Research Article

Study on the Intention of Foreign Trade Driven by Cross-Border E-Commerce Based on Blockchain Technology

Tiange Gao

School of International Business and Trade, Zhejiang Industry and Trade Vocational College, Wenzhou 325000, Zhejiang, China

Correspondence should be addressed to Tiange Gao; gaotiange@zjitc.edu.cn

Received 16 September 2021; Accepted 24 November 2021; Published 10 December 2021

Academic Editor: Jian Su

Copyright © 2021 Tiange Gao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cross-border e-commerce is also facing the problems of cross-border goods selling counterfeit, long delivery time of cross-border logistics, and high cross-border payment fee in the process of development. Blockchain technology, with its characteristics of high trustworthiness, traceability, and information immutability, can be applied to the field of cross-border e-commerce, providing a new direction for cross-border e-commerce to solve these problems. At the present stage, scholars at home and abroad mainly study how blockchain technology is applied in cross-border e-commerce, explore the specific mode of combining blockchain technology with cross-border e-commerce, and lay the theoretical foundation for the application of blockchain technology in cross-border e-commerce, while less research is conducted on the application effect of blockchain technology in cross-border e-commerce. Based on this, this paper researches the influence mechanism of the application of blockchain technology in cross-border e-commerce on consumers’ willingness to purchase, explains the current situation of the application of blockchain technology in various fields of cross-border e-commerce, and on this basis, divides the quality of the blockchain system of cross-border e-commerce into three dimensions of commodity information quality, logistics service quality, and payment security.

1. Introduction

With the continuous development of Internet technology, the popularity of smart phones and tablets is increasing, and the continuous improvement of telecommunication network infrastructure has allowed more and more people to access the Internet easily and quickly, bringing unprecedented development opportunities for cross-border e-commerce. IMedia Research data show that the total value of retail imports and exports of cross-border e-commerce in China in 2020 have reached 186.21 billion RMB, an increase of 38.3% compared to 2019 [1]. During the epidemic, cross-border e-commerce companies took advantage of “no-touch” and the government introduced a series of policies favorable to the development of cross-border e-commerce, which enabled cross-border e-commerce to maintain high growth in the first half of 2020. The rapid development of cross-border e-commerce is also faced with many problems [2, 3]. According to the data of e-commerce Research Center of NetEase, in the past year, the reasons for domestic cross-border e-commerce consumers’ complaints mainly focused on the quality of goods, logistics and transportation, difficulties in returning and exchanging goods, and after-sales service. According to the data of Ai Media Consulting, the scale of China’s sea-tao users will reach 154 million in 2019, and the scale of China’s sea-tao users will be expected to reach 158 million in 2022. In response to the use of China’s cross-border e-commerce platform, 65.3% of respondents said that the usage rate has increased, and the guarantee of genuine products, brand awareness, and quality of goods have become the three most important factors when sea-tao users purchase goods [3, 4]. In order to solve the problems encountered in the development of cross-border e-commerce, various companies have started to explore the use of emerging technologies to solve the current challenges faced by cross-border e-commerce.

In 2016, blockchain technology began to receive widespread attention, and the Ministry of Industry and Information Technology wrote blockchain as a strategic frontier technology and disruptive technology into the State Council’s 13th Five-Year Plan for National Informatization...
Blockchain technology has the characteristics of decentralization, nontamperable information, and traceability of transactions, and various cross-border e-commerce companies have started to explore the use of blockchain technology to establish cross-border e-commerce logistics, payment, and product traceability systems to solve the problems encountered in the development of cross-border e-commerce [6]. Therefore, studying the impact of blockchain technology application on the purchase willingness of cross-border e-commerce consumers helps cross-border e-commerce companies to better improve the cross-border e-commerce blockchain system and promote the healthy development of cross-border e-commerce. With the rapid development of cross-border e-commerce, the competition among cross-border e-commerce companies is becoming more and more intense, and consumers are becoming more and more important to cross-border e-commerce companies. In order to better attract consumers to buy products from this enterprise, major cross-border e-commerce companies use blockchain technology to establish new cross-border logistics, cross-border payment, and product traceability systems.

2. Related Work

The traceability and highly trustworthy features of blockchain technology can help cross-border e-merchants establish a blockchain traceability system to ensure the quality of products from the source and solve the problem of product quality control faced by cross-border e-merchants. Based on blockchain technology, [7] integrated the nodes involved in the process of cross-border e-commerce transactions, such as suppliers and consumers, to build a cross-border e-commerce trade chain, which can effectively improve the security and effectiveness of transactions and solve the trust problems faced by cross-border e-commerce transactions [8]. Reference [9] argued that the timestamp technology in the blockchain ensures that all the commodity information entered into the blockchain system has a temporal dimension and improves consumers’ trust in the authenticity of cross-border e-commerce goods. Reference [10] mainly studied cross-border e-commerce export trade and argued that a product information tracing network connecting cross-border commodity manufacturers, transportation enterprises, quality inspection companies, customs, and other links should be built based on blockchain technology to promote the sharing of transaction data in each link and improve the quality and efficiency of product traceability.

By combining blockchain technology with IoT technology, a model of imported product information traceability is established with the cross-border e-commerce platform as the core, through which consumers can inquire about the real information of purchased products, ensure the authenticity and traceability of transaction information in each link of the whole cross-border commodity transaction process, and create a safer and faster cross-border transaction environment [11, 12]. Reference [8] argues that the combination of blockchain technology and cross-border e-commerce will reestablish a more formal, intelligent, and transparent set of cross-border trade rules, effectively integrate the cross-border e-commerce supply chain, and solve the trust problem in cross-border e-commerce transactions. A set of product information traceability system for cross-border e-commerce supply chain management is developed based on blockchain technology, which can solve the key recovery problem, effectively resist cloning attacks, counterfeit label attacks, and counterfeit product attacks, and help the healthy development of cross-border e-commerce [13].

The influence of cross-border e-commerce service quality on consumers’ purchase intention was studied based on a technology acceptance model [14]. A theoretical model with system quality, service quality, and information quality as independent variables and perceived risk and consumer trust as mediating variables was established by combining the characteristics of cross-border apparel goods, and it was found through empirical research that information quality and service quality of cross-border e-commerce websites can also significantly influence purchase intention through the mediation of consumer trust. Reference [15] demonstrated through empirical analysis that four environmental cues of online shopping, namely, online promotion cues, content marketing cues, personalized recommendation cues, and social comment cues, can have a significant positive impact on consumers’ purchase intentions.

3. Background Knowledge

3.1. Blockchain. Reference [16] considers blockchain technology as a computer system that uses a chained data structure to obtain and verify data, a distributed structure and consensus algorithm to produce data, cryptography, and peer-to-peer data transmission to ensure data security, and a computer language to program and execute smart contracts. In simple terms, the database in the blockchain is like a ledger, and the process of reading and writing to the blockchain database is equivalent to bookkeeping in the ledger, and the blockchain technology will send the information on the ledger page to all the participating subjects in the whole blockchain system after bookkeeping. This way of reading and writing data will make the participants in the whole blockchain system have a ledger containing all the information in their hands, so blockchain technology is also called distributed ledger technology [17].

3.2. Consumer Willingness to Buy. Willingness is primarily a subjective probability that a person will perform a certain behavior, a concept originally applied in the field of psychology. After the emergence of consumer behavior psychology, this concept was also applied to management disciplines. Domestic and foreign scholars began to study consumer’s willingness to buy and to define the concept of consumer’s willingness to buy [18, 19]. Reference [20] argued that consumers’ willingness to buy refers to the extent to which people subjectively want a certain good, and it was found through research that consumers’ own perceptions of
value and brand can have an impact on willingness to buy [5, 21]. According to [22], consumer purchase intention is mainly a measure of the subjective probability of consumers to buy a certain good and there is a correlation between this purchase intention and consumers’ purchase behavior [9]. Overall, consumer purchase intention is the probability that a consumer will purchase a certain product or service in the future.

4. Program of This Article

4.1. Model Construction. Based on the technology acceptance model, this paper divides the independent variable cross-border e-commerce blockchain system quality into three dimensions: product information quality, logistics service quality, and payment security, with perceived usefulness and perceived ease of use as mediating variables and consumer purchase intention as the dependent variable, and constructs the theoretical model of this paper, as shown in Figure 1.

In the theoretical model, in order to study the influence of blockchain technology application on the purchase intention of cross-border e-commerce consumers, this paper takes the quality of cross-border e-commerce blockchain system as an exogenous variable and divides the quality of cross-border e-commerce blockchain system into three dimensions: commodity information quality, logistics service quality, and payment security. Among them, commodity information quality refers to the degree of detail and reliability of cross-border commodity-related information such as certification of commodity manufacturers and commodity quality inspection reports obtained by consumers when they make cross-border purchases through the cross-border e-commerce blockchain system [23]. Logistics service quality refers to the ability of cross-border e-commerce blockchain system to meet consumers’ demand for cross-border logistics, which usually include factors such as transportation time, quality of outer packaging of transported goods, and logistics and distribution information. Payment security mainly refers to the ability of the cross-border e-commerce blockchain system in improving the efficiency of cross-border payment and guaranteeing the security of cross-border payment, etc. [16, 24].

In the theoretical model, the two main mediating variables are perceived usefulness and perceived ease of use. Perceived usefulness usually refers to the degree of usefulness of information perceived by users to themselves. In this paper, perceived usefulness specifically refers to the subjective feeling of whether the information related to products, logistics, and payment obtained by consumers through the cross-border e-commerce blockchain system is helpful for making purchase decisions. Perceived ease of use refers to consumers’ subjective perception of how easy it is to use the cross-border e-commerce blockchain system.

For the relationship between cross-border e-commerce and consumers’ willingness, reference [25] found that publicity should be provided with rich and authentic information so that it can improve consumers’ understanding of the product, which in turn has a significant impact on consumers’ willingness to purchase. Reference [26] found that the more detailed the product information descriptions that can be provided on a web page, the higher the consumer’s willingness to purchase. Rich and detailed product information can increase consumers’ perceptions and thus reduce uncertainty, and merchants should provide more detailed and realistic information to increase consumers’ willingness to purchase. Cross-border e-commerce blockchain system can provide detailed and real product information, which can provide credible product quality inspection reports and thus increase consumers’ willingness to purchase.

When consumers purchase cross-border goods, cross-border logistics play a core chain role. It was found that customers’ ability to find out the transportation information of the purchased cross-border goods and to provide efficient customs clearance services during the shopping process on cross-border e-commerce platforms is an important factor that affects consumers’ willingness to purchase [4, 27]. Reference [28] found that the quality of cross-border logistics services can significantly improve consumers’ perceived value. Therefore, if cross-border logistics can provide perfect after-sales service, ensure that cross-border goods are not broken during transportation, and reduce the delivery time of cross-border logistics, it will improve the purchase willingness of cross-border e-commerce consumers.

4.2. E-Commerce Transaction Process. The e-commerce platform utilizes the openness and public nature of blockchain to conveniently perform periodic energy storage rental services and electricity sales services. Under the traditional transaction mode, each cycle is independent of the others. Users have a time vacuum for on-chain information transactions and thus cannot conduct on-chain information transactions with the e-commerce platform at any moment [3, 28].

The transaction process designed in this paper increases the number of transaction cycles by conducting physical layer transmission while conducting on-chain energy storage lease and electricity sales transactions, thus improving the profitability of the e-commerce platform and enhancing the convenience of users. The transaction cycle consists of 3 phases divided into 4 periods, of which $t_0 - t_2$ is the on-chain information transaction phase, $t_1 - t_3$ is the physical layer commodity transmission phase, and $t_3 - t_4$ is the fund settlement phase. The fund settlement does not affect the on-chain information transaction and physical transmission of the next cycle, so the start time of the next cycle does not consider the fund settlement time of the previous cycle. Due to the limitation that the physical layer commodity transmission cannot be incoming and outgoing at the same time, the commodity transmission phase is evenly divided into $t_1 - t_2$ and $t_2 - t_3$ time periods, and the on-chain information transaction phase is also evenly divided into $t_0 - t_1$ and $t_1 - t_2$ time periods, and the on-chain information transaction of the next cycle starts when the physical transmission of the previous cycle is finished in the first time period.
Under the conditions of this transaction cycle, the transaction flow of the e-commerce platform combining sharing and self-management is shown in Figure 2. The specific transaction steps of the combined shared and self-owned e-commerce platform are as follows.

Step 1. Electricity platform after joining the blockchain-based electricity market simultaneously releases the information of available energy storage for lease, electricity purchase, and receiving electricity vouchers to the whole network (electricity vouchers are the data recorded by smart meters on the blockchain according to the commodities stored by users after actually leasing energy storage, issuing electricity vouchers means recording the data of stored commodities, and withdrawing electricity vouchers means recording the data of withdrawn commodities) [10].

\[
U_{ESA} = \{ C^{S}_{ESA,T_N}, Q^{SE}_{ESA,T_N}, P^{S}_{ESA,T_N}, P^{BE}_{ESA,T_N}, D^{S}_{ESA}, D^{BE}_{ESA}, P^{Vou}_{ESA}, S_{ESA} \},
\]

where \(C^{S}_{ESA,T_N} \) is the energy storage capacity that can be leased by the \(T_N \)-cycle e-commerce platform \(i \); \(Q^{BE}_{ESA,T_N} \) refers to consumer willingness to request for \(T_N \)-cycles of e-commerce platform \(i \); \(P^{BE}_{ESA,T_N} \) is the price of a unit of energy storage leased by the \(T_N \)-cycle e-commerce platform \(i \); \(P^{S}_{ESA,T_N} \) is the price at which the \(T_N \)-cycle e-commerce platform \(i \) seeks to purchase consumer will; \(D^{S}_{ESA} \) and \(D^{BE}_{ESA} \) are the addresses of the smart contracts issued by the e-commerce platform \(i \) for leasing energy storage and purchasing electricity, respectively; \(P^{Vou}_{ESA} \) is the address of the smart contract for the e-commerce platform \(i \) to verify the power credentials; \(S_{ESA} \) is the private key signature of the e-commerce platform \(i \).

The formula for \(C^{S}_{ESA,T_N} \) is

\[
C^{S}_{ESA,T_N} = C^{S}_{ESA,T_{N-1}} + Q^{SE}_{ESA,T_{N-1}} + Q^{Vou}_{ESA,T_{N-1}} + Q^{Vou}_{ESA,T_{N-1}},
\]

where \(C^{S}_{ESA,T_{N-1}} \) is the actual physical energy storage surplus for \(T_{N-1} \)-cycle electricity platform \(i \); \(Q^{SE}_{ESA,T_{N-1}} \) is the actual consumer willingness to sell electricity for \(T_{N-1} \)-cycle electricity platform \(i \); \(Q^{Vou}_{ESA,T_{N-1}} \) is the amount of electricity vouchers received by 66-cycle electricity platform \(i \); and \(Q^{Vou}_{ESA,T_{N-1}} \) is the consumer willingness to expire the lease time of \(T_{N-1} \)-cycle energy storage aggregator \(i \) [12].

The formula for \(Q^{BE}_{ESA,T_N} \) is

\[
Q^{BE}_{ESA,T_N} = K^{BE}_{ESA,T_N},
\]

where \(K^{BE}_{ESA,T_N} \) is the prediction coefficient of e-commerce platform \(i \) obtained by analyzing transaction data for multiple cycles of the same time period.

Step 2. After the in-chain transaction in Step 1 is completed, the order for leased energy storage is sent to the physical
transmission service provider for commodity transmission, and the commodity transmission cost is paid by the leasing party. After the commodity transmission is completed, the smart meter feeds back the actual transmitted commodities to the chain, and the energy storage provider issues power vouchers to the leading user based on the actual stored commodities V_{ESA}:

$$V_{ESA} = \{ Q_{ESA,T_N}, S_{ESA} \},$$

(6)

where Q_{UER,T_N} is the actual stored consumer willingness of user j of T_N-cycle leased energy storage. While the commodity transmission is carried out at the physical layer, the e-commerce platform releases the electricity sales information to the whole network, i.e.,

$$U_{ESA} = \{ Q_{ESA,T_N}, P_{ESA,T_N}, D_{ESA}, S_{ESA} \},$$

(7)

where Q_{ESA,T_N} is the willingness of consumers sold on the T_N cycle e-commerce platform; f_{ESA,T_N} is the tariff of the commodity sold by the T_N-week energy storage aggregator; D_{ESA} is address of the smart contract issued for the sale of goods by energy storage aggregator i.

The formula for D_{ESA} is

$$D_{ESA} = Q_{ESA,T_N-1} + Q_{ESA,T_N} + \sum_{j=1}^{W} \left(f_{User_j,CUser,T_N} \right) Q_{Vou_{ja},ESA,T_N} - Q_{Vou_{ja},ESA,T_N+1},$$

(8)

where Q_{ESA,T_N-1} is the actual stored consumer willingness stored in the physical energy storage of T_N-1 cycle EPP i; C_{User,T_N} is the storage capacity leased by user j in the first T_N cycle; $f_{User_j,CUser,T_N}$ is the predicted capacity factor of leased user j; Q_{Vou_{ja},ESA,T_N} is the amount of electricity vouchers received by T_N cycle EPP i; Q_{Vou_{ja},ESA,T_N} is the consumer willingness at the end of the lease time of T_N+1 cycle EPP i.

D_{ESA} is calculated as follows:

$$D_{ESA} = (1 + G_{ESA})P^G + P_T.$$

(9)

Electricity sale information released by the e-commerce platform is matched with the commodity demand information on the chain through smart contracts, and the successful matching user signs the electricity sale information to finally generate a transaction order.

Step 3. The transaction order for selling electricity and the order for making individual consumer power voucher to withdraw electricity are sent to the physical transmitter for commodity transmission, and the transmission cost is paid by the e-commerce platform. After the transmission is completed, the smart meter feeds back the actual transmission consumer’s wishes, thereby withdrawing the power voucher [13].

Step 4. Compare the transaction order information on the chain with the actual physical commodity transmission, and settle the funds with the penalty fee for breach of contract.

In the trading strategy of the e-commerce platform designed in this paper, the uncertainty of individual consumption is large, and the prediction ability of users is generally insufficient, thus causing a higher possibility of default. When a power sales user generates a transaction order with the e-commerce platform, if it does not provide the e-commerce platform with the corresponding consumer will, it will be penalized according to the deviation consumer will between the winning bid and the actual issued consumer will. The penalty cost of the electricity seller’s breach of contract, i.e., the compensation cost to the electricity purchaser R_{User_j} is calculated as

$$R_{User_j} = MQ_j^P,$$

(10)

where M is the penalty factor; Q_j^P is the absolute value of the deviated consumer willingness between the traded consumer willingness on the trade order and the actual transmitted consumer willingness; P is the traded tariff [28].

When the e-commerce platform acts as a power seller and a recipient of power vouchers it needs to release commodities. According to the deviation consumer will between the winning volume and the actual issuing consumer will, the electric merchant platform releases the power purchase information to the chain, makes up for the deviation consumer will by purchasing the corresponding commodities, and compensates the power purchase user and the user who makes the individual consumer power voucher according to the deviation between the final commodity transmission time and the initial transmission time. The compensation cost R_{ESA} of the electric platform i is calculated as

$$R_{ESA} = HtQ_j^e,$$

(11)

where H is the default compensation coefficient; t is the deviation time; Q_j^e is the absolute value of the deviation consumer willingness between the trading consumer willingness and the actual transmission consumer willingness on the electricity sales transaction order and the extraction consumer willingness order. After the settlement is completed, the final transfer is made by the smart contract to both parties according to the settlement result, and the fund settlement phase of this cycle ends [29].

5. Example Analysis

5.1. Parameter Setting. The application scenario contains six different users, among which users 1 to 3 are distributed energy users; user 4 is a user who needs to purchase goods from an e-commerce platform; user 5 is a daily individual consumption user; user 6 is an e-commerce platform; user 7 is a merchant; and user 8 is a commodity self-employed merchant. Distributed energy users in scenario 1 consider storing the excess goods. Scenario 2 is based on scenario 1, in which the distributed energy users dispose excess commodities by selling them directly on the chain, while other user functions remain unchanged. Given the relatively accurate prediction of the power of individual consumption devices in short periods, each time period in the simulation...
ESA issues energy storage capacity lease

Users with energy storage demand report the demand to the energy storage provider

Are users qualified to filter requirements through smart contracts?

Information transaction is completed to generate charge discharge order

Physical transmission of electric energy

Smart meter feedback actual data

Fund settlement

ESA issues power purchase demand and quotation

Electricity quantity and price quoted by the seller

Are the sellers qualified through smart contract screening?

Information transaction is completed to generate charge discharge order

Physical transmission of electric energy

Smart meter feedback actual data

Are the sellers qualified through smart contract screening?

Electrical quantity and price quoted by the user

Verify that the power certificate is compliant?

Workflow 2: Transaction flow diagrams of e-commerce platform combining shared and self-operated models.
test is set to 15 min, and a total of 96 sets of data are collected throughout the day. To compare the benefits of each user in the two scenarios, the willingness to send consumers and the willingness to use consumers on a daily basis were collected from users 1 to 3.

5.2. Analysis of User Transaction Results. The simulation of the trading strategy in this paper is carried out using Remix, an online simulation platform for Ether, and the data of scenario 1 and scenario 2 are imported and exchanged for Ether and RMB at a fixed ratio [30]. In order to facilitate comparison of users’ revenue, the tax costs arising from the transaction process are ignored, and the default problem is not considered, on which the users’ demand is aggregated with the energy storage provider. When the difference between individual user consumption is less than 0, the user pays to purchase goods directly from the e-commerce platform, while when the difference between individual consumption is greater than 0, users 1–3 in scenario 1 make energy storage lease transactions with the matched e-commerce platform users 6 and individual merchants 7 through the solidity smart contract file set up in Remix.

Users 1 to 3 in scenario 2 are also matched with users 7 and 8 who acquire goods according to the smart contract. The total goods to be sold by user 1 in each cycle are 18,471, and the matched goods are 18,023; the total goods to be sold by user 2 are 10,942, and matched goods are 10,911 kW h; the total goods to be sold by user 3 are 42,495, and matched goods are 39,694 kW h. After the aggregation is completed, the number of transactions made by users 1 to 3 in the scenario where each cycle is partially combined is read from the Remix platform and compared with the number of transactions in the traditional model where each cycle is completely independent, as shown in Table 1.

All users need only 32 h to complete 96 cycles in the cycle consolidation scenario, while it takes 48 h to complete 96 cycles in the cycle independence scenario, so the consolidation of cycles can increase the number of transactions per unit time. As can be seen from Table 1, users 1, 2, and 3 increase the number of transactions in 96 cycles of 6, 11, and 14, respectively, in the cycle consolidation scenario. Therefore, in the scenario of cycle consolidation, the number of trading cycles per unit time is higher, and the number of transactions with the same number of cycles is also increased. The increase in the number of transactions increases the frequency with which users can participate in commodity transactions, thus improving the convenience of transactions for users on the chain.

The data of the same users in both scenarios were simulated through MATLAB to compare their revenue. To facilitate the comparison, the stored goods are converted to the peak hour goods with equal value, and the time period 09:00–13:00, when each user sends more individual consumers’ willingness to consume, is used to compare the users’ revenue. The comparison of the revenue of users 1 to 3 in the two scenarios for this time period is shown in Figure 3.

From the simulation results, it can be seen that the total value of the consumer willingness difference of user 1 in the 09:00–13:00 time period is 2.577, and the conversion gain obtained by using energy storage leasing by trading this consumer willingness with the e-commerce platform under scenario 1 is 0.554 yuan, while the gain obtained by selling this consumer willingness directly under scenario 2 is 0.438 yuan; the total value of the consumer willingness difference of user 2 in the 09:00–13:00 time period is 0.348, and the conversion revenue obtained by using energy storage leasing under scenario 1 is 0.075 yuan. The total value of the difference between the goods of user 2 in the 09:00–13:00 period is 0.348, and the conversion revenue obtained by using the energy storage lease in scenario 1 is 0.075 yuan, while the revenue obtained by selling these consumers’ wishes directly in scenario 2 is 0.059 yuan; user 3 sends individual consumer transactions in the 09:00–13:00 period, and the conversion revenue obtained by using the energy storage lease in scenario 1 is 0.554 yuan, while the revenue obtained by selling these consumers’ wishes directly in scenario 2 is 0.438 yuan. The total value of the individual consumer will difference of 9.558 is issued by user 3 at 09:00–13:00 hours, the conversion revenue obtained by using energy storage leasing under scenario 1 is $2.044, and the revenue obtained by selling these goods directly under scenario 2 is $1.625.

It can be seen from Figure 3 that the revenue under scenario 1 is greater than the revenue under scenario 2 during the time when the difference in the willingness of users to send individual consumers is greater than 0. Moreover, as the difference in the willingness of each user to send individual consumers increases, the difference in revenue under scenario 1 and scenario 2 also increases. Considering that the electricity sales price varies from peak to valley at any time, the total revenue of users 1–3 for the whole day is analyzed to obtain the revenue of users under two scenarios. From the graph, it can be seen that the all-day revenue of users 1–3 under scenario 1 is also larger than that under scenario 2. Comparing the two trading strategies, it can be seen that when the energy storage leasing is carried out by the individual consumer platform, the real-time excess goods issued by the distributed energy are stored, and the revenue is greater than the direct sale of the excess goods, which makes the distributed energy users have higher revenue, and at the same time of using the energy storage leasing, the e-commerce platform also gains profit, reaching a win-win situation.

5.3. Revenue Analysis of Shared and Self-Owned E-Commerce Platforms. Further comparative analysis is needed of the benefits of users 1–3 after trading with individual merchants, commodity self-employed merchants, and the combined shared and self-employed e-commerce platform in this paper’s model. The ratio of actual storage to storage lease is assumed to be 0.9 and matched by aggregation, while the acquisition price of all self-employed merchants is taken as the highest value of the offer and the sale price is taken as the lowest value of the offer for the reliability of the comparison of simulation results. Eight different scenarios are constructed corresponding to the different ways of handling surplus goods by users 1–3.
The data are simulated by MATLAB to obtain the revenue comparison of the three users under various scenarios as shown in Figure 4. Under various scenarios, the e-commerce platform can make fuller use of its own energy storage under the trading model in this paper, making the idle energy storage a container for buying and selling goods low and high, so that it can obtain multiple benefits of multimode trading. As can be seen from the figure, the benefits of leasing a small amount of energy storage alone and self-operating goods alone are both low, while the benefits of the e-commerce platform combining sharing and self-operating are both high. Comparing the benefits of the eight different scenarios, it can be seen that the benefits of the combined shared-self-employed e-commerce platform are greater than the sum of the benefits of the separate merchant and the merchandise self-employed merchant in 96 cycles, due to the fact that the combination of shared energy storage and
merchandise self-employed trading results in more frequent trading of goods, which maximizes the benefits of the combined shared-self-employed e-commerce platform.

5.4. User and E-Commerce Platform Default Analysis. In the given scenario 2, there are the actual transaction data of user 1 and user 6 for the period of 12:00-13:00 of the day considering their default cases. The table shows that, during this time period, user 1 is default on a total of 0.089 commodities, and the transaction price at that time is $0.425, so the default penalty is $0.0189. User 6 is an energy storage aggregator, and the defaulted commodities in that period total 3.4, and the compensation commodity deviation time is 7.5 min, so the compensation to the electricity purchase customer is $0.255, and the loss of the energy storage aggregator due to the default in that period is $2.353. From the above default cases, it can be seen that the transaction model designed in this paper can effectively deal with the default cases occurring in each trading entity; i.e., the default cases are punished while the defaulted users are compensated.

6. Conclusions

In this paper, we design a transaction strategy that combines sharing and e-commerce platform and build a general architecture that includes user application layer, physical network layer, and smart contract through the blockchain platform. Finally, the user matching transaction is simulated by Remix and MATLAB. The simulation results verify that the transaction model proposed in this paper enhances the convenience of each user, improving the economic benefits of distributed energy users and energy storage aggregators, and the overall transaction model is feasible and efficient.

The trading model provides new ideas for the development of shared energy storage and distributed energy trading in China and will be followed by in-depth research on the application of energy storage and distributed energy in the trading model, combining it with flexible resources to further improve the practicality of the model.

Data Availability

The dataset used in this paper is available from the author upon request.

Conflicts of Interest

The author declares no conflicts of interest regarding this work.

Acknowledgments

This work supported by the Project of Soft science of Zhejiang Provincial Department of Science and Technology named “The evaluation index system and optimization of business environment of Zhejiang logistics enterprise under the background of The Belt and Road Initiative” under granted No. 2020C35029 and the Project of Teaching Reform in the 13th five year plan of Zhejiang Provincial Department of Education named “Research and Practice on the training of compound technical talents in Higher Vocational Colleges Based on 1 + X certificate system” under granted No. jg20190893.

References

[1] Z. Hua, K. Be, and Q. Shi, “Research on the information tracing model for cross-border e-commerce products based on blockchain,” *E3S Web of Conferences*, vol. 235, no. 4, Article ID 03018, 2021.
[2] X. Liu and J. Walsh, “Development of cross-border e-commerce in the context of China’s foreign trade strategy,” *City University Research Journal*, vol. 9, no. 4, pp. 776–787, 2019.
[3] Y. Wang, F. Jia, T. Schoenherr, Y. Gong, and L. Chen, "Cross-border e-commerce firms as supply chain integrators: the management of three flows," Industrial Marketing Management, vol. 89, pp. 72–88, 2020.

[4] C. Y. Lin, "Knowledge mapping analysis of research frontiers and hotspots from the perspective of China-ASEAN cross-border e-commerce," in Proceedings of the 2021 International Conference on Control and Intelligent Robotics, pp. 556–561, Guanzxi, China, June 2021.

[5] Q. Liao and Y. Wang, "Prospect and challenges of cross-border payment posed by digital currency—from the perspective of blockchain coalition," in Proceedings of the E3S Web of Conferences, p. 218, EDP Sciences, Kryvyi Rih, Ukraine, May 2020.

[6] H. Hallikainen and T. Laukkanen, "Trustworthiness in e-commerce: a replication study of competing measures," Journal of Business Research, vol. 126, pp. 644–653, 2021.

[7] D. Goutam, B. V. Gopalakrishna, and S. Ganguli, "Determinants of customer loyalty dimensions," Journal of Electronic Commerce in Organizations, vol. 19, no. 1, pp. 1–23, 2021.

[8] X.-D. Shen, X. Chen, R. Ji, and R.-H. Wu, "The new ecosystem of cross-border e-commerce among Korea, China and Japan based on blockchain," Journal of Korea Trade, vol. 24, no. 5, pp. 87–105, 2020.

[9] X. Zhou and Y. He, "Study on application of arcs motivational model on cross-border e-commerce course design," in Proceedings of the International Conference on Mental Health and Humanities Education (ICMHHE 2020), pp. 288–293, Atlantis Press, Wuhan, China, March 2020.

[10] P. Dutta, T.-M. Choi, S. Somani, and R. Butala, "Blockchain technology in supply chain operations: applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, vol. 142, Article ID 102067, 2020.

[11] T. Xie, C. Zhang, Z. Zhang, and K. Yang, "Utilizing active sensor nodes in smart environments for optimal communication coverage," IEEE Access, vol. 7, Article ID 11338, 2018.

[12] Z. Liu and Z. Li, "A blockchain-based framework of cross-border e-commerce supply chain," International Journal of Information Management, vol. 52, Article ID 102059, 2019.

[13] Z. Liu and Z. Li, "A blockchain-based framework of cross-border e-commerce supply chain," International Journal of Information Management, vol. 52, Article ID 102059, 2020.

[14] S. Li, "Structure optimization of e-commerce platform based on artificial intelligence and blockchain technology," Wireless Communications and Mobile Computing, vol. 2020, no. 12, 8 pages, Article ID 8825825, 2020.

[15] Q. Liao and M. Shao, "Discussion on payment application in cross-border e-commerce platform from the perspective of blockchain," E3S Web of Conferences, vol. 235, no. 2, Article ID 03020, 2021.

[16] B. Niu, Z. Mu, B. Cao, and J. Gao, "Should multinational firms implement blockchain to provide quality verification?" Transportation Research Part E: Logistics and Transportation Review, vol. 145, Article ID 102121, 2021.

[17] M. Fernandes and J. R. Verhoeve, "How blockchain affects the technological strategy of the financial industry: an analysis based on knowledge discovery in text," Future Studies Research Journal Trends and Strategies, vol. 12, no. 2, pp. 311–334, 2020.

[18] C. Zhang, T. Xie, K. Yang et al., "Positioning optimisation based on particle quality prediction in wireless sensor networks," IET Networks, vol. 8, no. 2, pp. 107–113, 2019.

[19] T. Qiu, R. Zhang, and Y. Gao, "Ripple vs. SWIFT: transforming cross border remittance using blockchain technology," Procedia Computer Science, vol. 147, pp. 428–434, 2019.

[20] P. Esmaeilzadeh, "Consumers’ perceptions of using health information exchanges (HIEs) for research purposes," Information Systems Management, vol. 36, no. 1-2, pp. 57–77, 2019.

[21] L. Wang, C. Zhang, Q. Chen et al., "A communication strategy of proactive nodes based on loop theorem in wireless sensor networks," in Proceedings of the 2018 Ninth International Conference on Intelligent Control and Information Processing (ICICIP), pp. 160–167, IEEE, Wanzhou, China, November 2018.

[22] M. S. Rahman, A. A. Omar, M. Bhuiyan, A. Basu, S. Kiyomoto, and G. Wang, "Accountable cross-border data sharing using blockchain under relaxed trust assumption," IEEE Transactions on Engineering Management, vol. 67, no. 99, pp. 1–11, 2020.

[23] A. Perri, U. Andersson, P. C. Nell, and G. D. Santangelo, "Balancing the trade-off between learning prospects and spillover risks: MNC subsidiaries' vertical linkage patterns in developed countries," Journal of World Business, vol. 48, no. 4, pp. 503–514, 2013.

[24] H. Li, D. Zeng, L. Chen, Q. Chen, M. Wang, and C. Zhang, "Immune multipath reliable transmission with fault tolerance in wireless sensor networks," in Proceedings of the International Conference on Bio-Inspired Computing: Theories and Applications, pp. 513–517, Springer, Singapore, October, 2016.

[25] S. L. Shen, M. C. Lee, and C. Y. Lin, "The influence of brand image and perceived value of cross-border E-commerce businesses on consumer purchase intention with Thailand’s baggo serving as the study object," International Journal of Uncertainty and Innovation Research, vol. 2, no. 1, pp. 57–71, 2020.

[26] A. Aristovnik and M. Matevz, "The Economic and Monetary Union’s effect on (international) trade: the case of Slovenia before euro adoption," MPRA Paper, vol. 79, no. 17445, pp. 26–37, 2009.

[27] D. Farrell and T. Kalil, "A strategy for innovation: the administrations comprehensive approach includes research, education, infrastructure, a conducive market environment, and a quest to meet national needs," Research in Dance Education, vol. 14, no. 3, pp. 201–215, 2010.

[28] G. H. Chung, J. Du, and J. N. Choi, "How do employees adapt to organizational change driven by cross-border M&As: a case in China," Journal of World Business, vol. 49, no. 1, pp. 78–86, 2014.

[29] D. W. Chapman, A. Pekol, and E. Wilson, "Cross-border university networks as a development strategy: lessons from three university networks focused on emerging pandemic threats," International Review of Education, vol. 60, no. 5, pp. 619–637, 2014.

[30] D. Soman and M. Zhao, "The fewer the better: number of goals and savings behavior," Journal of Marketing Research, vol. 48, no. 6, pp. 944–957, 2011.