Complete genome sequence of \textit{Corynebacterium pseudotuberculosis} biovar ovis strain P54B96 isolated from antelope in South Africa obtained by rapid next generation sequencing technology

Syed Shah Hassan1, Luis Carlos Guimarães1, Ulisses de Pádua Pereira5, Arshad Islam6, Amjad Ali1, Syeda Marriam Bakhtiar1, Dayana Ribeiro1, Anderson Rodrigues dos Santos1, Siomar de Castro Soares1, Fernanda Dorella1, Anne Cybelle Pinto1, Maria Paula Cruz Schneider2, Maria Silvanira Barbosa5, Síntia Almeida1, Vinícius Abreu1, Flávia Aburjaille1, Adriana Ribeiro Carneiro2, Louise Teixeira Cereida2, Karina Fiaux1, Eudes Barbosa1, Carlos Diniz1, Flavia S. Rocha1, Rommel Thiago Jucá Ramos2, Neha Jain4, Sandeep Tiwari4, Debmalya Barh4, Anderson Miyoshi1, Borna Müller3, Artur Silva2*, Vasco Azevedo1*

1Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
2Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
3DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
4Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (HOAB), Nonakuri, Purba Medinipur, West Bengal, India
5Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Brazil
6Instituto de Ciências Exatas (ICEX), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

*Corresponding Authors: Prof. Vasco Azevedo (vasco@icb.ufmg.br) and Prof. Artur Silva (asilva@ufpa.br)

Keywords: biovar ovis, Gram-positive pathogen, caseous lymphadenitis/cheesy gland disease, liver lesion, Antelope, genome sequencing, Ion Torrent.

The \textit{Actinobacteria}, \textit{Corynebacterium pseudotuberculosis} strain P54B96, a nonmotile, non-sporulating and a mesophile bacterium, was isolated from liver, lung and mediastinal lymph node lesions in an antelope from South Africa. This strain is interesting in the sense that it has been found together with non-tuberculous mycobacteria (NTMs) which could nevertheless play a role in the lesion formation. In this work, we describe a set of features of \textit{C. pseudotuberculosis} P54B96, together with the details of the complete genome sequence and annotation. The genome comprises of 2.34 Mbp long, single circular genome with 2,084 protein-coding genes, 12 rRNA, 49 tRNA and 62 pseudogenes and a G+C content of 52.19%. The analysis of the genome sequence provides means to better understanding the molecular and genetic basis of virulence of this bacterium, enabling a detailed investigation of its pathogenesis.

Introduction

Caseous lymphadenitis (CLA) or cheesy gland [1] is highly prevalent in many regions of the world, resulting in huge and significant economic losses in agribusiness since it is responsible for a decrease in wool production and carcass quality [2]. Mainly small ruminant populations like sheep and goats, and other mammals, such as bovines, pigs, deer, ovines, equines, and even, though rarely, in camels and humans, are the victims of \textit{Corynebacterium pseudotuberculosis} [3-6]. The disease is characterized by the presence of caseous necrosis in external and/or internal lymph nodes [1,7]. Ulcerative lymphangitis, which is confined to the lymph vessels of extremities particularly the hind legs, is a disease caused by this bacterium in the horse [8,9]. The bacterium in
some cases of human lymphadenitis, clinical strains are occasionally recovered [10]. The prevalence of CLA in the animals scattered throughout the globe needs effective measures to control the onset of the disease in herds along with the treatment of infected animals. Numerous reports have been published worldwide where mainly small ruminants are the carriers of the \textit{C. pseudotuberculosis}. They include South Africa, Brazil, United States of America, Canada, Australia, New Zealand, United Kingdom and Egypt [11-18]. Histopathological examination of antelope carcasses from a South African game reserve, a part of their routine meat inspection, showed tuberculosis-like lesions. These lesions were characterized by the presence of encapsulated necrogranulomatous inflammation similar to CLA within the pulmonary tissues, in bronchial lymph nodes, liver, kidney and some other organs of the antelopes [11]. Diseases caused by the bacterium \textit{C. pseudotuberculosis} are presented in various clinical forms as sheep and goats, affected with CLA [19]. Among the affected animal population, the increased prevalence and rapid transmission of the disease necessitates certain measures to control disease dissemination and prevent the nearby wildlife. The analysis of the genome sequence will help us better understand the molecular and genetic basis of virulence of this bacterium.

\section*{Classification and Features}

\textit{C. pseudotuberculosis} is a facultative intracellular pathogen showing pleomorphic forms like coccoids and filamentous rods, with sizes ranging between 0.5-0.6 µm and 1.0-3.0 µm [2]. Cells are described as Gram-positive, non-encapsulated, non-motile, non-sporulating and possessing fimbriae [12,20]. The bacterium was first isolated in 1888 from bovine farcy by Nocard and was first completely described by Preisz, showing its resemblance to diphtheria bacillus. The organism has been previously named \textit{Bacillus pseudotuberculosis ovis}; \textit{Bacillus pseudo-tuberculosis} and, \textit{Corynebacterium ovis} [8,21]. It is a facultative anaerobe. The best growth temperature and pH are 37°C and 7.0-7.2, respectively [17,22]. After initially growing sparsely, strain P54B96 forms organized clumps on the agar surface, demonstrating dry opaque and concentrically ringed colonies. In liquid media it develops a granular deposit with a surface pellicle [8,22,23].

There exist two biotypes of \textit{C. pseudotuberculosis} according to their capability of nitrate reduction. Bacteria capable of performing the reduction of nitrate are classified into biovar \textit{equi} (nitrate reduction positive; mainly isolated from horses and cattle) while the bacteria which can not perform the reduction of nitrate, pertain to biovar ovis (nitrate reduction negative; frequently isolated from sheep and goats) [2,24]. \textit{Corynebacteria} possess an unusual structural organization in their cell envelope, similar to the Gram-negative bacteria [25] and belong to a very heterogeneous CMNR (\textit{Corynebacterium}, \textit{Mycobacterium}, \textit{Nocardia} and \textit{Rhodococcus}) group that shares characteristics including an outer lipid layer, mycolic acids in the cell wall along with with its derivatives including phospholipids and lipomannans [4]. Marchand \textit{et al.} (2012) and others reported the presumed mycomembrane, an atypical outer membrane, pore-forming proteins like PorA and PorB, mycoloyltransferases, the so-called fibronectin-binding proteins like cMytA-D and cMytF, several lipoproteins and some unknown putative C-terminal hydrophobic anchored proteins [26]. Analysis of amino acids and amino sugars of cell wall peptidoglycan reveals the presence of \textit{meso}-diaminopimelic acid (meso-DAP). Major cell wall sugars are arabinose and galactose [17,27]. In addition, high and low molecular mass glucan, arabinomannan and lipoglycan also make part of the cell wall. Trehalose dimycolate (TDM) and trehalose monomycolate (TMM) are soluble cell envelope lipids [28]. Biochemically, all strains produce acid from glucose, maltose, fructose, sucrose and mannose [21,22]. This bacterium is catalase positive and phospholipase D, beta-hemolysis and oxidase negative [23,29].

Figure 1 shows the phylogenetic neighborhood of \textit{C. pseudotuberculosis} strain P54B96 in an \textit{rpoB} gene (β subunit of RNA polymerase) based tree. It has recently been shown that phylogenetic analysis for the identification of \textit{Corynebacterium} as well as other CMNR species based on \textit{rpoB} gene sequences are more accurate than analyses based on 16S rRNA [42,43]. The \textit{rpoB} gene sequences of reference strains from the CMNR group were used to construct the phylogenetic tree.
Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position. The genome project is deposited in the Genomes OnLine Database [44] and the complete genome sequence is available in GenBank (CP003385.1). Sequencing, finishing and annotation were performed by the Rede Paraense de Genômica e Proteômica (RPGP), Pará, Brazil. A summary of the project information is shown in Table 2.

Growth conditions and DNA isolation

C. pseudotuberculosis P54B96 was grown in brain-heart-infusion broth (BHI-HiMedia Laboratories Pvt. Ltda, India) in shake culture at 140 rpm and at 37°C. Extraction of chromosomal DNA was performed by using 50 mL of 48–72 h culture of *C. pseudotuberculosis*, centrifuged at 4°C and 2000×g for 20 min. Resuspension of cell pellets was done in 1 mL Tris/EDTA/NaCl [10 mM Tris/HCl (pH7.0), 10 mM EDTA (pH8.0), and 300 mM NaCl] for re-centrifugation under the same conditions. The pellets were re-suspended in 1 mL TE/lysozyme [25 mM Tris/HCl (pH8.0), 10 mM EDTA (pH8.0), 10 mM NaCl, and 10 mg lysozyme/mL]. The sample was then incubated at 37°C for 30 min and then 30 µL of 30% (w/v) sodium N-lauroyl-sarcosine (Sarcosyl) was added to it, incubated for 20 min at 65°C, followed by incubation for 5 min at 4°C. Purification of DNA with phenol/chloroform/isoamylalcohol (25:24:1) was followed by precipitation with ethanol. DNA concentration was determined by spectrophotometer, and the DNA was visualized in ethidium bromide-stained 0.7% agarose gel.

Genome sequencing and assembly

The complete genome sequence of *C. pseudotuberculosis* P54B96 was obtained using the Ion Torrent PGM (Life Technologies) Sequencing Platform. A total of 562,812 reads were generated, each with a mean size of 112 nts usable sequence (35-fold coverage). Furthermore, a hybrid de novo assembly approach was applied using 376,642 Ion filtered reads (19-fold coverage). This was carried out after quality filtering process during which reads representing an average Phred quality of less than 20, were removed. This strategy allowed closing gaps without bench work time cost [45].

Figure 1. Phylogenetic tree of *C. pseudotuberculosis* strain P54B96 representing its position relative to type strains in *Corynebacteriaceae* along with some other type strains of CMNR group. The tree was inferred from 3,537 aligned characters of the rpoB gene sequence using maximum likelihood method and then checked for its agreement with the current classification Table 1. The branch lengths represent the expected number of substitutions per site. Numbers adjacent to the branches are support values from 1,000 bootstrap replicates, indicated when Larger than 60%. Calculations to determine the phylogenetic distances were done by the software MEGA v5 [30].

http://standardsingenomics.org
Table 1. Classification and general features of *C. pseudotuberculosis* strain P54B96 according to the MIGS recommendations [31].

MIGS ID	Property	Term	Evidence code
	Classification	Domain *Bacteria*	TAS [32]
		Phylum *Actinobacteria*	TAS [33]
		Class *Actinobacteria*	TAS [34]
		Order *Actinomycetales*	TAS [34-37]
		Suborder Corynebacterineae	
		Family *Corynebacteriaceae*	TAS [34,35,37,38]
		Genus *Corynebacterium*	TAS [35,38,39]
		Species *Corynebacterium pseudotuberculosis*	TAS [35,40]
		Strain P54B96	TAS [11]
	Gram stain	Positive	TAS [21]
	Cell shape	pleomorphic forms	TAS [21]
	Motility	non-motile	TAS [8]
	Sporulation	non-sporulating	TAS [22]
	Temperature range	mesophilic	TAS [8,22]
	Optimum temperature	37°C	TAS [8,22]
	Salinity	not reported	NAS
	Oxygen requirement	aerobic and facultatively anaerobic	TAS [8,22]
MIGS-22	Carbon source	glucose, fructose, maltose, mannose, and sucrose	TAS [8]
MIGS-6	Habitat	Host	TAS [22]
MIGS-15	Biotic relationship	intracellular facultative pathogen	TAS [22]
MIGS-14	Pathogenicity	sheep, goats, horses and cattle, rarely humans	TAS [5,6]
	Biosafety level	2	TAS [22]
	Isolation	liver, lung, mediastinal lymph node lesions of antelope	TAS [11]
MIGS-4	Geographic location	Mpumalanga province, South Africa	TAS [11]
MIGS-5	Sample collection time	2009	TAS [11]
MIGS-4.1	Latitude	not reported	
MIGS-4.2	Longitude	not reported	
MIGS-4.3	Depth	not reported	
MIGS-4.4	Altitude	not reported	

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e. a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e. not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [41]. If the evidence code is IDA, then the property was directly observed for a living isolate by one of the authors or an expert mentioned in the acknowledgements.
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Fragments (mean size 112 bp)
MIGS-29	Sequencing platforms	Semiconductor Ion Torrent PGM
MIGS-31.2	Sequencing coverage	35-fold
MIGS-30	Assemblers	CLC Genome Workbench 4.7.2, Velvet
MIGS-32	Gene calling method	Glimmer v3.02
	INSDC ID	CP003385 (chromosome)
	GenBank Date of Release	April 05, 2012
	GOLD ID	Gc02176
	NCBI project ID	77871
	Database: IMG-GEBA	2512564058
MIGS-13	Source material identifier	BHI broth, P54B96
	Project relevance	Animal Pathogen, Medical

For homopolymer correction, an inherent problem of the Ion Torrent [46], CLCBio Genome Workbench 4.7.2 was used. Having detected a high number of frameshifts, manual curation was required prior to analysis to prevent false-positive identification of pseudogenes. The genome of P54B96 strain consists of 2,337,657 bp circular chromosome and the average G+C content of the chromosome is 52.2%. The genome was predicted to contain 2,084 coding sequences (CDS), four rRNA operons, 49 tRNA and 62 pseudogenes.

Genome annotation

For automatic annotation, different programs were used. These include; Glimmer: gene predictor [47], RNAmmer: rRNA predictor [48]; tRNA-scan-SE: tRNA predictor [49]; and Tandem Repeat Finder: repetitive DNA predictor [50]. Functional annotation was performed by similarity analyses, using public databases of National Center for Biotechnology Information (NCBI) non-redundant database, Pfam and InterProScan software [51], which integrates multiple domain and protein family databases. Manual annotation was performed using Artemis [52].

Metabolic network analysis

The metabolic Pathway/Genome Database (PGDB) was computationally generated using Pathway Tools software version 15.0 [53] and MetaCyc version 15.0 [54], based on annotated EC numbers and a customized enzyme name mapping file. There has been no manual curation in the database and it may contain errors, similar to a Tier 3 BioCyc PGDB [55].

Genome properties

The genome is 2,337,657 bp long and comprises one main circular chromosome with a 52.19% GC content. A total of 2,207 genes were predicted, among which 2,146 were protein coding genes, and 61 RNAs; 62 pseudogenes were also identified. Of the whole genome, 69.01% comprise genes that were assigned with putative functions, while the remaining genes were annotated as hypothetical proteins. The properties and statistics of the *C. pseudotuberculosis* genome are listed in Table 3. The distributions of genes into COGs functional categories is presented in Figure 2 and Table 4, followed by a cellular overview diagram in Figure 3 and a summary of metabolic network statistics shown in Table 5.
Corynebacterium pseudotuberculosis strain P54B96

Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	2,337,657	100.00%
DNA coding region (bp)	2,005,391	85.79%
DNA G+C content (bp)	1,219,912	52.19%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	2,145	100.00%
RNA genes	61	2.76%
rRNA operons	4	
Protein-coding genes	2,084	97.16%
Pseudo genes	62	2.81%
Genes with function prediction	1,511	68.46%
Genes in paralog clusters	425	19.26%
Genes assigned to COGs	1,552	70.32%
Genes assigned Pfam domains	1,596	72.32%
Genes with signal peptides	651	29.50%
Genes with transmembrane helices	584	26.46%
CRISPR repeats	0	

Figure 2. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Table 4. Number of genes associated with the general COG functional categories

Code	Value	%age	Description
J	140	6.72%	Translation, ribosomal structure and biogenesis
A	1	0.1%	RNA processing and modification
K	121	5.8%	Transcription
L	88	4.2%	Replication, recombination and repair
B	0	0.0%	Chromatin structure and dynamics
D	21	1.0%	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0%	Nuclear structure
V	25	1.2%	Defense mechanisms
T	54	2.6%	Signal transduction mechanisms
M	87	4.2%	Cell wall/membrane biogenesis
N	1	0.1%	Cell motility
Z	0	0.0%	Cytoskeleton
W	0	0.0%	Extracellular structures
U	27	1.3%	Intracellular trafficking and secretion
O	77	3.7%	Posttranslational modification, protein turnover, chaperones
C	90	4.3%	Energy production and conversion
G	113	5.4%	Carbohydrate transport and metabolism
E	177	8.5%	Amino acid transport and metabolism
F	73	3.5%	Nucleotide transport and metabolism
H	102	4.9%	Coenzyme transport and metabolism
I	57	2.7%	Lipid transport and metabolism
P	122	5.9%	Inorganic ion transport and metabolism
Q	26	1.3%	Secondary metabolites biosynthesis, transport and catabolism
R	169	8.1%	General function prediction only
S	136	6.5%	Function unknown
-	655	31.4%	Not in COGs

Figure 3. Schematic cellular overview of all pathways of the *C. pseudotuberculosis* P54B96 metabolism. Nodes represent metabolites, with shape indicating class of metabolite. Lines represent reactions.

http://standardsingenomics.org
Corynebacterium pseudotuberculosis strain P54B96

Table 5. Metabolic Network Statistics

Attribute	Value
Total genes	2,145
Enzymes	500
Enzymatic reactions	764
Metabolic pathways	152
Metabolites	622

Acknowledgement

We would like to gratefully acknowledge the help of all the team members & the financing agencies. Hassan S.S acknowledges the receipt of a Scholarship from the CNPq under the "TWAS-CNPq Postgraduate Fellowship Programme" for doctoral studies. This work was partially executed by Rede Paraense de Genômica e Proteômica supported by FAPESPA (Fundação de Amparo à Pesquisa do Estado do Pará), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brasil).

References

1. Williamson LH. Caseous lymphadenitis in small ruminants. [vii.]. Vet Clin North Am Food Anim Pract 2001; 17:359-371. PubMed
2. Dorella FA, Pacheco LG, Oliveira SC, Miyoshi A, Azevedo V. Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 2006; 37:201-218. PubMed http://dx.doi.org/10.1051/vetres:2005056
3. Ayers JL. Caseous lymphadenitis in goats and sheep: a review of diagnosis, pathogenesis, and immunity. J Am Vet Med Assoc 1977; 171:1251-1254. PubMed
4. Marchand CH, Salmeron C, Raad RB, Meniche X, Chami M, Masi M, Blanot D, Daffe M, Tropis M, Huc E, et al. Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum. J Bacteriol 2012; 194:587-597. PubMed http://dx.doi.org/10.1128/JB.06138-11
5. Brown CC, Olander HJ, Alves SF. Synergistic hemolysis-inhibition titers associated with caseous lymphadenitis in a slaughterhouse survey of goats and sheep in Northeastern Brazil. Can J Vet Res 1987; 51:46-49. PubMed
6. Lipisky BA, Goldberger AC, Tompkins LS, Plorde JJ. Infections caused by nondiphtheria corynebacteria. Rev Infect Dis 1982; 4:1220-1235. PubMed http://dx.doi.org/10.1093/clinids/4.6.1220
7. Aleman M, Spier SJ, Wilson WD, Doherr M. Corynebacterium pseudotuberculosis infection in horses: 538 cases (1982-1993). J Am Vet Med Assoc 1996; 209:804-809. PubMed
8. Merchant IA, Packer RA. Veterinary bacteriology and virology. Ames: Iowa State University Press; 1967, p. 752.
9. Piontkowski MD, Shivvers DW. Evaluation of a commercially available vaccine against Corynebacterium pseudotuberculosis for use in sheep. J Am Vet Med Assoc 1998; 212:1765-1768. PubMed
10. Trost E, Ott L, Schneider J, Schroder J, Jaenicke S, Goesmann A, Husemann P, Stoye J, Dorella FA, Rocha FS, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics 2010; 11:728. PubMed http://dx.doi.org/10.1186/1471-2164-11-728
11. Müller B, de Klerk-Lorist LM, Henton MM, Lane E, Parsons S, Gey van Pittius NC, Kotze A, van Helden PD, Tanner M. Mixed infections of Corynebacterium pseudotuberculosis and nontuberculous mycobacteria in South African antelopes presenting with tuberculosis-like lesions. Vet Microbiol 2011; 147:340-345. PubMed http://dx.doi.org/10.1016/j.vetmic.2010.07.017
12. Connor KM, Quirie MM, Baird G, Donachie W. Characterization of United Kingdom isolates of Corynebacterium pseudotuberculosis using pulsed-field gel electrophoresis. J Clin Microbiol 2000; 38:2633-2637. PubMed
13. Ben Saïd MS, Ben Maitigue H, Benzarti M, Messadi L, Rejeb A, Amara A. Epidemiological and clinical studies of ovine caseous lymphadenitis. *Arch Inst Pasteur Tunis* 2002; **79**:51-57. PubMed

14. Binns SH, Bailey M, Green LE. Postal survey of ovine caseous lymphadenitis in the United Kingdom between 1990 and 1999. *Vet Rec* 2002; **150**:263-268. PubMed

15. Arsenault J, Girard C, Dubreuil P, Daignault D, Galarneau JR, Boisclair J, Simard C, Belanger D. Prevalence of and carcass condemnation from maedi-visna, paratuberculosis and caseous lymphadenitis in culled sheep from Quebec, Canada. *Prev Vet Med* 2003; **59**:67-81. PubMed

16. Paton MW, Walker SB, Rose IR, Watt GF. Prevalence of caseous lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks. *Aust Vet J* 2003; **81**:91-95. PubMed

17. Selim SA. Oedematous skin disease of buffalo in Egypt. *J Vet Med B Infect Dis Vet Public Health* 2001; **48**:241-258. PubMed

18. Pinheiro RRGA, Alves FSF, Haddad JP. Aspectos epidemiológicos da caprinocultura cearense. *Arquivo Brasileiro Med Veterinaria Zootecnia* 2000; **52**:10. http://dx.doi.org/10.1590/S0102-0935200000500021

19. Barakat AASSA, Atef A, Saber MS, Nafie EK. Two serotypes of *Corynebacterium pseudotuberculosis* isolated from different animal species. *Revue Scientifique et Technique Office International des Epizooties* 1984; **3**:151-163.

20. Hard GC. Electron microscopic examination of *Corynebacterium ovis*. *J Bacteriol* 1969; **97**:1480-1485. PubMed

21. Jones DCM. Irregular, nonsporing Gram-positive rods. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds), Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore; 1986. p. 1261.

22. Buxton A, Fraser G. *Corynebacterium*. In: Buxton A, Fraser G (eds) Animal Microbiology. Blackwell Scientific Publications, Edinburgh, 1977, p. 177.

23. Muckle CA, Gyles CL. Characterization of strains of *corynebacterium pseudotuberculosis*. *Can J Comp Med* 1982; **46**:206-208. PubMed

24. Biberstein EL, Knight HD, Jang S. Two biotypes of *Corynebacterium pseudotuberculosis*. *Vet Rec* 1971; **89**:691-692. PubMed

25. Bayan N, Houssin C, Chami M, Leblon G. Mycomembrane and S-layer: two important structures of *Corynebacterium glutamicum* cell envelope with promising biotechnology applications. *J Biotechnol* 2003; **104**:55-67. PubMed

26. De Sousa-D’Aura C, Kacem R, Puech V, Tropis M, Leblon G, Houssin C, Daffe M. New insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in *Corynebacterium glutamicum*. *FEMS Microbiol Lett* 2003; **224**:35-44. PubMed

27. Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. *Microbiology* 2001; **147**:1365-1382. PubMed

28. Gebhardt H, Meniche X, Tropis M, Kramer R, Daffe M, Morbach S. The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in *Corynebacterineae*. *Microbiology* 2007; **153**:1424-1434. PubMed

29. Songer JG, Beckenbach K, Marshall MM, Olson GB, Kelley L. Biochemical and genetic characterization of *Corynebacterium pseudotuberculosis*. *Am J Vet Res* 1988; **49**:223-226. PubMed

30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* 2011; **28**:2731-2739. PubMed

31. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification.
Corynebacterium pseudotuberculosis strain P54B96

Nat Biotechnol 2008; 26:541-547. PubMed [http://dx.doi.org/10.1038/nbt1360]

32. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed [http://dx.doi.org/10.1073/pnas.87.12.4576]

33. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.

34. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479-491. [http://dx.doi.org/10.1099/00207713-47-2-479]

35. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225-420. [http://dx.doi.org/10.1099/00207713-30-1-225]

36. Buchanan RE. Studies in the nomenclature and classification of bacteria. II. The primary subdivisions of the Schizomycetes. J Bacteriol 1917; 2:155-164. PubMed

37. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589-608. PubMed [http://dx.doi.org/10.1099/ijs.0.065780-0]

38. Lehmann KB, Neumann R, Lehmann's Medizin, Handatlanter. X Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik., Fourth Edition, Volume 2, J.F. Lehmann, München, 1907, p. 270.

39. Bernard KA, Wiebe D, Burdz T, Reimer A, Ng B, Singh C, Schindle S, Pacheco AL. Assignment of Brevibacterium stations (ZoBell and Upham 1944) Breed 1953 to the genus Corynebacterium, as Corynebacterium stations comb. nov., and emended description of the genus Corynebacterium to include isolates that can alkalize citrate. Int J Syst Evol Microbiol 2010; 60:874-879. PubMed [http://dx.doi.org/10.1099/ijs.0.012641-0]

40. Eberson F. A bacteriologic study of the diphtheroid organisms with special reference to Hodgkin's disease. J Infect Dis 1918; 23:1-42.

41. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. PubMed [http://dx.doi.org/10.1038/75556]

42. Khamis A, Raoult D, La Scola B. rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 2004; 42:3925-3931. PubMed [http://dx.doi.org/10.1128/JCM.42.9.3925-3931.2004]

43. Khamis A, Raoult D, La Scola B. Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of Corynebacterium. J Clin Microbiol 2005; 43:1934-1936. PubMed [http://dx.doi.org/10.1128/JCM.43.4.1934-1936.2005]

44. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kiryptides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2010; 38(Database issue):D346-D354. PubMed [http://dx.doi.org/10.1093/nar/gkp848]

45. Cerdeira LT, Carneiro AR, Ramos RT, de Almeida SS, D'Afonseca V, Schneider MP, Baumbach J, Tauch A, McCulloch JA, Azevedo VA, et al. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study. J Microbiol Methods 2011; 86:218-223. PubMed [http://dx.doi.org/10.1016/j.mimet.2011.05.008]

46. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 2011; 6:e22751. PubMed [http://dx.doi.org/10.1371/journal.pone.0022751]

47. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999; 27:4636-4641. PubMed [http://dx.doi.org/10.1093/nar/27.23.4636]

48. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100-3108. PubMed [http://dx.doi.org/10.1093/nar/gkm160]
49. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res* 1997; 25:955-964. PubMed

50. Benson G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids Res* 1999; 27:573-580. PubMed http://dx.doi.org/10.1093/nar/27.2.573

51. Zdobnov EM, Apweiler R. InterProScan--an integration platform for the signature-recognition methods in InterPro. *Bioinformatics* 2001; 17:847-848. PubMed http://dx.doi.org/10.1093/bioinformatics/17.9.847

52. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B. Artemis: sequence visualization and annotation. *Bioinformatics* 2000; 16:944-945. PubMed http://dx.doi.org/10.1093/bioinformatics/16.10.944

53. Karp PD, Paley S, Romero P. The Pathway Tools software. *Bioinformatics* 2002; 18(Suppl 1):S225-S232. PubMed http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S225

54. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C, et al. The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. *Nucleic Acids Res* 2007; 36(Database issue):D623-D631. PubMed http://dx.doi.org/10.1093/nar/gkm900

55. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. *Nucleic Acids Res* 2005; 33:6083-6089. PubMed http://dx.doi.org/10.1093/nar/gki892