Supplementary Material

Preparation of tetrahydro-1H-xanthen-1-one and chromen-1-one derivatives via a Morita-Baylis-Hillman/oxa-Michael/elimination cascade

Manoel T. Rodrigues Jr.,a Hugo Santos, ª Lucas A. Zeoly,a Deborah A. Simoni, b Albert Moyano,c and Fernando Coelho* a

ª Laboratory of Synthesis of Natural Products and Drugs, and b Laboratory of Crystallography, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
 c Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Catalonia, Spain
 E-mail: facoelho@unicamp.br

Table of Contents

Copies of 1H and 13C(1H) NMR spectra .. S3
X-Ray Crystallographic Data for Compound 4c .. S46
References .. S48
\(^1\)H NMR and \(^{13}\)C\(^{1\text{H}}\) NMR spectra for compounds 3a-m, 4a-c and 5a-b (only resonance signals associated with each compound have been integrated and/or assigned chemical shift values)
Figure S1. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 3a.
Figure S2. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3a.
Figure S3. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 3b.
Figure S4. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3b.
Figure S5. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 3c.
Figure S6. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3c.
Figure S7. 1H NMR spectrum (250 MHz, CDCl₃) of compound 3d.
Figure S8. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3d.
Figure S9. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 3e.
Figure S10. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3e.
Figure S11. 1H NMR spectrum (500 MHz, CDCl$_3$) of compound 3f.
Figure S12. 13C NMR spectrum (126 MHz, CDCl$_3$) of compound 3f.
Figure S13. 1H NMR spectrum (250 MHz, DMSO-d_6) of compound 4a.
Figure S14. 13C NMR spectrum (63 MHz, DMSO-d_6) of compound 4a.
Figure S15. 1H-1H COSY NMR contour plot (250 MHz, DMSO-d$_6$) of compound 4a.
Figure S16. 1H-13C HSQC NMR contour plot (250 MHz, DMSO-d_6) of compound 4a.
Figure S17. 1H-1H NOESY NMR contour plot (250 MHz, DMSO-d_6) of compound 4a.
Figure S18. 1H NMR spectrum (250 MHz, CDCl₃) of compound 3g.
Figure S19. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3g.
Figure S20. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 3h.
Figure S21. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3h.
Figure S22. 1H NMR spectrum (250 MHz, CDCl$_3$/MeOH-d$_4$ 6:1) of compound 4b.
Figure S23. 13C NMR spectrum (63 MHz, CDCl$_3$/MeOH-d_6 6:1) of compound 4b.
Figure S24. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 3i.
Figure S25. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3i.
Figure S26. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 4c.
Figure S27. 13C NMR spectrum (101 MHz, CDCl$_3$) of compound 4c.
Figure S28. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 3j.
Figure S29. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3j.
Figure S30. 1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5a.
Figure S31. 13C NMR spectrum (126 MHz, CDCl$_3$) of compound 5a.
Figure S32. $\text{^1H-^1H COSY NMR contour plot (500 MHz, CDCl}_3\text{)}$ of compound 5a.
Figure S33. 1H-13C HSQC NMR contour plot (500 MHz, CDCl$_3$) of compound 5a.
Figure S34. 1H-13C HMBC NMR contour plot (500 MHz, CDCl$_3$) of compound 5a.
Figure S35. 1H-1H NOESY NMR contour plot (500 MHz, CDCl$_3$) of compound 5a.
Figure S36. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 3k.
Figure S37. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3k.
Figure S38. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 5b.
Figure S39. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 5b.
Figure S40. 1H NMR spectrum (500 MHz, CDCl$_3$) of compound 3l.
Figure S41. 13C NMR spectrum (126 MHz, CDCl$_3$) of compound 3l.
Figure S42. 1H NMR spectrum (250 MHz, CDCl$_3$) of compound 3m.
Figure S43. 13C NMR spectrum (63 MHz, CDCl$_3$) of compound 3m.
X-Ray Crystallographic Data for Compound 4c

Crystal structure of (2E)-2-[(2-hydroxy-3-methoxyphenyl)methylidene]-5-methoxy-1H,2H,3H,3aH-cyclopenta[b]chromen-1-one (4c) (Figure S44) was determined by single crystal X-ray diffraction analysis using a crystal that had been obtained by slow evaporation of a ethyl acetate/chloroform mixture (1:1 v/v) of 4c. Data collection was performed on a Bruker APEX II DUO area diffractometer, at low temperature (150 K, CRYOSTREAM 700 - Oxford Cryosystem), based on a strategy combining omega and phi scans, with 0.5° width and 10 s of acquisition time per frame, operating with a Mo fine-focus sealed tube source of radiation (Kα λ = 0.71073 Å).

Cell refinement and data reduction were done using SAINT³ and multi-scan absorption correction was applied using SADABS-2014/5³. Solution structure was obtained by primary atom site location by structure-invariant direct methods SHELXS97². SHELXL2014/7³ was chosen to perform structure refinement using least squares methods against F^2 and hydrogen atoms were placed during the refinement, with their location inferred from neighbouring sites. All non-hydrogen atoms were refined anisotropically, while H-atom parameters were not refined. 311 parameters were refined (0 restraints), $R(F^2 > 2 \sigma(F^2)) = 0.033$, $wR(F^2) = 0.079$, $S = 1.02$, with maximum and minimum residual electron density of 0.65 e Å⁻³ and -0.47 e Å⁻³, respectively. Details about the analyzed crystal and data collection are presented in Table S1 and Table S2, respectively.
Figure S44. The molecular structure of (2E)-2-[(2-hydroxy-3-methoxyphenyl)methylidene]-5-methoxy-1H,2H,3H,3aH-cyclopenta[b]chromen-1-one (4c) with 50% probability displacement ellipsoids.
Table S1. Selected crystallographic data for (2E)-2-[(2-hydroxy-3-methoxyphenyl)methylidene]-5-methoxy-1H,2H,3H,3aH-cyclopenta[b]chromen-1-one (4c) crystal

Property	Value
C$_{21}$H$_{18}$O$_5$·2(CHCl$_3$)	Z = 2
Mr = 589.09	
Triclinic, P1	D_x = 1.536 Mg m$^{-3}$
a = 8.8569 (8) Å	Mo Kα radiation, λ = 0.71073 Å
b = 10.8992 (11) Å	Cell parameters from 134 reflections
c = 14.8123 (14) Å	θ = 3.2–24.4°
α = 71.700 (2)$^\circ$	μ = 0.71 mm$^{-1}$
β = 79.556 (2)$^\circ$	T = 150 K
γ = 70.333 (2)$^\circ$	Block, yellow
V = 1273.8 (2) Å³	0.22 × 0.12 × 0.08 mm

Table S2. Selected crystallographic data for data collection

Property	Value
Absorption correction: multi-scan	R_{int} = 0.037
T_{min} = 0.684, T_{max} = 0.745	θ_{max} = 26.8$^\circ$, θ_{min} = 1.5$^\circ$
35447 measured reflections	$h = -11 \rightarrow 11$
5395 independent reflections	$k = -13 \rightarrow 13$
4302 reflections with $l > 2\sigma(l)$	$l = -18 \rightarrow 18$

References

1. Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
3. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.