A deeper understanding of fission from a droplet of condensed nuclear matter splitting into fragments is still strongly motivated, even though its discovery occurred more than 80 years ago [1]. Firstly, fission data is crucial for increasingly wide applications [2] such as for nuclear energy, production of medical isotopes, radiation shielding, as well as for basic sciences such as synthesis of superheavy elements [3, 4] and constraints on r-process in neutron-star mergers [5, 6]. Due to experimental difficulties, however, fission yields are only available at neutron energies of thermal energy, 0.5 MeV and 14 MeV in major nuclear data libraries [8]. Energy dependent fission data is very needed. Secondly, the fission process is extremely complex from the microscopic view as a probe of non-equilibrium quantum many-body dynamics [9–11].

It is known that the pioneer Bohr-Wheeler statistical theory is very successful but not applicable for highly excited fission with experimental observations of exceeding precission neutron multiplicities [12]. Strong viscosity and dissipation in hot nuclear matter has to be invoked [13]. The realistic fission of compound nuclei is not only determined by the barrier but also the later phase of fission evolutions towards scission becomes important [14]. In addition, the quantum effects such as shell effects and pairing would gradually fade away as excitation energies increase [4, 15]. There were studies of the role of static temperature-dependent fission barriers [4, 15, 16], however, the microscopic fission dynamics in terms of excitation energy dependence is still absent.

For experiments, the well-known semi-empirical model by Brosa et al. [17] is the primary tool for evaluations of fission data with high accuracy. This model has great physics intuition on the multi-channel fission and the random neck-rupture assumptions, which is well established by detailed fission observations, in particular correlations between distributions of mass yields, total kinetic energies (TKE) and neutron multiplicities. However, as a major obstacle for extrapolations when experiments are absent, the origin and pathways of two asymmetric standard channels (denoted S1, S2) in Brosa model are still ambiguous, although shell effects are present in nascent fragments [10, 18]. This also hinders shape dynamics models [14, 19, 22] based on potential energy surfaces (PES) to take into account these intuitive assumptions. Therefore, the validation of physics assumptions of the Brosa model from microscopic dynamical models would be significant.

The microscopic time-dependent density functional theory (TD-DFT) is promising to describe the later phase of fission from saddle to scission [23–27]. TD-DFT has provided valuable clues about the overdamped assumption [28], non-adiabatic effects [29], the excitations of fragments [24], the role of shell effects [18] and pairing effects [27], but the lack of fluctuations undermines TD-DFT to reproduce distributions of fission yields [28, 30]. It is an evident defect that strongly dissipated fission has no dissipation-fluctuation correspondence. At low excitations, the probability of orbital exchanges is connected to the Landau-Zener effect and is dependent on the pairing gap [23]. At high excitations, as the pairing is diminished, it is expected that thermal fluctuations are the main source of orbital changes. There are efforts such as the stochastic TD-DFT with initial fluctuations [30, 31] or by including dynamical density fluctuations [32], aiming to bridge the Langevin descriptions [20]. The time-dependent random-phase approximation [33] can describe particle-number fluctuations but not actual distributions of fission observables [29, 34]. In addition to quantal fluctuations, it is essential to include thermal fluctuations based on TD-DFT which would become significant in fission of highly excited compound nuclei. Thermal fluctuations in the mean-field picture can be naturally linked to random transitions between single-particle levels around Fermi surfaces. Actually the fluctuations in single-particle and collective motions are interweaved in the TD-DFT approach.

In this Letter, we study the energy dependence of fission observables of the compound nucleus 240Pu with microscopic TD-DFT, including dynamical pairing and thermal fluctuations. This is an attempt to develop....
a consistent understanding of fission mechanism connecting microscopic dynamical models and statistical Langevin models. As a reward, it turns out that our results can explain the origin of the two asymmetric fission channels of the Brosa model.

We describe the fission of compound nuclei with the time-dependent Hartree-Fock+BCS (TD-BCS) approach [32–36]. The initial configuration of compound nuclei 240Pu is obtained by finite-temperature Hartree-Fock+BCS calculations [13, 37]. The evolutions of compound nuclei is similar to that of the zero-temperature time-dependent Hartree-Fock-Bogoliubov (TD-HFB) formulism [35],

$$i\hbar \frac{d\mathcal{R}}{dt} = [H, \mathcal{R}],$$

where H is the HFB hamiltonian, \mathcal{R} is the general density matrix. The initial H and \mathcal{R} are associated with a finite temperature [27]. The time-dependent Hartree-Fock+BCS equations can be obtained by using BCS basis or canonical basis [32–36]. Note that TD-BCS can describe dynamical pairing approximately compared to the fully dynamical pairing in TD-HFB.

In TD-BCS, the evolution of densities is actually related to the evolution of occupation numbers of single-particle levels. In the mean-field picture, the single-particle levels around Fermi surfaces are active for orbital exchanges due to dynamical pairing fluctuations [27]. To mimic thermal fluctuations, we implement random transitions between single-particle levels without explicit external forces, in which the occupation number n_k is modified with a random additive δn_k. The random δn_k is designed as a transition so that the total particle number is strictly conserved. The transition occurs as a random Gaussian noise around Fermi surfaces and the transition amplitude δn_k is proportional to $e^{-|E_k-E_j|/T}$ as a symmetric Boltzmann distribution, where T is an effective temperature and $E_{k,j}$ are single-particle energies. The random transitions are connected to statistical collisions approximately, while the exact treatment of two-body collision terms beyond TDHF is very sophisticated [38]. The transition amplitudes are also constrained by the Pauli exclusion principle. The thermal transitions are naturally prohibited at low temperatures. At high temperatures, the orbital exchanges are mainly induced by thermal fluctuations, even when two levels are not close.

The calculations are performed with the time-dependent Hartree-Fock solver Sky3D [33, 40] with the addition of our modifications of TD-BCS plus thermal fluctuations. The initial configurations at finite temperatures are obtained using the SkyAx solver [15, 41], to interface with Sky3D [42]. The time evolution operator is based on the Taylor expansion at the fourth order and time step is taken as 0.1 fm/c. The box size (x, y, z) is taken as $48 \times 48 \times 64$ fm and the grid space is 0.8 fm. The nuclear interaction we adopted is the widely used SkM* parameterization [43] and the paring interaction is the mixed pairing [44].

We firstly studied the fission of compound nuclei 240Pu with different initial temperatures with TD-BCS. The initial deformation in this work adopts the dimensionless quadrupole-octupole deformations as $\beta_2=2.3$ and $\beta_3=1.0$ (see the definition [45]). The timescale is an important quantity characterizing nuclear dynamics with dissipations and fluctuations [46]. Fig. (a) displays the evolutions of the number of particles in the neck. The zero-temperature TD-BCS calculations is slower than TDHF calculations, due to dynamical pairing effects [27]. With increasing temperatures T, the evolution times become considerably lengthened. Note that fission would not oc-
In this case, thermal fluctuations have to be invoked. The damping time from the beginning stage of evolutions. Furthermore, the hot nuclei, we see that pairing energies dissipate rapidly compared to zero-temperature results in Fig. 2(a). In BCS calculations at high temperatures but with an initial temperature increases. This also indicates that the initial pairing can reduce viscosity to some extent. With a considerable initial pairing, the fission now happens at $T=1.0$ and 1.25 MeV, but still not happen at $T=1.5$. In this case, thermal fluctuations have to be invoked.

Fig. 3 displays the evolutions of octupole deformations and pairing energies at $T=0.9$ and 1.5 MeV with thermal fluctuations. The resulting evolution times of different pathways are distributed widely. At $T=1.5$ MeV, the fission now occurs with thermal fluctuations as an indispensable driving source. The resulted scission deformations are widely distributed compared to that of $T=0.9$ MeV, as a result of larger effects of thermal fluctuations at higher temperatures. Pairing energies decrease at the beginning due to dissipations and then induced dynamical pairings increase towards the scission due to thermal fluctuations, exhibiting interesting competing roles of dissipation and fluctuation. The induced pairing becomes prominent after long time evolutions.

One of the key issues is the distributions of outcomes of TD-BCS calculations with thermal fluctuations. Fig 4 shows the fission pathways in the quadrupole-octupole deformation space. At $T=0.9$ MeV ($E^*=16.1$), the fission yields are mainly distributed around two asymmetric channels. The average masses of heavy fragments are around $A_H=134.8$ and 139.3 for S1 and S2 channels, respectively. The associated average TKE are around 187.3 and 172.3 MeV respectively. This is exactly the two standard asymmetric fission channels of 240Pu in the Brosa model [4]. The two channels of pathways are close in the deformation space while S2 corresponds to a larger deformation or a longer neck. The onset of two asymmetric channels is mainly due to dynamical effects while it would be difficult to distinguish them by models based on static PES. It is understandable that the longer neck structure leads to smaller TKE and wider distributions. The longer

![Graph](image_url)

TABLE I: Calculated fission observables of 240Pu at different initial temperatures T (MeV) and associated excitation energies E^*, including mass of heavy fragment A_H, excitation energies of heavy fragments E^*_H and light fragments E^*_L, and TKE. All energies are in MeV. TDHF results are also listed. TD-BCS results with an initial pairing of zero temperature are listed for comparisons. With thermal fluctuations, averaged values and standard deviations in brackets are shown.

T (MeV)	A_H	E^*_H	E^*_L	TKE
TDHF	134.9	9.9	12.0	186.9
TD-BCS with temperature				
0.5 (4.7)	135.3	9.1	19.3	186.9
0.75 (10.6)	135.8	13.8	21.3	185.3
0.9 (16.1)	135.6	17.8	24.8	185.6
with initial pairing				
0.0	138.6	10.6	22.6	172.1
0.75 (10.6)	137.7	13.5	25.1	175.6
1.0 (20.5)	138.4	19.8	28.8	174.2
1.25 (34.6)	137.0	28.9	32.9	176.9
with thermal fluctuations				
0.9 (16.1)	137.5(2.7)	20.7(4.1)	26.4(2.8)	178.3(7.9)
1.5 (53.2)	138.5(4.9)	41.4(5.7)	42.3(4.9)	172.6(3.9)
Figure 4: The fission pathways of 240Pu within TD-BCS plus thermal fluctuations in the space of quadrupole-octupole deformations (Q_{20}, Q_{30}), at temperatures of 0.9 MeV (upper panel) and 1.5 MeV (lower panel). At $T=0.9$ MeV, the fission pathway without fluctuations (yellow color) is also shown. Specific results of S1 and S2 channels are also shown inside the upper panel.

S2 pathways also lead to more dissipations and higher excitations of fragments, leading to the sawtooth structure of neutron multiplicities. At $T=1.5$ MeV ($E^* = 53.2$ MeV), the splitting of S1 and S2 is not clear any more. The distributions of scission deformations and masses are much wider than that of 0.9 MeV. This demonstrated that the splitting of S1 and S2 disappears at high excitations as quantal effects fade away. Systematic analysis has also found that S2 is dominated and the percentage of S1 channel decreases with increased energies.

Finally, Table I displays the calculated fission observables. The complete results of all fluctuated pathways are given in the supplement. In experiments, the averaged TKE of 239Pu(n, f) is about 175 MeV and slightly decreases with increasing energies. It is related to generally larger scission deformations at higher excitations as shown in Fig. 4. The experimental averaged mass of heavy fragments A_H is about 140 rather than the magic number 132. It is shown that TKE and A_H from TD-BCS with temperatures and TDHF are about 186 MeV and 135.5, which are around S1 channel. On the other hand, TKE and A_H from TD-BCS with initial pairings are about 175 MeV and 138. We see that a considerable initial pairing is favorable for S2 channel. With thermal fluctuations, averaged TKE and A_H come back to experiments with spreading widths. We have demonstrated the essential role of thermal fluctuations in fission of compound nuclei when initial pairings are diminished, to correspond to increased dissipations. The obtained excitation energies of fragments are also useful for understanding energy dependence of neutron emission. The heavy fragments have less excitation energies at low excitations but become close to that of light fragments at high excitations. It is promising to calculate distributions of fission observables with more pathways and also varying initial deformations. Our work sheds a new light on the intuitive Brosa model for extrapolations and provides valuable clues towards a predictive microscopic fission theory.

We are grateful to discussions with F.R.Xu and W. Nazarewicz, and also discussions in the workshop on “Future of Theory in Fission” held at University of York in October 2019. This work was supported by the National Key R&D Program of China (Contract No. 2018YFA0404403), the National Natural Science Foundation of China under Grants No. 11975032, 11835001, 11790325, 11961141003. It was also supported by UK STFC under grant number ST/P005314/1. We also acknowledge that computations in this work were performed in Tianhe-1A located in Tianjin.

[1] L. Meitner, O. R. Frisch, Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction, Nature 143, 239 (1939).
[2] L.A. Bernstein, D. A. Brown, A. J. Koning, B.T. Rearden, C. E. Romano, A. A. Sonzogni, A. S. Voyles, and W. Younes, Our Future Nuclear Data Needs, Ann. Rev. Nucl. Part. Sci. 69, 109(2019).
[3] J.H. Hamilton, S. Hofmann, and Y.T. Oganessian, Search for Superheavy Nuclei, Ann. Rev. Nucl. Part. Sci. 63, 383(2013).
[4] J.C. Pei, W. Nazarewicz, J.A. Sheikh and A.K. Kerman, Fission Barriers of Compound Superheavy Nuclei, Phys. Rev. Lett. 102, 192501(2009).
[5] M. Eichler, A. Arcones, A. Kelic, O. Korobkin, K. Langanke, T. Marketin, G. Martinez-Pinedo, I. V. Panov, T. Rauscher, S. Rosswog, C. Winteler, N. T. Zinner, F.K. Thielemann, The Role of Fission in Neutron Star Mergers and its Impact on the r-Process Peaks, Astrophys. J. 808, 30(2015).
[6] S. Goriely, The fundamental role of fission during r-process nucleosynthesis in neutron star mergers, Eur. Phys. J. A 51, 22(2015).
[7] J. Sadhukhan, S. A. Giuliani, Z. Matheson, and W. Nazarewicz, Efficient method for estimation of fission fragment yields of r-process nuclei, Phys. Rev. C 101, 065803(2020).
[8] M.B. Chadwick, et al., ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data, Nuclear Data Sheets 112, 2887 (2011).

[9] M. Bender et al., Future of Nuclear Fission Theory, J. Phys. G (accepted), arXiv:2005.10210 (2020). https://doi.org/10.1088/1361-6471/abab4f

[10] K.H. Schmidt and B. Jurado, Review on the progress in nuclear fission-experimental methods and theoretical descriptions, Rep. Prog. Phys. 81, 106301(2018).

[11] N. Schunck and L. M. Rohleder, Microscopic theory of nuclear fission: a review, Rep. Prog. Phys. 79 116301 (2016).

[12] J. Randrup and P. Møller, Energy dependence of fission-dissipative fission, Phys. Rev. Lett. 71, 4303 (1993).

[13] P. Paul and M. Thoennessen, Fission Time Scales from Giant Dipole Resonances, Annu. Rev. Nucl. Part. Sci. 44, 65 (1994).

[14] P. Fröbrich, I.I. Gontchar, N.D. Mavlitov, Langevin fluctuation-dissipation dynamics of hot nuclei: Prescission neutron multiplicities and fission probabilities, Nucl. Phys. A 556, 281 (1993).

[15] Y. Zhu and J.C. Pei, Thermal fission rates with temperature dependent fission barriers, Phys. Rev. C 94, 024329 (2016).

[16] J. Zhao, T. Nikšić, D. Vretenar, and S.G. Zhou, Microscopic self-consistent description of induced fission dynamics: Finite-temperature effects, Phys. Rev. C 90, 014618 (2019).

[17] U. Brosa, S. Grossmann, A. Müller, Nuclear Scission, Phys. Rept. 197, 167 (1990).

[18] G. Scamps, C. Simenel, Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides, Nature 564, 382 (2018).

[19] D. Regnier, N. Dubray, N. Schunck, and M. Verriere, Fission fragment charge and mass distributions in 239Pu(n,f) in the adiabatic nuclear energy density functional theory, Phys. Rev. C 93, 054611 (2016).

[20] K. Sekimoto, Langevin Equation and Thermodynamics, Prog. Theo. Phys. Suppl. 130, 17 (1998).

[21] J. Randrup and P. Möller, Energy dependence of fission-fission mass distributions from strongly damped shape evolution, Phys. Rev. C 88, 064606 (2013).

[22] L.L. Liu, X.Z. Wu, Y.J. Chen, C.W. Shen, Z.X. Li, and Z.G. Ge, Study of fission dynamics with a three-dimensional Langevin approach, Phys. Rev. C 99, 044614 (2019).

[23] S.E. Koonin and J.R. Nix, Microscopic calculation of nuclear dissipation, Phys. Rev. C 13, 209 (1976).

[24] J.W. Negele, S.E. Koonin, P. Moller, J.R. Nix, and A.J. Sierk, Dynamics of induced fission, Phys. Rev. C 17, 1098 (1978).

[25] T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, and K. Yabana, Time-dependent density-functional description of nuclear dynamics, Rev. Mod. Phys. 88, 045004 (2016).

[26] C. Simenel, A.S. Umar, Heavy-ions collisions and fission dynamics with the time-dependent Hartree-Fock theory and its extensions, Prog. Part. Nucl. Phys. 103, 19 (2018).

[27] A. Bulgac, P. Magierski, K. J. Roche, and I. Stetcu, Induced Fission of 240Pu within a Real-Time Microscopic Framework, Phys. Rev. Lett. 116, 122504 (2016).

[28] A. Bulgac, S. Jin, K.J. Roche, N. Schunck, and I. Stetcu, Fission dynamics of 240Pu from saddle to scission and beyond, Phys. Rev. C 100, 034615 (2019).

[29] G. Scamps, C. Simenel, and D. Lacroix, Superfluid dynamics of 258Fm fission, Phys. Rev. C 92, 011602(R) (2015).

[30] D. Lacroix, and S. Ayik, Stochastic quantum dynamics beyond mean field, Eur. Phys. J. A 50: 95 (2014).

[31] S. Ayik, A stochastic mean-field approach for nuclear dynamics, Phys. Lett. B 658, 174 (2008).

[32] A. Bulgac, S. Jin, and I. Stetcu, Unitary evolution with fluctuations and dissipation, Phys. Rev. C 100, 014615 (2019).

[33] R. Balian and M. Vénérioni, Fluctuations in a time-dependent mean-field approach, Phys. Lett. B 136, 301 (1984).

[34] K. Godbey, C. Simenel, and A.S. Umar, Microscopic predictions for the production of neutron-rich nuclei in the reaction 176Yb+176Yb, Phys. Rev. C 101, 034602 (2020).

[35] S. Ebata, T. Nakatsuksa, T. Inakura, K. Yoshida, Y. Hashimoto, and K. Yabana, Canonical-time dependent Hartree-Fock-Bogoliubov theory and linear-response calculations, Phys. Rev. C 82, 034306 (2010).

[36] G. Scamps, D. Lacroix, G.F. Bertsch, and K. Washiyama, Pairing dynamics in particle transport, Phys. Rev. C 85, 034328 (2012).

[37] A.L. Goodman, Finite-temperature HFB theory, Nucl. Phys. A 352, 30 (1981).

[38] C.Y. Wang, H.H.K. Tang, Dynamics of nuclear fluid. V. Extended time-dependent Hartree-Fock approximation illuminates the approach to thermal equilibrium, Phys. Rev. C 20, 1419 (1979).

[39] J.A. Maruhn, P.-G. Reinhard, P.D. Stevenson, and A.S. Umar, The TDHF code Sky3D, Comp. Phys. Comm. 185, 2195 (2014).

[40] B. Schuetrumpf, P.-G. Reinhard, P.D. Stevenson, A.S. Umar, and J.A. Maruhn, The TDHF code Sky3D version 1.1, Comp. Phys. Comm. 229, 211 (2018).

[41] P.-G. Reinhard, B. Schuetrumpf, and J.A. Maruhn, The Axial Hatree-Fock + BCS Code SkyAx, Comp. Phys. Commun. (2020) doi:10.1016/j.cpc.2020.107603

[42] M. Pancic, Y.Qiang, J.C. Pei, P. Stevenson, Shape Evolutions in Fission Dynamics Within Time-Dependent Hartree-Fock Approach, Front. Phys. 8, 351 (2020).

[43] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.B. Håkansson, Towards a better parametrisation of Skyrme-like effective forces: A Critical study of the SkM force, Nucl. Phys. A 386, 79 (1982).

[44] J. Dobaczewski, W. Nazarewicz, and M.V. Stoitsov, Nuclear ground-state properties from mean-field calculations, Eur. Phys. J. A 15, 21 (2002).

[45] M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, and W. Greiner, Potential energy surfaces of superheavy nuclei, Phys. Rev. C 58, 2126 (1998).

[46] C. Simenel, K. Godbey, and A.S. Umar, Timescales of Quantum Equilibration, Dissipation and Fluctuation in Nuclear Collisions, Phys. Rev. Lett. 124, 212504 (2020).

[47] P.H. Chen, Z.Q. Feng, J.Q. Li, H.F. Zhang, A statistical approach to describe highly excited heavy and superheavy nuclei, Chin. Phys. C 40, 091002 (2016).

[48] P. Goddard, P. Stevenson, and A. Rios, Fission dynamics within time-dependent Hartree-Fock Hamiltonian, Front. Phys. 8, 351 (2020).

[49] U. Brosa, H.H. Knitter, T.S. Fan, J.M. Hu, S.L. Bao, P. Goddard, P. Stevenson, and A. Rios, Fission dynamics, Eur. Phys. J. A 50: 95 (2014).

[50] See the Supplement Material for fission observables of individual events obtained from TD-BCS calculations with
thermal fluctuations.

[51] K. Meierbachtol, F. Tovesson, D. L. Duke, V. Geppert-Kleinrath, B. Manning, R. Meharchand, S. Mosby, and D. Shields, Total kinetic energy release in 239Pu(n,f) post-neutron emission from 0.5 to 50 MeV incident neutron energy, Phys. Rev. C 94, 034611(2016).
Supplement Material for “Fission Dynamics of Compound Nuclei: Pairing versus Fluctuations”

Yu Qiang,1 J.C. Pei,1 and P.D. Stevenson2

1 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
2 Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

TABLE I: Calculated detailed fission observables of compound 240Pu with TD-BCS plus thermal fluctuations. Results include 10 individual cases at temperature of 0.9 and 1.5 MeV, respectively. The table lists the fission evolution time (T_f) (in fm/c), mass of heavy fragment A_H, the proton number Z_H and neutron number N_H of heavy fragments, the proton number Z_L and neutron number N_L of light fragments, excitation energies of heavy fragments E^*_H and light fragments E^*_L, the total excitation energies of fragments TXE, total kinetic energies TKE, the quadrupole deformation Q_{20} and octupole deformation Q_{30} before scission. All energies are in MeV.

Case	T_f	A_H	N_H	Z_H	N_L	Z_L	E^*_H	E^*_L	TXE	TKE	TKE+TXE	Q_{20} (b)	Q_{30} (b^{3/2})

(T=0.9)
- S1 channels-
1 974.0 134.2 82.4 51.8 63.5 42.2 15.3 25.1 40.4 188.6 229.0 389.1 43.7
2 1567.0 134.9 82.3 52.6 63.6 41.4 18.8 21.6 40.4 189.2 226.6 376.4 39.7
3 1176.0 134.9 82.7 52.2 63.3 41.8 15.9 25.9 41.8 186.2 228.0 397.6 46.8
4 873.0 135.1 82.9 52.2 63.0 41.8 18.0 26.0 44.0 185.1 229.1 402.0 45.1

- S2 channels-
5 2992.0 136.2 83.3 53.0 62.7 41.0 27.7 28.8 56.5 173.5 230.0 452.7 54.7
6 950.0 139.2 85.0 54.2 60.9 39.8 21.9 27.1 49.0 173.0 222.0 443.6 57.4
7 1380.0 139.5 85.0 54.5 60.9 39.5 22.0 24.5 46.4 173.2 219.7 434.2 53.6
8 5007.0 139.5 85.6 53.9 60.3 40.5 26.5 30.0 56.5 173.3 229.8 435.8 51.4
9 2385.0 140.1 86.2 53.9 59.8 40.1 21.1 30.4 51.5 170.2 221.7 444.4 53.8
10 3061.0 141.7 86.5 55.1 59.4 38.8 19.6 24.2 43.8 170.6 214.4 432.0 57.4

(T=1.5)
1 1915 127.6 77.7 49.8 67.6 44.1 35.1 49.7 84.8 173.5 258.3 483.5 43.3
2 3012 135.4 82.0 53.4 63.3 40.6 39.7 39.9 79.6 180.5 260.1 429.2 49.2
3 2972 136.0 83.2 52.8 62.1 41.2 40.1 44.2 84.4 175.9 260.2 431.4 47.4
4 3754 137.8 84.6 53.2 60.6 40.7 50.9 36.9 87.8 170.5 258.4 456.1 47.6
5 3871 138.1 84.8 53.4 60.4 40.6 30.8 47.9 78.7 173.1 252.5 451.1 61.0
6 3774 138.6 84.5 54.1 60.7 39.9 40.4 40.7 81.1 175.5 256.6 426.4 56.7
7 881 141.8 86.9 54.8 58.5 39.1 46.9 40.9 87.8 168.8 256.5 488.4 71.2
8 2027 142.3 86.4 55.9 58.9 38.1 42.0 40.8 82.7 169.5 252.2 438.7 61.8
9 2382 143.8 87.7 56.2 57.6 37.8 44.3 47.2 91.5 168.7 260.2 446.8 71.5
10 1337 143.9 87.9 56.0 57.4 38.0 43.8 34.7 78.5 169.8 248.3 433.5 62.5