ON PROJECTIVE MODULES OVER FINITE QUANTUM GROUPS

CRISTIAN VAY

Abstract. Let D be the Drinfeld double of the bosonization $B(V)^{\#}kG$ of a finite-dimensional Nichols algebra $B(V)$ over a finite group G. It is known that the simple D-modules are parametrized by the simple modules over $D(G)$, the Drinfeld double of G. This parametrization can be obtained by considering the head $L(\lambda)$ of the Verma module $M(\lambda)$ for every simple $D(G)$-module λ. In the present work, we show that the projective D-modules are filtered by Verma modules and the BGG Reciprocity $[P(\mu) : M(\lambda)] = [M(\lambda) : L(\mu)]$ holds for the projective cover $P(\mu)$ of $L(\mu)$. We use graded characters to proof the BGG Reciprocity and obtain a graded version of it. As a by-product we show that a Verma module is simple if and only if it is projective. We also describe the tensor product between projective modules.

1. Introduction

The representation theory of the universal enveloping algebras of Lie algebras has plenty of powerful and beautiful methods and results which have served as inspiration to the study of modules over many other algebras. The first property that was extended to other contexts is that the simple modules are in bijective correspondence with the simple modules of the Cartan subalgebra. This was made by several authors for the Drinfeld double D of the bosonization $B(V)^{\#}kG$ of a finite-dimensional Nichols algebra $B(V)$ over a finite group G; see for instance [5, 7, 16, 29] for G abelian, and [21, 22, 26] for general G. In these works $D(G)$, the Drinfeld double of the underlying group, plays the role of the Cartan subalgebra. Namely, let Λ be a complete set of non-isomorphic simple $D(G)$-modules and $M(\lambda)$ denote the generalized Verma module of $\lambda \in \Lambda$. Then, the head $L(\lambda)$ of $M(\lambda)$ is simple and every simple D-module can be obtained in this way, see loc. cit.

Here we continue this approach and investigate the projective modules over D. We obtain the following results.

(I) Every projective D-module P has a (graded) standard filtration. That is, there is a sequence of (graded) submodules $0 = N_0 \subset N_1 \subset \cdots \subset N_n = P$ such that each N_i/N_{i-1} is isomorphic to a Verma module. We denote by $[P : M(\lambda)]$ the numbers of subquotients isomorphic to the Verma module $M(\lambda)$, $\lambda \in \Lambda$.

(II) The BGG Reciprocity holds in our setting. More precisely, let $P(\mu)$ be the projective cover of $L(\mu)$, $\mu \in \Lambda$ (it exists because D is a finite-dimensional algebra over an algebraically closed field k of characteristic...
zero). Then, for all \(\lambda \in \Lambda\),
\[
[P(\mu) : M(\lambda)] = [M(\lambda) : L(\mu)]
\]
where the last square brackets denote the numbers of occurrences of \(L(\mu)\) as composition factor of \(M(\lambda)\).

We also give analogous results to (I) and (II) for co-Vermas. As consequence, we show that

(III) A Verma module is simple if and only if it is projective.

(IV) The tensor product between projective modules is isomorphic to the induced module from a semisimple \(D(G)\)-modules.

The BGG Reciprocity has its origin in the work of Bernstein-Gelfand-Gelfand [9] for modules in the category \(O\). To achieve our goals we imitate the strategy in [17, Section 3] developed by Irving [18], who has also defined axiomatically a class of highest weight categories for which the BGG Reciprocity holds [19]. However, our algebra \(D\) does not completely fit in these frameworks. Indeed, a highest weight category has finite global dimension but a finite-dimensional non-semisimple Hopf algebra is Frobenius and then it has infinite global dimension.

A more general definition of highest weight category was given by Kleshchev [20]. Although this can have infinite global dimension, there must exist a partial order \(\leq\) on \(\Lambda\) such that \(\mu \leq \lambda\) if \(L(\mu)\) is a composition factor of the Verma module \(M(\lambda)\), like in the definition of Cline-Parshall-Scott [12]. This property may fail in our case. For instance, if \(B(V)\) is the Fomin-Kirillov algebra \(\mathcal{FK}_3\) and \(G\) is the symmetric group \(S_3\), we have shown that the composition factors of \(M(\tau, 0)\) and \(M(e, \rho)\) are the same: \(L(\tau, 0)\), \(L(\sigma, -)\) and \(L(e, \rho)\) [26, Theorems 9 and 10]. Then, such an order on \(\Lambda\) will imply that \((\tau, 0) = (e, \rho)\), a contradiction. The order also ensures that the simple modules are identified by their characters but the characters of \(L(\tau, 0)\) and \(L(e, \rho)\) are equal [26, Corollaries 22 and 24].

After this work appeared, Bellamy and Thiel [8] introduced a highest weight theory for finite-dimensional graded algebras with triangular decomposition. They show that the category of graded modules over such an algebra is highest weight. They noted that \(D\) fits in their framework and hence some of our results can be deduced from [8]. As \(D\) is a finite-dimensional Hopf algebra, there are some peculiarities in this setting which are not present in [8] but are instrumental in our proofs. For instance, (a) the dual of a Verma module is isomorphic to a Verma module and (b) the tensor product between a Verma module and a co-Verma module is the induced module from a semisimple \(D(G)\)-modules.

Let us summarize the main ideas in the present work. First, we observe that the Nichols algebra \(B(V)\) is finite-dimensional and graded. Thus, we can consider graded characters that allow us to distinguish the simple modules (Theorem 3.3) since they are characterized by their highest-weights. The finiteness assumption is useful to lead the standard filtrations of projective modules (Theorem 4.3 and Lemma 2.8) using (b). It also implies that the homogeneous component of maximal degree in \(B(V)\) is one-dimensional. We use this fact to prove that the set of Verma modules is closed by taking duals, see (11). Then, we find some identities among the graded characters of a Verma module, its dual and co-Verma
module (Theorem 3.4). As a consequence we give a graded version of the BGG Reciprocity similar to [20, Theorem 7.6]. More explicitly, there exist Laurent polynomials \(p_{P(\mu), M(\lambda)} \), \(p_{M(\lambda), L(\mu)} \) \(\in \mathbb{Z}_{\geq 0}[t, t^{-1}] \) such that the graded characters of \(P(\mu) \) and \(M(\lambda) \) satisfy

\[
\text{ch}^* P(\mu) = \sum_{\lambda \in \Lambda} p_{P(\mu), M(\lambda)} \text{ch}^* M(\lambda) \quad \text{and} \quad \text{ch}^* M(\lambda) = \sum_{\mu \in \Lambda} p_{M(\lambda), L(\mu)} \text{ch}^* L(\mu)
\]

in the ring \(\mathbb{Z}[t, t^{-1}] \). For all \(\lambda, \mu \in \Lambda \), we show in Corollary 3.6 that

\[
p_{P(\mu), M(\lambda)} = p_{M(\lambda), L(\mu)}
\]

in the ring \(\mathbb{Z}[t, t^{-1}] \), where the ring automorphism \(() : \mathbb{Z}[t, t^{-1}] \rightarrow \mathbb{Z}[t, t^{-1}] \) interchanges \(t \) and \(t^{-1} \). By evaluating these polynomials at \(t = t^{-1} = 1 \) we obtain the BGG Reciprocity (Theorem 4.3).

Finally, we point out some by-products of our results. Let us assume that we know the graded characters of the simple modules. Then, we can deduce the graded structure of the indecomposable projective modules from the graded version of the BGG Reciprocity. Moreover, we can infer the tensor product between simple and projective modules from the multiplication of their graded characters in the ring \(\mathbb{Z}[t, t^{-1}] \). We carry out this plan for \(B(V) = F \mathbb{K}_3 \) and \(G = S_3 \) jointly with Barbara Pogorelsky in [27].

The article is organized as follows. We set our conventions and notations in Section 2 and state immediate properties of the \(D \)-modules. We regard the graded characters in Section 3. The results (I)–(IV) are proved in Section 4. We give some examples in Section 5.

Acknowledgments. I thank Nicolás Andruskiewitsch for the interesting and guiding discussions, and his comments which helped me improve this work. Also, I want to thank Ivan Angiono and Victor Ostrik for the useful conversations. Part of this work was carried out during a visit to the University of Antwerp. I am grateful with Fred Van Oystayen and Yinhuo Zhang for their warm hospitality and interesting discussions.

2. Preliminaries

We assume that the reader is familiarized with Hopf algebras and Nichols algebra.

Through this work we adopt the conventions and notations from [20, Section 3] about finite quantum groups which we briefly recall below. Although the results in [20] were stated for non-abelian groups, they also hold for abelian groups. These were proved for instance in [5, 7, 16, 21, 22, 29] by different methods.

We fix a finite group \(G \) and a Yetter-Drinfeld module \(V \in \mathcal{YD}^{kG} \) such that its Nichols algebra \(B(V) \) is finite-dimensional. Let \(B(\overline{V}) \) be the Nichols algebra of the Yetter-Drinfeld module \(\overline{V} \in \mathcal{YD}^{kG} \) determined by the isomorphism

\[
B(\overline{V}) \# kG \simeq (B(V) \# \mathbb{K}G)^{*op}.
\]

We denote by \(D \) the Drinfeld double of the bosonization \(B(V) \# \mathbb{K}G \) and by \(D(G) \) the Drinfeld double of \(kG \). Then \(B(\overline{V}) \# kG \) and \(D(G) \) are Hopf subalgebras of \(D \).
Moreover, \(D \) admits a triangular decomposition, i.e., the multiplication gives a linear isomorphism

\[
\mathfrak{B}(V) \otimes D(G) \otimes \mathfrak{B}(V) \to D.
\]

The usual \(\mathbb{Z} \)-grading on the Nichols algebras induces a \(\mathbb{Z} \)-grading on \(D \) by setting

\[
D^n = \bigoplus_{n=j-i} \mathfrak{B}^i(V) \otimes D(G) \otimes \mathfrak{B}^j(V).
\]

Via the adjoint action in \(D \), \(\mathbb{V} \) identities with the dual object of \(V \) in the category of \(D(G) \)-modules. Moreover, it holds that

\[
\mathfrak{B}^n(V) \simeq \mathfrak{B}^n(V)^* \quad (1)
\]

as \(D(G) \)-modules for all \(n \geq 0 \), see the remark below.

The Hopf subalgebra \(D^{\geq 0} \) generated by \(\mathfrak{B}(V) \) and \(D(G) \) satisfies

\[
D^{\geq 0} \simeq (\mathfrak{B}(V))\#D(G).
\]

Analogously, we will consider the Hopf subalgebra

\[
D^{\leq 0} \simeq \mathfrak{B}(V)\#D(G).
\]

Remark 2.1. In [26] Lemma 11 (iii) and (iv) we claim that \(\mathfrak{B}(V) \) and \(\mathfrak{B}(\mathbb{V}) \) are the Nichols algebras of \(V \) and \(\mathbb{V} \) in \(D(G)\mathcal{M} \), and \(\mathfrak{B}(\mathbb{V}) \) is isomorphic to \(\mathfrak{B}(V)^{\text{dual}} \) in \(D(G)\mathcal{M} \), the category of \(D(G) \)-modules. However, we made a mistake in the proof and these properties do not hold. The correct version of them is the following.

(i) \(\mathfrak{B}(\mathbb{V}) \) is isomorphic to the Nichols algebra \(\mathfrak{B}(\mathbb{V}, c^{-1}) \) corresponding to the dual object of \(V \) in \(D(G)\mathcal{M} \) and the inverse braiding of the usual one in \(D(G)\mathcal{M} \).

(ii) There is an isomorphism \(\mathfrak{B}(\mathbb{V}) \simeq \mathfrak{B}(V, c) \) of algebras in \(D(G)\mathcal{M} \). Moreover, their defining ideals coincide in the tensor algebra \(T(\mathbb{V}) \).

(iii) \(\mathfrak{B}^n(\mathbb{V}) \simeq \mathfrak{B}^n(V)^* \) as \(D(G) \)-modules for all \(n \geq 0 \), that is (1).

In fact, (i) is a straightforward computation, (ii) follows like [4] Lemma 1.11] and (iii) is a consequence of (ii) and [3] Proposition 3.2.30).

The comultiplication in \(D \) satisfies

\[
\Delta(x) = x \otimes 1 + g_x \otimes x + \sum_{i=1}^{n-1} (D^{\leq 0})^{i-n} \otimes (D^{\leq 0})^{-i},
\]

for all \(x \in \mathfrak{B}^n(V) \) where \(g_x \in G \), and

\[
\Delta(y) = y \otimes 1 + y(-1) \otimes y(0) + \sum_{i=1}^{n-1} (D^{\geq 0})^{n-i} \otimes (D^{\geq 0})^i
\]

for all \(y \in \mathfrak{B}^n(V) \) where \(y(-1) \otimes y(0) \) is the coaction of \(y \) since \(\mathfrak{B}^n(V) \in \mathcal{M}^D \).

Let \(n_{\text{top}} \) be the maximal degree of the Nichols algebra \(\mathfrak{B}(V) \). The homogeneous component \(\mathfrak{B}^{n_{\text{top}}}(V) \) is one-dimensional and coincides with space of integrals. We fix a non-zero monomial \(x_{\text{top}} = x_1 \cdots x_{n_{\text{top}}} \in \mathfrak{B}^{n_{\text{top}}}(V) \) with \(x_i \in V \). The antipode \(S \) applied to this element is

\[
S(x_{\text{top}}) = (-1)^{n_{\text{top}}} g_{x_{\text{top}}^{-1}} x_{n_{\text{top}}} \cdots (g_1^{-1} x_1) = cx_{\text{top}} g_{x_{\text{top}}}^{-1}
\]

for some non-zero scalar \(c \).
The maximal degree of $\mathfrak{B}(\overline{\mathcal{V}})$ also is n_{top}. We fix a basis element y_{top} of $\mathfrak{B}^{n_{\text{top}}}(\overline{\mathcal{V}})$.

Let β_1 and β_2 be non-zero right integrals of $\mathfrak{B}(\overline{\mathcal{V}}) \# kG$ and $\mathfrak{B}(V) \# kG$, respectively. According to our convention, $D^* \simeq (\mathfrak{B}(\overline{\mathcal{V}}) \# kG) \otimes (\mathfrak{B}(\mathcal{V}) \# kG)$ as algebras. Then $\beta = \beta_1 \otimes \beta_2$ is a non-zero right integral of D^*.

The Drinfeld double of a finite-dimensional Hopf algebra is a symmetric algebra, see [23, p. 488, (3)] and [25, 28]. That is, D has a non-degenerate bilinear form (\cdot, \cdot) which is associative and symmetric. It is known that $(a, b) = \beta(ab)$ for all $a, b \in D$. Hence $(D^n, D^m) = 0$, if $n + m \neq 0$.

An important property of a symmetric algebra is that the socle and the head of every indecomposable projective are isomorphic, see for instance [13, (9.12)].

Conventions. In this work we consider finite-dimensional left modules over D. When there is no place to confusion, we will refer to them just as modules. We will use N, N', N_1, \ldots to denote them. Projective D-modules are injective (and vice versa) because D is Frobenius. We will consider the D-modules as $D^{\leq 0}$-modules or $D(G)$-modules by restricting the action. We will use N to denote the $D(G)$-modules.

Let N be a module and N a $D(G)$-submodule. We emphasize that the action $\mathfrak{B}(\mathcal{V}) \otimes N \to N$ is a morphism of $D(G)$-modules, cf [26, (31)] and in particular so is $k x_{\text{top}} \otimes N \to N$.

2.1. **Weights.** We fix a representative set Λ of isomorphism classes of simple $D(G)$-modules. We call *weights* the elements of this set. The counit ε of $D(G)$ gives the trivial representation. Then, by abuse of notation, we assume that $\varepsilon \in \Lambda$. The dual weight of λ will be denoted λ^*.

It is well-know that the weights are parametrized by conjugacy classes O_g and irreducible representations ρ of the centralizer of $g \in G$, see e. g. [3]. For instance, for G abelian, the weights are one-dimensional and are in bijective correspondence with $G \times \hat{G}$ where \hat{G} is the group of characters of G. For G non-abelian, the weight $\lambda = M(g, \rho)$ attached to the pair (g, ρ) has dimension $\# O_g \cdot \dim \rho$.

Let N be a $D(G)$-module and $\lambda \in \Lambda$. We define

$$[N : \lambda] = \dim \text{Hom}_{D(G)}(\lambda, N) \quad (5)$$

We say that λ is a weight of N if $[N : \lambda] \neq 0$. Since $D(G)$ is a semisimple algebra, $N = \oplus_{\lambda \in \Lambda} [N : \lambda] \cdot \lambda$. In particular, any module over D, $D^{\geq 0}$ and $D^{\leq 0}$ decomposes into the direct sum of their weights.

Let K be the Grothendieck ring of the category of $D(G)$-modules. This was described in [31], and anticipated in [24]. We think of K as the free abelian group generated by Λ. Then the *character* of N is the element in K

$$\text{ch } N = \sum_{\lambda \in \Lambda} [N : \lambda] \cdot \lambda.$$

The product in K between $\lambda, \lambda' \in \Lambda$ is given by the tensor product

$$\lambda \cdot \lambda' = \text{ch}(\lambda \otimes \lambda').$$

Then ε is the unit of K. For G non-abelian $\lambda \otimes \lambda'$ could not belong to Λ but it decomposes into the direct sum of weights. Recall that K is a commutative ring because $D(G) \mathcal{M}$ is a braided category.
2.2. **Highest and lowest weights.** A weight is a simple $D^{\geq 0}$-module if we let $\mathcal{B}(V)$ act via the counit. In this case, we call it a *highest-weight*. Up to isomorphisms, all the simple $D^{\geq 0}$-modules are highest-weight. A module generated by a highest-weight is called a *highest-weight module*. Notice that the tensor product of highest-weights decomposes into the direct sum of highest-weights since $\Delta(V) \subset V \otimes 1 + k^G \otimes V$.

Similarly, we consider weights as $D^{\leq 0}$-modules and call these *lowest-weights*. In particular, the space of lowest-weights of a $D^{\leq 0}$-module N coincides with its socle $soc_{D^{\leq 0}} N = \{ n \in N \mid V \cdot n = 0 \} \simeq \oplus_{\lambda \in \Lambda} \dim \text{Hom}_{D^{\leq 0}}(\lambda, N) \cdot \lambda. \quad (6)$

Since the maximal degree component of a Nichols algebra is one-dimensional, $\lambda_V = \text{ch} B^{\text{top}}(V)$ and $\lambda_{\bar{V}} = \text{ch} B^{\text{top}}(\bar{V})$ are one-dimensional weights. These are the unique lowest-weight and highest-weight of the regular left modules $D^{\leq 0} D^{\geq 0}$ and $D^{\geq 0} D^{\geq 0}$. Tensoring by λ_V induces a bijection between weights because (1) implies $\lambda_{\bar{V}} = \lambda^*_V$ and hence $\lambda_V \cdot \lambda_{\bar{V}} = \varepsilon. \quad (8)$

2.3. **Verma and simple modules.** We fix a weight $\lambda \in \Lambda$. The corresponding Verma module [26, Definition 12] is the induced module $M(\lambda) = D \otimes_{D^{\geq 0}} \lambda. \quad (7)$

It is a highest-weight module and any highest-weight module of weight λ is a quotient of it. By the triangular decomposition, we see that

$$M(\lambda) \simeq \mathcal{B}(V) \otimes \lambda$$

as $D(G)$-modules and it is a free $\mathcal{B}(V)$-module and inherits the \mathbb{Z}-grading from D.

2.3.1. **Simple modules.** The Verma modules have simple head and simple socle. This is a well-known fact, see for instance [5, 7, 10, 29] for G abelian, and [21, 22, 26] for general G. Therefore the simple D-modules are in bijective correspondence with Λ. We adopt the next conventions.

- $L(\lambda)$ is the head of $M(\lambda)$. It is the unique simple highest-weight module of weight λ. It inherits the \mathbb{Z}-grading from $M(\lambda)$ [26].
- $S(\lambda)$ is the socle of $M(\lambda)$. It is the unique simple lowest-weight module of weight $\lambda_V \cdot \lambda$. The lowest-weight of $S(\lambda)$ is realized by $B^{\text{top}}(V) \otimes \lambda$.
- $\underline{\lambda}$ denotes the lowest-weight of $L(\lambda)$. Then the assignment $\lambda \mapsto \underline{\lambda}$ is a bijection in Λ.
- We think of M, L and S (and also P, Ind and W, see below) as maps from K to $D\mathcal{M}$ which transform sums of weights into direct sums of modules. We will use this fact to abbreviate the notation. For instance, we will write $M(\lambda \cdot \mu)$ instead of $\oplus_i n_i \cdot M(\lambda_i)$ if $\lambda \cdot \mu = \sum_i n_i \lambda_i$.

Then

$$L(\lambda) \simeq S(\lambda_{\bar{\lambda}} \cdot \underline{\lambda}) \quad \text{and} \quad L(\lambda)^* \simeq L(\underline{\lambda}^*), \quad (8)$$

the first isomorphism follows by the characterization of the simple modules and the second one follows by [26, Theorem 5].
2.3.2. Verma modules as $\mathcal{D}^{\leq 0}$-modules. Clearly, we have that
\[M(\lambda) \simeq \mathcal{D}^{\leq 0} \otimes_{\mathcal{D}(G)} \lambda. \] (9)
and, since the top degree of a Nichols algebra is one-dimensional,
\[\text{soc}_{\mathcal{D}^{\leq 0}} M(\lambda) = \mathcal{B}^{\text{top}}(V) \otimes \lambda \simeq \lambda \cdot \lambda. \] (10)

Lemma 2.2. As $\mathcal{D}^{\leq 0}$-module, $M(\lambda)$ is the projective cover of the lowest-weight λ and the injective hull of the lowest-weight $\lambda \cdot \lambda$.

Proof. By (9), $M(\lambda)$ is an induced module from a semisimple algebra and hence it is projective. Also, it is injective because $\mathcal{D}^{\leq 0}$ is a finite-dimensional Hopf algebra. By (10), $M(\lambda)$ is indecomposable and the lemma follows. \(\square\)

The next remark is very useful and follows directly from (9).

Remark 2.3. A morphism $f : M(\lambda) \rightarrow N$ of \mathcal{D}-modules is injective if and only if $x_{\text{top}} \cdot f(\lambda) \neq 0$.

2.3.3. The dual of a Verma module. For all $\lambda \in \Lambda$ it holds that
\[M(\lambda)^* \simeq M((\lambda \cdot \lambda)^*). \] (11)
In fact, we can see that $(\mathcal{B}^{\text{top}}(V) \otimes \lambda)^* \simeq (\lambda \cdot \lambda)^*$ is a highest-weight of $M(\lambda)^*$ by using the \mathbb{Z}-degree. This induces a morphism $f : M((\lambda \cdot \lambda)^*) \rightarrow M(\lambda)^*$. We apply f to $\text{soc}_{\mathcal{D}^{\leq 0}}(M(\lambda \cdot \lambda)^*)$ and evaluate in the space $1 \otimes \lambda \subset M(\lambda)$:
\[\langle x_{\text{top}} \cdot f((\lambda \cdot \lambda)^*), 1 \otimes \lambda \rangle = \langle (\mathcal{B}^{\text{top}}(V) \otimes \lambda)^*, S(x_{\text{top}}) \otimes \lambda \rangle = \langle (\mathcal{B}^{\text{top}}(V) \otimes \lambda)^*, x_{\text{top}} \otimes g_{x_{\text{top}}}^{-1} \rangle \neq 0, \]

here we use (11) and the fact that the action of $g_{x_{\text{top}}}^{-1}$ is bijective on λ. Therefore (11) follows from Remark 2.3 using the finiteness assumption.

For all $0 \leq j \leq n_{\text{top}}$, we immediate deduce from (11) that
\[(\mathcal{B}^{\text{top}}(V) \otimes \lambda)^* \simeq \mathcal{B}^j(\lambda \cdot \lambda)^* \] (12)
as $\mathcal{D}(G)$-modules. Using (11), we can rewrite the above isomorphism as
\[\mathcal{B}^{\text{top}}(V) \otimes \lambda^* \simeq (\mathcal{B}^j(V) \otimes (\lambda \cdot \lambda))^* \] (13)

2.3.4. The co-Verma modules. Let us consider λ as a lowest-weight. We set
\[W(\lambda) = \mathcal{D} \otimes_{\mathcal{D}^{\leq 0}} \lambda \simeq \mathcal{B}(\lambda) \otimes \lambda, \] (14)
where the isomorphism is of $\mathcal{D}(G)$-modules and it inherits the \mathbb{Z}-grading from \mathcal{D}.

The co-Verma modules have analogous properties to the Verma modules. In fact, we can see that $W(\lambda)$ have simple head and simple socle as in the proof of [26, Theorem 3 and 4]. These are isomorphic to the socle and the head of $M(\lambda_{\text{top}}, \lambda)$, respectively. Also, they are indecomposable projective as $\mathcal{D}^{\geq 0}$-modules.

2.4. Projective modules. The next lemma is inspired by [23, Lemma 2.4].

Lemma 2.4. Let P be projective. Then
\[\text{soc}_{\mathcal{D}^{\leq 0}} P \simeq \oplus_{\lambda \in \Lambda} \dim \text{Hom}_{\mathcal{D}^{\leq 0}}(\lambda, P) \cdot \lambda. \]
if and only if, as $\mathcal{D}^{\leq 0}$-modules,
\[P \simeq \oplus_{\lambda \in \Lambda} \dim \text{Hom}_{\mathcal{D}^{\leq 0}}(\lambda, P) \cdot M(\lambda_{\text{top}} \cdot \lambda). \]
Proof. Since \(\mathcal{D} \) is free over \(\mathcal{D}^{\leq 0} \), \(P \) is \(\mathcal{D}^{\leq 0} \)-projective. Hence \(P \) decomposes into the direct sum of indecomposable projective \(\mathcal{D}^{\leq 0} \)-modules, which are precisely the Verma modules by Lemma 2.2. Then, the lemma follows using (10). \(\square \)

Definition 2.5. Given a weight \(\lambda \), \(P(\lambda) \) denotes the projective cover of the simple highest-weight module \(L(\lambda) \).

Lemma 2.6. Let \(\lambda \) be a weight. Then

(i) \(P(\lambda) \) is the injective hull of \(L(\lambda) \).

(ii) \(P(\lambda) \) is the projective cover of \(M(\lambda) \).

(iii) \(P(\lambda) \) is the injective hull of \(M(\lambda_V \cdot \lambda) \).

(iv) \(P(\lambda) \) is the projective cover of \(W(\lambda) \).

(v) \(P(\lambda) \) is the injective hull of \(M(\lambda_V \cdot \lambda) \).

(vi) \(P(\lambda)^* \simeq P(\lambda^*) \).

Proof. (i) holds because \(\mathcal{D} \) is a symmetric algebra.

(ii) (iii) As the Verma modules have simple socle and simple head, we can deduce that \(P(\lambda) \) is the projective cover of \(M(\lambda) \) and the injective hull of \(M(\lambda_V \cdot \lambda) \), see for instance [13, (6.25)].

We show (iv) and (v) in a similar way, cf. Definition 14.

(vi) is consequence of (i) and (8) because \(P(\lambda)^* \) is the injective hull of \(L(\lambda)^* \). \(\square \)

By the above lemma we have the next commutative diagrams of injective and surjective morphisms:

\[
\begin{array}{ccc}
L(\lambda) & \hookrightarrow & M(\lambda_V \cdot \lambda) \\
\downarrow & & \downarrow \\
W(\lambda_V \cdot \lambda) & \hookrightarrow & P(\lambda) \\
\end{array}
\quad
\begin{array}{ccc}
P(\lambda) & \longrightarrow & M(\lambda) \\
\downarrow & & \downarrow \\
W(\lambda) & \longrightarrow & L(\lambda) \\
\end{array}
\]

(15)

We deduce from the morphisms in the first rows that

\(\lambda \) and \(\lambda_V \cdot \lambda \) are weights of \(\text{soc}_{\mathcal{D}^{\leq 0}} P(\lambda) \). \(\square \)

The numbers of occurrences of \(L(\lambda) \) as composition factor of \(N \) will be denoted by \([N : L(\lambda)]\). It is known that \([N : L(\lambda)] = \dim \text{Hom}_\mathcal{D}(P(\lambda), N) = \dim \text{Hom}_\mathcal{D}(N, P(\lambda))\), the last equality is thanks to Lemma 2.6 (i).

2.5. **Induced modules.**

Definition 2.7. Given a weight \(\lambda \), \(\text{Ind}(\lambda) \) denotes the induced module \(\mathcal{D} \otimes \mathcal{D}(G) \lambda \).

We can consider \(\text{Ind}(\lambda) \) as a submodule of the left regular module \(\mathcal{D} \) since \(\mathcal{D}(G) \) is a subalgebra. Moreover, it is a direct summand and hence projective. Then

\[
\text{Ind}(\lambda) = \bigoplus_{\mu \in \Lambda} [L(\mu) : \lambda] \cdot P(\mu)
\]

(17)

In fact, if \(\lambda \) is a weight of \(L(\mu) \), then there is a non trivial epimorphism \(f : \text{Ind}(\lambda) \to L(\mu) \) just by the definition of induced module. Thus \(f \) factors through \(P(\mu) \) and we deduce (17) because of the Frobenius reciprocity \(\text{Hom}_\mathcal{D}(\text{Ind}(\lambda), L(\mu)) \simeq \text{Hom}_{\mathcal{D}(G)}(\lambda, L(\mu)) \).

The triangular decomposition of \(\mathcal{D} \) gives linear isomorphisms

\[
\text{Ind}(\lambda) \simeq \mathcal{B}(V) \otimes \mathcal{B}(V) \otimes \lambda \simeq \mathcal{B}(V) \otimes \mathcal{B}(\overline{V}) \otimes \lambda
\]

(18)
and \(\text{Ind}(\lambda) \) inherits the \(\mathbb{Z} \)-grading of \(D \). Therefore we see that

\[
\text{soc}_{D^{\geq 0}} \text{Ind}(\lambda) \simeq \lambda_V \otimes \mathfrak{B}(V) \otimes \lambda.
\]

(19)

Hence, by Lemma 2.4, we have the next isomorphism of \(D^{\leq 0} \)-modules:

\[
\text{Ind}(\lambda) \simeq M(\text{ch} \mathfrak{B}(V) \cdot \lambda).
\]

(20)

Lemma 2.8. Let \(\lambda, \mu \) be weights and

\[f : \text{Ind}(\lambda \cdot \mu) \longrightarrow W(\lambda) \otimes M(\mu) \]

the morphism induced by \(\lambda \otimes \mu \xrightarrow{\sim} (1 \otimes \lambda)(1 \otimes \mu) \). Then \(f \) is an isomorphism.

Proof. We will see that \(f \) is injective using Remark 2.3 and hence \(f \) is an isomorphism because the modules have the same dimension.

Let \(z \in \text{soc}_{D^{\leq 0}} \text{Ind}(\lambda \cdot \mu) \). By (19), \(z = x_{\text{top}} \sum_i y_i (h_i \otimes k_i) \) where \(y_i \in \mathfrak{B}(V) \) and \((h_i \otimes k_i) \in \lambda \otimes \mu\). Then

\[f(z) = x_{\text{top}} \sum_i (y_i h_i) \otimes (x_{\text{top}} k_i) + W(\lambda) \otimes \left(\sum_{i=0}^{\mu_{\text{top}} - 1} M^{-i}(\mu) \right), \]

using that \(\mu \) is a highest-weight, (2) and (3). Then \(f \) is injective in \(\text{soc}_{D^{\leq 0}} \text{Ind}(\lambda \cdot \mu) \) because \(g_{x_{\text{top}}} \circ g_{x_{\text{top}}} : \mathfrak{B}(V) \otimes \lambda \otimes \mu \longrightarrow \mathfrak{B}(V) \otimes \lambda \otimes \mathfrak{B}(V) \mu \) is injective. \(\Box \)

2.6. Tensor identity. The next lemma is probably known but we have not found any reference. The analogous result in Lie Theory is called “tensor identity”.

Let \(A \) be a Hopf algebra, \(B \) a Hopf subalgebra and \(R \) a subalgebra such that the multiplication \(R \otimes B \longrightarrow A \) gives a linear isomorphism. Under this hypothesis \(A \otimes_B (-) : B \mathcal{M} \longrightarrow A \mathcal{M} \) is an exact functor since an induced module is \(B \)-free.

We assume that \(R = \oplus_{n \geq 0} R(n) \) is graded with \(R(0) = k \) and the comultiplication of \(x \in R(n) \) satisfies

\[
\Delta x = x_{(1)} \otimes x_{(2)} \in x \otimes 1 + \bigoplus_{j=0}^{n-1} R(j) \otimes A, \quad \forall n \geq 0.
\]

(21)

Lemma 2.9. Let \(N \) be an \(A \)-module, \(U \) a \(B \)-module and \(U \otimes N \longrightarrow (A \otimes_B U) \otimes N \) the inclusion of \(B \)-modules given by \(u \otimes n \mapsto 1 \otimes u \otimes n \). Then the induced morphism

\[f : A \otimes_B (U \otimes N) \longrightarrow (A \otimes_B U) \otimes N \]

is an isomorphism of \(A \)-modules.

Proof. The \(A \)-modules in question are isomorphic to \(R \otimes U \otimes N \) as vector space and are filtered by \(F_n = \oplus_{0 \leq j \leq n} R(j) \otimes U \otimes N \). Then we will prove by induction that \(f_{| F_n} \) is bijective for all \(n \geq 0 \).

For \(n = 0 \) is obvious. We evaluate \(f \) in \(x \otimes u \otimes n \in R(n) \otimes U \otimes N \) and obtain

\[f(x \otimes u \otimes n) = x \cdot (1 \otimes u \otimes n) = x_{(1)}(1 \otimes u) \otimes x_{(2)} n \in x \otimes u \otimes n + f(F_{n-1}) \]

by (21). The lemma follows from the inductive hypothesis. \(\Box \)

2.6.1. Applications. The above lemma applies to \(A = D, B = D^{\geq 0} \) and \(R = \mathfrak{B}(V) \).

Lemma 2.10. Let \(M(\lambda) \) be a Verma module and \(\mu \) a highest-weight of a module \(N \). Then \(M(\lambda \cdot \mu) \) is a submodule of \(M(\lambda) \otimes N \).

Proof. By assumption we have an inclusion \(\lambda \otimes \mu \longrightarrow \lambda \otimes N \) of \(D^{\geq 0} \)-modules. As \(D \otimes_{D^{\geq 0}} (-) \) is an exact functor

\[M(\lambda \cdot \mu) = D \otimes_{D^{\geq 0}} (\lambda \otimes \mu) \longrightarrow D \otimes_{D^{\geq 0}} (\lambda \otimes N) \]

is an inclusion of \(D \)-modules and the lemma follows by Lemma 2.9. \(\Box \)
Lemma 2.11. Let P the injective hull of $M(\lambda \cdot \mathbf{\Lambda})$ for some weights λ and μ. Then P is a direct summand of $P(\lambda) \otimes L(\mu)$.

Proof. By Lemma 2.6 (iii) $P(\lambda)$ is the injective hull of $M(\lambda \cdot \mathbf{\Lambda})$. By Lemma 2.10 $M(\lambda \cdot \mathbf{\Lambda} \cdot \mu)$ is a submodule of $P(\lambda) \otimes L(\mu)$. Since $P(\lambda) \otimes L(\mu)$ is injective, the lemma follows. \hfill \square

3. Graded modules

We start by summarizing some notions about graded modules.

Let $N = \bigoplus_{i \in \mathbb{Z}} N(i)$ be a \mathbb{Z}-graded D-module, that is $D^n \cdot N(i) \subseteq N(n + i)$ for all $n, i \in \mathbb{Z}$. A morphism $f : N \to N'$ between \mathbb{Z}-graded D-modules has degree ℓ if $f(N(i)) \subseteq N'(i + \ell)$. The space of such morphisms is denoted by $\text{Hom}^\bullet_D(N, N')_\ell$. Thus, the morphisms in the category of \mathbb{Z}-graded D-modules are the 0-degree ones. The Hom-spaces satisfy $\text{Hom}^\bullet_D(N[\ell], N')_0 = \text{Hom}^\bullet_D(N, N')_\ell = \text{Hom}^\bullet_D(N, N'[-\ell])_0$ and

$$\text{Hom}^\bullet_D(N, N') = \bigoplus_{\ell \in \mathbb{Z}} \text{Hom}^\bullet_D(N, N')_\ell.$$ \hfill (22)

The ℓ-shift T_ℓ is an endofunctor in the category of \mathbb{Z}-graded D-modules such that $N[\ell] = T_\ell(N)$ is N as D-module with homogeneous components $N[i]|(\ell) = N(i - \ell)$ for all $i \in \mathbb{Z}$. These functors satisfy $T_\ell \circ T_{\ell'} = T_{\ell + \ell'}$ for all $\ell, \ell' \in \mathbb{Z}$. Given a Laurent polynomial $p = \sum_{i \in \mathbb{Z}} a_i t^i \in \mathbb{Z}_{\geq 0}[t, t^{-1}]$, we set

$$p \cdot N = \bigoplus_{i \in \mathbb{Z}} a_i \cdot T_i(N)$$

This induces an action of $\mathbb{Z}[t, t^{-1}]$ over the Grothendieck ring R^\bullet of the category of \mathbb{Z}-graded D-modules.

The modules $L(\lambda)|i\rangle$, with $\lambda \in \Lambda$ and $i \in \mathbb{Z}$, form a complete set of non-isomorphic simple \mathbb{Z}-graded D-modules.

Since each $N(i)$ is a $D(G)$-module, we define the graded character of N by setting

$$\text{ch}^\bullet N = \sum_{i \in \mathbb{Z}} \text{ch} N(i) t^i \in K[t, t^{-1}].$$ \hfill (23)

Clearly, there exist unique $p_{N, \lambda} \in \mathbb{Z}[t, t^{-1}]$, $\lambda \in \Lambda$, such that

$$\text{ch}^\bullet N = \sum_{\lambda \in \Lambda} p_{N, \lambda} \cdot \lambda.$$ \hfill (24)

The tensor product between \mathbb{Z}-graded D-modules is \mathbb{Z}-graded with the natural grading for tensor product and it holds that

$$\text{ch}^\bullet (N \otimes N') = \text{ch}^\bullet N \cdot \text{ch}^\bullet N'.$$ \hfill (25)

The dual of N also is a \mathbb{Z}-graded D-module by setting

$$N^*(j) = (N(-j))^*.$$

This is compatible with the grading of D because the antipode is an homogeneous morphism.

Therefore $\text{ch}^\bullet : R^\bullet \to K[t, t^{-1}]$ is a ring homomorphism and $\text{ch}^\bullet N^* = \overline{\text{ch}^\bullet N}$; where $p(t, t^{-1}) = p(t^{-1}, t)$ for any $p \in K[t, t^{-1}]$.
3.1. Graded projectives. Thank to [15] Corollary 3.4] every projective module admits a \(Z \)-grading. Moreover, up to a shift, every indecomposable projective module admits only one \(Z \)-grading [15 Theorem 4.1].

For each \(\lambda \in \Lambda \) we fix a \(Z \)-grading \(P(\lambda) = \oplus_{n \in \mathbb{Z}} P(\lambda)(n) \) such that there is a homogeneous weight \(S \) of degree 0 generating \(P(\lambda) \) with \(\text{ch} S = \lambda \). Thus, we have a commutative diagram of \(Z \)-graded \(D \)-module epimorphisms and a section

\[
\begin{array}{ccc}
P(\lambda) & \longrightarrow & \text{Ind}(\lambda) \\
\downarrow & & \downarrow \\
L(\lambda) & & \\
\end{array}
\]

(26)

Also, the diagram on the right hand of (15) is of \(Z \)-graded \(D \)-modules.

Given \(\lambda \in \Lambda \), we denote \(l_{\lambda} \) the minimal degree of \(L(\lambda) \). Thus, (5) implies that

\[
(L(\lambda)[i])^* \simeq L \left(\lambda \right) [-i - l_{\lambda}] \quad \text{and} \quad l_{\lambda} = l_{\lambda}^{-1}.
\]

Lemma 3.1. Let \(\lambda \) be a weight and \(i \in \mathbb{Z} \). In the category of \(Z \)-graded \(D \)-modules it holds that

- (i) \(P(\lambda)[i] \) is the projective cover and the injective hull of \(L(\lambda)[i] \).
- (ii) \(P(\lambda)[i] \) is the projective cover of \(M(\lambda)[i] \).
- (iii) \(P(\lambda)[i] \) is the injective hull of \(M(\lambda) [i + l_{\lambda} + n_{\text{top}}] \).
- (iv) \(P(\lambda)[i] \) is the projective cover of \(W(\lambda) [i + l_{\lambda}] \).
- (v) \(P(\lambda)[i] \) is the injective hull of \(W(\lambda) [i - n_{\text{top}}] \).
- (vi) \(P(\lambda)[i]^* \simeq P \left(\lambda \right) [-i - l_{\lambda}] \).

Proof. (i) The first part is clear. Let \(e \in D^0 \) be a primitive idempotent such that \(P(\lambda) \simeq De \) [15] Proposition 5.8 (iii)], and \(S \) be the socle of \(De \) which is homogeneous by [15] Proposition 3.5 (ii). Since the symmetric bilinear form of \(D \) satisfies \((1, eS(0)) = (1, eS) \), recall Section 2 we can reason like in the proof of [13] (9.12) to show that \(eS(0) \neq 0 \). Hence \(P(\lambda)[i] \) is the injective hull of \(L(\lambda)[i] \). (vii) follows from Lemma 2.6 (i) and (27). The remaining items are deduced from (i) and Lemma 2.6 (iii).

Let \(P \) be a projective module with a fixed \(Z \)-grading. Therefore there exist unique polynomials \(p_{P, P(\lambda)} \in \mathbb{Z}_{\geq 0}[t, t^{-1}] \) such that

\[
P \simeq \oplus_{\lambda \in \Lambda} p_{P, P(\lambda)} \cdot P(\lambda) \quad \text{if and only if} \quad \text{ch}^* P = \sum_{\lambda \in \Lambda} p_{P, P(\lambda)} \text{ch}^* P(\lambda)
\]

(28)

by [15] Proposition 5.8 (iii)]. If \([P : P(\lambda)] = p_{P, P(\lambda)}(1) \), then

\[
P \simeq \oplus_{\lambda \in \Lambda} [P : P(\lambda)] \cdot P(\lambda)
\]

(29)

as ungraded modules.

Let us consider \(P \) as a \(D^{\leq 0} \)-module. Since \(D^{\leq 0} \) is a graded subalgebra of \(D \), \(P \) also is a projective \(Z \)-graded \(D^{\leq 0} \)-module. Hence, by [15] Proposition 5.8 (iii)] and Lemma 2.2] there exist unique polynomials \(p_{P, M(\lambda)} \in \mathbb{Z}_{\geq 0}[t, t^{-1}] \) such that

\[
P \simeq \oplus_{\lambda \in \Lambda} p_{P, M(\lambda)} \cdot M(\lambda) \quad \text{as} \quad D^{\leq 0} \text{-modules}
\]

(30)
if and only if
\[\text{ch}^\bullet \mathcal{P} = \sum_{\lambda \in \Lambda} p_{\text{P}, M(\lambda)} \text{ch}^\bullet M(\lambda). \]

Moreover, for each \(\lambda \in \Lambda \) and \(i \in \mathbb{Z} \), we assume that the lowest-weight \(\lambda V \cdot \lambda \) is concentrated in degree 0 and set
\[a_{\text{P}, M(\lambda), i} = \dim \text{Hom}_{D}^\bullet (\lambda V \cdot \lambda, \mathcal{P})_{i-\text{proj}}. \]

Therefore \(\dim \text{Hom}_{D}^\bullet (\lambda V \cdot \lambda, \mathcal{P}) = p_{\text{P}, M(\lambda)}(1) \) and
\[p_{\text{P}, M(\lambda)} = \sum_{i} a_{\text{P}, M(\lambda), i} t^{i} \in \mathbb{Z}[t, t^{-1}] \]

by Lemma 2.4.

In particular, we have that \(p_{\text{Ind}(\mu), M(\lambda)} = p_{\text{P}(\lambda), \mu} \) and \(p_{\text{Ind}(\mu), M(\lambda)} = p_{\mathbb{B}(\mathcal{V}) \otimes \mu, \lambda} \) for all \(\lambda, \mu \in \Lambda \). Thus, we obtain graded versions of (17) and (20), that is
\[\text{Ind}(\mu) \simeq \bigoplus_{\lambda \in \Lambda} p_{\text{P}(\lambda), \mu} \cdot M(\lambda) \simeq \text{M}(\text{ch}^\bullet \mathbb{B}(\mathcal{V}) \cdot \mu) \]

as \(\mathbb{Z} \)-graded \(D \)-modules and \(\mathbb{Z} \)-graded \(D \leq 0 \)-modules, respectively.

Remarks 3.2. Let \(\mathcal{R}^\bullet_{\text{proj}} \) be the Grothendieck ring of the subcategory of projective modules. Clearly, \(\{ \text{ch}^\bullet \mathcal{P}(\lambda) \mid \lambda \in \Lambda \} \) is a \(\mathbb{Z}[t, t^{-1}] \)-basis of \(\mathcal{R}^\bullet_{\text{proj}} \). Moreover, the sets \(\{ \text{ch}^\bullet M(\lambda) \mid \lambda \in \Lambda \} \) and \(\{ \text{ch}^\bullet W(\lambda) \mid \lambda \in \Lambda \} \) so are by (30) and (39).

3.2. The simple modules are identified by their graded characters. Let \(N = \bigoplus_{i \in \mathbb{Z}} N(i) \) be a \(\mathbb{Z} \)-graded \(D \)-module. For each \(\lambda \in \Lambda \) and \(i \in \mathbb{Z} \), we define
\[a_{N, M(\lambda), i} = \dim \text{Hom}_{D}^\bullet (\mathcal{P}(\lambda)[i], N)_{0} = \dim \text{Hom}_{D}^\bullet (N, \mathcal{P}(\lambda)[i])_{0}; \]

these dimensions are equal by Lemma 3.1(1). It is the number of composition factors of \(N \) isomorphic to \(L(\lambda)[i] \). We also define the Laurent polynomial
\[p_{N, M(\lambda)} = \sum_{i} a_{N, M(\lambda), i} t^{i} \in \mathbb{Z}[t, t^{-1}]. \]

By the next theorem the ring morphism \(\text{ch}^\bullet : \mathcal{R}^\bullet \rightarrow \mathbb{K}[t, t^{-1}] \) is injective.

Theorem 3.3. The set \(\{ \text{ch}^\bullet L(\lambda) \mid \lambda \in \Lambda \} \) is a \(\mathbb{Z}[t, t^{-1}] \)-basis of \(\mathcal{R}^\bullet \). More explicitly, if \(N = \bigoplus_{i \in \mathbb{Z}} N(i) \) is a \(\mathbb{Z} \)-graded \(D \)-module, then the Laurent polynomials \(p_{N, M(\lambda)} \) are the unique ones such that
\[\text{ch}^\bullet N = \sum_{\lambda \in \Lambda} p_{N, L(\lambda)} \text{ch}^\bullet L(\lambda). \]

Therefore \([N : L(\lambda)] = p_{N, L(\lambda)}(1)\).

Proof. Suppose that \(0 = \sum_{\lambda \in \Lambda} p_{\lambda} \text{ch}^\bullet L(\lambda) \) with \(p_{\lambda} \in \mathbb{Z}[t, t^{-1}] \). Multiplying by a suitable \(t^{j} \) with \(j < 0 \), we can assume that \(p_{\lambda} \in \mathbb{Z}[t^{-1}] \) for all \(\lambda \). Then, we deduce that \(p_{\lambda} = 0 \) for all \(\lambda \) since \(\text{ch}^\bullet L(\lambda) = \lambda + \sum_{j < 0} \text{ch}(L(\lambda)(j)) t^{j} \), and the uniqueness follows.

Let \(L \) be a simple submodule of \(N \). As \(L \) is graded and a highest-weight module, there is \(i \in \mathbb{Z} \) such that \(L(j) \subseteq N(i + j) \) and the quotient \(N/L \) is a \(\mathbb{Z} \)-graded \(D \)-module. Then \(\text{ch}^\bullet N = t^{i} \text{ch}^\bullet L + \text{ch}^\bullet N/L \) and the theorem follows by induction on the length of \(N \); we use that \(P(\lambda)[i] \) is a \(\mathbb{Z} \)-graded projective module and then \(\text{Hom}_{D}(P(\lambda)[i], -)_{0} \) is an exact functor.

The equality \([N : L(\lambda)] = p_{N, L(\lambda)}(1)\) is clear. \qed
3.3. **Graded character identities.** Irving has defined a class of highest weight categories for which the BGG Reciprocity holds \[19\]. These categories have a duality functor \(\delta\) which is trivial on simple modules. Using the order on the weights, he shows that the characters of a Verma module \(M\) and \(\delta M\) are equal.

Although we do not have either such a duality or an order on the weights, we can prove the following identities among the graded characters of Verma modules, their duals and the modules \(W(\lambda) = D \otimes_{D^\lambda} \lambda\), recall \[14\]. Such identities are key in the proof of the BGG Reciprocity.

Theorem 3.4. Let \(\lambda\) be a weight. Then

\[
t^{n_{top}} \text{ch}^* W(\lambda^V \cdot \lambda)^* = \text{ch}^* W(\lambda^*) = \text{ch}^* M(\lambda)^* = t^{n_{top}} \text{ch}^* M((\lambda^V \cdot \lambda)^*).
\]

Proof. We have that \((B^j(V) \otimes \lambda)^* \simeq B^j(V)^* \otimes \lambda^* \simeq B^j(V \otimes \lambda)^*\) by \[1\] and hence \(\text{ch}^* W(\lambda^*) = \text{ch}^* M(\lambda)^*\), it is (ii).

On the other hand, \[12\] and \[13\] imply (i) and (iii), respectively:

\[
\text{ch}^* M(\lambda)^* = t^{n_{top}} \text{ch}^* M((\lambda^V \cdot \lambda)^*) \quad \text{and} \quad t^{n_{top}} \text{ch}^* W(\lambda^V \cdot \lambda)^* = \text{ch}^* W(\lambda^*).
\]

□

We compare the graded composition factors of a Verma module and its dual using that \(\{\text{ch}^* L(\lambda) \mid \lambda \in \Lambda\}\) is a \(\mathbb{Z}[t, t^{-1}]\)-basis. Recall that \(M(\mu)^* \simeq M((\lambda^V \cdot \mu)^*)\) by \[11\].

Corollary 3.5. Let \(\lambda\) and \(\mu\) be weights. Then

\[
t_{n_{top}} \text{ch}^* p_{M(\lambda), L(\mu)} = t_{n_{top}} \text{ch}^* p_{M((\lambda^V \cdot \lambda)^*), L(\overline{\mu})}.
\]

In particular, \(|M(\lambda) : L(\mu)| = |M((\lambda^V \cdot \lambda)^*) : L(\overline{\mu})|\) by evaluating the above polynomials at \(t = t^{-1} = 1\).

Proof. We have the linear isomorphisms

\[
\text{Hom}^*_D(P(\mu)[i], M(\lambda)) \simeq \text{Hom}^*_D(M(\lambda)^*, (P(\mu)[i])^*)_0 \\
\simeq \text{Hom}^*_D(M(\lambda)^*, P(\overline{\mu})[-l_{\mu} - i])_0.
\]

Then \(a_{M(\lambda), L(\mu), i} = a_{M(\lambda)^*, L(\overline{\mu})}, -l_{\mu} - i\) and hence \(p_{M(\lambda), L(\mu)} = t_{-l_{\mu}} p_{M(\lambda)^*, L(\overline{\mu})}\). Thus, the corollary follows from Theorem 3.4. □

We do not know yet whether the projective modules are filtered by Verma modules. Instead, we know that they decompose into the direct sum of Verma modules as \(\mathbb{Z}\)-graded \(\mathcal{D}^{\leq 0}\)-modules \[20\]. Such decomposition is related to the graded composition factors of the Verma modules, as we see below in a graded version of the BGG Reciprocity.

Corollary 3.6. Let \(\lambda\) and \(\mu\) be weights. Then

\[
p_{P(\mu), M(\lambda)} = p_{M(\lambda), L(\mu)}.
\]

Proof. We have the linear isomorphisms

\[
\text{Hom}^*_D(\lambda^V \cdot \lambda, P(\mu))_{i-n_{top}} \simeq \text{Hom}^*_D(W(\lambda^V \cdot \lambda), P(\mu))_{i-n_{top}} \\
\simeq \text{Hom}^*_D(P(\mu)^*, (W(\lambda^V \cdot \lambda)[i-n_{top}]^*)_0 \\
\simeq \text{Hom}^*_D(P(\overline{\mu})[-l_{\mu}], W(\lambda^V \cdot \lambda)[-i+n_{top}])_0 \\
\simeq \text{Hom}^*_D(P(\overline{\mu})[i-n_{top} - l_{\mu}], W(\lambda^V \cdot \lambda)^*)_0,
\]

\[\]
the first one is the Frobenius reciprocity and the third one is by Lemma 3.1 \[vii\]
Thus, by (32), Theorem 3.3 and Corollary 3.3, we have that
\[t^{-n_{top}} p_{\rho, M(\lambda)} = p_{W(\lambda, \cdot)^* \cdot L(\rho)} = p_{M((\lambda, \cdot)^*, L(\rho))} = t^{-1} p_{M(\lambda), L(\mu)} \]
and the corollary follows. \[\square\]

4. Standard filtrations and the BGG Reciprocity

We say that a (graded) module \(N \) has a (graded) standard filtration, so-called Verma flag, if there exists a sequence of (graded) submodules \(0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_n = N \) such that each subquotient \(N_i / N_{i-1} \) is isomorphic to a Verma module. The multiplicity of a Verma module \(M(\lambda) \) in \(N \) is
\[\{N : M(\lambda)\} = \# \{i \mid N_i / N_{i-1} \cong M(\lambda)\}. \]
We also define \(\{N : M(\lambda)[\ell]\} = \# \{i \mid N_i / N_{i-1} \cong M(\lambda)[\ell]\} \) for the graded case.

The following lemmas are analogous to [17, Theorem 3.6 and Proposition 3.7 (b)].

Lemma 4.1. Let \(\lambda \) be a weight and \(N \) a (graded) module. Then \(M(\lambda) \otimes N \) has a (graded) standard filtration.

Proof. Let \(0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_r = \lambda \otimes N \) be a filtration of \(\lambda \otimes N \) by (graded) \(D \otimes \mathbb{Z} \)-modules such that \(N_i / N_{i-1} \) is a highest-weight \(\mu_i \), i.e., a Jordan-Hölder series as (graded) \(D \otimes \mathbb{Z} \)-module. Applying the exact functor \(D \otimes (-) \) to \(M(\lambda) \otimes N \) using Lemma 2.9 with \(U = \lambda \).

Lemma 4.2. Let \(N \) be a (graded) module which has a (graded) standard filtration and \(N = N' \oplus N'' \) as (graded) modules. Then \(N' \) and \(N'' \) have (graded) standard filtrations.

Proof. By the (graded) standard filtration of \(N \) we have an inclusion of \(i : M(\lambda) \rightarrow N \). Let \(p' : N \rightarrow N' \) be the natural projection and \(\iota' \) its section. We can assume that \((p' \circ i)(1 \otimes \lambda) \neq 0 \) since the Verma modules have simple socle. Therefore \((\iota' \circ p' \circ i) : M(\lambda) \rightarrow N' \) is an inclusion and the lemma follows by induction since \(N/M(\lambda) = N'/M(\lambda) \oplus N'' \).

The main result of the section is the following, cf. [17, Theorems 3.10 and 3.11]. Recall the definition of \(a_{P, M(\lambda), i} \) from (32).

Theorem 4.3. Every projective module \(P \) has a graded standard filtration and
\[\{P : M(\lambda)[i]\} = a_{P, M(\lambda), i} \]
holds for all \(\lambda \in \Lambda \). Therefore the BGG Reciprocity
\[\{P(\mu) : M(\lambda)\} = [M(\lambda) : L(\mu)] \]
holds for all \(\lambda, \mu \in \Lambda \).

Proof. By Lemma 2.8 and Lemma 4.1 \(Ind(\lambda) \cong M(\lambda) \otimes W(\varepsilon) \) has a graded standard filtration. The indecomposable projective \(P(\lambda) \) is a graded direct summand of \(Ind(\lambda) \) by (32) and the above section. Hence it has a graded standard filtration by Lemma 4.2. Therefore all the projective modules have a standard filtration.

The equality \(\{P : M(\lambda)[i]\} = a_{P, M(\lambda), i} \) is clear and therefore the BGG Reciprocity follows from Corollary 3.6 by evaluating the polynomials at \(t = t^{-1} = 1 \). \[\square\]
We point out the information about the structure of the indecomposable projective modules which can be deduced from the above results.

Remarks 4.4. Let \(0 = N_0 \subset N_1 \subset \cdots \subset N_n = P(\lambda) \) be a graded standard filtration of \(P(\lambda) \) whose subquotients are \(N_i/N_{i-1} \cong M(\lambda_i) / [\ell_i] \) for all \(i = 1, \ldots, n \).

Hence, \(P(\lambda) \cong M(\lambda_1) / [\ell_1] \oplus \cdots \oplus M(\lambda_n) / [\ell_n] \) as \(\mathbb{Z} \)-graded \(D^{\leq 0} \)-modules.

Via this isomorphism, \(\overline{V} \cdot (1 \otimes \lambda_i) / [\ell_i] \subseteq (1 \otimes \lambda_{i-1}) / [\ell_{i-1}] \). Moreover, if we know this action, we can infer inductively the action of \(\overline{V} \) on \(M(\lambda_i) / [\ell_i] \) using the commutation rules between \(V \) and \(\overline{V} \), cf. [26, p. 438].

By Lemma 3.1, \(M(\lambda_i) / [\ell_i] = M(\lambda_{i-1} \cdot \overline{V}) / [\lambda_i + \lambda_{i-1}] \) and \(M(\lambda_n) / [\ell_n] = M(\lambda) \).

4.1. Simple and projective Verma modules

The next corollary is a direct consequence of the BGG Reciprocity. However, we give another nice proof without using the former theorem.

Lemma 4.5. Let \(f : N \to M(\lambda) \) be a projection. If \(S \subset N \) is a highest-weight such that \(f(S) = 1 \otimes \lambda \), then \(f \) splits.

Proof. We define a morphism \(\phi : M(\lambda) \to N \) by \(\phi(1 \otimes \lambda) = S \) and hence \(f \circ \phi = \text{id}_M \). \(\square \)

Corollary 4.6. Let \(M(\lambda) \) be a Verma module. The following are equivalent:

(i) \(M(\lambda) \) is simple.

(ii) \(M(\lambda) \) is projective.

(iii) \(M(\lambda) \) is injective.

Proof. Since \(D \) is a finite-dimensional Hopf algebra, a \(D \)-module is projective if and only if it is injective. Then (ii) and (iii) are equivalent.

Assume that \(M = M(\lambda) \) is simple. We shall prove that every projection \(f : N \to M \) splits. By Lemma 4.3, it is enough to find a highest-weight \(S \subset N \) such that \(f(S) = 1 \otimes \lambda \). Let \(S' \) be a weight of \(N \) such that \(f(S') = B^{\text{top}}(V) \otimes \lambda \). Then \(S = y_{\text{top}}S' \) is a highest-weight of \(N \) and \(f(y_{\text{top}}S') = 1 \otimes \lambda \) by [26, Corollary 15].

Assume now that \(M = M(\lambda) \) is projective. Let \(f : \text{Ind}(\lambda) \to M \) be the projection such that \(f(\lambda) = 1 \otimes \lambda \) and \(\phi : M \to \text{Ind}(\lambda) \) a section of \(f \). Hence \(\phi(1 \otimes \lambda) \subset y_{\text{top}} \otimes B(V) \otimes \lambda \) since \(\overline{V}S = 0 \). That is, for each \(s \in S \) there exists \(x_s \in B(V) \) such that \(\phi(s) = y_{\text{top}} \otimes x_s \otimes s \) and then \(s = f(\phi(s)) = y_{\text{top}}x_s \). As the Verma module is graded, \(x_s \in B^{\text{top}}(V) \) and is non-zero if \(s \neq 0 \). Therefore \(M \) is simple by [26, Corollary 15]. Then (ii) implies (i). \(\square \)

We obtain a useful result if we combine the above corollary and the characterization of the simple modules \(L(\lambda) \) and \(S(\lambda) \).

Corollary 4.7. Let \(N \) be a module and \(M(\lambda) \) a simple Verma module. Assume that either \(\lambda \) is a highest-weight of \(N \) or \(\lambda' \cdot \lambda \) is a lowest-weight of \(N \). Then \(M(\lambda) \) is a direct summand of \(N \).

Proof. If \(\lambda \) is a highest-weight of \(N \), then we have a non-trivial morphism \(f : M(\lambda) \to N \). As \(M(\lambda) \) is simple, \(f \) is a monomorphism. But also \(M(\lambda) \) is injective, then \(f \) splits.

Assume that \(\lambda' \cdot \lambda \) is a lowest-weight. Let \(U \) be a simple quotient of the submodule generated by \(\lambda' \cdot \lambda \). As there is a unique simple lowest-weight module of
weight \(\lambda_V \cdot \lambda \), \(U = S(\lambda) = M(\lambda) \). Then \(M(\lambda) \) is a direct summand of \(U \) and hence it is of \(N \) because \(M(\lambda) \) is injective.

4.2. **Co-standard filtration.** We say that a (graded) module has a (graded) co-standard filtration if it is filtered by (graded) modules whose subquotients are isomorphic to co-Verma modules \(W(\lambda) \), recall \([12]\). The multiplicities \([N : W(\lambda)]\) and \([N : W(\lambda)[b]]\) are defined as for standard filtrations. We next formulate analogous results to those about standard filtrations. The proofs are similar.

Lemma 4.8. Let \(\lambda \) be a weight and \(N \) a (graded) module.

1. Then \(M(\lambda) \otimes N \) has a (graded) standard filtration.\(^\square\)

2. If \(N \) has a (graded) standard filtration and \(N = N' \oplus N'' \) as (graded) modules, then \(N' \) and \(N'' \) have (graded) standard filtrations.\(^\square\)

Let \(P \) be a graded projective module. Then, it is also graded projective as a \(D^{\geq 0}_\Lambda \)-module. For each \(\lambda \in \Lambda \) and \(i \in \mathbb{Z} \), we define
\[
a_{P, W(\lambda), i} = \dim \text{Hom}_{D^{\geq 0}}(\lambda_V \cdot \lambda, P)_{i+n_{top}} \quad \text{and} \quad p_{P, W(\lambda)} = \sum_i a_{P, W(\lambda), i} t^i \in \mathbb{Z}[t, t^{-1}];
\]
we assume that the highest-weight \(\lambda_V \cdot \lambda \) is concentrated in degree 0. Therefore
\[
P \simeq \bigoplus_{\lambda \in \Lambda} p_{P, W(\lambda)} \cdot W(\lambda).
\]
as \(D^{\geq 0}_\Lambda \)-modules.

The second item below is the BGG Reciprocity for co-Verma modules. Item (iii) says that the multiplicities of the co-Verma modules can be deduced from the composition factors of the Verma modules.

Theorem 4.9. Every projective module \(P \) has a graded co-standard filtration and the following indentities hold for all \(\lambda, \mu \in \Lambda \):

1. \(|P : W(\lambda)[\mu]| = a_{P, W(\lambda), i} \).
2. \(p_{P(\mu), W(\lambda)} = p_{W(\lambda), \lambda(\mu)} \) and \(|P(\mu) : W(\lambda)| = [W(\lambda) : L(\mu)] \).
3. \(p_{P(\mu), W(\lambda)} = t^{-n_{top}} p_{M(\lambda_V \cdot \lambda), \lambda(\mu)} \) and \(|P(\mu) : W(\lambda)| = [M(\lambda_V \cdot \lambda) : L(\mu)] \).
\(\square\)

4.3. **Tensor product of projective modules.**

Theorem 4.10. Let \(P \) and \(Q \) be projective modules. Then
\[
P \otimes Q \simeq \bigoplus_{\lambda, \mu \in \Lambda} p_{P, W(\lambda)} p_{Q, M(\mu)} \text{Ind}(\lambda \cdot \mu).
\]

Proof. Let \(0 = Q_0 \subset Q_1 \subset \cdots \subset Q_n = Q \) be a graded standard filtration of \(Q \). Since \(P \otimes - \) is exact and \(P \otimes N \) is projective for any module, we have that
\[
P \otimes Q \simeq \bigoplus_{i=1}^n P \otimes (Q_i / Q_{i-1}) \simeq \bigoplus_{\mu \in \Lambda} p_{Q, M(\mu)} P \otimes M(\mu).
\]
Let \(0 = P_0 \subset P_1 \subset \cdots \subset P_n = P \) be a graded co-standard filtration of \(P \). By Lemma \([28]\), \(W(\lambda) \otimes M(\mu) \simeq \text{Ind}(\lambda \cdot \mu) \) is projective. Then
\[
P \otimes M(\mu) \simeq \bigoplus_{i=1}^n (P_i / P_{i-1}) \otimes M(\mu) \simeq \bigoplus_{\lambda \in \Lambda} p_{P, W(\lambda)} \text{Ind}(\lambda \cdot \mu)
\]
and the theorem follows.\(\square\)
5. Examples

5.1. Taft algebras. Let $G = C_n = \langle g \rangle$ be the cyclic group of order n and q a n-th primitive root of unity. The quantum line $k(x | x^n = 0)$ is isomorphic to the Nichols algebra of $V = kx \in \mathcal{V}D$ with action $g \cdot x = qx$ and coaction $\rho(x) = g \otimes x$. The Taft algebra T_q is the bosonization $\mathcal{B}(V) \# kG$. The Frobenius-Lusztig kernel $u_q(\mathfrak{sl}(2))$ is isomorphic to a quotient of the Drinfeld double $D(T_q)$ by a central group-like element. The simple modules of $D(T_q)$ and $u_q(\mathfrak{sl}(2))$ were studied for instance in [11] and [1, 10, 14, 30], respectively.

In the case of $D(T_q)$, $\Lambda \cong C_n \times C_n = \langle \chi_1 \rangle \times \langle \chi_2 \rangle$ and all the Verma modules $M(r,s) = M(\chi_1, \chi_2)$ have dimension n. The simple module $L(r, 1 - (r + l))$ has dimension l for $1 \leq l, r \leq n$ [11 Theorem 2.5]. Therefore the Verma modules $M(r, 1 - (r + n))$ are simple and projective by Corollary 4.6.

It is easy to see that the composition factors of $M(r, 1 - (r + l))$ are $L(r, 1 - (r + l))$ and $L(r + l, 1 - ((r + l) + (n - l)))$. Therefore the indecomposable projective $P(r, 1 - (r + l))$ has a submodule $N \cong M(r + l - n, 1 - ((r + l - n) + (n - l)))$ and $P(r, 1 - (r + l))/N \cong M(r, 1 - (r + l))$ by the BGG Reciprocity. Notice that the module in [11 Remark 2.8] is $M(r, 1 - (r + n - 1))$.

The previous facts do not appear in [11]. Of course, we can also come to the same conclusion using the knowledge about modules over $u_q(\mathfrak{sl}(2))$.

5.2. The Shapovalov determinant. Assume $\mathcal{B}(V)$ is a Nichols algebra of diagonal type. In [10] the authors give a formula analogous to the Shapovalov determinant for complex semisimple Lie algebras. Thus, they characterize the simple Verma modules of the Drinfeld doubles attached to $\mathcal{B}(V)$. We now know that this also gives a characterization of the projective Verma modules by Corollary 4.6.

5.3. The Nichols algebra of unidentified diagonal type $u\mathfrak{so}(7)$. This is the smallest Nichols algebra of unidentified type, $\dim \mathcal{B}(V) = 144$, see [6]. Let G be an abelian group such that $\mathcal{B}(V) \in \mathcal{B}(V) \# kG$. The simple modules of \mathcal{D} are classified in [2]. The authors divide the set of weights in 47 subsets and study the corresponding Verma modules case by case. They obtain three families of weights (C_0, C_1, C_2) which are related with the Shapovalov determinant.

They use the Shapovalov determinant to show that the Verma modules in C_0 are simple [2 Lemma 1.6]. Hence these are projective by Corollary 4.6.

The class C_1 is formed by 9 different types of weights. The composition factors of the Verma module $M(\Lambda)$, $\Lambda \in C_1$, are given explicitly in [2 Section 2]. These are $L(\lambda')$ and $L(\lambda)$ for certain $\lambda' \in C_1$. Then, using the BGG Reciprocity, we deduce that the projective cover $P(\lambda)$ of $L(\lambda)$ has a submodule isomorphic to $M(\mu)$ for certain $\mu \in C_1$ satisfying $\mu' = \lambda$ and $P(\lambda)/M(\mu) \cong M(\lambda)$.

The Verma module in C_2 might have more than two composition factors, see [2 Remark 3.2]. It is possibly to obtain the composition factors of $M(\lambda)$, for all $\lambda \in C_2$, by reasoning as in [2 Remark 3.2]; the graded characters can also help.

5.4. The Fomin-Kirillov algebra \mathcal{FK}_3. This is a Nichols algebra in $k\mathfrak{s}_3 \mathcal{V}D$, it is the smallest one over a non-abelian group. In [26] we investigate the Verma and simple modules over the Drinfeld double of $\mathcal{FK}_3 \# k\mathfrak{s}_3$. In this case, the set of weights is

$$\Lambda = \{(e,+), (e,-), (e,\rho), (\sigma,+), (\sigma,-), (\tau,0), (\tau,1), (\tau,2)\}. $$
We have shown that $M(e, -)$, $M(\tau, 1)$, $M(\tau, 2)$ and $M(\sigma, +)$ are simple. Therefore they are projective by Corollary 4.10. The composition factors of the remaining Verma modules are given in [26, Theorems 7, 8, 9 and 10]. We have that

- $\text{ch } M(\sigma, -) = 2 \cdot \text{ch } L(\sigma, -) + 2 \cdot \text{ch } L(e, +) + \text{ch } L(\tau, 0) + \text{ch } L(e, \rho)$.
- $\text{ch } M(e, +) = 2 \cdot \text{ch } L(e, +) + \text{ch } L(\sigma, -)$.
- $\text{ch } M(e, \rho) = \text{ch } M(\tau, 0) = \text{ch } L(\tau, 0) + \text{ch } L(e, \rho) + \text{ch } L(\sigma, -)$.

By the BGG Reciprocity, we conclude that

- $\text{ch } P(\sigma, -) = 2 \cdot \text{ch } M(\sigma, -) + \text{ch } M(e, +) + \text{ch } M(\tau, 0) + \text{ch } M(e, \rho)$.
- $\text{ch } P(e, +) = 2 \cdot \text{ch } M(e, +) + 2 \cdot \text{ch } M(\sigma, -)$.
- $\text{ch } P(e, \rho) = \text{ch } M(\tau, 0) = \text{ch } M(\tau, 0) + \text{ch } M(e, \rho) + \text{ch } M(\sigma, -)$.

Together with Barbara Pogorelsky, we study these projective modules more in detail [27]. We also discuss the tensor product between the simple and projective modules.

References
[1] H. H. Andersen, J. C. Jantzen, and W. Soergel. Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: independence of p. Astérisque, (220):321, 1994.
[2] N. Andruskiewitsch, I. Angiono, A. Mejía, and C. Renz. Simple modules of the quantum double of the Nichols algebra of unidentified diagonal type $uq(7)$. arXiv:1608.06395.
[3] N. Andruskiewitsch and M. Graña. Braided Hopf algebras over non-abelian finite groups. Bol. Acad. Nac. Cienc. (Córdoba), 63:45–78, 1999. Colloquium on Operator Algebras and Quantum Groups (Spanish) (Vaquerías, 1997).
[4] N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider. The Nichols algebra of a semisimple Yetter-Drinfeld module. Amer. J. Math., 132(6):1493–1547, 2010.
[5] N. Andruskiewitsch, D. Radford, and H.-J. Schneider. Complete reducibility theorems for modules over pointed Hopf algebras. J. Algebra, 324(11):2932–2970, 2010.
[6] I. Angiono. Nichols algebras of unidentified diagonal type. Comm. Algebra, 41(12):4667–4693, 2013.
[7] S. Azam, H. Yamane, and M. Yousofzadeh. Classification of finite-dimensional irreducible representations of generalized quantum groups via Weyl groupoids. Publ. Res. Inst. Math. Sci., 51(1):59–130, 2015.
[8] Gwyn Bellamy and Ulrich Thiel. Highest weight theory for finite-dimensional graded algebras with triangular decomposition. arXiv:1705.08024, 2017.
[9] I. N. Bernstein, I. M. Gel’fand, and S. I. Gel’fand. A certain category of g-modules. Funkcional. Anal. i Priložen., 10(2):1–8, 1976.
[10] V. Chari and A. Pressley. Indecomposable restricted representations of quantum sl_2. Publ. Res. Inst. Math. Sci., 30(2):335–352, 1994.
[11] H.-X. Chen. Irreducible representations of a class of quantum doubles. J. Algebra, 225(1):391–409, 2000.
[12] E. Cline, B. Parshall, and L. Scott. Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math., 391:85–99, 1988.
[13] C. W. Curtis and I. Reiner. Methods of representation theory. Vol. I. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1990. With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication.
[14] C. M. Drupieski. Representations and cohomology for Frobenius-Lusztig kernels. J. Pure Appl. Algebra, 215(6):1473–1491, 2011.
[15] R. Gordon and E. L. Green. Graded Artin algebras. J. Algebra, 76(1):111–137, 1982.
[16] I. Heckenberger and H. Yamane. Drinfel’d doubles and Shapovalov determinants. Rev. Un. Mat. Argentina, 51(2):107–146, 2010.
[17] J. E. Humphreys. Representations of semisimple Lie algebras in the BGG category O, volume 94 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
[18] R. S. Irving. Projective modules in the category O. unpublished manuscript, 1982.
[19] R. S. Irving. BGG algebras and the BGG reciprocity principle. *J. Algebra*, 135(2):363–380, 1990.
[20] A. S. Kleshchev. Affine highest weight categories and affine quasihereditary algebras. *Proc. Lond. Math. Soc. (3)*, 110(4):841–882, 2015.
[21] L. Krop and D. E. Radford. Simple modules for the Drinfel’d double of a class of Hopf algebras. In *Groups, rings and algebras*, volume 420 of *Contemp. Math.*, pages 229–235. Amer. Math. Soc., Providence, RI, 2006.
[22] L. Krop and D. E. Radford. Representations of pointed Hopf algebras and their Drinfel’d quantum doubles. *J. Algebra*, 321(9):2567–2603, 2009.
[23] M. Lorenz. Representations of finite-dimensional Hopf algebras. *J. Algebra*, 188(2):476–505, 1997.
[24] G. Lusztig. Leading coefficients of character values of Hecke algebras. In *The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986)*, volume 47 of *Proc. Sympos. Pure Math.*, pages 235–262. Amer. Math. Soc., Providence, RI, 1987.
[25] U. Oberst and H.-J. Schneider. Über Untergruppen endlicher algebraischer Gruppen. *Manuscripta Math.*, 8:217–241, 1973.
[26] B. Pogorelsky and C. Vay. Verma and simple modules for quantum groups at non-abelian groups. *Adv. Math.*, 301:423–457, 2016.
[27] B. Pogorelsky and C. Vay. On the representation theory of a quantum group attached to the Fomin-Kirillov algebra \mathcal{F}_3. *arXiv:1707.02091*, 2017.
[28] D. E. Radford. Minimal quasitriangular Hopf algebras. *J. Algebra*, 157(2):285–315, 1993.
[29] D. E. Radford and H.-J. Schneider. On the simple representations of generalized quantum groups and quantum doubles. *J. Algebra*, 319(9):3689–3731, 2008.
[30] R. Suter. Modules over $U_q(sl_2)$. *Comm. Math. Phys.*, 163(2):359–393, 1994.
[31] S. J. Witherspoon. The representation ring of the quantum double of a finite group. *J. Algebra*, 179(1):305–329, 1996.

FAAMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, República Argentina.

E-mail address: vay@famaf.unc.edu.ar