Case report

Simultaneous bilateral aqueous misdirection following certolizumab therapy for rheumatoid arthritis

Leif Hynneklev,1 Alexander Stanley Thrane,1 Jørgen Krohn1,2

SUMMARY
Aqueous misdirection syndrome is a rare, incompletely understood, sight-threatening eye condition that is difficult to diagnose and treat. We present a case of simultaneous bilateral aqueous misdirection following the administration of certolizumab in a 41-year-old women with rheumatoid arthritis and no known risk factors. To our knowledge, aqueous misdirection has not previously been associated with the use of tumour necrosis factor-alpha inhibitors.

BACKGROUND
Aqueous misdirection syndrome (AMS), also known as malignant glaucoma, is a sight-threatening condition associated with a uniform shallowing of the anterior chamber and normal or elevated intraocular pressure (IOP). The exact mechanism is incompletely understood, but thought to be related to a redirection of aqueous humour into the vitreous due to anterior rotation of the ciliary body with consequent ciliolenticular and/or vitreous block. AMS can occur spontaneously, but is most frequently seen in the context of cataract or glaucoma surgery. Other risk factors include hyperopia and previous angle-closure. The diagnosis is made by the observation of axial flattening of the anterior chamber despite a patent iridotomy, in the presence of elevated or sometimes normal IOP. Miotics can worsen AMS, while cycloplegics may improve the condition. Most patients require neodymium-doped yttrium aluminum garnet (Nd:YAG) laser anterior hyaloidotomy with posterior capsulotomy if pseudophakic or phacoemulsification combined with pars plana vitrectomy if phakic. Certolizumab pegol is a pegylated antigen-binding fragment (Fab) of humanised tumour necrosis factor (TNF-ɑ) antibody, used for the treatment of rheumatoid arthritis, ankylosing spondylitis, Crohn’s disease and other autoimmune diseases. Herein, we report an unusual case of simultaneous bilateral AMS associated with certolizumab therapy for rheumatoid arthritis.

CASE PRESENTATION
A 41-year-old women, with rheumatoid arthritis and no history of eye disease or surgery, was admitted to the neurology department with acute blurred vision and headache of 3–4 weeks duration. A transient ischaemic attack was first suspected, but neurological workup and imaging were normal. During the past 4 years, she had been treated with prednisolone and various disease-modifying anti-rheumatic drugs (sulfasalazine, infliximab, etanercept, adalimumab) without satisfactory response. Five weeks prior to presentation, she had started on 400 mg certolizumab pegol injections every 2 weeks. Apart from oral prednisolone, 15 mg/day, she had not been using any other drugs during the last month before starting certolizumab. An erythematous rash developed at the injection site 9 days after the first certolizumab injection. After the second injection, 2 weeks later, she was therefore given a single dose of oral cetirizine 10 mg. The third and last certolizumab injection was 6 days prior to presentation, given at half dose (200 mg) together with cetirizine 10 mg/day for 3 days to reduce the symptoms and appearance of the local skin reaction. Her uncorrected visual acuity (VA) was 20/200 in both eyes (OU). Despite a history of emmetropia, a best-corrected VA of 20/30 OU was achieved with a spherical equivalent correction (SEC) of −6 and −6.25 diptres (D) in the right eye (OD) and left eye (OS), respectively. Slit-lamp examination revealed a uniform shallowing of the anterior chambers, with anterior displacement of the lens–iris complex and no signs of choroidal effusion (figure 1). Gonioscopy showed almost completely occluded angles, and IOP was 36 mm Hg bilaterally. Acute angle-closure glaucoma was suspected, and she was given maximal IOP-lowering medication and bilateral Nd:YAG laser iridotomy aided by pilocarpine 2%. The following morning, IOP was 14 mm Hg OU, but the anterior chambers were still very shallow, and her refractive error had increased to −7.25 and −8.00 D. Optical biometry revealed shallow anterior chamber depths of 1.16 mm and 1.43 mm, normal lens thicknesses of 4.39 mm and 4.43 mm and normal axial lengths of 23.57 and 23.47 mm in OD and OS, respectively. B-scan ultrasonography was performed to exclude choroidal effusion. Based on the clinical course and ancillary findings, a diagnosis of bilateral AMS was made. Bilateral Nd:YAG laser anterior hyaloidotomy was performed followed by topical cyclopentolate 0.5%, dexamethasone 0.1%, dorzolamide/timolol and oral prednisolone. Immediately after the hyaloidotomy, a significant deepening of the anterior chambers was observed. Four hours later, normal anterior chamber depths were
anticholinergic activity. Cetirizine, however, has a negligible
been associated with certain antihistamines owing to their weak
are reported in the literature. A limitation of our study is
ruled out, the time course and the lack of any predisposing risk
is based on a single case and other causes cannot be completely
the administration of a TNF-α
best of our knowledge, this is the first report of AMS following
of aqueous humour and thereby led to its misdirection. To the
Figure 1 Scheimpflug images and slit-lamp photographs of
complaints. Her rheumatoid arthritis was subsequently treated
stable emmetropia and normal visual function without any other
After 4 days, her VA was 20/20 OU with a SEC of +0.2 D OD
and +0.0 D OS. Certolizumab was discontinued due to the
high probability of being the causative agent. Within 4 weeks,
al topical medications were withdrawn, and the IOP remained
within the normal range. Four months follow-up revealed normal
visual fields, normal IOP normal peripapillary retinal nerve
fibre layers by spectral domain optical coherence tomography,
stable emmetropia and normal visual function without any other
comments. Her rheumatoid arthritis was subsequently treated
with oral prednisolone 5–20 mg/day, adjusted according to clin-
cal response.

OUTCOME AND FOLLOW-UP
After 4 days, her VA was 20/20 OU with a SEC of +0.2 D OD
and +0.0 D OS. Certolizumab was discontinued due to the
high probability of being the causative agent. Within 4 weeks,
al topical medications were withdrawn, and the IOP remained
within the normal range. Four months follow-up revealed normal
visual fields, normal IOP normal peripapillary retinal nerve
fibre layers by spectral domain optical coherence tomography,
stable emmetropia and normal visual function without any other
comments. Her rheumatoid arthritis was subsequently treated
with oral prednisolone 5–20 mg/day, adjusted according to clin-
cal response.

DISCUSSION
Spontaneous bilateral AMS is a rare event, and only six cases are reported in the literature. A limitation of our study is
the lack of ultrasound biomicroscopy (UBM) due to equipment
malfunon. UBM may have helped to identify the status of the
ciliary body and processes as well as possible ciliary body effu-
sion that can precipitate AMS. Pupillary block glaucoma has been associated with certain antihistamines owing to their weak
anticholinergic activity. Cetirizine, however, has a negligible
anticholinergic activity, and we have not found any reports in the
literature on an association between cetirizine medication
and pupillary block or angle-closure. In our patient, there is
substantial evidence against a pupillary block, and for an AMS
mechanism, including a lack of resolution after iridotomy, a
uniform shallowing of the anterior chambers and an increasing
myopic shift following miotics. A possible molecular explana-
tion for the association between certolizumab and AMS could
be an inhibition of TNF-α-induced expression of the vasoac-
tive and smooth muscle-contracting peptide endothelin-1 in the
ciliary body, which may have altered the normal dynamics
of aqueous humour and thereby led to its misdirection. To the
best of our knowledge, this is the first report of AMS following
the administration of a TNF-α inhibitor. Although our report
is based on a single case and other causes cannot be completely
ruled out, the time course and the lack of any predisposing risk
factors suggest that the bilateral AMS in our patient was induced
by certolizumab. Patients with known risk factors such as axial
hyperopia and a history of primary angle-closure may need to
be followed more closely with UBM after starting certolizumab.

Learning points
- Aqueous misdirection syndrome (AMS) is a diagnostic and
therapeutic challenge, where immediate recognition and
treatment can improve the outcome.
- AMS may first present to non-ophthalmologists and
masquerade as an acute neurological condition.
- An insidious increase in intraocular pressure, a shallow
anterior chamber both centrally and peripherally, and an
increasing myopic shift are signs to look out for.
- Bilateral AMS rarely occurs spontaneously in patients without
any risk factors.
- Cycloplegics and laser anterior hyaloidotomy may reverse the
condition.

Contributors AST and LH were responsible for managing the patient. All authors contributed to writing the manuscript and approved the final version.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work
is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1 Kaplowitz K, Yung E, Flynn R, et al. Current concepts in the treatment of vitreous
block, also known as aqueous misdirection. Surv Ophthalmol 2015;60:229–41.
2 Graudal N, Kaas-Hansen BS, Gussi L, et al. Different original and Biosimilar TNF
inhibitors similarly reduce joint destruction in rheumatoid arthritis–a network meta-
analysis of 36 randomized controlled trials. Int J Mol Sci 2019;20:pi: E4350.
3 Deeks ED. Certolizumab pegol: a review in inflammatory autoimmune diseases.
Bull Drugs 2016;30:607–17.
4 González-Martin-Moro L, Iglesias-Ussel L, Cobo-Soriano R, et al. Spontaneous
malignant glaucoma: case report and review of the literature. Saudi J Ophthalmol
2019;33:398–400.
5 Manku MS. Spontaneous bilateral malignant glaucoma. Aust N Z J Ophthalmol
1985;13:249–50.
6 Gonzalez F, Sanchez-Salorio M, Pacheco P. Simultaneous bilateral “malignant
glaucoma” attack in a patient with no antecedent eye surgery or miotics. Eur J
Ophthalmol 1992;2:91–3.
7 Amini H, Fekrat N, Razeghejad MR. Simultaneous spontaneous bilateral malignant
glaucoma attack in a young patient with bilateral posterior polar cataract. Ann
Ophthalmol 2005;37:285–8.
8 Jaraide EF, Dirani A, Labbouz S, et al. Spontaneous simultaneous bilateral malignant
glaucoma of a patient with no antecedent history of medical or surgical eye diseases.
Clin Ophthalmol 2014;8:1047–50.
9 Adekoya BJ, Balogun MM, Balogun BG, et al. Malignant glaucoma: report of a
presumed bilateral spontaneous case. East and Central African Journal of Surgery
2014;19:55–9.
10 Feng L, Roufas A, Healey PR, et al. Bilateral spontaneous aqueous misdirection: it can happen! Clin Exp Ophthalmol 2015;43:771–3.
11 Razeghejad MR, Myers JS, Katz LJ. Iatrogenic glaucoma secondary to medications.
Exp Eye Res 1998;66:9–18.
12 Prasanna G, Dibas AI, Yorio T. Cholinergic and adrenergic modulation of the Ca2+
response to endothelin-1 in human ciliary muscle cells. Invest Ophthalmol Vis Sci
2000;41:1142–8.

Hynneklev L, et al. BMJ Case Rep 2020;13:e235194. doi:10.1136/bcr-2020-235194
