Effect of Al₂O₃ powder in deionized water on metal removal rate during electro discharge machining of H11 die steel

To cite this article: Nikhil Jain et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 402 012012

View the article online for updates and enhancements.
Effect of Al₂O₃ powder in deionized water on metal removal rate during electro discharge machining of H11 die steel

Nikhil Jain *, Ankur Pareek¹ and Bhuvnesh Bhardwaj²

¹Government Engineering College Ajmer- 205025, India
²Jaipur Engineering College and Research Centre, Jaipur-302022, India
*Corresponding author: nikhilj981@gmail.com

Abstract. The electrical discharge machining commonly used nonconventional machining process for making dies. The H11 die steels are commonly used for making forging and casting dies. In the present research, the effect of Al₂O₃ powder in de-ionized water as dielectric fluid, pulse on time, current, voltage on metal removal rate (MRR) have been investigated. The result shows that MRR increases with increase in pulse on time and current. Also, The MRR increases with the presence of Al₂O₃ powder in de-ionized water.

Keywords. Al₂O₃ powder, de-ionized water, MRR, H11 die steel

1. Introduction

Now a days, various machining processes are employed to achieved the finish product from the raw material in production the manufacturing industries [1]. Due to the enormously demands for new alloy having improve mechanical/ thermal/ tribological properties in aerospace and automotive industries, EDM process has grown enormously [2]. The EDM process is an excellent alternative machining process for making the finish products using high strength conductive materials and ceramics with high dimensional accuracy [3]. During the EDM machining, the material erosion takes place due to electric sparking between the work piece and the electrode [4]. The Kerosene / EDM oil / deionized water are the commonly used dielectric fluid for EDM [5].

The AISI H11, AISI H13, AISI D1, AISI D2, AISI D3, AISI P20 etc. die steels are commonly used for making hot-work forging dies, press forging dies and die-casting dies [6]. Conventional machining of die materials requires high wear resistance tool. Hardness and toughness of these materials requires non-conventional machining. Now days, due to global competitiveness, manufacturing industries are gives attention towards the quality of finish products with high productivity. The MRR is significantly affected on the selection of cutting conditions. To maximize the MRR during the EDM machining, EDM conditions should be selected properly.

In the past, numerous researchers made attempt to investigate the influence of EDM machining condition on MRR and selection of optimal machining conditions for maximum MRR during electric discharge machining.
Chow et al. [7] investigated the effect of SiC powder mixed in kerosene during the micro-slit machining of Ti alloy by EDM. Result revealed that material MRR and surface finish increases with the presence of SiC powder in kerosene. Lin and Lin [8] optimized the EDM conditions during electrical discharge machining using grey relational analysis (GRA) with Taguchi methodology and fuzzy methodology. The pulse on time, discharge current and duty factor have been considered as EDM conditions. The GRA has been found more accurate approach to optimize the EDM conditions. Kansal et al. [9] employed response surface methodology (RSM) for the optimization of EDM machining variables for minimum surface roughness and maximum MRR using Powder mixed dielectric fluid. The surface roughness and maximum MRR are taken as output responses. The result revealed that MRR and surface finish increases in the presence of silicon powder in dielectric fluid during the EDM process.

Kanlayasiri and Boonmung [10] studied the influence of machining parameter on surface finish during wire cut EDM of SKD11 cold die steel. The pulse-on time and current are found most influencing factors that affects the surface roughness. Chiang [11] developed prediction models for surface finish, MRR and electrode wear ratio using RSM during EDM machining of Al$_2$O$_3$+TiC mixed ceramic. The pulse on time and discharge current are found most significant parameters that affect electrode wear ratio and surface finish. Also, as the current, voltage and duty factor increases, the MRR also increases. Habib et. al. [12] used RSM to study the influence of EDM conditions with kerosene/ SiC mixed dielectric fluid on MRR. The results revealed that gap voltage, pulse on time and peak current are observed significant parameters that affect the MRR. Rao et al. [13] used artificial neural network and genetic algorithm to study the effect of EDM conditions on surface finish during the machining of 15CDV6, Ti6Al4V, M-250, and HE15 materials. Also, an attempt is made to develop model in terms of EDM conditions. A comparison has also been made between the predicted results and experimental results. The results revealed that developed model has high prediction ability to predict the new values of surface roughness with different combination of EDM conditions.

Chattopadhyay et al. [14] investigated the impact of machining variables on surface roughness during rotary EDM process of copper-steel system with kerosene as dielectric fluid using Taguchi methodology. The peak current and pulse on time are found main influencing factor for surface finish. Ahmed and Lajis [15] employed response surface methodology for the optimization of the EDM conditions during the machining of Inconel 718. The surface roughness and MRR are considered as response. For MRR, peak current was identified as main influencing machining variable while minimum surface roughness is achieved at minimum value of peak current and pulse on time. Shashikant et al. [16] developed empirical relationship between process variables and MRR using RSM during EDM process of EN19 steel. The process variables have been optimized for maximum MRR. The current, voltage, pulse off-time, and their interactions are found significant while pulse on-time has been found insignificant variable for MRR.

Rengasamy et al. [17] investigated the effect of wt % ZrB$_2$ as reinforcement in Al 4032 alloy on mechanical properties and tool wear during the EDM machining of Al 4032/ ZrB$_2$ based MMCs. It has been revealed that compressive strength increases with increases in wt% of ZrB$_2$. Also, pulse on time is found insignificant parameter for tool wear. Satpathy et al. [18] used topsis methodology for the optimization of EDM parameters for minimum TWR and maximum MRR during the EDM machining of AlSiC- 20% SiC reinforced metal matrix composite. It is observed from the result that the MRR decreases with increase in pulse on time. Tamang et al. [19] investigated the influence of EDM conditions on overcut and taper angle in drilling of AISI305 stainless steel using brass electrode. The results revealed that as the current and pulse on time increases, the overcut also increases while taper angle increases with increase in value of current. Bains et al. [20] investigated the effect of magnetic field assisted EDM parameters on micro hardness and recast layer thickness of work-piece during the EDM machining of Al/SiC based MMC using Cu/Gr/W based electrode. It has been found that magnetic field decreases the micro hardness and recast layer thickness of workpiece. Barenji et al. [21] studied the influence of EDM
variable on MRR and TWR in machining of AISI D6 tool steel using circular copper electrode. It has been observed that as the value of pulse on time and current increases, the MRR also increases.

The review of published literature presented above indicates that lot of research work is carried out to study the influence of EDM parameters (pulse on time, pulse of time, voltage and current) for minimum TWR. Very fewer efforts have been made to investigate the effect of dielectric fluid on TWR and MRR. The H11 hot die steels are commonly used die steel for making different purpose dies. Thus, there is a lot of scope to explore this material. In this research RSM based on face centered design (FCD) has been used to investigate the effect of pulse on time, current, voltage and type of dielectric fluid (de-ionized water and Al₂O₃ mixed de-ionized water) on MRR. An attempt has also been made to develop prediction models for MRR in terms of EDM machining conditions.

2. Design matrix for experimentation

In the present research, pulse on time, current, voltage, and types of dielectric fluid have been considered as an EDM machining condition. Among these machining conditions, current, voltage, and pulse on time have been considered as numeric factor while types of dielectric fluid has been as category EDM parameter. The table 1 shows the EDM parameters and values of parameters while table 2 shows the design matrix according to face centered design based RSM for experimentation and measured values of MRR.

Parameters	Units	Type	Levels
Voltage	Volts	Numeric	-1 200
Current	Amp	Numeric	10 500
Pulse on time	µs	Numeric	80 1250
Type of dielectric	Categoric	De-ionized water/ Al₂O₃	

Table 2. Design matrix and measured values of MRR

Std order	Voltage (Volts)	Current (Amp)	Pulse on time (µs)	Type of Dielectric	MRR (mm³/min)
1	20	10	50	deionized water	0.865
2	50	10	50	deionized water	3.527
3	20	20	50	deionized water	4.374
4	50	20	50	deionized water	6.527
5	20	10	125	deionized water	0.994
6	50	10	125	deionized water	3.882
7	20	20	125	deionized water	4.317
---	---	---	---	---	---
8	50	20	125	deionized water	6.828
9	20	15	88	deionized water	3.522
10	50	15	88	deionized water	5.895
11	35	10	88	deionized water	3.218
12	35	20	88	deionized water	6.472
13	35	15	50	deionized water	4.379
14	35	15	125	deionized water	4.714
15	35	15	88	deionized water	4.881
16	35	15	88	deionized water	4.992
17	35	15	88	deionized water	4.737
18	35	15	88	deionized water	4.837
19	20	10	50	de-ionized water/ Al$_2$O$_3$	1.838
20	50	10	50	de-ionized water/ Al$_2$O$_3$	4.327
21	20	20	50	de-ionized water/ Al$_2$O$_3$	5.174
22	50	20	50	de-ionized water/ Al$_2$O$_3$	7.147
23	20	10	125	de-ionized water/ Al$_2$O$_3$	1.886
24	50	10	125	de-ionized water/ Al$_2$O$_3$	4.915
25	20	20	125	de-ionized water/ Al$_2$O$_3$	5.483
26	50	20	125	de-ionized water/ Al$_2$O$_3$	7.928
27	20	15	88	de-ionized water/ Al$_2$O$_3$	4.397
28	50	15	88	de-ionized water/ Al$_2$O$_3$	6.858
29	35	10	88	de-ionized water/ Al$_2$O$_3$	4.482
30	35	20	88	de-ionized water/ Al$_2$O$_3$	7.273
31	35	15	50	de-ionized water/ Al$_2$O$_3$	5.683
3. Experimentation and measurement

All drilling operations have been carried out on AISI H11 hot die steel samples of dimension 30 mm x 30 mm x 10 mm using ELEKTRA EMS 5535 EDM machine. The copper rods of 12 mm diameter and 3 cm length have been used as an EDM tool. The de-ionized water having electric resistivity 0.25 MΩ cm and de-ionized water with Al₂O₃ (2 gm/L) have been used as dielectric fluids. The MRR of machined samples have been evaluated using Equation 1.

\[
MRR = \frac{W_{iw} - W_{fw}}{\rho \times T}
\]

(1)

Where,

- \(W_{iw}\) = Initial weight of workpiece
- \(W_{fw}\) = Final weight of workpiece
- \(\rho\) = Density of AISI H11 steel
- \(T\) = Machining time

The weights of samples have been measured using Sartorius LA-1200S precision scale having accuracy of 0.001 g. The final values of MRR are presented in Table 2.

4. Result and discussion

The objective of present research is to investigate the impact of EDM parameters and Al₂O₃ in dielectric fluid on MRR during the machining of AISI H11 steel. For this purpose, the experimental results along with design matrix have been input into the design expert software 8.0.4.7.

4.1 Development of empirical relationship between EDM conditions and MRR.

4.1.1 Diagnosis of assumptions of ANOVA. The figure 1 shows the normal probability plot for residuals. It is used to validate the first assumption of ANOVA i.e. assumption of normal distribution [22]. It has been revealed from the figure that mostly residuals are laying on a straight line i.e. the residuals for MRR are normally distributed. The figure 2 shows residuals versus the predicted plot for MRR. It is used for the validation of second assumption of ANOVA i.e. assumption of constant variance [23]. There is no predefined pattern is observed, so data is following second assumption of ANOVA.
Figure 1. Normal probability plot for residuals of MRR

Figure 2. Plot between of residuals and predicted MRR

4.1.2 ANOVA for MRR. In this research, ANOVA is conducted at the confidence level of 95%. The reduce ANOVA table for MRR after the forward elimination method is given in table 3.
Table 3 represents that the “Prob. > F” for MRR empirical model is 0.0001 which is lower than 0.05, that shows the MRR empirical model is significant, that implies the terms in the model affects the MRR. In the same manner, the “Prob. > F” for current, pulse on time, voltage, type of dielectric fluids and interaction of voltage & current; voltage & pulse on time and second order term of pulse on time, current & voltage are smaller than 0.05 so these are the significant terms for MRR prediction model.

The “Prob. > F” for lack-of-fit is 0.2537 which is larger than 0.05, so it is insignificant, which is required. The R^2 value and adjusted R^2 value are 0.991 and 0.988 respectively, which is almost close to each other. Adequate precision is equal to 72.11 which indicate adequate model discrimination.

Table 3. Reduce ANOVA for MRR

Source	Sum of squares	Degree of freedom	Mean square	F-Value	p-value Prob> F
Model	96.151	9.000	10.683	326.639	0.0001
A-Voltage (Volts)	31.210	1.000	31.210	954.223	0.0001
B-Current (Amp)	49.893	1.000	49.893	1525.449	0.0001
C-Pulse on time (µs)	0.392	1.000	0.392	11.977	0.0019
D-Type of dielectric	7.891	1.000	7.891	241.274	0.0001
AB	0.247	1.000	0.247	7.537	0.0108
AC	0.159	1.000	0.159	4.867	0.0364
A^2	0.786	1.000	0.786	24.045	0.0001
B^2	0.191	1.000	0.191	5.837	0.0230
C^2	1.010	1.000	1.010	30.879	0.0001
Residual	0.850	26.000	0.033		
Lack of Fit	0.725	20.000	0.036	1.742	0.2537
Pure Error	0.125	6.000	0.021		
Cor Total	97.002	35.000			
Std. Dev.	0.1809		R-Squared	0.991233	
Mean	4.8549		Adj R-Squared	0.988199	
C.V. %	3.7251		Pred R-Squared	0.984421	
PRESS	1.5111		Adeq Precision	72.11287	

4.1.3 MRR prediction empirical model. The MRR prediction empirical models with deionized water and deionized water/Al$_2$O$_3$ are given in Equations 2 and 3 respectively.

$\begin{align*}
\text{(MRR)} &= -9.517 + 0.211 \times V + 0.60 \times I + 0.052 \times \text{Pulse on time} - 0.0016 \times I \times V + 0.0002 \times V \times \text{Pulse on time}^2 \\
\text{Pulse on time} &= 0.0017 \times V^2 - 0.0075 \times I^2 - 0.0003 \\
\text{(MRR)} &= -8.58 + 0.211 \times V + 0.60 \times I + 0.052 \times \text{Pulse on time} - 0.0016 \times I \times V + 0.0002 \times V \times \text{Pulse on time}^2 \\
\text{Pulse on time} &= 0.0017 \times V^2 - 0.0075 \times I^2 - 0.0003
\end{align*}$

(2) (3)
4.2 Impact of EDM conditions on MRR
The figure 3 represents the effect of types of dielectric fluid on metal removal rate at V 35 volts, current 15 ampere and pulse on time 88 µs.

Figure 3. Effect of type of dielectric fluid on MRR

From the figure it cleared that the addition of Al₂O₃ powder in deionized water increases the MRR. The Al₂O₃ powder in deionized water increases the electrical conductivity and gap between the workpiece & tool, which further increases the MRR [24]. Also, the Al₂O₃ powder creates a bridge between the workpiece and electrode gap which further scatter discharge energy. The scatter energy generates a minor crater and debris. The MRR is accelerated due to easily drain of minor debris from the gap.

Figure 4. 3D Plot for MRR in terms of V and current with deionized water
The figures 4 and 5 shows the 3D plots for MRR in terms of current and voltage at constant pulse on time 88µs with deionized water and deionized water/Al₂O₃ respectively.

Figure 5. 3D Plot for MRR in terms of voltage and current with deionized water/Al₂O₃

From the both plots it has been revealed that MRR increases with increase in voltage and current with both types of dielectric fluid. At the current increases. The spark energy increases with increase in current, which further increase the pulsation energy with faster melting of workpiece. This leads to increase in MRR of workpiece [25]. Also, with increase in voltage, the pulsation energy also increases, which further increases the amount of MRR.

Figure 6. 3D Plot for MRR with pulse on time voltage and deionized water
Figure 7. 3D Plot for MRR with pulse on time, voltage and deionized water/Al₂O₃

The figures 6 and 7 shows the 3D plots for MRR in terms of voltage and pulse on time with deionized water and deionized water/Al₂O₃ respectively at constant current 15 ampere. From the plots it is cleared that MRR initially increases up to a certain value of pulse on time after that MRR continuously decreases with increase in pulse on time. As the pulse on-time increases, the amount of discharge energy at the interface of workpiece and tool also increase, which expands the plasma channel. This give rise to enlargement of heat source radius, consequently increase the MRR up to a certain value of pulse on time. After that further increase in pulse on time, plasma channel becomes wilder and spark energy centralization decreases which leads to decrease in MRR [24].

From the all plots it is cleared that the maximum MRR is obtained at higher value of current, voltage and some certain value of pulse on time with deionized water/Al₂O₃ dielectric fluid. At low current, low voltage and low pulse on time, Al₂O₃ powder prevents the formation of plasma channels which reduces the MRR. Also, at high current, high voltage and high pulse on time, ideal plasma channel is generated which increase discharge energy but at the same time Al₂O₃ powder increases the gap quantity and makes the spark more unfailing therefore MRR decreases [24].

5. Optimization and conformation run

The optimum solutions for MRR are shown in table 4. The maximum MRR 8.02174 mm³/min has been obtained at 50 volts, 20 ampere current, 93 µs pulse on time with deionized water/Al₂O₃ dielectric fluid.

A set of three experiments have been conducted to validate the developed MRR models. The table 4 indicates the comparison between the experimental and predicted values of MRR. The absolute % error between the predicted MRR and experimental MRR are obtained within 5 %, which shows the excellent prediction ability of developed models.
Table 4. Optimum value and conformation run

S.No.	Voltage (volts)	Current (Amp.)	Pulse on time (µs)	Types of dielectric	MRR (mm³/min)	% Absolute error
1	49.63	20	93	De-ionized water/Al₂O₃	8.022	-2.387
2	50	20	78	Al₂O₃	7.828	-3.231
3	50.00	20	98	De-ionized water	7.112	4.823

6. Conclusion
The aim of the present research is to study the influence of EDM parameters and Al₂O₃ in dielectric on MRR during the EDM machining of AISI H11 hot die steel. Also, an attempt is made to develop MRR prediction models in terms of EDM parameters with different types of dielectric using RSM. The following major conclusions have been derived:

1. The pulse on time, current, voltage, and types of dielectric shows the significant effect on MRR.
2. The interaction of current and voltage & voltage and pulse on time have been also found significant model term that affects the MRR.
3. The R² square value 0.9912 shows that developed model has excellent MRR prediction ability.
4. The quadratic variation for MRR has been obtained with current, voltage and pulse on time.
5. The MRR initially increases with increase in pulse on time up to a certain value of pulse on time after that MRR continuously decreases with increase in pulse on time. Also, MRR continuously increases with increase in voltage and current.
6. The higher MRR is achieved with deionized water/Al₂O₃ dielectric fluid for all the values of voltage, current and pulse on time.
7. The maximum MRR 8.02174 mm³/min has been obtained at 50 volts, 20 ampere current, 93 µs pulse on time with deionized water/Al₂O₃ dielectric fluid.
8. The conformation run shows the excellent predicted ability of the developed MRR prediction models.

In this research empirical relationship has been developed only for MRR. The work can be extended by considering more responses like TWR, surface roughness etc. and more EDM parameters such as temperature, shape of electrode, type of tools, etc.

7. References
[1] Bhardwaj B, Kumar R and Singh P 2013 Surface roughness (Rₐ) prediction model for turning of AISI 1019 steel using response surface methodology and Box–Cox transformation, *Proc. Inst. Mech. Eng. B J Eng. Manuf.* **228**, 232
[2] Singh N, Raghukandan P, Rathinasabapathi M, Pai B C 2004 Electric discharge machining of Al-10% SiCP as-cast metal matrix composites, *J. Mater. Process. Technol.* **30**, 1657
[3] Ho K H, Newman S T, Rahimifard S, Allen R D 2004 State of art in wire electrical discharge machining (WEDM), *Int. J. Mach. Tool. Manu.* **44**, 1259
[4] Chen Y and Mahdavian S.M. 1999 Parametric study into erosion wear in a computer numerical controlled electro-discharge machining process, Wear. 236, 354

[5] Alidoosti A, Ghafari-Nazari A, Moztarzadeh F, Jalali N, Moztarzadeh S and Mozafari M 2013 Electrical discharge machining characteristics of nickel–titanium shape memory alloy based on full factorial design, J. Intell. Mater. Syst. Struct. 24(13), 1556

[6] Coldwell H, Woods R, Paul M, Koshy P, Dewes R and Aspinwall D 2003 Rapid machining of hardened AISI H13 and D2 mould die and press tool, J. Mater. Proc. Technol. 135, 311

[7] Chow H, Yan B, Huang F and Hung J 1998 Study Of Added Powder In Kerosene For The Micro-Slit Machining Using EDM On Titanium Alloy, J. Mater. Proc. Technol.101, 103

[8] Lin L and Lin L 2002 The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics, Int. J. Mach. Tool Manu. 42, 244

[9] Kansal K, Singh S and Kumar P 2005 Parametric optimization of powder mixed electrical discharge machining by response surface methodology, J. Mater. Proc. Technol. 169, 436

[10] Kanlayasiri K and Boonmung S 2007 Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel Design of experiments and regression model, J. Mater. Proc. Technol. 192–193, 464

[11] Chiang K T 2008 Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic, Int. J. Adv. Manu. Technol. 37, 533

[12] Habib S 2009 Study of Parameters in Electrical Discharge Machining Through RSM Approach. Appl. math. model. 33, 4407

[13] Rao M, Janardhana R, Rao H and Rao S 2009 Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm J. Mater. Proc. Technol.209, 1520

[14] Chattopadhyay K, Verma S, Satsangi P and Sharma P 2010 Development Of Empirical Model For Different Process Parameters During Rotary Electric Discharge Machining Of Copper-Steel (EN-8)System J .Mater. Proc. Technol.209, 1465

[15] Ahmad S and Lajis M. A.2013 Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration International Conference on Mechanical Engineering Research(ICMER2013), 1-7.

[16] Shashikant, Roy A and Kumar K 2014 Effect and optimization of various machine process parameters on the surface roughness in EDM for an EN 19 material using response surface methodology Proc. Mater. Science 5, 1709

[17] Rengasamy R, Rajkumar M and Senthilkumaran S 2015 An Analysis of Mechanical Properties and Optimization of EDM Process Parameters of Al 4032 Alloy Reinforced with Zrb2 and Tib2 In-Situ Composites J.Alloys Compd. 662, 328

[18] Satpathy A, Tripathy S, Pallavi N and Brahma M 2016 Optimization of EDM process parameters for AISiC- 20% SiC reinforced metal matrix composite with multi response using TOPSIS Mater. Today Proc. 4, 3052

[19] Tamang S , Natarajan N and Chandrasekar M 2016 Optimization of EDM process in machining micro holes for improvement of hole quality J. Braz. Soc. Mech. Sci. & Eng. 39, 1287

[20] Bains P, Sidhu S, Payal H 2017Magnetic Field Assisted EDM: New Horizons for Improved Surface Properties Silicon 2017 https://doi.org/10.1007/s12633-017-9600-7

[21] Barenji R V, Pourasl H H, Khojastehnejhad V M 2016 Electrical discharge machining of the AISI D6 tool steel: Prediction and modeling of the material removal rate and tool wear ratio. Precision Eng. 45, 444
[22] Bhardwaj B, Kumar R and Singh P 2013 Effect of machining parameters on surface roughness in end milling of AISI 1019 steel. *Proc. Inst. Mech. Eng. Part B*. **228**, 714

[23] Bhardwaj B, Kumar R, Singh P 2014 Prediction of Surface Roughness in Turning of EN 353 using Response Surface Methodology. *Trans. Indian Inst. Met.* **67(3)**, 313

[24] Daneshmand S, Monfared V, Neyestanak A 2016 Effect of Tool Rotational and Al2O3 Powder in Electro Discharge Machining Characteristics of NiTi-60 Shape Memory Alloy, *Silicon*. **9(2)**, 273-283

[25] Singh A, Kumar S, Singh V 2014 Optimization of Parameters Using Conductive Powder in Dielectric for EDM of Super Co 605 with Multiple Quality Characteristic, *Mater. Manu. Processes*. **29(3)**, 273