JORDANIAN QUANTUM ALGEBRA $\mathcal{U}_h(\mathfrak{sl}(N))$ VIA CONTRACTION METHOD AND MAPPING

B. ABDESSELAM†‡, A. CHAKRABARTI‡§ and R. CHAKRABARTI∗¶

† Laboratoire de Mathématique et Physique Théorique, Faculté des Sciences et Techniques, Parc de Grandmont-F 37041 Tours, France.
‡ Centre de Physique Théorique, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
§ Institute of Mathematical Sciences, Madras 600113, India.

May 2001

Abstract

Using the contraction procedure introduced by us in Ref. [20], we construct, in the first part of the present letter, the Jordanian quantum Hopf algebra $\mathcal{U}_h(\mathfrak{sl}(3))$ which has a remarkably simple co-algebraic structure and contains the Jordanian Hopf algebra $\mathcal{U}_h(\mathfrak{sl}(2))$, obtained by Ohn, as a subalgebra. A nonlinear map between $\mathcal{U}_h(\mathfrak{sl}(3))$ and the classical $\mathfrak{sl}(3)$ algebra is then established. In the second part, we give the higher dimensional Jordanian algebras $\mathcal{U}_h(\mathfrak{sl}(N))$ for all N. The Universal R-matrix of $\mathcal{U}_h(\mathfrak{sl}(N))$ is also given.

Keywords: Standard quantization, Nonstandard quantization, contraction procedure, Hopf algebra, universal R-matrix, Irreducible representations (irreps.).

1 Introduction

It is well known that the enveloping Lie algebra $\mathcal{U}(\mathfrak{sl}(N))$ has two quantizations: The first one called the Drinfeld-Jimbo deformation or the standard quantum deformation [1, 2] is quasitriangular ($R_{21}R \neq I$), whereas the second one called the Jordanian deformation or the non-standard quantum deformation [3] is triangular ($R_{21}R = I$). A typical example of Jordanian quantum algebras was first introduced by Ohn [4]. In general, nonstandard quantum algebras are obtained by applying Drinfeld twist to the corresponding Lie algebras [3]. The twisting that produces an algebra isomorphic to the Ohn algebra [4] is found in [3, 7].

Recently, the twisting procedure was extensively employed to study a wide variety of Jordanian deformed algebras, such as $\mathcal{U}_h(\mathfrak{sl}(N))$ algebras [8, 9, 10, 11], symplectic algebras [8] and [9, 10].
\(U_h(\text{sp}(N)) \) [12], orthogonal algebras \(U_h(\text{so}(N)) \) [13, 14, 15, 16] and orthosymplectic superalgebra \(U_h(\text{osp}(1|2)) \) [17, 18]. It appears from these studies that:

1. The non-standard quantum algebras have undeformed commutation relations;
2. The Jordanian deformation appear only in the coalgebraic structure;
3. The coproduct and the antipode maps have very complicated forms in comparison with the Drinfeld-Jimbo and the Ohn deformations.

To our knowledge, Jordanian quantum algebra \(U_h(\text{sl}(N)) \) has been written explicitly, with a simple coalgebra, only for \(N = 2 \) [4]. The main object of the present letter is to construct the Jordanian quantum algebra \(U_h(\text{sl}(3)) \) using the contraction procedure developed in [20] and the map studied in Refs. [20, 21]. The \(U_h(\text{sl}(3)) \) algebra presented here has the following properties:

1. The Ohn algebra \(U_h(\text{sl}(2)) \) is included in our structure \(U_h(\text{sl}(3)) \) in a natural way as a Hopf subalgebra and appear here from the longest root generators i.e. from \(e_3, f_3 \) and their corresponding Cartan generator \(h_3 \);
2. Our Jordanian deformed \(U_h(\text{sl}(3)) \) algebra may be regarded as the dual Hopf algebra of the function algebra \(\text{Fun}_h(\text{SL}(3)) \) studied in [22];
3. The present \(U_h(\text{sl}(3)) \) algebra is endowed with a relatively simple coalgebra structure (as compared to previous studies [8, 9, 10, 11]).

Implementing our contraction technique we subsequently obtain higher dimensional Jordanian quantum algebras \(U_h(\text{sl}(N)) \) for arbitrary values of \(N \).

This letter is organized as follows: The Jordanian quantum algebra \(U_h(\text{sl}(3)) \) is introduced via a nonlinear map and proved to be a Hopf algebra in section 2. The irreducible representations (irreps.) of \(U_h(\text{sl}(3)) \) are also given. Higher dimensional algebras \(U_h(\text{sl}(N)) \), \(N \geq 4 \) are presented in the sections 3 and 4.

2 \(U_h(\text{sl}(3)) \): Map, Hopf Algebra, Irreps. and \(\mathcal{R}_h \)-matrix

In this letter, \(\hbar \) is an arbitrary complex number. It was proved in [20] that the \(\mathcal{R}_h \)-matrix of the Jordanian quantum algebra \(U_h(\text{sl}(3)) \) can be obtained from the \(\mathcal{R}_q \)-matrix associated to the Drinfeld-Jimbo quantum algebra \(U_q(\text{sl}(3)) \) through a specific contraction which is singular in the \(q \to 1 \) limit. For the transformed matrix, the singularities, however, cancel yielding a well-defined construction. Here we assume the \(U_q(\text{sl}(3)) \) Hopf algebra to be well-known [23].

For brevity and simplicity we limit ourselves to (fundamental irrep.) \(\otimes \) (arbitrary irrep.). Recall that for \(U_q(\text{sl}(3)) \) algebra the \(R_q \)-matrix in the representation (fund.) \(\otimes \) (arb.) reads [23]:

\[
R_q = \left(\pi_{(\text{fund.})} \otimes \pi_{(\text{arb.})} \right) \mathcal{R}_q = \begin{pmatrix}
 q^{\frac{1}{2}(2h_1+h_2)} & q^{\frac{1}{2}(2h_1+h_2)} \Lambda_{12} & q^{\frac{1}{2}(2h_1+h_2)} \Lambda_{13} \\
 0 & q^{-\frac{1}{2}h_2} & q^{-\frac{1}{2}(h_1-h_2)} \Lambda_{23} \\
 0 & 0 & q^{-\frac{1}{2}(h_1+2h_2)}
\end{pmatrix},
\]

(1)
where
\[
\begin{align*}
\Lambda_{12} &= q^{-1/2}(q - q^{-1})q^{-h_{12}/2} \hat{f}_1, \\
\Lambda_{13} &= q^{-1/2}(q - q^{-1}) \hat{f}_3 q^{-1/2(h_{13} + h_2)}, \\
\Lambda_{23} &= q^{-1/2}(q - q^{-1})q^{h_{23}/2} \hat{f}_2.
\end{align*}
\]

The elements \(k_i^{\pm} = q^{\pm h_1}, \ k_2^{\pm} = q^{\pm h_2}, \ k_3^{\pm} = q^{\pm (h_1 + h_2)}\), \(\hat{e}_1, \hat{e}_2, \hat{e}_3 = \hat{e}_1 \hat{e}_2 - q^{-1} \hat{e}_2 \hat{e}_1, \hat{f}_1, \hat{f}_2\) and \(\hat{f}_3 = \hat{f}_2 \hat{f}_1 - q \hat{f}_1 \hat{f}_2\) are the \(U_q(sl(3))\) generators. The corresponding classical generators are denoted by \(h_1, h_2, h_3 = h_1 + h_2, e_1, e_2, e_3 = e_1 e_2 - e_2 e_1, f_1, f_2\) and \(f_3 = f_2 f_1 - f_1 f_2\).

We have shown in [20] that the nonstandard \(R_h\)-matrix (in the representation \((\text{fund.}) \otimes \text{(arb.)})\) arise from the \(R_q\)-matrix (in \((\text{fund.}) \otimes \text{(arb.)})\) as follows:

\[
R_h = \lim_{q \to 1} \left[E_q \left(\frac{\hbar \hat{e}_3}{q - 1} \right) \otimes E_q \left(\frac{\hbar \hat{e}_3}{q - 1} \right) \right]^{-1} R_q \left[E_q \left(\frac{\hbar \hat{e}_3}{q - 1} \right) \otimes E_q \left(\frac{\hbar \hat{e}_3}{q - 1} \right) \right]
\]

\[
= \lim_{q \to 1} \begin{pmatrix}
E_q^{-1} \left(\frac{\hbar \hat{e}_3}{q - 1} \right) & 0 & -\frac{\hbar}{q - 1} E_q^{-1} \left(\frac{\hbar \hat{e}_3}{q - 1} \right) \\
0 & E_q^{-1} \left(\frac{\hbar \hat{e}_3}{q - 1} \right) & 0 \\
0 & 0 & E_q^{-1} \left(\frac{\hbar \hat{e}_3}{q - 1} \right)
\end{pmatrix} R_q \begin{pmatrix}
E_q \left(\frac{\hbar \hat{e}_3}{q - 1} \right) & 0 & \frac{\hbar}{q - 1} E_q \left(\frac{\hbar \hat{e}_3}{q - 1} \right) \\
0 & E_q \left(\frac{\hbar \hat{e}_3}{q - 1} \right) & 0 \\
0 & 0 & E_q \left(\frac{\hbar \hat{e}_3}{q - 1} \right)
\end{pmatrix}
\]

\[
= \begin{pmatrix}
T & 2 \hbar T^{-1/2} e_2 & -\frac{\hbar}{2} (T + T^{-1}) (h_1 + h_2) + \frac{\hbar}{2} (T - T^{-1}) \\
0 & I & -2 \hbar T^{1/2} e_1 \\
0 & 0 & T^{-1}
\end{pmatrix},
\]

where

\[
T = \hbar e_3 + \sqrt{1 + \hbar^2 e_3^2}, \quad T^{-1} = -\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2}.
\]

The deformed exponential in (3) is defined by

\[
E_q(x) = \sum_{n=0}^{\infty} \frac{x^n}{[n]!}, \quad [n]! = [n] \times [n - 1]!,
\]

\[
[n] = \frac{q^n - q^{-n}}{q - q^{-1}}, \quad [0]! = 1.
\]

The following properties can be pointed out:

1. The corner elements of (3) have exactly the same structure as in the \(R_h\)-matrix of \(U_h(sl(2))\). This implies that the classical generators \(e_3, h_3 = h_1 + h_2\) and \(f_3\) of \(U(sl(3))\) are deformed (for the nonstandard quantization: \(U(sl(3)) \rightarrow U_h(sl(3))\)) as follows [20, 21]:

\[
T = \hbar e_3 + \sqrt{1 + \hbar^2 e_3^2}, \quad T^{-1} = -\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2},
\]

\[
H_3 = \sqrt{1 + \hbar^2 e_3^2} h_3, \quad F_3 = f_3 - \frac{\hbar^2}{4} e_3 (h_3^2 - 1),
\]
and evidently satisfy the commutation relations [4]

\[T T^{-1} = T^{-1} T = 1, \]
\[[H_3, T] = T^2 - 1, \quad [H_3, T^{-1}] = T^{-2} - 1, \]
\[[T, F_3] = \frac{\hbar}{2} (H_3 T + T H_3), \quad [T^{-1}, F_3] = -\frac{\hbar}{2} (H_3 T^{-1} + T^{-1} H_3), \]
\[[H_3, F_3] = -\frac{1}{2} (T F_3 + F_3 T + T^{-1} F_3 + F_3 T^{-1}). \]

(7)

With the following definition (see Ref. [4])

\[E_3 = \hbar^{-1} \ln T = \hbar^{-1} \text{arcsinh } \hbar e_3, \]

(8)

it follows that the elements \(H_3, E_3 \) and \(F_3 \) satisfy the relations

\[[H_3, E_3] = 2 \frac{\sinh \hbar E_3}{\hbar}, \]
\[[H_3, F_3] = -F_3 \left(\cosh \hbar E_3 \right) - \left(\cosh \hbar E_3 \right) F_3, \]
\[[E_3, F_3] = H_3, \]

(9)

where it is obvious that as \(\hbar \to 0 \), we have \((H_3, E_3, F_3) \to (h_3, e_3, f_3) \). It is now evident from (7) that \(\mathcal{U}_h(sl(2)) \subset \mathcal{U}_h(sl(3)) \).

2. The expression (3) of the \(R_h \)-matrix indicates that the simple root generators \(e_1 \) and \(e_2 \) are deformed as follows:

\[E_1 = \sqrt{\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2}} e_1 = T^{1/2} e_1, \]
\[E_2 = \sqrt{\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2}} e_2 = T^{1/2} e_2. \]

(10)

To complete our \(\mathcal{U}_h(sl(3)) \) algebra, we introduce the following \(\hbar \)-deformed generators:

\[F_1 = \sqrt{-\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2}} f_1 + \frac{\hbar}{2} \sqrt{\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2}} e_2 h_3 = T^{-1/2} \left(f_1 + \frac{\hbar}{2} e_2 T h_3 \right), \]
\[F_2 = \sqrt{-\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2}} f_2 - \frac{\hbar}{2} \sqrt{\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2}} e_1 h_3 = T^{-1/2} \left(f_2 - \frac{\hbar}{2} e_1 T h_3 \right), \]
\[H_1 = \left(-\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2} \right) \left(\sqrt{1 + \hbar^2 e_3^2} h_1 + \frac{\hbar}{2} e_3 (h_1 - h_2) \right) = h_1 - \frac{\hbar}{2} e_3 T^{-1} h_3, \]
\[H_2 = \left(-\hbar e_3 + \sqrt{1 + \hbar^2 e_3^2} \right) \left(\sqrt{1 + \hbar^2 e_3^2} h_2 - \frac{\hbar}{2} e_3 (h_1 - h_2) \right) = h_2 - \frac{\hbar}{2} e_3 T^{-1} h_3. \]

(11)

The expressions (6), (10) and (11) constitute a realization of the Jordanian algebra \(\mathcal{U}_h(sl(3)) \) with the classical generators via a nonlinear map. This immediately yields the irreducible representations (irreps.) of \(\mathcal{U}_h(sl(3)) \) in an explicit and simple manner.
Proposition 1 The Jordanian algebra $\mathcal{U}_h(sl(3))$ is an associative algebra over \mathbb{C} generated by H_1, H_2, H_3, E_1, E_2, T, T^{-1}, F_1, F_2 and F_3, satisfying, along with (7), the commutation relations

\[
\begin{align*}
[H_1, H_2] &= 0, & [H_1, T^{-1}H_3] &= [H_2, T^{-1}H_3] = 0, \\
[H_1, E_1] &= 2E_1, & [H_2, E_2] &= 2E_2, \\
[H_1, E_2] &= -E_2, & [H_2, E_1] &= -E_1, \\
[T^{-1}H_3, E_1] &= E_1, & [T^{-1}H_3, E_2] &= E_2, \\
[H_1, F_1] &= -2F_1 + \hbar E_2 T^{-1}H_3, & [H_2, F_2] &= -2F_2 - \hbar E_1 T^{-1}H_3, \\
[H_1, F_2] &= F_2 - \hbar E_1 T^{-1}H_3, & [H_2, F_1] &= F_1 + \hbar E_2 T^{-1}H_3, \\
[TH_3, F_1] &= -T^2F_1, & [TH_3, F_2] &= -T^2F_2, \\
[T^{-1}E_1, F_1] &= \frac{1}{2}(T + T^{-1})H_1 + \frac{1}{2}(T - T^{-1})H_2, \\
[T^{-1}E_2, F_2] &= \frac{1}{2}(T + T^{-1})H_2 + \frac{1}{2}(T - T^{-1})H_1, \\
[T^{-1}E_1, F_2] &= 0, & [T^{-1}E_2, F_1] &= 0, \\
[E_1, E_2] &= \frac{1}{2\hbar}(T^2 - 1), \\
[T F_2, T F_1] &= T \left(F_3 - \frac{\hbar}{2} H_3 T H_3 - \frac{\hbar}{8}(T - T^{-1}) \right) \\
[TH_1, T] &= \frac{1}{2}(T^2 - 1), & [TH_1, T^{-1}] &= \frac{1}{2}(T^{-2} - 1), \\
[TH_2, T] &= \frac{1}{2}(T^2 - 1), & [TH_2, T^{-1}] &= \frac{1}{2}(T^{-2} - 1), \\
[H_1, F_3] &= -\frac{T^{-1}}{4} \left(T F_3 + F_3 T + T^{-1}F_3 + F_3 T^{-1} \right) - \frac{\hbar}{4} T^{-1} H_3^2 - \frac{\hbar}{4} H_3 T^{-1} H_3, \\
[H_2, F_3] &= -\frac{T^{-1}}{4} \left(T F_3 + F_3 T + T^{-1}F_3 + F_3 T^{-1} \right) - \frac{\hbar}{4} T^{-1} H_3^2 - \frac{\hbar}{4} H_3 T^{-1} H_3, \\
[E_1, T] &= [E_1, T^{-1}] = [E_2, T] = [E_2, T^{-1}] = 0, \\
[F_1, T] &= \hbar T E_2, & [F_1, T^{-1}] &= -\hbar T^{-1} E_2, \\
[F_2, T] &= -\hbar T E_1, & [F_2, T^{-1}] &= \hbar T^{-1} E_1, \\
[E_1, F_3] &= -\frac{1}{2} \left(T F_2 + F_2 T \right), & [E_2, F_3] &= \frac{1}{2} \left(T F_1 + F_1 T \right), \\
[F_1, F_3] &= \hbar T F_1 - \hbar E_2 F_3 + \frac{\hbar^2}{4} T E_2, \\
[F_2, F_3] &= \hbar T F_2 + \hbar E_1 F_3 - \frac{\hbar^2}{4} T E_1.
\end{align*}
\]

(12)

Here we quoted only the final results. To obtain the realizations of H_1 and H_2 given in (11), we, in analogy with (6), started with the ansatz $\sqrt{1 + \hbar^2 e_3^2 h_1}$ and $\sqrt{1 + \hbar^2 e_3^2 h_2}$ for these
generators respectively. It is easy to see that

\[
\sqrt{1 + \hbar^2 e_3^2 h_1}, F_3 = -\frac{1}{4} (TF_3 + F_3T + T^{-1}F_3 + F_3T^{-1})
\]
\[
+ \frac{\hbar^2}{4} (e_3(h_1 - h_2)H_3 + H_3e_3(h_1 - h_2)),
\]
\[
\sqrt{1 + \hbar^2 e_3^2 h_2}, F_3 = -\frac{1}{4} (TF_3 + F_3T + T^{-1}F_3 + F_3T^{-1})
\]
\[
- \frac{\hbar^2}{4} (e_3(h_1 - h_2)H_3 + H_3e_3(h_1 - h_2)).
\]

(13)

Then, if we add to \(\sqrt{1 + \hbar^2 e_3^2 h_1}\) and deduct from \(\sqrt{1 + \hbar^2 e_3^2 h_2}\) the term \(\frac{\hbar}{2} e_3(h_1 - h_2)\), we obtain

\[
[(\sqrt{1 + \hbar^2 e_3^2 h_1} + \frac{\hbar}{2} e_3(h_1 - h_2)), F_3] = -\frac{1}{4} (TF_3 + F_3T + T^{-1}F_3 + F_3T^{-1})
\]
\[
+ \frac{\hbar}{4} T(h_1 - h_2)H_3 + \frac{\hbar}{4} H_3T(h_1 - h_2),
\]
\[
[(\sqrt{1 + \hbar^2 e_3^2 h_2} - \frac{\hbar}{2} e_3(h_1 - h_2)), F_3] = -\frac{1}{4} (TF_3 + F_3T + T^{-1}F_3 + F_3T^{-1})
\]
\[
- \frac{\hbar}{4} T(h_1 - h_2)H_3 - \frac{\hbar}{4} H_3T(h_1 - h_2).
\]

(14)

These commutation relations suggest the realizations \(H_1 \sim (\sqrt{1 + \hbar^2 e_3^2 h_1} + \frac{\hbar}{2} e_3(h_1 - h_2))\) and \(H_2 \sim (\sqrt{1 + \hbar^2 e_3^2 h_2} - \frac{\hbar}{2} e_3(h_1 - h_2))\). Finally, to preserve the Cartan subalgebra, we are obliged to multiply both of these expressions by \(T^{-1}\). The resultant maps for \(H_1\) and \(H_2\) are quoted in (11). The expressions of \(F_1\) and \(F_2\) are obtained in a similar way. The expressions (6), (10) and (11) may be looked now as a particular realization of the \(U_h(sl(3))\) generators. Other maps may also be considered.

Proposition 2 In terms of the Chevalley generators (simple roots) \(\{E_1, E_2, F_1, F_2, H_1, H_2\}\), the algebra \(U_h(sl(3))\) is defined as follows:

\[
T = \left(1 + 2\hbar[E_1, E_2]\right)^{1/2},
\]
\[
T^{-1} = \left(1 + 2\hbar[E_1, E_2]\right)^{-1/2},
\]
\[
[H_1, H_2] = 0,
\]
\[
[H_1, E_1] = 2E_1,
\]
\[
[H_1, E_2] = -E_2,
\]
\[
[H_1, F_1] = -2F_1 + \hbar E_2(H_1 + H_2),
\]
\[
[H_1, F_2] = F_2 - \hbar E_1(H_1 + H_2),
\]
\[
[T^{-1}E_1, F_1] = \frac{1}{2}(T + T^{-1})H_1 + \frac{1}{2}(T - T^{-1})H_2,
\]
\[[T^{-1}E_2, F_2] = \frac{1}{2}(T + T^{-1})H_2 + \frac{1}{2}(T - T^{-1})H_1, \]
\[[T^{-1}E_1, F_2] = [T^{-1}E_2, F_1] = 0, \]
\[E_1^2E_2 - 2E_1E_2E_1 + E_2E_1^2 = 0, \]
\[E_2^2E_1 - 2E_2E_1E_2 + E_1E_2^2 = 0, \]
\[(TF_1)^2TF_2 - 2TF_1TF_2TF_1 + TF_2(TF_1)^2 = 0, \]
\[(TF_2)^2TF_1 - 2TF_2TF_1TF_2 + TF_1(TF_2)^2 = 0, \]
\[(15) \]

or, briefly
\[[H_i, H_j] = 0, \]
\[[H_i, E_j] = a_{ij}E_j, \]
\[[H_i, F_j] = -a_{ij}F_j + T^{-1}[F_j, T](H_1 + H_2), \]
\[[T^{-1}E_i, F_j] = \delta_{ij} \left(T^{-1}H_i + \frac{1}{2}(T - T^{-1})(H_1 + H_2) \right), \]
\[(ad E_i)^{1-a_{ij}}(E_j) = 0, \quad i \neq j, \]
\[(ad TF_i)^{1-a_{ij}}(TF_j) = 0, \quad i \neq j, \]
\[(16) \]
where \((a_{ij})_{i,j=1,2} \) is the Cartan matrix of \(\text{sl}(3) \), i.e. \(a_{11} = a_{22} = 2 \) and \(a_{12} = a_{21} = -1 \).

3. We now turn to the coalgebraic structure:

Proposition 3 The Jordanian quantum algebra \(\mathcal{U}_h(\text{sl}(3)) \) admits a Hopf structure with coproducts, antipodes and counits determined by

\[\Delta(E_1) = E_1 \otimes 1 + T \otimes E_1, \]
\[\Delta(E_2) = E_2 \otimes 1 + T \otimes E_2, \]
\[\Delta(T) = T \otimes T, \]
\[\Delta(F_1) = F_1 \otimes 1 + T^{-1} \otimes F_1 + hH_3 \otimes E_2 \]
\[= F_1 \otimes 1 + T^{-1} \otimes F_1 + T(H_1 + H_2) \otimes T^{-1}[F_1, T], \]
\[\Delta(F_2) = F_2 \otimes 1 + T^{-1} \otimes F_2 - hH_3 \otimes E_1 \]
\[= F_2 \otimes 1 + T^{-1} \otimes F_2 + T(H_1 + H_2) \otimes T^{-1}[F_2, T], \]
\[\Delta(F_3) = F_3 \otimes T + T^{-1} \otimes F_3, \]
\[\Delta(H_1) = H_1 \otimes 1 + 1 \otimes H_1 - \frac{1}{2}(1 - T^{-2}) \otimes T^{-1}H_3 \]
\[= H_1 \otimes 1 + 1 \otimes H_1 - \frac{1}{2}(1 - T^{-2}) \otimes (H_1 + H_2), \]
\[\Delta(H_2) = H_2 \otimes 1 + 1 \otimes H_2 - \frac{1}{2}(1 - T^{-2}) \otimes T^{-1}H_3 \]
\[= H_2 \otimes 1 + 1 \otimes H_2 - \frac{1}{2}(1 - T^{-2}) \otimes (H_1 + H_2), \]
\[\Delta(H_3) = H_3 \otimes T + T^{-1} \otimes H_3, \]
\[
S(E_1) = -T^{-1}E_1, \quad S(E_2) = -T^{-1}E_2,
\]
\[
S(T) = T^{-1}, \quad S(T^{-1}) = T,
\]
\[
S(F_1) = -TF_1 + hTH_3T^{-1}E_2 = -TF_1 + T^2(H_1 + H_2)T^{-2}[F_1, T],
\]
\[
S(F_2) = -TF_2 - hTH_3T^{-1}E_1 = -TF_2 + T^2(H_1 + H_2)T^{-2}[F_2, T],
\]
\[
S(F_3) = -TF_3T^{-1},
\]
\[
S(H_1) = -H_1 - \frac{1}{2}(T - T^{-1})H_3 = -H_1 - \frac{1}{2}(T^2 - 1)(H_1 + H_2),
\]
\[
S(H_2) = -H_2 - \frac{1}{2}(T - T^{-1})H_3 = -H_2 - \frac{1}{2}(T^2 - 1)(H_1 + H_2),
\]
\[
S(H_3) = -TH_3T^{-1},
\]
\[
\epsilon(a) = 0, \quad \forall a \in \{H_1, H_2, H_3, E_1, E_2, F_1, F_2, F_3\},
\]
\[
\epsilon(T) = \epsilon(T^{-1}) = 1. \quad (17)
\]

All the Hopf algebra axioms can be verified by direct calculations. Let us remark that our coproducts have simpler forms as compared to Refs. [8, 9, 10, 11].

Proposition 4 The universal \(\mathcal{R}_h\)-matrix has the following form:

\[
\mathcal{R}_h = F^{-1} \mathcal{F}, \quad (18)
\]

where

\[
\mathcal{F} = \exp(hTH_3 \otimes E_3) \exp(2hTE_1 \otimes T^{-2}E_2). \quad (19)
\]

The \(\mathcal{R}\)-matrix properties are verified using MAPLE. The element (18) coincides with the universal \(\mathcal{R}\)-matrix of the Borel subalgebra and gives exactly the expression (3) in the representation (fund.) \(\otimes\) (arb.).

4. Following Drinfeld’s arguments [4], it is possible to construct a twist operator \(G \in \mathcal{U}(sl(3))^\otimes[[h]]\) relating the Jordanian coalgebraic structure given by (17) with the corresponding classical coalgebraic structure. For an invertible map \(m : \mathcal{U}_h(sl(3)) \to \mathcal{U}(sl(3)), m^{-1} : \mathcal{U}(sl(3)) \to \mathcal{U}_h(sl(3))\), the following relations hold:

\[
(m \otimes m) \circ \Delta \circ m^{-1}(\mathcal{X}) = G\Delta_0(\mathcal{X})G^{-1}, \quad m \circ S \circ m^{-1}(\mathcal{X}) = gS_0(\mathcal{X})g^{-1}, \quad (20)
\]

where \(\mathcal{X} \in \mathcal{U}(sl(3))[[h]]\) and \((\Delta_0, \epsilon_0, S_0)\) are the coproduct, counit and the antipode maps of the classical \(\mathcal{U}(sl(3))\) algebra. The transforming operator \(g(\in \mathcal{U}(sl(3))[[h]])\) and its inverse may be expressed as

\[
g = \mu \circ (\text{id} \otimes S_0)G, \quad g^{-1} = \mu \circ (S_0 \otimes \text{id})G^{-1}, \quad (21)
\]

where \(\mu\) is the multiplication map.
For the map presented here in (6), (10) and (11), we have the construction

\[G = 1 \otimes 1 - \frac{1}{2} h \hat{r} + \frac{1}{8} h^2 \left[\hat{r}^2 + 2(e_3 \otimes e_3) \Delta_0(h_3) \right] - \frac{1}{48} h^3 \left[\hat{r}^3 + 6(e_3 \otimes e_3) \Delta_0(h_3) \hat{r} - 4(\Delta_0(e_3))^2 \hat{r} \right] + \frac{1}{384} h^4 \left[\hat{r}^4 - 16(\Delta_0(e_3))^2 \hat{r}^2 + 12(e_3 \otimes e_3) \Delta_0(h_3) \hat{r}^2 + 12((e_3 \otimes e_3) \Delta_0(h_3))^2 + 6(e_3^2 \otimes 1 - 1 \otimes e_3^2)^2 \Delta_0(h_3) + 12(\Delta_0(e_3))^2 (e_3^2 \otimes 1 + 1 \otimes e_3^2) \Delta_0(h_3) - 8 \Delta_0(e_3)(e_3^3 \otimes 1 + 1 \otimes e_3^3) \Delta_0(h_3) - 10(\Delta_0(e_3))^4 \Delta_0(h_3) \right] + O(h^5), \]

(22)

where \(\hat{r} = h_3 \otimes e_3 - e_3 \otimes h_3 \). The above twist operators, while obeying the requirement (20) for the full \(\mathcal{U}(sl(3))[[h]] \) algebra, are, however, generated only by the elements \((e_3, h_3)\), related to the longest root. This property accounts for the embedding of the \(\mathcal{U}_h(sl(2)) \) algebra in the higher dimensional \(\mathcal{U}_h(sl(3)) \) algebra. The transforming operator \(g \) is obtained in (22) in a closed form. The series expansion of the twist operator \(G \) may be developed up to an arbitrary order in \(h \). The expansion (22) of the twist operator \(G \) in powers of \(h \) satisfies the cocycle condition

\[(1 \otimes G)(id \otimes \Delta_0)G = (\Delta_0 \otimes 1)(1 \otimes G)(id \otimes \Delta_0) \]

(23)

upto the desired order. The present discussion of the twist operator relating to the \(\mathcal{U}_h(sl(3)) \) algebra may be easily extended to higher dimensional Jordanian algebras. (A systematic study of twists for \(\mathcal{U}_h(sl(2)) \) can be found in [21]).

5. Let us mention that there is a \(\mathbb{C} \)-algebra automorphism \(\phi \) of \(\mathcal{U}_h(sl(3)) \) such that

\[
\begin{align*}
\phi(T^{\pm 1}) &= T^{\pm 1}, \\
\phi(F_3) &= F_3, \\
\phi(H_3) &= H_3, \\
\phi(E_1) &= E_2, \\
\phi(F_1) &= F_2, \\
\phi(H_1) &= H_2, \\
\phi(E_2) &= -E_1, \\
\phi(F_2) &= -F_1, \\
\phi(H_2) &= H_1.
\end{align*}
\]

(24)

(For \(h = 0 \), this automorphism reduces to the classical one \((h_1, e_1, f_1, h_2, e_2, f_2) \rightarrow (h_2, e_2, f_2, h_1, -e_1, -f_1)\)). Also there is a second \(\mathbb{C} \)-algebra automorphism \(\varphi \) of \(\mathcal{U}_h(sl(3)) \) defined as:

\[
\begin{align*}
\varphi(T^{\pm 1}) &= -T^{\pm 1}, \\
\varphi(F_3) &= -F_3, \\
\varphi(H_3) &= -H_3, \\
\varphi(E_1) &= E_1, \\
\varphi(F_1) &= F_1, \\
\varphi(H_1) &= H_1, \\
\varphi(E_2) &= E_2, \\
\varphi(F_2) &= F_2, \\
\varphi(H_2) &= H_2.
\end{align*}
\]

(25)

6. The expressions (6), (10) and (11) permit immediate explicit construction of the finite-dimensional irreducible representations of \(\mathcal{U}_h(sl(3)) \). For example, the three-dimensional irreducible representations are spanned by

\[
H_1 = \begin{pmatrix} 1 & 0 & \frac{h}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad F_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -\frac{h}{2} \\ 0 & 0 & 0 \end{pmatrix},
\]

9
Here from the longest roots, i.e. from e, h.

The three-irrep. (27) is simply obtained from the irrep. (26) using the automorphism φ. The irrep. (27) has evidently no classical $(h = 0)$ limit.

3 $U_h(sl(4))$: Map and R_h-matrix

The major interest of our approach is that it can be generalized for obtaining Jordanian quantum algebras $U_h(sl(N))$ of higher dimensions. Here we illustrate our method using $U(sl(4))$ as an example. Let $h_1 = e_{11} - e_{22} \equiv h_{12}$, $h_2 = e_{22} - e_{33} \equiv h_{23}$, $h_3 = e_{33} - e_{44} \equiv h_{34}$, $e_1 \equiv e_{12}$, $e_2 \equiv e_{23}$, $e_3 \equiv e_{34}$, $f_1 \equiv e_{21}$, $f_2 \equiv e_{32}$ and $f_3 \equiv e_{43}$ be the standard Chevalley generators (simple roots) of $U(sl(4))$. The others roots obtained by action of the Weyl group are denoted by $e_{13} = [e_{12}, e_{23}]$, $e_{14} = [e_{13}, e_{34}]$, $e_{24} = [e_{23}, e_{34}]$, $e_{31} = [e_{32}, e_{21}]$, $e_{41} = [e_{43}, e_{31}]$, $e_{42} = [e_{43}, e_{32}]$, $h_{13} = h_{12} + h_{23}$, $h_{14} = h_{12} + h_{23} + h_{34}$ and $h_{24} = h_{23} + h_{34}$. As for $U_h(sl(3))$, the Jordanian deformation arises here from the longest roots, i.e. from e_{14}, e_{41} and h_{14}. These generators are deformed as follows:

$$
T = he_{14} + \sqrt{1 + h^2 e_{14}^2},
$$

$$
T^{-1} = -he_{14} + \sqrt{1 + h^2 e_{14}^2},
$$

$$
E_{41} = e_{41} - \frac{h^2}{4} e_{14}(h_{14}^2 - 1),
$$

$$
H_{14} = \sqrt{1 + h^2 e_{14}^2} h_{14},
$$

with the well-known coproducts

$$
\Delta(T) = T \otimes T,
\Delta(T^{-1}) = T^{-1} \otimes T^{-1},
\Delta(E_{41}) = E_{41} \otimes T + T^{-1} \otimes E_{41},
\Delta(H_{14}) = H_{14} \otimes T + T^{-1} \otimes H_{14}.
$$

(28)
It is now easy to verify that $H_{23} + H_{34} = H_{24}$, $[E_{12}, E_{23}] = E_{13}$, $[E_{32}, E_{21}] = E_{31}$, $H_{12} + H_{23} = H_{13}$, $[E_{23}, E_{34}] = E_{24}$, $[E_{43}, E_{32}] = E_{42}$. (33)

*Each subsets forms a $\mathcal{U}(sl(3))$ subalgebra in $\mathcal{U}(sl(4))$.
Proposition 5 The generating elements \(H_1 \equiv H_{12}, \; H_2 \equiv H_{23}, \; H_3 \equiv H_{34}, \; E_1 \equiv E_{12}, \; E_2 \equiv E_{23}, \; E_3 \equiv E_{34}, \; F_1 \equiv E_{21}, \; F_2 \equiv E_{32}, \; F_3 \equiv E_{43} \) of the Jordanian quantum algebra \(\mathcal{U}_h(sl(4)) \) obey the following commutation rules:

\[
T = \left(1 + 2h[E_1, [E_2, E_3]]\right)^{1/2}, \; \quad T^{-1} = \left(1 + 2h[E_1, [E_2, E_3]]\right)^{-1/2},
\]

\[
[H_1, H_2] = [H_1, H_3] = [H_2, H_3] = 0, \; \quad [H_1, E_1] = 2E_1, \; \quad [H_1, E_2] = -E_2, \; \quad [H_1, E_3] = 0, \; \quad [H_2, E_1] = -E_1, \; \quad [H_2, E_2] = 2E_2, \; \quad [H_2, E_3] = -E_3, \; \quad [H_3, E_1] = 0, \; \quad [H_3, E_2] = -E_2, \; \quad [H_3, E_3] = 2E_3,
\]

\[
[H_1, F_1] = -2F_1 + T^{-1}[F_1, T](H_1 + H_2 + H_3), \; \quad [H_1, F_2] = F_2, \; \quad [H_1, F_3] = T^{-1}[F_3, T](H_1 + H_2 + H_3),
\]

\[
[H_2, F_1] = F_1, \; \quad [H_2, F_2] = -2F_2, \; \quad [H_2, F_3] = F_3, \; \quad [H_3, F_1] = T^{-1}[F_1, T](H_1 + H_2 + H_3), \; \quad [H_3, F_2] = F_2,
\]

\[
[H_3, F_3] = -2F_3 + T^{-1}[F_3, T](H_1 + H_2 + H_3), \; \quad [T^{-1}E_1, F_1] = T^{-1}H_1 + \frac{1}{2}(T - T^{-1})(H_1 + H_2 + H_3),
\]

\[
[E_2, F_2] = H_2, \; \quad [T^{-1}E_3, F_3] = T^{-1}H_3 + \frac{1}{2}(T - T^{-1})(H_1 + H_2 + H_3), \; \quad [T^{-1}E_1, F_2] = 0,
\]

\[
[E_2, F_1] = [E_2, F_3] = 0, \; \quad [T^{-1}E_3, F_1] = [T^{-1}E_3, F_2] = 0,
\]

\[
[E_1, E_3] = [T F_1, TF_3] = 0, \; \quad E_1 E_2 - 2E_1 E_2 E_1 + E_2 E_1^2 = 0, \; \quad E_1 E_2^2 - 2E_2 E_1 E_2 + E_2^2 E_1 = 0,
\]

\[
E_2^2 E_3 - 2E_2 E_3 E_2 + E_3 E_2^2 = 0, \; \quad E_2 E_3^2 - 2E_3 E_2 E_3 + E_3^2 E_2 = 0,
\]

\[
(TF_1)^2F_2 - 2TF_1F_2TF_1 + F_2(TF_1)^2 = 0, \; \quad TF_1F_2^2 - 2F_2TF_1F_2 + F_2^2TF_1 = 0,
\]

\[
(TF_3)^2F_2 - 2TF_3F_2TF_3 + F_2(TF_3)^2 = 0, \; \quad F_2^2TF_3 - 2F_2TF_3F_2 + TF_3F_2^2 = 0 \quad (34)
\]

or, briefly,

\[
[H_i, H_j] = 0, \; \quad [H_i, E_j] = a_{ij}E_j, \; \quad [H_i, F_j] = -a_{ij}F_j + (\delta_{i1} + \delta_{i3})T^{-1}[F_j, T](H_1 + H_2 + H_3),
\]

\[
[T^{-\delta_{i1}+\delta_{i3}}E_i, F_j] = \delta_{ij}\left(T^{-\delta_{i1}+\delta_{i3}}H_i + \frac{(\delta_{i1} + \delta_{i3})(T - T^{-1})(H_1 + H_2 + H_3)}{2}\right),
\]

\[
[E_i, E_j] = [T^{\delta_{i1}+\delta_{i3}}F_i, T^{\delta_{i1}+\delta_{i3}}F_j] = 0, \; \quad AD_{E_i}^{1-a_{ij}}(E_j) = 0, \; \quad (i \neq j), \; \quad AD(T^{\delta_{i1}+\delta_{i3}}F_i)^{1-a_{ij}}(T^{\delta_{i1}+\delta_{i3}}F_j) = 0, \; \quad (i \neq j), \quad (35)
\]
where \((a_{ij})_{i,j=1,2,3}\) is the Cartan matrix of \(sl(4)\).

Proposition 6 The non-cocommutative coproduct structure of \(U_h(sl(4))\) reads:

\[
\begin{align*}
\Delta(E_1) &= E_1 \otimes 1 + T \otimes E_1, \\
\Delta(E_2) &= E_2 \otimes 1 + 1 \otimes E_2, \\
\Delta(E_3) &= E_3 \otimes 1 + T \otimes E_3, \\
\Delta(F_1) &= F_1 \otimes 1 + T^{-1} \otimes F_1 + (H_1 + H_2 + H_3) \otimes T^{-1}[F_1, T], \\
\Delta(F_2) &= F_2 \otimes 1 + T^{-1} \otimes F_2, \\
\Delta(F_3) &= F_3 \otimes 1 + T^{-1} \otimes F_3 + (H_1 + H_2 + H_3) \otimes T^{-1}[F_3, T], \\
\Delta(H_1) &= H_1 \otimes 1 + 1 \otimes H_1 - \frac{1}{2}(1 - T^{-2}) \otimes (H_1 + H_2 + H_3), \\
\Delta(H_2) &= H_2 \otimes 1 + 1 \otimes H_2, \\
\Delta(H_3) &= H_3 \otimes 1 + 1 \otimes H_3 - \frac{1}{2}(1 - T^{-2}) \otimes (H_1 + H_2 + H_3).
\end{align*}
\]

(36)

In the (fund.) \(\otimes\) (arb.) representation, the \(R_h = (\pi_{\text{fund.}} \otimes \pi_{\text{arb.}}) R_h\) take the following simple form:

\[
R_h = \begin{pmatrix}
T & 2hT^{-1/2}e_{24} & 2hT^{-1/2}e_{34} & -\frac{h}{2}(T + T^{-1})(h_1 + h_2 + h_3) + \frac{h}{2}(T - T^{-1}) \\
0 & I & 0 & -2hT^{1/2}e_{12} \\
0 & 0 & I & -2hT^{1/2}e_{13} \\
0 & 0 & 0 & T^{-1} \end{pmatrix}.
\]

(37)

Proposition 7 The universal \(R_h\)-matrix for \(U_h(sl(4))\) may be cast in the form:

\[
R_h = F^{-1}_{21} F,
\]

(38)

where

\[
F = \exp \left(hTH_{14} \otimes E_{14} \right) \exp \left(2hTE_{34} \otimes T^{-2}E_{13} + 2hTE_{24} \otimes T^{-2}E_{12} \right),
\]

(39)

\[
E_{14} = h^{-1} \ln T = h^{-1} \text{arcsinh} \, h e_{14}.
\]

(40)

The \(R_h\)-matrix (38) coincides with the universal \(R\)-matrix of the Borel subalgebra. Let us just note that the tensor elements \(TE_{34} \otimes T^{-2}E_{13}\) and \(TE_{24} \otimes T^{-2}E_{12}\) commute.

4 \(U_h(sl(N))\): Generalization

The \(U_h(sl(5))\) algebra is derived in a similar way: The elements \(E_2, E_3, F_2, F_3, H_2, H_3\) are not affected by the nonstandard quantization. From these above studies, It is easy to see that:
Proposition 8 The Jordanian quantization deform $\mathcal{U}_h(sl(N))$’s Chevalley generators as follows:

$$
T = h[e_1, [e_2, \cdots, [e_{N-2}, e_{N-1}] \cdots]] + \sqrt{1 + h^2([e_1, [e_2, \cdots, [e_{N-2}, e_{N-1}] \cdots]])^2},
$$

$$
T^{-1} = -h[e_1, [e_2, \cdots, [e_{N-2}, e_{N-1}] \cdots]] + \sqrt{1 + h^2([e_1, [e_2, \cdots, [e_{N-2}, e_{N-1}] \cdots]])^2},
$$

$$
E_i = T^{(\delta_{i1} + \delta_{i,N-1})/2} e_i,
$$

$$
F_i = T^{-(\delta_{i1} + \delta_{i,N-1})/2} \left(f_i + \frac{h}{2} T[f_i, [e_1, [e_2, \cdots, [e_{N-2}, e_{N-1}] \cdots]](h_1 + \cdots + h_{N-1}) \right)
$$

$$
H_i = h_i - \frac{(\delta_{i1} + \delta_{i,N-1})h}{2}[e_1, [e_2, \cdots, [e_{N-2}, e_{N-1}] \cdots]]T^{-1}(h_1 + \cdots + h_{N-1}) \quad (i = 1, \cdots, N-1)
$$

and they satisfy the commutation relations

$$
[H_i, H_j] = 0, \quad [H_i, E_j] = a_{ij} E_j,
$$

$$
[H_i, F_j] = -a_{ij} F_j + (\delta_{i1} + \delta_{i,N-1})T^{-1}[F_j, T](H_1 + \cdots + H_{N-1}),
$$

$$
[T^{-(\delta_{i1} + \delta_{i,N-1})} E_i, F_j] = \delta_{ij} \left(T^{-(\delta_{i1} + \delta_{i,N-1})} H_i + \frac{(\delta_{i1} + \delta_{i,N-1})}{2} (T - T^{-1})(H_1 + \cdots + H_{N-1}) \right),
$$

$$
[E_i, E_j] = 0, \quad |i - j| > 1,
$$

$$
[T^{(\delta_{i1} + \delta_{i,N-1})} F_i, T^{(\delta_{j1} + \delta_{j,N-1})} F_j] = 0, \quad |i - j| > 1,
$$

$$
(ad E_i)^{1-a_{ij}}(E_j) = 0, \quad (i \neq j),
$$

$$
(ad T^{(\delta_{i1} + \delta_{i,N-1})} F_i)^{1-a_{ij}}(T^{(\delta_{j1} + \delta_{j,N-1})} F_j) = 0, \quad (i \neq j),
$$

where $(a_{ij})_{i,j=1,\cdots,N}$ is the Cartan matrix of $sl(N)$, i.e. $a_{ii} = 2$, $a_{i,i\pm 1} = -1$ and $a_{ij} = 0$ for $|i - j| > 1$.

The algebra (42) is called the Jordanian quantum algebra $\mathcal{U}_h(sl(N))$. The expressions (41) may be regarded as a particular nonlinear realization of the $\mathcal{U}_h(sl(N))$ generators.

Proposition 9 The Jordanian algebra $\mathcal{U}_h(sl(N))$ (42) admits the following coalgebra structure:

$$
\Delta(E_i) = E_i \otimes 1 + T^{(\delta_{i1} + \delta_{i,N-1})} \otimes E_i,
$$

$$
\Delta(F_i) = F_i \otimes 1 + T^{-(\delta_{i1} + \delta_{i,N-1})} \otimes F_i + T(H_1 + \cdots + H_{N-1}) \otimes T^{-1}[F_i, T],
$$

$$
\Delta(H_i) = H_i \otimes 1 + 1 \otimes H_i - \frac{(\delta_{i1} + \delta_{i,N-1})}{2} (1 - T^{-2}) \otimes (H_1 + \cdots + H_{N-1}),
$$

$$
S(E_i) = -T^{-(\delta_{i1} + \delta_{i,N-1})} E_i,
$$

$$
S(F_i) = -T^{(\delta_{i1} + \delta_{i,N-1})} F_i + T^2(H_1 + \cdots + H_{N-1})T^{-2}[F_i, T],
$$

$$
S(H_i) = -H_i + \frac{(\delta_{i1} + \delta_{i,N-1})}{2} (1 - T^2)(H_1 + \cdots + H_{N-1}),
$$

$$
\epsilon(E_i) = \epsilon(F_i) = \epsilon(H_i) = 0. \quad (43)
$$
 Proposition 10 The R_{\hbar}-matrix of $U_{\hbar}(\mathfrak{sl}(N))$ has the following general form:

$$R_{\hbar} = F_{21}^{-1} F,$$

(44)

where

$$F = \exp\left(\hbar TH_{1N} \otimes E_{1N}\right) \exp\left(\sum_{k=2}^{N-1} 2\hbar TE_{kN} \otimes T^{-2}E_{1k}\right),$$

(45)

$$H_{1N} = T(H_1 + \cdots + H_{N-1}),$$

(46)

$$E_{1N} = \hbar^{-1} \ln T = \hbar^{-1} \arcsinh \hbar e_{1N},$$

(47)

$$E_{kN} = [E_k, \cdots, [E_{N-2}, E_{N-1}]], \quad k = 2, \cdots, N - 2,$$

(48)

$$E_{N-1,N} = E_{N-1},$$

(49)

$$E_{12} = E_1,$$

(50)

$$E_{1k} = [E_1, \cdots, [E_{k-2}, E_{k-1}]], \quad k = 3, \cdots, N - 1$$

(51)

and may be obtained from the R_q-matrix associated to $U_q(\mathfrak{sl}(N))$ via the contraction procedure discussed above, i.e.

$$R_{\hbar} = \lim_{q \to 1} \left[E_q\left(\frac{\hbar e_{1N}}{q - 1}\right) \otimes E_q\left(\frac{\hbar e_{1N}}{q - 1}\right)\right]^{-1} \mathcal{R}_q \left[E_q\left(\frac{\hbar e_{1N}}{q - 1}\right) \otimes E_q\left(\frac{\hbar e_{1N}}{q - 1}\right)\right].$$

(52)

It is interesting to note that, via the nonlinear map (41), the \hbar-deformed generators (E_i, F_i, H_i) may be also equipped with an induced co-commutative coproduct. Similarly, the undeformed generators (e_i, f_i, h_i), via the inverse map, may be viewed as elements of the $U_{\hbar}(\mathfrak{sl}(N))$ algebra; and, thus, may be endowed with an induced noncommutative coproduct.

Acknowledgments: One of us (BA) wants to thank Professor Peter Forgacs for a kind invitation to the University of Tours, where parts of this work was done. He is also grateful to the members of the group for their kind hospitality.

References

[1] V. G. Drinfeld, Quantum Groups, Proc. Int. Congress of Mathematicians, Berkeley, California, Vol. 1, Academic Press, New York (1986), 798.

[2] M. Jimbo, A Q Difference analog of $U(G)$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 63-60.

[3] E. E. Demidov, Yu. I. Manin, E. E. Mukhin, D. Z. Zhdanovich, Nonstandard quantum deformation of $GL(N)$ and constant solutions of the Yang-Baxter equation, Prog. Theor. Phys. Suppl. 102 (1990) 203-218.
[4] Ch. Ohn, *A ∗-product on SL(2) and the corresponding nonstandard quantum group GL(2)*, Lett. Math. Phys. 25 (1992) 85-88.

[5] V. G. Drinfeld, Leningrad Math. J. 1 (1990) 1419.

[6] O. V. Ogievetsky, Suppl. Rendiconti Cir. Math. Palermo, Serie II 37, (1993) 4569.

[7] M. Gerstenhaber, A. Giaquinto and S. D. Schak, Israel Math. Conf. Proc. 7 (1993) 45.

[8] P. P. Kulish, V.D. Lyakhovsky and A.I. Mudrov, *Extended Jordanian twists for Lie algebras*, J. Math. Phys. 40 (1999) 4569.

[9] V. D. Lyakhovsky and M. A. Del Olmo, *Peripheric Extended Twists*, math.QA/9811153.

[10] V. D. Lyakhovsky and M. A. Del Olmo, *Extended and Reshetikhin Twists for sl(3)*, math.QA/9903065.

[11] V. D. Lyakhovsky, A. M. Mirolubov and M. A. Del Olmo, *Quantum Jordanian Twists*, math.QA/9811153.

[12] D. N. Ananikian, P. P. Kulish and V.D.Lyakhovsky, *Chains of twists for symplectic Lie algebras*, math.QA/0010312.

[13] P. P. Kulish, V.D. Lyakhovsky and M. A. Del Olmo, *Chains of twists for classical Lie algebras*, math.QA/9908061.

[14] P. P. Kulish and V.D. Lyakhovsky, *Jordanian twists on deformed carrier subspaces*, math.QA/0007182.

[15] P. P. Kulish, V.D. Lyakhovsky and A. Stolin, *Full chains of twists for orthogonal algebras*, math.QA/0007182.

[16] V.D. Lyakhovsky, A. Stolin and P. P. Kulish, *Chains of Frobenius subalgebras of so(M) and the corresponding twists*, math.QA/0010147.

[17] E. Celeghini and P. P. Kulish, *Twist Deformation of the rank one Lie Superalgebra*, J. Phys. A: 31, (1998) L79.

[18] P. P. Kulish, *Super-Jordanian deformation of the orthosymplectic Lie superalgebras*, math.QA/9806104.

[19] B. Abdesselam, A. Chakrabarti and R. Chakrabarti, *Irreducible representations of Jordanian quantum algebra U_h(sl(2)) via a nonlinear map*, Mod. Phys. Lett. A 36 (1996) 2883.

[20] B. Abdesselam, A. Chakrabarti and R. Chakrabarti, *Towards a general construction of nonstandard R_h-matrices as contraction limits of R_q-matrices: The U_h(sl(N)) algebra case*, Mod. Phys. Lett. A 10 (1998) 779.
[21] B. Abdesselam, A. Chakrabarti, R. Chakrabarti and J. Segar, *Maps and twists relating $\mathcal{U}(sl(2))$ and the nonstandard $\mathcal{U}_h(sl(2))$: unified construction*, Mod. Phys. Lett. A **12** (1999) 765-777.

[22] M. Alishahiha, J. Phys. A **28** (1995) 6187

[23] S. Majid, *Foundations of Quantum Group Theory* (Cambridge Univ. Press, 1995).