The determination of a doubly resolving set with the minimum size for $C_n \Box P_k$ and some minimal resolving parameters for $(C_n \Box P_k) \Box P_2$

Jia-Bao Liua, Ali Zafarib,*

aSchool of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, P.R. China
bDepartment of Mathematics, Faculty of Science, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran

Abstract

Applications of resolving sets in graph theory and other science have a long history, and if we consider a graph as a chemical compound then the determination of a doubly resolving set with the minimum size is very useful to analysis of chemical compound. In this work, we will consider the computational study of doubly resolving sets for the cartesian product $C_n \Box P_k$ and $(C_n \Box P_k) \Box P_2$. Indeed, we will show that if n is an even or odd integer, then the minimum size of a doubly resolving set in $C_n \Box P_k$ is 3, and more we compute some minimal resolving parameters for $(C_n \Box P_k) \Box P_2$. In particular, we will show that if n is an even or odd integer, then the minimum size of a doubly resolving set in $(C_n \Box P_k) \Box P_2$ is 4.

Keywords: cartesian product, resolving set, doubly resolving set.

1. Introduction

All graphs considered in this work are assumed to be finite and connected. A graphical representation of a vertex v of a connected graph G relative to an arranged subset $W = \{w_1, ..., w_k\}$ of vertices of G is defined as the k-tuple $(d(v, w_1), ..., d(v, w_k))$, and this k-tuple is denoted by $r(v|W)$, where $d(v, w_i)$ is considered as the minimum distance of a shortest path from v to w_i. If any vertices u and v that belong to $V(G) - W$ have various representations with respect to the set W, then W is called a resolving set for G [6]. Slater [20] considered the concept and notation of the metric dimension problem under the term locating set. Also, Harary and Melter [11] considered these problems under the term metric dimension as follows: A resolving set of the minimum size or cardinality is called the metric dimension of G and this minimum size denoted by $\beta(G)$. Resolving parameters in graphs have been studied in [1, 4, 5, 14, 15, 16, 17, 21].

Cáceres [7] considered the concept and notation of a doubly resolving set of graph G, and we can see that a subset $W = \{w_1, w_2, ..., w_k\}$ of vertices of a graph G is a doubly resolving set of G if for any various vertices $x, y \in V(G)$ we have $r(x|W) \neq r(y|W)$, where λ is an integer, and I indicates the unit λ-vector $(1, ..., 1)$, see [2]. Doubly resolving sets have played a special role in the study of resolving sets. In particular, a doubly resolving set in graph G with the minimum size, is denoted by $\psi(G)$. The applications of above concepts and related parameters are very useful to analysis of a chemical compound and note that these problems are NP hard, see [3, 8, 9, 10, 13].

The cartesian product of two graphs G and H, denoted by $G \Box H$, is the graph with vertex set $V(G) \times V(H)$ and with edge set $E(G \times H)$ so that $(g_1, h_1)(g_2, h_2) \in E(G \Box H)$, whenever $h_1 = h_2$ and $g_1g_2 \in E(G)$, or $g_1 = g_2$ and $h_1h_2 \in E(H)$.

Now, we use C_n and P_k to denote the cycle on $n \geq 3$ and the path on $k \geq 3$ vertices, respectively. In this article, we will consider the computational study of doubly resolving sets for the cartesian product $C_n \Box P_k$ and $(C_n \Box P_k) \Box P_2$. Indeed, in Section 3.1, we define a graph isomorphic to the cartesian product $C_n \Box P_k$, and we will consider the determination of a doubly resolving set with the minimum size of the cartesian product $C_n \Box P_k$, In particular, in Section

*Corresponding author

Email addresses: liujiabao163.com; liujiabao@ahjzu.edu.cn (Jia-Bao Liu), zafari.math.pu@gmail.com; zafari.math@pnu.ac.ir (Ali Zafari)
2. Definitions and Preliminaries

Definition 2.1. Consider two graphs G and H. If there is a bijection, $\theta : V(G) \rightarrow V(H)$ so that u is adjacent to v in G if and only if $\theta(u)$ is adjacent to $\theta(v)$ in H, then we say that G and H are isomorphic.

Definition 2.2. [19] Let G be a graph. A vertex v of G strongly resolves two vertices u and v of G if u belongs to a shortest $v - w$ path or v belongs to a shortest $u - w$ path. A set $W = \{w_1, w_2, ..., w_m\}$ of vertices of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertices of W. A strong resolving set of the minimum size is called the strong metric dimension of G, and this minimum size is denoted by $sdim(G)$.

Remark 2.1. Suppose that n is an even natural number greater than or equal to 6 and G is the cycle graph C_n. Then $\beta(G) = 2$, $\psi(G) = 3$ and $sdim(G) = \lceil \frac{n}{2} \rceil$.

Remark 2.2. Suppose that n is an odd natural number greater than or equal to 3 and G is the cycle graph C_n. Then $\beta(G) = 2$, $\psi(G) = 2$ and $sdim(G) = \lceil \frac{n}{2} \rceil$.

Theorem 2.1. Suppose that n is an odd integer greater than or equal to 3. Then the minimum size of a resolving set in the cartesian product $C_n \square P_k$ is 2.

Theorem 2.2. Suppose that n is an even integer greater than or equal to 4. Then the minimum size of a resolving set in the cartesian product $C_n \square P_k$ is 3.

Theorem 2.3. If n is an even or odd integer is greater than or equal to 3, then the minimum size of a resolving set in the cartesian product $C_n \square P_k$ is n.

3. Main Results

3.1. The determination of a doubly resolving set with the minimum size for $C_n \square P_k$

Although, some resolving parameters such as the minimum size of resolving sets and the minimum size of strong resolving sets calculated for the cartesian product $C_n \square P_k$, see [7, 18], but in this section we will determine the minimum size of a doubly resolving set in $C_n \square P_k$. Thus for this purpose, we first label the vertices of the $C_n \square P_k$ in a way that helps us and we introduce some notation which is used throughout this section. Suppose n and k are natural numbers greater than or equal to 3, and $[n] = \{1, ..., n\}$. Now, suppose that G is a graph with vertex set $\{x_1, ..., x_n\}$ on layers $V_1, V_2, ..., V_k$, where $V_p = \{x_{i(p-1)+1}, x_{(p-1)+2}, ..., x_{(p-1)+n}\}$ for $1 \leq p \leq k$, and the edge set of graph G is $E(G) = \{x_ix_j|x_i, x_j \in V_p, 1 \leq i < j \leq nk, j - i = 10rj - i = n - 1\} \cup \{x_ix_j|x_i \in V_q, x_j \in V_q+1, 1 \leq i < j \leq nk, 1 \leq q \leq k - 1, j - i = n\}$. We can see that this graph is isomorphic to the cartesian product $C_n \square P_k$. So, we can assume throughout this article $V(C_n \square P_k) = \{x_1, ..., x_{nk}\}$. Now, in this section, we give a more elaborate description of the cartesian product $C_n \square P_k$, that are required to prove of Theorems. We use V_p, $1 \leq p \leq k$, to indicate a layer of the cartesian product $C_n \square P_k$, where V_p, is defined already. Also, for every two vertices x_i and x_j in $C_n \square P_k$, we say that x_i and x_j are compatible in $C_n \square P_k$, if $n|j - i$. We can see that the degree of a vertex in the layers V_1 and V_k is 3, also the degree of a vertex in the layer V_p, $1 < p < k$ is 4, and hence $C_n \square P_k$ is not regular. We say that two layers of $C_n \square P_k$ are congruous, if the degree of compatible vertices in two layers are identical. Note that, if n is an even natural number, then $C_n \square P_k$ contains no cycles of odd length, and hence in this case $C_n \square P_k$ is bipartite. For more result of families of graphs with constant metric, see [3, 12]. The cartesian product $C_4 \square P_3$ is depicted in Figure 1.
Theorem 3.1. Consider the cartesian product $C_n \square P_k$. If n is an odd integer greater than or equal to 3, then the minimum size of a doubly resolving set in the cartesian product $C_n \square P_k$ is 3.

Proof. In the following cases we show that the minimum size of a doubly resolving set in the cartesian product $C_n \square P_k$ is 3.

Case 1. First, we show that the minimum size of a doubly resolving set in the cartesian product $C_n \square P_k$ must be greater than 2. Consider the cartesian product $C_n \square P_k$ with the vertex set $\{x_1, \ldots, x_{n+1}\}$ on the layers V_1, V_2, \ldots, V_k, which is defined already. Based on Theorem 2.1, we know that $\beta(C_n \square P_k) = 2$. We can show that if n is an odd integer then all the elements of every minimum resolving set of $C_n \square P_k$ must lie in exactly one of the congruous layers V_i or V_j. Without lack of theory if we consider the layer V_1 of the cartesian product $C_n \square P_k$ then we can show that all the minimum resolving sets in the layer V_1 of $C_n \square P_k$ are the sets as to form $M_i = \{x_i, x_{i+1}\}$, $1 \leq i \leq \lceil \frac{n}{2} \rceil$ and $N_j = \{x_j, x_{j+1}\}$, $1 \leq j \leq \lfloor \frac{n}{2} \rfloor$. On the other hand, we can see that the arranged subsets M_i cannot be doubly resolving sets for $C_n \square P_k$ because for $1 \leq i \leq \lceil \frac{n}{2} \rceil$ and two compatible vertices x_i and x_{i+2} with respect to x_i, we have $r(x_i; M_i) - r(x_{i+2}; M_i) = -1$, where I indicates the unit 2-vector $(1, 1)$. By applying the same argument we can show that the arranged subsets N_j cannot be doubly resolving sets for $C_n \square P_k$. Hence, the minimum size of a doubly resolving set in $C_n \square P_k$ must be greater than 2.

Case 2. Now, we show that the minimum size of a doubly resolving set in the cartesian product $C_n \square P_k$ is 3. For $1 \leq i \leq \lceil \frac{n}{2} \rceil$, let x_i be a vertex in the layer V_1 of $C_n \square P_k$ and x_j be a compatible vertex with respect to x_i, where x_i lie in the layer V_2 of $C_n \square P_k$, then we can show that the arranged subsets $A_i = M_i \cup x_i = \{x_i, x_{i+1}\}$ of vertices in the cartesian product $C_n \square P_k$ are the minimum doubly resolving sets for the cartesian product $C_n \square P_k$. It will be enough to show that for any compatible vertices x_i and x_j in $C_n \square P_k$, $r(x_i; A_i) - r(x_j; A_i) \neq \lambda I$. Suppose $x_i \in V_p$ and $x_d \in V_q$ are compatible vertices in the cartesian product $C_n \square P_k$, $1 \leq p < q \leq k$. Hence, $r(x_i; M_i) - r(x_q; M_i) = \lambda I$, where I is a positive integer, and I indicates the unit 2-vector $(1, 1)$. Also, for the compatible vertex x_j with respect to x_i, $r(x_i; x_i) - r(x_d; x_i) = \lambda I$. So, $r(x_i; A_i) - r(x_d; A_i) \neq \lambda I$, where I indicates the unit 3-vector $(1, 1, 1)$. Especially, for $1 \leq j \leq \lfloor \frac{n}{2} \rfloor$ if we consider the arranged subsets $B_j = N_j \cup x_c = \{x_j, x_{j+1}\}$ of vertices the cartesian product $C_n \square P_k$, where x_c lie in the same layer V_k of the cartesian product $C_n \square P_k$ and x_c is a compatible vertex with respect to x_j, then by applying the same argument we can show that the arranged subsets $B_j = N_j \cup x_c = \{x_j, x_{j+1}\}$ of vertices in the cartesian product $C_n \square P_k$ are the minimum doubly resolving sets for the cartesian product $C_n \square P_k$.

Theorem 3.2. Suppose that n is an even integer greater than or equal to 4. Then the minimum size of a doubly resolving set in the cartesian product $C_n \square P_k$ is 3.

Proof. Consider the cartesian product $C_n \square P_k$ with the vertex set $\{x_1, \ldots, x_{n+1}\}$ on the layers V_1, V_2, \ldots, V_k, which is defined already. Based on Theorem 2.2, if n is even integer then $\beta(C_n \square P_k) = 3$ and it is well known that $\beta(C_n \square P_k) \leq \psi(C_n \square P_k)$. Especially, we show that $\psi(C_n \square P_k) = 3$. Suppose $S_1 = \{x_1, x_2\}$ is a set of vertices in the layer V_1 of the cartesian product $C_n \square P_k$ and x_c is a compatible vertex with respect to x_1, where x_c lie in the layer V_k of the cartesian
product $C_n \square P_k$. We can show that the arranged subset $S_2 = S_1 \cup x_c = \{x_1, x_2, x_c\}$ of vertices in the cartesian product $C_n \square P_k$ is one of the minimum resolving sets for the cartesian product $C_n \square P_k$. In particular, we show that the arranged subset $S_2 = S_1 \cup x_c = \{x_1, x_2, x_c\}$ of vertices in the cartesian product $C_n \square P_k$ is one of the minimum doubly resolving sets for the cartesian product $C_n \square P_k$. It will be enough to show that for any compatible vertices x_c and x_d in $C_n \square P_k$, $r(x_c|S_2) - r(x_d|S_2) \neq \lambda I$. Suppose $x_c \in V_p$ and $x_d \in V_q$ are compatible vertices in the cartesian product $C_n \square P_k$, $1 \leq p < q \leq k$. Hence, $r(x_c|S_1) - r(x_d|S_1) = -\lambda I$, where λ is a positive integer, and I indicates the unit 2-vector $(1,1)$. Also, for $x_c \in S_2$, $r(x_c|S_2) - r(x_d|S_2) = \lambda I$, where I indicates the unit 3-vector $(1,1,1)$.

\[\square \]

Remark 3.1. It is noteworthy that, if n is an odd integer greater than 3, then by the similar manner which is done in the previous Theorem we can show that the arranged subset $S_2 = S_1 \cup x_c = \{x_1, x_2, x_c\}$ of vertices in the cartesian product $C_n \square P_k$ is also one of the minimum doubly resolving sets for the cartesian product $C_n \square P_k$, where the set S_2 is defined in the previous Theorem.

Lemma 3.1. If n is an even or odd integer is greater than or equal to 3, then the minimum size of a strong resolving set in the cartesian product $C_n \square P_k$ is n.

Proof. Although, the minimum size of strong resolving sets in the cartesian product $C_n \square P_k$ calculated, but by another way we show that the minimum size of a strong resolving set in the cartesian product $C_n \square P_k$ is n. Suppose $T_1 = V_2 \cup \ldots \cup V_{k-1}$ is an arranged subset of vertices in $C_n \square P_k$, where $V_p, 2 \leq p \leq k - 1$ which is defined already. If $k = 3$ then $T_1 = V_2$ cannot be a resolving set for $C_n \square P_k$. If $k \geq 4$ then we can prove that the set T_1 is a resolving set for $C_n \square P_k$. Now, by considering various vertices $x_1 \in V_1$ and $x_m \in V_k, n(k - 1) + 1 \leq m \leq nk$, there is not a $w \in T_1$ so that x_1 belongs to a shortest $x_m - w$ path or x_m belongs to a shortest $x_1 - w$ path. Thus $T_1 = V_2 \cup \ldots \cup V_{k-1}$ cannot be a strong resolving set for $C_n \square P_k$. Now, suppose that T_2 is a subset of vertices in V_1 so that T_2 is a resolving set in $C_n \square P_k$ and the cardinality of T_2 is less than n. We can be concluded that T_2 cannot be a strong resolving set for $C_n \square P_k$. In particular, if the cardinality of T_2 is equal to $n - 1$, we prove that T_2 cannot be a strong resolving set for $C_n \square P_k$. In this case, without lack of theory assume that $T_2 = \{x_1, \ldots, x_{n-1}\}$. Now, by considering various vertices x_m in V_1 and $x_1 \neq x_m$ in V_2, there is not a $w \in T_2$ so that x_m belongs to a shortest $x_1 - w$ path or x_1 belongs to a shortest $x_m - w$ path. Thus the set $T_2 = \{x_1, \ldots, x_{n-1}\}$ of vertices in $C_n \square P_k$ cannot be a strong resolving set for $C_n \square P_k$. Hence, if T is a strong resolving set in $C_n \square P_k$, then the minimum size of T must be greater than or equal to n. So, suppose that $T = \{x_1, \ldots, x_n\}$ is an arranged subset of vertices in the layer V_1 of the cartesian product $C_n \square P_k$, we prove that this subset is a strong resolving set in $C_n \square P_k$. For $1 < p < q \leq k$, if both vertices $x_c \in V_p$ and $x_d \in V_q$ are compatible in $C_n \square P_k$ relative to x_c, $1 \leq r \leq n$, then x_r belongs to a shortest $x_c - x_d$ path. For $1 < p < q \leq k$, if both vertices $x_c \in V_p$ and $x_d \in V_q$ are not compatible in $C_n \square P_k$ and lie in various layers in $C_n \square P_k$, then there is a exactly one compatible vertex in V_1 relative to x_c say x_c such that $x_c \in V_p$ and $x_d \in V_q$ are not compatible in $C_n \square P_k$ and lie in the same layer of $C_n \square P_k$ say V_p, then there is exactly one vertex in the layer V_1 say x_c so that x_c and x_d are compatible in $C_n \square P_k$ and x_c belongs to a shortest $x_c - x_d$ path. Thus the set $T = \{x_1, \ldots, x_n\}$ is one of the minimum strong resolving sets for $C_n \square P_k$, and hence the minimum size of a strong resolving set in the cartesian product $C_n \square P_k$ is n.

\[\square \]

3.2. The determination of some minimal resolving parameters for $(C_n \square P_k) \square P_2$

Consider the cartesian product $C_n \square P_k$ with the vertex set $\{x_1, \ldots, x_n\}$ on the layers V_1, V_2, \ldots, V_n, where $V_p, 1 \leq p \leq k$, which is defined in Section 3.1. Also, we consider one copy of the cartesian product $C_n \square P_k$ with the vertex set $\{y_1, \ldots, y_n\}$ on the layers U_1, \ldots, U_k, where it can be defined U_p, as similar V_p on the vertex set $\{y_1, \ldots, y_n\}$. Now, suppose that H is a graph with vertex set $\{x_1, \ldots, x_n\} \cup \{y_1, \ldots, y_n\}$ so that for $1 \leq t \leq nk$, the vertex x_t is adjacent to y_t in H, then we can see that the graph H is isomorphic to $(C_n \square P_k) \square P_2$. So, we can assume that $(C_n \square P_k) \square P_2$ contains k layers Z_1, \ldots, Z_k, where $Z_p = V_p \cup U_p, 1 \leq p \leq k$; also V_p and U_p denote internal and external layers of $(C_n \square P_k) \square P_2$, on the sets $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$, respectively. In particular, we can see that the degree of a vertex in the layers Z_1 and Z_k is 4, also for $1 < p < k$, the degree of a vertex in the layer Z_p is 5. The graph $(C_n \square P_k) \square P_2$ is depicted in Figure 2.
Theorem 3.3. If n is an odd integer greater than or equal to 3, then the minimum size of a resolving set in $(C_n \Box P_k) \Box P_2$ is 3.

Proof. Suppose $V((C_n \Box P_k) \Box P_2) = \{x_1, ..., x_{nk}\} \cup \{y_1, ..., y_{lk}\}$. Based on Theorem 2.1, we know that if n is an odd integer greater than or equal to 3, then the minimum size of a resolving set in $C_n \Box P_k$ is 2. Also, by definition of $(C_n \Box P_k) \Box P_2$ we can verify that for $1 \leq t \leq nk$, every vertex y_t is adjacent to x_t, and hence none of minimal resolving sets of $C_n \Box P_k$ cannot be a resolving set for $(C_n \Box P_k) \Box P_2$. Therefore, the minimum size of a resolving set in $(C_n \Box P_k) \Box P_2$ must be greater than 2.

Now, we show that the minimum size of a resolving set in $(C_n \Box P_k) \Box P_2$ is 3. For $1 \leq i \leq \lceil \frac{n}{2} \rceil$, let x_i be a vertex in internal layer V_1 of $(C_n \Box P_k) \Box P_2$ and x_i be a compatible vertex with respect to x_i, where x_i lie in the internal layer V_2 of $(C_n \Box P_k) \Box P_2$. Based on Theorem 3.1, we know that the arranged subsets $A_i = \{x_i, x_{i+1}, x_{i+2}\}$ of vertices in internal layers of $(C_n \Box P_k) \Box P_2$ are resolving sets for internal layers of $(C_n \Box P_k) \Box P_2$, and hence the arranged subsets $A_i = \{x_i, x_{i+1}, x_{i+2}\}$ are the minimum resolving sets for $(C_n \Box P_k) \Box P_2$ because for every vertex y_i in external layer of $(C_n \Box P_k) \Box P_2$, we have $r(y_i | A_i) = (d(x_i, x_j) + 1, d(x_i, x_{i+j}), d(x_i, x_j) + 1, d(x_i, x_j) + 1)$, so all the vertices in the external layers U_j have various representations with respect to the sets A_i. In the same way for $1 \leq j \leq \lceil \frac{n}{2} \rceil$, if we consider the arranged subsets $B_j = N_j \cup x_j = \{x_j, x_{i+j}, x_{i+j}, x_i\}$ of vertices in internal layers of $(C_n \Box P_k) \Box P_2$, where x_i lie in the internal layer V_2 of $(C_n \Box P_k) \Box P_2$ and x_j is a compatible vertex with respect to x_j, then by applying the same argument we can show that the arranged subsets $B_j = N_j \cup x_j = \{x_j, x_{i+j}, x_i\}$ of vertices in internal layers of $(C_n \Box P_k) \Box P_2$ are the minimum resolving sets for $(C_n \Box P_k) \Box P_2$. □

Lemma 3.2. If n is an odd integer greater than or equal to 3, then the minimum size of a doubly resolving set in $(C_n \Box P_k) \Box P_2$ is greater than 3.
Proof. Suppose \(V((C_n \square P_k) \square P_2) = \{x_1, \ldots, x_n\} \cup \{y_1, \ldots, y_n\} \). For \(1 \leq i \leq \left\lceil \frac{n}{2} \right\rceil \), let \(x_i \) be a vertex in internal layer \(V_i \) of \((C_n \square P_k) \square P_2 \), and \(x_i \) be a compatible vertex with respect to \(x_i \), where \(x_c \) lie in the internal layer \(V_i \) of \((C_n \square P_k) \square P_2 \). Based on proof of Theorem 3.3, we know that the arranged subsets \(A_i = M_i \cup S = \{x_i, x_i + 1, x_i + 2, \ldots, x_i + k - 1\} \) of vertices in internal layers of \((C_n \square P_k) \square P_2 \) cannot be doubly resolving sets for \((C_n \square P_k) \square P_2 \) because \(r(y_j|A_i) = (d(x_i, x_i) + 1, d(x_i, x_i) + 1) \). In the same way for \(1 \leq j \leq \left\lceil \frac{n}{2} \right\rceil \), if we consider the arranged subsets \(B_j \) \(= N_j \cup S = \{x_j, x_j + 1, x_j + 2, \ldots, x_j + k - 1\} \) of vertices in internal layers of \((C_n \square P_k) \square P_2 \), where \(x_i \) lie in the internal layer \(V_i \) of \((C_n \square P_k) \square P_2 \) and \(x_c \) is a compatible vertex with respect to \(x_j \), then we can show that the arranged subsets \(B_j \) cannot be doubly resolving sets for \((C_n \square P_k) \square P_2 \). Hence the minimum size of a doubly resolving set in \((C_n \square P_k) \square P_2 \) is greater than 3.

Lemma 3.3. If \(n \) is an even integer greater than or equal to 4, then the minimum size of a resolving set in \((C_n \square P_k) \square P_2 \) is greater than 3.

Proof. Suppose \(V((C_n \square P_k) \square P_2) = \{x_1, \ldots, x_n\} \cup \{y_1, \ldots, y_n\} \). Based on Theorem 2.2, we know that if \(n \) is an even integer greater than or equal to 4, then the minimum size of a resolving set in \(C_n \square P_k \) is 3. By the same manner which is done in Theorem 3.3, we can show that the minimum size of a resolving set in \((C_n \square P_k) \square P_2 \) must be greater than 3.

Theorem 3.4. If \(n \) is an even or odd integer greater than or equal to 3, then the minimum size of a doubly resolving set in \((C_n \square P_k) \square P_2 \) is 4.

Proof. Based on Lemma 3.3, we know that if \(n \) is an even integer greater than or equal to 4, then \(\beta((C_n \square P_k) \square P_2) > 3 \). Also based on Theorem 3.3, we know that if \(n \) is an odd integer greater than or equal to 3, then \(\beta((C_n \square P_k) \square P_2) = 3 \) and by Lemma 3.2, we know that, the minimum size of a doubly resolving set in \((C_n \square P_k) \square P_2 \) is greater than 3. In particular, it is well known that \(\beta((C_n \square P_k) \square P_2) \leq \psi((C_n \square P_k) \square P_2) \). Now, we show that if \(n \) is an even or odd integer greater than or equal to 3, then the minimum size of a doubly resolving set in \((C_n \square P_k) \square P_2 \) is 4. Let \(S_2 = \{x_1, x_2, x_k\} \) be an arranged subset of vertices in internal layers of \((C_n \square P_k) \square P_2 \), where \(x_c \) is a compatible vertex with respect to \(x_1 \) and suppose that \(S_3 = S_2 \cup y_c = \{x_1, x_2, x_k, y_c\} \) is an arranged subset of vertices in \((C_n \square P_k) \square P_2 \). Thus the minimum size of a doubly resolving set in \((C_n \square P_k) \square P_2 \) is 4.

Theorem 3.5. If \(n \) is an even or odd integer greater than or equal to 3, then the minimum size of a strong resolving set in \((C_n \square P_k) \square P_2 \) is 2n.

Proof. Suppose \(V((C_n \square P_k) \square P_2) = \{x_1, \ldots, x_n\} \cup \{y_1, \ldots, y_n\} \) and suppose that \(O_1 = Z_2 \cup \ldots \cup Z_{k-1} \) is an arranged subset of vertices in \((C_n \square P_k) \square P_2 \), where \(Z_p, 2 \leq p \leq k - 1 \) which is defined already. It is easy to verify that, the subset \(O_1 = Z_2 \cup \ldots \cup Z_{k-1} \) cannot be a strong resolving set for \((C_n \square P_k) \square P_2 \). By the same manner which is done in proof of Theorem 3.1, it is also easy to verify that, every subset of vertices in the layer \(Z_1 \) of \((C_n \square P_k) \square P_2 \), of cardinality \(2n - 1 \) cannot be a strong resolving set for \((C_n \square P_k) \square P_2 \). Thus the minimum size of a strong resolving set in \((C_n \square P_k) \square P_2 \) must be greater than or equal to \(2n \). So, suppose that \(O_2 = \{x_1, \ldots, x_n\} \cup \{y_1, \ldots, y_n\} \) is an arranged subset of vertices in the layer \(Z_1 \) of \((C_n \square P_k) \square P_2 \), by the same manner which is done in proof of Theorem 3.1, we can show that the subset \(O_2 \) is a strong resolving set in \((C_n \square P_k) \square P_2 \), because for \(1 \leq i \leq nk \), the vertex \(x_i \) is adjacent to \(y_i \), and hence the subset \(O_2 \) is one of the minimum strong resolving sets in \((C_n \square P_k) \square P_2 \).

4. Conclusion

In this work, we considered the computational study of doubly resolving sets of the cartesian product \(C_n \square P_k \) and \((C_n \square P_k) \square P_2 \). Indeed, we showed that if \(n \) is an even or odd integer, then the minimum size of a doubly resolving set in \((C_n \square P_k) \square P_2 \) is 3, and we computed some minimal resolving parameters for \((C_n \square P_k) \square P_2 \). In particular, we showed that if \(n \) is an even or odd integer, then the minimum size of a doubly resolving set in \((C_n \square P_k) \square P_2 \) is 4.
Acknowledgements
This work was supported in part by Anhui Provincial Natural Science Foundation under Grant 2008085J01 and Natural Science Fund of Education Department of Anhui Province under Grant KJ2020A0478.

Authors' informations
Jia-Bao Liu\(^a\) (liujiabaoad@163.com; liujiabao@ahjzu.edu.cn)
Ali Zafari\(^a\) (Corresponding Author) (zafari.math.pu@gmail.com; zafari.math@pnu.ac.ir)
\(^a\) Department of Mathematics, Faculty of Science, Payame Noor University, P.O. Box 19395–4697, Tehran, Iran.

References
[1] M. Abas and T. Vetrík, Metric dimension of Cayley digraphs of split metacyclic groups, Theoretical Computer Science, vol. 809, pp. 61-72, 2020.
[2] A. Ahmad and S. Sultan, On Minimal Doubly Resolving Sets of Circulant Graphs, Acta Mechanica Slovaca, vol. 21(1), pp. 6-11, 2017.
[3] M. Ahmad, D. Alrowaili, Z. Zahid, I. Siddique, and A. Iampan, Minimal Doubly Resolving Sets of Some Classes of Convex Polytopes, Journal of Mathematics, vol. 2022, pp. 1-13, 2022.
[4] M. Ali, G. Ali, M. Imran, A. Q. Baig, and M. K. Shafiq, On the metric dimension of Mobius ladders, Ars Comb, vol. 105, pp. 403-410, 2012.
[5] M. Baca, E. T. Baskoro, A. N. M. Salman, S. W. Saputro, and D. Suprijanto, The metric dimension of regular bipartite graphs, Bulletin mathematique de la Societe des Sciences Mathematiques de Roumanie Nouvelle Serie, vol. 54, pp. 15-28, 2011.
[6] P. S. Buczakowski, G. Chartrand, C. Poisson, and P. Zhang, On k-dimensional graphs and their bases, Periodica Math Hung, vol. 46(1), pp. 9-15, 2003.
[7] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Serra, and D. R. Wood, On the metric dimension of Cartesian products of graphs, SIAM Journal on Discrete Mathematics, vol. 21, pp. 423-441, 2007.
[8] P. J. Cameron and J. H. Van Lint, Designs, Graphs, Codes and Their Links, London Mathematical Society Student Texts 22, Cambridge: Cambridge University Press, 1991.
[9] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics, vol. 105, pp. 99-113, 2000.
[10] X. Chen, X. Hu, and C. Wang, Approximation for the minimum cost doubly resolving set problem, Theoretical Computer Science, vol. 609(3), pp. 526-543, 2016.
[11] F. Harary and R. A. Melter, On the metric dimension of a graph, Combinatoria, vol. 2, pp. 191-195, 1976.
[12] M. Imran, A. Q. Baig, and A. Ahmed, Families of plane graphs with constant metric dimension, Utilitas Mathematica, vol. 88, pp. 43-57, 2012.
[13] J. Kratica, V. Kovačević-Vujčić, M. Čangalović and M. Stojanović, Minimal doubly resolving sets and the strong metric dimension of some convex polytopes, Applied Mathematics and Computation, vol. 218(19), pp. 9790-9801, 2012.
[14] J.-B. Liu, M. F. Nadeem, H. M. A. Siddiqui, and W. Nazir, Computing Metric Dimension of Certain Families of Toeplitz Graphs, IEEE Access, vol. 7, pp. 126734-126741, 2019.
[15] J.-B. Liu, A. Zafari, and H. Zarei, Metric dimension, minimal doubly resolving sets and strong metric dimension for Jellyfish graph and Cocktail party graph, Complexity, vol. 2020, pp. 1-7, 2020.
[16] J.-B. Liu and A. Zafari, Computing minimal doubly resolving sets and the strong metric dimension of the layer Sun graph and the Line Graph of the Layer Sun graph, Complexity, vol. 2020, pp. 1-8, 2020.
[17] J.-B. Liu and A. Zafari, Some resolving parameters in a class of Cayley graphs, Journal of Mathematics, vol. 2022, pp. 1-5, 2022.
[18] J. A. Rodríguez-Velázquez, I. G. Yero, D. Kuziak, and O. R. Oellermann, On the strong metric dimension of Cartesian and direct products of graphs, Discrete Mathematics, vol. 335, pp. 8-19, 2014.
[19] A. Sebő and E. Tannier, On metric generators of graphs, Math. Oper. Res, vol. 29, pp. 383-393, 2004.
[20] P. J. Slater, Leaves of trees, in Proceedings of the 6th Southeastern Conference on Combinatorics, Graph theory and Computing, Boca Raton, FL, USA, pp. 549-559, 1975.
[21] X. Zhang and M. Naeem, Metric Dimension of Crystal Cubic Carbon Structure, Journal of Mathematics, vol. 2021, pp. 1-8, 2021.