Diagnostic utility of \textit{BRAF}^{V600E} mutation testing in thyroid nodules in elderly patients

Anna Guerra1, Vincenzo Di Crescenzo1, Alfredo Garzi1, Mariapia Cinelli2, Chiara Carlonagno3, Stefano Pepe1, Pio Zeppa1, Massimo Tonacchera4, Mario Vitale1

From 26th National Congress of the Italian Society of Geriatric Surgery
Naples, Italy. 19-22 June 2013

Abstract

\textbf{Background:} Thyroid cancer is a rare disease characterized by the subtle appearance of a nodule. Fine-needle cytology (FNC) is the first diagnostic procedure used to distinguish a benign from a malignant nodule. However, FNC yields inconclusive results in about 20\% of cases. \textit{BRAF}^{V600E} mutation is the most frequent genetic alteration in papillary thyroid carcinoma (PTC); its high prevalence makes this oncogene a useful marker to refine inconclusive FNC results. However, the prevalence of the \textit{BRAF}^{V600E} mutation depends on detection methods, geographical factors, and age. The aim of this study is to determine the prevalence of \textit{BRAF}^{V600E} mutation and its utility as a diagnostic tool in elderly subjects.

\textbf{Methods:} FNC from 92 PTC patients were subjected to the analysis of \textit{BRAF} mutation by pyrosequencing and direct sequencing; age-dependent prevalence was also determined.

\textbf{Results:} \textit{BRAF} mutation analysis was successful in all FNC specimens. \textit{BRAF}^{V600E} was documented in 62 (67.4\%) and in 58 (63.0\%) PTCs by pyrosequencing and direct sequencing, respectively. \textit{BRAF}^{V600E} prevalence did not correlate with patient's age at diagnosis. Twenty out of 32 PTCs (62.5\%) were correctly diagnosed by \textit{BRAF} mutation analysis in inconclusive FNC results.

\textbf{Conclusions:} Detection of \textit{BRAF}^{V600E} in cytology specimens by pyrosequencing is a useful diagnostic adjunctive tool in the evaluation of thyroid nodules also in elderly subjects.

Introduction

Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Reactive oxygen species (ROS) are highly reactive molecules that consist of a number of diverse chemical species including superoxide anion (O$_2^-$), hydroxyl radical (OH$^-$), and hydrogen peroxide (H$_2$O$_2$) [1]. Oxidative stress is an important aspect of cancer, diabetes, neurodegenerative, cardiovascular and other diseases, and elevated ROS has been implicated in the mechanism of senescence and aging [2,3]. Oxidant overproduction occurs in response to several stressors, including chemicals, drugs, pollutants, high-caloric diets and exercise [4]. The prevalence of palpable thyroid nodules in iodine-sufficient regions ranges between 1\% - 9\% in adults [5]. It is lower in young people and increases progressively with age. However, the prevalence of nodular goiter markedly increases when ultrasoundography is used. About 75\% of individuals over the age of 80 years have nodules on ultrasound examination. The majority of thyroid nodules are benign and the incidence of thyroid cancer is low, accounting for about 5\% of nodules [6,7], although it has increased over the last decades. The increase of incidence is not equally attributed to all types of thyroid cancer. Papillary thyroid carcinoma (PTC) is the most frequent thyroid cancer, accounting for approximately 85 - 90\% of all thyroid cancers, whereas follicular thyroid carcinoma accounts for about 10\% or less, and poorly differentiated and undifferentiated or anaplastic carcinomas are very rare.

* Correspondence: mavitale@unisa.it
1Department of Medicine and Surgery, University of Salerno, Salerno, Italy
Full list of author information is available at the end of the article

© 2013 Guerra et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
(approximately 1 - 2%) [8]. The risk of thyroid cancer is higher in women and people with low iodine intake, high body mass index and radiation exposure [9-11]. Hashimoto’s Thyroiditis (HT) is a frequent thyroid disorder whose prevalence increases with age. PTC is believed to be more frequent in patients with concurrent HT. RET rearrangements (RET/PTC) and BRAF point mutations are genetic alterations occurring in PTC, proposed as tumor markers to refine inconclusive FNC results. The identification of changes in the expression of other molecular biomarkers, such as Ca2+-transporting proteins, which have been proposed as an alternative to determine the utility of BRAFV600E as a tumor marker, depends upon its diagnostic marker status, which varies on the basis of detection methods and geographical factors. While RET rearrangements are induced by thyroid exposure to ionizing radiations, no BRAF mutation inducing factors have been identified so far. The higher prevalence of age-related thyroid diseases, such as HT or longer exposure to endocrine disrupters and thyroid toxic agents, may affect the prevalence of BRAF mutations in elderly subjects as well as the sensitivity of BRAFV600E as a tumor marker. The clinical appearance of thyroid cancer is that of a nodule, sometimes representing a challenging diagnostic dilemma with thyroid or unusual extra-thyroidal masses [20,21]. Until serological biomarkers are available, FNC is the primary diagnostic tool offering the highest values of sensitivity and specificity [22-27]. Nonetheless, inconclusive results may occur and the application of molecular techniques to FNC has dramatically increased its sensitivity [25,28-31], including in the case of HT with diffuse or nodular enlargement [26]. These advantages are enhanced in the case of benign nodules, which does not require surgical treatment, and even more in the elderly, where surgery is generally more burdensome, complex and expensive than in younger patients [32,33]. Hence, the aims of the present study are to determine the utility of BRAFV600E mutation detection as a diagnostic tool to refine inconclusive FNC results in elderly subjects and whether its sensitivity is age-related.

Material and methods

Patients and clinicopathological data collection

A total of 92 patients with PTC were enrolled in the study after giving their consent and with the approval from the institutional review board. Clinicopathological data included: age at diagnosis, gender, tumor size, and TNM staging. Tumor volume was calculated according to the formula of the ellipsoid model: volume (mL) = width × length × thickness × ⅓/6. After surgical resection, tissues were fixed in formalin, embedded in paraffin wax, and stained with haematoxylin and eosin for microscopy studies. Standard criteria were employed to classify tumors and their variants [34]. FNC was performed and classified according to the British Thyroid Association [35] as described elsewhere [36,37]. As far as the concomitant lymphoid infiltrate concerns, its polyclonal, inflammatory nature was assessed in selected cases by flow cytometry (FC) and related data were interpreted accordingly [38-41] in this specific clinical and anatomical setting. Clinicopathological data are reported in Table 1.

DNA extraction from cytology samples

Cytology samples were obtained using a syringe with a 22-gauge needle passed three to four times. Material from the needle was used to prepare a smear for cytology, then the needle was washed out with 5 ml of normal saline into a collection tube, and centrifuged. The pellet was resuspended into TRI Reagent buffer (Sigma) and stored at -20 °C for DNA extraction.

Detection of the BRAF mutation

Direct sequencing was performed by BigDye Terminator method. DNA was amplified by polymerase chain reaction (PCR) with specific primers, as described previously [42]. Pyrosequencing was performed as described in detail elsewhere [42,43]. Briefly, DNA was amplified by PCR, processed to obtain single-stranded DNA, hybridized to sequencing primers, and sequencing-by-synthesis reaction of the complementary strand was automatically performed on a PSQ 96MA instrument (Biotage, Uppsala, Sweden). The cut-off was set at 5%, corresponding to the mean percentage of normal tissues plus 2 SD.

Statistics

Results were analyzed by the chi-square of independence test or the t-test with Prism (Version 3.00 for Windows;
GraphPad Software, San Diego, CA, USA). The level of significance was set at $P < 0.05$.

Results

A total of 92 PTC patients entered the study. Patients were divided into 2 groups: < 70 years old (No. = 74) and ≥ 70 years old (No. = 18). The mean age of the 2 groups was 79.4 and 50.4, respectively. Cervical lymphadenopathy was documented by ultrasonography in 9 subjects; neck irradiation, symptoms of compression and familiarity for thyroid carcinoma were documented in 1 patient, respectively (Table 1). *BRAF* mutational analysis was successful in all cytology specimens. *BRAF* V600E was documented in 62 patients (67.4%) and in 58 (63.0%) patients by pyrosequencing and direct sequencing, respectively (Table 2). The prevalence of *BRAF* V600E mutation in the 2 age groups was similar (67.6 vs. 66.6 by pyrosequencing in < 70 years vs. ≥70 years, respectively). The mean age of PTC patients (*BRAF* V600E positive or negative) was similar (54.4 and 54.3 respectively, $P = 0.461$). Twenty-four (26.1%) FNCs yielded inconclusive results (Table 3), 10.9% and 13.4% were THY3 and THY4, respectively. *BRAF* V600E mutation was documented in 16 inconclusive FNC results (66.6%). No significant difference in sensitivity was documented between young and elderly patients.

Discussion

The clinical utility of molecular testing for inconclusive FNC results was demonstrated by a number of studies in the last decade. Among the genetic alterations known in thyroid cancer, *BRAF* V600E is the most useful to this purpose, because of its high sensitivity and its absolute specificity. However, its sensitivity depends on the detection method and on its prevalence. cDNA sequencing is the gold standard for the detection of genetic mutations. However, the sensitivity of these methods is reduced by the diluting effect of the wild type gene carried by tumor cells and non-tumor cells in the specimen [23]. This is particularly relevant when other thyroid diseases are present. Thyroid autoimmunity, and HT in particular, are frequent in the general female population and even more frequent in the elderly. These diseases are characterized by an abundant lymphoplasmacytic infiltrate of the thyroid and in the late stages by fibrous atrophy. Hence, the sensitivity of molecular tests applied to thyroid cytology specimens was hypothesized to be reduced in elderly subjects [44]. Another possible factor affecting the sensitivity of *BRAF* V600E diagnostic tests is the prevalence of this oncogene in a specific cohort. Besides the detection methods, racial or geographical factors are the major determining factors of *BRAF* V600E prevalence. This oncogene is much more frequent in the Korean population than in any other, being detected in about 90% of PTCs. Its high prevalence can be the result of a particular genetic imprinting or the effect of food or environmental factors. Iodine diet content and goitrogen factors, the exposure to ionizing radiations, endocrine disrupters and thyroid toxic agents can be relevant in the development of thyroid cancer. A low iodine diet has been associated with a higher prevalence of thyroid cancer, with a higher papillary/follicular thyroid ratio [45]. Also, the exposure to ionizing radiations is a risk factor for the development of thyroid cancer. The genetic rearrangement of the proto-oncogene RET generates chimeric proteins (RET/PTC) with demonstrated carcinogenetic properties. RET rearrangements, and RET/PTC3 in particular, are induced by the exposure to ionizing radiations, so that their prevalence is increased in the exposed populations [46,47]. Time of exposition to interfering agents is crucial for carcinogenesis, so that the risk of thyroid cancer development is age-dependent. Studies on population of different geographic areas showed the reduction of RET/PTC in thyroid tumors in older subjects [48,49]. Although *BRAF* V600E has been extensively investigated, evidence on the etiology of this oncogene is lacking. Study results indicate that the prevalence of *BRAF* V600E does not change in elderly subjects and that it can be used as a PTC marker in inconclusive FNC results. The sensitivity of the Big Dye terminator method is low since it is based on an automated or subjective evaluation of a chromatogram. For this reason, mutations detected in less than 20% of PCR products yield ambiguous or false negative results [50]. Accordingly, *BRAF* V600E detection in this study was higher by pyrosequencing analysis than by direct sequencing, and PTC was correctly diagnosed in 66.6% of FNC inconclusive results by means of this method.

Table 2 Prevalence of *BRAF* V600E mutation in 92 PTCs.

Age (years)	Direct Sequencing	Pyrosequencing
<70	11 (61.1)	12 (66.6)
≥70	47 (63.5)	50 (67.6)
P	n.s.	n.s.

Number of positive samples (and percentages).

n.s., not significant

Table 3 FNC results and detection of *BRAF* V600E mutation by pyrosequencing.

FNC	Age, > 70 years	Age, ≥ 70 years
TYH	*BRAF* V600E	*BRAF* V600E
total	total	total
3	6 (75.0)	1 (50.0)
4	7 (63.6)	2 (66.6)
5	37 (67.2)	13 (69.2)

Number of positive samples (and percentages).

TYH 3, indeterminate; TYH 4, suspicious for malignancy; TYH 5, malignant.
Conclusions
The prevalence of BRAFV600E mutation in PTCs of elderly subjects is similar to that of younger subjects. The detection of BRAFV600E mutation in cytology specimens by pyrosequencing is a useful diagnostic adjunctive tool in the evaluation of thyroid nodules also in elderly subjects.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MC = Aggregate Professor of Oncology, University of Naples. AG = Resident in Clinical Pathology at University of Salerno. PZ = Associate Professor of Pathology at University of Salerno. MT = Associate Professor of Endocrinology at University of Pisa. MV = Associate Professor of Endocrinology at University of Salerno.

Declarations
Publication charges for this article were covered by research funds of the project Bando Faro 2011 - Finanziamenti per l’Avvio di Ricerche Originiali, cofounded by the Compagnia di San Paolo and by the Polo per le Scienze e le Tecnologie per la Vita of the University Federico II in Naples. This article has been published as part of BMC Surgery Volume 13 Supplement 2, 2013. Proceedings from the 26th National Congress of the Italian Society of Geriatric Surgery. The full contents of the supplement are available online at http://www.biomedcentral.com/bmcsurg/supplements/13/s2.

Authors’ details
1. Department of Medicine and Surgery, University of Salerno, Salerno, Italy.
2. Department of Public Health, University of Naples “Federico II”, Naples, Italy.
3. Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy.
4. Department of Endocrinology, Research Center of e le Tecnologie per la Vita of the University Federico II in Naples.2

Published: 8 October 2013

References
1. Cui H, Kong Y, Zhang H: Oxidative stress, mitochondrial dysfunction, and aging. Journal of signal transduction 2012, 2012:646594.
2. Testa D, Guerra G, Marcuccio G, Landolfi PG, Motta G: Oxidative stress in chronic otitis media with effusion. Acta oto-laryngologica 2012, 132(8):834-837.
3. Cattaneo F, Iacopo A, Guerra G, Montagnani S, Ammendola R: NADPH-oxidase-dependent reactive oxygen species mediate EGF receptor transactivation by FPR1 in WKT/WMV-stimulated human lung cancer cells. Free radical biology & medicine 2011, 51(6):1126-1136.
4. Conti V, Russo-Many A, Corti G, Guerra G, Grasso G, Filippelli W, Paribello V, Ferrara N, Filippelli A: Aerobic training workload affects human endothelial cells redox homeostasis. Medicine and science in sports and exercise 2013, 45(4):644-653.
5. Tonacchera M, Pinchera A, Vitti P: Assessment of nodular goitre. Best Pract Res Clin Endocrinol Metab 2010, 24(1):51-61.
6. Kang HW, No JH, Chung JH, Min YK, Lee MS, Lee MK, Yang JH, Kim KW: Prevalence, clinical and ultrasonographic characteristics of thyroid incidentalomas. Thyroid 2004, 14(1):29-33.
7. Hodgson NC, Button J, Solorzano CC: Thyroid cancer: is the incidence still increasing? Ann Surg Oncol 2004, 11(12):1093-1097.
8. Sherman S: Thyroid carcinoma. Lancet 2003, 361(9356):501-511.
9. Belfiore A, La Rosa G, La Porta GA, Giuffrida D, Milazzo G, Lupo L, Regalbuto C, Vigneri R: Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 1992, 93(4):363-369.
10. Dal Maso L, La Vecchia C, Franceschi S, Preston-Martin S, Ron E, Levi F, Mack W, Mark SD, McTiernan A, Kolonel L, et al: A pooled analysis of thyroid cancer studies. V. Anthropometric factors. Cancer Causes Control 2003, 14(2):137-144.
11. Baverstock K, Eglolf B, Pinchera A, Ruchti C, Williams D: Thyroid cancer after Chernobyl. Nature 1992, 359(6390):21-22.
12. Dragoni S, Laforenza F, Lodofo E, Bottino C, Berra-Romani R, Carlo Bongio G, Cinelli MP, Guerra G, Pedrazzoli P, et al: Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2+ concentration. Stem Cells 2011, 29(11):1986-1997.
13. Lodofo F, Laforenza U, Bonetti E, Lim D, Dragoni S, Bottino C, Orso HL, Guerra G, Garini C, Masa M, et al: Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One 2012, 7(9):e42541.
14. Moccia F, Bonetti E, Dragoni S, Fontana J, Lodofo F, Berra Romani R, Laforenza U, Rosti V, Tanzi F: Hematopoietic progenitor and stem cells circulate by surfing on intracellular Ca2+ waves: A novel target for cell-based therapy and anti-cancer treatment? Curr Signal Transd T 2012, 7(7):161-176.
15. Moccia F, Dragoni S, Lodofo F, Bonetti E, Bottino C, Guerra G, Laforenza U, Rosti V, Tanzi F: Store-dependent Ca2+ entry in endothelial progenitor cells as a perspective tool to enhance cell-based therapy and adverse tumour vascularization. Curr Med Chem 2012, 19(34):5802-5818.
16. Dragoni S, Laforenza U, Bonetti E, Lodofo F, Bottino C, Guerra G, Borghesi A, Stronati M, Rosti V, Tanzi F, Moccia F: Canonical Transient Receptor Potential 3 channel triggers VEGF-induced intracellular ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev 2013, 22(19):2561-2580.
17. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ: Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 2007, 7(7):519-530.
18. Sanchez-Hernandez Y, Laforenza F, Bonetti E, Fontana J, Dragoni S, Russo M, Avelino-Cruz JE, Schnelli S, Testa D, Guerra G, et al: Store-operated Ca2+ entry is expressed in human endothelial progenitor cells. Stem Cells Dev 2010, 19(12):1967-1981.
19. Rodenick HL, Cook SJ: Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 2008, 8(5):361-375.
20. Sorice A, Guerra G, Cinelli MP, Testa D, Galli V, Macchi V, De Caro R: Parapharyngeal eotic thyroid: the possible persistence of the lateral thyroid anlage. Clinical case report. Surg Radiol Anat 2004, 26(4):338-343.
21. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ: Moazzafar EL, Moirer B, Piscini S, Schlumberger M, et al: Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19(11):1167-1214.
22. Guerra A, Marotta V, Deandrea M, Motta M, Limone PP, Caleo A, Zeppe P, Espostio S, Fulciniti F, Vitale M: BRAFV600E associates with cytoplasmatic localization of p27kip1 and higher cytokeratin 19 expression in papillary thyroid carcinoma. Endocrine 2013, 44(1):165-171.
23. Vitale M: Intratumor BRAFV600E: Heterogeneity and Kinase inhibitors in the Treatment of Thyroid Cancer: A Call for Participation. Thyroid 2013, 23(4):517-519.
24. Vitale M: SEREX: a promising approach for identification of thyroid cancer serological biomarkers. Clin Endocrinol (Oxf) 2013, 79(12):12-13.
25. Kim MT, Alexander EK: Diagnostic use of molecular markers in the evaluation of thyroid nodules. Endocr Pract 2012, 18(3):796-802.
26. Zeppe P, Cazzonili I, Peluso AL, Troncone G, Lucariello A, Picardi M, Carella C, Pane F, Vetrani A, Palombini L: Cytologic, flow cytometry, and molecular assessment of lymphoid infiltrate in fine-needle cytology samples of Hashimoto thyroiditis. Cancer 2009, 117(3):174-184.
27. Bellevicne C, Cazzonili I, Malapelle U, Zeppe P, Troncone G: CYTological and molecular features of papillary thyroid carcinoma with prominent hobnail features: a case report. Acta Cytol 2012, 56(5):560-564.
28. Alexander BK, Kennedy GC, Babel ZW, Gibas ES, Chudow D, Diggans J, Friedman L, Kios RT, LiVolii VA, Mandel SJ, et al: Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 2010, 367(8):705-715.
29. Hodak SP, Rosenthal DS: Information for clinicians: commercially available molecular diagnosis testing in the evaluation of thyroid nodule fine-needle aspiration specimens. Thyroid 2013, 23(2):131-134.
30. Santini M, Fiorella A, Zeppe P, Vociommini G, Di Crescenzo VG, Laperuta P: Role of diffusing capacity in predicting complications after lung resection for cancer. Thorac Cardiovasc Surg 2007, 55(6):391-394.
31. Zeppe P, Varone V, Cozzolino I, Salvatore D, Vetranì A, Palombini L: Fine needle cytology and flow cytometry of ectopic cervical thymoma: a case report. Acta Cytol 2010, 54(Suppl):998-1002.
32. Gervasi R, Orlando G, Lerose MA, Amato B, Docimo G, Zeppe P, Puzziello A: Thyroid surgery in geriatric patients: a literature review. BMC Surg 2012, 12(Suppl 1):S16.
33. Passler C, Avanesian R, Kaczirek K, Prager G, Schueba C, Niederle B: Thyroid surgery in the geriatric patient. Arch Surg 2002, 137(11):1243-1248.
34. Rosai J, Carcangiu ML, De Lellis RA: Tumors of the thyroid gland. In Atlas of tumor pathology, third series, fascicle 5. Washington DC: Armed Forces Institute of Pathology;Rosai J SL. 1992:49-62.
35. British Thyroid Association, Royal College of Physicians: Fine needle aspiration cytology (FNAC). Guidelines for the Management of Thyroid Cancer 2nd edition Royal College of Physicians London: Peras P; 2007, 9-10.
36. Zeppa P, Barra E, Napolitano V, Cozzolino I, Troncone G, Picardi M, De Renzo A, Mainenti PP, Vetranì A, Palombini L: Impact of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) in lymph nodal and mediastinal lesions: a multicenter experience. Diagn Cytopathol 2011, 39(10):723-729.
37. D’Antonio A, Baldi C, Memoli D, Caléo A, Rosamillo R, Zeppe P: Fine needle aspiration biopsy of intraparotid spindle cell lipoma: a case report. Diagn Cytopathol 2013, 41(2):171-173.
38. Cozzolino I, Viglieri E, Sosa Fernandez LV, Selleri C, Pepe S, Vitale M, Triggiani M, Zeppe P: Non lymphomatous donal B-Cell populations in enlarged lymph nodes in acquired immunodeficiency syndrome. Infez Med 2012, 20(Suppl 2):35-42.
39. Cozzolino I, Nappa S, Picardi M, De Renzo A, Troncone G, Palombini L, Zeppe P: Clonal B-cell population in a reactive lymph node in acquired immunodeficiency syndrome. Diagn Cytopathol 2009, 37(12):910-914.
40. Cipullo C, Amato B, Viglieri E, Di Crescenzo V, Zeppe P: Lymph node fine needle cytology in the diagnosis of infectious diseases and reactive unspecific processes. Infez Med 2012, 20(Suppl 3):30-33.
41. Stanzone B, Cozzolino I, Arpino G, Viglieri E, Virginia SF, Zeppe P: Multiple metachronous proliferative fasciitis occurring in different anatomic regions: a case report and review of the literature. Pathol Res Pract 2012, 208(2):126-130.
42. Guerra A, Sapio MR, Marotta V, Campanile E, Rossi S, Forno I, Fugazzola L, Budillon A, Moccia T, Feni G, et al: The Primary Occurrence of BRAFV600E Is a Rare Clonal Event in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab 2012, 97(2):517-524.
43. Guerra A, Fugazzola L, Marotta V, Crillo M, Rossi S, Cirelli V, Forno I, Moccia T, Budillon A, Vitale M: A high percentage of BRAFV600E alleles in papillary thyroid carcinoma predicts a poorer outcome. J Clin Endocrinol Metab 2012, 97(7):2333-2340.
44. Marotta V, Guerra A, Zatelli MC, Uberti ED, Stasi VD, Faggiano A, Colao A, Vitale M: BRAF mutation positive papillary thyroid carcinoma is less advanced when Hashimoto's thyroiditis lymphocytic infiltration is present. Clin Endocrinol (Oxf) 2013.
45. Feldt-Rasmussen U: Iodine and cancer. Thyroid 2001, 11(S):483-486.
46. Sapio MR, Guerra A, Marotta V, Campanile E, Formisano R, Deandrea M, Motta M, Limone PP, Feni G, Rossi G, et al: High growth rate of benign thyroid nodules bearing RET/PTC rearrangements. J Clin Endocrinol Metab 2011, 96(8):E916-919.
47. Marotta V, Guerra A, Sapio MR, Vitale M: RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur J Endocrinol 2011, 165(4):499-507.
48. Nakazawa T, Kondo T, Kobayashi Y, Takamura N, Murata S, Kameyama K, Muramatsu A, Ito K, Kobayashi M, Katoh R: RET gene rearrangements (RET/PTC1 and RET/PTC3) in papillary thyroid carcinomas from an iodine-rich country (Japan). Cancer 2005, 104(S2):1941-951.
49. Elisei R, Romci C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, Basolo F, Demidchik EP, Miccoli P, Pinchera A, et al: RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 2001, 86(7):3211-3216.
50. Sapio MR, Posca D, Troncone G, Petrinato G, Palombini L, Rossi G, Feni G, Vitale M: Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J Endocrinol 2006, 154(2):341-348.

Cite this article as: Guerra et al. Diagnostic utility of BRAFv600e mutation testing in thyroid nodules in elderly patients. BMC Surgery 2013 13(Suppl 2):S37.