Chapter 6

Promoting Rural Electrification in Sub-Saharan Africa: Least-Cost Modelling of Decentralized Energy-Water-Food Systems: Case Study of St. Rupert Mayer, Zimbabwe

J. Winklmaier and S. Bazan Santos

Abstract The outstanding solar potential in Sub-Saharan Africa (SSA) enables significantly cheaper levelized costs of electricity for decentral solar systems compared to the commonly used diesel generators. Yet, the limited purchase power in SSA impedes rural electrification by solar systems due to their high investment costs. Decentralized Energy-Water-Food systems (EWFS) have the potential to solve this problem. Using solar-powered water pumps, rural communities can supply water for drinking and irrigation. Thereby, agriculture does not depend on rainfall solely and can be done all over the year, which leads to increasing productivity. The increased crop production reduces the community’s expenses for nutrition and enables profit by sales, which in turn enables a payback of the initial investment costs of the solar system. The increased amount of biomass waste enables economically feasible small-scale biogas production. The biogas can be used for electricity production by biogas motors. These can supply private, social or small commercial loads, which enhance the local productivity even more. To identify the least-cost system design regarding the supply of electricity, water and food for the rural village of St. Rupert Mayer, Zimbabwe, the linear optimization model urbs was adapted. urbs was developed for energy system modelling, yet its sector coupling feature allows to add processes like water pumps and commodities such as biogas. The modelling results show that a holistic system including photovoltaics (PV), water pumps, enhanced agriculture and biogas production reduces the levelized costs of electricity (LCOE) from 0.45 USD/kWh by power supply from diesel generators to 0.16 USD/kWh. The modelling results shall support local governments and entrepreneurs in their decision-making.

Keywords Decentralized renewable energy solutions · Energy-Water-Food systems · Biogas · Least-cost modelling · Economic development

J. Winklmaier (✉) · S. Bazan Santos
Technical University of Munich, Lichtenbergstrasse 4a, 85748 Garching, Germany
e-mail: johannes.winklmaier@tum.de

© The Author(s) 2018
M. Mpholo et al. (eds.), Africa-EU Renewable Energy Research and Innovation Symposium 2018 (RERIS 2018), Springer Proceedings in Energy, https://doi.org/10.1007/978-3-319-93438-9_6
6.1 Introduction

“Access to affordable, reliable, sustainable and modern energy for all” is one of the 17 sustainable development goals (SDG) set by the United Nations [1]. Economic growth is hindered by insufficient, unreliable and expensive availability of electricity and is felt by consumers of all sizes [2]. However, at this moment a total of 1.3 billion people worldwide have no access to electricity, 600 million of whom live in Sub-Saharan Africa (SSA) [3]. While the extraordinary potential for solar energy in SSA allows for a low levelized cost of electricity (LCOE) by means of photovoltaics (PV), which is lower than electricity generated by conventional fossil fuels, the share of solar and wind energy in primary energy consumption in SSA is currently smaller than 0.1% [3]. A major reason for this is the high interest rates typically found in SSA in combination with low purchasing power of the masses. These have an especially negative impact on investments in volatile renewable energy (RE) technologies since these have typically higher specific investment costs than conventional fossil fuel powered energy production units. This negative effect of limited purchasing power on the implementation of RE systems is further aggravated by the additional need for investment in storage and control systems. Thus, in off-grid regions the loads have to be optimized to minimize storage costs while increasing the local productivity to justify the investment in PV. Solar water pumps are a good example of such loads as they can be used flexibly and add to agricultural productivity by the pumped water. Another advantage of these decentralized Energy-Water-Food systems (EWFS) is that the resulting biomass residue can produce cost-effective biogas. This can be used to compensate the volatile PV electricity production using cheap generators.

6.2 Literature Review

The conceptualization of decentralized EWFS was driven by large-scale studies on software-based optimal planning and sizing of hybrid renewable energy systems (HRES), which propose the integration of renewable, traditional energy technologies and energy storages [4]. The complexity of these integrated energy supply systems is approached through cost-optimal modelling, simulation and optimization tools such as SOLSTOR, SOLEM and HOMER, reviewed in [5]. These tools dimension energy systems based on economic criteria as the total net present cost (TNPC) or levelized cost of energy (LCOE). The aim is to propose cost-feasible system configurations in contrast to other software tools, which optimize technical parameters such as the overall system efficiency [6]. Cost-optimal HRES are the most widely spread state-of-the-art solution for sustainable rural development through reliable and cost-effective electricity supply [5]. The economic feasibility of the proposed system designs has been positively measured through the impact on the agricultural sector. Agriculture is one main primary source of income and of
local food supply [7]. By performing pre-analysis and calculations related to agricultural processes outside the optimization tools, the model outputs fit closely to the rural reality. Hence, several studies assess load requirements for agricultural irrigation apart from the domestic load [8, 9]. Another approach is the scheduling of daily irrigation according to the operation of photovoltaic-powered water pumping systems [10, 11]. Research is also effectuated on the usage of crop residues to power cost-free fuelled biomass generators [12] or the generation of biogas through anaerobic fermentation as well as from crop residues use in order to power biogas generators [13, 14]. These pre-analysis calculations carried out before the simulation address the dependency of agricultural processes (water and food systems) on energy technologies, portrait the local eco-system more competently and assess rural development goals.

However, a key desirable feature is the direct modelling and simulation of processes relevant to EWFS in cost-optimizing HRES software in order to properly dimension the integrative decentralized system. Studies approaching the EWF nexus highlight the need for integrative solutions that consider the synergies among the components of EWFS and assess the connections between the three subsystems [15, 16]. Existing tools address the interdependencies of these complex systems from project management-based frameworks [17] or techno-ecological methodologies like resource management [16]. Hence, this research aims to contribute to the current research status-quo by assessing the economic feasibility of EWFS with least-cost modelling. This is achieved with urbs, a linear optimization model developed at the Chair of Renewable and Sustainable Energy Systems, Technical University Munich (TUM), Germany. All previous studies on urbs have focused on grid-connected [18, 19] or off-grid [20] energy systems. urbs allows, however, the modelling of cross-sector systems as transformation processes of input and output resources and the optimization of the integrated system. The results show the optimal planning and operation for the holistic EWFS. Furthermore, the trade-offs across the energy-water-food nexus and the associated impact can be analysed. The workflow is outlined in the next section.

6.3 Methodology

This study uses the model urbs for the analysis of the EWF system scenarios in decentralized off-grid rural areas. urbs is an open-source linear optimization tool programmed in the language Python. It is an economic model and identifies the optimal system configuration that meets a predetermined resource demand with respect to the economic feasibility. This is given by the minimal variable total costs resulting from the techno-economic modelling of each process, transmission and storage technologies in the system. Furthermore, urbs offers features for the design of buying and selling processes, intertemporal optimization as well as demand-side
management, and allows configurable time and space resolution (one-node or multiple-node system) [18]. The complete mathematical description of urbs can be found in [21].

Figure 6.1 shows the schematic EWFS framework with the main input and outputs. This work focuses on the off-grid one-node system, characterized by local weather conditions, demand, resource availability and site topography. There are market-based prices for purchasing and selling of selected resources and all EWF processes and storages are subject to local techno-economic parameters. The model outputs listed in Fig. 6.1 are obtained under the main restriction of satisfying the hourly EWF demands. The proposed model is tested on a Zimbabwean use case village.

St. Rupert Mayer (SRM), a village in rural Zimbabwe with 250 inhabitants, was chosen as a case study for the modelling of an EWFS was chosen. The long-term cooperation between SRM and TUM facilitated the acquisition of required input data for the model regarding demand and supply of power, water, agriculture and food. Based on the nominal power of residential applications and their temporal utilization patterns, a Monte Carlo Simulation was conducted to create an hourly electrical load profile for SRM [22]. The daily water demand is 50 l per person, the daily food demand is represented by 600 g wheat per person, which covers the required 2200 kcal per day [1]. The demand time series for power, water and food include just residential consumption, additional loads such as the power demand by water pumps are implemented as possible processes. Because of the unreliability of the grid connection, SRM is assumed to be off-grid regarding the modelling. Power supply is possible by diesel generators, biogas generators, PV and batteries. The time series for global horizontal radiation in SRM has been created with “PVWatts” and converted into hourly capacity factors for PV [22]. Water can be purchased by water trucks for 0.80 USD/m³ or supplied by water pumps and stored in water tanks. Wheat can be purchased and sold on the local market for each 0.45 USD/kg or supplied by local farming. Because of the missing water grid connection and the unreliable power grid, presently farming in SRM is just possible in small scales.
during rainy season. In the model, just farming by means of groundwater pumping is taken into account. The wheat straw can be used as free fuel for a biogas digester in order to generate fuel for the biogas generator. Based on questionnaires, the variable costs of the process *Field* represent an annual income of 750 USD for farmers in SRM. The maximum capacity for farming is set to 10 ha and for groundwater to 300,000 m³ per year, both based on values during peak productivity in the 1990s. Although SRM is modelled as a “green field” in order to give generic results, all described Energy-Water-Food processes are or have been implemented in SRM. Thus, it was possible to acquire the locally occurring CAPEX and OPEX for these processes by questionnaires in SRM [23]. General techno-economic process parameters are defined based on literature research, e.g. the weighted average cost of capital (WACC) is set to 15%. All model assumptions are listed in the appendix.

The investigated scenarios are distinguished by the amount of implemented demand-commodities, processes and storages. Scenario 1 represents a simple diesel island system, scenario 9 includes all possible processes of the modelled EWFS as shown in Fig. 6.2 (Table 6.1).

6.4 Results and Discussion

Figure 6.3 shows a result plot for the least-cost power generation with *urbs*. The black line is showing the implemented power demand, the additional demand due to the water pump is visualised as a negative power producer. The power producers *Diesel Generator* and *Photovoltaics* generate sufficient electricity to cover both types of demand including storage losses. The excessive power being produced by PV is causing dump load, “*Shunt(Elec.*)*”, which is shown as a negative producer as well.
Figure 6.4 shows the least-cost power generation mix for each scenario. As soon as PV is allowed to be installed from scenario “+PV” on, it generates a relevant share of power, yet the Diesel generator continues to supply power during night hours. For all scenarios including power generation with PV, the least-cost generation includes overproduction by PV and thus dump load, even if batteries are allowed, which can be observed in Fig. 6.3. The use of water pumps leads to increasing PV capacity and decreasing battery capacity or dump load because the water pump is working as a flexible load. This effect is minor for the supply of private water demand in scenario “+Water demand”, yet increases significantly in case of increased water supply for agriculture in the scenarios “+Fields” and “+Food selling”. In this scenario, the maximum available land of 10 ha is completely used. In scenario “+Biogas” there is no more power generation from PV and just a slight generation from diesel generators. The selling-oriented agriculture results in 342 t of straw, which can be used as free fuel for the biogas digester and its energy content of 530 MWh exceeds the total power demand of the EWFS by far.

As shown in Fig. 6.5, the LCOE decrease from 0.45 to 0.38 USD/kWh if power can be generated by diesel generators and PV. The introduction of batteries and

Table 6.1 Modelled scenarios

#	Title	Modelled demands, processes, and storages etc.
S1	Diesel	Electricity (E) demand + Diesel (D) buy + Diesel Generator (DG)
S2	+PV	S1 + Photovoltaic (PV) + Electricity (E) dump load
S3	+Battery	S2 + Battery (Bat)
S4	+Water Demand	S3 + Water (W) demand + buy
S5	+Water Pump	S4 + Water Pump (WP) + Water Tank (WT)
S6	+Food Demand	S5 + Food (Fo) demand + buy
S7	+Fields	S6 + Field (Fie)
S8	+Food Selling	S7 + Food (Fo) sell
S9	+Biogas	S8 + Biogas Digester (BD) + Biogas Tank (BT) + Biogas Generator (BG)

Fig. 6.3 Power generation time series for one week in kW—Scenario “+Fields”
water pumps for private water demand reduces the LCOE just minimally. Yet, the increased water pump capacities of the scenarios “+Fields” and “+Food Selling” reduce the LCOE significantly to 0.34 and 0.31 USD/kWh, respectively. This is due their cost-efficient utilization during the day, as shown in Fig. 6.3. The introduction of biogas leads to a further reduction of the LCOE to 0.16 USD/kWh, because of the moderate CAPEX of both processes, low storage costs for the biogas tank and the sufficient availability of straw as free input of the digester. The described reductions of LCOE lead to reductions of annual costs per capita, as it can be seen in Fig. 6.5. However, the annual costs rise in the scenario “+Water demand” and especially in the scenario “+Food demand” because of the additional costs for water and food, which have to be purchased as shown in Fig. 6.6. The scenarios “+Water Pump” and “+Fields” show significantly lower annual costs than these because water and food are now self-supplied by water pumps and fields on lower costs. The revenue by selling wheat in the last two scenarios leads to a drastic cost reduction.
29 USD per year and person in scenario “+Biogas” is remarkable, because these expenses cover the consumption of power, water and food per capita. The identical demand causes annual costs of 227 USD per person in scenario “+Food demand”. The expenses on fuel and purchase of food dominate this scenario’s costs, but there is no revenue from sales. The system costs in the last scenario are actually higher than the ones of scenario “+Food demand”, yet almost offset by the revenue of the wheat sales. Furthermore, its system costs are not caused by fuel and purchase but are dominated by variable costs. These are caused by the high maintenance costs of the biogas digestion and in particular the salary for farmers, which also occur in scenario “+Fields” and “+Food selling”. Based on the resulting variable costs, this scenario leads to the creation of 60 jobs in agriculture. The job creation could be even higher if more cultivatable land would be available. Figure 6.6 shows also, that in no scenario the CAPEX ("invest") are dominating, mostly due to the purchasing costs for diesel. In the last scenario, no investment-intensive PV is installed anymore.

6.5 Conclusion and Recommendations

The results show the techno-economic benefits of decentralized EWFS. The use of solar-powered water pumps enables sufficient water supply at low costs for enhanced agriculture. The increased agricultural productivity leads to revenues by crop sales, job creation in farming, and big quantities of crop waste like straw, which can be converted on low costs to biogas and thus power the whole system. Both the biogas generation and utilization as well as the revenues by crop sales reduce the total system costs for the supply of power, water and food to less than 11% of the costs occurring in case of power generation with diesel and water and

![Annual system costs in USD per year for each scenario](image)
food purchase from the market. Additionally, the job creation in agriculture creates local purchase power, which enables to pay off the investment costs of the system.

Further model improvement will address: Implementation of rainfall time series, modelling groundwater as storage, enhanced soil analysis, fertilizer demand, fertilizer supply by commercial ones or residues from biogas digester, life-cycle-analysis for soil nutrients, additional field crops, variation of crop prices, livestock farming, food processing, other electrical loads from commercial and social sector, heat demand for cooking, heat supply by firewood and biogas, labour as commodity.

Additionally, the obtained results have to be implemented to identify obstacles, which are not covered by the model yet, such as required technical expertise. Based on these findings, governments, entrepreneurs and other local stakeholders shall be able to promote electrification and economic development of rural regions in SSA by means of EWFS.

Appendix 1: Techno-Economic Input Parameter

See Tables 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 6.10.

Table 6.2 Techno-economic parameters for diesel generator [20, 24, 25]

Unit	Value
Investment costs	US$/KW
Fixed O&M costs	US$/KW/year
Variable O&M costs	US$/kWh
Diesel price	US$/kWh
Load efficiency	%
Depreciation time	year

Unit	Value
Investment costs	240
Fixed O&M costs	5% of investment costs
Variable O&M costs	0.024
Diesel price	0.1
Load efficiency	25
Depreciation time	20

Table 6.3 Techno-economic parameters for solar photovoltaics [20, 26]

Unit	Value
Investment costs	US$/kW
Fixed O&M costs	US$/kW/year
Modular efficiency	%
Depreciation time	year

Unit	Value
Investment costs	1600
Fixed O&M costs	2% of investment costs
Modular efficiency	16.7
Depreciation time	20
Table 6.4 Techno-economic parameters for water pumps [27, 28]

Parameter	Unit	Value
Investment costs	US$/kW	900
Fixed O&M costs	US$/kW/year	5% of investment cost
Total dynamic head	m	70
Pump efficiency	%	80
Depreciation time	year	15

Table 6.5 Techno-economic parameters for wheat fields [29–31, 39, 40]

Parameter	Unit	Value
Max capacity of fields	ha	10
Variable O&M costs	US$/ton	247.73
Average wheat yield	ton/ha	6
Wheat growth time	day	120
Max cycles per year	–	3
Labor requirements	farmer/ha	6
Wheat ratio to wheat plant	%	35
Wheat waste ratio to wheat plant	%	65
Wheat plant water requirements	m³/ton	263.58
Depreciation time	year	20

Table 6.6 Techno-economic parameters for biogas digester [32–34, 36, 41, 42]

Parameter	Unit	Value
Investment costs	US$/kW	500
Fixed O&M costs	US$/kW/year	2% of investment costs
Variable O&M costs	US$/kWh	0.024
Calorific energy in 1 m³ biogas	kWh	6.2
Biogas yield from wheat	m³/ton	450
Biogas yield from wheat waste	m³/ton	250
Depreciation time	year	20
Table 6.7 Techno-economic parameters for lithium battery \([20, 35]\)

Unit	Value
Investment cost (Energy) US$/kW	250
Investment cost (Power) US$/kWh_{el}	350
Fixed cost (Power) US$/kW/year	2% of investment costs (Power)
Fixed cost (Energy) US$/kWh_{el}/year	10
Variable cost (Power) US$/kWh_{el}	0.02
Input efficiency %	95
Output efficiency %	95
Initial state of charge (SOC) %	50
Depreciation time year	10

Table 6.8 Techno-economic parameters for biogas generator \([36–38, 43]\)

Unit	Value
Investment costs US$/kW	400
Fixed O&M costs US$/kW/year	5% of investment costs
Variable O&M costs US$/kWh_{el}	0.02
Efficiency %	30
Depreciation time year	20

Table 6.9 Techno-economic parameters for water tank

Unit	Value
Investment costs US$/m3	30
Depreciation time year	20

Table 6.10 Techno-economic parameters for biogas storage

Unit	Value
Investment costs US$/kWh	16.13
Depreciation time year	20
Appendix 2: Time Series for Least-Cost Power Generation and Storage

See Figs. 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, and 6.15.

Fig. 6.7 Time series for least-cost power generation for one week in kW—Scenario “Diesel”

Fig. 6.8 Time series for least-cost power generation for one week in kW—Scenario “+ PV”

Fig. 6.9 Time series for least-cost power generation and storage for one week in kW—Scenario “+ Battery”
Fig. 6.10 Time series for least-cost power generation and storage for one week in kW—Scenario “+ Water Demand”

Fig. 6.11 Time series for least-cost power generation and storage for one week in kW—Scenario “+ Water Pump”

Fig. 6.12 Time series for least-cost power generation and storage for one week in kW—Scenario “+ Food Demand”
Fig. 6.13 Time series for least-cost power generation and storage for one week in kW—Scenario “+ Fields”

Fig. 6.14 Time series for least-cost power generation and storage for one week in kW—Scenario “+ Food selling”

Fig. 6.15 Time series for least-cost power generation and storage for one week in kW—Scenario “+ Biogas”
Appendix 3: Output Parameter

See Tables 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, and 6.17.

Table 6.11 Installed process capacities for each scenario

#	DG [kW]	PV [kW]	BG [kW]	BD [kW]	WP [kW]	Fie [ha]
S1	35.87	0	0	0	0	0
S2	35.87	23.16	0	0	0	0
S3	29.55	25.43	0	0	0	0
S4	29.55	25.43	0	0	0	0
S5	29.84	25.79	0	0	0.40	0
S6	29.84	25.79	0	0	0.40	0
S7	31.55	31.02	0	0	5.52	2.89
S8	35.32	46.03	0	0	15.68	10
S9	8.7	0	27.17	47.38	4.78	10

Table 6.12 Installed storage capacities for each scenario

#	Bat [kWh]	WT [m³]	BT [kWh]
S1	0	0	0
S2	0	0	0
S3	14.57	0	0
S4	14.57	0	0
S5	13.68	10.48	0
S6	13.68	10.48	0
S7	9.25	9.36	0
S8	0.58	7.28	0
S9	0	0.52	222.29

Table 6.13 Energy, water and food quantities for each scenario

#	Energy [kWh]	Water [m³]	Wheat [ton]	Straw [ton]
S1	86,104.07	0.00	0.00	0
S2	86,104.07	0.00	0.00	0
S3	86,104.07	0.00	0.00	0
S4	86,104.07	4555.20	0.00	0
S5	87,188.65	4555.20	0.00	0
S6	87,188.65	4555.20	52.56	0
S7	96,613.15	44,138.14	52.56	97.76
S8	12,0174.43	143,095.48	183.96	342.17
S9	120,174.43	143,095.48	183.96	342.17
Table 6.14 Bought and sold commodities for each scenario

#	Diesel buy [kWh]	Water buy [m³]	Wheat buy [ton]	Wheat sell [ton]
S1	344,416.30	0	0	0
S2	232,345.65	0	0	0
S3	209,640.59	0	0	0
S4	209,640.59	4555.20	0	0
S5	211,093.85	0	0	0
S6	211,093.85	0	52.56	0
S7	204,405.85	0	0	0
S8	203,194.48	0	0	131.40
S9	2239.50	0	0	131.40

Table 6.15 Power generation mix for each scenario

#	DG [kWh]	PV [kWh]	BG [kWh]
S1	86,104.07	0.00	0
S2	58,086.41	37,130.61	0
S3	52,410.15	40,764.24	0
S4	52,410.15	40,764.24	0
S5	52,773.46	41,345.52	0
S6	52,773.46	41,345.52	0
S7	51,101.46	49,736.43	0
S8	50,798.62	73,794.97	0
S9	559.88	0.00	119,614.55

Table 6.16 System costs in USD per year for each scenario

#	Revenue	Invest	Fuel	Fixed	Variable	Purchase
S1	0	1375.39	34,441.63	430.45	2066.50	0
S2	0	7295.19	23,234.56	1171.53	1394.074	0
S3	0	8963.29	20,964.06	1345.55	1437.085	0
S4	0	8963.29	20,964.06	1345.55	1437.085	3644.16
S5	0	9102.14	21,109.39	1368.23	1431.906	0
S6	0	9102.14	21,109.39	1368.23	1431.906	23,652.00
S7	0	10,894.64	20,440.59	1733.96	14,374.95	0
S8	−59,130.00	15,635.90	20,319.45	2610.87	46,800.69	0
S9	−59,130.00	7164.73	223.95	1336.48	57,547.30	0
Table 6.17 LCOE and annual costs per capita for each scenario

#	LCOE [c/kWh]	Annual costs per capita [US$/year]
S1	44.50	153.30
S2	38.40	132.40
S3	37.90	130.80
S4	37.90	145.40
S5	37.70	132.00
S6	37.70	226.65
S7	34.40	189.78
S8	30.50	104.95
S9	16.40	28.57

References

1. United Nations, Sustainable development goals [Online]. http://www.un.org/sustainable
development/sustainable-development-goals/
2. CDC, Development impact evaluation: what are the links between power, economic growth (2016)
3. International Energy Agency, Africa energy outlook, 2015
4. B. Binayak, L. Kyung-Tae, G. Lee, Y. Cho, S. Ahn: Optimization of hybrid renewable energy power systems: a review. Int. J. Precis. Eng. Manuf. Green Technol. (2015)
5. S. Yashwant, S. Gupta, A. Bohre, Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system. Renew. Sustain. Energy Rev. (2018)
6. S. Sunanda, S. Chandel, Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. (2014)
7. N. Varshney, M. Sharma, D. Khatod, Sizing of hybrid energy system using HOMER. Int. J. Emerg. Technol. Adv. Eng. (2013)
8. M. Shahzad, A. Zahid, T. Rashid, M. Rehan, M. Ali, M. Ahmad, Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy (2017)
9. R. Sen, S. Bhattacharyya, Off-grid electricity generation with renewable energy technologies in India: an application of HOMER. Renew. Energy (2014)
10. A. Al-Waeli, A. Al-Kabi, A. Al-Mamari, H. Kazem, M. Chaichan, Evaluation of the economic and environmental aspects of using photovoltaic water pumping system. In: 9th International Conference on Robotic, Vision, Signal Processing and Power Applications: Empowering Research and Innovation (2016)
11. M. Chaichan, A. Kazem, M. El-Din, A. Al-Kabi, A. Al-Mamari, H. Kazem, Optimum design and evaluation of solar water pumping system for rural areas. Int. J. Renew. Energy Res. (IRER) (2017)
12. Priyanka, S. Bath, M. Rizwan, Design and optimization of RES based standalone hybrid system for remote applications. In: 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (2017)
13. P. Ananda, S. Bathb, M. Rizwanc, Design of solar-biomass-biogas based hybrid system for rural electrification with environmental benefits. Int. J. Recent Innov. Trends Comput. Commun. (2017)
14. P. Mathema, Optimization of integrated renewable energy system—micro grid (IRES-MG). Tribhuvan University (2008)
15. UNECE. Water-food-energy-ecosystem nexus [Online]. http://www.unece.org/env/water/nexus.html
16. E. Martinez-Hernandez, M. Leach, A. Yang, Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym. Appl. Energy (2017)
17. H. Sieverding, D. Clay, E. Khan, J. Sivaguru, M. Pattabiraman, R. Koodali, M. Ndiva-Mongoh, J. Stone, A sustainable rural food–energy–water nexus framework for the northern great plains. Agric. Environ. Lett. (2016)
18. M. Askri, Challenges of energy system modelling for developing countries. Technical University of Munich, Institute for Renewable and Sustainable Energy Systems (2017)
19. M. Huber, A. Roger, T. Hamacher, Optimizing long-term investments for a sustainable development of the ASEAN power system. Energy (2015)
20. A. Okunlola, Assessment of decentralized energy systems in Sub-Saharan Africa: Energy system modelling and job creation analysis. Technical University of Munich, Institute for Renewable and Sustainable Energy Systems (2017)
21. urbs: a linear optimisation model for distributed energy systems [Online]. http://urbs.readthedocs.io/en/latest/
22. M. Mayr: Feasibility analysis of power supply by small-scale wind turbines in urban, semi-urban and rural districts of Zimbabwe. Technical University of Munich, Institute for Renewable and Sustainable Energy Systems (2017)
23. C. Schulze: The Nexus of Water, Food and Energy in emerging countries: Data acquisition and renewable resource potential assessment by GIS and ground measurements in Zimbabwe. Technical University of Munich, Institute for Renewable and Sustainable Energy Systems (2017)
24. GlobalPetrolPrices.com [Online]. http://www.globalpetrolprices.com/Zimbabwe/diesel_prices/
25. U.S. Energy Information Administration [Online]. https://www.eia.gov/energyexplained/index.cfm?page=about_energy_conversion_calculator
26. Cool Solar [Online]. https://www.cool-solar-africa.com/
27. Grundfos [Online]. http://magazines.grundfos.com/Grundfos/SU/UK/Groundwater/
28. A. Al-Waeli, K. Moanis, H. Kazem, M. Chaichan, Optimum design and evaluation of solar water pumping system for rural areas. Int. J. Renew. Energy Res. (2017)
29. Harvesting Crop Residues [Online]. http://extensionpublications.unl.edu/assets/pdf/g1846.pdf
30. Zimmatic [Online] Increasing Wheat Yields: Through Efficient Irrigation Solutions. http://www.zimmatic.com/stuff/contentmgr/files/0/9ee056014d476a4cfbf86883b0604ec1/pdf/z_bro_wheat__revised_9.2013_.pdf
31. CropWat [Online]. http://www.fao.org/land-water/databases-and-software/cropwat/en/
32. R. Kigozi, O. Aboyade, E. Muzenda, Technology selection of biogas digesters for OFMSW via multi-criteria decision analysis [Online] in The 2014 International Conference of Manufacturing Engineering and Engineering Management
33. Biogas in India [Online]. http://large.stanford.edu/courses/2010/ph240/pydipati2/
34. Cropgen [Online]. http://www.cropgen.soton.ac.uk/deliverables.htm
35. H. Hesse, Elektrische Energiespeicher für stationäre Anwendungsfälle (2017)
36. P. Mukumba, G. Makaka, S. Mamphweli, S. Misi, A possible design and justification for a biogas plant at Nyazura Adventist High School, Rusape, Zimbabwe. J. Energy South. Afr. (2013)
37. S. Mandal, H. Yasmin, M. Sarker, M. Beg, Prospect of solar-PV/biogas/diesel generator hybrid energy system of an off-grid area in Bangladesh [Online], in AIP Conference Proceedings 1919 (2017)
38. R. Rownak, K. Ahmed, M. Shajibul-Al-Rajib, Solar-Biomass-CAES hybrid system: proposal for rural commercial electrification in Bangladesh. Int. J. Innov. Appl. Stud. ISSN 19 (2017)
39. Management of irrigated wheat [Online]. http://www.fao.org/docrep/006/y4011e/y4011e0r.htm
40. Seed Co wheat varieties on the market [Online]. http://www.seedcogroup.com/zw/media/blog/seed-co-wheat-varieties-market
41. S. Ahmad, K. Mahmood, A. Muhammad, Designing and strategic cost estimation of biogas plant: an alternative for current energy crisis in Pakistan. Int. J. Renew. Energy Environ. Eng. (2015)
42. B. Amigun, H. von Blottnitz, Capacity-cost and location-cost analyses for biogas plants in Africa. Resour. Conserv. Recycl. (2010)
43. S. Sigarchian, R. Paleta, A. Malmquist, A. Pina, Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system—Case study Kenya. Energy (2015)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.