Primary prophylaxis of bacterial infections and *Pneumocystis jirovecii* pneumonia in patients with hematologic malignancies and solid tumors: 2020 updated guidelines of the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (AGIHO/DGHO)

Annika Y. Classen 1,2 · Larissa Henze 3 · Marie von Lilienfeld-Toal 4 · Georg Maschmeyer 5 · Michael Sandherr 6 · Luisa Durán Graeff 1,2 · Nael Alakel 7 · Maximilian Christopeit 8 · Stefan W. Krause 9 · Karin Mayer 10 · Silke Neumann 11 · Oliver A. Cornely 1,2,12,13 · Olaf Penack 14 · Florian Weißinger 15 · Hans-Heinrich Wolf 16 · Jörg Janne Vehreschild 1,2,17

Received: 21 September 2020 / Accepted: 4 February 2021 / Published online: 13 April 2021
© The Author(s) 2021

Abstract

Hematologic and oncologic patients with chemo- or immunotherapy-related immunosuppression are at substantial risk for bacterial infections and *Pneumocystis jirovecii* pneumonia (PcP). As bacterial resistances are increasing worldwide and new research reshapes our understanding of the interactions between the human host and bacterial commensals, administration of antibacterial prophylaxis has become a matter of discussion. This guideline constitutes an update of the 2013 published guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO). It gives an overview about current strategies for antibacterial prophylaxis in cancer patients while taking into account the impact of antibacterial prophylaxis on the human microbiome and resistance development. Current literature published from January 2012 to August 2020 was searched and evidence-based recommendations were developed by an expert panel. All recommendations were discussed and approved in a consensus conference of the AGIHO prior to publication. As a result, we present a comprehensive update and extension of our guideline for antibacterial and PcP prophylaxis in cancer patients.

Keywords Neutropenia · Prophylaxis · Bacterial infections · Resistance · Pneumocystis

Introduction

During recent years, the advent of an increasing amount of targeted drugs and other strategies of personalized medicine has resulted in rapid changes in treatment paradigms for hematologic and oncologic patients. Thus, since the previous version of this guideline many new substances have received approval in high-risk hematologic treatment indications (e.g., idelalisib in follicular lymphoma/CLL) while immunological effects and possible risks for opportunistic infections remain poorly examined. However, most new treatment strategies only delay disease progression and most patients still receive conventional anti-cancer chemotherapy at some point of their treatment. As a consequence of immunotherapy- and chemotherapy-related immunosuppression and neutropenia, bacterial infections and *Pneumocystis jirovecii* pneumonia (PcP) are significant causes of morbidity and mortality [1–4]. Most authors define neutropenia as a neutrophil count below 500/μl or < 1000/μl with predicted decline to less than 500/μl within the next 2 days [5, 6]. If no neutrophil count is available or possible, neutropenia can be assumed during leukopenia with leukocytes < 1000/μl.

Although no prospective studies have formally compared possible management strategies, fever during an episode of neutropenia (febrile neutropenia, FN) is generally considered a medical emergency and usually entails rapid initiation of empiric treatment with broad-spectrum antibiotics and in most cases hospitalization. Besides the morbidity and mortality related to FN, the need for antibiotic treatment, treatment side
effects, inpatient stay or frequent outpatient visits also impairs quality of life, especially for patients in palliative treatment situations and causes considerable costs [1].

The incidence of febrile neutropenia is highly variable depending on patient-related risk factors as well as type of treatment and ranges from close to 0% (low-intensity treatment for solid tumors) [7] to almost 100% (induction treatment for acute leukemia) [8]. Real-life incidence rates may in general be higher outside the controlled conditions of prospective clinical trials [9].

Many oncologists advocate the use of general preventative strategies aiming at reducing transmission of pathogens via infection control, hygiene, and/or behavioral recommendations, although most infections in neutropenic hosts are usually considered of endogenous origin [10]. Other than that, there are two established pharmacological interventions to reduce incidence of FN: (i) granulocyte colony-stimulating factors (G-CSF), which are the topic of another guideline and (ii) prophylactic antibiotic use [11, 12].

The administration of antibacterial prophylaxis and its impact on patient outcome has been extensively studied. It is generally accepted that this strategy reduces the incidence of febrile events and infections, while survival benefits have only been demonstrated in meta-analyses by including studies from different epochs [13]. Even though prophylactic regimens are generally well tolerated during short-term observation, recent breakthroughs in the understanding of resistance development, spread of multidrug-resistant organisms, and the general interactions between the human host and its commensal microbiota have to be considered in a risk–benefit assessment.

We updated our guideline to give an overview about current evidence on antibacterial prophylaxis strategies and the choice of drugs to prevent bacterial infection and PcP in neutropenic patients. In addition, we revisited patient risk stratification and bacterial epidemiology and considered the current discussion on potential adverse effects caused by antibiotic exposure.

Methods

This guideline is an update of the 2013 published version [12]. As established, an expert group of hematologists, oncologists, and infectious disease specialists, all of them members of the Infectious Disease Working Party of the German Society of Hematology and Medical Oncology (AGIHO), reviewed and discussed current evidence on antibacterial and PcP prophylaxis. Initially, a literature search of publications from January 2012 to March 2017 was performed and evaluated by subcommittees of two to six experts. The literature review was updated at the time of manuscript finalization (August 2020), which revealed no new breakthrough results necessitating further amendments to the recommendations. All statements and recommendations were discussed in meetings, in telephone conferences, and by electronic correspondence. Recommendations have been approved via expert consensus during the AGIHO plenary meeting on 13 March 2017 and the manuscript was reviewed by all co-authors prior to submission. Evaluation of strength of recommendation and quality of evidence was performed in consistence with other recently updated German and European guidelines (Table 1) [4, 14–16]. The detailed methodology is described in the guideline report.

This guideline gives recommendations on antibacterial and PcP prophylaxis in neutropenic cancer patients. Recommendations on the diagnosis and empirical treatment of fever of unknown origin during neutropenia can be found in a distinct guideline of the AGIHO [4]. Information on antiviral and antifungal prophylaxis as well as information on infection prevention in patients undergoing allogeneic and autologous stem cell transplantation can also be found in separate AGIHO publications [15–18].

Patients and risk factors

Reliable identification of hematologic and oncologic patients at risk for febrile neutropenia and infection is a prerequisite to evaluate the need for prophylactic treatment. The chance of infection during neutropenia increases over time; therefore, severity and duration of neutropenia are unequivocal risk factors for the development of infection following chemotherapy [5, 6]. In line with other guidelines [4, 19, 20], we recommend to stratify neutropenic patients into two different risk groups according to the anticipated duration of neutropenia. Patients likely to develop prolonged neutropenia (> 7 days) should be considered as high-risk patients (A-I), whereas patients with estimated duration of neutropenia of seven days or less should not be considered at high risk (A-I), unless additional risk factors are present (B-II) [21, 22] (Table 2).

Prophylaxis with granulocyte colony-stimulating factors (G-CSF) or granulocyte-macrophage colony-stimulating factors (GM-CSF) should be considered for risk stratification as G-CSF prophylaxis reduces the incidence of FN and bacterial infection by shortening the length of neutropenia [11]. Use of G-CSF is recommended if the anticipated risk for FN is above 20% [11, 23]. There is insufficient clinical evidence to compare clinical outcome for prophylaxis with colony-stimulating factors versus use of antibiotics [23]. If sufficient risk reduction can be achieved by G-CSF administration, that should be the preferred strategy, based on superior tolerability and the absence of selective pressure to bacteria by G-CSF in contrast to antibacterials (B-II).

Numerous studies have assessed risk factors for FN that could potentially guide individual decisions towards antibacterial prophylaxis. Major dilemma is caused by the
heterogeneous assessment of discriminating subsets of highly interacting risk factors (e.g., age, comorbidity, performance score, and renal function). This limitation necessitates great caution when comparing results from different studies.

Most established guidelines compile lists of risk factors reported in one or more publications [25–28]. However, this strategy will inevitably lead to an overstatement of the actual risk by disregarding the interactions. We therefore extracted risk factors only from those epidemiological analyses which assessed the risk of FN by multivariable analysis.

Our strategy still revealed a concerning heterogeneity of results between studies. No single patient-related risk factor other than duration of neutropenia and intensity of chemotherapy was consistently identified as an effective predictor of FN. For example, age is generally considered a risk factor for FN and listed as such in all major guidelines [20, 25–27, 29], although 15 of 19 identified studies controlling for confounders with 68,007 of 70,466 patients did not identify age as an independent risk factor in multivariable analysis. The administered dose of chemotherapy has been considered a risk factor for infection during neutropenia [22, 30, 31], while the impact of the chemotherapeutic regimen remains unclear. It has been shown that infection rates differ between treatment regimens [32–34] but not all studies showed statistically significant differences. The risk of febrile neutropenia and infection was shown to be higher during the first than

Table 1 Grading

Category, grade	Definition
Strength of recommendation	
A	Strongly supports a recommendation for use
B	Moderate evidence to support a recommendation for use
C	Marginally supports a recommendation for use
D	Supports a recommendation against use
Quality of evidence—level	
I	Evidence from at least one properly designed randomized, controlled trial
II	Evidence from at least one well-designed clinical trial, without randomization; from cohort or case-controlled analytic studies (preferably from > 1 center); from multiple time series; or from dramatic results of uncontrolled experiments
III	Evidence from opinions of respected authorities; based on clinical experience; descriptive case studies; or reports of expert committees
Quality of evidence—index (for level II)	
r	Meta-analysis or systematic review of randomized controlled trials
t	Transferred evidence, that is, results from different patient cohorts, or similar immune status situation
h	Comparator group is a historical control
u	Uncontrolled trial
a	Published abstract (presented at an international symposium or meeting)

Table 2: Risk factors for bacterial infection during neutropenia

Clinical situation	Intention/recommendation	Intervention	SoR	QoE	References
Patients with prolonged neutropenia (> 7 days)a	Identify patients at risk for FN	Consider as high-risk patients	A	I	[5, 19, 23]
Patients with neutropenia > 0 and ≤ 7 days and significant additional risk factorsb					
Patients with neutropenia ≤ 7 days without additional risk factors					

SoR strength of recommendation, QoE quality of evidence

a This estimation should consider potential G-CSF prophylaxis. If sufficient risk reduction can be achieved by G-SCF, that should be the preferred strategy

b See Table 3
during subsequent cycles of chemotherapy [30, 35–37]. The overall burden of comorbidities, but not low performance scores, seems to be independently associated with the risk for FN; however, no single comorbid condition can be identified as the main driver of FN risk.

Some of the more frequently detected independent factors associated with FN are listed in Table 3. Other additional risk factors, e.g., immunoglobulin deficiency, prior infections, and specific rare comorbidities may play a role in selected patient groups and should be part of individual considerations. However, patients with neutropenia duration of 7 days or less should not be considered at high risk because of one potential risk factor, but by clinical judgment based on comprehensive assessment of patient status and intended treatment. The decision should not only account for clinical risk factors but also patient management aspects (e.g., outpatient/inpatient treatment, estimated compliance, distance from hospital, home environment, and social support).

New anti-cancer agents and antibacterial prophylaxis

The use of new anti-cancer agents, e.g., immune-modulating drugs, antibodies, and molecular targeted agents in clinical routine increases constantly. Many of these agents received fast-track approval by regulatory authorities based on successful phase II–III trials while the impact of such drugs on the incidence of infections is not yet fully determined. Infections have been identified as a potential side effect of several anti-cancer drugs, though exact numbers remain unknown. In the absence of further individual risk factors, we recommend not to classify such patients as high-risk patients of FN when considering antibiotic prophylaxis [38].

To date, antibacterial prophylaxis in non-neutropenic patients is only recommended in those treated with the C5-antibodies eculizumab or ravulizumab without previous meningococcal vaccination (or vaccination < 2 weeks prior to drug administration) to prevent infection by Neisseria spp. [39, 40]. Prophylaxis should be performed with penicillin V 250 mg every 12 h, or ciprofloxacin 500 mg daily for at least 4 weeks after complete immunization or until protective titers are documented (A-IIu), comparable to the situation around surgical splenectomy.

Spectrum of pathogens in infections of neutropenic patients

While bacteremia is the most commonly identified cause of infection during FN, almost half of the febrile events are ultimately classified as fever of unknown origin (FUO), since no infectious focus can be identified [2]. In cases of microbiologically documented gram-positive bacteremia, the dominant species are typically coagulase-negative staphylococci, α-hemolytic streptococci, and Staphylococcus aureus. Sepsis due to gram-negative pathogens is associated with high mortality and often caused by enterobacteria such as Escherichia coli or Klebsiella spp. and by non-fermenters, in particular Pseudomonas aeruginosa [41–44].

In past observations, implementation of antibacterial prophylaxis with activity against gram-negative bacteria was associated with a decrease of gram-negative but an increase of gram-positive bacteria isolated from patients with FN [42, 45]. In the last decade, a new shift towards higher rates of gram-negative pathogens in bacteremia has been described in hematologic patients [43, 44, 46–48]. These observations have recently been confirmed by large multicenter surveillance studies [49–51]. Of note, no significant trend for blood stream infection due to resistant bacteria (methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae) was described. However, the surveillance was performed in patients undergoing hematopoietic stem cell transplantation (HSCT) and the situation for patients with other malignant diseases and other treatment regimens may differ. To better understand the impact of fluoroquinolone (FQ) prophylaxis on local epidemiology, continuous microbiological surveillance is highly recommended. This should not only focus on FQ-resistant pathogens but also on rates of Clostridioides difficile infection (CDI) [52–54].

Resistance development

Bacterial resistance increases globally, which bears two potential implications for prophylactic use of antibiotics: (i) the effectiveness of prophylactic antibiotics may decrease and (ii) the use of broad-spectrum antibiotics in large patient populations without infection undermines current demands for
rational anti-infective prescription. The prevalence of colonization due to ESBL Enterobacteriaceae increases worldwide, while prior colonization with ESBL-producing pathogens in hematologic/oncologic patients constitutes an important risk factor for subsequent development of ESBL-associated bloodstream infections [50, 51, 55]. Concerns about resistance development therefore led some experts to vote against antibacterial prophylaxis in neutropenic patients [19, 24].

The prevalence of resistant pathogens, especially Escherichia coli and Enterococcus faecium, is higher and increases more rapidly in the hematologic/oncologic compared to other patient populations [47, 48, 56, 57]. Recent studies demonstrated that FQ use may expedite the emergence and colonization with bacterial strains resistant to the administered drug as well as other drugs with genetically linked resistance genes [58, 59]. Studies on discontinuation of antibacterial prophylaxis detected reappearance of gram-negative bacteria in blood culture isolates after FQ restriction, while a decrease in the proportion of FQ-resistant organisms was observed [43, 55, 60]. Yet, an increase of resistance was not uniformly observed across studies during antibiotic prophylaxis [61]. Gudiel et al. described a decrease in FQ resistance (71% versus 37%; p < 0.001); an observed concurrent increase in multidrug-resistant gram-negative bloodstream infections (BSI) (1% versus 6%, p < 0.001) was probably attributable to global changes in the epidemiology of resistant bacteria [43]. Of note, a recently published study demonstrated that the patients’ 30-day mortality was higher when developing bacteremia from FQ-resistant than from FQ-sensitive gram-negatives [62].

We do not generally recommend to use a threshold of FQ resistance among gram-negative bacteria in a given population for instituting FQ prophylaxis (D-III). However, to avoid amplification of resistant clones, we do not recommend to initiate prophylaxis with FQ if colonization of a patient with FQ-resistant gram-negative bacteria is known prior to the onset of prophylaxis (D-IIb). Surveillance of resistance development (A-III) and antibiotic prophylactic efficacy (B-III) should be performed. Considering the local epidemiology, prospective studies are needed for evaluation of FQ prophylaxis in areas with high local rates of FQ resistance among gram-negative bacteria.

Novel considerations regarding microbiome and resistome

New sequencing techniques have led to an abundance of new insights on host–microbiota interactions which may ultimately in part redefine our understanding of the pathogenesis of many infections and other diseases [63]. Two recent studies by Chong et al. analyzed the impact of prior FQ prophylaxis on the gut microbiota [64, 65]. After the first administration of prophylaxis, disappearance of quinolone-susceptible Enterobacteriaceae and emergence of FQ-resistant bacteria were observed. Even though levels of FQ-susceptible Enterobacteriaceae could recover during subsequent cycles of prophylaxis, detection rates of FQ-resistant bacteria significantly increased after repeated prophylaxis (8/35 samples versus 20/33 samples, p = 0.0028). Moreover, detection frequency seemed to increase with the number of prophylactic treatment cycles [64]. Other studies have shown that antibiotic exposure causes long-lasting disturbances of the gut microbiota, which may be a necessary step towards acquisition of multidrug-resistant colonization [66, 67].

There is growing concern regarding a possible effect of microbiota composition on oncogenesis and response to anti-cancer treatment. After two independent studies in mice demonstrated the dependency of cisplatin and cyclophosphamide efficacy on prevalence of distinct bacterial groups in the gut microbiota [68, 69], several clinical studies have confirmed that antibiotic exposure and/or gut microbiota composition may influence outcomes of human cancer patients as well [70–75]. Additional studies have highlighted the interconnection of antibiotic treatment and dysbiosis with the emergence of CDI, bloodstream infections and graft-versus-host disease (GvHD) in allogeneic stem cell recipients [76–80]. More recently, antibiotic use and dysbiosis have been linked to worse outcomes of viral infections, possibly as result of impaired T cell activation [81–83]. Further studies are needed to better understand the molecular mechanisms of the observed effects. There are currently no studies specifically reporting a potential effect of FQ prophylaxis on tumor response. However, it should be kept in mind that administration of antibiotic drugs may have considerable interaction with anti-cancer treatment. Any decision for antibiotic prophylaxis must be carefully balanced against the potential for resistance induction, immediate drug-related adverse events (e.g., rash, nausea, QT prolongation, and tendinopathy), and microbiota-mediated adverse events (e.g., CDI, antibiotic-associated diarrhea, GvHD, reduced effectiveness of anti-cancer treatment). It is imperative that future studies on antibiotic prophylaxis consider these new insights to fully evaluate the consequences of FQ exposure.

Efficacy of prophylaxis

Antibacterial prophylaxis has been shown to be effective and safe in preventing febrile episodes and bacterial infections in neutropenic patients [5, 6, 13, 84–86]. A large meta-analysis conducted by Gafter-Gvili et al. included data from 13,579 patients out of 109 trials and compared prophylactic strategies (FQ, trimethoprim–sulfamethoxazole/TMP-SMX, other systemic drugs, non-absorbable drugs) with placebo or no intervention [13]. A significant reduction of infection-related and
all-cause mortality could be shown in patients receiving antibacterial prophylaxis. Moreover, a significant decrease in rates of microbiologically documented infection and bacteremia could be observed. However, the meta-analyses included numerous historical studies from a different era of bacterial resistance and when proper empirical treatment strategies for FN were not universally established. Administration of antibacterial prophylaxis was generally associated with more side effects [13].

Following publications on the rapid and profound effect of antibiotics on selection of resistant bacteria and microbiota composition, it has become a matter of debate how a single drug prophylaxis can maintain effectiveness over a prolonged period of time, i.e., multiple chemotherapy cycles. Indeed, only one of the included studies [35] discriminated the outcome of overall and infection-related mortality between the first and each subsequent cycle while one additional study reported on outcomes during first and during all chemotherapy cycles [6]. It was therefore decided to separate evidence rating and recommendation for first and subsequent chemotherapy cycles.

Since the last version of this guideline [12], a comprehensive literature search by multiple researchers did not reveal new evidence from prospective, randomized clinical trials in adult cancer patients. The results of the recently published TEAMM trial indicate that prophylaxis with levofloxacin is significantly associated with a reduction in febrile episodes and death during the first 12 weeks of multiple myeloma (MM) therapy [87]. This led the authors to the conclusion that levofloxacin prophylaxis should become standard of care for newly diagnosed MM patients, although overall survival during the 1-year follow-up period of the trial was lower than in the placebo group. A major limitation of the TEAMM trial is that incidence of neutropenia was not reported for the patient cohorts, while administration of antibacterial prophylaxis in prolonged neutropenia is known to show a direct benefit for affected patients. A new meta-analysis evaluating the impact of antibiotic prophylaxis in multiple myeloma (MM) patients including the TEAMM trial indicated that antibiotic prophylaxis for the first 3 months following MM diagnosis decreases the incidence of infection, while this decrease did just reach the threshold of statistical significance. Moreover, no evidence for a decrease in mortality could be noted [88]. The modest benefit of antibacterial prophylaxis in MM patients has thus to be weighed carefully against the risk of resistance development, toxicity, and its impact on following therapies. Given the established quality of evidence, after thorough review of the identified literature, it was thus decided that the methodology of most new studies was insufficient to allow relevant new conclusions on prophylactic efficacy [55, 89–96].

However, the current studies underline that antibacterial prophylaxis continues to be effective in the current overall epidemiologic setting regarding predominant bacterial strains and resistances.

Based on the available evidence and under consideration of the defined risk groups, we recommend using antibacterial prophylaxis in high-risk patients receiving their first chemotherapy cycle if prevention of fever and infection is desired (A-I). This strategy may also be effective in reducing overall mortality, but ultimate evidence is lacking (B-II). Antibiotic prophylaxis in low-risk groups receiving their first chemotherapy cycle may be considered for prevention of fever and infection (B-I), but a reduction of mortality was not shown for this patient group (C-II). In this sense, low-risk patients with relevant individual risk factors should be considered as high-risk patients (Tables 2 and 3). Considering the increase of resistant bacteria and given lack of evidence, we downgraded our recommendation for antibiotic prophylaxis during subsequent chemotherapy cycles in high-risk (B-I) and low-risk patients (C-I) (recommendations summarized in Table 4).

Duration of prophylaxis administration

Data regarding timing of prophylaxis initiation and duration of administration are still scarce and comparative studies are warranted. In patients with high risk for development of FN and infection, prophylactic agents are mostly administered with the start of chemotherapy [5], while administration in low-risk patients is often initiated at the end of chemotherapy application [6]. We recommend starting antibacterial prophylaxis in high-risk patients with the start of the cytostatic regimen (B-IIa). To reduce side effects and to prevent resistance development, antibacterial prophylaxis should be terminated with the end of neutropenia or with the initiation of therapeutic broad-spectrum antibiotics, as it has been protocol standard in the respective landmark trials [5, 6] (A-IIb). In case of breakthrough infection during prophylactic administration of FQ, we recommend switching to another drug class for empiric therapy (A-III) (Table 5).

Drugs for antibacterial prophylaxis

Antibacterial prophylaxis in neutropenic patients is commonly performed with trimethoprim–sulfamethoxazole (TMP-SMX) in standard therapeutic dosing (800/160 mg every 12 h) or FQ. No significant differences regarding incidence of fever and infection as well as all-cause or infection-related mortality could be shown between both drugs [13, 99, 100]. The combination TMP-SMX is probably similarly effective as FQ for prevention of febrile neutropenia and death (B-II). However, FQ prophylaxis is associated with better tolerability as well as lower bacterial resistance [13, 101]. Therefore, we recommend preferring FQs over TMP-SMX to avoid side effects.
Compared to FQ, TMP-SMX has the advantage of providing additional prophylaxis against PcP [100]. Of note, we could not identify a study addressing the situation that a patient needs antibacterial and PcP prophylaxis at the same time. It remains unknown whether TMP-SMX three times per week in combination with FQ is better tolerated and/or more effective than TMP-SMX in therapeutic dose without FQ.

The FQ ciprofloxacin and levofloxacin have both been evaluated in different studies and are the first-choice agents for antibacterial prophylaxis compared to other FQs (A-II). Oral absorption of ciprofloxacin following chemotherapy has been described to decrease after cytostatic treatment [102]. Levofloxacin shows inferior efficacy against Pseudomonas aeruginosa than ciprofloxacin but has the advantage of being active against gram-positive bacteria. To date, other than ciprofloxacin, prophylactic administration of levofloxacin in patients with chemotherapy-associated neutropenia is not approved in Germany. Moreover, severe side effects including life-threatening hepatotoxicity led to an official warning regarding the off-label use of levofloxacin. Although not part of the major studies, it may be considered to use intravenous FQ formulations in patients with expected poor resorption due to severe diarrhea and/or inability to swallow the drug.

The broad-spectrum FQ moxifloxacin has been shown to prevent bacteremia in patients undergoing autologous HSCT and to shorten the length of febrile episodes [103]. However, it has no proven superiority to ciprofloxacin or levofloxacin prophylaxis, while it seems to be related with higher risk for CDI [104]. Furthermore, bacteremia due to P. aeruginosa could be observed during moxifloxacin prophylaxis [103]. It has been studied whether combining FQs with agents active against gram-positive bacteria prevents FN by reducing the incidence of gram-positive infections in neutropenic

Table 4 Indications for antibacterial prophylaxis

Clinical setting	Intention/recommendation	Intervention	SoR	QoE	References
High-risk patients receiving first chemotherapy cycle	Prevent fever and infections by using antibacterial prophylaxis	Antibacterial prophylaxis	A	I	[5, 13, 66, 67, 79, 97, 98]
High-risk patients receiving subsequent chemotherapy cycles			B	I	[67, 70]
Low-risk patients receiving first chemotherapy cycle	Reduce mortality by using antibacterial prophylaxis	Penicillin V 250 mg b.i.d. or ciprofloxacin 500 mg q.d. until 4 weeks after immunization or documented protective titers	B	II	[5, 13, 84]
Low-risk patients receiving subsequent chemotherapy cycles			C	II	[6, 84, 98]
Patients receiving eculizumab, ravulizumab, or splenectomy or patients with functional asplenia without effective meningococcal vaccination	Prevent meningococcal disease		A	II	[39, 40]

*a The recommendation levels refer to the efficacy in achieving the specific endpoint and not on the overall recommendation of antibacterial prophylaxis. Prevention of fever and infections is a non-critical clinical goal and must be weighed against selective pressure and adverse drug effects (see sections “Recent warnings regarding fluoroquinolone safety” and “Novel considerations regarding microbiome and resistome”)

Table 5 Timing and duration of antibacterial prophylaxis

Clinical setting	Intention/recommendation	Intervention	SoR	QoE	References
Patients with indication for antibacterial prophylaxis at high risk for infection	Prevention of fever or infection	Start antibacterial prophylaxis with start of cytostatic drugs	B	II	[5, 6, 13]
Patients with indication for antibacterial prophylaxis at low risk for infection	Reduce side effects, prevent resistance development	Start antibacterial prophylaxis 5–8 days after beginning chemotherapy	B	III	
Start of empirical broad-spectrum antibiotic treatment or End of neutropenia		Termination of antibacterial prophylaxis	A	II	
Patient with breakthrough infection receiving FQ prophylaxis	Treatment of infection	Use of FQ for empirical therapy	D	III	
patients [35, 105]. A meta-analysis by Paul et al. showed no significant differences in all-cause mortality after addition of anti-gram-positive antibiotics, while bacterial superinfections due to gram-positive pathogens were less frequently detected [106]. Adverse events and nephrotoxicity were significantly higher when additional antibiotics were administered. Based on these findings, we do not recommend the addition of prophylactic antibiotics active against gram-positive bacteria in neutropenic patients (D-II) (Table 6).

Recent warnings regarding fluoroquinolone safety

In recent years, a series of warnings regarding safety of FQs was released by several health authorities, including the German Bundesinstitut für Arzneimittel und Medizinprodukte and the US Food and Drug Administration. These warnings raise the issue of potentially disabling and permanent toxic effects on large blood vessels, muscles, tendons, joints, peripheral nerves, and the central nervous system [111–114]. Consequently, FQs should no longer be prescribed for non-severe and/or self-limiting infections (e.g., upper respiratory tract infections, urinary tract infection, acute exacerbation of chronic bronchitis, and COPD), traveler’s diarrhea, and chronic non-bacterial prostatitis. Special attention is required for patients at risk of toxicity, i.e., elderly patients, patients with impaired renal function, solid organ transplantation recipients, and patients receiving concomitant corticosteroids. Patients showing any signs of tendinitis or tendon rupture, myalgia, muscle weakness, arthralgia, neuropathy, confusion, or hallucinations. In addition, a list of preconditions increasing the risk for aortic aneurysms is provided in the warning letters.

The warning letters were discussed by the guideline group and it was agreed upon that the new evidence does not change the overall rating of the evidence or the recommendation. This has also been extensively argued by another guideline group [115]. The decision not to change the recommendation was based on three primary reasons. Firstly, in the setting of neutropenia, for no other drugs, sufficient evidence regarding efficacy and tolerability is available. While TMP-SMX has comparable efficacy, it showed a higher rate of treatment-emergent adverse events in comparative trials. Secondly, hematologic and oncologic patients are typically closely monitored by the treating physician and toxic side effects could probably be detected earlier, allowing timely termination of FQ treatment. And finally, the guideline group felt that the overall low rate of severe side effects of FQs, especially compared to the severity of the underlying disease of neutropenic patients and the high efficacy of FQs in preventing infections, does not outweigh the potential benefits of FQ use.

Table 6 Drugs for antibacterial prophylaxis

Clinical setting	Intention/recommendation	Intervention	SoR	QoE	References
Neutropenic patients with indication for antibacterial prophylaxis	Prevent FN or death	Use fluoroquinolone prophylaxis, if indicated	A	I	[13, 101, 107, 108]
Prevent FN or death	Use therapeutic dose TMP-SMX instead of FQs, if indicated	B	II		[13, 101, 107, 108]
Prevent FN or death	Prefer selective gut decontamination vs. systemically active antibacterials	*			[109, 110]
Reduce side effects of antibacterials	Prefer fluoroquinolone prophylaxis vs. TMP-SMX	A	II		[13, 101, 107, 108]
Prevent FN or death	Ciprofloxacin and levofloxacin as FQs of choice for prophylaxis	A	II		[5, 13, 103–105]
Prevent FN and reduce incidence of gram-positive infections	Combine fluoroquinolone with an agent active against gram-positive bacteria	D			[13, 35, 105, 106]
Neutropenic patients with indication for antibacterial prophylaxis and known colonization with multiresistant bacteria	Prevent FN or death	FQ prophylaxis if known colonization by FQ-resistant gram-negative bacteria	D		[50, 51, 58, 79]

*a Note that these recommendations are made provided that a patient was determined to receive an antibacterial prophylaxis under consideration of Table 4. A high level of evidence/recommendation in this table does not provide recommendation to the indication of prophylaxis, but only on the choice of drug if an indication is given.
We advise physicians to inform patients about potential FQ side effects and discuss the risks and benefits of alternative strategies, i.e., standard-dose TMP-SMX (more acute side effects), an oral third-generation cephalosporin (lack of evidence), or no antibiotic prophylaxis (increased risk of fever and hospitalization).

Selective digestive tract decontamination

The rationale behind decontamination of the intestinal or digestive tract is to eliminate most bacteria which can cause endogenous infection by translocation from the digestive system ideally by non-absorbable anti-infective agents only [44]. Selective digestive tract decontamination (often termed SDD or SD) aims at leaving the anaerobic flora intact and many authors of comparative studies have claimed a benefit for SDD 15–20 years ago [116–118]. However, most studies used absorbable antibiotics like cotrimoxazole or FQ and are thus difficult to distinguish from systemically active antibiotic prophylaxis. After a decade of no new data on SDD, two retrospective studies comparing non-absorbable antibiotics (colistin or rifaximin) with antibiotic prophylaxis using FQ in patients who received an allogeneic HSCT found comparable efficacy of SDD versus systemic antibiotics with regard to infections [109, 110]. The most recent study observed a survival benefit for patients who received non-absorbable as opposed to systemic antibiotic prophylaxis; however, it remains unclear how rifaximin would have compared to placebo or other systemically active antibiotic prophylaxis [110]. Of note, both studies do not define their regimen for PcP prophylaxis, which might add a low level of systemic antibiotic activity if given.

A concern regarding SDD is the possibility of inducing resistance. A recent meta-analysis of SDD in critically ill patients found no short-term increase of a small set of specific resistant organisms/resistance genes in studies investigating SDD [119], while other data indicate that the composition of the intestinal microbiota and the resistome is importantly affected by SDD [66, 120, 121]. It could be shown that application of SDD in intensive care patients has considerable effects on the gut microbiota, including overgrowth by Enterococcus spp. [121, 122].

In summary, because of the lack of well-designed prospective trials and the lack of data from patients other than allogeneic HSCT recipients, a recommendation regarding SDD cannot be made.

Indication for Pneumocystis jirovecii prophylaxis

Infections caused by Pneumocystis jirovecii are a common complication in immunocompromised patients; the individual risk depends on the underlying disease and treatment regimen [123–126]. Trials on PcP in HIV-uninfected cancer patients are sparse, but several risk factors for development of PcP have been identified [127, 128].

Oncologic patients at significant risk for PcP are those treated for acute lymphoblastic leukemia, those treated with a combination of fludarabine, cyclophosphamide, and rituximab [129], and patients undergoing allogeneic HSCT [128, 130]. Moreover, long-term use of steroids (> 20 mg/day prednisone equivalent for 4 weeks) increases the risk of developing PcP [129, 131, 132]. Patients with hematologic malignancies appear to have higher mortality rates once they develop PcP [133]. The administration of chemoprophylaxis in patients with one of these three risk factors is thus strongly recommended to prevent PcP (A-I) and reduce mortality (A-IIr).

Other hematologic and oncologic patients may occasionally develop PcP, such as lymphoma patients treated with R-CHOP14 or escalated BEACOPP protocol, patients treated with nucleoside analogs or long-term anti-CD20 antibody therapy, patients receiving high-dose steroids in addition to a radiotherapy for brain malignancies, and patients with CD4 count < 200 cells/μl [127, 134, 135]. There are no studies demonstrating benefit of PcP chemoprophylaxis in these patient groups, though it is likely that the number needed to treat is considerably higher compared to the high-risk groups. Such patients at moderate risk may or may not receive chemoprophylaxis to prevent PcP (C-III) and to reduce mortality (C-III).

New immune-modulating agents might increase the risk for PcP [136–138]. Patients receiving idelalisib are at high risk for developing PcP and prophylaxis must be administered concurrently (drug label) [139–141]. Initiation of chemoprophylaxis at the beginning of therapy is recommended by the manufacturer and should be maintained for 2–6 months after stopping therapy. Increased rates of PcP and other opportunistic infections have been observed in a phase II pilot of alemtuzumab without administration of prophylaxis [142]. Some authors recommend chemoprophylaxis during treatment with alemtuzumab with TMP-SMX or an equivalent agent [143, 144]. If radiotherapy is combined with temozolomide, chemoprophylaxis is recommended and administered in clinical studies [145–147]. Based on the documented high-risk situation, we strongly recommend chemoprophylaxis against PcP for patients receiving temozolomide (in combination with radiotherapy), idelalisib, or alemtuzumab (A-IIu,t) (Tables 7 and 8).

Choice of drugs and doses for PcP prophylaxis

Administration of PcP prophylaxis has been extensively studied in HIV-positive patients [153] and non-HIV patients [127, 133, 154]. Based on the available evidence, the most effective prophylactic agent is TMP-SMX,
which also offers protection for toxoplasmosis [153], nocardiosis [155], and actinomycosis. For these reasons, TMP-SMX is the first-choice agent for PCP prophylaxis (A-IIt,r). It is unknown whether the low doses of TMP-SMX used for PCP prophylaxis are also effective in preventing other infections. No relevant differences in efficacy of different dosing strategies for TMP-SMX, i.e., one single-strength tablet per day (80/400 mg) or one double-strength tablet (160/800 mg) daily or thrice a week, were shown in clinical studies [156, 157]. A study in HIV-infected patients observed a 43% lower risk of discontinuing TMP-SMX due to side effects if the double-strength tablet was given thrice a week instead of daily [153]. We recommend using any of these dosing regimens (B-II).

In patients with intolerance or severe adverse events related to TMP-SMX administration, atovaquone, dapsone, or pentamidine (aerosolized) can be used as alternatives. Atovaquone has been studied in HIV-infected patients [158–160], while only few studies in non-HIV-infected immunocompromised patients exist [161–163]. The drug was highly effective, generally well tolerated and not associated with hematologic toxicity. We therefore recommend atovaquone as first alternative to TMP-SMX as PCP prophylaxis in patients with underlying hematologic or oncologic malignancies. Low-dose atovaquone has been described to be less effective in PCP prophylaxis [164]; thus, 1500 mg atovaquone should be administered once daily (off-label use) (A-II). To increase bioavailability of atovaquone, it should be taken during a fatty meal [165, 166]. If hematologic toxicity is not a major concern, dapsone (100 mg/day) can be used (A-IIt). Efficacy of daily dapsone was equivalent to the administration of TMP-SMX in comparative studies [167–169]. Testing for glucose-6-phosphat dehydrogenase deficiency is recommended prior to administration of dapsone. If prophylaxis of toxoplasmosis is indicated, dapsone should be combined with pyrimethamine. The risk of dapsone-induced methemoglobinemia must be carefully considered.

Aerosolized pentamidine is a popular option for PCP prophylaxis, considering the lack of hematologic toxicity or drug–drug interactions and the long dosing interval of 28 days. However, efficacy is probably lower compared to systemic prophylaxes. Pentamidine has no efficacy against toxoplasmosis and bacterial infections, which is of concern, especially after allogeneic HSCT [170–173]. Some authors have reported a mild to moderate decline in pulmonary function after long-term exposure [174–177], while others found no effect [178]. Pentamidine inhalation has been shown to cause considerable exposure and respiratory side effects in healthcare workers [179, 180], and adequate measures are recommended to protect staff. Our recommendation to use aerosolized pentamidine (300 mg once/month) is moderate (B-II) (Table 9). There have been reports of successful use of intravenous pentamidine in prevention of PCP [187–189]. In the absence of comparative trials, no recommendation can be given for this regimen in favor of established ones.

Table 7 Risk factors and indications for *Pneumocystis jirovecii*

Significant risk	Intermediate risk	Special indications
• Acute lymphoblastic leukemia	• R-CHOP14 or escalated BEACOPP	• Alemtuzumab
• Allogeneic stem cell transplantation	• Nucleoside analogs	• Idelalisib (drug label)
• Long-term steroids with > 20 mg q.d. prednisone equivalent for > 4 weeks	• Brain irradiation with high-dose steroids	• Brain irradiation + temozolomide
• Fludarabine + cyclophosphamide + rituximab	• CD4 cell count < 200/µl	

Table 8 Indications for *Pneumocystis jirovecii* pneumonia prophylaxis

Clinical setting	Intention/recomendation	Intervention	SoR	QoE	Reference
Patients at significant risk for developing PCP	Prevent PCP	Use chemoprophylaxis	A	I	[125–133, 148–151]
Patients at intermediate risk			C	III	[127, 134, 135]
Patients receiving idelalisib, alemtuzumab, or temozolomide (with radiation)			A	II_t	[142, 144, 152]
(treatment)					
Patients at significant risk for developing PCP	Reduce mortality	Use chemoprophylaxis	A	II_t	[127]
Patients at intermediate risk			C	III	[127]
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00277-021-04452-9.

Author contribution
All authors contributed to the guideline conception and design. Material preparation, data collection, and analysis were performed by all authors. The first draft of the manuscript was written by AYC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. Travel expenses and organizational costs of meetings and consensus conferences were funded by the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (DGHO). No additional funding was provided for this guideline.

Data availability
Not applicable.

Materials availability
Not applicable.

Code availability
Not applicable.

Declarations

Ethics approval
Not applicable.

Consent to participate
Not applicable.

Consent for publication
Not applicable.

Conflict of interest
Annika Y. Classen, Larissa Henze, Luisa Durán Graeff, Karin Mayer, Silke Neumann, Stefan Krause, Hans-Heinrich Wolf, and Florian Weißinger declare that they have no conflict of interest.

Marie von Lilienfeld-Toal has received travel grants and honoraria from Celgene, Gilead, Chugai, Janssen, Novartis, Amgen, Takeda, BMS, Medac, Oncopeptides, Merck, CDDF, and Pfizer; is a consultant for Celgene, Gilead, Oncopeptides, MSD, 4DPharma, Janssen, and Shionogi; and received research funding from BMBF, Deutsche Jose Carreras Leukämie-Stiftung, IZKF Jena, DFG, Novartis, Gilead, Deutsche Krebshilfe, Celgene, and Deutsche Forschungsgemeinschaft.

Georg Maschmeyer received honoraria for lectures from Amgen, Gilead, Bristol-Myers Squibb, Merck-Serono, and Janssen-Cilag.

Michael Sandherr received honoraria for lectures from Roche and BMS.

Nael Alakel received honoraria for lectures from Basilea Pharmaceutica and honoraria for advice from Gilead, MSD Sharp & Dohme GmbH, Pfizer, and Amgen.

Maximilian Christopeit reports personal fees from Merck/MSD, GILEAD, Basilea, IQONE, and Shionogi; non-financial support and other from Robert-Koch-Institut during the conduct of the study; other from Celgene, Neovii, and Eurocept; and personal fees from JAZZ, outside the submitted work.

Olaf Penack has received honoraria and travel support from Astellas, Gilead, Jazz, MSD, Neovii Biotech, Pfizer, and Therakos. He has received research support from Bio Rad, Gilead, Incyte, Jazz, Neovii Biotech, Pierre Fabre, Sanofi, and Takeda. He is member of the advisory board to Jazz, Gilead, MSD, Omeros, Shionogi, and SOBI.

Oliver A. Cornely is supported by the German Federal Ministry of Research and Education, is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – CECAD, EXC 2030 – 390661388 and has received research grants from Actelion, Amlyx, Astellas, Basilea, Cidara, Da Volterra, F2G, Gilead, Janssen, Medicines Company, Melinta, Merck/MSD, Octapharma, Pfizer, and Scynexis; is a consultant to Actelion, Alleera, Amlyx, Astellas, Basilea, Bioysys, Cidara, Da Volterra, Entasis, F2G, Gilead, Matinas, MedPace, Menarini, Merck/MSD, Mylan, Nabriva, Noxxon, Octapharma, Paratek, Pfizer, PSI, Roche Diagnostics, Scynexis, and Shionogi; and received lecture honoraria from Al-Jazeera Pharmaceuticals, Astellas, Basilea, Gilead, Grupo Biotoscana, Merck/MSD, and Pfizer.

Janne Vehreschild has received personal fees from Merck/MSD, Gilead, Pfizer, Astellas Pharma, Basilea, German Centre for Infection Research (DZIF), University Hospital Freiburg/Congress and Communication, Academy for Infectious Medicine, University Manchester, German Society for Infectious Diseases (DGt), Arztekammer Nordrhein, University Hospital Aachen, Back Bay Strategies, German Society for Internal Medicine (DGIM) and grants from Merck/MSD, Gilead, Pfizer, Astellas Pharma, Basilea, German Centre for Infection Research (DZIF), German Federal Ministry of Education and Research (BMBF), (PJ-T: DLR), University of Bristol, and Rigshospitalet Copenhagen.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Kuderer NM, Dale DC, Crawford I, Cosler LE, Lyman GH (2006) Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer. 106:2258–2266
2. Pagano L, Caira M, Rossi G, Tumbarello M, Fanci R, Garzia MG et al (2012) A prospective survey of febrile events in hematological malignancies. Ann Hematol 91:767–774
3. Cordonnier C, Cesaro S, Maschmeyer G, Einsele H, Donnelly JP, Alano A et al (2016) Pneumocystis jiroveci pneumonia: still a concern in patients with haematological malignancies and stem cell transplant recipients. J Antimicrob Chemother 71:2379–2385
4. Heinz WJ, Buchheidt D, Christopeit M, von Lilienfeld-Toal M, Comely OA, Einsele H et al (2017) Diagnosis and empirical treatment of fever of unknown origin (FUO) in adult neutropenic patients: guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann Hematol
5. Bucaneve G, Micoczi A, Menichetti F, Marino P, Dionisi MS, Martinelli G et al (2005) Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N Engl J Med 353:977–987
6. Cullen M, Steven N, Billingham L, Gaunt C, Hastings M, Simmonds P et al (2005) Antibacterial prophylaxis after chemotherapy for solid tumors and lymphomas. N Engl J Med 353:988–998
7. Hidalgo M, Mendiola C, Lopez-Vega JM, Castellano D, Mendez M, Batiste-Alenton E et al (1998) A multicenter randomized phase II trial of granulocyte-colony stimulating factor-supported, platinum-based chemotherapy with flexible midcycle cisplatin administration in patients with advanced ovarian carcinoma. PSAMOMA Cooperative Group. Spain Cancer 83:719–725
8. Heil G, Hoeler D, Sants MA, Lechner K, Liu Yin JA, Papa G et al (1997) A randomized, double-blind, placebo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. The International Acute Myeloid Leukemia Study Group. Blood. 90: 4710–4718
9. Truong J, Lee EK, Trudeau ME, Chan KK (2016) Interpreting febrile neutropenia rates from randomized, controlled trials for consideration of primary prophylaxis in the real world: a systematic review and meta-analysis. Ann Oncol 27:608–618
10. Liss BJ, Vehreschild JJ, Comely OA, Hallek M, Fatkenheuer G, Wisplinghoff H et al (2012) Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection. 40:613–619
11. Vehreschild JJ, Bohme A, Comely OA, Kahl C, Karthaus M, Kreuzer KA et al (2014) Prophylaxis of infectious complications with colony-stimulating factors in adult cancer patients undergoing chemotherapy-evidence-based guidelines from the Infectious Diseases Working Party AGIHO of the German Society for Haematology and Medical Oncology (DGHO). Ann Oncol 25: 1709–1718
12. Neumann S, Krause SW, Maschmeyer G, Schiel X, von Lilienfeld-Toal M, Infectious Diseases Working P et al (2013) Primary prophylaxis of bacterial infections and Pneumocystis jiroveci pneumonia in patients with hematological malignancies and solid tumors: guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 92:433–442
13. Gafter-Gvili A, Fraser A, Paul M, Vidal L, Lawrie TA, van de Wetering MD, et al. Antibiotic prophylaxis for bacterial infections in febrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev 2012;1:CD004386.
14. Comely OA, Cuenca-Estrella M, Meis JF, Ullmann AJ (2014) European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Fungal Infection Study Group (EFISG) and European Confederation of Medical Mycology (ECMM) 2013 joint guidelines on diagnosis and management of rare and emerging fungal diseases. Clin Microbiol Infect 20(Suppl 3):1–4
15. Ullmann AJ, Schmidt-Hieber M, Bertz H, Heinz WJ, Kiehl M, Kruger W et al (2016) Infectious diseases in aloegenic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016. Ann Hematol 95:1435–1455
16. Mellinghoff SC, Panje J, Alakel N, Behre G, Buchheidt D, Christopeit M et al (2017) Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann Hematol
17. Sandherr M, Hentrich M, von Lilienfeld-Toal M, Massenkeil G, Neumann S, Penack O et al (2015) Antiviral prophylaxis in patients with solid tumours and haematological malignancies--update of the Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO). Ann Hematol 94:1441–1450
18. Christopeit MS-H, M; Sprute, R.; Buchheidt, D.; Hentrich, M.; Karthaus, M.; Penack, O.; Ruhnke, M.; Weissinger, F.; Comely, O.A.; Maschmeyer, G. Prophylaxis, diagnosis and therapy of infections in patients undergoing high-dose chemotherapy and autolo-gous hematopoietic stem cell transplantation, 2020 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Submitted. 2020.
19. Slavin MA, Lingaratnam S, Mileskin L, Booth DL, Cain MJ, Ritchie DS et al (2011) Use of antibacterial prophylaxis for patients with neutropenia. Australian Consensus Guidelines 2011 Steering Committee. Intern Med J 41:102–109
20. Taplitz RA, Kennedy EB, Bow EI, Crews J, Gleason C, Hawley DK et al (2018) Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. J Clin Oncol 36:3043–3054
21. Chao C, Page JH, Yang SJ, Rodriguez R, Huynh J, Chia VM (2014) History of chronic comorbidity and risk of chemotherapy-induced febrile neutropenia in cancer patients not receiving G-CSF prophylaxis. Ann Oncol 25:1821–1829
22. Lyman GH, Abella E, Pettengell R (2014) Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: a systematic review. Crit Rev Oncol Hematol 90:190–199
23. Skoetz N, Bohlius J, Engert A, Monsef I, Blank O, Vehreschild JJ. Prophylactic antibiotics or G(M)-CSF for the prevention of infections and improvement of survival in cancer patients receiving G-CSF prophylaxis. Ann Oncol 25:1821–1829
24. Christopeit MS-H, M; Sprute, R.; Buchheidt, D.; Hentrich, M.; Karthaus, M.; Penack, O.; Ruhnke, M.; Weissinger, F.; Comely, O.A.; Maschmeyer, G. Prophylaxis, diagnosis and therapy of infections in patients undergoing high-dose chemotherapy and autolo-gous hematopoietic stem cell transplantation, 2020 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Submitted. 2020.
25. Flowers CR, Seidenfeld J, Bow EI, Karten C, Gleason C, Hawley DK et al (2013) Antimicrobial prophylaxis and outpatient
management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 31:794–810.

26. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JJ, Mullen CA et al (2011) Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 52: e56–e93.

27. Averbuch D, Orasch C, Cordonnier C, Livermore DM, Mikulska M, Viscoli C et al (2013) European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica. 98: 1826–1835.

28. Taplitz RA, Kennedy EB, Bow EJ, Crews J, Gleason C, Hawley DK, et al. (2018) Outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America Clinical Practice Guideline Update. J Clin Oncol. JCO2017776211.

29. Baden LR, Swaminathan S, Angarone M, Blouin G, Camins BC, Casper C, et al. (2017) Prevention and treatment of cancer-related infections - NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®).

30. Lyman GH, Delgado DJ (2003) Risk and timing of hospitalization for febrile neutropenia in patients receiving CHOP, CHOP-R, or CNOP chemotherapy for intermediate-grade non-Hodgkin lymphoma. Cancer. 98:2402–2409.

31. Lyman GH, Morrison VA, Dale DC, Crawford J, Delgado DJ, Friedman M et al (2003) Risk of febrile neutropenia among patients with intermediate-grade non-Hodgkin’s lymphoma receiving CHOP chemotherapy. Leuk Lymphoma 44:2069–2076.

32. Assi H, Murray J, Boyle L, Rayson D (2014) Incidence of febrile neutropenia in early stage breast cancer patients receiving adjuvant FEC-D treatment. Support Care Cancer 22:3227–3234.

33. Borg C, Ray-Coquard I, Philip I, Clapissou G, Bendriss-Vermare N, Menetrier-Caux C et al (2004) CD4 lymphopenia as a risk factor for febrile neutropenia and early death after cytotoxic chemotherapy in adult patients with cancer. Cancer. 101:2675–2680.

34. Sasaki T, Takenaka Y, Hayashi T, Yamamoto M, Cho H, Fukusumi T et al (2015) Factors predicting severe infections during chemotherapy in head and neck cancer patients. Acta Otolaryngol 135:1086–1091.

35. Tjan-Heijnen VC, PE P, A A, CH M, J B, J vM et al (2012) Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect 19:474–479.

36. Marin M, Gudiol C, Ardanuy C, Garcia-Vidal C, Calvo M, Arnan M et al (2014) Bloodstream infections in neutropenic patients with cancer: differences between patients with haematological malignancies and solid tumours. J Inf Secur 69:417–423.

37. Ramphal R (2004) Changes in the etiology of bacteremia in febrile neutropenic patients and the susceptibilities of the currently isolated pathogens. Clin Infect Dis 39(Suppl 1):S25–S31.

38. Conn JR, Catchpole EM, Runnegar N, Mapp SJ, Markay KA (2017) Low rates of antibiotic resistance and infectious mortality in a cohort of high-risk hematology patients: a single center, retrospective analysis of blood stream infection. PLoS One 12: e0178059.

39. Cattaneo C, Quaresmini G, Casari S, Capucci MA, Micheletti M, Borlenghi E et al (2008) Recent changes in bacterial epidemiology and the emergence of fluoroquinolone-resistant Escherichia coli among patients with haematological malignancies: results of a prospective study on 823 patients at a single institution. J Antimicrob Chemother 61:721–728.

40. Trecarichi EM, Pagano L, Candoni A, Pastore D, Cattaneo C, Fanci R et al (2015) Current epidemiology and antimicrobial resistance data for bacterial bloodstream infections in patients with hematologic malignancies: an Italian multicentre prospective survey. Curr Microbiol Infect 21:337–343.

41. De Rosa FG, Motta I, Audisio E, Frairia C, Busca A, Di Perri G (2014) A multicentre cohort study on colonization and infection with extended spectrum beta-lactamase producing Enterobacteriaceae in high-risk patients undergoing allogeneic stem cell transplantation: epidemiology and the emergence of fluoroquinolone-resistant Escherichia coli. J Inf Secur 69:417–423.

42. Vehreschild MJ, Weitershagen D, Biehl LM, Tacke D, Vehreschild MJ, Hamprecht A, Peterson L, Schubert S, Hantschel M, Peter S et al (2014) A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother 69:3387–3392.

43. Welte G, Theilacker C, Tschauder S, Otvos L, Butz B, Jost P, Fleischhauer K, et al. (2017) Multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother. 72:1615–1620.
55. Verlinden A, Jansens H, Goossens H, van de Velde AL, Schroyens WA, Bernenan ZN et al (2014) Clinical and microbiological impact of discontinuation of fluoroquinolone prophylaxis in patients with prolonged profound neutropenia. Eur J Haematol 93:302–308
56. See I, Freifeld AG, Magill SS (2016) Causative organisms and associated antimicrobial resistance in healthcare-associated, central line-associated bloodstream infections from oncology settings, 2009-2012. Clin Infect Dis 62:1203–1209
57. Satlin MJ, Cohen N, Ma KC, Gerdinez Z, Soave R, Aksin G et al (2016) Bacteremia due to carbapenem-resistant Enterobacteriaceae in neutropenic patients with hematologic malignancies. J Inf Secur 73:336–345
58. Kantele A, Mero S, Kirveskari J, Laaveri T (2017) Fluoroquinolone antibiotic users select fluoroquinolone-resistant ESBL-producing Enterobacteriaceae (ESBL-PE) - data of prospective traveller study. Travel Med Infect Dis
59. Hakki M, Humphries RM, Hemarajata P, Tallman GB, Shields RK, Mettus RT et al (2019) Fluoroquinolone prophylaxis selects for meropenem-nonsusceptible Pseudonomas aeruginosa in patients with hematologic malignancies and hematopoietic cell transplant recipients. Clin Infect Dis 68:2045–2052
60. Saito T, Yoshikawa T, Inuma Y, Takakura S, Fujihara N, Ichinohe T et al (2008) Effects on spectrum and susceptibility patterns of isolates causing bloodstream infection by restriction of fluoroquinolone prophylaxis in a hematology-oncology unit. Eur J Clin Microbiol Infect Dis 27:209–216
61. Chong Y, Yakushiji H, Ito Y, Kaminura T (2011) Clinical impact of fluoroquinolone prophylaxis in neutropenic patients with hematological malignancies. Int J Infect Dis 15:e277–e281
62. Miles-Jay A, Butler-Wu S, Rowhani-Rahbar A, Pergam SA (2015) Incidence rate of fluoroquinolone-resistant gram-negative rod bacteremia among allogeneic hematopoietic cell transplantation patients during an era of levofloxacin prophylaxis. Biol Blood Marrow Transplant 21:539–545
63. Laukens D, Brinkman BM, Raes J, De Vos M, Vandenbeeke P (2016) Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev 40:117–132
64. Chong Y, Shimoda S, Miyake N, Aoki T, Ito Y, Kaminura T et al (2017) Incomplete recovery of the fecal flora of hematological patients with neutropenia and repeated fluoroquinolone prophylaxis. Infect Drug Resist 10:193–199
65. Chong Y, Shimoda S, Yakushiji H, Ito Y, Aoki T, Miyamoto T et al (2014) Clinical impact of fluoroquinolone-resistant Escherichia coli in the fecal flora of hematological patients with neutropenia and levofloxacin prophylaxis. PLoS One 9:e85210
66. Buelow E, Gonzalez TB, Versluis D, Oostdijk EA, Ogilvie LA, van Mourik MS et al (2014) Effects of selective digestive decontamination (SDD) on the gut resistome. J Antimicrob Chemother 69:2215–2223
67. Isaac S, Scher JU, Djkovic A, Jimenez N, Litman DR, Abramson SB et al (2017) Short- and long-term effects of oral vancomycin on the human intestinal microbiota. J Antimicrob Chemother 72:128–136
68. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342:967–970
69. Vissud S, Saccheri F, Mignot G, Yamazaki T, Daille KR, Hannan D et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 342:971–976
70. Pfug N, Kluth S, Vehreschild JJ, Bahlo J, Tacke D, Biehl L et al (2016) Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology. 5:e1150399
71. Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER et al (2017) Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol 35:1650–1659
72. Weber D, Jenq RR, Peled JU, Taur Y, Hirschst A, Koestler J et al (2017) Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 23:845–852
73. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpint et al TV (2018) Gut microbiome modules response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103
74. Elkhaf E, Raihani L, Richard C, Messaoudene M, Belkaid W, Malo J et al (2019) Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology. 8: e1568812
75. Pinato DJ, Howlett S, Ottaviani D, Unus H, Patel A, Mineo T et al (2019) Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncology 5:1774–1778
76. Lee YJ, Arguello ES, Jenq RR, Littmann E, Kim GJ, Miller LC et al (2017) Protective factors in the intestinal microbiome against clostridium difficile infection in recipients of allogeneic hematopoietic stem cell transplantation. J Infect Dis 215:1117–1123
77. Harris B, Morjaria SM, Littmann ER, Geyer AI, Stover DE, Barker JN et al (2016) Gut microbiota predict pulmonary infiltrates after allogeneic hematopoietic cell transplantation. Am J Respir Crit Care Med 194:450–463
78. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L et al (2014) The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 124:1174–1182
79. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A et al (2012) Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55:905–914
80. Routy B, Letendre C, Enot D, Chenard-Poirier M, Mehraj V, Seguin NC et al (2017) The influence of gut-decontamination prophylactic antibiotics on acute graft-versus-host disease and survival following allogeneic hematopoietic stem cell transplantation. Oncoimmunology. 6:e1258506
81. Thackray LB, Hundle SA, Gorman MJ, Poddar S, Bagadia P, Briseno CG et al (2018) Oral antibiotic treatment of mice exacerbates the disease severity of multiple flaviviruses infections. Cell Rep 22:3440–3453 e6
82. Haak BW, Littmann ER, Chaubal JL, Pickard AJ, Fontana E, Adhi F et al (2018) Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood. 131:2978–2986
83. Ogimi C, Krantz EM, Golob JL, Waghmare A, Liu C, Leisenring WM et al (2018) Antibiotic exposure prior to respiratory viral infection is associated with progression to lower respiratory tract disease in allogeneic hematopoietic cell transplant recipients. Biol Blood Marrow Transplant 24:2293–2301
84. Imran H, Tleyjeh IM, Amdt CA, Baddour LM, Erwin PJ, Tsigrelis C et al (2008) Fluoroquinolone prophylaxis in patients with neutropenia: a meta-analysis of randomized placebo-controlled trials. Eur J Clin Microbiol Infect Dis 27:53–63
85. Owattanapanich V, Chayakulkeeree M (2019) Efficacy of levofloxacin as an antibacterial prophylaxis for acute leukemia patients receiving intensive chemotherapy: a systematic review and meta-analysis. Hematology (Amsterdam, Netherlands) 24:362–368
86. Egan G, Robinson PD, Martinez JPD, Alexander S, Appenn RA, Dupuis LL et al (2019) Efficacy of antibiotic prophylaxis in
patients with cancer and hematopoietic stem cell transplantation recipients: a systematic review of randomized trials. Cancer Med 8:4536–4546.

87. Drayson MT, Bowcock S, Planche T, Iqbal G, Pratt G, Yong K et al (2019) Levofloxacin prophylaxis in patients with newly diagnosed myeloma (TEAMM): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial. Lancet Oncol 20:1760–1772.

88. Mohyuddin GR, Aziz M, McClune B, Abdallah AO, Qazilbash M (2020) Antibiotic prophylaxis for patients with newly diagnosed multiple myeloma: Systematic review and meta-analysis. Eur J Haematol 104:420–426.

89. Yeshurun M, Vaxman I, Shargian L, Yahav D, Bishara J, Pasvolsky O et al (2017) Antibacterial prophylaxis with ciprofloxacin for patients with multiple myeloma and lymphoma undergoing autologous hematopoietic cell transplantation: a quasi-experimental single-centre before-after study. Clin Microbiol Infect.

90. Yemm KE, Barreto JN, Mara KC, Dierkhsing RA, Gangat N, Tosh PK (2018) A comparison of levofloxacin and oral third-generation cephalosporins as antibacterial prophylaxis in acute leukaemia patients during chemotherapy-induced neutropenia. J Antimicrob Chemother 73:204–211.

91. Modi D, Jang H, Kim S, Surapaneni M, Sankar K, Deol A et al (2017) Fluoroquinolone prophylaxis in autologous hematopoietic stem cell transplant recipients. Support Care Cancer 25:2593–2601.

92. Pohlen M, Marx J, Mellmann A, Becker K, Mesters RM, Mikesch JH et al (2016) Ciprofloxacin versus colistin prophylaxis during neutropenia in acute myeloid leukemia: two parallel patient cohorts treated in a single center. Haematologica. 101:1208–1215.

93. Satin MJ, Vardhana S, Soave R, Shore TB, Mark TM, Jacobs SE et al (2015) Impact of prophylactic levofloxacin on rates of bloodstream infection and fever in neutropenic patients with multiple myeloma undergoing autologous hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 21:1808–1814.

94. Jung SH, Kang SJ, Jang HC, Ahn JS, Yang DH, Lee SS et al (2014) Effect of levofloxacin prophylaxis for prevention of severe infections in multiple myeloma patients receiving bortezomib-containing regimens. Int J Hematol 100:473–477.

95. Lee SSF, Fulford AE, Quinn MA, Seabrook J, Arenz D, Mahne M, Bredenfeld H et al (2012) Efficacy and safety of moxifloxacin as antibacterial prophylaxis for patients receiving autologous haematopoietic stem cell transplantation: a randomised trial. Int J Antimicrob Agents 39:130–134.

96. Fernandes R, Mazzarello S, Stober C, Ibrahim MFK, Dudani S, Masi S et al (2019) Antibacterial prophylaxis in haematological patients associated with reduction in hospital admis-

97. Johnson EJ, MacGowan AP, Potter MN, Stockley RK, White LO, Slade RR et al (1990) Reduced absorption of oral ciprofloxacin after chemotherapy for haematological malignancy. J Antimicrob Chemother 25:837–842.

98. von Baum H, Sigge A, Bommer M, Kern WV, Marre R, Dohner H et al (2006) Moxifloxacin prophylaxis in neutropenic patients. J Antimicrob Chemother 58:891–894.

99. Bow EJ, Rayner E, Louie TJ (1988) Comparison of norfloxacin with cotrimoxazole/colistin (COT/COL) versus ciprofloxacin (CIP) in neutropenic patients with cancer and hematopoietic stem cell transplantation: a systematic review and analysis of randomized controlled trials. J Antimicrob Chemother 55:436–444.

100. Bow EJ, Rayner E, Louie TJ (1988) Comparison of norfloxacin with cotrimoxazole for infection prophylaxis in acute leukemia. The EORTC-Gnotobiotic Project Group. Eur J Cancer (Oxford, England : 1990) 28a:873–878.

101. Koh S, Yamada K, Hayashi Y, Koh H, Nakashima Y et al (2015) Effectiveness of antibacterial prophylaxis with non-absorbable polymyxin B compared to levofloxacin after allogeneic hematopoietic stem cell transplantation. Transplant Inf Dis 17:647–654.

102. Weber D, Oefner PJ, Dettmer K, Hiergeist A, Koessler J, Gessner A et al (2016) Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation. Bone Marrow Transplant 51:1087–1092.

103. FDA Drug Safety Communication: FDA advises restricting fluoroquinolone antibiotic use for certain uncomplicated infections; warns about disabling side effects that can occur together. 2016.

104. FDA warns about increased risk of ruptures or tears in the aorta with fluoroquinolone antibiotics against Gram-positive infections for febrile neutropenia: a systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother 211:477–444.

105. FDA warns about disabling side effects that can occur together. 2019.

106. Rote-Hand-Brief zu Fluorchinolon-Antibiotika: Schwerwiegende Nebenwirkungen und Anhaltende, die Lebensqualität beeinträchtigende und möglicherweise irreversible Nebenwirkungen. German Bundesinstitut für Arzneimittel und Medizinprodukte. 2018.

107. Mikułska M, Averbuch D, Tissot F, Cordonnier C, Akova M, Calandra T et al (2018) Fluoroquinolone prophylaxis in haematological cancer patients with neutropenia: ECIL critical appraisal of previous guidelines. J Inf Secur 76:20–37.

108. Bäuerle-D-Brief zu systemisch und inhalativ angewendeten Fluorchinolonen: RISIKO FÜR AORTENANEYRYSMEN UND AORTENDISSEKTIONEN. German Bundesinstitut für Arzneimittel und Medizinprodukte 2018.

109. Calandra T et al (2016) Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation. Bone Marrow Transplant 51:1087–1092.

110. Mikułska M, Averbuch D, Tissot F, Cordonnier C, Akova M, Calandra T et al (2018) Fluoroquinolone prophylaxis in haematological cancer patients with neutropenia: ECIL critical appraisal of previous guidelines. J Inf Secur 76:20–37.

111. Bäuerle-D-Brief zu systemisch und inhalativ angewendeten Fluorchinolonen: RISIKO FÜR AORTENANEYRYSMEN UND AORTENDISSEKTIONEN. German Bundesinstitut für Arzneimittel und Medizinprodukte 2018.

112. Mikułska M, Averbuch D, Tissot F, Cordonnier C, Akova M, Calandra T et al (2018) Fluoroquinolone prophylaxis in haematological cancer patients with neutropenia: ECIL critical appraisal of previous guidelines. J Inf Secur 76:20–37.

113. Bäuerle-D-Brief zu systemisch und inhalativ angewendeten Fluorchinolonen: RISIKO FÜR AORTENANEYRYSMEN UND AORTENDISSEKTIONEN. German Bundesinstitut für Arzneimittel und Medizinprodukte 2018.
118. Bow EJ, Rayner E, Scott BA, Louie TJ (1987) Selective gut decontamination with nalidixic acid or trimethoprim-sulfamethoxazole for infection prophylaxis in neutropenic cancer patients: relationship of efficacy to antimicrobial spectrum and timing of administration. Antimicrob Agents Chemother 31: 551–557

119. Daneman N, Sarwar S, Fowler RA, Cuthbertson BH (2013) Effect of selective decontamination on antimicrobial resistance in intensive care units: a systematic review and meta-analysis. Lancet Infect Dis 13:328–341

120. Benus RF, Harmsen HJ, Welling GW, Spanjersberg R, Zijlstra JG, Degener JE et al (2010) Impact of digestive and oropharyngeal decontamination on the intestinal microbiota in ICU patients. Intensive Care Med 36:1394–1402

121. Buelow E, Bello Gonzalez TDJ, Fuentes S, de Steenhuijsen Piters WAA, Lahti L, Bayjanov JR et al (2017) Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. Microbiome. 5:88

122. Bello Gonzalez TDJ, Pham P, Top J, Willems RJL, van Schaik W, Schoovaerts K, Dirix L, Rutten A, Van Schaeren J, Van Herendael B, Van Grieken S et al (2017) Pneumocystis jiroveci pneumonia (PJP) in non-HIV immunocompromised individuals. Acta Clin Belg:1-4

123. Schoovaerts K, Dirix L, Rutten A, Van Schaeren J, Van Herendael B, Van Grieken S et al (2017) Pneumocystis jiroveci pneumonia (PJP) in non-HIV immunocompromised patients. Cochrane Database Syst Rev. CD005590.

124. Walzer PD, Perl DP, Krostadt DJ, Rawson PG, Schultz MG (1974) Pneumocystis carinii pneumonia in the United States. Epidemiologic, diagnostic, and clinical features. Ann Intern Med 80:83–93

125. Hughes WT, Feldman S, Aur RJ, Verzosa MS, Hustu HO, Simone JV (1975) Intensity of immunosuppressive therapy and the incidence of Pneumocystis carinii pneumonitis. Cancer. 36:2004–2009

126. Sepkowitz KA (2002) Opportunistic infections in patients with and patients without Acquired immunodeficiency syndrome. Clin Infect Dis 34:1098–1107

127. Stern A, Green H, Paul M, Vidal L, Leibovici L (2014) Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients. Cochrane Database Syst Rev. CD005590.

128. Hughes WT, Price RA, Kim H-K, Coburn TP, Grigsby D, Feldman S (1973) Pneumocystis carinii pneumonitis in children with malignancies. J Pediatr 82:404–415

129. Martin-Garrido I, Carmona EM, Specks U, Limper AH (2013) Pneumocystis pneumonia in patients treated with rituximab. Chest. 144:258–265

130. De Castro N, Neuville S, Sarfati C, Ribaud P, Derouin F, Gluckman E et al (2005) Occurrence of Pneumocystis jiroveci pneumonia after allogeneic stem cell transplantation: a 6-year retrospective study. Bone Marrow Transplant 36:879–883

131. Mansharamani NG, Garland R, Delaney D, Koziel H (2000) Management and outcome patterns for adult Pneumocystis carinii pneumonia, 1985 to 1995. Chest. 118:704–711

132. Maeda T, Babazono A, Nishi T, Matsuda S, Fushimi K, Fujimori T, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996

133. Siegel SE, Nesbit ME, Baehner R, Sather H, Hammond GD (1980) Pneumocystis during therapy for childhood acute lymphoblastic leukemia. Am J Dis Child (1960) 134:28–34
180. Balmes JR, Estacio PL, Quinlan P, Kelly T, Corkery K, Blanc P (1995) Respiratory effects of occupational exposure to aerosolized pentamidine. J Occup Environ Med 37:145–150

181. Hughes WT, Kuhn S, Chaudhary S, Feldman S, Verzosa M, Aur RJ et al (1977) Successful chemoprophylaxis for Pneumocystis carinii pneumonia in cardiac transplant recipients by trimethoprim sulfamethoxazole. Transplantation. 56:359–362

182. Hughes WT (1987) Pneumocystis carinii pneumonitis. N Engl J Med 297:1419–1426

183. Olsen SL, Renlund DG, O’Connell JB, Taylor DO, Lassetter JE, Schneider MM, Nielsen TL, Nelsing S, Hoepelman AI, Eeftinck Schattenkerk JK, van der Graaf Y et al (1995) Efficacy and toxicity of two doses of trimethoprim-sulfamethoxazole as primary prophylaxis against Pneumocystis carinii pneumonia in patients with human immunodeficiency virus. Dutch AIDS Treatment Group. J Infect Dis 171:1632–1636

184. Hirschel B, Lazzarin A, Chopard P, Opravil M, Furrer HJ, Ruttimann S et al (1991) A controlled study of inhaled pentamidine for primary prevention of Pneumocystis carinii pneumonia. N Engl J Med 324:1079–1083

185. Schilder AG, Balmes JR, Estacio PL, Quinlan P, Kelly T, Corkery K, Blanc P (1995) Respiratory effects of occupational exposure to aerosolized pentamidine. J Occup Environ Med 37:145–150

186. Link H, Vohрин г. HF, Wingen F, Bragas B, Schwarz A, Ehninger G (1993) Pentamidine aerosol for prophylaxis of Pneumocystis carinii pneumonia after BMT. Bone Marrow Transplant 11:403–406

187. Lim MJ, Stebbings A, Lim SJ, Foor K, Hou JZ, Farah R et al (2015) IV pentamidine for primary PJP prophylaxis in adults undergoing allogeneic hematopoietic progenitor cell transplant. Bone Marrow Transplant 50:1253–1255

188. Curi DA, Duerst RE, Badke C, Bell J, Chaudhury S, Kletzel M et al (2016) IV pentamidine for Pneumocystis jirovecii pneumonia prophylaxis in pediatric allogeneic stem cell transplant patients. Bone Marrow Transplant 51:1394–1396

189. Sweiss K, Anderson J, Wirth S, Oh A, Quigley JG, Khan I et al (2018) A prospective study of intravenous pentamidine for PJP prophylaxis in adult patients undergoing intensive chemotherapy or hematopoietic stem cell transplant. Bone Marrow Transplant 53:300–306

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Annika Y. Classen 1,2 · Larissa Henze 3 · Marie von Lilienfeld-Toal 4 · Georg Maschmeyer 5 · Michael Sandherr 6 · Luisa Durán Graeff 1,2 · Nael Alakel 7 · Maximilian Christopeit 8 · Stefan W. Krause 9 · Karin Mayer 10 · Silke Neumann 11 · Oliver A. Cornely 1,2,12,13 · Olaf Penack 14 · Florian Weiβinger 15 · Hans-Heinrich Wolf 16 · Jörg Janne Vehreschild 1,2,17 ·

1 Faculty of Medicine and University Hospital Cologne, Department I for Internal Medicine, University of Cologne, Herderstr. 52-54, 50931 Cologne, Germany
2 German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
3 Department of Medicine, Clinic III – Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
4 Department of Hematology and Oncology, Clinic for Internal Medicine II, University Hospital Jena, Jena, Germany
5 Hematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
6 Specialist Clinic for Haematology and Oncology, Medical Care Center Penzberg, Penzberg, Germany
7 Department I of Internal Medicine, Hematology and Oncology, University Hospital Dresden, Dresden, Germany
8 Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
9 Department of Medicine 5 – Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
10 Medical Clinic III for Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn (UKB), Bonn, Germany
11 Interdisciplinary Center for Oncology, Wolfsburg, Germany
12 Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
13 University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
14 Medical Department for Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
15 Department for Internal Medicine, Hematology/Oncology, and Palliative Care, Evangelisches Klinikum Bethel v. Bodelschwinghsche Stiftungen Bethel, Bielefeld, Germany
16 Department IV of Internal Medicine, University Hospital Halle, Halle, Germany
17 Department of Internal Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany