Cytotoxic Effect of Puya chilensis Collected in Central Chile

César Echeverria-Echeverria¹, Aly Valderrama-Villarroel², Marcelo Ortega³, Rodrigo A. Contreras⁴, Gustavo E. Zúñiga⁴,⁵, Leonor Alvarado-Soto⁶, and Rodrigo Ramírez-Tagle⁶

Abstract
This study sought to evaluate the pharmacological activity of metabolites isolated from the dried and lyophilized ethanol extracts as well as other solvent fractions of the currently endangered Puya chilensis Molina (Chagual) by analyzing their effects on a human hepatocellular carcinoma (HCC) cell line. We identified several active metabolites from Chagual extracts and two, in particular, carnosol, were found in all the prepared fractions. In addition, Chagual exhibited considerable cytotoxicity against the cancer cell line used in this study, with a half-maximal inhibitory concentration (IC₅₀) of 0.44 ± 0.11 and 0.27 ± 0.04 after a 72-hour treatment and, therefore, has the potential for further investigation as a source of candidate therapeutic agents.

Keywords
human hepatocellular carcinoma, metabolites, Puya chilensis, bioactive nutrients

Received: January 6th, 2022; Accepted: March 15th, 2022.

Introduction
The Bromeliaceae family members have a high diversity of taxa in the neotropical region with 58 genera and 3172 species, and Puya is a large genus with close to 200 species.¹² Puya species are present in the mountain regions of Central America, in the mid to high elevations of the Andes, and south to lower elevations of Central Chile.³ The Puya species have considerable morphological variations due to the diverse climatic conditions where they grow, which range from wet to arid habitats. In Chile, the genus Puya grows in the Mediterranean area, and Puya chilensis Molina (Chagual) is a characteristic plant of the stony ground near the region that stretches from Coquimbo to Valparaiso. The inflorescence is a pyramidal scape with numerous and reflexed bracts, which are bipinnate where the lower half is densely covered with large greenish yellow flowers.³

“Chagual” is the local traditional name of P. chilensis and its conservation status conferred by the International Union for Conservation of Nature (IUCN) criteria has qualified it as of “least concern (LC)”. However, Chagual has been endangered by the decimation of the native forest area, change in soil use, and changes in global climatic conditions. In addition, the cultural use of this plant as a food item in Chile, the only Puya species that is eaten as a salad is Puya chilensis (Schmeda).

Over the last years, the bioactivities of some Bromeliaceae species have been demonstrated such as the pineapple stem (Ananas comosus L., family Bromeliaceae), which has proteases that have shown antiproliferative and proapoptotic effects in colon carcinoma.⁵ In addition, other Bromeliaceae genera have been reported to exhibit antioxidant, photoprotective, and anti-nociceptive effects.¹²,⁶ However, the specific bioactivity or phytochemical properties of the Chilean Puya are not fully known. Therefore, the aim of this study was to determine the bioactivity of some metabolites isolated from Chagual and their effect on human hepatocellular carcinoma (HCC).

¹Universidad de Atacama, Copiapo, Chile
²Universidad Católica del Maule, Talca, Chile
³Universidad Andrés Bello, Santiago, Chile
⁴Universidad de Santiago de Chile, Santiago, Chile
⁵Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Santiago, Chile
⁶Universidad de Aconcagua, Santiago, Chile

Corresponding Author:
Rodrigo Ramírez-Tagle, Universidad de Aconcagua, Dirección de Investigacion y Postgrado, 7630367, Vitacura, Chile.
Email: rodrigo.ramirez@uac.cl

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Materials and Methods

Plant material and extraction

Fresh *P. chilensis* [identified by Aly Valderrama] stems were purchased from a local collector in Melipilla (Metropolitana, Region, Chile) who sells *P. chilensis* as fresh salad. The plant material, stored at −20 °C, was cut into 2 portions and chopped; one portion was dried at room temperature until constant weight while the other was lyophilized. Both samples were macerated separately in 1 L of ethanol, diethyl ether, and ethyl acetate (analytical grade) [10% w/v] in the dark at room temperature with constant agitation for 7 days. Then, the total extract was concentrated using a rotary evaporator at 40 °C and stored at −20 °C until the analysis (Table 1).

General experimental procedures

A 6490 triple quadrupole liquid chromatography/mass spectrometry (LC/MS) system equipped with an electrospray ionization (ESI) source (Agilent Technologies, Palo Alto, CA, USA) was used. All determinations were performed under negative ionization mode at a capillary voltage of 3000 V. Nitrogen was used as the nebulizer (35 psi) and drying gas at 10 L/min at a temperature of 300 °C. The PMT, fragmenter, and skimmer were set at 850, 100, and 60 V, respectively. A full scan mass spectrum was acquired from *m/z* 100 to 1300. Data acquisition and processing were carried out using MassHunter MS Optimizer software (Agilent Technologies, Palo Alto, CA, USA).

The separation was performed using a C18 column; 150 × 4.6 mm I.D.; 5 µm particle size (Agilent Technologies, Palo Alto, CA, USA). The mobile phase consisted of water with 0.1% formic acid (phase a) and acetonitrile with 0.1% formic acid (phase b) at a flow rate of 0.6 mL/min. The linear elution gradient was from 80% (a) to 60% (a) in 20 min. Each run was followed by a 5-minute wash with 100% (b) and an equilibration period of 11 min with 80% (a)/20% (b). The total run time for the analysis was 20 min. Then, 10 µL of the sample was injected and the peaks were assigned based on the mass of the standard compounds (Sigma Aldrich, Munich, Germany).

Metabolite identification was performed using the METLIN database according to the ionization patterns of triple quad MS/MS spectra obtained for each peak (https://metlin.scripps.edu/index.php, Scripps Center for Metabolomics). Databases analyze the match between reference spectrum and experimental data; identification regarding >95% of probability of match and retention times (polarity) was used to determine the plausibility of correct identification (double control: polarity in elution and mass spectrum) [Supplementary Figure S1].

Cell culture

Human HCC HepG2 cells (American Type Culture Collection, ATCC, HB-8065) were grown in a monolayer culture in Dulbecco’s modified Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS) and antibiotic-antimycotic agents (all Gibco, NY, USA) at 37 °C in a humidified 5% CO₂ incubator.

Cytotoxicity assay

HepG2 cells were seeded in a 96-well plate at an initial density of 5 × 103 cells/well. Twenty-four hours later, the cells were treated with either the control (Milli-Q water) or various concentrations (0.5-1 mg/mL) of lyophilized and dried ethanolic extracts of the Chagual for (A and C) 48 and (B and D) 72 h. Cell viability was measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Insert contains half-maximal inhibitory concentration (IC₅₀) values ± standard deviation (SD). Data are mean ± SD of 3 independent experiments each performed in triplicate.

Metabolites	Dried plant material	Lyophilized plant material
3, 4-dihydroxybenzoic acid (DHBA)	Diethyl ether and ethyl acetate fractions	Ethyl acetate fraction
Gallic acid (GA)	Diethyl ether and ethanol fractions	Ethyl acetate fraction
Shikimic acid	Diethyl ether and ethanol fractions	Ethyl acetate fraction
Hesperetin	Diethyl ether and ethanol fractions	Ethyl acetate fraction
8-C-glycosylkaempferol	Diethyl ether and ethanol fractions	Ethyl acetate fraction
Carnosol	Diethyl ether and ethanol fractions	Ethyl acetate fraction
concentrations of Chagual for 48 and 72 h. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the cytotoxicity, as previously described. The absorbance of the dissolved formazan crystals was measured at 540 nm using a microplate reader (Tecnan infinite® F50, Grodig, Austria).

Results

Isolation of compounds

Diverse metabolites were isolated from the different fractions analyzed, and at least 2 metabolites were found in all the fractions. Carnosol, a potent antitumor polyphenol, was confirmed as a metabolite by comparing its spectral peak to standard spectra in the databases. The second metabolite found in all the fractions was determined to be similar to quinic acid by comparing its spectrum with a reference spectrum in the databases. The second metabolite identified were 3,4-dihydroxybenzoic acid (DHBA), 3,4,5-trihydroxybenzoic acid (gallic acid, GA), shikimic acid, hesperetin, and 8-C-glycosykaempferol.

Cytotoxicity assay

Exposure of tumor cells to increasing concentrations (0.5-1 mg/mL) of Chagual extracts resulted in a dose-dependent decrease in cell viability at 48 and 72 h (Figure 1). The in vitro antitumor activity analysis of ethanolic extracts of the lyophilized (Figure 1A and B) and dried (Figure 1C and D), Chagual plant material revealed that they were highly cytotoxic with a half-maximal inhibitory concentration (IC50) of 0.44 ± 0.11 and 0.27 ± 0.04, the latter only after a 72-hour treatment (Figure 1B and D, respectively).

Discussion and Conclusions

The compounds isolated in this study have been reported in other plants; however, it was interesting to discover their presence in the *Puya* genus. Carnosol is an ortho-diphenolic diterpene (Figure 1). Carnosol has been reported to possess antitumor properties. Recently, it was discovered to have antiproliferative activity against several human cancer cells, as well as the ability to induce the intrinsic apoptosis pathway in MCF-7 cells.

In the present work, compounds tentatively identified in the extracts of *P. chilenais* are different from other works. We also present for the first-time information on the antitumor properties of Chagual.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors would like to thank the financial support of FONDECYT 11170840 (C.E.E.).

Author’s Contribution

Conceptualization, R.R.T. and C.E.E.; Methodology, M.O. and C.E.E.; Validation, G.Z., R.C., and C.E.E.; Formal Analysis, R.C. and C.E.E.; Investigation, R.R.T.; Resources, C.E.E.; Writing—Original Draft Preparation, R.R.T.; Writing—Review and Editing, A.V.V.; Visualization, C.E.E.; Supervision, R.R.T.; Project Administration, L.A.S.
Ethical Approval
Not applicable, because this article does not contain any studies with human or animal subjects.

Informed Consent
Not applicable, because this article does not contain any studies with human or animal subjects.

Trial Registration
Not applicable, because this article does not contain any clinical trials.

Supplemental material
Supplemental material for this article is available online.

ORCID iD
Rodrigo Ramírez-Tagle [10]
https://orcid.org/0000-0003-0694-1808

References

1. De Oliveira RG, Souza GR, Guimarães AL, et al. Dried extracts of *Encholirium spectabile* (Bromeliaceae) present antioxidant and photoprotective activities in vitro. *J. Young Pharm*. 2013;5(3):102-105. doi:10.1016/j.jsp.2013.08.005

2. De Lima-Saraiva SR, Silva JC, Branco CR, Branco A, Cavalcanti Amorim EL, da Silva Almeida JR. Antinociceptive effect of Encholirium spectabile: a Bromeliaceae from the Brazilian caatinga biome. *Pharmaun Mag.* 2014;10:S655-S660. doi:10.4103/0973-1296.139817

3. Jabaily RS, Sytsma KJ. Phylogenetics of Chilean Bromeliaceae: diversity, distribution and evaluation of conservation status. *Biodiversity and Conservation*. 2009;18(9):2449-2471. doi:10.1007/s10531-009-9601-y

4. Romano B, Fasolino I, Pagano E, et al. The chemopreventive activity in the aqueous crude extract of the leaves of *Nidularium procerum*: a Bromeliaceae from the Brazilian coastal rain forest. *Biol Pharm Bull*. 2005;28:1010-1015. doi:10.1248/bpb.28.1010

5. Contreras RA, Pizarro M, Köhler H, Zamora P, Zúñiga GE. UV-B shock induces photoprotective flavonoids but not antioxidant activity in Antarctic *Colobanthus quitensis* (Kunth) Bartl. *Environ. Exp. Bot.* 2019;159:179-190. https://doi.org/10.1016/j.envexpbot.2019.08.007

6. Echeverría C, Becerra A, Nuñez-Villena F, et al. The paramagnetic and luminescent [Re6Se8I6]3− cluster. Its potential use as an anti-tumoral and biomarker agent. *New J Chem.* 2012;36:927-932. doi:10.1039/c2nj21016a

7. Contreras RA, Pizarro M, Köhler H, Zamora P, Zúñiga GE. UV-B shock induces photoprotective flavonoids but not antioxidant activity in Antarctic *Colobanthus quitensis* (Kunth) Bartl. *Environ. Exp. Bot.* 2019;159:179-190. https://doi.org/10.1016/j.envexpbot.2019.08.007

8. Echeverría C, Becerra A, Nuñez-Villena F, et al. The paramagnetic and luminescent [Re6Se8I6]3− cluster. Its potential use as an anti-tumoral and biomarker agent. *New J Chem.* 2012;36:927-932. doi:10.1039/c2nj21016a

9. Dörrie J, Sapula K, Zunino SJ. Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. *Cancer Lett.* 2001;170:33-39. doi:10.1016/S0304-3835(01)00549-3

10. Huang SC, Ho CT, Lin-Shiau SY, Lin JK. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappaB and c-Jun. *Biochem Pharmacol.* 2005;69:221-232. doi:10.1016/j.bcp.2004.09.019

11. Tajiki K, Minamikawa T. Occurrence of shikimic and quinic acids in angiosperms. *Phytochemistry*. 1975;14:195-197. doi:10.1016/0031-9422(75)80369-9

12. Inoue M, Suzuki R, Koide T, Sakagushi N, Oghara Y, Yabu Y. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. *Biochem Biophys Res Commun.* 1994;204:898-904. doi:10.1006/brbc.1994.2544

13. Aranganathan S, Nalini N. Antiproliferative efficacy of hesperetin (Citrus flavonoid) in 1,2-dimethylhydrazine-induced colon cancer. *Phytotherapy Research*. 2013;27:999-1005. doi:10.1002/ptr.4826

14. Wu T, Zang X, He M, Pan S, Xu X. Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. *J Agric Food Chem.* 2013;61:8185-8190. doi:10.1021/jf402222v

15. Gajhede M, Anthoni U, Nielsen PH, Pedersen EJ, Christophersen C. Carnosol. Crystal structure, absolute configuration, and spectroscopic properties of a diterpene. *J Crystallography Spectroscopy Res.* 1990;20:165-171. doi:10.1007/BF01169707

16. Munne-Bosch S, Schwarz K, Alegre L. Response of abietane diterpenes to stress in Rosmarinus officinalis L.: new insights into the function of diterpenes in plants. *Free Rad Res.* 1999;31:S107-S112. doi:10.1080/1071576990301391

17. Khan N, Afq M, Mukhtar H. Apoptosis by dietary factors: the suicide solution for delaying cancer growth. *Carcinogenesis*. 2006;28:233-239. doi:10.1039/carinbl243

18. Johnson JJ, Syed DN, Suh Y, et al. Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene carnosol: implications for chemoprevention. *Cancer Prev Res.* 2010;3:1112-1123. doi:10.1158/1940-6207.CAPR-10-0168

19. Huang MT, Ho CT, Wang ZY, et al. Inhibition of skin tumorigenesis by dietary factors: the suicide solution for delaying cancer growth. *Cancer Lett.* 2001;170:33-39. doi:10.1016/S0304-3835(01)00549-3

20. Zunino S, Storms D. Carnosol delays chemotherapy-induced DNA fragmentation and morphological changes associated with apoptosis in leukemia cells. *Cancer Lett.* 2009;61:94-102. doi:10.1016/j.canlet.2008.02.174

21. Moran ME, Carothers AM, Weyant MJ, Redston M, Bertagnolli MM. Carnosol inhibits β-catenin tyrosine phosphorylation and prevents adenoma formation in the C57BL/6J/min/+ mouse. *Cancer Res.* 2005;65:233-239. doi:10.1158/0008-5472.CAN-05-0580

22. Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal cancer: lessons from mouse models. *Nature Rev. Cancer*. 2005;5:41-54. doi:10.1038/nrc1507

23. Kim S-H. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. *Toxicol Sci.* 2006;91:123-131. doi:10.1093/toxsci/kfl063
24. Tan C, Shan X, Xu G, Lin YM, Chen Z. Phytoaccumulation of cadmium through Azolla from aqueous solution. *Ecol Eng*. 2011;37:1942-1946. doi:10.1016/j.ecoleng.2011.01.010

25. Kratz JM, Andrichetti-Fröhner CR, Leal PC, et al. Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. *Biol Pharm Bull*. 2008;31:903-907. doi:10.1248/bpb.31.903

26. Kang MS, Oh JS, Kang IC, Hong SJ, Choi CH. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. *J Microbiol*. 2008;46:744-750. doi:10.1007/s12275-008-0235-7

27. Inoue M, Suzuki R, Sakaguchi N, et al. Selective induction of cell death in cancer cells by gallic acid. *Biol Pharm Bull*. 1995;18:1526-1530. doi:10.1248/bpb.18.1526

28. Kaur M, Velmurugan B, Rajamanickam S, Agarwal R, Agarwal C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. *Pharm Res*. 2009;26:2133-2140. doi:10.1007/s11095-009-9926-y

29. Zhong ZG, Huang JI, Liang H, et al. The effect of gallic acid extracted from leaves of *Phyllanthus emblica* on apoptosis of human hepatocellular carcinoma BEL-7404 cells. *Zhong Yao Cai* 2009;32:1097-1101.

30. Huang J, Zhong Z. Study of gallic acid extracted from the leaves of *Phyllanthus emblica* on apoptotic mechanism of human hepatocellular carcinoma cells BEL-7404. *Zhong Yao Cai* 2011;34:246-249.

31. Popova AV, Hincha DK. Effects of flavon glycosides on liposome stability during freezing and drying. *Biochim Biophys Acta - Biomembr*. 2016;1858:3050-3060. doi:10.1016/j.bbamem.2016.09.020