Clinical problems of patients with cachexia due to chronic illness: a congress report

Sara Hadzibegovic1,2,3,4, Philipp Sikorski1,2,3,4, Sophia K. Potthoff1,2,3,4, Jochen Springer3,4, Alessia Lena1,2,3,4 and Markus S. Anker1,2,3,4*

1Division of Cardiology and Metabolism, Department of Cardiology, Charité - Campus Virchow Klinikum (CVK), Berlin, Germany; 2Department of Cardiology, Campus Benjamin Franklin (CBF), Charité University Medicine, Berlin, Germany; 3Berlin Institute of Health Center for Regenerative Therapies (BCHR), Berlin, Germany; 4DZHK (Deutsche Zentrum für Herz-Kreislauf-Forschung), Berlin, Germany

Introduction

Cachexia is a complex and multifactorial comorbidity characterized by a metabolic imbalance.1,2 It is defined as a body weight loss ≥5% in the last 12 months in patients with a chronic illness who also suffer from at least three of the following five symptoms: fatigue, decreased muscle strength, low fat-free mass index, anorexia, and/or altered biochemistry (haemoglobin < 12 g/dl, serum albumin < 3.2 g/dl, increased interleukin 6, or C-reactive protein).3 It is influenced by immunological,4 neurohormonal,5 and mucointestinal6 impairments and aggravated by factors such as malabsorption and dietary deficiencies.7,8 Cachexia is frequently seen in different chronic diseases9: in 50–80% of advanced cancer patients,10 30–50% of dialysis patients,11 20–30% of chronic obstructive pulmonary disease patients,12 20–30% of rheumatoid arthritis patients,13 10% of patients after neurologic stroke,14 and 10–20% of chronic heart failure (CHF) patients.15,16 As an example, CHF patients share many risk factors with cachexia that also contribute to its development: high prevalence of comorbidities,17,18 immunoinflammatory alterations,19 worsening nutritional status,20 and a sedentary lifestyle with a high risk for frailty21 due to a decrease of daily life activities22 or frequent rehospitalizations.23 Hence, wasting disorders are associated with poorer quality of life,24 longer hospitalization rates,25 and increased mortality.26–28

Therefore, there is a need for annually meetings, in person or digital, where clinicians and basic researches can share their knowledge on the topic. Over 400 participants from more than 35 countries attended the ‘12th International Conference on Cachexia, Sarcopenia and Muscle Wasting’, which was held in Berlin, Germany, from 6 to 8 December 2019. It provided a great platform for new updates about cachexia and muscle wasting disorders. Among a variety of lectures and poster presentations, one special clinical session was dedicated to the most frequent symptoms in patients with cachexia and their treatments: swallowing problems, pain, depression, muscle weakness, fatigue, and shortness of breath.

Swallowing problems

In the first lecture of the session, Professor Hidetaka Wakabayashi from Yokohama, Japan, thematized swallowing problems in cachectic patients with cancer. Strongly depending on the cancer entity and stage, they occur in 30–90% of cancer patients during anticancer treatment.29 Head and neck cancer, prior radiotherapy, nasogastric tubes, and low skeletal mass are the most frequent contributing factors to swallowing problems.30 Among hospitalized patients, those with cardiovascular comorbidities like arterial hypertension, acute myocardial infarction, and CHF have a high risk to develop oropharyngeal dysphagia.31 Professor Wakabayashi highlighted the importance of diagnosing sarcopenic dysphagia. It is characterized by four major criteria: whole body sarcopenia, dysphagia, reduced swallowing muscle mass on imaging tests, and an exclusion of all other causes for dysphagia.32 This can be found in up to 30% of patients in dysphagia rehabilitation.33 Therefore, especially in older patients with sarcopenia and dysphagia, hand grip strength, gait speed, and swallowing function should be routinely tested in order to identify patients with sarcopenic dysphagia. According to the speaker, the treatment of sarcopenic dysphagia includes three major components: exercise,34 nutritional,35 and dysphagia36 rehabilitation. An early rehabilitation with nutritional support consisting of approximately 35 kcal/kg/day is important for prevention and treatment. It also involves frequent monitoring of the body function,
Pain

In the next lecture, Associate Professor Florian Strasser from St Gallen, Switzerland described the different kinds of pain syndromes, which frequently occur in cachectic patients with advanced cancer. Pain can be caused by cancer disease itself or appear due to anticancer treatment, for example, chemotherapy induced neuropathy. It also frequently occurs in chronic diseases like low back pain syndromes, multiple sclerosis, rheumatic diseases, chronic obstructive pulmonary disease, or transits post surgically from acute to chronic pain. In a descriptive cross-sectional study with 62 CHF patients with NYHA class II-IV, pain was frequently observed. Ninety-eight per cent of the patients described unspecified pain in the past month, and 66% had pain in the last 24 h. The character of pain in 1886 CHF patients was assessed in another interventional study. Eighty per cent of patients reported at least some chest pain, and the authors concluded that it was unlikely only due to angina pectoris. Psychological comorbidities like depression, distress, and anxiety can also worsen pain in affected patients and vice versa. Associate Professor Strasser differentiated pain in nociceptive pain, including superficial, deep somatic or visceral pain, and neuropathic pain. Inflammatory mediators, for example, tumour necrosis factor-alpha, cyclooxygenase 2 enzymes, interleukin 1, and interleukin 6, were illustrated as possible pain modulators, yet more research is needed to better understand the pathophysiology of pain. A daily assessment of pain in patients is necessary and should include questions about pain characteristic, intensity, risk factors, emotional, and cognitive impairments. Associate Professor Strasser emphasized a multimodal pain management in cancer with pharmacologic interventions and a behavioural approach. An early prophylactic management of secondary as well as nutrition-impact symptoms should also be taken in consideration, as pharmacological side effects like opioid-induced constipation and nausea can worsen the nutritional status in the affected patients. In this context, Associate Professor Strasser highlighted that an adequate pain management may improve appetite, physical function, quality of life, and medical adherence in cachectic patients with advanced cancer.

Depression

Professor Joan Reid from Belfast, UK, gave an overview about depression, an underestimated burden in cachectic patients. Depression in chronic illnesses may be undetected in 50–60% of cases, and among the elderly, the incidence might even be higher. In this context, depression is a common comorbidity in CHF patients with a prevalence of 20%. It is a risk factor for overall poor quality of life, higher rate of readmissions, and increased mortality in cardiac patients. Professor Reid demonstrated that cachexia challenges cancer patients and family members on many different levels: psychologically, socially, and emotionally. The aggravating psychosocial impact of cancer cachexia on the entire family was observed in a cross-sectional survey with 702 family members of cachectic patients with advanced cancer—60% of family members reported some kind of eating-related stress. In another cross-sectional study, 30% of advanced cancer patients were examined for symptoms that are prone for depression. In 52 patients with severe cachexia due to cancer, sleeping was disturbed in 73% of patients, fatigue was present in 77%, distress in 62%, lack of appetite in 69%, and lack of energy in 62%. The symptom burden increased with the stage of cachexia. Therefore, Professor Reid urged to raise awareness and understanding for depression in cachectic patients especially among health care professionals. She appealed for validated identification criteria and management strategies in order to improve the quality of life in these patients. Currently, there are no standardized criteria for diagnosis of depression in cachectic patients. Hence, she promoted two questionnaires to assess mental health: the emotional well-being subscale from Functional Assessment of Chronic Illness Therapy and the Kidney Disease Quality of Life 36-Item Short Form Survey. Both of them were used in a longitudinal study on cachexia among patients with renal failure. Therapeutic approaches of depression in cachectic cancer patients involve serotonin reuptake inhibitors and symptomatic treatment of cachexia in the affected patients. Cytokines were also described as a possible link between depression, cachexia, and chronic diseases and may be further treatment targets.

Muscle weakness and fatigue

The role and objective assessment of skeletal muscle in cancer cachexia was presented by Assistant Professor Richard Dunne from Rochester, USA. Primarily, skeletal muscle...
wasting is an important contributor of cancer cachexia leading to decreased physical performance and disability in these patients.\(^{10,79}\) In CHF patients, sarcopenia is present in about 20–50% of cases.\(^{80}\) Muscle loss with or without weight loss has a worsening impact on functional capacity and quality of life in CHF patients.\(^{81}\) Muscle weakness is caused by alterations of muscle morphology and metabolism.\(^{8,82}\) Various objective measurements to assess muscle strength and physical performance were discussed: isokinetic dynamometers of the lower limb,\(^{83}\) handgrip dynamometry,\(^{84}\) stair climbing power test, 6-minute walk test,\(^{85}\) and short physical performance battery test.\(^{86}\) Additionally, Professor Dunne pointed out the heterogeneous definitions of cachexia in recent research studies. Still, the most common criteria in the definitions was weight loss.\(^{87}\) Low muscle strength, a main component of sarcopenia,\(^{88}\) is less frequently included in clinical practice. He concluded that there is no gold standard for assessing strength in cachectic patients,\(^{89}\) and therefore, the aforementioned examinations are rarely carried out in clinical practice. Currently, common treatments of muscle weakness include aerobic or resistance exercise\(^{90}\) and nutritional support according to the European Society for Clinical Nutrition and Metabolism guidelines.\(^{91}\) Several clinical trials with multimodal interventions combined with a nutrition and exercise program were highlighted.\(^{92–96}\) The results of these trials showed superiority for multimodal interventions in feasibility, safety, and improvement of physical performance in cachectic patients with advanced cancer.

Shortness of breath

In the last lecture of the session, Dr Markus Anker from Berlin, Germany, presented shortness of breath as one of main symptoms in cachectic patients. Dyspnoea is frequently observed in patients with heart failure (depending on the stage in up to 100% of patients)\(^{97}\) and malignancies (~50%).\(^{98}\) In an observational study, even treatment-naïve colorectal cancer patients showed heart failure-like symptoms with mildly reduced left-ventricular ejection fraction and low breath efficiency.\(^{99}\) Cancer patients in palliative care frequently suffer from respiratory symptoms including coughing (20–90%), haemoptysis (5–40%), and shortness of breath (30–90%).\(^{100}\) Dyspnoea in end-stage cancer can be aggrivated by lung metastases, pleural effusions, or respiratory muscle fatigue due to cachexia.\(^{101,102}\) In patients with advanced CHF, shortness of breath (50–100%) and tiredness (60–90%) are very common.\(^{103}\) As a possible pathophysiologic explanation for shortness of breath, Dr Anker discussed the ‘muscle hypothesis’ leading to a catabolic metabolism.\(^{104}\) This can result in an increased metabolic activity\(^{105}\) and a sympathetic activation,\(^{106}\) possibly explaining higher resting heart rates of patients with mainly advanced stage colorectal, pancreatic, and non-small cell lung cancer, compared with health controls.\(^{107}\) Common diagnostic tests for cachectic patients with dyspnoea include imaging (chest X-ray and CT), physical examinations (oxygen saturation, blood pressure, and haemoglobin), and functional testing (pulmonary, ergometry, and performance tests).\(^{100}\) Dr Anker concluded that regular assessments of dyspnoea including physical, emotional, and social components are important in patients with chronic diseases in order to determine the best therapy for the patient with respect to the underlying disease, including pharmacological and nonpharmacological treatments.\(^{108}\)

Conclusions

During the ‘12th International Conference on Cachexia, Sarcopenia and Muscle Wasting’, five lectures were dedicated to the most common clinical problems of cachectic patients with chronic diseases, including swallowing problems, pain, depression, muscle weakness, and shortness of breath. Future consensus definitions regarding these clinical problems will help to identify patients with such problems more efficiently. Only then goal-oriented therapies can be implemented. Major components for the treatment of these clinical problems include nutritional support, exercise training, talk therapy, and pharmacological treatments.

Conflict of interest

M.S.A. has received personal fees from Servier, outside the submitted work. All other authors declare no conflict of interest.

References

1. Pin F, Barreto R, Couch ME, Bonetto A, O’Connell TM. Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism. J Cachexia Sarcopenia Muscle 2019; 10: 140–154.
2. Brown JL, Lee DE, Rosa-Caldwell ME, Brown LA, Perry RA, Haynie WS, Huseman K, Sataranatarajan K, Van Remmen H, Washington TA, Wiggs MP, Greene NP. Protein imbalance in the development of skeletal muscle
arthritis: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2018; 9: 816–825.
14. Scherbakov N, Pietrock C, Sandek A, Ebben N, Valentova M, Springer J, Scheffold JC, von Haehling S, Anker SD, Norman K, Haeseler KG, Doehner W. Body weight changes and incidence of cachexia after stroke. J Cachexia Sarcopenia Muscle 2019; 10: 610–620.
15. Carbone S, Billingsley HE, Rodriguez-Miguez P, Kirkman DL, Garten R, Franco RL, Lee DC, Lavie CJ. Lean mass abnormalities in heart failure: the role of sarcopenia, sarcopenic obesity, and cachexia. Curr Probl Cardiol 2019: 100417.
16. Tomasoni D, Adamo M, Lombardi CM, Metra M. Highlights in heart failure. ESC Heart Fail 2019; 6: 983–991.
17. Streng KW, Nauta JF, Hillege HL, van der Meer P, Voors AA. Non-cardiac comorbidities in heart failure outpatients with preserved and reduced ejection fraction: a community-based study. Eur J Heart Fail 2018; 20: 1257–1266.
18. Markoussis-Mavrogenis G, Tromp J, Ouwerkerk W, Devalaraja M, Anker SD, Cleland JG, Dickstein K, Filippatos GS, van der Harst P, Lang CC, Metra M, Ng LL, Ponikowski P, Samani NJ, Zwinderman AH. Zannad F, Damman K, van der Meer P, Voors AA. Non-cardiac comorbidities in heart failure: survival, reduced, mid-range and preserved ejection fraction. Int J Cardiol 2018; 271: 132–139.
19. Iorio A, Senni M, Barbati G, Greene SJ, Pali S, Zambon E, Di Nola C, Cioffi G, Tarantini L, Gavazzi A, Sinagra G, Di Lenarda A. Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: a community-based study. Eur J Heart Fail 2018; 20: 1257–1266.
20. Porto CM, Silva VL, da Luz JSB, Filho BM, da Silveira VM. Association between vitamin D deficiency and heart failure risk in the elderly. ESC Heart Fail 2018; 5: 63–74.
21. Vitale C, Jankowska E, Hill L, Pieplo M, Doehner W, Anker SD, Lainscak M, Jaarsma T, Tonikovs P, Rosano GMC, Seferovic P, Coats AJ. Heart Failure Association/European Society of Cardiology position paper on frailty in patients with heart failure. Eur J Heart Fail 2019; 21: 1299–1305.
22. Kitamura M, Izawa KP, Yaeuka M, Mimura Y, Nagashima H, Oka K. Differences in nutritional status and activities of daily living and mobility in elderly hospitalized patients with heart failure. ESC Heart Fail 2019; 6: 344–350.
23. Platz E, Jhund PS, Claggett BL, Pfeffer MA, Swedberg K, Granger CB, Yusuf S, Solomon SD, McMurray J. Prevalence and prognostic importance of precipitating factors leading to heart failure hospitalization: recurrent hospitalizations and mortality. Eur J Heart Fail 2018; 20: 295–303.
24. Ryan AM, Prado CM, Sullivan ES, Power DG, Daly LE. Effects of weight loss and sarcopenia on response to chemotherapy, quality of life, and survival. Nutrition 2019; 67, 110539–68.
25. Arthur ST, Noone JM, van Doren BA, Roy D, Blanchette CM. One-year prevalence, comorbidities and cost of skeletal muscle loss and sarcopenia-related inpatient admissions in the USA. Drugs Context 2014; 3: 212265.
26. Kwan HY, Maddocks M, Nolan CM, Jones SE, Patel S, Barker RE, Kon SSC, Polley MJ, Cullinan P, Man WD. The prognostic significance of weight loss in chronic obstructive pulmonary disease-related cachexia: a prospective cohort study. J Cachexia Sarcopenia Muscle 2019; 10: 1330–1338.
27. Tsuji M, Amiya E, Hatano M, Nitta D, Maek H, Rui C, Saito A, Hosoya Y, Minatsuks S, Hara T, Nemoto M, Kagami Y, Endo M, Kimura M, Kinoshita O, Nawata K, Morita H, Ono M, Komuro I. Abdominal skeletal muscle mass as a predictor of mortality in Japanese patients undergoing left ventricular assist device implantation. ESC Heart Fail 2019; 6: 526–535.
28. Niedziela JT, Hudzik B, Strojek K, Polofski L, Gasaor M, Rozenz G. Weight loss in heart failure is associated with increased mortality only in non-obese patients without diabetes. J Cachexia Sarcopenia Muscle 2019; 10: 1307–1315.
29. Frown J, Hughes R, Skeat J. The prevalence of patient-reported dysphagia and oral complications in cancer patients. Support Care Cancer 2020; 28: 1141–1150.
30. Wakabayashi H, Matsushima M, Uwano R, Watanabe N, Oritsu H, Shimizu Y. Skeletal muscle mass is associated with severe dysphagia in cancer patients. J Cachexia Sarcopenia Muscle 2015; 6: 351–357.
31. Bassi D, Furkim AM, Silva CA, Coelho MS, Rolim MR, Alencar ML, Machado MJ. Identification of risk groups for oropharyngeal dysphagia in hospitalized patients in a university hospital. Codas 2014; 26: 17–27.
32. Mori T, Fujisima I, Takakayashi H, Oshima F, Itoya M, Kunita K, Kayashita J, Nishioh S, Sonoda A, Kuroda Y, Yamada M, Ogawa S. Development, reliability, and validity of a diagnostic algorithm for sarcopenic dysphagia. JCMS Clinical Reports 2017.
33. Takakayashi H, Mori R, Murakami T. The prevalence and prognostic significance of sarcopenic dysphagia in patients who require dysphagia rehabilitation. J Nutr Health Aging 2019; 23: 84–88.
34. Bauer J, Morley JE, Schols AMWJ, Ferrucci L, Cruz-Jentoft AJ, Dent E, Baracos VE, Crawford JA, Doehrer W, Heymsfield SB, Jatoi A, Kalantar-Zadeh K, Lainscak M, Landi F, Laviano A, Mancuso M, Muscaritoli M, Prado CM, Strasser F, van Heehling S, Coats AJS, Anker SD. sarcopenia: a time for action. An SCWD position paper. J Cachexia Sarcopenia Muscle 2019; 10:956–961.

35. Fujishima I, Fujii-Kurachi M, Arai H, Hyodo M, Kagaya H, Maeda K, Mori T, Nishioka S, Oshima F, Ogawa S, Ueda K, Umezaki T, Wakabayashi H, Yamawaki M, Yoshimura Y. Sarcopenia and dysphagia: position paper by four professional organizations. Geriatr Gerontol Int 2019; 19:91–97.

36. Wakabayashi H. Presbyhypagia and sarcopenic dysphagia: association between aging, sarcopenia, and deglutition disorders. J Frailty Aging 2014; 3:97–103.

37. Nagano A, Nishioka S, Wakabayashi H. Rehabilitation nutrition for iatrogenic sarcopenia and sarcopenic dysphagia. J Nutr Health Aging 2019; 23:256–265.

38. Shiraiishi A, Yoshimura Y, Wakabayashi H, Tsuji Y, Yamaga M, Koga H. Hospital dental hygienist intervention improves activities of daily living, home discharge and mortality in post-acute rehabilitation. Geriatr Gerontol Int 2019; 19:189–196.

39. Kim HH, Park JS. Efficacy of modified chin tuck against resistance exercise using hand-free device for dysphagia in stroke survivors: a randomised controlled trial. J Oral Rehabil 2019; 46:1042–1046.

40. https://iddsi.org/.

41. Cruz-Jentoft AJ, Sayer AA. sarcopenia. Lancet 2019; 393:2636–2646.

42. Segov H, Barbera L, Sutradhar R, Howell D, Dudgeon D, Ar tmega C, Liu Y, Hussain A, Sussman J, Earle C. Trajectory of performance status and symptom scores for patients with cancer during the last six months of life. J Clin Oncol 2011; 29:1151–1158.

43. Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML, Cassidy J, Koltzenburg M, Kiernan MC. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin 2013; 63:419–437.

44. Staff NP, Grisold A, Grisold W, Windebank AJ. Chemorotherapy-induced peripheral neuropathy: a current review. Ann Neurol 2017; 81:772–81.

45. Hartvigsen J, Hancock MJ, Kongsted A, Louw Q, Ferreira ML, Genevey S, Hoy D, Karpinnen J, Pransky G, Sieper J, Smeets RJ, Underwood M. Lancaster low back pain series: working group who low back pain is and why we need to pay attention. Lancet 2018; 391:2356–2367.

46. Ferraro D, Plantone D, Morselli F, Dallari G, Simone AM, Vitetta F, Sala P, Primiano G, Nociti V, Pardini M, Mirabella M, Volonno C. Systematic assessment and characterization of chronic pain in multiple sclerosis patients. Neuroly Sci 2018; 39:445–453.

47. Ahlstrand I, Björk M, Thyberg I, Falkmer T. Pain and difficulties performing valued life activities in women and men with rheumatoid arthritis. Clin Rheumatol 2015; 34:1353–1362.

48. Maigman N, Chauy J, Daoust R, Duc L, Mabiala-Makele F, Collomb-Muret R, Roustit M, Maindet C, Pépin JB, Vigilino D. Pain during exacerbation of chronic obstructive pulmonary disease: a prospective cohort study. PLoS ONE 2019; 14:e0217370.

49. Glare P, Aubrey KR, Myles PS. Transition from acute to chronic pain after surgery. Lancet 2019; 393:1537–1546.

50. Haedle C, Smith M, VanBuren J, Klein D, Turvey C. The characteristics of pain in patients diagnosed with depression and heart failure. Pain Manage Nurs 2017; 18:353–362.

51. Clark AJ, Furst D. Do patients with chronic heart failure have chest pain? Int J Cardiol 2013; 167:185–189.

52. Srijala KL, Jensen MP, Mendoza ME, Yi JC, Fisher HM, Keefe JF. Psychological and behavioral approaches to cancer pain management. J Clin Oncol 2014; 32:1703–1711.

53. de Heer EW, Palacios JE, Adér HJ, van Marwijk HWJ, Tylee A, van der Felz-Cornelis CM. Chest pain, depression and anxiety in coronary heart disease: consequence or cause? A prospective clinical study in primary care. J Psychosom Res 2020; 129:109981.

54. Yoong J, Poon P. Principles of cancer pain management: an overview and focus on pharmacological and interventional strategies. Aust J Gen Pract 2018; 47:758–762.

55. Reyes-Gilbert CA, Spitz MR, Yemmurugalingam S, Swartz M, Gu J, Wu X, Bruera E, Shest S. Role of inflammation gene polymorphisms on pain severity in lung cancer patients. Cancer Epidemiol Biomarkers Prev 2009; 18:2636–2642.

56. Brunelli C, Bennett MI, Kaasa S, Fainsinger R, Sjögren P, Mercadante S, Lahre ET, Caraceni A, European Association for Palliative Care (EAPC) Research Network; International Association for the Study of Pain (IASP) Cancer Pain Special Interest Group. Classification of neuropathic pain in cancer patients: a Delphi expert survey report and EAPC/IASP proposal of an algorithm for diagnostic criteria. Pain 2014; 155:2707–2713.

57. Nekolaichuk CL, Fainsinger R, Sjøgren P, Mercadante S, Krkevski Skvarč N, Vissers K, Wirz S, Wells G, Morlion B. Standards for the management of cancer-related pain across Europe—a position paper from the EFC Task Force on Cancer Pain. Eur J Pain 2019; 23:660–668.

58. Portenoy RK, Ahmadzai SH, Bautista MJ, Bouzid K, Gibson R, Gumara Y, Hassan AA, Hattori S, Keefe JF, Kraychete DC, Lee DH, Tamura K, Wang J. Cancer Pain management in Resource-limited settings (CAPER) Working Group. Optimizing cancer pain management in resource-limited settings. Support Care Cancer 2019; 27:2113–2124.

59. Portenoy RK, Ahmadzai SH, Bautista MJ, Bouzid K, Gibson R, Gumara Y, Hassan AA, Hattori S, Keefe JF, Kraychete DC, Lee DH, Tamura K, Wang J. Cancer Pain management in Resource-limited settings. Support Care Cancer 2019; 27:2113–2124.

60. Portenoy RK, Ahmadzai SH, Bautista MJ, Bouzid K, Gibson R, Gumara Y, Hassan AA, Hattori S, Keefe JF, Kraychete DC, Lee DH, Tamura K, Wang J. Cancer Pain management in Resource-limited settings. Support Care Cancer 2019; 27:2113–2124.

61. Greenberg BH, Mills PJ. Depression in cancer survivors. J Clin Oncol 2019; 2124.

62. Chabowski M, Polanski J, Jankowska-Polańska B, Janczak D, Rosińczuk J. Is nutritional status associated with the level of anxiety, depression and pain in patients with lung cancer? J Thorac Dis 2018; 10:2303–2310.

63. Dall L, Dolan R, Power D, Ni Bhuachalla É, Sim W, Fallon M, Cussen S, Simmons C, McMillan DC, Laird BJ, Ryan A. The relationship between the BMI-adjusted weight loss grading system and quality of life in patients with incurable cancer. J Cachexia Sarcopenia Muscle 2019 [Epub ahead of print].

64. Young JQ, Królikowska E, Mondeccai DJ, Weisner C. Prevalence of behavioral health disorders and associated chronic disease burden in a commercially insured health system: findings of a case-control study. Gen Hosp Psychiatry 2015; 37:101–108.

65. Han KM, Ko YH, Yoon HK, Han C, Ham BJ, Kim YK. Relationship of depression, chronic disease, self-rated health, and gender with health care utilization among community-living elderly. J Affect Disord 2018; 241:402–410.

66. Liguori I, Russo G, Curcio F, Sasso G, Della-Morte D, Gargiulo G, Pirrozi F, Cacciatore F, Bonaduce D, Abete P, Testa G. Depression and chronic heart failure in the elderly: an intriguing relation. J Geriatr Cardiol 2018; 15:451–459.

67. Rutledge T, Reis VA, Linke SE, Greenberg BH, Mills PJ. Depression in heart failure a meta-analytic review of prevalence, intervention effects, and
associations with clinical outcomes. *J Am Coll Cardiol* 2006; 48: 1527–1537.
68. Baert A, De Smedt D, De Sutter J, De Bacquer D, Puddu PE, Clays E, Padaens S. Factors associated with health-related quality of life in stable ambulatory congestive heart failure patients: systematic review. *Eur J Prev Cardiol* 2018; 25: 472–481.
69. Moser DK, Doering LV, Chung ML. Vulnerabilities of patients recovering from an exacerbation of chronic heart failure. *Am Heart J* 2005; 150: 984.
70. Friedmann E, Thomas SA, Liu F, Morig POP, Chapa D, Gottlieb SS, Sudden Cardiac Death in Heart Failure Trial Investigators. Relationship of depression, anxiety, and social isolation to chronic heart failure outpatient mortality. *Am Heart J* 2006; 152: e1–e8.
71. Reid J, McKenna H, Fitzsimons D, McCance T. The experience of cancer cachexia: a qualitative study of advanced cancer patients and their family members. *Int J Nurs Stud* 2009; 46: 606–616.
72. Sainsbury MA, Maeda I, Morita T, Okajima Y, Hamaguchi Y, Aoyama M, Kizawa Y, Tsuneto S, Shima Y, Miyashita M. Eating-related distress and need for nutritional support of families of advanced cancer patients: a nationwide survey of bereaved family members. *J Cachexia Sarcopenia Muscle* 2016; 7: 527–534.
73. Zhou T, Yang K, Thapa S, Liu H, Wang B, Yu S. Differences in symptom burden for cachexia in end stage kidney disease—study protocol. *BMC Nephrol* 2018; 19: 6.
74. Riechelmann RP, Burman D, Tannock IF, Rodin G, Zimmermann C. Phase II trial of mirtazapine for cancer-related cachexia and anorexia. *Am J Hosp Palliat Care* 2010; 27: 106–110.
75. Naing A, Dalal S, Abdelrahim M, Wheler J, Hess K, Fu S, Hong DS, Janku F, Falchook GS, Ilustre A, Ouyang F, Kurzrock R. Olanzapine for cachexia in patients with advanced cancer: an exploratory study of effects on weight and metabolic cytokines. *Support Care Cancer* 2015; 23: 2649–2654.
76. Prado BL, Qian Y. Anti-cytokines in the treatment of cancer cachexia. *Ann Palliat Med* 2019; 8: 67–79.
77. Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, Boirie Y, Bossaeus I, Cederholm T, Costelli P, Fearon KC, Laviano A, Maggio M, Rossi Fanelli F, Schneider SM, Schols A, Sieber CC. Consensus definition of sarcopenia, cachexia and anorexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. *Clin Nutr* 2010; 29: 154–159.
78. Suzuki T, Palus S, Springer J. Skeletal muscle wasting in chronic heart failure. *ESC Heart Fail* 2018; 5: 1099–1107.
79. Emami A, Saitoh M, Valenton M, Sandek A, Evertz R, Ebnner N, Loncar G, Springer J, Doehner W, Lainscak M, Hallenfuß G, Anker SD, von Heilshing S. Comparison of sarcopenia and cachexia in men with chronic heart failure: results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). *Eur J Heart Fail* 2018; 20: 1580–1587.
80. Hulmi JJ, Nissinen TA, Räsänen M, Degerman J, Lautajoja JH, Hemanthakumar KA, Backman JT, Ritvos O, Silverinnofen M, Kivelä R. Prevention of chemotherapy-induced cachexia by ACVR2B ligand blocking has different effects on heart and skeletal muscle. *J Cachexia Sarcopenia Muscle* 2018; 9: 417–432.
81. Bourgeois B, Fan B, Johannsen N, Gonzalez MC, Ng BK, Sommer MJ, Shepherd JA, Heymsfield SB. Improved strength prediction combining clinically available measures of skeletal muscle mass and quality. *J Cachexia Sarcopenia Muscle* 2019; 10: 84–94.
82. Crawford J. What are the criteria for response to cachexia treatment? *Ann Palliat Med* 2019; 8: 43–49.
83. Demers C, McKelvie RS, Nagessa A, Yusuf S, RESOLVD Pilot Study Investigators. Reference and responsiveness of the six-minute walk test in patients with heart failure. *Am Heart J* 2001; 142: 698–703.
84. Gewandter JS, Dale W, Magnuson A, Pandya C, Hecker CE, Lemelton T, Roussel B, Ithikhar R, Dolan J, Noyes K, Mobile SG. Associations between a patient-reported outcome (PRO) measure of sarcopenia and falls, functional status, and physical performance in older patients with cancer. *J Geriatr Oncol* 2015; 6: 433–441.
85. Anker MS, Holcomb R, Muscaritoli M, von Heilshing S, Haverkamp W, Jatoi A, Morley JE, Strasser F, Landmesser U, Crafts AJS, Anker SD. Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. *J Cachexia Sarcopenia Muscle* 2019; 10: 22–34.
86. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Brayère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. *Age Ageing* 2019; 48: 16–31.
87. Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Englerke K, Maggi S, Dennison E, Al-Daghi NM, Allepaerts S, Bauer J, Baumans I, Brandi ML, Bruyère O, Cederholm T, Cerretta F, Cherubini A, Cooper C, Cruz-Jentoft A, Mccloskey E, Dawson-Hughes B, Kaufman JM, Laslop A, Petersmans J, Reginster JY, Rizzoli R, Robinson S, Rolland Y, Rueda R, Vellas B, Kanis JA. Pitfalls in the measurement of muscle mass: a need for a reference standard. *J Cachexia Sarcopenia Muscle* 2018; 9: 269–278.
88. Cole CL, Kleckner IR, Jatoi A, Schwartz EM, Dunne RF. The role of systemic inflammation in cancer-associated muscle wasting and rationale for exercise as a therapeutic modality. *JSM Clin Rep* 2018; 3: pii: e00065.
89. Arends J, Bachmann P, Baracos V, Barthelemy N, Berts H, Bozzetti F, Fearon K, Hütterer E, Isenring E, Kaasa S, Krznaric Z, Laird B, Larson M, Laviano A, Mühlbach S, Muscaritoli M, Oldervoll L, Ravasco P, Solheim T, Strasser F, van der Schueren M, Preiser JC. ESPEN guidelines on nutrition in cancer patients. *Clin Nutr* 2017; 36: 11–48.
90. Solheim TS, Laird BJA, Balstad TR, Stene GB, Bye A, Johns N, Pettersen GH, Follon M, Fearnor P, Fearon K, Kaasa S. A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. *J Cachexia Sarcopenia Muscle* 2017; 8: 778–788.
91. Uster A, Ruehlin M, S'e G, S'c D, K'z R, Imboden H, R'k T, Ballmer PE. Effects of nutrition and physical exercise intervention in palliative cancer patients: a randomized controlled trial. *Clin Nutr* 2018; 37: 1202–1209.
92. Grote M, Mulhöfer C, Weigl M, Davies-Knorr P, Belka C. Progressive resistance training in cachectic head and neck cancer patients undergoing radiotherapy: a randomized controlled pilot feasibility trial. *Radiat Oncol* 2018; 13: 215.
93. Wiskemann J, Clauss D, Tjaden C, Hackert T, Schneider L, Ulrich CM, Steindorf K. Progressive resistance training to impact physical fitness and body weight in pancreatic cancer patients: a randomized controlled trial. *Plos One* 2019; 48: 257–266.
94. Naito T, Mitsunaga S, Miura S, Tatematsu N, Inano T, Mouri T, Tsuji T, Higashiguchi T, Inui A, Okayama T, Yamaguchi T, Morikawa A, Mori N, Takahashi T, Strasser F, Omae K, Mori
97. O’Leary N, Murphy NF, O’Loughlin C, Tiernan E, McDonald K. A comparative study of the palliative care needs of heart failure and cancer patients. *Eur J Heart Fail* 2009; 11: 406–412.

98. Walsh D, Donnelly S, Rybicki L. The symptoms of advanced cancer: relationship to age, gender, and performance status in 1,000 patients. *Support Care Cancer* 2000; 8: 175–179.

99. Cramer L, Hildebrandt B, Kung T, Wichmann K, Springer J, Doehner W, Sandek A, Valentova M, Stojakovic T, Scharnagl H, Riess H, Anker SD, von Haehling S. Cardiovascular function and predictors of exercise capacity in patients with colorectal cancer. *J Am Coll Cardiol* 2014; 64: 1310–1319.

100. Cachia E, Ahmedzai SH. Breathlessness in cancer patients. *Eur J Cancer* 2008; 44: 1116–1123.

101. Dudgeon DJ, Lertzman M, Askew GR. Physiological changes and clinical correlations of dyspnea in cancer outpatients. *J Pain Symptom Manage* 2001; 21: 373–379.

102. Mori M, Morita T, Matsuda Y, Yamada H, Kanesihi K, Matsumoto Y, Matsuo N, Odagiri T, Aruga E, Watanabe H, Tatar R, Sakurai H, Kimura A, Katayama H, Suga A, Nishi T, Shirado AN, Watanabe T, Kuchiba A, Yamaguchi T, Iwase S. How successful are we in relieving terminal dyspnea in cancer patients? A real-world multi-center prospective observational study. *Support Care Cancer* 2019 [Epub ahead of print].

103. Riley JP, Beattie JM. Palliative care in heart failure: facts and numbers. *ESC Heart Fail* 2017; 4: 81–87.

104. Coats AJ, Clark AL, Piepoli M, Volterrani M, Poole-Wilson PA. Symptoms and quality of life in heart failure: the muscle hypothesis. *Br Heart J* 1994; 72: S36–S39.

105. Belli JF, Bacal F, Bocchi EA, Guimarães GV. Ergoreflex activity in heart failure. *Arq Bras Cardiol* 2011; 97: 171–178.

106. Floras JS. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. *J Am Coll Cardiol* 1993; 22: 72A–84A.

107. Anker MS, Ebner N, Hildebrandt B, Springer J, Sinn M, Riess H, Anker SD, Landmesser U, Haerkenkamp W, von Haehling S. Resting heart rate is an independent predictor of death in patients with colorectal, pancreatic, and non-small cell lung cancer: results of a prospective cardiovascular long-term study. *Eur J Heart Fail* 2016; 18: 1524–1534.

108. Kamal AH, Maguire JM, Wheeler JL, Currow DC, Abernethy AP. Dyspnea review for the palliative care professional: treatment goals and therapeutic options. *J Palliat Med* 2012; 15: 106–114.