Combined Dexamethasone Intravitreal Implant and Glaucoma Drainage Device Placement for Uveitic Glaucoma

To the Editor:

Uveitic glaucoma is a clinician’s gray area of interest where the best treatment is still not clear. We read with great interest the recently published article by Nguyen et al1 “Combined Dexamethasone Intravitreal Implant and Glaucoma Drainage Device Placement for Uveitic Glaucoma” and we would like to appreciate the work of authors.

The cause of raised intraocular pressure in these cases may be the blockage of the trabecular meshwork by the inflammatory cells/pigments, trabeculitis, peripheral anterior synchiae and which may get exaggerated by steroid responsiveness.2 Gonioscopy is an important tool to determine the angle status but the authors have not mentioned about the angle status in this study cohort. Uveitic eye can be difficult to treat with frequent episodes of hypotony due to ciliary body inflammation followed by intraocular pressure building up once the inflammation resolves.3,4 We made a few more queries and observations and would like to share with the authors.

First, the mean preoperative logMAR best-corrected visual acuity was 0.55 ± 0.40 which deteriorated over the 9 months of follow-up as illustrated in the Box plot. We want to know whether the cause for hypotony on postoperative 1-month upto 3-month; however, the cause for hypotony was not mentioned. Also we want to know if there was corneal-tube touch or lens-tube touch noted in this case.

Third, most of the patients in this study cohort were on topical and systemic immunosuppressant preoperatively and postoperatively, so to what extent the dexamethasone implant was beneficial in reducing the frequency of uveitic episodes or increasing the success of the tube implant is not clear. A control group comprising of similar patients on preoperative topical and systemic corticosteroids/immunosuppressant undergoing tube implant without the dexamethasone implant should have been included. So, we agree with the authors that a long-term prospective study with a control group would be needed to give a better understanding of the role of combined placement of intravitreal dexamethasone implant with glaucoma drainage device in eyes with uveitic glaucoma.

Tania Bansal, MS Ophthalmology
Julie Pegu, MS Ophthalmology
Glaucan Services, Dr. Shroff’s Charity Eye Hospital, Daryaganj, New Delhi, India

REFERENCES
1. Nguyen T, Kim H, Mielke C, et al. Combined dexamethasone intravitreal implant and glaucoma drainage device placement for uveitic glaucoma. J Glaucoma. 2020;29:252–257.
2. Kalogeropoulos D, Sung VC. Pathogenesis of uveitic glaucoma. J Curr Glaucoma Pract. 2018;12:125–138.
3. Daniel E, Pistilli M, Pujari SS, et al. Risk of hypotony in noninfectious uveitis. Ophthalmology. 2012;119:2377–2385.
4. Sen HN, Drye LT, Goldstein DA, et al. Hypotony in patients with uveitis: the

Combined Dexamethasone Intravitreal Implant and Glaucoma Drainage Device Placement for Uveitic Glaucoma

To the Editor:

Uveitic glaucoma is a clinician’s gray area of interest where the best treatment is still not clear. We read with great interest the recently published article by Nguyen et al1 “Combined Dexamethasone Intravitreal Implant and Glaucoma Drainage Device Placement for Uveitic Glaucoma” and we would like to appreciate the work of authors.

The cause of raised intraocular pressure in these cases may be the blockage of the trabecular meshwork by the inflammatory cells/pigments, trabeculitis, peripheral anterior synchiae and which may get exaggerated by steroid responsiveness.2 Gonioscopy is an important tool to determine the angle status but the authors have not mentioned about the angle status in this study cohort. Uveitic eye can be difficult to treat with frequent episodes of hypotony due to ciliary body inflammation followed by intraocular pressure building up once the inflammation resolves.3,4 We made a few more queries and observations and would like to share with the authors.

First, the mean preoperative logMAR best-corrected visual acuity was 0.55 ± 0.40 which deteriorated over the 9 months of follow-up as illustrated in the Box plot. We want to know whether the cause for decreased vision preoperatively, so to what extent the dexamethasone implant was beneficial in reducing the frequency of uveitic episodes or increasing the success of the tube implant is not clear. A control group comprising of similar patients on preoperative topical and systemic corticosteroids/immunosuppressant undergoing tube implant without the dexamethasone implant should have been included. So, we agree with the authors that a long-term prospective study with a control group would be needed to give a better understanding of the role of combined placement of intravitreal dexamethasone implant with glaucoma drainage device in eyes with uveitic glaucoma.

Tania Bansal, MS Ophthalmology
Julie Pegu, MS Ophthalmology
Glaucan Services, Dr. Shroff’s Charity Eye Hospital, Daryaganj, New Delhi, India

REFERENCES
1. Nguyen T, Kim H, Mielke C, et al. Combined dexamethasone intravitreal implant and glaucoma drainage device placement for uveitic glaucoma. J Glaucoma. 2020;29:252–257.
2. Kalogeropoulos D, Sung VC. Pathogenesis of uveitic glaucoma. J Curr Glaucoma Pract. 2018;12:125–138.
3. Daniel E, Pistilli M, Pujari SS, et al. Risk of hypotony in noninfectious uveitis. Ophthalmology. 2012;119:2377–2385.
4. Sen HN, Drye LT, Goldstein DA, et al. Hypotony in patients with uveitis: the

Disclosure: The authors declare no conflict of interest.
DOI: 10.1097/IJG.000000000001613

Response to: Combined Dexamethasone Intravitreal Implant and Glaucoma Drainage Device Placement for Uveitic Glaucoma

In Reply:

We thank Bansal and colleagues for highlighting some of the challenges in managing uveitic glaucoma and for their correspondence regarding our study.

While there was no statistically significant change in visual acuity throughout the 1-year postoperative period, the study’s small sample size led to greater data spread at postoperative months 1 and 9 (Fig. 1). The box plots demonstrate how mean logMAR visual acuity (crosshairs) was more susceptible to skew from the larger data spread, while the median logMAR visual acuity (line) was more stable.

Causes of decreased vision in the postoperative period included one eye with hypotony maculopathy due to ciliary body shutdown at postoperative months 1 and 3, which resolved by postoperative month 6 (with no corneal-tube or lens-tube touch). Another eye had transiently-reduced visual acuity at postoperative month 9 from a vitreous hemorrhage following a repeat intravitreal dexamethasone implant injection performed in the retina clinic, which

This study was supported in part by an institutional grant from Research to Prevent Blindness to the University of Wisconsin Department of Ophthalmology and Visual Sciences.

Disclosure: The authors declare no conflict of interest.
DOI: 10.1097/IJG.000000000001614