Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review

Kha Wai Hon, Nadiah Abu*, Nurul-Syakima Ab Mutalib and Rahman Jamal

UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia

The number of colorectal cancer (CRC) cases have increased gradually year by year. In fact, CRC is one of the most widely diagnosed cancer in men and women today. This disease is usually diagnosed at a later stage of the development, and by then, the chance of survival has declined significantly. Even though substantial progress has been made in understanding the basic molecular mechanism of CRC, there is still a lack of understanding in using the available information for diagnosing CRC effectively. Liquid biopsies are minimally invasive and have become the epitome of a good screening source for stage-specific diagnosis, measuring drug response and severity of the disease. There are various circulating entities that can be found in biological fluids, and among them, exosomes, have been gaining considerable attention. Exosomes can be found in almost all biological fluids including serum, urine, saliva, and breast milk. Furthermore, exosomes carry valuable molecular information such as proteins and nucleic acids that directly reflects the source of the cells. Nevertheless, the inconsistent yield and isolation process and the difficulty in obtaining pure exosomes have become major obstacles that need to be addressed. The potential usage of exosomes as biomarkers have not been fully validated and explored yet. This review attempts to uncover the potential molecules that can be derived from CRC-exosomes as promising biomarkers or molecular targets for effective diagnosing of CRC.

Keywords: exosomes, colorectal cancer, biomarkers, targeted therapy, molecular target

INTRODUCTION

Colorectal cancer is the fourth leading cause of cancer deaths globally with an estimation of 1.4 million new cases yearly around the world (Xu et al., 2016). Screening for the early detection of CRC is crucial to reduce its mortality through prevention and management before CRC progress into advanced stages (Us Preventive Services Task Force, 2016). Statistics have reported that the 5-year survival rate is up to 90% for CRC diagnosed at early stages and localized as compared to 71% for CRC cases with lymph node involvement, and only 13% when distant metastases are present (Howlader et al., 2016). Although there are multiple tests available for CRC screening,
Extracellular vesicles can be divided into three main categories based on the intracellular origins and/or biological functions, namely apoptotic bodies, microvesicles, and exosomes (El Andaloussi et al., 2013). In particular, exosomes are phospholipid bilayer nanovesicles that range from 50 to 100 nm in diameter (Wang et al., 2014). As compared to microvesicles (100 nm to 1 µm) and apoptotic bodies (1–5 µm), exosomes are the smallest EVs which are naturally secreted by almost every cell type including dendritic cells (Liu Q. et al., 2016), mast cells (Xiao et al., 2014), platelets (Goetzl et al., 2016), T lymphocytes (Wahlgren et al., 2012), epithelial cells (Borges et al., 2013), and neurons (Bahraini et al., 2015). Exosomes can be detected in all body fluids such as cerebrospinal fluid, plasma, urine, amniotic fluid, and even saliva (Keller et al., 2011; Lasser et al., 2011; Tietje et al., 2014). While microvesicles and apoptotic bodies form directly from outward budding of plasma membrane, exosomes are different to originate from MVBs within endocytic pathway (Bobrie et al., 2012). Among these three classes of EVs, exosomes are perhaps the best characterized subset of EVs. Pan and Johnstone (1983), exosomes were first reported to function as “garbage bags” secreted by sheep reticulocytes to remove obsolete materials. Since then, exosome biology has started to gain immense interest from the research community while numerous reports have revealed the functional importance of exosomes in various biological events, such as intracellular communication (Record et al., 2014), cell signaling (Xiao et al., 2014), tissue regeneration (Borges et al., 2013), immune response (Liu Q. et al., 2016), viral replication (Gallo et al., 2017), cancer development (Greening et al., 2015) as well as organ-specific metastasis (Hoshino et al., 2015) Evidently, exosomes have the unique ability of transporting different types of cargos including DNA, mRNA, miRNA, and proteins inside the same vesicles.

According to ExoCarta (as of March 2017) which is a database of exosomal proteins, RNAs and lipids, there are about 9700 proteins and 1110 lipids that are discovered to be associated with exosomes of various origins (Keerthikumar et al., 2016). The correlation between different components of exosomes and disease pathogenesis is still not fully elucidated as various findings from related studies have not been well-compared and coordinated toward a main concept. As compared to other classes of EVs, exosomes as intracellular messengers have relatively high abundance and stability in circulating entities to carry genetic information and other biological materials, which could be useful as biomarkers and therapeutic targets (Yoon et al., 2014; Milane et al., 2015; Zhang et al., 2015). At present, there is still no exosome-based clinical testing approved for diagnostic, prognostic and predictive purposes of CRC cases. Therefore, this review will specifically discuss the potential roles of exosomes as biomarkers in CRC as well as to provide insight into the future direction for exosome-related research.

COMPOSITION OF EXOSOMAL MEMBRANE

The proteomic and biochemical analysis of purified exosomes have also revealed that the phospholipid bilayer membrane of exosomes is embedded with various proteins and lipids which originate from the parent cells. These exosomal proteins and lipids may serve as surface markers for the characterization and differentiation of exosomes from other types of microvesicles besides having potential roles in various biological interactions. Generally, endosomal proteins such as Alix, TSG101, calthrin, and ubiquitin are highly conserved among exosomes from most of the cell types (Bobrie et al., 2012). These proteins are components of the ESCRT-I complex, which assist in the sorting of endocytic ubiquitinated cargos into MVBs (early precursors of exosomes) besides acting as mediators of the association between ESCRT-0 and ESCRT-I complex (Baietti et al., 2012; Sun et al., 2015; Christ et al., 2016). Exosomes are also enriched with integrins and tetraspanins that are transmembrane proteins responsible for cellular targeting and adhesion, also commonly used as molecular markers to distinguish from other classes of microvesicles (Rana et al., 2012). Integrins on tumor exosomes may play important roles in modulating organ-specific metastasis as a keystone of cancer progression (Hoshino et al., 2015). CD9, CD63, and CD81 are few tetraspanins commonly detected on all types of exosomes (Wang et al., 2014). CRC-exosomes have been reported to carry tetraspanin CD24 which is an important biomarker commonly detected in many malignancies including ovarian cancer (Im et al., 2014) and CRC (Nosrati et al., 2016). Coincidentally, exosomes extracted from blood plasma of CRC patients showed upregulation in CD24 expression, suggesting its possible implication in early diagnosis of CRC (Yumusova et al., 2016). CD147 is another novel tetraspanin that has been detected on exosomes released by CRC cell lines as well as in patient serum by using Exoscreen method, which could be a new rapid and highly sensitive detection method (Yoshioka et al., 2014).

Heat shock proteins namely HSC70, HSP60, HSP70, and HSP90 frequently found in all exosomes are proposed to modulate protein trafficking into ILVs which are precursors of exosomes (Lv et al., 2012). Annexins and Rab proteins selectively found in certain subsets of exosomes are important for exosome formation, membrane trafficking and release of exosomes from parent cells (Kastelowitz and Yin, 2014). Certain cytoskeleton proteins can be detected in exosomes, including actin, tubulin, and cofilin (Kowal et al., 2014). Additionally, exosomes are commonly enriched in lipid-rafts including cholesterol, sphingolipids, ceramide, and glycosphospholipids containing long and saturated fatty-acyl chains (Record et al., 2014).
As exosomes are mostly embedded with host cell-specific transmembrane membrane, exosomes derived from the human colon carcinoma cell line LIM1215 have been shown to carry colon epithelial cell-specific A33 antigen and EpCAM as distinctive cellular markers (Tauro et al., 2013). The A33 protein is a glycoprotein that is highly expressed in CRC and been used in clinical trials for targeted therapy (Welt et al., 2003; Baptistella et al., 2016). The expression of A33 protein is also positively correlated with the differentiation status of CRC (Baptistella et al., 2016). EpCAM or CD326, has been shown to be highly overexpressed in most of the CRC tissues, and significantly correlated with abnormal cell proliferation, invasion, and metastases of CRC (Liu et al., 2014). High level of EpCAM expression on LIM1215-derived exosomes could be optimized as a specific antigen in developing antibody microarray for detection of cancer cell lines based on surface proteins of exosomes (Belov et al., 2016). On the other hand, higher level of circulating exosomes correlated with poor prognosis and shorter survival time were observed in CRC patients as compared to healthy controls, which could be used as tumor indicator for CRC cases but further investigation is required to study the release mechanism of exosomes into the plasma of CRC patients (Silva et al., 2012).

INTRACELLULAR PROTEINS IN CRC-EXOSOMES

Only a handful of studies have been performed to analyze the total protein content of CRC-exosomes. An interesting study by Mathivanan et al. (2010) revealed that both A33-exosomes and EpCAM-exosomes carry some other tissue-specific proteins such as cadherin-17, CEA, PCNA, EGFR, mucin 13, misshapen-like kinase 1, keratin 18, mitogen-activated protein kinase 4, Claudins (1, 3, and 7), centrosomal protein 55 kDa, and ephrin-B1 and -B2. For the first time, it has been proposed that cadherin-17 ectodomain in LM1215-derived exosomes is more specific than CEA in early detection of CRC (Bernhard et al., 2013). Cadherin-17 is a calcium-dependent transmembrane glycoprotein that has been reported to be overexpressed in gastric, pancreatic, and colorectal adenocarcinomas (Su et al., 2008). Meanwhile, exosomes derived from CRC cell lines were found to be enriched with TGF-β, which is essential to inhibit immune response against CRC cells by suppressing T cell proliferation and transform phenotype of T cells into tumor-growth supporting cells (Yamada et al., 2016). Exosomes from CRC primary tumors are particularly enriched in metastatic factors, providing valuable information on the metastatic keystone for CRC patients. However, more extensive studies are required to discover and understand about the total intracellular proteins in exosomes secreted by different types of parent cells. Figure 1 summarizes the proteins that can be found in general exosomes and CRC-derived exosomes.

MicroRNAs IN CRC-EXOSOMES

Tumor cells also secrete exosomes to transport multiple genetic materials and biological cargos which are essential to maintain the tumoral microenvironment and influence cancer progression. Tumor-derived exosomes can even travel to distant sites to induce metastatic niches and immune suppression which further favors the aggressive transformation of cancerous cells (Wang et al., 2014). MicroRNAs are small non-coding RNAs that specifically inhibit mRNA translation or induce mRNA degradation, which could be essential in the initiation and development of cancers when tumor suppressor genes are suppressed. Exosomal microRNAs have been targeted as potential biomarkers for the diagnosis of CRC at initial stages due to the wide availability and high specificity of certain exosomal microRNAs to CRC (Ogata-Kawata et al., 2014). Serum level of exosomal miR-17-92a and miR-19a have been found to be upregulated in CRC patients including the recurrent cases (Matsumura et al., 2015). Overexpression of miR-17-92a as an oncogenic miRNA in CRC patients is highly correlated with tumorigenesis especially at the early stages of cancer development (Concepcion et al., 2012). Elevated level of miR-19a has been reported to promote cancer cell proliferation and tumor invasion at any stage of CRC and is possibly correlated with poor prognosis (Zheng et al., 2014). Meanwhile, a recent study has reported that exosomes released from human colon cancer cells carry miR-210 that may influence the adhesion of neighboring metastatic cells (Bigagli et al., 2016). Originally, miR-210 is upregulated in CRC tissues while its overexpression is strongly correlated with aggressive invasion and distant metastasis (Qu et al., 2014). Increased levels of exosomal miR-193a were observed in CRC patients especially those with liver metastasis in advanced stages, implicating the possible role of miR-193a to promote tumor progression (Teng et al., 2017).
Other microRNAs in CRC-exosomes such as let-7a, miR-1229, miR-1246, miR-150, miR-223, and miR-23a have been reported with significant increment as compared to exosomes from healthy subjects (Ogata-Kawata et al., 2014). It has been proposed that exosomal microRNAs can achieve high specificity and sensitivity of up to 95% for miR-1229 while the sensitivities of CA19-9 and CEA for stage I CRC are only 10 and 15% respectively, suggesting the potential of exosomal microRNAs as novel biomarkers in diagnosing CRC even at early stages. Another study had utilized next generation sequencing to characterize exosomal microRNAs in two major classes of exosomes (A33 and EpCAM-positive respectively) that were derived from human LIM1863 colon cancer cell line (Ji et al., 2014). The results reported two different miRNA expression profiles when certain microRNAs can only be detected in exosomes from specific cell lines. Such implications may attract more attention for more related work to be carried out in the future as it shows that even within the same CRC pathogenesis, the molecular profile within the exosomes remain different. Although there are various microRNAs being discovered in CRC-exosomes, currently there is still no collective view of which microRNAs should be selected for CRC.

OTHER CLASSES OF NUCLEIC ACIDS IN CRC-EXOSOMES

mRNAs and lncRNAs are long RNAs with the length of 200 nucleotides and above. Emerging evidence has proposed that lncRNAs are crucial regulators in various biological processes involved in carcinogenesis (Han et al., 2015). Among all three classes of EVs, exosomes are the most enriched with lncRNAs (Dong et al., 2016). In addition to this, few exosomal lncRNAs namely CRNDE-h and MAGEA3 have been identified as potential biomarkers for CRC detection (Dong et al., 2016; Liu T. et al., 2016). For instance, exosomal CRNDE-h was found to be positively correlated with poor prognosis of CRC patients, suggesting the high value of exosomal CRNDE-h as a key prognostic factor in CRC cases (Liu T. et al., 2016).

Circular RNAs (circRNAs) are a set of non-coding RNAs that are covalently closed from the 5′ end to the 3′ end (Abu and Jamal, 2016). CircRNAs are abundant, differentially expressed in different diseases, more stable than linear RNAs and have longer half-lives (Abu and Jamal, 2016). Recently, circRNAs are found to be more enriched in exosomes than in parent cells (Li et al., 2015; Dou et al., 2016; Lasda and Parker, 2016). The presence of circRNAs in CRC-exosomes has been reported in CRC cell lines and serum of CRC patients (Li et al., 2015; Dou et al., 2016). Additionally, the enrichment of circRNAs in KRAS mutant cells is significantly downregulated as compared to KRAS wild-type cells. Among the differentially expressed exosomal circRNAs found in KRAS mutant CRC cell lines were circFAT1, circARHGAP5, and circHIPK3 (Dou et al., 2016). On the other hand, in serum-derived exosomes from CRC patients, the enrichment of circRNAs differ between CRC patients and healthy subjects. In CRC patients, some of the circRNAs were missing and new circRNAs were identified (Li et al., 2015). Li et al. (2015) discovered that circ-KLDHC10 was significantly upregulated in CRC-derived exosomes as compared to exosomes from healthy controls. Since circRNAs are generally more enriched and stable
TABLE 1 | Summary of studies that have investigated differentially expressed exosomal nucleic acids in CRC.

Class	Name	Sources	Expression	Potential role	Reference
miRNAs	miR-17-92a	Serum	Upregulated	Early stage tumorigenesis	Matsumura et al., 2015
miRNAs	miR-19a	Serum	Upregulated	Promote cancer cell proliferation and tumor invasion	Ogata-Kawata et al., 2014
miRNAs	let-7a	Serum	Upregulated	Not specific	
miRNAs	miR-1229	Serum			
miRNAs	miR-1246	Serum			
miRNAs	miR-150	Serum			
miRNAs	miR-223	Serum			
miRNAs	miR-23a	Serum			
miRNAs	miR-193a	Plasma	Upregulated	Promote tumor progression	Teng et al., 2017
miRNAs	miR-210	Cell line	Upregulated	Distant metastasis	Bigagl et al., 2016
miRNAs	ΔNp73	Serum	Upregulated	• Affect proliferation and drug resistance	Soldevilla et al., 2014
mRNAs	Np73	Serum	Upregulated	• Related to advanced stage of CRC and shorter disease-free survival	
lncRNAs	CRNDE-h	Serum	Upregulated	Poor prognosis of CRC	Liu T. et al., 2016
circRNAs	circ-KLHC10	Cell line and serum	Upregulated	Not specific	Li et al., 2015
circRNAs	circRTN4	Cell line	Upregulated	Not specific	Dou et al., 2016
circRNAs	CircFAT1	Cell line	Upregulated		
circRNAs	circARHGAP5	Cell line	Upregulated		
circRNAs	CircHIPK3	Cell line	Upregulated		
Proteins	CD 24	Plasma	Upregulated	Early detection of CRC	Yunusova et al., 2016
Proteins	A33	Cell line	Enriched	Differentiation of CRC	Tauro et al., 2013
Proteins	CD 147	Cell line		Early detection of CRC	Yoshiba et al., 2014
Proteins	EpCAM	Cell line		Clinical biomarker of CRC	Tauro et al., 2013
Proteins	Cadherin-17	Cell line		Not specific	Bernhard et al., 2013
Proteins	CEA	Cell line			Mathivanan et al., 2010
Proteins	PCNA	Cell line			
Proteins	EGFR	Cell line			
Proteins	TGF-β	Cell line			
Proteins	SERPINA1	Serum	Upregulated	Immune escape	Yamada et al., 2016
Proteins	SERPINF2	Serum		ECM remodeling, cellular communication, signal transduction, vascular permeability, inflammation	Chen et al., 2017
Proteins	MMP9	Serum			

Additionally, ΔNp73 mRNA is reported to be enriched in CRC-exosomes and can be transferred into a recipient cell (Soldevilla et al., 2014). Upon reception, the CRC-derived exosomes containing ΔNp73 mRNA may affect the acceptor’s cell proliferation and drug resistance response. This indicates that the components within an exosomal boundaries not only contain passive information but may also actively regulate recipient cells directly. Exosomes derived from human SW480 CRC cells were reported with enrichment in 27 cell cycle-related mRNAs which may promote proliferation of endothelial cells to induce angiogenesis in tumor growth and metastasis (Hong et al., 2009). Interestingly, HCT-116 CRC cells-derived exosomes were shown to contain internal double stranded DNA (Thakur et al., 2014). Exosomal DNA may serve as a translation biomarker for early detection of cancer especially in regard to the parental cell mutation status (Thakur et al., 2014). Table 1 lists down all of the nucleic acids and proteins found in CRC-derived exosomes.

BOTTLENECKS, FUTURE DIRECTION, AND CONCLUSION

The study of exosomes in the pathogenesis of CRC has started to gain considerable attention from the research community. Most of the current studies mainly focus on developing exosomal biomarkers for early detection and prognosis prediction of CRC. However, as mentioned earlier, the lack of standardization and optimisation for most of the current exosomes purification protocols remains as one of the major challenges for CRC-related exosomal studies. Also, the physical features as to what constitutes an “exosome” are diverse and are still, by standard, elusive. This is a major challenge if exosomes are to be used as biomarkers, for clinical diagnosis of different diseases. As researchers begin to understand more about the potential roles of CRC-exosomes, the future direction of related studies may lie within a broader scope of research such as the recruitment or activation of the immune system to counteract CRC tumorigenesis, tailored drug delivery systems, biomarkers...
for metastasis prediction and even targeted elimination of exosomes-mediated metastasis. Based on our review of many studies so far, even within an exosomal vesicle, there are various molecules that can be used as biomarkers or potential targets for therapy. Proteins and nucleic acids found in CRC-exosomes can serve as biomarkers for CRC whether in combination with each other or individually. However, as mentioned above, even within the same pathogenesis, the molecular profile of the exosomes may be different. For future screening or profiling studies, exosomes from the same source can be first divided based on their extracellular protein profile and only then be separated based on the components within. Nevertheless, a more efficient way of classifying exosomes should be developed either by the protein profile, nucleic acid profile, size or affinity to better utilize exosomes as biomarkers or targeted therapy. Therefore, more effort is required to translate the diverse properties of exosomes into the development of highly sensitive diagnostic strategies for rapid and non-invasive diagnosis as well as better prognosis prediction of CRC cases.

AUTHOR CONTRIBUTIONS

KWH and NA: drafted and wrote the manuscript, NA: conceived the idea for the manuscript, NA, NSAM, and RJ: provided critical analysis and language editing.

FUNDING

This work was supported by the Dana Impak Perdana Grant, DIP-2016-013 from Universiti Kebangsaan Malaysia.

REFERENCES

Abu, N., and Jamal, R. (2016). Circular RNAs as promising biomarkers: a mini-review. Front. Physiol. 7:355. doi: 10.3389/fphys.2016.00355

Bahrami, L., Song, J. H., Diez, D., and Hanayama, R. (2015). Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci. Rep. 5:7989. doi: 10.1038/srep07989

Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degest, G., Geeraerts, A., et al. (2017). Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685. doi: 10.1038/ncc2502

Baptistella, A. R., Salles Dias, M. V., Aguiar, S. J., Begnami, M. D., and Martins, V. R. (2016). Heterogeneous expression of A33 in colorectal cancer: possible explanation for A33 antibody treatment failure. Anticancer Drugs 27, 734–737. doi: 10.1097/CAD.0000000000000579

Belov, L., Matic, K. J., Hallal, S., Best, O. G., Mulligan, S. P., and Christopherson, R. I. (2016). Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J. Extracell. Vesicles 5:23355. doi: 10.3402/jev.v5.23355

Bernhard, O. K., Greening, D. W., Barnes, T. W., Ji, H., and Simpson, R. J. (2013). Detection of cadherin-17 in human colon cancer LIM1215 cell secretome and tumour xenograft-derived interstitial fluid and plasma. Biochim. Biophys. Acta 1834, 2372–2379. doi: 10.1016/j.bbapap.2013.03.022

Bigagli, E., Luceri, C., Guasti, D., and Cinci, L. (2016). Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: role of microRNA-210. Cancer Biol. Ther. 17, 1062–1069. doi: 10.1080/15384047.2016.1219915

Bobrie, A., Colombro, M., Kruemich, S., Raposo, G., and Théry, C. (2012). Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles 1:18397. doi: 10.3402/jev.v1i0.18397

Borges, F. T., Melo, S. A., Ozdemir, B. C., Kato, N., Revuelta, I., Miller, C. A., et al. (2013). TGF-beta-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J. Am. Soc. Nephrol. 24, 385–392. doi: 10.1681/ASN.2012101031

Chen, Y., Xie, Y., Xu, L., Zhan, S., Xiao, Y., Gao, Y., et al. (2017). Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. Int. J. Cancer 140, 900–913. doi: 10.1002/ijc.30396

Christ, L., Wenzel, E. M., Liestol, K., Raiborg, C., Campstiein, C., and Stenmark, H. (2016). ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212, 499–513. doi: 10.1083/jcb.201507009

Concepcion, C. P., Bonetti, C., and Ventura, A. (2012). The miR-17-92 family of microRNA clusters in development and disease. Cancer J. 18, 262–267. doi: 10.1097/PPO.0b013e318258b60a

Dong, L., Lin, W., Qi, P., Xu, M. D., Wu, X., Ni, S., et al. (2016). Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 25, 1185–1166. doi: 10.1158/1055-9965.EPI-16-0006

Dou, Y., Cha, D. J., Franklin, J. L., Higginbotham, J. N., Jeppesen, D. K., Weaver, A. M., et al. (2016). Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci. Rep. 4:37592. doi: 10.1038/srep37592

El Andaloussi, S., Langer, M., Breakefield, X. O., and Wood, M. J. A. (2013). Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357. doi: 10.1038/nrd3979

Gallo, A., Vella, S., Miele, M., Timoneri, F., Di Bella, M., Bosi, S., et al. (2017). Global profiling of viral and cellular non-coding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos. Cancer Lett. 388, 334–343. doi: 10.1016/j.canlet.2016.12.003

Goetzl, E. J., Goetzl, L., Karliner, J. S., Tang, N., and Pulliam, L. (2016). Human plasma platelet-derived exosomes: effects of aspirin. FASEB J. 30, 2058–2063. doi: 10.1096/fj.201500150R

Greening, D. W., Gopal, S. K., Mathias, R. A., Liu, L., Sheng, J., Zhuo, H. J., et al. (2015). Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin. Cell Dev. Biol. 40, 60–71. doi: 10.1016/j.semcdb.2015.02.008

Han, D., Wang, M., Ma, N., Xu, Y., Jiang, Y., and Gao, X. (2015). Long noncoding RNAs novel players in colorectal cancer. Cancer Lett. 361, 13–21. doi: 10.1016/j.canlet.2015.03.002

Hong, B. S., Cho, J. H., Kim, H., Choi, E. J., Rho, S., Kim, J., et al. (2009). Colorectal cancer-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 10:556. doi: 10.1186/1471-2164-10-556

Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335. doi: 10.1038/nature15756

Howlader, N., Krapcho, N. A., Miller, M., Bishop, K., Altekruse, S. F., Kosary, C. L., et al. (eds). (2016). SEER Cancer Statistics Review. Bethesda, MD: National Cancer Institute, 1975–2013.

Im, H., Shao, H., Park, Y. I., Peterson, V. M., Castro, C. M., Weissleder, R., et al. (2014). Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495. doi: 10.1038/nbt.2886

Ji, H., Chen, M., Greening, D. W., He, W., Rai, A., Zhang, W., et al. (2014). Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct mirna-enrichment signatures. PLoS ONE 9:e100314. doi: 10.1371/journal.pone.0100314

Ji, H., Greening, D. W., Barnes, T. W., Lim, J. W., Tauro, B. J., Rai, A., et al. (2013). Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics 13, 1672–1686. doi: 10.1002/pmic.201200562
Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. *ChemBioChem* 15, 923–928. doi: 10.1002/cbic.201400403

Keethikumar, S., Chisanga, D., Ariyaratne, D., Al Safrar, H., Anand, S., Zhao, K., et al. (2016). ExoCarta: a web-based compendium of exosomal cargo. *J. Mol. Biol.* 428, 688–692. doi: 10.1016/j.jmb.2015.09.019

Keller, S., Ridinger, I., Rupp, A. K., Janssen, J. W., and Altevogt, P. (2011). Body fluid-derived exosomes as a novel template for clinical diagnostics. *J. Transl. Med.* 9:86. doi: 10.1186/1479-5867-9-8

Kowal, J., Tkach, M., and Théry, C. (2014). Biogenesis and secretion of exosomes. *Curr. Opin. Cell Biol.* 29, 116–125. doi: 10.1016/j.cub.2014.05.004

Lasda, E., and Parker, R. (2016). Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. *PLoS One* 11:e0148407.

Lasser, C., Alikhani, V. S., Ekstrom, K., Eldh, M., Paredez, P. T., Bossios, A., et al. (2011). Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. *J. Transl. Med.* 9:9. doi: 10.1186/1479-5876-9-9

Lee, W. S., Baek, J. H., Kim, K. K., and Park, Y. H. (2012). The prognostic significant of percentage drop in serum CEA post curative resection for colon cancer. *Surg. Oncol.* 21, 45–51. doi: 10.1016/j.suronc.2010.10.003

Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., et al. (2015). Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. *Cell Res.* 25, 981–984. doi: 10.1038/cr.2015.82

Liu, D., Sun, J., Zhou, J., Zhou, H., Zhang, X., and Zhang, Y. (2014). Expression and clinical significance of colorectal cancer stem cell marker EpCAM^high^/CD44^+^ in colorectal cancer. *Oncol. Lett.* 7, 1544–1548. doi: 10.3892/ol.2014.1907

Liu, Q., Rojas-Canales, D. M., Devito, S. J., Shufesky, W. J., Stolz, D. B., Erdos, G., et al. (2016). Donor dendritic cell-derived exosomes promote allograft-targeting immune response. *J. Clin. Invest.* 126, 2805–2820. doi: 10.1172/JCI84577

Liu, T., Zhang, X., Gao, S., Jing, F., Yang, Y., Du, L., et al. (2016). Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. *Oncotarget* 7, 85551–85563. doi: 10.18632/oncotarget.13465

Lv, L. H., Wan, Y. L., Lin, Y., Zhang, W., Yang, M., Li, G. L., et al. (2012). Anticancer drugs release cause of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. *J. Biol. Chem.* 287, 15874–15885. doi: 10.1074/jbc.M112.430588

Mathivanan, S., Lim, J. W., Tauro, B. J., Ji, H., Moritz, R. L., and Simpson, R. J. (2010). Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. *Mol. Cell. Proteomics* 9, 197–208. doi: 10.1074/mcp.M900152-MCP200

Matsumura, T., Sugimachi, K., Iinuma, H., Takahashi, Y., Kurashige, J., Sawada, G., et al. (2012). Exosomal microRNA in serum is a novel biomarker of recurrence in colorectal cancer. *PLoS One* 7:e90992. doi: 10.1371/journal.pone.0090992

MiR-210 is an independent prognostic factor and contributes to metastasis in colorectal cancer. *PLoS One* 9:e90952. doi: 10.1371/journal.pone.0090952

M900152-MCP200
Yoshioka, Y., Kosaka, N., Konishi, Y., Ohta, H., Okamoto, H., Sonoda, H., et al. (2014). Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. *Nat. Commun.* 5:3591. doi: 10.1038/ncomms4591

Yunusova, N. V., Tamkovich, S. N., Stakheeva, M. N., Afanas’ev, S. G., Frolova, A. Y., and Kondakova, I. V. (2016). The characterization of exosome from blood plasma of patients with colorectal cancer. *AIP Conf. Proc.* 1760, 020070. doi: 10.1063/1.4960289

Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., and Xu, W. (2015). Exosomes in cancer: small particle, big player. *J. Hematol. Oncol.* 8, 83. doi: 10.1186/s13045-015-0181-x

Zheng, G., Du, L., Yang, X., Zhang, X., Wang, L., Yang, Y., et al. (2014). Serum microRNA panel as biomarkers for early diagnosis of colorectal adenocarcinoma. *Br. J. Cancer* 111, 1985–1992. doi: 10.1038/bjc.2014.489

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer DL and handling Editor declared their shared affiliation.

Copyright © 2017 Hon, Abu, Ab Mutalib and Jamal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.