Case Report

Chronic osteomyelitis of the hand by *Mycobacterium kansasii* in an immunocompromised patient

Jorge Adrián Garza Cerna¹, Raúl Omar Martínez Zarazúa²*, Everardo Valdes Flores¹, M. Mauricio Manuel García Pérez¹, Gabriel Ángel Mecott Rivera¹

1Department of Plastic Surgery, 2Department of General Surgery, Nuevo León University Hospital, Monterrey, Nuevo León, Mexico

Received: 11 July 2021
Revised: 08 October 2021
Accepted: 11 October 2021

Correspondence:
Dr. Raúl Omar Martínez Zarazúa,
E-mail: raulomar1989@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Atypical mycobacteria are pathogens that uncommonly infect the hand. These organisms are capable of causing extensive bone damage in the hand. *Mycobacterium kansasii* is a slow growing non-tuberculous *Mycobacterium*. It is the second most common non-tuberculous *Mycobacterium* that mainly affects the hand and joints. Immunosuppressed patients are more likely to develop infection. Because extrapulmonary involvement of *M. kansasii* is rare, skin and soft tissue infections are infrequent; osteomyelitis is even rarer. Immunosuppressed patients are more likely to develop infection. There is a delay in diagnosis antibiotics have been given with no response. Imaging studies are recommended in the diagnostic approach, with magnetic resonance imaging being the best option to show bone and soft tissue involvement. Infected tissue culture has greater sensitivity for diagnosis. Treatment for musculoskeletal involvement consists of multiple susceptibility-based antibiotics and antiretroviral therapy in HIV coinfection, combined with surgical management with incision and drainage.

Keywords: Hand osteomyelitis, Non-tuberculous *Mycobacterium*, Immunocompromised

INTRODUCTION

Atypical mycobacteria are rare pathogens in hand infections. These organisms are capable of causing extensive hand bone damage.¹ Reports of atypical mycobacteria in hand infections have increased compared with *M. tuberculosis*.² *M. kansasii* is a slow-growing, non-tuberculous *Mycobacterium* described in 1953 as a cause of human infections. It is the second most common non-tuberculous *Mycobacterium* that mainly affects the hand and joints. Because extrapulmonary involvement of *M. kansasii* is rare, skin and soft tissue infections are infrequent; osteomyelitis is even rarer.³ ⁴ Immunosuppressed patients are more likely to develop infection.⁵ An incidence of 0.44% of *M. kansasii* infections has been reported in patients with HIV.⁶ We report the case of an HIV-positive patient with a long-standing hand infection with the evidence of the *M. kansasii*.

CASE REPORT

The patient is a 45-year-old HIV-positive man who came to the emergency room with edema of the left hand accompanied by pain, supputation, hyperthermia, discoloration, and worsening symptoms in the past week. He had a history of trauma of his left hand three months before when he suffered a fall from his height without presenting an injury or deformity at that time. He refused medical attention. His HIV-positive diagnosis was made four months before. He is receiving retroviral treatment...
with poor results with a viral load of 627,000 copies and 36 CD4.

On examination in the emergency room, he had a metacarpal bone deformity of his left hand with edema, hyperthermia, and pain on palpation. There was a chronic wound located on the hypothenar eminence and another in the palmar region of the wrist, both with a purulent secretion (Figure 1) and an abscess in the proximal region of the left forearm (Figure 2).

A hand x-ray showed fractures of the 4th and 5th metacarpals with osteomyelitis of the carpal bones and the joint with the 4th and 5th metacarpal (Figure 3).

The abscesses of the left hand and forearm were drained and debrided, followed by secondary wound closure. A qualitative PCR of the tissue produced a nontuberculous *Mycobacterium*. A culture of the purulent secretion revealed *M. kansasii*.

The antibiotic therapy scheme was adjusted according to susceptibility. Trimethoprim-sulfamethoxazole combined with rifampicin, isoniazid, ethambutol, and pyrazinamide was started.

The patient improved clinically, and his infection was successfully treated. He was discharged with outpatient antibiotics and antiretroviral treatment.

DISCUSSION

Infection with *M. kansasii*, like other nontuberculous mycobacterial infections, is associated with HIV coinfection in patients with advanced immunosuppression. Musculoskeletal involvement is rare. The tendon sheath and septic arthritis are the most common sites of infection.7

Nontuberculous mycobacteria grow slowly. They are environmental pathogens that are found in natural sources, specifically tap water and soil. Symptoms generally involve the synovium of the hand and wrist with stiffness, edema, and finger paresthesia.8 A history of trauma is frequent. There is a delay in diagnosis in most cases because multiple antibiotics have been given with no response.9

Imaging studies are recommended in the diagnostic approach, with magnetic resonance imaging being the best option to show bone and soft tissue involvement.
PCR can identify the infectious causal agent; however, there can be false negatives. Infected tissue culture has greater sensitivity for diagnosis.

Treatment for musculoskeletal involvement consists of multiple susceptibility-based antibiotics and antiretroviral therapy in HIV coinfection, combined with surgical management with incision and drainage in case of an abscess, the incision must be parallel to the lines of tension to favor adequate healing.\(^{11,12}\) The duration of antibiotic therapy is up to 12 months after a negative culture.\(^{13,14}\)

CONCLUSION

This case represents a rare infection of bone and muscle in the hand and wrist by *M. kansasii* and HIV coinfection. Identification of the causal agent is a diagnostic challenge. A diagnosis and subsequent targeted antibiotic therapy are achieved with surgical debridement and culture of the infected tissue.

ACKNOWLEDGEMENTS

The author would like to thank the masters of plastic surgery for their teaching and handling in the clinical case that medical attention is provided.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Minkin BI, Mills CL, Bullock DW, Burke FD. *Mycobacterium kansasii* osteomyelitis of the scaphoid. J Hand Surg. 1987;12(6):1092-4.
2. Wada A, Nomuram S, Ibha F. *Mycobacterium kansasii* flexor tenosynovitis presenting as carpal tunnel syndrome. J Hand Surg. 2000;25(3):308-10.
3. Bhatt K, Banavathi K. *Mycobacterium kansasii* osteomyelitis - a masquerading disease. JMM Case Rep. 2018;5(1):e005114.
4. Bollam R, Phan T. *Mycobacterium marinum* infection of the hand presenting as a nodular skin lesion. J Clin Tuberc Other Mycobact Dis. 2020;20:100166.
5. Huayllani MT, Sisti A, Boczar D, Restrepo DJ, Parker AS, Sarabia-Estrada R, Rinker BD, Forte AJ. Chronic Tenosynovitis of the Upper Extremities Caused by *Mycobacterium kansasi*: A Clinical Case and Systematic Review of Literature. Indian J Plast Surg. 2020;53(1):25-35.
6. Smith MB, Molina CP, Schnadig VJ, Boyars MC, Aronson JF. Pathologic Features of *Mycobacterium kansasii* Infection in Patients with acquired Immunodeficiency Syndrome. Arch Pathol Lab Med. 2003;127(5):554-60.
7. Menashe L, Kerr LD, Hermann G. *Mycobacterium kansasii* causing chronic monoarticular synovitis in a patient with HIV/AIDS. J Radiol Case Rep. 2015;9(9):26-35.
8. Napaumpaiporn C, Katchamart W. Clinical manifestations and outcomes of musculoskeletal non-tuberculous mycobacterial infections. Rheumatol Int. 2019;39(10):1783-7.
9. Formanoy E, Lam HY, Arends JE. Tenosynovitis of the right hand, Netherlands. J Med. 2013;7(1):10.
10. Balagué N, Uçkay I, Vostrel P, Hinrikson H, Van Aaken I, Beaulieu JY. Non-tuberculous mycobacterial infections of the hand. Chir Main. 2015;34(1):18-23.
11. Wang MS, Berry M, Lehto-Hoffman A, Vi L, Ramessar N. Chronic Tenosynovitis due to *Mycobacteria kansasii* in an Immunocompetent Host. Case Rep Infect Dis. 2018;2018:3297531.
12. Pastorino A, Tavarez MM. Incision and Drainage. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK556072/. Accessed on 2021 July 31.
13. Johnston JC, Chiang L, Elwood K. *Mycobacterium kansasii*. Microbiol Spectr. 2017;5(1).
14. Mazis GA, Sakellarious V, Kontos F, Zerva L, Spyridonos SG. Recurrent fluctuant mass of the wrist and forearm associated with chronic tenosynovitis by *Mycobacterium kansasi*. Orthopedics. 2011;18;34(5):400.

Cite this article as: Cerna JAG, Zarazúa ROM, Flores EV, Pérez MMMG, Rivera GAM. Chronic osteomyelitis of the hand by *Mycobacterium kansasii* in an immunocompromised patient. Int Surg J 2021;8:3430-2.