Abstract

The proliferation of fake news, i.e., news intentionally spread for misinformation, poses a threat to individuals and society. Despite various fact-checking websites such as PolitiFact, robust detection techniques are required to deal with the increase in fake news. Several deep learning models show promising results for fake news classification, however, their black-box nature makes it difficult to explain their classification decisions and quality-assure the models. We here address this problem by proposing a novel interpretable fake news detection framework based on the recently introduced Tsetlin Machine (TM). In brief, we utilize the conjunctive clauses of the TM to capture lexical and semantic properties of both true and fake news text. Further, we use the clause ensembles to calculate the credibility of fake news. For evaluation, we conduct experiments on two publicly available datasets, PolitiFact and GossipCop, and demonstrate that the TM framework significantly outperforms previously published baselines by at least 5% in terms of accuracy, with the added benefit of an interpretable logic-based representation. Further, our approach provides higher F1-score than BERT and XLNet, however, we obtain slightly lower accuracy. We finally present a case study on our model’s explainability, demonstrating how it decomposes into meaningful words and their negations.

1 Introduction

Social media platforms on the Internet have become an integral part of everyday life, and more and more people obtain news from social rather than traditional media, such as newspapers. Key drivers include cost-effectiveness, freedom to comment, and shareability among friends. Despite these advantages, social media exposes people to abundant misinformation. Fake news stories are particularly problematic as they seek to deceive people for political and financial gain (Gottfried and Shearer, 2016).

In recent years, we have witnessed extensive growth of fake news in social media, spread across news blogs, Twitter, and other social platforms. At present, most online misinformation is manually written (Vargo et al., 2018). However, natural language models like GPT-3 enable automatic generation of realistic-looking fake news, which may accelerate future growth. Such growth is problematic as most people nowadays digest news stories from social media and news blogs (Allcott and Gentzkow, 2017). Indeed, the spread of fake news poses a severe threat to journalism, individuals, and society. It has the potential of breaking societal belief systems and encourages biases and false hopes. For instance, fake news related to religion or gender inequality can produce harmful prejudices. Fake news can also trigger violence or conflict. When people are frequently exposed to fake news, they tend to distrust real news, affecting their ability to distinguish between truth and untruth. To reduce these negative impacts, it is critical to develop methods that can automatically expose fake news.

Fake news detection introduces various challenging research problems. By design, fake news intentionally deceives the recipient. It is therefore difficult to detect fake news based on linguistic content, style, and diverseness. For example, fake news may narrate actual events and context to support false claims (Feng et al., 2012). Thus, other than hand-crafted and data-specific features, we need to employ a knowledge base of linguistic patterns for effective detection. Training fake news classifiers on crowdsourced data may further provide a poor fit for future news events. Fake news is emerging continuously, quickly rendering previous textual content obsolete. Accordingly, some studies, such as (Guo et al., 2018), have tried to incorporate so-
cial context and hierarchical neural networks using attention to uncover more lasting semantic patterns.

Despite significant advances in deep learning-based techniques for fake news detection, few approaches can explain their classification decisions. Currently, knowledge on the dynamics underlying fake news is lacking. Thus, explaining why certain news items are considered fake may uncover new understanding. Making the reasons for decisions transparent also facilitates discovering and rectifying model weaknesses. To the best of our knowledge, previous research has not yet addressed explainability in fake news detection.

Paper contributions: In this paper, we propose an explainable framework for fake news detection built using the Tsetlin Machine (TM). Our TM-based framework captures the frequent patterns that characterize real news, distilling both linguistic and semantic patterns unique for fake news stories. The resulting model constitutes a global interpretation of fake news. To provide a more refined view on individual fake news (local interpretability), we also propose a credibility score for measuring the credibility of news. Finally, our framework allows the practitioner to see what features are critical for making news fake (global interpretability).

Paper organization: The remainder of the paper is organized as follows. In Section 2, we briefly summarize related work. We then detail our explainable framework in Section 3. In Section 4, the datasets and experimental configurations are presented. We analyze our empirical results in Section 5, before we conclude the work in the last section.

2 Related Work

The problem of detecting deception is not new to natural language processing (Vargo et al., 2018). Significant application domains include detecting false online advertising, fake consumer reviews, and spam emails (Ott et al., 2011) (Zhang and Guan, 2008). The detection of fake news focuses on uncovering spread of misleading news articles (Zhou and Zafarani, 2020) (Zhou et al., 2019). Typical detection techniques use either text-based linguistic features (Potthast et al., 2018) or visual features (Gupta et al., 2013). Overall, fake news detection methods fall into two groups: knowledge-based models based on fact-checking news articles using external sources (WuYou et al., 2014), and style-based models, which leverage linguistic features capturing writing style (Rubin and Lukoianova, 2015). Many studies such as (Wang, 2017) (Mitra and Gilbert, 2015) (Shu et al., 2020a) incorporate publicly available datasets, providing a basis for detailed analysis of fake news and detection methods.

Recently, deep learning-based latent representation of text has significantly improved fake news classification accuracy (Karimi and Tang, 2019). However, the latent representations are generally difficult to interpret, providing limited insight into the nature of fake news. In (Castillo et al., 2011), the authors introduced features based on social context, obtained from the profiles of users and their activity patterns. Other approaches depend upon social platform-specific features such as likes, tweets, and retweets for supervised learning (Volkova et al., 2017) (Ruchansky et al., 2017).

While the progress on detecting fake news has been significant, limited effort has been directed towards interpretability. Existing deep learning methods generally extract features to train classifiers without giving any interpretable explanation. This lack of transparency makes them black boxes when it comes to understandability (Du et al., 2019). In this paper, we propose a novel fake news detection method that builds upon the TM (Granmo, 2018). The TM is a recent approach to pattern classification, regression, and novelty detection (Abeyrathna et al., 2021; Yadav et al., 2021; Abeyrathna et al., 2020; Bhattarai et al., 2021) that attempts to bridge the present gap between interpretability and accuracy in state-of-the-art machine learning. By using the AND-rules of the TM to capture lexical and semantic properties of fake news, our aim is to improve the performance of fake news detection. More importantly, our framework is intrinsically interpretable, both globally, at the model level, and locally for the individual false news predictions.

3 Explainable Fake News Detection Framework

In this section, we present the details of our TM-based fake news detection framework.

3.1 TM Architecture

The TM consists of a team of two-action Tsetlin Automata (TAs) with 2^N states. Each TA performs either action “Include” (in State 1 to N) or action “Exclude” (in State N to $2N$). Jointly, the actions specify a pattern recognition task. Action “Include” incorporates a specific sub-pattern, while action
“Exclude” rejects the sub-pattern. The TAs are updated based on iterative feedback in the form of rewards or penalties. The feedback signals how well the pattern recognition task is solved, with the intent of maximizing classification accuracy. Rewards reinforce the actions performed by the TAs, while penalties suppress the actions.

By orchestrating the TA team with rewards and penalties, a TM can capture frequent and discriminative patterns from labeled training data. Each pattern is represented as a conjunctive clause in propositional logic, based on the human-interpretable disjunctive normal form (Valiant, 1984). That is, the TM produces AND-rules formed as conjunctions of propositional variables and their negations.

A two-class TM structure is shown in Figure 1, consisting of two separate TMs (TM_1 and TM_2). As seen in the Input-step, each TM takes a Boolean (propositional) vector $X = (x_1, \ldots, x_o)$, $x_k \in \{0,1\}$, $k \in \{1, \ldots, o\}$ as input, which is obtained by booleanizing the text input as suggested in (Berge et al., 2019; Yadav et al., 2021). That is, the text input is modelled as a set of words, with each Boolean input signaling the presence or absence of a specific word. From the input vector, we obtain $2o$ literals $L = (l_1, l_2, \ldots, l_{2o})$. The literals consist of the inputs x_k and their negated counterparts $\bar{x}_k = \neg x_k = 1 - x_k$, i.e., $L = (x_1, \ldots, x_o, \neg x_1, \ldots, \neg x_o)$.

A TM forms patterns using m conjunctive clauses C_j (Figure 1 – Clauses). How the patterns relate to the two output classes ($y = 0$ and $y = 1$) is captured by assigning polarities to the clauses. Positive polarity is assigned to one half of the clauses, denoted by C^+_j. These are to capture patterns for the target class ($y = 0$ for TM_1 and $y = 1$ for TM_2). Negative polarity is assigned to the other half, denoted by C^-_j. Negative polarity clauses are to capture patterns for the non-target class ($y = 1$ for TM_1 and $y = 0$ for TM_2). In effect, the positive polarity clauses vote for the input belonging to the target class, while negative polarity clauses vote against the target class.

Any clause C^+_j for a certain target class is formed by ANDing a subset $L^+_j \subseteq L$ of the literal set. For instance, the clause $C^+_j(X) = x_1 x_2$ consists of the literals $L^+_j = \{x_1, x_2\}$, and it outputs 1 if both of the literals are 1-valued. Similarly, we have clauses C^-_j for the non-target class.

The final classification decision is done after summing up the clause outputs (Summation-step in the figure). That is, the negative outputs are substracted from the positive outputs. Employing a single TM, the sum is then thresholded using the unit step function u, $u(v) = 1$ if $v \geq 0$ else 0, as shown in Eq. (2):

$$\hat{y} = u \left(\sum_{j=1}^{m/2} C^+_j(X) - \sum_{j=1}^{m/2} C^-_j(X) \right).$$

(2)
The summation of clause outputs produces an adaptive ensemble effect designed to help dealing with noisy and diverse data (Granmo, 2018). For example, the classifier \(\hat{y} = u(x_1\bar{x}_2 + \bar{x}_1x_2 - x_1x_2 - \bar{x}_1\bar{x}_2) \) captures the XOR-relation.

With multi-class problems, the classification is instead performed using the \(\text{argmax} \) operator, as shown in the figure. Then the target class of the TM with the largest vote sum is given as output.

3.2 Interpretable Learning Process

As introduced briefly above, the conjunctive clauses in a TM are formed by a collection of TAs. Each TA decides whether to “Include” or “Exclude” a certain literal in a specific clause based on reinforcement, i.e., rewards, penalties, or inaction feedback. The reinforcement depends on six factors: (1) target output (\(y = 0 \) or \(y = 1 \)), (2) clause polarity, (3) clause output (\(C_j = 0 \) or \(1 \)), (4) literals value (i.e., \(x = 1 \), and \(\neg x = 0 \)), (5) vote sum, and (6) the current state of the TA.

The TM learning process carefully guides the TAs to converge towards optimal decisions. To this end, the TM organizes the feedback it gives to the TAs into two feedback types. Type I feedback is designed to produce frequent patterns, combat false negatives, and make clauses evaluate to \(1 \). Type I feedback is given to positive polarity clauses when \(y = 1 \) and to negative polarity clauses when \(y = 0 \). Type II feedback, on the other hand, increases the discriminating power of the patterns, suppresses false positives, and makes clauses evaluate to \(0 \). Type II feedback is given to positive polarity clauses when \(y = 0 \) and to negative polarity clauses when \(y = 1 \).

The feedback is further regulated by the sum of votes \(v \) for each output class. That is, the voting sum is compared against a voting margin \(T \), which is employed to guide distinct clauses to learn different sub-patterns. The details of the learning process can be found in (Granmo, 2018).

We use the following sentence as an example to show how the inference and learning process can be interpreted: \(X = \{\text{“Building a wall on the U.S-Mexico border will take literally years.”}\} \). with output target “true news” i.e., \(y = 1 \). First, the input is tokenized and negated: \(X = \{\text{“build”} = 1, \text{“\neg build”} = 0, \text{“wall”} = 1, \text{“\neg wall”} = 0, \text{“U.S - Mexico”} = 1, \text{“\neg U.S - Mexico”} = 0, \text{“take”} = 1, \text{“\neg take”} = 0, \text{“years”} = 1, \text{“\neg years”} = 0\} \). We consider two positive polarity clauses and one negative polarity one (i.e., \(C^+_1 \), \(C^+_2 \), and \(C^-_1 \)) to show different feedback conditions occurring while learning the propositional rules.

The learning dynamics are illustrated in Figure 2. The upper part of the figure shows the current configuration of clauses and TA states for three dif-
different scenarios. On the left side of the vertical bar, the literals are included in the clause, and on the right side of the bar, the literals are excluded. The upper part also shows how the three different kinds of feedback modifies the states of the TAs, either reinforcing “Include” or “Exclude”. The lower part depicts the new clause configurations, after the reinforcement has been persistently applied.

For the first time stamp in the figure, we assume the clauses are initialized randomly as follows: \(C_1^+ = (\text{build} \land \text{wall} \land \text{years}), C_2^+ = (\text{build} \land \text{wall} \land \text{years} \land \neg \text{take} \land \neg \text{U.S} \land \text{Mexico}), \) and \(C_1^- = (\text{build} \land \text{take} \land \text{years}).\) Since clause \(C_1^+\) consists of non-negated literals of value 1 in the input \(X\), the output becomes 1 (because \(C_1^+ = 1 \land 1 \land 1\)). This invokes the condition \((C_1^+ = 1 \land \neg y = 1)\). So, as shown in upper left of Figure 2, when the actual output is 1 and the clause output is 1, Type I (a) feedback is used to reinforce the Include action. Therefore, literals such as \(\neg \text{U.S} \land \text{Mexico}\) and \(\neg \text{take}\) are eventually included, because they appear in \(X\). This process makes the clause \(C_1^+\) eventually have one sub-pattern captured for \(y = 1\), as shown on the lower left side of Figure 2. I.e., \(\neg \text{take}\) and \(\neg \text{U.S} \land \text{Mexico}\) have been included in the clause.

Similarly, in \(C_2^+\), the clause output is 0 because of the negated inputs \(\neg \text{take}\) and \(\neg \neg \text{U.S} \land \text{Mexico}\) (i.e., \(C_2^+ = 1 \land 1 \land 1 \land 0 \land 0\)). This invokes the condition \((C_2^+ = 0 \land \neg y = 1)\). Here, so-called Type I (b) feedback is used to reinforce Exclude actions. In this example, literals such as \(\neg \text{take}\) and \(\neg \neg \text{U.S} \land \text{Mexico}\) are eventually excluded from \(C_2^+\) as shown in the middle part of Figure 2, thus establishing another sub-pattern for \(C_2^+\).

Type II feedback (right side of figure) only occurs when \(y = 0\) (for positive polarity clauses) and \(y = 1\) (for negative polarity clauses). We here use the negative polarity clause \(C_1^-\) to demonstrate the effect of Type II feedback. This type of feedback is triggered when the clause output is 1. The goal is now to make the output of the affected clause change from 1 to 0 by adding 0-valued inputs. Type II feedback can be observed on the right side of Figure 2, where all negated literals finally are included in \(C_1^-\) to ensure that the clause outputs 0.

3.3 Problem Statement for Fake News Detection

We now proceed with defining the fake news detection problem formally. Let \(A\) be a news article with \(s_i\) sentences, where \(i = 1\) to \(S\) and \(S\) is the total number of sentences. Each sentence can be written as \(s_i = (w_1^i, w_2^i, \ldots, w_W^i),\) consisting of \(W\) words. Given the booleanized input vector \(X \in \{0, 1\}^o,\) the fake news classification is a Boolean classification problem, where we predict whether the news article \(A\) is fake or not, i.e., \(F : X \rightarrow y \in \{0, 1\}.\) We also aim to learn the credibility of news by formulating a TM-based credibility score that measures how check-worthy the news is. With this addition, the classifier function can be written as \(F : X \rightarrow (y, Q),\) where \(y\) is a classification output and \(Q\) is the credibility score.

3.4 Credibility Assessment

The credibility score can be calculated as follows. Firstly, the TM architecture in Section 3.1 is slightly tweaked for the score generation. In the architecture, instead of identifying the class with the largest voting sum using Argmax, we obtain the raw score from both the output classes. The raw score is generated using clauses, which represent frequent lexical and semantic patterns that characterize the respective classes. Therefore, the score contains information on how the input resembles the patterns captured by the clauses. We thus use this score to measure the credibility of news. For instance, consider the vote ratios of 2:1 and 10:1 for two classes (i.e., real vs. fake news) obtained from two different inputs. Then the first class wins the majority vote in both cases, however, the 10:1 vote ratio suggests higher credibility than for the input that gave a ratio of 2:1.

To normalize the credibility score so that it falls between 0 and 1, we apply the logistic function to the formula in Eq. (2) as shown in Eq. (3).

\[
Q_i = \frac{1}{1 + \exp(-k(v_i^f - v_i^t))}.
\] (3)

Above, \(Q_i\) is the credibility score of the \(i^{th}\) sample, and \(k\) is the logistic growth rate. \(v_i^f\) and \(v_i^t\) are the total sum of votes collected by clauses for fake and true news respectively. Here, \(k\) is a user-configurable parameter deciding the slope of the function. For example, consider the scores \((43, -47)\) and \((124, -177)\), both predicting fake class. The credibility scores obtained from Eq. (3) with \(k = 0.012\) are
0.74 and 0.97, which shows that the second news is more credible than the first one.

4 Experiment Setup

In this section, we present the experiment configurations we use to evaluate our proposed TM framework.

4.1 Datasets

For evaluation, we adopt the publicly available fake news detection data repository FakeNewsNet (Shu et al., 2017). The repository consists of news content from different fact-checking websites, including social context and dynamic information. We here use news content annotated with labels by professional journalists from the fact-checking websites Politifact and GossipCop. Politifact is a fact-checking website that focuses on U.S political news. We extract news articles published till 2017. GossipCop focuses on fact-checking of entertainment news collected from various medias. While GossipCop has more fake news articles than Politifact, Politifact is more balanced, as shown in Table 1.

4.2 Preprocessing

The relevant news content and the associated labels, i.e., True or False news, are extracted from both of the datasets. The preprocessing steps include cleaning, tokenization, lemmatization, and feature selection. The cleaning is done by removing less important information such as hyperlinks, stop words, punctuation, and emojis. The datasets are then booleanized into a sparse matrix for the TM to process. The matrix is obtained by building a vocabulary consisting of all unique words in the dataset, followed by encoding the input as a set of words using that vocabulary. To reduce the sparseness of the input, we adopt two methods: 1) Chi-squared test statistics as a feature selection technique, and 2) selecting the most frequent literals from the dataset. The experiment is performed using both methods, and the best results are included. For the Politifact and GossipCop datasets, we selected the 20 000 and 25 000 most significant features, respectively.

4.3 Baseline

We first summarize the state-of-the-art of the fake news detection approaches.

Dataset	#Real	#Fake	#Total
Politifact	563	391	954
GossipCop	15,338	4,895	20,233

Table 1: Dataset statistics.

- RST (Rubin et al., 2015): Rhetorical Structure Theory (RST) represents the relationship between words in a document by building a tree structure. It extracts the news style features from a bag-of-words by mapping them into a latent feature representation.
- LIWC (Pennebaker et al., 2015): Linguistic Inquiry and Word Count (LIWC) is used to extract and learn features from psycholinguistic and deception categories.
- HAN (Yang et al., 2016): HAN uses a hierarchical attention neural network (HAN) for embedding word-level attention on each sentence and sentence-level attention on news content, for fake news detection.
- CNN-text (Kim, 2014): CNN-text utilizes convolutional neural network (CNN) with pre-trained word vectors for sentence-level classification. The model can capture different granularities of text features from news articles via multiple convolution filters.
- LSTM-ATT (Lin et al., 2019): LSTM-ATT utilizes long short term memory (LSTM) with an attention mechanism. The model takes a 300-dimensional vector representation of news articles as input to a two-layer LSTM for fake news detection.
- RoBERTa-MWSS: The Multiple Sources of Weak Social Supervision (MWSS) approach, built upon RoBERTa (Liu et al., 2019), was proposed in (Shu et al., 2020b).
- BERT (Devlin et al., 2019): Bidirectional Encoder Representations from Transformers (BERT) is a Transformer-based model which contains an encoder with 12 transformer blocks, self-attention heads and hidden shape size of 768.
- XLNet (Yang et al., 2019): XLNet is a generalized autoregressive pretraining model that integrates autoencoding and a segment recurrence mechanism from transformers.
In addition, we compare our results with other machine learning baseline models such as logistic regression (LR), naive Bayes, support vector machines (SVM), and random forest (RF). For a fair comparison, we select the methods that only extract textual features from news articles. The performance for these baseline models has been reported in (Shu et al., 2019) and (Shu et al., 2020a).

4.4 Training and Testing
We use a random training-test split of 75%/25%. The classification results are obtained on the test set. The process is repeated five times, and the average accuracy and F1 scores are reported. To provide robust results, we calculated an ensemble average by first taking the average of 50 stable epochs, followed by taking the average of the resulting five averages. We run our TM for 200 epochs with hyperparameter configuration of 10 000 clauses, a threshold T of 200, and sensitivity s of 25.0. To ensure a fair comparison of the results obtained by other machine learning algorithms, we use the Python Scikit-learn framework that includes LR, SVM and Naïve Bayes, using default parameter settings.

5 Results and Discussion
We now compare our framework with above-mentioned baseline models.

5.1 Comparison with State-of-the-Art
The experimental results are shown in Table 2. Clearly, our model outperforms several of the other baseline models in terms of accuracy and F1 score.

Models	PolitiFact Acc.	PolitiFact F1	GossipCop Acc.	GossipCop F1
RST	0.607	0.569	0.531	0.512
LIWC	0.769	0.818	0.736	0.572
HAN	0.837	0.860	0.742	0.672
CNN-text	0.653	0.760	0.739	0.569
LSTM-ATT	0.833	0.836	0.793	0.798
LR	0.642	0.633	0.648	0.646
SVM	0.580	0.659	0.497	0.595
Naïve Bayes	0.617	0.651	0.624	0.649
RoBERTa-MWSS	0.825	0.805	0.803	0.807
BERT	0.88	0.87	0.85	0.79
XLNet	0.895	0.90	0.855	0.78
TM	0.871	0.901	0.842	0.896

Table 2: Performance comparison of our model with 8 baseline models.

One can further observe that HAN outperforms LIWC, CNN-text, and RST for both datasets. This is arguably because HAN can capture the syntactic and semantic rules using hierarchical attention to detect fake news. Similarly, the LIWC performs better than RST. One possible explanation for this is that LIWC can capture the linguistic features in news articles based on words that denote psycholinguistic characteristics. The LSTM-ATT, which has extensive preprocessing using count features and sentiment features along with hyperparameter tuning (Lin et al., 2019), has similar performance compared with HAN in PolitiFact, however, outperforms HAN on GossipCop. One reason for this can be that the attention mechanism is able to capture the relevant representation of the input. In addition, we see that machine learning models such as LR, SVM, and Naïve Bayes are not very effective in neither of the datasets.

The recent transformer-based models BERT and XLNet outperform our model in terms of accuracy. Our TM-based approach obtains slightly lower accuracy, achieving 87.1% for PolitiFact and 84.2% for GossipCop. However, the F1 score for PolitiFact is 0.90, whereas for GossipCop it is 0.89, which is marginally better than XLNet and BERT. Thus, we achieve state-of-the-art performance with respect to F1-score overall, and with respect to accuracy when comparing with interpretable approaches. Since GossipCop is unbalanced with sample ratio of 3:1 for real and fake news, we submit that the F1 score is a more appropriate performance measure than accuracy. Overall, our model is much simpler than the deep learning models because we do not use any pre-trained embeddings for preprocessing. This also helps in making our model more transparent, interpretable, and explainable.

The credibility assessment is performed as described in Subsection 3.4. The Figs. 3 and 4 show the credibility scores for a fake news sample from PolitiFact and GossipCop, respectively. As seen, the fake news can be ranked quite distinctly. This facilitates manual checking according to credibility, allowing users to focus on the fake news articles with highest scores. However, when we observe the soft scores e.g. obtained from XLNet, most of the samples are given rather extreme scores. That is, classifications are in general submitted with very high confidence. This is in contrast to the more cautious and diverse credibility scores produced by TM clause voting. If we for instance set a credibility score threshold of 0.8 in TM, we narrow the
selection of fake news down to around 300 out of 400 for PolitiFact and to around 2 800 out of 4 895 for GossipCop.

5.2 Case Study: Interpretability

We now investigate the interpretability of our TM approach in fake news classification by analyzing the words captured by the clauses for both true and fake news. In brief, the clauses capture two different types of literals:

- Plain literals, which are plain words from the target class.
- Negated literals, which are negated words from the other classes.

The TM utilizes both plain and negated word patterns for classification. When we analyze the clauses, we see that most of the sub-patterns consist of negated literals. This helps TM make decisions robustly because it can use both negated features from the negative polarity clauses of other classes, as well as the plain features from positive polarity clauses for the intended class. Taking the positive- and negative polarity clauses together, one gets stronger discrimination power.

Table 3 and Table 4 exemplify the above behavior for fake news detection. To showcase the explainability of our approach, we list the ten most captured plain and negated words per class, for both datasets. We observe that negated literals appear quite frequently in the clauses. This allows the trained TM to represent the class by the features that characterize the class as well as the features that contrast it from the other class. TM clauses that contain negated and unnegated inputs are termed non-monotone clauses, and these are crucial for human commonsense reasoning, as explored in “Non-monotonic reasoning” (Reiter, 1987).

Also observe that the TM clauses include both descriptive words and discriminative words. For example, in PolitiFact, the Fake class captures words like “trump”, while the True class captures the negated version, i.e., “¬trump”. However, this does not mean that all the news related to Trump are Fake. Actually, it means that if we break down the clauses into literals, we see “trump” as a descriptor/discriminator for the Fake News class. Therefore, most of the clauses captured the word “trump” in plain and in negated form (for the True news class). However, one single word cannot typically produce an accurate classification decision. It is the joint contribution of the literals in a clause that contributes to the high accuracy. Hence, we have to look at all word pattern captured by the clauses. When an input is passed into the trained TM, the clauses from both classes that capture the input word pattern are activated, to vote for their respective class. Finally, the classification is made based on the total votes gathered by both classes for the particular input.

6 Conclusions

In this paper, we propose an explainable and interpretable Tsetlin Machine (TM) framework for fake news classification. Our TM framework employs clauses to capture the lexical and semantic features based on word patterns in a document. We also explain the transparent TM learning of clauses from labelled text. The extensive experimental evaluations demonstrate the effectiveness of our model on real-world datasets over various baselines. Our
results show that our approach is competitive with far more complex and non-transparent methods, including BERT and XLNet. In addition, we demonstrate how fake news can be ranked according to a credibility score based on classification confidence. We finally demonstrate the explainability of our model using a case study. In our future work, we intend to go beyond using pure text features, also incorporating spatio-temporal and other meta-data features available from social media content, for potentially improved accuracy.

References

K. Darshana Abeyrathna, Bimal Bhattarai, Morten Goodwin, Saeed Gorji, Ole-Christoffer Granno, Lei Jiao, Rupsa Saha, and Rohan K. Yadav. 2021. Massively Parallel and Asynchronous Tsetlin Machine Architecture Supporting Almost Constant-Time Scaling. In The Thirty-eighth International Conference on Machine Learning (ICML 2021). ICML.

K. Darshana Abeyrathna, Ole-Christoffer Granno, Xuan Zhang, Lei Jiao, and Morten Goodwin. 2020. The Regression Tsetlin Machine - A Novel Approach to Interpretable Non-Linear Regression. Philosophical Transactions of the Royal Society A, 378.

H. Allcott and Matthew Gentzkow. 2017. Social media and fake news in the 2016 election. NBER Working Paper Series.

Geir Thore Berge, Ole-Christoffer Granno, T. Tveit, M. Goodwin, Lei Jiao, and Bernt Viggo Matheussen. 2019. Using the tsetlin machine to learn human-interpretable rules for high-accuracy text categorization with medical applications. IEEE Access, 7:115134–115146.

Bimal Bhattarai, Ole-Christoffer Granno, and L. Jiao. 2021. Measuring the Novelty of Natural Language Text Using the Conjunctive Clauses of a Tsetlin Machine Text Classifier. In 13th International Conference on Agents and Artificial Intelligence (ICAART 2021). INSTICC.

C. Castillo, Marcelo Mendoza, and B. Poblete. 2011. Information credibility on twitter. In WWW.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL-HLT.

Mengnan Du, Ninghao Liu, and Xia Hu. 2019. Techniques for interpretable machine learning. Commun. ACM, 63:68–77.

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012. Syntactic stylometry for deception detection. In ACL.

Jeffrey A. Gottfried and E. Shearer. 2016. News use across social media platforms 2016.
Ole-Christoffer Granmo. 2018. The Tsetlin machine - a game theoretic bandit driven approach to optimal pattern recognition with propositional logic. ArXiv, abs/1804.01508.

Han Guo, J. Cao, Y. Zhang, Junbo Guo, and J. Li. 2018. Rumor detection with hierarchical social attention network. Proceedings of the 27th ACM International Conference on Information and Knowledge Management.

A. Gupta, H. Lamba, P. Kumaraguru, and A. Joshi. 2013. Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In WWW ’13 Companion.

Hamid Karimi and Jiliang Tang. 2019. Learning hierarchical discourse-level structure for fake news detection. In Proceedings of the 2019 Conference of the North. Association for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In EMNLP.

J. Lin, Glenna Tremblay-Taylor, Guanyi Mou, Di You, and Kyumin Lee. 2019. Detecting fake news articles. 2019 IEEE International Conference on Big Data (Big Data), pages 3021–3025.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. ArXiv, abs/1907.11692.

T. Mitra and E. Gilbert. 2015. Credbank: A large-scale social media corpus with associated credibility annotations. In ICWSM.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Hancock. 2011. Finding deceptive opinion spam by any stretch of the imagination. In The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA, pages 309–319. The Association for Computer Linguistics.

J. Pennebaker, Ryan L. Boyd, K. Jordan, and Kate G. Blackburn. 2015. The development and psychometric properties of liwc2015.

Martin Potthast, Johannes Kiesel, K. Reinartz, Janek Bevendorff, and Benno Stein. 2018. A stylistic inquiry into hyperpartisan and fake news. In ACL.

R Reiter. 1987. Nonmonotonic reasoning. Annual Review of Computer Science, 2(1):147–186.

Victoria L. Rubin, Niall Conroy, and Yimin Chen. 2015. Towards news verification: Deception detection methods for news discourse.

Victoria L. Rubin and Tatiana Lukoianova. 2015. Truth and deception at the rhetorical structure level. Journal of the Association for Information Science and Technology, 66.

N. Ruchansky, Sungyong Seo, and Y. Liu. 2017. Csi: A hybrid deep model for fake news detection. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.

Kai Shu, Limeng Cui, Suhang Wang, D. Lee, and Huan Liu. 2019. Defend: Explainable fake news detection. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dong-won Lee, and Huan Liu. 2020a. FakeNewsNet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media. Big Data, 8(3):171–188.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news detection on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter, 19(1):22–36.

Kai Shu, Guoqing Zheng, Yichuan Li, Subhabrata Mukherjee, Ahmed Hassan Awadallah, Scott W. Ruston, and Huan Liu. 2020b. Leveraging multi-source weak social supervision for early detection of fake news. ArXiv, abs/2004.01732.

Leslie G Valiant. 1984. A Theory of the Learnable. Communications of the ACM, 27(11):1134–1142.

Chris J. Vargo, Lei Guo, and Michelle A. Amazeen. 2018. The agenda-setting power of fake news: A big data analysis of the online media landscape from 2014 to 2016. New Media & Society, 20:2028 – 2049.

Svitlana Volkova, Kyle Shaffer, Jin Yea Jang, and Nathan Oken Hodas. 2017. Separating facts from fiction: Linguistic models to classify suspicious and trusted news posts on twitter. In ACL.

William Yang Wang. 2017. “liar, liar pants on fire”: A new benchmark dataset for fake news detection. In ACL.

WuYou, K. AgarwalPankaj, LiChengkai, Yang-jun, and YuCong. 2014. Toward computational fact-checking. In VLDB 2014.

Rohan Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. 2021. Human-level interpretable learning for aspect-based sentiment analysis. In AAAI.

Z. Yang, Zihang Dai, Yiming Yang, J. Carbonell, R. Salakhutdinov, and Quoc V. Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS.

Zichao Yang, Diyi Yang, Chris Dyer, X. He, Alex Smola, and E. Hovy. 2016. Hierarchical attention networks for document classification. In HLT-NAACL.
Linfeng Zhang and Yong Guan. 2008. Detecting click fraud in pay-per-click streams of online advertising networks. *2008 The 28th International Conference on Distributed Computing Systems*, pages 77–84.

X. Zhou, R. Zafarani, Kai Shu, and H. Liu. 2019. Fake news: Fundamental theories, detection strategies and challenges. *Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining*.

Xinyi Zhou and Reza Zafarani. 2020. A survey of fake news. *ACM Computing Surveys*, 53(5):1–40.