Superpotential for novel symmetry beyond shape invariance

Shi-Hai Dong 1,4† and Biswanath Rath 3,†

1 Research Center for Quantum Physics, Huzhou University, Huzhou 313000, P. R. China,
2 Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 077000, Mexico, and
3 Department of Physics, Maharaja Sriram Chandra Bhanj Deo University, Takatpur, Baripada -757003, Odisha, India.

I. INTRODUCTION

Supersymmetry formulated nearly four decades ago is a landmark contribution of Witten [1] to understand interesting energy relations between two nearly identical partner Hamiltonians [2,13]

\[H^{(±)} = p^2 + W^2 \mp \frac{dW}{dx} \] (1)

connected with energy conditions as

\[E_{n+1}^{(±)} = E_n^{(±)}, \quad E_0^{(−)} = 0. \] (2)

Later on Gendenshtein [2] proposed an elegant way of calculating energy \(E_n^{(−)} \) on some potentials satisfying the condition

\[V_+(x, \lambda) = V_-(x, \beta) + R(\beta), \quad \beta = f(\lambda) \] (3)

can directly yield energy level \(E_n^{(−)} \) of \(H^{(−)} \) as

\[E_n^{(−)} = \sum R(\beta). \] (4)

In fact, this excellent idea works well only on some potentials [2,10]. Further a list of model potentials are reflected in [2,6]. A common feature on these models, where shape invariance (SI) remains valid is "continuous" nature of superpotential (W). However, Bougie, Gangopadhyaya and Mallow (BGM) [7] suggested that Coulomb like model W can also be handled using the SI. Authors have also given a model one-dimensional potential. By curiosity we notice that when the (BGM) is combined with SUSY model of Marques, Negini and da Silva (MND) [6], we explore non-validity of SUSY conditions. This brings us a curiosity to study new symmetry that can emerge from the model of BGM and MND. Hence, in this communication we propose a new type of discontinuity in superpotential (W) and study its spectral properties with appropriate mathematical development associated with examples. A common model superpotential satisfying the above relation [8] is \(W_1 = \lambda x \), it is easy to see that

\[V_1^{(1)}(x, \lambda) = V_1^{(−)}(x, -\lambda) + 2\lambda \] (5)

\[E_n^{(−)} = 2\lambda n. \] (6)

In this model of superpotential both SUSY and shape invariance remain valid. However, Bougie, Gangopadhyaya and Mallow [7] proposed a model superpotential as

\[W_2 = wx - \frac{a}{x} + \left[\frac{2wx}{(wx^2 + 2a - 1)} - \frac{2wx}{(wx^2 + 2a + 1)} \right] \] (7)

and claimed a few interesting natures connecting to Euler equation. However, neglecting the extra term we have

\[W_2 \sim wx - \frac{a}{x} = x - \frac{1}{x}, \quad \text{for } w = a = 1. \] (8)

Here SUSY remains invalid and also shape invariance is no longer useful in releasing energy \(E_n^{(−)} \) because it is practically impossible to visualize

\[V_2^{(1)} = V_2^{(−)} + f(\beta). \] (9)

This simple superpotential nature has been reflected in Fig.4 which also displays the natures of other superpotential \(W_2 - W_3 \) simultaneously. Apart from this, a new model superpotential was proposed by Marques, Negreni and Da Silva [4] as

\[W_3 = \lambda x|x| = x|x|, \quad \text{for } \lambda = 1. \] (10)

In this model SUSY remains valid but SI keeps invalid. Stimulated from \(W_2 \) and \(W_3 \), we may suggest

\[W_4 = x|x| - \lambda|x| = x|x| - \frac{|x|}{x}. \] (11)
FIG. 1: (Color online) Plots of superpotentials $W_i (i=1, 2, 3, 4, 5, 6)$. Both SUSY and SI for W_1 are valid, SUSY for W_3 is valid but its SI is invalid. Both SUSY and SI of the remaining are invalid.

Here neither SUSY nor shape invariance remains valid. Below we present a few energy levels of Hamiltonian generated by the superpotential W_4 as shown in Table I

$$H^{(-)} = p^2 + W^2 - \frac{dW}{dx}. \quad (12)$$

n	$E_n^{(-)}$
0	-0.333 8
1	0.553 1
2	3.821 7
3	6.961 7

The corresponding wave functions are displayed in Fig. 2.

The plan of this work is organized as follows. In Section III, we will propose a new symmetry model and verify their difference is a constant. Some concluding remarks are given in Section III.

II. NOVEL SYMMETRY $E_n^{(+)} - E_n^{(-)} = 2$

Here, we suggest a new model on superpotential as

$$W_5 = x - \lambda \frac{|x|}{x} \quad (13)$$

whose nature is also reflected in Fig. 1.

Further, Hamiltonians generated from the above new model are

$$H^\pm = p^2 + x^2 + \lambda^2 - 2\lambda |x| \pm 1. \quad (14)$$

The corresponding SUSY potentials satisfy the relation

$$V_+(x, \lambda) = V_-(x, \lambda) + 2 \quad (15)$$

Hence using shape invariance condition one can easily verify that

$$E_n^{(-)} \neq 2n. \quad (16)$$

In other words, shape invariance method fails to address the correct energy levels of

$$H^{(-)} = p^2 + x^2 - 2|x|, \quad \text{for } \lambda = 1, \quad (17)$$

as reflected in Table III. The wave functions with respect to this superpotential W_5 are shown in Fig. 3.

TABLE II: Energy levels of novel symmetry related to W_5 ($\lambda = 1$)

n	$E_n^{(-)}$
0	-0.381 0
1	0.468 4
2	2.000 0
3	3.395 0

Similarly, another model for the superpotential can be written as

$$W_6 = x + e^{-|x|/x}. \quad (18)$$

In this case, the above superpotential W must be an odd function of x in order to justify the well-behaved nature of wave functions of the Hamiltonians

$$H^{\pm} = p^2 + x^2 + e^{-2|x|/x} + 2xe^{-|x|/x} \pm 1. \quad (19)$$

In this case, we also find superpotential approach is invalid

$$E_n^{(-)} \neq 2n \quad (20)$$
Proof: $E_{n}^{(+)} - E_{n}^{(-)} = 2$

Let E_{n} be the energy of Hamiltonian

\[H = p^2 + W^2 \tag{21} \]

then energy of

\[H^{(+)} = p^2 + W^2 + \frac{dW}{dx} \]

becomes $E_{n}^{(+)} = E_{n} + 1$. Similarly, the spectrum of the following Hamiltonian

\[H^{(-)} = p^2 + W^2 - \frac{dW}{dx} \tag{23} \]

becomes $E_{n}^{(-)} = E_{n} - 1$. Hence, it is easy to equate and see that

\[E_{n}^{(+)} - E_{n}^{(-)} = 2 \tag{24} \]

However, in general it should be

\[E_{n}^{(+)} - E_{n}^{(-)} = 2\lambda \tag{25} \]

where λ is the multiplicative constant of linear term in superpotential $W_{5,6}$.

III. CONCLUDING REMARKS

In conclusion, new symmetry operator has no relation with shape invariance. We compare the nature of $W_{5,6}$ with others in the same fig. Further the computed results in tables have been cross checked using calculations involving MATLAB [14,15].

Acknowledgments: This work is partially supported by 20220355-SIP-IPN.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
n & $E_{n}^{(-)}$ \\
\hline
0 & 0.001 3 \\
1 & 1.725 2 \\
2 & 2.105 7 \\
3 & 4.023 5 \\
\hline
\end{tabular}
\caption{Energy levels $E_{n}^{(-)}$ generated from W_{6}.}
\end{table}

[1] E. Witten, Nucl. Phys. B 185, 513 (1981).
[2] I. E. Gendenshtein, JETP Lett. 38, 356 (1983).
[3] G. Junker, Supersymmetric methods in quantum and statistical Physics, (Berlin Springer) (1996).
[4] F. Cooper, A. Khare and U. Sukhatme, Supersymmetry in Quantum Mechanics, (World Scientific, Singapore)(2001).
[5] B. K. Bagchi, Supersymmetry in Quantum and Classical Mechanics, (Boca Raton, FL, Chapman and Hall CRC Press)(2005).
[6] F. Marques, O Negrini and A J da Silva, J. Phys. A 45, 115307.
[7] J. V. Mallow, A. Gangopadhyya, J. Bougie and C. Rasinaru, Phys. Lett. A 384(6), 126129 (2020).
[8] A. Gangopadhyaya, J. V. Mallow, C. Rasinaru, J. Bougie, Phys. Lett. A 384(28), 126722 (2020).
[9] B. Roy, P. Roy and R. Roychoudhury, Fortschr. Phys. 89(3), 211(1981).
[10] S. H. Dong. Factorization Method in Quantum Mechanics, (Springer)(2007).
[11] W. C. Qiang and S. H. Dong, Phys. Scr. 72, 1277(2005).
[12] B. Rath, Nuovo Cimento B 115(10) (2000), 1229(2000); Erratum, 124 B(8), 1(2009).
[13] K. Abhinav and P. K. Panigrahi, Ann. Phys. 325, 1198(2010).
[14] B. Rath and H. Mavromatis, Ind. J. Phys B 73(4), 641(1999).
[15] M. Tater and A. V. Turbiner, J. Phys. A 26, 697(1993).