MicroRNA-219-5p inhibits epithelial-mesenchymal transition and metastasis of colorectal cancer by targeting lymphoid enhancer-binding factor 1

Lan-xuan Huang, Chun-yan Hu, Li Jing, Min-cong Wang, Meng Xu, Jing Wang, Yu Wang, Ke-jun Nan and Shu-hong Wang

Department of Oncology, First Affiliated Hospital of Xi’an Jiaotong University; Department of Gynecology, North-western Women’s and Children’s Hospital; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China

Key words
Colorectal cancer, epithelial-mesenchymal transition, LEF1, metastasis, miR-219

Correspondence
Ke-jun Nan and Shu-hong Wang
Department of Oncology, First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China.
Tel: +86 029 85324600; Fax: +86 029 85324600; E-mails: nankj@163.com; tanking@sina.com

Funding Information
Natural Science Foundation of Shaanxi Province Department of Education, (Grant / Award Number: ‘2016M8035’); CSCO-MERCK SERONO oncology research foundation, (Grant / Award Number: ‘Y-MX2015-096’); Chinese National Natural Science Foundation, (Grant / Award Number: ‘81672810’).

Received May 11, 2017; Revised July 13, 2017; Accepted July 30, 2017

Cancer Sci 108 (2017) 1985–1995
doi: 10.1111/cas.13338

Colorectal cancer (CRC) is a major public health problem and ranks as the fourth leading cause of cancer death worldwide. Approximately 20% of patients have distant metastasis at the time of diagnosis. In addition, 35%–45% of patients with localized disease will experience recurrence within 5 years after surgery. Most of these relapses occur as a result of metastasis, which is the main cause of death in CRC patients. Therefore, it is of great importance to clarify the mechanism of CRC metastasis to find significant biomarkers and develop a novel therapeutic strategy.

miRs are members of a rapidly growing class of small non-coding RNAs 19 to 24 nucleotides in length. They act on target mRNAs in a sequence-specific way to either promote their cleavage and degradation or reduce their translational efficiency, thereby decreasing protein expression. As a result of this regulatory function on gene expression, miRs have been shown to play a critical role in the pathogenesis and progression of tumors. Several studies have indicated that aberrant expression of miRs, such as miR-21, miR-let-7 and miR-24, is associated with proliferation, apoptosis, and invasion of CRC cells by targeting corresponding function proteins. As for miR-219-5p, it has been reported as a tumor suppressor in gastric cancer, glioblastoma and esophageal adenocarcinoma, and it also works as a negative regulator of cell proliferation in CRC by targeting platelet-derived growth factor receptor. However, the mechanism between miR-219-5p and colorectal cancer (CRC) metastasis remains unclear. In the present study, miR-219-5p was found to be down-regulated in CRC tissue compared with matched normal tissue. Through luciferase reporter assay, we demonstrated lymphoid enhancer-binding factor 1 (LEF1) as a direct target of miR-219-5p. Overexpression of miR-219-5p could inhibit motility, migration and invasion of CRC cells, and inhibit epithelial-mesenchymal transition (EMT). Furthermore, silencing LEF1 phenocopied this metastasis-suppressive function. The recovery experiment showed that re-expression of LEF1 rescued this suppressive effect on tumor metastasis and reversed the expression of EMT markers caused by miR-219-5p. Additionally, we demonstrated that miR-219-5p exerted this tumor-suppressive function by blocking activation of the AKT and ERK pathways. Finally, a nude mice experiment showed that miR-219-5p reduced the lung metastasis ability of CRC cells. Taken together, our findings indicate that miR-219-5p inhibits metastasis and EMT of CRC by targeting LEF1 and suppressing the AKT and ERK pathways, which may provide a new antitumor strategy to delay CRC metastasis.
mesenchymal phenotype in epithelial cells.\(^{14,15}\) The activation of EMT-related transcription factors such as Snail and ZEB leads to downregulation of E-Cadherin and simultaneous upregulation of mesenchymal genes such as N-Cadherin and Vimentin.\(^ {16}\) Several signaling pathways such as the TGF-β leads to downregulation of E-Cadherin and simultaneous of EMT-related transcription factors such as Snail and ZEB.

EMT in breast cancer cells by phosphorylation of Twist1,\(^ {18,19}\) another study found that activation of MAPK may promote ERK changes molecular markers of EMT in CRC cells, and according to ATCC. TGF-\(\beta\) (Manassas, VA, USA) and cultured in specific culture medium for protein analysis as previously described.

Western blotting. Total protein was extracted using RIPA lysis buffer supplemented with \(\times 1\) cocktail and phosphatase inhibitor (Heart Biological, Xi’an, China). After quantitative analysis with bicinchoninic acid (BCA) assay kit (Bioss, Beijing, China) and cultured in specific culture medium according to ATCC. TGF-\(\beta\)1 (10 ng/mL; Peprotech, Rocky Hill, CT, USA) was added to culture medium for 72 h to activate the AKT/ERK pathways. All cell lines were grown at \(37^\circ\)C in 5% CO\(_2\).

Cell lines and culture conditions. Human colorectal cancer cell lines (Caco-2, HT-29, HCT 116, SW480, SW620 and LoVo) and HEK293T cells were purchased from the Type Culture Collection of Chinese Academy of Sciences (Shanghai, China) and cultured in DMEM with 10% FBS and 1% penicillin/streptomycin (HyClone, Logan, UT, USA). Human normal colon epithelial cell line FHC was purchased from ATCC (Manassas, VA, USA) and cultured in specific culture medium according to ATCC. TGF-\(\beta\)1 (10 ng/mL; Peprotech, Rocky Hill, CT, USA) was added to culture medium for 72 h to activate the AKT/ERK pathways. All cell lines were grown at \(37^\circ\)C in 5% CO\(_2\).

Cell migration and invasion assay. LoVo or SW460 cells were seeded in six-well plates (approximately \(4 \times 10^5\) cells per well). Three longitudinal scratches were made with sterile 10-\(\mu\)L pipette tips 48 h after transfection. Then, floating cell debris was washed three times with PBS. Subsequently, the cells were cultured in serum-free medium. Typical wound healing images were observed and photographed at 0 h and 24 h under an inverted microscope.

Materials and Methods.

Clinical tissue. Twenty paired colorectal cancer tissue and matched normal tissue samples were obtained from patients who underwent surgical resection of colorectal cancer at the First Affiliated Hospital of Xi’an Jiaotong University (Xi’an, China) from November 2015 to March 2017. None of the patients had received chemotherapy or radiotherapy before surgery. This study was approved by the Clinical Research Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong University. All patients provided written informed consent.

Cell lines and culture conditions. Human colorectal cancer cell lines (Caco-2, HT-29, HCT 116, SW480, SW620 and LoVo) and HEK293T cells were purchased from the Type Culture Collection of Chinese Academy of Sciences (Shanghai, China) and cultured in DMEM with 10% FBS and 1% penicillin/streptomycin (HyClone, Logan, UT, USA). Human normal colon epithelial cell line FHC was purchased from ATCC (Manassas, VA, USA) and cultured in specific culture medium according to ATCC. TGF-\(\beta\)1 (10 ng/mL; Peprotech, Rocky Hill, CT, USA) was added to culture medium for 72 h to activate the AKT/ERK pathways. All cell lines were grown at \(37^\circ\)C in 5% CO\(_2\).
Statistical analysis. Data analysis was carried out using IBM SPSS Statistics Version 22 (IBM Corp., Armonk, NY, USA). Data were reported as mean ± SD and t-test was used to determine differences between groups. Differences were considered statistically significant when \(P < 0.05 \).

Results

miR-219-5p is downregulated and LEF1 is upregulated in CRC tissue and cell lines. By analyzing the expression level of miR-219-5p and LEF1 in 20 paired CRC tissue and corresponding normal tissue samples using qRT-PCR, we found that miR-219-5p was significantly decreased in most of the CRC tissue compared with that in the matched controls (Fig. 1a, \(P < 0.001 \)), whereas LEF1 was increased (Fig. 1b, \(P < 0.001 \)). Paired comparison revealed the same tendency (Fig. S1). Linear regression analysis showed a possible relevance between miR-219-5p and LEF1 in these clinical tissues with \(R^2 = 0.755 \) (Fig. 1c). Moreover, low miR-219-5p expression was found to be correlated with large tumor size, advanced
TNM stage, node and distant metastasis ($P < 0.01$, $P < 0.01$, $P < 0.05$ and $P < 0.001$, respectively, Table 1, Table S3), whereas high LEF1 expression was strongly associated with large tumor size, node and distant metastasis and advanced TNM stage ($P < 0.05$, $P < 0.05$, $P < 0.001$ and $P < 0.01$, respectively, Table 1). No significant association between miR-219-5p or LEF1 expression level and age or gender was observed. Parameters of 20 CRC patients are listed in Table 1.

LEF1 is a direct target of miR-219-5p. LEF1 was assumed to be a direct target of miR-219-5p, as it was simultaneously predicted by all three miR target gene prediction software packages (TargetScan, miRDB, DIANA). In addition, the potential binding sequence in LEF1 3′ UTR was identified (Fig. 2a). To validate that LEF1 is a direct target of miR-219-5p, a dual-luciferase reporter assay was carried out. The reporter vector containing wild-type binding sequence (pmirGLO-LEF1-wt) or mutated-type binding sequence (pmirGLO-LEF1-mut) was transfected into HEK293T cells along with miR-219-5p mimic or miR-ctrl. Results showed that cotransfection of pmirGLO-LEF1-wt and miR-219-5p mimic led to a significant decrease (approximately 60%) in luciferase activity compared with the control group, whereas cotransfection of pmirGLO-LEF1-mut and miR-219-5p mimic had no effect on luciferase activity (Fig. 2b).

To further confirm the functional significance of miR-219-5p on LEF1, we overexpressed or downregulated miR-219-5p in multiple CRC cell lines. Results showed that forced transfection of miR-219-5p mimic into LEF1 high-expression cell lines SW480, LoVo and SW620 after transfection with various concentrations of miR-219-5p mimic (30, 60, or 120 nM) or miR-ctrl analyzed by quantitative RT-PCR (qRT-PCR). (d,e) qRT-PCR and Western blotting analysis of LEF1 mRNA and protein levels after cells were transfected with miR-219-5p inhibitors in a dose-dependent manner. (f) Relative miR-219-5p expression in HCT 116, HT-29 and Caco-2 after transfection with various concentrations of miR-219-5p inhibitor (30, 60, or 120 nM) or miR-ctrl analyzed by qRT-PCR. (g,h) LEF1 mRNA and protein levels after cells were transfected with miR-219-5p inhibitors in a dose-dependent manner. Data are shown as mean ± SD. *$P < 0.05$, **$P < 0.01$. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

Fig. 2. Lymphoid enhancer-binding factor 1 (LEF1) is a direct target of microRNA-219-5p (miR-219-5p). (a) Sequences of LEF1 3′ UTR and miR-219-5p according to the prediction of TargetScan. Wild-type and mutated-type binding sequences of LEF1 3′ UTR are shown. (b) Relative luciferase activity in HEK293T cells transfected with reporter vector containing wild-type binding sequence (pmirGLO-LEF1-wt) or mutated-type binding sequence (pmirGLO-LEF1-mut) along with miR-219-5p mimic or negative control. (c) Relative miR-219-5p expression in SW480, LoVo and SW620 after transfection with various concentrations of miR-219-5p mimic (30, 60, or 120 nM) or miR-ctl analyzed by quantitative RT-PCR (qRT-PCR). (d,e) qRT-PCR and Western blotting analysis of LEF1 mRNA and protein levels after cells were transfected with miR-219-5p inhibitors in a dose-dependent manner. LEF1 is a direct target of miR-219-5p. LEF1 was assumed to be a direct target of miR-219-5p, as it was simultaneously predicted by all three miR target gene prediction software packages (TargetScan, miRDB, DIANA). In addition, the potential binding sequence in LEF1 3′ UTR was identified (Fig. 2a). To validate that LEF1 is a direct target of miR-219-5p, a dual-luciferase reporter assay was carried out. The reporter vector containing wild-type binding sequence (pmirGLO-LEF1-wt) or mutated-type binding sequence (pmirGLO-LEF1-mut) was transfected into HEK293T cells along with miR-219-5p mimic or miR-219-5p negative control. Results showed that cotransfection of pmirGLO-LEF1-wt and miR-219-5p mimic led to a significant decrease (approximately 60%) in luciferase activity compared with the control group, whereas cotransfection of pmirGLO-LEF1-mut and miR-219-5p mimic had no effect on luciferase activity (Fig. 2b).

To further confirm the functional significance of miR-219-5p on LEF1, we overexpressed or downregulated miR-219-5p in multiple CRC cell lines. Results showed that forced transfection of miR-219-5p mimic into LEF1 high-expression cell lines SW620, SW480 and LoVo led to a sharp increase in miR-219-5p level (Fig. 2c), meanwhile it caused a significant decrease in LEF1 expression both at mRNA and protein levels in a dose-dependent manner (Fig. 2d,e). Conversely, an obvious increase in LEF1 expression was observed in LEF1 low-expression cell lines Caco-2, HT-29 and HCT 116 when transfected with miR-219-5p inhibitor in a dose-dependent manner (Fig. 2f–h).

These results suggest that LEF1 is a direct target of miR-219-5p. In addition, through promoting degradation of LEF1 mRNA, miR-219-5p can reduce LEF1 expression both at mRNA and protein levels. miR-219-5p inhibits motility and invasion of CRC cells by suppressing LEF1. SW480 and LoVo cells were chosen for further study because they have low expression of miR-219-5p.
Fig. 3. microRNA-219-5p (miR-219-5p) inhibits motility and invasion of colorectal cancer (CRC) cells. (a,b) Expression of miR-219-5p after transfection of miR-219-5p mimic (120 nM, left panel) and expression of lymphoid enhancer-binding factor 1 (LEF1) after transfection of siRNA targeting lymphoid enhancer-binding factor 1 (si-LEF1) (right panel) into (a) SW480 and (b) LoVo cells determined by quantitative RT-PCR (qRT-PCR). (c,d) Left panel, wound healing assay in (c) SW480 and (d) LoVo cells treated with miR-219-5p mimic or si-LEF1 and the corresponding negative control. Right panel, quantitative results of wound healing assay shown on the left. (e,f) Left panel, migration and invasion of cells determined by transwell assay in (e) SW480 and (f) LoVo cells treated with miR-219-5p mimic or si-LEF1 and the corresponding negative control. Scale bar, 100 μm. Right panel, quantitative results of transwell assay shown on the left. Data are shown as mean ± SD. *P < 0.05, **P < 0.01.
Through transfection with miR-219-5p mimic, there was a robust increase in miR-219-5p mRNA level (Fig. 3a,b). Moreover, to validate whether the molecular biological function of miR-219-5p was mediated by suppression of LEF1, we used a siRNA targeting LEF1, which induced a decrease in LEF1 mRNA by 70% (Fig. 3a,b). First, we detected cell motility. Results of wound healing assay suggested that miR-219-5p inhibited motility of SW480 and LoVo cells (Fig. 3c,d). Similarly, cell motility was inhibited when transfected with si-LEF1 into SW480 and LoVo cells (Fig. 3c,d). Next, transwell assay was carried out to evaluate migration and invasion ability. Results showed that the number of migrated and invaded cells was significantly decreased after transfection of miR-219-5p or si-LEF1 compared with that of the control group (Fig. 3e,f). Taken together, these findings demonstrate that miR-219-5p inhibits motility, migration and invasion of CRC cell lines, and that silencing LEF1 can replicate these effects of miR-219-5p.

miR-219-5p suppresses EMT in CRC cells. To explore the effect of miR-219-5p on EMT in CRC cell lines, we monitored changes in EMT markers E-Cadherin, N-Cadherin, Vimentin and Snail. qRT-PCR and Western blotting results all showed that the expression of E-Cadherin was higher in miR-219-5p mimic-transfected and si-LEF1-transfected groups compared.
with that in their corresponding controls, whereas the level of N-Cadherin, Vimentin and Snail was lower in CRC cells transfected with miR-219-5p or si-LEF1 (Fig. 4). Activation of the EMT transcription factor Snail and downregulation of the epithelial marker E-Cadherin along with the upregulating of mesenchymal markers N-Cadherin and Vimentin indicate the progress of EMT. Therefore, the above findings suggest that ectopic expression of miR-219-5p can suppress EMT, which is in accordance with its suppressive function on migration and invasion of CRC cells. Moreover, the loss of LEF1 phenocopied this inhibitory function.

LEF1 rescues the inhibitory effect of miR-219-5p on metastasis and EMT of CRC cells. To further demonstrate whether LEF1 could mediate the function of miR-219-5p in suppressing metastasis and EMT of CRC cells, a rescue experiment was conducted. First, SW480 and LoVo cells were transfected with LEF1-expressing vector. qRT-PCR results showed that the LEF1-expressing vector could notably increase LEF1 expression at the mRNA level (Fig. 5a,b). Transwell assay also validated its ability on promoting migration and invasion (Fig. 5c,d). Then, SW480 and LoVo cells were transfected with miR-219-5p only or cotransfected with miR-219-5p and LEF1-expressing vector. Interestingly, transwell assay revealed that the inhibitory effect of miR-219-5p on migration and invasion of CRC cells could be significantly rescued by re-expressing exogenous LEF1 (Fig. 5c,d). Consistently, expression of EMT markers was also recovered by overexpression of LEF1. Western blotting analysis showed that exogenous expression of LEF1 inhibited expression of E-Cadherin but restored expression of N-Cadherin, Vimentin and Snail (Fig. 5e,f). Taken together, our present results demonstrate that miR-219-5p exerts its inhibitory effect on...
miR-219-5p inhibits CRC EMT by targeting LEF1

Results

Function of miR-219-5p in vitro

The results above demonstrate the critical metastasis suppressive role of miR-219-5p in EMT and associated with the Wnt/β-catenin and ERK pathways as previously reported to suppress EMT, we assessed the activation of AKT/ERK pathways. When the AKT/ERK pathways were reactivated in CRC cells, EMT was induced again. These results and the immunofluorescence experiment showed subcellular localization of β-catenin had no obvious change (Fig. S2b). This indicates that with activation of the AKT/ERK pathways, EMT was induced again. These results demonstrate that miR-219-5p suppresses EMT by reducing activation of the AKT/ERK pathways.

Discussion

Distant metastasis is the major cause of CRC-related mortality. An increasing number of studies have reported the significant role of miRs in the metastatic cascade of CRC, including angiogenesis, invasiveness, circulation, extravasation and metastatic colonization. Moreover, miR-based therapies have lately been emphasized. Investigation of the use of miRs as drugs or drug targets against tumors is under way. There have been various small molecule inhibitors that can inhibit the function of miR-21. In addition, RNAi strategies including miRNAs have been used as genetic tools and are one of the most promising therapies. Pre-miR-34a or pre-miR-199a transfection was shown to reduce the number of liver metastases in nude mice. These results indicate miRs are potential and promising strategies to inhibition and treatment of CRC metastasis.

Accumulating evidence has demonstrated that a series of tumors, including gastric cancer, glioblastoma and pancreatic cancer, has a reduced level of miR-219-5p, indicating the tumor-suppressive effect of this miR. Overexpression of miR-219-5p can decrease the proliferation and invasion of gastric cancer cells by targeting the liver receptor homolog-1, meanwhile repressing activation of the Wnt/β-catenin signaling pathway. In addition, another group demonstrated that miR-219-1-3p can negatively regulate Mucin-4 expression, thereby decreasing the proliferation of pancreatic cancer cells associated with a decrease in activation of the AKT and ERK pathways, which is partly consistent with our findings in the CRC model.

LEF1 is an oncoprotein that also serves as a prognostic marker in several human malignancies. As a transcription factor of the Wnt/β-catenin pathway, dysregulation of LEF1 transcriptional activity plays a critical role in oncogenesis. In order to further understand whether miR-219-5p can affect LEF1 transcriptional activity, a Top/Fop flash assay was conducted, which showed a two-fold decrease in luciferase activities in the miR-219-5p transfected group (Fig. S2a). Also, this decrease did not depend on β-catenin as the immunofluorescence experiment showed subcellular localization of β-catenin had no obvious change (Fig. S2b). These results support that miR-219-5p can decrease the transcriptional activity of LEF1 by downregulating LEF1 expression.

In the present study, we demonstrated that miR-219-5p bound to the 3′UTR of LEF1, leading to degradation and translational repression of LEF1 mRNA, thus inhibiting EMT-associated migration and invasion through reducing the activation of AKT and ERK pathways.

EMT is an important process during development and oncogenesis and mediated by several important pathways. As the
AKT/ERK pathways widely participate in tumor proliferation, angiogenesis and metastasis, we decided to investigate the change of AKT/ERK pathways in the EMT process. In the present study, after overexpressing miR-219-5p, a decrease in the phosphorylation of AKT and ERK was observed. Furthermore, when reactivating the AKT/ERK pathways with TGF-β, expression of EMT markers was reversed, suggesting miR-219-5p inhibited EMT in CRC by reducing the activation of AKT and ERK pathways.

Studies have reported that the connection between Wnt/β-catenin/LEF1 and AKT/ERK pathways may be mediated by metalloproteinases, which have proteolytic properties and therefore can activate cell surface molecules through proteolytic cleavage or “shedding”, including EGFR ligands such as TGF-α, adhesion molecules such as integrin β1 and proinflammatory cytokines such as TNF-α etc. Specific MMP, activated by LEF1, can cleave the ectodomains of various ligands, leading to an increase of soluble ligands and binding with their receptors, thus activating cellular signaling including AKT/ERK pathways. The EGFR ligands such as TGF-α may activate downstream AKT/ERK pathways by activating EGFR. (30, 31) Integrin β1 driven Src-Akt hyperactivation can trigger EGFR ligand-independent signaling. (32, 33) Besides, TGF-β can activate downstream PI3K/AKT and p-ERK by phosphorylating FAK. (34, 35) Conversely, when the activity of MMP is inhibited, this MMP-induced cleavage of the ligands is blocked, resulting in downregulation of the activity of AKT/ERK pathways. We have measured the expression level of MMP-2 and MMP-9 after transfection of miR-219-5p. Results showed that the level of MMP-2 and MMP-9 decreased after overexpressing miR-219-5p (Fig. S3b). Furthermore, the level of TGF-α and TGF-β in miR-219-5p overexpressed cell supernatant was measured by an ELISA assay, which showed a ~two-fold decrease compared with the controls (Fig. S3a).
However, the specific mechanism of miR-219-5p regulating the AKT/ERK pathways needs further exploration. Meanwhile, further analysis on the association between miR-219-5p expression level and recurrent or overall survival is needed to clarify whether miR-219-5p can be used as a prognostic biomarker. Moreover, we focused on the function of miR-219-5p only, but the mechanism of its downregulation in CRC progression remains unclear. Further studies are required to fully understand the complex mechanism behind miR-219-5p expression and maturation.

Briefly, we determined miR-219-5p as a tumor suppressor that can block the expression of LEF1, thereby inhibiting EMT in CRC by reducing the activation of AKT and ERK signaling pathways. Our elucidation of the roles of miR-219-5p in CRC will enable the discovery of specific therapeutic approaches for CRC patients. Nevertheless, the importance of miR-219-5p in inhibition of EMT and, presumably, suppression of the early phases of metastasis need further exploration in the clinical setting for human colorectal cancer.

Acknowledgments

This study was supported by CSCO-MERCK SERONO Oncology Research Foundation (Y-MX2015-096), Chinese National Natural Science Foundation (81672810) and Natural Science Foundation of Shaanxi Province Department of Education (2016M8035).

Disclosure Statement

Authors declare no conflicts of interest for this article.

Abbreviations

CRC
colorectal cancer
EMT
epithelial-mesenchymal transition
LEF1
lymphoid enhancer-binding factor 1
miR
microRNA
miR-219-5p
si-LEF1
siRNA targeting lymphoid enhancer-binding factor 1
TGF-β
transforming growth factor beta

References

1. McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015; Adv Nutr 2016; 7: 418–9.

2. Tauriello DV, Valon A, Lonardo F, Battie E. Determinants of metastatic competency in colorectal cancer. Mol Oncol 2017; 11: 97–119.

3. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA network: the implications for cancer research. Nat Rev Cancer 2010; 10: 389–92.

4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–97.

5. Moridkia A, Mirzaei H, Sahebkar A, Salimian J. MicroRNAs: potential candidates for diagnosis and treatment of colorectal cancer. J Cell Physiol 2017; https://doi.org/10.1002/jcp.25801.

6. Li C, Dong J, Han Z, Zhang K. MicroRNA-219-5p represses the proliferation, migration, and invasion of gastric cancer cells by targeting the LRH-1/ Wnt/beta-catenin signaling pathway. Oncol Rep 2016; https://doi.org/10.3727/096504016X14768374457986.

7. Jiang Y, Yin L, Jing H, Zhang H. MicroRNA-219-5p exerts tumor suppressor function by targeting ROBO1 in glioblastoma. Tumour Biol 2015; 36: 8943–51.

8. Matsui D, Zaidi AH, Martin SA et al. Primary tumor microRNA signature predicts recurrence and survival in patients with locally advanced esophageal adenocarcinoma. Oncotarget 2016; 7: 81281–91.

9. Xiong GB, Zhang GN, Xiao Y et al. MicroRNA-219-5p functions as a tumor suppressor partially by targeting platelet-derived growth factor receptor alpha in colorectal cancer. Neoplasma 2015; 62: 855–63.

10. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

11. Kermanshahi TR, Jayachandran P, Chang DT, Pai R. LEF1 is frequently expressed in colorectal carcinoma and not in other gastrointestinal tract adenocarcinomas: an immunohistochemical survey of 602 gastrointestinal tract neoplasms. Appl Immunohistochem Mol Morphol 2014; 22: 728–34.

12. Wang WJ, Yao Y, Jiang LL et al. Increased LEF1 expression and decreased Noch2 expression are strong predictors of poor outcomes in colorectal cancer patients. DisMarkers 2013; 35: 395–405.

13. Wang WJ, Yao Y, Jiang LL et al. Knockdown of lymphoid enhancer factor 1 inhibits colon cancer progression in vitro and in vivo. PLoS One 2013; 8: e76596.

14. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–8.

15. Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 2013; 342: 1234850.

16. Yeung KT, Yang J. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol 2017; 11: 28–39.

17. Zhang J, Tian XJ, Xing J. Signal transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks. J Clin Med 2016; 5: E41.

18. Chen B, Zeng X, He Y et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget 2016; 7: 71400–16.

19. Hong J, Zhou J, Fu J et al. Phosphorylation of serine 68 of Twist1 by MAP2Ks stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res 2011; 71: 3980–90.

20. Muhammad S, Kaur K, Huang R et al. MicroRNAs in colorectal cancer: role in metastasis and clinical perspectives. World J Gastroenterol 2014; 20: 17011–9.

21. Hur K. MicroRNAs: promising biomarkers for diagnosis and therapeutic targets in human colorectal cancer metastasis. BMC Rep 2015; 48: 217–22.

22. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9: 775–89.

23. Gunmireddy K, Young DD, Xiong Y, Hogenesch JB, Huang Q, Deiters A. Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl 2008; 47: 7482–4.

24. Mudduluru G, Ceppi P, Kumaraswamy R, Scagliotti GV, Papotti M, Allgayer H. Regulation of Axin receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 2011; 30: 2888–99.

25. Lahdaoui F, Delpu Y, Vincent A et al. miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene 2015; 34: 780–8.

26. Rao SA, Arimappamagan A, Pandey P et al. miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One 2013; 8: e63164.

27. Grillo SJ, Bellacosa A, Upson J et al. The protein kinase Akt induces epithelial-mesenchymal transition and promotes enhanced motility and invasive strategies of squamous cell carcinoma lines. Cancer Res 2003; 63: 2172–8.

28. Xie L, Law BK, Chytli AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta-induced EMT in vitro. Neo- plastia 2004; 6: 603–10.

29. Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3’ kinase/AKT pathways. Oncogene 2005; 24: 7443–54.

30. Musgrove EA. Wnt signalling via the epidermal growth factor receptor partially by targeting platelet-derived growth factor receptor alpha in colorectal cancer. Neoplasma 2011; 58: 714–20.

31. Cividini M, Holbro T, Hynes NE. Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. EMBO Rep 2003; 4: 166–71.

32. Principe DR, Diaz AM, Torres C et al. TGFβ engages MEK/ERK to differentially regulate benign and malignant pancreas cell function. Oncogene 2017; https://doi.org/10.1038/onc.2016.500.

33. Chen L, Fu H, Luo Y et al. cPLA2α mediates TGF-β-induced epithelial-mesenchymal transition in breast cancer through PI3K/Akt signaling. Cell Death Disc 2017; 8: e2728.

34. Kim YJ, Jung K, Back DS, Hong SS, Kim YS. Co-targeting of EGFR receptor and neuropilin-1 overcomes cetuximab resistance in pancreatic ductal adenocarcinoma with integrin β1-driven Src-Akt bypass signaling. Oncogene 2017; 36: 2543–52.

35. Coleldo D, Mathew S, Ward R, Pumiglia K, LaFlamme SE. Integrins regulate microtubule nucleating activity of centrosome through mitogen-activated protein kinase/extracellular signal-regulated kinase/extracellular signal-regulated kinase (MEK/ERK) signaling. J Biol Chem 2012; 287: 2520–30.
Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Fig. S1. Paired comparison of miR-219-5p or LEF1 expression level in 20 paired CRC and normal tissue samples. Paired comparison of miR-219-5p (a) or LEF1 (b) expression level in 20 paired clinical tissue samples.

Fig. S2. miR-219-5p downregulates the transcriptional activity of LEF1. (a) Luciferase activity in SW480 cells transfected with miR-219-5p or miR-ctrl along with either TOPflash or FOPflash. (b) Immunofluorescence of β-catenin in SW480 cells after transfection with miR-219-5p or miR-ctrl.

Fig. S3. Change of MMPs and TGF-β, TGF-α in SW480 and LoVo cells after transfection with miR-219-5p or miR-control. (a) ELISA assay of TGF-α and TGF-β in SW480 and LoVo cells supernatant after transfection of miR-219-5p or miR-ctrl. (b) Western blotting analysis of LEF1 and MMP-2, MMP-9.

Table S1. Primer sequences used in qRT-PCR.

Table S2. Sequences of miR and siRNA.

Table S3. Characteristics of patients with CRC.