The Potential of Antimicrobial Peptides as an Antiviral Therapy against COVID-19

Sherif Elnagdy* and Maha AlKhazindar

ABSTRACT: COVID-19 is currently considered as a life-threatening pandemic viral infection. Finding an antiviral drug or a vaccine is the only route for humans’ survival against it. To date, no specific antiviral treatment has been confirmed. Antimicrobial peptides (AMPs) have been widely regarded as a promising solution to combat harmful microorganisms. They are biologically active molecules produced by different organisms as an essential component of their innate immune response against invading pathogens. Lactoferrin (LF), one of the AMPs, is an iron-binding glycoprotein that is present in several mucosal secretions. The antiviral activity of LF exists against a wide range of human and animal viruses (DNA and RNA). LF was proven to increase the host immunity against viral infection. Since LF is one of the constituents of breast milk and significantly located at the mucosal layers of the human body, it is considered the first line of defense against microbial infection. LF was reported to have antiviral activity against SARS-CoV infection. The significant antiviral activity of LF makes it a potential option as an immunity enhancer, a drug or a drug conjugate with conventional antivirals. The affordability, environmental safety, and efficiency of LFs will make them superior to all other control strategies.

KEYWORDS: AMPs, antiviral, COVID-19, lactoferrin
orcid.org/

Drugs are still under study and to date, no specific antiviral drug or a vaccine is the only route for survival of COVID-19 infection. Several routes of antiviral drugs are still under study and to date, no specific antiviral treatment has been confirmed.

Antimicrobial peptides (AMPs) have been widely regarded as a promising solution to combat harmful microorganisms. They are biologically active molecules produced by a wide variety of organisms as an essential component of their innate immune response against invading pathogens. AMPs are short sequence peptides polymer ranging from 10 to 100 amino acids, positively charged, amphiphilic. They have been isolated from organisms, belonging to six kingdoms, including humans. The Antimicrobial Peptide Database (APD) contains more than 3000 antimicrobial peptides, among which are 189 AMPs with antiviral activities.

The antimicrobial effect of AMPs was reported to either act on the membrane of different pathogenic microorganisms including bacteria, fungus, and virus or modulate the innate immune response in higher organisms. Depending on the kind of pathogen, the AMPs may be expressed either constitutively or inducibly. The antiviral activity of the AMPs was shown against enveloped RNA and DNA viruses, except some nonenveloped viruses. The antiviral activity of AMPs takes place according to its action due to adsorption on the viral surface and entry process or its direct effect on the viral envelope.

The AMPs positively charged residues enable them to interact electrostatically with negatively charged cell surface molecules such as heparan sulfate. Heparan sulfate consists of glycosaminoglycan molecules that are strongly related to viral attachment. It was proven that AMPs that block heparan sulfate should be able to reduce the viral infection. Also, the AMPs antiviral effect is related to their ability to inhibit the spread of a virus from a cell to another cell across tight junctions (cell-to-cell spread) or inhibit the formation of giant cells (syncytium).

Lactoferrin (LF), one of the AMPs, is an iron-binding glycoprotein that is present in several mucosal secretions which have a significant activity in the innate immune system. LF is known to have a wide spectrum of antimicrobial activity against bacteria, fungi, and several viruses. The antiviral activity of LF exists against a wide range of human and animal viruses (both DNA and RNA) due to its ability to inhibit replication of those viruses. Moreover, LF was proven to increase the host immunity against viral infection, rather than acting against the virus after infection, by preventing virus entry to the host cell, through blocking cellular receptors, or direct binding to the virus particles. Since LF is one of the constituents of breast milk, studies have shown that at least part of the antiviral properties of breast milk can be attributed to a direct antiviral activity of LF.

The basic reproduction number of infection (R_0) was estimated to be 2.0–2.5 by the WHO, indicating a transmission infection rate than SARS-CoV. Confirmed cases and deaths are elevating daily and the short-term solution, so far, is home quarantine to lessen the infection rates. This is affecting the world economy and will later cause severe implications on human welfare. Accordingly, finding an antiviral drug or a vaccine is the only route for survival of humans against COVID-19 infection. Several routes of antiviral drugs are still under study and to date, no specific antiviral treatment has been confirmed.

Antimicrobial peptides (AMPs) have been widely regarded as a promising solution to combat harmful microorganisms. They are biologically active molecules produced by a wide variety of organisms as an essential component of their innate immune response against invading pathogens. AMPs are short sequence peptides polymer ranging from 10 to 100 amino acids, positively charged, amphiphilic. They have been isolated from organisms, belonging to six kingdoms, including humans. The Antimicrobial Peptide Database (APD) contains more than 3000 antimicrobial peptides, among which are 189 AMPs with antiviral activities.

The antimicrobial effect of AMPs was reported to either act on the membrane of different pathogenic microorganisms including bacteria, fungus, and virus or modulate the innate immune response in higher organisms. Depending on the kind of pathogen, the AMPs may be expressed either constitutively or inducibly. The antiviral activity of the AMPs was shown against enveloped RNA and DNA viruses, except some nonenveloped viruses. The antiviral activity of AMPs takes place according to its action due to adsorption on the viral surface and entry process or its direct effect on the viral envelope.

The AMPs positively charged residues enable them to interact electrostatically with negatively charged cell surface molecules such as heparan sulfate. Heparan sulfate consists of glycosaminoglycan molecules that are strongly related to viral attachment. It was proven that AMPs that block heparan sulfate should be able to reduce the viral infection. Also, the AMPs antiviral effect is related to their ability to inhibit the spread of a virus from a cell to another cell across tight junctions (cell-to-cell spread) or inhibit the formation of giant cells (syncytium).

Lactoferrin (LF), one of the AMPs, is an iron-binding glycoprotein that is present in several mucosal secretions which have a significant activity in the innate immune system. LF is known to have a wide spectrum of antimicrobial activity against bacteria, fungi, and several viruses. The antiviral activity of LF exists against a wide range of human and animal viruses (both DNA and RNA) due to its ability to inhibit replication of those viruses. Moreover, LF was proven to increase the host immunity against viral infection, rather than acting against the virus after infection, by preventing virus entry to the host cell, through blocking cellular receptors, or direct binding to the virus particles. Since LF is one of the constituents of breast milk, studies have shown that at least part of the antiviral properties of breast milk can be attributed to a direct antiviral activity of LF.

The Antimicrobial Peptide Database (APD) contains more than 3000 antimicrobial peptides, among which are 189 AMPs with antiviral activities. The antiviral activity of AMPs was shown against enveloped RNA and DNA viruses, except some nonenveloped viruses. The antiviral activity of AMPs takes place according to its action due to adsorption on the viral surface and entry process or its direct effect on the viral envelope.

The AMPs positively charged residues enable them to interact electrostatically with negatively charged cell surface molecules such as heparan sulfate. Heparan sulfate consists of glycosaminoglycan molecules that are strongly related to viral attachment. It was proven that AMPs that block heparan sulfate should be able to reduce the viral infection. Also, the AMPs antiviral effect is related to their ability to inhibit the spread of a virus from a cell to another cell across tight junctions (cell-to-cell spread) or inhibit the formation of giant cells (syncytium).

Lactoferrin (LF), one of the AMPs, is an iron-binding glycoprotein that is present in several mucosal secretions which have a significant activity in the innate immune system. LF is known to have a wide spectrum of antimicrobial activity against bacteria, fungi, and several viruses. The antiviral activity of LF exists against a wide range of human and animal viruses (both DNA and RNA) due to its ability to inhibit replication of those viruses. Moreover, LF was proven to increase the host immunity against viral infection, rather than acting against the virus after infection, by preventing virus entry to the host cell, through blocking cellular receptors, or direct binding to the virus particles. Since LF is one of the constituents of breast milk, studies have shown that at least part of the antiviral properties of breast milk can be attributed to a direct antiviral activity of LF.

The COVID-19 virus outbreak in late 2019, which spread from China, led to a pandemic infection. So far, current approaches have not yet proven to be effective. Many alternatives are proposed nowadays, and antiviral peptides are among them. This article may reveal more facts about the feasibility of using the AMPs in general and LF in particular, as an antiviral treatment. As a result, it can be a corner stone for more future research on the LFs as antiviral therapy in general and against COVID-19 in particular. The affordability, environmental safety, and efficiency of LFs will make them superior to all other control strategies, especially since LF is a safe natural protein that is a commercially already produced drug at an affordable price. Therefore, the objectives of this article are short-term and long-term objectives. For the short-term objectives, the first is to ensure efficient and instant treatment and protection of humans from the viral infections such as that caused by COVID-19 and as a result, decrease the humans’ mortality rate that has been rising at an exponential rate since the abrupt appearance of this viral infection. The second is to prevent the transmission of this disease among humans by increasing their immunity. A long-term objective is protection of humans from this viral infection, which will bring back normal life and which will have a huge impact on the economy worldwide after the huge financial loss that was caused due to the spread of that infection. The second-long-term objective is to ensure the healthiness of people and to protect them not only against COVID-19 but also against any emerging viral infection, and accordingly, this will maximize the social welfare of humans.

AUTHOR INFORMATION

Corresponding Author

Sherif Elnagdy — Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt; orcid.org/0000-0003-1331-8977; Email: sh.elnagdy@gmail.com

Author

Maha AlKhazindar — Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt

Complete contact information is available at: https://pubs.acs.org/10.1021/acscptsci.0c00059

Author Contributions

S.E. and M.A. conceived the idea, drafted the manuscript, and were involved in the coordination of the project and the final version of the manuscript.

781

https://dx.doi.org/10.1021/acsptsci.0c00059
ACS Pharmacol. Transl. Sci. 2020, 3, 780–782
The authors declare no competing financial interest.

REFERENCES

(1) Wu, Z., and McGoogan, J. M. (2020) Characteristics of and important lessons from the Coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323, 1239.

(2) Yang, D., and Leibowitz, J. L. (2015) The structure and functions of coronavirus genomic S and S' ends. Virus Res. 206, 120–33.

(3) Perlman, S. (2020) Another Decade, Another Coronavirus. N. Engl. J. Med. 382, 760–2.

(4) International Committee on Taxonomy of Viruses (ICTV) (2020) The species severe acute respiratory syndrome related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Coronavirusidae. Nat. Microbiol.

(5) Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., Zheng, X.-S., Zhao, K., Chen, Q.-J., Deng, F., Liu, L.-L., Yan, B., Zhan, F.-X., Wang, Y.-Y., Xiao, G.-F., and Shi, Z.-L. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.

(6) Ji, W., Wang, W., Zhao, X., Zai, J., and Li, X. (2020) Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J. Med. Virol. 92, 433–40.

(7) Lam, T. T. Y., Shum, M. H. H., Zhu, H. C., Tong, Y., Ni, X., Liao, Y., Wei, W., Cheung, W. Y., Li, W., Li, L., Leung, G. M., Holmes, E. C., Hu, Y., and Guan, Y. (2020) Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv preprint. DOI: 10.1101/2020.02.13.945485.

(8) Phelan, A. L., Katz, R., and Gostin, L. O. (2020) The novel Coronavirus originating in Wuhan, China: challenges for global health governance. JAMA 323 (8), 709–710.

(9) Gu, J., Han, B., and Wang, J. (2020) COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 158, 1518.

(10) van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., and Munster, V. J. (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–7.

(11) World Health Organization. (2020) WHO Director-General’s opening remarks at the media briefing on COVID-19. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-mission-briefing-on-covid-19---13-march-2020.

(12) Wang, G., Li, X., and Wang, Z. (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093.

(13) Jensen, H., Hamill, P., and Hancock, R. E. (2006) Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511.

(14) McCann, K. B., Lee, A., Wan, J., Roginski, H., and Coventry, M. J. (2003) The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. J. Appl. Microbiol. 95, 1026–1033.

(15) Pietrantoni, a, Ammendolia, M, Tinari, a, Siciliano, R, Valenti, P, and Superti, F (2006) Bovine lactoferrin peptidic fragments involved in inhibition of Echovirus 6 in vitro infection. Antiviral Res. 69, 98–106.

(16) Belaid, A, Aouni, M, Khelifa, R, Trabelsi, A, Jemmalia, M, and Hani, K. (2002) In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J. Med. Virol. 66, 229–234.

(17) Mettenleiter, T. C. (2001) Brief overview on cellular virus receptors. Virus Res. 82, 3–8.

(18) WuDunn, D., and Spear, P. G. (1989) Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 63, 52–58.

(19) Vorland, L. H. (1999) Lactoferrin: a multifunctional glycoprotein. Apmin 107 (11), 971–981.

(20) van der Strate, B. W., Beljaars, L, Molema, G, Harmens, M. C., and Meijer, D. K. (2001) Antiviral activities of lactoferrin. Antiviral Res. 52, 225–239.

(21) Superti, F., Ammendolia, M. G., Valenti, P., and Seganti, L. (1997) Antirotaviral activity of milk proteins: lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med. Microbiol. Immunol. 186 (2–3), 83–91.

(22) Ikeda, M., Nozaki, A, Sugiyama, K, Tanaka, T, Naganuma, A, Tanaka, K, Sekihara, H, Shimotohno, K, Saito, M, and Kato, N. (2000) Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res. 66, 51–63.

(23) Lang, J., Yang, N, Deng, J, Liu, K, Yang, P, Zhang, G, and Jiang, C. (2011) Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One 6 (8), e23710.