A NOTE ON SOLVABLE MAXIMAL SUBGROUPS IN SUBNORMAL SUBGROUPS OF $GL_n(D)$

HUYNH VIET KHANH AND BUI XUAN HAI

Abstract. Let D be a non-commutative division ring, G a subnormal subgroup of $GL_n(D)$. In this note we show that if G contains a non-abelian solvable maximal subgroup, then $n = 1$ and D is a cyclic algebra of prime degree over F.

1. Introduction

In the theory of skew linear groups, one of unsolved difficult problems is that whether the general skew linear group over a division ring contains maximal subgroups. In [1], the authors conjectured that for $n \geq 2$ and a division ring D, the group $GL_n(D)$ contains no solvable maximal subgroups. In [2], this conjecture was shown to be true for non-abelian solvable maximal subgroups. In this paper, we consider the following more general conjecture.

Conjecture 1. Let D be a division ring, G a non-central subnormal subgroup of $GL_n(D)$. If $n \geq 2$, then G contains no solvable maximal subgroups.

We note that this conjecture is not true if $n = 1$. Indeed, in [1], it was proved that the subgroup $C^* \cup C^*j$ is solvable maximal in the multiplicative group H^* of the division ring of real quaternions H. In this note, we show that Conjecture 1 is true for non-abelian solvable maximal subgroups of G, that is, G contains no non-abelian solvable maximal subgroups. This fact generalizes the main result in [2] and it is a consequence of Theorem 3.7 in the text.

2. Throughout this note, D is a division ring with center F and D^* denotes the multiplicative group of D. For a positive integer n, $M_n(D)$ is the matrix ring of degree n over D. We identify F with $F I_n$ via the ring isomorphism $a \mapsto a I_n$, where I_n is the identity matrix of degree n. If S is a subset of $M_n(D)$, then $F[S]$ denotes the subring of $M_n(D)$ generated by the set $S \cup F$. Also, if $n = 1$, i.e., if $S \subseteq D$, then $F(S)$ is the division subring of D generated by $S \cup F$. Recall that a division ring D is locally finite if for every finite subset S of D, the division subring $F(S)$ is a finite dimensional vector space over F. If H and K are two subgroups in a group G, then $N_K(H)$ denotes the set of all elements $k \in K$ such that $k^{-1} H k \leq H$, i.e., $N_K(H) = K \cap N_G(H)$. If A is a ring or a group, then $Z(A)$ denotes the center of A.

Key words and phrases. division ring; maximal subgroup; solvable group; polycyclic-by-finite group.

2010 Mathematics Subject Classification. 12E15, 16K20, 16K40, 20E25.

The second author was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.04-2016.18.
Let $V = D^n = \{ (d_1, d_2, \ldots, d_n) | d_i \in D \}$. If G is a subgroup of $\text{GL}_n(D)$, then V may be viewed as D-G bimodule. Recall that a subgroup G of $\text{GL}_n(D)$ is irreducible (resp. reducible, completely reducible) if V is irreducible (resp. reducible, completely reducible) as D-G bimodule. If $F'[G] = M_n(D)$, then G is absolutely irreducible over D. An irreducible subgroup G is imprimitive if there exists an integer $m \geq 2$ such that $V = \bigoplus_{i=1}^m V_i$ as left D-modules and for any $g \in G$ the mapping $V_i \to V_ig$ is a permutation of the set $\{ V_1, \ldots, V_m \}$. If G is irreducible and not imprimitive, then G is primitive.

2. Auxiliary lemmas

Lemma 2.1. Let D be a division ring with center F, and M a subgroup of $\text{GL}_n(D)$. If $M/M \cap F^*$ is a locally finite group, then $F[M]$ is a locally finite dimensional vector space over F.

Proof. Take any finite subset $\{ x_1, x_2, \ldots, x_k \} \subseteq F[M]$ and write

$$x_i = f_{i_1} m_{i_1} + f_{i_2} m_{i_2} + \cdots + f_{i_s} m_{i_s}.$$

Let $G = \langle m_{i_j} : 1 \leq i \leq k, 1 \leq j \leq s \rangle$ be the subgroup of M generated by all m_{i_j}. Since $M/M \cap F^* \cong MF^*/F^*$ is locally finite, the group GF^*/F^* is finite. Let $\{ y_1, y_2, \ldots, y_t \}$ be a transversal of F^* in GF^* and set

$$R = Fy_1 + Fy_2 + \cdots + Fy_t.$$

Then, R is a finite dimensional vector space over F containing $\{ x_1, x_2, \ldots, x_k \}$. □

Lemma 2.2. Every locally solvable periodic group is locally finite.

Proof. Let G be a locally solvable periodic group, and H be a finitely generated subgroup of G. Then, H is solvable with derived series of length $n \geq 1$, say,

$$1 = H^{(n)} \lhd H^{(n-1)} \lhd \cdots \lhd H' \lhd H.$$

We shall prove that H is finite by induction on n. For if $n = 1$, then H is a finitely generated periodic abelian group, so it is finite. Suppose $n > 1$. It is clear that H/H' is a finitely generated periodic abelian group, so it is finite. Hence, H' is finitely generated. By induction hypothesis, H' is finite, and as a consequence, H is finite. □

Lemma 2.3. Let D be a division ring with center F, and G a subnormal subgroup of D^*. If G is soluble-by-finite, then $G \subseteq F$.

Proof. Let A be a soluble normal subgroup of finite index in G. Since G is subnormal in G, so is A. By [L9] 14.4.4, we have $A \subseteq F$. This implies that $G/Z(G)$ is finite, so G' is finite too. Therefore, G' is a finite subnormal subgroup of D^*. In view of [K] Theorem 8), it follows that $G' \subseteq F$, hence G is solvable. Again by [L9] 14.4.4, we conclude that $G \subseteq F$.

For our further use, we also need one result of Wehrfritz which will be restated in the following lemma for readers’ convenience.

Lemma 2.4. [L6] Proposition 4.1] Let $D = E(A)$ be a division ring generated as such by its metabelian subgroup A and its division subring E such that $E \leq C_D(A)$. Set $H = N_D(A), B = C_A(A'), K = E(Z(B)), H_1 = N_K(A) = H \cap K^*$, and let T be the maximal periodic normal subgroup of B.
Proposition 3.1. Let D be a division ring with center F, and G a subnormal subgroup of D^*. If M is a non-abelian solvable-by-finite maximal subgroup of G, then M is abelian-by-finite and $[D : F] < \infty$.

Proof. Since M is maximal in G and $M \subseteq F(M)^* \cap G \subseteq G$, either $M = F(M)^* \cap G$ or $G \subseteq F(M)^*$. The first case implies that M is a solvable-by-finite subnormal subgroup of $F(M)^*$, which yields M is abelian by Lemma 2.3 a contradiction. Therefore, the second case must occur, i.e., $G \subseteq F(M)^*$. By Stuth’s theorem (see e.g. [13], 14.3.8), we conclude that $F(M) = D$. Let N be a solvable normal subgroup of finite index in M. First, we assume that N is abelian, so M is abelian-by-finite. In view of [17], Corollary 24], the ring $F[N]$ is a Goldie ring, and hence it is an Ore domain whose skew field of fractions coincides with $F(N)$. Consequently, any $\alpha \in F(N)$ may be written in the form $\alpha = pq^{-1}$, where $q, p \in F[N]$ and $q \neq 0$. The normality of N in M implies that $F[N]$ is normalized by M. Thus, for any $m \in M$, we have

$$mam^{-1} = mpq^{-1}m^{-1} = (mpm^{-1})(m^{-1}qm)^{-1} \in F(N).$$

In other words, $L := F(N)$ is a subfield of D normalized by M. Let $\{x_1, x_2, \ldots, x_k\}$ be a transversal of N in M and set

$$\Delta = Lx_1 + Lx_2 + \cdots + Lx_k.$$

Then, Δ is a domain with $\dim_\mathbb{F} \Delta \leq k$, so Δ is a division ring that is finite dimensional over its center. It is clear that Δ contains F and M, so $D = \Delta$ and $[D : F] < \infty$.

Next, we suppose that N is a non-abelian solvable group with derived series of length $s \geq 1$. Then we have such a series

$$1 = N^{(s)} \leq N^{(s-1)} \leq \cdots \leq N' \leq N \leq M.$$

If we set $A = N^{(s-2)}$, then A is a non-abelian metabelian normal subgroup of M. By the same arguments as above, we conclude that $F(A)$ is normalized by M and we have $M \subseteq N_G(F(A)^*) \subseteq G$. By the maximality of M in G, either $N_G(F(A)^*) = M$ or $N_G(F(A)^*) = G$. If the first case occurs, then $G \cap F(A)^*$ is a subnormal subgroup of $F(A)^*$ contained in M. Since M is solvable-by-finite, so is $G \cap F(A)^*$. By Lemma 2.3 $A \subseteq G \cap F(A)^*$ is abelian, a contradiction. We may therefore assume that $N_G(F(A)) = G$, which says that $F(A)$ is normalized by G. In view of Stuth’s theorem, we have $F(A) = D$. From this we conclude that $Z(A) = F^* \cap A$ and $F = C_D(A)$. Set $H = N_{D^*}(A)$, $B = C_A(A')$, $K = F(Z(B))$, $H_1 = H \cap K^*$, and T to be the maximal periodic normal subgroup of B. Then H_1 is an abelian group, T is a characteristic subgroup of B and hence of A. In view of Lemma 2.4 we have three possible cases:

Case 1: T is not abelian.
Since T is normal in M, we conclude that $M \subseteq N_G(F(T)^*) \subseteq G$. By the maximality of M in G, either $M = N_G(F(T)^*)$ or $G = N_G(F(T)^*)$. The first case implies that $F(T)^* \cap G$ is subnormal in $F(T)^*$ contained in M. Again by Lemma 2.2, it follows that $T \subseteq F(T) \cap G$ is abelian, a contradiction. Thus, we may assume that $G = N_G(F(T)^*)$, which implies that $F(T) = D$ by Stuth’s theorem. By Lemma 2.2, T is locally finite. In view of Lemma 2.1 we conclude that D is a locally finite division ring. Since M is solvable-by-finite, it contains no non-cyclic free subgroups. In view of [5, Theorem 3.1], it follows $[D:F] < \infty$ and M is abelian-by-finite.

Case 2: T is abelian and contains an element x of order 4 not in the center of $B = C_A(A')$.

It is clear that x is not contained in F. Because x is of finite order, the field $F(x)$ is algebraic over F. Since (x) is a 2-primary component of T, it is a characteristic subgroup of T (see the proof of [13, Theorem 1.1, p.132]). Consequently, (x) is a normal subgroup of M. Thus, all elements of the set $x^M := \{m^{-1}xm | m \in M\} \subseteq F(x)$ have the same minimal polynomial over F. This implies $|x^M| < \infty$, so x is an FC-element, and consequently, $[M : C_M(x)] < \infty$. Setting $C = \text{core}_M(C_M(x))$, then $C \trianglelefteq M$ and $[M : C]$ is finite. Since M normalizes $F(C)$, we have $M \subseteq N_G(F(C)^*) \subseteq G$. By the maximality of M in G, either $N_G(F(C)^*) = M$ or $N_G(F(C)^*) = G$. The last case implies that $F(C) = D$, and consequently, $x \in F$, a contradiction. Thus, we may assume that $N_G(F(C)^*) = M$. From this, we conclude that $G \cap F(C)^*$ is a subnormal subgroup of $F(C)^*$ which is contained in M. Thus, $C \subseteq G \cap F(C)^*$ is abelian by [13, 14.4.4]. Therefore, C is an abelian normal subgroup of finite index in M. By the same arguments used in the first paragraph we conclude that $[D:F] < \infty$.

Case 3: $H = AH_1$.

Since $A' \subseteq H_1 \cap A$, we have $H/H_1 \cong A/A \cap H_1$ is abelian, and hence $H' \subseteq H_1$. Since H_1 is abelian, H' is also abelian. Moreover, $M \subseteq H_1$, it follows that M' is also abelian. In other words, M is a metabelian group, and the conclusions follow from [4, Theorem 3.3]. \qed

Let D be a division ring, and G a subnormal subgroup of D^*. It was showed in [4, Theorem 3.3] that if G contains a non-abelian metabelian maximal subgroup, then D is cyclic of prime degree. The following theorem generalizes this phenomenon.

Theorem 3.2. Let D be a division ring with center F, and G a subnormal subgroup of D^*. If M is a non-abelian solvable maximal subgroup of G, then the following conditions hold:

(i) There exists a maximal subfield K of D such that K/F is a finite Galois extension with $\text{Gal}(K/F) \cong M/K^* \cap G \cong \mathbb{Z}_p$ for some prime p, and $[D:F] = p^2$.

(ii) The subgroup $K^* \cap G$ is the FC-center. Also, $K^* \cap G$ is the Fitting subgroup of M. Furthermore, for any $x \in M \setminus K$, we have $x^p \in F$ and $D = F[M] = \bigoplus_{i=1}^{p} Kx^i$.
Theorem 3.4. Let D be a division ring with center F, G be a subnormal subgroup of D^*, and M be a non-abelian maximal subgroup of G. Then M cannot be finitely generated solvable-by-finite. In particular, M cannot be polycyclic-by-finite.

Proof. Suppose that M is solvable-by-finite. Then by Proposition 3.1, we conclude that $[D : F] < \infty$. In view of 10, Corollary 3, it follows that M is not finitely generated. The rest of the corollary is clear.

Theorem 3.4. Let D be a non-commutative locally finite division ring with center F, and G a subnormal subgroup of $GL_n(D)$, $n \geq 1$. If M is a non-abelian solvable maximal subgroup of G, then $n = 1$ and all conclusions of Theorem 3.2 hold.

Proof. By 5, Theorem 3.1, there exists a maximal subfield K of $M_n(D)$ containing F such that $K^* \cap G$ is a normal subgroup of M and $M/K^* \cap G$ is a finite simple group of order $[K : F]$. Since $M/K^* \cap G$ is solvable and simple, we conclude $M/K^* \cap G \cong \mathbb{Z}/p$, for some prime number p. It follows that $[K : F] = p$ and $[M_n(D) : F] = p^2$, from which we have $n = 1$. Finally, all conclusions follow from Theorem 3.2.

Lemma 3.5. Let R be a ring, and G a subgroup of R^*. Assume that F is a central subfield of R and A is a minimal abelian subgroup of G such that $K = F[A]$ is normalized by G. Then $F[G] = \bigoplus_{g \in T} Kg$ for every transversal T of A in G.

Proof. For the proof of this lemma, we use the similar techniques as in the proof of 2, Lemma 3.1. Since K is normalized by G, it follows that $F[G] = \sum_{g \in T} Kg$ for every transversal T of A in G. Therefore, it suffices to prove that every finite subset of $\{g_1, g_2, \ldots, g_n\} \subseteq T$ is linearly independent over K. Assume by contradiction that there exists such a non-trivial relation $k_1g_1 + k_2g_2 + \cdots + k_ng_n = 0$, with n chosen minimal. The minimality of n implies $g_2g_1^{-1} \notin K$, and hence $g_2g_1^{-1} \notin A = C_G(A)$. Thus, there exists an element $x \in A$ such that $g_2g_1^{-1}x \neq xg_1^{-1}g_2$. For each $1 \leq i \leq n$, if we set $x_i = g_i^{-1}x$, then $x_i \neq x_j$. Since G normalizes K, it follows $x_i \in K^*$ for all $1 \leq i \leq n$. Now, we have

$$(k_1g_1 + \cdots + k_ng_n)x - x_1(k_1g_1 + \cdots + k_ng_n) = 0.$$
Consequently,

\[(x_2 - x_1)k_2^2g_2 + \cdots + (x_n - x_1)k_ng_n = 0,\]

which is a non-trivial relation. This contradicts the minimal choice of \(n\). Therefore, \(T\) is linearly independent over \(K\). \(\square\)

Remark 1. In view of [8, Theorem 11], if \(D\) is a division ring with at least five elements and \(n \geq 2\), then any non-central subnormal subgroup of \(\text{GL}_n(D)\) contains SL\(_n(D)\) and hence is normal.

Theorem 3.6. Let \(D\) be non-commutative division ring with center \(F\), and \(G\) a subnormal subgroup of \(\text{GL}_n(D)\), \(n \geq 2\). Assume additionally that \(F\) contains at least five elements. If \(M\) is a solvable maximal subgroup of \(G\), then \(M\) is abelian.

Proof. Setting \(R = F[M]\), then \(M \subseteq R^* \cap G \subseteq G\). By the maximality of \(M\) in \(G\), either \(R^* \cap G = M\) or \(G \subseteq R^*\). We need to consider two possible cases:

Case 1: \(R^* \cap G = M\).

By Remark 1, \(M\) is a normal subgroup of \(R^*\). If \(M\) is reducible, then by [7, Lemma 1], it contains a copy of \(D^*\). Consequently, \(D^*\) is solvable, and hence it is commutative, a contradiction. We may therefore assume that \(M\) is irreducible. Consequently, \(R\) is a prime ring by [14, 1.1.14]. So, in view of [8, Theorem 2], either \(M \subseteq Z(R)\) or \(R\) is a domain. If the first case occurs, then we are done. Now, suppose that \(R\) is a domain. By [17, Corollary 24], we conclude that \(R\) is a Goldie ring, and hence \(R\) is an Ore domain. Let \(\Delta_1\) be the skew field of fractions of \(R\), which is contained in \(M_n(D)\) by [14, 5.7.8]. Since \(M \subseteq \Delta_1 \cap G \subseteq G\), either \(G \subseteq \Delta_1\) or \(M = \Delta_1 \cap G\). The first case implies \(\Delta_1 = M_n(D)\), which is impossible since \(n \geq 2\). Thus \(M = \Delta_1 \cap G\), and hence \(M\) is normal in \(\Delta_1^*\). Since \(M\) is solvable, it is contained in \(Z(\Delta_1)\) by [13, 14.4.4], so \(M\) is abelian.

Case 2: \(G \subseteq R^*\).

In this case, remark 1 yields \(\text{SL}_n(D) \subseteq R^*\). Thus, by the Cartan-Brauer-Hua Theorem for the matrix ring, one has \(R = F[M] = M_n(D)\). According to [13, Theorem A], \(M\) is abelian-by-locally finite. Let \(A\) be a maximal abelian normal subgroup of \(M\) such that \(M/A\) is locally finite. By [14, 1.2.12], \(F[A]\) is a semisimple artinian ring. The Wedderburn-Artin Theorem implies that

\[F[A] \cong M_{n_1}(D_1) \times M_{n_2}(D_2) \cdots \times M_{n_s}(D_s),\]

where \(D_i\) are division \(F\)-algebras, \(1 \leq i \leq s\). Since \(F[A]\) is abelian, \(n_i = 1\) and \(K_i := D_i = Z(D_i)\) are fields that contain \(F\) for all \(i\). Therefore,

\[F[A] \cong K_1 \times K_2 \cdots \times K_s.\]

If \(M\) is imprimitive, then by [5, Lemma 2.6], we conclude that \(M\) contains \(\text{SL}_r(D)\) for some \(r > 1\). This is impossible since \(\text{SL}_r(D)\) is unsolvable if \(r > 1\). It follows that \(M\) is primitive. Therefore, in view of [2, Proposition 3.3], \(F[A]\) is an integral domain, so \(s = 1\). Hence, \(K := F[A]\) is a subfield of \(M_n(D)\) containing \(F\). Again by [2, Proposition 3.3], we conclude that \(L := C_{M_n(D)}(K) \cong M_n(\Delta_2)\) for some division \(F\)-algebra \(\Delta_2\). Since \(M\) normalizes \(K\), it also normalizes \(L\). Therefore, we have \(M \subseteq N_G(L^*) \subseteq G\). By the maximality of \(M\) in \(G\), either \(M = N_G(L^*)\) or \(G = N_G(L^*)\). The last case implies that \(L^*\) is normal in \(\text{GL}_n(D)\). By the Cartan-Brauer-Hua Theorem for the matrix ring, either \(L \subseteq F\) or \(L = M_n(D)\). If
\(L \subseteq F \) then \(M_n(D) = K = F[A] \) is a field, a contradiction. If \(L = M_n(D) \), then \(K = F[A] \subseteq F \). Consequently, \(M/M \cap F^* \) is locally finite, and hence \(D \) is a locally finite division ring by Lemma 24. If \(M \) is non-abelian, then by Theorem 23 we conclude that \(n = 1 \), a contradiction. Therefore \(M \) is abelian in this case. Now, we consider the case \(M = N_G(L^*) \), from which we have \(L^* \cap G \subseteq M \). In other words, \(L^* \cap G \) is a solvable normal subgroup of \(GL_m(\Delta_2) \). If \(m > 1 \), then in view of Remark 1 one has \(L^* \cap G \subseteq Z(\Delta_2) \) or \(SL_m(D) \subseteq L^* \cap G \). The last case implies that \(SL_2(\Delta_2) \) is solvable, a contradiction. Thus, we have \(L^* \cap G \subseteq Z(\Delta_2) \). If \(m = 1 \) then \(L = \Delta_2 \). According to \([13, 14.4.4] \), we conclude that \(L^* \cap G \subseteq Z(\Delta_2) \). In any case, \(L^* \cap G \) is an abelian normal subgroup of \(M \) and \(M/L^* \cap G \) is locally finite. By the maximality of \(A \) in \(M \), it follows \(A = L^* \cap G = L^* \cap M = C_M(A) \). In other words, \(A \) is a maximal abelian subgroup of \(M \).

By Lemma 3.5 \(F[M] = \oplus_{m \in T} K_m \) for some transversal \(T \) of \(A \) in \(M \). Thus, for any \(x \in L \), there exist \(k_1, k_2, \ldots, k_t \in K \) and \(m_1, m_2, \ldots, m_t \in T \) such that \(x = k_1m_1 + k_2m_2 + \cdots + k_tm_t \). Take an arbitrary element \(a \in A \), by the normality of \(A \) in \(M \), there exist \(a_i \in A \) such that \(ma_i = a_im_i \) for all \(1 \leq i \leq t \). Since \(xa = ax \), it follows

\[
(k_1a_1 - k_1a)m_1 + (k_2a_2 - k_2a)m_2 + \cdots + (k_ta_t - k_ta)m_t = 0.
\]

Because \(\{m_1, m_2, \ldots, m_t\} \) is linearly independent over \(K \), we have \(a = a_1 = \cdots = a_t \). Consequently, \(ma_i = a_im_i \) for all \(a \in A \), and thus \(m_1 \in C_M(A) = A \) for all \(1 \leq i \leq t \). This means \(x \in K \), and hence \(L = K \).

Next, we prove that \(M/A \) is simple. Suppose that \(N \) is an arbitrary normal subgroup of \(M \) properly containing \(A \). Note that by the maximality of \(A \) in \(M \), we conclude that \(N \) is non-abelian. We claim that \(Q := F[N] = M_n(D) \). Indeed, since \(N \) is normal in \(M \), we have \(M \subseteq N_G(Q^*) \subseteq G \), and hence either \(N_G(Q^*) = M \) or \(N_G(Q^*) = G \). First, we suppose the former case occurs. Then \(Q^* \cap G \subseteq M \), hence \(Q^* \cap G \) is a solvable normal subgroup of \(R^* \). In view of \([2, Proposition 3.3] \), \(Q \) is a prime ring. It follows by \([8, Theorem 2] \) that either \(Q^* \cap G \subseteq Z(Q) \) or \(Q \) is a domain. If the first case occurs, then \(N \subseteq Q^* \cap G \) is abelian, which contradicts to the choice of \(N \). If \(Q \) is a domain, then by Goldie’s theorem, it is an Ore domain. Let \(\Delta_2 \) be the skew field of fractions of \(Q \), which is contained in \(M_n(D) \) by \([14, 5.7.8] \). Because \(M \) normalizes \(Q \), it also normalizes \(\Delta_2 \), from which we have \(M \subseteq N_G(\Delta_2^*) \subseteq G \). Again by the maximality of \(M \) in \(G \), either \(N_G(\Delta_2^*) = M \) or \(N_G(\Delta_2^*) = G \). The first case implies that \(\Delta_2^* \cap G \) is a solvable normal subgroup of \(\Delta_2^* \). Consequently, \(N \subseteq \Delta_2^* \cap G \) is abelian by \([13, 14.4.4] \), a contradiction. If \(N_G(\Delta_2^*) = G \), then \(\Delta_2 = M_n(D) \) by Stuth’s theorem, which is impossible since \(n \geq 2 \). Therefore, the case \(N_G(Q^*) = M \) cannot occur. Next, we consider the case \(N_G(Q^*) = G \). In this case we have \(Q^* \cap G \subseteq G \), hence \(SL_n(D) \subseteq Q^* \). By the Cartan-Brauer-Hua theorem for the matrix ring, we conclude \(Q = M_n(D) \) as claimed. In other words, we have \(F[N] = F[M] = M_n(D) \).

For any \(m \in M \subseteq F[N] \), there exist \(f_1, f_2, \ldots, f_s \in F \) and \(n_1, n_2, \ldots, n_s \in N \) such that

\[
m = f_1n_1 + f_2n_2 + \cdots + f_sn_s.
\]

Let \(H = \langle n_1, n_2, \ldots, n_s \rangle \) be the subgroup of \(N \) generated by \(n_1, n_2, \ldots, n_s \). Set \(B = AH \) and \(S = F[B] \). Since \(M/A \) is locally finite, the group \(B/A \) is finite. Let \(\{x_1, \ldots, x_k\} \) be a transversal of \(A \) in \(B \). The maximality of \(A \) in \(M \) implies that \(A \)
is a maximal abelian subgroup of B that is also normal in B. By Lemma 3.3

$$S = Kx_1 \oplus Kx_2 \oplus \cdots \oplus Kx_k,$$

which says that S is an artinian ring. Since $C_{M_n(D)}(A) = L$ is a field, in view of \cite[Proposition 3.3]{2}, A is irreducible. Because B contains A, it is irreducible too. By \cite[1.1.14]{14}, it follows that S is a prime ring. Now, S is both prime and artinian, so it is simple and $S \cong M_{n_0}(\Delta_0)$ for some division F-algebra Δ_0. If we set $F_0 = Z(\Delta_0)$, then $Z(S) = F_0$. Since B is abelian-by-finite, the group ring FB is a PI-ring by \cite[Lemma 11, p.176]{12}. Thus, as a homomorphic image of FB, the ring $S = F[B]$ is also a PI-ring. By Kaplansky’s theorem, we conclude that $[S : F_0] < \infty$.

If we set $K_0 = F_0[A]$, then $K \subseteq K_0$ and $F_0[B] = S$. By Lemma 3.3 we conclude that $S = K_0x_1 \oplus \cdots \oplus K_0x_k$. For dimensional reason, one has $K = K_0$ and $F_0 \subseteq K$. Hence K is a finite extension field over F_0. Recall that A is normal in B, so for any $b \in B$, the mapping $\theta_b : K \rightarrow K$ given by $\theta_b(x) = bxb^{-1}$ is well defined. It is clear that θ_b is an F_0-automorphism of K. Thus, the mapping

$$\psi : B \rightarrow \text{Gal}(K/F_0)$$

defined by $\psi(b) = \theta_b$ is a group homomorphism with

$$\ker\psi = C_B(K^*) = C_B(A) = A.$$

Since $F_0[B] = S$, it follows that $C_S(B) = F_0$. Therefore, the fixed field of $\psi(B)$ is F_0, and hence K/F_0 is a Galois extension. By the fundamental theorem of Galois theory, one has ψ is a surjective homomorphism. Hence, $B/A \cong \text{Gal}(K/F_0)$.

Setting $M_0 = M \cap S^*$, then $B \subseteq M_0$ and $F_0[M_0] = F_0[B] = S$. It is clear that A is a maximal abelian subgroup of M_0 that is also normal in M_0. By replacing B by M_0 and by the same arguments used in the preceding paragraph, we also have $M_0/A \cong \text{Gal}(K/F_0)$. Consequently, $B/A \cong \text{Gal}(K/F_0) \cong M_0/A$. The conditions $B \subseteq M_0$ and $B/A \cong M_0/A$ imply $B = M_0$. Hence, $m \in M_0 = B \subseteq N$. Since m was chosen arbitrarily, it follows that $M = N$, which implies the simplicity of M/A. Since M/A is simple and solvable, one has $M/A \cong Z_p$, for some prime number p. By Lemma 3.3 it follows $\dim_K M_n(D) = |M/A| = p$, which forces $n = 1$, a contradiction.

Now, we are ready to get the main result of this note which gives in particular, the positive answer to Conjecture 4 for non-abelian case.

Theorem 3.7. Let D be a non-commutative division ring with center F, G a subnormal subgroup of $\text{GL}_n(D)$. Assume additionally that F contains at least five elements if $n > 1$. If M is a non-abelian solvable maximal subgroup of G, then $n = 1$ and the following conditions hold:

(i) There exists a maximal subfield K of D such that K/F is a finite Galois extension with $\text{Gal}(K/F) \cong M/K^* \cap G \cong Z_p$ for some prime p, and $[D : F] = p^2$.

(ii) The subgroup $K^* \cap G$ is the FC-center. Also, $K^* \cap G$ is the Fitting subgroup of M. Furthermore, for any $x \in M \setminus K$, we have $x^p \in F$ and $D = F[M] = \bigoplus_{i=1}^p Kx^i$.

Proof. Combining Theorem 3.2 and Theorem 3.6 we get the results. \qed
REFERENCES

[1] S. Akbari, R. Ebrahimian, H. Momenee Kermani, and A. Salehi Golsefidy, “Maximal subgroups of $GL_n(D)$”, *J. Algebra* **259** (2003) 201-225.

[2] H. R. Dorbidi, R. Fallah-Moghaddam, and M. Mahdavi-Hezavehi, “Soluble maximal subgroups in $GL_n(D)$”, *J. Algebra Appl.* **10**(6) 2013-1382.

[3] P. Draxl, *Skew Fields*, London Math. Soc. Lecture Note Ser. **81** (Cambridge University Press, 1983).

[4] B. X. Hai and N. A. Tu, “On multiplicative subgroups in division rings”, *J. Algebra Appl.* **15**(3) (2016) 1650050 (16 pages).

[5] B. X. Hai and H. V. Khanh, “On free subgroups in maximal subgroups of skew linear groups”, *arXiv:1808.08539v1 [math.RA]*.

[6] I. N. Herstein, “Multiplicative commutators in division rings”, *Israel J. Math.* **31** (1978), 180-188.

[7] D. Kiani, “Polynomial identities and maximal subgroups of skew linear groups”, *Manuscripta Math.* **124** (2007) 209-274.

[8] C. Lanski, “Solvable subgroups in prime rings”, *Proc. Amer. Math. Soc.* **82** (1981) 533-537.

[9] M. Mahdavi-Hezavehi and S. Akbari, “Some special subgroups of $GL_n(D)$”, *Algebra Colloq.* **5**(4) (1998) 361-370.

[10] M. Mahdavi-Hezavehi, M. G. Mahmudi, and S. Yasamin, “Finitely generated subnormal subgroups of $GL_n(D)$ are central”, *J. Algebra* **225** (2000) 517-521.

[11] M. Ramezan-Nassab and D. Kiani, “Nilpotent and polycyclic-by-finite maximal subgroups of skew linear groups”. *J. Algebra* **399** (2014), 269-276.

[12] D. S. Passman, *The algebraic structure of group rings* (New York: Wiley- Interscience Publication, 1977).

[13] R. W. Scott, *Group Theory* (Dover Publication, INC, 1987).

[14] M. Shirvani and B. A. F. Wehrfritz, *Skew Linear Groups* (Cambridge Univ. Press, 1986).

[15] B. A. F. Wehrfritz, “Soluble normal subgroups of skew linear groups”, *J. Pure Appl. Algebra* **42** (1986) 95-107.

[16] B. A. Wehrfritz, “Normalizers of nilpotent subgroups of division rings”, *Q. J. Math.* **58** (2007) 127-135.

[17] B. A. F. Wehrfritz, “Goldie subrings of Artinian rings generated by groups”, *Q. J. Math. Oxford* **40** (1989) 501-512.

Faculty of Mathematics and Computer Science, VNUHCM - University of Science, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam.

E-mail address: huynhvietkhanh@gmail.com; bxhai@hcmus.edu.vn