Meson physics in asymmetric matter

Andrea Mammarella and Massimo Mannarelli
Laboratori Nazionali del Gran Sasso, via G. Acitelli 22, Assergi (AQ), Italy
E-mail: andrea.mammarella@lngs.infn.it

Abstract. This paper describes dynamic and thermodynamic (at $T = 0$) properties of mesons in asymmetric matter in the framework of Chiral Perturbation Theory. We consider the effect of nonzero isospin and strangeness chemical potentials on a mesonic system and report on the corresponding phase diagram. We also study meson masses and mixing in the resulting normal phase, pion condensation phase and kaon condensation phase. We find differences with previous papers regarding meson masses and mixing in the condensed phases; the results presented here are supported by theory group analysis and direct calculations. Pressure, density and equation of state of the system at $T = 0$ and nonzero μ_I are calculated, finding remarkable agreement with analogue studies performed by lattice calculations.

1. Introduction

Understanding the QCD phase diagram is important for many different phenomena, for example the astrophysics of compact stars or heavy-ion collisions. It is known that depending on the value of the isospin chemical potential, μ_I, and on the value of the strangeness chemical potential, μ_S, three different phases can be realized: the normal phase, the pion condensed (π_c) phase and the kaon condensed (K_c) phase [1, 2, 3]. The realization of a mesonic condensate can drastically change the low energy properties of matter, including the mass spectrum and the lifetime of mesons.

Previous analysis of the meson condensed phases by QCD-like theories were developed in [4, 5]. Pion condensation in two-flavor quark matter was studied in [2, 6] and in three-flavor quark matter in [3]. In particular, the phase diagram as a function of μ_I and μ_S was presented in [3]. Finite temperature effects in $SU(2)_L \times SU(2)_R$ chiral perturbation theory (χPT) have been studied in [7, 8, 9]. One remarkable property of quark matter with nonvanishing isospin chemical potential is that it is characterized by a real measure, thus the lattice realization can be performed with standard numerical algorithms [10, 11]. The π_c and the K_c phases have been studied by NJL models in [12, 13, 14] and by random matrix models in [15]. All these models find results in qualitative and quantitative agreement; in particular, the phase diagram of matter has been firmly established. We have studied the masses and mixing of mesonic states and we have found results that disagree with [3] that, up to our knowledge, is the only paper in which they are studied.

The thermodynamic properties of the condensed phases have been studied by LQCD simulations in [16, 17]. Previously, various results on the π_c phase were derived in [9] by an NJL model. In particular, the equation of state (EoS) of the NJL model was presented. Recently in [18, 19, 20] a perturbative analysis of QCD at large isospin density has been presented. Those pQCD results...
are consistent with LQCD for $\mu_I \gtrsim 3m_\pi$ [20], where m_π is the pion mass. At smaller values of μ_I it seems that pQCD underestimates the energy density and it is not able to capture the condensation mechanism. However, for small values of μ_I (and μ_S), χPT can be used.

In this article we briefly review how to include chemical potentials in χPT [21, 22, 23, 24, 25], then we describe some phenomenological properties related to this inclusion, like the existence of the different phases already listed and the changes in meson masses and mixing. We will also show how the inclusion of chemical potentials affects meson properties [26]. Finally we will study the effect of nonzero isospin and strangeness chemical potentials on the pressure, density and equation of state of the system [27].

The paper is organized as follows. In Sec. 2 we describe the model and how it predicts different phases. In Sec. 3 we show how group theory tools can be used to calculate the mass eigenstates and the meson mixing in the condensed phases and we list and discuss the results obtained. In sec 4 we study the thermodynamic properties of the system. Finally, in Sec. 5, we summarize the results.

2. Model

2.1. Lagrangian and definitions

In this section we briefly review the model that we are going to use in the following. It is the one described in [3]. It is a chiral effective Lagrangian at the lowest order in the momenta. The general $O(p^2)$ Lorentz invariant Lagrangian density describing the pseudoscalar mesons can be written as [21]

$$\mathcal{L} = \frac{F_0^2}{4} \text{Tr}(D_\mu \Sigma D^\mu \Sigma^\dagger) + \frac{F_0^2}{4} \text{Tr}(X \Sigma^\dagger + \Sigma X^\dagger),$$

(1)

where Σ describes the meson fields, $X = 2B_0(s + ip)$ represents scalar and pseudoscalar external fields and the covariant derivative is defined as

$$D_\mu \Sigma = \partial_\mu \Sigma - i\frac{2}{v_\mu, \Sigma} - i\frac{2}{2 a_\mu, \Sigma},$$

(2)

where v_μ and a_μ are vectorial and axial external currents, respectively. The Lagrangian has two free parameters F_0 and B_0. Because this is an effective theory, they have to be fixed by mesons phenomenology: they are related to the pion decay and to the quark-antiquark condensate, respectively. See for example [21, 22, 23, 24, 25].

If the meson field transforms as

$$\Sigma \rightarrow R \Sigma L^\dagger,$$

(3)

the Lagrangian density possess the symmetry $SU(N_f)_L \times SU(N_f)_R$ and the chiral symmetry breaking corresponds to the spontaneous global symmetry breaking $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_{L+R}$. In standard χPT, the mass eigenstates are charge eigenstates as well. This ensures that mesons are particles with a well defined mass and charge. If the system is in a medium the ground state can be tilted to different vacua that can also be charged with respect to some of the $SU(3)$ generators. This would imply that the eigenstates will not be eigenstates of the broken charges. The effects of a medium can be taken into account by considering appropriate external currents in Eq. (1).

At vanishing temperature the ground state is determined by maximizing the Lagrangian density with respect to the external currents. The pseudoscalar mesons are then described as oscillations around the vacuum. We use the same nonlinear representation of [3] corresponding to

$$\Sigma = u \bar{\Sigma} u \quad \text{with} \quad u = e^{i T \phi / 2},$$

(4)

where T_a are the $SU(N_f)$ generators and $\bar{\Sigma}$ is a generic $SU(N_f)$ matrix to be determined by maximizing the static Lagrangian. The reasoning behind the above expression is that under
SU(Nf)\textsubscript{L} \times SU(Nf)\textsubscript{R} mesons can be identified as the fluctuations of the vacuum as in Eq. (3) with $\theta^R_0 = -\theta^L_0 = \theta_a$.

In the following we will assume that $a_\mu = 0$, $p = 0$, $X = 2GM$, where M is the $N_f \times N_f$ diagonal quark mass matrix and G is a constant, that with these conventions is equal to B_0. Moreover, we will assume that

$$v'^\nu = 2\mu\delta^{\nu 0}$$

meaning that the vectorial current consists of the quark chemical potential, with μ a SU(N_f) matrix in flavor space. Its explicit expression in our case of interest, ie SU(3), is:

$$\mu = \text{diag}(\mu_u, \mu_d, \mu_s) = \text{diag}(\frac{1}{3}\mu_B + \frac{1}{2}\mu_I, \frac{1}{3}\mu_B - \frac{1}{2}\mu_I, \mu_B - \mu_S) = \frac{\mu_B - \mu_S}{3}I + \frac{\mu_I}{2}\lambda_3 + \frac{\mu_S}{\sqrt{3}}\lambda_8,$$

(6)

It is important to remark that this model only holds for $|\mu_B| \lesssim 940$ MeV, $|\mu_I| \lesssim 770$ MeV and $|\mu_S| \lesssim 550$ MeV [3].

2.2. Ground state and different phases

To find the ground state we have to substitute (4) in the Lagrangian (1). It is not necessary to use a complete SU(3) parametrization for $\bar{\Sigma}$, but it is sufficient:

$$\bar{\Sigma} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{array} \right) \left(\begin{array}{ccc} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \beta & \sin \beta \\ 0 & -\sin \beta & \cos \beta \end{array} \right),$$

(7)

because $\bar{\Sigma}$ has to be orthogonal to the chemical potential in the SU(3) generator space [26]. Substituting (7) in (1) and maximizing, we find three different vacua, thus there are three ground states, each one describing a different phase [3]:

- Normal phase:
 $$\mu_I < m_\pi \quad \mu_S < m_K - \frac{1}{2}\mu_I,$$
 characterized by
 $$\alpha_N = 0, \quad \beta_N \in (0, \pi), \quad \bar{\Sigma}_N = \text{diag}(1, 1, 1).$$
 (9)

- Pion condensation phase:
 $$\mu_I > m_\pi \quad \mu_S < \frac{-m^2_\pi + \sqrt{(m^2_\pi - \mu_I^2)^2 + 4m^2_K\mu_I^2}}{2\mu_I},$$
 characterized by
 $$\cos \alpha_\pi = \left(\frac{m_\pi}{\mu_I} \right)^2, \quad \beta_\pi = 0,$$
 $$\bar{\Sigma}_\pi = \left(\begin{array}{ccc} \cos \alpha_\pi & \sin \alpha_\pi & 0 \\ -\sin \alpha_\pi & \cos \alpha_\pi & 0 \\ 0 & 0 & 1 \end{array} \right) = \frac{1 + 2\cos \alpha_\pi}{3}I + i\lambda_2 \sin \alpha_\pi + \frac{\cos \alpha_\pi - 1}{\sqrt{3}}\lambda_8.$$

- Kaon condensation phase:
 $$\mu_S > m_K - \frac{1}{2}\mu_I \quad \mu_S > \frac{-m^2_\pi + \sqrt{(m^2_\pi - \mu_I^2)^2 + 4m^2_K\mu_I^2}}{2\mu_I},$$
 (11)
characterized by \(\cos \alpha_K = \left(\frac{m_K}{m_{I^+} + \mu_{I^+}}\right)^2\), \(\beta_K = \pi/2\).

\[
\Sigma_K = \left(\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right) = \frac{1 + 2\cos \alpha_K}{3}\mathbb{I} + \frac{\cos \alpha_K - 1}{2\sqrt{3}} \left(\sqrt{3}\lambda_3 - \lambda_8\right) + i\lambda_5 \sin \alpha_K.
\]

Note that the kaon condensation can only happen for

\[
\mu_S > \bar{\mu}_S = m_K - \frac{m_\pi}{2}.
\]

These results are summarized in figure 1 [3].

3. Meson Masses and Mixing
3.1. Mixing

As we have seen in Sec. 2.2 the ground state in the condensed phases is not diagonal and thus has SU(3) charges that cause symmetry breaking that will lead to mix mesons. Studying the breaking pattern can guide us to identify the allowed mixing in the condensed phases.

The starting Lagrangian has an \(SU(3)_L \times SU(3)_R\) symmetry, broken to \(SU(3)_V\) by the quark masses. The introduction of chemical potentials via the external current (5) further reduces this symmetry to \(U(1)_L \times U(1)_R \times U(1)_L \times U(1)_R\), meaning that the \(\lambda_3\) and \(\lambda_8\) terms in (5) break isospin and hypercharge conservation. When the system enters one of the condensed phases the vacuum acquires a charge and thus there is no symmetry left.

In all of these cases we can use the quantum numbers of the \(SU(2)\) subgroups of \(SU(3)\) to label the states and to find out which ones can mix. We only need two of them, because they are not independent. The states that can mix and the related quantum numbers are shown in table 1.

Unfortunately, this is not sufficient to determine if \(\pi_0\) and \(\eta\) can mix, because they do not have a well defined U and V spin, so we have to study deeply how the ground state affects them. Let us first consider the normal phase. In the normal phase there is no operator that can induce the mixing of the mesonic states, thus they remain unchanged but the \(Q_3\) and \(Q_8\) charges will induce Zeeman-like mass splittings.

In any of the condensed phases, there is an additional charge that is spontaneously induced, and the corresponding operator will lead to mixing.
The pressure of the system can be found substituting $\bar{\Sigma}$ in 1. In the different phases we get:

$$
\rho_{I,LO}^{N} = 0 \quad \rho_{I,LO}^{\pi C} = \frac{F_{0}^{2} \mu_{I}^{2}}{2} \left(1 - \frac{m_{I}^{2}}{\mu_{I}^{2}}\right)^{2} \quad \rho_{I,LO}^{K_{C}} = \frac{F_{0}^{2} \mu_{K}^{2}}{2} \left(1 - \frac{m_{K}^{2}}{\mu_{K}^{2}}\right)^{2}
$$

with $\mu_{K} = \mu_{I}/2 + \mu_{S}$. It is important to observe that the expressions for the pressure in the condensed phases are exactly the same if we change $\mu_{I} \rightarrow \mu_{K}$ and $m_{I} \rightarrow m_{K}$. Number density and equation of state can be derived using:

$$
n_{I,LO} = \frac{\partial \rho_{I,LO}}{\partial \mu_{I}} \quad \text{and} \quad \epsilon = \mu_{I} n_{I} + \mu_{S} n_{S} - p, \quad \quad (13)
$$

where the index i represents I=isospin or K=kaon. In the πC phase we obtain:

$$
n_{I,LO}^{\pi C} = f_{\pi}^{2} \mu_{I} \left(1 - \frac{m_{I}^{4}}{\mu_{I}^{2}}\right) \quad \text{and} \quad \epsilon_{\pi C,LO}^{I} = \frac{f_{\pi}^{2} \mu_{I}^{2}}{2} \left(1 + 2 \frac{m_{I}^{2}}{\mu_{I}^{2}} - 3 \frac{m_{I}^{4}}{\mu_{I}^{4}}\right) \quad (14)
$$

Table 1. Mixing mesons with the corresponding T-spin and U-spin quantum numbers. These quantum numbers label the $SU(3)$ subspace spanned by the corresponding mesonic states. The π_{0} and the η do not appear because they are not U-spin eigenstates.

Mixing states (T, U)
π_{+}, π_{-}
K_{+}, K_{-}
K_{0}, \bar{K}_{0}

Let us first focus on isospin (or T-spin). We have to consider two cases. Suppose that the vacuum has a charge that commutes with T^{2}, as in the πc phase, say the charge corresponding to $T_{2} = i(T_{-} - T_{+})$, see Eq. (11). The T_{\pm} operators can induce mixing among the charged pions and among the kaons. On the other hand, T-spin conservation does not allow the $|\pi_{0}\rangle = |T = 1, T_{3} = 0\rangle$ to mix with the $|\eta\rangle = |T = 0, T_{3} = 0\rangle$.

Now suppose instead that the vacuum has a charge that does not commute with T^{2} as in the Kc phase. Any operator that does not commute with isospin will commute with T^{2}, these will be the mass eigenstates. Masses and mixings have been calculated [26]. The procedure is straightforward: we have to diagonalize the quadratic part of the Lagrangian by solving the related secular equation, obtaining the masses and subsequently the eigenstates. The resulting expressions are quite involved so we only show plots of the masses μ_{I} dependence for different values of μ_{S} in figure 2.

3.2. Masses
The mass eigenstates are found diagonalizing the Lagrangian in the different phases. They present the mixing predicted by the group theory analysis of the previous subsection. Masses and mixings have been calculated [26]. The procedure is straightforward: we have to diagonalize the quadratic part of the Lagrangian by solving the related secular equation, obtaining the masses and subsequently the eigenstates. The resulting expressions are quite involved so we only show plots of the masses μ_{I} dependence for different values of μ_{S} in figure 2.

4. Thermodynamic
The pressure of the system can be found substituting $\bar{\Sigma} \rightarrow \Sigma$ in 1. In the different phases we get:
while the analogous results in the kaon condensation phase can be obtained substituting \(m_\pi \rightarrow m_K \) and \(\mu_I \rightarrow \mu_K \), see \([17, 27]\). To compare the \(\chi \)PT energy density with the results obtained by LQCD simulations in \([16]\) and by pQCD in \([20]\), we divide it by the Stefan-Boltzmann limit, which has been defined in \([16]\) as \(\epsilon_{SB} = 9 \mu^4_I/(4\pi^2) \) and describes a cold, degenerate gas of weakly interacting quarks which is the limit of our system if there was no interactions. In Fig. 3 we report our ratio \(\epsilon_{LO}^c/\epsilon_{SB} \) and the results of \([16]\) and \([20]\). We immediately notice that the \(\chi \)PT curve perfectly captures the peak structure at low \(\mu_I \), while it begins to depart from the LQCD results after \(\mu_I \sim 2m_\pi \), indicating the breakdown of the LO approximation. An interesting result is that within our framework we obtain an analytic expression for the position of the peak, which for the \(\pi \sigma \) phase is given by \(\mu_I^{\text{peak}} = (\sqrt{13} - 2)^{1/2} m_\pi \approx 1.276 m_\pi \) and is independent of \(f_\pi \). This result is very close to the LQCD result obtained in \([16]\), where the values \(\mu_I^{\text{peak}} = \{1.20, 1.25, 1.275\} m_\pi \) have been obtained considering different spatial volumes \(L^3 \) with side \(L = \{16, 20, 24\} \), respectively. The continuum-linearly-extrapolated value for the peak position is \(\mu_I^{\text{peak}} = 1.30 m_\pi \).

It is not clear if the peak point is related to some undergoing physics. In our model the pion condensate has reached a significant value at that point, almost approaching its asymptotic limit \(B \), see Fig. 4, so we tend to exclude that the peak appearance is related to the occurrence of the condensation.

More specifically, the pion condensate can be evaluated by introducing external source terms in the chiral Lagrangian and by differentiating with respect to them. After the phase transition it grows as \(\langle \pi^+ \rangle = B \sqrt{1 - m_\pi^4/\mu^4_I} \) \([3, 5]\), so that at \(\mu_I^{\text{peak}} \) it reaches already \(\sim 79\% \) of its asymptotic value. We are therefore more inclined to interpret this peak structure as a consequence of the filling of the condensate, rather than of the onset of its formation, which at zero-temperature should occur at \(\mu_I = m_\pi \). We also obtain an analytic expression for the ratio at the peak

\[
\frac{\epsilon}{\epsilon_{SB}}|_{\text{peak}} = \frac{4(\sqrt{13} - 5)\pi^2 f_\pi^2}{9(\sqrt{13} - 2) m_\pi^2},
\]

(15)

which would give information on the \(f_\pi/m_\pi \) scaling if precise LQCD data were available. It is worth mentioning that the above results hold in the \(Kc \) phase if one considers \(\epsilon_{SB} = 9 \mu^4_K/(4\pi^2) \).
Figure 3. Energy density over the Stefan-Boltzmann limit. The lattice points have been obtained at $T = 20$ MeV; the colors correspond to the different lattice volumes considered in [16]. The orange dotted line corresponds to the pQCD results of [20]. The dashed black line corresponds to our results.

Then, we obtain $\mu_{K}^{\text{peak}} = (\sqrt{13} - 2)^{1/2} m_K$ and an expression analogous to Eq.(15), with $m_{\pi} \rightarrow m_K$.

From Fig. 3 it seems that for $\mu_I > 2m_\pi$ the LO χPT breaks down, resulting in an underestimate of the energy density. The basic reason is that for large μ_I we have that $\epsilon^\text{LO}_{\chi} \propto f^2_\pi \mu_I^2$ from Eq. (13), while pQCD correctly predicts $\epsilon^{\text{pQCD}} \propto \mu_I^4$. At the next-to-leading order (NLO), it is possible to show that the χPT energy density includes a term proportional to $(2l_1 + 2l_2 + l_3)\mu_I^4$, where l_1, l_2 and l_3 are NLO low energy constants [24]. Comparing our results with the pQCD energy density we obtain

$$2l_1 + 2l_2 + l_3 = \frac{3}{8\pi^2} \left(\frac{\epsilon_{\text{pQCD}}}{\epsilon_{\text{SB}}} - \frac{2f_\pi^2 \mu_I^2}{9\mu_I^4} + O(\mu_I^{-4}) \right),$$

leading to $2l_1 + 2l_2 + l_3 \simeq 0.6 \times 10^{-3}$ for $\mu_I = 3m_\pi$, consistent with the empirical values of the low energy constants [24].

Figure 4. χPT results for the ratio $\epsilon/\epsilon_{\text{SB}}$ (solid line) and the pion condensate normalized to its maximum value B (dashed blue line).

5. Conclusion

We have shown how meson physics in presence of chemical potentials can be described using Chiral Perturbation Theory. There are three different phases: a normal phase, a pion
condensation phase and a kaon condensation phase. The condensed phases ground states have a charge and thus can generate mixing among mesons.

In this context we have illustrated how the mixing is influenced by model symmetries and that group theory constrains the mixing possibilities. These results, obtained by group theory alone, are expected to hold in any theory describing meson states. We have then described mesons masses in the three phases, calculating them from the Lagrangian (1). These masses are in perfect agreement with the group theory reasoning.

Finally we have derived the pressure and equation of state of the system at $T = 0$, comparing them with the equivalent results obtained in lattice simulations and obtaining a very good agreement on a non trivial feature like a peak structure in the meson energy density over the Stefan Boltzmann one.

These results can be applied for example in the physics of compact stars, the study of cosmic rays and the study of in medium nuclear decays.

References

[1] Migdal A B, Saperstein E, Troitsky M and Voskresensky D 1990 Phys.Rept. 192 179–437
[2] Son D and Stephanov M A 2001 Phys.Rev.Lett. 86 592–595 (Preprint hep-ph/0005225)
[3] Kogut J and Toublan D 2001 Phys.Rev. D64 034007 (Preprint hep-ph/0103271)
[4] Kogut J, Stephanov M A and Toublan D 1999 Phys.Lett. B464 183–191 (Preprint hep-ph/9906346)
[5] Kogut J, Stephanov M A, Toublan D, Verbaarschot J and Zhitnitsky A 2000 Nucl.Phys. B582 477–513 (Preprint hep-ph/0001171)
[6] Son D and Stephanov M A 2001 Phys.Atom.Nucl. 64 834–842 (Preprint hep-ph/0011365)
[7] Loewe M and Villavicencio C 2003 Phys.Rev. D67 074034 (Preprint hep-ph/0212275)
[8] Loewe M and Villavicencio C 2004 Phys.Rev. D70 074005 (Preprint hep-ph/0404232)
[9] He L y, Jin M and Zhuang P f 2005 Phys.Rev. D71 116001 (Preprint hep-ph/0503272)
[10] Allford M G, Kapustin A and Wilczek F 1999 Phys.Rev. D59 054502 (Preprint hep-lat/9807039)
[11] Kogut J and Sinclair D 2002 Phys.Rev. D66 034505 (Preprint hep-lat/0202028)
[12] Toublan D and Kogut J 2003 Phys.Lett. B564 212–216 (Preprint hep-ph/0301183)
[13] Barducci A, Casalbuoni R, Pettini G and Ravagli L 2004 Phys.Rev. D69 096004 (Preprint hep-ph/0402104)
[14] Barducci A, Casalbuoni R, Pettini G and Ravagli L 2005 Phys.Rev. D71 016011 (Preprint hep-ph/0410250)
[15] Klein B, Toublan D and Verbaarschot J 2005 Phys.Rev. D72 015007 (Preprint hep-ph/0405180)
[16] Detmold W, Orginos K and Shi Z 2012 Phys. Rev. D86 054507 (Preprint 1205.4224)
[17] Detmold W, Orginos K, Savage M J and Walker-Loud A 2008 Phys. Rev. D78 054514 (Preprint 0807.1856)
[18] Andersen J O, Haque N, Mustafa M G and Strickland M 2016 Phys. Rev. D93 054045 (Preprint 1511.04660)
[19] Cohen T D and Sen S 2015 Nucl. Phys. A942 39–53 (Preprint 1503.00006)
[20] Graf T, Schaffner-Bielich J and Fraga E S 2016 Phys. Rev. D93 054030 (Preprint 1511.09457)
[21] Gasser J and Leutwyler H 1984 Annals Phys. 158 142
[22] Leutwyler H 1994 Annals Phys. 235 165–203 (Preprint hep-ph/9311274)
[23] Ecker G 1995 Prog.Part.Nucl.Phys. 35 1–80 (Preprint hep-ph/9501357)
[24] Scherer S 2003 Adv.Nucl.Phys. 27 277 (Preprint hep-ph/0210398)
[25] Scherer S and Schindler M R 2005 (Preprint hep-ph/0505265)
[26] Mammarella A and Mammarelli M 2015 Phys. Rev. D92 085025 (Preprint 1507.02934)
[27] Carignano S, Mammarella A and Mammarelli M 2016 Phys. Rev. D93 051503 (Preprint 1602.01317)