Pharmacogenomic effects of β-blocker use on femoral neck bone mineral density

Kathleen T. Nevolaa, Archana Nagarajana,b, Alexandra C. Hintonb, Katerina Trajanoskac,d, Melissa M. Formosae,f, Angela Xuereb-Anastasie,f, Nathalie van der Veldeg, Bruno H. Strickerd, Fernando Rivadeneirae,d, Nicholas R. Fuggleh, Leo D. Westburyi, Elaine M. Dennisonh,k, Cyrus Cooperh,i,j, Douglas P. Kiell,m, Katherine J. Motyln, Christine W. Laryb

aGraduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA, bCenter for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA, cDepartment of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands, dDepartment of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands, eDepartment of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta, fCentre for Molecular Medicine and Biobanking, gDepartment of Internal Medicine, Geriatrics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands, hMRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK, iNIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK, jNIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK, kVictoria University of Wellington, Wellington, New Zealand, lDepartment of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. mHinda and Arthur Marcus Institute for Aging Research Hebrew SeniorLife, Boston, MA, USA, nCenter for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, USA.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Corresponding Author:
Christine W. Lary

Center for Outcomes Research and Evaluation
509 Forest Ave. Suite 200
Portland, ME 04101
207-661-7657
clary@mmc.org

Grants and Fellowships: This work was supported by the COBRE in Mesenchymal and Neural Regulation of Metabolic Networks (NIH/NIGMS P20GM121301 to Lucy Liaw), NIH/NIAMS K01AR067858 to KJM, NIH/NIAMS R01 AR041398 to DPK, Framingham Contract Number (75N92019D00031). The MOFS was supported by the Research and Innovation Development Trust (RIDT) of the University of Malta, The Malta Community Chest Fund, and the European Union Strategic Educational Pathways Scholarship scheme (STEPS). The Rotterdam Study was supported by the Erasmus MC University Medical Center and Erasmus University Rotterdam; The Netherlands Organization for Scientific Research (NWO); The Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); The Netherlands Genomics Initiative (NGI); the Ministry of Education, Culture and Science; the Ministry of Health, Welfare and Sports; the European Commission (DG XII); and the Municipality of Rotterdam. The BPROOF study is registered with the Netherlands Trial (NTR NTR1333) and with ClinicalTrials.gov (NCT00696514). This study was supported and funded by The Netherlands Organization for Health Research and Development (ZonMw, Grant 6130.0031), the Hague; an unrestricted grant from NZO (Dutch Dairy Association), Zoetermeer; Orthica, Almere; NCHA (Netherlands Consortium Healthy Ageing) Leiden/Rotterdam; Ministry of
Economic Affairs, Agriculture and Innovation (project KB-15-004-003), The Hague; Wageningen University, Wageningen; VUmc, Amsterdam; Erasmus Medical Center, Rotterdam. The Hertfordshire Cohort Study is supported by the Medical Research Council University Unit Partnership grant number MRC_MC_UP_A620_1014.

Disclosure: DPK has received royalty payments from Wolters Kluwer for authoring a chapter in UpToDate on Falls and grant funding through a grant to his Institute by the Dairy Council, Amgen, and Radius Health. Cyrus Cooper reports personal fees (outside the submitted work) from Amgen, Danone, Eli Lilly, GSK, Kyowa Kirin, Medtronic, Merck, Nestle, Novartis, Pfizer, Roche, Servier, Shire, Takeda, and UCB. Elaine Dennison reports personal fees (outside the submitted work) from Pfizer Healthcare and the UCB Discussion panel. No other authors have disclosures to report.

Author Contributions: Kathleen T. Nevola performed data visualization, analytical design, analysis, drafting, interpretation, and critical review. Kathleen T. Nevola also created all figures and tables and wrote all code for the analysis of FHS data, MOFS data, and meta-analyses. Archana Nagarajan, Alexandra C. Hinton, and Christine Lary performed sensitivity analyses and wrote code and manuscript portions related to the sensitivity analyses. Katerina Trajanoska and Fernando Rivadeneira did the design and analysis in the Rotterdam and BPROOF cohorts and drafting and critical revision. Melissa M. Formosa and Angela Xuereb-Anastasi performed data acquisition for the MOFS cohort and drafting and critical revision. Nathalie van der Velde and Fernando Rivadeneira designed and acquired data for the BPROOF cohort. Bruno H. Stricker and Fernando Rivadeneira designed and acquired data for the Rotterdam cohort. Nicholas R. Fuggle, Leo D. Westbury, Elaine M. Dennison, and Cyrus Cooper performed data acquisition, design, and analysis of the Hertfordshire Cohort Study. Douglas P. Kiel secured funding to obtain bone density data for the FHS and aided in
analytical design and interpretation. Katherine J. Motyl performed interpretation, drafting, and critical review.

Code for FHS analyses can be found at

https://github.com/knevola/MMC/tree/master/Aim2_Genetic_Influences_scripts.
Abstract

Context. Recent studies have shown that β-blocker (BB) users have a decreased risk of fracture and higher bone mineral density (BMD) compared to non-users, likely due to the suppression of adrenergic signaling in osteoblasts, leading to increased BMD. There is also variability in the effect size of BB use on BMD in humans, which may be due to pharmacogenomic effects.

Objective. To investigate potential single nucleotide polymorphisms (SNPs) associated with the effect of BB use on femoral neck BMD, we performed a cross-sectional analysis using clinical data, dual-energy X-ray absorptiometry, and genetic data from the Framingham Heart Study’s (FHS) Offspring Cohort. We then sought to validate our top four genetic findings using data from the Rotterdam Study, the BPROOF Study, the MOFS, and the Hertfordshire Cohort Study.

Design. We used sex-stratified linear mixed models to determine SNPs that had a significant interaction effect with BB use on femoral neck (FN) BMD across 11 gene regions. We also evaluated the association of our top single nucleotide polymorphisms (SNPs) from the FHS with microRNA (miRNA) expression in blood and identified potential miRNA-mediated mechanisms by which these SNPs may impact FN BMD.
Results. One polymorphism (rs11124190 in \textit{HDAC4}) was validated in females using data from the Rotterdam Study, while another (rs12414657 in \textit{ADRB1}) was validated in females using data from the MOFS. We performed an exploratory meta-analysis of all 5 studies for these polymorphisms, which further validated our findings.

Conclusions. This analysis provides a starting point for investigating the pharmacogenomic effects of BB use on BMD measures.

Keywords: β-blocker, beta blocker, bone, pharmacogenomics, miRNA, genomics
Introduction

Osteoporosis is a skeletal condition that causes bones to become fragile, resulting in an increased risk of fracture and decreased bone mineral density (BMD). This disorder affects over 10 million individuals in the United States and results in over 2 million osteoporotic fractures per year, with the annual hospital cost of osteoporotic fractures exceeding $28 billion dollars\(^1-^4\). Several studies have found an association between \(\beta\)-blocker (BB) use, decreased risk of fracture, and higher BMD\(^5-^8\), including a pilot randomized trial\(^9\). This association is thought to be mediated, at least in part, by attenuation of adrenergic signaling in osteoblasts (Figure 1)\(^10-^13\). In particular, it has been found that norepinephrine signaling activates \(\beta\)-adrenergic receptors in osteoblasts leading to signaling through cyclic AMP and protein kinase A, resulting in the activation of ATF4. ATF4 is a transcription factor that induces transcription of TNFSF11 (RANKL). TNFSF11 (RANKL) is secreted from osteoblasts and binds to either TNFRSF11A (RANK), a receptor on the surface of osteoclasts, or osteoprotegerin (OPG), a soluble decoy receptor produced by osteoblasts. TNFSF11 (RANKL) signaling through TNFRSF11A (RANK) leads to increased bone resorption due to increased osteoclast activity and differentiation.

While many studies have found an association between BB use and bone outcomes, there is variability in the effect size\(^5-^7\), and some negative studies\(^14-^16\). We hypothesize that genetic variation may contribute to this variability given the large genetic component of BMD itself\(^17\), and given the pharmacogenetic effects found for cardiovascular outcomes\(^18-^21\), with demonstrated associations in the beta-adrenergic receptor genes\(^12,18,22-^25\). However, associations between these SNPs and BMD have not been demonstrated, as a recent analysis by Veldhuis-Vlug et al. showed that non-synonymous SNPs in \textit{ADRB2} were not significantly...
associated with BMD or fracture risk. Previous genome-wide association studies (GWAS) of BMD and osteoporosis have been performed, but there have not been previous pharmacogenomic studies evaluating the effect of BB use on BMD, although other studies have found SNPs associated with BMD and osteoporosis to map to or near genes involved in adrenergic signaling.

In addition to genetic polymorphisms, we have previously found circulating microRNAs (miRNAs) to be associated with BB use and BMD and revealed potential miRNA-mediated mechanisms by which BB use influences BMD, including attenuation of adrenergic signaling in osteoblasts. miRNAs are small (~22 nucleotides), non-coding RNAs that act on target mRNAs to inhibit protein expression through mRNA degradation and translational inhibition. Circulating miRNAs have been used to develop hypotheses regarding underlying mechanisms in many applications including cardiovascular disease and cancer etiology, variation in handgrip strength, and response to antidepressant treatment. Several circulating miRNA have been implicated as potential biomarkers of osteoporosis and BB treatment response, and miRNAs have also been assessed in association with GWAS signals using expression quantitative loci (eQTL) analysis in many outcomes to discover potential mechanisms and biomarkers of these conditions.

To discover genetic polymorphisms associated with the effect of BB use on femoral neck (FN) BMD, we sought to evaluate genetic polymorphisms that map to or near genes involved in adrenergic signaling in bone and that interact with BB use in their association with FN BMD. These candidate genes were chosen based on what is currently known about the effect of adrenergic signaling on osteoblasts in bone as has been previously described (Figure 1). FN BMD was chosen as an outcome variable due to its clinical importance and its use to evaluate fracture risk of patients using the FRAX tool. We also sought to determine putative underlying miRNA-mediated pathways involved in this association.
We hypothesize that genetic polymorphisms in these candidate genes can partly explain the variation in FN BMD among BB users. Furthermore, we hypothesize that genetic polymorphisms may impact miRNA-mediated mechanisms underlying the association between BB use and FN BMD. To test these hypotheses, we followed the analytic plan shown in Figure S1. We used linear mixed modeling followed by conditional joint analysis to analyze this genetic association in these candidate genes using clinical data from the Framingham Heart Study. Since β-adrenergic signaling and the effect of BB use has previously been shown to have sex-specific effects, and also BMD and osteoporosis prevalence vary by sex, we used a sex-stratified model for our genetic association studies. We submitted four SNPs for validation and obtained validation for two in independent studies, and additionally performed exploratory meta-analyses across cohorts.

To generate functional hypotheses, we analyzed individual miRNAs that were associated with these polymorphisms and BB use to identify candidate mechanisms that were altered in the presence of the alternative alleles.

Materials and Methods

Study sample

Data for this cross-sectional analysis was made available from dbGaP through approved request number 1302685. The Framingham Heart Study (FHS) is an ongoing three-generation community-based study. For this study, we focused on members of the Offspring Cohort, which includes the children of the original cohort and their spouses. At each FHS examination, age, height, BMI, and extensive questionnaires were obtained according to standardized protocols. Most of the members of the Offspring cohort were enrolled in the ancillary Framingham Osteoporosis Study in 2002. BMD was measured at the hip (femoral neck, trochanter, and total femur) and lumbar spine (average BMD of L2-
in g/cm2 using a GE Lunar Prodigy dual-energy X-ray (DXA) absorptiometer. For this analysis, 1,527 individuals were included based on being a member of the Framingham Offspring Cohort who attended examination cycle 8 (2005-2008, n = 3,021), having BMD data that was assessed after the exam 8 date when BB use was assessed, and having genetic data available. Genetic data was collected and imputed as previously described56,57. In brief, genotypes were measured using the Affymetrix 500K and 50K Human Gene Focused Panels. Genetic polymorphisms’ positions were based on the GRCh37/hg19 assembly from February 2009. Imputation was based on the Haplotype Reference Consortium (HRC) reference panel release 1. The panel included only autosomes with 39,235,157 sites of which 39,210,718 sites were included in the dataset returned by the Michigan Imputation Server with high-quality imputation. Multi-allelic sites were excluded from our analysis. The imputed SNPs’ value ranged from 0 to 2, referring to the predicted dosage of the alternative allele.

Medication assessment

Medication usage, including oral BB use as the primary exposure and other medications related to bone in sensitivity analyses, was measured using a medication questionnaire in which the medication name, strength, route, and frequency (day/week/month/year) were recorded by directly viewing the medication bottle during the exam 8 (2005-2008) visit, excluding PRN use. We categorized BB users as β1-selective for the chemical group “Beta blocking agents, selective” and as “non-selective” for the chemical groups “Beta blocking agents, non-selective” or “Alpha and beta blocking agents”. We computed BB daily dose for each patient and for each drug by converting the strength and frequency to a daily dose. We divided this calculated daily dose by the WHO-determined defined daily dose (DDD)58 to get a standardized dose in units of DDD for that drug.

We additionally recorded use of other bone-related medications for sensitivity analyses examining confounding by these variables. Medications for therapy group “bone
diseases” or with chemical name “raloxifene” were considered bone disease drugs. The chemical names for the therapy group bone diseases consisted mostly of alendronic acid and risedronic acid with etidronic acid, ibandronic acid, ipriflavone, pamidronic acid, and zoledronic acid also included. We also noted oral steroid use (including chemical groups “corticosteroids” and “glucocorticoids”). Treatment for hypertension, lipids, or diabetes was recorded as part of the exam 8 visit. Prior cardiovascular disease (CVD) was determined from an adjudicated file of cardiovascular events recorded prior to exam 8.

All participants provided informed consent, and the examination protocols were approved by the Boston University Medical Center Institutional Review Board and the Hebrew SeniorLife Institutional Review Board.

miRNA expression profiling

Whole blood from fasting morning samples was used for miRNA profiling which was obtained at exam 8, coincident with the BB use ascertainment, and just before BMD measurement and stored at -80°C. Several studies have used this miRNA data in association with BMD, BB use, and other phenotypes31,35,59,60. In brief, the high-throughput Gene Expression Core Laboratory at the University of Massachusetts Medical School profiled commercially available TaqMan miRNA assays35,59,60. A subset of the 754 miRNAs profiled in 600 FHS participants was further profiled in additional FHS Offspring Cohort members using quantitative real-time polymerase chain reaction (RT-qPCR). 333 miRNAs had a measurable cycle threshold (Ct) value in at least 5% of participants. A higher Ct value reflects a lower miRNA expression value. The FHS Systems Approach to Biomarker Research in Cardiovascular Disease Initiative Steering Committee previously reviewed all quality control measures and noted that > 95% of the data points had coefficients of variation <10% (mean ~4th)60. Of the 1527 individuals who were included in the genetic association study, 1304 had miRNA data available for miRNA association analysis. We modeled
technical sources of variation in miRNA concentration (crossing threshold, Ct) values including RNA quality, RNA concentration, and 260/280 ratio (ratio of absorbance at 260 and 280 nm using a spectrophotometer) as previously described. Briefly, we categorized each technical variable by decile and included them as factor variables in our models to account for nonlinear effects.

Identifying Genes of Interest

For our candidate gene list, we selected genes involved in adrenergic signaling in osteoblasts as detailed by Elefteriou et al. We added TNFRSF11A (RANK) and OPG to this list of genes as TNFSF11 (RANKL) binds to the receptors encoded by these genes. Our pathway, therefore, starts at β-adrenergic receptors and ends at TNFSF11 (RANKL) receptors TNFRSF11A (RANK) and OPG (Figure 1). To further filter our list, we also required that at least one SNP that mapped to or near each gene have a suggestive association with eBMD (BMD estimated by quantitative ultrasound of the heel), FN BMD, or lumbar spine BMD in a previous GWAS studies as reported in the Musculoskeletal Genomics Knowledge Portal. A suggestive association was defined as having at least 1 SNP within the coding region ±100 kb that is associated with the phenotype with a p-value < 5 x 10^-4, parameters which have been set by the Musculoskeletal Genomics Knowledge Portal. Similar parameters have been used as suggestive p-values in previous studies, ranging from 1 x 10^-4 to 1 x 10^-6. Our final gene list contained 13 genes: 3 β-adrenergic receptor genes (ADRB1, ADRB2, ADRB3), 5 PKA subunits (PRKACB, PRKAR1A, PRKAR1B, PRKAR2A, PRKAR2B), HDAC4, ATF4, TNFSF11 (RANKL), TNFRSF11A (RANK), and OPG.
Identifying SNPs of Interest

We performed our analysis in a two stage design, in which we used Framingham as the discovery cohort and then sought to validate our top SNPs in replications cohorts. This strategy has been used in previous pharmacogenetic studies. Polymorphisms had previously been excluded if they satisfied any of the following criteria: Hardy-Weinberg equilibrium value p-value less than 1 x 10^{-6}, call rate less than 96.9%, minor allele frequency less than 0.01, number of Mendelian errors greater or equal to 1000, or at locations that did not map to GRCh37. Well-imputed SNPs were determined across the genome by filtering for an R^2 value greater than 0.8 as provided by the HRC after imputation. Then SNPs from 2 kB upstream of the gene region to 0.5 kB downstream of the gene region were extracted for further analysis according to RefSeq, filtering out poly-allelic SNPs. These SNPs were then filtered for having a minor allele frequency > 0.05 in our population of 1527 individuals. This resulted in 1482 SNPs across 11 genes. ADRB3 and PRKAR1B did not have any SNPs that met our filtering criteria.

Modeling Interaction Effect between Genotype and BB use on FN BMD

The 1,482 polymorphisms were analyzed in 1,527 individuals for an association with FN BMD that was modified by BB use using a linear mixed model, stratifying based on sex, and adjusting for interrelatedness between individuals by modeling a kinship matrix as a random effect (Imeckin function in coxme package in R). We performed a sex-stratified analysis since β-adrenergic signaling and the effect of BB use has previously been shown to have sex-specific effects, and also BMD and osteoporosis prevalence vary by sex. The female-only model adjusted for age, height, BMI, and current estrogen use, and the male-only regression model adjusted for age, height, and BMI. Menopausal status was not adjusted for because over 99.6% of our female cohort were post-menopausal; only 3 women were
premenopausal (0.37%). FN BMD measurement was used as the dependent variable, while allele dosage, BB use, and their interaction for each SNP were modeled, and the interaction effect estimate and p-value were used as the parameters of interest. FN BMD was chosen as the dependent variable because of its clinical importance, especially in the calculation of the FRAX score, and FN BMD was available in more subjects than other BMD sites, such as lumbar spine BMD44. We also focused on a single skeletal site due to the limited power for detecting interaction in a pharmacogenetic study, and the multiple testing penalty that would ensue with multiple phenotypes.

To account for linkage disequilibrium (LD) between SNPs, we performed a conditional joint analysis using GCTA (GCTA-COJO)68,69, and filtered for a p-value of < 0.05 after the conditional joint analysis. GCTA-COJO was used to perform a stepwise model selection procedure to select independently associated SNPs. Default parameters were used with the exception of threshold p-value, which was set to 0.05, and difference in allele frequency between summary statistics and LD reference sample which was set to 1. Genetic data from the FHS (n=1527) was used as both the reference sample to estimate linkage disequilibrium as well as the dataset to create the summary statistics file. We did not perform additional multiple testing adjustment in the discovery phase, and instead performed a Bonferroni correction for the number of SNPs in the validation phase, as in Singh et al.63. Since we adjusted for covariates in our models that may have genetic components (height, BMI), we examined previous SNP associations with these covariates in prior GWAS studies to identify potential collider bias.
Determining SNPs in High LD

We used HaploReg70, Search Candidate cis-Regulatory Elements by ENCODE (SCREEN)71, and LDlink72 to explore LD among SNPs and annotations including chromatin state, previous eQTL signals, and proteins bound in ChIP-Seq experiments for our top 11 SNPs and SNPs in high LD with those SNPs ($r^2 = 0.8$) as calculated using the European population of the 1000 Genomes Project using HaploReg or LDLink. Correlation between SNPs was also calculated within our cohort using the R function cor.

miRNA Association Analysis

The 11 genetic polymorphisms that were found to be significant in our pharmacogenomic association model were analyzed in 1,304 of the 1,527 individuals who had available miRNA data. We determined association between SNPs and 333 miRNAs assayed using qPCR data. Associated miRNAs were determined using a linear mixed model, stratifying based on sex and adjusting for interrelatedness between individuals by modeling a kinship matrix as a random effect (lmekin function in coxme package in R73). The female-only model adjusted for age, height, BMI, current estrogen use, and miRNA technical variables (RNA concentration, RNA quality, and RNA 260/280 ratio, a measure of purity of the RNA), and the male-only regression model adjusted for age, height, BMI, and the same miRNA technical variables. Isolation batch effect was not included as a covariate due to power restraints. miRNA expression level as measured by q-PCR was used as the dependent variable, while allele dosage, BB use, and their interaction were modeled for each SNP.

For many participants, some miRNAs were not expressed at a detectable level. Therefore, for each miRNA in each participant, the expression level was redefined as a discrete variable, $X = 1$ if undetectable and $X = 0$ if detectable. For miRNA expressed in more than 5\% but less than 10\% of samples, we modeled the discrete expression value, and for miRNA expressed in
more than 90% of samples, we modeled the continuous expression value. For miRNA expressed in 10% to 90% of samples, both the discrete model and continuous expression model were computed with the final p-value determined using Fisher’s method.

miRNA Target Determination

mRNA targets of significant miRNA were determined using the get_multimiR function in the multimiR R Package, which queried miRNA-target databases to determine validated targets of each miRNA (miRecord, miRTarBase, TarBase).

Validation Analysis

Our top four SNPs, two in each sex, were submitted for validation in four independent population-based cohorts: the Rotterdam Study, the BPROOF study, the Malta Osteoporosis Fracture Study (MOFS), and the Hertfordshire Cohort Study. The polymorphisms were assessed for a significant interaction effect with BB use, adjusting for multiple testing using pre-specified thresholds, using linear regression modeling in validation cohorts. The female-only model adjusted for age, height, BMI, and current estrogen use, and the male-only regression model adjusted for age, height, and BMI. A summary of validation cohorts’ data and methodology can be found in Table S1. Analysis of the Rotterdam study also adjusted for cohort effect in all models. The pre-specified criteria for a SNP to be validated was $p < 0.05/4 (0.0125)$ in cohorts with both sexes and $p < 0.05/2 (0.025)$ in cohorts with only 1 sex.

Meta-Analysis Methods

Meta-analysis was performed across the five cohorts using the metagen function in the meta package. A fixed effect and random effect meta-analysis was performed based on the effect estimates and their standard errors. The inverse variance method was used for pooling. Forest plots were generated using the forest function in the meta package. The fixed-effect model
estimates were used unless significant heterogeneity, as calculated by the I² statistic, was observed (p-value of I² statistic <0.05).

Results

11 SNPs were found to be significant in 6 genes in discovery sample

Characteristics of the study cohort are given in Table S2116, including estrogen usage rate which was 8.9% in women, and use of medication for bone disease which was 21.3% for women and 2.8% for men. We analyzed 1,482 SNPs across 13 genes related to adrenergic signaling in bone using genetic data from the FHS (Table S2116). 11 SNPs in 6 genes were found to have a significant interaction effect with BB use on FN BMD (p < 0.05) after performing GCTA-COJO analysis (Table 1). 5 SNPs were found to be significant in the female-only model while the other 6 were significant in the male-only model. There was no overlap in significant SNPs across sexes. Most of these SNPs were intronic polymorphisms, except for rs12414657 (ADRB1) which is an upstream transcript polymorphism, and rs13393217 (TNFSF11 or RANKL) which is a 3 prime untranslated region (UTR) polymorphism. We also looked at the functional annotation of highly correlated SNPs using HaploReg, SCREEN, and LDlink and by performing correlation analysis within the Framingham cohort. Of these 11 SNPs, only one had a non-synonymous SNP in high LD, rs12414657 (ADRB1) which is highly correlated with rs1801252, a missense SNP that codes for a serine to glycine shift at the 49th amino acid in ADRB1.
SNPs for Validation

We chose to validate 4 of the 11 SNPs in an external cohort, two in females and two in males, to limit our multiple testing burden which was strictly controlled in our validation cohorts. These SNPs are indicated in bold in Tables 1 and S3. Our rationale for validation is detailed in Figure S2. Of the 11 SNPs with a p-value < 0.05 after conditional analysis, none were non-synonymous SNPs, but rs12414657 (ADRB1) was in high LD with a non-synonymous SNP, so this SNP was chosen for validation in females. The SNPs that mapped to or near PKA subunit genes (rs970318 and rs6952920) were excluded from validation because PKA is involved in many different processes and the SNPs could not be mapped to a role in β-adrenergic signaling or BMD. The most significant SNPs in each sex were then chosen to reach 2 SNPs per sex. These SNPs were rs11124190 (HDAC4) in females and rs34170507 and rs6567268 (both in TNFRSF11A or RANK) in males. SNPs were considered validated in an external cohort if they met the following pre-specified significance thresholds: p < 0.0125 (0.05/4) in cohorts with both sexes and p < 0.025 (0.05/2) in cohorts with only 1 sex to account for multiple testing. The effect estimate for the interaction effect of the alternative allele was positive for all four SNPs in the discovery sample (FHS), indicating higher BMD in BB users with more copies of the alternative allele compared with non-BB users. Of these four SNPs, rs11124190 (HDAC4) had a significant interaction effect with BB use on BMD in females from the Rotterdam Study (Estimate = 0.024, SE = 0.009, p = 0.010) (Figure 2, Table S3), and rs12414657 (ADRB1) had a significant interaction effect with BB use on BMD in females from the MOFS (Estimate = 0.0576, SE = 0.0219, p = 0.0085) (Figure 3, Table S3). The other 2 SNPs were not significant in males in the Rotterdam, BPROOF, or Hertfordshire Cohort studies (Table S3). We also performed a meta-analysis for rs11124190 (HDAC4) and for rs12414657 (ADRB1) in all five studies, with a significant interaction in the fixed-effect model for both SNPs (Fixed effect model for rs11124190:
Estimate = 0.0166, CI = [0.0035, 0.0296], p = 0.0128; Fixed effect model for rs12414657:
Estimate = 0.0168, CI = [0.0015, 0.0320], p = 0.0314) (Figure 2, 3). There was no evidence
of significant heterogeneity at either locus across these studies.

miRNAs associated with top SNPs

To determine potential miRNA-related mechanisms for these SNPs, we determined
significantly associated miRNA (p < 0.05) with each of the top 11 SNPs. We then determined
if the associated miRNAs had been previously associated with osteoporosis or BMD
measures, which we term “bone-related miRNAs” (Table S4116)36–38,76–93. We also noted the
association of SNPs with miR-19a-3p and miR-186-5p as we have previously found these to
be associated with BB use and BMD31. Finally, we determined if any of the significant
miRNAs targeted the gene in which the associated SNP is located in or nearby. Of note, 8 of
the 11 SNPs were associated with bone-related miRNAs, and 5 SNPs were associated with
miRNAs that targeted the gene where the SNP is located (Table S5116).

Bone-related miRNAs associated with top SNPs

To develop hypotheses regarding the mechanism by which these SNPs interact with BB use
to influence BMD, we evaluated miRNA associated with our top four SNPs that we tested for
validation. These SNPs were associated with at least one bone-related miRNA or a miRNA
that targeted the gene in which the SNP is located (Table S5116). Rs12414657 (ADRB1) was
associated with increased miR-19a-3p expression in female BB users (Figure S3A, S3B116).
We have previously found miR-19a-3p to be positively associated with BB use, total femur
BMD, and lumbar spine BMD31. ADRB1 is also a validated target of miR-19a-3p94. The
rs11124190 (HDAC4) polymorphism was associated with decreased expression of miR-17-5p
in female BB users (Figure S3C, S3D116). miR-17-5p is associated with osteoporosis (Table
S4116) and is a biomarker of osteoporosis and suppresses osteogenic differentiation76. In
TNFRSF11A (RANK), rs34170507 was associated with decreased expression of miR-31-5p in male BB users (Figure S4A, S4B) and miR-31-5p suppresses osteogenic differentiation\(^9\). Finally, rs6567268 (TNFRSF11A or RANK) was associated with increased expression of let-7g-5p and miR-374a-5p in male BB users (Figure S4C, S4D, S4E). Let-7g-5p and miR-374a-5p target TNFRSF11A (RANK) mRNA and suppress its expression (found using multiMir R package\(^7\)). These miRNAs may provide insights into potential mechanisms by which BB users with the alternative allele of these genetic polymorphisms tend to have higher BMD (Figure 4).

Sensitivity Analyses

Since BBs are used for several treatment indications, and BB users may be taking other medications or have comorbidities that may influence BMD, we performed a series of sensitivity analyses to address potential confounding in our top two validated genetic variants in females. The number of individuals in each medication or comorbidity category is summarized in Table S2. First, we repeated our primary analysis excluding medications taken for bone disease (see Methods) and found the interaction effect of BB use and SNP (number of alternative alleles) to be almost identical to the original model (Table S6) with an effect size of 0.042 (standard error 0.024) for the ADRB1 SNP and 0.053 (SE 0.022) for the HDAC4 SNP, although the p-value did become non-significant due to the loss of power for ADRB1 (\(p = 0.08\)) but remained significant for HDAC4 (\(p=0.017\)). We additionally excluded oral steroid use and found a similar result. Next, to account for hypertension or lipid treatment, we chose to analyze our interaction models within each treatment category after excluding those treated for bone disease. The BB by SNP interaction effect estimates are shown in Table S6 and show remarkable consistency with the original estimates. They are all positive and while the p-values do increase due to the reduction in subset sample sizes, they remain significant or suggestive in most cases. We also adjusted for treatment for
diabetes and found a nearly identical effect estimate and found similar effect estimates when excluding those with prior cardiovascular disease (Table S6116).

Next, because β_1-selectivity and dosage of the BB used may influence the genetic interaction, we fit models in which we compared β_1-selective BB use vs. no BB use and then standardized daily dose (see Methods) as a linear term or categorized at the median into “low” or “high” values. The β_1-selective users showed slightly reduced effect sizes, and the dose model showed large and highly significant effects at both loci. Furthermore, when stratifying into low and high dose BB users, the interaction effect was found to be much larger and more significant in the high dose groups for both loci. We also looked at the effects of BB use and the top two SNPs on total hip BMD and lumbar spine BMD (Table S6116). We found the effects sizes to be similar in total hip compared with femoral neck though slightly reduced in size, although still significant in the case of the \textit{HDAC4} locus. In the case of lumbar spine, the effect sizes were slightly increased at both loci although not quite significant.

Finally, as hemolysis may be a confounder of miRNA differential expression in blood, we also performed sensitivity analyses in which we additionally adjusted for miR-451a expression, a miRNA that is associated with hemolysis, for the miRNA relevant to our top SNP candidates (miR-19a-3p for the \textit{ADRB1} SNP and miR-17-5p for the \textit{HDAC4} SNP). We found that this adjustment causes a slight decrease in effect size for each of these models (see Table S6116), but that the p-values remain quite low and are nearly significant. We additionally tested the association between miR-451a expression and BB use, FN BMD, and miR-19a-3p and miR-17-5p, and did not find any of the associations to be significant ($p>0.05$). Therefore, we feel it is unlikely that hemolysis has confounded our miRNA genetic association results.
Discussion

We have identified four SNPs in the FHS discovery cohort that show a significantly higher BMD for BB users with more copies of the alternative allele as compared to non-users, two of which were validated in external cohorts (rs11124190 (HDAC4) and rs12414657 (ADRB1)) in females, and two of which were not validated (rs34170507 and rs6567268 in TNFRSF11A or RANK in males). This focused our genetic analysis on 3 genes involved in the adrenergic signaling pathway in bone: ADRB1, HDAC4, and TNFRSF11A (RANK). We have also identified 5 miRNAs that are associated with the interaction effect between these SNPs and BB use that are associated with genes in the adrenergic signaling pathway in bone or have previously been shown to be associated with osteoporosis. As such we presented four putative mechanisms by which these SNPs interact with BB use to influence BMD (Figure 4).

Of these four SNPs, rs11124190 (HDAC4) was validated in the Rotterdam Study and rs12414657 (ADRB1) was validated in the MOFS. The minor allele frequency of rs11124190 (HDAC4) in European cohorts is 0.15, while the minor allele frequency of rs12414657 (ADRB1) is 0.14\(^70\). The effect size of the HDAC4 SNP is 0.048 g/cm\(^2\) and for the ADRB1 SNP is 0.043 g/cm\(^2\) which represent the difference in FN BMD between BB users and non-users for each additional copy of the alternative allele. A magnitude of 0.043 g/cm\(^2\) represents a 4.7% difference in BMD for females who have an average of 0.91 g/cm\(^2\) (see Table S2\(^116\)) in this study. Considering that the average annual loss of femoral neck BMD is 0.6% in older men and women (average age 75)\(^96\), this effect size represents close to 8 years of BMD loss due to aging, although rates vary by age and sex and other factors, thus these effect sizes are clinically significant.
The intronic \textit{HDAC4} SNP, rs11124190, is polymorphism in high LD with other intronic polymorphisms in \textit{HDAC4}. According to HaploReg and SCREEEN, this SNP has not been reported to be associated with methylation or acetylation histone modification in osteoblast primary cells, nor did it overlap with any cis-regulatory elements in other cells70,71. This SNP has not been previously reported in association with other traits. Rs12414657 is a polymorphism 430 bp upstream of the 5’ region of \textit{ADRB1} and is in high LD with rs1801252, a missense polymorphism in \textit{ADRB1} that codes for a change from serine to glycine at the 49th amino acid. According to HaploReg, rs12414657 (\textit{ADRB1}) is associated with H3K4me3_Pro and 22_Promp methylation and acetylation histone modification in osteoblast primary cells, and this site is bound by Pol2, TAF1, or Pol24H8 in non-bone cell lines70. This suggests that this SNP is within the promoter region of \textit{ADRB1}, as it is associated with H3K4me3 which is a histone modification that indicates a promoter region97,98. This histone modification promotes chromatin remodeling that allows transcription factors to bind to that site99, and Pol24H8 binding indicates a transcription factor binding site100. Thus, a polymorphism at this location may impact the transcription of \textit{ADRB1}. This is further supported in SCREEEN, where rs12414657 (\textit{ADRB1}) overlapped with a cis-Regulatory element that expressed a cell type agnostic proximal enhancer-like signature including high DNase, H3K4me4, H3K27ac, and CTCF markers (Z-score > 1.64)71. These markers were not as strong in osteoblast primary cells where DNase-seq was not available, and H3K4me3 had the highest Z-score at 1.08. Unlike rs12414657 (\textit{ADRB1}), rs1801252 (\textit{ADRB1}), a non-synonymous SNP in high LD with rs12414657 (\textit{ADRB1}), has been reported in association with resting heart rate and survival in patients with heart failure101–108.

Sex-specific effects in β-adrenergic signaling have been shown previously. Specifically, β-adrenergic contractile response is greater in male mice than female mice45, and female rabbit hearts have decreased capacity to respond to β-adrenergic stimulation as compared to male
rabbit hearts. In humans, sex differences related to β-adrenergic signaling are present with regard to susceptibility to heart failure, arrythmia, and other cardiovascular conditions, such as hypertension. BBs are also reported to be less effective in woman than men.

Osteoporosis and BMD also vary by sex, and osteoporosis is more prevalent in women, especially post-menopausal women, with ovariectomized mice serving as an in vivo model of post-menopausal osteoporosis. Therefore, we performed sex-stratified genetic analyses and did not observe and overlap in findings between sexes. Sex-specific effects, if present, could reflect the differential occurrence of disease among sexes or could arise from differences in RNA expression, protein expression, or downstream response. The lack of replication of genetic findings across sexes may also be a result of power limitations, especially given that our findings in males did not replicate in external cohorts. Given that our top SNPs are non-coding SNPs, there may be a functional SNP in high LD with our top SNPs. Other possibilities include alteration in splicing efficiency, activation of cryptic splice sites, or altered expression of alternate transcripts. Furthermore, these SNPs may be involved in long-range gene regulation and influence the expression of remote genes as part of a regulatory element.

There are important limitations to our study to be noted. Our study is cross-sectional and thus our results are to be interpreted as an association, with causal mechanisms yet to be determined. Due to limited power, we did not correct for multiple testing in the discovery cohort, but we did perform strict multiple testing correction in the validation cohorts using the Bonferroni method. We feel that these results should be validated in additional prospective studies for confirmation. In addition, as we did not perform a full GWAS due to limited power, there are many potential genes as well as long-range regions around our candidate genes that were not assessed that may have pharmacogenomics effects. Collider bias is also a potential concern as there are many genetic polymorphisms associated with...
height and BMI, which we used as covariates. However, we did not find that height or BMI had been previously associated with any of the SNPs submitted for validation or for SNPs in high LD with those SNPs. Additionally, for GCTA-COJO, Yang et al. recommend a reference sample of greater than 4000 individuals. While we did not have access to that sample size for our reference sample, previous simulated studies report an $R^2 > 0.9$ when using a reference sample with more than 1000 individuals, which we did have. Another potential limitation of our findings is that the association of SNPs, miRNAs, and BB use could be due to confounding by treatment indication. We attempted to reduce the effects of confounding by conditioning on important clinical covariates and miRNA technical variables, but residual confounding is still possible. In addition, we performed a detailed series of sensitivity analyses for our top two SNPs in females in which we removed individuals being treated for bone disease or steroids, stratified by treatment with other medications known to have bone effects, examined the results of these SNPs at other skeletal sites, and looked at β_1-selectivity and dose-specific models, and have found that the effect estimates were stable under all of these scenarios. We were also underpowered to adjust for batch effects in our miRNA analysis, and our miRNA data, which is from whole blood, may not reflect expression in bone. However, these miRNAs have been previously associated with BMD, fractures, or osteoporosis using data from plasma, serum, or whole blood, and we did test for potential confounding due to hemolysis. An additional limitation is the lack of diversity in the study sample, limiting our findings to participants of white, European ancestry background. Also, these SNPs have not previously been cited in any GWAS study, which limits our knowledge to that obtained from our own datasets. We are also uncertain as to why these effects are different by sex, although prior evidence of sex differences in the effects of β-adrenergic signaling or power limitations may provide explanations. Another limitation is that while the study sample was homogenous, the validation cohorts used were
heterogeneous in regards to sample design and demographics. This may have limited our power but strengthened the external validity of our findings.

To our knowledge, this is the first study to suggest an interaction between genes and BB use on BMD. We have identified 4 sex-specific genetic polymorphisms that map to or near genes involved in adrenergic signaling in bone and successfully validated 2 of them in external cohorts. Based on our previous work showing that beta blocker use is associated with the presence of certain circulating miRNA’s, we have also determined miRNAs associated with these SNPs and putative miRNA-mediated mechanisms by which these SNPs mediate the effect of BB use on BMD. We intend to validate these mechanisms in future using in vivo, in vitro, and clinical models. In conclusion, our findings that beta blocker associations with BMD may be modified by genetic variation suggest that studies evaluating the bone effects of BBs consider genetic variation in drug response.
Data Availability

Data from the Framingham Heart Study that was analyzed during this study are included in this published article or in the data repositories listed in References. Restrictions apply to some or all the availability of data generated or analyzed during this study to preserve patient confidentiality or because they were used under license. The corresponding author will on request detail the restrictions and any conditions under which access to some data may be provided.
References

1. Bauer D, Krege J, Lane N, et al. National Bone Health Alliance Bone Turnover Marker Project: current practices and the need for US harmonization, standardization, and common reference ranges. *Osteoporos Int*. 2012;23(10):2425-2433. doi:10.1007/s00198-012-2049-z

2. Kling JM, Clarke BL, Sandhu NP. Osteoporosis Prevention, Screening, and Treatment: A Review. *J Womens Health*. 2014;23(7):563-572. doi:10.1089/jwh.2013.4611

3. US Preventive Services Task Force, Grossman DC, Curry SJ, et al. Vitamin D, Calcium, or Combined Supplementation for the Primary Prevention of Fractures in Community-Dwelling Adults: US Preventive Services Task Force Recommendation Statement. *JAMA*. 2018;319(15):1592-1599. doi:10.1001/jama.2018.3185

4. Weaver CM, Bischoff-Ferrari HA, Shanahan CJ. Cost-benefit analysis of calcium and vitamin D supplements. *Arch Osteoporos*. 2019;14(1):50. doi:10.1007/s11657-019-0589-y

5. Yang S, Nguyen ND, Eisman JA, Nguyen TV. Association between beta-blockers and fracture risk: A Bayesian meta-analysis. *Bone*. 2012;51(5):969-974. doi:10.1016/j.bone.2012.07.013

6. Pasco JA, Henry MJ, Sanders KM, Kotowicz MA, Seeman E, Nicholson GC. β-Adrenergic Blockers Reduce the Risk of Fracture Partly by Increasing Bone Mineral Density: Geelong Osteoporosis Study. *J Bone Miner Res*. 2004;19(1):19-24. doi:10.1359/jbmr.0301214

7. Bonnet N, Gadois C, McCloskey E, et al. Protective effect of β blockers in postmenopausal women: Influence on fractures, bone density, micro and macroarchitecture. *Bone*. 2007;40(5):1209-1216. doi:10.1016/j.bone.2007.01.006

8. Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. *JAMA*. 2004;292(11):1326-1332. doi:10.1001/jama.292.11.1326

9. Khosla S, Drake MT, Volkman TL, et al. Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism. *J Clin Invest*. 2018;128(11):4832-4842. doi:10.1172/JCI122151

10. Elefteriou F. Impact of the Autonomic Nervous System on the Skeleton. *Physiol Rev*. 2018;98(3):1083-1112. doi:10.1152/physrev.00014.2017

11. Elefteriou F. Neuronal signaling and the regulation of bone remodeling. *Cell Mol Life Sci CMLS*. 2005;62(19):2339-2349. doi:10.1007/s00018-005-5175-3

12. Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. *Nature*. 2005;434(7032):514-520. doi:10.1038/nature03398

13. Motyl KJ, Rosen CJ. The Skeleton and the Sympathetic Nervous System: It’s about Time! *J Clin Endocrinol Metab*. 2012;97(11):3908-3911. doi:10.1210/jc.2012-3205
14. Reid IR, Gamble GD, Grey AB, et al. β-Blocker Use, BMD, and Fractures in the Study of Osteoporotic Fractures. *J Bone Miner Res.* 2005;20(4):613-618. doi:10.1359/JBMR.041202

15. Rejnmark L, Vestergaard P, Kassem M, et al. Fracture Risk in Perimenopausal Women Treated with Beta-Blockers. *Calcif Tissue Int.* 2004;75(5):365-372. doi:10.1007/s00223-004-0222-x

16. Solomon DH, Ruppert K, Zhao Z, et al. Bone Mineral Density Changes Among Women Initiating Blood Pressure Lowering Drugs: A SWAN Cohort Study. *Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA.* 2016;27(3):1181-1189. doi:10.1007/s00198-015-3332-6

17. Stewart TL, Ralston SH. Role of genetic factors in the pathogenesis of osteoporosis. *J Endocrinol.* 2000;166(2):235-245. doi:10.1677/joe.0.1660235

18. Shin J, Johnson JA. Pharmacogenetics of β-Blockers. *Pharmacother J Hum Pharmacol Drug Ther.* 2007;27(6):874-879. doi:10.1592/phco.27.6.874

19. Cunningham PN, Chapman AB. The future of pharmacogenetics in the treatment of hypertension. *Pharmacogenomics.* 2019;20(3):129-132. doi:10.2217/pgs-2018-0191

20. Gong Y, Wang Z, Beitelshees AL, et al. PHARMACOGENOMIC GENOME-WIDE META-ANALYSIS OF BLOOD PRESSURE RESPONSE TO BETA-BLOCKERS IN HYPERTENSIVE AFRICAN AMERICANS. *Hypertension.* 2016;67(3):556-563. doi:10.1161/HYPERTENSIONAHA.115.06345

21. Shahin Mohamed H., Conrado Daniela J., Gonzalez Daniel, et al. Genome- Wide Association Approach Identified Novel Genetic Predictors of Heart Rate Response to β- Blockers. *J Am Heart Assoc.* 7(5):e006463. doi:10.1161/JAHA.117.006463

22. Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF. β1-Adrenergic Receptor Polymorphisms and Antihypertensive Response to Metoprolol. *Clin Pharmacol Ther.* 2003;74(1):44-52. doi:10.1016/S0009-9236(03)00068-7

23. Pacanowski M, Gong Y, Cooper-DeHoff R, et al. β-Adrenergic Receptor Gene Polymorphisms and β-Blocker Treatment Outcomes in Hypertension. *Clin Pharmacol Ther.* 2008;84(6):715-721. doi:10.1038/clpt.2008.139

24. Dishy V, Sofowora GG, Xie HG, et al. The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. *N Engl J Med.* 2001;345(14):1030-1035. doi:10.1056/NEJMoa010819

25. Heckbert Susan R., Hindorff Lucia A., Edwards Karen L., et al. β2-Adrenergic Receptor Polymorphisms and Risk of Incident Cardiovascular Events in the Elderly. *Circulation.* 2003;107(15):2021-2024. doi:10.1161/01.CIR.0000065231.07729.92

26. Veldhuis-Vlug AG, Oei L, Souverein PC, et al. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density. *Osteoporos Int.* 2015;26(7):2019-2027. doi:10.1007/s00198-015-3087-0
27. Morris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences on osteoporosis in humans and mice. *Nat Genet.* 2019;51(2):258-266. doi:10.1038/s41588-018-0302-x

28. Sabik OL, Farber CR. Using GWAS to identify novel therapeutic targets for osteoporosis. *Transl Res.* 2017;181:15-26. doi:10.1016/j.trsl.2016.10.009

29. Trajanoska K, Rivadeneira F. The genetic architecture of osteoporosis and fracture risk. *Bone.* 2019;126:2-10. doi:10.1016/j.bone.2019.04.005

30. Musculoskeletal KP. Accessed May 14, 2020. http://mskkp.org/

31. Nevola KT, Kiel DP, Zullo AR, et al. miRNA Mechanisms Underlying the Association of Beta Blocker Use and Bone Mineral Density. *J Bone Miner Res.* Published online August 2020. doi:10.1002/jbmr.4160

32. Koturbash I, Tolleson WH, Guo L, et al. microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. *Biomark Med.* 2015;9(11):1153-1176. doi:10.2217/bmm.15.15.89

33. Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, et al. Blood microRNA changes in depressed patients during antidepressant treatment. *Eur Neuropsychopharmacol.* 2013;23(7):602-611. doi:10.1016/j.euroneuro.2012.06.013

34. Freedman JE, Ercan B, Morin KM, et al. The distribution of circulating microRNA and their relation to coronary disease. *F1000Research.* 2012;1. doi:10.12688/f1000research.1-50.v1

35. Murabito JM, Rong J, Lunetta KL, et al. Cross-sectional relations of whole-blood miRNA expression levels and hand grip strength in a community sample. *Aging Cell.* 2017;16(4):888-894. doi:10.1111/ace.12622

36. Li H, Wang Z, Fu Q, Zhang J. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. *Biomarkers.* 2014;19(7):553-556. doi:10.3109/1354750X.2014.935957

37. Panach L, Mišút D, Tárník JJ, Cano A, García-Pérez MÁ. Serum Circulating MicroRNAs as Biomarkers of Osteoporotic Fracture. *Calcif Tissue Int.* 2015;97(5):495-505. doi:10.1007/s00223-015-0036-z

38. Seeliger C, Karpinski K, Haug AT, et al. Five Freely Circulating miRNAs and Bone Tissue miRNAs Are Associated With Osteoporotic Fractures. *J Bone Miner Res.* 2014;29(8):1718-1728. doi:10.1002/jbmr.2175

39. Solayman MH, Langæe TY, Gong Y, et al. Effect of plasma MicroRNA on antihypertensive response to beta blockers in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) studies. *Eur J Pharm Sci.* 2019;131:93-98. doi:10.1016/j.ejps.2019.02.013

40. Castaldi Alessandra, Zaglia Tania, Di Mauro Vittoria, et al. MicroRNA-133 Modulates the β1-Adrenergic Receptor Transduction Cascade. *Circ Res.* 2014;115(2):273-283. doi:10.1161/CIRCRESAHA.115.303252
41. Kordas G, Rudra P, Hendricks A, Saba L, Kecharis K. Insight into genetic regulation of miRNA in mouse brain. *BMC Genomics*. 2019;20(1):1-14. doi:10.1186/s12864-019-6110-6

42. Shen JJ, Wang Y-F, Yang W. Sex-Interacting mRNA- and miRNA-eQTLs and Their Implications in Gene Expression Regulation and Disease. *Front Genet.* 2019;10. doi:10.3389/fgene.2019.00313

43. Nikpay M, Beehler K, Valsesia A, et al. Genome-wide identification of circulating-miRNA expression quantitative trait loci reveals the role of several miRNAs in the regulation of cardiometabolic phenotypes. *Cardiovasc Res.* 2019;115(11):1629-1645. doi:10.1093/cvr/cvz030

44. Johansson H, Kanis J, Odén A, et al. Impact of femoral neck and lumbar spine BMD discordances on FRAX probabilities in women; a meta-analysis of international cohorts. *Calcif Tissue Int.* 2014;95(5):428-435. doi:10.1007/s00223-014-9911-2

45. McIntosh VJ, Chandrasekera PC, Lasley RD. Sex differences and the effects of ovariectomy on the β-adrenergic contractile response. *Am J Physiol - Heart Circ Physiol.* 2011;301(3):H1127-H1134. doi:10.1152/ajpheart.00711.2010

46. Hoeker GS, Hood AR, Katra RP, Poelzing S, Pogwizd SM. Sex Differences in β-Adrenergic Responsiveness of Action Potentials and Intracellular Calcium Handling in Isolated Rabbit Hearts. *PLoS ONE.* 2014;9(10). doi:10.1371/journal.pone.0111411

47. Bugiardini Raffaele, Yoon Jinsung, Kedev Sasko, et al. Prior Beta-Blocker Therapy for Hypertension and Sex-Based Differences in Heart Failure Among Patients With Incident Coronary Heart Disease. *Hypertension.* 2020;76(3):819-826. doi:10.1161/HYPERTENSIONAHA.120.15323

48. Al-Gburi S, Deussen A, Zatschler B, et al. Sex-difference in expression and function of beta-adrenoceptors in macrovessels: role of the endothelium. *Basic Res Cardiol.* 2017;112(3):29. doi:10.1007/s00395-017-0617-2

49. Calhoun DA, Oparil S. The Sexual Dimorphism of High Blood Pressure. *Cardiol Rev.* 1998;6(6):356-363. doi:10.1097/00045415-199811000-00012

50. Seeman E. Sexual Dimorphism in Skeletal Size, Density, and Strength. *J Clin Endocrinol Metab.* 2001;86(10):4576-4584. doi:10.1210/jcem.86.10.7960

51. Fiechter M, Bengs S, Roggo A, et al. Association between vertebral bone mineral density, myocardial perfusion, and long-term cardiovascular outcomes: A sex-specific analysis. *J Nucl Cardiol.* 2020;27(3):726-736. doi:10.1007/s12350-019-01802-z

52. Tuzun S, Eskiyurt N, Akarirmak U, et al. Incidence of hip fracture and prevalence of osteoporosis in Turkey: the FRACTURK study. *Osteoporos Int.* 2012;23(3):949-955. doi:10.1007/s00198-011-1655-5

53. Alswat KA. Gender Disparities in Osteoporosis. *J Clin Med Res.* 2017;9(5):382-387. doi:10.14740/jocmr2970w
54. dbGaP Study. Accessed September 24, 2020. https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v31.p12

55. Hannan MT, Felson DT, Dawson-Hughes B, et al. Risk Factors for Longitudinal Bone Loss in Elderly Men and Women: The Framingham Osteoporosis Study. *J Bone Miner Res.* 2000;15(4):710-720. doi:https://doi.org/10.1359/jbmr.2000.15.4.710

56. Kalsbeek A, Veenstra J, Westra J, et al. A genome-wide association study of red-blood cell fatty acids and ratios incorporating dietary covariates: Framingham Heart Study Offspring Cohort. *PLOS ONE.* 2018;13(4):e0194882. doi:10.1371/journal.pone.0194882

57. Psaty BM, O’Donnell CJ, Gudnason V., et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: Design of prospective meta-analyses of genome-wide association studies from five cohorts. *Circ Cardiovasc Genet.* 2009;2(1):73-80. doi:10.1161/CIRCGENETICS.108.829747

58. WHO Collaborating Centre for Drug Statistics Methodology ATC/DDD Index. Norwegian Institute of Public Health. 2018.

59. McManus DD, Rong J, Huan T, et al. Messenger RNA and MicroRNA transcriptomic signatures of cardiometabolic risk factors. *BMC Genomics.* 2017;18(1):139. doi:10.1186/s12864-017-3533-9

60. McManus DD, Lin H, Tanriverdi K, et al. Relations between circulating microRNAs and atrial fibrillation: data from the Framingham Offspring Study. *Heart Rhythm Off J Heart Rhythm Soc.* 2014;11(4):663-669. doi:10.1016/j.hrthm.2014.01.018

61. Singh Sonal, Warren Helen R., Hiltunen Timo P., et al. Genome- Wide Meta- Analysis of Blood Pressure Response to β1- Blockers: Results From ICAPS (International Consortium of Antihypertensive Pharmacogenomics Studies). *J Am Heart Assoc.* 2019;8(16):e013115. doi:10.1161/JAHA.119.013115

62. Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. *BMC Genomics.* 2008;9:516. doi:10.1186/1471-2164-9-516

63. Singh S, McDonough CW, Gong Y, et al. Genome Wide Association Study Identifies the HMGCS2 Locus to be Associated With Chlorthalidone Induced Glucose Increase in Hypertensive Patients. *J Am Heart Assoc.* 2018;7(6). doi:10.1161/JAHA.117.007339

64. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids Res.* 2007;35(suppl_1):D61-D65. doi:10.1093/nar/gkl842

65. Sinnett D, Beaulieu P, Bélanger H, et al. Detection and characterization of DNA variants in the promoter regions of hundreds of human disease candidate genes. *Genomics.* 2006;87(6):704-710. doi:10.1016/j.ygeno.2006.01.001
66. Chang HS, Park JS, Lee HS, et al. Association analysis of ILVBL gene polymorphisms with aspirin-exacerbated respiratory disease in asthma. BMC Pulm Med. 2017;17(1):210. doi:10.1186/s12890-017-0556-6

67. Li H, Achour I, Bastarache L, et al. Integrative genomics analyses unveil downstream biological effectors of disease-specific polymorphisms buried in intergenic regions. Npj Genomic Med. 2016;1(1):1-12. doi:10.1038/npjgenmed.2016.6

68. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A Tool for Genome-wide Complex Trait Analysis. Am J Hum Genet. 2011;88(1):76-82. doi:10.1016/j.ajhg.2010.11.011

69. Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44(4):369-375. doi:10.1038/ng.2213

70. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(D1):D930-D934. doi:10.1093/nar/gkr917

71. Moore JE, Purcaro MJ, Pratt HE, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583(7818):699-710. doi:10.1038/s41586-020-2493-4

72. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinforma Oxf Engl. 2015;31(21):3555-3557. doi:10.1093/bioinformatics/btv402

73. Therneau TM. Coxme: Mixed Effects Cox Models.; 2020. Accessed September 22, 2020. https://CRAN.R-project.org/package=coxme

74. Ru Y, Kechris KJ, Tabakoff B, et al. The multiMiR R package and database: integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Res. 2014;42(17):e133-e133. doi:10.1093/nar/gku631

75. Schwarzer G. Meta: General Package for Meta-Analysis.; 2020. Accessed September 22, 2020. https://CRAN.R-project.org/package=meta

76. Fang T, Wu Q, Zhou L, Mu S, Fu Q. miR-106b-5p and miR-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Exp Cell Res. 2016;347(1):74-82. doi:10.1016/j.yexcr.2016.07.010

77. Kocijan R, Muschitz C, Geiger E, et al. Circulating microRNA Signatures in Patients With Idiopathic and Postmenopausal Osteoporosis and Fragility Fractures. J Clin Endocrinol Metab. 2016;101(11):4125-4134. doi:10.1210/jc.2016-2365

78. osteomiRs - novel biomarkers for bone quality - TAMiRNA - stability for life. Accessed August 20, 2019. http://www.tamirna.com/products/osteomirtm.html?tx_sbtab_pi1%5Btab%5D=54#sbtab
79. Avendaño-Félix M, Fuentes-Mera L, Ramos-Payan R, et al. A Novel OsteomiRs Expression Signature for Osteoblast Differentiation of Human Amniotic Membrane-Derived Mesenchymal Stem Cells. BioMed Research International. doi:10.1155/2019/8987268

80. Cheng VK, Au PC, Tan KC, Cheung C. MicroRNA and Human Bone Health. JBMR Plus. 2018;3(1):2-13. doi:10.1002/jbmr4.10115

81. Feichtinger X, Muschitz C, Heimel P, et al. Bone-related Circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their Association to Bone Microstructure and Histomorphometry. Sci Rep. 2018;8(1):4867. doi:10.1038/s41598-018-22844-2

82. Heilmeyer U, Hackl M, Skalicky S, et al. Serum miRNA Signatures Are Indicative of Skeletal Fractures in Postmenopausal Women With and Without Type 2 Diabetes and Influence Osteogenic and Adipogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro. J Bone Miner Res. 2016;31(12):2173-2192. doi:10.1002/jbmr.2897

83. Huang J, Meng Y, Liu Y, et al. MicroRNA-320a Regulates the Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Targeting HOXA10. Cell Physiol Biochem. 2016;38(1):40-48. doi:10.1159/000438607

84. Kocijan R, Weigl M, Skalicky S, et al. MicroRNA levels in bone and blood change during bisphosphonate and teriparatide therapy in an animal model of postmenopausal osteoporosis. Bone. 2020;131:115104. doi:10.1016/j.bone.2019.115104

85. Laxman N, Mallmin H, Nilsson O, Kindmark A. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5). Genes. 2017;8(1):4. doi:10.3390/genes8010004

86. Mäkitie RE, Hackl M, Niinimäki R, Kakko S, Grillari J, Mäkitie O. Altered MicroRNA Profile in Osteoporosis Caused by Impaired WNT Signaling. J Clin Endocrinol Metab. 2018;103(5):1985-1996. doi:10.1210/jc.2017-02585

87. Novello C, Pazzaglia L, Cingolani C, et al. miRNA expression profile in human osteosarcoma: role of miR-1 and miR-133b in proliferation and cell cycle control. Int J Oncol. 2013;42(2):667-675. doi:10.3892/ijo.2012.1717

88. Qiu W, Kassem M. miR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation. Biochim Biophys Acta BBA - Mol Cell Res. 2014;1843(9):2114-2121. doi:10.1016/j.bbamer.2014.06.004

89. Sun T, Li C-T, Xiong L, et al. miR-375-3p negatively regulates osteogenesis by targeting and decreasing the expression levels of LRP5 and β-catenin. PLOS ONE. 2017;12(2):e0171281. doi:10.1371/journal.pone.0171281

90. Weilner S, Skalicky S, Salzer B, et al. Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone. 2015;79:43-51. doi:10.1016/j.bone.2015.05.027
91. Yu X, Zhang X, Dhakal IB, Beggs M, Kadlubar S, Luo D. Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells. *BMC Cancer*. 2012;12(1):29. doi:10.1186/1471-2407-12-29

92. Zarecki P, Hackl M, Grillari J, Debono M, Eastell R. Serum microRNAs as novel biomarkers for osteoporotic vertebral fractures. *Bone*. 2020;130:115105. doi:10.1016/j.bone.2019.115105

93. Zhang L, Tang Y, Zhu X, et al. Overexpression of MiR-335-5p Promotes Bone Formation and Regeneration in Mice. *J Bone Miner Res*. 2017;32(12):2466-2475. doi:10.1002/jbmr.3230

94. Miao Y, Chen H, Li M. MiR-19a overexpression contributes to heart failure through targeting ADRB1. *Int J Clin Exp Med*. 2015;8(1):642-649.

95. Weilner S, Schraml E, Wieser M, et al. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. *Aging Cell*. 2016;15(4):744-754. doi:10.1111/acel.12484

96. Berry SD, Samelson EJ, Pencina MJ, et al. Repeat Bone Mineral Density Screening and Prediction of Hip and Major Osteoporotic Fracture. *JAMA J Am Med Assoc*. 2013;310(12):1256-1262. doi:10.1001/jama.2013.277817

97. Sharifi-Zarchi A, Gerovska D, Adachi K, et al. DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism. *BMC Genomics*. 2017;18. doi:10.1186/s12864-017-4353-7

98. Liang G, Lin JCY, Wei V, et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. *Proc Natl Acad Sci U S A*. 2004;101(19):7357-7362. doi:10.1073/pnas.0401866101

99. Wysocka J, Swigut T, Xiao H, et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. *Nature*. 2006;442(7098):86-90. doi:10.1038/nature04815

100. Transcription Factor ChIP-seq from ENCODE (Pol2-4H8). Accessed August 4, 2020. http://mrhgsv.gs.washington.edu/cgi-bin/hge?hsid=2403413_8E3AQ21hRgcdxZsAvb1QIY1jtFCL&c=chr12&l=9093843&r=9094542&o=9094267&t=9094533&g=wgEncodeRegTfbsClusteredV2&i=Pol2-4H8

101. Rathz DA, Brown KM, Kramer LA, Liggett SB. Amino Acid 49 Polymorphisms of the Human β1-Adrenergic Receptor Affect Agonist-Promoted Trafficking. *J Cardiovasc Pharmacol*. 2002;39(2):155-160.

102. Sandilands AJ, O’Shaughnessy KM. β1-Adrenoreceptor Polymorphisms and Blood Pressure: 49S Variant Increases Plasma Renin But Not Blood Pressure in Hypertensive Patients. *Am J Hypertens*. 2019;32(5):447-451. doi:10.1093/ajh/hpz019

103. Luzum JA, English JD, Ahmad US, et al. Association of Genetic Polymorphisms in the Beta-1 Adrenergic Receptor with Recovery of Left Ventricular Ejection Fraction in Patients with Heart Failure. *J Cardiovasc Transl Res*. 2019;12(4):280-289. doi:10.1007/s12265-019-09866-5
104. Márquez MF, Fragoso JM, Pérez-Pérez D, et al. POLYMORPHISMS IN β-ADRENERGIC RECEPTORS ARE ASSOCIATED WITH INCREASED RISK TO HAVE A POSITIVE HEAD-UP TILT TABLE TEST IN PATIENTS WITH VASOVAGAL SYNCOPE. *Rev Investig Clin Organo Hosp Enfermedades Nutr.* 2019;71(2):124-132. doi:10.24875/RIC.18002734

105. Wei W, Tian Y, Zhao C, et al. Correlation of ADRB1 rs1801253 Polymorphism with Analgesic Effect of Fentanyl After Cancer Surgeries. *Med Sci Monit Int Med J Exp Clin Res.* 2015;21:4000-4005. doi:10.12659/msm.894060

106. Wittwer ED, Liu Z, Warner ND, et al. β-1 and β-2 adrenergic receptor polymorphism and association with cardiovascular response to orthostatic screening. *Auton Neurosci Basic Clin.* 2011;164(1-2):89-95. doi:10.1016/j.autneu.2011.07.004

107. Börjesson M, Magnusson Y, Hjalmarson Å, Andersson B. A novel polymorphism in the gene coding for the beta1-adrenergic receptor associated with survival in patients with heart failure. *Eur Heart J.* 2000;21(22):1853-1858. doi:10.1053/euhj.1999.1994

108. Ranade K, Jorgenson E, Sheu WH-H, et al. A Polymorphism in the β1 Adrenergic Receptor Is Associated with Resting Heart Rate. *Am J Hum Genet.* 2002;70(4):935-942. doi:10.1086/339621

109. Calabrese G, Mesner LD, Foley PL, Rosen CJ, Farber CR. Network Analysis Implicates Alpha-Synuclein (*Snca*) in the Regulation of Ovariectomy-Induced Bone Loss. *Sci Rep.* 2016;6:29475. doi:10.1038/srep29475

110. Kamitaki N, Sekar A, Handsaker RE, et al. Complement genes contribute sex-biased vulnerability in diverse disorders. *Nature.* Published online May 11, 2020;1-7. doi:10.1038/s41586-020-2277-x

111. Guo L, Zhang Q, Ma X, Wang J, Liang T. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression. *Sci Rep.* 2017;7. doi:10.1038/srep39812

112. Cui C, Yang W, Shi J, et al. Identification and Analysis of Human Sex-biased MicroRNAs. *Genomics Proteomics Bioinformatics.* 2018;16(3):200-211. doi:10.1016/j.gpb.2018.03.004

113. Yang C-X, Wright EC, Ross JW. Expression of RNA-binding proteins DND1 and FXR1 in the porcine ovary, and during oocyte maturation and early embryo development. *Mol Reprod Dev.* 2012;79(8):541-552. doi:10.1002/mrd.22059

114. Fu Y, Xu Z, Chen Z, Wen B, Gao J. Integrated analysis of sex-biased mRNA and miRNA expression profiles in the gonad of the discus fish (Symphysodon aequifasciatus). *bioRxiv.* Published online December 10, 2018:492264. doi:10.1101/492264

115. Cooper DN. Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. *Hum Genomics.* 2010;4(5):284-288. doi:10.1186/1479-7364-4-5-284

116. Supplementary Material: http://clary.mmcri.cloud/JES_Nevola_et_all_supplement.pdf
Figure 1: Adrenergic signaling in bone. Norepinephrine (NE) binds to β-adrenergic receptors, stimulating adrenergic signaling through cAMP and PKA. This results in the activation of ATF4, a transcription factor that triggers the transcription of TNFSF11 (RANKL). HDAC4 is a histone deacetylase that further acts to stabilize ATF4. TNFSF11 (RANKL) is secreted by osteoblasts and binds to TNFRSF11A (RANK) receptors on osteoclasts or OPG soluble decoy receptors. Activation of TNFRSF11A (RANK) then stimulates osteoclast differentiation, leading to bone resorption. BBs competitively bind to β-adrenergic receptors, blocking signaling by norepinephrine.

Figure 2: Forest plot of meta-analysis for rs11124190 (HDAC4) in females. Meta-analysis between FHS, the Rotterdam Study, the BPROOF Study, the MOFS, and the Hertfordshire Cohort Study for rs11124190 (HDAC4) in female only models. TE is the treatment estimate and refers to the estimate of each model, while seTE refers to the standard error of the treatment estimate. The weight (fixed) and weight (random) columns refer to the weighting for the fixed effect model and the random effect model respectively.

Figure 3: Forest plot of meta-analysis for rs12414657 (ADRB1) in females. Meta-analysis between FHS, the Rotterdam Study, the BPROOF Study, the MOFS, and the Hertfordshire Cohort Study for rs12414657 (ADRB1) in female only models. TE is the treatment estimate and refers to the estimate of each model, while seTE refers to the standard error of the treatment estimate. The weight (fixed) and weight (random) columns refer to the weighting for the fixed effect model and the random effect model respectively.
Figure 4: Hypothesized miRNA-mediated mechanisms underlying the association between top SNPs and BMD in BB users. Female BB users with the alternative allele of rs12414657 (ADRB1) have higher expression of miR-19a-3p and higher BMD. miR-19a-3p inhibits gene targets involved in adrenergic signaling including ADRB1 and HDAC4. This inhibition of adrenergic signaling in bone would then lead to increased BMD. Female BB users with the alternative allele of rs11124190 (HDAC4) have lower expression of miR-17-5p and higher BMD. miR-17-5p inhibits osteogenic differentiation, therefore lower expression of miR-17-5p would lead to higher BMD. Male BB users with the alternative allele for rs34170507 (TNFRSF11A (RANK)) have lower expression of miR-31-5p and higher BMD. miR-31-5p inhibits osteogenic differentiation, so lower expression of miR-31-5p should lead to higher BMD. Male BB users with the alternative allele for rs6567268 (TNFRSF11A or RANK) have higher expression of let-7g-5p and miR-374a-5p and higher BMD. Let-7g-5p and miR-374a-5p both inhibit TNFRSF11A (RANK) expression. The lower TNFRSF11A (RANK) expression would decrease bone resorption leading to higher BMD.
Table 1: Significant SNPs using GCTA-COJO. SNPs that met a p-value < 0.05 cutoff using GCTA-COJO analysis, including the gene the SNP is located in or near and the reference and alternative alleles, the position of the SNP in the hg19 genome build, the rsID of the SNP, and the model in which the SNP was significant (female-only or male-only model). The effect size, SE, and p-value were determined using conditional joint analysis using the summary statistics from the linear mixed model analysis. The linear mixed model included the interaction effect between the alternative allele dosage of the SNP and BB use and its effect on FN BMD, adjusting for covariates and modeling interrelatedness between individuals using a kinship matrix. The summary statistics for all SNPs were then used to perform GCTA-COJO analysis. SNPs chosen for validation are included in bold.

Gene (Ref/Alt)	Position hg19	rsID	Model	Effect size from conditional Analysis	SE from conditional analysis	p-value from conditional analysis
ADRB1 (T/C)	115803375	rs1241465	Female	0.0431	0.0216	0.0461
HDAC4 (C/A)	239972561	rs1339321	Female	0.0440	0.0194	0.0231
HDAC4 (C/G)	240223080	rs1112419	Female	0.0489	0.0188	0.0093
HDAC4 (G/A)	240050108	rs1459001	Male	0.0872	0.0343	0.0111
HDAC4 (G/A)	240112014	rs3791554	Male	-0.0576	0.0257	0.0247
PRKACB (A/G)	84682179	rs970318	Male	0.0373	0.0162	0.0217
PRKAR2B (G/A)	106736732	rs6952920	Female	0.0401	0.0136	0.0032
TNFRSF11A (RANK) (T/C)	60025809	rs7293360	Female	0.0703	0.0293	0.0164
TNFRSF11A (RANK) (G/A)	60001153	rs3417050	Male	0.0695	0.0170	4.44x10^{-5}
TNFRSF11A (RANK) (C/T)	60026732	rs6567268	Male	0.0484	0.0173	0.0051
TNFSF11 (RANKL) (T/C)	43177169	rs9533166	Male	-0.0310	0.0158	0.0497
Figure 1

[Diagram showing the interaction between Osteoblast and Osteoclast with proteins such as NE, Adrenergic Receptor, PKA, HDAC4, ATF4, RANK, RANKL, OPG, and their regulatory pathways.]
Figure 2

Study	TE	seTE	Weight (fixed)	Weight (random)	
FHS	0.0489	0.0188	0.0489 [0.0121; 0.0857]	12.6%	18.6%
Rotterdam	0.0240	0.0090	0.0240 [0.0064; 0.0416]	54.8%	31.4%
BPROOF	-0.0170	0.0190	-0.0170 [-0.0542; 0.0202]	12.3%	18.3%
MOFS	-0.0024	0.0176	-0.0024 [-0.0369; 0.0321]	14.3%	19.9%
Hertfordshire	-0.0045	0.0271	-0.0045 [-0.0576; 0.0485]	6.1%	11.8%

Fixed effect model
Random effects model
Heterogeneity: $I^2 = 53\%$, $Q = 0.0003$, $p = 0.07$
Figure 3

Study	TE	seTE	Weight (fixed)	Weight (random)
FHS	0.0431	0.0216	0.0431 [0.0008; 0.0854]	13.0% 19.6%
Rotterdam	0.0050	0.0100	0.0050 [-0.0146; 0.0246]	60.6% 35.2%
BPProOF	-0.0100	0.0270	-0.0100 [-0.0629; 0.0429]	8.3% 14.9%
MOFS	0.0576	0.0219	0.0576 [0.0148; 0.1005]	12.7% 19.3%
Hertfordshires	0.0303	0.0334	0.0303 [-0.0351; 0.0957]	5.4% 11.0%

Fixed effect model

Random effects model

Heterogeneity: $I^2 = 47\%$, $t^2 = 0.0004$, $p = 0.11$
Figure 4

Female BB users

rs12414657
ADRB1

↑miR-19a-3p

↓Adrenergic signaling

↑BMD

rs11124190
HDAC4

↓miR-17-5p

↑Osteogenic differentiation

Male BB users

rs34170507
TNFRSF11A (RANK)

↓miR-31-5p

↑Osteogenic differentiation

↑BMD

rs6567268
TNFRSF11A (RANK)

↑let-7g-5p

↓RANK expression

↑miR-374a-5p