Antibacterial and Biofilm Inhibitory Effects of Rutin Nanocrystals

Mohammad Yousef Memar 1, Mina Yekani 2,3, Simin Sharifi 4*, Solmaz Maleki Dizaj 4*

1 Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2 Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
3 Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
4 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
* Correspondence: sharifi.ghazi@gmail.com (S.S.); maleki.s.89@gmail.com, malekidizaj@tbzmed.ac.ir (S.M.D.);
Scopus Author ID 55600756100

Received: 24.12.2021; Accepted: 24.01.2022; Published: 25.03.2022

Abstract: Rutin is a nontoxic bioactive agent that extensively exists in fruits and vegetables with several therapeutic properties, essentially attributed to its effective anti-inflammatory and antioxidant actions. Rutin possesses poor bioavailability and low aqueous solubility, limiting its therapeutic applications. The expansion of nanoparticulate systems is one of the technical routes to enhance the solubility and bioavailability of rutin. The present study aimed to examine the antimicrobial effects of rutin nanocrystals (RNs). A minimum inhibitory concentration (MIC), biofilm, and attachment inhibitory effects of RNs were evaluated for several bacterial strains compared with bulk rutin. It was shown that the aqueous dispersion of RNs was much more effective than rutin against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Streptococcus mutans, Klebsiella pneumonia, and Acinetobacter baumannii. The results revealed that rutin's antimicrobial activity improved by reducing particle size up to the nano-sized range in the MIC test. RNs and rutin didn't show any biofilm inhibitory effect.

Keywords: rutin; nanocrystals; antimicrobial activity.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Curcumin, rutin, quercetin, and resveratrol are well-known natural compounds that are helpful in biomedicine due to their excellent safety, cost-effectiveness, and broad biological impacts [1-4]. Flavonoids' many pharmacological/biological effects, including ROS scavenging, anti-inflammatory, immunomodulatory, antibacterial, and cancer-fighting properties, have made them excellent prospective medicines [4-6]. As a lipophilic component, Rutin is soluble in organic solvents such as pyridine, methanol, and ethanol [7, 8]. In addition, rutin has limited stability and bioavailability, and these physicochemical characteristics are mostly attributable to its low water solubility [8, 9]. Rutin has significant antioxidant capabilities due to its reducing characteristics on various oxidizing species such as superoxide, peroxyl, and hydroxyl radicals [10]. Besides, it has pharmacological properties such as anticancer, antibacterial, and anti-inflammatory properties [11-13]. Rutin has been demonstrated to prevent the prooxidant effects of certain flavonoids by accelerating the production of oxygen radicals [14]. Rutin could be useful in biomedical applications due to its nontoxic chemical structure [15, 16].
Many investigations have looked at flavonoids’ anti-biofilm potential, including rutin’s biofilm inhibitory efficacy against drug-resistant biofilm-producing bacteria [17-21].

Rutin has been shown to have potent antibacterial properties against a wide range of bacteria [22]. Rutin has been shown to have strong antibacterial, and antifungal action against pathogens such as Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, and Candida krusei and have been reported [23]. According to the studies, rutin displays effective actions against gram-negative and gram-positive bacteria. The study on the antibacterial effect of flavonoids is conflicting, perhaps because of inter-and intra-assay differences in susceptibility examinations. On the other hand, several studies revealed a relation between flavonoid structure and antibacterial activity. Furthermore, several studies have found an association between flavonoids' action and the inhibition of DNA gyrase. Furthermore, it has been suggested that (−)-epigallocatechin gallate and sophoraflavone G inhibit the function of the cytoplasmic membrane and that licochalones A and C prevent metabolism of energy [21].

Nanotechnology uses innovative techniques to modify matter at an atomic or molecular level, and it has found widespread use in all disciplines of research [24, 25]. In the field of biomedicine, developing drug delivery via nanoparticulate systems has resulted in a marked rise in technological innovation [26, 27]. Nanomedicine has opened up new possibilities for the pharmaceutical industry’s future [28, 29]. Increased bioavailability of active substances is a benefit of nanotechnology-based medication nanoformulations [30].

The present study aimed at investigating the antibacterial and biofilm inhibitory effect of RNs against S. aureus, P. aeruginosa, Escherichia coli, Enterococcus faecalis, Streptococcus mutans, Klebsiella pneumonia, A. baumannii. Furthermore, bacterial cell attachment was studied to evaluate the effect of RNs on the adherence of bacteria to the surfaces.

2. Materials and Methods

2.1. Preparation of rutin nanocrystals.

RNs were prepared in our previous study via the ultra-sonication method and solvent evaporation process [31] (Figure 1). The prepared RNs displayed a mean particle size of 75 ± 0.16 nm. Moreover, the results of SEM (Figure 1a) showed that the RNs had aggregated quasi-spherical, uniform small nanoparticles (Figure 1b). The RNs displayed crystalline states according to peak intensities (Figure 1c). The FTIR spectra evaluated the chemical composition of RNs, and there was no difference between the absorption bands of the bulk rutin and RNs (Figure. 1d) [31].

2.2. The antibacterial effects of bulk rutin and RNs.

Bacterial isolates used in this study were isolated from Tabriz, Iran, during 2020. MRSA isolates were primarily screened by the resistance to cefoxitin disk (30 µg) according to Clinical & Laboratory Standards Institute (CLSI) guidelines.

The antibacterial effects of RNs and bulk rutin were assessed by determining minimum inhibitory concentration (MIC) via the broth microdilution technique in Cation-Adjusted Mueller–Hinton Broth (CAMHB). The broth microdilution method was performed according to protocols of the Clinical & Laboratory Standards Institute (CLSI) [32]. The lowest
concentration of a compound considered as MIC completely inhibited the bacterial growth, which was recognized by the unaided eye.

![Figure 1](https://biointerfaceresearch.com/)

Figure 1. Physicochemical characterization of the RNs; (a) The particle size distribution, (b) Image of SEM, (c) The pattern of XRD, and (d) FTIR peak of RNs and bulk rutin. (Adapted from [31], which is under the Creative Commons Attribution License).

2.3. **Biofilm Inhibitory effect of RNs and bulk rutin.**

The antibiofilm effect of RNs and bulk rutin were assessed via minimum biofilm inhibitory concentration (MBIC) determination. First, 100 µL from 0.5 McFarland bacterial suspension was added to the microplate wells containing 100 µL of TSB. The generation of biofilm of bacteria was stimulated by the addition of 0.25% glucose to TSB. The bacterial suspension was cultured at 35°C for 24 hours in a microplate. Following this, the serial concentrations of RNs and bulk rutin were added to the wells, and it was incubated for 20 hours at 35°C. The content of the wells was removed, and wells were washed by sterile water and violently shaken. The OD at 650 nm was assessed on a microplate before and after incubation for 6 hours at 35°C. The MBIC was measured as the lowest level of a compound that led in a variation of OD 650 at or below 10% of the mean of OD of two positive control wells [33].

2.4. **The effect of RNs and bulk rutin on adhesion of bacteria to surfaces.**

Sub-inhibitory concentrations (0.5 MIC) of RNs and bulk rutin were applied to the wells of a 96 well microplate to assess the influence of RNs and bulk rutin on biofilm development. Fresh TSB (1:20) with and without RNs and bulk rutin were used to dilute overnight grown cultures of tested bacteria. After adding the suspension to the wells, the microplates were incubated for 24 hours at 35°C. After the content of wells was removed,
generated biofilms were rinsed with sterile water and fixed with methanol for 5 minutes. After drying the plates, it was stained for 15 minutes with a crystal violet solution. The wells were three times then the generated biofilms were solubilized via acetic acid (33%). After, the OD of wells was measured at wavelength 492 nm via the microplate readers. The wells with TSB without bacteria were considered as a negative control.

2.5. Statistical analysis.

The data were analyzed by the one-way ANOVA in the SPSS software version 20. Values of P<0.05 were considered statistically significant.

3. Results and Discussion

Rutin didn't show any significant antibacterial effect on all examined bacteria in the tested concentration. The RNs inhibited all examined bacteria at different levels. The RNs showed more antibacterial effect against Gram-negative bacteria compared with Gram-positives. The MICs spectrum of RNs was 1024-4096 µg/mL (Figure 2).

Several studies have addressed that the drug-loaded NPs may interact with microbial cells due to two probable mechanisms: (a) they may fuse with surfaces of bacterial cells and increase the permeability of cells to agents, (b) they also may be absorbed by the cell wall and act as a depot to release of antibacterial drug [34]. Bharathi et al. designed a rutin-containing chitosan-coated zinc oxide (CS-ZnO) nanocomposite. The antibacterial activity of the nanocomposite was evaluated against different pathogenic Gram-negative and Gram-positive bacteria, and it has been displayed that the nanocomposite was more efficient against Gram-negative bacteria [35]. When metal oxide is coated with organic polymers, the optical and structural properties of nanoparticles show remarkable changes. Bharathi and coworkers used a facile greener method to prepare chitosan (CS) coated iron oxide nanocomposite containing rutin. The prepared nanoparticles displayed antibacterial activity against Gram-negative and Gram-positive bacteria [36].

Antibacterial agents are commonly efficient over planktonic bacteria may not be effective against biofilm form [37]. The application of an appropriate delivery system for antibacterial agents can be beneficial in treating infections caused by biofilm form [38, 39].

![Figure 2. The inhibitory effects of RNs on bacterial isolates.](image-url)
The generated biofilm is difficult to eliminate due to its resistance to most antibacterial drugs. In some cases, removal of infected tissues or apparatuses is essential for eradicating biofilm-related infections that are uncomfortable and, in some cases, impossible [40]. As a result, eliminating biofilms may need the use of new formulations or compounds that increase biofilm sensitivity to antimicrobial drugs [41]. In the present study, RNs and rutin didn't show any inhibitory effect on the preformed biofilm. To further investigate the effect of rutin nanoparticles on biofilm, its effect can be examined in combination with other antibiotics. Deepika et al. showed the enhanced biofilm inhibitory effect of rutin (200 μg/mL) in combination with gentamicin (2.5 μg/mL) [18].

Bacterial cell attachment was studied to evaluate the effect of RNs at sub-MICs levels (0.5 MIC) on the adherence of bacteria to the surfaces. It was observed that bacterial attachment was significantly decreased after 12 h of incubation in the presence of sub-MICs levels of RNs than rutin and controls (well-containing bacteria grown in the absence of RNs) (Figure 3).

Adherence is critical in bacterial colonization on different surfaces [42, 43]. The present study results showed that RNs reduced bacterial adherence at sub-MIC levels significantly in all bacteria except K. pneumonia (P<0.05).

4. Conclusions

Generally, nanoparticles can be an applicable drug delivery approach with favorable characters in treating infections. The results of our study indicate that RNs have more antibacterial activity compared with rutin. Rutin and RNs didn't show any biofilm inhibitory effect. RNs decreased adherence of bacteria at sub-MIC levels.

These findings may be beneficial for applying RNs against Gram-negative and Gram-positive bacteria. However, more studies are needed to evaluate the antibacterial and biofilm inhibitory effects of rutin nanoparticles combined with other antibiotics. The in vivo studies on the biological activities and side effects of RNs are necessary for this application.

Funding

This research was funded by the Vice-Chancellor for Research at Tabriz University of Medical Sciences, Tabriz, Iran (grant number; 62275).
Ethical Approval

The Ethics Committee of the Tabriz University of Medical Sciences (IR.TBZMED.VCR.REC.1397.510) approved this study.

Acknowledgments

The present paper was derived from a grant provided by the Vice-Chancellor for Research at Tabriz University of Medical Sciences (number 62275). The authors would like to appreciate their financial support.

Conflicts of Interest

The authors did not disclose any conflict of interest.

References

1. Mihanfar, A.; Nouri, M.; Roshangar, L.; Khadem-Ansari, M.H. Polyphenols: Natural compounds with promising potential in treating polycystic ovary syndrome. Reproductive Biology 2021, 21, 100500, https://doi.org/10.1016/j.repbio.2021.100500.
2. Blahova, J.; Martiniaikova, M.; Babikova, M.; Kovačova, V.; Omelka, R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals 2021, 14, 806, https://doi.org/10.3390/ph14080806.
3. Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzarù, I. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021, 26, 1109, https://doi.org/10.3390/molecules26041109.
4. Khezri, K.; Maleki Dizaj, S.; Rahbar Saadat, Y.; Sharifi, S.; Shahi, S.; Ahmadian, E.; Eftekhari, A.; Dalir Abdolahinia, E.; Lotfipour, F. Osteogenic differentiation of mesenchymal stem cells via curcumin-containing nanoscaffolds. Stem Cells International 2021, 2021, https://doi.org/10.1155/2021/1520052.
5. Alipour, M.; Pouya, B.; Aghazadeh, Z.; SamadiKafil, H.; Ghorbani, M.; Alizadeh, S.; Aghazadeh, M.; Dalir Abdolahinia, E. The Antimicrobial, Anti-Inflammatory and Anti-Inflammatory Effects of Polycaprolactone/Gelatin Scaffolds Containing Chrysins for Regenerative Endodontic Purposes. Stem Cells International 2021, 2021, https://doi.org/10.1155/2021/3828777.
6. Sharifi, S.; Moghaddam, F.A.; Abedi, A.; Maleki Dizaj, S.; Ahmadian, S.; Abdolahinia, E.D.; Khatibi, S.M.H.; Samiei, M. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. BioFactors 2020, 46, 874-893, https://doi.org/10.1002/biof.1682.
7. Narasagoud, S.S.; Hegde, V.G.; Chougale, R.B.; Masti, S.P.; Vootla, S.; Malabadi, R.B. Physico-chemical and functional properties of rutin induced chitosan/poly (vinyl alcohol) bioactive films for food packaging applications. Food Hydrocolloids 2020, 109, 106096, https://doi.org/10.1016/j.foodhyd.2020.106096.
8. Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in food science & technology 2017, 67, 220-235, https://doi.org/10.1016/j.tifs.2017.07.008.
9. Sharma, S.; Ali, A.; Ali, J.; Sahni, J.K.; Baboota, S. Rutin: therapeutic potential and recent advances in drug delivery. Expert opinion on investigational drugs 2013, 22, 1063-1079, https://doi.org/10.1517/13543784.2013.805744.
10. Imani, A.; Maleki, N.; Bohlouli, S.; Khouhsoltani, M.; Sharifi, S.; Maleki Dizaj, S. Molecular mechanisms of anticancer effect of rutin. Phytotherapy Research 2021, 35, 2500-2513, https://doi.org/10.1002/ptr.6977.
11. Negahdari, R.; Bohlouli, S.; Sharifi, S.; Maleki Dizaj, S.; Rahbar Saadat, Y.; Khezri, K.; Jafari, S.; Ahmadian, E.; Gorbani Jahandizi, N.; Raesi, S. Therapeutic benefits of rutin and its nanoformulations. Phytotherapy Research 2015, 35, 1719-1738, https://doi.org/10.1002/ptr.6904.
12. Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi pharmaceutical journal 2017, 25, 149-164, https://doi.org/10.1016/j.jspjs.2016.04.025.
13. Satari, A.; Ghasemi, S.; Habtemariam, S.; Ashgharian, S.; Lorigoooini, Z. Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination
14. Hodnick, W.F.; Kung, F.S.; Roettger, W.J.; Bohmont, C.W.; Pardini, R.S. Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids: A structure-activity study. Biochemical pharmacology 1986, 35, 2345-2357, https://doi.org/10.1016/0006-2952(86)90461-2.

15. Kang, J.; Lu, X.; Zeng, H.; Liu, H.; Lu, B. Investigation on the electrochemistry of rutin and its analytical application. Analytical letters 2002, 35, 677-686, https://doi.org/10.1081/AL-120003169.

16. Hooresfand, Z.; Ghanbarzadeh, S.; Hamishehkar, H. Preparation and characterization of rutin-loaded nanophytosomes. Pharmaceutical Sciences 2015, 21, 145-151, https://doi.org/10.15171/PS.2015.29.

17. Wang, M.; Zhang, Y.; Guo, P. Effect of florfenicol and thiampenicol exposure on the photosynthesis and antioxidant system of Microcystis flos-aquae. Aquatic Toxicology 2017, 186, 67-76, https://doi.org/10.1016/j.aquatox.2017.02.022.

18. Deepika, M.S.; Thangam, R.; Sakthidhasan, P.; Arun, S.; Sivasubramanian, S.; Thirumurugan, R. Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control 2018, 90, 282-294, https://doi.org/10.1016/j.foodcont.2018.02.044.

19. Singh, A.; Gupta, R.; Pandey, R. Rice seed priming with picomolar rutin enhances rhizospheric Bacillus subtilis CIM colonization and plant growth. PloS one 2016, 11, e0146013, https://doi.org/10.1371/journal.pone.0146013.

20. Al-Shabib, N.A.; Husain, F.M.; Ahmad, I.; Khan, M.S.; Khan, R.A.; Khan, J.M. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control 2017, 79, 325-332, https://doi.org/10.1016/j.foodcont.2017.03.004.

21. Deepika, M.S.; Thangam, R.; Vijayakumar, T.S.; Sasirekha, R.; Vimala, R.; Sivasubramanian, S.; Arun, S.; Babu, M.D.; Thirumurugan, R. Antibacterial synergy between rutin and florfenicol enhances therapeutic spectrum against drug resistant Aeromonas hydrophila. Microbial pathogenesis 2019, 135, 103612, https://doi.org/10.1016/j.micpath.2019.103612.

22. Cushnie, T.T.; Lamb, A.J. Antimicrobial activity of flavonoids. International journal of antimicrobial agents 2005, 26, 343-356, https://doi.org/10.1016/j.ijantimicag.2005.09.002.

23. Orhan, D.D.; Özçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiological research 2010, 165, 496-504, https://doi.org/10.1016/j.micres.2009.09.002.

24. Lohani, A.; Verma, A.; Joshi, H.; Yadav, N.; Karki, N. Nanotechnology-based cosmeceuticals. International Scholarly Research Notices 2014, 2014, https://doi.org/10.1155/2014/843687.

25. Shen, Y.; Zhang, Y.; Gao, Z.F.; Ye, Y.; Wu, Q.; Chen, H.-Y.; Xu, J.-J. Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today 2021, 38, 101121, https://doi.org/10.1016/j.nan tod.2021.101121.

26. Maleki Dizaj, S.; Sharifi, S.; Ahmadian, E.; Eftekhari, A.; Adibkia, K.; Lotfipour, F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert opinion on drug delivery 2019, 16, 331-345, https://doi.org/10.1080/17425247.2019.1587408.

27. Maleki Dizaj, S.; Sharifi, S.; Jahangiri, A. Electrospun nanofibers as versatile platform in antimicrobial delivery: current state and perspectives. Pharmaceutical Development and Technology 2019, 24, 1187-1199, https://doi.org/10.1080/10837450.2019.1656238.

28. Abbasi Kajani, A.; Haghjooy Javanmand, S.; Asadnia, M.; Razmjou, A. Recent advances in nanomaterials development for nanomedicine and cancer. ACS Applied Bio Materials 2021, 4, 5908-5925, https://doi.org/10.1021/acsabm.1c00591.

29. Zhang, J.; Hu, K.; Di, L.; Wang, P.; Liu, Z. et al. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Advanced Drug Delivery Reviews 2021, 178, 113964, https://doi.org/10.1016/j.addr.2021.113964.

30. Joyce, I.J.; Davidov-Pardo, G.; McClements, D.J. Nanotechnology for increased micronutrient bioavailability. Trends in food science & technology 2014, 40, 168-182, https://doi.org/10.1016/j.tifs.2014.08.006.

31. Bohlouli, S.; Jafarmard Gharehbagh, F.; Dalir Abdolahinia, E.; Kouhsoltani, M.; Ebrahimi, G.; Roshangar, L.; Imani, A.; Sharifi, S.; Maleki Dizaj, S. Preparation, Characterization, and Evaluation of Rutin Nanocrystals as an Anticancer Agent against Head and Neck Squamous Cell Carcinoma Cell Line. Journal of Nanomaterials 2021, 2021, https://doi.org/10.1155/2021/9980451.

32. Weinstein, M.P. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically 2018, Clinical and Laboratory Standards Institute, Wayne, PA, USA.
33. Memar, M.Y.; Yekani, M.; Ghanbari, H.; Nabizadeh, E.; Vahed, S.Z.; Maleki Dizaj, S.; Sharifi, S. Antimicrobial and antibiofilm activities of meropenem loaded-mesoporous silica nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. *Journal of Biomaterials Applications* 2021, 36, 605-612, https://doi.org/10.1177/08853282211003848.

34. Samiei, M.; Farjami, A.; Maleki Dizaj, S.; Lotfiipour, F. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies. *Materials Science and Engineering: C* 2016, 58, 1269-1278, https://doi.org/10.1016/j.msec.2015.08.070.

35. Bharathi, D.; Ranjithkumar, R.; Chandarshekar, B.; Bhuvaneshwari, V. Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: As a bionanocomposite. *International journal of biological macromolecules* 2019, 129, 989-996, https://doi.org/10.1016/j.ijbiomac.2019.02.061.

36. Bharathi, D.; Ranjithkumar, R.; Vasantharaj, S.; Chandarshekar, B.; Bhuvaneshwari, V. Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. *International journal of biological macromolecules* 2019, 132, 880-887, https://doi.org/10.1016/j.ijbiomac.2019.03.233.

37. Sun, F.; Qu, F.; Ling, Y.; Mao, P.; Xia, P.; Chen, H.; Zhou, D. Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. *Future Microbiology* 2013, 8, 877-886, https://doi.org/10.2217/fmb.13.58.

38. Kalelkar, P.P.; Riddick, M.; García, A.J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. *Nature Reviews Materials* 2022, 7, 39-54, https://doi.org/10.1038/s41578-021-00362-4.

39. Wakade, V.S.; Shende, P. Strategic advancements and multimodal applications of biofilm therapy. *Expert Opinion on Biological Therapy* 2021, 21, 395-412, https://doi.org/10.1080/14712598.2020.1822319.

40. Wu, H.; Moser, C.; Wang, H.-Z.; Høiby, N.; Song, Z.-J. Strategies for combating bacterial biofilm infections. *International journal of oral science* 2015, 7, 1-7, https://doi.org/10.1038/ijos.2014.65.

41. Hwang, I.-s.; Hwang, J.H.; Choi, H.; Kim, K.-J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. *Journal of medical microbiology* 2012, 61, 1719-1726, https://doi.org/10.1099/jmm.0.047100-0.

42. Echeverria, C.; Torres, M.D.T.; Fernández-García, M.; de la Fuente-Nunez, C.; Muñoz-Bonilla, A. Physical methods for controlling bacterial colonization on polymer surfaces. *Biotechnology Advances* 2020, 43, 107586, https://doi.org/10.1016/j.biotechadv.2020.107586.

43. Filipović, U.; Dahmane, R.G.; Ghannouchi, S.; Zore, A.; Bohinc, K. Bacterial adhesion on orthopedic implants. *Advances in Colloid and Interface Science* 2020, 283, 102228, https://doi.org/10.1016/j.cis.2020.102228.