Cranial Musculoskeletal Description of Black-Throated Finch (Aves: Passeriformes: Estrildidae) with DiceCT

Khanh H. T. To¹*, Haley D. O’Brien², Michelle R. Stocker¹, Paul M. Gignac²

¹Department of Geosciences, Virginia Tech, Derring Hall, 926 W Campus Dr, Blacksburg, VA 24060
²Anatomy and Cell Biology, Oklahoma State University-Center for Health Sciences, 1111 W 17th St, Tulsa, OK 74107

*Corresponding Author: Khanh H. T. To (khanhto@vt.edu)

Running Title: Finch cranial muscles

Keywords: allometry, ontogeny, fledgling, adductor, non-invasive

Article Type: Article

Introduction:

Throughout ontogeny, shifts in food resource acquisition are common across vertebrates (Duffield and Bull 1998, Whitfield and Donnelly 2006, Wang et al. 2017). Such changes necessarily impact dietary opportunities and behaviors, which can be accommodated by subsequent functional-anatomical changes to the size (e.g. crocodiles, Gignac and Erickson 2015), morphology (e.g. caterpillars to butterflies), and physiology of the feeding system (e.g. birds, Starck 1993), or a combination of each. Birds exhibit contrasting developmental modes, varying from precociality to altriciality, which categorically defines their morphological, behavioral, and physiological characteristics (Starck 1993). A majority of birds exhibit altriciality, including all songbirds (Order Passeriformes) which constitutes 6,000 of the approximately 10,000 currently recognized species of extant Aves. Altricial birds have young that rely on their parents for food, protection, and thermoregulation (Starck 1993); therefore, as hatchlings and nestlings, songbirds do not manipulate their food, and their feeding apparatus as a
whole may not be as fully functional compared to their precocial (e.g., developmentally more advanced) counterparts.

The avian feeding apparatus is part of a kinetic skull held together by ligaments and with motions powered by a series of muscles (Bock 1964, Holliday and Witmer 2007, Bhattacharyya 2013) that enhances food capture (e.g., meat, nectar, seeds) and aids in manipulation of a wide variety of resources. The highly versatile keratinized rhamphotheca that covers the rostrum and mandible, along with the additional range of motion facilitated by cranial kinesis, is thought to have contributed to modern birds’ global ecological success, exemplified by Passeriformes because its members are exceptional diverse in their ecologies, diets, and morphologies.

Passeriform skull osteology, specifically with respect to the beak (Grant and Grant 1996, Abzhanov et al. 2004, Podos et al. 2004, Clayton et al. 2005, Abzhanov et al. 2006), has been the focus of many studies (Warter 1965, Rich et al. 1985, Hernandez et al. 1993, Donatelli 1997, Thomas 2001, Abzhanov et al. 2006, James 2004, Seijas and Trejo 2011, Turker 2012, Previatto and Posso 2015a, Guzzi et al. 2016, Ujhelyi 2016, Lima et al. 2019), but only a small fraction of those studies documented the jaw musculature and other soft tissues that enable kinesis to function (Donatelli 1997, Bock 1985, Nuijens et al. 2000, Genbrugge et al. 2011, Kalyakin 2015, Previatto and Posso 2015b). This is due in part to the diminutive nature of the feeding system, which makes it practically difficult for researchers to work with. The smallest adult passerine bird weighs just 4.2 grams (Fritzpatrick et al. 2004), and with the largest member of passerines weighing in at 1.5 kilograms, not only are the adults small, but the hatchling and fledgling are even smaller. Difficulties presented by small animal size have resulted in a gap in our understanding of how the cranial kinetic system is composed, functioned, and evolved within this highly specialized group of passeriform birds.
Qualitative changes, such as beak length and shape as well as neurocranium shape (Genbruge et al. 2011) suggest that the size, location, and orientation of jaw musculature associated with cranial kinesis may also shift during ontogeny. In this study we describe the feeding apparatus of the black-throated finch (Estrildidae: *Poephila cincta*), a seed-eating songbird in the Old-World tropics and Australasia with a short, thick, and conical bill. Juvenile or sub-adult birds rapidly achieve average adult size or larger as a combined result of the steady diet from their parents while not having to perform many energy-consuming tasks, such as flying and active foraging (Starck 1993). Juvenile black-throated finches gain nourishment by begging adults to feed them with their mouths open due to a widely gaping jaw, whereas adults feed by foraging on harder granivorous materials, such as fallen grass seeds and invertebrates and sometimes collecting seeds directly from the seed-heads. Due to these ontogenetic differences in degree and direction of jaw opening, we hypothesize that juveniles and adults may have different muscle configurations that reflect in these life history stage-specific jaw functions. However, we are not able to address this until we identify a practical and effective means to study the delicate and diminutive anatomy of this versatile feeding apparatus. Modern visualization techniques allow for digital quantification of small muscle dimensions without the distortions associated with physical dissection (Sullivan et al. 2019). Therefore, to study these diminutive jaw muscles, we used diffusible iodine-based contrast-enhanced computed tomography (diceCT) and digital dissection (Gignac and Kley 2014, Gignac et al. 2016). We examine the utility of diceCT and digital dissection for small specimens by describing the jaw musculature of two growth stages, adult and fledgling, as well as qualitatively and quantitatively documenting morphology of the jaw adductor chamber and its components.

Institutional abbreviations: ISIS: TZI: Tulsa Zoo, Inc
Methods:

One fledgling (unknown sex) and one adult female black-throated finch (*Poephila cincta*) were each acquired as deceased individuals from the Tulsa Zoo, Inc. (Tulsa, OK; Adult *P. cincta* ISIS No. 17981; fledgling *P. cincta* ISIS No. 18032). The fledgling had not molted to adult plumage and was approximately 50 days from hatching at time of death based on records kept by the Tulsa Zoo, whereas the adult black-throated finch had mature plumage and was >180 days old at the time of death. The finch specimens were initially stored frozen. All specimens were chemically fixed in 10% neutral buffered formalin for approximately two weeks. Specimens were then pre-stain CT-scanned to capture skull morphologies, using grayscale thresholding in Avizo© version 9.0, 9.3, and 9.5 (Thermo Fisher Scientific, Waltham, MA) to generate skeletal models. Computed tomographic data were collected on a GE phoenix v|tome|x s240 high-resolution microfocus CT system (General Electric, Fairfield, CT) at the American Museum of Natural History Microscopy and Imaging Facility (New York, NY) and on a Nikon XTH 225 ST high-resolution microfocus CT system (Tokyo, Japan) at DENTSPLY’s Research and Design Facility (Tulsa, OK). All unstained specimens were scanned at resolutions of < 70-micron isometric voxel sizes to obtain the degree of detail necessary to identify bony landmarks. All scanning parameters are listed in Table 1.

After CT scanning for skeletal anatomy, each specimen was soaked in a 3% weight-by-volume (w/v) of Lugol’s iodine (iodine-potassium iodide, I2KI) for 10 or 14 days (fledgling and adult, respectively) (Gignac and Kley 2014, Gignac et al. 2016; see Table 2 for staining information). The solution was refreshed once during the staining period. In an aqueous solution,
I₂KI becomes I³⁻, which binds to fats and sugars in soft tissues (Gignac et al. 2016) and renders those tissues denser than bone. As a result, they are readily visible in X-ray micro-CT images. Once fully stained, specimens were rinsed for one hour in deionized water to remove excess, unbound iodine, then micro-CT scanned a second time to visualize cranial musculature. In this second scan, the specimens were imaged at resolutions of <29-micron isometric voxel sizes, permitting the detail necessary to distinguish adjacent muscle bellies in the feeding apparatus.

To reconstruct the hard tissue, we reconstructed the pre-stain, skeletal-only image stacks through automatic segmentation, grayscale thresholding, and manual, slice-by-slice touch-up. Head length was measured physically with standard calipers and digitally in Avizo to the nearest millimeter (mm), using the "Measurements" tool. During image-stack processing, we utilized Fiji (National Institutes of Health, Bethesda, MD) to crop, rotate, and re-slice the global axes of the image stack so that they were orthogonal in the standard anatomical planes. Following segmentation of the pre-injection skeletal scans, the diceCT image stacks were processed secondarily. The anatomy of the skull and left-side jaw musculature were manually reconstructed in Avizo based on grayscale value differences. Each muscle was first delineated in the plane that was easiest to discern and evaluate, which in this case was the transverse plane, to differentiate it from adjacent muscle bellies before more thorough segmentation was performed. The initial step generated a tubular schematic of muscles and their attachment points. A more thorough segmentation was then performed on each muscle using a combination of the “Brush” tool and the “Interpolation” tool. When the thorough segmentation in one plane of view was performed, at least one other view was simultaneously monitored in order identify, corroborate, and confirm the muscle boundaries seen in the primary plane view. Muscle boundaries were determined based on sharp differentiation between grayscale values that usually denotes muscles and dense,
unstained connective tissues or muscles and bones/cartilage (see e.g., Gignac and Kley, 2014).
Segmentation at the muscle boundaries was more conservative, meaning that if voxel grayscale values were determined to be “in-between” those of muscles and bones/cartilage, then those voxels were not included in the segmented muscles. This more thorough segmentation step was then performed on the other planes as well to properly discern additional muscle details such as oblique attachment sites and muscle fibers interdigitation. Due to Lugol’s iodine being a poor contrast-stain for ligaments and other connective tissues, alongside the visibility of muscle fascicles, we are confident that the “denser” grayscale value is indicative of muscle bellies being segmented (Gignac and Kley, 2014; Gignac et al., 2016, Supplementary Materials). We measured muscle-volume renderings in Avizo using the “Measurements” tool, and used the archosaur muscle density from Gignac and Erickson (2016) (1.056 g/cm³) to calculate the mass of each jaw muscle. The left-side musculature was reconstructed in both specimens for consistency. The following muscles were 3D rendered for the black-throated finch based on work by Bock (1985) and Genbrugge et al. (2011): *Musculus adductor mandibulae externus caudalis* (MAMEC); *M. adductor mandibulae externus rostralis lateralis* (MAMERL); *M. adductor mandibulae externus rostralis medialis* (MAMERM); *M. adductor mandibulae externus rostralis temporalis* (MAMERT); *M. adductor mandibulae externus ventralis* (MAMEV); *M. adductor mandibulae caudalis* (MAMC); *M. depressor mandibulae* (MDM); *M. protractor pterygoideus* (MPP); *M. protractor quadratus* (MPQ); *M. pseudotemporalis profundus* (MPsP); *M. pseudotemporalis superficialis* (MPsS); *M. pterygoideus dorsalis* (MPtD); and *M. pterygoideus ventralis* (MPtV) (see Table 3). Even though in accordance with Bock (1985) the pterygoideus muscles are more highly subdivided (i.e., *M. pterygoideus medialis anterior, medialis posterior, and lateralis*; Bock 1985), we use “dorsalis” and “ventralis”
terminology without dividing the muscles into finer partitions to describe the pterygoideus muscles. Image stacks and scan metadata files are available for download through Morphosource.org under project P1079. Anatomical landmarks were labeled with reference to prior descriptions for the Java and medium ground finches by Genbrugge et al. (2011); however, not all anatomical landmarks are present in our rendering because of taxonomic and resolution differences between our samples and reference scans. Following completion of the project, specimens were returned to the Tulsa Zoo by request for incineration per institutional policies.

Results:

The adult skull is 20 mm long from the tip of the beak to the back of the parietal, while the fledgling skull measures 22 mm long. Both the fledgling and adult skulls across the frontal bone from orbit-to-orbit measure 12 mm. The fledgling skull shows less ossification at the posteroventral portion of the skull based on both grayscale and thresholding values in the CT scans (Figure 1, 4), with many small areas of cartilage and dermal bone likely still composing the posteroventral margin of the cranium. Because cartilage is less mineralized and therefore usually has a lower density value, it is not visualized as well in the CT scans as bone. Both the adult and fledgling skulls show the presence of ossified *os siphonium* (ossified tube connecting the tympanum and the articular air chambers of mandible) and *os opticus* (a partially or completely curved ossified scleral bone surrounding the optic nerve entrance into the eyeball, Figure 1), which are not present in all birds (Tiemeier 1950). The lower jaw of the adult finch (Figure 2) is morphologically more similar to the Java finch than to the medium ground finch (Genbrugge et al. 2011), especially with the more medial placement of the *tuberculum pseudotemporalis* by the
caudal processus coronoideus. The hyoid of both the fledgling and adult black-throated finch (Figure 3) are both ossified and the adult hyoid is slightly more robust than the fledgling hyoid.

All muscle bellies were readily visualized in diceCT datasets. Visualized muscle features included boundaries between muscles, overall muscle morphology, muscle attachment sites, interdigitation of muscles and (in some muscles) fiber morphologies (see Materials and Methods; Figure 4 and 5). As compared to the fledgling specimens, the adult had a lower mass of all muscles except for the $M. \text{depressor mandibulae}$ and the $M. \text{protractor pterygoideus}$. These differences ranged from -52.8 to -4.98% with $M. \text{adductor mandibulae externus rostralis lateralis}$ and $M. \text{adductor mandibulae externus rostralis temporalis}$ showing the greatest and least mass deviations, respectively (Table 4). The adductor mandibulae externus and pterygoideus muscles make up the two largest muscle groups in mass and volume for both the fledgling and the adult specimen (Table 4). A full breakdown of muscle mass differences are listed in Table 4.

Several of the muscles show multi-pennate morphology, meaning that the sections of muscle fibers within a muscle run in different directions as compared to one or more central tendons. In comparison with the noisy-scrub finch, medium ground finch, and Java finch, the muscles in both the fledgling and adult black-throated finch displayed comparable pennate morphologies except for the $M. \text{pseudotemporalis superficialis}$. In the fledgling, the $M. \text{pseudotemporalis superficialis}$ tri-pennate muscle morphology is seen instead of the bipennate muscle morphology that was reported for this muscle in other species in passerines (Genbrugge et al. 2011, Bock 1985) and in the adult specimen of the current study (Supplementary Materials).
Discussion:

Our diceCT reconstruction of the jaw musculature allowed us to not only discern the minute mass and volume of the soft tissues, but also their morphology and differences between our two growth stages. For example, the tripinnate *M. pseudotemporalis superficialis* in the fledgling may disappear ontogenetically, leading an adult condition of bipinnate muscle morphology commonly seen in more mature individuals. This muscle morphological change has not been documented in other birds and can only be resolved with more densely sampled ontogenetic datasets to determine whether this occurrence was because of individualistic differences or due to actual muscle morphological change. Passeriformes have extremely partitioned and interdigitated muscle groups in comparison to non-passerine birds, and this is found in the black-throated finch as in other finches such as the noisy-scrub finch (Bock 1985), medium ground finch (Genbrugge et al. 2011), and Java finch (Genbrugge et al. 2011). Whether the musculature becomes even more complex and partitioned in other groups or offers some advantages (biomechanical, etc.) over a more simplified muscle arrangement is currently unknown. The increase in musculature complexity can be correlated to an increase in beak dexterity and control. This would effectively allow granivores such as the black-throated finch to easily extract seeds from the seed head or quickly forage for seeds among debris. However, addressing this hypothesis is beyond the scope of the current study and would benefit from an in-depth evaluation across Passeriformes.

Generally, it is expected that older individuals are larger and, therefore, the features of mature individuals should be more massive. However, our adult finch had smaller values for nearly all jaw muscle masses (exception for the *M. depressor mandibulae* and the *M. protractor pterygoideus*) in comparison to the fledgling specimen of the same species. Several lines of
reasoning supported that the CT image stack of the adult finch did not have any apparent
distortion that could be due to muscle shrinkage from the iodine staining. In the scan, the muscle
fibers did not appear straightened and "rigid", and no prominent gaps were apparent between
adjacent muscle fiber bundles. The space between the jaw muscles of the fledgling were more
prominent than in the adult, but the fledgling’s brain tissues are still flushed against the cranial
cavity (see Supplemental video files S1 and S2) (whereas brain tissues pull away from the
cranial cavity as a result of over-staining with salt-rich agents such as Lugol’s iodine; Watanabe
et al. 2019). Likewise, not all of the muscle groups showed mass reduction in the adult compared
to the fledgling; the *M. depressor mandibulae* showed mass increase. We conclude that if there
was muscle shrinkage, it is most reasonable to expect that all muscle groups should show a
systematic difference in volume loss (Vickerton et al. 2013, Gignac et al. 2016). As this was not
the case, we interpret that muscle-size differences are not due to significant chemical shrinkage
(Gignac et al. 2016).

Other factors that could have contributed to this mass difference might be intraspecific
differences such that the adult female we sampled was a particularly small individual or that the
fledgling was a particularly large individual. Because this species is not reported as sexually
dimorphic, we interpret that the sex of the fledgling should not have been a factor regarding
overall mass differences. However, breeding condition might be an important consideration for
the adult. Other female songbirds, such as house wrens, have been reported to lose mass during
breeding season either for contributing body tissues to offspring production (Freed 1981) or due
to decreased foraging time (Norberg 1981, Prince et al. 1981, Newton et al. 1983, Moreno 1989).
The adult female specimen sampled for our study may have been breeding when collected,
which would have impacted the mass of structures throughout the body. On the other hand,
nesting physiology may be an important consideration for the fledgling. For example, finches fledge as they approach adult body size, apparent in our sample as a result of comparable head widths between the fledgling and adult individuals (both 12 mm transverse width across the orbits). Some nesting bird species achieve asymptotic weight while nest-bound because nestlings do not need to expend energy for daily high-cost activities such as flying and foraging (Starck 1993, Stöcker and Weihs 1996). A combination of these factors may explain the less massive jaw musculature that characterizes the adult black-throated finch as compared to the fledgling individual.

Better criteria for specimen collection, including information about sex and in what season the specimen was collected, is stressed for collecting small songbirds because slight differences can contribute to apparently significant changes. Further research should incorporate additional specimens (e.g., at least 10)—including hatchlings, additional fledglings, and male and female adults—to fully explore these findings. These factors are also important considering that digital dissection is a time-consuming process, and the low number of individuals in this study limit some interpretations. Digital dissection speed can be improved by utilizing interpolation tools (Sullivan et al., 2019) along with physical-to-digital comparison via manual dissection. Increasingly improved visualization techniques continue to allow us to better study small specimens, which can lay bare subtle but potentially important differences in exceptionally small, gross anatomical features. Our study demonstrates how these differences can make it difficult to clearly interpret taxon-specific musculoskeletal anatomy. To meaningfully contextualize lilliputian traits, double-digit sampling alongside stricter demographic criteria are requisite to account for possible biological anomalies.
Declaration of Competing Interest

The authors declare no competing interests.

Acknowledgments:

We thank the following people for their help with the success of this project: R. Kotarsky of the Tulsa Zoo Inc for access to specimens.; M. Hill, A. Hill, and the Microscopy and Imaging facility at the AMNH; S. Rigsby at DENTSPLY R&D for μCT scanning assistance. This research was funded by the Department of Anatomy and Cell Biology at Oklahoma State University-Center for Health Sciences and NSF EAGER 1450850 & DEB 1457180 awarded to PMG. We also give thanks to Dr. Karen McBee in the Department of Integrative Biology of Oklahoma State University for introducing KHTT to the paleobiology faculties in OSU-CHS. We want to thank Khoi Nguyen, Lan-Nhi Phung, Tan Nguyen, and Dr. Trung Ly for assistance in translating the abstract to Vietnamese. Finally, this project was a part of KHTT’s honor thesis with PG and HDO as a second reader; KHTT extends a heart-felt thank you to her mentors for being patient, understanding, and knowledgeable throughout this opportunity.
References:

Abzhanov, A., M. Protas, B. R. Grant, P. R. Grant, and C. J. Tabin. 2004. Bmp4 and morphological variation of beaks in Darwin's Finches. Science 305:1462-1465.

Abzhanov, A., W. P. Kuo, C. Hartmann, B. R. Grant, P. R. Grant, and C. J. Tabin. 2006. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 442:563-567.

Bhattacharyya, B. N. 2013. Avian jaw function: Adaptation of the seven–muscle system and a review. Proceedings of the Zoological Society 66:75-85.

Bock, W. J. 1985. The skeletomuscular systems of the feeding apparatus of the Noisy Scrub-bird, *Atrichornis clamosus* (Passeriformes: Atrichornithidae). Records of the Australian Museum 37:193–210.

Clayton, D. H., B. R. Moyer, S. E. Bush, T. G. Jones, D. W. Gardiner, B. B. Rhodes, and F. Goller. 2005. Adaptive significance of avian beak morphology for ectoparasite control. Proceedings of the Royal Society B: Biological Sciences 272:811-817.

Curtis, N., M. E. H. Jones, J. Shi, P. O'Higgins, S. E. Evans, and M. J. Fagan. 2011. Functional relationship between skull form and feeding mechanics in *Sphenodon*, and implications for diapsid skull development. PLoS ONE 6:e29804.

Donatelli, R. J. 2013. Osteologia e miologia cranianas de Dendrocolaptidae (Passeriformes: Tyranni) 1. Gêneros *Glyphorhynchus, Campylorhamphus, Dendrocincla, Xiphorhynchus e Dendrocolaptes*, 2013, Volume 5.

Duffield, G. A., and C. M. Bull. 1998. Seasonal and ontogenetic changes in the diet of the Australian skink *Egernia stokesii*. Herpetologica 54:414-419.
Fabbri, M., N. Mongiardino Koch, A. C. Pritchard, M. Hanson, E. Hoffman, G. S. Bever, A. M. Balanoff, Z. S. Morris, D. J. Field, J. Camacho, T. B. Rowe, M. A. Norell, R. M. Smith, A. Abzhanov, and B.-A. S. Bhullar. 2017. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nature Ecology & Evolution 1:1543-1550.

Freed, L. A. 1981. Loss of mass in breeding wrens: stress or adaptation? Ecology 62:1179-1186.

Genbrugge, A., A. Herrel, M. Boone, L. Van Hoorebeke, J. Podos, J. Dirckx, P. Aerts, and A. Dominique. 2011. The head of the finch: the anatomy of the feeding system in two species of finches (Geospiza fortis and Padda oryzivora). Journal of Anatomy 219:676-695.

Gignac, P. M., and N. J. Kley. 2014. Iodine-enhanced micro-CT imaging: Methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 322:166-176.

Gignac, P. M., and G. M. Erickson. 2015. Ontogenetic changes in dental form and tooth pressures facilitate developmental niche shifts in American alligators. Journal of Zoology 295:132-142.

Gignac, P. M., and G. M. Erickson. 2016. Ontogenetic bite-force modeling of Alligator mississippiensis: implications for dietary transitions in a large-bodied vertebrate and the evolution of crocodylian feeding. Journal of Zoology 299:229-238.

Gignac, P. M., and N. J. Kley. 2018. The utility of diceCT imaging for high-throughput comparative neuroanatomical studies. Brain, Behavior and Evolution:180-190.
Gignac, P. M., N. J. Kley, J. A. Clarke, M. W. Colbert, A. C. Morhardt, D. Cerio, I. N. Cost, P. G. Cox, J. D. Daza, C. M. Early, M. S. Echols, R. M. Henkelman, A. N. Herdina, C. M. Holliday, Z. Li, K. Mahlow, S. Merchant, J. Müller, C. P. Orsbon, D. J. Paluh, M. L. Thies, H. P. Tsai, and L. M. Witmer. 2016. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. Journal of Anatomy 228:889-909.

Grant, B. R., and P. R. Grant. 1996. High survival of Darwin's Finch hybrids: effects of beak morphology and diets. Ecology 77:500-509.

Guzzi, A., M. S. Duarte Branco, and R. J. Donatelli. 2016. Cranial osteology of the genus *Sclerurus* (Passeriformes: Furnariidae). Revista de Biología Tropical 64:1155-1170.

Hernandez, E. C., Mercedes, M., Rando, J. C. 1993. Estudio Osteologico Comparado De Dos Subspecies De *Corvus Corax* (Aves: Passeriformes). Archaeofauna 2:181-190.

Holliday, C. M., and L. M. Witmer. 2007. Archosaur adductor chamber evolution: Integration of musculoskeletal and topological criteria in jaw muscle homology. Journal of Morphology 268:457-484.

James, H. F. 2004. The osteology and phylogeny of the Hawaiian finch radiation (Fringillidae: Drepanidini), including extinct taxa. Zoological Journal of the Linnean Society 141:207-255.

Jollie, M. 1958. Comments on the phylogeny and skull of the Passeriformes. The Auk 75:26-35.

Kalyakin, M. V. 2015. Morpho-functional analysis of the jaw apparatus of Vietnamese Passerine birds (Passeriformes): inferences on their trophic adaptations, ecology, and systematic position. Journal of Ornithology 156:307-315.
Lima, M. d. C., Mariano, E. F., Brito, W. J. B. d.; Souza, J. G.; Carreiro, A. N. 2019. Anatomia e morfometria cranianas de Coryphospingus pileatus (Wied, 1821) (Passeriformes:Thraupidae). Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais 14:245-253.

Moreno, J. 2009. Strategies of mass change in breeding birds. Biological Journal of the Linnean Society 37:297-310.

Moyer, A. E., W. Zheng, and M. H. Schweitzer. 2016. Microscopic and immunohistochemical analyses of the claw of the nesting dinosaur, Citipati osmolskae. Proceedings of the Royal Society B: Biological Sciences 283:20161997.

Newton, I., M. Marquiss, and A. Village. 1983. Weights, breeding, and survival in European Sparrowhawks. The Auk 100:344-354.

Norberg, R. A. 1981. Temporary weight decrease in breeding birds may result in more fledged young. The American Naturalist 118:838-850.

Nuijens, F. W., A. C. Hoek, and R. G. Bout. 2000. The role of the postorbital ligament in the Zebra Finch (Taeniopygia Guttata). Netherlands Journal of Zoology 50:75.

Podos, J., J. A. Southall, and M. R. Rossi-Santos. 2004. Vocal mechanics in Darwin's finches: correlation of beak gape and song frequency. The Journal of Experimental Biology 207:607-619.

Previatto, D. M., Posso, S. R. 2015. Jaw musculature of Cyclarhis gujanensis (Aves: Vireonidae). Brazilian Journal of Biology 75:655-661.

Previatto, D. M., Posso, S. R. 2015. Cranial Osteology of Cyclarhis gujanensis (Aves: Vireonidae). Papéis Avulsos de Zoologia 55:255-260.
Prince, P. A., C. Ricketts, and G. Thomas. 1981. Weight loss in incubating albatrosses and its implications for their energy and food requirements. The Condor 83:238-242.

Rich, P. V., A. R. McEvey, and R. F. Baird. 1985. Osteological comparison of the Scrub-birds, *Atrichornis*, and Lyrebirds, *Menura* (Passeriformes: Atrichornithidae and Menuridae). Records of the Australian Museum 37:165–191.

Sanz, J. L., L. M. Chiappe, B. P. Pérez-Moreno, J. J. Moratalla, F. Hernández-Carrasquilla, A. D. Buscalioni, F. Ortega, F. J. Poyato-Ariza, D. Rasskin-Gutman, and X. Martínez-Delclòs. 1997. A nestling bird from the Lower Cretaceous of Spain: implications for avian skull and neck evolution. Science 276:1543-1546.

Seijas, S., Trejo, A. 2011. Clave para la identificación de los Passeriformes del noroeste patagónico en base a la osteología craneal. El Hornero 26:129-147.

Starck, J. M. 1993. Evolution of Avian Ontogenies; pp. 275-366 in D. M. Power (ed.), Current Ornithology: Volume 10. Springer US, Boston, MA.

Stöcker, S., and D. Weihs. 1996. Foraging costs as a defining factor for growth and asymptotic mass. Bulletin of Mathematical Biology 58:739-751.

Sullivan, S. P., F. R. McGechie, K. M. Middleton, and C. M. Holliday. 2019. 3D muscle architecture of the pectoral muscles of European Starling (*Sturnus vulgaris*). Integrative Organismal Biology 1:1-18.

Thomas, R. 2001. The comparative osteology of european corvids (Aves: Corvidae), with a key to the identification of their skeletal elements. Tomek T, Bochenski ZM, Polish Academy of Sciences, Institute of Systemics and Evolution of Animals. Krakow, 2000.

International Journal of Osteoarchaeology 11:448-449.

Tiemeier, O. W. 1950. The os opticus of birds. Journal of Morphology 86:25-46.
Türker, I. 2012. *Pica pica* (L. 1758) ve *Garrulus glandarius* (L. 1758) (Aves: Passeriformes) türlerinin karşılaştırmalı iskelet anatomisi. Graduate School of Natural and Applied Sciences. Department of Biology, Ankara University, 134 pp.

Ujhelyi, P. 2016. Cranial morphology of European passerine bird families (Aves, Passeriformes). *Ornis Hungarica* 24:54.

Wang, S., J. Stiegler, R. Amiot, X. Wang, G.-h. Du, J. M. Clark, and X. Xu. 2017. Extreme ontogenetic changes in a ceratosaurian theropod. *Current Biology* 27:144-148.

Warter, S. 1965. The cranial osteology of the New World Tyrannoidea and its taxonomic implications. Department of Zoology and Physiology, Louisiana State University and Agricultural and Mechanical College, 171 pp.

Watanabe, A., P. M. Gignac, A. M. Balanoff, T. L. Green, N. J. Kley, and M. A. Norell. 2019. Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? *Journal of Anatomy* 234:291-305.

Whitfield, S. M., and M. A. Donnelly. 2006. Ontogenetic and seasonal variation in the diets of a Costa Rican leaf-litter herpetofauna. *Journal of Tropical Ecology*:409-417.

Tables and Figures

Table 1

Specimen	Voxel size	Voltage (kV)	Current (mA)	Exposure time (ms)
Adult Skeletal	0.07032915	100	120	200
Adult Contrast-stained	0.028752338	180	101	N/A
Table 1: Scanning parameters for the adult and fledgling black-throated finch (*P. cincta*) skeletal and contrast-stained data.

Specimen	% w/v	Staining duration (days)
Fledgling Skeletal	0.04857118	90
		110
		200
Fledgling Contrast-stained	0.014593898	147
		59
		508

Table 2: Specimen staining information; abbreviation: weight-by-volume, w/v.

Specimen	Staining solution % w/v	Staining duration (days)
Adult Contrast-stained	3%	14
Fledgling Contrast-stained	3%	10

Table 3

Muscles	Attachment sites
Musculus adductor mandibulae externus profundus (MAMEP)	Lateroventral surface of the postorbital process; Lateral surface of the lower jaw
M. adductor mandibulae externus caudalis (MAMEC)	Lateral surface in between the postorbital process and the zygomatic process; Dorsomedial and dorsal surface of the lower jaw, near the coronoid process
Muscle Name	Description
-------------	-------------
M. adductor mandibulae externus rostralis lateralis (MAMERL)	Expansive surface of the skull between the temporal fossa and otic head of the quadrate; Lateral surface of mandibulae fenestra
M. adductor mandibulae externus rostralis medialis (MAMERM)	Lateral edge of the posterior wall of the orbit; Medial surface of the mandibular fossa and coronoid process
M. adductor mandibulae externus rostralis temporalis (MAMERT)	Lateral surface in between the postorbital process and the zygomatic process; superficial to the M. adductor mandibulae externus caudalis; Joins into the M. adductor mandibulae externus rostralis medialis to reach the lateral surface of the mandibular fossa and coronoid process
M. adductor mandibulae externus ventralis (MAMEV)	Ventral surface of the zygomatic process of the squamosal; Caudodorsomedial and caudodorsal surface of the lower jaw, on the coronoid process
M. adductor mandibulae caudalis (MAMC)	The proximal half of the rostrolateral surface of the postorbital process of the quadrate; Caudodorsomedial and caudodorsal surface of the lower jaw, posterior to the coronoid process
M. depressor mandibulae (MDM)	Medioventral surface of the retro-articular process; Lateroposterior surface of the squamosal, parietal, and basisphenoid
M. protractor pterygoideus (MPP)	Lateral surface of the interorbital septum and interior surface the allosphenoid; Medial surface of the orbital process of the quadrate and the body of the quadrate
M. protractor quadratus (MPQ)	Medioposterial surface of the postorbital process and the body of the quadrate
M. pseudotemporalis profundus (MPsP)	Distal rostral surface of the orbital process of the quadrate; Ventromedial surface of coronoid process, medial surface of the mandibular fossa
M. pseudotemporalis superficialis (MPsS)	Rostral surface of the quadrate orbital process; Ventromedial surface of coronoid process
M. pterygoideus dorsalis (MPtD)	Anterodorsal surface of the palatine and anterodorsal surface of the pterygoid; Medial surface of the mandibular fossa
M. pterygoideus ventralis (MPtV)	Posterior surface of the pterygoid; Rostroventroamedial surface of the medial and ventral mandible

Table 3: Attachment sites of the jaw musculature in the black-throated finch (*P. cincta*) drawn from micro-CT and diceCT data as well as from Bock (1985) and Genbrugge et al. (2011).
Muscle	Fledgling Finch Volume (mm³)	Fledgling Finch Mass (mg)	Adult Finch Volume (mm³)	Adult Finch Mass (mg)	% Mass Difference
M. adductor mandibulae externus caudalis (MAMEC)	0.97	1.03	0.75	0.79	-23.10
M. adductor mandibulae externus profundus (MAMEP)	2.31	2.44	1.13	1.19	-51.21
M. adductor mandibulae externus rostralis lateralis (MAMERL)	3.46	3.65	1.63	1.72	-52.80
M. adductor mandibulae externus rostralis medialis (MAMERM)	0.86	0.91	0.54	0.57	-37.47
M. adductor mandibulae externus rostralis temporalis (MAMERT)	0.92	0.97	0.87	0.92	-4.98
M. adductor mandibulae externus ventralis (MAMEV)	1.22	1.29	1.12	1.19	-37.96
M. adductor mandibulae caudalis (MAMC)	2.11	2.23	1.12	1.19	-46.86
M. depressor mandibulae (MDM)	3.65	3.86	4.98	5.26	36.31
M. protractor pterygoideus (MPP)	1.26	1.33	1.45	1.53	15.00
M. protractor quadratus (MPQ)	0.51	0.54	0.46	0.48	-10.20
M. pseudotemporalis profundus (MPsP)	3.07	3.24	2.48	2.62	-19.09
M. pseudotemporalis superficialis (MPsS)	2.99	3.16	1.82	1.92	-39.24
M. pterygoideus dorsalis (MPtD)	3.92	4.14	2.49	2.63	-36.59
M. pterygoideus ventralis (MPtV)	8.61	9.09	7.86	8.30	-8.65

Table 4: The jaw muscle measurements of the adult and fledgling black-throated finch (*P. cincta*).
Figure 1: Skull of fledgling black-throat finch in A: lateral view. B: Ventral view without the hyoid and mandible. Skull of adult black-throat finch in C: lateral view. D: Ventral view without the hyoid and mandible. Scale bar represents 5mm. Abbreviations: f.mand.caud., caudal mandibular fenestra; jug.bar, jugal bar; os epi., osseous epiphyal; os opt., osseous opticus; os pal., osseous palatine; os pter., osseous pterygoid; os quad., osseous quadrates; proc.antorb., antorbital process; proc.orb.qd., orbital process of the quadrates; proc.postorb., postorbital process; proc.zyg., zygomatic process; scl.ring, sclerotic ring; sept.interorb., interorbital septum
Figure 2: Mandible in the adult black-throat finch. A: oblique view. B: dorsal view. C: posterior view. Scale bar represents 1mm. Abbreviations: cond.caud., caudal condyle; cond.lat., lateral condyle; f.mand.caud., caudal mandibular fenestra; proc.cor., coronoid process; proc.mand.lat., lateral mandibular process; proc.mand.med., medial mandibular process; tub.intercot., tuberculum intercotylaris; tub.ps.temp.: tuberculum pseudotemporalis
Figure 3: The hyoid in dorsal view. A: fledgling. B: adult. Scale bar indicates 1mm. Abbreviations: os bas., osseous basihyal; os cera., osseous cerahyal; os epi., osseous ephyal; os uro., osseous urohyal; proc.para., paraglossal process
Superficial jaw musculature of black-throat finch in lateral view. A: fledgling. B: adult. Scale bar is 5mm. Abbreviations: MAMEP, M. adductor mandibular externus profundus; MAMERL, M. adductor mandibular externus rostralis lateralis; MAMERT, M. adductor mandibular externus rostralis temporalis; MAMEV, M. adductor mandibular externus ventralis; MAMC, M. adductor mandibular caudalis; MDM, M. depressor mandibulae; MPP, M. protractor pterygoideus; MPSP, M. pseudotemporalis profundus; MPSS, M. pseudotemporalis superficialis; MPTD, M. pterygoideus dorsalis; MPTV, M. pterygoideus ventralis.

167x57mm (300 x 300 DPI)
Oblique view of black-throat finch skull. A: All jaw musculature in fledgling. B: Only the profundal jaw musculature in fledgling. C: All jaw musculature in adult. D: Only the profundal jaw musculature in adult. Scale bar represents 1mm. Abbreviations: MAMEC, M. adductor mandibulae externus caudalis; MAMEP, M. adductor mandibulae externus profundus; MAMERL, M. adductor mandibulae externus rostralis lateralis; MAMERM, M. adductor mandibulae externus rostralis medialis; MAMERT, M. adductor mandibulae externus rostralis temporalis; MAMEV, M. adductor mandibulae externus ventralis; MAMC, M. adductor mandibularis caudalis; MDM, M. depressor mandibulae; MPP, M. protractor pterygoideus; MPQ, M. protractor quadratus; MPsP, M. pseudotemporalis profundus; MPsS, M. pseudotemporalis superficialis; MPTD, M. pterygoideus dorsalis; MPTV, M. pterygoideus ventralis.

165x207mm (300 x 300 DPI)