Regulation of nuclear factor-κB in intestinal epithelial cells in a cell model of inflammation

Fadia R. Homaidan1,CA, Iman Chakroun1 and Marwan E. El-Sabban2

1Department of Physiology and 2Department of Human Morphology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon

CA Corresponding author:
Tel: +961 1 350000, ext. 4892; 5976
Fax: +961 1 744464
E-mail: fh01@aub.edu.lb

BACKGROUND: Interleukin-1 (IL-1), an inflammatory cytokine whose levels are elevated in inflamed mucosa, causes part of its effect on intestinal epithelial cells (IEC) through inducing ceramide production.

Aim: To study the role of nuclear factor-κB (NF-κB), a pro-inflammatory and anti-apoptotic factor, in IL-1-treated IEC.

Methods: NF-κB activity and levels of apoptotic proteins were assessed by electrophoretic mobility shift assay and RNA-protection assay, respectively.

Results: IL-1 and ceramide, which have been shown to partially mediate IL-1 effects on IEC, activated NF-κB levels significantly. This activation was due to a decrease in IkB-α and IkB-β protein levels. Moreover, the ratio of mRNA levels of anti-apoptotic to pro-apoptotic proteins was significantly increased in IL-1-treated IEC.

Conclusion: NF-κB may play a key role in the regulation of the expression of pro-inflammatory and/or apoptotic genes in inflammatory bowel disease, making this protein an attractive target for therapeutic intervention.

Key words: Nuclear factor-κB, Interleukin-1, Inflammatory bowel disease, Inflammation, Intestinal epithelial cells

Introduction

Transcriptional factors of the nuclear factor (NF)-κB/Rel family regulate the expression of genes involved in inflammation, cell proliferation and apoptosis.1,2 NF-κB is rapidly activated in response to a wide variety of stimuli such as viral and bacterial infections or the interaction of the inflammatory cytokines with their receptors.3 It is a heterodimer of the p50 (NF-κB-I) and p65 (Rel-A) subunits; however, proteins that constitute the NF-κB family form a variety of functional homodimers and heterodimers.4–6 Under resting conditions, the complex is present in the cytoplasm sequestered in an inactive form due to its association with an inhibitory protein belonging to the IκB family. Activation of NF-κB involves the dissociation of the Rel-A subunit from the inhibitory proteins, such as IκB-α, and the translocation of Rel-A from the cytoplasm to the nucleus, where it dimerizes with the p50 or c-Rel subunits and interacts with specific target genes.7 The dissociation of Rel-A from IκB occurs following a cascade of intracellular signals that leads to specific phosphorylation of the inhibitory subunit6 on serine or tyrosine residues.8,9 This phosphorylation is followed by ubiquitination and proteolysis of the inhibitory protein via a non-lysosomal, adenosine triphosphate (ATP)-dependent proteolytic proteasome. Inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin-1 (IL-1) have been shown to be elevated in the mucosa of patients with inflammatory bowel disease. These cytokines possess diverse biological functions that include cell proliferation, inflammation and apoptosis. They contribute to activation of intestinal epithelial cells (IEC) activation as well as the activation of immune cells that get recruited after the inflammatory insult. We have shown that in IEC, IL-1 activates sphingomyelinase, an enzyme that catalyzes the hydrolysis of sphingomyelin to ceramide.10 In contrast to what has been observed in many cell types, however, ceramide did not induce apoptosis in IEC, neither did IL-1, but rather induced the synthesis of cyclooxygenase-2 (COX-2) leading to increased levels of pro-inflammatory mediators such as prostaglandin E2.11 NF-κB consensus regions have been shown to be present on the COX-2 promoter region and these regions have been shown to be involved in COX-2 mRNA induction by cytokines.12 Moreover, NF-κB seems to possess a significant anti-apoptotic role.13,14 Indeed, some known pro-apoptotic extracellular signals can induce NF-κB that in turn induces the expression of genes that are anti-apoptotic.14,15 Mediators that can induce NF-κB could therefore protect against apoptotic elimination of affected cells. Interestingly, this anti-apoptotic role of NF-κB has only been described for Rel-A but not for c-Rel or p50, which possess pro-apoptotic and anti-proliferative properties.14,15
In this study we investigate the effects and mechanism of action of IL-1 and/or ceramide in regulating NF-κB in IEC. Activation of NF-κB by IL-1 may be responsible for the lack of apoptosis observed in cells treated with IL-1 and/or ceramide.\(^{11}\)

Materials and methods

Materials

Human recombinant IL-1α was obtained from Immunoex (Seattle, Washington, USA). Bromophenol blue, coomassie blue R-250, alkaline phosphatase-conjugated goat anti-rabbit IgG, polyclonal rabbit anti-human recombinant IL-1α, anti-apoptotic proteins bcl-2, bcl-w and bcl-xL, and the housekeeping genes L-32 and GAPDH. and bfl-1, and the housekeeping genes L-32 and pro-apoptotic proteins bad, bax, bak mRNA: anti-apoptotic proteins bcl-2, bcl-w and were used and it contained probes for the following medicines: Acrylamide and N,N,N-tetraacetic acid (EGTA), ethylene glycol-bis-(2-aminoethyl)tetramethylethylene diamine (TEMED), methanol, acetic acid, isopropanol, dithiothreitol, imidazole, LiCl, and 2-mercaptoethanol, and N-acetyl sphingosine (C2 ceramide) and ZLL (Z-leu-leu-CHO), a proteasome inhibitor, were purchased from BioMol (Plymouth Meeting, Pennsylvania, USA). RNA protection Kits and templates were obtained from BD Pharmingen (San Diego, California, USA). The multi-probe RPA template mapo-2 was used and it contained probes for the following mRNA: anti-apoptotic proteins bcl-2, bcl-xL, and pro-apoptotic proteins bad, bak and bfl-1, and the housekeeping genes L-32 and GAPDH.

Antisera

Rabbit polyclonal antisera to 1kB-α, 1kB-β, c-Rel, Rel-A, NF-κB p50, NF-κB consensus oligonucleotide, laminin reagents, ECL marker and anti-rabbit IgG horseradish peroxidase (HRP)-conjugate subunit were purchased from Santa Cruz Biotechnology (Santa Cruz, California, USA).

Methods

Cell culture

Murine intestinal epithelial cell line Mode-K\(^{16}\) was obtained from Dr P.B. Ernst (University of Texas, Medical Branch, Galveston, Texas, USA). Mode-K cells were maintained in DMEM (low glucose) containing 10% fetal bovine serum (FBS), 10 mM sodium pyruvate, and non-essential amino acids. T-84 cells, human colonic cell line, were grown in DMEM/F-12 medium supplemented with 10% FBS. Cell viability was measured using the trypan blue exclusion assay.

Preparation of homogenate. Cells were trypsinized, centrifuged at 200 g, and washed in phosphate-buffered saline (PBS) twice. The cells were then resuspended in PBS: 2 × electrophoresis sample buffer (SB), ratio 1:1. The sample buffer consisted of 0.25 M Tris–HCl (pH 6.8), 4% w/v SDS, 20% v/v glycerol and 0.1% bromophenol blue. Samples were then boiled for 5 min and stored at -80°C.

Nuclear extract preparation

Cells were harvested and collected by centrifugation at 200 g for 10 min and washed once with PBS. Cells were lysed by rapid freezing in ethanol/dry ice and thawed by resuspension in a hypotonic ice-cold buffer containing 10 mM KCl, 1.5 mM MgCl₂, 1 mM dithiothreitol (DTT), and 10 mM Hepes. The nuclei were centrifuged at 1250 g for 10 min at 4°C and the nuclear pellets were gently extracted in a hypertonic solution containing 0.4 mM NaCl, 1.5 mM MgCl₂, 0.2 mM EDTA, 1 mM DTT, 0.5 mM PMSF, 20 mM Hepes and 25% glycerol, for 30 min at 4°C, and then centrifuged for 20 min at 20,000 g to collect the nuclear proteins in the supernatant. The supernatant was diluted with 30 μl of buffer containing: 50 mM KCl, 20% (v/v) glycerol, 0.2 mM EDTA, 1 mM DTT, 0.5 mM PMSF, 20 μM Hepes, and stored at -70°C. Protein concentrations were determined using the Bio-Rad assay.

Western blotting

Total protein extracts were run on a 12% SDS-polyacrylamide gels. Gels were transferred to PVDF membranes overnight at 4°C. Following transfer, membranes were washed with PBS containing 0.1% Tween 20 (TPBS) and blocked with 5% non-fat dry milk for 1 h at room temperature. Antibodies were then added in TPBS and incubated for 2 h at room temperature. Unbound antibodies were washed three times with TPBS and the anti-rabbit IgG HRP-conjugate was added at 1:5000 dilution for 1 h at room temperature. The membranes were washed and incubated with luminol reagents and then exposed to autoradiography.

Electrophoretic mobility shift assay

NF-κB consensus oligonucleotide was end-labeled with γ-32P ATP using T4 polynucleotide kinase. The
hybridization reaction was performed using 10–20 μg of nuclear extract, 1 μg of poly(dI,dC), 1 μg of poly(dN6) as a non-specific competitor, and 10 μg of bovine serum albumin in 20 mM Heps, 50 mM KCl, 1 mM EDTA and 5 mM DTT. The reaction was diluted with water to a v/v ratio of 1:20 of the labeled probe. The mixture was incubated for 30 min, then stopped by adding 6 μl of 15% Ficoll solution containing the indicator dyes bromophenol blue and xylene cyanol. The reaction mixture (20 μl of each sample) was electrophorized on a 5% non-denaturating polyacrylamide gel. The gel was transferred to Whatman filter paper, dried at 80°C under vacuum for 2 h and processed for autoradiography at −80°C overnight. The specific NF-κB band was determined by competition experiments using a mutant oligonucleotide that has lost its ability to bind to the transcription factor. Subunit specificity was determined using specific antibodies to the NF-κB components (anti Rel-A, p50 and c-Rel) in the incubation step, which results in a supershift of the specific band due to the bound antibody.

RNase protection assay

Radioactive RNA probes were synthesized from DNA templates using T7 RNA polymerase and radioactive UTP as a substrate. The reaction was terminated after 1 h incubation at room temperature by the addition of DNase. The labeled RNA probes were extracted once with phenol:chloroform-isoamyl alcohol, precipitated in equal volume of 4 M ammonium acetate and 5 volumes of ice-cold absolute ethanol, incubated at −80°C for 30 min, centrifuged at full speed for 15 min at 4°C in a microcentrifuge, washed once with 90% ethanol, allowed to air-dry and then solubilized in hybridization buffer and quantified using a scintillation counter. RNA samples (2–20 μg) were dried under vacuum and hybridized with the probe overnight.

Unhybridized RNA were digested using RNase A and the reaction was terminated by the addition of Proteinase K. Hybridized RNA were then extracted using phenol:chloroform-isoamyl alcohol, precipitated in ammonium acetate and absolute ethanol, washed once with 90% ethanol and then air-dried. The pellets were solubilized in loading buffer (supplied by the manufacturer) and were ran on a 5% acrylamide-urea gel using 0.5 x tris borate–EDTA buffer (containing 45 mM tris-borate, and 1 mM EDTA, pH 8.0) as a running buffer, dried and exposed to autoradiography. Yeast tRNA was used as a negative control.

Results

IL-1 targets the NF-κB pathway

To establish whether IEC are functionally coupled to biological signals that lead to the activation of NF-κB by IL-1, cells were treated with IL-1 at different concentrations and time periods, and the NF-κB DNA binding activity was measured in nuclear extracts by electrophoretic mobility shift assay using a NF-κB consensus oligonucleotide. We first confirmed the constitutive expression of NF-κB in Mode-K cells. Two positive complexes were detected by the radiolabeled NF-κB consensus oligonucleotide (Fig. 1). These complexes were not changed in the presence of a mutant oligonucleotide (data not shown).

IL-1 has been shown to activate the sphingomyelin metabolic pathway, which will cause increased accumulation of ceramide in IEC. Ceramide acts as a second messenger in IEC and seems to mediate, at least in part, the effects of IL-1 observed on IEC function. Thus the effect of ceramide on NF-κB in the presence or absence of IL-1 was tested. Treatment of IEC by IL-1 and/or ceramide caused a significant increase in NF-κB levels in Mode-K cells (Fig. 2). Supershift assays using anti-p50 and c-Rel-specific antibodies showed little variation in the amount of the DNA-bound proteins with the various treatments, while Rel-A-containing heterodimers (activated NF-κB state) were supershifted, indicating that Rel-A is the major subunit that is translocated to the nucleus after cell activation by IL-1.

Regulation of IκB subunits by IL-1

Effect of IL-1 and ceramide on IκBα protein levels

We next examined the effect of IL-1 on the activation of IκB to determine which subunit is responsible for

![FIG. 1. Constitutive expression of NF-κB in Mode-K cells. In the second and third lane, as indicated, are shown increased expression of NF-κB in IL-1-treated cells (10 ng/ml and 30 ng/ml, respectively) for 24 h. In the last two lanes are shown increased expression of NF-κB in ceramide-treated cells (10 and 30 μM, respectively) for 24 h. Equivalent amounts of nuclear extract from IEC were prepared and analyzed for NF-κB binding activity with a 32P-labeled oligonucleotide probe containing NF-κB binding sites. This experiment is representative of six.](image)
As compared with untreated control (n set at 100% and the rest of the bands were calculated as a percentage of the control. *p < 0.05, **p < 0.005; p value represents the comparison of the effect of IL-1 on IκBα levels in control untreated cells was set at 100% and the rest of the bands were calculated as a percentage of the control. *p < 0.05, **p < 0.005; p value represents the comparison of the effect of IL-1 on IκBα levels as compared with untreated control (n = 4).

Effect of IL-1 and ceramide on IκBβ protein levels

IL-1 and ceramide also induced a decrease in the levels of IκBβ levels in T-84 cells. The decrease, which was time (Fig. 5) and concentration dependent (data not shown), was maximal around 1 h with both treatments. The decrease observed in the levels of IκBβ that was maximal at 4 h for IL-1 (10 ng/ml) and ceramide (10 μM) was much greater than that observed with IκBα for the same treatment (80% decrease at 4 h versus 40% at 1 h in ceramide-treated cells, for example). This suggests that both IκBα and IκBβ may be involved in releasing NF-κB from the cytosolic complex to translocate into the nucleus; however, the effect of treatment on IκBβ proceeds that of IκBα. Similar results were obtained in Mode-K cells (data not shown).

Effects of IL-1 and ceramide on IκBε protein levels

The effect of ceramide and/or IL-1 on IκBε were also investigated. Neither treatment had any significant effect on the levels of IκBε (for Mode-K cells tested up to 24 h; Fig. 6) in either IEC line used, suggesting that it is not involved in the action of IL-1 on NF-κB activation.
Effects of IL-1 and ceramide on IκBα and IκBβ protein levels in the presence of ZLL

ZLL is a potent and selective reversible proteasome inhibitor. It inhibits NF-κB activation by preventing IκB degradation. Cells were treated with ZLL for different time periods before IL-1 or ceramide treatment, and the levels of IκBα and IκBβ were measured (Fig. 6). ZLL reversed the effect induced by IL-1 or ceramide on both IκB levels, thus preventing their degradation, and subsequently no translocation of NF-κB was observed. These data suggest that translocation of NF-κB is dependent on the activation of proteasome that leads to the degradation of IκBα and IκBβ, thus freeing NF-κB to translocate to the nucleus for its action on activating different genes.

Regulation of mRNA levels of apoptotic proteins by IL-1 treatment

Using the RNA protection assay, the mRNA levels of apoptotic proteins were shown to be regulated by IL-1 treatment. The mRNA levels of the anti-apoptotic proteins bcl-x and bcl-w were increased while bcl-2 was unchanged; and the levels of the pro-apoptotic proteins bax, bak and bad were significantly reduced (Fig. 7). Similar results were obtained when cells were treated with ceramide. These data provide supportive evidence that IL-1 and/or ceramide do not induce apoptosis in intestinal epithelial cells and, rather, they feed into the prostanoid synthetic pathway through the induction of COX-2.11

Discussion

Apoptosis is a highly conserved evolutionary event crucial for normal development and homeostasis. Deregulated cell death has been associated with disease entities such as cancer17 and cardiovascular disease.18 Cells defective for NF-κB signaling were found to be more sensitive to apoptotic-inducing signals than normal wild-type cells,19,20 suggesting an anti-apoptotic role for NF-κB. NF-κB is a transcription factor involved in the regulation of many genes and is activated in response to a wide variety of stimuli including inflammation, viral and bacterial infections.
and stress factors. In particular, NF-κB has been shown to modulate the expression of pro-inflammatory cytokines, chemokines, immune receptors, adhesion molecules, and enzymes that generate mediators of inflammation. Activation of NF-κB involves the dissociation of the Rel-A (p65) subunit from inhibitory proteins, mainly IκBα, and its translocation from the cytoplasm to the nucleus, where it dimerizes with the p50 or c-Rel subunits and interacts with specific target genes. Activation of Rel-A or c-Rel containing NF-κB dimers results in the transcriptional stimulation of genes that are important for cell proliferation. NF-κB also possesses a significant anti-apoptotic role. Indeed, the pro-apoptotic extracellular signals can also induce NF-κB that in turn induces the expression of genes that are anti-apoptotic. We have previously shown that IL-1 and ceramide did not cause any increase in apoptosis in Mode-K intestinal epithelial cells. In this report, we show that treatment of cells with IL-1 caused activation of NF-κB and that this activation was completely dependent on its dissociation from the inhibitory proteins IκBα and IκBβ. The release of NF-κB from IκBα proceeds its dissociation from IκBβ.

The increase in the ratio of anti-apoptotic to pro-apoptotic mRNA provides an explanation for the lack of induction of apoptosis in IL-1-treated and/or ceramide-treated IEC. Both stimulators feed into the prostanooid synthetic pathway through the induction of COX-2, which is thought to be due to activating NF-κB and translocation Rel-A to the nucleus where it can then bind on the COX-2 gene and induce its synthesis.

Mediators that can induce NF-κB could therefore protect against apoptotic elimination of affected cells. Interestingly, this anti-apoptotic role of NF-κB has only been described for Rel-A but not for c-Rel or p50, which possess pro-apoptotic and anti-proliferative properties. This study shows that, upon activation of NF-κB, Rel-A was the subunit that was translocated preferentially from the cytoplasm to the nucleus, where it is capable of dimerizing with the p50 or c-Rel subunits and interacts with specific target genes, some of which are apoptotic proteins. Using the RNA protection assay we were able to show that in IL-1-treated or ceramide-treated IEC, the message levels of anti-apoptotic proteins were significantly increased while those of the pro-apoptotic proteins levels were significantly decreased. This correlated well with what we have observed earlier in IL-1-treated IEC where it was shown that the protein levels of bcl-x were increased while protein levels of bax were significantly reduced. Inhibition of NF-κB activation and subsequent translocation have been shown to promote apoptosis in tumor cells such as multiple myeloma cells. This was prevented by the proteasome inhibitor PS-341, which prevents the degradation of IκBs by the proteasomes and hence the release of NF-κB from the IκB complex. PS-341 has also been recently used in clinical trials to resolve different types of malignancies.

Activation of NF-κB is an important event in numerous inflammatory processes of the gastrointestinal tract. Induction of this transcription factor has been reported in Helicobacter pylori gastritis, inflammatory bowel disease, and pancreatitis. Recently, it has been shown that protein kinase C, intracellular calcium and activation of NF-κB are crucial for the induction of the COX-2 gene in the parietal cells in response to carbachol stimulation. Earlier reports have stated that ceramide is a major second messenger for TNF-α-induced NF-κB activation, while others have not observed any role for ceramide in IκBα degradation. Ceramide was capable of activating NF-κB to the same extent as IL-1, providing more evidence that IL-1 causes some of its effects through the activation of the sphingomyelin pathway. Neither IL-1 nor ceramide induced apoptosis in IEC but both induced COX-2 synthesis leading to increased levels of prostaglandin E2. The COX-2 gene contains consensus regions for NF-κB that have been shown to be important for the induction of COX-2 mRNA levels by cytokines. In human alveolar epithelial cells, activation of mitogen-activated protein kinases by ceramide contributes to the TNF-α signaling that occurs downstream of neutral sphingomyelinase activation and results in the stimulation of IκB kinase (IKK1/2) and NF-κB in the COX-2 promoter, followed by initiation of COX-2 expression. Pro-inflammatory cytokines activate the IKK complex that phosphorylates the NF-κB inhibitors, triggering their conjugation with ubiquitin and subsequent degradation via a non-lysosomal, ATP-dependent proteolytic proteasome. Freed NF-κB dimers translocate to the nucleus and induce target genes, such as COX-2, which catalyzes the synthesis of pro-inflammatory prostaglandins, in particular prostaglandin E2. At late stages of inflammatory episodes, however, COX-2 directs the synthesis of anti-inflammatory cyclopentenone prostaglandins, suggesting a role for these molecules in the resolution of inflammation.

ACKNOWLEDGEMENTS. This project is supported by grants from the American University of Beirut Medical Practice Plan, the Lebanese National Research Council, and the Third World Academy of Sciences.

References

1. Baldwin AS. The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–683.
2. Barnes PJ, Karin M. Nuclear factor-κB——a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–1071.
3. Baucus AE, Henkel T. Function and activation of NF-κB in the immune system. Annu Rev Immunol 1994; 12: 141–179.
4. Thomas D, Maniatis T. Identification of the rel family members required for virus induction of the human beta interferon gene. Mol Cell Biol 1995; 15: 152–164.
5. Thomas D, Maniatis T. NF kappa B: a lesson in family values. Cell 1995; 80: 529–532.
18. Mustapha S, Kirshner A, De Moissac D, Kirshenbaum LA. A direct interaction of bcl-2 with phospholipid signaling pathways in intestinal epithelial cells. *Inflam Res* 2001; 3: 375 – 381.

19. Homaidan FR, Chakroun I, Dbaibo GS, El-Sabban ME. IL-1 activates two phospholipid signaling pathways in intestinal epithelial cells. *Mediat Inflamm* 2002; 11: 39 – 45.

20. Yamamato K, Arakawa T, Ueda N, Yamamato S. Transcriptional role of the tumor necrosis factor receptor of activated T lymphocytes in human epithelial cells. *Am J Physiol* 2002; 278: C451 – C456.

21. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegman K, Kronke M. Molecular mechanisms mediating antinociception and protection. *Am J Physiol* 2000; 278: C451 – C462.

22. Hideshima T, Mitsiades C, Akiyama, et al. Molecular mechanisms mediating antinociception and protection. *Am J Physiol* 2000; 278: C451 – C462.

23. Aghajanian C, Soffert N, Dizon D, et al. A phase I trial of the novel proteasome inhibitor PS-341 in advanced solid tumor malignancies. *Clin Cancer Res* 2002; 8: 2955 – 2961.

24. Orlowski RZ, Stinchcombe TE, Mitchell BS, et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. *J Clin Oncol* 2002; 20: 4420 – 4427.

25. Keates S, Htti Y, Upton M, Kelly C. Helicobacter pylori infection activates NF-kB in gastric epithelial cells. *Gastroenterology* 1997; 113: 1099 – 1109.

26. Wahl C, Liptay S, Adler G, Schmid R. Sulphasalazine: a potent and specific inhibitor of nuclear factor kappa B. *J Clin Invest* 1996; 10: 1163 – 1174.

27. Guvovsky I, Guydskaya A, Blinman T, Zaninovic V, Pandol SJ. Early NF-kB activation is associated with hormone-induced pancreatitis. *Am J Physiol* 1996; 275: G1402 – G1414.

28. Pauswadi N, Ramamoorthy S, Crofford LJ, Askari FK, Todisco A. Regulation and function of COX-2 gene expression in isolated gastric parietal cells. *Am J Physiol* 2002; 282: G1069 – G1078.

29. Schutze S, Potthoff K, Machleidt T, Berkovic, D, Wiegman K, Kronke M. TNF activates NF-kB by phosphatidylcholine specific phospholipase C-dependent induction of cytochromease-2 in MC 3T3-E1 cells. *J Biol Chem* 1995; 320: 3151 – 3160.

30. Bauerle PA, Baltimore D. NF-kB: ten years after. *EMBO J* 1995; 14: 2870 – 2883.

31. Beg AA, Shao WC, Bronson RT, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the Rel-A component of NF-kappa B. *Nature* 1995; 376: 167 – 170.

32. Abbadie C, Kaburn N, Boudi F, Smardova J, Stehelin D, Vandenbunder P. Phosphorylation of human bcl-2 on serines 32 and 36 controls bcl-2 proteolysis and NF-kB activation in response to diverse stimuli. *EMBO J* 1995; 14: 2870 – 2883.

33. Reed JC. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. *J Immunol Methods* 1994; 199: 75 – 99.

34. di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. *Nature* 1997; 388: 548 – 554.

35. Di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. *Nature* 1997; 388: 548 – 554.

36. Di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. *Nature* 1997; 388: 548 – 554.

37. Di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. *Nature* 1997; 388: 548 – 554.

38. Di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. *Nature* 1997; 388: 548 – 554.

39. Di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. *Nature* 1997; 388: 548 – 554.

40. Di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. *Nature* 1997; 388: 548 – 554.

41. Di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. *Nature* 1997; 388: 548 – 554.

42. Di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. *Nature* 1997; 388: 548 – 554.