Safety of aripiprazole for tics in children and adolescents
A systematic review and meta-analysis

Chunsong Yang, MPHa,b, Qiusha Yi, BSb,c, Lingli Zhang, MDa,b,*, Hao Cui, MPHd,e, Jianping Mao, BSc

Abstract
Background: Aripiprazole is widely used in the management of tic disorders (TDs), we aimed to assess the safety of aripiprazole for TDs in children and adolescents.

Methods: A systematic literature review was performed in the databases of MEDLINE, Embase, the Cochrane Library and 4 Chinese databases, from inception to February 2019. All types of studies evaluating the safety of aripiprazole for TDs were included. The quality of studies was assessed using the Cochrane Risk of Bias tool, the Newcastle–Ottawa Scale tool, the National Institute of Clinical Excellence, the CARE (Case Report) guidelines according to types of studies. Risk ratio (RR) and incidence rate with a 95% confidence interval (CI) were used to summarize the results.

Results: A total 50 studies involving 2604 children met the inclusion criteria. The result of meta-analysis of randomized controlled trials showed that there was a significant difference between aripiprazole and haloperidol with respect to rate of somnolence (RR = 0.596, 95% CI: 0.394, 0.901), extrapyramidal symptoms (RR = 0.238, 95% CI: 0.111, 0.505), tremor (RR = 0.255, 95% CI: 0.114, 0.571), constipation (RR = 0.147, 95% CI: 0.040, 0.553), and dry mouth (RR = 0.141, 95% CI: 0.046, 0.425). There was a significant difference between aripiprazole and placebo in the incidence rate of adverse events (AEs) for somnolence (RR = 0.656, 95% CI: 1.270, 3.945). The meta-analysis of incidence of AEs related to aripiprazole for case series studies revealed that the incidence of sedation was 26.9% (95% CI: 16.3%, 44.4%), irritability 25% (95% CI: 9.4%, 66.6%), restlessness 31.3% (95% CI: 13%, 75.1%), nausea and vomiting 28.9% (95% CI: 21.1%, 39.5%), and weight gain 31.3% (95% CI: 10.7%, 91.3%).

Conclusion: Aripiprazole was generally well tolerated in children and adolescents. Common AEs were somnolence, headache, sedation, nausea, and vomiting. Further high-quality studies are needed to confirm the safety of aripiprazole for children and adolescents with TDs.

Abbreviations: ADHD = attention-deficit hyperactivity disorder, AEs = adverse events, CI = confidence interval, OCD = obsessive compulsive disorder, RCTs = randomized controlled trials, RR = risk ratio, TDs = tic disorders.

Keywords: aripiprazole, children, safety, systematic review, tic disorders

Editor: Yan Li.

This study was funded by Natural Science Foundation of China: Evidence based establishment of evaluation index system for pediatric rational drug use in China (No. 81373381) and Sichuan Health and Wellness Committee: Evidence-based construction of clinical drug route for children with tic disorder (18PJ528). The sponsor had no role in the study design, writing of the manuscript, or decision to submit this or future manuscripts for publication.

The authors have no conflicts of interest to disclose.

Copyright © 2019 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Medicine (2019) 98:22(e15816)

Received: 4 September 2018 / Received in final form: 13 April 2019 / Accepted: 2 May 2019
http://dx.doi.org/10.1097/MD.0000000000015816
1. Introduction

Tic disorders (TDs) are very common neurodevelopmental condition in children and adolescents\(^1\) and are characterized by the presence of abrupt and repeated motor movements or vocalization. There are 3 kinds of TD: transient tic, chronic tic, and Tourette syndrome with prevalence rates 2.99%, 1.61%, and 0.77%, respectively.\(^{2}\) In general, the severity of TDs wanes in late adolescence, and the prevalence rates of TDs in adulthood become much lower. There are various comorbid psychiatric conditions with TDs, such as obsessive-compulsive disorder (OCD), attention-deficit hyperactivity disorder (ADHD), and sustained social problems. TDs and these comorbidities are associated with many serious impairments in social functioning as well as emotional and educational impairment, which can have serious negative impacts on quality of life.\(^{1}\)

Currently, pharmacological treatment is the most common intervention for patients with TDs, including typical antipsychotics (e.g., haloperidol, pimozide), atypical antipsychotics (e.g., risperidone, quetiapine), analgesics (e.g., naltrexone, prooxyphene), anticonvulsants (e.g., topiramate), and antidepressants (e.g., desipramine), among others. However, the use of these treatments is associated with several adverse events (AEs), including tardive dyskinesia, extrapyramidal syndrome, and electrocardiographic abnormality.\(^{6,7}\)

Aripiprazole, a dopamine agonist and 5-HT1A receptor, could act as a dopamine D2 partial agonist based on local dopamine system surroundings.\(^{6,8}\) It is extensively used in the management of TDs in the United States, China, and other countries. Yang et al.\(^{10}\) reviewed 12 trials including 935 participants aged between 4 and 18 years, involving aripiprazole for children with TDs. Those authors confirmed that aripiprazole appears to be a new treatment approach for children with TDs; the systematic review also pointed out that drowsiness, increased appetite, nausea, and headache were common AEs with use of aripiprazole for tics. However, that study only included randomized controlled trials (RCTs) and did not include a quantitative analysis of safety; therefore, the safety of aripiprazole was not well evaluated.

A considerable number of trials have researched the efficacy and safety of aripiprazole for patients with TDs; these studies have provided evidence of the comparative efficacy and safety of aripiprazole for TDs.\(^{11-14}\) However, several new reports have been published demonstrating that the findings for the relative safety of aripiprazole in children and adolescents need to be updated.

Therefore, to provide additional information on the safety of aripiprazole, we included all types of studies and performed a meta-analysis to assess the safety of aripiprazole for TDs in children and adolescents.

2. Methods

This meta-analysis was conducted strictly according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines, and the ethical approval and informed consent were unnecessary since the meta-analysis was aimed to summarize the previous studies.

2.1. Search strategy and study selection

A systematic literature review was performed in the databases of MEDLINE, Embase, the Cochrane Library, the Chinese Biomedical Literature Database, China Knowledge Resource Integrated Database, VIP Database, and Wanfang Database, from inception to March 2018. Citations of relevant studies were searched for appropriate articles as well. The search terms included “aripiprazole,” “Tourette syndrome,” “tics,” and “tic.” According to the specific requirements of the database, the terms were combined into different retrieval expressions. (See Supplemental Digital Content, which illustrates search strategy for Each Database, http://links.lww.com/MD/D11).

2.2. Inclusion and exclusion criteria

The inclusion criteria were developed using the PICOS (P: population; I: intervention; C: comparison; O: outcome; S: study design) framework, as follows:

1. Population: aged < 18 years old, with a clinical diagnosis of TD
2. Intervention: aripiprazole
3. Comparison: placebo or other types of pharmacotherapies
4. Outcome: prevalence rate of all types of AEs
5. Study design: all types of studies, including RCT, non-RCT, cohort study, case-control study, case series study, and case report, with data extraction and quality assessment

Meanwhile, we restricted the language of publications English or Chinese. Through reading the title, abstract, and full text, we judged whether studies met the inclusion criteria.

Data were extracted by 1 author and checked by another author using an Excel form, which included the following information: study information, age, sex, treatment, control, treatment period, time of follow-up, diagnostic criteria, and prevalence rate of AEs.

The quality of all RCTs and non-RCTs was assessed using the Cochrane Risk of Bias tool according to the Cochrane Handbook for Systematic Reviews of Interventions (www.cochranehandbook.org): Random sequence generation; Allocation concealment; Blinding of participants; Blinding of outcome assessment; Incomplete outcome data; Selective reporting; Other sources of bias.\(^{11}\) The qualities of case-control studies and cohort studies were assessed using the Newcastle–Ottawa Scale tool.\(^{16}\) Assessment of risk of bias in case series was based on the recommendations of the National Institute of Clinical Excellence (NICE): Case series in more than 1 center, that is, multicenter study; Is the hypothesis/aim/objective of the study clearly described? Are the inclusion and exclusion criteria (case definition) clearly reported? Is there a clear definition of the outcomes reported? Were data collected prospectively? Is there an explicit statement that patients were recruited consecutively? Are the main findings of the study clearly described? Are outcomes stratified? (e.g., by disease stage, abnormal test results, patient characteristics).\(^{17}\) Quality appraisal of case reports was conducted according to the CARE (Case REport) guidelines: Title; Keywords; Abstract; Introduction; Patient Information; Clinical Findings; Timeline; Diagnostic Assessment; Therapeutic Intervention; Follow-up and Outcomes; Discussion; Patient Perspective; Informed Consent.\(^{18}\)

2.3. Statistical analysis

All statistical analyses were performed using Stata 12.0 (StataCorp, College Station, TX). Risk ratio (RR) and incidence rate with a 95% confidence interval (CI) were used to summarize the results. The significance of evidence was evaluated using the Z-test. We used the Q test and I2 statistic to assess the percentage
of heterogeneity. When the outcome of the Q test was $P < .1$ and $I^2 > 50\%$, revealing the significance of heterogeneity, then a random-effects model was applied to evaluate the summary results; otherwise, a fixed-effects model was applied. Sensitivity analysis was performed on a network excluding trials with low quality. Funnel plots were used to evaluate publication bias, if the number of included studies for 1 outcome was 10 or more.

3. Results

3.1. Included studies

Our initial database search yielded 211 studies. After reading the title, abstract, and full text, 50 studies met the inclusion criteria (Fig. 1); Of these, 24 were English articles and 26 were Chinese articles, involving a total of 2604 children with TDs. The characteristics of included studies are depicted in Table 1.

A total 17 RCTs[20–39] were included in our review, involving 1232 participants aged 0 to 18 years. The period of treatment ranged from 4 to 12 weeks. Thirteen studies were conducted in China, 2 in Iran, 1 in South Korea, and 1 multicenter trial conducted in the United States, Canada, Hungary, and Italy.

In terms of case-control studies, a total 10 non-RCT[40–44] articles were eligible for inclusion. The included studies involved 826 children under the age of 18 years, with a treatment duration of 8 to 104 weeks. Seven were conducted in China, 1 in Italy, 1 in South Korea, and 1 in the United States.

In terms of case series, we identified a total of 15 studies[45–60] on the safety of aripiprazole in the treatment of Tourette syndrome, a total 538 children. Eight studies were conducted in China, 4 in the United States, and 3 in South Korea.

Eight case reports[61–68] were included in our review, with a total of 8 children. Three studies were carried out in China; the remaining 5 studies were conducted in South Korea, the United States, Greece, Turkey, and India, respectively.

3.2. Quality assessment

To assess the methodological quality of RCTs, only 9 studies (52.9%) used an adequate method of random sequence generation; the remaining studies did not mention any method or used an inappropriate allocation method. Three studies (17.6%) implemented allocation concealment. Similarly, blinding of participants and outcome assessment were not specified; 3 studies (17.6%) described blinding of participants and outcome assessment, and 2 studies (12.5%) were judged to be prone to a high risk of bias. The risk of bias regarding incomplete outcome data was judged to be high in 1 report (6.3%). Reporting bias was not detected in any of the included studies, and no other bias was found.

In the assessment of methodology quality of non-RCTs, none of these studies described appropriate random sequence generation. Five studies (50%) described as open-label trials had adequate allocation concealment; the remaining 5 studies (50%) did not include sufficient information to evaluate this item, leading to the determination of unclear risk. For blinding, 3 studies (30%) were assessed as having high risk of bias in the blinding of participants and personnel. Similarly, 3 studies (30%) were judged to be prone to high risk of bias in the blinding of outcome assessment; the remaining studies (70%) could not be evaluated because of insufficient information. In terms of complete outcome data, 4 studies (40%) were described as unclear risk of bias, and the remainder (60%) showed low risk of bias. Reporting bias was not detected in any of the included studies; no other bias was found.

Case studies had a mean score of 5.67 points according to the NICE guidelines checklist. Only 2 studies were multicenter studies, and outcomes were not stratified in either study; the remaining indicators demonstrated fair good quality.

We assessed the methodological quality of case reports based on the 13 items of the CARE guidelines. All case reports described the items of title, patient information, clinical findings, time line, therapeutic interventions, follow-up and outcomes, and discussion. Six studies included the items of introduction and diagnostic assessment, and 5 studies comprised the items keywords and abstract. Only 2 reports had a low risk of informed consent. All reports had a high risk of patient perspective. The quality assessment of the included studies is summarized in Table 2.

3.3. RCT safety results

The most common AEs with aripiprazole in RCTs were somnolence (17.2%), increased appetite (13.5%), sedation (13.2%), dyspepsia (9.7%), and nasopharyngitis (9.1%).

3.3.1. Aripiprazole versus other pharmacotherapies

3.3.1. Neurological and psychiatric symptoms. We compared aripiprazole with haloperidol, risperidone, and sulfur with respect to various types of neurological and psychiatric AEs. The results of the meta-analysis showed that there was a significant difference between aripiprazole and haloperidol in the rates of somnolence (RR = 0.596; 95% CI: 0.394, 0.901; $P = .014$), extrapyramidal symptoms (RR = 0.236; 95% CI: 0, 0.111, 0.505; $P = .000$), and tremor (RR = 0.255; 95% CI: 0.114, 0.571; $P = .001$). The differences for the remaining AEs showed no statistical significance ($P > .05$).

3.3.2. Digestive system. The included studies reported that the occurrence of gastrointestinal AEs with aripiprazole was significantly lower than those with haloperidol for constipation (RR = 0.148; 95% CI: 0.040, 0.553; $P = .004$). Although the rate of AEs with use of aripiprazole with respect to the digestive

![Figure 1. Flow chart of literature screening and the selection process.](image-url)
Study	Study type	Disease types	Sample	Sample size	Treatment	Control group	Treatment period (wk)	Diagnostic criteria
		Tic disorder	Age (y)	Male (%)	Aripiprazole	Risperidone	8	DSM-IV
Ghanizadeh	RCT	Tic disorder	6–18	60 (48)	initial dose: 2.5 mg/d, maximum dose: 10 mg/d	initial dose: 0.25 mg/d, gradually increase dose, final dose: 2–3 mg/d	8	DSM-IV-TR
Yoo 2013	RCT	Tourette disorder	6–18	61 (53)	Aripiprazole initial dose: 2 mg/d, gradually increase dose, maximum dose: 20 mg/d	Placebo initial dose: 2 mg/d, gradually increase dose, maximum dose: 20 mg/d	10	YGTSS
Chen 2012	RCT	Tic disorder	T:8.1±2.9, C:7.9±3.2	T:31, C:31	Aripiprazole initial dose: 2.5 mg, maximum dose: 10 mg/d	Haloperidol initial dose: 0.5 mg, maximum dose: 10 mg/d	8	CCMD-3
Sun 2014	RCT	Tic disorder	T:12.0±3.4, C:12.5±3.6	T:38, C:38	Aripiprazole initial dose: 2.5 mg/d, maximum dose: 7.5 mg/d	Haloperidol initial dose: 1–2 mg/d, maximum dose: 10 mg/d	3	ICD-10
Zhang 2014	RCT	Tic disorder	T:8.4±4.2, C:8.8±4.5	T:38, C:38	Aripiprazole initial dose: 2.5 mg/d, maximum dose: 10 mg/d	Sulfur initial dose: 25 mg, bid, maximum dose: 400 mg/d	12	DSM-IV
Liu 2010	RCT	Tic disorder	T:9.4±1.9, C:8.5±2.1	T:33, C:32	Aripiprazole initial dose: 2.5 mg/d, increase dose every week: 2.5 mg, maximum dose: 10 mg/d	Sulfur initial dose: 25 mg, bid, increase dose every week: 25 mg, maximum dose: 400 mg/d	12	DSM-IV -TR
Guo 2013	RCT	Tic disorder	T:10.3±2.1, C:10.8±2.1	T:40, C:40	Aripiprazole initial dose: 2.5 mg, maximum dose: 12.5 mg, average daily dose: 7.8±1.1 mg	Haloperidol initial dose: 1 mg, maximum dose: 16 mg, average daily dose: 5.7±0.8 mg	8	ICD-10
Ren 2012	RCT	Tic disorder	5–16	68 (59)	Aripiprazole initial dose: 2.5 mg/d, gradually increase dose, final dose: 5–20 mg/d	Haloperidol initial dose: 1 mg/d, gradually increase dose, final dose: 2–8 mg/d	8	YGTSS
Zhou 2015	RCT	Tic disorder	T:9.5±4.5, C:11.5±5.5	T:50, C:50	Aripiprazole initial dose: 2 mg/d, maximum dose: 15 mg/d	Haloperidol initial dose: 1 mg/d, maximum dose: 10 mg/d	10	DSM-IV -TR
Qin 2014	RCT	Tic disorder	T:10.32±1.36, C:10.32±1.36	T:45, C:42	Aripiprazole initial dose: 2.5 mg/d, maximum dose: 7.5 mg/d	Haloperidol initial dose: 1–2 mg/d, maximum dose: 10 mg/d	8	DSM
Bai 2014	RCT	Tic disorder	T:11.8±2.10, C:11.9±1.83	T:30, C:30	Aripiprazole initial dose: 2.5 mg/d, maximum dose: 12.5 mg/d	Aripiprazole initial dose: 2.5 mg/d, maximum dose: 12.5 mg/d	8	ICD-10
Gao 2013	RCT	Tic disorder	T:11.2±3.5, C:8.6±2.9	T:31, C:17	Aripiprazole initial dose: 2.5 mg/d, gradually increase dose every week: 2.5–5.0 mg/d, maximum dose: 20 mg/d	Haloperidol initial dose: 1 mg/d, increase dose every week: 2 mg/d, maximum dose: 8 mg/d	8	CCMD-3
Zhang 2015	RCT	Tic disorder	T:7.3±2.5, C:7.3±2.5	T:40, C:40	Aripiprazole initial dose: 2.5 mg/d, maximum dose: 10 mg/d	Risperidone initial dose: 0.5 mg/d, maximum dose: 3 mg/d	12	CCMD-3
Salleh 2017	RCT	Tourette disorder	7–17	133 (104)	Aripiprazole initial dose: (<50 kg 5 mg/d, >50 kg 10 mg/d, >50 kg 20 mg/d	Placebo	8	DSM-IV-TR
Ghanizadeh 2016	RCT	Tic disorder	T:10.5±3.1, C:10.9±2.0	T:20, C:16	Aripiprazole initial dose:1.25 mg/d, titrated up to 7.5 mg/d, bid, during 1 wk	Aripiprazole initial dose:1.25 mg/d, titrated up to 7.5 mg/d, during 1 wk	8	DSM-IV
Study	Study type	Characteristics of participants	Interventions	Treatment period (wk)	Diagnostic criteria			
---------------	------------	---------------------------------	---	-----------------------	--			
Wang 2015	RCT	Age (y): 5–18	Tic disorder	45 (38)	DSM-IV - TR			
		Sample: T: 8.7 ± 2.3, C: 8.9 ± 2.5						
		Disease types:						
			Aripiprazole (initial dose 1.25 mg/d, maximum dose: 10 mg/d, bid)					
			Haloperidol (initial dose 1.0 mg/d, increase every week: 2 mg, maximum dose: 6 mg/d)					
Ying 2018	RCT	Age (y): 5–11	Tourette syndrome	84 (54)	DSM-IV			
		Sample: T: 8.1 ± 1.0, C: 8.3 ± 0.9						
			Aripiprazole (initial dose 2.5 mg/d, increase every week: 2.5 mg, until symptoms disappearance or maximum dose: 10 mg/d)					
Yoo 2011	non-RCT	Age (y): 11.2 ± 3.5	Tic disorder	48 (33)	DSM-IV			
		Sample: T: 8.6 ± 2.9, C: 8.6 ± 2.9						
			Aripiprazole (initial dose: 5 mg/day, increments every 2 weeks: 5–10 mg/d, maximum dose: 20 mg/d)					
			Haloperidol (initial dose: 0.75 mg/d and increased in 1.5–3 mg/d increments every 2 weeks, maximum dose: 4.5 mg/d)					
Rizzo 2012	non-RCT	Age (y): 11.6 ± 2.2	Tourette syndrome	79 (67)	DSM-IV			
		Sample: T2: 11.2 ± 3.1, C: 10.2 ± 2.8						
			Aripiprazole (initial dose: 1.25–15 mg/d)					
			Haloperidol (initial dose: 1–4 mg/d)					
Liang 2010	non-RCT	Age (y): 10.4 ± 2.46	Tourette syndrome	82 (64)	DSM-IV			
		Sample: T1: 10.3 ± 2.45, C: 10.3 ± 2.41						
			Aripiprazole (initial dose: 5–30 mg/d)					
Liu 2011	Non-RCT	Age (y): 10.3 ± 2.7	Tourette syndrome	195 (156)	DSM-IV			
		Sample: T: 9.9 ± 2.6, C: 9.9 ± 2.6						
			Aripiprazole (initial dose: 2.5 mg, qd, increase dose every week: 2.5 mg, final dose: 5–15 mg/d, qd)					
			Haloperidol (initial dose: 6–16 mg/d)					
Gulisano 2011	Non-RCT	Age (y): 13.1 ± 2.3	Tic disorder	50 (43)	DSM-IV			
		Sample: T: 9.1 ± 2.9, C: 9.1 ± 2.9						
			Aripiprazole (initial dose: 1.25–2.5 mg, bid, maximum dose: 10 mg/d, bid)					
			Haloperidol (initial dose: 1.0 mg/d, increase every week: 2 mg, maximum dose: 6 mg/d)					
Chen 2014	Non-RCT	Age (y): 9.4 ± 2.3	Tic disorder	59 (52)	DSM-IV			
		Sample: T: 9.2 ± 2.0, C: 9.2 ± 2.0						
			Aripiprazole (initial dose: 1.25–2.5 mg, bid, maximum dose: 10 mg/d, bid)					
Wang 2013	Non-RCT	Age (y): 7.5 ± 3.8	Tic disorder	60 (41)	DSM-IV			
		Sample: T: 7.8 ± 3.4, C: 7.8 ± 3.4						
			Aripiprazole (initial dose: 2.5 mg/d, maximum dose: 10 mg/d)					
Xu 2015	Non-RCT	Age (y): 9.0 ± 5.0	Tic disorder	88 (43)	DSM-IV			
		Sample: T: 9.0 ± 5.0, C: 9.0 ± 5.0						
			Aripiprazole (initial dose: 5.3 mg/d)					
Zhao 2011	Non-RCT	Age (y): 8.1 ± 3.5	Tic disorder	108 (72)	DSM-IV			
		Sample: T: 7.9 ± 3.3, C: 7.9 ± 3.3						
			Aripiprazole (initial dose: 5 mg, maintenance dose: 5–15 mg/d)					
Zheng 2015	Non-RCT	Age (y): 9.4 ± 2.3	Tic disorder	61 (42)	DSM-IV			
		Sample: T: 9.2 ± 2.0, C: 9.2 ± 2.0						
			Aripiprazole (initial dose: 2.5 mg/d, increase dose every week: 2.5 mg, maximum dose: 15 mg)					
Ho 2014	Case series	Age (y): 4–18	Tic disorder	81 (69)	DSM-IV			
			Aripiprazole (initial dose: 2.5 mg/d, maintenance dose: 2.5 mg/d)					
Lyon 2009	Case series	Age (y): 13.36 ± 3.33	Tic disorder	11 (10)	DSM-IV			
			Aripiprazole (initial dose range: 1.25–13.75 mg/d, mean daily dose: 4.5 ± 3.0 mg)					
Cui 2010	Case series	Age (y): 6–18	Tic disorder	72 (55)	DSM-IV			
			Aripiprazole (initial dosage: 1.25–2.5 mg/d in prepubertal children, 2.5–5 mg/d in adolescent, mean daily doses: 4.88 ± 0.63 mg, 7.33 ± 2.06 mg during weeks 2 and 4; final dose: 8.17 ± 2.41 mg or 0.19 mg/kg)					

(continued)
Study	Type	Age (y)	Sample (male%)	Disease types	Treatment group	Control group	Treatment period (wk)	Diagnostic criteria
Murphy 2009	Case series	12.0±2.8	16 (15)	Tic disorder	Aripiprazole (average dose: 3.3 ± 2.1 mg/d (range 1.25–7.5 mg/d))	Aripiprazole (initial dosage: 2.5–7.5 mg, and the mean dosage of week 1: 5.33±1.29 mg; mean daily doses varied from 5.33±0.88 mg, 6.83±2.01 mg, 7.33±3.06 mg, 8.33±3.86 mg during weeks 2, 3, 5, 9, and the final dose was 8.17±4.06 mg or 0.20 mg/kg (range from 0.1 to 0.58 mg/kg))	6	DSM-IV
Soo 2008	Case series	7–19	15 (14)	Tic disorder	Aripiprazole (average dose: 3.3 ± 2.1 mg/d (range 1.25–7.5 mg/d))	Aripiprazole (initial dosage: 2.5–7.5 mg, and the mean dosage of week 1: 5.33±1.29 mg; mean daily doses varied from 5.33±0.88 mg, 6.83±2.01 mg, 7.33±3.06 mg, 8.33±3.86 mg during weeks 2, 3, 5, 9, and the final dose was 8.17±4.06 mg or 0.20 mg/kg (range from 0.1 to 0.58 mg/kg))	12	DSM-IV-TR
Yoo 2007	Case series	7–18	24 (19)	Tic disorder	Aripiprazole (average dose: 3.3 ± 2.1 mg/d (range 1.25–7.5 mg/d))	Aripiprazole (initial dosage: 2.5–7.5 mg, and the mean dosage of week 1: 5.33±1.29 mg; mean daily doses varied from 5.33±0.88 mg, 6.83±2.01 mg, 7.33±3.06 mg, 8.33±3.86 mg during weeks 2, 3, 5, 9, and the final dose was 8.17±4.06 mg or 0.20 mg/kg (range from 0.1 to 0.58 mg/kg))	8	DSM-IV
Yoo 2006	Case series	11.93±3.41	14 (12)	Tourette disorder	Aripiprazole (mean dose: 10.79 mg [from 2.5 to 15 mg] or 0.22 mg/kg [from 0.083 to 0.55 mg/kg])	Aripiprazole (mean dose: 10.79 mg [from 2.5 to 15 mg] or 0.22 mg/kg [from 0.083 to 0.55 mg/kg])	8	DSM-IV
Budman 2008	Case series	13.4±2.8	37 (20)	Tourette disorder	Aripiprazole (initial dose: 2.5 mg/d, increase dose in 1–2 wk, to 5–25 mg/d)	Aripiprazole (increase dose in 1–2 wk, to 5–25 mg/d)	12	DSM-IV-TR
Murphy 2005	Case series	12.1±4.05	6 (3)	Tourette syndrome	Aripiprazole (average dose: 11.7 mg [range 5–25 mg] or 0.21 mg/kg [range 0.08–0.6 mg/kg])	Aripiprazole (average dose: 11.7 mg [range 5–25 mg] or 0.21 mg/kg [range 0.08–0.6 mg/kg])	12	NR
Sun 2011	Case series	7–18	47 (29)	Tic disorder	Aripiprazole (average dose: 11.7 mg [range 5–25 mg] or 0.21 mg/kg [range 0.08–0.6 mg/kg])	Aripiprazole (average dose: 11.7 mg [range 5–25 mg] or 0.21 mg/kg [range 0.08–0.6 mg/kg])	8	ICD-10
Zhao 2012	Case series	6–16	39 (31)	Tourette disorder	Aripiprazole (average dose: 11.7 mg [range 5–25 mg] or 0.21 mg/kg [range 0.08–0.6 mg/kg])	Aripiprazole (average dose: 11.7 mg [range 5–25 mg] or 0.21 mg/kg [range 0.08–0.6 mg/kg])	8	DSM-IV
Liang 2010	Case series	12.01±3.57	86 (69)	Tic disorder	Aripiprazole (initial dose: 2.5 mg/d, increase dose in 1–2 wk, to 5–25 mg/d)	Aripiprazole (increase dose in 1–2 wk, to 5–25 mg/d)	8	YGTSS
Bi 2012	Case series	11±4	38 (17)	Tic disorder	Aripiprazole (mean dose: 2.5 mg/d, maximum dose: 15 mg/d, qd)	Aripiprazole (mean dose: 2.5 mg/d, maximum dose: 15 mg/d, qd)	8	YGTSS
Gao 2014	Case series	10.62±3.33	25 (15)	Tic disorder	Aripiprazole (initial dose: 5–15 mg/d)	Aripiprazole (initial dose: 5–15 mg/d)	10	CCMD-3
Zhao 2015	Case series	10.8±1.91	27 (21)	Tic disorder	Aripiprazole (initial dose: 5–15 mg/d)	Aripiprazole (initial dose: 5–15 mg/d)	8	YGTSS
Shim 2014	Case report	15	1 (1)	Tourette syndrome	Aripiprazole+Tomoxetine+Valproate (initial dose: 20 mg aripiprazole and 20 mg atomoxetine, maximum dose: 25 mg aripiprazole and 40 mg atomoxetine, maintenance dose: 20 mg aripiprazole, 25 mg atomoxetine and 500 mg valproate)	Aripiprazole+Tomoxetine+Valproate (initial dose: 20 mg aripiprazole and 20 mg atomoxetine, maximum dose: 25 mg aripiprazole and 40 mg atomoxetine, maintenance dose: 20 mg aripiprazole, 25 mg atomoxetine and 500 mg valproate)	NR	DSM-IV
Bhatia 2014	Case report	16	1 (1)	Tourette syndrome	Aripiprazole (initial dose: 5 mg/d, maximum dose: 10 mg/d)	Aripiprazole (initial dose: 5 mg/d, maximum dose: 10 mg/d)	1	NR
Lai 2009	Case report	16	1 (1)	Tic disorder	Aripiprazole (initial dose: 5 mg/d, maximum dose: 10 mg/d)	Aripiprazole (initial dose: 5 mg/d, maximum dose: 10 mg/d)	13	YGTSS
Fountoulakis 2006	Case report	18	1 (1)	Tourette disorder	Aripiprazole (initial dose: 5 mg/d, maximum dose: 10 mg/d)	Aripiprazole (initial dose: 5 mg/d, maximum dose: 10 mg/d)	NR	YGTSS
Yu 2010	Case report	6	1 (1)	Tourette syndrome	Aripiprazole (initial dose: 5 mg/d, maximum dose: 10 mg/d)	Aripiprazole (initial dose: 5 mg/d, maximum dose: 10 mg/d)	NR	NR
Wang 2009	Case report	10	1 (1)	Tourette syndrome	Aripiprazole+Ulepuride (Ulepuride (initial dose: 250 mg/d, maximum dose: 500 mg/d), Aripiprazole 5 mg/d, maintenance dose: 25 mg/d)	Aripiprazole+Ulepuride (Ulepuride (initial dose: 250 mg/d, maximum dose: 500 mg/d), Aripiprazole 5 mg/d, maintenance dose: 25 mg/d)	>12	NR
Lewis 2010	Case report	17	1 (1)	Tourette syndrome	Aripiprazole+Ulepuride (Ulepuride (initial dose: 250 mg/d, maximum dose: 500 mg/d), Aripiprazole 5 mg/d, maintenance dose: 25 mg/d)	Aripiprazole+Ulepuride (Ulepuride (initial dose: 250 mg/d, maximum dose: 500 mg/d), Aripiprazole 5 mg/d, maintenance dose: 25 mg/d)	6	NR
Matsui 2015	Case report	15	1 (1)	Tic disorder	Aripiprazole+Lithium+Atosiban (Aripiprazole: initial dose: 5 mg/d, maximum dose: 15 mg/d, Lithium 1500 mg/d, Atosiban 10 mg/d)	Aripiprazole+Lithium+Atosiban (Aripiprazole: initial dose: 5 mg/d, maximum dose: 15 mg/d, Lithium 1500 mg/d, Atosiban 10 mg/d)	>15	NR
system was lower than those with use of risperidone and sulfur, there was no statistical difference (P > .05).

3.3.3. Cardiovascular system.

Four types of AEs of the cardiovascular system (abnormal electrocardiogram, chest discomfort, tachycardia, bradycardia) were reported among the aripiprazole and haloperidol groups. Nevertheless, the differences were not statistically significant (P > .05).

3.3.4. Urinary system.

Only 2 studies reported AEs affecting the urinary system. There were no urinary AEs with aripiprazole; the use of sulfur had 1 reported case of urinary AEs. Nocturia occurred with risperidone in 4 cases; however, there were no significant differences (P > .05).

3.3.5. Respiratory system.

The included studies reported that the occurrence of nasopharyngitis with aripiprazole was significantly lower than that with placebo (P < .05). As for upper respiratory infection, we found no significant differences.

3.3.6. Other AEs.

Meta-analysis of 1 study (n=60) that compared the occurrence of blurred vision and itching between aripiprazole and risperidone showed that there were differences, but without statistical significance (P > .05). A significant difference was observed in the incidence rate of dry mouth between aripiprazole and haloperidol treatment groups (RR = 0.141; 95% CI: 0.046, 0.425; P = .001).

3.3.7. Aripiprazole versus placebo.

We retrieved 2 RCTs (n=194) that reported AEs in a positive control group and placebo group. The results of meta-analysis showed that there was no significant difference (P > .05) in the incidence rate of AEs between aripiprazole and placebo, except for somnolence (RR = 6.565; 95% CI: 1.270, 33.945; P = .025), as shown in Table 3.

3.4. Non-RCT safety results

We compared aripiprazole with other pharmacotherapies with respect to safety in individual human systems. The most common AEs with aripiprazole in non-RCTs were somnolence (15.7%), sedation (10.9%), nausea and vomiting (8.4%), extrapyramidal symptoms (6.9%), and gastrointestinal disturbance (6.4%).

The results of meta-analysis revealed that there was no significant difference in the rate of AEs between aripiprazole and haloperidol, risperidone, sulfur, and pimozide. Similar statistical differences were found for the incidence of AEs between 2 aripiprazole treatment groups with different administration frequency (aripiprazole q.i.d. vs aripiprazole q.d.), as shown in Table 3.

3.5. Case series safety results

There were 13 studies describing AEs in detail whereas the other 2 only briefly mentioned AEs. The most common incidence of AEs with use of aripiprazole was sedation (26.9%; 95% CI: 16.3%, 44.4%), irritability (25%; 95% CI: 9.4%, 66.6%), restlessness (31.3%; 95% CI: 13%, 75.1%), nausea and vomiting (28.9%; 95% CI: 21.1%, 39.5%), and weight gain (31.3%; 95% CI: 10.7%, 91.3%) (P > .05). There were no significant differences for tiredness; stomach discomfort; or muscle, bone, or joint pain/conditions (P > .05) (Table 4).

3.6. Case report safety results

Five of 8 cases (62.5%) mentioned or described AEs, which included convulsions, mania, fidgeting, trembling, inarticulate speech, slow motion, dizziness, muscle cramps, nystagmus, torticollis, and insomnia.

3.7. Sensitivity analysis

In regard to the primary outcome, after excluding trials with low-quality RCTs which did not report appropriate randomized method and allocation, no material change of the pooled...
Group	Study type	Studies	n/N1	n/N2	Heterogeneity	RR (95% CI)	P
Neurological and psychiatric symptoms							
Somnolence	RCT	3	18/107	18/93	P = .405, I² = 0.0%	0.596 (0.394, 0.901)	.014
	Non-RCT	2	20/61	18/48	P = .683, I² = 0.0%	0.671 (0.449, 1.004)	.053
Aripiprazole vs Haloperidol	RCT	1	8/31	5/29	Not applicable	1.497 (0.553, 4.054)	.427
	Non-RCT	1	9/98	7/97	Not applicable	1.273 (0.494, 3.281)	.618
Aripiprazole vs Risperidone	RCT	1	0/33	1/32	Not applicable	0.324 (0.014, 0.761)	.485
	Non-RCT	1	0/26	1/26	Not applicable	0.420 (0.018, 9.699)	.590
Aripiprazole vs Placebo	RCT	2	16/121	1/73	P = .853, I² = 0.0%	6.565 (1.270, 33.945)	.025
Headache							
Aripiprazole vs Haloperidol	RCT	1	5/89	0/44	Not applicable	5.500 (0.311, 97.281)	.245
	Non-RCT	1	6/25	7/25	Not applicable	0.857 (0.335, 2.192)	.748
Aripiprazole vs Placebo	RCT	2	16/121	4/73	P = .853, I² = 44.2%	2.616 (0.850, 8.061)	.094
Dizziness							
Aripiprazole vs Haloperidol	RCT	1	0/31	2/17	Not applicable	0.112 (0.006, 2.217)	.151
	Non-RCT	2	2/70	2/58	P = .231, I² = 34.4%	0.716 (0.144, 3.550)	.683
Aripiprazole vs Risperidone	RCT	1	2/31	1/29	Not applicable	1.871 (0.179, 19.540)	.601
	Non-RCT	1	4/98	3/97	Not applicable	1.320 (0.303, 5.742)	.712
Aripiprazole vs Sulfur	RCT	1	1/30	2/30	Not applicable	0.500 (0.046, 5.224)	.563
	Non-RCT	1	0/19	1/15	Not applicable	0.267 (0.012, 6.114)	.498
Aripiprazole vs Placebo	RCT	1	1/32	4/29	Not applicable	0.227 (0.027, 1.912)	.172
Extrapyramidal symptoms							
Aripiprazole vs Haloperidol	RCT	3	8/107	26/93	P = .206, I² = 36.7%	0.236 (0.111, 0.505)	.000
	Non-RCT	3	7/102	41/89	P = .206, I² = 46.3%	0.127 (0.059, 0.271)	.155
Aripiprazole vs Placebo	RCT	1	3/32	2/29	Not applicable	1.359 (0.244, 7.570)	.726
Insomnia							
Aripiprazole vs Haloperidol	RCT	2	3/76	0/76	P = .818, I² = 0%	4.000 (0.457, 35.000)	.210
	Non-RCT	1	1/34	2/17	Not applicable	0.274 (0.027, 2.808)	.276
Aripiprazole vs Risperidone	RCT	2	3/71	0/69	P = .795, I² = 0%	3.889 (0.447, 33.800)	.218
	Non-RCT	1	1/33	2/97	Not applicable	1.871 (0.179, 19.540)	.601
Aripiprazole vs Sulfur	RCT	1	1/33	2/97	Not applicable	2.912 (0.123, 68.946)	.508
	Non-RCT	1	1/25	2/25	Not applicable	1.320 (0.303, 5.742)	.712
Aripiprazole vs Placebo	RCT	1	1/32	4/29	Not applicable	0.227 (0.027, 1.912)	.172
Tiredness							
Aripiprazole vs Haloperidol	RCT	1	1/41	3/41	Not applicable	0.333 (0.036, 3.073)	.332
	Non-RCT	2	3/71	5/69	P = .795, I² = 0%	1.614 (0.162, 3.237)	.474
Aripiprazole vs Risperidone	RCT	1	2/98	3/97	Not applicable	0.660 (0.113, 3.862)	.645
	Non-RCT	1	2/19	2/15	Not applicable	0.789 (0.125, 4.968)	.801
Aripiprazole vs Placebo	RCT	1	10/89	0/44	Not applicable	10.500 (0.629, 175.169)	.102
Anxiety							
Aripiprazole vs Haloperidol	RCT	1	1/30	2/30	Not applicable	0.500 (0.046, 5.224)	.563
	Non-RCT	2	5/121	4/73	P = .223, I² = 32.6%	0.871 (0.239, 3.173)	.834
Aripiprazole vs Placebo	RCT	1	2/41	6/41	Not applicable	0.333 (0.071, 1.556)	.162
Fatigue							
Aripiprazole vs Haloperidol	RCT	5	8/203	2/197	P = .804, I² = 0%	2.643 (0.793, 8.810)	.114
	Non-RCT	1	2/98	0/97	Not applicable	4.940 (0.241, 101.776)	.300
Aripiprazole vs Placebo	RCT	1	1/33	0/32	Not applicable	2.912 (0.123, 68.946)	.508
	Non-RCT	1	0/30	4/30	Not applicable	0.111 (0.006, 1.977)	.135

(continued)
Group	Study type	Studies	n/N1	n/N2	Heterogeneity	RR (95% CI)	P
Aripiprazole vs Haloperidol	RCT	5	7/211	27/205		0.255 (0.114,0.571)	.001
Irritability	RCT	1	0/31	2/17	Not applicable	0.112 (0.006,2.217)	.151
Aripiprazole vs Risperidone	RCT	1	1/31	0/29	Not applicable	2.813 (0.119,66.399)	.521
Aripiprazole qd vs Aripiprazole bid	RCT	1	2/19	0/15	Not applicable	4.000 (0.206,77.528)	.359
Slowness	RCT	1	0/32	2/29	Not applicable	0.182 (0.009,3.637)	.265
Restlessness	RCT	1	3/89	1/44	Not applicable	1.483 (0.159,13.851)	.730
Aripiprazole vs Placebo	RCT	1	1/89	0/44	Not applicable	1.500 (0.062,36.090)	.803
Emotional hypersensitivity	Non-RCT	1	1/31	2/17	Not applicable	0.274 (0.027,2.808)	.276
Aripiprazole vs Haloperidol	Non-RCT	1	3/31	1/17	Not applicable	0.548 (0.037,8.225)	.664
Aripiprazole vs Haloperidol	Non-RCT	1	0/42	2/42	Not applicable	0.200 (0.010,4.045)	.294
Nausea vomiting	RCT	5	15/202	20/182		0.567 (0.298,1.111)	.100
Aripiprazole vs Haloperidol	RCT	3	13/102	4/89		1.853 (0.755,4.549)	.178
Aripiprazole vs Risperidone	RCT	2	3/71	4/69		0.750 (0.188,3.000)	.684
Aripiprazole vs Sulfur	Non-RCT	1	3/98	5/97	Not applicable	0.594 (0.146,2.417)	.467
Aripiprazole vs Pimozide	Non-RCT	1	6/25	0/25	Not applicable	13.000 (0.771,219.107)	.075
Aripiprazole qd vs Aripiprazole bid	RCT	1	1/19	1/15	Not applicable	0.395 (0.039,9.949)	.429
Aripiprazole qd vs Aripiprazole gd	Non-RCT	1	0/32	1/33	Not applicable	0.420 (0.018,8.899)	.590
Aripiprazole vs Placebo	RCT	2	18/121	8/73		1.473 (0.660,2.829)	.344
Increased appetite	Non-RCT	1	1/31	1/17	Not applicable	0.548 (0.037,8.225)	.664
Aripiprazole vs Risperidone	RCT	1	8/31	8/29	Not applicable	0.935 (0.404,2.165)	.876
Aripiprazole qd vs Aripiprazole bid	RCT	1	6/19	2/15	Not applicable	2.368 (0.556,10.036)	.244
Aripiprazole vs Placebo	RCT	2	9/121	1/73		3.766 (0.690,20.549)	.126
Dyspepsia	RCT	1	6/40	3/40	Not applicable	2.000 (0.537,7.448)	.301
Aripiprazole vs Risperidone	Non-RCT	1	6/98	6/97	Not applicable	0.990 (0.331,2.962)	.986
Aripiprazole vs Placebo	RCT	1	1/32	2/29	Not applicable	0.453 (0.043,4.738)	.509
Decreased Appetite	RCT	1	4/31	0/29	Not applicable	8.438 (0.474,150.154)	.147
Anorexia	RCT	1	1/31	2/17	Not applicable	0.274 (0.027,2.808)	.276
Abdominal pain	RCT	1	2/32	1/29	Not applicable	1.813 (0.173,18.953)	.619
Aripiprazole vs Risperidone	RCT	1	3/31	2/29	Not applicable	1.403 (0.252,7.805)	.699
Aripiprazole qd vs Aripiprazole bid	RCT	1	1/19	1/15	Not applicable	0.789 (0.054,11.606)	.863
Gastrointestinal reaction	RCT	5	0/205	14/190		0.148 (0.040,0.553)	.004
Aripiprazole vs Placebo	RCT	1	0/30	4/31	Not applicable	0.115 (0.006,2.043)	.141
Drooling	RCT	1	0/31	2/17	Not applicable	0.112 (0.006,2.217)	.151
Aripiprazole qd vs Aripiprazole bid	RCT	1	1/19	0/15	Not applicable	2.400 (0.105,55.028)	.584
Gastrointestinal Disturbance	RCT	1	2/31	2/17	Not applicable	0.548 (0.085,3.553)	.529
Abnormal liver function	Non-RCT	1	1/98	0/97	Not applicable	2.970 (0.122,72.014)	.503
Cardiovascular system	Non-RCT	1	1/98	0/97	Not applicable	2.970 (0.122,72.014)	.503
Abnormal electrocardiogram	RCT	1	0/31	2/31	Not applicable	0.200 (0.010,4.003)	.292

(continued)
estimated effects in sensitivity analysis was found (Table 5). The minor change of estimated effects between interventions was as follows: Aripiprazole versus Placebo (Somnolence).

3.8. Publication bias

Finally, funnel plots were not used because the number of included studies in 1 comparison had insufficient statistical power, according to the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions.

4. Discussion

In this study, we evaluated the safety of aripiprazole for TDs in the wider context. To our knowledge, this is the first and most comprehensive meta-analysis of this topic. Our analyses were based on 50 studies (17 RCT, 10 case control, 8 case report, 15 case series) including 2604 children with TDs.

Results from the meta-analysis showed that the rate of AEs with aripiprazole was significantly lower than those with haloperidol in some fields. In terms of neurological and psychiatric symptoms, only the comparison of aripiprazole with haloperidol and aripiprazole with placebo showed a significant difference in RCTs; the other studies showed nonsignificant differences. In terms of AEs of the digestive system, only the comparison of aripiprazole and haloperidol showed a significant difference in RCTs. In terms of respiratory system AEs, a significant difference was found only between aripiprazole and placebo in RCTs; other studies showed a nonsignificant difference. In terms of AEs of the cardiovascular, urinary, and...
motor systems, we found nonsignificant differences between aripiprazole and other pharmacotherapies. Overall, the results of our systematic review favored the clinical use of aripiprazole, which can be considered an excellent treatment option for TDs as aripiprazole shows good tolerability in children and adolescents. Our findings agreed with those of previous relevant studies. Considering that the quality of studies included here was poor, it is necessary to confirm our findings in future studies.

There are some strengths that should be noted in our meta-analysis. First, this study is based on the PRISMA reporting recommendations.\(^6\) Second, to ensure the coverage of all relevant AEs, a comprehensive search of the literature was conducted in which we included any type of study, to reduce the possibility of publication bias. Third, 2 independent authors were involved in the phases of study retrieval, data extraction, and quality assessment. In addition, another author checked the consistency of the results and resolved disagreements. Fourth, the tools used in this review to assess the risk of bias are the most widely used and accepted.

Several important limitations of this review also emerged. First, although the report retrieval was comprehensive, it is still possible that unpublished reports were not found. In addition, we failed to search several websites of special agencies that report adverse drug events. Second, some of our results focused on short-term outcomes, which cannot be generalized to long-term safety. Third, the measures and definition of some AEs might differ among the included studies, which might cause clinical heterogeneity. Fourth, no protocol was established before the study was carried out. Fifth, we could not combine data from different dose arm, it is difficult to separate different dose arm, because every study gave the appropriate dose for patients according to the weight and age.

Table 4

Meta-analysis of case series.

Group	Studies	n/N,	Heterogeneity	Incidence rate (95% CI)	P
Neurological and psychiatric symptoms					
Somnolence	6	22/151	P = .001, I² = 76.1%	0.137 (0.052, 0.364)	.000
Headache	6	22/196	P = .000, I² = 86.6%	0.109 (0.029, 0.408)	.001
Sedation	6	60/241	P = .017, I² = 63.6%	0.269 (0.163, 0.444)	.000
Dizziness	5	20/188	P = .000, I² = 87.8%	0.110 (0.027, 0.442)	.002
Extrapyramidal symptoms	1	2/24	Not applicable	0.083 (0.021, 0.333)	.000
Insomnia	3	10/87	P = .015, I² = 76.0%	0.086 (0.014, 0.512)	.007
Fatigue	4	13/98	P = .000, I² = 83.9%	0.118 (0.023, 0.593)	.009
Akathisia	4	12/146	P = .278, I² = 22.2%	0.091 (0.047, 0.179)	.000
Tiredness	3	10/55	P = .004, I² = 81.6%	0.172 (0.022, 1.327)	.001
Anxiety	2	5/75	P = .036, I² = 0.00%	0.068 (0.028, 0.164)	.000
Tremor	3	4/67	P = .068, I² = 62.7%	0.082 (0.016, 0.431)	.003
Irritability	1	4/16	Not applicable	0.250 (0.094, 0.666)	.006
Emotional hypersensitivity	2	5/118	P = .193, I² = 41.1%	0.048 (0.015, 0.153)	.000
Restlessness	1	5/16	Not applicable	0.313 (0.133, 0.759)	.000
Somnambulism	1	3/81	Not applicable	0.037 (0.012, 0.115)	.000
Became quiet	1	5/81	Not applicable	0.062 (0.026, 0.148)	.000
Inattention	1	3/16	Not applicable	0.188 (0.060, 0.581)	.004
Decreased volition	1	2/24	Not applicable	0.083 (0.021, 0.333)	.000
Increased agitation	2	10/62	P = .072, I² = 69.0%	0.163 (0.049, 0.543)	.003
Drug-induced Parkinsonism	1	1/37	Not applicable	0.027 (0.004, 0.192)	.000
Digestive symptoms					
Nausea/vomiting	5	39/141	P = .511, I² = 0.0%	0.289 (0.211, 0.395)	.000
Increased appetite	4	26/141	P = .007, I² = 75.3%	0.194 (0.075, 0.503)	.001
Dyspepsia	1	1/24	Not applicable	0.042 (0.006, 0.296)	.001
Decreased appetite	3	14/117	P = .001, I² = 85.3%	0.162 (0.040, 0.654)	.011
Anorexia	1	1/24	Not applicable	0.042 (0.006, 0.296)	.001
Constipation	2	3/74	P = .308, I² = 3.6%	0.049 (0.015, 0.154)	.000
Stomach discomfort	3	15/117	P = .000, I² = 92.2%	0.154 (0.021, 1.140)	.067
Cardiovascular system					
Electrocardiogram QT prolonged	1	1/37	Not applicable	0.161 (0.105, 0.311)	.000
Tachycardia	1	1/47	Not applicable	0.020 (0.002, 0.094)	.000
Bradycardia	1	2/47	Not applicable	0.043 (0.011, 0.170)	.000
Urinary symptoms					
Frequent urination	1	2/16	Not applicable	0.125 (0.031, 0.500)	.003
Endocrine system					
Weight gain	4	23/65	P = .002, I² = 79.2%	0.313 (0.107, 0.913)	.034
Weight loss	3	11/51	P = .052, I² = 66.2%	0.225 (0.076, 0.664)	.007
Polydipsia	1	1/24	Not applicable	0.042 (0.006, 0.296)	.001
Others					
Blurred vision	1	1/24	Not applicable	0.042 (0.006, 0.296)	.001
Dry mouth	5	11/113	P = .090, I² = 50.3%	0.119 (0.049, 0.289)	.000
Muscle, bone, or joint pain/condition	3	13/60	P = .000, I² = 87.9%	0.165 (0.020, 0.345)	.002

Yang et al. Medicine (2019) 98:22 www.md-journal.com

We would recommend that future studies include a larger number of cases and more consistently report the incidence of AEs.
5. Conclusion

In conclusion, we found that aripiprazole had clinically relevant tolerability in children and adolescents. Aripiprazole might be viewed as an important treatment option for patients with TDs in these age groups. The common AEs were somnolence, headache, sedation, and nausea and vomiting. There is a need for further studies to confirm the use of aripiprazole in children and adolescents with TDs.

Acknowledgments

The authors thank Group of People with Highest Risk of Drug Exposure of International Network for the Rational Use of Drugs, China for providing support to coordinate circulation of the manuscript to all co-authors and collect comments from all co-authors.

Author contributions

YCS, YQS, ZLL, CH, and MJP contributed to planning, supervision, writing, and analysis of the study; YCS, YQS, and ZLL independently selected titles, abstract and full text; YCS, YQS, CH, and MJP each contributed to data collection, writing the manuscript and review of the literature. All authors have read and approved the final manuscript.

Conceptualization: Jianping Mao.
Methodology: Chunsong Yang, Lingli Zhang, Hao Cui.
Software: Jianping Mao.
Validation: Hao Cui.
Visualization: chunsong yang.
Writing – original draft: chunsong yang, qiusha yi.
Writing – review & editing: chunsong yang.

References

[1] Robertson MM, Eapen V, Cavanna AE. The international prevalence, epidemiology, and clinical phenomenology of Tourette syndrome: a cross-cultural perspective. J Psychosom Res 2009;67:475–83.
[2] Knight T, Steeves T, Day L, et al. Prevalence of Tic disorders: a systematic review and meta-analysis. Pediatr Neurol 2012;47:77–90.
[3] Gulisano M, Cali PV, Cavanna AE, et al. Cardiovascular safety of aripiprazole and pimozide in young patients with Tourette syndrome. Neurol Sci 2011;32:1211–7.
[4] Evans J, Seri S, Cavanna AE. The effects of Gilles De La Tourette syndrome and other chronic tic disorders on quality of life across the lifespan: a systematic review. Eur Child Adolesc Psychiatry 2016;25:939–48.
[5] Grados MA, Mathews CA. Latent class analysis of Gilles De La Tourette syndrome using comorbidities: clinical and genetic implications. Biol Psychiatry 2008;64:219–25.
[6] Sallie PR, Nesbitt L, Jackson C, et al. Relative efficacy of haloperidol and pimozide in children and adolescents with Tourette’s disorder. Am J Psychiatry 2008;165:1057–62.
[7] Rampello L, Alvano A, Battaglia G, et al. Tic disorders: from pathophysiology to treatment. J Neurol 2006;253:1–3.
[8] Yoo HK. Open-label study comparing the efficacy and tolerability of aripiprazole and haloperidol in the treatment of pediatric tic disorders. Eur Child Adolesc Psychiatry 2011;20:127–35.
[9] Bowles TM, Levin GM. Aripiprazole: a new atypical antipsychotic drug. Ann Pharmacother 2003;37:687–94.
[10] Yang CS, Huang H, Zhang L-L, et al. Aripiprazole for the treatment of tic disorders in children: a systematic review and meta-analysis. BMC Psychiatry 2015;15:179.
[11] Ghanzadeh A, Haghighi A. Twice-weekly aripiprazole for treating children and adolescents with tic disorder, a randomized controlled clinical trial. Ann Gen Psychiatry 2016;15:21.
[12] Walden K, Hill J, Termine C, et al. Trials of pharmacological interventions for Tourette syndrome: a systematic review. Behav Neurol 2013;26:265–73.
[13] Rickards H, Cavanna AE, Worrall R. Treatment practices in Tourette syndrome: the European perspective. Eur J Paediatr Neurol 2012;16:361–4.

Table 5

Meta-analysis of high-quality RCT.	Study type	n/N1	n/N2	Heterogeneity	RR (95% CI)	P	
Neurological and psychiatric symptoms	Somnolence	RCT 1	12/89	1/44	Not applicable	5.933 (0.797,44.178)	.082
Aripiprazole vs Placebo Lethargy	RCT 1	5/89	0/44	Not applicable	5.500 (0.311,97.281)	.245	
Aripiprazole vs Placebo Headache	RCT 1	7/89	1/44	Not applicable	3.461 (0.439,27.259)	.238	
Aripiprazole vs Placebo Sedation	RCT 1	12/89	1/44	Not applicable	5.933 (0.797,44.178)	.082	
Aripiprazole vs Placebo Fatigue	RCT 1	10/89	0/44	Not applicable	10.500 (0.629,175.169)	.102	
Aripiprazole vs Placebo Akathisia	RCT 1	3/89	0/44	Not applicable	3.500 (0.185,66.305)	.404	
Aripiprazole vs Placebo Restlessness	RCT 1	3/89	1/44	Not applicable	1.483 (0.159,13.851)	.730	
Aripiprazole vs Placebo Somnambulism	RCT 1	1/89	0/44	Not applicable	1.500 (0.062,36.090)	.803	
Aripiprazole vs Placebo Digestive symptoms	Nausea vomiting	RCT 1	12/89	3/44	Not applicable	1.978 (0.588,6.648)	.270
Aripiprazole vs Placebo Increased appetite	RCT 1	7/89	1/44	Not applicable	3.461 (0.439,27.259)	.238	
Aripiprazole vs Placebo Respiratory system Nasopharyngitis	RCT 1	7/89	0/44	Not applicable	7.500 (0.438,128.401)	.164	

Notes: n means total events, N1 means patients of treatment group; N2 means patients of control group.
Yang et al. Medicine (2019) 98:22 www.md-journal.com

[14] Cavanaugh AE, Selvini C, Termine C, et al. Tolerance profile of aripiprazole in patients with Tourette syndrome. J Psychopharmacol 2012;26:84–5.
[15] Higgins JPT, Altman DG, Sterne JAC (Editors). Chapter 8: Assessing Risk Of Bias In Included Studies. In: Higgins JPT, Green S (Editors). Cochrane Handbook For Systematic Reviews Of Interventions. Version 5.1.0 (Updated March 2011). The Cochrane Collaboration, 2011. Available From: www.Cochrane-Handbook.Org.
[16] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603–5.
[17] NICE. Appendix 4: Quality of case series form. Available at: http://www.nice.org.uk/guidance/index. Accessed 2002.
[18] Gagnier JJ, Kienle G, Altman DG, et al. The CARE guidelines: consensus-based clinical case reporting guideline development. BMJ Case Rep 2013;38:43.
[19] Higgins J, Thompson S, Deeks J, et al. Statistical heterogeneity in fi.
[20] Ghanizadeh A, Haghighi A. Aripiprazole Versus Risperidone For Trouble.
[21] Higgins JPT, Green S (Editors). Handbook For Systematic Reviews Of Interventions. In: Higgins JPT, Green S (Editors). Cochrane Handbook For Systematic Reviews Of Interventions. Version 5.1.0 (Updated March 2011). The Cochrane Collaboration, 2011. Available From: www.Cochrane-Handbook.Org.
[22] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603–5.
[23] Higgins J, Thompson S, Deeks J, et al. Statistical heterogeneity in fi.
[24] Sun Y, Wang H-P, Duan L-F. The clinical ef.
[25] Chen L-B, Chen Y-H. Clinical study of low-dose aripiprazole in the treatment of Tourette syndrome. Tianjin Pharmaceutical 2011;2:80–41.
[26] Wang Y-H, Chen Y-H, Deng L-H, et al. A comparative study of aripiprazole orally disintegrating tablets and haloperidol in the treatment of tic disorder. J Clin Pharmacol Therapeut 2015;30:1393–6.
[27] Zhang H, Huang H-Z, Lin G-D. A randomized controlled study of risperidone and aripiprazole in treatment of children with tic disorder. Clin Focus 2015;30:1393–6.
[28] Zhou Q-M, Li Y-D, Deng L-H, et al. A comparative study of aripiprazole orally disintegrating tablets and haloperidol in the treatment of tic disorder. J Clin Med 2015;36:2995–7.
[29] Xu X-X. Effects of aripiprazole on the efficacy and compliance of children in tic disorder. World Latest Med Inform 2015;15:77–8.
[30] Zhao H-A, Zhang Q-F, Sun M-Y. Clinical study of aripiprazole in the treatment of Tourette syndrome. Chin J Health Psychol 2010;12:421–4.
[31] Gao R, Zhou Y-D, Huang Z-Y, et al. An open controlled study of aripiprazole and haloperidol in the treatment of tic disorder in children and adolescents. Sichuan Mental Health 2013;4:300–2.
[32] Zhang H, Huang H-Z, Lin G-D. A randomized controlled study of risperidone and aripiprazole in treatment of children with tic disorder. Clin Focus 2015;30:1393–6.
[33] Guo F, Wang J-F, Guo S-Q, et al. Comparative study on efficacy of aripiprazole and thiapride in the treatment of TOURETTE syndrome. Shandong Med 2013;39:88–9.
[34] Zhao B, Hong X-Y, Zhang Z. Clinical study of aripiprazole in the treatment of tic disorder of childhood. China J Health Psychol 2010;12:421–4.
[35] Bi B, Liu L, Zhu Y-Z, et al. Clinical study of aripiprazole in children with Tourette syndrome. Tianjin Pharmaceutical 2011;2:80–41.
[36] Qin J. Effects of aripiprazole on the efficacy and compliance of children in tic disorder. Yiayao Qianyan 2014;27:128–9.
[37] Bhatia M, Gautam P, Kaur J. Case report on Tourette syndrome treated successfully with aripiprazole. Shanghai Arch Psychiatry 2014;26:297–9.
[38] Lai C-H. Aripiprazole treatment in an adolescent patient with chronic motor tic disorder and treatment-resistant obsessive-compulsive disorder. Int J Neuropsychopharmacol 2009;12:1291–3.
[39] Yoo HK, Choi S-H, Park S, et al. An open-label study of the efficacy and tolerability of aripiprazole for children and adolescents with tic disorders. J Child Adolesc Psychopharmacol 2006;16:503–6.
[40] Bhatia M, Gautam P, Kaur J. Case report on Tourette syndrome treated successfully with aripiprazole. Shanghai Arch Psychiatry 2014;26:297–9.
[41] Lai C-H. Aripiprazole treatment in an adolescent patient with chronic motor tic disorder and treatment-resistant obsessive-compulsive disorder. Int J Neuropsychopharmacol 2009;12:1291–3.
[64] Fountoulakis KN, Siamouli M, Kantartzis S, et al. Acute dystonia with low-dosage aripiprazole in Tourette’s disorder. Ann Pharmacother 2006;40:775–81.

[65] Chen VC-H. Aripiprazole for the tic symptoms in a child receiving atomoxetine treatment for ADHD. Progr Neuro-Psychopharmacol Biol Psychiatry 2010;34:1355–6.

[66] Wang PW, Huang MF, Yen CF, et al. Diagnosis and treatment of comorbidities of Tourette’s syndrome and bipolar disorder in a 10-year-old boy. Kaohsiung J Med Sci 2009;25:608–19.

[67] Lewis K, Rappa L, Sherwood-Jachimowicz DA, et al. Aripiprazole for the treatment of adolescent Tourette’s syndrome: a case report. J Pharmacy Pract 2010;23:239–44.

[68] Mazlum B, Zaimoglu S, Oztop DB. Exacerbation of tics after combining aripiprazole with pimozide a case with Tourette Syndrome. J Clin Psychopharmacol 2015;35:340–1.

[69] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Ann Internal Med 2009;151:264–9.