Evaluating *Ex Ante* Counterfactual Predictions with *Ex Post* Causal Inference

Cyrus Samii, joint with Michael Gechter, Rajeev Dehejia, and Cristian Pop-Eleches

2019 DRI Annual Conference
Motivation

• What **method** to use to inform a policy choice in a given context?
 • External experiments? Internal observational evidence? (cf. Pritchett & Sandefur 2015)
 • Highly nuanced model? Simple model? Agnostic “model-free” methods?

• To answer the question, need a way to **judge** methods.
 • Methods make *ex ante* proposals.
 • We leverage subsequent experiments to do *ex post* evaluation.
Contribution

• Define criterion for methods to target *ex ante*
 • Consider a policy maker’s utility function
 • Ask methods to recommend policies to maximize *ex ante* this utility

• Define a method for *ex post* judgement based on this criterion
 • We use *ex post* experiments to judge
 • Experiments offer design-unbiased ways to compare methods

• Consider a *variety of methods* to form policy recommendations
 • Structural models of varying complexity
 • Reduced form methods of varying complexity
Application

• Promoting school enrollment in Morocco.
 • Policy maker is considering conditional cash transfers.
 • Wants to know how to optimally target the transfers.
 • Maximizes
 \[
 \text{treated} \times (\text{gains} - \text{alternative uses of funds}) \\
 + \text{untreated} \times (\text{alternative uses of funds} – \text{foregone gains})
 \]

• Information available *ex ante* to derive recommendations
 • Survey data from Morocco
 • Experiments from elsewhere (Mexico Progresa)
Methods for Ex Ante Recommendations

• Extrapolating from Progresa RCT in Mexico
 • Generalized random forest
 (cf. Athey et al. 2019)
 • Simple regression interacting gender and years-of-ed. dummies

• Analyzing observational data in Morocco
 • Semiparametric static structural model
 (cf. Todd & Wolpin 2006)
 • Parametric dynamic structural model
 (cf. Attanasio et al. 2012)
 • Exogeneity and (semi-)parametric assumptions
Strategy for Ex Post Evaluation

• Each method tries to maximize policy-maker utility
• How did they do?
• Make ex post judgment using Tayssir RCT in Morocco
• RCT allows for design-unbiased ex post estimation of utility from each method

\[
\text{treated} \times (\text{gains - alternative uses of funds}) \\
+ \text{untreated} \times (\text{alternative uses of funds – foregone gains})
\]
Results (preliminary)

• First, sanity check: optimize utility in Mexico using data from Mexico
• GRF significantly outperforms simple regression

	w/ CE
Share treated (GRF)	0.169
Share treated (yrs. educ-sex)	0.107
Enrollment difference	0.140
SE enroll. diff.	0.004
Welfare difference	0.127
SE welfare diff.	0.004

Welfare comparison for GRF vs. yrs.educ.-sex extrapolation

• For structural models, original papers showed similar
Results (preliminary)

• Now move on to Morocco

• Simple regression *from Mexico* outperforms blanket rule of treating everyone:

	w/ CE
Share treated (yrs. educ-sex)	0.020
Share treated (all)	1
Enrollment difference	-0.054
SE enroll. diff.	0.010
Welfare difference	0.028
SE welfare diff.	0.009

Welfare comparison for yrs.educ.-sex extrapolation vs. treat all.
Results (preliminary)

• But we *do not* see additional gains from fancier GRF extrapolation:

	w/ CE
Share treated (GRF)	0.172
Share treated (yrs. educ-sex)	0.020
Enrollment difference	0.013
SE enroll. diff.	0.007
Welfare difference	0.005
SE welfare diff.	0.006

Welfare comparison for GRF vs. yrs.educ.-sex extrapolation
Results (preliminary)

- Nor from structural models fit to Morocco observational data:

	w/ CE		w/ CE
Share treated (SPS)	0.269	Share treated (SPS)	0
Share treated (yrs. educ-sex)	0.020	Share treated (yrs. educ-sex)	0.020
Enrollment difference	0.010	Enrollment difference	0.002
SE enroll. diff.	0.009	SE enroll. diff.	0.003
Welfare difference	-0.010	Welfare difference	0.003
SE welfare diff.	0.008	SE welfare diff.	0.003

Welfare comparison for SPS vs. yrs.educ.-sex extrapolation

Welfare comparison for DPS vs. yrs.educ.-sex extrapolation
Implications and Extensions

• Simplicity travels, nuance does not?
• What if we add more external experiments?
 • Ongoing work with RCTs from 7 contexts
• What if effects are more complex?
 • Ongoing work considers spillovers and equilibrium effects.