Nonlinear Stefan problem with convective boundary condition in Storm’s materials

Adriana C. Briozzo and Maria F. Natale

Abstract. We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material $x > 0$, with phase change temperature T_f. We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition, and we assume a convective boundary condition at the fixed face $x = 0$. A unique explicit solution of similarity type is obtained. Moreover, asymptotic behavior of the solution when $h \to +\infty$ is studied.

Mathematics Subject Classification. 35R35 · 80A22 · 35C05.

Keywords. Stefan problem · Free boundary problem · Phase change process · Similarity solution.

1. Introduction

As in [4,11,13], we consider the following one-phase nonlinear unidimensional Stefan problem for a semi-infinite material $x > 0$, with phase change temperature T_f

$$s(T) \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[k(T) \frac{\partial T}{\partial x} \right], \quad 0 < x < X(t), \quad t > 0,$$

(1.1)

$$k(T(0,t)) \frac{\partial T}{\partial x}(0,t) = \frac{h}{\sqrt{t}} [T(0,t) - T_m], \quad h > 0, \quad t > 0,$$

(1.2)

$$T(X(t),t) = T_f,$$

(1.3)

$$k(T_f) \frac{\partial T}{\partial x}(X(t),t) = \alpha X(t), \quad t > 0,$$

(1.4)

$$X(0) = 0$$

(1.5)

where the positive constant α is ρL, L is the latent heat of fusion of the medium, ρ is the density (assumed constant), T_m is the temperature of the medium $T_m < T(0,t) < T_f$ and h_0 is the positive heat transfer coefficient.

We assume that the metal exhibits nonlinear thermal characteristics such that the heat capacity $c_p(T) > 0$ and the thermal conductivity $k(T) > 0$ satisfy a Storm’s condition [1,2,5–7,12]

$$\frac{d}{dT} \left(\sqrt{\frac{s(T)}{k(T)}} \right) = \lambda = \text{const.} > 0,$$

(1.6)

where $s(T) = \rho c_p(T)$.

This paper has been partially sponsored by the Proyect PIP No. 112-200801-00534 “Inecuaciones Variacionales, Control Optimo y Problemas de Frontera Libre: teoría, análisis numérico y aplicaciones”, from CONICET-UA, Rosario-Argentina and Proyect: “Ecaciones a derivadas parciales, inecuaciones variacionales elípticas, problemas de frontera libre y de control óptimo y aplicaciones”, Universidad Austral Rosario-Argentina.
Condition (1.6) was originally obtained by [12] in an investigation of heat conduction in simple monoatomic metals. There, the validity of the approximation (1.6) was examined for aluminum, silver, sodium, cadmium, zinc, copper and lead.

This class of moving boundary problems for Storm materials was originally solved in [9,10] by using a reciprocal transformation. Reciprocal Bäcklund transformations were used in [8] to obtain solutions both a one-phase and a two-phase Stefan problems in nonlinear heat conduction.

In [7], the free boundary problem (1.1)–(1.6) (fusion case) for the particular case $k(T) = \rho c/(a + bT)^2$ and $s(T) = \rho c =$ constant was studied. The explicit solution of this problem was obtained through the unique solution of an integral equation with time as a parameter. A similar case with the constant temperature at the fixed face $x = 0$ was also studied.

In [2], two nonlinear Stefan problems analogous to (1.1)–(1.5) with phase change temperature T_f and the Storm’s condition (1.6) were considered. In one case, a heat flux boundary condition of the type $q(t) = q_0 \sqrt{t}$ and in the other case a temperature boundary condition $T = T_s < T_f$ at the fixed face $x = 0$ were assumed. Solutions of similarity type were obtained in both cases, and the equivalence of the two problems was demonstrated.

The goal of this paper is to determine the temperature $T = T(x,t)$ and the position of the phase change boundary at time t, $X = X(t)$, which satisfy the problem (1.1)–(1.6). In Sect. 2, we show how to find a unique solution of the similarity type for this problem. In Sect. 3, we study the asymptotic behavior when $h \to +\infty$. We prove that the solutions $T = T_h(x,t), X = X_h(t)$ of (1.1)–(1.6) converge to the solution $T = T_\infty(x,t), X = X_\infty(t)$ of an analogous Stefan problem with temperature condition $T(0,t) = T_m$ when $h \to +\infty$.

2. Existence and uniqueness of the solution to the Stefan problem with convective boundary condition on the fixed face

We consider the problem (1.1)–(1.6), and we propose a similarity-type solution given by [2–4]

$$T(x,t) = \Phi(\xi), \quad \xi = \frac{x}{X(t)}$$

(2.1)

where

$$X(t) = \sqrt{2\gamma t}, \quad t > 0$$

(2.2)

is the free boundary and γ is assumed a positive constant to be determined. Then, we have that the problem (1.1)–(1.5) is equivalent to

$$k(\Phi)\Phi''(\xi) + k'(\Phi)\Phi'^2(\xi) + \gamma s(\Phi)\Phi'(\xi)\xi = 0, \quad 0 < \xi < 1,$$

(2.3)

$$k(\Phi(0))\Phi'(0) = h\sqrt{2\gamma}[\Phi(0) - T_m],$$

(2.4)

$$\phi(1) = T_f,$$

(2.5)

$$k(\Phi(1))\Phi'(1) = \alpha\gamma.$$

(2.6)

If we define

$$y(\xi) = \sqrt{\frac{k}{s}(\Phi(\xi))},$$

(2.7)

then a parameterization of the Storm condition (1.6) is

$$s(\Phi) = -\frac{1}{\lambda y^2} \frac{dy}{d\Phi}, \quad k(\Phi) = -\frac{1}{\lambda} \frac{dy}{d\Phi}$$

(2.8)

and then we have that the following problem is equivalent to (2.3)–(2.6)

$$\frac{d^2y}{d\xi^2} + \frac{\gamma\xi dy}{y^2 d\xi} = 0, \quad 0 < \xi < 1,$$

(2.9)
\[y'(0) = -\lambda h \sqrt{2\gamma} \left[P(y^2(0)) - T_m \right], \quad (2.10) \]
\[y'(1) = -\alpha \gamma, \quad (2.11) \]
\[y(1) = y_1 = \sqrt{k(T_f)} \frac{s(T_f)}{s(T_f)} \quad (2.12) \]

where \(P \) is the inverse function of the decreasing function \(k_s \).

Lemma 2.1. A parametric solution to the problem (2.9)–(2.12) is given by

\[\xi = \varphi_1(u) = \frac{F_{u_0}(u)}{F_{u_0}(u_1)}, \quad (2.13) \]
\[y = \varphi_2(u) = \frac{\sqrt{\gamma} \sqrt{\frac{\pi}{2}} \left[\text{erf} \left(\frac{u}{\sqrt{2}} \right) - g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right]}{F_{u_0}(u_1)}, \quad (2.14) \]

for

\[u_0 \leq u \leq u_1 \]

where the function \(F_{u_0} = F_{u_0}(u) \) was defined in [2] as follows

\[F_{u_0}(u) = \exp \left(-\frac{u^2}{2} \right) + u \left(\int_{u_0}^{u} \exp \left(-\frac{x^2}{2} \right) dx - \frac{\exp \left(-\frac{u_0^2}{2} \right)}{u_0} \right) \]
\[= \sqrt{\frac{\pi}{2}} u \left[g \left(\frac{u}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) - g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right], \quad u \geq u_0 \]

with \(u_0, u_1 \) are the parameter values which verify that \(\xi = \varphi_1(u_0) = 0 \) and \(\xi = \varphi_1(u_1) = 1 \),

\[g(x, p) = \text{erf}(x) + p \frac{\exp \left(-\frac{x^2}{2} \right)}{x}, \quad p > 0, \ x > 0 \quad (2.15) \]

and

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-z^2)dz, \quad x > 0. \]

The unknowns \(\gamma, u_0 \) and \(u_1 \) must verify the following system of equations

\[u_0 = \sqrt{2} \lambda h \left[P \left(\frac{\gamma \exp \left(-\frac{u_0^2}{2} \right)}{\left[u_0 F_{u_0}(u_1) \right]^2} \right) - T_m \right], \quad (2.16) \]
\[\sqrt{\gamma} = \frac{\exp \left(-\frac{u_1^2}{2} \right)}{\sqrt{\frac{\pi}{2}} \alpha \lambda \left[g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) - \text{erf} \left(\frac{u_1}{\sqrt{2}} \right) \right]} \quad (2.17) \]
\[y_1 = \frac{\exp \left(-\frac{u_1^2}{2} \right)}{\alpha \lambda F_{u_0}(u_1)} \quad (2.18) \]

Proof. A parametric solution of (2.9) was deduced in [4], and it is given by

\[\xi = \varphi_1(u) = C_2 \left(\exp \left(-\frac{u^2}{2} \right) + u \left(\int_{0}^{u} \exp \left(-\frac{x^2}{2} \right) dx + C_1 \right) \right) \quad (2.19) \]
\[y = \sqrt{\gamma} C_2 \left(\int_{0}^{u} \exp \left(-\frac{x^2}{2} \right) dx + C_1 \right) \quad u > 0 \quad (2.20) \]
where C_1 and C_2 are integration constants to be determined.

We choose u_0 and u_1 be such that $\varphi_1(u_0) = 0$ and $\varphi_1(u_1) = 1$; we obtain that
\[
C_1 = -\frac{\exp\left(-\frac{u_0^2}{2}\right)}{u_0} - \int_0^{u_0} \exp\left(-\frac{x^2}{2}\right) \, dx,
\] (2.21)
\[
C_2 = \left\{ \exp\left(-\frac{u_1^2}{2}\right) + u_1 \left(-\frac{\exp\left(-\frac{u_0^2}{2}\right)}{u_0} + \int_{u_0}^{u_1} \exp\left(-\frac{x^2}{2}\right) \, dx \right) \right\}^{-1}.
\] (2.22)

Then, we have
\[
\xi = \varphi_1(u) = \frac{\exp\left(-\frac{u_0^2}{2}\right) + u \left(\int_{u_0}^{u} \exp\left(-\frac{x^2}{2}\right) \, dx - \frac{\exp\left(-\frac{u_0^2}{2}\right)}{u_0} \right)}{\exp\left(-\frac{u_1^2}{2}\right) + u_1 \left(-\frac{\exp\left(-\frac{u_0^2}{2}\right)}{u_0} + \int_{u_0}^{u_1} \exp\left(-\frac{x^2}{2}\right) \, dx \right)}, \quad u_0 \leq u \leq u_1
\] (2.23)
and
\[
y = \varphi_2(u) = \frac{\sqrt{\gamma} \left\{ -\frac{\exp\left(-\frac{u_0^2}{2}\right)}{u_0} + \int_{u_0}^{u} \exp\left(-\frac{x^2}{2}\right) \, dx \right\}}{\exp\left(-\frac{u_1^2}{2}\right) + u_1 \left(-\frac{\exp\left(-\frac{u_0^2}{2}\right)}{u_0} + \int_{u_0}^{u_1} \exp\left(-\frac{x^2}{2}\right) \, dx \right)}, \quad u_0 \leq u \leq u_1
\] (2.24)
that is (2.13)–(2.14).

Next we prove that the unknowns u_0, u_1 and γ must satisfy (2.16)–(2.18). From (2.23) and (2.24), we have
\[
y'(\xi) = \frac{\varphi'_2(u)}{\varphi'_1(u)} = \frac{\sqrt{\gamma} \exp\left(-\frac{u_0^2}{2}\right)}{\int_{u_0}^{u} \exp\left(-\frac{x^2}{2}\right) \, dx - \frac{\exp\left(-\frac{u_0^2}{2}\right)}{u_0}}
\] (2.25)
then
\[
y'(0) = -\sqrt{\gamma}u_0
\] (2.26)
and taking into account that
\[
y(0) = -\sqrt{\gamma} \exp\left(-\frac{u_0^2}{2}\right)
\]
and from (2.10), we have (2.16).

Analogously we have
\[
y'(1) = \frac{\varphi'_2(u_1)}{\varphi'_1(u_1)} = \frac{\sqrt{\gamma} \exp\left(-\frac{u_1^2}{2}\right)}{\int_{u_0}^{u_1} \exp\left(-\frac{x^2}{2}\right) \, dx - \frac{\exp\left(-\frac{u_1^2}{2}\right)}{u_0}}
\] (2.27)
and by (2.11) we have
\[\sqrt{\gamma} \exp \left(\frac{-u_1^2}{2} \right) - \frac{u_1}{u_0} \exp \left(\frac{-u_0^2}{2} \right) \int_{u_0}^{u_1} \exp \left(\frac{-x^2}{2} \right) dx = -\alpha \lambda \gamma \] \hspace{1cm} (2.28)

that is (2.17).

Last, we have
\[y(1) = \varphi_2(u_1) = \sqrt{\gamma} \left\{ -\frac{1}{u_0} \exp \left(\frac{-u_0^2}{2} \right) + \frac{u_1}{u_0} \int_{u_0}^{u_1} \exp \left(\frac{-x^2}{2} \right) dx \right\} \] \hspace{1cm} (2.29)

and taking into account (2.12) and (2.17) we obtain (2.18).

Next we want to find \(u_0, u_1 \) and \(\gamma \) the solutions to the equations (2.16)–(2.18). We can rewrite the system (2.16)–(2.18) as follows
\[P^{-1} \left(\frac{u_0}{\sqrt{2h\lambda}} + T_m \right) = \gamma \exp \left(-u_0^2 \right) \left[u_0 F_{u_0}(u_1) \right]^2 \] \hspace{1cm} (2.30)

\[\frac{\sqrt{\gamma}}{\alpha \lambda \sqrt{\frac{\pi}{2}}} \exp \left(\frac{-u_1^2}{2} \right) = \frac{\exp \left(\frac{-u_0^2}{2} \right)}{g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) - \text{erf} \left(\frac{u_0}{\sqrt{2}} \right)} \] \hspace{1cm} (2.31)

\[M(u_1) = g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \] \hspace{1cm} (2.32)

where
\[M(x) = g \left(\frac{x}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \left(\frac{1}{\alpha \lambda y_1} + 1 \right) \right) \] \hspace{1cm} (2.33)

Lemma 2.2. The real function \(F_{u_0} \) and \(M \) satisfy the following properties:
\[F_{u_0}(u_0) = 0, \quad F(+\infty) = -\infty \] \hspace{1cm} (2.34)
\[F_{u_0}'(x) = \frac{\sqrt{\pi}}{2} \left\{ \text{erf} \left(\frac{x}{\sqrt{2}} \right) - g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right\} < 0 \] \hspace{1cm} (2.35)
\[M(0) = +\infty, \quad M(+\infty) = 1 \quad \text{and} \quad M'(x) < 0. \] \hspace{1cm} (2.36)

Proof. See [1] and [2].

Lemma 2.3. (Existence of the solution)
There exists a solution of the system (2.30)–(2.32) given by
\[\tilde{u}_1 = M^{-1} \left(g \left(\frac{\tilde{u}_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right) \] \hspace{1cm} (2.37)
\[\tilde{\gamma} = \frac{\exp \left(-\tilde{u}_1^2 \right)}{\alpha \lambda^2 \left(\frac{\exp \left(-\tilde{u}_1^2 \right)}{u_0} - \frac{\tilde{u}_1}{\tilde{u}_0} \right) \int_{\tilde{u}_0}^{\tilde{u}_1} \exp \left(\frac{-x^2}{2} \right) dx)^2} \] \hspace{1cm} (2.38)
where \(\tilde{u}_0 \) is a solution of
\[
P^{-1} \left(\frac{u_0}{\sqrt{2h\lambda}} + T_m \right) = \frac{\gamma \exp(-u_0^2)}{\left[u_0 F_{u_0} \left(M^{-1} \left(g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right) \right) \right]^2}. \tag{2.39}
\]

Proof. Because \(M \) is a decreasing function, there exists the inverse function \(M^{-1} \), and from (2.32) for each \(u_0 \) there exists a unique \(u_1 \) given by
\[
u_1(u_0) = M^{-1} \left(g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right). \tag{2.40}
\]
If we replace (2.40) in (2.31) and (2.30), we have
\[
\gamma(u_0) = \frac{\exp \left(-u_1^2(u_0) \right)}{\alpha^2 \lambda^2 \left(\frac{\exp \left(-\frac{u_0^2}{2} \right)}{u_0} - \int_{u_0} \exp \left(-\frac{x^2}{2} \right) \, dx \right)^2}, \tag{2.41}
\]
and
\[
P^{-1} \left(\frac{u_0}{\sqrt{2h\lambda}} + T_m \right) = \frac{\gamma(u_0) \exp(-u_0^2)}{\left[u_0 F_{u_0}(u_1(u_0)) \right]^2}. \tag{2.42}
\]
We define the function
\[
G(u_0) := P^{-1} \left(\frac{u_0}{\sqrt{2h\lambda}} + T_m \right)
\]
which satisfies \(G(0) = \frac{k}{s} (T_m) \) and \(G'(u_0) < 0 \), and let
\[
H(u_0) := \frac{\gamma(u_0) \exp(-u_0^2)}{\left[u_0 F_{u_0}(u_1(u_0)) \right]^2}.
\]
From (2.18), (2.40) and (2.41), it follows that
\[
H(u_0) = \frac{2y_1^2 \exp(-u_0^2)}{u_0^2 \pi \left[\text{erf} \left(\frac{M^{-1}(g(y_0^2, 1/\sqrt{\pi})))}{\sqrt{2h\lambda}} \right) - g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right]^2},
\]
\(H(0) = y_0^2, H(+\infty) = +\infty \) and \(H(u_0) \geq y_0^2, \forall u_0 \geq 0 \).

Since \(T_m < T_f \), we conclude \(G(0) = \frac{k}{s} (T_m) > \frac{k}{s} (T_f) = y_1^2 = H(0) \).

Taking into account the properties of \(G \) and \(H \), there exists \(\tilde{u}_0 < u_0^* = (T_f - T_m) \sqrt{2h\lambda} \) which satisfies (2.42).

Then by (2.40) and (2.41), we complete the solution \(\tilde{u}_1 = u_1(\tilde{u}_0) \) and \(\tilde{\gamma} = \gamma(\tilde{u}_0) \) to the system (2.30)–(2.32). \(\square \)

Lemma 2.4. (Uniqueness of the solution)

The solution \((\tilde{u}_0, \tilde{u}_1, \tilde{\gamma}) \) to the system (2.16)–(2.18) is unique.

Proof. Suppose the assertion of the lemma is false. That is there exist two solutions \((\tilde{u}_0, \tilde{u}_1, \tilde{\gamma}) \) and \((u_0^*, u_1^*, \gamma^*) \) to (2.16)–(2.18).

We assume that \(\tilde{u}_0 < u_0^* \); then, by (2.13) we have
\[
\xi = \frac{F_{u_0^*}(u)}{F_{u_0^*}(u_1^*)} = \frac{F_{\tilde{u}_0}(u)}{F_{\tilde{u}_0}(\tilde{u}_1)}, \quad \text{for } u_0^* \leq u \leq \text{min} (\tilde{u}_1, u_1). \tag{2.43}
\]
For \(u = u_0^* \), we have
\[
0 = \frac{F_{u_0^*}(u_0^*)}{F_{u_1^*}(u_1^*)} = \frac{F_{u_0}(u_0^*)}{F_{u_0}(u_1)}
\tag{2.44}
\]
then \(F_{u_0}(u_0^*) = 0 \). This is a contradiction because \(F_{u_0}(u_0^*) = 0 \) if and only if \(u = \tilde{u}_0 \).

Theorem 2.5. The problem \((1.1)–(1.6)\) has a unique similarity-type solution given by
\[
T(x, t) = P \left(\left(\varphi_2 \left(\varphi_1^{-1} \left(x/X(t) \right) \right) \right)^2 \right), \quad 0 < x < X(t)
\tag{2.45}
\]
where
\[
X(t) = \sqrt{2\tilde{\gamma}t}, \quad t > 0
\tag{2.46}
\]
is the free boundary,
\[
\varphi_1(u) = \frac{F_{\tilde{u}_0}(u)}{F_{\tilde{u}_0}(\tilde{u}_1)},
\tag{2.47}
\]
\[
\varphi_2(u) = \frac{\sqrt{7}\sqrt{\frac{\pi}{2}} \left[\text{erf} \left(\frac{u}{\sqrt{2}} \right) - g \left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right]}{F_{\tilde{u}_0}(\tilde{u}_1)},
\tag{2.48}
\]
\((\tilde{u}_0, \tilde{u}_1, \tilde{\gamma})\) is the unique solution of \((2.16)–(2.18)\) and \(P = \left(\frac{k s}{k} \right)^{-1} \) is the inverse function of the function \(\frac{k}{s} \).

Proof. Fixed the data: \(\alpha, \lambda, h, T_f \) of the problem \((1.1)–(1.6)\), we obtain the solutions of the equations \((2.16)–(2.18)\) given by \((2.37), (2.38)\) and \(\tilde{u}_0 \) is the solution of \((2.39)\).

Next, we obtain \(\varphi_1 \) and \(\varphi_2 \) given by \((2.47), (2.48)\), respectively, and the free boundary is \(X(t) = \sqrt{2\tilde{\gamma}t} \).

Taking into account that \(\varphi_1 \) is an increasing function, we determine \(\varphi_1^{-1} \left(\frac{x}{X(t)} \right) \). Finally, we invert the relation \((2.7)\), and from \((2.1)\) we obtain \((2.45)\).

Remark 2.6. If \(T(0, t) = T_s \) is constant, the convective condition \((1.2)\) at the fixed face \(x = 0 \) of the problem \((1.1)–(1.6)\) becomes a Neumann boundary condition given by
\[
k(T(0, t)) \frac{\partial T}{\partial x}(0, t) = \frac{q_0}{\sqrt{t}}
\tag{2.49}
\]
with
\[
q_0 = h[T_s - T_m].
\]
The Stefan problem \((1.1)–(1.6)\) with the condition \((2.49)\) instead \((1.2)\) was studied in [2].

3. Asymptotic behavior of the solution when \(h \to +\infty \)

Let \(h > 0 \) and \(T = T_h(x, t), X = X_h(t) \) denote the solution to the problem \((1.1)–(1.6)\) given by \((2.45)–(2.48)\). We will study the behavior of this solution when the transfer coefficient \(h \to +\infty \). We will prove that \(T_h, X_h \) converges to the solution \(T_\infty, X_\infty \) of the following parabolic free boundary problem:
\[
s(T) \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[k(T) \frac{\partial T}{\partial x} \right], \quad 0 < x < X(t), \quad t > 0,
\tag{3.1}
\]
\[
T(0, t) = T_m, \quad t > 0,
\tag{3.2}
\]
\[
T(X(t), t) = T_f, \quad t > 0,
\tag{3.3}
\]
\[
k(T_f) \frac{\partial T}{\partial x}(X(t), t) = \alpha X(t), \quad t > 0,
\tag{3.4}
\]
\[
X(0) = 0
\tag{3.5}
\]
with the Storm’s condition

\[\frac{d}{dT} \left(\sqrt{\frac{s(T)}{s(T)}} \right) = \lambda. \]

(3.6)

The problem (3.1)–(3.6) was studied in [2]. The solution is given by

\[T_\infty(x, t) = P \left((\varphi_{2\infty} (\varphi_{1\infty}^{-1} (x/X_\infty(t))))^2 \right) \]

(3.7)

\[X_\infty(t) = \sqrt{2\gamma_\infty t} \]

(3.8)

where

\[\varphi_{1\infty}(u) = \frac{F_{v_0}(u)}{F_{v_0}(v_1)}, \]

(3.9)

\[\varphi_{2\infty}(u) = \sqrt{\gamma_\infty} \sqrt{\frac{\pi}{2}} \left[\text{erf} \left(\frac{u}{\sqrt{2}} \right) - g \left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right] \]

(3.10)

with \(v_0 \leq u \leq v_1 \). The parameters \(v_0, v_1 \) and \(\gamma_\infty \) satisfy the following equations

\[y_1 = \sqrt{\gamma_\infty} \frac{F_{v_0}(v_1) - \exp \left(-\frac{v_1^2}{2} \right)}{v_1 F_{v_0}(v_1)} \]

(3.11)

\[\sqrt{\gamma_\infty} = \frac{v_1 y_1}{1 + \alpha \lambda y_1} \]

(3.12)

\[\frac{k}{s} (T_m) = y_0 = -\sqrt{\gamma_\infty} \frac{\exp \left(-\frac{v_1^2}{2} \right)}{v_0 F_{v_0}(v_1)} \]

(3.13)

which are equivalent to

\[\frac{k}{s} (T_m) = H(v_0) = \frac{2 y_1^2 \exp \left(-\frac{v_1^2}{2} \right)}{v_0^2 \pi} \left[\text{erf} \left(\frac{M^{-1} \left(\frac{v_0}{\pi^{1/2}} \right)}{\sqrt{2}} \right) - g \left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right] \]

(3.14)

\[\sqrt{\gamma_\infty} = \frac{\exp \left(-\frac{v_1^2}{2} \right)}{\alpha \lambda \sqrt{\frac{\pi}{2}} \left[g \left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) - \text{erf} \left(\frac{v_1}{\sqrt{2}} \right) \right]} \]

(3.15)

\[v_1 = M^{-1} \left(g \left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}} \right) \right). \]

(3.16)

For simplicity of notation, we write \((u_{0h}, u_{1h}, \gamma_h)\) instead of \((\tilde{u}_{0h}, \tilde{u}_{1h}, \tilde{\gamma}_h)\), which is the solution of (2.30)–(2.32). Firstly, we will prove that \((u_{0h}, u_{1h}, \gamma_h)\) converges to \((v_0, v_1, \gamma_\infty)\) when \(h \to +\infty\). The proof of this statement is based on the following lemma:

Lemma 3.1. The sequences \(\{u_{0h}\}, \{u_{1h}\}\) and \(\{\gamma_h\}\) are increasing and bounded. Moreover,

\[\lim_{h \to +\infty} u_{0h} = v_0, \quad \lim_{h \to +\infty} u_{1h} = v_1, \quad \text{and} \quad \lim_{h \to +\infty} \gamma_h = \gamma_\infty. \]

Proof. From properties of function \(G = G_h(x) = P^{-1} \left(\frac{x}{\sqrt{2h \lambda}} + T_m \right)\), we have

a) \(h_1 \leq h_2 \Rightarrow G_{h_1}(x) \leq G_{h_2}(x), \quad \forall x \geq 0\)

b) \(G_h(x) \leq \frac{k}{s}(T_m), \quad \forall x \geq 0, \quad h > 0\).
We consider \(h_1 < h_2 \), if \(u_{0h_1} \) and \(u_{0h_2} \) are the solutions of \(G_{h_1}(x) = H(x) \) and \(G_{h_2}(x) = H(x) \), respectively, by a) and properties of function \(H \) we have that \(u_{0h_1} < u_{0h_2} \). Moreover, from b) results \(u_{0h} \leq v_0 \) for all \(h > 0 \). Then, \(\{ u_{0h} \} \) is an increasing bounded sequence, and there exists \(\tilde{u}_0 \) such that

\[
\lim_{h \to +\infty} u_{0h} = \tilde{u}_0.
\]

Letting \(h \to +\infty \) on \(G_h(u_{0h}) = H(u_{0h}) \) yields \(\frac{k}{s}(T_m) = H(\tilde{u}_0) \). By uniqueness of the solution of (3.14) results \(\tilde{u}_0 = v_0 \).

From (2.32), we have

\[
u_{1h} = M^{-1}\left(g\left(\frac{u_{0h}}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right)
\]

Because \(\{ u_{0h} \} \) is increasing, \(M \) and \(g \) are decreasing functions we have that the sequence \(\{ u_{1h} \} \) is increasing. Moreover, taking into account \(u_{0h} \leq v_0 \) and (3.16) follows

\[
u_{1h} = M^{-1}\left(g\left(\frac{u_{0h}}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right) \leq M^{-1}\left(g\left(v_0, \frac{1}{\sqrt{\pi}}\right)\right) = v_1
\]

for all \(h > 0 \).

By (3.17), we obtain

\[
\lim_{h \to +\infty} u_{1h} = \lim_{h \to +\infty} M^{-1}\left(g\left(\frac{u_{0h}}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right) = M^{-1}\left(g\left(v_0, \frac{1}{\sqrt{\pi}}\right)\right) = v_1.
\]

Finally, letting \(h \to +\infty \) in (2.31) we have

\[
\lim_{h \to +\infty} \gamma_h = \gamma_\infty.
\]

It follows easily of (2.31) and (2.32) that \(\sqrt{\gamma_h} = \frac{u_{1h}y_1}{1 + \alpha \lambda y_1} \). Taking into account \(u_{1h} \leq v_1 \), we have

\[
\sqrt{\gamma_h} = \frac{u_{1h}y_1}{1 + \alpha \lambda y_1} \leq \frac{v_1y_1}{1 + \alpha \lambda y_1} = \sqrt{\gamma_\infty} \quad \forall h > 0.
\]

\(\square \)

Corollary 3.2. For each \(t > 0 \), the sequence \(\{ X_h(t) \} \) is monotonically increasing and \(\lim_{h \to +\infty} X_h(t) = X_\infty(t) \).

We can now define an extension \(\tilde{T}_h = \tilde{T}_h(x, t) \in C^1[0, X_\infty(t)] \) of \(T_h(x, t) \) as follows

\[
\tilde{T}_h(x, t) = \begin{cases} T_h(x, t) & \text{if } 0 \leq x < X_h(t) \\ \frac{\alpha \sqrt{2 \gamma_h}}{2k(T_f)\sqrt{t}} (x - X_h(t)) + T_f & \text{if } X_h(t) \leq x \leq X_\infty(t) \end{cases}
\]

(3.18)

Lemma 3.3. The functions \(\tilde{T}_h \in C^1[0, X_\infty(t)] \) satisfy

\[
\left| \frac{\partial \tilde{T}_h}{\partial x} \right| \leq M \quad \text{on } [0, X_\infty(t)] \quad \text{for all } h > 0, \ t > 0.
\]

Proof. Let \(t > 0 \) and \(x \in [0, X_\infty(t)] \).

If \(x \in [X_h(t), X_\infty(t)] \), then

\[
\left| \frac{\partial \tilde{T}_h(x, t)}{\partial x} \right| = \frac{\alpha \sqrt{2 \gamma_\infty}}{2k(T_f)\sqrt{t}}.
\]
For otherwise, this is \(x \in [0, X_h(t)] \) according to (2.1) and (2.7) we have
\[
\frac{\partial \tilde{T}_h(x, t)}{\partial x}(x, t) = P'(y_h^2 \left(\frac{x}{X_h(t)} \right)) 2y_h \left(\frac{x}{X_h(t)} \right) y'_h \left(\frac{x}{X_h(t)} \right) \frac{1}{X_h(t)}
\]

Since \(k \) is decreasing and \(T_m = T_h(x, t) \leq T_f \), from (2.7) we have \(y_1 \leq y_h \left(\frac{x}{X_h(t)} \right) \leq y_0 \), for all \(h > 0 \). From (1.6), it follows that
\[
\left| P'(y_h^2 \left(\frac{x}{X_h(t)} \right)) \right| \leq \frac{1}{2\lambda y_1 k_m}
\]
where \(k_m = \min \{k(T), T_m \leq T \leq T_f\} \). Taking into account (2.23), (2.24), (2.47) and Lemma 3.1, we have
\[
\left| y'_h \left(\frac{x}{X_h(t)} \right) \right| \leq \frac{1}{\sqrt{\pi t}} \left(1 - \text{erf} \left(\frac{\nu_1}{\sqrt{2}} \right) \right).
\]

Then for \(x \in [0, X_h(t)] \) results
\[
\left| \frac{\partial \tilde{T}_h(x, t)}{\partial x} \right| \leq \frac{y_0}{\lambda y_1 k_m \sqrt{\pi t}} \left(1 - \text{erf} \left(\frac{\nu_1}{\sqrt{2}} \right) \right).
\]

Summarizing, for all \(h > 0 \) and \(x \in [0, X_\infty(t)] \) we obtain
\[
\left| \frac{\partial \tilde{T}_h(x, t)}{\partial x} \right| \leq M = \max \left\{ \frac{\alpha \sqrt{2\gamma_\infty}}{2k(T_f)\sqrt{t}}, \frac{y_0}{\lambda y_1 k_m \sqrt{\pi t}} \left(1 - \text{erf} \left(\frac{\nu_1}{\sqrt{2}} \right) \right) \right\}
\]
and this precisely the assertion of the lemma. \(\square \)

Lemma 3.4. We have \(\lim_{h \to +\infty} \tilde{T}_h(x, t) = T_\infty(x, t) \) for each \(t > 0 \) and \(x \in [0, X_\infty(t)] \).

Proof. Let \(t > 0 \) and \(x \in [0, X_\infty(t)] \). By Corollary 3.2, there exists \(h_0 = h_0(x) > 0 \) such that \(x \in [0, X_h(t)] \) for all \(h \geq h_0 \). We consider \(\tilde{T}_h(x, t) \) for \(h \geq h_0 \) we have
\[
\tilde{T}_h(x, t) = T_h(x, t) = P \left((\varphi_{2h}^{-1} (\varphi_{1h}^{-1} (x/X_h(t))))^2 \right).
\]

Taking into account Lemma 3.1, Corollary 3.2, (2.47) and (2.48) we obtain that the sequence \(\{T_h(x, t)\} \) converges to \(T_\infty(x, t) \). If \(x = X_\infty(t) \), then \(\tilde{T}_h(X_\infty(t), t) = T_f = T_\infty(X_\infty(t), t) \).

Hence, the sequence \(\{\tilde{T}_h(x, t)\} \) converges to \(T_\infty(x, t) \) pointwise on \([0, X_\infty(t)] \) for each \(t > 0 \). \(\square \)

Theorem 3.5. For each \(t > 0 \), we have the family of functions \(\{\tilde{T}_h\} \) converges uniformly to \(T_\infty \) for \(h \to +\infty \) on \([0, X_\infty(t)] \).

Proof. By Lemma 3.3, for any \(t > 0 \) the functions \(\tilde{T}_h(x, t) \) are equicontinuous on \([0, X_\infty(t)] \) and from Lemma 3.4 converges pointwise to \(T_\infty(x, t) \) for \(h \to +\infty \). Then, by Ascoli Arzela lemma we obtain their uniform convergence on \([0, X_\infty(t)] \). \(\square \)

4. Conclusions

One-phase nonlinear, one-dimensional Stefan problem for a semi-infinite material \(x > 0 \), with phase change temperature \(T_f \), has been considered with the assumption of a Storm’s condition for the heat capacity and thermal conductivity and a convective condition at the fixed face. Existence and uniqueness of a similarity-type solution have been obtained. Moreover, the convergence of this problem to problem with temperature condition at the fixed face when \(h \to +\infty \) has been proved.
Acknowledgments

This paper has been partially sponsored by the Proyect PIP No. 112-200801-00534 “Inecuaciones Variacionales, Control Optimo y Problemas de Frontera Libre: teoría, análisis numérico y aplicaciones”, from CONICET-UA, Rosario–Argentina and Proyect: “Ecuaciones a derivadas parciales, inecuaciones variacionales elípticas, problemas de frontera libre y de control óptimo y aplicaciones”, Universidad Austral Rosario–Argentina.

References

1. Briozzo, A.C., Natale, M.F., Tarzia, D.A.: Determination of unknown thermal coefficients for Storm’s type materials through a phase-change process. Int. J. Nonlinear Mech. 34, 329–340 (1999)
2. Briozzo, A.C., Natale, M.F.: One-dimensional nonlinear Stefan problems in Storm’s materials. Mathematics 2, 1–11 (2014). doi:10.3390/math2010001
3. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1965)
4. Hill, J.M., Hart, V.G.: The Stefan problem in nonlinear heat conduction. J. Appl. Math. Phys. (ZAMP) 37, 206–229 (1986)
5. Knight, J.H., Philip, J.R.: Exact solution in nonlinear diffusion. J. Eng. Math. 8, 219–227 (1974)
6. Natale, M.F., Tarzia, D.A.: Explicit solutions to the two-phase Stefan problem for Storm’s type materials. J. Phys. A Math. Gen. 37, 395–404 (2000)
7. Natale, M.F., Tarzia, D.A.: Explicit solution for a one-phase Stefan problem with temperature-dependent thermal conductivity. Bolletino Della Unione Matematica Italiana, UMI 9-B(8), 79–99 (2006)
8. Rogers, C.: Application of a reciprocal transformation to a two-phase Stefan problem. J. Phys. A Math. Gen. 18, L105–L109 (1985)
9. Rogers, C.: On a class of moving boundary problems in nonlinear heat conduction: application of a Bäcklund transformation. Int. J. Nonlinear Mech. 21, 249–256 (1986)
10. Rogers, C.: Application of reciprocal Bäcklund transformations to Stefan problems in nonlinear heat conduction. In: Transactions of the US Army Conference on Applied Mathematics and Computing, Georgia Institute of Technology, vol. 86, pp. 573–587. (1986)
11. Solomon, A.D., Wilson, D.G., Alexiades, V: Explicit solutions to phase change problems. Quart. Appl.Math. 51, 237–243 (1983)
12. Storm, M.L.: Heat conduction in simple metals. J. Appl. Phys. 22, 940–951 (1951)
13. Tarzia, D.A.: An inequality for the coefficient σ of the free boundary \(s(t) = 2\sigma\sqrt{t} \) of the Neumann solution for the two-phase Stefan problem. Quart. Appl. Math. 39, 491–497 (1981)

Adriana C. Briozzo
Depto. de Matemática
F.C.E., Univ. Austral and CONICET
Paraguay 1950
S2000FZF
Rosario
Argentina
e-mail: abriozzo@austral.edu.ar

Maria F. Natale
Depto. de Matemática
F.C.E., Univ. Austral
Paraguay 1950
S2000FZF
Rosario
Argentina
e-mail: fnatale@austral.edu.ar

(Received: November 11, 2015; revised: November 25, 2015)