Bali Medical Journal

INDONESIAN PHYSICIAN FORUM & INDONESIA COLLEGE OF SURGEONS, INDONESIA
Vol 5, No 2 (2016)

Table of Contents

ORIGINAL ARTICLE
The Healing Effect of Cuttlefish Bone on Fractured Bone in Rat Model
Laskar Pradnyan Kloping, Purwati Purwati, Mouli Edward
Online First: April 30, 2016
DOI: 10.15562/bmj.v5i2.195

ORIGINAL ARTICLE
Correlation between Nerve Growth Factor (NGF) with Brain Derived Neurotropic Factor (BDNF) in Ischemic Stroke Patient
Joko Widodo, Andi Asadul, Andi Wijaya, Gatot Lawrence
Online First: May 03, 2016
DOI: 10.15562/bmj.v5i2.199

ORIGINAL ARTICLE
Cinnamon Extract Effect on Osteoblast Activity in Diabetic Wistar Rats
Fahrin Ramadan Andiwijaya, Fundhy Sinar Ikrar Prihatanto, Hermawan Susanto
Online First: May 04, 2016
DOI: 10.15562/bmj.v5i2.168

ORIGINAL ARTICLE
Intra Arterial Heparin Flushing Increases Manual Muscle Test – Medical Research Council (MMT-MRC) Score in Chronic Ischemic Stroke Patient
Terawan Agus Putranto, Irawan Yusuf, Bachtiar Murtala, Andi Wijaya
Online First: May 11, 2016
DOI: 10.15562/bmj.v5i2.200

ORIGINAL ARTICLE
Relative Humidity of 40% Inhibiting the Increase of Pulse Rate, Body Temperature, and Blood Lactic Acid During Exercise
Nengah Sandi, Alex Pangkahila, Putu Gede Adiatmika
Online First: May 14, 2016
ORIGINAL ARTICLE
High Ki67 and Vascular Endothelial Growth Factor (VEGF) Protein Expression as Negative Predictive Factor for Combined Neoadjuvant Chemotherapy in Young Age Stage III Breast Cancer
I Wayan Sudarsa, Ida Bagus Tjakra Wibawa Manuaba, Sri Maliawan, I Wayan Putu Sutirtayasa
Online First: May 23, 2016
DOI: 10.15562/bmj.v5i2.203

ORIGINAL ARTICLE
Cosmetic Outcome of Tubularized Incised Plate Depends on The Type of Hypospadias: A Case Control Study
Gede Wirya Kusuma Duarsa, Teguh Dwi Nugroho, Tjokorda Gede Bagus Mahadewa, Anak Agung Gde Oka, Ketut Putu Yasa, Ida Bagus Made Suryawisesa
Online First: August 01, 2016
DOI: 10.15562/bmj.v5i2.228

ORIGINAL ARTICLE
Anti-Inflammatory Effect of Red Piper Crocatum Leaves Extract Decrease TNF-α and IL-6 Levels in Wistar Rat with Atherosclerosis
Sri Wahjuni, I.W. Wita, I N. Mantik Astawa
Online First: May 30, 2016
DOI: 10.15562/bmj.v5i2.210

ORIGINAL ARTICLE
The accuracy of histopathologic examination compared with polymerase chain reaction to diagnose human papillomavirus infection in the uterine cervix
I G.A.S. Mahendra Dewi
Online First: June 05, 2016
DOI: 10.15562/bmj.v5i2.221

ORIGINAL ARTICLE
Correlation Between Protein Intake and Nitrogen Balance of Surgical Patients in Anesthesiology and Intensive Care Installation, Sanglah General Hospital, Denpasar, Bali, Indonesia
Made Wiryana, I Ketut Sinardja, Tjokorda Gde Agung Senapathi, I Made Gede Widnyana, Putu Agus Surya Panji, I Wayan Aryabiantara, Marilaeta Cindryan
Online First: June 08, 2016
DOI: 10.15562/bmj.v5i2.216
Antihypertensive and Antioxidant Potential of Purple Sweet Potato Tuber Dry Extract in Hypertensive Rats
I Made Jawi, I W Putu Sutirta Yasa, Agung Nova Mahendra
Online First: June 09, 2016
DOI: 10.15562/bmj.v5i2.217

Administration of Leptin Increases the Level of Follicle Stimulating Hormone (FSH) and Development of Ovarian Follicles in Postpartum Anestrus of Bali Cattle
Indira Laksmi, Tjok G.O. Pemayun, I Made Damriyasa, N.S. Dharmawan
Online First: June 12, 2016
DOI: 10.15562/bmj.v5i2.215

Betel Leaf Extract (Piper betle L.) Antihyperuricemia Effect Decreases Oxidative Stress by Reducing the Level of MDA and Increase Blood SOD Levels of Hyperuricemia Wistar Rats (Rattus norvegicus)
I Made Sumarya, Nyoman Adiputra, Putra Manuaba, Dewa Sukrama
Online First: June 16, 2016
DOI: 10.15562/bmj.v5i2.218

Relation between Fiber Diet and Appendicitis Incidence in Children at H. Adam Malik Central Hospital, Medan, North Sumatra-Indonesia
Boyke Damanik, Erjan Fikri, Iqbal Pahlevi Nasution
Online First: June 19, 2016
DOI: 10.15562/bmj.v5i2.225

Fetal Sex Determination Using Cell-Free Fetal Dna (cffDNA) in Maternal Blood
I Nyoman Hariyasa Sanjaya, Tjok Gde Agung Suwardewa, I G Kamasan N. Arijana
Online First: June 19, 2016
DOI: 10.15562/bmj.v5i2.197

Unripe Papaya (Carica papaya L.) Seed Hexane Fraction Extract Inhibits Male Mice (Mus musculus) Spermatogenesis Stronger Than Unripe Papaya Seed Methanolic Extract
Bagus Komang Satriyasa
Online First: June 20, 2016
DOI: 10.15562/bmj.v5i2.224
ORIGINAL ARTICLE
The Relationship Between Education, Job, and Family Income with TB Medication Dropouts in Timor-Leste
Valente Da Silva, Suryadi Tigeh, Nyoman Wirawan, Made Bakta
Online First: June 22, 2016
DOI: 10.15562/bmj.v5i2.223

ORIGINAL ARTICLE
Association of Epidermal Growth Factor Receptor (EGFR) with Tumor Location and Clinicopathological Aspect in Head and Neck Squamous Cell Carcinoma
I Nyoman Diwiya Abdi Nuratna, Ida Bagus Made Surya Wisesa
Online First: June 27, 2016
DOI: 10.15562/bmj.v5i2.228

ORIGINAL ARTICLE
Lactate Clearance: Predictor for Mortality and Therapeutic Response on Severe Sepsis Patient
Edwin Saleh Siregar, Andriana Purnama, Reno Rudiman
Online First: June 27, 2016
DOI: 10.15562/bmj.v5i2.230

ORIGINAL ARTICLE
Hospital Accreditation: What is its Effect on Quality and Safety Indicators? Experience of an Iranian teaching hospital
Ali Janati, Jafar Sadegh Tabrizi, Firooz Toofan, Khadijeh Nadim Algalandis, Reza Ebrahimoghli
Online First: July 04, 2016
DOI: 10.15562/bmj.v5i2.241

ORIGINAL ARTICLE
Indonesian Modified Checklist for Autism in Toddler, Revised with Follow-Up (M-CHAT-R/F) for Autism Screening in Children at Sanglah General Hospital, Bali-Indonesia
I Gusti Ayu Trisna Windiani, Soetjiningsih Soetjiningsih, I Gusti Agung Sugitha Adnyana, Kadek Apik Lestari
Online First: July 08, 2016
DOI: 10.15562/bmj.v5i2.240

ORIGINAL ARTICLE
Older Age and Worse Nutritional State Were Related with Impaired Inflammatory Response in Elderly Patients
R.A. Tuty Kuswardhani, Gede Sukrawan, Ketut Suastika
Online First: July 12, 2016
DOI: 10.15562/bmj.v5i2.239
ORIGINAL ARTICLE

Dietary Iron Intake and Serum Interleukin-6 Levels of Obese Children With and Without Iron Deficiency
Lanang Sidiartha, I Made Bakta, I Made Wiryana, I Wayan Putu Sutirtayasa, Damayanti R. Sjarif
Online First: July 18, 2016
DOI: 10.15562/bmj.v5i2.249

ORIGINAL ARTICLE

The Correlation of Nurses’ job Burnout and Their Social Responsibility Considering the Role of Control Locus
Reyhane Izedi, Mohammad Amin Bahrami
Online First: July 20, 2016
DOI: 10.15562/bmj.v5i2.258

ORIGINAL ARTICLE

Caspase-3 Expression Correlation with Cell Differentiation Grade, Stage, and Residual Tumor Size in Epithelial Ovarian Cancer
I Nyoman Gede Budiana
Online First: July 23, 2016
DOI: 10.15562/bmj.v5i2.259

ORIGINAL ARTICLE

SpO2/FiO2 Ratio as an Oxygenation Parameter in Pediatric Acute Respiratory Distress Syndrome
Dinna Auliawati, Ida Bagus Gede Suparyatha, Dyah Kanya Wati, I Nyoman Budi Hartawan, Ida Bagus Subanada
Online First: November 21, 2016
DOI: 10.15562/bmj.v5i2.338

ORIGINAL ARTICLE

Pheno-genotypic profile of Vibrio cholerae hemolysin (hlyA) isolated from shrimp and shellfish at Kedonganan fish market, Bali-Indonesia
I Dewa Made Sukrama, Rian Ka Praja, Ni Nengah Dwi Fatmawati
Online First: July 07, 2016
DOI: 10.15562/bmj.v5i2.231

REVIEW

Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Novel Markers for Diagnosis of Sudden Sensorineural Hearing Loss: A Systematic Review and Meta-analysis
Mohammad Amin Bahrami, Abdollah Ansari, Kefayat Chaman-Ara, Elham Bahrami, Sima Bahrami, Mohammad Nabi Bahrami, Omid Barati, Mahmood Moosazadeh, Rauf O˘ guzhan Kum
Online First: April 30, 2016
DOI: 10.15562/bmj.v5i2.198

REVIEW

Safety Procedure for Biosafety and Controlling a Communicable Disease: Streptococcus Suis
Deasy Ayuningtyas Tandio, Amertha Putra Manuaba
Online First: June 13, 2016
DOI: 10.15562/bmj.v5i2.220

REVIEW

Evaluation and Prioritization of Service Quality Dimensions Using Dematel and Topsis (A Case Study in Iran)
Khatere Khanjankhani, Sima Rafiee, Mohammad Ranjbar Ezzatabadi, Rooollah Askari, Fatemeh Abooee, Milad Shafii
Online First: June 30, 2016
DOI: 10.15562/bmj.v5i2.233

REVIEW

High Level of Soluble FMS-Like Tyrosine Kinase-1 (sFlt-1) Serum in Pregnancy as a Risk Factor of Preeclampsia
I Gede Mega Putra, I Gede Putu Surya, A.A Sagung Istri Mas Pratiwi
Online First: July 18, 2016
DOI: 10.15562/bmj.v5i2.247

REVIEW

Characteristics of High-Risk Pregnancy in Sanglah General Hospital 2011-2014
Ryan Saktika Mulyana, Anak Agung Ngurah Jaya Kusuma, I Nyoman Hariyasa Sanjaya, Endang Sri Widiyanti
Online First: July 26, 2016
DOI: 10.15562/bmj.v5i2.260

CASE REPORT

Airborne Fungi in Chronic Rhinosinusitis Patients Maxillary Sinus Lavage at Dr. Saiful Anwar Hospital Malang
Iriana Maharani, Rus Suheryanto, Endang Retnoningsih
Online First: May 08, 2016
DOI: 10.15562/bmj.v5i2.181

CASE REPORT

The Characteristics of Cervical Cancer Patients Who Underwent a Radical Hysterectomy at Sanglah Hospital Denpasar in 2015
I Nyoman Bayu Mahendra
CASE REPORT
Treatment of a Recurrent Vaginal Obstruction With a Modified Mold After an Excision of a Transverse Vaginal Septum
I Wayan Megadhana
Online First: June 01, 2016
DOI: 10.15562/bmj.v5i2.212

CASE REPORT
Brain Metastasis as Initial Manifestation of Melanoma (A Case Report)
Vitorino Modesto Santos, Renata Faria Silva, Viviane Vieira Passini, Mayza Lemes Duarte, Leandro Pretto Flores
Online First: June 28, 2016
DOI: 10.15562/bmj.v5i2.149

CASE REPORT
Management of Spinal Tuberculosis (TB) in Developing Country
Tjokorda GB Mahadewa
Online First: July 04, 2016
DOI: 10.15562/bmj.v5i2.245

CASE REPORT
Gallbladder Ascariasis: A Successful Conservative Treatment in a Rarely Found Case
Suma Wirawan, Bayu Indratama
Online First: July 26, 2016
DOI: 10.15562/bmj.v5i2.242

CASE REPORT
Asymptomatic Cardiac Rhythm Abnormality in Children with Dengue Virus Infection
Ni Putu Veny Kartika Yantie, Eka Gunawijaya, I Wayan Suradipa, I Wayan Gustawan
Online First: July 28, 2016
DOI: 10.15562/bmj.v5i2.209
Editor-in-Chief

Prof. Dr. Sri Maliawan, SpBS
(Scopus ID= 15738530400, h-index= 3, maliawans@yahoo.com)
Department of Neuro Surgery, Udayana University
Sanglah General Hospital
Bali - Indonesia

Associate Editor

Prof. Putra Manuaba, M.Phil
(Scopus ID= 8412278400, h-index= 1, putramanuaba28@yahoo.com)
Biomedicine Postgraduate Program, Udayana University
Bali - Indonesia

Editorial Board for Regional America

Ankit Sakhuja, M.B.B.S., F.A.C.P., F.A.S.N.
(Scopus ID= 16744977200, h-index= 8, asakhuja@med.umich.edu)
Nephrology and Hypertension Cleveland Clinic (United States)

Editorial Board for Regional Australia

Prof. John Svigos, MB, BS, DRCOG., FRCOG., RANZCOG
(Scopus ID= 6603773825, h-index= 7, jsvigos@iprimus.com.au)
Ashford Hospital & Faculty of Health Sciences, University of Adelaide, Australia

Editorial Board for Regional Europa

Prof. Harald Hoekstra
(Scopus ID= 36038081900, h-index= 53 ,jsvigos@iprimus.com.au)
Universitair Medisch Centrum Groningen, Division of Surgical Oncology, Groningen the Netherland
Editorial Board for Regional Asia

Prof. Huang Qin
(Scopus ID= 8570628900, h-index= 1, qhuang@cqu.edu.cn)
Chairman Dept. of Neurosurgery, Guangdong 999 Hospital Guangzhou China

Dr. P.S. Ramani M.D
(Scopus ID= 7003454654, h-index= 5, ramani@balimedicaljournal.org)
Professor and Head Dept. of Neuropinal Surgery, University of Mumbai-India

Prof. Soo Khee Chee
(Scopus ID= 7005885770, h-index= 8, kheechee.soo@duke-nus.edu.sg)
SGH (Singapore General Hospital), National University Hospital, Duke Medical Center
Singapore

Prof. Shukla
(Scopus ID= 7103167378, h-index= 29, shukla@balimedicaljournal.org)
Banaras Hindu University Institute of Medical Sciences, Varanasi India

Dr. Junichi Mizuno, Ph.D
(Scopus ID= 7006425415, h-index= 16, junichi@balimedicaljournal.org)
Southern Tohoku General Hospital, Department of Neurosurgery, Iwanuma, Miyagi, Japan

Dr. G Sai sailesh Kumar, Ph.D
(Scopus ID= 56176035300, h-index= 5, saisailesh.kumar@gmail.com)
Department of Physiology, Little Flower Institute of Medical Sciences and Research, Angamaly,
Kerala, India

Assoc. Prof. Mohammad Amin Bahrami
(Scopus ID= 55524082200, aminbahrami1359@gmail.com)
Head of healthcare management department, Shahid Sadoughi University of Medical Sciences,
Yazd, Iran

Dr. Tanveer Beg, PhD
(Scopus ID: 6505772852; h-index = 11; tbmirza@jazanu.edu.sa)
Assistant Professor, Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi
Arabia.

Editorial Board Members

Prof. Dr. dr. I Made Bakta, Sp.PD(KHOM)
(Scopus ID= 6603197439, h-index= 3, bakta@balimedicaljournal.org)
Udayana University, Sanglah General Hospital, Bali-Indonesia

Prof. Dr. dr. A. A. Raka Sudewi, Sp.S(K)
(Scopus ID= 12140226200, h-index= 2, sukadewi@balimedicaljournal.org)
Postgraduate Program Udayana University, Sanglah Hospital, Bali-Indonesia
Prof. Dr. dr. IB Tjakra Wibawa Manuaba SpB K.Onk MPH
(Scopus ID= 22953883500, h-index= 2, tjakra@balimedicaljournal.org)
Udayana University, Sanglah General Hospital, Bali-Indonesia

Prof. Ketut Suwiyoga, SpOG
(suwiyoga@balimedicaljournal.org)
Faculty of Medicine, Udayana University, Sanglah Hospital Denpasar, Bali-Indonesia

Prof. Andi Asadul Islam
(asadul@balimedicaljournal.org)
Faculty of Medicine Hasanudin University, Makasar-Indonesia

Prof. Dr. dr. Abdul Hafid Bajamal, Sp.BS
(bajamal@balimedicaljournal.org)
Faculty of Medicine Airlangga University, Surabaya-Indonesia

Prof. I Ketut Siki Kawiyan SpB, SpOrtho
(kawijaya@balimedicaljournal.org)
Faculty of Medicine Udayana University, Sanglah General Hospital, Bali-Indonesia

Dr. Sudarsa SpB
(sudarsana@balimedicaljournal.org)
Sanglah General Hospital, Bali-Indonesia

Dr Steven Christian SPB
(christian@balimedicaljournal.org)
Sanglah General Hospital, Bali-Indonesia

Dr. Nyoman Semadi SpB
(semadi@balimedicaljournal.org)
Thorax and Cardiovascular Surgery, Sanglah General Hospital, Bali-Indonesia

Dr. Wayan Sutarga
(sutarga@balimedicaljournal.org)
Sanglah General Hospital, Bali-Indonesia

dr. I.B. Amertha P. Manuaba, SKed, MBiomed.
(AmerthaManuaba@gmail.com / Amertha_Manuaba@unud.ac.id)
(ResearcherID: P-9169-2016) (orcid.org/0000-0001-6647-9497)
Scopus ID=57195520004
Biomedicine Magister Program, Udayana University, Indonesia
The accuracy of histopathologic examination compared with polymerase chain reaction to diagnose human papillomavirus infection in the uterine cervix

Mahendra-Dewi I G.A.S.

ABSTRACT

Introduction: Until today cancer is still the main health problem besides infectious disease in Indonesia and other developing countries. Cervical cancer is the second most common cancer, where early detection of high-risk Human Papillomavirus (HPV) infection as the causative agent is very important so that the cervical lesions do not develop into pre-cancerous lesions and cancer. Even though, Polymerase Chain Reaction (PCR) is still not possible to be used as a screening method in the wider community, because the cost is quite expensive. An easier, cheaper, and simpler method of examination is needed to detect earlier infection, with the accuracy close to gold standard examination. This study aims to determine the accuracy of histopathologic examination compared with PCR to diagnose HPV infection in the uterine cervix.

Methods: This is a cross-sectional diagnostic test, with predictor variable is conventional histopathology examination, and outcome variable is PCR examination. The samples in this study were tissue biopsy, or surgery samples of patients clinically diagnosed with cervical lesion. A 2x2 table was created to calculate the sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV).

Result: A total of 39 samples were observed in this study. The sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) were 72.73%, 58.82%, 69.57% and 62.50%, respectively.

Conclusion: This study found the accuracy of histopathologic examination compared with PCR to diagnose HPV infection in the uterine cervix is more than 50%.

Keywords: accuracy, histopathology, PCR, HPV, uterine cervix
Cite This Article: Mahendra-Dewi I G.A.S. 2017. The accuracy of histopathologic examination compared with polymerase chain reaction to diagnose human papillomavirus infection in the uterine cervix. Bali Medical Journal 5(2): 362-365. DOI:10.15562/bmj.v5i2.221

INTRODUCTION

Cancer is still a health problem in the world especially in developing countries including Indonesia. One of these cancers is cervical cancer, whose incidence is still high and tends to increase. Cervical cancer ranks the second most common cancer after breast cancer, which is one of the main causes of death in women.1,2,3,4

High risk oncogenic human papillomavirus (HPV) play a causative role in the development of cervical cancer.3,4,5,6

Most sexually-active women are exposed to HPV infection during their lifetimes. To date, more than 120 HPV types have been found, of which more than 40 types of HPV infect the anogenital and other mucosal body, of these, 13–18 types belonging to high-risk type.7 Approximately 90-95% of cervical cancer are caused by high-risk HPV-16 and 18.3,4,8

Early detection of this high-risk human papillomavirus infection is very important to prevent the development of cervical lesions into precancerous lesions and cancer. A study by Kose and Murat (2014) found about 15% of women infected with HPV develop cervical intraepithelial neoplasia (CIN) within 7 years. Invasive cancer developed at a rate of 1–3% after this infection, and the required period is approximately 25–40 years or a few months to several years depending on the precancerous lesion grade.7,9

These infections provide cytopathic effect i.e. changes in cervical squamous epithelial cells that are a pathognomonic sign for productive HPV infection, which can be seen in both routine cytological screening with the Papanicolaou (Pap) test and histopathologic examination.7,10 The cytopathic effect called koilocytic atypia, characterized by the presence of nuclear atypia i.e. the size of the nucleus varies and enlarging up to three times the normal nucleus size, hyperchromatic nucleus, irregular nuclear membrane, cavitation or cytoplasmic halo around the nucleus, and cell membrane thickening.4,10,11,12 The genesis of the cytoplasmic vacuole has remained unclear, particularly because both HPV DNA replication and virion assembly occur exclusively in the nucleus.4,12

Cytopathic effects related to the human papillomavirus (HPV) infection are more frequently found in cervical intraepithelial neoplasia (CIN) 1.11

*Correspondence to: Mahendra-Dewi I G.A.S., Department of Pathology Anatomy, Faculty of Medicine Udayana University/ Sanglah General Hospital Denpasar-Bali mahendradewi@rocketmail.com

Received: 2016-01-23
Accepted: 2016-02-23
Published: 2016-06-5

Open access: www.balimedicaljournal.org and ojs.unud.ac.id/index.php/bmj
Molecular-based HPV testing such as Polymerase Chain Reaction (PCR) is not yet possible used as a screening program. An easier, cheaper and simpler method of examination is needed to detect earlier infection, which can be applied in developing countries with large populations, but still, has a sensitivity and specificity close to gold standard. This study aims to determine the accuracy of histopathologic examination compared with PCR to diagnose HPV infection in the uterine cervix.

RESEARCH DESIGN AND METHODS

Specimen collection

This study design was a cross-sectional diagnostic test that was conducted during the years 2013-2014. The materials of this study were the paraffin-embedded tissue biopsy, or surgery of patients with clinically diagnosed have a cervical lesion at Obstetric and Gynecologic Department Faculty of Medicine Udayana University/ Sanglah General Hospital. Samples were collected on a consecutive basis until the required sample size was met. The conventional histopathology examination was as the predictor variable and PCR examination as the outcome variable.

Histopathology Examination and HPV DNA Detection

The specimen was processed and then stained with routine Hematoxylin & Eosin. Histopathologic examination was performed to determine the presence of cytopathic effects as a sign of suspicion of HPV infection. For detection of HPV DNA, the paraffin-embedded tissues from biopsy or surgery of patients that have been examined histopathologically, either with or without cytopathic effect were sent to Molecular Biology Laboratory Unit, Faculty of Medicine Udayana University. SPF10 primers at several dilutions were used to amplify the DNA. A total of 39 cervical lesion patients were included in this study.

Statistical Analysis

A descriptive characteristic of the data subject was tabulated. A 2×2 table was created to calculate the sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV).

RESULTS

Sample distribution based on patient age display in Table 1, and the results of histopathologic and PCR examination display in Table 2 and Table 3. The positive cytopathic effect with conventional histopathologic examination show in Figure 1 and the

Table 1 Sample Distribution Based on Patient Age

Age range (years)	Number	Percentage (%)
21-30	4	10.26
31-40	12	30.77
41-50	12	30.77
51-60	7	17.94
61+	4	10.26
Total	39	100.00

Table 2 Sample Distribution Based on Patient Age, Histopathologic and PCR Examination

Age range (years)	Histopathology	PCR				
	Positive	Negative	Total	Positive	Negative	Total
21-30	2	5.13	2	5.13	4	10.26
31-40	7	17.95	5	12.82	12	30.77
41-50	6	15.38	6	15.38	12	30.77
51-60	5	12.82	2	5.13	7	17.95
61+	3	7.69	1	2.56	4	10.25
Total	23	58.97	16	41.03	9	100.00

Table 3 Sample Distribution Based on Histopathologic and PCR Examination

PCR	Positive	Negative	Total	Se (%)	Sp (%)	PPV (%)	NPV (%)
Histopathology	16	7	23	72.73	58.82	69.57	62.50
Negative	6	10	16				
Total	22	17	39				
positive result of DNA HPV with PCR examination shown in Figure 2.

A total of 39 cervical lesion patients were included in this study. Of these patients, the most distribution was obtained in the 31-40 and 41-50 year age group of 12 samples (30.77%) each. This study is in accordance with the result of previous studies. A study by Ting et al. (2010) found age range of low-grade lesions occurred at 20-30 years age groups.14 A cross-sectional study in Indonesia to evaluate the performance of a single-visit approach of cervical cancer screening, using visual inspection with acetic acid (VIA), histology and cryotherapy in low-resource settings, found 64.4% high-risk women were in the age group of 30–49 years.15 Young sexually active women are the highest risk for acquiring HPV infection.7

Examination with conventional histopathology to determine the positive cytopathic effect as an indication of suspicion HPV infection was found in 23 samples (58.97%). Examination with PCR for positive DNA HPV was found in 22 samples (56.41%). The most prevalence of positive patients with conventional histopathology and PCR examination was in the 31-40 years age group, each of 7 samples (17.95%) and 8 samples (20.51%).

All of the positive HPV samples in this study were low-grade precancerous lesions i.e. cervical intraepithelial neoplasia (CIN) grade 1. This result showed a higher percentage compared to the previous study i.e. the prevalence of HPV infection in precancerous lesion was 18% in CIN 1 and 66% in CIN 2-3.11,16

Study by Hu et al. (2011) found 3.4% of their samples were diagnosed as CIN grade 2 or worse lesions, and 17.1% were found to be positive for HPV DNA.17 In cervical cancer cases, infection by HPV found by 90-95% in the world,18 and 95.9% in Jakarta.19 A study by Vet et al. (2008) in three regions in Indonesia; Jakarta, Tasikmalaya, and Bali. Investigate age-specific prevalence of HPV types in a population-based sample of 2686 women, aged 15–70 years, found the overall HPV prevalence was 11.4%, and 92.9% was positive in cervical cancer patients.20

DISCUSSION

Of the 39 samples studied, the most distribution of cervical, uterine lesion either with or without suspicion for HPV infection diagnosed with conventional histopathology was obtained in the 31-40 and 41-50 year age group of 12 samples (30.77%) each. This study is in accordance with the result of previous studies. A study by Ting et al. (2010) found age range of low-grade lesions occurred at 20-30 years age groups.14 A cross-sectional study in Indonesia to evaluate the performance of a single-visit approach of cervical cancer screening, using visual inspection with acetic acid (VIA), histology and cryotherapy in low-resource settings, found 64.4% high-risk women were in the age group of 30–49 years.15 Young sexually active women are the highest risk for acquiring HPV infection.7

Examination with conventional histopathology to determine the positive cytopathic effect as an indication of suspicion HPV infection was found in 23 samples (58.97%). Examination with PCR for positive DNA HPV was found in 22 samples (56.41%). The most prevalence of positive patients with conventional histopathology and PCR examination was in the 31-40 years age group, each of 7 samples (17.95%) and 8 samples (20.51%).

All of the positive HPV samples in this study were low-grade precancerous lesions i.e. cervical intraepithelial neoplasia (CIN) grade 1. This result showed a higher percentage compared to the previous study i.e. the prevalence of HPV infection in precancerous lesion was 18% in CIN 1 and 66% in CIN 2-3.11,16

Study by Hu et al. (2011) found 3.4% of their samples were diagnosed as CIN grade 2 or worse lesions, and 17.1% were found to be positive for HPV DNA.17 In cervical cancer cases, infection by HPV found by 90-95% in the world,18 and 95.9% in Jakarta.19 A study by Vet et al. (2008) in three regions in Indonesia; Jakarta, Tasikmalaya, and Bali. Investigate age-specific prevalence of HPV types in a population-based sample of 2686 women, aged 15–70 years, found the overall HPV prevalence was 11.4%, and 92.9% was positive in cervical cancer patients.20

Table 2 show the number of cases with positive cytopathic effect as a suspicion of HPV infection with the conventional histopathologic examination as many as 23 samples (58.97%), while with PCR were 22 samples (56.41%). The most prevalence of positive patients with conventional histopathologic and PCR examination was in the 31-40 years age group, each of 7 samples (17.95%) and 8 samples (20.51%).

Table 3 show the accuracy of conventional histopathologic examination compared with PCR namely: sensitivity (Se) = 72.73%, specificity (Sp) = 58.82%, positive predictive value (PPV) = 69.57% and negative predictive value (NPV) = 62.50%.
Of 23 positive samples examined with conventional histopathology, only 16 samples were positive with PCR examination, so the positive predictive value (PPV) was 69.57%. Of 16 negative samples examined with conventional histopathology, only 10 samples were negative with PCR examination, so the negative predictive value (NPV) was 62.50%. This study found 16 samples were positive with conventional histopathologic examination and also positive with PCR examination of all positive samples (22 samples), so the sensitivity (Se) was 72.73%. Ten samples were negative with conventional histopathologic examination and also negative with PCR examination of all negative samples (17 samples), so the specificity (Sp) was 58.82%. The accuracy obtained in this study is lower than the previous study, i.e. sensitivity for HPV infection in the form of atypia koliocytotic as much as 88.89% and PPV 72.73%.

Another study found koliocytosis was found in 63% of the smears from women with a histopathological diagnosis of CIN 1.

A study by Abdelbadia et al. (2016) who compared the results of a pap smear, histopathology, colposcopy and PCR swab with in situ hybridizations (ISH) PCR tissue. Found highly significant results, with sensitivity of 87.5%, 100%, 62.5% and 56.2% respectively, but the specificity were 78.6%, 42.9%, 28.6% and 100% respectively. The conclusion of their research that conventional cytology and histopathology were sensitive tests for detection of HPV and this may help for early detection and histopathology were sensitive tests for detection of their research that conventional cytology 42.9%, 28.6% and 100% respectively. The conclusions (ISH) PCR tissue. Found highly significant compared the results of a pap smear, histopathologic examination and also negative with PCR examination of all negative samples (22 samples), so the sensitivity (Se) was 72.73%. Ten samples were negative with conventional histopathologic examination and also positive with PCR examination of all positive samples (22 samples), so the specificity (Sp) was 58.82%. The accuracy obtained in this study is lower than the previous study, i.e. sensitivity for HPV infection in the form of atypia koliocytotic as much as 88.89% and PPV 72.73%.

REFERENCES
1. Matah M, Sareen S. Detection of HPV by PCR-A Novel Step in the Prevention of Cancer Cervix. J Obstet Gynaecol India. 2012; 62(2): 188-191. doi: 10.1007/s13224-012-0167-3.
2. Burk RD, Chen Z, Van Doorslaer K. Human Papillomaviruses: Genetic Basis of Carcinogenicity. Public Health Genomics. 2009; 12:281–290. DOI:10.1159/000214919.
3. Zampronha RAC, Freitas-Junior R, Murta EFC, Michelin MA, Barbaresco AA, Adal SJ, de Oliveira AM, Rassi AB, Oton GJB. Human papillomavirus types 16 and 18 and the prognosis of patients with stage I cervical cancer. Clinics. 2013; 68 (6). http://dx.doi.org/10.6061/clinics/2013/H614.
4. Krawczyk E, Suprynovicz FA, Liu X, Dai Y, Hartmann DP, Hanover J, Schlegel R. Koliocytosis. A Cooperative Interaction between the Human Papillomavirus E5 and E6 Oncoproteins. Am J Pathol. 2008; 173(3): 682–688. doi: 10.2353/ajpath.2008.080280.
5. Chen AA, Gheut T, Franceschi S, Tommasino M, Clifford GM. Human Papillomavirus Type 18 Genetic Variation and Cervical Cancer Risk Worldwide. J. Virol. 2015. doi:10.1128/JVI.01747-15.
6. Dahlström LA, YlitaloN, Sundström K, Palmgren J, Ploner A, Eloranta S, Sanjeevi CB, Andersson S, Rohan T, Dillner J, Adami HO, Par Sparrén. Prospective study of Human Papillomavirus and Risk of Cervical Adenocarcinoma. Int J Cancer 2010; 127(8): 1923–1930. doi:10.1002/ijc.25408.
7. Trotter H, Franco EL. The epidemiology of genital human papillomavirus infection. Vaccine. 2006; 24SI: S1–S15.
8. Yuwana T, Kiyono T. Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol. 2009; 19(2):97-113. doi: 10.1002/rmv.605.
9. Köse FM, Naki MM. Cervical premalignant lesions and their management. J Turk Ger Gynecol Assoc. 2014; 15(2): 109–121. doi: 10.5152/tjgga.2014.29795.
10. Wright TC, Ferenczy A, Ronnett BM, Kurman RJ. Precancerosus Lesions of the Cervix. In: Kurman RJ, Eillson LH, Ronnett BM, editors. Blaustein’s Pathology of the Female Genital Tract. Sixth edition. 2011. New York: Springer. p. 156-295.
11. Alves de Sousa NL, Alves RR, Martins MR, Barros NK, Ribeiro AA, Zeferino LC, Dufloth RM, Rabelo-Santos SH. Cytopathic effects of human papillomavirus infection and the severity of cervical intraepithelial neoplasia: A frequency study. Diagn Cytopathol. 2012; 40(10): 873-879. doi: 10.1002/dc.21656.
12. Hajdu SI. A Note from History: The Link between Koilocytes and Human Papillomaviruses. Ann Clin Lab Sci. 2006; 36(4): 485-487.
13. Abdelbadia M, Shaker OG, Hosni HN, Khalifa SE, Shazly AE. Human papillomavirus (HPV) in Egyptian females: study by cytology, histopathology, colposcopy and molecular diagnosis of high risk types. Malaysian J Pathol. 2016; 38(3): 257 – 266.
14. Ting J, Kruzikas DT, Smith JS. A global review of age-specific and overall prevalence of cervical lesions. Int J Gynecol Cancer. 2010; 20(7):1244-9.
15. Vet JNI, Kooijmaa JL, Henderson FC, Aziz FM, Purwoto G, Susanto H, IGD Surya, Budiningsih S, Corinna S, Fleurer GJ, Trimobs JB, and Peters AW. Single-visit approach of cervical cancer screening: See and Treat in Indonesia. Br J Cancer. 2012; 107(5): 772–777. doi: 10.1038/bjc.2012.334.
16. Hu L, Guo M, He Z, Thornton J, McDaniel LS, Hughsen MD. Human papillomavirus genotyping and p16expression in cervical intraepithelial neoplasia of adolescents. ModPathol. 2005; 18, 267–273.
17. Hu SY, Hong Y, Zhao FH, Lewkovitz AK, Chen F, Zhang WH, Pan QJ, Zhang X, Fei C, Li H, Qiao YL. Prevalence of HPV Infection And Cervical Intraepithelial Neoplasia And Attitudes towards HPV Vaccination among Chinese Women Aged 18-25 in Jiangsu Province. Chin J Cancer Res. 2011; 23(1): 25–32. doi:10.1161/j.sj.bjc.6604417.
18. Haverkos HW. Multifactorial Etiology of Cervical Cancer: A Hypothesis. MedGenMed. 2005; 7 (4): 57.
19. de Boer MA, Vet JN, Aziz MF, Corinna S, Purwoto G, van den Akker BE, Dijkman A, Peters AA, Fleurer GJ. Human papillomavirus type 18 and other risk factors for cervical cancer in Jakarta, Indonesia. Int J Gynecol Cancer. 2006; 16(5):1809-14. doi: 10.1111/j.1525-1438.2006.00701.x
20. Vet JNI, de Boer MA, van den Akker BEWM, Lisnawati, Budiningsih S, Tyasmorowati D, Moestikaningsih, Corinna S, Peters AW, Fleurer GJ. Prevalence of human papillomavirus in Indonesia: a population-based study in three regions. Br J Cancer. 2008; 99, 214–218. doi:10.1038/sj.bjc.6604417.
21. Salvia PND, Bergo SM, BonessoSabadin PIP, Tagliarini EB, Hackel C, De Angelo Andrade LAL. Correlation between Histological Criteria and Human Papillomavirus Presence Based on PCR Assay in Cervical Biopsies. Int J Gynecol Cancer. 2004; 14 (Issue 1): 126-132.
The accuracy of histopathologic examination compared with polymerase chain reaction to diagnose human papillomavirus infection in the uterine cervix

by Mahendra Dewi
The accuracy of histopathologic examination compared with polymerase chain reaction to diagnose human papillomavirus infection in the uterine cervix

Mahendra-Dewi I G.A.S.

ABSTRACT

Introduction: Until today cancer is still the main health problem besides infectious disease in Indonesia and other developing countries. Cervical cancer is the second most common cancer, where early detection of high-risk Human Papillomavirus (HPV) infection as the causative agent is very important so that the cervical lesions do not develop into pre-cancerous lesions and cancer. Even though, Polymerase Chain Reaction (PCR) is still not possible to be used as a screening method in the wider community, because the cost is quite expensive. An easier, cheaper, and simpler method of examination is needed to detect earlier infection, with the accuracy close to gold standard examination. This study aims to determine the accuracy of histopathologic examination compared with PCR to diagnose HPV infection in the uterine cervix.

Methods: This is a cross-sectional diagnostic test, with predictor variable is conventional histopathology examination, and outcome variable is PCR examination. The samples in this study were tissue biopsy, or surgery samples of patients clinically diagnosed with cervical lesion. A 2x2 table was created to calculate the sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV).

Result: A total of 39 samples were observed in this study. The sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) were 72.73%, 58.82%, 69.57% and 62.50%, respectively.

Conclusion: This study found the accuracy of histopathologic examination compared with PCR to diagnose HPV infection in the uterine cervix is more than 50%.

Keywords: accuracy, histopathology, PCR, HPV, uterine cervix

INTRODUCTION

Cancer is still a health problem in the world especially in developing countries including Indonesia. One of these cancers is cervical cancer, whose incidence is still high and tends to increase. Cervical cancer ranks the second most common cancer after breast cancer, which is one of the main causes of death in women. High risk oncogenic human papillomavirus (HPV) play a causative role in the development of cervical cancer. Most sexually-active women are exposed to HPV infection during their lifetimes. To date, more than 120 HPV types have been found, of which more than 40 types of HPV infect the anogenital and other mucosal body, of these, 13-18 types belonging to high-risk type. Approximately 90-95% of cervical cancer are caused by high-risk HPV-16 and 18. Early detection of this high-risk human papillomavirus infection is very important to prevent the development of cervical lesions into precancerous lesions and cancer. A study by Kose and Murat (2014) found about 15% of women infected with HPV develop cervical intraepithelial neoplasia (CIN) within 7 years. Invasive cancer developed at a rate of 1-3% after this infection, and the required period is approximately 25-40 years or a few months to several years depending on the precancerous lesion grade. These infections provide cytopathic effect i.e. changes in cervical squamous epithelial cells that are a pathognomonic sign for productive HPV infection, which can be seen in both routine cytological screening with the Papanicolaou (Pap) test and histopathologic examination. The cytopathic effect called koilocytotic atypia, characterized by the presence of nuclear atypia i.e. the size of the nucleus varies and enlarging up to three times the normal nucleus size, hyperchromatic nucleus, irregular nuclear membrane, cavitation or cytoplasmic halo around the nucleus, and cell membrane thickening. The genesis of the cytoplasmic vacuole has remained unclear, particularly because both HPV DNA replication and virion assembly occur exclusively in the nucleus. Cytopathic effects related to the human papillomavirus (HPV) infection are more frequently found in cervical intraepithelial neoplasia (CIN) 1-4.
Molecular-based HPV testing such as Polymerase Chain Reaction (PCR) is not yet possible as a screening program. An easier, cheaper and simpler method of examination is needed to detect earlier infection, which can be applied in developing countries with large populations, but still, has a sensitivity and specificity close to gold standard. This study aims to determine the accuracy of histopathologic examination compared with PCR to diagnose HPV infection in the uterine cervix.

RESEARCH DESIGN AND METHODS

Specimen collection

This study design was a cross-sectional diagnostic test that was conducted during the years 2013-2014. The materials of this study were the paraffin-embedded tissue biopsy, or surgery of patients with clinically diagnosed have a cervical lesion at Obstetric and Gynecologic Department Faculty of Medicine Udayana University/ Sanglah General Hospital. Samples were collected on a consecutive basis until the required sample size was met. The conventional histopathology examination was as the predictor variable and PCR examination as the outcome variable.

Histopathology Examination and HPV DNA Detection

The specimen was processed and then stained with routine Hematoxylin & Eosin. Histopathologic examination was performed to determine the presence of cytopathic effects as a sign of suspicion of HPV infection. For detection of HPV DNA, the paraffin-embedded tissues from biopsy or surgery of patients that have been examined histopathologically, either with or without cytopathic effect were sent to Molecular Biology Laboratory Unit, Faculty of Medicine Udayana University. SPF10 primers at several dilutions were used to amplify the DNA. A total of 39 cervical lesion patients were included in this study.

Statistical Analysis

A descriptive characteristic of the data subject was tabulated. A 2x2 table was created to calculate the sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV).

RESULTS

Sample distribution based on patient age display in Table 1, and the results of histopathologic and PCR examination display in Table 2 and Table 3. The positive cytopathic effect with conventional histopathologic examination show in Figure 1 and the

Table 1	Sample Distribution Based on Patient Age	
Age range (years)	Number	Percentage (%)
21-30	4	10.26
31-40	12	30.77
41-50	12	30.77
51-60	7	17.94
61+	4	10.26
Total	39	100.00

Table 2	Sample Distribution Based on Patient Age, Histopathologic and PCR Examination											
Age range (years)	Histopathology	PCR										
	Positive	Negative	Total	Positive	Negative	Total	Number	Total				
21-30	2	10.26	4	10.26	2	5.13	4	10.26				
31-40	7	30.77	12	30.77	8	20.51	12	30.77				
41-50	6	30.77	12	30.77	5	12.82	12	30.77				
51-60	5	12.82	7	17.94	4	10.25	7	17.94				
61+	3	7.69	1	2.56	4	10.25	7	17.94				
Total	23	58.97	16	41.03	9	100.00	22	56.41	17	43.59	39	100.00

Table 3	Sample Distribution Based on Histopathologic and PCR Examination						
PCR	Positive	Negative	Total	Se (%)	Sp (%)	PPV (%)	NPV (%)
Histopathology	16	7	23	72.73	58.82	69.57	62.50
Negative	6	10	16				
Total	22	17	39				
Figure 1 Positive cytopathic effect as a suspicion of HPV infection with conventional histopathologic examination (×400) (H & E, 450x).

Figure 2 HPV DNA amplification products by PCR examination in the uterine cervix. Line 1 standard DNA, line 2 positive control, line 3 negative control, line 4 sample with positive HPV DNA positive result of DNA HPV with PCR examination shown in Figure 2.

A total of 39 cervical lesion patients were included in this study. Of these patients, the most distribution was obtained in the 31-40 and 41-50 year age group of 12 samples (30.77%) each.

Table 2 show the number of cases with positive cytopathic effect as a suspicion of HPV infection with the conventional histopathologic examination as many as 23 samples (58.97%), while with PCR were 22 samples (56.41%). The most prevalence of positive patients with conventional histopathologic and PCR examination was in the 31-40 years age group, each of 7 samples (17.95%) and 8 samples (20.51%).

Table 3 show the accuracy of conventional histopathologic examination compared with PCR namely: sensitivity (Se) = 72.73%, specificity (Sp) = 58.82%, positive predictive value (PPV) = 69.57% and negative predictive value (NPV) = 62.50%.

DISCUSSION

Of the 39 samples studied, the most distribution of cervical, uterine lesion either with or without suspicion for HPV infection diagnosed with conventional histopathology was obtained in the 31-40 and 41-50 year age group of 12 samples (30.77%) each. This study is in accordance with the result of previous studies. A study by Ting et al. (2010) found a range of low-grade lesions occurred at 20-30 years age groups. A cross-sectional study in Indonesia to evaluate the performance of a single-visit approach of cervical cancer screening, using visual inspection with acetic acid (VIA), histology and cryotherapy in low-resource settings, found 64.4% high-risk women were in the age group of 30-49 years. Young sexually active women are the highest risk for acquiring HPV infection.

Examination with conventional histopathology to determine the positive cytopathic effect as an indication of suspicion HPV infection was found in 23 samples (58.97%). Examination with PCR for positive DNA HPV was found in 22 samples (56.41%). The most prevalence of positive patients with conventional histopathology and PCR examination was in the 31-40 years age group, each of 7 samples (17.95%) and 8 samples (20.51%). All of the positive HPV samples in this study were low-grade precancerous lesions i.e. cervical intraepithelial neoplasia (CIN) grade 1. This result showed a higher percentage compared to the previous study i.e. the prevalence of HPV infection in precancerous lesion was 18% in CIN 1 and 66% in CIN 2-3.

Study by Hu et al. (2011) found 3.4% of their samples were diagnosed as CIN grade 2 or worse lesions, and 17.1% were found to be positive for HPV DNA. In cervical cancer cases, infection by HPV found by 90-95% in the world, and 95.9% in Jakarta.

A study by Vet et al. (2008) in three regions in Indonesia; Jakarta, Tegal Malaya, and Bali. Investigate age-specific prevalence of HPV types in a population-based sample of 2986 women, aged 15-70 years, found the overall HPV prevalence was 11.4%, and 92.9% was positive in cervical cancer patients.
Of 23 positive samples examined with conventional histopathology, only 16 samples were positive with PCR examination, so the positive predictive value (PPV) was 69.57%. Of 16 negative samples examined with conventional histopathology, only 10 samples were negative with PCR examination, so the negative predictive value (NPV) was 62.50%. This study found 16 samples were positive with conventional histopathologic examination and also positive with PCR examination of all positive samples (22 samples), so the sensitivity (Se) was 72.73%. Ten samples were negative with conventional histopathologic examination and also negative with PCR examination of all negative samples (17 samples), so the specificity (Sp) was 58.82%. The accuracy obtained in this study is lower than the previous study, i.e., sensitivity for HPV infection in the form of atypia koilocytic as much as 88.89% and PPV 72.73%.

Studi by Matala and Sareen (2011) found 66.6% of the low-grade squamous intraepithelial lesion (LSIL) were HPV positive, 33.3% of koilocytosis were HPV positive.

Another study found koilocytosis was found in 63% of the smear from women with a histopathological diagnosis of CIN 1.

A study by Abdelbadiaa et al. (2016) who compared the results of a pap smear, histopathology, colposcopy and PCR swab with situ hybridizations (ISH) PCR tissue. Found highly significant results, with sensitivity of 87.5%, 100%, 62.5% and 56.2% respectively, but the specificity was 78.6%, 42.9%, 28.6% and 100% respectively. The conclusion of their research that conventional cytology and histopathology were sensitive tests for detection of HPV and this may help for early detection of cancer cervix in a developing country.

REFERENCES

1. Matala M, Sareen S. Detection of HPV by PCR: A Novel Step in the Prevention of Cancer Cervix. J Obstet Gynecol India. 2012; 62(2): 188-191. doi: 10.1007/s13224-012-0167-3.
2. Burk RD, Chen Z, Van Doornlaer K. Human Papillomaviruses: Genetic Basis of Carcinogenicity. Public Health Genomics. 2009; 12:281-290. DOI: 10.1159/000214919.
3. Zamproha RAC, Frías-Junior R, Murta EFC, Michelin MA, Barbaresco AA, Adal SJ, de Oliveira AM, Raaij AR, Oton GJR. Human papillomavirus types 16 and 18 and the prognosis of patients with stage I cervical cancer. Clinics. 2013; 68 (6), http://dx.doi.org/10.6061/clinics/2013/6014.
4. Kraswcyzk E, Suprynowicz FA, Liu X, Dui Y, Hartmann DP, Hanover J, Schlegel R. Koilocytosis. A Co-operative Investigation between the Human Papillomavirus ES and E6 Oncoproteins. Am J Pathol. 2008; 173(3): 682-688. doi: 10.2353/ajpath.2008.080280.
5. Chen AA, Ghiet T, Franceschi S, Tommasino M, Clifford GM. Human Papillomavirus Type 18 Genetic Variation and Cervical Cancer Risk Worldwide. J. Virol. 2015. doi:10.1128/JVI.01747-15.
6. Dahlström LA, Titaan N, Sundström K, Pålsson L, Plovan A, Eleonora S, Sanjeevi CB, Anderson S, Bohan T, Diller J, Adam H, Par Sperani. Prospective study of Human Papillomavirus and Risk of Cervical Adenocarcinoma. Int J Cancer 2010; 127(8): 1923-1930. doi: 10.1002/ijc.25408.
7. Trottier H, Franco EL. The epidemiology of genital human papillomavirus infection. Vaccine. 2008; 26(51): S14-S15.
8. Yugova T, Kiyono T. Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol. 2009; 19 (2):97-113. doi: 10.1002/rmv.405.
9. Kose FM, Niki MM. Cervical premalignant lesions and their management. J Turk Ger Gynecol Assoc. 2014; 15(2): 109-121. doi: 10.5152/jtgga.2014.39795.
10. Wright TC, Ferenczy A, Ronnett BM, Kurman RJ. Precancerous Lesions of the Cervix. In: Kurman RJ, Ellenbogen LH, Ronnett BM, editors. Blaustein’s Pathology of the Female Genital Tract. Sixth edition. 2011. New York: Springer. p. 136-295.
11. Alves de Sousa NL, Alves RR, Martins MR, Barros NK, Ribeiro AA, Zeferino IC, Duflot RM, Rabelo Santos SH. Cytopathic effects of human papillomavirus infection and the severity of cervical intraepithelial neoplasia: A frequency study. Diagn Cytopathol. 2012; 40(10):871-5. doi: 10.1002/dcy.21656.
12. Hajdu SI. A Note from History: The Link between Koilocytes and Human Papillomaviruses. Ann Clin Lab Sci. 2006; 36(4): 485-487.
13. Abdelbadiaa M, Shaker OG, Hosni MN, Khalifa SE, Sharfy AF. Human papillomavirus (HPV) in Egyptian females: study by cytology, histopathology, colposcopy and molecular diagnostics of high risk types. Malaysian J Pathol. 2016; 38(3): 257-266.
14. Ting J, Kruzikas DT, Smith JS. A global review of age-specific and overall prevalence of cervical lesions. Int J Gynecol Cancer. 2010; 20(7):1244-9.
15. Vet JN, Kooijsman JH, Henderson PC, Aziz FM, Purwoto G, Susanto HG, D'Souza, Budiningi S, Cornish S, Fleuren GJ, Triphon JB, and Peters AAW. Single visit approach of cervical cancer screening: See and Treat in Indonesia. Br J Cancer. 2012; 107(5): 772-777. doi: 10.1038/bjc.2012.334.
16. Hu I, Guo M, He Z, Thornton J, McDaniels LS, Hughes MD. Human papillomavirus genotyping and p16 expression in cervical intraepithelial neoplasia of adolescents. MedPatrol. 2005; 18: 267-273.
17. Hu SY, Hong Y, Zhao FH, Lewkowitz AK, Chen Z, Zhang WH, Pan QJ, Zhang X, Wei C, Li H, Qiao YL. Prevalence of HPV Infection and Cervical Intraepithelial Neoplasia And Attitudes towards HPV Vaccination among Chinese Women Aged 18-25 in Jiangsu Province, Chin J Cancer Res. 2011; 23(1): 23-32. doi: 10.1055/s-0030-1268253.
18. Haverkos HW. Multifactorial Biology of Cervical Cancer: A Hypothesis. MedGen. 2005; 7(4): 57.
19. de Boer MA, Vet JN, Aziz ME, Cornish S, Purwoto G, van den Akker BE, Dijkman A, Peters AA, Fleuren GJ. Human papillomavirus type 18 and other risk factors for cervical cancer in Jakarta, Indonesia. Int J Gynecol Cancer. 2006; 16(5): 1809-14. doi: 10.1111/j.1525-1236.2006.00701.x.
20. Vet JN, de Boer MA, van den Akker BEWM, Linawati, Budiningi S, Tsymmorou AD, Moestakingsih, Cornish S, Peters AAW, Fleuren GJ. Prevalence of human papillomavirus in Indonesia: a population-based study in three regions. Br J Cancer. 2008; 99, 214-218. doi: 10.1038/bjc.2008.444.
21. Salvia PND, Bergo SM, Bonesso-Sabudini PFI, Tagliaferri EB, Hackel C, De Angelo Andrade LAL. Correlation between Histological Criteria and Human Papillomavirus Presence Based on PCR Assay in Cervical Biopsies. Int J Gynecol Cancer. 2006; 14 (Issue 1): 126-132.
The accuracy of histopathologic examination compared with polymerase chain reaction to diagnose human papillomavirus infection in the uterine cervix

FINAL GRADE	GENERAL COMMENTS
/0	Instructor

PAGE 1

PAGE 2

PAGE 3

PAGE 4
The accuracy of histopathologic examination compared with polymerase chain reaction to diagnose human papillomavirus infection in the uterine cervix
#	Reference	Source	Percentage
8	Kyung Jin Eoh, Hee Jung Kim, Jung-Yun Lee, Eun Ji Nam, Sunghoon Kim, Sang Wun Kim, Young Tae Kim. "Upregulation of homeobox gene is correlated with poor survival outcomes in cervical cancer", Oncotarget, 2017	Publication	1%
9	"Abstracts from the 37th Congress of the Société Internationale d’Urologie, Centro de Congressos de Lisboa, October 19-22, 2017", World Journal of Urology, 2017	Publication	1%
10	repository.unair.ac.id	Internet Source	1%
11	www.cpqrr.fiocruz.br	Internet Source	1%
12	www.degruyter.com	Internet Source	1%
13	worldwidescience.org	Internet Source	1%
14	onlinelibrary.wiley.com	Internet Source	1%
15	Manjari Matah. "Detection of HPV by PCR—A Novel Step in the Prevention of Cancer Cervix", The Journal of Obstetrics and Gynecology of India, 06/01/2012	Publication	<1%
Yongtaek Oh. "Polymerase chain reaction-based fluorescent Luminex assay to detect the presence of human papillomavirus types", Cancer Science, 4/2007
Publication

Jacqueline A. Louwers. "Colposcopic Characteristics of High-Risk Human Papillomavirus-Related Cervical Lesions :", Journal of Lower Genital Tract Disease, 01/2010
Publication
S Cornain. "Prevalence of human papillomavirus in Indonesia: a population-based study in three regions", British Journal of Cancer, 07/08/2008

Chen, Xiujie, Keng-Ling Wallin, Meng Duan, Baback Gharizadeh, Biying Zheng, and Pengpeng Qu. "Prevalence and genotype distribution of cervical human papillomavirus (HPV) among women in urban Tianjin, China: Prevalence and Genotype Distribution of HPV", Journal of Medical Virology, 2015.

Nubia Muñoz. "Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer", New England Journal of Medicine, 02/06/2003

Keng-Ling Wallin. "Type-Specific Persistence of Human Papillomavirus DNA before the Development of Invasive Cervical Cancer", New England Journal of Medicine, 11/25/1999

Harmon, Maureen L. "Premalignant and malignant squamous lesions of the vulva",

Exclude quotes	On	Exclude matches	< 3 words	Exclude bibliography	On