Reimagining Global Oncology Clinical Trials for the Postpandemic Era: A Call to Arms

Kamal S. Saini, MD, MBBS; Begoña de las Heras, MD; Ruth Plummer, MD, PhD; Victor Moreno, MD, PhD; Marco Romano, MD; Javier de Castro, MD, PhD; Philippe Attimossi, MD; Judy Fredriksen, BPharm; Gouri Shankar Bhattacharyya, MD, MBBS; Martin Sebastian Olive, MD; Gaia Schiaven, MD, PhD; Kevin Punie, MD; Jesus Garcia-Foncillas, MD; Ernesto Rogata, GCE A; Richie Pfeiffer, MS; Cecilia Ortegosa, MSc, MD; Kenneth Morrison, BSc, PhD; Giuseppe Curigliano, MD, PhD; Lynda Chin, MD; Monika Lamba Saini, MD, PhD; Øystein Rekdal, PhD; Steven Anderson, PhD; Javier Cortes, MD, PhD; Manuela Leone, MD; Janet Dancey, MD; Chris Twelves, BMedSci, MD; and Ahmad Awada, MD, PhD

INTRODUCTION

The process of developing new anticancer therapeutics has been considered by some to be expensive, time consuming, bureaucratic, and, to some extent, inefficient. The coronavirus disease 2019 (COVID-19) pandemic has significantly affected clinical oncology studies and underlined the need to embrace and accelerate long-pending and awaited reforms to cancer clinical trial methodology.

This article highlights the need for optimal use of technology, reduced paperwork and bureaucracy, speedier trial setup, and greater patient centricity in the design and conduct of future clinical and translational cancer studies around the world.

INCREASED USE OF TECHNOLOGY

The basic technology to enable secure and reliable telephone/video contact between clinicians, study coordinators, and patients to facilitate remote medical consultation has been available for a number of years; however, its adoption has been limited for a variety of reasons, including lack of access to such technologies in some developing countries and concerns surrounding privacy, safety, financial reimbursement, and legal and regulatory issues. Changes to reimbursement rules and regulations have been recently announced to encourage the use of telemedicine during the COVID-19 lockdown. These and other such pandemic-era reforms should be adopted not only for the current situation but should also be considered for permanent adoption.

Electronic consent and telemedicine consultation could replace some protocol-mandated clinic visits, especially those for which medical imaging, biosample collection, or physical examination are not required. Reduced exposure to the hospital environment could enhance patient safety, comfort, and quality of life while also perhaps lowering the number of protocol deviations in clinical trials and the overall burden of trial participation. It may also help reduce inequalities in access to clinical trials resulting from transportation challenges because of geographic, financial, or physical issues, and would also reduce the burden on patient caregivers. Virtual formats could replace in-person investigator meetings, steering committee meetings, etc, thereby reducing physical, financial, and environmental burden while increasing speed and flexibility. Using social media as an easily accessible communication tool could also help to optimize the care of patients enrolled in cancer clinical trials. Measures that can be self-reported by patients are increasingly being used in clinical practice and trials, and these data can be collected remotely as electronic patient-reported outcomes (ePROs).

During the ongoing pandemic, patients, clinicians, and hospitals have become increasingly comfortable using telemedicine, and many stakeholders agree that the resulting improved access, lower cost, reduced risk of infection, and time saved should make telemedicine an integral part of our standard practice in cancer care and research moving forward, at least for predefined activities. Adopting digital pathology and radiomics platforms to enable images to be seamlessly analyzed at a remote and/or central facility could increase efficiency in cancer trials. Use of artificial intelligence could help efficiently match the unique clinical and molecular pathology characteristics of a given patient to relevant clinical trials within their region of the country, thereby providing access to potentially life-enhancing trials for a broader and more diverse population.

Physical activity trackers, smart watches and other wearable devices, and smartphones with health applications allow for the real-time remote collection of health parameters, such as physical activity, ECG, temperature, blood glucose level, oxygen saturation, and ePROs. Validated, secure, and approved wearable devices could autopopulate trial databases with robust longitudinal data, reducing the need for manual data entry and providing more efficient and improved data quality and integrity. Use of clinical decision support algorithms to detect early signs and symptoms of concern (eg, fever and tachycardia suggestive of infection) and to alert the...
treating clinical team should be explored in cancer clinical trials where feasible. Such algorithms can also be customized to support specific clinical trial protocols, which may help to improve protocol adherence and care consistency across investigators in decentralized sites so that clinical trials can be opened in additional community sites and be more accessible for more patients closer to their homes.

Remote monitoring by contract research organization staff, other auditors, and even by regulatory inspectors could also be enabled by secure technologic solutions.

We should acknowledge, however, that there are challenges to the increased use of such technologies in clinical trials, especially related to cybersecurity. It is also important to ensure that the increased use of technology does not have the unintended consequence of excluding individuals who are unable or unwilling to access that technology, such as the elderly and disadvantaged. Moreover, the increased use of technology may be both an opportunity and a threat to increasing clinical trial participation by people in low- and middle-income countries where access to mobile devices may be relatively good but other infrastructure less so.

Cutting the Clutter

Eliminating unnecessary complexity and bureaucracy from clinical trials could help reduce the cost and time required to answer research questions.

Reducing the verbosity and complexity of the informed consent form is long overdue. In case patients who are enrolled in ongoing studies need to have their consent reobtained, the updated informed consent forms should not repeat information already presented in the initial consent documents, and the application of eConsent technologies provides an efficient source of this revised information and an effective audit of review and signature.

Each data item that is collected in clinical trials generates burden and cost (data entry, multiple levels of checks, source data verification, and query generation and resolution). Despite this, a significant proportion of the data collected during cancer trials may never be used; for example, a Canadian study found that only 18% of data elements collected during clinical trials were reported in future publications, although a part of such unpublished data may still have been used effectively.

Whereas the collection of research biopsies may enable useful future correlative science, their immediate utility often remains uncertain. A strong scientific rationale for collecting tissue should be defined and ethical issues should be carefully considered before making them mandatory in cancer trials. Alternate specimen types, such as liquid biopsies, for enrollment or monitoring purposes should be considered when and where appropriate.

The process of submitting diagnostic blocks and other biosamples should be streamlined and standardized, and we should aim to collect only the essential data and samples required to answer the predefined objectives of the ongoing study, allowing the option to collect more data and samples from interested patients/sites for subsequent translational research.

Published and reusable standards, rather than just templates, of trial charters, biospecimen collection protocols, and toxicity management guidelines could help reduce paperwork and duplication of effort. Attempts at the standardization of trial methodology should be encouraged and adopted. A greater ease of administration for ethical review across institutions, which would allow for a single ethics board to be designated lead for multiple centers within a region, country, or even continent, should become standard.

Regulators, such as the US Food and Drug Administration; health systems, like the United Kingdom National Health Service; professional oncology societies, such as the European Society of Medical Oncology and the American Society of Clinical Oncology; and industry should continue to make efforts to streamline clinical research and reduce the burden of paperwork. It is a challenge for principal investigators to sign off and act as guarantor for electronic case record forms and multiple serious adverse event reports; it is important that investigator oversight is not diluted by collecting ever-increasing volumes of data for which they are not easily equipped to vouch and certify.

Speedier Approvals and Permissions to Launch Clinical Trials

Regulators and stakeholders involved with planning and executing cancer studies should carefully analyze and adopt best practices where possible from some large COVID-19 trials, like RECOVERY (EudraCT 2020-001113-21), DisCoVeRy (ClinicalTrials.gov identifier: NCT04315948), and SOLIDARITY (ClinicalTrials.gov identifier: NCT04330690), which were designed quickly and built to greatly reduce the bureaucratic burden on participating sites, with rapid startup, simplified requirements for recording consent, collection of only essential data, and ease and flexibility in methods of data entry, which enabled a remarkably early first readout of efficacy.

Patient Centricity

With numerous societal changes underway, this is also an opportunity for a step change in patient involvement in clinical trials. Much progress has been made with patient and public involvement in clinical trials, grant applications, and trial oversight groups. Still, there is scope for deeper engagement with patient and public involvement groups to set the global oncology research agenda. Such a relationship must be transparent and integral to study design and conduct and not merely superficial. Many COVID-19 trials...
had broad entry criteria, and there is now an opportunity similarly to broaden eligibility criteria \(^{46,47}\) and to recruit an ethnically diverse population in cancer trials.\(^{48}\)

The COVID-19 pandemic has given a boost to the emerging concept of the virtual or decentralized trial, which is a siteless study in which patient recruitment is done via Web-based methods that involve social media, patient portal and telemedicine applications, informed consent via remote electronic document access, review and signature, some trial activities done via video conference, physical examination done via remote visit or in-home nurse visit, laboratory specimen collection done by local clinics or in-home phlebotomist visit or patient service draw centers, data collection via digital health devices or ePROs, shipping of drugs to the patient’s home, and outcomes collected by remote methods using digital tools.\(^{49}\) A fully virtual trial is not feasible for most cancer studies, given the need for detailed and often delicate discussions, especially at the time of informed consent\(^{50}\), intravenous drug administrations; medical imaging; and toxicity surveillance. However, decentralizing some elements when appropriate could make conventional trials more efficient, potentially reducing patient burden and consequential clinical trial dropout and optimizing health care resource utilization. These hybrid trials would be located on a spectrum, with interventional clinical trials at one end and pragmatic or real-world studies at the other.\(^{51}\) A careful review of the number of mandatory visits to the hospital should be performed and, where possible, reduced.\(^{6}\) Social media platforms should be used to share results of clinical trials in innovative and patient-centered ways, including lay-language summaries and intuitive data visualization.

Future Perspectives

The coming era of more patient-friendly clinical trials will require changes to the way cancer services are currently organized and delivered, with the aim of reducing the number of times the patient and contract research organization staff need to visit the site. Home visits by specialized nurses and phlebotomists, delivery of certain medications to patients’ homes, and precise and timely communication with family physicians or local clinics to perform laboratory testing will likely improve the patient experience. It will, however, require careful coordination by the sites, which could be challenging in areas with limited capacity or resources. We must also be careful to ensure that any changes we adopt should not result in the systematic exclusion of potential patient pools based on geographic location, rural versus urban settings, access to digital technology, educational level, ethnicity, ability, or age.\(^{52,53}\)

In conclusion, the pandemic has revealed certain limitations in the current models of cancer care and the traditional conservative approach to cancer research.\(^{54-56}\)

Consequently, the move toward patient centricity has accelerated, with increasing use of easily accessible and comprehensible technology, such as video, mobile phones, apps, telemedicine, and wearable devices. It has also created an opportune moment to reflect on past practices and fine tune the technologies, policies, and methodologies that we adopt in future cancer studies to enable us to develop better medicines for our patients in a faster and more efficient manner.

AFFILIATIONS

1 Covance, Princeton, NJ
2 East Suffolk and North Essex NHS Foundation Trust, Ipswich, United Kingdom
3 Madrid Medical Doctors Association, Madrid, Spain
4 Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
5 START Madrid-FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain
6 Hospital Universitario La Paz, IDiPAZ, Madrid, Spain
7 Oncology Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
8 F. Hoffmann-La Roche, Basel, Switzerland
9 Salt Lake City Medical Centre, Kolkata, India
10 Immunomedics, Morris Plains, NJ
11 R&D Oncology, AstraZeneca, Cambridge, United Kingdom
12 Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
13 University Hospital Fundacion Jimenez Diaz, Autonomous University of Madrid, Madrid, Spain
14 Leeds Cancer Centre, Patient and Public Involvement Group, Leeds, United Kingdom
15 Istituto Europeo di Oncologia, IRCCS, Milan, Italy
16 University of Milano, Milan, Italy
17 Apricity Health, Houston, TX
18 Dell Medical School at the University of Texas at Austin, Austin, TX
19 HistoGeneX, Antwerp, Belgium
20 Lytix Biopharma, Oslo, Norway
21 IOB Institute of Oncology, Quiron Group, Madrid, Spain
22 Canadian Cancer Trials Group, Queen’s University, Kingston, Ontario, Canada
23 University of Leeds and Leeds Teaching Hospitals Trust, Leeds, United Kingdom

The views expressed in this article are those of the authors and do not necessarily represent the views of, nor should be attributed to, the organizations or institutions for which they work.

CORRESPONDING AUTHOR

Kamal S. Saini, MD, MBBS, Covance, 206 Carnegie Center, Princeton, NJ 08540-6233; Twitter: @KSainiMD; e-mail: kamalveer.saini@covance.com.

AUTHOR CONTRIBUTIONS

Conception and design: Kamal S. Saini, Begoña de las Heras, Ruth Plummer, Victor Moreno, Marco Romano, Ernesto Rogata, Richie Pfeiffer, Kenneth Morrison, Giuseppe Curigliano, Øystein Rekdal, Steven Anderson, Janet Dancey, Ahmad Awada

Administrative support: Begoña de las Heras, Marco Romano, Kenneth Morrison

Provision of study materials or patients: Gouri Shankar Bhattacharyya, Ernesto Rogata, Giuseppe Curigliano
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/site/misc/authors.html.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Kamal S. Saini
Employment: Covance
Stock and Other Ownership Interests: Covance

Begoña de las Heras
Employment: Covance
Stock and Other Ownership Interests: Covance

Ruth Plummer
Honoria: Bristol Myers Squibb, Pfizer (I), Amgen (I), Tesaro, Novartis, AstraZeneca, MedImmune
Consulting or Advisory Role: Clovis Oncology, Novartis, Astex Pharmaceuticals, Pierre Fabre, Bayer, Octimet, Biosceptre, Ellipses Pharma, Karus Therapeutics, Cybrexa Therapeutics, Sanofi, CV6 Therapeutics
Research Funding: AstraZeneca (Inst), MedImmune (Inst)
Patents, Royalties, Other Intellectual Property: Named on patent for use of poly (ADP-ribose) polymerase inhibitor rucaparib (Inst)
Travel, Accommodations, Expenses: MSD Oncology, Bristol Myers Squibb

Victor Moreno
Employment: START
Consulting or Advisory Role: Merck, Bristol Myers Squibb, Bayer, Janssen Oncology
Speakers’ Bureau: Bayer
Research Funding: AbbVie (Inst), ACEA Biosciences (Inst), Adaptimmune (Inst), Amgen (Inst), AstraZeneca (Inst), Bayer (Inst), BeiGene (Inst), Bristol Myers Squibb (Inst), Boehringer Ingelheim (Inst), Celgene (Inst), Eisai (Inst), E-theapeutics (Inst), GlaxoSmithKline (Inst), Janssen (Inst), Menarini (Inst), Merck (Inst), Nanobiotix (Inst), Novartis (Inst), Pfizer (Inst), PfizerMar (Inst), PsiOxus Therapeutics (Inst), Puma Biotechnology (Inst), Regeneron (Inst), RigonTEC (Inst), Roche (Inst), Sanofi (Inst), Sienna Oncology (Inst), Synthon (Inst), Taiho Pharmaceutical (Inst), Takeda (Inst), Tesaro (Inst), Transgene (Inst)
Expert Testimony: Medscapes, Bayer, Nanobiotix
Travel, Accommodations, Expenses: Regeneron, Sanofi
Other Relationship: Bristol Myers Squibb

Javier de Castro
Consulting or Advisory Role: AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Merck Sharp & Dohme, F Hoffmann-La Roche, Pfizer, Pierre Fabre, Takeda, Tesaro, Teva
Research Funding: F Hoffmann-La Roche
Travel, Accommodations, Expenses: AstraZeneca, Merck Sharp & Dohme, F Hoffmann-La Roche

Philippe Aftimos
Honoria: Synthion, Roche
Consulting or Advisory Role: Macrogenics, Boehringer Ingelheim, Novartis, Amcure, Roche, Novartis, Amgen, Servier, G1 Therapeutics, Radius Health
Travel, Accommodations, Expenses: Amgen, MSD Oncology, Roche, Pfizer, Judy Fredriksson
Employment: F Hoffmann-La Roche
Stock and Other Ownership Interests: F Hoffmann-La Roche

Gouri Shankar Bhattacharyya
Honoria: Vicus Therapeutics, Mylan, Biocon, Cipla, Intas
Consulting or Advisory Role: Vicus Therapeutics, Mylan, Biocon, Cipla, Zuvventus, OncoStem Diagnostics
Speakers’ Bureau: Biocon, Novartis, Cipla, Meda, Intas, Boehringer Ingelheim, AstraZeneca, OncoStem Diagnostics
Research Funding: Vicus Therapeutics

Gaia Schiavon
Employment: AstraZeneca
Stock and Other Ownership Interests: AstraZeneca

Kevin Punie
Honoria: Pfizer, Pfizer (Inst), Eli Lilly (Inst), Roche (Inst), Novartis (Inst), Mundia Pharma (Inst)
Consulting or Advisory Role: AstraZeneca (Inst), Eli Lilly (Inst), Novartis (Inst), Novartis, Pierre Fabre (Inst), Roche (Inst), Vifor Pharma (Inst), Teva (Inst)
Research Funding: Sanofi (Inst)
Travel, Accommodations, Expenses: Novartis, AstraZeneca, PharmaMar, Pfizer, Roche

Jesus Garcia-Foncillas
Honoria: Merck (Inst), Bayer, Sanofi, Servier (Inst)
Consulting or Advisory Role: Bayer
Speakers’ Bureau: Bayer
Travel, Accommodations, Expenses: Janssen

Richard Pfeiffer
Employment: Life Image

Cecilia Orbegoso
Employment: AstraZeneca
Stock and Other Ownership Interests: AstraZeneca

Giuseppe Curigliano
Honoria: Ellipses Pharma
Consulting or Advisory Role: Genentech, Pfizer, Novartis, Eli Lilly, Foundation Medicine, Bristol Myers Squibb, Samsung, AstraZeneca, Daiichi-Sankyo, Boehringer Ingelheim, GlaxoSmithKline, Seattle Genetics
Speakers’ Bureau: Genentech, Novartis, Pfizer, Eli Lilly, Foundation Medicine, Samsung, Daiichi Sankyo
Research Funding: Merck (Inst)
Travel, Accommodations, Expenses: Genentech, Pfizer
REFERENCES

1. Wouters OJ, McKee M, Luyten J: Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA 323:844-853, 2020

2. Jardim DL, Schwaeberle M, Hong DS, et al: An appraisal of drug development timelines in the era of precision oncology. Oncotarget 7:53037-53046, 2016

3. Steenstra DP, Kantarjian HM: Impact of cancer research bureaucracy on innovation, costs, and patient care. J Clin Oncol 32:376-378, 2014

4. Ioannidis JP: Why most clinical research is not useful. PLoS Med 13:e1002049, 2016

5. Saini KS, de Las Heras B, de Castro J, et al: Effect of the COVID-19 pandemic on cancer treatment and research. Lancet Haematol 7:e432-e435, 2020

6. Unger JM, Blanke CD, LeBlanc M, et al: Association of the coronavirus disease 2019 (COVID-19) outbreak with enrollment in cancer clinical trials. JAMA Netw Open 3:e2010651, 2020

7. Borno HT, Small EJ: Does the COVID-19 outbreak identify a broader need for an urgent transformation of cancer clinical trials research? JAMA Netw Open 3:e2010651, 2020

8. Doherty GJ, Goksu M, de Paula BHR: Rethinking cancer clinical trials for COVID-19 and beyond. Nat Cancer 37:568-572, 2020

9. Colbert LE, Kouzy R, Abi Jaoude J, et al: Cancer research after COVID-19: Where do we go from here? Cancer Cell 37:637-638, 2020

10. US Centers for Medicare & Medicaid Services: Medicare telemedicine health care provider fact sheet. https://www.cms.gov/newsroom/fact-sheets/medicare-telemedicine-health-care-provider-fact-sheet

11. National Health Service: COVID-19 Information Governance advice for staff working in health and care organisations. https://www.nhsx.nhs.uk/covid-19-open/06/09/seema-verma-telehealth-access-covid19/

12. Ross C: ‘I can’t imagine going back’: Medicare leader calls for expanded telehealth access after Covid-19. STAT, June 9, 2020:https://www.statnews.com/2020/06/09/seema-verma-telehealth-access-covid19/

13. Shachar C, Engel J, Elwyn G: Implications for telehealth in a postpandemic future: Regulatory and privacy issues. JAMA 323:2375-2376, 2020

14. US Food and Drug Administration: Dr. Hahn on COVID-19 [YouTube video]. https://www.youtube.com/watch?v=vM1DG7muX50

15. Welch BM, Marshall E, Qunungo S, et al: Teleconsent: A novel approach to obtain informed consent for research. Contemp Clin Trials Commun 3:74-79, 2016

16. Sirintrapun SJ, Lopez AM: Telemedicine in cancer care. Am Soc Clin Oncol Educ Book 38:540-545, 2018

17. Subbiah IM, Hamilton E, Kroll M, et al: A big world made small: Using social media to optimize patient care. Am Soc Clin Oncol Educ Book 39:e212-e218, 2019

18. Hollander JE, Carr BG: Virtual reality? Telemedicine for COVID-19. N Engl J Med 382:1679-1681, 2020

19. Ohannesian R, Duong TA, Odone A: Global telemedicine implementation and integration within health systems to fight the COVID-19 pandemic: A call to action. JMIR Public Health Surveil 6:e18810, 2020

20. Pell R, Oien K, Robinson M, et al: The use of digital pathology and image analysis in clinical trials. J Pathol Clin Res 5:81-90, 2019

21. Chauvie S, De Maggi A, Baralis I, et al: Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial. Eur Radiol 30:4134-4140, 2020

22. Beck JT, Rammage M, Jackson GP, et al: Artificial intelligence tool for optimizing eligibility screening for clinical trials in a large community cancer center. JCO Clin Cancer Inform 4:50-59, 2020
23. Woo M: An AI boost for clinical trials. Nature 573:S100-S102, 2019
24. Jain NM, Culley A, Knoop T, et al: Conceptual framework to support clinical trial optimization and end-to-end enrollment workflow. JCO Clin Cancer Inform 3:1-10, 2019
25. Kim J, Campbell AS, Wang J: Wearable non-invasive epidermal glucose sensors: A review. Talanta 177:163-170, 2018
26. Chetelat O, Ferrario D, Proença M, et al: Clinical validation of LTMS-S: A wearable system for vital signs monitoring. Conf Proc IEEE Eng Med Biol Soc 2015:3125-3128, 2015
27. Calvert M, Kyle D, Mercieca-Bebber R, et al: Guidelines for inclusion of patient-reported outcomes in clinical trial protocols: The SPIRIT-PRO extension. JAMA Oncol 3:189-194, 2018
28. Paulsen A, Oberggaard S, Lauritsen JM: Quality of data entry using single entry, double entry and automated forms processing: An example based on a study of patient-reported outcomes. PLoS One 7:e35087, 2012
29. Cox SM, Lane A, Volchenboum SL: Use of wearable, mobile, and sensor technology in cancer clinical trials. JCO Clin Cancer Inform https://doi.org/10.1200/JCOI.17.00147
30. Waterhouse DM, Harvey RD, Hurley P, et al: Early impact of COVID-19 on the conduct of oncology clinical trials and long-term opportunities for transformation: Findings from an American Society of Clinical Oncology survey. JCO Oncol Pract 16:417-421, 2020
31. European Medicines Agency: Guidance on remote GCP inspections during the COVID19 pandemic. https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/guidance-remote-gcp-inspections-during-covid-19-pandemic_en.pdf
32. Gribben J, Macintyre E, Sonneveld P, et al: Reducing bureaucracy in clinical research: A call for action. HemaSphere 4:e352, 2020
33. Duley L, Gilillan A, Duggan M, et al: What are the main inefficiencies in trial conduct: A survey of UKCRC registered clinical trials units in the UK. Trials 19:15, 2018
34. Duong Q, Mandrekar SJ, Winham SJ, et al: Understanding verbosity: Funding source and the length of consent forms for cancer clinical trials. J Cancer Educ 10.1007/s13187-020-01757-7 [epub ahead of print on May 8, 2020]
35. Cornell A, Namey E, Mueller MP, et al: Evidence-based strategies for shortening informed consent forms in clinical research. J Empir Res Hum Res Ethics 12:1-25, 2017
36. O’Leary E, Seow H, Julian J, et al: Data collection in cancer clinical trials: Too much of a good thing? Clin Trials 10:624-632, 2013
37. Swisz CR, Drazner MW, Ratain MJ: Analysis of impact of post-treatment biopsies in phase I clinical trials. J Clin Oncol 34:369-374, 2016
38. Levin LA, Peppercorn JM, Tam AL, et al: Ethical framework for including research biopsies in oncology clinical trials: American Society of Clinical Oncology research statement. J Clin Oncol 37:2368-2377, 2019
39. Makhlouf H, Watson MA, Lankes HA, et al: Toward improving practices for submission of diagnostic tissue blocks for National Cancer Institute clinical trials. Am J Clin Pathol 153:149-155, 2020
40. Blagden SP, Billingham L, Brown LC, et al: Effective delivery of complex innovative design (CID) cancer trials: A consensus statement. Br J Cancer 122:473-482, 2020
41. US Food and Drug Administration: Evaluating the Paperwork Reduction Act Part II: Are Burdens Being Reduced? https://www.fda.gov/news-events/congressional-testimony/evaluating-paperwork-reduction-act-part-ii-are-burdens-being-reduced
42. National Health Service: 12 actions to support and apply research in the NHS. https://www.england.nhs.uk/wp-content/uploads/2018/05/12-actions-to-support-and-apply-research-in-the-nhs.pdf
43. Perez-Gracia JL, Awada A, Calvo E, et al: ESMO Clinical Research Observatory (ECRO): Improving the efficiency of clinical research through rationalisation of bureaucracy. ESMO Open 5:e000662, 2020
44. Kotecki N, Penel N, Awada A: How to emerge from the conservatism in clinical research methodology? Curr Opin Oncol 29:400-404, 2017
45. de Miguel M, Doger B, Boni V, et al: Increased vulnerability of clinical research units during the COVID-19 crisis and their protection. Cancer 10.1002/cncr.32980 [epub ahead of print on June 2, 2020]
46. Gyawali B, Poudyal BS, Eisenhauer EA: Covid-19 pandemic: An opportunity to reduce and eliminate low-value practices in oncology? JAMA Oncol 10.1001/jamaoncol.2020.2404 [epub ahead of print on July 2, 2020]