Dynamic Evaluation of Policy Feasibility, Feedbacks and the Ambitions of COALitions

Stephen Bi (stephen.bi@pik-potsdam.de)
Potsdam Institute for Climate Impact Research https://orcid.org/0000-0001-9631-9793

Nico Bauer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Germany
https://orcid.org/0000-0002-0211-4162

Jessica Jewell
Chalmers University of Technology https://orcid.org/0000-0003-2846-9081

Article

Keywords: coal phase-out, climate coalitions, political feasibility, integrated assessment modeling, empirical socio-political models, energy system feedbacks, model coupling

Posted Date: November 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-827021/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Dynamic Evaluation of Policy Feasibility, Feedbacks and the Ambitions of COALitions

STEPHEN L BI1,2*, NICO BAUER1 AND JESSICA JEWELL3,4,5

1Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
2Technical University of Berlin, Berlin, Germany
3Chalmers University of Technology, Gothenburg, Sweden
4University of Bergen, Bergen, Norway
5International Institute for Applied Systems Analysis, Laxenburg, Austria

*Corresponding author, email: stephen.bi@pik-potsdam.de

Abstract

While the Paris Agreement instituted bottom-up coordination into international climate negotiations, state-of-the-art integrated assessment models (IAMs) implement policies from the top-down, distributing burdens subjectively or normatively. Here, we introduce the first evidence-based approach for emulating real-world policymaking, Dynamic Policy Evaluation (DPE). Just as IAMs rely on empirical relationships to prospectively quantify myriad techno-economic variables and simulate investment activity, DPE endogenises national policy adoption based on observed causations between IAM variables and political decisions. We demonstrate DPE on the Powering Past Coal Alliance (PPCA) via iterative feedback loops between the IAM REMIND and a policy feasibility model, deriving probabilistic scenarios with multi-stage accession. Our scenarios estimate baseline ambition toward “consigning coal to history,” the 1.5°C-consistent entry point prioritised by COP26, exposing the potential loophole of non-electric coal demand and other carbon leakage risks. We then assess path-dependencies of PPCA expansion to Covid-19 recovery actions, illustrating DPE’s utility for exploring policy interactions.

Introduction

Under the Paris Agreement, 175 nations agreed to common-but-differentiated responsibilities toward limiting global warming to 1.5-2°C above pre-industrial levels. While cost-effectiveness analyses (CEA) by integrated assessment models (IAMs) derive techno-economically and geophysically feasible pathways to achieve the climate targets, the political feasibility of these scenarios is under scrutiny. Socio-political barriers are well-acknowledged, typically analysed through exogenously-determined ‘second-best’ scenarios, such as delayed action, regionally-differentiated ambition, or technological skepticism. However, these still presume global policy coordination, which appears infeasible in a bottom-up international regime without credible enforcement mechanisms. Two methodological innovations are necessary to achieve this: (i) to objectively and dynamically quantify policy feasibility and diffusivity, and (ii) to harness bidirectional feedbacks between national policy adoption and the global energy economy.
Here, we introduce dynamic policy evaluation (DPE), a novel IAM approach (Table 1) which fulfills both requirements to endogenise bottom-up policy coordination. Given that IAMs derive long-term energy system investment patterns consistent with empirical data and anticipated socioeconomic trends, it follows that observed policy developments can be coherently extrapolated in parallel. Recent empirical research has begun to codify causal links between national techno-economic contexts and real-world political decisions17–19, and vice-versa20. DPE merges this knowledge with SPE. To wit, SPE captures the global energy system impacts of an emerging policy initiative in the variables computed, which can be input to empirical models that then systematically define policy stringencies across model regions and periods for a subsequent scenario (Methods; Figure M2). This iterative feedback loop mimics the co-evolution of energy economics and energy politics; each government’s behavior can be influenced by the actions of any other nation(s) or perturbations to the system.

IAM Approach	Research Question	Coal Phase-Out Insight	Feasibility Focus
Cost-Effectiveness Analysis (CEA)	What policy actions and ambition levels are required to achieve cost-optimal pathways toward an environmental goal (e.g. Paris climate targets)?	Coal is often phased out by 2050 in cost-efficient, Paris-compliant, benchmark scenarios21,22.	Endogenous assessment of a target’s techno-economic feasibility given assumptions on future technology and socioeconomic developments that may include political feasibility constraints.
Stated Policy Evaluation (SPE)	What are the long-term outcomes if revealed or stated ambition essentially remains static over time?	Current PPCA members abate 2.5 GtCO\textsubscript{2} of emissions from coal-fired electricity18.	Assessment of current policies or pledges assumed to be politically feasible but also to remain static. Often used as baseline reference scenarios.
Policy Evaluation Analysis (PEA)	What could a given policy (or policy suite) accomplish towards a stated goal if adopted globally or in a predetermined coalition?	A global coal exit by ~2050 can account for half the emissions reductions required for the 2°C Paris climate target23.	Assessment of long-term impacts of hypothetical policy options with endogenous technological feasibility and exogenous prescription of political feasibility (or global policy adoption).
Dynamic Policy Evaluation (DPE)	Given diverse and fluid national contexts, how does the implied global ambition toward a bottom-up initiative compare to its stated goals? How do the policy’s energy system impacts affect the coalition’s future growth?	As global systems and national politics co-evolve, where will coal phase-out policies become politically feasible, and how much coal can be expected to phase-out by 2050?	Concurrent endogenous assessment of a policy’s techno-economic feasibility via IAM and political feasibility via empirical analysis of IAM scenario data. This inter-disciplinary coupling captures reciprocal feedbacks between policy adoption and the energy system, improving realism of future policy uptake and thus emissions.

Table 1. Approaches to IAM scenario analysis compared. Dynamic policy evaluation merges the divide between energy-economy models (e.g. IAMs), which excel in depicting long-term techno-economic feasibility, and social science research, which excels at understanding today’s technology and policy landscape. DPE endogenises feedbacks between the two analytical approaches to embed socio-political dynamics into IAM scenarios, improving conventional SPE representations of baseline policy ambition and opening new doors for research on politically feasible mitigation strategies. The present study demonstrates DPE on the coal phase-out agenda.

CEA-derived mitigation strategies and international negotiations frequently prioritize the phase-out of coal21,22,24, owing to its low economic value, high emissions factor, readier substitutes, and longer-lived capital relative to other fossil fuels25–28. The aggregate desirability of abandoning coal is further underscored by PEA demonstrations of the health and environmental benefits25. The socio-political feasibility, meanwhile, remains underexplored18,29,30. As some nations continue to commission coal-fired power plants19,31–33 (Table 2), others have formed the Powering Past Coal Alliance (PPCA), an opt-in initiative aspiring to eradicate “unabated coal-fired electricity” by 2030 in the OECD and EU, and by 2050 in developing and emerging economies34.
Although the 41 current national PPCA members comprise just 5.1% of global coal-fired electricity, this constitutes a doubling since Jewell et al. (2019). Despite grave uncertainty, SPE and PEA can essentially only depict all-or-nothing outcomes for the coal phase-out agenda (Table 1). Using DPE, we fill this exigent research gap and address the following research questions. Under standard baseline assumptions, which countries can be reasonably expected to accede, and what constitutes a plausible range of outcomes? Can the PPCA’s sector-specific policy foster Paris-consistent coal declines, or is economy-wide coverage necessary? What are the relative effects of carbon leakage and renewable technology spillovers on PPCA evolution? Finally, how path-dependent is PPCA growth and efficacy to near-term coal demand uncertainties after Covid-19?13

World Region	Operating Capacity (GW)	Mean Plant Age (yrs)	Mean Lifespan (yrs)	Capacity Pipeline (GW)	Project Completion Rates	Implied Emissions (GtCO₂)
Canada, AUS, NZ	34.4	33.1	40.2	5.2	35.5%	1.96
China	1028.4	11.2	22.2	285.6	54.8%	78.25
EU-27 + UK	141.5	32.8	42.0	1.8	43.2%	8.26
Former Soviet Union	85.8	42.8	51.2	5.6	47.4%	4.57
India	225.7	12.3	38.9	102.7	35.8%	34.73
Japan	47.2	22.3	36.9	9.8	71.0%	5.68
Latin America	17.5	18.1	31.6	5.2	40.1%	2.19
MENA	9.2	21.3	36.9	19.9	43.2%	1.06
Non-EU Europe	26.4	22.2	48.0	29.5	41.8%	5.93
Other Asian States	129.2	11.7	35.0	154.9	58.8%	25.57
Sub-Saharan Africa	44.1	31.2	48.0	34.9	39.7%	2.21
USA	248.8	40.5	48.9	0.0	1.4%	13.89
World	**2058.1**	**18.5**	**31.1**	**655.1**	**50.1%**	**184.3**

Table 2. Bottom-up coal power capacity statistics aggregated to REMIND’s 12 world-region level, including the operating capacity in 2020, the capacity-weighted mean age of operating plants, the historical capacity-weighted mean lifespan, currently planned capacity, and the completion rate of pipeline projects from 2014-2020. The final column calculates the implied total emissions from operating and planned coal plants if these historical values are held constant in the future (neutral Covid recovery scenario). See Table A3 for implied emissions of other recovery scenarios, and Table A2 for planned capacity and completion rates of each project phase.

We define an outcome as socio-politically feasible if there are actors who have the capacity to realise it in a given context. Thus, a national energy and climate policy is feasible if it aligns with state imperatives and if the state has sufficient capacity to overcome vested interests. For the coal phase-out arena, Jewell et al. (2019) defined a dynamic feasibility space (DFS) in terms of national likelihoods of joining the PPCA. Specifically, the study analysed a pool of 2,036 regression models, permuting eleven independent variables seeking to explain PPCA membership, and established that high per-capita GDP and low reliance on coal for electricity supply (coal-power-share) have particularly strong explanatory power (Figure 2a). In a first attempt to quantify future policy feasibility, we use the IAM REMIND to provide scenario data to the DFS via the novel COALogit model, which employs spatial downscaling routines and probabilistic thresholds, or ‘socio-political tipping points,’ within the PPCA-DFS to iteratively define country-level, evidence-based scenarios of PPCA growth for REMIND analysis (Figure 2; see Methods).
Figure 1. Dynamic Policy Evaluation depicted as a cyclical, iterative interface between techno-economic and socio-political analyses, both in the present study (inner circle and parentheses) and in the broader context of integrating IAMs and social sciences (outer circle). Policy feedbacks in this study begin with the impacts of currently legislated coal exits on national energy sectors, regional energy systems, and the global energy market, i.e. dynamic actors and contexts, via REMIND-endogenous effects (inner blue hexagon). REMIND feeds future per-capita GDP and coal-power-shares to COALogit, which infers national probabilities of PPCA accession. These political prospects are translated to coalition scenarios and policy stringency coefficients (Methods) which inform regionally-differentiated policy uptake in REMIND. Staged accession is simulated by repeating the cycle in different model time-steps.
Results

Scenario Implementation

To address these questions, we model 18 scenarios investigating three dimensions: coalition expansion, policy ambition, and Covid-19 recovery (Table 3). The REMIND-COALogit model-coupling framework mimics the PPCA’s staged accession through an iterative cascade (Figure M4) which dynamically fragments policy stringency across model regions. We first analyse the energy system impacts of our ‘median-estimate’ probable-neutral scenarios alongside the analogous probable-brown scenarios, selected for the divergence in China’s behavior (Figure 2c+d):

1. **Power-2p-N** (power-exit policy – 50%-probable coalition – neutral recovery)
2. **Power-2p-B** (power-exit – 50%-probable – brown)
3. **Demand-2p-N** (demand-exit – 50%-probable – neutral)
4. **Demand-2p-B** (demand-exit – 50%-probable – brown)

Thereafter, we analyse sensitivities across each dimension using efficacy indices for coal phase-out and climate mitigation which compare scenarios on unit scales, where 0 represents reference (NPI) coal consumption or CO₂ emissions and 1 corresponds to 1.5°C levels.
IAM Mode	Analysis Dimension	Scenario Name	Scenario Definition
DPE	Coalition Expansion (endogenous)	1p (proven)	Real-world PPCA members (Table SF1) and nations assigned ≥95% probability of coalition accession by COALogit
		2p (probable)	1p plus nations above 50% coalition threshold
		3p (possible)	2p plus nations above 5% coalition threshold
PEA	Policy Ambition (exogenous)	Power-exit	Unabated coal-fired electricity phase-out by 2030 in OECD+EU coalition members and 2050 in non-OECD+EU coalition members (verbatim PPCA declaration)
		Demand-exit	Unabated coal consumption phase-out along same timeline, except metallurgical coal is permitted a ten-year delay (2040 and 2060 deadlines) to reflect steel decarbonisation inertia and China’s 2060 carbon neutrality pledge⁴⁰.
SPE	Reference Scenario	NPi(-covid)	Currently-implemented national policies, a revealed-ambition scenario serving as our baseline. We model four variations: NPi-N, NPi-B, and NPi-G, which correspond to each Covid recovery scenario, and NPi-default, without Covid constraints.
	External Scenarios	NDC(-covid)	Stated-ambition scenario assuming full compliance with the first-round ‘nationally-determined contributions’ to the Paris Agreement. We model three Covid-dependent variations (NDC-N, NDC-B, NDC-G).
CEA	Benchmark Scenarios	WB-2C	‘Well-below 2°C’, a scenario with >67% likelihood of limiting global mean temperature rise to <2°C above pre-industrial levels throughout the century. Without Covid constraints.
		Hi-1.5C	‘Higher 1.5°C’, a scenario with >50% chance of achieving the 1.5°C target in 2100 with a moderate allowance of temporary mid-century temperature overshoot. No Covid constraints.
		1.5C	Scenario with >67% probability of achieving 1.5°C and a 50% chance of temporary overshoot by <0.1°C. Along with NPi-default, used to define efficacy indices (Figure 4). No Covid constraints.

Table 3. Definition of each scenario within each dimension of analysis, including reference and benchmarks.

The 18 total DPE-PPCA scenarios cover every unique combination of the three ‘PPCA scenario elements’. The 2p coalition and neutral recovery represent our default set of assumptions, while the other scenarios are included for sensitivity analysis. We consider the two policy options (or a mixture thereof) to be similarly probable, so both are presented in detail as ‘median-estimate’ scenarios.
Power-Exit

OECD+EU 2p-N Accession by 2025

Following a neutral Covid-19 recovery, operating coal power capacity in 2025 declines 10% from 2020 to 1850GW globally (Appendix I), corresponding to a 0.8EJ/yr reduction in coal-fired power generation. The resulting trends in national coal-power-shares and the general upward movement of per-capita GDP along the ‘Middle-of-the-Road’ SSP2 development trajectory lead 45 of 48 OECD+EU nations to exceed a 50% accession probability by 2025 (Figure 2b). COALogit assigns these nations to the 2p-N coalition, and the power-2p-N REMIND scenario applies the power-exit policy to them in 2030.

Non-OECD+EU 2p-N Accession by 2045

Using results from these intermediate REMIND scenarios (Table M2), COALogit assesses the propensity of non-OECD+EU countries to adopt a 2050 power-exit based on their per-capita GDP and coal-power-shares in 2045. We find that 137 of 201 non-OECD nations cross the 2p-neutral threshold, so the full power-2p-N coalition comprises 182 members representing 82% of 2020 coal power generation, of which 70% was in non-OECD members.

2p-B Accession

The brown recovery, meanwhile, increases coal-fired capacity by 13% (to 2320GW) and generation by 0.8EJ/yr globally from 2020-2025. Coal-power-shares thus deviate from the neutral recovery, but per-capita GDP develops identically. This leads Chile and China to abstain from accession (Figure 2d), so the power-2p-B scenario consists of 44 OECD and 136 non-OECD members, representing 36% of 2020 coal-fired electricity, 70% of which was generated by OECD nations.

Coal Market Response

The power-2p-N coalition reduces their cumulative 2020-2100 unabated coal-fired electricity by 38% compared to NPI-neutral (NPI-N) (Figure 3a). Depression of global coal market price reaches 8% by 2050, leading to a 54% global coal leakage rate – i.e. each joule of coal phased-out incentivises 0.54J of coal use in another sector or country. Meanwhile, power-2p-B coalition members reduce their reference coal electricity 24% – viz. China’s abstention decreases the magnitude of the first-order effect by 80% – while coal leakage rises to 63% globally. Extra-coalition coal power demand counterintuitively declines in both scenarios, complemented by increased coal-to-liquids (CTL) and solids consumption. In either case, coalition members contribute 80% of the global coal leakage, vastly exceeding the conventional free-rider problem.

Energy System Response

Figure 3b illustrates the overall primary energy (PE) demand impacts of these power-2p scenarios. Oil and gas (O&G) account for two-thirds of the fuel switching during the OECD stage (2020-2035; see Figure M4) of power-2p-N. After the non-OECD phase-out commences in 2035, VRE dominates 93% of the energy system response. The latter phenomenon is not evident in the power-2p-B coalition, illustrating China’s importance for VRE penetration and learning-by-doing spillovers. The benefits remain within the coalition, however, as VRE diffusion into free-riders increases minimally (<0.5%) in either scenario. A global scale-back of end-use electrification across all sectors (Figure SF3b), dually disincentivised by higher power system capital costs and cheaper coal-based solids and liquids, is an apparent limiting factor of additional VRE deployment. Globally, we calculate carbon leakage rates of 54% in power-2p-N and 76% in power-2p-B, over 85% of which occurs intra-coalition in both cases.
a) Cumulative, 2020-2100

PE Coal Demand Shifts - Power Exit 2p

	Coalition	Freeriders
Neutral	+130 EJ,	+61 EJ,
	-98 EJ	-109 EJ
Brown	+7 EJ,	+112 EJ,
	-20 EJ	-60 EJ
	-199 EJ	-45 EJ

b) Inter-Fuel PE Substitution - Power Exit 2p

	Coalition	Freeriders
Neutral	+3 EJ,	+8 EJ,
	+2 EJ	-20 EJ
	+192 EJ,	+21 EJ
Brown	+3 EJ	+2 EJ
	-9 EJ	-5 EJ
Figure 3. Annual differences in coal (a + c) or primary energy (b + d) demand from NPi in probable power-exit (a-b) and demand-exit (c-d) scenarios, with the cumulative differences denoted by labels. Columns distinguish between coalition members and free-riders in the Covid recovery scenario represented by each row. Coal demand is given in primary energy (PE) values and categorised by secondary energy (SE) conversion route. Generally, negative areas in the ‘Coalition’ column reflect the intended policy effect, while all other differences indicate system feedbacks.
Power-exit Policy Evaluation

At the global level, the power-2p-N policy-coalition scenario reduces coal use by 450EJ compared to NPi-N. Indexed to NPi-default, this achieves just 1.2% of the cost-efficient coal phase-out derived in the 1.5°C scenario. Thus, the median-estimate power-exit scores just .01 on the coal-exit efficacy index (Figure 4). The climate mitigation efficacy is even lower, scoring .01 (saving 6GtCO₂). Still, these are considerably better outcomes than power-2p-B, which underperform NPi-default on both indices (.02 and -.01, respectively), implying that a global brown recovery from the Covid-19 recession may outweigh the PPCA’s long-term coal and emissions reduction prospects. In any event, the verbatim power-exit contributes negligibly toward Paris-consistent abatement, assuming weak strengthening of global carbon pricing and non-electric sector regulations.

Demand-Exit

Coalition Expansion

For the demand-exit, COALogit returns a 2p-neutral coalition scenario identical to power-2p-N. These 182 members comprise 81% of global coal demand in 2020, 25% of which was from OECD frontrunners. The demand-2p-brown coalition contains just one fewer member than power-2p-B (Serbia), totaling 179 nations which comprise 32% of 2020 coal demand. OECD members represent a 60% share.

Alliance Members

From 2020-2100, both demand-2p-N and demand-2p-B coalition members phase-out over three-quarters of their respective NPi coal consumption. CtL accounts for 68% of this decline in 2p-neutral (77% in 2p-brown) and solids for 18% (17%), while unabated electricity only constitutes 10% (3%) (Figure 3c). Intra-coalition oil demand surges 25% in both scenarios due to an oil-for-CtL swap in transport (Figure 3d), and gas demand increases 9% (8%), as industry’s coal transition is divided between gasification and electrification (Figure SF4e). Cumulative VRE deployment increases 12% in 2p-N members but just 4% in 2p-B, 99% (96%) of which occurs post-2035 as the OECD again substitutes their phased-out coal primarily with O&G (~75%). Biomass deployment rises ~15% in either scenario, suggesting China is particularly important for VRE penetration.

Free-riders

The response of free-riding nations in demand-2p-N and demand-2p-B follow similar temporal profiles, albeit with high variance in magnitudes (Figure 3c-d). Free-riders also increase industry electrification and gasification (Figure SF4e), but fuel it with coal (Figure 3c). A knock-on coal-for-oil swap in extra-coalition transport liquids is evident following the OECD phase-out – much stronger when China freerides in the brown recovery – but inverts after non-OECD adoption. Coal drives the entirety of extra-coalition carbon leakage in demand-2p-B (7% rate), which is just 24% of global carbon leakage (30% rate). In demand-2p-N, free-rider leakage rates are slightly net-negative (-1% coal, -0.4% carbon), so intra-coalition emissions are the sole driver of the 18% global carbon leakage rate.

Demand-exit Policy Evaluation

Globally, the demand-2p-N scenario results in a coal phase-out of 10,300EJ from 2020-2100 compared to NPi-N. Isolated from other policies, this 50%-probable Alliance leads to a cumulative 3040GtCO₂ globally, saving 790Gt compared to NPi-N. Hence, moderate growth of a demand-exit coalition leads to efficacy indices of .52 for coal phase-out and .22 for mitigation. China’s abstention is highly detrimental, as demand-2p-B scores .29 and .12, respectively. In both cases, the adverse effect of O&G leakage is evidenced by the ~250% spread between coal and emissions abatement efficacies.
Figure 4. Compilation of all 18 scenarios, assessed for their efficacy relative to 1.5°C pathways in terms of coal phase-out (indicated by the lower x-axis, solid points, and bold font) and CO₂ emissions reductions (upper x-axis, hollow points, italic font). Each scenario is scored on an index between 0 and 1, where 0 represents the NPi reference scenario (without Covid considerations) and 1 corresponds to 1.5°C. For each row, the 2p points can be considered the DPE median estimate, and the range between 1p and 3p indicates the uncertainty range.

Sensitivity Analyses
Coalition Growth
Efficacy Indices
The 95%-probable 1p and 5%-probable 3p coalition scenarios embody the considerable uncertainty inherent to estimating future political decisions. For the demand-neutral case, the 1p-3p range of coal phase-out efficacy is .05–.85, and .02–.37 for emissions mitigation (Figure 4). Power-neutral scenarios have an uncertainty range of -.01–.02 for coal and -.01–.01 for emissions. Therefore, while the demand-exit is highly sensitive to coalition size, the power-exit is robustly inconsequential.

Carbon Leakage
Carbon leakage primarily emerges through coal markets in power-exit scenarios and through inter-fuel substitutions in demand-exit simulations. We find power-1p scenarios to be extraordinary cases which
exhibit >100% leakage rates (237% in power-1p-N). Figure SF4a suggests that the power-exit retards electro-mobility learning, leading to lock-ins of inefficient CtL and oil. This (small-magnitude) feedback is robust to coalition size but becomes overshadowed by other responses, resulting in a 56% carbon leakage rate in power-3p-N.

Comparatively, the demand-exit tempers leakage: 72% in demand-1p-N and 17% in demand-3p-N. Irrespective of policy choice, we find that global carbon leakage rates decrease as the coalition grows, and intra-coalition leakage dwarfs extra-coalition leakage with sufficiently large policy uptake (all 2p and 3p). These findings are all robust across Covid recovery scenarios.

The impact of the power-exit on VRE ranges from -3EJ in 1p-N to 348EJ in 3p-N. The decline in 1p VRE penetration is another consequence of the negative electro-mobility feedback. Bioenergy and other low-carbon energy (Bio&LCE) deployment experiences marginal upticks of 2-55 EJ (1p-3p). Under a demand-exit-neutral regime, these second-order effects range from 112-2070EJ for VRE and 63-1320EJ for Bio&LCE.

We demonstrate that the demand-exit policy is 38x as effective at phasing out coal and 27x as potent at CO$_2$ abatement as the power-exit in our most optimistic scenarios – green Covid recovery with virtually global participation (3p). Figure 5 compares the PE trajectories of demand-3p-G and power-3p-G against NPi-green, NDC-green, and 1.5°C to visualise their aggregate effects and illuminate the remaining transformations necessary. The most glaring divergence between NPi-G and 1.5°C pathways is the 17-fold difference in non-electric coal consumption, which the power-exit further exacerbates.

Figure 5 suggests that natural gas restrictions and bioenergy support are the most urgent priorities after coal, given the sharp, immediate bifurcation between their 1.5°C trajectories and all other pathways. Moreover, demand-3p-G incentivises an additional 780EJ gas and 2100EJ oil (Figure SF2), which can be avoided with immediate and sustained investment in renewable industry and transport fuels.

Our three data-driven scenarios of post-Covid infrastructure (Appendix I) span a range of 1670GW-2320GW of coal power capacity in 2025. DPE demonstrates the path-dependence of PPCA expansion to these near-term uncertainties. Most notably, China accedes in neutral-2p (1070GW national 2025 capacity) and green-2p (980GW) scenarios but abstains in brown-2p (1310GW). Figure 3 illustrates the dynamic impacts of China’s decision while Figure 4 shows the disparities in long-term prospects. We report coal efficacy indices (1p-3p range) of .29 (.03–.76) for demand-brown and .53 (.06–.86) for demand-green, and mitigation efficacy scores of .12 (.01–.33) and .23 (.02–.38), respectively. Power-exit scenarios exhibit minimal overall sensitivity all analysis dimensions, meanwhile, with coal efficacy scores ranging between -.03 (brown-1p) and .02 (green-3p), and mitigation efficacies between -.01 and .01. Nevertheless, these results suggests a robust negative correlation between near-term coal power capacity and long-term PPCA efficacy. Greener public investment and regulatory decisions at this critical juncture not only reduce immediate emissions but also have legacy effects that facilitate future feasibility of coal phase-out policies. Myopic brown recovery packages, meanwhile, would impose substantial strain upon future generations to mobilise the necessary transition.
Figure 5. Maximum potential impact of power- and demand-exit policies on global PE demand trajectories from 2005-2100, in comparison with key benchmark scenarios. The green Covid recovery (-G) results in the most CO₂ and coal abatement in NPi, NDC, and demand-exit scenarios. Although the power-exit is found, against expectations, to be most effective after a brown recovery, its membership rate is highest in the 3p-G coalition scenario, which captures 99.9% of 2020 coal consumption in both policy scenarios. The power-3p-G and demand-3p-G scenarios are thus akin to conventional policy evaluation analyses which assess global policy potential.

Discussion

Interdisciplinary Linkage

The integration of socio-political and techno-economic analyses is an emerging endeavor in climate mitigation research. Thus far, attempts to merge empirical social science research on energy transitions with energy-economy models have not robustly improved the realism of mitigation pathways. Our work confronts this challenge by focusing on political dynamics on a global, relative scale, and by narrowing our independent variable pool to IAM-native techno-economic factors, effectively building on a tradition of validating and improving model assumptions through empirical data. We concede that behavioral, institutional, and cultural factors may hold greater predictive potential, but these fuzzier variables have not yet been prospectively quantified.

The Powerless Power-exit

The PPCA’s power-exit declaration cites Rocha et al., an ex-post ensemble analysis of coal-fired electricity in Paris-consistent CEA pathways of select IAMs and energy system models (ESMs). However, coal power phases out in these scenarios amidst rapid coal and emissions declines economy-wide. The power-sector bias, evident throughout the coal phase-out discourse, may be explained in part by data accessibility barriers. The only open-access, comprehensive, coal-asset-level datasets were power-plant-specific until comparable data on mines and steel plants were published in 2021. We therefore surmise that the PPCA’s sector-exclusivity was motivated by politics – e.g. to encourage maximum participation – and by under-contextualised scientific messaging.

The inadequacy and short-sightedness of the verbatim PPCA is evidenced by the future coal demand profile in REMIND’s NPi scenarios; while electricity accounted for ~60% of 2015 coal use, it represents just 16% cumulatively from 2020-2100 (Figure 5). Moreover, the power-exit generally decreases free-rider coal electricity while CtL and industrial coal use universally increase. Other model baselines robustly corroborate coal demand growth in industry and transport. A recent review suggested that model scenarios are often overly-dependent on coal, but some power sector bias was evident and it
found that coal phases-out most readily in REMIND’s CEA simulations24. The present study does not
dispute the urgency of power sector decarbonisation, as electrification is vital to myriad mitigation
strategies52, but provides grounds for the coalition-of-the-willing to explicitly cover non-electric
sectors.

The Demanding Demand-exit
We acknowledge that COALogit cannot accurately estimate demand-exit feasibility since power-exit
PPCA pledges form our empirical basis. Our analysis assumes perfect interchangeability to directly
compare the two policy options, but a real-world trade-off is anticipated between policy ambition and
coalition growth. Stated political ambition, as insinuated by the first-round NDCs, supports this theory.
Relative to 1.5°C-consistent levels, the NDC scenario leaves 10x as much residual non-electric coal use
as unabated coal power, which is phased-out faster than any PPCA scenario modeled here (Figure 5).
Nevertheless, the least effective demand-exit(-1p-B) outperforms the most optimistic power-exit(-3p-
G), and our median-estimate demand-exit-2p coalitions effect 30x more coal phase-out on average
than the virtually-global power-exit-3p scenarios. These outcomes strongly indicate that the PPCA
should prioritise sectoral coverage over coalition expansion. Still, expanding the policy to new
countries is ultimately essential, and a demand-exit along currently proposed timelines is ultimately
insufficient, as even the most optimistic demand-3p-green cannot replicate the coal use pathways of
our least-optimistic Paris-compliant benchmark, well-below 2°C (Figure 4)vii.

The Policy Feedback Loop
The evolving coalitions derived by COALogit are largely insensitive to policy choice, i.e. for a given Covid
recovery, power-exit and demand-exit coalitions are nearly indistinguishable. This is an artefact of
COALogit’s parsimonious dependence on coal-power-shares and the fact that the power-exit is simply
a subdivision of the demand-exit. Generally, we observe an inverse relationship between OECD
coalition size and non-OECD accession probabilities due to extra-coalition leakage of coal electricity,
best illustrated by Figure SF1b-d.

Although demand-2p scenarios trigger net-negative extra-coalition coal leakage, free-rider coal power
consumption actually increases, discouraging their accession. Power-2p scenarios are also unique, in
that extra-coalition coal-fired electricity decreases. However, the root cause is a hindrance of end-use
electrification globally, notably exacerbating liquid-fueled transport, the most notoriously challenging
end-use to decarbonise across IAM scenarios53. Hence, PPCA members must counteract the negative
feedbacks provoked by their demand-side efforts and mobilise self-perpetuating policy uptake by
ramping up electrification, VRE, and knowledge transfer to maximise technological spillovers.

A Supplementary Supply-exit
Furthermore, recent literature highlights the importance of complementing demand-side policies with
supply-side action54–56 through for example mining or export restrictions. This counteracts price
depression and leakage, increasing the potential for self-propagation. Given bilateral trade
partnerships and spatial variance in coal quality, however, policy efficacy depends upon the specific
adopters.

Crucially, the largest anticipated coal consumers in 2045 – China, India, and ASEAN members (Figure
2c) – can each sustain a self-sufficient coal supply. However, their coal infrastructure receives
significant overseas financing from OECD-based investors57, where divestment campaigns are
historically commonplace56. Granted, Chinese banks are the world’s largest overall coal financiers57
and may insulate the domestic industry from foreign politics, but OECD legislatures can conceivably
induce coal declines through cross-border financial mechanisms, e.g. debt-for-nature swaps58. China’s
historical 22-year mean plant lifetime (Table 2) and its 2060 carbon neutrality pledge40 breed cautious
optimism.
Averting the Next Crisis

These coal-rich nations also exhibit the highest path-dependence of accession probability to near-term investment decisions. Most glaringly, China falls below the $2p$ thresholdviii and Indonesia below $3p$ probability in brown recovery scenarios. Additionally, we observe that numerous highly-probable coalition members within the OECD continue to commission coal power plants in brown and neutral Covid recoveriesx. PPCA accession then forces a sudden mass exodus of unamortised capital – a 100% rate of early retirementt from 2025-2030. Thus, to protect the health of their economyz, power grid59, citizenryy, and global-leader status, OECD governments must cancel their entire coal pipelines60.

Future Research

DPE presents a way forward for inter-disciplinary climate policy research seeking to understand the intersection of techno-economic, socio-political, and climate target feasibility. To enable similarly evidence-based simulations of policy uptake in future studies, empirical research must identify robust correlations between revealed ambition, viz. domestic legislation, and energy-economic variables computed endogenously by forward-looking models. As the remaining window to respect the 1.5°C target dwindles2, we invite the data science community to contribute their expertise in large-scale regression exercises16,61. As more DFS models are derived, they can be merged with IAMs as nested or sequential feedback loops to portray a cohesive, inter-reactive landscape of baseline climate ambition.

Furthermore, parallel research needs to examine supplementary policy options for frontrunners (‘early entry points’62) that best augment global mitigation efficacy. We offer our median-estimate scenarios as ‘living’ baselines upon which subsequent DPE and PEA studies can be performed. By capturing the global policy interactions that other real-world developments and policy candidates can have with the PPCA and each other, researchers can identify high-synergy, low-risk policy suites for willing-and-able nations to facilitate energy transitions in less capable economies. Supply-side fossil fuel regulations and carbon pricing are prime candidates given their uptake frequency56 and anticipated efficacy55.

Finally, future work should strive to fully endogenise policy formation and feedback, with maximal temporal resolution, into IAM optimization routines.

References

1. UNFCCC. Paris Agreement. (2015).
2. Kriegler Elmar et al. Pathways limiting warming to 1.5°C: a tale of turning around in no time? \textit{Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences} \textbf{376}, 20160457 (2018).
3. Rogelj, J. et al. Chapter 2: Mitigation pathways compatible with 1.5°C in the context of sustainable development. in \textit{Global Warming of 1.5 °C an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change} (Intergovernmental Panel on Climate Change, 2018).
4. Geels, F. W., Berkhout, F. & van Vuuren, D. P. Bridging analytical approaches for low-carbon transitions. \textit{Nature Clim. Change} \textbf{6}, 576–583 (2016).
5. Hirt, L. F., Schell, G., Sahakian, M. & Trutnevyte, E. A review of linking models and socio-technical transitions theories for energy and climate solutions. \textit{Environmental Innovation and Societal Transitions} \textbf{35}, 162–179 (2020).
6. Jewell, J. & Cherp, A. On the political feasibility of climate change mitigation pathways: Is it too late to keep warming below 1.5°C? \textit{WIREs Climate Change} \textbf{11}, e621 (2020).
7. Trutnevyte, E. \textit{et al.} Societal Transformations in Models for Energy and Climate Policy: The Ambitious Next Step. \textit{One Earth} \textbf{1}, 423–433 (2019).
8. Riahi, K. et al. Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals. *Technological Forecasting and Social Change* **90**, 8–23 (2015).

9. Bauer, N. et al. Quantification of an efficiency–sovereignty trade-off in climate policy. *Nature* **588**, 261–266 (2020).

10. Schreyer, F. et al. Common but differentiated leadership: strategies and challenges for carbon neutrality by 2050 across industrialized economies. *Environmental Research Letters* **15**, 114016 (2020).

11. Nordhaus, W. Climate Clubs: Overcoming Free-riding in International Climate Policy. *American Economic Review* **105**, 1339–1370 (2015).

12. Voigt, C. The Compliance and Implementation Mechanism of the Paris Agreement. *RECIEL* **25**, 161–173 (2016).

13. Baumstark, L. et al. REMIND2.1: Transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. *Geoscientific Model Development Discussions* 1–50 (2021) doi:10.5194/gmd-2021-85.

14. Sabel, C. F. & Victor, D. G. Governing global problems under uncertainty: making bottom-up climate policy work. *Climatic Change* **144**, 15–27 (2017).

15. Meckling, J., Kelsey, N., Biber, E. & Zysman, J. Winning coalitions for climate policy. *Science* **349**, 1170–1171 (2015).

16. Cherp, A., Vinichenko, V., Tosun, J., Gordon, J. A. & Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. *Nat Energy* **6**, 742–754 (2021).

17. Lamb, W. F. & Minx, J. C. The political economy of national climate policy: Architectures of constraint and a typology of countries. *Energy Research & Social Science* **64**, 101429 (2020).

18. Jewell, J., Vinichenko, V., Nacke, L. & Cherp, A. Prospects for powering past coal. *Nat. Clim. Chang.* **9**, 592–597 (2019).

19. Jakob, M., Flachsland, C., Steckel, J. C. & Urpelainen, J. The political economy of climate and energy policy: A Theoretical Framework. 22 (Working Paper).

20. Pahle, M. et al. Sequencing to ratchet up climate policy stringency. *Nature Climate Change* **8**, 861–867 (2018).

21. Bauer, N. et al. CO2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies. *Technological Forecasting and Social Change* **90**, Part A, 243–256 (2015).

22. McGlade, C. & Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. *Nature* **517**, 187–190 (2015).

23. Rauner, S., Bauer, N., Dirnacher, A. & Van Dingenen, R. Coal exit health and environmental damage reductions outweigh economic impacts. *Nature Climate Change (accepted)* (2020).

24. Minx, J. et al. Coal transitions – Part 2: Phase-out dynamics in global long-term mitigation scenarios. *Environmental Research Letters (submitted)* (Submitted).

25. Bauer, N. et al. Assessing global fossil fuel availability in a scenario framework. *Energy* **111**, 580–592 (2016).

26. Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. *Nature* **1** (2019) doi:10.1038/s41586-019-1364-3.

27. Fofrich, R. et al. Early retirement of power plants in climate mitigation scenarios. *Environ. Res. Lett.* **15**, 094064 (2020).
28. Johnson, N. et al. Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants. *Technological Forecasting and Social Change* **90**, 89–102 (2015).

29. Diluiso, F. et al. Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences. *Environ. Res. Lett.* **16**, 113003 (2021).

30. Muttitt, G., Price, J., Pye, S. & Welsby, D. Ignoring socio-political realities in energy models overweights coal power phaseout compared to other climate mitigation options. (Unpublished Manuscript).

31. Edenhofer, O. King Coal and the queen of subsidies. *Science* **349**, 1286–1287 (2015).

32. Edenhofer, O., Steckel, J. C., Jakob, M. & Bertram, C. Reports of coal’s terminal decline may be exaggerated. *Environ. Res. Lett.* **13**, 024019 (2018).

33. Jakob, M. et al. The future of coal in a carbon-constrained climate. *Nat. Clim. Chang.* **10**, 704–707 (2020).

34. Blondeel, M., Van de Graaf, T. & Haesebrouck, T. Moving beyond coal: Exploring and explaining the Powering Past Coal Alliance. *Energy Research & Social Science* **59**, 101304 (2020).

35. Bertram, C. et al. COVID-19-induced low power demand and market forces starkly reduce CO2 emissions. *Nat. Clim. Chang.* (2021) doi:10.1038/s41558-021-00987-x.

36. Gilabert, P. & Lawford-Smith, H. Political Feasibility: A Conceptual Exploration. *Political Studies* **60**, 809–825 (2012).

37. Winkelmann, R. et al. Social tipping processes towards climate action: A conceptual framework. *Ecological Economics* **192**, 107242 (2022).

38. Otto, I. M. et al. Social tipping dynamics for stabilizing Earth’s climate by 2050. *Proc Natl Acad Sci USA* **201900577** (2020) doi:10.1073/pnas.1900577117.

39. Bond, K., Fulton, M. & Hobley, A. The political tipping point: Why the politics of energy will follow the economics. (2019).

40. Bauer, N. et al. The 1.5°C global climate target and China’s carbon neutrality pledge. *Science* (in review).

41. Fricko, O. SSP2: A middle of the road scenario for the 21st century. *Global Environmental Change This Special Issue.* (2016).

42. Li, F. G. N., Trutnevye, E. & Strachan, N. A review of socio-technical energy transition (STET) models. *Technological Forecasting and Social Change* **100**, 290–305 (2015).

43. Cherp, A., Vinichenko, V., Jewell, J., Brutschin, E. & Sovacool, B. Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. *Energy Research & Social Science* **37**, 175–190 (2018).

44. van Sluisveld, M. A. E. et al. Comparing future patterns of energy system change in 2 °C scenarios with historically observed rates of change. *Global Environmental Change* **35**, 436–449 (2015).

45. Wilson, C., Grubler, A., Bauer, N., Krey, V. & Riahi, K. Future capacity growth of energy technologies: are scenarios consistent with historical evidence? *Climatic Change* **118**, 381–395 (2013).

46. Loftus, P. J., Cohen, A. M., Long, J. C. S. & Jenkins, J. D. A critical review of global decarbonization scenarios: what do they tell us about feasibility? *WIREs Clim Change* **6**, 93–112 (2015).

47. Rocha, M. et al. *IMPLICATIONS OF THE PARIS AGREEMENT FOR COAL USE IN THE POWER SECTOR*. https://climateanalytics.org/media/climateanalytics-coalreport_nov2016_1.pdf (2016).

48. Global Energy Monitor. Global Coal Plant Tracker January 2021. *EndCoal.org* https://endcoal.org/global-coal-plant-tracker/ (2021).
49. IEA. World energy balances. *IEA World Energy Statistics and Balances* https://doi.org/10.1787/data-00512-en (2017).

50. Edelenbosch, O. Y. *et al.* Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models. *Energy* **122**, 701–710 (2017).

51. Ritchie, J. & Dowlatabadi, H. Why do climate change scenarios return to coal? *Energy* **140**, 1276–1291 (2017).

52. Gunnar Luderer *et al.* Accelerated electrification based on cheap renewables facilitates reaching Paris Climate targets. *Submitted to Nature Energy.*

53. Luderer, G. *et al.* Residual fossil CO2 emissions in 1.5–2 °C pathways. *Nature Climate Change* **8**, 626–633 (2018).

54. Asheim, G. B. *et al.* The case for a supply-side climate treaty. *Science* **365**, 325–327 (2019).

55. Erickson, P., Lazarus, M. & Piggot, G. Limiting fossil fuel production as the next big step in climate policy. *Nature Climate Change* **1** (2018) doi:10.1038/s41558-018-0337-0.

56. Gaulin, N. & Le Billon, P. Climate change and fossil fuel production cuts: assessing global supply-side constraints and policy implications. *Climate Policy* **1–14** (2020) doi:10.1080/14693062.2020.1725409.

57. Manych, N., Steckel, J. C. & Jakob, M. Finance-based accounting of coal emissions. *Environ. Res. Lett.* **16**, 044028 (2021).

58. Cassimon, D., Prowse, M. & Essers, D. The pitfalls and potential of debt-for-nature swaps: A US-Indonesian case study. *Global Environmental Change* **21**, 93–102 (2011).

59. Simshauser, P. & Gilmore, J. Climate policy discontinuity & Australia’s 2016-2021 renewable investment supercycle (Accepted Manuscript). *Energy Policy-forthcoming* (2022).

60. International Energy Agency. *Net Zero by 2050: A Roadmap for the Global Energy Sector*. 224 https://www.iea.org/reports/net-zero-by-2050 (2021).

61. Levi, S. Why hate carbon taxes? Machine learning evidence on the roles of personal responsibility, trust, revenue recycling, and other factors across 23 European countries. *Energy Research & Social Science* **73**, 101883 (2021).

62. Bertram, C. *et al.* Complementing carbon prices with technology policies to keep climate targets within reach. *Nature Climate Change* **5**, 235–239 (2015).

1 The participating subnational governments and private sector organisations are not considered in our study.
2 Countries are defined according to the ISO 3166-1 convention (249 total).
3 For reference, we estimate 2160GW when extrapolating with globally-uniform 40-year lifespans and 100% project completion as assumed in prior literature (see Figure A1).
4 Global Energy Monitor. Global Coal Public Finance Tracker July 2020. *EndCoal.org*.
5 Global Energy Monitor. Global Coal Mine Tracker January 2021. *EndCoal.org*.
6 Global Energy Monitor. Global Steel Plant Tracker January 2021. *EndCoal.org*.
7 This may well be an artefact of REMIND-COALogit’s low temporal resolution, as more ‘reasonable’ pathways could be modeled by allowing coalition accession and policy enactment along a rolling horizon, i.e. in each REMIND period, which would be highly resource-intensive. Future DPE implementations may explore reducing the IAM optimisation horizon in each iteration to enable this.
8 China did not breach the 2p coalition in any scenario until after COALogit was re-calibrated to account for the accession of Spain, Croatia, Albania, North Macedonia, and Montenegro in July 2021, illustrating the dynamism of the DFS, i.e. the sensitivity of COALogit to relatively minor developments.
9 Japan and South Korea in the green recovery as well.
* Under default REMIND assumptions, early retirement is limited to 9% p.a. (45% per 5-year time-step). Several regions were thus mathematically infeasible without removing this constraint.
Dynamic Policy Evaluation depicted as a cyclical, iterative interface between techno-economic and socio-political analyses, both in the present study (inner circle and parentheses) and in the broader context of integrating IAMs and social sciences (outer circle). Policy feedbacks in this study begin with the impacts of currently legislated coal exits on national energy sectors, regional energy systems, and the global energy market, i.e. dynamic actors and contexts, via REMIND-endogenous effects (inner blue hexagon). REMIND feeds future per-capita GDP and coal-power-shares to COALogit, which infers national probabilities of PPCA accession. These political prospects are translated to coalition scenarios and policy stringency coefficients (Methods) which inform regionally-differentiated policy uptake in REMIND. Staged accession is simulated by repeating the cycle in different model time-steps.
Figure 2

Dynamic feasibility of PPCA adoption in each country according to COALogit. Logistic regression of Alliance membership based on GDP per capita (indicator of state capacity) and coal-power-share (proxy for coal phase-out policy cost) in 2015 (a), 2025 (b) and 2045 (c & d), depicting all nations with >1% coal-power-share in the respective year. Bubble size indicates the operating coal capacity at that time, while 'PPCA Status' and 'OECD Status' reflect membership as of July 2021. The shaded areas show the
probabilistic coalition scenarios: proven (1p), proven + probable (2p), and proven + probable + possible (3p). Panels (b) and (c) represent the neutral Covid recovery – (c) follows directly from a 2030 power-exit by OECD-2p coalition members in (b) – while (d) illustrates the brown recovery, following from Figure SF1a.
Annual differences in coal \((a + c)\) or primary energy \((b + d)\) demand from NPi in probable power-exit \((a-b)\) and demand-exit \((c-d)\) scenarios, with the cumulative differences denoted by labels. Columns distinguish between coalition members and free-riders in the Covid recovery scenario represented by each row. Coal demand is given in primary energy (PE) values and categorised by secondary energy (SE) conversion route. Generally, negative areas in the ‘Coalition’ column reflect the intended policy effect, while all other differences indicate system feedbacks.

Figure 4
Compilation of all 18 scenarios, assessed for their efficacy relative to 1.5°C pathways in terms of coal phase-out (indicated by the lower x-axis, solid points, and bold font) and CO2 emissions reductions (upper x-axis, hollow points, italic font). Each scenario is scored on an index between 0 and 1, where 0 represents the NPi reference scenario (without Covid considerations) and 1 corresponds to 1.5°C. For each row, the 2p points can be considered the DPE median estimate, and the range between 1p and 3p indicates the uncertainty range.

![Graph: Global Energy Demand Pathways by Type](image)

Figure 5

Maximum potential impact of power- and demand-exit policies on global PE demand trajectories from 2005-2100, in comparison with key benchmark scenarios. The green Covid recovery (-G) results in the most CO2 and coal abatement in NPi, NDC, and demand-exit scenarios. Although the power-exit is found, against expectations, to be most effective after a brown recovery, its membership rate is highest in the 3p-G coalition scenario, which captures 99.9% of 2020 coal consumption in both policy scenarios. The power-3p-G and demand 3p-G scenarios are thus akin to conventional policy evaluation analyses which assess global policy potential.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Methodsfinal.docx
- NEnergyappendixDPEPPCA.docx
- NEnergysupplementDPEPPCA.docx
• DPEintermediatecascadescenarios.csv