NEVANLINNA THEORY AND RATIONAL POINTS

Junjiro Noguchi

Abstract S. Lang [L] conjectured in 1974 that a hyperbolic algebraic variety defined over a number field has only finitely many rational points, and its analogue over function fields. We discuss the Nevanlinna-Cartan theory over function fields of arbitrary dimension and apply it for Diophantine property of hyperbolic projective hypersurfaces (homogeneous Diophantine equations) constructed by Masuda-Noguchi [MN]. We also deal with the finiteness property of S-units points of those Diophantine equations over number fields.

Introduction

S. Lang [L] conjectured in 1974 that a hyperbolic algebraic variety defined over a number field has only finitely many rational points, and its analogue over function fields. For subvarieties of Abelian varieties the function field analogue was dealt with by M. Raynaud [R], and lately G. Faltings [F] proved this conjecture for subvarieties of Abelian varieties over number fields. On the other hand, the author [Nog5] proved the function field analogue in general case (cf. also [Nog1], [Nog2]). See Y. Imayoshi-H. Shiga [IS], M. Zaidenberg [Z], and M. Suzuki [Su1], [Su2] for non-compact versions of this result.

In the case of curves (Fermat, Catalan, Thue equations, etc.) defined over function fields, R.C. Mason [Ma1], J. Silverman [Si] and J. Mueller [Mu] obtained similar or more precise finiteness properties by making use of a different method which relies on the function field analogue of “abc-conjecture” of Masser-Oesterlé. The function field analogue of “abc-conjecture” was proved in more general form by R.C. Mason [Ma1], [Ma2], J. Voloch [Vo] and W. Brownawell-D. Masser [BrM]. They actually proved a version of “abc-conjecture” in several variables (to say, $abc\cdots$ conjecture), which is nothing but a special case of Nevanlinna-Cartan’s second main theorem with truncated counting functions applied to algebraic case (see [C], (3), and §2).

Here we discuss the Nevanlinna-Cartan theory over function fields of arbitrary dimension (cf. J. Wang [W1], [W2] and [W3] for related results), and apply it for Diophantine property of hyperbolic projective hypersurfaces (homogeneous Diophantine equations) constructed by [MN]. We also deal with the finiteness property of S-units points of those Diophantine equations over number fields.

Research at MSRI supported in part by NSF grant #DMS 9022140.
Acknowledgement. The present manuscript is based on a talk of the author for Workshop in Nevanlinna Theory and Diophantine Approximation, January 22-26, 1996, Mathematical Sciences Research Institute, University of California, Berkeley. The author is grateful to the institute for the very active and stimulating circumstance, and for the hospitality. His thanks are also due to the co-organizers of the workshop, Professor Pit-Mann Wong and P. Vojta.

1. Function field case

We deal with the Nevanlinna theory over function fields of an arbitrary dimension by making use of the method of Cartan [C] and Nochka [N], which affirmatively proved Cartan’s conjecture (cf. also [Ch] and [Fu2]). Let k be an algebraically closed field of characteristic 0, let R be a smooth projective algebraic variety of dimension N over k, and let K denote the rational function field of R. To use analytic definitions as well, we set $k = \mathbb{C}$.

We fix a class ω of an ample line bundle (a Hodge metric form) on R. Let D be a divisor on R, and define the counting function of D with respect to ω by

$$N(D; \omega) = \int_D \omega^{N-1}.$$

If σ is a meromorphic section of some line bundle and (σ) denotes the divisor determined by σ, then we write

$$N(\sigma; \omega) = N((\sigma); \omega).$$

Let $a_i \in K^*$, $1 \leq i \leq m$, and let $((a_j))$ denote the least common multiple of the polar divisors of a_i, $1 \leq i \leq m$. We define the height function of $(a_i)_{1 \leq i \leq m}$, by

$$ht((a_j); \omega) = N(((a_i)); \omega).$$

From $a_i \in K^*$, $1 \leq i \leq m$, we obtain a rational mapping $f = [1; a_1, \ldots, a_m] : R \to \mathbb{P}^m(\mathbb{C})$, and define the order function of f by

$$T(f; \omega) = \int_R f^* \Omega \wedge \omega^{N-1},$$

where Ω denotes the Fubini-Study Kähler form on $\mathbb{P}^m(\mathbb{C})$. The first main theorem is nothing but the Poincaré residue theorem:
(1.1) Theorem. Let the notation be as above. Let L be the line bundle determined by (a_i), and let $\sigma \in \Gamma(R, L)$ be a holomorphic section. Then

$$T(f; \omega) = \text{ht}((a_j); \omega) = N(\sigma; \omega), \quad 0 \leq j \leq m.$$

Next we have the “second main theorem with truncated counting functions”:

(1.2) Theorem. Let $f = [\sigma_0, \ldots, \sigma_m] : R \to \mathbb{P}^m(C)$ be a reduced representation of a rational mapping given by holomorphic sections σ_j of a line bundle. Let H_1, \ldots, H_q ($q \geq m + 1$) be linear forms on $\mathbb{P}^m(C)$ in general position such that $f^*H_j \neq 0$ for any j. Let r denote the rank of df at general point, and let l denote the dimension of the smallest linear subspace of $\mathbb{P}^m(C)$ containing $f(R)$. Then

$$(q - l - 1)T(f; \omega) \leq \sum_{i=1}^{q} N_{l-r+1}(f^*H_i; \omega) + \left\{\frac{(l-r+1)(l-r+2)}{2} + r - 1\right\} N(J; \omega).$$

(1.3)

Here $N_{l-r+1}(H_i(x_j); \omega)$ is the truncated counting function of zeros of $H_i(x_j)$, and J is a divisor used to define the generalized Wronskian bundle $W = [pJ] \otimes L^{l+1}$, and is independent of f. Cf. J. T.-Y. Wang [W1], [W2], and [W3] for related results.

Theorem (1.2) plays an important role. Because of the truncated counting functions $N_{l-r+1}(H_i(x_j); \omega)$, we may consider inequality (1.3) as a version of “abc-conjecture” in several variables over function fields of an arbitrary dimension. (cf. [Ma2], [Vo], and [BrM], Corollary I). We derive a “ramification theorem” over function fields (Corollary (2.16)), and “Borel’s theorem” over functions fields:

(1.4) Theorem. Let $x_j \in K^*, 1 \leq j \leq s$, satisfy

$$a_1x_1^d + \cdots + a_sx_s^d = 0 \quad (s \geq 2).$$

Assume

$$(1.5) \quad d > s(s - 2) + (s - 1)^2 \text{ht}((a_1, \ldots, a_s); \omega) + \frac{(s - 1)(s - 2)}{2} N(J; \omega).$$

Then there is a disjoint decomposition $\{1, \ldots, s\} = \bigcup_{\nu=1}^{l} I_\nu$ of indices such that

(i) $|I_\nu| \geq 2$ for all ν;
(ii) for arbitrary two indices $j, k \in I_\nu$, the ratio x_j/x_k is a constant.
(iii) $\sum_{j \in I_\nu} a_jx_j^d = 0$ for all ν.

We use the above results to study the rational points of a Diophantine equation. Let \(X \subset \mathbb{P}^{n-1}_K \) be a hypersurface defined over \(K \) by equation
\[
a_1 M_1^d(z_1, \ldots, z_n) + \cdots + a_s M_s^d(z_1, \ldots, z_n) = 0,
\]
where \(a_j \in K^* = K \setminus \{0\} \) and \(d \in \mathbb{Z}, > 0 \). We set
\[
Y(P) = \{(u_1, \ldots, u_n) \in \mathbb{P}^{n-1}(k); \sum_j a_j M_j^d(z_1, \ldots, z_n)M_j^d(u_1, \ldots, u_n) = 0,
\text{and } u_j = 0 \text{ if } z_j = 0\}.
\]
Then \(Y(P) \) is a projective variety defined over \(k \). Moreover, we set
\[
\mathcal{R}(P) = \{(z_1u_1, \ldots, z_nu_n) \in \mathbb{P}^{n-1}(K); (u_1, \ldots, u_n) \in Y(P)\} \subset X(K).
\]

(1.7) Main Theorem. Let the notation be as above. Assume that \(\{M_j(z_1, \ldots, z_n)\}_{j=1}^s \) is \(n \)-admissible ([MN]).

(i) Assume that \(d > s(s-2) \). Then the heights \(\text{ht}((z_i); \omega) \) of points of \(X(K) \) are bounded.

(ii) Assume (4) for \(d \). Then all points of \(X(K) \) are defined over \(k \); that is, all points \(x = (x_1, \ldots, x_n) \in X(K) \) are represented by \(x_j \in k \).

(iii) Assume that
\[
d > s!(s! - 2) + \frac{(s! - 1)(s! - 2)}{2}N(J; \omega).
\]
Then there are only finitely many rational points \(P_\mu \in X(K), \mu = 1, \ldots, \mu_0 (< \infty) \) such that
\[
X(K) = \bigcup_{\mu=1}^{\mu_0} \mathcal{R}(P_\mu).
\]
In the proof of (iii) we use the result of E. Bombieri-J. Mueller [BM] in a form generalized by Theorem (1.2).

2. Number field case—\(S \)-unit points

In this section we deal with \(X \) defined by (1.6) over a number field \(F \). We say that a point \((z_i) \in \mathbb{P}^{n-1}(F) \) is \(S \)-units point if \(z_i \in \mathcal{O}_S^* \) or \(z_i = 0 \), denote by \(X(\mathcal{O}_S^*) \) the set of \(S \)-units point of \(X \subset \mathbb{P}^{n-1}_F \). By making use the same idea as in the proof of the Main Theorem (1.7) we then apply Borel’s Theorem for \(S \)-units to prove
Theorem. Let \(\{ M_j(z_1, \ldots, z_n) \}_{j=1}^{s} \) be an \(n \)-admissible set of monomials, and let \(X \) be defined by (1.6) with an arbitrary \(d \geq 1 \). Then \(X(O_S^*) \) is a finite set.

Remark. (i) Mahler ([M], p. 724, Folgerung 2) proved Theorem (2.1) in the case of \(n = s = 3 \).

(ii) Let \([F; Q]\) denote the extension degree and let \(|S|\) be the cardinality of \(S \). By making use of the bound obtained by Győry [G1, G2], we have

\[
|X(O_S^*)| \leq (2^n - 1)(2^{35s^2})(s-1)^3|S|.
\]

(iii)(ASMT-conjecture) We give an analogue of Theorem (2.1) over number fields, which is an extension of Schmidt’s linear subspace theorem. This may be called “Arithmetic Second Main Theorem-conjecture” by its nature. Let \(F \) and \(S \) be as above. We define the truncated counting function \(N_\lambda(H(x_i)) \) over the places of \(F \) outside \(S \). Let \(H_j, 1 \leq j \leq q \), be linear forms in general position on \(\mathbb{P}_F^m \). Then for an arbitrary \(\epsilon > 0 \) there are finitely many hyperplanes \(E_\nu \) such that for \((x_i) \in \mathbb{P}_m(F) \setminus \bigcup E_\nu
\]

\[
(q - m - 1 - \epsilon)\text{ht}((x_i)) \leq N_m(H(x_i)).
\]

(iv) The above ASMT-conjecture implies the finiteness of \(X(F) \). In this respect the works of Khoai-Tu [KT] and Sarnak-Wang [SW] are of interest; especially Sarnak-Wang [SW] showed that some hyperbolic smooth hypersurfaces of \(\mathbb{P}^4 \) and \(\mathbb{P}^5 \) constructed by [MN] defined over \(\mathbb{Q} \) has infinitely many rational points over the \(p \)-adic number field \(\mathbb{Q}_p \) for every prime \(p \), and that its Brauer-Manin group known as an obstruction for the Hasse principle is vanishing.

(v) See [MN] for a number of examples.

References

[BM] E. Bombieri and J. Mueller, The generalized Fermat equation in function fields, J. Number Theory 39 (1991), 339-350.

[BrM] W.D. Brownawell and D.M. Masser, Vanishing sums in function fields, Math. Proc. Camb. Phil. Soc. 100 (1986), 427-434.

[C] H. Cartan, Sur les zéros des combinaisons linéaires de \(p \) fonctions holomorphes données, Mathematica 7 (1933), 5-31.

[Ch] W. Chen, Defect relations for degenerate meromorphic maps, Trans. Amer. Math. Soc. 319 (1990), 499-415.

[F] G. Faltings, Diophantine approximation on Abelian varieties, Ann. Math. 133 (1991), 549-576.

[Fu1] H. Fujimoto, Non-integrated defect relation for meromorphic maps of complete Kähler manifolds into \(\mathbb{P}^{N_1}(\mathbb{C}) \times \cdots \times \mathbb{P}^{N_k}(\mathbb{C}) \), Japan. J. Math. 11 (1985), 233-264.
[Fu2] ——, Value Distribution Theory of the Gauss Map of Minimal Surfaces in \mathbb{R}^m, Aspect Math. E21, Vieweg, Braunschweig, 1993.

[G1] K. Györy, On the numbers of families of solutions of systems of decomposable form equations, Publ. Math. Debrecen 42 (1993), 65-101.

[G2] ——, Letter, October 1994.

[IS] Y. Imayoshi and H. Shiga, A finiteness theorem for holomorphic families of Riemann surfaces, In: D. Drasin (ed.) Holomorphic Functions and Moduli vol. II, Springer, New York-Berlin-Heidelberg-London-Paris-Tokyo, 1988.

[KT] H. H. Khoai and M. V. Tu, p-adic Nevanlinna-Cartan theorem, Internat. J. Math. 6 (1995), 719-731.

[Ko1] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Pure and Appl. Math. vol. 2, Marcel Dekker, New York, 1970.

[Ko2] ——, Intrinsic distances, measures, and geometric function theory. Bull. Amer. Math. Soc. 82 (1976), 357-416.

[L1] S. Lang, Higher dimensional Diophantine problems, Bull. Amer. Math. Soc. 80 (1974), 779-787.

[L2] ——, Hyperbolic and Diophantine analysis. Amer. Math. Soc. 14 (1986), 159-205.

[L3] ——, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York-Berlin-Heidelberg, 1987.

[L4] ——, Number Theory III, Encycl. Math. Sci. vol. 60, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona, 1991.

[La] M. Laurent, Equations diophantinnes exponentielles, Invent. Math. 78 (1984), 299-327.

[M] K. Mahler, Zur Approximation algebraischer Zahlen. I. (Über den größten Primteiler binärer Formen.), Math. Ann. 107 (1933), 691-730.

[Ma1] R.C. Mason, Diophantine Equations over Function Fields, London Math. Soc. Lecture Notes vol. 96, Cambridge University Press, Cambridge, 1984.

[Ma2] ——, Norm form equations. I. J. Number Theory 22 (1933), 190-207.

[Mu] J. Mueller, Binomial Thue’s equation over function fields, Compo. Math. 73 (1990), 189-197.

[MN] K. Masuda and J. Noguchi, A construction of hyperbolic hypersurfaces of $\mathbb{P}^n(\mathbb{C})$, Math. Ann. 304 (1996), 339-362.

[N] A.M. Nadel, The nonexistence of certain level structures on abelian varieties over complex function fields, Ann. Math. 129 (1989), 161-178.

[No] E.I. Nochka, On the theory of meromorphic functions, Sov. Math. Dokl. 27 (1983), 377-381.

[Nog1] J. Noguchi, A higher dimensional analogue of Mordell’s conjecture over function fields, Math. Ann. 258 (1981), 207-212.

[Nog2] ——, Hyperbolic fibre spaces and Mordell’s conjecture over function fields, Publ. RIMS, Kyoto Univ. 21 (1985), 27-46.

[Nog3] ——, Hyperbolic manifolds and Diophantine geometry, Sugaku Expositions 4 (1991), pp. 63-81, Amer. Math. Soc., Providence, Rhode Island, 1991.
NEVANLINNA THEORY AND RATIONAL POINTS

[Nog4] ——, Moduli space of Abelian varieties with level structure over function fields, International J. Math. 2 (1991), 183-194.

[Nog5] ——, Meromorphic mappings into compact hyperbolic complex spaces and geometric Diophantine problem, Internat. J. Math. 3 (1992), 277-289.

[Nog6] ——, An example of a hyperbolic fiber space without hyperbolic embedding into compactification, Proc. Osaka International Conference, Osaka 1990, Complex Geometry (G. Komatsu and Y. Sakane, eds.) Lecture Notes in Pure and Appl. Math. vol. 143, pp. 157-160, Marcel Dekker, New York-Basel-Hong Kong, 1993.

[Nog7] ——, Some topics in Nevanlinna theory, hyperbolic manifolds and Diophantine geometry, Geometry and Analysis on Complex Manifold, Festschrift for A. Kobayashi 60th Birthday, pp. 140–156, World Scientific, Singapore, 1994.

[NO] —— and T. Ochiai, Geometric Function Theory in Several Complex Variables, Transl. Math. Mono. 80, Amer. Math. Soc., Providence, Rhode Island, 1990.

[R] M. Raynaud, Around the Mordell conjecture for function fields and a conjecture of S. Lang, Algebraic Geometry (M. Raynaud and T. Shioda, eds.), Lecture Notes in Math. vol. 1016, pp. 1-19, Springer, Berlin-New York, 1983.

[SW] P. Sarnak and L. Wang, Some hypersurfaces in \mathbb{P}^4 and the Hasse-principle, C.R. Acad. Sci. Paris, Sér. I 321 (1995), 319-322.

[S] H.P. Schlickewei, The p-adic Thue-Siegel-Roth-Schmidt Theorem, Archiv Math. 29 (1977), 267-270.

[Sc] W. Schmidt, Diophantine Approximation, Lecture Notes in Math. vol. 785, Springer, Berlin-Heidelberg-New York, 1980.

[Si] J.H. Silverman, The Catalan equation over function fields, Trans. Amer. Math. Soc. 273 (1982), 201-205.

[St1] W. Stoll, Die beiden Hauptsätze der Wertverteilungstheorie bei Funktionen mehrerer komplexer Veränderlichen (I); (II), J. Acta. Math. 90, (1953),1-115; Acta Math.92 (1954), 55-169.

[St2] ——, Value Distribution of Holomorphic Maps into Compact Complex Manifolds, Lecture Notes in Math. 135, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

[St3] ——, Value Distribution on Parabolic Spaces, Lecture Notes in Math. 600, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

[Su1] M. Suzuki, Moduli spaces of holomorphic mappings into hyperbolically embedded complex spaces and holomorphic fibre spaces, to appear in J. Math. Soc. Japan.

[Su2] ——, Mordell property of hyperbolic fiber spaces with noncompact fibers, to appear in Tôhoku J. Math.

[V] P. Vojta, Diophantine Approximations and Value Distribution Theory, Lecture Notes in Math. vol. 1239, Springer, Berlin-Heidelberg-New York, 1987.

[Vo] J.F. Voloch, Diagonal equations over function fields, Bol. Soc. Brasil. Math. 16 (1985), 29-39.

[W1] J. T.-Y. Wang, Diophantine equations over function fields, Thesis, Notre Dame, 1994.

[W2] ——, The truncated second main theorem of function fields, to appear in J. Number Theory.
[W3] ——, Effective Roth theorem of function fields, The Rocky Mountain J. Math.

[Z] M.G. Zaidenberg, A function-field analog of the Mordell conjecture: a noncompact version, Math. USSR Izvestiya 35 (1990), 61-81.

Department of Mathematics, Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo 152, Japan (noguchi@math.titech.ac.jp).

Current address: Mathematical Sciences Research Institute, University of California, Berkeley, 1000 Centennial Drive, Berkeley, California 94720, USA (noguchi@msri.org).