Extraction, Purification and Characterization of β-Galactosidase from Tomato (Lycopersicum esculentum)

S. A. Hussien¹ and K. Doosh*²

College of Agriculture, University of Anbar, Iraq
College of Agriculture, University of Baghdad, Iraq

*Corresponding author’s e-mail: sahuseen@uoanbar.edu.iq

Abstract. β-galactosidase enzyme EC (3.2.1.23), lactase, can be described as an enzyme of glycoside hydrolase which performs the catalyzing of β-galactosidas hydrolysis to monosaccharides by breaking glycosidic bond. The objective of this study was to extraction and purification β-galactosidase from tomato (Lycopersicum esculentum), ten Different types of extraction were investigated to selection of the best extraction of the enzyme, The Na. phosphate buffer (0.1M and pH6) had given a highest Specific activity of crude enzyme has been 212.27 U/mg. protein. The purification procedures were performed with the use of the precipitation of ammonium sulfate, Ion-exchange and gel filtration chromatographic techniques. ammonium sulfate (70) % saturation has been the best method for precipitation and partially purification of enzyme with a purification fold 1.83 and enzymatic yield 88.31%. This followed by the use of ion exchange chromatography by DEAE sephadex A50 column, the purification times of the enzymatic extract were 2.36, with an enzymatic yield 25.48%. After the final purification step of gel filtration chromatography using SephadexG-100 column, the enzyme has been purified 3.92 fold with 16.33% of enzymatic yield. The optimum enzymatic activity was found at pH (6). The plant extracts tomato (Lycopersicom esculentum) were used to characterize the enzyme in the term of pH, temperature,. The enzyme activity measured by its ability to hydrolyze the substrate 2-nitrophenyl β-D-galactopyranoside (ONPG). The enzyme activity was reached maximum at 45°C and at pH 5.5. The enzyme’s molecular weight has been estimated to 74 KDa by the gel filtration chromatography method, and 73 k D on SDS-PAGE.

1. Introduction

β-galactosidase (β-D-galactohydrolase or β-D-galactohydrolase) which is referred to as the lactase can be described as a set of the enzymes that are capable of cleaving the β linked residues of the galactose from a variety of the compounds and is typically utilized for cleaving the lactose to glucose and galactose [1]. enzyme β-galactosidase (EC3.2.1.23) performs the catalyzing of the bonds of β(1-3) hydrolysis and β(1-4) galactosyl in the oligo and disaccharides, however, it performs the catalyzing reverse reaction of hydrolysis as well, typically referred to as the trans-glycosylation. It has a wide range of distributions, encompassing microorganisms, animals and plants. [2];[3]; [4]; [5]. The enzyme β-galactosidases It described with their capability in hydrolyzing the terminal non-reducing residues of the β-D-galactosyl from the β-D-galactosidase [4] (Figure 1).
Those enzymes related to depleting the oligo- and polysaccharides throughout the mobilization of the seed reserves [6] in addition to the fact that throughout the cell wall loosening process for the elongation of the cells [7]. In addition to that, they were associated with the processes of the fruit ripening [8], dietary lactose hydrolysis [9], lactose metabolism and other β-galactosidase in the microorganisms [10]. One of the significant properties of the galactosidases is their possibility of modifying the specificity of the blood group of the intact human erythrocytes through the removal of the residues of the galactose from the glycoproteins of the cell surface [11].

The majority of the plant β-galactosidases have specific optima of the pH in weak acidic solutions [12, 13 and 14] that are close to the stomach and duodenal values of the pH. Which has raised the potential of the β-galactosidases (i.e. the residual in the ingested plant foods) which attack the gastric mucin. This type of attacks would result in the exposure of gastric wall to the acid and the proteolysis. It has been a common knowledge that there are numerous isozymes of the β-galactosidase in Quiescent seeds of a number of plant species [15]; [16] however, it’s unknown whether those isozymes are species specific or they are different amongst the same species’ cultivars.

It was purified from a variety of the sources of plants, such as mango [15], chickpeas [17], Cowpea [13], Vigna unguiculata [18], apricot seed [19], tomato [2], watermelon [20], Peach [21] and almonds [22]. Increasing the activity of the β-galactosidase throughout the germination of the seeds discovered as well in the plants like the soybeans and fenugreek [23].

The Plant's β-galactosidase is more suitable for the industrial applications due to its easy adaptability high availability, as well as cost effectiveness [24]. Due to those enzymatic properties, the β-galactosidase is capable of hydrolyzing the milk sugar This is why the enzyme is commonly referred to as lactase. As a result, those enzymes are of a high importance for dairy industries for purpose of manufacturing the lactose-free and low-lactose products of milk [25]. In addition to that, the β-galactosidases commonly utilized as well in the experimentations for the enzymatic synthesis of the galacto-oligosaccharides [26].

Tomatoes is a greenish vegetable has an extremely decreased content of the calories and mainly made up of water, approximately 90%-95%. tomatoes as well includes fibers; substances such as the potassium, minerals, phosphorus, calcium, magnesium, iron and antioxidants like the β-carotene and vitamins C, E, and A, vitamin K, foliate in addition to a number of the vitamin B complexes [27]. The tissues of the tomatoes contain small amounts of the phenolic compounds in the case where the plants grown under the non-stressful conditions [28]. Because unavailability of sources that indicate the production of lactase enzymes from the prickly lettuce plant that is found in a large and wide area in all regions of Iraq, therefore this study aimed to purify β-galactosidase from tomatoes and study some of its properties in order to invest this plant in the production of the enzyme and use it in some applications.
2-Materials and Methods

2.1. Materials
Samples of the fresh tomato (Lycopersicom esculentum) have been obtained from local market (Baghdad) during February 2020. Characterizing β-galactosidase carried out at Biochemistry lab in Baghdad Univ. DEAE Sephadex A-50 was purchased from Healthcare, p-Nitrophenyl β-D-galactopyranoside and sephadex G100 were purchased from Sigma-Aldrich, all other analytical grade materials have been obtained from Sigma-Aldrich and BDH.

2.2. Extraction of the enzyme
Crude plant extract made from the tomato (Lycopersicom esculentum) and utilized as β galactosidase source. In order to determine the best solution for extraction of the enzyme, the following solutions have been used: extraction by distilled water, 0.5% sodium carbonate solution pH7.20, 0.2 M buffer sodium acetate solution pH 5, and 10% sodium chloride pH 5, 0.20 M buffer phosphate pH 7, 0.05 M ascorbic acid pH 5, 0.01M citric acid pH5, 0.2% potassium chloride, 0.2% calcium chloride and glycerol 20%. 50gm Plant leaves were homogenized in 50ml from each solutions in a blender for four minutes. The homogenate has been filtered with use of a cloth sheet and centrifuged afterwards for 20min (at 4°C) at 10000rpm. Supernatants have been utilized for the β-galactosidase assay as a crude enzyme solution [29].

2.3. Estimation of the Protein
The protein content has been specified in a spectro-photometric way at 595nm using the bradford method [30] with the use of the Bovine Serum Albumin (BSA) as standard.

2.4. Enzyme Assay
The activity of Enzyme has been assayed through the measuring of rate at which it can hydrolyze the o-nitrophenol - β-D-glucopyranoside (ONPG) [31]. With the existence of the β-D-galactosidase, the ONPG is hydrolyzed to the D-galactose (colorless) and o- nitrophenyl (ONP) (yellow). The mix of the reaction of the β-galactosidase included 0.40ml of 0.10M acetate buffer (pH equal to 4), 0.50ml of 2mM of the substrate and 0.10ml of the solution of the enzyme. Following a 15min incubation at a temperature of 37°C, the reaction has been stopped by adding of 1ml of 0.10mM Na2CO3 and observed at 420nm. The amount of released was quantified using the ONP standard (Figure 2). A single enzyme activity unit can be described as the enzyme amount liberating 1μmol of the o-nitrophenol per minute under the conditions of the assay.

![Graph](image)

Figure 2. standard curve of ONP using to quantified o-nitrophenol released in the presence of β-D-Galactosidase
2.5. Optimization of pH extraction
To determine the optimum pH of extraction β-galactosidase, a variety of the values of the pH, which range between 4 and 8, with the use of 0.10M concentration values of the following systems of the buffer: sodium acetate (pH 4 - 5.5), sodium phosphate (pH 6 - 7.5) and Tris–HCl (pH 8). Optimum pH for extraction was determined using the specific activity (enzyme activities/conc. of protein) for the crude extracts at different pH [32].

2.6. Purification of β-glucosidase
All of the steps of the purification have been carried out at temperature values that don’t exceed 4-8°C.

2.7. Precipitation by Ammonium sulfate
Determining the optimal concentration of the ammonium sulfate for the purification has been by treatment of ammonium sulfate30%, 40%, 50%, 60%, 70%, 80% and 90% additions [32]. After weighing the ammonium sulfate concentrations, slowly mixing the enzyme with the stirrer overnight at 4°C to the point where it is homogeneous. After that centrifuging by a 3500 rpm speed for 30min at 4 °C. Following the completion of the process of the centrifugation, the precipitate has been dissolved in a 0.1M of Na-phosphate buffer (pH 7) and dialyzed against the poly ethylene glycol (M wt. 20000). The enzyme activity and protein concentration were estimated for solutions.

2.8. Anion exchange chromatography Sephadex A50
The DEAE sephadex A-50 column was prepared according to the supplier method (GE Healthcare) The column (2X20 cm) was filled by ion exchange material and equilibrated using phosphate buffer (10 mM, pH 6.5). Aliquot of 3ml of the enzyme solution which has been produced from precipitation step has been loaded on the column of the ion exchange. The separated fractions have been gathered at a 0.5 mL/min flow rate with 5mL for every one of the fractions. The washing process has been done with the use of the same buffer that was utilized in equilibration, and elution has been accomplished by same buffer with linear gradient concentration of 0-1.0 M sodium chloride. The proteins have been observed at 280nm and enzymatic activity was measured in each fraction. The fractions of active β-glucosidase were pooled and dialyzed for 24h by poly ethylene glycol. The protein concentration, total volume and enzymatic activity have been measured.

2.9. Gel filtration by Sephadex G-100 column
The Sephadex G-100 gel was prepared according to the instructions of the processed company, and 5 ml of purified enzyme obtained from The Sephadex G-100 samples from anion exchange were loaded on Sephadex G100 column (1.5cm X 65 cm) equilibrated earlier with a 0.10M sodium phosphate buffer (pH = 6.70) that contains 0.10M Sodium Chloride to eluted by same buffer at a 10ml h1 flow rate. The fractions have been obtained (5ml for each fraction) [33]. In every one of the steps, β-galactosidase activity and protein content have been specified. A fractions containing enzyme activity were collected and dialyzed against poly ethylene glycol. The protein concentration, total volume and enzymatic activity have been measured. The solution was kept under freezing at -20 °C until use in subsequent experiments.

2.10. Effect of pH on Enzyme Activity
According to Gulzar and Amin, the optimum pH of β-galactosidase calculated by incubating it at 50 °C in various buffers with different pH values varying from 2.0 to 9.0 [18]. In each buffer system, the enzyme assay was separately performed. Relative activity (percent) was estimated

2.11. Effect of Temperature on Enzyme Activity
Incubating the reaction mixtures at different temperatures ranging from 25 °C to 80 °C, the optimum temperature of galactosidase determined and the activity was represented by relative activity (percent).

2.12. Estimating the molecular weight with the gel filtration chromatography
The native enzyme’s (β-galactosidase) molecular weight has been calculated with the chromatography of the gel filtration. Trypsin (23 kDa), pepsin (35 kDa), ovaalpomin (43 kDa), serum albumin (67 kDa) and collagen (105kDa) have been utilized as a reference. The blue dextran (2,000kDa) has been utilized for the determination of void volume (V_0). The buffer of the elution has been 0.01 M phosphate buffer
(pH=7) and flow rate has been 0.50mL/min. The elute’s absorbance has been maintained at 280nm. The calculated β-galactosidase molecular weight has been found from plotting the molecular weights of the standard proteins against the retention times (Ve) [34].

2.13. Molecular weight estimation by SDS Electrophoresis
Molecular weight of β-galactosidase obtained from purification step by Sephadex G-100 column was determined using SDS Polyacrylamide Gel Electrophoresis according to the method described by Garfin [35]. The molecular weight was calculated using the analysis of the linear regression from data which has been obtained by denaturing PAGE with the use 12.5% gel and a set of six clear sample of standard proteins with known molecular weights.

2.14. Statistical Analyses
Every experiment has been applied in triplicates and results have been represented as values of average ± standard deviations (SD) with the use of the Microsoft excel 2007.

3. Results and Discussion
Ten solutions for enzyme extraction from tomato (Solanum lycopersicum) have been used. The results mentioned in table (1) indicate that extraction by 0.2 M buffer phosphate pH 7 is more efficiently in comparison with other extraction solutions. The enzymatic activity and specific activities of enzyme which has been extracted via the above-mentioned solution were 7.31 U/ml and 96.60 U/mg, protein respectively. According to the results mentioned in table (1), the high level of specific activity along with the enzyme activity is attributed to the increase in the ionic power That is of great effect on dismantling the ionic linkages connecting the enzyme and other components, a factor that increases the enzyme dissolution.

No	Method of Extraction	Enzyme Activity	Protein Conc.	Specific Activity
1	Water	3.26	0.07	48.22
2	NaCl (10%, pH5)	4.68	0.07	66.27
3	Na₂CO₃ (0.5%, pH7.2)	4.82	0.06	77.04
4	KCl 0.2%	3.96	0.06	62.12
5	CaCl₂ 0.2%	5.64	0.07	80.57
6	Buffer acetate (0.2M, pH5)	4.17	0.06	70.23
7	Buffer phosphate (0.2M, pH7)	7.31	0.08	96.60
8	Glycerol 20%	3.29	0.10	32.44
9	Ascorbic acid (0.05M, pH5)	3.17	0.09	34.92
10	Citric acid (0.01M, pH5)	3.05	0.09	35.82

3.1. Effect of the pH on the Activity of the β-galactosidase
Every one of the enzymes has an optimal value of the pH under which it shows its optimal performance. Any change in the value of the pH results in altering the structure of the enzyme and Influencing their activities. With the increase or the decrease of the pH, specific amino acids are protonated or deprotonated, as a result, altering the activity and the conformation of the proteins [36]. The activity of the β-galactosidase has been discovered to differ according to the values of the pH (4 to 8), the optimal
value of the pH of enzyme activity has been equal to 6 in Na. phosphate buffer solution 0.1M with specific activity 212.27 U/mg protein (Figure 3).

![Graph showing specific activity vs pH](image)

Figure 3. The Specific activity of the β-galactosidase in the crude extract of tomato at a variety of the values of the pH

Those results have coincided with observations that have stated that optimal value of the pH of the plant β-galactosidase in the range of the weak. It was discovered that extracting 3 iso-enzymes of the β-galactosidase from the apricots had an optimal value of the pH from 4 to 6 [12], in almonds has been 5.50 [13] and from black bean was 4.5[14]. While the optimal value of the pH of the β-galactosidase was more acidic from chickpea seeds with 2.8 [17] and from peach was 3.0 [21].

3.2. Purification of β-galactosidase

For purifying β-galactosidase, the crude extract has been precipitated using ammonium sulfate in different saturation ratios (30-90%), and dialyzed against poly ethylene glycol (M wt. 20000) overnight to remove an extra salt. Results showed that β-galactosidase precipitated efficiently with ammonium sulfate in saturation ratio of 70% (Figure 4). After dissolving precipitate, Enzyme specific activity increase to 105.82 U/mg, with a purification fold 1.83, and yield of 88.81% compared with crude extraction (Table 2). Ammonium sulfate is the most widely utilized reagent to salt out proteins led to of the fact that its high solubility provides the ability to achieve a solution with a high ionic strength [37]. Pal A. et al. [13] Purified β-galactosidase from Almond with 15-60% precipitation, Purifying the crude extract of the Apricot seeds with the ammonium sulphate (30%-70%) has resulted in increasing specific activity and the purification fold to 29.07U/mg proteins and 2.92, respectively [19]; [21] purified the β-galactosidase from Peach by using 85% ammonium sulfate saturation increases Specific activity with yield 45% and 21 purification fold. Asma Saeed et al.[20] used 80% ammonium sulfate precipitation method for the partial purification of β-galactosidase from Watermelon, precipitated enzyme yielded 60% recovery and two folds purification of the enzyme. Such difference can be a result of the gradation of the salt is utilized to purification or the concentration of the salt and the saturation duration for the purification.
Figure 4. enzyme activity of β-galactosidase using precipitation by ammonium sulfate in different saturation ratios

Dialyzed enzyme produced from ammonium sulfate precipitation step more purified throughout DEAE Sephadex A-50 column. Results illustrated in figure (5) showed that one peak of proteins was appeared in elution step represents enzyme activity. This indicates that β-galactosidase carry negative charge differ from the column charge. Fractions of enzymatic activity collected and dialyzed using poly ethylene glycol (M wt 20000). In this step of purification (ion exchange chromatography), enzyme specific activity was 196.84 U/mg with purification fold 2.36 and yield reach 25.48% as can be seen in table2. In another study, Joaquim et al.[22] purify extracted from two Cowpea Cultivar, subjected to the ion exchange chromatography via the DEAE-sephadex has been fractionated in 2 separate peaks (DS-I & DS-II) both of which displays a β-galactosidase activity. Whereas the DS-I has been unbound to column DS-II has been bound and eluted afterwards with 0.70M NaCl. [38] purified enzyme via the ion-exchange chromatography column using DEAE-Cellulose (Diethyl amino ethyl Cellulose).

Figure 5. Ion exchange chromatography for purification of β-galactosidase extracted from tomato using DEAE-Sephadex A50 column.
Enzyme solution which has been obtained from the ion exchange chromatography purification step has been more purified by a technique of the Gel filtration chromatography throughout Sephadex G100. One-protein peak represents enzyme activity was appeared figure (6). The specific activity has been reached to 327.33 U/mg protein with a purification fold 3.92 and enzyme yield of 16.33% as shown in table (2). Columns of gel filtration used in the purification of β-galactosidase in scientific studies varied, sephadex G100 column was used to purify β-galactosidase from peach, with 19 times purification fold and enzymatic yield 16.5% [21], such column used to purification enzyme from Apricot [38], the purification fold recorded 4.5 and 40.7% enzymatic yield. [39] used Sephacryl S200 when they purification enzyme from *Aspergillus niger*, the purification fold was 5.054 with 25.269% yield. Another study used Sephadex-75 to purification enzyme from Almond seeds at a yield of 136.4% and fold purification 2.9 [40].

![Figure 6. Gel filtration chromatography for purifying β-galactosidase extracted from tomato (Lycopersicom esculentum) with the use of the Sephadex G-100 column](image)

| Table 2. Purification Steps of β-galactosidase extracted from tomato (Lycopersicom esculentum). |
|---|---|---|---|---|---|---|
| Step | Volume (ml) | Activity U/ml | Protein conc. (mg/ml) | Specific Activity U/mg | Total Activity (unit) | Purification fold | Yield 100% |
| Crude extract precipitation by ammonium sulphate 70% | 100 | 6.32 | 0.08 | 631.50 | 83.50 | 1 | 100 |
| Dialysis | 26 | 21.45 | 0.14 | 557.70 | 153.21 | 1.83 | 88.31 |
| IE Chromatography | 11 | 28.80 | 0.18 | 316.80 | 161.12 | 1.93 | 56.80 |
| DEAE-Sephadex A50 | 12 | 13.41 | 0.07 | 160.92 | 196.84 | 2.36 | 25.48 |
| Gel filtration Sephadex G-100 | 7 | 0.05 | 14.73 | 103.11 | 327.33 | 3.92 | 16.33 |
3.3. Effect of pH on β-galactosidase Activity

Every enzyme has an ideal pH at which it performs best. Any pH shift can cause changes in the structure of the enzyme and affect its function. Some amino acids are deprotonated or protonated as the pH increases or decreases, thereby altering the conformation and behavior of proteins[44]. The operation of β-galactosidase was found to differ with the pH values (Figure 3), respectively, respectively. The optimum pH of the enzyme activity was 5.5 and the enzyme was stable at pH from 2.5 to 8.5. The relative activities of β-galactosidase at pH 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6, 6.5, 7, 7.5, 8, 8.0 and 8.5 were 26.29%, 35.34%, 46.83%, 80.15%, 91.75%, 100%, 96.94%, 84.21%, 54.77%, 33.82%, and 19.45%, respectively.

![Figure 7. Relative activity (%) of the enzyme β-galactosidase in the extract of tomato.](image)

These findings were in accordance with the observations that the optimum pH of the β-galactosidase plant was within the acid range[39]. The extraction from apricots of three isoenzymes of β-galactosidase was found to have an optimum pH between 4.0 and 6.0 [13] and in almonds to be 5.5 [6], but the optimum peach pH of β-galactosidase was 3.0 [46], Hymenaea courbaril 3.5 [47] and kidney beans 3.5 [47], respectively. 4.0 [42]. The results indicated that the enzyme is suitable for hydrolysis of lactose present in whey or milk where pH varies from 4.5 to 6.8 [4].

3.4. Effect of Temperature on β-galactosidase Activity

Each enzyme has the optimum temperature at which Vmax is reached by the reaction. With temperature, the reaction velocity increases until a peak velocity is reached, where the maximum number of molecules with sufficient energy to pass over the energy barrier and form the reaction products is reached[40]. Further temperature changes can lead to a decrease in the reaction velocity of the enzyme's temperature-induced denaturation due to the transition in the native folded protein structure to uncoil into a random configuration. The hydrogen bonds are broken at high temperatures, so the molecular conformation of the enzyme is changed. The effect of the activity of the β-galactosidase temperature in the plant extract was investigated by measuring the activity of the enzymes at different temperatures from 25 °C to 75 °C. The optimum temperature, as shown in the figure, was 50 °C. (3). The enzyme was stable at temperatures between 25°C and 60 °C and the enzyme showed 0 percent of maximal activity at 80 °C. The relative activities of β - galactosidase at 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C, and 80°C were 0%, 16.02%, 34.63%, 57.47%, 82.15%, 100%, 86.66%, 46.62%, 22.73% 13.43%, 6.78% and 0%, respectively.
At higher temperatures, the loss of activity of the enzyme may be attributed to its unfolding and subsequent loss of active site due to denatured proteins [41]. The same optimum temperature (45 °C) was obtained for nasturtium, peach and courbaril hymenaea [42]; [37]; [39]. The extraction of three β-galactosidase isoforms from mung bean seedlings has been found to have an optimum temperature of 50°C to 53°C [47]. The optimum temperature was slightly different in many species, such as in chickpea, cowpea and almond plants, 60 °C [43]; [14]; [4], 40 °C [18] and 70 °C [20] for apricot seeds. Most of the above studies have shown that most β-galactosidase temperatures in the 40-60 °C range are optimal. An significant factor in the selection of enzymes for manufacturing, biotechnological and medical applications is determining the optimum temperature. The majority of industrial enzymes have been reported to have Vmax at 40-50°C[43]. The optimum temperature of Artemisia judaica is 50 ° C, which means that it can be used in industrial and medical applications.

3.5. Determination of the Molecular Weight
β-galactosidase molecular weight which has been purified from tomato found by two methods. The first method done with gel filtration chromatography throughout sephadex G100 in presence of five standard proteins as a size indicators and plotting the relationship between Ve/Vo (elution volume/ void volume) against log molecular weight. Results illustrated in figure (7) has shown that the enzyme’s molecular weight 74 Dalton. In the second method, Electrophoresis with SDS-PAGE used to estimate the enzyme’s molecular weight. Figure (8) shows the appearance of a single weak peak in the purified sample, as determined by relative mobility Rm, the single enzyme band in the sample give a molecular weight of 73 kD. The results from these two methods were close. The molecular weight determined with the gel filtration and SDS-PAGE confirms monomeric nature of the β-galactosidase from lettuce. This result was approximately similar to the result of Kishore [17] on chick pea with a molecular weight of 83 kD, and with study of Martarello et al. [39] on Aspergillus niger 76 kD, but it was lower or higher in other studies 42 kD [21], 52 kD [22], 165.98 kD [38]. The change in molecular weight due to the effect of several factors, such as the source of the extracted enzyme [37].
Figure 9. The determination of the β-galactosidase molecular weight by gel filtration using Sephadex G100 column purified from tomato.

\[y = -11.273x + 60.402 \]
\[R^2 = 0.989 \]
Figure 10. Determining the Molecular weight of the purified β-galactosidase enzyme on SDS-PAGE analysis. a: purified β-galactosidase, b: marker of the molecular weight

\[y = 1.2427x + 0.9492 \]
\[R^2 = 0.9888 \]

73KD MW 1.86.............. 0.73 = (1) R f

References
[1] Carrington, CM, Pressy, R 1996, β-Galactosidase II activity in relation to changes in cell wall galactosyl composition during tomato ripening. *J Am Soc Hortic Sci*, **121**, 132–136
[2] Ingra, CJE, Mulcare CA, Itan Y, Thomas, MG and Swallow, DM 2009. Lactose digestion and the evolutionary genetics of lactase persistence. *Hum Genet* **124**, 579–591
[3] Seddigh, S and Darabi, M 2015, Comprehensive analysis of betagalactosidase protein in plants based on Arabidopsis thaliana. *Turk J Biol*, **38**, 140-150
[4] Ali, NA 2010, Extraction and Purification OF β-galactosidase from new Born Sheep Brain. *Iraqi Journal of Science*, **50**(3): 437-443.
[5] Akasaki, M, Suzuki, M, Funakoshi, I and Yamashina, I 1976, Characterization of beta-galactosidase from a special strain of *Aspergillus oryzae*. *J Biochem*, **80**, 195–200
[6] Li, SC, Han, JW, Chen, KC and Chen, CS 2001, Purification and characterization of isoforms of β-galactosidases in mung bean seedlings. *Phytochemistry*, **57**, 349-359.
[7] Stolle-Smits, T, Beekhuizen, JG, Kok, MTC, Pijnenburg, M, Recourt, K, Derksen, J and Voragen, AGJ 1999. Changes in cell wall polysaccharides of green bean pods during development. *Plant Physiology*, **121**, 363-372.
[8] Moctezuma, E, Smith, DL, Gross, KC 2003, Antisense suppression of a β-galactosidase gene (TBG6) in tomato increases fruit cracking. *J Exp Bot* **54**, 2025–2033.
[9] Bayless, TM and Rosensweig, NS 1966, A racial difference in incidence of lactase deficiency. *JAMA- J Am Med Assoc.*, 197, 968–972.

[10] Akasaki, M, Suzuki, M, Funakoshi, I and Yamashina, I 1976. Characterization of beta-galactosidase from a special strain of *Aspergillus oryzae*. *J Biochem.*, 80, 195–200.

[11] Fukuda, MN, Fukuda, M, Hakamori, SI 1979, Cell surface modification by endo-galactosidase. *J Biol Chem.*, 254, 5458–5465.

[12] Gulzar, S, and Amin, S 2012, Kinetic Studies on β-Galactosidase Isolated from Apricots (*Prunus armeniaca* kaisa). *American Journal of Plant Sciences*, 3, 636-645.

[13] Pal, A, Lobo, M and Khanum, F 2013. Extraction, purification and thermodynamic characterization of almond (*Amygdalus communis*) β-galactosidase for the preparation of delactosed milk. *Food Technol and Biotechnol.*, 51, 53-61.

[14] Ferdinand, CC and Charles, ON 2008, Kinetic analysis of urea inactivation of β-galactosidase in the presence of galactose, *Journal of Enzyme Inhibition and Medicinal Chemistry*, 23(1), 7-15.

[15] Ali, ZM, Armugam, S and Lazan, H 1995, β-Galactosidase and its significance in ripening mango fruit. *Phytochemistry*, 38: 1109-1114.

[16] Eneas-Filho, J, Suderio, FB, Gomes-Filho, E and Prisco, JT 2000, Multiple forms of cotyledonary β-galactosidases from Vigna unguiculata quiescent seeds. *Revista Brasileira de Botânica*, 23, 69-76.

[17] Kishore, D and Kayastha, AMA 2012, β-galactosidase from chick pea (*Cicer arietinum*) seeds: Its purification, biochemical properties and industrial applications. *Food Chemistry*, 13: 1113–1122.

[18] Sudério, FB, Barbosa, GK, Gomes-Filho, E and Eneas-Filho, J 2011, Purification and characterization of cytosolic and cell wall β-galactosidases from *Vigna unguiculata* stems. *Braz. J. Plant Physiol.*, 23(1), 5-14.

[19] Yossef, HD and El Beltagey, AE 2014, Extraction, purification and characterization of apricot Seed β-Galactosidase for Producing Free Lactose Cheese. *J Nutr Food Sci.*, 4: 270.

[20] Asma, S, Muhammad, S, Umber, Z, Rubina, N, Saleem, J and Ahmad, S 2017, β-Galactosidase from Watermelon (*Citrullus lanatus*) Seedlings: Partial Purification and Properties. *Pak. J. Biotechnol.*, 14(3), 271-278.

[21] Dong Hoon, L, Sang-Gu AZ, K, Sang-Gon, S and Jae KB 2002, Purification and Characterization of a β-Galactosidase from Peach (*Prunus persica*). *Molecules and Cells* 15(1), 68-74.

[22] Joaquim, EF, Gislainy, KD, Fabricio, BS, Jose TP and Eneas GF 2001, Isolation and partial purification of beta-galactosidases from cotyledons of two cowpea cultivars. *Revista Brasileira de Fisiologia Vegetal*, 13(3), 251-261.

[23] Khaled, AA, Esam, EH, Adel, AA and Heba, E 2005, Production and characterization of β-galactosidase enzyme and its application in milk. The 9th Egyptian Conference of Home Economics (Home Economics and Current Issues), P 333-349., At Menufiya, Egypt.

[24] Dwevedi, A and Kayastha, AM 2010, Plant β-galactosidases: physiological significance and recent advances in technological applications. *J. Plant Biochemistry and Biotechnology*, 19 (1), 09-20.

[25] Chen, W, Chen, H, Xia, Y, Zhao, J, Tian, F and Zhang, H 2008. Production, purification and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from *Bacillus stearothermophilus*. *J Dairy Sci* 91, 1751–1758.

[26] Torres, DMP, Do Pilar, F, Goncalves, M, Texeira, JA and Rodrigues, LR 2010, Galactooligosaccharides: production, properties, applications, and significance as prebiotics. *Comp Rev Food Sci Food Safety*, 9, 438–454.
[27] Marlett, JA, McBurney, MI and Slavin, JL 2002. American dietetic association. “position of the american dietetic association: health implication of dietary fiber.” *Journal of the American Dietetic Association*, 102(7), 993-1000

[28] Tomás-Barberán, FA, Loaiza-Velarde, J, Bonfanti, A, Saltveit, ME 1997, Early wound- and ethylene-induced changes in phenylpropanoid metabolism in harvested lettuce. *J. Am. Soc. Hortic. Sci.*, 122, 399-404

[29] Ogawara, S, Abe, K and Nakajima, T 2007, Pepper betagalactosidase1 (PBG1) plays a significant role in fruit ripening in bell pepper (*Capsicum annuum*). *Biosci. Biotechnol. Biochem*, 71 (2), 309-22

[30] Bradford, MM 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. *Analytical Biochemistry*, 72, 248

[31] Omar, MA, Mohammad HA and Ibrahim MA 2016, Characterization of β-galactosidase in the crude plant extract of *Artemisia judaica* L. in presence and absence of some heavy metals. *American Journal of Life Sciences*, 4(5), 99-10

[32] Khalid, FA, Gazi, MA and Abdulhakem, DH 2016. Extraction of peroxidase from seeds of some plants belonging to gramineae, fabaceae and solanaceae families and study of biochemical characteristics from the selected source. *Anbar J. of Agriculture Sciences*, 14(1), 314-326

[33] Abdulhakeem, DH, Khalid, FA, Gazi, MA and Zazali, BA 2020. Purification and kinetic properties of purified peroxidase from prosol millet seeds. *International Journal of Pharmaceutical Research*, 12(2), 923-934

[34] Pagthinathan, M, Ghazali, HM, Yazid, AM and Foo, HL 2019, Extraction, purification and characterisation of a milk-clotting protease from ‘kesinai’ (*Streblus asper* Lour.) leaves. *International Food Research Journal*, 26(3), 913-922

[35] Garfin, DE 1990. Purification procedure electrophoretic. Methods in Enzymology.ed. Murray E. D. and Deitscher P. J, 182, 425-441

[36] Talwar, GP, and Srivastava, LM 2006, Textbook of Biochemistry and Human Biology, 3rd Ed. Prentice-Hall: New Delhi.

[37] Voet, D, Voet JG and Pratt CW 1999, Fundamentals of Biochemistry. John Wiley and Sons, USA, 687-689

[38] Sanad, B, Al-Arrji, N and Al-Hamadi A 2017, Extraction, Purification and characterization of β-galactosidase from apricot (*Prunus armeniaca*). Fruit for lactose intolerance treatment. *International Journal of ChemTech Research*, 10(6), 919-929

[39] Martarello, RD, Cunha, L, Cardoso, SL, de Freitas, MM, Silveira, D, Fonseca-Buzzo, YM, Homem-de-Mello, M, Filho, E and Magalhães, PO 2019, Optimization and partial purification of beta-galactosidase production by *Aspergillus niger* isolated from brazilian soils using soybean residue. *AMB Express*, 9(1), 81

[40] Sanad, BM, Jinan, HM and Iman, HA 2018, Extraction and purification of ßeta-galactosidase from a local almond seeds (*Prunus mygdalus*). *IOSR Journal of Pharmacy and Biological Sciences*, 13(1), 34-39. DOI: 10.9790/3008-1301023439

[41] Ajaykumar, M, Take, I and Shweta, N 2012, Isolation, characterization and purification of alpha galactosidase from Peas. *J. Adv. Lab. Res. Biol.*, 2(3), 164-170

[42] Ali, N, Andleeb, S, Mazher, B and Khan, AA 2016, Optimization of B-galactosidase production from yogurt and dairy soil associated bacteria using different fermentation. *BMRI*, 11(2), 1-15

[43] Atrooz, OM, Abukhalil, MH and AlRawashdeh, IM 2016, Characterization of β-galactosidase in the crude plant extract of *Artemisia judaica* L. in presence and absence of some heavy metals. *American Journal of Life Sciences*, 4(5), 99-105
[44] Edwards, M, Bowman, YJ, Dea, IC and Reid, JS A β-galactosidase from nasturtium
(Tropaeolum majus L.)

[45] Sanad, B, Al-Arjji, N and Al-Hamadi A 2017, Extraction, purification and characterization of β-
galactosidase from Apricot(Prunus meniacakaisa) Fruit for lactose intolerance treatment.
International Journal of ChemTech Research, 10(6), 919-929

[46] Sanad, BM, Jinan, HM, Iman, HA 2018, Extraction and purification of ßeta-galactosidase from a
Local Almond seeds (Prunus amygdalus). IOSR Journal of Pharmacy and Biological Sciences,
13(1), 34-39.

[47] Carrington, CM and Pressey, R 1996, β-Galactosidase II activity in relation to changes in cell
wall Galactosyl composition during tomato ripening. Journal of the American Society for
Horticultural Science, 121, 132-136.