Research Article

Infrared Spectroscopic Characterization of Tellurite Glasses Containing Heavy Metal Oxides

G. Upender,1 C. P. Vardhani,1 V. Kamalaker,1 and V. Chandra Mouli1,2

1 Glassy Materials Research Laboratory (GMRL), Department of Physics, Osmania University, Hyderabad 500 007, India
2 Pulla Reddy Institute of Technology, Vargal, Madak, A.P., India

Correspondence should be addressed to V. Chandra Mouli, vorucm90@yahoo.com

Received 13 July 2009; Revised 28 October 2009; Accepted 15 November 2009

Copyright © 2010 G. Upender et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The infrared (IR) spectra of (100-x)TeO2–xWO3 glasses reveal that the glass network consists of [TeO3]/[TeO3+1], [TeO4], [WO4], and [WO6] groups as basic structural units. Addition of WO3 oxide to the binary TeO2–WO3 glasses increases the amount of lower coordination of [TeO3]/[TeO3+1] units and decreases the higher coordination of [TeO4] units and also the formation of Te–O–W linkages at the expense of Te–O–Te linkages. The IR spectra of 60TeO2–(40-x)WO3–xPbO glasses reveal that the glass network consists of [TeO3], [TeO4], [WO4], [WO6], and [PbO4] units. Changes in the coordination state of tellurium and tungsten ions occur when the PbO and WO3 concentrations are varied. The dual role of the lead ions is confirmed in 60TeO2–(40-x)WO3–xPbO glass system. The W ion coordination state changes from 4 to 6 when WO3 concentration increases beyond 30 mol% in both (100-x)TeO2–xWO3 and 60TeO2–(40-x)WO3–xPbO glass systems. The IR spectra of 60B2O3–10TeO2–(30-x)ZnO–xPbO glasses reveal that the glass network consists of [TeO3], [BO3], and [BO4] groups.

1. Introduction

Glasses with heavy metal oxides (TeO2, GeO2, Bi2O3,WO3, PbO,Ag2O, etc.) are promising materials for IR technologies, nonlinear optics, and design of laser devices [1]. Tellurite-based glasses are the subject of intense current research because of the interesting electrical and optical properties. Main features include extended Infrared transmittance [2], high nonlinear optical indices [3], low fusion temperature, and they constitute an excellent matrix for active element doping, justifying a continuous technological interest [4]. The synthesis of glasses with high refractive index values is of great importance in the glass science and the optical industries. Among tellurite glasses, the glasses based on WO3, PbO, and other heavy-metal oxides (HMO) are known to have high linear refractive indices (n > 2.1) [5–7]. The high linear refractive index of Te+4 containing glasses is attributed to the nonbonding lone electron pair 5s2 of tellurium [8].

The PbO is unique in its influence on the glass structure and is widely used in glasses because it enhances the resistance against devitrification, improves the chemical durability, and lowers the melting temperature [9, 10]. PbO could act both as glass network former and as modifier depending on its concentration in the glasses [11, 12]. B2O3 is one of the best and well-known glass former. Addition of small amount of TeO2 into the borate glass network enhances the glass quality with an improvement in transparency, refractive index. Addition of ZnO into the boro-tellurite glass network produces low rates of crystallization and increases the glass-forming ability [13]. Hence it is of interest to study the structural changes brought about by PbO in tungsto-tellurite and boro-tellurite glasses, which may help in predicting the physico-chemical properties.

The aim of the present work is to study the short range structure and structural changes with compositions of (100-x)TeO2–xWO3, 60TeO2–(40-x)WO3–xPbO, and 60B2O3–10TeO2–(30-x)ZnO–xPbO glass systems by Infrared spectroscopy.

2. Experimental

The tellurium-based glasses (100-x)TeO2–xWO3, 60TeO2–(40-x)WO3–xPbO, and 60B2O3–10TeO2–(30-x)ZnO–xPbO were prepared from 99.9% purity-grade oxides (Aldrich). Powders of TeO2, WO3, B2O3, ZnO, and PbO were weighted to get the required composition and ground in a mortar
Table 1: Glass compositions.

Samples	Oxides (mol%)	TeO₂	WO₃	PbO	B₂O₃	ZnO
TW1		90	10	—	—	—
TW2		80	20	—	—	—
TW3		70	30	—	—	—
TW4		60	40	—	—	—
TWP1		60	40	0	—	—
TWP2		60	30	10	—	—
TWP3		60	20	20	—	—
TWP4		60	10	30	—	—
TWP5		60	0	40	—	—
BTZP1		10	—	0	60	30
BTZP2		10	—	10	60	20
BTZP3		10	—	20	60	10
BTZP4		10	—	30	60	0

Table 2: Observed IR band positions in the (100-x)TeO₂–xWO₃ glass system.

Sample ID	IR bands (cm⁻¹)
TW1	460–490 640 — 730 865 925
TW2	460–490 645 — 735 860 934
TW3	460–490 — 665 745 855 940
TW4	460–490 — 675 790 850 945

with a pestle for 1 hour to obtain homogeneous mixtures. Each batch was then transferred to a platinum crucible and melted at about 800–950°C in an electric furnace. This melt was held at this temperature for 30 minutes until a bubble-free liquid was formed. The melts were stirred to achieve desirable homogeneity. The homogeneous melt was quenched by pouring it on to a preheated stainless steel mould to avoid excess thermal shocks. The glasses were annealed for 8 hours at 100°C to relieve the mechanical strains. The compositions of the glass samples employed in the present study are given in Table 1.

X-ray diffractograms of powdered glass samples were recorded using a copper target (\(\lambda(kα) = 1.54\AA\)) on a Philips PW (1140) diffractometer at room temperature. The IR spectra of the glass samples were recorded at room temperature using a Perkin-Elmer FT-IR spectrometer model 1605 using KBr disc technique. The investigated samples were ground to fine particles and then mixed with KBr in the ratio (0.002 : 0.2 g) glass to KBr, respectively. The weighted mixture was then subjected to a pressure of 5 tons/cm². The transmission spectra were measured immediately after preparing the desired disks.

3. Results and Discussion

3.1. XRD and IR Spectra of (100-x)TeO₂–xWO₃ Glasses. The X-ray diffraction spectra show no peaks, indicating that the samples are amorphous.

The IR spectra of (100-x)TeO₂–xWO₃ glass system recorded in the wave number region 1150–440 cm⁻¹ are shown in Figure 1. The IR spectra of these glasses are characterized by IR absorption bands in the wave number regions 925–945 cm⁻¹, 850–865 cm⁻¹, 730–790 cm⁻¹, 600–680 cm⁻¹, and 460–490 cm⁻¹. The IR band positions are summarized in Table 2. The IR absorption in the range 600–680 cm⁻¹ in the tellurium containing glasses is due to stretching vibrations of the Te–O bond in the TeO₄ tbp (trigonal bipyramids) and TeO₃ tp (trigonal pyramids) units [14]. The band observed at 640 cm⁻¹ in 90TeO₂–10WO₃ (TW1) glass is assigned to TeO₄ tbp units. The band at around 925 cm⁻¹ in TW1 in the high wave number region of the spectrum is characteristic of the presence of the tungsten ions in [WO₄] units or [WO₆] units in the structure of the glass [15–17]. The band at around 730–790 cm⁻¹ is due to Te–O₆ bond vibrations of distorted TeO₃ units [17, 18]. The shoulder at 865 cm⁻¹ is assigned to vibration of W–O–W linkages [19, 20]. The IR band in the region 460–490 cm⁻¹ is assigned to Te–O–W linkages, which would increase the glass network connectivity and this assignment is made in agreement with the theoretical model for vibrations of mixed bridge bonds containing heavy metal and glass former atoms [21]. The formation of Te–O–W linkages is expected because both W and Te atoms have comparable electronegativity and can therefore substitute for each other in bonding with O atoms [21]. That is, there is a fraction of W cations that have partial covalent bonding and are incorporated in the binary TeO₂–WO₃ glass network [17].

Equimolecular substitution of WO₃ for TeO₂ causes changes in the structure of the TeO₂–WO₃ glasses, which is apparent in the IR spectra of glasses (Figure 1). As the WO₃ content increases from 10 mol% to 40 mol%, the band at 640 cm⁻¹ in 90TeO₂–10WO₃ (TW1) shifts towards higher wave numbers: from 640 to 645, 665, and then to 675 cm⁻¹, while the band at 730 cm⁻¹ shifts to 790 cm⁻¹.

This observed shift may be due to higher field intensity of...
mixed Te–O–W and W–O–W linkages, in which the oxygen is highly polarized, compared with Te–O–Te linkages, since W⁶⁺-ions possess higher field intensity than Te⁴⁺-ions [18], and this observed shift may be related to the apparition of TeO₃ units concomitant to a reduction in the number of TeO₄ units. Thus it is concluded that addition of PbO causes a change in the coordination state of the tellurium ions and their partial conversion from 3-coordination to 4-coordination. This is supported by the appearance of band in the 600–645 cm⁻¹ region corresponding to [TeO₄] units. At low proportion of PbO (up to 20 mol%), it enters the glass network by breaking up the Te–O–Te, Te–O–W bonds and introduces coordination defects known as dangling bond (Te–O···Pb²⁺···O–Te) which in turn decreases the TeO₃ units by forming TeO₄ units [24]. When the PbO content is increased from 20 to 40 mol%, a considerable proportion may be act as double bridges between adjacent TeO₃ and WO₃ units such as = Te–O–Pb–O–W = which can be formed beside the formation of PbO₄ units [25]. The lead in this case acts as a glass forming

Table 3: Observed IR band positions in the 60TeO₂–(40-x)WO₃–xPbO glass system.

Sample ID	IR bands (cm⁻¹)
TWP1	460–490 675 790 850 945
TWP2	645 660 761 843 929
TWP3	635 670 742 820 911
TWP4	630 667 724 810 894
TWP5	638 678 731

TeO₃ trigonal pyramids, while the band at around 724–790 cm⁻¹ is due to Te–Oeq bond vibrations of distorted TeO₄ units. The shoulder at 945 cm⁻¹ in TWP1 in the high wave number region of the spectrum is a characteristic of the presence of tungsten ions in [WO₆] units in the structure of the glass [17]. The shoulder at around 810–850 cm⁻¹ is due to vibration of W–O–W linkages and the band in the region 460–490 cm⁻¹ is assigned to Te–O–W linkages [17]. Equimolecular substitution of PbO for WO₃ causes changes in the structure of the TWP glasses, which is apparent in the IR spectra of glasses (Figure 2).

As the PbO content increases from 10 to 30 mol%, this causes a shift in the IR band due to W–O–W linkages towards lower wave numbers: from 850 to 843, 820, and then to 810 cm⁻¹ and also causes a shift in the band 945 cm⁻¹ due to WO₆ octahedra toward lower wave numbers: from 945 to 929, 911 and then to 894 cm⁻¹. The observed shift in the 945 cm⁻¹ band and in the band 850 cm⁻¹ toward lower wave number in the composition range from 10 to 30 mol% PbO may be an indication of the transformation of WO₆ units to WO₄ units. This receives support from the appearance of band at 894 cm⁻¹ in 60TeO₂–30PbO–10WO₃ (TWP4) and is due to WO₄ units [23]. When WO₃ is substituted mol by mol by PbO the number of oxygens in the glass network diminishes according to the ratio 3/1. Thus the glass network becomes less distorted and this also suggests that the formation of WO₄ units at high PbO content. The shoulder at about 850 cm⁻¹ is absent in the IR spectrum of 60TeO₂–40PbO glass.

When the PbO content increases from 10 to 20 mol%, a new band at around 635 cm⁻¹ is observed in addition to that of ~670 cm⁻¹, which indicates the formation of Te–O–Pb bonds in the glass network and this suggests formation of TeO₄ units at the expense of TeO₃ units. Thus it is concluded that addition of PbO causes a change in the coordination state of the tellurium ions and their partial conversion from 3-coordination to 4-coordination. This is supported by the appearance of band in the 600–645 cm⁻¹ region corresponding to [TeO₄] units. At low proportion of PbO (up to 20 mol%), it enters the glass network by breaking up the Te–O–Te, Te–O–W bonds and introduces coordination defects known as dangling bond (Te–O···Pb²⁺···O–Te) which in turn decreases the TeO₃ units by forming TeO₄ units [24]. When the PbO content is increased from 20 to 40 mol%, a considerable proportion may be act as double bridges between adjacent TeO₃ and WO₃ units such as = Te–O–Pb–O–W = which can be formed beside the formation of PbO₄ units [25]. The lead in this case acts as a glass forming

3.2. IR Spectra of 60TeO₂–(40-x)WO₃–xPbO Glasses. The IR spectra of the ternary TeO₂–WO₃–PbO (TWP) glass system recorded in the wave number region 1400–440 cm⁻¹ are shown in Figure 2. The IR spectra of the glasses are characterized by absorption bands in the wave number ranges 890–945 cm⁻¹, 810–850 cm⁻¹, 724–790 cm⁻¹, 600–680 cm⁻¹, and 460–490 cm⁻¹. The IR band positions are summarized in Table 3. The band in the region 670–680 cm⁻¹ in 60TeO₂–40WO₃ (TWP1) glass is assigned to
agent and is incorporated in the glass structure in the form of [\text{PbO}_4] units.

Therefore, for PbO up to 20 mol\%, it plays a network modifier role, and at \(x \geq 30 \), it plays a network former role in the present system. The study performed clarified the structural species of lead-tungsten tellurite glasses and confirmed the dual structural role of lead ions.

3.3. IR Spectra of 60B_2O_3–10TeO_2–(30-x)ZnO–xPbO Glasses

The IR spectra of the quaternary 60B_2O_3–10TeO_2–(30-x)ZnO–xPbO (BTZP) glass system recorded in the wave number region 4000–440 cm\(^{-1}\) are shown in Figure 3. The IR spectra of these glasses are characterized by absorption bands in the wave number regions 3436–3450 cm\(^{-1}\), 1333–1390 cm\(^{-1}\), 950–1085 cm\(^{-1}\), 665–687 cm\(^{-1}\), and 458 cm\(^{-1}\). The IR band positions of the present glass system are summarized in Table 4.

The IR band absorption in the high wave number region of the spectrum with maximum in the 3436–3450 cm\(^{-1}\) region belongs to O–H stretching vibrations [26]. In the present glass system (BTZP), the disappearance of the absorption band at 806 cm\(^{-1}\) indicates the absence of boroxol ring formation and thus clearly indicating the presence of trigonal pyramids [\text{BO}_3] and trigonal bipyramids [\text{BO}_4] units. The IR absorption band in the 950–1085 cm\(^{-1}\) in all the glasses is due to stretching vibrations of B–O bond of [\text{BO}_4] units [27, 28] and the absorption band in the 1333–1390 cm\(^{-1}\) region can be attributed to stretching vibrations of B–O bond of [\text{BO}_3] units [29].

The absorption band at around 668 cm\(^{-1}\) indicates the presence of tellurium–oxygen groups. The structure pattern of tellurium–containing glasses is determined by trigonal pyramids [\text{TeO}_3] and trigonal bipyramids [\text{TeO}_4]. The absorption in the range of 600–700 cm\(^{-1}\) in such glasses is determined by the stretching vibrations of Te–O bonds in [\text{TeO}_3] and [\text{TeO}_4] units. The absorption of [\text{TeO}_4] units has a high-wave number position than [\text{TeO}_3] units. In general case, the absorption band range of [\text{TeO}_3] units correlates with 650–700 cm\(^{-1}\) and that of [\text{TeO}_4] units correlates with 600–650 cm\(^{-1}\) [14, 30]. Analyzing the obtained results and comparing them to the published data [12], it is clear that trigonal pyramids [\text{TeO}_3] are present in the structure of all the glass systems (BTZP) because the absorption band appears at 667–685 cm\(^{-1}\) region. For lower concentration of PbO (20 mol\%), PbO substituted for ZnO in BTZP series causes changes in the structure of the glasses, which is apparent in a shift of the absorption band at 668 cm\(^{-1}\) to higher wave number side up to 687 cm\(^{-1}\). Usually a shift of absorption bands to higher wave numbers occurs as a result of an increase in the degree of polymerization of the structural network [\text{TeO}_3] units of the glass system. Absorption band at 687 cm\(^{-1}\) shifted to the lower wave number side, as the mole percentage of PbO increased from 20 to 30. These changes are may be due to formation of TeO–Pb linkages and dual role of lead ions in the glass network.

In Figure 3, the band around 1022 cm\(^{-1}\) in BTZP1 shifts up to 1085 cm\(^{-1}\) as the content of PbO increases up to 20 mol\% and the band around 1085 cm\(^{-1}\) shifts up to 1022 cm\(^{-1}\) as the content of PbO increases from 20 to 30 mol\%. In lead borate glasses [31], at low concentrations (15–20 mol\%) PbO acts as a modifier of the structural network in the form of [\text{PbO}_3] groups and promotes conversion of [\text{BO}_3] units to [\text{BO}_4] tetrahedra. Above 15–20 mol\% PbO, some lead ions enter the structure as network former in the form of [\text{PbO}_4] units. The absorption band at 458 cm\(^{-1}\) in BTZP3 and BTZP4 probably belongs to the PbO vibration of [\text{PbO}_4] units [32]. Thus the fraction of [\text{BO}_4] units increases as the content of PbO increases from 20 to 30 mol\%. It is clear from Figure 3 that there is no significant change in position but there is clear evidence of a decrease in the intensity of the absorption band around 1342 cm\(^{-1}\), and a corresponding increase in the intensity of the band at 1022 cm\(^{-1}\) is observed in the spectra of all the glasses in BTZP series. This observation suggests that the number of [\text{BO}_4] units decreases and the fraction of [\text{BO}_4] units increases as the PbO content increases. The study performed clarified the structural species of B_2O_3–TeO_2–ZnO–PbO glasses and confirmed the dual structural role of lead ions.

4. Conclusions

Transparent and stable glasses were obtained in the TeO_2–WO_3, TeO_2–WO_3–PbO, and B_2O_3–TeO_2–ZnO–PbO glass systems. The IR results show the progressive transformation of the TeO_2 units to more distorted TeO_3+1 units for TeO_2–WO_3 glasses with increasing WO_3 content. Addition of PbO and WO_3 increases the population of lower coordination units [TeO_2]/[TeO_3+1] in the TeO_2–WO_3–PbO glass network at the expense of higher coordination units [TeO_4]. Addition

Table 4: Observed IR band positions in the 60B_2O_3–10TeO_2–(30-x)ZnO–xPbO glass system.

Sample ID	IR bands (cm\(^{-1}\))				
BTZP1	668	1022	1333	3448	
BTZP2	668	1081	1344	3448	
BTZP3	458	687	1085	1342	3448
BTZP4	458	667	1022	1342	3450
of WO$_3$ to the glass systems of TeO$_2$–WO$_3$ and TeO$_2$–WO$_3$–PbO results in the formation of more W–O–W and W–O–Te linkages, while that of the Te–O–Te linkages decreases as WO$_3$ increases. In the case of TeO$_2$–WO$_3$–PbO glasses, the TeO$_2$/TeO$_3$ units are transformed to TeO$_4$ units with increasing PbO content. Increasing the PbO content in B$_2$O$_3$–TeO$_2$–ZnO–PbO glasses causes partial conversion of the boron ions from trigonal coordination [BO$_3$] to [BO$_4$] tetrahedral coordination. [TeO$_4$] units are present in all the glass samples of B$_2$O$_3$–TeO$_2$–ZnO–PbO glass system and the dual role of the lead ions is confirmed in this glass system.

Acknowledgment

G. Upender is grateful to UGC (University Grants Commission), New Delhi, for providing financial assistance under the scheme of RFSMS (Research Fellowships in Science for Meritorious Students).

References

[1] P. Marcel, Annales de Chimie, Science des Matériaux, vol. 28, p. 87, 2003.
[2] M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd$^3^+$ in tellurite and phosphotellurite glasses,” Journal of Applied Physics, vol. 52, no. 4, pp. 2944–2949, 1981.
[3] K. Shioya, T. Komatsu, H. G. Kim, R. Sato, and K. Matsunaka, “Optical properties of transparent glass-ceramics in K$_2$SiB$_2$O$_6$–TeO$_2$ glasses,” Journal of Non-Crystalline Solids, vol. 189, no. 1-2, pp. 16–24, 1995.
[4] R. A. F. El-Mallaway, Tellurite Glasses Handbook-Physical Properties and Data, CRC Press, Boca Raton, Calif, USA, 2001.
[5] T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, and T. Komatsu, “Thermal stability and heat capacity changes at the glass transition in K$_2$O-WO$_3$-TeO$_2$ glasses,” Journal of Non-Crystalline Solids, vol. 242, no. 2-3, pp. 154–164, 1998.
[6] I. Shaltout, Y. Tang, R. Braunstein, and E. E. Shaisha, “FTIR spectra and some optical properties of tungstate-tellurite glasses,” Journal of Physics and Chemistry of Solids, vol. 57, no. 9, pp. 1223–1230, 1996.
[7] R. A. F. El-Mallaway, Tellurite Glasses Handbook, CRC Press, Boca Raton, Calif, USA, 2002.
[8] E. Fargin, A. Berthereau, T. Cardinal, et al., “Optical non-linearity in oxide glasses,” Journal of Non-Crystalline Solids, vol. 203, pp. 96–101, 1996.
[9] B. N. Meera, A. K. Sood, N. Chandrabhas, and J. Ramkrishna, “Raman study of lead borate glasses,” Journal of Non-Crystalline Solids, vol. 126, no. 3, pp. 224–230, 1990.
[10] T. Takaishi, M. Takahashi, J. Jin, T. Uchino, T. Yoko, and M. Takahashi, “Structural study on PbO-SiO$_2$ glasses by X-ray and neutron diffraction and 29Si MAS NMR measurements,” Journal of the American Ceramic Society, vol. 88, no. 6, pp. 1591–1596, 2005.
[11] K. J. Rao, B. G. Rao, and S. R. Elliott, “Glass formation in the system PbO-PbCl$_2$,” Journal of Materials Science, vol. 20, no. 5, pp. 1678–1682, 1985.
[12] G. E. Rachkovskaya and G. B. Zakharevich, “IR spectra of tellurium germanate glasses and their structure,” Journal of Applied Spectroscopy, vol. 74, no. 1, pp. 86–89, 2007.
[13] L. M. Fortes, L. F. Santos, M. C. Goncalves, and R. M. Almeida, “Preparation and characterization of Er$^{3+}$-doped TeO$_2$-based oxyhalide glasses,” Journal of Non-Crystalline Solids, vol. 324, no. 1-2, pp. 150–158, 2003.
[14] Y. Dimitriev, V. Dimitrov, and M. Arnaudov, “IR spectra and structures of tellurite glasses,” Journal of Materials Science, vol. 18, no. 5, pp. 1353–1358, 1983.
[15] V. Dimitrov, M. Arnaudov, and Y. Dimitriev, “IR-spectral study of the effect of WO$_3$ on the structure of tellurite glasses,” Monatshefte für Chemie, vol. 115, no. 8-9, pp. 987–991, 1984.
[16] P. Caillet and P. Saumagne, “Étude des monomolybdates et monowolframates alcalins anhydres par spectroscopie infrarouge et raman,” Journal of Molecular Structure, vol. 4, no. 2–4, pp. 191–201, 1969.
[17] P. Charton, L. Gengembre, and P. Armand, “TeO$_2$-WO$_3$ glasses: infrared, XPS and XANES structural characterizations,” Journal of Solid State Chemistry, vol. 168, no. 1, pp. 175–183, 2002.
[18] D. Munoz-Martin, M. A. Villegas, J. Gonzalo, and J. M. Fernández-Navarro, “Characterisation of glasses in the TeO$_2$–WO$_3$–PbO system,” Journal of the European Ceramic Society, vol. 29, no. 14, pp. 2903–2913, 2009.
[19] M. Tatsumisago, T. Minami, Y. Kowada, and H. Adachi, “Structural change of rapidly quenched binary tellurite glasses with composition and temperature,” Physics and Chemistry of Glasses, vol. 35, no. 2, pp. 89–97, 1994.
[20] S. Muthupari and K. J. Rao, “Thermal and infrared spectroscopic studies of binary MO$_3$-P$_2$O$_5$ and ternary Na$_2$O-MO$_3$-P$_2$O$_5$ (M = Mo or W) glasses,” Journal of Physics and Chemistry of Solids, vol. 57, no. 5, pp. 553–561, 1996.
[21] I. Shaltout, Y. Tang, R. Braunstein, and A. M. Abu-Elazm, “Structural studies of tungstate-tellurite glasses by raman spectroscopy and differential scanning calorimetry,” Journal of Physics and Chemistry of Solids, vol. 56, no. 1, pp. 141–150, 1995.
[22] Y. Mizuno, M. Ikeda, and A. Yoshida, “Application of tellurite bonding glasses to magnetic heads,” Journal of Materials Science Letters, vol. 11, no. 24, pp. 1653–1656, 1992.
[23] C. Y. Wang, Z. X. Shen, and B. V. R. Chowdari, “Raman studies of Ag$_2$O·WO$_3$·TeO$_2$ ternary glasses,” Journal of Raman Spectroscopy, vol. 29, no. 9, pp. 819–823, 1998.
[24] D. Laval, J. Horak, J. Navratil, S. Karamazov, and A. Sklenar, “Reflectivity spectra of PbO-TeO$_2$-SiO$_2$ glasses with high PbO content,” Physics and Chemistry of Glasses, vol. 42, no. 4-5, pp. 324–327, 2001.
[25] V. R. Kumar and N. Veeriah, “Dielectric properties of Zn$_2$O$_2$-PbO-TeO$_2$ glasses,” Journal of Physics and Chemistry of Solids, vol. 59, no. 1, pp. 91–97, 1998.
[26] P. J. Bray and J. G. Okeese, Interaction of Radiation with Solids, Dierenum, New York, NY, USA, 1967.
[27] E. I. Kamitsos, A. P. Patsis, M. A. Karakassides, and G. D. Chryssikos, “A vibrational study of lithium sulfate based fast ionic conducting glasses,” Journal of Physical Chemistry B, vol. 90, no. 19, pp. 4528–4533, 1986.
[28] M. Ganguli and K.J. Rao, “Studies on the effect of Li$_2$SO$_4$ on the structure of lithium borate glasses,” Journal of Physical Chemistry B, vol. 103, no. 6, pp. 920–930, 1999.
[29] E. I. Kamitsos, A. P. Patsis, M. A. Karakassides, and G. D. Chryssikos, “Infrared reflectance spectra of lithium borate glasses,” Journal of Non-Crystalline Solids, vol. 126, no. 1-2, pp. 52–67, 1990.
[30] A. G. Vlasov and V. A. Florinski, Eds., *Structure and Physicochemical Properties of Inorganic Glasses*, Leningrad, Khimiya, Russia, 1974.

[31] N. M. Pavlushkin and A. K. Zhuravlev, *Low-Melting Glasses*, Energiya, Moscow, Russia, 1970.

[32] G. Srinivasarao and N. Veeraiah, “Influence of Cr³⁺ ions on the structure and certain physical properties of PbO-As₂O₃ glasses,” *The European Physical Journal—Applied Physics*, vol. 16, no. 1, pp. 11–22, 2001.