Collimated Electron Jets by Intense Laser Beam-Plasma Surface Interaction under Oblique Incidence

H. Ruhl∗

Theoretische Quantenelektronik, TU Darmstadt, Hochschulstrasse 4A, 64289 Darmstadt, Germany

Y. Sentoku†, K. Mina, K.A. Tanaka(1), and R. Kodama

Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita Osaka, 565, Japan

(1) Department of Electromagnetic Energy Engineering and Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita Osaka, 565, Japan

(Febuary 1, 2022)

Oblique incidence of a p-polarized laser beam on a fully ionized plasma with a low density plasma corona is investigated numerically by Particle-In-Cell and Vlasov simulations in two dimensions. A single narrow self-focused current jet of energetic electrons is observed to be projected into the corona nearly normal to the target. Magnetic fields enhance the penetration depth of the electrons into the corona. A scaling law for the angle of the ejected electrons with incident laser intensity is given.

52.25.Dg, 52.40.Nk, 52.65.-y

∗Hartmut.Ruhl@physik.th-darmstadt.de
†sentoku@ile.osaka-u.ac.jp
The availability of tabletop high intensity laser systems has lead to the investigation of novel regimes of short pulse laser-plasma interaction. Recently the emission of collimated electron jets under specular angles with respect to the density normal direction have been observed for an obliquely incident laser beam on a steep density plasma.

When a target is irradiated by an intense laser pulse above the field ionization threshold it quickly ionizes. For sufficiently long laser pulse irradiation the plasma present on the surface gradually expands into the vacuum with the ion acoustic speed. Hence, a plasma corona is formed. For short laser pulses there is not enough time for hydrodynamic expansion. Short pulse simulations show however, that an ion shelf is formed on a typical time scale \(t_s = \omega_0^{-1}(m_i/Zm_e)^{1/2} \) due to the generation of a strong electric field at the plasma-vacuum interface. This ion shelf represents a low density plasma corona.

There are different mechanisms which can lead to collimated electron jets when an intense laser pulse interacts with a vastly over-dense, steep density plasma that has a low density plasma corona. One effect that plays a role in the interaction is the Brunel effect which works for oblique incidence. Here the electrons are accelerated into the vacuum as well as into the target by the electric field present along the density gradient. The coronal plasma is expected to collimate and enhance the range of the ejected electrons in two (2D) or three (3D) spatial dimensions by quasi-steady magnetic field generation. The collimating effect of quasi-steady fields has recently been addressed in a different context.

To investigate the phenomenon just outlined in more detail we perform Particle-In-Cell (PIC) and Vlasov (VL) simulations both in two spatial dimensions (2D). In both approaches we do not simulate the evolution of the corona self-consistently but treat it parametrically with ions fixed. In our PIC simulations we rotate the target and in our VL simulations we set the frame of normal incidence to model oblique incidence of the laser beam. The boost frame method is well established in 1D. However, in 2D using the boost frame is very helpful in establishing the physics of the underlying laser-plasma interaction.

We investigate the interaction of a \(p \)-polarized laser beam incident under angles of 30° (PIC) and 45° (VL) on a preformed fully ionized target with an under-dense plasma corona in front of it. In both simulations the laser beam has a duration of about 100fs. For the PIC case the laser beam intensity is \(2.0 \cdot 10^{18} \text{W/cm}^2 \) and for the VL case \(1.0 \cdot 10^{17} \text{W/cm}^2 \). The laser wavelength in the simulations is 1\(\mu \text{m} \) with beam diameters of 8 \(\mu \text{m} \) (PIC) and 5 \(\mu \text{m} \) (VL) at full-width-half-maximum. The coordinates of the simulation box are \(x \) and \(y \), respectively. The size of the simulation box is 23 \(\mu \text{m} \times 23 \mu \text{m} \) for the PIC simulations and 6 \(\mu \text{m} \times 12 \mu \text{m} \) for the VL simulations. In our PIC simulations we assume mirror-reflecting boundary conditions for the electrons in \(x \)- and \(y \)-directions. In the VL simulations we use periodic boundary conditions in \(y \)-direction. Electrons leaving the simulation box at \(x = 6 \mu \text{m} \) are replaced by thermal electrons and at \(x = 0 \mu \text{m} \) they are allowed to escape. We note that mirror-reflecting boundary conditions in our PIC simulations force us to increase the simulation box for long simulation times. The distribution functions for the electrons and ions needed for the VL simulations have two momentum directions \(p_x \) and \(p_y \) in addition. The quasi-particle number per cell used in the PIC simulations is 50 for each species. The fully ionized plasma density is \(4n_e \) (PIC) and \(8n_e \) (VL). In both simulations we assume a uniform low density plasma corona with a density of 0.1\(n_e \) in front of the target.

Plot (a) of Figure 1 gives the quasi-steady magnetic field \(B_x \) in front of the target inclined at 30°, as obtained by PIC simulations. The peak magnitude of the normalized magnetic field is 0.62, which corresponds to approximately 30 MG. It changes polarity very rapidly along the density gradient revealing the presence of a very localized self-focused current jet. The low density plasma corona guarantees quasi-neutrality and helps to generate the magnetic field in front of the target. Plot (b) of the same figure shows the electron energy density. We find a collimated electron jet which coincides with the quasi-steady magnetic field from plot (a). For the parameters of plot (b) the ejection angle is approximately 17° form the target normal. There are also fast electrons injected into the over-dense plasma. We again observe that they are almost normal to the target surface. Figure 1(c) shows the instantaneous plot of the electron energy density with over-plotted positive \(B_x \) field indicating the phase of the laser field. It is clearly seen that the outgoing electrons are generated on the target surface once per laser cycle by the Brunel absorption mechanism and are bunched on the scale of the laser wavelength consequently. The range of the electrons is enhanced. A similar result we obtain from our VL simulations which make use of boost frame coordinates.

To illustrate how the boost frame approach for oblique incidence in 2D works we briefly derive the correct boundary conditions for the laser pulse in the boosted frame. We start by defining an arbitrary pulse envelope function \(z(x, y, t) \) in the lab-frame. Next we perform a Lorentz rotation of electromagnetic fields about \((x_0, y_0) \). In the final step we boost the latter to the frame of normal incidence for which the longitudinal field \(E_x \) disappears. We obtain

\[
E_x^B = 0, \quad E_y^B = \frac{1}{\gamma} z(x_r, y_r, t), \quad B_z^B = \frac{1}{c\gamma} z(x_r, y_r, t),
\]

where
\[x_r = \frac{1}{\bar{\gamma}}(x - x_0) + (y - y_0)\bar{\beta}, \quad y_r = \frac{1}{\bar{\gamma}}(y - y_0) - (x - x_0)\bar{\beta}, \]

(2)

with

\[t = \frac{\bar{\gamma} \bar{\beta}}{c} y^B, \quad x = -ct^B, \quad y = \bar{\gamma} y^B. \]

(3)

The function \(z \) is the same function as in the lab-frame. For the relativistic factors we have \(\bar{\beta} = \sin \theta \) and \(\bar{\gamma} = 1/\cos \theta \), where \(\theta \) is the angle of incidence. Plot (a) of Figure 3 illustrates the incident time resolved electromagnetic field \(E_y \) for a Gaussian pulse envelope. Plot (b) of the same figure gives the incident time resolved electromagnetic field \(E_y \) of the simulations.

Plot (a) of Figure 3 gives the quasi-steady magnetic field in the plasma corona in front of the over-dense plasma target. Plot (b) of the same figure gives the quasi-steady magnetic field with the quasi-steady \(B_x^0 \) over-plotted (red solid lines). Plot (c) of Figure 3 gives the quasi-steady magnetic field with the quasi-steady longitudinal current density \(j_{xe} \) over-plotted (red dashed lines).

Since the current density \(j_{xe} \) is invariant under Lorentz boosts along \(y \) it may serve as a quantity from which to determine the direction of the electron jets. We now introduce the coordinates \(\chi = x^B + y^B \) which move along with the background plasma current present in the boosted frame. Since the time-averaged current density \(\langle j_{xe}^B \rangle \) in the co-moving coordinates varies slowly with time we obtain \(\langle j_{xe}^B \rangle (x^B, y^B, t^B) = \langle j_{xe}^B \rangle (\chi, \xi) \). This yields

\[\langle j_{xe}^B \rangle (\chi, \xi) = \langle j_{xe}^B \rangle (\chi, \bar{\gamma} \xi) . \]

(4)

The direction of the collimated electron jets in the lab frame can now be calculated from the direction of the current density in the boosted frame. Plot (c) of Figure 3 gives \(\langle j_{xe}^B \rangle \). The direction of the emitted electrons is indicated by the white solid line plotted in the figure. We obtain a mean emission angle of 20° in the boosted frame and 14° in the lab frame. We note that the lab frame is dilated in transverse direction when viewed from the boosted frame and hence the emission angle in the boost frame is larger by a factor of \(\bar{\gamma} = 1/\sqrt{1 - \beta^2} \) as indicated by Equation (4).

In boost frame coordinates we may easily analyze the physical mechanism that leads to the large areal quasi-steady magnetic field and the direction of the ejected electrons. We recall that in the boosted frame we have a constant background fluid velocity \(u_B = c \sin \theta \) which approaches speed of light for large angles of incidence. In this frame the polarization of the magnetic field vector of the incident laser beam is normal to the \(xy \)-plane and to the flow direction of the background current. If the laser intensity is small enough as in [1] and the angle of incidence sufficiently large the boost velocity exceeds the laser quiver velocity. The driving force under these conditions is exerted predominantly by the oscillating magnetic field of the laser beam (see the red solid contour lines of \(B_x^0 \) plotted over \(B_x \) in plot (b) of Figure 3 for the location of the force). The resulting force is \(F = -e \ u_B \times B \) and is capable of ejecting electrons out of the surface at a rate of once per laser cycle. This is the Brunel mechanism [4]. The quasi-steady magnetic field in the plasma corona is generated by the electron current emitted from the target. The polarization of the magnetic field is such that it collimates the electrons propagating through the plasma corona.

To derive an approximate criterion for the range angle under which the fast electrons are emitted from the target surface we assume that the target laser interaction in the boosted frame is quasi-one-dimensional. Since the full-width-half-maximum of the laser beams in our simulations is at least 5 \(\mu \)m and the intensities are sufficiently low to prevent target imprinting we believe that this assumption is justified. We next rewrite the Vlasov equation in the boosted frame [1] and solve it for an initial Maxwellian. We approximate the plasma-vacuum interface by a step-like density profile with \(n(x) = n_0 \) for \(x > 0 \) and treat the ions as immobile. We obtain for the distribution function

\[f(t) = \frac{n_0}{\sqrt{2\pi} m^3 v_{th}^3} \exp \left(-\frac{p_x^2(0) + p_y^2(0)}{2m^2 v_{th}^2} \right) \exp \left(-\frac{(p_y(0) + \bar{\beta} \gamma mc)^2}{2\bar{\gamma}^2 m^2 v_{th}^2} \right), \]

(5)

and for the equations of motion

\[x(\tau) = x - \int_\tau^t d\eta \ v_x(\eta), \]

(6)

\[p_x(\tau) = p_x + e \int_\tau^t d\eta \ [E_x(x(\eta), \eta) + v_y(\eta) \ \partial_x A_y(x(\eta), \eta)] , \]

(7)

\[p_y(\tau) = p_y + e \ [A_y(x(\tau), \tau) - A_y(x(t))], \]

(8)

\[p_z(\tau) = p_z , \]

(9)
with

\[v_{x/y}(\tau) = \frac{c p_x(\tau)}{\sqrt{m^2c^2 + p_x^2(\tau) + p_y^2(\tau) + p_z^2(\tau)}}. \] (10)

Equations (9) and (10) indicate lateral canonical momentum conservation in boost frame coordinates. We now assume that \(A_y \) has a harmonic time dependence. Making use of Equations (9) and (10) and assuming \(v_x \ll c \) or \(v_x \approx c \) we obtain \(\langle p_x \rangle \approx -\beta \gamma mc \). The quantity \(\langle p_x \rangle \) denotes the ensemble and time averaged transverse momentum. Treating \(\langle p_x \rangle \) as a free parameter and transforming back to the lab frame yields

\[\langle p_y^L \rangle = \gamma^2 \beta mc \left(\sqrt{1 + \frac{\langle p_y^2 \rangle}{\gamma^2 m^2 c^2}} - 1 \right), \quad \langle p_z^L \rangle = \langle p_x \rangle. \] (11)

The ejection angle is now given by \(\tan \theta' = \langle p_y^L \rangle / \langle p_x^L \rangle \). For \(\langle p_x \rangle \to \infty \) we obtain \(\tan \theta' = \beta \gamma = \tan \theta \). This means that only ultrarelativistic electrons are ejected at very close to specular direction. For smaller longitudinal momenta \(\langle p_x \rangle \) we expect that the electrons are emitted at angles that are smaller than the angle for specular emission as observed in our simulations. Assuming that the mean fast electron momentum in \(x \)-direction is given by \(\langle p_x \rangle / \gamma mc \approx \sqrt{\alpha I \lambda^2} \) we thus obtain

\[\tan \theta' = \frac{\sqrt{1 + \alpha I \lambda^2} - 1}{\sqrt{\alpha I \lambda^2}} \tan \theta. \] (12)

Equation (12) looses validity as soon as target deformations start to become significant. The validity also depends on the accuracy of the mean longitudinal momentum given as a function of intensity. For \(I \lambda^2 = 1.0 \cdot 10^{17} \text{Wcm}^{-2} \mu \text{m}^2 \) we obtain an ejection angle of \(\theta' = 14^\circ \) and for \(I \lambda^2 = 2.0 \cdot 10^{18} \text{Wcm}^{-2} \mu \text{m}^2 \) we obtain \(\theta' = 17^\circ \) from the simulations. This yields \(\alpha^{-1} \approx 8.0 \cdot 10^{17} \text{Wcm}^{-2} \mu \text{m}^2 \).

In conclusion, we have demonstrated with the help of two different simulation techniques that collimated electrons with enhanced range can be emitted from an over-dense target if a low density plasma corona is present. In addition, we have shown that fast electrons are injected into the over-dense plasma. Both, the ejection and injection directions are almost along the density normal direction for \(p \)-polarized light. By a transformation to the moving frame in which the laser pulse appears to be normally incident we were able to give a criterion for the angle range of the emitted electrons with ejection momentum. We find that for a planar interaction interface only speed of light electrons can be emitted at specular direction for \(p \)-polarized light. Less energetic electrons appear under almost normal emission angles due to a lack of lateral momentum transfer. This analytical result is in qualitative agreement with our numerical observations. We note that in addition to the mechanism outlined in this paper other mechanisms of fast electron generation like wake-field acceleration in the corona may exist leading to different emission angles.

[1] S. Bastiani et al., Phys. Rev. E 56, 7179 (1997).
[2] D. Bauer et al., Phys. Rev. E 58, 2436 (1998).
[3] Paul Gibbon, Phys. Rev. Lett. 73, 664 (1994).
[4] F. Brunel, Phys. Rev. Lett 59, 52 (1987).
[5] L. Gorbunov et al., Phys. Plasmas 4, 4358 (1997).
[6] A. Pukhov and J. Meyer-ter-Vehn 79, 2686 (1997).
[7] A. Bourdier, Phys. Fluids 26, 1804 (1983).
[8] H. Ruhl and P. Mulser, Phys. Lett. A 205, 388 (1995).
[9] Paul Gibbon, Phys. Rev. Lett. 73, 664 (1994).
[10] H. Ruhl and A. Cairns, Phys. Plasmas 4, 2246 (1997).

FIG. 1. Quasi-steady magnetic field \(B_x \) (a), quasi-steady electron energy density \(\epsilon \) (b), and instantaneous electron energy density with the laser field \(B_z \) (c). Yellow contour areas are positive and blue areas negative. The parameters are \(n/n_{\text{crit}} = 4 \), \(I \lambda^2 = 2.0 \cdot 10^{18} \text{Wcm}^{-2} \mu \text{m}^2 \), \(\theta = 30^\circ \), \(t = 120 \text{fs} \), and \(B_{\text{ad}} = 100 \mu \text{G} \).
FIG. 2. Illustration of the boost technique in 2D for an incident laser pulse of Gaussian pulse envelope (a) and time resolved E_y taken in the simulations (b). The left figure in (a) gives the incident pulse, the figure in the middle gives the pulse after a rotation, and the right figure shows the pulse after the final boost. The arrows in (a) indicate the propagation direction of the laser pulse. The white solid lines in (b) give the density profile. The parameters for (b) are $n/n_{crit} = 8$, $I\lambda^2 = 1.0 \cdot 10^{17}\text{Wcm}^{-2}\text{\mu m}^2$, $\theta = 45^\circ$, and $t = 25\text{fs}$.

FIG. 3. Quasi-steady B_x (a), quasi-steady B_x with quasi-steady B_z^2 over-plotted (b), and quasi-steady B_x with current density over-plotted (c). Yellow contour areas are positive and blue areas negative. The white solid lines along y located between $x = 4\mu m$ and $x = 5\mu m$ are density iso-contours. The other lines over-plotted in (a) indicate the quasi-steady magnetic field. They are along $x = 3.63\mu m$ (solid) and $y = 7.18\mu m$ (dashed). The parameters are $n/n_{crit} = 8$, $I\lambda^2 = 1.0 \cdot 10^{17}\text{Wcm}^{-2}\text{\mu m}^2$, $\theta = 45^\circ$, $t = 75\text{fs}$, and $B_0 = 1.5\text{MG}$.
This figure "FIG1.gif" is available in "gif" format from:

http://arxiv.org/ps/physics/9807021v2
This figure "FIG2.gif" is available in "gif" format from:

http://arxiv.org/ps/physics/9807021v2
This figure "FIG3.gif" is available in "gif" format from:

http://arxiv.org/ps/physics/9807021v2