Plasma Levels of the Proinflammatory Chitin-Binding Glycoprotein YKL-40, Variation in the Chitinase 3-Like 1 Gene (CHI3L1), and Incident Cardiovascular Events

Paul M Ridker, MD; Daniel I. Chasman, PhD; Lynda Rose, MS; Joseph Loscalzo, MD, PhD; Jack A. Elias, MD

Background—YKL-40, encoded by the chitinase 3-like 1 (CHI3L1) gene, is a chitinase-like protein involved in innate immune function hypothesized to play a role in the progression of atherosclerosis that may have differential roles in myocardial infarction (MI), as compared to stroke.

Methods and Results—In a nested case-control study conducted within a prospective cohort of 23,294 initially healthy women of European ancestry, we (1) measured plasma concentration of YKL-40 among 359 participants who subsequently developed cardiovascular events and among 359 age-, smoking-, and hormone replacement therapy–matched participants who remained free of disease during 17 years of follow-up, (2) compared effects of YKL-40 on vascular risk to that associated with 3 alternative inflammatory biomarkers (high-sensitivity C-reactive protein [(hsCRP)], soluble intracellular adhesion molecule 1, and fibrinogen), and (3) evaluated the role of 41 single-nucleotide polymorphisms (SNPs) in the chitinase 3-like 1 gene (CHI3L1) as determinants of YKL-40 levels and incident vascular events. YKL-40 levels were higher in women with hypertension, diabetes, and obesity and correlated modestly with high-density lipoprotein cholesterol, triglycerides, and hsCRP, but not with low-density lipoprotein cholesterol. Baseline YKL-40 level was significantly associated with incident thromboembolic stroke with a magnitude of effect (a 40% per quartile increase in odds ratio [OR], \(P=0.019 \)) comparable to that of hsCRP (a 52% per quartile increase in OR, \(P=0.006 \)). By contrast, no significant association was observed between YKL-40 and incident MI. Genetic variation in CHI3L1 was strongly associated with YKL-40 levels; however, in this sample set, we did not observe a statistically significant association between genotype and future vascular events.

Conclusions—Among initially healthy U.S. women, plasma levels of the proinflammatory chitinase-like protein, YKL-40, were influenced by environmental as well as genetic factors and predicted incident thromboembolic stroke, but not MI, a differential effect consistent with limited previous data. (J Am Heart Assoc. 2014;3:e000897 doi: 10.1161/JAHA.114.000897)

Key Words: chitin • genetics • inflammation • innate immunity • myocardial infarction • stroke
those with above median (P<0.001) as well as below median (P=0.02) levels of hsCRP, whereas no association was observed for MI (corresponding P values 0.60 and 0.64). Similarly, in a second Danish cohort, YKL-40 levels in the upper quartile were significantly associated with incident stroke (hazard ratio [HR], 1.63; P=0.001), but, again, showed no association with IMI (HR, 0.73; P=0.2). Finally, in a European population with stable coronary artery disease (CAD), YKL-40 was strongly associated with all-cause mortality inclusive of stroke, but not with recurrent episodes of angina and only marginally with recurrent MI (RMI). This difference, if real, could be of pathophysiological importance because, in contrast to CRP, which is largely produced by hepatocytes, YKL-40 is produced by macrophages and neutrophils within inflamed tissues and thus might reflect better local vascular bed inflammation. However, because YKL-40 is also an acute-phase reactant, it remains uncertain whether this chitinase-like protein plays a direct role in atherothrombosis or, as with other acute-phase biomarkers, reflects an underlying proinflammatory response prevalent among high-risk individuals.

To address these issues, we evaluated the role of YKL-40 as a potential determinant of MI and stroke in an independent prospective cohort of initially healthy U.S. women who were followed over a 17-year period for incident vascular events. Within this cohort, we also sought to understand the relationships of YKL-40 to major cardiovascular (CV) risk (CVR) factors, such as age, diabetes, smoking, and hypertension (HTN), and to a series of measured plasma biomarkers of risk, including traditional lipids, apolipoproteins, homocysteine, and lipoprotein(a). Furthermore, we sought to compare the magnitude of any effects on vascular risk observed for YKL-40 to the magnitude of effect observed for 3 alternative systemic inflammatory biomarkers (hsCRP, sICAM-1, and fibrinogen). Finally, we evaluated the role of a prespecified lead single-nucleotide polymorphism (SNP), rs4950928, and 40 additional SNPs at the chitinase 3-like 1 (CHI3L1) gene locus as potential determinants of YKL-40 levels and for their effect on incident vascular events among the 23 294 study participants of European ancestry.

Methods

Study Cohort and Endpoint Ascertainment

We investigated plasma levels of YKL-40 and genetic polymorphisms in CHI3L1 among initially healthy participants in the prospective Women’s Health Study (WHS) and its associated genome-wide association study, the Women’s Genome Health Study (WGHS). Details of the WHS and WGHS have been provided elsewhere11,12; in brief, the WHS is a nationwide cohort of 39 876 U.S. women aged 45 years and older who were free of CV disease (CVD), cancer, or other major illness at study entry from September 1992 through May 1995. Women initially took part in a randomized factorial trial of aspirin and vitamin E in the primary prevention of CVD and cancer; since trial conclusion in 2004, all participants have continued to be followed prospectively with follow-up rates of 97.2% for morbidity and 99.4% for mortality. Final results of the trial have been published11; neither intervention had a significant effect on the combined endpoint of major CV events (CVEs), including MI, stroke, or death resulting from CV cause. All study participants provided written informed consent. The study protocol was approved by the institutional review board of Brigham and Women’s Hospital (Boston, MA). The WGHS12 is the genetic component of the WHS and includes approximately 25 000 of these women who additionally provided baseline plasma samples, which were collected in EDTA and stored in liquid nitrogen until the time of analysis. Buffy coat samples obtained at this initial blood collection were used as a source of DNA for the genetic analyses.

Once enrolled, all study participants were prospectively followed over an average period of 17 years for the occurrence of first-ever CVEs (MI, thromboembolic stroke, or CV death). The endpoint of MI was confirmed if symptoms of ischemia were present and if the event was associated with diagnostic changes in cardiac enzyme levels or if there were diagnostic electrocardiographic changes. The diagnosis of thromboembolic stroke was confirmed if the patient had a new neurological deficit of >24-hour duration that was not coded by the WHS neurologic endpoint committee as having a primary hemorrhagic origin; computed tomography or magnetic resonance scanning was available for almost all cases. Deaths from coronary heart disease were confirmed by record review, death certificates, autopsy reports, and information provided by family members.

Plasma Studies of YKL-40

For the plasma-based component of the current analysis, we constructed a prospective nested case control study within the WHS in which baseline samples were obtained from 359 study participants of European ancestry who subsequently developed a confirmed CV endpoint during follow-up (cases). For efficiency and to provide comparable power for comparisons of MI and stroke, 146 cases of IMI and 146 incident cases of stroke were included in the cases selected (along with an additional 67 CV deaths). For each of these women, baseline plasma samples were also obtained from a control woman of European ancestry who was selected from the pool of remaining study participants who did not develop CVEs during follow-up (controls). Case and control women were matched on the basis of age (±2 years), smoking status.
Baseline plasma samples from each case (N=359) and control (N=359) participant, which had been stored since study initiation in liquid nitrogen, were thawed and assayed for YKL-40 protein by enzyme-linked immunosassay (R&D Systems, Minneapolis, MN) in a core laboratory certified by the National Heart, Lung and Blood Institute/Centers for Disease Control and Prevention Lipid Standardization program. Matched plasma specimens were analyzed in duplicate, with the position of the case specimen varied at random to reduce systematic bias and minimize interassay variability. In pilot data performed using blinded split plasma samples obtained, shipped, stored, and processed in an identical manner to those used in the main study, intra- and interassay coefficients of variation were <7% across expected ranges of YKL-40. In this pilot, we observed no substantive difference in YKL-40 levels measured before or after 2 freeze-thaw cycles, the same number of cycles used for the main study.

Levels of total and high-density lipoprotein cholesterol (HDL-C) as well as triglycerides (TGs) were measure enzymatically on a Hitachi 911 autoanalyzer (Roche Diagnostics, Basel, Switzerland), whereas low-density lipoprotein cholesterol (LDL-C) was determined directly (Genzyme, Cambridge, MA). Levels of apolipoprotein B100 and apolipoprotein A-I were measured by an immunoturbidimetric technique, also on the Hitachi 911 analyzer (Roche Diagnostics). Plasma levels of homocysteine, lipoprotein(a), hsCRP, fibrinogen, and sICAM-1 were measured in a central core laboratory facility, as previously described.13–15

For the plasma-based analyses, medians and proportions for baseline risk factors were computed for case and control participants and compared using Wilcoxon’s signed-rank test or McNemar’s test. Wilcoxon’s rank-sum test was used to compare plasma YKL-40 values in risk factor subgroups. Spearman’s correlation coefficients were used to evaluate for any evidence of relationship between plasma YKL-40 and a series of other measured lipid and inflammatory biomarkers known to reflect vascular risk in this cohort. Tests for trend were used to evaluate evidence of association between increasing levels of YKL-40 and subsequent vascular risk after dividing the study population into quartiles on the basis of the distribution of control values. Adjusted odds ratios (ORs) were obtained with conditional multivariable logistic regression models that, in addition to conditioning on the matching variables of age, smoking status, and HRT, also adjusted for potential confounding variables (LDL-C, HDL-C, systolic blood pressure, body mass index (BMI), diabetes, and parental history of MI before age 60 years). On an a priori basis, we performed separate analyses for IMI and incident stroke. Finally, we compared the magnitude of any effects observed between YKL-40 and incident vascular events in this prospective case-control study to the magnitude of effect observed in these study samples for 3 other inflammatory biomarkers (hsCRP, fibrinogen, and sICAM-1).

Genetic Studies of CHI3L1

For the genetic component of the current analysis, genotype data were evaluated for 41 SNPs within 110 kb 5’ to 40 kb 3’ of the CHI3L1 encoding YKL-40 protein. Genotypes for 40 of these SNPs were obtained as part of the WGHS, which used the Illumina (San Diego, CA) HumanHap300 Duo+platform to query a genome-wide panel of tag and candidate SNPs, as described previously.12 Given previous data and to avoid issues related to linkage disequilibrium and multiple hypothesis testing, we elected, on an a priori basis, to use rs4950928 as the lead SNP for these analyses. Thus, in addition to the above 40 SNPs, genotypes for rs4950928 were derived by imputation with MaCH v.1.0.16 using the HapMap2 release 22 CEU reference panel and had imputation quality of R^2=0.91. One of the directly genotyped SNPs, rs946263, was in high link disequilibrium (LD; $r^2=0.78$ in 1000 genomes CEU panel) with rs4950928.

To investigate the relationship of genetic variation in CHI3L1 to plasma levels of YKL-40, we limited our analyses to those women who participated in the plasma component of this study and who were of European ancestry (N=614). Median levels of YKL-40 were computed by genotype for each of the 41 SNPs and association tests used to evaluate for statistical significance of any effect of genotype on YKL-40 levels.

For investigations of variation at CHI3L1 as potential determinants of incident vascular events, we used genetic data obtained from all 23 294 initially healthy women of European ancestry genotyped as part of the WGHS. Within this group, 900 incident major CVEs accrued during the follow-up period (inclusive of 364 MIs, 402 thromboembolic strokes, and 277 confirmed CV deaths); analyses relating variation at CHI3L1 to all-cause mortality included 1917 events. As in the plasma studies, we selected, on an a priori basis, rs4950928 as our lead SNP for the genetic association analyses. For these latter analyses, Cox’s proportional hazard models assuming an additive effect across genotypes were used to generate per-allele beta-coefficients, SEs, hazard ratios (HRs), and associated confidence levels.

For both the plasma-based and genetic analyses, all probability values are 2-tailed and all confidence intervals (CIs) computed at the 95% level.

Results

Case and control women were matched on age (median, 63 years), smoking status (21% current smokers), and a
history of HRT (43.7%). As expected, initially healthy women who subsequently developed CVEs (cases) were more likely at baseline to have a history of HTN, obesity, diabetes, or hyperlipidemia, when compared with women who remained free of reported disease (controls). With regard to concomitantly obtained measures of inflammatory biomarkers, case women also had significantly higher levels of CRP, fibrinogen, and sICAM-1 (Table 1).

The overall distribution of YKL-40 is shown in Figure 1, before (left) and after (right) log transformation. The median value among our controls (33.6 ng/mL) and the interquartile range (23.7, 51.2) are comparable to those from other published general population studies and consistent with values described by the assay manufacturer (and in our pilot) using fresh plasma samples.

| Table 1. Baseline Clinical Characteristics of Study Participants Who Contributed to the Genetic Analysis (N=23,294) and of Those Study Participants Selected for the Plasma-Based Case-Control Analysis (N=718) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Genetic Analysis Cohort (N=23,294) | Plasma-Based Case-Control Analysis | P Value |
| Age, y | 52 (48, 59) | 63 (58, 68) | 63 (58, 68) | Matching variable |
| Smoking status, % | | | |
| Current | 11.6 | 20.9 | 20.9 | Matching variable |
| Past | 37.5 | 37.3 | 37.3 | |
| Never | 50.9 | 41.8 | 41.8 | |
| HRT use, % | 43.9 | 43.7 | 43.7 | Matching variable |
| Body mass index, kg/m² | 24.9 (22.5, 28.3) | 25.0 (22.3, 28.9) | 26.2 (22.7, 29.3) | 0.005 |
| Diabetes, % | 2.5 | 2.8 | 13.9 | <0.0001 |
| Hypertension, % | 24.6 | 35.1 | 54.2 | <0.0001 |
| Hyperlipidemia, % | 30.0 | 39.6 | 41.2 | 0.72 |
| Family history, % | 13.0 | 9.6 | 15.5 | 0.04 |
| Total cholesterol, mg/dL | 208 (184, 236) | 219 (192, 241) | 222 (199, 250) | 0.04 |
| HDL-C, mg/dL | 52 (43, 62) | 51 (43, 63) | 48 (40, 58) | 0.0004 |
| Triglycerides, mg/dL | 119 (84, 176) | 130 (93, 180) | 157 (104, 240) | <0.0001 |
| Apolipoprotein A1, mg/dL | 149 (132, 168) | 150 (134, 168) | 147 (130, 169) | 0.17 |
| Apolipoprotein B, mg/dL | 100 (84, 121) | 108 (90, 128) | 116 (93, 138) | <0.0001 |
| Lipoprotein(a), mg/dL | 10.4 (4.3, 32.2) | 9.9 (4.5, 35.1) | 12.4 (5.4, 6.9) | 0.12 |
| Homocysteine, umol/L | 10.5 (8.7, 12.9) | 11.3 (9.5, 13.8) | 11.5 (9.4, 14.7) | 0.05 |
| HbA1c, % | 5.0 (4.8, 5.2) | 5.1 (4.9, 5.3) | 5.1 (4.9, 5.4) | 0.01 |
| hsCRP, mg/L | 2.0 (0.8, 4.4) | 2.3 (1.2, 4.6) | 3.5 (1.7, 6.5) | <0.0001 |
| sICAM-1, ng/mL | 343 (302, 395) | 359 (318, 415) | 377 (328, 441) | 0.003 |
| Fibrinogen, mg/dL | 350 (307, 401) | 367 (322, 427) | 380 (331, 447) | 0.016 |
| YKL-40, ng/mL | N/A | 33.6 (23.7, 51.2) | 41.4 (25.5, 69.6) | <0.0001 |

P-value is for the comparison of women who remained free of cardiovascular disease during follow-up (controls), as compared to women who developed incident myocardial infarction, stroke, or cardiovascular death (cases). Case and control participants were matched on age, smoking status, and use of hormone replacement therapy. HbA1c indicates hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; HRT, hormone replacement therapy; hsCRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; sICAM1, soluble intercellular adhesion molecule type 1.
observed according to alcohol consumption ($P=0.56$), exercise frequency ($P=0.88$), postmenopausal status ($P=0.27$), or smoking history ($P=0.25$).

Table 3 presents ORs for future vascular events according to increasing quartiles of YKL-40 at study entry. In multivariable analyses conditioned on age, smoking, and HRT, and further adjusted for blood pressure, HDL, and LDL-C, diabetes, family history of premature CAD, and BMI, the ORs from lowest (referent) to highest baseline quartile of YKL-40 for the overall combined endpoint of any major vascular event were 1.0, 1.14, 1.15, and 1.96, respectively (P-trend=0.02). However, this effect was largely the result of an association of

Table 2. Spearman’s Correlation Coefficients Between YKL-40 and Other Measured Plasma Biomarkers of Vascular Risk

	YKL-40	hsCRP	Fib	ICAM1	TC	LDL-C	ApoB	HDLC	ApoA	TG	Lp(a)	Hcyst	HbA1c
YKL-40	1.0												
hsCRP	0.18**	1.0											
Fib	0.12*	0.42**	1.0										
ICAM1	0.22**	0.22**	0.28**	1.0									
TC	0.03	0.08	0.12*	0.11*	1.0								
LDL-C	−0.03	0.04	0.18**	0.13*	0.86**	1.0							
ApoB	0.06	0.21**	0.28**	0.26**	0.74**	0.76**	1.0						
HDL-C	−0.10*	−0.23**	−0.27**	−0.25**	0.08*	−0.09*	−0.38**	1.0					
ApoA	−0.04	−0.08*	−0.24**	−0.19**	0.09*	−0.15*	−0.19**	0.79**	1.0				
TG	0.18**	0.31**	0.07	0.15*	0.39**	0.23**	0.51**	−0.48**	−0.19**	1.0			
Lp(a)	−0.002	−0.03	0.12*	0.05	0.12*	0.17**	0.14*	−0.05	−0.10*	−0.02	1.0		
Hcyst	0.21**	0.001	0.11*	0.17**	0.12*	0.12*	0.10*	−0.06	−0.03	0.01	−0.07	1.0	
HbA1c	0.18**	0.22**	0.23**	0.18**	0.09*	0.13*	0.18**	−0.27**	−0.24**	0.18**	0.05	0.04	1.0

Data are from the case-control portion of the study. ApoA indicates apolipoprotein A1; ApoB, apolipoprotein B; Fib, fibrinogen; Hba1c, hemoglobin A1c; Hcyst, homocysteine; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; ICAM1, soluble intercellular adhesion molecule type 1; LDL-C, low density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; Lp(a), lipoprotein(a).

* $P<0.05$; ** $P<0.0001$.

Figure 1. Distribution of baseline YKL-40 levels (left) and lnYKL-40 levels (right) in the study population. Values shown are comparable to those reported in other populations and in studies using fresh plasma.
YKL40 with incident stroke; for this endpoint, the ORs from lowest (referent) to highest baseline quartile of YKL-40 were 1.0, 1.50, 1.52, and 2.93, respectively (P-trend across quartiles = 0.019). By contrast, no significant association was observed between baseline levels of YKL-40 and IMI; for this endpoint, the ORs from lowest (referent) to highest baseline quartile of YKL-40 were 1.0, 0.96, 0.73, and 1.24, respectively (P-trend across quartiles = 0.81). These effects were not substantially attenuated with further adjustment for any of the alternative inflammatory biomarkers or for estimated glomerular filtration rate.

We compared the magnitude of effect of YKL-40 on incident stroke to the magnitude of effect on this endpoint for fibrinogen, sICAM1, and hsCRP (Table 4). Despite intercorrelations between all of these factors, different effects were observed on incident stroke. Specifically, unlike YKL-40, the associations with incident stroke observed across increasing quartiles of either sICAM-1 or fibrinogen were small and not statistically significant (P-trend across quartiles = 0.81). These effects were not substantially attenuated with further adjustment for any of the alternative inflammatory biomarkers or for estimated glomerular filtration rate.

Table 3. Multivariable Adjusted Odds Ratios for Increasing Baseline Quartiles of YKL-40 and Incident Vascular Events

Range (ng/mL)	Quartile 1	Quartile 2	Quartile 3	Quartile 4	P-Trend
Any vascular event					
OR*	1.00	1.14	1.15	1.96	0.021
95% CI	Referent	0.66 to 1.96	0.66 to 1.98	1.12 to 3.43	
P	Referent	0.64	0.63	0.02	
N	70	67	84	138	
Incident myocardial infarction					
OR*	1.00	0.96	0.74	1.24	0.81
95% CI	Referent	0.38 to 2.40	0.31 to 1.78	0.49 to 3.12	
P	Referent	0.93	0.50	0.64	
N	32	24	38	52	
Incident stroke					
OR*	1.00	1.50	1.52	2.93	0.019
95% CI	Referent	0.63 to 3.54	0.62 to 3.72	1.23 to 7.01	
P	Referent	0.36	0.36	0.02	
N	28	30	30	58	

Data are from the case-control portion of the study. HDL indicates high-density lipoprotein; LDL, low-density lipoprotein.

*Odds ratios from the case-control sample were matched for age, smoking, and hormone replacement therapy use and adjusted for systolic blood pressure (mm Hg), HDL-cholesterol (mg/dL), LDL-cholesterol (mg/dL), body mass index (kg/m²), diabetes, and parental history of myocardial infarction before age 60 years.

YKL40 and CHI3L1, and Cardiovascular Events

Ridker et al

DOI: 10.1161/JAHA.114.000897

Journal of the American Heart Association

6
Table 4. Multivariable Adjusted Odds Ratios for Increasing Baseline Quartiles of Fibrinogen, sICAM-1, and hsCRP and Incident Stroke

	Quartile 1	Quartile 2	Quartile 3	Quartile 4	P-Trend
Fibrinogen					
mg/dL	<322	322 to 368	369 to 427	>427	
OR*	1.00	0.99	1.14	1.18	0.63
95% CI	Referent	0.46 to 2.13	0.54 to 2.40	0.51 to 2.72	
P	Referent	0.98	0.73	0.70	
N	30	26	41	41	
sICAM-1					
ng/mL	<318	318 to 359	360 to 415	>415	
OR*	1.00	1.27	1.51	1.58	0.21
95% CI	Referent	0.62 to 2.61	0.69 to 3.29	0.78 to 3.21	
P	Referent	0.51	0.29	0.64	
N	29	32	34	43	
hsCRP					
mg/L	<1.2	1.2 to 2.3	2.4 to 4.6	>4.6	
OR*	1.00	1.40	1.48	3.42	0.007
95% CI	Referent	0.64 to 3.12	0.59 to 3.67	1.35 to 8.71	
P	Referent	0.40	0.40	0.01	
N	20	28	35	60	

Data are from the case-control portion of the study. LDL-C indicates low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; HRT, hormone replacement therapy; hsCRP, high-sensitivity C-reactive protein; sICAM-1, soluble intercellular adhesion molecule type 1.

*Odds ratios (OR) were matched for age, smoking, and HRT and adjusted for systolic blood pressure (mm Hg), HDL-C (mg/dL), LDL-C (mg/dL), body mass index (kg/m²), diabetes, and parental history of myocardial infarction before age 60 years.

Discussion

Chitinases are evolutionarily conserved hydrolytic enzymes that break down glycosidic bonds in chitin, a major component of insect and crustacean exoskeletons and of the cell wall of fungi. Although humans do not produce chitin, chitinases and chitinase-like proteins (such as YKL-40) are believed to play an important role in inflammation with expression of YKL-40 induced by IL-6 (but not tumor necrosis factor alpha). This family of glycosidasases also is involved in fibrosis and tissue remodeling and are expressed in multiple diverse disease states, including asthma, sarcoidosis, schizophrenia, and cancer. YKL-40 also inhibits oxidant-induced injury, augments adaptive (Th2) immunity, and regulates apoptosis. With regard to vascular biology,
Macrophages within atherosclerotic plaques express YKL-40 and YKL-40 has been reported to stimulate alternative macrophage activation and function as an adhesion and migration factor for vascular smooth muscle cells.6,7

In this prospective epidemiological evaluation of apparently healthy women, elevated baseline plasma levels of YKL-40 were associated with increasing ORs of thromboembolic stroke, but not MI. The association with stroke persisted after control for several lipid and nonlipid CV risk factors and had a magnitude of effect similar to that of the nonspecific inflammatory biomarker, hsCRP (Figure 2). In these analyses, both environmental and genetic factors influenced YKL-40 levels, though SNPs associated with lifelong differences in plasma YKL-40 levels, including the lead SNP at rs4950928, were not, in turn, significantly associated with incident vascular events.

Earlier clinical data relating plasma YKL-40 to vascular disease and vascular risk factors have included cross-sectional and retrospective studies. For example, in previous studies as in our data, YKL-40 levels have been found to increase with age, blood pressure, and severity of insulin resistance.25,26 However, it is difficult in cross-sectional or retrospective study designs to discern whether elevations of YKL-40 precede or are a result of specific vascular or metabolic abnormalities. In our study, plasma samples were obtained several years before the onset of first-ever vascular events, greatly reducing the likelihood of reverse causality.

Although prior prospective studies of YKL-40 as a determinant of incident coronary and cerebral occlusive disease are limited, they are remarkably consistent with the potential differential effect observed on stroke, as compared to MI observed in the current data (Figure 4). In particular, investigators in the Copenhagen City Heart Study reported that elevated levels of plasma YKL-40 were significantly associated with incident stroke, whereas no association was observed for MI.8 This differential effect has also been observed in a second independent prospective Danish cohort.9 Similarly, in a European population with stable CAD, YKL-40 was again strongly associated with all-cause mortality inclusive of stroke, but not with recurrent episodes of angina and only marginally with RMI.10 As with other inflammatory biomarkers, YKL-40 has also consistently been shown to associate with all-cause mortality, including among those with stable CAD.27–29

Figure 3. Median levels of YKL-40 (from the case-control study, left column) and rates for incident stroke, major cardiovascular events, and all-cause mortality (from the total study population) according to variation in CHI3L1. Data are shown for the lead SNP rs4950928 and for rs946263 and rs10399805. CHI3L1 indicates chitinase 3-like 1 gene; CV, cardiovascular; SNPs, single-nucleotide polymorphisms.
Despite expression in several disease states, the function of YKL-40 in humans remains uncertain. In our data, and as shown in patients with or at risk for asthma, genetic polymorphism at CHI3L1 has a major effect on plasma YKL-40 levels, with more than a doubling of levels when comparing individuals with the CC and GG genotypes at rs4950928. Yet, unlike earlier data for asthma, where genotypes associated with higher YKL-40 levels were also associated with a higher prevalence of asthma, we were unable to detect a statistically significant influence of genotype on incident vascular events. However, the total number of vascular events is relatively modest in our secondary genomic analyses, particularly for events of thromboembolic stroke, where the plasma data are most informative. Thus, these latter data should not be construed to exclude a potential causal role for YKL-40 in atherogenesis. Rather, we believe these data support ongoing work to investigate the possible role of YKL-40 in several atherothrombotic states, in particular, stroke.

Potential limitations of the plasma component of our study include the fact that we relied on a single, frozen baseline blood sample and that we evaluated only postmenopausal women. However, observed YKL-40 levels in our study are very similar to those expected in fresh plasma and in our pilot (Figure 1); these data suggest that our collection and storage procedures, which include freezing at -170°C, are sufficient to preserve the integrity of YKL-40 in our samples. Furthermore, because we used plasma rather than serum samples, we avoided the release of YKL-40 from activated neutrophils that can occur during coagulation. Nonetheless, because we studied only women and because sex-specific findings for YKL-40 might exist, care should be taken when generalizing these data to men. Beyond sample integrity, strengths of our study include its prospective nested case-control design in which plasma samples for all study participants were obtained at study entry, many years before the occurrence of first-ever vascular events. Such a study design considerably reduces potential biases inherent in retrospective studies where plasma sampling is done after, rather than before, the onset of disease. Furthermore, by matching case and control participants by age, smoking, and HRT use, it is highly unlikely that confounding effects resulting from any of these variables could explain our results.

Although YKL-40 is involved in multiple inflammatory processes, it has been hypothesized that expression of this protein is particularly relevant in carotid atherosclerosis. For example, Michelson et al. reported higher YKL-40 expression in diseased carotid plaques, when compared to healthy individuals, and higher YKL-40 levels among those with

rs4950928	Myocardial infarction	0.0878	0.0929	1.09	0.91 to 1.31	0.34
	Thromboembolic stroke	-0.0247	0.0913	0.98	0.82 to 1.17	0.79
	Major cardiovascular events	0.0372	0.0599	1.03	0.91 to 1.16	0.59
	Cardiovascular death	0.0475	0.1179	1.05	0.83 to 1.32	0.69
	All-cause mortality	-0.0395	0.0419	0.96	0.89 to 1.04	0.35
rs946263	Myocardial infarction	0.0706	0.0935	1.07	0.89 to 1.29	0.45
	Thromboembolic stroke	-0.0467	0.0922	0.95	0.80 to 1.14	0.61
	Major cardiovascular events	0.0183	0.0603	1.02	0.90 to 1.15	0.76
	Cardiovascular death	0.0401	0.1185	1.04	0.82 to 1.31	0.74
	All-cause mortality	-0.0410	0.0420	0.96	0.88 to 1.04	0.33
rs10399805	Myocardial infarction	0.0819	0.1081	1.08	0.88 to 1.34	0.45
	Thromboembolic stroke	0.0175	0.0616	1.07	0.92 to 1.26	0.42
	Major cardiovascular events	0.1151	0.0679	1.13	0.93 to 1.38	0.22
	Cardiovascular death	0.2689	0.1283	1.31	1.02 to 1.68	0.04
	All cause mortality	0.0998	0.0470	1.10	1.01 to 1.21	0.34

Data are shown for the a priori selected lead SNP rs4950928 and for rs946263 and rs10399805 using age-adjusted Cox proportional hazards models assuming an additive genetic effect across genotype. CHI3L1 indicates chitinase 3-like 1 gene; HR, hazard ratio; SNP, single-nucleotide polymorphism.
Table 6. Relationship of Genetic Variation at CHI3L1 to Incident Vascular Events and All-Cause Mortality

	B	SE	HR	95% CI	P Value
rs10399805					
Myocardial infarction	0.0819	0.1081	1.09	0.88 to 1.34	0.45
Thromboembolic stroke	0.1244	0.1013	1.13	0.93 to 1.38	0.22
Major cardiovascular events	0.1151	0.0679	1.12	0.98 to 1.28	0.09
Cardiovascular death	0.2689	0.1283	1.31	1.02 to 1.68	0.04
All-cause mortality	0.0998	0.0470	1.10	1.01 to 1.21	0.03
rs1065761					
Myocardial infarction	−0.1124	0.1195	0.89	0.71 to 1.13	0.35
Thromboembolic stroke	0.0300	0.1079	1.03	0.83 to 1.27	0.78
Major cardiovascular events	−0.0712	0.0748	0.93	0.80 to 1.08	0.34
Cardiovascular death	−0.2047	0.1565	0.81	0.60 to 1.11	0.19
All cause mortality	−0.0222	0.0504	0.98	0.89 to 1.08	0.66
rs10802901					
Myocardial infarction	−0.0443	0.0811	0.96	0.82 to 1.12	0.58
Thromboembolic stroke	−0.0299	0.0770	0.97	0.83 to 1.13	0.70
Major cardiovascular events	−0.0071	0.0513	0.99	0.90 to 1.10	0.89
Cardiovascular death	0.1160	0.1002	1.12	0.92 to 1.37	0.25
All cause mortality	0.0100	0.0350	1.01	0.94 to 1.08	0.77
rs10920574					
Myocardial infarction	−0.0896	0.1756	0.91	0.65 to 1.29	0.61
Thromboembolic stroke	0.0609	0.1570	1.06	0.78 to 1.45	0.70
Major cardiovascular events	0.1296	0.1016	1.14	0.93 to 1.39	0.20
Cardiovascular death	0.3561	0.1833	1.43	1.00 to 2.05	0.05
All cause mortality	−0.0200	0.0745	0.98	0.85 to 1.13	0.79
rs10920576					
Myocardial infarction	0.1318	0.1075	1.14	0.92 to 1.41	0.22
Thromboembolic stroke	0.0981	0.1037	1.10	0.90 to 1.35	0.34
Major cardiovascular events	0.1438	0.0682	1.15	1.01 to 1.32	0.03
Cardiovascular death	0.2124	0.1333	1.24	0.95 to 1.61	0.11
All cause mortality	0.0278	0.0488	1.03	0.93 to 1.13	0.57
rs11587584					
Myocardial infarction	0.0941	0.1452	1.10	0.83 to 1.46	0.52
Thromboembolic stroke	−0.0163	0.1446	0.98	0.74 to 1.31	0.91
Major cardiovascular events	0.0221	0.0952	1.02	0.85 to 1.23	0.82
Cardiovascular death	−0.1775	0.2058	0.84	0.56 to 1.25	0.39
All cause mortality	−0.0292	0.0664	0.97	0.85 to 1.11	0.66
rs12026765					
Myocardial infarction	0.1361	0.1129	1.15	0.92 to 1.43	0.23
Thromboembolic stroke	0.0996	0.1091	1.10	0.89 to 1.37	0.36
Major cardiovascular events	0.1546	0.0714	1.17	1.01 to 1.34	0.03
Cardiovascular death	0.2607	0.1376	1.30	0.99 to 1.70	0.06
All cause mortality	0.0497	0.0510	1.05	0.95 to 1.16	0.33
rs12123883					
Myocardial infarction	0.1126	0.1353	1.12	0.86 to 1.46	0.41

Continued
Table 6. Continued

rs12141375	B	SE	HR	95% CI	P Value
Myocardial infarction	−0.1130	0.0953	0.89	0.74 to 1.08	0.24
Thromboembolic stroke	−0.0743	0.0895	0.93	0.78 to 1.11	0.41
Major cardiovascular events	−0.0535	0.0594	0.95	0.84 to 1.06	0.37
Cardiovascular death	−0.0023	0.1164	1.00	0.79 to 1.25	0.98
All-cause mortality	0.0179	0.0399	1.02	0.94 to 1.10	0.65

rs1340237	B	SE	HR	95% CI	P Value
Myocardial infarction	−0.0903	0.0870	0.91	0.77 to 1.08	0.30
Thromboembolic stroke	0.0496	0.0797	1.05	0.90 to 1.23	0.53
Major cardiovascular events	−0.0110	0.0541	0.99	0.89 to 1.10	0.84
Cardiovascular death	0.0699	0.1054	1.07	0.87 to 1.32	0.51
All-cause mortality	−0.0508	0.0375	0.95	0.88 to 1.02	0.18

rs1340239	B	SE	HR	95% CI	P Value
Myocardial infarction	−0.0350	0.1587	0.97	0.71 to 1.32	0.83
Thromboembolic stroke	−0.0244	0.1499	0.98	0.73 to 1.31	0.87
Major cardiovascular events	0.0381	0.0973	1.04	0.86 to 1.26	0.70
Cardiovascular death	0.2334	0.1778	1.26	0.89 to 1.79	0.19
All-cause mortality	0.0324	0.0671	1.03	0.91 to 1.18	0.63

rs1732442	B	SE	HR	95% CI	P Value
Myocardial infarction	−0.1827	0.1501	0.83	0.62 to 1.12	0.22
Thromboembolic stroke	0.0159	0.1314	1.02	0.79 to 1.31	0.90
Major cardiovascular events	−0.1143	0.0927	0.89	0.74 to 1.07	0.22
Cardiovascular death	−0.2307	0.1935	0.79	0.54 to 1.16	0.23
All-cause mortality	−0.0550	0.0620	0.95	0.84 to 1.07	0.37

rs2250509	B	SE	HR	95% CI	P Value
Myocardial infarction	0.0190	0.1105	1.02	0.82 to 1.27	0.86
Thromboembolic stroke	−0.0481	0.1078	0.95	0.77 to 1.18	0.66
Major cardiovascular events	0.0038	0.0707	1.00	0.87 to 1.15	0.96
Cardiovascular death	−0.0746	0.1450	0.93	0.70 to 1.23	0.61
All-cause mortality	0.0099	0.0483	1.01	0.92 to 1.11	0.84

rs2297950	B	SE	HR	95% CI	P Value
Myocardial infarction	−0.0337	0.0805	0.97	0.83 to 1.13	0.68
Thromboembolic stroke	−0.0113	0.0761	0.99	0.85 to 1.15	0.88
Major cardiovascular events	−0.0221	0.0510	0.98	0.89 to 1.08	0.66
Cardiovascular death	0.0734	0.0994	1.08	0.89 to 1.31	0.46
All-cause mortality	−0.0392	0.0351	0.96	0.90 to 1.03	0.26

rs2486072	B	SE	HR	95% CI	P Value
Myocardial infarction	−0.1583	0.0791	0.85	0.73 to 1.00	0.05
Thromboembolic stroke	−0.0789	0.0742	0.92	0.80 to 1.07	0.29
Major cardiovascular events	−0.0639	0.0495	0.94	0.85 to 1.03	0.20
Table 6. Continued

	B	SE	HR	95% CI	P Value
Cardiovascular death	0.0811	0.0966	1.08	0.90 to 1.31	0.40
All-cause mortality	−0.0075	0.0337	0.99	0.93 to 1.06	0.82
rs2486948					
Myocardial infarction	−0.0633	0.1042	0.94	0.77 to 1.15	0.54
Thromboembolic stroke	−0.0090	0.0970	0.99	0.82 to 1.20	0.93
Major cardiovascular events	0.0089	0.0645	1.01	0.89 to 1.14	0.89
Cardiovascular death	0.0967	0.1240	1.10	0.86 to 1.40	0.44
All-cause mortality	0.0038	0.0442	1.00	0.92 to 1.09	0.93
rs2486949					
Myocardial infarction	−0.1111	0.0740	0.89	0.77 to 1.03	0.13
Thromboembolic stroke	−0.0692	0.0703	0.93	0.81 to 1.07	0.32
Major cardiovascular events	−0.0615	0.0469	0.94	0.86 to 1.03	0.19
Cardiovascular death	0.0184	0.0931	1.02	0.85 to 1.22	0.84
All-cause mortality	0.0093	0.0321	1.01	0.95 to 1.07	0.77
rs2486962					
Myocardial infarction	−0.1364	0.0742	0.87	0.75 to 1.01	0.07
Thromboembolic stroke	−0.0529	0.0704	0.95	0.83 to 1.09	0.45
Major cardiovascular events	−0.0591	0.0470	0.94	0.86 to 1.03	0.21
Cardiovascular death	0.0759	0.0934	1.08	0.90 to 1.30	0.42
All-cause mortality	−0.0079	0.0322	0.99	0.93 to 1.06	0.81
rs2494287					
Myocardial infarction	−0.1712	0.1250	0.84	0.66 to 1.08	0.17
Thromboembolic stroke	−0.1513	0.1177	0.86	0.68 to 1.08	0.20
Major cardiovascular events	−0.0882	0.0767	0.92	0.79 to 1.06	0.25
Cardiovascular death	0.1218	0.1406	1.13	0.86 to 1.49	0.39
All-cause mortality	−0.0157	0.0511	0.98	0.89 to 1.09	0.76
rs2494295					
Myocardial infarction	0.1120	0.0747	1.12	0.97 to 1.29	0.13
Thromboembolic stroke	0.0856	0.0713	1.09	0.95 to 1.25	0.23
Major cardiovascular events	0.0954	0.0476	1.10	1.00 to 1.21	0.05
Cardiovascular death	0.0815	0.0949	1.08	0.90 to 1.31	0.39
All-cause mortality	0.0378	0.0327	1.04	0.97 to 1.11	0.25
rs2494302					
Myocardial infarction	0.1603	0.1693	1.17	0.84 to 1.64	0.34
Thromboembolic stroke	0.2621	0.1533	1.30	0.96 to 1.76	0.09
Major cardiovascular events	0.1976	0.1059	1.22	0.99 to 1.50	0.06
Cardiovascular death	−0.0182	0.2319	0.98	0.62 to 1.55	0.94
All-cause mortality	0.0521	0.0775	1.05	0.90 to 1.23	0.50
rs2642531					
Myocardial infarction	0.1024	0.1075	1.11	0.90 to 1.37	0.34
Thromboembolic stroke	0.0589	0.1040	1.06	0.87 to 1.30	0.57
Major cardiovascular events	0.1155	0.0681	1.12	0.98 to 1.28	0.09
Cardiovascular death	0.1943	0.1322	1.21	0.94 to 1.57	0.14
All-cause mortality	0.0263	0.0483	1.03	0.93 to 1.13	0.59
rs2886117	B	SE	HR	95% CI	P Value
-----------	-------	-------	-------	------------	---------
Myocardial infarction	0.1293	0.1060	1.14	0.92 to 1.40	0.22
Thromboembolic stroke	0.1238	0.1011	1.13	0.93 to 1.38	0.22
Major cardiovascular events	0.1368	0.0672	1.15	1.01 to 1.31	0.04
Cardiovascular death	0.2902	0.1271	1.34	1.04 to 1.71	0.02
All-cause mortality	0.1073	0.0468	1.11	1.02 to 1.22	0.02

rs3753472	B	SE	HR	95% CI	P Value
Myocardial infarction	−0.0887	0.0790	0.92	0.78 to 1.07	0.26
Thromboembolic stroke	0.0179	0.0740	1.02	0.88 to 1.18	0.81
Major cardiovascular events	−0.0119	0.0497	0.99	0.90 to 1.09	0.81
Cardiovascular death	0.0475	0.0984	1.05	0.86 to 1.27	0.63
All-cause mortality	−0.0192	0.0341	0.98	0.92 to 1.05	0.57

rs3753473	B	SE	HR	95% CI	P Value
Myocardial infarction	0.0471	0.1511	1.05	0.78 to 1.41	0.76
Thromboembolic stroke	0.0417	0.1451	1.04	0.78 to 1.39	0.77
Major cardiovascular events	0.1106	0.0940	1.12	0.93 to 1.34	0.24
Cardiovascular death	0.5463	0.1587	1.73	1.27 to 2.36	0.00
All-cause mortality	0.0212	0.0669	1.02	0.90 to 1.16	0.75

rs3766539	B	SE	HR	95% CI	P Value
Myocardial infarction	0.0093	0.1288	1.01	0.78 to 1.30	0.94
Thromboembolic stroke	−0.0147	0.1243	0.99	0.77 to 1.26	0.91
Major cardiovascular events	0.0392	0.0812	1.04	0.89 to 1.22	0.63
Cardiovascular death	0.1411	0.1556	1.15	0.85 to 1.56	0.36
All-cause mortality	0.0569	0.0554	1.06	0.95 to 1.18	0.30

rs3766553	B	SE	HR	95% CI	P Value
Myocardial infarction	−0.0078	0.0738	0.99	0.86 to 1.15	0.92
Thromboembolic stroke	0.0469	0.0701	1.05	0.91 to 1.20	0.50
Major cardiovascular events	0.0505	0.0469	1.05	0.96 to 1.15	0.28
Cardiovascular death	0.1268	0.0936	1.14	0.95 to 1.36	0.18
All-cause mortality	−0.0073	0.0322	0.99	0.93 to 1.06	0.82

rs3766560	B	SE	HR	95% CI	P Value
Myocardial infarction	0.1135	0.1050	1.12	0.91 to 1.38	0.28
Thromboembolic stroke	0.0635	0.1017	1.07	0.87 to 1.30	0.53
Major cardiovascular events	0.1259	0.0665	1.13	1.00 to 1.29	0.06
Cardiovascular death	0.1984	0.1290	1.22	0.95 to 1.57	0.12
All-cause mortality	0.0171	0.0474	1.02	0.93 to 1.12	0.72

rs3766562	B	SE	HR	95% CI	P Value
Myocardial infarction	0.0139	0.1820	1.01	0.71 to 1.45	0.94
Thromboembolic stroke	0.1656	0.1604	1.18	0.86 to 1.62	0.30
Major cardiovascular events	0.1405	0.1087	1.15	0.93 to 1.42	0.20
Cardiovascular death	0.0877	0.2214	1.09	0.71 to 1.68	0.69
All-cause mortality	0.1518	0.0743	1.16	1.01 to 1.35	0.04

rs3823145	B	SE	HR	95% CI	P Value
Myocardial infarction	−0.0097	0.0953	0.99	0.82 to 1.19	0.92
Table 6. Continued

rs4950937	Myocardial infarction	–0.0391	0.0830	0.96	0.82 to 1.13	0.64
rs4971226	Thromboembolic stroke	–0.0387	0.0789	0.96	0.82 to 1.12	0.62
rs4971226	Major cardiovascular events	–0.0297	0.0527	0.97	0.88 to 1.08	0.57
rs4971226	Cardiovascular death	0.0536	0.1026	1.06	0.86 to 1.29	0.60
rs4971226	All-cause mortality	–0.0002	0.0358	1.00	0.93 to 1.07	1.00
rs6427997	Myocardial infarction	0.0220	0.0743	1.02	0.88 to 1.18	0.77
rs6427997	Thromboembolic stroke	–0.0275	0.0709	0.97	0.85 to 1.12	0.70
rs6427997	Major cardiovascular events	0.0105	0.0473	1.01	0.92 to 1.11	0.82
rs6427997	Cardiovascular death	0.0718	0.0934	1.07	0.89 to 1.29	0.44
rs6427997	All-cause mortality	0.0088	0.0324	1.01	0.95 to 1.07	0.78
rs6672661	Myocardial infarction	0.0994	0.0777	1.10	0.95 to 1.29	0.20
rs6672661	Thromboembolic stroke	0.0568	0.0746	1.06	0.91 to 1.22	0.45
rs6672661	Major cardiovascular events	0.0581	0.0498	1.06	0.96 to 1.17	0.24
rs6672661	Cardiovascular death	–0.0289	0.1007	0.97	0.80 to 1.18	0.77
rs6672661	All-cause mortality	0.0206	0.0343	1.02	0.95 to 1.07	0.55
rs6686206	Myocardial infarction	0.1168	0.0760	1.12	0.97 to 1.30	0.12
rs6686206	Thromboembolic stroke	0.1053	0.0726	1.11	0.96 to 1.28	0.15
rs6686206	Major cardiovascular events	0.0926	0.0486	1.10	1.00 to 1.21	0.06
rs6686206	Cardiovascular death	–0.0243	0.0983	0.98	0.80 to 1.18	0.80
rs6686206	All-cause mortality	0.0328	0.0335	1.03	0.97 to 1.10	0.33
rs7542294	Myocardial infarction	0.1058	0.0984	1.11	0.92 to 1.35	0.28
rs7542294	Thromboembolic stroke	–0.0397	0.0985	0.96	0.79 to 1.17	0.69
rs7542294	Major cardiovascular events	0.0684	0.0634	1.07	0.95 to 1.21	0.28
rs7542294	Cardiovascular death	0.1595	0.1223	1.17	0.92 to 1.49	0.19
rs7542294	All-cause mortality	–0.0155	0.0447	0.98	0.90 to 1.07	0.73
rs762625	Myocardial infarction	0.1274	0.0992	1.14	0.94 to 1.38	0.20
rs762625	Thromboembolic stroke	0.1108	0.0947	1.12	0.93 to 1.35	0.24
rs762625	Major cardiovascular events	0.1396	0.0628	1.15	1.02 to 1.30	0.03
rs762625	Cardiovascular death	0.2325	0.1212	1.26	1.00 to 1.60	0.05
rs762625	All-cause mortality	0.0491	0.0444	1.05	0.96 to 1.15	0.27

Continued
symptomatic carotid atherosclerosis, as compared to asymptomatic carotid disease; in this report, LDL-C did not differentiate between groups, data consistent with the clinical observation that cholesterol is less relevant for stroke risk than coronary risk. Other work suggests that mechanical compression and stretch stimulates production of YKL-40,31

rs871850	Myocardial infarction	0.0503	0.0737	1.05	0.91 to 1.22	0.50
	Thromboembolic stroke	0.0222	0.0701	1.02	0.89 to 1.17	0.75
	Major cardiovascular events	0.0463	0.0469	1.05	0.96 to 1.15	0.32
	Cardiovascular death	0.0686	0.0930	1.07	0.89 to 1.29	0.46
	All-cause mortality	0.0221	0.0321	1.02	0.96 to 1.09	0.49

rs880633	Myocardial infarction	0.0375	0.0736	1.04	0.90 to 1.20	0.61
	Thromboembolic stroke	0.0033	0.0699	1.00	0.87 to 1.15	0.96
	Major cardiovascular events	0.0315	0.0468	1.03	0.94 to 1.13	0.50
	Cardiovascular death	0.1061	0.0930	1.11	0.93 to 1.33	0.25
	All-cause mortality	−0.0046	0.0321	1.00	0.93 to 1.06	0.89

rs883389	Myocardial infarction	−0.0407	0.0851	0.96	0.81 to 1.13	0.63
	Thromboembolic stroke	−0.0188	0.0805	0.98	0.84 to 1.15	0.82
	Major cardiovascular events	−0.0194	0.0538	0.98	0.88 to 1.09	0.72
	Cardiovascular death	0.0538	0.1048	1.06	0.86 to 1.30	0.61
	All-cause mortality	−0.0009	0.0367	1.00	0.93 to 1.07	0.98

rs946261	Myocardial infarction	0.1603	0.0748	1.17	1.01 to 1.36	0.03
	Thromboembolic stroke	−0.0203	0.0726	0.98	0.85 to 1.13	0.78
	Major cardiovascular events	0.0734	0.0479	1.08	0.98 to 1.18	0.13
	Cardiovascular death	0.1489	0.0943	1.16	0.96 to 1.40	0.11
	All-cause mortality	0.0289	0.0330	1.03	0.96 to 1.10	0.38

rs946263	Myocardial infarction	0.0706	0.0935	1.07	0.89 to 1.29	0.45
	Thromboembolic stroke	−0.0467	0.0922	0.95	0.80 to 1.14	0.61
	Major cardiovascular events	0.0183	0.0603	1.02	0.90 to 1.15	0.76
	Cardiovascular death	0.0401	0.1185	1.04	0.83 to 1.31	0.74
	All-cause mortality	−0.0410	0.0420	0.96	0.88 to 1.04	0.33

rs872129	Myocardial infarction	0.1384	0.1512	1.15	0.86 to 1.54	0.36
	Thromboembolic stroke	−0.1480	0.1627	0.86	0.63 to 1.19	0.36
	Major cardiovascular events	−0.0474	0.1041	0.95	0.78 to 1.17	0.65
	Cardiovascular death	−0.1923	0.2197	0.82	0.54 to 1.27	0.38
	All-cause mortality	−0.0487	0.0716	0.95	0.83 to 1.10	0.50

Data are shown for the all additional SNPs evaluated using age-adjusted Cox proportional hazards models assuming an additive genetic effect across genotype. CHI3L1 indicates chitinase 3-like 1 gene; SNPs, single-nucleotide polymorphisms.
an interesting observation because there are differences in the strain characteristics of carotid, as compared to coronary, plaques, with the former being more susceptible to HTN. However, YKL-40 is also produced in macrophages, epithelial cells, and some neutrophils in nonatheromatous disease and may reflect fibrosis or extracellular tissue remodeling. Furthermore, in the genetic component of our data, we did not observe an association between polymorphisms in the CH13L1 locus encoding YKL-40 and vascular events. Thus, whether the effects observed here are specific to carotid atherogenesis and late plaque development or represent a more global systemic response to inflammation will require further investigation.

Sources of Funding
Supported by U01 HL108630 (Mechanism-Associated Phenotypes for Genetic analyses of Heart, Lung, Blood, and Sleep Diseases [MAPGen for HLBS]) with additional support from CA047988, HL043851, HL080467, HL099355, HL061795, HL107192, and HL108630 from the National Institutes of Health (Bethesda, MD).

Disclosures
Dr Ridker is listed as a coinventor on patents held by the Brigham and Women’s Hospital that relate to the use of inflammatory biomarkers in CVD and diabetes that have been licensed to AstraZeneca and Siemens. The remaining authors report no additional conflicts.
Functional variants in the promoter region of Chitinase 3-like 1 (CHI3L1) and susceptibility to schizophrenia. *Am J Hum Genet*. 2007;80:12–18.

23. Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? *Cancer Epidemiol Biomarkers Prev*. 2006;15:194–202.

24. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. *Annu Rev Physiol*. 2011;73:479–501.

25. Rathcke CN, Vestergaard H. YKL-40—an emerging biomarker in cardiovascular disease and diabetes. *Cardiovasc Diabetol*. 2009;8:61.

26. Nielsen AR, Erikstrup C, Johansen JS, Fischer CP, Plomgaard P, Krogh-Madsen R, Taudorf S, Lindegaard B, Pedersen BK. Plasma YKL-40: a BMI-independent marker of type 2 diabetes. *Diabetes*. 2008;57:3078–3082.

27. Mygind ND, Iversen K, Kober L, Goetze JP, Nielsen H, Boesgaard S, Bay M, Johansen JS, Nielsen OW, Kirk V, Kastrup J. The inflammatory biomarker YKL-40 at admission is a strong predictor of overall mortality. *J Intern Med*. 2013;273:205–216.

28. Rathcke CN, Raymond I, Kistorp C, Hildebrandt P, Faber J, Vestergaard H. Low grade inflammation as measured by levels of YKL-40: association with an increased overall and cardiovascular mortality rate in an elderly population. *Int J Cardiol*. 2010;143:35–42.

29. Harutyunyan M, Gotze JP, Winkel P, Johansen JS, Hansen JF, Jensen GB, Hilden J, Kjoller E, Kolmos Hj, Gluud C, Kastrup J. Serum YKL-40 predicts long-term mortality in patients with stable coronary disease: A prognostic study within the CLARICOR trial. *Immunobiology*. 2013;218:945–951.

30. Michelsen AE, Rathcke CN, Skjelland M, Holm S, Ranheim T, Krogh-Sørensen K, Halvorsen B. Increased YKL-40 expression in patients with carotid atherosclerosis. *Atherosclerosis*. 2010;211:569–595.

31. Park JA, Drazen JM, Tschumperlin DJ. The chitinase-like protein YKL-40 is secreted by airway epithelial cells at baseline and in response to compressive mechanical stress. *J Biol Chem*. 2010;285:29817–29825.