An Online Identification System of 10 kV Medium Voltage Line-Variation Relationship

Yue Fan¹, Tao Yu², Chunlong Li², Senlin Yang¹, Wenjun Chen², Guorui Zhang³

¹State Grid Qinghai Electric Power Company, Xining Qinghai
²Guoluo Power Supply Company, State Grid Qinghai Electric Power Company, Xining Qinghai
³State Grid Qinhuangdao Electric Power Supply Company, Qinhuangdao Hebei

Email: 873321454@qq.com

Received: Aug. 6th, 2020; accepted: Aug. 19th, 2020; published: Aug. 26th, 2020

Abstract

The 10 kV medium-voltage line transformer relation refers to the connection relation between the transformer (station area) and the 10 kV distribution line. The real-time and accuracy of the 10 kV medium-voltage line transformer relation is the premise to realize the accurate calculation of the line loss of 10 kV line and the basis for the operation control of 10 kV line. In this paper, an online identification system of 10 kV mid-voltage line transformer relationship is proposed. Through the identification terminal of mid-voltage line transformer relationship, the analysis machine of mid-voltage line transformer relationship and the main station of line-transformer relationship identification, the relationship of 10 kV mid-voltage line transformer can be accurately identified online and real-time, providing reliable basis for accurate calculation and operation control of line loss of 10 kV line.

Keywords

Line Transformer Relationship, Line Loss, Identification Terminal, Analytical Engine, Master Station

Article References

范越, 于涛, 李春龙, 杨森林, 陈文君, 张国瑞. 一种 10 kV 中压线变关系在线识别系统[J]. 智能电网, 2020, 10(4): 196-203. DOI: 10.12677/sg.2020.104022
摘要
10 kV中压线变关系指的是变压器(台区)和10 kV配电线路的连接关系，10 kV中压线变关系的实时性、准确性是实现10 kV线路线损精准计算的前提，是10 kV线路运行控制的依据。本文提出的一种10 kV中压线变关系在线识别系统，通过中压线变关系识别终端、中压线变关系分析机和线变关系识别主站，可以在线实时精确判别10 kV中压线变关系，为10 kV线路线损精准计算、运行控制提供可靠依据。

关键词
线变关系, 线损, 识别终端, 分析机, 主站

1. 引言
随着我国供配电技术的不断发展，新的变压器不断接入，大大增加了10 kV配电网络的复杂性。另外我国地形复杂、线路多样，电网维护过程中经常进行线路改造、负荷切改等操作，原本清楚的10 kV线变关系不断发生变化。10 kV中压线变关系的准确、实时识别一直是电力公司的一大难题，当然通过线路停电可以解决线变关系排查的问题，但面对当前优质服务及供电可靠性的压力，全面停电排查的方法变得不再成为可能[1]。

10 kV线路线损率是电力公司的一项重要经济指标，提高线损正确可算率是降损增效的根本途径[2]。10 kV中压线变关系的准确性、实时性是10 kV线路线损精准计算的前提，也是10 kV线路运行控制的依据。本文提出的一种10 kV中压线变关系在线识别系统设计，通过中压线变关系识别终端、中压线变关系分析机和线变关系识别主站，可以在线实时精确判别10 kV中压线变关系，为10 kV线路线损精准计算、运行控制提供可靠依据。另外该系统可在10 kV线路不停电的情况下部署实施，避免了电力公司10 kV停电施工的复杂流程和潜在的经济损失风险。

2. 系统组成
2.1. 中压线变关系识别终端
中压线变关系识别终端主要实现低频载波信号的发送，通过电源接口并接在变压器低压侧A、B、C任意两相之间。中压线变关系识别终端主要由电源模块、485通信模块、4G通信模块、低频载波信号发生模块和芯片组构成，原理框图如图1所示。

2.2. 中压线变关系分析机
中压线变关系分析机主要实现低频载波信号的提取，低压侧取电，CT互感线圈卡接在10 kV电流互感器二次侧电流线上。中压线变关系分析机主要由电源模块、485通信模块、4G通信模块、低频载波信号提取模块、CT互感器和芯片组构成，原理框图如图2所示。
2.3. 线变关系识别主站

线变关系识别主站主要实现:
A. 线路、变压器建档，并关联中压线变关系分析机、中压线变关系识别终端；
B. 控制中压线变关系识别终端发送；
C. 接收中压线变关系分析机上报结果并分析线变关系；
D. 生成线变关系变更记录。

线变关系识别主站可以外网部署，也可以内网部署，技术架构如图3所示：

![技术架构图](image)

图3. 线变关系识别主站技术架构图

3. 系统核心

随着供电可靠性要求的不断提高，10 kV 线路停电作业施工加装设备越来越困难，要想实现该线变关系识别批量工程化应用，必须实现 10 kV 不停电施工安装部署，关键核心为：

- 载波信号如何实现低压侧发送可直接穿透工频变压器在 10 kV 线路沿 A、B、C 三相主线远距离传输;
- 载波信号如何实现 10 kV 线路电流互感器二次侧非接触式小信号提取。

3.1. 理论计算与仿真

根据传输理论，载波信号沿配电线路持续振荡衰减，载波信号频率越低则传输距离越远[3]。

以工频变压器低压侧 A、B 两相间发送载波信号为例，假设变压器为 Dyn11 连接方式，变压器变比 $n=25$，低压侧 A、B、C 三相载波电流信号分别为：

$$I_{A2} = A \sin wt$$ \hspace{1cm} (1)
$$I_{B2} = A \sin (wt + \pi)$$ \hspace{1cm} (2)
$$I_{C2} = 0$$ \hspace{1cm} (3)

根据 Dyn11 连接方式的变压器两边电流换算，低压侧转换至中压侧各相电流分别为：

$$I_{A1} = \frac{I_{A2} - I_{C2}}{\sqrt{3}n} = \frac{A}{\sqrt{3}n} \sin wt$$ \hspace{1cm} (4)
$$I_{B1} = \frac{I_{B2} - I_{C2}}{\sqrt{3}n} = -\frac{2A}{\sqrt{3}n} \sin wt$$ \hspace{1cm} (5)
根据(4)、(5)、(6)可以看出，在工频变压器低压侧A、B两相间发送相同强度载波电流信号时，中压侧B相载波电流信号强度约为低压侧的$\frac{2}{25\sqrt{3}}$，中压侧A、C两相的载波电流信号强度为中压侧B相载波电流信号强度的$\frac{1}{2}$。

同理，在A、C两相间或B、C两相间或变压器为Ynd11连接时，中压侧载波电流信号强度与低压侧的比例关系与上述一致。

仿真模型如图4所示，同样以Dyn11型变压器为例，低压侧A、B两相间注入强度为I的载波电流信号，频率分别为f_1、f_2、f_3、f_4、f_5、f_6、f_7、f_8、f_9、f_{10}；通过线路阻性R、容性C、感性L负载，模拟线路衰减环境[4]，经FFT分析得到中压侧近端、远端接收的强度I_1、I_2数据如表1所示：

![Figure 4. Simulation model diagram](https://example.com/figure4.png)

Table 1. Simulation data sheet
表1. 仿真数据表

载波频率	相序	近端接收强度I_1	远端接收强度I_2
f_1	A	0.016I	0.009I
	B	0.023I	0.012I
	C	0.017I	0.008I
f_1	A	0.009I	0.005I
	B	0.02I	0.011I
	C	0.01I	0.004I
f_2	B	0.021I	0.011I
	B	0.022I	0.006I
f_3	B	0.02I	0.004I
f_4	B	0.019I	0.0019I
f_5	B	0.007I	0
f_6	B	0.001I	0
f_{10}	B	0.001I	0
从表1可以看出在一定频率范围内，中压侧载波电流信号强度与低压侧的比例关系仿真数据与理论计算一致，超过一定频率，载波信号无法穿透工频变压器长距离传输，该频率在2 KHz左右。

在仿真测试中，远端接收模拟非接触小信号提取，加入两级CT变比，接收端信号缩小10000倍，采用FFT分析仍能接收到固定频率的载波电流信号。

3.2. 实际测试

在青岛10 kV银海线上远端选取1台变压器，低压侧注入低频载波电流信号，该变压器距离接收端10 km，接收端仍可正常接收。载波发送、接收端波形图如图5、图6所示：

![Figure 5](image.png)

Figure 5. Waveform of carrier transmitter
图5. 载波发送端波形图

![Figure 6](image.png)

Figure 6. Waveform of carrier receiver
图6. 载波接收端波形图

3.3. 结论

经过理论计算、仿真测试、实际测试得到如下结论：

DOI: 10.12677/sg.2020.104022
a. 载波信号频率超过 2 KHz，无法穿透工频变压器远距离传输；
b. 无背景噪声情况下，频率越高，同等长度的传输线，载波信号衰减越大；
c. 极限情况，特定频率的载波信号仍有一半可以到达接收端；
d. 基于特定算法，载波小信号非接触提取可实现。

综上所述，中压线变关系识别终端主用发送频率选 833 Hz，备用发送频率选 625 Hz，中压线变关系分析机可以在实现非接触小信号提取，整套系统可以实现在 10 kV 线路不停电的情况下施工部署。

4. 系统流程

线变关系识别系统工作由线变关系识别主站调度，中压线变关系识别终端、中压线变关系分析机配合，共同实现线变关系在线识别功能，具体工作流程如图 7 所示：

![Figure 7. Flow chart of line transformer relationship identification system](image)

图 7. 线变关系识别系统流程框图

5. 实际应用

在江西鹰潭以 10 kV 中兆星河汇开闭所为试点，此试点涉及 10 kV 中兆线、10 kV 星河线 2 条进线下 56 台变压器，共安装 2 台中压线变关系分析机和 56 台中压线变关系识别终端。线变关系识别主站部署在国网江西鹰潭供电公司内网服务器上。

设备安装完成第一次识别完成后结果跟现场停电识别结果一致，表明该套线变关系识别系统识别准确率 100%，单台变压器识别时间 2 分钟以内。

现场进行切改负荷试验，将 10 kV 星汇线供电台区切换到 10 kV 中兆线。试验完成后，线变关系识别主站开启巡探模式，图 8 为线变关系识别主站巡探完成后根据识别结果生成的部分线变关系变更记录。

负荷切改试验后，识别结果完全正确，证明该套线变识别系统可以在线实时精准判别线变关系。

由于 10 kV 中兆线、10 kV 星汇线经常进行负荷运转调整，原月平均线损统计为−20%、32%，运行该 10 kV 中压线变关系在线识别系统以来，根据提供的线变关系变更记录及时调整对应台区下所有变压器的电量统计，月平均线损统计降为 6%、6%并一直维持在该水平。另外线变关系在线识别系统生成的
线变关系变更记录为配网运维、调度进行负荷调整时提供了正确的原始数据参考，有效避免某条线路超负荷运转造成的经济损失。

台区名称	变更后 供电线路	变更前 供电线路	变更时间
星河汇一期06号公变	10kV中压线	10kV星汇线	2018-08-29 10:38:27
星河汇二期02号公变	10kV中压线	10kV星汇线	2018-08-29 10:37:38
星河汇三期01号公变	10kV中压线	10kV星汇线	2018-08-29 10:35:29
2#物业专用欧式箱变	10kV中压线	10kV星汇线	2018-08-29 10:33:30
18#物业专用欧式箱变	10kV中压线	10kV星汇线	2018-08-29 10:31:31
滨江市中联置业有限公司	10kV中压线	10kV星汇线	2018-08-29 10:29:32
滨江市第一小学	10kV中压线	10kV星汇线	2018-08-29 10:28:33
星河汇三区03号公变	10kV中压线	10kV星汇线	2018-08-29 10:27:29
星河汇三区05号公变	10kV中压线	10kV星汇线	2018-08-29 10:26:30

Figure 8. Change record chart of partial line to transformer relationship

图 8. 部分线变关系变更记录图

6. 结束语

经过理论计算、仿真测试、实际测试和实际应用，证明上述 10 kV 中压线变关系在线识别系统，达到了预期效果，识别准确率 100%，单台变压器识别时间不超过 2 分钟，可为 10 kV 线路线损精准计算、运行控制提供可靠依据。另外该系统可以在 10 kV 线路不停电的情况下部署实施，避免了电力公司 10 kV 停电施工的复杂流程和潜在的经济损失风险[5]，满足电力公司应用需求。

另外基于低频载波发送、接收的研究，对 10 kV 架空线路、电缆线路、混合线路实现在线测距[6]有重要参考价值。

参考文献

[1] 郑美春. 瞬时停电法在台区户变关系排查中的应用[J]. 企业导报, 2014(23): 153, 193.

[2] 李源林, 邓帆, 龚杰, 付康. 顾及空间约束的户变关系识别与调整方法[J]. 电力科学与工程, 2018(28): 191-196.

[3] 谢志远, 王岩, 郭以贺, 刘倩. 电力线通信中传输线参数测试与应用[J]. 电测与仪表, 2012, 40(1): 52-56.

[4] 谢志远, 孙艳, 郭以贺, 刘倩. 基于传输线理论的低压电力线通信建模和分析[J]. 电力科学与工程, 2010(7): 5-8.

[5] 王超. 浅谈 10kV 配电网程停电施工管理[J]. 中国新科技新产品, 2018(7): 78-79.

[6] 郑顺义, 胡华亮, 黄荣水, 季铮. 电力线实时测距方法研究[J]. 武汉大学学报(信息科学版), 2011(6): 704-707.