We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,100 Open access books available
167,000 International authors and editors
185M Downloads

154 Countries delivered to
TOP 1% Our authors are among the
most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

Epilepsy is a disease that affects about 40 million people worldwide (Njamshi et al., 2010). In 1968, the prevalence of epilepsy in Africa was about 4.8 to 40‰. In 1996, Diop and collaborators reported in Senegal a prevalence of epilepsy of 21‰ (Diop et al., 1996). In 2006, Ngounou and collaborators estimated the prevalence in sub-Saharan Africa to be two or three time higher than the rate in developed world (Ngounou et al., 2007). In Cameroon, some epidemiological studies on epilepsy have shown that, the prevalence of epilepsy is estimated to vary from 5-136/1000. The highest ones are reported in some villages of the Cameroon Central Province located in the Sanaga and Mbam River Valley (Nchoji Nkwi & Tioko Ndonko, 1989; Dongmo et al., 2000; Preux et al., 2000; Boussinesq et al., 2002; Kamgnjo et al., 2003; Dongmo et al., 2004; Prischich et al., 2008). Cameroon is one of the countries most affected by epilepsy in Africa and in the world. Thus, epilepsy is among the major public health problems in Cameroon. In Africa and in Cameroon particularly, phytotherapy in traditional medicine still plays an important role in the management of diseases, mainly among populations with very low income (Geoffrey & Kirby, 1996). And phytotherapy relies on the use of a wide variety of plant species. Annona muricata Linn (Annonaceae), Annona senegalensis Pers (Annonaceae), Bryophyllum pinnatum (Lam) Oken (Crassulaceae), Citrus sinensis (Linn) Osbeck (Rutaceae), Clerodendron thomsoniae Balf (Verbenaceae), Daniellia oliveri (Rolfe) Hutch and Dalz (Caesalpiniaceae), Datura stramonium Linn (Solanaceae), Detarium microcarpum Gui et Perr (Caesalpiniaceae), Euphorbia hirta Linn (Euphorbiaceae), Flacourtia indica Willd (Flacourtiaceae), Hymenocoridia acida Tul (Hymenocardiaeaceae), Jatropha gossypifolia Linn (Euphorbiaceae), Khaya senegalensis A Juss (Desrousseaux) (Meliaceae), Mentha cordifolia Auct (Lamiaceae), Prosopis Africana Guill and Perr (Taub) (Mimosaceae), Ricinus communis Linn (Euphorbiaceae), Securidaca longepedunculata Fres (Polygalaceae), Senna singueana (Delile) Lock 1988 (Caesalpinaceae), Terminalia glaucescens Planch. ex Benth (Combretaceae), Terminalia mollis Laws (Combretaceae), Tetrapleura tetraptera Taub (Schum Thomn)

1 G.S. Taiwe1, F.C.O. Moto1, G.T. Ngoupaye1, R.R.N. Vougat1, V.D. Sakoue1, C. Gwa1, E.R. Ayissi2, C. Dong2, A. Rakotonirina2 and S.V. Rakotonirina2

1 Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
2 Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
(Mimosaceae), *Trichilia emetica* Vahl (Meliaceae) and *Vitellaria paradoxa* C F Gaertn (Sapotaceae) are plants that are being used empirically in traditional medicine in Cameroon to treat epilepsy and diseases related to the brain like agitations, anxiety, convulsions, dizziness, headaches, insomnia, migraines, pains and schizophrenia according to our traditional Healers and the literature (Abbiw, 1990; Adjanohoun et al., 1984, 1996; Arbonnier, 2000; Berhaut, 1975; Biholong, 1986; Bouquet, 1969; Brenan, 1959; Dalziel, 1937; Hutchinson & Dalziel, 1958; Iwu, 1993; Joyner, 2004; Malgras, 1992; Mutasa et al., 1990; Nwaiwu & Akah, 1986; Pousset, 1989; Raponda-Walker & Silans, 1961; Saulnier, 1998) (Table 1). Though the literature showed a lot of pharmacological studies done

Name of the plant	Part of the plant used	Form of the medicine	Diseases	Chemical characterization	Pharmacological properties	Country
Annona muricata	Leaves	Infusion	Insomnia, diabetes, Spasms, Fever	Steroid, cardiac glycosides	Antimicrobial	Cameroon, Forest areas
Annona senegalensis	Leaves	Infusion	Convulsions, Epilepsy, Sterility, diarrhoea, dysentery		anticonvulsant	Cameroon, Central Africa, West Africa, South Africa
Bidens pilosa	Decoction	Dizziness, migraines, headaches, rheumatism			Anti hypertensive	Cameroon, Central America
Bryophyllum pinnatum	Application on head Decoction	Convulsions, rheumatism, Arthritis	Flavonoids, antraquinones		Antinociceptive, anti-inflammatory antidiabetic	Central Africa
Citrus sinensis	Leaves + Flowers, Roots	Decoction Infusion	Epilepsy, convulsions, Insomnia, agitation, Headaches, Malaria fever, Anxiety, schizophrenia		Sedative	Humid tropical areas
Clerodendron thomsoniae	Leaves	Roots	Epilepsy, convulsions, muscular spasm	Flavonoids, coumarins, rutin, apigenin, luteolin, naringin, chrysin, quercetin	Antiparasitic	Cameroon, India
Daniellia oliveri	Barks	Roots	Epilepsy, Migraine, stomach-ache, Epilepsy, anxiety, convulsions, gastritis	Alkaloids, atropine		Angola, Cameroon, Sudan, West Africa, Central Africa
Datura stramonium	Fruits, Leaves	Decoction Infusion	Epilepsy, Coughs, asthma, pains	Alkaloids, atropine		Africa, Asia, America, Europe
Detarium microcarpum	Leaves	Decoction	Dizziness, schizophrenia, paralytic malaria, diarrhoea, Epilepsy, Pains			West Africa, Central Africa
Euphorbia hirta	Whole plant	Decoction	Convulsions, Insomnia, Diarrhoea, amoeba, ashy, coughs, pains	Alkaloids, tannins	Anxiolytic	Africa continent
Flacourtia indica	Fruits, Leaves	Decoction	Epilepsy, headache, fever, stomach-ache, diarrhoea, Sleep disorders	beta-sitosterol, butyrolactone, sterols, flavonoids, coumarins, terpenoids, phenolics	Antiplasmodial Protection against liver toxicity	Africa, Europe

(Mimosaceae), *Trichilia emetica* Vahl (Meliaceae) and *Vitellaria paradoxa* C F Gaertn (Sapotaceae) are plants that are being used empirically in traditional medicine in Cameroon to treat epilepsy and diseases related to the brain like agitations, anxiety, convulsions, dizziness, headaches, insomnia, migraines, pains and schizophrenia according to our traditional Healers and the literature (Abbiw, 1990; Adjanohoun et al., 1984, 1996; Arbonnier, 2000; Berhaut, 1975; Biholong, 1986; Bouquet, 1969; Brenan, 1959; Dalziel, 1937; Hutchinson & Dalziel, 1958; Iwu, 1993; Joyner, 2004; Malgras, 1992; Mutasa et al., 1990; Nwaiwu & Akah, 1986; Pousset, 1989; Raponda-Walker & Silans, 1961; Saulnier, 1998) (Table 1). Though the literature showed a lot of pharmacological studies done

Name of the plant	Part of the plant used	Form of the medicine	Diseases	Chemical characterization	Pharmacological properties	Country
Annona muricata	Leaves	Infusion	Insomnia, diabetes, Spasms, Fever	Steroid, cardiac glycosides	Antimicrobial	Cameroon, Forest areas
Annona senegalensis	Leaves	Infusion	Convulsions, Epilepsy, Sterility, diarrhoea, dysentery		anticonvulsant	Cameroon, Central Africa, West Africa, South Africa
Bidens pilosa	Decoction	Dizziness, migraines, headaches, rheumatism			Anti hypertensive	Cameroon, Central America
Bryophyllum pinnatum	Application on head Decoction	Convulsions, rheumatism, Arthritis	Flavonoids, antraquinones		Antinociceptive, anti-inflammatory antidiabetic	Central Africa
Citrus sinensis	Leaves + Flowers, Roots	Decoction Infusion	Epilepsy, convulsions, Insomnia, agitation, Headaches, Malaria fever, Anxiety, schizophrenia		Sedative	Humid tropical areas
Clerodendron thomsoniae	Leaves	Roots	Epilepsy, convulsions, muscular spasm	Flavonoids, coumarins, rutin, apigenin, luteolin, naringin, chrysin, quercetin	Antiparasitic	Cameroon, India
Daniellia oliveri	Barks	Roots	Epilepsy, Migraine, stomach-ache, Epilepsy, anxiety, convulsions, gastritis	Alkaloids, atropine		Angola, Cameroon, Sudan, West Africa, Central Africa
Datura stramonium	Fruits, Leaves	Decoction Infusion	Epilepsy, Coughs, asthma, pains	Alkaloids, atropine		Africa, Asia, America, Europe
Detarium microcarpum	Leaves	Decoction	Dizziness, schizophrenia, paralytic malaria, diarrhoea, Epilepsy, Pains			West Africa, Central Africa
Euphorbia hirta	Whole plant	Decoction	Convulsions, Insomnia, Diarrhoea, amoeba, ashy, coughs, pains	Alkaloids, tannins	Anxiolytic	Africa continent
Flacourtia indica	Fruits, Leaves	Decoction	Epilepsy, headache, fever, stomach-ache, diarrhoea, Sleep disorders	beta-sitosterol, butyrolactone, sterols, flavonoids, coumarins, terpenoids, phenolics	Antiplasmodial Protection against liver toxicity	Africa, Europe
Name of the plant	Part of the plant used	Form of the medicine	Diseases	Chemical characterization	Pharmaco-logical properties	Country
---------------------------	------------------------	----------------------	--	--------------------------	------------------------------	-------------------
Hymenocardia acida	Leaves, Barks, Roots	Infusion, Powder	Headaches, fever, hypotension, diabetes, sickle cells			Cameroon, West Africa
Jatropha gossypifolia	Leaves, Roots	Decoction, Infusion, Powder	Convulsions, fever, hypotension, Convulsions;			Cameroon, West Africa
Khaya senegalensis	Leaves, Roots	Decoction	Headaches, Epilepsy, schizophrenia, malaria	Saponins, Tannins, triterpenes	Antiinflammatory	Cameroon
Mentha cordifolia	Leaves	Infusion	Insomnia, muscle relaxant, Fever		Antioxidant	Cameroon
Prospis africana	Leaves, Barks	Decoction	Epilepsy, insomnia, anxiety states, headaches, migraine, agitation, fever		Antitryptosominal	Cameroon, West Africa
Ricinus communis	Leaves, Flowers, Roots	Decoction	Epilepsy, convulsions, headaches, diarrhea, asthma		Neuroleptic like properties	Central Africa, West Africa
Securidaca longepedunculata	Barks, Roots, Leaves	Infusion	Epilepsy, Epilepsy, Malaria, schizophrenia, Pain, Rheumatism		Anxiolytic	Cameroon, West Africa
Senna singueana	Leaves, Barks, Roots	Decoction, Infusion	Fever, Conjunctivitis, Convsulsions, gonorrhea, bilharzias, stomach-aches, constipation, Epilepsy, syphilis,			Cameroon, Mali, Soudan, East and South Africa.
Terminalia glaucescens,	Barks	Decoction, Infusion	Epilepsy, Epilepsy, Leucorrhoea, Hepatitis, leucorrhoea Epilepsy, diarrhea, leucorrhoea	7-Methylphyscion Cassiamin A		Central Africa, East and South Africa.
Terminalia mollis	Roots	Infusion	Epilepsy		Anconvulsant	Angola, Cameroon, Sudan, West Africa, Central Africa
Trechilia emetica	Barks	Decoction	Epilepsy, anti-parasitic diseases Head aches	Tannins, sterols		Savannah belt, open woodland in Africa
Vitelaria paradoxa	Leaves, Barks	Decoction	Convulsions, Epilepsy, Head aches		Antimicrobial	Cameroon, Brazil

Table 1. Parts of the plant, form of the medicine and diseases treated in traditional medicine. Adeyemi et al., 2010; Adjanoehoum et al., 1984; Adjanoehoum et al., 1996; Adzu et al., 2003; Agassounon et al. 2008; Anete et al., 1998; Anuradha et al., 2008; Arbonnier, 2000; Berhaut, 1975; Brenan, 1959; Dimo et al., 2002; El-Mahmood et al., 2008; Ezugwu & Odoh, 2003; Gusman-Gutierez & Navarrete, 2009; Iwu, 1993; Joyner, 2004; Lompo et al., 1998; Malgras, 1992; Mutasa et al., 1990; Nazneen et al., 2009; Ogundiya, 2009; Ojewole, 2005; Palgrave, 2003; Pathak et al., 2010; Pousset, 1989; Satyarayana et al., 1996; Sunday et al., 2009; Saulnier, 1998; Seema Zareen, 2006; Worapan et al., 2009.
with these plants, very few were done to study their sedative and anticonvulsant properties. This study was undertaken to evaluate the anticonvulsant and sedative properties of these plants used in the treatment of insomnia and epilepsy in traditional medicine in Africa, particularly in Cameroon.

2. Materials and methods

2.1 Animals

Adult male mice (Mus musculus Swiss; 22 ± 2 g; 6 or 8 per group) were used for this study. The animals were housed in standard cages at 25°C, on a 12/12 h light-dark cycle. They were supplied with food and water ad libitum. Drugs were administered in a volume of 10 ml/kg of mice body weight. The study was conducted in accordance with the nationally (N°.FWA-IRB00001954) and internationally accepted principles for laboratory animal use and care. In diazepam or sodium thiopental-induced sleep tests, mice were divided into negative control group that received distilled water and four test groups that received different doses of the plant extracts. In anticonvulsant tests, there was one more group that received a known anticonvulsant compound and served as a positive control.

2.2 Plant material

A voucher specimen of each plant was authenticated by a botanist, Professor Mapongmetsem Pierre Marie, Department of Biological Sciences, University of Ngaoundéré and deposited at the National Herbarium of Cameroon in Yaoundé.

2.3 Preparation of the extracts

2.3.1 Decoction

10 g of each plant material were macerated for 1 h in an amount of distilled water (25, 50, 75, 100 or 150 ml) according to the plant. The mixture was boiled for 20 min. After cooling, the supernatant (decoction) was collected and filtered. The decoction of each plant was diluted in distilled water to obtain less concentrated solutions. In another experiment, the decoction was dried and the w/w yield of the extract was calculated (table 2). The decoctions were prepared according to the methods close to the ones used in traditional medicine.

2.3.2 Maceration

10 g of dried fruits of Datura stramonium were macerated in 50 ml of distilled water. After 1 h the supernatant was collected, filtered and used in mice. The w/w yield of the extract was obtained (table 2).

2.4 Anticonvulsant tests

2.4.1 N-methyl-D-aspartate (NMDA) test

Six groups of 6 or 8 mice received different treatments. Group I (negative control) was treated with distilled water. Groups II to V (test groups) were treated with 4 doses of the plant extracts. Group VI (positive control) was treated with 3 mg/kg of CGP 37849 i.p. or 33 nMol/kg of D-AP7 i.p. Mice were injected subcutaneously with NMDA, 75 mg/kg 1 h after administration of the different treatments. They were observed for 30 min. Animals
that did not exhibit turning behaviour within the 30 min of observation were declared protected. Turning behaviour was characterised by two consecutive 360° cycles fulfilled by the same animal (Croucher et al., 1982; Ngo Bum et al., 2001; 2009a; 2009b; Schmutz et al., 1990).

2.4.2 Strychnine (STR) test
Six groups of 6 or 8 mice received different treatments as above, except that group VI (positive control) was treated with clonazepam (3 mg/kg, i.p.). Convulsions followed by death were induced in mice by the i.p. injection of 2.5 mg/kg STR nitrate 1 h after administration of the different treatments. The animals which survived more than 10 min after strychnine injection were qualified protected (Ngo Bum et al., 2001, 2009a).

2.4.3 Picrotoxine (PIC) test
Six groups of 6 or 8 mice received different treatments as above, except that group VI (positive control) was treated with clonazepam (0.4 mg/kg, i.p.). Clonic seizures were induced in mice by the i.p. injection of 7.5 mg/kg PIC 1 h after administration of the different treatments. The animals which did not convulse within the 15 min of observation after PIC injection were qualified protected (Lehmann et al., 1988; Ngo Bum et al., 2001).

2.4.4 Pentylenetetrazol (PTZ) test
Six groups of 6 or 8 mice received different treatments as above, except that group VI (positive control) was treated with clonazepam (0.1 mg/kg, i.p.). Clonic seizures were induced in mice by the i.p. injection of 70 mg/kg PTZ 1 h after administration of the different treatments. The animals that did not convulse within the 10 min from the injection of PTZ were qualified protected (Ngo Bum et al., 2001, 2009a, 2009b).

2.4.5 Isonicotinic hydrazide acid (INH) test
Six groups of 6 or 8 mice received different treatments as above, except that group VI (positive control) was treated with diazepam, 10 mg/kg (per os). Animals were injected i.p. with INH 250 mg/kg 1 h after the administration of the different treatments. The time to the onset of clonic or tonic seizures was recorded. (Bernasconi et al., 1988; Ngo Bum et al., 2001).

2.5 Diazepam or sodium thiopental-induced sleep in mice
Five groups of 6 or 8 mice received different treatments. Group I (negative control) was treated with distilled water and groups II to V (test groups) were treated with 4 doses of the plant extracts. The methods described by Beretz et al., (1978) and modified by Rakotonirina et al., (2001) were used. Sleep potentiating effects of the plant were studied in mice that received sodium thiopental or diazepam at a dose of 50 mg/kg (i.p.) 1 hour after the administration of the different treatments. The time between the loss of the straightening reflex and the regain of this reflex measured the sleeping time. The loss or the regain of the straightening reflex was measured by stimulating the external ear. When the mouse anterior paw does not move after stimulation with horsehair, the animal is sleeping. When the mouse is awakened, it moves and shakes its paw.
Table 2. Quantities of plants powder and distilled water, and part of the plant used to prepare the decoctions.

Name of the plant	Part of the plant used	Quantity plant powder (g)	Quantity of water (ml)	Yield (%)	Root of administration
Annona muricata	Fresh leaves	10	50	6	i.p.
Annona senegalensis	Dried leaves	10	75	5	i.p.
Bidens pilosa	Fresh leaves	10	25	3.5	i.p.
Bryophyllum pinnatum	Fresh leaves	10	25	7	i.p.
Citrus sinensis	Fresh leaves	10	50	5	i.p.
Clerodendron thomsoniae	Dried leaves	10	50	6.7	i.p.
Daniellia oliveri	Dried barks	10	50	9.9	p.o.
Dattia stramonium	Dried fruits	10 (macerate)	50	7	i.p.
Detarium microcarpum	Dried roots	10	50	7.43	p.o.
Euphorbia hirta	Fresh plant	10	50	7	i.p.
Flacourtia indica	Dried barks	10	100	10	p.o.
Flacourtia indica	Dried barks	10	100	10	p.o.
Hymenocardia acida	Fresh leaves	10	25	2.19	i.p.
Jatropha gossypijlofa	Dried leaves	10	50	7	i.p.
Khaya senegalensis	Dried leaves	10	75	5	i.p.
Mentha cordifolia	Fresh leaves	10	50	7	i.p.
Prosopis Africana	Dried leaves	10	50	5.6	i.p.
Ricinus communis	Fresh leaves	10	50	6	p.o.
Securidaca longepedunculata	Dried roots	10	150	10	i.p.
Senna singeana	Dried roots	10	50	8	p.o.
Terminalia glaucescens	Dried roots	10	100	7.6	p.o.
Terminalia mollis	Dried roots	10	50	7.1	p.o.
Tetrapleura tetraperta	Dried barks	10	50	4.2	i.p.
Trichilia emetic	Fresh roots	10	50	6.3	p.o.
Vitelaria paradoxa	Fresh leaves	10	150	12.6	i.p.

i.p. (intraperitoneal), p.o. (per os).

2.6 Statistical analysis

Three parameters were measured: the protection against chemically-induced seizures, the latency to the onset of seizures (min) in INH test, the latency to the onset of sleep and the sleeping time (min) in the sleep potentiation test. Data of the control groups were compared to data of groups treated with the plants extracts and to data of the positive control groups. The statistical analysis were done using Fisher exact test and Anova followed by Dunnett (REGWQ). P<0.05 was considered significant.

2.7 Chemicals

D-2-amino-7-phosphonoheptanoate, Clonazepam, Isonicotinic hydrazide acid, N-methyl-D-aspartate, pentylenetetrazol, picrotoxine, sodium thiopental and strychnine are from Sigma Chemical, USA. Diazepam is from Roche, France.
3. Results

3.1 Sedative properties

The extracts of twenty one plants increased in a dose-dependent manner the sleeping time induced by sodium thiopental or diazepam. The most potent was *Datura stramonium*. it multiplied by a factor of 5 the sleeping time of the control group (from 16 ± 7 to 94 ± 25 min at a dose of 70 mg/kg), but this extract was very toxic for animals. The decoctions of eight plants multiplied by a factor of 4 the sleeping time of their control group: *Annona senegalensis* (from 19 ± 4 to 89 ± 29 min at a dose of 67 mg/kg), *Clerodendron thomsoniae* (from 19 ± 3 to 94 ± 30 min at a dose of 134 mg/kg), *Daniellia oliveri* (from 20 ± 8 to 81 ± 13 min at a dose of 198 mg/kg), *Hymenocardia acida* (from 20 ± 11 to 85 ± 21 min at a dose of 87.6 mg/kg), *Securidaca longepedunculata* (from 18 ± 3 to 78 ± 14 min at a dose of 66.7 mg/kg), *Tetrapleura tetraptera* (from 19 ± 3 to 91 ± 15 min at a dose of 84 mg/kg) and *Trichilia emetica* (from 17 ± 1 to 84 ± 10 min at a dose of 126 mg/kg). The sleeping time of the control groups were multiplied by a factor of 3 by six plants: *Flacourtia indica* (from 16 ± 12 to 49 ± 3 min at a dose of 100 mg/kg), *Jatropha gossypiifolia* (from 11 ± 5 to 43 ± 15 min at a dose of 140 mg/kg), *Prosopis Africana* (from 19 ± 3 to 61 ± 26 min at a dose of 112 mg/kg), *Senna singueana* (from 24 ± 2 to 86 ± 5 min at a dose of 20 mg/kg), *Terminalia glaucescens* (from 37 ± 13 to 120 ± 21 min at a dose of 76 mg/kg), and *Vitellaria paradoxa* (from 25 ± 4 to 84 ± 20 min at a dose of 84 mg/kg). The decoctions of five plants multiplied by a factor of 2 the sleeping time of their control group: *Annona muricata* (from 31 ± 11 to 71 ± 15 min at a dose of 120 mg/kg), *Bidens pilosa* (from 31 ± 2 to 80 ± 2 min at a dose of 140 mg/kg), *Detarium microcarpum* (from 20 ± 6 to 52 ± 12 min at a dose of 111.45 mg/kg), *Euphorbia hirta* (from 56 ± 16 to 145 ± 10 min at a dose of 140 mg/kg) and *Mentha cordifolia* (from 10 ± 2 to 24 ± 3 min at a dose of 140 mg/kg). *Bryophyllum pinnatum* induced a slight increase of the sleeping time. Only *Citrus sinensis* and *Kaya senegalensis* could not increase the total sleep time of mice (table 3). Some of those plants also reduced the onset time of sleep (Table 4).

3.2 Anticonvulsant properties

3.2.1 On PTZ- induced convulsions

78.3% of plants extract were effective against PTZ-induced convulsions. *Annona muricata*, *Annona senegalensis*, *Bidens pilosa*, *Clerodendron thomsoniae*, *Daniellia oliveri*, *Datura stramonium*, *Detarium microcarpum*, *Euphorbia hirta*, *Flacourtia indica*, *Hymenocardia acida*, *Mentha cordifolia*, *Ricinus communis*, *Securidaca longepedunculata*, *Senna singueana*, *Terminalia glaucescens*, *Terminalia mollis*, *Tetrapleura tetraptera*, *Trichilia emetica*, and *Vitellaria paradoxa* protected mice against convulsions induced by PTZ (table 5).

3.2.2 On STR- induced convulsions

The percentage of plants extracts that protected mice against STR-induced convulsions was 77.8%. *Annona muricata*, *Bidens pilosa*, *Daniellia oliveri*, *Detarium microcarpum*, *Flacourtia indica*, *Hymenocardia acida*, *Jatropha gossypiifolia*, *Khaya senegalensis*, *Mentha cordifolia*, *Prosopis Africana*, *Securidaca longepedunculata*, *Senna singueana*, *Terminalia mollis*, and *Trichilia emetica* protected mice against STR- induced convulsions (table 5).

3.2.3 On PIC- induced convulsions

The percentage of plants extracts that protected mice against PIC-induced convulsions was 87.5%. *Clerodendron thomsoniae*, *Flacourtia indica*, *Mentha cordifolia*, *Securidaca longepedunculata*, *Trichilia emetica* and *Vitellaria paradoxa* protected mice against convulsions induced by PIC (table 5).

www.intechopen.com
Senna singueana, Terminalia glaucescens and Vitellaria paradoxa protected mice against convulsions induced by PIC (table 5).

Plant	Doses of the plants in mg/kg
Daniellia olivieri	CON 49.5 9 ± 3 6 ± 1 6 ± 1 5 ± 2 3 ± 1**
Detarium microcarpum	CON 37.15 9 ± 3 7 ± 2 6 ± 3 4 ± 2* 6 ± 3
Flacouria indica	DIAZ 4 ± 2 10 25 4 ± 4 11 ± 6 4 ± 4
Hymenocardia acida	DIAZ 4 ± 2 8.7 21.9 6 ± 1* 5 ± 1** 3 ± 1***
Mentha cordifolia	DIAZ 3 ± 1 14 35 2 ± 1 6 ± 3 4 ± 1
Securidaca longepedunculata	CON 10 20 5 ± 1 4 ± 1* 4 ± 1*
Senna singueana	DIAZ 15 ± 3 6 ± 1*** 6 ± 1*** 7 ± 1*** 8 ± 1***
Terminalia glaucescens	DIAZ 4 ± 2 9.5 19 5 ± 1 6 ± 3 2 ± 2
Terminalia mollis	DIAZ 14 7 ± 2 35 2 ± 1** 3 ± 1** 4 ± 1*
Trichilia emetica	DIAZ 6 ± 1 12.6 33 5 ± 1 4 ± 1*** 2 ± 1***

Data represent the onset time of sleep. Values are means ± ESM. N = 6 or 8 per dose. *<p 0.05, **<p 0.01, ***<p 0.001 vs control, Anova followed by Dunnett (REGWQ). CON = distilled water, DIAZ = diazepam 50 mg/kg.

Table 3. The effects of the different plants on the onset time of sleep induced in mice by sodium thiopental or diazepam.

3.2.4 On NMDA-induced turning behaviour

The percentage of plants extracts that protected mice against NMDA-induced turning behaviour was 100%. Annona muricata, Bidens pilosa, Bryophyllum pinnatum, Citrus sinensis, Euphorbia hirta, Khaya senegalensis protected mice against turning behaviour induced by NMDA (table 5).

3.2.5 On MES-induced convulsions

The percentage of plants extracts that protected mice against MES-induced convulsions was 25%. Securidaca longepedunculata protected mice against convulsions induced by MES (table 5).

3.2.6 On INH-induced convulsions

The percentage of plants extracts that were effective against INH-induced convulsions in mice was 60%. Ricinus communis, Securidaca longepedunculata, Senna singueana delayed the onset of seizures in INH test (table 5).

3.2.7 Plants efficacy

Flacouria indica, Ricinus communis, Securidaca longepedunculata, Senna singueana, Terminalia glaucescens showed very good anticonvulsant activities (80 to 100% of protection against PTZ, PIC or INH induced seizures). The other eighteen plants tested protected 50 to 75% of...
Table 4. The effects of the different plants on the total sleep time induced in mice by sodium thiopental or diazepam.

Plant	Doses of the plants in mg/kg	CON	31 ± 11	51 ± 26*	67 ± 2***	68 ± 2***	71 ± 15***
Annona marilata	CON	12	30	60	120		
Annona senegalensis	DIAZ	19 ± 4	6.7	17	34	46	
Bidens pilosa	DIAZ	31 ± 2	6.7	17	34	46	
Bryophyllum pinnatum	DIAZ	21 ± 2	28	70	140	290	
Citrus sinensis	DIAZ	56 ± 24	10	25	50	100	
Clorodendron thomsoniae	CON	19 ± 3	13.4	33.5	67	134	
Daniella oliveri	CON	20 ± 8	49.5	99	148.5	198	
Datura stramonium	CON	16 ± 7	3.3	3.5	35	70	
Dietraria microcarpus	DIAZ	20 ± 6	37.15	47.3	111.45	148.6	
Exoptoria hirta	DIAZ	56 ± 16	14	35	70	140	
Flacourtia indica	CON	16 ± 12	10	25	50	100	
Hymenocardia acida	CON	20 ± 11	8.7	21.9	43.8	87.6	
Jatropha gossypiifolia	CON	11 ± 5	14	35	70	140	
Kaya senegalensis	CON	63 ± 15	6.7	17	34	67	
Merida cordifolia	DIAZ	19 ± 3	14	35	70	140	
Prosopis africana	DIAZ	19 ± 3	11.2	28	56	112	
Securidaca longepediculata	DIAZ	18 ± 3	10	20	50	66.7	
Semia singapurica	DIAZ	24 ± 2	20	40	80	160	
Terminalia glauccenss	CON	37 ± 13	9.5	19	38	76	
Terminalia molina	CON	17 ± 1	14	35	70	140	
Tetrapleura tetraptera	DIAZ	19 ± 3	8.4	21	42	84	
Trichilia emetica	DIAZ	17 ± 1	12.6	33	66	126	
Vitellaria paradoxa	DIAZ	25 ± 4	12	21	42	84	

Data represent the total sleep time. Values are means ± ESM. N = 6 or 8 per dose, *p< 0.05, **p<0.01, ***p< 0.001 vs control, Anova followed by Dunnett (REGWQ). CON = distilled water, DIAZ = diazepam 50 mg/ kg, THIO = sodium thiopental 50 mg/ kg.
Plant Name	Doses of the plants in mg/kg	Doses of the plants in mg/kg	
Annona muricata			
PTZ 0	16	50*	100***
STR 0	12	0	100***
NMRA 0	16	33	100***
Annona senegalensis			
PTZ 0	6.7	17	67
STR 0	12	37	50*
Bilens pilosa			
PTZ 0	14	35	140
STR 0	16	50*	100***
NMRA 0	16	50*	100***
Bryophyllum pinnatum			
PTZ 0	28	70	140
STR 0	16	33	9
NMRA 0	16	33	9
Citrus sinensis			
PTZ 0	10	25	100
STR 0	0	0	100
NMRA 0	0	0	100
Clorodendron Thomsoniae			
PTZ 0	13.4	33	67
STR 0	12	37	62*
Danellia alveari			
PTZ 0	14.5	99	148.5
STR 0	25	37	37
NMRA 0	16	66**	50*
Dietaria microcarpum			
PTZ 0	37	37	111
STR 0	30	33	0
Euphrasia tarta			
PTZ 0	14	35	140
STR 0	12	37	37
NMRA 0	33	33	50*
Ficus carica			
PTZ 0	10	25	100
STR 0	20	40	40
NMRA 0	33	33	50*
Hymenocardia acida			
PTZ 0	8.76	21.9	43.8
STR 0	16	33	33
Jatropha gossypifolia			
PTZ 0	14	35	70
STR 0	0	0	0
NMRA 0	0	0	0
Khaty senegalensis			
PTZ 0	6.7	17	67
STR 0	12	34	25
NMRA 0	16	33	33
Mentha cordifolia			
PTZ 0	14	35	70
STR 0	16	33	33
NMRA 0	16	33	33
Prospis africana			
PTZ 0	11.2	28	112
STR 0	0	0	0
Ricinus communis			
PTZ 0	12	30	60
STR 0	0	62*	50*
Data represent the percentage of protected mice in different tests. N = 6 or 8 per dose, *p < 0.05, **p < 0.01, ***p < 0.001 vs control, Anova followed by Dunnett (REGWQ). CON (negative control) = distilled water, CP (positive control) = clonazepam 0.1 mg/kg for PTZ test, clonazepam 0.4 mg/kg for PIC test, clonazepam 3 mg/kg for STR test, diazepam 10 mg/kg for INH test and D-AP7 33 μmol/kg or CGP 37849 3 mg/kg for NMDA test.

Table 5. The effects of the different plants on the convulsions and turning behaviour induced in mice by INH, NMDA, PIC, PTZ and STR.

Plant	CON	PTZ	STR	PIC	MES	INH
Securidaca longepedunculata						
PTZ	10	67*	67*	67*	67*	67*
STR	0	50*	50*	50*	50*	50*
PIC	0	67**	67**	67**	67**	67**
INH	46 ± 3	62 ± 12**	67 ± 20**	78 ± 21**	97 ± 20***	
Senna singunusa						
PTZ	0	80**	80**	80**	80**	80**
STR	0	60*	60*	60*	60*	60*
PIC	0	40	40	40	40	40
MES	0	20	20	20	20	20
INH	21 ± 1	30 ± 1**	29 ± 6	32 ± 9**	37 ± 1**	42 ± 6**
Terminalia glaucens	CON	9.5	19	38	76	CP
PTZ	0	40	60*	60*	100**	100**
STR	0	40	40	40	40	40
PIC	0	40	40	40	40	40
MES	0	20	20	20	20	20
INH	36 ± 7	41 ± 13	18 ± 5	42 ± 9	47 ± 13	85 ± 26***
Terminalia mollis	CON	14	35	70	140	CP
PTZ	0	50*	50*	50*	50*	50*
STR	0	66**	66**	66**	66**	66**
Tetrapleura tetrapetra	CON	8.4	21	42	84	CP
PTZ	0	25	50*	50*	50*	50*
Trichilia emetica	CON	12.6	33	66	126	CP
PTZ	0	25	50*	50*	50*	50*
STR	0	12	25	25	25	25
Vitellaria paradoxa	CON	12	21	42	84	CP
PTZ	0	12	50*	50*	50*	50*
PIC	0	0	12	50*	37	100**

mice against the induced convulsions. 78% of plants protected both PTZ and STR-induced convulsions. 80.6% of plants protected both PTZ and PIC-induced convulsions. 80.8% of plants protected both STR and PIC-induced convulsions. Finally, 66.7% of plants at the same time protected PTZ, STR and PIC-induced convulsions.

3.2.8 Plants toxicity

Datura stramonium, Ricinus communis and Securidaca longepedunculata were also showed to be toxic. Their extract killed animal in 24h after their administration to mice.

4. Discussion and conclusions

The extracts of twenty one plants (91.3% of plants) increased the sleeping time induced by sodium thiopental or diazepam. The potentiation of the sleep time suggests the presence of sedative properties in the extracts of these plants (Rakotonirina et al., 2001; Ngo Bum et al., 2009a; 2009b). These sedative properties could be related to the presence of some components in the extracts activating the benzodiazepine, barbiturate and/or GABA...
Clinical and Genetic Aspects of Epilepsy

receptors in the GABA_A receptor complex (Rang et al., 1999; Bonin & Orser, 2008; Olkkola & Ahonen, 2008). Diazepam (benzodiazepine) and sodium thiopental (barbiturate) all bind to the GABA_A receptor complex. Diazepam potentiates GABA-mediated inhibition via the increase in the affinity of this inhibitory neurotransmitter to its recognition sites within the GABA_A receptor complex, by increasing the opening frequency of the chloride ion channel which leads to the enhancement of influx of chloride anions into the neuron and subsequent hyperpolarisation (Czapinsky et al., 2005). While sodium thiopental that act on the barbiturate binding site directly gate the chloride ion channel of the GABA_A receptor complex. The sedative properties found here could explain the use of the twenty one plants in traditional medicine in Africa, particularly in Cameroonian in the treatment of insomnia. The first eight more potent plants to induced sedation were: *Datura stramonium* > *Clerodendron thomsoniae* > *Terminalia mollis* > *Trichilia emetica* > *Tetrapleura tetraptera* > *Annona senegalensis* > *Securidaca longepedunculata* > *Hymenocardia acida* > *Daniellia oliveri*. Two plants, *Citrus sinensis* and *Kaya senegalensis* did not show sedative properties. The results also showed that 95.6% of the tested plants possess anticonvulsant properties by inhibiting convulsions induced chemically or electrically. Five plants (*Flacourtia indica*, *Ricinus communis*, *Securidaca longepedunculata*, *Senna singueana*, *Terminalia glaucescens*) showed very good anticonvulsant activities against PTZ, PIC or INH induced seizures. The effect was moderate for the rest of plants. *Tetrapleura tetraptera* one of the plants studied showed also anticonvulsant properties in fruits (Nwaiwu, 1986; Ojewole, 2005). The antagonism of INH, PTZ- and PIC-induced seizures suggests the interaction of these plants with the GABA-ergic neurotransmission (De Deyn et al., 1992; Doctor et al., 1982; Lösch & Schmidt, 1988; Salih & Mustafa, 2008; Perez-Saad & Buznego, 2008). GABA is the main inhibitory neurotransmitter substance in the brain and is widely implicated in epilepsy. Inhibition of GABA-ergic neurotransmission or activity has been shown to promote and facilitate seizures, while enhancement of GABA-ergic neurotransmission is known to inhibit or attenuate seizures (Gale, 1992; Li-Ping et al., 2008). Moreover, some studies indicated that PTZ diminishes the GABAergic tone (Mcdonald & Baker, 1977; Ahmadiani, 2003), probably by a competitive antagonist action on the BZD receptors (Rehavi et al., 1982). Correspondingly, drugs that enhance GABA_A-receptor neurotransmission, such as BZDs (White, 1997; Ahmadiani et al., 2003) can block seizures induced by PTZ. PIC is known to be a non competitive GABA antagonist exerting his effect by blocking the chloride channel in the GABA_A receptor complex. Isoxazide can precipitate convulsions in patients with seizure disorders, and it is regarded as a GABA-synthesis inhibitor (Kale Shubhangi et al., 2010). The antagonism of STR -induced convulsions suggests the presence of anticonvulsant effect through glycine-STR-sensitive receptors (Findlay et al., 2002). Few plants extract antagotanized MES induced convulsions, by probably prolonging neurons sodium channels inactivation (Holmes, 2007). The results show no difference in plants inhibiting convulsions induced by PTZ, PIC and STR. GABA and glycine-STR-sensitive neurotransmission are equally involved. But very few plants produced their anticonvulsant activities by prolonging neurons sodium channels inactivation. *Datura stramonium, Ricinus communis* and *Securidaca longepedunculata* were found toxic and therefore they are not suitable to be used to treat people. The toxicity of *Ricinus communis* could be related to the presence of a very toxic component named ricin (Iwu, 1993). The toxicity of *Datura stramonium* could be related to its delirants or anticholinergics compounds.

www.intechopen.com
5. Conclusion

The purported anticonvulsant and sedative properties of the medicinal plants are scientifically shown. The ethnopharmacological study on Cameroon anticonvulsant and sedative medicinal plants is accurate in 90% of cases. A great amount of plants extract interacted through GABA and glycine-STR-sensitive neurotransmissions to inhibit convulsions. Many anticonvulsant plants also possess sedative properties. Twenty one plants possess sedative properties, but only eighteen plants could be used in traditional medicine in Africa in the treatment of insomnia. Eighteen plants possess at least moderate anticonvulsant effects, while five plants possess very good anticonvulsant properties. However only twenty medicinal plants could be used in the treatment of epilepsy. Three plants were found very toxic.

6. Acknowledgment

We would like to thank Professor AMVAM ZOLLO Paul Henri, Professor Ngounouno Ismaila, and Dr Megueni Clautilde for their support.

7. References

Abbiw, D. K. (1990). *Useful plants of Ghana: West African uses of wild and cultivated plants*. ISBN 185390437, London, United Kingdom.

Adeyemi, O.O.; Akindele, A.J.; Yemitan, O.K.; Aigbe, F.R. & Fagbo, F.I. (2010). Anticonvulsant, anxiolytic and sedative activities of the aqueous root extract of *Securidaca longepedunculata* Fresen. *Journal of Ethnopharmacology*, Vol.130, No.2, (July, 2010), pp. 191-195, ISSN 0378-8741.

Adjanohoun, J.E.; Ake Assi, L.; Chibon, P.; De Vecchy, H.; Duboze, E.; Eyme, J.; Gassita, J.N.; Goudote, E.; Guinko, S.; Keita, A.; Koudogbo, B.; Le Bras, M.; Mourambou, I.; Mve-Mengome, E.; Nguema, M.G.; Ollome, J.B.; Posso, P. & Sita, P. (1984). *Médecine traditionnelle et pharmacopée: contribution aux études ethnobotaniques et floristiques du Gabon*. Editions A.C.C.T. ISBN 0754-0924, Paris, France.

Adjanohoun, J.E.; Aboubakar, N.; Dramane, K.; Ebot, M.E.; Ekpere, J.A.; Enow- Orok, E.G.; Focho, D.; Gbile, Z.O.; Kamanyi, A.; Kamsu-kom, J.; Keita, A.; Mbenkum, T.; Mbi, C.N.; Mbiele, A.L.; Mbone, L.L.; Mubiru, N.K.; Nancy, W.L.; Nkongmeneck, B.; Sabile, B.; Solowora, A.; Tamze, V. & Wirmum, C.K. (1996). *Traditional medicine and pharmacopoeia: Contribution to ethnomedical and floristic studies in Cameroon*. Organization of African Unity Scientific, Technical and Research Commission; Centre National de Production de Manuels Scolaires, ISBN 0716-084, Porto-Novo, Benin.

Adzu, B.; Abbah, J.; Vongtau, H. & Karniyus . (2003). Studies on the use of *Cassia singuea* in malaria ethnopharmacy, *Journal of Ethnopharmacology*, Vol.88, No.2-3, (October 2003), pp. 261-267, ISSN: 0378-8741.

Agassounon Djipko Tchibozo, M.; Sanon, S.; Damintoti, S.K.; Toukourou, F.; de Souza, C., Gbeassor, M., (2008). Appréciation des propriétés antiplasmodiale en vitro de *Flacourtia flavescens* Willd., une plante utilisée dans la médecine traditionnelle en Afrique. 15ème colloque sur la Pharmacopée et la Médecine Traditionnelles Africaines. Vol.15, pp. 156-160. (Décembre 2008), Conseil Africain et Malgache pour l’Enseignement Supérieur (CAMES), Libreville, Gabon.
Ahmadiani, A.; Mandgary, A. & Sayyah, M. (2003). Anticonvulsivant Effect of Flutamide on seizures induced by pentylene tetrazole, involvement of benzodiazepine receptors. *Epilepsia*, Vol.44, No.5, (May 2003), pp. 629-625, ISSN 1528-1167.

Anete, C.F.; Miriam, E.M. A.; Da Costa, M.L.; Ilza, R.B.; Bras, H.D.O. & Cunha, C.D. (1998). Pharmacological Evaluation of Ricinine, a Central Nervous System Stimulant Isolated from *Ricinus communis*. *Pharmacology, Biochemistry and Behavior*, Vol.63, No.3, (November 1998), pp. 367-375, ISSN 0091-3057.

Anuradha, H.; Srikumar, B.N.; Shankaranarayana, Rao, B.S. & Lakshmana, M. (2008). *Euphorbia hirta* reverses chronic stress-induced anxiety and mediates its action through the GABA receptor benzodiazepine receptor-Cl channel complex. *Journal of Neural transmission*, Vol.11, No 3, (September 2008), pp. 35-42, ISSN 1435-1463.

Arbouplier, M. (2000). *Arbres, arbustes et lianes des zones sèches d’Afrique de l’Ouest*. Mali, Ouagadougou: Centre de Coopération Internationale en Recherche Agronomique pour le développement/Muséum national d’histoire naturelle/Union mondiale pour la nature (CIRAD/MNHN/UICN), IBSN 0209-0914, Paris, France.

Beretz, A.; Haag-Berrurier, M.; Anton, R. (1978). Choix de méthodes pharmacologiques pour l’étude des activités de l’aubépine. *Plantes médicinales et phytothérapie*, Vol .4, pp. 305-314.

Berhaut, J. (1975). *Flore illustrée du Sénégal. Dictyotlédones. Tome IV Ficoidées à Légumineuses*. Government of Senegal, pp. 183-184, 553-555, Dakar, Senegal.

Bernasconi, R.; Klein, M.; Martin, P.; Christen, P.; Hafner, T.; Portet, C. & Schmutz, M. (1988). Gamma-Vinyl GABA: comparison of neurochemical and anticonvulsant effects in mice. *Journal of Neural Transmission*, Vol.72, No.3, (October 1988), pp. 213-233, ISSN 1435-1463.

Biholong, M. (1986). Contribution à l’étude de la flore du Cameroun: les Astéracées. Thèse de doctorat. Université de Bordeaux III, pp. 10-50, France.

Bonin, R.P. & Orser, B.A. (2008). GABA receptor subtypes underlying general anesthesia. *Pharmacology Biochemistry and Behavior*, Vol.90, No.1, (January 2008), pp. 105-112, ISSN 0091-3057.

Bouquet, A. (1969). *Féticheurs et Médecine Traditionnelle au Congo (Brazaville)*. ORSTOM, IRD, FDI 13972, Mémoire No. 36, pp. 103-127, Montpellier, France.

Boussinesq, M.; Pion, D.S. & Kamgno, J. (2002). Relationship between Onchocerciasis and epilepsy: a matched case control in the Mbam Valley, Republic of Cameroon. *Transaction of the Royal Society of Tropical Medicine and Hygiene*, Vol.96, No.5, (September 2002), pp. 537-541, ISSN 0035-9203.

Brenan J.P.M. (1959). *Légumineuses (l) sous-famille des Caesalpiniioidea dans Flore de l’Afrique orientale tropicale*. Agents de la Couronne, Londres, England.

Croucher, J.M.; Collins, J.F. & Meldrum, B.S. (1982). Anticonvulsant action of excitatory amino acids antagonists. *Science*, Vol. 216, No. 4548, (May 1982), pp. 899-902, ISSN 1095-9203.

Czapinski, P.; Blaszczzyk, B. & Czuczwar, S.J. (2005). Mechanisms of Action of Antiepileptic Drugs. *Current Topics in Medicinal Chemistry*, Vol.5, No.1, (January 2005), pp. 3-143, ISSN 1568-0266.

Dalziel, J.M. (1937). *The useful plants of West Tropical Africa*. The Crown Agency for the Colonies, London, United Kingdom.
De Deyn, P.P.; D’Hooge, R.; Marescau, B. & Pei, Y-Q. (1992). Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. *Epilepsy Research*, Vol.12, No.2, (July 1992), pp. 87-110, ISSN 0920-1211.

Dimo, T.; Rakotonirina, S.V.; Tan, P.V.; Azay, J.; Dongo, E. & Clos, G. (2002). Leaf methanol extract of *Bidens pilosa* prevents and attenuates the hypertension induced by high-fructose diet in wistar rats. *Journal of Ethnopharmacology*, Vol.83, No. 4, (June 2002), pp. 183-191, ISSN 0378-8741.

Diop, A.G.; Ndiaye, M.; Thiam, A.; et al. (1996). Filière des soins anti-épileptiques en Afrique. *Epilepsies*, Vol. 10, pp.115-121.

Doctor, S.V.; Costa, L.G. & Muph ur, S.D. (1982). Effect of trimethyltin on chemically induced seizures, *Toxicology Letters*, Vol.13, No.4, (October 1982), pp. 217-223, ISSN 0378-4274.

Dongmo, L.; Ndo, D.; Atchou,G. & Njamnshi, A. (2000). Epilepsie au Sud-Cameroun: enquête préliminaire dans le village Bilomo. *Bulletin de la Société de Pathologie Exotique*, Vol.93, No.3, (July 2000), pp. 263-275, ISSN 0037-9085.

Ezugwu, C.O. & Odoh, U.E. (2003). Anticonvulsant activity of the root extract of *Annona senegalensis*. *Journal of Tropical Medicinal Plants*, Vol.4, No.1, (July 2003), pp. 51-55, ISSN 1511-8525.

Findlay, G.S.; Wick, M.J.; Mascia, M.P.; Wallace, D; Millier, G.W.; Harris, R.A. & Blednov Y.A. (2002). Transgenic expression of a mutant glycine receptor decreases alcohol sensitivity of mice. *Journal Pharmacology Experimental Therapeutics*, Vol. 300, No. 2, (February 2002), pp. 526-534, ISSN 0022-3565.

Gale K. (1992). GABA and epilepsy: basic concepts from preclinical research. *Epilepsia*. Vol.33, No.5, (November 1992), pp. S3-S12, ISSN 0013-9580.

Gusman-Gutierez, S.L. & Navarrete A. (2009). Pharmacological Exploration of the sedative mechanism of hesperidin identified as the Active principle of *Citrus sinensis* flowers. *Planta medica*, Vol. 75, No. 4, (February 2009), pp. 295-301, ISSN: 0032-0943.

Hutchinson, J. & Dalziel, J.M. (1958). *Flora of West Tropical Africa*. Crown Agents, Ed. 2 (Revised by R.W.J. Keay), The Whitefriars Press, London & Tonbridge, Great Britain.

Iwu, M.M. (1993). *Handbook of African Medicinal Plants*. CRC Press, ISBN 084934266X, New York, USA.
Clinical and Genetic Aspects of Epilepsy

- Kamgno, J.; Pion, S.; & Boussinesq, M. (2003). Demographic impact of epilepsy in Africa: results of a 10-years cohort study in a rural area of Cameroon. *Epilepsia*, Vol. 44, No7, (July 2003), pp. 956-963, ISSN 0013-9580.

- Lehmann, J.; Hutchison, A.; McPherson, S.E.; Mondadori, C.; Schmutz, M.; Sinton, C.M.; Tsai, C.; Murphy, D.E.; Steel, D.J.; Williams, M.; Cheney, D.L. & Wood, P.L. (1988). CGS 19755, a selective and competitive N-methyl-D-aspartate-type excitatory amino acid receptor antagonist. *Journal of Pharmacology and Experimental Therapeutics*, Vol.246, No.1, (July 1988), pp. 65-75, ISSN 1521-0103.

- Li-Ping, G.; Xian-Yu, S.; Guan-Rong, T.; Kyu-Yun, C. & Zhe-Shan, Q. (2008). The Synthesis and Anticonvulsant Activity of 1-Substituted-7-Methoxy-1,2,4-Triazolo [4, 3-a] Quinoline; *Turkish journal of chemistry*, Vol.32, No.2, (April 2008), pp. 181-189, ISSN 1300-0837.

- Lompo, M.; Nikiema, J.B.; Guissou, I.P.; Moës, A.J. & Fontaine, J. (1998). The topical anti-inflammatory effects of chloroform extract from Khaya senegalensis stem barks. *Phytotherapy Research*, Vol.12, No.6, (July 1998), pp. 448-450, ISSN: 0951-418X.

- Löschler, W. & Schmidt, D. (1988). Which animal model should be used in the search for new antiepileptic drugs? A proposal based on the experimental and chemical consideration. *Epilepsy Research*, Vol. 2, No. 3, (May 1988), pp. 145 -181, ISSN 0920-1211.

- Macdonald, R.L. & Barker, J.L. (1977). Pentyletetratrazole and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurons. *Nature*, Vol.267, No.23, (June 1977), pp. 720-721, ISSN 0028-0836.

- Malgras, D. (1992). *Arbres et arbustes guérisseurs des savanes malienues*. ACCT, Karthala, ISBN 2863373770, Paris, France.

- Mutasa, S.L.; Khan, M. & Jewers, K. (1990). 7-Methylphyscion and cassia min A from the root bark of *Cassia singueana*. *Planta Medica*. Vol.56, No.2, (April 1990) pp. 244-245, ISSN 0032-0943.

- Nazneen, M.; Abdul Mazid; Kundu, J.K.; Bachar, S.C.; Begum, F. & Datta, B.K. (2009). Protective effects of *Flacourtia indica aerial* parts extracts against paracetamol-induced hepatotoxicity in rats. *Journal of Taibbah University for Science*, Vol.2, No.1, (January 2009), pp. 1-6, ISSN 1658-3655.

- Nchoji Nkwi, P. & Tioko Ndongo, F. (1989). The Epileptic among the Bamileke of Maham in the Nde Division, West Province of Cameroon. *Culture Medicine and Psychiatry*, Vol.13, No.4, pp. 437-448, ISSN 0165-005X.

- Ngo Bum, E.; Schmutz, M.; Meyer, C.; Rakotonirina, A.; Bopelet, M.; Portet, C.; Jeker, A.; Rakotonirina, S.V.; Olpe, H.R. & Herrling, P. (2001). Anticonvulsant properties of the methanolic extract of *Cyperus articulatus* (Cyperaceae). *Journal of Ethnopharmacology* Vol.76, No.2, (July 2001), pp. 145-150, ISSN: 0378-8741.

- Ngo Bum, E.; Taiwe, G.S.; Nkaissa, L.A.; Moto, F.C.O.; Seke, E.P.F.; Hiana, I.R.; Bailabar, T.; Rouyatou; Seyni, P.; Rakotonirina, A. & Rakotonirina, S.V. (2009a). Validation of anticonvulsant and sedative activity of six medicinal plants. *Epilepsy and Behavior*, Vol.14, No.3, (March 2009), pp. 454-458, ISSN 1525-5050.

- Ngo Bum, E.; Taiwe G.S.; Moto F.C.O.; Ngoupaye G.T.; Nkantchoua G.C.N.; Pelanken M.M.; Rakotonirina S.V. & Rakotonirina A. (2009b). Anticonvulsant, anxiolytic and sedative

www.intechopen.com
properties of the roots of *Nauclea latifolia* Smith in mice. *Epilepsy and Behavior*, Vol. 15, No. 4, (August 2009), pp. 434-440, ISSN 1525-5050.

Ngounou, E.B.; Quet, F.; Dubreuil, C.M.; Marin, B.; Houinato, D.; Nubukpo, P.; Dalmay, F.; Millogo, A.; Nsengiyumva, G.; Kouna-Ndouongo, P.; Diagana, M.; Ratsimbazafy, V.; Druet-Cabanac, M. & Preux, P.M. (2007). Épidémiologie de l’épilepsie en Afrique subsaharienne : une revue de la littérature. *Cahiers d’études et de recherche francophones/Santé*. Vol.16, No.4, (Octobre-novembre-décembre 2006), pp. 225-238, Synthèse.

Njamnshi, A.K.; Bissek, A.C.; Yepnio, F.N.; Tabah, E.N.; Angwafor, S.A.; Kuate, C.T.; Déma, F.; Fonsah, J.V.; Acho, A.; Kepeden, M.N.; Azinwi, Y.H.; Kuwoh, P.B.; Angwafor III, F.F. & Muna, W.F. (2010) . A community survey of knowledge, perceptions, and practice with respect to epilepsy among traditional healers in the Batibo Health District, Cameroon. *Epilepsy and behavior*, Vol. 17, N°1, (January 2010), pp.95-102, PMID: 19932640.

Nwaiwu, J.I. & Akah, P.A. (1986). Anticonvulsant activity of the volatile oil from the fruit of *tetrapleura tetraptera*. *Journal of Ethnopharmacology* Vol.18, No.2, (July 1982), pp. 103-107, ISSN: 0378-8741.

Ogundiya, M. O.; Kolapo, A. L.; Okunade, M. B.; Adjumobi, J. A. (2009). Assessem of phytochemical composition and antimicrobial activity of *Terminalia glaucescens* against some oral pathogens. *Electronic journal of environmental, agricultural and food chemistry*; Vol.8, No.7, (January 2009), pp. 466-471, ISSN: 1579-4377.

Ojewole, J.A. (2005). Analgesic and anticonvulsant properties of *Tetrapleura tetraptera* (Taub) (Fabaceae) fruit aqueous extract in mice. *Phytotherapy Research*, Vol.19, No.12, (December 2005) pp.1023-1029, ISSN 1099-1573.

Okada, R. & Negishi, H. (1989). The role of nitrotetragenol gabaergic pathway in the propagation of pentylentetrazol-induced seizures. *Brain Research*. Vol.480 , No.1, (February 1989), pp. 383-387, ISSN 0006-8993.

Olkokola, K.T. & Ahonen, J. (2008). Midazolam and other benzodiazepines. *Handbook of Experimental Pharmacology*, Vol.182, No.1, (January 2001), pp. 335-360, ISSN: 0378-8741.

Palgrave, C.K.; Drumond, R.B.; Eugene, J. & Palgrave, C.M. (2003). *Trees of Southern Africa*. Struik Publishers, ISBN 1868723895, Cape Town South Africa.

Pathak, P.; Saraswathy, Vora, A. & Savai J. (2010). In vitro antimicrobial activity and phytochemical analysis of the leaves of *Annona muricata*. *International Journal of Pharmaceutical Researches and Development*, Vol.2, No.5, (July 2010), pp. 1-6, ISSN: 0974-9446.

Pérez-Saad, H. & M.T. Buñuego (2008). Behavioral and antiepileptic effects of acute administration of the extract of the plant *Cestrum nocturnum* Lin (lady of the night). *Epilepsy and Behaviour*, Vol.12, No.3, (April 2008), pp. 366-372, ISSN 1525-5050.

Pouillet, J.L. 1989. *Plantes médicinales africaines, utilisation pratique*. Ellipses, ISBN 2729889183, Paris, France.

Preux, P.M.; Tiemagni,F.; Fodzo,L.; Kandem,P.; Ngouafong, P.; Ndondo,F.; Macharia,W.; Dongmo, L.; Dumas,M. (2000). Antiepileptic therapies in the Mi Province in Cameroon. *Epilepsia*, Vol.41, No.4, (April 2000), pp. 432-439, ISSN 1528-1167.

Prischich, F.; De Rinaldis, M.; , Flaminia, B.; Egeo, G.; Santori, C.; Zappaterreno, A.; Fattouch, J.; Di Bonaventura, C.; Bada, J; Gianluca, R.; Pizzuti, A.; Cardona, F.; Sa’a,
V.V.; Giallonardo, A.T.; D’Eraso, E.; Pelliccia, A. & Vanacore, N. (2008). High prevalence of epilepsy in a village in littoral province of Cameroon. *Epilepsy Research*, Vol. 82, No. 2, (October 2008), pp. 200-210, ISSN 0920-1211.

Rakotonirina, S.V.; Ngo Bum, E.; Rakotonirina, A. & Bopelet, M. (2001). Sedative properties of the extract of the rhizome of *Cyperus articulatus*. *Fitoterapia*, Vol.72, No.1, (September 2001), pp. 22-29, ISSN 0367-0326.

Rang, H.P., Dale, M.M., Ritter, J.M., 1999. *Pharmacology*. Churchill Livingstone, ISBN 0443059748, New York, USA.

Raponda-Walker, Sillans, R. (1961). *Les plantes utiles du Gabon*. Edition Sepia, ISBN 290788692, Libreville, Gabon.

Rehavi, M.; Skolnick, P. & Paul, S.M. (1982). Effects of tetrazole derivatives on [3H]-diazepam binding: in vitro: correlation with convulsant potency. *European Journal of Pharmacology*, Vol.78, No.3, (March 1982), pp. 353–356, ISSN 0014-2999.

Salih, M.A. & Mustafa, M.M. (2008). A substance in broad beans (*Vicia faba*) is protective against experimentally induced convulsions in mice. *Epilepsy and Behaviour*, Vol. 12, No. 1, (January 2008), pp. 25-29, ISSN 1525-5050.

Satyanaraya, V.; Kurupadanam, G.L. & Srimanaraya, G. (1996). Photochemistry of plants. *Fitoterapia*. Vol.30, No.4, (July 1996), pp. 1026-1029, ISSN 0367-326X.

Saulnier, P. (1998). *Plantes médicinales et soins en Afrique*, Edition SEPIA, ISBN : 9782907888929, Saint-Maur, France.

Schmutz, M.; Portet, C.; Jeker, A.; Klebs, K.; Vassout, A.; Allgeier, H.; Heckendorn, R.; Fagg, G.E.; Olpe, H.R. & Van Riezen, H. (1990). The competitive NMDA receptor antagonists CGP 37849 and CGP 39551 are potent, orally-active anticonvulsants in rodents. *Naunyn-Schmiedeberg’s Archives of Pharmacology*, Vol.342, No.7, (October 1990), pp. 61-66, ISSN 1432-1912.

Seema, Z. (2006). *Phytochemical studies on Terminalia glaucescens, Pteleopsis hylodendron and related medical plants*. Thèse doctorat Ph.D., Université de Karachi, Pakistan.

Sunday, E.; Atawodi, & Ogunbusola, F. (2009). Evaluation of Anti trypanosomal Properties of Four Extracts of Leaves, Stem and Root Barks of *Prosopis africana* in Laboratory Animals. *Nigerian for experimental biology* Vol.21, No.2, (December 2009), pp. 101-108, ISSN 0795-8080

White, H.S. (1997). New mechanisms of antiepileptic drugs, In: *Porter, R., Chadwick, D.*, (Ed.), 1-30, Butterworth Heinemann, ISBN 1933864168, Boston, USA.

Worapan, S.; Sornkanok, V.; Chuda, C.; Damri, P. & Siriprapa, A. (2008). Pharmacognostic Investigation of the Leaves of *Mentha cordifolia* and its DNA Fingerprints. *Thai Pharmaceutical and Health Science Journal*, Vol. 4, No. 1, (January 2009), pp.9-14. ISSN: 0125-4685.
This book on Epilepsy was conceived and produced as a source of information on wide range of issues in epilepsy. We hope that it will help health care providers in daily practices and increase their understanding on diagnosis and treatment of epilepsies. The book was designed as an update for neuroscientists who are interested in epilepsy, primary care physicians and students in health care professions.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

E. Ngo Bum, G.S. Taiwe, F.C.O. Moto, G.T. Ngoupaye, R.R.N. Vougat, V.D. Sakoue, C. Gwa, E.R. Ayissi, C. Dong, A. Rakotonirina and S.V. Rakotonirina (2011). Antiepileptic Medicinal Plants used in Traditional Medicine to Treat Epilepsy, Clinical and Genetic Aspects of Epilepsy, Dr. Zaid Afawi (Ed.), ISBN: 978-953-307-700-0, InTech, Available from: http://www.intechopen.com/books/clinical-and-genetic-aspects-of-epilepsy/antiepileptic-medicinal-plants-used-in-traditional-medicine-to-treat-epilepsy
