Computer Graphics
Summary and Outlook

Matthias Teschner
Introduction to Computer Graphics

Rendering
Modeling
Simulation

Homogeneous Notation
Ray Casting
Bézier Curves
Particle Fluids

Rasterization
Piecewise Polynomial Curves
Phong
Rendering – Modeling – Simulation

© Spellwork Pictures

Modeling

Rendering
Rendering – Modeling – Simulation

Animation

Rendering

© Spellwork Pictures
Rendering – Modeling - Simulation

Johan Idoffsson
Chalmers University
Volvo Cars
Simulated and rendered with PreonLab
FIFTY2 Technology
Specialization Courses – Topics

Rendering
- Light: Radiometric Quantities
- Material: BRDF
- Light / Material: Rendering Equation
- Radiosity
- Stochastic Raytracing

Simulation
- Particle Motion
- Elastic Solids
- Fluids (Particles and Grids)
- Rigid Bodies
- Contact
Specialization Courses – Concepts

Rendering	Simulation
Finite Element Modeling	Finite Differences
Monte Carlo Integration	Smoothed Particle Hydrodynamics
Linear Systems	
Spatial Data Structures	
Real Time Graphics / High Performance Computing	
Rendering Equation

- $L(p \rightarrow \omega_o) = L_e(p \rightarrow \omega_o) + \int_\Omega f_r(p, \omega_i \leftrightarrow \omega_o) L(p' \leftrightarrow \omega_i) \cos(\omega_i, n_p) d\omega_i$
- Establishes relations between incident and exitant radiances
- Expresses the steady state of radiances in a scene
- Governs the computation of radiances from all scene points into all directions

Akenine-Möller et al.
Solving the Rendering Equation

- Exitant radiances from all scene points into all directions

\[L_e(p \rightarrow \omega_o) \]

\[L(p \rightarrow \omega_o) \]
Particle Simulation
Projects – Theses

Rendering Track

Simple Raytracer

Stochastic Raytracer

Features / Performance / Accuracy

Simulation Track

Simple Fluid Solver

Incompressible SPH Solver

Research
Image Processing

- Slides, recordings, information on
 - https://lmb.informatik.uni-freiburg.de/lectures/image_processing/
- First question-and-answer session on
 - Monday, June 14, 10:15
Computer Graphics
Summary and Outlook

Matthias Teschner