Non-autonomous overgrowth by oncogenic niche cells: Cellular cooperation and competition in tumorigenesis

Masato Enomoto,1,3 John Vaughen1,3 and Tatsushi Igaki1,2

1Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto; 2PRESTO, Japan Science and Technology Agency, Saitama, Japan

Key words
Cell competition, cell death, cellular cooperation, cellular senescence, tumor progression

Correspondence
Tatsushi Igaki, Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
Tel.: +81-75-753-7684; Fax: +81-75-753-7686;
E-mail: igaki@ifl.kyoto-u.ac.jp

3These authors contributed equally to this work.

Funding Information
Japanese Ministry of Education, Science, Sports, Culture and Technology; Japan Agency for Medical Research and Development; Japan Society for the Promotion of Science; PRESTO, Japan Science and Technology Agency.

Received July 31, 2015; Revised September 2, 2015; Accepted September 8, 2015

Cancers progress through clonal evolution, the sequential acquisition of oncogenic mutations through Darwinian selection of advantaged subclones. For example, in colon cancers, adenomatous polyposis coli (APC) mutant clones acquire malignancy after further mutation of K-Ras, p53, and other genes. While genetic sequencing corroborated cancer’s clonal evolution, it also revealed remarkable clonal heterogeneity. A recent study found rampant intratumor genetic divergence, with ~60% of mutations not universally distributed among subclones. Furthermore, in human glioblastoma, coexisting subclones amplified distinct oncogenic receptor tyrosine kinases (epidermal growth factor receptor [EGFR], PDGFR, and c-Met). Clonal heterogeneity could therefore promote subclone cooperation alongside clonal competition. Indeed, interclonal cooperation between subclones potentiated tumorigenesis in mouse-modeled breast cancer. Excitingly, clonal population dynamics of cancer-derived, heterogeneous subclones were reproducible across independent xenografts, suggesting that tumor heterogeneity is a tractable problem. While interclonal communication is considered crucial to cancer’s etiology, detailed in vivo mechanisms are lacking.

Drosophila genetics enables manipulation of oncogenic cell clones in vivo. Remarkably, Drosophila tumorigenesis recapitulates aspects of human cancer, including polarity loss, basement-membrane degradation, and invasion. Accordingly, genetic screens in Drosophila have identified evolutionarily conserved tumor-suppressor genes, including Hippo pathway components. Genetic mosaic analysis also revealed an unusual tumor-promoting cell population that can be called “oncogenic niche cells” (ONCs). Oncogenic niche cells drive non-autonomous tumor progression through cellular competition and cooperation with surrounding cell populations. This review characterizes diverse ONCs identified in Drosophila and describes the genetic basis of non-autonomous tumor progression. Similar mechanisms may contribute to mammalian cancer progression and recurrence.
by cell competition, a process in which normally viable "loser" cells are eliminated by neighboring "winner" cells. Cell competition is triggered by lower translation rates, disrupted apico-basal polarity, or aberrant signal transduction, and thus functions as a tumor suppressor and developmental regulator. \(13-16\)

Alongside cell competition, ONCs commonly feature cooperation between the JNK and Hippo pathways. Below, we describe five classes of ONCs characterized in \textit{Drosophila} imaginal epithelia.

Oncoprotein Src. Elevation of oncoprotein Src often correlates with tumor malignancy, yet Src’s role in tumorigenesis remains unclear. \(17\) Clones of cells overexpressing Src64B (Src; c-Src homolog) in the \textit{Drosophila} imaginal disc are eliminated by JNK-dependent cell competition. \(18,19\) However, Src clones also function as ONCs to cause non-autonomous overgrowth of surrounding tissue (Fig. 1b). \(19\) Src-activated cells accumulate intracellular F-actin and activate the Hippo pathway effector Yorkie (Yki; YAP homolog). Simultaneously, JNK signaling induces cell death in a cell-autonomous manner but propagates Yki to neighboring cells, causing overgrowth of surrounding tissue (Fig. 1c). Blocking Yki inside Src-activated cells abolished neighboring Yki activation, implying propagation of Yki from ONCs. Thus, while JNK-mediated cell competition restrains Src-activated ONC autonomous growth, JNK–Yki cooperation contributes to non-autonomous tumorigenesis.

Endocytic dysregulation. Endocytic trafficking controls internalization and sorting of extracellular molecules and transmembrane proteins. Consequently, endocytic dysregulation disrupts signaling pathways and cell polarity, contributing to human cancers. \(20-22\) Multiple genetic screens in \textit{Drosophila} identified endosomal sorting complex components vps25 and erupted (ept; tsg101 homolog) as causing non-autonomous overgrowth. \(23-26\) Endocytic ONCs accumulated endosomal Notch, inducing the cytokine Unpaired (Upd; interleukin [IL]-6 homolog) and triggering JAK–signal transducer and activator of transcription (STAT) signaling in surrounding cells (Fig. 2a). A similar but distinct endocytic ONC was formed by mutating Rab5, an early endosome component. Rab5-deficient ONCs accumulated EGFR and Eiger (tumor necrosis factor homolog), activating Ras and JNK pathways, respectively. \(27\) JNK and Ras signaling cooperatively activated Yki, inducing...
Upd expression and subsequent non-autonomous overgrowth (Fig. 2b). Non-autonomous phenotypes are dependent on cell competition;

\[p53 \text{-} \text{expressing cells prevented from dying autonomously overgrow, (28) } \]

suggesting apoptosis propagated by Eiger

\[\text{Rab5DN} \text{-expressing cells clones autonomously overgrow, (28) suggesting} \]

that establishment of endocytic ONCs is contingent on cell competition and clone size.

Apoptotic stimulus. Apoptosis is a hallmark of many cancers and often correlates with increased proliferation and worse prognosis (29). In Drosophila wing discs, massive cell death triggers non-autonomous “compensatory proliferation”, yielding normal adult wings. (30) Yki is activated in dying and neighboring cells and is essential for wing disc regeneration. (31, 32) Notably, in this case, JNK activation is necessary and sufficient for Yki induction in wing discs, (31) and JNK activity non-autonomously propagates following local wounding. (33) JNK also stimulates cell migration to the wound site, similar to JNK-driven developmental or tumorigenic invasion (Fig. 3a). (35, 36)

In a similar phenomenon, when cell death is induced but not executed, typically through overexpression of caspase inhibitor p35, persistent “undead” cells become ONCs and trigger non-autonomous overgrowth through the growth factors Decapentaplegic (Dpp; bone morphogenetic protein/transforming growth factor-\(\beta \) homolog) and Wingless (Wg; Wnt homolog). (37) In wing discs, this is dependent on a p53-JNK positive feedback loop activated by the initiator caspase Dronc (Fig. 3b). (40)

Undead cells generated through genomic instability also function as ONCs, secreting Wg and triggering JNK-dependent non-autonomous hyperplasia. (41) Here, JNK-activated MMP1 activity also induces basement membrane degradation and invasion. Intriguingly, undead cells can also cause non-autonomous apoptosis propagated by Eiger-JNK. (42) Dying ONCs may unleash an autocatalytic wave of JNK, death, growth factor secretion, and proliferation.

Polarity loss. Apico-basal polarity is essential for epithelial cell function and homeostasis. Polarity loss underlies many cancers and is often critical for cancer progression. (43) Imaginal epithelia entirely mutant for conserved apico-basal polarity genes scribble (scrib) or discs large (dlg) develop into tumors. However, clones of these mutant cells surrounded by wild-type cells are eliminated through Eiger-JNK signaling in “tumor-suppressive cell competition”. (44) Competition-induced JNK also suppresses Yki activity in scrib clones. (45) Although JNK restrains overgrowth of scrib tissue, it is required for tumor progression and metastasis of scrib+RasV12 clones. (46) Surprisingly, distinct scrib and RasV12 mosaic clones induced in the same imaginal disc still trigger metastasis of RasV12 cells. (33) suggesting that scrib cells function as ONCs (Fig. 4a). JNK activity propagates from scrib to RasV12 cells, inducing Upd and JAK–STAT signaling that cooperates with Ras signaling to induce metastasis. Remarkably, JAK–STAT signaling is also required within scrib-neighboring cells to eliminate scrib clones. (33, 46) As JAK–STAT and JNK both suppress and promote scrib tumor formation, competition-triggered interclonal cooperation likely underlies polarity-defective ONCs.

Ras, mitochondrial dysfunction, and senescence. Metastasis of RasV12-expressing cells can be triggered by different ONCs, such as scrib clones. (8, 47) A genetic screen for RasV12-induced non-autonomous growth identified mutations in genes required for mitochondrial respiratory function, which are frequently downregulated in various cancers. (48) Clones harboring RasV12 and mitochondrial dysfunction (RasV12/mito–/–) produce reactive oxygen species (ROS), activating JNK. JNK and Ras cooperatively activate Yki, which upregulates Upd and Wg to induce surrounding tissue overgrowth. (49) Thus, RasV12/mito–/– cells act as ONCs. Interestingly, RasV12/mito–/– cells cause cell-cycle arrest through ROS production and undergo p53-dependent cellular senescence (Fig. 4a). (50) Overexpression of p53 inside RasV12 clones is sufficient to induce ONCs and non-autonomous overgrowth. Therefore, senescent cells may function as ONCs through inflammatory cytokine release. (51) A conserved phenomenon called the senescence-associated secretory phenotype (SASP). (52) Indeed, paralleling scrib interclonal cooperation, RasV12/mito–/–-produced Upd triggers adjacent RasV12 metastasis (Fig. 4b). (49) Interestingly, activated Ras signaling stimulates Eiger exocytosis, causing JNK accumulation and JAK–STAT activation at clonal boundaries between RasV12 and wild-type cells. (53) JNK transcytosis could underlie JNK propagation and cell competition’s role in oncogenic cooperation.

Oncogenic niche cell themes: JNK-mediated cell competition and cooperation

There are several shared ONC themes (Table 1). Notably, Src-activated, endocytic, and polarity-defective ONCs undergo JNK-mediated cell competition. Thus, tumor-suppressive cell
Although JNK impinges on Hippo through Ajuba-mediated Warts regulation, activating Yki and driving overgrowth, (55,56) non-autonomous JNK does not induce Yki. Instead, autonomous JNK cooperatively propagates Yki activity to neighboring cells (Fig. 1c). (19) Additionally, polarity loss can still induce non-autonomous Yki activation in tissues lacking the JNK ligand Eiger, (45) suggesting that JNK-independent pathways may activate non-autonomous Yki in polarity ONCs. Thus, specific mechanisms of non-autonomous Yki activation remain unclear. Surprisingly, JNK directly impinges on Hippo through Ajuba-mediated Warts regulation, activating Yki and driving overgrowth. (55,56)

Table 1. Common oncogenic niche cell (ONC) themes

ONCs	Competition and cell death	Cooperation	Growth factors	Cellular senescence or p53 accumulation (p53+?)
Src-activated JNK	JNK→cell death	JNK→Yki		
Endocytic dysregulation	JNK→cell death	Notch→JAK→STAT	Upd	p53+
Apoptotic stimulus	Cell death	JNK→Dpp, Wg	Wg	p53+
Polarity defect	JNK→cell death	JNK→JAK→STAT	Upd	
RasV12/mito−/−	JNK→JAK→Yki	JNK/Ras→Yki	Dpp	
		JNK→Yki	Wg	
		JNK→p53		

Dpp, Decapentaplegic; ROS, reactive oxygen species; STAT, signal transducer and activator of transcription; Upd, UNPAIRED; Wg, Wingless; Yki, Yorkie.

Fig. 4. Cooperation between RasV12 and oncogenic niche cells (ONCs). (a) scrib cells activate Eiger/JNK signaling, causing neighboring RasV12 cells (purple) to secrete Unpaired (Upd) and metastasize. Alternatively, RasV12/mito−/−cells (mitochondrial dysfunction, senescent ONC) generate reactive oxygen species (ROS) and activate p53, which cooperatively activate JNK. JNK and RasV12 inactivate the Hippo pathway, activating Yorkie (Yki) and triggering secretion of Upd and Wingless (Wg). ONC-induced senescence-associated secretory phenotype stimulates neighboring RasV12 cell invasion. (b) While RasV12 clones (GFP+) fail to metastasize from the larval brain hemisphere (BH) to the ventral nerve cord (VNC), senescent ONCs (RasV12/mito−/−) stimulate RasV12 invasion (arrowheads). STAT, signal transducer and activator of transcription; TNF, tumor necrosis factor.
core Hippo pathway components are not commonly disrupted in human cancer. Instead, Hippo dysregulation may potentiate tumorigenesis through interclonal cooperation. Indeed, Yki/YAP is nuclear in ~60% of hepatocellular carcinomas and 65% of non-small-cell lung cancers. Oncogenic niche cell-driven, non-autonomous Yki activation could contribute to mammalian cancer progression.

JNK may additionally act through Polycomb group proteins (PcG), which enforce epigenetic repression. During wound-healing, JNK inactivates PcG to allow fate reprogramming. Therefore, JNK activity could alleviate PcG repression of growth factors like Wg or Upd. Notably, loss of PcG protein Polyhomeotic causes non-autonomous, Upd-mediated overgrowth. Because mammalian JNK can act as a pro-apoptotic gene linked to tumor regulation, JNK may function in both mammalian and Drosophila ONCs.

Oncogenic niche cell hypothesis: Crumbs in ONC establishment

A common ONC theme is cooperative Yki activation (Table 1), suggesting that Hippo pathway activity may influence ONCs. Indeed, differential Hippo pathway activity triggers cell competition: Yki-activated cells are super-competitors while yki mutants are eliminated. Alongside JNK-based competition, could Hippo-mediated competition establish ONCs? The apical transmembrane protein Crumbs (Crb) is a good candidate for ONC establishment. Crb recruits Expanded (Ex), activating Hippo and inhibiting Yki. Intriguingly, Crb accumulates in polarity and endocytic ONCs. Furthermore, Crb-overexpressing clones are eliminated while crb mutants induce neighbor-cell death in a competitive phenomenon dependent on Crb-Crb extracellular interactions. Therefore, in certain
ONCs, high Crb may may JNK-dependent repression of Yki and "loser" status. Conversely, neighboring cells with lower Crb would overgrow through JNK-activated Yki. Crb3 is downregulated in human tumor-derived cell lines, consistent with lower Crb permitting overgrowth.

However, while Crb-overexpressing cells are eliminated, overexpression of only Crb’s intracellular domain (Crb-intra) causes autonomous overgrowth. Intriguingly, Crb-intra overgrowth is rescued by depletion of Eiger’s receptor Grindelwald, which colocalizes with Crb at apical membranes. This supports the idea that Crb-JNK might contribute to ONCs, but highlights the complexity of Crb overexpression phenotypes. Indeed, although Crb recruits Ex and activates Hippo, Crb can also promote Ex degradation through ubiquitylation. Moreover, Hippo pathway mutants accumulate Crb yet become super-competitors, perhaps through elevation of anti-apoptotic DIA1 or mechanisms paralleling Crb-intra induced overgrowth. While Crb’s contribution to ONCs is highly complex, it is likely that Crb and JNK can cooperatively dictate Yki activity and competitive outcomes in ONCs.

Oncogenic niche cell themes: a role for cellular senescence?

Though cell death is common to ONCs, it is not induced in RasV12/mito−/− cells, which instead activate p53 and undergo cellular senescence. JNK-activated Yki stimulates Upd/Wg secretion in a SASP, reminiscent of growth factor secretion by “undead” ONCs. Intriguingly, p53 has been linked to cell competition. In murine hematopoietic stem cells (HSCs), irradiated p53−/− HSCs outcompete p53+/− but not p53+/− HSCs. Separately, p53 knockdown in differentiared murine tissue allowed disproportionate expansion of p53−/− cells. Surprisingly, p53 knockdown in undifferentiated embryonic stem cells lead to p53−/− cell elimination, suggesting that p53 knockdown triggers context-dependent cell competition. Supporting this, apoptosis of Myc-overexpressing, p53−/− Drosophila cells was dependent on surrounding neighbors. Furthermore, p53 is intimately linked to JNK in Drosophila: p53 and JNK form a feed-forward loop in undeand ONCs, sufficient to induce each other’s expression and p53 directly binds JNK. Indeed, blocking p53 in RasV12/mito−/− abrogated JNK activity and ONC formation.

Therefore, p53 or cellular senescence may trigger cell competition and establish ONCs. p53 is elevated in tsq101 null mice, likely from impaired ubiquitin-mediated degradation. Ubiquitinated proteins accumulate in vps25 and ept mutant ONCs, and mutations in an E1 ubiquitin-activating enzyme cause non-autonomous overgrowth. While these phenotypes can partly be explained by p53’s pro-apoptotic role, p53 may fuel non-autonomous tumor progression through cell competition and SASP. As p53 is frequently mutated in human cancers, dysregulated cell competition or SASP may contribute to mammalian cancer progression (see below).

Oncogenic niche cells in mammalian cancer

Do ONCs contribute to mammalian cancer progression? Although cellular senescence can suppress tumor formation, it can fuel non-autonomous overgrowth through cytokine secretion in a SASP. Mammalian studies also suggest that SASP can drive non-autonomous tumor progression. Senescence-associated secretory phenotype of murine hepatic stellate cells potentiates hepatocellular carcinoma formation. Moreover, SASP in epithelial cells triggers malignancy through paracrine secretion of IL-6 and IL-8, paralleling senescent ONCs’ induction of neighboring RasV12 metastasis (Fig. 4b). Thus, non-autonomous tumor progression through cellular senescence and SASP seems conserved in mammalian cancer progression. Like cell competition, cellular senescence can suppress or promote tumorigenesis. As chemotherapy often potentiates cellular senescence, senescence ONCs could contribute to cancer recurrence (Fig. 5).

Alongside cellular senescence, cell death is commonly observed in human cancers and often correlates with increased tissue proliferation. In a mouse model of hepatocellular carcinogenesis, dying hepatocytes activate JNK and ROS, inducing proliferation of surrounding cells through cytokine release. Importantly, therapy-induced death can also trigger ONC-mediated proliferation. Following radiotherapy, dying cancer cells activate effector caspases 3/7, triggering prostaglandin E2 (PGE2) secretion. Subsequently, PGE2 stimulates neighbor-cell proliferation. Notably, tumor recurrence positively correlated with high activation of caspases 3/7 in human patients. In human prostate cancer, chemotherapy-induced PGE2 can trigger non-autonomous cell proliferation and tumor repopulation through cancer stem cell populations (see below). Thus, cell death and cellular senescence in ONCs can initiate tumors and hinder treatment (Fig. 5).

Oncogenic niche cells may promote tumorigenesis through non-autonomous effects on cancer stem cells (CSCs). The CSC hypothesis proposes that specialized stem cells contribute disproportionately to cancerous populations. Consequently, cancer heterogeneity can be partially attributed to differentiation hierarchies stemming from distinct CSC subpopulations. Experimental evidence suggests that CSC progeny are surprisingly plastic in their fate and can dedifferentiate to CSCs. Intriguingly, a pulse of Sre activity was sufficient to convert a non-malignant breast cell line into a self-renewing, containing cancer through an IL-6/nuclear factor-κB positive feedback loop. Furthermore, IL-6 addition to regular cancer cells induced dedifferentiation to CSCs. As ONCs frequently induce Upd/IL-6 (Table 1) through JNK–Yki cooperation in Drosophila, ONC-secreted factors could promote non-autonomous CSC induction. Concomitantly, ONCs could promote CSC proliferation, such as in therapy-induced CSC proliferation and repopulation. Notably, in human hepatocellular carcinoma, JNK and IL-6 markers are commonly associated with CSCs, although no evidence directly links CSCs to ONCs. Additionally, as CSCs are often resistant to apoptosis, it is possible that CSCs themselves could function as “undead” ONCs when challenged with apoptotic stimuli, such as chemotherapy.

Conclusions

Drosophila studies have brought insight to tumor progression through genetic dissection of ONCs. As senescent and dying ONCs are likely conserved in mammals, further ONC analysis will inform our understanding of mammalian cancer etiology. Despite diverse genetic triggers, ONCs share many characteristics, including cell death, competition, and cooperation. The role of JNK in cell competition and its cooperation with Yki merits further study in both Drosophila and mammalian cancer models. The relationships between ONCs, Crb, p53, cellular senescence, and cell competition are exciting areas for future
References

1 Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–67.
2 Marusyk A, Almedov V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 2012; 12: 323–34.
3 Gerlinger M, Rowan AJ, Horswell S et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883–92.
4 Snuderl M, Fazlollahi L, Le LP et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 2011; 20: 810–7.
5 Cleary AS, Leonard TL, Gestl SA, Gunther EJ. Tumour cell heterogeneity and constraints. The authors thank Shizue Ohsawa for providing unpublished data and the Igaki laboratory for helpful discussion during the manuscript’s preparation. Research in T.I.’s laboratory is supported by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Science, Sports, Culture and Technology, Platform for Dynamic Approaches to Living System from the Japanese Ministry of Education, Science, Sports, Culture and Technology and the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science, and PRESTO, Japan Science and Technology Agency.

Disclosure Statement

The authors have no conflict of interest.

Acknowledgments

The authors apologize for omitting relevant literature due to space constraints. The authors thank Shizue Ohsawa for providing unpublished data and the Igaki laboratory for helpful discussion during the manuscript’s preparation. Research in T.I.’s laboratory is supported by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Science, Sports, Culture and Technology, Platform for Dynamic Approaches to Living System from the Japanese Ministry of Education, Science, Sports, Culture and Technology and the Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science, and PRESTO, Japan Science and Technology Agency.

www.wileyonlinelibrary.com/journal/cas

© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

Cancer Sci | December 2015 | vol. 106 | no. 12 | 1657

16 Baker NE. Cell competition. 15 de Beco S, Ziosi M, Johnston LA. New frontiers in cell competition. Chemotherapy-induced death or senescence. Therefore, cancer and apoptosis. We envision that ONCs contribute to non-autonomous tumour initiation and progression through cooperation with adjacent premalignant tissue or through CSC induction or stimulation (Fig. 5). The basic genetic mechanisms uncovered in Drosophila ONCs likely underlie interclonal cooperation in heterogeneous mammalian cancers. Moreover, mammalian evidence suggests that ONCs fuel tumour recurrence following chemotherapy-induced death or senescence. Therefore, cancer topography, the potential for ONC induction or subclone cooperation, must be carefully considered before individualized therapies become a reality.

25 Vaccari T, Bilder D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating Notch trafficking. Dev Cell 2005; 9: 687–98.
26 Nogberg KH, Schibbe S, Bardwick SK, Hariharan IK. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell 2005; 9: 699–710.
27 Takino K, Ohsawa S, Igaki T. Loss of Rab5 drives non-autonomous cell proliferation through TNF and Ras signaling in Drosophila. Dev Biol 2014; 395: 19–29.
28 Ballestros-Arias L, Saavedra V, Morata G. Cell competition may function either as tumour-suppressing or as tumour-stimulating factor in Drosophila. Oncogene 2014; 33: 4377–84.
29 Somi Y, Paakkö P, Lehto VP. Histopathological evaluation of apoptosis in cancer. Am J Pathol 1998; 153: 1041–53.
30 Haynie J, Bryant P. The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Roux Arch Dev Biol 1977; 183: 85–100.
31 Sun G, Irvine KD. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev Biol 2011; 350: 139–51.
32 Grusche FA, Degoutin JL, Richardson HE, Harvey KF. The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 2011; 350: 255–66.
33 Wu M, Pastor-Pareja JC, Xu T. Interaction between RasV12 and scribbled clonally induces tumour growth and invasion. Nature 2010; 463: 545–8.
34 Herrera SC, Martin R, Morata G. Tissue homeostasis in the Wing Disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 2013; 9: e1003446.
35 Igaki T, Pagliarini RA, Xu T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 2006; 16: 1139–46.
36 Srivastava A, Pastor-Pareja JC, Igaki T, Pagliarini R, Xu T. Basement membrane remodeling is essential for Drosophila disc evisceration and tumor invasion. Proc Natl Acad Sci USA 2007; 104: 2721–6.
37 Huh JR, Guo M, Hay BA. Compensatory proliferation induced by cell death in the Drosophila Wing Disc requires activity of the apical cell death Caspase Dronc in a nonapoptotic role. Curr Biol 2006; 14: 1262–6.
38 Pérez-Garzio A, Martin FA, Morata G. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 2004; 131: 5591–8.
39 Ryoo HD, Goren C, Steller H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 2004; 7: 491–501.
40 Shlevkov E, Morata G. A dp53/C19JNK-dependant feedback amplification loop is essential for the apoptotic response to stress in Drosophila. Cell Death Differ 2012; 19: 451–60.
41 Dekanty A, Barrio L, Mazzopappa M, Auer H, Milán M. Aneuploidy-induced delaminating cells drive tumorigenesis in Drosophila epidermis. Proc Natl Acad Sci USA 2012; 109: 20549–54.
42 Pérez-Garzio A, Fuchs Y, Steller H. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. elife 2013; 2: e01004.
43 Martin-Belmonte F, Pérez-Moreno M. Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 2012; 12: 23–38.
44 Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T. Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell 2009; 16: 458–65.
Review
Tumorigenesis by oncogenic niche cells
www.wileyonlinelibrary.com/journal/cas

45 Chen CL, Schroeder MC, Kango-Singh M, Tao C, Halder G. Tumor suppression by cell competition through regulation of the Hippo pathway. *Proc Natl Acad Sci USA* 2012; 109: 484–9.

46 Schroeder MC, Chen CL, Gajewski K, Halder G. A non-cell-autonomous tumor suppressor role for Stat in eliminating oncogenic scribble cells. *Onco
gene* 2013; 32: 4471–9.

47 Brumby AM, Richardson HE. Scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. *EMBO J* 2003; 22: 5769–79.

48 Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. *Onco
gene* 2006; 25: 4647–62.

49 Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T. Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. *Nature* 2012; 490: 547–51.

50 Nakamura M, Ohsawa S, Igaki T. Mitochondrial defects trigger proliferation of neighbouring cells via a senescence-associated secretory phenotype in Drosophila. *Nat Commun* 2014; 5: 5264.

51 Ohsawa S, Takimoto D, Igaki T. Dismantling tumour heterogeneity in flies: genetic basis of interclonal oncogenic cooperation. *J Biochem* 2014; 156: 129–36.

52 Coppé J-P, Desprez P-Y, Kro刺ca A, Campisi J. The senescence-associated secretory phenotype: the dark side of tissue suppression. *Annu Rev Pathol* 2010; 5: 99–118.

53 Chabu C, Xu T. Oncogenic Ras stimulates Eiger/TNF exocytosis to promote growth. *Development* 2014; 141: 4729–39.

54 Moreno E. Is cell competition relevant to cancer? *Nat Rev Cancer* 2008; 8: 141–7.

55 Sun G, Irvine KD. Ajuba family proteins link JNK to Hippo signaling. *Sci Signal* 2013; 6: ra81.

56 Enomoto M, Kizawa D, Ohsawa S, Igaki T. JNK signaling is converted from anti- to pro-tumor pathway by Ras-mediated switch of Warts activity. *Dev Biol* 2015; 403: 162–71.

57 Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. *Nat Rev Cancer* 2013; 13: 246–57.

58 Lee N, Maurange C, Ringrose L, Brandsdorff VL, McEwen DG. p53 binding prevents phosphatase-mediated inactivation of Diphosphorylated c-Jun N-terminal kinase. *J Biol Chem* 2012; 287: 17554–67.

59 Ruland J, Sirard C, Elia A et al. p53 Accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsp101. *Proc Natl Acad Sci USA* 2001; 98: 1859–64.

60 Lee TV, Ding T, Chen Z et al. The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-au
tonomously. *Development* 2008; 135: 43–52.

61 Wells BS, Yoshida E, Johnston LA. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. *Curr Biol* 2006; 16: 1606–15.

62 Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. *Genes Dev* 2012; 26: 1268–86.

63 Yoshimoto S, Loo TM, Atarashi K et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. *Nature* 2013; 499: 97–101.

64 Coppé J-P, Patil CK, Rodier F et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. *PLoS Biol* 2008; 6: e301.

65 Sun Y, Campisi J, Higano C et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. *Nat Med* 2012; 18: 1359–68.

66 Maeda S, Kamata H, Luo J-L, Lef
tt H, Karin M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. *Cell* 2005; 121: 977–90.

67 Sacramento T, He G, Matsuura A et al. Hepatocyte necrosis induced by oxidative stress and IL-1 receptor release mediates carcinogen-induced compensatory pro
iliferation and liver tumorigenesis. *Cancer Cell* 2008; 14: 156–65.

68 Huang Q, Li F, Liu X et al. Caspase 3-mediated stimulation of tumour cell repopulation during cancer radiotherapy. *Nat Med* 2011; 17: 860–6.

69 Kurtova AV, Xiao J, Mo Q et al. Blocking PGE2-induced tumour repopula
tion abrogates bladder cancer chemoresistance. *Nature* 2015; 517: 209–13.

70 Clevers H. The cancer stem cell: premises, promises and challenges. *Nat Med* 2011; 17: 313–9.

71 Liopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. *Cell* 2009; 139: 693–706.

72 Liopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. *Proc Natl Acad Sci USA* 2011; 108: 397–402.