Development and validation of a yeast high-throughput screen for inhibitors of Aβ₄₂ oligomerization

Sei-Kyoung Parkⁱ, Scott D. Pegan², Andrew D. Mesecar³, Lisa M. Jungbauer⁴*, Mary Jo LaDu⁴ and Susan W. Liebman¹‡

SUMMARY
Recent reports point to small soluble oligomers, rather than insoluble fibrils, of amyloid β (Aβ), as the primary toxic species in Alzheimer's disease. Previously, we developed a low-throughput assay in yeast that is capable of detecting small Aβ₄₂ oligomer formation. Specifically, Aβ₄₂ fused to the functional release factor domain of yeast translational termination factor, Sup35p, formed sodium dodecyl sulfate (SDS)-stable low-n oligomers in living yeast, which impaired release factor activity. As a result, the assay for oligomer formation uses yeast growth to indicate restored release factor activity and presumably reduced oligomer formation. We now describe our translation of this assay into a high-throughput screen (HTS) for anti-oligomeric compounds. By doing so, we also identified two presumptive anti-oligomeric compounds from a sub-library of 12,800 drug-like small molecules. Subsequent biochemical analysis confirmed their anti-oligomeric activity, suggesting that this form of HTS is an efficient, sensitive and cost-effective approach to identify new inhibitors of Aβ₄₂ oligomerization.

INTRODUCTION
Several aggregated forms of the amyloid β peptide (Aβ), which are generated by proteolytic processing of the amyloid precursor protein (APP), in normal brains and cerebrospinal fluid (CSF) are believed to have a crucial role in the development of Alzheimer's disease (AD) (Hardy and Higgins, 1992; Selkoe, 1991; Younkin, 1995). Although extracellular amyloid plaques and neurofibrillary tangles formed by insoluble fibrils in brains are hallmarks of AD, recent findings suggest that smaller non-fibrillar oligomeric forms of the Aβ peptide are a more likely cause of AD. Indeed, studies in mice as well as mammalian cell culture showed that detergent-stable Aβ oligomers are potent neurotoxins (Dahlgren et al., 2002; Kayed et al., 2003; Lambert et al., 1998; Lesne et al., 2006; Walsh et al., 2002a). Recently, Aβ dimers in AD brain or CSF have been specifically identified as toxic because they (but not Aβ monomers) induce synaptic dysfunction (Klyubin et al., 2008; Walsh et al., 2002a). In addition, oligomer-specific antibodies can reduce the Aβ-induced toxicity of soluble AD brain extract (Gong et al., 2003; Lambert et al., 2001; Lee et al., 2006).

Small molecules that prevent the formation of Aβ₄₂ (a 42-residue Aβ protein) aggregates that lead to the formation of large plaques had previously been of interest (De Felice and Ferreira, 2002; Estrada and Soto, 2007; Soto et al., 1998). However, evidence for a pathological role of small soluble Aβ oligomers in early AD development led to the idea that inhibiting the formation of Aβ development is a more promising strategy to prevent or treat AD (Klein et al., 2001; Walsh et al., 2002b). Although the relationship between toxic oligomers, large fibrils and plaques is unclear, at least some oligomers seem not to be precursors of large fibrils. Hence, it is possible that large fibrillar aggregates might help prevent toxic oligomers from forming (Chen et al., 2010; Cheng et al., 2007; Glabe, 2005; Harper et al., 1999; Kayed et al., 2003; Necula et al., 2007a). As a result, the ideal drug candidate might inhibit toxic oligomer formation while not inhibiting large fibril aggregation.

Cell-based assays for drug-like molecules that inhibit Aβ₄₂ aggregation are advantageous because toxic compounds are immediately discarded (Bharadwaj et al., 2010; Caine et al., 2007; Kim et al., 2006; Lee et al., 2009; Macreadie et al., 2008). Compounds that inhibit Aβ aggregation have been well studied and some of them also inhibit Aβ oligomerization (Amijee et al., 2009; Amijee and Scopes, 2009; Scherzer-Attali et al., 2010). Such compounds include modified short Aβ peptides, designed to bind to the core region of Aβ₄₂ that is involved in fibrillization, e.g. SEN304 (a methylated pentapeptide of Aβ₄₂). SEN304 has been reported to inhibit secretion of toxic sodium dodecyl sulfate (SDS)-stable oligomers in 7PA2 cells (Kokkoni et al., 2006). Other compounds that are known to inhibit Aβ₄₂ from forming toxic oligomers and that also have a therapeutic effect in AD animal models are: curcumin (Yang et al., 2005), RS-0406 (hydroxynaline) (Nakagami et al., 2002; O’Hare et al., 2010; Walsh et al., 2005), SEN1269 (hydroxynaline derivative; Senexis), scyllo-inositol (AZD-103) (McLaurin et al., 2000; McLaurin et al., 2006; Townsend et al., 2006), PBT1 (Clioquinol, 8-hydroxyquinolin) (Hsiao et al., 1996) and PBT2 (a copper/zinc ionophore, 8-hydroxyquinolin) (Adlard et al., 2008; Faux et al., 2010). Both scyllo-inositol (Transition Therapeutics and Elan) and PBT2 (Prana Biotechnology) are currently in clinical trials. Recent work points to compounds that bind to Aβ₄₂ as possible inhibitors of Aβ₄₂ toxicity (Alavez et al., 2011; Chen et al., 2010; Scherzer-Attali et al., 2010).
The inhibition of Aβ42 oligomer formation is often assayed using pure synthetic Aβ42 peptide reconstituted under conditions that favor Aβ42 oligomerization over fibrillation. Prevention of oligomer formation is characterized by using Thioflavin T (ThT) and/or antibodies specific for oligomers (Chang et al., 2003; Chromy et al., 2003; Hamaguchi et al., 2009; Necula et al., 2007b; Yang et al., 2005), or by using mammalian cells that overexpress and secrete human Aβ42 that forms oligomers in conditioned medium (O’Hare et al., 2010; Walsh et al., 2002a; Walsh et al., 2005).

Here, we develop a yeast in vivo assay that is specific for assessing the inhibition of Aβ42 oligomerization activity. Previously, we reported a yeast Aβ oligomerization model in which the formation of SDS-stable low-n oligomers, including dimers, trimers and tetramers, of an Aβ42-fusion protein is easily detected (Bagriantsev and Liebman, 2006). Briefly, an Aβ42 fusion to the essential functional domain (MRF) of the translational release factor, Sup35 (Derkatch et al., 1996; Ter-Avanesyan et al., 1993), provides an Aβ42 aggregation-specific probe tied to a functional Sup35 readout. The Aβ-MRF construct was overexpressed in cells lacking chromosomal SUP35. The MRF expressed in the fusion (Aβ-MRF) was shown to have reduced translation termination factor activity by a simple growth test (left panel in Fig. 1). This seems to be due to aggregation of the fusion protein into SDS-stable low-n oligomers reminiscent of the detergent-stable oligomers found in human AD brains (Gong et al., 2003; Klyubin et al., 2008; Shankar et al., 2008) (left panel in Fig. 2A). Indeed, analogous fusions made with an Aβ12 aggregation-deficient mutation, F19T, F20T and I31P (Hilbich et al., 1992; Morimoto et al., 2004; Williams et al., 2004), called Aβm2-MRF, retained almost complete translation termination factor activity and formed almost no oligomers (left panel in Fig. 2A) (Bagriantsev and Liebman, 2006).

Using this system, we developed and validated a high-throughput assay to screen small chemicals for an effect on Aβ42 oligomer formation. The idea for the primary high-throughput screen (HTS) was to identify small drug-like molecules that restore translation termination activity to the Aβ-MRF strains by inhibiting formation of Aβ-MRF small oligomers, seen as inhibition of growth in media lacking adenine (–Ade) (right panel in Fig. 1). Here we report two drug-like compounds that were selected by the growth assay in a pilot screen. Through biochemical analyses, these compounds were further verified to indeed inhibit Aβ-MRF oligomer formation in vivo. They also inhibited bona fide Aβ42 peptide polymerization and fibril formation in vitro. Thus, the yeast HTS growth assay is a promising strategy to screen for inhibitors of Aβ42 oligomerization.

RESULTS

Characterization of yeast Aβ-MRF aggregation into low-n oligomers

When Aβ-MRF in yeast lysates was treated with 1% SDS at room temperature and resolved by SDS-PAGE, most of the Aβ-MRF was found as low-n oligomers (dimer, trimer, tetramer) and monomers (expected molecular mass 73.7 kDa, but runs as 95 kDa), although a portion of the Aβ-MRF was stuck in the well or appeared as a smear above the oligomers (left panel in Fig. 2A). To investigate whether the SDS-stable oligomers seen were present in native yeast cells or were derived from larger in vivo aggregates that were broken down by the SDS treatment, we examined lysates that were not treated with SDS before loading on the gel (right panel in Fig. 2A). These untreated samples showed similar oligomers and larger material, and this larger material did not break down into oligomers or monomers when they were excised from the gel, treated with 1% SDS at room temperature and run again on a second SDS-PAGE (Fig. 2B). However all forms of the Aβ-MRF were completely converted into monomers by boiling in 2% SDS and β-mercaptoethanol (BME; lower panel in Fig. 2A).

We also examined lysates with non-denaturing PAGE (left panel in Fig. 2C) and size exclusion chromatography (SEC; supplementary material Fig. S1), in which the Aβ-MRF was detected as a complex with 10-15 monomers and monomers and low-n oligomers were not detected. The complex was broken into monomers and low-n oligomers when the native lysate was treated with BME before loading on the gel (middle panel in Fig. 2C). One possibility is that Aβ-MRF monomers and low-n oligomers are cross-linked into, or trapped in, bigger aggregates in the lysate via disulfide bonds. These large aggregates in the lysate might be disaggregated by the reducing agent, BME, possibly returning the Aβ-MRF to the intracellular monomer and oligomer states. Indeed, there are seven cysteine residues in the fusion [five in the release factor (RF) and two in the linkers between Aβ and MRF].
Before examining the effect of compounds in our assay, we made our yeast strain more permeable to chemicals by deleting the erg6 gene (Dunstan et al., 2002). The altered sterol composition of cell membranes in the erg6 mutants causes enhanced chemical uptake (Sharma, 2006; Welihinda et al., 1994), and we verified that an erg6 deletion caused our yeast strain to become more sensitive to cycloheximide (supplementary material Fig. S2). Testing the yeast assay with known inhibitors

Because SEN304 caused toxicity in +Ade media, we cannot determine whether it restored Aβ-MRF translation termination activity in –Ade media (Fig. 3A). Curcumin and RS-0406 had no significant inhibitory effects on Aβ-MRF oligomerization (Fig. 3B). Scylo-inositol, however, had a clear effect in our system: growth in –Ade media was inhibited to 50% of the DMSO control without causing toxicity in +Ade media (Fig. 3A). Furthermore, western blot analyses indicate that scylo-inositol decreased oligomer formation 51.5±7% of that seen with DMSO alone, based on the ratio of oligomer and monomer band intensities on western blots and quantified using the Alpha Imager 2200 (Alpha Innotech). Error bars are standard deviation of three blots.

Development of the yeast HTS and a pilot screen for inhibitors of Aβ-MRF oligomerization

We used the growth assay described above to screen for small compounds that block Aβ oligomerization, by selecting for restored Aβ-MRF translation termination activity. Prior to the primary screen, HTS parameters (e.g. shaking level, time of incubation, size of liquid sample and prevention of evaporation) were optimized. The sensitivity, reproducibility and stability of the assay was assessed using a library of pre-fractionated marine bacterial extracts (a gift from William Fenical, Scripps Oceanography, La Jolla, CA) (supplementary material Fig. S3). Positive and negative controls were cells expressing, respectively, the aggregation-deficient mutant Aβm2-MRF or Aβ-MRF. On the basis of the experimental settings and HTS protocol, a screen with 12,800 compounds was conducted using a sub-library...
of the DIVER and CNS sets (ChemBridge, San Diego, CA). Each assay was carried out in duplicate at a single compound concentration (22 μM). We had an initial hit rate of 0.23%: 29 out of 12,800 compounds caused decreased growth in –Ade media without a significant growth decrease in +Ade media in duplicate well plates (Fig. 4).

Elimination of false positives

We focused on 17 of the 29 compounds that fell into nine structural classes and one miscellaneous group based on their size, shape and the distribution of functional groups (Table 1). These 17 compounds were purchased from the vendor at a purity of 95% and restested in triplicate at the same concentration (22 μM) and conditions as the primary screen. The quality of the test, based on Z-factor statistics (Zhang et al., 1999), confirmed the assay quality to be excellent, reflective of values of >0.8 for both assays calculated from controls. Ten of the 17 compounds inhibited more than 50% decrease in the presence of SDS-stable Aβ oligomers, lysates were treated with 1% SDS for 7 minutes at room temperature, subjected to immunoblot analysis and probed with antibodies against the RF domain of Sup35p (BE4; developed in our laboratory). In cells grown with DMSO only, there were a lot of SDS-stable Aβ1-14 oligomers decreased and concomitantly the level of monomeric Aβ decreased in –Ade media as the concentration was increased, suggesting that Aβ oligomer formation was suppressed in a dose-dependent manner (Fig. 6). Estimates for EC50 (the concentration of a compound at which 50% of its maximal effect is observed in vivo) obtained using the Enzyme Kinetics module of SigmaPlot (v. 9.01 Systat) (Ratia et al., 2008) were 12.8 and 6.7 μM for AO-11 and AO-15, respectively. The stronger activity of AO-15 represented by the smaller EC50 value was partially caused by cytotoxicity of the compound at higher concentrations, whereas AO-11 had no apparent cytotoxicity (Table 1 and Fig. 6).

To directly test whether the restored translational termination factor activity associated with these compounds is correlated with a decrease in the presence of SDS-stable Aβ-MRF oligomers, lysates treated and grown with AO-11 or AO-15 at various concentrations were analyzed (Fig. 7). To determine the level of SDS-stable small oligomers, lysates were treated with 1% SDS for 7 minutes at room temperature, subjected to immunoblot analysis and probed with antibodies against the RF domain of Sup35p (BE4; developed in our laboratory). In cells grown with DMSO only, there were a lot of SDS-stable Aβ-MRF oligomers and much fewer monomers. In the presence of higher concentrations of the compounds, the levels of oligomers decreased and concomitantly the level of monomeric Aβ-MRF increased. AO-11, at 100 μM, decreased oligomer formation by 50% more than the known anti-aggregation compound scyllalinositol (Fig. 3B). The EC50 values for AO-11 and AO-15 are 32.4 and 45.2 μM, respectively. The 2.5- (AO-11) or 6-fold (AO-15) higher EC50 values seen here compared with the EC50 values for growth inhibition in –Ade media indicate that the growth assays were highly sensitive to the gain of monomers at the expense of oligomers.

The structure of these two new hits is shown in Fig. 8. They both have properties desirable for a CNS drug (Congreve et al., 2003; Rishton, 2003): six or fewer H-bond acceptors (actually three and two); three or fewer H-bond donors (actually zero and one); molecular weight <400 (actually <300); CLogP under 5 (actually 2 and 3) and a topological polar surface area of <75 (actually 37 and 50 μM) in a 96-well plate format. They showed no or mild growth inhibition in +Ade media, but growth was significantly inhibited in –Ade media as the concentration was increased, suggesting that Aβ oligomer formation was suppressed in a dose-dependent manner (Fig. 6). Estimates for EC50 (the concentration of a compound at which 50% of its maximal effect is observed in vivo) obtained using the Enzyme Kinetics module of SigmaPlot (v. 9.01 Systat) (Ratia et al., 2008) were 12.8 and 6.7 μM for AO-11 and AO-15, respectively. The stronger activity of AO-15 represented by the smaller EC50 value was partially caused by cytotoxicity of the compound at higher concentrations, whereas AO-11 had no apparent cytotoxicity (Table 1 and Fig. 6).

To directly test whether the restored translational termination factor activity associated with these compounds is correlated with a decrease in the presence of SDS-stable Aβ-MRF oligomers, lysates treated and grown with AO-11 or AO-15 at various concentrations were analyzed (Fig. 7). To determine the level of SDS-stable small oligomers, lysates were treated with 1% SDS for 7 minutes at room temperature, subjected to immunoblot analysis and probed with antibodies against the RF domain of Sup35p (BE4; developed in our laboratory). In cells grown with DMSO only, there were a lot of SDS-stable Aβ-MRF oligomers and much fewer monomers. In the presence of higher concentrations of the compounds, the levels of oligomers decreased and concomitantly the level of monomeric Aβ-MRF increased. AO-11, at 100 μM, decreased oligomer formation by 50% more than the known anti-aggregation compound scyllalinositol (Fig. 3B). The EC50 values for AO-11 and AO-15 are 32.4 and 45.2 μM, respectively. The 2.5- (AO-11) or 6-fold (AO-15) higher EC50 values seen here compared with the EC50 values for growth inhibition in –Ade media indicate that the growth assays were highly sensitive to the gain of monomers at the expense of oligomers.

The structure of these two new hits is shown in Fig. 8. They both have properties desirable for a CNS drug (Congreve et al., 2003; Rishton, 2003): six or fewer H-bond acceptors (actually three and two); three or fewer H-bond donors (actually zero and one); molecular weight <400 (actually <300); CLogP under 5 (actually 2 and 3) and a topological polar surface area of <75 (actually 37 and
AO-11 was previously patented for use for drug treatment of Duchenne muscular dystrophy [CA2685540 (A1)], whereas there is no previous patent or literature on AO-15. AO-11 and AO-15 inhibit in vitro Aβ_{42} polymerization

To further study the activity of the selected inhibitors, electron microscopy (EM) and western blotting were carried out on samples of soluble Aβ_{42} peptide prepared in the presence and absence of AO-11 and AO-15 under defined oligomer-forming conditions (Stine et al., 2003) with slight modifications (see Methods). We tested effects of the inhibitors at 50 μM, when more than 60% of oligomer formation was inhibited in vivo. Soluble recombinant Aβ_{42} peptide was prepared and subjected to polymerization in the presence of DMSO, AO-11 or AO-15 for 24 hours at room temperature without shaking. Aliquots of duplicate samples were taken and examined by EM (Fig. 9A) and SDS-PAGE (Fig. 9B). In the presence of DMSO (1% v/v, the concentration in which the inhibitors were dissolved), most of the peptides formed large fibrillar networks composed of uniform long fibrils by 24 hours. A clear change in morphology with a reduction in the fibril length and the absence of large fibrillar networks throughout the EM was detected when Aβ_{42} peptides were incubated with AO-11 or AO-15. Particularly with AO-11, which had a stronger effect than AO-15 in vivo, fibrils are difficult to detect and only amorphous precipitates with bumps or nodules were seen. The reduced numbers of fibrils observed by EM correlated with a decrease in SDS-stable large fibrils detected by anti-Aβ antibody (6E10) on western blots of SDS-PAGE performed on parallel samples. These results suggest that AO-11 and AO-15 efficiently inhibited the formation of Aβ_{1-42} SDS-stable aggregates in vitro.

DISCUSSION

With accumulating reports pointing to small SDS-stable Aβ_{42} oligomers as a major early culprit in AD pathology, inhibiting their formation has become an attractive therapeutic target. Previous generations of inhibitors of Aβ aggregation were often selected for...
their ability to inhibit the formation of large Aβ fibrils rather than toxic oligomers. Subsequent attempts to characterize the effects of these compounds on oligomer formation have faced challenges partly due to the myriad of possible in vitro Aβ42 assemblies and difficulty in monitoring and characterizing oligomer formation (Bitan et al., 2005; Hepler et al., 2006). Furthermore, because these primary assays were conducted in vitro, many of these compounds were toxic when tested in vivo (Liu and Schubert, 2006).

Our screen is designed to specifically select against Aβ42 oligomer formation. Indeed, scyllo-inositol, which is known to inhibit Aβ42 from forming toxic oligomers, also inhibited oligomer formation in our assay (Fig. 3). Some small molecules that inhibit Aβ42 oligomer formation might also inhibit large fibril formation. Our ultimate goal is to uncover molecules that affect oligomer formation without inhibiting fibril formation. This specificity might be crucial for success in the clinic, because fibril formation might actually be beneficial (Chen et al., 2010; Cheng et al., 2007; Necula et al., 2007a; Treusch et al., 2009).

We found that, in living yeast, Aβ-MRF aggregated into small SDS-stable low-n oligomers such as dimers, trimers and tetramers that look remarkably like the neurotoxic Aβ42 oligomers secreted from CHO cells (7PA2) expressing the familial V717F Alzheimer’s-disease-causing APP (Walsh et al., 2002a). However, because yeast lysates were treated with 1% SDS before loading on acrylamide gels, the oligomers seen could have been derived from larger in vivo aggregates that were broken down by the room-temperature 1% SDS treatment. To investigate this possibility we omitted the SDS sample treatment that were broken down by the room-temperature 1% SDS treatment. As such, the oligomers seen in this study might be derived from larger in vivo aggregates.

To investigate this possibility we omitted the SDS sample treatment that were broken down by the room-temperature 1% SDS treatment. As such, the oligomers seen in this study might be derived from larger in vivo aggregates.

The activity of the 17 compounds identified in the primary screen was retested in triplicate. Inhibition of growth in –Ade (black) indicates restored translational release factor activity of Aβ-MRF. Growth on +Ade (gray) indicates absence of compound-associated toxicity. Effects of compounds were also tested on a sup35 mutant strain lacking Aβ-MRF (white). Compounds 11 (AO-11) and 15 (AO-15) inhibited growth only in –Ade, but not in +Ade, and also had no effect on the growth of the sup35 mutant, indicating that their ability to restore translational termination activity is not general and is probably caused by reducing Aβ-sup35 toxicity. Effects of compounds were also tested on a primary assay (Fig. 3). Some small molecules that inhibit Aβ-MRF were grown in –Ade (black) and +Ade (gray) media to late logarithmic phase in the presence of AO-11 or AO-15 at the indicated concentrations. The effect of each compound on Aβ-MRF was measured as OD600 and converted into % of growth relative to 0 μM controls. Data represent the average of three replicate experiments and error bars represent the standard deviation.
In this study, we used a robot to perform our yeast $\alpha\beta_42$ oligomerization HTS campaign. Of 12,800 compounds tested, four passed this pilot proof-of-principle primary screen. We eliminated two of the four hits in a secondary screen for false positives that affected the suppression efficiency of a $sup35$ mutant (Bradley et al., 2003). The remaining two compounds (AO-11 and AO-15) both significantly decreased $\alpha\beta_42$ aggregation in vitro and affected $\alpha\beta_42$ oligomer formation in vivo. Although AO-11 and AO-15 seem to affect large aggregate formation as well as oligomerization, our assay should allow the detection of compounds that specifically inhibit oligomerization and not large aggregate formation.

METHODS

Yeast strains and media

Assays were performed in $\{\text{MATa ade1-14 ura3-52 leu2-3,112 trp1-289 his3-200}\}$ (Chernoff et al., 1993) with a G1256A change in $\text{SLI}35$ (Bradley et al., 2003), and in $\alpha\beta$-MRF and $\alpha\beta\beta$-MRF yeast also derived from 74D-694 but with a $sup35::\text{LEU2}$ disruption (Nakayashiki et al., 2001) and respectively containing p1364 ($\text{pRS313, CEN, Ura3, CUP1::MRF}$) or p1541 ($\text{pRS313, CEN, Ura3, CUP1::\alpha\beta\beta-MRF}$). ERG6 of the ergosterol biosynthetic pathway was deleted (Longtine et al., 1998) in these strains to enhance permeability to small compounds.

Media, cultivation and transformation procedures were standard (Sherman, 2002). Strains were grown in complex medium (YPD), biosynthetic pathway was deleted (Longtine et al., 1998) in these strains to enhance permeability to small compounds.

Growth assays for the primary screen and validation

Duplicate assays in clear flat-bottom 384-well plates (ScreenMates) in 90 μL used a Tecan Freedom EVO 200 robot (Ratia et al., 2008). Wells were filled in order with 45 μL of library compounds (10 mM in DMSO) and 45 μL of assay medium inoculated with 1×10^5 or 1×10^6 cells/well for the $–Ade$ or $+Ade$ assays, respectively, of the assay strain grown without $\alpha\beta$-MRF overexpression. Each plate contained 32 positive ($\alpha\beta\beta$-MRF) and 32 negative ($\alpha\beta$-MRF) controls with 0.2 μL of DMSO only. Plates sealed half way with parafilm were incubated at room temperature with shaking (900 rpm) until the cultures reached stationary phase (5 days for $–Ade$; 4 days for $+Ade$). OD$_{600}$ determined growth.

Data analysis

Z-factor values (Zhang et al., 1999) were determined from controls using:

$$Z = 1 - \frac{3(\text{SD of positive} + \text{SD of negative})}{\text{mean of positive} – \text{mean of negative}}$$

where ‘SD of positive’ and ‘SD of negative’ are, respectively, standard deviations of OD$_{600}$ of $\alpha\beta\beta$-MRF and $\alpha\beta$-MRF samples; ‘mean of positive’ and ‘mean of negative’ are, respectively, OD$_{600}$ means of $\alpha\beta\beta$-MRF and $\alpha\beta$-MRF samples. Z values greater than 0.5 indicate an excellent assay.

EC$_{50}$ values were estimated by fitting data to $v = v_i/(1 + [I]/EC_{50})$ with the SigmaPlot (v. 9.01 Systat) Enzyme Kinetics module, where v_i and v_o are, respectively, the reaction rates in the presence and absence of inhibitor, and $[I]$ is the inhibitor concentration (Ratia et al., 2008).

SDS and non-denaturing gel electrophoresis and western blot analysis

Preparation of lysates and western blot analysis of $\alpha\beta$-MRF oligomers were performed as described previously (Bagriantsev and Liebman, 2006). For SDS-PAGE, lysates of late logarithmic cells grown at 30°C in 5 ml $+Ade$ with 50 μM CuSO$_4$ and DMSO or a compound were treated with 1% SDS for 7 minutes at room temperature, resolved on 7.5% Tris-Glycine gels (0% SDS, Bio-Rad) in 0.1% SDS containing Laemmli running buffer and transferred to a PVDF membrane (Bio-Rad) in Laemmli buffer with 0.1% SDS and 15% methanol.

For non-denaturing PAGE, lysates of native sample buffer (Invitrogen) with 0.5% digitonin, 10 mM PMSF, and yeast anti-protease cocktail (Sigma) 1:100 were resolved on a 3-12% Blue native Novex Bis-Tris gel (Invitrogen).

Immunodetection was performed using monoclonal antibodies against the RF domain of Sup35p (BE4; developed by our laboratory). Signals were
Yeast HTS for anti-\(\alpha\)\(_{42}\) oligomers

Clinical issue

Alzheimer's disease (AD) is the most common form of dementia, currently affecting an estimated 5.2-million people in the United States alone. Although the number of deaths caused by stroke, prostate cancer, breast cancer, heart disease and HIV all decreased from 2000-2008, deaths caused by AD increased by 66%. Furthermore, the increasing age demographic in the United States means that the number of patients with AD is likely to double by 2040. Thus, the need to prevent or more effectively treat the disease is crucial. AD is mainly a sporadic disease, most often appearing in people over 65 years of age. It manifests as a progressive brain disorder that damages and eventually destroys brain cells, leading to loss of memory and cognitive function, and eventually leading to death. Amyloid plaques, composed of the small protein amyloid \(\beta\) (\(\alpha\)\(_{42}\)), and neurofibrillar tangles, composed of Tau protein, are pathological hallmarks of AD. Recent studies indicate that small \(\alpha\)\(_{42}\) oligomers are the likely neurotoxin that causes AD. Thus, preventing the formation of \(\alpha\)\(_{42}\) oligomers is a promising approach to prevent or slow AD.

Results

To identify therapeutic compounds that can prevent or treat AD, the authors developed a high-throughput screen (HTS) for drug-like inhibitors of \(\alpha\)\(_{42}\) oligomerization that uses yeast expressing \(\alpha\)\(_{42}\) fused to a reporter. The activity of the reporter in the fusion protein is lost when the \(\alpha\)\(_{42}\) region causes the protein to aggregate into small oligomers, enabling a screen to detect small molecules that inhibit aggregation, based on restoration of reporter activity. A pilot screen of 12,800 compounds identifies two molecules that restore reporter activity in a dose-dependent manner and that are subsequently validated in secondary genetic screens. The finding that both compounds also inhibit \(\alpha\)\(_{42}\) oligomer formation shows that the yeast reporter system is a reliable readout for oligomer formation. Both compounds have chemical properties that are desirable for development into central nervous system drugs.

Implications and future directions

This work confirms the validity of a yeast HTS to identify inhibitors of \(\alpha\)\(_{42}\) oligomerization. Larger drug and drug-like libraries will now be screened, and the most promising drug candidates will be modified using structure-activity relationship analyses to develop new non-toxic compounds that inhibit \(\alpha\)\(_{42}\) oligomerization. In future, potential drugs will be tested for effects in models of AD based on higher organisms, paving the way to clinical trials.

SEC fractionation and dot blot assay

Total lysate of 200 \(\mu\)l (0.5 mg total yeast protein in native sample buffer) was loaded onto an equilibrated analytical Superose 12 10/300 GL column (GE Healthcare) connected to a liquid chromatography system (Bio-Rad) and eluted with yeast lysis buffer (Bagriantsev and Liebman, 2006) lacking glycerol. Samples from each fraction (20 \(\mu\)l) were spotted onto PVDF membrane that was pre-wet with transfer buffer (25 mM Bicine, 25 mM Bis-Tris, 1 mM EDTA, \(pH\) 7.2). The membrane was washed once in TBS (20 mM Tris, 140 mM NaCl, \(pH\) 7.6) with 0.1% Tween-20, blocked and immunoblotted with anti-Sup35-RF antibodies.

ACKNOWLEDGEMENTS

This work was supported by grants to S.W.L. from the Alzheimer's Association (IIRG-06-25468 and IIRG-10-173736) and the NIH (R21 AG02881). The authors are grateful to Dennis Selkoe (Harvard Medical School, Boston, MA) for kindly providing RS-0406 and to David Scopes (Sensexis Limited, UK) for kindly providing SEN304 and SEN1269. We also thank Jack Gibbons (Electron Microscopy Facility, UIC) for performing TEM analysis. We are also grateful to Sviatoslav Bagriantsev, a former member of S.W.L.'s research group, for giving ideas and suggestions.

COMPETING INTERESTS

The authors declare that they do not have any competing or financial interests.

AUTHOR CONTRIBUTIONS

S.-K.P. and S.W.L. designed the overall experimental approach and wrote the paper, with S.-K.P. performing most of the experiments. S.D.P. and A.D.M. provided the compound libraries, established the screening protocol, prepared the robot liquid handling system for the HTS screen, and analyzed and placed the hits in chemical family groups. They also edited the manuscript. M.J.L. helped develop the in vitro \(\alpha\)\(_{42}\) oligomerizations and size exclusion chromatography, and helped edit the manuscript. M.J.L. helped develop the in vitro biochemical assays and analyzed the data.

SUPPLEMENTARY MATERIAL

Supplementary material for this article is available at http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.007963/-/DC1

REFERENCES

Adlard, P. A., Cherny, R. A., Finkelstein, D. I., Gautier, E., Robb, E., Cortes, M., Volitakis, I., Liu, X., Smith, J. P., Perez, K. et al. (2008). Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. *Neuron* 59, 43-55.

Alavez, S., Vantipalli, M. C., Zucker, D. J. S., Klang, I. M. and Lithgow, G. J. (2011). Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. *Nature* 472, 226-230.

Amijee, H. and Scopes, D. I. (2009). The quest for small molecules as amyloid inhibiting therapies for Alzheimer’s disease. *J. Alzheimers Dis.* 17, 33-47.

Amijee, H., Madine, J., Middleton, D. A. and Doig, A. J. (2009). Inhibitors of Amyloid aggregation and toxicity. *Biochem. Soc. Trans.* 37, 692-696.

Bagriantsev, S. and Liebman, S. W. (2000). Modulation of Abeta42 low-n oligomerization using a novel yeast reporter system. *BMC Biol.* 4, 32.

Bharadwaj, P., Martins, R. and Macreadie, I. (2010). Yeast as a model for studying Alzheimer’s disease. *FEBS Yeast Res.* 10, 961-969.

Bitan, G., Fradinger, E. A., Spring, S. M. and Teplow, D. B. (2003). Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. *Nature* 1782, 226-230.

Bain, J., Armstrong, A. H., Koehler, A. N. and Hecht, M. H. (2010). Small molecule microarrays enable the discovery of compounds that bind the Alzheimer’s Aβ peptide and reduce its cytotoxicity. *J. Am. Chem. Soc.* 132, 17015-17022.

Cheng, I. H., Searce-Levie, K., Legleiter, J., Palop, J. J., Gerstein, H., Bien-Ly, N., Puolivali, J., Lesne, S., Aske, K. H., Muchowski, P. J. et al. (2007). Accelerating amyloid-beta fibrillation reduces oligomer levels and functional deficits in Alzheimer disease mouse models. *J. Biol. Chem.* 282, 23818-23828.
Lee, E. B., Leng, L. Z., Zhang, B., Kwong, L., Trojanowski, J. Q., Abel, T. and Lee, V. M. (2006). Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J. Biol. Chem. 281, 4292-4299.

Lee, L. L., Ha, H., Chang, Y. T. and Delisa, M. P. (2009). Discovery of amyloid-beta aggregation inhibitors using an engineered assay for intracellular protein folding and solubility. Protein Sci. 18, 277-286.

Lesne, S., Koh, M. T., Kotlikine, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M. and Ashe, K. H. (2006). A specific amyloid-beta protein assembly in the brain. Nature. 440, 352-357.

Liu, Y. and Schubert, D. (2006). Treating Alzheimer’s disease by inactivating bioactive amyloid beta peptide. Curr. Alzheimer Res. 3, 129-135.

Longtime, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippus, P. and Pringle, J. R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 14, 953-961.

Macreadie, I., Loff-Miri, M., Mohotti, S., Shapira, D., Bennett, L. and Varghese, J. (2008). Validation of folate in a convenient yeast assay suited for identification of inhibitors of Alzheimer’s amyloid-beta aggregation. J. Alzheimers Dis. 15, 391-396.

Mclaurin, J., Golombok, R., Jurewicz, A., Antel, J. P. and Fraser, P. E. (2000). Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit Abeta-induced toxicity. J. Biol. Chem. 275, 18495-18502.

Mclaurin, J., Kierstead, M. E., Brot, E. M., Hawkes, C. A., Lemberg, M. H., Phinney, A. L., Darabie, A. A., Cousins, J. E., French, J. E., Lan, M. F. et al. (2006). Cyclohexanexohexol inhibitors of Abeta aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat. Med. 12, 801-808.

Morimoto, A., Irie, K., Murakami, K., Masuda, Y., Ohigashi, H., Nagao, M., Fukuda, H., Shimizu, T. and Shirasawa, T. (2004). Analysis of the secondary structure of beta-amyloid [Abeta(42)] fibrils by systematic probe replacement. J. Biol. Chem. 279, 52781-52786.

Nakagami, Y., Nishimura, S., Murasugi, T., Kubo, T., Kaneko, I., Meguro, M., Marumoto, S., Kogen, H., Koyama, K. and Oda, T. (2002). A novel compound RS-0466 reverses beta-amyloid-induced cytotoxicity through the Akt signaling pathway in vitro. Eur. J. Pharmacol. 457, 11-17.

Nakayashiki, T., Ebihara, K., Bannai, H. and Nakamura, Y. (2001). Yeast [PSI+] “prions” that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Mol. Cell.7, 1121-1130.

Necula, M., Breydo, L., Milton, S., Kayed, R., van der Veer, W. E., Tone, P. and Glabe, C. G. (2007a). Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillation. Biochemistry.46, 8850-8860.

Necula, M., Kayed, R., Milton, S. and Glabe, C. G. (2007b). Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillation pathways are independent and distinct. J. Biol. Chem. 282, 10311-10324.

O’Hare, E., Scopes, D. I., Treherne, J. M., Norwood, K., Spanwick, D. and Kim, E. M. (2005). RS-0466 reverses amyloid-beta oligomer-induced behavioural deterioration in vivo. Brain Res. 1021, 30-37.

Ratia, K., Pegan, S., Takayama, J., Sleeman, K., Coughlin, M., Baliji, S., Chaudhuri, H., Prabhakar, B. S., Johnson, M. E. et al. (2008). A noncovalent class of papain-like protease/deubiquitinating inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. USA 105, 16119-16124.

Rishton, G. M. (2003). Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov. Today. 8, 86-96.

Scherzer-Attali, R., Pellarin, R., Convertino, M., Frydman-Marom, A., Egoz-Matia, S., Ratia, K., Fletterick, R. J., Pellarin, R., Frydman-Marom, A., Egoz-Matia, S. and Sherman, F. (2002). Getting started with yeast. Trends Neurosci. 25, 486-489.

Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L. et al. (2002). Implications of sterol structure for membrane lipid composition, pathways are independent and distinct. J. Biol. Chem. 277, 1375-1386.
Ter-Avanesyan, M. D., Kushnirov, V. V., Dagkesamanskaya, A. R., Didichenko, S. A., Chernoff, Y. O., Inge-Vechtomov, S. G. and Smirnov, V. N. (1993). Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7, 683-692.

Townsend, M., Cleary, J. P., Mehta, T., Hofmeister, J., Lesne, S., O’Hare, E., Walsh, D. M. and Selkoe, D. J. (2006). Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-beta oligomers. Ann. Neurol. 60, 668-676.

Treusch, S., Cyr, D. M. and Lindquist, S. (2009). Amyloid deposits: protection against toxic protein species? Cell Cycle 8, 1668-1674.

Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J. and Selkoe, D. J. (2002a). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535-539.

Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J. and Selkoe, D. J. (2002b). Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans. 30, 552-557.

Walsh, D. M., Townsend, M., Podlisny, M. B., Shankar, G. M., Fadeeva, J. V., El Agnaf, O., Hartley, D. M. and Selkoe, D. J. (2005). Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J. Neurosci. 25, 2455-2462.

Wellihinda, A. A., Beavis, A. D. and Trumbly, R. J. (1994). Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1193, 107-117.

Williams, A. D., Portelius, E., Kheterpal, I., Guo, J. T., Cook, K. D., Xu, Y. and Wetzel, R. (2004). Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833-842.

Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, S. A. et al. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280, 5892-5901.

Younkin, S. G. (1995). Evidence that A beta 42 is the real culprit in Alzheimer’s disease. Ann. Neurol. 37, 287-288.

Zhang, J. H., Chung, T. D. and Oldenburg, K. R. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 4, 67-73.