Supplementary Information for

Ab Initio Thermodynamics Reveals the Nanocomposite Structure of Ferrihydrite

Michel Sassi¹,*, Anne M. Chaka¹, and Kevin M. Rosso¹

¹Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

*E-mail: michel.sassi@pnnl.gov

CONTENT

Details of surface enthalpies calculated with Metadise p2
Surface entropy and temperature-dependent surface energy p3
Effect of different (T,\(p\)H\(_2\)O) conditions on relative phase stability p4
AIT calculated Gibbs free energy and equilibrium reactions p5
Equilibrium solubility and hydrolysis reactions p5
Effect of pH on the solubility of [Fe(III)] of iron-(oxyhydr)oxide minerals p6
Supplementary References p7
Details of surface enthalpies calculated with Metadise:

Surface direction	Goethite	Hematite	Lepidocrocite	Orthorhombic phase	Michel Model	Manceau Model						
	ΔH_{surf}^p (J/m2)	ΔH_{surf}^h (J/m2)	ΔH_{surf}^p (J/m2)	ΔH_{surf}^h (J/m2)	ΔH_{surf}^p (J/m2)	ΔH_{surf}^h (J/m2)						
[001]	1.68	0.64	1.78	1.21	0.93	0.69	dipole	-	1.70	0.71		
[100]	1.48	0.78	1.99	1.01	1.46	0.80	1.81	0.64	1.42	0.56	1.12	0.60
[010]	0.68	1.01	1.99	1.01	0.25	0.25	1.86	0.58	1.80	0.54	0.58	1.16
[011]	1.86	0.64	2.41	0.83	0.81	0.60	dipole	-	dipole	-	1.39	0.74
[110]	1.18	0.50	2.03	0.81	1.49	0.84	1.40	0.59	1.73	0.81	0.96	0.72
[101]	1.32	0.84	2.34	0.67	1.68	0.72	dipole	-	dipole	-	1.64	0.44
[111]	1.33	0.61	2.41	0.84	1.66	0.73	dipole	-	dipole	-	1.38	0.75
[021]	1.22	0.58									1.13	0.59
[012]			2.36	0.97								
[102]			1.88	0.97								

Table S1: Calculated surface enthalpies of cleaved (ΔH_{surf}^p) and hydroxylated (ΔH_{surf}^h) surfaces for goethite, hematite, lepidocrocite, the orthorhombic phase, and the two ferrihydrite models.
- **Surface entropy and temperature-dependent surface energy:**

Mineral phases	ρ_{H_2O} (μmol/m2)	$S_{H_2O}^{Chem}$ (J.mol$^{-1}$.K$^{-1}$)	$S_{H_2O}^{Phys}$ (J.m$^{-2}$.K$^{-1}$)
Hematite (α-Fe$_2$O$_3$)	13.20	-17.10	-5×10$^{-5}$
Manceau Model (FeOOH)	10.58	-17.10	-5×10$^{-5}$
Michel Model (Fe$_5$O$_8$H)	12.10	-17.10	-5×10$^{-5}$
Goethite (α-FeOOH)	11.02	-17.10	-5×10$^{-5}$
Lepidocrocite (γ-FeOOH)	10.26	-17.10	-5×10$^{-5}$
Orthorhombic (Fe$_5$O$_8$H)	12.47	-17.10	-5×10$^{-5}$

Table S2: Details of the surface entropy for each mineral phase investigated. ρ_{H_2O}, $S_{H_2O}^{Chem}$, and $S_{H_2O}^{Phys}$ are respectively the density of water, the entropy of chemisorbed and physisorbed water. While ρ_{H_2O} has been calculated in this work, the values for $S_{H_2O}^{Chem}$ and $S_{H_2O}^{Phys}$ were obtained from the work of Hiemstra.1

For each mineral phase, the temperature-dependence of the surface energy has been calculated using the following generic equation:

$$\gamma(T) = \Delta H_{surf}^{h} - T(\rho_{H_2O} \times S_{H_2O}^{Chem} + S_{H_2O}^{Phys})$$

Table S3 summarizes the values of $\gamma(T)$ for the mineral phases considered.

Mineral phases	Temperature (K)											
	0	100	200	298.15	300	400	500	600	700	800	900	1000
Hematite	0.750	0.778	0.805	0.832	0.833	0.860	0.888	0.915	0.943	0.971	0.998	1.026
Manceau Modela	0.400	0.423	0.446	0.469	0.469	0.492	0.515	0.539	0.562	0.585	0.608	0.631
Manceau Modelb	0.100	0.123	0.146	0.169	0.169	0.192	0.215	0.239	0.262	0.285	0.308	0.331
Michel Modela	0.400	0.426	0.451	0.477	0.477	0.503	0.528	0.554	0.580	0.606	0.631	0.657
Michel Modelb	0.100	0.126	0.151	0.177	0.177	0.203	0.228	0.254	0.280	0.306	0.331	0.357
Goethite	0.550	0.574	0.598	0.621	0.622	0.645	0.669	0.693	0.717	0.741	0.765	0.788
Lepidocrocite	0.440	0.463	0.485	0.507	0.508	0.530	0.553	0.575	0.598	0.620	0.643	0.665
Orthorhombic	0.590	0.616	0.643	0.668	0.669	0.695	0.722	0.748	0.774	0.801	0.827	0.853

Table S3: Calculated values of $\gamma(T)$ in J/m2 at different temperatures.

a used $\Delta H_{surf}^{h} = 0.40$ J/m2.

b used $\Delta H_{surf}^{h} = 0.10$ J/m2.
Effect of different (T,pH₂O) conditions on relative phase stability:

Figure S1: Particle-size dependency of the relative phase stability of the Manceau and Michel ferrihydrite models as well as for goethite, lepidocrocite, hematite and the orthorhombic phase for pH₂O=32 mbar and pH₂O=1 bar, and (a,d) T=100 K, (b,e) T=298.15 K, and (c,f) T=500 K. For the two ferrihydrite models, the curves with open squares were obtained using ΔH_{surf}^{h}=0.10 J/m², while the curves with open circles used ΔH_{surf}^{h}=0.40 J/m². Square filled curves used ΔH_{surf}^{h} calculated for hydroxylated periodic surface crystals. The red hatched area represents the size-range of particles for which the two ferrihydrite models can potentially coexist.
• AIT calculated Gibbs free energy and equilibrium reactions:

Mineral phase	$\Delta G_{\text{Calc.}}$ (kJ/mol)	$\Delta G_{\text{Expt.}}$ (kJ/mol)	Equilibrium reactions	Log($K_{s0}^{\text{Calc.}}$)	Log($K_{s0}^{\text{Expt.}}$)
Hematite	-747.375	-744.400	$\text{Fe}_2\text{O}_3 + 6\text{H}^+ \leftrightarrow 2\text{Fe}^{3+} + 3\text{H}_2\text{O}$	-3.627	-2.101
Michel model	-1958.630	n/a	$\text{Fe}_5\text{O}_8\text{H} + 15\text{H}^+ \leftrightarrow 5\text{Fe}^{3+} + 8\text{H}_2\text{O}$	-4.257	n/a
Manceau model	-486.942	n/a	$\text{FeOOH} + 3\text{H}^+ \leftrightarrow \text{Fe}^{3+} + 2\text{H}_2\text{O}$	-1.049	n/a
Goethite	-490.372	-490.600	$\text{FeOOH} + 3\text{H}^+ \leftrightarrow \text{Fe}^{3+} + 2\text{H}_2\text{O}$	-1.650	-1.020
Lepidocrocite	-479.810	-482.700	$\text{FeOOH} + 3\text{H}^+ \leftrightarrow \text{Fe}^{3+} + 2\text{H}_2\text{O}$	-0.202	0.365
Orthorhombic	-1944.192	n/a	$\text{Fe}_5\text{O}_8\text{H} + 15\text{H}^+ \leftrightarrow 5\text{Fe}^{3+} + 8\text{H}_2\text{O}$	-1.725	n/a
H_2O	-235.232	-237.141			
Fe^{3+}	n/a	-10.500			

Table S4: Comparison of AIT calculated and experimental Gibbs free energies and solubilities for virtual bulk lattices of the various mineral phases considered at $T=298.15$ K and $p\text{H}_2\text{O}=32$ mbar.

• Equilibrium solubility and hydrolysis reactions:

Based on the equilibrium reactions shown in Table S4, the equilibrium solubility of [Fe(III)] for each mineral phase has been calculated by following the methodology given in Ref[4,5] by:

$$K_{\text{Fe}_2\text{O}_3} = \frac{a_{\text{Fe}}^2 a_{\text{H}_2\text{O}}^3}{a_{\text{H}}^6}$$

$$K_{\text{Fe}_5\text{O}_8\text{H}} = \frac{a_{\text{Fe}}^5 a_{\text{H}_2\text{O}}^8}{a_{\text{H}}^{15}}$$

$$K_{\text{FeOOH}} = \frac{a_{\text{Fe}} a_{\text{H}_2\text{O}}^2}{a_{\text{H}}^3}$$

Where a_i is the activity of the species i and is defined by the product between the activity coefficient (γ_i) and the concentration of the species i such that $a_i = \gamma_i \times [i]$. Considering pure water as the medium for the chemical reactions, we used the Davies formula to calculate the activity coefficients of the charged species involved in the chemical reactions, as well as the activity of water. The use of the Davies formula is justified for solutions with ionic strength lower than 0.3 mol/kg.

$$\gamma = 10^{-a z_i^2 \left(\frac{i}{2} \frac{I}{17} - 0.3 I\right)}$$

where a is the Debye-Hückel parameter having the value of 0.50948, z_i is the charge of the species, and I (in mol/kg) is the ionic strength of the solution. The water activity has been determined by the following equation:
\[
(H_2O) = \frac{[H_2O]}{[H_2O] + \sum_{[\text{solute}]},}
\]

where \([H_2O]=55.5099 \text{ mol/kg}.

The hydrolysis equilibrium reactions\(^{4,5}\) considered in the calculations are:

\[
\begin{align*}
\text{Fe}^3+ + H_2O &\leftrightarrow \text{Fe(OH)}^2+ + H^+ \\
\text{Fe}^3+ + 2H_2O &\leftrightarrow \text{Fe(OH)}_2^+ + 2H^+ \\
\text{Fe}^3+ + 3H_2O &\leftrightarrow \text{Fe(OH)}_3^0 + 3H^+ \\
\text{Fe}^3+ + 4H_2O &\leftrightarrow \text{Fe(OH)}_4^- + 4H^+
\end{align*}
\]

- **Effect of pH on the solubility of \([\text{Fe(III)}]\) of iron-(oxyhydr)oxide minerals:**

 \[\text{Figure S2: Equilibrium solubility of [Fe(III)] for the various minerals in pure water. (a-c) Particle-size dependence of [Fe(III)] solubility at pH=3, 5, and 7. The red hatched area represents the size-range of particles for which the two ferrihydrite models can potentially coexist. (d) pH-dependence of [Fe(III)] solubility of iron (oxyhydr)oxide phases considered as virtual bulk lattices, with Gibbs free energy calculated from AIT and compared to experimental values.}\]
• Supplementary References:

1. Hiemstra, T. Formation, stability, and solubility of metal oxide nanoparticles: Surface entropy, enthalpy, and free energy of ferrihydrite. *Geochim. Cosmochim. Acta* **158**, 179-198 (2015).

2. Navrotsky, A.; Mazeina, L.; Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. *Science* **319**, 1635-1638 (2008).

3. *NIST-JANAF Thermochemical Tables*, 4th ed., edited by J. M. W. Chase American Chemical Society, Washington, DC, **1998**.

4. Millero, F. J; Yao, W.; Aicher, J. The separation of Fe(II) and Fe(III) in natural waters. *Mar. Chem.* **50**, 21-39 (1995).

5. Liu, X.; Millero, F. J. The solubility of iron hydroxide in sodium chloride solutions. *Geochim. Cosmochim. Acta* **63**, 3487-3497 (1999).