Predicting the geographic distribution habitats of *Schizomyia buboniae* (Diptera: Cecidomyiidae) and its host plant *Deverra tortuosa* (Apiaceae) in Egypt by using MaxEnt modeling

Mohamed Kamel1*, Ahmed S. Bream2, Mohamed M. Moursy3 and Sanad H. Ragab2

Abstract

Background: In some localities of the Mediterranean coast and the Nile land region, the gall midge *Schizomyia buboniae* Frauenfeld, 1859 (Diptera: Cecidomyiidae) induce small barrel-shaped galls on the stem of *Deverra tortuosa* (Desf.) DC. (Family: Apiaceae). Host plants interact with several insects in a different manner. The current work studies the interaction of *S. buboniae* with *D. tortuosa*. Furthermore, the present work predicted the distribution of *S. buboniae* and its host plant *D. tortuosa* in Egypt by using MaxEnt modeling, in addition to the effect of elevation and vegetation cover on its distribution.

Results: The predominance of *S. buboniae* occurred during late winter to spring. The *S. buboniae* larvae are occasionally attacked by endoparasitoids of the genus *Inostemma* (Platygastridae). There was a significant positive correlation between the number of galls per plant and the plant cover within the study localities. Meanwhile, there was no significant correlation between the number of galls per plant and the altitude within the study localities. Also, the high temperature and altitude were the most important predictors for the habitat distribution of *S. buboniae* and its host plant *D. tortuosa*. The predicted distribution range size for *S. buboniae* is less than the total predicted distribution range size for *D. tortuosa*.

Conclusions: The current study suggests that the gall inducer prefers large plants more than small ones. The present study suggests that the habitat distribution patterns of *S. buboniae* and its host plant *D. tortuosa* in Egypt can be modeled using a small number of occurrence records together with environmental variable layers for the study area through the maximum entropy modeling technique.

Keywords: Galls, Prediction, Mediterranean coast, Interactions, Climatic variable
formation involves an intimate parasitic interaction be-
tween the gall maker and its host plant (Rocha et al.,
2013). Galls supply nutrition, assurance, and shelter to
the gall-inducing insects or their offspring (Ascendino &
Maia, 2018).

Gall-inducing insects are remarkable bioindicators of
any alters in the environment and habitat quality due to
their host specificity, close-fitting habit, abundance, and
easy localization (Julião, Fernandes, Negreiros, Bedê, &
Araújo, 2005; Santana & Isaias, 2014). The diversity of
gall-inducing insects reflects the conservation status of
an ecosystem (Santana & Isaias, 2014).

Gall-inducing insects may provide a vital tool to evalu-
ate habitat quality and restoration (Kamel, 2021). Their
species richness was used as indicators of forest age and
health (Fernandes, Almada, & Carneiro, 2010), and they
were used as bioindicators of habitat restoration in a
degraded land of Atlantic Forest (Moreira, Fernandes,
Almada, & Santos, 2007).

A question of great interest is how gall-inducing in-
sects are affected by several biotic and abiotic variables.
The plant structural complexity, the altitudinal/latitu-
dinal gradient, and the host plant geographical range size
are the main factors that may affect the richness and di-
versity of gall-inducing insects (Fernandes et al., 2010;
Kamel, 2012; Roininen et al., 2006). The physical struc-
ture of the aerial vegetation parts of the host plant af-
fects the community structure of gall insects (Araújo, De
Paula, Carneiro, & Schoereder, 2006a). Additionally, leaf
size and shoot diameter may also affect the gall induc-
tion (Fritz, Gaud, Sacchi, & Price, 1987; Yamazaki &
Ohsaki, 2006).

Gall-forming species is about 2% of the total named
insect species (Dreger-Jauffret, 1992; Raman, Schaefer,
Withers, & Enfield, 2005). Cecidomyiidae (Diptera:
Nematocera) are the youngest, largest, and most diverse
subfamily of gall midges that hold more than 6651 spe-
cies (Gagné & Jaschhof, 2004; Gagné & Jaschhof, 2021).
Cecidomyiidae have a cosmopolitan distribution; there-
fore, Cecidomyiidae is estimated to be the richest taxon
in the kingdom Animalia with over 1.8 million species
worldwide (Hebert et al., 2016). Gall-forming insects
have an important role in pollination (Borges, 2015).
Some of Cecidomyiidae gall midget species are econom-
ically important; it can make damage to agricultural
plants (Darvas, Skuhrová, & Andersen, 2000) and to for-
est trees (Skuhrová & Roques, 2000). Some galls contain
tanins which are used for tanning and for medicinal pur-
poses from India to Algiers (Gerling, Kugler, & Lupo,
1976).

Recently, many gall midgets were recorded inducing
different types of plant galls in several regions of Egypt
(Doğanlar & Elsayed, 2013; Doğanlar & Elsayed, 2015;
Elsayed & Karam, 2016; Elsayed, Karam, & Tokuda,
2017; Elsayed, Skuhrava, Karam, Elminshawy, & Al-
Eryan, M. A., 2015; Kamel, 2012; Kamel, 2021; Kamel,
Semida, & Abdel-Dayem, 2012).

Schizomyia is a genus of gall midges. It is character-
ized by a cosmopolitan distribution (Elsayed et al., 2019;
Elsayed, Lin, Yang, & Tokuda, 2020; Elsayed, Yukawa, &
Tokuda, 2018; Frauenfeld, 1859). In the coastal desert
habitat, Schizomyia bubonae (Frauenfeld, 1859) induces
berry-like galls on the stems of Deverra tortuosa (Skuh-
rová, Skuhrový, & Elsayed, 2014). It was collected before
in some areas of Egypt such as Suez, Wadi Degla Pro-
tectorate in Cairo, and Burg El-Arab (Alexandria). (Frau-
enfeld, 1859; Skuhrová et al., 2014). This species is
univoltine, with galls apparent on the host from late f
February to early April. Pupation takes place inside the
gall, and adults emerge from March to April (Dorchin &
freidberg, 2011; Skuhrová et al., 2014).

Deverra tortuosa (Desf.) DC. (Family: Apiaceae) is re-
corded as a common associate in most plant communi-
ties located in the coastal and inland desert habitats
(Serag, Khedr, & Amer, 2020). Deverra tortuosa is one of
the most important medicinal plants in Egypt. It is uti-
лизed in folk medicine as a diuretic, carminative, anti-
asthmatic, and analgesic against hypertension,
constipation, fever, headache, and bites (Azzazi, Afifi,
Tammam, & Sheikh Alsouk, A., 2015; El-Mokasabi,
2014). D. tortuosa resists against intestinal parasites and
stomach pain (Azzazi et al., 2015). The Deverra extracts
showed high scavenging and anti-oxidant properties
under stress conditions (El-lamey, 2015a). D. tortuosa
has high palatability for several grazing animals (Boulos,
2000). The plant grows in desert wadis and stony and
sandy plains, and it is located in Egypt, Palestine, Saudi
Arabia, Libya, and Tunisia (Boulos, 2000).

Species distribution models (SDMs) are an efficient
tool for assessing the potential for species to exist in re-
gions not previously surveyed (Guisan & Thuiller, 2005).
These models have been used for providing a baseline
for predicting a species’ response to landscape variance
and/or climate change (Araújo, Thuiller, & Pearson,
2006b) and for recognizing the important areas for con-
servation (Wilson, Westphal, Possingham, & Elith,
2005). Several studies indicated that a statistical mechan-
ics approach as the MaxEnt technique performs very
well even with small samples (Hernandez, Graham, Mas-
ter, & Albert, 2006; Phillips, Anderson, & Schapire,
2006). Some studies were performed using species distri-
bution models for predicting the geographic distribution
of various species in Egypt (El Alqamy et al., 2010;
Kamel et al., 2012).

Therefore, the main goal of this study was to investi-
gate the interaction of S. bubonae with D. tortuosa in
some regions of the Mediterranean coast in Egypt and
study the effect of elevation and vegetation cover on gall
induction. Furthermore, this study tried to estimate the geographic distribution habitats of *S. buboniae* and its host plant *D. tortuosa* in Egypt using the maximum entropy modeling technique (MaxEnt) for searching the suitable areas of the gall maker *S. buboniae* and its host plant *D. tortuosa* in Egypt, which should be the important areas for conservation.

Methods

Study area

The floral territories of Egypt may be divided into the Mediterranean coast, the Nile land, and the deserts and mountains (El Hadidi & Hosni, 1996). Egypt’s Mediterranean coast (north coast) extends from Sallum for approximately 970 km east to Rafah, with an approximate width of 15–20 km in a north-south direction (Hadidi, 1981). According to Zahran, El Demerdash, and Mashaly (1985) and Zahran, El-Demerdash, and Mashaly (1990), the north coast is ecologically divided into three sections; western (the Mareotis, spreading for 550 km between Sallum and Alexandria), middle (deltaic, spreading for 180 km between Alexandria and Port Said), and eastern (Sinaitic, spreading for 220 km between Port Said and Rafah).

The current study was conducted in some regions of the Mediterranean coast, in addition to some localities in the Nile land region. The chosen sampling sites for *D. tortuosa* were El Sadat City, El Nubariyah, Wadi El Natrun, El Amria, and El Alamein City (Fig. 6). The study sites were visited periodically in the period from February 2019 to June 2020, once every 2 months.

Table 1 The recorded locations of *D. tortuosa* in Egypt

No.	Location	Coordinates	References
1	Wadi Degla, Cairo	29.96 31.32955	(Chhtek, Osbornova, & Sourkova, 1967)
2	Wadi El Natrun, El Alamein Road	30.657 29.603	(El-Lamey, 2015b)
3	Ras El Hekmah	31.1179 27.823	(Chhtek et al., 1967)
4	Wadi Hoff	29.916 31.3779	(Chhtek et al., 1967)
5	Cairo-Suez Road	31.118 31.635	(Chhtek et al., 1967)
6	Cairo-Suez Road	31.1042 31.7443	(Chhtek et al., 1967)
7	Cairo-Suez Road	31.0923 31.8682	(Chhtek et al., 1967)
8	Cairo-Suez Road	30.0816 31.9444	(Chhtek et al., 1967)
9	Wadi Sudr, Ras Sudr	29.500 32.700	(El-Lamey, 2015b)
10	Wadi Sudr, Ras Sudr	30.300 30.1000	(El-Lamey, 2015b)
11	Wadi Sudr, Ras Sudr	30.700 29.400	(El-Lamey, 2015b)
12	18 km west of Mersa Matruh	31.250 27.387	(El-Lamey, 2015b)
13	46 km coastal road before Mersa Matruh	31.1337 27.666	(Chhtek et al., 1967)
14	Ras El Hekma	27.816 31.887	(Chhtek et al., 1967)
15	Wadi Natrun	30.338167 30.406389	(Chhtek et al., 1967)
16	Cairo-Alexandria Desert Road	30.392 30.376	(Chhtek et al., 1967)
17	Pyramids, Giza	29.980 31.129	(Chhtek et al., 1967)
18	Pyramids, Giza	29.982 31.132	(Chhtek et al., 1967)
19	Ismailia City	30.6043 32.2578	(Chhtek et al., 1967)
20	4 km from Ain Sokima	29.639 32.3078	(Chhtek et al., 1967)
21	Helwan	29.8404 31.2983	(Chhtek et al., 1967)
22	WADI Quseib, coast of Gulf of Suez	29.0515 33.2051	(Chhtek et al., 1967)
23	Mohgra Oasis	30.2506 28.9367	(Chhtek et al., 1967)
24	Wadi Aber of Gebl Ataqa	29.9259 32.363	(Chhtek et al., 1967)
25	Sakkara, Cairo	29.8590 31.1352	(Chhtek et al., 1967)
26	6 October	30.90133 29.544444	(Abd El-Ghani, Bornkamm, El-Sawaf, & Turky, 2011)
27	Farsh Shoeab	28.5527 33.9668	(Kamel et al., 2012)
28	Wadi El Deir	28.55776 33.97799	(Kamel et al., 2012)
29	Wadi El Arbain	28.55269 33.94931	(Kamel et al., 2012)
30	Wadi Telah	28.5765 33.92702	(Kamel et al., 2012)
31	El-Gabal El-Molawan	28.58151 34.06413	(Kamel et al., 2012)
Study plants
Deverra tortuosa (Desf.) DC. (Family: Apiaceae) is strongly aromatic glabrous and densely branched perennial shrub (30–80 cm), the plant stems are dichotomously branched, the leaves are caduceus, the flowers' petals are almost glabrous, and the fruit is sparingly hairy and globose (Boulos, 2000; Migahid, 1989). The recorded locations of D. tortuosa in Egypt are shown in Fig. 2 and Table 1.

Samples collection and identification
The size of each plant within the sample was measured using a tape meter for calculating plant cover (the ground area obscured by the plant’s biomass when viewed from above) (Qi, Wei, Chen, & Chen, 2019) according to formula the (average width/100/2) × 2 × (22/7), in addition to the number of galls on different parts of the plant. Plant samples were identified according to Boulos (2000) and Migahid (1989). The immature stages of the gall inducer inside the galls were collected from the field and reared in the laboratory until the adults emerge; gall midge specimens are preserved in vials with 75% alcohol. The manipulation of the specimens was carried out under a stereomicroscope (model MBC-9, USSR) using a dissecting needle and a very delicate small forceps to prevent the sample distortions.

Data analysis
The collected data were analyzed using the SPSS computer package (PASW statistics ver.18, 2009). The Spearman correlation test was used to measure the relationship between altitude, plant size, and the number of galls per plant. Also, the one-way ANOVA test was used to compare the mean number of galls per plant between different localities.

Mapping and predicting distributions of plant species
The presence locations for Deverra tortuosa are recorded using GPS (Garmin XL 12). The Maxent software (version 3.3.1) is utilized to predict the potential distribution of the plant species using the presence data (recorded distribution) together with environmental variable layers for the study area, such as altitude, temperature, and moisture (Phillips et al., 2006; Phillips, Dudík, & Schapire, 2004).

Environmental data of the model
The model used various datasets as raster grids. Data were classified into climatic variables and topographical data. Nineteen bioclimatic variables (Table 2) are used to define the eco-physiological tolerances of a species (Graham & Hijmans, 2006). These were obtained from the WorldClim dataset (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; http://www.worldclim.org/bioclim.htm). Altitude is the most topographic data that was utilized as a partial dataset (~1 km) from the Shuttle Radar Topography Mission (SRTM). Moreover, we obtained retrospective distributional data for Deverra tortuosa from published literature besides our reliable observational data. When specific geographic coordinates were not provided for a locality, we used maps and gazetteers to assign geographical coordinates to these records.

Statistical validation of the model
An extrinsic and independent test datasets were used to assess the predictive performance of the model (randomly data partition into 75% of the points was used to build the model and to predict species “training data” and 25% for model testing “testing data”). Statistical validation of the model was performed by comparing the extrinsic omission rates (i.e., proportion of test localities falling outside the prediction for each algorithm) with calculations of the area under the curve (AUC) of the receiver operating characteristic (ROC). The area under the curve (AUC) is used as a measure of the accuracy of the model (Phillips, 2016). The AUC ranges from 0 to 1. An AUC of 0.5 indicates a model that is no better than random, while an AUC of 1 indicates a perfect model (Phillips et al., 2004; Phillips et al., 2006). The current study used the AUC classification system provided by Hosmer, Lemeshow, and Cook (2000). That system classifies the AUC values as follows: 0.5–0.6 = no discrimination, 0.6–0.7 = poor discrimination, 0.7–0.8 = acceptable discrimination, 0.8–0.9 = excellent discrimination.
discrimination, and 0.9–1.0 = outstanding discrimination (Hosmer et al., 2000). The percentage contribution of each variable to the final model was provided by MaxEnt; the contribution values are determined by the increase in gain of the model provided by each variable (Phillips et al., 2006). The MaxEnt model's internal jackknife test was used to determine which variables contribute most to the model development.

Results
Gall morphology and life history of *Schizomyia buboniae* (Diptera: Cecidomyiidae)

The gall midge *S. buboniae* (Fig. 1) induced 392 galls on 91 individuals of *D. tortuosa* within the study area (Table 3). The galls (Fig. 2) develop on the stems of *Deverra tortuosa* and appear as globular aggregations of 10–50 small barrel-shaped assemblages, resulting in a delicate berry-like structure, 1.5–3 cm in diameter. Each barrel-shaped chamber of the gall contains a single larva. Pupation takes place inside the gall (Fig. 1), and one generation is recorded during a year. The fresh gall is green in February and soon converts to yellow and then brown after adult gall midges emerge from it in early April to the end of May. The *S.*

Table 3 Gall induction on *Deverra tortuosa* within the study area

Location	Number of host plant	Number of galls
El Sadat city	34	212
Wadi El Natrun	5	12
EL Nubariyah	2	4
El Amria	6	17
El Alamein	44	147
Total	91	392

![Fig. 1](image) The gall midge *Schizomyia buboniae* Frauenfeld, 1859 (Diptera: Cecidomyiidae). a Ethanol-preserved larvae (3 mm), b pupa (3 mm), and c adult (2.5 mm)
buboniae larvae are occasionally attacked by endoparasitoids of the genus Inostemma (Platygastridae) (Fig. 3).

Factors affecting the distribution of Schizomyia buboniae on Deverra tortuosa
Correlation between the number of galls per plant, plant cover, and altitude
There was a significant positive correlation between the number of galls per plant and the plant cover within the study localities ($rs = 0.340, P < 0.01$) (Fig. 4). Meanwhile, there was no significant correlation between the number of galls per plant and the altitude within the study localities ($rs = -0.105, P = 0.354$).

Spatial distribution of the number of galls induced on Deverra tortuosa among different localities
There was a significant difference in the number of galls induced on Deverra tortuosa among different localities (El Sadat City, EL Nubariyah, Wadi El Natrun, El Amria, and El Alamein City) ($F(4, 86) = 2.611, P < 0.05$) (Fig. 5). El Sadat City showed the greatest mean number of galls per plant, 6.24, as compared to 2, 2.4, 2.83, and 3.34 at EL Nubariyah, Wadi El Natrun, El Amria, and El Alamein City, respectively.

The post hoc test according to Tukey’s method is performed to test multiple comparisons between different study localities in the distribution of the number of galls induced on Deverra tortuosa. There was a significant difference between El Sadat City and El Alamein City equal to 2.89 ($P < 0.05$).
Spatial prediction model of the gall midge *S. buboniae* and its host plant *D. tortuosa* in Egypt

The predicted distribution range of *S. buboniae* and *D. tortuosa* in Egypt

The MaxEnt model for *S. buboniae* is shown in Fig. 6. The predicted distribution habitat of *S. buboniae* is mainly concentrated in some areas close to the Mediterranean coast, in addition to some areas in the Nile delta region and the Red Sea coasts. Five presence records were used for training and one for testing. The AUC (Fig. 7) for the training points was 0.994 and for the test points, it was 0.999, with a standard deviation of −1.000.

The AUC was greater than 0.90, indicating outstanding discrimination for *S. buboniae*. The minimum training presence among training points was 57.207. At this threshold, the fractional predicted area was 0.013, and the omission rate for test points was 0.000. The model classifies the test points correctly significantly more than a random model (*P* < 0.001).

The MaxEnt model for *D. tortuosa* is shown in Fig. 8. The predicted distribution habitat of *D. tortuosa* covers wide regions of the Mediterranean coast, in addition to some localities in the Nile land region, the Red Sea coast, and South Sinai. Twenty-five presence records

![Fig. 4](Image)

Fig. 4 The relationship between the number of galls per plant and the plant cover within the study localities

![Fig. 5](Image)

Fig. 5 The spatial pattern of gall distribution on the *Deverra tortuosa* among different study localities (*)F* (4, 86) =2.611, *P* < 0.05)
were used for training the model and 8 for testing. The AUC (Fig. 9) for the training points was 0.941, and for the test points, it was 0.934, with a standard deviation of 0.017. The AUC was greater than 0.90, indicating outstanding discrimination for *D. tortuosa*. The minimum training presence among training points was 2.115. At this threshold, the fractional predicted area was 0.415, and the omission rate for test points was 0.000. The model classifies the test points correctly significantly more than a random model (*P* < 0.001).

Effect of predictor variables in the representation of the MaxEnt model for *S. buboniale* and *D. tortuosa* in Egypt

According to the analysis of the variables using the percent contribution heuristic test (Fig. 10), *S. buboniale* showed high sensitivity to altitude, temperature seasonality (BIO4), precipitation of the warmest quarter (BIO18), precipitation seasonality (BIO15), annual mean temperature (BIO1), isothermality (BIO3), and mean temperature of the wettest quarter (BIO8), with contribution percentage equal to 45%, 18%, 13%, 11%, 7%, 4%, and 2%, respectively.

The MaxEnt model’s internal jackknife test of variable importance showed that altitude was the most important predictor of *S. buboniale* habitat distribution. This variable showed higher gains that included the most information as compared to the other variables.
According to the analysis of the variables using the percent contribution heuristic test (Fig. 11), *D. tortuosa* showed high sensitivity to temperature seasonality (BIO4), precipitation of the warmest quarter (BIO18), precipitation seasonality (BIO15), temperature annual range (BIO7), mean temperature of the warmest quarter (BIO10), max temperature of the warmest month (BIO5), and precipitation of the wettest quarter (BIO16), with contribution percentage equal to 54%, 12%, 9%, 7%, 7%, 6%, and 5%, respectively.

The MaxEnt model’s internal jackknife test of variable importance showed that max temperature of the warmest month (BIO5) and precipitation of the warmest quarter (BIO18) were the most important predictors of *D. tortuosa* habitat distribution. These variables presented higher gains that included the most information as compared to the other variables.

Discussion

A question of great concern in herbivory is how plant traits affect attacks by phytophagous insects (Prado & Vieira, 1999). According to Price (1991), the plant vigor hypothesis proposes that more potent, energetic, fast-growing plants will be preferred by several types of herbivores that depend on high meristematic activity, units of large size, or some chemicals of nutritional property related with vigor. The current study suggests that the
gall inducer prefers the large plants more than the small ones which was clear from the positive correlation between the plant cover and the number of galls per plant. Therefore, the current study supports the plant vigor hypothesis in the case of *D. tortuosa*. It may be strongly attributed to the availability of resources provided by large plants, which supports the suggestions of Feeny (1975). Gall-inducing insects usually prefer large and fast-growing plant organs, such as shoots and leaves (Price, 1991). The current study showed that the stem of *D. tortuosa* is one of the most important parts of the plant subjected to gall induction. It may be strongly attributed to the large shoot diameter that may provide enough area for gall induction (De Bruyn, 1994). Also, the gall inducer prefers the more rewarding parts of the plant to form the gall (Whitham, 1978).

The current study suggests that the habitat distribution patterns of *S. buboniae* and its host plant *D.*
The gall maker or belonging to diverse insect groups. These other species S. buboniae D. tortuosa. due to its highly specific interaction with the host plant buboniae can be a vital tool for biodiversity conservation and have predictable responses to any changes in the en-
2014). They possess a high specificity to their host plants predicted distribution habitat of S. buboniae is mainly concentrated in some areas close to the Mediterranean coast, in addition to some regions in the Nile delta region. This agrees with the findings of Skuhravá et al. (2014) who reported that the distribution of S. buboniae is concentrated in Mediterranean regions, while the predicted distribution habitat of D. tortuosa covers a wider region of the Mediterranean coast, in addition to some localities in the Nile land region, the Red Sea coast, and South Sinai. This has concurred with the view of Kamel et al. (2012) and El-Lamey (2015b) who recorded D. tortuosa in different areas of South Sinai.

Gall-inducing insects are perfect models for studies on the specificity and ecological diversity due to their abundance, richness, and sessile habit (Santana & Isaias, 2014). They possess a high specificity to their host plants and have predictable responses to any changes in the environment (Fernandes et al., 2009).

So, the current study suggested that the gall midge S. buboniae can be a vital tool for biodiversity conservation due to its highly specific interaction with the host plant D. tortuosa.

The present study showed that altitude was the most important predictor of S. buboniae habitat distribution. This agrees with the findings of Semida (2006) and Kamel et al. (2012) who suggested that altitude is an important variable determining the distribution of gall-forming insects. Furthermore, max temperature of the warmest month (BIO5) and precipitation of the warmest quarter (BIO18) were the most important predictors of D. tortuosa habitat distribution. This has concurred with the view of Vasseur et al. (2014) who suggested that most plant species show increases in performance at greater mean temperatures.

Plant galls are remarkable for the association of a complex community of species, other than the gall inducer, belonging to diverse insect groups. These other species may be either parasites that cause the eventual death of the gall maker or “guests” of the gall former “inquilines” that obtain their nourishment from tissues of the gall (Sanver & Hawkins, 2000). The present study showed that the S. buboniae larvae are occasionally attacked by parasitic wasps of the genus Inostemma (Platygastridae, Hymenoptera), which is recorded in plant galls to benefit from the nutrients found in the plant tissue inside the gall. This agrees with the findings of Dorchin and Freidberg (2011) who reported that Inostemma sp. was endo-parasitoids for the S. buboniae larvae which form stem galls in D. tortuosa in Israel. In contrast, Kamel et al. (2012) showed that Inostemma sp. was the principal gall maker which induced stem galls on D. tortuosa in Saint Katherine Protectorate, South Sinai. Therefore, this finding was incorrect according to our results.

Conclusions

The current study suggests that the gall-making insects prefer large plants more than small ones. The present study suggests that the predicted habitat of S. buboniae and its host plant D. tortuosa in Egypt can be modeled using a small number of occurrence records together with climatic variable layers for the study area through the maximum entropy modeling technique.

Based on our prediction results and analysis, it is so important to study more about plant gall induction in Egypt as a unique form of insect-plant interactions Additionally, we need to pay more attention to the suitable areas of the gall inducer S. buboniae and its host plant D. tortuosa in Egypt, which should be the important areas for protection.

Abbreviations

Alt: Altitude; AUC: Area under the curve; Bio1: Annual mean temperature; Bio10: Mean temperature of the warmest quarter; Bio11: Mean temperature of the coldest quarter; Bio12: Annual precipitation; Bio13: Precipitation of the wettest month; Bio14: Precipitation of the driest month; Bio15: Precipitation seasonality (coefficient of variation); Bio16: Precipitation of the wettest quarter; Bio17: Precipitation of the driest quarter; Bio18: Precipitation of the warmest quarter; Bio19: Precipitation of the coldest quarter; Bio2: Mean diurnal range (mean of monthly (max temp − min temp)); Bio3: Isothermality (P2/P7) (× 100); Bio4: Temperature seasonality (standard deviation × 100); Bio5: Max temperature of the warmest month; Bio6: Min temperature of the coldest month; Bio7: Temperature annual range (P95−P5); Bio8: Mean temperature of the wettet quarter; Bio9: Mean temperature of the driest quarter; Fig.: Figure; GIS: Geographical information system; m. a. s. l: Meters above sea level; MaxEnt: Maximum entropy modeling technique; P: Probability; ROC: Receiver operating characteristics; rs: Spearman correlation coefficient; Sig.: Significant; SRTM: Shuttle Radar Topography Mission

Acknowledgements

Not applicable.

Authors’ contributions

MK, MM, and SHR collected the data. ASB analyzed the results. MK and SHR interpreted the results of predicting the geographic distribution habitats of Schizomyia buboniae (Diptera: Cecidomyiidae) and its host plant Deverra tortuosa (Family: Apioiaceae) in Egypt by using MaxEnt modeling. MK was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Environmental Basic Sciences, Institute of Environmental Studies and Research, Ain Shams University, Cairo, Egypt. 2Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt.

Received: 24 July 2020 Accepted: 5 May 2021

References

Araújo, M. B., Thuiller, W., & Pearson, R. G. (2006b). Climate warming and the distribution and spatial habitat heterogeneity in the landscape of urbanizing desert ecosystems in Egypt. Urban Ecosystems, 14, 585–616. Araújo, A. P. A., De Paula, J. D. A., Carneiro, M. A. A., & Schoereder, J. H. (2006a).

Azzazi, M., Afifi, M., Tammam, O., & Sheikh Alsouk, A. (2015). Chemical against phytopathogenic fungi. Swift Journal of Agricultural Research, 1, 28–32.

Barbosa, P., & Wagner, M. R. (1989). Chapter 10 - Gall-forming insects. In P. Barbosa, & M. R. Wagner (Eds.), (1989). Ithaca, NY: Academic Press.

Barbosa, P., & Wagner, M. R. (Eds.), (1989). Ithaca, NY: Academic Press.

Borges, R. M. (2015). How to be a fig wasp parasite on the fig–fig wasp mutualism. Current Opinion in Insect Science, 8, 34–40. https://doi.org/10.1016/j.cois.2015.01.011.

Boulos, L. (2000). Flora of Egypt, (vol. 2). Al hadara publishing.

Chirtek, J., Osbornova, J., & Sourkova, M. (1967). Notes on the genus Deverra (Umbelliferae). Preslia, Prioa, 4, 5.

Darvas, B., Shukravá, M., & Andersen, A. (2000). Agricultural dipteran pests of the Palaearctic region. Contributions to a Manual of Palaearctic Diptera, 1, 565–650.

De Bruyn, L. (1994). Life history strategies of three gall-forming flies tied to natural variation in growth of Phragmites australis. In P. W. Price, W. J. Mattson, & Y. N. Baranchikov (Eds.), (1994). Austin, University of Texas Press, 244.

Doğanlar, M., & Elsayed, A. K. (2013). Parasitoids complex of Asphondylia conglomerata De STEFANI (Diptera: Cecidomyiidae) on the Mediterranean Saltbush, Atriplex halimus L.(Chenopodaceae) in Egypt, with descriptions of new species from Euphorbia and Toymyidae (Hymenoptera: Chalcidoidea).

Dorchin, N., & Freidberg, A. (2011). The gall midges (Diptera: Cecidomyiidae) of Apiceae in Israel. Zootaxa, 3044(1), 28–48. https://doi.org/10.11646/zootaxa.3044.1.

Dreger-Jauffret, F. (1992). Diversity of insect-inducing insects and their galls. In J. D. Shorthouse, & O. Rohlfshitz (Eds.), (1992). Biology of insect-inducing galls, (pp. 8–33). Oxford University Press.

El Ali, M., Karam, A., Abulsharaf, N., Nagy, A., Hamada, A., Rashad, S., & Kamel, M. (2010). Predicting the status and distribution of the Nubian ibex (Capra nubiana) in the high-altitude mountains of south Sinai (Egypt).

El Hadidi, M. N., & Hosni, H. A. (1996). Biodiversity in the flora of Egypt. In L. J. Van Der Maesen, X. M. Van Der Burgt, & J. M. Van Menenich De Rooy (Eds.), (1996). The biodiversity of African plants: Proceedings 21th IUFRO Congress 22–27 August 1994, Wageningen, The Netherlands. Springer Netherlands, https://doi.org/10.1007/978-94-009-0285-5_101.

El-Lamey, T. (2015a). Total phenolic content and antioxidant activity of Deverra tortuosa (Desf) DC. growing in different habitats. Journal of Biological Chemistry & Environmental Sciences 1687-5478, 10, 183–201.

El-Lamey, T. M. (2013b). Contribution of solutes to the osmotic adjustment of Deverra tortuosa (Desf) DC. Journal of Biodiversity and Environmental Sciences, 7, 380–395.

El-Mokasbi, F. M. (2014). Floristic composition and traditional uses of plant species at Wadi Alkuf, Al-Jabal Al-Akhdar, Libya. American-Eurasian Journal of Agricultural & Environmental Sciences, 14, 685–697.

Elsayed, A. K., & Karam, H. H. (2016). First record of Planococcus minor (Maskell) (Hemiptera: Pseudococcidae) as a prey of Diadipsis donaldi (Harris) (Diptera: Cecidomyiidae). Studio Dipterologico, 2(2), 265–266.

Elsayed, A. K., Karam, H. H., & Tokuda, M. (2017). A new Gephyraulus species (Diptera: Cecidomyiidae) inducing flower bud galls on the European sea rock fly Carlini maritima Scop.(Brassicaceae). Applied entomology and zoology, 52(4), 553–558. https://doi.org/10.13535-017-0508-x.

Elsayed, A. K., Lin, S.-F., Yang, M.-M., & Tokuda, M. (2020). The first report of the genus Schizomyia (Diptera: Cecidomyiidae) in Taiwan, with description of a new species forming stem galls on Maesa perifolia var. formosana (Primulaceae). Journal of Asia-Pacific Entomology, 23(4), 1083–1088. https://doi.org/10.1016/j.jape.2020.08.011.

Elsayed, A. K., Shukrava, M., Karam, H. H., Elminshawy, A., & Al-Eryan, M. A. (2013). New records and new species of gall midges (Diptera: Cecidomyiidae) developing on Chenopodaceae in Egypt. Zootaxa, 3904(1), 105–115. https://doi.org/10.11646/zootaxa.3904.1.6.

Elsayed, A. K., Wheeler, G. S., Purcell, M., Dyer, K., Zhang, J., & Tokuda, M. (2019). A new Schizomyia species (Diptera: Cecidomyiidae) inducing flower bud galls on Chinese tallow tree Triadica sebifera in its native range. Applied Entomology and Zoology, 54(4), 429–436. https://doi.org/10.11646/zootaxa.3251-00639-9.

Elsayed, A. K., Yakawa, J., & Tokuda, M. (2018). A taxonomic revision and molecular phylogeny of the eastern Palearctic species of the genera Schizomyia Kieffer and Asteralobia Kovalev (Diptera, Cecidomyiidae, Schizomyiinae) with descriptions of five new species of Schizomyia from Japan. Zoosyst, 868(808), 123–160. https://doi.org/10.11646/zootaxa.868.29679.

Feeny, P. (1975). Biochemical coevolution between plants and their insect herbivores. Coevolution of animals and plants. University of Texas Press, Austin, Journal of Animal Ecology, 13, 1–8.

Fernandes, G. W., Almada, E. D., & Carneiro, M. A. A. (2010). Gall-inducing insect species richness as indicators of forest age and health. J Environmental Entomology, 39, 1134–1140.

Fernandes, S. P. C., Castelo-Branco, B. P., Albuquerque, F. A., Brito-Ramos, A. B., Ferreira, A. L. N., Braga, D. V. V., & Almeida-Corte, J. S. (2009). Galhas entomólogicas em um fragmento urbano de Mata Atlântica no centro de endemismo de Pernambuco. Revista Brasileira de Biodiversidade, 7(3), 240–244.

Frauenfeld, G. (1859). Ueber exotische Pflanzenauswüchse, erzeugt von Insekten. Frauenfeld, G. (1859). Ueber exotische Pflanzenauswüchse, erzeugt von Insekten.

Fritz, R. S., Gaud, W. S., Sacchi, C. F., & Price, P. W. (1987). Patterns of intra-and interspecific association of gall-forming sawflies in relation to shape size on their willow host plant. Oecologia, 73(2), 159–169. https://doi.org/10.1007/BF00377503.

Gagré, R. J., & Jaschhof, M. (2004). A catalog of the Cecidomyiidae (Diptera) of the world. Entomological Society of Washington DC.

Gagré, R. J., & Jaschhof, M. (2021). A catalog of the Cecidomyiidae (Diptera) of the world.
Gerling, D., Kugler, J., & Lupo, A. (1976). The galls of insects and mites that occur on Tamarix spp. Israel and the Sinai. Bullettn del Laboratorio di Entomologia Agraria “Filippo Silvestri” di Portici, 33, 53–79.

Graham, C. H., & Hijmans, R. J. (2006). A comparison of methods for mapping species ranges and species richness. Global Ecology biogeography, 15(6), 578–587. https://doi.org/10.1111/j.1466-8238.2006.00257.x.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(6), 993–1009. https://doi.org/10.1111/j.1466-0248.2005.00792.x.

Hadi, M. N. (1981). An outline of the planned ‘flora of Egypt’. In V. Täckholm (Ed.), Flora of Egypt. D. Koelz.

Hebert, P. D. N., Ratnasingham, S., Zakharov, E. V., Telfer, A. C., Levesque-Beaudin, V., Milton, M. A., … DeWaard, J. R. (2016). Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1702), 20150333. https://doi.org/10.1098/rstb.2015.0333.

Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecology, 87(3), 773–785. https://doi.org/10.1111/j.0012-7623.2006.01070.x.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276.

Hori, K. (1976). Plant growth-regulating factor in the salivary gland of several heteropterous insects. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 53(4), 435–438. https://doi.org/10.1016/0305-0491(76)90193-0.

Hosmer, D. W., Lemeshow, S., & Cook, E. D. (2000). Applied logistic regression (2nd ed.). Wiley. https://doi.org/10.1002/0471722146.

Juliano, G. R., Fernandes, G. W., Negreiros, D., Bedê, L., & Araújo, R. C. (2005). Insetos galgadores associados a duas espécies de plantas invasoras de áreas urbanas e peri-urbanas. Revista Brasileira de Entomologia, 49(1), 97–106. https://doi.org/10.1590/S0100-88692005000100010.

Kamel, M. (2012). Plant galls in Sinai, Egypt. Plant gall induction in St. Katherine protectorate. KG Heinein-Böcking-Straße, Germany, Lambert Academic Publishing GmbH & Co.

Kamel, M. (2021). Hiking trails effects on the diversity of gall-inducing insects in high altitude ecosystem, St. Katherine Protectorate, Egypt. Zoology in the Middle East, 67(1), 48–56. https://doi.org/10.1080/19937140.2020.1859975.

Kamel, M., Semida, F., & Abdel-Dayem, M. (2012). Galls inducing insects in Sinai. Ecosystem, Egypt. Galls inducing insects and their host plants in St. Katherine Protectorate. KG Heinein-Böcking-Straße, Germany, Lambert Academic Publishing GmbH & Co.

Migahid, A. M. (1989). Galls inducing insects in Sinai. Bulletin of the Entomological Society of Egypt, 37(1), 48–56. https://doi.org/10.1111/j.0027-1140.2015.00352.x.

Price, P. W. (1991). The plant vigor hypothesis and herbivore attack. Oikos, 1, 244–251.

Qian, Y., Wei, W., Chen, C., & Chen, L. (2019). Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, 18, e00606.

Raman, A., Schaeffer, C. W., Withers, T. M., & Enfield, N. H. (2005). Biology, ecology, and evolution of gall-inducing arthropods. (vol. 1 and 2). New Hampshire, Science Publishers Inc., xvi.

Rocha, S., Branco, M., Boas, L. V., Almeida, M. H., Protasov, A., & Mendel, Z. (2013). Gall induction may benefit host plant: A case of a gall wasp and eucalyptus tree. Tree Physiology, 33(4), 388–397. https://doi.org/10.1093/treephys/ptt009.

Sanver, D., & Hawkins, B. A. (2000). Galls as habitats: The inquiline communities of insect galls. Basic and Applied Ecology, 1(1), 3–11. https://doi.org/10.1016/S1439-1791-00001.

Serag, M. S., Khedr, A. H. A., & Amer, N. G. (2020). Ecological and essential oils characteristics of Deverra tortuscal (Dest) DC. in Egyptian deserts. African Journal of Biological Sciences, 16(1), 11–20. https://doi.org/10.21608/ajbs.2020.71379.

Skuhatavá, M., & Roques, A. (2000). Palaearctic dipteran forest pests. Contributions to a manual of Palaearctic Diptera, 1, 651–692.

Skuhatavá, M., Skuhatavá, V., & Elsayed, A. (2014). Gall midges (Diptera: Cecidomyiidae) of Egypt. Annotated list and zoogeographical analysis. Acta Societatis Zoologicae Bohemicanae, 78, 241–268.

Vasseur, D. A., Delong, J. P., Gilbert, B., Greg, H. S., Harley, C. D. G., Mccann, K. S., … O’connor, M. I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings. Biological Sciences, 281(1779), 20140261.2.

Whitham, T. G. J. E. (1978). Habitat selection by Pemphigus aphids in response to resistance limitation and competition. Ecology, 59(6), 1164–1176. https://doi.org/10.2307/1938230.

Wilson, K. A., Westphal, M. I., Possingham, H. P., & Elith, J. (2005). Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biological Conservation, 122(1), 99–112. https://doi.org/10.1016/j.biocon.2004.07.004.

Yamazaki, K., & Ohsaki, N. (2006). Willow leaf traits affecting host use by the leaf-gall-forming sawfly. Population Ecology, 48(4), 363–371. https://doi.org/10.1007/s10280-006-0022-8.

Zahran, M., El Demerdash, M., & Mashaly, I. (1985). On the ecology of the deltaic flora of Egypt. Ismaileyah. 16-19 Apr 1985 Conference of Botany. Ismaileyah. 16-19 Apr 1985.