Proof of Brouwer’s Conjecture

Vladimir Blinovsky*, Llohan D Speranca**

*Universidade Federal de São Paulo (UNIFESP).
Campus Sao Jose dos Campos. Instituto de Ciencia e Tecnologia (ICT), Brazil,
 *vblinovs@yandex.ru
 **lsperanca@gmail.com

*Institute for Information Transmission Problems,
B. Karetnyi 19, Moscow, Russia
Abstract We prove the Brouwer’s Conjecture

Let A be $n \times n$ incidence matrix of simple undirected graph G:

\[a_{i,j} = \begin{cases}
1, & \text{iff } (i, j) \in G, \\
0, & \text{otherwise}.
\end{cases} \]

Define Laplacian $L(G)$ of G as follows

\[L(G) = D - A, \]

were diagonal $n \times n$ matrix D has entries

\[d_i = |\{j : (i, j) \in G\}|. \]

We have $\sum d_i = 2m$, were m is number of edges in G. Considering G as directed graph with some choice of ordering of vertices in G define $m \times n$ matrix B:

\[b_{i,j} = \begin{cases}
1, & \text{if } j \text{ starting vertex in edge } i, \\
-1, & \text{if } j \text{ pendant vertex in edge } i, \\
0, & \text{otherwise}
\end{cases} \]

Then $G = B^T B$ and hence eigenvalues of matrix $L(G)$ are nonnegative:

\[0 = \mu_n(L(G)) \leq \mu_1(L(G)) \leq \ldots \leq \mu_1(L(G)). \]

Brouwer’s Conjecture. [2]. For every graph $G \subset 2^n$ and integer $1 \leq t \leq n - 1$, the following inequality is valid:

\[S_t(G) = \sum_{i=1}^t \mu_i(L(G)) \leq m + \binom{t+1}{2}, \quad t = 1, \ldots, n. \]

For convenience, we denote

\[\Delta_t(G) = S_t(G) - m(G) - \binom{t+1}{2}. \]

Whenever $\Delta_t(G) \leq 0$, we say that G satisfy BC_t.

It is known to be valid for trees [8], for $k = 1, 2, n - 1, n$, for unicyclic and bicyclic graphs [12], for regular graphs [4], for $n \leq 10$ it was checked by A. Brouwer using a computer. In [5] was proved that Brouwer’s conjecture holds asymptotically almost surely.

Before the proof of Brouwer’s conjecture (we call it next Conjecture) we introduce some consequences of the its validity.

Define

\[\bar{d}(G) = \{\bar{d}_1, \ldots, \bar{d}_n\}, \quad \bar{d}_i = |\{j : d_j \geq i\}|. \]
We say that the set E of edges is compressed if from $e = (i < j) \in E$ it follows that $e = (i_1 < j_1) \in E$, were $i_1 \leq i, j_1 \leq j$. Define threshold graph \hat{G} as the graph which set of edges is equivalent (up to permutations on $[n]$) to compressed set.

Grone - Merris conjecture [6], which was proved by Bai [7] says that the following upper bound is valid

$$\sum_{i=1}^{t} \mu_i(L(G)) \leq \sum_{i=1}^{t} \bar{d}_i(G).$$

It is known [9] that for threshold graphs there is equality in the last relation.

Define Laplacian energy of graph as follows

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i(L(G)) - \frac{2m}{n} \right|.$$

Define graph G on n nodes with m edges is spectrally threshold dominated (III) if for each $k \in [n]$ there is a threshold graph \hat{G} having the same number of nodes and edges satisfying

$$\sum_{i=1}^{t} \mu_i(L(G)) \leq \sum_{i=1}^{t} \sum_{i=1}^{t} \mu_i(L(\hat{G})) = \sum_{i=1}^{t} \bar{d}_i(L(\hat{G})).$$

In [11] was stated

Conjecture 1. All graphs are spectrally threshold dominated.

The main result of the paper [11] is the following

Theorem 1. For each spectrally threshold dominated graph G there exists a threshold graph with the same number of nodes and edges whose Laplacian energy is at least as large as that of G.

In [11] was proved that all (finite) graphs are spectrally threshold dominated iff Conjecture is valid. Hence proving Brouwer’s conjecture we prove conjecture III.

In [11] for each m and n were found the extremal threshold graphs G which deliver the maximum to the $LE(G)$ over all extremal threshold graphs and as it follows now over all graphs with given m, n.

1 Preliminary Remarks

Here we gather preliminary results that will be useful later.

Let $\overline{G} = (\binom{[n]}{2}) - G$ denote the complement of G. Then, (9):

$$\mu_i(L(G)) = n - \mu_{n-i}(L(G)), \; i = 1, \ldots, n - 1,$$

The following duality result will be key in our work. It follows directly from the proof of Theorem 6 in [8], by including the proper $\Delta’s$ in the calculation.
Theorem 2 ([10]). For every graph G,

$$\Delta_t(G) = \Delta_{n-t-1}(\bar{G})$$ \hspace{1cm} (1)

In particular, G satisfies BC_t if and only if \bar{G} satisfies BC_{n-t-1}.

On the other hand, once G satisfy BC_t, the graph obtained by adding an empty vertex, $G \cup \{v\}$, trivially satisfy BC_t. Then, from Theorem 2 we conclude that the graph obtained by adding a complete vertex, G' satisfies BC_{t+1}:

$$\Delta_{t+1}(G') = \Delta_{t+1}(G \cup \{v\}) = \Delta_{n-t-1}(\bar{G} \cup \{v\}) = \Delta_{n-t-1}(\bar{G}) = \Delta_t(G).$$ \hspace{1cm} (2)

Given $G \subset \binom{[n]}{2}$, we define the threshold family of G, $\mathcal{T}(G)$, as the family of all graphs obtained by G by adding complete or empty vertices. Note that the family of threshold graphs defined in the Introduction coincides with $\mathcal{T}(\emptyset)$. We also conclude that G satisfy Brouwer’s Conjecture if and only if an element in $\mathcal{T}(G)$ does so. The identities $\Delta_{t+1}(G \cup \{v\}) = \Delta_t(G)$ and (2) gives us:

Lemma 1. Brouwer's Conjecture is valid for every n and t provided that BC_t' holds for every graph G with n' vertices where $t' = \frac{n'-1}{2}$ if n' is odd or t' equal to either $\frac{n'-2}{2}$ or $\frac{n'}{2}$ if n' is even.

We call the explicit t''s in Lemma 1 as the middle t's. In what follows we will consider an inductive approach on n to prove that BC_t holds for the middle t's, whenever it holds for middle t's for graphs with less vertices. To this end, we remove one vertex of G and derive a special basis of \mathbb{R}^n where explicit bounds can be inferred. To this aim, we recall the following formula for $L(G)$:

$$\langle L(G)v, v \rangle = \frac{1}{2} \sum_{p \sim q} (v_p - v_q)^2, \hspace{1cm} (3)$$

and recall that

$$S_t(G) = \max \left\{ \sum_{i=1}^{t} \langle L(G)x_i, x_i \rangle \left| x_1, \ldots, x_t, \langle x_i, x_j \rangle = \delta_{ij} \right. \right\},$$

$$= \max \left\{ \text{tr}(L(G)|_V) \left| V \text{ is a } t \text{ dimensional subspace of } \mathbb{R}^n \right. \right\} \hspace{1cm} (4)$$

for $\{z_1, \ldots, z_n\}$ an orthonormal set of eigenvectors corresponding to non-increasing eigenvalues, and $z_n = (1/\sqrt{n}, \ldots, 1/\sqrt{n})$. From the last equality we conclude that

$$S_t(G) = \sum_{i=1}^{t} \langle L(G)x_i, x_i \rangle$$

for any orthonormal basis $\{x_1, \ldots, x_t\}$ of $\text{span}\{z_1, \ldots, z_t\}$.
Lemma 2. For every $p \in [n]$, there is a basis $\{x_1(p), ..., x_t(p)\}$ of $\text{span}\{z_1, ..., z_t\}$ such that $x_t(p)$ is the only vector with a possibly non-zero pth coordinate. Likewise, there is a basis $\{x_{t+1}(p), ..., x_{n-1}(p)\}$ of $\text{span}\{z_{t+1}, ..., z_{n-1}\}$ such that $x_{t+1}(p)$ is the only vector with non-zero pth coordinate.

Proof. For simplicity, we prove only the first part for $p = 1$ and omit the notation (p) in $x_i(p)$. Given a collection of orthonormal vectors $\mathcal{W} = \{w_1, ..., w_t\}$, denote

$$l_p(\mathcal{W}) = (w_{1p}, ..., w_{tp})$$

as the vector defined by the pth coordinates. For the proof, we take $w_i = z_i$, the ith eigenvector and write $|l_i|^2 = \sum_i z_i^2$. Let A be an orthonormal $t \times t$ matrix whose last column, A_t, has coordinates

$$\alpha_{t,1} = \frac{z_{1,1}}{|l_1|}, ..., \alpha_{t,t} = \frac{z_{t,1}}{|l_1|}.$$

Let Z be the matrix whose ith column is z_i. Then the columns of $X =ZA$ forms an orthonormal basis for $\text{span}\{z_1, ..., z_t\}$. The first coordinate of the ith column in X is given by

$$\sum_{j=1}^t \alpha_{i,j} z_{i,j,1} = |l_1| \langle A_i, A_t \rangle = |l_1| \delta_{i,t}. \quad \square$$

From now on we fix a basis as in Lemma 2 with $p = 1$ and denote it by $\{x_1, ..., x_t, x_{t+1}, ..., x_{n-1}\}$. We further assume $0 < x_{t,1}, x_{t+1,1} < \sqrt{\frac{n-1}{n}}$, since the extremal cases are easily dealt with (see the discussion below and Proposition 1).

Note that x_t is given explicitly by:

$$x_t = \frac{1}{|l_1|} \sum_{i=1}^t \frac{z_{i,1}}{z_i}.$$

This form is used to conclude the main bound in this paper (Proposition 1). The existence of x_t also allows our induction step. Let $x_1, ..., x_t$ be as in Lemma 2. Given $G \subset \binom{[n]}{2}$, consider the subgraph G' obtained by removing the first vertex of G, together with its edges. We have that

$$S_t(G) = \sum_{i=1}^t \langle L(G)x_i, x_i \rangle = \sum_{i=1}^{t-1} \langle L(G')x_i, x_i \rangle + \sum_{i=1}^{t-1} \sum_{j=1}^{t-1} x_{j,i}^2 + \langle L(G)x_t, x_t \rangle \leq S_{t-1}(G') + \omega_1 + \langle L(G)x_t, x_t \rangle,$$

where

$$\omega_p = \sum_{(p,q) \in E} \sum_{i=1}^{t-1} (x_{i,p}(p) - x_{i,q}(p))^2,$$

and the last inequality follows from (4). In particular, if G' satisfies BC_{t-1}, then G satisfies BC_t if

$$\omega_p + \langle L(G)x_t(p), x_t(p) \rangle \leq t + d_p,$$

where d_p is the degree of vertex p. This completes the proof of Proposition 1.
for some p. Equivalently, we can work with the dual graph, \bar{G}, and show that BC_t holds if
\[
\bar{\omega}_p + \langle L(G)x_{t+1}(p), x_{t+1}(p) \rangle \leq \bar{t} + \bar{d}_p.
\] (9)

Where here we take $x_{t+1}(p)$ as the only vector with (possibly) non-zero pth-coordinate, and
\[
\bar{t} = n - 1 - t, \quad \bar{d}_p = n - 1 - d_p,
\]
\[
\bar{\omega}_p = \sum_{q:(p,q) \in \bar{E}} \sum_{i=t+2}^{n-1} (x_{i,p}(p) - x_{i,q}(p))^2.
\]

The key elements in the paper are the following bounds on $\langle L(G)x_t, x_t \rangle$ and ω_1.

Proposition 1. Let $x_t(1) = x_t$ be as in Lemma 2 and $x_{t,1} > 0$. Then,
\[
\langle x_t, L(G)x_t \rangle \leq \left\{ \begin{array}{ll}
d_1 + \sqrt{d_1 \frac{1-x_t^2}{x_t^2}}, & x_{t,1}^2 \geq \frac{d_1}{d_1+1}; \\
\frac{n d_1}{n-1} + \sqrt{\frac{d_1 d_2}{n-1} - \frac{d_1 d_1}{n-1}} \frac{1-x_t^2}{x_t^2}, & x_{t,1}^2 < \frac{d_1}{d_1+1}.
\end{array} \right.
\] (10)

Likewise,
\[
\langle x_{t+1}, L(\bar{G})x_{t+1} \rangle \leq \left\{ \begin{array}{ll}
\bar{d}_1 + \sqrt{\bar{d}_1 \frac{1-x_{t+1}^2}{x_{t+1}^2}}, & x_{t+1,1}^2 \geq \frac{\bar{d}_1}{\bar{d}_1+1}; \\
\frac{n \bar{d}_1}{n-1} + \sqrt{\bar{d}_1 \left(1 - \frac{\bar{d}_1}{n-1}\right) \frac{1-x_{t+1}^2}{x_{t+1}^2}}, & x_{t+1,1}^2 < \frac{\bar{d}_1}{\bar{d}_1+1}.
\end{array} \right.
\]

Proof. By eventually replacing x_t by $-x_t$, we assume that $x_{t,1} > 0$. Denote $(L(G)x_t)_1$ as the first coordinate of $L(G)x_t$. Let us first show that
\[
\langle x_t, L(G)x_t \rangle = \frac{(L(G)x_t)_1}{|l_1|},
\] (11)
then the Proposition will follow by Jensen inequality.

Let $\{z_1, ..., z_t\}$ be as in Lemma 2. Using (9), we conclude that
\[
\langle x_t, L(G)x_t \rangle = \sum_{i=1}^{t} \langle z_i, L(G)z_i \rangle \frac{z_i^2}{|l_1|^2} = \frac{1}{|l_1|^2} \sum_{i=1}^{t} \mu_i z_i^2.
\]
On the other hand,
\[
(L(G)x_t)_1 = \left(\sum_{i=1}^{t} \frac{\mu_i z_i |l_1|}{|l_1|} \right)_1 = \frac{1}{|l_1|} \sum_{i=1}^{t} \mu_i z_i^2,
\]
concluding the claim. Nonetheless:

$$\langle x_t, L(G)x_t \rangle x_{t,1} = d_1x_{1,t} - \sum_{p:(1,p)\in E} x_{t,p} \leq d_1x_{t,1} + \sum_{p:(1,p)\in \bar{E}} x_{t,p}$$

and

$$\left| \sum_{p:(1,p)\in E} x_{t,p} \right| = \left| \sum_{p:(1,p)\in \bar{E}} x_{t,p} + x_{t,1} \right| \leq x_{t,1} + \left| \sum_{p:(1,p)\in \bar{E}} x_{t,p} \right|.$$

Thus

$$(x_t, L(G)x_t)x_{t,1} \leq d_1x_{1,t} + \min \left\{ \left| \sum_{p:(1,p)\in E} x_{t,p} \right|, x_{t,1} + \left| \sum_{p:(1,p)\in \bar{E}} x_{t,p} \right| \right\}.$$

Using Jensen inequality we obtain:

$$\left| \sum_{p:(1,p)\in E} x_{t,p} \right| \leq \sqrt{d_1x}, \quad \left| \sum_{p:(1,p)\in \bar{E}} x_{t,p} \right| \leq \sqrt{d_1(1-x_{t,1}^2)-x},$$

where $x = \sum_{p:(1,p)\in E} x_{t,p}^2$. Therefore,

$$\min \left\{ \left| \sum_{p:(1,p)\in E} x_{t,p} \right|, x_{t,1} + \left| \sum_{p:(1,p)\in \bar{E}} x_{t,p} \right| \right\} \leq \max_{x\in[0,1-x_{t,1}^2]} \min \left\{ \sqrt{d_1x}, x_{t,1} + \sqrt{(n-d_1-1)(1-x_{t,1}^2)-x} \right\}$$

$$= \begin{cases} \frac{x_{t,1}d_1}{n-1} + \sqrt{\frac{d_1d_{i+1}}{n-1}(1-\frac{n}{n-1}x_{t,1}^2)}, & x_{t,1}^2 \geq \frac{d_1}{d_{i+1}}; \\ \sqrt{d_1(1-x_{t,1}^2)}, & \text{otherwise}. \end{cases}$$

To conclude the last equality, first observe that $\sqrt{d_1x}$ is increasing with respect to x, thus $\sqrt{d_1x} \leq \sqrt{d_1(1-x_{t,1}^2)}$. On the other hand, the first bound on $x_{t,1}^2$ is equivalent to

$$\sqrt{d_1(1-x_{t,1}^2)} \leq x_{t,1},$$

making $\sqrt{d_1(1-x_{t,1}^2)}$ the solution to the max min problem. Otherwise, since $x \mapsto \sqrt{d_1(1-x_{t,1}^2)-x}$ is decreasing, the max min is achieved when

$$\sqrt{d_1x} = x_{t,1} + \sqrt{(n-d_1-1)(1-x_{t,1}^2)-x}. \quad (12)$$
We manipulate this equation as follows:

\[
\begin{align*}
\sqrt{d_1 x} - x_{t,1} = \\
(n-1)x - 2\sqrt{d_1 x}x + x_{t,1}^2 - d_1(1-x_{t,1}^2) = 0
\end{align*}
\]

\[
\begin{align*}
x = \frac{\sqrt{d_1 x_{t,1}}}{n-1} + \sqrt{\left(\frac{\sqrt{d_1 x_{t,1}}}{n-1}\right)^2 - \frac{x_{t,1}^2 - d_1(1-x_{t,1})}{n-1}}
\end{align*}
\]

\[
\begin{align*}
= \frac{\sqrt{d_1 x_{t,1}}}{n-1} + \sqrt{d_1 x_{t,1}^2 - (n-1)x_{t,1}^2 + (n-1)d_1(1-x_{t,1})}
\end{align*}
\]

\[
\begin{align*}
= \frac{\sqrt{d_1 x_{t,1}}}{n-1} + \sqrt{d_1(1-x_{t,1}^2) + \frac{1}{n-1}x_{t,1}^2}
\end{align*}
\]

\[
\begin{align*}
= \frac{\sqrt{d_1 x_{t,1}}}{n-1} + \sqrt{d_1(1-x_{t,1})}
\end{align*}
\]

The result is concluded by multiplying the last expression by $\sqrt{d_1}$. \hfill \square

Before proceeding, we remark the following inequality that follows from the last proof.

Lemma 3. Let $y = |\sum_{p:(1,p)\in E} x_{t,p}|$, then, $y < \sqrt{\frac{d_1 d_2}{n-1}}$.

Proof. Indeed

\[
y = \left| \sum_{p:(1,p)\in E} x_{t,p} \right| = x = \left| \sum_{p:(1,p)\in E} x_{t,p} + x_{t,1} \right| \leq \max_{x\in[0,1]} \left\{ \sqrt{d_1 x}, \sqrt{d_1(1-x)} \right\}
\]

Note that max min in the rhs of last inequality achieved at x which satisfied equality

\[
\sqrt{d_1 x} = \sqrt{d_1(1-x)}
\]

or

\[
x = \frac{\bar{d}_1}{n-1}.
\]

From this equality Lemma follows. \hfill \square

An extra inequality is also needed. Recall that x_t, x_{t+1} are the only vectors in $\{x_1, \ldots, x_{n-1}\}$ with non-zero first coordinates. To motivate the next inequality, we also recall that the first vertex is complete if and only if the vector

\[
v_1 = \left(\sqrt{\frac{n-1}{n}}, \frac{1}{\sqrt{n(n-1)}}, \ldots, \frac{1}{\sqrt{n(n-1)}} \right)
\]

is in the span of $\{x_1, \ldots, x_t\}$. Next, we measure how much this vector does not belong to this t-subspace.
Since v_0 is orthogonal to $\{x_1, \ldots, x_{t-1}, x_{t+2}, \ldots, x_{n-1}, z_n\}$, there exists $0 < \lambda < 1$ and a vector $y = (0, y_2, \ldots, y_n)$, $\sum_{p=2}^{n} y_p = 0$, $\sum_{p=2}^{n} y_p^2 = 1$ such that

$$x_t = v_1 \sqrt{\lambda} + \sqrt{1 - \lambda} y;$$

$$x_{t+1} = v_1 \sqrt{1 - \lambda} - \sqrt{\lambda} y.$$

Further denote:

$$B = \sum_{p < q, (p, q) \in E} (y_p - y_q)^2, \quad \bar{B} = \sum_{p < q, (p, q) \in \bar{E}} (y_p - y_q)^2.$$

Then, Lemma 3 gives:

$$\langle x_t, L(G)x_t \rangle = \lambda d_1 \frac{n}{n-1} + (1 - \lambda) B - 2 \sqrt{\lambda(1 - \lambda)} \sum_{p : (1, p) \in E} x_{t,p} \quad \text{(13)}$$

$$\leq \lambda d_1 \frac{n}{n-1} + (1 - \lambda) B + 2 \sqrt{\lambda(1 - \lambda)} d_1 \left(1 - \frac{d_1}{n-1}\right);$$

$$\langle x_{t+1}, L(\bar{G})x_{t+1} \rangle = (1 - \lambda) \bar{d}_1 \frac{n}{n-1} + \lambda \bar{B} - 2 \sqrt{\lambda(1 - \lambda)} y$$

$$\leq (1 - \lambda) \bar{d}_1 \frac{n}{n-1} + \lambda \bar{B} + 2 \sqrt{\lambda(1 - \lambda)} \bar{d}_1 \left(1 - \frac{\bar{d}_1}{n-1}\right). \quad \text{(14)}$$

Optimisation over λ deliver the following bounds:

Proposition 2. Let x_t be as above. Then,

$$\langle x_t, L(G)x_t \rangle \leq \frac{d_1 \frac{n}{n-1} + B}{2} + \frac{1}{2} \sqrt{ \left(d_1 \frac{n}{n-1} - B \right)^2 + 4 d_1 \left(1 - \frac{d_1}{n-1}\right) };$$

$$\langle x_{t+1}, L(\bar{G})x_{t+1} \rangle \leq \frac{\bar{d}_1 \frac{n}{n-1} + \bar{B}}{2} + \frac{1}{2} \sqrt{ \left(\bar{d}_1 \frac{n}{n-1} - \bar{B} \right)^2 + 4 \bar{d}_1 \left(1 - \frac{\bar{d}_1}{n-1}\right) }.$$

Proof. We maximize the expression in (13) for $0 < \lambda < 1$. To this aim, we analyze the derivative of the expression with respect to λ:

$$d_1 \frac{n}{n-1} - B + \sqrt{ \left(d_1 \frac{n}{n-1} - B \right)^2 + 4 d_1 \left(1 - \frac{d_1}{n-1}\right) }; \quad \text{(15)}$$

Observe that the derivative goes to $+\infty$ and $-\infty$ as λ goes to 0 and 1, respectively. Therefore, we conclude that the maximum is in the interior. On the other hand, equalling (15) to zero gives:

$$\lambda^2 - \lambda + \frac{1}{4 + A^2} = 0, \quad A = \frac{d_1 \frac{n}{n-1} - B}{\sqrt{d_1 \frac{n}{n-1}}}. \quad \text{9}$$
The maximum is achieved at:
\[\lambda_{\pm} = \frac{1}{2} \left(1 \pm \frac{A}{\sqrt{4 + A^2}} \right). \]

The proof is concluded by replacing \(\lambda \) by \(\lambda_{\pm} \) in (13), observing that \(\lambda_{\pm} = 1 - \lambda_{\mp} \).

As an alternative to using Proposition 2, BC will hold if we can prove at least one of the following inequalities:

\[\frac{d_1(n-1)+B}{2} + \frac{1}{2} \sqrt{\left(\frac{d_1}{n-1} - B \right)^2 + 4d_1 \left(1 - \frac{d_1}{n-1} \right)} + \omega_1 \leq t + d_1; \quad (16) \]

\[\frac{\bar{d}_1(n-1)+\bar{B}}{2} + \frac{1}{2} \sqrt{\left(\frac{\bar{d}_1}{n-1} - \bar{B} \right)^2 + 4\bar{d}_1 \left(1 - \frac{\bar{d}_1}{n-1} \right)} + \bar{\omega}_1 \leq \bar{t} + \bar{d}_1. \quad (17) \]

For the bound on \(\omega_\tau \), we remark that \(x_t(p) \) can be somehow uniquely determined if \(l_p \neq 0 \).

2 Proof of Conjecture

We use induction on \(n \) to prove BC and assume that BC is true for \(n \leq 15 \). For \(n \leq 15 \) BC can be checked using modern computer.

Let \(\{x_i, i \in [n-1]\} \) be the set of eigenvectors of \(L(G) \). Considering Grassmannian frame \(F \) with row set \(\{x_i, i \in [t]\} \) and complement frame \(\bar{F} \) with row set \(\{x_i, i \in [t+1,n-1]\} \) we note that orthogonal transformation of columns preserve these frames and we can assume that Grassmannian frames \(H_{1,p}(\{x_i(p), j \in [t]\}), H_{2,p}(\{x_i(p), j \in [t+1,n-1]\}) \), are generated by vectors \(x_j(p) = (x_{j,1}(p), x_{j,2}(p), \ldots, x_{j,\bar{d}_1+1}(p), 0, x_{j,\bar{d}_1+2}(p), \ldots, x_{j,n}(p)) \), \(j \in [n-1] \setminus \{t,t+1\} \), \(x_j(p) = (x_{j,1}(p), x_{j,2}(p), \ldots, x_{j,n}(p)) \), \(j \in \{t,t+1\} \). Note, that

\[x_{t,1}^2 + x_{t+1,1}^2 = \frac{n-1}{n}. \]

W.l.o.g. we can assume that \(p = 1 \) and \(x_{t,1} \in \left(0, \sqrt{(n-1)/n} \right) \). Next we skip \(p = 1 \) in the notations.

As a first step, we observe that the case \(x_{t,1}^2 \leq \frac{d_1}{d_1+1} \) (respectively, \(x_{t+1,1}^2 \leq \frac{d_1}{d_1+1} \)) is easily discarded.

Lemma 4. Suppose that either \(|\ell_i|^2 < \frac{d_1}{d_1+1} \) or \(|\bar{\ell}_i|^2 < \frac{\bar{d}_1}{\bar{d}_1+1} \) for some \(i \). Then, BC holds for \(G \).

Proof. To prove BC for \(n \) and \(x_{t,1}^2 \geq \frac{d_1}{d_1+1} \), assuming that it is true for \(n-1 \) it is sufficient to prove the inequality

\[d_1 + \sqrt{d_1 \frac{1-x_{t,1}^2}{x_{t,1}^2}} + \omega_1 \leq d_1 + t \]

or

\[\omega_1 \leq t - \sqrt{d_1 \frac{1-x_{t,1}^2}{x_{t,1}^2}}. \]
Last inequality is trivial, since

\[
\sqrt{d_1 \frac{1-x_{t,1}^2}{x_{t,1}^2}} \leq \sqrt{d_1 \frac{1-d_1}{d_{t+1}}} \leq 1.
\]

The same consideration proves BC when \(x_{t+1,1}^2 \geq \frac{d_{t+1}}{d_1} \).

Putting (8) and Proposition 1 together we conclude that \(BC_t \) holds for \(G \) if one of the following inequalities is true:

\[
\frac{d_1}{n-1} + \sqrt{d_1 \left(1 - \frac{d_1}{n-1}\right) \frac{1-n^{-1}x_{t,1}^2}{x_{t,1}} + \omega_1} \leq t; \tag{18}
\]

\[
\frac{d_1}{n-1} + \sqrt{d_1 \left(1 - \frac{d_1}{n-1}\right) \frac{1-n^{-1}x_{t+1,1}^2}{x_{t+1,1}} + \tilde{\omega}_1} \leq \tilde{t}. \tag{19}
\]

For the remaining of the paper, we consider \(t = \frac{n}{2} \) when \(n = 2t \) and \(t = \frac{n-1}{2} \) when \(n = 2t + 1 \).

Assume at first that \(\omega_1 < t(1 - \delta) \).

Then using (18) we obtain the inequality

\[
d_1 \left(1 - \frac{d_1}{n-1}\right) \frac{1-n^{-1}x_{t,1}^2}{x_{t,1}^2} \leq \left(\frac{n}{2} \delta - 1\right)^2
\]

or

\[
x_{t,1}^2 \geq \frac{z\overline{z}(n-1)}{z\overline{z}n + \left(\frac{n}{2} \delta - 1\right)^2}.
\]

The last inequality is satisfied if

\[
x_{t,1}^2 \geq \frac{2}{n\delta^2}, \ \delta > \frac{2\sqrt{2}}{(\sqrt{2} - 1)n}.
\]

It is left to consider the reverse condition:

\[
x_{t,1}^2 < \frac{2}{n\delta^2}. \tag{20}
\]

In this case, we have:

\[
d_1 < \omega_1 + \sum_{p: (1,p) \in E} (x_{t,p} - x_{t,1})^2 < d_1 x_{t,1}^2 + 2\sqrt{d_1} x_{t,1} + 1 + \omega_1 < \frac{2}{\delta^2} + \frac{2\sqrt{2}}{\delta} + 1 + \omega_1 < \frac{2}{\delta^2} + 2\sqrt{2} + 1 + t(1 - \delta) < \frac{n-1}{n} t, \ \delta > 2n^{-1/3}.
\]

We thus conclude the proof with the following result:
Lemma 5. G satisfies BC_t if \([21]\) holds.

Proof. We have

$$\frac{d_1 n}{2} + B + \frac{1}{2} \sqrt{\left(\frac{d_1 n}{n-1} - B\right)^2 + 4d_1 \left(1 - \frac{d_1}{n-1}\right)} + d_1 \leq d_1 + t;$$

$$\sqrt{\left(\frac{d_1 n}{n-1} - B\right)^2 + 4d_1 \left(1 - \frac{d_1}{n-1}\right)} \leq 2t - \frac{n}{n-1} - B.$$

Assume that $B \leq t - \frac{2}{\delta}$, then

$$4d_1 \left(1 - \frac{d_1}{n-1}\right) \leq \left(2t - \frac{n}{n-1} - B\right)^2 - \left(\frac{n}{n-1} - B\right)^2.$$

Hence we need to prove inequality

$$d_1 \left(1 - \frac{d_1}{n-1}\right) \leq \left(\frac{n}{n-1} - B\right)(t - B).$$

Hence we have inequality

$$d_1 < t \left(1 - \frac{\delta}{\delta}\right)$$

when $\frac{\delta}{\delta} < \delta < 1$, $t - B > \frac{2}{\delta}$.

At last, if $B > t - \frac{2}{\delta}$, then $\bar{B} < n - t + \frac{2}{\delta} = \frac{n}{2} + \frac{2}{\delta}$, $\bar{d}_1 > n - 1 - t \left(1 - \frac{\delta}{\delta}\right) > \frac{n}{2} \left(1 + \frac{\delta}{\delta}\right)$.

From other side

$$\bar{B} \geq \sum_{p,(1,p) \in \bar{E}} \left(x_{t+1,1} - x_{t+1,p}\right)^2 \geq \frac{\bar{d}_1 x_{t+1,1}^2}{1 + \bar{x}_{t+1,1}^2} - 2|x_{t+1,1}|\sqrt{\bar{d}_1(1 - x_{t+1,1}^2)}$$

$$> \frac{n}{2} \left(1 + \frac{\delta}{16}\right) \left(\frac{n-1}{n} - \frac{2}{n\delta^2}\right) - 2\sqrt{\frac{n}{2} \left(1 + \delta\right)} > \frac{n}{2} + \frac{2}{\delta}.$$

Last inequality is true when $\delta > 2n^{-1/3}$. This contradiction complete the proof in the case when there exists $i \in [n]$, s.t. $\omega_i \leq t(1 - \delta)$.

Next we assume that $\omega_i > t(1 - \delta)$, $i \in [n]$. Then $d_i \geq \omega_i > t(1 - \delta)$. Assume that there exists $p \in [n]$ s.t. $t(1 + \delta) \geq d_p \geq t(1 - \delta)$. Taking into account that $\omega_q > t(1 - \delta)$ we have

$$\sum_{q:p,(p,q) \in \bar{E}} \sum_{i=1}^t x_{i,q}^2 < t - t(1 - \delta) = t\delta.$$

Hence

$$\frac{1}{n - d_p} \sum_{q:p,(p,q) \in \bar{E}} \sum_{i=1}^t x_{i,q}^2 < \frac{t\delta}{n - 1 - d_p} < \frac{t\delta}{n - t - t\delta} < \frac{\delta}{1 - \delta}. $$

12
We have
\[P\left(\sum_{i=1}^{t} x_{i,q}^2 > \frac{\sqrt{\delta}}{1 - \delta} \right) < \sqrt{\delta}. \]

Hence
\[\sum_{i=1}^{t} x_{i,p}^2 < \frac{\sqrt{\delta}}{1 - \delta} \]

for \(q \in J, J \subset \{ q : (p, q) \in \bar{E} \}, |J| > (1 - \sqrt{\delta})(1 - \delta)t. \)

Hence for the arbitrary \(q \in J \)
\[d_q < \omega_q + \sum_{k \in J}(x_{t,q} - x_{t,k})^2 < d_q x_{i,q}^2 + 2\sqrt{d_q|x_{i,q}|} + t < d_p \frac{\sqrt{\delta}}{1 - \delta} + 2\sqrt{n} \frac{\sqrt{\delta}}{1 - \delta} + t \]

or
\[d_q < t(1 + 2\sqrt{\delta}), n > 36\delta^{-3/2}, p \in J. \]

The same argument for \(\bar{d}_q, q \in \bar{J} \subset \{ q : (p, q) \in E \}, |\bar{J}| > (1 - \sqrt{\delta})(1 - \delta)t \) reaches the same inequality
\[\bar{d}_q < t(1 + 2\sqrt{\delta}), n > 36\delta^{-3/2}. \]

Renumbering vertices we can assume that
\[t(1 - 2\sqrt{\delta}) \leq d_q, \bar{d}_q \leq t(1 + 2\sqrt{\delta}), q \in [2(1 - \sqrt{\delta})t(1 - \delta)] > [n(1 - 2\sqrt{\delta})]. \]

In the remaining part \([n] \setminus [n(1 - 2\sqrt{\delta})]\), we use the trivial bound \(d_p, \bar{d}_p < n. \) \(G \) satisfies BC if
\[\sum_{i=1}^{t} \mu_i(L(G)) \leq \sum_{i=1}^{t} d_i + \sqrt{2mt} < 2n^2\sqrt{\delta} + t^2(1 + 2\sqrt{\delta}) + n\sqrt{n} < m + \frac{t + 1}{2} = m + \frac{n/2 + 1}{2}. \]

Brouwer conjecture BC\(_{t-1}\) for graph \(\bar{G} \) is valid if
\[\sum_{i=1}^{t-1} \mu_i(L(\bar{G})) \leq \sum_{i=1}^{t-1} d_i + \sqrt{2mt} < 2n^2\sqrt{\delta} + t^2(1 + 2\sqrt{\delta}) + n\sqrt{n} < \bar{m} + \frac{n/2}{2}. \]

Both inequalities could not be violated for small \(\delta \), because \(m + \bar{m} = \binom{n}{2} \).

Because for BC to be true it is sufficient that one of these inequalities to be valid, what completes the proof whenever there is \(i \in [n] \) such that \(t(1 + \delta) \geq d_i \geq t(1 - \delta). \)

Assume now that \(d_i \geq t(1 + \delta), i \in [n] \). Then \(d_i \leq t(1 - \delta). \)

BC\(_{t-1}\) is true if
\[\sum_{i=1}^{t-1} \mu_i(L(\bar{G})) \leq \sum_{i=1}^{t-1} \bar{d}_i + \sqrt{2mt} \leq t(t - 1)(1 - \delta) + \sqrt{nm} \leq t(t - 1)(1 - \delta) + n\sqrt{n} \leq \bar{m} + \frac{n(n - 2)}{8}, \]

which is true because BC is obviously true when \(\bar{m} < \frac{n}{2} \). \(\square \)
References

[1] Ravinder Kumar, Bounds for eigenvalues of graphs, Journal of Mathematical Inequalities, V. 4, N3, (2010), 399 - 404.

[2] A.E.Brouwer, W.H. Haemers, Spectra of Graphs. Springer-Verlag, New York, 2012

[3] Ky Fan, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Nat. Acad. Sci. USA 35 (1949), 652–655.

[4] Mayank, On variants of the Grone-Merris conjecture, https://pure.tue.nl/ws/files/46996128/693554-1.pdf, 2010

[5] I.Rocha, Brouwer’s conjecture holds asymptotically almost surely, https://arxiv.org/pdf/1906.05368v1.pdf

[6] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Disc. Math. 7 (1994), 221–229

[7] H. Bai. The Grone-Merris conjecture. Trans. Amer. Math. Soc., 363(8):4463–4474, 2011

[8] W.H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, Linear Algebra and its Applications, 432 (2010) 2214–2221

[9] A.M. Duval, V. Reiner, Shifted simplicial complexes are Laplacian integral, Trans. Amer. Math. Soc. 354 (2002) 4313–4344.

[10] C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.

[11] C. Helmberg and V. Trevisan. Threshold graphs of maximal Laplacian energy. Discrete Mathematics, 338:1075–1084, 2015.

[12] Z. Du and B. Zhou. Upper bounds for the sum of Laplacian eigenvalues of graphs. Linear Algebra and its Applications, 436(9):3672 – 3683, 2012

[13] Z.Lotker, Note on deleting a vertex and weak interlacing of the Laplacian spectrum, Electronic Journal of Linear Algebra, Vol.16, pp. 68-72

[14] R.Abebe, A Conjectural Brouwer Inequality for Higher-Dimensional Laplacian Spectra, https://arxiv.org/pdf/1907.07541.pdf