Quantum toys for quantum computing: persistent currents controled by spin chirality

Gen Tatara and N. Garcia

Graduate School of Science, Osaka University,
Toyonaka Osaka 560-0043, Japan and
Consejo Superior de Investigaciones Cientificas Serrano 144, 28006 Madrid, Spain

(Dated: October 30, 2018)

Abstract

Quantum devices and computers will need operational units in different architectural configurations for their functioning. The unit should be a simple “quantum toy”, easy to handle superposition states. Here a novel such unit of quantum mechanical flux state (or persistent current) in a conducting ring with three ferromagnetic quantum dots is presented. The state is labeled by the two direction of the persistent current, which is driven by the spin chirality of the dots, and is controled by the spin. It is demonstrated that by use of two rings connected, one can carry out unitary transformations on the input flux state by controling one spin in one of the rings, enabling us to prepare superposition states. The flux is shown to be a quantum XOR operation gate, and may be useful in quantum computing.
Realization of quantum mechanical two-level systems and controlling the superposition of the states in experiment is a fundamental but also an interesting subject. Such systems are intensively studied recently, since controlling them is a starting point of the realization of quantum computers\cite{1}. Such two-level systems, called Qubits, has been implemented, for instance, in ion traps\cite{2}, nuclear spins\cite{3}, and in Josephson junctions\cite{4}. In the case of flux in Josephson junction, the two-level states are states with persistent currents in a superconducting loop with different directions. The current is induced by a magnetic flux through the ring, and the quantum superposition of the two current states was observed recently by a fine tuning of the flux\cite{4}.

In this paper, we present a novel quantum mechanical flux state, which is controled by controlling the spin in a quantum dot. The flux here is due to a persistent current in a conducting ring, but of different origin as Josephson Qbit; namely, current induced by spin chirality. By putting three (or more) quantum dots which carries quantum spin, we show that the wave function of the flux is controled by that of the spins. The realization of the superposition state of flux is thus realized simply by creating a superposition state on one of the spins. We also demonstrate that this system can be used to create entangled states of two or more spins. This “quantum toy” also works as a quantum XOR logic gate, which may be useful in quantum computers. We also discuss more sophisticated case of two rings coupled, where we can carry out unitary transformations on the current state.

The existence of the spontaneous current in a small ring in contact with three or more ferromagnets when the three magnetization vectors form a finite solid angle was pointed out recently in ref.\cite{5}. The effect is due to the breaking of the time-reversal symmetry in the orbital motion as a consequence of non-commutativity of the spin algebra, and it is essential that the electron wave function is coherent over the ring. The current was shown to be proportional to the non-coplanarity (spin chirality) of the three magnetizations, \((\mathbf{S}_1 \times \mathbf{S}_2) \cdot \mathbf{S}_3\), where magnetizations are represented by classical vectors \(\mathbf{S}_1\), \(\mathbf{S}_2\), and \(\mathbf{S}_3\).

Here we consider the case where the magnetization is quantum spin of \(S = 1/2\), which is carried by ferromagnetic dots on the ring, in which case the same reasoning as in ref.\cite{5} applys. We do not consider the screening due to the Kondo effect, considering the temperature higher than the Kondo temperature. The spins in the dots can then be regarded as qubits. Note that the decoherence time of the electron spin is known to be much larger in general in nanostructures than that for the charge due to the smallness of the spin-orbit
FIG. 1: The system of chirality-driven persistent current with three ferromagnetic dots.

coupling\[6\). We treat perturbatively the coupling between the conduction electron and the spins in the dots. The equilibrium current at \(x\) is calculated from \(J(x) = \frac{\hbar}{2m} \text{Im} \text{Tr}[\nabla_x - \nabla_{x'}]G(x, x', \tau = -0)|_{x=x'}\), where \(G(x, x', \tau) \equiv -\langle Tc(x, \tau)c^\dagger(x', 0) \rangle\) is the thermal Green function, and trace is over the spin indices. The interaction with the spins in the dots can be expressed by the potential \(V(x) = -\Delta S(x) \cdot \sigma\), where \(S(x) \equiv \sum_i \hat{S}_i \delta(x - a_i)\), \(a_i\) being the position of ferromagnetic dots \((i = 1, 2, 3)\), and \(\Delta\) represents the effective coupling between the electron and quantum spin, \(\hat{S}\). The Green function is determined by the Dyson equation, \(G = g + gV G\), where the free Green function is denoted by \(g\). By noting that the free Green function is symmetric under spatial reflection, \(g(x, x') = g(x', x)\), and by summing over a path contributing to the current and its time-reversed path, the contribution to the current \(J(x)\) at \(n\)-th order in \(V\) is shown to be proportional to

\[
\sum_{x_i} \text{Tr}[V(x_1)V(x_2)\cdots V(x_n) - V(x_n)\cdots V(x_2)V(x_1)]\nabla_x g(x, x_1)g(x_1, x_2)g(x_2, x_3)\cdots g(x_n, x).
\]

(1)

The second term in the square bracket corresponds to the contribution from the time-reversed path. Since \(\text{Tr}[V(x_1)V(x_2) - V(x_2)V(x_1)] = \Delta^2 S^\mu(x_1)S^\nu(x_2)\text{Tr}[\sigma^\mu \sigma^\nu] = 0\), we immediately see that the leading contribution is from the third order with \(x_i \in F_i\), which reads

\[
\hat{J}(x) = \frac{e\hbar}{m} \int \frac{d\omega}{2\pi} f(\omega)\nabla_x \text{Im} |g_{x_1}g_{12}g_{23}g_{3x'}||_{x'=x} 4\Delta^3 \hat{S}_1 \times \hat{S}_2 \cdot \hat{S}_3,
\]

(2)

where we have used \(\text{Tr}[\sigma_i \sigma_j \sigma_k] = 2i\epsilon_{ijk}\), \(f(\omega)\) is the Fermi distribution function and \(g_{ij} = g^r(a_i - a_j, \omega)\) \((i, j = x, 1, 2, 3)\) is the retarded free Green function. In the case of one-dimensional ring, the result is

\[
\hat{J} = J_0 \hat{C}_3
\]

(3)

where \(\hat{C}_3 \equiv (\hat{S}_1 \times \hat{S}_2) \cdot \hat{S}_3\) and \(J_0 = -2e\frac{v_F}{L} \cos(k_F L) \left(\frac{\Delta}{\epsilon_F}\right)^3\). The state of the system is thus specified by a combination of states of the spin-qubits \(\hat{S}_i\) and a current-qubit \(\hat{J}\). The
current takes a value according to the "volume" of the three spins, \((\mathbf{S}_1 \times \mathbf{S}_2) \cdot \mathbf{S}_3\). The magnitude \(J_0\) of the present persistent current is different from the conventional one due to a magnetic flux through the ring \(\mathcal{A}\), by a factor of \((\frac{1}{\epsilon_F})^3\). The appearance of the current is due to the symmetry breaking of the charge \((\text{U}(1))\) sector, as in the case of the current in Josephson junction. But note that here the \(\text{U}(1)\) symmetry breaking was due to the non-commutativity of spin \((\text{SU}(2))\) sector.

Classically, spin chirality \(C_3 \equiv (\mathbf{S}_1 \times \mathbf{S}_2) \cdot \mathbf{S}_3\) (with \(\mathbf{S}_i\)'s as classical vectors) vanishes if any of the \(\mathbf{S}_i\)'s are parallel to each other, and is thus read as a XOR operation. To be explicite, we choose \(\mathbf{S}_3/\mathbf{z}\), and then \(C_3 = \frac{1}{2}(S_1^x S_2^y - S_1^y S_2^x)\). If we label the state \(\mathbf{S}_1 = \frac{1}{2}\hat{x}\) as 0 and \(\mathbf{S}_1 = \frac{1}{2}\hat{y}\) as 1, the result of \(C_3\) is written as \(C_3(00) = C_3(11) = 0\), \(C_3(01) = -C_3(10) = \frac{1}{\sqrt{2}}\) (states are labelled by \((\mathbf{S}_1 \mathbf{S}_2)\)), and hence \(|C_3|\) is classical XOR. We can also label \(\mathbf{S}_1 = \frac{1}{2}\hat{x}\) as 0 and \(-\frac{1}{2}\hat{x}\) as 1 for \(\mathbf{S}_1\), and \(\mathbf{S}_2 = \frac{1}{2}\hat{y}\) as 0 and \(-\frac{1}{2}\hat{y}\) as 1 for \(\mathbf{S}_2\), fixing the direction of \(\mathbf{S}_1\) and \(\mathbf{S}_2\) in \(x\) and \(y\) direction, respectively. We then have \(C_3(00) = C_3(11) = \frac{1}{\sqrt{2}}\) and \(C_3(01) = C_3(10) = -\frac{1}{\sqrt{2}}\) and this is another XOR if we read the sign of \(C_3\) as 0 and 1.

Let us see how the quantum operation works. To remove an irrelevant degeneracy due to rotational symmetry, we fix \(\mathbf{S}_3\) in \(\mathbf{z}\)-direction. Then the quantum operator \(\hat{C}_3\) reduces to \(\hat{C}_2 \equiv \frac{1}{2}(\hat{S}_1 \times \hat{S}_2)_z = \frac{i}{4}(\hat{S}_1^+ \hat{S}_2^- - \hat{S}_1^- \hat{S}_2^+)\). The eigenvalues \(\lambda\) and eigenstates (represented by \(|\mathbf{S}_1^z \mathbf{S}_2^z\rangle\)) of \(\hat{C}_2\) are obtained as \(\lambda = 0\) for \(|++\rangle \equiv |0_+\rangle\) and \(|-\rangle \equiv |0_-\rangle\), \(\lambda = \frac{1}{4}\) for \(|\frac{1}{\sqrt{2}}(|++\rangle + e^{\frac{-i\pi}{4}}|+-\rangle) \equiv |R\rangle\), and \(\lambda = -\frac{1}{4}\) for \(|\frac{1}{\sqrt{2}}(|++\rangle + e^{\frac{i\pi}{4}}|+-\rangle) \equiv |L\rangle\). Note that the current states \(|R\rangle\) and \(|L\rangle\) correspond to the entangled states as a result of "square-root swap" operation \([10]\). As is expected from the classical picture of the current appearing when the three spins points in \(x\), \(y\) and \(z\) directions, it is useful to describe the spin state by use of different quantization axis for \(\mathbf{S}_1\) and \(\mathbf{S}_2\). We choose the axis of \(\mathbf{S}_1\) as in \(x\)-direction, and that of \(\mathbf{S}_2\) in \(y\)-direction. For instance, \(|0\rangle = |x\rangle\) and \(|1\rangle = |−x\rangle\) for \(\mathbf{S}_1\) is written as \(|±x\rangle = \frac{1}{\sqrt{2}}(|+\rangle ± |−\rangle)\). Then states of the two spins are expressed in terms of eigenstates of \(\hat{C}_2\) as

\[
|±x, ±y\rangle = \frac{1}{2}(|0_+\rangle + i|0_-\rangle) ± \frac{i}{\sqrt{2}}|R\rangle
\]

\[
|±x, ±y\rangle = \frac{1}{2}(|0_+\rangle - i|0_-\rangle) ± \frac{i}{\sqrt{2}}|L\rangle
\]

By taking the expectation values, we see that the classical XOR gate mentioned above is reproduced by taking the expectation value, \(\langle \hat{C}_2 \rangle\).

In order to implement quantum operations, we need to kill the unwanted state without
current, $|0_\pm\rangle$. These states carry finite total $S_z(\equiv S_z^1 + S_z^2)$, $S_z = \pm 1$, and thus are deleted by use of projection into $S_z = 0$ subspace, which we write as P_0. (Note that $|R\rangle$ and $|L\rangle$ are eigenstates of $S_z = 0$.) After the projection, the mapping (4) reduces to

$$P_0 |\pm x, \pm y\rangle = \pm \frac{i}{\sqrt{2}} |R\rangle,$$

$$P_0 |\mp x, \pm y\rangle = \pm \frac{i}{\sqrt{2}} |L\rangle,$$

and we have direct correspondence between the quantum spin states and two states of the current. The operation here is a modified quantum XOR gate (neglecting the coefficient of $\frac{i}{\sqrt{2}}$):

$$|S_1, S_2\rangle \quad C_2 \quad |00\rangle \quad \leftrightarrow \quad |R\rangle$$

$$|01\rangle \quad \leftrightarrow \quad e^{i\pi}|L\rangle$$

$$|10\rangle \quad \leftrightarrow \quad |R\rangle$$

$$|11\rangle \quad \leftrightarrow \quad e^{i\pi}|L\rangle$$

(6)

The extra factor of $e^{i\pi}$ can be removed by a single spin operation if one wants. We can easily check that this operation correctly maps the superposition state of the spin into the corresponding superposition state of the current.

The operation is obviously extended to the case of more qubits. For instance, 4-bit operation is carried out by putting five S_i's on a ring, with S_5 fixed in z-direction. The current in this case is found (by a similar calculation) to be proportional to the five-spin-chirality, \hat{C}_{12345}, obtained as

$$\hat{C}_{12345} = [(\hat{S}_1 \times \hat{S}_2) \cdot \hat{S}_3](\hat{S}_4 \cdot \hat{S}_5) + [(\hat{S}_3 \times \hat{S}_4) \cdot \hat{S}_5](\hat{S}_1 \cdot \hat{S}_2)$$

$$-[(\hat{S}_2 \times \hat{S}_4) \cdot \hat{S}_5](\hat{S}_1 \cdot \hat{S}_3) + [(\hat{S}_1 \times \hat{S}_4) \cdot \hat{S}_5](\hat{S}_2 \cdot \hat{S}_3).$$

(7)

We can show that this \hat{C}_{12345} works as XOR and AND operation combined in rather a complex way.

In the gate proposed here, the single qubit operation is achieved by applying different magnetic field on each qubit, and for this purpose, magnetic scanning-probe tips might be useful\cite{6}. The magnetic field to point the quantum mechanical spin in the desired direction can be a pulse as in the case of pulsed NMR\cite{3}. For successive operation, one needs somehow to translate the quantum information carried by the current into the spin direction, to be
FIG. 2: Two rings coupled (a) with one spin in common and (b) with two spins in common. The current state J_2 in the second ring is a result of a unitary transformation of J_1 specified by (θ, ϕ). (c)(d): Example of operation on the flux by controlling S_4. In (d), superposition state of current in the second ring is created from the R state in the first ring.

used as inputs of the next step calculation, and this may be carried out by combining two rings (see below). The present gate has a great advantage if we just want the result of a single operation (but on $2n$ qubits ($n \geq 1$)).

As is seen from the above consideration, our systems can be used as a preparation tool of an entangled state of two or more spins. For instance, in the case of three spins S_i ($i = 0, 1, 2$), with $S_0//z$, we can create an entangled state of $|S_1S_2\rangle = \frac{1}{\sqrt{2}}(|+\rangle \mp i|\mp\rangle)$ by projecting the current state into $|R\rangle$ or $|L\rangle$, respectively. The current state is implemented by putting magnetic flux through the ring (i.e. by inducing conventional persistent current) [11].

By carrying out unitary transformations for the spins in the above states, we can obtain various superposition states. Entangled state of three spins is also straightforward. We combined two rings as in Fig. 2(a), with one spin S_2 in common. Thus the current states for the first ring, J_1, is described as $|R\rangle_1 = |+\rangle_1|\mp\rangle_1|+\rangle_1$, and $|L\rangle_1 = |+\rangle_1|\mp\rangle_1|+\rangle_1$, where $|+\rangle_1$ denotes the state of S_1 and S_2. Let us point S_4 on the second ring in arbitrary direction described by the polar coordinates (θ, ϕ). Then the current state of the second ring is written in terms of S_2 and S_3 as

$$|R\rangle_2 = \frac{1}{2}[\sin \theta(e^{-i\phi}|+\rangle - e^{i\phi}|-\rangle)(\cos \theta + i)|+\rangle + -| - (\cos \theta - i)|-\rangle + =)_{23}$$

$$|L\rangle_2 = \frac{1}{2}[\sin \theta(e^{-i\phi}|+\rangle - e^{i\phi}|-\rangle)(\cos \theta - i)|+\rangle + -| - (\cos \theta + i)|-\rangle + +)_{23}$$

Thus if we prepare by use of magnetic field the state $|R\rangle$ for both of the rings, i.e., $|R_1R_2\rangle$,
the realized spin state on the two rings is

$$|R_1R_2\rangle = \frac{1}{2} [-\sin \theta e^{-i\phi} (|+--\rangle + i|--+\rangle) - (\cos \theta - i)|+--\rangle + i(\cos \theta + i)|--+\rangle]_{123} \quad (9)$$

and hence the entanglement of the three spins can be controlled by (θ, ϕ). We notice that

for $\theta = 0$, $|R_1R_2\rangle_{\theta=0} = -\frac{e^{-i\pi/4}}{\sqrt{2}}(|+--\rangle + |--+\rangle)$ and for $\theta = \pi$, $|R_1R_2\rangle_{\theta=\pi} = \frac{e^{i\pi/4}}{\sqrt{2}}(|+--\rangle - |--+\rangle)_{123}$ and this is equal to $-|R_1L_2\rangle_{\theta=0}$. This means that if we start from the state $|R_1R_2\rangle$ with $S_4/|z$ and flip S_4 to be $S_4/|z$, we obtain a state $|R_1L_2\rangle$; the current in the second ring is reversed. Thus the total flux created by the current is 2 in the initial state, but is switched off to be zero by reversing S_4; i.e., by reversing spin we can vanish the flux even if current exist in each ring. (Fig. 2(c))

Alternative way to couple two rings is to share two spins (Fig. 2(b)). In this case, the current J_1 and J_2 are both determined by S_1 and S_2, but the state can again contolable by S_4. In fact, pointing $S_4//(\theta, \phi)$, the current states of the first ring is translated into the current states of the second ring as (after projection P_0)

$$|R\rangle_1 = \frac{e^{i\pi/4}}{\sqrt{2}} \left[-\sin^2 \frac{\theta}{2} |R\rangle_2 + \cos^2 \frac{\theta}{2} |L\rangle_2 \right]$$

$$|L\rangle_1 = \frac{e^{-i\pi/4}}{\sqrt{2}} \left[\cos^2 \frac{\theta}{2} |R\rangle_2 - \sin^2 \frac{\theta}{2} |L\rangle_2 \right]. \quad (10)$$

Thus one can create from a current in ring 1 any superposition of $|R\rangle$ and $|L\rangle$ on the second ring. (Fig. 2(d))

The readout of the target bit is carried out by measuring the flux arising from the persistent current. Such measurement on a single ring has been successfully carried out in the case of conventional persistent current in a ring of gold \[12\] and GaAs-AlGaAs \[13\]. Let us give an estimate of the present effect. We consider as an example a ring of GaAs-AlGaAs as in Ref. \[13\], where $v_F \simeq 2.6 \times 10^5 m/s$, $e_F \simeq 1.3 \times 10^{-2} eV$. For a ring with diameter of 2μm, we have $J \simeq 14 \times (\Delta/e_F)^3 \text{nA}$. The coupling Δ depends on the distance of the conducting layer in the semi-conductor, but for the case it is close to the interface with the ferromagnet, Δ/e_F would be close to the value in the ferromagnet; $\Delta/e_F \simeq 0.2$ (i.e., effective coupling $\Delta \sim 2.6 \text{meV}$). So the current would be 0.1nA. The flux due to this current is not large but may be detected with present lock-in technique. Much larger current would be obtained if we use a superconduciting ring of p-wave order parameter, such as Sr$_2$RuO$_4$ \[14\], since the arising persistent current becomes macroscopic. Some semiconducting materials (like GaAs) are
known to switch to be ferromagnetic when magnetic impurities are doped; (Ga,Mn)As15. Such host materials would show a high polarizability when in contact with ferromagnetic agents, and thus would be suitable for the experimental realization of the present effect, because the coupling Δ will increase and thus the value of the current.

Another good way to measure the current would be to measure the Hall like effect in the four terminal measurement. In the presence of flux (or persistent current), the four-terminal conductance through a ring is expected to be asymmetric with respect to the flux, and a finite difference of the conductance arises when the voltage and current leads are reversed16. The difference (which may be regarded as a “Hall conductance”, G_H) is expected in our system to be $G_H \approx \frac{e^2}{h} (\Delta/\epsilon_F)^3 C_3 (\sim e^2/h \times O(10^{-2}))$ for the above estimate and if $C_3 \sim O(1)$. This is of order of typical atomic size contacts of semiconductors, and would be measureable. The electric measurement, being very sensitive, detection of very small spin chirality C_3 would be possible, as well as the system with smaller coupling Δ.

We have demonstrated that by manipulation of spin, we can control the persistent current in small rings. The quantum current states are described as entangled states of two or more spins. By use of coupling of two or more rings, unitary transformations can be carried out on the current states and superposition states can be prepared. Experimental demonstration of this “quantum toy” would be interesting, because this can be used as an unit for quantum computing. Implementation by use of rings of semiconductors or p-wave superconductors would be in particular interesting.

G. T. thanks H. Kohno for discussion and Ministry of Education, Culture, Sports, Science and Technology, Japan and The Mitsubishi Foundation for financial support. He thanks Consejo Superior de Investigaciones Cientificas for its hospitality during his stay.

\begin{thebibliography}{9}

\bibitem{1} J. I. Cirac, Quantum computation: basic concepts and physical implementations, in \textit{Nanometer Scale Science and Technology}, Proceeding of the International School of Physics, “Enrico Fermi”, Editor, M. Allegrini, N. Garcia and O. Marti, (IOS press, the Netherlands, 2001)
\bibitem{2} Q.A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, H. J. Kimble, Phys. Rev. Lett. \textbf{75}, 4710 (1995).
\bibitem{3} N. A. Gershenfeld and I. L. Chuang, Science \textbf{275}, 350 (1997).
\end{thebibliography}
[4] C. H. van der Wal, A.C.J. ter Haar, F. K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd and J.E. Mooij, Science, 290, 773 (2000).

[5] G. Tatara and H. Kohno, to appear in Phys. Rev. B (preprint cond-mat/0208377).

[6] D. Loss and D. P. DiVicenzo, Phys. Rev. A57, 120 (1997).

[7] The expression is the same as the classical case in Ref. 5. This is because \(\hat{S}_i \)'s commute each other at the lowest order in \(\Delta \), since they are not coupled among each other.

[8] N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961).

[9] M. Büttiker, Y. Imry and R. Landauer, Phys. Lett. 96A, 365 (1983).

[10] Y. Makhlin, G. Schön and A. Shnirman, Nature 398, 305 (1999).

[11] H. Kohno, G. Tatara and H. Fukuyama, in preparation.

[12] V. Chandrasekhar, et al., Phys. Rev. Lett. 67, 3578 (1991).

[13] D. Mailly, C. Chapelier and A. Benoit, Phys. Rev. Lett. 70, 2020 (1993).

[14] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz and F. Lichtenberg, Nature 372, 532 (1994).

[15] H. Ohno, Science, 281, 951 (1998).

[16] M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986).