Frequency of vacA, cagA and babA2 virulence markers in Helicobacter pylori strains isolated from Mexican patients with chronic gastritis

Gloria Luz Paniagua1, Eric Monroy1, Raymundo Rodríguez2, Salvador Arroniz1, Cristina Rodríguez1, José Luis Cortés2, Ausencio Camacho2, Erasmo Negrete1 and Sergio Vaca*1

Address: 1Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de Mexico, Mexico and 2Hospital General Regional 72 del Instituto Mexicano del Seguro Social, Av. G. Baz s/n, Tlalnepantla, 54000, Estado de Mexico, Mexico

Email: Gloria Luz Paniagua - mya@unam.mx; Eric Monroy - mopi@unam.mx; Raymundo Rodríguez - rodmoc@prodigy.net.mx; Salvador Arroniz - chinpato@prodigy.net.mx; Cristina Rodríguez - cristy@unam.mx; José Luis Cortés - coel63@hotmail.com; Ausencio Camacho - dipatci@hotmail.com; Erasmo Negrete - negateec@yahoo.com; Sergio Vaca* - vsergio@servidor.unam.mx

* Corresponding author

Abstract

Background: Helicobacter pylori has been strongly associated with chronic gastritis, peptic and duodenal ulcers, and it is a risk factor for gastric cancer. Three major virulence factors of H. pylori have been described: the vacuolating toxin (VacA), the cytotoxin-associated gene product (CagA) and the adhesion protein BabA2. Since considerable geographic diversity in the prevalence of H. pylori virulence factors has been reported, the aim of this work was to establish the H. pylori and vacA, cagA and babA2 gene status in 238 adult patients, from a marginal urban area of Mexico, with chronic gastritis.

Methods: H. pylori was identified in cultures of gastric biopsies by nested PCR. vacA and cagA genes were detected by multiplex PCR, whereas babA2 gene was identified by conventional PCR.

Results: H. pylori-positive biopsies were 143 (60.1%). All H. pylori strains were vacA+; 39.2% were cagA+; 13.3% were cagA+ babA2+ and 8.4% were babA2+. Mexican strains examined possessed the vacA s1, m1 (43.4%), s1, m2 (24.5%), s2, m1 (20.3%) and s2, m2 (11.9%) genotypes.

Conclusion: These results show that the Mexican patients suffering chronic gastritis we have studied had a high incidence of infection by H. pylori. Forty percent (63/143) of the H. pylori strains analyzed in this work may be considered as highly virulent since they possessed two or three of the virulence markers analyzed: vacA s1 cagA babA2 (9.8%, 14/143), vacA s1 babA2 (4.9%, 7/143), and vacA s1 cagA (29.4%, 42/143). However, a statistically significant correlation was not observed between vacAs1, cagA and babA2 virulence markers ($\chi^2$ test; $P > 0.05$).
Background

*Helicobacter pylori* is a spiral-shaped Gram-negative bacterium that has been strongly associated with chronic gastritis and peptic ulcer disease [1,2], and it is a risk factor for gastric cancer [3-5].

Three major virulence factors of *H. pylori* have been described: the cytotoxin-associated gene product (CagA), the vacuolating toxin (VacA) and the adhesion protein BabA2. The cytotoxin-associated gene A (CagA) is a protein with a molecular mass of approximately 125–140 kDa, encoded by the cagA gene, [6,7], that is translocated into gastric epithelial cells by a type IV secretion system, encoded by the cag pathogenicity island (cag PAI) [8]. Inside epithelial cells CagA is phosphorylated on tyrosine residues by host cell Src kinases and stimulates cell-signaling pathways [9], which in turn causes elongation of the cell [10] and activation of proto-oncogenes [11].

The vacuolating cytotoxin gene vacA is polymorphic, varying in the signal and middle regions. The main signal region alleles are s1 and s2, whereas the middle region alleles are m1 and m2 [12,13]. VacA is a toxin that binds to several epithelial receptors [14-16] and forms hexameric pores [17], which later are endocytosed and converted in large vacuoles [18].

The BabA adhesin of *H. pylori* is an outer membrane protein that binds to the fucosylated histo-blood group antigens on the surface of gastric epithelial cells [19,20]. It has been reported that *H. pylori* strains possessing babA2 gene, which encodes active BabA adhesin, are associated with

---

**Figure 1**

Identification of *H. pylori* isolated from gastric biopsy samples and genotyping of its main virulence genes by PCR. Images shown are from representative gel electrophoresis. A: Lane 1, MWM 50 bp-ladder; Lanes 2 and 9 negative control without DNA; Lanes 3–8, 10 and 11, *H. pylori* isolated from gastric biopsy samples (417-bp amplicon); Lane 12, reference strain *H. pylori* ATCC 43629. B: Lane 1, negative control without DNA, Lane 2, MWM 50 bp-ladder; Lanes 3–6, *H. pylori* isolated from gastric biopsy samples (230-bp amplicon); Lane 7, *H. pylori* ATCC 43629. C: Lane 1, MWM 50-bp-ladder; Lane 2, *H. pylori* isolated from gastric biopsy sample (vacA s1, m1 cagA); Lane 3, negative control without DNA; Lanes 4–5, *H. pylori* isolated from gastric biopsy samples (vacA s1, m1); Lane 6, ATCC 43629. D: Lane 1, MWM 200 bp-ladder; Lane 2, ATCC 43629; Lanes 3,4,6 and 8, babA2-positive *H. pylori* isolated from gastric biopsy samples; Lane 5, control without DNA; Lane 7, babA2-negative *H. pylori* isolated from gastric biopsy sample.
increased gastric inflammation [21] and increased risk for duodenal ulcer and adenocarcinoma [22].

*H. pylori* virulence factors frequency varies widely. For instance, vacAs1 prevalence fluctuates from 48% [23] to 100% [24] whereas cagA prevalence fluctuates from 66.9% [23] to 83.6% [25] and 100% [26]. babA2 reported prevalence fluctuates from 46% [27] to 82.3% [28] in South-American countries. Since considerable geographic diversity in the prevalence of *H. pylori* virulence factors has been reported, the aim of this work was to establish the *H. pylori* and vacA, cagA and babA2 gene status in 238 adult patients, from a marginal urban area of Mexico, with chronic gastritis.

### Materials and methods

#### Subjects and clinical samples

Two hundred and thirty eight patients, endoscopically diagnosed with chronic gastritis (154 women and 84 men) with an average age of 52.24 years (range 16 to 83), who had undergone endoscopy in Hospital General Regional 72 of the Instituto Mexicano del Seguro Social at Tlalnepantla, Estado de Mexico, Mexico, were included in this study. Written informed consent for participation was obtained from every patient before the study. The ethics committee at Hospital General Regional 72 approved the study protocol in advance. Antral biopsy specimens were obtained from every patient before the study. The ethics committee at Hospital General Regional 72 of the Instituto Mexicano del Seguro Social at Tlalnepantla, Estado de Mexico, Mexico, were included in this study. Written informed consent for participation was obtained from every patient before the study. The ethics committee at Hospital General Regional 72 approved the study protocol in advance. Antral biopsy specimens were obtained from every patient before the study.

### Table 1: Frequency of vacA *H. pylori* genotypes in Mexican patients with chronic gastritis

| Genotype | Number (%) |
|----------|------------|
| s1m1     | 62 (43.4)  |
| s1m2     | 35 (24.5)  |
| s2m1     | 29 (20.3)  |
| s2m2     | 17 (11.9)  |
|           | 143 (100)  |

### Table 2: Frequency of cagA and babA2 genes in *H. pylori* isolates

| Genotype | Number (%) |
|----------|------------|
| vacA     | cagA       | babA2 |
| +        | +          | +     | 19 (13.3) |
| +        | -          | -     | 12 (8.4)  |
| +        | +          | -     | 56 (39.2) |
|          |            | -     | 56 (39.2) |
|          |            |       | 143 (100) |

### H. pylori culture

For bacterial culture, biopsy specimens were macerated and homogenized in Brucella Broth and a 100 μL aliquot was inoculated on Casman Agar (Difco) containing 5% horse blood and *H. pylori* selective supplement (Oxoid-SR 147E). Agar plates were incubated in 6% CO2, for up to four days. Colonies were identified as *H. pylori* according to standard criteria including negative Gram staining, typical cell morphology, and positive reactions to catalase, oxidase, and urease.

### Identification of *H. pylori* by nested PCR

*H. pylori* DNA was extracted from colonies collected in microcentrifuge tubes containing 125 μL of sterile phosphate-buffered saline. Suspensions were vortexed vigorously for 2 min; the tubes were boiled in a water bath for 15 min, cooled in ice, and centrifuged at 13000 × g for 1 min. DNA in supernatant was stored at -20°C until used as template in PCR.

*H. pylori* was detected by nested PCR. First PCR run was done as described by Li et al., [29] with primers EHC-U (5’-CCCTCACGCCCATCGTCCAAAAAC-3’) and EHC-L (5’-AAGAAGTCAAAAAACGCCCCAACA-3’). Amplification was performed in 25 μL reaction volume containing 1 μL (25 pmol) of each primer (EHC-U and EHC-L, Sigma-Genosys), 2.5 μL 10× Buffer Solution, 17.5 μL nuclease-free water, 3 μL template DNA, 1.5 mmol MgCl2, 0.5 U AmpliTaq polymerase and 100 mmol dNTPs (PArrayaTM Ready-To-GoTM PCR beads). Products were amplified under the following conditions: 5 min at 95°C for initial denaturation followed by 40 cycles of 45 s at 94°C, 45 s at 59°C, and 30 s at 72°C with a final round of 10 min at 72°C in a Corbett Research CGI-96 Thermocycler. A 417 bp product was obtained by this procedure. Second PCR run was done as described by Song et al., [30] with primers ET-5U (5’-CGCAATCAATGTCGACGAA-3’) and ET-5L (5’-TGAGACTTCTCCFAGAACGGTGT-3’) complementary to an internal fragment of the amplon obtained with EHC-U and EHC-L primers. Amplification conditions were identical to those of the first run, except that 0.2 μL of the first PCR run product as template, and 25 cycles, were used. A 230 bp amplon was obtained.

In each experiment, both positive and negative controls, with DNA from *H. pylori* ATCC 43629 and without template DNA, were included.

### Detection of cagA, vacA, and babA2 by PCR

In order to detect cagA and vacA alleles, primers and multiplex PCR amplification conditions described by Chattopadhyay, et al., [31] and Atherton et al., [13,32] were used. These PCR protocols detect cagA (350 bp amplon), and distinguish vacA s1 (259 bp amplon) from vacA s2 (286 bp amplon), and vacA m1 (567 bp amplon) from...
Table 3: Frequency of cagA and babA2 genes in vacA s1-positive H. pylori isolates

| Genotype | Number (%) |
|----------|------------|
| vacA s1  | cagA babA2 |
| +        | +          | 14 (14.4) |
| +        | -          | 7 (7.2)   |
| +        | +          | 42 (43.3) |
| +        | -          | 34 (35.0) |

97 (100)

vacA m2 (642 bp amplicon). PCR detection of babA2 was done as described by Gerhard et al. [22]. PCR products were analyzed by agarose gel electrophoresis at 120 V, 94 mA for 120 min. Gels were stained with ethidium bromide and photographed under UV illumination with Gel Logic 100 system (Kodak).

Results and discussion

It is known that more than 50% of the world's human population is colonized by H. pylori [33,34]. We report here that H. pylori was cultured from 60.1% biopsy samples (143/238) and identified by nested PCR, which rendered the expected 417 bp and 230 bp amplicons (Fig 1A, B) as reported by Li et al. [29] and Song et al. [30]. This result is in agreement with previously reported H. pylori prevalence in Mexican people. A community-based national seroprevalence survey of H. pylori infection in Mexico showed an overall prevalence of 66%. Twenty-percent of one-year-old children had antibodies against H. pylori, with an increased seropositivity of up to 50% in children who were 10 years of age [35]. Variations in prevalence have been reported among particular regions with a prevalence of 86.1% in southeastern Mexico [36] and 47.1% in children from northwestern Mexico [37].

All H. pylori strains were positive for the vacA gene (Table 1), as evidenced by PCR product sizes, which enabled to differentiate s and m alleles (Fig. 1C). s1 m1 was the most frequent vacA allelic combination in the H. pylori strains examined, followed by s1 m2, s2 m1 and s2 m2 (Table 1). These results suggest that two thirds of these strains are virulent, as it has been reported that H. pylori isolates with vacAs1m1 and vacAs1m2 allelic combinations exhibit high and low vacuolating activity, respectively, whereas those with vacAs2 fails to induce cell vacuolation in vitro [13].

Amplicons of the cagA and babA2 genes were detected in agarose gels as 350 bp and 832 bp bands, respectively, (Fig. 1C and 1D). Fifty two percent of the H. pylori isolates were cagA-positive, prevalence less than that reported in other studies from South-American [28,38,39] and Asian countries [40]. In Mexico, prevalence of H. pylori infection with CagA-positive strains varies from 47.6% to 63.4% [41]. cagA-positive H. pylori strains have been associated with the severe mucosa inflammation that underlies peptic ulcer, atrophic gastritis and gastric carcinoma [42-44].

Although vacAs1 cagA+ H. pylori strains had been considered as virulent, in a study of H. pylori isolates from Mexican patients it was reported that vacAs1b and cagA+ strains were found at similar frequencies in adults with and without peptic ulcers [45].

H. pylori BabA adhesin, encoded by the babA2 gene, participates in adhesion of H. pylori to Leb antigens on human gastric epithelial cells [19]. The babA2 gene was found in only 21.7% of the H. pylori isolates (Table 2). This frequency is considerably lesser than babA2 reported frequencies, which vary from 46% [27] to 82.3% [28] in South-American countries. It is important to note that PCR detection of babA2 in H. pylori do not always correlates with its adhesive properties and, conversely, failure to detect babA2 by PCR does not mean that the strain is not adherent, as there is substantial allelic variation in babA2 gene [46-48].

Forty four percent of the H. pylori strains analyzed in this work (63/143) possessed two or three of the virulence markers analyzed (Table 3): vacA s1 cagA babA2 (9.8%, 14/143), vacA s1 babA2 (4.9%, 7/143), and vacA s1 cagA (29.4%, 42/143).

Conclusion

Results presented here show that the Mexican patients suffering chronic gastritis we have studied had a high incidence of infection by H. pylori, and suggest that 44% of the H. pylori strains examined may be considered virulent, since they possessed two or three of the virulence markers analyzed. However, a statistically significant correlation was not observed between vacAs1, cagA and babA2 virulence markers (χ² test; P > 0.05).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GP, EM and EN carried out the molecular studies; RR, JC and AC, obtained the gastric biopsy samples; SA and CR carried out the microbiological procedures; SV conceived of the study, and participated in its design and coordination, and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Project supported by PAPIIT IN216508, DGAPA, UNAM.

References

1. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984, 1(8390):1311-1315.
1. Petersen WL: Helicobacter pylori and peptic ulcer disease. N Engl J Med 1991, 324:1043-1048.

2. The International Consensus Development Panel: Helicobacter pylori in peptic ulcer disease. J Am Med Assoc 1994, 272:65-69.

3. International Agency for Research on Cancer: Schistosomes, liver flukes and Helicobacter pylori. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 61. World Health Organization, Geneva, Switzerland, 1994.

4. Isaacs PG: Gastric lymphoma and Helicobacter pylori. N Engl J Med 1994, 330:1310-1311.

5. Covacci A, Censi S, Bugnoli M, Petracca R, Burroni D, Macchia G, Massone A, Papini E, Xiang Z, Figura N, Rappuoli R: Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci USA 1993, 90:5791-5795.

6. Tummuruk MK, Cover TL, Blaser MJ: Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxicity production. Infect Immun 1993, 61:1799-1809.

7. Zhu J, Seidlmayer B, Gerland E, Fischer W, Hass R: Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000, 287:1497-1500.

8. Schuller M, Meull S, Hauck CR, Meyer TF, Backert S: The kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 2002, 277:6775-6778.

9. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS: Altered states of phosphorylation of CagA in the induction of host cell growth changes by Helicobacter pylori. Proc Natl Acad Sci USA 1999, 96:14559-14564.

10. Meyer-ter-Vehn T, Covacci A, Kist M, Pahl HL: Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem 2000, 275:16064-16072.

11. Cover TL, Tummuruk MK, Cao P, Thompson SA, Blaser MJ: Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem 1994, 269:10566-10573.

12. Atherton JC, Cao P, Peek RM, Tummuruk MK, Blaser MJ: Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 1995, 270:1771-1777.

13. Seto K, Hayashi-Kuwabara Y, Yoneta N, Suda H, Tamaki H: Vacuolation induced by cytotoxin from Helicobacter pylori is mediated by EGFR receptor in HeLa cells. FEBS Lett 1998, 431:347-353.

14. Padilla P, Wada A, Yahiro K, Kimura M, Niidome T, Aoyagi H, Kuma-tori A, Anami M, Hamashi T, Fujisawa J, Saito H, Moss J, Hirayama T: Morphologic differentiation of HL-60 cells is associated with appearance of RPTP beta and induction of Helicobacter pylori VacA sensitivity. J Biol Chem 2000, 275:15200-15206.

15. Yahiro K, Wada A, Nakayama M, Kimura T, Ojiushi K, Niidome T, Aoyagi H, Yoshino K, Yonezawa K, Moss J, Hirayama T: Protein-tyrosine phosphatase alpha, RPTP alpha, is a Helicobacter pylori VacA receptor. J Biol Chem 2003, 278:19183-19189.

16. Czajkowski DM, Iwamoto H, Cover TL, Shaf ZF: The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc Natl Acad Sci USA 1999, 96:2001-2006.

17. Papini E, de Bernard M, Milla E, Bugnoli M, Zerial M, Rappuoli R, Montecucco C: Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc Natl Acad Sci USA 1999, 96:1633-1638.

18. Borens T, Fank P, Roth KA, Larson G, Normark S: Attachment of Helicobacter pylori to human gastric epithelial mediated by blood group antigens. Science 1993, 262:1892-1895.

19. Prinz C, Schongger M, Rad R, Becker I, Keiditsch E, Wagenpfel S, Claasen M, Rosch T, Schepp W, Gerhard M: Key importance of the Helicobacter pylori adherence factor blood group antigen binding adhesin during chronic gastric inflammation. Cancer Res 2001, 61:1903-1909.

20. Gerhard M, Leh N, Neumayer N, Borens T, Rad R, Schepp W, Michael S, Claasen M, Prinz C: Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc Natl Acad Sci USA 1999, 96:12778-12783.

21. Selbach M, Dominitz D, Marcon M, Lopez-Brea M, vacA genes and vacA alleles in Spanish Helicobacter pylori clinical isolates from patients of different ages. FEMS Immunol Med Microbiol 1999, 24:215-219.

22. Chomvarin C, Namwattana W, Chaiwattana K, Maipirun P, Sangchan A, Sripa B, Tor-Udom S, Vilaichone R: Prevalence of Helicobacter pylori vacA, cagA, iceA and babA2 genotypes in Thai dyspeptic patients. Int J Infect Dis 2008, 12(1):30-36.

23. Salehi Z, Jelodar M, Rama M, Ahaki M, Mollasalehi H, Mashayekhi F: Helicobacter pylori cagA status and peptic ulcer disease in Iran. Dig Dis Sci 2009, 54:608-613.

24. Parsonnet J, Perez-Perez GI, Miyazaki H, Blaser MJ: Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer Inst 1995, 87:1777-1780.
43. Blaser MJ, Pérez-Pérez GI, Klephantos H, Cover TL, Peek RM, Chyou PH, Stemmermann GN, Nomura A: Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 1995, 55:2111-2115.

44. Yamaoka Y, Kodama T, Gutierrez O, Kim JG, Kashima K, Graham DY: Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J Clin Microbiol 1999, 37:2274-2279.

45. González-Valencia G, Atherton JC, Muñoz O, Dehesa M, Madrazo-de la Garza A, Torres J: Helicobacter pylori vacA and cagA genotypes in Mexican adults and children. J Infect Dis 2000, 182:1450-1454.

46. Hennig EE, Mernaugh R, Edl J, Cao P, Cover TL: Heterogeneity among Helicobacter pylori strains in expression of the outer membrane protein BabA. Infect Immun 2004, 72:3429-3435.

47. Olfat FO, Zheng Q, Oleastro M, Voland P, Borén T, Karttunen R, Engstrand L, Rad R, Prinz C, Gerhard M: Correlation of the Helicobacter pylori adherence factor BabA with duodenal ulcer disease in four European countries. FEMS Immunol Med Microbiol 2005, 44:151-156.

48. Colbeck JC, Hansen LM, Fong JM, Solnick JV: Genotyping profile of the outer membrane proteins BabA and BabB in clinical isolates of Helicobacter pylori. Infect Immun 2006, 74:4375-4378.