Planning the priority of high tech industries based on SWARA-WASPAS methodology: The case of the nanotechnology industry in Iran

Mohammad Reza Ghorshi Nezhada,b, Sarfaraz Hashemkhani Zolfania,b,*, Fathollah Moztarzadeha,b, Edmundas Kazimieras Zavadskasc and Mohsen Bahramia,b

aDepartment of Management, Science and Technology, Amirkabir University of Technology (Tehran Polytechnic), Technology Foresight Group, Tehran, Iran; bFutures Studies Research Institute, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; cInstitute of Internet and Intelligent Technologies, Vilnius Gediminas Technical University, Vilnius, Lithuania

(Received 8 April 2014; accepted 15 September 2015)

Decision-making and planning at the top level is highly complicated. One important duty of each government and of policy makers is planning at different levels for future problems. This research addresses such a concern. Planning for the future is the aim of this research. Moreover, the importance of the topic is discussed. The case study focused on is the nanotechnology industry and its development in Iran. Nanotechnology is one of the main and strategic industries in Iran. The important criteria for such a development are determined based on a literature review and the experiences from other countries. The different alternatives are selected based on the different applications of nanotechnology in other industries. The alternatives are: agriculture, transportation, construction, oil and gas, textile products, food industry, defence industry, health and medicine, nano electronics, nano energy and environment and water. The methodology employed is Multiple Criteria Decision Making (MCDM). In addition, SWARA-WASPAS is the hybrid MADM model employed in which SWARA is applied to evaluate the criteria and WASPAS is utilised to evaluate and rank the alternatives.

Keywords: Future planning; high-tech industries; nanotechnology; Multi Criteria Decision Making (MCDM); SWARA; WASPAS

JEL classification: O14, O25, C44, C63

1. Introduction

In our time, the emergence of knowledge is such that scholars and scientists call it the ‘knowledge era’. In this era, knowledge is seen as the distinctive factor of development or underdevelopment. Nations and communities that recognise the importance of knowledge early can take advantage of knowledge as a strategic factor or competitive benefit in the economic, social, and political forums. Hence these countries could build a considerable and distinctive gap between themselves and other countries (Jannatifard, Nikraftar, & Safdari, 2011).

Nowadays, no country is immune from the influence of technological advances. In recent decades a technological revolution was accompanied by changes in social,
economic, political and even personal topics around the world. The technological revolution has great potential to metamorphose the quality of life, business and industry evolution, and the wealth and displacement power at the national level. Technology achievements for each country create wealth, power, opportunity, pride and national honour; therefore, nations are enthusiastic to dominate the technology.

Innovative initiatives, especially R&D activities, are the important parts of productivity growth (Griliches, 1981; Sadeghi, Azar, & Sepehri Rad, 2012; Stokey, 1995; Wang & Wu, 2012; Wang, Yu, & Liu, 2013) and since the mid-1990s – at the same time as the information technology revolution – high-tech industries have been playing a significant role in economic development (Griliches & Mairesse, 1984; Lichtenberg, 1992; Nadiri, 1993; Ortega-Argilés, Piva, Potters, & Vivarelli, 2010; Tsai & Wang, 2004; Wang et al., 2013).

Governments have realised that without science and technology they cannot compete in the global markets and they cannot ensure their national security. They have found that their prosperity depends on proper employment of science and technology to meet national needs.

Technology is an increasingly important element of globalisation and of competitiveness. The acceleration of technological changes and the pre-requisites necessary to participate effectively in globalisation are making it more difficult for many developing countries to compete (Dahlman, 2007).

Technology plays an increasingly important role in international affairs. It is increasingly seen as a key component of national power and a driving force for global change. Some authors thus proclaim that technology is the ‘new wealth of nations’ (Ayres, 1988; Rosenberg, Landau, & Mowery, 1992).

In the contemporary world, wherever science and technology have flourished development has been quick and wherever there has been indifference to science and technology, development has been slow. Nowadays, one of the main factors regarding the power of countries is knowledge.

Economic development is highly related to technological development. It is therefore not surprising that many industrially developing nations follow explicit strategies to increase their technological competence level (Steenhuis & Bruijn, 2005).

The Islamic Republic of Iran (IRI) knowingly views ‘knowledge’ and its consequent adjustment of 20-year prospects to the year of Vision 2025 (2011) as the emergent impact in this era. Achieving the first rank in Science and Technology in Southwest Asia (Vision 2025, 2011) is considered IRI’s most import strategic issue.

To achieve this, Iran needs to consider benefits from various factors that were identified over the long-run and, along with continuous improvement, will guide the country to its final destination.

Considering the importance of immediate access to emerging technologies such as automated manufacturing technology, advanced materials technology, microelectronic technology, biotechnology, nanotechnology, information technology, environmental technology, aerospace technology, and new energy technology, no country can handle its economy without keeping pace with the growth and progress of these technologies. Thus, identification of critical and emerging technologies has a significant role in order to provide various scenarios, strategic planning, policy formulation and technology development strategies for moving from the current state to the target state. On the other hand, the limited resources and facilities of each country necessitates prioritising areas of science and technology to achieve the objectives and mission of plans upstream. The Islamic Republic of Iran, by considering the undeniable impact of emerging technology...
In this article, we attempt to develop a methodology for future planning of high tech industries in Iran. The SWARA-WASPAS methodology is applied to the process of decision-making and future planning. The case studied is the nanotechnology industry because nanotechnology has demonstrated excellent progress in Iran.

To this end, all applications of nanotechnology in various areas of sciences in Iran were identified and evaluated using criteria that were determined based on a literature review and past research. SWARA and WASPAS are applied for evaluating criteria and alternatives. The aim is to identify the priority nanotechnology applications that should be investigated.

The evaluation Process of this research is shown in Figure 1.

2. High-tech industries

Technology is an increasingly important element of globalisation and of competitiveness, and the acceleration in the rate of technological change and the pre-requisites necessary to participate effectively in globalisation are making it more difficult for many developing countries to compete (Dahlman, 2007).

Technology plays an increasingly important role in international affairs. It is increasingly seen as a key component of national power and a driving force for global change. Some authors have thus proclaimed technology the ‘new wealth of nations’ (Ayres, 1988; Rosenberg et al., 1992).
Economic development is highly related to technological development. It is therefore not surprising that many of the industrially developing nations follow explicit strategies to increase their technological competence level (Steenhuis & Bruijn, 2005).

During the current period, the emergence of knowledge is such that scholars and scientists are calling it the “knowledge era”. In this era, knowledge will be considered as a distinctive factor in development or underdevelopment. Nations and communities, who have perceived the importance of knowledge early and taken advantage of knowledge as a strategic factor or competitive benefit in economic, social, and political forums, could build a considerable and distinctive gap between themselves and the other countries (Jannatifard et al., 2011). The Islamic Republic of Iran knowingly views ‘knowledge’ as the emergent impact in this current era and, consequently, in the country’s adjustment of its 20 years prospects, to the year 2025, it considers its most import strategic issue to be achieving the first rank in Science and Technology in Southwest Asia (Vision 2025, 2011).

3. Nanotechnology

Nanotechnology is the manipulation of matter at the atomic and molecular scale. First, an extensive description of nanotechnology refers to the specific goal of precisely manipulating atoms and molecules in order to make macro-scale products, in addition to molecular nanotechnology. A more common definition of Nanotechnology was created by the National Nanotechnology Initiative, which defines it as the manipulation of matter with a minimum dimension sized from 1 to 100 nm. (Drexler, 1986, 1992)

Nanotechnology affects all materials:

- Ceramics
- Metals
- Polymers
- Biomaterials
- Semiconductors

Nanotechnology is an interdisciplinary field that aims to achieve a mass application by 2020. This field is a new approach to education, innovation, learning and management that creates fundamental changes in many aspects of human life.

Nanotechnology will have enormous impact on our lives, production, exchange and communication with others, manufacturing and utilisation of new energy sources and environmental protection.

In the coming decade, it will be necessary to focus on four aspects of nanotechnology development:

1. How nanotechnology can help to improve our understanding of nature, perform exploration and innovation, predict material properties and design materials and systems at the nano scale, i.e. ‘knowledge progress’.
2. How nanotechnology can create economical and medical values, i.e. ‘material progress’.
3. How nanotechnology is contributing to sustainable development, community safety and international cooperation, i.e. ‘global progress’
4. How nanotechnology can improve quality of life and social justice, i.e. ‘moral progress’
Table 1. The experience of nanotechnology strategic plans in some nations (Iran Nanotechnology Initiative Council, www.nano.ir).

Country	Title	Vision	Priority
Austria	Austrian Nanotechnology Action Plan	Alberta will be a leading contributor in placing Canada amongst the top five nations in the world by helping it produce 10 per cent of the world’s nanotechnology based economic activity.	Synthesis and characterisation of nanocrystals and nanowires, Synthesis of materials based on supramolecules, Production of devices and nanosensors on a molecular scale, Development of nanomaterials suitable for catalysis and specific modifications to the surfaces of semiconductors, Development of interfaces for nanoelectronics and nanofluidics devices, Theory, modelling and simulation of nanosystems, Development of quantitative imaging and characterisation techniques supporting research into nanotechnology, Energy and environment, Health and medical technologies, Agriculture and forestry, Nanomedicine and drug delivery, Priority sector, Priority sector, Priority sector, National priority
Canada	Alberta Nanotechnology Strategy, Unleashing Alberta’s Potential		R & D focus, R & D focus
Denmark	Technology Foresight on Danish Nanoscience and Nanotechnology	Towards 2020, Denmark is to be amongst the absolute world leaders in regards to the mastery	
Table 1. (Continued).

Nanotechnology strategic plans

Country	Title	Vision	Priority	Priority Type
Finland	FinNano, Nanotechnology Programme	The FinNano programme will strengthen Finland’s position as an innovative high-tech country, Commercialisation of nanotechnology-enabled innovations will increase the welfare of our society.	Biocompatible materials	National priority
			Nanosensors and nanofluidics	National priority
			Plastic electronics	National priority
			Nano-optics and nanophotonics	National priority
			Nanocatalysis, hydrogen technology, etc.	National priority
			Nanomaterials with new functional properties	National priority
			Innovative nanostructure materials	R & D focus
			Nanosensors and nanoactuators	R & D focus
			New nanoelectronics solutions	R & D focus
			Nanostructured and functional materials	R & D focus
			Coatings and devices	R & D focus
			Measurement methods	R & D focus
			Production and scalability	R & D focus
			Electronics	Priority sector
			Forest cluster	Priority sector
Country	Nanotechnology Framework			
--------------	---			
Germany	Action Plan Nanotechnology 2015			
Ireland	Ireland’s Nanotechnology Commercialisation Framework			

Germany - Action Plan Nanotechnology 2015
- Chemical sector
- Health and well-being
- Environment
- Safety
- Renewal of industry clusters and production
- Nanochemistry
- Nano-optics and lighting technologies
- Nano-analytics
- Nanobiotechnology
- Climate/energy
- Health/nutrition and agriculture
- Mobility
- Communications
- Security
- Advanced materials
- Nanobiotech
- More than Moore

Ireland - Ireland’s Nanotechnology Commercialisation Framework
- Advanced materials
- Nanobiotech
- More than Moore

(Continued)
Country	Title	Vision	Priority	Priority Type
Netherlands	Netherlands Nano Initiative, Strategic Research Agenda	iskaading research nation in selected fields of nanoscience, nanotechnology and new materials. NANOMAT shall lay the foundations for a new, knowledge-based and research-intensive industrial sector and facilitate a sustainable renewal of established Norwegian industry.	Next-gen electronics	Priority sector
			Medical devices and diagnostics	Priority sector
			Environmental applications	Priority sector
			Bionanotechnology	National priority
			Nanomaterials	National priority
			Nanofabrication	National priority
			Beyond Moore	National priority
			Water	Priority sector
			Energy	Priority sector
			Nutrition	Priority sector
Norway	Nanotechnology and New Materials (NANOMAT)	Norway shall be a leading research nation in selected fields of nanoscience, nanotechnology and new materials. NANOMAT shall lay the foundations for a new, knowledge-based and research-intensive industrial sector and facilitate a sustainable renewal of established Norwegian industry.	Materials	R & D focus
			Interface/surface science and catalysis	R & D focus
			Fundamental physical and chemical phenomena and processes at the nanometre scale	R & D focus
			Components, systems and complex processes on the basis of N&N	R & D focus
			Ethical, legal and societal aspects	R & D focus
Country	Programme	Focus Area	Priority Sector	
--------------	---	---	-----------------	
Poland	Strategic Priorities for Nanotechnology Programme	Synthesis, manipulation and fabrication; characterisation; theory and modelling	R & D focus	
		Energy and the environment	Priority sector	
		ICT and microsystems	Priority sector	
		Health and biotechnology	Priority sector	
		Ocean and food	Priority sector	
		Nanoscale phenomena and processes	National priority	
		Nanomaterials and nanocomposites	National priority	
		Nanoscale devices	National priority	
		Nanoanalytics and nanometrology	National priority	
		Quantum structures and nanodevices	R & D focus	
		Synthesis and characterisation of nanomaterials	R & D focus	
		Modelling and computations of nanostructures	R & D focus	
		Poverty reduction	National priority	
		Key technology platforms	National priority	
		(including biotechnology and ICT)		

(Continued)
Table 1. (Continued).

Nanotechnology strategic plans

Country	Title	Vision	Priority	Priority Type
Switzerland	Action Plan: Synthetic Nanomaterials	technology businesses that support the country’s future competitiveness and enhanced quality of life.	Chemical and bio-processing Advanced materials and manufacturing Leveraging resource-based industries Water Energy Mining and Minerals Health	National priority National priority National priority Priority sector Priority sector Priority sector
UK	UK Nanotechnologies Strategy, Small Technologies, Great Opportunities	The UK’s economy and consumers will benefit from the development of nanotechnologies through Government’s support of innovation and promotion of the use of these emerging and enabling technologies in a safe, responsible and sustainable way reflecting the needs of the public, industry and academia.	High Aspect Ratio Nanoparticles (HARNs) Energy generation through solar technology Novel methods for diagnosing disease and drug delivery Reducing carbon emissions Nanosilver Metal oxides	R & D focus National priority National priority National priority Priority sector Priority sector
USA	National Nanotechnology Initiative Strategic Plan	A future in which the ability to understand and control matter at the nanoscale leads to a revolution in technology and industry that benefits society	Fundamental nanoscale phenomena and processes Nanomaterials	National priority
Country	Reference	Reference (pdf)		
-------------	---	---		
Austria	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2& id=12			
Canada	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2& id=11	http://assembly.ab.ca/lao/library/egovdocs/2007/alae/162023.pdf		
Denmark	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2& id=6			
Finland	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2& id=16			
Germany	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2& id=5	http://www.bmbf.de/pub/akionsplan_nanotechnologie_2015_en.pdf		
Ireland	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2& id=17			
Netherlands	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2& id=7	http://www.nanoned.nl/downloads/downloads/Netherland_Nano_Initiative_SRA_English.pdf		

(Continued)
Country	Reference	Reference (pdf)
Norway	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2&id=18	NANOMATprogramplanengelskweb.pdf
Poland	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2&id=14	
Saudi Arabia	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2&id=8	http://www.kacst.edu.sa/en/research/Documents/Nanotechnology.pdf
South Africa	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2&id=9	
Switzerland	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2&id=15	Action+plan+Synthetic+Nanomaterials.pdf
UK	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2&id=4	http://www.bis.gov.uk/assets/goscience/docs/u/10-825-uk-nanotechnologies-strategy.pdf
USA	http://www.statnano.com/index.php?ctrl=document&action=view&lang=2&id=3	http://www.nano.gov/sites/default/files/pub_resource/2011_strategic_plan.pdf

Source: Compiled by the authors
During the last few decades, nanotechnology has gained the attention of international scientific and industrial communities. In this regard, nations have launched their short- and long-term programmes to benefit from the huge market expected to be created by the utilisation and implementation of this technology in their industrial/technological infrastructures (Sarkar & Beitollahi, 2009). Some experiences of countries are presented in Table 1. Information was gathered by the authors from information on the Iran Nanotechnology Initiative Council’s website.

4. Methodology
The hybrid MCDM method considered in this research is based on the methodology of Hashemkhani Zolfani, Aghdaie, Derakhti, Zavadskas, and Morshed Varzandeh (2013). SWARA-WASPAS is presented at the first step for decision-making on business issues. This methodology is established with a new perspective on decision-making and was developed in other researches, such as assessing the priority of regions for implementing solar plants (Vafaeipour, Hashemkhani Zolfani, Morshed Varzandeh, Derakhti, & Keshavarz, 2014) and evaluating real-time intelligent sensors for structural health monitoring of bridges (Bitarafan, Hashemkhani Zolfani, Lale Arefi, Zavadskas, & Mahmoudzadeh, 2014). This methodology aims for the top level of decision-making and policy-making in the real world.

4.1. Step-wise weight assessment ratio analysis (SWARA) method
There have been several MADM methods, such as the analytic hierarchy process (AHP) (Saaty, 1980), analytic network process (ANP) (Saaty & Vargas, 2001), entropy (Shannon, 1948; Sušinskas, Zavadskas, & Turskis, 2011; Keršulienė & Turskis, 2011), FARE (Ginevicius, 2011), SWARA (Keršulienė, Zavadskas, & Turskis, 2010), etc., in dealing with the multiple criteria problems. In all of the above-mentioned methods, weight assessment is one of the crucial and controversial issues. In most MADM problems, in the process of ranking the alternatives in a decision-making process, a method or an approach is required to calculate the weight of criteria to follow further steps and finally rank the alternatives. Moreover, the final order of alternatives can be calculated in some weight calculation techniques applied for ranking, while in the others it cannot.

Experts’ viewpoints are the major determinant of the SWARA method. To be more precise, each expert chooses the importance of each criterion. In the next step, all the criteria are ranked from the first to last, based on each expert’s idea. Experts’ opinions, their own implicit knowledge, information and experiences are applied in all evaluation processes. The most important and influencing criterion gets the first rank, and the least important criterion gets the last rank. To determine the overall ranks of the decision model, the mediocre value of ranks is used (Kersuliene & Turskis, 2011). The experts’ ability and mastery are the most vital and influencing points in determining the importance of each criterion in the SWARA method (Kersuliene et al., 2010).

The fundamental feature of this method of decision-making is that there is no need to evaluate and rank the criteria since the policies of companies or countries are utilised to define some problems’ priorities. Hence, SWARA can be useful whenever the priorities exist but the weight of each criterion is pivotal. SWARA’s framework is totally different from other similar methodologies such as FARE, AHP and ANP. SWARA prepares this opportunity in which policy makers make decisions based on different situations and prioritise criteria based on their needs and goals. The other important point is
the role of experts. Experts play a key role in the process of every important project. The SWARA method is useful to apply in the process of decision and policy-making at the top level of decision-making in important topics (Hashemkhani Zolfani & Saparauskas, 2013).

In the following, some of the recent developments of decision-making models based on the SWARA method are listed: the design of products (Hashemkhani Zolfani, Zavadskas, & Turskis, 2013), selecting the optimal alternative of mechanical longitudinal ventilation of tunnel pollutants (Hashemkhani Zolfani, Esfahani, Bitarafan, Zavadskas, & Lale Arefi, 2013), investigating the success factors of online games based on explorers (Hashemkhani Zolfani, Farrokhzad, & Turskis, 2013), machine tool selection (Aghdaie, Hashemkhani Zolfani, & Zavadskas, 2013a), market segmentation and selection (Aghdaie, Hashemkhani Zolfani, & Zavadskas, 2013b) and sustainable development of rural areas’ building structures based on local climate (Hashemkhani Zolfani & Zavadskas, 2013).

The procedure for the criteria weights determination is presented in Figure 2.

4.2. Weighted Aggregates Sum Product Assessment (WASPAS)

WASPAS is a recently presented method and is known as one of the newest methods proposed by the scientific community. This new methodology is based on the Weighted
Sum Model (WSM) and Weighted Product Model (WPM). Zavadskas, Turskis, Antucheviciene, and Zakarevicius (2012) are the innovators of this new method and, in their research, they prove that this aggregated method gets the better accuracy compared with the accuracy of applying just one of WSM or WPM.

WASPAS calculation is based on the following steps.

4.2.1. Normalised decision-making matrix based on

\[\tilde{x}_{ij} = \frac{x_{ij}}{\text{opt}x_{ij}}, \text{ where } i = 1, m; j = 1, n \]

(1)

if the optimum value is a maximum

\[\tilde{x}_{ij} = \frac{\text{opt}x_{ij}}{x_{ij}}, \text{ where } i = 1, m; j = 1, n \]

(2)

if the optimum value is a minimum

4.2.2. Calculating WASPAS weighted and normalised decision-making matrix for the summarising part

\[\tilde{x}_{ij,\text{sum}} = \tilde{x}_{ij}q_j, \text{ where } i = 1, m; j = 1, n \]

(3)

4.2.3. Calculating WASPAS weighted and normalised decision-making matrix for the multiplication part

\[\tilde{x}_{ij,\text{mult}} = \tilde{x}_{ij}^q, \text{ where } i = 1, m; j = 1, n \]

(4)

4.2.4. Final calculation for evaluating and prioritising alternatives based on

\[WPS_i = 0.5 \sum_{j=1}^{n} \tilde{x}_{ij} + 0.5 \prod_{j=1}^{n} \tilde{x}_{ij}, \text{ where } i = 1, m; j = 1, n \]

(5)

All research based on the WASPAS method up to now are listed in the following.

Zavadskas et al. (2012) developed WASPAS as a new methodology, Staniunas, Medineckiene, Zavadskas, and Kalibatas (2013) used it in the ecological–economical assessment of the modernisation of multi-dwelling houses, Hashemkhani Zolfani, Aghdaie et al. (2013) in decision-making in business issues, Aghdaie, Hashemkhani Zolfani, and Zavadskas (2014) in supplier selection and Chakraborty and Zavadskas (2014) in decision-making in manufacturing.
5. Case study

This study is organised based on the economic position of Iran in international literature. Decisions about high tech industries are highly important in managing a country. Nanotechnology is one of the high tech industries that has made significant progress in Iran in comparison with other industries. This research is organised based on applications of nanotechnology in the sciences. The priority of applications is the main part of this research.

5.1. Iran nanotechnology

Iran has recognised the significance of nanotechnology, as have other pioneering countries, and started its activities in line with the development of the technology. In this regard, and as a first step, a Study Committee for Nanotechnology in Iran began its activities in 2001 and, finally, the Iran Nanotechnology Initiative Council (INIC) was established in the country in 2003.

The Islamic Republic of Iran, by considering the undeniable impact of nanotechnology on its nation’s wealth and economy, initiated the national nanotechnology development plan referred to as ‘Future Strategy’ in 2005 (Sarkar & Beitollahi, 2009).

5.2. Vision

For the materialisation of the 20-year vision plan of the Islamic Republic of Iran (Vision 2025, 2011), the software movement and the improvement of the level, quality and security of people’s lives, there are some suggestions as to how Iran can become a developed country in nanotechnology through:

- indigenous and advanced infrastructures and enjoying a higher share of expert human resources;
- effective and constructive internal and international interactions;
- generator of economic added value resulting from nanotechnology;
- competition capability at global level.

5.3. Mission

Iran’s mission is to succeed in achieving its proper place among 15 countries that are advanced in nanotechnology and to promote that position in a bid to develop Iran’s economy.

5.4. Objectives

- Propel the research activities into the field of nanotechnology.
- Provide experts for the nano industry, scientific and technological institutions.
- Establish a mechanism to promote problem-based research into technology.
- Entrepreneur training.

6. The model of research

The model and important criteria of research is identified based on a literature review of this scientific area. The criteria and sub-criteria are illustrated in Table 2.
In this research, 11 applications of nanotechnology are considered. The applications are presented in Table 3.
8. Experts’ information

Forty experts from different fields participated in this research. Their selection process was based on their professional knowledge in the relevant fields and also general knowledge of nanotechnology in science. The experts were selected based on the advice and suggestions of the Iranian Nanotechnology Society (www.nanosociety-ir.com).

The information about experts is shown in Table 4. It should be considered that experts participated in both parts of the research.

9. Research findings

In this section, the numerical results of SWARA and WASPAS are presented. Priority and weights of criteria are presented in the SWARA results sub-section and priority and ranking alternatives are calculated with the WASPAS method.

9.1. SWARA results

The information about calculations with the SWARA method are shown in Tables 5–12. The final weight of each sub-criterion is presented in the tables.

Table 3. Applications of nanotechnology in sciences.

Alternatives
1 Nanotechnology in Agriculture
2 Nanotechnology in Transportation
3 Nanotechnology in Construction
4 Nanotechnology in Oil and Gas
5 Nanotechnology in Textile Products
6 Nanotechnology in the Food Industry
7 Nanotechnology in Defence Industry
8 Nanotechnology in Health & Medicine
9 Nano-Electronics
10 Nano-Energy
11 Nanotechnology in the Environment and Water

Source: Compiled by the authors

Table 4. The characteristics of the decision-making experts.

Field	Gender	Education level			
	Male	Bachelor	Master	Doctor	
Agriculture	3	1	1	1	2
Transportation	5	0	0	3	2
Construction	2	0	1	1	0
Oil and Gas	5	2	1	2	4
Textile Products	2	1	1	1	1
Food Industry	0	2	0	0	2
Health & Medicine	3	2	1	2	2
Electronics	4	1	1	1	3
Energy	4	0	0	3	1
Environment and Water	3	0	0	1	2

Source: Compiled by the authors
Table 5. Final weights of assessment criteria.

Criterion	Comparative importance of average value s_j	Coefficient $k_j = s_j + 1$	Recalculated weight $w_j = \frac{s_j}{k_j}$	Weight $q_j = \frac{w_j}{\sum w_j}$
C_2	0.135	1	0.882	0.532
C_1	1.135	1	0.468	0.468

Source: Compiled by the authors

Table 6. Final weights of feasibility criteria.

Criterion	Comparative importance of average value s_j	Coefficient $k_j = s_j + 1$	Recalculated weight $w_j = \frac{s_j}{k_j}$	Weight $q_j = \frac{w_j}{\sum w_j}$	Final weights
C_{1-2}	0.12	1	0.834	0.546	0.256
C_{1-1}	1.12	1.12	0.464	0.464	0.212

Source: Compiled by the authors

Table 7. Final weights of attractiveness criteria.

Criterion	Comparative importance of average value s_j	Coefficient $k_j = s_j + 1$	Recalculated weight $w_j = \frac{s_j}{k_j}$	Weight $q_j = \frac{w_j}{\sum w_j}$	Final weights
C_{2-3}	0.14	1	0.878	0.337	0.179
C_{2-1}	0.22	1.22	0.720	0.278	0.148

Source: Compiled by the authors

Table 8. Final weights of research and technology potential criteria.

Criterion	Comparative importance of average value s_j	Coefficient $k_j = s_j + 1$	Recalculated weight $w_j = \frac{s_j}{k_j}$	Weight $q_j = \frac{w_j}{\sum w_j}$	Final weights
C_{1-1-4}	0.195	1	0.837	0.231	0.048
C_{1-1-2}	0.19	1.19	0.704	0.194	0.042
C_{1-1-3}	0.22	1.22	0.578	0.159	0.033
C_{1-1-1}	0.135	1.135	0.51	0.141	0.030
C_{1-1-5}	0.135	1.135	0.51	0.141	0.030

Source: Compiled by the authors

Table 9. Final weights of application potential criteria.

Criterion	Comparative importance of average value s_j	Coefficient $k_j = s_j + 1$	Recalculated weight $w_j = \frac{s_j}{k_j}$	Weight $q_j = \frac{w_j}{\sum w_j}$	Final weights
C_{1-2-3}	0.18	1	0.848	0.271	0.07
C_{1-2-2}	0.2	1.18	0.707	0.226	0.058
C_{1-2-4}	0.235	1.235	0.573	0.183	0.047

Source: Compiled by the authors
In the first step, the criteria in each level are evaluated by experts. In this survey, each expert prioritises the criteria and sub-criteria of each level and then the lowest average is selected. \(s_j \) is based on average of experts’ ideas. Hashemkhani Zolfani and Bahrami (2014) explained in detail how the SWARA method can work. They considered multiples of 5% as a scale of evaluation. Experts can express the differentiation of criteria and relative importance of them with this scale which is mentioned above.

The weights of the criteria and sub-criteria are presented separately in Table 13. This table is useful for an appropriate overview on the criteria and model of research.

Table 10. Final weights of research and technological opportunities criteria.

Criterion	Comparative importance of average value \(s_j \)	Coefficient \(k_j = s_j + 1 \)	Recalculated weight \(w_j = \frac{s_j}{k_j} \)	Weight \(q_j = \frac{w_j}{\sum w_j} \)	Final weights
\(C_2-1-1 \)	1	1	1	0.2	0.035
\(C_2-1-4 \)	0.13	1.13	0.885	0.176	0.031
\(C_2-1-2 \)	0.17	1.17	0.757	0.151	0.028
\(C_2-1-8 \)	0.195	1.195	0.634	0.126	0.023
\(C_2-1-6 \)	0.12	1.12	0.567	0.114	0.020
\(C_2-1-3 \)	0.23	1.23	0.461	0.093	0.017
\(C_2-1-5 \)	0.205	1.205	0.383	0.077	0.013
\(C_2-1-7 \)	0.205	1.205	0.318	0.063	0.011

Source: Compiled by the authors

Table 11. Final weights of social and environment attractiveness criteria.

Criterion	Comparative importance of average value \(s_j \)	Coefficient \(k_j = s_j + 1 \)	Recalculated weight \(w_j = \frac{s_j}{k_j} \)	Weight \(q_j = \frac{w_j}{\sum w_j} \)	Final weights
\(C_2-2-2 \)	1	1	1	0.277	0.041
\(C_2-2-3 \)	0.195	1.195	0.837	0.233	0.034
\(C_2-2-1 \)	0.22	1.22	0.687	0.190	0.028
\(C_2-2-5 \)	0.2	1.2	0.573	0.159	0.024
\(C_2-2-4 \)	0.13	1.13	0.508	0.141	0.21

Source: Compiled by the authors

Table 12. Final weights of economic attractiveness.

Criterion	Comparative importance of average value \(s_j \)	Coefficient \(k_j = s_j + 1 \)	Recalculated weight \(w_j = \frac{s_j}{k_j} \)	Weight \(q_j = \frac{w_j}{\sum w_j} \)	Final weights
\(C_2-3-1 \)	1	1	1	0.215	0.044
\(C_2-3-4 \)	0.15	1.15	0.870	0.186	0.039
\(C_2-3-3 \)	0.195	1.195	0.729	0.156	0.032
\(C_2-3-6 \)	0.175	1.175	0.621	0.133	0.027
\(C_2-3-7 \)	0.125	1.125	0.553	0.119	0.024
\(C_2-3-5 \)	0.16	1.16	0.477	0.102	0.021
\(C_2-3-2 \)	0.145	1.145	0.417	0.089	0.018

Source: Compiled by the authors. *\(s_j \) is calculated based on average of expert’s ideas. The information gained privately from each expert and the scale is based multiples of 5%.

In the first step, the criteria in each level are evaluated by experts. In this survey, each expert prioritises the criteria and sub-criteria of each level and then the lowest average is selected. \(s_j \) is based on average of experts’ ideas. Hashemkhani Zolfani and Bahrami (2014) explained in detail how the SWARA method can work. They considered multiples of 5% as a scale of evaluation. Experts can express the differentiation of criteria and relative importance of them with this scale which is mentioned above.

The weights of the criteria and sub-criteria are presented separately in Table 13. This table is useful for an appropriate overview on the criteria and model of research.
9.2. WASPAS results

The priorities of alternatives about future planning in the nanotechnology industry in Iran is presented in Tables 14–16. The information about alternatives is presented in Table 2.

Based on the WASPAS results, application of Nano Technology in Nano technology in health and medicine is identified as the best alternative for developing and investing in future planning of industry in Iran. The priority of nanotechnology applications is presented in Table 16.

Table 13. The weights of criteria and sub-criteria of the model.

Criteria and sub-criteria	Final weights
C1: Feasibility	
C1-1: Research and Technology Potential	0.468
C1-1-1: Compatibility with natural and geographical advantages	0.212
C1-1-2: Compatibility with Scientific and technological capabilities (for production,	0.048
localization, etc.)	
C1-1-3: Acquisition technology required from foreign bodies	0.042
C1-1-4: Compatibility with the institutional structure and science - research networks	0.059
C1-1-5: Compatibility with Human Resources	0.030
C1-2: Attractiveness	0.256
C1-2-1: Ability to provide financing needed	0.047
C1-2-2: Compatibility with requirements of the law – Legal	0.07
C1-2-3: Compatibility with The political and international capabilities	0.081
C1-2-4: Compatibility with The private sector’s ability	0.058
C2: Attractiveness	0.532
C2-1: Research and Technological Opportunities	0.179
C2-1-1: Dealing with Technologies in outlook	0.035
C2-1-2: Localisation and promote technologies have been transferred	0.028
C2-1-3: Improvement Cycle of science and technology to create and innovation new	0.017
technologies	
C2-1-4: Promotion Basic Sciences	0.031
C2-1-5: Merge and form clusters of technology (along with other technologies)	0.013
C2-1-6: Opportunities for international cooperation in science and technology	0.020
C2-1-7: Solve problems of related industries	0.011
C2-1-8: Strengthen the relationship between industry and universities	0.023
C2-2: Social and Environment Attractiveness	0.148
C2-2-1: Promotion of social justice and welfare	0.028
C2-2-2: Improving health and quality of life	0.041
C2-2-3: Compatibility with environment and reduction of environment pollution	0.034
C2-2-4: Utilisation of renewable energy resources, replacing renewable energy	0.021
C2-2-5: Promotion human’s skills in modern and development societies such as innovation	0.024
and entrepreneurship	
C2-3: Economic Attractiveness	0.205
C2-3-1: Wealth creation and economic value	0.044
C2-3-2: Improve productivity	0.018
C2-3-3: Development Exports of goods and services based on technology	0.032
C2-3-4: Employment with an emphasis on employing expert human	0.039
C2-3-5: Create international strategic advantage	0.021
C2-3-6: Market growth (increase market share, particularly at the international level)	0.027
C2-3-7: Development and strengthening private sector	0.024

Source: Compiled by the authors
Table 14. Decision-making matrix

	C1-1-1	C1-1-2	C1-1-3	C1-1-4	C1-1-5	C1-2-1	C1-2-2	C1-2-3	C1-2-4	C1-2-5	C2-1-1	C2-1-2	C2-1-3	C2-1-4	C2-1-5	C2-1-6
	Max															
A1	7	3	5	1	1	1	5	5	1	3	5	3	5	5	5	5
A2	7	7	5	5	3	5	7	7	5	7	7	7	9	9	9	9
A3	7	7	5	5	5	5	7	7	5	7	9	9	9	9	9	9
A4	9	7	3	9	7	9	7	9	7	7	9	7	9	9	9	9
A5	5	5	5	3	3	3	7	3	3	5	5	5	5	5	5	5
A6	5	7	5	5	5	5	7	5	5	3	5	5	5	5	5	5
A7	9	9	9	9	9	7	7	9	9	7	9	9	9	9	9	9
A8	9	7	7	9	9	7	7	9	9	7	9	9	9	9	9	9
A9	7	7	7	9	9	7	7	9	9	7	9	9	9	9	9	9
A10	9	7	7	7	5	7	7	9	7	7	9	9	9	9	9	9
A11	9	7	7	7	5	7	7	5	9	7	9	7	9	9	9	9

	C2-1-7	C2-1-8	C2-2-1	C2-2-2	C2-2-3	C2-2-4	C2-2-5	C2-2-6	C2-3-1	C2-3-2	C2-3-3	C2-3-4	C2-3-5	C2-3-6	C2-3-7	
	Max															
A1	5	5	9	7	5	5	5	9	9	7	3	7	7	7	7	7
A2	9	9	9	9	9	7	9	9	9	7	9	7	9	9	9	9
A3	9	9	9	9	9	7	9	9	9	7	9	9	9	9	9	9
A4	9	9	9	9	9	7	9	9	9	7	9	9	9	9	9	9
A5	5	7	7	5	5	7	9	9	5	7	7	7	9	9	7	7
A6	7	7	7	9	7	5	5	7	7	9	3	5	7	7	7	7
A7	9	7	5	1	9	9	7	9	7	7	7	7	7	7	7	7
A8	9	9	9	5	7	9	9	9	7	7	7	7	7	7	7	7
A9	9	7	7	5	3	7	9	7	9	9	7	7	7	7	7	7
A10	9	7	7	9	9	5	7	9	5	7	7	7	7	7	7	7
A11	9	7	7	9	9	5	7	9	5	7	7	7	7	7	7	7

Source: Compiled by the authors
Table 15. WASPAS normalised decision-making matrix.

| | C1-1 | C1-2 | C1-3 | C1-4 | C1-5 | C1-6 | C2-1 | C2-2 | C2-3 | C2-4 | C2-5 | C2-6 | C2-7 | C2-8 | C2-9 | C2-10 | C2-11 | C2-12 | C2-13 | C2-14 | C2-15 | C2-16 |
|----|-------|
| | Max |
| A1 | 0.7778| 0.3333| 0.5556| 0.1111| 0.1111| 0.1111| 0.7143| 0.5556| 0.1111| 0.3333| 0.7143| 0.5556| 0.1111| 0.3333| 0.5556| 0.5556| 0.5556| 0.5556| 0.5556| 0.5556| 0.5556|
| A2 | 0.7778| 0.7778| 0.5556| 0.5556| 0.3333| 0.5556| 0.7778| 0.7778| 0.5556| 0.7778| 0.7778| 0.5556| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000|
| A3 | 1.0000| 0.7778| 0.3333| 0.5556| 0.5556| 0.5556| 0.7778| 0.7778| 0.5556| 0.7778| 0.7778| 0.5556| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000|
| A4 | 0.5556| 0.5556| 0.3333| 0.5556| 0.5556| 0.5556| 0.3333| 0.5556| 0.5556| 0.3333| 0.5556| 0.5556| 0.7143| 0.5556| 0.5556| 0.5556| 0.5556| 0.5556| 0.5556| 0.5556| 0.5556|
| A5 | 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000|
| A6 | 1.0000|
| A7 | 1.0000| 0.7778| 0.3333| 0.5556| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000|
| A8 | 0.7778| 0.7778| 0.5556| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778|
| A9 | 1.0000|
| A10| 0.7778| 0.7778| 0.5556| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 0.7778| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000|
| A11| 0.7778|

Source: Compiled by the authors
10. Discussion

Thinking about these concepts and some others is intended to provide information on the methods and mechanisms underlying the development of nanotechnology. It is obvious that in realising these methods one needs to travel a long way, and that others (leading countries in science and technology) have passed this way. It should not be expected that one passes this way overnight; it took developed and industrialised countries over 200 to 300 years. However, there are successful examples amongst Southeast Asian countries, such as Korea, China, Taiwan, Singapore, Malaysia, India, and so on, such that despite beginning late, over a period of two or three decades, it is possible they could narrow the technological gap between themselves and industrialised countries.

The experiences of the last two centuries also shows that the economic, military and political authority of countries is based on their mastery of technology. So in the present circumstances, and even within the next few years, Iran’s main and important strategy should be mastery over technology. To this end an environment should be created in which new technologies can flourish and an obvious commitment to technological development (as one of the national priorities) should be displayed. Emerging technologies are technologies that are not yet fully commercialised (they are in the early stages of their life cycle), but over the next few years they would be commercialised and it is predicted that their use will increasingly develop.

These technologies will create new industries and existing industries may become outdated. They have the ability to create change in organisations and society. So we should enhance our abilities in these fields with caution and vigilance. In this respect, the fields of automated manufacturing technology, microelectronics, biotechnology, micro-technology (nanotechnology), information technology, advanced materials technology, environmental technology, aerospace technology and the technologies of new energy sources should be prioritised for research and development programmes. And in order to develop new technologies, specific research and development programmes should be formulated and a particular credit should be allocated. The extensive nature of these technologies, their close engagement with existing science and technology and their enormous economic and social impact require long-term planning, and a multi-sectoral approach to policy-making. It has also been developed in most active countries in this area.

Alternatives	WSP_i	Ranking		
Nanotechnology in agriculture	0.2676	0.2195	0.4871	11
Nanotechnology in transportation	0.4119	0.3996	0.8115	7
Nanotechnology in construction	0.4109	0.4018	0.8127	6
Nanotechnology in oil and gas	0.4393	0.4271	0.8664	2
Nanotechnology in textile products	0.3061	0.2822	0.5883	10
Nanotechnology in the food industry	0.3343	0.3236	0.6578	9
Nanotechnology in defence industry	0.4291	0.4070	0.8361	3
Nanotechnology in health & medicine	0.4724	0.4689	0.9413	1
Nano-electronics	0.4209	0.4123	0.8332	4
Nano-energy	0.4163	0.4090	0.8253	5
Nanotechnology in the environment and water	0.4043	0.3960	0.8002	8

Source: Compiled by the authors
In Iran, there is a need for policy makers to develop the technologies to be considered by state officials. Therefore, in the last few years the government has taken steps to develop new technologies by planning and allocating relatively enormous resources. Among these, the developmental strategies of biotechnology, the TAKFA project and the founding of a special committee for nanotechnology are notable.

Health and related issues are vital for each society. A sustainable society that is related to human resources, has a direct relationship to social and economic aspects of sustainability. From the other perspective, the ‘health and medicine’ industry has good potential to develop and make a profit. Without a doubt, health is one of the top priorities of policies in countries around the world. This is because health is a separate and independent topic from all national and regional policies. Furthermore, as we can see from the results, after health and medicine the other priorities are completely related to the national and reginal policies of Iran. The oil and defence applications of nanotechnology are the top priorities after health and medicine.

In this study, a proper model to identify new technology priorities is proposed that can be generalised to other fields of technology. So we should take an international perspective. For Iran, what is happening in the world today is important and the prospect of globalisation in all programmes and policies should be considered. Today, we have to decide about our future in the world and move toward it through proper planning and priority setting. We must ensure that we are aware of international developments in technology (especially new technology). To this end, creating and developing future research centres in different organisational and national levels should be taken into account.

11. Conclusion

Planning in technologies, and especially high tech industries and their futures, has a key role in the economics of each nation, in the present and in the future. This study aimed to develop a methodology for future planning in this area. Decision and policy-making at the top level of managing is highly complicated and needs appropriate cooperation and coordinating.

The Multiple Criteria Decision Making perspective can be considered as a powerful framework and methodology in this way. This perspective can divide the topic into sub-topics and make the decision-making process easier.

The SWARA method has a powerful and logical perspective for decision and policy-making because priorities have different dimensions, such as politics, culture, and so on. In this study SWARA is applied in the process of decision-making for evaluating the weights and priorities of criteria. WASPAS is a new methodology that is very reliable for calculations. In this study, WASPAS is applied to evaluate and rank alternatives.

This research is based on the Iranian situation in international economics and technology. The main industry that was selected as a case study was nanotechnology and its applications in the sciences. Planning is presented based on the priority of results. Investing priorities should be considered based on the results of Table 15. This new framework can be considered as a framework for future and similar research.

Disclosure statement

No potential conflict of interest was reported by the authors.
References

Aghdaie, M. H., Hashemkhani Zolfani, S., & Zavadskas, E. K. (2013a). Decision making in machine tool selection: An integrated approach with SWARA and COPRAS-G methods. *Inzinerine Ekonomika – Engineering Economics*, 24, 5–17.

Aghdaie, M. H., Hashemkhani Zolfani, S., & Zavadskas, E. K. (2013b). “A hybrid approach for market segmentation and market segment evaluation and selection: An integration of data mining and MADM”, *Transformations in Business & Economics*, 12 2B (29B), 431–458.

Aghdaie, M. H., Hashemkhani Zolfani, S., & Zavadskas, E. K. (2014). Synergies of data mining and multiple attribute decision making. *Procedia - Social and Behavioral Sciences*, 110, 767–776.

Ayres, R. U. (1988). Technology: The wealth of nations. *Technological Forecasting and Social Change*, 33, 189–201.

Bitarafan, M., Hashemkhani Zolfani, S., Lale Arefi, S., Zavadskas, E. K., & Mahmoudzadeh, A. (2014). Evaluation of real-time intelligent sensors for structural health monitoring of bridges based on SWARA-WASPAS. *Baltic Journal of Road and Bridge Engineering*, 9, 333–340.

Chakraborty, S., & Zavadskas, E. K. (2014). Applications of WASPAS Method in Manufacturing-Decision Making. *Informatica*, 25(1), 1–20.

Daft, R. M., & Daft, R. L. (2007). Technology globalization and international competitiveness challenges for developing countries. In *Industrial development for the 21st Century: Sustainable development perspectives* (pp. 1–423). New York, NY: United Nations.

Drexler, E. K. (1986). *Engines of creation: The coming era of Nanotechnology*. New York, NY: Anchor Books.

Drexler, E. K. (1992). *Nanosystems: Molecular machinery, manufacturing, and computation*. New York, NY: John Wiley & Sons.

Durand, T. (2003). Twelve lessons from key technologies 2005*: The French technology foresight exercise. *Journal of Forecasting*, 22, 161–177.

Ginevicius, R. (2011). A new determining method for the criteria weights in multi-criteria evaluation. *International Journal of Information Technology & Decision Making*, 10, 1067–1095.

Griliches, Z. (1981). R&D patents and productivity. Chicago, IL: University of Chicago Press.

Griliches, Z., & Mairesse, J. (1984). Productivity and R&D at the firm level. In Z. Griliches (Ed.), *R&D, patents and productivity* (pp. 465–501). Chicago, IL: University of Chicago Press.

Hashemkhani Zolfani, S., Aghdaie, M. H., Derakhti, A., Zavadskas, E. K., & Morshed Varzandeh, M. H. (2013). Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. *Expert Systems with Applications*, 40, 7111–7121.

Hashemkhani Zolfani, S., Esfahani, M. H., Bitarafan, M., Zavadskas, E. K., & Lale Arefi, S. (2013). Developing a new hybrid MCDM method for selection of the optimal alternative of mechanical longitudinal ventilation of tunnel pollutants during automobile accidents. *Transport*, 28, 89–96.

Hashemkhani Zolfani, S., Farrokhzad, M., & Turskis, Z. (2013). Investigating on successful factors of online games based on explorer. *E & M Ekonomie a Management*, 16, 161–169.

Hashemkhani Zolfani, S., & Saparauskas, J. (2013). New application of SWARA method in prioritizing sustainability assessment indicators of energy system. *Inzinerine Ekonomika-Engineering Economics*, 24(5), 408–414.

Hashemkhani Zolfani, S., & Zavadskas, E. K. (2013). Sustainable development of rural areas’ building structures based on local climate. *Procedia Engineering*, 57, 1295–1301.

Hashemkhani Zolfani, S., Zavadskas, E. K., & Turskis, Z. (2013). Design of products with both International and Local perspectives based on Yin-Yang balance theory and SWARA method. *Economika Istraživanja- Economic Research*, 26, 153–166.

Hashemkhani Zolfani, S., & Bahrami, M. (2014). Investment prioritizing in high tech industries based on SWARA-COPRAS approach. *Technological and Economic Development of Economy*, 20, 534–553.

Jannatifard, M., Nikraftar, H., & Safdari, F. (2011). *Iran’s 2010-2011 competitiveness Report. Iran chamber of commerce, industries and mines*. Center for Economic Research and Evaluation (In Persian).

Keenan, M. (2003). Identifying emerging generic technologies at the national level: The UK experience. *Journal of Forecasting*, 22, 129–160.
Keršuliene, V., & Turskis, Z. (2011). Integrated fuzzy multiple criteria decision making model for architect selection. *Technological and Economic Development of Economy*, 17, 645–666.

Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). *Journal of Business Economics and Management*, 11, 243–258.

Klusacek, K. (2004). Technology foresight in the Czech Republic. *International Journal of Foresight and Innovation Policy*, 1, 89–105.

Lichtenberg, F. R. (1992). *R&D investment and international productivity differences* (NBER working paper 4161). Cambridge, MA: National Bureau of Economic Research.

Nadiri, I. (1993). *Innovations and technological spillovers* (NBER working paper 4423). Cambridge, MA: National Bureau of Economic Research.

Ortega-Argilés, R., Piva, M., Potters, L., & Vivarelli, M. (2010). Is corporate R&D investment in high-tech sectors more effective? *Contemporary Economic Policy*, 28, 353–365.

Rosenberg, N., Landau, R., & Mowery, D. C. (1992). *Technology and the wealth of nations*. Stanford: Stanford University Press.

Saaty, L. T. (1980). *The analytic hierarchy process*. New York, NY: McGraw Hill Company.

Saaty, L. T., & Vargas, L. G. (2001). *Models, methods, concepts & applications of the analytical hierarchy process*. Boston: Kluwer Academic Publishers.

Sadeghi, A., Azar, A., & Sepehri Rad, R. (2012). Developing a fuzzy group AHP model for prioritizing the factors affecting success of High-Tech SME’s in Iran: A case study. *Procedia - Social and Behavioral Sciences*, 62, 957–961.

Sarkar, S., & Beitollahi, A. (2009). An overview on nanotechnology activities in Iran. *Iranian Journal Public Health*, 38, 65–68.

Shannon, C. E. (1948). The mathematical theory of communication. *Bell System Technical Journal*, 27, 379–423.

Son, S. H., Park, B., Oh, S. H., & Yu, H. Y. (2006). Priority Setting of future Technology area based on Korean Technology Foresight exercise. *PICMET 2006 proceeding*, 1481–1487

Staniunas, M., Medineckiene, M., Zavadskas, E. K., & Kalibatas, D. (2013). To modernize or not: Ecological–economical assessment of multi-dwelling houses modernization. *Archives in Civil and Mechanical Engineering*, 13, 88–98.

Steenhuis, H. J., & Bruijn, E. J. D. (2005). High technology in developing countries analysis of technology strategy, technology transfer, and success factors in the aircraft industry. *1st International Conference on Operations and Supply Chain Management*, Bail, 1–13.

Stokey, N. L. (1995). R&D and economic growth. *Review of Economic Studies*, 62, 469–489.

Sušinskas, S., Zavadskas, E. K., & Turskis, Z. (2011). Multiple criteria assessment of pile-columns alternatives. *The Baltic Journal of Road and Bridge Engineering*, 6, 77–83.

Tsai, K. H., & Wang, J. C. (2004). R&D productivity and the spillover effects of high-tech industry on the traditional manufacturing sector: The case of Taiwan. *World Economics*, 27, 1555–1570.

Vafaeipour, M., Hashemkhani Zolfani, S., Morshed Varzandeh, M. H., Derakhti, A., Keshavarz, Eshkalag M., & (2014). Assessment of regions priority for implementation of solar plants in Iran: New application of a hybrid multi-criteria decision making approach. *Energy Conversion and Management*, 86, 653–663.

Vision (1404, 2025) (2011). The status of science & Technology in Iran in 2010 in comparison with other countries. Retrieved from http://www.vision1404.ir/fa/Oloom.aspx (InPersian).

Wang, H. W., & Wu, M. C. (2012). Business type, industry value chain, and R&D performance: Evidence from high-tech firms in an emerging market. *Technological Forecasting & Social Change*, 79, 326–340.

Wang, D. H. M., Yu, T. H. K., & Liu, H. Q. (2013). Heterogeneous effect of high-tech industrial R&D spending on economic growth. *Journal of Business Research*, 66, 1990–1993.

Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. *Electronics and Electrical Engineering*, 6, 3–6.