Title	unknotting numbers of diagrams of a given nontrivial knot are unbounded (Knots and soft-matter physics: Topology of polymers and related topics in physics, mathematics and biology)
Author(s)	TANIYAMA, KOUKI
Citation	物性研究 (2009), 92(1): 123-126
Issue Date	2009-04-20
URL	http://hdl.handle.net/2433/169102
Type	Departmental Bulletin Paper
Textversion	publisher

Kyoto University
UNKNOTTING NUMBERS OF DIAGRAMS OF A GIVEN NONTRIVIAL KNOT ARE UNBOUNDED

KOUKI TANIYAMA (谷山公規)

概要
任意の非自明結び目 \(K \) と任意の自然数 \(n \) に対して、\(K \) のあるダイアグラム \(D \) が存在して \(D \) の結び目解消数は \(n \) 以上となる。\(K \) の結び目解消数の2倍が \(K \) の最小交点数から1引いたもの以下であることはよく知られている。ここで等式が成り立つのは \(K \) が \((2,p) \)-トーラス結び目であるときに限る。

Let \(L \) be a link in the 3-sphere \(S^3 \) and \(D \) a diagram of \(L \) on the 2-sphere \(S^2 \). It is well known that by changing over/under information at some crossings of \(D \) we have a diagram of a trivial link. See for example [3]. Let \(u(D) \) be the minimal number of such crossing changes. Namely, there are some \(u(D) \) crossings of \(D \) such that changing them yields a trivial link diagram, and changing less than \(u(D) \) crossings never yields a trivial link diagram. We call \(u(D) \) the unlinking number of \(D \). In the case that \(D \) is a diagram of a knot \(u(D) \) is called the unknotting number of \(D \). The unlinking number \(u(L) \) of \(L \) is defined by the minimum of \(u(D) \) where \(D \) varies over all diagrams of \(L \). Namely we have the following equality.

\[
 u(L) = \min \{ u(D) \mid D \text{ is a diagram of } L \}.
\]

For a knot \(K \) \(u(K) \) is called the unknotting number of \(K \). Then it is natural to ask whether or not the set \(\{ u(D) \mid D \text{ is a diagram of } L \} \) is bounded above. In [1] Nakanishi showed that an unknotting number one knot \(6_2 \) has an unknotting number two diagram. Then he showed the following theorem in [2].

Theorem 1 [2]. Let \(K \) be a nontrivial knot. Then \(K \) has a diagram \(D \) with \(u(D) \geq 2 \).

As an extension of Theorem 1, we have the following theorem.

Theorem 2. Let \(L \) be a nontrivial link. Then for any natural number \(n \) there exists a diagram \(D \) of \(L \) with \(u(D) \geq n \).
That is, the set \(\{ u(D) \mid D \text{ is a diagram of } L \} \) is unbounded above.

We note that Theorem 2 is an immediate consequence of the following proposition.

Proposition 3. Let \(L \) be a nontrivial link and \(D \) a diagram of \(L \). Then there exists a diagram \(D' \) of \(L \) with \(u(D') = u(D) + 2 \).

The proof of Proposition 3 is done by using a modification of diagram illustrated in Figure 1 that is essentially the same as that used in [2]. See [4] for the detail.
As an immediate consequence of Proposition 3 we have the following corollary.

Corollary 4. Let L be a nontrivial link. Then the set $\{u(D) \mid D \text{ is a diagram of } L\}$ contains a set $\{u(L) + 2m \mid m \text{ is a non-negative integer}\}$.

Question 5. Let L be a nontrivial link. Is the set $\{u(D) \mid D \text{ is a diagram of } L\}$ equals the set $\{u(L) + m \mid m \text{ is a non-negative integer}\}$?

The following proposition is a partial answer to Question 5.

Proposition 6. Let L be an alternating link with $u(L) = 1$. Suppose that L has an alternating diagram D_0 with $u(D_0) = 1$. Then the set $\{u(D) \mid D \text{ is a diagram of } L\}$ equals the set of natural numbers $\{u(L) + m \mid m \text{ is a non-negative integer}\}$.

Let $c(D)$ be the number of crossings in D. We call $c(D)$ the crossing number of D. Then the crossing number $c(L)$ of L is defined by the minimum of $c(D)$ where D varies over all diagrams of L. It is natural to ask the relation between $u(D)$ and $c(D)$, or $u(L)$ and $c(L)$. For a diagram D of a knot K other than a trivial diagram the following inequality is well-known. See for example [3].

$$u(K) \leq u(D) \leq \frac{c(D) - 1}{2}.$$

In particular this inequality holds for a minimal crossing diagram D of K where $c(D) = c(K)$. Thus for any nontrivial knot K we have the following inequality.

$$u(K) \leq \frac{c(K) - 1}{2}.$$

It is also well known that the equality holds for $(2,p)$-torus knots. Conversely we have the following theorem.

Theorem 7. (1) Let D be a diagram of a knot that satisfies the equality

$$u(D) = \frac{c(D) - 1}{2}.$$

Then D is one of the diagrams illustrated in Figure 2. Namely D is a reduced alternating diagram of some $(2,p)$-torus knot, or D is a diagram with just one crossing.
(2) Let K be a nontrivial knot that satisfies the equality
\[u(K) = \frac{c(K) - 1}{2}. \]

Then K is a $(2,p)$-torus knot for some odd number $p \neq \pm 1$. Namely only 2-braid knots satisfy the equality.

Figure 2

For links the situation is somewhat different. Let D be a diagram of a link. Then the following inequality is well-known.
\[u(L) \leq u(D) \leq \frac{c(D)}{2}. \]

Thus for any link L we have the following inequality.
\[u(L) \leq \frac{c(L)}{2}. \]

The following theorem shows that not only $(2,p)$-torus links but some other links satisfy the equality.

Theorem 8. (1) Let $D = \gamma_1 \cup \cdots \cup \gamma_p$ be a diagram of a p-component link that satisfies the equality
\[u(D) = \frac{c(D)}{2}. \]

Then each γ_i is a simple closed curve on S^2 and for each pair i, j, the subdiagram $\gamma_i \cup \gamma_j$ is an alternating diagram or a diagram without crossings.

(2) Let L be a μ-component link that satisfies the equality
\[u(L) = \frac{c(L)}{2}. \]

Then L has a diagram $D = \gamma_1 \cup \cdots \cup \gamma_\mu$ such that each γ_i is a simple closed curve on S^2 and for each pair i, j, the subdiagram $\gamma_i \cup \gamma_j$ is an alternating diagram or a diagram without crossings.

Two examples of such links are illustrated in Figure 3. We note that for a link described in Theorem 8 the unlinking number equals the sum of the absolute values of all pairwise linking numbers.

The detail will appear in [4].
REFERENCES

[1] Y. Nakanishi, Unknotting numbers and knot diagrams with the minimum crossings, *Math. Sem. Notes, Kobe Univ.*, 11 (1983), 257-258.
[2] Y. Nakanishi, Union and tangle, *Proc. Amer. Math. Soc.*, 124 (1996), 1625-1631.
[3] M. Ozawa, Ascending number of knots and links, preprint, arXiv:0705.3337.
[4] K. Taniyama, Unknotting numbers of diagrams of a given nontrivial knot are unbounded, to appear in J. Knot Theory Ramifications.

DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION, WASEDA UNIVERSITY, NISHI-WASEDA
1-6-1, SHINJUKU-KU, TOKYO, 169-8050, JAPAN

E-mail address: taniyama@waseda.jp