Target Track Initiation in Difficult Scenarios Using Probability-1 Homotopy Methods and Cubature Integration

David Frederic Crouse
Naval Research Laboratory
4555 Overlook Ave., SW
Washington DC 20375
E-Mail: david.crouse@nrl.navy.mil

Abstract—Probability-1 homotopy algorithms are seldom taught in standard numerical analysis classes, and, with a few exceptions, their utility in target track initiation has been largely overlooked. This paper demonstrates how such methods can be used for unbiased measurement conversion and initial target-state estimation in difficult scenarios involving non-simultaneous measurements when combined with cubature integration techniques. Scenarios considered are range-only and time-delay-of-arrival-only measurements as well as surface-wave time-delay-of-arrival-only measurements.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. CUBATURE INTEGRATION 2
3. PROBABILITY-1 HOMOTOPY METHODS 3
4. BISTATIC RANGE-ONLY TRACK INITIATION 8
5. BISTATIC TIME-DELAY-OF-ARRIVAL-ONLY TRACK INITIATION 13
6. BISTATIC TDOA-ONLY SURFACE-WAVE TARGET LOCALIZATION 14
7. RECOGNIZING MORE DIFFICULT PROBLEMS 15
8. CONCLUSIONS .. 16
APPENDICES .. 17
A. FORMULAE FOR THE CUBATURE POINTS 17
B. SIMPLE NUMERICAL DIFFERENTIATION 18
REFERENCES .. 18

1. INTRODUCTION

The majority of work on target-tracking algorithms utilizes multivariate Gaussian approximations for the target state and focuses on how measurements can be assigned to targets after a track has been started on each target. However, to start a track on a target, one must determine that a set of measurements over time belongs to a common target, and one must transform the measurements into an initial target-state estimate, which usually consists of a mean and a covariance matrix. This paper considers how a set of measurements can be assigned to targets and what components is the covariance of the measurement, and the value of the measurement, the covariance associated with that one sets the position components of the target state to some bounds associated with the maximum allowable velocity of the target. “One-point differencing” means that one sets the position components of the target state to the value of the measurement, the covariance associated with those components is the covariance of the measurement, and the velocity components of the state are set to zero with the covariance of the state set to some bounds associated with the maximum allowable velocity of the target. “Two-point differencing” means that the two measurements are used to algebraically solve for the velocity under a linear dynamic model.

Probability-1 homotopy methods have most likely been overlooked in the tracking literature due to the complexity of implementing even the simplest one. As many readers might also not want to go to the trouble of implementing the probability-1 homotopy method described in this paper, an implementation has been made available for download as part of the Tracker Component Library, which is currently at https://github.com/DavidFCrouse/Tracker-Component-Library. The relevant function is called homotopySolver, is in the "Mathematical Functions" folder, and requires the Runge-Kutta routines that are also part of the library.

Typically, if a target state consists of position and velocity components and measurements can be transformed into complete Cartesian locations, one-point or two-point differencing can be used to get an initial target-state estimate as described in [2, Ch. 5.5] and [50]. “One-point differencing” means that one sets the position components of the target state to the value of the measurement, the covariance associated with those components is the covariance of the measurement, and the velocity components of the state are set to zero with the covariance of the state set to some bounds associated with the maximum allowable velocity of the target. “Two-point differencing” means that the two measurements are used to algebraically solve for the velocity under a linear dynamic model.

More sophisticated methods of starting a target track are discussed along with tracking algorithms in the tutorial series [14–16]. For example, in [14] an information filter is used to start tracks instead of two-point differencing. Such an algorithm allows process noise to be incorporated into the covariance estimate of the initial state. In [15], track initiation in the presence of ray-traceable atmospheric refraction is demonstrated through the use of cubature integration methods to obtain unbiased Cartesian-converted measurements and statistically consistent covariance matrices. Additionally, in [16] track initiation on a non-linear dynamic model is demon-
strated, where Doppler-measurements are used to refine an initial estimate obtained without such measurements using a maximum-likelihood estimation method.

In all of the aforementioned scenarios, the measurements available to start the track could be converted from the measurement domain into complete 3D position measurements. The problem of track initiation given incomplete measurements, on the other hand, is more difficult. Incomplete-measurement track initiation is a necessary part of many passive tracking algorithms. For example, in [23], the problem of track initiation of aircraft using bistatic range-only measurements is considered. In the full 3D case including no prior information on the target altitude, an initial position estimate was obtained using three simultaneous bistatic measurements by finding a function that algebraically transforms three ranges into a Cartesian position; the covariance associated with that estimate was obtained using a linearization.²

In [4], two general strategies for track initialization using incomplete measurements based on maximum a posteriori estimation are provided. One method is based on linearization, similar to what was done in [23], and the other is based on the use of the “unsecented transformation,” which is a second-order cubature integration technique. Unlike in [4], the focus of this article is on directly obtaining the first two moments of an estimate given a sufficient number of measurements, and not on obtaining the maximum a posteriori estimate. Moreover, this article assumes that no prior information is available (beyond just assuming the target is within the viewing region of the sensor).

The method of track initiation chosen for this paper is a generalization of the method used in [15] for initiation in a refraction-corrupted environment. It consists of the following steps:

1. Find a function to convert from the measurement domain to the target-state domain. For example, a function to convert bistatic range-only measurements into a Cartesian position or position and velocity.
2. Assume that available measurements are corrupted with Gaussian noise having known covariance matrices and calculate the first two moments of the target state given the measurements using cubature integration.

During the track-initiation phase, the effects of process noise in the dynamic model are neglected. Unlike the method in [15], the examples in this paper do not all just convert the measurements into Cartesian measurements and then pass them to an information filter. Rather, in two instances, the entire state is estimated at once given the measurements. The use of cubature integration to perform this task is described in Section 2.

This leaves the problem of finding a function that converts a set of measurements into the target-state domain. It shall not always be assumed that multiple sensors simultaneously observe the target so that one can directly obtain Cartesian positions (assuming that the target state is Cartesian). Additionally, it is desirable to obtain a solution that will work with general dynamic models. For example, when using multiple model estimators, such as those described in [2, Ch. 11.6], initial estimates are needed for all possible dynamic models.

In many instances given nonlinear target dynamics, a function converting from the measurement domain into the target-state domain can be explicitly found. For example, given two position measurements, one can get a velocity measurement assuming a Keplerian orbital dynamic model (standard two-point differencing would be inaccurate) by solving Lambert’s problem as in [33, 34]. Similarly, assuming a Keplerian dynamic model, three directional observations can be transformed into a full target-state vector as in [35, 36], though multiple solutions might exist. However, the focus of this paper is on instances where finding an explicit solution is either very difficult or is too time consuming.

In high-precision models such as described in [19], where ray-tracing might be used to account for complicated atmospheric or acoustic propagation and a wide variety of effects might come into play in the dynamic model or in establishing a high-fidelity coordinate system, it would take an unreasonable amount of time to derive an explicit conversion from the measurement domain into the domain of the target state. Thus, as described in Section 3, a probability-1 homotopy method is used in this article. The simplest type of probability-1 homotopy methods are generally designed to solve the problem f(x) = 0 or f(x) = x. They are “probability-1” because, given a random initialization, they will converge to a solution in a finite number of iterations with probability 1.³ Such techniques can be applied to a wide variety of problems, and good implementations can be quite fast for many types of problems.

Measurement conversion and/or track initiation discussed in this paper is demonstrated through three challenging scenarios:

1. Section 4: Measurement conversion using simultaneous bistatic range measurements and track initiation using non-simultaneous bistatic range measurements assuming a linear dynamic model.
2. Section 5: Track initiation using non-simultaneous time-delay-of-arrival of measurements assuming a linear dynamic model.
3. Section 6: Measurement conversion using simultaneous bistatic surface-wave TDOA measurements.

Another practical application of probability-1 homotopy methods in tracking is in the bistatic range-only orbital track-initiation problem, which is addressed in [38, 42, 60] and is not further considered in this paper. Though probability-1 homotopy methods are very powerful, Section 7 notes problems that can arise due to to a poor formulation of a problem and/or finite-precision errors. The results are concluded in Section 8.

2. Cubature Integration

Cubature integration is a technique of exactly or approximately evaluating multivariate integrals in which a weighting function, typically a Gaussian probability density function (PDF), multiplies another function. For a general multidi-

²In [23], the algebraic method for transforming from the measurement to the state domain was not provided. Rather it was solved in Mathematica and the expression was too long to publish. It is thus worth noting that in [49], an explicit expression (the spherical-intersection method) is provided for the general range-only target-position estimation problem along with a linearization for a covariance matrix.

³There can exist a few degenerate initial estimates or problem solutions where the algorithm can fail. However, in some instances, these are easy to guess. For example, setting the initial estimate to be the location of the sensor is generally bad.
mensional integral, one can write
\[
\int_{\mathbb{R}^d} w(x)g(x) \, dx = \sum_{i=0}^{N_x} \omega_i g(\xi_i)
\]
where \(w \) is a scalar weighting function that takes the \(d_x \)-dimensional vector parameter \(x \), \(g \) is a vector or scalar function, and \(\omega_i \) are cubature weights and \(\xi_i \) are \(d_x \)-dimensional cubature points. The cubature points and weights are designed for a particular weighting function so that the equality in (1) is true for all multivariate (vector) polynomials \(g \) up to a certain degree. For non-polynomial or higher-order functions, the sum on the right-hand side of (1) can be taken to be an approximation.

Cubature points and weights for many choices of weighting functions up to many degrees and orders are available. Many cubature formulae are given in the (out-of-print) monograph [62] and are listed on the website http://nines.cs.kuleuven.be/ecf, which is documented in [12]. Cubature integration forms the basis of the cubature Kalman filter as discussed in [14]. Cubature integration can be easily used to approximate expected values and covariance matrices of nonlinear transformations of multivariate Gaussian random variables. That is,
\[
\hat{x} \triangleq E\{g(x)\} \approx \sum_{i=0}^{N_x} \omega_i g(\xi_i)
\]
\[
E\{(g(x) - \hat{x})(g(x) - \hat{x})'\} \approx \sum_{i=0}^{N_x} \omega_i (g(\xi_i) - \hat{x})(g(\xi_i) - \hat{x})'
\]
where \(E \) is the expected-value operator. Note that when approximating covariance matrices, only cubature formulae using all positive points and weights should be used to guarantee that the resulting matrix is always positive definite or positive semi-definite.

For the track-initiation problems considered in this paper, process noise is neglected over the time period during which the measurements used for track initiation are collected. This means that the measurements are deterministically related to the target state at different times. If the dimensionality of the collected measurements equals the dimensionality of the state and the state is uniquely determined by the measurements, then there exists a function \(g \) that can transform a set of measurements into a state at the time of the final measurement. In this paper, the function \(g \) is not found explicitly; rather, a probability-1 homotopy method as in Section 3 is used. Given some way to evaluate \(g \), then cubature integration as in (2) and (3) can be used to get a mean and covariance matrix for an initial target-state estimate.

For all of the examples in this paper, fifth-order cubature points and weights are used. The fifth-order cubature points of Algorithm 3-5 in [62, Pg. 317] as formulated for a Gaussian distribution in [14] are used in all sections except Section 6. Since the cubature points of [62, Pg. 317] require that the dimensionality of the state be at least two, they are not suitable for the two-dimensional surface-wave problem in Section 6. Thus, in Section 6, the one-dimensional cubature points of [31] are used with the quadrature rule of [62, Ch. 2], as described in Appendix D of [18]. Appendix A provides the necessary formulae so that the results can be reproduced.

3. PROBABILITY-1 HOMOTOPY METHODS

The General Differential Equation
Probability-1 homotopy methods for solving systems of nonlinear equations are discussed in the tutorials [54, 68–70]. As noted in [48, 69], they can even be applied to constrained optimization problems. Given an \(N \times 1 \) vector-state \(x \) and a function \(f(x) \) providing an \(N \times 1 \) output, the homotopy methods considered in this paper solve the problems \(f(x) = 0 \) or \(f(x) = x \).

Most general homotopy formulations for finding the zero of a function \(f(x) \) begin with
\[
0 = \lambda f(x) + (1 - \lambda) g(x)
\]
where one is given an initial estimate \(x_0 \) that is the zero of the function \(g(x) \). Thus, (4) holds for \(\lambda = 0 \) at the point \(x_0 \). Homotopy methods increase the homotopy parameter \(\lambda \) from zero to one, while keeping (4) satisfied. Thus, when \(\lambda = 1 \), the problem has been solved.

The most common homotopy method presented in textbooks, such as [9, Ch. 10.5], is where one writes a differential equation assuming that \(x \) depends on the homotopy parameter \(\lambda \) and then integrates over \(\lambda \) from zero to one. For example, differentiating (4), one can write the differential equation in \(x \) as
\[
0 = f(x) + \lambda (\nabla f(x))' \frac{dx}{d\lambda} - g(x) + (1 - \lambda) (\nabla g(x))' \frac{dx}{d\lambda}
\]
where the gradient operator is defined to be
\[
\nabla \triangleq \left[\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} \cdots \frac{\partial}{\partial x_n} \right]'
\]
thus, the Jacobian of a function \(f(x) \) is
\[
(\nabla f(x))' = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}
\]
Solving (5) for \(\frac{dx}{d\lambda} \), one gets
\[
\frac{dx}{d\lambda} = \left(\lambda (\nabla f(x))' + (1 - \lambda) (\nabla g(x))' \right)^{-1} \cdot (g(x) - f(x))
\]
where starting at \(x_0 \) for \(\lambda = 0 \), one could numerically solve the initial-value problem, integrating from \(\lambda = 0 \) to \(\lambda = 1 \) to solve for \(f(x) = 0 \). However, it can be seen that problems could arise causing the algorithm to fail if the matrix being inverted is singular. In homotopies appearing in the target-tracking literature, integration directly over \(\lambda \) is the most common approach. For example, such a technique forms the traditional approach to moving particles in a Daum-Huang homotopy particle filter [10, 22], where a slightly different homotopy is used. However, such an approach is not suitable for the problem of finding an inverse function, which is the
Differential arc length is defined to be order to solve (10), rather than obtaining a differential equation only in

Thus,

Combining (13) with (10) provides the differential equations

where

Thus, a solution could be obtained by integrating over the coupled differential equations $\frac{d\lambda}{ds}$ and $\frac{dx}{ds}$ starting from $s = 0$ until $\lambda = 1$. The sign of the scalar function $h[x]$ is chosen arbitrarily at the start (though it generally makes sense to choose it so that $\frac{d\lambda}{ds}$ is initially positive), and during integration, the sign is chosen to make the direction traveled continuous (not doubling back on itself). Though the path is supposed to make sure that $B[x]$ is never singular, real-world numerical implementations can run into problems, which is why (14) and (15) should generally not be used.

nullspace can be implemented using a singular-value decomposition as described in [30, Ch. 2.4]. The matrix should only have a single vector in the nullspace, so in the event there is more due to finite-precision problems, just choose one.

2. The derivative to be used in the integration is

where $p = 1$ or $p = -1$ and p is chosen in a routine from the kth step to the $(k + 1)$-th step. That routine integrates along the path in λ-x space such that the angle between $\frac{du_{k+1}}{ds}$ and $\frac{du_k}{ds}$ is less than 180°. That is, the direction along the path is not reversed. The condition that the angle between u_{k+1} and u_k be less than 180° is equivalent to stipulating that $p = -1$ if $\left(\frac{du_{k+1}}{ds}\right)' \left(\frac{du_k}{ds}\right) < 0$. For the first step, use $du_0/ds = [1, 0]'$ to initially start in the direction of increasing λ. Sometimes, other solutions can be found by starting with $du_0/ds = [-1, 0]'$.

The above approach for determining the derivatives is used in the Fortran algorithms for solving homotopy problems in [71, 72] and is essentially the suggested approach in [67]. Note that while integrating over s, λ might not increase monotonically from 0 to 1. That is, the function might double-back a few times before reaching 1. The implementation of an algorithm to integrate over s until $\lambda = 1$ is discussed in Section 3.

Specific Homotopies

The specific problem that needs to be solved is $f[x] = z$ where z is a given set of observations, x is the target-state vector, and f transforms x into the measurement domain. In all of the examples in this paper, the combined dimensionality of all of the measurements equals the dimensionality of the target-state vector. There are multiple choices for $g[x]$ and $f[x]$ which may be used to solve the problem. In writing this paper, the most relevant choices that were considered are as follows: (a in the following homotopies is some value that satisfies the problem when $\lambda = 0$)

1. The homotopy used in the estimator described in [60] for performing bistatic range-only initiation of orbital objects:

$$0 = \lambda(z - f[x]) + (1 - \lambda)(x - a)$$

2. A modification of the homotopy for solving for the zeros of a function from [70]:

$$0 = \lambda(z - f[x]) + (1 - \lambda)(a - f[x])$$

which is equivalent to

$$0 = a + \lambda(z - a) - f[x].$$

3. A modification of an algorithm to solve for the zeros of a function, with a special focus on solving for all real roots of a nonlinear equation, from [53], which expands on the work of [37]. The work of [37] focuses on finding all (real and complex) roots. The original homotopy is

$$0 = \lambda f[x] + (1 - \lambda)((x - a) + (f[x] - f[a]))$$

which, if the $f[a] + a$ term is lumped together into just a is
equivalent to
\[0 = \lambda (\tilde{a} - x) + x + \tilde{f}(x) - \tilde{a}. \] (22)

The modification for finding \(\tilde{f}(x) = z \) instead of \(\tilde{f}(x) = 0 \) is to substitute \(\tilde{f}(x) - z \) for \(\tilde{f}(x) \) in (22).

While solving the examples in this paper, it was observed that the second homotopy above generally had the best performance. Thus, that is the one used in the rest of the paper.

In [53], the third homotopy is used to find all real roots of polynomial equations. In such an instance, one does not stop once \(\lambda = 1 \) but instead continues on to discover other instances when \(\lambda = 1 \). Generally, paths trace out closed loops in \(\lambda \) (assuming no solutions at \(\pm \infty \)). Thus, if there are only two solutions, one can find a second solution by starting along the path in the opposite direction for the second root. That is one must trace out the curve both with \(u_0 = [1, 0]' \) and \(u_0 = [-1, 0]' \).

Implementing a Solution

Probability-1 homotopy methods converge in a finite number of steps given a random initialization (finite-precision issues notwithstanding). This is significantly better than using Newton’s method to solve the problem, as a bad initialization can cause the estimator to diverge. The implementation of such algorithms simply consists of integrating a differential equation. For example, when considering the second homotopy in Section 3, the differential equation to be solved is the normalized nullspace basic vector, solving
\[\left[(z - a) - (\nabla f(x))' \right] \left[\frac{d \lambda}{ds} \right] = 0 \] (23)
as described in Subsection 3, where \(I_{N,N} \) is an \(N \times N \) identity matrix.

Initially, one would assume that a simple off-the-shelf algorithm for integrating differential equations, such as the \(\text{ode}45 \) or \(\text{ode}113 \) functions in Matlab, could be used to solve the homotopy problem. However, this is not the case, because the choice of \(p \) in Equation (17) depends on past derivative information that is not made available to the path-following algorithm. Additionally, even on problems that one could successfully solve by always assuming \(p \) to be \(+1 \), the difficulty arises that one is not integrating over a known span of \(s \): One does not know how far the optimal solution is from the (presumably very bad) initial estimate. All one can say is that the minimum possible distance to the optimal solution is 1, which would be the necessary change in \(\lambda \) if the initial estimate \(x_0 \) were the correct solution to the problem. When using \(\text{ode}45 \) in Matlab, one can integrate until \(\lambda \) is one using “events.” However, the algorithm is very slow.

A popular package for solving homotopy optimization problems is HOM4PS, which is described in [43] and whose website is at http://hom4ps.org. The package is used for a number of passive localization problems in [65] and for Doppler-only localization in [44]. Unfortunately, the package requires that the problem be specified in terms of a multivariate polynomial system, and thus is not suitable for some of the more general problems considered in this paper.\(^4\)

The solution chosen for use in this article is similar to that used in the HOMPACK Fortran function FIXPDF [71, 72].\(^5\) The HOMPACK package includes a number of different types of homotopy algorithms. In [71], it was observed that while sometimes more computationally demanding than alternative methods, the technique based on using an ordinary differential-equation solver in FIXPDF was the least likely to fail. Thus, such a method is chosen here. Note that the most commonly used routines for solving homotopy problems appear to be based on using a Newton’s method predictor-corrector algorithm. Examples include the routine in HOMPACK and the orbital estimation algorithm of [60].

The homotopy algorithm used in this paper is shown in Fig. 1 with necessary integrator interpolation constants given in Fig. 2. The algorithm is similar to the algorithm described in [67] and consists of running a differential-equation solver until one passes \(\lambda = 1 \) and then performing interpolation between the final two points of the differential-equation-solving routine to find the value of \(x \) when \(\lambda \) is exactly equal to one. However, as noted in [67], no matter how good a differential-equation solver is, the solution will slowly diverge from the constraint in (22) due to finite-precision errors. To ameliorate such problems, the algorithm of [67] recomputes the constant factor (in this instance \(a \)) every few iterations to enforce the constraint. For example, using the second homotopy, the constraint is given by
\[a = \frac{f(x) - z\lambda}{1 - \lambda}. \] (24)

In the implementation of Fig. 1, this reinitialization occurs after the number of iterations since the last reset (counted in \(n_{\text{SinceReset}} \) exceeds a constant \(\text{USERSTEP} \) number of steps. Also, if the algorithm passes \(\lambda = 1 \) and has not reset, then it is reset once before finishing to try to get the most precise solution.

Note that an alternative to using (24) to force the homotopy to hold is to never change \(a \), but rather to use Newton’s method to force the estimate back onto the path. The iteration for Newton’s method with the second homotopy is
\[x_k = x_{k-1} - \left(- (\nabla f(x)')^{-1} (a + \lambda (z - a) - f(x)) \right). \] (25)

This correction is used in the simulations. However, it is used (10 iterations) in place of (24) to force compliance with the homotopy condition when making plots of the homotopy curves. A correction like this (which also changes \(\lambda \)) forms the basis of the predictor-correction family of probability-1 homotopy algorithms, as described in [71].

In the HOMPACK routine FIXPDF [72], the differential-

\(^4\)While writing this paper, it was found that the links on the HOM4PS website to the latest stable version of HOM4PS, which is HOM4PS-2, did not work.

\(^5\)Note that code given in the collected algorithms of the Association for Computing Machinery (ACM) at http://netlib.org/toms/ is subject to a license agreement that precludes commercial use without permission from the ACM, thus greatly limiting the utility of the code library and presumably precluding the publication of any U.S. Government-developed algorithms in ACM Transactions on Mathematical Software as U.S. Government work is not subject to U.S. copyright. Thus, the actual HOMPACK Fortran routines were not used in any simulations for this paper. Additionally, the homotopy used in HOMPACK is different than the one used in this paper.
...the algorithm with the sign of Δa flipped should allow one to find a second solution if two solutions exist as would traveling farther along the path after passing the first occurrence of $\lambda = 1$.

Figure 1. A summary of the algorithm used for finding one solution via the probability-1 homotopy method. Two equal signs mean equality, one means assignment. Additional solutions can be found by starting the algorithm with different initial values (except for $\tau_{\text{StartReset}}$ and τ_{EndReset}). The constants for the Runge-Kutta interpolation $A \tilde{B}$, c, \tilde{a}_8, a_0, c_8, c_9, \tilde{b}_8, and b_9 are given in Fig. 2. The max and min functions operate the same way as in Matlab: Given two vectors, the functions respectively find the maximum/minimum values for corresponding elements; given a vector and a scalar, the functions find the maximum/minimum with respect to all elements and the scalar. The above description does not reflect the computational savings one could obtain due to the first-same-as-last feature of the Dormand-Prince embedded Runge-Kutta pair. Also, the iterative computation of the K matrix can be performed more efficiently than written. The $\cdot | \cdot$ operator is the absolute value and it operates element-by-element. User-provided constants other than Δ_{MIN} are capitalized. The derivative d only takes s as a parameter in order to have the same format that typical Runge-Kutta algorithms require. However, since the derivative does not actually depend on s, that parameter can be discarded. The dependence on n in the derivative computation reflects the need to avoid backtracking. The initial value of Δa is arbitrary but given no additional prior information should be less than 1 (the distance traveled in λ if x_0 is correct). Initializing the algorithm with the sign of Δ_{MIN} flipped should allow one to find a second solution if two solutions exist as would traveling farther along the path after passing the first occurrence of $\lambda = 1$.

...
equation solving routine used is that described in [57], where an Adams predictor-corrector algorithm is used. Here, the embedded Dormand-Prince Runge-Kutta RK5(4)7FM algorithm of [26] is chosen, as it is simpler to implement, and Runge-Kutta (RK) methods have largely supplanted predictor-corrector methods nowadays. The Dormand-Prince pair has associated fourth- and fifth-order interpolation routines given in [27, Ch. 6.5]. The notation RK5(4)7FM can be decoded as an RK method where the primary polynomial order is 5 but the secondary order (for determining the step size to use) is 4. The algorithm requires 7 evaluations of the derivative (in this case the \(u \) vector in (17)) per integration step, and \(F \) denotes the fact that the last function evaluation of the past step is the first function evaluation of the next step, allowing one to avoid an extra function evaluation after the first step. The \(M \) indicates that the algorithm was developed with the objective of minimizing a certain error norm. The algorithm is embedded, because results for computing the primary-order solution are reused when computing the secondary-order solution are reused when computing the primary-order solution are reused when computing the step size in the implementation of the homotopy algorithm in Fig. 1. The embedded Runge-Kutta step is from [26] and the associated fifth-order interpolation routine is from [27, Ch. 6.5].

The step size in the implementation of the homotopy algorithm is determined using the Fehlberg method, which requires estimates from both orders of the Dormand-Prince pair at each step. The Fehlberg method is described simply in [9, Ch. 5.5] and involves the assumption that the error in the estimate is proportional to the difference between the primary and secondary orders of the Runge-Kutta methods. However, the implementation shown in Fig. 1 uses constants called \(\text{ABSTOL} \) and \(\text{RELTOL} \) to compare the value \(\epsilon \) to a relative tolerance (a fraction of the parameter size) or to an absolute tolerance, if the parameter becomes too small. Generally, \(\text{ABSTOL} < \text{RELTOL} \). The error estimate used in [9, Ch. 5.5] uses only an absolute tolerance. However, the Fehlberg step-size correction formula is the same as in [9, Ch. 5.5], with the following ad-hoc changes:

1. The step size is not allowed to increase by more than a factor of 10, to address issues if \(\epsilon \approx 0 \).
2. The step size is not allowed to decrease by more than a factor of 10 the first time a step is rejected, to avoid taking too small a step.
3. The step size is halved rather than using Fehlberg’s routine after the first rejection, so as to avoid the case where Fehlberg’s reduction is too small.

For the simulations in this article, the following values were used for the constants needed in the algorithm, unless otherwise specified:

- \(\text{RELTOL} = 10^{-8} \)
- \(\text{ABSTOL} = 10^{-10} \)
- \(\text{MAXITER} = 512 \)
- \(\text{MAXITER}_{\text{Newton}} = 25 \)
- \(\text{RESETSTEP} = 0 \)
- \(\text{TOL}_{\lambda} = 10^{-8} \)

Note that the implementation of the homotopy solver in HOMPACK [72], terminates with a failure if the \(\lambda \) term ever goes negative. However, it was noticed that with certain combinations of homotopies and problems \(\lambda \) can go negative while still on a valid path to the correct answer. Thus, the implementation used in this paper allows \(\lambda \) to take on negative values. Moreover, in problems with exactly two real solutions, one must allow \(\lambda \) to be negative in order to get the second solution by starting in the opposite direction along the path; that is, starting with \(\text{d}u/\text{d}x = [-1, 0]^T \).

Table: Dormand-Prince RK5(4)7FM 5th-Order Interpolation Constants

\(a_k \)	5207 & 0 & 92 & -79 & 53217 & 11 & 4 & 0 & 0
\(a_0 \)	48000 & 795 & 960 & 8480000 & 300 & 125
\(c_k \)	9017 & 318 & -3072 & 108544 & 192 & 125

Table: Dormand-Prince RK5(4)7FM 5th-Order Interpolation Constants

| \(b^{(5)} \) | 57600 & 16005 & 640 & 339200 & 2100 & 40 |
| \(b^{(4)} \) | 5179 & 7571 & 393 & 92097 & 187 & 1 |

Figure 2. The constants that are used in the Runge-Kutta step and the interpolation routine in the homotopy algorithm in Fig. 1. The embedded Runge-Kutta step is from [26] and the associated fifth-order interpolation routine is from [27, Ch. 6.5].
4. Bistatic Range-Only Track Initiation

The Scenario

The first scenario considered is the problem of bistatic range-only track initiation. In this scenario, as well as in all of the subsequent ones, the effects of light-time are ignored. That is, the motion of the target in the time-interval between when a pulse was transmitted from the transmitter to when it hit the target is assumed negligible. Additionally the motion of the target in the interval between when the pulse is scattered by the target to when it is picked up by the receiver is also ignored. These are reasonable assumptions except for certain times when tracking orbital objects. Issues concerning the breakdown of traditional tracking algorithms due to light-time uncertainty are discussed in [18].

The problem of bistatic range-only track initiation is addressed in the context of passive tracking in [23]. However, the solution involves converting multiple simultaneous bistatic range measurements into a Cartesian position. However, as one would expect the target detection probability to be particularly low in passive applications, one would assume that it is generally not ideal to require that multiple receivers simultaneously observe the target in order to start a track. Thus, the primary focus of this scenario is the instances where few or none of the measurements are simultaneous.

In order to handle non-simultaneous measurements, a target dynamic model must be assumed. In this case, a constant-velocity motion model, such as is described in [2, Ch. 6.2.2] is used. The model is

\[x_{k+1} = F_k x_k \]

where \(x \) is the target state and \(k \) indicates the discrete-time step (step times coincide with measurements). The target state consists of Cartesian position and velocity components and is ordered \(x = [x, y, z, dx/dt, dy/dt, dz/dt]^T \). The matrix \(F \) is the state transition matrix and is

\[
F_k = \begin{bmatrix}
1 & 0 & 0 & T_k & 0 & 0 \\
0 & 1 & 0 & 0 & T_k & 0 \\
0 & 0 & 1 & 0 & 0 & T_k \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

(27)

where \(T_k \) is the time interval between discrete step \(k \) and step \(k + 1 \). The position components can be extracted by multiplying by the matrix \(H \) as

\[
r_{k}^{\text{Tar}} = H x_k
\]

where

\[
H = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

(29)

Because there is no process noise in the model, it is simple to propagate the target state being estimated to any time when there is an observation. In the discussion below and in the simulations, the state is at time \(k = 1 \). For a transmitter at time \(k \) at position \(r_{k}^{\text{Tar}} \) and a receiver at position \(r_{k}^{\text{Rx}} \), the bistatic range is

\[
r_k = \| r_{k}^{\text{Rx}} - r_{k}^{\text{Tar}} \| + \| r_{k}^{\text{Rx}} - r_{k}^{\text{Tar}} \|
\]

(30)

where

\[
r_{k}^{\text{Tar}} = \begin{bmatrix}
H x_1 \\
H F_1 x_1 \\
H F_2 x_1 \end{bmatrix} \quad \text{For } k = 1
\]

\[
r_{k}^{\text{Tar}} = \begin{bmatrix}
H \left(\sum_{i=1}^{N-1} F_i \right) x_1 \\
\end{bmatrix} \quad \text{For } k = N
\]

(31)

and where \(x_1 \) is the target state at the time of the first measurement. Similar equations can be derived by flipping the sign of \(T_k \) and reversing the order of \(k \) in the equations if one desires to express \(r_{k}^{\text{Tar}} \) in terms of \(x_N \), which can be more useful for recursive tracking applications.

The function \(f(x) \) in the homotopy method for this problem is \(f(x) = [r_1, r_2, \ldots, r_N]^T \). The homotopy method of Section 3 requires partial derivatives that are assembled into the matrix \(\nabla f(x)' \) in (7), for which this model can be explicitly solved. The partial derivative with respect to component \(x_p \) of \(x \) is

\[
\frac{\partial r_k}{\partial x_p} = \frac{(r_{k}^{\text{Tar}} - r_{k}^{\text{Rx}})'}{ \| r_{k}^{\text{Tar}} - r_{k}^{\text{Rx}} \| } + \frac{(r_{k}^{\text{Tar}} - r_{k}^{\text{Rx}})'}{ \| r_{k}^{\text{Tar}} - r_{k}^{\text{Rx}} \| } \frac{\partial r_{k}^{\text{Rx}}}{\partial x_p}
\]

(32)

where

\[
\frac{\partial r_{k}^{\text{Tar}}}{\partial x_p} = \begin{bmatrix}
H \frac{\partial x_1}{\partial x_p} \\
H F_1 \frac{\partial x_1}{\partial x_p} \\
\vdots \\
H \left(\sum_{i=0}^{N-1} F_i \right) \frac{\partial x_1}{\partial x_p} \\
\end{bmatrix} \quad \text{For } k = 1
\]

(33)

Note that \(\frac{\partial x_1}{\partial x_p} \) is a vector of zeros with a 1 in the place of component \(x_p \). For a general \(F_k \) matrix, the order of the multiplications in the general product in (33) matters. In the problem at hand, the successive multiplications are equivalent to forming an \(F \) matrix as in (27) except \(T_k \) is replaced with the sum of the different \(T_i \) values of the different \(F_k \) matrices that are multiplied together.

Equations similar to those given above are necessary for solving the problem of localizing a target given three simultaneous bistatic range measurements. Initially, the use of a homotopy method to solve such a problem would appear to be pointless given that an explicit solution (with an approximate covariance matrix) is given in [49]. However, as shall be demonstrated, the homotopy method appears to be less susceptible to finite-precision errors and the use of cubature integration produces a more statistically consistent covariance matrix.
1. All sensors are located in the same plane. Thus, their probability-1 homotopy method is more robust.

The probability-1 homotopy algorithm described in Fig. 1 provides a single solution. If run with the sign of \(\frac{dV}{dx} \) flipped, it might provide a second solution. However, in Scenario 2, no solution was obtained when the algorithm was run in the direction of decreasing \(\lambda \). Rather, to obtain the second solution, one must continue after reaching the \(\lambda = 1 \) point and search for a second crossing of the \(\lambda = 1 \) threshold. Thus, the method used to obtain all solutions is to attempt to obtain two solutions in either direction. However, it is possible that one obtains up to two solutions in both directions (4 total). This is not because the problem has four solutions, but because the homotopy doubles back and the extra solutions are within finite-precision bounds of other solutions. Thus, for all examples in this paper, a solution had to be at least 10 m away from an existing solution to be declared unique.

Table 1 lists the position estimates obtained by the spherical-intersection routine as well as the probability-1 homotopy method given noise-free bistatic range measurements from Sensors 1 through 3 in Fig. 3 in each of the scenarios. The summed absolute difference between the ranges obtained with the estimates and the true ranges are also provided. It can be seen that the spherical-intersection algorithm does extremely poorly in the first scenario, where a pseudoinverse had to be at least \(10 \) m away from an existing solution to be declared unique.

Figure 4 shows the components of the path that is followed by the homotopy method when finding the solutions for the first scenario. It can be seen that the homotopy curves form closed loops that pass through all of the solutions. The ability of a single homotopy curve to provide all solutions is useful and is utilized, for example, in [60] to find all solutions to the bistatic range-only orbit determination problem.

Now the problem of obtaining an unbiased estimate of the target location and an accurate covariance matrix given noisy measurements, is considered. The spherical-intersection algorithm of [49] generates a covariance matrix based on a Taylor series approximation. This is chosen as a baseline for comparison to other methods. Also, only the third scenario is considered. Though two solutions are obtained each time, only the first solution with a positive \(z \)-coordinate is used. In practice, if the sensors remain on or near the ground, there should not be any ambiguity as to the solution to use. It is assumed that the range measurements are corrupted with independent Gaussian noise having a standard deviation of 10 m. Figure 5 plots the root-mean-squared error (RMSE) and the average normalized estimation-error squared (ANEES) of the estimates for 500 Monte-Carlo runs as a function of the \(y \) value of the target location. The ANEES is a measure of
how consistent the covariance matrix is and is discussed in [14]. It can be seen in Fig. 5a that the estimation error of the spherical-intersection method is worse than that of the probability-1 homotopy method. However, the estimates from the spherical-intersection method might still be usable if it were not for the covariance estimate being extremely bad. The NEES of the spherical-intersection algorithm does not fit on the scale of the plot in Fig. 5b. On the other hand, the combination probability-1 homotopy method with a cubature method produces consistent results. When the same algorithms were run using the sensor choice of Scenario 2, the difference between the probability-1 homotopy algorithm and the spherical-intersection method become significantly smaller (not shown).

Non-Simultaneous Bistatic Range-Only Track Initiation

The scenario of Fig. 3 is used again for the problem of non-simultaneous bistatic range-only track initiation. Here, measurements are taken $T_k = 10$ s apart for all detections. Whereas the first sensor in Fig. 3 always broadcasts, the receiving sensor changes in the order $2, 3, 4, 2, 3, 4$. As all sensors except Sensor 1 are moving, the receivers are not in the same place at the time of their second measurement. All sensors are chosen to be at an altitude of $z = 0$ (Scenario 1 of the previous subsection). In order to demonstrate the algorithm, the target is only considered at the initial state in the plot. An initial estimate of $x_0 = [10\, m, 10\, m, 10\, m]^T$ is used with the homotopy algorithm. Table 2 lists the two solutions obtained from the probability-1 homotopy method given error-free range estimates. Unlike in the triangulation case, both solutions have positive values of z. Therefore, finding the correct solution is more difficult, though it could be made simpler using Doppler information.

To demonstrate the use of the combination of the probability-1 homotopy method with cubature integration, the target is given with a true initial state of $x = [-20\, km, y, 7\, km, 0, 0, -150\, m/s]^T$, where y ranges from 20 km to 50 km. A total of 25 Monte-Carlo runs were performed. Each time, the algorithm was run it yielded two solutions. Solutions obtained using the same initial conditions (i.e. using the same value of $\frac{dx}{dt}$ initially and arriving in the same order when multiple solutions along a single path were found) were assumed to be the same across cubature points.

Solutions were associated across subsequent Monte-Carlo runs by pairing the ones with the smallest summed Mahalanobis distances between the current and previous Monte-Carlo run. That is, given current state estimates x_1 and x_2, the criteria was used to find the best match.

Table 1. The two estimates obtained using the probability-1 homotopy method and the spherical-intersection method to localize a target given 3 error-free bistatic measurements for each of the three scenarios of Subsection 4. The summed absolute errors of the ranges implied by the solutions are also compared to the ranges due to the true target (located at $(−20\, km, 100\, km, 7\, km)$). Due to finite-precision problems and issues regarding matrix singularity, the simple explicit spherical-intersection algorithm performs notably worse than the probability-1 homotopy method. All computations were obtained using double-precision arithmetic. In all instances, an (extremely bad) initial estimate of $x_0 = [10\, m, 10\, m, 10\, m]^T$ was used to initialize the homotopy method.

Algorithm	x	y	z	Summed Range Error
Probability-1	$-20.000\, km$	$100.00\, km$	$7.0000\, km$	$71.847\, \mu m$
Spherical Intersection	$-24.508\, km$	$-79.364\, km$	$0\, km$	$38.319\, km$
Scenario 1	$-19.993\, km$	$100.276\, km$	$0\, km$	$59.000\, m$
Probability-1	$-20.000\, km$	$100.00\, km$	$7.000\, km$	$20.094\, \mu m$
Spherical Intersection	$-20.000\, km$	$99.999\, km$	$6.9989\, km$	$4.1072\, \mu m$
Scenario 2	$-20.000\, km$	$100.00\, km$	$-6.9800\, km$	$8.4556\, \mu m$
Probability-1	$-19.984\, km$	$99.938\, km$	$6.9272\, km$	$406.86\, m$
Spherical Intersection	$-20.035\, km$	$99.036\, km$	$-15.015\, km$	$881.89\, m$

Figure 4. The evolution of the estimates in the probability-1 homotopy method for finding the two solutions of the noise-free version of Scenario 1 of Subsection 4. The (extremely bad) initial estimate of $x_0 = [10\, m, 10\, m, 10\, m]^T$ is used. The plot traces out the evolution of each of the coordinates as a function of λ. The solution follows a closed loop in homotopy space.

The ANEES is a quick method of observing covariance matrix consistency. However, it has its shortcomings. A more thorough analysis would make use of more advanced covariance consistency measures such as the noncredibility index and the inclination indicator of [46].
The combination probability-1 homotopy method/cubature integration produced consistent results, whereas the Taylor series-based covariance matrix for the spherical-intersection method was extremely large (from 181.76 to 1443.2), outside of the bounds of the plot. The initial estimate for the probability-1 homotopy method was fixed to \(\hat{x}_0 = [10 \text{ m}, 10 \text{ m}, 10 \text{ m}]' \).

Table 2. The two target state solutions obtained using the probability-1 homotopy algorithm with noise-free bistatic range-only measurements in the problem of Subsection 4. The summed absolute errors of the ranges implied by the solutions are also compared to the ranges due to the true target (with a state of \(\hat{x}_0 = [10 \text{ m}, 10 \text{ m}, 10 \text{ m}, 10 \text{ m/s}, 10 \text{ m/s}, 10 \text{ m/s}]' \)). Their small size indicates that the solutions are both valid; the first solution is clearly the correct one. Attempts to continue farther along the solution curve produce repeats of these, indicating that the homotopy forms a closed loop.

\[
\begin{array}{cccccc}
\hat{x}_1 & \hat{y}_1 & \hat{z}_1 & \hat{x}_2 & \hat{y}_2 & \hat{z}_2 & \text{Summed Range Error} \\
-20.000 \text{ km} & 100.00 \text{ km} & 7.0000 \text{ km} & 16.396 \text{ nm/s} & 24.752 \text{ nm/s} & -150.00 \text{ m/s} & 2.2849 \mu \text{m} \\
-19.867 \text{ km} & 100.28 \text{ km} & 2.7653 \text{ km} & -6.5607 \text{ m/s} & -10.390 \text{ m/s} & -190.04 \text{ m/s} & 2.2039 \mu \text{m}
\end{array}
\]

\[\text{cost} = (\hat{x}_i - \hat{x}_1^{\text{prev}}) (\mathbf{P}_1 + \mathbf{b}_1^{\text{prev}})^{-1} (\hat{x}_i - \hat{x}_1^{\text{prev}}) + (\hat{x}_j - \hat{x}_2^{\text{prev}}) (\mathbf{P}_2 + \mathbf{b}_2^{\text{prev}})^{-1} (\hat{x}_j - \hat{x}_2^{\text{prev}}) \quad \text{(34)}\]

where the terms with the superscript “prev” are the estimates from the previous Monte-Carlo run, and the assignment of \(i \) and \(j \) to 1 and 2 changes the cost. Thus, if the lowest cost is the one including the term \(\hat{x}_1 - \hat{x}_1^{\text{prev}} \), then the current Monte-Carlo run is assigned in the same order as the last one; otherwise it is flipped.

Figure 6 shows the RMSE and the NEES of the simulations with their 99.96% confidence regions based on the covariance matrix obtained by cubature integration, assuming that the estimates are Gaussian distributed. Twenty-five Monte-Carlo runs were performed. Figure 7 shows plots of the average location and confidence region of the estimates. The relationship between the covariance matrices and ellipsoid confidence regions is explained in [3, Ch. 2.3.2].

Although the algorithm was able to start tracks at the points used in Fig. 7, difficulties arose at some other points due to the use of a non-random initialization. Consider, for example, the observation vector

\[
\mathbf{r} = \begin{bmatrix} 6.54939571733673' \\
3.39755887761309' \\
6.041497354208824' \\
6.408764048245604' \\
3.185113537131574' \\
5.987761763930806' \\
\end{bmatrix} \times 10^4 \text{ m.} \quad \text{(35)}
\]

This vector arose in a simulation when running the probability-1 homotopy method on a cubic point originating from a noisy measurement in a scenario where \(y = 1.11 \times 10^4 \text{ m.} \) The probability-1 homotopy algorithm, described in Section 3, failed to find a solution. Yet, the plot of the homotopy curve shown in Fig. 8 appears to show two valid solutions. However, the curve never actually touches the \(\lambda = 1 \) point, most likely due to the initialization not being good enough and/or finite-precision errors. When run...
Figure 6. The RMSE and NEES of the estimate (of the two solutions) closest to the true estimate for the range-only track-initiation (3D position and velocity) problem. The true-target state was always $x = [-20 \text{ km}, y, 7 \text{ km}, 0, 0, -150 \text{ m/s}]^T$, where y was varied. The bistatic range measurements (taken as described in the text) always had a standard deviation of 10 m and were corrupted with Gaussian noise. The sensors used are as described in the text. 25 Monte-Carlo runs were performed. The horizontal lines are the 95% confidence region of the NEES. It can be seen that the results are statistically consistent with the covariance matrix.

Figure 7. The two solutions obtained (position components shown in 2D) for the multistatic non-simultaneous range-only track-initiation (3D position and velocity) problem for different y values of the true solutions using the combined cubature and probability-1 homotopy methods averaged over 25 Monte-Carlo runs. The blue solutions (left) are associated with the true solution and the red (right) are corresponding ghost solutions that would have to be eliminated through further track filtering or using additional measurement components, such as Doppler. The ellipses represent the 99.97% confidence regions based on the obtained covariance matrix and assuming a Gaussian distribution for the estimates. The same Monte-Carlo runs as used in Fig. 6 were used here.

Figure 8. A plot of the evolution of the three Cartesian position coordinates given the initial conditions for the example where the probability-1 homotopy algorithm as described in the text failed for the non-simultaneous bistatic range-only track-initiation problem. The initial state was $x_0 = [10 \text{ m}, 10 \text{ m}, 10 \text{ m/s}, 10 \text{ m/s}, 10 \text{ m/s}]^T$. It looks like the homotopy curves cross the $\lambda = 1$ boundary twice, corresponding to the two solutions that one would expect. However, the curves only get close without getting within TOL of 1. This is due to the use of a poor (non-random) initialization. Using the truncated random estimate of $x_0 = [2638 \text{ m}, 1455 \text{ m}, 1360 \text{ m}, 8692 \text{ m/s}, 5797 \text{ m/s}, 5498 \text{ m/s}]^T$, the algorithm successfully produces two reasonable estimates when using TOL$\lambda = 10^{-5}$.

Figure 8. A plot of the evolution of the three Cartesian position coordinates given the initial conditions for the example where the probability-1 homotopy algorithm as described in the text failed for the non-simultaneous bistatic range-only track-initiation problem. The initial state was $x_0 = [10 \text{ m}, 10 \text{ m}, 10 \text{ m/s}, 10 \text{ m/s}, 10 \text{ m/s}]^T$. It looks like the homotopy curves cross the $\lambda = 1$ boundary twice, corresponding to the two solutions that one would expect. However, the curves only get close without getting within TOL of 1. This is due to the use of a poor (non-random) initialization. Using the truncated random estimate of $x_0 = [2638 \text{ m}, 1455 \text{ m}, 1360 \text{ m}, 8692 \text{ m/s}, 5797 \text{ m/s}, 5498 \text{ m/s}]^T$, the algorithm successfully produces two reasonable estimates when using TOL$\lambda = 10^{-5}$.

12
using a random initialization and different parameters (as described in the caption to Fig. 8), the algorithm succeeded. Section 5 demonstrates a much more egregious example of a poor, non-random initialization causing the algorithm to fail. Probability-1 homotopy methods can fail for initializations chosen in certain finite regions, which is why a robust algorithm might extend the present algorithm with multiple initializations.

5. BISTATIC TIME-DELAY-OF-ARRIVAL-ONLY TRACK INITIATION

The Scenario

The problem of track initiation using multistatic TDOA measurements is similar to that of range-only initiation, but has other applications. In general, TDOA measurements are useful when passively tracking emitting objects, because one cannot obtain a range measurement when the time of target transmission. TDOA-based localization (multilateration) is particularly useful in detecting attempts to disrupt civilian air traffic control systems that rely on Automatic Dependent Surveillance-Broadcast (ADS-B) information sent out by transponders on aircraft.

ADS-B signals identify aircraft and contain information regarding the location of aircraft based on global navigation satellite system (GNSS) signals received by the aircraft. However, as noted in [13, 56], the system can be easily disrupted using hardware costing under $2,000 U.S. to create false targets. Thus, as noted in [58, 61], a common method to make the system more robust is to use multiple simultaneous TDOA measurements to localize the source of an ADS-B message (multilateration) and verify that the estimated location is within a sufficient error tolerance of the location reported by the transponder.

In [29], an explicit closed-form solution to the multilateration problem is provided. The application of cubature integration with probability-1 homotopy methods can extend the applicability of the multilateration solution to more complex environments. For example, there has long been interest in satellite-based transponder tracking of aircraft as evinced by patents filed prior to the advent of ADS-B [21] and by the patent [59] filed after the advent of ADS-B related to satellite multilateration techniques. Using a ray-traced atmospheric model, one can go beyond such work to account for atmospheric refraction and delay to get a more accurate measurement model than the geometric models used in [29] and standard texts on multilateration for aviation. Though an explicit solution to such models would not be practical, a combination of a probability-1 homotopy method and cubature integration could be used to get an unbiased estimate of the source location along with a confidence estimate in the form of a covariance matrix. This section demonstrates the basic principle of this idea in terms of the same geometric model used in [29], as the development of a full ray-traced propagation model is beyond the scope of this article.

We wish to consider both the multilateration case, which is in the literature, as well as the case where not enough simultaneous TDOA measurements are available at one time (for example, one sensor has a missed detection). In the latter case, TDOA measurements from multiple times are used to get a complete state vector consisting of position and velocity. This is a generalization of the TDOA positioning problem that is solved using a homotopy method in [65]. Such an example might arise in aircraft surveillance in the case when an aircraft crosses between the edges of multiple surveillance regions. The formulation of the problem allows the sensors to move as well as the target, making it general enough to be representative of a satellite-surveillance scenario. As was the case in Section 4, a constant-velocity model is assumed for the aircraft.

The model for a TDOA measurement where the time difference is taken between sensor a located at r_k^a at discrete time k and sensor b located at r_k^b is

$$\Delta t_{k}^{(a,b)} = \frac{1}{c} \left(\| r_k^a - r_{Tar} \| - \| r_k^b - r_{Tar} \| \right)$$

(36)

where c is the (assumed-constant, i.e. no refraction) speed of propagation of the signal (e.g. the speed of light) and r_{Tar} is the location of the target at time k. For simplicity, it is assumed that the delays are multiplied by c to get range differences

$$\Delta r_{k}^{(a,b)} = \| r_k^a - r_{Tar} \| - \| r_k^b - r_{Tar} \|.$$

(37)

The partial derivative of a range difference with respect to a component x_p of a target state x (which can consist of position and velocity components) is

$$\frac{\partial \Delta r_{k}^{(a,b)}}{\partial x_p} = \frac{\partial}{\partial x_p} \left(\| r_k^a - r_{Tar} \| - \| r_k^b - r_{Tar} \| \right).$$

(38)

The partial derivatives $\frac{\partial r_{Tar}}{\partial x_p}$ are the same as in (33) in Section 4.

Simulation Example

The problem of track initiation using 6 non-simultaneous TDOA measurements is considered. The simulation scenario is the same as Scenario 1 used in Section 4. Ship 1 is always used as the receiver against which all time delays are references. Measurements from the other ships come $T_{k}^{1} = 1$ second apart in time. The other ships receive in the order 2,3,4,2,3,4. No simultaneously received measurements from the other ships are considered. The simulation is run using the pseudo-range values of (37) with a measurement standard deviation of 10 m.

As in Section 4, the algorithm is run with true state vectors of $x = [-20 \text{ km}, y, 7 \text{ km}, 0, 0, -150 \text{ m/s}]$, where y was varied. Unlike in Section 4, the probability-1 homotopy algorithm performs poorly using a constant initialization of $x_0 = [10 \text{ m}, 10 \text{ m}, 10 \text{ m/s}, 10 \text{ m/s}, 10 \text{ m/s}]$. Thus, the algorithm was run with an initialization of $x_0^{(0)} = [10 \text{ m}, 10 \text{ m}, 10 \text{ m/s}, 0 \text{ m/s}, 0 \text{ m/s}]$, and if that failed to provide two solutions, then $x_0^{(1)} = [10 \text{ km}, 10 \text{ km}, 0 \text{ m/s}, 0 \text{ m/s}, 0 \text{ m/s}]$ was used. Fig. 9 shows the results of the algorithm for a single Monte-Carlo run.

When run as described using two initializations, the algorithm appears to be less likely to fail than the range-only non-simultaneous case of Section 4. However, in this instance it is enlightening to see how the homotopy algorithm fails with the two different initializations used.
random initialization

1 homotopy algorithms converge with probability-1 making the estimation problem quite simple. Probability-regions that are bad initializations, as illustrated in this case.

Figure 10 shows the homotopy curves when the probability-1 homotopy method is initialized with two different initializations. In the first instance, the homotopy curve is so far from the initial guess that the failure to cross the curve twice, making the estimation problem quite simple. Probability-1 homotopy algorithms converge with probability-1 with a random initialization. This means there can exist certain regions that are bad initializations, as illustrated in this case.

6. BISTATIC TDOA-ONLY SURFACE-WAVE TARGET LOCALIZATION

The Scenario

Consider the case of the following set of pseudo-range measurements:

\[
\begin{bmatrix}
-0.380474297506655 \\
-2.3614362877573945 \\
1.88908958333787 \\
-0.38383067594687 \\
-2.384769818163341 \\
1.894406704554572
\end{bmatrix} \times 10^4 \text{m.} \tag{39}
\]

The HFSW measurement models used in much of the tracking literature are generally low fidelity, becoming increasingly worse as the distance from the radars increases. For example, in [1, 7, 8, 25, 32, 51, 55], HFSW radars are modeled as providing range and direction-of-arrival measurements as two polar coordinates in a local polar-coordinate system residing in the local tangent plane to the Earth. The papers do not address how such an approximation could be mapped to actual locations on the surface of the Earth.

Much of the literature on the propagation of electromagnetic waves over the Earth’s surface focuses on how inhomogeneities in the composition of the surface diffraction waves (for example, how radio is received over hills), such as in [66]. However, the literature on surface waves across objects other than the Earth does employ forms of ray tracing, which would be amenable to use in target-tracking algorithms. For example, in [5] it is demonstrated that under certain assumptions electromagnetic waves moving across a curved surface can be traced as rays whose propagation follows Fermat’s principle of least time. Fermat’s principle of least time states that the time taken for a photon to travel between two points will be a local minimum when considering possible trajectories. Fermat’s principle was used in [15] to derive a ray-tracing measurement model for observing airborne targets in the absence of surface-wave effects. The principle shall be used here for modeling surface-wave measurements.

Assuming a constant propagation speed across the surface of an ideal, flat ocean on an ellipsoidal Earth, the solution to the surface-wave propagation problem is the same as the direct or indirect geodetic problems of navigation, depending on exactly which type of measurement problem one wishes to solve. The direct geodetic problem of navigation answers the question where one will end up after traveling a certain distance on the straightest possible path on the curved Earth, given an initial heading. As demonstrated in [20], the solution is directly tied to methods for simulating maneuvering targets on or above the curved Earth. The indirect geodetic problem, on the other hand, takes two points on the surface of the Earth and answers the question of how far and in which initial direction one must travel to get from one point to the other along the shortest path.

The indirect geodetic problem can be efficiently solved using the algorithm described in [40, 41], which can be downloaded from http://geographiclib.sourceforge.net. The range returned by the solution to the indirect geodetic problem is the distance along the surface of the curved Earth from the target to the receiver. Denote the range obtained by solving the direct geodetic problem from the target to receiver \(a\) as \(r_{a\Tar}\). The TDOA of a signal from the target received by receiver \(a\) and \(b\), taking receiver \(b\) as the reference, is

\[
\Delta T^{(a,b)} = \frac{1}{c} \left(r^a_{\Tar} - r^b_{\Tar} \right) \tag{40}
\]

where \(c\) is the assumed-constant speed of propagation of the surface wave. For simulation purposes, it is assumed that...
and longitude (an ellipsoidal coordinate system). The refer-
ocean and had its state estimated directly in geodetic latitude
problem. The target was assumed to be on the surface of the

described in [40, 41] were used to solve the direct geodetic

Δ

defined in [24], which has a semi-major axis of

World Geodetic System 1984 (WGS84) reference ellipsoid

demonstrated on an example near Hawaii. The sea surface is

A Simulation Example

Thus numerical differentiation (as described in Appendix B)

Numerical differentiation necessary for the probability-1 ho-

mopy algorithm was performed using

Δ

is multiplied by c to get the pseudo-range difference

\[\Delta r^{(a,b)} = \left(r^a \{ r_{\text{Tar}} \} - r^b \{ r_{\text{Tar}} \} \right). \] (41)

The probability-1 homotopy algorithm of Section 3 requires
derivatives of the measurement function. However, the mea-
surement function in this instance is extremely nonlinear. Thus numerical differentiation (as described in Appendix B)
is used.

A Simulation Example

The use of the algorithm for surface-wave localization is
demonstrated on an example near Hawaii. The sea surface is
approximated as matching the U.S. Department of Defense’s
World Geodetic System 1984 (WGS84) reference ellipsoid
defined in [24], which has a semi-major axis of 6378137.0 m
and a flattening factor of 1/298.257223563. The algorithms
described in [40, 41] were used to solve the direct geodetic
problem. The target was assumed to be on the surface of the
ocean and had its state estimated directly in geodetic latitude
and longitude (an ellipsoidal coordinate system). The refer-
ence receiver was located on the island of Maui at 20.765382°
North latitude and −155.978592° East longitude (that is +155.978592° West longitude). The other receivers were
at latitude, longitude pairs of (20.231756°, −155.761268°) and
(20.126059°, −155.555275°), which are both on the island of
Hawaii. The true target was located at

\((5.19360°, −139.887397°), \) which is a geodetic distance of

approximately 1,728 km away from the radar on Maui.
Numerical differentiation necessary for the probability-1 ho-
motopy algorithm was performed using \(\epsilon = 1e − 4 \) radians
(the target state was computed in radians, not degrees). The
measurements were taken assuming a pseudorange standard
deviation of \(\sigma_r = 10 \text{ m} \). Averaging in latitude and longitude
in the cubature routine should be done accounting for the

spherical nature of the globe as described in [17], though the
effect does not matter much if one is far from the poles and
the ±180° longitude point.

Figure 11 shows the results of the combination of the
probability-1 homotopy algorithm and cubature integration
routine initialized with the point \((20.505977°, −155.883491°)
which lies between the islands of Maui and Hawaii. The algo-

rithm was able to successfully localize the target and provide

a reasonable covariance ellipse. The algorithm can actually
produce two solutions. However, the second solution appears
to always be on the other side of the globe. For example, in
this instance, the second solution produced by the combina-

tion probability-1 homotopy method and cubature integration
was \((−20.500898879499871°, 24.181575060002753°) \),
which is located in the South Atlantic. In general, it appears
that the solution obtained by starting with \(du/ds = [1, 0] \)’s
is going to be the one in the Pacific, so there should be no need
to search for additional solutions.

7. Recognizing More Difficult Problems

The great success of cubature integration coupled with
probability-1 homotopy methods for track initiation in the
previous sections when given a sufficiently random initial-
ization can make it seem as if the technique can be used
on almost any problem. However, due to finite-precision
issues, the structure and formulation of the problem can be
a major determining factor in whether the homotopy method
of Section 3 will succeed.

A simple example of how the formulation of a problem
cause problems with probability-1 homotopy methods
is exemplified by the two formulations of a problem taken
from Problem 3 of [37] involving kinetics in a stirred reactor,
which is used as an example in [53]. The first formulation of the problem is to find the zero of the scalar function (given $T > 0$)

$$f_1(T) = \frac{1}{T^2} e^{\frac{10500 + T}{T^4}} - 1.11 \times 10^{11}$$

(42)

where the necessary derivative with respect to T required to use the probability-1 homotopy method is

$$\frac{df_1(T)}{dT} = -2 \left(\frac{10500 + T}{T^4} \right) e^{\frac{10500}{T^4}}.$$

(43)

The second formulation of the same problem is

$$f_2(T) = 2T \ln(T) - 21000 + \ln \{1.11 \times 10^{11}\} T$$

(44)

where the derivative is

$$\frac{df_2(T)}{dT} = 2 + \ln \{1.11 \times 10^{11}\} + 2 \ln(T).$$

(45)

Solving the above two formulations of the same problem using the homotopy method presented in this paper with an initial guess of $T = 273.15$ yields a solution of approximately 376.6790 using f_1 and 551.7738 using f_2. The solution using f_2 is essentially correct within precision bounds, whereas the solution using f_1 is extremely bad. An examination of the steps within the algorithm shows that the tolerance bounds in f_1 are not sufficiently small to enforce the homotopy condition in (22) after each step. If the initial guess were taken to be $T = 10$, then the solution using f_1 would fail due to finite-precision errors causing a NaN value to arise, and the solution using f_2 would still succeed. Thus one can see that the scaling of a problem can greatly influence the accuracy and success of the algorithm.

While the scaling of the problem in the above example makes the finite-precision problems quite clear, other problems can be difficult due to the stiffness of the differential equations involved.

8. CONCLUSIONS

The combination of a probability-1 homotopy algorithm and cubature integration can solve unbiased measurement-conversion problems in scenarios for which no closed-form solution is available. This was demonstrated with the example of obtaining a position estimate with associated covariance matrix of a target on the ocean using only bistatic surface-wave TDOA measurements. Such a problem does

Note that double-precision is used in all simulations.
not appear to have been previously solved in the literature and can be increasingly used for passively detecting floating and shipborne surface-wave radars, which have been studied by numerous authors [6, 28, 39, 45]. Moreover, though the simulation did not model correlations between the measurement components, such correlations can be easily taken into account by modifying the covariance matrix used with the cubature points.

More detailed analyses were provided with the examples of bistatic range-only target localization and track initiation. It was demonstrated that bistatic range-only localization using a probability-1 homotopy method combined with cubature integration is more resilient in the face of finite-precision errors than a closed-form solution. Additionally, it produces significantly more consistent covariance matrices than methods of obtaining a covariance matrix based on a Taylor-series approximation.

Non-simultaneous bistatic range-only and TDOA-only track initiation (unbiased position and velocity estimation with an associated covariance matrix) were also successfully demonstrated. However, it was also shown that the use of hand-chosen non-random inputs can cause the algorithm to fail. The advantage in using a probability-1 homotopy algorithm to solve inverse problems is that it will converge with probability 1 given a random initial estimate. In practice, however, some difficulties can arise as there are occasionally degenerate scenarios, and some initial estimates can fail to converge. In the case of TDOA-only track initiation, multiple (extremely awful) deterministic initial estimates were chosen to assure convergence of the probability-1 homotopy algorithm (the convergence region of which is massively larger than Newton’s method).

This work appears to be the only published instance of complete track initiation using non-simultaneous range-only and TDOA-only measurements (i.e. not enough measurements are available at any one time to obtain a complete position estimate). Probability-1 homotopy methods are powerful in that they can find multiple solutions to a problem when reinitialized properly after finding a previous solution. The probability-1 homotopy algorithm used in this paper stands in contrast to that used for Doppler-only track initiation in [44] in that it does not require that the measurement model be polynomial, allowing for much more general models such as the surface-wave track-initiation example.

Probability-1 homotopy algorithms can also be used in situations where extra measurements are available if one uses the least-squares estimate instead of directly converting the measurement. An example of using a (polynomial-only) probability-1 method for solving such a least-squares problem is given in [65] for a problem given in multidimensional polynomial form. However, finite-precision errors and the presence of stiff differential equations can cause certain general problems (not considered here) to be more difficult to solve without resorting to extended-precision arithmetic and more sophisticated differential-equation integration routines.

All together, the combination of a probability-1 homotopy method with a cubature integration technique can form a powerful approach to target track initialization in very difficult scenarios.

ACKNOWLEDGEMENTS

This research is supported by the Office of Naval Research through the Naval Research Laboratory Base Program.

APPENDICES

A. FORMULAE FOR THE CUBATURE POINTS

This appendix summarizes the formulae for the cubature points used in this paper. The general fifth-order cubature points for approximating a $d > 2$-dimensional multivariate standard normal ($\mathcal{N}\{0, 1\}$) distribution given in [14] (but originally taken from [62, pg. 317, No. 5-3]) were used for the 3D localization problem of Section 4 and are reproduced here as

Fifth-Order Cubature Points and Weights

Weight (ω_i)	Point (ξ_i)
$\frac{1}{(d+2)^2}$	$[\pm a]$
$\frac{2}{(d-2)^2}$	$(\pm b, \pm b, \ldots, \pm b)$

The points are given as shown above, where

$$a = \sqrt{\frac{d + 2}{2}} \quad b = \sqrt{\frac{d + 2}{d - 2}}$$

and d is the dimensionality of the points generated. The \pm indicates that all possible combinations of negative and positive elements should be used. The bracket notation for the first set of points indicates that all possible vectors with that single nonzero element should be generated. There are $2d$ points of the first type and 2^d points of the second type. These points can be used for integrals involving an arbitrary Gaussian weighting with $d > 2$.

Note that 14 cubature points are necessary to evaluate a 3D integral. For evaluating a 6D integral, 76 cubature points would be needed. Thus, the alternative set of cubature points given in [14] (but originally from [47]) that require only 57 points were used. These are

Alternate Fifth-Order Cubature Points and Weights

Weight (ω_i)	Point (ξ_i)
$\frac{1}{(d+2)^2}$	0
$\frac{d^2(7-d)}{2(d+1)^2(d+2)^2}$	$\pm a_1 c_1 \forall 1 \leq i \leq (d+1)$
$\frac{2(d-1)^2}{(d+1)^2(d+2)^2}$	$\pm (a_i + a_j) c_2 \forall 1 \leq i < j \leq (d+1)$

where

$$c_1 = \sqrt{d + 2} \quad c_2 = \sqrt{\frac{d(d+2)}{2(d-1)}}$$

17
and there are \(d+1 \) \(d \)-dimensional \(\mathbf{a}_i \) vectors for \(i = 1 \) through \(i = d+1 \) of the form \(\mathbf{a}_i = [\mathbf{a}_i(1), \mathbf{a}_i(2), \ldots, \mathbf{a}_i(d)]' \) with

\[
\mathbf{a}_i(k) = \begin{cases}
\frac{d+1}{d(d-k+2)(d-k+1)} & \text{for } k < i, \\
\frac{(d+1)(d-i+1)}{d(d-i+2)} & \text{for } k = i, \\
0 & \text{otherwise}.
\end{cases}
\tag{48}
\]

There is one point from the first row in the table (the origin), \(2(d+1) \) points for the second row and \(d(d+1) \) points for the third row. These points and weights have been modified from their original form in [47] so that they can be used for integrals involving an arbitrary Gaussian weighting with \(d \geq 4 \).

For the surface-wave localization problem of Section 6, to be handle a \(d \geq 2 \)-dimensional standard normal distribution, the arbitrary-order cubature points and weights as described in Appendix D of [18] (originally obtained by combining the linear formula of [31] with the product rule of [62, Ch. 2]) are used. These are found as follows:

Arbitrary-Order Cubature Points and Weights

The procedure is to find an order \(k = 2m - 1 \) cubature formula where \(m \) is an integer.

1. First, find a scalar formula.
 Find the eigenvectors and eigenvalues of the \(m \times m \) matrix \(\mathbf{J} \)

\[
[J]_{ij} = \begin{cases}
\sqrt{i} & \text{if } j = i + 1, \\
\sqrt{j} & \text{if } i = j + 1, \\
0 & \text{otherwise.}
\end{cases}
\tag{49}
\]

using, for example, the \texttt{eig} command in Matlab. Let \(\mathbf{V} \) be the \(m \times m \) matrix where each column is an eigenvector and \(\mathbf{D} \) be a matrix where the diagonal elements are eigenvalues.

The \(i \)th eigenvalue corresponds to \(\tilde{\xi}_i \), which is the \(i \)th scalar cubature point, and the corresponding weight for the cubature point is the first element of the corresponding eigenvector \(\tilde{\mathbf{w}}_i \) \((\tilde{\mathbf{w}}_i = \mathbf{V}(1,i)^{-2} \) in Matlab notation.)

2. Next, find the multidimensional points. The \(j \)th multidimensional point and its corresponding weight are

\[
\omega_j = \prod_{i=1}^{m} \tilde{\omega}_{c_j(i)} \\
\xi_j = \begin{bmatrix} \tilde{\xi}_{c_j(1)} \\ \vdots \\ \tilde{\xi}_{c_j(d)} \end{bmatrix}.
\tag{50}
\]

where the indices \(c_j = [c_j(1), c_j(2), \ldots, c_j(d)]' \) form the \(j \)th permutation of \(m \) items in \(d \) slots. This begins with \(c_1 = [1, 1, \ldots, 1]' \). Given \(c_1 \ldots, c_d \) can be found using the following routine:

```matlab
curChoice=1;
c(curChoice)=c(curChoice)+1;
while(curChoice>m)
c(curChoice:-1:1)=1;
curChoice=curChoice+1;
c(curChoice)=c(curChoice)+1;
end
```

The above routine should not be passed the last possible value of \(c \) as it will read past the end of the vector.

To make the aforementioned cubature points and weights for the standard normal distribution suitable for use with an arbitrary \(\mathcal{N}(\mu, \Sigma) \) distribution, the weights are transformed as

\[
x^{(i)} = \mu + \Sigma \tilde{\xi}_i.
\tag{51}
\]

B. SIMPLE NUMERICAL DIFFERENTIATION

A number of the examples in this paper use models for which it would be difficult to derive explicit derivatives for the homotopy algorithm. Therefore, numerical differentiation is used. This appendix summarizes how central numerical differentiation routines of an arbitrary order can be derived.

In [9, Ch. 4.1], numerical differentiation formulae are derived via Lagrange interpolating polynomials and a number of low-order solutions are provided. The order of the derivative interpolation increases linearly with the number of points used. The solution can be generalized to an arbitrary number of points via Equation (4.2) of [9], which expresses the points as a first derivative of a specific Lagrange interpolating polynomial. For the purpose of this paper, the simple three-point central difference formula

\[
f'(x) \approx \frac{f(x + \epsilon) - f(x - \epsilon)}{2\epsilon} \tag{52}
\]

is used, where \(\epsilon \) is a small quantity. The error in the formula is \(O(\epsilon^2) \).

REFERENCES

[1] B. Balaji and Z. Ding, “A performance comparison of nonlinear filtering techniques based on recorded radar datasets,” in Proceedings of SPIE: Signal and Data Processing of Small Targets, vol. 7445, San Diego, CA, 2 Aug. 2009.

[2] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. New York: John Wiley and Sons, Inc, 2001.

[3] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion. Storrs, CT: YBS Publishing, 2011.

[4] C. R. Berger, M. Daun, and W. Koch, “Low-complexity track initialization from a small set of non-invertible measurements,” EURASIP Journal on Advances in Signal processing, vol. 2008, no. 142, Jan. 2008.

[5] M. V. Berry, “Attenuation and focusing of electromagnetic surface waves rounding gentle bends,” Journal of Physics A: Mathematical and General, vol. 8, no. 12, pp. 1952–1971, Dec. 1975.

[6] A. Bourges, R. Guivarc’h, B. Uguen, and R. Gillard, “High-frequency surface wave radar based on sea floating antenna concept,” IET Microwaves, Antennas, and Propagation, vol. 3, no. 8, pp. 1237–1244, Dec. 2009.

[7] P. Braca, R. Grasso, M. Vespe, S. Maresca, and J. Horstmann, “Application of the JPDA-UKF to HFSW radars for maritime situational awareness,” in Proceedings of the 15th International Conference on Information Fusion, Singapore, 7–12 Jul. 2012, pp. 2585–2592.
[8] P. Braca, M. Vespe, S. Maresca, and J. Horstmann, “A novel approach to high frequency radar ship tracking exploiting aspect diversity,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 Jul. 2012, pp. 6895–6898.

[9] R. L. Burden and J. D. Faires, Numerical Analysis, 9th ed. Boston, MA: Brooks/Cole, 2011.

[10] S. Choi, P. Willett, F. Daum, and J. Huang, “Discussion and application of the homotopy filter,” in Proceedings of SPIE: Signal Processing, Sensor Fusion, and Target Recognition XX, vol. 8050, Orlando, FL, 2011.

[11] S.-N. Chow, J. Mallet-Paret, and J. A. Yorke, “Finding zeroes of maps: Homotopy methods that are constructive with probability one,” Mathematics of Computation, vol. 32, no. 143, pp. 887–899, Jul. 1978.

[12] R. Cools, “An encyclopaedia of cubature formulas,” Journal of Complexity, vol. 19, no. 3, pp. 445–453, Jun. 2003.

[13] A. Costin and A. Francillon, “Ghost in the air(traffic): On insecurity of ADS-B protocol and practical attacks on ADS-B services,” in Proceedings of the Black Hat Security Conference, Las Vegas, NV, 24–26 Jul. 2012. [Online]. Available: https://media.blackhat.com/bh-us-12/Briefings/Costin/BF.US12_Costin_Ghosts_In_Air_WP.pdf

[14] D. F. Crouse, “Basic tracking using 3D monostatic and bistatic measurements,” IEEE Aerospace and Electronic Systems Magazine, vol. 29, no. 8, Part II, pp. 4–53, Aug. 2014.

[15] ———, “Basic tracking using 3D monostatic and bistatic measurements in refractive environments,” IEEE Aerospace and Electronic Systems Magazine, vol. 29, no. 8, Part II, pp. 54–75, Aug. 2014.

[16] ———, “Basic tracking using nonlinear continuous-time dynamic models,” IEEE Aerospace and Electronic Systems Magazine, vol. 30, no. 2, Part II, pp. 4–41, Feb. 2015.

[17] ———, “Cubature/ unscented/ sigma point Kalman filtering with angular measurement models,” in Proceedings of the 18th International Conference on Information Fusion, Washington, D.C., 6–9 Jul. 2015.

[18] ———, “On measurement-based light-time corrections for bistatic orbital debris tracking,” IEEE Transactions on Aerospace and Electronic Systems, 2015.

[19] ———, “An overview of major terrestrial, celestial, and temporal coordinate systems for target tracking,” Naval Research Laboratory, Tech. Rep., 2015.

[20] ———, “Simulating aerial targets in 3D accounting for the Earth’s curvature,” Journal of Advances in Information Fusion, 2015.

[21] R. P. Crow, “Combined ground and satellite system for global aircraft surveillance guidance and navigation,” U.S. Patent 5,627,546, May 6, 1997.

[22] F. Daum and J. Huang, “Particle flow for nonlinear filters, Bayesian decisions and transport,” in Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 Jul. 2013, pp. 1072–1079.

[23] M. Daun and C. R. Berger, “Track initialization in a multistatic DAB/DVB-T network,” in Proceedings of the 11th International Conference on Information Fusion, Cologne, Germany, 30 Jun. – 3 Jul. 2008, pp. 722–729.

[24] Department of Defense, “Department of Defense world geodetic system 1984: Its definition and relationships with local geodetic systems,” National Imagery and Mapping Agency, Tech. Rep. NGA.STND.0036_1.0.0_WGS84, 8 Jul. 2014. [Online]. Available: http://earth-info.nga.mil/GandG/publications/NGA_STND_0036_1_0_0_WGS84/NGA.STND.0036_1.0.0_WGS84.pdf

[25] Z. Ding, “Comparison of the EKF and the IMM estimator for HFSWR tracking applications,” in Proceedings of the International Radar Symposium, Wroclaw, Poland, 21–23 May 2008.

[26] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, Mar. 1980.

[27] J. R. Dormand, Numerical Methods for Differential Equations. Boca Raton: CRC Press, 1996.

[28] T. Fickenscher, G. A., J. Hinz, M. Holters, and U. Zöller, “MIMO surface wave radar using time staggered FMCE chirp signals,” in Proceedings of the 8th European Radar Conference, Manchester, United Kingdom, 12–14 Oct. 2011, pp. 69–72.

[29] M. D. Gillette and H. F. Silverman, “A linear closed-form algorithm for source localization from time-differences of arrival,” IEEE Signal Processing Letters, vol. 15, pp. 1–4, 2008.

[30] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. Baltimore, MD: The Johns Hopkins University Press, 2013.

[31] G. H. Golub and J. H. Welsh, “Calculation of Gauss quadrature rules,” Mathematics of Computation, vol. 23, pp. 221–230, 1969.

[32] Z. Gong-Jian, F. Tian-Jiao, Y. Chang-Jun, Q. Tai-Fan, and C. Nai-Gang, “Bi-station OTH radar locating and tracking using only range and doppler measurements,” in Proceedings of the International Conference on Computer Applications and Modeling, vol. 9, Taiyuan, Shanxi, China, 22–24 Oct. 2010, pp. V9–88–V9–92.

[33] R. H. Gooding, “On the solution of Lambert’s orbital boundary-value problem,” Royal Aerospace Executive, Procurement Executive, Ministry of Defence, Farnborough, Hants, United Kingdom, Tech. Rep. 88027, Apr. 1988.

[34] ———, “A procedure for the solution of Lambert’s orbital boundary-value problem,” Celestial Mechanics and Dynamical Astronomy, vol. 48, no. 2, pp. 145–165, 1990.

[35] ———, “A new procedure for orbit determination based on three lines of sight (angles only),” Royal Aerospace Executive, Procurement Executive, Ministry of Defence, Farnborough, Hants, United Kingdom, Tech. Rep. 93004, Apr. 1993.

[36] ———, “A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight,” Celestial Mechanics and Dynamical Astronomy, vol. 66, no. 4, pp. 387–423, 1997.

[37] K. S. Gritton, J. D. Seader, and W.-J. Lin, “Global homotopy continuation procedures for seeking all roots of a nonlinear equation,” Computers and Chemical Engineering, vol. 25, no. 7, pp. 1003–1019, Aug. 2001.
[38] A. Hart and S. Markland, “Application of homotopy continuation method to low-eccentricity preliminary orbit determination,” Master’s thesis, Massachusetts Institute of Technology, Jun. 1991.

[39] R. Howell and J. Walsh, “Measurement of ocean wave spectra using a ship-mounted HF radar,” *IEEE Journal of Oceanic Engineering*, vol. 18, no. 3, pp. 306–310, Jul. 1993.

[40] C. F. F. Karney. (2013, 31 Aug.) Addenda and errata for papers on geodesics. [Online]. Available: http://geographiclib.sourceforge.net/geod-addenda.html

[41] ——, “Algorithms for geodesics,” *Journal of Geodesy*, vol. 87, no. 1, pp. 43–45, Jan. 2013.

[42] S. M. Kirschner, M. V. Samii, S. R. Broaddus, and C. E. Doll, “Preliminary orbit determination system (PODS) for tracking and data relay satellite system (TDRSS)-tracked target spacecraft using the homotopy continuation method,” in *Proceedings of the Flight Mechanics/Estimation Theory Symposium*, Greenbelt, MD, 10–11 May 1988, pp. 217–237.

[43] T.-L. Lee, T.-Y. Li, and C.-H. Tsai, “HOM4PS-2.0 a software package for solving polynomial systems by the polyhedral homotopy continuation method,” *Computing*, vol. 83, no. 2–3, pp. 109–133, Nov. 2008.

[44] T.-L. Lee, S.-S. Lin, W.-W. Lin, S.-T. Yau, and J. Zhu, “Polynomial calculations in Doppler tracking,” *Communications in Information and Systems*, vol. 12, no. 2, pp. 157–184, 2012.

[45] B. Li and Y. Yuan, “A method for ship target extraction from broadened Bragg lines in bistatic shipborne SWR,” in *Proceedings of the 8th International Conference on Signal Processing*, vol. 4, Beijing, China, 16–20 Nov. 2006.

[46] X. R. Li and Z. Zhao, “Measuring estimator’s credibility: Noncredibility index,” in *Proceedings of the 9th International Conference on Information Fusion*, Florence, Italy, 10–13 Jul. 2006.

[47] J. Lu and D. L. Darmofal, “Higher-dimensional integration with Gaussian weight for applications in probabilistic design,” *SIAM Journal on Scientific Computing*, vol. 26, no. 2, pp. 613–624, 2004.

[48] O. L. Magnasarian, “Equivalence of the complementary problem to a system of nonlinear equations,” *SIAM Journal of Applied Mathematics*, vol. 31, no. 1, pp. 89–92, Jul. 1976.

[49] M. Malanowski and K. Kulpa, “Two methods for target localization in multistatic passive radar,” *IEEE transactions on Aerospace and Electronic Systems*, vol. 48, no. 1, pp. 572–580, Jan. 2012.

[50] M. Mallick and B. La Scala, “Comparison of single-point and two-point difference track initiation algorithms using position measurements,” *Acta Automatica Sinica*, vol. 34, no. 3, pp. 258–265, Mar. 2008.

[51] S. Maresca, P. Braca, R. Grasso, and J. Horstmann, “Multiple oceanographic HF surface-wave radars applied to maritime surveillance,” in *Proceedings of the 17th International Conference on Information Fusion*, Salamanca, Spain, 7–10 Jul. 2014.

[52] R. Menzel and Schwetlick, “Zur Lösung parameter-abhängiger nichtlineärer Gleichungen mit singulären Jacobi-Matrizen,” *Numerische Mathematik*, vol. 30, no. 1, pp. 65–79, 1978.

[53] S. K. Rahimian, F. Jalali, J. D. Seader, and R. E. White, “A new homotopy for seeking all real roots of a nonlinear equation,” *Computers and Chemical Engineering*, vol. 35, no. 3, pp. 403–411, 8 Mar. 2011.

[54] S. L. Richter and R. A. DeCarlo, “Continuation methods: Theory and applications,” *IEEE Transactions on Systems, Man, and Cybernetics*, vol. SMC-13, no. 4, pp. 459–464, Jul./Aug. 1983.

[55] G. Rujiang, Y. Yeshu, and Q. Taifan, “Adaptive modified Hough transform track initiator for HFSWR tracking of fast and small targets,” *Journal of Systems Engineering and Electronics*, vol. 16, no. 2, pp. 316–320, Jun. 2005.

[56] M. Schäfer, V. Lenders, and I. Martinovic, “Experimental analysis of attacks on next generation air traffic communication,” in *Proceedings of the 11th International Conference on Applied Cryptography and Network Security*, Barrief, Canada, 25–28 Jun. 2013, pp. 253–271.

[57] L. F. Shampine and M. K. Gordon, “Solving ordinary differential equations with ODE, STEP, and INTTRP?” Sandia Laboratories, Albuquerque, NM, Tech. Rep. SLA-73-1060, Jan. 1974.

[58] A. Smith, R. Cassell, T. Breen, R. Hulstrom, and C. Evers, “Methods to provide system-wide ADS-B back-up, validation, and security,” in *Proceedings of the 25th IEEE/IAAA Digital Avionics Systems Conference*, Portland, OR, 15–19 Oct. 2006.

[59] A. E. Smith, R. Hulstrom, C. A. Evers, and T. J. Breen, “Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surveillance,” U.S. Patent US 8,072,382 B2, Dec. 6, 2011.

[60] R. L. Smith and C. Huang, “Study of a homotopy continuation method for early orbit determination with the tracking and data relay satellite system (TDRSS),” National Aeronautics and Space Administration/Computer Sciences Corporation, Beltsville, MD, Tech. Rep. 86230, Mar. 1986.

[61] M. Strohmeier, V. Lenders, and I. Martinovic, “On the security of the automatic dependent surveillance-broadcast protocol,” *IEEE Communications Surveys and Tutorials*, vol. 17, no. 2, pp. 1066–1087, Second Quarter 2015.

[62] A. Stroud, *Approximate Calculation of Multiple Integrals*. Edgewood Cliffs, NJ: Prentice-Hall, Inc., 1971.

[63] R. Stöckli, E. Vermote, N. Saleous, R. Simmon, and D. Herring. (2005, 22 Aug.) The blue marble next generation – a true color earth dataset including seasonal dynamics from MODIS. [Online]. Available: http://eoimages.gsfc.nasa.gov/images/imagerecords/73000/73751/readme.pdf

[64] The Visible Earth. (2013, 11 Sep.) The blue marble: Land surface, ocean color, sea ice and clouds. NASA Goddard Space Flight Center. [Online]. Available: http://visibleearth.nasa.gov/view.php?id=57735

[65] Y. Tian and Y. Cheng, “Solving optimal positioning problems via homotopy continuation,” in *Proceedings of the AIAA Guidance, Navigation and Control Conference*, National Harbor, MD, 13–17 Jan. 2014.

[66] J. R. Wait, “The ancient and modern history of EM ground-wave propagation,” *IEEE Antennas and Propagation Magazine*, vol. 40, no. 5, pp. 7–24, Oct. 1998.

[67] L. T. Watson, “A globally convergent algorithm for computing fixed points of C^2 maps,” *Applied Mathe-
[68] ——, “Globally convergent homotopy methods: A tutorial,” *Applied Mathematics and Computation*, vol. 31, pp. 369–396, May 1989.

[69] ——, “Globally convergent homotopy algorithms for nonlinear systems of equations,” *Nonlinear Dynamics*, vol. 1, no. 2, pp. 143–191, Mar. 1990.

[70] ——, “A survey of probability-one homotopy methods for engineering applications,” Virginia Polytechnic Institute and State University, Blacksburg, VA, Tech. Rep. TR 90-47, 1990. [Online]. Available: http://eprints.cs.vt.edu/archive/00000229/01/TR-90-47.pdf

[71] L. T. Watson, S. C. Billups, and A. P. Morgan, “Algorithm 652: HOMPACK: A suit of codes for globally convergent homotopy algorithms,” *ACM Transactions on Mathematical Software*, vol. 13, no. 3, pp. 281–310, Sep. 1987.

[72] L. T. Watson, M. Sosonkina, R. C. Melville, A. P. Morgan, and H. F. Walker, “Algorithm 777: HOMPACK: A suit of Fortran 90 codes for globally convergent homotopy algorithms,” *ACM Transactions on Mathematical Software*, vol. 23, no. 4, pp. 514–549, Dec. 1997.