Enhancement of photoresponse to ultraviolet region by coupling perovskite LaMnO$_3$ with TiO$_2$ nanoparticles

N Afifah1,2 and R Saleh1,2
1Department of Physics, Faculty of Mathematics and Natural Sciences Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
2Integrated Laboratory of Energy and Environment, Faculty of Mathematics and Natural Sciences Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia

Corresponding author's e-mail: rosari.saleh@gmail.com

Abstract. Mixed oxides of rare-earth elements and 3d transition metal perovskite materials were studied for their catalytic application. We have previously reported the catalytic performance of perovskite LaMnO$_3$ nanoparticles under visible light and ultrasonic irradiation separately and simultaneously. However, LaMnO$_3$ perovskite’s narrow optical gap can absorb only a small portion of the solar spectrum in the ultraviolet region, resulting in low catalytic performance. Coupling LaMnO$_3$ with other metal oxides with an optical gap in the ultraviolet light range offers an effective solution to this problem by improving catalytic performance. To this end, sol-gel was used to prepare LaMnO$_3$/TiO$_2$ nanocomposites with varying LaMnO$_3$ to TiO$_2$ molar ratios. The LaMnO$_3$/TiO$_2$ nanocomposites were characterized using X-ray diffraction (XRD), a vibrating samples magnetometer (VSM), and UV-visible diffuse reflectance spectroscopy (DRS). The anatase phase of TiO$_2$ and the orthorhombic structure of LaMnO$_3$ facilitate the coupling of LaMnO$_3$ with TiO$_2$, and the incorporation of TiO$_2$ nanoparticles tends to increase the optical gap of the nanocomposite. The samples were used to remove organic dyes by means of simultaneous light and ultrasonic irradiation. The results confirm that the photosonocatalytic performance of LaMnO$_3$/TiO$_2$ nanocomposites successfully extends to the ultraviolet light region, and the main factors influencing photosonocatalytic activity are studied and discussed.

1. Introduction

ABO$_3$-type perovskite (A: rare earth; B: transition metal) has been widely used as a catalyst to degrade organic pollutants contained in wastewater because of its high chemical stability, high electron mobility, non-toxicity, and environmental friendliness [1-2]. LaMnO$_3$ is one ABO$_3$-type perovskite that can be used in this way; its special physical and chemical characteristics and an optical band gap value corresponding to the range of visible light irradiation make it a strong candidate for use as a catalyst. The use of LaMnO$_3$ as catalyst is of interest because solar energy contains about 46% visible light [1, 3-5].

Catalytic performance could also be improved by combining TiO$_2$ and LaMnO$_3$ in nanocomposite form. Catalysts in nanocomposite form are known to inhibit electron-hole recombination, so improving catalytic performance [6-7]. Additionally, the optical gap of TiO$_2$ (~3.2 eV) would be expected to extend the response of nanocomposite light in the ultraviolet (UV) light range, which accounts for about 5% of solar energy. TiO$_2$ itself is used as a catalyst because it is high catalytic activity, non-toxicity, and low cost [8].

The catalytic activity of LaMnO$_3$ nanoparticles has been reported in our previous work [9]. The combination of visible light and ultrasonic (Vis+US) in photosonocatalytic activity achieved maximum...
performance in degrading methylene blue (MB) as organic pollutant model. In the present study, catalyst performance was improved by synthesizing LaMnO$_3$/TiO$_2$ nanocomposite using the sol-gel method. TiO$_2$’s influence on the photosonocatalytic activity of LaMnO$_3$/TiO$_2$ nanocomposite was assessed using different irradiation sources: UV light and ultrasonic (UV+US) and visible light and ultrasonic (Vis+US). The main factors influencing photosonocatalytic activity are investigated and discussed below.

2. Experimental details

Chemicals: All chemicals were of analytical grade and were used without further purification. Reagents included LaCl$_3$·7H$_2$O, MnCl$_2$·4H$_2$O, titanium dioxide (TiO$_2$), and sodium hydroxide (NaOH), (Merck).

Catalyst preparation: LaMnO$_3$ nanoparticles were first prepared following our procedure in previous work [9]. LaMnO$_3$/TiO$_2$ with different molar ratios (1:0.1, 1:0.3, and 1:0.5) were synthesized using the sol-gel method [10], involving the following steps. First, 0.00125 mol TiO$_2$ was dissolved in 30 mL distilled water under the influence of a magnetic stirrer. Then, 0.00125 NaOH was dissolved in 65 mL distilled water and added to the mixture (solution A). Next, solution A was stirred and heated to a temperature of 80°C. Meanwhile, the prepared LaMnO$_3$ nanoparticle was dissolved into 30 mL a distilled water (solution B). Solution B was then mixed with solution A under the continuous influence of a magnet stirrer at 80°C for 2 hours. The final product was allowed to stand for one night at room temperature and then heated at 120°C for an hour in vacuum conditions.

Characterization: The crystal structure was obtained using X-ray diffraction (XRD) spectroscopy (Rigaku Miniflex 600) with monochromatic Cu-K$_\alpha$ radiation source (\(\lambda = 1.54060 \) Å), operating at 40 kV and 20 mA in the range 10-90°. The XRD pattern was then analyzed using the MAUD program and the Rietveld method for obtaining crystal structure and lattice parameters. Magnetic characteristics were measured using an Oxford Type 1.2 T vibrating sample magnetometer (VSM) (from 0 to ± 1 Tesla). Optical characteristics were measured using a UV-Vis diffuse reflectance spectrophotometer.

Photosonocatalytic activity: Methylene blue (MB) was chosen as a model organic pollutant. For present purposes, MB degradation was executed using LaMnO$_3$/TiO$_2$ nanocomposite as catalyst and a combination of light and ultrasonic irradiation, known as photosonocatalysis. This photosonocatalytic procedure was described in detail in our previous work [9], using a Hitachi UH5300 UV-visible spectrophotometer for measurement. Moreover, in this work, the photosonocatalytic were monitored using different irradiation sources: UV light and ultrasonic (UV+US) and visible light and ultrasonic (Vis+US). MB degradation percentage was measured as C_t/C_0, where C_t is the MB concentration at a specified time following irradiation and C_0 is the earlier concentration of MB after reaching adsorption–desorption equilibrium. To identify the main active species in MB degradation, chemical compounds such as di-ammonium oxalate, sodium sulfate, and tert-butyl alcohol were used as hole, electron, and hydroxyl radical scavengers. To check its stability, the catalyst was reused 4 times.

3. Results and discussion

The crystal structure of the sample was studied using XRD spectroscopy. Figure 1(a) shows the diffraction pattern of LaMnO$_3$/TiO$_2$ samples with different molar ratios, as well as the diffraction patterns of TiO$_2$ and LaMnO$_3$. The dominant diffraction pattern of the LaMnO$_3$/TiO$_2$ nanocomposite was that of orthorhombic LaMnO$_3$ [11-12]. The diffraction peak at 2θ 25.2° confirmed the presence of the tetragonal structure in the anatase phase of TiO$_2$ [7]. There was no impurity phase in the diffraction pattern of the LaMnO$_3$/TiO$_2$ nanocomposite. Table 1 summarizes lattice parameter values for the diffraction pattern of the sample obtained by the Rietveld refinement method and crystal size values calculated using Scherrer’s formula [13].

VSM measurement was used to investigate the magnetic properties of samples. Figure 1(b) shows the magnetic saturation of LaMnO$_3$/TiO$_2$ nanocomposites with different molar ratios. All samples showed ferromagnetic behavior at room temperature. The results also confirm that magnetic saturation were influenced by the presence of TiO$_2$, and that magnetization decreased with increased TiO$_2$ molar ratio. This decrease in magnetization with increased TiO$_2$ molar ratio may be caused by the decrease of LaMnO$_3$ mass in the presence of TiO$_2$ as non-magnetic material. TiO$_2$ is also known to have diamagnetic
characteristics, which may reduce dipolar interaction of the LaMnO$_3$/TiO$_2$ nanocomposite [10]. Magnetic saturation values for LaMnO$_3$/TiO$_2$ nanocomposite are summarized in table 1.

![Figure 1](image_url)

Figure 1. (a) XRD pattern; (b) VSM spectra; and (c) UV-Vis reflectance spectra of LaMnO$_3$/TiO$_2$ nanocomposites with different molar ratios.

Table 1. The lattice parameter, grain size $<D>$, magnetic saturation (M-S) and optical gap of LaMnO$_3$/TiO$_2$ nanocomposite.

Sample	Lattice Parameter LaMnO$_3$	Lattice Parameter TiO$_2$	$<D>$ LaMnO$_3$ (nm)	$<D>$ TiO$_2$ (nm)	M-S (emu/g)	Optical gap (eV)
LaMnO$_3$	5.7419 7.7215 5.5403	-	-	44	3.20	1.24
LaMnO$_3$/0.1TiO_2	5.7382 7.7187 5.5430	3.8215	9.4850	24	0.60	1.48
LaMnO$_3$/0.3TiO_2	5.7269 7.6995 5.5321	3.7824	9.5055	23	0.48	1.59
LaMnO$_3$/0.5TiO_2	5.7136 7.6787 5.5176	3.7685	9.4907	20	0.36	1.62
Optical characteristics of the samples were studied using UV-Vis diffuse reflectance spectroscopy (DRS). Figure 1(c) shows the UV-Vis reflectance spectra of LaMnO$_3$ and LaMnO$_3$/TiO$_2$ nanocomposite with variation of molar ratio. Extrapolating the curve using Kubelka-Munk analysis [14] provided the optical band gap value of each sample. These values are summarized in table 1. The results indicate that the adsorption capacity of LaMnO$_3$/TiO$_2$ nanocomposite is in the range of visible light radiation. Additionally, optical band gap value was found to increase with the molar ratio of TiO$_2$. The increase in optical band gap value would be expected to increase the response of LaMnO$_3$/TiO$_2$ nanocomposite light in the UV light radiation.

![Figure 2](image2.png)

Figure 2. The photosonocatalytic activity of LaMnO$_3$/TiO$_2$ nanocomposite with different molar ratios of TiO$_2$ under UV (left) and Visible (right) light irradiation. The inset shows MB degradation rate using LaMnO$_3$/TiO$_2$ nanocomposite.

![Figure 3](image3.png)

Figure 3. The effect of scavengers on photosonocatalytic degradation of MB using LaMnO$_3$/0.5TiO$_2$ nanocomposite.
The photosonocatalytic activity of LaMnO$_3$/TiO$_2$ nanocomposite was used to degrade MB as model organic pollutant under different light irradiation sources, combining UV light and ultrasonic (UV+US) and visible light and ultrasonic (Vis+US). Figure 2 shows the photosonocatalytic activity of LaMnO$_3$/TiO$_2$ nanocomposite with different molar ratios. For comparison, the photosonocatalytic activity of LaMnO$_3$ nanoparticle is also shown. The results demonstrate that the presence of TiO$_2$ in the nanocomposite also increases the photosonocatalytic activity of LaMnO$_3$ nanoparticles. Increased TiO$_2$ molar ratio increases the photosonocatalytic activity of LaMnO$_3$/TiO$_2$ nanocomposite in both UV+US and Vis+US. The highest degradation was obtained using LaMnO$_3$/TiO$_2$ nanocomposite with molar ratio 1:0.5. The inset in figure 2 shows MB degradation rate using LaMnO$_3$/TiO$_2$ nanocomposite, calculated by a pseudo-first order kinetics model [15], in which ln (C$_t$/C$_0$) = k$_{app}$t. The results show that photosonocatalytic activity using Vis+US irradiation was faster than when using UV+US irradiation; this may be caused by the greater LaMnO$_3$ content as a catalyst of visible light. The optical gap values for the nanocomposite also confirmed its absorption capacity in the range of visible light irradiation.

In general, photosonocatalytic activity was influenced by catalyst interaction with ultrasonic and light waves. The increase of photosonocatalytic activity following combination of the two wave interactions was described in our previous work [9]. The influence of different light irradiation on catalyst interaction can be described as follows. Light waves can influence photosonocatalysis by forming electrons and holes. The electrons in conduction band interact with oxygen (O$_2$) molecules to form superoxide radicals (•O$_2^-$), and holes in the valence band interact with water molecules to form hydroxyl radicals (•OH). Superoxide radicals and hydroxyl radicals are known as strong reductor and oxidator agents and can degrade the complex chemical bonds of organic pollutants. It follows that the time needed for electrons and holes to recombine is strongly influenced by photosonocatalytic activity [16]. In the nanocomposite, using visible light as irradiation source, electrons in the conduction band of LaMnO$_3$ did not return directly to the valence band but were first transferred to the conduction band of TiO$_2$. In this way, the recombination of electrons and holes can be inhibited, and photosonocatalytic activity is seen to increase by comparison with the performance of the LaMnO$_3$ nanoparticle alone. The opposite was found to occur when UV light was used as irradiation source. At that moment, electrons from the TiO$_2$ conduction band did not return directly to the valence band but were transferred to the conduction band of LaMnO$_3$, inhibiting the recombination of electrons and holes, and increasing photosonocatalytic activity.

The present study also sought to identify the most influential factors in photosonocatalytic activity by adding several kinds of different scavenger. The degradation of methylene blue due to the existence

![Figure 4. The reusability on the photosonocatalytic degradation of MB using LaMnO$_3$/0.5TiO$_2$ nanocomposite](image-url)
of Na$_2$S$_2$O$_8$, di-ammonium oxalate, and tert-butyl alcohol as scavengers of electrons, holes, and hydroxyl radicals is shown in figure 3. The use of di-ammonium oxalate as a hole scavenger inhibited MB degradation rate, indicating that holes played the most important role in photosonocatalytic activity. Catalyst stability during degradation is shown in figure 4. Reused 4 times, 1:0.5 LaMnO$_3$/TiO$_2$ nanocomposite using Vis+US irradiation succeeded in degrading 92% of MB, indicating the good stability of LaMnO$_3$/TiO$_2$ nanocomposite as catalyst.

4. Conclusions
The use of LaMnO$_3$/TiO$_2$ nanocomposite’s photosonocatalytic activity to degrade methylene blue was successful using both UV+US and Vis+US irradiation. The incorporation of TiO$_2$ on the nanocomposite increased the photosonocatalytic activity and successfully extended the response of catalyst to the ultraviolet light region. The use of LaMnO$_3$/TiO$_2$ in nanocomposite form plays an important role in the improvement of photosonocatalytic performance by reducing electron-hole recombination.

References
[1] Hu J, Ma J, Wang L, Huang H and Ma L 2014 Powder Technol. 254 556-62
[2] Lotey G S and Verma N K 2014 Mat. Sci. Semicon. Proc. 21 206-11
[3] Hu J, Ma J, Wang L and Huang H 2014 Mater. Sci. Eng. B 180 46-53
[4] Hu J, Ma J, Wang L and Huang H 2014 J. Alloy. Compd. 583 539-45
[5] Hu J, Men J, Ma J and Huang H 2014 J. Rare Earth. 32 1126-34
[6] Tang P, Tong Y, Chen H, Cao F and Pan G 2013 Curr. Appl. Phys. 13 340-3
[7] Gao K and Li S 2012 Appl. Surf. Sci. 285 6460-4
[8] Grabowska E 2016 Appl. Catal. B: Environ. 186 97-126
[9] Afifah N and Saleh R 2016 Mater. Sci. Forum 864 99-105
[10] Ariffin S A, Jalaludin S and Saleh R 2015 Mater. Sci. Forum 827 49-55
[11] Galal A, Atta N F and Ali S M 2011 Electrochim. Acta 56 5722-30
[12] Zhang C, Guo Y, Guo Y, Lu G, Boreave A, Retailleau L, Baylet A and Giroir-Fendler A 2014 Appl. Catal. B: Environ. 148-149 490-8
[13] Abazari R and Sanati S 2013 Superlattice. Microst. 68 148-57
[14] Köferstein R, Jäger L and Ebbinghaus S G 2013 Solid State Ionics 249-250 1-5
[15] Saleh R and Djaja N F 2014 Superlattice. Microst. 74 217-33
[16] Tijare S N, Joshi M V, Padole P S, Mangrulkar P A, Rayalu S S and Labhsetwar N K, 2012 Int. J. Hydrogen Energ. 37 10451-6