Blood coagulation factor XIII (FXIII) plays a key role in the final step of coagulation cascade. It is of tetrameric structure consisting of two potentially active A subunits and two protective/inhibitory B subunits (FXIII-A₂B₂). A sequential activation by thrombin and Ca²⁺ is needed for its transformation into an active transglutaminase (TG). Thrombin cleaves off an activation peptide from FXIII-A then in the presence of Ca²⁺ FXIII-B₂ dissociates and FXIII-A assumes an enzymatically active configuration (FXIII-A*: FXIIIa).¹ The main task of FXIIIa is to cross-link fibrin γ-₅ and α-chains and to attach α₂-plasmin inhibitor to fibrin through ε(γ-glutamyl)lysyl isopeptide bonds. This way FXIIIa mechanically stabilizes the fibrin clot and protects it from fibrinolytic degradation. In addition, FXIII is essential for carrying out pregnancy, it is involved in wound healing and angiogenesis, and very likely it might also be implicated in several other cellular functions.²

The severe bleeding diathesis of patients with inherited FXIII-A deficiency clearly indicates the importance of FXIII in maintaining hemostasis.³ In the general population FXIII-A deficiency is among the rarest inherited coagulation disorder (one in two million), but in countries with a high frequency of consanguineous marriages,
particularly if it is combined with a founder mutation, the frequency is much higher.\(^4\) Autoantibodies formed against either of the FXIII subunits also result in severe, frequently life-threatening hemorrhagic complications with a mortality rate around 25%.\(^5\) It is also a rare condition, in a most recent review 48 well-established published cases, 47 with anti-FXIII-A and 1 with anti-FXIII-B antibody, were collected.\(^6\) The autoantibody might be related to autoimmune disease; however, particularly in elderly patients it is frequently idiopathic. The autoantibody might interfere with the activation of FXIII, might inhibit the TG activity of FXIIIA and by forming immune-complex with the protein might accelerate its clearance from the circulation. A classification of anti-FXIII antibodies based on the above criteria has been proposed.\(^6\) The classical method used for the diagnosis and for measuring the inhibitory strength of anti-FXIII-A autoantibodies is based on Bethesda-Nijmegen assay.\(^7\) We proposed to supplement this assay by the determination of the patient’s immunoglobulin G (IgG) concentration required for 50% inhibition of FXIII activation/activity and by the determination of the binding affinity between FXIII-A and the patient’s IgG.\(^6\)

In the present study, a patient with anti-FXIII-A demonstrating unusual laboratory and clinical features was investigated. The results allowed us to point out difficulties in the diagnostic process and to test the recommended novel approach to the antibody characterization with the aim of introducing these techniques into laboratory practice. The described unusual clinical complication could draw clinicians’ attention for such a possibility.

A 67-year-old female, during an intended brief hospitalization for cortisone injection in her osteoarthritic knees, was accidentally hurt and huge hematomas developed at the posterior side of both thighs. No previous history of spontaneous bleeding and post-surgical hemorrhagic complication were recorded. Despite eight transfusions of red blood cells hemoglobin concentration remained low. She was hospitalized for 45 days with several misdiagnoses. After this period, medical consultation at the Hemophilia Care Center, University Hospital of Dijon suspected FXIII deficiency and 17% FXIII activity was measured using the Berichrom assay (Dade Behring) without blank compensation. As such an extent of FXIII deficiency does not explain the severity of bleeding,\(^\text{8}\) FXIII activity measurement was repeated by the ammonia release assay without and with blank compensation.\(^\text{9}\) As such an extent of FXIII deficiency does not explain the severity of bleeding,\(^\text{8}\) FXIII activity measurement was repeated by the ammonia release assay without and with blank compensation\(^\text{9}\) (Technochrom FXIII assay: Technoclone, Vienna, Austria). Correction for blank revealed that the real FXIII activity was below the limit of detection (Figure 1A). Such undetectable FXIII activity was confirmed by the complete lack of fibrin cross-linking in the clot of the patient plasma (Figure 1A). No mutation was found in the FXIIIA1 gene by bidirectional sequencing of exons and flanking intronic regions. The presence of inhibitory anti-FXIII autoantibody was revealed by mixing study and 74 Bethesda unit (BU) was measured by Bethesda-Nijmegen assay.\(^7\) No FXIII-A\(_2\)B\(_2\) and FXIII-A\(_2\)A\(_2\) antigen were detected in the patient’s plasma by enzyme-linked immunosorbent assay (ELISA).\(^\text{10,11}\) while FXIII-B antigen was in the reference interval (Figure 1B). However, the fact that a considerable amount of FXIII-A was detected in the plasma by western blotting suggested that the autoantibody interfered with the binding of monoclonal anti-FXIII-A antibodies used in the ELISAs (Figure 1B).

Most recently, further techniques were proposed for the more precise characterization of anti-factor autoantibodies in general, and anti-FXIII autoantibodies in particular.\(^6\) In our case the affinity of the autoantibody to recombinant FXIII-A\(_2\) (a kind gift of Dr E Olsen, Novo Nordisk, Måløv, Denmark) was determined by surface plasmon resonance (SPR) using Biacore 3000 instrument (GE Healthcare, Little Chalfont, UK; Figure 1C). As expected the antibody showed high affinity toward FXIII-A\(_2\) with a \(K_D\) of 2.77 ± 0.66 × 10\(^{-9}\) mol/L.

We also determined 50% inhibitory concentration (IC\(_{50}\)) of the patient’s IgG, which, in our opinion, is a more accurate measure of the autoantibody’s inhibitory power than the Bethesda unit. Fifty percent inhibition was achieved at 74 ± 8.6 μg/mL patient’s IgG concentration (Figure 1D), while normal IgG, even in the highest concentration, had no effect on FXIII activity.

The autoantibody might interfere with the cleavage of FXIII-A by thrombin, with the Ca\(^{2+}\) induced structural changes and with the transglutaminase activity of FXIIIa. It may also exert a combined effect. To properly classify the inhibitory effect of the autoantibody we tested these possibilities separately. The effect of the patient’s IgG on the proteolytic cleavage of the FXIII-A by thrombin was studied by western blotting. Comparison of the time course of FXIII-A truncation in the presence of normal and patient’s IgG suggests that the removal of the activation peptide by thrombin was not prevented by the antibody (Figure S1A in supporting information).

We also tested the combined effect of patient’s IgG on Ca\(^{2+}\) induced FXIII activation and on the activity of FXIIIA. In this set-up the patient’s IgG exerted a close to total (92.3%) inhibition (Figure S1B). Finally, we investigated the effect of patient’s IgG on fully activated FXIII. In this case the inhibition of FXIIIA by the patient’s IgG was moderate: 44% of the transglutaminase activity was inhibited by 300 μg/mL IgG (Figure S1C) suggesting that the inhibition of transglutaminase activity only partially contributed to the combined inhibition of Ca\(^{2+}\) induced activation and FXIIIA activity. According to the proposed classification the neutralizing anti-FXIII-A autoantibody is of combined type (type IV).\(^6\)
BOVET ET AL.

A

FXIII activity	Berichrom® assay	Technochrom® assay	Technochrom® assay
Without blank correction	17%	18.5%	<1%
With blank correction			

B

FXIII antigens measured by ELISA	FXIII-A2B2 antigen	FXIII-A2 antigen	FXIII-B2 antigen
	<0.5 %	<0.5 %	116%

C

K_D 2.770.66 ± 0.66 x 10^-9 M

D

IC_50 74 µg/ml

E

FXIII activity (%)
The diagnosis and clinical management of acquired FXIII deficiency due to anti-FXIII-A autoantibody is rather challenging. The case presented here demonstrates that unexpected irregularities in the laboratory evaluation could make the diagnosis even more difficult and unforeseen clinical events might complicate the clinical course. From the case presentation the following conclusions can be drawn: (a) FXIII activity measurement without blank compensation might be seriously misleading in grading the severity of the deficiency. (b) The anti-FXIII-A autoantibody might interfere with the antibody used in the immunoassay resulting in gross underestimation of the FXIII-A2 and FXIII-A2-B2 antigen levels. (c) In addition to the Nijmegen-Bethesda assay, determination of IC50, and the dissociation constant are also useful for proper autoantibody characterization. (d) Identification of the mechanism by which the autoantibody interferes with the activation/activity of FXIII is required for proper classification. (e) The inhibitory anti-FXIII-A autoantibody does not protect the patient from thromboembolic complications.

ACKNOWLEDGMENTS
The authors are indebted to Gizella Haramura for excellent technical assistance and to Dr Bálint Bécsi for his help in surface plasmon resonance experiments. The contribution of Drs Vanessa Leguy-Seguin and Bernard Bonnotte to clinical evaluation of the case is acknowledged. This work was supported by grants from the Hungarian Scientific Research Fund (K 129287 and K 120633) and by the GINOP-2.3.2-15-2016-00050 project. The latter project is co-financed by the European Union and the European Regional Development Fund.

CONFLICTS OF INTEREST
The authors state that they have no conflicts of interest.

AUTHOR CONTRIBUTIONS
JB and ED conducted the clinical evaluation, monitoring and treatment of the patient; BH performed FXIII activity measurements, IC50 determination, SDS PAGE and western blotting experiments; É.K. measured FXIII antigen levels; determination of dissociation constant was carried out by KP; LM designed and controlled the laboratory evaluation; the draft of the manuscript was written by LM; JB and BH were also involved in preparing the final version of the manuscript.

ORCID
László Muszbek https://orcid.org/0000-0002-3798-9962

REFERENCES
1. Muszbek L, Bereczky Z, Bagoly Z, Komaromi I, Katona E. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev. 2011;91:931-972.
2. Mitchell JL, Mutch NJ. Let’s cross-link: diverse functions of the pro-miscuous cellular transglutaminase factor XIII-A. J Thromb Haemost. 2019;17:19-30.
3. Muszbek L, Bagoly Z, Cairo A, Peyvandi F. Novel aspects of factor XIII deficiency. Curr Opin Hematol. 2011;18:366-372.
4. Dorgahaleh A, Naderi M, Hosseini MS, et al. Factor XIII deficiency in Iran: a comprehensive review of the literature. Semin Thromb Hemost. 2015;41:323-329.
5. Franchini M, Frattini F, Crestani S, Bonfanti C. Acquired FXIII inhibitors: a systematic review. *J Thromb Thrombolysis*. 2013;36:109-114.

6. Muszbek L, Penzes K, Katona E. Auto- and alloantibodies against factor XIII: laboratory diagnosis and clinical consequences. *J Thromb Haemost*. 2018;16:822-832.

7. Verbruggen B, Novakova I, Wessels H, Boezeeman J, van den Berg M, Mauser-Bunschoten E. The Nijmegen modification of the Bethesda assay for factor VIII: C inhibitors: improved specificity and reliability. *Thromb Haemost*. 1995;73:247-251.

8. Menegatti M, Palla R, Boscarino M, et al. Minimal factor XIII activity level to prevent major spontaneous bleeds. *J Thromb Haemost*. 2017;15:1728-1736.

9. Karpati L, Penke B, Katona E, Balogh I, Vamosi G, Muszbek L. A modified, optimized kinetic photometric assay for the determination of blood coagulation factor XIII activity in plasma. *Clin Chem*. 2000;46:1946-1955.

10. Katona E, Haramura G, Karpati L, Fachet J, Muszbek L. A simple, quick one-step ELISA assay for the determination of complex plasma factor XIII (A2B2). *Thromb Haemost*. 2000;83:268-273.

11. Katona E, Ajzner E, Toth K, Karpati L, Muszbek L. Enzyme-linked immunosorbent assay for the determination of blood coagulation factor XIII A-subunit in plasma and in cell lysates. *J Immunol Methods*. 2001;258:127-135.

12. Tang N, Li D, Wang X, Yang J. Concurrent hematoma and venous thrombosis in a patient with autoimmune acquired factor XIII deficiency. *Int J Lab Hematol*. 2020;42:e4-e6.

13. Ogawa Y, Yanagisawa K, Souri M, et al. Successful management of a patient with autoimmune hemorrhaphilia due to anti-factor XIII/13 antibodies complicated by pulmonary thromboembolism. *Acta Haematol*. 2017;137:141-147.

14. Boehlen F, Casini A, Chizzolini C, et al. Acquired factor XIII deficiency: a therapeutic challenge. *Thromb Haemost*. 2013;109:479-487.

15. Miesbach W. Rituximab in the treatment of factor XIII inhibitor possibly caused by Ciprofloxacin. *Thromb Haemost*. 2005;93:1001-1003.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Bovet J, Hurják B, De Maistre E, Katona É, Pénzes K, Muszbek L. Autoimmune factor XIII deficiency with unusual laboratory and clinical phenotype. *J Thromb Haemost*. 2020;18:1330–1334. https://doi.org/10.1111/jth.14811