1. PROOFS OF PROPOSITIONS AND THEOREM 1

1.1. Conditions

We first list some of the conditions needed in the proofs of our asymptotic results.

(C1) The distortion functions satisfy \(\phi(u) > 0 \) and \(\psi(u) > 0 \) for all \(u \in [U_L, U_R] \), where \([U_L, U_R]\) denotes the compact support of \(U \). Moreover, the distortion functions \(\phi(u) \) and \(\psi(u) \) have third order continuous derivatives. The density function \(f_U(u) \) of the random variable \(U \) is bounded away from 0 and satisfies the Lipschitz condition of order 1 on \([U_L, U_R]\).

(C2) The density of \(X \), \(f_X(x) \) is bounded away from zero for all \(x \in [X_L, X_R] \), where \([X_L, X_R]\) denotes the compact support of \(X \). The functions \(g(x) \) and \(E[Y^2|X = x] \) have third order continuous derivatives on \([X_L, X_R]\).

(C3) The kernel function \(K(\cdot) \) is a univariate bounded continuous and symmetric density function about zero, satisfying that \(\int |t|^j K(t) dt < \infty \) for \(j = 1, 2, 3, 4 \), \(\mu_2 = \int t^2 K(t) dt \neq 0 \) and \(\mu_4 = \int t^4 K(t) dt \neq 0 \), moreover, \(\mu_{K^2} = \int K^2(t) dt > 0 \) and \(\mu_{K^2,2} = \int t^2 K^2(t) dt > 0 \). The second order derivative of \(K(\cdot) \) is bounded on \(\mathbb{R} \), satisfying a Lipschitz condition.

1.2. A technical lemma

Lemma 1. Suppose \(E(T|U = u) = m(u) \) and its derivatives up to the second order are bounded for all \(u \in \Omega \), where \(\Omega \) is defined in condition (A1). \(E[T^3] < \infty \) and \(\sup_u \int |t|^2 f(u, t) dt < \infty \) for any \(s > 2 \), where \(f(u, t) \) is the joint density of \(U \) and \(T \). Let \((U_i, T_i), i = 1, 2, \ldots, n \) be independent and identically distributed (i.i.d.) samples from \((U, T)\). If (A1)-(A3) hold, and \(n^{2s-1}h \rightarrow \infty \) for \(s < 1 - \frac{3}{2} \), then

\[
\sup_{u \in \Omega} \left| \frac{1}{n} \sum_{i=1}^{n} K_h(U_i - u) T_i - f_U(u)m(u) - \frac{1}{2} \int [f_U(u)m(u)]'' u^2h^2 \right| = O(\tau_{n, h}), \text{a.s.}
\]

where \(\mu_2 = \int K(u)u^2 du \), \(\tau_{n, h} = h^3 + \sqrt{\log n/(nh)} \).

Proof. Lemma 1 can be immediately proven using the result obtained in Mack and Silverman (1982), see also in Lemma 7.1 of Fan and Huang (2005). \(\blacksquare \)
Lemma 2. Suppose that the Conditions (C1)-(C4) hold. Let $M(w)$ be a continuous function satisfying $EM^2(u) < \infty$. Then,

$$n^{-1} \sum_{i=1}^{n} \left(\hat{Y}_i - Y_i \right) M(W_i) = n^{-1} \sum_{i=1}^{n} \left(|\hat{Y}_i| - |Y_i| \right) \frac{E[YM(W)]}{E(|Y|)} + o_P(n^{-1/2})$$

$$n^{-1} \sum_{i=1}^{n} \left(\hat{X}_i - X_i \right) M(W_i) = n^{-1} \sum_{i=1}^{n} \left(|\hat{X}_i| - |X_i| \right) \frac{E[XM(W)]}{E(|X|)} + o_P(n^{-1/2}).$$

Proof. Lemma 2 is the result of Lemma B.2 in Zhang et al. (2012), see also in Zhao and Xie (2018).

1.3. Proof of Propositions 1-2

In the following, Step 1-Step 3 give the detailed proof of asymptotic expression of $\hat{g}(x) - g(x)$. Step 4 gives the detailed proof of asymptotic expression of $\hat{g}'(x) - g'(x)$. Step 5 gives the detailed proof of asymptotic expression of $\hat{E}(\phi^2(U)) - E(\phi^2(U))$. Step 6 is the detailed proof of asymptotic expression of $\hat{\sigma}_1^2 - \sigma_1^2$, and Step 7 is the detailed proof of asymptotic expression of $\hat{\sigma}_2^2(x) - \sigma_2^2(x)$.

Proof. Step (1). In this step, we first analyse $\hat{M}_{n,h}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} \left(\frac{\hat{X}_i - x}{h_2} \right) \delta \left(\frac{\hat{X}_i - x}{h_2} \right) \hat{Y}_i$, $\delta = 0, 1$. Note that $|\hat{Y}| - E(|Y|) = O_P(n^{-1/2})$ and $|\hat{X}| - E(|X|) = O_P(n^{-1/2})$. Using the asymptotic results of local linear estimators (Fan and Gijbels; 1996), we have

$$\hat{\phi}(u) - \phi(u) = \frac{S_{n2}(u)V_{n0,|\hat{Y}|}(u) - S_{n1}(u)V_{n1,|\hat{Y}|}(u)}{S_{n2}(u)S_{n0}(u) - [S_{n1}(u)]^2} - \phi(u) \tag{A.1}$$

$$= \frac{1}{nh_1 f_U(u) E(|Y|)} \sum_{i=1}^{n} K \left(\frac{U_i - u}{h_1} \right) \left[|\hat{Y}_i| - \phi(U_i) E(|Y|) \right] + \frac{\mu h_1^2}{2} \phi''(u) + O_P(h_1^2 + (nh_1)^{-1/2} + O_P(n^{-1/2}),$$

$$\hat{\psi}(u) - \psi(u) = \frac{S_{n2}(u)V_{n0,|\hat{X}|}(u) - S_{n1}(u)V_{n1,|\hat{X}|}(u)}{S_{n2}(u)S_{n0}(u) - [S_{n1}(u)]^2} - \psi(u) \tag{A.2}$$

$$= \frac{1}{nh_1 f_U(u) E(|X|)} \sum_{i=1}^{n} K \left(\frac{U_i - u}{h_1} \right) \left[|\hat{X}_i| - \psi(U_i) E(|X|) \right] + \frac{\nu h_1^2}{2} \psi''(u) + O_P(h_1^2 + (nh_1)^{-1/2} + O_P(n^{-1/2}),$$

For $\delta = 0$, using (A.2), Taylor expansion entails that

$$\hat{M}_{n,0}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \hat{Y}_i + \frac{1}{nh_2} \sum_{i=1}^{n} \left(\frac{X_i - x}{h_2} \right) K' \left(\frac{X_i - x}{h_2} \right) \hat{Y}_i \tag{A.3}$$

$$+ O_P \left(h_1^4 + \frac{\log n}{nh_1} \right)$$

$$= \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \hat{Y}_i + A_{n1}(x) + O_P \left(h_1^4 + \frac{\log n}{nh_1} \right).$$
Using Lemma 1, we have

\[A_{n1}(x) = -\frac{1}{nh_2^n} \sum_{i=1}^{n} \left(\frac{\tilde{\psi}(U_i) - \psi(U_i)}{\psi(U_i)} \right) K' \left(\frac{X_i - x}{h_2} \right) X_i \tilde{Y}_i \]

\[+ \frac{1}{nh_2^n} \sum_{i=1}^{n} \left(\frac{[\tilde{\psi}(U_i) - \psi(U_i)]^2}{\psi^2(U_i)} \right) K' \left(\frac{X_i - x}{h_2} \right) X_i \tilde{Y}_i + O_P \left(h_2^{-1} \left(h_2^3 + \sqrt{\log n/nh_1} \right)^3 \right) \]

\[= A_{n1,1}(x) + A_{n1,2}(x) + o_P \left(h_2^2 + (nh_2)^{-1/2} \right). \]

Using the condition (C3), we have \(\int K'(t) dt = 0, \int tK'(t) dt = -1, \int t^2K'(t) dt = 0 \) and \(\int t^3K'(t) dt = -3\mu_2. \)

Recalling that \(E(Y|X = x_0) = g(x_0), \) for any constant \(x_0 \in \mathcal{X}, \) we have

\[E \left[\frac{1}{h_2} K' \left(\frac{X - x_0}{h_2} \right) Xg(X) \right] = \int (x_0 + th_2)g(x_0 + th_2)f_X(x_0 + th_2)K'(t)dt \]

\[= -h_2 \{ g(x_0)f_X(x_0) + x_0[g(x_0)f_X(x_0)]' \} \]

\[-h_2^3 \mu_2 \left\{ \frac{3}{2} [g(x_0)f_X(x_0)]'' + \frac{x_0}{2}[g(x_0)f_X(x_0)]''' \right\} + O(h_2^5) \]

\[\overset{\text{def}}{=} -h_2 s_1(x_0) - h_2^3 s_2(x_0) + O(h_2^5). \]

Using (A.2), Lemma 1 and the U-statistic’s property (Serfling; 1980) we have

\[A_{n1,1}(x) = \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_1(x) + h_2^3 s_2(x) + O(h_2^5) + O_P \left(h_2^3 h_2^{-1} \sqrt{\log n/nh_1} \right). \] (A.6)

Let \(\Delta_i = \frac{|X_i| - E(|X_i|)\psi(U_i)}{E(|X_i|)} \), then we have

\[A_{n1,2}(x) = \frac{1}{nh_2^n} \sum_{s=1}^{n} \sum_{t=1}^{n} \sum_{i=1}^{n} \tilde{Y}_i X_i \left(\frac{X_i - x}{h_2} \right) K \left(\frac{U_s - U_t}{h_1} \right) K \left(\frac{U_t - U_i}{h_1} \right) \Delta_i \Delta_t \] (A.7)

\[+ \frac{\mu_2 h_2^2}{nh_2} \sum_{s=1}^{n} \sum_{i=1}^{n} \tilde{Y}_i X_i \left(\frac{X_i - x}{h_2} \right) K \left(\frac{U_s - U_i}{h_1} \right) \Delta_s \]

\[+ \frac{\mu_2 h_2^2}{nh_2} \sum_{i=1}^{n} \frac{\psi''(U_i) s_2(X_i)}{\psi^2(U_i)} K' \left(\frac{X_i - x}{h_2} \right) + o_P(h_2^2 + (nh_2)^{-1/2}). \]

Similar to (A.5)-(A.6), the third term in (A.7) is of order \(O_P(h_2^2). \) The U-statistic method in Serfling (1980) entails that the second term of (A.7) is of order \(O_P(n^{-1/2}h_2^2). \) The second order of the projection of U-statistic entails that the first term is \(O_P(\frac{1}{nh_1}) = O_P((nh_2)^{-1/2}) as \frac{h_2}{nh_1} \to 0. \) Consequently, we have that \(A_{n1,2}(x) = o_P((nh_2)^{-1/2}). \)

As \(h_2^2 h_2^{-1} \{ \log n \} \to 0, h_2^4 h_2^{-2} \to 0 \) and \(\frac{h_2^{1/2} \log n}{nh_1} \to 0, \) we have

\[\tilde{M}_{n0,y}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \tilde{Y}_i + \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_1(x) \] (A.8)

\[+ o_P \left(h_2^2 + (nh_2)^{-1/2} \right) \]

\[\overset{\text{def}}{=} M_{n0,y}(x) + \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_1(x) + o_P \left(h_2^2 + (nh_2)^{-1/2} \right). \]
For $\delta = 1$, using (A.2), Taylor expansion entails that

$$
\hat{M}_{n_1,Y}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \tilde{Y}_i
+ \frac{1}{nh_2} \sum_{i=1}^{n} \left(\frac{X_i - X_i}{h_2} \right) \left\{ K' \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) + K \left(\frac{X_i - x}{h_2} \right) \right\} \tilde{Y}_i
+ O_P \left(h_1^4 + \frac{\log n}{n h_1} \right)
$$

(A.9)

Moreover,

$$
\hat{B}_{n_1}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} \left(\frac{X_i - X_i}{h_2} \right) \left\{ K' \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) + K \left(\frac{X_i - x}{h_2} \right) \right\} \tilde{Y}_i
+ O_P \left(h_2^2 + (nh_2)^{-1/2} \right)
$$

(A.10)

Using (A.4), (A.10) and (A.11), we have

$$
\hat{B}_{n_1}(x) = \frac{h_2^2}{2} E \left(\frac{\phi(U) \psi''(U)}{\psi(U)} \right) s_3(x) h_2 + O_P(n^{-1/2}h_2) + O_P(h_2^2 + (nh_2)^{-1/2}).
$$

(A.12)

Consequently, together with (A.9), (A.10) and (A.12), we have

$$
\hat{M}_{n_1,Y}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \tilde{Y}_i
+ \frac{\mu_2 h_1^2}{2} E \left(\frac{\phi(U) \psi''(U)}{\psi(U)} \right) s_3(x) h_2 + O_P(h_2^2 + (nh_2)^{-1/2})
$$

(A.13)

Step (2). In this step, we analyse $\hat{Q}_{uw}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} \left(\frac{X_i - x}{h_2} \right)^w K \left(\frac{X_i - x}{h_2} \right), w = 0, 1, 2$.

For \(w = 0 \), similar to (A.8) and (A.13), we have

\[
\hat{Q}_{n0}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) + \frac{1}{nh_2} \sum_{i=1}^{n} K' \left(\frac{X_i - x}{h_2} \right) \left(\frac{\hat{X}_i - X_i}{h_2} \right) + o_P(h_2^2 + (nh_2)^{-1/2})
\]

\[
= \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) + \mu_2 h_2^2 \frac{E}{2} \left(\frac{\psi''(U)}{\psi(U)} \right) (xf'_X(x) + f_X(x)) + o_P(h_2^2 + (nh_2)^{-1/2})
\]

\[
\def \hat{Q}_{n0}(x) + \frac{\mu_2 h_2^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x) + o_P(h_2^2 + (nh_2)^{-1/2}).
\]

For \(w = 1 \), we have

\[
\hat{Q}_{n1}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) + \frac{1}{nh_2} \sum_{i=1}^{n} \left\{ K' \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) + K \left(\frac{X_i - x}{h_2} \right) \right\} \left(\hat{X}_i - X_i \right)
\]

\[
+ o_P(h_2^2 + (nh_2)^{-1/2})
\]

\[
= \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) + C_{n1}(x) + o_P(h_2^2 + (nh_2)^{-1/2})
\]

Similar to (A.10), we have

\[
C_{n1}(x) = \frac{\mu_2 h_2^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) (xf'_X(x) + 2f_X(x)) + o_P(h_2^2 + (nh_2)^{-1/2})
\]

\[
= \frac{\mu_2 h_2^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) h_2 + o_P(h_2^2 + (nh_2)^{-1/2}).
\]

Thus, we have

\[
\hat{Q}_{n1}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) + \frac{\mu_2 h_2^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) h_2 + o_P(h_2^2 + (nh_2)^{-1/2})
\]

\[
\def \hat{Q}_{n1}(x) + \frac{\mu_2 h_2^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) h_2 + o_P(h_2^2 + (nh_2)^{-1/2}).
\]

For \(w = 2 \), we have

\[
\hat{Q}_{n2}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right)^2
\]

\[
+ \frac{1}{nh_2} \sum_{i=1}^{n} \left\{ K' \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right)^2 + 2K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \right\} \left(\frac{\hat{X}_i - X_i}{h_2} \right)
\]

\[
+ o_P(h_2^2 + (nh_2)^{-1/2})
\]

\[
= \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right)^2 + D_{n2}(x) + o_P(h_2^2 + (nh_2)^{-1/2}).
\]
Similar to (A.10) and (A.16), we have

$$D_{n1}(x) = \frac{\mu h^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) \mu_2(xf'_X(x) + f_X(x)) + o_P(h^2_2 + (nh_2)^{-1/2})$$ \hspace{1cm} (A.19)

$$= \frac{\mu^2 h^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x) + o_P(h^2_2 + (nh_2)^{-1/2}).$$

Then, we have

$$Q_{n2}(x) = \frac{1}{nh_2} \sum_{i=1}^n K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right)^2$$ \hspace{1cm} (A.20)

$$+ \frac{\mu^2 h^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x) + o_P(h^2_2 + (nh_2)^{-1/2})$$

$$= Q_{n2}(x) + \frac{\mu^2 h^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x) + o_P(h^2_2 + (nh_2)^{-1/2}).$$

Step 3. Using these asymptotic expressions obtained in Step 1 and Step 2, we have

$$\hat{g}(x) = \frac{Q_{n2}(x)M_{n0, \hat{Y}}(x) - Q_{n1}(x)M_{n1, \hat{Y}}(x)}{Q_{n2}(x)Q_{n0}(x) - \left[Q_{n1}(x) \right]^2}. \hspace{1cm} (A.21)$$

Using Lemma 1, we have

$$\hat{M}_{n0, \hat{Y}}(x) - \hat{Q}_{n0}(x)g(x)$$ \hspace{1cm} (A.22)

$$= M_{n0, \hat{Y}}(x) - Q_{n0}(x)g(x)$$

$$+ \frac{\mu^2 h^2}{2} \left\{ E \left(\frac{\psi''(U)}{\psi(U)} \right) s_1(x) - E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)g(x) \right\} + o_P \left(h^2_2 + (nh_2)^{-1/2} \right)$$

$$= \frac{1}{nh_2} \sum_{i=1}^n K \left(\frac{X_i - x}{h_2} \right) \left[Y_i - g(X_i) \right] + \frac{1}{nh_2} \sum_{i=1}^n K \left(\frac{X_i - x}{h_2} \right) \left[g(X_i) - g(x) \right]$$

$$+ \frac{\mu^2 h^2}{2} \left\{ E \left(\frac{\psi''(U)}{\psi(U)} \right) s_1(x) - E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)g(x) \right\} + o_P \left(h^2_2 + (nh_2)^{-1/2} \right)$$

$$= \frac{1}{nh_2} \sum_{i=1}^n K \left(\frac{X_i - x}{h_2} \right) \left[Y_i - g(X_i) \right] + h^2_2 \mu_2 \left[g'(x)f'_X(x) + \frac{1}{2} g''(x)f_X(x) \right]$$

$$+ \frac{\mu^2 h^2}{2} \left\{ E \left(\frac{\psi''(U)}{\psi(U)} \right) s_1(x) - E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)g(x) \right\}$$

$$+ O_P(h^2_2) + o_P \left(h^2_2 + (nh_2)^{-1/2} \right).$$

Using (A.20) and Lemma 1, we have

$$\hat{Q}_{n2}(x) = \mu_2 f_X(x) + \frac{h^2}{2} f''_X(x) \int u^4 K(u)du + \frac{\mu h^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x) \hspace{1cm} (A.23)$$

$$+ o_P(h^2_2 + (nh_2)^{-1/2}).$$

Together with (A.22) and (A.23), we have

$$\hat{Q}_{n2}(x) [M_{n0, \hat{Y}}(x) - \hat{Q}_{n0}(x)g(x)]$$ \hspace{1cm} (A.24)

$$= \frac{\mu_2 f_X(x)}{nh_2} \sum_{i=1}^n K \left(\frac{X_i - x}{h_2} \right) \left[Y_i - g(X_i) \right] + h^2_2 \mu_2 f_X(x) \left[g'(x)f'_X(x) + \frac{1}{2} g''(x)f_X(x) \right]$$

$$+ \frac{\mu^2 h^2}{2} \left\{ E \left(\frac{\psi''(U)}{\psi(U)} \right) s_1(x) - E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)g(x) \right\}$$

$$+ o_P(h^2_2 + (nh_2)^{-1/2}).$$
Moreover, similar to (A.22), we have
\[
\hat{M}_{n_1, \hat{Y}}(x) - \hat{Q}_{n_1}(x)g(x) = \hat{M}_{n_1, \hat{Y}}(x) - Q_{n_1}(x)g(x)
\]
\[
= M_{n_1, \hat{Y}}(x) - Q_{n_1}(x)g(x)
\]
\[
= \frac{\mu_2 h_2^3}{2} \left\{ E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_3(x) - E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x)g(x) \right\} + o_P(h_2^4 + (nh_2)^{-1/2})
\]
\[
= \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i - g(X_i) \right]
\]
\[
= g'(x) f_X(x) \mu_2 h_2 + \frac{\mu_2 h_2^3}{2} \left\{ E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_3(x) - E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x)g(x) \right\}
\]
\[
= o_P(h_2^3 + (nh_2)^{-1/2}).
\]
Together with (A.17) and (A.25), we have
\[
\hat{Q}_{n_1}(x) \left[\hat{M}_{n_1, \hat{Y}}(x) - \hat{Q}_{n_1}(x)g(x) \right]
\]
\[
= g'(x) f_X(x) f_X(x) \mu_2 h_2^2 + o_P(h_2^4 h_2^2 + h_2^3) + o_P(h_2^2 + (nh_2)^{-1/2}).
\]
Consequently, using (A.24) and (A.26), we have
\[
\hat{Q}_{n_2}(x) \left[\hat{M}_{n_1, \hat{Y}}(x) - \hat{Q}_{n_1}(x)g(x) \right] - \hat{Q}_{n_1}(x) \left[\hat{M}_{n_1, \hat{Y}}(x) - \hat{Q}_{n_1}(x)g(x) \right]
\]
\[
= \frac{\mu_2 f_X(x)}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i - g(X_i) \right] + \frac{\mu_2 h_2^3}{2} f_X(x) g''(x)
\]
\[
+ \frac{\mu_2^2 h_2^2}{2} f_X(x) \left\{ E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_1(x) - E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)g(x) \right\}
\]
\[
+ o_P(h_2^3 + (nh_2)^{-1/2}).
\]
Similar to (A.27), we have
\[
\hat{Q}_{n_2}(x) \hat{Q}_{n_0}(x) = \left[\hat{Q}_{n_1}(x) \right]^2
\]
\[
= \mu_2 f_X(x) + \frac{h_2^3}{2} f_X(x) f_X(x) + f_X(x) f_X(x) \int u^2 K(u)du - \frac{h_2^4}{2} \int f_X'(x)^4 u^2 K(u)du + \frac{\mu_2^2 h_2^2}{2} f_X(x) g''(x)
\]
\[
+ \mu_2^2 h_2^2 E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_4(x) f_X(x) + o_P(h_2^3 + (nh_2)^{-1/2})
\]
\[
= \mu_2 f_X(x)
\]
Together with (A.27) and (A.28), we have
\[
\hat{Q}_{n_2}(x) \left[\hat{M}_{n_0, \hat{Y}}(x) - \hat{Q}_{n_0}(x)g(x) \right] - \hat{Q}_{n_1}(x) \left[\hat{M}_{n_1, \hat{Y}}(x) - \hat{Q}_{n_1}(x)g(x) \right]
\]
\[
= \frac{\mu_2 f_X(x)}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i - g(X_i) \right] + \frac{\mu_2 h_2^3}{2} f_X(x) g''(x)
\]
\[
+ \frac{\mu_2^2 h_2^2}{2} f_X(x) \left\{ E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_1(x) - E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)g(x) \right\}
\]
\[
+ o_P(h_2^3 + (nh_2)^{-1/2}).
\]
Recalling the definitions of $s_1(x)$ and $s_4(x)$ in (A.5) and (A.14), we have $\frac{s_1(x)}{f_X(x)} = g(x) + xg'(x) + xg(x)\frac{f_X(x)}{f_X(x)}$. 7
\[
\frac{s_n(x)}{f_X(x)} = 1 + x f'_X(x).
\]
Thus, from (A.29), we have
\[
\sqrt{nh_2} \left(\hat{g}(x) - g(x) - \frac{\mu_2 h_2^2}{2} g''(x) - \frac{\mu_3 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) m_1(x) - E \left(\frac{\psi''(U)}{\psi(U)} \right) m_2(x) \right) \\
= \frac{1}{\sqrt{nh_2 f(x)}} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i - g(X_i) \right] + o_P(1)
\]
(A.30)
\[
\leadsto N \left(0, \mu_{K^2} \left\{ \Var(\phi(U)) E(Y^2|X = x) + \Var(Y|X = x) \right\} \right) ,
\]
where \(\mu_{K^2} = \int K^2(u) du \), \(m_1(x) = g(x) + x g'(x) + x g(x) \frac{f(x)}{f_X(x)} \), \(m_2(x) = g(x) + x g(x) \frac{f'(x)}{f_X(x)} \).

Step 4. In the following, we define \(\mu_d = \int u^d K(u) du \) for \(d = 2m, \ m = 1, 2, \ldots \). For the estimator of \(\hat{g}'(x) \), we have
\[
\hat{h}_2 \left[\hat{g}'(x) - g'(x) \right] = Q_{n_0} \left(\hat{M}_{n_1, \hat{X}}(x) - 2 Q_{n_2} h_2 g'(x) \right) - Q_{n_1} \left(\hat{M}_{n_0, \hat{X}}(x) - 2 Q_{n_1} h_2 g'(x) \right) \left[Q_{n_2}(x) Q_{n_0} - \left[Q_{n_1}(x) \right]^2 \right] .
\]
(A.31)

Similar to (A.22), we have
\[
\hat{M}_{n_0, \hat{X}}(x) - Q_{n_1}(x) h_2 g'(x) \\
= M_{n_0, \hat{X}}(x) - Q_{n_1}(x) h_2 g'(x) \left(\mu_2 h_2^2 \frac{E \left(\phi(U)\psi''(U) \psi(U) \right) s_1(x) - \mu_3 h_2^2 E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) h_2^2 g'(x) + o_P(h_2^2 + (nh_2)^{-1/2}) \right) \\
+ \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_1(x) - \mu_2 h_2^2 E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) h_2^2 g'(x) + o_P(h_2^2 + (nh_2)^{-1/2}) \\
= 1 \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i - g(X_i) \right] + \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[g(X_i) - (X_i - x) g'(x) \right] \\
+ \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_1(x) - \mu_2 h_2^2 E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) h_2^2 g'(x) + o_P(h_2^2 + (nh_2)^{-1/2}) \\
+ g''(x) f_X(x) + \frac{\mu_2 h_2^2}{12} \left[3 g''(x) f''_X(x) + 2 g'''(x) f'_X(x) \right] + \frac{\mu_2 h_2^6}{36} g''''(x) f''_X(x) \\
+ \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_1(x) - \mu_2 h_2^2 E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) h_2^2 g'(x) + o_P(h_2^2 + (nh_2)^{-1/2}) .
\]
From (A.17), we have
\[
\hat{Q}_{n_1}(x) \\
= f'_X(x) \mu_2 h_2 + \frac{\mu_4}{6} f''_X(x) h_2^2 + \frac{\mu_2 h_2^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) h_2 + o_P(h_2^2 + (nh_2)^{-1/2}) + O_P(h_2^2) .
\]
(A.33)
From (A.32)-(A.33), we have

\[
\hat{Q}_{n1}(x) \left[\hat{M}_{n0, \hat{Y}}(x) - \hat{Q}_{n1}(x) h_{2g'}(x) \right]
= \frac{f_X(x)\mu_2}{n} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i - g(X_i) \right] + f_X(x)f_X(x)g(x)\mu_2 h_2
+ \frac{\mu_3^2 h_3^2}{2} f_X(x)[g(x)f''_X(x) + g''(x)f_X(x)] + \frac{\mu_4}{6} f_X(x)f_X(x)g(x)h_3^2
+ \frac{\mu_2 h_3^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_3(x) + \frac{\mu_2 h_3^2 h_2}{2} f_X(x)g(x)E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x)
+ o_p(h_3^2 + (nh_2)^{-1/2}).
\]

Similar to (A.25), we have

\[
\hat{M}_{n1, \hat{Y}}(x) - \hat{Q}_{n2}(x) h_{2g'}(x)
= M_{n1, \hat{Y}}(x) - Q_{n2}(x) h_{2g'}(x)
\]

\[
= M_{n1, \hat{Y}}(x) - Q_{n2}(x) h_{2g'}(x)
+ \frac{\mu_2 h_3^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_3(x)h_2 - \frac{\mu_3^2 h_3^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)h_2g'(x) + o_p(h_3^2 + (nh_2)^{-1/2})
\]

\[
= \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i - g(X_i) \right]
+ \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) [g(X_i) - (X_i - x)g'(x)]
+ \frac{\mu_2 h_3^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_3(x)h_2 - \frac{\mu_3^2 h_3^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)h_2g'(x) + o_p(h_3^2 + (nh_2)^{-1/2})
\]

\[
= \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i - g(X_i) \right]
+ g(x)f_X(x)\mu_2 h_2 + \frac{1}{6} g(x)f_X(x)\mu_4 h_2^2 + \frac{1}{2} g''(x)f_X(x)\mu_4 h_2^2 + \frac{1}{6} g'''(x)f_X(x)\mu_4 h_2^2
+ \frac{\mu_2 h_3^2 h_2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_3(x) - \frac{\mu_3^2 h_3^2 h_2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)g'(x) + o_p(h_3^2 + (nh_2)^{-1/2}).
\]

Using (A.14), we have

\[
\hat{Q}_{n0}(x) = f_X(x) + \frac{\mu_2}{2} f_X''(x)h_2^2 + \frac{\mu_2 h_2^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x) + o_p(h_3^2 + (nh_2)^{-1/2}).
\]

Together with (A.35)-(A.36)

\[
\hat{Q}_{n0}(x) \left[\hat{M}_{n1, \hat{Y}}(x) - \hat{Q}_{n2}(x) h_{2g'}(x) \right]
= \frac{f_X(x)}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i - g(X_i) \right] + g(x)f_X(x)f_X(x)\mu_2 h_2

+ \mu_4 h_2 f_X(x) \left[\frac{1}{6} g(x)f_X''(x) + \frac{1}{2} g''(x)f_X'(x) + \frac{1}{6} g'''(x)f_X(x) \right]
+ \frac{\mu_2 h_3^2 h_2}{2} f_X(x)E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) s_3(x) - \frac{\mu_3^2 h_3^2 h_2}{2} f_X(x)E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)g'(x)

+ \frac{\mu_2}{2} g(x)f_X''(x)h_2^2 + \frac{\mu_2 h_2^2 h_2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x)g'(x) + o_p(h_3^2 + (nh_2)^{-1/2}).
\]
From (A.34) and (A.37), we have

\[
\dot{\bar{Q}}_{n0}(x) \left[\bar{M}_{n1}\bar{\gamma}(x) - \bar{Q}_{n2}(x)h_2g'(x) \right] - \dot{\bar{Q}}_{n1}(x) \left[\bar{M}_{n0}\bar{\gamma}(x) - \bar{Q}_{n1}(x)h_2g'(x) \right] = \frac{f_X(x)}{n h_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \left[\bar{Y}_i - g(X_i) \right] + \left[\frac{\mu_4 - \mu_2^2}{2} \bar{f}'_X(x)f_X(x)g''(x) + \frac{\mu_4}{6} g'''(x)f_X^2(x) \right] h_2^3 + \frac{\mu_2 h_2^2 h_2}{2} E \left(\frac{\bar{\phi}(U) \bar{\psi}''(U)}{\bar{\psi}(U)} \right) \left[\bar{f}'_X(x)f_X(x) - \mu_2 s_4(x)g'(x)f_X(x) + s_5(x)g(x)f_X(x) \right] + o_P(h_2^3 + (nh_2)^{-1/2}).
\]

(A.38)

Note that

\[
v_1(x) \overset{\text{def}}{=} \frac{1}{\mu_2 f_X^2(x)} \left\{ f_X(x)s_1(x) - f_X^2(x)s_1(x) \mu_2 \right\} = x \left[g''(x) + \frac{g''(x)}{f_X(x)} - \frac{g(x)f_X'(x)}{f_X^2(x)} \right] + \frac{g(x)f_X'(x)}{f_X(x)} + 2g'(x)
\]

(A.39)

\[
v_2(x) \overset{\text{def}}{=} \frac{1}{\mu_2 f_X^2(x)} \left\{ \mu_2 s_4(x)g(x)f_X(x) - \mu_2 s_4(x)g'(x)f_X(x) - s_5(x)g(x)f_X(x) \right\} = x \left[\frac{g(x)f_X'(x)}{f_X(x)} - \frac{g(x)f_X'(x)}{f_X^2(x)} - \frac{g(x)f_X(x)}{f_X(x)} \right] - \frac{g(x)f_X(x)}{f_X(x)} - g'(x).
\]

(A.40)

From (A.28), we have

\[
\dot{\bar{Q}}_{n2}(x)\bar{Q}_{n0}(x) - \left[\bar{Q}_{n1}(x) \right]^2 \rightarrow^P \mu_2 f_X^2(x).
\]

Together with (A.31),(A.38)-(A.40), we have

\[
h_2 \left[g'(x) - g'(x) \right] = \frac{\dot{\bar{Q}}_{n0}(x) \left[\bar{M}_{n1}\bar{\gamma}(x) - \bar{Q}_{n2}(x)h_2g'(x) \right] - \dot{\bar{Q}}_{n1}(x) \left[\bar{M}_{n0}\bar{\gamma}(x) - \bar{Q}_{n1}(x)h_2g'(x) \right]}{\dot{\bar{Q}}_{n2}(x)\bar{Q}_{n0}(x) - \left[\bar{Q}_{n1}(x) \right]^2} = \frac{1}{nh_2 f_X(x) \mu_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \left[\bar{Y}_i - g(X_i) \right] + \left[\frac{\mu_4 - \mu_2^2}{2} \bar{f}'_X(x)f_X(x)g''(x) + \frac{\mu_4}{6} g'''(x)f_X^2(x) \right] h_2^3 + \frac{\mu_2 h_2^2 h_2}{2} E \left(\frac{\bar{\phi}(U) \bar{\psi}''(U)}{\bar{\psi}(U)} \right) v_1(x) + \frac{\mu_2 h_2^2 h_2}{2} E \left(\frac{\bar{\phi}(U) \bar{\psi}''(U)}{\bar{\psi}(U)} \right) v_2(x) + o_P(h_2^3 + (nh_2)^{-1/2}).
\]

(A.41)
Let \(\mu_{K^2,t} = \int t^2 K^2(t)dt \). From (A.41), we have

\[
\sqrt{nh^2} \left\{ \hat{g}'(x) - g'(x) - \left[\frac{\mu_4 - \mu_4^2 f_X(x)g''(x)}{2\mu_2} + \frac{\mu_4\hat{g}''(x)}{\hat{\mu}_2} \right] h^2 \right\}
\]

\[
= \frac{1}{\sqrt{nh^2f_X(x)\mu_2}} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h^2} \right) \left(\frac{X_i - x}{h^2} \right) \left[\hat{g}(x) - g(x) \right] + o_p(1)
\]

\[
\rightarrow N \left(0, \mu_{K^2,t} \left\{ \text{Var}(\hat{g}(U))E(Y^2|X = x) + \text{Var}(Y|X = x) \right\} \right).
\]

Step 5. Using (A.1) and U-statistic method in Serfling (1980), as \(\frac{\log^2 n}{nh^4} \rightarrow 0 \) and \(nh^4 \rightarrow 0 \), we have

\[
\hat{E}[\phi^2(U)] = \frac{1}{n} \sum_{i=1}^{n} \phi^2(U_i) + \frac{2}{E([Y])} \sum_{i=1}^{n} \phi^2(U_i) \left[|Y_i| - E([Y]) \right] + o_p(n^{-1/2}).
\]

From (A.43), we have

\[
\sqrt{n} \left(\hat{E}[\phi^2(U)] - E[\phi^2(U)] \right)
\]

\[
= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \phi^2(U_i) - E[\phi^2(U_i)] \right\} + \frac{2}{\sqrt{n}E([Y])} \sum_{i=1}^{n} \phi^2(U_i) \left[|Y_i| - E([Y]) \right] + o_p(1)
\]

\[
= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\{ \phi^2(U_i) \left[\frac{2|Y_i|}{E([Y])} - 1 \right] - E[\phi^2(U_i)] \right\} + o_p(1)
\]

\[
\rightarrow N \left(0, \text{Var} \left(\phi^2(U) \left[\frac{2|Y|}{E([Y])} - 1 \right] \right) \right).
\]

Step 6. Using Lemma 2, we have

\[
\frac{1}{n} \sum_{i=1}^{n} (\hat{X}_i - X_i) = \frac{1}{n} \sum_{i=1}^{n} \left(|\hat{X}_i| - |X_i| \right) \frac{E(X)}{E(|X|)} + o_p(n^{-1/2})
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} (\hat{X}_i - X_i)(X_i - E(X)) = \frac{1}{n} \sum_{i=1}^{n} \left(|\hat{X}_i| - |X_i| \right) \frac{E(X(X - E(X)))}{E(|X|)} + o_p(n^{-1/2})
\]

Using (A.2) and Lemma 1, we have

\[
\frac{1}{n} \sum_{i=1}^{n} (\hat{X}_i - X_i)^2 = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{X}_i^2}{\hat{\psi}(U_i)} + o_p \left(h^4 + \frac{\log n}{nh^4} \right)
\]

\[
= O_p \left(h^4 + \frac{\log n}{nh^4} \right) = o_p(n^{-1/2}).
\]
Together with (A.45)-(A.47), \(\frac{1}{n} \sum_{i=1}^{n} \bar{X}_i - E(X) = O_P(n^{-1/2}) \) and \(\frac{1}{n} \sum_{i=1}^{n} X_i - E(X) = O_P(n^{-1/2}) \), we have

\[
\hat{\sigma}_1^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - E(X))^2 + \frac{1}{n} \sum_{i=1}^{n} (\bar{X}_i - X_i)^2 + \left(E(X) - \bar{X} \right)^2 \\
+ 2 \sum_{i=1}^{n} (\bar{X}_i - X_i) \left(E(X) - \bar{X} \right) + \frac{2}{n} \sum_{i=1}^{n} (\bar{X}_i - X_i)(X_i - E(X)) \\
+ \frac{2}{n} \sum_{i=1}^{n} (X_i - E(X)) \left(E(X) - \bar{X} \right) \\
= \frac{1}{n} \sum_{i=1}^{n} (X_i - E(X))^2 + \frac{2}{n} \sum_{i=1}^{n} (|\bar{X}_i| - |X_i|) \frac{\text{Var}(X)}{E(|X|)} + o_P(n^{-1/2}).
\]

From (A.48), we have

\[
\sqrt{n} (\hat{\sigma}_1^2 - \sigma_1^2) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} [(X_i - E(X))^2 - \sigma_1^2] \\
+ \frac{2}{n} \sum_{i=1}^{n} (|\bar{X}_i| - |X_i|) \frac{\text{Var}(X)}{E(|X|)} + o_P(1) \\
\xrightarrow{L} N \left(0, \text{Var} \left((X - E(X))^2 + (\psi(U) - 1) \frac{2|X|\text{Var}(X)}{E(|X|)} \right) \right).
\]

Step 7. In this step, we analyse the asymptotic expression of \(\hat{\gamma}_2(x) \). Recalling the definition of \(\hat{\gamma}_2(x) \), we have

\[
\hat{\gamma}_2(x) = \frac{\hat{Q}_{n2}(x) \hat{M}_{n0, \bar{Y}_2}(x) - \hat{Q}_{n1}(x) \hat{M}_{n1, \bar{Y}_2}(x)}{\hat{Q}_{n2}(x) \hat{Q}_{n0}(x) - \left(\hat{Q}_{n1}(x) \right)^2}.
\]

We now analyse \(\hat{M}_{n0, \bar{Y}_2}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} \left(\frac{\bar{X}_i - x}{h_2} \right)^{\delta} K \left(\frac{\bar{X}_i - x}{h_2} \right) \bar{Y}_i^2, \delta = 0, 1. \)

For \(\delta = 0 \), similar to (A.8), we have

\[
\hat{M}_{n0, \bar{Y}_2}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \bar{Y}_i^2 + \frac{1}{nh_2} \sum_{i=1}^{n} \left(\frac{\bar{X}_i - X_i}{h_2} \right) K' \left(\frac{X_i - x}{h_2} \right) \bar{Y}_i^2 \\
+ O_P \left(h_1^2 + \frac{\log n}{nh_1} \right) \\
= \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \bar{Y}_i^2 + \epsilon_{n1}(x) + o_P(h_1^2 + (nh_1)^{-1/2}).
\]

In the following, we define

\[
g_{Y^2}(x) = E(Y^2 | X = x).
\]

Similar to (A.4)-(A.7), we have

\[
\epsilon_{n1}(x) = -\frac{1}{nh_2} \sum_{i=1}^{n} \left(\frac{\hat{\psi}^2(U_i) - \psi(U_i)}{\psi(U_i)} \right) K' \left(\frac{X_i - x}{h_2} \right) X_i \bar{Y}_i^2 + o_P(h_1^2 + (nh_1)^{-1/2}) \\
= \frac{\mu_2 h_1^2}{2} E \left(\frac{\phi^2(U) \psi''(U)}{\psi(U)} \right) \{g_{Y^2}(x)f_X(x) + x[g_{Y^2}(x)f_X(x)]'\} + o_P(h_1^2 + (nh_1)^{-1/2}) \\
= \frac{\mu_2 h_1^2}{2} E \left(\frac{\phi^2(U) \psi''(U)}{\psi(U)} \right) s_6(x) + o_P(h_1^2 + (nh_1)^{-1/2}).
\]
Thus, we have
\[
\hat{M}_{n_0 \tilde{Y}_2}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \hat{Y}_i^2 + \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi^2(U) \psi''(U)}{\psi(U)} \right) s_0(x) + o_P(h_2^2 + (nh_2)^{-1/2}).
\] (A.53)

For $\delta = 1$, similar to (A.13), we have
\[
\hat{M}_{n_1 \tilde{Y}_2}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \hat{Y}_i^2 + \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi^2(U) \psi''(U)}{\psi(U)} \right) s_7(x) + o_P(h_2^2 + (nh_2)^{-1/2}).
\] (A.54)

Similar to (A.11)-(A.12), we have
\[
F_{n_1}(x) = \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi^2(U) \psi''(U)}{\psi(U)} \right) \left\{ x[g_{\tilde{Y}_2}(x) f_X(x)]'' + 2[g_{\tilde{Y}_2}(x) f_X(x)]' \right\} + o_P(h_2^2 + (nh_2)^{-1/2})
\] (A.55)

def\[\mu_2 h_2^2}{2} E \left(\frac{\phi^2(U) \psi''(U)}{\psi(U)} \right) s_7(x) + o_P(h_2^2 + (nh_2)^{-1/2}).
\]

Thus, we have
\[
\hat{M}_{n_1 \tilde{Y}_2}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \hat{Y}_i^2 + \frac{\mu_2 h_2^2}{2} E \left(\frac{\phi^2(U) \psi''(U)}{\psi(U)} \right) s_7(x) + o_P(h_2^2 + (nh_2)^{-1/2}).
\] (A.56)

Note that $g_{\tilde{Y}_2}(x) = E[\phi^2(U)] g_{Y_2}(x)$. Using (A.14) and (A.53), we have
\[
\hat{M}_{n_0 \tilde{Y}_2}(x) - \hat{Q}_{n_0}(x) g_{\tilde{Y}_2}(x)
\] (A.57)
Together with (A.23),

\[
\dot{Q}_{n2}(x) \left\{ \hat{M}_{n0,y^2}(x) - \dot{Q}_{n0}(x)g_{y^2}(x) \right\} = \frac{\mu_2 f_X(x)}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i^2 - E[\phi^2(U)]g_{y^2}(X_i) \right]
+ \hat{h}_2^2 \mu_2^2 E[\phi^2(U)] f_X(x) \left[g_{y^2}(x) f_X(x) + \frac{1}{2} g_{y^2}''(x) f_X(x) \right]
+ \frac{\mu_2^2 \hat{h}_2^2 f_X(x)}{2} \left\{ E \left(\frac{\phi^2(U)^2}{\psi(U)} \right) s_6(x) - E[\phi^2(U)] E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x) g_{y^2}(x) \right\}
+ o_P(h_2^2 + (nh_2)^{-1/2}).
\]

Using (A.25) and (A.56), we have

\[
\dot{M}_{n1,y^2}(x) - \dot{Q}_{n1}(x)g_{y^2}(x) = \frac{1}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \hat{Y}_i^2 - Q_{n1}(x)g_{y^2}(x)
+ \frac{\mu_2 \hat{h}_2^2}{2} \left\{ E \left(\frac{\phi^2(U)}{\psi(U)} \right) s_7(x) - E[\phi^2(U)] E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) g_{y^2}(x) \right\} + o_P(h_2^2 + (nh_2)^{-1/2})
+ \frac{\mu_2 \hat{h}_2^2}{2} \left\{ E \left(\frac{\phi^2(U)}{\psi(U)} \right) s_7(x) - E[\phi^2(U)] E \left(\frac{\psi''(U)}{\psi(U)} \right) s_5(x) g_{y^2}(x) \right\}
+ O_P(h_2^2) + o_P(h_2^2 + (nh_2)^{-1/2}).
\]

Together with (A.17), (A.25) and (A.33), we have

\[
\dot{Q}_{n1}(x) \left[\hat{M}_{n1,y^2}(x) - \dot{Q}_{n1}(x)g(x) \right] = E[\phi^2(U)] g_{y^2}(x) f_X(x) f_X(x) \mu_2^2 \hat{h}_2^2 + O_P(h_2^2 + (nh_2)^{-1/2}) + o_P(h_2^2 + (nh_2)^{-1/2}).
\]

Consequently, using (A.58) and (A.60), we have

\[
\dot{Q}_{n2}(x) \left[\hat{M}_{n0,y^2}(x) - \dot{Q}_{n0}(x)g_{y^2}(x) \right] - \dot{Q}_{n1}(x) \left[\hat{M}_{n1,y^2}(x) - \dot{Q}_{n1}(x)g_{y^2}(x) \right] = \frac{\mu_2 f_X(x)}{nh_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i^2 - E[\phi^2(U)]g_{y^2}(X_i) \right] + E[\phi^2(U)] \mu_2^2 \hat{h}_2^2 f_X^2(x) g_{y^2}(x)
+ \frac{\mu_2^2 \hat{h}_2^2 f_X(x)}{2} \left\{ E \left(\frac{\phi^2(U)^2}{\psi(U)} \right) s_6(x) - E[\phi^2(U)] E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x) g_{y^2}(x) \right\}
+ o_P(h_2^2 + (nh_2)^{-1/2}).
\]
Using (A.28) and (A.61), we have

\[\frac{1}{nh_{fX}(x)} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\hat{Y}_i^2 - E[\phi^2(U)] \hat{g}_Y(x_i) - \frac{\mu_2 h^2 E[\phi^2(U)]}{2} \hat{g}_Y'(x_i) \right] + \frac{\mu_2 h^2}{2f_X(x)} \left[E \left(\frac{\phi^2(U)}{\psi(U)} \right) s_0(x) - 2E[\phi^2(U)]E \left(\frac{\phi(U)}{\psi(U)} \right) s_1(x)g(x) \right] + a_P(h^2 + (nh_2)^{-1/2}). \]

From (A.44), we have \(E[\phi^2(U)] = O_P(n^{-1/2}) = a_P((nh_2)^{-1/2}). \) Thus, using (A.29)-(A.30), (A.62), we have

\[\hat{g}_Y'(x) - E[\phi^2(U)] \hat{g}_Y'(x) \]

\[= \hat{g}_Y'(x) - g_Y'(x) - E[\phi^2(U)] \left[\hat{g}_Y'(x) - g_Y'(x) \right] + [g_Y'(x) - E[\phi^2(U)]g_Y'(x)] + a_P((nh_2)^{-1/2}). \]

Together with \(E[\phi^2(U)] \xrightarrow{P} E[\phi^2(U)] \), and \(\sigma^2(x) = \frac{g_Y'^2(x)}{f_X(x)^2} - g^2(x) \), we have

\[\frac{1}{nh_{fX}(x)} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\frac{\hat{Y}_i^2}{E[\phi^2(U)]} - 2g(x) \hat{Y}_i - g_Y(x) + 2g(x)g_Y(x) \right] \]

\[+ \frac{\mu_2 h^2}{2f_X(x)} \left[g_Y'(x) - 2g(x)g_Y''(x) + \frac{\mu_2 h^2}{2f_X(x)} E \left(\frac{\phi''(U)}{\psi(U)} \right) s_4(x) \left[2g^2(x) - g_Y(x) \right] \right] \]

\[+ \frac{\mu_2 h^2}{2f_X(x)E[\phi^2(U)]} \left[E \left(\frac{\phi^2(U)}{\psi(U)} \right) s_0(x) - 2E[\phi^2(U)]E \left(\frac{\phi(U)}{\psi(U)} \right) s_1(x)g(x) \right] \]

\[+ a_P((nh_2)^{-1/2}). \]

From \(s_4(x) \) defined in (A.5) and (A.52), we have \(m_3(x) = \frac{s_4(x)}{f_X(x)^2} = g_Y^2(x) + xg_Y'(x) + xg_Y(x) \frac{f_X'(x)}{f_X(x)} \). Thus, from (A.29), we have

\[\sqrt{nh_2} \left(\hat{g}_Y^2(x) - g_Y^2(x) - \frac{\mu_2 h^2}{2} [g_Y'(x) - 2g(x)g_Y''(x)] \right) \]

\[- \frac{\mu_2 h^2}{2f_X(x)} E \left(\frac{\phi''(U)}{\psi(U)} \right) s_4(x) \left[2g^2(x) - g_Y(x) \right] \]

\[- \frac{\mu_2 h^2}{2f_X(x)E[\phi^2(U)]} \left[E \left(\frac{\phi^2(U)}{\psi(U)} \right) s_0(x) - 2E[\phi^2(U)]E \left(\frac{\phi(U)}{\psi(U)} \right) s_1(x)g(x) \right] \]

\[= \frac{1}{\sqrt{nh_{fX}(x)}} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left[\frac{\hat{Y}_i^2}{E[\phi^2(U)]} - 2g(x) \hat{Y}_i - g_Y(x) + 2g(x)g_Y(x) \right] + a_P(1). \]
1.4. Proof of Theorem 1

Proof. To give the asymptotic expression of \(\hat{\rho}(x) \), it is equivalent to present the asymptotic expression of \(\hat{\rho}^2(x) \). Note that

\[
\hat{\rho}^2(x) - \rho^2(x) = \frac{\sigma_1^2 [g'(x)]^2}{\sigma_1^2 [g'(x)]^2 + \sigma^2(x)} - \frac{\sigma_2^2 [g'(x)]^2}{\sigma_2^2 [g'(x)]^2 + \sigma^2(x)}
\]

(A.66)

\[
= \frac{\sigma_1^2 [g'(x)]^2 - \sigma_2^2 [g'(x)]^2}{\sigma_1^2 [g'(x)]^2 + \sigma^2(x)} \frac{\sigma_2^2 [g'(x)]^2}{\sigma_2^2 [g'(x)]^2 + \sigma^2(x)}
\]

\[
= \frac{\sigma_1^2 [g'(x)]^2 - \sigma_2^2 [g'(x)]^2}{\sigma_1^2 [g'(x)]^2 + \sigma^2(x)} \frac{\sigma_2^2 [g'(x)]^2}{\sigma_2^2 [g'(x)]^2 + \sigma^2(x)}
\]

(A.68)

Using (A.49) and (A.64), we have \(\sigma_1^2 - \sigma_1^2 = O_P(n^{-1/2}) \), and

\[
h_2 R_{n3}(x) = O_P(h_2 n^{-1/2}), h_2 R_{n4}(x) = O_P(h_2 n^{-1/2}) + O_P(h_2^3 + (nh_2)^{-1/2}) = o_P(h_2^3 + (nh_2)^{-1/2}).
\]

(A.67)

From (A.42), (A.49) and (A.64), we have \(\hat{g}'(x) \xrightarrow{p} g'(x), \sigma_1^2 \xrightarrow{p} \sigma_1^2, \sigma_2^2(x) \xrightarrow{p} \sigma^2(x) \), and then

\[
h_2 R_{n1}(x) = \frac{\sigma_1^2 \sigma_2^2(x)}{\sigma_1^2 [g'(x)]^2 + \sigma_2^2(x)} h_2 \left\{ [g'(x)]^2 - [g'(x)]^2 \right\} + o_P(h_2^3 + (nh_2)^{-1/2})
\]

(A.68)

\[
= \frac{2 \sigma_1^2 \sigma_2^2(x) g'(x)}{\sigma_1^2 [g'(x)]^2 + \sigma_2^2(x)} h_2 \left\{ g'(x) - [g'(x)]^2 \right\} + o_P(h_2^3 + (nh_2)^{-1/2})
\]

\[
\def \zeta(x) h_2 \left\{ g'(x) - [g'(x)]^2 \right\} + o_P(h_2^3 + (nh_2)^{-1/2})
\]

(A.69)

\[
= \frac{\zeta(x)}{nh_2^{f(x)}(x) \mu_2} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \left[\hat{y}_i - g(X_i) \right]
\]

\[
+ \frac{\zeta(x)}{nh_2^{f(x)}(x) \mu_2} \left[\frac{\mu_4 - \mu_3^2 f''(x)g''(x)}{2 \mu_2} + \frac{\mu_4}{6 \mu_2} g'''(x) \right] h_2^3 + \frac{\mu_2 h_2^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) v_1(x) \zeta(x)
\]

\[
+ \frac{\mu_2 h_2^2}{2} E \left(\frac{\psi''(U)}{\psi(U)} \right) v_2(x) \zeta(x) + o_P(h_2^3 + (nh_2)^{-1/2})
\]

\[
h_2 R_{n2}(x) = \frac{\sigma_1^2 [g'(x)]^2}{\sigma_1^2 [g'(x)]^2 + \sigma_2^2(x)} h_2 \left\{ \sigma_2^2(x) - [g'(x)]^2 \right\} + o_P(h_2^3 + (nh_2)^{-1/2})
\]

(A.69)

\[
= \frac{\mu_2 \pi(x) h_2^3}{2} \left[g(y_2) - 2g(x) g'(x) + s_2 \pi(x) h_2^2 E \left(\frac{\psi''(U)}{\psi(U)} \right) s_4(x) \left[2g(x) - g(y_2) \right] + o_P(h_2^3 + (nh_2)^{-1/2})
\]

\[
+ \frac{\mu_2 \pi(x) h_2^2}{2f(x)} E \left[\phi''(U) \right] \left[E \left(\frac{\phi''(U) \psi''(U)}{\psi(U)} \right) s_6(x) - 2E[\phi''(U)] E \left(\frac{\phi(U) \psi''(U)}{\psi(U)} \right) s_1(x) g(x) \right]
\]

\[
+ o_P(h_2^3 + (nh_2)^{-1/2}).
\]
Together with (A.66)-(A.69), we have

\[
\begin{align*}
 h_2 \left[\hat{\rho}^2(x) - \rho^2(x) \right] &= h_2 R_{n1}(x) - h_2 R_{n2}(x) + o_P(h_2^3 + (nh_2)^{-1/2}) \\
 &= \frac{\zeta(x)}{nh_2 f_X(x) \mu_2} \sum_{i=1}^n K \left(\frac{X_i - x}{h_2} \right) \left(\frac{X_i - x}{h_2} \right) \left[\tilde{Y}_i - g(X_i) \right] \\
 &+ \left[\frac{\mu_1 - \mu_2^2}{2} \frac{f_X'(x)g''(x)\zeta(x)}{f_X(x)} \right] + \frac{\mu_4}{6\mu_2} g'''(x)\zeta(x) \left[\frac{g''(x) - 2g(x)g''(x)}{2} \right] h_2^3 \\
 &+ \frac{\mu_2 h_2^4 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) \left[\frac{v_1(x)\zeta(x)}{f_X(x)} + \frac{2s_1(x)g(x)\pi(x)}{f_X(x)} \right] \\
 &+ \frac{\mu_2 h_2^4 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) \left[\frac{v_2(x)\zeta(x) - s_4(x)\pi(x)\frac{2g^2(x) - g_Y^2(x)}{f_X(x)}}{f_X(x)} \right] \\
 &- \frac{\mu_2 h_2^4 h_2^2}{2} E \left(\frac{\phi(U)\psi''(U)}{\psi(U)} \right) \left[\frac{s_6(x)\pi(x)}{f_X(x)E[\phi^2(U)]} \right] + o_P(h_2^3 + (nh_2)^{-1/2}).
\end{align*}
\]

Using asymptotic expression (A.70) and the equation \(h_2 (\hat{\rho}(x) - \rho(x)) = \frac{1}{\hat{\rho}(x) + \rho(x)} h_2 \left[\hat{\rho}^2(x) - \rho^2(x) \right] \), we complete the proof of Theorem 1.

\[\square\]

References

Fan, J. and Gijbels, I. (1996). *Local Polynomial Modelling and Its Applications*, Chapman & Hall, London.

Fan, J. and Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear models, *Bernoulli. Official Journal of the Bernoulli Society for Mathematical Statistics and Probability* **11**(6): 1031–1057.

Mack, Y. P. and Silverman, B. W. (1982). Weak and strong uniform consistency of kernel regression estimates, *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete* **61**(3): 405–415.

Serfling, R. J. (1980). *Approximation Theorems of Mathematical Statistics*, John Wiley & Sons Inc., New York.

Zhang, J., Zhu, L. and Liang, H. (2012). Nonlinear models with measurement errors subject to single-indexed distortion, *Journal of Multivariate Analysis* **112**: 1–23.

Zhao, J. and Xie, C. (2018). A nonparametric test for covariate-adjusted models, *Statistics & Probability Letters* **133**(Supplement C): 65 – 70.