The Number of Rational Points On Genus 4 Hyperelliptic Supersingular Curves in Characteristic 2

Gary McGuire1 and Alexey Zaytsev2
School of Mathematical Sciences
University College Dublin
Ireland

Abstract

One of the big questions in the area of curves over finite fields concerns the distribution of the numbers of points: Which numbers occur as the number of points on a curve of genus g? The same question can be asked of various subclasses of curves. In this article we classify the possibilities for the number of points on genus 4 hyperelliptic supersingular curves over finite fields of order 2^n, n odd.

Keywords: curve, genus, supersingular, finite field

MSC: 14H45

1 Introduction

Throughout this paper we let $q = 2^n$, where n is odd, and let \mathbb{F}_q denote a finite field with q elements.

This paper concerns the possibilities for the number of \mathbb{F}_q-rational points, N, on hyperelliptic supersingular curves. The Serre refinement of the Hasse-Weil bound gives

$$|N - (q + 1)| \leq g \lceil 2\sqrt{q} \rceil$$

(1)

which allows a wide range of possible values for N. The typical phenomenon for supersingular curves is that the number of points is far more restricted than the general theory allows.

1Research supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006

2Research supported by Science Foundation Ireland Grant 07/RFP/MATF846
To be more precise, for curves of genus less than 4 the following results are known.

Theorem 1. (Deuring, Waterhouse) The number of \(\mathbb{F}_q \)-rational points \(N \) on a supersingular genus 1 curve defined over \(\mathbb{F}_q \) satisfies

\[
N - (q + 1) \in \{0, \pm \sqrt{2q}\},
\]

and all these occur.

Theorem 2. (Rück, Xing) The number of \(\mathbb{F}_q \)-rational points \(N \) on a hyperelliptic supersingular genus 2 curve defined over \(\mathbb{F}_q \) satisfies

\[
N - (q + 1) \in \{0, \pm \sqrt{2q}\},
\]

and all these occur.

Theorem 3. (Oort) There are no hyperelliptic supersingular genus 3 curves in characteristic 2.

In this paper we will prove the following theorem.

Theorem 4. The number of \(\mathbb{F}_q \)-rational points \(N \) on a hyperelliptic supersingular genus 4 curve defined over \(\mathbb{F}_q \) satisfies

\[
N - (q + 1) \in \{0, \pm \sqrt{2q}, \pm 2\sqrt{2q}, \pm 4\sqrt{2q}\}
\]

and all these occur.

Examples show that all these values do indeed occur, see next section. We note that \(\pm 3\sqrt{2q} \) is not a possibility.

Classifying the possible numbers of points is the same as classifying one coefficient of the zeta function, so these results can be seen as a contribution towards classification of zeta functions.

Our proof uses the theory of quadratic forms in characteristic 2. This method has previously been used in this context in van der Geer-van der Vlugt [1]. There is also a discussion in Nart-Ritzenthaler [3], see Lemma 2.2, which restricts the number of points sufficiently for their purposes, but does not completely classify them.

In Section 2 we present background on curves, and in Section 3 we present background on quadratic forms. Section 4 presents our proof using quadratic forms. In Section 5 we present an alternative proof, under an extra hypothesis, using the theory of abelian varieties. The two methods of proof are completely different. Although the second method does not prove the full result, we believe it is of interest.
2 Curves Background

The equation
\[y^2 + y = x^9 + ax^5 + bx^3. \] (2)
defines a hyperelliptic curve of genus 4 over \(\mathbb{F}_q \), where \(a, b \in \mathbb{F}_q \). It is shown by Scholten-Zhu [5] that this curve is supersingular, and conversely, that any hyperelliptic supersingular curve of genus 4 defined over \(\mathbb{F}_q \) is isomorphic over the algebraic closure \(\overline{\mathbb{F}_q} \) to a curve with equation (2).

This is not a normal form for isomorphism over \(\mathbb{F}_q \). It is shown in [4] (using the Deuring-Shafarevitch formula) that any genus 4 hyperelliptic curve of 2-rank 0 defined over \(\mathbb{F}_q \) has an equation of the form
\[y^2 + y = c_9x^9 + c_7x^7 + c_5x^5 + c_3x^3 + c_1x. \]

It is also shown in [4] that this curve is supersingular if and only if \(c_7 = 0 \). Therefore, any hyperelliptic supersingular curve of genus 4 defined over \(\mathbb{F}_q \) is isomorphic over \(\overline{\mathbb{F}_q} \) to a curve with equation
\[y^2 + y = fx^9 + ax^5 + bx^3 + cx + d \] (3)
for some constants \(f, a, b, c, d \in \mathbb{F}_q \). One needs an extension field, in general, to get an isomorphism with (2).

For examples, when \(n = 11 \), and \(w \) is a primitive element of \(\mathbb{F}_{2^{11}} \) with minimal polynomial \(x^{11} + x^2 + 1 \), the curve
\[y^2 + y = x^9 + w^{512}x^5 + w^{118}x^3 \]
has \(N - (2^{11} + 1) = 256 \), and the curve
\[y^2 + y = w^9x^9 + w^{517}x^5 + w^{121}x^3 + w^{24}x \]
has \(N - (2^{11} + 1) = -256 \). Examples with \(N - (2^{11} + 1) = \pm 256 \) are not common. The curve
\[y^2 + y = x^9 + w^{520}x^5 + w^{117}x^3 + w^{14}x \]
has \(N - (2^{11} + 1) = 128 \) and the curve
\[y^2 + y = x^9 + w^{520}x^5 + w^{117}x^3 + w^{15}x \]
has \(N - (2^{11} + 1) = -128 \). Examples with \(N - (2^{11} + 1) = 0 \) or \(\pm 64 \) are plentiful.
3 Quadratic Forms Background

We now outline the basic theory of quadratic forms over \mathbb{F}_2.

Let $Q : \mathbb{F}_q \rightarrow \mathbb{F}_2$ be a quadratic form. The polarization of Q is the symplectic bilinear form B defined by

$$B(x, y) = Q(x + y) - Q(x) - Q(y).$$

By definition the radical of B (denoted W) is

$$W = \{x \in \mathbb{F}_q : B(x, y) = 0 \text{ for all } y \in \mathbb{F}_q\}.$$

The rank of B is defined to be $n - \dim(W)$, and the first basic theorem of this subject states that the rank must be even.

Next let $Q|_W$ denote the restriction of Q to W, and let

$$W_0 = \{x \in W : Q(x) = 0\}$$

(sometimes W_0 is called the singular radical of Q). Note that $Q|_W$ is a linear map $W \rightarrow \mathbb{F}_2$ with kernel W_0. Therefore

$$\dim W_0 = \begin{cases} \dim(W) - 1 & \text{if } Q|_W \text{ is onto} \\ \dim(W) & \text{if } Q|_W = 0 \text{ (i.e. } W = W_0) \end{cases}.$$

The rank of Q is defined to be $n - \dim(W_0)$. The following theorem is well known, see [1] or [2] for example.

Theorem 5. Continue the above notation. Let $M = |\{x \in \mathbb{F}_q : Q(x) = 0\}|$, and let $w = \dim(W)$.

If Q has odd rank then $M = 2^{n-1}$. In this case, $\sum_{x \in \mathbb{F}_q} (-1)^{Q(x)} = 0$.

If Q has even rank then $M = 2^{n-1} \pm 2^{(n-2+w)/2}$.

4 Proof of Theorem 4

Determining the value of the sum

\[S := \sum_{x \in \mathbb{F}_q} (-1)^{\text{Tr}(fx^9 + ax^5 + bx^3 + cx + d)} \]

is equivalent to determining the number of \(x \in \mathbb{F}_q \) for which \(\text{Tr}(fx^9 + ax^5 + bx^3 + cx + d) = 0 \). By Hilbert’s Theorem 90, this is equivalent to determining the number of solutions in \(\mathbb{F}_q \) of (3). Indeed, if \(N \) is the number of projective \(\mathbb{F}_q \)-rational points on

\[y^2 + y = fx^9 + ax^5 + bx^3 + cx + d \]

then \(S = N - (q + 1) \).

Theorem 6. \(S \) must take values in the set

\[\{0, \pm 2^{(n+1)/2}, \pm 2^{(n+3)/2}, \pm 2^{(n+5)/2}\}. \]

Equivalently, \(N - (q + 1) \) must take values in the set

\[\{0, \pm \sqrt{2q}, \pm 2\sqrt{2q}, \pm 4\sqrt{2q}\}. \]

Proof: Squaring \(S \) gives

\[S^2 = \sum_{x,y \in \mathbb{F}_q} (-1)^{\text{Tr}(fx^9 + fy^9 + ax^5 + ay^5 + bx^3 + by^3 + cx + cy)}. \]

Substituting \(y = x + u \), and for notational purposes letting \(\chi(t) = (-1)^{\text{Tr}(t)} \), we get

\[S^2 = \sum_{x,u \in \mathbb{F}_q} \chi(fx^9 + f(x + u)^9 + ax^5 + a(x + u)^5 + bx^3 + b(x + u)^3 + cx + c(x + u)) \]

\[= \sum_{x,u \in \mathbb{F}_q} \chi(f(x^8u + xu^8 + u^9) + a(x^4u + xu^4 + u^5) + b(x^2u + xu^2 + u^3) + cu) \]

\[= \sum_{u \in \mathbb{F}_q} \chi(fu^9 + au^5 + bu^3 + cu) \left(\sum_{x \in \mathbb{F}_q} \chi(f(x^8u + xu^8) + a(x^4u + xu^4) + b(x^2u + xu^2)) \right) \]

\[= \sum_{u \in \mathbb{F}_q} \chi(fu^9 + au^5 + bu^3 + cu) \left(\sum_{x \in \mathbb{F}_q} \chi(x^8[fu + f^8u^{64} + a^2u^2 + a^8u^{32} + b^4u^4 + b^8u^{16}]) \right). \]

To obtain the last line we have used the facts that \(\chi(s + t) = \chi(s)\chi(t) \) and \(\chi(t^2) = \chi(t) \).
The inner sum has the form $\sum_{x \in \mathbb{F}_q} \chi(xL)$, and is a character sum over a group because χ is a character of the additive group of \mathbb{F}_q. This sum is therefore 0 unless $L = 0$. Letting

$$L_{f,a,b}(u) = L(u) = fu + f^8 u^{64} + a^2 u^2 + a^8 u^{32} + b^4 u^4 + b^8 u^{16}$$

we have

$$S^2 = \sum_{u \in \mathbb{F}_q} \chi(fu^9 + au^5 + bu^3 + cu) \left(\sum_{x \in \mathbb{F}_q} \chi(x^8 L(u)) \right)$$

and the inner sum is 0 unless $L(u) = 0$.

Note that $L(u)$ is a linearized polynomial, and the roots form a vector space over \mathbb{F}_2. Let $W_{f,a,b} = W$ be the kernel of $L(u)$ inside \mathbb{F}_q, i.e.,

$$W = \{ u \in \mathbb{F}_q : L(u) = 0 \}.$$

Then W is an \mathbb{F}_2-subspace of \mathbb{F}_q of dimension at most 6, because $L(u)$ has degree $64 = 2^6$.

The next part of the proof is to observe that the dimension of W must be odd. This is because $n - \dim(W)$ is the rank of a symplectic bilinear form, and this rank must be even. The form here is $B(x, y) = Q(x + y) - Q(x) - Q(y)$ where $Q(x) = \text{Tr}(fx^9 + ax^5 + bx^3 + cx)$ is an \mathbb{F}_2-valued quadratic form. It is straightforward to check that W is the radical of B.

We now conclude that W is an \mathbb{F}_2-subspace of \mathbb{F}_q of dimension 1 or 3 or 5.

We may now write

$$S^2 = q \sum_{u \in W} \chi(fu^9 + au^5 + bu^3 + cu).$$

If Q is not identically 0 on W, then $S = 0$ by Theorem 5 because χ is a non-trivial character on W and Q has odd rank. On the other hand, if Q is identically 0 on W, then Q has even rank and by Theorem 5 we get

$$S^2 = q \cdot |W|.$$

Because $|W| = 2^w$ where $w \in \{1, 3, 5\}$ we are done. □
5 Jacobians of supersingular hyperelliptic curves

In this section we prove the main theorem of this article via the theory of supersingular abelian varieties, but under an extra assumption, which most likely holds for this type of abelian variety.

Recall that a curve \(C \) is called supersingular over a finite field \(\mathbb{F}_q \) if its Jacobian \(\text{Jac}(C) \) is a supersingular abelian variety. Therefore we start with some facts from the theory of abelian varieties.

Let \(A \) be an abelian variety of dimension \(g \) over \(\mathbb{F}_q \) where \(q = p^n \). The characteristic polynomial \(P(X) \in \mathbb{Z}[X] \) of the Frobenius endomorphism is given by

\[
P_A(X) = X^{2g} + a_1X^{2g-1} + \cdots + a_gX^g + qa_{g-1}X^{g-1} + \cdots + q^g.
\]

Recall that an abelian variety \(A \) is simple if it is not isogenous to a product of abelian varieties of lower dimensions. In that case \(P_A(X) \) is either irreducible over \(\mathbb{Z} \) or \(P_A(X) = h(X)^s \) where \(h(X) \in \mathbb{Z}[X] \) is irreducible over \(\mathbb{Z} \).

The isogeny classes are completely classified by their characteristic polynomials.

Theorem 7. (Tate) Let \(A \) and \(B \) be the abelian varieties defined over \(\mathbb{F}_q \). Then an abelian variety \(A \) is \(\mathbb{F}_q \)-isogenous to an abelian subvariety of \(B \) if and only if \(P_A(X) \) divides \(P_B(X) \) over \(\mathbb{Q}[X] \). In particular, \(P_A(X) = P_B(X) \) if and only if \(A \) and \(B \) are \(\mathbb{F}_q \)-isogenous.

The property of an abelian variety being supersingular is a property of the isogeny class of this abelian variety and therefore it is completely determined by its characteristic polynomial. For example there is the Stichtenoth-Xing criteria \(^7\) that imposes conditions on the coefficients of a characteristic polynomial \(P_A(X) \) of an abelian variety \(A \) over a finite field \(\mathbb{F}_q \) to be a supersingular abelian variety. Their result is the following.

Theorem 8. Let \(q = p^n \) and \(A \) be an abelian variety of dimension \(g \) over a finite filed \(\mathbb{F}_q \) with the characteristic polynomial of the Frobenius endomorphism

\[
P_A(X) = X^{2g} + a_1X^{2g-1} + \cdots + a_gX^g + qa_{g-1}X^{g-1} + \cdots + q^g.
\]

Then \(A \) is supersingular if and only if \(p^{\frac{1}{2g}} | a_j \) for all \(1 \leq j \leq g \).
The main object of investigation of this paper is a supersingular curve of genus 4 over a finite field \mathbb{F}_{2^n}, where n is an odd number. Therefore we start with a list of the characteristic polynomials of a simple supersingular abelian variety of dimension less or equal 4 over \mathbb{F}_{2^n}, see [6].

\[
\begin{align*}
X^2 & \pm 2^{(n+1)/2} X + 2^n \\
X^2 & + 2^n \\
X^4 & \pm 2^n X^2 + 2^{2n} \\
X^4 & \pm 2^{(n+1)/2} X^3 + 2^n X^2 \pm 2^{(3n+1)/2} X + 2^{2n} \\
(X^2 - 2^n)^2 & \\
X^8 & \pm 2^{(n+1)/2} X^7 + 2^n X^6 - 2^{2n} X^4 + 2^{3n} X^2 \pm 2^{(7n+1)/2} X + 2^{4n} \\
X^8 & + 2^{4n} \\
X^8 & - 2^n X^6 + 2^{2n} X^4 - 2^{3n} X^2 + 2^{4n}.
\end{align*}
\]

As a direct consequence of Tate’s theorem (Theorem 7) we obtain the following proposition.

Proposition 1. Let C be a supersingular curve of genus 4 over a finite field \mathbb{F}_{2^n}, where n is odd, such that $\#C(\mathbb{F}_{2^n}) = 2^n + 1 \pm 3\sqrt{2^{n+1}}$. Then the polynomial

\[
(X^2 + 2^{(n+1)/2} X + 2^n)^3 (X^2 + 2^n)
\]

is the characteristic polynomial of the Frobenius on $\text{Jac}(C)$.

We prove that under certain conditions, this type of curve is impossible.

Now, we consider the endomorphism algebra of the $\text{Jac}(C)$, and consider the element $(\text{Frob} + \text{Ver})/2^{(n-1)/2}$ (where Frob is the Frobenius endomorphism and Ver is the Verschiebung). From Theorem 8 it follows that this element is algebraic:

Lemma 9. Let ω be a root of the characteristic polynomial of Frobenius of supersingular curve. Then the number $(\omega + \bar{\omega})/2^{(n-1)/2}$ is an algebraic number.

Now we can prove the main theorem about the number of rational curves on the curves under consideration.

Theorem 10. Let C be a hyperelliptic supersingular curve of genus 4 over a finite field \mathbb{F}_{2^n}, with odd n. If $(\text{Frob} + \text{Ver})/2^{(n-1)/2}$ is an endomorphism of $\text{Jac}(C)$ then

\[
\#C(\mathbb{F}_{2^n}) - 2^n - 1 \in \{0, \pm 2^{(n+1)/2} \pm 2 \cdot 2^{(n+1)/2}, \pm 4 \cdot 2^{(n+1)/2}\}.
\]
Proof. From Theorem 8 it follows that $\text{Tr}(\text{Frob}_{\mathbb{F}_{2^n}})$ is divisible by $2^{(n+1)/2}$, hence $2^{(n+1)/2}$ divides $\#C(\mathbb{F}_{2^n}) - 2^n - 1$. Combining this result and the Hasse-Weil-Serre bound we get that $\#C(\mathbb{F}_{2^n}) - 2^n - 1 = N2^{(n+1)/2}$, with $|N| \leq 4$.

Now we assume that $\#C(\mathbb{F}_q) = 2^n + 1 \pm 3 \cdot 2^{(n+1)/2}$. Then by Proposition 1 and Tate’s theorem it follows that $\text{Jac}(C) \sim E_1 \times E_2$, where E_1 and E_2 are supersingular elliptic curves with characteristic polynomials $X^2 + 2^{(n+1)/2}X + 2^n$ and $X^2 + 2^n$, respectively. The polynomial $(X - 2)^3X$ is the characteristic polynomial of $(\text{Frob} + \text{Ver})/2^{(n-1)/2}$, and the resultant of these factors is 2. Therefore by theorem 1 in [8] it follows there exists a curve D such that $\text{Jac}(D)$ is isogenous either E_1^3 or E_2 and there exists a double cover $\sigma : C \to D$. Due to the fact the hyperelliptic involution lies in the center of an automorphism group of a hyperelliptic curve we get the following decomposition

$$\text{Jac}(C) \sim \text{Jac}(D) \times \text{Jac}(C/\langle \sigma \tau \rangle)$$

and a double covering $\sigma \tau : C \to C/\langle \sigma \tau \rangle$. Therefore we have that either D has genus 3 or $C/\langle \sigma \tau \rangle$ has genus 3, which is impossible by Hurwitz’s genus formula.

References

[1] G. van der Geer, M. van der Vlugt, Reed-Muller Codes and supersingular curves I, Compositio Mathematica, 84, No. 3 (1992) 333-367.

[2] R. Lidl, H. Niederreiter, Finite Fields, Addison-Wesley, 1983.

[3] E. Nart, C. Ritzenthaler Jacobians in isogeny classes of supersingular abelian threefolds in characteristic 2, http://arxiv.org/abs/math/0610276

[4] J. Scholten, H. J. Zhu, Hyperelliptic curves in characteristic 2, IMRN No. 17 (2002) 905–917.

[5] J. Scholten, H. J. Zhu, Families of supersingular curves in characteristic 2, Math. Research Letters 9, no 5-6, (2002) 639–650.

[6] Vijaykumar Singh, Alexey Zatysev, Gary McGuire, On The Characteristic Polynomial of Frobenius of Supersingular Abelian Varieties Of Dimension up to 7 over Finite Fields, http://arxiv.org/abs/1005.3635

[7] H. Stichtenoth and C. Xing, On the structure of the divisor class group of a class of curves over finite fields, Arch. Math., Vol. 65 (1995) 141–150.
[8] Improved upper bounds for the number of points on curves over finite fields, by Everett W. Howe, Kristin E. Lauter, Annales de l’Institut Fourier, volume 53, 6(2003), 1677–1737.