Investigation of full arrangement of models on the mechanical properties of samples made from photopolymer material FullCure 720

A V Balyakin, R A Vdovin¹ and R R Kyarimov
Samara University, 34, Moskovskoe sh., Samara, 443086 Russia

¹E-mail: vdovin.ssau@gmail.com

Abstract. The results of experimental studies to determine the relationship between arrangement of synthesized model on build platform of 3D printer ObjetEden 350 and mechanical properties of the model fabricated from FullCure 720 photopolymer material were described. During the study, measurements of hard-fabricated samples were made, and the strength and plastic properties of FullCure 720 photopolymer material while tensile test were analyzed.

1. Introduction
To study the effect of arrangement synthesized models on the build platform of 3D printing system ObjetEden 350 using PolyJet technology on the mechanical properties of photopolymer material FullCure 720 [1, 2], samples were designed and fabricated (figure 1). Mechanical properties determine the structural strength of materials.

Figure 1. Samples size used in experiment.

The algorithm for samples arrangement on the build platform and define the appropriate technological parameters for fabrication, particularly was presented in [1, 3, 4]. It should be noted that in order to minimize the influence of random parameters of the process under study on the response function (the final result of the experiment), it is necessary to proceed a series of experiments under the same conditions - to randomize experiments over time [5-7]. Thus, the number of test samples was 72 pieces (figure 2).
2. Description of research models

2.1. Hardness test
The main mechanical properties of the material include: strength, stiffness, elasticity, ductility, hardness, impact strength.

Hardness tests are one of the most common types of mechanical tests due to their simplicity, high performance, as well as the possibility of non-destructive testing of both laboratory samples and finished products [8]. The methods for determining hardness depending on the speed of load application are divided into static and dynamic, and according to the method of load application, they are divided into pressing and scratching methods.

In all existing hardness testing methods, a properly prepared surface layer of the sample is important. It should, as far as possible, fully characterize the material whose hardness must be determined. All surface defects (scale, potholes, dents, gross risks, etc.) must be removed. The quality requirements of the test surface depend on the test method and usually involve its grinding, and even polishing. The measurement was carried out using a portable hardness test machine HardnessTesterTH160. When measuring, three repetitions (three points) were carried out on each sample. The results of samples measurements from photopolymer material FullCure 720 are presented in table 1 [9, 10].

Sample №	Lieb hardness (HL)						
1-1	777	1-19	674	2-1	795	2-19	706
1-2	784	1-20	645	2-2	788	2-20	719
1-3	788	1-21	599	2-3	778	2-21	706
1-4	855	1-22	720	2-4	854	2-22	811
1-5	852	1-23	781	2-5	849	2-23	797
1-6	838	1-24	969	2-6	853	2-24	786
1-7	848	1-25	764	2-7	837	2-25	780
1-8	825	1-26	759	2-8	838	2-26	768
1-9	824	1-27	751	2-9	844	2-27	848
1-10	820	1-28	849	2-10	841	2-28	846
1-11	842	1-29	836	2-11	844	2-29	836
1-12	839	1-30	837	2-12	836	2-30	674
1-13	793	1-31	621	2-13	840	2-31	671
1-14	840	1-32	668	2-14	837	2-32	709
1-15	838	1-33	662	2-15	832	2-33	813
1-16	837	1-34	774	2-16	850	2-34	741
1-17	849	1-35	767	2-17	848	2-35	777
1-18	845	1-36	750	2-18	849	2-36	760

Table 1. Lieb hardness test results.
2.2. Mechanical test

Mechanical properties are determined by the mechanical test results of standard sample. Each of these tests differs in the sample loading scheme, the prevailing direction of stresses arising in the sample, and the type of sample failure \[11\].

By the nature of changes in the current load in time, mechanical tests are distinguished: static, dynamic and fatigue.

Static tests are those where an investigation sample of the test material is subjected to a constant or gradually increasing load. The most important types of static tests are: tensile test, compression test, bending test, shear test, torsion test.

As a result of statistical test, the strength, elastic and plasticity properties of materials are determined.

The tensile test was carried out on a TestometricFS 150 AX tensile testing machine. All samples were stretched, in the amount of 72 pieces. During the test, the machine recorder automatically builds a relationship graph between the tensile load F (N) acting on the sample and the absolute elongation of the sample caused by this load Δl (mm). An example of such dependence is presented in figure 3.

![Figure 3. Practical dependence between tensile load and absolute elongation of sample № 1-2.](image)

The numerical values of F and Δl by themselves do not characterize the properties of the material, since they depend on the size of the test sample. The largest cross-sectional area of sample S_0, the greater force F necessary for its deformation. The larger initial length l_0, the greater absolute elongation Δl (sample will stretch more).

![Figure 4. View of destructed samples.](image)
Flat samples with a cross-sectional area S₀ of standard size from the studied FullCure 720 photopolymer material were fixed in the grips of testing machine and stretched under an ever-increasing load until break.

The nature of the plastic deformation was uneven and gradually localized in a certain part of the sample. After the local stresses in this region exceeded the ultimate strength, the sample was destroyed (figure 4).

Table 2 presents the main results of tensile tests of the samples.
To compare the sample test results made from the same FullCure 720 material, it is necessary to build a relationship between the stresses σ (MPa) arising in the cross sections of the sample and the relative elongation of the sample ε (%).

Sample №	Force, N	Elongation, mm	Sample №	Force, N	Elongation, mm	Sample №	Force, N	Elongation, mm	Sample №	Force, N	Elongation, mm
1-1	960	2,5	1-19	1020	2,7	2-1	1080	3,5	2-19	900	2,6
1-2	1160	4,0	1-20	1000	2,6	2-2	1040	3,3	2-20	950	2,8
1-3	1140	3,8	1-21	1060	3,6	2-3	1100	3,1	2-21	1000	2,9
1-4	1250	2,9	1-22	800	1,5	2-4	1200	3,1	2-22	1200	3,5
1-5	1040	3,2	1-23	480	0,7	2-5	1200	2,7	2-23	840	2,0
1-6	1240	3,8	1-24	1100	2,2	2-6	1200	3,5	2-24	880	1,7
1-7	1260	3,0	1-25	480	0,7	2-7	1250	3,0	2-25	730	1,1
1-8	1080	3,4	1-26	480	0,7	2-8	1200	3,0	2-26	520	1,1
1-9	1200	3,0	1-27	560	1,2	2-9	1200	3,4	2-27	480	1,1
1-10	900	1,5	1-28	600	0,9	2-10	1050	2,6	2-28	580	1,0
1-11	620	3,7	1-29	700	1,2	2-11	900	2,9	2-29	580	1,3
1-12	665	1,6	1-30	700	1,1	2-12	1200	3,2	2-30	460	0,9
1-13	1000	2,0	1-31	440	0,7	2-13	1000	2,3	2-31	460	0,9
1-14	1000	2,4	1-32	620	1,2	2-14	1000	2,7	2-32	620	1,7
1-15	630	1,7	1-33	720	1,2	2-15	880	1,9	2-33	500	1,2
1-16	1000	1,9	1-34	1080	2,2	2-16	1200	2,6	2-34	600	1,4
1-17	1000	1,7	1-35	700	3,3	2-17	900	1,9	2-35	1080	1,9
1-18	700	1,3	1-36	600	1,9	2-18	900	2,5	2-36	1000	1,9

The resulting relationship (see figure 3) is called the material tensile diagram. The numerical values of σ and ε completely characterize the strength and plastic properties of the photopolymer material of the samples under static tension.

3. Results

Analysis of the measuring hardness results showed that the samples 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 28, 29 have the highest hardness obtained during the studies. These samples correspond to the orientation of the synthesized model on the build platform of ObjetEden 350 machine with a maximum overall dimension along the X or Y axes. The sample coating surface and support material does not have a special effect on hardness [12, 13].

Analysis of the obtained results while tensile test of samples from photopolymer material showed that the highest strength and plastic properties of the Full Cure 720 material are observed for samples 3, 4, 5, 6, 7, 8, 9. These samples are characterized by maximum overall dimension along the X axis on the
build platform of ObjetEden 350 machine. Figure 5 shows a schematic representation of the synthesized model on the build platform and forces direction acting on the sample during tension. A value of 0.016 mm characterizes the thickness of each layer during fabrication. As the study results showed, the surface coating of samples and the support material do not significantly affect the strength properties.

Figure 5. Arrangement of fabricated samples to achieve maximum strength and plastic properties of FullCure 720 photopolymer material.

4. Conclusions
Based on the studies, it was experimentally defined that in the process of fabrication photopolymer models from FullCure 720 material using PolyJet technology on the ObjetEden 350 3D printing system to obtain master models with high mechanical properties (the highest hardness and high strength and plastic properties), it is necessary to orient the model maximum overall dimension along the X axis (direction of the printing unit track), and along the X or Y axes, if not possible. It was found that the sample coating surface and support material has no significant effect on the mechanical properties of the samples [14-16].

Acknowledgment
This study was conducted as part of the Russian Federation presidential grant project for the government support of postdoctoral research workers (MK–2019 grant)

References
[1] Dobryshkina E M, Balaykin A V and Vdovin R A 2018 Analysis of possibilities of high-speed prototyping technology in hot section manufacturing MATEC Web of Conferences 224 8
[2] Dobryshkina E M, Vdovin R A, Balaykin A V and Alekseev V P 2016 Fast prototyping technologies application research for the gas turbine engine turbine blades manufacture Proc. of Samara scientific center of Russian Academy of Sciences 18(4) 1168-72
[3] Shumkov A A 2015 Fast prototyping technologies application for the medical implants manufacture Contemporary issues of science and education 2(2) 146
[4] Balyakin A V, Smelov V G and Chempinskii L A 2012 Additive technologies application for the combustion chamber parts manufacture Samara university bulletin. Aerospace engineering, technologies and machinery manufacturing 3-2(34) 47-52
[5] Belov P S, Dragina O G and Nikiforov D Yu 2014 The technological process of 3D-models manufacturing and pilot samples production by using fast prototyping technologies Machinery manufacturing technology 6 34-6
[6] Smirnov D A and Balanduk I P 2015 Analysis of technologies for the printing process of FDM and POLYJET 3D-models Ural science and manufacturing 11 112-3
[7] Kiseleva A E 2017 Additive technologies application in shipbuilding design tasks Scientific and technical bulletin of Russian Maritime Register of Shipping 48-49 84-8
[8] Adler Yu P 1976 Design of experiments in the search for the optimal conditions (Moscow: Science) p 280
[9] Vieira L F, Paggiand R A and Salmoria G V 2011 Thermal and dynamic-mechanical behavior of FullCure 3D printing resin post-cured by different methods Proc. of the 5th Int. Conf. on
Advanced Research in Virtual and Rapid prototyping vol 28 (Leiria, Boca Raton: CRC Press) pp 385-8

[10] Khaimovich I N and Demianinko E G 2015 Mathematical material and process simulation (Samara: SSAU) p 82

[11] Pilipovic A, Raos P and Sercer M 2009 Experimental analysis of properties of materials for rapid prototyping Adv Manuf Technol 40 105

[12] Vieira L F, Paggiand R A and Salmoria G V 2012 Innovative developments in virtual and physical prototyping Proceeding 385-8

[13] Fastermann P 2012 Rapid Prototyping Springer Verlag Berlin Heidelberg 114-128

[14] Vdovin R A 2019 Improving the quality of the manufacturing process of turbine blades of the gas turbine engine Journal of Physics: Conference Series 1399(4) 6

[15] Vdovin R A 2020 Designing a duplicate model of the GTE turbine blade casting process IOP Conference Series: Materials Science and Engineering 709(3) 5

[16] Agapovichev A V, Balaykin A V and Smelov V G 2015 Application of additive technologies in the production of aircraft engine parts Modern applied science 9(4) 151-9