75As NMR Observation of Anisotropic Spin Fluctuations in the
Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$ Superconductor ($T_c = 22$ K)

Fanlong Ning1, Kanagasingham Ahilan1, Takashi Imai1,2, Athena S. Sefat3, Rongying Jin3, Michael A. McGuire3, Brian C. Sales3, David Mandrus3

1Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S4M1, Canada
2Canadian Institute for Advanced Research, Toronto, Ontario M5G1Z8, Canada
3Materials Science and Technology Division, Oak Ridge National Laboratory, TN 37831, USA

KEYWORDS: Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, NMR, anisotropic spin fluctuations

The recent discovery of iron-pnictide superconductors with transition temperatures as high as $T_c \sim 55$ K has attracted a huge amount of attention.$^{1-4}$ A prototypical parent compound of the iron-pnictide superconductors, BaFe$_2$As$_2$, is an itinerant antiferromagnet, and displays a first order Spin Density Wave (SDW) transition at $T_{SDW} \sim 135$ K accompanied by a simultaneous tetragonal-orthorhombic structural phase transition.$^5, 6$ In a recent paper,7 Kitagawa et al. reported a comprehensive 75As NMR investigation of the parent compound BaFe$_2$As$_2$, and proposed a stripe antiferromagnetic spin structure below T_{SDW}. They also showed the growth of anisotropic spin fluctuations at 75As sites between ab- and c-axis orientations in the paramagnetic state above T_{SDW}. In this short note, we will demonstrate that analogous anisotropy of paramagnetic spin fluctuations grows with decreasing temperature in the optimally electron-doped superconductor Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$ ($T_c = 22$ K) when short-range antiferromagnetic correlations develop toward T_c.

In Fig. 1(a), we show the 75As nuclear spin-lattice relaxation rate divided by temperature, $^{75} (\frac{1}{T_1T})_{ab}$, for Ba(Fe$_{0.92}Co_{0.08}$)$_2As_2$ with an external magnetic field $B_{ext} = 7.7$ Tesla applied within the ab-plane. For comparison, we also reproduce $^{75} (\frac{1}{T_1T})c$ with B_{ext} applied along the c-axis from our earlier report.8 Compared with the case of BaFe$_2$As$_2$ in [7], the overall magnitude of $^{75} (\frac{1}{T_1T})$ in the paramagnetic state is suppressed by Co doping for both orientations. We refer readers to our previous studies$^8, 9$ for a systematic investigation of the Co doping effects on the static and dynamic susceptibilities. Our results in Fig. 1(a) show that the enhancement of $^{75} (\frac{1}{T_1T})$ toward T_c is stronger for $^{75} (\frac{1}{T_1T})_{ab}$ than for $^{75} (\frac{1}{T_1T})_c$. This behavior in Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$ is qualitatively similar to that of the undoped parent compound BaFe$_2$As$_2$ above T_{SDW}.7

In general, $^{75} (\frac{1}{T_1T})$ probes spin fluctuations within the plane perpendicular to the quantization axis set by B_{ext}.

\[
\frac{1}{T(1)}_c \propto \sum_q |A_\alpha(q)|^2 \frac{\chi_\alpha''(q,f)}{f} + \sum_q |A_b(q)|^2 \frac{\chi_b''(q,f)}{f} \tag{1a}
\]
\[
\propto 2 \sum_q |A_a(q)|^2 \frac{\chi_a''(q,f)}{f}, \tag{1b}
\]
\[
\frac{1}{T|c|^2} \propto \sum_q |A_a(q)|^2 \frac{\chi_a''(q,f)}{f} + \sum_q |A_c(q)|^2 \frac{\chi_c''(q,f)}{f}, \tag{1c}
\]
where \(|A_\alpha(q)|^2 \) (\(\alpha = a, b, c \)) and \(\chi_\alpha''(q,f) \) are the wave-vector \(q \)-dependent hyperfine form factor and the dynamical spin susceptibility at NMR frequency \(f \), respectively. We assume \(|A_\alpha(q)|^2 \) and \(\chi_\alpha''(q,f) \) are isotropic within the \(ab \)-plane in the tetragonal phase. Thus stronger enhancement of \(75(\frac{1}{T|c|^2})_{ab} \) toward \(T_c \) indicates that spin fluctuations are enhanced at \(75 \) As sites more strongly toward \(T_c \) along the \(c \)-axis than within the \(ab \)-plane. We define the anisotropy, \(R \), from Eqs. (1b) and (1c) as,

\[
R = \frac{\sum_q |A_c(q)|^2 \chi_c''(q,f)}{\sum_q |A_\alpha(q)|^2 \chi_\alpha''(q,f)} = \frac{(\frac{1}{T|c|^2})_{ab} - \frac{1}{2}(\frac{1}{T|c|^2})_c}{\frac{1}{2}(\frac{1}{T|c|^2})_c}, \tag{2}
\]

We plot \(R \) in Fig. 1(b). \(R \) continuously increases with decreasing temperature toward \(T_c \). Since the magnitudes of the hyperfine form factors are comparable \(^7\) and temperature independent, the observed temperature dependence of \(R \) reflects that of the spin fluctuations. For comparison, we also estimate \(R \) for the parent compound from the data reported in \(^7\) as shown in Fig. 1(b). The magnitudes of \(R \) for the two compounds are comparable toward the ordering temperatures. The anisotropy \(R \) below \(T_c \) can, in principle, provide valuable information about the pairing state,\(^10\) but it is beyond the scope of this short note.

In Fig. 2, we present \(^{59}(\frac{1}{T|c|^2})_{ab} \) for Ba(Fe\(_{0.92}\)Co\(_{0.08}\))\(_2\)As\(_2\) with \(B_{ext} \) applied within the \(ab \)-plane. We also present \(^{59}(\frac{1}{T|c|^2})_c \) for comparison.\(^8\) \(^{59}(\frac{1}{T|c|^2})_c \) levels off below \(\sim 100 \) K down to \(T_c \), while \(^{59}(\frac{1}{T|c|^2})_{ab} \) is enhanced slightly toward \(T_c \). This finding provides additional proof that the spin fluctuations are anisotropic. The presence of the orbital contributions to \(\frac{1}{T|c|^2} \)\(^11\) of \(^{59}\)Co makes it difficult to estimate \(R \). The difference between the temperature dependences of \(75(\frac{1}{T|c|^2}) \) and \(^{59}(\frac{1}{T|c|^2}) \) suggest that different areas in the Brillouin Zone have a different temperature dependence for spin fluctuations, and that the hyperfine form factors filter out the different regions for \(75 \) As and \(^{59}\)Co. Alternatively, because of the itinerant nature of electrons, the local spin density at \(75 \) As and \(^{59}\)Co sites may display different behaviors.

In conclusion, we have demonstrated that the anisotropy \(R \) of the paramagnetic spin fluctuations grows toward \(T_c \) at \(75 \) As sites in the superconductor Ba(Fe\(_{0.92}\)Co\(_{0.08}\))\(_2\)As\(_2\), with stronger spin fluctuations along the \(c \)-axis. Our finding is in remarkable contrast with the case of high \(T_c \) cuprates, where \(R \) is independent of temperature above \(T_c \).\(^10\)

The work at McMaster was supported by NSERC, CIFAR and CFI. Research at ORNL
Fig. 1. (Color Online). (a) The temperature dependence of $\frac{1}{T} \frac{1}{T_1}$ with external field $B_{ext} = 7.7$ Tesla applied within the ab-plane (■) and along the c-axis (●) in Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$. (b) The temperature dependence of the anisotropy of spin fluctuations R for the superconductor Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$ (◇), and BaFe$_2$As$_2$ (△) (estimated from [7], $T_{SDW} = 135$ K). The dashed line marks T_c.

Fig. 2. (Color Online). $^{59}(\frac{1}{T} \frac{1}{T_1})$ with external field B_{ext} applied within the ab-plane (■) and along the c-axis (●) for the superconductor Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$. The dashed line marks T_c.

3/5
sponsored by Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy.
References

1) Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono: J. Amer. Chem. Soc. 130 (2008) 3296.
2) Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao: Chin. Phys. Lett. 25 (2008) 2215.
3) M. Rotter, M. Tegel, and D. Johrendt: Phys. Rev. Lett. 101 (2002) 107006.
4) A. S. Sefat, R. Y. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D Mandrus: Phys. Rev. Lett. 101 (2008) 117004.
5) M. Rotter, M. Tegel, I. Schellenberg, W. Hermes, R. Pottgen, and D. Johrendt: Phys. Rev. B 78 (2008) 020502(R).
6) Q. Huang, Y. Qiu, W. Bao, J. W. Lynn, M. A. Green, Y. Chen, T. Wu, G. Wu, and X.H. Chen: Phys. Rev. Lett. 101 (2008) 257003.
7) K. Kitagawa, N. Katayama, K. Ohgushi, M. Yoshida, and M. Takigawa: J. Phys. Soc. Jpn. 77 (2008) 114709.
8) F.L. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus: J. Phys. Soc. Jpn. 77 (2008) 103705.
9) F.L. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus: J. Phys. Soc. Jpn. 78 (2009) 013711.
10) M. Takigawa, J. L. Smith, and W. L. Hults: Phys. Rev. B 44 (1991) 7764(R).
11) Y. Yafet and V. Jaccarino: Phys. Rev. 133 (1964) A1630.