Classification and Feature Selection Algorithms for Multi-class CGH data
Jun Liu, Sanjay Ranka, and Tamer Kahveci
Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611

ABSTRACT
Recurrent chromosomal alterations provide cytological and molecular positions for the diagnosis and prognosis of cancer. Comparative Genomic Hybridization (CGH) has been useful in understanding these alterations in cancerous cells. CGH datasets consist of samples that are represented by large dimensional arrays of intervals. Each sample consists of long runs of intervals with losses and gains.

In this paper, we develop novel SVM based methods for classification and feature selection of CGH data. For classification, we developed a novel similarity kernel that is shown to be more effective than the standard linear kernel used in SVM. For feature selection, we propose a novel method based on the new kernel that iteratively selects features that provides the maximum benefit for classification.

We compared our methods against the best wrapper based and filter based approaches that have been used for feature selection of large dimensional biological data. Our results on datasets generated from the Progenetix database, suggests that our methods are considerably superior to existing methods.

Availability: All software developed in this paper can be downloaded from http://plaza.ufl.edu/junliu/feature.tar.gz.

1 INTRODUCTION
Numerical and structural chromosomal imbalances are one of the most prominent and pathogenetically relevant features of neoplastic cells [27]. One method for measuring genomic aberrations is Comparative Genomic Hybridization (CGH) [11]. CGH is a molecular-cytogenetic analysis method for detecting regions with genomic imbalances (gains or losses of DNA segments). Applying microarray technology to CGH measures thousands of copy number information distributed throughout the genome simultaneously [30]. Raw data from array CGH experiments is expressed as the ratio of normalized fluorescence of tumor and reference DNA. Normalized CGH ratio data surpassing predefined thresholds is considered indicative for genomic gains or losses, respectively. Chromosomal and array CGH data has been an important resource for cancer cytogenetics [3, 12, 16, 19, 25, 35, 22].

In contrast to the array CGH, the chromosomal CGH results (on which this paper is based) are annotated in a reverse in-situ karyotype format [26] describing imbalanced genomic regions with reference to their chromosomal location. CGH data of an individual tumor can be considered as an ordered list of status values, where each value corresponds to a genomic interval (e.g., a single chromosomal band). The terms feature and dimension are also used for genomic interval. The status can be expressed as a real number (positive, negative, or zero for gain, loss, or no aberration respectively). We use this strategy and represent gain, loss, and no change with +1, -1, and 0 respectively. Figure 1 shows a plot of 120 CGH cases belonging to Retinoblastoma, NOS (ICD-O 9510/3).

An important task in cancer research is to separate healthy patients from cancer patients and to distinguish patients of different cancer subtypes, based on their cytogenetic profiles. This is also known as the classification problem. These tasks help successful cancer diagnosis and treatment. Cancer is currently responsible for about 25% of all deaths [20]. Early identification of the cancer is often vital for the survival of the patients. For example, colon cancer is 90% curable when it is identified at the early age. Over 500,000 people die each year from colon cancer in the world [10].

Support Vector Machine (SVM) is one of the state-of-art kernel based machine learning techniques and has been widely used for the classification of microarray data [23]. Choosing or developing an appropriate kernel function greatly improves the performance of SVM [34]. The frequently used linear kernel function does not exploit the following properties of CGH data and can lead to sub par performance for classification:

- Features in CGH data represent ordered genomic intervals on chromosomes and their values are categorical.
- Neighboring features are often highly correlated as a point-like genomic aberration can expand to the neighboring intervals. This results in a contiguous run of gain or loss status in CGH data [24] (Figure 1).

It is essential to develop a kernel that takes these properties into consideration.

Another related task is feature selection that selects a small subset of discriminative features. Feature selection has several advantages for CGH data. First, it reduces the risk of over fitting by
removing noisy features thereby improving the predictive accuracy. Second, the important features found can potentially reveal that specific chromosomal regions are consistently aberrant for particular cancers. There is biological support that a few key genetic alterations correspond to the malignant transformation of a cell [33]. Determination of these regions from CGH datasets can allow for high resolution global gene expression analysis to genes in these regions and thereby can help in focusing investigative efforts for understanding cancer on them.

Existing feature selection methods broadly fall into two categories, wrapper and filter methods. Wrapper methods use the predictive accuracy of predetermined classification algorithms, such as SVM, as the criteria to determine the goodness of a subset of features [18, 39, 9]. Wrapper methods based on SVM mostly use the linear kernel that is not suitable for CGH data. Also, they select features in a backward elimination scheme, which is inefficient in determining highly discriminative features and leads to poor predictive performance when a small feature set is selected. Filter methods select features based on discriminant criteria that rely on the characteristics of data, independent of any classification algorithm [7, 38]. Filter methods are limited in scoring the predictive power of combined features, and thus have shown to be less powerful in predictive accuracy as compared to wrapper methods [5].

The classification problem of multiple classes is generally more difficult as compared to the classification of binary classes [23, 7]. It also gives a more realistic assessment of the proposed feature selection method [7]. In this paper, we consider the problem of classification and feature selection for CGH data with multiple cancer types. We address the above mentioned problems and develop SVM-based methods. This paper has two important contributions:

1. **We develop a novel kernel function called Raw for CGH data.** This measure counts the number of common aberrations between any two samples. We show that this kernel measure is significantly better for CGH data than the standard linear kernel used in SVM based methods.

2. **We develop an SVM-based feature selection method for CGH data called Maximum Influence Feature Selection (MIFS).** It uses an iterative procedure to progressively select features. In each iteration, an SVM based model on selected features is trained. This model is used to select one of the remaining features that provides the maximum benefit for classification. This process is repeated until the desired number of features is reached. We extend the MIFS feature selection method described above for multiclass CGH data. In each iteration, a one-versus-all strategy is used to train multiple SVMs with each SVM corresponding to the classification of one class from the others. A radial sort based approach is used to combine the rankings of remaining features from each SVM into a global ranking. The best feature based on this ranking is added to the selected set.

Our experimental results show that the Raw kernel improves the classification accuracy by 7.3% on average over twelve datasets. These datasets are systematically derived from the Progenetix database based on predefined similarity levels and sizes. These datasets will serve as benchmarks for future research on data mining methods for CGH data. We compared our MIFS method to well known feature selection methods MRMR [7] (filter) and SVM-RFE [18] (wrapper) on twelve datasets. The results show that MIFS outperforms both MRMR and SVM-RFE in terms of classification accuracy. The results also show that our methods only need 5% of all features to provide a comparable classification accuracy as compared to all the features. Further, our methods can improve the accuracy by 3.1% using only 10% of the features as compared to using all features.

The rest of the paper is organized as follows. Section 2 presents background. Section 3 discusses the classification problem using SVM and introduces our new kernel function called Raw. Section 4 proposes our MIFS method based on Raw kernel for multi-class CGH data. Section 5 discusses our dataset resampling scheme for benchmarking purpose. Section 6 presents the experimental results and related discussions. We conclude our work in Section 7.

2 Background

Classification aims to build an efficient and effective model for predicting class labels of unknown data. The model is built on the training data, which consists of data points chosen from input data space and their class labels. Classification techniques have been widely used in microarray analysis to predict sample phenotypes based on gene expression patterns. Li et al. have performed a comparative study of multiclass classification methods for tissue classification based on gene expression [23]. They have conducted comprehensive experiments using various classification methods including SVM [36] with different multiclass decomposition techniques, Naive Bayes, K-nearest neighbor and decision tree [34]. They found SVM to be the best classifier for tissue classification based on gene expression.

The problem of feature selection was first proposed in machine learning. A good review can be found at [17]. Recently, feature selection methods have been widely studied in gene selection of microarray data. These methods can be decomposed into two broad classes

1. **Filter Methods:** These methods select features based on discriminating criteria that are relatively independent of classification. Several methods use simple correlation coefficients similar to Fisher’s discriminant criterion [15, 29]. Others adopt mutual information [7] or statistical tests (t-test, F-test) [8, 28]. Earlier filter based methods evaluated features in isolation and did not consider correlation between features. Recently, methods have been proposed to select features with minimum redundancy [38, 7]. The methods proposed by Ding et al. [7] uses a minimum redundancy - maximum relevance (MRMR) feature selection framework. They supplement the maximum relevance criteria along with minimum redundancy criteria to choose additional features that are maximally dissimilar to already identified ones. By doing this, MRMR expands the representative power of the feature set and improves their generalization properties.

2. **Wrapper Methods:** Wrapper methods utilize the classifier as a black box to score the subsets of features based on their predictive power. Wrapper methods based on SVM have been widely studied in machine learning community [37, 17, 31]. SVM-RFE (Support Vector Machine Recursive Feature Elimination) [18], a wrapper method applied to cancer research is called, uses a backward feature elimination scheme to recursively remove insignificant features from subsets of features. In each recursive step, it ranks the features based on the amount of reduction in the objective function. It then eliminates the bottom ranked feature from the results. A number of variants also
use the same backward feature elimination scheme and linear kernel.

The methods aimed for binary class data use a recursive support vector machine (R-SVM) algorithm to analyze noisy high-throughput proteomics and microarray data [39] and a method that computes the feature ranking score from statistical analysis of weight vectors of multiple linear SVMs trained on subsamples of the original training data [9].

For feature selection of multiclass data, Ramaswamy et al. used an one-versus-all strategy to convert the multiclass problem into a series of binary class problems and applied SVM-RFE to each binary class problem separately [32]. Fu et al. [14] also proposed a method based on the one-versus-all strategy. For each binary class problem, they wrapped the feature selection into a 10-fold cross validation (CV) and selected features using SVM-RFE in each fold. They also developed a probabilistic model to select significant features from the 10-fold results.

Filter methods are generally less computationally intensive than wrapped methods. However, they tend to miss complementary features that individually do not separate the data well. A recent comparison of feature selection methods for multiclass microarray data classification [5] shows that wrapper methods such as SVM-RFE lead to better classification accuracy for large number of features, but often gives lower accuracy than filter methods when the number of selected features is very small.

3 CLASSIFICATION WITH SVM

Support Vector Machine (SVM) is a state-of-art technique for classification [36]. It has been shown to have better accuracy and computational advantages over their contenders [18]. It has been successfully applied for many biological classification problems. The technique works as follows. Consider a set of points that are presented in a high dimensional space such that each point belongs to one of two classes. An SVM computes a hyperplane that maximizes the margin separating the two classes of samples. The optimal hyperplane is called decision boundary. Formally, let \(x_1, x_2, \ldots, x_n \) and \(y_1, y_2, \ldots, y_n \) denote \(n \) training samples and their corresponding class labels respectively. Let \(y_i \in \{-1, 1\} \) denote labels of two classes. The decision boundary of a linear classifier can be written as \(w \cdot x + b = 0 \) where \(w \) and \(b \) are parameters of the model. By rescaling the parameters \(w \) and \(b \), the margin \(d \) can be written as \(d = \frac{2}{\|w\|} \) [34]. The learning task in SVM can be formalized as the following constrained optimization problem:

\[
\min_w \left\{ \frac{\|w\|^2}{2} \right\}
\]

subject to \(y_i(w \cdot x_i + b) \geq 1, i = 1, 2, \ldots, n \).

The dual version of the above problem corresponds to finding a solution to the following quadratic program:

Maximize \(J \) over \(\alpha_i \):

\[
J = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j
\]

subject to \(\alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0 \), where \(\alpha_i \) is a real number.

The decision boundary can then be constructed from the solutions \(\alpha_i \) to the quadratic program. The resulting decision function of a new sample \(z \) is

\[
D(z) = w \cdot z + b
\]

with \(w = \sum \alpha_i y_i x_i \) and \(b = < y_i, w - x_i > \). Usually many of the \(\alpha_i \) are zero. The training samples \(x_i \) with non-zero \(\alpha_i \) are called support vectors. The weight vector \(w \) is a linear combination of support vectors. The bias value \(b \) is an average over support vectors. The class label of \(z \) is obtained by considering the sign of \(D(z) \).

Standard SVM methods find a linear decision boundary based on the training examples. They compute the similarity between sample \(x_i \) and \(x_j \) using the inner product \(x_i^T x_j \). However, the simple inner product does not always measure the similarity effectively for all applications. For some applications, a non-linear decision boundary is more effective for classification. The basic SVM method can then be extended by transforming samples to a higher dimensional space via a mapping function \(\Phi \). By doing this, a linear decision boundary can be found in the transformed space if a proper function \(\Phi \) is used. However, the mapping function \(\Phi \) is often hard to construct. The computation in the transformed space can be expensive because of its high dimensionality. A kernel function can be used to overcome this limitation. A kernel function is defined as \(K(x_i, x_j) = \Phi(x_i)^T \Phi(x_j) \), where \(x_i \) and \(x_j \) denote the \(i \)th and \(j \)th sample respectively. It really computes the similarity between \(x_i \) and \(x_j \). With the help of kernel function, an explicit form of the mapping function \(\Phi \) is not required.

In our preliminary work, we have introduced a new measure called Raw that captures the underlying categorical information in CGH data [24]. We will discuss how to incorporate it into the basic SVM method. CGH data consists of sparse categorical values (gain, loss and no change). Conceptually, the similarity between CGH samples depends on the number of aberrations (gains or losses) they both share. Raw calculates the number of common aberrations between a pair of samples. Given a pair of samples \(a = a_1, a_2, \ldots, a_m \) and \(b = b_1, b_2, \ldots, b_n \). The similarity between \(a \) and \(b \) is computed as

\[
\text{Raw}(a, b) = \sum_{i=1}^{m} S(a_i, b_i).
\]

Here \(S(a_i, b_i) = 1 \) if \(a_i = b_i \) and \(a_i \neq 0 \). Otherwise \(S(a_i, b_i) = 0 \).

The main difference between \(\text{Raw}(a, b) \) and \(a^T \cdot b \) is the way they deal with different aberrations in the same interval. For example, if two samples \(a \) and \(b \) have different aberrations at the \(i \)th interval, i.e. \(a_i = 1, b_i = -1 \) or \(a_i = -1, b_i = 1 \), the inner product calculates this pair as \(a_i \cdot b_i = -1 \) while \(\text{Raw} \) calculates \(S(a_i, b_i) = 0 \). The similarity value between \(a \) and \(b \) computed by \(\text{Raw} \) is always greater than or equal to the inner product of \(a \) and \(b \). We propose to use \(\text{Raw} \) function as the kernel function for the training as well as prediction.

Using SVM with the Raw kernel amounts to solving the following quadratic program:

Maximize \(J \) over \(\alpha_i \):

\[
J = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \text{Raw}(x_i, x_j)
\]

subject to \(\alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0 \).

Accordingly, the resulting decision function of a new sample \(z \) is

\[
D(z) = \sum_{i} \alpha_i y_i \text{Raw}(x_i, z) + b.
\]

The main requirement for the kernel function used in nonlinear SVM is that there exists a transformation function \(\Phi(\cdot) \) such that the
kernel function computed for a pair of samples is equivalent to the inner product between the samples in the transformed space \([34]\). In other words, \(\text{Raw}(x_i, x_j) = \Phi(x_i)^T \Phi(x_j)\). This requires that the underlying kernel matrix is "semi-positive definite". For given data points \(\{x_i\}_{i=1}^{n} \in \mathbb{X}^m\), the kernel matrix can be defined as \(M = (\text{Raw}(x_i, x_j))_{i,j=1}^{n}\). If for all \(n\), all sets of data points and all vectors \(v \in \mathbb{R}^n\) the inequality \(v^T M v \geq 0\) holds, then \(M\) is called semi-positive definite. We now prove that our Raw kernel satisfies this requirement.

The function \(\Phi()\): \(a \in \{0, 1, -1\}^m \rightarrow b \in \{0, 1\}^{2m}\), is defined as follows:

\[
\Phi(a) = b_{2i-1}b_{2i} = 01 \quad \text{if } a_i = 1
\]

\[
\Phi(a) = b_{2i-1}b_{2i} = 10 \quad \text{if } a_i = -1
\]

\[
\Phi(a) = b_{2i-1}b_{2i} = 00 \quad \text{if } a_i = 0
\]

For example, given \(a = [1, 1, 0, -1]\), \(\Phi(a)\) is computed as \(\Phi(a) = [0, 1, 0, 1, 0, 0, 0, 0]\). With this transformation, it is easy to see that the Raw kernel can be written as the inner product of \(\Phi(x)\) and \(\Phi(y)\), i.e. \(\text{Raw}(x, y) = \Phi(x)^T \cdot \Phi(y)\). This is because Raw only counts the number of common aberrations in computing the similarity between two samples (if both the values are 0, they are not counted).

We define a \(2m\) by \(n\) matrix \(u\) whose \(j\)th column vector corresponds to \(\Phi(x_j)\), i.e. \(u := [\Phi(x_1), \Phi(x_2), \ldots]\). The Raw kernel matrix can be written as

\[
M = \begin{bmatrix}
\text{Raw}(x_1, x_1) & \text{Raw}(x_1, x_2) & \cdots \\
\text{Raw}(x_2, x_1) & \text{Raw}(x_2, x_2) & \cdots \\
\vdots & \vdots & \ddots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\Phi(x_1)^T \cdot \Phi(x_1) & \Phi(x_1)^T \cdot \Phi(x_2) & \cdots \\
\Phi(x_2)^T \cdot \Phi(x_1) & \Phi(x_2)^T \cdot \Phi(x_2) & \cdots \\
\vdots & \vdots & \ddots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\Phi(x_1)^T \\
\Phi(x_2)^T \\
\vdots \\
\end{bmatrix}
\begin{bmatrix}
\Phi(x_1) \\
\Phi(x_2) \\
\vdots \\
\end{bmatrix}
\]

\[
= u^T u
\]

Now we have \(v^T M v = v^T (u^T u) v = (w^T w) \geq 0\), \(v \in \mathbb{R}^n\). Therefore, the Raw kernel is semi-positive definite.

4 Maximum Influence Feature Selection

An important characteristic of CGH data is that neighboring features are strongly correlated (Figure 1). Selecting these highly correlated features incurs "redundancy" in the feature set. When the number of selected features is small, this "redundancy" can lead to sub par performance for classification. For example, assume that we want to select two features for classification. If the 8th feature is ranked high for well separating samples of different classes, the 1st and 9th feature are likely ranked high too. However, selecting both 8th and 1st (or 9th) feature does not improve the classification accuracy significantly because they are redundant in discriminative power. On the other hand, if the 8th feature improves the classification accuracy when combined with the 9th feature but has a low ranking, the 9th and 8th feature should be selected instead.

Wrapper methods based on backward feature elimination, such as SVM-RFE [18], are limited in choosing a small set of highly discriminative features. This is because they try to remove features that do not perform well with the remaining set of features. However, this does not imply that the eliminated feature would not work well for the final chosen set of features. Filter methods iteratively add features with the most discriminative power into an existing set. This easily causes redundancy in the selected features. The MMRR method [7] tries to address this limitation by adding features with maximum relevance and minimum redundancy. However, due to the difficulty in selecting complementary features, it often produces lower predictive accuracy as compared to wrapper method.

We propose a novel non-linear SVM-based method called Maximum Influence Feature Selection (MIFS) for the classification of multiclass CGH data that addresses the limitations of existing wrapper methods.

A simple approach to feature selection is to perform an exhaustive search. Clearly, this is not computationally feasible but for a very small number of features. We use a greedy search strategy to iteratively add features to a feature subset in a similar vein as used by Guyon et al [18]. The basic approach is to compute the change in the objective function caused by removing or adding a given feature. In our case, we select the feature that maximizes the variation on the objective function. The added feature is the one that has the most influence or gain on the objective function.

The feature that has the most influence on the objective function is determined as follows. Let \(S\) denote the feature set selected at a given algorithm step and \(J(S)\) denote the value of the objective function of the trained SVM using feature set \(S\). Let \(k\) denote a feature that is not contained in \(S\). The change in the objective function after adding a candidate feature is written as \(DJ(k) = [J(S \cup \{k\})] - J(S)\). In the case of SVM, the objective function that needs to be maximized (under the constraint \(0 \leq \alpha_i\) and \(\sum, \alpha_i y_i = 0\)) is:

\[
J(S) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \text{Raw}(x_i, x_j)
\]

For each feature \(k\) not in \(S\), the new objective function \(J(S \cup \{k\})\) has to be computed. One option is to compute this gain or influence for each remaining feature \(k\), by retraining the SVM. However, the computational requirements can be significantly reduced by assuming that the value of \(\alpha_i\)'s do not change significantly after the feature \(k\) is added. Thus, the new objective function with feature \(k\) added can be defined as:

\[
J(S \cup \{k\}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \text{Raw}(x_i, x_j)
\]

\[
= \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \text{Raw}(x_i, x_j) - \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \text{Raw}(x_i, x_j)
\]

We add the feature that has the largest difference \(DJ(k)\) to the feature set.

The above method requires \(S\) to be non-empty. To jump start the method, the first feature has to be derived. One approach is to compute \(J(\{k\})\) for every feature \(k\) by training a separate SVM for each
feature \(k \). One can, then, select the feature with the largest value as the starting feature. However, this can be computationally very expensive.

Another approach is to use the most discriminating feature (such as done by standard filter based methods that rank features according to their individual predictive power). The mutual information \(I \) of two variables \(r \) and \(s \) is defined as

\[
I(r, s) = \sum_{i,j} p(r_i, s_j) \log \frac{p(r_i, s_j)}{p(r_i)p(s_j)}
\]

where \(p(r, s) \) is their joint probabilities; \(p(r) \) and \(p(s) \) are the respective marginal probabilities. Assuming that the \(k \)th feature is a random variable, the mutual information \(I(k, y) \) between class labels \(y = \{y_1, y_2, \ldots, y_n\} \) and the feature variable \(k \) can be used to quantify the relevance of \(k \)th feature for the classification task. The feature \(k \) with the maximum \(I(k, y) \) is chosen as the starting feature. We have found that using such methods is satisfactory. Our preliminary experimental results showed that MIFS is not sensitive to the initial feature chosen.

The feature selection method proposed above only works for two-class problems. We derive the multiclass version using a one-versus-all approach as follows.

First step.
Let \(C \geq 3 \) denote the number of classes. For each \(i, 1 \leq i \leq C \), a binary SVM that separates the \(i \)th class from the rest is trained based on the selected feature set \(S \).

Second step.
For each binary SVM, \(DJ(k) \) is computed for every feature \(k \) not in \(S \). All the candidate features are ranked based on the value of \(DJ \). The larger value the value of \(DJ(k) \), the smaller is its rank of \(k \) (smaller is better). As a result, \(C \) ranked lists of features are obtained. Each ranked list corresponds to one of the \(C \) SVMs. Equivalently, each candidate feature corresponds to a ranking vector containing its rankings in these \(C \) ranked lists. For example, a feature can be ranked as the first in the first list; second in the second list; 20th in the third list, 15th in the fourth list. The vector that is used for ranking this feature is \([1, 3, 20, 15] \).

Third step.
A feature that ranks low in one list may rank high in another. Our goal is to determine features that are most informative in discriminating one class from the rest even if they are quite uninformative in other classifications. This is achieved as follows. The ranking vector of each candidate feature is sorted in an ascending order. If one regards each element of the ranking vector as a digit, each ranking vector could represent a \(C \) digit number. The smallest ranking (the first element) represents the most significant digit. A least significant digit radix sort algorithm can then be used to sort all the ranking vectors and, accordingly, a global ranking of features can be derived. For example, assume we have three features, \(k_1, k_2 \) and \(k_3 \) whose rankings in four binary SVMs are \([1, 3, 20, 15], [8, 4, 7, 6] \) and \([5, 1, 30, 4] \) respectively. The vectors show that \(k_1 \) ranks top in separating class one from others and ranks third in separating class two from others etc. Each ranking vector is sorted in an ascending order. The resulting vectors are \([1, 3, 15, 20], [4, 6, 7, 8] \) and \([1, 4, 5, 30] \) respectively. Next, a radix sort algorithm is applied over the three vectors. The resulting order of vectors changes to \([1, 3, 15, 20], [1, 4, 5, 30], [4, 6, 7, 8] \), which corresponds to the order of features: \(k_1, k_3, k_2 \). This provides a global ranking of the three features.

The lowest ranked feature is added into \(S \). The above three step process is used iteratively to determine the next feature. This process stops when a predetermined number of features are selected or \(S \) contains all the features. Also, with the set \(S \), the features are ranked based on the order of addition into this set. The iterative procedure for MIFS is formally defined as follows:

Input: Training samples \(\{x_1, x_2, \ldots, x_n\} \) and class labels \(\{y_1, y_2, \ldots, y_n\}, 1 \leq y_i \leq C \), initial feature set \(S \), predetermined number of features \(r \).

1. **Initialize:** Ranked feature list \(RL = S \), candidate feature set \(L = D - S \) (\(D \) is the set of all features).
2. **While** \(|S| < r \)
 a. For \(i = 1 \) to \(C \)
 1. Construct new class labels \(\{y_1, y_2, \ldots, y_m\} \), \(y_j = 1 \) if \(y_j = i \), otherwise \(y_j = -1 \);
 2. Train an SVM using training samples with features in \(RL \);
 3. Compute the change of objective function \(DJ(k) \) for each candidate feature \(k \in L \);
 b. Compute the ranking vectors for all the features in \(L \) from \(C \) ranked lists;
 c. Sort the elements of each ranking vector in an ascending order;
 d. Perform a radix sort over all ranking vectors to produce a global ranking of features in \(L \);
 e. Find the top ranked feature \(e \) and update \(RL = [RL, e] \) and \(L = L - \{e\} \).
3. **Return:** Ranked feature list \(RL \)

This algorithm can be generalized to add more than one feature in Step 2.e to speed up computations when the number of features \(r \) is large.

Time Complexity The training time complexity for SVM is dominated by the time for solving the underlying quadratic program. The conventional approach for solving the quadratic program takes time cubic in the number of samples and linear in the number of features [6]. (Some approximate solutions make the empirical complexity to be \(O(n^{1.7}) \) [21].) Based on this, the time complexity for this algorithm is \(O(n^3) \) in the worst case.

5 DATASETS
The Progenetix database [2] (http://www.progenetix.net) consists of more than 12,000 cases [1]. We use a dataset consisting of 5020 CGH samples (i.e. cytogenetic imbalance profiles of tumor samples) taken from Progenetix. These samples belong to 19 different histopathological cancer types that have been coded according to the ICD-O-3 system [13]. The subset with the smallest number of samples, consists of 110 non-neoplasic cases, while the one with largest number of samples, Adenocarcinoma, NOS (ICD-O-8140/3), contains 1057 cases. Each CGH sample consists of 862 ordered genomic intervals extracted from 24 chromosomes.

Testing the performance (predictive accuracy and run time) of the proposed methods, requires evaluating them over datasets with
different properties such as 1) number of samples contained in the dataset, 2) number of cancer types contained in the dataset, and 3) the similarity level between samples from different cancer types, which indicating the difficulty of classification. Currently, there are no standard benchmarks for normalized CGH data that take the three properties into account. We propose a method to select subsets from the Progenetix database in a principled manner to create datasets with desired properties. The dataset sampler accepts the following three parameters as input: 1) Approximate number of samples (denoted as \(N \)), 2) Number of cancer types (denoted as \(C \)), and 3) Similarity range (denoted as \([\delta_{\text{min}}, \delta_{\text{max}}]\)) between samples belonging to different cancer types. An outline of the proposed dataset sampler is as follows:

1. For each cancer type, partition all the samples belonging to this cancer type into several disjoint groups using clustering. Each cluster corresponds to the different aberration patterns for a given cancer type.
2. Compute the pairwise similarity between pairs of groups obtained in the first step.
3. Construct a complete weighted graph where each vertex denotes a group of samples and the weight of an edge equals to the similarity between two groups that are connected by this edge.

One can use this graph to find a set of samples of a given size \(N \) (by choosing a subset of groups that sum to \(N \)), given number of cancer types, and based on level of similarity between groups (by only considering groups that have a similarity within the range of \([\delta_{\text{min}}, \delta_{\text{max}}]\)). The advantage of the above dataset sampler is that a large number of datasets can be created with variable number of samples and cancer types as well as variable level of similarities between the chosen cancer types. This allows for testing the accuracy and performance of a new method across a variety of potential scenarios.

Figure 2 shows an example of how such a dataset sampler works. Consider a dataset containing 1,000 CGH samples - 400 samples belonging to cancer type \(c_1 \) and the other 600 samples belonging to cancer type \(c_2 \). Assume that each cancer type is clustered into 2 clusters. This results in 4 groups of CGH samples, which are denoted as \(g_i \), \(1 \leq i \leq 4 \). Let the size of \(g_1 \), \(g_2 \), \(g_3 \), and \(g_4 \) be 150, 250, 450, and 150 respectively. The pairwise similarity between any two groups is shown in the Figure. Using this, one can construct a weighted graph where each vertex denotes a group and the weight of each edge equals to the similarity between two groups that are connected by this edge. Suppose that a dataset needs to be sampled with \(N = 400 \), \(C = 2 \), \(\delta_{\text{min}} = 0.025 \) and \(\delta_{\text{max}} = 0.035 \). The graph can be parsed to find out that \(g_2 \) and \(g_4 \) satisfy the three conditions and a new dataset can be sampled by combining the samples in \(g_2 \) and \(g_4 \).

The advantage of the above dataset sampler is that a large number of datasets can be created with variable number of samples and cancer types as well as variable level of similarities between the chosen cancer types. This allows for testing the accuracy and performance of a new method across a variety of potential scenarios.

We used our dataset resampling scheme to select datasets at four different similarity levels from the Progenetix dataset. We denote the similarity levels as Best, Good, Fair, and Poor. The samples in Best has the highest similarity and those in Poor have the lowest similarity. For each similarity level, we created three datasets with four, six, and eight cancer types respectively. Thus, in total, we have 12 datasets. For convenience, we use the similarity level followed by the number of cancer types to denote a dataset. For example, best4 denotes the dataset with similarity level Best (i.e., homogeneous samples) and contains six cancer types. The number of samples in each dataset is around 1,000. Note that there is no topological relations between different datasets because we generate all datasets in separate runs. For example, any sample in best4 is not necessarily contained in best6 or best8. Details of each dataset are listed in Table 1 and Table 2.

6 EXPERIMENTAL RESULTS

In this section, we describe the experimental comparison of our methods with SVM-RFE and MRMR. We developed our code using MATLAB and ran our experiment on a system with dual 2.59 GHz AMD Opteron Processors, 8 gigabytes of RAM, and a Linux operating system.

6.1 Comparison of Linear and Raw Kernel

In this section, we compare the Raw kernel to linear kernel for the classification of CGH data. We perform the experiments over the twelve datasets using a 5-fold cross validation (CV). For each dataset, we randomly divided the data set into five disjoint subsets about equal size. For each fold, we keep one subset as the test data set and the other four sets as the training examples. We train two SVMs over the training examples using linear and Raw kernel respectively. We then use each SVM to predict the class labels of the set aside examples respectively. We compute the predictive accuracy of each SVM as the ratio of number of correctly classified samples to the number of test dataset examples. Next, we choose another subset as set aside examples and the rest as training examples. We repeat this
6.2 Comparison of MIFS with Other Methods

The results show that, compared to other filter and wrapper methods, MIFS is the most effective approach for gene selection and cancer classification. It is shown to be better than filter methods such as those based on ranking coefficients similar to Fisher’s discriminant criterion. SVM-RFE is also shown to be more effective than wrapper methods using RFE and other multivariate linear discriminant functions, such as Linear Discriminant Analysis and Mean Squared Error (Pseudo-inverse) [18].

For each method, a 5-fold cross validation is used. In each fold, the feature selection method is applied over the training examples. Multiple sets of features with different sizes (4, 8, 16 features etc) are selected. For each set of features, a classifier is trained on the training examples with only the selected features. The predictive accuracy of this classifier is determined using the test (set aside) examples with the same set of features. These steps are repeated for each of the 5-folds to compute the average predictive accuracy.

In the experiments, we use the DAGSVM with Raw kernel as the classifier for testing the predictive accuracy of features selected by different methods. Since the SVM-RFE presented in the literature only works for two-class data, we extended it to multi-class data using the same “ranking scheme” that we use to extend MIFS (as described in Section 4). The originally proposed SVM-RFE uses linear kernel for feature selection purpose. We stick to the same implementation of SVM-RFE in our experiments. We also implement a variant of SVM-RFE using Raw kernel. Based on our experimental results, the classification accuracy of Raw kernel based SVM-RFE is roughly midway between the linear kernel based SVM-RFE and MIFS. Detailed results of Raw kernel based SVM-RFE are not presented here due to space limitations.

The experimental results are shown in Table 2. In this table, the predictive accuracy of features selected by three methods, MIFS, MRMR and SVM-RFE, over twelve datasets are compared. For each feature selection method, the results for 4, 8, 16, 40, 60, 80, 100, 150, 250 and 500 features over each dataset are presented. The results are averaged over the 5-folds and reported in columns 5 to 10. In the 15th column, the average predictive accuracies of SVM built upon 862 features, i.e. no feature selection, are reported. The average predictive accuracies of the twelve datasets are reported in the last three rows. The key findings are described as follows.

Comparison between MIFS and MRMR

The results show that, when the number of features is less than or equal to sixteen, there is no clear winner between MIFS and MRMR. Although, MIFS is slightly better than MRMR based on the average results of the twelve datasets, neither of the two methods are predominantly better than the other. However, when the number of features is greater than sixteen, MIFS outperforms MRMR in almost all cases. We believe that using SVM based approach provides combination of features that have significantly better predictive power than MRMR for CGH datasets. Also, it is worth noting that if we compare the best predictive accuracy obtained for a given dataset (given in bold) by using SVM-RFE.
Table 2. The comparison of classification accuracy for three feature selection methods, MIFS, MRMR and SVM-RFE (denoted as RFE), on twelve datasets. The best accuracy obtained for each dataset is highlighted in **bold**. Term \(N \) denotes the number of cases. The cancer codes are explained in Table 1.

Dataset	Cancer code	\(N \)	Method	Number of Features												
			MIFS	4	8	16	40	60	80	100	150	250	500	862		
poor4	A,B,C,D	803	MRMR	0.734	0.772	0.778	0.794	0.791	0.799	0.814	0.819	0.819	0.821	**0.824**	0.814	0.815
			RFE	0.567	0.644	0.681	0.706	0.746	0.771	0.794	0.814	0.819	0.802	0.809		
poor6	A,B,C,D,E,F	815	MRMR	0.527	0.59	0.615	0.622	0.64	0.654	**0.659**	0.645	0.649	0.633			
			RFE	0.332	0.37	0.431	0.531	0.551	0.596	0.561	0.596	0.610	0.635	0.633		
poor8	A,B,C,D,E,F,G,H	764	MRMR	0.338	0.394	0.433	0.469	0.470	0.488	0.496	0.513	**0.53**	0.53	0.486		
			RFE	0.259	0.274	0.303	0.39	0.423	0.435	0.457	0.456	0.456	0.475			
fair4	B,D,I,J	812	MRMR	0.598	0.685	0.728	0.777	0.796	0.789	0.784	0.777	0.783	0.786	0.798		
			RFE	0.466	0.527	0.608	0.693	0.753	0.753	0.771	0.786	0.807	0.801	0.804	0.792	
fair6	B,C,D,E,F,I	880	MRMR	0.587	0.698	0.754	0.814	0.822	0.825	**0.827**	0.82	0.82	0.807			
			RFE	0.504	0.64	0.696	0.761	0.775	0.778	0.781	0.789	0.797	0.816			
fair8	B,C,D,E,H,I,K,L	767	MRMR	0.536	0.641	0.684	0.7	**0.736**	0.733	0.727	0.735	0.732	0.713			
			RFE	0.398	0.528	0.616	0.677	0.687	0.688	0.702	0.70	0.701	0.709			
good4	B,D,H,M	794	MRMR	0.586	0.673	0.763	0.773	0.782	0.784	**0.783**	0.774	0.778	0.767			
			RFE	0.543	0.61	0.656	0.711	0.718	0.74	0.732	0.735	0.767	0.749			
good6	D,J,K,L,N,O	867	MRMR	0.455	0.551	0.593	0.645	0.709	0.716	**0.724**	0.697	0.69	0.694			
			RFE	0.339	0.437	0.517	0.597	0.638	0.653	0.668	0.682	0.674	0.698			
good8	D,E,H,J,K,N,P,Q	827	MRMR	0.373	0.477	0.567	0.659	0.674	**0.676**	0.665	0.673	0.666	0.655			
			RFE	0.258	0.346	0.424	0.508	0.53	0.581	0.605	0.624	0.632	0.654			
best4	A,D,E,R	1158	MRMR	0.650	0.754	0.763	0.817	0.829	0.832	0.829	0.821	**0.838**	0.82			
			RFE	0.596	0.659	0.708	0.753	0.786	0.789	0.776	0.791	0.803	0.801	0.817		
best6	A,D,E,H,O,R	1095	MRMR	0.497	0.568	0.699	0.731	0.767	0.765	0.763	**0.77**	0.75	0.755			
			RFE	0.449	0.499	0.587	0.667	0.71	0.712	0.727	0.729	0.736	0.749			
best8	A,D,E,F,H,K,L,R	1016	MRMR	0.427	0.543	0.635	0.726	**0.737**	0.733	0.735	0.732	0.735	0.727			
			RFE	0.342	0.429	0.532	0.641	0.648	0.687	0.694	0.723	0.719	0.724			
Avg	N/A	N/A	MIFS	0.524	0.612	0.673	0.713	0.732	0.736	**0.737**	0.734	0.735	0.723			
			RFE	0.422	0.497	0.563	0.636	0.662	0.679	0.69	0.7	0.708	0.721			

Using MIFS for feature selection The results in Table 2 shows that using only 40 features results in classification accuracy that is comparable to using all the features. Also, using 80 features derived from MIFS scheme results in comparable or better classification accuracy as compared to all the features. This is significant as beyond data reduction, the proposed scheme can lead to better classification. To support this hypothesis, we generated four new datasets using our dataset resampler. The resulting four datasets (newds1 to newds4) contain 4, 5, 6 and 8 classes respectively. The number of samples in the four datasets are 508, 1021, 815 and 649. We applied the MIFS method over these datasets. We compare the classification accuracies obtained by using all 862 features to those using only 40 and 80 selected features. The results are shown in
REFERENCES

Table 3. The comparison of classification accuracy using different number of features.

Dataset	Number of Features
newds1	0.801 0.799
newds2	0.803 0.819 0.8
newds3	0.629 0.67 0.637
newds4	0.706 0.748 0.719
Average	0.735 0.757 0.739

Table 3. These results substantiate our hypothesis that using around 40 features (roughly 5% of all features) can generate comparable accuracy to using all the features. Also, using around 80 features (roughly 10% of all the features) can result in comparable or better prediction than all the 862 features.

It is worth noting that the other two methods, typically have lower or comparable accuracy when the number of features used is less than all the features.

7 CONCLUSIONS

Comparative Genomic Hybridization (CGH) is one of the important mapping techniques for cancerous cells. In this paper, we develop novel SVM based methods for classification and feature selection of CGH data. For SVM based classification, we show that the kernel used by us is substantially better than the standard kernel for SVM. Our approach of greedily selecting features with the maximum influence on an objective function results in significantly better classification and feature selection. We compared our methods against SVM-RFE (wrapper) and MRMR (filter) approaches that have been used for classification and feature selection of large dimensional biological data. Our results on twelve datasets generated from the Progenetix database, suggests that our methods are considerably superior to existing methods. Further, unlike other methods proposed in the literature, our methods can improve the overall classification error by using a small fraction (around 10%) of all the features.

REFERENCES

[1] J. Baudis. An online database and bioinformatics toolbox to support data mining in cancer geneticians. Biotechniques, 2006.

[2] M. Baudis and M. L. Chary. Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics, 17(12):1228–1229, 2001.

[3] J. M. Bentz, et al. High incidence of chromosomal imbalances and gene amplifications in the classical follicular variant of follicle center lymphoma. Blood, 88(4):1437–1444, 1996.

[4] C. C. Cawley. MATLAB support vector machine toolbox (v0.55.9). http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox. University of East Anglia, School of Information Systems, Norwich, Norfolk, U.K. NR4 7TJ, 2000.

[5] H. Chai and Carlotta Domeniconi. An evaluation of gene selection methods for multi-class microarray data classification. In Proceedings of the Second European Workshop on Data Mining and Text Mining in Bioinformatics, pages 3–10, 2004.

[6] Olivier Chapelle. Training a support vector machine in the primal. Neural Comput., 19(5):1155–1178, 2007.

[7] J. C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol, 3(2):185–205, April 2005.

[8] H. Q. Ding. Analysis of gene expression profiles: class discovery and leaf ordering. In RECOMB, pages 127–136, New York, NY, USA, 2002. ACM Press.

[9] K. B. Du, J. C. Rajapakse, H. Wang, and F. Arzajie. Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans Nanobioscience, 4(3):228–234, September 2005.

[10] Walid S El-Deiry. Colon Cancer, Adenocarcinoma. e medicine, 2006.

[11] A. Kallioniemi et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258(5083):818–821, 1992.