A small molecule drug screening identifies colistin sulfate as an enhancer of Natural Killer cell cytotoxicity.

Serena Cortés-Kaplan1,2,3, Mohammed S. Hasim1,2,3, Shelby Kaczmarek2,3, Zaid Taha1,2,3, Glib Maznyi1,2,3, Scott McComb2,3,4, Seung-Hwan Lee2,3, Jean-Simon Diallo1,2,3, Michele Ardolino1,2,3

1: Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON
2: CI3, University of Ottawa, Ottawa, ON
3: Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON
4: Human Health Therapeutics Research Centre, National Research Council, Canada

* Correspondence:
Michele Ardolino
501 Smyth Road, Cancer Center, 3-328, Ottawa, ON, K1H 8M2
m.ardolino@uottawa.ca
Tel: +1-613-737-8899 ext 77257
Abstract:

Because of their crucial role in tumor immunity, NK cells have quickly become a prime target for immunotherapies, with adoptive transfer of NK cells and the use of NK cell engagers quickly moving to clinical stage. On the other hand, only few studies have focused on small molecule drugs capable of unleashing NK cell against cancer. In this context, repurposing small molecule is an attractive strategy to identify new immunotherapies from already approved drugs. Here, we screened 1,200 FDA-approved drugs from the Prestwick Chemical Library, to identify compounds that increase NK cell cytotoxic potential. Using a high-throughput luciferase-release cytotoxicity assay, we found that the antibiotic colistin sulfate increased cytotoxicity of human NK cells towards cancer cells. The effect of colistin was short lived and was not observed when NK cells were pretreated with the drug, showing how NK cell activity was potentiated only when the compound was present at the time of recognition of cancer cells. Further studies are needed to uncover the mechanism of action and the pre-clinical efficacy of colistin sulfate in mouse cancer models.

Keywords:

NK cells, immunotherapy, functional screen, drug repurposing
Introduction

Seminal studies from the 1990s and early 2000s highlighted the importance of the immune system in tumor biology through processes such as immunosurveillance and immunoeediting\(^1\), which in turn led to the most recent advances in cancer therapeutics: immunotherapies. Cancer immunotherapy is an encompassing term referring to therapeutic strategies that target components of the immune system to enhance clearance of the malignant cells. Various categories of immunotherapies exist\(^2\) and, encouragingly, some became first-line treatments in some cancer types\(^3,4\). As the field of immunotherapy continues to develop, we have gained a better understanding of how immune cells contribute to immunotherapy efficacy, for instance Natural Killer (NK) cells. NK cells are innate lymphoid cells that play a crucial role in tumor surveillance and clearance\(^5\). The importance of NK cells in immunosurveillance is appreciated from the observation that mice without functional NK cells show impaired tumor control\(^6,7\) and that patients with defective or decreased frequency of NK cells are at greater risk of developing malignancies, specifically virally induced cancers\(^8,9\). Recently, a thorough systematic review and meta-analysis encompassing 15 solid cancer types found that NK cell infiltration in solid tumors was associated with improved overall survival\(^10\), whereas lower low frequency of circulating or tumor-infiltrating NK cells or NK cells that display impaired function are associated with worse prognosis in several cancer types\(^11-14\). NK cells can either be administered for adoptive cell therapy or can be directly targeted to enhance their anti-tumor activity\(^5\). Within the second category, small molecule drugs have been surprisingly overlooked, despite evidence that small molecules can potentiate NK anti-cancer functions\(^15,16\). In addition to enhancing cytotoxicity, small molecules can also be used to promote proliferation and maturation in expansion protocols for NK cells that are used for adoptive cell therapies\(^15\). Small molecule immunotherapies are advantageous as they are orally...
bioavailable, usually cost less than biological immunotherapies, can target both extracellular and intracellular components and have a greater ability to penetrate through physiological barriers\cite{17}. However, from small molecule identification to development of a lead drug compound, the clinical drug pipeline can take years if not decades before the drug sees use in the clinic. For this reason, drug repurposing is an attractive alternative that identifies new indications for previously approved drugs. Repurposed drugs already have a safety and efficacy profile associated with them which makes this a favorable route. Several studies have conducted high-throughput drug screenings to identify drugs that modulate NK cell activity. These studies utilized commercially available libraries containing repurposed drugs\cite{18-20} or natural compound libraries\cite{21,22} and have identified small molecules that were not previously known to modulate NK cell activity. Here, we screened the Prestwick Chemical Library for compounds capable of enhancing cytotoxicity of human NK cells towards leukemia target cells and identified the antibiotic colistin sulfate as an enhancer of NK cell cytotoxicity.

Materials and Methods.

Cell culture

All cell lines were cultured in a humidified incubator at 37°C and 5% CO$_2$ in media supplemented with 100 U/ml penicillin (Gibco, CA), 100 µg/ml streptomycin (Gibco), 10 g/ml gentamycin sulfate (Gibco), 20 mM HEPES (Fisher, ON). NK92 cells were cultured in RMPI-1640 containing 10% fetal bovine serum (FBS) (Gibco). K562-NL cells were cultured in RMPI-1640 containing 5% FBS. A375-NL cells and 786O-NL cells were cultured in DMEM (Corning, VA) containing 10% FBS.
Reagents and drugs

Preparation of coelenterazine substrate: 500 μg of coelenterazine substrate (CTZ) (Gold Biotechnology, MO) was reconstituted in 610 μL of 100% ethanol and 6.2 μL of 12 N hydrochloric acid. The reconstituted substrate was protected from light and stored at -80°C until use. Prior to measuring luciferase activity, the reconstituted CTZ was mixed with 1X salt buffer (45 mM EDTA, 30 mM sodium pyrophosphate, 1.425 M NaCl) at a 1:200 dilution (5 μL CTZ per 1 mL salt buffer).

The Prestwick Chemical Library (https://www.prestwickchemical.com) was kindly provided by Dr. Diallo.

Preparation of candidate drugs: colistin sulfate salt (Sigma-Aldrich, MO), nicotinamide (Sigma-Aldrich), monensin sodium salt (Sigma-Aldrich), zafirlukast (Sigma-Aldrich), tizanidine hydrochloride (Sigma-Aldrich), closantel (Sigma-Aldrich), benazepril hydrochloride (Sigma-Aldrich), and diflorasone diacetate (Sigma-Aldrich) were prepared at a master stock concentration of 1 mM in 100% DMSO, with exception of colistin sulfate salt which was dissolved in water. A working stock concentration was prepared for all candidate drugs of 100 μM in PBS with a final DMSO concentration of 10%. All candidate drugs were stored at -20°C until use.

Fluorochrome-conjugated antibodies, all from BD Biosciences, CA: AF647-CD3 (Clone UCHT-1), APC-R700-CD4 (Clone RPA-T4), BV786-CD8 (Clone RPA-T8), PE-CD56 (Clone B159), BV711-CD16 (Clone 3G8), BV650-CD19 (Clone SJ25-C1) and PerCP-Cy5.5-CD14 (Clone MφP9).
Generation of cell lines

To generate K562, A375 and 78O cells expressing nanoluciferase, lentiviral particles were produced by co-transfecting 293T cells with a lentiviral plasmid encoding nano luciferase plenti-NL (a gift from Dr. Wanker through Addgene; http://n2t.net/addgene:113450; RRID:Addgene #113450), packaging plasmids pCMV-dR8.2dvpr (a gift from Dr. Weinberg through Addgene; http://n2t.net/addgene:8455; RRID:Addgene #8455) and pCMV-VSV-G (a gift from Dr. Weinberg through Addgene; http://n2t.net/addgene:8454; RRID:Addgene_8454), following Lipofectamine 3000 transfection instructions for a 10 cm dish (Invitrogen, CA). 72 hours following the transfection, supernatant containing lentiviral particles was collected and used to transduce K562, A375 and 786O-NL cells by spin-infection (500 g for 2 hours at 37˚C) with 8 μg/mL polybrene (Sigma-Aldrich). Four days post-transduction, nano luciferase expression was confirmed by using the Nano-glo luciferase assay system (Promega, WI). After nano luciferase expression was confirmed, single cells from the transduced cell populations were sorted into five 96-well plates using the MoFlow XDP Cell Sorter (Beckman Coulter, CA). After several weeks of culture, wells with cell growth were tested for luciferase expression. Selected clones were mixed at an equal ratio to make a polyclonal population.

Luciferase release-based cytotoxicity assay

NK92 cells were co-cultured with target cells expressing NL in triplicate at various E:T (effector:target) ratios in RPMI 5% FBS in 96-well V bottom plates (Sarstedt, QC) for 5 hours at 37˚C. After the incubation, 50 μL of supernatant from each well was transferred to round-bottom black 96-well plates (Corning, ME). Depending on the experiment, either 25 μL of Nano-glo substrate or CTZ substrate was added to each well and the Biotek Synergy Mx plate reader (Biotek,
VT) was used to measure luminescence. Percentage (\%) specific lysis was calculated using the following equation (Equation 1), where experimental release are the raw luminescence values from NK92+target cells, spontaneous release are the raw luminescence values from the target cells in absence of effector cells, and maximal release are the raw luminescent values from target cells treated with 30 μg/mL of digitonin (Sigma-Aldrich).

\[
\% \text{ specific lysis} = \frac{(\text{experimental release} - \text{spontaneous release})}{(\text{maximal release} - \text{spontaneous release})} \times 100 \quad \text{(Equation 1)}
\]

Flow cytometry-based cytotoxicity assays

Flow cytometry-based cytotoxicity assay was performed as described before23. Briefly, NK92 cells were co-cultured with CFSE-labelled targets cells in triplicate at various E:T ratios with 10,000 target cells per well in RPMI 5% FBS in 96-well V bottom plate (Sarstedt) for 5 hours at 37°C. Cells were then stained with Zombie NIR™ Fixable Viability Kit (Biolegend, CA). Prior to acquisition, APC counting beads (Spherotech, IL) were added. Samples were acquired using the HTS function of the LSR Fortessa (BD Biosciences). Percentage specific lysis was calculated using Equation 1, where experimental release is the ratio of beads to live target cells from NK92+target cell wells, spontaneous release is the ratio of beads to live target cells from the target cells in absence of effector cells wells, and for maximal release, the value 0 was used as we would expect there to be no live cells.

Screening of the Prestwick Chemical Library and plate configuration

The Prestwick Chemical Library, which contains 1,200 regulatory-approved drugs, was screened to identify compounds capable of enhancing NK92 cytotoxicity. K562-NL cells alone or a
co-culture of NK92+K562-NL cells at a E:T ratio of 1 were treated with 10 μM of each drug for 5-hours at 37°C. Each compound was evaluated in singlet over 2 independent experiments.

The Prestwick Chemical Library’s 15 stock plates were stored at -20°C in 10% DMSO at a concentration of 100 μM in deep well plates (Axygen, Tamaulipas, Mexico), with compounds only in columns 2-11. On the day of the screen, the stock plates were thawed, and the Bravo Automated Liquid Handling Platform (Agilent, CA) was used to dispense 10 μL of each drug (final drug concentration of 10 μM) to columns 2-11 to a total of thirty 96-well V-bottom assay plates (Sarstedt). For the 15 assay plates containing K562-NL cells alone, 45 μL of K562-NL cells plus 45 μL of media was dispensed to all columns for a final assay volume of 100 μL. For the 15 assay plates containing K562-NL+NK92 cells, 45 uL of K562-NL was dispensed to all columns and 45 μL of NK92 cells was dispensed from column 1-11 for a final assay volume of 100 μL. Controls were dispensed in column 1 and 12 for each assay plate. For all 30 assay plates, 10 μL of 10% DMSO was dispensed to column 1 (final DMSO concentration of 1%). For the 15 assay plates containing K562-NL cells alone, 10 μL of 300 μg/mL of digitonin was dispensed to column 12 (final concentration of 30 μg/mL) as a maximal release control. For the 15 assay plates containing K562-NL+NK92 cells, NK92 and K562-NL cells were dispensed at a 9:1 E:T ratio in column 12 as a positive control for NK92 cytotoxicity. Negative controls in column 1 were K562-NL+DMSO (K562-NL alone plates) and 1:1 E:T+DMSO (NK92+K562-NL plates). Plate layouts is depicted in Supplementary Fig. 1.
After the incubation, 50 μL of supernatant from each assay plate was transferred to round-bottom black 96-well plates (Corning, ME) using the Bravo Automated Liquid Handling Platform. Biotek plate reader was used to dispense 25 μL of CTZ to each well and measure luminescence.

Z’ factor, fold-change and normalization analysis
Raw luminescence values from the screenings were used to calculate Z’-factor and luminescent fold-change. To evaluate the overall screening assay stability, Z’ factor was calculated for each assay plate using the negative (column 1: DMSO) and positive (column 12: 9:1 E:T or digitonin) control values in each plate. Equation 2 was used to calculate Z’ factor, where SD+ represents the standard deviation of the positive control, SD− represent the standard deviation of the negative control, m+ represents the mean of the positive control and m− represents the mean of the negative control.

\[
Z' = 1 - \frac{3SD^+ + 3SD^-}{|m^+ - m^-|} \quad \text{(Equation 2)}
\]

To identify compounds capable of enhancing NK92 cytotoxicity, the luminescent fold-change over DMSO control was calculated for all compounds in the E:T=1 condition and K562-NL alone condition. Compounds that had a fold-change ≥1.3 were considered drug hits. Drugs were excluded if the fold-change was ≥1.3 in the K562-NL alone treated with drugs condition. Fold-change for each plate was calculated by using the controls on individual plates.
Dose-response experiments

K562-NL cells alone or NK92 and K562-NL cells mixed at a 1:1 and 3:1 E:T ratio were treated with either 0, 1, 5, 10 and 20 μM of drug candidates for 5 hours at 37°C. Luciferase activity was measured as previously described.

Colistin sulfate pre-treatment

NK92 or K562-NL cells alone were treated for either 24 hours or 1 hour with 10 μM of colistin sulfate. Prior to mixing the cells together, the drug was washed out. Pre-treated NK92 cells were mixed with untreated K562-NL cells, and pre-treated K562-NL cells were mixed with untreated NK92 cells. A condition where drug treatment was present during the 5-hour incubation was also included. Luciferase activity was measured as previously described.

Human PBMC isolation

Human blood samples were obtained from healthy donors using the Perioperative Human Blood and Tissue Specimen Collection Program protocol approved by The Ottawa Health Science Network Research Ethics Board (OHSN - REB 2011884-01H). PBMCs were isolated from peripheral blood of healthy donors by Ficoll (GE Healthcare, Sweden) gradient centrifugation at 19°C. Cells were resuspended in CryoStor® CS10 and cryopreservation of cells was followed according to the manufacturer’s instructions (BioLife Solutions, WA).
Human NK cell cytotoxicity assays with colistin treatment

Previously frozen human PBMCs from healthy donors were thawed according to CryoStor® CS10 thawing cells protocol (BioLife Solutions), afterwards, PBMCs were kept overnight at 4°C. NK cells were isolated from PBMCs using EasySep™ Human NK Cell Isolation Kit (Stemcell Technologies, BC). NK cells were co-cultured with K562-NL cells at different E:T ratios and treated with 10 μM of colistin for 5 hours at 37°C. Luciferase activity was measured as previously described.

Statistical analysis

Statistical analyses conducted included unpaired two-tailed Student’s t test, one or two-way ANOVA with either Dunnett’s, Sidak, Tukey’s or Bonferroni’s multiple comparison test, as described in the figure captions. Statistical significance was achieved when the p value was ≤0.05. GraphPad Prism 9 was used for statistical analyses. For flow cytometry experiments, FlowJo V.10.7.1 was used for analysis.

Results

Generation of K562-NL and validation of a luciferase release-based killing assay

Traditional methods to assess NK cell cytotoxicity such as chromium-release or flow cytometry-based assays are difficult to scale up for a high-throughput use. Luciferase release-based killing assays have proven useful to perform drug screenings24, and a luciferase released-based screen was employed in a previous NK cell drug screening18. To generate target cells suitable for a luciferase release-based NK cell killing assay, we transduced the myeloid leukemia cell line K562 with a lentiviral plasmid encoding nano luciferase (NL). Expression of NL was assessed on
transduced K562 cells by exposing cellular lysates to the substrate: no signal was observed from the lysate of control cells, whereas a robust signal was detected from the lysate of transduced K562 cells (Sup. Fig. 2A). Once we verified NL expression on K562 cells, we employed K562-NL as targets in a luciferase release-based killing assays using the NK cell line NK92 as effectors. Consistent with what expected in cytotoxicity assays, the presence of effector cells increased the luminescence signal in a dose-dependent manner, indicating that the target cells were effectively killed, whereas the luminescence signal observed with target cells alone was similar to that of the media only (Fig. 1A).

Next, we sought to obtain a polyclonal population of K562 cells expressing NL from the transduced population, which likely contained cells which were not transduced. Therefore, we sorted single cells into five 96-well plates and tested wells where cell growth was observed for luciferase expression. K562 clones expressing NL were then tested in cytotoxicity assay vis-à-vis with the unsorted K562-NL population (Sup Fig. 2B). Clones that were killed by NK92 cells similarly to the K562 bulk population were selected and mixed at an equal ratio to make a polyclonal population of K562-NL cells, which was then used in all subsequent experiments.

Optimization of the conditions for a high-throughput luciferase release-based cytotoxicity assay

For these first experiments, to test NL activity, we used furimazine (FMZ), the optimized substrate for NL. However, using furimazine in a high-throughput setting is not feasible due to the high cost of the substrate. Therefore, we explored if the less expensive substrate coelenterazine (CTZ), widely used for Renilla and Gaussia luciferase, could be used as an alternative. After conducting a luciferase release-based cytotoxicity assay, we used either FMZ or CTZ to assess NL activity.
side-by-side. Luminescent signal was detected with both substrates, although the magnitude of luminescence was higher using FMZ (Fig. 1B). However, the dynamic range between targets only and the E:T ratio of 1 was comparable between the two substrates, and CTZ maintained the same dose-response observed using FMZ, indicating that CTZ could effectively replace FMZ as a substrate for these experiments.

Next, we set to determine the ideal E:T ratio to use for the drug screening. We conducted several luciferase release-based cytotoxicity assays that included a range of E:T ratios and chose to use a E:T ratio of 1 as this ratio shows minimal killing but still has detectable luminescence above K562-NL target cells alone and there is large dynamic range between the 1 and 81 ratios, an E:T ratio that shows saturation in killing (Fig. 1C).

As a positive control for the screen, we decided to use the mild detergent digitonin, as we found it able to effectively lyse targets cells without compromising NL activity (Fig. 1D).

For these set-up experiments, the supernatant from the luciferase-release cytotoxicity assay was collected and transferred to a new plate after a centrifugation step, which would be hardly feasible in high-throughput conditions. Our concern was that by skipping the centrifugation step prior to collecting the supernatant, we would capture live target cells that would lyse after addition of the substrate, resulting in similar luminescence detection between target cells alone and target+effector cells. Therefore, to determine if this step was required, we tested the difference between directly collecting the assay’s supernatant at the end of the cytotoxicity assay with or without a centrifugation step. To our advantage, the difference between the target cells alone and
target-effector cells condition was still retained without the centrifugation step (Fig. 1E). Based on these results, we deemed that a centrifugation step prior to supernatant collection was unnecessary and decided to proceed with directly collecting the assay supernatant for the drug screening.

Finally, to optimize the high-throughput drug screening workflow, we needed to estimate if leaving the effector or target cells at room temperature for an extended amount of time before they were seeded would affect the results as, logistically, we could not keep cells in their cell culture conditions (humidified incubator, 37°C, 5% CO₂) when seeding the drug screening assay plates. We simulated drug screen plating conditions by incubating NK92 and K562-NL cells separately at room temperature for 0, 60, 120, 180, and 240 minutes before the cells were seeded into assay plates. We observed that leaving the cells at room temperature more than 120 minutes before being seeded into assay plates gradually but substantially decreased NK92 cytotoxicity (Fig. 1F). We also observed a slight increase in spontaneous lysis in the K562-NL alone condition as time progressed, shown by the increase in luminescence detection at the last two time points (Fig. 1F). Based on these results, we concluded that cells had to be seeded within 1-hour to maintain the dynamic range between the experimental and control conditions.

Screening of the Prestwick Chemical Library to identify enhancers of NK cell cytotoxicity

To identify compounds that enhanced NK cell cytotoxicity, we employed the Prestwick Chemical Library. K562-NL cells alone or NK92+K562-NL cells mixed at a E:T ratio of 1 were treated with 10 μM of each drug for 5 hours at 37°C (Fig. 2A). Each compound was evaluated in singlet over 2 biological replicates. To identify compounds that increased NK92 cytotoxicity, the luminescent
values of all wells containing drugs were compared to the DMSO control wells from the same plate and this difference was quantified as fold-change over DMSO control (Fig. 2B). Fold-change values for all compounds and the list of excluded compounds are listed in Supplemental Tables 1 and 2.

Compounds with a fold-change ≥ 1.3 were considered to have increased NK cell cytotoxicity. We identified 87 drugs that had a fold-change ≥ 1.3 from the first screening of the Prestwick Chemical Library and 119 drugs that had a fold-change ≥ 1.3 from the second screening. From this list, only Alexidine dihydrochloride proved to be toxic for target cells even in absence of effectors, and was therefore not further considered. 14 compounds from the total drugs identified had a fold-change ≥ 1.3 on both screening days (Table 1). From these 14 drugs, 8 candidate drugs were selected for follow-up experiments. Drugs with higher fold-change were prioritized and drugs that were no longer in use, not available in the North American market or were already known to be enhancers of NK cytotoxicity were excluded. The 8 candidate drugs and associated fold-change were colistin sulfate salt (2.02), nicotinamide (1.85), monensin sodium salt (1.62), zafirlukast (1.54), tizanidine hydrochloride (1.42), closantel (1.41), benazepril hydrochloride (1.40), and diflorsone diacetate (1.40) (Table 1).

To evaluate the overall screening assay stability, Z' factor was calculated for each assay plate from the screening of the Prestwick Chemical Library. The screening assay had an average Z' factor of 0.72 for K562-NL alone plates treated with drugs and 0.44 for the NK92 + K562-NL (E:T of 1) plates treated with drugs. A Z' factor close to 0.5 is considered fair and Z' factor 0.5-1 is considered
good. Z'-factor for each individual plate can be found in Supplementary Table 3. Z'-factor analysis suggests that the overall quality of the drug screening was fair.

Drug	Fold-change	Drug class
1 Colistin sulfate salt^{a,b}	2.02	antibiotic
2 Nicotinamide^a	1.85	vitamin B3
3 Monensin sodium salt^a	1.62	antibiotic
4 Butirosin disulfate salt	1.60	aminoglycoside antibiotic
5 Zafirlukast^a	1.54	anti-asthmatic
6 Amphotericin B	1.50	antifungal
7 Argatroban	1.46	anti-coagulant
8 Dimethisoquin hydrochloride	1.45	anesthetic
9 Tizanidine hydrochloride^a	1.42	adrenergic agonist
10 Closantel^a	1.41	anti-parasitic
11 Benazepril hydrochloride^a	1.40	ACE inhibitor
12 Diflorasone diacetate^a	1.40	topical steroid
13 Butoconazole nitrate	1.38	anti-fungal
14 Etretinate	1.34	retinoid

Table 1. Compounds identified as enhancers of NK92 cytotoxicity from screening the Prestwick Chemical Library. Listed drugs had a luminescent fold-change ≥ 1.3 on both screening days. Drug class for each compound is listed. "Candidate drugs that were selected for further investigation. "Fold-change of single screening.
Validation of candidate drugs

Initial validation of the 8 candidate drugs was conducted by performing cytotoxicity assays following the drug screening experimental conditions (E:T ratio of 1 and drug concentration of 10 µM). Of the eight drugs we tested, only colistin sulfate salt (herein colistin) increased NK cell cytotoxicity (Fig. 3A), whereas the other 7 drugs did not change, or even reduced, the ability of NK cells to kill target cells (Fig. 3B-H).

Validation was expanded over two E:T ratio (1 and 3) and over a wider range of drug concentration (1-20 µM). Colistin was effective starting from 5 µM at both E:T ratios (Fig. 4A), and increased cytotoxicity even at lower E:T ratios (Fig. 5). In contrast, the other compounds failed to elicit NK cell cytotoxicity in the tested conditions (Fig. 4B-H), indicating they were likely false positives. Taken together, these results corroborate that colistin sulfate enhances the cytotoxic activity of NK92 cells against K562 leukemia cells.

Colistin sulfate failed to potentiate NK cell killing of non-hematopoietic cancer cell lines.

K562 are widely used to study NK cell cytotoxicity due to their high susceptibility to NK recognition and killing. Given the promising results obtained with colistin, we tested if this compound would also increase NK-mediated killing of more resistant cell lines. For these studies, we employed the melanoma cell line A375 and the renal adenocarcinoma cell line 786O, both transduced with NL. Whereas killing of K562 was potentiated by drug treatment, neither A375 nor 786O cells were killed more effectively in the presence of colistin sulfate (Fig. 6), indicating that the compound failed to generally boost NK cell cytotoxicity.
The effect of colistin sulfate on NK cells is short lived.

To gather insights on the mechanisms underlying colistin-enhanced NK cell killing, we pre-treated NK92 cells with the drug for 24 hours and then employed them as effectors in killing assays. NK92 cells were pre-treated with 0, 1, 5 or 10 μM of colistin and, prior to incubation with K562-NL cells, the drug was washed out. Consistent with the results of our screening, colistin was not toxic towards NK92 cells (Fig. 7A). However, NK92 cells pre-treated with colistin failed to kill target cells more effectively than the control, whereas, consistent with what described above, colistin increased NK-mediated killing when present during the co-culture (Fig. 7B).

Considering that NK92 cells pre-treated for 24-hour with colistin did not present increased cytotoxicity, we tested if shorter pre-incubations could be more effective. NK92 cells were treated with 10 μM of colistin for 1 hour, and the drug was washed out prior to co-culture with K562-NL cells. In comparison to the untreated condition, 1-hour pre-treatment of NK92 cells with colistin slightly but consistently increased NK92 cytotoxicity (Fig. 7C). On the other hand, pre-treatment of K562 cells did not increase NK cell killing (Fig. 7D), suggesting that colistin sulfate, rather than sensitizing the target cells, acted on NK cells, but in a short-lived fashion.

Colistin sulfate increases cytotoxicity of primary human NK cells.

Lastly, we tested if colistin treatment increased cytotoxicity of primary NK cells. We obtained PBMCs from healthy donor blood and isolated NK cells by negative selection. NK cell purity was ~85% and both CD56+CD16- and CD56+CD16+ NK cell populations were present (not shown). After NK cells were isolated from PBMCs, they were immediately co-cultured with K562-NL cells at varying E:T ratios and treated with 10 μM of colistin for 5 hours. Pooled results from all 3
healthy donor are shown in Fig. 8. Consistent with the results obtained using NK92 cells, primary
NK cells treated with colistin showed an increased cytotoxicity towards K562-NL.

Overall, this screen of the Prestwick Chemical Library identified colistin as a potential enhancer
of NK cell cytotoxicity towards some cell types. The effect of colistin sulfate was short-lived but
was observed in both NK92 and primary human NK cells.
Discussion and Conclusions

Here, we conducted a high-throughput luciferase release-based cytotoxicity assay to screen the Prestwick Chemical Library and identify compounds that increased NK cell cytotoxicity. Luciferase-release assays have been used in previous a NK cell drug screening with success18. The results of that screening identified small molecule inhibitors of NK cell cytotoxicity; however no small molecule enhancers were identified. To our knowledge, this is the first drug screening to employ a luciferase-release cytotoxicity assay format that identified small molecules capable of increasing NK cell cytotoxicity. Overall, the quality of our screening assay was fair, as determined by the Z’ factor. One problem we faced was that the dynamic range between the $<1:1 \text{ E:T DMSO negative control}>$ and $<9:1 \text{ E:T positive control}>$ in the 1:1 E:T plates decreased overtime, which is most likely due to decreased cytotoxicity of NK92 cells as time progressed. In preparation for the screen, we realized that cells kept at room temperature for more than 2-hours prior to co-culture for the cytotoxicity assay showed decreased cytotoxicity and therefore separated the screen in two days. However, the signal of the $<9:1 \text{ E:T positive control}>$ began to overlap with the signal of the $<1:1 \text{ E:T DMSO control}>$ and as a result reduced the Z’ factor. To improve future screenings, a strategy to maintain a low the signal-to-noise ratio overtime will be needed. Another limitation of the drug screening was that, due to COVID19-related shortage of plastic material, each compound was only tested in 2 biological replicates, which prevented us to perform a more robust statistical analysis of our results.

However, even in light of these limitations, the screening identified compounds previously reported to enhance NK cell activity, including amphotericin B19. We also identified nicotinamide, which is currently under investigation in clinical trials as a supportive agent for ex vivo expansion.
of primary NK cells for the treatment of Non-Hodgkin lymphoma and multiple myeloma27. Interestingly, nicotinamide failed to be validated in follow up experiments at the tested concentrations. On the other hand, two compounds identified in previous screens, naftifine and butenafine20, were not highlighted in our screening (fold-change 0.84 and 1.14, respectively). Also, we identified monensin, a known inhibitor of NK cell degranulation as an enhancer of NK92 cytotoxicity. As expected, upon further tests, monensin was shown to decrease NK92 cytotoxicity in a dose-dependent manner.

From the 8 candidate drugs identified from screening of the Prestwick Chemical Library, colistin was the only drug that increased NK cell cytotoxicity in validation experiments. Colistin, also known as polymyxin E, is an antibiotic derived from \textit{Bacillus polymyxa} and is used to treat antibiotic-resistant infections28. Colistin is an amphipathic molecule that disrupts the membrane of Gram-negative bacteria by displacing calcium and magnesium ions28. This ultimately leads to increased cell permeability and eventually cell death. Few studies have investigated how colistin modulates immune cells, let alone NK cells. One study found that colistin increased cytotoxicity of murine splenic NK cells towards YAC-1 target cells and increased production of IFN-\gamma29. Although no mechanism was provided, it was shown that both polycationic peptide and hydrophobic tail domains were needed for the observed effect29. Colistin was also shown to increase NK cytotoxicity in combination with the antibiotics daptomycin or teicoplanin in mouse model of multi-resistant \textit{Acinetobacter baumannii} infection, and this combination showed a greater increase in NK cytotoxicity than either antibiotic on its own30. Colistin was previously identified in a Prestwick Chemical Library screen as a compound capable of enhancing p38/MAPK pathway, a key pathway in innate immunity that is induced from TLR signaling31,32. Subsequently,
this group showed that colistin increased phagocytosis, cytokine secretion and phosphorylation of p38 in rat macrophages and KEGG pathway analysis of treated macrophages showed upregulation of genes involved in signal transduction, immune pathways and calcium signaling33. Interestingly, colistin induced upregulation of genes downstream of the MAPK and PI3K-Akt pathways33 in conditions similar to those of our screen. The MAPK and PI3K-Akt pathways are implicated in downstream signaling of NK activating receptors34, suggesting a potential mechanism for colistin increasing NK cytotoxicity. Altogether, these highlighted studies illustrate that colistin has potential immunomodulatory properties beyond its bactericidal activity.

The fact that the effect of colistin was short-lived and evidence that some drugs disrupting membrane integrity have been shown to increase exocytosis of lytic granules of NK cells20, suggests that colistin facilitated granule exocytosis in NK cells. However, if this was the mechanism of action, we would expect that colistin would increase NK cell-mediated killing towards all tested target cell lines, which was not the case. Therefore, the mechanism of action of colistin remains to be elucidated.

In conclusion, we first optimized a luciferase release-based NK cell cytotoxicity assay for a high-throughput format. Using this assay format, we screened the Prestwick Chemical Library for small molecules that had the ability to increase NK cell cytotoxicity and identified colistin sulfate salt as an enhancer of NK cell cytotoxicity.

Acknowledgements

We thank members of the Ardolino lab for critically reading the manuscript and Dr. Auer for facilitating PBMC collection. This study was funded by the Canadian Institutes of Health Research.
(to MA), by CIHR, Terry Fox Research Institute, Canadian Cancer Society supported by the Lotte & John Hecht Memorial Foundation (to JSD) and by the National Research Council Canada Disruptive Technology Solutions Cell and Gene Therapy challenge program (to SMC).

Author contributions.

Author contributions are detailed according to CRediT criteria.

Author	Conceptualization	Formal analysis	Funding acquisition	Investigation	Methodology	Resources	Supervision	Visualization	Writing - original draft	Writing review & editing
SCK	X	X	X	X	X	X	X	X		
MSH								X		
SK								X		
ZT		X						X		
GM								X		
SMC			X					X		
SL								X		
JSD	X	X		X	X	X				
MA	X	X	X			X	X	X		

Conflicts of interest: JSD is an inventor on patents licensed to Turnstone Biologics, which is commercializing oncolytic Maraba virus. JSD has patents licensed and also holds equity in Virica Biotech, which is developing oncolytic virus platforms. MA has a consulting agreement with Alloy Therapeutics and a sponsored research agreement with Dragonfly Therapeutics and Actym Therapeutics.

References
1 Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. *Annu Rev Immunol* **29**, 235-271, doi:10.1146/annurev-immunol-031210-101324 (2011).

2 Zhang, Y. & Zhang, Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. *Cellular & molecular immunology* **17**, 807-821, doi:10.1038/s41423-020-0488-6 (2020).

3 Voelker, R. Immunotherapy Is Now First-line Therapy for Some Colorectal Cancers. *JAMA* **324**, 433, doi:10.1001/jama.2020.13299 (2020).

4 Martinez, P., Peters, S., Stammers, T. & Soria, J. C. Immunotherapy for the First-Line Treatment of Patients with Metastatic Non-Small Cell Lung Cancer. *Clinical cancer research : an official journal of the American Association for Cancer Research* **25**, 2691-2698, doi:10.1158/1078-0432.CCR-18-3904 (2019).

5 Hodgins, J. J., Khan, S. T., Park, M. M., Auer, R. C. & Ardolino, M. Killers 2.0: NK cell therapies at the forefront of cancer control. *J Clin Invest* **129**, 3499-3510, doi:10.1172/JCI129338 (2019).

6 Kim, S., Iizuka, K., Aguila, H. L., Weissman, I. L. & Yokoyama, W. M. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. *Proc Natl Acad Sci U S A* **97**, 2731-2736, doi:10.1073/pnas.050588297 (2000).

7 Smyth, M. J. *et al.* Perforin is a major contributor to NK cell control of tumor metastasis. *J Immunol* **162**, 6658-6662 (1999).

8 Moon, W. Y. & Powis, S. J. Does Natural Killer Cell Deficiency (NKD) Increase the Risk of Cancer? NKD May Increase the Risk of Some Virus Induced Cancer. *Front Immunol* **10**, 1703, doi:10.3389/fimmu.2019.01703 (2019).

9 Orange, J. S. Natural killer cell deficiency. *J Allergy Clin Immunol* **132**, 515-525, doi:10.1016/j.jaci.2013.07.020 (2013).

10 Nersesian, S. *et al.* NK cell infiltration is associated with improved overall survival in solid cancers: A systematic review and meta-analysis. *Transl Oncol* **14**, 100930, doi:10.1016/j.tranon.2020.100930 (2021).

11 Wang, W. T. *et al.* Elevated absolute NK cell counts in peripheral blood predict good prognosis in chronic lymphocytic leukemia. *J Cancer Res Clin Oncol* **144**, 449-457, doi:10.1007/s00432-017-2568-2 (2018).

12 Lim, S. A. *et al.* Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. *Front Immunol* **10**, 496, doi:10.3389/fimmu.2019.00496 (2019).

13 Jun, E. *et al.* Progressive Impairment of NK Cell Cytotoxic Degranulation Is Associated With TGF-β1 Deregulation and Disease Progression in Pancreatic Cancer. *Front Immunol* **10**, 1354, doi:10.3389/fimmu.2019.01354 (2019).

14 Liu, Y. *et al.* Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. *Oncogene* **36**, 6143-6153, doi:10.1038/onc.2017.209 (2017).

15 Kerr, W. G. & Chisholm, J. D. The Next Generation of Immunotherapy for Cancer: Small Molecules Could Make Big Waves. *J Immunol* **202**, 11-19, doi:10.4049/jimmunol.1800991 (2019).

16 Nicolai, C. J. *et al.* NK cells mediate clearance of CD8(+) T cell-resistant tumors in response to STING agonists. *Sci Immunol* **5**, doi:10.1126/sciimmunol.aaz2738 (2020).

17 Zhu, H. F. & Li, Y. Small-Molecule Targets in Tumor Immunotherapy. *Nat Prod Bioprospect* **8**, 297-301, doi:10.1007/s13659-018-0177-7 (2018).
Hayek, S. et al. Identification of Primary Natural Killer Cell Modulators by Chemical Library Screening with a Luciferase-Based Functional Assay. *SLAS Discov* 24, 25-37, doi:10.1177/2472555218797078 (2019).

Kim, N., Choi, J. W., Park, H. R., Kim, I. & Kim, H. S. Amphotericin B, an Anti-Fungal Medication, Directly Increases the Cytotoxicity of NK Cells. *Int J Mol Sci* 18, doi:10.3390/ijms18061262 (2017).

Theorell, J. et al. Immunomodulatory activity of commonly used drugs on Fc-receptor-mediated human natural killer cell activation. *Cancer Immunol Immunother* 63, 627-641, doi:10.1007/s00262-014-1539-6 (2014).

Gong, C. et al. A High-Throughput Assay for Screening of Natural Products that Enhanced Tumoricidal Activity of NK Cells. *Biol Proced Online* 17, doi:10.1186/s12575-015-0026-6 (2015).

Xu, Z. et al. A high-throughput assay for screening natural products that boost NK cell-mediated killing of cancer cells. *Pharm Biol* 58, 357-366, doi:10.1080/13880209.2020.1748661 (2020).

Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. *J Clin Invest* 128, 4654-4668, doi:10.1172/JCI99317 (2018).

Matta, H. et al. Development and characterization of a novel luciferase based cytotoxicity assay. *Sci Rep* 8, 199, doi:10.1038/s41598-017-18606-1 (2018).

England, C. G., Ehlerding, E. B. & Cai, W. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. *Bioconjug Chem* 27, 1175-1187, doi:10.1021/acs.bioconjchem.6b00112 (2016).

Zhang, J. H., Chung, T. D. & Oldenberg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. *J Biomol Screen* 4, 67-73, doi:10.1177/108705719900400206 (1999).

Bachanova, V. et al. Vol. 25 S175-S176 (Biology of Blood and Marrow Transplantation, Biology of Blood and Marrow Transplantation, 2019).

Conly, J. & Johnston, B. Colistin: the phoenix arises. *Can J Infect Dis Med Microbiol* 17, 267-269, doi:10.1155/2006/901873 (2006).

Zhong, M., Kadota, Y., Shimizu, Y. & Gohda, E. Induction of cytolytic activity and interferon-gamma production in murine natural killer cells by polymyxins B and E. *Int Immunopharmacol* 8, 508-513, doi:10.1016/j.intimp.2007.11.001 (2008).

Cirioni, O. et al. Colistin enhances therapeutic efficacy of daptomycin or teicoplanin in a murine model of multiresistant Acinetobacter baumannii sepsis. *Diagn Microbiol Infect Dis* 86, 392-398, doi:10.1016/j.diagmicrobio.2016.09.010 (2016).

Cai, Y., Cao, X. & Aballay, A. Whole-animal chemical screen identifies colistin as a new immunomodulator that targets conserved pathways. *mBio* 5, doi:10.1128/mBio.01235-14 (2014).

Peroval, M. Y., Boyd, A. C., Young, J. R. & Smith, A. L. A critical role for MAPK signalling pathways in the transcriptional regulation of toll like receptors. *PLoS One* 8, e51243, doi:10.1371/journal.pone.0051243 (2013).

Wang, J. et al. Immunomodulatory Effects of Colistin on Macrophages in Rats by Activating the p38/MAPK Pathway. *Front Pharmacol* 10, 729, doi:10.3389/fphar.2019.00729 (2019).

Chen, Y., Lu, D., Churov, A. & Fu, R. Research Progress on NK Cell Receptors and Their Signaling Pathways. *Mediators Inflamm* 2020, 6437057, doi:10.1155/2020/6437057 (2020).
Figure Legends

Figure 1. Optimization of a luciferase release-based cytotoxicity assay for a high-throughput screen.

NK92 cells were co-cultured with K562-NL cells at the indicated E:T ratios for 5-hrs at 37°C. After incubation, the supernatant was collected, the indicated substrate added, and luminescence read by Biotek Synergy microplate reader. A. Luciferase-release cytotoxicity assay using transduced K562-NL cells (bulk population, unsorted). 20,000 K562-NL targets per well. After the incubation, luciferase activity was measured using Promega Nano-glo luciferase assay system. Mean +/- SD of three technical replicates. B. After the incubation, luciferase activity was measured after addition of either Promega Nano-glo luciferase assay system (FMZ) or CTZ substrate. 10,000 K562-NL targets per well. Mean +/- SD of three technical replicates. Representative of 3 biological replicates. C. Luciferase-release cytotoxicity assay using 10,000 K562-NL cells. After the incubation, luciferase activity was tested after addition of CTZ. Mean +/- SD of three technical replicates. Graph is representative of 2 biological replicates. D. K562-NL cells were treated with 30 μg/mL digitonin and compared to K562-NL cells co-cultured at a E:T ratio of 27. 10,000 K562-NL cells per well. Luciferase activity was tested after addition of CTZ. Mean +/- SD of three technical replicates. Representative of 2 biological replicates. E. Supernatant from a cytotoxicity assay was either collected directly or collected after a centrifugation step. Three technical replicates are shown. Representative of 2 biological replicates. F. NK92 or K562-NL cells were incubated at room temperature at indicated times (minutes) prior to start a cytotoxicity assay. Mean +/- SD of three technical replicates. Representative of 3 biological replicates.
Figure 2. Screening of the Prestwick Chemical Library.

A. Schematic workflow of the Prestwick Chemical Library screening. B. Average luminescent fold-change over DMSO control of all 1,200 compounds from NK92+K562-NL condition are plotted. The screening was conducted in singlet, over two biological replicates. The dotted red line indicates 1.3-fold-change. Compounds with a luminescent fold-change over DMSO control ≥ 1.3 were considered enhancers of NK92 cytotoxicity. Points represent the average fold-change of n=2 biological replicates, except points 321-400 and 481-560 which represent fold-change from one replicate.

Figure 3. Colistin sulfate salt increases NK92 cytotoxicity against K562-NL.

NK92 and K562-NL cells were seeded into 96-well V bottom plates containing identified drug hits (10 μM) from the Prestwick Chemical Library at a E:T ratio of 1, with 10,000 K562-NL cells per well, for 5-hrs at 37°C. After the incubation, the supernatant was collected and transferred to 96-well black plates. A. Colistin sulfate salt. B. Nicotinamide. C. Diflorasone diacetate. D. Closantel. E. Benazepril hydrochloride. F. Tizanidine hydrochloride. G. monensin sodium salt. H. Zafirlukast. Mean +/- SD of n=2. Unpaired two-tailed Student’s t test. ns= not significant, **: p<0.01

Figure 4. Colistin sulfate salt increases NK92 cytotoxicity against K562-NL.

NK92 and K562-NL cells were seeded into a 96-well V bottom plate at a 1:1 or 3:1 E:T ratio with 10,000 K562-NL cells per well and treated with 1, 5, 10 and 20 μM of the indicated drug for 5-hrs at 37°C. After the incubation, the supernatant was collected and transferred to a 96-well black plate. A. Colistin sulfate salt. B. Nicotinamide. C. Diflorasone diacetate. D. Closantel. E.
Benazepril hydrochloride. **F.** Tizanidine hydrochloride. **G.** monensin sodium salt. **H.** Zafirlukast.

Mean +/- SD of n=2. Two-way ANOVA with Tukey’s multiple comparison test. **: p<0.01, ***: p<0.001, ****: p<0.0001.

Figure 5. Treatment with colistin sulfate increases NK92 cytotoxicity against K562 cells.

NK92 cells were mixed with K562-NL cells and seeded into a 96-well V bottom plate at a 0.3:1, 1:1 and 3:1 E:T ratio with 10,000 K562-NL cells per well and treated with 10 μM of colistin for 5-hrs at 37℃. After the incubation, the supernatant was collected and transferred to a 96-well black plate. The Biotek Synergy microplate reader was used to dispense CTZ and read luminescence. Percent specific lysis is depicted. Mean +/- SD of n=2. Statistical analysis with two-way ANOVA.

Figure 6. Treatment with Colistin sulfate failed to increase NK92-mediated killing of non-hematopoietic cell lines.

NK92 and K562-NL/A375-NL (A) or K562-NL/786O-NL (B) cells were seeded into a 96-well V bottom plate at a 1:1 E:T ratio with 10,000 target cells per well and treated with 10 μM of colistin for 5-hrs at 37℃. After the incubation, the supernatant was collected and transferred to a 96-well black plate. The Biotek Synergy microplate reader was used to dispense CTZ and read luminescence. Percent specific lysis is depicted. Mean +/- SD of n=2. Statistical analysis with two-tailed Student’s t-test. **: p<0.01; ****: p<0.0001.

Figure 7. The effect of colistin sulfate on NK cells is short lived.

A. Percent viability of NK92 cells by trypan-exclusion dye after 24-h treatment with 0, 1, 5, 10 μM of colistin. B NK92 cells were treated for 24-hrs with 0, 1, 5 and 10 μM of colistin. After
24-hrs, NK92 cells were washed and co-cultured with 10,000 K562-NL cells at a 1:1 E:T ratio for 5-hrs at 37°C. NK92 cells co-cultured with targets cells and treated with 10 μM of colistin during the 5-h incubation were also included. After the incubation, the supernatant was collected and transferred to a 96-well black plate. The Biotek Synergy microplate reader was used to dispense CTZ and read luminescence. Percent specific lysis is depicted. Mean +/- SD of n=3. One-way ANOVA with Dunnett’s multiple comparison test. ****: p<0.0001.

C. NK92 cells were treated for 1-h with 10 μM of colistin. After 1-h, the compound was washed and NK92 cells were co-cultured with 10,000 K562-NL cells in a 96-well V bottom plate at a 1:1 E:T ratio for 5-hrs at 37°C. NK92 cells co-cultured with targets cells and treated with 10 μM of colistin during the 5-h incubation were also included. After the incubation, the supernatant was collected and transferred to a 96-well black plate. The Biotek Synergy microplate reader was used to dispense CTZ and read luminescence. Percent specific lysis is depicted. Mean +/- SD of n=2. One-way ANOVA with Tukey’s multiple comparison test. ns= not significant, *: p<0.05, **: p<0.01; ****: p<0.0001.

D. NK92 and K562-NL cells were pre-treated separately with 10 μM of colistin. After 1-h, cells were washed and co-cultured with either treated or untreated cells. Cells were seeded in a 96-well V bottom plate at a E:T of 1 ratio using 10,000 K562-NL cells per well for 5-hrs at 37°C. NK92 cells co-cultured with targets cells and treated with 10 μM of colistin during the 5-h incubation were also included. After the incubation, the supernatant was collected and transferred to a 96-well black plate. The Biotek Synergy microplate reader was used to dispense CTZ and read luminescence. Percent specific lysis is depicted. Mean +/- SD of n=2. One-way ANOVA with Tukey’s multiple comparison test.
comparison test. Only significant differences between treatments are shown. *: p<0.05; ****:
p<0.0001.

Figure 8. Colistin sulfate enhances the killing activity of primary human NK cells.

Human NK cells isolated from PBMCs from healthy donors were mixed with K562-NL cells and were seeded into a 96-well V bottom plate at increasing E:T ratios, with 10,000 K562-NL cells per well and treated with 10 μM of colistin for 5-hrs at 37°C. After the incubation, the supernatant was collected and transferred to 96-well black plates. The Biotek Synergy microplate reader was used to dispense CTZ and read luminescence. Percent specific lysis is shown. Mean +/- SD of n=3 healthy donors. Statistical analysis was conducted with two-way ANOVA.

Supplementary Figure 1: layout of the screening plates.

Supplementary Figure 2: generation of K562-NL: K562 cells were transduced with a nano- luciferase expressing vector or a control and lysed. Luminescence was assessed (A). (B) K562-NL cells were sorted as single clones, and used as targets in cytotoxicity assays vis a vis with unsorted cells.
Figure 1
A

1. Dispense Prestwick Chemical Library and cells to assay plates.

 K562-NL + 10 uM drugs

 NK92 + K562-NL + 10 uM drugs

2. Treat with drugs for 5-hrs at 37C.

3. Transfer assay supernatant to read plates.

 collect supernatant

 Read plates

4. Dispense CTZ substrate and measure luminescence.

B

Specific lysis fold change

colistin sulfate salt

Figure 2
Figure 3

- **A**: Colistin sulfate
- **B**: Nicotinamide
- **C**: Diflorasone diacetate
- **D**: Closantel
- **E**: Benazepril hydrochloride
- **F**: Tizanidine hydrochloride
- **G**: Monensin sodium salt
- **H**: Zafirlukast

Legend:
- ns: Not significant
- ****: Significant at the 0.001 level
Figure 4

(A) % Specific Lysis vs. concentration (uM) for Colistin sulfate (E:T ratio 1:3).

(B) % Specific Lysis vs. concentration (uM) for Nicotinamide (E:T ratio 1:3).

(C) % Specific Lysis vs. concentration (uM) for Diflorasone diacetate (E:T ratio 1:3).

(D) % Specific Lysis vs. concentration (uM) for Closantel (E:T ratio 1:3).

(E) % Specific Lysis vs. concentration (uM) for Benazepril hydrochloride (E:T ratio 1:3).

(F) % Specific Lysis vs. concentration (uM) for Tizanidine hydrochloride (E:T ratio 1:3).

(G) % Specific Lysis vs. concentration (uM) for Monensin sodium salt (E:T ratio 1:3).

(H) % Specific Lysis vs. concentration (uM) for Zafirlukast (E:T ratio 1:3).
Figure 5

% Specific Lysis

p<0.0001

Colistin sulfate
untreated
Figure 6

A

K562-NL

A375-NL

% Specific Lysis

untreated

Colistin sulfate

untreated

Colistin sulfate

B

K562-NL

786O-NL

% Specific Lysis

untreated

Colistin sulfate

untreated

Colistin sulfate
Figure 7
Specific Lysis vs E:R ratio (E:R = 0.3:1, 1, 3) with treatments Colistin sulfate and untreated.

Figure 8: Graph showing differences in % Specific Lysis between the two treatments with p<0.0001.
Supplementary Figure 1

E:T=1

	1	2	3	4	5	6	7	8	9	10	11	12
A												
B												
C												
D												
E												
F												
G												
H												

10% DMSO | | | | | | | | | | | | |

E:T=9

	1	2	3	4	5	6	7	8	9	10	11	12
A												
B												
C												
D												
E												
F												
G												
H												

10% DMSO | | | | | | | | | | | | |

Targets alone

	1	2	3	4	5	6	7	8	9	10	11	12
A												
B												
C												
D												
E												
F												
G												
H												

10% DMSO | | | | | | | | | | | | |

Digitonin | | | | | | | | | | | | |

Supplementary Figure 1
Supplemental Table 1. Fold-change of NK92 and K562-NL cells treated with compounds from the Prestwick Chemical Library drug screening.

Fold-change of luminescent values of all wells containing compounds compared DMSO control wells in the same plate. Each compound was evaluated in singlet over 2 biological replicates. aPlates 5 & 7: fold-change of one replicate.

Prestw number	Plate # / Well position	Chemical name	Target alone	1:1 E:T	
Prestw-1	01A02	Azaguanine-8	0.84	1.16	
Prestw-2	01A03	Allantoin	0.86	1.15	
Prestw-3	01A04	Acetazolamide	0.87	1.13	
Prestw-4	01A05	Metformin hydrochloride	0.86	1.16	
Prestw-5	01A06	Atracurium besylate	0.83	1.15	
Prestw-6	01A07	Isoflupredone acetate	0.76	1.19	
Prestw-7	01A08	Amiloride hydrochloride dihydrate	0.89	1.20	
Prestw-8	01A09	Amprolium hydrochloride	0.85	1.19	
Prestw-9	01A10	Hydrochlorothiazide	0.81	1.20	
Prestw-10	01A11	Sulfaguanidine	0.79	1.16	
Prestw-11	01B02	Meticrane	0.86	1.05	
Prestw-12	01B03	Benzonatate	0.81	1.16	
Prestw-13	01B04	Hydroflumethiazide	0.92	1.16	
Prestw-14	01B05	Sulfacetamide sodic hydrate	0.83	1.09	
Prestw-15	01B06	Heptaminol hydrochloride	0.87	1.06	
Prestw-16	01B07	Sulfathiazole	0.88	1.17	
Prestw-17	01B08	Levodopa	0.86	1.12	
Prestw-18	01B09	Idoxuridine	0.89	1.17	
Prestw-19	01B10	Captopril	0.84	1.11	
Prestw-20	01B11	Minoxidil	0.88	1.10	
Prestw-21	01C02	Sulfaphenazole	0.91	1.10	
Prestw-22	01C03	Panthenol (D)	0.97	1.15	
Prestw-23	01C04	Sulfadiazine	0.93	1.06	
Prestw-24	01C05	Norethynodrel	0.98	1.08	
Prestw-25	01C06	Thiamphenicol	0.91	1.11	
Prestw-26	01C07	Cimetidine	0.90	1.10	
Prestw-27	01C08	Doxylamine succinate	0.93	1.08	
Prestw-28	01C09	Ethambutol dihydrochloride	0.81	1.12	
Prestw-29	01C10	Antipyrine	0.80	1.00	
Prestw-30	01C11	Antipyrine, 4-hydroxy	0.83	1.10	
Prestw-31	01D02	Chloramphenicol	0.89	1.04	
Prestw-32	01D03	Epirizole	0.88	1.03	
Prestw-33	01D04	Diprophylline	0.85	1.04	
Prestw-34	01D05	Triamterene	0.92	1.08	
Prestw-35	01D06	Dapsone	0.94	1.08	
Prestw-36	01D07	Troleandomycin	0.91	1.15	
Prestw-37	01D08	Pyrimethamine	0.82	1.06	
Prestw-38	01D09	Hexamethonium dibromide dihydrate	0.89	1.13	
Prestw-39	01D10	Diflunisal	0.79	1.06	
Prestw-40	01D11	Niclosamide	0.81	1.18	
Prestw-41	01E02	Procaine hydrochloride	0.92	1.07	
Prestw-42	01E03	Moxisylyte hydrochloride	0.94	1.10	
Prestw-43	01E04	Betazole hydrochloride	0.95	1.06	
Prestw-44	01E05	Isoxicam	0.91	1.00	
Prestw-45	01E06	Naproxen	0.91	1.05	
Prestw-46	01E07	Naphazoline hydrochloride	0.92	1.08	
Prestw-47	01E08	Ticlopidine hydrochloride	0.88	1.12	
Prestw-48	01E09	Dicyclomine hydrochloride	0.89	1.05	
Prestw-49	01E10	Amyleine hydrochloride	0.84	1.04	
Prestw-50	01E11	Lidocaïne hydrochloride	0.92	1.04	
Prestw-51	01F02	Trichlorfon	0.93	0.99	
Prestw-52	01F03	Carbamazepine	0.95	1.02	
Prestw-53	01F04	Triflupromazine hydrochloride	0.94	0.96	
Prestw-54	01F05	Mefenamic acid	0.91	1.05	
Prestw-55	01F06	Acetohexamide	0.95	1.06	
Prestw-56	01F07	Sulpiride	0.93	1.02	
Prestw-57	01F08	Benoxinate hydrochloride	0.85	1.00	
Prestw-58	01F09	Oxethazaine	0.82	1.01	
Prestw-59	01F10	Pheniramine maleate	0.80	1.13	
Prestw-60	01F11	Tolazoline hydrochloride	0.81	1.02	
Prestw-61	01G02	Morantel tartrate	0.87	1.00	
Prestw-62	01G03	Homatropine hydrobromide (R,S)	0.89	0.99	
Prestw-63	01G04	Nifedipine	0.79	1.03	
Code	Identifier	Name	Value 1	Value 2	
----------	------------	-----------------------------	---------	---------	
Prestw-64	01G05	Chlorpromazine hydrochloride	0.91	1.01	
Prestw-65	01G06	Diphenhydramine hydrochloride	0.77	0.96	
Prestw-66	01G07	Minaprine dihydrochloride	0.83	1.03	
Prestw-67	01G08	Miconazole	0.85	1.06	
Prestw-68	01G09	Isoxsuprine hydrochloride	0.84	1.00	
Prestw-69	01G10	Acebutolol hydrochloride	0.85	1.02	
Prestw-70	01G11	Tolnaftate	0.85	1.06	
Prestw-71	01H02	Todralazine hydrochloride	0.82	1.02	
Prestw-72	01H03	Imipramine hydrochloride	0.81	0.91	
Prestw-73	01H04	Sulindac	0.83	0.99	
Prestw-74	01H05	Amitryptiline hydrochloride	0.90	0.91	
Prestw-75	01H06	Adiphenine hydrochloride	0.87	1.01	
Prestw-76	01H07	Dibucaine	0.87	0.99	
Prestw-77	01H08	Prednisone	0.85	1.02	
Prestw-78	01H09	Thioridazine hydrochloride	0.82	0.98	
Prestw-79	01H10	Diphemanil methylsulfate	0.72	0.99	
Prestw-80	01H11	Trimethobenzamine hydrochloride	0.84	1.06	
Plate 2					
Prestw-81	02A02	Metronidazole	0.89	1.16	
Prestw-82	02A03	Fulvestrant	0.97	1.16	
Prestw-83	02A04	Edrophonium chloride	0.92	1.24	
Prestw-84	02A05	Moroxidine hydrochloride	0.83	1.13	
Prestw-85	02A06	Baclofen (R,S)	0.94	1.13	
Prestw-86	02A07	Acyclovir	0.95	1.17	
Prestw-87	02A08	Diazoxide	0.91	1.19	
Prestw-88	02A09	Amidopyrine	0.93	1.12	
Prestw-89	02A10	Busulfan	0.90	1.20	
Prestw-90	02A11	Pindolol	0.91	1.19	
Prestw-91	02B02	Khellin	0.86	1.03	
Prestw-92	02B03	Zimelidine dihydrochloride monohydrate	0.92	1.08	
Prestw-93	02B04	Azacyclonol	0.86	1.03	
Prestw-94	02B05	Azathioprine	0.89	1.07	
Prestw-95	02B06	Lynestrenol	0.90	1.10	
Prestw-96	02B07	Guanabenz acetate	0.95	1.19	
Prestw-97	02B08	Disulfiram	0.95	0.87	
Prestw-98	02B09	Acetylsalicylsalicyclic acid	0.93	1.23	
Prestw-99	02B10	Mianserine hydrochloride	0.96	1.08	
Prestw-100	02B11	Nocodazole	0.99	1.25	
Code	Description	Value1	Value2		
--------	---	--------	--------		
Prestw-101	R(-) Apomorphine hydrochloride hemihydrate	0.89	1.10		
Prestw-102	Amoxapine	0.87	0.86		
Prestw-103	Cyproheptadine hydrochloride	0.84	1.09		
Prestw-104	Famotidine	0.88	1.16		
Prestw-105	Danazol	0.98	1.07		
Prestw-106	Nicorandil	0.93	1.14		
Prestw-1314	Pioglitazone	1.02	1.16		
Prestw-108	Nomifensine maleate	0.89	1.04		
Prestw-109	Dizocilpine maleate	0.86	1.04		
Prestw-1192	Oxandrolone	0.83	1.16		
Prestw-111	Naloxone hydrochloride	0.94	1.08		
Prestw-112	Metolozone	0.80	1.01		
Prestw-113	Ciprofloxacin hydrochloride	0.93	1.02		
Prestw-114	Ampicillin trihydrate	0.91	1.06		
Prestw-115	Haloperidol	0.95	1.06		
Prestw-116	Naltrexone hydrochloride dihydrate	0.90	1.06		
Prestw-117	Chlorpheniramine maleate	0.90	1.00		
Prestw-118	Nalbuphine hydrochloride	0.85	1.05		
Prestw-119	Picotamide monohydrate	0.83	1.13		
Prestw-120	Triamcinolone	0.81	1.14		
Prestw-121	Bromocryptine mesylate	0.85	1.24		
Prestw-1471	Amfepramone hydrochloride	0.93	1.08		
Prestw-123	Dehydrocholic acid	0.93	1.15		
Code	Name	Value1	Value2		
---------	-------------------------------	--------	--------		
Prestw-1184	Tioconazole	0.94	0.98		
Prestw-125	Perphenazine	0.98	0.45		
Prestw-126	Mefloquine hydrochloride	0.95	1.03		
Prestw-127	Isoconazole	0.88	1.04		
Prestw-128	Spironolactone	0.86	1.11		
Prestw-129	Pirenzepine dihydrochloride	0.88	1.09		
Prestw-130	Dexamethasone acetate	0.88	1.13		
Prestw-131	Glipizide	0.86	1.07		
Prestw-132	Loxapine succinate	0.78	0.90		
Prestw-133	Hydroxyzine dihydrochloride	0.77	0.80		
Prestw-134	Diltiazem hydrochloride	1.00	1.03		
Prestw-135	Methotrexate	0.88	1.10		
Prestw-136	Astemizole	0.94	0.77		
Prestw-137	Clindamycin hydrochloride	0.92	1.08		
Prestw-138	Terfenadine	1.10	0.86		
Prestw-139	Cefotaxime sodium salt	0.93	1.11		
Prestw-140	Tetracycline hydrochloride	0.84	1.14		
Prestw-141	Verapamil hydrochloride	0.87	0.99		
Prestw-142	Dipyridamole	0.93	1.03		
Prestw-143	Chlorhexidine	1.36	0.41		
Prestw-144	Loperamide hydrochloride	0.93	0.83		
Prestw-145	Chlortetracycline hydrochloride	0.91	1.03		
Prestw-146	Tamoxifen citrate	0.87	1.00		
Code	Code	Substance	Unit 1	Unit 2	
----------	----------	------------------------------------	--------	--------	
Prestw-147	02G08	Nicergoline	0.90	1.03	
Prestw-148	02G09	Canrenoic acid potassium salt	0.87	1.01	
Prestw-149	02G10	Thioproperazine dimesylate	0.86	0.77	
Prestw-150	02G11	Dihydroergotamine tartrate	0.89	0.82	
Prestw-151	02H02	Erythromycin	0.76	0.95	
Prestw-1474	02H03	Chloroxine	0.84	0.97	
Prestw-153	02H04	Didanosine	0.87	0.97	
Prestw-154	02H05	Josamycin	0.87	0.97	
Prestw-155	02H06	Paclitaxel	0.82	0.94	
Prestw-156	02H07	Ivermectin	0.79	1.05	
Prestw-157	02H08	Gallamine triethiodide	0.79	0.95	
Prestw-158	02H09	Neomycin sulfate	0.87	1.02	
Prestw-159	02H10	Dihydrostreptomycin sulfate	0.85	1.01	
Prestw-160	02H11	Gentamicine sulfate	0.89	1.06	
Plate 3					
Prestw-161	03A02	Isoniazid	0.90	1.10	
Prestw-162	03A03	Pentylenetetrazole	0.95	1.14	
Prestw-163	03A04	Chlorzoxazone	0.89	1.09	
Prestw-164	03A05	Ornidazole	0.86	1.17	
Prestw-165	03A06	Ethosuximide	0.94	1.08	
Prestw-166	03A07	Mafenide hydrochloride	0.97	1.22	
Prestw-167	03A08	Riluzole hydrochloride	0.95	0.94	
Prestw-168	03A09	Nitrofurantoin	0.91	1.11	
Reference	Code	Name	Lower Limit	Upper Limit	
-----------	--------	-----------------------------	-------------	-------------	
Prestw-169	03A10	Hydralazine hydrochloride	0.87	1.14	
Prestw-170	03A11	Phenelzine sulfate	0.96	1.26	
Prestw-171	03B02	Tranexamic acid	0.86	1.04	
Prestw-172	03B03	Etofylline	1.01	1.18	
Prestw-173	03B04	Tranylcypromine hydrochloride	0.90	1.07	
Prestw-174	03B05	Alverine citrate salt	0.97	1.10	
Prestw-175	03B06	Aceclofenac	0.92	1.07	
Prestw-176	03B07	Iproniazide phosphate	0.88	1.14	
Prestw-177	03B08	Sulfamethoxazole	0.84	1.02	
Prestw-178	03B09	Mephenesin	0.90	1.07	
Prestw-179	03B10	Phenformin hydrochloride	0.86	1.12	
Prestw-180	03B11	Flutamide	0.96	0.96	
Prestw-181	03C02	Ampyrone	0.93	1.05	
Prestw-182	03C03	Levamisole hydrochloride	0.84	0.94	
Prestw-183	03C04	Pargyline hydrochloride	0.83	1.03	
Prestw-184	03C05	Methocarbamol	0.95	1.08	
Prestw-185	03C06	Aztreonam	0.86	1.06	
Prestw-186	03C07	Cloxacillin sodium salt	0.88	1.02	
Prestw-187	03C08	Catharanthine	0.89	1.06	
Prestw-188	03C09	Pentolinium bitartrate	0.85	1.02	
Prestw-189	03C10	Aminopurine, 6-benzyl	0.69	0.85	
Prestw-190	03C11	Tolbutamide	0.88	0.84	
Prestw-191	03D02	Midodrine hydrochloride	0.87	0.96	
Code	Name	Value1	Value2		
--------	--	--------	--------		
Prestw-192	03D03 Thalidomide	0.88	0.94		
Prestw-193	03D04 Oxolinic acid	0.94	0.98		
Prestw-194	03D05 Nimesulide	0.90	1.06		
Prestw-195	03D06 Hydrastinine hydrochloride	0.85	0.98		
Prestw-196	03D07 Pentoxifylline	0.93	0.97		
Prestw-197	03D08 Metaraminol bitartrate	0.85	0.99		
Prestw-198	03D09 Salbutamol	0.86	1.11		
Prestw-199	03D10 Prilocaine hydrochloride	0.91	0.99		
Prestw-200	03D11 Camptothecine (S,+)	0.88	0.87		
Prestw-201	03E02 Ranitidine hydrochloride	0.90	1.11		
Prestw-202	03E03 Tiratricol, 3,3',5-triiodothyroacetic acid	0.83	1.06		
Prestw-203	03E04 Flufenamic acid	0.92	1.05		
Prestw-204	03E05 Flumequine	0.98	1.09		
Prestw-205	03E06 Tolfenamic acid	0.90	1.10		
Prestw-206	03E07 Meclofenamic acid sodium salt monohydrate	0.85	1.06		
Prestw-1181	03E08 Tibolone	1.04	1.02		
Prestw-208	03E09 Trimethoprim	0.94	1.03		
Prestw-209	03E10 Metoclopramide monohydrochloride	0.87	1.03		
Prestw-210	03E11 Fenbendazole	0.90	0.90		
Prestw-211	03F02 Piroxicam	0.92	0.94		
Prestw-212	03F03 Pyrantel tartrate	0.86	0.93		
Prestw-213	03F04 Fenspiride hydrochloride	0.93	0.97		
Prestw-214	03F05 Gemfibrozil	0.87	0.95		
Code	Description	Value 1	Value 2		
--------	--------------------------------------	---------	---------		
Prestw-215	Mefexamide hydrochloride	0.85	0.97		
Prestw-216	Tiapride hydrochloride	0.92	1.05		
Prestw-217	Mebendazole	0.91	1.03		
Prestw-218	Fenbufen	0.86	1.03		
Prestw-219	Ketoprofen	0.88	0.96		
Prestw-220	Indapamidine	0.88	1.01		
Prestw-221	Norfloxacin	0.82	1.01		
Prestw-222	Antimycin A	0.95	1.15		
Prestw-223	Xylometazoline hydrochloride	0.87	1.00		
Prestw-224	Oxymetazoline hydrochloride	0.89	1.02		
Prestw-225	Nifenazone	0.87	0.95		
Prestw-226	Griseofulvin	0.75	0.95		
Prestw-227	Clemizole hydrochloride	0.88	1.02		
Prestw-228	Tropicamide	0.86	0.83		
Prestw-229	Nefopam hydrochloride	0.88	0.70		
Prestw-230	Phentolamine hydrochloride	0.86	0.75		
Prestw-231	Etodolac	0.92	1.07		
Prestw-232	Scopolamin-N-oxide hydrobromide	0.95	0.97		
Prestw-233	Hyoscyamine (L)	0.95	1.01		
Prestw-234	Chlorphensin carbamate	0.92	0.99		
Prestw-235	Metampicillin sodium salt	0.92	0.94		
Prestw-236	Dilazep dihydrochloride	0.95	1.01		
Prestw-237	Ofloxacin	0.97	1.05		
---	---	---	---	---	---
Prestw-	03H09	Lomefloxacin hydrochloride	0.96	1.03	
Prestw-	03H10	Orphenadrine hydrochloride	0.95	0.91	
Prestw-	03H11	Proglumide	0.85	1.08	
Plate 4					
Prestw-	04A02	Mexiletine hydrochloride	0.91	1.20	
Prestw-	04A03	Flavoxate hydrochloride	0.84	1.16	
Prestw-	04A04	Bufexamac	0.85	1.09	
Prestw-	04A05	Glutethimide, para-amino	0.96	1.22	
Prestw-	04A06	Dropropizine (R,S)	0.89	1.21	
Prestw-	04A07	Pinacidil	0.92	1.03	
Prestw-	04A08	Albendazole	0.92	1.02	
Prestw-	04A09	Clonidine hydrochloride	0.86	1.20	
Prestw-	04A10	Bupropion hydrochloride	0.86	1.29	
Prestw-	04A11	Alprenolol hydrochloride	0.90	1.18	
Prestw-	04B02	Chlorothiazide	0.82	0.95	
Prestw-	04B03	Diphenidol hydrochloride	0.78	1.10	
Prestw-	04B04	Norethindrone	0.80	1.13	
Prestw-	04B05	Nortriptyline hydrochloride	0.80	0.99	
Prestw-	04B06	Niflumic acid	0.82	1.17	
Prestw-	04B07	Isotretinoin	0.84	1.23	
Prestw-	04B08	Retinoic acid	0.89	1.24	
Prestw-	04B09	Antazoline hydrochloride	0.83	1.11	
Prestw-	04B10	Ethacrynic acid	0.89	1.20	
Code	Name	Min	Max		
----------	-----------------------------------	-----	-----		
Prestw-260	Praziquantel	0.86	1.10		
Prestw-261	Ethisterone	0.81	1.04		
Prestw-262	Triprolidine hydrochloride	0.83	1.12		
Prestw-263	Doxepin hydrochloride	0.86	0.86		
Prestw-264	Dyclonine hydrochloride	0.76	1.01		
Prestw-265	Dimenhydrinate	0.82	1.09		
Prestw-266	Disopyramide	0.87	1.14		
Prestw-267	Clotrimazole	0.92	1.06		
Prestw-268	Vinpocetine	0.86	1.25		
Prestw-269	Clomipramine hydrochloride	0.84	0.97		
Prestw-270	Fendiline hydrochloride	0.89	0.91		
Prestw-271	Vincamine	0.82	1.12		
Prestw-272	Indomethacin	0.83	1.02		
Prestw-273	Cortisone	0.78	1.11		
Prestw-274	Prednisolone	0.98	1.16		
Prestw-275	Fenofibrate	0.82	1.12		
Prestw-276	Bumetanide	0.88	1.25		
Prestw-277	Labetalol hydrochloride	0.84	1.09		
Prestw-278	Cinnarizine	0.86	1.18		
Prestw-279	Methylprednisolone, 6-alpha	0.80	1.26		
Prestw-280	Quinidine hydrochloride monohydrate	0.80	1.14		
Prestw-281	Fludrocortisone acetate	0.81	1.11		
Prestw-282	Fenoterol hydrobromide	0.82	1.15		
Code	Name	Value1	Value2		
--------	---	--------	--------		
04E04	Homochlorcyclizine dihydrochloride	0.72	0.81		
04E05	Diethylcarbamazine citrate	0.78	1.19		
04E06	Chenodiol	0.86	1.13		
04E07	Perhexiline maleate	0.82	0.80		
04E08	Oxybutynin chloride	0.81	1.06		
04E09	Spiperone	0.86	1.14		
04E10	Pyrilamine maleate	0.83	1.13		
04E11	Sulfinpyrazone	0.77	1.09		
04F02	Dantrolene sodium salt	0.73	0.97		
04F03	Trazodone hydrochloride	0.71	0.96		
04F04	Glafenine hydrochloride	0.79	1.09		
04F05	Pimethixene maleate	0.73	0.81		
04F06	Pergolide mesylate	0.85	1.26		
04F07	Acemetacin	0.77	1.05		
04F08	Benzydamine hydrochloride	0.83	0.99		
04F09	Fipexide hydrochloride	0.84	1.17		
04F10	Mifepristone	0.84	1.17		
04F11	Diperodon hydrochloride	0.81	1.01		
04G02	Lisinopril	0.80	0.96		
04G03	Lincomycin hydrochloride	0.79	1.04		
04G04	Telenzepine dihydrochloride	0.80	1.06		
04G05	Econazole nitrate	0.81	1.21		
04G06	Bupivacaine hydrochloride	0.80	1.26		
Prestw-306	04G07	Clemastine fumarate	0.77	0.86	
Prestw-307	04G08	Oxytetracycline dihydrate	0.84	1.29	
Prestw-308	04G09	Pimozide	0.85	1.16	
Prestw-309	04G10	Amodiaquin dihydrochloride dihydrate	0.89	0.72	
Prestw-310	04G11	Mebeverine hydrochloride	0.84	1.19	
Prestw-311	04H02	Ifenprodil tartrate	0.75	0.98	
Prestw-312	04H03	Flunarizine dihydrochloride	0.78	1.17	
Prestw-313	04H04	Trifluoperazine dihydrochloride	0.79	0.78	
Prestw-314	04H05	Enalapril maleate	0.85	1.05	
Prestw-315	04H06	Minocycline hydrochloride	0.83	1.04	
Prestw-316	04H07	Glibenclamide	0.81	1.19	
Prestw-317	04H08	Guanethidine sulfate	0.82	1.07	
Prestw-318	04H09	Quinacrine dihydrochloride dihydrate	0.85	0.47	
Prestw-319	04H10	Clofilium tosylate	0.85	1.08	
Prestw-320	04H11	Fluphenazine dihydrochloride	0.85	0.76	

Plate 5

Prestw-321	05A02	Streptomycin sulfate	1.03	1.09
Prestw-322	05A03	Alfuzosin hydrochloride	1.00	1.14
Prestw-323	05A04	Chlorpropamide^a	1.04	1.09
Prestw-324	05A05	Phenylpropanolamine hydrochloride	1.03	1.08
Prestw-325	05A06	Ascorbic acid	1.13	1.10
Prestw-326	05A07	Methyldopa (L,−)	1.08	1.12
Prestw-327	05A08	Cefoperazone dihydrate	1.04	1.09
Prestw-328	05A09	Zoxazolamine	0.97	1.17
Prestw-329	05A10	Tacrine hydrochloride hydrate	0.92	1.07
Prestw-330	05A11	Bisoprolol fumarate	0.97	1.27
Prestw-331	05B02	Tremorine dihydrochloride	0.87	0.79
Prestw-332	05B03	Practolol	0.89	0.93
Prestw-333	05B04	Zidovudine, AZT	0.97	0.93
Prestw-334	05B05	Sulfisoxazole	0.94	0.97
Prestw-335	05B06	Zaprinast	1.04	1.02
Prestw-336	05B07	Chlormezanone	0.92	0.91
Prestw-337	05B08	Procainamide hydrochloride	0.93	0.98
Prestw-338	05B09	N6-methyladenosine	0.97	1.00
Prestw-339	05B10	Guanfacine hydrochloride	1.44	1.05
Prestw-340	05B11	Domperidone	0.92	0.62
Prestw-341	05C02	Furosemide	0.93	0.93
Prestw-342	05C03	Methapyrilene hydrochloride	0.90	0.96
Prestw-343	05C04	Desipramine hydrochloride	0.78	0.65
Prestw-344	05C05	Clorgyline hydrochloride	0.88	0.98
Prestw-345	05C06	Clenbuterol hydrochloride	0.96	0.94
Prestw-346	05C07	Maprotiline hydrochloride	0.99	0.78
Prestw-347	05C08	Thioguanosine	0.96	1.04
Prestw-348	05C09	Chlorprothixene hydrochloride	0.93	0.88
Prestw-349	05C10	Ritodrine hydrochloride	1.69	1.03
Prestw-350	05C11	Clozapine	0.96	0.73
Prestw-351	05D02	Chlorthalidone	0.91	0.88
Prestw-352	05D03	Dobutamine hydrochloride	0.86	0.91
Prestw-353	05D04	Moclobemide	0.95	1.00
Prestw-354	05D05	Clopamide	0.98	0.94
Prestw-355	05D06	Hycanthone	0.93	0.74
Prestw-356	05D07	Adenosine 5'-monophosphate monohydrate	1.03	1.12
Prestw-357	05D08	Amoxicillin	1.05	1.22
Prestw-358	05D09	Cephalexin monohydrate	1.07	1.17
Prestw-359	05D10	Dextromethorphan hydrobromide monohydrate	1.09	1.01
Prestw-360	05D11	Droperidol	1.04	0.95
Prestw-361	05E02	Bambuterol hydrochloride	0.97	0.88
Prestw-362	05E03	Betamethasone	0.95	1.09
Prestw-363	05E04	Colchicine	1.01	0.38
Prestw-364	05E05	Metergoline	1.08	0.94
Prestw-365	05E06	Brinzolamide	1.02	0.98
Prestw-366	05E07	Ambroxol hydrochloride	0.98	1.13
Prestw-367	05E08	Benfluorex hydrochloride	0.99	1.09
Prestw-368	05E09	Bepridil hydrochloride	0.96	0.99
Prestw-369	05E10	Meloxicam	1.50	0.98
Prestw-370	05E11	Benzbromarone	1.01	0.94
Prestw-371	05F02	Ketonofen fumarate	0.88	0.78
Prestw-372	05F03	Debrisoquin sulfate	0.98	0.99
Prestw-373	05F04	Amethopterin (R,S)	0.97	1.07
Prestw-374	05F05	Methylergometrine maleate	1.09	0.99
Prestw-375	05F06	Methiothepin maleate	1.14	0.63
Prestw-376	05F07	Clofazimine	0.98	0.98
Prestw-377	05F08	Nafronyl oxalate	1.09	1.14
Prestw-378	05F09	Bezafibrate	1.02	1.12
Prestw-1152	05F10	Nefazodone HCl	1.34	1.04
Prestw-380	05F11	Clebopride maleate	1.12	0.80
Prestw-381	05G02	Lidoflazine	0.80	0.53
Prestw-382	05G03	Betaxolol hydrochloride	1.00	0.96
Prestw-383	05G04	Nicardipine hydrochloride	0.36	0.45
Prestw-384	05G05	Probucol	0.95	1.02
Prestw-385	05G06	Mitoxantrone dihydrochloride	1.05	0.87
Prestw-386	05G07	GBR 12909 dihydrochloride	0.98	0.96
Prestw-387	05G08	Carbetapentane citrate	1.00	1.05
Prestw-388	05G09	Dequalinium dichloride	1.12	0.69
Prestw-389	05G10	Ketoconazole	1.00	0.85
Prestw-390	05G11	Fusidic acid sodium salt	1.04	0.76
Prestw-391	05H02	Terbutaline hemisulfate	0.91	1.01
Prestw-392	05H03	Ketanserin tartrate hydrate	0.90	1.02
Prestw-393	05H04	Hemicolinium bromide	0.84	0.99
Prestw-394	05H05	Kanamycin A sulfate	0.97	1.05
Prestw-395	05H06	Amikacin hydrate	0.95	0.98
Prestw-396	05H07	Etoposide	0.97	1.04
Code	Reference	Compound	Value1	Value2																			
Prestw-397	05H08	Clomiphene citrate (Z,E)	0.94	0.88																			
Prestw-398	05H09	Oxantel pamoate	0.93	1.03																			
Prestw-399	05H10	Prochlorperazine dimaleate																					
Prestw-400	05H11	Hesperid	0.95	1.22																			
	Plate 6																						
Prestw-401	06A02	Testosterone propionate	1.02	1.14																			
Prestw-402	06A03	Arecoline hydrobromide	1.03	1.12																			
Prestw-403	06A04	Thyroxine (L)	1.00	0.87																			
Prestw-1288	06A05	Idebenone	1.03	0.88																			
Prestw-405	06A06	Pepstatin A	0.99	1.01																			
Prestw-406	06A07	SR-95639A	0.99	1.06																			
Prestw-407	06A08	Adamantamine fumarate	1.03	1.20																			
Prestw-408	06A09	Butoconazole nitrate	1.04	1.38																			
Prestw-409	06A10	Amiodarone hydrochloride	1.00	1.34																			
Prestw-410	06A11	Amphotericin B	1.04	1.50																			
Prestw-411	06B02	Androsterone	0.93	1.03																			
Prestw-1489	06B03	Amifostine	0.94	1.09																			
Prestw-413	06B04	Carbarsone	0.94	0.95																			
Prestw-1219	06B05	Amlodipine	1.07	0.72																			
Prestw-1147	06B06	Modafinil	1.00	0.99																			
Prestw-416	06B07	Bacampicillin hydrochloride	1.06	1.12																			
Prestw-1298	06B08	Lamivudine	0.98	1.00																			
Prestw-418	06B09	Biotin	0.99	1.27																			
Code	Compound	Min	Max																				
---------	-----------------------------------	-----	-----																				
Prestw-419	Bisacodyl	1.04	1.28																				
Prestw-1242	Erlotinib	0.99	1.25																				
Prestw-421	Suloctidil	0.99	1.03																				
Prestw-1368	Zotepine	0.97	0.82																				
Prestw-423	Carisoprodol	0.97	1.02																				
Prestw-424	Cephalosporanic acid, 7-amino	0.97	1.07																				
Prestw-425	Chicago sky blue 6B	0.88	1.01																				
Prestw-426	Buflomedil hydrochloride	0.98	1.13																				
Prestw-1393	Dibenzepine hydrochloride	1.06	1.09																				
Prestw-428	Roxatidine Acetate HCl	1.05	1.26																				
Prestw-429	Cholecalciferol	1.00	1.29																				
Prestw-430	Cisapride	0.97	1.13																				
Prestw-1303	Pefloxacin	0.86	1.05																				
Prestw-432	Corticosterone	1.03	1.18																				
Prestw-433	Cyanocobalamin	0.85	1.10																				
Prestw-434	Cefadroxil	0.94	1.11																				
Prestw-435	Cyclosporin A	0.93	0.45																				
Prestw-436	Digitoxigenin	1.12	0.78																				
Prestw-437	Digoxin	1.11	0.85																				
Prestw-438	Doxorubicin hydrochloride	1.01	1.06																				
Prestw-439	Carbimazole	0.95	1.22																				
Prestw-440	Epiandrosterone	1.00	1.23																				
Prestw-441	Estradiol-17 beta	0.88	1.04																				
Code	Code	Name	API	AUC																			
----------	----------	---	----------	----------																			
Prestw-1380	06E03	Clobutinol hydrochloride	0.98	1.22																			
Prestw-443	06E04	Gabazine	0.92	1.15																			
Prestw-1156	06E05	Oxcarbazepine	0.95	1.14																			
Prestw-445	06E06	Cyclobenzaprine hydrochloride	0.96	0.87																			
Prestw-446	06E07	Carteolol hydrochloride	0.98	1.11																			
Prestw-447	06E08	Hydrocortisone base	1.06	1.22																			
Prestw-448	06E09	Hydroxytacrine maleate (R,S)	1.02	1.31																			
Prestw-449	06E10	Pilocarpine nitrate	1.02	1.33																			
Prestw-450	06E11	Dicloxacillin sodium salt	1.03	1.18																			
Prestw-451	06F02	Alizapride HCl	1.00	1.20																			
Prestw-1161	06F03	Stanozolol	0.92	1.16																			
Prestw-1257	06F04	Calcipotriene	0.96	1.31																			
Prestw-1429	06F05	Linezolid	0.98	1.11																			
Prestw-455	06F06	Mebhydrolone 1,5-naphtalenedisulfonate	0.96	1.12																			
Prestw-456	06F07	Meclocycline sulfosalicylate	0.98	1.06																			
Prestw-457	06F08	Meclozine dihydrochloride	1.00	1.19																			
Prestw-458	06F09	Melatonin	0.98	1.25																			
Prestw-1251	06F10	Butalbital	1.08	1.43																			
Prestw-460	06F11	Dinoprost trometamol	0.99	1.12																			
Prestw-461	06G02	Tropisetron HCl	0.98	1.11																			
Prestw-462	06G03	Cefixime	0.93	1.13																			
Prestw-463	06G04	Metrizamide	0.92	1.27																			
Prestw-1323	06G05	Quetiapine	0.80	1.04																			
Code	Section	Chemical Name	Ratio 1	Ratio 2																			
----------	---------	------------------------------------	---------	---------																			
Prestw-1464	06G06	Tosufloxacin hydrochloride	0.93	1.13																			
Prestw-1400	06G07	Efavirenz	0.81	1.01																			
Prestw-1157	06G08	Rifapentine	0.96	1.13																			
Prestw-468	06G09	Neostigmine bromide	0.95	1.33																			
Prestw-469	06G10	Niridazole	0.92	1.19																			
Prestw-470	06G11	Ceforanide	0.90	1.12																			
Prestw-1358	06H02	Vatalanib	0.79	0.99																			
Prestw-1295	06H03	Itopride	0.89	1.03																			
Prestw-473	06H04	Cefotetan	0.93	1.01																			
Prestw-1254	06H05	Fentiazac	0.94	1.08																			
Prestw-475	06H06	Brompheniramine maleate	0.96	0.94																			
Prestw-476	06H07	Primaquine diphosphate	1.07	0.95																			
Prestw-477	06H08	Progesterone	0.97	1.02																			
Prestw-478	06H09	Felodipine	0.92	1.27																			
Prestw-1325	06H10	Raclopride	0.96	1.23																			
Prestw-1385	06H11	Closantel	0.97	1.41																			
Plate 7th																							
Prestw-481	07A02	Serotonin hydrochloride	0.78	1.33																			
Prestw-482	07A03	Cefotiam hydrochloride	0.90	1.05																			
Prestw-1336	07A04	Rofecoxib	0.73	1.17																			
Prestw-484	07A05	Benperidol	0.97	1.37																			
Prestw-485	07A06	Cefaclor	0.89	1.20																			
Prestw-486	07A07	Colistin sulfate	0.80	2.02																			
Code	Code	Name	Value1	Value2																			
----------	----------	-------------------------------	--------	--------																			
Prestw-487	07A08	Daunorubicin hydrochloride	0.87	1.02																			
Prestw-488	07A09	Dosulepin hydrochloride	0.90	1.09																			
Prestw-489	07A10	Ceftazidime pentahydrate	0.88	1.44																			
Prestw-490	07A11	Iobenguane sulfate	0.90	1.76																			
Prestw-491	07B02	Metixene hydrochloride	0.80	0.62																			
Prestw-492	07B03	Nitrofural	0.87	1.29																			
Prestw-493	07B04	Omeprazole	0.87	1.19																			
Prestw-494	07B05	Propylthiouracil	0.84	1.08																			
Prestw-495	07B06	Terconazole	0.95	0.63																			
Prestw-496	07B07	Tiaprofenic acid	0.83	0.98																			
Prestw-497	07B08	Vancomycin hydrochloride	0.87	1.18																			
Prestw-498	07B09	Artemisinin	0.89	1.32																			
Prestw-499	07B10	Propafenone hydrochloride	0.88	1.51																			
Prestw-500	07B11	Ethamivan	0.79	1.81																			
Prestw-501	07C02	Vigabatrin	0.81	1.46																			
Prestw-502	07C03	Biperiden hydrochloride	0.75	1.42																			
Prestw-503	07C04	Cetirizine dihydrochloride	0.70	1.45																			
Prestw-504	07C05	Etifenin	0.91	1.18																			
Prestw-505	07C06	Metaproterenol sulfate, orciprenaline sulfate	0.86	1.35																			
Prestw-506	07C07	Sisomicin sulfate	0.94	1.09																			
Prestw-1159	07C08	Sibutramine HCl	0.97	1.09																			
Prestw-508	07C09	Resveratrol	0.80	0.91																			
Prestw-509	07C10	Bromperidol	1.03	1.10																			
Prestw-510	07C11	Cyclizine hydrochloride	0.88	1.17																			
Prestw-511	07D02	Fluoxetine hydrochloride	0.87	1.27																			
Prestw-512	07D03	Iohexol	0.92	1.45																			
Prestw-513	07D04	Norcyclobenzaprine	0.89	1.02																			
Prestw-514	07D05	Pyrazinamide	0.87	1.13																			
Prestw-515	07D06	Trimethadione	0.96	1.24																			
Prestw-516	07D07	Lovastatin	0.99	1.21																			
Prestw-517	07D08	Nystatine	0.92	1.08																			
Prestw-518	07D09	Budesonide	0.83	1.56																			
Prestw-519	07D10	Imipenem	0.92	1.37																			
Prestw-520	07D11	Sulfasalazine	0.57	0.90																			
Prestw-1430	07E02	Lofexidine	0.99	1.31																			
Prestw-522	07E03	Thiostrepton	0.84	1.40																			
Prestw-1169	07E04	Miglitol	1.06	1.61																			
Prestw-524	07E05	Tiabendazole	1.02	1.08																			
Prestw-525	07E06	Rifampicin	0.87	1.19																			
Prestw-526	07E07	Ethionamide	1.06	0.86																			
Prestw-527	07E08	Tenoxicam	0.88	1.17																			
Prestw-528	07E09	Triflusal	0.96	1.54																			
Prestw-529	07E10	Mesoridazine besylate	0.96	1.23																			
Prestw-530	07E11	Trolox	1.05	1.32																			
Prestw-531	07F02	Pirenperone	0.99	1.54																			
Prestw-532	07F03	Isoquinoline, 6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydro, hydrochloride	1.01	1.34																			
Code	Label	Value1	Value2																				
--------	---------------------------	--------	--------																				
Prestw-533 07F04	Phenacetin	0.87	1.45																				
Prestw-534 07F05	Atovaquone	1.05	1.53																				
Prestw-535 07F06	Methoxamine hydrochloride	1.02	1.29																				
Prestw-953 07F07	(S)-(-)-Atenolol	1.08	1.34																				
Prestw-537 07F08	Piracetam	0.81	1.41																				
Prestw-538 07F09	Phenindione	1.08	1.50																				
Prestw-539 07F10	Thiocolchicoside	1.02	1.42																				
Prestw-540 07F11	Clorsulon	0.98	1.44																				
Prestw-541 07G02	Ciclopirox ethanolamine	0.91	1.23																				
Prestw-542 07G03	Probenecid	0.92	1.28																				
Prestw-543 07G04	Betahistine mesylate	0.90	1.37																				
Prestw-544 07G05	Tobramycin	1.02	1.25																				
Prestw-545 07G06	Tetramisole hydrochloride	0.87	1.16																				
Prestw-546 07G07	Pregnenolone	0.89	1.06																				
Prestw-547 07G08	Molsidomine	1.00	1.32																				
Prestw-548 07G09	Chloroquine diphosphate	1.10	1.20																				
Prestw-549 07G10	Trimetazidine dihydrochloride	0.96	1.49																				
Prestw-550 07G11	Parthenolide	1.03	0.93																				
Prestw-551 07H02	Hexitetidine	0.83	1.27																				
Prestw-552 07H03	Selegiline hydrochloride	0.93	1.22																				
Prestw-553 07H04	Pentamidine isethionate	1.00	1.28																				
Prestw-554 07H05	Tolazamide	0.93	1.19																				
Prestw-555 07H06	Nifuroxazide	0.86	1.11																				
Reference	Code	Name	Ratio 1	Ratio 2																			
-----------	----------	-----------------------------	---------	---------																			
Prestw-1144	07H07	Mirtazapine	0.93	1.00																			
Prestw-557	07H08	Dirithromycin	0.88	1.03																			
Prestw-558	07H09	Gliclazide	0.88	1.30																			
Prestw-559	07H10	DO 897/99	0.96	1.28																			
Prestw-560	07H11	Prenylamine lactate	0.95	1.13																			
Plate 8																							
Prestw-1188	08A02	Ziprasidone Hydrochloride	1.04	0.98																			
Prestw-1441	08A03	Mevastatin	1.04	0.92																			
Prestw-1322	08A04	Pyridostigmine iodd	1.03	1.06																			
Prestw-1491	08A05	Pentobarbital	1.03	1.23																			
Prestw-565	08A06	Atropine sulfate monohydrate	0.95	1.32																			
Prestw-566	08A07	Eserine sulfate, physostigmine sulfate	1.03	1.02																			
Prestw-1139	08A08	Itraconazole	0.93	0.99																			
Prestw-1174	08A09	Acarbose	0.98	1.48																			
Prestw-1403	08A10	Entacapone	1.03	1.44																			
Prestw-1449	08A11	Nicotinamide	0.97	1.85																			
Prestw-571	08B02	Tetracaïne hydrochloride	0.99	1.22																			
Prestw-572	08B03	Mometasone furoate	1.07	1.17																			
Prestw-1467	08B04	Troglitazone	1.02	1.13																			
Prestw-574	08B05	Dacarbazine	1.01	1.12																			
Prestw-1351	08B06	Tenatoprazole	0.99	1.15																			
Prestw-576	08B07	Acetopromazine maleate salt	1.03	0.84																			
Prestw-1271	08B08	Escitalopram	0.91	0.89																			
Code	Page	Compound	C1	C2																			
-----------	------	---------------------------------	----	----																			
Prestw-1158	08B09	Ropinirole HCl	0.95	1.28																			
Prestw-1297	08B10	Lacidipine	1.04	1.22																			
Prestw-1228	08B11	Argatroban	0.93	1.46																			
Prestw-1328	08C02	Reboxetine mesylate	0.98	1.07																			
Prestw-582	08C03	Lobelanidine hydrochloride	0.95	1.26																			
Prestw-583	08C04	Papaverine hydrochloride	0.83	1.11																			
Prestw-584	08C05	Yohimbine hydrochloride	1.02	1.14																			
Prestw-585	08C06	Lobeline alpha (-) hydrochloride	0.93	1.02																			
Prestw-1211	08C07	Alfacalcidol	1.00	1.09																			
Prestw-587	08C08	Cilostazol	0.97	0.99																			
Prestw-588	08C09	Galanthamine hydrobromide	0.98	1.13																			
Prestw-1130	08C10	Azelastine HCl	0.95	1.04																			
Prestw-1409	08C11	Etretinate	1.01	1.34																			
Prestw-1274	08D02	Emedastine	1.09	1.28																			
Prestw-1407	08D03	Etofenamate	0.81	1.28																			
Prestw-1369	08D04	Zaleplon	0.96	1.24																			
Prestw-594	08D05	Diclofenac sodium	1.04	1.17																			
Prestw-1410	08D06	Exemestane	0.93	1.09																			
Prestw-596	08D07	Convolamine hydrochloride	0.99	0.97																			
Prestw-1183	08D08	Temozolomide	0.97	1.10																			
Prestw-598	08D09	Xylazine	1.02	1.22																			
Prestw-1132	08D10	Celiprolol HCl	1.00	1.11																			
Prestw-1367	08D11	Zopiclone	0.97	1.18																			
Code	Description	Min	Max																				
----------	---------------------------	-----	-----																				
Prestw- 1198	Tranilast	0.91	1.16																				
Prestw- 1182	Tizanidine HCl	1.03	1.42																				
Prestw- 1364	Zafirlukast	0.94	1.54																				
Prestw- 1252	Butenafine	0.93	1.14																				
Prestw- 1121	Carbadox	0.99	1.09																				
Prestw- 1331	Rimantadine	0.99	0.98																				
Prestw- 607	Eburnamonine (-)	0.96	1.22																				
Prestw- 1460	Oxibendazol	1.04	1.23																				
Prestw- 1292	Ipsapirone	0.96	1.29																				
Prestw- 610	Harmaline hydrochloride dihydrate	0.97	1.11																				
Prestw- 611	Harmalol hydrochloride dihydrate	0.94	1.23																				
Prestw- 612	Harmol hydrochloride monohydrate	1.01	1.30																				
Prestw- 613	Harmine hydrochloride	0.88	1.10																				
Prestw- 1177	Carbidopa	0.93	1.08																				
Prestw- 615	Chrysene-1,4-quinone	1.00	1.06																				
Prestw- 616	Demecarium bromide	0.99	1.07																				
Prestw- 617	Quipazine dimaleate salt	1.01	1.14																				
Prestw- 1127	Acipimox	0.98	1.17																				
Prestw- 619	Diflorasone Diacetate	1.01	1.40																				
Prestw- 620	Harmane hydrochloride	0.98	1.22																				
Prestw- 621	Methoxy-6-harmalan	0.85	1.05																				
Prestw- 1217	Amisulpride	0.94	1.19																				
Prestw- 623	Pyridoxine hydrochloride	0.93	1.23																				
Code	Component	08G05	08G06	08G07	08G08	08G09	08G10	08G11	08H02	08H03	08H04	08H05	08H06	08H07	08H08	08H09	08H10	08H11	09A02	09A03	09A04	09A05	09A06
-------------	------------------------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
Prestw-1469	Mercaptopurine	0.91																					
Prestw-1134	Cytarabine	0.91	0.90																				
Prestw-626	Racecadotril	0.89																					
Prestw-627	Folic acid	0.97																					
Prestw-1129	Benazepril HCl	0.92																					
Prestw-1178	Aniracetam	0.92																					
Prestw-630	Dimethisoquin hydrochloride	0.92																					
Prestw-1210	Alendronate sodium	0.91																					
Prestw-632	Dipivefrin hydrochloride	0.88																					
Prestw-633	Thiorphan	0.88																					
Prestw-1463	Tomoxetine hydrochloride	0.83																					
Prestw-1299	Lapatinib ditosylate	0.94																					
Prestw-1488	Penciclovir	0.87																					
Prestw-1427	Levetiracetam	0.94																					
Prestw-1392	Dexamfluramine hydrochloride	0.88																					
Prestw-1408	Etoricoxib	0.90																					
Prestw-1341	Sertindole	0.86																					
Plate 9	Sulmazole	0.86																					
Prestw-641	Gefitinib	0.87																					
Prestw-1270	Flunisolide	0.93																					
Prestw-643	N-Acetyl-DL-homocysteine Thiolactone																						
Prestw-644	Flurandrenolide	0.89																					
Prestw-645	Flurandrenolide																						
Code	Compound	Value1	Value2																				
--------	------------------------------------	--------	--------																				
Prestw-1125	Oxiconazole Nitrate	0.89	0.87																				
Prestw-1166	Rebamipide	0.89	1.02																				
Prestw-1154	Nilvadipine	0.81	1.21																				
Prestw-649	Etanidazole	0.81	1.24																				
Prestw-650	Butirosin disulfate salt	0.88	1.60																				
Prestw-651	Glimepiride	0.82	0.94																				
Prestw-652	Picrotoxinin	0.92	0.99																				
Prestw-653	Mepenzolate bromide	0.90	1.09																				
Prestw-654	Benfotamine	0.87	1.00																				
Prestw-655	Halcinonide	0.87	1.05																				
Prestw-656	Lanatoside C	0.92	0.71																				
Prestw-657	Benzamil hydrochloride	0.93	0.78																				
Prestw-658	Suxibuzone	0.84	1.20																				
Prestw-659	6-Furfurylaminopurine	0.87	1.10																				
Prestw-660	Avermectin B1a	0.85	1.16																				
Prestw-1317	Pranlukast	0.88	0.97																				
Prestw-1477	Penicillamine	0.91	1.12																				
Prestw-1365	Zileuton	0.91	0.98																				
Prestw-1432	Loratadine	0.85	0.96																				
Prestw-1201	Clindamycin Phosphate	0.89	1.06																				
Prestw-666	Nisoldipine	0.84	0.84																				
Prestw-667	Foliosidine	0.92	0.83																				
Prestw-1165	Acitretin	0.87	1.08																				
Code	Code	Chemical Name	C1	C2																			
------------	------------	--------------------------------------	-------	-------																			
Prestw-1162	09C10	Zonisamide	0.95	1.27																			
Prestw-1173	09C11	Irsogladine Maleate	0.90	1.06																			
Prestw-671	09D02	Dydrogesterone	0.93	1.19																			
Prestw-1346	09D03	Sumatriptan succinate	0.88	1.21																			
Prestw-1456	09D04	Opipramol dihydrochloride	0.82	0.86																			
Prestw-1447	09D05	Nalidixic acid sodium salt	0.94	1.05																			
Prestw-1475	09D06	Oxacillin Na	0.96	1.05																			
Prestw-676	09D07	Beta-Escin	0.91	0.97																			
Prestw-1496	09D08	Tiludronate disodium	0.91	0.90																			
Prestw-1349	09D09	Tazobactam	0.87	1.15																			
Prestw-1285	09D10	Ibandronate	0.93	1.02																			
Prestw-1363	09D11	Warfarin	0.98	1.16																			
Prestw-1318	09E02	Pranoprofen	0.91	1.14																			
Prestw-1340	09E03	Secnidazole	0.93	1.21																			
Prestw-683	09E04	Pempidine tartrate	0.97	1.33																			
Prestw-1381	09E05	Clodronate	0.92	1.14																			
Prestw-685	09E06	Nitrarine dihydrochloride	0.98	0.83																			
Prestw-1194	09E07	Thimerosal	0.95	0.25																			
Prestw-1465	09E08	Tramadol hydrochloride	0.96	0.97																			
Prestw-688	09E09	Estropipate	0.96	1.04																			
Prestw-1253	09E10	Butylscopolammonium (n-) bromide	0.93	1.08																			
Prestw-1494	09E11	Irinotecan Hydrochloride	0.94	1.02																			
Prestw-1353	09F02	Tylosin	1.00	1.09																			
Code	Value	Description	Mean	SD																			
--------	-------	---	------	-----																			
09F03	0.96	Citalopram Hydrobromide																					
09F04	0.99	Promazine hydrochloride																					
09F05	0.97	Sulfamerazine																					
09F06	1.03	Venlafaxine																					
09F07	1.01	Ethotoin																					
09F08	0.91	3-alpha-Hydroxy-5-beta-androstan-17-one																					
09F09	0.96	Tetrahydrozoline hydrochloride																					
09F10	1.00	Hexestrol																					
09F11	0.96	Cefmetazole sodium salt																					
09G02	0.91	Trihexyphenidyl-D,L Hydrochloride																					
09G03	0.88	Succinylsulfathiazole																					
09G04	0.86	Famprofazone																					
09G05	1.03	Bromopride																					
09G06	1.32	Methyl benzethonium chloride																					
09G07	0.77	Chlorcyclizine hydrochloride																					
09G08	0.88	Diphenylpyraline hydrochloride																					
09G09	1.09	Benzethonium chloride																					
09G10	0.96	Trioxsalen																					
09G11	0.93	Doxofylline																					
09H02	0.88	Sulfabenzamide																					
09H03	0.87	Benzocaine																					
09H04	0.92	Dipyrone																					
09H05	0.90	Isosorbide dinitrate																					
Code	Description	09H06	09H07	09H08	09H09	09H10	09H11																
----------	------------------------------	------	------	------	------	------	------																
Prestw-715	Sulfachloropyridazine	0.85	0.88																				
Prestw-716	Pramoxine hydrochloride	0.94	1.01																				
Prestw-717	Finasteride	0.88	0.97																				
Prestw-718	Fluorometholone	0.88	1.08																				
Prestw-719	Cephalothin sodium salt	0.88	1.08																				
Prestw-720	Cefuroxime sodium salt	0.90	1.11																				
Plate 10																							
Prestw-721	Althiazide	1.01	0.97																				
Prestw-722	Isopyrin hydrochloride	1.02	0.99																				
Prestw-723	Phenethicillin potassium salt	1.01	0.97																				
Prestw-724	Sulfamethoxypyridazine	0.95	0.87																				
Prestw-725	Deferoxamine mesylate	0.96	0.91																				
Prestw-726	Mephentermine hemisulfate	0.83	0.96																				
Prestw-727	Liranaftate	0.93	0.99																				
Prestw-728	Sulfadimethoxine	0.89	0.88																				
Prestw-729	Sulfanilamide	0.80	0.94																				
Prestw-730	Balsalazide Sodium	0.84	0.95																				
Prestw-731	Sulfadinoxaline sodium salt	0.94	1.00																				
Prestw-732	Streptozotocin	0.99	1.09																				
Prestw-733	Metoprolol-(+,-) (+)-tartrate salt	1.01	1.04																				
Prestw-734	Flumethasone	0.92	1.08																				
Prestw-735	Flecainide acetate	0.99	1.02																				
Prestw-736	Cefazolin sodium salt	0.92	1.04																				
Code	Code-1	Chemical Name	Value 1	Value 2																			
----------	---------	-----------------------------------	---------	---------																			
Prestw-737	10B08	Atractyloside potassium salt	0.90	1.11																			
Prestw-738	10B09	Folinic acid calcium salt	0.92	0.99																			
Prestw-739	10B10	Levonordefrin	0.90	1.02																			
Prestw-740	10B11	Ebselen	0.91	1.15																			
Prestw-741	10C02	Nadide	0.89	1.11																			
Prestw-742	10C03	Sulfamethizole	0.93	1.09																			
Prestw-743	10C04	Medrysone	0.93	1.03																			
Prestw-744	10C05	Flunixin meglumine	0.92	1.02																			
Prestw-745	10C06	Spiramycin	0.98	1.08																			
Prestw-746	10C07	Glycopyrrolate	1.01	1.09																			
Prestw-747	10C08	Cefamandole sodium salt	0.90	1.02																			
Prestw-748	10C09	Monensin sodium salt	0.97	1.19																			
Prestw-749	10C10	Isoetharine mesylate salt	0.85	1.03																			
Prestw-750	10C11	Mevalonic-D, L acid lactone	0.91	1.08																			
Prestw-751	10D02	Terazosin hydrochloride	0.87	1.10																			
Prestw-752	10D03	Phenazopyridine hydrochloride	0.86	1.05																			
Prestw-753	10D04	Demeclocycline hydrochloride	0.90	1.00																			
Prestw-754	10D05	Fenoprofen calcium salt dihydrate	0.93	1.05																			
Prestw-755	10D06	Piperacillin sodium salt	0.95	1.11																			
Prestw-756	10D07	Diethylstilbestrol	0.90	1.01																			
Prestw-757	10D08	Chlorotrianisene	0.90	1.04																			
Prestw-758	10D09	Ribostamycin sulfate salt	0.88	0.95																			
Prestw-759	10D10	Methacholine chloride	0.93	0.94																			
Code	Compound	Value1	Value2																				
--------	---------------------------------	--------	--------																				
Prestw-760	10D11 Pipenzolate bromide	0.81	0.96																				
Prestw-761	10E02 Butamben	0.87	1.08																				
Prestw-762	10E03 Sulfapyridine	0.89	0.98																				
Prestw-763	10E04 Meclofenoxate hydrochloride	0.92	1.14																				
Prestw-764	10E05 Furaladone hydrochloride	0.92	0.96																				
Prestw-765	10E06 Ethoxyquin	0.83	0.92																				
Prestw-766	10E07 Tinidazole	0.91	1.06																				
Prestw-767	10E08 Guanadrel sulfate	0.88	0.96																				
Prestw-768	10E09 Vidarabine	0.91	1.01																				
Prestw-769	10E10 Sulfameter	0.86	0.88																				
Prestw-770	10E11 Isopropamide iodide	0.88	0.96																				
Prestw-771	10F02 Alclometasone dipropionate	0.85	1.15																				
Prestw-772	10F03 Leflunomide	0.85	0.94																				
Prestw-773	10F04 Norgestrel-(D)	0.85	0.96																				
Prestw-774	10F05 Fluocinonide	0.91	1.14																				
Prestw-775	10F06 Sulfamethazine sodium salt	0.88	1.06																				
Prestw-776	10F07 Guaifenesin	0.96	1.04																				
Prestw-777	10F08 Alexidine dihydrochloride	16.01	6.74																				
Prestw-778	10F09 Proadifen hydrochloride	0.81	0.95																				
Prestw-779	10F10 Zomepirac sodium salt	0.81	0.95																				
Prestw-780	10F11 Cinoxacin	0.79	1.02																				
Prestw-781	10G02 Clobetasol propionate	0.85	1.02																				
Prestw-782	10G03 Podophyllotoxin	0.94	0.68																				
Code	Description	Value1	Value2																				
----------	------------------------------------	--------	--------																				
Prestw-783	Clofibric acid	0.84	1.03																				
Prestw-784	Bendroflumethiazide	0.88	1.04																				
Prestw-785	Dicumarol	0.91	1.11																				
Prestw-786	Methimazole	0.84	0.93																				
Prestw-787	Merbromin	0.74	0.89																				
Prestw-788	Hexylcaine hydrochloride	0.81	1.00																				
Prestw-789	Drofenine hydrochloride	0.78	0.97																				
Prestw-790	Cycloheximide	0.80	0.99																				
Prestw-791	(R) -Naproxen sodium salt	0.77	0.93																				
Prestw-792	Propidium iodide	0.74	0.85																				
Prestw-793	Cloperastine hydrochloride	0.82	0.80																				
Prestw-794	Eucatropine hydrochloride	0.80	0.82																				
Prestw-795	Isocarboxazid	0.83	0.79																				
Prestw-796	Lithocholic acid	0.78	0.78																				
Prestw-797	Methotrimeprazine maleat salt	0.84	0.81																				
Prestw-798	Dienestrol	0.84	0.86																				
Prestw-799	Pridinol methanesulfonate salt	0.78	0.95																				
Prestw-800	Amrinone	0.77	0.96																				
Plate 11																							
Prestw-801	Carbinoxamine maleate salt	0.91	1.04																				
Prestw-802	Methazolamide	0.99	1.00																				
Prestw-803	Pyrithyldione	1.01	1.12																				
Prestw-804	Spectinomycbin dihydrochloride	0.99	0.99																				
Prestw-805	11A06	Piromidic acid	1.01	1.09																			
Prestw-806	11A07	Trimipramine maleate salt	0.91	0.95																			
Prestw-807	11A08	Chloropyramine hydrochloride	0.95	1.04																			
Prestw-808	11A09	Furazolidone	0.97	1.12																			
Prestw-809	11A10	Dichlorphenamide	0.92	1.26																			
Prestw-810	11A11	Sulconazole nitrate	1.02	1.18																			
Prestw-1233	11B02	Auranofin	1.02	0.49																			
Prestw-812	11B03	Cromolyn disodium salt	0.98	0.87																			
Prestw-813	11B04	Bucladesine sodium salt	0.94	0.88																			
Prestw-814	11B05	Cefsulodin sodium salt	0.96	0.84																			
Prestw-815	11B06	Fosfosal	0.96	1.10																			
Prestw-816	11B07	Suprofen	0.92	1.03																			
Prestw-817	11B08	Catechin- (+,-) hydrate	0.92	1.08																			
Prestw-818	11B09	Nadolol	0.94	1.19																			
Prestw-819	11B10	Moxalactam disodium salt	1.03	1.16																			
Prestw-820	11B11	Aminophylline	0.97	0.99																			
Prestw-821	11C02	Azlocillin sodium salt	0.98	1.07																			
Prestw-822	11C03	Clidinium bromide	0.94	0.96																			
Prestw-823	11C04	Sulfamonomethoxine	0.99	0.99																			
Prestw-824	11C05	Benzthiazide	1.01	1.03																			
Prestw-825	11C06	Trichlormethiazide	0.97	1.23																			
Prestw-826	11C07	Oxalamine citrate salt	0.92	1.18																			
Prestw-827	11C08	Propantheline bromide	0.94	1.19																			
Code	Code	Name	1	2																			
------	------	--	-----	------																			
Prestw-1361	11C09	Viloxazine hydrochloride	0.98	0.99																			
Prestw-829	11C10	Dimethadione	0.92	1.01																			
Prestw-830	11C11	Ethaverine hydrochloride	0.89	0.93																			
Prestw-831	11D02	Butacaine	0.93	0.97																			
Prestw-832	11D03	Cefoxitin sodium salt	0.96	0.99																			
Prestw-833	11D04	Ifosfamide	0.95	1.11																			
Prestw-834	11D05	Novobiocin sodium salt	0.85	1.09																			
Prestw-835	11D06	Tetrahydroxy-1,4-quinone monohydrate	1.03	1.19																			
Prestw-836	11D07	Indoprofen	0.83	1.26																			
Prestw-837	11D08	Carbenoxolone disodium salt	0.90	1.01																			
Prestw-838	11D09	Iocetamic acid	0.93	1.13																			
Prestw-839	11D10	Ganciclovir	0.89	1.20																			
Prestw-840	11D11	Ethopropazine hydrochloride	0.94	0.78																			
Prestw-1455	11E02	Olanzapine	0.95	0.88																			
Prestw-842	11E03	Trimeprazine tartrate	0.85	0.63																			
Prestw-843	11E04	Nafcillin sodium salt monohydrate	0.85	1.07																			
Prestw-844	11E05	Procyclidine hydrochloride	0.86	0.95																			
Prestw-845	11E06	Amiprilose hydrochloride	0.92	1.10																			
Prestw-846	11E07	Ethynylestradiol 3-methyl ether	0.97	1.05																			
Prestw-847	11E08	(-) -Levobunolol hydrochloride	0.91	1.06																			
Prestw-848	11E09	Iodixanol	0.90	1.10																			
Prestw-849	11E10	Rolitetracycline	0.78	0.97																			
Prestw-850	11E11	Equilin	0.90	0.87																			
---	---	---	---	---																			
Prestw-851	11F02	Paroxetine Hydrochloride	0.95	0.78																			
Prestw-1454	11F03	Nylidrin	0.89	0.91																			
Prestw-853	11F04	Liothyronine	0.87	1.07																			
Prestw-854	11F05	Roxithromycin	0.91	1.01																			
Prestw-855	11F06	Beclomethasone dipropionate	0.89	1.16																			
Prestw-856	11F07	Tolmetin sodium salt dihydrate	0.97	1.11																			
Prestw-857	11F08	(+) -Levobunolol hydrochloride	0.97	1.10																			
Prestw-858	11F09	Doxazosin mesylate	0.87	0.92																			
Prestw-859	11F10	Fluvastatin sodium salt	0.88	0.98																			
Prestw-860	11F11	Methylhydantoin-5-(L)	0.91	0.87																			
Prestw-861	11G02	Gabapentin	0.84	0.94																			
Prestw-862	11G03	Raloxifene hydrochloride	0.89	0.82																			
Prestw-863	11G04	Etidronic acid, disodium salt	0.92	0.91																			
Prestw-864	11G05	Methylhydantoin-5-(D)	0.88	1.04																			
Prestw-865	11G06	Simvastatin	0.88	0.94																			
Prestw-866	11G07	Azacytidine-5	0.86	0.91																			
Prestw-867	11G08	Paromomycin sulfate	0.83	1.10																			
Prestw-868	11G09	Acetaminophen	0.89	1.04																			
Prestw-869	11G10	Phthalylsulfathiazole	0.87	0.97																			
Prestw-870	11G11	Luteolin	0.81	0.96																			
Prestw-871	11H02	Iopamidol	0.88	1.11																			
Prestw-872	11H03	Iopromide	0.82	1.10																			
Prestw-873	11H04	Theophylline monohydrate	0.86	0.94																			
Code	Plate	Name	Value1	Value2																			
----------	-------	------------------------------------	--------	--------																			
Prestw-874	11H05	Theobromine	0.90	0.97																			
Prestw-875	11H06	Reserpine	0.81	0.76																			
Prestw-1239	11H07	Bicalutamide	0.84	0.90																			
Prestw-877	11H08	Scopolamine hydrochloride	0.88	0.89																			
Prestw-878	11H09	Ioversol	0.84	0.96																			
Prestw-1495	11H10	Rabeprazole	0.79	0.93																			
Prestw-880	11H11	Carbachol	0.91	0.97																			
Plate 12																							
Prestw-881	12A02	Niacin	1.03	1.17																			
Prestw-882	12A03	Bemegride	1.04	1.14																			
Prestw-883	12A04	Digoxigenin	1.03	0.86																			
Prestw-884	12A05	Meglumine	0.98	1.11																			
Prestw-885	12A06	Cantharidin	0.98	1.03																			
Prestw-886	12A07	Clioquinol	0.93	1.18																			
Prestw-887	12A08	Oxybenzone	0.94	1.14																			
Prestw-888	12A09	Promethazine hydrochloride	0.89	1.03																			
Prestw-1167	12A10	Diacerein	0.94	1.06																			
Prestw-1137	12A11	Esmolol hydrochloride	0.90	1.13																			
Prestw-1486	12B02	Cortisol acetate	0.97	0.93																			
Prestw-1416	12B03	Flubendazol	0.97	0.95																			
Prestw-893	12B04	Felbinac	1.00	0.88																			
Prestw-894	12B05	Butylparaben	1.03	0.86																			
Prestw-895	12B06	Aminohippuric acid	0.91	0.90																			
Code	Compound	Value1	Value2																				
--------	-----------------------------------	--------	--------																				
Prestw-896	12B07 N-Acetyl-L-leucine	1.02	0.92																				
Prestw-897	12B08 Pipemidic acid	0.98	0.95																				
Prestw-898	12B09 Dioxybenzone	0.95	0.79																				
Prestw-899	12B10 Adrenosterone	0.99	0.75																				
Prestw-900	12B11 Methylatropine nitrate	1.00	0.98																				
Prestw-901	12C02 Hymecromone	0.96	0.97																				
Prestw-902	12C03 Caffeic acid	0.90	0.94																				
Prestw-903	12C04 Diloxanide furoate	0.95	0.94																				
Prestw-904	12C05 Metyrapone	0.93	0.91																				
Prestw-905	12C06 Urapidil hydrochloride	0.96	0.89																				
Prestw-906	12C07 Fluspirilen	0.95	0.78																				
Prestw-907	12C08 S-(+)-ibuprofen	1.00	0.86																				
Prestw-908	12C09 Ethynodiol diacetate	0.99	0.82																				
Prestw-909	12C10 Nabumetone	0.96	0.74																				
Prestw-910	12C11 Nisoxetine hydrochloride	0.96	0.83																				
Prestw-911	12D02 (+)-Isoproterenol (+)-bitartrate salt	0.98	0.88																				
Prestw-912	12D03 Monobenzone	0.90	0.82																				
Prestw-913	12D04 2-Aminobenzenesulfonamide	0.92	1.12																				
Prestw-914	12D05 Estrone	1.01	1.20																				
Prestw-915	12D06 Lorglumide sodium salt	0.83	1.16																				
Prestw-916	12D07 Nitrendipine	0.82	0.67																				
Prestw-917	12D08 Flurbiprofen	0.82	0.87																				
Prestw-918	12D09 Nimodipine	0.87	0.81																				
Code	Description	Value 1	Value 2																				
--------	------------------------------------	---------------	---------------																				
Prestw-919		12D10	Bacitracin	0.95	0.93																		
Prestw-920		12D11	L(-)-vesamicol hydrochloride	0.91	0.86																		
Prestw-921		12E02	Nizatididine	0.91	0.96																		
Prestw-922		12E03	Thioperamide maleate	0.87	0.89																		
Prestw-923		12E04	Xamoterol hemifumarate	0.89	0.91																		
Prestw-924		12E05	Rolipram	0.99	0.97																		
Prestw-925		12E06	Thonzonium bromide	1.36	0.89																		
Prestw-926		12E07	Idazoxan hydrochloride	0.97	0.84																		
Prestw-927		12E08	Quinapril HCl	0.92	0.83																		
Prestw-928		12E09	Nilutamide	0.91	0.90																		
Prestw-929		12E10	Ketorolac tromethamine	0.87	0.85																		
Prestw-930		12E11	Protriptyline hydrochloride	0.89	0.76																		
Prestw-931		12F02	Propofol	0.87	0.94																		
Prestw-932		12F03	S(-)Eticlopride hydrochloride	0.97	0.89																		
Prestw-933		12F04	Primidone	0.93	0.99																		
Prestw-934		12F05	Flucytosine	0.91	1.04																		
Prestw-935		12F06	(-)-MK 801 hydrogen maleate	0.86	1.02																		
Prestw-936		12F07	Bephenium hydroxynaphthoate	0.97	0.86																		
Prestw-937		12F08	Dehydroisoandrosterone 3-acetate	0.90	0.90																		
Prestw-938		12F09	Benserazide hydrochloride	0.91	0.84																		
Prestw-939		12F10	Iodipamide	0.94	0.84																		
Prestw-1213		12F11	Allopurinol	0.95	0.81																		
Prestw-941		12G02	Pentetic acid	0.91	1.00																		
Code	Description	Value 1	Value 2																				
----------	--	---------	---------																				
Prestw-942	12G03 Bretylium tosylate	0.88	0.95																				
Prestw-943	12G04 Pralidoxime chloride	0.85	0.93																				
Prestw-944	12G05 Phenoxybenzamine hydrochloride	0.88	0.93																				
Prestw-945	12G06 Salmeterol	0.86	0.80																				
Prestw-946	12G07 Altretamine	0.88	0.83																				
Prestw-947	12G08 Prazosin hydrochloride	0.90	0.78																				
Prestw-948	12G09 Timolol maleate salt	0.96	0.84																				
Prestw-949	12G10 (+,-)-Octopamine hydrochloride	0.89	0.80																				
Prestw-1279	12G11 Stavudine	0.92	0.89																				
Prestw-951	12H02 Crotamiton	0.82	0.99																				
Prestw-1197	12H03 Toremifene	0.85	0.87																				
Prestw-536	12H04 (R)-(+) - Atenolol	0.86	1.03																				
Prestw-954	12H05 Tyloxapol	0.88	1.03																				
Prestw-955	12H06 Florfenicol	0.87	0.95																				
Prestw-956	12H07 Megestrol acetate	0.88	1.00																				
Prestw-957	12H08 Deoxycorticosterone	0.83	0.93																				
Prestw-958	12H09 Urosiol	0.94	0.98																				
Prestw-959	12H10 Proparacaine hydrochloride	0.85	1.03																				
Prestw-960	12H11 Aminocaproic acid	0.90	0.84																				
Plate 13																							
Prestw-961	13A02 Denatonium benzoate	1.01	1.02																				
Prestw-1259	13A03 Canrenone	1.04	1.03																				
Prestw-963	13A04 Enilconazole	1.02	1.08																				
Code	Code	Compound	Min	Max																			
----------	----------	--	-----	-----																			
Prestw-964	13A05	Methacycline hydrochloride	0.98	1.03																			
Prestw-1415	13A06	Floxuridine	1.06	1.26																			
Prestw-966	13A07	Sotalol hydrochloride	0.98	1.26																			
Prestw-1267	13A08	Gestrinone	1.01	1.18																			
Prestw-968	13A09	Decamethonium bromide	1.01	1.26																			
Prestw-969	13A10	3-Acetamidocoumarin	0.98	1.26																			
Prestw-970	13A11	Roxarsone	0.92	1.21																			
Prestw-971	13B02	Remoxipride Hydrochloride	0.94	0.95																			
Prestw-972	13B03	THIP Hydrochloride	1.01	0.98																			
Prestw-973	13B04	Pirilindole mesylate	0.96	0.97																			
Prestw-974	13B05	Pronethalol hydrochloride	0.95	1.05																			
Prestw-975	13B06	Naftopidil dihydrochloride	0.96	1.06																			
Prestw-976	13B07	Tracazolate hydrochloride	0.97	1.04																			
Prestw-977	13B08	Zardaverine	1.02	1.19																			
Prestw-978	13B09	Memantine Hydrochloride	0.96	1.29																			
Prestw-979	13B10	Ozagrel hydrochloride	1.00	1.10																			
Prestw-980	13B11	Piribedil hydrochloride	1.02	1.20																			
Prestw-981	13C02	Nitrocarbamphen hydrochloride	0.91	0.97																			
Prestw-982	13C03	Nandrolone	1.00	1.00																			
Prestw-983	13C04	Dimaprit dihydrochloride	0.99	1.08																			
Prestw-1459	13C05	Oxfendazol	1.03	1.05																			
Prestw-1268	13C06	Guaiacol	0.92	1.19																			
Prestw-986	13C07	Proscillaridin A	0.97	0.76																			
-----	-----	-----	-----	-----	-----																		
Prestw-1316	13C08	Pramipexole	0.97	1.21																			
Prestw-1452	13C09	Norgestimate	1.05	1.09																			
Prestw-1374	13C10	Chlormadinone acetate	0.95	1.21																			
Prestw-1310	13C11	Phenylbutazone	0.93	1.25																			
Prestw-991	13D02	Gliquidone	0.90	1.04																			
Prestw-992	13D03	Pizotifen malate	0.92	0.82																			
Prestw-993	13D04	Ribavirin	0.95	1.10																			
Prestw-994	13D05	Cyclpenthiazide	0.95	1.10																			
Prestw-995	13D06	Fluvoxamine maleate	0.90	1.21																			
Prestw-1321	13D07	Prothionamide	0.99	1.06																			
Prestw-997	13D08	Fluticasone propionate	0.93	1.20																			
Prestw-998	13D09	Zuclopenthixol hydrochloride	0.97	0.60																			
Prestw-999	13D10	Proguanil hydrochloride	0.87	1.14																			
Prestw-1000	13D11	Lymecycline	0.91	1.16																			
Prestw-1001	13E02	Alfadolone acetate	0.92	1.36																			
Prestw-1002	13E03	Alfaxalone	1.01	1.11																			
Prestw-1003	13E04	Azapropazone	0.91	1.21																			
Prestw-1004	13E05	Meptazinol hydrochloride	0.93	1.17																			
Prestw-1005	13E06	Apramycin	0.97	1.25																			
Prestw-1006	13E07	Epitiostanol	0.97	1.18																			
Prestw-1007	13E08	Fursultiamine Hydrochloride	0.90	1.22																			
Prestw-1008	13E09	Gabexate mesilate	0.96	1.08																			
Prestw-1009	13E10	Pivampicillin	1.01	1.17																			
Code	Category	Name	Min	Max																			
---------	------------	---	-----	-----																			
Prestw-1010	13E11	Talampicillin hydrochloride	0.87	1.26																			
Prestw-1011	13F02	Flucloxacillin sodium	0.95	1.16																			
Prestw-1012	13F03	Trapidil	0.89	1.13																			
Prestw-1013	13F04	Deptropine citrate	0.85	0.95																			
Prestw-1014	13F05	Sertraline	0.97	0.64																			
Prestw-1015	13F06	Ethamsylate	0.99	1.28																			
Prestw-1016	13F07	Moxonidine	0.96	1.28																			
Prestw-1017	13F08	Etilefrine hydrochloride	1.01	1.21																			
Prestw-1018	13G02	Alprostadil	0.93	0.86																			
Prestw-1019	13G03	Tocainide hydrochloride	0.94	1.27																			
Prestw-1020	13F10	Torsemide	0.91	1.24																			
Prestw-1021	13G04	Halofantrine hydrochloride	0.90	0.87																			
Prestw-1022	13G05	Risperidone	0.93	1.05																			
Prestw-1023	13G06	Benzathine benzylpenicillin	0.87	1.28																			
Prestw-1024	13G07	Arbutin	0.84	1.21																			
Prestw-1025	13G08	Tocainide hydrochloride	0.94	1.37																			
Prestw-1026	13G09	Benzaldehyde	0.87	1.28																			
Prestw-1027	13G10	Risperidone	0.93	1.05																			
Prestw-1028	13G11	Torsemide	0.91	1.24																			
Prestw-1029	13H02	Halofantrine hydrochloride	0.90	0.87																			
Prestw-1030	13H03	Articaine hydrochloride	0.93	0.82																			
Code	Name	Code	Value1	Value2																			
----------	-----------------------------	------	--------	--------																			
Prestw-1033	Nomegestrol acetate	13H04	0.91	0.87																			
Prestw-1034	Pancuronium bromide	13H05	0.89	0.91																			
Prestw-1035	Molindone hydrochloride	13H06	0.88	1.04																			
Prestw-1036	Alcuronium chloride	13H07	0.88	1.10																			
Prestw-1037	Zalcitabine	13H08	0.93	1.24																			
Prestw-1038	Methyldopate hydrochloride	13H09	0.91	1.27																			
Prestw-1039	Levocabastine hydrochloride	13H10	0.90	1.25																			
Prestw-1040	Pyrvinium pamoate	13H11	0.96	1.39																			
Plate 14	Etomidate	14A02	1.04	0.90																			
Prestw-1041	Tridihexethyl chloride	14A03	1.01	0.86																			
Prestw-1042	Penbutolol sulfate	14A04	1.05	0.83																			
Prestw-1043	Prednicarbate	14A05	1.05	0.81																			
Prestw-1044	Sertaconazole nitrate	14A06	1.01	0.82																			
Prestw-1045	Repaglinide	14A07	1.00	0.95																			
Prestw-1046	Piretanide	14A08	0.97	0.94																			
Prestw-1047	Piperacetazidine	14A09	0.86	0.84																			
Prestw-1048	Oxyphenbutazone	14A10	0.91	1.00																			
Prestw-1049	Quinethazone	14A11	1.32	1.24																			
Prestw-1050	Moricizine hydrochloride	14B02	0.96	0.93																			
Prestw-1051	Iopanoic acid	14B03	1.00	0.76																			
Prestw-1052	Pivmecillinam hydrochloride	14B04	0.97	0.87																			
Prestw-1053	Levopropoxyphene napsylate	14B05	0.92	0.90																			
Code	Compound	Value1	Value2																				
---------	------------------------------------	--------	--------																				
Prestw-1055	Piperidolate hydrochloride	0.98	0.87																				
Prestw-1056	Trifluridine	0.96	0.92																				
Prestw-1057	Oxprenolol hydrochloride	1.00	0.92																				
Prestw-1058	Ondansetron Hydrochloride	0.96	0.91																				
Prestw-1059	Propoxycaine hydrochloride	1.03	0.90																				
Prestw-1060	Oxaproxin	0.95	0.94																				
Prestw-1061	Phensuximide	1.02	0.84																				
Prestw-1062	Ioxaglic acid	1.07	1.10																				
Prestw-1063	Naftifine hydrochloride	0.97	0.84																				
Prestw-1064	Meprylcaine hydrochloride	0.90	0.94																				
Prestw-1065	Milrinone	0.97	0.99																				
Prestw-1066	Methantheline bromide	1.00	0.91																				
Prestw-1067	Ticarcillin sodium	0.96	1.02																				
Prestw-1068	Thiethylperazine malate	1.05	0.57																				
Prestw-1069	Mesalamine	1.00	1.00																				
Prestw-1362	Vorinostat	1.04	1.00																				
Prestw-1071	Imidurea	0.89	0.96																				
Prestw-1072	Lansoprazole	0.94	0.90																				
Prestw-1073	Bethanechol chloride	0.97	0.86																				
Prestw-1074	Cyproterone acetate	1.01	0.95																				
Prestw-1075	(R)-Propranolol hydrochloride	0.95	1.08																				
Prestw-1076	Ciprofibrate	1.03	1.05																				
Prestw-1420	Formestane	0.98	0.97																				
Prestw-1078	14D09	Benzylpenicillin sodium	0.94	0.97																			
Prestw-1079	14D10	Chlorambucil	0.94	1.14																			
Prestw-1080	14D11	Methiazole	0.95	1.06																			
Prestw-1081	14E02	(S)-propranolol hydrochloride	0.93	1.06																			
Prestw-1082	14E03	(-)-Eseroline fumarate salt	0.94	1.02																			
Prestw-1294	14E04	Isosorbide mononitrate	0.94	1.03																			
Prestw-1084	14E05	Leucomisine	0.98	1.07																			
Prestw-1493	14E06	Topiramate	0.96	1.05																			
Prestw-1086	14E07	D-cycloserine	0.95	1.06																			
Prestw-1087	14E08	2-Chloropyrazine	1.02	1.07																			
Prestw-1088	14E09	(+,-)-Syneprine	0.98	1.11																			
Prestw-1089	14E10	(S)-(−)-Cycloserine	1.00	1.03																			
Prestw-1090	14E11	Homosalate	0.94	1.13																			
Prestw-1091	14F02	Spaglumic acid	0.95	1.10																			
Prestw-1092	14F03	Ranolazine	0.93	1.06																			
Prestw-1443	14F04	Misoprostol	0.94	1.18																			
Prestw-1094	14F05	Sulfadoxine	0.95	1.01																			
Prestw-1095	14F06	Cyclopentolate hydrochloride	0.97	1.10																			
Prestw-1096	14F07	Estriol	0.94	1.10																			
Prestw-1097	14F08	(-)-Isoproterenol hydrochloride	0.95	1.13																			
Prestw-1339	14F09	Sarafloxacin	0.99	1.13																			
Prestw-1099	14F10	Nialamide	1.01	1.09																			
Prestw-1195	14F11	Toltrazuril	0.96	1.02																			
Prestw-1101	14G02	Perindopril	0.88	1.08																			
---	---	---	---	---																			
Prestw-1102	14G03	Fexofenadine HCl	0.90	0.99																			
Prestw-1202	14G04	4-aminosalicylic acid	0.90	1.15																			
Prestw-1104	14G05	Clonixin Lysinate	0.96	1.04																			
Prestw-1105	14G06	Verteporfin	0.84	1.12																			
Prestw-1106	14G07	Meropenem	0.95	0.92																			
Prestw-1107	14G08	Ramipril	0.92	1.03																			
Prestw-1108	14G09	Mephenytoin	0.94	0.96																			
Prestw-1109	14G10	Rifabutin	0.89	0.84																			
Prestw-1110	14G11	Parbendazole	0.89	1.09																			
Prestw-1111	14H02	Mecamylamine hydrochloride	0.92	0.81																			
Prestw-1112	14H03	Procarbazine hydrochloride	0.96	0.81																			
Prestw-1113	14H04	Viomycin sulfate	0.87	0.85																			
Prestw-1114	14H05	Saquinavir mesylate	0.92	0.78																			
Prestw-1115	14H06	Ronidazole	0.96	0.99																			
Prestw-1116	14H07	Dorzolamide hydrochloride	0.89	1.14																			
Prestw-1117	14H08	Azaperone	0.96	1.22																			
Prestw-1118	14H09	Cefepime hydrochloride	0.92	1.23																			
Prestw-1119	14H10	Clocortolone pivalate	0.90	1.23																			
Prestw-1120	14H11	Nadifloxacin	1.07	1.20																			
Plate 15	15A02	Buspirone hydrochloride	1.07	0.90																			
Prestw-1283	15A03	Anastrozole	1.36	1.09																			
Code	Name	1	2																				
----------	-------------------------------------	-----	----																				
Prestw-	Doxycycline hydrochloride	1.30	0.78																				
1399																							
Prestw-	Sulbactam	1.11	0.85																				
1345																							
Prestw-	Fleroxacin	1.08	0.87																				
1414																							
Prestw-	Potassium clavulanate	1.04	1.08																				
1315																							
Prestw-	Valproic acid	1.08	1.16																				
1482																							
Prestw-	Mepivacaine hydrochloride	1.06	1.06																				
1280																							
Prestw-	Rifaxim	1.09	1.06																				
1478																							
Prestw-	Estradiol Valerate	1.01	1.16																				
1473																							
Prestw-	Acetylcysteine	1.03	0.86																				
1206																							
Prestw-	Melengestrol acetate	1.43	0.80																				
1435																							
Prestw-	Bromhexine hydrochloride	1.08	0.73																				
1246																							
Prestw-	Anethole-trithione	1.03	0.80																				
1223																							
Prestw-	Amcinonide	1.08	0.72																				
1476																							
Prestw-	Caffeine	1.08	0.76																				
1256																							
Prestw-	Carvedilol	1.17	0.73																				
1262																							
Prestw-	Methenamine	1.06	0.99																				
1282																							
Prestw-	Phentermine hydrochloride	1.11	0.98																				
1308																							
Prestw-	Diclazuril	1.12	0.92																				
1394																							
Prestw-	Famciclovir	1.09	0.84																				
1249																							
Prestw-	Dopamine hydrochloride	1.06	1.05																				
1398																							
Prestw-	Cefdinir	1.04	0.78																				
1263																							
Prestw-	Carprofen	1.13	0.91																				
1261																							
Prestw-	Celecoxib	1.06	0.87																				
1371																							
Code	Name	Value1	Value2																				
----------	--------------------------------	--------	--------																				
Prestw-1258	15C07 Candesartan	1.04	0.83																				
Prestw-1483	15C08 Fludarabine	1.03	0.90																				
Prestw-1484	15C09 Cladribine	0.98	1.12																				
Prestw-1356	15C10 Vardenafil	1.07	1.00																				
Prestw-1417	15C11 Fluconazole	0.98	0.84																				
Prestw-1203	15D02 5-fluorouracil	1.01	0.95																				
Prestw-1487	15D03 Mesna	0.95	1.06																				
Prestw-1444	15D04 Mitotane	0.99	0.83																				
Prestw-1497	15D05 Ambrisentan	0.93	0.95																				
Prestw-1479	15D06 Triclosan	1.06	0.91																				
Prestw-1401	15D07 Enoxacin	1.06	0.89																				
Prestw-1307	15D08 Olopatadine hydrochloride	1.08	0.85																				
Prestw-1187	15D09 Granisetron	1.03	1.00																				
Prestw-1224	15D10 Anthralin	1.04	1.07																				
Prestw-1492	15D11 Lamotrigine	0.99	0.76																				
Prestw-1383	15E02 Clofibrate	0.93	1.09																				
Prestw-1481	15E03 Cyclophosphamide	0.91	1.05																				
Prestw-1229	15E04 Aripiprazole	1.03	1.01																				
Prestw-1405	15E05 Ethinylestradiol	1.03	0.97																				
Prestw-1419	15E06 Fluocinolone acetonide	0.93	0.90																				
Prestw-1343	15E07 Sparfloxacin	0.95	0.90																				
Prestw-1390	15E08 Desloratadine	0.98	0.51																				
Prestw-1378	15E09 Clarithromycin	0.92	0.94																				
Code	Code2	Name	Value1	Value2																			
---------	-------	-----------------------------------	--------	--------																			
Prestw-	1199	Tripelennamine hydrochloride	0.98	0.92																			
Prestw-	1352	Tulobuterol	1.05	1.00																			
Prestw-	1196	Topotecan	0.99	1.09																			
Prestw-	1232	Atorvastatin	1.01	1.03																			
Prestw-	1234	Azithromycin	0.96	0.98																			
Prestw-	1286	Ibudilast	0.92	0.94																			
Prestw-	1433	Losartan	0.87	0.93																			
Prestw-	1236	Benztropine mesylate	0.91	0.61																			
Prestw-	1359	Vecuronium bromide	1.00	0.88																			
Prestw-	1350	Telmisartan	1.05	1.02																			
Prestw-	1490	Nalmefene hydrochloride	0.97	0.85																			
Prestw-	1241	Bifonazole	0.85	0.87																			
Prestw-	1265	Gatifloxacin	0.95	0.99																			
Prestw-	1265	Bosentan	1.07	0.93																			
Prestw-	1244	Gemcitabine	0.79	0.84																			
Prestw-	1266	Olmesartan	0.84	0.59																			
Prestw-	1190	Racepinephrine HCl	0.91	0.94																			
Prestw-	1480	Montelukast	0.95	1.02																			
Prestw-	1189	Docetaxel	0.94	0.91																			
Prestw-	1180	Cilnidipine	0.96	0.97																			
Prestw-	1376	Imiquimod	0.97	1.00																			
Prestw-	1291	Fosinopril	0.87	0.97																			
Prestw-	1423	Imatinib	0.90	0.72																			
Prestw-	1290																						
Code	Code	Name	Value_1	Value_2																			
------------	------	-------------------------	---------	---------																			
Prestw-1446	15H03	Moxifloxacin	0.89	0.70																			
Prestw-1421	15H04	Formoterol fumarate	0.91	0.65																			
Prestw-1338	15H05	Rufloxacin	0.94	0.77																			
Prestw-1319	15H06	Pravastatin	0.99	0.82																			
Prestw-1337	15H07	Rosiglitazone	0.90	0.98																			
Prestw-1334	15H08	Rivastigmine	0.90	0.98																			
Prestw-1342	15H09	Sildenafil	0.92	1.03																			
Prestw-1207	15H10	Acetylsalicylic acid	0.88	0.99																			
Prestw-1472	15H11	Hexachlorophene	0.95	0.99																			
Supplemental Table 2. Compounds of the Prestwick Chemical Library excluded from analysis. Compounds that had a fold-change ≥ 1.3 in the K562-NL alone condition were excluded from analysis as these drugs cytotoxic to K562-NL cells in absence of NK92 cells.

Prestw number	Plate # / Well position	Chemical name	average fold-change
Prestw-349	05C10	Ritodrine hydrochloride	1.69
Prestw-369	05E10	Meloxicam	1.50
Prestw-339	05B10	Guanfacine hydrochloride	1.44
Prestw-925	12E06	Thonzonium bromide	1.36
Prestw-143	02G04	Chlorhexidine	1.36
Prestw-1152	05F10	Nefazodone HCl	1.34
Prestw-1435	15B03	Melengestrol acetate	1.43
Prestw-705	09G06	Methyl benzethonium chloride	1.32
Prestw-1050	14A11	Quinethazone	1.32
Prestw-1399	15A04	Doxycycline hydrochloride	1.30
Prestw-777	10F08	Alexidine dihydrochloride	16.01
Prestw-1222	15A03	Anastrozole	1.36
Supplemental Table 3. Z’ factor for individual assay plates from the screening of the Prestwick Chemical Library. Z’ factor was calculated using the positive and negative control luminescent values from each plate.

Plate #	K562-NL alone	1:1 E:T
1	0.84	0.64
2	0.67	0.52
3	0.63	0.20
4	0.75	0.43
5	0.66	0.50
6	0.64	0.56
7	0.74	0.80
8	0.73	0.28
9	0.75	0.54
10	0.81	0.55
11	0.80	0.56
12	0.79	0.68
13	0.77	0.51
14	0.74	-0.06
15	0.50	0.06
Average	0.72	0.44