Comparative genome analysis of *Solanum lycopersicum* and *Solanum tuberosum*

Rohit Lall¹, George Thomas¹, Satendra Singh², Archana Singh³ & Gulshan Wadhwa⁴*

¹Department of Molecular and Cellular Engineering, SHIATS, Allahabad-211007; ²Department of Computational Biology & Bioinformatics, SHIATS, Allahabad-211007; ³Division of Biochemistry, Indian Agricultural Research Institute, New Delhi-110012; ⁴Department of Biotechnology, Ministry of Science and Technology, New Delhi – 110003; Gulshan Wadhwa - Email: gulshan@dbt.nic.in; Phone: +91-9811301820; Fax: +91-11-24362884; *Corresponding author

Received October 05, 2013; Accepted October 30, 2013; Published November 11, 2013

Abstract: *Solanum lycopersicum* and *Solanum tuberosum* are agriculturally important crop species as they are rich sources of starch, protein, antioxidants, lycopene, beta-carotene, vitamin C, and fiber. The genomes of *S. lycopersicum* and *S. tuberosum* are currently available. However the linear strings of nucleotides that together comprise a genome sequence are of limited significance by themselves. Computational and bioinformatics approaches can be used to exploit the genomes for fundamental research for improving their varieties. The comparative genome analysis, Pfam analysis of predicted reviewed paralogous proteins was performed. It was found that *S. lycopersicum* proteins belong to more families, domains and clans in comparison with *S. tuberosum*. It was also found that mostly intergenic regions are conserved in two genomes followed by exons, intron and UTR. This can be exploited to predict regions between genomes that are similar to each other and to study the evolutionary relationship between two genomes, leading towards the development of disease resistance, stress tolerance and improved varieties of tomato.

Key words: *S. lycopersicum, S. tuberosum, genome.*

Background:
Solanaceae family represent important family in agriculture as it is one of the major source of edible fruits *Solanum lycopersicum, Solanum tuberosum* and *Nicotiana tabacum*. Tomato fruits are the second most consumed vegetable after potatoes, and are a globally important dietary source of lycopene, beta-carotene, vitamin C, and fiber. Potato contributes to dietary intake of starch, protein, antioxidants, and vitamins. In addition to its agricultural value and due to its diploid genetics and inbreeding potential, tomato is a widely used model species for fundamental research on subjects including fruit development and pathogen response [1].

The developments in sequencing technologies are providing genome sequences of different species. Deciphering a genome sequence, that is, determining the linear order of nucleotides for each chromosome in the genome, allows molecular biologists to understand and manipulate this blueprint. For plants in particular, this in turn enables breeders to more efficiently engineer solutions for crop improvement to respond to the growing demand for food and energy from modern society [2].

The genome draft of Tomato and Potato is now available in plant databases. The nuclear genome of potato and tomato consists of twelve chromosomes. Their genomes are expected to measure approximately 840 Mb and 950 Mb in size, respectively [3-5].

The availability of their genome sequences will provide the community with a first glimpse into genome evolution of *Solanaceae* (and Asterids in general) and will impact both fundamental research and breeding strategies in these species for the coming years.

The aim of the present research work was to predict paralogous proteins in Tomato proteome and to carry out comparative
BIOINFORMATION

genome analysis of Tomato and Potato to uncover various genomic features of two genomes and to gain insight the similarity and differences between two genomes.

Figure 1: Pfam comparison of *S. lycopersicum* and *S. tuberosum* protein sequences.

Prediction of Paralogous Proteins in *S. lycopersicum* and *S. tuberosum* Genome

The reviewed set of proteins sequences of *S. lycopersicum* and *S. tuberosum* was retrieved from the Uniprot Database in FASTA format. The all against all database searches by using the genomic BLAST-P available at NCBI server was used to predict paralogous protein in the selected set of protein sequences [7-8]. In case of all against all search, a comparison was made in which every predicted protein sequence was used as a query in a similarity search against a database composed of the rest of the self-proteome, and the significant matches were identified by a low E-value. Since many proteins comprise different combinations of a common set of domains, proteins that align more than 80% of their lengths for query and subject were selected. After this filtration only those alignments were selected which give the sequence identity more than 60%.

Families, domain and repeats for paralogous protein sequences in *S. lycopersicum* and *S. tuberosum*

For the purpose of functional annotation and to investigate the gene family expansion, the identified set of paralogous proteins was used to search the protein families by using the Pfam search. Each family is represented by multiple sequence alignments and Hidden Markov models (HMMs) [9]. The paralogous protein dataset was submitted at Pfam server which predicted the protein families, motifs, repeats and clans at the default pfam parameter (http://pfam.sanger.ac.uk/).

Results and Discussion: After performing the all against all searches for all reviewed protein sequences of *S. lycopersicum* and *S. tuberosum* it was found that 60 paralogous proteins present in *S. lycopersicum* and while 110 were present in *S. tuberosum*. All predicted paralogous proteins of *S. lycopersicum* and *S. tuberosum* can be retrieved by using accession number given in Table 1 & 2 (see supplementary material). The predicted paralogous proteins belong to different family having different domain and repeats. For the purpose of functional annotation and to investigate the gene family expansion, the identified set of paralogous proteins was used to search the protein families by using the Pfam search.
Pfam analysis of S. lycopersicum and S. tuberosum protein sequences

It was found that most of the identified proteins belong to different families, domains and clans in S. lycopersicum and S. tuberosum protein sequences Table 3 (see supplementary material). But also there are proteins having no clans (Figure 1). Proteins contain functional units known as domains and various combinations of domains results in different protein formations. Therefore identification of domains in proteins is essential for giving insights into their function. Pfam also generates higher-level groupings of related families, known as clans. A protein belongs to different families, domains and clans may be due to proteins family expansion and adaptations by the genomes [10].

It was found that S. lycopersicum proteins belong to more families, domains and clans in comparison with S. tuberosum. But also there are proteins having no clans.

Comparative genomics Solanum lycopersicum and Solanum tuberosum

The comparison of the genomic regions of S. lycopersicum and S. tuberosum was performed. It was found that the genome of two selected plants have conserved, non conserved and also different genomic compassions and different levels. But there are other areas also where difference in conservation was noted.

It was found that mostly intergenic regions are conserved in two genomes followed by exons, intron (they are found in the genes of most organisms and many viruses, and can be located in a wide range of genes) and UTR (untranslated region) (Figure 2).

An Intergenic region (sometimes also referred to as junk DNA) represent stretch of DNA sequences located between genes. Their function is still unknown but sometime they are involve in regulation of gene expressions (these regions do contain functionally important elements such as promoters and enhancers).

The comparative alignment of genomic regions of S. lycopersicum and S. tuberosum revealed that it was found that there are regions where only conserved part is present in two genomes (Figure 3). Along with this there are regions were conserved regions, untranslated region (UTR) exons present together without any non aligned region (Figure 4). Non aligned Genomic region are also found in the alignment two genomes (Figure 5).

Once the elements in a genome sequence have been identified, the next step is to assign to them a plausible biological function. Computational inference of the function of a particular sequence can be achieved either directly through sequence similarity searches, or indirectly through the identification of common motifs or domains between groups of functionally related sequences.

Presence of Intergenic region in large number may be due to a higher repeat content in tomato genome than the potato genome. There are many protein families that represent a large gene superfamily in plants, these genes are involved in the biosynthesis of secondary metabolites [11-12].

Alignments between genome sequences of multiple accessions or varieties of a single species allow for the study of genome diversity, evolution and insertion/deletion polymorphisms (InDels). Moreover, alignments between the genomes of related species, for example from the same genus, can be generated to identify structural variation such as translocations, inversions, The identified sequence variation from both approaches can be utilized to study the evolution of genomes, and to generate molecular markers that can be exploited to screen large populations [13-14].

The general availability of genome sequences for crop plant species is having a tremendous impact on the genetics and breeding of these organisms. Future comparative sequence analyses of the completed tomato and potato genome sequences will address many of the unresolved questions related with genome-wide profiles of specific multigene families [15].
Conclusion:
The large scale analysis of tomato and potato revealed many interesting structural and functional differences between two genomes. It was found that tomato genome is more repetitive than the potato genome also the composition of repeat is different in these genomes. Taken together, the present will help in understanding the contents, structure and organization of the tomato and potato genomes, which will be of great value to plant breeders and researchers in the years to come.

Acknowledgement:
The authors are grateful to the Sam Higginbottom Institute of Agriculture, Technology & Sciences, Deemed University, Allahabad for providing the facilities and support to complete the present research work.

References:
[1] Kimura S & Sinha N, CSH Protoc. 2008 doi: 10.1101/pdb.emo105 [PMID: 21356708]
[2] Fray RG & Grierson D, Trends Genet. 1993 9: 438 [PMID: 8122312]
[3] Tomato Genome Consortium, Nature. 2012 485: 635 [PMID: 22660326]
[4] Potato Genome Sequencing Consortium and Xu X et al. Nature. 2011 475: 189 [PMID: 21743474]
[5] Dolezel J et al. Nat Protoc. 2007 2: 2233 [PMID: 17853881]
[6] Frazer KA et al. Nucleic Acids Res. 2004 32: W273 [PMID: 15215394]
[7] Altschul SF et al. Nucleic Acids Res. 1997 25: 3389 [PMID: 9254694]
[8] Singh S et al. Bioinformation 2011 6: 31 [PMID: 21464842]
[9] Finn RD et al. Nucleic Acids Res. 2008 36: D281 [PMID: 18039703]
[10] Gogarten JP & Olendzenski L, Curr Opin Genet Dev. 1999 9: 630 [PMID: 10607614]
[11] Zhu W et al. BMC Genomics. 2008 9: 286 [PMID: 18554403]
[12] Datema E et al. BMC Plant Biol. 2008 8: 34 [PMID: 18405374]
[13] Pujar A et al. Database (Oxford). 2013 doi: 10.1093/database/bat028 [PMID: 23681907]
[14] Väli U et al. BMC Genet. 2008 9: 8 [PMID: 18211670]
[15] Moyle LC, Evolution. 2008 62: 2995 [PMID: 18752600]

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited

Edited by P Kangueane
Citation: Lall et al. Bioinformation 9(18): 923-928 (2013)
Supplementary material:

Table 1: Paralogous proteins predicted in *S. lycopersicum*

S. No.	Reviewed proteins	Paralogous proteins	S. No.	Reviewed proteins	Paralogous proteins
1	Q43495	XP_004228451.1	31	Q42876	NP_001238841.1
2	P93207	NP_001234278.1	32	P58905	XP_004247774.1
3	P93206	XP_004250139.1	33	O04161	NP_001234253.1
4	P93208	XP_004252529.1	34	Q9FVNO	NP_001234216.1
5	P93209	NP_001234677.1	35	P10748	XP_004229803.1
6	P42652	NP_001234007.1	36	Q42884	NP_001234422.1
7	P93210	NP_001234107.1	37	Q42885	NP_001234411.1
8	P93211	NP_001234097.1	38	P37215	NP_001234415.1
9	P93212	NP_001234637.1	39	P37216	NP_001234418.1
10	P93213	NP_001234267.1	40	Q9M6A3	NP_001234320.1
11	P93214	NP_001234272.1	41	Q8WY5	NP_001233968.1
12	P18485	NP_001234178.1	42	Q08655	NP_001234632.1
13	Q42881	NP_001234026.1	43	P37219	XP_004237806.1
14	P29535	NP_001234280.1	44	P37220	XP_004237805.1
15	P93236	XP_004232029.1	45	Q2MIK2	YP_514837.1
16	Q2MIIH	YP_514861.1	46	Q2MIK5	YP_514837.1
17	Q2MIIH	YP_514861.1	47	Q2MI10	YP_514859.1
18	P10967	XP_004247700.1	48	Q2MI93	YP_514859.1
19	P05116	NP_001234024.1	49	Q2MI11	YP_514858.1
20	P07920	XP_004251527.1	50	Q2MI94	YP_514858.1
21	P49297	NP_001233878.1	51	Q2MIK1	YP_514838.1
22	Q96482	XP_004236747.1	52	Q2MIK4	YP_514838.1
23	Q96483	XP_004249866.1	53	Q2MIK0	YP_514839.1
24	Q96484	XP_004249286.1	54	Q2MIK3	YP_514839.1
25	P28032	NP_001234099.1	55	Q2MIJ9	YP_514840.1
26	Q40170	NP_001234543.1	56	Q2MI2B	YP_514840.1
27	Q42464	NP_001234384.1	57	E7DN63	NP_001234604.1
28	Q9XG19	NP_001234385.1	58	P48980	NP_001234465.1
29	Q40168	XP_004232995.1	59	P49118	NP_001234636.1
30	Q10712	XP_004253490.1	60	Q8GUQ5	XP_004237477.1

Table 2: Paralogous proteins predicted in *S. tuberosum*

S. No.	Reviewed proteins	Paralogous proteins	S. No.	Reviewed proteins	Paralogous proteins
1	Q43643	CA0X03822.1	56	P54260	P54260.1
2	Q2VEG8	AAC23997.1	57	P30924	P30924.2
3	P30170	P30170.1	58	P55243	CAW47336.1
4	P30171	P30171.1	59	P23509	CAW47343.1
5	P30173	P30173.1	60	P50433	CAW06997.1
6	P30167	P30167.1	61	P393564	P393564.1
7	P30168.2	P30171.1	62	P48020	P48020.1
8	P14674	P14674.1	63	Q41437	BAB20771.1
9	P14675	P14675.1	64	Q41438	AXE26933.1
10	Q42429	Q42429.1	65	Q08276	CAW64031.1
11	P31427	P31427.2	66	P50217	CBN63628.1
12	Q41480	Q41480.2	67	P22200	P22200.1
13	Q43646	Q43646.1	68	Q9S8M0	Q9S8M0.2
14	P58519	P58519.1	69	P29696	P29696.1
15	Q41448	Q41448.1	70	P80471	P80471.2
16	P80595	P80595.2	71	P37831	P37831.1
17	P21357	P21357.2	72	O23479	O23479.1
18	Q27655	Q27655.1	73	Q41238	Q41238.1
19	Q2VEH0	CA05947.1	74	Q2370	Q2370.1
20	Q2VEI8	Q2VEI8.1	75	P37225	P37225.1
21	Q819H6	Q819H6.1	76	P32088	P32088.2
22	P8916	CAW55661.1	77	Q9FS88	Q9FS88.2
23	Q76MX2	CB70727.1	78	Q307Y9	Q307Y9.1
Table 3: *S. lycopersicum* and *S. tuberosum* Pfam comparison

Classification	S. lycopersicum	S. tuberosum
Family	304	194
Domain	191	113
No_clan	788	369
CLO	590	338