Continuous input nonlocal games

N. Aharon, S. Machnes, B. Reznik, J. Silman, and L. Vaidman

School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel

(Dated: June 12, 2007)

We present three nonlocal games for a two-player team, in which the inputs the players receive are continuous. In addition, the inputs are not constrained by a "promise". The games therefore admit a simple set of rules. It can be shown that in the first two games a quantum advantage obtains. We conjecture that this is true for the third game as well.

The nonlocal nature of quantum mechanics [1, 2, 3] has recently been highlighted in a number of games [4, 5, 6, 7, 8, 9, 10]. Termed nonlocal [9], these are joint tasks for a team composed of several remote players. Each of the players is assigned by a verifier an input generated according to some joint probability distribution. The players must then send an output to the verifier, who carries a truth table dictating for each combination of inputs, which combinations of outputs result in a win. The players may coordinate a joint strategy prior to receiving their input, but cannot communicate with one another subsequently. A team sharing quantum correlations (entanglement) is said to employ a "quantum" strategy, while a team restricted to sharing classical correlations is said to employ a "classical" strategy.

In previously introduced nonlocal games the input set is discrete and finite. In contrast, in the games we present the input is continuous. Moreover, most nonlocal games include a "promise" regarding the allowed input combinations. This means that if \(n_i \) is the number of inputs that may be assigned to player \(i \), then the total number of input combinations that may simultaneously be assigned, \(n \), satisfies \(n < \prod_i n_i \). This restriction is especially tailored to guarantee a maximum advantage for quantum strategies over classical ones, and can make the rules of the game complex. In the games we present there is no such promise. The joint probability distribution governing the assignment of inputs is uniform, and the rules are simple. Nevertheless, a non-negligible quantum advantage obtains.

In the first game two remote players \(A \) and \(B \) receive a uniformly generated input \(a \in [0, 1] \) and \(b \in [0, 1] \), respectively. Following this, each of the players sends a classical bit representing an output \(o_i \in \{1, -1\} \) (\(i = A, B \)) to the verifier. The game is considered to have been won if

\[
o_A \cdot o_B = \begin{cases}
+1, & a + b < 1 \\
-1, & a + b \geq 1
\end{cases}.
\]

The game, therefore, amounts to the problem of returning a positive (negative) product of outputs when the sum of the inputs is less than (greater than or equal to) 1. In the following we show that a team employing a quantum strategy can achieve a higher probability for winning the game than a team restricted to classical strategies.

We begin by presenting the optimal classical strategy. It is easy to show that it is deterministic, i.e. the output is a single-valued function of the input, and is given for example by

\[
o_A = 1, \quad o_B = \begin{cases}
+1, & b < \frac{1}{2} \\
-1, & b \geq \frac{1}{2}
\end{cases}.
\]

The winning probability then equals 75% (see Fig. 1). This can be proven rigorously by translating the game into a Bell inequality for an infinite number of measurement settings. Indeed, the inequality obtains as the continuum limit of a family of Bell inequalities first discovered by Gisin [11]. For details see [12].

In the quantum strategy we present the players share a two qubit singlet state

\[
|\psi_s\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle).
\]
Having beforehand agreed on a coordinate system, the players then measure the spin component of their qubits along different axes in the xy-plane. The choice of axes is dictated by the inputs as follows: A measures along an axis spanning an angle of $\theta_A(a)$ from the negative x-axis, while B measures along an axis spanning an angle of $\theta_B(b)$ from the negative y-axis (see Fig. 2). The players then send the results of the measurements to the verifier. For $a + b \geq 1$ the game is won if the two players obtain opposite results, while for $a + b < 1$ the converse holds. Given a and b the probability for identical results is $\sin^2(\Delta/2)$, where $\Delta := \frac{\pi}{4} - \theta_A(a) - \theta_B(b)$ is the angle between the axes of measurement. The total winning probability is therefore given by

$$P_W = \int_0^1 da \int_0^1 db |\Theta(a + b - 1)\cos^2(\Delta/2)| + \Theta(1 - a - b)\sin^2(\Delta/2),$$

where Θ is the unit step function. To maximize P_W we look for $\theta_A(a)$ and $\theta_B(b)$ such that when $a + b \geq 1$ ($a + b < 1$) Δ is small (large). A most natural choice is

$$\theta_A(a) = \pi a, \quad \theta_B(b) = \pi b,$$

as is evident from Fig. 2. The integral then equals $\frac{1}{2} + \frac{1}{\pi}$ corresponding to a winning probability of $\sim 81.8\%$. This gives an advantage of $\sim 6.8\%$ to a team making use of quantum correlations over a team limited to classical correlations. Numerical evidence indicates that the angles defined in eq. (5) are indeed optimal.

The above game is a special case of a more general joint task in which A and B are assigned the uniformly generated inputs $a \in [0, m]$ and $b \in [0, n]$, respectively, and must return correlated (anticorrelated) outputs when $a + b < \frac{n + m}{2}$ ($a + b \geq \frac{n + m}{2}$). Indeed, by setting $n = -m$ and defining $\tilde{b} := -b$, the game reduces to the task of returning identical outputs when $a < \tilde{b}$ and opposite otherwise.

The second game is identical to the first in all but the winning conditions. The game is now considered to have been won if

$$o_A \cdot o_B = \begin{cases} +1, & 2|b - a| > \frac{1}{2} \mod 1 \\ -1, & 2|b - a| \leq \frac{1}{2} \mod 1 \end{cases}.$$

That is, the players must return correlated outputs if the absolute value of the their inputs’ difference is greater than $\frac{1}{2} \mod 1$, otherwise they must return anticorrelated outputs.

A possible realization of the optimal classical strategy is

$$o_A = \begin{cases} +1, & a \leq \frac{1}{2} \\ -1, & a > \frac{1}{2} \end{cases}, \quad o_B = \begin{cases} +1, & b \leq \frac{1}{2} \\ -1, & b > \frac{1}{2} \end{cases}.$$ (6)

The winning probability equals 75%, as in the first game (see Fig. 3). To see that this is the maximum, consider Fig. (3). If we cyclically shift the input of one of the players by $\frac{1}{4}$, then the regions that require correlated or anticorrelated outputs within each quadrant correspond to the first game [13]. Therefore, if the game admitted a strategy with a winning probability greater than 75% in any of the quadrants, so would the first game.

The quantum strategy we present differs from that of the first game only in the choice of axes A and B measure along. The winning probability now equals
\[P_W = \int_0^1 da \int_{a - 1/4}^{a + 1/4} db \cos^2(\Delta a) + \int_{a + 1/4}^{a + 3/4} db \sin^2(\Delta a), \]

(8)

Here \(\Delta := \theta_A(a) - \theta_B(b) \) with both angles now spanning from the y-axis in the xy-plane. The maximum obtains for

\[\theta_A(a) = 2\pi a, \quad \theta_B(b) = 2\pi b, \]

(9)
giving the same winning probability as in the first game, i.e. \(\sim 81.8\% \). Numerical evidence indicates that this is indeed the maximum.

Both games described naturally accommodate a geometric description. For example, as is evident from the quantum strategy, the second game can be reformulated as the problem of returning identical outputs when the angle between a pair of nonvanishing two-dimensional vectors is greater than \(\pi/2 \). The question arises as to how the quantum advantage changes when playing the game in three dimensions. More specifically, two remote players are each assigned a pair of angles \(0 \leq \theta_i \leq \pi, \) \(0 \leq \varphi_i < 2\pi \), designating a three dimensional unit vector \(\hat{r}_i \) \((i = A, B) \). The game is considered to have been won if

\[o_A \cdot o_B = \begin{cases} +1, & \hat{r}_A \cdot \hat{r}_B < 0 \\ -1, & \hat{r}_A \cdot \hat{r}_B \geq 0 \end{cases}. \]

(10)
The joint probability distribution governing the assignment of angles is a product \(\rho_A(\theta_A, \varphi_A) \rho_B(\theta_B, \varphi_B) \) with

\[\rho_i(\theta_i, \varphi_i) = \sin \theta_i, \]

(11)
guaranteeing isotropy \[14\].

The classical strategy that we present is an extension of the optimal classical strategy of the second game, where in the geometric description \(A \) (\(B \)) returns an output equal to 1 (\(-1 \)), respectively, if the angle corresponding to his input is less than or equal to \(\pi \). Otherwise, \(A \) (\(B \)) returns \(-1 \) (\(1 \)). Similarly, we now have \(A \) (\(B \)) return 1 \((1) \) when \(\theta_A \leq \pi/2 \) \((\theta_B \leq \pi/2) \), independent of \(\varphi_A \) \((\varphi_B) \), and \(-1 \) \((1) \) otherwise. The integral then gives \(1 - \frac{1}{\pi} \), or a \(\sim 68.2\% \) probability of winning. It seems likely that this strategy is the optimal.

As in the other games, in the quantum strategy that we consider, \(A \) and \(B \) measure along axes dictated by their inputs, \(\hat{n}_A(\hat{r}_A) \) and \(\hat{n}_B(\hat{r}_B) \). The probability for winning is then given by

\[P_W = \int_{\Omega_A} d\Omega_A \int_{\Omega_B} d\Omega_B \Theta(\hat{n}_A \cdot \hat{r}_B) \cos^2(\Delta a) \]

\[+ \Theta(-\hat{n}_A \cdot \hat{r}_B) \sin^2(\Delta a), \]

(12)

with \(\Delta := \text{ArcCos}(\hat{n}_A \cdot \hat{r}_B) \), and maximizes for

\[\hat{n}_A(\hat{r}_A) = \hat{r}_A, \quad \hat{n}_B(\hat{r}_B) = \hat{r}_B. \]

(13)

The probability of winning than equals 75\%. Interestingly, the the quantum advantage remains unchanged equaling \(\sim 6.8\% \).

In fact, all the games share a unifying "theme". Suppose that \(A \) and \(B \) each receive the coordinates of a randomly generated three dimensional vector \(\hat{r}_A \) and \(\hat{r}_B \), respectively. Then by a suitable choice of the joint probability distribution governing the assignment of the vectors, each of the games translates to a question about the quantity

\[\xi := |\hat{r}_B - \hat{r}_A| = \sqrt{\hat{r}_B^2 - 2\hat{r}_B \cdot \hat{r}_A + \hat{r}_A^2}. \]

(14)
The third game obtains if we restrict the vectors to unit magnitude. Actually, it is enough to require that the vectors be nonvanishing so long as they are generated isotropically. We then ask whether \(\xi < \sqrt{r_B + r_A^2} \). The second game is the same except that we farther restrict the vectors to lie on the same plane. In the first game we abolish isotropy altogether. The vectors are generated antiparallel to one another, with their magnitudes uniformly distributed between 0 and 1. \(\xi \) then equals \(r_A + r_B \), and the players must decide whether \(\xi > 1 \).

To conclude, we have presented three novel nonlocal games. The first two admit a superior quantum strategy, and it seems likely that the third does as well. The games differ from other nonlocal games in the literature in that their input sets are continuous. As such, we hope that they may help in the development of quantum communication tasks utilizing continuous inputs.

Acknowledgments

We acknowledge support from the Israeli Science Foundation (Grants no. 784/06 and 990/06), and from the European Commission under the Integrated Project Qubit Applications (QAP) funded by the IST directorate (Contract no. 015848).
[1] J.S. Bell, Physics 1, 195 (1964).
[2] J.F. Clauser, R.A. Holt, M.A. Horne, and A. Shimony, Phys. Rev. Lett. 23, 880 (1969).
[3] D.M. Greenberger, M.A. Horne, and A. Zeilinger, in *Bell’s Theorem, Quantum Theory and Conceptions of the Universe*, edited by M. Kafatos (Springer, 1988), pg. 69.
[4] B.S. Tsirelson, Lecture Notes in Quantum Information Processing, Tel-Aviv University (1996).
[5] L. Vaidman, Found. Phys. 29, 615 (1999).
[6] L. Vaidman, Phys. Lett. A 286, 241 (2001). See also L. Vaidman, in *Quantum [Un]speakables: From Bell to Quantum Information*, edited by R. Bertlmann and A. Zeilinger (Springer, 2002), pg. 221.
[7] A. Cabello, Phys. Rev. A 68, 042104 (2003).
[8] P.K. Aravind, Am. J. Phys. 72, 1303 (2004).
[9] R. Cleve, P. Høyer, B. Toner, and J. Watrous, Proceedings of the 19th IEEE Conference on Computational Complexity, (2004), pg. 236.
[10] G. Brassard, A. Broadbent, and A. Tapp, Found. Phys. 35, 1877 (2005).
[11] N. Gisin, Phys. Lett. A 260, 1 (1999).
[12] J. Silman, S. Machnes, and N. Aharon, in preparation.
[13] To be more precise, each of the quadrants corresponds to the truth table of the $a < b$ or $a > b$ formulation of the first game.
[14] The differential of a solid angle, Ω, in spherical coordinates is proportional to $\sin \theta$. This introduces a weight function when integrating over θ and φ.