Dairy products and colorectal cancer in middle eastern and north African countries: a systematic review

K. El kinany1,2*, M. Deoula1, Z. Hatime1, B. Bennani3 and K. El Rhazi1

Abstract
Background: This systematic review was conducted to explain the association between dairy products and colorectal cancer (CRC) risk in Middle Eastern and North African countries (MENA).
Methods: The database consulted were PubMed, Clinical Trials, and Cochrane to extract the relevant studies published till the 31st of December 2016, using inclusion and exclusion criteria according to Prisma Protocol. The characteristics of these studies comprised the consumption of all types of dairy products in relation to CRC risk.
Results: Seven studies were included in this review. For dairy products overall, no significant association was found. Regarding modern dairy products, included studies found controversial results with OR = 9.88 (95% CI: 3.80–24.65) and ORa = 0.14 (95% CI: 0.02–0.71). A positive association was reported between traditional dairy products and CRC risk, to OR = 18.66 (95% CI: 3.06–113.86) to OR = 24 (95% CI: 1.74–330.82) to ORa = 1.42 (95% CI: 0.62–3.25), p trend = 0.03. Calcium was inversely associated with the CRC risk with ORa = 0.08 (95% CI: 0.04–0.17).
Conclusion: This is the first systematic review which illustrated the association between dairy consumption and CRC risk in MENA region. The results were inconsistent and not always homogeneous. Further specified studies may be warranted to address the questions about the association between CRC and dairy products in a specific context of MENA region.
Keywords: Dairy products, Colorectal cancer, Risk, Prevention, Middle eastern and north African countries, Systematic review

Background
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide [1], with nearly 1.4 million new cases diagnosed in 2012 and 694,000 deaths [2]. There is a large geographical variation of CRC incidence, that is very high in developed countries compared with developing countries [3], but there is an increasing incidence in countries undergoing nutritional transitions [4, 5].

Several studies have provided solid evidence that lifestyle and dietary factors are likely to be the major determinants of CRC risk [6–12].

Milk and dairy products have the distinction of being composed of different elements; some of which could hypothetically increase the risk of certain diseases [13]; while others may decrease it [14]. In fact, the evidence that milk and calcium protect against CRC was judged as probable by an international panel of experts [12, 15, 16]. Most of these results come from North-American and European countries. Little is known about this relationship in MENA countries.

MENA countries have several common factors such as environment, culture, and some dietary habits. Furthermore, this region is incurring nutrition transition, which is associated with an increased burden of non-communicable diseases [17–19]. This nutrition transition is characterized by the increasing consumption of some westernized foods including dairy products [20].
There are two types of dairy products in this region: modern products which are similar to European countries as (total, semi-skimmed, and skimmed) milk, (hard, semi-hard, soft and fresh) cheese, and (double, fresh and ice) cream, and traditional products which differ by their composition. The main traditional dairy products of North African countries as well as in Middle East countries are Lben, Raib, Jben, Kilia, zebda beldia, Zabadi, Karish cheese, Aoules, Tallaga cheese, Mish cheese, Domiati cheese, Rigouta, Kishk, Laban, Labaneh, Shenineh, Shenglish, Keshkeh, Akawieh, kefir and Chelal [21, 22]. All these traditional dairy products are prepared by simply allowing the raw milk to ferment spontaneously at room temperature (15° to 25 °C) for 1 to 3 days depending on the season [23]. The presence of mycotoxins, the lack of veterinary care, and the poor sanitary conditions are the biggest problems challenging public health safety of these products [21].

The consumption of dairy products in MENA region has increased during the last two decades from 30 to 150 kg/capita/year [24]. However, this increase is small when compared with the main producing countries such as India, the United States of America, China, Pakistan and Brazil [25].

The increasing incidence of CRC in this region could be related to this nutrition transition and also to the nutritional specificities of this region, including traditional dairy products which may affect the genetic mutation profile.

The present systematic review aimed at describing the associations between dairy products and CRC risk in MENA countries, based on the published scientific literature.

Methods

Search strategy

We conducted an exhaustive search for full text articles in databases, namely in: Pub Med (http://www.ncbi.nlm.nih.gov), Cochrane (www.thecochranelibrary.com), and in Clinical Trials (clinicaltrials.gov). We used the key words “dairy products” (any type of Milk, whole milk, skimmed milk, semi skimmed milk, milk free fat, soya milk), Cheese (hard, soft, fresh, semi hard), Yogurt, Cream (ice cream, fresh cream, double cream), “traditional dairy products” (Lben, Raib, Jben, Kilia, zebda beldia, Zabadi, Karish cheese, Aoules, Tallaga cheese, Mish cheese, Domiati cheese, Rigouta, Kishk, Labaneh, Shenineh, Shenglish, Keshkeh, Akawieh, and Chelal); and “Colorectal cancer, Colon cancer, and Rectal cancer”. We have also selected the areas of “North African countries” (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) and “Middle east countries” (Turkey, Bahrain, Iraq, Iran, Israel, Jordan, Kuwait, Lebanon, Oman, Palestine, Qatar, Saudi Arabia, Syria, United Arab Emirates, and Yemen). All identified studies published until the 31st December 2016 were considered.

Inclusion criteria

The studies that were included in this review were original studies conducted among people living in the MENA region. The surveys investigated the associations between dairy products and CRC, and provided estimates of the associations, by reporting the odds ratio (OR) or relative risk (RR) for analytical studies or means comparison and differences in the percentage for clinical trials with 95% confidence intervals (CIs) or p-value. All reviewed articles were published in English or French. Ecological [26, 27], laboratory and animal [28–31] studies, and off topic studies [32–35] were excluded (Table 1). The bibliographic research took place over a period of two months.

Extraction data

We extracted the following data in each paper intended for reviewing: the name of the first author, the country as well as the design of study, the number of participants and the year of publication, the exposure and confounding factors, the specific characteristics and the outcomes, the main findings and the effects.

17 Relevant publications were selected first upon reading their titles and abstracts, and by reading the full texts of the chosen articles. Upon excluding ten studies which did not meet the criteria (for the most part laboratory and animal studies), only seven studies were singled out for reviewing (Fig. 1).

Quality assessment

The quality of the included studies was assessed using PRISMA guidelines [36], and they were evaluated by the following lines: the accuracy as well as the validity of the questions (answers per evidence), and the representability of the studied population. The synthesis (Table 2) reflected the strength of the findings in relation to the types of the study design [37] (level), and their methodological weaknesses (the biases and limitations of each study).

Results

Seven studies were included in this review, representing five countries: Egypt, Jordan (Arafa et al., Suhad et al., and Tayyem et al.), Israel, Saudi Arabia, and Tunisia. The study results were summarized in Table 3.

Concerning the relation between overall dairy products (milk, yogurt, cheese, and Labaneh) and CRC risk, the Jordanian studies (Arafa et al., and Suhad et al.) [38, 39] did not find any significant association.

Regarding modern dairy products, the Tunisian and the Saudi Arabian studies [40, 41] found controversial results. The Saudi Arabian study found an increased risk
of CRC related to milk OR = 9.88 (95% CI: 3.80–24.65), while the Tunisian study found a decreased risk of CRC related to milk OR = 0.14 (95% CI: 0.02–0.71). Concerning cheese consumption, the Saudi Arabian study [41] found it a risk factor OR = 8 (95% CI: 1.40–45.75) only for men.

As for traditional dairy products and CRC risk, the Saudi Arabian and the Jordanian studies [41, 42] demonstrated that traditional dairy products were a risk factor. For a Jordanian study (Tayyem et al.,) [42], the consumption of labaneh was found to be associated with the risk of CRC (OR = 1.42, P_trend = 0.038), likewise the Saudi Arabian study [41] showed that the consumption of laban, and labaneh, 4 times or above a week resulted in an increase in the CRC risk respectively Laban OR = 18.66 (95% CI: 3.06–113.86) and Labanah OR = 24 (95% CI: 1.74–330.82).

For the relationship between calcium and CRC risk, the Egyptian [43] and Israeli [44] studies found that calcium is a protective factor. For the Egyptian study, calcium rich diet was considered as a protective factor with OR = 0.08 (95% CI: 0.04–0.17). The Israeli clinical trial concluded that long-term calcium supplements and long-term dietary habits significantly suppressed rectal epithelial proliferation (REP) in adenoma patients.

Table 1 Characteristics of excluded studies

Author, date	Country	Type of study	Exclusion criteria
Abbastabar et al., (2015)	Iran	Ecological study	Risk not specified.
Khoury et al., (2014)	Lebanon	Experimental study.	Experimental Research in vitro using cell line and cell culture.
Rohani et al., (2013)	Iran	Ecological study	Risk not specified.
Habib et al., (2013)	United Arab Emirates	Experimental study.	Experimental research in vitro using culture of cell.
Attaallah et al., (2012)	Turkey	Experimental study.	Experimental Research in vivo using rats.
Bener et al., (2010)	Qatar	Case control study	Not examine the relationship between dairy products and CRC.
Almurshed et al., (2009)	Saudi Arabia	Case control study	Not examine the relationship between dairy products and CRC.
Can et al., (2009)	Turkey	Clinical trial	Study the quality of life in patients being treated for CRC.
Topuz et al., (2008)	Turkey	Randomized prospective observational study	Examine the effect of oral kefir administration on serum pro-inflammatory cytokine levels in patients with CRC.
Cenesiz et al., (2008)	Turkey	Experimental study.	Experimental research in vivo using mice.

![Fig. 1 The PRISMA Diagram of the selected papers](image-url)
Discussion
This systematic review aimed at describing the relationship between dairy products and CRC in MENA countries. Some of these included studies reported that dairy products were a protective factor for CRC; others considered them as a risk factor.

Three studies in total found that dairy products were protective factors, representing three countries in this region: Egypt, Tunisia, and Israel. Several studies found similar results and showed that milk was considered as a protective factor because of its high calcium concentration [45–49]. In fact, the high intake of calcium was associated with a decreased risk for CRC [50] and calcium supplements were used to prevent CRC [51]. Moreover, milk constituents other than calcium may also contribute to the anti-neoplastic activity, including conjugated linoleic acid (CLA) which has antioxidant, anti-inflammatory and immune modulatory properties [52–54].

Saudi Arabian, and Jordanian studies [41, 42] found that dairy products including traditional ones were considered as risk factors. This result was similar to a longitudinal study which concluded that highly childhood dairy intake increased CRC risk [55]. For traditional dairy products, despite the acidic nature of these products (pH 5.0–5.5) [22] they showed a high number of indicator microorganisms [56]. This can be explained by the poor hygienic conditions in which these products were prepared, as well as the poor bacteriological quality of the raw milk used for their manufacture [22]. Furthermore, these traditional products are high in fat content [57]. Several studies showed that a high fat consumption increased the concentration of bile acid which can promote CRC [58–60].

In the same country Jordan, two case-control studies (Arafa et al., and Suhad et al.,) [38, 39] did not find any relationship between dairy products and the risk of CRC development. Some cohort studies showed the same results but only for total milk [61].

The results of the examined surveys are not only inconsistent and controversial, they have in addition several limitations: Some studies were conducted based on a small sample size and the controls were recruited among inpatients [40, 41] who have other diseases than cancer and have been following a diet because of them. Thus, these samples may not be representative of the targeted population.

Regarding the Egyptian study [43], it included already treated cases of CRC, which may affect the quality of the collected data in the way that patients probably, changed their diet after being diagnosed. Indeed, the study did not exclude cases and controls that followed a diet.

Moreover, dietary history was evaluated in most of these studies, by the Food Frequency Questionnaire (FFQ) and during 2 years earlier to cancer as it is the case for the Egyptian study. In most cases, these FFQs...
Table 3 Main results of Included Studies

Author/ Year/ Reference	County and setting	Study design and Population	Exposure and Confounders	Outcome	Comparison	Main finding and effect		
Tayyem et al., (2016) [50].	- Jordan	- Five large Jordanian hospitals including oncology services.	- Case control study	- 220 Cases were selected from five large Jordanian hospitals with oncology services. - 281 Controls were selected from hospital personnel, outpatients and visitors.	- Exposure: meats, dairy products and fat. - Confounders: age, sex, BMI, PA, total EI, income, occupation, education level, marital status, cigarette smoking, other health problems and family history of CRC.	CRC in both sexes	- Group 1: CRC cases (116 males and 104 females). - Group 2: Healthy disease-free controls (Number of males and females was not determined).	The daily consumption of: - Labaneh OR = 1.42 (95% CI: 0.62–3.25), ptrend = 0.03. - Milk OR = 1.24 (95% CI: 0.62–2.47), ptrend = 0.59. - Yoghurt OR = 0.76 (95% CI: 0.25–2.32), ptrend = 0.65. - White cheese OR = 1.06 (95% CI: 0.46–2.45), ptrend = 0.06. - Ice cream: OR = 1.68 (95% CI: 0.77–3.65), ptrend = 0.11. The weekly consumption of: - Cooked yogurt OR = 0.59 (95% CI: 0.26–1.39), ptrend = 0.03. The monthly consumption of: - Processed cheese OR = 0.29(95% CI: 0.06–1.45), ptrend = 0.004. Inverse association with calcium rich diet OR = 0.08 (95% CI: 0.04–0.17).
Suhad et al., (2015) [47].	- Jordan	- Five large Jordanian hospitals including oncology services.	- Case control study	- 167 Cases were selected from five major Jordanian hospitals including an oncology center. - 240 Controls were selected from hospital personnel, outpatients, visitors, and accompanying individuals (not a first degree relative).	- Exposure: five food groups-grains, vegetables, fruits, milk, and meat and legumes. - Confounders: total EI, age, sex, PA, family history of CRC, household income, marital status, and cigarette smoking.	CRC in both sexes	- Group 1: CRC cases (79 males and 88 females). - Group 2: Healthy controls (108 males and 132 females).	- Milk OR = 0.75(95% CI: 0.40–1.40). - Yoghurt OR = 0.62(95% CI: 0.36–1.06). - Labaneh OR = 1.32 (95% CI: 0.76–2.27). - White cheese OR = 1.46 (95% CI: 0.86–2.47).
Mahfouz et al., (2014) [51].	- Egypt	- Minia oncology center	- Case control study	- 150 Cases were selected from Minia oncology center. - 300 Controls were selected from community	- Exposure: dietary and lifestyles factors. - Confounders: PA, fruit and vegetables.	CRC in both sexes	- Group 1: CRC cases receiving any treatment (72 males and 78 females) - Group 2: Controls (144 males and 156 females).	The monthly consumption of dairy products: - Milk OR = 1.60 (95% CI: 0.84–3.04). - Calcium OR = 0.99 (95% CI: 0.99–1.00).
Arafa et al., (2011) [46].	- Jordan	- Al-Bashir Hospital, the principal governmental center for CRC registry and therapy	- Case control study	- 220 Cases were selected from Al-Bashir Hospital. - 220 Controls were selected from the outpatient departments.	- Exposure: smoking, alcohol drinking, family history of CRC, vitamins supplement, monthly income and physical activity, dietary intake using a FFQ. - Confounders: routine exercise practice, smoking history, BMI, fruit, vegetables, meats, tea.	CRC in both sexes	- Group 1: CRC cases (118 males and 102 females) - Group 2: Controls (118 males and 102 females).	- Milk, yoghurt and cheese group OR = 1.60 (95% CI: 0.84–3.04). - Calcium OR = 0.99 (95% CI: 0.99–1.00).
Guesmi et al., (2010) [48].	- Tunisia	- Surgery service in Nicole Charles Hospital And in Institut Salah Aziaez of Cancerology	- Case control study	- 32 Cases were selected from Nicole Charles Hospital And in Institut Salah Aziaez of Cancerology. - 61 Controls were selected from surgery and orthopaedic departments.	- Exposure: alimentary factors like meats group, fruits, vegetables, Raw oil, olive oil, full cereals, sweets and methods of cooking. - Confounders: Age, sex, geographic origin, smoking, anemia, sport, walking, frequency of consumption	CRC in both sexes	- Group 1: CRC cases (12 males and 20 females) - Group 2: Controls (39 males and 22 females).	Milk OR = 0.14 (95% CI: 0.02–0.71).
were not validated and the frequency of each food consumption was calculated by a scale of two values: Rare /frequent. Thus, the quality of usable questionnaire was weak which might have led to a lack of information and precision, and might have over- or under-estimated dietary intake.

Equally important, data analysis was not always adjusted for all potential confounders as energy intake, BMI, nutrient intake, and alcohol intake. Therefore, results from these studies ought to be interpreted with caution.

The major limit of the Israeli study [44], even if it’s a prospective study, was the low number of voluntary participants, alongside with the large proportion of intervened patients who did not finish the 1 year of calcium intervention and non-intervened patients who did not comply with the 1 year rectal biopsy. This study may lack of power and its results may not apply in a similar situation.

Conclusion

This review, which is the first study in its kind in MENA countries, presented the main results about the association between CRC and dairy products in this region. The highlighted results were inconsistent, controversial, and studies had several limitations. Further studies with a best quality of methodology, are needed to address the questions about the association between CRC and dairy products in a specific context of MENA region.

Abbreviations

CI: Confidence Intervals; CLA: Conjugated Linoleic Acid; CRC: Colorectal cancer; FFQ: Food Frequency Questionnaire; MENA: Middle Eastern and North African countries; OR: Odds Ratio; REP: Rectal Epithelial Proliferation; RR: Relative Risk

Acknowledgements

I thank infinitely Dr. Teresa Norat from the department of Epidemiology and Biostatistics, School of Public Health, Imperial College London for her pertinent remarks which helped me a lot in writing this article, I also thank Ms. Soukaina El kinany, a PhD student from the English department for her support.
help in the revision of the manuscript and her great effort during the drafting.

Funding
No funding was received for this systematic review.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Authors’ contributions
KE and MMSD conceived the study design, interpretation of the data, and wrote the manuscript. ZH contributed to the conception, the design of the study and the acquisition of data. BB contributed to the conception of the study, and the acquisition of data. KE supervised the data collection, contributed to the study design and to the data collection, and corrected the manuscript. All authors have read and approved the manuscript.

Ethics approval and consent to participate
Ethical approval is not required for this review.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Epidemiology and Public Health, Faculty of Medicine and pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
2Faculty of Science Dhar Mehraz, Laboratory of Microbiology and Molecular Biology, Fez, Morocco. Laboratory of Microbiology and Molecular Biology, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

Received: 31 March 2017 Accepted: 16 February 2018

Published online: 01 March 2018

References
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. A. Cancer Journal of Clinicians. 2012;62(2):228–108.
2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Global cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):359–86.
3. International Agency for Research on Cancer: World Cancer Report. 2014.
4. Belasen R. Nutrition transition and food sustainability: Proc Nutr Soci. 2014; 73(3):385–8.
5. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, Barro RM, Baregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Davanda R, et al. Global, regional, and National Cancer Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncology. 2016;3(4):524–48.
6. Haenszel W, Kuhlara M. Studies of Japanese migrants. I. Mortality from lung cancer in European migrants to Australia: the role of dietary change. Int J Cancer. 1980;25(4):431–7.
7. Baena R, Salinas P. Diet and colorectal cancer. Maturitas. 2015;80(3):258–64.
8. McMichael AJ, McColl MG, Hartshorne JM, Woodings TL. Patterns of gastrointestinal cancer in European migrants to Australia: the role of dietary change. Int J Cancer. 1980;25(4):431–7.
9. Baena R, Salinas P. Diet and colorectal cancer. Maturitas. 2015;80(3):258–64.
10. Chen Z, Wang PP, Woodrow J, Zhu Y, Roebothan B, Mclaughlin JR, Parfrey PS. Dietary patterns and colorectal cancer: results from a Canadian population-based study. Nutr J. 2015;14(8).
11. Moskal A, Freising H, Bymes G, Assi N, Fáhey MT, Jemrab M, Ferrari P, Tjønneland A, Petersen KE, Dahm CC, et al. Main nutrient patterns and colorectal cancer risk in the European prospective investigation into cancer and nutrition study. Br J Cancer. 2016;115(11):1430–40.
12. Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology. 2015;148(6):1244–60.
13. Qu B, Zhan H, Hao Q. Role of circulating and supplemental calcium and vitamin D in the occurrence and development of colorectal adenoma or colorectal cancer. J Clin Gastroenterol. 2017.
14. Um CY, Fedirko V, Flanders WD, Judd SE, Bostick RM. Associations of calcium and milk product intake with incident, sporadic colorectal adenomas. Nutr Cancer. 2017;69(3):416–27.
15. World Cancer Research Fund / American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington DC, AICR; 2007.
16. Aune D, Lau R, Chan DS, Vieira R, Greenwood DC, Kampman E, Norat T. Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol. 2012;23(1):37–45.
17. Ajlouni N, Ahmed F. Association between dietary pattern and risk of cardiovascular disease among adults in the Middle East and North Africa region: a systematic review. Food and Nutrition Research. 2015;59.
18. Fahed AC, El-Hage-Sleiman AK, Farhat TI, Nemer GM. Diet, genetics, and disease: a focus on the Middle East and North Africa region. Journal of Nutrition and Metabolism. 2012;2012:2012:19.
19. Fahed AC, El-Hage-Sleiman AK, Farhat TI, Nemer GM. Diet, genetics, and disease: a focus on the middle east and north Africa region. Journal of Nutrition and Metabolism. 2012;2012.
20. Golparand M, Mrimirian P, Jesisi M, Toolabi K, Mojarrad M, Azizi F. Dietary trends in the Middle East and North Africa: an ecological study (1961 to 2007). Public Health Nutr. 2012;15(10):1835–44.
21. Benkerroum N. Traditional fermented foods of north African countries: technology and food safety challenges with regard to microbiological risks. Compr Rev Food Sci Food Saf. 2013;12(1):54–89.
22. Food and Agriculture Organization of The United Nations: The technology of traditional milk products in developing countries. 1990.
23. National Research Council (US) Panel on the Applications of Biotechnology to Traditional Fermented Foods: Applications of Biotechnology to Fermented Foods: Report of an Ad Hoc Panel of the Board on Science and Technology for International Development: National Academy Press. Washington, D.C; 1992.
24. OECD/FAO: “Dairy and Dairy Products”, in OECD-FAO Agricultural Outlook. 2016-2025. Publishing, Paris 2016.
25. Mhamed MEROII, Marion Kusnmann GACIC, Selma Tozaniai: The dairy products market -Documentary study- LACTMED 2015.
26. Abbastabar H, Roustazadeh A, Aliзадeh A, Hamirschd P, Valipour M, Valipour AA. Relationships of colorectal cancer with dietary factors and public health indicators: an ecological study. Asian Pac J Cancer Prev. 2015;16(9):3991–5.
27. Riani-Rasaf M, Abdolahi M, Jazayeri S, Kalantari N, Asadi-Lari M. Correlation of cancer incidence with diet, smoking and socio-economic position across 22 districts of Tehran in 2008. Asian Pac J Cancer Prev. 2015;14(3):1669–76.
28. Atiaaliw A, Yilmaz AM, Erdoğan Y, Yağcin AS, Aktan AO. Whey protein versus whey protein hydrolysate for the protection of azoxymethane and dextran sodium sulfate induced colon tumors in rats. Pathology Oncology Research. 2012;18(4):817–22.
29. Cerenzia S, Devrim AK, Kamber U, Sozmen M. The effect of kefir on glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) levels in mice with colonic abnormal crypt formation (ACF) induced by azoxymethane (AOX). Dtsch Tierarztl Wochenschr. 2008;115(1):15–9.
30. Habib HM, Ibrahim WH, Schneider-Stork R, Hassan HM. Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem. 2013; 141(1):148–52.
31. Khoury N, El-Hayek S, Taras O, El-Sabban M, El-Sibai M, Rizk S. Kefir exhibits anti-proliferative and pro-apoptotic effects on colon adenocarcinoma cells with no significant effects on cell migration and invasion. Int J Oncol. 2014;45(5):2117–27.
53. Evans NP, Misyak SA, Schmelz EM, Guri AJ, Hontecillas R, Bassaganya-Riera J.
52. Weingarten MA, Zalmanovici A, Yaphe J. Dietary calcium supplementation
51. Gonzalez CA, Riboli E. Diet and cancer prevention: contributions from the
50. Vano YA, Rodrigues MJ, Schneider SM. Lien épidémiologique entre
49. Sun Z, Wang PP, Roebothan B, Cotterchio M, Green R, Buehler S, Zhao J,
48. Newmark HL, Wargovich MJ, Bruce WR. Colon Cancer and dietary fat,
47. Lamprecht SA, Lipkin M. Cellular mechanisms of calcium and vitamin d in the
46. Tayyem RF, Bawadi HA, Shehadah I, AbuMweis SS, Agraib LM, Al-Jaberi T,
45. Cho E, Smith-Warner SA, Spiegelman D, Beeson WL, Van den Brandt PA,
44. Mahfouz EM, Sadek RR, Abdel-Latief WM, Mosallem FA, Hassan EE. The role
43. Can G, Topuz E, Derin D, Durna Z, Aydiner A. Effect of kefir on the quality of
42. Guesmi F, Zoghlami A, Sghaiier D, Nouira R, Dziri C. Alimentary factors
41. Nashed RM, Almusred KS. Colorectal cancer: a case control study of dietary
40. Almurshed KS. Colorectal cancer: case-control study of sociodemographic,
39. Topuz E, Derin D, Can G, Kurtlik E, Cinar S, Aykan F, Cevikbas A, Dipsi R,
38. Arafa MA, Waly MI, Jriesat S, Al Khafajei A, Sallam S. Dietary and lifestyle
37. Sackett DL. Rules of evidence and clinical recommendations on the use of
36. Bener A, Waly MI, Al Khafajei A, El Khatib A. The impact of dairy products on
35. Topuz E, Derin D, Can G, Kurtlik E, Cinar S, Aykan F, Cevikbas A, Dipsi R,
34. Can G, Topuz E, Derin D, Durna Z, Aydiner A. Effect of kefir on the quality of
33. Bener A, Moore MA, Ali R, El Ayoubi HR. Impacts of family history and
32. Almurshed KS. Colorectal cancer: case-control study of sociodemographic,
31. Van der Pols JC, Bain C, Heenan DL, Freudenheim JL, Giovannucci E, et al.
30. Squires J, Zhao J, Zhu Y, et al. Calcium and vitamin D and risk of colorectal
29. Norat T, Chan D, Lau R, Aune D, Vieira R. The associations between food,
28. Van der Pols JC, Bain C, Heenan DL, Freudenheim JL, Giovannucci E, et al.
27. Edirisinghe R, Heenan DL, Khatib A, El Ayoubi HR. The role of milk products in
26. Bloomfeld R, Isaacs KL. Conjugated linoleic acid modulates immune
25. Colditz GA, Folsom AR, Fraser GE, Freudenheim JL, Giovannucci E, et al.
24. Diversity of vegetables and fruits in the diet: a comparison of three
23. Kritchevsky D. Antimutagenic and some other effects of conjugated linoleic
22. Almurshed KS. Colorectal cancer: case-control study of dietary
21. Al-Nusairr M, Heath DD, Bani-Hani KE. Meats, milk and fat consumption in
20. Almurshed KS. Colorectal cancer: case-control study of dietary
19. Lamprecht SA, Lipkin M. Cellular mechanisms of calcium and vitamin d in the
18. Kusumastuti W, Tangboonruang N, Sutthjaroen Y. The production of
colorectal cancer. J Natl Cancer Inst. 2014;106(2):171–2.
17. Cho E, Smith-Warner SA, Spiegelman D, Beeson WL, Van den Brandt PA,
16. Al-Nusairr M, Heath DD, Bani-Hani KE. Meats, milk and fat consumption in
15. Almurshed KS. Colorectal cancer: case-control study of dietary
14. Van der Pols JC, Bain C, Heenan DL, Freudenheim JL, Giovannucci E, et al.
13. Van der Pols JC, Bain C, Heenan DL, Freudenheim JL, Giovannucci E, et al.
12. Van der Pols JC, Bain C, Heenan DL, Freudenheim JL, Giovannucci E, et al.
11. Van der Pols JC, Bain C, Heenan DL, Freudenheim JL, Giovannucci E, et al.
10. Van der Pols JC, Bain C, Heenan DL, Freudenheim JL, Giovannucci E, et al.