Unlike previously thought, Systemic Lupus Erythematosus (SLE) is a common clinical entity, whose actual numbers are unraveling by the day. This is the prototypic chronic autoimmune condition that has been described since ages. The word “lupus” literally means “wolf’s bite” in Latin. It was coined in the 13th century by Rogerius, who observed that few of his patients had red colored rashes on their face (“erythematous”) which resembled a wolf’s bite. As the name suggests this is a “systemic” disease which often presents with a plethora of organ involvement. The systemic features were first described by Moriz Kaposi in the 19th century. Even among the organ systems involved, the manifestations can be so diverse that it often warrants a rational clinical suspicion and a thorough evaluation to rule out the disease. Here we review the involvement of the Nervous system affection in SLE in all its aspects.

How common is it?

SLE is a disease of the female gender predominantly (9:1 in US studies and Indian studies show 11:1 towards the female gender). The incidence of SLE ranges from 20-150 per 100,000 population in the US. But Indian epidemiological studies are very scarce with some studies showing incidence of 3.2 per 100,000 population. Given the increasing availability of diagnostic tools and better awareness among patients and doctors these numbers are only headed north.

The neurological involvement of SLE ranges from 14-75%. This is because of the extremely flexible diagnostic criteria proposed by American College of Rheumatology...
(ACR) in 1999 when it proposed a set of 19 syndromes of neurological lupus of which 12 had Central Nervous System (CNS) Lupus and seven had Peripheral Nervous System (PNS) Lupus8,9.

A few Indian studies focusing on the CNS lupus alone, showed that even though the cause for admission in SLE cases to hospital was neurological in only 32% of cases but nearly 78% had one neuropsychiatric manifestation or another7. Again, compared to males, females had a higher neurological involvement in SLE. CNS involvement in SLE is usually seen within one year of disease onset and is rarely the heralding organ system to be involved.

Why should we know about CNS Lupus?

CNS involvement usually correlates with high disease activity of SLE. The clinical outcomes of major CNS involvement are pretty grim owing to the delay in presentation (patient factors), delay in recognition and treatment (iatrogenic factors). Compared to the west, the 10-year survival rates of SLE patients in general is a meager 50% in India, compared to an 80% from western data7. Hence earlier recognition of the commoner CNS manifestations may lead to an earlier diagnosis and better outcome rates.

Pathogenesis of CNS Lupus

SLE, as described earlier is a chronic auto-immune condition where in the antibodies produced by the body cross react with the host tissues causing the disease. There are a range of antibodies that are known to be associated with SLE, most commonly anti-Smith / RiboNucleoPeptide (RNP), anti-Ro/La, anti-dsDNA among many more18,19,20,21.

But, as we know the human brain and most of its divisions (except the PNS) are “IMMUNOLOGICALLY PRIVILEGED” structures of the body owing to the presence of the omnipresent Blood-Brain-Barrier10.

Hence it was thought that, for the auto-antibodies which are circulating in the plasma to affect the CNS there can be 2 possible routes. The first if the auto-antibodies are produced in-situ in the CNS; or secondly, if there was a breach in the Blood Brain Barrier, i.e; damage to the microvasculature in the CNS in the form of either a vasculitis or thrombosis (the latter seeming more likely as in APLA). Once the antibodies are in the vicinity of the once cryptic CNS antigens, they bind to the tissues and initiate a cascading complement activation or they may cause deposition of immune complexes; both of which ultimately cause activation of apoptotic pathways and neuronal damage.

This was indeed confirmed by a number of post mortem biopsy studies which showed the presence of a wide variety of pathologies ranging from micro and macro infarcts, bleeds, atrophy, ischemic and patchy demyelination etc. All of them had an underlying common phenomenon of micro-vasculopathy (non-specific) which underlines the fact that disruption of the blood brain barrier is an integral part of the pathogenesis of CNS lupus (highlighted by the fluctuating ICAM-1 levels with disease flares and remissions)2.

The plethora of manifestations of CNS lupus is due to the fact that in each case the pathology may be different.

There are two scenarios explained regarding the pathogenesis of Neurological Lupus. (Figure 1)

Review on CNS Lupus

Figure 1 : Pathogenesis of CNS Lupus

Scenario-1 Each antibody type can cross react with a specific receptor in the CNS. DiGiorgio et al showed that the anti-NR2 antibodies cross react with the N-Methyl-D-Aspartate receptors which are richly located in the hippocampus (seat of learning and memory). A number of other intrathecal auto-antibodies are associated with CNS lupus like the anti-Ribosomal-P antibodies, anti-MAP-2 antibodies. The elevated levels of intrathecal MMP-9 (secreted by the walls of the vasculature mainly) PAI-1, IL-6, IL-8 all are under investigation as markers of disease activity11,12.

Scenario-2 The patient may present with arterial or venous thrombosis (SLE is a common cause of Stroke in Young). Although most cases are due to commonly associated Anti-Phospho-Lipid antibodies like the Lupus anticoagulant and Anti-Cardiolipin antibodies, which cross react with the phospholipids on the cell wall of the endothelial cells of the microvasculature causing vasculopathy of the vessels leading to either bleeding or thrombosis13.
Table 1: The American College of Rheumatology proposed 19 syndromes of Neuro-Psychiatric SLE14

CENTRAL NERVOUS SYSTEM	PERIPHERAL NERVOUS SYSTEM
1. Aseptic Meningitis	13. Guillain-Barre syndrome
2. Cerebrovascular Disease	14. Autonomic disorder
3. Demyelinating Syndrome	15. Mononeuropathy (single/multiplex)
4. Headache	16. Myasthenia gravis
5. Movement Disorder	17. Cranial Neuropathy
6. Myelopathy	18. Plexopathy
7. Seizure Disorder	19. Polyneuropathy
8. Cognitive dysfunction	

PSYCHIATRIC SYNDROMES
9. Acute confusional state
Anxiety disorder
11. Mood disorder
Psychosis

Table 2: Showing the American College of Rheumatology criteria of 1997, highlighting the neurological features
Role of genetics in neurological lupus:

Although CNS involvement in SLE is common, studies looking at the genetic factors involved in CNS lupus pathogenesis have been rarely conducted. Koga and colleagues in 2011 looked at 282 Japanese SLE patients compared with 222 controls, to assess the cumulative number of risk alleles associated with certain specific genes like HLA-DRB1, IRF5, STAT4, BLK, TNFAIP3, TNIP1, FCGR2B, and TNFSF13 genes. There were significantly higher genetic association with the disease than in the control group.

Neurological lupus is a spectrum disorder

Nervous system involvement is one of the most common organ systems in SLE patients compared with 222 controls, to assess the cumulative number of risk alleles associated with certain specific genes like HLA-DRB1, IRF5, STAT4, BLK, TNFAIP3, TNIP1, FCGR2B, and TNFSF13 genes. There were significantly higher genetic association with the disease than in the control group.

Table 3: Shows the 2012 SLICC criteria to establish a diagnosis of SLE

Co-evolution of SLE criteria & neurological features with time:

In 1999 the American College of Rheumatology (ACR) came up with a list of 19 diverse clinical syndromes, how neurological lupus may present (Table 1). This was after the initial 1997 ACR criteria for SLE which included CNS manifestations of only seizures and psychosis. (Table 2)

At the time, even though the list was comprehensive it is now being understood that the list is never complete. This is because day by day reports emerge of new associations with SLE like Poly-myositis, Neuro Myelitis Optica, Posterior Reversible Encephalopathy Syndrome.
etc. This underlines the fact that neurological lupus is indeed a big basket having a diverse spectrum of clinical presentations.

Following this in 2012, an international research group called Systemic Lupus International Collaborating Clinics (SLICC) proposed a revision to the criteria in which they introduced 17 criteria (which had 11 clinical and 6 immunological), elaborated in Table 3. Among the clinical criteria neurological criteria had Seizures, psychosis, Mononeuritis multiplex, Myelitis, Peripheral or Cranial neuropathy and an acute confusional state. This showed that in the period between 1997 to 2012, there was a significant rise in our understanding of the neurological involvement in Lupus.

However, this year in 2019 the European League Against Rheumatism (EULAR) and the American College
of Rheumatology (ACR) came out with a new algorithm for the diagnosis of SLE. In the present EULAR-ACR 2019 criteria the neurological features were trimmed to involve only delirium, psychosis and seizures only. Among them the highest weightage is given to seizures. This has been explained in Table 4.

A number of clinical studies have been carried out with the above criteria. Most studies have found that the most common CNS presentation is headache11. (South Indian studies quote an incidence of nearly 55\% of all CNS manifestations – with equal incidence of vascular and tension type headaches). But it must be understood that it is the underlying pathogenetic mechanism (either an inflammatory/ vasculopathy) that determines the syndrome which presents to the clinician.

One study in Greece states that among SLE patients with recurrent flares 13\% was due to major CNS flares of which the most common manifestations were Seizure disorders followed by strokes, myelopathy, optic neuritis and psychosis (needing admission).

Epileptic attacks coincided with higher disease activity scores, younger age at onset and with antibodies like ANA and ds-DNA. On the other hand, myelopathy was associated with lower disease activity scores, lower compliment and with NMO antibodies along with ANA and ds-DNA. Strokes however were often found to occur secondary to Anti-Phospholipid antibodies.

How do we investigate a case of suspected CNS lupus?

Neurological Lupus is a disease of exclusion. This is because of such diverse presentations of the disease, no single manifestation can be confidently attributed to the disease before excluding all other possible causes. For example: During the workup of a young stroke, if it is found that ANA/ds-DNA is positive; it would be ideal to exclude all other causes using Echocardiography, Homocysteine, Angiograms of the concerned vessels etc before implicating the stroke to SLE.

Immunological testing should be guided by the syndrome of presentation. For example, antibodies like APLA, aCL, anti-beta-GP etc for a thrombotic episode, antibodies like anti-Ribosomal-P for a psychotic episode, antibodies against aquaporin-4 for a myelopathy etc.

Among the radiological investigations, Magnetic Resonance Imaging (MRI) and its advancements such as Spectroscopy, Diffusion weighted imaging, Magnetic Transfer imaging are all useful in identifying the pathology in general but none are considered as gold standard investigation. The same is the case with electrophysiological studies, which can point out a pathology in general but cannot specify or rule out the etiology as SLE.

Due to the lack of specificity of most investigative modalities available as of now, a multi-disciplinary approach is recommended to rule out other causes until the neurological illness can be attributed to SLE.

Management of neurological lupus: Management can be divided into 3 phases14:

- **Symptomatic management**

 To begin with, the patients must be treated syndromically, i.e.; Anticoagulants and antiplatelets for thrombotic episodes as and when applicable, Antiepileptic medications for seizures etc. One thing of note is to evaluate possible side-effects of drugs used due to the diverse (maybe subclinical involvement of other organ systems in SLE).

 Management of an acute flare & long term immunomodulation

 These two entities are discussed together because both are a continuity.

 Data from randomized trials for Neurological Lupus management, is available mainly for Cyclophosphamide (in comparison with Methylprednisolone) which found that cyclophosphamide is an ideal immune-modulation to be used in cases of Neurological SLE.

 In our experience, for a developing country like India with difficulty in following up patients routinely and also keeping in mind the vast amounts of side-effects associated with oral steroids, we found the use of pulse steroid regimens using Methylprednisolone (in combination with cyclophosphamide) each month for 6 months followed by tapering pulses of steroids provide an equal if not better immune-suppression (for short term flare control). We recommend pulse doses of Methylprednisolone 1 gram for 3 days along with Cyclophosphamide dose of 0.75-1g/m2. This regimen is ideal in cases of SLE causing autoimmune mediated inflammatory diseases, not so much for SLE with thrombotic conditions.

 Future – role of biologicals in management of SLE

 Targeted biological treatments that modulate aspects of the immune system, have evolved rapidly, as a result of better understanding of the immune pathogenesis. Currently, some novel drugs have appeared in the management of SLE patients, which have shown promising results in phase II, III trials, targeting B cell, T cell, cytokine, and other molecules.

 One of the best outcomes was the development of belimumab and rituximab27,28. The fully humanized
monoclonal antibody against soluble trimeric B cell activating factor (BAFF), belimumab, has been approved for the treatment of SLE in Europe and the USA29,30.

Rituximab is another promising option, targeting the CD20 antigen. But lacks data in Neurological Lupus. Most data for rituximab is available with Nephritis from the LUNAR trial. EXPLORER trial evaluated rituximab in non-renal SLE patients and found no significant difference compared to steroids and cyclophosphamide. If more and more data is made available in Neurological Lupus, this drug can be a very good steroid sparing agent with doses to be given every six months. Each cycle is given at a dose of 375 mg/m2 weekly (repeated after a week).

Stem cells in SLE management

Autologous Hematopoietic Stem Cell Transplantation (HSCT) is one ray of hope for this condition, whose efficacy was established by an international multi-center, open-label phase III, ASTIS trial (Autologous Stem cell Transplantation International Scleroderma)31,32.

Mesenchymal Stem Cells (MSC) also appears to be a ray of hope for overcoming autoimmunity because of their immunosuppressive properties. MSCs modulate the immune response of different cell populations. Their most important effects are T-cell proliferation and dendritic cell (DC) differentiation inhibition, which are key activating factors of autoimmune disorders. MSCs are effective in

Figure 3. An algorithm for management of Neurological SLE14

inhibiting proliferation of CD4 and CD8 T cells as well as memory and naïve T cells33,34.

Data from other immunomodulators like mycophenolate mofetil, azathioprine, methotrexate, cyclosporin are sparse specially for Neurological SLE. A note of caution in our experience is the use of Azathioprine can lead to fatal pancytopenia if the cell counts are not monitored often. Hence use in patients in whom good follow up can be established.

In resistant relapses or flares, Intravenous Immunoglobulins or plasma exchange maybe tried. Immunoglobulins are given at a dose of 2 grams/kg body weight over 3 to 5 days. The exact mechanism how immunoglobulins or plasma exchange helps is still not yet fully ascertained.

Hence in a developing country like India, it would be prudent to prescribe a drug based on individual patient factors and judging the side effect profile to match a suitable drug to a suitable patient.

The following algorithm summarizes the above points as a flow chart in the management of Neurological Lupus14.

An algorithm for management of Neurological SLE was published in a review by Cesar Magro-Checa et al; in 2016 which summarizes the options as shown14.

Conclusion

Neurological Lupus is a very commonly encountered problem which often goes unnoticed unless with major CNS involvement. This article directs future researchers to establish more data regarding management of Neurological Lupus. This article emphasizes the importance of recognition and early management of Neurological Lupus to improve the quality of life and reduce the morbidity and mortality rates associated with SLE.

References

1. Bertsias G, Cervera R, Bounam DT. Systemic Lupus Erythematosus: Pathogenesis and Clinical Features. EULAR Textbook on Rheumatic Diseases, Geneva, Switzerland: European League Against Rheumatism 2012; 476-505. [accessed on 15th July, 2017]

2. Popescu A, Kao AH. “Neuropsychiatric Systemic Lupus Erythematosus. Current Neuropharmacology. 2011;9(3):449-57. DOI: 10.2174/157015911796557984

3. Hanly JG. Diagnosis and management of neuropsychiatric SLE. Nat Rev Rheumatol. Online publication February 2014. DOI: 10.1038/nrrheum.2014.15. [accessed on 5th July, 2017]

4. Kumar A. Indian guidelines on the management of SLE. J Indian Rheumatol Assoc. 2002(10):80-96. Available from: https://medind.nic.in/jaa/t02/i4/jaa02i4p80/. [accessed on 6th July, 2017].

5. Hannahs Hahn B. Systemic Lupus Erythematosus, In: Kasper.L.D, Fauci.A.S et al.(eds.) Harrison’s Principles of Internal Medicine Volume 2. 19th ed. United States of America: McGraw Hill education; 2015:2124-34.

6. Joshi VR. Systemic Lupus Erythematosus, In: Munjal.Y.P (ed). API Textbook of Medicine Volume 2. 9th ed. Mumbai, India: Jaypee Brothers Medical Publishers (P) Ltd. 2012:1853-9.

7. Robert M, Sunita R, Thulausedharam NK. Neuropsychiatric manifestations systemic lupus erythematosus: A study from South India. Neurology India: 2006(54-1):75-7. DOI: 10.4103/0028-3386.24713

8. Kampylafka EI, Alexopoulos H, Kosmidis ML, Panagiotakos DB, Vlachoyiannopoulos PG, Dalakas MC, et al. Incidence and Prevalence of Major Central Nervous System Involvement in Systemic Lupus Erythematosus: A 3-Year Prospective Study of 370 Patients. PLoS ONE. 2013;8(2):e55843. DOI: 10.1371/journal.pone.0055843

9. Bortoluzzi A, Padovan M, Farina I, Galuppi E, DeLeonardis F, Govoni M. Therapeutic strategies in severe neuropsychiatric systemic lupus erythematosus: experience from a tertiary referral centre. Reumatismo. 2012; 64(6):350-9. DOI: 10.4081/reumatismo.2012.350

10. Hay EM, Isenberg A. Autoantibodies in central nervous system lupus. British Journal of Rheumatology. 1993(4);32:329-32. DOI: 10.1093/rheumatology/32.4.329

11. Yoshio T, Okamoto H. Pathogenesis of Neuropsychiatric Syndromes of Systemic Lupus Erythematosus. Open Journal of Rheumatology and Autoimmune Diseases. 2015;5: 46-56. DOI: 10.4236/ojr.2015.52009

12. Fanouriakisa A, Boumpasb DT, Bertsias GK. Pathogenesis and treatment of CNS lupus. Curr Opin Rheumatol. 2013,25:577-83. DOI: 10.1097/BOR.0b013e328363eaf1

13. Van Dam AP. Diagnosis and pathogenesis of CNS Lupus. Rheumatol Int. 1991;11(1): 1-11. DOI: 10.1007/BF00290244

14. Magro-Chec C, Zirkzee E, Huizinga TW, Steup-Beekman GM. Management of Neuropsychiatric Systemic Lupus Erythematosus: Current Approaches and Future Perspectives. Drugs. 2016;76(4):459-83. DOI: 10.1007/s40265-015-0354-3
Suhas et al

15. Muscal E, Brey RL. Neurological Manifestations of Systemic Lupus Erythematosus in Children and Adults. Neurology. 2010;28(1):61–73. DOI: 10.1016/j.ncl.2009.09.004

16. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012 Aug;64(8):2677-86. DOI: 10.1002/art.34473

17. 2019 European League Against Rheumatism/ American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019;71: 1400-12. DOI: 10.1002/art.40930

18. Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev. 2015;14(1):75–9. DOI: 10.1016/j.autrev.2014.10.003

19. Giliuty NV, Chappell CP, Clark EA. B-cell selection and the development of autoantibodies. Arthritis Rheum. 2012;64(Suppl 4):S1. DOI: 10.1186/ar3918

20. Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9(7):491–502. DOI: 10.1038/nri2572

21. Diamond B, Scharff MD. Somatic mutation of the T15 heavy chain gives rise to antibody with autoantibody specificity. Proc Natl Acad Sci U S A. 1984;81:5841–4. DOI: 10.1073/pnas.81.18.5841

22. Jeltsch-David, H., Muller, S. Neuropsychiatric systemic lupus erythematosus: inflammation and autoimmunity. Autoimmun Rev. 2014;13(5):482–7. DOI: 10.1016/j.autrev.2013.11.009.

23. Koga M, Kawasaki A, Ito I et al. Cumulative association of eight susceptibility genes with systemic lupus erythematosus: results from 136 patients from the French Autoimmunity and Rituximab registry. Arthritis Rheum. 2010;62(8):2458–66. DOI: 10.1002/art.27541

24. de Vries B, Steup-Beekman GM, Haan J, et al. TREC1 gene variant in neuropsychiatric systemic lupus erythematosus. Annals of the Rheumatic Diseases. 2010;69:1886-7. DOI: 10.1136/ard.2009.114157

25. Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee Y-A, et al. N. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus: [brief communications]. Nature Genetics. 2007;39(9): 1065-7. DOI: 10.1038/ng2091

26. Namjou B, Kothari P, Kelly J et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011;12:270–9. DOI: 10.1038/gene.2010.73

27. Navarra SV, Guzman RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9767):721–31. DOI: 10.1016/S0140-6736(10)61354-2.

28. TY L, Ng KP, Cambridge G, et al. A retrospective seven-year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at University College London Hospital: the first fifty patients. Arthritis Rheum. 2009;61(4):482–7. DOI: 10.1002/art.24341

29. Terrier B, Amoura Z, Ravaud P, Hachulla E, Jouenne R, Combe B, Bonnet C, Cacoub P, Cantagrel A, de Bandt M, Fain O, Fautrel B, Gaudin P, Godaux B, Harlé JR, Hot A, Kahn JE, Lambotte O, Larroche C, Léone J, Meyer O, Paillet D, Pertuiset E, Quartier P, Schaeverbeke T, Sibilia J, Somogyi A, Soubrier M, Vignon E, Bader-Meunier B, Mariette X, Gottenberg JE, Club Rhumatismes et Inflammation Safety and efficacy of rituximab in systemic lupus erythematosus: results from 136 patients from the French Autoimmunity and Rituximab registry. Arthritis Rheum. 2010;62(8):2458–66. DOI: 10.1002/art.27541

30. Diaz-Lagares C, Croca S, Sangle S, et al. Efficacy of rituximab in 164 patients with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun Rev. 2012;11(5):357–64. DOI: 10.1016/j.autrev.2011.10.009.

31. van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA. 2014;311:2490–8. DOI: 10.1001/jama.2014.6368

32. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4:267–74.

33. Dazzi F, Horwood NJ. Potential of mesenchymal stem cell therapy. Curr Opin Oncol. 2007;19:650–5. DOI: 10.1097/CCO.0b013e3282f0e116

34. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43. DOI: 10.1182/blood.V99.10.3838