Estratificação do Risco de Morte Súbita na Insuficiência Cardíaca de Etiologia Não Isquêmica

Resumo

A insuficiência cardíaca é uma condição clínica de elevada prevalência, associada à morbidade e mortalidade significativas, apesar de importantes avanços em sua terapêutica. Em 30-40% dos casos, a etiologia da insuficiência cardíaca é definida como não isquêmica. O implante de cardioversor-desfibrilador (CDI) mostrou-se capaz de reduzir a mortalidade total entre os pacientes com insuficiência cardíaca não isquêmica. Observa-se, porém, que número significativo de pacientes que receberem o CDI não apresenta nenhuma terapia ao longo de seu acompanhamento. Por outro lado, dentro da realidade brasileira e de vários outros países, o CDI não pode ser implantado em todos os pacientes com insuficiência cardíaca não isquêmica que teriam indicação pelas diretrizes. Não há dúvida sobre a necessidade de se identificar melhor quais pacientes têm maior risco de morte súbita e assim, maior benefício com implante de CDI, uma vez que a idade acelera o processo de degeneração. Os custos e as potenciais complicações relacionadas ao implante do CDI, não há dúvida de que uma seleção mais adequada dos pacientes com maior risco de MS e que possam apresentar maior benefício com o implante do CDI ainda se faz necessária.

Introdução

A prevalência e a incidência da insuficiência cardíaca (IC) indicam tratar-se de importante problema de saúde pública. Dados do município de São Paulo sugerem elevado número de internações, particularmente na população idosa, altos custos de tratamento e taxas de mortalidade que se aproximam de 15%. Em 30-40% dos casos de insuficiência cardíaca com fração de ejeção (FE) reduzida, a etiologia da disfunção ventricular é definida como não isquêmica. Dados do Registro BREATHE (I Registro Brasileiro de Insuficiência Cardíaca) indicam que, em 70% dos pacientes que são internados com IC, a etiologia é não isquêmica (Gráfico 1). A IC é considerada de etiologia não isquêmica (ICNI) na ausência de lesões significativas na angiografia coronariana ou com resultado negativo em método de imagem para investigação de isquemia. Entre os pacientes com ICNI, a causa da disfunção ventricular pode ser desconhecida, sendo chamada miocardiopatia dilatada idiopática, ou pode ser atribuída a uma série de motivos, como hipertensão arterial, exposição a agentes potencialmente tóxicos (quimioterápicos, álcool), doença de Chações, miocardiites, doenças infiltrativas, miocardiopatia periparto, valvulopatias, doenças genéticas e autoimunes.

Palavras-chave

Insuficiência Cardíaca / mortalidade; Morte Súbita Cardíaca; Desfibriladores Implantáveis.

Correspondência: Maurício Pimentel

Av. Luiz Manoel Gonzaga, 23 ap. 1002, Petrópolis. CEP 90470280, Porto Alegre, RS – Brasil

E-mail: mauriciopimentel@cardiol.br; mpimentelrs@gmail.com

Artigo recebido em 31/01/14; revisado em 31/03/14; aceito em 03/04/14.

DOI: 10.5935/abc.20140125
em classe funcional II da NYHA, a MS é responsável por 64% dos óbitos, e a progressão da IC, por 12%. Na classe funcional III, a MS determina 59% dos óbitos, e a progressão da IC, 26% (Tabela 2). Já na classe IV, a progressão da IC leva a 56% dos óbitos, e a MS, a 33%. Na cardiopatia chagásica, classe funcional III-IV, cardiomegalia no RX de tórax, disfunção ventricular no ecocardiograma, complexos QRS de baixa voltagem no eletrocardiograma, taquicardia ventricular não sustentada no Holter e sexo masculino compõem o escore de risco para mortalidade total. Não foi realizada análise específica para MS. Tanto a diretriz brasileira como as diretrizes internacionais incluem a classe funcional entre os critérios para indicação do CDI na prevenção primária de pacientes com ICNI.

A ocorrência de síncope é considerada importante fator de risco para a ocorrência de MS nos pacientes com ICNI. Em estudo de coorte com 491 pacientes com IC grave, sendo 51% ICNI, Middlekauff e cols. demonstraram que, entre os pacientes com síncope, a incidência de MS foi de 45%, comparada a 12% naqueles sem história de síncope. Estudo de coorte de pacientes com ICNI, portadores de CDI, indicou que a ocorrência de terapias apropriadas nos pacientes com síncope é semelhante à daqueles com MS reanimada. Phang e cols. acompanharam 108 pacientes com ICNI e síncope, e 71 pacientes com ICNI e arritmia ventricular sustentada. A incidência de arritmias ventriculares, MS e mortalidade total foi semelhante nos dois grupos. A presença de síncope é considerada nas diretrizes como indicação de CDI nos pacientes com ICNI. Além da classe funcional e da síncope, outras variáveis clínicas associadas a maior risco de eventos arrítmicos são a ausência de uso de betabloqueador e a pressão sistólica.

Vários estudos têm avaliado o valor prognóstico de exames de rotina da prática clínica para estratificação de risco de pacientes com ICNI. Exames como hemoglobina, ácido úrico e peptídeo natriurético atrial aparecem em estudos isolados como preditores de mortalidade e eventos arrítmicos. Porém, como os resultados ainda não são consistentes, não há como considerar isoladamente esses exames na avaliação de risco. Empregando modelo de predicção de risco derivado do escore de Seattle, baseado em variáveis clínicas e laboratoriais rotineiras, Levy e cols. dividiaram os pacientes do estudo SCD-HeFT em cinco grupos de risco. Enquanto, no grupo I, o CDI reduziu significativamente o risco relativo de MS em 88%, no grupo V a redução foi de 24%, não significativa. Em relação à mortalidade total, as reduções absolutas do risco com CDI foram de 6,6%, 8,8%, 10,6%, 14% e –4,9%, respectivamente, nos quintis de risco I a V. Não foi apresentada análise incluindo exclusivamente os pacientes com ICNI.

Fração de ejeção do ventrículo esquerdo

A FE do ventrículo esquerdo pode ser mensurada por uma série de métodos largamente disponíveis, sendo o principal deles o ecocardiograma. A redução da FE é considerada o principal fator de risco para MS e mortalidade total em pacientes com ICNI. Poucos trabalhos, porém, avaliaram a FE como fator de risco para MS especificamente nos pacientes com ICNI. O estudo MACAS (Marburg Cardiomyopathy Study), coorte prospectiva com 343 pacientes com ICNI, demonstrou que, em pacientes com ritmo sinusal, para cada 10% de redução da FE houve risco relativo de 2,28 para eventos arrítmicos maiores. Em pacientes com fibrilação atrial, o risco relativo foi de 4,5.
FE ≤ 35% foi critério de inclusão no SCD-HeFT, ensaio clínico que fundamenta a indicação do CDI na ICNI10. A direttriz brasileira e as direttrizes internacionais colocam FE ≤ 35% como critério para indicação de CDI como prevenção primária em pacientes com ICNI12,15. É importante ressaltar que, apesar de a FE ser considerada o principal fator de risco para MS, número significativo de eventos ocorre em pacientes com FE > 35%16. Embora o risco relativo de MS seja significativamente maior em pacientes com FE ≤ 35%, o número absoluto de casos de MS é maior em pacientes com FE mais preservada, já que estes constituem um subgrupo muito maior. Dados do estudo de Maastricht mostram que, em pacientes que tinham FE aferida antes de episódio de MS, 52% tinham FE > 30% e 32% FE > 40%17.

Tabela 1 – Preditores de risco de MS na ICNI

Método	Marcador/risco	Comentário
Avaliação clínica		
Classe funcional NYHA	Clase II da NYHA → 64% dos óbitos por MS	Associada a diferentes riscos de MS
	Clase III da NYHA → 59% dos óbitos por MS	
Síncope	Com síncope → 45% de MS em 1 ano	Em pacientes com IC avançada (classes III e IV da NYHA)
	Sem síncope → 12% de MS em 1 ano	
Exames laboratoriais	BNP, ácido úrico e hemoglobina	Incluídos em escores de predição de risco
FEVE	Redução de 10% → RR de 2,28 de eventos arrítmicos	Principal fator de risco para MS
		Validado em cohortes e ensaios de CDI
Eletrocardiograma	Duração do QRS e potenciais tardios	QRS não foi associado a risco de MS na ICNI
		Potenciais tardios com resultados conflitantes
Holter		
TVNS hasalysts e TVNS + FEVE <30% → RR de 8,2 de eventos	marcador independente em metanálise com metarregressão	
Variabilidade da FC	SDNN	Estudos com resultados controversos
Microalternância onda T (MOT)	MOT alterada → RR 2,99 de morte ou arritmia	Marcador independente em metanálise
Teste ergospirométrico	Presença de ventilação periódica → qui-quadrado de 44,7	Marcador independente em estudo de pacientes isquêmicos e com ICNI
Cintilografia com ¹¹¹I-MIBG	Resultado alterado → HR 4,79 para MS	Em estudo de pacientes isquêmicos e com ICNI
EEF	EEF positivo → HR 4,19 para terapia do CDI	Em estudo de pacientes com ICNI
Avaliação genética	Genótipo Arg389Gly do receptor β1-adrenérgico	Algumas mutações e polimorfismos associados a maior risco de MS
RNM cardíaca	Fibrose → HR 3,2-5,4 para eventos arrítmicos	Fibrose aumenta risco de MS na ICNI

CDI: cardioversor-desfibrilador; **IC**: insuficiência cardíaca; **ICNI**: insuficiência cardíaca não isquêmica; **MIBG**: metaiodobenzilguanidina; **MS**: morte súbita; **NYHA**: New York Heart Association; **RNM**: ressonância nuclear magnética; **TVNS**: taquicardia ventricular não sustentada; **FEVE**: fração de ejeção do ventrículo esquerdo; **EEF**: Estudo eletrofisiológico; **BNP**: peptídeo natriurético atrial; **RR**: risco relativo; **SDNN**: desvio-padrão da média dos intervalos R-R.

Tabela 2 – Classe funcional e tipo de morte em pacientes com IC*

Classe funcional NYHA	Morte súbita (%)	Morte por progressão da IC (%)	Morte por outras causas (%)
II	64	12	24
III	59	26	15
IV	33	56	11

IC: insuficiência cardíaca; **NYHA**: New York Heart Association. * Adaptada da referência 13.

Eletrocardiograma

O eletrocardiograma (ECG) é um método simples, facilmente disponível, com informações que podem ser utilizadas na estratificação de risco de pacientes com ICNI. A prevalência de prolongamento do intervalo QRS nos pacientes com IC varia de 20-50% 18. Nos estudos de coorte específicos de pacientes com ICNI, não foi demonstrada relação entre presença de bloqueio de ramo e elevado do risco de MS19,20. No estudo DEFINITE (Defibrillators in Nonischemic Cardiomyopathy Treatment Evaluation), ensaio clínico de pacientes com ICNI em que o CDI reduziu a MS de causa arrítmica sem redução significativa da mortalidade total, não houve relação entre duração do QRS e mortalidade total21. No SCD-HeFT houve maior benefício com implante do CDI em pacientes com QRS ≥ 120 ms, mas não foi...
realizada análise específica para o grupo com ICNI. A presença de fragmentação do complexo QRS (padrão RSR’, duração < 120 ms em duas derivações contíguas) foi associada a maior ocorrência de eventos arrítmicos em pacientes com ICNI em um trabalho17. Esse achado ainda necessita de confirmação em estudos posteriores. Estudos observacionais mostram resultados controversos sobre a associação entre medida do intervalo QT e mortalidade de pacientes com IC, e não há análise específica para pacientes com ICNI.13 A dispersão do intervalo QT (diferença máxima entre os intervalos QT no ECG de superfície) foi avaliada nos pacientes com ICNI. Embora estudos iniciais tivessem mostrado associação positiva, trabalhos recentes não encontraram associação entre a disparidade do intervalo QT e o aumento de eventos arrítmicos graves.18

O eletrocardiograma de alta resolução (ECGAR) é um método de amplificação e processamento dos sinais eletrocardiográficos que permite análise da presença de potenciais tardios ao final do complexo QRS e da duração do intervalo QRS. Os trabalhos que avaliaram o papel do ECGAR na estratificação de risco de pacientes com ICNI apresentam resultados conflitantes. Presença de potenciais tardios no ECGAR foi identificada em 27% dos pacientes com ICNI, estando associada a aumento da mortalidade cardiovascular e de eventos arrítmicos.19 Em outros trabalhos, porém, apesar da semelhante prevalência de alteração no ECGAR, esse método não mostrou capaz de estratificar o risco de eventos arrítmicos nos pacientes com ICNI.19,20

Holter (monitoração eletrocardiográfica ambulatorial)

O Holter é um método diagnóstico facilmente disponível, e pode ser considerado na avaliação de risco de pacientes com ICNI levando em consideração a presença da taquicardia ventricular não sustentada (TVNS) e a análise de medidas da atividade autonômica, como a variabilidade da frequência cardíaca (VFC) e a turbulência da frequência cardíaca (TFC). A incidência de TVNS (Figura 1) em pacientes com ICNI varia de 30-79%, e sua utilização na estratificação de risco de eventos arrítmicos é considerada controversa.21 Lacoviole e cols.20, em estudo prospectivo de 179 pacientes, demonstraram que a presença de TVNS foi associada a risco relativo de 2,96 (IC95%: 1,17-7,49; p = 0,022) para a ocorrência de eventos arrítmicos graves. No estudo MACAS, a presença de TVNS isoladamente não foi associada de modo significativo a maior risco de eventos arrítmicos.23 Já a combinação da presença de TVNS com FE < 30% foi associada a um aumento de 8,2 vezes no risco de eventos arrítmicos (IC 95%: 3,1-22,6; p = 0,0001). Nessa mesma coorte foi realizada análise subsequente levando-se em consideração a duração e a FC da TVNS. A incidência de eventos arrítmicos foi de 2% ao ano nos pacientes sem TVNS, 5% ao ano nos pacientes com TVNS com duração de 5-9 batimentos e 10% ao ano nos pacientes com TVNS com duração ≥ 10 batimentos (Tabela 3).15 Com relação à FC da TVNS, não houve diferença significativa entre os grupos com e sem eventos arrítmicos. Dados de metaanálise indicam que a presença de TVNS foi associada a aumento de 3,2 vezes no risco de MS (IC 95%: 2,12-4,89; p < 0,05). Em pacientes com ICNI portadores de CDI, presença de TVNS foi associada a aumento de 7,8 vezes no risco de terapias apropriadas pelo CDI (IC 95%: 1,8-33,7; p = 0,006). Presença de TVNS ou 10 ou mais extrassístoles ventriculares por hora no Holter foi critério de inclusão no estudo DEFINITE, já descrito.24 A análise conjunta dos resultados dos estudos indica que a presença de TVNS pode indicar maior risco de arritmias ventriculares graves. No entanto, os resultados dos estudos ainda não permitem que se possa atribuir à presença de TVNS no Holter valor suficiente para a tomada de decisão clínica em relação ao implante ou não de CDI.

A VFC é uma medida da atividade autonômica que leva em consideração a variação, batimento a batimento, do intervalo R-R. A análise da VFC pode ser realizada no domínio do tempo ou da frequência, sendo que a medida mais comumente utilizada na prática clínica é o SDNN, que representa o desvio-padrão da média dos intervalos R-R. A redução da VFC foi associada a maior risco de morte por progressão da IC, mas não a maior risco de MS.26,37 No estudo MACAS, não houve associação entre redução da VFC e aumento do risco de eventos arrítmicos.38 Por outro lado, análise do estudo DEFINITE aponta que pacientes com VFC preservada apresentam bom prognóstico e poderiam não se beneficiar do implante de CDI.20

A TFC é uma medida da atividade autonômica que leva em consideração variações no intervalo R-R que ocorrem após a presença de extrassístole ventricular. No seguimento de pacientes do estudo MACAS, não houve associação significativa entre TFC e eventos arrítmicos, assim como no estudo de Klingenheben, que avaliou uma série de marcadores de atividade autonômica.19,39

Microalternência de onda T

A microalternância de onda T (MOT) pode ser definida como alterações batimento a batimento na morfologia, amplitude e/ou polaridade da onda T. Como essas alterações ocorrem em microvolts, existem programas de processamento específicos para detecção de MOT. O estudo ALPHA (T-Wave Alternans in Patients with Heart Failure) acompanhou prospectivamente 476 pacientes com ICNI classe funcional II-III. Destes, 44,8% apresentaram MOT positiva, 34,6% negativa e 20,6% indeterminada. O desfecho primário (morte cardíaca + arritmias graves) ocorreu em 6,5% dos pacientes com MOT alterada (positiva ou indeterminada) e em 1,6% daqueles com MOT normal. Na análise multivariada, o risco relativo foi de 3,2 (IC95%: 1,12-9,2; p = 0,006). O valor preditivo positivo para esse desfecho em 18 meses foi de 97,3% (IC95%: 93,3-99,3), porém o valor preditivo negativo foi de 9% (IC95%: 5,9-13).

Tabela 3 – Incidência de eventos arrítmicos maiores e TVNS em Holter de 24 h

TVNS	Eventos arrítmicos maiores (%/ano)**
Ausência de TVNS	2
TVNS de 5-9 batimentos	5
TVNS ≥ 10 batimentos	10

TVNS: taquicardia ventricular não sustentada. * Adaptada da referência 33. ** p < 0,05.
No estudo MACAS, por outro lado, a MOT não foi capaz de estratificar os pacientes com maior risco de eventos arrítmicos19. A taxa de eventos foi de 13% nos pacientes com MOT positiva, 10% com MOT negativa e 24% com MOT indeterminada, sem diferença estatisticamente significativa. Em metanálise que considerou o desfecho combinado evento arrítmico grave ou morte por qualquer causa, o risco relativo para MOT alterada (anormal ou indeterminada) foi de 2,99 (IC95%: 1,88-4,75), com valor preditivo negativo de 96,2%41. No estudo de MOT dentro do ensaio clínico SCD-HeFT, não houve diferença significativa de eventos arrítmicos graves entre pacientes com MOT normal, alterada ou indeterminada42. Assim, estudos com resultados conflitantes e a ausência de ensaio clínico que tenha considerado a MOT como critério de inclusão fazem com que a MOT não seja considerada nas diretrizes como critério para seleção de pacientes candidatos a implante de CDI.

Teste ergoespirométrico

O teste ergoespirométrico (teste cardiopulmonar) é recomendado para avaliação e seguimento de pacientes com IC8. Dados de metanálise indicam que variáveis derivadas do teste ergoespirométrico, como consumo de oxigênio (VO\textsubscript{2}), inclinação do equivalente ventilatório de CO\textsubscript{2} (VE/VC\textsubscript{O}\textsubscript{2} slope) e presença de ventilação periódica, indicam de modo independente aumento do risco de eventos combinados, incluindo mortalidade total, mortalidade cardíaca, transplante cardíaco, hospitalização e necessidade de dispositivo de assistência ventricular43. Dados nacionais de pacientes em uso de betabloqueador mostraram que VO\textsubscript{2}, de pico ≤ 10 ml/kg 7min-1 indica alto risco de eventos cardiovasculares, VO\textsubscript{2}, entre 10-16 ml/kg 7min-1 indica risco moderado, e VO\textsubscript{2} >16 ml/kg 7min-1 indica menor risco. Inclinação VE/VC\textsubscript{O}\textsubscript{2} > 34 também foi associada a maior risco44. Pacientes com ICNI correspondiam a 68% da amostra. Não foi realizada análise estratificada quanto à etiologia da IC.

Guazzi e cols.25 avaliaram o desempenho das variáveis do teste ergoespirométrico com relação ao risco de MS. Os pacientes que evoluíram sem eventos apresentavam VO\textsubscript{2} de pico de 16,8 ± 4,5 ml/kg 7min-1, inclinação VE/VC\textsubscript{O}\textsubscript{2} de 32,8 ± 6,4 e prevalência de ventilação periódica de 20,3%.

Os pacientes que evoluíram com MS apresentavam VO\textsubscript{2} de pico de 13,58 ± 3,2 ml/kg 7min-1, inclinação VE/VC\textsubscript{O}\textsubscript{2} de 41,5 ± 11,4 e prevalência de ventilação periódica de 100%. Em análise multivariada, a única variável associada a maior risco de MSC foi a presença de ventilação periódica. Nesse trabalho, pacientes com ICNI constituíram 37% da amostra (n = 156), não tendo sido realizada análise estratificada quanto à etiologia da IC. Esses achados necessitam de confirmação em estudos prospectivos envolvendo maior número de pacientes, preferencialmente possibilitando análise com relação à etiologia da IC.

Cintilografia miocárdica com 123I-MIBG

A cintilografia miocárdica com iodo-123-metaiodobenzilguanidina (123I-MIBG) pode avaliar a função do sistema nervoso simpático em pacientes com IC. Dados recentes indicam que baixa relação 123I-MIBG coração/mediastino tardia e taxa de washout aumentada foram associadas a maior incidência de eventos cardiovasculares46. Em estudo de coorte com 106 pacientes, sendo 44% com ICNI, pacientes com cintilografia 123I-MIBG anormal tiveram risco de MS significativamente maior (hazard ratio 4,79, IC95% 1,55-14,76; p = 0,006)47. Em outro trabalho, que acompanhou 116 pacientes portadores de CDI, aqueles com alterações na cintilografia com 123I-MIBG apresentaram maior taxa de terapias do CDI (52% versus 5%, p < 0,01)48. Em ambos os trabalhos, não foi realizada análise específica para pacientes com ICNI. Considerando-se os achados promissores desses e de outros trabalhos, estima-se que venham a ser realizados estudos prospectivos com maior número de pacientes, com possibilidade de análise estratificada quanto à etiologia da IC, que possibilitem a inclusão da cintilografia com 123I-MIBG nas diretrizes para estratificação de risco dos pacientes com ICNI.

Estudo eletrofisiológico

No grupo de pacientes com IC de etiologia isquêmica, o estudo eletrofisiológico (EEF) com estimulação ventricular programada é capaz de identificar pacientes com maior risco de eventos arrítmicos graves49. Porém, entre pacientes com ICNI, os resultados dos trabalhos são controversos. Poll e cols.50 realizaram EEF em 20 pacientes com ICNI, com indução de...
taquiarritmia ventricular em 30% dos casos. Destes, 50% apresentaram taquiarritmia ventricular durante o seguimento. Entre aqueles com EEF negativo, 36% apresentaram arritmia. Na década de 1990, Brembilla-Perrot e cols. realizaram EEF em 92 pacientes, com indução de taquiarritmia ventricular em 8%. A incidência de arritmia ventricular nesse grupo foi de 50%, enquanto no grupo com EEF negativo foi de 4%. Grimm e cols., em estudo com 34 pacientes, induziram taquiarritmia ventricular em 38% dos casos. A incidência de arritmia ventricular nesse grupo foi de 30% comparada a 24% no grupo com EEF negativo. Esses estudos envolveram número pequeno de pacientes, apresentaram metodologia heterogênea e foram realizados antes do largo emprego dos betabloqueadores no tratamento da IC.

Estudos recentes têm novamente avaliado o desempenho do EEF nesse cenário. Em subanálise do estudo DEFINITE, o EEF foi positivo em 14% dos pacientes e, destes, 34% apresentaram arritmia ventricular. Entre aqueles com EEF negativo, a incidência de arritmia ventricular foi de 12%. O valor preditivo positivo do EEF foi de 34%, e o valor preditivo negativo foi de 88% para a ocorrência de terapias do CDI. Gatouzis e cols. acompanharam prospectivamente 158 pacientes com ICNI submetidos à realização de EEF tendo em vista a prevenção primária de MS. O EEF foi considerado positivo (indução de taquicardia ventricular ou fibrilação ventricular) em 44 pacientes (28%) e negativo em 114 (72%). Implante de CDI foi realizado em 41 pacientes do grupo EEF positivo e em 28 do grupo EEF negativo. A mortalidade total ao longo de 46,9 meses de acompanhamento não foi estatisticamente diferente entre os pacientes com EEF positivo ou negativo. Entre os pacientes que receberam CDI, a taxa de ocorrência de terapias pelo CDI (choque ou estimulação antitauquirardia) foi de 73,2% no grupo com EEF positivo e de 17,9% no grupo com EEF negativo (p = 0,001). O valor preditivo positivo foi o único fator prognóstico para ocorrência de terapia pelo CDI (hazard ratio 4,19, IC95% 1,467-11,994; p = 0,007). Considerando-se o conjunto dos resultados dos estudos, as diretrizes não recomendam a realização de EEF como rotina para estratificação de risco dos pacientes com ICNI. Estudos futuros com maior número de pacientes e evidências de terapia farmacológica e protocolos de estimulação ventricular uniformes poderão definir melhor o papel do EEF nesse grupo de pacientes.

Avaliação genética

Há vários estudos avaliando a associação entre mutações genéticas com a fisiopatologia e o prognóstico de pacientes com ICNI, particularmente naqueles com doença familiar. Entre as condições mais bem investigadas estão as mutações do gene da lamina A/C (LMNA). Pasotti e cols. demonstraram que pacientes com ICNI portadores de mutações LMNA apresentam alta incidência de eventos arrítmicos graves (40-67%), tendo como fatores de risco classe funcional da NYHA, tipo de mutação e prática de atividade física competitiva. Em estudo de van Rijsingen e cols., a incidência de eventos arrítmicos graves foi de 18%, tendo como fatores de risco TVNS, FE, sexo masculino e o tipo de mutação. Mutações no gene dos canais de sódio SCN5A foram igualmente associadas a maior risco de eventos arrítmicos. Mutações no gene RBM20, responsável por regulação de processo de splicing em tecido cardíaco, foram identificadas em 2,8% dos pacientes de uma coorte com ICNI e CDI, não estando associadas a maior risco de arritmias ventriculares. Considerando-se a prevalência e a importante implicação prognóstica, a pesquisa de mutações LMNA pode ser considerada em todos os pacientes com ICNI idiopática, especialmente quando houver comprometimento significativo do sistema de condução. No Brasil, não há disponibilidade dessa avaliação genética para uso clínico rotineiro.

A análise da presença de polimorfismos genéticos também vem sendo avaliada como ferramenta para estratificação de risco de pacientes com ICNI. Em estudo de coorte, a presença do alelo Gly389 do polimorfismo do receptor β1-adrenérgico Arg389Gly foi associada a menor frequência de arritmias ventriculares. Estudo de coorte nacional, incluindo pacientes com ICNI, que correspondiam a 41% do grupo. O genótipo AT1R-1166CC do polimorfismo associado ao sistema renina-angiotensina-aldosterona foi associado a risco duas vezes maior de terapias do CDI. Pacientes com ICNI corresponderam a 23% dos pacientes que receberam terapia do CDI. A análise de polimorfismos genéticos é uma área promissora. Estudos futuros poderão levar à identificação de pacientes com padrão genético de maior risco e que possam apresentar maior benefício com o implante do CDI.

Ressonância nuclear magnética cardíaca

A presença de fibrose miocárdica constitui importante substrato arritmogênico nos pacientes com ICNI. A detecção da presença de fibrose miocárdica através de marcadores séricos do metabolismo do colágeno ou métodos de imagem poderia identificar pacientes de maior risco. Kanouapiks e cols. demonstraram que pacientes com ICNI e alteração em marcadores séricos do metabolismo do colágeno apresentaram maior taxa de terapias apropriadas do CDI. Pacientes com ICNI corresponderam a 23% dos pacientes que receberam terapia do CDI. A análise de polimorfismos genéticos é uma área promissora. Estudos futuros poderão levar à identificação de pacientes com padrão genético de maior risco e que possam apresentar maior benefício com o implante do CDI.
Figura 2 – RNM cardíaca de paciente com ICNI, FE 35%, mostrando área de fibrose mesocárdica no septo interventricular.

terapia apropriada do CDI e hospitalização (hazard ratio 3,4 IC95% 1,26-9; p = 0,015). Nessa coorte, extensão da fibrose >4,4% da massa do VE foi associada a pior prognóstico, e o valor prognóstico da presença de fibrose foi restrito aos pacientes com FE < 30%. Esses achados não foram confirmados no trabalho de Hombach e cols.⁶⁹, que não evidenciaram associação entre a presença de fibrose e o desfecho combinado morte cardíaca ou MS, no acompanhamento de 151 pacientes. As variáveis derivadas da RNM associadas ao desfecho foram índice cardíaco e índice do volume diastólico final do ventrículo direito, além da presença de QRS >110 ms e diabetes.

Gulati e cols.⁷⁰ publicaram recentemente os resultados da maior coorte de pacientes com ICNI submetidos a RNM. Foram acompanhados 472 pacientes mediana de seguimento de 5,3 anos. O desfecho primário mortalidade total ocorreu em 26,8% dos pacientes com fibrose miocárdica e em 10,6% dos pacientes sem fibrose. Após análise multivariada com ajuste para FE e outros fatores prognósticos, a presença de fibrose apresentou hazard ratio de 2,43 (IC95% 1,50-3,92; p < 0,001), e a extensão da fibrose hazard ratio foi de 1,10 (IC95% 1,05-1,16; p < 0,001). Esses resultados, assim como os dos estudos anteriores, indicam que a RNM pode ser um método útil na estratificação de risco de pacientes com ICNI. A utilidade da RNM necessita de confirmação em estudos prospectivos multicêntricos, delineados especificamente para essa questão.

Conclusão

A estratificação do risco de MS entre os pacientes com ICNI permanece como importante desafio clínico. Tendo em vista a tomada de decisão sobre implante ou não de CDI, os aspectos mais bem estabelecidos no momento e que devem ser considerados são fração de ejeção, classe funcional e presença de sícope (Figura 3). Vários testes não invasivos e o estudo eletrofisiológico invasivo apresentam resultados ainda controversos. A RNM cardíaca vem apresentando resultados promissores e poderá vir a ser considerada na estratificação de risco da ICNI. Estudos prospectivos multicêntricos, avaliando a associação de diferentes métodos não invasivos e invasivos, poderão gerar escores de risco capazes de identificar mais adequadamente os pacientes de maior risco MS e, assim, com maior possibilidade de benefício com implante de CDI.
Contribuição dos autores
Concepção e desenho da pesquisa: Pimentel M, Rohde LE; Obtenção de dados: Pimentel M; Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Pimentel M, Zimerman LI, Rohde LE.

Potencial conflito de interesse
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica
Este artigo é parte de tese de Doutorado de Maurício Pimentel pela Universidade Federal do Rio Grande do Sul.

Referências
1. Godoy HL, Silveira JA, Segalla E, Almeida DR. Hospitalização e mortalidade por insuficiência cardíaca em hospitais públicos no município de São Paulo. Arq Bras Cardiol. 2011;97(5):402-7.
2. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93(9):1137-46.
3. Mann DL. Heart failure: a companion to Braunwald’s heart disease. Philadelphia: Saunders; 2011. p. 363-89.
4. BREATHE Investigators. Rationale and design: BREATHE registry – 1Brazilian Registry of Heart Failure. Arq Bras Cardiol. 2013;100(5):390-4.
5. Zipes DP, Wellens HJ. Sudden cardiac death. Circulation. 1998;98(21):2334-51.
6. Koutalas E, Kanoupakis E, Vardas P. Sudden cardiac death in non-ischemic dilated cardiomyopathy: a critical appraisal of existing and potential risk stratification tools. Int J Cardiol. 2013;167(2):335-41.
7. Gauí EN, Klein CH, Oliveira GM. Mortalidade por insuficiência cardíaca: análise ampliada e tendência temporal em três estados do Brasil. Arq Bras Cardiol. 2010;94(1):55-61.
8. Bocchi EA, Marcondes-Braga FG, Bacal F, Ferraz AS, Albuquerque D, Rodrigues DA, et al. Sociedade Brasileira de Cardiologia. Atualização da Diretriz Brasileira de Insuficiência Cardíaca Crônica 2012. Arq Bras Cardiol. 2012;98(3) supl. 1:1-33.
9. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al; Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) Investigators. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225-37. Erratum in N Engl J Med. 2005;352(20):2146.
10. Poole JE, Johnson GW, Hellkamp AS, Anderson J, Callans DJ, Raitt MH, et al. Prognostic importance of defibrillator shocks in patients with heart failure. N Engl J Med. 2008;359(10):1009-17.
11. Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med. 1996;335(26):1933-40.
12. Russo AM, Stainback RF, Bailey SR, Epstein AE, Heidenreich PA, Jessup M, et al. ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: a report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. Heart Rhythm. 2013;10:e11-58.
13. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353(9169):2001-7.

14. Rassi A Jr, Rassi A, Little WC, Xavier SS, Rassi SC, Rassi AC, et al. Development and validation of a risk score for predicting death in Chagas’ heart disease. N Engl J Med. 2006;355(8):799-808.

15. Martinelli Filho M, Zimmerman L, Lorga AM, Vasconcelos JT, Rassi A Jr. Diretrizes brasileiras de dispositivos cardíacos eletrônicos implantáveis. Arq Bras Cardiol. 2007;89(6):e210-38.

16. Middlekauff HR, Stevenson WG, Stevenson LW, Saxton LA. Syncpe in advanced heart failure: high risk of sudden death regardless of origin of syncope. J Am Coll Cardiol. 1993;21(10):110-6.

17. Knight BP, Goyal R, Pelosi F, Fleming M, Horwood L, Morady F, et al. Outcome of patients with nonischemic dilated cardiomyopathy and unexplained syncope treated with an implantable defibrillator. J Am Coll Cardiol. 1999;33(7):1964-70.

18. Phang RS, Kang D, Tighiouart H, Estes NA 3rd, Link MS. High risk of ventricular arrhythmias in patients with nonischemic dilated cardiomyopathy presenting with syncope. Am J Cardiol. 2006;97(3):416-20.

19. Grimm W, Christ M, Bach J, Müller HH, Maisch B. Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: results of the Marburg Cardiomyopathy Study. Circulation. 2003;108(23):2883-91.

20. Anselmino M, De Ferrari GM, Massa R, Manca L, Tritto M, Molon G, et al. Alpha Study Group Investigators. Predictors of mortality and hospitalization for cardiac causes in patients with heart failure and nonischemic heart disease: a subanalysis of the Alpha study. Pacing Clin Electrophysiol. 2009;32 Suppl 1:S214-8.

21. Scott PA, Barry J, Roberts PR, Morgan JM. Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: a meta-analysis. Eur J Heart Fail. 2009;11(10):958-66.

22. Levy WC, Lee KL, Hellkamp AS, Poole JE, Mozaffarian D, Linker DT, et al. Outcomes of patients with nonischemic dilated cardiomyopathy and unexplained syncope treated with an implantable defibrillator. J Am Coll Cardiol. 1999;33(7):1964-70.

23. Phang RS, Kang D, Tighiouart H, Estes NA 3rd, Link MS. High risk of ventricular arrhythmias in patients with nonischemic dilated cardiomyopathy presenting with syncope. Am J Cardiol. 2006;97(3):416-20.

24. Grimm W, Christ M, Bach J, Müller HH, Maisch B. Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: results of the Marburg Cardiomyopathy Study. Circulation. 2003;108(23):2883-91.

25. Anselmino M, De Ferrari GM, Massa R, Manca L, Tritto M, Molon G, et al. Alpha Study Group Investigators. Predictors of mortality and hospitalization for cardiac causes in patients with heart failure and nonischemic heart disease: a subanalysis of the Alpha study. Pacing Clin Electrophysiol. 2009;32 Suppl 1:S214-8.

26. Scott PA, Barry J, Roberts PR, Morgan JM. Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: a meta-analysis. Eur J Heart Fail. 2009;11(10):958-66.

27. Levy WC, Lee KL, Hellkamp AS, Poole JE, Mozaffarian D, Linker DT, et al. Outcomes of patients with nonischemic dilated cardiomyopathy and unexplained syncope treated with an implantable defibrillator. J Am Coll Cardiol. 1999;33(7):1964-70.

28. Gang Y, Ono T, Hnatkova K, Hashimoto K, Camm AJ, Pitt B, et al; ELITE II investigators. QT dispersion has no prognostic value in patients with symptomatic heart failure: an ELITE II substudy. Pacing Clin Electrophysiol. 2003;26(1 Pt 2):394-400.

29. Fauchier L, Babuty D, Cosnay P, Poret P, Rouesnel P, Fauchier JP. Long-term prognostic value of time domain analysis of signal-averaged electrocardiography in idiopathic dilated cardiomyopathy. Am J Cardiol. 2000;85(5):618-23.

30. Grimm W, Glaveris C, Hofmann J, Menz V, Müller HH, Hufnagel G, et al. Arrhythmia risk stratification in idiopathic dilated cardiomyopathy based on echocardiography and 12-lead, signal-averaged, and 24-hour holter electrocardiography. Am J Heart. 2000;140(1):43-51.

31. Okutucu S, Otto A. Risk stratification in nonischemic dilated cardiomyopathy: current perspectives. Cardiol J. 2010;17(3):219-29.

32. Iacovelli M, Forleo C, Guida P, Romito R, Sorrente S, et al. Ventricular regularization dynamics provides independent prognostic information toward major arrhythmic events in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2007;50(3):225-31.

33. Grimm W, Christ M, Maisch B. Long runs of non-sustained ventricular tachycardia on 24-hour ambulatory electrocardiogram predict major arrhythmic events in patients with idiopathic dilated cardiomyopathy. Pacing Clin Electrophysiol. 2005;28 Suppl 1:S520-7.

34. de Sousa MR, Morillo CA, Rabelo FT, Nogueira Filho AM, Ribeiro AL. Non-sustained ventricular tachycardia as a predictor of sudden cardiac death in patients with left ventricular dysfunction: a meta-analysis. Eur J Heart Fail. 2000;10(10):1007-14.

35. Verma A, Sarak B, Kaplan AJ, Oosthuizen R, Beardsall M, Wulffhart Z, et al. Predictors of appropriate implantable cardioverter defibrillator (ICD) therapy in primary prevention patients with ischemic and non-ischemic cardiomyopathy. Pacing Clin Electrophysiol. 2010;33(3):320-9.

36. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998;98(15):1510-6.

37. Fauchier L, Babuty D, Cosnay P, Autret ML, Fauchier JP. Heart rate variability in idiopathic dilated cardiomyopathy: characteristics and prognostic value. J Am Coll Cardiol. 1997;30(4):1089-14.

38. Rashba EJ, Estes NA, Wang P, Schaechter A, Howard A, Zareba W, et al. Preserved heart rate variability identifies low-risk patients with nonischemic dilated cardiomyopathy: results from the DEFINITE trial. Heart Rhythm. 2006;3(3):281-6.

39. Klingenheben T, Ptaszynski P, Hohnloser SH. Heart rate turbulence and other autonomic risk markers for arrhythmia risk stratification in dilated cardiomyopathy. J Electrocardiol. 2008;41(4):306-11.

40. Salerno-Uriarte JA, De Ferrari GM, Klersy C, Pedretti RF, Tritto M, Sallusti L, et al; ALPHA Study Group Investigators. Prognostic value of off-wave alternans in patients with heart failure due to nonischemic cardiomyopathy: results of the ALPHA Study. J Am Coll Cardiol. 2007;50(19):1896-904.

41. De Ferrari GM, Sanzo A. T-wave alternans in risk stratification of patients with nonischemic dilated cardiomyopathy: Can it help to better select candidates for ICD implantation? Heart Rhythm. 2009;6(3 Suppl):S29-35.

42. Gold MR, Ip JH, Costantini O, Poole JE, McNulty S, Mark DB, et al. Role of microvolt T-wave alternans in assessment of arrhythmia vulnerability among patients with heart failure and systolic dysfunction: primary results from the T-wave alternans sudden cardiac death in heart failure trial substudy. Circulation. 2008;118(20):2022-8.

43. Cahalin LP, Chase P, Arena R, Myers J, Bensimhon D, Pelcardy MA, et al. A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev. 2013;18(1):79-94.
44. Guimarães GV, Silva MS, d’Avila VM, Ferreira SM, Silva CP, Bocchi EA, VO, pico e inclinação VE/VO da era dos betablockadores na insuficiência cardíaca: uma experiência brasileira. Arq Bras Cardiol. 2008;91(1):39-48.
45. Guazzi M, Raimondo R, Vicenzi M, Arena R, Proserpio C, Sarzi Braga S, et al. Exercise oscillatory ventilation may predict sudden cardiac death in heart failure patients. J Am Coll Cardiol. 2007;50(4):299-308.
46. Kelesidis I, Travin ML. Use of cardiac radionuclide imaging to identify patients at risk for arrhythmic sudden cardiac death. J Nucl Cardiol. 2012;19:142-52.
47. Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53(5):426-35.
48. Boogers MJ, Borfilets CJ, Hennenmann MM, van Bommel RJ, van Ramshout J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Nucl Med. 2010;51(7):2767-70.
49. Poll DS, Marchlinski FE, Buxton AE, Josephson ME. Usefulness of programmed stimulation in idiopathic dilated cardiomyopathy. Am J Cardiol. 1986;58(10):992-7.
50. Brembilla-Perrot B, Donetti J, de la Chaise AT, Sadoul N, Alot E, Jullière Y. Diagnostic value of ventricular stimulation in patients with idiopathic dilated cardiomyopathy. Am Heart J. 1991;121(4 Pt 1):1124-31.
51. Grimm W, Hofmann J, Menz V, Luck K, Maisch S. Programmed ventricular stimulation for arrhythmia risk prediction in patients with idiopathic dilated cardiomyopathy and nonsustained ventricular tachycardia. J Am Coll Cardiol. 1996;32(3):739-45.
52. Daubert JP, Winters SL, Subacius H, Berger RD, Ellenbogen KA, Taylor SG, et al. Defibrillators In Nonischemic Cardiomyopathy Treatment Evaluation (DEFINITE) Investigators. Ventricular arrhythmia inducibility predicts subsequent ICD activation in nonischemic cardiomyopathy patients: a DEFINITE substudy. Pacing Clin Electrophysiol. 2009;32(6):755-61.
53. Catzoulis KA, Vuillotis AJ, Tuachris D, Salourou M, Archontakis S, Dilaveris P, et al. Primary prevention of sudden cardiac death in a nonischemic dilated cardiomyopathy population: Reappraisal of the role of programmed ventricular stimulation. Circ Arrhythm Electrophysiol. 2013;6(3):504-12.
54. Pisan S, Liu P, Morales A, Hershberger RE. Where genome meets phenotype: rationale for integrating genetic and protein biomarkers in the diagnosis and management of dilated cardiomyopathy and heart failure. J Am Coll Cardiol. 2012;60(4):283-9.
55. Pasotti M, Klersy C, Pilotto A, Marziliano N, Rapezzi C, Serio A, et al. Long-term outcome and risk stratification in dilated cardiomyopathies. J Am Coll Cardiol. 2008;52(15):1250-60.
56. van Rijswijngen IA, Arbustini E, Elliott PM, Mogensen J, Herrmann-van Ast JF, van der Kooi AJ, et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm. 2012;9(3):390-6.
57. McNair WP, Sinagra G, Taylor MR, Di Lenarda A, Ferguson DA, Salcedo EE, et al; Familial Cardiomyopathy Registry Research Group. SCNSA mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol. 2011;57(21):2160-8.
58. Reis AM, Libutti SA, Makino S, Islam Z, Frangiskakis JM, Mehdi H, et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm. 2012;9(3):390-6.
59. Vouliotis AI, Tsiachris D, Salourou M, Archontakis S, Dilaveris P, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48(10):1977-85.
60. Cuznić EM, Marinós EG, Manóls HE, Goudis CA, Salustros IG, et al. Serum markers of collagen turnover predict future shocks in implantable cardioverter-defibrillator recipients with dilated cardiomyopathy on optimal treatment. J Am Coll Cardiol. 2010;55(24):2753-9.
61. Vouliotis AI, Tsiachris D, Salourou M, Archontakis S, Dilaveris P, et al. Genetic polymorphisms of the adrenergic system and implantable cardioverter-defibrillator therapies in patients with heart failure. Europace. 2010;12(5):686-91.
62. Blanco RR, Austin H, Vest RN 3rd, Valadri R, Li W, Lassegue B, et al. Genetic variation in the alternative splicing regulator RBM20 is associated with malignant arrhythmias and altered circulating miR-155 levels in patients with chronic heart failure. J Card Fail. 2012;18(7):717-23.
63. Soejima K, Stevenson WG, Sapp JL, Selwyn AP, Couper G, Epstein LM. Endocardial and epicardial radiofrequency ablation of ventricular tachycardia associated with dilated cardiomyopathy: the importance of low-voltage scars. J Am Coll Cardiol. 2004;43(10):1834-42.
64. Kanopoulos EM, Manios EG, Kallergis EM, Mavrakis HE, Goudis CA, Salustros IG, et al. Serum markers of collagen turnover predict future shocks in implantable cardioverter-defibrillator recipients with dilated cardiomyopathy on optimal treatment. J Am Coll Cardiol. 2010;55(24):2753-9.
65. McCloud TH, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108(1):54-9.
66. Nazerian S, Bluemke DA, Lardo AC, Zivman MM, Watkins SP, Dickfeld TL, et al. Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation. 2005;111(28):2821-5.
67. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48(10):1977-85.
68. Lehke S, Lossnitzer D, Schöb M, Steen H, Merten C, Kemmling H, et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart. 2011;97(9):727-32.
69. Hombach V, Merkle N, Torzewski J, Kraus JM, Kunze M, Zimmermann P, et al. Exercise oscillatory ventilation may predict sudden cardiac death in patients with non-ischaemic dilated cardiomyopathy. Eur Heart J. 2009;30(16):2117-23.
70. Gulati A, Nabour A, Ismail TF, Guha K, Khwaja J, Raza S, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309(9):896-908. Erratum in JAMA. 2013;310(1):99.