Asymptotic linear stability of Benney–Luke line solitary waves in 2D

Tetsu Mizumachi\textsuperscript{1,3} and Yusuke Shimabukuro\textsuperscript{2}

\textsuperscript{1} Division of Mathematical and Information Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
\textsuperscript{2} Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, section 4, Roosevelt Road, Taipei 10617, Taiwan

E-mail: tetsum@hiroshima-u.ac.jp and shimaby@gate.sinica.edu.tw

Received 12 January 2017, revised 18 June 2017
Accepted for publication 30 June 2017
Published 7 August 2017

Recommended by Dr Jean-Claude Saut

Abstract

In this paper, we study transverse linear stability of line solitary waves to the two-dimensional Benney–Luke equation which arises in the study of small amplitude long water waves in 3D. In the case where the surface tension is weak or negligible, we find a curve of resonant continuous eigenvalues of the linearized operator in a neighborhood of $\lambda = 0$. Time evolution of these resonant continuous eigenmodes is described by a 1D damped wave equation in the transverse variable and it gives a linear approximation of the local phase shifts of modulating line solitary waves. In exponentially weighted space whose weight function increases in the direction of the motion of the line solitary wave, the other part of solutions to the linearized equation decays exponentially as $t \to \infty$.

Keywords: line solitary wave, transverse linear stability, long wave models
Mathematics Subject Classification numbers: Primary 35B35, 37K45; Secondary 35Q35

1. Introduction

In this paper, we study transverse linear stability of line solitary waves for the Benney–Luke equation

$$\partial_t^2 \Phi - \Delta \Phi + a \Delta^2 \Phi - b \Delta \partial_t^2 \Phi + (\partial_t \Phi)(\Delta \Phi) + \partial_t (|\nabla \Phi|^2) = 0 \quad \text{on } \mathbb{R} \times \mathbb{R}^2.$$  

(1.1)

\textsuperscript{3} Author to whom any correspondence should be addressed.
The Benney–Luke equation is an approximation model of small amplitude long water waves with finite depth originally derived by Benney and Luke [4] as a model for 3D water waves. Here $\Phi = \Phi(t, x, y)$ corresponds to a velocity potential of water waves. We remark that (1.1) is an isotropic model for propagation of water waves whereas KdV, BBM and KP equations are unidirectional models. See e.g. [6–8] for the other bidirectional models of 2D and 3D water waves. Since the Benney–Luke equation is isotropic, it could be more useful to describe non-linear interactions of waves at high angle than the KP equations.

The parameters $a, b$ are positive and satisfy $a - b = \hat{\tau} - 1/3$, where $\hat{\tau}$ is the inverse Bond number. In this paper, we will assume $0 < a < b$, which corresponds to the case where the surface tension is weak or negligible.

If we think of waves propagating in one direction, slowly evolving in time and having weak transverse variation, then the Benney–Luke equation can be formally reduced to the KP-II equation if $0 < a < b$ and to the KP-I equation if $a > b > 0$. More precisely, the Benney–Luke equation (1.1) is reduced to

$$2f_{\tilde{t}} + (b - a)f_{\tilde{x}\tilde{x}} + 3f_{\tilde{t}\tilde{x}} + f_{\tilde{y}\tilde{y}} = 0$$

in the coordinate $\tilde{t} = \varepsilon^2 t, \tilde{x} = \varepsilon(x - t)$ and $\tilde{y} = \varepsilon^2 y$ by taking terms only of order $\varepsilon^2$, where $\Phi(t, x, y) = cf(\tilde{t}, \tilde{x}, \tilde{y})$. See e.g. [25] for the details. We refer to [1] which constructs web solutions of (1.1) in the long wave limit. On the other hand, the Benney–Luke equation (1.1) can realize finite time dynamics of the KP-II equation as in the case of 2-dimensional Boussinesq equations (see [15] and [33]).

The solution $\Psi(t)$ of the Benney–Luke equation (1.1) formally satisfies the energy conservation law

$$E(\Phi(t), \partial_t \Phi(t)) = E(\Phi_0, \Psi_0) \quad \text{for } t \in \mathbb{R},$$

where

$$E(\Phi, \Psi) := \int_{\mathbb{R}^2} \left\{ |\nabla \Phi|^2 + a(\Delta \Phi)^2 + \Psi^2 + b|\nabla \Psi|^2 \right\} \, dx \, dy,$$

and (1.1) is globally well-posed in the energy class $(\dot{H}^2(\mathbb{R}^2) \cap \dot{H}^1(\mathbb{R}^2)) \times H^1(\mathbb{R}^2)$ (see [41]).

The Benney–Luke equation (1.1) has a three-parameter family of line solitary wave solutions $\Phi(t, x, y) = \varphi_c(x \cos \theta + y \sin \theta - ct + \gamma), \quad \pm c > 1, \quad \gamma \in \mathbb{R}, \quad \theta \in [0, 2\pi), \quad \varphi_c(x) = \varphi_c'(x) = \frac{\alpha_c - 1}{c} \tanh \left( \frac{\alpha_c x}{2} \right)$

and

$$(bc^2 - a)\varphi''_c - (c^2 - 1)\varphi_c + 3c \varphi^2 = 0. \quad (1.4)$$

Stability of solitary waves to the one-dimensional Benney–Luke equation are studied by [39] for the strong surface tension case $a > b > 0$ by using the variational argument (10, 17) which was originated by [3, 5] and by [31] for the weak surface tension case $b > a > 0$ by adopting the semigroup approach of [36]. In the both cases, the solitary wave $q_c(x - ct)$
is a critical point of an energy-momentum functional. However, if \( b > a > 0 \), the energy–momentum functional has infinitely many unstable directions around the solitary wave and we cannot apply the method in [10, 17] for the weak surface tension case. It also occurs to other Boussinesq type equations as well (see e.g. [45]).

If \( a > b > 0 \), then (1.1) has a stable ground state for \( c \) satisfying \( 0 < c^2 < 1 \). Note that for the water wave equation with strong surface tension, orbital stability of solitary waves conditional on global solvability has been proved by Mielke [24] by the variational argument. See also [23] for the algebraic decay property of the ground state. In view of [43, 44], line solitary waves for the 2D Benney–Luke equation are expected to be unstable in this parameter regime.

On the other hand if \( 0 < a < b \) and \( c := \sqrt{1 + c^2} \) is close to 1 (the sonic speed), then \( \varphi(x - ct) \) is expected to be transversally stable because \( q_e(x) \) is similar to a KdV 1-soliton and line solitons of the KP-II equation is transversally stable ([21, 29, 30, 32]).

The dispersion relation for the linearization of (1.1) around 0 is

\[
\omega^2 = (\xi^2 + \eta^2) \frac{1 + a(\xi^2 + \eta^2)}{1 + b(\xi^2 + \eta^2)}
\]

for a plane wave solution \( \Phi(t, x, y) = e^{i(\xi t + \eta y - \omega t)} \). If \( b > a > 0 \), then \( |\nabla \omega| \leq 1 \) and solitary waves travel faster than the maximum group velocity of linear waves. Measuring the size of perturbations with an exponentially weighted norm biased in the direction of motion of a line solitary wave, we can observe that perturbations which are decoupled from the line solitary wave decay as \( t \to \infty \). In the 1D case, small solitary waves are exponentially linearly stable in the weighted space and \( \lambda = 0 \) is an isolated eigenvalue of the linearized operator (see [31]). In our problem, however, the value \( \lambda = 0 \) is not an isolated eigenvalue. This is because line solitary waves do not decay in the transverse direction. Indeed, for any size of line solitary waves of (1.1), there appears a curve of continuous spectrum that goes through \( \lambda = 0 \) and lies in the stable half plane (theorem 2.1). The curve of continuous eigenvalues has to do with perturbations that propagate toward the transverse direction along the crest of the line solitary wave (theorem 2.3). If line solitary waves are small, the rest of the spectrum belongs to a stable half plane \( \{ \lambda \in \mathbb{C} \mid |\Re \lambda| \leq -\beta < 0 \} \) (theorem 2.4). For the KP-II equation, the spectrum of the linearized operator around a 1-line soliton near \( \lambda = 0 \) can be obtained explicitly thanks to the integrability of the equation (see [2, 9, 29]). In this paper, we will use the Lyapunov–Schmidt method to find resonant eigenmodes of the linearized operator.

To prove non-existence of unstable modes for the linearized operator around small line solitary waves, we make use of the KP-II approximation of the the linearized operator of (1.1) on long length scales and make use of the transverse linear stability of line solitons for the KP-II equation. For 1D long wave models, non-existence of unstable modes for the linearized operator around solitary waves has been proved by utilizing spectral stability of KdV solitons. See e.g. [12–14, 26–28, 35, 37] and [31] for the 1D Benney–Luke equation. We expect that the KP-II approximation of the linearized operators in the low frequency regime is useful to investigate linear stability of other 2D long wave models such as KP-BBM and Boussinesq systems with no surface tension (see e.g. [11]). For the 3D water wave equation with flat bottom and no surface tension, the linearized equation around the trivial solution can be read as

\[
\begin{cases}
\partial_t \eta - |D| \tanh |D| \phi = 0, \\
\partial_t \phi + \eta = 0,
\end{cases}
\]

and the dispersion relation for (1.6) is

\[
\omega^2 = \sqrt{\xi^2 + \eta^2} \tanh(\sqrt{\xi^2 + \eta^2}) = \xi^2 + \eta^2 - \frac{1}{3}(\xi^2 + \eta^2)^2 + O((\xi^2 + \eta^2)^3).
\]
which is similar to (1.5) in the sense that \( \omega(\xi, \eta) \) is isotropic in \( \xi \) and \( \eta \), that the group velocity is the largest at \( (\xi, \eta) = (0, 0) \) and that the group velocity is smaller than the velocity of solitary waves. Thanks to this similarity, our argument could be helpful to study linear stability of line solitary waves for the 3D water waves in the long wave regime.

Now let us introduce several notations. For an operator \( A \), we denote by \( \sigma(A) \) the spectrum and by \( D(A) \) and \( R(A) \) the domain and the range of the operator \( A \), respectively. For Banach spaces \( V \) and \( W \), let \( B(V, W) \) be the space of all linear continuous operators from \( V \) to \( W \) and \( \|T\|_{B(V,W)} = \sup_{\|u\|_V=1}\|Tu\|_W \) for \( T \in B(V,W) \). We abbreviate \( B(V, V) \) as \( B(V) \). For \( f \in S(\mathbb{R}^n) \) and \( \varphi \in S'(\mathbb{R}^n) \), let

\[
(\mathcal{F}f)(\xi) = \hat{f}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-ix\xi} \, dx,
\]

\[
(\mathcal{F}^{-1}f)(x) = \hat{f}(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{ix\xi} \, d\xi,
\]

and \( (mD)f)(x) = (2\pi)^{-n/2}(m \ast f)(x) \). We denote \( (f, g) \) by

\[
(f, g) = \sum_{j=1}^m \int_{\mathbb{R}} f_j(x) \overline{g_j(x)} \, dx
\]

for \( \mathbb{C}^m \)-valued functions \( f = (f_1, \cdots, f_m) \) and \( g = (g_1, \cdots, g_m) \). The symbol \( \langle x \rangle \) denotes \( \sqrt{1 + x^2} \) for \( x \in \mathbb{R} \).

Let \( L^2_\alpha(\mathbb{R}^2) = L^2(\mathbb{R}^2; e^{2\alpha x} \, dx) \), \( L^2_\xi(\mathbb{R}) = L^2(\mathbb{R}; e^{2\alpha x} \, dx) \) and let \( H^k_\alpha(\mathbb{R}^2) \) and \( H^k_\alpha(\mathbb{R}) \) be Hilbert spaces with the norms

\[
\|u\|_{H^k_\alpha(\mathbb{R}^2)} = \left( \|\partial_x^k u\|_{L^2_\xi(\mathbb{R})}^2 + \|\partial_y^k u\|_{L^2_\xi(\mathbb{R})}^2 + \|u\|_{L^2_\xi(\mathbb{R})}^2 \right)^{1/2},
\]

\[
\|u\|_{H^k_\alpha(\mathbb{R})} = \left( \|\partial_x^k u\|_{L^2_\xi(\mathbb{R})}^2 + \|u\|_{L^2_\xi(\mathbb{R})}^2 \right)^{1/2}.
\]

We use \( a \lesssim b \) and \( a = O(b) \) to mean that there exists a positive constant such that \( a \leq Cb \). Various constants will be simply denoted by \( C \) and \( C_i \) (\( i \in \mathbb{N} \)) in the course of the calculations.

### 2. Statement of results

Since (1.1) is isotropic and translation invariant, we may assume \( \theta = \gamma = 0 \) in (1.3) without loss of generality. Let \( \Psi = \partial_t \Phi \), \( A = I - a \Delta \) and \( B = I - b \Delta \). Then in the moving coordinate \( z = x - ct \), the Benney–Luke equation (1.1) can be rewritten as

\[
\begin{aligned}
\partial_t \Phi &= c \partial_z \Phi + \Psi, \\
\partial_t \Psi &= c \partial_z \Psi + B^{-1} A \Delta \Phi - B^{-1} (\Psi \Delta \Phi + 2 \nabla \Phi \cdot \nabla \Psi),
\end{aligned}
\]

\[ (2.1) \]

Let \( r_c(z) = -cq_c(z) \). Linearizing (2.1) around \( (\Phi, \Psi) = (\bar{\varphi}_c(z), r_c(z)) \), we have

\[
\begin{aligned}
\partial_t \left( \begin{array}{c}
\Phi \\
\Psi
\end{array} \right) &= \mathcal{L} \left( \begin{array}{c}
\Phi \\
\Psi
\end{array} \right), \\
\mathcal{L} &= \mathcal{L}_0 + V, \quad \mathcal{L}_0 = \left( \begin{array}{cc}
\frac{c \partial_z}{B^{-1} A \Delta} & 1 \\
0 & c \partial_z
\end{array} \right),
\end{aligned}
\]

\[ (2.2) \]

\[
V = -B^{-1} \left( \begin{array}{cc}
v_{1,1} & 0 \\
0 & v_{2,2}
\end{array} \right), \quad v_{1,1} = 2r'_c(z) \partial_z + r_c(z) \Delta, \quad v_{2,2} = 2q_c(z) \partial_z + q'_c(z).
\]

\[ (2.3) \]
We study linear stability of (2.2) in a weighted space $X := H_0^1(\mathbb{R}^2) \times L^2_\alpha(\mathbb{R}^2)$. Let $\mathcal{L}(\eta)u(z) = e^{-\eta z} \mathcal{L}(e^{\eta z}u(z))$ for $\eta \in \mathbb{R}$. Note that $V$ is independent of $y$. For each small $\eta \neq 0$, the operator $\mathcal{L}(\eta)$ has two stable eigenvalues.

**Theorem 2.1.** Let $0 < a < b$ and $k \in \mathbb{N}$. Fix $c > 1$ and $\alpha \in (0, \alpha_c)$. Then there exist a positive constant $\eta_0$ and functions $\lambda(\eta) \in C^\infty([-\eta_0, \eta_0])$,

$$\zeta(\cdot, \eta) \in C^\infty([-\eta_0, \eta_0]; H^k_\alpha(\mathbb{R}) \times H^{k-1}_\alpha(\mathbb{R}))$$

such that

$$\mathcal{L}(\eta)\zeta(\cdot, \eta) = \lambda(\eta)\zeta(\cdot, \eta), \quad \mathcal{L}(\eta)^*\zeta^*(\cdot, \eta) = \lambda(-\eta)\zeta^*(\cdot, \eta),$$

$$\lambda(\eta) = i\lambda_1 \eta - \lambda_2 \eta^2 + O(\eta^3),$$

$$\zeta(\cdot, \eta) = \zeta_1 + i\lambda_1 \eta \zeta_2 + O(\eta^2) \quad \text{in } H^k_\alpha(\mathbb{R}) \times H^{k-1}_\alpha(\mathbb{R}),$$

$$\zeta^*(\cdot, \eta) = \zeta_1^* - i\lambda_1 \eta \zeta_2^* + O(\eta^2) \quad \text{in } H^k_\alpha(\mathbb{R}) \times H^{k-1}_\alpha(\mathbb{R}),$$

$$\overline{\lambda(\eta)} = \lambda(-\eta), \quad \overline{\zeta(\cdot, \eta)} = \overline{\zeta(\cdot, \eta)}, \quad \overline{\zeta^*(\cdot, \eta)} = \overline{\zeta^*(\cdot, \eta)} \quad \text{for } \eta \in [-\eta_0, \eta_0] \text{ and } z \in \mathbb{R},$$

(2.7)

where $\lambda_1$ and $\lambda_2$ are positive constants, $A_0 = 1 - a \partial_x^2$, $B_0 = 1 - b \partial_x^2$ and

$$\zeta_1 = \left( \begin{array}{c} q_c \\ r_c \end{array} \right), \quad \zeta_2 = \left( \begin{array}{c} \int_{-\infty}^\infty \partial_x q_c \\ -\partial_x r_c \end{array} \right),$$

$$\zeta_1^* = c \left( \begin{array}{c} -B_0 \partial_x r_c - 2q_c \partial_x q_c - q'_c \int_{-\infty}^\infty \partial_x q_c \\ B_0 \int_{-\infty}^\infty \partial_x q_c \end{array} \right), \quad \zeta_2^* = \left( \begin{array}{c} A_0 q_c' \\ -B_0 r_c \end{array} \right).$$

**Remark 2.1.** We remark that $\mathcal{L}(0)$ is a linearized operator of the 1D Benney–Luke equation around $\varphi_c(z)$ and that $\zeta_1$ and $\zeta_2$ belong to the generalized kernel of $\mathcal{L}(0)$. More precisely,

$$\mathcal{L}(0)\zeta_1 = 0, \quad \mathcal{L}(0)\zeta_2 = \zeta_1, \quad \mathcal{L}(0)^*\zeta_1^* = \zeta_2^*, \quad \mathcal{L}(0)^*\zeta_2^* = 0,$$

$$\ker_\mathcal{L}(\mathcal{L}(0)) := \cup_{\alpha = 1}^{\infty} \ker (\mathcal{L}(0)^\alpha) = \text{span} \{ \zeta_1, \zeta_2 \},$$

$$\ker_\mathcal{L}(\mathcal{L}(0)^*) := \cup_{\alpha = 1}^{\infty} \ker ((\mathcal{L}(0)^*)^\alpha) = \text{span} \{ \zeta_1^*, \zeta_2^* \},$$

in a weighted space $L^2_\alpha(\mathbb{R})$ with $\alpha \in (0, \alpha_c)$. The eigenvalue $\lambda = 0$ for $\mathcal{L}(0)$ splits into two stable eigenvalues $\lambda(\pm \eta)$ for $\mathcal{L}(\eta)$ with $\eta \neq 0$.

In the exponentially weighted space $L^2_{\alpha_2}(\mathbb{R})$, the value $\lambda = 0$ is an isolated eigenvalue of $\mathcal{L}(0)$ and there exists a $\beta > 0$ such that

$$\sigma(\mathcal{L}(0)) \setminus \{ 0 \} \subset \{ \lambda \in \mathbb{C} \mid \Re \lambda \leq -\beta \}$$

provided $c > 1$ and $c$ is sufficiently close to 1. See lemma 2.1, theorem 2.3 and appendix B in [31].

**Remark 2.2.** We expect that $\zeta_k(\cdot, \eta)$ and $\zeta_k^*(\cdot, \eta)$ ($k = 1, 2$) do not belong to $L^2(\mathbb{R})$ as is the same with continuous resonant modes for the KP-II equation and that the spectral projection onto the subspace corresponding to the continuous eigenvalues $\{ \lambda(\eta) \}_{\eta \in [-\eta_0, \eta_0]}$ is not bounded on $H^1(\mathbb{R}^2) \times L^2(\mathbb{R}^2)$. This is a reason why we study spectral stability of $\mathcal{L}$ in the exponentially weighted space $X$. 

3423
We will prove theorem 2.1 by using the Lyapunov–Schmidt method in section 6.

Let \( \eta_0 \) be a small positive number and \( P(\eta_0) \) be the spectral projection onto the subspace corresponding to the continuous eigenvalues \( \{ \lambda(\eta) \}_{-\eta_0 \leq \eta \leq \eta_0} \) defined by (3.49) and (3.50). Let \( Q(\eta_0) = I - P(\eta_0) \). The operators \( P(\eta_0) \) and \( Q(\eta_0) \) are bounded on \( H^1_0(\mathbb{R}^2) \times L^2_0(\mathbb{R}^2) \) for any \( \alpha > 0 \) (see lemma 3.6 in section 3.2). Let \( Z = Q(\eta_0)(H^1_0(\mathbb{R}^2) \times L^2_0(\mathbb{R}^2)) \). If \( L \) is spectrally stable, then the restriction of \( e^{itL} \) to \( Z \) is exponentially stable.

**Theorem 2.2.** Let \( 0 < a < b, c > 1 \) and \( \alpha \in (0, \alpha_0). \) Consider the operator \( L \) in the space \( X = H^1_0(\mathbb{R}^2) \times L^2_0(\mathbb{R}^2). \) Assume that there exist positive constants \( \beta \) and \( \eta_0 \) such that

\[
\sigma(L)|_Z \subset \{ \lambda \in \mathbb{C} \mid \Re \lambda \leq -\beta \},
\]

where \( L \) is the restriction of the operator \( L \) to \( Z. \) Then for any \( \beta' < \beta, \) there exists a positive constant \( C \) such that

\[
\| e^{tL} Q(\eta_0) \|_{L(X)} \leq Ce^{-\beta't} \quad \text{for any } t \geq 0.
\]

(2.8)

The semigroup estimate (2.8) follows from the assumption (H) and the Gearhart–Prüss theorem [16, 38] which tells us that the boundedness of \( C^0 \)-semigroup in a Hilbert space is equivalent to the uniform boundedness of the resolvent operator on the right half plane. See also [18–20].

Time evolution of the continuous eigenmodes \( \{ e^{\lambda(z)}g(z, \eta) \}_{-\eta_0 \leq \eta \leq \eta_0} \) can be considered as a linear approximation of non-uniform phase shifts of modulating line solitary waves. For the KP-II equation, modulations of the local amplitude and the angle of the local phase shift of a line soliton are described by a system of Burgers’ equations (see [29, theorems 1.4 and 1.5]). In this paper, we find the first order asymptotics of solutions for the linearized equation (2.2) described by a wave equation with a diffraction term and it tends to a constant multiple of the \( x \)-derivative of the line solitary wave as \( t \to \infty. \)

**Theorem 2.3.** Let \( 0 < a < b, c > 1 \) and \( \alpha \) be as in theorem 2.2.

Let \( (\Phi_0, \Psi_0) \in H^2_0(\mathbb{R}^2) \times H^1_0(\mathbb{R}^2). \) Assume (H). Then a solution of (2.2) with \( (\Phi(0), \partial_t \Phi(0)) = (\Phi_0, \Psi_0) \) satisfies

\[
\left\| \begin{pmatrix} \partial_t \Phi(t, z, y) \\ \partial_z \Phi(t, z, y) \end{pmatrix} - (H_t * W_t * f)(y) \begin{pmatrix} q'_t(z) \\ r'_t(z) \end{pmatrix} \right\|_{L^2(\mathbb{R})L^\infty([0, t])} = O(t^{-1/4}) \quad \text{as } t \to \infty,
\]

where \( f(y) = \langle c \Phi_0 - A_0 \partial_q \Phi_0, q_c \rangle, \) \( H_t(y) = (4\pi \lambda t)^{-1/2} e^{-y^2/4\lambda t}, \) \( \kappa_1 = \frac{1}{2} \pm E(q_c, r_c) \) and \( W_t(y) = (2\kappa_1)^{-1} \) for \( y \in [-\lambda_1 t, \lambda_1 t] \). The first order asymptotics of solutions to (2.2) suggests that the local phase shift of line solitary waves propagates mostly at constant speed toward \( y = \pm \infty. \)

We remark that if \( f(y) \) is well localized and \( \int_{\mathbb{R}} f(y) dy = 0, \) then \( H_t * W_t * f(y) \approx (2\kappa_1)^{-1} \int_{\mathbb{R}} f(y) dy \) on any compact intervals in \( y \) as \( t \to \infty. \) The first order asymptotics of solutions to (2.2) suggests that the local phase shift of line solitary waves propagates mostly at constant speed toward \( y = \pm \infty. \)

If \( c \) is close to 1, then the assumption (H) is valid and the spectrum of \( L \) is similar to that of the linearized KP-II operator around a line soliton. To utilize the spectral property of the linearized operators of the KP-II equation around one-line solitons, we introduce the scaled parameters and variables

\[
\lambda = \epsilon^\Lambda, \quad \epsilon^2 = 1 + \epsilon^2, \quad \hat{z} = \epsilon z, \quad \hat{y} = \epsilon^2 y, \quad \xi = \epsilon^2 \xi, \quad \eta = \epsilon^2 \eta,
\]

and translate the solitary wave profile \( q_c(x) \) as
\[ q_\epsilon(z) = \epsilon^2 \theta_\epsilon(\hat{z}), \quad \theta_\epsilon(\hat{z}) = \frac{1}{c} \text{sech}^2 \left( \frac{\hat{\alpha}_\epsilon \hat{z}}{2} \right), \quad \hat{\alpha}_\epsilon = \frac{1}{\sqrt{bc^2 - a}}. \] (2.10)

Let

\[ \hat{\alpha}_0 = (b - a)^{-1/2}, \quad \theta_0(\hat{z}) = \text{sech}^2 \left( \frac{\hat{\alpha}_0 \hat{z}}{2} \right), \]

\[ L_{\text{KP}} = -\frac{1}{2} \{ (b - a) \partial_{\hat{z}}^3 - \partial_{\hat{z}} + \partial_{\hat{z}}^{-1} \partial_{\hat{y}}^2 + 3 \partial_{\hat{z}}(\theta_0) \}. \]

We remark that the operator \( L_{\text{KP}} \) is the linearization of the KP-II equation around its line soliton solution \( \theta_0(x - \frac{1}{t}) \). The linearized operator \( L_{\text{KP}} \) has continuous eigenvalues \( \lambda_{\text{KP}}(\eta) = \frac{b}{a} \sqrt{1 + i\gamma \eta} \) which has to do with dynamics of modulating line solitons (see [9, 29] and section 3.1).

In the low frequency regime, we can deduce the eigenvalue problem

\[ L \begin{pmatrix} u \\ v \end{pmatrix} = \lambda \begin{pmatrix} u \\ v \end{pmatrix} \] (2.12)

to \( L_{\text{KP}} \partial_t u = \lambda \partial_t u \) provided \( \epsilon \) is sufficiently small. More precisely, we have the following.

**Theorem 2.4.** Let \( c = \sqrt{1 + \epsilon^2} \), \( \alpha = \hat{\alpha} \epsilon \) and \( \hat{\alpha} \in (0, \hat{\alpha}_0/2) \). Then there exist positive constants \( \epsilon_0, \eta_0, \beta \) and \( \lambda \) such that if \( \epsilon \in (0, \epsilon_0) \), then

\[ \sigma(L) \setminus \{ \lambda \epsilon(\eta) \mid \eta \in [-\epsilon^2 \eta_0, \epsilon^2 \eta_0] \} \subseteq \{ \lambda \in \mathbb{C} \mid \Re \lambda \leq -\beta \epsilon^3 \}, \] (2.13)

\[ \lim_{\epsilon \downarrow 0} |\epsilon^3 \lambda \epsilon(\eta) - \lambda_{\text{KP}}(\eta)| = O(\epsilon^3) \quad \text{for} \ \eta \in [-\eta_0, \eta_0], \] (2.14)

\[ \| e^{tL} Q(\epsilon^2 \eta_0) \|_{B(X)} \leq K e^{-\beta \epsilon^3 t} \quad \text{for any} \ t \geq 0, \] (2.15)

where \( K \) is a constant that does not depend on \( t \).

### 3. Resonant modes of the linearized operator

In this section, we will prove the existence of resonant continuous eigenvalues of \( L \) near \( \lambda = 0 \) and show that the resonant eigenvalues and resonant eigenmodes for \( L \) are similar to those for the linearized KP-II operator \( L_{\text{KP}} \) provided line solitary waves are small.

#### 3.1. Spectral stability in the KP-II scaling regime

First, we recall some spectral properties of the linearized KP-II equation around 1-line solitons. Let us consider the eigenvalue problem of the linearized operator of (2.11) around \( \theta_0 \). Let

\[ L_{\text{KP},0} = -\frac{1}{2} \{ (b - a) \partial_{\hat{z}}^3 - \partial_{\hat{z}} + \partial_{\hat{z}}^{-1} \partial_{\hat{y}}^2 \}, \quad L_{\text{KP}} = L_{\text{KP},0} - \frac{3}{2} \partial_{\hat{z}}(\theta_0), \]

\[ L_{\text{KP}}(\eta) = -\frac{1}{2} \partial_{\hat{z}} \{ (b - a) \partial_{\hat{z}}^2 - 1 + 3 \theta_0 \} + \frac{\eta^2}{2} \partial_{\hat{z}}^{-1}. \]
Formally, we have \( L_{\text{KP}}(u(z)e^{iv}) = e^{iv}(L_{\text{KP}}(\eta)u)(z) \). The operator \( L_{\text{KP},0} \) is spectrally stable in exponentially weighted spaces.

**Lemma 3.1.** Let \( \alpha \in (0, \alpha_0) \) and \( \beta_0 = \frac{\alpha}{2} \{1 - (b - a)\alpha^2\} \). Then
\[
\|(\Lambda - L_{\text{KP},0})^{-1}\|_{\mathcal{B} (L^2_{\alpha}(\mathbb{R}^2))} \leq (\Re \Lambda + \beta_0)^{-1} \quad \text{for } \Lambda \text{ satisfying } \Re \Lambda > -\beta_0.
\] (3.1)

Moreover, there exists a positive constant \( C \) such that if \( \Re \Lambda > -\beta_0/2 \),
\[
\|\partial_z^j (\Lambda - L_{\text{KP},0})^{-1}\|_{\mathcal{B} (L^2_{\alpha}(\mathbb{R}^2))} \leq C \left( \frac{\Re \Lambda + \beta_0}{2} \right)^{-1 + \frac{j}{2}} \quad \text{for } j = 1, 2.
\] (3.2)
\[
\| (\Lambda - L_{\text{KP},0})^{-1} \|_{\mathcal{B} (L^2_{\alpha}(\mathbb{R}^2))} \leq C \left| \frac{\Re \Lambda + \beta_0}{2} \right|^{-2/3}.
\] (3.3)

**Proof.** By the Plancherel theorem,
\[
\|g\|^2_{L^2_{\alpha}(\mathbb{R}^2)} = \int_{\mathbb{R}^2} e^{2\alpha x} |g(x, y)|^2 \, dx \, dy = \int_{\mathbb{R}^2} |\hat{g}(\xi + i\alpha, \eta)|^2 \, d\xi \, d\eta
\] (3.4)
for any \( g \in C_0(\mathbb{R}^2) \) and an operator \( m(D) := \frac{i}{\pi} \hat{m} \ast f \) is bounded on \( L^2_{\alpha}(\mathbb{R}^2) \) if and only if
\[
\|m(D)\|_{\mathcal{B} (L^2_{\alpha}(\mathbb{R}^2))} = \sup_{(\xi, \eta) \in \mathbb{R}^2} |m(\xi + i\alpha, \eta)| < \infty.
\] (3.5)

Suppose \( f \in L^2_{\alpha}(\mathbb{R}^2) \) and that \( u \) is a solution of
\[
(\Lambda - L_{\text{KP},0})u = f.
\]
Then
\[
\hat{u}(\xi, \eta) = \frac{\hat{f}(\xi, \eta)}{\Lambda - L_{\text{KP},0}(\xi, \eta)}.
\]
where \( L_{\text{KP},0}(\xi, \eta) = \frac{1}{2} \{ (b - a)\xi^3 + \xi - \xi^{-1}\eta^2 \} \). It follows from (3.5) that for \( j = 0, 1, 2 \) and \( \Lambda \) with \( \Re \Lambda > -\beta_0 \),
\[
\|\partial_z^j (\Lambda - L_{\text{KP},0})^{-1}\|_{\mathcal{B} (L^2_{\alpha}(\mathbb{R}^2))} = \sup_{(\xi, \eta) \in \mathbb{R}^2} \frac{|\xi + i\alpha|^j}{|\Lambda - L_{\text{KP},0}(\xi + i\alpha, \eta)|}.
\]
Since
\[
\Re L_{\text{KP},0}(\xi + i\alpha, \eta) = -\frac{1}{2} \left\{ 3(b - a)\alpha^2 \xi^2 + 2\beta_0 + \frac{\alpha^2}{\xi^2 + \alpha^2} \right\} \geq -\beta_0,
\]
we have (3.1) and (3.2). Moreover, we have (3.3) because \( |\Re L_{\text{KP},0}(\xi + i\alpha, \eta)| \leq \{ -\Re L_{\text{KP},0}(\xi + i\alpha, \eta) \}^{3/2} \).
\[\square\]
Let $\gamma_1 = 4\sqrt{(b-a)/3}$, $\tilde{x} = \frac{\partial_0}{\sqrt{2}} x$ and

$$
\lambda_{KP}(\eta) = \frac{i\eta}{\sqrt{3}} \sqrt{1 + i\gamma_1 \eta},
$$

$$
g_0(x, \eta) = \frac{2(b-a)}{\gamma_1 \sqrt{1 + i\gamma_1 \eta}} \partial_0^2 \left( e^{-i\gamma_1 \eta \theta} \text{sech} x \right),
$$

$$
g^*_0(x, \eta) = \frac{i}{\eta} \partial_0 \left( e^{i\gamma_1 \eta \theta} \text{sech} x \right).
$$

Using lemma 2.1 in [29] and the change of variable

$$
x \mapsto \frac{\partial_0}{2} x, \quad y \mapsto \frac{1}{\gamma_1} y, \quad \eta \mapsto \gamma_1 \eta,
$$

we have for $\eta \in \mathbb{R} \setminus \{0\}$,

$$
\mathcal{L}_{KP}(\eta) g_0(x, \pm \eta) = \lambda_{KP}(\pm \eta) g_0(x, \pm \eta), \quad \mathcal{L}_{KP}(\eta^* \eta) g^*_0(x, \pm \eta) = \lambda_{KP}(\pm \eta) g^*_0(x, \pm \eta),
$$

$$
\int_{\mathbb{R}} g_0(x, \eta) g^*_0(x, \eta) \, dx = 1, \quad \int_{\mathbb{R}} g_0(x, \eta) g^*_0(x, -\eta) \, dx = 0.
$$

To resolve the singularity of $g_0(x, \eta)$ and the degeneracy of $g^*_0(x, \eta)$ at $\eta = 0$, we decompose them into their real parts and imaginary parts. Let

$$
g_{0,1}(x, \eta) = g_0(x, \eta) + g_0(x, -\eta), \quad g_{0,2}(x, \eta) = \frac{1}{i\eta} \{g_0(x, \eta) - g_0(x, -\eta)\},
$$

$$
g^*_{0,1}(x, \eta) = \frac{1}{2} \{g^*_0(x, \eta) + g^*_0(x, -\eta)\}, \quad g^*_{0,2}(x, \eta) = \frac{\eta}{2i} \{g^*_0(x, \eta) - g^*_0(x, -\eta)\}.
$$

Then

$$
\int_{\mathbb{R}} g_{0,j}(x, \eta) g^*_{0,k}(x, \eta) \, dx = \delta_{jk} \quad \text{for} \, j, k = 1, 2.
$$

Moreover, we see that $g_{0,k}(x, \eta)$ and $g^*_{0,k}(x, \eta)$ are even in $\eta$ and that for $k = 1, 2$ and $\hat{\alpha} \in (0, \hat{\alpha}_0)$,

$$
\|g_{0,k}(\cdot, \eta) - g_{0,k}(\cdot, 0)\|_{L^2_{\eta}} + \|g^*_{0,k}(\cdot, \eta) - g^*_{0,k}(\cdot, 0)\|_{L^2_{\eta}} = O(\eta^2), \quad (3.6)
$$

$$
g_{0,1}(x, 0) = -\frac{\sqrt{3}}{2} \theta_0'(x), \quad g_{0,2}(x, 0) = \theta_0(x) + \left(\frac{x}{2} + \frac{1}{\hat{\alpha}_0}\right) \theta_0'(x), \quad (3.7)
$$

$$
g^*_{0,1}(x, 0) = \frac{\hat{\alpha}_0}{2\sqrt{3}} \int_{-\infty}^{\infty} (x_1 \theta_0'(x_1) + 2 \theta_0(x_1)) \, dx_1, \quad g^*_{0,2}(x, 0) = \frac{\hat{\alpha}_0}{2} \theta_0(x). \quad (3.8)
$$

Let $\mathcal{P}_{KP}(\eta_0)$ be the spectral projection to resonant modes $\{g_0(x, \pm \eta)e^{i\eta \theta}\}_{-\eta_0 \leq \eta \leq \eta_0}$ defined by

$$
\mathcal{P}_{KP}(\eta_0)f(x, y) = \frac{1}{\sqrt{2\pi}} \sum_{k=1,2} \int_{-\eta_0}^{\eta_0} a_{0,k}(\eta) g_{0,k}(x, \eta)e^{i\eta \theta} \, d\eta,
$$

$$
a_{0,k}(\eta) = \int_{\mathbb{R}} (F_{x,f})(x, \eta) g^*_{0,k}(x, \eta) \, dx,
$$

3427
and let $Q_{\mathcal{KP}}(\eta_0) = I - P_{\mathcal{KP}}(\eta_0)$. By lemma 3.1 in [29], the operator $P_{\mathcal{KP}}(\eta_0)$ and $Q_{\mathcal{KP}}(\eta_0)$ are bounded on $L^2_\alpha(\mathbb{R}^2)$ for an $\alpha \in (0, \bar{\alpha}_0)$ provided $\eta_0$ is sufficiently small. Moreover, we have the following.

**Proposition 3.2.** Let $\bar{\alpha} \in (0, \bar{\alpha}_0)$ and $\eta_*$ be a positive number satisfying $\frac{\bar{\alpha}}{2} (\bar{\alpha}(1 + 1/\eta_* - 1) = \bar{\alpha}$. For any $\eta_0 \in (0, \eta_*)$, there exists a positive number $b$ such that

$$\sup_{\mathbb{R} \Lambda \geq -b} \| (\Lambda - \mathcal{L}_{\mathcal{KP}})^{-1} Q_{\mathcal{KP}}(\eta_0) \|_{B(L^2_\alpha(\mathbb{R}^2))} < \infty.$$ 

**Proof.** By proposition 3.2 in [29], there exist positive constants $b_1$ and $C$ such that

$$\| e^{i\varepsilon x} Q_{\mathcal{KP}}(\eta_0) \|_{B(L^2_\alpha(\mathbb{R}^2))} \leq Ce^{-b_1 t}.$$ 

If $\mathbb{R} \Lambda \geq -b > -b_1$, then

$$\| (\Lambda - \mathcal{L}_{\mathcal{KP}})^{-1} Q_{\mathcal{KP}}(\eta_0) \|_{B(L^2_\alpha(\mathbb{R}^2))} \leq \int_0^{\infty} \| e^{-\lambda t} e^{i\varepsilon x} Q_{\mathcal{KP}}(\eta_0) \|_{B(L^2_\alpha(\mathbb{R}^2))} \, dt \lesssim \frac{1}{b_1 - b}.$$ 

### 3.2. Resonant modes

In this subsection, we will prove the existence of continuous resonant modes of $\mathcal{L}$ near $\lambda = 0$ by using the Lyapunov–Schmidt method. Let

$$A(\eta) = 1 + a\eta^2 - a\partial_z^2, \quad B(\eta) = 1 + b\eta^2 - b\partial_z^2,$$

$$\mathcal{L}_0(\eta) = \left( \begin{array}{cc} c\partial_z & 1 \\ B(\eta)^{-1} A(\eta) \partial_z - \eta^2 & c\partial_z \end{array} \right);$$

$$\mathcal{L}(\eta) = \mathcal{L}_0(\eta) + V(\eta), \quad V(\eta) = -B(\eta)^{-1} \left( \begin{array}{cc} 0 & 0 \\ v_{1,\epsilon}(\eta) & v_{2,\epsilon}(\eta) \end{array} \right);$$

$$v_{1,\epsilon}(\eta) = 2\epsilon' \partial_z + r_c(\partial_z^2 - \eta^2), \quad v_{2,\epsilon}(\eta) = 2q_c \partial_z + q'.$$

If $e^{i\varepsilon y}(u_1(z), u_2(z))$ is a solution of (2.12), then

$$\mathcal{L}(\eta) \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

(3.9)

or equivalently,

$${\cal A}(\eta)(\partial_z^2 - \eta^2) - (\lambda - c\partial_z^2) B(\eta) u_1 - v_{1,\epsilon}(\eta) u_1 - v_{2,\epsilon}(\eta)(\lambda - c\partial_z) u_1 = 0,$$

(3.10)

$$u_2 = (\lambda - c\partial_z) u_1.$$  

(3.11)

We will find solutions of (3.9) in $H^1_\alpha(\mathbb{R}) \times L^2_\alpha(\mathbb{R})$ for small $\eta$. Using the change of variables (2.9) and (2.10) and dropping the hats in the resulting equation, we have

$$F(U, \lambda, \epsilon, \eta) := 2\mathcal{L}_\epsilon(\eta) U - \lambda T_1(\epsilon, \eta) U + \epsilon^2 \lambda^2 B_\epsilon(\eta) \partial_z^{-1} U = 0,$$

(3.12)

where $U(z) = \partial_z u_1(z/\epsilon)$ and

$$L_\epsilon(\eta) = -\frac{1}{2} \partial_z \{ (bc^2 - a) \partial_z^2 - 1 + 3\epsilon \theta_\epsilon \} + \frac{\eta^2}{2} T_2(\epsilon, \eta),$$

$$T_1(\epsilon, \eta) = 2b B_\epsilon(\eta) - \epsilon^2 (2\theta_\epsilon + \theta_\epsilon^{-1}), \quad T_3(\epsilon, \eta) = \{ A_\epsilon(\eta) + \epsilon^2 (bc^2 - a) \partial_z^2 + c\epsilon^2 \theta_\epsilon \} \partial_z^{-1},$$

$$A_\epsilon(\eta) = 1 + a\epsilon^2 (\epsilon^2 \eta^2 - \partial_z^2), \quad B_\epsilon(\eta) = 1 + b\epsilon^2 (\epsilon^2 \eta^2 - \partial_z^2).$$
Let $L_\epsilon(\eta)$ be an operator on $L^2_0(\mathbb{R})$ with $D(L_\epsilon) = H^1_0(\mathbb{R})$ for an $\alpha \in (0, \alpha_c)$ and 

$$
(\partial_z^{-1} f)(z) = -\int_z^\infty f(z_1) \, dz_1 \quad \text{for } f \in L^2_0(\mathbb{R}).
$$

We remark that $F(U, \Lambda, 0, \eta) = 2L_{KP}(\eta) U - 2\Lambda U$ and the translated eigenvalue problem (3.12) is similar to the eigenvalue problem of the KP-II equation provided $\epsilon$ is sufficiently small. For small $\eta \neq 0$, (3.9) has two eigenvalues in the vicinity of 0.

First, we will find an approximate solution of (3.12). Let $U(\eta) = U_0 + \eta U_1 + \eta^2 U_2 + O(\eta^3)$, $\Lambda(\eta) = i\Lambda^0_{1, \epsilon} \eta - \Lambda^0_{2, \epsilon} \eta^2 + O(\eta^3)$ and formally equate the powers of $\eta$ in (3.12). Then

$$\begin{align*}
L_\epsilon(0)U_0 &= 0, \\
L_\epsilon(0)U_1 &= \frac{1}{2} \Lambda^0_{1, \epsilon} T_1(\epsilon, 0)U_0, \\
2L_\epsilon(0)U_2 &= - \{ T_2(\epsilon, 0) + \Lambda^0_{2, \epsilon} T_1(\epsilon, 0) - c^2(\Lambda^0_{1, \epsilon})^2 B_\epsilon(0)\partial_z^{-1} \} U_0 + i\Lambda^0_{1, \epsilon} T_1(\epsilon, 0)U_1.
\end{align*}
$$

Let $\theta_1, \theta_0(z) = \partial_\epsilon q_\epsilon (\frac{z}{\epsilon}), \theta_0, \theta_1, \theta_0, \theta_1(\epsilon, 0) = 0$ and $\theta_1, \theta_0, \theta_1(\epsilon, 0) = \frac{3c}{2} \theta_1, \theta_0, \theta_1(\epsilon, 0) = 0$.

It follows from [36, proposition 2.8] that

$$\begin{align*}
L_\epsilon(0)\theta_0' &= 0, \\
L_\epsilon(0)\theta_1' &= -\theta_0', \\
L_\epsilon(0)^*\theta_\epsilon &= 0, \\
L_\epsilon(0)^*\int_{-\infty}^z \theta_1(\epsilon, z_1) \, dz_1 &= \theta_\epsilon.
\end{align*}
$$

where $\ker_{x}(A)$ denotes the generalized kernel of the operator $A$. Differentiating (1.4) with respect to $c$ and $x$, using the change of variables (2.9), (2.10) and dropping the hats in the resulting equation, we have

$$\begin{align*}
L_\epsilon(0)\theta_1 &= -\frac{1}{2} T_1(\epsilon, 0)\theta_0', \\
L_\epsilon(0)^*\int_{-\infty}^z \theta_1(\epsilon, z_1) \, dz_1 &= \frac{1}{2} \partial_z^{-1} T_1(\epsilon, 0)\theta_0'.
\end{align*}
$$

Combining (3.13), (3.14), (3.17), (3.20) and the fact that $\ker(L_\epsilon(0)) = \text{span}\{\theta_\epsilon\}$, we have

$$\begin{align*}
U_0 &= \theta_0', \\
U_1 &= -i\Lambda^0_{1, \epsilon} \theta_1 + C_1 \theta_0'.
\end{align*}
$$

up to the constant multiplicity, where $C_1$ is an arbitrary constant.

Next, we will determine $\Lambda^0_{1, \epsilon}$. Multiplying (3.15) by $\theta_\epsilon$ and substituting (3.21) into the resulting equation, we have from (3.18)

$$\begin{align*}
\langle T_2(\epsilon, 0)\theta_0' + \Lambda^0_{2, \epsilon} T_1(\epsilon, 0)\theta_\epsilon' - c^2(\Lambda^0_{1, \epsilon})^2 B_\epsilon(0)\theta_\epsilon, \theta_\epsilon \rangle + i\Lambda^0_{1, \epsilon} \langle T_1(\epsilon, 0)(i\Lambda^0_{1, \epsilon} \theta_1 + C_1 \theta_0'), \theta_\epsilon \rangle \\
= -2\langle U_2, L_\epsilon(0)^*\theta_\epsilon \rangle &= 0.
\end{align*}
$$
Since $\theta_\epsilon$ is even and $\theta_\epsilon'$ and $T_1(\epsilon, 0)\theta_\epsilon'$ are odd, we have $\langle T_1(\epsilon, 0)\theta_\epsilon', \theta_\epsilon \rangle = \langle \theta_\epsilon', \theta_\epsilon \rangle = 0$ and

$$\langle \Lambda_1^0 \rangle^2 = \frac{f_1(\epsilon)}{f_2(\epsilon)},$$

$$f_1(\epsilon) = \langle T_2(\epsilon, 0)\theta_\epsilon', \theta_\epsilon \rangle, \quad f_2(\epsilon) = \langle T_1(\epsilon, 0)\theta_{1, \epsilon} + c^2 B_\epsilon(0)\theta_\epsilon, \theta_\epsilon \rangle.$$  \hspace{1cm} (3.22)

By (3.16) and the fact that $T_1(\epsilon, 0)\partial_\epsilon^* \theta_\epsilon = -T_1(\epsilon, 0)\theta_\epsilon' = -c^{-1} \partial_\epsilon \{ (A_\epsilon(0) + c^2 B_\epsilon(0)) \} \theta_\epsilon$, we have

$$f_1(\epsilon) = \frac{1 + 2c^2}{3} (\theta_\epsilon', \theta_\epsilon) + \frac{c^2}{3} (4a - bc^2) (\theta_\epsilon', \theta_\epsilon'),$$

$$f_2(\epsilon) = \frac{1}{\epsilon} \langle \{ A_\epsilon(0) + c^2 B_\epsilon(0) \} \theta_{1, \epsilon}, \theta_{1, \epsilon} \rangle + c^2 \langle B_\epsilon(0) \theta_\epsilon, \theta_\epsilon \rangle.$$

Since

$$\| \theta_\epsilon - \theta_0 \|_{H^k(R) \cap H_{\text{loc}}^k(R)} + \| \theta_{1, \epsilon} \| \| \theta_\epsilon' - z \theta_0' \|_{H^k(R) \cap H_{\text{loc}}^k(R)} = O(\epsilon^2) \quad \text{for any } k \geq 0,$$

we have $\Lambda_1^0 = \pm \frac{1}{\sqrt{3}} + O(\epsilon^2)$.

Now we will use the Lyapunov–Schmidt method to prove existence of solutions to (3.12) satisfying $(U(\eta), \Lambda(\eta)) \simeq (\theta_\epsilon' - i\eta \Lambda_{1, \epsilon}, i\eta \Lambda_{1, \epsilon})$.

**Lemma 3.3.** Let $\alpha \in (0, \alpha_0/2)$. There exist positive constants $\epsilon_0$ and $\eta_0$ such that (3.12) has a solution $(U(\eta), \Lambda(\eta))$ satisfying for any $\eta \in [-\eta_0, \eta_0]$ and $k \geq 0$,

$$\sup_{\epsilon \in (0, \epsilon_0)} \| U_\epsilon(\eta) - \theta_\epsilon' + \Lambda_\epsilon(\eta) \theta_{1, \epsilon} \|_{H^k(R)} = O(\eta^2),$$

$$\sup_{\epsilon \in (0, \epsilon_0)} | \Lambda_\epsilon(\eta) - i\Lambda_{1, \epsilon} \eta + \Lambda_{2, \epsilon} \eta^2 | = O(\eta^3),$$

where $\Lambda_{1, \epsilon}$ and $\Lambda_{2, \epsilon}$ are constants satisfying $\Lambda_{1, \epsilon} = \frac{1}{\sqrt{3}} + O(\epsilon^2)$ and $\Lambda_{2, \epsilon} = \frac{2}{3\alpha_0} + O(\epsilon^2)$. Moreover,

$$\overline{U_\epsilon(\eta)} = U_\epsilon(-\eta), \quad \Lambda_\epsilon(\eta) = \Lambda_\epsilon(-\eta) \quad \text{for } \eta \in [-\eta_0, \eta_0],$$

and the mapping $[-\eta_0, \eta_0] \ni \eta \mapsto (U_\epsilon(\eta), \Lambda_\epsilon(\eta)) \in H^k(\mathbb{R}) \times \mathbb{R}$ is smooth for any $k \geq 0$.

**Proof.** Let $\Lambda(\eta) = i\eta \Lambda_1(\eta)$ and

$$U(\eta) = \theta_\epsilon' - (i\eta \Lambda_1(\eta) - \eta^2 \gamma(\eta)) \theta_{1, \epsilon} + \eta^2 \overline{U}(\eta), \quad \overline{U}(\eta) \perp \theta_\epsilon, \int_{-\infty}^{\infty} \overline{\theta_{1, \epsilon}(z)} \, dz = 0.$$  \hspace{1cm} (3.27)

Then (3.12) is translated into

$$2\overline{\Lambda}_\epsilon(\eta) \overline{U} + G_1(\gamma, \Lambda_1, \epsilon, \eta) - i\eta G_2(\gamma, \Lambda_1, \epsilon, \eta) = 0,$$

where
\[ \tilde{L}_e(\eta) = L_e(\eta) - \frac{1}{2} \eta \Lambda_1(\eta) T_1(e, \eta) - \frac{\epsilon^2}{2} \eta^2 \Lambda_1(\eta)^2 B_\epsilon(\eta) \partial_{z}^{-1}, \]

\[ G_1(\gamma, \Lambda_1, \epsilon, \eta) = T_2(e, \eta) \theta'_0 + 2 \gamma L_e(\eta) \theta_{1,e} - \Lambda_1^2 \{ T_1(e, \eta) \theta_{1,e} + \epsilon^2 B_\epsilon(\eta) \theta_e \}, \]

\[ G_2(\gamma, \Lambda_1, \epsilon, \eta) = 2 b c e^4 \Lambda_1 \theta'_0 + \Lambda_1 \{ T_2(e, \eta) + \gamma T_1(e, \eta) \} \theta_{1,e} \]

\[ + \epsilon^2 \Lambda_1^2 (\Lambda_1 + \epsilon \gamma) B_\epsilon(\eta) \int_{\epsilon}^{\infty} \theta_{1,e}(z_1) \, dz_1. \]

Here we use (3.20) and the fact that \( \{ T_1(e, \eta) - T_1(0, \eta) \} \theta'_e = 2 b c e^4 \gamma^2 \theta'_e. \)

Let \( P_\epsilon : L_0^2 \rightarrow \text{ker}(L_0(0)) \) be the spectral projection associated with \( L_0(0) \) and let \( Q_\epsilon = I - P_\epsilon(0) \). Since \( \tilde{U} \in Q_\epsilon L_0^2(\mathbb{R}) \), we can translate (3.28) into

\[ 2 \tilde{L}_e(\eta) \tilde{U} + Q_\epsilon G_1(\gamma, \Lambda_1, \epsilon, \eta) - i \eta Q_\epsilon G_2(\gamma, \Lambda_1, \epsilon, \eta) = 0, \quad (3.29) \]

\[ F_1(\gamma, \Lambda_1, \epsilon, \eta) := \left( G_1(\gamma, \Lambda_1, \epsilon, \eta) - i \eta G_2(\gamma, \Lambda_1, \epsilon, \eta) + 2 (\tilde{L}_e(\eta) - L_0(0)) \tilde{U}, \theta_e \right), \quad (3.30) \]

\[ F_2(\gamma, \Lambda_1, \epsilon, \eta) := \left( G_1(\gamma, \Lambda_1, \epsilon, \eta) - i \eta G_2(\gamma, \Lambda_1, \epsilon, \eta) + 2 (\tilde{L}_e(\eta) - L_0(0)) \tilde{U}, \int_{0}^{\infty} \tilde{\theta}_{1,e} \right), \quad (3.31) \]

where \( \tilde{L}_e(\eta) = Q_\epsilon \tilde{L}_e(\eta) Q_\epsilon \). Let \( k_1 \) be a positive number such that

\[ \sup_{\epsilon \in (0, \epsilon_0], \eta \in [-\eta_0, \eta_0]} \left( \| T_1(\epsilon, \eta) \|_{B(H^1(\mathbb{R}), L^2(\mathbb{R}))} + \| T_2(\epsilon, \eta) \|_{B(H^1(\mathbb{R}), L^2(\mathbb{R}))} \right) \]

\[ + \| B_\epsilon(\eta) \partial^{-1} \|_{B(H^1(\mathbb{R}), L^2(\mathbb{R}))} \leq k_1. \]

Suppose \( \sup_{\eta \in [-\eta_0, \eta_0]} (|\Lambda_1(\eta)| + |\gamma(\eta)|) \leq k_2 \) for a \( k_2 > 0 \) and \( \| Q_\epsilon L_0(0) \|_{B(H^1(\mathbb{R}), L^2(\mathbb{R}))} \leq \eta^2 k_1 (1 + k_2^2 \epsilon^2) + \eta k_1 k_2, \)

we see that \( \tilde{L}_e(\eta)^{-1} : Q_\epsilon L_0^2(\mathbb{R}) \rightarrow Q_\epsilon H^1(\mathbb{R}) \) is uniformly bounded in \( \epsilon \in (0, \epsilon_0) \) and \( \eta \in [-\eta_0, \eta_0] \) provided \( \epsilon_0 \) and \( \eta_0 \) are sufficiently small. Thus there exists a positive constant \( C_1 \) such that

\[ \sup_{\epsilon \in (0, \epsilon_0], \eta \in [-\eta_0, \eta_0]} \| \tilde{U}(\eta) \|_{H^1(\mathbb{R})} \leq C_1 \{(1 + k_2)^2 + \epsilon^2 \eta_0 k_2^2\}. \]

Let

\[ \gamma^0_0 = \frac{f_3(\epsilon)}{f_4(\epsilon)}, \]

\[ f_3(\epsilon) = (\Lambda_{1,e})^2 \left( T_1(0, 0) \theta_{1,e} + \epsilon^2 B_\epsilon(0) \theta_{1,e} \int_{0}^{\epsilon} \tilde{\theta}_{1,e}(z_1) \, dz_1 \right) - \left( T_2(0, 0) \theta'_0 \int_{-\infty}^{\epsilon} \tilde{\theta}_{1,e}(z_1) \, dz_1 \right), \]

\[ f_4(\epsilon) = 2 \left( L_0(0) \theta_{1,e} \int_{-\infty}^{\epsilon} \tilde{\theta}_{1,e}(z_1) \, dz_1 \right). \]

(3.32)
By (3.18) and (3.23), \( f_4(c) = 3\langle \theta_0, \theta_0 \rangle + O(c^2) \). Using (3.22), (3.23) and the fact that 
\[
(A^0_{1,c})^2 = \frac{1}{2} + O(c^2) \text{ and }
\]
\[
\|\bar{\theta}_{1,c} - 2\theta_0 - z\partial_0\|_{H^1_0(\mathbb{R}) \cap H^\infty_0(\mathbb{R})} = O(c^2) \quad \text{for any } k \geq 0,
\]
we have
\[
f_3(c) = \left\langle 2\frac{\partial}{\partial \theta}, \int_{-\infty}^{z} \bar{\theta}_{1,c} \right\rangle + O(c^2) = -\frac{1}{6}\|\theta_0\|^2_{L^1(\mathbb{R})} + O(c^2).
\]
Thus we have
\[
\gamma^0_c = -\frac{1}{18} \frac{\|\theta_0(z)\|^2_{L^1(\mathbb{R})}}{\langle \theta_0, \theta_0 \rangle} + O(c^2) = -\frac{1}{3\alpha_0} + O(c^2).
\]
In view of (3.22) and (3.32),
\[
F_1(\bar{U}_0, \gamma^0_c, A^0_{1,c}, \epsilon, 0) = \left\langle G_1(\gamma, A^0_{1,c}, \epsilon, 0), \theta_0 \right\rangle
\]
\[
= \left\langle T_2(\epsilon, 0)\partial_0 \theta, \theta_0 \right\rangle - (A^0_{1,c})^2(\langle T_1(\epsilon, 0)\theta, \theta_0 \rangle + \epsilon^2 B_0(0)\theta, \theta_0 \rangle
\]
\[
= 0,
\]
where \( \bar{U}_0 = \bar{U}(0) \).
\[
F_2(\bar{U}_0, \gamma^0_c, A^0_{1,c}, \epsilon, 0) = \left\langle G_1(\gamma^0_c, A^0_{1,c}, \epsilon, 0), \int_{-\infty}^{z} \bar{\theta}_{1,c}(z_1) \, dz_1 \right\rangle = 0,
\]
Next, we compute the Fréchet derivative of \( (F_1, F_2) \) at \( U_0 = (\bar{U}_0, \gamma^0_c, A^0_{1,c}, \epsilon, 0) \). By (3.18), (3.20), (3.23) and (3.33),
\[
\partial_{\gamma} F_1(U_0) = 2\langle L_0(0)\theta_{1,c}, \theta_0 \rangle = 0,
\]
\[
\partial_{A} F_1(U_0) = -2A^0_{1,c} \langle T_1(\epsilon, 0)\theta_{1,c}, \theta_0 \rangle + \epsilon^2 B_0(0)\theta_{1,c} = -6A^0_{1,c}\langle \theta_0, \theta_0 \rangle + O(c^2),
\]
\[
\partial_{\epsilon} F_2(U_0) = 2\langle L_0(0)\theta_{1,c}, \int_{-\infty}^{z} \bar{\theta}_{1,c} \rangle = -2\theta_{1,c} + 3\langle \theta_0, \theta_0 \rangle + O(c^2),
\]
and \( D(\gamma, A)(F_1, F_2)(U_0) = \begin{pmatrix} \partial_{\gamma} F_1(U_0) & \partial_{A} F_1(U_0) \\ \partial_{\gamma} F_2(U_0) & \partial_{A} F_2(U_0) \end{pmatrix} \) is invertible. Thus by the implicit function theorem, there exists a smooth function \( (\gamma_c(\eta), A_{1,c}(\eta)) \) around \( \eta = 0 \) satisfying
\[
\gamma_c(0) = \gamma^0_c, \quad A_{1,c}(0) = A^0_{1,c}, \quad A^0_{1,c}(0) = -\frac{\partial_{\gamma} F_1(U_0)}{\partial_{A} F_1(U_0)} =: iA^0_{2,c}.
\]
Since
\[
G_2(\gamma_c(0), A_{1,c}(0), \epsilon, 0) = \langle A_{1,c}(0)(T_2(\epsilon, 0) + \gamma_c(0)T_1(\epsilon, 0))\theta_{1,c} + O(c^2)
\]
\[
= A^0_{1,c} \left\{ -\int_{-\infty}^{z} \bar{\theta}_{1,c}(z_1) \, dz_1 + 2\gamma_c(0)\theta_{1,c} \right\} + O(c^2) \quad \text{in } L^2_0(\mathbb{R}),
\]

3432
we have
\[
\partial_t F_j \left( \tilde{U}_0, \tau_0, \Lambda^0_{\epsilon}, \epsilon, 0 \right) = -i \left\langle G_2 \left( U_0, \tau_0, \Lambda^0_{\epsilon}, \epsilon, 0 \right), \theta_\epsilon \right\rangle,
\]
\[
= i \Lambda^0_{\epsilon, \epsilon} \left\{ \frac{1}{2} ||\theta_0||^2_{L^2(\mathbb{R})} - 3 \gamma_\epsilon \theta_0 \right\} + O(\epsilon^3)
\]
\[
= \frac{2i}{3} \Lambda^0_{\epsilon, \epsilon} ||\theta_0||^3_{L^2(\mathbb{R})},
\]
and \( \Lambda^0_{\epsilon, \epsilon} = \frac{1}{3} ||\theta_0||^2_{L^2(\mathbb{R})} ||\theta_0||^2_{L^2(\mathbb{R})} + O(\epsilon^3) = 2/(3\lambda) + O(\epsilon^3). \)

Letting \( \Lambda_\epsilon(\eta) = i\eta \Lambda_{1, \epsilon}(\eta) \) and
\[
U_\epsilon(\eta) = \theta_\epsilon + \left\{ \Lambda_\epsilon(\eta) - \frac{2}{3} \gamma_\epsilon \right\} \theta_\epsilon
\]
we have (3.24) and (3.26) because \( \overline{\Lambda_\epsilon(\eta)} = \tilde{L}_\epsilon(-\eta) \) and \( F_j(\gamma, \tilde{\Lambda}, \eta, \epsilon) = F_j(\gamma, \tilde{\Lambda}, -\eta, \epsilon) \) for \( j = 1, 2 \). Thus we complete the proof.

**Lemma 3.4.** Let \( \epsilon, \alpha, \epsilon_0 \) and \( \eta_0 \) be as in lemma 3.3. For any \( \epsilon \in (0, \epsilon_0) \) and \( \eta \in [-\epsilon_0, \epsilon_0] \), let \( \lambda(\eta) = \epsilon^2 \Lambda_\epsilon(\epsilon^{-2} \eta), \ u(z, \eta) = \psi(u_1(z, \eta), u_2(z, \eta)), \ v(\eta) = \psi(v_1(\eta), v_2(\eta)) \) and
\[
u_1(z, \eta) = (\lambda(-\eta) + c \partial_{\epsilon} B(\eta)) \int_{-\infty}^{\epsilon} U_{\epsilon}(-z_1, -\epsilon^{-2} \eta) \, dz_1
\]
\[
- (2q_{\epsilon} \partial_{\epsilon} + q'_\epsilon) \int_{-\infty}^{\epsilon} U_{\epsilon}(-z_1, -\epsilon^{-2} \eta) \, dz_1,
\]
\[
u_2(z, \eta) = B(\eta) \int_{-\infty}^{\epsilon} U_{\epsilon}(-z_1, -\epsilon^{-2} \eta) \, dz_1.
\]
Then
\[
\mathcal{L}(\eta)u(\cdot, \eta) = \lambda(\eta)u(\cdot, \eta), \quad \mathcal{L}(\eta)^*v(\cdot, \eta) = \lambda(-\eta)v(\cdot, \eta), \quad (3.35)
\]
\[
\tilde{\mathcal{L}}(\eta) = \lambda(-\eta), \quad u(z, \eta) = u(z, -\eta), \quad v(\eta, \eta) = v(\eta, -\eta), \quad (3.36)
\]
\[
\langle u(x, \eta), v(x, -\eta) \rangle = 0 \quad \text{for} \ \eta \in [-\epsilon_0, \epsilon_0] \setminus \{0\}. \quad (3.37)
\]

Moreover, for any \( k \in \mathbb{N} \), the mappings \([-\epsilon_0, \epsilon_0] \ni \eta \mapsto u(\epsilon^{-1}, \eta) \in H^{k}_{\alpha}(\mathbb{R}) \times H^{k-1}_{\alpha}(\mathbb{R}) \) and \([-\epsilon_0, \epsilon_0] \ni \eta \mapsto v(\epsilon^{-1}, \eta) \in H^{k}_{\alpha}(\mathbb{R}) \times H^{k-1}_{\alpha}(\mathbb{R}) \) are smooth.

**Proof.** By (3.10), (3.11) and the definition of \( U_\epsilon(\eta) \), we see that \( u(z, \eta) \) is a solution of (3.9) with \( \lambda = \lambda(\eta) \). The mappings \( \eta \mapsto u(\epsilon^{-1}, \eta) \) and \( v(\epsilon^{-1}, \eta) \) are smooth thanks to the smoothness of \( U_\epsilon(\eta) \) and (3.36) follows from (3.26).
Suppose $\mathcal{L}(\eta)^* \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \lambda(\eta) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ and $\tilde{v}_2 = B(\eta)^{-1} v_2$. Then

$$v_1 = (\lambda(\eta) + c \partial_z) B(\eta) \tilde{v}_2 + v_{2,\epsilon}(\eta)^* \tilde{v}_2,$$

(3.38)

$$\{ A(\eta)(\partial_z^2 - \eta^2) - (\lambda(\eta) + c \partial_z)^2 B(\eta) \} \tilde{v}_2 = \{ v_{1,\epsilon}(\eta)^* + (\lambda(\eta) + c \partial_z) v_{2,\epsilon}(\eta)^* \} \tilde{v}_2 = 0.$$

(3.39)

Formally, we have $v_{2,\epsilon}(\eta)^* = -v_{2,\epsilon}(\eta)$ and $v_{1,\epsilon}(\eta)^* + c \partial_z v_{2,\epsilon}(\eta)^* = v_{1,\epsilon}(\eta) - c v_{2,\epsilon}(\eta) \partial_z$. Using the change of variable $z \mapsto -z$ and the fact that $q_\alpha$ is an even function, we see that $\tilde{v}_2(-z)$ satisfies (3.10) with $\lambda = \lambda(-\eta)$ and that

$$\tilde{v}_2(z, \eta) = \int_{-\infty}^{z} U_\epsilon(-z_1, -\epsilon^2 \eta) \, dz_1$$

is a solution of (3.39). Thus we prove $\mathcal{L}(\eta)^* v(\cdot, \eta) = \lambda(-\eta) v(\cdot, \eta)$. We have (3.37) from (3.35) since $\lambda(\eta) \neq \lambda(\eta)$ for $\eta \in [-\epsilon^2 \eta_0, \epsilon^2 \eta_0] \setminus \{0\}$. Thus we complete the proof.

Let

$$g(z, \eta) = \frac{\sqrt{3}}{2} \left( 1 + i \frac{\Re \langle u(\cdot, \eta), v(\cdot, \eta) \rangle}{\Im \langle u(\cdot, \eta), v(\cdot, \eta) \rangle} \right) \begin{pmatrix} u_1(z, \eta) \\ u_2(z, \eta) \end{pmatrix},$$

$$g^*(z, \eta) = -\frac{i \epsilon_0}{4} \begin{pmatrix} v_1(z, \eta) \\ v_2(z, \eta) \end{pmatrix}.$$

By (3.36) and (3.37),

$$g(z, \eta) = g(z, -\eta), \quad g^*(z, \eta) = g^*(z, -\eta),$$

(3.40)

$$\langle g(\cdot, \eta), g^*(\cdot, -\eta) \rangle = 0 \quad \text{and} \quad \Re \langle g(\cdot, \eta), g^*(\cdot, \eta) \rangle = 0 \quad \text{for} \ \eta \in [-\epsilon^2 \eta_0, \epsilon^2 \eta_0].$$

(3.41)

To resolve the degeneracy of the subspace $\text{span}\{g(\cdot, \eta), g^*(\cdot, \eta)\}$ at $\eta = 0$, we introduce

$$g_1(z, \eta) = \frac{1}{2} \{ g(z, \eta) + g(z, -\eta) \}, \quad g_2(z, \eta) = \frac{1}{2i \kappa(\eta)} \{ g(z, \eta) - g(z, -\eta) \},$$

(3.42)

$$g^*_1(z, \eta) = \frac{i}{\kappa(\eta)} \{ g^*(z, \eta) - g^*(z, -\eta) \}, \quad g^*_2(z, \eta) = \frac{1}{2} \{ g^*(z, \eta) + g^*(z, -\eta) \},$$

(3.43)

where $\kappa(\eta) = 1/2 \Im \langle g(\cdot, \eta), g^*(\cdot, \eta) \rangle$. By (3.40) and (3.41), we have

$$\langle g_i(\cdot, \eta), g^*_j(\cdot, \eta) \rangle = \delta_{ij} \quad \text{for} \ i, j = 1, 2.$$

(3.44)

The profiles of $g_1(z, \eta)$ and $g^*_1(z, \eta)$ for small line solitary waves are as follows.

**Corollary 3.5.** Let $c, \alpha, \epsilon_0$ and $\eta_0$ be as in lemma 3.3. For every $k \geq 0$, there exists a positive constant $C$ such that for $\eta \in [-\epsilon^2 \eta_0, \epsilon^2 \eta_0]$ and $\epsilon \in (0, \epsilon_0]$

$$\left\| \begin{pmatrix} 1 & 0 \\ 0 & e^{-1} \end{pmatrix} \begin{pmatrix} g_1(\epsilon^{-1} \cdot, \epsilon^2 \eta) - \frac{\sqrt{3}}{2} \begin{pmatrix} \theta_c \\ -\epsilon \theta_c \end{pmatrix} \end{pmatrix} \right\|_{H^k_\alpha(R) \times H^{k-1}_\alpha(R)} \leq C(\epsilon^2 + \eta^2),$$

(3.45)
\[ \left\| \begin{pmatrix} 1 & 0 \\ 0 & \epsilon^{-1} \end{pmatrix} \right\| g_2(\epsilon^{-1}, \epsilon^2 \eta) - \frac{1}{2} \left( \epsilon^{\theta_{1,\epsilon}} + 2 \epsilon^{\theta_{0,\epsilon}} \right) \right\|_{H^1_0(\mathbb{R}) \times H^{-1}_0(\mathbb{R})} \leq C(\epsilon^2 + \eta^2). \] (3.46)

\[ \left\| \begin{pmatrix} \epsilon^{-1} & 0 \\ 0 & 1 \end{pmatrix} \right\| g_1^*(\epsilon^{-1}, \epsilon^2 \eta) - \frac{\epsilon_0}{4 \sqrt{3}}\left( \epsilon^{\theta_{1,\epsilon}} \right) \right\|_{H^1_0(\mathbb{R}) \times H^{-1}_0(\mathbb{R})} \leq C(\epsilon^2 + \eta^2). \] (3.47)

\[ \left\| \begin{pmatrix} \epsilon^{-1} & 0 \\ 0 & 1 \end{pmatrix} \right\| g_2(\epsilon^{-1}, \epsilon^2 \eta) - \frac{\epsilon_0}{4} \left( \epsilon^{\theta_{0,\epsilon}} \right) \right\|_{H^1_0(\mathbb{R}) \times H^{-1}_0(\mathbb{R})} \leq C(\epsilon^2 + \eta^2). \] (3.48)

**Proof.** First, we expand \( \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle \) into powers of \( \eta \) up to the second order. By the definitions of \( u(z, \eta) \) and \( v(z, \eta) \),

\[ \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle = 2\lambda(\epsilon^2 \eta) \langle u(\cdot, \epsilon^2 \eta), v_2(\cdot, \epsilon^2 \eta) \rangle - 2\epsilon \langle \partial_\theta u_1(\cdot, \epsilon^2 \eta), v_2(\cdot, \epsilon^2 \eta) \rangle \]

\[ - \left\langle u_1(\cdot, \epsilon^2 \eta), 2\epsilon q_\epsilon U_\epsilon(-\epsilon, -\eta) + q_\epsilon^2 \int_{-\infty}^{\epsilon} U_\epsilon(-z_1, -\eta) \right\rangle \right\rangle. \]

By (3.27) and (3.34),

\[ u_1(\epsilon^{-1}z, \epsilon^2 \eta) = \theta_\epsilon + \{ i\eta \Lambda_{1,\epsilon} + \eta^2 (\gamma_0 + \Lambda_{2,\epsilon}) \} \int_{z}^{\infty} \theta_{1,\epsilon} - \eta^2 \int_{z}^{\infty} U_0(z_1) \right\rangle d \in \right H^1_0(\mathbb{R}), \]

and

\[ v_2(\epsilon^{-1}z, \epsilon^2 \eta) = B_\epsilon(\eta) \left[ -\theta_\epsilon + \{ i\eta \Lambda_{1,\epsilon} + \eta^2 (\gamma_0 + \Lambda_{2,\epsilon}) \} \int_{-\infty}^{\epsilon} \right\rangle d \in \right H^1_0(\mathbb{R}). \]

Using the fact that \( \theta_\epsilon \) and \( \theta_{1,\epsilon} \) are even, we have

\[ \epsilon \langle u_1(\cdot, \epsilon^2 \eta), v_2(\cdot, \epsilon^2 \eta) \rangle = -\langle B_\epsilon(0) \theta_\epsilon, \theta_\epsilon \rangle - i\eta \Lambda_{1,\epsilon} \left( \int_{-\infty}^{\epsilon} B_\epsilon(0) \theta_\epsilon \right) \right\rangle + O(\eta^2). \]

\[ \langle \partial_\theta u_1(\cdot, \epsilon^2 \eta), v_2(\cdot, \epsilon^2 \eta) \rangle = \left\{ 2i\eta \Lambda_{1,\epsilon} - 2\eta^2 (\gamma_0 + \Lambda_{2,\epsilon}) \right\} \langle B_\epsilon(0) \theta_\epsilon, \theta_{1,\epsilon} \rangle \]

\[ - \eta^2 \left\{ (\Lambda_{1,\epsilon})^2 B_\epsilon(0) \theta_{1,\epsilon} + \int_{-\infty}^{\epsilon} \theta_{1,\epsilon} + 2 B_\epsilon \theta_\epsilon \right\} + O(\eta^2), \]

\[ \left\langle u_1(\cdot, \epsilon^2 \eta), 2\epsilon q_\epsilon U_\epsilon(-\epsilon, -\eta) + q_\epsilon^2 \int_{-\infty}^{\epsilon} U_\epsilon(-z_1, -\eta) \right\rangle \right\rangle = -3\epsilon^2 \eta \Lambda_{1,\epsilon} \left\{ (\theta_{1,\epsilon})^2 \theta_\epsilon + O(\eta^2) \right\} \right\rangle. \]

In the last line, we use (2.10). Since \( \tilde{U}(\eta) \perp \theta_\epsilon \) and \( \| B_\epsilon(0) \theta_\epsilon - \theta_\epsilon \|_{L^2_{-\infty}} = O(\epsilon^2) \), we have \( \langle U_0, B_\epsilon(0) \theta_\epsilon \rangle = O(\epsilon^2) \). Combining the above with (3.33) and the fact that \( \lambda(\epsilon^2 \eta) = \epsilon^3 \left( i\eta \Lambda_{1,\epsilon} + O(\eta^2) \right) \), we have
Nonlinearity 30 (2017) 3419
T Mizumachi and Y Shimabukuro

\[ \Im(u(\cdot, e^2 \eta), v(\cdot, e^2 \eta)) = -2c \Im(\partial_x u_1(\cdot, e^2 \eta), v_2(\cdot, e^2 \eta)) + O(e^2 \eta + \eta^3) \]
\[ = -4\eta \lambda_1^0 (B_x(0) \theta_x \theta_1) + O(e^2 \eta + \eta^3) \]
\[ = \left\{ -\frac{16}{\sqrt{3} \alpha_0} + O(e^2) \right\} \eta + O(\eta^3), \]
\[ \Re(u(\cdot, e^2 \eta), v(\cdot, e^2 \eta)) = -2c \Re(\partial_x u_1(\cdot, e^2 \eta), v_2(\cdot, e^2 \eta)) + O(e^2 \eta^2) \]
\[ = 2\eta^2 \left\{ (\lambda_1^0)^2 \langle \theta_1 \cdot, B_x(0) \int_{-\infty}^{\infty} \theta_1 \rangle + 2(\gamma_0 + \lambda_1^0) \langle B_x(0) \theta_x \theta_1 \rangle + O(\eta^2) \right\} \]
\[ \leq \frac{32}{3\alpha_0} \eta^2 + O(\eta^2 + \eta^4). \]

Note that \( \Re(u(\cdot, e^2 \eta), v(\cdot, e^2 \eta)) \) is even in \( \eta \) thanks to (3.36). Thus we have
\[ \frac{\Re(u(\cdot, e^2 \eta), v(\cdot, e^2 \eta))}{\Im(u(\cdot, e^2 \eta), v(\cdot, e^2 \eta))} = -\frac{2\eta}{\sqrt{3} \alpha_0} + O(e^2 \eta), \]
\[ \langle g(\cdot, e^2 \eta), g^*(\cdot, e^2 \eta) \rangle = -\frac{\sqrt{3} \alpha_0}{8} \Im(u(\cdot, e^2 \eta), v(\cdot, e^2 \eta)) \left\{ 1 + \left( \frac{\Re(u(\cdot, e^2 \eta), v(\cdot, e^2 \eta))}{\Im(u(\cdot, e^2 \eta), v(\cdot, e^2 \eta))} \right)^2 \right\} \]
\[ = 2\eta \{1 + O(\eta^2 + \eta^4)\}, \]
and (3.45)–(3.48) follow immediately from the definitions of \( g_k \) and \( g_k^* (k = 1, 2) \).

\[ \square \]

**Remark 3.1.** In view of (3.40), we have
\[ \mathcal{L}(\eta) g_1(\cdot, \eta) = \Re \lambda(\eta) g_1(\cdot, \eta) - \kappa(\eta) \Im \lambda(\eta) g_2(\cdot, \eta), \]
\[ \mathcal{L}(\eta) g_2(\cdot, \eta) = \frac{3 \lambda(\eta)}{\kappa(\eta)} g_1(\cdot, \eta) + \Re \lambda(\eta) g_2(\cdot, \eta), \]
\[ \mathcal{L}(\eta) g_1^*(\cdot, \eta) = \Re \lambda(\eta) g_1^*(\cdot, \eta) + \frac{3 \lambda(\eta)}{\kappa(\eta)} g_2^*(\cdot, \eta), \]
\[ \mathcal{L}(\eta) g_2^*(\cdot, \eta) = -\kappa(\eta) \Im \lambda(\eta) g_1^*(\cdot, \eta) + \Re \lambda(\eta) g_2^*(\cdot, \eta). \]

Now we define a spectral projection to resonant modes. Let \( \mathcal{P}(\eta_0) \) be an operator defined by
\[ \mathcal{P}(\eta_0) f(z, y) = \frac{1}{\sqrt{2\pi}} \sum_{k=1, 2} \int_{-\eta_0}^{\eta_0} c_k(\eta) g_k(z, \eta) e^{i\eta y} d\eta, \quad (3.49) \]
\[ c_k(\eta) = \int_{\mathbb{R}} (\mathcal{F}_k f)(z, \eta) : g_k^*(z, \eta) dz \quad (3.50) \]
for \( f \in X \) and let \( \mathcal{Q}(\eta_0) = I - \mathcal{P}(\eta_0) \). Using corollary 3.5, we can prove that \( \mathcal{P}(\eta_0) \) and \( \mathcal{Q}(\eta_0) \) are spectral projections associated with \( \mathcal{L} \) in exactly the same way with [29, lemma 3.1].

**Lemma 3.6.** Let \( c = \sqrt{1 + e^2} \) and \( \alpha \in (0, \alpha_0 e/2) \). Then there exist positive constants \( \epsilon_0 \) and \( \eta_1 \) such that for any \( \epsilon \in (0, \epsilon_0) \) and \( \eta_0 \in [0, \eta_1] \),

\[ \text{..} \]
(1) $\|P(c^2\eta_0)f\|_X \leq C\|f\|_X$ for any $f \in X$, where $C$ is a positive constant depending only on $\alpha$, $\epsilon$ and $\eta_0$.

(2) $LP(c^2\eta_0)f = P(c^2\eta_0)Lf$ for any $f \in D(L)$.

(3) $P(c^2\eta_0)^2 = P(c^2\eta_0)$ on $X$.

(4) $e^{tL}P(c^2\eta_0) = P(c^2\eta_0)e^{tL}$ on $X$.

4. Properties of the free operator $L_0$

In this section, we investigate properties of the linearized operator $L_0$ in $X$. To begin with, we investigate the spectrum of $L_0$.

**Lemma 4.1.** Let $\alpha'_0 = \sqrt{\frac{\alpha_0}{\alpha_0 - \alpha}}$. Suppose $0 < a < b$, $c > 1$ and $\alpha \in (0, \alpha'_0)$. Then

$$\sigma(L_0(D)) \subset \left\{ \lambda \in \mathbb{C} \mid \Re \lambda < -\frac{a}{2}(c-1) \right\}.$$ 

By (3.5), the operator $\begin{pmatrix} m_{11}(D) & m_{12}(D) \\ m_{21}(D) & m_{22}(D) \end{pmatrix}$ is bounded on $X$ if and only if

$$\sum_{i,j=1,2} (1 + \xi^2 + \eta^2)^{(j-i)/2} |m_{ij}(\xi + i\alpha, \eta)| < \infty. \quad (4.1)$$

The symbol of the operator $L_0$ is

$$L_0(\xi, \eta) = \begin{pmatrix} ic\xi & 1 \\ -(\xi^2 + \eta^2)S(\xi, \eta)^2 & ic\xi \end{pmatrix}, \quad S(\xi, \eta) = \sqrt{\frac{1 + a(\xi^2 + \eta^2)}{1 + b(\xi^2 + \eta^2)}},$$

and we observe $L_0(\xi, \eta)P(\xi, \eta) = P(\xi, \eta) \operatorname{diag}(\lambda_+(\xi, \eta), \lambda_-(\xi, \eta))$, where

$$\lambda_{\pm}(\xi, \eta) = \pm \mathcal{S}(\xi, \eta) \sqrt{\frac{1 + b(\xi^2 + \eta^2)}{1 + a(\xi^2 + \eta^2)}}, \mu(\xi, \eta) = \xi \sqrt{1 + \xi^{-2} \eta^2}.$$ 

$$P(\xi, \eta) = \begin{pmatrix} -\mathcal{S}(\xi, \eta)^{-1} & \mathcal{S}(\xi, \eta)^{-1} \\ \mathcal{S}(\xi, \eta) & \mathcal{S}(\xi, \eta) \end{pmatrix}. \quad (4.2)$$

To investigate properties of the resolvent operator $(\lambda - L_0)^{-1}$, we need the following.

**Claim 4.2.** Suppose $0 < a < b$ and $0 < \alpha < \alpha_c$. Then

$$0 \leq \Re \mu(\xi + i\alpha, \eta) \leq \Im \mu(\xi + i\alpha, 0) = \alpha \quad \text{for} \ \xi \in \mathbb{R}, \quad (4.3)$$

$$\xi \Re \mu(\xi + i\alpha, \eta) > 0, \quad \Im \mu(\xi + i\alpha, \eta) > 0 \quad \text{for} \ \xi \neq 0. \quad (4.4)$$

**Claim 4.3.** Suppose $0 < a < b$ and $0 < \alpha < \alpha_c$. Then

$$\Re S(\xi + i\alpha, \eta) > 0 \quad \text{for} \ (\xi, \eta) \in \mathbb{R}^2, \quad (4.5)$$

$$\xi \Im S(\xi + i\alpha, \eta) < 0 \quad \text{for} \ \xi \in \mathbb{R} \setminus \{0\} \text{ and } \eta \in \mathbb{R}, \quad (4.6)$$

$$\sqrt{\frac{a}{b}} < |S(\xi + i\alpha, \eta)| < S(\alpha, 0) < c \quad \text{for} \ (\xi, \eta) \in \mathbb{R}^2 \setminus \{(0, 0)\}, \quad (4.7)$$

$$|S(\xi + i\alpha, \eta)| < 1 - \frac{b - a}{2} \frac{\xi^2 + \eta^2 - \alpha^2}{1 + b(\xi^2 + \eta^2 - \alpha^2)} \quad \text{for} \ (\xi, \eta) \in \mathbb{R}^2. \quad (4.8)$$

3437
Claim 4.4. Suppose $0 < a < b$, $c > 1$ and $\alpha \in (0, \alpha_c')$. Then for $(\xi, \eta) \in \mathbb{R}^2$,
\[
-2\alpha \xi < \Re\lambda_+ (\xi + i\alpha, \eta) \leq - \alpha \xi,
\]
(4.9)
\[
\Re\lambda_- (\xi + i\alpha, \eta) \leq - \alpha \left\{ c - 1 + \frac{b - a}{2} \frac{\xi^2 + \eta^2 - \alpha^2}{1 + b(\xi^2 + \eta^2 - \alpha^2)} \right\},
\]
(4.10)
\[
-\alpha \xi \leq \Re\lambda_- (\xi + i\alpha, \eta) \leq - \frac{\alpha}{2} (c - 1).
\]
(4.11)

Proof of claim 4.2. Since
\[
\mu (\xi + i\alpha, \eta) = (\xi + i\alpha) \sqrt{1 + \frac{\eta^2}{(\xi + i\alpha)^2}} = \text{sgn}(\xi) \sqrt{(\xi + i\alpha)^2 + \eta^2},
\]
we have (4.4).

Since $\exists \mu (i\alpha, \eta) = \sqrt{\alpha^2 - \eta^2}$ for $\eta \in [-\alpha, \alpha]$ and $\exists \mu (i\alpha, \eta) = 0$ for $\eta \in \mathbb{R}$ satisfying $|\eta| > \alpha$, we have (4.3) for $\xi = 0$. Let $s = \eta^2$, $\gamma_1 (\xi, s) = \Re\mu (\xi + i\alpha, \eta)$ and $\gamma_2 (\xi, s) = \Im\mu (\xi + i\alpha, \eta)$. To prove (4.3), it suffices to show that $\gamma_2 (\xi, s)$ is monotone decreasing in $s$ when $\xi \neq 0$. Differentiating
\[
\gamma_1^2 - \gamma_2^2 = \xi^2 - \alpha^2 + s \quad \text{and} \quad \gamma_1 \gamma_2 = \alpha \xi
\]
(4.12)
with respect to $s$, we have
\[
\partial_s \gamma_2 = - \frac{\gamma_2}{2(\gamma_1^2 + \gamma_2^2)}.
\]
(4.13)
Combining (4.13) with (4.4), we have $\partial_s \gamma_2 < 0$. Thus we prove (4.3). $\square$

Proof of claim 4.3. We observe
\[
S (\xi + i\alpha, \eta)^2 = \frac{1 + a(\xi^2 + \eta^2 - \alpha^2) + 2ia\alpha \xi}{1 + b(\xi^2 + \eta^2 - \alpha^2) + 2ib\alpha \xi} \frac{1}{1 - b\alpha^2 + b(\xi^2 + \eta^2) + 2ib\alpha \xi}.
\]
(4.14)
Since $0 < a < b$ and $1 - b\alpha^2 > 0$ for $\alpha \in (0, \alpha_c)$, it follows from (4.14) that
\[
|S (\xi + i\alpha, \eta)|^2 \geq \Re S (\xi + i\alpha, \eta)^2 > \frac{a}{b} > 0 \quad \text{for} \quad (\xi, \eta) \in \mathbb{R}^2,
\]
(4.15)
\[
\xi \Im S (\xi + i\alpha, \eta)^2 < 0 \quad \text{for} \quad \xi \in \mathbb{R} \setminus \{0\} \quad \text{and} \quad \eta \in \mathbb{R}.
\]
(4.16)
By (4.15), we have the first part of (4.7) and (4.5) because $\Re S (i\alpha, 0) = \sqrt{1 - a\alpha^2} > 0$ and $S (\xi + i\alpha, \eta)$ is continuous in $(\xi, \eta) \in \mathbb{R}^2$. Equation (4.6) follows from (4.5) and (4.16).
We have $c > S(i\alpha, 0)$ for $\alpha \in (0, \alpha_c)$. By (4.14) and the triangle inequality,

$$|S(\xi + i\alpha, \eta)|^2 \leq a + \left(1 - \frac{a}{b}\right) \frac{1}{1 + b(\xi^2 + \eta^2 - \alpha^2)} \leq \frac{1 + a(\xi^2 + \eta^2 - \alpha^2)}{1 + b(\xi^2 + \eta^2 - \alpha^2)} \leq \frac{1 - \alpha a^2}{1 - \alpha b a^2} = S(i\alpha, 0)^2,$$

and $|S(\xi + i\alpha, \eta)| = S(i\alpha, 0)$ if and only if $\xi = \eta = 0$. Thus we have the second part of (4.7). Furthermore, we have (4.8) from (4.17) since $|S| \leq (|S|^2 + 1)/2$. Thus we complete the proof.

Using claim 4.3, we will estimate the upper and lower bounds of $\lambda_{\pm}(\xi + i\alpha, \eta)$.

**Proof of claim 4.4.** First, we will show

$$\Im(\mu(\xi + i\alpha, \eta)S(\xi + i\alpha, \eta)) \geq 0 \quad \text{for} \quad (\xi, \eta) \in \mathbb{R}^2. \tag{4.18}$$

We see that $\mu(\xi + i\alpha, \eta)S(\xi + i\alpha, \eta)$ is a real number if and only if $\xi = 0$ and $|\eta| \geq \alpha$ since

$$\Im\{\mu(\xi + i\alpha, \eta)S(\xi + i\alpha, \eta)\}^2 = 2\alpha \xi \left[a \frac{b}{b} + \left(1 - \frac{a}{b}\right) \frac{1}{1 + b(\xi + i\alpha)^2 + b\eta^2}\right]$$

and

$$\mu(i\alpha, \eta)^2 S(i\alpha, \eta)^2 = (\eta^2 - \alpha^2) \frac{1 - \alpha b a^2 + \alpha \eta a}{1 - \alpha b a^2 + \beta \eta^2}.$$

Thanks to the continuity of $\Im(\mu S)(\xi + i\alpha, \eta)$ on $\mathbb{R}^2$ and the fact that $\Im(\mu S)(i\alpha, 0) > 0$, we have (4.18).

By (4.18) and the definition of $\lambda_{\pm}$,

$$\Re\lambda_+(\xi + i\alpha, \eta) \leq -\alpha c, \quad \Re\lambda_-(\xi + i\alpha, \eta) \geq -\alpha c.$$

Since $0 < \alpha < \alpha' < \alpha_c$, it follows from (4.3), (4.4),(4.6) and (4.7) that

$$\Re\lambda_+(\xi + i\alpha, \eta) \geq -\alpha c - \Im\mu(\xi + i\alpha, \eta) \Re S(\xi + i\alpha, \eta) > -2\alpha c,$$

$$\Re\lambda_-(\xi + i\alpha, \eta) \leq -\alpha c + \Im\mu(\xi + i\alpha, \eta) \Re S(\xi + i\alpha, \eta). \tag{4.19}$$

Combining (4.19) with (4.3) and (4.8), we have (4.10). Since $x/(1 + bx)$ is increasing on $[-\alpha^2, \infty)$ and $c > S(i\alpha, 0)^2$ for $\alpha \in (0, \alpha'_c)$,

$$\Re\lambda_-(\xi + i\alpha, \eta) \leq -\alpha \left\{c - 1 - \frac{b - a}{2} - \frac{\alpha^2}{1 - b \alpha^2}\right\}$$

$$= -\alpha \left(c - 1 - \frac{1}{2} \frac{\alpha^2}{\alpha} S(i\alpha)^2\right) < -\frac{\alpha}{2} (c - 1).$$

Thus we complete the proof. \qed
Now we are in position to prove lemma 4.1.

**Proof of lemma 4.1.** If \( \lambda \neq \lambda_{\pm}(\xi, \eta) \),

\[
(\lambda - \mathcal{L}_0(\xi, \eta))^{-1} = \frac{1}{(\lambda - \lambda_{+}(\xi, \eta))(\lambda - \lambda_{-}(\xi, \eta))} \left( \frac{\lambda - ic\xi}{-(\mu S)^2(\xi, \eta)} - \frac{1}{\lambda - ic\xi} \right). \tag{4.20}
\]

Since \(2ic\xi = \lambda_{+} + \lambda_{-} \) and \(2\mu S = \lambda_{+} - \lambda_{-}\),

\[
\frac{2(\lambda - ic\xi)}{(\lambda - \lambda_{+}(\xi, \eta))(\lambda - \lambda_{-}(\xi, \eta))} = \frac{1}{\lambda - \lambda_{+}(\xi, \eta)} + \frac{1}{\lambda - \lambda_{-}(\xi, \eta)},
\]

\[
\frac{2\mu S(\xi, \eta)S(\xi, \eta)}{(\lambda - \lambda_{+}(\xi, \eta))(\lambda - \lambda_{-}(\xi, \eta))} = \frac{1}{\lambda - \lambda_{+}(\xi, \eta)} - \frac{1}{\lambda - \lambda_{-}(\xi, \eta)}. \tag{4.21}
\]

In view of (4.1), (4.7), (4.20) and (4.21), the operator \( \lambda - \mathcal{L}_0 \) has a bounded inverse on \( X \) if

\[
\sup_{(\xi, \eta) \in \mathbb{R}^2} |\lambda - \lambda_{\pm}(\xi + i\alpha, \eta)|^{-1} < \infty. \tag{4.22}
\]

Thus we have

\[
\sigma(\mathcal{L}_0(D)) = \{\lambda_{\pm}(\xi + i\alpha, \eta) \mid (\xi, \eta) \in \mathbb{R}^2\}, \tag{4.23}
\]

and lemma 4.1 follows immediately from (4.9), (4.11) and (4.23).

To prove the boundedness of \( (\lambda - \mathcal{L})^{-1} \) restricted on \( \mathcal{Q}(\eta_0)X \) for a small \( \eta_0 > 0 \), the estimate (4.4) in claim 4.4 is insufficient. To have a better estimate on \( (\lambda - \lambda_{-}(D))^{-1} \), we will estimate \( \lambda_{-}(\xi, \eta) \) in the high frequency regime, the middle frequency regime and in the low frequency regime, separately. Let \( \delta = \epsilon^{1/20}, K = \delta^{-3} \) and

\[
A_{\text{high}} = \{\xi, \eta\in \mathbb{R}^2 \mid |\xi| \geq \delta \text{ or } |\eta| \geq \delta|\xi + i\alpha|\},
\]

\[
A_{\xi, m} = \{\xi, \eta \in \mathbb{R}^2 \mid K\xi \leq |\xi| \leq \delta, |\eta| \leq \delta|\xi + i\alpha|\},
\]

\[
A_{\eta, m} = \{\xi, \eta \in \mathbb{R}^2 \mid |\xi| \leq K\epsilon, K\epsilon|\xi + i\alpha| \leq |\eta| \leq \delta|\xi + i\alpha|\},
\]

\[
A_{\text{low}} = \{\xi, \eta \in \mathbb{R}^2 \mid |\xi| \leq K\epsilon, |\eta| \leq K\epsilon|\xi + i\alpha|\},
\]

\[
\tilde{A}_{\text{low}} = \{\xi, \eta \in \mathbb{R}^2 \mid |\xi| \leq K\epsilon, |\eta| \leq K(K + \hat{\alpha})\epsilon^2\}.
\]

Obviously, we have \( \mathbb{R}^2 = A_{\text{high}} \cup A_{\xi, m} \cup A_{\eta, m} \cup A_{\text{low}} \subset \tilde{A}_{\text{low}}. \) Suppose \( c = \sqrt{1 + \epsilon^2} \) and that \( \epsilon \) is a small positive number. In the low frequency regime \( A_{\text{low}}, \)

\[
i\mu(D) \sim \epsilon \partial_{\hat{z}} + \frac{c^3}{2} \partial_{\hat{z}}^{-1} \partial_{\hat{z}}^0, \quad S(D) \sim I + \frac{b-a}{2} \partial_{\hat{z}}^2, \quad \lambda_{-}(D) \sim c^3 \mathcal{L}_{KP, 0}(D_1, D_2), \quad \lambda_{+}(D) \sim 2\epsilon \partial_{\hat{z}},
\]

where \( \hat{z} = \epsilon z, \hat{y} = \epsilon^2 y \) and \( \mathcal{L}_{KP, 0}(D_1, D_2) = -\frac{1}{2} \{(b-a)\partial_{\hat{z}}^3 - \partial_{\hat{z}} + \partial_{\hat{z}}^{-1} \partial_{\hat{z}}^0 \}. \) More precisely, we have the following.

**Lemma 4.5.** Let \( c = \sqrt{1 + \epsilon^2}, \quad \alpha = \epsilon \hat{\alpha}, \) and \( \hat{\alpha} = 1/\sqrt{bc^2 - a}. \) Let \( \xi = \epsilon \hat{\xi}, \eta = \epsilon^2 \hat{\eta}. \) Suppose \( \hat{\alpha} \in (0, \hat{\alpha}_c). \) Then there exist positive constants \( c_0 \) and \( C \) such that for \( \epsilon \in (0, c_0), \)

\[
\lambda_{-}(\xi + i\alpha, \eta) = \epsilon^3 \left( \frac{i\hat{z}}{2} + \hat{\alpha} \right) \left\{ 1 + (b-a)(\hat{z} + i\hat{\alpha})^2 - \frac{\hat{\eta}^2}{(\hat{\xi} + i\hat{\alpha})^2} + O(K^4 \epsilon^2) \right\}. \tag{4.24}
\]
for \((\xi, \eta) \in A_{\text{low}}\),
\[
\lambda_-(\xi + i\alpha, \eta) = \frac{i\varepsilon^3}{2} (\xi + i\hat{\alpha}) \left\{ 1 + (b - a)(\xi + i\hat{\alpha})^2 - \frac{\hat{\eta}^2}{(\xi + i\hat{\alpha})^2} + O(K^8\varepsilon^4) \right\}
\]  \quad (4.25)

for \((\xi, \eta) \in \tilde{A}_{\text{low}}\),
\[
\Re \lambda_-(\xi + i\alpha, \eta) \leq -\frac{\tilde{\alpha}\varepsilon^3}{4} \left\{ 1 + (b - a)\xi^2 \right\} \quad \text{for} \quad (\xi, \eta) \in A_{\xi,m},
\]  \quad (4.26)
\[
\Re \lambda_-(\xi + i\alpha, \eta) \leq -\frac{\alpha\varepsilon^3}{4} \frac{\hat{\eta}^2}{\xi^2 + \hat{\alpha}^2} \quad \text{for} \quad (\xi, \eta) \in A_{\eta,m},
\]  \quad (4.27)
\[
\Re \lambda_-(\xi + i\alpha, \eta) \leq -C\delta^2\varepsilon \quad \text{for} \quad (\xi, \eta) \in A_{\text{high}}.
\]  \quad (4.28)

**Proof of lemma 4.5.** If \((\xi, \eta) \in A_{\text{low}}\), then
\[
|\hat{\xi}| \leq K, \quad |\hat{\eta}| / |\xi + i\hat{\alpha}| \leq K,
\]
\[
\mu(\xi + i\alpha, \eta) = \varepsilon (\xi + i\hat{\alpha}) \sqrt{1 + \frac{c^2\hat{\eta}^2}{(\xi + i\hat{\alpha})^2}}
\]
\[
= \varepsilon (\xi + i\hat{\alpha}) \left\{ 1 + \frac{c^2}{2} \frac{\hat{\eta}^2}{(\xi + i\hat{\alpha})^2} + O(K^4\varepsilon^4) \right\},
\]  \quad (4.30)
\[
S(\xi + i\alpha, \eta) = \sqrt{1 + \frac{(a - b)}{b} \left\{ (\xi + i\alpha)^2 + \eta^2 \right\}^2}
\]
\[
= 1 + \frac{a - b}{2} \varepsilon^2 (\xi + i\hat{\alpha})^2 + O(\varepsilon^4 K^4).
\]  \quad (4.31)

Combining (4.29)–(4.31) and the fact that \(c = 1 + \frac{c^2}{2} + O(\varepsilon^4)\), we have (4.24). If \((\xi, \eta) \in \tilde{A}_{\text{low}}\), then \(|\hat{\xi}| \leq K\) and \(|\hat{\eta}| / |\xi + i\hat{\alpha}| \leq K(K + \hat{\alpha}) / \hat{\alpha}\) and we can prove (4.25) in exactly the same way.

Suppose \((\xi, \eta) \in A_{\xi,m}\). Then \(\xi = O(\delta), \alpha / \xi = O(K^{-1})\) and \(\eta / \xi = O(\delta)\). By (4.10),
\[
\Re \lambda_-(\xi + i\alpha, \eta) \leq -\alpha \left\{ c - 1 + \frac{b - a}{2} \frac{\xi^2 + \eta^2 - \alpha^2}{1 + b(\xi^2 + \eta^2 - \alpha^2)} \right\}
\]
\[
= -\alpha \left\{ \frac{c^2}{2} + O(\varepsilon^4) + \frac{b - a}{2} (1 + O(\delta^2 + K^{-2})) \xi^2 \right\}.
\]  \quad (4.29)

Thus we have (4.26) provided \(c_0, \delta\) and \(K^{-1}\) are sufficiently small.

Let \((\xi, \eta) \in A_{\eta,m}\). By (4.3), (4.7) and (4.19),
\[
\Re \lambda_-(\xi + i\alpha, \eta) \leq -\alpha c + 3\mu(\xi + i\alpha, \eta) S(\xi + i\alpha, \eta)
\]
\[
\leq -c \left\{ \alpha - 3\mu(\xi + i\alpha, \eta) \right\}.
\]  \quad (4.32)
Since
\[
\mu(\xi + i\alpha, \eta) = (\xi + i\alpha) \left\{ 1 + \frac{\eta^2}{(\xi + i\alpha)^2} \right\} = \varepsilon(\xi + i\alpha^2) \left\{ 1 + \frac{\varepsilon^2\eta^2}{2(\xi + i\alpha)^2} (1 + O(\delta^2)) \right\},
\]
\[
\Im \mu(\xi + i\alpha, \eta) = \varepsilon - \frac{\varepsilon^3\alpha^2}{2(\xi + \alpha^2)} (1 + O(\delta^2)).
\]

By (4.32) and the above, we have (4.27) provided \(c_0, \delta, \lambda\) are sufficiently small.

Finally, we will prove (4.28). Suppose \((\xi, \eta) \in A_{\text{high}}\) and \(|\xi| \geq \delta\). Then there exists a positive constant \(C_1\) such that \(\xi^2 + \eta^2 - \alpha^2 \geq C_1\delta^2\) and it follows from (4.10) that
\[
\Re \lambda_- (\xi + i\alpha, \eta) \leq -\alpha \left\{ c - \frac{b - a}{2} \frac{C_1\delta^2}{1 + bC_1\delta^2} \right\} \lesssim -c\delta^2.
\]

Suppose \((\xi, \eta) \in A_{\text{high}}\) and \(|\eta||\xi + i\alpha|^{-1} \geq \delta\). By (4.3) and (4.13),
\[
\Im \mu(\xi + i\alpha, \eta) = \gamma_2 (\xi, s) \leq \gamma_2 (\delta^2 |\xi + i\alpha|^2) \quad \text{if } s = \eta^2 \geq \delta^2 |\xi + i\alpha|^2.
\]
(4.33)

If \(0 \leq s \leq \delta^2 |\xi + i\alpha|^2\),
\[
\gamma_1 + \gamma_2 = |(\xi + i\alpha)^2 + s| \leq (1 + \delta^2)|\xi + i\alpha|^2,
\]
and it follows from (4.13) that for a \(C > 0\),
\[
\gamma_2 (\xi, \delta^2 |\xi + i\alpha|^2) \leq \gamma_2 (\xi, 0) \exp (-\delta^2/2(1 + \delta^2)) \leq \alpha - C\delta^2.
\]
(4.34)

Substituting (4.33) and (4.34) into (4.32), we have (4.28). Thus we complete the proof.

Finally, we will estimate operator norms of \((\lambda - \lambda_\pm (D))^{-1}\) on \(L^2(\mathbb{R}^2)\) and its subspaces.

Let \(\rho_\pm\) be functions on \(\mathbb{R}\) such that \(\rho_\pm(\eta) + \hat{\rho}_\pm(\eta) = 1\) for \(\eta \in \mathbb{R}\) and
\[
\rho_\pm(\eta) = \begin{cases} 
1 & \text{if } |\eta| \leq K(K + \hat{\alpha})\varepsilon^2, \\
0 & \text{if } |\eta| \geq K(K + \hat{\alpha})\varepsilon^2.
\end{cases}
\]

Let \(\rho_\pm(\xi)\) be the characteristic function of \(\{ \xi \in \mathbb{C} \mid |\Re \xi| \leq K\epsilon \}\), \(\hat{\rho}_\pm(\xi) = 1 - \rho_\pm(\xi)\) and
\[
Y := \rho_\pm(D_z)L^2_\alpha(\mathbb{R}^2), \quad Y_{\text{low}} := \rho_\pm(D_z)Y, \quad Y_{\text{high}} := \hat{\rho}_\pm(D_z)Y.
\]

We remark that \(A_{\text{low}} = \text{supp} \hat{\rho}_\pm(\xi)\rho_\pm(\eta)\).

**Lemma 4.6.** Let \(c, \alpha, \lambda_\pm\) be as in lemma 4.5. Let \(\hat{\beta} \in (0, \frac{\hat{\alpha}}{2})\) and \(\lambda \in \Omega_{\epsilon} := \{ \lambda \in \mathbb{C} \mid |\Re \lambda| \geq \hat{\beta} \varepsilon^2 \}\). Then there exist positive constants \(C\) and \(c_0\) such that if \(\epsilon \in (0, c_0)\) and \(\lambda \in \Omega_{\epsilon}\),
\[
\| (\lambda - \lambda_+(D))^{-1} \|_{(L^2_\alpha)} \leq Ce^{-1},
\]
(4.35)
\[
\| (\lambda - \lambda_-(D))^{-1} \|_{(L^2_\alpha)} \leq Ce^{-3},
\]
(4.36)
\[
\| (\lambda - \lambda_+(D))^{-1} \|_{H^1(\Omega_{\text{high}})} \leq CK^{-2} \epsilon^{-3}, \quad (4.37)
\]

\[
\| B^{-1} \mu(D)(\lambda - \lambda_-(D))^{-1} \|_{H^1(\Omega_{\text{high}})} + \| B^{-1} \partial_h(\lambda - \lambda_-(D))^{-1} \|_{H^1(\Omega_{\text{high}})} \leq CK^{-1} \epsilon^{-2}, \quad (4.38)
\]

\[
\| B^{-1} \mu(D)(\lambda - \lambda_-(D))^{-1} \|_{H^1(\Omega_{\text{low}})} + \| B^{-1} \partial_h(\lambda - \lambda_-(D))^{-1} \|_{H^1(\Omega_{\text{low}})} \leq C \epsilon^{-2}. \quad (4.39)
\]

**Proof.** By (4.9) and (4.11),

\[
\inf_{\lambda \in \Omega_+}(\xi, \eta) \in \mathbb{R}^2 |\lambda - \lambda_+(\xi + i\alpha, \eta)| \geq \inf_{\lambda \in \Omega_+}(\xi, \eta) \in \mathbb{R}^2 \Re(\lambda - \lambda_+(\xi + i\alpha, \eta)) \geq C \epsilon. \quad (4.40)
\]

Hence it follows from (3.5) that

\[
\| (\lambda - \lambda_+(D))^{-1} \|_{L^2(\mathbb{R}^2)} = \sup_{(\xi, \eta) \in \mathbb{R}^2} \frac{1}{|\lambda - \lambda_+(\xi + i\alpha, \eta)|} \leq C \epsilon^{-1},
\]

\[
\| (\lambda - \lambda_-(D))^{-1} \|_{L^2(\mathbb{R}^2)} = \sup_{(\xi, \eta) \in \mathbb{R}^2} \frac{1}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \leq C \epsilon^{-3},
\]

where C is a positive constant that does not depend on \( \epsilon \in (0, \epsilon_0) \) and \( \lambda \in \Omega_+ \).

Next, we will show (4.37). Suppose \( f \in Y_{\text{high}} \). Then \( \text{supp}(\xi, \eta) \subset \tilde{A}_{\text{low}} \subset A_{\xi,m} \cup A_{\eta,m} \cup A_{\text{high}} \). By lemma 4.5,

\[
\inf_{\lambda \in \Omega_+, (\xi, \eta) \in \tilde{A}_{\text{low}} \cup A_{\xi,m} \cup A_{\text{high}}} |\lambda - \lambda_-(\xi + i\alpha, \eta)| \geq K^2 \epsilon^3. \quad (4.41)
\]

Hence it follows from (3.5) that

\[
\| (\lambda - \lambda_-(D))^{-1} f \|_{L^2(\mathbb{R}^2)} \leq \sup_{(\xi, \eta) \in A_{\text{high}}} \frac{1}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \left( \int_{\mathbb{R}^2} |f(\xi + i\alpha, \eta)|^2 \, d\xi \, d\eta \right)^{1/2} 
\leq K^{-1} \epsilon^{-3} \| f \|_{L^2(\mathbb{R}^2)}.
\]

Next, we will prove (4.38). By (4.28),

\[
\sup_{\lambda \in \Omega_+, (\xi, \eta) \in \tilde{A}_{\text{high}}} \frac{|\xi + i\alpha| + |\mu(\xi + i\alpha, \eta)|}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \leq \delta^{-2} \epsilon^{-1}, \quad (4.42)
\]

where \( B(\xi, \eta) = 1 + b(\xi^2 + \eta^2) \). By (4.26) and the definition of \( A_{\xi,m} \),

\[
\frac{|\xi + i\alpha| + |\mu(\xi + i\alpha, \eta)|}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \leq \frac{\sqrt{\xi^2 + \eta^2}}{\epsilon \xi^2} \leq \frac{1}{K \epsilon^2} \quad \text{for} \ (\xi, \eta) \in A_{\xi,m} \text{ and } \lambda \in \Omega_+ . \quad (4.43)
\]

By (4.27) and the fact that \( |\xi + i\alpha| + |\mu(\xi + i\alpha, \eta)| \leq 1 \epsilon \) for \( (\xi, \eta) \in A_{\eta,m} \),
\[
\frac{|\xi + \alpha| + |\mu(\xi + \alpha, \eta)|}{|\lambda - \lambda_-(\xi + \alpha, \eta)|} \lesssim K|\xi + \alpha|^2 \eta^{-2} \lesssim \frac{1}{K \epsilon^2} \quad \text{for } (\xi, \eta) \in A_{\eta,m} \text{ and } \lambda \in \Omega_\epsilon.
\]

Combining (4.42)–(4.44) with
\[
|B(\xi + i\alpha, \eta)| \geq 1 - b \alpha^2 > 0,
\]
we have (4.38).

Finally, we will prove (4.39). By (4.25), we have for \(\lambda \in \Omega_\epsilon\) and \((\xi, \eta)\in \tilde{A}_{\text{low}},\)
\[
\begin{align*}
|\lambda - \lambda_-(\xi + i\alpha, \eta)| &\geq \epsilon^3 \left[-\beta + \frac{\hat{\alpha}}{2} \left(1 - (b-a)\alpha^2 + 3(b-a)\xi^2 + \frac{\hat{\eta}^2}{\xi^2 + \hat{\alpha}^2}\right)\right] + O(K^0 \epsilon^3) \\
&\geq \epsilon^3 (1 + \xi^2).
\end{align*}
\]

\[
\sup_{\lambda \in \Omega_\epsilon, (\xi, \eta) \in \tilde{A}_{\text{low}}} \frac{|\xi + i\alpha|}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \lesssim \sup_{\xi \in [0,K]} \frac{|\xi| + \hat{\alpha}}{\epsilon^2 (1 + \xi^2)} = O(\epsilon^{-2}).
\]

Thus we complete the proof. \(\square\)

5. Spectral stability for small line solitary waves

In this section, we will prove theorem 2.4. For small line solitary waves, the spectrum of the linearized operator \(L\) is well approximated by that of \(L_{KP}\) in the low frequency regime, while the spectrum of \(L\) is close to that of the free operator \(L_0\) in the high-frequency regime. We will show that any spectrum of \(L\) belongs to the stable half plane and is bounded away from the imaginary axis except for the continuous eigenvalues \(\{\lambda_c(\eta)\}\). More precisely, we will prove
\[
\sup_{\lambda \in \Omega_\epsilon} \| (\lambda - L)^{-1} Q(\epsilon^2 \eta_0) \|_{B(\mathbb{X})} < \infty.
\]

Since the potential part of \(L\) is independent of \(y\), we can estimate the high frequency part in \(y\) and the low frequency part in \(y\), separately.

5.1. Spectral stability for high frequencies in \(y\)

First, we will estimate solutions of the resolvent equation
\[
(\lambda - L)u = f
\]
for \(f \in \tilde{\rho}_\xi(D_y)\mathbb{X}\). In the high frequency regime in \(y\), the potential term \(V\) is relatively small compared with \(\lambda - L_0\).

**Lemma 5.1.** Let \(c, \alpha, \hat{\alpha}\) and \(\Omega_\epsilon\) be as in lemma 4.6. There exists a positive number \(\epsilon_0\) such that if \(\epsilon \in (0, \epsilon_0)\) and \(\lambda \in \Omega_\epsilon\), then
\[
\sup_{\lambda \in \Omega_\epsilon} \| \tilde{\rho}_\xi(D_y) (\lambda - L)^{-1} \tilde{\rho}_\xi(D_y) \|_{B(\mathbb{X})} < \infty.
\]
Proof of lemma 5.1. In view of lemma 4.1 and the second resolvent formula
\[(\lambda - \mathcal{L})^{-1} = (I - (\lambda - \mathcal{L}_0)^{-1}V)^{-1}(\lambda - \mathcal{L}_0)^{-1}, \quad (5.3)\]
it suffices to show that
\[\sup_{\lambda \in \Omega_+} \| \tilde{p}_y(D_y)(I - (\lambda - \mathcal{L}_0)^{-1}V)^{-1}\tilde{p}_y(D_y) \|_{B(\mathcal{X})} < \infty. \quad (5.4)\]

By (4.20),
\[(\lambda - \mathcal{L}_0)^{-1}V = - (\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1}B^{-1} \left( \begin{array}{cc} v_1 \\ (\lambda - c\partial_x)v_1 \\ v_2 \\ (\lambda - c\partial_x)v_2 \end{array} \right)\]
\[= : \left( \begin{array}{ccc} r_{11}(\lambda) & r_{12}(\lambda) \\ r_{21}(\lambda) & r_{22}(\lambda) \end{array} \right). \]

First, we will show (5.4) admitting
\[\sup_{\lambda \in \Omega_+} (\| \tilde{p}_y(D_y)r_{11}(\lambda)\tilde{p}_y(D_y) \|_{B(H_{\mathcal{X}})} + \| \tilde{p}_y(D_y)r_{22}(\lambda)\tilde{p}_y(D_y) \|_{B(H_{\mathcal{X}})}) = O(K^{-1}), \]
\[\sup_{\lambda \in \Omega_+} \| \tilde{p}_y(D_y)r_{12}(\lambda)\tilde{p}_y(D_y) \|_{B(L_2^\infty H_{\mathcal{X}^*})} = O(K^{-1} \epsilon^{-1} + \delta^{-2}), \]
\[\sup_{\lambda \in \Omega_+} \| \tilde{p}_y(D_y)r_{21}(\lambda)\tilde{p}_y(D_y) \|_{B(L_2^\infty H_{\mathcal{X}^*})} = O(\epsilon \delta^{-2}). \quad (5.5)\]

Let
\[B_1(\lambda) = \begin{pmatrix} I - r_{11}(\lambda) & -r_{12}(\lambda) \\ O & I - r_{22}(\lambda) \end{pmatrix}, \]
\[B_2(\lambda) = \begin{pmatrix} I - (I - r_{11}(\lambda))^{-1}r_{12}(\lambda)(I - r_{22}(\lambda))^{-1}r_{21}(\lambda) & 0 \\ -(I - r_{22}(\lambda))^{-1}r_{21}(\lambda) & I \end{pmatrix}. \]

Then \(I - (\lambda - \mathcal{L}_0)^{-1}V = B_1(\lambda)B_2(\lambda)\). We see from (5.5) that \(I - r_0(\lambda) (i = 1, 2)\) have bounded inverse and that
\[\| \tilde{p}_y(D_y)r_{12}(\lambda)\tilde{p}_y(D_y) \|_{B(L_2^\infty H_{\mathcal{X}^*})} \| \tilde{p}_y(D_y)r_{21}(\lambda)\tilde{p}_y(D_y) \|_{B(L_2^\infty H_{\mathcal{X}^*})} = O(K^{-1} \epsilon^{-2} + \epsilon \delta^{-4}) = O(\epsilon^{1/40}). \]

Thus we have
\[\sup_{\lambda \in \Omega_+} \| \tilde{p}_y(D_y)B_1(\lambda)^{-1}\tilde{p}_y(D_y) \|_{B(\mathcal{X})} + \| \tilde{p}_y(D_y)B_2(\lambda)^{-1}\tilde{p}_y(D_y) \|_{B(\mathcal{X})} < \infty, \]
and \(\tilde{p}_y(D_y)(I - (\lambda - \mathcal{L}_0)^{-1}V)^{-1}\tilde{p}_y(D_y) \in L^\infty(\Omega_+; B(\mathcal{X})).\)

Now we will start to show (5.5). By (4.21),
\[\Delta(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1} = \frac{\text{Im}(D)}{2S(D)} \left\{ (\lambda - \lambda_+(D))^{-1} - (\lambda - \lambda_-(D))^{-1} \right\}, \quad (5.6)\]
\[(\lambda - c\vartheta_\lambda)(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1} = \frac{1}{2}\left((\lambda - \lambda_+(D))^{-1} + (\lambda - \lambda_-(D))^{-1}\right).\] 

(5.7)

If \(|\eta| \geq K(K + \hat{\alpha})^2\), then \((\xi, \eta) \in \hat{\Lambda}^c \subset A_{\text{low}} \cup A_{\xi,m} \cup A_{\eta,m}\). Since 
\[v_{1,c} = eq^c,\]

it follows from (5.6), (A.5) and claim A.1 in the appendix that 
\[\|\tilde{\rho}_\lambda(D_\lambda)(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1}B^{-1}v_{1,c}\|_{B(H^1)} \lesssim I_1 + I_2,\]

where 
\[I_1 = \epsilon^4 \sup_{(\xi, \eta) \in A_{\text{low}}} \frac{|B(\xi + i\alpha, \eta)|^{-1}}{|\lambda - \lambda_+(\xi + i\alpha, \eta)| \lambda - \lambda_-(\xi + i\alpha, \eta)|} = O(K^{-2}).\]

By (4.40), (4.41) and (4.45), 
\[I_1 = \epsilon^4 \sup_{(\xi, \eta) \in A_{\text{low}}} \frac{|B(\xi + i\alpha, \eta)|^{-1}}{|\lambda - \lambda_+(\xi + i\alpha, \eta)| \lambda - \lambda_-(\xi + i\alpha, \eta)|} = O(K^{-2}).\]

By (4.40), (4.42)–(4.44) and claim A.3, 
\[I_2 \lesssim \epsilon + \epsilon^2 \sup_{(\xi, \eta) \in A_{\text{low}}} \frac{|\mu(\xi + i\alpha, \eta)|}{|B(\xi + i\alpha, \eta)|} |\lambda - \lambda_-(\xi + i\alpha, \eta)|^{-1} \lesssim K^{-1}.\]

Thus we prove 
\[\sup_{\lambda \in \Omega_\epsilon} \|\tilde{\rho}_\lambda(D_\lambda)r_{11}(\lambda)\tilde{\rho}_\lambda(D_\lambda)\|_{B(H^1)} \lesssim I_1 + I_2 = O(K^{-1}).\]

Next, we will estimate \(\tilde{\rho}_\lambda(D_\lambda)r_{12}(\lambda)\tilde{\rho}_\lambda(D_\lambda)\). Since 
\[v_{2,c} = 2\vartheta_\lambda(q_c) - q_c,\]

we have from claim A.1 
\[\|\tilde{\rho}_\lambda(D_\lambda)r_{12}(\lambda)\tilde{\rho}_\lambda(D_\lambda)\|_{B(H^1)} \lesssim I_3 + I_4,\]

where 
\[I_3 = \epsilon^2 \|\tilde{\rho}_\lambda(D_\lambda)(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1}B^{-1}\|_{B(H^1)},\]

\[I_4 = \epsilon^3 \|\tilde{\rho}_\lambda(D_\lambda)(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1}B^{-1}\|_{B(H^1)}.\]

By (3.5), 
\[I_3 \lesssim \sup_{(\xi, \eta) \in A_{\text{low}}} \frac{\epsilon^2|\xi + i\alpha|}{|\lambda - \lambda_+(\xi + i\alpha, \eta)| |\lambda - \lambda_-(\xi + i\alpha, \eta)||B(\xi + i\alpha, \eta)|^{1/2}},\]

\[I_4 \lesssim \sup_{(\xi, \eta) \in A_{\text{low}}} \frac{\epsilon^3}{|\lambda - \lambda_+(\xi + i\alpha, \eta)| |\lambda - \lambda_-(\xi + i\alpha, \eta)|}.\]
It follows from (4.40) and (4.42)–(4.45) that
\[
I_3 \lesssim \sup_{(\xi,\eta) \in \Lambda_{\eta,n}} \frac{e^2|\xi + i\alpha|}{|\lambda - \lambda_+(\xi + i\alpha,\eta)||\lambda - \lambda_-(\xi + \alpha,\eta)|} + \sup_{(\xi,\eta) \in \Lambda_{\eta,n}} \frac{e^2|\xi + i\alpha|}{|\lambda - \lambda_+(\xi + i\alpha,\eta)||\lambda - \lambda_-(\xi + \alpha,\eta)|} \lesssim \delta^{-2} + K^{-1}e^{-1}.
\]

By (4.40) and (4.41),
\[
I_4 = O(K^{-2}e^{-1}).
\]

Thus we prove
\[
\sup_{\lambda \in \Omega_\alpha} \|\tilde{\rho}_2(D_2)r_2(\lambda)\tilde{\rho}_2(D_2)\|_{B(L^2)} \lesssim K^{-1}e^{-1} + \delta^{-2}.
\]

Using (5.7), we can estimate \(r_{21}\) and \(r_{22}\) in exactly the same way. Thus we complete the proof. \(\square\)

5.2. Spectral stability for low frequencies in \(y\)

Now we will estimate solutions of (5.2) for \(f \in \rho_\eta(D_2)X\) satisfying the orthogonality condition
\[
\int \mathbb{R} (\mathcal{F}f)(x,\eta) \cdot \overline{\mathcal{F}g}(x,\eta) \, dx = 0 \quad \text{for} \quad \eta \in [-2\eta_0, 2\eta_0] \quad \text{and} \quad k = 1, 2.
\]

Let \(\tilde{f} = (\tilde{f}_1, \tilde{f}_2)\) and \(f = (f_1, f_2) = P(D)\tilde{f}\). To begin with, we will show that (5.10) is reduced to a secular term condition that \(\tilde{f}_2\) does not include the resonant modes of the linearized KP-II operator \(\mathcal{L}_{\text{KP}}\) in the limit \(\epsilon \to 0\).

Let \(E_{\epsilon} : L^2_\alpha(\mathbb{R}^2) \to L^2_\alpha(\mathbb{R}^2)\) be an isomorphism defined by \(E_{\epsilon}(f)(x,y) := \epsilon^{-3/2}(\epsilon^{-1}x, \epsilon^{-2}y)\) and let
\[
Z = \{f \in \rho_\eta(D_2)X \mid \mathcal{P}(\epsilon^2\eta_0)f = 0\}, \quad \tilde{Z} = P(D)^{-1}Z,
\]
\[
\tilde{Z} = \{(f_1, f_2) \in Y \times Y \mid \mathcal{P}(\eta_0)E_{\epsilon}\rho_\epsilon(D_2)f_2 = 0\}.
\]

Note that \(P(D) : Y \times Y \to \rho_\eta(D_2)X\) is isomorphic for small \(\epsilon > 0\) because \(|\mu(\xi + i\alpha,\eta)|\) is bounded away from 0 for \(\eta \in \text{supp}\rho_\eta\). Let \(P(\eta_0)\) be the projection on \(L^2(\mathbb{R}^2; \mathbb{C}^2)\) defined by
\[
P(\eta_0) \begin{pmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ (\rho_\eta(D_2)E^{-1}P_{\text{KP}}(\eta_0)E_{\epsilon}\rho_\epsilon(D_2)\tilde{u}_2) \end{pmatrix}.
\]

The subspaces \(\tilde{Z}\) and \(Z\) are isomorphic provided \(\epsilon\) is small.

**Lemma 5.2.** Let \(\epsilon_0\) and \(\eta_0\) be sufficiently small positive numbers. Then for \(\epsilon \in (0, \epsilon_0)\), there exists an operator \(\Pi : \tilde{Z} \to Z\) such that
\[
\|\Pi - I\|_{B(\tilde{Z}, Y \times Y)} + \|\Pi^{-1} - I\|_{B(Y \times Y)} = O(K^{-1} + \eta_0^2).
\]

Let \(W_1 = H^\infty_{\alpha}(\mathbb{R}) \times L^2_{\alpha}(\mathbb{R}), \quad W_0 = L^2_{\alpha}(\mathbb{R}; \mathbb{C}^2), \quad W_0^* = L^2_{\alpha}(\mathbb{R}; \mathbb{C}^2)\) and \(W_1^* = H^{-1}_{\alpha}(\mathbb{R}) \times L^2_{\alpha}(\mathbb{R}), \) where \(H^{-1}_{\alpha}(\mathbb{R}) = \{f \mid \langle \xi \rangle^{-1}F(e^{-\alpha_2}f)(\xi) \in L^2(\mathbb{R})\}.\) To prove lemma 5.2, we need the following.
Claim 5.3. Let $\alpha \in (0, \alpha_0)$, $\alpha = \epsilon_\epsilon$ and let $\epsilon_0$ and $\eta_0$ be sufficiently small positive numbers. If $\epsilon \in (0, \epsilon_0)$ and $\eta \in [-\eta_0, \eta_0]$, then
\[
\left\| \partial_\epsilon P(D) \right\|_{B(W^1, W^\infty)} = O(\epsilon^2 \eta^2),
\]
and let
\[
\left\| \partial_\eta P(D_\epsilon, \epsilon^2 \eta) \right\|_{B(W^1, W^\infty)} = O(\epsilon^2 \eta^2),
\]
where $(\partial_\epsilon^*)^{-1} f(\xi) = - \int_{-\infty}^{\infty} f(z_\epsilon) \, dz_\epsilon$.

Proof. In view of (A.1), (A.4) and their proofs,\[
\left\| \partial_\epsilon P(D) \left\{ i \mu(D, \epsilon^2 \eta) - \partial_\epsilon \right\} \right\|_{B(W^1)} + \left\| \partial_\eta P(D) \left\{ i \mu(D, \epsilon^2 \eta) - \partial_\eta \right\} \right\|_{B(W^1)} = O(\epsilon^2 \eta^2). \tag{5.11}
\]
Claim 5.3 follows from (5.11). \hfill \square

Proof of lemma 5.2. Let $u = P(\eta_0)u$ for $u \in \mathbb{Z}$. To prove lemma 5.2, it suffices to show
\[
\left\| P(D)^{-1} \mathcal{P}(\epsilon^2 \eta_0) P(D) - \mathcal{P}(\eta_0) \right\|_{B(Y \times Y)} = O(K^{-1} + \eta_0^2). \tag{5.12}
\]
See e.g. [22, chapter I, section 4.6].

First, we will show
\[
\left\| P(D)^{-1} \mathcal{P}(\epsilon^2 \eta_0) P(D_\epsilon) f \right\|_{L^2_\epsilon(\mathbb{R}^2)} + \left\| P(D_\epsilon) P(D)^{-1} \mathcal{P}(\epsilon^2 \eta_0) P(D) f \right\|_{L^2_\epsilon(\mathbb{R}^2)} \lesssim K^{-1} \| f \|_{L^2_\epsilon(\mathbb{R}^2)}. \tag{5.13}
\]

Let
\[
\tilde{c}(\eta) = \int_{\mathbb{R}} \tilde{\mu}(D_\epsilon) \mathcal{F}_\eta f(z, \eta) \cdot P(D_\epsilon, \eta) g^*(z, \eta) \, dz.
\]

Then
\[
P(D)^{-1} \mathcal{P}(\epsilon^2 \eta_0) P(D) \tilde{\mu}(D_\epsilon) f = \frac{1}{2 \pi} \sum_{k=1,2} \int_{-\epsilon^2 \eta_0}^{\epsilon^2 \eta_0} \tilde{c}(\eta) P(D_\epsilon, \eta)^{-1} g_k(z, \eta) e^{i \eta \eta} \, d\eta.
\]

By corollary 3.5, we have for $\eta \in [-\epsilon^2 \eta_0, \epsilon^2 \eta_0]$\[
\left\| \partial_\epsilon P(D_\epsilon, \eta)^{-1} g^*_k(z, \eta) \right\|_{L^2_\epsilon(\mathbb{R})} = O(\epsilon^{1/2}), \quad \left\| P(D_\epsilon, \eta)^{-1} g_k(z, \eta) \right\|_{L^2_\epsilon(\mathbb{R})} = O(\epsilon^{1/2}).
\]
Since $\|\partial^{-1}_z \hat{\rho}_z(D_z)\|_{L^2(\mathbb{R})} \leq (K\varepsilon)^{-1}$,
\[
|\hat{e}_k(\eta)| = \left| \int \partial^{-1}_z \hat{\rho}_z(D_z)(F(\cdot, \eta) \cdot \hat{\partial}_z P(D_z, \eta)^* g_k(\cdot, \eta) \, dz \right|
\leq K^{-1} \varepsilon^{-1/2} \|F(\cdot, \eta)\|_{L^2(\mathbb{R})}.
\]
Hence it follows from the Plancherel theorem that
\[
\|P(D)^{-1} \mathcal{P}(\varepsilon_2 \eta_0) P(D) \rho_z(D_z) f\|_{L^2_{\varepsilon}(\mathbb{R})} \lesssim \sum_{k=1,2} \|\hat{e}_k(\eta) P(D, \eta)^* g_k(x, \eta)\|_{L^2_{\epsilon_2}(\mathbb{R})} \|\mathcal{P}(\varepsilon_2 \eta_0) \mathcal{P}(\epsilon)\|_{L^2_{\epsilon_2}(\mathbb{R})} \lesssim K^{-1} \|f\|_{L^2_{\varepsilon}(\mathbb{R})}.
\]
Similarly, we have $\|\hat{\rho}_z(D_z) P(D)^{-1} \mathcal{P}(\varepsilon_2 \eta_0) P(D) f\|_{L^2_{\varepsilon}(\mathbb{R})} \lesssim K^{-1} \|f\|_{L^2_{\varepsilon}(\mathbb{R})}$. Thus we prove (5.13).

Next, we will show
\[
\rho_z(D_z) P(D)^{-1} \mathcal{P}(\varepsilon_2 \eta_0) P(D) \rho_z(D_z) \simeq \rho_z(D_z) E^{-1}_\varepsilon \mathcal{P}(\eta_0) E \rho_z(D_z).
\]
By the fact that $\rho_z(D_z)$ is bounded on $L^2_{\eta}(\mathbb{R}^2)$ and $\|f(\cdot)\|_{L^2_{\eta}(\mathbb{R})} = \varepsilon^{-1/2} \|f(\cdot)^{-1}\|_{L^2_{\eta}(\mathbb{R})}$,
\[
\left\| \rho_z(\epsilon D_z) \left\{ \epsilon^{-1} \mathcal{P}(\varepsilon_2 \eta_0) P(D) - \left( \begin{array}{c} 0 \\ \epsilon \end{array} \right) \right\} \right\|_{L^2_{\eta}(\mathbb{R})} \leq II_1 + II_2 + II_3 + II_4 = O(K^2 \varepsilon + \eta^2),
\]
where
\[
II_1 = \epsilon^{-3/2} \left\| \rho_z(D_z) \left\{ P(D_z, \varepsilon^2 \eta^2)^{-1} - \frac{1}{2} \left( \begin{array}{cc} 0 & S^{-1}(D_z, \varepsilon^2 \eta^2) \\ -\partial_z & 0 \end{array} \right) \right\} g_k(\cdot, \varepsilon^2 \eta) \right\|_{L^2_{\eta}(\mathbb{R})},
\]
\[
II_2 = \frac{1}{2} \epsilon^{-3/2} \left\| \rho_z(D_z) \left( S^{-1}(D_z, \varepsilon^2 \eta^2) - I \right) \left( \begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right) g_k(\cdot, \varepsilon^2 \eta) \right\|_{L^2_{\eta}(\mathbb{R})},
\]
\[
II_3 = \frac{1}{2\epsilon} \left\| \partial_z \left( \begin{array}{cc} 1 & 0 \\ 0 & -\partial_z \end{array} \right) g_k(\cdot, \varepsilon^2 \eta^2) \right\|_{L^2_{\eta}(\mathbb{R})},
\]
\[
II_4 = \|g_{\eta}(\cdot, \eta) - g_{\eta}(\cdot, 0)\|_{L^2_{\eta}(\mathbb{R})}.
\]
Indeed, it follows from corollary 3.5 that $II_3 = O(\varepsilon^2 + \eta^2)$ and that for $k = 1, 2$,
\[
\|g_k(\cdot, \varepsilon^2 \eta)\|_{L^2_{\eta}(\mathbb{R})} = O(\varepsilon^{-1/2}), \quad \left\| \left( \begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right) g_k(\cdot, \eta) \right\|_{L^2_{\eta}(\mathbb{R})} = O(\varepsilon^{1/2}).
\]
Combining the above with claim 5.3 and (A.8), we have $II_1 = O(\eta^2)$ and $II_2 = O(K^2 \varepsilon)$ and we have $II_4 = O(\eta^2)$ from (3.6). We can prove
\[
\left\| \rho_z(\epsilon D_z) \left\{ P(\varepsilon D_z, \varepsilon^2 \eta^2) g_k(\cdot, \varepsilon^2 \eta^2) - \left( \begin{array}{c} 0 \\ g_{\eta}(\cdot, \eta) \end{array} \right) \right\} \right\|_{L^2_{\eta}(\mathbb{R})} = O(\eta^2 + K^2 \varepsilon) \quad (5.15)
\]
in the same way. Since
\[ P(D_z, \eta)^{-1}P(\epsilon^2 \eta_0)P(D_z, \eta)f = \sum_{k=1,2} (2\pi)^{-1/2} \int_{c_{\eta_0}}^{c_{\eta_0}} \langle F_k, (\cdot, \eta), P(D_z, \eta)^*g_k^*(\cdot, \eta) \rangle P(D_z, \eta)^{-1}g_k(x, \eta)e^{i\eta} \, d\eta, \]
we have from (5.14) and (5.15) that
\[ \left\| \rho_{\epsilon}(D_z) \left( P(D)^{-1}P(\epsilon^2 \eta_0)P(D) - \begin{pmatrix} 0 & 0 \\ 0 & \rho_{\epsilon}(D_z)E^\epsilon_{\eta_0}P_{\eta}(\epsilon^2 \eta_0)E_{\epsilon\rho_{\epsilon}(D_z)} \end{pmatrix} \right) \rho_{\epsilon}(D_z) \right\|_{B(\mathcal{L})} = O(\eta_0^2 + K^{-1}). \] 
(5.16)

Finally, we will prove that for a \( \tau_0 > 0 \),
\[ \left\| \tilde{\rho}_{\epsilon}(tD_z)P_{\eta}(\epsilon^2 \eta_0) \right\|_{B(\mathcal{L})} + \left\| P_{\eta}(\epsilon^2 \eta_0)\tilde{\rho}_{\epsilon}(tD_z) \right\|_{B(\mathcal{L})} = O(e^{-\tau_0 K}). \]
(5.17)

Since \( \tilde{g}_0(z, \eta) := e^{z\xi^*}g_0(z, \eta) \) and \( \tilde{g}_0^*(z, \eta) := e^{-z\xi^*}g_0^*(z, \eta) \) are analytic on \( \{ z \in \mathbb{C} \mid |\Im z| < \hat{\alpha}_0 \} \) and \( \sup_{\tau \in [-\tau_0, \tau_0]} (\|\tilde{g}_0(z + i\tau, \eta)\|_{L^2(\mathbb{R})} + \|\tilde{g}_0^*(z + i\tau, \eta)\|_{L^2(\mathbb{R})}) < \infty \) for any \( \tau_0 \in [0, \hat{\alpha}_0) \) and \( \eta \in [-\eta_0, \eta_0] \), it follows from the Paley–Wiener theorem ([42, theorem IX.14]) that there exists a \( C_{\tau_0} \) for any \( \tau_0 \in [0, \hat{\alpha}_0) \) such that
\[ \sup_{\eta \in [-\eta_0, \eta_0]} (|F_k\tilde{g}_0(\xi, \eta)| + |F_k\tilde{g}_0^*(\xi, \eta)|) \leq C_{\eta_0}e^{-\tau_0|x|}. \]
(5.18)

By (5.18) and the definition of \( P_{\eta}(\epsilon^2 \eta_0) \), we have (5.17). Combining (5.13), (5.16) and (5.17), we have (5.12). Thus we complete the proof.

Next, we will show that \((\lambda - \mathcal{L})^{-1}|z\) is uniformly bounded in \( \lambda \in \Omega_e \).

**Lemma 5.4.** Let \( c, \alpha \) and \( \epsilon_0 \) be as in lemma 5.1. Then there exists a positive constant \( C \) such that
\[ \sup_{\lambda \in \Omega_e} \| (\lambda - \mathcal{L})^{-1}f \|_X \leq C \| f \|_X \quad \text{for any } f \in Z. \]

Let \( f \in Z \) and
\[ \bar{u} = (\bar{u}_1, \bar{u}_2) := \Pi P(D)^{-1}u, \quad \bar{f} := (\bar{f}_1, \bar{f}_2) = \Pi P(D)^{-1}f. \]
(5.19)

Then \( \bar{f} \in Z \) and (5.2) is translated into
\[ \begin{cases} \left( \lambda - \lambda_+ (D) \right) \bar{u}_1 - (a_1 + \bar{r}_1) \bar{u}_1 - (a_2 + \bar{r}_2) \bar{u}_2 = \bar{f}_1, \\ \left( \lambda - \lambda_- (D) \right) \bar{u}_2 - (a_1 + \bar{p}_1) \bar{u}_1 = \bar{f}_2. \end{cases} \]
(5.20)

where
\[ a_1 = \frac{1}{2} B^{-1} S(D)^{-1} v_{1, e}\mu(D)^{-1} - \frac{1}{2} B^{-1} S(D)^{-1} v_{2, e} S(D), \]
\[ a_2 = -\frac{1}{2} B^{-1} S(D)^{-1} v_{1, e}\mu(D)^{-1} - \frac{1}{2} B^{-1} S(D)^{-1} v_{2, e} S(D), \]
\[ \begin{pmatrix} \bar{r}_1 & \bar{r}_2 \\ \bar{r}_2 & \bar{r}_1 \end{pmatrix} = \left[ \Pi \left( \begin{pmatrix} \lambda_+ (D) + a_1 & a_2 \\ a_1 & \lambda_- (D) + a_2 \end{pmatrix} \right) \right]^{-1}. \]
We decompose \( \tilde{f}_2 \) and \( \tilde{u}_2 \) into the high frequency part and the low frequency part. Let \( \tilde{u}_{2,h} = \tilde{\rho}_c(D_c)\tilde{u}_2, \tilde{u}_{2,\ell} = \tilde{\rho}_c(D_c)\tilde{u}_2, \tilde{f}_{2,h} = \tilde{\rho}_c(D_c)\tilde{f}_2 \) and \( \tilde{f}_{2,\ell} = \tilde{\rho}_c(D_c)\tilde{f}_2 \). Then
\[
\begin{pmatrix}
\lambda I - \left( \begin{array}{cc}
\lambda_+(D) & 0 \\
0 & \lambda_-(D) \\
0 & \lambda_-(D)
\end{array} \right) - A \\
\tilde{u}_1 \\
\tilde{u}_{2,h} \\
\tilde{f}_1 \\
\tilde{f}_{2,h} \\
\tilde{f}_{2,\ell}
\end{pmatrix} = \begin{pmatrix}
\tilde{f}_1 \\
\tilde{u}_{2,h} \\
\tilde{u}_{2,\ell}
\end{pmatrix},
\]
where
\[
A = \begin{pmatrix}
a_1 + \tilde{r}_{11} & a_2 + \tilde{r}_{12} & a_2 + \tilde{r}_{12} \\
\tilde{\rho}_c(D_c)(a_1 + \tilde{r}_{21}) & \tilde{\rho}_c(D_c)(a_2 + \tilde{r}_{22}) & \tilde{\rho}_c(D_c)(a_2 + \tilde{r}_{22}) \\
\tilde{\rho}_c(D_c)(a_1 + \tilde{r}_{21}) & \tilde{\rho}_c(D_c)(a_2 + \tilde{r}_{22}) & \tilde{\rho}_c(D_c)(a_2 + \tilde{r}_{22})
\end{pmatrix}.
\]

To estimate \( \tilde{u}_{2,h} \) and \( \tilde{u}_{2,\ell} \), we need the following.

**Lemma 5.5.** Let \( \hat{\alpha} \in (0, \hat{\alpha}_0/2), \alpha = \hat{\alpha} \epsilon \) and \( \Omega_\epsilon \) be as in lemma 4.6. There exists an \( \epsilon_0 > 0 \) such that
\[
\sup_{\lambda \in \Omega_\epsilon, \epsilon \in (0, \epsilon_0)} \|a_2(\lambda - \lambda_-(D))^{-1}\tilde{\rho}_c(D_c)\|_{B(Y)} < \infty,
\]
(5.21)
\[
\|a_2(\lambda - \lambda_-(D))^{-1}\tilde{\rho}_c(D_c)\|_{B(Y)} = O(K^{-1}).
\]
(5.22)

**Lemma 5.6.** Let \( \hat{\alpha} \in (0, \hat{\alpha}_0/2) \) and \( \alpha = \hat{\alpha} \epsilon \). Let \( \hat{\beta} \) be a small positive number and \( \Omega_\epsilon \) be as in lemma 4.6. There exist positive constants \( \epsilon_0 \) and \( \eta_0 \) such that
\[
\|\tilde{\rho}_c(D_c)(I - (a_2 + \tilde{r}_{22})(\lambda - \lambda_-(D))^{-1})^{-1}\tilde{\rho}_c(D_c)E^{-1}_{\epsilon}Q_{\epsilon}F_{\epsilon}E_{\epsilon}\|_{B(Y)}
\]
is uniformly bounded in \( \epsilon \in (0, \epsilon_0) \) and \( \lambda \in \Omega_\epsilon \).

**Proof of Lemma 5.5.** By (A.5) and the definition of \( a_2 \),
\[
\|a_2(\lambda - \lambda_-(D))^{-1}\tilde{\rho}_c(D_c)\|_{B(Y)} \lesssim \|B^{-1}v_{1,\epsilon}\mu(D)^{-1}(\lambda - \lambda_-(D))^{-1}\tilde{\rho}_c(D_c)\|_{B(Y)}
\]
\[
+ \|B^{-1}v_{2,\epsilon}(\lambda - \lambda_-(D))^{-1}\tilde{\rho}_c(D_c)\|_{B(Y)}.
\]
Since
\[
B^{-1}v_{1,\epsilon}\mu(D)^{-1} = c \{ (q_c - B^{-1}[B, q_c])B^{-1}\mu(D) \} - 2cB^{-1}q_c^\prime \partial_\mu(D)^{-1},
\]
(5.23)
it follows from claims A.1–A.3 and lemma 4.6 that
\[
\|B^{-1}v_{1,\epsilon}\mu(D)^{-1}(\lambda - \lambda_-(D))^{-1}\tilde{\rho}_c(D_c)\|_{B(Y)} \lesssim \epsilon^2 \|B^{-1}\mu(D)(\lambda - \lambda_-(D))^{-1}\|_{B(\gamma_{\epsilon})} + \epsilon^3 \|B^{-1}\partial_\mu(D)(\lambda - \lambda_-(D))^{-1}\|_{B(\gamma_{\epsilon})}
\]
\[
= O(K^{-1}).
\]
We can prove
\[
\|B^{-1}v_{2,\epsilon}(\lambda - \lambda_-(D))^{-1}\tilde{\rho}_c(D_c)\|_{B(Y)} \lesssim \epsilon^3 \|B^{-1}\partial_\mu(D)(\lambda - \lambda_-(D))^{-1}\|_{B(\gamma_{\epsilon})}
\]
\[
= O(K^{-1})
\]
in the same way. Thus we prove (5.22).
Next, we will show (5.21). As in the proof of (5.22), we have
\[\|a_2(\lambda - \lambda_-(D))^{-1} \rho_2(D_2)\|_{B(Y)} \lesssim e^2 \|\rho(D)(\lambda - \lambda_-(D))^{-1}\|_{B(Y_{su})} + e^2 \|\partial_\lambda(\lambda - \lambda_-(D))^{-1}\|_{B(Y_{su})} + e^2 \|\lambda - \lambda_-(D))^{-1}\|_{B(Y)}.\]

Combining the above with lemma 4.6, we have (5.21). Thus we complete the proof.

**Proof of lemma 5.6.** To prove lemma 5.6, we approximate \(\lambda_-(D) + a_2\) by \(\mathcal{L}_{KP}\) and apply proposition 3.2. Let \(E_\epsilon : L^2_0(\mathbb{R}^2) \to L^2_0(\mathbb{R}^2)\) be an isomorphism defined by \((E_\epsilon f)(x, y) := e^{-3/2} f(x/\epsilon, y/\epsilon^2)\), \(a_2, \epsilon = e^{-3} E_\epsilon a_2 E_\epsilon^{-1}\) and \(\lambda_-(\xi, \eta) = e^{-3} \lambda_-(\epsilon \xi, \epsilon^2 \eta)\). Then
\[\|\rho_2(D_2) \left\{ a_2(\lambda - \lambda_-(D))^{-1} + \frac{3}{2} E_\epsilon^{-1} \partial_\xi(\theta_0)(\lambda - \mathcal{L}_{KP,0})^{-1} E_\epsilon \right\} \rho_2(D_2) \|_{B(Y)} \leq III_1 + III_2,\]

where \(\rho_{KP}(\xi, \eta) = \rho_2(\epsilon \xi)\rho_2(\epsilon^2 \eta)\) and
\[\begin{align*}
III_1 &= \left\| \rho_{KP}(D) \left\{ a_2, \epsilon + \frac{3}{2} \partial_\xi(\theta_0) \right\} \rho_{KP}(D) \right\|_{B(L^2_a)} \|\lambda - \lambda_-(D))^{-1}\|_{B(L^2_a)} \\
III_2 &= \frac{3}{2} \left\| \rho_{KP}(D) \partial_\xi(\theta_0) \right\| \left\{ (\lambda - \mathcal{L}_{KP,0})^{-1} - (\lambda - \lambda_-(D))^{-1} \right\} \rho_{KP}(D) \right\|_{B(L^2_a)}.
\end{align*}\]

By (4.36) and (A.11), we have \(III_1 = O(K^5 \epsilon^2)\). By (3.5),
\[III_2 \lesssim \sup_{(\xi, \eta) \in \Delta_{su}} \frac{(1 + |\xi + i\alpha|)\lambda_-(\xi + i\alpha, \eta) - \mathcal{L}_{KP,0}(\xi + i\alpha, \eta)}{|\lambda - \mathcal{L}_{KP,0}(\xi + i\alpha, \eta)\|\lambda - \lambda_-(\xi + i\alpha, \eta)|}.
\]

Since
\[|\lambda_-(\xi + i\alpha, \eta) - \mathcal{L}_{KP,0}(\xi + i\alpha, \eta)| = O(K^8 \epsilon^2)\]
by (4.25) and \(\sup_{\alpha > \beta/2, (\xi, \eta) \in \mathbb{R}^2} (1 + |\xi|)\|\lambda - \mathcal{L}_{KP,0}(\xi + i\alpha, \eta)|^{-1} < \infty\) thanks to lemma 3.1, we have
\[III_2 \lesssim K^8 \epsilon^2.
\]

Thus we have
\[\|\rho_2(D_2) a_2(\lambda - \lambda_-(D))^{-1} \rho_2(D_2) + \frac{3}{2} E_\epsilon^{-1} \partial_\xi \left\{ \theta_0(\lambda - \mathcal{L}_{KP,0})^{-1} \right\} E_\epsilon \|_{B(Y)} = O(K^8 \epsilon^2).
\]

By lemma 4.6 and claim A.5, we have
\[\|p_{22}(\lambda - \lambda_-(D))^{-1}\|_{B(Y)} = O(K^5 \epsilon^2).
\]
Combining the above with proposition 3.2 and (5.24), we obtain lemma 5.6. Thus we complete the proof.

Now we are in position to prove lemma 5.4.
Proof of lemma 5.4. By lemma 4.6, claims A.4 and A.5,
\[
\| (\lambda - \lambda_+ (D) - a_1 - \tilde{r}_1 )^{-1} B(\gamma) \| = O(\epsilon^{-1}),
\]
\[
\| \tilde{u}_1 \| \lesssim \epsilon^{-1} \| \tilde{f}_1 \| + \epsilon (\| \tilde{u}_{2,h} \| + \| \tilde{u}_{2,e} \|). \quad (5.25)
\]
Since
\[
\| \rho_\epsilon (D_\gamma) \| (\lambda - \lambda_-(D) - a_2 - \tilde{r}_2 )^{-1} \rho_\epsilon (D_\gamma) E_\epsilon^{-1} Q_{KP}(\eta_0) E_\epsilon \rho_\epsilon (D_\gamma) \| = O(\epsilon^{-3})
\]
by lemmas 4.6 and 5.6,
\[
\| \tilde{u}_{2,e} \| \lesssim \epsilon^{-3} \| \tilde{f}_{2,e} \| + K (\| \tilde{u}_{2,h} \| + \| \tilde{u}_1 \|)
\]
follows from claims A.4 and A.5. Furthermore, lemmas 5.5, 5.6 and claim A.5 imply
\[
\| (a_2 + \tilde{r}_2) \rho_\epsilon (D_\gamma) \| (\lambda - \lambda_-(D) - a_2 - \tilde{r}_2 )^{-1} \rho_\epsilon (D_\gamma) E_\epsilon^{-1} Q_{KP}(\eta_0) E_\epsilon \rho_\epsilon (D_\gamma) \| = O(1),
\]
\[
\| (a_2 + \tilde{r}_2) \tilde{u}_{2,h} \| \| \leq \| \tilde{f}_{2,h} \| + K \epsilon^2 (\| \tilde{u}_1 \| + \| \tilde{u}_{2,h} \|).
\]
By lemmas 4.6, 5.5, claims A.4 and A.5,
\[
\| \tilde{u}_\epsilon (D_\gamma) \| (\lambda - \lambda_-(D) - a_2 - \tilde{r}_2 )^{-1} \tilde{u}_\epsilon (D_\gamma) \| = O(K^{-2} \epsilon^{-3}),
\]
and
\[
\| \tilde{u}_{2,h} \| \lesssim K^{-2} \epsilon^{-3} (\| \tilde{f}_{2,h} \| + \| (a_2 + \tilde{r}_2) \tilde{u}_{2,h} \| + \| (a_1 + \tilde{r}_1) \tilde{u}_1 \|) \lesssim K^{-2} \epsilon^{-3} (\| \tilde{f}_{2,h} \| + \| \tilde{f}_{2,e} \| + K^{-1} \| \tilde{u}_1 \| + \| \tilde{u}_{2,h} \|). \quad (5.26)
\]
Combining the above, we have
\[
\| \tilde{u}_1 \| \lesssim \epsilon^{-1} \| \tilde{f}_1 \| + \epsilon^{-2} (K^{-1} \| \tilde{f}_{2,h} \| + \| \tilde{f}_{2,e} \|),
\]
\[
\| \tilde{u}_{2,h} \| \lesssim K^{-2} \epsilon^{-2} (K^{-1} \| \tilde{f}_1 \| + \| \tilde{f}_{2,h} \|),
\]
\[
\| \tilde{u}_{2,e} \| \lesssim K^{-1} \epsilon^{-2} (K^{-1} \| \tilde{f}_1 \| + \| \tilde{f}_{2,e} \|),
\]
and \( \sup_{\lambda \in \Omega} \| \Pi P(D)^{-1} (\lambda - \mathcal{L}^{-1} P(D) \Pi^{-1} \| = \infty \). Since \( \Pi P(D)^{-1} : Z \rightarrow \mathcal{Z} \) is isomorphic, we have lemma 5.4. Thus we complete the proof. \( \square \)

5.3. Proof of theorem 2.4

Now we are in position to prove theorem 2.4. Lemmas 3.3, 3.4, 5.1 and 5.4 imply (2.13) and (2.14). Taking \( \beta > 0 \) smaller if necessary, we see from Gearhart–Prüss theorem that for small \( \epsilon > 0 \), there exists a \( K = K(\epsilon) \) satisfying (2.15). This completes the proof of theorem 2.4.

6. Proof of theorem 2.1

In this section, we will show that the eigenvalue \( \lambda = 0 \) of \( \mathcal{L}(0) \) splits into two stable eigenvalues of \( \mathcal{L}(\eta) \) for small \( \eta \neq 0 \) without assuming smallness of line solitary waves. As in subsection 3.2, we will use the Lyapunov–Schmidt method.
To begin with, we expand $\mathcal{L}(\eta)$ as $\mathcal{L}(\eta) = \mathcal{L}(0) + \eta^2 \mathcal{L}_1(\eta)$ with

$$\mathcal{L}_1(0) = B_0^{-1} \begin{pmatrix} I - A_0 - B_0^{-1} A_0 + r_c & 0 \\ 0 & 0 \end{pmatrix} + b B_0^{-2} \begin{pmatrix} 0 & 0 \\ v_{1,0}(0) & v_{2,0}(0) \end{pmatrix}.$$ 

We easily see that $\|\mathcal{L}_1(\eta)\|_{\mathcal{B}(L^2_0(\mathbb{R}) \times L^2_0(\mathbb{R}))} = O(1)$ as $\eta \to 0$.

Using the ansatz

$$\lambda(\eta) = i \eta \lambda(\eta), \quad \zeta(\eta) = \zeta_1 + \{\lambda(\eta) + \eta^2 \gamma(\eta)\} \zeta_2 + \eta^2 \mathcal{L}(\eta),$$

we will solve the eigenvalue problem (3.9). Suppose $\mathcal{L}(\eta) \zeta(\eta) = \lambda(\eta) \zeta(\eta)$ and $z(\eta) \perp \zeta^*_1$, $\zeta^*_2$.

Then

$$\mathcal{Q}_0(\mathcal{L}(\eta) - i \eta \lambda) \zeta(\lambda(\eta), \eta) + \mathcal{Q}_0 \mathcal{G}(\lambda(\eta), \eta) = 0,$$

where $\mathcal{Q}_0 : H^1_0(\mathbb{R}) \times L^2_0(\mathbb{R}) \to \mathbb{R}$ is a spectral projection associated with $\mathcal{L}(0)$.

The operator $\mathcal{L}(0) : H^1_0(\mathbb{R}) \times H^1_0(\mathbb{R}) \to H^1_0(\mathbb{R}) \times L^2_0(\mathbb{R})$ is a Fredholm operator of index zero. In fact, we see from claim 4.4, (4.20) and (4.21) with $\lambda = 0$ that $\mathcal{L}_0(0) : H^1_0(\mathbb{R}) \times H^1_0(\mathbb{R}) \to H^1_0(\mathbb{R}) \times L^2_0(\mathbb{R})$ has a bounded inverse and $V(0)$ is a compact operator on $H^1_0(\mathbb{R}) \times L^2_0(\mathbb{R})$. Note that $\lambda_1(D_0, 0)^{-1} \in B(L^2_0(\mathbb{R}), H^1_0(\mathbb{R}))$ by (4.7) and the fact that $\partial^{-1}_0 \in B(L^2_0(\mathbb{R}), H^1_0(\mathbb{R}))$.

Thus there exist positive constants $C$ and $\kappa(< 1/k)$ such that if $\|\mathcal{L}(\eta)\|_{\mathcal{B}(L^2_0(\mathbb{R}) \times L^2_0(\mathbb{R}))} < k$, then a solution $\zeta = \zeta(\lambda(\eta), \gamma, \eta)$ of (6.1) satisfies

$$\|z(\lambda(\eta), \gamma, \eta)\|_{H^1_0(\mathbb{R}) \times H^1_0(\mathbb{R})} \leq C \|\mathcal{G}(\lambda(\eta), \eta)\|_{\mathcal{B}(L^2_0(\mathbb{R}) \times H^1_0(\mathbb{R}))}.$$

Now we choose constants $\lambda_{1,0}$ and $\gamma_0$ so that

$$F_1(\lambda_{1,0}, \gamma_0, 0) = 0, \quad F_2(\lambda_{1,0}, \gamma_0, 0) = 0.$$

By straightforward computations, we have

$$\langle \zeta_1, \zeta_1^* \rangle = 0, \quad \langle \zeta_1, \zeta_2^* \rangle = 0, \quad \langle \zeta_2, \zeta_2^* \rangle = \frac{1}{2} \int_{\mathbb{R}} q_c r_c dz > 0,$$

$$\langle \zeta_2, \zeta_1^* \rangle = -\left(\frac{c}{2} \frac{d}{dc} \int_{\mathbb{R}} q_c^2 dz + c \frac{d}{dc} \int_{\mathbb{R}} r_c dz \right) \left(\frac{d}{dc} \int_{\mathbb{R}} q_c dz \right)$$

$$= \frac{16 b c^4 - a (c^2 - 1) + (bc^2 - a) + 2c^4 (2bc^2 - b - a)}{bc^2 - a} > 0,$$

$$\langle \mathcal{L}_1(0) \zeta_1, \zeta_2^* \rangle = \langle -A_0 q_c - B_0^{-1} A_0 q_c + q_c - b B_0^{-2} \partial^2_0 (c \frac{3}{2} q_c^2) - c q_c^2, c q_c \rangle$$

$$= \left\langle -\frac{4}{3} A_0 + \frac{c^2}{3} B_0 + 1 - c^2 \right\rangle q_c, c q_c$$

$$= -\frac{8}{15} c^2 - 1 c \alpha_c \left(2c^2 (b - a) + 3(bc^2 - a)\right) < 0.$$
because
\[(A_0 - c^2 B_0) q_c + \frac{3}{2} c q_c^2 = 0 \quad (6.7)\]
by (1.4) and
\[\int_\mathbb{R} q_c(x)^2 \, dx = \frac{8(\epsilon^2 - 1)^2}{3 \alpha_c c^2}, \quad \int_\mathbb{R} q_c'(x)^2 \, dx = \frac{8\alpha_c(\epsilon^2 - 1)^2}{15 c^2}.
\]
In view of (6.4) and (6.6), we have \(\lambda_{1,0} := \sqrt{\frac{\langle \zeta(0) \rangle \langle \zeta^2 \rangle}{\langle \zeta^2 \rangle}} > 0\).
Since
\[
\partial_{\lambda_1} F_1(\lambda_{1,0}, \gamma_0, 0) = 2\lambda_{1,0} \langle \zeta_2, \zeta_1^* \rangle, \quad \partial_{\lambda_1} F_1(\lambda_{1,0}, \gamma_0, 0) = \langle \zeta_1, \zeta_1^* \rangle \neq 0,
\]
\[
\partial_{\lambda_1} F_2(\lambda_{1,0}, \gamma_0, 0) = 2\lambda_{1,0} \langle \zeta_2, \zeta_2^* \rangle \neq 0, \quad \partial_{\lambda_1} F_2(\lambda_{1,0}, \gamma_0, 0) = \langle \zeta_1, \zeta_2^* \rangle = 0,
\]
it follows from the implicit function theorem that there exists an \(\eta_0 > 0\), \(\lambda_1(\eta), \gamma(\eta) \in C^1([-\eta_0, \eta_0])\) such that \(\lambda_1(0) = \lambda_{1,0}, \gamma(0) = \gamma_0\) and \(F_k(\lambda_1(\eta), \gamma(\eta), \eta) = 0\) for \(\eta \in [-\eta_0, \eta_0]\) and \(k = 1, 2\). Moreover, we have
\[
\lambda_1'(0) = -\frac{\partial_{\eta} F_2(\lambda_{1,0}, \gamma_0, 0)}{\partial_{\lambda_1} F_2(\lambda_{1,0}, \gamma_0, 0)} = \frac{i}{2} \left( \gamma_0 - \frac{\langle L_1(0) \zeta_2, \zeta_2^* \rangle}{\langle \zeta_2, \zeta_2^* \rangle} \right) = i\lambda_{2,0},
\]
and \(\lambda(\eta) = i\lambda_{1,0} \eta - \lambda_{2,0} \eta^2 + O(\eta^3)\). Thus we prove (2.4) and (2.5).
To obtain the asymptotic expansion of \(\zeta^*(\eta)\), let \(\tilde{v}_2(z, \eta) = \zeta(-z, -\eta) \cdot (1, 0)\), where \cdot denotes the inner product in \(\mathbb{C}^2\) and
\[
\zeta^*(\eta) = c \left( \left( \frac{\lambda(-\eta) + c \partial_z \bar{\gamma}}{B(\eta)} \right) \bar{v}_2(z, \eta) + v_2(\eta)^* \bar{v}_2(z, \eta) \right).
\]
As in the proof of lemma 3.4, we have \(L(\eta) \zeta^*(\eta) = \lambda(-\eta) \zeta^*(\eta)\). Since \(\lambda(-\eta) = -i\lambda_1 \eta - \lambda_2 \eta^2 + O(\eta^3)\),
\[
\tilde{v}_2(\cdot, \eta) = q_c - i\lambda_1 \eta \int_{-\infty}^{\eta} \partial_q q_c(z_1) \, dz_1 + O(\eta^2) \quad \text{in } H^k_{-\alpha}(\mathbb{R}) \text{ for any } k \geq 0.
\]
we have (2.6). We can show (2.7) in the same way as the proof of lemmas 3.3 and 3.4.
Finally, we will prove \(\lambda_{2,0} > 0\). By (6.4) and the definition of \(\lambda_{2,0}\),
\[
\frac{d}{dc} L(q_c, r_c) \lambda_{2,0} = -(L_1(0) \zeta_1, \zeta_1^*) - (L_1(0) \zeta_2, \zeta_2^*) - \lambda_{1,0}^2 \langle \zeta_2, \zeta_2^* \rangle.
\]
We have
\[
L_1(0) \zeta_2 = B_0^{-1} \begin{pmatrix} 0 \\ A_0 \partial_z^{-1} \partial_q q_c + (A_0 - B_0) B_0^{-1} \partial_z^{-1} \partial_q q_c + b B_0^{-2} \left( 3 c \partial_z q_c \partial_z q_c + \frac{1}{2} \partial_z^2 (q_c^2) \right) + B_0^{-1} \left( 3 c \partial_z \partial_z^{-1} \partial_q q_c, q_c + 3 c \partial_z (q_c^2) \partial_z^{-1} \partial_q q_c \right) \end{pmatrix}.
\]
Using the fact that \(q_c\) and \(\partial_z q_c\) are even, \(q_c^2\) is odd and \(B_0^{-1} f\) retains the parity of \(f\), we have
\[
(L_1(0) \zeta_2, \zeta_2^*) = c^3 \langle \partial_z^{-1} \partial_q q_c, q_c \rangle + c^2 \langle \partial_z^2 \partial_q q_c, q_c \rangle + c^2 \langle \partial_z^{-1} \partial_q q_c, q_c \rangle = \frac{c}{3} (2c^2 + 1) \langle \partial_z^{-1} \partial_q q_c, q_c \rangle.
\]
In the last line, we use \( (A_0 - c^2 B_0)q_c + \frac{3c^2}{2} q_c^2 = 0 \). Analogously, we have
\[
(L_1(0)\zeta, \zeta') = \mathcal{C}(q_c, (\partial_z^{-1})^* \partial_z q_c) + c^2 (q_c^2, (\partial_z^{-1})^* \partial_z q_c) = \frac{c}{3} (2c^2 + 1) (\partial_z^{-1} \partial_z q_c, q_c),
\]
where \((\partial_z^{-1})^* f = -\int_{-\infty}^{\infty} f(z_1) \, dz_1\). By integration by parts,
\[
\langle \partial_z^{-1} \partial_z q_c, q_c \rangle = -\frac{1}{4} \frac{d}{dc} \left( \int_{\mathbb{R}} q_c \, dz \right)^2 = -\frac{4}{3} \frac{d}{dc} \frac{(c^2 - 1)(bc^2 - a)}{c^2}.
\]
Combining (6.8)–(6.11) with (6.4)–(6.6), we have
\[
\lambda_{2,0} \frac{d}{dc} E(q_c, r_c) = -\lambda_{1,0} \langle \zeta_2, \zeta_1^* \rangle - \frac{16}{3} \frac{(1 + 2c^2)}{c^2} (bc^2 - a) = 32 \frac{(bp^2 - a)}{3d(\rho)} n(\rho),
\]
where \( \rho = \frac{c^2}{2} \) and
\[
d(\rho) = 6a^2 + (3a^2 - 9ab) \rho + (6a^2 + 2b^2 - 2ab) \rho^2 + (b^2 - 19ab) \rho^3 + 12b^2 \rho^4,
\]
\[
n(\rho) = 7a^2 - ba + (4a^2 - 10ba) \rho + (3b^2 + 4a^2 - 7ab) \rho^2 + 6b(b - 2a) \rho^3 + 6b^2 \rho^4.
\]
Since \( \frac{\partial}{\partial z} E(q_c, r_c) > 0 \), we see from (6.12) that \( \lambda_{2,0} \) is positive if \( d(\rho) > 0 \) and \( n(\rho) > 0 \) for any \( \rho > 1 \).

To show that \( n(\rho) > 0 \) for all \( \rho = c^2 > 1 \) and \( b > a > 0 \), we differentiate \( n(\rho) \) twice to have
\[
n'(\rho) = 4a^2 - 10ab + 2(3b^2 + 4a^2 - 7ab) \rho + 18(b^2 - 2ab) \rho^2 + 24b^2 \rho^3,
\]
and
\[
n''(\rho) = 2(3b^2 + 4a^2 - 7ab) + 36b^2 \rho + 72b(bp^2 - ap) > 0 \quad \text{for any } \rho > 1.
\]
Since \( n'(1) = 12(b - a)^2 + 36(b - a) b > 0 \) and \( n(1) = 15(b - a)^2 > 0 \), we have \( n'(\rho) > 0 \) and \( n(\rho) > 0 \) for any \( \rho > 1 \). Similarly, we have
\[
d'(\rho) = (3a^2 - 9ab) + 2(6a^2 + 2b^2 - 2ab) \rho + 3(b^2 - 19ab) \rho^2 + 48b^2 \rho^3,
\]
\[
d''(\rho) = 12a^2 + 4b(b - a) + 6b^2 \rho + 6b(-114a + 144bp) > 0 \quad \text{for any } \rho > 1,
\]
\[
d'(1) = 15(b - a)^2 + 40(b - a) b > 0, \quad d(1) = 15(b - a)^2 > 0,
\]
and \( d(\rho) > 0 \) for any \( \rho > 1 \) and \( b > a > 0 \). This completes the proof of theorem 2.1.

7. Proof of theorem 2.2

The Gearhart–Pruß theorem [16, 38] tells us the semigroup estimate (2.8) follows from uniform boundedness of \((\lambda - L)^{-1} Q(\eta_b)\) in a stable half plane. Let \( \Omega = \{ \lambda \mid \Re \lambda \geq -\beta \} \).

Applying [38, corollary 4] to a Hilbert space \( Q(\eta_b) X \), we have (2.8) provided \((\lambda - L)^{-1} Q(\eta_b)\) is uniformly bounded in \( \Omega \). Thus to prove theorem 2.2, it suffices to show the following.
Lemma 7.1. Let $c > 1$ and $\alpha \in (0, \alpha_\ast)$. Assume (H) for $\beta \in (0, \alpha(c - 1)/2)$ and an $\eta_0 > 0$. Then for any $\beta' < \beta$,
\[
\sup_{\lambda \in \Omega} \| (\lambda - \mathcal{L})^{-1} Q(\eta_0) \|_{\mathcal{B}(\mathcal{X})} < \infty. \tag{7.1}
\]

Proof. By (H), the restricted resolvent $(\lambda - \mathcal{L})^{-1} Q(\eta_0)$ is uniformly bounded on any compact subset of $\Omega$. Thus by Lemma 4.1 and (5.3), we have (7.1) provided
\[
\sup_{\lambda \in \Omega, |\lambda| \geq K_1} \| (\lambda - \mathcal{L}_0)^{-1} V \|_{\mathcal{B}(\mathcal{X})} \leq \frac{1}{2} \tag{7.2}
\]
for sufficiently large $K_1$. To prove (7.2), we apply the argument for the 1-dimensional Benney–Luke equation [31] for low frequencies in $y$ and use the argument in section 5.1 for high frequencies in $y$.

Let $K_2 > 0$, $\chi$ be the characteristic function of $[-K_2, K_2]$ and $\tilde{\chi}(\eta) = 1 - \chi(\eta)$ for $\eta \in \mathbb{R}$. First, we will show that
\[
(\lambda - \mathcal{L}_0)^{-1} V \chi(D_y) = \begin{pmatrix} r_{11}(\lambda) & r_{12}(\lambda) \\ r_{21}(\lambda) & r_{22}(\lambda) \end{pmatrix} \chi(D_y) \to 0 \text{ uniformly as } \lambda \to \infty \text{ with } \lambda \in \Omega. \tag{7.3}
\]

By (5.6) and (5.8),
\[
r_{11}(\lambda) \chi(D_y) = \frac{i c}{2} S(D)^{-1} \{ (\lambda - \lambda_+ (D))^{-1} - (\lambda - \lambda_- (D))^{-1} \} \mu(D) B^{-1} q_\alpha \chi(D_y) - c (\lambda - \lambda_+(D))^{-1} (\lambda - \lambda_- (D))^{-1} B^{-1} q_\alpha'' \chi(D_y). \]

By the Plancherel theorem,
\[
\| (\lambda - \lambda_\pm (D))^{-1} \chi(D_y) f \|_{L^2(\mathbb{R}^2)} = \left\| \frac{\hat{f}(\xi + i \alpha, \eta)}{\lambda - \lambda_\pm (\xi + i \alpha, \eta)} \right\|_{L^2(\mathbb{R}^2 \times [-K_2, K_2])}. \]

In view of (4.9) and (4.11), we have $\lim_{\lambda \in \Omega, \lambda \to \infty} \| (\lambda - \lambda_\pm (D))^{-1} f \|_{L^2(\mathbb{R}^2)} = 0$ for any $f \in L^2_{\alpha}$ thanks to the dominated convergence theorem. Thus we prove $(\lambda - \lambda_\pm (D))^{-1} \to 0$ strongly as $\lambda \to \infty$ with $\lambda \in \Omega$. Since $\mu(D) B^{-1} q_\alpha \chi(D_y) : H_{\alpha}^1 \to H_{\alpha}^1$ are compact, we see that $\lim_{\lambda \in \Omega, \lambda \to \infty} \| r_{11}(\lambda) \|_{\mathcal{B}(H_{\alpha}^1)} = 0$ as in [31, p 265]. We can prove
\[
\lim_{\lambda \in \Omega, \lambda \to \infty} \left( \| r_{12}(\lambda) \chi(D_y) \|_{\mathcal{B}(L^2_{\alpha}, H_{\alpha}^\pm)} + \| r_{21}(\lambda) \chi(D_y) \|_{\mathcal{B}(H_{\alpha}^\pm, L^2_{\alpha})} + \| r_{22}(\lambda) \chi(D_y) \|_{\mathcal{B}(L^2_{\alpha})} \right) = 0
\]
in exactly the same way.

By Lemma 4.6 and the definition of $r_{ij}(\lambda)$,
\[
\| r_{ij}(\lambda) \tilde{\chi}(D_y) \|_{\mathcal{B}(H_{\alpha}^{\pm - 1}, H_{\alpha}^{\pm - 1})} \leq \| \tilde{\chi}(D_y) \mu(D) B^{-1} \|_{\mathcal{B}(L^2_{\alpha})} + \| \tilde{\chi}(D_y) \|_{\mathcal{B}(L^2_{\alpha})} \to 0 \text{ as } K_2 \to \infty. \tag{7.4}
\]

Combining (7.3) and (7.4), we have (7.2). Thus we complete the proof. \qed
8. Proof of theorem 2.3

Let

\[ g(z, \eta) = \left( 1 + \frac{\Re \langle \zeta(x, \eta), \zeta^*(x, \eta) \rangle}{\Im \langle \zeta(x, \eta), \zeta^*(x, \eta) \rangle} \right) \zeta(z, \eta), \quad g^*(z, \eta) = \zeta^*(z, \eta), \]

and define \( g_k(z, \eta) \) and \( g_k^*(z, \eta) \) \((k = 1, 2)\) by (3.42) and (3.43) as in section 3. By (2.7), we have for \( \eta \in [-\eta_0, \eta_0] \), \( z \in \mathbb{R} \) and \( k = 1, 2 \),

\[ g(z, \eta) = g(z, -\eta), \quad g^*(z, \eta) = g^*(z, -\eta), \]

\[ \kappa(\eta) := \frac{1}{2} \Im \langle g(\cdot, \eta), g^*(\cdot, \eta) \rangle \quad \text{is odd}, \]

and \( g_k(z, \eta) \) and \( g_k^*(z, \eta) \) are real valued and even in \( \eta \). Moreover,

\[ \langle g_k(\cdot, \eta), g_k^*(\cdot, \eta) \rangle = \delta_{jk} \quad \text{for } j, k = 1, 2. \]

By theorem 2.1 and (6.4),

\[ \langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle = \langle \zeta_1, \zeta_1^* \rangle + i\lambda_1 \eta \left\{ \langle \zeta_2, \zeta_2^* \rangle + \langle \zeta_1, \zeta_1^* \rangle \right\} + O(\eta^2) = 2i\kappa_1 \eta + O(\eta^2), \]

and

\[ \kappa(\eta) = \frac{1}{2} \Im \langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle \left\{ 1 + \left( \frac{\Re \langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle}{\Im \langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle} \right)^2 \right\} = \kappa_1 \eta + O(\eta^2). \]

(8.1)

Let \( \bar{\Phi}(t) = (\Phi(t), \Psi(t)) \) be a solution of (2.2) with \( \Phi(0) = (\Phi_0, \Psi_0) \) and

\[ c_k(t, \eta) = \left\langle F, \bar{\Phi}(t, \cdot, \eta), g_k^*(\cdot, \eta) \right\rangle \quad \text{for } \eta \in [-\eta_0, \eta_0] \text{ and } k = 1, 2. \]

Then

\[ \bar{\Phi}(t) = \frac{1}{\sqrt{2\pi}} \sum_{k=1,2} \int_{-\eta_0}^{\eta_0} c_k(t, \eta) g_k(z, \eta) e^{\eta y} \, d\eta. \]

By remark 3.1,

\[ \partial_t \begin{pmatrix} c_1(t, \eta) \\ c_2(t, \eta) \end{pmatrix} = \begin{pmatrix} \langle \mathcal{L}(\eta) F, \bar{\Phi}(t, \cdot, \eta), g_1^*(\cdot, \eta) \rangle \\ \langle \mathcal{L}(\eta) F, \bar{\Phi}(t, \cdot, \eta), g_2^*(\cdot, \eta) \rangle \end{pmatrix} = \mathcal{A}(\eta) \begin{pmatrix} c_1(t, \eta) \\ c_2(t, \eta) \end{pmatrix}, \]

where

\[ \mathcal{A}(\eta) = \begin{pmatrix} \Re \lambda(\eta) & \frac{\Delta \lambda(\eta)}{\kappa(\eta)} \\ -\kappa(\eta) / \Im \lambda(\eta) & \Im \lambda(\eta) \end{pmatrix}. \]

Let \( e(t, \eta) = |\kappa(\eta)c_1(t, \eta)|^2 + |c_2(t, \eta)|^2 \). Then \( e(t, \eta) = e^{2i\Re \lambda(\eta)} e(0, \eta) \) and
\[
\|\eta^{k+1} c_1(t, \eta)\|_{L^2(-\eta_0, \eta_0)}^2 + \|\eta^k c_2(t, \eta)\|_{L^2(-\eta_0, \eta_0)}^2 \lesssim \int_{-\eta_0}^{\eta_0} \eta^{2k} e(t, \eta) \, d\eta
\]
\[
\lesssim (1 + t)^{-k} \{\|\eta c_1(0, \eta)\|_{L^2(-\eta_0, \eta_0)}^2 + \|c_2(0, \eta)\|_{L^2(-\eta_0, \eta_0)}^2\}
\]
\[
\lesssim (1 + t)^{-k} (\|\Phi_0\|_{L^2_0(B^2)} + \|\Psi_0\|_{L^2_0(B^2)}). \tag{8.2}
\]

Because \(\kappa(\eta) = \kappa_1 \eta + O(\eta^3)\) with \(\kappa_1 \neq 0\) and \(\Re\lambda(\eta) = -\lambda_2 \eta^2 + O(\eta^4)\) with \(\lambda_2 > 0\). Since \(\kappa(\eta)\) and \(\Im\lambda(\eta)\) are odd and \(\Re\lambda(\eta)\) is even, it follows from theorem 2.1 and (8.1) that
\[
A(\eta) = A_0(\eta) + \begin{pmatrix} O(\eta^4) & O(\eta^4) \\ O(\eta^4) & O(\eta^4) \end{pmatrix}, \quad A_0(\eta) = \begin{pmatrix} -\lambda_2 \eta^2 \\ -\lambda_1 \kappa_1 \eta^2 - \lambda_2 \eta^2 \end{pmatrix}.
\]

By the variation of the constants formula,
\[
\begin{pmatrix} c_1(t, \eta) \\ c_2(t, \eta) \end{pmatrix} = e^{\mathcal{A}(\eta)} \begin{pmatrix} c_1(0, \eta) \\ c_2(0, \eta) \end{pmatrix} - \int_0^t e^{(t-s)\mathcal{A}(\eta)} \begin{pmatrix} A(\eta) - A_0(\eta) \\ c_2(s, \eta) \end{pmatrix} \, ds,
\]
where \(e^{\mathcal{A}(\eta)} = e^{-\lambda_2 \eta^2} \begin{pmatrix} \cos t\lambda_1 \eta & \frac{\sin t\lambda_1 \eta}{\kappa_1 \eta} \\ -\kappa_1 \eta \sin t\lambda_1 \eta & \cos t\lambda_1 \eta \end{pmatrix}\) Using (8.2), we have for \(k = 0\) and 1,
\[
\begin{align*}
\|e^{-\lambda_2 \eta^2} c_1(0, \eta)\|_{L^2(-\eta_0, \eta_0)}^2 &+ \sum_{j=1}^\infty \int_0^t \|e^{(t-s)\lambda_2 \eta^2} c_j(s, \eta)\|_{L^2(-\eta_0, \eta_0)}^2 \, ds \\
&\lesssim (1 + t)^{-k/2} (\|\Phi_0\|_{L^2_0(B^2)} + \|\Psi_0\|_{L^2_0(B^2)}).
\end{align*}
\tag{8.3}
\]

Since \(f(\eta) = (\Phi_0(0, \eta), \zeta_2)\) and \(g_2(\cdot, \eta) - \zeta_2\|_{L^2(B)} = O(\eta^2)\), we have
\[
|c_2(0, \eta) - \tilde{f}(\eta)| \lesssim \|F_\eta \Phi_0(0, \eta)\|_{L^2_0(B)} \|g_2(\cdot, \eta) - \zeta_2\|_{L^2(B)}
\]
\[
\lesssim \eta^2 (\|F_\eta \Phi_0(\eta)\|_{L^2_0(B)} + \|F_\eta \Phi_0(\cdot, \eta)\|_{L^2_0(B)}),
\]
and
\[
\left\|e^{-\lambda_2 \eta^2} \frac{\sin t\lambda_1 \eta}{\kappa_1 \eta} \begin{pmatrix} c_2(0, \eta) - \tilde{f}(\eta) \end{pmatrix}\right\|_{L^2(-\eta_0, \eta_0)} \lesssim (1 + t)^{-1/2} (\|\Phi_0\|_{L^2_0(B^2)} + \|\Psi_0\|_{L^2_0(B^2)}). \tag{8.4}
\]

Combining (8.3) and (8.4) with \(g_1(\cdot, \eta) - \zeta_1\|_{L^2(B)} = O(\eta^2)\), we have for \(k = 0\) and 1,
\[
\| \eta^k \left\{ c_1(t, \eta) g_1(\cdot, \eta) - e^{-\lambda t \eta^2} \sin \frac{t \lambda \eta}{\kappa_1 \eta} f(\eta) \zeta_1(\eta) \right\} \|_{L^2([-\eta_0, \eta_0], L^p_\alpha(\mathbb{R}))} \\
\leq \| \eta^{k+2} c_1(t, \eta) \|_{L^2([-\eta_0, \eta_0], \sup_{0<|\eta|<\eta_0} \eta^{-2} \| g_1(\cdot, \eta) - \zeta_1(\eta) \|_{L^2_\alpha(\mathbb{R})})} \\
+ \| \eta^k \left\{ c_1(t, \eta) - e^{-\lambda t \eta^2} \sin \frac{t \lambda \eta}{\kappa_1 \eta} f(\eta) \right\} \|_{L^2([-\eta_0, \eta_0], \| \zeta_1 \|_{L^2_\alpha(\mathbb{R})})} \\
\lesssim (1 + t)^{-k/2} (\| \Phi_0 \|_{L^4_\alpha(\mathbb{R})}^2 + \| \Psi_0 \|_{L^4_\alpha(\mathbb{R})}^2).
\]  

Using the Plancherel theorem, (8.2), (8.5) and (8.6), we have
\[
\| e^{-\lambda t \eta^2} \sin \frac{t \lambda \eta}{\kappa_1 \eta} f(\eta) \zeta_1(\eta) \|_{L^2(\eta \geq \eta_0, L^p_\alpha(\mathbb{R}))} \lesssim e^{-\lambda t \eta^2} (\| \Phi_0 \|_{L^4_\alpha(\mathbb{R})}^2 + \| \Psi_0 \|_{L^4_\alpha(\mathbb{R})}^2). 
\]

By theorem 2.2,
\[
\| Q(\eta_0) \vec{\Phi}(t) \|_{H^s_\alpha(\mathbb{R})^2 \times H^s_\alpha(\mathbb{R})^2} \lesssim e^{-\beta t} (\| \Phi_0 \|_{H^s_\alpha(\mathbb{R})^2} + \| \Psi_0 \|_{H^s_\alpha(\mathbb{R})^2}).
\]

This completes the proof of theorem 2.3.

Acknowledgments

This research is supported by JSPS KAKENHI Grant Number JP25400174.

Appendix. Miscellaneous estimates of operator norms

In this section, we collect estimates of the norm of operators.

A solitary wave profile \( q_c(x) \) is similar to KdV 1-solitons provided \( c \) is close to 1. In view of (2.10), we have the following estimates on derivatives of \( q_c \).

Claim A.1. Let \( c = \sqrt{1 + \epsilon^2} \), \( \alpha = \alpha_c \) and \( \alpha \in (0, \alpha_0/2) \). There exists positive constants \( \epsilon_0 \) and \( C \) such that
\[
\| \partial_x^j Q_c \|_{H^s_\alpha(\mathbb{R})^2} \lesssim C c^{2j-2i} \quad \text{for} \quad \epsilon \in (0, \epsilon_0) \quad \text{and} \quad i, j \in \mathbb{Z}_{\geq 0}.
\]

\[3460\]
Next, we collect estimates of $\partial_\xi$, $\mu(D)$, $S(D)$ and $B^{-1}$.

**Claim A.2.** Let $\alpha > 0$ and $\alpha = \hat{\alpha} \epsilon$. There exists a positive constants $\epsilon_0$ such that if $\epsilon \in (0, \epsilon_0)$,

$$\begin{align*}
    \|\partial_\xi^{-1}\|_{B(\xi)} &\leq \alpha^{-1}, \\
    \|\mu(D)^{-1}\|_{B(\eta)} &\leq \sqrt{2} \alpha^{-1}, \\
    \|\partial_\xi \mu(D)^{-1}\|_{B(\eta)} &\leq \sqrt{2}, \\
    \|\partial_\xi \|_{B(\gamma_\eta)} &\leq (K + \hat{\alpha}) \epsilon, \\
    \|\mu(D)^{-1}\|_{B(\gamma_\eta)} &\leq \{2(K + \hat{\alpha}) \epsilon\}^j \text{ for } j \in \mathbb{N}, \\
    \|i \partial_\xi \mu(D)^{-1} + 1\|_{B(\gamma)} &\leq O(K^2 \epsilon^2). 
\end{align*}$$

**Proof.** By (3.5),

$$\|\partial_\xi^{-1}\|_{B(\xi)} = \sup_{\xi \in \mathbb{R}} \left| \frac{1}{\xi + i \alpha} \right| \leq \alpha^{-1},$$

$$\|\partial_\xi \mu(D)^{-1}\|_{B(\eta)} = \sup_{(\xi, \eta) \in \mathbb{R} \times [-K(K + \hat{\alpha}) \epsilon, K(K + \hat{\alpha}) \epsilon]} \left| \frac{\xi + i \alpha}{\mu(\xi + i \alpha, \eta)} \right|.$$

If $\eta \in \left[ -K(K + \hat{\alpha}) \epsilon^2, K(K + \hat{\alpha}) \epsilon^2 \right]$ and $\epsilon$ is sufficiently small, then $\eta^2 \leq \alpha^2 / 2$, $|\mu(\xi + i \alpha, \eta)|^4 = (\xi^2 + \alpha^2 - \eta^2)^2 + 4 \xi^2 \eta^2 \geq \frac{1}{4} (\xi^2 + \alpha^2)^2$.

Combining the above, we have (A.2).

Since $\text{supp} \hat{f}(\xi + i \alpha, \eta) \subset \tilde{A}_{\text{low}}$ for $f \in Y_{\text{low}}$, we have (A.3). Moreover

$$\|i \partial_\xi \mu(D)^{-1} + 1\|_{B(\gamma)} = \sup_{|\eta| \leq K(K + \hat{\alpha}) \epsilon^2} \left| 1 + \frac{\eta^2}{(\xi + i \alpha)^2} \right|^{-1/2} - 1 = O(K^2 \epsilon^2).$$

Thus we complete the proof. $\square$

**Claim A.3.** Let $\alpha > 0$ and $\alpha = \hat{\alpha} \epsilon$. There exists positive constants $C$ and $\epsilon_0$ such that for any $\epsilon \in (0, \epsilon_0)$,

$$\begin{align*}
    \|S(D)\|_{B(\xi)} + \|S(D)^{-1}\|_{B(\xi)} &\leq C, \\
    \|\partial_\xi^j B^{-1}\|_{B(\xi)} + \|\mu_j(D)^{1/2} B^{-1}\|_{B(\xi)} &\leq C \text{ for } j = 0, 1, 2, \\
    \|B, \partial_\xi q_e\|_{B(\xi)} &\leq C \epsilon^{i+3}, \\
    \|B^{-1} - I\|_{B(\gamma_\eta)} + \|S(D) - I\|_{B(\gamma_\eta)} + \|S^{-1}(D) - I\|_{B(\gamma_\eta)} &\leq CK^2 \epsilon^2. 
\end{align*}$$

**Proof.** We can prove (A.5)–(A.7) in the same way as lemmas 7.2 and 7.4 in [31]. Since $B(\xi + i \alpha, \eta) = 1 + b \{(\xi + i \alpha)^2 + \eta^2\} = 1 + O(K^2 \epsilon^2)$ for $(\xi, \eta) \in \tilde{A}_{\text{low}}.$
we have
\[ \|B^{-1} - I\|_{\mathcal{L}(\mathcal{H})} = \sup_{(\xi, \eta) \in \mathcal{H}_\infty} |B^{-1}(\xi + i\alpha, \eta) - 1| = O(K^2\epsilon^2). \]

Similarly, we have \[ \|S(D) - I\|_{\mathcal{H}(\mathcal{H}_\infty)} + \|S^{-1}(D) - I\|_{\mathcal{H}(\mathcal{H}_\infty)} = O(K^2\epsilon^2) \] from (4.31).

Next, we will estimate the operator norms of \( a_1 \) and \( a_2 \).

**Claim A.4.** Let \( \alpha \in (0, \alpha_0/2) \) and \( c = \sqrt{1 + \epsilon^2} \). There exists an \( \epsilon_0 > 0 \) such that if \( \epsilon \in (0, \epsilon_0) \) and \( \alpha = \epsilon\alpha_0 \), then
\[ \|a_i\|_{\mathcal{B}(\mathcal{Y})} = O(\epsilon^2) \quad \text{for } i = 1, 2, \] (A.9)
\[ \|a_i\rho_2(D_c)\|_{\mathcal{B}(\mathcal{Y})} + \|\rho_2(D_c)a_i\|_{\mathcal{B}(\mathcal{Y})} = O(K\epsilon^3) \quad \text{for } i = 1, 2, \] (A.10)
\[ \left\| \rho_{KP}(D)\{a_{2,c} + 3/2 \partial_c(\theta_0^c)\} \rho_{KP}(D) \right\|_{\mathcal{B}(L^2(R^2))} = O(K^3\epsilon^2). \] (A.11)

**Proof.** By claims A.1–A.3, (5.9) and (5.23), we have
\[ \|B^{-1}v_{1,c}\mu(D)^{-1}\|_{\mathcal{B}(L^2)} + \|B^{-1}v_{2,c}\|_{\mathcal{B}(L^2)} = O(\epsilon^2), \]
\[ \|B^{-1}v_{1,c}\mu(D)^{-1}\rho_c(D_c)\|_{\mathcal{B}(\mathcal{Y})} + \|B^{-1}v_{2,c}\rho_c(D_c)\|_{\mathcal{B}(L^2)} = O(K\epsilon^3), \]
\[ \|\rho_c(D_c)B^{-1}v_{1,c}\mu(D)^{-1}\|_{\mathcal{B}(\mathcal{Y})} + \|\rho_c(D_c)B^{-1}v_{2,c}\|_{\mathcal{B}(L^2)} = O(K\epsilon^3). \]

Combining the above with (A.5), we have (A.9) and (A.10).

Finally, we will prove (A.11). By (A.8),
\[ \|\rho_c(D_c)\{2a_2 + 3(q_c(\partial_c + q_c^c))\} \rho_c(D_c)\|_{\mathcal{B}(\mathcal{Y})} \]
\[ \leq \left\| \{iv_{1,c}\mu(D)^{-1} - (q_c(\partial_c + 2q_c^c))\} \rho_c(D_c) \right\|_{\mathcal{B}(\mathcal{Y})} \]
\[ + O(K^2\epsilon^2(\|\rho_c(D_c)v_{1,c}\mu(D)^{-1}\rho_c(D_c)\|_{\mathcal{B}(\mathcal{Y})} + \|\rho_c(D_c)v_{2,c}\rho_c(D_c)\|_{\mathcal{B}(\mathcal{Y})})). \]

Claims A.1 and A.2 imply
\[ \|\rho_c(D_c)v_{1,c}\mu(D)^{-1}\rho_c(D_c)\|_{\mathcal{B}(\mathcal{Y})} + \|\rho_c(D_c)v_{2,c}\rho_c(D_c)\|_{\mathcal{B}(\mathcal{Y})} = O(K\epsilon^3), \] and
\[ \|\{iv_{1,c}\mu(D)^{-1} - (q_c(\partial_c + 2q_c^c))\} \rho_c(D_c) \|_{\mathcal{B}(\mathcal{Y})} \]
\[ \lesssim \|q_c\|_{L^\infty} \|\{i\mu(D) - \partial_c\}\rho_c(D_c)\|_{\mathcal{B}(\mathcal{Y})} + \|q_c^c\|_{L^\infty} \|\{i\partial^c\mu(D)^{-1} + I\} \rho_c(D_c)\|_{\mathcal{B}(\mathcal{Y})} \]
\[ + (c - 1)(\|q_c(\partial_c + 2q_c^c)\|_{L^\infty} + \|q_c^c\|_{L^\infty}) \|\rho_c(D_c)\|_{\mathcal{B}(\mathcal{Y})} \]
\[ \lesssim K^3\epsilon^5. \]

In the last inequality, we use the fact that \( c = 1 + O(\epsilon^2) \). Combining the above with the fact that \( \|\epsilon^{-2}q_c(\cdot/\epsilon) - \theta_0\|_{C^1} = O(\epsilon^2) \), we have (A.11). Thus we complete the proof. \( \square \)
Claim A.5.

\[ \| \tilde{r}_{ij} \|_{H^1(Y)} \lesssim K \epsilon^3 \quad \text{for } i, j = 1, 2, \quad (A.12) \]

\[ \| \tilde{r}_{22} \|_{H^1(Y)} \lesssim K \epsilon^5. \quad (A.13) \]

**Proof.** By Lemma 5.2,

\[ \Pi^{-1} = \begin{pmatrix} I & 0 \\ \epsilon_{21} & I + \epsilon_{22} \end{pmatrix} \]

with \( \| \epsilon_{ij} \|_{H^2(\mathbb{R}^2)} = O(K^{-1}) + \eta \) and for \((\overline{u}_1, \overline{u}_2) \in \tilde{Z} \) and \((\overline{u}_1, \overline{u}_2) = \Pi(\overline{u}_1, \overline{u}_2) \),

\[
\begin{pmatrix}
\tilde{r}_{11} & \tilde{r}_{12} \\
\tilde{r}_{21} & \tilde{r}_{22}
\end{pmatrix}
= \begin{pmatrix} \Pi, \left( \lambda_+(D) + a_1 \right. & a_2 \\
\left. a_1 & \lambda_-(D) + a_2 \right) \end{pmatrix}
\begin{pmatrix} \overline{u}_1 \\
\overline{u}_2 \end{pmatrix}
- a_2 \rho_2(D) E_i^{-1} P_{\lambda}(\eta_0) E_i \rho_2(D) \overline{u}_2
\rho_2(D) E_i^{-1} P_{\lambda}(\eta_0) E_i \rho_2(D) a_1 \overline{u}_1
- [\lambda_-(D) + a_2, \rho_2(D) E_i^{-1} P_{\lambda}(\eta_0) E_i \rho_2(D)] \overline{u}_2
\end{pmatrix}.
\]

Combining the above with claim A.4, we have (A.12).

Next, we will prove (A.13) by using the KP-II approximation of \( \lambda_{\text{inc}}(D) + a_{2,1} \) in the low frequency regime.

It follows from (4.25), (5.18) and (A.11),

\[
\begin{align*}
\| \left( \lambda_-(D) + a_{2,1} \rho_2(D) \right) g_{0,1}(\cdot, \eta) - \mathcal{L}_{\text{KP}}(\eta) g_{0,1}(\cdot, \eta) \|_{L^2_{\eta}} \\
+ \| \left( \lambda_{\text{inc}}(D) + a_{2,1} \right)^* \rho_2(D) g^*_0(\cdot, \eta) - \mathcal{L}_{\text{KP}}(\eta)^* g^*_0(\cdot, \eta) \|_{L^2_{\eta}} \\
= O(K \epsilon^3). \quad (A.14)
\end{align*}
\]

Since

\[
\begin{align*}
\tilde{r}_{22} \overline{u}_2 &= - \left( \lambda_-(D) + a_2, \rho_2(D) E_i^{-1} P_{\lambda}(\eta_0) E_i \rho_2(D) \right) \overline{u}_2 \\
&= - \epsilon^3 E_i^{-1} \left[ \lambda_{\text{inc}}(D) + a_{2,1} \rho_2(D) \right] \mathcal{L}_{\text{KP}}(\eta_0) \mathcal{P}_{\lambda}(\eta_0) \rho_2(D) E_i \overline{u}_2,
\end{align*}
\]

and \( \mathcal{L}_{\text{KP}} \mathcal{P}_{\lambda}(\eta_0) = \mathcal{P}_{\lambda}(\eta_0) \mathcal{L}_{\text{KP}} \), we have (A.13) from (A.14). \( \square \)

**References**

[1] Ablowitz M J and Curtis C W 2013 Conservation laws and non-decaying solutions for the Benney–Luke equation Proc. R. Soc. A 469 20120690
[2] Alexander J C, Pego R L and Sachs R L 1997 On the transverse instability of solitary waves in the Kadomtsev–Petviashvili equation Phys. Lett. A 226 187–92
[3] Benjamin T B 1972 The stability of solitary waves Proc. R. Soc. A 328 153–83
[4] Benney D J and Luke J C 1964 Interactions of permanent waves of finite amplitude J. Math. Phys. 43 309–13
[5] Bona J 1975 On the stability theory of solitary waves Proc. R. Soc. A 344 363–74
[6] Bona J L, Colin T and Guillgné C 2013 Propagation of long-crested water waves Discrete Continuous Dyn. Syst. 33 599–628
[7] Bona J L, Colin T and Lannes D 2005 Long wave approximations for water waves Arch. Ration. Mech. Anal. 178 373–410
[8] Bona J L, Chen M and Saut J-C 2002 Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory J. Nonlinear Sci. 12 283–318

[9] Burstedt S P 1985 Damping of soliton oscillations in media with a negative dispersion law Sov. Phys.—JETP 61 270–4; translated from Zh. Eksper. Teoret. Fiz. 88 (1985), 461–9 (Russian)

[10] Cazenave T and Lions P L 1982 Orbital stability of standing waves for some nonlinear Schrödinger equations Commun. Math. Phys. 85 549–61

[11] Chen M, Curtis C W, Deconinck B, Lee C W and Nguyen N 2010 Spectral stability of stationary solutions of a Boussinesq system describing long waves in dispersive media SIAM J. Appl. Dyn. Syst. 9 999–1018

[12] Friesecke G and Pego R L 2002 Solitary waves on FPU lattices. II. Linear implies nonlinear stability Nonlinearity 15 1343–59

[13] Friesecke G and Pego R L 2004 Solitary waves on Fermi–Pasta–Ulam lattices. III. Howland-type Floquet theory Nonlinearity 17 207–27

[14] Gallay T and Schneider G 2001 KP description of unidirectional long waves. The model case Proc. R. Soc. Edinburgh Sect. A 131 885–98

[15] Gearhart L 1978 Spectral theory for contraction semigroups on Hilbert space Trans. Am. Math. Soc. 236 385–94

[16] Grillakis M, Shatah J and Strauss W 1987 Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74 160–97

[17] Herbst I 1983 The spectrum of Hilbert space semigroups J. Operator Theory 10 87–94

[18] Howland J S 1984 On a theorem of Gearhart J. Operator Theory 13 138–42

[19] Huang F L 1985 Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces Ann. Differ. Equ. 1 43–56

[20] Kadomtsev B B and Petviashvili V I 1970 On the stability of solitary waves in weakly dispersive media Sov. Phys.—Differ. Equ. 4 441–66

[21] Kadomtsev B B and Petviashvili V I 1970 On the stability of solitary waves to the Benney Luke equation Syst. Sci. 9 318–283

[22] Kato T 1995 Perturbation Theory for Linear Operators (Classics in Mathematics) 2nd edn (Berlin: Springer)

[23] Maris M 2001 Analyticity and decay properties of the solitary waves to the Benney–Luke equation Differ. Integral Equ. 14 361–84

[24] Mielke A 2002 On the energetic stability of solitary water waves Phil. Trans. R. Soc. A 360 2337–58

[25] Milowski P A and Keller J B 1996 Three dimensional water waves Stud. Appl. Math. 37 149–66

[26] Miller J R and Weinstein M I 1996 Asymptotic stability of solitary waves of the FPU lattices Commun. Pure Appl. Math. 49 399–441

[27] Mizumachi T 2009 Asymptotic stability of lattice solitons in the energy space Commun. Math. Phys. 288 125–44

[28] Mizumachi T 2013 Asymptotic stability of N-solitary waves of the FPU lattices Arch. Ration. Mech. Anal. 207 393–457

[29] Mizumachi T 2015 Stability of line solitons for the KP-II equation in $\mathbb{R}^2$ Mem. Am. Math. Soc. 238 (1125)

[30] Mizumachi T Stability of line solitons for the KP-II equation in $\mathbb{R}^2$, II Proc. R. Soc. Edinburgh Sect. A (accepted)

[31] Mizumachi T, Pego R L and Quintero J R 2013 Asymptotic stability of solitary waves in the Benney–Luke model of water waves Differ. Integral Equ. 26 253–301

[32] Mizumachi T and Tzvetkov N 2012 Stability of the line soliton of the KP-II equation under periodic transverse perturbations Math. Ann. 352 659–90

[33] Paumond L 2003 A rigorous link between KP and a Benney–Luke equation Differ. Integral Equ. 16 1039–64

[34] Pego R L and Quintero J R 1999 Two-dimensional solitary waves for a Benney–Luke equation Physica D 132 476–96

[35] Pego R L and Sun S-M 2016 Asymptotic linear stability of solitary water waves Arch. Ration. Mech. Anal. 222 1161–216

[36] Pego R L and Weinstein M I 1994 Asymptotic stability of solitary waves Commun. Math. Phys. 164 305–49

[37] Pego R L and Weinstein M I 1997 Convective linear stability of solitary waves for Boussinesq equations Stud. Appl. Math. 99 311–75

[38] Prüss J 1984 On the spectrum of $C_0$-semigroups Trans. Am. Math. Soc. 284 847–57
[39] Quintero J R 2003 Nonlinear stability of a one-dimensional Boussinesq equation J. Dyn. Differ. Equ. 15 125–42
[40] Quintero J R 2005 Nonlinear stability of solitary waves for a 2D Benney–Luke equation Discrete Continuous Dyn. Syst. 13 203–18
[41] Quintero J R 2011 The Cauchy problem and stability of solitary waves for a 2D Boussinesq-KdV type system Differ. Integral Equ. 24 325–60
[42] Reed M and Simon B 1980 Methods of Modern Mathematical Physics I Functional Analysis 2nd edn (New York: Academic)
[43] Rousset F and Tzvetkov N 2009 Transverse nonlinear instability for two-dimensional dispersive models Ann. IHP Anal. Non Linéaire 26 477–96
[44] Rousset F and Tzvetkov N 2008 Transverse nonlinear instability of solitary waves for some Hamiltonian PDE’s J. Math. Pures Appl. 90 550–90
[45] Smereka P 1992 A remark on the solitary wave stability for a Boussinesq equation Nonlinear Dispersive Wave Systems (Orlando, FL, 1991) (River Edge, NJ: World Scientific) pp 255–63