Data on free and bound volatile compounds in six *Ribes nigrum* L. blackcurrant cultivars

Yaran Liu, Shaoyang Wang, Jie Ren, Guanshen Yuan, Yiqing Li, Bolin Zhang, Baoqing Zhu *

Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Abstract

The data investigated 198 volatile compounds of six currant cultivars grown in China which is analyzed by SPME–GC–MS. Volatile compounds in these currant samples were identified by two methods, comparing retention indices with reference standards and matching mass spectrum in the NST11 library. A synthetic currant matrix prepared according to the currant juice condition were extracted and analyzed using the same extraction procedure as the currant samples. The standard curve was generated for quantification of volatile compounds. For the volatiles without the available standard, the data provided consulting standards that had the same carbon atom or the similar functional structure for quantification. Further interpretation and discussion can be seen in article entitled “Characterization of Free and Bound Volatile Compounds in Six *Ribes nigrum* L. Blackcurrant Cultivars” (Liu et al., 2018) [1].

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.foodres.2017.10.038

* Corresponding author.

E-mail address: zhubaoqing@bjfu.edu.cn (B. Zhu).

https://doi.org/10.1016/j.dib.2018.01.090

2352-3409 © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Chemistry
More specific subject area	Aroma
Type of data	Table
How data was acquired	GC–MS (Agilent 7890 gas chromatography and an Agilent 5975 mass spectrometer) with automated HS-SPME
Data format	Analyzed
Experimental factors	Each currant cultivar was mashed and centrifuge to obtain currant juice. The currant juice was mixed with NaCl and 4-methyl-2-pentanol (internal standard). The bound volatile extraction was released by AR2000 enzyme solution.
Experimental features	The free and bound volatile extraction was analyzed by HS-SPME followed by GC–MS using a 60 m × 0.25 mm, 0.25 µm thickness HP-INNOWAX capillary column.
Data source location	The horticultural experimental station at the Northeast Agricultural University in China (latitude 44°04′ and longitude 125°42′)
Data accessibility	Data is provided with this article.

Value of the data

- This data provided physicochemical parameters of six currant cultivars for further studies of currant quality control.
- Total 198 Volatile compounds were identified in six currant cultivars by GC–MS.
- The standard curve of some volatile compounds was generated for quantification of volatile compounds by GC–MS. The data can be used for reference of volatiles quantification.
- The data calculated the retention indices of volatiles compounds that can be used for qualitative analysis by GC–MS.

1. **Data**

 See Tables 1–3.

2. **Experimental design, materials and methods**

 2.1. **Currant samples**

 Six cultivars of currant (“Risagar”, “Fertodi”, “Brodthrop”, “Sofya”, “Yadrionaya”, and “Liangye”) were obtained from the horticultural experimental station at the Northeast Agricultural University in China (latitude 44°04′ and longitude 125°42′) at their maturity stage. The currant samples were frozen at -20°C prior to further analysis (Table 1).

2.2. **Chemicals and reagents**

 Glucose, sodium hydroxide, sodium chloride, citric acid, and sodium dihydrogen phosphate were obtained from Beijing Chemical Works (Beijing, China). HPLC grade dichloromethane, ethanol, and methanol were purchased from Honeywell (Morris Township, NJ, USA). Pure water was obtained from Milli-Q purification system (Millipore, Bedford, MA, USA). The volatile standards used for identification were purchased from Sigma-Aldrich (St. Louis, MO, USA) with a purity above 98%. Other reagents were of analytical grade unless specifically noted.
2.3. Volatile extraction

Each currant cultivar was mashed and centrifuged to yield currant juice. The currant juice (5 mL) was mixed with NaCl (1.00 g) and 1.0018 g/L 4-methyl-2-pentanol (10 µL, internal standard) in a 15-mL glass vial containing a magnetic stirrer with a PTFE-silicon septum. The mixture was equilibrated on a heating and agitation platform at 40 °C for 30 min. The free volatile compounds in the sample were concentrated with headspace SPME regarding our previous report [2]. Each currant cultivar was conducted in three independent extractions.

The bound volatiles were released using AR2000 enzyme solution according to our published methods [2]. Afterwards, the bound volatile compounds were extracted and analyzed using the same SPME as the free volatile compounds.

2.4. GC–MS analysis

The volatile compounds analysis on GC followed our previous method [3]. An Agilent 7890 gas chromatography equipped with an Agilent 5975 mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) was used to analyze volatile compounds. A 60 m × 0.25 mm, 0.25 µm thickness HP-INNOWAX capillary column (J&W Scientific, Folsom, CA, USA) was used to separate the volatile compounds using the carrier gas (helium) at 1 mL/min flow rate. The over temperature was programmed as follows: 50 °C held for 1 min, then increased from 50 °C to 220 °C at a rate of 3 °C/min and held at 220 °C for 5 min, and then increased to 250 °C at 5 °C/min and held at 250 °C for 5 min. The temperature of MS transfer line was set at 280 °C. Mass spectrum was recorded at 70 eV with 130 °C in the electron impact (EI) mode. All scan mass from m/z 25 to 300 was recorded. C₆-C₂₄ alkane series (Supelco, Bellefonte, PA, USA) was analyzed under the same chromatographic conditions for calculation of retention indices of volatiles. The volatiles in currant were identified by comparing their retention indices and mass spectrum with reference standard. The volatiles without the available standard were tentatively identified by comparing their retention indices and mass spectrum with the NIST11 library (Table 3).

2.5. Standards analysis

A synthetic currant matrix was prepared regarding the physicochemical index of the currant juice. The synthetic currant matrix consisted of 170 g/L sugar and 3.5 g/L citric acid with its pH adjusted 4.0 using 5 M NaOH solution. Each external volatile standard was dissolved in HPLC-grade ethanol to generate the stock standard solution. These stock standard solutions were then combined using the synthetic matrix to form standard working solution. Afterwards, the standards working solution was diluted using the synthetic matrix to 18 successive levels. The standards were analyzed using the same extraction procedure as the currant samples, and analyzed under the same GC method. The standard curve was integrated using the peak area ratio of external volatile standard to internal standard versus the concentration of external standard (Table 2).

Table 1

Cultivar	Juice yield (%)	pH	Total soluble solid (°Brix)	Titratable acid (g/L)
Sofya	65.07 ± 1.73 b	2.66 ± 0.01 a	14.80 ± 0.14 a	3.34 ± 0.13 ab
Yadronaya	66.36 ± 1.10 b	2.68 ± 0.01 ab	15.04 ± 0.00 b	3.15 ± 0.09 a
Liangye	53.06 ± 0.64 a	2.81 ± 0.01 c	16.15 ± 0.07 c	4.03 ± 0.04 bc
Risagar	52.49 ± 1.22 a	2.68 ± 0.03 ab	17.25 ± 0.07 d	4.52 ± 0.21 c
Fertodi	51.46 ± 2.06 a	2.65 ± 0.02 a	18.05 ± 0.21 f	4.25 ± 0.43 c
Brodtrop	60.45 ± 4.46 ab	2.74 ± 0.00 b	15.05 ± 0.21 ab	3.06 ± 0.04 a

a expressed as citric acid. Data are mean ± standard deviation of triplicate tests. Different letters in each column indicate significant differences at a significant level of 0.05.
Compounds	CAS no.	Characteristic Ions (m/z)	Quantitative ion (m/z)	Range (μg L⁻¹)	Regression equation	R²	
Alcohols				Max	Min		
Heptanol	111706	70,564,355	70	211.00	0.21	\(y = 1147.1x + 1.4069 \)	0.976
1-Octanol	111875	567,084	56	6.56	0.01	\(y = 7025.9x + 0.1283 \)	0.991
Isopentanol	123513	55,424,341	55	1413.80	0.69	\(y = 19779x + 31.211 \)	0.952
Isohexanol	626891	56,414,342	56	94.00	1.47	\(y = 5358.2x + 0.8578 \)	0.990
2-Heptanol	543497	454,355	45	51.50	0.10	\(y = 748.37x + 0.2814 \)	0.994
1-Hexanol	111273	56,434,155	56	493.50	0.48	\(y = 1546.3x - 5.0952 \)	0.885
(Z)-3-Hexen-1-ol	928961	6,741,395,582	67	2035.00	3.97	\(y = 13,476x + 2.371 \)	0.990
3-Octanol	589980	59,558,341	59	103.13	25.78	\(y = 16,945x + 36.908 \)	0.914
Benzyl alcohol	100516	79,108,107	79	1135.00	17.73	\(y = 36,338x + 36.142 \)	0.994
Aldehydes				Max	Min		
Decanal	112312	4,341,575,544	43	19.40	0.02	\(y = 2272.1x - 0.2855 \)	0.962
Hexanal	66251	4,456,414,357	44	7870.00	3.84	\(y = 7081x - 8.15 \)	0.988
(E)-2-Hexenal	6728263	41,423,983	83	40,220.00	4.91	\(y = 11726x - 704.46 \)	0.982
Nonanal	124196	57,414,356	57	13.00	3.25	\(y = 648.61x + 1.9932 \)	0.884
Octanal	124130	4,344,415,684	43	6.56	0.01	\(y = 70.259x + 0.1283 \)	0.991
Benzaldehyde	100527	771,061,055,150	77	58.75	0.46	\(y = 1782x + 1.4342 \)	0.993
Acids				Max	Min		
Butyric Acid	107926	607,341	60	120.00	15.00	\(y = 21,865x + 42.766 \)	0.907
Hexanoic acid	142621	6,073,414,387	60	104.38	26.09	\(y = 8519.9x + 30.542 \)	0.781
Heptanoic acid	111148	607,343	60	580.00	9.06	\(y = 5021.9x + 40.935 \)	0.952
Octanoic Acid	124072	6,073,434,155	60	2210.00	138.13	\(y = 35,255x + 219.26 \)	0.933
Esters				Max	Min		
Ethyl acetate	141786	43	43	7440.00	116.25	\(y = 7923.88x + 0.0075 \)	0.999
Ethyl 2-hydroxybenzoate	118616	120	120	31.50	0.25	\(y = 537.33x + 1.7861 \)	0.963
Ethyl butanoate	105344	714,329	71	103.20	3.23	\(y = 1624.7x + 6.7199 \)	0.976
Isoamyl acetate	123922	43,705,587	70	202.20	1.58	\(y = 948.91x + 9.6091 \)	0.953
Ethyl hexanoate	123660	8899	88	193.60	0.38	\(y = 628.86x + 9.0529 \)	0.921
Hexyl acetate	142927	435,684	84	50.30	0.20	\(y = 739.31x + 0.1564 \)	0.985
Ethyl octanoate	111115	7487	74	3.00	0.38	\(y = 318.11x + 0.3035 \)	0.992
Ethyl caprylate	106321	88,127	88	103.30	0.05	\(y = 1049.9x + 4.7153 \)	0.945
Table 2 (continued)

Compounds	CAS no.	Characteristic Ions (m/z)	Quantitative ion (m/z)	Range (μg L⁻¹)	Regression equation	R²		
				Max				
				Min				
Terpenoids								
Linalool	78706	71,414,393	71	0.15	0.00	0.996		
Neral	106263	41	41	0.01	0.04	0.960		
Paracymene	99876	11,913,491,120	119	22.00	0.17	0.926		
Nerol	106252	69,419,368	69	0.02	0.00	0.968		
Geraniol	106241	69,41,6829	69	0.03	0.00	0.966		
Sulcatone	110930	43	43	120.00	0.12	0.993		
β-Myrcene	123353	41,936,939	41	0.02	0.00	0.958		
Furan linalool oxide	98555	5,993,121,136	59	0.11	0.00	0.971		
α-Terpineol								
(Z)-β-Damascenone	23726934	121	121	2.27	0.28	0.995		
(E)-β-Damascenone	23726934	69	69	2.27	0.04	0.994		
Benzene								
Benzaldehyde	100527	771,061,055,150	77	58.75	0.46	0.993		
Methyl 4-hydroxybenzoate	119368	120,152	120	69.00	0.54	0.910		
2-Phenyethanol	60128	91,122	91	649.38	5.07	0.995		
Phenol	108952	946,665	94	43.40	0.01	0.979		
p-Ethylguaiacol	2785899	137,152	137	39.60	0.62	0.960		
p-Ethylphenol	123079	107,122	107	6.23	0.39	0.976		
Styrene	100425	104,103,787,751	104	129.00	1.01	0.960		
NO.	NO.	Compound	RI	Quantitative analysis	Quantification m/z	Quantitative standard curve	Classification	
-----	-----	---------------------------------	------	-----------------------	---------------------	----------------------------	------------------	
1	A1	Acetic acid	1449	RI, Mass	60	Butyric Acid Acids		
2	A2	Propionic Acid	1534	RI, Mass	74	Butyric Acid Acids		
3	A3	Isobutyric acid	1563	RI, Mass	43	Butyric Acid Acids		
4	A4	Pivalic acid	1573	RI, Mass	57	Ethyl caprylate Acids		
5	A5	Butyric Acid	1622	Str, RI, Mass	60	Butyric Acid Acids		
6	A6	Isovaleric acid	1664	RI, Mass	60	Butyric Acid Acids		
7	A7	2-Ethylbutanoic acid	1665	RI, Mass	74	Butyric Acid Acids		
8	A8	Valeric acid	1732	RI, Mass	60	Hexanoic acid Acids		
9	A9	Hexanoic acid	1840	Str, RI, Mass	60	Hexanoic acid Acids		
10	A10	2-Ethylhexanoic acid	1944	RI, Mass	73	Hexanoic acid Acids		
11	A11	Heptanoic acid	1947	Str, RI, Mass	60	Heptanoic acid Acids		
12	A12	Octanoic Acid	2052	Str, RI, Mass	60	Octanoic Acid Acids		
13	A13	Nonanoic acid	2155	RI, Mass	60	Octanoic Acid Acids		
14	L14	Hexanal	1041	Str, RI, Mass	56	Hexanal Aldehyde		
15	L15	(E)-2-Hexenal	1220	Str, RI, Mass	41	(E)-2-Hexenal Aldehyde		
16	L16	Octanal	1280	Str, RI, Mass	43	Octanal Aldehyde		
17	L17	(E)-2-Heptenal	1323	RI, Mass	41	Hexanal Aldehyde		
18	L18	Nonanal	1385	Str, RI, Mass	57	Nonanal Aldehyde		
19	L19	1-Formyl-5-ethylcyclopentene	1414	RI, Mass	124	Decanal Aldehyde		
20	L20	(E)-2-Octenal	1428	RI, Mass	41	Decanal Aldehyde		
21	L21	Decanal	1492	Str, RI, Mass	43	Decanal Aldehyde		
22	L22	Benzaldehyde	1523	Str, RI, Mass	77	Benzaldehyde Aldehyde		
23	-	p-Tolualdehyde	1650	RI, Mass	91	Benzaldehyde Aldehyde		
24	L24	2-Isopropenyl-5-methylhex-4-enal	1684	Mass	69	Decanal Aldehyde		
25	L25	(E,E)-2,4-Nonadienal	1703	RI, Mass	81	Decanal Aldehyde		
26	L26	Cuminaldehyde	1785	RI, Mass	133	Benzaldehyde Aldehyde		
27	L27	3,4-Dimethylbenzaldehyde	1818	RI, Mass	133	Benzaldehyde Aldehyde		
28	B28	Styrene	1232	Str, RI, Mass	104	Styrene Benzene		
29	B29	2,5-Dimethylstyrone	1429	RI, Mass	117	Benzylalcohol Benzene		
30	B30	p-Cymene	1411	RI, Mass	117	Benzylalcohol Benzene		
31	B31	2,4-Dimethylstyrone	1415	RI, Mass	117	Benzylalcohol Benzene		
32	B32	2-Allyltoluene	1420	RI, Mass	117	Benzylalcohol Benzene		
33	B33	Hypnon	1651	RI, Mass	105	Benzaldehyde Benzene		
34	B34	Veratrol	1704	RI, Mass	138	p-Ethylguaicacol Benzene		
35	B35	3-Hydroxy-3-phenylbutan-2-one	1750	Mass	43	2-Phenyethanol Benzene		
36	B36	Methyl 4-hydroxybenzoate	1777	Str, RI, Mass	120	Methyl 4-hydroxybenzoate		
37	B37	2-Methylanthalene	1857	RI, Mass	142	Benzylalcohol Benzene		
NO.	NO.a	Compound	RI	Quantitative analysis\(^b\)	Quantification \(m/z\)	Quantitative standard curve\(^d\)	Classification	
-----	------	-------------------------------	--------	-----------------------------	------------------------	----------------------------------	----------------------	
38	B38	1-Methylnaphthalene	1891	R.I., Mass 142	Benzylic alcohol	Benzene		
39	B39	Butylhydroxytoluene	1913	R.I., Mass 205	Benzaldehyde	Benzene		
40	B40	1,2-Benzisothiazole	1959	R.I., Mass 135	Benzylic alcohol	Benzene		
41	B41	5-Hydroxyindan	2481	Mass 133	\(p\)-Ethylphenol	Benzene		
42	B42	Guaiacol	1859	Str, R.I., Mass 109	Guaiacol	Volatile Phenols		
43	B43	\(o\)-Cresol	1998	R.I., Mass 108	\(p\)-Ethylphenol	Volatile Phenols		
44	B44	Phenol	2001	Str, R.I., Mass 94	Phenol	Volatile Phenols		
45	B45	\(p\)-Ethylguaiacol	2027	Str, R.I., Mass 137	\(p\)-Ethylguaiacol	Volatile Phenols		
46	B46	2,5-Xylenol	2072	R.I., Mass 122	\(p\)-Ethylphenol	Volatile Phenols		
47	B47	\(p\)-Cresol	2077	R.I., Mass 107	\(p\)-Ethylphenol	Volatile Phenols		
48	–	Eugenol	2160	R.I., Mass 164	\(p\)-Ethylphenol	Volatile Phenols		
49	B49	\(p\)-Ethylphenol	2165	Str, R.I., Mass 107	\(p\)-Ethylphenol	Volatile Phenols		
50	B50	4-Vinylguaiacol	2187	R.I., Mass 150	\(p\)-Ethylguaiacol	Volatile Phenols		
51	B51	2,4-Di-tert-butylphenol	2289	R.I., Mass 191	\(p\)-Ethylphenol	Volatile Phenols		
52	B52	4-Formyl-2,6-di-tert-butylphenol	2461	Mass 219	\(p\)-Ethylphenol	Volatile Phenols		
53	E53	Isoamyl acetate	1114	Str, R.I., Mass 43	Isoamyl acetate	Acetate Esters		
54	E54	Hexyl acetate	1261	Str, R.I., Mass 43	Hexyl acetate	Acetate Esters		
55	E55	\((Z)-3\)-Hexenol acetate	1308	R.I., Mass 43	Ethyl hexanoate	Acetate Esters		
56	E56	\((E)-2\)-Hexenol acetate	1324	R.I., Mass 43	Ethyl hexanoate	Acetate Esters		
57	E57	Furfuryl acetate	1530	R.I., Mass 43	Ethyl caprylate	Acetate Esters		
58	E58	Bornyl acetate	1576	R.I., Mass 95	Ethyl caprylate	Acetate Esters		
59	E59	Benzyl acetate	1727	R.I., Mass 108	Ethyl 2-hydroxybenzoate	Acetate Esters		
60	E60	2-Phenetyl acetate	1816	R.I., Mass 104	Ethyl 2-hydroxybenzoate	Acetate Esters		
61	E61	Ethyl acetate	691	Str, R.I., Mass 43	Ethyl acetate	Ethyl esters		
62	E62	Ethyl butanoate	899	Str, R.I., Mass 71	Ethyl butanoate	Ethyl esters		
63	E63	Ethyl hexanoate	1222	Str, R.I., Mass 88	Ethyl hexanoate	Ethyl esters		
64	E64	Ethyl octanoate	1387	Str, R.I., Mass 74	Ethyl octanoate	Ethyl esters		
65	E65	Ethyl 2-hydroxybutanoate	1403	R.I., Mass 59	Ethyl 2-hydroxybenzoate	Ethyl esters		
66	E66	Ethyl caprylate	1425	Str, R.I., Mass 88	Ethyl caprylate	Ethyl esters		
67	E67	Ethyl 3-hydroxybutyrate	1516	R.I., Mass 43	Ethyl 2-hydroxybenzoate	Ethyl esters		
68	E68	Ethyl benzoate	1666	R.I., Mass 105	Ethyl 2-hydroxybenzoate	Ethyl esters		
69	E69	Ethyl 3-hydroxyhexanoate	1677	R.I., Mass 71	Ethyl 2-hydroxybenzoate	Ethyl esters		
70	E70	Ethyl 2-hydroxybenzoate	1813	Str, R.I., Mass 120	Ethyl 2-hydroxybenzoate	Ethyl esters		
71	E71	Methyl butanoate	785	R.I., Mass 74	Ethyl butanoate	Other Esters		
72	E72	Methyl caproate	1186	R.I., Mass 74	Ethyl butanoate	Other Esters		
73	E73	Butyl butanoate	1207	R.I., Mass 71	Ethyl butanoate	Other Esters		
74	E74	Methyl 2-hydroxybutyrate	1379	R.I., Mass 59	Ethyl 2-hydroxybenzoate	Other Esters		
75	E75	Methyl 3-hydroxybutyrate	1478	Mass 43	Ethyl 2-hydroxybenzoate	Other Esters		
No.	Code	Name of Compound	RI	Mass	Code	Name of Compound	RI	Mass
-----	------	------------------	----	------	------	------------------	----	------
76	E76	Methyl 2-hydroxy-3-methylpentanoate	1490	RI, Mass	90	Ethyl 2-hydroxybenzoate	Other Esters	
77	E77	Methyl 2-hydroxyhexanoate	1575	RI, Mass	69	Ethyl 2-hydroxybenzoate	Other Esters	
78	E78	Methyl decanoate	1590	RI, Mass	74	Ethyl caprylate	Other Esters	
79	E79	Methyl benzoate	1620	RI, Mass	105	Ethyl 2-hydroxybenzoate	Other Esters	
80	E80	Methyl 3-hydroxypropionate	1645	RI, Mass	43	Ethyl 2-hydroxybenzoate	Other Esters	
81	E81	Methyl 2-hydroxyoctanoate	1784	Mass	97	Ethyl caprylate	Other Esters	
82	E82	3-Hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate	1869	RI, Mass	71	Ethyl caprylate	Other Esters	
83	E83	2,4,4-trimethyl-1,3-pentanediyl bis(2-methylpropanoate)	1880	Mass	71	Ethyl caprylate	Other Esters	
84	E84	1-hydroxy-2,4,4-trimethyl-3-pentanyl 2-methylpropanoate	1885	Mass	71	Ethyl caprylate	Other Esters	
85	E85	Methyl 5-methylsalicylate	1902	Mass	134	Ethyl 2-hydroxybenzoate	Other Esters	
86	E86	Diisobutyl glutarate	2008	Mass	115	Ethyl caprylate	Other Esters	
87	E87	2-Isooctoxyethyl benzoate	2128	Mass	105	Ethyl 2-hydroxybenzoate	Other Esters	
88	H88	2-Pentanol	1135	RI, Mass	45	2-Heptanol	Higher Alcohols	
89	H89	Isopentanol	1214	Str, RI, Mass	55	Isopentanol	Higher Alcohols	
90	H90	Pentyl alcohol	1253	RI, Mass	42	1-Hexanol	Higher Alcohols	
91	H91	3-Heptanol	1291	RI, Mass	59	2-Heptanol	Higher Alcohols	
92	H92	2-Methyl-1-pentanol	1297	RI, Mass	43	Isopentanol	Higher Alcohols	
93	H93	4-Pentenol	1299	RI, Mass	67	(E)-2-Hexene-1-ol	Higher Alcohols	
94	H94	(E)-2-Penten-1-ol	1309	RI, Mass	57	(E)-2-Hexene-1-ol	Higher Alcohols	
95	H95	Isohexanol	1310	Str, RI, Mass	56	Isohexanol	Higher Alcohols	
96	H96	2-Heptanol	1315	Str, RI, Mass	45	2-Heptanol	Higher Alcohols	
97	H97	3-Methylpentanol	1323	RI, Mass	56	Isohexanol	Higher Alcohols	
98	H98	1-Hexanol	1349	Str, RI, Mass	56	1-Hexanol	Higher Alcohols	
99	H99	4-Methyl-2-heptanol	1353	Mass	45	Isohexanol	Higher Alcohols	
100	H100	6-Methyl-2-heptanol	1368	RI, Mass	45	Isohexanol	Higher Alcohols	
101	H101	(Z)-3-Hexen-1-ol	1381	Str, RI, Mass	67	(Z)-3-Hexen-1-ol	Higher Alcohols	
102	H102	4-Methyl-3-pentenol	1384	RI, Mass	41	Isohexanol	Higher Alcohols	
103	H103	3-Octanol	1387	Str, RI, Mass	59	3-Octanol	Higher Alcohols	
104	H104	(E)-2-Hexene-1-ol	1401	Str, RI, Mass	57	(E)-2-Hexene-1-ol	Higher Alcohols	
105	H105	4-Methylhexanol	1424	RI, Mass	70	1-Octanol	Higher Alcohols	
106	H106	Heptanol	1448	Str, RI, Mass	70	Heptanol	Higher Alcohols	
107	H107	1-Octanol	1551	Str, RI, Mass	56	1-Octanol	Higher Alcohols	
108	H108	Norbornyl alcohol	1561	Mass	94	1-Octanol	Higher Alcohols	
109	H109	(E)-2-Octen-1-ol	1609	RI, Mass	57	(E)-2-Hexene-1-ol	Higher Alcohols	
110	H110	(Z)-5-Octen-1-ol	1609	RI, Mass	67	(E)-2-Hexene-1-ol	Higher Alcohols	
111	H111	1-Nonanol	1654	RI, Mass	56	1-Octanol	Higher Alcohols	
112	H112	(Z)-3-Nonen-1-ol	1679	RI, Mass	81	(E)-2-Hexene-1-ol	Higher Alcohols	
113	H113	2-Hydroxyoctene	1756	RI, Mass	43	2-Phenylethanol	Higher Alcohols	
114	H114	Decanol	1758	RI, Mass	70	1-Octanol	Higher Alcohols	
115	H115	p-Phenylethanol	1810	RI, Mass	79	Benzylalcohol	Higher Alcohols	
116	H116	p-Cymene-8-ol	1847	RI, Mass	43	2-Phenylethanol	Higher Alcohols	
NO.	Compound	RI	Quantitative analysis	Quantification m/z	Quantitative standard curve	Classification		
-----	---------------------------------	-------	-----------------------	--------------------	-----------------------------	-------------------------		
117	H117 Benzylalcohol	1875	Str, RI, Mass	79	Benzyalcohol	Higher Alcohols		
118	H118 2-Phenylethanol	1911	Str, RI, Mass	91	2-Phenylethanol	Higher Alcohols		
119	H119 2,4-Dimethylphenethyl alcohol	2017	Mass	119	2-Phenylethanol	Higher Alcohols		
120	H120 p-Isopropylbenzyl alcohol	2098	RI, Mass	135	2-Phenylethanol	Higher Alcohols		
121	K121 2-Octanone	1281	RI, Mass	43	Decanal	Ketones		
122	K122 Acetoin	1297	RI, Mass	45	1-Hexanol	Ketones		
123	K123 2,3-Octanediene	1315	RI, Mass	43	Decanal	Ketones		
124	K124 Tyranton	1367	RI, Mass	43	Ethyl hexanoate	Ketones		
125	K125 3-Methyl-3-cyclohexen-1-one	1411	Mass	67	Decanal	Ketones		
126	K126 (E,E)-3,5-Octadien-2-one	1569	RI, Mass	95	Decanal	Ketones		
127	K127 2-Furyl ethyl ketone	1634	RI, Mass	81	Decanal	Ketones		
128	K128 Sabina ketone	1674	RI, Mass	96	Styrene	Ketones		
129	K129 Cryptone	1373	RI, Mass	126	Styrene	Others		
130	O130 Dimethyl trisulfide	1706	RI, Mass	85	Styrene	Others		
131	O131 Tonkalide	1720	RI, Mass	41	Styrene	Others		
132	O132 2-Methyl-2-butenolide	1973	RI, Mass	99	Ethyl 3-hydroxybutanoate	Others		
133	O133 5-Octanolide	2361	RI, Mass	20	Benzy alcohol	Others		
134	– Coumaran	1456	RI, Mass	95	Ethyl caprylate	Norisoprenoids		
135	T135 6-Methyl-5-hepten-2-ol	934	RI, Mass	71	–	Terpenoids		
136	– Vinylidimethylcarbinol	1127	RI, Mass	93	Terpinolen	Terpenoids		
137	T137 3-Karen	1139	RI, Mass	93	Terpinolen	Terpenoids		
138	T138 Nopinen	1142	RI, Mass	93	Terpinolen	Terpenoids		
139	T139 Menthaadiene	1156	RI, Mass	93	Terpinolen	Terpenoids		
140	T140 Terpilene	1187	RI, Mass	93	Terpinolen	Terpenoids		
141	T141 α-Phellandrene	1199	RI, Mass	43	Terpinolen	Terpenoids		
142	T142 Cineole	1226	RI, Mass	93	Terpinolen	Terpenoids		
143	T143 Cithemene	1253	Str, RI, Mass	119	Paracymene	Terpenoids		
144	T144 Paracymene	1265	RI, Mass	93	Terpinolen	Terpenoids		
145	T145 Terpinolene	1321	RI, Mass	71	–	Terpenoids		
146	– Prenol	1333	Str, RI, Mass	43	Sulfatone	Terpenoids		
147	T147 Sulcatone	1356	RI, Mass	139	Furan linalool oxide	Terpenoids		
148	T148 Rosoxide	1360	Mass	121	β-Myrcene	Terpenoids		
149	T149 3,4-Dimethyl-2,4,6-octatriene	1441	RI, Mass	59	Furan linalool oxide	Terpenoids		
150	T150 cis-Linalooloxide	1469	Mass	59	Furan linalool oxide	Terpenoids		
151	T151 Linalol oxide A	1516	RI, Mass	95	α-Terpineol	Terpenoids		
152	T152 Camphor	1520	RI, Mass	121	Terpinolen	Terpenoids		
No.	Compound Name	RI, Mass	Mass	α-Terpineol Terpenoids				
-----	---	------------	-------	------------------------				
154	1,4-Dimethyl-4-acetylcyclohexene	1541	109					
155	Linalool	1591	94					
156	L-4-terpineol	1592	92					
157	Caryophyllene	1614	94					
158	p-Mentha-1-en-9-ol	1637	71					
159	Menthol	1653	92					
160	Pinocarveol	1656	43					
161	Cepheine	1658	139					
162	2,2,3-Trimethyl-3-cyclopentene-1-ethanol	1660	43					
163	Borneol	1668	95					
164	Phellandral	1704	109					
165	6-[(2-Hydroxy-2-propyl)-3-methyl-2-cyclohexen-1-yl acetate	1715	59					
166	6-Methyl-2-vinyl-5-hepten-1-ol	1726	41					
167	2-Hydroxycineol	1726	108					
168	Lilac alcohol formate A	1731	55					
169	Piperitone	1731	82					
170	Neral	1733	41					
171	Carvone	1736	82					
172	Linalool oxide	1736	68					
173	Lilac alcohol B	1743	55					
174	cis-p-Menth-2-en-7-ol	1753	93					
175	L-Verbenone	1754	107					
176	(Z)-α-Damascenone	1760	121					
177	D-Citronellol	1761	41					
178	1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one	1744	121	β-Ionone				
179	trans-p-Menth-2-en-7-ol	1772	93					
180	1,7,7-Trimethylbicyclo[2.2.1] hept-5-en-2-ol	1776	108					
181	7-Methyl-3-methylene-6-octen-1-ol	1782	69					
182	Lilac alcohol C	1786	55					
183	Perillal	1789	68					
184	Nerol	1796	69					
185	Isogeraniol	1808	41					
186	(E)-α-Damascenone	1822	69					
187	2-Hydroxycineol	1827	55					
188	Lilac alcohol D	1833	109					
189	(Z)-Carveol	1843	69					
190	Geraniol	1858	108					
191	p-Menth-1-en-9-ol	1937	94					
192	p-Menth-1,4-dien-7-ol	1946	79					
NO.	NO.	Compound	RI	Quantitative analysis	Quantification m/z	Quantitative standard curve	Classification	
-----	-----	---------------------------	---------	-----------------------	--------------------	-----------------------------	----------------	
194	T194	Perilla alcohol	1993	RI, Mass	68	α-Terpineol	Terpenoids	
195	T195	p-Menthadien-7-ol	2087	Mass	79	α-Terpineol	Terpenoids	
196	T196	Spathulenol	2123	Mass	43	α-Terpineol	Terpenoids	
197	T197	7-epi-α-selinene	2166	Mass	161	Terpinolene	Terpenoids	
198	T198	Bisabolol	2207	RI, Mass	43	α-Terpineol	Terpenoids	

* Numbers of compounds used for principal component analysis in article entitled “Characterization of Free and Bound Volatile Compounds in Six Ribes nigrum L. Blackcurrant Cultivars” [1].

* Quantitative Analysis – Str: identified with standard substance; RI: RI agreed with database of NIST11; Mass: mass spectrum agreed with the mass spectral database.

* Quantification m/z – the main fragment of compound for quantification.

* Quantitative Standard Curve – the compound was quantified by the standard curve of compounds with similar structure.
Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2015ZCQ-SW-04 and 201610022032) and the National Natural Science Foundation of China (No. 31301732).

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.01.090.

References

[1] Y. Liu, S. Wang, J. Ren, G. Yuan, Y. Li, B. Zhang, et al., Characterization of free and bound volatile compounds in Six ribes nigrum L. blackcurrant cultivars, Food Res. Int. 103 (2018) 201–315.
[2] Y. Wen, F. He, B. Zhu, Y. Lan, Q. Pan, C. Li, et al., Free and glycosidically bound aroma compounds in cherry (Prunus avium L.), Food Chem. 152 (2014) 29–36.
[3] Y. Wu, Q. Pan, W. Qu, C. Duan, Comparison of volatile profiles of nine litchi (Litchi chinensis Sonn.) cultivars from Southern China, J. Agr. Food Chem. 57 (2009) 9676–9681.