Perverse sheaves and graphs on surfaces

Mikhail Kapranov, Vadim Schechtman

January 11, 2016

1 Introduction

The aim of this note is to propose a combinatorial description of the categories \(\text{Perv}(S, N) \) of perverse sheaves on a Riemann surface \(S \) with possible singularities at a finite set of points \(N \). Here we consider the sheaves with values in the category of vector spaces over a fixed base field \(k \). We allow (in fact, require) the surface \(S \) to have a boundary. Categories of the type \(\text{Perv}(S, N) \) can be used as inductive building blocks in the study of any category of perverse sheaves, see [GMV]. Therefore explicit combinatorial descriptions of them are desirable.

We proceed in a manner similar to [KS1]. To define a combinatorial data we need to fix a Lagrangian skeleton of \(S \). In our case it will be a spanning graph \(K \subset S \) with the set of vertices \(\text{Vert}(K) = N \) (for the precise meaning of the word "spanning" see Section 3B). (In the case of a hyperplane arrangement in \(\mathbb{C}^n \) discussed in [KS1] the Lagrangian skeleton was \(\mathbb{R}^n \subset \mathbb{C}^n \).) We denote by \(\text{Ed}(K) \) the set of edges of \(K \). We suppose for simplicity in this Introduction that \(K \) has no loops. As any graph embedded into an oriented surface, \(K \) is naturally a ribbon graph, i.e., it is equipped with a cyclic order on the set of edges incident to any vertex.

To any ribbon graph \(K \) we associate a category \(\mathcal{A}_K \) whose objects are collections \(\{ E_x, E_e \in \text{Vect}(k), x \in \text{Vert}(K), e \in \text{Ed}(K) \} \) together with linear maps

\[
E_x \xrightarrow{\gamma} E_e,
\]

given for each couple \((x, e)\) with \(x \) being a vertex of an edge \(e \). Here \(\text{Vect}(k) \) denotes the category of finite dimensional \(k \)-vector spaces. These maps must
satisfy the relations which use the ribbon structure on \(K \) and are listed in Section 3C below.

If \(K \subset S \) is a spanning graph as above, then our main result (see Theorem 3.6) establishes an equivalence of categories

\[
Q_K : \text{Perv}(S, N) \rightarrow A_K
\]

For \(F \in \text{Perv}(S, N) \) the vector spaces \(Q_K(F)_x, Q_K(F)_v \) are the stalks of the constructible complex \(R_K(F) = R\Gamma_K(F)[1] \) on \(K \) which, as we prove, is identified with a constructible sheaf in degree 0.

A crucial particular case is \(S = \) the unit disc \(D \subset \mathbb{C} \), \(N = \{0\} \). Take for the skeleton a corolla \(K_n \) with center at 0 and \(n \) branches. Thus, the same category \(\text{Perv}(D, 0) \) has infinitely many incarnations, being equivalent to \(A_n := A_{K_n}, n \geq 1 \).

The corresponding equivalence \(Q_n \) is described in Section 2, see Theorem 2.1. The special cases of this equivalence are:

(i) \(Q_1 : \text{Perv}(D, 0) \rightarrow A_1 \): this is a classical theorem, in the form given in [GGM].

(ii) \(Q_2 : \text{Perv}(D, 0) \rightarrow A_2 \) is a particular case of the main result of [KS1], see op. cit., §9A. In loc. cit. we have also described the resulting equivalence

\[
A_1 \rightarrow A_2
\]

explicitly. In a way, objects of \(A_2 \) are ”square roots” of objects of \(A_1 \), in the same manner as the Dirac operator is a square root of the Schrödinger operator. That is why we call \(A_n \) a ”1/n-spin (parafermionic) incarnation” of \(\text{Perv}(D, 0) \).

Finally, in Section 3D we give (as an easy corollary of the previous discussion) a combinatorial description of the category \(\text{PolPerv}(S, N) \) of polarized perverse sheaves, cf. [S]. These objects arise ”in nature” as decategorified perverse Schobers, cf. [KS2], the polarization being induced by the Euler form \((X, Y) \mapsto \chi(R\text{Hom}(X, Y)) \).

The idea of localization on a Lagrangian skeleton was proposed by M. Kontsevich in the context of Fukaya categories. The fact that it is also applicable to the problem of classifying perverse sheaves (the constructions of [GGM] and [KS1] can be seen, in retrospect, as manifestations of this
idea) is a remarkable phenomenon. It indicates a deep connection between Fukaya categories and perversity. A similar approach will be used in [DKSS] to construct the Fukaya category of a surface with coefficients in a perverse Schober.

The work of M.K. was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

2 The “fractional spin” description of perverse sheaves on the disk

A. Statement of the result. Let X be a complex manifold. By a perverse sheaf on X we mean a C-constructible complex \mathcal{F} of sheaves of k-vector spaces on X, which satisfies the middle perversity condition, normalized so that a local system in degree 0 is perverse. Thus, if $k = \mathbb{C}$ and \mathcal{M} is a holonomic \mathcal{D}_X-module, then $R\text{Hom}_{\mathcal{D}_X}(\mathcal{M}, \mathcal{O}_X)$ is a perverse sheaf.

Let $D = \{|z| < 1\} \subset \mathbb{C}$ be the unit disk. Let k be a field. We denote by $\text{Perv}(D, 0)$ the abelian category of perverse sheaves of k-vector spaces on D which are smooth (i.e., reduce to a local system in degree 0) outside $0 \in D$.

Let $n \geq 1$ be an integer. Let \mathcal{A}_n be the category of diagrams of finite-dimensional k-vector spaces (quivers) Q, consisting of spaces E_0, E_1, \cdots, E_n and linear maps

$$E_0 \xrightarrow{\gamma_i} E_i, \quad i = 1, \cdots, n,$$

satisfying the conditions (for $n \geq 2$):

(C1) $\gamma_i \delta_i = \text{Id}_{E_i}$.

(C2) The operator $T_i := \gamma_i + 1 \delta_i : E_i \to E_{i+1}$ (where $i+1$ is considered modulo n), is an isomorphism for each $i = 1, \cdots, n$.

(C3) For $i \neq j, j + 1 \mod n$, we have $\gamma_i \delta_j = 0$.

For $n = 1$ we impose the standard relation:

(C) The operator $T = \text{Id}_{E_1} - \gamma_1 \delta_1 : E_1 \to E_1$ is an isomorphism.

Theorem 2.1. For each $n \geq 1$, the category $\text{Perv}(D, 0)$ is equivalent to \mathcal{A}_n.

3
For $n = 1$ this is the standard (Φ, Ψ) description of perverse sheaves on the disk [GGM], [Be]. For $n = 2$ this is a particular case of the description in [KS1] (§9 there).

B. Method of the proof. For the proof we consider a star shaped graph $K = K_n \subset D$ obtained by drawing n radii R_1, \ldots, R_n from 0 in the counterclockwise order, see Fig. 1. Then $D - K$ is the union of n open sectors U_1, \ldots, U_n numbered so that U_ν is bordered by R_ν and $R_{\nu + 1}$.

Proposition 2.2. For any $F \in \text{Perv}(D, 0)$ we have $H^j_K(F) = 0$ for $i \neq 1$. Therefore the functor
$$R : \text{Perv}(D, 0) \longrightarrow \text{Sh}_K, \quad F \mapsto R(F) = R_K(F) := H^1_K(F)$$

is an exact functor of abelian categories.

Proof: Near a point $x \in K$ other than 0, the graph K is a real codimension 1 submanifold in D, and F is a local system in degree 0, so the statement is obvious (“local Poincaré duality”). So we really need only to prove that the space $H^j_{K_n}(F)_0 = H^j_{K_n}(D, F)$ vanishes for $j \neq 1$. The case $n = 0$ is known, $H^1_{K_1}(D, F)$ being identified with $\Phi(F)$, see [GGM]. The general case is proved by induction on n. We consider an embedding of K_n into $K_{n + 1}$ so that the new radius $R_{n + 1}$ subdivides the sector U_n into two. This leads to a morphism between the long exact sequences relating hypercohomology with and without support in K_n and $K_{n + 1}$:

$$\cdots \longrightarrow H^j(D - K_n, F) \longrightarrow H^{j + 1}_{K_n}(D, F) \longrightarrow H^{j + 1}(D, F) \longrightarrow \cdots$$

For $j \neq 0$ the map α_j is an isomorphism because its source and target are 0. Indeed, $D - K_n$ as well as $D - K_{n + 1}$ is the union of contractible sectors, and F is a local system in degree 0 outside 0, so the higher cohomology of each sector with coefficients in F vanishes. This means that

$$H^{j + 1}_{K_n}(D, F) = H^{j + 1}_{K_{n + 1}}(D, F) = 0, \quad j \neq 0$$
and so by induction all these spaces are equal to 0. □

Remark 2.3. An alternative proof of the vanishing of $H^{\neq 1}_{K_n}(\mathcal{F})_0$ can be obtained by noticing that $R\Gamma_{K_n}(\mathcal{F})_0[1]$ can be identified with $\Phi_{z^n}(\mathcal{F})$, the space of vanishing cycles with respect to the function z^n. It is known that forming the sheaf of vanishing cycles with respect to any holomorphic function preserves perversity.

The graph $K = K_n$ is a regular cellular space with cells being \{0\} and the open rays R_1, \ldots, R_n. For $\mathcal{F} \in \text{Perv}(D, 0)$ the sheaf $\mathcal{R}(\mathcal{F})$ is a cellular sheaf on K and as such is completely determined by the linear algebra data of:

1. Stalks at the (generic point of the) cells, which we denote:

 $E_0 = E_0(\mathcal{F}_n) := \mathcal{R}(\mathcal{F})_0 = \text{stalk at } 0$

 $E_i = E_i(\mathcal{F}) = \mathcal{R}(\mathcal{F})_{R_i} = \text{stalk at } R_i, \ i = 1, \ldots, n.$

2. Generalization maps corresponding to inclusions of closures of the cells, which we denote

 $\gamma_i : E_0 \longrightarrow E_i, \ i = 1, \ldots, n.$

This gives “one half” of the quiver we want to associate to \mathcal{F}.

C. Cousin complex. In order to get the second half of the maps (the δ_i), we introduce, by analogy with [KS1], a canonical “Cousin-type” resolution of any $\mathcal{F} \in \text{Perv}(D, 0)$.

Denote by

$i : K \hookrightarrow D, \ j : D - K \hookrightarrow D$

the embeddings of the closed subset K and of its complement $D - K = \bigsqcup_{\nu=1}^n U_{\nu}$. For any complex of sheaves \mathcal{F} on D (perverse or not) we have a canonical distinguished triangle in $D^b \text{Sh}_{D}$:

\[(2.4) \quad i_* i^! \mathcal{F} \longrightarrow \mathcal{F} \longrightarrow j_* j^* \mathcal{F} \xrightarrow{\delta} i_* i^! \mathcal{F}[1] \]

(here and elsewhere j_* means the full derived direct image). Recalling that $i^!$ has the meaning of cohomology with support, and denoting $j_{\nu} : U_{\nu} \hookrightarrow D$ the embeddings of the connected components of $D - K$, we conclude, from Proposition 2.2.2
Corollary 2.5. Let $\mathcal{F} \in \text{Perv}(D, 0)$. Then \mathcal{F} is quasi-isomorphic (i.e., can be thought of as represented by) the following 2-term complex of sheaves on D:

$$\mathcal{E}^\bullet(\mathcal{F}) = \left\{ \bigoplus_{\nu=1}^n j_{\nu*}(\mathcal{F}|_{U_\nu}) \xrightarrow{\delta} \mathcal{R}(\mathcal{F}) \right\}.$$

Here the grading of the complex is in degrees 0, 1 and the map δ is induced by the boundary morphism δ from (2.4).

We further identify $\mathcal{F}|_{U_\nu} \simeq E_{\nu U_\nu} = \text{constant sheaf on } U_\nu$ with stalk E_ν as follows. As \mathcal{F} is locally constant (hence constant) on U_ν, it is enough to specify an isomorphism

$$H^0(U_\nu, \mathcal{F}) \xrightarrow{\alpha_\nu} E_\nu = H^1_{K}(\mathcal{F})_x,$$

where x is any point on R_ν. Taking a small disk V around x, we have $E_\nu = H^1_{V \cap K}(V, \mathcal{F})$. This hypercohomology with support is identified, via the coboundary map of the standard long exact sequence relating cohomology with and without support), with the cokernel of the map

$$H^0(V, \mathcal{F}) \longrightarrow H^0(V \cap U_\nu, \mathcal{F}) \oplus H^0(V \cap U_{\nu-1}, \mathcal{F}) = H^0(V - K, \mathcal{F})$$

Since \mathcal{F} is constant on V, the projection of $H^0(V \cap U_\nu, \mathcal{F}) = H^0(U_\nu, \mathcal{F})$ to the cokernel, i.e., to E_ν, is an isomorphism. We define α_ν to be this projection.

We now assume $n \geq 2$. Then the closure of U_ν is a proper closed sector \overline{U}_ν, and so we can rewrite the complex $\mathcal{E}^\bullet(\mathcal{F})$ as

$$\mathcal{E}^\bullet(\mathcal{F}) = \left\{ \bigoplus_{\nu=1}^n E_{\nu \overline{U}_\nu} \xrightarrow{\delta} \mathcal{R}(\mathcal{F}) \right\}.$$

Indeed,

$$j_{\nu*}(\mathcal{F}|_{U_\nu}) = j_{\nu*}(E_{\nu U_\nu}) = E_{\nu \overline{U}_\nu}.$$

D. Analysis of the morphism δ. We now analyze the maps of stalks over various points induced by δ. Since the target of δ is supported on K, it is enough to consider two cases:
Stalks over 0. We get maps of vector spaces
\[\delta_\nu : (\mathcal{E}_\nu_{U_\nu})_0 = E_\nu \rightarrow \mathcal{R}(\mathcal{F})_0 = E_0, \quad \nu = 1, \cdots, n. \]
These maps, together with the generalization maps \(\gamma_\nu \), form the quiver
\[Q = Q(\mathcal{F}) = \{ E_0 \xrightarrow{\gamma_i} E_i \delta_i \} \]
which we associate to \(\mathcal{F} \).

Stalks over a generic point \(x \in R_\nu \). As \(x \) lies in two closed subsets \(U_\nu \) and \(U_{\nu-1} \), we have two maps
\[\delta_{U_\nu, R_\nu} : (\mathcal{E}_\nu_{U_\nu})_x = E_\nu \rightarrow \mathcal{R}(\mathcal{F})_x = E_\nu, \]
\[\delta_{U_{\nu-1}, R_\nu} : (\mathcal{E}_{\nu-1_{U_{\nu-1}}})_x = E_{\nu-1} \rightarrow \mathcal{R}(\mathcal{F})_x = E_\nu. \]

Proposition 2.6. We have the following relations:
\[\delta_{U_\nu, R_\nu} = \text{Id}_{E_\nu}, \quad \delta_{U_{\nu-1}, R_\nu} = -T_{\nu-1}, \]
where
\[T_{\nu-1} : E_{\nu-1} = h^0(U_{\nu-1}, \mathcal{F}) \rightarrow E_\nu = H^0(U_\nu, \mathcal{F}) \]
is the counterclockwise monodromy map for the local system \(\mathcal{F}|_{D\setminus\{0\}} \).

Proof: We start with the first relation. Recall that the identification \(\alpha_\nu : H^0(U_\nu, \mathcal{F}) \rightarrow E_\nu \) was defined in terms of representation of \(E_\nu \) as a quotient, i.e., in terms of the coboundary map in the LES relating hypercohomology with and without support. So the differential \(\delta \) in \(\mathcal{E}^* (\mathcal{F}) \), applied to a section \(s \in H^0(U_\nu, \mathcal{F}) \), gives precisely \(\alpha_\nu (s) \), so after the identification by \(\alpha_\nu \), the map on stalks over \(x \in R_\nu \), becomes the identity.

We now prove the second relation. Representing \(e \in E_{\nu-1} \) by a section \(s \in H^0(U_{\nu-1}, \mathcal{F}) \), we see that \(\delta_{U_{\nu-1}, R_\nu} (e) \) is represented by the image of
\[(0, s) \in H^0(U_\nu, \mathcal{F}) \oplus H^0(U_{\nu-1}, \mathcal{F}) \]
in the quotient
\[(H^0(U_\nu, \mathcal{F}) \oplus H^0(U_{\nu-1}, \mathcal{F}))/H^0(V, \mathcal{F}). \]
But the identification of this quotient with \(E_\nu \) is via the projection to the first, not second, summand, i.e., to \(H^0(V \cap U_\nu, \mathcal{F}) = H^0(U_\nu, \mathcal{F}) \). The element \((t, 0) \) projecting to the same element of the quotient as \((0, s) \), has \(t = -T_{\nu-1}(s) = \text{minus} \) the analytic continuation of \(s \) to \(U_\nu \). \(\square \)
Proposition 2.7. The maps γ_ν, δ_ν in the diagram $Q(\mathcal{F})$ satisfy the conditions (C1)-(C3), i.e., $Q(\mathcal{F})$ is an object of the category A_n.

Proof: We spell out the conditions that the differential δ in the Cousin complex $\mathcal{E}^\bullet(\mathcal{F})$ is a morphism of sheaves. More precisely, both terms of the complex are cellular sheaves on D with respect to the regular cell decomposition given by $0, R_1, \ldots, R_n, U_1, \ldots, U_n$. So the maps of the stalks induced by δ must commute with the generalization maps.

Consider the generalization maps from 0 to R_ν. In the following diagram the top row is the stalk of the complex $\mathcal{E}^\bullet(\mathcal{F})$ over 0, the bottom row is the stalk over R_ν, and the vertical arrows are the generalization maps:

$$
\begin{array}{ccc}
\bigoplus_{\mu=1}^n E_\mu & \xrightarrow{\sum \delta_\mu} & E_0 \\
p_{\nu, \nu-1} & & \downarrow \gamma_\nu \\
E_\nu \oplus E_{\nu-1} & \xrightarrow{\Id - T_{\nu-1}} & E_\nu,
\end{array}
$$

the lower horizontal arrow having been described in Proposition 2.6. We now spell out the condition of commutativity on each summand E_μ inside $\bigoplus_{\mu=1}^n E_\mu$.

- **Commutativity on E_ν:** this means $\gamma_\nu \delta_\nu = \Id$.
- **Commutativity on $E_{\nu-1}$:** this means $\gamma_\nu \delta_{\nu-1} = -T_{\nu-1}$, in particular, this composition is an isomorphism.
- **Commutativity on E_μ for $\mu \neq \nu, \nu - 1$:** This means that $\gamma_\nu \delta_\mu = 0$, since the projection $p_{\nu, \nu-1}$ annihilates E_μ. The proposition is proved.

E. $Q(\mathcal{F})$ and duality. Recall that the category Perv($D, 0$) has a perfect duality

$$
(2.8) \quad \mathcal{F} \mapsto \mathcal{F}^\star = \mathbb{D}(\mathcal{F})[2],
$$

i.e., the shifted Verdier duality normalized so that for \mathcal{F} being a local system (in our case, constant sheaf) in degree 0, we have that \mathcal{F}^\star is the dual local system in degree 0. We will use the notation (2.8) also for more general complexes of sheaves on D.

On the other hand, the category A_n also has a perfect duality

$$
Q = \left\{ E_0 \xrightarrow{\gamma_\nu} E_\nu \right\}_{\nu=1}^n \quad \mapsto \quad Q^\star = \left\{ E_0^\star \xrightarrow{\delta_\nu} E_\nu^\star \right\}_{\nu=1}^n.
$$
Proposition 2.9. The functor \(Q : \text{Perv}(D, 0) \to \mathcal{A}_n \) commutes with duality, i.e., we have canonical identifications \(Q(\mathcal{F}^\bullet) \simeq Q(\mathcal{F})^* \).

Proof: We modify the argument of [KS1], Prop. 4.6. That is, we think of \(K \) as consisting of \(n \) “equidistant” rays \(R_\nu \), joining \(0 \) with \(\zeta^{\nu-1} \), \(\zeta = e^{2\pi i/n} \), \(\nu = 1, 2, \ldots, n \).

We consider another star-shaped graph \(K' \) formed by the radii \(R_1', \ldots, R_n' \) so that \(R_\nu' \) is in the middle of the sector \(U_\nu \). Thus, the rotation by \(e^{i\pi/n} \) identifies \(R_\nu \) with \(R_\nu' \) and \(K' \) with \(K \).

We can use \(K' \) instead of \(K \) to define \(R(\mathcal{F}) \) and \(R(\mathcal{F}^\bullet) \). We will denote the corresponding sheaves \(R_{K'}(\mathcal{F}) = H^1_{K'}(\mathcal{F}) \), and similarly for \(R_{K'}(\mathcal{F}^\bullet) \).

Since Verdier duality interchanges \(i^! \) and \(i^\ast \) (for \(i : K' \to D \) being the embedding), we have

\[
R_{K'}(\mathcal{F}^\bullet)^\ast \simeq \mathcal{F}|_{K'}
\]

(usual restriction). To calculate this restriction, we use the Cousin resolution of \(\mathcal{F} \) defined by using \(K \) and the \(U_\nu \):

\[
\mathcal{F} \simeq \mathcal{E}^\bullet = \left\{ \bigoplus_{\nu=1}^n E_{\nu, U_\nu} \xrightarrow{\delta} R_K(\mathcal{F}) \right\}.
\]

So we restrict \(\mathcal{E}^\bullet \) to \(K' \). Since \(K' \cap K = \{0\} \) and \(R_K(\mathcal{F}) \) is supported on \(K \), the restriction \(R_K(\mathcal{F})|_{K'} = E_{0, 0} \) is the skyscraper sheaf at 0 with stalk \(E_0 \).

So

\[
\mathcal{F}|_{K'} \simeq \left\{ \bigoplus_{\nu=1}^n (E_{\nu, U_\nu})_{R_\nu'} \xrightarrow{\delta'} \sum_{\nu=1}^n \delta_\nu (E_0)_{0} \right\}.
\]

On the other hand, the shifted Verdier dual to \(R_{K'}(\mathcal{F}^\bullet) \), as a sheaf on \(K' \) is identified by, e.g., [KS1], Prop. 1.11 with the complex of sheaves

\[
\left\{ \bigoplus_{\nu \subset K'} E_{\nu} (\mathcal{F}^\bullet)^\ast \otimes \text{or}(C) \right\}.
\]

Here \(C \) runs over all cells of the cell complex \(K' \), and \(E_{\nu} (\mathcal{F}^\bullet)^\ast \) is the stalk of the cellular sheaf \(R_{K'}(\mathcal{F}^\bullet) \) at the cell \(C \). Explicitly, \(C \) is either 0 or one of the \(R'_{\nu} \), so

\[
R_{K'}(\mathcal{F}^\bullet)^\ast = \left\{ \bigoplus_{\nu=1}^n E_{\nu} (\mathcal{F}^\bullet)^\ast \xrightarrow{\delta} \sum_{\nu=1}^n \delta_\nu (E_0)_{0} \right\}.
\]
By the above, this complex is quasi-isomorphic to
\[
\mathcal{F}|_{K'} = \left\{ \bigoplus_{\nu=1}^{n} E_{\nu}(\mathcal{F}) \xrightarrow{\sum \delta_{\nu}} E_{0}(\mathcal{F})_{0} \right\}.
\]
So we conclude that
\[
E_{\nu}(\mathcal{F}^{\bullet}) = E_{\nu}(\mathcal{F})^{*}, \quad \gamma_{\nu}^{\bullet} = (\delta_{\nu}^{\mathcal{F}})^{*}.
\]
This proves the proposition.

Proof of Theorem 2.1 We already have the functor
\[
Q : \text{Perv}(D, 0) \rightarrow \mathcal{A}_{n}, \quad \mathcal{F} \mapsto Q(\mathcal{F}).
\]
Let us define a functor \(\mathcal{E} : \mathcal{A}_{n} \rightarrow D^{b}\text{Sh}_{D} \). Suppose we are given
\[
Q = \left\{ E_{0} \xrightarrow{\gamma_{\nu}} E_{\nu} \right\}_{\nu=1}^{n} \in \mathcal{A}_{n}.
\]
We associate to it the Cousin complex
\[
\mathcal{E}^{\bullet}(Q) = \left\{ \bigoplus_{\nu=1}^{n} E_{\nu}(\mathcal{F})_{\nu} \xrightarrow{\delta} \mathcal{R}(Q) \right\}.
\]
Here \(\mathcal{R}(Q) \) is the cellular sheaf on \(K \) with stalk \(E_{0} \) at 0, stalk \(E_{\nu} \) at \(R_{\nu} \) and the generalization map from 0 to \(R_{\nu} \) given by \(\gamma_{\nu} \). The map \(ul\delta \) is defined on the stalks as follows:

Over 0: the map
\[
(E_{\nu}(\mathcal{F}))_{0} = E_{\nu} \rightarrow \mathcal{R}(Q)_{0} = E_{0}
\]
is given by \(\delta_{\nu} : E_{\nu} \rightarrow E_{0} \).

Over \(R_{\nu} \): The map
\[
\left(\bigoplus_{\mu=1}^{n} E_{\mu}(\mathcal{F}) \right)_{R_{\nu}} = E_{\nu} \oplus E_{\nu-1} \rightarrow \mathcal{R}(Q)_{R_{\nu}} = E_{\nu}
\]
is given by
\[
\text{Id} - T_{\nu-1} : E_{\nu} \oplus E_{\nu-1} \rightarrow E_{\nu}.
\]
Reading the proof of Proposition 2.6 backwards, we see that the conditions (C1)-(C3) mean that in this way we get a morphism \(\delta \) of cellular sheaves on \(D \), so \(\mathcal{E}^{\bullet}(Q) \) is an object of \(D^{b}\text{Sh}_{D} \).

Further, similarly to Proposition 2.9 we see that \(\mathcal{E}^{\bullet}(Q^{*}) \simeq \mathcal{E}(Q)^{*} \).
Proposition 2.10. \(\mathcal{E}^\bullet(Q) \) is constructible with respect to the stratification \((\{0\}, D - \{0\})\) and is perverse.

Proof: Constructibility. It is sufficient to prove the following:

(a) The sheaf \(H^0(\mathcal{E}^\bullet(Q))|_{D-\{0\}} \) is locally constant.

(b) The sheaf \(H^1(\mathcal{E}^\bullet(Q))|_{D-\{0\}} \) is equal to 0.

To see (a), we look at the map of stalks over \(R_\nu \):

\[
\text{Id} - T_{\nu-1} : E_\nu \oplus E_{\nu-1} \to E_\nu
\]
given by the differential \(\delta \) in \(\mathcal{E}^\bullet(Q) \). So, by definition, \(H^0(\mathcal{E}^\bullet(Q))_{R_\nu} \) and \(H^1(\mathcal{E}^\bullet(Q))_{R_\nu} \) are the kernel and cokernel of this map.

Now, since \(T_{\nu-1} \) is an isomorphism, \(\text{Ker}(\text{Id} - T_{\nu-1}) \) projects to both \(E_\nu \) and \(E_{\nu-1} \) isomorphically. This means that \(H^0(\mathcal{E}^\bullet(Q)) \) is locally constant over \(R_\nu \); the stalk at \(R_\nu \) projects (“generalizes”) to the stalks at \(U_\nu \) and \(U_{\nu-1} \) in an isomorphic way.

To see (b), we notice that \(\text{Id} - T_{\nu-1} \) is clearly surjective and so \(H^1(\mathcal{E}^\bullet(Q))_{R_\nu} = 0 \). Since \(\mathcal{E}^1(Q) = \mathcal{R}(Q) \) is supported on \(K \), this means that \(H^1(\mathcal{E}^\bullet(Q)) \) is supported at 0, and its restriction to \(D - \{0\} \) vanishes. So \(H^1(\mathcal{E}^\bullet(Q)) \) are \(\mathbb{C} \)-constructible as claimed.

Perversity. By the above, \(\mathcal{E}^\bullet(Q) \) is semi-perverse, i.e., lies in the non-positive part of the perverse t-structure, that is, \(H^i(\mathcal{E}^\bullet(Q)) \) is supported on complex codimension \(\geq i \). Further, \(\mathcal{E}^\bullet(Q)^\bullet \) also satisfies the same semi-perversity since it is identified with \(\mathcal{E}^\bullet(Q^*) \). This means that \(\mathcal{E}^\bullet(Q) \) is fully perverse. Proposition 2.10 is proved.

It remains to show that the functors

\[
Perv(D, 0) \xrightarrow{Q} \mathcal{A}_n
\]

are quasi-inverse to each other. This is done in a way completely parallel to [KS1], Prop. 6.2 and Lemma 6.3 (“orthogonality relations”). Theorem 2.1 is proved. □

See Appendix for some further study of the categories \(\mathcal{A}_n \).
3 The graph description of perverse sheaves on an oriented surface

A. Generalities. The purity property. Let S be a compact topological surface, possibly with boundary ∂S; we denote $S^\circ = S - \partial S$ the interior. Let $N \subset S^\circ$ be a finite subset. We then have the category $\text{Perv}(S, N)$ formed by perverse sheaves of k-vector spaces on S, smooth outside N.

By a graph we mean a topological space obtained from a finite 1-dimensional CW-complex by removing finitely many points. Thus we do allow edges not terminating in a vertex on some side ("legs"), as well as 1-valent and 2-valent vertices as well as loops. For a vertex x of a graph K we denote by $H(x)$ the set of half-edges incident to x. We can, if we wish, consider any point $x \in K$ as a vertex: if it lies on an edge, we consider it as a 2-valent vertex, so $H(x)$ is this case is the set of the two orientations of the edge containing x. Further, for a graph K we denote by $\text{Vert}(K)$ and $\text{Ed}(K)$ the sets of vertices and edges of K.

We denote by \mathcal{C}_K the cell category of K defined as follows. The set $\text{Ob}(\mathcal{C}_K)$ is $\text{Vert}(K) \sqcup \text{Ed}(K)$ ("cells"). Non-identity morphisms can exist only between a vertex x and an edge e, and

$$\text{Hom}(x, e) = \{ \text{half-edges } h \in H(x) \text{ contained in } e \}.$$

So $|\text{Hom}(x, e)|$ can be 0, 1 or 2 (the last possibility happens when e is a loop beginning and ending at x). If K has no loops, then \mathcal{C}_K is a poset. We denote by $\text{Rep}(\mathcal{C}_K) = \text{Fun}(\mathcal{C}_K, \text{Vect}_k)$ the category of representations of \mathcal{C}_K over k.

Proposition 3.1. The category of cellular sheaves on K is equivalent to $\text{Rep}(\mathcal{C}_K)$.

Proof: This is a particular case of general statement [1] which describes constructible sheaves on any stratified space in terms of representations of the category of exit paths.

Let now $K \subset S$ be any embedded graph (possibly passing through some points of N). We allow 1-valent vertices of K to be situated inside S, as well as on ∂S.

Proposition 3.2. For $\mathcal{F} \in \text{Perv}(S, N)$ we have $\mathbb{H}^i_K(\mathcal{F}) = 0$ for $i \neq 1$.
Proof: This follows from Proposition 2.2. Indeed, the statement is local on \(S \), and the graph \(K \) is modeled, near each of its points, by a star shaped graph in a disk.

We denote
\[
\mathcal{R}(\mathcal{F}) = \mathcal{R}_K(\mathcal{F}) := H^1_K(\mathcal{F}),
\]
this is a cellular sheaf on \(K \).

B. Spanning ribbon graphs. From now on we assume that \(S \) is oriented. Graphs embedded into \(S \) have, therefore, a canonical ribbon structure, i.e., a choice of a cyclic ordering on each set \(H(x) \). See, e.g., [DK] for more background on this classical concept.

For a ribbon graph \(K \) we have a germ of an oriented surface with boundary \(\text{Surf}(K) \) obtained by thickening each edge to a ribbon and gluing the ribbons at vertices according to the cyclic order. In the case of a 1-valent vertex \(x \) we take the ribbon to contain \(x \), so that \(x \) will be inside \(\text{Surf}(K) \).

By a spanning graph for \(S \) we mean a graph \(K \), embedded into \(S^\circ \) as a closed subset, such that the closure \(\overline{K} \subset S \) is a graph embedded into \(S \), and the embedding \(K \hookrightarrow S^\circ \) is a homotopy equivalence. Thus we allow for legs of \(K \) to touch the boundary of \(S \).

C. The category associated to a ribbon graph.

Definition 3.3. Let \(K \) be a graph, and \(C_K \) be its cell category. By a double representation of \(C_K \) we mean a datum \(Q \) of:

1. For each \(x \in \text{Vert}(K) \), a vector space \(E_x \).
2. For each \(e \in \text{Ed}(K) \), a vector space \(E_e \).
3. For each half-edge \(h \) incident to a vertex \(x \) and an edge \(e \), linear maps
\[
E_x \xrightarrow{\gamma_h} E_e.
\]

Let \(\text{Rep}^{(2)}C_K \) be the category of double representations of \(C_K \).

Let now \(K \) be a ribbon graph. Denote by \(A_K \) the full subcategory in \(\text{Rep}^{(2)}C_K \) formed by double representations \(Q = (E_x, E_e, \gamma_h, \delta_h) \) such that for each vertex \(x \in K \) the following conditions are satisfied (depending on the valency of \(x \):
• If \(x \) is 1-valent, then we require:

\[
(C_x) \quad \text{Id}_{E_e} - \gamma_h \delta_h : E \to E \text{ is an isomorphism.}
\]

• If the valency of \(x \) is \(\geq 2 \), then we require:

\[
(C1_x) \quad \text{For each half-edge } h \text{ incident to } x, \text{ we have } \gamma_h \delta_h = \text{Id}_{E_e}.
\]

\[
(C2_x) \quad \text{Let } h, h' \text{ be any two half-edges incident to } x \text{ such that } h' \text{ immediately follows } h \text{ in the cyclic order on } H(x). \text{ Let } e, e' \text{ be the edges containing } h, h'. \text{ Then } \gamma_{h'} \delta_h : E_e \to E_{e'} \text{ is an isomorphism.}
\]

\[
(C3_x) \quad \text{If } h, h' \text{ are two half edges incident to } x \text{ such that } h \neq h' \text{ and } h' \text{ does not immediately follow } h, \text{ then } \gamma_{h'} \delta_h = 0.
\]

Example 3.4. If \(K = K_n \) is a “ribbon corolla” with one vertex and \(n \) legs, then \(\mathcal{A}_K = \mathcal{A}_n \) is the category from \(\S 2 \).

D. Description of \(\text{Perv}(S, N) \) in terms of spanning graphs. Let \(S \) be an oriented surface, \(K \subset S \) be a spanning graph and \(N = \text{Vert}(K) \). For \(F \in \text{Perv}(S, N) \) we have the sheaf \(R_K(F) \) on \(K \), cellular with respect to the cell structure given by the vertices and edges. Therefore by Proposition 3.1 it gives the representation of \(\mathcal{C}_K \) which, explicitly, consisting of:

- The stalks \(E_x, E_e \) at the vertices and edges of \(K \). We write \(E_x(F), E_e(F) \) if needed.
- The generalization maps \(\gamma_h : E_x \to E_e \) for any incidence, i.e. half-edge \(h \) containing \(x \) and contained in \(e \).

Proposition 3.5. For the Verdier dual perverse sheaf \(F^\bullet \) we have canonical identifications

\[
E_x(F^\bullet) \simeq E_x(F)^*, \quad E_e(F^\bullet) \simeq E_e(F)^*.
\]

Proof: Follows from the local statement for a star shaped graph in a disk, Prop. 2.9

So we define

\[
\delta_h = (\gamma_h^\bullet)^* : E_e \to E_x.
\]
Theorem 3.6. (a) The data $Q = Q(F) = (E_x, E_e, \gamma_h, \delta_h)$ form an object of the category \mathcal{A}_K.

(b) If K is a spanning graph for S, and $N = \text{Vert}(K)$, then the functor

$$Q_K : \text{Perv}(S, N) \to \mathcal{A}_K, \quad F \mapsto Q(F)$$

is an equivalence of categories.

Proof: (a) The relations $(C1_x)$-$$(C3_x)$ resp. (C_x) defining \mathcal{A}_K, are of local nature, so they follow from the local statement (Proposition 2.6) about a star shaped graph in a disk.

(b) This is obtained by gluing the local results (Theorem 2.1). More precisely, perverse sheaves smooth outside N, form a stack \mathfrak{P} of categories on S. We can assume that $S = \text{Surf}(K)$, so \mathfrak{P} can be seen as a stack on K, and $\text{Perv}(S, N) = \Gamma(K, \mathfrak{P})$ is the category of global sections of this stack. Similarly, \mathcal{A}_K also appears as $\Gamma(K, \mathfrak{A})$, where \mathfrak{A} is the stack of categories on K given by $K' \mapsto \mathcal{A}_K'$ (here K' runs over open subgraphs of K). Our functor Q comes from a morphism of stacks $Q : \mathfrak{P} \to \mathfrak{A}$, so it is enough to show that Q is an equivalence of stacks. This can be verified locally, at the level of stalks at arbitrary points $x \in K$, where the statement reduces to Theorem 2.1.

Cf. [KS1], §9B for a similar argument.

D. Polarized sheaves. Let us call a polarized space an object $E \in \text{Vect}(k)$ equipped with a nondegenerate k-bilinear form

$$\langle \ , \ \rangle : E \times E \to k,$$

not necessarily symmetric. A linear map $f : E \to E'$ between polarized spaces has two adjoints: the left and the right one, $^tf, f^\top : E' \to E$, defined by

$$\langle ^tf(x), y \rangle = \langle x, f(y) \rangle; \quad \langle y, f^\top(x) \rangle = \langle f(y), x \rangle.$$

Polarized spaces give rise to several interesting geometric structures motivated by category theory, see [Bon].

Let us call a polarized perverse sheaf over S an object $\mathcal{F} \in \text{Perv}(S, N)$ equipped with an isomorphism with its Verdier dual $B : \mathcal{F} \to \mathcal{F}^\ast$. This concept can be compared with that of [S]; however we do not require any symmetry of B. Polarized perverse sheaves on S with singularities in N form a category $\text{PolPerv}(S, N)$ whose morphisms are morphisms of perverse sheaves commuting with the isomorphisms B.

15
Definition 3.7. Given a ribbon graph K, we define the category $p\mathcal{A}_K$ (resp. A^p_K) whose objects are collections $Q = (E_x, E_e, \gamma_h, \delta_h)$ as in \mathcal{A}_K, together with an additional data of polarizations on all spaces E_e, E_x, subject to an additional condition: for each h, we have $\delta_h = \gamma_h^\top$ (resp. $\delta_h = \gamma_h^\top$).

Since by definition the equivalence Q_K from Theorem 3.6 commutes with the duality, we obtain:

Corollary 3.8. If K is a spanning graph for S and $N = \text{Vert}(K)$, then we have two equivalences

$$pQ_K : \text{PolPerv}(S, N) \sim \rightarrow p\mathcal{A}_K; \quad Q^p_K : \text{PolPerv}(S, N) \sim \rightarrow A^p_K. \quad \square$$

A Appendix. Coboundary actions and helices

Since the same marked surface (S, N) has many spanning graphs $K \supset N$, the corresponding categories \mathcal{A}_K are all equivalent to each other, being identified with $\text{Perv}(S, N)$. One can continue the analysis of this paper by constructing a system of explicit identifications $\mathcal{A}_K \rightarrow \mathcal{A}_K'$ for pairs of spanning graphs $K, K' \supset N$ connected by “elementary moves”, in the spirit of [DK]. To keep the paper short, we do not do it here, but discuss a local aspect of this issue: the action of \mathbb{Z}/n on \mathcal{A}_n.

Let G be a discrete group which we consider as a category with one object pt. Recall (see, e.g., [De], [GK]) that a category with G-action, or a categorical representation of G is a lax 2-functor $F : G \rightarrow \text{Cat}$ from G to the 2-category of categories.

Explicitly, it consists of the following data (plus the data involving the unit of G, see [GK]):

1. A category $\mathcal{C} = F(pt)$.
2. For each $g \in G$, a functor $g_* = F(g) : \mathcal{C} \rightarrow \mathcal{C}$.
3. For each $h, g \in G$, an isomorphism of functors $\alpha_{h,g} = F(h,g) : h_*g_* \Rightarrow (hg)_*$.
4. It is required that for any three elements $h, g, f \in G$ the square

$$
\begin{array}{ccc}
h_*g_*f_* & \xrightarrow{\alpha_{h,g}} & (hg)_*f_* \\
\alpha_{g,f} \downarrow & & \downarrow \alpha_{hg,f} \\
h_*(gf)_* & \xrightarrow{\alpha_{h,gf}} & (hg f)_*
\end{array}
$$

is commutative, i.e.
\[\alpha_{h,g,f} = \alpha_{h,g} \alpha_{f}. \]

Example A.1. If \(F(g) = \text{Id}_C \) for all \(g \in G \), then \(F \) is the same as a 2-cocycle \(\alpha \in Z^2(G; Z(C)) \) where \(Z(C) \) is the center of \(C := \text{the group of automorphisms of the identity functor Id}_C \), the action of \(G \) on \(Z(C) \) being trivial.

We say that the action is **strict** if \((gf)_* = g_* f_* \), and \(\alpha_{g,f} = \text{Id}_{g_* f_*} \) for all composable \(g, f \). In other words, a strict action is simply a group homomorphism \(F : G \to \text{Aut}(C) \).

All actions of \(G \) on a given category \(C \) form themselves a category, denoted \(\text{Act}(G, C) \). It has a distinguished object \(I \), the trivial action, with all \(g_* = \text{Id}_C \) and all \(\alpha_{h,g} = \text{Id} \). Given an action \(F \) as above, a **coboundary structure** on \(F \) is an isomorphism \(\beta : I \to F \) in \(\text{Act}(G, C) \). Explicitly, it consists of:

- A collection of natural transformations \(\beta_g : \text{Id}_C \xrightarrow{\sim} g_* \), given for all \(g \in G \) such that
- For each \(g, f \in G \) the square
 \[
 \begin{array}{ccc}
 \text{Id}_C & \xrightarrow{\beta_f} & f_* \\
 \beta_{gf} & \downarrow & \downarrow \beta_g \\
 (gf)_* & \xrightarrow{\alpha_{g,f}^{-1}} & g_* f_*
 \end{array}
 \]
 is commutative, in other words, \(\alpha_{g,f} = \beta_{gf} \beta_f^{-1} \beta_g^{-1} \).

Examples A.2. (a) In the situation of Example A.1, a coboundary structure on \(F \) is the same as a 1-cochain
\[
\beta \in C^1(G; Z(C)) = \text{Hom}_{\text{Set}}(G, Z(C)), \quad d \beta = \alpha.
\]

(b) If our action is strict, then a coboundary structure on it is a collection of natural transformations \(\{ \beta_g \} \) as above, such that \(\beta_{gf} = \beta_g \beta_f \).

Returning now to the situation of §2, we have a strict action of \(Z/n \) on \(A_n \) such that \(k \in Z/n \) acts by rotation by \(2\pi k/n \). More precisely, for
\[
x = (E_0, E_1, \ldots, E_n; \gamma_i, \delta_i) \in \text{Ob}(A_n)
\]
we define
\[
k_* x = (E_0, E_1 + k, \ldots, E_{n+k}; \gamma_{i+k}, \delta_{i+k}), \quad k \in Z/n
\]
where the indices (except for \(E_0 \)) are understood modulo \(n \).
Proposition A.3. The strict action of \(\mathbb{Z} \) on \(\mathcal{A}_n \) induced by the composition
\[
\mathbb{Z} \to \mathbb{Z}/n \to \text{Aut}(\mathcal{A}_n)
\]
is coboundary.

Proof: For \(x \in \mathcal{A}_n \) as above we have an arrow \(\beta_1(x) : x \to 1_* x \) in \(\mathcal{A}_n \), induced by the fractional monodromies
\[
T_i = \gamma_{i+1} \delta_i : E_i \to E_{i+1}, \ i \in \mathbb{Z}/n,
\]
which give rise to natural isomorphisms \(\beta_1 : \text{Id}_{\mathcal{A}_n} \to 1_* \) (here \(1 \in \mathbb{Z}/n \) is the generator). More generally, putting \(\beta_k := (\beta_1)^k, \ k \in \mathbb{Z} \), we get a coboundary structure on the composed action. \(\square \)

Note that in particular the global monodromy \(T = \beta_n \) is a natural transformation \(\text{Id}_{\mathcal{A}_n} \to \text{Id}_{\mathcal{A}_n} \), so it is an element of \(Z(\mathcal{A}_n) \). For an object \(x \in \mathcal{A}_n \) the sequence
\[
\cdots (-1)_* x, x, 1_* x, \cdots, n_* x, \cdots
\]
can be seen as a decategorified analog of a helix, see \[BP\], with the monodromy \(T \) playing the role of the Serre functor.

References

[Be] A. Beilinson. How to glue perverse sheaves. In: K-theory, arithmetic and geometry (Moscow, 1984), Lecture Notes in Math. 1289, Springer-Verlag, 1987, 42 - 51.

[Bon] A. I. Bondal. A symplectic groupoid of triangular bilinear forms and the braid group. Russian Math. Izvestiya 68 (2004) 659-708.

[BP] A. I. Bondal, A. E. Polishchuk. Homological properties of associative algebras: the method of helices. Russian Math. Izv. 42 (1994) 219-260.

[De] P. Deligne. Action du groupe des tresses sur une catégorie. Invent. Math. 128 (1997), 159-175.

[DK] T. Dyckerhoff, M. Kapranov. Triangulated surfaces in triangulated categories. ArXiv: 1306.2545.

[DKSS] T. Dyckerhoff, M. Kapranov, V. Schechtman, Y. Soibelman. Perverse Schobers on surfaces and Fukaya categories with coefficients, in preparation.

18
[GGM] A. Galligo, M. Granger, P. Maisonobe. \mathcal{D}-modules et faisceaux pervers dont le support singulier est un croisement normal. Ann. Inst. Fourier Grenoble, 35 (1985), 1-48.

[GK] N. Ganter, M. Kapranov. Representation and character theory in 2-categories. Adv. in Math. 217 (2008), 2269-2300.

[GMV] S. Gelfand, R. D. MacPherson, K. Vilonen. Perverse sheaves and quivers. Duke Math. J. 3 (1996), 621-643.

[KS1] M. Kapranov, V. Schechtman, Perverse sheaves over real hyperplane arrangements, arXiv:1403.5800; Ann. of Math. (2016), to appear.

[KS2] M. Kapranov, V. Schechtman, Perverse Schobers, arXiv:1411.2772.

[KS3] M. Kashiwara, P. Schapira. Sheaves on Manifolds. Springer, 1990.

[S] M. Saito, Modules de Hodge polarisables, Publ. RIMS, 24 (1988), 849 - 995.

[T] D. Treumann. Exit paths and constructible stacks. Compositio Math. 145 (2009), 1504-1532.

M.K.: Kavli Institute for Physics and Mathematics of the Universe (WPI), 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8583, Japan; mikhail.kapranov@ipmu.jp

V.S.: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France; schechtman@math.ups-toulouse.fr