Bound states in inhomogeneous magnetic field in graphene: a semiclassical approach

A. Kormányos,1 P. Rakýta,2 L. Oroszlány,1 and J. Cserti 2
1Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
2Department of Physics of Complex Systems, Eötvös University, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary

We derive semiclassical quantization equations for graphene mono- and bilayer systems where the excitations are confined by the applied inhomogeneous magnetic field. The importance of a semiclassical phase, a consequence of the spinor nature of the excitations, is pointed out. The semiclassical eigenenergies show good agreement with the results of quantum mechanical calculations based on the Dirac equation of graphene and with numerical tight binding calculations.

PACS numbers: 73.22.Dj, 03.65.Sq, 03.65.Vf

I. INTRODUCTION

Observation of massless Dirac fermion type excitations in recent experiments on graphene has generated huge interest both experimentally and theoretically.1,12,13. For reviews on graphene see Refs. 4,5,6,7,8 and a special issue in Ref. 9.

The intensive theoretical and experimental work have lead to good understanding of the physical phenomena in the bulk of disorder-free graphene in homogeneous magnetic field.10,11. Recently, the interest in inhomogeneous magnetic field setups has also appeared. Martino et al.12 have demonstrated that massless Dirac electrons can be confined by inhomogeneous magnetic field and that a magnetic quantum dot can be formed in graphene, levels of which are tunable almost at will. The so-called "snake states" known from studies13,14 on two dimensional electron gas (2DEG) have also attracted interest and their properties have been discussed in graphene monolayer15,16 and in carbon-nanotubes17,18.

Semiclassical methods have helped our understanding of complicated physical phenomena enormously and become a standard tool of investigation. Not only they offer a simple, easy to grasp classical picture but in many cases they can also give quantitative predictions on observables. Yet the first semiclassical study on graphene systems has only very recently appeared19. Ulmto and Carmier derived and expression for the semiclassical Green's function in graphene and studied the "Berry-like" phase which appears in the semiclassical theory. The importance of "Berry-like" and "non-Berry-like" phases in the asymptotic theory of coupled partial differential equations and their role in semiclassical quantization have previously been discussed in Refs. 22,23,24,25.

In this work we study a graphene nanoribbon24 in a non-uniform magnetic field22,15,16 as shown in Fig. 1(a) and (b) and a circular magnetic dot in graphene monolayer24 [see Fig. 1(c)]. We assume that the applied perpendicular magnetic field of magnitude $|B_z|$ changes in step-function like manner at the interfaces of the magnetic and non-magnetic regions and that it is strong enough so that the magnetic length $l_B = \sqrt{\hbar/e|B_z|}$ is much smaller than the characteristic spatial dimension of the graphene sample. We show that in this case the semiclassical quantization can predict and help to understand the main features of the the quantum spectra at the K point of graphene mono- and bilayer.

FIG. 1: In a) and b) the applied perpendicular magnetic field B is zero in the center region of width $2W$. In the case of a), in the left and right regions the magnetic fields point in the same directions, while in the case of b), in the opposite directions. The magnitude B of the magnetic field is the same in both left and right regions. In the case of Fig. 1(c) a circular non-magnetic region of radius R is considered in graphene monolayer, whereas outside this region there is perpendicularly applied magnetic field of magnitude B.

The article is organized in the following way. Firstly, in section II we give a brief overview of the exact quantum mechanical treatment of graphene mono and bilayer. We also discuss some of the technical details of the quantum calculation regarding the system shown in Fig. II. Next, in section III we introduce our semiclassical formalism and wherever possible we give a unified description for graphene mono and bilayer. In section IV we present the results of the semiclassical quantization for graphene nanoribbons in inhomogeneous magnetic field and compare it to tight binding (TB) and exact quantum calculations. In the next, section V we apply the semiclassical formalism to a magnetic dot in graphene monolayer. Finally, in section VI we arrive to our conclusions.
II. MONOLAYER AND BILAYER GRAPHENE: QUANTUM MECHANICAL TREATMENT

In the simplest approximation the Dirac Hamiltonian describing the low-energy excitations at the \(K \) point of the Brillouin zone in monolayer (bilayer) graphene reads

\[
\hat{H}_\beta = g_\beta \begin{pmatrix}
0 & (\pi_x - i \pi_y) \\
(\pi_x + i \pi_y) & 0
\end{pmatrix}.
\]

(1)

Here \(\beta = 1 \) (2) for monolayer (bilayer) and \(g_1 = v_F = \sqrt{3}/2 a t_1/\hbar \) is given by the hopping parameter \(t_1 \) between the nearest neighbours in monolayer graphene (\(a = 0.246 \) nm is the lattice constant in the honeycomb lattice). Moreover, \(g_2 = -1/2m^* \) and the mass term is given by \(m^* = t_2/(g_1)^2 \), \(t_2 \) being the interlayer hopping between \(A - B \) sites of bilayer\(^1\). The operators \((\pi_x, \pi_y)\) are defined by \(\pi = (\pi_x, \pi_y) = \mathbf{p} + e\mathbf{A} \), where \(\mathbf{p} = \frac{\hbar}{2} \mathbf{\hat{p}} \) is the canonical momentum operator and the vector potential \(\mathbf{A} \) is related to the magnetic field through \(\mathbf{B} = \text{rot} \mathbf{A} \). Due to the chiral symmetry \(\sigma_z \hat{H}_\beta \sigma_z = -\hat{H}_\beta \), where \(\sigma_z \) is a Pauli matrix, it is enough to consider the positive eigenvalues of the Hamiltonian \(\hat{H}_\beta \).

In section \(\text{III} \) we study a graphene nanoribbon\(^2\) of width \(L \gg L_B \) [see Figs. \(\text{I}(a),(b) \)]. In the central region \(|x| < W \) the magnetic field is zero, while for \(|x| \geq W \) a non-zero perpendicular magnetic field is applied. We assume a step function-like change of the magnetic field at \(x = W \) and use the vector potential \(\mathbf{A}(r) = (0, A_y(x), 0)^T \) to preserve the translation invariance in the \(y \) direction. Other details of the quantum calculation can be found in Refs. \(\text{12,13,16} \).

The magnetic dot system is shown in Fig. \(\text{II(c)} \). It consists of a graphene monolayer in homogeneous perpendicular magnetic field with a circular inclusion where the magnetic field is zero. The circular symmetry of the setup suggests that one should choose the vector potential in the symmetric gauge:

\[
\mathbf{A}(r) = \begin{cases}
0 & r < R, \\
\frac{B}{2r}((\gamma^2 - \mathbf{r}^2)/2) & r \geq R,
\end{cases}
\]

(2)

where \(r = (r \cos \phi, r \sin \phi) \) is in polar coordinates. One can show that with this choice the Schrödinger equation \(\hat{H}_\beta \psi_\beta = E \psi_\beta \) becomes separable in \(r \) and \(\phi \). In the case of graphene monolayer, requiring that the wave function be normalizable and continuous at \(r = R \) leads to a secular equation, solutions of which are the quantum eigenenergies (see Eq. \(\text{21} \)) in Ref. \(\text{16} \).

III. SEMICLASSICAL FORMALISM FOR GRAPHENE

We now give a brief account of our semiclassical formalism. Our discussion goes along the lines of the.

Refs. \(\text{21,24,25} \) from where we have also borrowed some of the notations.

We seek the solutions of the Schrödinger equation \(\hat{H}_\beta \psi_\beta = E \psi_\beta \) in the following form\(25\):

\[
\psi_\beta(r) = \sum_{k \geq 0} \left(\frac{\hbar}{i} \right)^k a^\beta_k(r)e^{iS_\beta(r)},
\]

(3)

where \(a^\beta_k(r) \) are spinors and \(S_\beta(r) \) is the classical action. Performing the unitary transformation \(\psi_\beta \to e^{-iS_\beta(r)} \psi_\beta \), \(\hat{H}_\beta \to e^{-iS_\beta(r)} \hat{H}_\beta e^{iS_\beta(r)} \) the Schrödinger equation can be rewritten as

\[
\begin{pmatrix}
-E & g_\beta(\hat{\Pi}_x - i\hat{\Pi}_y) \\
g_\beta(\hat{\Pi}_x + i\hat{\Pi}_y) & -E
\end{pmatrix}
\begin{pmatrix}
a^\beta_0(r) \\
a^\beta_1(r)
\end{pmatrix} = 0.
\]

(4)

where \(\hat{\Pi}_x = \hat{p}_x + \Pi^0_x \), where \(\Pi^0_x = p_x + eA_x(r) \), \(p_x = \frac{\partial S_\beta}{\partial x} \), and similarly for \(\Pi^0_y \). The WKB strategy\(22\) is to satisfy Eq. \(\text{1} \) separately order by order in \(h \).

At \(\mathcal{O}(h^0) \) order we obtain

\[
\begin{pmatrix}
-E & g_\beta(\hat{\Pi}^0_x - i\hat{\Pi}^0_y) \\
g_\beta(\hat{\Pi}^0_x + i\hat{\Pi}^0_y) & -E
\end{pmatrix}
\begin{pmatrix}
a^\beta_0(r) \\
a^\beta_1(r)
\end{pmatrix} = 0.
\]

(5)

This classical Hamiltonian can be diagonalized with eigenvalues

\[
\mathcal{H}^\pm_\beta(p, r) = \pm g_\beta((\Pi^0_x(p)^2 + (\Pi^0_y(p)^2)^{1/2}.
\]

(6)

and eigenvectors \(V^\pm_\beta(p, r) \). What we have found is that the \(\mathcal{O}(h^0) \) order equation is in fact equivalent to a pair of classical Hamilton-Jacobi equations:

\[
E - \mathcal{H}^\pm_\beta\left(\frac{\partial S^\pm_\beta(r)}{\partial r}, r \right) = 0.
\]

(7)

The solution of Eq. \(\text{4} \) - when it exists - can be found e.g. by the method of characteristics\(21\).

For \(E \neq 0 \) the eigenvectors of the classical Hamiltonian given in Eq. \(\text{5} \) are

\[
V^\pm_\beta = \frac{1}{\sqrt{2}} \begin{pmatrix}
\pm(-1)^{\beta-1}e^{-i\beta\phi} \\
1
\end{pmatrix}
\]

(8)

(here \(\phi \) is the phase of \(\Pi^0_x - i\Pi^0_y \)) but the eigenspinor \(a^\beta_0 \) can be more generally written as \(a^\beta_0 = A^\beta_0(r)e^{i\gamma^\beta_0(r)}V^\pm_\beta \) where \(A^\beta_0(r) \) is a real amplitude and \(\gamma^\beta_0(r) \) is a phase. Equations for \(A^\beta_0(r) \) and \(\gamma^\beta_0(r) \) can be obtained from the \(\mathcal{O}(h^1) \) order of Eq. \(\text{4} \). One can show that the \(\mathcal{O}(h^1) \) order equation can be written in the following form\(21,24,25\)

\[
(a^\beta_0 + a^\beta_0^\dagger)\hat{M}_\beta a^\beta_0 + a^\beta_0^\dagger a^\beta_0 = 0.
\]

(9)

Using the notation \(\sigma = (\sigma_x, \sigma_y, \sigma_{x,y,z} \) being the Pauli matrices, the operator \(\hat{M}_\beta \) for graphene monolayer is
The imaginary part of Eq. (9) expresses the conservation of probability since it can be cast into the form of a continuity equation $\text{div} j_\beta^\pm = 0$. Here $j_\beta^\pm = \text{Im} \langle \Psi^{s,\pm}_\beta | \hat{\nabla} \Psi^{s,\pm}_\beta \rangle$ is the probability current carried by the semiclassical wavefunction $\Psi^{s,\pm}_\beta = a_0^{\beta,\pm} \hat{c}^\dagger S^\pm_\beta$ ($\hat{\nabla} = \frac{\hbar}{m}[\hat{H}_\beta, \hat{r}]$ is the velocity operator). Similarly to the case of quantum systems described by scalar Schrödinger equation, this continuity equation determines $A_\beta^\pm(\hat{r})$.

The real part of Eq. (4) allows to calculate the phase $\gamma_\beta^\pm(\hat{r})$. The equation determining $\gamma_\beta^\pm(\hat{r})$ reads

$$\frac{d\gamma_\beta^\pm(\hat{r})}{dt} = c_1^{\beta,\pm} \left(\frac{\partial \Pi^0_y(\hat{r})}{\partial \hat{r}} - \frac{\partial \Pi^0_z(\hat{r})}{\partial \hat{r}} \right) = c_1^{\beta,\pm} \frac{\beta}{2} eB_z(\hat{r}),$$

where $c_1^{\pm} = v_0^2/E$, $c_2^{\pm} = \pm 1/m^*$, and we denoted by $B_z(\hat{r})$ the component of the applied magnetic field which is perpendicular to the graphene sheet. The second equality in Eq. (10) follows from $\frac{\partial^3 S_\beta(\hat{r})}{\partial \hat{r}^3} = \frac{\partial^2 S_\beta(\hat{r})}{\partial \hat{r}^2}$. The Hamiltonian given in Eq. (11) yields a gapless spectrum for bilayer graphene. Theoretical and experimental studies of bilayer graphene have shown that an electron density dependent gap exists between the otherwise degenerate valence and conduction bends (described by \mathcal{H}_β^v and \mathcal{H}_β^c respectively, in our semiclassical formalism). Assuming that the gap is spatially constant, one can take it into account by considering the Hamiltonian $\mathcal{H}_\beta^\pm/H_{\beta,x}^\pm = \mathcal{H}_\beta^v + (\Delta/2)\sigma_z$. The new term $(\Delta/2)\sigma_z$ affects only the $O(\hbar^0)$ calculations, while the operator \hat{M}_2 in Eq. (9) remains the same. Consequently, Eq. (11) is modified to

$$\mathcal{H}_\beta^\pm(\hat{p}, \hat{r}) = \pm \frac{1}{2m^*} \sqrt{[\Pi^0_y(\hat{r})]^2 + [\Pi^0_z(\hat{r})]^2 + \Delta^2},$$

where $\Delta = \Delta/m^*$ and the right hand side of Eq. (10) for $\beta = 2$ is multiplied by $\eta = \sqrt{1 - \frac{\Delta^2}{4}}$.

It has been shown in Refs. 12, 22, 24, 25 that for N-dimensional integrable systems where the particles have an internal, e.g. spin or electron-hole degree of freedom, one can derive a generalization of the EBK quantization of scalar systems. In general, the quantization conditions read

$$\frac{1}{\hbar} \int_{\Gamma_j} \hat{p} \, d\hat{r} + \alpha_j = 2\pi \left(n_j + \frac{\mu_j}{4} \right)$$

Here $\Gamma_j, j = 1 \ldots N$ are the irreducible loops on the N-torus in the phase space, n_j, μ_j are positive integers, μ_js are the Maslov indices counting the number of caustic points along Γ_j and finally α_js measure the change of the phase of the spinor part of the wavefunction as the system goes around a loop Γ_j. The systems we are considering (see Fig. 1) are more simple in that the Schrödinger equation is separable if the vector potential $\mathbf{A}(\hat{r})$ is chosen in an appropriate gauge, which takes into account the symmetry of the setup [i.e. translational symmetry in the case of Fig. (1a), (b) and rotational in the case of Fig. (1c)]. The magnetic field B_z in Eq. (11) will depend on only one of the (generalized) coordinates, let us denote this coordinate by x_1, the conjugate momentum by p_1, and the other coordinate (conjugate momentum) by $x_2 (p_2)$. It turns out that due to the symmetry of the system $\gamma(\hat{r})$ will also depend only on $x_2 \beta$. Therefore one of the two quantization conditions, involving the coordinate x_2 and the conjugate momentum p_2, is exactly the same as it would be for a scalar wavefunction (this corresponds to $\alpha_2 = 0$ in Eq. (12)). In the quantization condition involving p_1 and x_1 however, the phase α_1 is in general not zero but is determined by Eq. (10):

$$\alpha_1 = \gamma_2^\beta = c_1^{\beta,\pm} \frac{\beta}{2} \frac{B_z(\hat{x}_1(\hat{t}))}{\hbar} \int_0^{\hat{t}} dt.$$

For systems with piece-wise constant magnetic field profiles such as those shown in Fig. (1) the calculation of γ_β^\pm simplifies to $\gamma_\beta^\pm = c_1^{\beta,\pm,\Sigma} \int B_z(t) \, dt$. Here T_i is the time the particle spends during one full period of its classical motion in the ith region where the strength of the perpendicular component of the magnetic field is given by $B_{z,i}$. In the semiclassical picture $\gamma(\hat{r})$ changes only when the particle, during the course of its classical motion, passes through non-zero magnetic field regions and this phase change of the wave function needs to be taken into account in the semiclassical quantization.

IV. BOUND STATES IN GRAPHENE NANORIBBONS

We now apply the presented semiclassical formalism to determine the energy of the bound states in inhomogeneous magnetic field setups in graphene nanoribbons, see Figs (1a) and (b). Throughout the rest of the paper we will only consider \mathcal{H}_β^\pm corresponding to positive energies. \mathcal{H}_β^v would describe negative energies, these however do not need to be considered separately due to the chiral symmetry of the Hamiltonian, as explained in section I.

Using the Landau gauge $\mathbf{A} = (0, A_y(x), 0)^T$ the translation invariance of the system in the y direction is preserved and therefore the solution of the Hamilton-Jacobi equation Eq. (7) can be sought as $S_0^\pm(\hat{r}) = S_\hat{r}^\pm(\hat{x}) + p_y \hat{y}$. Since the classical motion in the y direction is not bounded, $p_y = \hbar k_y$ is not quantized, it appears as a continuous parameter in our calculations. In contrast, the motion in the x direction is bounded due to the x dependent magnetic field $B_\hat{x}(\hat{r})$. Therefore the quantization condition reads

$$\frac{1}{\hbar} \int p_\beta(\hat{x}) \, dx + \gamma_\beta = 2\pi (n + 1/2).$$

(Note that the Maslov index is $\mu = 2$.) It is useful to introduce at this point the following dimensionless parameters: the width of the non-magnetic region $\tilde{w} = W/l_H$,
the guiding center coordinate $\tilde{X} = k_B l_B$, both in units of l_B (which is defined in Sec. II). Throughout this paper we will use $\tilde{w} = 2.2$.

We start our discussion with the magnetic waveguide configuration shown in Fig. 1(a) in graphene monolayer. Introducing the dimensionless energy $\tilde{E}_{ml} = E l_B / h v_F$, one finds that for $|X| < \tilde{E}_{ml}$ there is one turning point in each of the left and right magnetic regions. A simple calculation gives $\gamma_1 = \pi$ and writing out explicitly the result of the action integral from Eq. (14) it follows that

$$4 K_{ml} \tilde{w} + \pi \tilde{E}_{ml}^2 = 2n \pi, \quad n = 1, 2, \ldots$$

Here we have introduced the dimensionless wave number $K_{ml} = \sqrt{\tilde{E}_{ml}^2 - \tilde{X}^2}$ and note that the phase change of the wave function due to $\gamma(x)$ cancelled the phase contribution coming from the Maslov index. Furthermore, if $X > \tilde{E}_{ml}$ ($X < -\tilde{E}_{ml}$) there are two turning points in the left (right) magnetic regions. One finds that also for this case $\gamma_1 = \pi$ which again cancels the contribution from the Maslov index, thus for $|X| > \tilde{E}_{ml}$ the semiclassical quantization yields

$$\tilde{E}_{n} = \sqrt{2n}, \quad n = 1, 2, \ldots$$

i.e. the energies are independent of X (and hence k_B). This is the same as the exact quantum and the semiclassical results for the relativistic Landau levels (LLs) in homogeneous magnetic field. From the exact quantum calculations it is known that a zero energy state also exists in this system. Formally, from Eq. (16) one can obtain a zero-energy state by assuming that $n = 0$ is admissible. However, Eq. (8) and hence Eq. (10) are only valid for $E \neq 0$. Therefore we exclude $n = 0$.

Comparison of the semiclassical eigenvalues with the results of exact quantum calculations are shown in Fig. 2 (For details of the quantum calculation see e.g. Ref. [16].)

The agreement between the quantum and semiclassical calculations is in general very good, especially for higher energies. For lower energies and $|X| \gg \tilde{E}_{ml}$ one can observe quantum states which are almost dispersionless and their energy is very close to the non-zero energy LLs in graphene monolayer. Semiclassically, these states are described by Eq. (16). Although the zero energy state of the spectrum cannot be accounted for by our semiclassics an expression for the gap between the zero and the first non-zero energy states can be easily obtained by putting $n = 1$ and $X = 0$ in Eq. (15) and it gives a rather accurate prediction as it can be seen in Fig. 3. The presented semiclassical method can not describe those quantum states which correspond to $|X| \approx \tilde{E}_{ml}$ [see the dashed line in Fig. 2] i.e. when one of the the turning points is in the area of rapid spatial variation of the magnetic field.

For comparison, we have also calculated the quantization condition for graphene bilayer using the classical Hamiltonian given in Eq. (11) and the general quantization condition shown in Eq. (12). For $\tilde{E}_{bd} > \tilde{X}^2 / 2$, where $\tilde{E}_{bd} = E_{bd} / E_{B} c$, $\omega_c = |e B| / m$ being the cyclotron frequency, it reads:

$$2 K_{bd} \tilde{w} + \pi \tilde{E}_{bd} = \pi \left(n - \frac{1}{2} \right), \quad n = 2, 3, \ldots$$

Here $K_{bd} = \sqrt{2 E_{bd} - X^2}$ and we have taken into account that in this case $\gamma_2 = 2\pi$. For $\eta = 1$ [where η has been defined after Eq. (11)] this result is very similar to what one would obtain for a 2DEG, the only difference being that for 2DEG one would have $+1/2$ on the right hand side of Eq. (17). This similarity is a consequence of having a parabolic dispersion relation $E(k)$ close to the Fermi energy in both a 2DEG and graphene bilayer systems.

We let the integer quantum number n to run from $n = 2$ in Eq. (17) for the following considerations: from Ref. [21] we know that in a more simple case of homogeneous magnetic field the four-fold degenerate LL of the quantum calculations at $\tilde{E}_{bd} = 0$ (corresponding to $n = 0, 1$) can not be correctly described semiclassically but for LLs having $\tilde{E}_{bd} > 0$ the agreement between the semiclassical and quantum results is qualitatively very good. Similarly, we

FIG. 2: Results of exact quantum calculations (solid lines) and the semiclassical approximation given by Eqs. (15) and (16) (circles) as a function of k_B (in units of l_B) for graphene bilayer. The dashed lines indicate $|X| = \tilde{E}_{ml}$ (see text).

FIG. 3: Results of exact quantum calculations (solid lines) and the semiclassical approximation given by Eqs. (17) and (18) (circles) as a function of k_B (in units of l_B) for graphene monolayer. The dashed lines indicate $X^2 / 2 = \tilde{E}_{bd}$ (see text).
expect that in our case the semiclassical approximation should only work for \(n \geq 2 \). We have found that this is indeed the case, see Fig. 3 where the solid lines show bands obtained by TB calculations and the circles are calculated using Eq. \(\text{(17)} \) for \(n \geq 2 \) [we have taken \(\eta = 1 \)]. The \(\tilde{E}_{bl} > 0 \) energy bands for \(\tilde{E}_{bd} > \tilde{X}^2/2 \) are remarkably well described by Eq. \(\text{(17)} \) [note however that like in the homogeneous magnetic field case, there is a four-fold degenerate state at \(\tilde{E}_{bd} = 0 \)]. For \(\tilde{E}_{bd} < \tilde{X}^2/2 \) the bands of TB calculations again become almost dispersionless and level off very close to the LLs of bilayer graphene in homogeneous field\(^\dagger\). The semiclassical expression for the energy levels in this regime of \(\tilde{X} \) is

\[
\tilde{E}_{bd} = (n - 1/2), \quad n = 2, 3, \ldots
\]

which is again a good approximation of the quantum result. Our semiclassics cannot account for states having \(\tilde{X}^2/2 \approx \tilde{E}_{bd} \) i.e. when one of the turning points is in rapidly varying magnetic field region.

We now turn to the semiclassical study of the system depicted in Fig. 1(b), where the magnetic field is reversed in one of the regions. It has been shown in Refs. \(\text{[15,16]} \) that peculiar type of current carrying quantum states called snake states exist close to the \(\tilde{K} \) point of graphene for this magnetic field configuration. These states can also be described by the Dirac Hamiltonian and are therefore amenable to semiclassical treatment.

We start the discussion with the graphene monolayer case. There are no turning points and hence no states if \(-\tilde{X} > \tilde{E}_{ml} \). For \(|\tilde{X}| < \tilde{E}_{ml} \) there is one turning point in each of the non-zero magnetic field regions. In contrast to the symmetric magnetic field configuration [Fig. 1(a)] we find that for one full period of motion \(\gamma_1 = 0 \): the contributions of the two magnetic field regions, pointing in the opposite direction, cancel. Using Eq. \(\text{(13)} \) the quantization condition is:

\[
K_{ml}(2\tilde{w} + \tilde{X}) + \tilde{E}_{ml}^2 \left(\arcsin \left[\frac{\tilde{X}}{\tilde{E}_{ml}} \right] + \frac{\pi}{2} \right) = \pi (n + 1/2) \quad n = 0, 1, 2, \ldots
\]

Note, that unlike in the case of Eq. \(\text{(15)} \) here a solution for \(n = 0 \) also exists. Moreover, for \(\tilde{X} > \tilde{E}_{ml} \) there are two turning points both in the left (we denote them by \(x_1^L, x_2^L \)) and in the right (denoted by \(x_1^R, x_2^R \)) magnetic region. The quantization using \(x_1^L, x_2^L \) leads to the same result as in Eq. \(\text{(10)} \) i.e. \(\tilde{E}_{n,L} = \sqrt{2\tilde{n}} \), while using \(x_1^R, x_2^R \) gives the sequence \(\tilde{E}_{n,R} = \sqrt{2(n + 1)} \). The difference between \(\tilde{E}_{n,L} \) and \(\tilde{E}_{n,R} \) is due to the fact that the sign of the phase contribution from \(\gamma(x) \) depends on the direction of the magnetic field, i.e. it is +\(\pi \) when \(x_1^L, x_2^L \) is used in the calculations and -\(\pi \) when \(x_1^R, x_2^R \) is used [see Eq. \(\text{(10)} \)]. From these considerations it follows that if \(n = 0, 1, 2, \ldots \) as we assumed in Eq. \(\text{(10)} \), the two sequence \(\tilde{E}_{n,L}, \tilde{E}_{n,R} \) give two-fold degenerate dispersionless states at \(\tilde{E}_{ml} = \sqrt{2}, \sqrt{4}, \sqrt{6} \ldots \) and a nondegenerate one at \(\tilde{E}_{ml} = 0 \). We have to exclude, however, the \(\tilde{E}_{ml} = 0 \) solution, see the discussion below Eq. \(\text{(10)} \).

The results of quantum and of semiclassical calculations are shown in Fig. 4.(For details of the quantum calculation see e.g. Ref. \(\text{[15]} \).) As one can see the agreement is again very good for \(\tilde{E}_{ml} \gtrapprox 0.4 \) except when \(\tilde{X} \approx \tilde{E}_{ml} \), see the discussion in the previous example, i.e. when the magnetic fields point in the same direction. The two-fold degenerate dispersionless quantum states can also be observed for \(\tilde{X} > \tilde{E}_{ml} \). States having energies \(0 < \tilde{E}_{ml} \lesssim 0.25 \) can not be described by our semiclassics and note that in the lowest energy band corresponding to \(n = 0 \) in Eq. \(\text{(10)} \) nonphysical solutions also appear along with the genuine ones for \(0.25 \lesssim \tilde{E}_{ml} \lesssim 0.4 \). This clearly indicates the limits of applicability of our approach, i.e. it does not work for energies close to the Dirac point.

We end our discussion of the bound states in mono and bilayer graphene nanoribbons with the bilayer system corresponding to the previous, monolayer example, e.g. for the magnetic field setup of Fig. 1(b). For \(-\tilde{X} > \sqrt{2}\tilde{E}_{bl} \) there are no turning points and hence no states. The quantization condition for \(\tilde{X}^2/2 < \tilde{E}_{bl} \) can simply be obtained from Eq. \(\text{(10)} \) by changing \(\tilde{E}_{ml} \to \sqrt{2}\tilde{E}_{bl} \) and \(K_{ml} \to K_{bl} \). \(K_{bl} \) is defined after Eq. \(\text{(17)} \). Finally, for \(\tilde{X}^2/2 > \tilde{E}_{bl} \) our semiclassics predicts a sequence of doubly-degenerate, dispersionless energy levels at \(\tilde{E}_{bd} = (n - 1/2), n = 2, 3, \ldots \), in a similar fashion as in the monolayer case. As one can see in Fig. 5 for \(\tilde{E}_{bl} \gtrapprox 0.8 \) the semiclassical approximation captures all the main features of the TB calculations quite well, apart from the region where \(\tilde{X}^2/2 \approx \tilde{E}_{bl} \) for \(\tilde{X} > 0 \) [see the discussion below Eq. \(\text{(18)} \)]. Dispersive states corresponding to \(n = 0, 1 \) can also be described semiclassically if \(\tilde{E}_{bd} \gtrapprox 0.8 \) [see the lowest two bands in Fig. 5], but for smaller energies nonphysical solutions along with the genuine ones do appear and for \(\tilde{E}_{bl} \lesssim 0.1 \) i.e. very close to the Dirac point no quantum states can be described with the presented semiclassical approach.
whence it is clear that the potential of Eq. (2) preserves the circular symmetry of the problem, the quantization condition for the problem, the perpendicular field is applied.

region of radius \(R \) while outside this region a constant \(\tilde{B} \) is simply the missing magnetic flux that can be associated with the Maslov index. Hence the quantization condition is

\[S_{B=0}^{\tilde{B}}(\xi_1, \xi_2) = \frac{\hbar}{2} \int_{\xi_1}^{\xi_2} d\xi \sqrt{-2 \tilde{E} \xi - m^2} \tag{22} \]

[the \(\hbar \) factor in the above expressions appears because in the calculation we already took into account the quantization of \(p_{\phi} \), see Eq. (20)]. The integrals in Eqs. (21) and (22) can be analytically calculated but the resulting expressions are too lengthy to be recorded here.

As a next step to obtain a semiclassical quantization rule we proceed with the analysis of the classical dynamics along the lines of Ref. 29. Calculating the radial velocity \(v_r(r) = \frac{\hbar c r}{e B} \), in the magnetic region one finds that for \(\tilde{E}^2 > 2 \tilde{m} \) there can be two turning points in the radial motion which we denote by \(\xi_0^{\tilde{B}} \) and \(\xi_0 \). In terms of the dimensionless parameters \(\tilde{R}_c = \tilde{E} \) and \(\tilde{X} = \sqrt{\tilde{R}_c^2 - 2 \tilde{m}} \) (the radius of the classical cyclotron motion and the guiding center coordinate respectively, both in the units of \(l_B \)) the turning points can be written as \(\xi_0^{\tilde{B}} = \frac{1}{2}(\tilde{R}_c \pm \tilde{X})^2 \). With regard to \(\delta \), there are then two possible cases.

i) The first case is when \(\delta < \xi_0^{\tilde{B}}, \xi_0 \) (or equivalently, \(\delta < \frac{\pi^2}{2 \tilde{E}} \)) and therefore the radial motion is confined entirely to the magnetic region. Calculation of \(\gamma_1 \) gives a phase \(+\pi \) which cancels the phase contribution from the Maslov index. Hence the quantization condition is

\[S_{B=0}^{\tilde{B}}(\xi_0, \xi_0^{\tilde{B}})/\hbar = 2n \pi \] where \(S_{B=0}^{\tilde{B}}(\xi_0, \xi_0^{\tilde{B}}) \) is calculated using Eq. (22). Explicitly, the energy levels \(\tilde{E}_{n,m} \) are given by

\[\tilde{E}_{n,m} = \sqrt{2n + |\tilde{m}| + \tilde{m}}. \tag{23} \]

This result is very similar to what one would obtain from exact quantum calculations for a homogeneous magnetic field, where the relativistic Landau levels are given by \(\tilde{E}_{n,m} = \sqrt{2n + |m| + m} \). Note however that in Eq. (23) instead of the integer quantum number \(m \) the non-integer \(\tilde{m} = m - \delta \) appears. From Eq. (23) it is clear that for \(\tilde{m} < 0 \) the energy bands are at \(\tilde{E}_{n} = \sqrt{2n} \), \(n = 1, 2, \ldots \), and they do not depend on \(\delta \) and \(\tilde{m} \). (In the nanoribbon case, we exclude \(n = 0 \) because that would give \(\tilde{E}_{n} = 0 \).) These \(\delta \) independent sections are readily observable in the energy bands corresponding to \(m = -2 \) in Fig. 6(a). On the other hand, for \(m > 0 \), \(\delta \ll m \) an approximately linear dependence on \(\delta \) of the bands corresponding to different \(m \) is predicted by Eq. (23) and this can also be observed, see Fig. 7(a). From classical point of view in the parameter range \(\tilde{m} < 0 \) (which implies \(\tilde{X} > \tilde{R}_c \)) the classical orbits are such that they do not encircle the zero magnetic field region [see Fig. 3(b)]. They are just like orbits in homogeneous magnetic field and this helps to understand why the quantum states corresponding to the same parameter range are reminiscent of dispersionless Landau levels. Conversely, for \(\tilde{m} > 0 \) (which implies \(\tilde{R}_c < \tilde{X} > \tilde{R}_c \)) the classical orbits do encircle the zero magnetic field region and therefore the energy of the corresponding quantum states depend on
E < |ω| separates the cases i) and ii) detailed in the main text. (b) E < |ω| separates the cases i) and ii) detailed in the main text.

The results of the semiclassical quantization (*) obtained from Eq. (24) for \(\tilde{E} < \frac{|m|}{\sqrt{2} \pi} \), \(\tilde{m} < 0 \). For \(\tilde{E} > \frac{|m|}{\sqrt{2} \pi} \), circles (○) show the semiclassical results calculated using Eqs. (24) and (25). The dashed line shows the \(\tilde{E} = \frac{|m|}{\sqrt{2} \pi} \) function which separates the cases i) and ii) detailed in the main text. (b) shows a cartoon of a classical orbit in the parameter range \(\tilde{E} < \frac{|m|}{\sqrt{2} \pi} \), \(\tilde{m} < 0 \).

ii) The second case is when \(\xi^− < \delta < \xi^+ \) which happens if \(\delta > \frac{m^2}{2E^2} \). The classical motion is no longer confined to the magnetic region but also enters the nonmagnetic dot. The turning point in the nonmagnetic region is at \(\xi_0 = \frac{m^2}{2E^2} < \delta \). Since the Maslov index is \(\mu = 2 \), the quantization condition can be written as

\[
\frac{2}{\hbar} \left[S_r^{B=0}(\xi_0, \delta) + S_r^{B≠0}(\delta, \xi^+) \right] + \gamma_1 = 2\pi(n + 1/2). \tag{24}
\]

Here \(S_r^{B=0}(\xi_0, \delta) \) and \(S_r^{B≠0}(\delta, \xi^+) \) can be calculated using Eq. (21) and Eq. (22) respectively, but the resulting expressions are again too lengthy to be presented here. Moreover, from Eq. (13) we find that

\[
\gamma_1 = \frac{\pi}{2} + \arcsin \left(\frac{E^2 - \tilde{m} - \delta}{\sqrt{E^2(\tilde{E}^2 - 2\tilde{m})}} \right). \tag{25}
\]

One can see that here in general \(\gamma_1 \neq \pi \) and therefore it does not cancel the contribution of the Maslov index.

As one can observe the overall agreement of the exact quantum and of the semiclassical calculations shown in Figs. 6, 7 is good, especially for higher energies. According to the exact quantum calculations, there is also a zero energy state but this can not be described by our semiclassics.

VI. CONCLUSIONS

To conclude, using semiclassical quantization we have studied the spectrum of bound states in inhomogeneous magnetic field setups in graphene mono and bilayer. We have found that a semiclassical quantization which takes into account a "Berry-like" phase can indeed explain all the main features of the exact quantum or numerical TB calculations. In particular, we have studied graphene mono- and bilayer nanoribbons in magnetic waveguide configuration and also in a configuration when snake states can exist. Besides, we discussed the magnetic dot system in graphene monolayer. For the considered step-wise constant magnetic field profile we have derived semiclassical quantization equations. In the case of graphene monolayer, we have compared the resulting semiclassical eigenenergies to quantum mechanical ones obtained from the corresponding Dirac equation. For graphene bilayer the results of the semiclassical quantization and numerical TB calculations have been compared. In all the cases a good agreement has been found except for energies very close to the Dirac point. We have shown that the main features of the spectrum depend on whether the classical guiding center coordinate is in the non-magnetic or in the magnetic field region.

Assuming homogeneous magnetic field, the energy of the Landau levels in semiclassical approximation has been calculated in Ref. (21). Our work can be considered as a generalization of these calculations to a class of non-homogeneous magnetic field setups, where due to the symmetry of the system, the Berry-like phase appearing in the semiclassical theory affects only one of the quantization conditions.

VII. ACKNOWLEDGMENT

We acknowledge discussions with Henning Schomerus. This work is supported partly by European Commission
To our best knowledge tight-binding (TB) or analytic calculations for the systems shown in Fig. 1(a),(b) have not yet been published for bilayer graphene. We obtained the results presented in Sec. IV using the TB Hamiltonian given e.g. in Ref. 20. In the numerical calculations the width of the graphene ribbon was $L = (\sqrt{3}N - 1)a$ where $N = 2400$ is the number of lattice sites in the x direction. Furthermore, we used $t_2/t_1 = 0.156$ and the strength of the magnetic field was $17T$.

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004); K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
2. Y. Zhang, J. P. Small, M. S. A. Amorí, and P. Kim, Phys. Rev. Lett. 94, 176803 (2005); Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
3. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, S. F. Hedin, A. K. Geim, Nature Physics 2, 177 (2006).
4. M. I. Katsnelson, Materials Today 10, 20 (2007).
5. M. I. Katsnelson and K. S. Novoselov, Solid State Commun. 143, 3 (2007).
6. A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
7. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, arXiv:0709.1163.
8. Johan Nilsson, A. H. Castro Neto, F. Guinea, N. M. R. Peres, arXiv:0712.3259.
9. Special issue of Solid State Commun. 143, 1 (2007).
10. Besides the review articles Refs. 4, 5, 6, 7, 8, see e.g. Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002); V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005); Phys. Rev. B 73, 245411 (2006); M. Tahir and K. Sabeeh, Phys. Rev. B 76, 195416 (2007).
11. E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).
12. A. De Martino, L. Dell’Anna, and R. Egger, Phys. Rev. Lett. 98, 066802 (2007).
13. J. E. Müller, Phys. Rev. Lett. 68, 385 (1992).
14. J. Reijniers and F. M. Peeters, J. Phys.: Condens. Matter 12, 9771 (2000); J. Reijniers, A. Matulis, K. Chang, F. M. Peeters and P. Vasilopoulos, Europhys. Lett. 59, 749 (2002); H. Xu et al., T. Heinzel, M. Evaldsson, S. Ihnatsenka, and I. V. Zozoulenko, Phys. Rev. B 75, 205301 (2007).
15. L. Oroszlány, P. Raktya, A. Kormányos, C. J. Lambert, and J. Cserti Phys. Rev. B (R) 77, 081403 (2008).
16. T. K. Ghosh, A. De Martino, W. Häusler, L. Dell’Anna, and R. Egger Phys. Rev. B 77, 081404 (2008).
17. N. Nemec and G. Cuniberti, Phys. Rev. B 74, 165411 (2006).
18. H.W. Lee and D.S. Novikov, Phys. Rev. B68 155402 (2003).