Immunity benefits of yoga and physical exercises in the era of COVID-19 Pandemic

Karuppasamy Govindasamy 1ABCDE, Chandrababu Suresh 1BC, Mithin Anand 2BCD, Saran KS 3BCD, Mou Pramanik 4ABCDE, Dilpreet Kaur 5ABCDE, Imen Achouri 6BCD, Hiba Boughanmi 6BCD

1Department of Physical Education and Sports Science, College of Science and Humanities, SRM Institute of Science and Technology
2Govt. College of Physical Education, East Hill, Calicut, Kerala, India
3Department of Physical Education, C.K.G.Memorial Govt. College, India
4Department of Yoga, College of Science and Humanities, SRM Institute of Science and Technology, India
5Department of Physical Education, Chandigarh University, India
6Department of Physical Education & Sports Science, Higher Institute of Sport and Physical Education, Tunisia

Authors’ Contribution: A – Study design; B – Data collection; C – Statistical analysis; D – Manuscript preparation; E – Funds Collection

DOI: https://doi.org/10.34142/HSR.2022.08.03.08

Corresponding author: Karuppasamy Govindasamy, gowthamadnivog@gmail.com; https://orcid.org/0000-0002-3019-5545 Department of Physical Education and Sports Science, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India.

How to Cite
Karuppasamy Govindasamy, Chandrababu Suresh, Mithin Anand, Saran KS, Mou Pramanik, Dilpreet Kaur, Imen Achouri, Hiba Boughanmi. Assessment of the functional status and level of physical fitness of people living Immunity benefits of yoga and physical exercises in the era of COVID-19 Pandemic. Health, Sport, Rehabilitation. 2022;8(3):99-110. https://doi.org/10.34142/HSR.2022.08.03.08

Abstract

Purpose. The novel coronavirus is the recently emerged disease of the respiratory system for which various national and international research agencies are putting joint efforts towards finding a permanent cure. Recently, the vaccine against coronavirus has been designed by various pharmaceutical agencies that are currently undergoing clinical trials. Since vaccines prevent infection by strengthening the defense system of the body, we proposed that yoga and physical exercises could act as an integrative approach to synergize the immunogenic response of the coronavirus vaccine. Yoga and physical exercises are already known to boost immunity against several other infections.

Materials and Methods. In the present review article, we aimed towards exploring the role of yoga and physical exercise as an immunity booster against coronavirus infection. Being India is a low-income country, yoga and physical exercises could be an excellent cost-effective strategy that could be administrated along with vaccine trials to enhance immunity against virus infection.

Results. In the present review, we analyze the studies conducted to date focusing on finding the role of yoga and physical exercises to prevent coronavirus infection. We also described the potential exercises, which are already known to enhance the immunity of the body by particularly targeting respiratory disease.

Conclusion. The present review article will help in providing the health agencies potential targets, which could further be explored to established a standard exercise module to enhance the vaccine-mediated immunity against coronavirus infection.

Key Words: coronavirus, vaccine, physical exercises, COVID-19, yoga
Анотація

Каруппасамі Говіндасамі, Чандрабабу Суреш, Моу Праманік, Дилпріт Каур, Імен Ачурі, Хіба Буганмі. Переваги йоги та фізичних вправ для імунітету в епоху пандемії COVID-19

Мета. Новий коронавірус — це нещодавно виникла хвороба дихальної системи, від якої різні національні та міжнародні дослідницькі агенції докладають спільних зусиль, щоб знайти постійне лікування. Нещодавно різними фармацевтичними агенціями була розроблена вакцина проти коронавірусу, яка зараз проходить клінічні випробування. Оскільки вакцини запобігають інфекції шляхом зміцнення захисної системи організму, ми запропонували йогу та фізичні вправи діяти як інтегративний підхід до синергії імуногенної відповіді вакцини проти коронавірусу. Вже відомо, що йога та фізичні вправи зміцнюють імунітет проти кількох інших інфекцій.

Матеріали та методи. У цій оглядовій статті ми мали на меті дослідити роль йоги та фізичних вправ як засобів підвищення імунітету проти коронавірусної інфекції. Оскільки Індія є країною з низьким рівнем доходу, йога та фізичні вправи можуть бути чудовою економічно ефективною стратегією, яку можна застосовувати разом із випробуваннями вакцини для підвищення імунітету проти вірусної інфекції.

Результати. У цьому огляді ми аналізуємо дослідження, проведені на сьогоднішній день, зосереджені на з’ясуванні ролі йоги та фізичних вправ у запобіганні зараження коронавірусом. Ми також описали потенційні вправи, які вже відомі для підвищення імунітету організму, особливо спрямованого на респіраторні захворювання.

Висновок. Ця оглядова стаття допоможе надати агентствам охорони здоров’я потенційні цілі, які можна було б додатково вивчити, щоб створити стандартний модуль вправ для посилення вакциноопосередкованого імунітету проти коронавірусної інфекції.

Ключові слова: коронавірус, вакцина, фізичні вправи, COVID-19, йога

Аннотация

Каруппасами Говиндасами, Чандрабабу Суреш, Моу Праманик, Дилприт Каур, Имен Ачури, Хиба Боганми. Польза йоги и физических упражнений для иммунитета в эпоху пандемии COVID-19

Цель. Новый коронавирус — это недавно появившееся заболевание дыхательной системы, для которого различные национальные и международные исследовательские агентства прилагают совместные усилия для поиска постоянного лекарства. Недавно вакцина против коронавируса была разработана различными фармацевтическими агентствами, которые в настоящее время проходят клинические испытания. Поскольку вакцины предотвращают инфекцию, укрепляя защитную систему организма, мы предположили, что йога и физические упражнения могут выступать в качестве интегративного подхода для синергизма иммуногенного ответа вакцины против коронавируса. Уже известно, что йога и физические упражнения повышают иммунитет против некоторых других инфекций.

Материалы и методы. В настоящей обзорной статье мы стремились изучить роль йоги и физических упражнений в качестве усиления иммунитета против коронавирусной инфекции. Поскольку Индия является страной с низким уровнем дохода, йога и физические упражнения могут стать отличной рентабельной стратегией, которую можно применить вместе с испытаниями вакцины для повышения иммунитета против вирусной инфекции.

Результаты. В настоящем обзоре мы анализируем проведенные на сегодняшний день исследования, посвященные выявлению роли йоги и физических упражнений в профилактике коронавирусной инфекции. Мы также описали потенциальные упражнения, которые, как уже известно, повышают иммунитет организма, в частности, нацелены на респираторные заболевания.

Вывод. Настоящая обзорная статья поможет предоставить агентствам здравоохранения потенциальные цели, которые можно было бы дополнительно изучить для создания стандартного модуля упражнений для повышения опосредованной вакциной иммунитета против коронавирусной инфекции.

Ключевые слова: коронавирус, вакцина, физические упражнения, COVID-19, йога
Introduction

The organized, coordinated, and repeated movement of body parts created by skeletal muscles that result in energy expenditure is known as physical exercises. Physical exercise can include sports activity, yoga, aerobics, running and other outdoor games [1]. Yoga is the traditional an ancient art of mind body balance which is practiced in India from centuries. Yoga and physical exercises are popular worldwide for achieving physical and mental fitness and are recommended as core elements of balanced living. Yoga and physical exercise, besides managing excess body weight, helps in fighting communicable diseases which may include viral infections, systemic inflammation and chronic non-communicable diseases. A large volume of studies has highlighted the applications of physical activities in maintaining homeostasis in non-communicable diseases also by lowering stress levels and boosting of immune power of the body [2]. Due to the lack of allopathic treatment of recently emerged novel coronavirus disease, various strategies such as social distancing and personal sanitization has been recommended by various health agencies to prevent COVID-19 infection. Health agencies have recommended that individuals should take necessary protective steps to increase their immunity, strengthen the respiratory system, and alleviate fear, fatigue, and depression. Currently, vaccines have been designed by various pharmaceutical companies to activate the body defense system to prevent coronavirus infection [3].

Since vaccines prevent viral infection by strengthening the immune system of the body, we proposed that if vaccine trials are integrated with yoga and physical exercises, it can help in boosting the immunogenic response of the coronavirus vaccine. In the present article, we performed an integrative analysis of literature on the role of physical activity in enhancing immunity against coronavirus infection. For this, the bibliographic analysis performed for the knowledge of respiratory diseases, effects of physical activity on the immune system and indicated an understanding of the latest research on coronavirus infection immunopathogenesis, including its interaction with the physical and health conditions of the host.

Materials and Methods

Search Strategy and Selection Criteria

References for this review were identified through searches of PubMed for articles published by the use of the terms “Coronavirus,” “COVID-19,” “SARS-CoV-2,” and “Yoga and physical exercise and immunity.” Relevant articles published were identified through searches in the authors’ files, in Google Scholar, Research Gate, and Springer Online Archives Collection. Materials resulting from these searches and relevant references cited in those articles were reviewed, and information from relevant articles was incorporated in the present review. Articles published in a language other than English were not included in the present review. We administered a search strategy designed with the help of a multidisciplinary team including a librarian MeSH terms "Coronavirus," "COVID-19," “SARS-CoV-2,” and "Yoga and physical exercise and immunity" on January 12th, 2021. To be included, the studies should have administered physical activity or Yoga for improving immunity in any population. We have not excluded the studies based on the diseased population as we wished the present study findings should be generalized for the global population. Articles published in a language other than English were not included in the present review. Our sample search strategy administered in the Embase is "/(physical activity/exp OR 'physical activity OR 'exercise'/exp OR exercise OR 'yoga'/exp OR yoga) AND (immune system' OR immunity) AND 'coronavirus disease 2019". We found 16 articles relevant and included for the final analysis and narrative synthesis (fig.1).

Results

Novel Coronavirus COVID-19 Pandemic

The novel coronavirus is a disease of the respiratory system, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In February 2020, the world health organization declared the name COVID-19 to coronavirus infection [4]. The outbreak of novel coronavirus occurred from the Wuhan city of China in December 2019 by the zoonotic transmission of viruses from animals to humans. COVID-19 is the fourth emerged novel coronavirus after HCoV-229E, SARS, and MERS-CoV [5]. Being contagious, the disease is spreading fiercely around the world within weeks taking the form of a pandemic. The infected person shows the symptoms of fever, fatigue, cough, chest congestion, difficulty in breathing, and inflammation in the lungs [6]. The appearance of symptoms may take a week after the infection, which makes it very difficult to diagnose the infection based on symptoms. Molecular testing methods that confirm the three viral genes- E, RdRp and N, in nasopharyngeal and oropharyngeal swabs using the
RT-PCR can diagnose disease before the appearance of symptoms [5], but due to the high cost and requirement of sophisticated laboratory facilities, mass testing is not feasible at the time of an outbreak. Due to unavailability of cheap detection method and specific pharmaceutical treatment or vaccine of the viral infection, alternative strategies which could limit the infection, is implemented all around the world. The worldwide outbreak of the pandemic of COVID-19 has contributed to a massive global health crisis. In contrast to seasonal influenza, SARS-CoV-2 mainly spreads through droplets, and is suggested to have greater transmissibility. Due to spread of COVID-19 vis asymptomatic or minimally symptomatic individuals who do not pursue any clinical examination, pandemic emerges as a major health concern [7].

Fig. 1. Flowchart showing the search strategy and inclusion of studies from the peer reviewed data bases

Table 1

Immune Component	Function	Role of Yoga and Exercise	Reference
Cytokines	Inhibition of pro-inflammatory cytokines production including IL-1, IL-2, IL-12, IL-18, IFN-γ and TNF-α	Muscle contraction during exercise leads to upregulation of antinflammatory and pro-inflammatory cytokines by	[17]
Neutrophils	Recruit inflammatory mediators like TNF-α and IL-1β	Aerobic exercise led to significant reduction in neutrophil	[18]
Leukocytes	Fight infection and defend the body against other foreign material	Physical activity enhances concentration of circulating leukocyte	[19]
Natural killer cells (NKs)	Control several types of tumors and microbial infections	NK cells enhance due to cellular stress promoted by physical exercise	[20]

Immune Compromisation in COVID-19

Immune response of the body act at two levels, innate immunity and adaptive immunity. The innate immune response involves the physical and chemical barriers which restrict the entry of pathogen in the body. Certain immune cells such as macrophages, dendritic cells, natural killer cells,
neutrophils are part of innate immunity. Apart from the cellular barriers, there are molecular barriers such as cytokines, interleukins, nitric oxide and anion superoxide which eliminate the invading pathogen. The more specific immune response is adaptive immunity which has cellular barriers made up of T lymphocytes and B lymphocytes and their products, such as antibodies and cytokines [2]. The host's immunity is an essential factor to promote infection eradication. Severely affected COVID-19 patients exhibit the compromised immune systems indicated by lymphopenia and elevated levels of C-reactive protein. Fever, exhaustion, and dry cough are predominant symptoms present in patients with COVID-19. Most patients have a better prognosis, but elderly patients and those with chronic underlying disorders may have worse outcomes [8]. In the early infection stages, patients are usually afebrile with only chills and respiratory symptoms [9]. The clinical symptoms may range from asymptomatic or moderate symptomatic to extreme forms of respiratory failure that may require ventilation support in the intensive care unit (ICU). Additional symptoms may involve sepsis, septic shock, and multiple organ dysfunction syndromes or multi-organ and systemic manifestations [10].

Fig. 2. Body immune response against coronavirus [11].

Table 2

Study Type/Name	Study Population and Duration	Type of intervention	Outcomes assessed	Main Findings	Reference
Effect of integrated yoga practices on immune responses in examination stress-A preliminary study	60 first year MBBS students randomly assigned to control and yoga group	Integrated yoga practice for 35 minutes daily for 12 weeks	IL-4 and INF-γ level	Decrease in serum IL-4 and INF-γ level	[27]
Randomized trial of yoga as a complementary therapy for pulmonary tuberculosis	pulmonary tuberculosis patients	Yoga for 60 minutes per day six time per week along with regular treatment for pulmonary tuberculosis	Symptom score	Reduced symptom score was found in yoga group	[28]
Effects of prenatal yoga on women's stress and immune function across pregnancy: A randomized controlled trial	94 healthy pregnant women	20-week yoga intervention	Salivary cortisol and IgA	Yoga group exhibit high cortisol and low IgA	[29]
Gene expression profiling in practitioners of Sudarshan Kriya	42 practitioners of Sudarshan Kriya	Gene expression in control vs. practitioners of Sudarshan Kriya	Antiapoptotic genes and antioxidant genes	Level of lymphocytes is upregulated due to high expression of	[30]
Study Title	Sample Size	Intervention Details	Outcomes	Reference	
---	-------------	---	---	-----------	
Yoga stretching for improving salivary immune function and mental stress in middle-aged and older adults	23 adult women	Yoga practice for 90 minutes	Salivary cortisol and IgA level	[22]	
Effects of meditation on the T-lymphocytes, B-lymphocytes and natural killer cells production	11 experienced meditators	1 hour meditation for 4 months	B Cells and T cells, NK Cells	[31]	
Regular yoga practice improves antioxidant status, immune function, and stress hormone releases in young healthy people:	25 Healthy university students	Yoga practice for 60 minutes for 12 weeks	Oxidative stress and antioxidant components	[32]	
Impact of yoga-based mind-body intervention on systemic inflammatory markers and co-morbid depression in active Rheumatoid arthritis patients	72 Rheumatoid arthritis patients	8-week yoga	Systemic inflammatory markers	[33]	
Comparative efficacy of a 12-week yoga-based lifestyle intervention and dietary intervention on adipokines, inflammation, and oxidative stress in adults with metabolic syndrome	260 young adults	12-week yoga-based lifestyle intervention	IL-6, TNF-alpha	[34]	
Effect of Hatha yoga training on rhinitis symptoms and cytokines in allergic rhinitis patients	30 allergic rhinitis patients	Hatha yoga for 60 minutes/ 3 times per week/ for 8 weeks	Cytokine level	[35]	
Coronavirus Vaccine Trials in India

Several biotech organizations, such as the Serum Institute of India, Bharat Biotech, Premas Biotech, and Zydus Cadila, have been actively involved in vaccine trials. The Serum Institute of India has a rich history of developing tetanus, flu, rabies, measles, and mumps vaccines. With Codagenix, the Serum Institute of India is exploring the potential of a live-attenuated vaccine against COVID-19. Apart from deCodagenix, the Serum Institute of India has also collaborated with the New York-based firm to develop the COVID-19 vaccine. India also has a collaboration with Oxford University to develop the Oxford COVID-19 or ChAdOx1 nCoV-19 vaccine. Bharat Biotech in partnership with the University of Wisconsin and FluGen Inc., and Thomas Jefferson University, has is developing a one-drop nasal vaccine called "CoroFlu" against COVID-19. Besides, Premas Biotech uses recombinant proteins to create the new COVID-19 vaccine with Akers Biosciences jointly. Likewise, Zydus Cadila has developed a COVID-19 vaccine called ZyCoV-D [3].

Discussion

Yoga and physical exercises Can Boost Immunity against coronavirus

The host’s immunity is an essential condition to promote infection eradication and, therefore, to combat the COVID-19 infection, the host must possess and robust immune system. Patients infected with the coronavirus known to have a disturbed immune system [12]. An important clinical feature of COVID-19 is impaired immunity characterized by lymphopenia and elevated CRP levels [9]. The frequent representation of elderly people in cases infected with COVID-19 indicates the possible role of immunosenescence that underlies their vulnerability to the infection. The magnitude and outcome of the viral infection may be either the result of a successful cellular/innate immune response that fights SARS-CoV-2, as seen in patients with mild clinical signs of infection, or a state of immunosuppression weakens the host’s defense and often overwhelms it. Several studies have highlighted the positive effect of yoga and physical exercises in the management of communicable diseases like influenza, tuberculosis (TB), and acquire immune deficiency syndrome in which the state of the immune system is an essential factor in the development of the disease [10]. Yoga and physical exercises have been found to prevent acute respiratory illness [12]. Breathing exercises have been reported in previous studies to enhance immunity, which helps combat viral infections subsequentially [13].

Despite the lack of reliable evidence on how physical activity strengthens the immune response to the coronavirus, multiple studies show that daily yoga and physical exercise is explicitly connected to reduced mortality from respiratory diseases, better vaccination response, and general metabolic homeostasis [14]. Daily yoga and physical exercise helps to strengthen the immune system while helping to reduce respiratory disorders and thereby defend against infections such as COVID-19 [15]. Yoga and physical exercise is much more critical for the elderly population, as these people typically have larger comorbidities and are more prone to developing the disease in comparison to the current coronavirus [16]. Proposed that people who have been healthy during their lives have less prominent features of immunosenescence, which could be a likely preventive factor against the occurrence of COVID-19 complications.

Innate and adaptive immunity function in a synchronized manner to fight against viral infections which otherwise can cause immunopathology. Physical activity of moderate strength is responsible for enhancing the anti-pathogenic activity of macrophages thus increasing the circulation of immune cells, immunoglobulins and anti-inflammatory cytokines, thereby reducing the pathogenic load on organs such as the lung and decreasing the risk of lung damage due to inflammatory cell infiltration [21]. Inflammatory responses and stress factors are reduced during daily yoga and physical exercise while lymphocytes, NK cells, immature B cells and monocytes are elevated. Therefore, there is an increase in immune vigilance and a decline in the systemic inflammatory response. Molecular mechanisms based on yoga and physical exercise are known to increase or decrease the levels of INF-γ, thus exhibiting a buffering action to restore the imbalance marked by either suboptimal or excessive expression of immune responses. Yoga and physical exercises could improve innate immune responses during incubation periods of viral infection by regulating the IFN-γ levels [22]. The level of various immune cells including CD4, CD8, B-lymphocytes and Natural Killer cells, knows to shift towards homeostasis level via yoga and physical exercises [23]. NK cells are innate lymphocytes that act as the first line of protection against the spread and eventual tissue damage of invading viruses. The available evidence confirms that pro-inflammatory markers, including interleukin-1 (IL-1) beta, IL-6...
and tumor necrosis factor (TNF)-alpha, maybe downregulated by yoga and physical exercises [2].

Severe COVID-19 infection is correlated with cytokine storms represented by increased cytokine levels (IL-6, IL-10, and TNF-α), lymphopenia (in CD4+ and CD8+ T cells), and decreased IFN-γ expression in CD4+ T cells [24]. The contraction of the muscle during the yoga and physical exercise enhances the production of anti-inflammatory (IL-10 and TGF-β) and pro-inflammatory cytokines (IL-1, IL-2, IL-12, IL-18, IFN-γ and TNF-α) in a duration and strength dependent manner [25]. The stimulation of the muscle fiber during yoga and physical exercise is responsible for increasing the release of calcium (Ca2+) and thereby facilitating the synthesis of pro-inflammatory cytokines, namely TNF-alpha and IL-1β, which function in the production of selectins, which in turn draw neutrophils to the site [26]. Physical activity is also responsible for increasing circulating leukocyte concentrations due to the shearing of immune cells, especially secondary lymphoid tissues such as the liver, spleen and lungs, in the blood vessels. After continuous yoga and physical exercise, the leukocyte concentration stays high with a peak of 30-120 minutes, which can last for up to 24 hours [19]. For populations at risk or already suffering from COVID-19, yoga and physical exercises could be a complementary intervention.

Conclusion

Coronavirus vaccines are a promising measure to end to COVID-19 pandemic. The yoga and physical exercise, which is already known to enhance the immune response in many vaccine trials, could be integrated with the COVID-19 vaccine trials to enhance the immunogenic potential of the vaccine. Other advantages offered by yoga and physical exercise may include improved immune vigilance, enhanced immune competence, avoidance or elimination of overweight, improved physical and cardiopulmonary conditioning, attenuation of systemic pro-inflammatory and pro-thrombotic disorders, reduction of oxidative stress, improvement of glycemic, insulinic and lipid metabolisms, as well as improvement of the reaction to vaccination. Therefore, the studies which could highlight the role of yoga and physical exercises in enhancing immunogenic response to coronavirus vaccine should be conducted to establish a direct correlation.

Acknowledgements

Authors wish to thank Dr. R. Mohanakrishnan, Director of Sports, Department of Physical Education and Sports Sciences, College of Science and Humanities, SRM Institutes of Science and Technology, Kattankulathur, Tamilnadu, India for his support towards research.

Funding

No funding sources

Conflicts of interest

None of the authors have any competing interests concerning the review.

Ethics approval and consent to participate

Not Applicable

References

1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. *Public health reports*. 1985;100(2):126.
2. da Silveira MP, da Silva Fagundes KK, Bizuti MR, Starck E, Rossi RC, e Silva DTdR. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. *Clinical and experimental medicine*. 2020;1-14.
3. Chakraborty C, Agoramoothy G. India’s cost-effective COVID-19 vaccine development initiatives. *Vaccine*. 2020.
4. Anon. Stop the coronavirus stigma now. *Nature*. 2020;580:165.
5. Chatterjee P, Nagi N, Agarwal A, Das B, Banerjee S, Sarkar S, et al. The 2019 novel coronavirus disease (COVID-19) pandemic: A review of the current evidence. *Indian Journal of Medical Research*. 2020;151(2):147.
6. De Felice F, Polimeni A, Valentini V. The impact of Coronavirus (COVID-19) on head and neck cancer patients’ care. *Radiotherapy and Oncology*. 2020;147:84.
7. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *The lancet*. 2020;395(10223):497-506. Parodi SM, Liu VX. From
containment to mitigation of COVID-19 in the US. Jama. 2020;323(15):1441-2.

8. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Nature Publishing Group, 2020.

9. Zhang J, Zhou L, Yang Y, Peng W, Wang W, Chen X. Therapeutic and triage strategies for novel coronavirus disease in fever clinics. The Lancet Respiratory Medicine. 2020;8(3):e11-e2.

10. Nagarithna R, Nagendra H, Majumdar V. A perspective on yoga as a preventive strategy for coronavirus disease 2019. International Journal of Yoga. 2020;13(2):89.

11. Ye Yi, Lagniton PN, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. International journal of biological sciences. 2020;16(10):1753.

12. Nagendra H. Yoga for COVID-19. International Journal of Yoga. 2020;13(2):87.

13. Malik N, Sharma A. Yogic Interventions for Psycho-Physical Well-Being Under Covid-19 Times & After. Asia Pacific Journal of Health Management. 2020;15(3):80-8.

14. Laddu DR, Lavie CJ, Phillips SA, Arena R. Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic. Progress in Cardiovascular Diseases. 2020.

15. Nieman D. Coronavirus Disease-2019: a tocsin to our aging, unfit, corpulent, and immunodeficient society. J Sport Health Sci. 2020.

16. Damiot A, Pinto AJ, Turner JE, Gualano B. Immunological implications of physical inactivity among older adults during the COVID-19 pandemic. Gerontology. 2020;66(5):431-8.

17. Terra R, Silva SAGd, Pinto VS, Dutra PML. Efeito do exercício no sistema imune: resposta, adaptação e sinalização celular. Revista brasileira de medicina do esporte. 2012;18(3):208-14.

18. Wolach B, Gavrieli R, Ben-Dror SG, Zigel L, Eliakim A, Falk B. Transient decrease of neutrophil chemotaxis following aerobic exercise. Medicine and science in sports and exercise. 2005;37(6):949-54.

19. Matthews CE, Ockene IS, Freedson PS, Rosal MC, Merriam PA, Hebert JR. Moderate to vigorous physical activity and risk of upper-respiratory tract infection. Medicine and science in sports and exercise. 2002;34(8):1242-8.

20. Dela F, Mikines KJ, Von Linstow M, Galbo H. Heart rate and plasma catecholamines during 24 h of everyday life in trained and untrained men. Journal of Applied Physiology. 1992;73(6):2389-95.

21. Nieman DC, Wentz LM. The compelling link between physical activity and the body’s defense system. Journal of sport and health science. 2019;8(3):201-17.

22. Eda N, Ito H, Shimizu K, Suzuki S, Lee E, Akama T. Yoga stretching for improving salivary immune function and mental stress in middle-aged and older adults. Journal of women & aging. 2018;30(3):227-41.

23. Infante JR, Peran F, Rayo JI, Serrano J, Domínguez ML, García L, et al. Levels of immune cells in transcendent meditation practitioners. International journal of yoga. 2014;7(2):147.

24. Pedersen SF, Ho Y-C. SARS-CoV-2: a storm is raging. The Journal of clinical investigation. 2020;130(5).

25. Cannon JG. Inflammatory cytokines in nonpathological states. Physiology. 2000;15(6):298-303.

26. Lavie CJ, Lee D-c, Sui X, Arena R, O’Keefe JH, Church TS, et al., editors. Effects of running on chronic diseases and cardiovascular and all-cause mortality. Mayo Clinic Proceedings; 2015: Elsevier.

27. Gopal A, Mondal S, Gandhi A, Arora S, Bhattacharjee J. Effect of integrated yoga practices on immune responses in examination stress–A preliminary study. International journal of yoga. 2011;4(1):26.

28. Visweswararaha NK, Telles S. Randomized trial of yoga as a complementary therapy for pulmonary tuberculosis. Respiriology. 2004;9(1):96-101.

29. Chen P-J, Yang L, Chou C-C, Li C-C, Chang Y-C, Liaw J-J. Effects of prenatal yoga on women’s stress and immune function across pregnancy: A randomized controlled trial. Complementary therapies in medicine. 2017;31:109-17.

30. Sharma H, Datta P, Singh A, Sen S, Bhardwaj NK, Kochupillai V, et al. Gene expression profiling in practitioners of Sudarshan Kriya. Journal of psychosomatic research. 2008;64(2):213-8.

31. Naumtung Y, Vorapongpiboon S, Thongpan A, Boonyaprasit S. Effects of meditation on the T-lymphocytes, B-lymphocytes and natural killer cells production. Agriculture and Natural Resources. 2005;39(4):660-5.

32. Lim S-A, Cheong K-J. Regular yoga practice improves antioxidant status, immune function, and stress hormone releases in young healthy people: a randomized, double-blind, controlled pilot study. The Journal of Alternative and Complementary Medicine. 2015;21(9):530-8.

33. Gautam S, Tolahunase M, Kumar U, Dada R. Impact of yoga based mind-body intervention on systemic inflammatory markers and co-morbid depression in active Rheumatoid arthritis patients: A randomized controlled trial. Restorative neurology and neurosciences. 2019;37(1):41-59.

34. Yadav R, Yadav RK, Khadgawat R, Pandey RM. Comparative efficacy of a 12 week yoga-based lifestyle intervention and dietary intervention on adipokines, inflammation, and oxidative stress in adults with metabolic syndrome: a randomized controlled trial. Translational behavioral medicine. 2019;9(4):594-604.

35. Chanta A, Klaewsongkram J, Mickleborough TD, Tongtako W. Effect of Hatha yoga training on rhinitis symptoms and cytokines in allergic rhinitis patients. Asian Pac J Allergy Immunol. 2019.
Information about authors

Karuppasamy Govindasamy
gowthamadnivog@gmail.com
https://orcid.org/0000-0002-3019-5545
Department of Physical Education and Sports Science, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India

Chandrababu Suresh
sureshc@srmist.edu.in
https://orcid.org/0000-0002-2385-1831
Department of Physical Education and Sports Science, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India

Mithin Anand
mithin.anand@gmail.com
https://orcid.org/0000-0002-8126-4299
Govt. College of Physical Education, East Hill, Calicut, Kerala, India

Saran KS
sarank32@gmail.com
https://orcid.org/0000-0002-0145-4405
Department of Physical Education, C.K.G.Memorial Govt. College, Perambra, Calicut, Kerala, India

Mou Pramanik
moupramanik1991@gmail.com
https://orcid.org/0000-0002-7560-9019
Department of Yoga, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India

Dilpreet Kaur
dilpreet.kaur2818@gmail.com
https://orcid.org/0000-0003-0517-1688
Department of Physical Education, Chandigarh University, Gharuan, 140413, Mohali, Punjab, India

Imen Achouri
imenachouri2021@gmail.com
https://orcid.org/0000-0003-1051-6978
Department of Physical Education & Sports Science, Higher Institute of Sport and Physical Education, University of Sfax, Sfax, 3000, Tunisia

Hiba Boughanmi
hiba.boughanmi1@yahoo.com
https://orcid.org/0000-0002-6512-478X
Department of Physical Education & Sports Science, Higher Institute of Sport and Physical Education, University of Sfax, Sfax, 3000, Tunisia

Інформація про авторів

Каруппасамі Говіндасами
gowthamadnivog@gmail.com
https://orcid.org/0000-0002-3019-5545
Кафедра фізичного виховання та спортивних наук, Науково-гуманітарний коледж, Інститут науки та технологій SRM, Каттанкулатур-603203, Тамілнаду, Індія

Чандрабабу Суреш
sureshc@srmist.edu.in
Кафедра фізичного виховання та спортивних наук, Науково-гуманітарний коледж, Інститут науки та технологій SRM, Каттанкулатур, Тамілнаду, Індія
Мітін Ананд
mithin.anand@gmail.com
https://orcid.org/0000-0002-8126-4299
Урядовий Коледж фізичного виховання, Іст-Хілл, Калікут, Керала, Індія

Саран КС
sarank32@gmail.com
https://orcid.org/0000-0002-0145-4405
Департамент фізичного виховання, С.К.Г.Memorial Govt. Коледж, Перамбра, Калікут, Керала, Індія

Моу Праманік
mouparamanik1991@gmail.com
Департамент йоги, Науково-гуманітарний коледж, Інститут науки та технологій SRM, Каттанкулатур, Тамілнаду, Індія

Ділпріт Каур
dilpreet.kaur2818@gmail.com
Факультет фізичного виховання, Університет Чандігарха, Гаруан, 140413, Мохалі, Пенджаб, Індія

Імен Ачурі
imenachouri2021@gmail.com
Кафедра фізичного виховання та спортивних наук, Департамент фізичного воспитания и спорта, Колледж естественных и гуманитарных наук, Институт науки и технологий SRM, Каттанкулатур-603203, Тамілнаду, Індія

Хіба Буганмі
hiba.boughannmi1@yahoo.com
Кафедра фізичного виховання та спортивних наук, Департамент йоги, Науково-гуманітарний коледж, Інститут науки та технологій SRM, Каттанкулатур, Тамілнаду, Індія

Інформація об авторах

Каруппасами Говиндасами
gowthamadnivog@gmail.com
https://orcid.org/0000-0002-3019-5545
Департамент фізичного виховання та спортивних наук, Департамент фізичного воспитания и спорта, Колледж естественных и гуманитарных наук, Институт науки и технологий SRM, Каттанкулатур-603203, Тамілнаду, Індія

Чандрабабу Суреш
sureshc@srmist.edu.in
Департамент фізичного виховання та спортивних наук, Департамент фізичного воспитания и спорта, Колледж естественных и гуманитарных наук, Институт науки и технологий SRM, Каттанкулатур-603203, Тамілнаду, Індія

Митин Ананд
mithin.anand@gmail.com
https://orcid.org/0000-0002-8126-4299
Правительственный Коледж фізичного виховання, Іст-Хілл, Калікут, Керала, Індія

Саран КС
sarank32@gmail.com
https://orcid.org/0000-0002-0145-4405
Департамент фізичного виховання, СКГ Memorial Govt. Коледж, Перамбра, Калікут, Керала, Індія

Моу Праманік
mouparamanik1991@gmail.com
Кафедра йоги, Керала, Індія

Ділпріт Каур
dilpreet.kaur2818@gmail.com
https://orcid.org/0000-0003-0517-1688
Кафедра фізичного воспитания, Чандигархский университет, Гаруан, 140413, Мохалі, Пенджаб, Індія
Имен Ачури
imenachouri2021@gmail.com
Департамент физического воспитания и спортивной науки,
Высший институт спорта и физического воспитания, Университет Сфакса, Сфакс, 3000, Тунис

Хиба Боганми
hiba.boughanmi1@yahoo.com
Кафедра физического воспитания и спортивной науки, Высший институт спорта и физической культуры,
Университет Сфакса, Сфакс, 3000, Тунис

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)