PKC\(\eta\) is required for \(\beta_1\gamma_2/\beta_3\gamma_2\)- and PKD-mediated transport to the cell surface and the organization of the Golgi apparatus

Alberto Marcelo Díaz Añel and Vivek Malhotra

Department of Biology, University of California, San Diego, La Jolla, CA 92093

Introduction

We identified a marine natural product ilimaquinone (IQ), which converted the Golgi apparatus into small vesicles (Takizawa et al., 1993). We reasoned that IQ treatment overactivates the membrane fission reaction, thus converting the Golgi apparatus into small vesicles. If true, an understanding of the IQ-mediated Golgi vesiculation process should reveal components of the membrane fission reaction. IQ-mediated Golgi vesiculation was reconstituted in permeabilized cells and was shown to require trimeric G proteins and a serine/threonine kinase called protein kinase D (PKD) (Jamora et al., 1997, 1999). Of interest is the revelation that these components are also required for the formation of transport carriers at the TGN that are en route to the cell surface. We now report that PKD is activated specifically by G protein subunit \(\beta_1\gamma_2\) and \(\beta_3\gamma_2\) via the Golgi apparatus–associated PKC\(\eta\).

Results

Identification of \(\beta\gamma\) subunits that regulate Golgi organization

\(\beta\gamma\) combinations were selected using one of five \(\beta\) subunits fused with FLAG tag (\(\beta_1\)-\(\beta_5\)), and one of five \(\gamma\) subunits fused with HA tag (\(\gamma_1\)-\(\gamma_5\)). 25 combinations of these two proteins were transfected, separately, into HeLa cells (Fig. 1 A). The organization of the Golgi apparatus was monitored by immunofluorescence microscopy, using antibodies against GM130 and TGN46 as markers for the cis-medial Golgi and the TGN, respectively. Of all the \(\beta\gamma\) combinations tested, \(\beta_1\gamma_2\) and \(\beta_3\gamma_2\) caused Golgi breakdown in greater than 60% of transfected cells (Fig. 1 A; and Fig. 1 B, a and b).

To confirm the role of \(\beta_1\gamma_2\) and \(\beta_3\gamma_2\) subunits in Golgi apparatus organization, a mutant of \(\gamma_2\) subunit was generated by replacing cysteine 68 with serine in the carboxy-terminal portion of the protein (\(\gamma_2\)C68S). This change alters the CAAX box and prevents geranylgeranylation of \(\gamma_2\)-C68S subunit, inhibiting membrane association. Transfected \(\beta_1\gamma_2\)-C68S and \(\beta_3\gamma_2\)-C68S subunits were cytosolic, and the Golgi complex appeared intact in all transfected cells (Fig. 2, a and b).

Correspondence to Vivek Malhotra: malhotra@biomail.ucsd.edu

Abbreviations used in this paper: DAG, diacylglycerol; IQ, ilimaquinone; PKD, protein kinase D; VSV, vesicular stomatitis virus.
Recombinant histidine-tagged β1γ2 and β3γ2 were expressed in human 293T cells, purified, and added to permeabilized NRK cells. β1γ2 and β3γ2 (10 nM) specifically caused fragmentation of the Golgi apparatus in >60% of cells (Fig. 3, a and b). In contrast, 10 nM β1γ2-C68S and β3γ2-C68S or β4γ2 had no effect on the organization of the Golgi apparatus (Fig. 3, c–f).

We have shown before that the PH domain of PKD blocks Golgi fragmentation induced by total bovine brain Gβγ (Jamora et al., 1999). We tested the effect of PKD-PH domain on Golgi fragmentation induced by β1γ2 and β3γ2, respectively. The GST-tagged PH domain of PKD and GFP-tagged PH domains of PLCβ2 and PLCδ1, were cotransfected along with β1γ2 or β3γ2 in HeLa cells. The PH domains of PKD and PLCβ2 are predominantly cytosolic, whereas the PH domain of PLCδ1 is localized to the plasma membrane, via PI(4,5)P2 binding (data not shown). The organization of the Golgi apparatus was monitored by fluorescence microscopy. The PH domains of PKD and PLCβ2 inhibited β1γ2- and β3γ2-mediated Golgi breakdown (Fig. 4 A). The latter result is consistent with the findings that PLCβ2 PH domain binds βγ (Wang et al., 2000). No inhibition of Golgi fragmentation was observed by PLCδ1 PH domain, which binds βγ on plasma membrane only in the presence of PI(4,5)P2 (Wang et al., 1999). PH domains of Akt/PKB and Bruton’s tyrosine kinase did not have effect on Golgi fragmentation induced by βγ (Fig. 4 A).

β1γ2 and β3γ2 activate protein kinase D

Since βγ-mediated effects on the Golgi apparatus are reportedly mediated through activation of PKD, we tested the effect of βγ on PKD phosphorylation and activation in intact cells. HeLa cells were transfected with GST-tagged wild-type PKD and FLAG-β1HA-γ2 or FLAG-β2C68S or HA-γ2 as a negative control. GST-PKD was immunoprecipitated from cells and tested for its activation. As shown in Fig. 4 B, PKD autophosphorylation at Ser916 was detected with all the constructs tested, but the phosphorylation of the activation loop at Ser744-748 was increased in the presence of β1γ2 (Fig. 4 B, lane 1). Phosphorylation of the activation loop was inhibited by the PH domains of PLCβ2 and PKD, but not by the PH domain of PLCδ1 (Fig. 4 B, lanes 3, 4, and 5). β3γ2 had similar effects on the activation of PKD (data not shown). β4γ2 did not activate phosphorylation of PKD in the activation loop (Fig. 4 B, lane 2). Based on these results, we conclude that β1γ2 induces phosphorylation and activation of PKD in intact cells.

β1γ2-mediated activation of PKD is via PKCζ

It is known that phosphorylation in the activation loop of PKD is mediated by PKC (Waldron et al., 2001). PKCζ and PKCε...
both activate PKD. These PKC isoforms are highly homologous and localize to the Golgi apparatus (Goodnight et al., 1995; Lehel et al., 1995; Brandlin et al., 2002; Rey et al., 2004). PKC binds to the PH domain of PKD (Waldron et al., 1999), and we have shown previously that addition of the PH domain of PKD inhibits IQ- and -mediated Golgi fragmentation (Jamora et al., 1999). To test a role for PKC in secretion mediated by the -mediated activation of PKD (Walidron et al., 1999), and we have shown previously that addition of the PH domain of PKD inhibits IQ- and -mediated Golgi fragmentation (Jamora et al., 1999). To test a role for PKC in secretion mediated by the PH domain of PKD (Walidron et al., 1999), and we have shown previously that addition of the PH domain of PKD inhibits IQ- and -mediated Golgi fragmentation (Jamora et al., 1999). To test a role for PKC in secretion mediated by the PH domain of PKD (Walidron et al., 1999), and we have shown previously that addition of the PH domain of PKD inhibits IQ- and -mediated Golgi fragmentation (Jamora et al., 1999). To test a role for PKC in secretion mediated by the PH domain of PKD (Walidron et al., 1999), and we have shown previously that addition of the PH domain of PKD inhibits IQ- and -mediated Golgi fragmentation (Jamora et al., 1999). To test a role for PKC in secretion mediated by the PH domain of PKD (Walidron et al., 1999), and we have shown previously that addition of the PH domain of PKD inhibits IQ- and -mediated Golgi fragmentation (Jamora et al., 1999). To test a role for PKC in secretion mediated by the PH domain of PKD (Walidron et al., 1999), and we have shown previously that addition of the PH domain of PKD inhibits IQ- and -mediated Golgi fragmentation (Jamora et al., 1999). To test a role for PKC in secretion mediated by the PH domain of PKD (Walidron et al., 1999), and we have shown previously that addition of the PH domain of PKD inhibits IQ- and -mediated Golgi fragmentation (Jamora et al., 1999). To test a role for PKC in secretion mediated by the PH domain of PKD (Walidron et al., 1999), and we have shown previously that addition of the PH domain of PKD inhibits IQ- and -mediated Golgi fragmentation (Jamora et al., 1999).
tained in the ER because of folding defects. Upon shift to 20°C, the protein leaves the ER and is retarded in the TGN. Subsequent shift to 32°C releases VSV-G from the TGN and it is transported to the cell surface. As shown in Fig. 6, in control cells expressing wild-type PKCζ, VSV–G protein is found at the cell surface 120 min after releasing the G protein from the TGN by a shift to 32°C (Fig. 6, a–d). In cells expressing PKCζ kinase inactive, VSV–G protein was still in the Golgi, even after 2 h at 32°C (Fig. 6, e–h).

Wild-type and constitutively activated forms of PKCζ were expressed in HeLa cells and the organization of the Golgi apparatus was monitored by fluorescence microscopy using antibodies to the early (GM130) and the late Golgi (TGN46). The wild-type PKCζ localized to the Golgi, and at the light microscopy level, the Golgi membranes appeared largely unaltered in organization (Fig. 7, a and b). Golgi membranes in cells expressing the constitutively activated form of PKCζ are, however, highly fragmented and appear diffusely dispersed in the

Figure 5. Activation of PKCζ by β1γ2, and subsequent hyper phosphorylation of PKD in the activation loop. HeLa cells were cotransfected with the constructs listed. The cells were lysed and the extracts analyzed by Western blotting to monitor the phosphorylation status of FLAG-PKCζ, GFP-PKCζ, and GST-PKD, respectively. The blots were quantitated as described in Materials and methods. (A) For PKCζ, the antibody used recognizes threonine 655 (T655). (B) Similar experimental procedure was used to monitor the effect of β1γ2 expression on the phosphorylation status of PKCζ phosphorylation (Ser729). (C) Coexpression of β1γ2 and PKCζ caused a fourfold increase in the phosphorylation of Ser744/748 (in the activation loop) of PKD without any appreciable change in the autophosphorylation of Ser916 (lane 2, shown in the Western blot and the bar graph). Values are means (±SD, vertical bars) of three separate experiments.

Figure 6. PKCζ is required for protein transport from TGN to the cell surface. HeLa cells were transfected with GFP-tsO45 VSV-G and FLAG-PKCζ-wt or FLAG-PKCζ-kinase dead. Following the procedure described in Materials and methods, immunofluorescence microscopy was used to detect GFP-tsO45 VSV-G localization. VSV–G protein is retained in the Golgi apparatus in PKCζ kinase dead–expressing cells after 120 min incubation at the permissive temperature C (a–h), compared with cells expressing the wild-type PKCζ (a–d).
PKC\(\eta\) and PKD-MEDIATED TRANSPORT TO THE CELL SURFACE • DÍAZ AÑEL AND MALHOTRA

PKD, AKAP-Lbc, and the Golgi connection

As shown previously and described here, PKD is a cytosolic protein, which binds Golgi membranes through interaction with DAG (Baron and Malhotra, 2002). The Golgi-associated pool of PKD is in an activated form and required for membrane fission (Maeda et al., 2001). PKD also has a plasma membrane associated target called Kidins220 in neurons (Iglesias et al., 2000). More recently, Scott and colleagues have reported a potentially interesting connection between PKD and a protein known as AKAP-Lbc (Carnegie et al., 2004). AKAP-Lbc is proposed to be a scaffold for three different kinases in this scheme. It has been reported that AKAP-Lbc binds PKA, PKC\(\eta\), and PKD. When cells expressing these kinases exogenously are treated with PdBu, PKC\(\eta\) is activated, which in turn activates PKD as monitored by an antibody against the phosphorylated Ser744/748-PKD. Activation of PKA by forskolin/IBMX was shown to phosphorylate AKAP-Lbc, which then releases activated PKD into the cytoplasm. But do these interactions have a physiological significance? Cells expressing GFP-AKAP-Lbc were cotransfected with GST-PKD wild type or GST-PKD kinase dead. The cells were then treated with PdBu, or PdBu and forskolin/IBMX, by the procedure of Scott and colleagues (Carnegie et al., 2004). The localization of PKD and AKAP-Lbc was monitored by fluorescence microscopy using antibodies to the respective tags. In untreated cells, wild-type PKD was clearly visible on Golgi membranes. AKAP-Lbc, however, does not colocalize with the TGN-specific PKD (Fig. 8 d). Treatment of cells with PdBu caused translocation of PKD and AKAP-Lbc to the cell surface. Imaging by confocal microscopy revealed a partial colocalization of these proteins on the plasma membrane (Fig. 8 h and inset). The Golgi membranes under these conditions, however, were intact. In other words, PdBu dependent activation of PKD was not sufficient for vesiculation of the Golgi apparatus. Treatment of cells with PdBu and forskolin/IBMX did not change the overall localization of these two components. They remained on the plasma membrane although the two proteins appeared by confocal microscopy to be separated from each other (Fig. 8 l). The same results were found with the kinase-dead form of PKD and AKAP-Lbc (Fig. 8, a–c, e–g, and i–k). Our results show that PKD and AKAP-Lbc do not colocalize on Golgi membranes and treatment with PdBu alone or PdBu and forskolin is not sufficient to activate PKD in a form capable of Golgi vesiculation.

Discussion

We have revealed a requirement for a new kinase, PKC\(\eta\), and specific \(\beta\) subunits, \(\beta1\gamma2\), and \(\beta3\gamma2\) in the PKD-dependent fission of Golgi membranes. G\(\beta\)y and PKD have been shown previously to regulate the production of transport vesicles from the TGN (Jamora et al., 1997, 1999; Liljedahl et al., 2001; Yeaman et al., 2004). PKC\(\eta\) is shown here to be required for pro-

![Figure 7. Expression of constitutively activated PKC\(\eta\) fragments the Golgi apparatus. HeLa cells were transfected with tagged versions of FLAG-PKC\(\eta\) wt (a and b), FLAG-PKC\(\eta\) constitutive active (c and d) and FLAG-PKC\(\eta\) constitutive active + GST-PKD kinase dead (e–h). The localization of the respective proteins was monitored by fluorescence microscopy using specific anti-tag antibodies. PKC\(\eta\)wt is localized to the Golgi apparatus (a and b). The Golgi apparatus in cells expressing PKC\(\eta\) constitutive active is fragmented (c and d). The PKC\(\eta\) constitutive active–mediated Golgi fragmentation is inhibited upon expression of PKD kinase dead (e and f). Interestingly, PKD kinase dead and PKC\(\eta\) constitutive active colocalize both at the level of Golgi cisternae (g–h) and the emanating tubules (insets in g and h). CA denotes constitutively activated, and KD a kinase-dead form of the respective kinase.](image-url)
tein transport from the TGN. There are three different isoforms of PKD in mammalian cells and all are specifically involved in the transport of cargo carrying a baso-lateral sorting signal (Yeaman et al., 2004). Knockdown of PKD by siRNA has been reported to block secretion of neurotensin (Li et al., 2004). We have shown previously that inhibiting PKD kinase activity blocks secretion by preventing membrane fission (Liljedahl et al., 2001). Long tubules containing cargo destined to the cell surface are seen emanating from the TGN under these conditions. Conversely, as shown here, overactivation of PKD by PdBu or PKC (by expressing 1 or a constitutively activated form of PKC) causes en mass fragmentation of the Golgi apparatus. This fragmentation is inhibited by expressing a kinase-inactive PKD. Together, our findings reveal that βγ or PKCγ (by expressing β1γ2 or a constitutively activated form of PKCγ) causes en mass fragmentation of the Golgi apparatus. This fragmentation is inhibited by expressing a kinase-inactive PKD. Together, our findings reveal that βγ or PKCγ (by expressing β1γ2 or a constitutively activated form of PKCγ) causes en mass fragmentation of the Golgi apparatus. This fragmentation is inhibited by expressing a kinase-inactive PKD. Together, our findings reveal that βγ or PKCγ (by expressing β1γ2 or a constitutively activated form of PKCγ) causes en mass fragmentation of the Golgi apparatus.

A number of components have been reported to be required for transport from the Golgi apparatus to the cell surface. The notable candidates: Par1 (Cohen et al., 2004), Lim kinase (Rosso et al., 2004), dynamin (Yang et al., 2001), PI(4)K (Audhya et al., 2000; Bruns et al., 2002; Levine and Munro 2002), cdc42 (Musch et al., 2001), myosin (Musch et al., 1997), kinesin (Kreitzer et al., 2000), and BARS-50 (Weigert et al., 1999). Cdc42, Par1, Lim kinase, kinesin, and dynamin are all reportedly involved in transport to the apical surface. These proteins are not likely to participate in the βγ-PKCγ-PKD-DAG-dependent membrane fission pathway, which is specialized for transport to the basolateral surface or for proteins carrying basolateral sorting signals (Yeaman et al., 2004). BARS-50 or CtBP (transcriptional corepressor) is reported to possess a membrane fission activity (Weigert et al., 1999). This is an exciting addition to the list of components involved in trafficking cargo. However, the details by which BARS-50—or, in its absence, another such component—might function in this reaction is not clear (Hildebrand and Soriano, 2002; Hidalgo Carcedo et al., 2004). Yeast PIK1 and mammalian

Figure 8. PKD on the Golgi membranes does not colocalize with AKAP-Lbc. HeLa cells were transfected with GFP-AKAP-Lbc and either wild-type (d, h, and l) or kinase-dead form of GST-PKD (a–c, e–g, and i–k). The location of AKAP-Lbc and PKD was monitored by confocal microscopy using GFP and anti-GST antibodies, respectively. PKD wild type and kinase dead is localized to the TGN (d) and the TGN-derived tubes, in the case of kinase-dead PKD (c and inset). The Golgi-associated form of PKD is in an activated state but it does not colocalize with AKAP-Lbc. Treatment with PdBu activates both the wild-type and the kinase-dead form of PKD. However, the PdBu-activated form of PKD is not sufficient to induce Golgi fragmentation. The PdBu-activated PKD translocates to the plasma membrane and partially colocalizes with AKAP-Lbc (g and h). Forskolin/IBMX treatment retains activated PKD on the plasma membrane, although it is not in complex with AKAP-Lbc (k and l).
S. cerevisiae lipid kinase is not known (Nishikawa et al., 1998). Sec14p in shown to coprecipitate with a PI4K activity, the identity of that port carriers from the Golgi apparatus (Audhya et al., 2000; PI4K are involved in events leading to the formation of trans-

of the right size, shape and the number is yet to be determined they are made to work in concert to produce a transport carrier to the plasma membrane. But the identity of the effectors and how motors to direct transport carriers for their onward journey to the appropriate time, when cargo of the correct size and quantity has

propose that phosphoinositides and DAG act to nucleate the emerging bud and cutting the membrane at the appro-

quired for protein transport from theTGN to the cell surface. The Golgi complex in mammalian cells has a “complex organization” that is maintained amidst a tremendous flux of membranes during protein transport. The mechanism of protein transport across, and out of the Golgi apparatus, is likely to be regulated by a variety of signals and layers of checks and balances. We have described four components (β1γ2, β3γ2-PKCη, PKD, and DAG) that control membrane fission. Many other factors will also be required to generate transport carriers from the TGN in a controlled manner to accommodate cellular demands (Fig. 9).

Materials and methods
cDNA constructs pCDNA3.1 plasmids expressing FLAG-β1 to β5, and HA-α1 to α5, and with histidine tags were a gift from S. Gutzkin (National Institutes of Health [NIH], Bethesda, MD). pEGFP constructs expressing PLCγ1, Akt/PKB, and Btk PH domains were donated by D. Alessi (University of Dundee, Scot-

land, UK). GFP-AKAP-Lbc plasmid was a gift from John D. Scott (Vallum Institute, Portland, OR). PKD plasmids were constructed in our laboratory by Yusuke Maeda (University of Osaka, Japan). HA-α2C685 mutant was gener-

ated by PCR, replacing the 68th codon, TGC [cysteine] with AGC [serine]. PLCγ2 PH domain and full-length PKCγ wild type were amplified by RT-PCR using purified HeLa cells RNA, and cloned in the vector pEGFP-

C1 (CLONTECH Laboratories, Inc.). FLAG-PKCη was a gift from Motoi Ohba (Showa University, Tokyo, Japan). Mutagenesis of both PKCs was done following the manufacturer’s protocol for the QuikChange site-
directed mutagenesis kit (Stratagene). The final products were PKCη A160E (PKCη constitutive active), PKCη K384A (PKCη kinase dead), PKCε T566E (PKCε constitutive active), and PKCε K437W (PKCε kinase dead).

Cell culture and transfections HeLa ATCC and 293T cells were cultured in DMEM (Cellgro), supple-

mented with 10% fetal bovine serum (GIBCO BRL). NRK cells were grown in a modification of Eagle’s medium (MEM; Cellgro). HeLa ATCC cells were transfected by established procedures by ei-

ther calcium phosphate (Sambrook et al., 1989) or lipofectamine 2000 (as recommended by Invitrogen). For both procedures, a final concentration of 4 μg or 0.5 μg, respectively, of plasmid or combination of plasmids were transfected into 1.8 × 10^5 cells/well in 500 μl of media grown on cover-

slips previously coated with proctein F (Biosource International). Cells were fixed after 24 h of transfection for immunofluorescence microscopy.

Figure 9. Generation of transport carriers from the TGN: a working hypothesis. (A) We propose that through a cargo-dependent in-

volve of G protein coupled receptor (GPCR), a trimeric G protein is activated at the TGN. The Gβγ subunits are involved in the production of DAG. The exact role of Gα in this process remains unclear. DAG activates PKCη and recruits PKD to the TGN. PKCη acti-

vates the TGN-bound PKD. The identity of Golgi-associated GPCR and the mechanism by which βγ results in the production of DAG are currently not known. Targets of PKCη, in addition to PKD, and the downstream targets of PKD are not known. It is possible that these kinases activate a diacylglycerol kinase that converts DAG into phosphatidic acid (PA) and a phospholipase, which convert PA into lys-

phosphatidic acid (LPA). LPA in our model would destabilize the neck of the budding transport carrier and promote fission. Green arrows denote activation; thin black arrows indicate involvement of additional components; and blue dotted line is suggestive of a hypothetical connection. (B) The scheme outlined above is used to regulate the formation of transport carriers from the TGN (a). Inactivation of PKCη or PKD does not affect cargo sorting and packaging, however membrane fission is inhibited, thus generating cargo filled transport carriers as large tubules attached to the TGN (b). Overactivation of PKCη and its downstream target PKD over activates the fission reaction, and the entire TGN is converted into small vesicles. The vesiculated TGN is an inactive acceptor for transport carriers from the preceding Golgi cisternae, and this combination generates a vesiculated Golgi apparatus (c).
Protein purification

293T cells were transfected with βγ constructs with histidine tags by the calcium phosphate method into 20–150-mm plates. Cells were washed 48 h after transfection with PBS and incubated for 30 min on ice with 1 ml of lysis solution (50 mM NaH2PO4, 500 mM NaCl, 1% CHAPS, 10 mM imidazole).

The cells were passed through a series of decreasing pore size gauge needles (18G, 21G, 25G) 20 times each, and lysed in a Dounce homogenizer on ice. Cell lysates were cleared by centrifugation at 10,000 rpm for 30 min in a refrigerated centrifuge. The expressed proteins were purified using nickel-agarose columns and eluted from the column with imidazole following the manufacturer’s protocol (Qiagen). Recombinant proteins were analyzed by SDS-PAGE-SDS analysis. Purified proteins were dialyzed overnight against buffer used in semi-permeabilization assays and stored at −80°C in 50 μl aliquots.

Immunoprecipitation

Transfected cells were lysed as described above, and the proteins of interest were immunoprecipitated as described previously (Bonifacino et al., 2004).

Immunofluorescence microscopy and Western blot

The following antibodies were used: anti FLAG (Sigma-Aldrich), HA (BabCO), GST (Amersham Biosciences), GM130, and TGN38 (BD Biosciences). Anti-TGN46 antibody was a gift from S. Ponnambalam (University of Leeds, Leeds, UK). Anti-phospho-serine (916) PKCα/PKD, and phospho-serine (744–748) PKCα/PKD were from Cell Signaling. Anti-phospho-threonine (653) PKCζ, and phospho-serine (729) PKCζ were from Biosource International.

Transfected cells on coverslips were fixed for 10 min in 4% formaldehyde in PBS, blocked 15 min with a solution containing 2.5% of horse serum, 0.02% sodium azide, and 0.1% Tween-20 (blocking solution). Appropriate antibodies diluted in blocking buffer were added, and cells were incubated for 30 min. After washing twice with PBS/0.1% Tween-20, 1:500 dilutions in blocking buffer of the selected fluorescent goat antibody (Jackson Immunoresearch Laboratories) were added for another 30 min incubation. The cells were washed twice again with PBS Tween-20, the first wash in presence of 1:10,000 Hoechst 33342 (Molecular Probes) and 1:500 dilutions in blocking buffer of the selected fluorescent goat anti- body (Jackson Immunoresearch Laboratories) were added for another 30 min incubation. The cells were washed twice again with PBS Tween-20, the first wash in presence of 1:10,000 Hoechst 33342 (Molecular Probes) to stain DNA, and mounted on slides with gelvatol (140 mM NaCl, 10 mM KH2PO4, 25 mM polyvinyl alcohol, 50 mM glycerol, 6.74 g 1,4-diazobicyclo[2.2.2] octane (DABCO), pH 8.6, for 200 ml). The entire procedure was done at room temperature. Cells were visualized with a Nikon Microphot-FXA microscope. All the slides were observed with a 60× objective, and the pictures were taken with a DP30 monochrome digital camera (Olympus). The images were analyzed on a Windows PC with the software MagnaFire 2.1 (Optronics). The filters used were B2A (for Texas-red staining) and B2E (for Cy2 staining and GFP) (Nikon).

Western blots were prepared following the manufacturer’s protocol for Phospho-PKD/PKCα (Ser744/748) (Cell Signaling). Secondary goat HRP–conjugated antibodies were from Jackson Immunoresearch Laboratories. The chemiluminescence reagent used to develop the blots was from Pierce (for Texas-red staining) and B2E (for Cy2 staining and GFP) (Nikon). Digital camera (Olympus). The images were analyzed on a Windows PC.

Acknowledgments

We thank members of the Malhotra laboratory for useful discussions. We thank Dr. Anare Mallababareena for the confocal microscopy–based analysis of PKD and AKAP-Lbc. We thank Dr. Silvio Gutkind for his generous gifts of tmericic GTP binding protein specific reagents and discussion.

Work in the Malhotra laboratory is funded by grants GM53747 and GM46224 from the NIH, the Human Frontier Science Program and Sand- ler’s program for Asthma Research.

Submitted: 14 December 2004
Accepted: 2 April 2005

References

Acharya, U., A. Mallababareena, J.K. Acharya, and V. Malhotra. 1998. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell. 92:183–192.

Audhissi, M. Fori, and S.D. Emr. 2000. Distinct roles for the yeast phosphati- dylinositol 4-kinase, Stt4p and Piki1p, in secretion, cell growth, and or- ganellar membrane dynamics. Mol. Biol. Cell. 11:2673–2689.

Bankaitis, V.A., and A.J. Morris. 2003. Lipids and the exocytotic machinery of eukaryotic cells. Curr. Opin. Cell Biol. 15:389–395.

Baron, C.L., and V. Malhotra. 2002. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science. 295:325–328.

Bonifacino, J.S., M. Dasso, B.J. Harford, J. Lippincott-Schwartz, and K.M. Ya- mada. 2004. Short Protocols in Cell Biology. John Wiley & Sons Inc., Hoboken, NJ. 826 pp.

Brandlin, I., S. Hubner, T. Eiseler, M. Martinez-Moya, A. Horschinek, A. Hauser, G. Link, S. Repp, P. Storz, K. Fizzenmaier, and F.J. Johannes. 2002. Protein kinase C (PKC)–mediated PKCα activation modules ERK and JNK signal pathways. J. Biol. Chem. 277:6490–6496.

Bruns, J.R., M.A. Ellis, A. Jeromín, and O.A. Weiss. 2002. Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J. Biol. Chem. 277:2012–2018.

Carnegie, G.K., F.D. Smith, G. McComnachie, L.K. Langeberg, and J.D. Scott. 2004. AKAP-Lbc nucleates a protein kinase D activation scaffold. Mol. Cell. 15:889–899.

Chida, K., T. Hara, T. Hirai, C. Konishi, K. Nakamura, K. Nakao, A. Aiba, M. Katsuki, and T. Kuroki. 2003. Disruption of protein kinase Ceta results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis. Cancer Res. 63:2404–2408.

Cohen, D., E. Rodriguez-Boulan, and A. Musch. 2004. Par-1 promotes a hepatic mode of apical protein trafficking in MDCK cells. Proc. Natl. Acad. Sci. USA. 101:13792–13797.

Godi, A., A. Di Campli, A. Konstantakopoulos, G. Di Tullio, D.R. Alessi, G.S. Kular, T. Daniele, P. Marra, J.M. Luccocc, and M.A. De Matteis. 2004. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns4P. Nat. Cell Biol. 6:393–404.

Goodnight, J.A., H. Mischak, W. Kolch, and J.F. Mushinski. 1995. Immunocy- tochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. J. Biol. Chem. 270:9991–10001.

Hidalgo Carcedo, C., M. Bonazzi, S. Spano, G. Turachino, A. Colanzi, A. Luini, and C. Cordu. 2004. Mammalian Golgi partitioning is driven by the mem- brane-fissioning protein CIBP3/BARS. Science. 305:93–96.

Hildebrand, J.D., and P. Soriano. 2002. Overlapping and unique roles for C-termi- nal binding protein 1 (CIBP1) and CIBP2 during mouse development. Mol. Cell. Biol. 22:5296–5307.

Iglesias, T., N. Cabrera-Poch, M.P. Mitchell, T.J. Naven, E. Rozengurt, and G. Schiavo. 2000. Identification and cloning of Kidins220, a novel neuronal substrate of protein kinase D. J. Biol. Chem. 275:40048–40056.

Jamora, C., P.A. Takizawa, R.F. Zaarour, C. Denesvre, D.J. Faulkner, and V. Malhotra. 1997. Regulation of Golgi structure through heterotrimeric G proteins. Cell. 91:617–626.

Jamora, C., N. Yamanyoue, J. Van Lint, J. Laudenslager, J.R. Vandenheede, D.J. Faulkner, and V. Malhotra. 1999. Bipolarity–regulated Golgi organization is through the direct activation of Protein Kinase D. Cell. 98:59–68.

Kreitzer, G., A. Marmorstein, P. Okamoto, R. Vallée, and E. Rodriguez-Boulan. 2000. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nat. Cell Biol. 2:125–127.

Lehle, C., Z. Olah, G. Jakab, and W.B. Anderson. 1995. Protein kinase Cα is localized to the Golgi via its zinc-finger domain and modulates Golgi function. Proc. Natl. Acad. Sci. USA. 92:1406–1410.

Levine, T.P., and S. Munro. 2002. Targeting of Golgi-specific pleckstrin homol- ogy domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12:695–704.

Li, J., K.L. O’Connor, M.R. Hellmich, G.H. Greesy Jr., C.M. Townsend Jr., and B.M. Evers. 2004. The role of protein kinase D in neurotensin secretion mediated by protein kinase C alpha/delta and Rho/Rho kinase. J. Biol. Chem. 279:28466–28474.

Liljedahl, M., Y. Maeda, A. Colanzi, I. Ayala, J. Van Lint, and V. Malhotra.
2001. Protein Kinase D regulates the fission of cell surface destined transport carriers from the Trans-Golgi Network. *Cell.* 104:409–420.

Maeda, Y., G.V. Beznoussenko, J. Van Lint, A.A. Mironov, and V. Malhotra. 2001. Recruitment of protein kinase D to the trans-Golgi network via the first cysteine-rich domain. *EMBO J.* 20:5982–5990.

Musch, A., D. Cohen, and E. Rodriguez-Boulan. 1997. Myosin II is involved in the production of constitutive transport vesicles from the TGN. *J. Cell Biol.* 138:291–306.

Musch, A., D. Cohen, G. Kreitzer, and E. Rodriguez-Boulan. 2001. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. *EMBO J.* 20:2171–2179.

Maeda, Y., G.V. Beznoussenko, J. Van Lint, A.A. Mironov, and V. Malhotra. 2001. Recruitment of protein kinase D to the trans-Golgi network via the first cysteine-rich domain. *EMBO J.* 20:2171–2179.

Musch, A., D. Cohen, G. Kreitzer, and E. Rodriguez-Boulan. 2001. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. *EMBO J.* 20:2171–2179.

Nishikawa, K.J., A. Toker, K. Wong, P.A. Marignani, F.J. Johannes, and L.C. Cantley. 1998. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase. *J. Biol. Chem.* 273:23126–23133.

Rey, O., J.R. Reeve Jr., E. Zhukova, J. Sinnet-Smith, and E.G. Rozengurt. 2004. G protein-coupled receptor-mediated phosphorylation of the activation loop of protein kinase D. dependence on plasma membrane translocation and protein kinase C. *J. Biol. Chem.* 279:34361–34372.

Rosso, S., F. Bollati, M. Bisbal, D. Peretti, T. Sumi, T. Nakamura, S. Quiroga, A. Ferreira, and A. Caceres. 2004. LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. *Mol. Biol. Cell.* 15:3433–3449.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1667 pp.

Takizawa, P.A., J.K. Yucel, B. Veit, D.J. Faulkner, T. Deerinck, G. Soto, M. Ellisman, and V. Malhotra. 1993. Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. *Cell.* 73:1079–1090.

Waldron, R.T., O. Rey, T. Iglesias, T. Tugal, D. Cantrell, and E. Rozengurt. 2001. Activation loop Ser744 and Ser748 in protein kinase D are transphosphorylated in vivo. *J. Biol. Chem.* 276:32606–32615.

Waldron, R.T., O. Rey, T. Iglesias, T. Tugal, D. Cantrell, and E. Rozengurt. 2001. Activation loop Ser744 and Ser748 in protein kinase D are transphosphorylated in vivo. *J. Biol. Chem.* 276:32606–32615.

Wang, T., L. Dowal, M.R. El-Maghrabi, M. Rebecchi, and S. Scarlata. 1999. Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. *Biochemistry.* 38:1517–1524.

Wang, T., L. Dowal, M.R. El-Maghrabi, M. Rebecchi, and S. Scarlata. 2000. The pleckstrin homology domain of phospholipase C-beta 2 links the binding of Gbetagamma to activation of the catalytic core. *J. Biol. Chem.* 275:7466–7469.

Weigert, R., M.G. Silletta, S. Spano, G. Turacchio, C. Cericola, A. Colanzi, S. Senatore, R. Mancini, E.V. Polishchuk, M. Salmona, et al. 1999. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatic acid. *Nature.* 402:429–433.

Yang, Z., H. Li, Z. Chai, M.J. Fullerton, Y. Cao, B.H. Toh, J.W. Funder, and J.P. Liu. 2001. Dynamin II regulates hormone secretion in neuroendocrine cells. *J. Biol. Chem.* 276:4251–4260.

Yeaman, C., M.I. Ayala, J.R. Wright, F. Bard, C. Bossard, A. Ang, Y. Maeda, T. Seufferlein, I. Mellman, W.J. Nelson, and V. Malhotra. 2004. Protein Kinase D regulates basolateral membrane protein exit from trans-Golgi network. *Nat. Cell Biol.* 6:106–112.
Figure 9 has been corrected to better indicate the position of several molecules relative to the Golgi membrane. The corrected figure is shown below. Please note that α-GTP remains bound to the Golgi membrane after activation and separation from $\beta\gamma$.