Transverse momentum dependent decorrelation in Pb-Pb collisions at LHC

De-Xian Wei

School of Science, Guangxi University of Science and Technology, Liuzhou, 545006, China

(Dated: April 8, 2020)

Based on a Multi-Phase Transport (AMPT) model simulations, the transverse momentum dependent decorrelation has been studied in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV, respectively. It has found that the Factorization ratio $r_{m,n}$ value deviates significantly from unity in non-central collisions. Such effect becomes stronger with an increasing the p_T difference $p_T^a - p_T^b$. These decorrelation is not only for the same order harmonic flow but also for the difference order harmonic flow. It has also found that the correlations involving higher powers of the flow vector yield stronger decorrelation, $r_{m,n;3} < r_{m,n;2} < r_{m,n;1}$ ($m = 2, 3$), except for the weighted factorization ratio $r_{3|4,k}$.

I. INTRODUCTION

The primary goal of ultra relativistic heavy-ion collisions is to understand the matter properties of Quark-Gluon Plasma (QGP), whose is produced in extreme conditions has been predicted by the Quantum Chromodynamics [1]. Anisotropic harmonics flow plays a major role in probing the properties of the QGP at the Relativistic Heavy Ion Collider (RHIC) at BNL [2] and Large Hadron Collider (LHC) at CERN [3]. The realization of higher order harmonics flow and its fluctuations [4], the correlation between the magnitude and phase of different order harmonics [5–7] and the transverse momentum and pseudorapidity dependence of event plane angles [8] has led to a good understanding of the initial fluctuating states and the properties of the strong QGP. Furthermore, the higher order harmonics ($n > 3$) can arise from initial fluctuating anisotropies in the same order harmonic (denoted linear response) or can be driven by lower order harmonics (denoted non-linear response) [9–12]. These mixed higher order harmonics $v_4\{\Psi_{22}\}, v_5\{\Psi_{23}\}, v_6\{\Psi_{222}\}, v_6\{\Psi_{33}\}$, and the non-linear response coefficients $\chi_{422}, \chi_{532}, \chi_{6222}, \chi_{633}$ are weakly sensitive to the initial-state conditions and transport properties of the QGP [13–16].

The experiment has been indicated that the flow vector fluctuations was observed by the decomposition of Fourier harmonics of the two-particles azimuthal correlations [17]. To test the flow vector fluctuations, a useful observable is the factorization ratio, $r_{n,n}$, which encodes the correlations of flow harmonics at different transverse momenta or pseudorapidities [8, 18–26]. These correlation revealed that the factorization ratio is sensitive to fluctuations in the initial states and not strongly dependent on the viscosity of the system [27].

Hypothetically, the factorization ratio can be broken down for different order harmonics correlations as a consequence of the initial fluctuations driven decorrelation between the higher order harmonics with its’ lower order harmonics and the same lower order harmonic. Following this idea, the main purpose of this paper is to illustrate a particular picture on the initial fluctuation driven mixed harmonics flows decorrelation (denoted mixed order factorization ratio breaking) in Pb-Pb collisions at LHC.

II. MATERIALS AND METHODS

Starting from the V_n estimators studied in Ref. [9, 13, 15], the harmonic flow can be expressed as a sum of the linear and non-linear modes,

$$V_4 = V_{4L} + \chi_{422}V_2^2,$$

$$V_5 = V_{5L} + \chi_{532}V_2V_3.$$

where V_{nL} denotes the linear part of V_n ($n = 4, 5$) that is not induced by lower-order harmonics [11], and the χ are the nonlinear response coefficients, characterizing the non-linear flow mode induced by the lower order harmonics. More higher order V_n ($n > 5$) are also shown in Ref. [15].

*Electronic address: dexianwei@gxust.edu.cn
The mixed higher-order harmonics in each p_T range are extracted using the scalar-product method as shown in Ref. [14], which describe by a Q-vector, as

$$V_1 \{ \Psi_{22} \} (p_T) = \frac{\text{Re} \langle Q_4(p_T)Q_{2B}^*Q_{2B}^* \rangle}{\sqrt{\text{Re} \langle Q_{2A}Q_{2A}^*Q_{2B}^*Q_{2B}^* \rangle}};$$

$$V_5 \{ \Psi_{32} \} (p_T) = \frac{\text{Re} \langle Q_5(p_T)Q_{3B}^*Q_{3B}^* \rangle}{\sqrt{\text{Re} \langle Q_{3A}Q_{3A}^*Q_{3B}^*Q_{3B}^* \rangle}}.$$ \hspace{1cm} (2)

Here, Q_{nA} and Q_{nB} are vectors from two different parts of a single event with particles range in a positive or negative pseudorapidity region, Q_n is the vector from charged particles in each p_T range within a mid-pseudorapidity region, and angle brackets denote the average over all events within a given centrality range.

Similar to the mixed higher-order flow harmonics, the non-linear response coefficients in each p_T range can be expressed as [14],

$$\chi_4 \{ \Psi_{22} \} (p_T) = \frac{\text{Re} \langle Q_4(p_T)Q_{2B}^*Q_{2B}^* \rangle}{\sqrt{\text{Re} \langle Q_{2Atrk}Q_{2Atrk}Q_{2B}^*Q_{2B}^* \rangle}};$$

$$\chi_5 \{ \Psi_{32} \} (p_T) = \frac{\text{Re} \langle Q_5(p_T)Q_{3B}^*Q_{3B}^* \rangle}{\sqrt{\text{Re} \langle Q_{3Atrk}Q_{3Atrk}Q_{3B}^*Q_{3B}^* \rangle}}.$$ \hspace{1cm} (3)

Where Q_{nAtrk} is chosen the same pseudorapidity region with Q_n.

Correlations between Q_n of different harmonics represent higher order correlations which can provide crucial information on the initial-state and its’ fluctuations of the medium. One observable to probe the p_T dependent flow vector fluctuations is the factorization ratio, $r_{n,n}$ [18, 19, 24]. It can be calculated using the two-particle Fourier harmonic by the same order. To test the mixed harmonics flows decorrelation, a mix-order factorization ratio $r_{m,n}$, are expressed as

$$r_{m,n}(p_T^a, p_T^b) = \frac{V_{m,n}(p_T^a, p_T^b)}{\sqrt{V_{m,m}(p_T^a, p_T^b)V_{n,n}(p_T^b, p_T^b)}};$$

$$V_{m,n}(p_T^a, p_T^b) = \langle Q_m(p_T^a)Q_n^*(p_T^b) \rangle.$$ \hspace{1cm} (4)

Where $V_{m,n}$ is the m^{th}- and n^{th}-order Fourier harmonic of the two-particle azimuthal correlations of the triggered and associated particles from p_T^a and p_T^b. To avoid self-correlation, the triggered particles (denoted p_T^a) are always selected from the positive pseudorapidity region and the associated particles (denoted p_T^b) are from the negative pseudorapidity region. A pseudorapidity gap is applied between p_T^a and p_T^b to suppress non-flow effects. In that case $r_{m,n}(p_T^a, p_T^b) \leq 1$ means that the harmonic flow at the transverse momenta p_T^a and p_T^b is partially decorrelated. This decorrelation can be due to the flow vector fluctuations both of flow magnitude and flow phase decorrelation [8] were generated by initial event-by-event geometry fluctuation.

Correlators of higher powers of the same order flow in two different p_T bins has been calculated by Hydrodynamic [24]. Naturally, a mix-order factorization ratio weighted with different powers of Q_n can be defined as

$$r_{m|n;k}(p_T^a, p_T^b) = \frac{V_{m|n;k}(p_T^a, p_T^b)}{\sqrt{V_{m|m;k}(p_T^a, p_T^a)V_{n|n;k}(p_T^b, p_T^b)}};$$

$$V_{m|n;k}(p_T^a, p_T^b) = \langle Q_m(p_T^a)^kQ_n^*(p_T^b)^k \rangle.$$ \hspace{1cm} (5)

For $k = 1$ one recovers the factorization ratio Eq. (4) $r_{m|1}(p_T^a, p_T^b) = r_{m,n}(p_T^b, p_T^b)$.

In this proceeding, the p_T-dependent factorization ratio is investigated in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV for the produced charged particles with the AMPT model [28], respectively. Base on AMPT event-by-event simulation [28], this paper present the factorization ratio by used the scalar-product method [14].

III. RESULTS

Fig. 1 depicts the estimated magnitude of harmonic flow v_n $(n = 4, 5)$ as a function of p_T in 20-60% Pb-Pb collisions at 2.76 and 5.02 TeV from AMPT event-by-event simulations (colored band), respectively. Here, Q_{nA} (Q_{nB}) are particles range in pseudorapidity region $2.9 < \eta < 5.2$ ($-5.2 < \eta < 2.9$), Q_n is charged particles range in pseudorapidity region $|\eta| < 2.4$. It shows that the results of AMPT calculations on Pb-Pb systems are agree with the CMS [14] data with error bars. In Fig. 1,
FIG. 1: (Color online) The magnitude of harmonic flows v_n ($n = 4, 5$) as a function of p_T in 20-60% Pb-Pb collisions at 2.76 and 5.02 TeV from AMPT simulations (colored band), respectively. AMPT results are compared with the CMS [14] data (red points and black points).

FIG. 2: (Color online) Non-linear response coefficients χ_n ($n = 4, 5$) as a function of p_T in 20-60% Pb-Pb collisions at 2.76 and 5.02 TeV from AMPT simulations (colored band), respectively. AMPT results are compared with the CMS [14] data (red points and black points).

The effect of v_n ($n = 4, 5$) increases with transverse momentum increasing, is understood as a consequence of the degree of interaction in the proceeding of transport.

Fig. 2 shows that the non-linear response coefficients χ_n ($n = 4, 5$) as a function of p_T in 20-60% Pb-Pb collisions at 2.76 and 5.02 TeV from AMPT event-by-event simulations (colored band), respectively. AMPT calculations on Pb-Pb systems are compatible with the CMS [14] data for the presented centrality class. In Fig. 2, the χ_n are increases with transverse momentum increasing. The p_T dependent χ_n is quite different than the results of p_T independent χ_n in Ref. [15] where are calculated by difference sub-events in the scalar-product method.

One study for p_T dependent flow vector fluctuations can be via the observable of the factorization ratio, $r_{m,n}$. The results of $r_{m,n}$ are presented in Fig. 3 as a function of the p_T difference $p_T^a - p_T^b$ with $|\Delta \eta| > 2$ in 40-50% Pb-Pb collisions at 2.76 and
FIG. 3: (Color online) Factorization ratio $r_{m,n}$ as a function of p_T in 40-50% Pb-Pb collisions at 2.76 and 5.02 TeV from AMPT simulations (colored band), respectively. The simulate results are compared with the 2.76 TeV on CMS data (red points).
FIG. 4: (Color online) The weighted factorization ratio $r_{2|n,k}$ as a function of p_T in 40-50% Pb-Pb collisions at 2.76 and 5.02 TeV, respectively. Up panels: 2.76 TeV for Pb-Pb collisions. Down panels: 5.02 TeV for Pb-Pb collisions.

FIG. 5: (Color online) Similar distributions as shown in Fig. 4, but for the weighted factorization ratio $r_{3|n,k}$.

5.02 TeV from AMPT event-by-event simulations (colored band), respectively. AMPT results are compared with the CMS [8] data (red points) at 2.76 TeV. In Fig. 3, the factorization ratio $r_{m,n}$ is significantly deviate from unity in non-central collisions. This effect has becomes stronger with an increasing the p_T difference $p_T^a - p_T^b$. It is indicated that p_T dependent flow vector are significant fluctuating in the presented p_T range. From Fig. 3, it shows that the Factorization ratio broken effect is not only for the same order harmonic flow but also for the difference order harmonic flow. These decorrelation can be found in the difference order harmonic flow, e.g. $r_{2,4}$, $r_{2,5}$ and $r_{3,5}$. Note that the higher order harmonic flow are defined by the linear
same order harmonic and the non-linear lower order harmonics in Eq. (1), as a result, correlations of the higher order harmonic with its non-linear lower order harmonic and the same lower order harmonic can be decorrelate due to the initial fluctuations. Furthermore, the decorrelation is weakly dependent on the collision energy.

Fig. 4 and Fig. 5 shows that the weighted factorization ratio \(r_{m,n;k} \) as a function of \(p_T \) in 40-50% Pb-Pb collisions at 2.76 and 5.02 TeV from AMPT event-by-event simulations, respectively. In Fig. 4, the up panels are results of \(r_{2|n;k} \) for 2.76 TeV on Pb-Pb collisions and the down panels are results of \(r_{2|n;k} \) for 5.02 TeV on Pb-Pb collisions, respectively. The charged trigger particles are chosen region in \(2.4 < p_T^b < 3.0 \) GeV/c. It has found that both ratios not agree with unity over the presented \(p_T^b \) range. The correlations involving higher powers of the flow vector yield stronger decorrelation, \(r_{2|n;3} < r_{2|n;2} < r_{2|n;1} \) where is shown in Fig. 4. Similar distributions for the weight factorization coefficient \(r_{3|n;k} \) is also shown in Fig. 5. From Fig. 5, the correlations involving higher powers of the flow vector yield also stronger decorrelation, \(r_{3|n;3} < r_{3|n;2} < r_{3|n;1} \), except for the weighted factorization ratio \(r_{3|4;k} \).

IV. SUMMARY

Base on AMPT event-by-event calculations, this paper has carried out the \(p_T \) dependent \(v_n \) (\(n = 4, 5 \)) and \(r_{m,n} \) by AMPT simulations in non-central Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) and 5.02 TeV, respectively. The results of AMPT calculations on Pb-Pb systems are compatible with the CMS data within error bars. By AMPT simulations, it has found that the Factorization ratio \(r_{m,n} \) value deviates significantly from unity in non-central collisions. Such effect becomes stronger with an increasing the \(p_T \) difference \(p_T^b - p_T^f \). These Factorization ratio broken effect is not only for the same order harmonic flow, but also for the difference order harmonic flow, as a result of initial fluctuations driven decorrelation between the higher order harmonic with its non-linear lower order harmonic and the same lower order harmonic. It has also found that the correlations involving higher powers of the flow vector yield stronger decorrelation, \(r_{m|n;3} < r_{m|n;2} < r_{m|n;1} \) (\(m = 2, 3 \)), except for the weighted factorization ratio \(r_{3|4;k} \).

Acknowledgements

This work was supported by the Youth Program of Natural Science Foundation of Guangxi (China), with Grant No. 2019GXNSFBA245080, the Special fund for talentes of Guangxi (China), with Grant No. GuiKeAD19245157, and also by the Doctor Startup Foundation of Guangxi University of Science and Technology, with Grant No. 19Z19.

[1] E. V. Shurya, Phys. Rept. 61, 71 (1980).
[2] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 80, 064912 (2009) [arXiv:0909.0191 [nucl-ex]].
[3] G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 86, 014907 (2012) [arXiv:1203.3087 [nucl-ex]].
[4] F. Gardim, F. Grassi, P. Ishida, M. Luzum and J.-Y. Ollitrault, Phys. Rev. C 100, 054905 (2019) [arXiv:1906.03045 [nucl-th]].
[5] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 107, 252301 (2011) [arXiv:1105.3928 [nucl-ex]].
[6] G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 90, 024905 (2014) [arXiv:1403.0489 [nucl-ex]].
[7] G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 92, 034903 (2015) [arXiv:1504.01289 [nucl-ex]].
[8] V. Khachatryan et al. [CMS Collaboration], Phys. Rev. C 92, 034911 (2015) [arXiv:1503.01692 [nucl-ex]].
[9] L. Yan and J.-Y. Ollitrault, Phys. Lett. B 744, 82 (2015) [arXiv:1502.02502 [nucl-th]].
[10] J. Qian, U. Heinz, and J. Liu, Phys. Rev. C 93, 064901 (2016) [arXiv:1602.02813 [nucl-th]].
[11] D. Teaney and L. Yan, Phys. Rev. C 86, 044908 (2012) [arXiv:1206.1905 [nucl-th]].
[12] S. Acharya et al. [ALICE Collaboration], [arXiv:1912.00740 [nucl-ex]].
[13] J. Milosevic, [arXiv:1708.09717 [nucl-ex]].
[14] CMS, [CMS Collaboration], [CMS-PAS-HIN-16-018].
[15] A. Sirunyan et al. [CMS Collaboration], [arXiv:1910.08789 [nucl-ex]].
[16] S. Acharya et al. [ALICE Collaboration], [arXiv:2002.00633 [nucl-ex]].
[17] K. Aamodt et al. [ALICE Collaboration], Phys. Lett. B 708, 249 (2012) [arXiv:1109.2501 [nucl-ex]].
[18] F. Gardim, F. Grassi, Frederique, M. Luzum and J.-Y. Ollitrault, Phys. Rev. C 87, 031901 (2013) [arXiv:1211.0989 [nucl-th]].
[19] U. Heinz, Z. Qiu and C. Shen, Phys. Rev. C 87, 034913 (2013) [arXiv:1302.3535 [nucl-th]].
[20] M. Aaboud et al. [ATLAS Collaboration], Eur. Phys. J. C 78, 142 (2018) [arXiv:1709.02301 [nucl-ex]].
[21] W. Zhao, H. Xu and H. Song, Eur. Phys. J. C 77, 645 (2017) [arXiv:1703.10792 [nucl-th]].
[22] P. Bozek and W. Broniowski, Phys. Rev. C 97, 034913 (2018) [arXiv:1711.03325 [nucl-th]].
[23] C. Bourjau, [arXiv:1807.05004 [nucl-th]].
[24] P. Bozek, Phys. Rev. C 98, 064906 (2018) [arXiv:1808.04248 [nucl-th]].
[25] S. Chatrchyan et al. [CMS Collaboration], JHEP 02, 088 (2014) [arXiv:1312.1845 [nucl-ex]].
[26] G. Aad et al. [ATLAS Collaboration], [arXiv:2001.04201 [nucl-ex]].
[27] S. Acharya et al. [ALICE Collaboration], JHEP 1709, 032 (2017) [arXiv:1707.05690 [nucl-ex]].
[28] Z.-W. Lin, C. Ko, B.A. Li, B. Zhang and S. Pal, Phys. Rev. C 72, 064901 (2005) [arXiv:nucl-th/0411110 [nucl-th]].