Inhibitory effect of norcantharidin on melanoma tumor growth and vasculogenic mimicry by suppressing MMP-2 expression

ZHENYU WANG¹, DINGYUN YOU², MINNAN LU³, YUEFENG HE⁴ and SHAN YAN⁵

¹Biomedical Engineering Research Center, Kunming Medical University; ²Department of Science and Technology; ³Experimental Center for Medical Science Research; ⁴School of Public Health; ⁵Institute of Molecular and Clinical Medicine, Kunming Medical University, Yunnan, Kunming 650500, P.R. China

Abstract. A form of microcirculation called vasculogenic mimicry (VM), which constitutes a novel approach for tumor blood supply in certain highly aggressive malignant tumors, was recently reported to contribute to tumor metastasis and poor prognosis in melanoma patients. Development of strategies to target tumor VM may be significant to reduce the recurrence and metastasis of melanoma. Norcantharidin (NCTD) has been shown to inhibit tumor growth and VM of human gallbladder carcinomas. Besides, NCTD could induce melanoma cell apoptosis. However, whether NCTD can inhibit the growth and VM formation of melanoma has not been evaluated. The present study aims to investigate the anti-VM activity of NCTD as a VM inhibitor for melanoma and its potential mechanisms. The anti-VM activity of NCTD was determined in human melanoma A375 cells and xenografts in vitro and in vivo. The findings indicate that NCTD inhibits tumor growth and VM formation of melanoma both in vitro and in vivo by suppressing matrix metalloproteinase-2 expression. The results suggest that NCTD is a potential therapeutic agent targeting VM in melanoma.

Introduction

Melanoma is the least common but most serious form of skin cancer (1). Rich blood supply affects the growth and metastasis of melanoma (2). A unique form of microcirculation called vasculogenic mimicry (VM), which is composed strictly of tumor cells without endothelial cells and efficiently supplies blood to tumor cells, has been reported (3). VM is associated with poor prognosis for patients with certain aggressive malignant tumors, including melanoma (4), hepatocellular carcinoma (5) and breast cancer (6). It was reported that the expression and secretion of matrix metalloproteinase (MMP)-2 is important in VM formation (7). The sole application of angiogenic inhibitors proved to be ineffective on VM due to the different molecular mechanisms that exist in endothelium-dependent angiogenesis and VM (8,9). Thus, it is important to develop new angiogenic inhibitors that target tumor VM or to combine anti-VM drugs with conventional chemotherapies. Traditional Chinese medicines are reported to have multifunctional antitumor activities (10).

Norcantharidin (NCTD), a demethylated analog of cantharidin, is a 7-oxabicyclo heptane-2,3-dicarboxylic acid derivative isolated from natural blister beetles that has antitumor properties in a variety of tumors such as primary hepatocellular (11) and bladder cancer (12), and the mechanism of NCTD against bladder cancer may be attributable to its anti-VM activity. NCTD also induces cell apoptosis in melanoma in vitro (13). However, whether NCTD can inhibit the tumor growth of melanoma in vivo and its underlying mechanisms remain unclear.

The current study aims to investigate the antitumor activity of NCTD as a VM inhibitor for human melanoma and its underlying mechanisms. The results indicate that NCTD inhibits tumor growth and VM of human melanoma by suppressing MMP-2 expression in vitro and in vivo. Thus, the present study reveals that NCTD may be a potential anti-VM agent for human melanoma.

Materials and methods

Cell culture. The A375 human melanoma cell line was obtained from the Cell Resource Center (Beijing, China) and was maintained in RPMI 1640 medium (Beijing Neurovnc Laboratories, Co. Ltd., Beijing, China) supplemented with 10% fetal bovine serum (FBS; HyClone; GE Healthcare Life Sciences, Logan, UT, USA) in an incubator with high-efficiency particulate air (HEPA) filter class 100 filter (Forma™ Series II; Thermo Fisher Scientific, Inc., Waltham, MA, USA) at 37°C with 5% CO₂.

Invasion assays. Transwell membranes (8-µm pore size; Costar; Corning, Life Sciences, Cambridge, UK) were coated with Matrigel (1 mg/ml; BD Biosciences, Franklin Lakes, NJ, USA)
prior to cell passage, A375 cells (1x10⁶) were seeded into the upper wells in RPMI 1640 medium supplemented with 0.2% FBS. Cells were untreated (control group) or treated with 28 µg/ml (1/2 half maximal inhibitory concentration) NCTD (NCTD group). NCTD was purchased from Jiangsu Kangxi Pharmaceutical Works (Jiangsu, China) in fresh culture medium. Lower wells contained RPMI 1640 medium supplemented with 20% FBS. After 24 h of incubation at 37°C, non-invading cells were removed from the upper surface of the membrane, and the cells that invaded each membrane were stained with a crystal violet solution and counted as described previously (7).

Three-dimensional (3-D) cultures. Matrigel was thawed at 4°C, and 20 µl was quickly added to each well of a 96-well plate and allowed to solidify for 40 min at 37°C in a humidified 5% CO₂ incubator. Tumor cells were seeded in complete RPMI 1640 medium onto the plate and incubated with or without NCTD (28 µg/ml) at 37°C for 12 and 24 h, respectively. Vasculogenic-like structure formation was filmed under an inverted phase-contrast light microscope.

Tumor xenografts. Mice (4-6 week-old BALB/c nu/nu male mice; Shanghai Laboratory Animal Center, Shanghai, China) weighing 18-24 g were randomly divided into the control group and the NCTD group (n=10/group). The mice were housed according to the official recommendations of the Chinese Community Guidelines (14). Tumors were established by inoculation of 1x10⁵ A375 cells suspended in 100 µl normal saline into the right back of the mice by subcutaneous injection. After the tumors had grown to a size of ~100 mm³, NCTD was administered by intraperitoneal injection at 28 mg/kg (1 half maximal lethal dose) in 0.1 ml normal saline for 13 consecutive days. Control animals were administered 0.1 ml normal saline as a vehicle control. The maximum diameter (a) and volume (V) of Biotechnology and Medicine (Tianjin, China).

Immunohistochemical analysis. Xenografted tumors from the mice were excised, fixed in 4% paraformaldehyde for 24 h, and then embedded in paraffin for histological studies. Paraffin-embedded tissues were sectioned into slices of 4-µm thickness for histological studies. Dewaxed and rehydrated tissue sections were subjected to antigen retrieval processes. Upon blocking, the sections were incubated with a primary antibody (dilution 1:50; catalogue number JC70; Neomarkers, Fremont, CA, USA) or anti-MMP-2 antibody (dilution 1:200; catalogue number ab37150; Abcam, Cambridge, UK). Negative controls were prepared using PBS instead of the primary antibodies. Upon washing with PBS, the sections were incubated with a goat anti-mouse EnVision kit (Genentech, South San Francisco, CA, USA) for 40 min at 37°C, and then incubated with 3,3’-diaminobenzidine chromogen for 10 min. The slides for CD31-periodic acid-Schiff (PAS; Beijing Zhongshan Jingqiao Biotechnology Co. Ltd., Beijing, China) double staining were then exposed to a 0.5% periodic acid solution for 15 min and subsequently incubated in Schiff solution for 20 min in a dark chamber. Subsequently, the slides were washed with distilled water for 3 min and counterstained with hematoxylin. Multiplication of intensity and percentage scores was utilized to determine the staining index result.

Zymography assays and MMP-2 protein concentration determination. Gelatin zymography was used to examine the levels of MMP-2 activity in A375 cells that were either untreated (control group) or treated with 28 µg/ml NTCD for 48 h. The culture media were collected and subjected to 10% SDS-PAGE using 0.01% w/v gelatin. The gel was washed twice in 2.5% (w/v) Triton X-100 solution and incubated overnight at 37°C in developing buffer [50 mmol/l Tris/HCl (pH 7.4), 10 mmol/l CaCl₂, 5 mmol/l ZnCl₂ and 0.05% Brij™ 35 Surfact-Amps™ Detergent Solution (Thermo Fisher Scientific, Inc.)]. The gels were subsequently stained with Coomassie Brilliant Blue R250 and destained until the wash remained clear and cleared zones associated with MMP activity were apparent. The concentrations of exogenous pro-MMP-2 and active MMP-2 in cell culture supernatants were assessed using the MMP-2 Biotrak Activity Assay (GE Healthcare Life Sciences, Chalfont, UK) according to the manufacturer’s guidelines.

Statistical analysis. All data were reported as the mean ± standard error of the mean and evaluated using SPSS 17.0 (SPSS Inc., Chicago, IL, USA). Student-Newman-Keuls t tests were used to evaluate differences between two groups. P<0.05 was considered to indicate a statistically significant difference.

Results

NCTD inhibits the invasion of A375 cells in vitro. Matrigel-coated transwell plates were used to assess the effects of NCTD on the ability of A375 melanoma cells to invade a basement membrane matrix. The results revealed that NCTD significantly reduced the number of cells that invaded through the Matrigel matrix after 24 h of treatment (P=0.005) (Fig. 1A).

NCTD inhibits tube formation by A375 cells in vitro. The vasculogenic-like network formation ability of melanoma cells was assessed in vitro by seeding the cells onto Matrigel-coated plates and then observing the cells under an inverted phase-contrast light microscope. As shown in Fig. 1B, the formation of VM

Serum-free conditioned medium	MMP-2 activity (ng/ml)
Control	367.82±14.8
NCTD	43.15±5.67

P<0.05 compared with the control group. NCTD, norcantharidin; MMP, matrix metalloproteinase.
networks by A375 melanoma cells was disrupted by the addition of NCTD for 12 or 24 h.

NCTD inhibits melanoma growth and VM formation in mice. To investigate the efficacy of NCTD in inhibiting melanoma growth, the tumor sizes of melanoma-bearing mice were measured once every 2 days throughout the experiment. At the end of the experiment, the volume and weight of the xenografts in the NCTD group decreased significantly with increased tumor inhibition in comparison with those of the control group (Fig. 2). CD31-PAS double staining was used to identify VM in the xenografts on day 21 of tumor inoculation. Microscopically, the xenografts in the control group exhibited tumor cell-lined channels containing red blood cells (Fig. 3) without any evidence of tumor necrosis. The channels consisted of tumor cells negative for CD31 and positive for PAS. By contrast, VM could hardly be observed in the tumor tissues treated with NCTD, while large areas of necrosis were easily detected, suggesting that NCTD inhibits the VM formation of melanoma xenografts in vivo.

NCTD downregulates the expression and activity of MMP-2. MMP-2 is a key player in VM formation (15). Thus, to explore the possible mechanisms of NCTD effects on tumor growth and VM of human melanoma in vitro and in vivo, in the present study, the expression and activity of MMP-2 protein from sections of melanoma xenografts and supernatants of 3-D culture samples were determined. The results indicated that MMP-2 expression in the in vivo xenografts of the NCTD group was significantly lower than that of the control group (Fig. 4A). Furthermore, the addition of NCTD decreased both the expression and activity of MMP-2 in the 3-D culture samples (Fig. 4B and Table I).
Discussion

The present study demonstrates that NCTD inhibits tumor growth and VM of melanoma by suppressing MMP-2 expression. Widespread metastasis caused by increased cell motility and a rich blood supply of tumor cells is the main cause of the poor prognosis of melanoma patients (16). Traditional anti-angiogenic drugs, including bevacizumab, sunitinib, angiostatin and endostatin, have yielded disappointing results on the management of melanoma, since VM exists as a particular microcirculation pattern, and the sole blockage of angiogenesis may not be effective (9,17-20).
Thus, the development of anti-VM drugs for the treatment of melanoma with VM is an urgent concern. NCTD is a demethylated and low-cytotoxic derivative of cantharidin. It has antitumor properties, hypotoxicity in a variety of tumor and apoptosis-promoting effects in melanoma in vitro. NCTD also inhibits VM formation in human gallbladder carcinomas. The present study further investigated the anti-VM activity of NCTD as a VM inhibitor for human melanoma. The results indicate that NCTD inhibits the growth and VM formation of melanoma both in vitro and in vivo, thus suggesting that NCTD may be a potential therapeutic agent targeting VM in melanoma.

We also sought to determine the possible mechanism of the inhibitory effects of NCTD on the growth and VM formation of melanoma. MMP-2 protein is considered to play a key role in VM formation in melanoma via the cleavage of the laminin (Ln)-5γ2 chain into two segments (Ln-5γ2x and Ln-5γ2y), which results in VM formation. Zhang et al. reported that NCTD inhibits tumor growth and VM of human gallbladder carcinomas by suppressing the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3-K)/MMP-2/Ln-5γ2 signaling pathway. Thus, in the current study, the effects of NCTD on MMP-2 protein expression and activity in melanoma were determined both in vitro and in vivo. The results demonstrate that NCTD not only inhibits VM formation of melanoma cells and xenografts, but also downregulates MMP-2 expression in vitro and in vivo. These results suggest that the PI3-K/MMP-2/Ln-5γ2 signaling pathway may also be the underlying molecular mechanism of the inhibitory effects of NCTD on the growth and VM formation of melanoma. Therefore, NCTD could be used as a potential anti-VM inhibitor in melanoma treatment.

In conclusion, the present study demonstrated that NCTD inhibits the growth and VM formation of melanoma by suppressing MMP-2 expression. NCTD may be used as a potential therapeutic agent targeting VM in melanoma. Further investigations are necessary to verify other molecular mechanisms of the inhibitory effects of NCTD on the VM formation of melanoma.

References

1. Jemal A, Siegel R, Xu J and Ward E: Cancer statistics, 2010. CA Cancer J Clin 60: 277-300, 2010.
2. Neitzel LT, Neitzel CD, Magee KL and Malafa MP: Angiogenesis correlates with metastasis in melanoma. Ann Surg Oncol 6: 70-74, 1999.
3. Maniotes AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS and Hendrix MJ: vascular channel formation by human melanoma cells in vivo and in vitro: Vascular mimicry. Am J Pathol 155: 739-752, 1999.
4. Warso MA, Maniotes AJ, Chen X, Majumdar D, Patel MK, Shilkaitis A, Gupta TK and Folberg R: Prognostic significance of periodic acid-Schiff-positive patterns in primary cutaneous melanoma. Clin Cancer Res 7: 473-477, 2001.
5. Liu WB, Xu GL, Jia WD, Li JS, Ma JL, Chen K, Wang ZH, Ge YS, Ren WH, Yu JH, et al: Prognostic significance and mechanisms of patterned matrix vasulogenic mimicry in hepatoacellular carcinoma. Med Oncol 28 (Suppl 1): S228-S238, 2011.
6. Shirakawa K, Wakasugi H, Heike Y, Watanabe I, Yamada S, Saito K and Konishi F: Vasulogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer 99: 821-828, 2002.
7. Seftor EA, Meltzer PS, Kirschmann DA, Pe'er J, Maniotes AJ, Trent JM, Folberg R and Hendrix MJ: Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastasis 19: 233-246, 2002.
8. van der Schaft DW, Seftor RE, Seftor EA, Hess AR, Gruman LM, Kirschmann DA, Yokoyama Y, Griffioen AW and Hendrix MJ: Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst 96: 1473-1477, 2004.
9. Rice C and Huang LE: From angiogenesis to hypoxia: Current research and future directions. Cancer Manag Res 3: 9-16, 2010.
10. Sun M, Han J, Duan J, Cui Y, Wang T, Zhang W, Liu W, Hong J, Yao M, Xiong S and Yan X: Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother Res 21: 269-277, 2007.
11. Ye H, Li Y, Hsieh Y, Chien M, Chiou H and Yang SF: Antimetastatic effects of norcantharidin on hepatoacellular carcinoma by transcriptional inhibition of MMP-9 through modulation of NF-κB activity. PLoS One 7: e31052, 2012.
12. Zhang JT, Sun W, Zhang WZ, Ge CY, Liu ZY, Zhao ZM, Lu XS and Fan YZ: Norcantharidin inhibits tumor growth and vasulogenic mimicry of human gallbladder carcinomas by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway. BMC Cancer 14: 193, 2014.
13. An WW, Wang MW, Tashiro S, Onodera S and Ikejima T: Norcantharidin induces human melanoma A375-S2 cell apoptosis through mitochondrial and caspase pathways. J Korean Med Sci 19: 560-566, 2004.
14. Qin Y, Zhang Q, Lee S, Zhong WL, Liu YR, Liu HJ, Zhao D, Chen S, Xiao T, Meng J, et al: Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells. Oncotarget 6: 40667-40679, 2015.
15. Hess AR, Seftor EA, Seftor RE and Hendrix MJ: Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasulogenic mimicry. Cancer Res 63: 4757-4762, 2003.
16. Hofmann-Welhöfer R, Woltsche-Kahr I, Smolle J and Kell H: Clinical and histological features of poor prognosis in cutaneous metastatic melanomas. J Cutan Pathol 23: 199-204, 1996.
17. Chen HX and Cleck JN: Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6: 465-477, 2009.
18. Higa GM and Abraham J: Biological mechanisms of bevacizumab-associated adverse events. Expert Rev Anticancer Ther 9: 999-1007, 2009.
19. Gille J: Antiangiogenic cancer therapies get their act together: Current developments and future prospects of growth factor- and growth factor receptor-targeted approaches. Exp Dermatol 15: 175-186, 2006.