Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Recent advances in copper and copper-derived materials for antimicrobial resistance and infection control

Neha Bisht¹, Neeraj Dwivedi¹,², Pradip Kumar¹,², Mayandi Venkatesh³, Amit K. Yadav⁴, Deepi Mishra¹,², Pratima Solanki⁴, Navin Kumar Verma⁵,⁶, Rajamani Lakshminarayanan³,⁷, Seeram Ramakrishna⁸, D. P. Mondal¹, Avanish Kumar Srivastava¹,² and Chetna Dhand¹,²

Abstract
Antibacterial properties of copper have been known for ages. With the rise of antimicrobial resistance (AMR), hospital-acquired infections, and the current SARS-CoV-2 pandemic, copper and copper-derived materials are being widely researched for healthcare ranging from therapeutics to advanced wound dressing to medical devices. We cover current research that highlights the potential uses of metallic and ionic copper, copper alloys, copper nanostructures, and copper composites as antibacterial, antifungal, and antiviral agents, including those against the SARS-CoV-2 virus. The applications of copper-enabled engineered materials in medical devices, wound dressings, personal protective equipment, and self-cleaning surfaces are discussed. We emphasize the potential of copper and copper-derived materials in combating AMR and efficiently reducing infections in clinical settings.

Addresses
¹ CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal 462026, MP, India
² Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
³ Ocular Infections & Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore
⁴ Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
⁵ Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandayal Road, 308232, Singapore
⁶ National Skin Centre, 1 Mandalyal Road, 308205, Singapore
⁷ Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857, Singapore
⁸ Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, 117576, Singapore

Corresponding author: Dhand, Chetna (chetna.dhand@ampri.res.in) (chetnachem24@gmail.com)

Keywords
Copper, Antimicrobial agents, Healthcare, Wound dressings, Effectiveness against COVID-19.

Introduction
Copper is an essential trace element with atomic number 29 and is vital for living organisms. Copper has been used since 9000 BC [1]. Copper's antibacterial activity may be seen in Hippocrates' books from 3000 BC [2] and Ayurvedic literature [3]. Copper was originally documented in the Scopus database as an antibacterial coating material in 1962 [4]. In 2008, the United States Environmental Protection Agency (US EPA) recognized copper and its alloys as efficient antimicrobial surfaces [5], capable of killing about 99.9% of bacteria in 2 h hours.

Copper-impregnated fibers are utilized as fabric disinfectants in hospitals [6]. According to reports, implementing copper in medical facilities decreases healthcare-associated infections (HAIs) [7]. Copper's outstanding contact-killing properties make it useful as a coating material for door handles, bed rails, lavatory surfaces, trays, intravenous (IV) poles, and other items [8]. Copper is also utilized in wound dressings to prevent infections and encourage wound healing [9] and as an antibacterial coating for implant surfaces [10,11] owing to its low-in vivo toxicity. Furthermore, based on the efficiency of copper in eliminating the SARS-CoV-2 virus, a copper nanoparticle-based antimicrobial coating...
Escherichia coli showed the effective killing of Specifics, Zeolite doped with copper ions (nZH-Cu) coated with 48% copper over a 24-h incubation time. The materials in the supplementary information discusses cytotoxicity assessment of copper and copper-derived against COVID-19. The section biocompatibility and casuing the efficiency of copper and derived materials on Cu surfaces, a specific section is devoted to show-briefest recorded viable period of the SARS-CoV-2 virus the current COVID-19 pandemic scenario and the receiving the highest importance (last 5 years). Given cleaning surfaces, with the most recent literature implments, intrauterine devices (IUDs), PPEs, and self-cleaning surfaces, with the most recent literature receiving the highest importance (last 5 years). Given the current COVID-19 pandemic scenario and the shortest recorded viable period of the SARS-CoV-2 virus on Cu surfaces, a specific section is devoted to showcasing the efficiency of copper and derived materials against COVID-19. The section biocompatibility and cytotoxicity assessment of copper and copper-derived materials in the supplementary information discusses the in vitro and in vivo toxicity of copper. Figure 1a summarizes various biomedical applications of copper and copper-derived materials as antimicrobial agents and their prospects. Figure 1b shows the timelines of key events in the history of copper as an antimicrobial agent.

Metallic copper and its ions as antimicrobial agents

Research on copper as an antimicrobial agent acquired momentum when U.S. EPA reported 300 surfaces of copper having effective antimicrobial properties [3]. In particular, Seo et al. [23] recorded a 99.99% reduction of Escherichia coli and Staphylococcus aureus on surfaces coated with 48% copper over a 24-h incubation time. Specifically, Zeolite doped with copper ions (nZH-Cu) showed the effective killing of E. coli and S. aureus strains [24]. In a concurrent study, Wheeldon et al. [25] compared the viability of Clostridium difficile on copper and stainless steel surfaces, which are commonly used in hospitals. Interestingly, Benhalima et al. [26] recorded the destruction of all the vegetative cells of C. difficile on the copper surface within 30 min (p < 0.005), while stainless steel showed no antibacterial action. In a detailed and comprehensive study, the antimicrobial effectiveness of metallic Cu is assessed against 25 distinct nosocomial bacterial strains (16 Enterobacteriaceae, 5 Staphylococci, and 4 Pseudomonas) isolated from healthcare units in Algeria, 400 g/mL Cu inhibited the growth of 60% of the isolated strains of Staphylococci, 25% of Pseudomonas, and 43.75% of Enterobacteriaceae.

Copper alloys as antimicrobial agents

Copper alloy surfaces have excellent antimicrobial properties against a wide variety of microorganisms, in observational research done from 2015 to 2016 at Reims University Hospital in France, Zerbib et al. [27] discovered that copper alloy successfully reduced the incidence of hand-transmitted healthcare-associated infections. Furthermore, Sheridan et al. [28] demonstrated a novel antiviral fabric infused with gallium liquid metal copper alloy (LMCu) as a breakthrough in the global fight against COVID-19 by demonstrating its applicability in designing PPE for healthcare personnel, bed/bath sheets for hospital settings, and patient clothing. Laourari et al. [29] have studied the antibacterial and antifungal properties of a NiCu-PANI/PVA quaternary nanocomposite against several nosocomial infections. The large zone of inhibition (ZOI) values of more than 17 mm, were recorded for all the tested strains including E. coli, Klebsiella pneumonia, Proteus sp., S. aureus, Fusarium oxysporum, etc., suggesting their strong antimicrobial potential.

Copper nanostructures as antimicrobial agents

The antimicrobial action of metal nanoparticles (NPs) has been attributed to their high surface-to-volume ratio.
and size. Sharma et al. [30] investigated the efficacy of antibacterial Cu NPs against *E. coli* and *Proteus vulgaris*. The interaction of Cu NPs with the bacterial cell wall causes oxidative stress caused by reactive oxygen species (ROS) that lead to bacterial cell death. In addition, Ha et al. [31] discovered that after a 10 and 30 min exposure to H1N1 virus with Cu NPs, there was no detectable viral DNA, and the contamination of the Cu NPs-treated H1N1 virus was greatly decreased. In another study, Qamar et al. [32] evaluated the antibacterial efficacy of CuO nanorods (CuO NRs) against a series of gram-positive and gram-negative bacterial strains by calculating ZOI which was significant in comparison to the standard drug (p < 0.0001) (Supplementary Table S1). Further, Alsharief et al. [33] reported that when *E. coli* was treated with 50 - 2500 μg copper nanospheres (Cu NSs), its growth was hindered within 4 h, while *Enterococcus* sp. growth was inhibited in 2 h except at the highest concentration. On incubation with a similar concentration of copper nanocubes (Cu NCs), the *E. coli* growth was hindered in 24 h, whilst the *Enterococcus* sp. growth was inhibited within 2 h, only for lower concentrations [33].

Mechanism of antimicrobial action of copper

The cell membrane of the bacteria is the primary target of copper antimicrobial action [34]. The electrostatic interactions of copper ions (Cu⁺ and Cu²⁺) with electronegative groups on the bacterial cell membrane, such
as thiol or carboxyl, cause the membrane to rupture [35]. The affinity of thiol for Cu\(^{+}\) and the tendency of Cu\(^{2+}\) to form reactive oxygen species (ROS) further damages cell proteins, and lipids, and eventually destroy all the genetic material, resulting in cell death [36–38]. Figure 2 depicts the possible antimicrobial action mechanism for copper.

Biomedical applications of copper and copper-derived materials

Medical implants

Copper in medical equipment [39] is considered safe for humans, as evidenced by the widespread and long-term use (> 10 years) of copper intrauterine devices (Cu IUDs) by millions of women. Copper nanoparticles coated on the therapeutic caps of dental implants have been demonstrated to inhibit pathogen and biofilm formation [40]. Copper-incorporated titanium (Ti-Cu) alloy implant was also discovered to exhibit excellent antimicrobial properties [41]. It is also been reported by Liu et al. [42] that Ti-Cu alloy prevents peri-implant infections while being biocompatible. The application of Ti-Cu alloy as a modern dental implant to avoid the formation of biofilm of *Streptococcus mutans* and *Porphyromonas gingivalis* on the surface of dental implants is of great help. In comparison to Ti, confocal microscopy images for 24 h revealed a substantial reduction in the viability of *S. mutans* and *P. gingivalis* biofilm on the surface of Ti-Cu alloy (Figure 3a). Under transmission electron microscope (TEM), both microbes in contact with the surface of Ti-Cu alloy showed disrupted membranes and irregular and reduced ion concentrations in the cytoplasm, while microbes in contact with the surface of Ti alloy showed regular morphologies with the preserved membrane (Figure 3b). In another study, Gollwitzer et al. [43] developed a copper incorporated titanium coating that proved cytocompatibility and antibacterial activity against clinically isolated strains of *S. aureus* and *Staphylococcus epidermidis*. Also, Bergemann et al. [44] demonstrated the effective killing of all *S. epidermidis* strains on titanium-copper-nitride (TiCuN) coated orthopedic implants within 24 h of incubation. Further, Milan et al. [45] developed copper-enhanced carbon coatings on a titanium alloy for bone implants that showed an osteogenic and angiogenic response. After incubating the bacterial strain of

![Figure 2](current-opinion-in-biomedical-engineering-2022-24-100408_current-opinion-in-biomedical-engineering.png)

Schematic illustration of contact killing action mechanism of antimicrobial copper.
P. gingivalis for 72 h, biofilm formation was significantly reduced, thus improving the efficacy of such implants. Also, the effect of Cu-TiO₂ coating on Ti was reported in another study performed by Wang et al. [11]. The in vitro study proved coating to be cytotoxicity-free and can stimulate the growth, attachment, and differentiation of MC3T3-E1 cells. In vivo tests demonstrated that the coating can improve osteogenesis and trigger the formation of new bone. Furthermore, Shahid et al. [46] compared the effectiveness of preventive methods and
the possibilities of various copper coated titanium implants in reducing infections associated with implants.

Wound dressings

Lemraski et al. [47] examined the antibacterial efficacy of polyvinyl alcohol/chitosan/copper nanofibers (PVA/Cs/Cu NPs) produced by electrospinning against gram-negative and gram-positive bacteria. The nanofiber showed good antimicrobial effectiveness against *Bacillus cereus*, as well as *S. aureus*, *E. coli*, and *Pseudomonas aeruginosa*. In another study, Ahire et al. [48] assessed the ability of wound dressing materials made of copper-containing nanofiber (Cu-F) against the development of biofilm of *S. aureus* and *E. coli*. The antibacterial activity of copper sulfide (CuS) impregnated three-layered masks are extremely effective, and a long-term exposure period of 5-10 min results in the copper mask completely stops virus-containing droplets from penetrating during short exposure intervals of 1-2 min, while a long-term exposure period of 5-10 min results in an 80% efficiency. Furthermore, Hashmi et al. [51] integrated copper oxide (CuO) onto polycrylonitrile (PAN)-based electrospun mask membranes and showed its good antibacterial efficacy against a variety of gram-negative and gram-positive microorganisms. It was discovered that increasing the concentration of CuO resulted in a progressive rise in the inhibition zone for all gram-negative and gram-positive microorganisms. In another study, Jung et al. [52] evaluated the antimicrobial activity of copper-coated polypropylene (PP) filters surrounding the KF94 face mask by exposing Vero cells to the coated PP filters after incubating them with the SARS-CoV-2 virus. According to RT-PCR and immunofluorescence, the copper-coated filters suppressed viruses by 75% within 1 h of incubation time. On the spun-bound PP filters, Paranthaman et al. [53] created a chemically bonded organosilane quaternary ammonium chloride-based GS75 coating on spun-bound PP filters and observed sustained deactivation of alpha and beta forms of COVID-19 virus after 72h incubation. Further, Soni et al. [54] also showed that single-walled carbon nanotubes (SWCNTs) modified hydrophobic PP surgical masks were successful in killing 99.99% and 99% of *E. coli* and virus-like particles, respectively.

Self-cleaning surfaces in clinical settings

Nosocomial or hospital-acquired infections are a global problem that causes significant death and morbidity [55]. In a clinical controlled investigation, Mohammady et al. [56] examined the bacterial burden on copper coated and non-coated copper surfaces in a regular ICU in Iran. Copper-coated heavily contacted surfaces decreased the bacterial load by 96% when compared to the control surfaces. In another study by Colin et al. [57], copper alloy door handles and handrails were mounted in 50% of 5 French long-term healthcare centers. The findings show that copper surfaces are less vulnerable to these severe contamination concerns, with the prevalence of these infections reduced by 50% and 79% on copper handrails and door handles, respectively. The copper handles retain their efficacy against the bacteria after 3 years of daily use in healthcare centers, with a bacterial reduction of ~90% for almost all of the examined copper door handles. Collingwood General and Marine Hospital (CGMH) of Canada have created self-sanitizing rooms employing copper-infused panels in patient rooms to inhibit the growth of microorganisms, according to a study [58]. The implementation of copper-infused sanitizing procedures in the hospital resulted in outstanding swab test findings. Previously, the bacterial count under typical settings ranged from 7000 to 8000 colonies, but it has now dropped dramatically to the range of 30-50 colonies.

The antibacterial potential and longevity of a copper-based surface are strongly dependent on the coating deposition process, which modulates surface attributes such as roughness, wettability, adhesion strength, chemical reactivity, and so on. Bharadishettar et al. [59] addressed several coating processes such as thermal spray (TS), electrophoretic deposition (EPD), chemical vapor deposition (CVD), physical vapor deposition (PVD), and others, emphasizing their impact on various surface factors that might influence the antimicrobial efficiency of copper surfaces. The TS technique is a widely used method for producing copper coatings having thicknesses ranging from 20 μm to a few mm with strong corrosion and adhesion strength while being inexpensive. The most prevalent TS techniques are plasma spraying, wire arc spraying, flame spraying, and cold spraying. Champagne et al. [60] showed the higher antibacterial potential of cold sprayed coatings due to greater dislocation density and enhanced copper ion diffusivity provided by sprayed particle impact velocity. Hadzhieva et al. [61] recently investigated the advantages of the EPD technique for depositing bactericidal smart coatings on medical implants, which are based on...
unique targeted responses, multiple therapeutic effects, and self-cleaning capabilities, which may lead to new antimicrobial treatment possibilities. Varghese et al. [62] discovered that Cu-SiO \textsubscript{2} coatings created by chemical vapor deposition show outstanding antibacterial efficiency against highly resistant bacterial strains such asVancomycin-resistant Enterococcus coli. The increased antibacterial capabilities are attributed to Cu nanostructuring in the silica matrix of the obtained coatings. The PVD approach is particularly successful in creating nano-thick copper coatings (35 nm-150 nm) with outstanding hardness and thermal stability, and it has been found to improve the antibacterial effectiveness of the surfaces [63].

Effectiveness of copper and copper-derived materials against COVID-19
Since the discovery of SARS-CoV-2 in December 2019 [64], the virus has spread rapidly over the world, and the devastating effects of the COVID-19 pandemic continue. As of now, there have been 5 million confirmed cases of COVID-19 globally, according to WHO [65]. SARS-CoV-2 is typically transferred by inhalation of respiratory aerosols [66], direct contact with an infected hand, or indirect transmission through contaminated ambient surfaces, particularly high-touch surfaces [67]. Many studies have been conducted to investigate the long-term infectious persistence of SARS-CoV-2 on various substrates. The US EPA also confirmed the long-term effectiveness of certain copper-derived materials against SARS-CoV-2 [22]. According to a recent report, Doremalen et al. [68] found copper to be more efficient than stainless steel in limiting SARS-CoV-2 survival. According to the scientists, exposing a COVID-19 virus to a copper surface reduces its half-life by 0.774 h (CI = 0.427 to 1.19) and after 4 h, the virus’s viability is zero. A CuS-incorporated mask is also extremely efficient in destroying SARS-CoV-2 after only 30 min of exposure [50]. The three-layered mask entirely prevents virus-containing droplets from entering after 1–2 min of exposure, and it is 80% effective after 5–10 min of exposure. In another investigation, Behzadinasab et al. [69] discovered that infection from SARS-CoV-2 suspended in 5 \textmu L droplets deposited on the coating was likewise suppressed by the created CuO layer. When compared to glass, SARS-CoV-2 infectivity in the CuO film is reduced by \(~99.9%\) in 60 min. Furthermore, after 1 h, cuprous oxide (Cu\textsubscript{2}O) particles linked with polyurethane, which were designed to inhibit SARS-CoV-2 survivability on solids, reduced the virus titer by 99.9% [70]. Figure 4 depicts copper’s potential as an early antiviral weapon against coronavirus.

Future prospects and conclusions
In many public and clinical settings, copper is utilized to reduce microbial contamination on high-touch surfaces. However, to deploy this copper-based antimicrobial coating technology on a large scale, the feasibility of replacing all current contamination-prone surfaces with copper, as well as their antimicrobial durability and cost of replacement, must be addressed. The majority of the research published to assess the antibacterial capability and toxicity of copper and copper-derived materials has been done \textit{in vitro}; nevertheless, it is equally important to encourage \textit{in vivo} settings to validate their application in specialized biomedical fields such as drug delivery, wound dressings, bioimplants, and so on. Alternative testing in a dynamic microenvironment, such as the lab-on-a-chip (LOC) approach, should be researched in addition to traditional \textit{in vitro} testing to provide reproducible, long-term experimental findings with standardized validation. There is significant proof that nanostructured copper coatings are very effective in inhibiting various microbes, and have also evolved as a valuable class of nanomaterials, for a variety of applications in the medical, ecological and industrial fields. Bharadishettar et al. [59] addressed several coating techniques such as TS, CVD, PVD, EPD, and so on, and highlighted various aspects of coated surfaces that lead to increased antimicrobial efficiency. More such research is needed to study the effect of technical parameters on the antimicrobial potential of copper-based coatings. Tiwari et al. [71] explored the development of nanomaterials-infused PPE kits with high hydrophobic characteristics that can serve as an effective barrier to aerosol-mediated viral transmission, which is presently the most likely infection pathway. Several studies have shown the broad-spectrum antibacterial properties and
antiviral efficiency of copper nanostructure-based coatings; nevertheless, the worry with the nanostructured coating is its toxicity, which may be damaging to the environment and living species. To reduce its toxicity to a non-significant level, innovative research methodologies, and inventions for optimizing the toxicity factors that may impede toxicity pathways should be developed. For example, innovative work should be designed to reduce the toxicity of Cu nanostructures by tuning their size, surface functionalization/modification, designing Cu alloy nanostructures, adopting appropriate coating techniques, and so on [72]. Employing a synergism approach, the development of advanced nanocomposites of Cu nanostructures with biocompatible antimicrobial polymers (chitosan, polydopamine, polyethyleneimine), antimicrobial peptides (epsilon polylysine) provide another futuristic strategy to design safe and effective antimicrobial coatings. Overall, copper and copper-derived materials are undeniably effective antimicrobial agents with promising biological applications.

Author contribution statement
CD strategized the review outline. NB, CD, ND, VM, and AKV contributed to writing the article. SR, DM, PS, NKV, RL, DPM, and AKS provided their constructive inputs to improve the quality of the manuscript.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

The authors declare no competing financial interests.

Acknowledgments
CD acknowledges funding support received from the Science and Engineering Research Board, India (SRG/2020/001215). The authors thank the Council of Scientific & Industrial Research, India for the financial support through focussed basic research (FBR) projects (MLP/204, MLP205, and MLP206).

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.cobme.2022.100408.

References
Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest
** of outstanding interest

1. Muhly JD: The copper Ox-hide ingots and the bronze age. Iraq 1977, 39:73–82.
2. Milanino R: Copper in medicine and personal care: a historical overview. NY: Copper and the skin; Informa Healthcare; 2006: 149–160.
3. Sudha VP, Ganesan S, Pazhani G, Ramamurthy T, NairG, * Venkatasubramanian P: Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria. J Health Popul Nutr 2012, 30.

First study reporting the significance of copper containers in eradicating bacterial contamination in water.
4. Rosenberg M, Ilic K, Juganson K, Ivask A, Ahoen MVe IV, Kahru A: Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. PeerJ 2019.
5. Engels-Deutsch MVREDPHM: Contact killing and antimicrobial properties of copper. J Appl Microbiol 2018, 124:1032–1046.

This article reported the antimicrobial effectiveness of copper by contact killing mechanism.
6. Murphy F, Tchetchik A, Funshi I: Reduction of health care-associated infections (HAIs) with antimicrobial inorganic nanoparticles incorporated in medical textiles: an economic assessment. Nanomaterials 2020, 10:999.

This article revealed the number in the reduction of hospitals acquired infections using copper impregnated medical clothing.
7. Colin M, Klingelschmidt F, Charpentier E, Josse J, * Kanagaratnam L, De Champs C, Gangloff SC: Copper alloy touch surfaces in healthcare facilities: an effective solution to prevent bacterial spreading. Materials 2018, 11:2479.

This article unveils the importance of copper alloy-based coatings on high touch surfaces to prevent bacterial transmission through surfaces.
8. Montero DA, Arellano C, Pardo M, Vera R, Gámez R, Cifuentes M, Berasain MA, Gómez M, Ramírez C, Vidal RM: Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities. Antimicrob Resist Infect Control 2019, 8:3.

This article reveals the remarkable contact-killing properties of copper coatings on high-touch surfaces.
9. Salvo J, Sandoval C: Role of copper nanoparticles in wound healing for chronic wounds: a literature review. Burns & Trauma 2022:10.

This article explores the potential of copper nanoparticles in wound dressing materials with low in-vivo toxicity.
10. Guo S, Guo Y, Wang L, Li Y, Ding Y, Gao J, Xu H, Ren T, Feng * DJICoTER: Application of copper ion in bone tissue engineering: biocompatibility, antibacterial properties, angiogenic activity, and osteogenic activity. 26: 2022:3410.

This article explores the implication of copper ions to develop antimicrobial coatings for implant surfaces.
11. Wang L-j, Ni X-h, Zhang F, Peng Z, Yu F-x, Zhang L-b, Li B, Jiao Y, Li Y-k, Yang B, *; Osteblast response to copper-doped microporous coatings on titanium for improved bone integration. Nanoscale Res Lett 2021, 16:146.

This study unveils the development of copper nanoparticle-based antimicrobial spray to prevent PPE from SARS-CoV-2 contamination.
12. Singh B: IIT Guwahati researchers develop affordable antimicrobial spray-based coating for PPE. India: THE ECONOMIC TIMES; 2020.

This study unveils the development of copper nanoparticle-based antimicrobial spray to prevent PPE from SARS-CoV-2 contamination.
13. GJPAeV Villedevieu: Copper and mildew 1930, 94:373–376.

First study revealing the antifungal potential of copper.
14. Dj B: The chemotherapeutic activity of compounds of copper, * rhodium, and certain other metals in mice infected with neurovaccinia and ectromelia viruses. Br J Exp Pathol 1958: 480–489.

First study revealing the antiviral potential of copper.
15. Goodwin TM, Montoro MN, Muderspach L, Paulson R, Roy S: Management of common problems in obstetrics and gynecology. John Wiley & Sons; 2010.

This article highlights the first time medical use of copper IUDs.
16. Wilks SA, Michels H, Keevil CW: The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 2005, 105:445–454.

First report revealing the antibacterial activity of copper.
17. Kuhn PJDM: Doorknobs: a source of nosocomial infection 1983, * 6:62–63.

Clinically proven as a biocidal surface material for the first time.
This study reveals the antibacterial effectiveness of metallic copper and its applicability in designing antimicrobial surfaces.

Hans M, Mathews S, Mucklich F, Soliz M: Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 2016:11.

This paper sheds light on various interactions involved in the microbial killing by copper.

Vincent M, Duval RE, Hartemann P, Engels-Deutsch M: Contact killing and antimicrobial properties of copper. J Appl Microbiol 2018, 124:1032–1046.

This paper gives detail about the contact killing mechanism of copper.

Dalecki AG, Crawford CL, Wolschendorf F: Chapter six - copper and antibiotics: discovery, modes of action, and opportunities for medicinal applications. In Poole RK. Advances in microbial physiology, 70. Academic Press; 2017:193–260.

Rai R, Gummid SN, Chand DK: Cuprous oxide- or copper-coated jute stick pieces at an air–water interface for prevention of aerial contamination in potable water. ACS Omega 2019, 4:22514–22520.

WHO: Intrauterine devices : technical and managerial guidelines for services. World Health Organization; 1997.

This article reported the long term safe usage of Cu IUDs.

Gómez AJ, Perez-Tijerina E et al.: Effect of titanium coated with 3 different types of copper nanoparticles in the oral biofilm formation. J Dent Health Oral Disord Ther 2021:12.

Liu H, Tang Y, Zhang S, Liu H, Wang Z, Li Y, Wang X, Ren L, Yang K, Qin LJ: Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. 8: 2002–395.

This article unveils the biocompatibility of copper infused implants.

Rui Liu KM, Chang Bei, Zhang Yumei, Zheng Ma, Allaker Robert P, Ren Ling, Yang Ke: Anti-bacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcius mutans and Porphyromonas gingivalis. Sci Rep 2016, 6.

Gollwitzer H, Haenle M, Mittelmeier W, Heidenau F, Harrasser N: A biocompatible sol-gel derived titania coating for medical implants with antibacterial modification by copper integration. Amb Express 2018, 8:24.

This study reveals the role of Cu-Ti antimicrobial coatings in medical implants.

Bergemann C, Zaatreh S, Wegner K, Arndt K, Podbielski A, ** Bader R, Prinz C, Lembke U, Nebe JB: Copper as an alternative antimicrobial coating for implants - an in vitro study. World J Transplant 2017, 7:193–202.

This study reveals the role of TiCu antimicrobial coatings for orthopedic implants.

Milan PB, Khamseh S, Zarrintaj P, Ramezanazadeh B, Badawi M, ** Montes S, Vahabi S, Saeb MR, Mozafar M: Copper-enriched diamond-like carbon coatings promote regeneration at the bone-implant interface. Helyon 2020, 6, e03798.

This study reveals the role of Cu coatings in inhibiting biofilm formation on bone implants.

Shahid A, Aslam B, Muzammil S, Aslam N, Shahid M, Almatroudi A, Alalleem KS, Saqaleen M, Niar MA, Rasool MH, et al.: The prospects of antimicrobial coated medical implants. J Appl Biomater Funct Mater 2021, 19, 2280800211040304.
This study unveils the importance of copper integrated nanofibrous wound dressings for biofilm inhibition.

This study explores the importance of copper integrated nanofibrous wound dressings for biofilm inhibition.

This study reveals the importance of SWCNT-based coating on mask filters for COVID-19 transmission.

This study explores the importance of copper integrated nanofibrous wound dressings for biofilm inhibition.

This study reveals the importance of organosilane quaternary ammonium chloride-based GS75 coating on mask filters for COVID-19 management.

This study unveils the importance of copper-coated masks in COVID-19 management.

This study reveals the importance of SWCNT-based coating on mask filters for COVID management.

This study unveils the importance of copper-coated masks in COVID-19 management.

This study explores the importance of the electrophoretic deposition technique to develop copper coatings.

This study reveals the importance of the thermal spray deposition technique to develop copper coatings.

This study explores the importance of copper-coated surfaces on the effect of SARS-CoV2 on N95 respirator masks or filters.

This study reveals the importance of the chemical vapor deposition technique to develop copper coatings.

This study reveals the importance of the electrophoretic deposition of antibacterial coatings for hospitals.

This study reveals the importance of SWCNT-based coating on mask filters for COVID management.

This study explores the importance of copper-coated masks in COVID-19 management.

This study reveals the importance of silicon dioxide coatings prepared by chemical vapor deposition against hospital-related pathogens.

This study reveals the importance of the physical vapor deposition technique to develop copper coatings.

This study explores the importance of copper alloy nanostructured Cu-SiO2 coatings prepared by chemical vapor deposition against hospital-related pathogens.

This study reveals the importance of the chemical vapor deposition technique to develop copper coatings.