ROBBA’S METHOD ON EXPONENTIAL SUMS

PEIGEN LI

Abstract. In this article, we use Robba’s method to give an estimate of the Newton polygon for the L-function and we can draw the Newton polygon in some special cases.

1. Introduction

The basic objects of this study are exponential sums on a torus of dimension n defined over a finite field k with $\text{char}(k) = p$. Our methods are based on the work of Dwork, Adolphson and Sperber. In [4], Robba gives an explicit calculation of one variable twisted exponential sums. In fact, his method can be applied to the case of multi-variables.

Let $ζ_p$ be a primitive p-th root of unity. Let $ψ$ be the additive character of k given by $ψ(t) = ω_{Trk/k_p}(t)$. Let f be a Laurent polynomial and write

$$f = \sum_{i=1}^{N} a_i x^{w_i} \in k[x_1, \cdots, x_n, x_1^{-1}, \cdots, x_n^{-1}].$$

We assume that $a_i \neq 0$ for all i. Define exponential sums

$$S_i(f) = \sum_{x \in T^n(k_i)} ψ(Tr_{k_i/k}(f(x))),$$

where k_i are the extensions of k of degree i. The L-function is defined by

$$L(f, t) = \exp \left(\sum_{i=1}^{\infty} S_i(f) t^i / i \right).$$

In [1, section 2], Adolphson and Sperber use Dwork’s method to prove that $L(f, t)^{(-1)^{n-1}}$ is a polynomial when f is nondegenerate. Moreover, they give a low bound of the Newton polygon of $L(f, t)^{(-1)^{n-1}}$ in [1, section 3], which we call Hodge polygon in this article. In our study, we want to give a more precise result about the Newton polygon when f has only n terms, that is $N = n$. Note that if we assume that $J = (w_1, \cdots, w_n)$ is invertible in $M_n(\mathbb{R})$, we can found a solution
b = (b_1, \cdots, b_n) \in \bar{k}^\times$ such that $a_ib^{w_i} = 1$ for all i. From now on, we assume that $(p, \det J) = 1$, $k = \mathbb{F}_p$ and

$$f = \sum_{i=1}^n x^{w_i}.$$

Let $\Delta(f)$ be the Newton polyhedron at ∞ of f which is defined to be the convex hull in \mathbb{R}^n of the set $\{w_j\}_{j=1}^n \cup \{(0, \cdots, 0)\}$ and let $C(f)$ be the convex cone generated by $\{w_j\}_{j=1}^n$ in \mathbb{R}^n. Let $\text{Vol}(\Delta(f))$ be the volume of $\Delta(f)$ with respect to Lebesgue measure on \mathbb{R}^n. We say f is nondegenerate with respect to $\Delta(f)$ if for any face σ of $\Delta(f)$ not containing the origin, the Laurent polynomials $\frac{\partial f}{\partial x^i}, i = 1, \cdots, n$ have no common zero in $(\bar{k}^\times)^n$, where $f = \sum_{w_j \in \sigma} a_j x^{w_j}$. Set $M(f) = C(f) \cap \mathbb{Z}^n$. Note that $(p, \det J) = 1$ implies that f is nondegenerate. Since we have assumed that J is invertible, any element $u \in M(f)$ can be uniquely written

$$u = \sum_{i=1}^n r_i w_i. \tag{1.1}$$

We define a weight on $M(f)$

$$w(u) := \sum_{i=1}^n r_i.$$

Note that the set of all elements $u \in M(f)$ such that all $0 \leq r_i < 1$ in the expression (1.1) form a fundamental domain of the lattice $M(f)$. Denote it by $S(\Delta)$. Note that $\text{card}(S(\Delta)) = n! \text{Vol}(\Delta(f)) = \det(J)$ and $(p, \det J) = 1$ imply that $S(\Delta)$ has a natural p-action. For any $u = r_1 w_1 + \cdots + r_n w_n \in S(\Delta)$, define

$$p.u = \sum_{i=1}^n \{pr_i\} w_i,$$

where $\{pr_i\}$ is the fractional part of pr_i for each i. We say $S(\Delta)$ is p-stable under weight function if $w(u) = w(p.u)$ for any $u \in S(\Delta)$. Now we give our main result.

Theorem 1.1. Suppose that $f = x^{w_1} + \cdots + x^{w_n}$ with $w_i \in \mathbb{Z}^n$ and $(p, \det J) = 1$. The Newton polygon of $L(f, t)^{(n-1)^{n-1}}$ coincides with the Hodge polygon of $\Delta(f)$ if and only if $S(\Delta)$ is p-stable under weight function.

Wan uses the Gauss sum to give an explicit formula of the L-function for the diagonal Laurent polynomial. Then he uses Stickelberger’s theorem to give a proof of above theorem. See [5, Theorem 3.4].
this article, we use Robba’s method to prove above theorem. Indeed, Robba’s method can also be applied to prove [1, Theorem 3.10] and it is easier than the method used in [1, §3].

2. P-ADIC ESTIMATES

Let \mathbb{Q}_p be the p-adic numbers. Let Ω be the completion of the algebraic closure of \mathbb{Q}_p. Denote by “ord” the additive valuation on Ω normalized by $\text{ord}(p) = 1$. The norm on Ω is given by $|u| = p^{-\text{ord}(u)}$ for any $u \in \Omega$.

Note that there is an integer M such that $w(M(f)) \subset \frac{1}{M}\mathbb{Z}$. In [1, section 1], Adolphson and Sperber introduce a filtration on $R(f) := k[x^M(f)]$ given by

$$R(f)_{i/M} = \left\{ \sum_{u \in M(f)} b_u x^u | w(u) \leq i/M \text{ for all } u \text{ with } b_u \neq 0 \right\}.$$

The associated graded ring is

$$\bar{R} = \bigoplus_{i \in \mathbb{Z}_{\geq 0}} \bar{R}^i/M,$$

where

$$\bar{R}^i/M = R(f)_{i/M} / R(f)_{(i-1)/M}.$$

For $1 \leq i \leq n$, let \bar{f}_i be the image of $x_i \frac{\partial f}{\partial x_i} \in R(f)_1$ in \bar{R}^1. Let \bar{I} be the ideal generated by $\bar{f}_1, \ldots, \bar{f}_n$ in \bar{R}. By [1, Theorem 2.14] and [1, Theorem 2.18], $\bar{f}_1, \ldots, \bar{f}_n$ in \bar{R} form a regular sequence in \bar{R} and $\dim_k \bar{R}/\bar{I} = n! \text{Vol}(\Delta(f))$. For each integer i, we have a decomposition

$$(2.1) \quad \bar{R}^i/M = \bar{V}^i/M \oplus (\bar{R}^i/M \cap \bar{I}).$$

Set $a_i = \dim_k \bar{V}^i/M$.

For a non-negative integer l, set

$$W(l) = \text{card} \left\{ u \in M(f) | w(u) = \frac{l}{M} \right\}.$$

Note that this is a finite number for each l. Set

$$H(i) = \sum_{l=0}^{n} (-1)^l \binom{n}{l} W(i - lM).$$

Lemma 2.1. With the notation above. Suppose that f is nondegenerate. Then $H(i) = a_i$ for all integer $i \geq 0$. Moreover, we have

$$H(k) = 0 \text{ for } k > nM, \quad \sum_{k=0}^{nM} H(k) = n! \text{Vol}(\Delta(f)).$$
Proof. By [1, Theorem 2.14], \(\{ \bar{f}_i \}_{i=1}^n \) form a regular sequence in \(\bar{R} \). So

\[
P_{\bar{R}/\bar{I}}(t) = P_{\bar{R}}(t)(1 - t^M)^n,
\]

where \(P_{\bar{R}/\bar{I}} \) (resp. \(P_{\bar{R}} \)) is the Poincaré series of \(\bar{R}/\bar{I} \) (resp. \(\bar{R} \)). On the other hand, we have

\[
P_{\bar{R}/(\bar{f}_1, \ldots, \bar{f}_n)} = \sum_{i=0}^{\infty} a_it^i, \quad P_{\bar{R}}(t) = \sum_{i=0}^{\infty} W(i)t^i.
\]

Hence

\[
a_i = \sum_{l=0}^{n} (-1)^l \binom{n}{l} W(i - lM) = H(i).
\]

The second assertion follows from [3, Lemma 2.9].

Note that \(\bar{R}/\bar{I} \) has a finite basis \(S = \{ x_u | u \in S(\Delta) \} \) and \(\text{card}(S) = n! \text{Vol}(\Delta(f)) \).

Definition 2.2. The Hodge polygon \(HP(\Delta) \) of \(\Delta(f) \) is defined to be the convex polygon in \(\mathbb{R}^2 \) with vertices \((0, 0)\) and

\[
\left(\sum_{k=0}^{m} H(k), \frac{1}{M} \sum_{k=0}^{m} kH(k) \right).
\]

Consider the Artin-Hasse exponential series: \(E(t) = \exp \left(\sum_{i=0}^{\infty} \frac{p^i}{p^i} \right) \).

By [2, Lemma 4.1], the series \(\sum_{i=0}^{\infty} \frac{p^i}{p^i} \) has a zero at \(\gamma \in \Omega \) such that \(\text{ord} \gamma = 1/(p - 1) \) and \(\zeta_p \equiv 1 + \gamma \mod \gamma^2 \). Set

\[
\theta(t) = E(\gamma t) = \sum_{i=0}^{\infty} c_it^i.
\]

The series \(\theta(t) \) is a splitting function in Dwork’s terminology [2, §4a]. In particular, we have \(\text{ord} c_i \geq i/(p - 1) \), \(\theta(t) \in \mathbb{Q}_p(\zeta_p)[[t]] \) and \(\theta(1) = \zeta_p \).

Fix an \(M \)-th root \(\bar{\gamma} \) of \(\gamma \) in \(\Omega \). Let \(K = \mathbb{Q}_p(\bar{\gamma}) \), and \(\mathcal{O}_K \) the ring of integers of \(K \). Let \(\hat{a}_j \in K \) be the Techmüller lifting of \(a_j \) and set

\[
\hat{f}(x) = \sum_{j=1}^{N} \hat{a}_j x^{\rho_j} \in K[x_1, x_1^{-1}, \cdots, x_n, x_n^{-1}].
\]

Consider the following spaces of \(p \)-adic functions

\[
B_0 = \left\{ \sum_{u \in M(f)} A_u \bar{\gamma}^{Mw(u)}x^u | A_u \in \mathcal{O}_K, A_u \to 0 \text{ as } u \to 0 \right\}.
\]
\[B = \left\{ \sum_{u \in M(f)} A_u \, \gamma_{Mw(u)} \, x^u | A_u \in K, A_u \to 0 \text{ as } u \to 0 \right\}. \]

Set \(\gamma_l = \sum_{i=0}^{l} \gamma^{p^i} / p^i \), \(h(t) = \sum_{i=0}^{\infty} \gamma_l t^i \). Define

\[H(x) = \sum_{j=1}^{n} h(x^{w_j}), \quad F_0(x) = \prod_{i=1}^{n} \theta(x^{w_i}) = \sum_{v \in M(f)} h_v x^v. \]

Define an operator \(\psi \) on formal Laurent series by

\[\psi \left(\sum_{u \in \mathbb{Z}^n} a_u x^u \right) = \sum_{u \in \mathbb{Z}^n} a_{pu} x^u. \]

Let \(\alpha = \psi \circ F_0(x) \). For \(i = 1, \cdots, n \), define operators

\[E_i = x_i \partial / \partial x_i, \quad \hat{D}_i = E_i + E_i(H) \]

By [1, Corollary 2.9], we have

\[L(f, t)^{(-1)^{n-1}} = \text{det}(1 - t\alpha|B/\sum_{i=1}^{n} \hat{D}_i B). \]

By [1, Therorem 2.18, Theorem A.1], \(S = \{ x^u \}_{u \in S(\Delta)} \) is a free basis of \(B/\sum_{i=1}^{n} \hat{D}_i B \). For any \(u \in M(f), u' \in S(\Delta) \), define \(A(u, u') \) by the relations

\[x^u \equiv \sum_{u' \in S(\Delta)} A(u, u') x^{u'} \mod \sum_{i=1}^{n} \hat{D}_i B. \]

For any \(u, u' \in S(\Delta) \), define \(\gamma(u, u') \) by the relations

\[\alpha(x^u) \equiv \sum_{u' \in S(\Delta)} \gamma(u, u') x^{u'} \mod \sum_{i=1}^{n} \hat{D}_i B. \]

The main purpose is to give estimate for the \(p \)-adic valuations of the coefficients \(\gamma(u, u') \).

For any \(u \in M(f) \), there is a unique \(u' \in S(\Delta) \) such that

\[u \in S_{u'} = \left\{ u' + \sum_{i=1}^{n} \mathbb{Z}_{\geq 0} w_i \right\}. \]

Set \(R_{u'} = \{ \xi = \sum a_u x^u \in B_0 | u \in S_{u'} \} \).

Lemma 2.3. For any \(u \in M(f) \), we have \(A(u, u') = 0 \) if \(u \notin S_{u'} \), \(\text{ord}(A(u, u')) \geq \frac{w(u') - w(u)}{p-1} \) if \(u \in S_{u'} \).
Proof. The first assertion follows from the facts that
\[B_0 = \bigoplus_{u' \in S(\Delta)} R_{u'} \]
and \(\hat{D}_i(R_{u'}) \subset R_{u'} \) for any \(i \) and \(u' \). Suppose that \(u \in S_{u'} \). By [1, Proposition 3.1], there exist \(A \in O_K \) and \(\xi_1, \ldots, \xi_n \in B_0 \) such that
\[\tilde{\gamma}_i^{Mw(u)}x^u = A\tilde{\gamma}_i^{Mw(u')}x^{u'} + \sum_{i=1}^n \hat{D}_i\xi_i. \]
Hence, we have
\[\text{ord}(A(u, u')) = \text{ord}(A\tilde{\gamma}_i^{Mw(u') - Mw(u)}) \geq \frac{w(u') - w(u)}{p - 1}. \]
\(\square \)

Proposition 2.4. For any \(u, u' \in S(\Delta) \), we have
\[\text{ord}(\gamma(u, u')) = \begin{cases} +\infty & \text{if } p.u' - u \neq 0, \\ \frac{pw(u' - w(u))}{p-1} & \text{if } p.u' - u = 0. \end{cases} \]
\(\text{ord}(\gamma(u, u')) = +\infty \) means that \(\gamma(u, u') = 0. \)

Proof. Note that
\[\alpha(x^u) = \psi(x^uF_0(x)) = \sum_{v \in M(f)} h_{pv-u}x^v \]
\[= \sum_{u' \in S(\Delta)} \sum_{v \in M(f)} h_{pv-u}A(v, u')x^{u'} \mod \sum_{i=1}^n \hat{D}_iB. \]
By Lemma 2.3, \(A(v, u') = 0 \) when \(v \notin S_{u'} \). Hence, we have
\[(2.2) \quad \gamma(u, u') = h_{pv'-u} + \sum_{v \in M(f) - S(\Delta)} h_{pv-u}A(v, u'). \]
Assume that \(v = u' + \sum_{i=1}^n s_iw_i \) with \(s_i \in \mathbb{Z}_{\geq 0} \). Note that
\[h_{pv-u} = \prod_{j=1}^n c_{k_j}, \]
where \((k_1, \ldots, k_n) \in \mathbb{Z}_{\geq 0}^n \) satisfies the equation
\[(2.3) \quad \sum_{i=1}^n k_iw_i = pv - u = pu' - u + p \sum_{i=1}^n s_iw_i. \]
If \(p.u' - u \neq 0 \), the above equation has no integer solution which implies that \(\gamma(u, u') = 0. \) If \(p.u' - u = 0 \), suppose that \(pu' - u = r_1w_1 + \cdots + r_nw_n \)
with $r_i \in \mathbb{Z}_{\geq 0}$ for all i. Note that $r_i \leq p - 1$ for all i and $w(pu' - u) = pw(u') - w(u) = r_1 + \cdots + r_n$. By (2.3), we have $k_i = r_i + ps_i$ for each i. Hence, by Lemma 2.3 and the estimate $\text{ord}(c_i) \geq \frac{i}{p-1}$, we have

$$\text{ord}(h_{p^u - u}A(v, u')) \geq \sum_{i=1}^{n} \frac{k_i - s_i}{p-1} = \sum_{i=1}^{n} \frac{s_i}{p-1} + \frac{pw(u') - w(u)}{p-1}. $$

If $v \notin S(\Delta)$, there is some i such that $s_i > 0$, we have

$$\text{ord}(h_{p^u - u}A(v, u')) > \frac{pw(u') - w(u)}{p-1}. $$

If $v = u' \in S(\Delta)$, we have $k_i = r_i \leq p - 1$ for all i. Note that

$$\theta(t) \equiv \exp(\gamma t) \mod t^p. $$

We have $\text{ord}(c_i) = \text{ord}(\frac{i}{p}) = \frac{i}{p-1}$ for any $i \leq p - 1$. Hence

$$\text{ord}(h_{p^{u' - u}}) = \sum_{i=1}^{n} \text{ord}(c_i) = \frac{1}{p-1} \sum_{i=1}^{n} r_i = \frac{pw(u') - w(u)}{p-1}. $$

By (2.2), we have

$$\text{ord}(\gamma(u, u')) = \text{ord}(h_{p^{u' - u}}) = \frac{pw(u') - w(u)}{p-1}. $$

\[\square \]

Theorem 2.5. Suppose that $f = \sum_{j=1}^{n} x^{w_j}$ and $(p, \det J) = 1$. The Newton polygon of $L(T^n, f, t)^{(-1)^{n-1}}$ coincides with the Hodge polygon $HP(\Delta)$ if and only if $S(\Delta)$ is p-stable under weight function.

Proof. By [1, Corollary 3.11], the Newton polygon of $L(T^n, f, t)^{(-1)^{n-1}}$ lies above the Hodge polygon of $HP(\Delta)$ with same endpoints and the matrix $\Gamma := (\gamma(u, u'))_{u, u' \in S(\Delta)}$ is invertible. By Proposition 2.4, $\gamma(u, u') \neq 0$ if and only if $p.u' - u = 0$. Hence there is exactly one non zero element in every column and row of Γ. Let $S(d, u)$ be the orbit of u under the p-action with exactly d elements. Suppose that $S(d, u) = \{u_1, \cdots, u_d\}$, where $u_i = p^{i-1}.u$. By Proposition 2.4, we have

$$\alpha(x^{u_1}, \cdots, x^{u_d}) = (x^{u_1}, \cdots, x^{u_d})
\begin{pmatrix}
0 & \gamma_{21} & \cdots \\
0 & 0 & \cdots \\
\vdots & \vdots & \ddots \\
\gamma_{1d} & \cdots & 0
\end{pmatrix}
$$

where $\gamma_{ij} = \gamma(u_i, u_j)$. Thus

$$\det(1 - \alpha t) = \prod_{S(d, u) \neq \emptyset} (1 - t^d \lambda_u),$$
where the above product runs through all the obits of \(S(\Delta) \) under the \(p \)-action and
\[
\lambda_u = \gamma_1 \gamma_2 \cdots \gamma_{d-1} \quad \text{with}
\]
\[
\text{ord}(\lambda_u) = \text{ord}(\gamma_1 \gamma_2 \cdots \gamma_{d-1})
\]
\[
= \frac{pw(u_d) - w(u_1)}{p - 1} + \cdots + \frac{pw(u_{d-1}) - w(u_d)}{p - 1}
\]
\[
= \sum_{i=0}^{d-1} w(p^i u).
\]
Set \(f_{u,d} = 1 - t^d \lambda_u \) and
\[
g_{u,d} = \prod_{i=0}^{d-1} (1 - tp^i w(p^i u)).
\]
Note that the Newton polygon of \(f_{u,d} \) always lies above the Newton polygon of \(g_{u,d} \) and the Newton polygon of the polynomial \(\prod_{S(d,u)} g_{u,d} \) is \(HP(\Delta) \). Hence \(HP(\Delta) \) coincides with the Newton polygon of \(\det(1 - \alpha t) \) if and only if the Newton polygons of \(g_{u,d} \) and \(f_{u,d} \) coincide for each \(u \).

When \(S(\Delta) \) is \(p \)-stable under weight function. We have \(w(u) = w(p.u) = \cdots = w(p^{d-1}.u) \) for each \(u \). Hence, the Newton polygons of \(g_{u,d} \) and \(f_{u,d} \) coincide for each \(u \).

Conversely, if the Newton polygons of \(g_{u,d} \) and \(f_{u,d} \) coincide for each \(u \). Since both polygons have same endpoints, we have \(w(u) = w(p.u) = \cdots = w(p^{d-1}.u) \) for each \(u \). Hence \(S(\Delta) \) is \(p \)-stable under weight function.

\[\square\]

References

[1] Alan Adolphson and Steven Sperber. Exponential sums and Newton polyhedra: Cohomology and estimates. *Annals of Mathematics*, 130(2):367–406, 1989.

[2] Bernard Dwork. On the zeta function of a hypersurface. *Publications Mathématiques de l'IHÉS*, 12:5–68, 1962.

[3] Anatoli G Kouchnirenko. Polyedres de Newton et nombres de Milnor. *Inventiones mathematicae*, 32(1):1–31, 1976.

[4] Philippe Robba. Index of \(p \)-adic differential operators III. Application to twisted exponential sums. *Astérisque*, 119(120):191–266, 1984.

[5] Daqing Wan. An Introduction to the theory of Newton polygons for \(L \)-functions of exponential sums, to appear. Preprint available at http://www.math.uci.edu/dwan/Overview. html, 1999.