NORMAL EQUIVARIANT COMPACTIFICATIONS OF \mathbb{G}_a^2 WITH PICARD NUMBER ONE

PINAKI MONDAL

Abstract. We classify all normal \mathbb{G}_a^2-surfaces with Picard number one, and characterize which of these surfaces have at worst log canonical, and which have at worst log terminal singularities, answering a question of Hassett and Tschinkel [HT99]. We also find all \mathbb{G}_a^2-structures on these surfaces and show that these surfaces and their minimal desingularizations have the same \mathbb{G}_a^2-structures (modulo equivalence of \mathbb{G}_a^2-actions). In particular, we show that some of these surfaces admit one dimensional moduli of \mathbb{G}_a^2-structures, answering another question of Hassett and Tschinkel [HT99].

1. Introduction

Hassett and Tschinkel [HT99] started the study of \mathbb{G}_a^n-varieties; these are equivariant compactifications of \mathbb{G}_a^n, i.e. \mathbb{C}^n with the additive group structure. They classified \mathbb{G}_a^n-structures on projective spaces and Hirzebruch surfaces, and showed that in dimension ≥ 6 projective spaces admit moduli of \mathbb{G}_a^n-structures. In particular, they asked the following questions regarding the $n = 2$ case:

Problem 1.1 ([HT99, Section 5.2]).

(1) Can the \mathbb{G}_a^2-structures on a given (smooth) surface have moduli?
(2) Classify \mathbb{G}_a^2-structures on projective surfaces with log terminal singularities and Picard number one.

Motivated by these questions, in this article we undertake a study of normal \mathbb{G}_a^2-surfaces with Picard rank one. In particular, we answer both these questions.

Indeed, every \mathbb{G}_a^2-surface of Picard rank one is trivially a primitive compactification of \mathbb{C}^2, i.e. a compact complex analytic surface containing \mathbb{C}^2 such that the curve at infinity is irreducible. In [Mon13] we gave an explicit description of automorphisms of normal primitive compactifications of \mathbb{C}^2. Using that description, in this article we classify all normal surfaces with Picard rank one which have \mathbb{G}_a^2-structures (theorem 4.2). Moreover, we give an explicit description of all \mathbb{G}_a^2-structures on these surfaces (theorem 4.2) and of the space of \mathbb{G}_a^2-structures modulo equivalence (theorem 4.3). In particular, it turns out that some of these spaces admit one dimensional moduli of \mathbb{G}_a^2-structures. On the other hand, we show that normal primitive compactifications of \mathbb{C}^2 have the special property that all of their automorphisms lift to automorphisms of their minimal desingularizations (theorem B.4), which implies that the spaces of \mathbb{G}_a^2-structures modulo equivalence on normal \mathbb{G}_a^2-surfaces of Picard rank one and on their minimal desingularizations are isomorphic (Corollary 5.3). In particular, it follows that some of these minimal desingularizations also admit one dimensional moduli of \mathbb{G}_a^2-structures, thereby answering question (1).

In [Mon16] we gave an explicit description of minimal desingularizations of normal primitive compactifications of \mathbb{C}^2. Combining this with Kawamata’s [Kaw88] classification of log canonical surface singularities (we follow the description of Alexeev [Ale92]) and our classification of \mathbb{G}_a^2-structures on normal surfaces of Picard rank one (theorems 4.2 and 4.3), we immediately obtain a classification of \mathbb{G}_a^2-structures on projective surfaces with log terminal or log canonical singularities and Picard number one (theorem 6.7), which answers question (2).
Some (more precisely, four, up to isomorphism,) of the \mathbb{G}_a^2-surfaces of Picard rank one are also singular del Pezzo surfaces in the sense of Derenthal and Loughran [DL10] corresponding to dual graphs of type $A_1, A_2 + A_1, A_4$ and D_5 (Corollary 4.5). In particular, the first two are respectively weighted projective spaces $\mathbb{P}^2(1, 1, 2)$ and $\mathbb{P}^2(1, 3, 2)$, and have precisely two \mathbb{G}_a^2-structures modulo equivalence. The third one admits a one dimensional moduli of \mathbb{G}_a^2-structures (modulo equivalence) - it is described in section 2. The other one admits only one \mathbb{G}_a^2-structure modulo equivalence.

2. A SIMPLE NON-SINGULAR SURFACE WITH ONE DIMENSIONAL MODULI OF \mathbb{G}_a^2-STRUCTURES.

Let $\bar{X} := \mathbb{P}^2$ and L be a line on \bar{X}. Blow up a point P on L, then blow up the point where the strict transform of L intersects the exceptional curve, and then blow up again the point of intersection of the strict transform of L and the new exceptional curve. Finally blow up a point on the newest exceptional curve which is not on the strict transform of either L or any of the older exceptional curves. Let X' be the resulting surface. Identifying $X := \bar{X} \setminus L$ with \mathbb{C}^2, we see that \bar{X}' is a non-singular compactification of \mathbb{C}^2 and the ‘weighted dual graph’ of the curve at infinity on \bar{X}' is as in fig. 1.

![Figure 1. Weighted dual graph of the curve at infinity on \bar{X}'](image)

Let \bar{X}'' be the surface formed by contracting (the strict transforms of) L, E_1, E_2 and E_3. In the notation introduced in section 3, \bar{X}'' is the normal primitive compactification of \mathbb{C}^2 corresponding to key sequence $\bar{\omega} := (3, 2, 5)$, and \bar{X}' is the minimal desingularization of \bar{X}''. Choose homogeneous coordinates $[u : v : w]$ on X such that $L = \{w = 0\}$ and P has coordinates $[1 : 0 : 0]$. Then $(x, y) := (u/w, v/w)$ are coordinates on X. It follows from theorem 4.3 and Corollary 5.3 that the moduli (up to equivalence) of \mathbb{G}_a^2-structures on \bar{X}' and \bar{X}'' consists of \mathbb{G}_a^2-actions τ_λ, $\lambda \in \mathbb{C}$ defined as follows:

\[(t_1, t_2) \cdot \tau_\lambda (x, y) = \left(x + \lambda \left(\frac{(t_1)^2}{2} + t_1y\right) + t_2, y + t_1\right)\]

3. PRELIMINARIES ON NORMAL PRIMITIVE COMPACTIFICATIONS OF \mathbb{C}^2

A primitive compactification of \mathbb{C}^2 is an analytic surface containing \mathbb{C}^2 such that the curve at infinity is irreducible. In this section we recall some properties of normal primitive compactifications of \mathbb{C}^2 from [Mon13].

Definition 3.1 (Key sequences). A sequence $\bar{\omega} := (\omega_0, \ldots, \omega_{n+1}), n \in \mathbb{Z}_{\geq 0}$, of integers is called a key sequence if it has the following properties:

1. $\omega_0 \geq 1$.
2. Let $e_k := \gcd(|\omega_0|, \ldots, |\omega_k|), 0 \leq k \leq n + 1$ and $\alpha_k := e_{k-1}/e_k, 1 \leq k \leq n + 1$. Then $e_{n+1} = 1$, and $\omega_{k+1} < \alpha_k \omega_k, 1 \leq k \leq n$.
3. Moreover, $\bar{\omega}$ is called primitive if $\omega_{n+1} > 0$ (or equivalently, $\omega_k > 0$ for all $k, 0 \leq k \leq n + 1$), and it is called algebraic if $\omega_k \in \mathbb{Z}_{\geq 0}(\omega_0, \ldots, \omega_{k-1}), 1 \leq k \leq n$.
4. Finally, $\bar{\omega}$ is called essential if $\alpha_k \geq 2$ for $1 \leq k \leq n$. Note that $\bar{\omega}$ is called algebraic if $\alpha_k \geq 2$ for $1 \leq k \leq n$.

(a) Given an arbitrary key sequence $(\omega_0, \ldots, \omega_{n+1})$, it has an associated essential subsequence $(\omega_0, \omega_i, \ldots, \omega_i, \omega_{n+1})$ where $\{i\}$ is the collection of all $k, 1 \leq k \leq n$, such that $\alpha_k \geq 2$.
(b) If $\bar{\omega}$ is an algebraic key sequence, then its essential subsequence is also algebraic.
Remark 3.2. Let $\bar{\omega} := (\omega_0, \ldots, \omega_{n+1})$ be a key sequence. It is straightforward to see that property 3 implies the following: for each $k, 1 \leq k \leq n$, $\alpha_k \omega_k$ can be uniquely expressed in the form $\alpha_k \omega_k = \beta_k,0 \omega_0 + \beta_k,1 \omega_1 + \cdots + \beta_k,k-1 \omega_{k-1}$, where β_k',s are integers such that $0 \leq \beta_k,j < \alpha_j$ for all $j \geq 1$. If $\bar{\omega}$ is in additional algebraic, then $\beta_k,0$’s of the preceding sentence are non-negative.

Definition 3.3. Let $\bar{\omega} := (\omega_0, \ldots, \omega_{n+1})$ be a key sequence and $\bar{\theta} \in (\mathbb{C}^*)^n$. Let $\bar{W}\bar{P}$ be the weighted projective space $\mathbb{P}^{n+2}(1, \omega_0, \omega_1, \ldots, \omega_{n+1})$ with (weighted) homogeneous coordinates $[w : y_0 : \cdots : y_{n+1}]$. We write $\bar{X}_{\bar{\omega},\bar{\theta}}$ for the subvariety of $\bar{W}\bar{P}$ defined by weighted homogeneous polynomials $G_k, 1 \leq k \leq n$, given by

$$G_k := w^{\alpha_k \omega_k - \omega_{k+1}} y_{k+1} - \left(y_k^{\alpha_k} - \theta_k \prod_{j=0}^{k-1} y_j^{\beta_k,j} \right)$$

where α_k’s and β_k,j’s are as in Remark 3.2.

Proposition 3.4 ([Mon13, Proposition 3.4]). If $\bar{\omega}$ is primitive and algebraic, then $\bar{X}_{\bar{\omega},\bar{\theta}}$ is a normal primitive algebraic compactification of \mathbb{C}^2. Conversely, every normal primitive algebraic compactification of \mathbb{C}^2 is isomorphic to $\bar{X}_{\bar{\omega},\bar{\theta}}$ for some primitive algebraic key sequence $\bar{\omega} := (\omega_0, \ldots, \omega_{n+1})$ and $\bar{\theta} \in (\mathbb{C}^*)^n$ for some $n \geq 0$.

Let $\bar{\omega} := (\omega_0, \ldots, \omega_{n+1})$ be a key sequence, and $\bar{\omega}_0 := (\omega_{i_0}, \ldots, \omega_{i_{l+1}})$, where $0 = i_0 < i_1 < \cdots < i_{l+1} = n+1$, be the essential subsequence of $\bar{\omega}$. Define

$$\chi_j := \frac{1}{\omega_0} (\omega_i - \sum_{k=1}^{j-1} (\alpha_k - 1) \omega_i), \quad 1 \leq j \leq l + 1.$$

where $\alpha_1, \ldots, \alpha_{n+1}$ are as in Definition 3.1. Let

$$\mathcal{E}_{\bar{\omega}} := \begin{cases} \{k \omega_0 \omega_1 - 1 : k \in \mathbb{Z}, \max\{0, (\chi_{l+1} + 1) \omega_0 \omega_1 < k < \omega_0 \omega_1 + 1\} \cup \{0\} & \text{if } \omega_0 > 0, \\
\{k \omega_0 \omega_1 - 1 : k \in \mathbb{Z}, 0 < k < (\chi_{l+1} + 1) \omega_0 \omega_1\} & \text{if } \omega_0 < 0. \end{cases}$$

Let $\beta \in \mathbb{Q}$. Let

$$\hat{k}(\beta) := \begin{cases} 0 & \text{if } \beta \geq \chi_1, \\
\max\{k : 1 \leq k \leq l + 1, \beta < \chi_k\} & \text{otherwise}. \end{cases}$$

$$\hat{\omega}_\beta := \omega_0 \beta + \sum_{j=1}^{\hat{k}(\beta)} (\alpha_{i_j} - 1) \omega_{i_j}$$

$$\hat{I}_\beta = \begin{cases} \{i : i_{k(\beta)} < i < i_{k(\beta)+1}\} & \text{if } \hat{k}(\beta) \leq l \\
\emptyset & \text{if } \hat{k}(\beta) = l + 1. \end{cases}$$

Note that $\hat{\omega}_{\chi_j} = \omega_{i_j}, 1 \leq j \leq l + 1$.

Definition 3.5. We say that a key sequence $\bar{\omega} := (\omega_0, \ldots, \omega_{n+1})$ is in the normal form if it satisfies one of the following (mutually exclusive) conditions:

(N0) (a) $n = 0$.
(b) $\omega_0 \geq \omega_1$.

(N1) (a) $n \geq 1$.
(b) $\omega_0 > \omega_1$.
(c) $\frac{\omega_k}{\omega_0} \notin \{\frac{k}{n} : \omega_0 \in \mathbb{Z}, k \geq 1\} \cup \{0\}$.
(d) For each $\beta \in \mathcal{E}_{\bar{\omega}}$, there does not exist $i \in \hat{I}_\beta$ such that $\omega_i = \hat{\omega}_\beta$.

Proposition 3.6 ([Mon13, Theorems 4.6 and 6.3]). Let \bar{X} be a primitive normal algebraic compactification of \mathbb{C}^2.

(1) There exist a unique $n \geq 0$ and a unique primitive algebraic key sequence $\bar{\omega} := (\omega_0, \ldots, \omega_{n+1})$ in normal form such that $\bar{X} \cong \bar{X}_{\bar{\omega},\bar{\theta}}$ for some $\bar{\theta} \in (\mathbb{C}^*)^n$.
(2) Let α_i’s and $\beta_{i,j}$’s be as in Remark 3.2. Moreover, set $\alpha_0 := 1$. Let $\bar{\omega}_e := (\omega_{i_0}, \ldots, \omega_{i_{k+1}})$ be the essential subsequence of $\bar{\omega}$. Define $\mu_1, \ldots, \mu_n \in \mathbb{Z}$ as follows: for each i, $1 \leq i \leq n$, pick the unique k such that $i_k \leq i < i_{k+1}$, and set

$$
\mu_i := \alpha_{i_0} \cdots \alpha_{i_k} - \sum_{j=1}^{k} \alpha_{i_0} \cdots \alpha_{i_{j-1}} \beta_{i,j}
$$

If $\bar{\theta} \in (\mathbb{C}^*)^n$ is such that $\bar{X} \cong \bar{X}_{\bar{\omega}, \bar{\theta}}$ as well, then there exist $\lambda_1, \lambda_2 \in \mathbb{C}^*$ such that

$$
\theta_i' = \lambda_1^{-\beta_{i,0}} \lambda_2^{\mu_i} \theta_i, \quad i = 1, \ldots, n.
$$

Theorem 3.7 ([Mon13, Theorem 5.2]). Fix a system of coordinates (x, y) on $X := \mathbb{C}^2$. Let $\bar{\omega} := (\omega_0, \ldots, \omega_{n+1})$ be a primitive key sequence in normal form, $\bar{\theta} := (\theta_1, \ldots, \theta_n) \in (\mathbb{C}^*)^n$, and $\bar{X} := \bar{X}_{\bar{\omega}, \bar{\theta}}$ be the corresponding primitive compactification of X. Let \mathcal{G} be the group of automorphisms of \bar{X}.

1. If (N0) holds, then $\bar{X} \cong \mathbb{P}^2(1, \omega_0, \omega_1)$. Fix (weighted) homogeneous coordinates $[z : x : y]$ on \bar{X}.
 (a) If $\omega_0 = \omega_1 = 1$, then $\bar{X} \cong \mathbb{P}^2$ and $\mathcal{G} \cong \text{PGL}(3, \mathbb{C})$.
 (b) If $\omega_0 > \omega_1 = 1$, then $\mathcal{G} = \{[z : x : y] \mapsto [az + by : cx + f(y, z) : dz + ey] : a, b, d, e \in \mathbb{C}, \ ad - be \neq 0, \ c \in \mathbb{C}^*, \ f \text{ is a homogeneous polynomial in } (y, z) \text{ of degree } \omega_0\}$.\]
 (c) If $\omega_0 > \omega_1 > 1$, then $\mathcal{G} = \{[z : x : y] \mapsto [z : ax + f(y, z) : by + c\bar{\omega}_1] : a, b \in \mathbb{C}^*, \ c \in \mathbb{C}, \ f \text{ is a weighted homogeneous polynomial in } (y, z) \text{ of weighted degree } \omega_0\}$.\]

2. If (N1) holds, define $\bar{\omega}_k := \omega_k/\alpha_{n+1}$, $0 \leq k \leq n$, and $\bar{\omega}_k^* := \alpha_1 \bar{\omega}_1 + \sum_{j=2}^{k} (\alpha_j - 1) \bar{\omega}_j - \bar{\omega}_k$, $2 \leq k \leq n$, where $\alpha_1, \ldots, \alpha_{n+1}$ are as in Definition 3.1. Set $\bar{\omega}^* := \gcd(\bar{\omega}_2^*, \ldots, \bar{\omega}_n^*)$ (note that $\bar{\omega}^*$ is defined only if $n \geq 2$) and

$$
(8) \quad k_\bar{X} := \left(\omega_0 + \omega_{n+1} + 1 - \sum_{k=1}^{n} (\alpha_k - 1) \omega_k\right)
$$

where $\alpha_1, \ldots, \alpha_{n+1}$ are as in Definition 3.1. Then \mathcal{G} consists of all $F : \bar{X} \rightarrow \bar{X}$ such that $F|_{X} : (x, y) \mapsto (a \omega_0 x + f(y), a \bar{\omega}_1 y + c)$, where

$$
a = \begin{cases}
\text{an arbitrary element of } \mathbb{C}^* & \text{if } n = 1, \\
\text{an } \bar{\omega}^*-\text{th root of unity} & \text{if } n \geq 2.
\end{cases}
$$

$$
c = \begin{cases}
0 & \text{if } 0 \leq k_\bar{X} < 0, \\
\text{an arbitrary element in } \mathbb{C} & \text{otherwise}.
\end{cases}
$$

and $f(y) \in \mathbb{C}[y]$ is a polynomial such that $\deg(f) \leq -(k_\bar{X} + \omega_1 + 1)/\omega_1$. \hfill \Box

4. G^2_a-structures on normal surfaces with Picard rank one

Let G be a connected linear algebraic group. A G-variety is a variety Y with a fixed left action of G such that the stabilizer of a generic point is trivial and the orbit of a generic point is dense. A G^2_a-surface is a G-variety for $G = G^2_a$. Two left actions σ_1, σ_2 of G on Y are equivalent if there is a commutative diagram as follows:

$$
\begin{array}{ccc}
G \times Y & \xrightarrow{(\alpha, j)} & G \times Y \\
\downarrow \sigma_1 & & \downarrow \sigma_2 \\
Y & \xrightarrow{j} & Y
\end{array}
$$

where α (resp. j) is an automorphism of G (resp. Y).

Lemma 4.1 below studies a class of G^2_a-actions on \mathbb{C}^2 of a very special form. It will be used in the classification of G^2_a-surfaces (theorem 4.2).
Lemma 4.1. Let Φ be the morphism $\mathbb{G}_a^2 \times \mathbb{C}^2 \to \mathbb{C}^2$ given by

\[
(t_1, t_2) \cdot (x, y) = \left(a(t_1, t_2)x + \sum_{i=0}^{m} b_i(t_1, t_2)y^i, b(t_1, t_2)y + c(t_1, t_2) \right),
\]

where (t_1, t_2) (resp. (x, y)) are coordinates on \mathbb{G}_a^2 (resp. \mathbb{C}^2), $m \geq 0$ and $a, b, c, b_1, \ldots, b_m \in \mathbb{C}[t_1, t_2]$. Then Φ defines a \mathbb{G}_a^2-action on \mathbb{C}^2 iff each of the following conditions holds:

1. $a(t_1, t_2) = b(t_1, t_2) = 1$ for all $(t_1, t_2) \in \mathbb{G}_a^2$.
2. There are $c_1, c_2 \in \mathbb{C}$ such that $c(t_1, t_2) = c_1t_1 + c_2t_2$ for all $t_1, t_2 \in \mathbb{G}_a^2$.
3. If $(c_1, c_2) = (0, 0)$, then b_i is linear in (t_1, t_2) for each i.
4. If $(c_1, c_2) \neq (0, 0)$, then there exists $\lambda_0, \ldots, \lambda_m, \mu_0 \in \mathbb{C}$ such that

\[
b_i(t_1, t_2) := \begin{cases} g_0(c_1t_1 + c_2t_2) + \mu_0(\bar{c}_2t_1 - \bar{c}_1t_2) & \text{if } i = 0, \\ g_i(c_1t_1 + c_2t_2) & \text{if } i = 1, \ldots, m, \end{cases}
\]

where for each $i = 0, \ldots, m$,

\[
g_i(r) := \lambda_ir + \frac{\lambda_{i+1}}{2}(i+1)r^2 + \cdots + \frac{\lambda_m}{m-i+1}(\frac{m}{m-i})r^{m-i+1}
\]

Proof. See appendix A. \(\square\)

Let $\bar{\omega} := (\omega_0, \ldots, \omega_{n+1})$ be a primitive key sequence in the normal form, $\bar{\theta} := (\theta_1, \ldots, \theta_n) \in (\mathbb{C}^*)^n$ and $X := \bar{X}_{\bar{\omega}, \bar{\theta}}$ be the corresponding primitive compactification of \mathbb{C}^2. Define k_X as in (8).

Theorem 4.2.

1. The following are equivalent:
 a. X admits the structure of a \mathbb{G}_a^2-surface,
 b. $\omega_0 + k_X < 0$.

2. Assume $X \not\cong \mathbb{P}^2$ and that there is a \mathbb{G}_a^2-action σ on \bar{X} which makes it a \mathbb{G}_a^2-surface. Then there is an automorphism F of \bar{X} such that F such that X is invariant under $\sigma \circ (1, F)$, where 1 is the identity map of \mathbb{G}_a^2, and $(\sigma \circ (1, F))|_X$ is of the form

\[
(t_1, t_2) \cdot (x, y) = \left(x + \sum_{i=0}^{m_2} g_i(c_1t_1 + c_2t_2)y^i + \mu(\bar{c}_2t_1 - \bar{c}_1t_2), y + c_1t_1 + c_2t_2 \right),
\]

where

\[
m_2 := [-k_X + \omega_0 + 1]/\omega_1,
\]

$(c_1, c_2) \in \mathbb{C}^2 \setminus \{(0, 0)\}$, $\mu \in \mathbb{C} \setminus \{0\}$, \bar{c}_j are complex conjugates of c_j, and

\[
g_i(r) := \lambda_i r + \frac{\lambda_{i+1}}{2}(i+1)r^2 + \cdots + \frac{\lambda_{m_2}}{m_2-i+1}(\frac{m_2}{m_2-i})r^{m_2-i+1}
\]

for some $\lambda_0, \ldots, \lambda_{m_2} \in \mathbb{C}$.

3. Conversely, for every $g_0, \ldots, g_{m_2}, c_1, c_2$ as above, identity (12) defines a \mathbb{G}_a^2-structure on X.

Proof. Theorem 3.7 implies that given any two copies of \mathbb{C}^2 in \bar{X}, there is an automorphism of \bar{X} that takes one to the other. Let F be any automorphism of \bar{X} which maps a σ-invariant copy of \mathbb{C}^2 to \bar{X}; set $\tau := \sigma \circ (1, F)$. Theorem 3.7 implies that $\tau|_X$ is given by

\[
(t_1, t_2) \cdot (x, y) = \left(a(t_1, t_2)x + \sum_{i=0}^{m_2} b_i(t_1, t_2)y^i, b(t_1, t_2)y + c(t_1, t_2) \right),
\]

where m_2 is from (13). Now the result follows from Lemma 4.1. \(\square\)
We continue with the notation from theorem 4.2. If $\omega_0 + k_\bar{X} < 0$, then theorem 4.2 implies that the following equation defines a G_2^0-structure τ_λ on $\bar{X}_{\omega,\bar{\theta}}$ for each $\lambda \in \mathbb{C}$.

\begin{equation}
(t_1, t_2) \circ \tau_\lambda (x, y) = \left(x + \lambda \sum_{i=0}^{m} \frac{1}{m - i + 1} \left(\sum_{j=0}^{i-1} h_i \binom{i}{j} t_1^{i-j} y^j \right) + t_2, y + t_1 \right)
\end{equation}

where $m := m_\omega$ from (13). Note that τ_0 is simply the action $(t_1, t_2) \cdot (x, y) = (x + t_2, y + t_1)$.

Theorem 4.3. Let $\bar{\omega}_0, \ldots, \bar{\omega}_n$ be as in assertion (2) of theorem 3.7. Assume $\bar{X} \not\equiv \mathbb{P}^2$ and $\omega_0 + k_\bar{X} < 0$.

1. If $m = 0$, then every G_2^0-structure on \bar{X} is equivalent to τ_0.
2. If $n = 0$ (or equivalently, \bar{X} is isomorphic to a weighted projective variety) and $m > 0$, then up to equivalence there are precisely two G_2^0-structures on \bar{X}, namely τ_0 and τ_1.
3. If $n \geq 1$ and $m > 0$, then
 a. every G_2^0-structure on \bar{X} is equivalent to τ_λ for some $\lambda \in \mathbb{C}$;
 b. if $n = 1$, then τ_λ is equivalent to $\tau_{\lambda'}$ if $\bar{X} = \bar{\omega}_1$ for some ω_1-th root ζ of identity;
 c. if $n > 1$, then τ_λ is equivalent to $\tau_{\lambda'}$ if $\bar{X} = \bar{\omega}_1$ for some ω_i-th root ζ_i of identity, where $\omega_i := \gcd(\bar{\omega}_1, \ldots, \bar{\omega}_n)$.

Proof. The $m = 0$ case follows immediately from theorem 4.2. So assume $m \geq 1$. Let X be a copy of \mathbb{C}^2 in \bar{X} with coordinates (x, y). Let σ be an arbitrary G_2^0-action on \bar{X}. Theorem 3.7 implies that replacing σ by a G_2^0-equivalent action if necessary, we may assume that X is invariant under σ. From (12) it is straightforward to see that after a change of coordinates on G_2^0 we may assume that the action of σ on X has the following form:

\begin{equation}
(t_1, t_2) \circ \sigma (x, y) = \left(x + \sum_{i=0}^{m} g_i(t_1) y^i + t_2, y + t_1 \right),
\end{equation}

where g_i's are defined as in (14). We would like to understand when there are automorphisms F of \bar{X} and ϕ of G_2^0 which induce an G_2^0-equivalence of σ and τ_λ. Lemma 5.1 below implies that $F(X) = X$. Therefore theorem 3.7 implies that $F|_X$ is of the form

\begin{equation}
(x, y) \mapsto (ax + h(y), dy + e)
\end{equation}

for some $h \in \mathbb{C}[y]$ such that $\deg(h) \leq m$. The G_2^0-equivalence of σ and τ_λ is equivalent to the identity

\begin{equation}
F((t_1, t_2) \circ \sigma (x, y)) = \phi(t_1, t_2) \circ \tau_\lambda F(x, y)
\end{equation}

Writing $\phi(t_1, t_2) = (s_1, s_2)$ identity (19) becomes

\[F \left(x + \sum_{i=0}^{m} g_i(t_1) y^i + t_2, y + t_1 \right) = (s_1, s_2) \circ \tau_\lambda (ax + h(y), dy + e) \]

which is equivalent to

\begin{equation}
\left(ax + \sum_{i=0}^{m} g_i(t_1) y^i + t_2 \right) + h(y + t_1), dy + dt_1 + e
\end{equation}

\[= \left(ax + h(y) + \lambda \sum_{i=0}^{m} \frac{1}{m - i + 1} \binom{m}{m - i} s_1^{m-i+1}(dy + e)^i + s_2, dy + e + s_1 \right) \]

Comparing the y-coordinates of both sides of (20) gives that $s_1 = dt_1$. Write $h(y) = \sum_{i=0}^{m} h_i y^i$, $h_i \in \mathbb{C}$, $i = 0, \ldots, m$. Then a comparison of the x-coordinates of both sides of (20) implies that

\[a \sum_{i=0}^{m} g_i(t_1) y^i + at_2 + \sum_{i=0}^{m} \sum_{j=0}^{i-1} h_i \binom{i}{j} t_1^{i-j} y^j = \lambda \sum_{i=0}^{m} \frac{1}{m - i + 1} \binom{m}{m - i} t_1^{m-i+1} s_2 + s_2 \]
or equivalently,

\[a g_m(t_1) y^m + \sum_{j=0}^{m-1} \left(a g_j(t_1) + \sum_{i=j+1}^{m} h_i \binom{i}{j} t_1^{i-j} \right) y^j + a t_2 \]

\[= \lambda d^m y^m + \lambda \sum_{j=0}^{m-1} \sum_{i=j}^{m} \frac{1}{m-i+1} \binom{m-i-j}{j} e^{i-j} t_1^{m-i+1} d^j y^j + s_2 \]

Write

\[g_j(t_1) = \sum_{k=j}^{m} \frac{\lambda_k}{k-j+1} \binom{k}{k-j} t_1^{k-j+1}, \]

Comparing coefficients of \(y^m \) gives

\[a \lambda_m = d^m \lambda \]

For each \(j = 1, \ldots, m-1 \), comparing coefficients of \(y^j \) gives

\[\frac{a \lambda_m}{m-j+1} \binom{m}{j} t_1^{m-j+1} = \sum_{l=1}^{m-j} \left(\frac{a \lambda_{l+j-1}}{l} \binom{l+j-1}{j} + h_{l+j} \binom{l+j}{j} \right) t_1^l \]

\[= \frac{d^j \lambda}{m-j+1} \binom{m}{j} t_1^{m-j+1} + \sum_{l=1}^{m-j} \frac{\lambda d^j}{l} \binom{m-l-1}{j} t_1^l \]

and similarly, for \(j = 0 \), we have

\[\frac{a \lambda_m}{m+1} t_1^{m+1} + \sum_{l=1}^{m} \left(\frac{a \lambda_{l-1}}{l} + h_l \right) t_1^l + a t_2 = \frac{\lambda}{m+1} t_1^{m+1} + \sum_{l=1}^{m} \frac{\lambda}{l} \binom{m}{l-1} t_1^l + s_2 \]

Identity (22) and a comparison of the coefficients of \(t_1^j \) from (24) for \(j = m-1 \) imply that \(d = 1 \).

But then it is straightforward to check that

\[h_k = \frac{a \lambda_{k-1}}{k} + \frac{1}{m+1} \binom{m+1}{k} e^{m+1-k}, \quad k = 1, \ldots, m \]

\[s_2 = a t_2 \]

is a solution to equations (24) and (25). It follows that \(\sigma \) is equivalent to \(\tau_3 \) if and only if it can be arranged that \(a \lambda_m = \lambda \) and \(d = 1 \). The theorem now follows from theorem 3.7. \(\square \)

Definition 4.4. A singular del Pezzo surface is a singular normal projective surface \(Y \) with only ADE-singularities, i.e., singularities for which the dual graphs of minimal resolutions are Dynkin diagrams of type \(A_k, D_l, \) or \(E_m \) for some \(k, l \) or \(m \), and each of the irreducible exceptional curve are rational curves with self intersection number \(-2\). The type of a singular point on \(Y \) is the type (as a Dynkin diagram) of the weighted dual graph of its minimal resolution.

Corollary 4.5. Adopt the notation of theorem 4.2.

1. The following are equivalent:
 (a) \(X_{\omega, \delta} \) is a singular del Pezzo surface which admits a \(G_2^a \)-structure.
 (b) \(\omega \) is either (2, 1), (3, 2), (3, 2, 5) or (3, 2, 4).

2. If \(\omega = (2, 1) \), then \(X_{\omega, \delta} \cong \mathbb{P}^2(1, 1, 2) \); \(X_{\omega, \delta} \) has only one singular point and it is of type \(A_1 \). Up to equivalence \(X_{\omega, \delta} \) has precisely two \(G_2^a \)-structures.

3. If \(\omega = (3, 2) \), then \(X_{\omega, \delta} \cong \mathbb{P}^2(1, 3, 2) \); \(X_{\omega, \delta} \) has two singular points - one of type \(A_2 \) and the other of type \(A_1 \). Up to equivalence \(X_{\omega, \delta} \) has precisely two \(G_2^a \)-structures.

4. If \(\omega = (3, 2, 5) \), then \(X_{\omega, \delta} \) is isomorphic to the hypersurface in \(\mathbb{P}^2(1, 3, 2, 5) \) (with weighted homogeneous coordinates \([w : x : y : z] \)) defined by \(wz - (y^3 + x^2) = 0 \); \(X_{\omega, \delta} \) has only one singular point and it is of type \(A_4 \). Up to equivalence \(X_{\omega, \delta} \) has a one dimensional moduli of \(G_2^a \)-structures.
(5) If \(\bar{\omega} = (3, 2, 4) \), then \(\bar{X}_{\bar{\omega}, \bar{g}} \) is isomorphic to the hypersurface in \(\mathbb{P}^2(1, 3, 2, 4) \) (with weighted homogeneous coordinates \([w : x : y : z]\)) defined by \(w^2z - (y^3 + x^2) = 0 \); \(\bar{X}_{\bar{\omega}, \bar{g}} \) has only one singular point and it is of type \(D_5 \). Up to equivalence \(\bar{X}_{\bar{\omega}, \bar{g}} \) has a one dimensional moduli of \(\mathbb{G}^2_a \)-structures.

Proof. \([\text{Mon13}, \text{Corollary 7.9}]\) implies that \(\bar{X}_{\bar{\omega}, \bar{g}} \) is a singular del Pezzo surface iff \(\bar{\omega} = (2, 1), (3, 2), (3, 2, 5, 1) \) or \((3, 2, 6 - r), r = 1, \ldots, 5 \). Assertion (1) then follows from theorem 4.2 and the observation that \(\omega_0 + k_\bar{X} < 0 \) for precisely those \(\bar{\omega} \) listed in assertion (1b). The other assertions follow from theorem 4.3, \([\text{Mon13, corollary 7.9}]\) and the description in \([\text{Mon16, theorem 4.5}]\) of weighted dual graphs of minimal resolutions of singularities of primitive compactifications of \(\mathbb{C}^2 \).

5. \(\mathbb{G}^2_a \)-structures on minimal desingularizations of \(\mathbb{G}^2_a \)-surfaces of Picard rank one

Lemma 5.1. Let \(Y \) be an irreducible variety, \(G \) be a group, \(U \) be an open subset of \(Y \), and \(\sigma_1, \sigma_2 \) be two actions of \(G \) on \(Y \) such that \(U \) is an orbit of \(G \) under both \(\sigma_1 \) and \(\sigma_2 \). Assume there are automorphisms \(\alpha \) of \(G \) and \(j \) of \(Y \) such that \(\sigma_{\alpha}(a(g), j(y)) = j(\sigma_1(g, y)) \) for all \(g \in G \), \(y \in Y \).

Then \(j(U) = U \).

Proof. Indeed, since \(U \) is open in \(Y \), there exist \(U \cap j^{-1}(U) \neq \emptyset \). Pick \(y \in U \cap j^{-1}(U) \). Then

\[
U = G\text{-orbit of } j(y) \text{ under } \sigma_2 = \{ \sigma_2(a(g), j(y)) : g \in G \} = \{ j(\sigma_1(g, y)) : g \in G \} = j(G\text{-orbit of } y \text{ under } \sigma_1) = j(U)
\]
as required. \(\square\)

Let \(\bar{\omega} \) be a key sequence in normal form, \(\bar{X} := \bar{X}_{\bar{\omega}, \bar{g}} \) be a \(\mathbb{G}^2_a \)-surface of Picard rank 1 containing \(X \cong \mathbb{C}^2 \), and \(\pi : X^{\min} \to \bar{X} \) be the minimal desingularization. Let \(\sigma_1 \) and \(\sigma_2 \) be actions of \(\mathbb{G}^2_a \) on \(\bar{X} \) which fix \(X \). Assertion (1) of theorem B.4 implies that there are group actions \(\sigma'_j \), \(1 \leq j \leq 2 \) of \(\mathbb{G}^2_a \) on \(X^{\min} \) which are compatible with \(\sigma \) and \(\pi \), i.e. \(\pi(\sigma'_j(a, x')) = \sigma_j(a, \pi(x')) \) for each \(j \) and \(a \in \mathbb{G}^2_a \), \(x' \in X^{\min} \).

Lemma 5.2. If \(\sigma'_1 \) is equivalent to \(\sigma'_2 \), then \(\sigma_1 \) is equivalent to \(\sigma_2 \).

Proof. Assume \(\sigma'_1 \) is equivalent to \(\sigma'_2 \) via automorphisms \(\alpha \) of \(\mathbb{G}^2_a \) and \(j \) of \(\bar{X}^{\min} \). Assertion (2) of theorem B.4 implies that \(j \) induces an automorphism \(j \) of \(\bar{X} \). It is straightforward to see that \(\sigma'_1 \) is equivalent to \(\sigma'_2 \) via \((\alpha, j) \).

Corollary 5.3. The space of \(\mathbb{G}^2_a \)-structures modulo equivalence on \(X^{\min} \) is isomorphic to the space of \(\mathbb{G}^2_a \)-structures modulo equivalence on \(\bar{X} \).

Proof. It follows immediately from combining theorem 4.3 and lemma 5.2 once we observe that every \(\mathbb{G}^2_a \)-action on \(X^{\min} \) is equivalent to an action which fixes \(X \).

Corollary 5.4. If \(\omega_0 + k_\bar{X} < 0 \) and \(m_{\bar{\omega}} \geq 1 \), then the minimal resolution of singularities of \(\bar{X} \) admits a moduli of \(\mathbb{G}^2_a \)-structures.

6. Log terminal and log canonical and \(\mathbb{G}^2_a \)-surfaces with Picard rank one

In section 6.1 we recall following Alexeev [Ale92] a part of Kawamata’s [Kaw88] classification of two dimensional log terminal and log canonical singularities in terms of dual graphs of their resolutions of singularities. In section 6.2 we recall from [Mon16] the description of dual graphs of resolution of singularities of primitive normal compactifications of \(\mathbb{C}^2 \). In section 6.3 we combine these results to classify log terminal and log canonical primitive normal compactifications of \(\mathbb{C}^2 \), and among these characterize those which admit \(\mathbb{G}^2_a \)-structures.
6.1. Two dimensional log terminal and log canonical singularities.

Definition 6.1. Let E_1, \ldots, E_k be non-singular curves on a (non-singular) surface such that for each $i \neq j$, either $E_i \cap E_j = \emptyset$, or E_i and E_j intersect transversally at a single point. Then $E = E_1 \cup \cdots \cup E_k$ is called a simple normal crossing curve. The (weighted) dual graph of E is a weighted graph with k vertices V_1, \ldots, V_k such that

- there is an edge between V_i and V_j if $E_i \cap E_j \neq \emptyset$,
- the weight of V_i is the self intersection number of E_i.

Usually we will abuse the notation, and label V_i’s also by E_i. If $\pi : Y' \to Y$ is the resolution of singularities of a surface, then the weighted dual graph of π is the weighted dual graph of the union of ‘exceptional curves’ (i.e. the curves that contract to points under π) of π.

Definition 6.2. Let (Y, P) be a germ of a normal surface, and $\pi : Y' \to Y$ be a resolution of the singularity of (Y, P) such that the inverse image of P is a normal crossing curve E. If $K_Y, K_{Y'}$ are respectively canonical divisors of Y, then

$$K_{Y'} = \pi^*(K_Y) + \sum_j a_j E_j$$

where the sum is over irreducible components E_j of E and a_j are rational numbers. The singularity (Y, P) is called log canonical (resp. log terminal) if $a_j \geq -1$ (resp. $a_j > -1$) for all j.

Definition 6.3. Given a simple normal crossing curve E on a surface, we denote by $\Delta(E)$ the absolute value of the determinant of the matrix of intersection numbers of components of E. If Γ is the weighted dual graph of E, then we also write $\Delta(\Gamma)$ for $\Delta(E)$.

The result below is a special case of Kawamata’s classification of log terminal and log canonical singularities. We follow the notation of Alexeev. The dual graphs of possible resolutions are listed in figs. 2 and 3. The notation used in these figures is as follows:

- each dot denotes a vertex;
- a number next to a dot represents the weight of the vertex;
- each empty oval denotes a chain, i.e. a tree such that every vertex has at most two edges;
- an oval with a symbol Δ in the interior denotes a chain Γ with $\Delta(\Gamma) = \Delta$.

Theorem 6.4 (Kawamata [Kaw88], Alexeev [Ale92]). Let $\pi : Y' \to Y$ be a resolution of singularities of a germ (Y, P) of normal surface. Assume that the exceptional curve E of π satisfies the following properties: E is a simple normal crossing curve, each irreducible component of E is a rational curve, and the dual graph of E is a tree.

1. The singularity of (Y, P) is log terminal iff the dual graph Γ of E is one of the graphs listed in fig. 2.

(2) The singularity of (Y, P) is log canonical but not log terminal iff the dual graph Γ of E is one of the graphs listed in fig. 3.
6.2. Dual graphs of resolution of singularities of normal primitive compactifications of \(\mathbb{C}^2\). Let \(n \geq 0\), \(\bar{\omega} = (\omega_0, \ldots, \omega_{n+1})\) be a primitive key sequence in normal form, \(\bar{\theta} \in (\mathbb{C}^*)^n\), and \(\bar{X} \cong \tilde{X}_{\bar{\omega}, \bar{\theta}}\) be the corresponding primitive normal compactification of \(\mathbb{C}^2\). Let \(C_{\infty}\) be the curve at infinity on \(\bar{X}\). It turns out that one can associate a formal descending Puiseux series, i.e. a formal sum
\[
\hat{\phi}(x, \xi) = a_1x^{\beta_1} + \ldots + a_sx^{\beta_s} + \xi^{\beta_{s+1}}
\]
where
- \(s \geq 0\),
- \(a_1, \ldots, a_s \in \mathbb{C}^*\),
- \(\beta_1 > \cdots > \beta_{s+1}\) are rational numbers,
- \(\xi\) is an indeterminate,

such that for each \(f \in \mathbb{C}[x, y]\),
\[
\text{pole}_{C_{\infty}}(f) = \omega_0 \deg_x \left(f|_{y=\hat{\phi}(x, \xi)}\right)
\]

Note that the normality of \(\bar{\omega}\) implies that either \(s = 0\), or \(\beta_1\) is a positive rational number between 0 and 1 such that neither \(\beta_1\) nor \(1/\beta_1\) is an integer.

Let \(d_j\) be the lowest common denominator of (reduced forms of) \(\beta_1, \ldots, \beta_j, 1 \leq j \leq s + 1\). The sequence of formal characteristic exponents of \(\hat{\phi}\) is the sequence \(\beta_1 = \beta_{j_1} > \cdots > \beta_{j_{s+1}} = \beta_{s+1}\) of exponents which satisfy the following property:
- \(d_j = d_{j_k}\) for each \(j = j_k, \ldots, j_{k+1} - 1\),
- \(d_{j_{k+1}} > d_{j_k}\) for each \(k = 1, \ldots, l - 1\).

The formal Newton pairs of \(\hat{\phi}\) are \((q'_{1,1}, p_{1,1}), \ldots, (q'_{l+1,1}, p_{l+1,1})\), where
\[
p_k = \begin{cases}
 d_{j_1} = d_1 & \text{if } k = 1, \\
 d_{j_k}/d_{j_{k-1}} & \text{if } k = 2, \ldots, l + 1.
\end{cases}
\]
\[
q'_k = \begin{cases}
 d_{j_1}\beta_1 & \text{if } k = 1, \\
 d_{j_k}(\beta_{j_k} - \beta_{j_{k-1}}) & \text{if } k = 2, \ldots, l + 1.
\end{cases}
\]

The formal Newton pairs are completely determined by (and also completely determine) the essential subsequence (Definition 3.1) of the key sequence \(\bar{\omega}\). The relation among them is as follows:

Proposition 6.5 ([Mon13, Propositoin A.1]). Let \(\bar{\omega}_e = (\omega_{i_0}, \ldots, \omega_{i_{l'+1}})\) be the essential subsequence of \(\bar{\omega}\) and \(\alpha_1, \ldots, \alpha_{n+1}\) be as in Definition 3.1. Then \(l' = l\), and for each \(j, 1 \leq j \leq l + 1\),
\[
p_j = \alpha_{i_j},
\]
\[
\beta_{i_j} := \frac{1}{\omega_0}(\omega_{i_j} - \sum_{k=1}^{j-1}(\alpha_{i_k} - 1)\omega_{i_k}), \quad 1 \leq j \leq l + 1.
\]

Theorem 6.6 ([Mon16, Proposition 4.2]).

1. If \(p_{l+1} = 1\), then there is a resolution of singularities of \(\bar{X}\) such that the dual graph is of the form displayed in fig. 4.
(2) If $p_{l+1} > 1$, then there is a resolution of singularities of \bar{X} such that the dual graph is a disjoint union of a chain Γ with $\Delta(\Gamma) = p_{l+1}$ and a graph of the form displayed in fig. 4.

\[\begin{array}{c}
|q'_1| & \cdots & |q'_{l+1}| \\
\bullet & \cdots & \bullet \\
p_1 & \cdots & p_l
\end{array} \]

Figure 4. Dual graphs in theorem 6.6

6.3. **Primitive compactifications with log terminal and log canonical singularities.** In this section we combine the results of preceding two sections to classify primitive normal compactifications of \mathbb{C}^2, including all Picard rank on G^2_n-surfaces, with log terminal and log canonical singularities.

We continue to use the notation from section 6.2. In particular, $\bar{\omega} = (\omega_0, \ldots, \omega_{n+1})$ is a primitive key sequence in normal form, $\bar{\theta} \in (\mathbb{C}^*)^n$, and $\tilde{X} := \bar{X}_{\bar{\omega}, \bar{\theta}}$ is the corresponding primitive normal compactification of \mathbb{C}^2. The following are straightforward consequences of the normality of $\bar{\omega}$ and proposition 6.5:

(i) $\gcd(q'_l, p_1) = 1$;
(ii) if $l \geq 1$, then $p_1 > 2$, $p_1 > q_1$, and neither q'_1/p_1 nor p_1/q'_1 is an integer.

Theorem 6.7. Let $\bar{\omega}_e$ be the essential subsequence (Definition 3.1) of $\bar{\omega}$.

1. \bar{X} has only log terminal singularities iff $\bar{\omega}_e$ is one of the key sequences in the first column of table 1. \bar{X} is in addition a G^2_n-surface iff it satisfies the conditions from the 4th column of table 1.
2. \bar{X} has a log canonical singularity which is not log terminal iff $\bar{\omega}_e$ is the key sequence from table 2. \bar{X} is in addition a G^2_n-surface iff it satisfies the condition from the 4th column of table 2.

Proof. The first statements of assertions (1) and (2) follow from observations (i), (ii), proposition 6.5 and theorems 6.4 and 6.6. For the criteria for having G^2_n-surface structures, we use theorem 4.2. If $n = 0$, then $k_{\tilde{X}} + \omega_0 = -\omega_1 - 1 < 0$, so that \tilde{X} is a G^2_0-surface; this explains the first two rows of table 1. The key sequences in table 2 and the remaining cases of table 1 are of the form $(p_1 p_2, q_1 p_2, q_1 p_2 - r)$, with $\alpha_1 = p_1$ and $\alpha_2 = p_2$. It follows that

$$k_{\tilde{X}} + \omega_0 = -q_1 p_1 p_2 + r - 1 + (p_1 - 1) q_1 p_2 = r - 1 - q_1 p_2$$

Therefore $k_{\tilde{X}} + \omega_0 < 0$ iff $q_1 p_2 \geq r$. This explains the criteria for G^2_n-surface structures in the 4th columns of tables 1 and 2. □

Appendix A. Proof of Lemma 4.1

At first we prove the (\Rightarrow) implication. The compatibility of the action implies that

\begin{align*}
(32a) \quad a(t_1 + t'_1, t_2 + t'_2) &= a(t_1, t_2) a(t'_1, t'_2) \\
(32b) \quad b(t_1 + t'_1, t_2 + t'_2) &= b(t_1, t_2) b(t'_1, t'_2), \\
(32c) \quad c(t_1 + t'_1, t_2 + t'_2) &= b(t_1, t_2) c(t'_1, t'_2) + c(t_1, t_2), \\
(32d) \quad f(t_1 + t'_1, t_2 + t'_2, y) &= a(t_1, t_2) f(t'_1, t'_2, y) + (t_1, t_2) b(t'_1, t'_2) y + c(t'_1, t'_2), \\
(32e) \quad f(t_1, t_2, y) := \sum_{i=0}^{m} b_i(t_1, t_2) y^i
\end{align*}
$\tilde{\omega}_e$	Formal Newton pairs	Dual graph of resolution of singularities	G_2^3-surface iff
$(1, 1)$	$(1, 1)$	-	always
(p, q)	(q, p)	if $q = 1$	always
$p > q \geq 1$, $\text{gcd}(p, q) = 1$		$q \cup p$	
$(p_1, p_2, q_1, p_2 - 1)$	$(q_1, p_1, -1, p_2)$	if $p_2 = 1$	always
$p_1 > q_1 > 1$, $\text{gcd}(p_1, q_1) = 1$, $p_2 \geq 1$		$q_1 \cup p_2$	
$(p_1, p_2, 2p_1, 2p_1 - 2)$	$(2, p_1, -2, p_2)$	if $p_2 = 1$	always
$p_1, p_2 \text{ odd, } p_1 > 2$, $p_2 \geq 1$		$2 \cup p_2$	
$(p_1, p_2, 2p_1, 2p_1 - r)$	$(2, p_1, -r, p_2)$	if $p_2 = 1$	never
$(p_1, r) \in \{(3, 3), (3, 4), (3, 5), (5, 3)\}$, $p_2 \geq 1$, $\text{gcd}(p_2, r) = 1$		$2 \cup p_2$	$p_2 \geq 3$ if $(p_1, r) = (3, 5)$, $p_2 \geq 2$ otherwise
$(p_1, 3p_2, 3p_2 - 2)$	$(3, p_1, -2, p_2)$	if $p_2 = 1$	always
$p_1 = 4, 5$, $p_2 \geq 1$, $\text{gcd}(p_2, 2) = 1$		$3 \cup p_2$	

Table 1. Log terminal primitive compactifications

$\tilde{\omega}_e$	Formal Newton pairs	Dual graph of resolution of singularities	G_2^3-surface iff
$(3p, 2p, 6p - 6)$	$(2, 3, -6, p)$	$2 \cup \{p\}$	$p \geq 3$
$p \geq 2$, $\text{gcd}(p, 6) = 1$			

Table 2. Primitive compactifications which are log canonical but not log terminal
Since \(a, b\) are non-zero polynomials in \((t_1, t_2)\), identities (32a) and (32b) imply that \(a(t_1, t_2) = b(t_1, t_2) = 1\) for all \((t_1, t_2) \in \mathbb{C}^2\). Identity (32c) then implies that \(c\) is a linear function in \((t_1, t_2)\), i.e. \(c(t_1, t_2) = c_1 t_1 + c_2 t_2\) for some \(c_1, c_2 \in \mathbb{C}\). Consequently identity (32d) implies that

\[
\sum_{i=0}^{m} (b_i(t_1 + t'_1, t_2 + t'_2) - b_i(t_1', t_2')) = \sum_{i=0}^{m} b_i(t_1, t_2)(y + c_1 t'_1 + c_2 t'_2)
\]

If \(c_1 = c_2 = 0\), then (33) implies that each \(b_i\) is linear and the action is given by

\[
(t_1, t_2) \cdot (x, y) = \left(x + \sum_{i=0}^{m} b_i(t_1, t_2)y^i, y \right)
\]

Now assume \((c_1, c_2) \neq (0, 0)\). For all \(\lambda \in \mathbb{C}\), plugging in \((t'_1, t'_2) = (\lambda c_2, -\lambda c_1)\) in (33) gives that

\[
\sum_{i=0}^{m} (b_i(t_1 + \lambda c_2, t_2 - \lambda c_1) - b_i(\lambda c_2, -\lambda c_1) - b_i(t_1, t_2))y^i = 0
\]

so that

\[
b_i(t_1 + \lambda c_2, t_2 - \lambda c_1) - b_i(\lambda c_2, -\lambda c_1) - b_i(t_1, t_2) = 0
\]

for each \(i = 0, \ldots, m\). Let \(\sigma : \mathbb{C}^2 \to \mathbb{C}^2\) be the map defined by

\[
(t_1, t_2) \mapsto (t_1', t_2') = \left(\tilde{c}_2, \frac{c_1}{c_2} \right)
\]

where \(\tilde{c}_i\) denotes the conjugate of \(c_i\), \(i = 1, 2\). Let \(\tilde{b}_i := b_i \circ \sigma^{-1}\). Identity (35) implies that

\[
\tilde{b}_i(s_1 + \lambda |c|^2, s_2) - \tilde{b}_i(\lambda |c|^2, 0) - \tilde{b}_i(s_1, s_2) = 0, \quad i = 0, \ldots, m
\]

where we wrote \((s_1, s_2)\) for \(\sigma(t_1, t_2)\) and \(|c|^2\) for \(|c_1|^2 + |c_2|^2\). It follows from (36) in a straightforward manner that for each \(i = 0, \ldots, m\),

\[
\tilde{b}_i(s_1, s_2) = g_i(s_2) + \mu_is_1
\]

for some \(\mu_i \in \mathbb{C}\) and \(g_i \in \mathbb{C}[s_2]\) such that \(g_i(0) = 0\). Plugging \(b_i(t_1, t_2) = \tilde{b}_i \circ \sigma(t_1, t_2) = g_i(c_1 t_1 + c_2 t_2) + \mu_i(c_2 t_1 - c_1 t_2)\) into (33) gives

\[
\sum_{i=0}^{m} (g_i(r + r') - g_i(r') + \mu_is)x^i = \sum_{i=0}^{m} (g_i(r) + \mu_is)(x + r')^i
\]

where \(r := c_1 t_1 + c_2 t_2\), \(r' := c_1 t_1 + c_2 t_2\), and \(s := c_2 t_1 - c_1 t_2\), \(i = 0, \ldots, s\). Substituting \(r = 0\) in (38) and using \(g_i(0) = 0\) yields that

\[
\sum_{i=0}^{m} \mu_ix^i = \sum_{i=0}^{m} \mu_i(x + r')^i
\]

which implies \(\mu_i = 0\) for \(i = 1, \ldots, m\). On the other hand, differentiating (38) with respect to \(r\) and then substituting \(r = 0\) yields

\[
\sum_{i=0}^{m} g'_i(r')x^i = \sum_{i=0}^{m} g'_i(0)(x + r')^i
\]

A comparison of coefficients of \(x^i\) from both sides of (40) gives

\[
g'_i(r') = g'_i(0) + g'_{i+1}(0) \binom{i + 1}{1} r' + \cdots + g'_m(0) \binom{m}{m-i} r'^{m-i}, \quad i = 0, \ldots, m.
\]

Since \(g_i(0) = 0\) for each \(i\), this implies that \(g_i\)'s are as in (11) with \(\lambda_i := g'_i(0), i = 0, \ldots, m\), and completes the proof of \((\Rightarrow)\) direction.
Now we prove the \((\Leftarrow)\) implication. It suffices to show that if \((c_1, c_2) \neq (0, 0)\), then identity (33) holds with \(b_j\)'s defined in (10). But then with \(r, r'\) defined as in (38), identity (33) is equivalent to the following identity:

\[
\sum_{i=0}^{m} (g_i(r + r') - g_i(r'))x^i = \sum_{i=0}^{m} g_i(r)(x + r')^i,
\]

which is in turn equivalent to identities below:

\[
g_i(r + r') - g_i(r') = \sum_{j=i}^{m} \binom{j}{j-i+1} (r + r')^{j-i+1} - r'^{j-i+1} \tag{42}
\]

Now (11) implies that for each \(i = 0, \ldots, m\),

\[
g_i(r + r') - g_i(r') = \sum_{j=i}^{m} \lambda_j \binom{j}{j-i+1} ((r + r')^{j-i+1} - r'^{j-i+1})
\]

\[
= \sum_{j=i}^{m} \lambda_j \frac{j!}{(j-k-i+1)!} \left(\frac{k}{j-k-i} \right) (r + r')^{j-i+1} - r'^{j-i+1}
\]

\[
= \sum_{k=0}^{m-i} \frac{(k+i)!}{k!} r^k \sum_{j=k+i}^{m} \frac{\lambda_j}{(j-k-i+1)!} (j-k-i)! (j-k-i+1)
\]

\[
= \sum_{k=0}^{m-i} \frac{(k+i)!}{k!} r^k g_{k+i}(r)
\]

\[
= \sum_{j=i}^{m} \binom{j}{j-i+1} (r')^{j-i} g_j(r),
\]

as required. \(\square\)

Appendix B. Automorphisms of minimal desingularizations of primitive compactifications of \(\mathbb{C}^2\)

In this section we show that every automorphism of a primitive compactification \(\bar{X}\) of \(X := \mathbb{C}^2\) lifts to an automorphism of the minimal desingularization \(X^{\text{min}}\) of \(\bar{X}\). Conversely, we also show that every automorphism of \(X^{\text{min}}\) which fixes \(X\) descends to an automorphism of \(\bar{X}\).

Let \((Y, P)\) be a germ of a non-singular analytic surface. Choose analytical coordinates \((u, v)\) on \(Y\) such that \(P = \{u = v = 0\}\). Let \(\tilde{\rho}, \tilde{q}\) be relatively prime positive integers such that \(\tilde{\rho} > \tilde{q} \geq 1\), and let \(\pi' : Y' \rightarrow Y\) be the minimal resolution of the singularity of the curve \(C := \{u(v^\tilde{\rho} - u^\tilde{q}) = 0\}\) at \(P\) i.e.

(i) \(\pi'\) is an isomorphism outside the inverse image of \(P\);
(ii) the strict transform of \(u(v^\tilde{\rho} - u^\tilde{q}) = 0\) on \(Y'\) intersects the union of the exceptional curves of \(\pi'\) transversally;
(iii) every \(\pi'' : Y'' \rightarrow Y\) satisfying the above two properties factors through \(\pi'\).
The morphism \(\pi' \) can be expressed as a sequence of blow ups. Let \(E_j, j = 1, 2, \ldots \), be the strict transform of the \(j \)'th blow up on \(Y' \). Denote by \(E_0 \) the strict transform of \(u = 0 \) on \(Y' \). Given a germ \(C \) of a curve at \(P \), we say that \(C \) is an \(E_j \)-curvette if the strict transform of \(C \) on \(Y' \) intersects \(E_j \) transversally. The following lemma follows from standard theory of resolution of curve singularities.

Lemma B.1. Express \(\tilde{p}/\tilde{q} \) as a continued fraction in the following way:

\[
\frac{\tilde{p}}{\tilde{q}} = m_1 + \frac{1}{m_2 + \frac{1}{\ddots + \frac{1}{m_N}}}
\]

where \(m_j \geq 2, j = 1, \ldots, N \). Then

1. The dual graph of \(E_0 \cup E_1 \cup \cdots \) is as in fig. 5.

![Figure 5. Dual graph for the minimal resolution of singularities of monomial curve singularities](image)

(2) The self intersection number of \(E_0 \) is \(1 - \left\lfloor \frac{\tilde{p}}{\tilde{q}} \right\rfloor \).

(3) Set \(M_j := \sum_{i=1}^{j} m_j, j = 0, \ldots, N \). For each \(j = 0, \ldots, N - 1 \) and each \(k = 1, \ldots, m_j + 1 \), let \(\check{p}_{M_j+k}, \check{q}_{M_j+k} \) be the positive relatively prime integers such that

\[
\frac{\check{p}_{M_j+k}}{\check{q}_{M_j+k}} = m_1 + \frac{1}{m_2 + \frac{1}{\ddots + \frac{1}{m_j + \frac{1}{k}}}}
\]

Then for generic \(\xi' \in \mathbb{C} \), the germ of \(v^{\check{p}_{M_j+k}} - \xi' u^{\check{q}_{M_j+k}} = 0 \) is an \(E_{M_j+k} \)-curvette. \(\square \)

Claim B.2. Adopt the notation of lemma B.1. Fix \(j, 0 \leq j \leq N - 1 \).

1. Assume \(j \) is even. Then

\[
\frac{(\check{p}_{M_j+k} - \check{q}_{M_j+k})/\check{p}_{M_j+k} < (\tilde{p} - \tilde{q})/\tilde{p}}
\]

(46)

\[
\left[(\check{p}_{M_j+k} - \check{q}_{M_j+k})/\check{p}_{M_j+k} \right] = \left[(\tilde{p} - \tilde{q})/\tilde{p} \right] = 0
\]

2. Assume \(j \) is odd. Then

\[
(\check{p}_{M_j+k} - \check{q}_{M_j+k})/\check{p}_{M_j+k} > (\tilde{p} - \tilde{q})/\tilde{p}
\]
Let Γ be the weighted chain (where the weight of a vertex is the self intersection number of the corresponding curve) connecting E_0 to E_{M_1+k}. If Γ is not as in fig. 6, then

$$[\tilde{p}_{M_1+k}/(\tilde{p}_{M_1+k} - \tilde{q}_{M_1+k})] \geq [\tilde{p}/(\tilde{p} - \tilde{q})]$$

(48)

\[E_0 \quad -1 \quad E_{m_1+1} \quad -2 \quad E_{M_1+k} \]

\[E_0 \quad -1 \quad E_2 \quad -2 \quad E_1 \]

\textbf{Figure 6.} ‘Irrelevant’ weighted chain

\textbf{Figure 7.} Case $\tilde{p}/\tilde{q} = 2$

Proof. Inequalities (45) and (47) follows immediately from assertion (3) of lemma B.1. Since $\tilde{q} < \tilde{p}$, inequality (46) follows from (45). We now prove (48). If $\tilde{p}/\tilde{q} > 2$ then

$$[\tilde{p}_{M_1+k}/(\tilde{p}_{M_1+k} - \tilde{q}_{M_1+k})] \geq 1 = [\tilde{p}/(\tilde{p} - \tilde{q})]$$

If $\tilde{p}/\tilde{q} = 2$, then the dual graph from fig. 5 is as follows, where we also list the weights (i.e. self intersection number of the corresponding curves): Therefore (48) is vacuously true. Now assume

$\tilde{p}/\tilde{q} < 2$. Then $m_1 = 1$ and $N \geq 2$ in identity (43). In particular, identities (43) and (44) imply that

$$[\tilde{p}_{1+m_2}/(\tilde{p}_{1+m_2} - \tilde{q}_{1+m_2})] = [\tilde{p}/(\tilde{p} - \tilde{q})] = 1 + m_2$$

(49)

It is straightforward to see that the weighted chain consisting of $E_0, E_2, E_3, \ldots, E_{m_2}$ is as in fig. 6, which proves (48).

Now we apply the preceding observations to minimal resolution of a primitive compactification \tilde{X} of \mathbb{C}^2. Pick the (unique) primitive key sequence $\vec{\omega} = (\omega_0, \ldots, \omega_{n+1})$ in normal form and $\vec{\beta} \in (\mathbb{C}^*)^n$ such that $\tilde{X} \cong \tilde{X}_{\vec{\omega}, \vec{\beta}}$. As in section 6.2 let $\tilde{\phi}(x, \xi) = \sum_{j=1}^s a_j x^{\beta_j} + \xi x^{\beta_{s+1}}$ be the formal descending Puiseux series associated to \tilde{X}. Let $\beta_1 = \beta_{j_1} > \cdots > \beta_{j_{s+1}} = \beta_{s+1}$ be the formal characteristic exponents, and $(q_{j_1}', p_{j_1}), \ldots, (q_{j_{s+1}}', p_{j_{s+1}})$ be the formal Newton pairs of $\vec{\omega}$. Embed $X := \mathbb{C}^2$ into \mathbb{P}^2 via $(x, y) \mapsto [x : y : 1]$. Then $(u, v) := (1/x, y/x)$ are analytic coordinates near $P := [1 : 0 : 0] \in \mathbb{P}^2$; note that $u = 0$ is the equation of the line at infinity on \mathbb{P}^2. Pick a generic $\xi' \in \mathbb{C}$. Then

$$\tilde{\psi}(u, \xi') := u \tilde{\phi}(1/u, \xi)|_{\xi = \xi'} = \sum_{j=1}^s a_j u^{1-\beta_j} + \xi u^{1-\beta_{s+1}}$$

is a (finite) Puiseux series in u. Let C be the germ at P of the (reduced) union of the line at infinity and the irreducible analytic curve with Puiseux expansion $v = \tilde{\psi}(u, \xi')$. It turns out (see e.g. [Mon16, Proposition 4.2]) that

(iv) If $\pi' : X' \to \mathbb{P}^2$ is the minimal resolution (in the sense of properties (i)-(iii)) of the singularity at P of C, then X' is also a resolution of singularities of \tilde{X}.

(v) The dual graph of the resolution $\sigma' : X' \to X$ is of the form described in theorem 6.6.

More precisely, in fig. 4

(1) the strict transform E_0 of the line at infinity on \mathbb{P}^2 is the ‘left end’ of the leftmost chain (with Δ-value $|q_1'| = q_1'$).
Let $m(i)$ from the proof of Theorem 5.2 imply that E be the integer associated to (the key sequence associated to) exceptional curves of π, and has an associated formal descending Puiseux series \tilde{x}, and possibly also the strict transform of the line at infinity. The latter gets contracted if and only if $q_i \leq p_i/2$, where $(q_1,p_1), \ldots, (q_{l+1},p_{l+1})$ are formal Newton pairs of ϕ.

Let E be an exceptional curve of π'. Then E defines a divisorial valuation centered at infinity on $C[x,y]$, and has an associated formal descending Puiseux series $\phi_E(x,\xi)$. Moreover,

(vi) The minimal resolution \bar{X}_{min} of singularities of X is formed by contracting some of the exceptional curves of π', and possibly also the strict transform of the line at infinity. The latter gets contracted if and only if $q_i \leq p_i/2$, where $(q_1,p_1), \ldots, (q_{l+1},p_{l+1})$ are formal Newton pairs of ϕ.

Let m_E be the integer associated to (the key sequence associated to) E defined as in (13), with $\bar{\omega}$ replaced by the key sequence associated to E. Observations (v.2), (v.3) and [Mon13, Observation (i) from the proof of Theorem 5.2] imply that

\[
\begin{align*}
(54) & \quad m_{\omega} = \frac{\text{ord}_x(\phi) + 1}{\deg_x(\phi)} - 1 = \left[\frac{p_1}{q_1} (\beta_{s+1} + 1) - 1 \right] \\
(55) & \quad m_E = \frac{\text{ord}_x(\phi_E) + 1}{\deg_x(\phi_E)} - 1 \begin{cases}
\frac{\tilde{p}_k}{\tilde{p}_k - \tilde{q}_k} & \text{in the scenario of (v.3.b) with } i = 1, \\
\frac{p_1}{q_1} \left(\beta_{j_i-1} - \frac{\tilde{q}_k}{p_1 \cdots p_{i-1} \tilde{p}_k} + 1 \right) - 1 & \text{in the scenario of (v.3.b) with } i > 1, \\
\frac{p_1}{q_1} (\beta_{j_i} + 1) - 1 & \text{in the scenario of (v.3.a),} \\
\frac{p_1}{q_1} (\beta_{j_i} + 1) - 1 & \text{in the scenario of (v.2).}
\end{cases}
\end{align*}
\]
Lemma B.3. Let E be an exceptional curve of the minimal resolution $\sigma : \bar{X}^{\min} \to \bar{X}$ of singularities of \bar{X}. Then $m_E \geq m_\varnothing$, where m_\varnothing is as in (13).

Proof. Observation (vi) implies that either

(a) E comes from either an exceptional curve of $\pi' : X' \to \mathbb{P}^2$,

(b) or E is the strict transformation of the line at infinity on \mathbb{P}^2.

At first consider case (a). In the scenario of observations (v.2) or (v.3.a) Identities (54) and (55) immediately imply that $m_E \geq m_\varnothing$. Now note that

\[(56) \quad m_\varnothing \leq \left\lfloor \frac{p_1}{q_1}(\beta_1 + 1) - 1 \right\rfloor = \left\lfloor \frac{p_1}{q_1} \right\rfloor \]

If (v.3.b) holds with $i = 1$, then (45), (48) and (56) imply that $m_E \geq m_\varnothing$. On the other hand, if (v.3.b) holds with $i > 1$, then (46) and (47) imply that

\[|\tilde{p}_k - q_k|/\tilde{p}_k \geq |(p_i - |q_i'|)/p_i| \]

Since $p_1 \cdots p_{i-1} \beta_{j_i-1}$ is an integer, it follows that

\[
\begin{align*}
(p_1 \cdots p_{i-1} \beta_{j_i-1} - \tilde{q}_k)/\tilde{p}_k &\geq |p_1 \cdots p_{i-1} \beta_{j_i-1} - |q_i'|/p_i| = |p_1 \cdots p_{i-1} \beta_{j_i}| \\
\Rightarrow p_1 \cdots p_{i-1} (\beta_{j_i-1} - q_k/(p_1 \cdots p_{i-1} \tilde{p}_k) + 1) &\geq |p_1 \cdots p_{i-1} (\beta_{j_i} + 1)| \\
\Rightarrow (\beta_{j_i-1} - q_k/(p_1 \cdots p_{i-1} \tilde{p}_k) + 1)p_1/q_1' &\geq |\beta_{j_i} + 1)p_1/q_1'| \geq m_\varnothing
\end{align*}
\]

as required.

Now consider Case (b). Since E_0 does not get contracted, it follows from the arguments in the proof of Claim B.2 that $p_1/|q_i'| > 2$. Identity (56) then implies that $m_\varnothing \leq 1 = m_E$. \qed

Adopt the notation of lemma B.3. Let Aut$_X(\bar{X})$ (resp. Aut$_X(\bar{X}^{\min})$ be the set of automorphisms of \bar{X} (resp. \bar{X}^{\min}) that fix X.

Theorem B.4.

1. Every automorphism F of \bar{X} lifts to an automorphism of \bar{X}^{\min} and $F(E) = E$ for every exceptional curve of E of σ.

2. Every automorphism of \bar{X}^{\min} that fixes X descends to an automorphism of \bar{X}.

3. σ induces an isomorphism Aut$_X(\bar{X}) \cong$ Aut$_X(\bar{X}^{\min})$.

Proof. Let F be an automorphism of \bar{X}. If $F(X) = X$, then lemma B.3 and [Mon13, Theorem 4.9] imply that assertion (1) holds for F. If \bar{X} is not isomorphic to a weighted projective space of the form $\mathbb{P}^2(1,1,p)$, then [Mon13, Proposition 5.1] implies that every automorphism of \bar{X} fixes X, so that assertion (1) holds for \bar{X}. Now assume $\bar{X} \cong \mathbb{P}^2(1,1,p)$. Since \bar{X} is in the normal form, this is due to [Mon13, theorem 5.2] that $\bar{X} = (p,1)$. It is then straightforward to see that there is only one irreducible exceptional curve E of σ and the order of pole of a polynomial f along E is precisely $\deg_y(f)$. [Mon13, Theorems 4.9 and 5.2] then imply that assertion (1) holds for \bar{X}.

Since \bar{X} is in the normal form, observation (vii) implies that for every irreducible exceptional curve of E of σ, the ‘key sequence’ of the pole along E is in the ‘normal form’ (in the sense of [Mon13, section 4]) with respect to (x,y)-coordinates; moreover, the key sequences are distinct for distinct (irreducible) exceptional curve. [Mon13, Theorem 4.6] then implies that $F(E) = E$ for every irreducible exceptional curve of E of σ. Assertion (2) then follows from [Mon13, theorems 4.9 and 5.2]. Assertion (3) is a consequence of the assertions (1) and (2). \qed

References

[Alle92] Valery Alexeev. Classification of log canonical surface singularities: Arithmetic proof. In Flips and abundance for algebraic threefolds. A summer seminar at the University of Utah, Salt Lake City, 1991, pages 47–58. Paris: Sociéte Mathématique de France, 1992.

[DL10] U. Derenthal and D. Loughran. Singular del Pezzo surfaces that are equivariant compactifications. J. Math. Sci., New York, 171(6):714–724, 2010.
[HT99] Brendan Hassett and Yuri Tschinkel. Geometry of equivariant compactifications of G^n_a. *Internat. Math. Res. Notices*, (22):1211–1230, 1999.

[Kaw88] Yujiro Kawamata. Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces. *Ann. Math. (2)*, 127(1):93–163, 1988.

[Mon13] Pinaki Mondal. Analytic compactifications of \mathbb{C}^2 part II - one irreducible curve at infinity. *http://arxiv.org/abs/1307.5577*, 2013.

[Mon16] Pinaki Mondal. Analytic compactifications of \mathbb{C}^2 part I - curvettes at infinity. *C. R. Math. Acad. Sci. Soc. R. Can.*, 38(2), 2016.