Mutagenic Assessment of Olmesartan Cilexetil by Bacterial Mutation Assay

Ji Won Kim¹, Ilyoung Ahn², Sung Ha Ryu³, Hong Ryeol Jeon⁴, Bong Sang Lee⁴ and Kyu-Bong Kim³

¹Department of Pharmacology, CKD Research Institute, Yongin, Korea
²Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Osong, Korea
³College of Pharmacy, Dankook University, Cheonan, Korea
⁴CTC BIO Inc. Paltan, Hwaseong, Korea

(Received September 26, 2013; Revised September 27, 2013; Accepted September 29, 2013)

Hypertension is a serious health problem due to high frequency and concomitant other diseases including cardiovascular and renal dysfunction. Olmesartan cilexetil is a new antihypertensive drug associated with angiotensin II receptor antagonist. This study was conducted to evaluate the mutagenicity of olmesartan cilexetil by bacterial reverse mutation test using Salmonella typhimurium (TA100, TA1535, TA98, and TA1537) and Escherichia coli (WP2 uvrA). At the concentrations of 0, 62, 185, 556, 1667, and 5000 µg/plate, olmesartan cilexetil was negative in both Salmonella typhimurium and Escherichia coli regardless of presence or absence of metabolic activation system (S9 mix). These results demonstrate that olmesartan cilexetil does not induce bacterial reverse mutation.

Key words: Hypertension, Olmesartan cilexetil, Angiotension II receptor antagonist, Mutagenicity

INTRODUCTION

Hypertension is a serious disease problem due to high frequency and concomitant increase in risk of cardiovascular and kidney diseases (1,2). Therefore, many antihypertensive drugs that possess mechanisms of blocking angiotensin converting enzyme (ACE) and angiotensin II (AII) receptors have been developed and shown in the market (3). ACE inhibitors regulate the activity of renin angiotensin system and have some adverse effects such as cough and angioedema (4-6), while AII receptor antagonists have been known to induce persistent dry cough and less frequent angioedema (7). Of these AII receptor antagonists, olmesartan is a nonpeptide AII antagonist that selectively and competitively inhibits the binding of angiotensin to type II receptors (7,8). Olmesartan cilexetil (1-(cyclohexyloxy carbonyloxy)ethyl 1-((2-(1H-tetrazol-5-yl)biphenyl-4-yl)methyl)4-(2-hydroxypropane-2-yl)-2-propyl-1H-imidazole-5-carboxylate) was recently developed as a new AII receptor antagonist of different salt of cilexetil comparing to olmesartan medoxomil (Fig. 1). Thus, we tested genotoxicity of olmesartan cilexetil to identify whether it could induce reverse mutation or not using Salmonella typhimurium (TA100, TA1535, TA98, and TA1537) and Escherichia coli (WP2 uvrA), according to OECD guideline (9).

MATERIALS AND METHODS

Materials. Olmesartan cilexetil was obtained from CTC Bio Inc. (Hwaseong, Korea). Nutrient broth No. 2 (Oxoid, London, UK) and bacto agar (Difco, Sparks, USA) were used as bacterial media. The following agents were purchased from commercial sources: magnesium sulfate heptahydrate, citric acid, and dipotassium hydrogen phosphate (Junsei, Tokyo, Japan); ammonium sodium hydrogen phosphate (YAKURI, Kyoto, Japan); sodium phosphate (mono and dibasic) and sodium azide (Bio basic, Ontario, Canada); L-histidine and D-biotin (Daejung, Siheung, Korea); L-tryp-
tophan (TCI, Tokyo, Japan); 2-nitrofluorene, 2-aminoanthracene, 9-aminoacridine hydrochloride monohydrate and dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St Louis, USA). For metabolic activation, S9 was purchased from Molecular Toxicology Inc. (Boone, USA) and kept at −80°C. Cofactor-I was purchased from Orient Yeast (Tokyo, Japan).

Bacterial strains and media. We used 5 strains including *Salmonella typhimurium* TA100, TA1535, TA98, and TA1537 and *Escherichia coli* WP2 uvrA. TA100, TA1535, and WP uvrA were used to identify the mutagenicity of base-pair substitution type, whereas TA98 and TA1537 were used as frame-shift type. The five strains were obtained from the Bio Toxtec (Cheongwon, Korea). Each strain was added in 2.5% Nutrient broth No. 2 and incubated for about 12 hr using shaking incubator (Jisco, Seoul, Korea). When bacteria counts were more than 1 × 10⁹ cells/ml, they were used in the test.

The minimal glucose agar plate containing bacto agar, Vogel-Bonner (VB) salts and 20% glucose was divided by 25 ml and then used. Top agar was prepared to 0.6% NaCl and 0.5% bacto agar, and then 0.5 mM histidine-biotin and 0.5 mM tryptophan were respectively added to *Salmonella typhimurium* or *Escherichia coli* type agar.

Test ingredient and positive controls. Test samples, practically water-insoluble, were diluted in DMSO at different concentrations (0, 62, 185, 556, 1667, and 5000 µg/plate). The standard mutagens used as positive controls in experiments without S9 mix were sodium azide (1.5 µg/plate) for TA100 and TA1535, 4-nitroquinoline 1-oxide (1 µg/plate) for WP2 uvrA, 2-nitrofluorene (5 µg/plate) for TA98 and 9-aminoacridine (40 µg/plate) for TA1537. In addition, 2-aminoanthracene (2 µg/plate) for TA100 and TA98, and 2-aminoanthracene (10 µg/plate) for TA1535, TA1537 and WP2 uvrA were used in the experiments with metabolic activation. DMSO was used as the negative control.

Metabolic activation system (S9 mixture). The commercially available S9 fraction was stored at −80°C until use. When preparing the S9 mix, cofactor-I dissolved in distilled water was added to the thawed S9 fraction and then S9 mix was kept in ice cooling.

Experimental procedure. Using pre-incubation, we studied the effect of metabolic activation. In condition without metabolic activation, 0.1 ml of each concentration of test ingredient, negative control or positive control was added to 0.5 ml of 0.1 M phosphate buffer (pH 7.4) and 0.1 ml of each strain, and then incubated at 37°C for 20 min. After shaking incubation, 2 ml of top agar was added to the incubation mixture according to the strains, and then poured onto a plate containing minimal agar. The plates were incubated at 37°C for 48 hr and the revertant colonies were counted.

Dose (µg/plate)	Number of Colonies/plate (without S9 mix)				
	TA98	TA100	TA1535	TA1537	WP2 uvrA
0	39 ± 0	103 ± 4.2	8.5 ± 3.5	9.5 ± 2.1	154 ± 9.9
62	37.5 ± 3.5	118 ± 0	9 ± 0	9 ± 2.8	151 ± 14.1
185	33 ± 1.4	111 ± 2.8	10 ± 2.8	10 ± 4.2	153 ± 22.6
556	38.5 ± 6.4	115 ± 2.8	8 ± 0	6.5 ± 0.7	161.5 ± 6.4
1667	27.5 ± 4.9	104 ± 12.7	8 ± 5.7	7.5 ± 0.7	136 ± 4.2
5000	17 ± 2.8	85 ± 42	6.5 ± 2.1	2.5 ± 0.7	142 ± 7.1
Positive control	232 ± 2.8	763 ± 14.0	570.5 ± 20.5	67.5 ± 3.5	1955 ± 202.2
	Number of Colonies/plate (with S9 mix)				
	TA98	TA100	TA1535	TA1537	WP2 uvrA
0	39 ± 5.7	121 ± 0	11.5 ± 3.6	7.5 ± 2.1	131 ± 15.6
62	50 ± 4.2	140.5 ± 2.1	11 ± 1.4	9 ± 1.4	147 ± 8.5
185	41.5 ± 3.5	139.5 ± 12.0	8.5 ± 2.1	7 ± 1.4	160 ± 18.4
556	45 ± 8.5	131 ± 0	9.5 ± 0.7	9.5 ± 3.5	153.5 ± 17.7
1667	31.5 ± 49	112 ± 24	6 ± 0	11 ± 2.8	164.5 ± 47.4
5000	30 ± 1.4	100.5 ± 2.1	7 ± 0	7.5 ± 0.7	161.5 ± 6.4
Positive control	473 ± 45.3	1504 ± 142.8	831.5 ± 3.5	106 ± 28	1211 ± 21.2

TA98: 2-nitrofluorene, 5 µg/plate; TA100: sodium azide, 1.5 µg/plate; TA1535: sodium azide, 1.5 µg/plate; TA1537: 9-aminoacridine, 40 µg/plate; WP2 uvrA: 4-nitroquinoline 1-oxide, 1 µg/plate.

TA98: 2-aminoanthracene, 2 µg/plate; TA100: 2-aminoanthracene, 2 µg/plate; TA1535: 2-aminoanthracene, 10 µg/plate; TA1537: 2-aminoanthracene, 10 µg/plate.

More than two-fold increase in revertant colonies over negative control, 0 µg/plate.
counted manually. In the presence of metabolic activation, 0.5 ml of freshly prepared S9 mix instead of 0.1 M phosphate buffer (pH 7.4) was added to the incubation mixture. Other procedures were performed in the same way. All experiments were analyzed in duplicate.

RESULTS

The results are shown as the mean ± standard deviation of colony counts obtained from 2 plates per test group (Table 1). When the numbers of revertant colonies are more than two folds compared to the negative control and show dose-dependence and repeatability in at least one plate, regardless of the presence or absence of metabolic system, the results were considered positive.

In positive controls, revertant colonies were significantly increased in each strain compared with the negative control (Table 1). However, olmesartan cilexetil treatment (62, 185, 556, 1667, and 5000 µg/plate) did not show any significant change of revertant colonies with negative control in all strains (Salmonella typhimurium TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvrA), regardless of the presence or absence of metabolic activation system (Table 1). Based on the above results, olmesartan cilexetil is considered as a substance that does not cause reverse mutation under current testing condition.

DISCUSSION

Olmesartan medoxomil as an antihypertensive drug selectively blocks the binding of AII to AT1 receptor, which mediates vasoconstrictive effect and is one of the key contributors to cardiovascular and renal diseases (10). Olmesartan medoxomil is rapidly converted to olmesartan, which is absorbed from the gastrointestinal tract into the body (11), thereafter, lowers ambulatory blood pressure and has contributed to cardiovascular and renal diseases (10). Olmesartan medoxomil is not considered as a genotoxic agent at clinically relevant doses. In genotoxicity assays of other AII receptor antagonist drugs, candesartan and eprosartan induced chromosomal aberrations in mammalian cells and showed positive results in the mouse lymphoma assay (13). Therefore, further studies including chromosomal aberration and in vivo micronucleus assay should be performed in order to clarify the genotoxicity of olmesartan cilexetil.

ACKNOWLEDGEMENT

This research was supported by CTC Bio Inc.

REFERENCES

1. He, J. and Whelton, P.K. (1997) Epidemiology and prevention of hypertension. Med. Clin. North Am., 81, 1077-1097.
2. Whelton, P.K. (1994) Epidemiology of hypertension. Lancet, 344, 101-106.
3. Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K. and He, J. (2005) Global burden of hypertension: analysis of worldwide data. Lancet, 365, 217-223.
4. Brenner, H.R. (2006) Olmesartan medoxomil: current status of its use in monotherapy. Vasc. Health Risk Manage., 2, 327-340.
5. Fitchet, A.E., Palmer, A.J. and Bulpitt, C.J. (1994) Cough with angiotensin converting enzyme inhibitors: how much of a problem? J. Hypertens. Suppl., 12, S43-S47.
6. Vleeming, W., van Amsterdam, J.G., Stricker, B.H. and de Wildt, D.J. (1998) ACE inhibitor-induced angioedema. Incidence, prevention and management. Drug Saf., 18, 171-188.
7. Warner, G.T. and Jarvis, B. (2002) Olmesartan medoxomil. Drugs, 62, 1354-1356.
8. Mizuno, M., Sada, T., Ikeda, M., Fukuda, N., Miyamoto, M., Yanagisawa, H. and Koki, H. (1995) Pharmacology of CS-866, a novel nonpeptide angiotensin II receptor antagonist. Eur. J. Pharmacol., 285, 181-188.
9. OECD/OCDE. (1997) OECD guidelines for the testing of chemicals (No. 471), Bacterial Reverse Mutation Test, pp. 1-344.
10. OECD/OCDE. (1997) OECD guidelines for the testing of chemicals (No. 471), Bacterial Reverse Mutation Test, pp. 1-344.
11. OECD/OCDE. (1997) OECD guidelines for the testing of chemicals (No. 471), Bacterial Reverse Mutation Test, pp. 1-344.
12. OECD/OCDE. (1997) OECD guidelines for the testing of chemicals (No. 471), Bacterial Reverse Mutation Test, pp. 1-344.
13. OECD/OCDE. (1997) OECD guidelines for the testing of chemicals (No. 471), Bacterial Reverse Mutation Test, pp. 1-344.
14. OECD/OCDE. (1997) OECD guidelines for the testing of chemicals (No. 471), Bacterial Reverse Mutation Test, pp. 1-344.
15. OECD/OCDE. (1997) OECD guidelines for the testing of chemicals (No. 471), Bacterial Reverse Mutation Test, pp. 1-344.
16. OECD/OCDE. (1997) OECD guidelines for the testing of chemicals (No. 471), Bacterial Reverse Mutation Test, pp. 1-344.
17. OECD/OCDE. (1997) OECD guidelines for the testing of chemicals (No. 471), Bacterial Reverse Mutation Test, pp. 1-344.