QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin

André J. Savol1,2, Virginia M. Burger1,2, Pratul K. Agarwal3, Arvind Ramanathan3,* and Chakr S. Chennubhotla2,∗

1Joint Carnegie Mellon University – University of Pittsburgh Ph.D. Program in Computational Biology, 2Department of Computational and Systems Biology, University of Pittsburgh, PA 15260 and 3Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA

ABSTRACT

Motivation: Molecular dynamics (MD) simulations have dramatically improved the atomicistic understanding of protein motions, energetics and function. These growing datasets have necessitated a corresponding emphasis on trajectory analysis methods for characterizing simulation data, particularly since functional protein motions and transitions are often rare and/or intricate events. Observing that such events give rise to long-tailed spatial distributions, we recently developed a higher-order statistics based dimensionality reduction method, called quasi-anharmonic analysis (QAA), for identifying biophysically-relevant reaction coordinates and substates within MD simulations. Further characterization of conformation space should consider the temporal dynamics specific to each identified substate.

Results: Our model uses hierarchical clustering to learn energetically coherent substates and dynamic modes of motion from a 0.5µs ubiquitin simulation. Autoregressive (AR) modeling within and between states enables a compact and generative description of the conformational landscape as it relates to functional transitions between binding poses. Lacking a predictive component, QAA is extended here within a general AR model appreciative of the second timescales, the data generated from such simulations can potentially reach O(terabytes). The availability of large datasets that cover the native-state dynamics and folding and unfolding pathways of the entire foldome, called Dynamonomics (van der Kamp et al., 2010), has allowed scientists to simulate over 2000 proteins with a combined timescale of 340µs. Projects such as Folding@home (Beberg et al., 2009) have also accelerated the availability of large datasets of protein folding trajectories as have specialized hardware, such as Anton (Shaw et al., 2007), field-programmable gate-arrays (FPGA; Alam et al., 2007), and GPUs (Harvey et al., 2009). The availability of such datasets, while useful, has created new challenges in (i) extracting low-dimensional, biophysically relevant coordinates that elucidate how the protein functions (for example, how a protein recognizes its binding partner), (ii) separating the landscape spanned by the simulations (or even groups of simulations) into a coherent set of conformational substates, (iii) quantifying the intrinsic structural and dynamical properties within a substate and finally, (iv) determining transition rates between these conformational substates. Indeed, important dynamical phenomena within simulated trajectories must be extracted from an enormous quantity of non-specific, ambient fluctuations. Clustering techniques for mining this noisy conformational space often use structural similarity measures, such as root-mean square deviation (RMSD) which quantifies an average value of structural deviation. However, functional motions need not elicit large global RMSD values; indeed, localized protein regions commonly exhibit small but important flexibility.

These observations motivated us to examine the statistical nature of atomic fluctuations from long timescale simulations (Ramanathan et al., 2009, 2011b). Our studies across multiple simulations (and
multiple force-fields) reveal that functionally relevant motions generally occur rarely. These events are reflected in higher-order correlations, manifested in long-tailed spatial (fluctuation) distributions (Mao et al., 1982). Techniques reliant on second-order statistics (variance) are poorly suited to resolve such higher-order correlations in the data, and we have observed that linear orthogonal bases (as in principal component analysis (Amadei et al., 1993)) poorly describe some energy landscapes. Thus, the current frameworks to analyze long timescale trajectories do not guarantee that identified substates are correlated with biophysically relevant events.

We recently put forward a low-dimensional representation of protein motions at long timescales using a novel technique, quasi-anharmonic analysis (QAA; Ramanathan et al., 2011a). QAA partitions the conformational landscape using fourth-order spatial-fluctuation statistics and detects substates with energetic coherence. Each region contains conformers that show similarity with respect to biophysically relevant order parameters. The insights gained from QAA were effectively used to resolve higher-order dependencies in spatial fluctuations in the context of molecular recognition and enzyme catalysis.

While QAA effectively captures spatial correlations, it lacks a stochastic model of the underlying dynamics and substate transitions. To address this shortcoming, we build autoregressive (AR) models to both encode local protein dynamics accessible within energetically coherent substates and permit transitions between connected regions in the landscape. We call this method the quasi-anharmonic autoregressive model (QAARM). Within a QAA-derived subspace, metastable states and their transition rates are extracted using hierarchical Markov clustering which provides parameter sets for the second-order AR model. We show that the learned AR model can be extrapolated to synthesize trajectories of arbitrary length. We exploit the time-invariant statistical regularities within protein motions to investigate equilibrium fluctuations of ubiquitin, a widely studied protein involved in the proteosomal degradation pathway. We show that QAARM can extract and synthesize pathways by which ubiquitin adapts its binding surface to recognize a variety of substrates.

3 APPROACH

An overview of QAARM is shown in Figure 1. MD simulation data is first processed to remove rotational and translational degrees of freedom. QAA is then applied (Section 5) which outputs a reduced dimensional representation of the original MD data. Motivated to detect biophysically relevant energy wells, or highly populated regions, in the low-dimensional QAA space, we next use a simple Markov diffusion model to cluster the conformations into metastable substates (Section 6). Local dynamics within each substate are then captured by a linear, second-order AR model (Section 7) which explicitly models spatial fluctuations. The AR model thus extends the time-insensitive QAA model by considering temporal relationships between successive MD frames.

Overview of QAARM: We use MD simulations as input to QAA. The output of QAA is a reduced dimensional space, in which conformers clustered together represent micro-states. This reduced-dimensional space is then input into a Markov diffusion framework to identify clusters of conformations that are kinetically accessible. These clusters represent metastable macro-states. We then build second order AR models for each substate to identify pathways between metastable states.

QAARM reveals molecular recognition pathways
4 MOLECULAR DYNAMICS SIMULATION OF HUMAN UBQIQUITIN

Ubiquitin, a small globular protein, is involved in the proteosomal degradation pathway. It consists of 76 residues and folds into a well defined β-grasp fold. Ubiquitin’s structure is evolutionarily conserved across all eukaryotes, consisting of five anti-parallel β-strands (β1 – β5) as well as two α-helices. The primary binding surface (R1 in Fig. 3) of ubiquitin is composed of a small number of residues proximal to the flexible β1 – β2 and β1 – β3 loops. A secondary binding interface consists of the β4 – α2 region. Ubiquitin binds to over 300 or more targets in the human cell and naturally has been the focus of many experimental and computational efforts to characterize molecular recognition (Meisenberg et al., 2006).

The protocol for simulating ubiquitin in solution has been described in detail in Ramanathan and Agarwal (2009). Briefly, eight crystal structures of ubiquitin (PDB codes: 1UBQ, 1P3Q, 1S1Q, 1TBE, 1YIW, 2D3G, 2G45 and 2FCQ) were used for our simulation. Each simulation was carried out using the AMBER suite of tools, and each production run lasted a total of 62.5 ns. Hydrogen atoms were simulated using SHAKE algorithm, while electrostatics were evaluated using the particle mesh-ewald (PME) technique. A cut-off of 10 Å was used for long-range interactions (electrostatic and van der Waals). Conformations were stored every picosecond resulting in a total of 62,500 conformations (0.5 ns). Conformations were centered around the origin. Second, second-order correlations and auto- and cross-cumulant terms are minimized, a procedure equivalent to diagonalizing the tensor K. No closed form solution exists for diagonalizing a tensor, however an approximate solution can be found using efficient algebraic techniques, such as Jacobi rotations (Golub and Van Loan, 1996). Just as the eigenbasis B diagonalizes the covariance matrix G, a rotation matrix U can be found which approximately diagonalizes the cumulant tensor K, leading to:

$$\bar{w} = JU\bar{u}.$$ (3)

Substituting for \bar{u} from above:

$$\bar{w} = J\Sigma^{-1/2}B^T \bar{u},$$ (4)

and thus $\bar{w} = U^{-1}I\bar{u}$ implying

$$U = B\Sigma^{1/2}.J^T.$$ (5)

Thus, U represents anharmonic modes of motion derived by minimizing the fourth-order dependencies in positional fluctuations, in addition to eliminating the second-order correlations (as is the case with quasi-harmonic analysis). Unlike in approaches that use principal component analysis, U can be non-orthogonal and hence intrinsically coupled. The anharmonic modes of motion U_l, each a column vector of matrix U, are sorted decreasingly by amplitude ($\|U_l\|$).

Finally, we paint each conformer in the QAA subspace by internal energies, the sum of electrostatic and Van der Waals interactions (computed with NAMDenergy, Phillips et al., 2005) over each conformation. We emphasize that resultant energy coherence within observed substates is an emergent property of the method, that is, conformer internal energies are not considered during the projection onto the QAA subspace.

5.1 Results: organizing ubiquitin conformational landscape into energetically homogenous regions

From the original simulation consisting of nearly 500,000 conformations (0.5 ns), 10,000 equally spaced conformations were collected for training the QAA basis. We performed QAA within a 30-dimensional subspace which covers 95% of the input variance. The anharmonic modes of motion reveal the exquisite ability of ubiquitin to modulate both the primary and secondary binding
surfaces ($\beta_1 - \beta_2$ and $\beta_3 - \beta_4$; $\beta_4 - \sigma_2$), as shown in Figure 2. In addition, the distances between $\beta_1 - \beta_2$ and $\beta_1 - \beta_3$ can also serve as order parameters to describe the anharmonic landscape spanned by our simulations. Motions along each of the anharmonic modes permits ubiquitin to adopt a conformation that resembles the substrate-bound conformation. Our AR models will be deemed successful if they can recover this property.

We begin hierarchical clustering by constructing a Markov transition matrix using edge weights between conformer pairs. Weights are chosen according to distance within QAA-space between connected conformers.

We then initiate a Markov chain (or random walk) on the weighted undirected network. As Markov transition probabilities homogenize through diffusion, an implicit clustering emerges from the network. First, a set of nodes representing the putative clusters are identified. Then, a Markov transition matrix is newly constructed using this reduced representation. The principle behind this construction is that upon reaching a stationary distribution at the coarsest hierarchy level, the Markov chain has also converged at finer (more local) network levels. This consistency regulates the overall topology of the network and helps build a multi-resolution representation of metastable states.

We expect that fine-grained hierarchy levels will produce many small clusters containing close neighbors in QAA-space; that is, most cluster members will be from the same time-window (and single trajectory). As Markov diffusion progresses (fine-grained to coarse), conformers that are more distant neighbors will be connected by edges in the diffused network, and will therefore be assigned to the same cluster. Thus, the hierarchical clustering can highlight dynamical connections between conformers at different timescales.

6 HIERARCHICAL CLUSTERING FOR METASTABLE SUBSTATES

Energy wells in the 30-dimensional QAA-space determine biophysically relevant substrates; the structure and dynamics of each can be characterized through clustering. Neighboring conformers in QAA-space have similar internal energies (cf. Fig. 2) and thus are dynamically and kinetically related. To facilitate clustering, we model the MD trajectory as an undirected network where edges connect energetically adjacent conformers in QAA-space. We can then cluster this network using a hierarchical Markov diffusion framework. This approach is an adaptation of our earlier work developing spectral graph-partitioning algorithms for segmenting natural images (Chennubhotla and Jepson, 2003, 2005), understanding protein dynamics and allosteric propagation (Chennubhotla and Bahar, 2006, 2007a), and relating signal propagation on a protein structure to its equilibrium dynamics (Chennubhotla and Bahar, 2007b).

Fig. 2. Organizing the conformational landscape of ubiquitin into energetically homogenous regions: Projections (v_i-n_j) of the conformations from the ubiquitin simulation onto the top three anharmonic basis vectors are colored according to the scaled internal energy values of the conformers. Also shown are the results from hierarchical clustering (Section 6), where a total of 78 clusters were identified. The arrows indicate portions of the landscape from where some of the clusters originated. Illustrative examples of cluster centers are shown as colored cartoons; overlaps with the other cluster centers are shown as transparent gray cartoons. In each of the example cluster centers, the region that undergoes the maximal conformational change is highlighted using a dotted rectangle. The corresponding secondary structures are marked for ease of identification.
Termination: end if \(n_t \leq 2 \). At this point, the network has been divided into one or two clusters.

Backwards iteration along the hierarchy allows computation of an \((n_t \times n_t)\) ownership matrix \(O_t \) for each hierarchy level \(t \), in which \(O_t(i,j) \) gives the probability that data point \(i \) belongs to cluster \(j \) at level \(t \) of the hierarchy:

\[
O_t(i,j) = \frac{K_t(i,j)\pi_t(i)}{\sum_{k=1}^{n_t} K_t(i,k)\pi_t(k)}
\]

where \(\sum_{j=1}^{n_t} O_t(i,j) = 1 \). The ownership matrix gives the probability distribution for the likelihood that a data point belongs to any metastable state of the trajectory, providing a soft partitioning of the data. A hard partitioning is determined by assigning each data point to the cluster to which it has maximal ownership probability.

6.2 Results: characterizing metastable substates in the ubiquitin landscape

The connectivity matrix \(C_0 \) at clustering initialization is shown in Figure 3. The connectivity matrix shows several regions of high cross-talk. Iterative diffusion of the Markov chain derived from this connectivity matrix, followed by kernel selection, results in six hierarchy levels with 10 000, 4486, 978, 78, 11, and 2 clusters at each respective level.

To provide parameters for the AR model (Section 7), a membership threshold must be chosen that is fine enough to capture local dynamics, but still coarse enough to allow flexibility. We chose a membership threshold such that all cluster members were reachable from the cluster center within 50 ps, where a substate's center is defined as the closest conformer to the mean of that substate. The mean QAA-space distance between conformers in successive frames is \(\bar{d} \), and the standard deviation is \(\sigma_d \). The hierarchy level at which 99.7% of the conformers are within \(\bar{d} + 3\sigma_d \) of their substate center is selected for further processing. Following this criterion, AR analysis was pursued using statistics from level 4 of the hierarchy.

Four cluster centers from the connectivity matrix are shown for example clusters in Figure 3. Clusters can be mapped from QAA-space onto the connectivity matrix to visualize accessibility between substates. As an example, dynamically distant clusters are illustrated in Figure 3 by the red and green enclosed regions. The metastable substates identified share significant similarities in both conformational and energetic space, however, they do not interact directly in QAA-space. This produces a partitioning of the landscape that is quite unique from the perspective of understanding ubiquitin’s equilibrium fluctuations: the landscapes’ extrema represent distinct conformations of ubiquitin’s binding regions. Note that while \(\beta_1 - \beta_2 \) and \(\beta_3 - \beta_4 \) adapt an ‘open’ conformation in the structure shown in green (average separation of over 18 Å), the red structure shows the binding regions ‘close’ to each other (average separation of 13.5 Å). Thus, the inherent motions of ubiquitin involve sampling the two metastable states with almost exclusively no cross-talk. However, note that both the red and green structures can interconvert between the metastable states highlighted in gray. These metastable states represent the so-called intermediates which are necessarily visited before sampling either open or close conformations. Intermediate metastable states also highlight the importance of ancillary structural changes that ubiquitin might have to undergo in order to sample either the open or close conformations. These changes are predominantly located along \(\beta_2 - \alpha_4 \) and the C-terminal tip of \(\alpha_1 \) helix. Thus, for the opening and closing of the binding region in ubiquitin, our pathways deduced from the Markov transition matrices reveal that it is energetically more favorable to undergo conformational changes along the two regions highlighted in gray.

7 BUILDING AR MODELS

Motivated by the need for a compact, linear and generative model of ubiquitin’s dynamics, we extend our findings from QAA and hierarchical clustering with a stochastic AR model inspired by problems in control theory and signal processing (Blake and Isard, 1998). Understood as a second-order stochastic differential equation that has been sampled at regular intervals, the model relates each successive protein conformation to the previous two. It consists of an appearance model and a dynamic model, which can be conceptualized, respectively, as encoding the protein in a meaningful low-dimensional (embedded) space and modeling characteristic motions within that subspace. Because we learn summarizing parameters for the protein’s dynamics in the model, we can synthesize extrapolated trajectories of arbitrary length. As a contrast to molecular dynamics methods, where the system and environment are simulated and dynamics result, the approach here models dynamics explicitly and exploits the statistical regularities intrinsic to a natively fluctuating protein. Within this approach, time-evolution of the protein’s conformation \(\pi_t \) results from coupling the
appearance and dynamics models:

\[
\begin{align*}
\vec{u}_t &= U \vec{w}_t + \vec{e}_t, & \vec{e}_t &\sim N(0, R), \\
\vec{w}_t &= A_1 \vec{w}_{t-1} + A_2 \vec{w}_{t-2} + \vec{\eta}_t, & \vec{\eta}_t &\sim N(0, Q),
\end{align*}
\]

where weights \(\vec{w}_t\) constitute the projection of \(\vec{u}_t\) onto the subspace spanned by \(U\), or its state. Determining a physically meaningful subset of basis vectors, and the vectors themselves, is frustrated by the enormous conformational space accessible to a fluctuating protein. A poor choice of basis vectors (or selecting too few) would increase the reconstruction error \(\vec{e}_t\) upon mapping each embedded state back to full conformational space. The basis chosen here, \(U\), is the first 30 anharmonic modes which are extracted using QAA and which span the conformational subspace available to the dynamic model. Both deterministic and stochastic elements are contained in the model’s dynamic component [Equation (7)].

The deterministic element is a second order Markov model in which the state at time \(t\), \(\vec{w}_t\), is a linear combination of states \(\vec{w}_{t-1}\) and \(\vec{w}_{t-2}\). Stochasticity is introduced by the Gaussian driving distribution \(\vec{\eta}_t\), which quantifies motions that are not fully captured by the linear model. More temporal information is available to this model than to a first order model; we show that this permits characterization of complex motion patterns that extend over several timeframes (or MD conformations during training). Distinct from the connectivity matrix in Section 4, the transition matrices \(A_1\) and \(A_2\) here constitute the second-order transition matrices of the stochastic process and must be learned from training simulation data. In the following subsections we address learning these dynamical model parameters and generating synthetic trajectories.

7.1 Learning the dynamical model

The dynamical model, Equation (7), exploits our knowledge of past states (conformations) to propose a future state. Before we can compute transition matrices \(A_1\) and \(A_2\) from training data, we first project the ubiquitin simulation into the embedded 30-dimensional QAA-space to yield training states \(\vec{w}_t\):

\[
\vec{w}_t \equiv U^T \vec{x}_t,
\]

where columns of \(X, \vec{x}_1, \ldots, \vec{x}_T\), are 3N vectors carrying the protein’s coordinates (for \(N\) residues). Following the derivation put forward in Hyndman (2007), the AR model is defined sequentially over the weights:

\[
\begin{align*}
\vec{w}_2 &\equiv A_1 \vec{w}_1 + A_2 \vec{w}_0 \\
\vec{w}_3 &\equiv A_1 \vec{w}_2 + A_2 \vec{w}_1 \\
&\vdots \\
\vec{w}_T &\equiv A_1 \vec{w}_{T-1} + A_2 \vec{w}_{T-2}
\end{align*}
\]

with unknowns \(A_1\) and \(A_2\). We concatenate state vectors and transition matrices with the notation \(W_{ij} = [\vec{w}_i, \vec{w}_{i+1}, \ldots, \vec{w}_j]\) and \(A = [A_1, A_2]\) to express the system in matrix form:

\[
W_{j,T} = AW_{j,T}^2 \text{ where } W_{j,T}^2 \equiv \begin{bmatrix} W_{j,T-1} & W_{j,T-2} \end{bmatrix}
\]

The total squared error between the true states and the predicted states is minimized with the Frobenius norm \(\| \cdot \|_F\):

\[
A = \arg\min_A \| \hat{A}W_2^2 - W_3 \|_F.
\]

Generally the state subspace is much smaller than the number of observations (training simulation frames), so \(W_{ij}\) is rarely square. The solution to (11) then follows:

\[
A = W_{2,T}W_{1,2}^*.
\]

where \(F^* \equiv F^T (FF^T)^{-1}\) denotes the pseudo-inverse of a matrix \(F\). Representative \(A_1\) and \(A_2\) matrices are shown in Figure 4A. The stochastic term, \(\vec{\eta}_t\), represents those dynamics that are inadequately captured by the second-order linear model, and is drawn from a Gaussian distribution with covariance equal to that of the prediction.
We can conceptualize each substate’s transition matrices as linearly
A time step found in the training data; the 25 000 synthetic trajectory
to propagate the AR-derived dynamics than with conventional
Interpreted physically, each \(A_1 \) and \(A_2 \) pair encodes the local, time
invariant dynamics. The eigen-decomposition of \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) yields the
exponential decay constants \(\beta_m = \frac{1}{2} \log \frac{P}{1-P} \) for these local dynamics,
where \(\lambda_m < 1 \) denotes any positive eigenvalue (Fig. 4B).

7.2 Synthesizing new motion sequences
The learned transition matrices \(A_1 \) and \(A_2 \), unique to each cluster,
can be used to generate novel structure sequences of arbitrary length. That is, \(\tilde{w}_1 \) and \(\tilde{x}_1 \) now constitute the unknowns in Equations (6) and (7). Starting from a randomly selected frame from our training trajectory, we propagate the model using only the learned transition matrices. Within the QAA space defined by the column vectors of \(U \), we compare each generated conformer to the mean structure of every cluster. At every step, the nascent trajectory is assigned to the cluster center with nearest Euclidean distance, and permitted to evolve according to that cluster’s \(A_1 \), \(A_2 \), and \(\tilde{\eta}_1 \) until it moves closer to a different cluster center. We generated a synthetic trajectory of 25 000 frames, during which the protein visited 76 of the 78 clusters present in the training data (cluster membership for 10 000 training and testing frames is shown in Fig. 4). Other than error/transition parameters and the determined local mean of each cluster, no temporal information from the training data was necessary for the time-evolution of ubiquitin’s dynamics. Additionally, it should be noted that the entirety of the generative process is carried out in the embedded QAA subspace, and the appearance model, Equation (6), is only used in post processing to return to full, 3\(^V \) conformation space. We can conceptualize each substate’s transition matrices as linearly encoding local dynamics, whereas reconstruction information from embedded to full conformational space is carried in the QAA basis vectors \(U \). Far less storage and computing resources are required to propagate the AR-derived dynamics than with conventional sampling. Temporally, the synthetic trajectory employs the same time step found in the training data; the 25 000 synthetic trajectory frames compares with approximately 25 ns of MD simulation.

7.3 Results: predicted pathways of molecular recognition in ubiquitin
The underlying stochastic dynamical model allows us to synthesize new conformations of arbitrary length. This is particularly useful when one has to predict the binding mode of ubiquitin with another protein. Note that in our simulations, ubiquitin was simulated in its substrate-free form. Hence, no explicit knowledge of the substrate-bound form was available. However, when we synthesize 25 000 conformers from QAARM, its utility becomes quite evident. The conformers show remarkable fluctuations along the flexible regions of ubiquitin (highlighted in Fig. 5A). Further, these motions are largely similar to the fluctuations in the ubiquitin simulations, as evidenced by projecting the synthesized conformations back onto the QAA basis space (Fig. 5B).

It is also interesting to note that the projection of the synthesized conformers onto the QAA basis space reveals novel pathways of ubiquitin binding. To illustrate this, we chose the PDB id: 2FIF where ubiquitin interacts with Rabex-5 along the secondary binding site of ubiquitin (\(\beta_2-\alpha_1 \) and \(\beta_3-\beta_4 \) interface). We computed the estimated number of contacts each synthesized conformer would form if it were to be superimposed onto the crystal structure. Since we use only C\(^\alpha \) atoms to generate the conformers, we consider two atoms to be in contact whenever they are separated by less than 7.3 Å (a standard practice in coarse-graining literature (Bahar and Cui, 2003)). The results of this computation are illustrated in Figure 5B. By projecting the synthesized conformers onto the QAA basis space, we discover that a small number of conformers (highlighted by the ellipse) form a large number of contacts with the substrate. Furthermore, the other parts of the landscape (in QAA) show meager contacts with the substrate. This allows us to pin-point a specific mechanism by which only a small number of the generated conformers can bind to ubiquitin in a specific manner. Although it remains to be seen if these conformations are also energetically favorable, we believe that QAARM has allowed one to predict complex formation by exploiting the statistical regularities in the substrate-free simulations of ubiquitin. Thus, in line with previous studies that proposed conformational selection to be a predominant pathway for recognizing binding partners in ubiquitin (Lange et al., 2008), our studies also predict a similar mechanism (at least at the C\(^\alpha \) resolution).

8 DISCUSSION AND CONCLUSION
Well-sampled conformational space is more useful with organizational principles which can describe and characterize it. Methods for extracting meaningful features and events must cope with longer simulations of increasingly larger and more complicated systems, and should eventually be used for validating and error-checking MD simulations themselves. The trajectory studied here samples many of the unique binding poses ubiquitin must adopt for specific recognition of diverse ligands, providing a rich platform for studying functionally relevant structural
transitions. However, ubiquitin’s structural shifts are subtle when
compared to those of hinge or multidomain proteins; that these
motions and connecting pathways are distinctly resolved with our
method speaks to the utility and suitability of higher-order statistics
for decomposing conformational space.

We exploited long-tail spatial distributions in former work
(QAA), and we extended it in this article with linear stochastic
models which account for temporal dependencies. This allows us
to explore specific, local dynamics accessible to a protein within
energetically homogeneous wells. Clustering to determine substates
was performed here within the 3D-dimensional QAA subspace, and
we plan to compare our identified substates to those from other
clustering methods in the future. Additionally, increasingly subtle
or energetically local behaviors can be encoded by learning AR
models at successive clustering levels; how we couple AR-models
at potentially disparate hierarchical levels to give a coherent picture
of protein fluctuations is a topic of future work. In addition, we
plan to apply maximum entropy methods to enable the dynamics
of even poorly-sampled energy wells to be incorporated into the
AR-model. While we demonstrated our framework on ubiquitin, we
have already used QAA on several other protein systems where we
expect QAARM to be useful as well.

ACKNOWLEDGEMENTS
We sincerely thank the anonymous reviewers for their constructive
suggestions in improving the manuscript.

Funding: National Institutes of Health [T32 EB009403 to A.J.S.
and V.M.B. as part of the HHMI-NIBIB Interfaces Initiative; Partial
support from RO1 GM86238(Pi: Bahar) to C.S.C.]. Oak
Ridge National Laboratory’s Laboratory Directed Research and
Development funds and the computing time allocation from the
Ridge National Laboratory’s Laboratory Directed Research and
Development funds and the computing time allocation from the
National Center for Computational Sciences (HiPPO3) (to P.K.A.).
ORNL is managed by UT-Battelle, LLC for the U.S. Department of
Energy (Contract No. DEAC05–00OR22725).

Conflict of Interest: none declared.

REFERENCES
Agarwal,P.K. (2006) Enzymes: an integrated view of structure, dynamics and function.
Milev Cell Fact., 5, e2.
Alakbarov,B. et al (2004) Application of time series analysis on molecular dynamics
simulations of proteins: a study of different conformational spaces by principal
component analysis. J. Chem. Phys., 121, 4570.
Alakbarov,B. et al (2005a) Hierarchical structure of the energy landscape of proteins
revisited by time series analysis. I. mimicking protein dynamics in different time
scales. J. Chem. Phys., 123, 144910.
Alakbarov,B. et al (2005b) Hierarchical structure of the energy landscape of proteins
revisited by time series analysis. II. investigation of explicit solvent effects. J. Chem.
Phys., 123, 144911.
Alakbarov,B. et al (2007) Mimicking protein dynamics by the integration of elastic
model network with time series analysis. Int. J. High Perform. Comput. Appl., 21,
59-65.
Alam,S.R. et al (2007) Using FPGA devices to accelerate biomolecular simulations.
Computer, 40, 66-73.
Amada,A. et al (1993) Essential dynamics of proteins. Protein Struct. Funct. Genet.,
17, 412-423.
Buharal. and Caa. (2005) Normal Mode Analysis: Theory and Applications in
Biological and Chemical Systems. Mathematical and Computational Biology Series.
Chapman and Hall CRC, New York.
Bulatao,J. et al (1995) Following protein folding in real time using NMR spectroscopy.
Nat. Struct. Mol. Biol., 2, 865-870.
Baxa,M. et al (1996) Principal component analysis and long time protein dynamics.
J. Phys. Chem., 100, 2567–2572.
Behring,A. et al (2000) Folding/Unfolding: lessons from eight years of volunteer
distributed computing. IEEE Int. Symp. Parallel Distrib. Process., 1–8.
Blake,A. and Isant,M. (1998) Active Contours. The Application of Techniques from
Graphics, Vision, and Control Theory and Statistics in Visual Tracking of Shapes in
Motion. Springer-Verlag New York, Inc. Secaucus, NJ, USA.
Bowman,G.G. and Panala,V.S. (2010) Protein folded states are kinetic hubs. Proc.
Natl Acad. Sci. USA, 107, 10809–10805.
Bronshtein,B. et al (2003) Accelerating molecular dynamics simulations by linear
prediction of time series. J. Chem. Phys., 118, 6179–6187.
Cardona,F. (1999) High order contacts for independent component analysis. Neural
Comput., 11, 157-192.
Chehroudi,B. et al (2006) Markov propagation of allosteric effects in biomolecular systems.
Mol. Biol. Cell, 2, 36.
Chehroudi,B. and Bahar,I. (2007a) Markov methods for hierarchical coarse
graining of large protein dynamics. J. Comp. Biol., 14, 765-766.
Chehroudi,B. and Bahar,I. (2007b) Signal propagation in proteins and relation to
equilibrium fluctuations. PLoS Comput. Biol., 3, 1716-1726.
Chehroudi,B. and Jepson,A. (2005) Eigemetric: half-lives of eigenvectors for spectral
clustering. In Becker,S. et al (eds) Advances in Neural Information Processing Systems
(NIPS). MIT Press, Cambridge, MA, pp. 689-696.
Chehroudi,B. and Jepson,A. (2005) Eigemetric eigensolver for transition
matrices in spectral methods. In Lawrence,K.S. et al (eds) Advances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, pp. 273–280.
Chiang,T.-H. et al. (2010) Markov dynamic models for long-timescale protein motion.
Bioinformatics, 26, 1269–1277.
Chodera,J.D. et al. (2007) Automatic discovery of metastable states for the construction
of markov models of macromolecular conformational dynamics. J. Chem. Phys.,
126, 155101.
Elffer,R. and Kaplans,M. (1987) Multiple conformational states of proteins: a molecular
dynamics analysis of myoglobin. Science, 235, 318-321.
Fahrenfeldt,H. et al (1988) Conformational substates in proteins. Ann. Rev. Biophys.
Biophys. Chem., 17, 451-479.
Fahrenfeldt,H. et al (1991) The energy landscapes and motions of proteins. Science,
254, 1598-1603.
Gelab,GH. and Van Lon.L.C.F. (1996) Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, USA.
Harvey,M.J. et al. (2009) Accem: accelerating biomolecular dynamics in the
microsecond time scale. J. Chem. Theory Comput., 5, 1632–1639.
Heynder-Wildman,K. and Kern,D. (2007) Dynamic personalities of proteins. Nature,
450, 964-972.
Hyman,M. (2007) Dynamic Texture Modelling. Master’s thesis, University of
Toronto, Toronto, Canada.
Kaplaus,M. and McCormon,J.A. (2002) Molecular dynamics simulations of
biomolecules. Nat. Struct. Biol., 9, 646-652.
Kneller,GR. (2005) Quasielectric neutron scattering and relaxation processes in
proteins: analysis and simulation-based models. Phys. Chem. Chem. Phys., 7,
2641-2655.
Kneller,GR. and Hinsen,K. (2001) Computing memory functions from molecular
dynamics simulations. J. Chem. Phys., 115, 11007–11105.
Lang,O.F. and Grubmüller,H. (2006) Can principal components yield a dimension
reduced description of protein dynamics on long time scales? J. Phys. Biol.,
110, 22642–22652.
Lange,O. and Grubmüller,H. (2006) Full correlation analysis of conformational protein
dynamics. Proteins, 70, 1294–1312.
Lang,O.F. et al. (2008) Recognition dynamic up to microseconds revealed from an
RDC-derived ubiquitin ensemble in solution. Science, 320, 1471-1475.
Max,B. et al. (1982) Molecular dynamics of femtocrystals: c: anharmonicity of
atomic displacements. Biopolymers, 21, 1979-1989.
Meisenberg,G. et al. (2006) Principles of Medical Biochemistry. Mosby, Elsevier,
Philadelphia, PA, USA.
Phillips,J.C. et al. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem.,
26, 1781–1802.
Ramanathan,A. and Agarwal,P.K. (2009) Computational identification of slow
conformational fluctuations in proteins. J. Phys. Biol, 113, 16609-16680.
Ramanathan,A. et al. (2009) An online approach for mining collective behaviors from
molecular dynamics simulations. In Research in Computational Molecular Biology
(RECOMB), Vol. 5541 of Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, pp. 136-154.
Ramanathan,A. et al. (2011a) Discovering conformational sub-states relevant to protein
function. PLoS ONE, 6, e15827.
Ramanathan, A. et al. (2011b) On-the-fly identification of conformational sub-states from molecular dynamics simulations. J. Chem. Theory Comput., 7, 778–789.
Shaw, D. E. et al. (2007) Anton, a special-purpose machine for molecular dynamics simulation. SIGARCH Comput. Archit. News, 35, 1–12.
Simonson, T. et al. (2002) Free energy simulations come of age: protein-ligand recognition. Acc. Chem. Res., 35, 430–437.
Tai, K. et al. (2008) Analysis of a 10 ns molecular dynamics simulation of mouse acetylcholinesterase. Biophys. J., 81, 715–724.
vander Kamp, M. W. et al. (2010) Dynameomics: a comprehensive database of protein dynamics. Structure, 18, 423–435.
West, A. M. A. et al. (2007) Extending molecular dynamics time scales with milestoning: example of complex kinetics in a solvated peptide. J. Chem. Phys., 126, 145104.