Processes with a Local Deterministic Interaction: Invariant Bernoulli Measures

V.A. Malyshev, A.A. Zamyatin

Abstract

A general class of Markov processes with a local interaction is introduced, which includes exclusion and Kawasaki processes as a very particular case. Bernoulli invariant measures are found for this class of processes.

Keywords: Markov processes with a local interaction, Bernoulli invariant measures, binary reactions

AMS subject classification numbers: 60K35, 82C22

1 Introduction

The goal of this paper is to introduce a class of processes with a local interaction, which we call exchange or Boltzmann processes as they model transformations of the internal degrees of freedom and/or chemical reactions for pairs of particles. The introduced class of processes includes such well-known processes as exclusion processes and Kawasaki processes.

The definition is as follows. Consider a graph G, finite or countable, with the set of vertices $V = V(G)$ and the set of edges $L = L(G)$. We define configuration as a function $x_v, v \in V$, on the set of vertices with values in some set X. The set X can be interpreted as the set of all characteristics of a site $v \in V(G)$ and/or of the particles sitting at v (such as the types of particles, their form, energy etc.).

On the set X^V of configurations a continuous time Markov process $\xi_t = \xi_t^{G,F,(\lambda_l)}$ is defined as follows. The transitions occur for each edge $l = (v, v') \in L(G)$ with rate $\lambda_l = \lambda_l(x_v, x_{v'})$, independently of all other edges. For a given l, the transition is a simultaneous transformation (binary reaction) of the spins x_v and $x_{v'}$, $$(x_v(t), x_{v'}(t)) \rightarrow (x_v(t + dt), x_{v'}(t + dt)) = F(x_v(t), x_{v'}(t))$$ (1)

where $F : S = X \times X \rightarrow S = X \times X$ is some fixed mapping. We always assume F to be symmetric, that is $Fj = jF$, where $j(x_1, x_2) = (x_2, x_1)$. This explains why the order of vertices in does not play any role. Thus, the process on G is defined by a function F and by the set of functions $\lambda_l(x_v, x_{v'}) = \lambda_l(x_{v'}, x_v)$, also assumed to be symmetric.
If the set X and the graph G are finite, then this defines a finite continuous time Markov chain, which we denote by ξ_t. Otherwise, for the existence of the process, one should impose some weak restrictions on F and λ_l.

The introduced process is a process with local interaction, these processes play nowadays an important role in constructing physical models, see for example [1, 3, 2]. A particular case are Kawasaki processes, where a pair of points exchanges spins, that is F is a permutation. Even more popular are exclusion processes, where $X = \{0, 1\}$ and F is also a permutation. In general the choice of F should correspond to the transformation of degrees of freedom of neighbour particles (for example, of water molecules) or to chemical reactions. As far as we know, such processes were never studied in sufficient generality.

The first problem we are solving here: for given F and λ_l, describe all invariant Bernoulli measures (IBM). A measure μ on $X V$ is called Bernoulli, if for some probability measure ν on X we have

$$\mu = \nu \times \nu \times \ldots = \nu^V.$$

Such measures are well-known and are very important for the study of exclusion processes, see [3].

\section{Invariance criteria}

We assume here that X and G are finite, and F is assumed to be one-to-one. Due to compactness, at least one invariant measure always exists. Moreover, if F is one-to-one, then the uniform measure on X^V is invariant. We want to know for which maps F there exist other invariant Bernoulli measures.

Let ν be a probability measure on X. Let us consider the measure $\nu^2 = \nu \times \nu$ on the set $S = X \times X$. Let ν^2 take k different values, d_1, d_2, \ldots, d_k. Define a partition $\{S_i\}$ of the set S such that S_i consists of all points of S where ν^2 takes the value d_i.

Note that the map F can be uniquely expanded on a finite number of cycles on S. Let C_1, \ldots, C_n be the supports of these cycles. We say that the measure ν agrees with the map F if the support of any cycle of F belongs to only one of the sets S_i, $i = 1, \ldots, k$. In other words, the partition $\{C_j\}$ is finer than the partition $\{S_i\}$; for any C_j there exists S_i such that $C_j \subseteq S_i$.

The following result gives a convenient criterion to check whether a given Bernoulli measure is invariant for given F.

\begin{theorem}
Let finite X, G be given and let F be one-to-one. Assume that for any edge l the rates $\lambda_l = \lambda_l(s)$ satisfy the condition: $\lambda_l(s) = \lambda_l(F^{-1}(s))$ for all $s \in S$. Then the following conditions are equivalent:

1. Bernoulli measure $\mu = \nu \times \nu \times \ldots = \nu^V$ is an invariant measure of the Markov process ξ_t for any finite graph G.

2. The measure ν^2 is an invariant measure of the Markov process ξ_t for the graph G_2 with two vertices and one edge between them.
\end{theorem}
3. The measure \(\nu^2 \) is invariant with respect to \(F \).

4. The measure \(\nu \) agrees with \(F \) in the sense defined above.

Proof Firstly, it is evident that conditions 3 and 4 are equivalent, that is, the invariance of \(\nu^2 \) with respect to \(F \) is equivalent to the fact that \(\nu^2 \) takes constant values on the support of each cycle of \(F \). It is also evident that 1 \(\Rightarrow \) 2.

Let us prove then that 2 \(\Rightarrow \) 1. In fact, let \(G, X, F \) be given and let \(l \) be the edge with vertices \(v \) and \(v' \). Denote \(\xi_l^{(i)} \) the Markov chain on \(X^V \) in which the only transitions are at the edge \((v, v') \):

\[
(x_v, x_{v'}) \rightarrow F(x_v, x_{v'}),
\]

with rates \(\lambda_l(x_v, x_{v'}) \), that is, the remaining \(\lambda_l(x_v, x_{v'}) = 0, l' \neq l \). It is clear that if the condition 2 holds, then the Bernoulli measure \(\nu^V \) on \(G \) is invariant with respect to any Markov chain \(\xi_l^{(i)} \). Then we get the assertion from the following general and evident proposition. Let a collection \(\xi_l^{(i)} \) of Markov processes on the same state space \(A \) be given, with the rates \(\lambda_{(i)}^{(i)}, \alpha, \beta \in A, \alpha \neq \beta \), correspondingly. Let moreover all the processes have the same invariant measure \(\pi = \{ \pi_{\alpha} \} \). Then the Markov process on \(A \) with rates \(\mu_{\alpha \beta} = \sum_l \lambda_{(i)}^{(i)}, \alpha \neq \beta \), has the same invariant measure. The proof of this proposition is immediately obtained by summing over \(l \) the equations for stationary probabilities of \(\xi_l^{(i)} \).

Let us prove now that 3 \(\Rightarrow \) 2, that is, if \(\nu^2(s) = \nu^2(F^{-1}(s)) \) for any \(s \in S \) then the measure \(\nu^2 \) is an invariant measure of the Markov process \(\xi_l \) for the graph \(G_2 \) with two vertices and one edge between them. To do this, let us write down the equations for the stationary probabilities of the Markov chain on \(G_2 \):

\[
\lambda_l(s)\nu^2(s) = \lambda_l(F^{-1}(s))\nu^2(F^{-1}(s)), \quad s \in S.
\]

They evidently hold under our assumptions. This implies 2 \(\Rightarrow \) 3 as well. \(\square \)

3 Description of invariant measures

Theorem 2.1 allows for given \(F \) to check whether a given Bernoulli measure \(\nu^V \) is invariant or not. To classify all invariant Bernoulli measures for given \(F \) is a more complicated problem. We give now simple combinatorial algorithms which allow, for given \(F \), to construct all IBM.

Let a measure \(\nu \) take values \(a_1, \ldots, a_m \), all different. Denote \(X_i = \{ x : \nu(x) = a_i \} \) and \(S_{ij} = (X_i \times X_j) \cup (X_j \times X_i) = S_{ij} \). We say that a measure \(\nu \) is a general situation measure if all pairwise products \(a_ia_j \) are different. The partition \(X_1, \ldots, X_m \) defines a \((m - 1) \)-parametric family \{ \((a_1, \ldots, a_m), a_1 + \ldots + a_m = 1 \) \} of general situation measures. We say that an IBM \(\nu^V \) is a general situation measure if \(\nu \) is a general situation measure. We will describe all such measures, under some assumptions. Let us note that for general situation measures any cycle \(C_k \) of \(F \) belongs to only one set \(S_{ij} \), that is, all \(S_{ij} \) are different.
A set \(A \subseteq S \) is called connected, if for any two elements \((a, b), (a', b') \in A\) there exists a chain of elements \((a_i, b_i) \in A, (a, b) = (a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n) = (a', b')\) in which all subsequent pairs have a common element, that is,

\[
(\{a_i\} \cup \{b_i\}) \cap (\{a_{i+1}\} \cup \{b_{i+1}\}) \neq \emptyset, \quad i = 1, \ldots, n - 1.
\]

Obviously, any set \(B \) can be uniquely partitioned into connected components. We shall give an algorithm for constructing all general situation IBM in case when all the cycles of \(F \) are connected.

Theorem 3.1 If all the cycles of \(F \) are connected then, among the partitions agreeing with \(F \), there exists a unique minimal partition \(\{S_{ij} = (X_i \times X_j) \cup (X_j \times X_i)\} \). Any general situation IBM belongs to the family of IBM defined by this minimal partition. The minimal partition \(\{S_{ij}\} \) is constructed by the algorithm given in the proof.

Proof A set \(A \subseteq S \) is called half-admissible, if it can be represented as \(A = X_1 \times X_2 \), where either \(X_1 = X_2 \) or \(X_1 \cap X_2 = \emptyset \). A set \(A \subseteq S \) is called admissible, if it can be represented as \(A = (X_1 \times X_2) \cup (X_2 \times X_1) \), where either \(X_1 \neq X_2 \) or \(X_1 \cap X_2 = \emptyset \). Half-admissible and admissible sets are always connected.

Lemma 3.1 For any connected set \(B \subseteq S \), among admissible sets containing (covering) \(B \) there exists a unique minimal admissible set covering \(B \).

Proof of Lemma 3.1 The proof of this lemma consists in direct construction of such covering set. Let us construct first a half-admissible set \(X_1 \times X_2 \) containing \(B \). To do this, take some element \((a, b) \in B\). Put, for example, \(a \in X_1, b \in X_2 \). If \(a = b \), then it follows that \(X_1 = X_2 \). In this case the minimal set will be the set \(X_1 \times X_1 \), where \(X_1 \) is the projection of \(B \) on \(X \) (the projection of the set \(B \subseteq S = X \times X \) on \(X \) is the set of all elements \(x \in X \) such that there exists \(a \in X \) such that either \((a, x)\) or \((x, a)\) belongs to \(B \).

Consider now the case when \(a \neq b \). Then necessarily \(b \in X_2 \), and also for all \((a, x) \in B \) necessarily \(x \in X_2 \). Continuing this process, due to connectedness of \(B \), we encounter all elements of \(B \) and will construct \(X_1 \) and \(X_2 \). During this process it can occur that some element \(c \) belongs both to \(X_1 \) and to \(X_2 \). Then, by definition of half-admissible set, it should be \(X_1 = X_2 \). The symmetrized set \(\overline{B} = (X_1 \times X_2) \cup (X_2 \times X_1) \) is called the closure of the set \(B \). The lemma is proved. □

We return to the proof of Theorem 3.1. Let \(\overline{C_i} \) be the closure of the cycle \(C_i \). To each cycle \(C_i \) there corresponds a symmetric cycle \(C_i^{sym} \), where all elements of \(C_i^{sym} \) are the permutations of the elements of \(C_i \). Moreover, either \(C_i^{sym} = C_i \) or \(C_i^{sym} \cap C_i = \emptyset \). Then \(D_i = C_i^{sym} \cup C_i \) define a covering of the set \(S \), however, they can intersect with each other. If some \(D_1 \) and \(D_2 \) intersect,
then their union is connected. In this case one can take $D_1 \cup D_2, D_3, \ldots, D_m$ instead of the collection of sets D_1, D_2, \ldots, D_m. On each step of this procedure the number of sets in the covering diminishes by 1, and finally we get a system of non-intersecting admissible sets which defines the partition $\{X_i\}$, and thus all general situation IBM. The resulting partition does not depend on the order in which we choose the pairs of intersecting subsets, since at each step we take the minimal admissible set. The theorem is proved. □

If there exist non-connected cycles, then several families of IBM are possible, as Example 3 below shows. An algorithm for constructing all such families is similar, but more involved, we discuss it below.

Example 1. Let us consider Kawasaki processes, when F is the permutation. In this case all the cycles have the length 1 or 2. Then each X_i consists of one point only, and each S_{ij} consists of one (if $i = j$) or two (if $i \neq j$) elements. Then any Bernoulli measure is invariant.

Example 2. Let $F(a, b) = (f(a), f(b))$, where f is a one-to-one mapping $X \to X$ having the cycles X_i. Then $S_{ij} = (X_i \times X_j) \cup (X_j \times X_i)$ define all IBM.

Example 3. The simplest example when there exist two general situation IBM is as follows. Let X consist of four points, that is $X = \{x_1, x_2, x_3, x_4\}$. Let any cycle of F consist of one point only, except for the following two cycles:

$$C_1 = \{(x_1, x_2), (x_3, x_4)\} \subset S$$

and the symmetric one,

$$C_1^{symm} = \{(x_2, x_1), (x_4, x_3)\},$$

consisting of two points. Then there are two admissible partitions, $X_1 = \{x_1, x_3\}, X_2 = \{x_2, x_4\}$ and $X_1' = \{x_1, x_4\}, X_2' = \{x_2, x_3\}$, which define two one-parametric families of general situation IBM.

Further on, we shortly describe the algorithm for constructing all families of IBM in the general case. Let us show first that for any set $B \subset S$ there exists a unique minimal covering (that is, the covering belonging to any such covering of the set B) by non-intersecting half-admissible sets. In fact, if B is not connected, then for any its connected component B_i consider the closure $\overline{B_i}$. It is easy to see that $\overline{B_i}$ do not intersect. Then the minimal half-admissible sets covering $\overline{B_i}$ do not intersect as well.

Let C_i be all the cycles of F, and C_{ij} be all connected components of the cycle C_i. Take the closure $\overline{C_{ij}}$ of each C_{ij}. Firstly, for any i we construct a minimal admissible set A_i containing all $\overline{C_{ij}}$. The problem is that there can be several such A_i (see Example 3). Then for given A_i we construct, as above, (already unique) minimal partition $\{S_{kl}\}$ such that each A_i belongs to one of the sets S_{kl}.

4 Generalizations and remarks

Maps which are not one-to-one
Let us consider the case when F is not one-to-one. A point $s \in S$ is called cyclic if $s = F^n(s)$ for some $n > 0$, where F^n is the nth iteration of the map F. The set of cyclic points is subdivided onto cycles. The remaining points are called inessential.

From the definition of invariant (with respect to F) measure it easily follows that the invariant measure is zero on the set of inessential points. Let a measure ν on X take values $a_0 = 0, a_1, \ldots, a_k$. Put $X_i = \{x \in X : \nu(x) = a_i\}, X_0 \neq \emptyset$. Then $(X_0 \times X) \cup (X \times X_0)$ contains the set of inessential points and possibly also some cycles. Let C_1, C_2, \ldots, C_m be all the cycles of the map F which do not belong to $(X_0 \times X) \cup (X \times X_0)$.

If, instead of X, we consider the set $X \setminus X_0$, then $(X \setminus X_0) \times (X \setminus X_0)$ is invariant with respect to F and is the union of the cycles C_1, C_2, \ldots, C_m, and, moreover, the map F on $(X \setminus X_0) \times (X \setminus X_0)$ is one-to-one. It means that the description of invariant measures can be reduced to the case when F is one-to-one.

Countable X

This case is quite similar to the case when X is finite. In fact, if F has infinite cycles, then ν^2 should be zero on them. Thus, one can delete from X the projections of all infinite cycles, that is we can restrict ourselves to the case when all cycles are finite. All the rest is similar to the case of finite X.

Oriented graph

Our results take place also in a more general case when the graph G is oriented. The map F from $S = X \times X$ to itself is not necessary symmetric. Moreover the intensities $\lambda_l(x_v, x_{v'})$ may be non-symmetric functions of the spin values. However, the condition $\lambda_l(x_v, x_{v'}) = \lambda_l(F^{-1}(x_v, x_{v'}))$ should be fulfilled.

Links with physics

The introduced processes have many links with physics, on the intuitive level. For example, the book [4] explains many facts of behaviour of liquids and amorphous bodies using stochastic exchange interaction between nearby molecules. It gives an alternative to the common approach based on hard-balls-type models.

However when one tries to derive an exchange process from the existing fundamental physical theory, one encounters many difficulties. For example, what is the set of states (that is, the set X introduced above) for the water molecules? The simplest classical model of water molecule includes at least the lengths of segments OH and the angles between them. The known quantum mechanical model is even more complicated: it defines a tetrahedron using molecular orbitals [5]. Moreover, it is known that chemical bonds of hydrogenic character may appear between closely situated water molecules — one molecule can have up to 4 such bonds. They form a random graph of bonds (edges) which presumably defines such properties of water as density, viscosity, heat capacity etc., and their abnormal character comparing with other liquids. In this context one can remark that the time dependence, even random, $\lambda_l = \lambda_l(t)$ does not
change the invariant measures, under keeping the symmetry condition for any \(t \).
This means also that the graph \(G \) itself (depending on the configuration of particles in the space) does not play an important role, since we can consider the complete graph where some \(\lambda_t = 0 \).

Some problems

It could be interesting to get similar results for the case when \(X \) is a smooth manifold. In this case conservation laws play an important role. For finite \(X, G \), an additive conservation law is a function \(E \) on \(X \) such that if \(F(x, y) = (x_1, y_1) \) then
\[
E(x) + E(y) = E(x_1) + E(y_1).
\]

If \(\nu \) is an IBM and \(C \) is an arbitrary constant, then the conservation law is
\[
E(x) = C \ln \nu(x).
\]

Other interesting possibilities are when \(F \) is random (see some examples in \[6\]) or even when \(F \) is quantum and \(X \) is a Hilbert space.

References

[1] C. Kipnis and C. Landim (1999) *Scaling Limits of Interacting Particle Systems*. Springer.

[2] H. Spohn (1991) *Large Scale Dynamics of Interacting Particles*. Springer.

[3] Th. Liggett (1985) *Interacting Particle Systems*. Springer.

[4] Ya. Frenkel (1975) *Kinetic Theory of Liquids*. Moscow (in Russian).

[5] F. Franks (2000) *Water: 2nd edition. A Matrix of Life*. Royal Society of Chemistry, UK.

[6] V.A. Malyshev and S.A. Pirogov (2008) Reversibility and non-reversibility in stochastic chemical kinetics. *Russian Math. Reviews* **63** (1), 3–36.