Disorders of the Nervous System

Large-Scale Phenotype-Based Antiepileptic Drug Screening in a Zebrafish Model of Dravet Syndrome

Matthew T. Dinday,1 and Scott C. Baraban1,2

DOI: http://dx.doi.org/10.1523/ENEURO.0068-15.2015

1Department of Neurological Surgery, Epilepsy Research Laboratory, University of California San Francisco, San Francisco, California 94143, 2Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143

Abstract

Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1ab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ~1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy.

Key words: antiepileptic; drug discovery; epilepsy; high throughput; pharmacology; zebrafish

Significance Statement

Dravet syndrome is a catastrophic childhood epilepsy that is resistant to available medications. Current animal models for this disease are not amenable to high-throughput drug screening. We used a zebrafish model for Dravet syndrome and screened >1000 compounds. We report the identification of compounds with the ability to suppress seizure behavior and electrographic seizure activity. This approach provides an example of precision medicine directed to pediatric epilepsy.

Introduction

Dravet syndrome (DS) is a devastating genetic epileptic encephalopathy that has been linked to more than >300 de novo mutations in a neuronal voltage-gated sodium channel (SCN). Children with DS are at a higher risk for sudden unexplained death in epilepsy and episodes of
uncontrolled status epilepticus (Dravet et al., 2005; Ceulemans et al., 2012). Delayed language development, disruption of autonomic function, and motor and cognitive impairment are also associated with this disease. Seizure management includes treatment with benzodiazepines, valproate, and/or stiripentol (Caraballo et al., 2005; Chiron and Dulac, 2011). Some reduction in seizure activity has been reported with the use of bromides and topiramate, or a ketogenic diet (Lotte et al., 2012; Wilmshurst et al., 2014; Dressler et al., 2015). Despite these options, available antiepileptic drugs (AEDs) do not achieve adequate seizure control in most DS patients (Dravet et al., 2005; Chiron and Dulac, 2011; Dressler et al., 2015), making the identification of new drugs a critical unmet need. High-throughput screening offers a powerful tool to identify new drug candidates for these patients. However, commonly available screening approaches rely on in vitro cell-based assays (Masimirembwa et al., 2001; Snowden and Green, 2008; Ko and Gelb, 2014) and do not recapitulate the complicated neural networks that generate seizures in vivo. Given the need for new treatments for children with DS, and the growing number of genetic epileptic encephalopathies that are medically intractable (Leppert, 1990; Epi4K Consortium, 2012; Ottmann and Risch, 2012), we developed an alternative phenotype-based in vivo drug-screening strategy. While cell-based in vitro screening assays can efficiently identify compounds that bind specific targets, whole-organism-based screens are more likely to reliably predict therapeutic outcomes as they maintain the complex neural circuitry involved in the underlying disease process. Whole-organism screens do not require well validated targets to identify compounds that yield a desirable phenotypic outcome, but can be prohibitively costly and time consuming in mammals. As a simple vertebrate with significant genetic similarity to human, zebrafish are now recognized as an ideal cost-effective alternative to achieve rapid in vivo phenotype-based screening (All et al., 2011).

Using scn1a mutant zebrafish larvae with a gene homologous to human and spontaneously occurring seizures (Baraban et al., 2013), we screened, in a blinded manner, a repurposed library of ~1000 compounds for drugs that inhibit unprovoked seizure events. We also screened two compounds (hyperzine A and fenfluramine) that were discovered in rodent-based assays using acquired seizure protocols and that were recently suggested as potential treatments for DS (Boel and Casaer, 1996; Coleman et al., 2008; Ceulemans et al., 2012; Bialer et al., 2015). Only 20 compounds in the repurposed drug library reduced swim behavior to control levels. However, many of these compounds were toxic or were not confirmed on retesting, and only four compounds advanced to a second-stage in vivo electrophysiology assay. Of these compounds (cytarabine, dimethadione, theobromine, and norfloxacain) only dimethadione, a T-type calcium channel antagonist previously reported to have anticonvulsant activity (Lowson et al., 1990; Zhang et al., 1996), reduced ictal-like electrographic discharges seen in scn1Lab mutant larvae. This two-stage phenotype-based screening approach, using a genetic DS model with >75% genomic similarity to human, is a sensitive, rapid means to successfully identify compounds with antiepileptic activity.

Materials and Methods

Zebrafish

Zebrafish were maintained in a light- and temperature-controlled aquaculture facility under a standard 14:10 h light/dark photoperiod. Adult zebrafish were housed in 1.5 L tanks at a density of 5-12 fish per tank and fed twice per day (dry flake and/or flake supplemented with live brine shrimp). Water quality was continuously monitored: temperature, 28-30°C; pH 7.4-8.0; conductivity, 690-710 mS/cm. Zebrafish embryos were maintained in round Petri dishes (catalog #FB0875712, Fisher Scientific) in “embryo medium” consisting of 0.03% Instant Ocean (Aquarium Systems, Inc.) and 000002% methylene blue in reverse osmosis-distilled water. Larval zebrafish clutches were bred from wild-type (WT; TL strain) or scn1Lab (didys552) heterozygous animals that had been backcrossed to TL wild-type for at least 10 generations. Homozygous mutants (n = 6544), which have widely dispersed melanosomes and appear visibly darker as early as 3 dpf (Fig. 1b), or WT larvae (n = 71) were used in all experiments at 5 or 6 dpf. Embryos and larvae were raised in plastic petri dishes (90 mm diameter, 20 mm depth) and density was limited to ~60 per dish. Larvae between 3 and 7 dpf lack discernible sex chromosomes. The care and maintenance protocols comply with requirements outlined in the Guide for the Care and Use of Animals (ebrary Inc., 2011) and were approved by the Institutional Animal Care and Use Committee (protocol #AN108659-01D).

Seizure monitoring

Zebrafish larvae were placed individually into 1 well of a clear flat-bottomed 96-well microplate (catalog #260836, Fisher Scientific) containing embryo media. Microplates were placed inside an enclosed motion-tracking device and acclimated to the dark condition for 10-15 min at room temperature. Locomotion plots were obtained for one fish per well at a recording epoch of 10 min using a DanioVision system running EthoVision XT software (DanioVision, Noldus Information Technology); threshold detection settings to identify objects darker than the background were optimized for each experiment. Seizure scoring was performed using the following three-stage scale (Baraban et al., 2005): Stage 0, no or very little swim activity; Stage I, increased, brief bouts of swim activity; Stage II, rapid “whirlpool-like” circling swim behavior; and Stage III, paroxysmal whole-body clonus-like convulsions, and a brief loss of posture. WT fish are normally scored at Stage 0 or I. Plots were analyzed for distance traveled (in millimeters) and mean velocity (in millimeters per second). As reported previously (Winter et al., 2008; Baraban et al., 2013), velocity changes were a more sensitive assay of seizure behavior. For electrophysiology studies, zebrafish larvae were briefly paralyzed with
α-bungarotoxin (1 mg/ml) and immobilized in 1.2% agarose; field recordings were obtained from forebrain structures. Epileptiform events were identified post hoc in Clampfit (Molecular Devices) and were defined as multi-spike or polyspike upward or downward membrane deflections greater than three times the baseline noise level and >500 ms in duration. During electrophysiology experiments zebrafish larvae were continuously monitored for the presence (or absence) of blood flow and heart beat by direct visualization on an Olympus BX51WI upright microscope equipped with a CCD camera and monitor.

Drugs

Compounds for drug screening were purchased from MicroSource Discovery Systems, Inc. (PHARMAKON 1600) and were provided as 10 mM DMSO solutions (Table 1). Test compounds for locomotion or electrophysiology studies were dissolved in embryo media and were tested at an initial concentration of 100 μM, with a final DMSO concentration of <2%. In all drug library screen studies, compounds were coded and experiments were performed by investigators who were blind to the nature of the compound. Baseline recordings of seizure behavior were performed prior to treatment, and the percentage change in state was used to identify compounds with potential anticonvulsant activity.

Figure 1. Locomotion assay to identify drugs that rescue the scn1Lab mutant epilepsy phenotype. **a**, Schematic of the phenotype-based screening process. Chemical libraries can be coded and aliquoted in small volumes (75 μL) into individual wells containing one mutant fish. The 96-well microplate is arranged so that six fish are tested per drug; with one row of six fish maintained as an internal control (red circles) on each plate. **b**, Representative images for WT and scn1Lab mutant zebrafish larvae at 5 dpf. Note the morphological similarity but darker pigmentation in mutant larvae. **c**, Box plot of mean velocity (in millimeters per second) for two consecutive recordings of mutant larvae in embryo media. Experiments were performed by first placing the mutant larvae in embryo media and obtaining a baseline locomotion response; embryo media was then replaced with new embryo media (to mimic the procedure used for test compounds), and a second locomotion response was obtained. The percentage change in velocity from baseline (recording 1) versus experimental model (recording 2) is shown. In the box plot, the bottom and top of the box represent the 25th percentile and the 75th percentile, respectively. The line across the box represents the median value, and the vertical lines encompass the entire range of values. This plot represents normal changes in tracking activity in the absence of a drug challenge. **d**, Plot of locomotor seizure behavior for scn1Lab mutants at 5 dpf for the 1012 compounds tested. Threshold for inhibition of seizure activity (positive hits) was set as a reduction in mean swim velocity of ≥44%; the threshold for a proconvulsant or hyperexcitable effect was set at an increase in the mean swim velocity of ≥44% (green dashed lines).
Table 1. List of compounds from the PHARMAKON 1600 library used in this screen.

Compound	Compound
ABACAVIR SULFATE	AMPROLIUM
ABAMECTIN (avermectin B1a shown)	AMSACRINE
ACADESINE	ANASTROZOLE
ACARBOSE	ANCITABINE HYDROCHLORIDE
ACETABUTOLOL HYDROCHLORIDE	ANETHOLE
ACECLIDINE	ANIRACETAM
ACECLOFENAC	ANISINDIONE
ACENOCOUMAROL	ANTAZOLINE PHOSPHATE
ACETAMINOPHEN	ANTHELINE
ACETOHYDROXYAMIC ACID	ANTIHYDROXYAMIC ACID
ACETOPHENAZINE MALEATE	APOMORPHINE HYDROCHLORIDE
ACETYLCHOLINE CHLORIDE	APRAZOLAM
ACETYLGLYCINE	ARGinine HYDROCHLORIDE
ACETYLGLYCINE	ARMODAFINIL
ACYCLOVIR	ARTENOLOL
ADAPALENE	ATORVASTATIN CALCIUM
ADELMLIDROSE	ATROPAUSINE
ADENINE	ATROPINE SULFATE
ADENOSINE	AUROTHIOGLUCOSE
ADENOSINE PHOSPHATE	AVOBENZONE
ADIPHENINE HYDROCHLORIDE	AZACITIDINE
ALKLOMIDE	AZASERINE
ALAPROCLATE	AZATADINE MALEATE
ALBENDAZOLE	AZATHIOPRINE
ALBUTEROL (+/-)	AZELAIC ACID
ALENDRONATE SODIUM	AZITHROMYCIN
ALEXIDINE HYDROCHLORIDE	BECKAMycin SULFATE
ALLANTOIN	BEMOTRIZINOL
ALLOPURINOL	BENAZEPIL HYDROCHLORIDE
ALMOTRIPTAN	BENDROFLUMETHIAZIDE
alpha-TOCHOPHEROL	BENORILATE
alpha-TOCHOPHERYL ACETATE	BENSERAZIDE HYDROCHLORIDE
ALPRAZOLAM	BENZALKONIUM CHLORIDE
ALRESTATIN	BENZETHIONIUM CHLORIDE
ALTIAZIDE	BENZOCAINE
ALTRETAMINE	BENZOIC ACID
ALVERINE CITRATE	BENZONATATE
AMANTADINE HYDROCHLORIDE	BENZOYL PEROXIDE
AMINONIOGLUTETHIMIDE	BENZTHIAZIDE
AMINOPROPIA ACID	BENZYL ALCOHOL
AMINOHIPPURIC ACID	BENZYL BENZOATE
AMINOLEVULINIC ACID HYDROCHLORIDE	BEPREDIL HYDROCHLORIDE
AMINOSALICYLATE SODIUM	BERGAPTEIN
AMITRIPTYLINE HYDROCHLORIDE	beta-CAROTENE
AMLEXANOX	BETAHISTINE HYDROCHLORIDE
AMLODIPINE BESYLATE	BETAINA HYDROCHLORIDE
AMODIAQUINE DIHYDROCHLORIDE	BETAMETHASONE
AMORFOLINE HYDROCHLORIDE	BETAMETHASONE 17,21-DIPROPIONATE
AMOXICILLIN	BETAMETHASONE VALERATE

(Continued)
Compound	Compound
BETAMIPRON	CEFOTAXIME SODIUM
beta-NAPHTHOL	CEFOTETAN
BETAZOLE HYDROCHLORIDE	CEFFOXITIN SODIUM
BETANECHOL CHLORIDE	CEFPIRAMIDE
BEZAFIBRATE	CEFSULODIN SODIUM
BICALUTAMIDE	CEFTIBUTEN
BIOTIN	CEFTRIAXONE SODIUM TRIHYDRATE
BISACODYL	CEFUROXIME AXETIL
BISOCTRIZOLE	CEFUROXIME SODIUM
BISORCIC	CELECOXIB
BITHIONATE SODIUM	CEPHALEXIN
BLEOMYCIN (bleomycin B2 shown)	CEPHALOTHIN SODIUM
BRETYLIUM TOSYLATE	CEPHAPIRIN SODIUM
BRINZOLAMIDE	CEPHRADINE
BROMHEXINE HYDROCHLORIDE	CETYLPYRIDINIUM CHLORIDE
BROMOCRIPTINE MESYLATE	CHENODIOL
BROMPHENIRAMINE MALEATE	CHLORAMBUCIL
BROXYQUINOLINE	CHLORAMPHENICOL
BUDESONIDE	CHLORAMPHENICOL HEMISUCCINATE
BUMETANIDE	CHLORAMPHENICOL PALMITATE
BUPIVACAINE HYDROCHLORIDE	CHLORCYCLIZINE HYDROCHLORIDE
BUPROPION	CHLORHEXIDINE
BUSULFAN	CHLOROCRESEL
BUTACAINE	CHLOROQUANIDE HYDROCHLORIDE
BUTAMBEN	CHLOROQUINE DIPHOSPHATE
BUTOCONAZOLE	CHLOROTHIAZIDE
CAFFEINE	CHLOROXINE
CAMPHOR (1R)	CHLOROXYLENOL
Candesartan	CHLORPHENIRAMINE (S) MALEATE
Candesartan Cilexil	CHLORPROMAZINE
CANDICIDIN	CHLORPROPAMIDE
CANRENOIC ACID, POTASSIUM SALT	CHLORPROMAZINE SODIUM
CANRENONE	CILASTOROL
CAPECITABINE	Cimetidine
CAPREOMYCIN SULFATE	CINCHOPHEN
CAPSAICIN	CINNARAZINE
CAPTAMINE	CINOSACIN
CAPTOPRIL	CINTRIAMIDE
CARBACHOL	CIPROFIBRATE
CARBENICILLIN DISODIUM	CIPROFLOXACIN
CARBENOXOLONE SODIUM	CISPLATIN
CARBETAPENTANE CITRATE	CITALOGRAM HYDROBROMIDE
CARBIDOPA	CITICOLINE
CARBOXINAMINE MALEATE	CLARITHROMYCIN
CARBOPLATIN	CLAVULANATE LITHIUM
CARISOPRODOL	CLEMASTINE
CARMUSTINE	CLIDINIUM BROMIDE
CARNITINE (di) HYDROCHLORIDE	CLINDAMYCIN HYDROCHLORIDE
CARPROFEN	CLOHEXACIN
CARVEDILOL	CLOIONOL
CEFACLOR	CLOBETASOL PROPIONATE
CEFADROXIL	CLOFARABINE
CEFAMANDOLE NAFATE	CLOFIBRATE
CEFAMANDOLE SODIUM	(Continued)
CEFAZOLIN SODIUM	(Continued)
CEFEPINE HYDROCHLORIDE	
CEFMENOXIME HYDROCHLORIDE	
CEFMETAZOLE SODIUM	
CEFOPERAZONE	
CEFORANIDE	

(Continued)
Compounds from the PHARMAKON 1600 library used in this screen. (continued)
CLOMIPHENE CITRATE
CLONIDINE HYDROCHLORIDE
CLOPIDOGREL SULFATE
CLORSULON
CLOSANTEL
CLOTRIMAZOLE
CLOXACILLIN SODIUM
CLOXYQUIN
CLOZAPINE
COENZYME B12
CORTISONE ACETATE
COTININE
CRESOL
CROMOLYN SODIUM
CRYOFLURANE
CYCLAMIC ACID
CYCLIZINE
CYCLOBENZAPRINE HYDROCHLORIDE
CYCLOHEXIMIDE
CYCLOPENTOLATE HYDROCHLORIDE
CYCLOPHOSPHAMIDE HYDRATE
CYCLOSERINE (D)
CYCLOSPORINE
CYCLOTHIAZIDE
CYPERMETHRIN
CYPROTERONE ACETATE
CYSTEAMINE HYDROCHLORIDE
CYTARABINE
DACARBAZINE
DACTINOMYCIN
DANAZOL
DANThRON
DANTROLENE SODIUM
DAPSONE
DAPTOMYCIN
DASATINIB
DAUNORUBICIN
DECIMEMIDE
DEFEROXAMINE MESYLATE
DEFLAZACORT
DEHYDROACETIC ACID
DEHYDROCHOLIC ACID
DEMECLOCYCLINE HYDROCHLORIDE
DERAoxib
DESIPRAMINE HYDROCHLORIDE
DESOXYCORTICOSTERONE ACETATE
DESVENLAFAXINE SUCCINATE
DEXAMETHASONE
DEXAMETHASONE ACETATE
DEXAMETHASONE SODIUM PHOSPHATE
DEXIUPROFEN
DEXLANSOPRAZOLE
DEXPROPRANOLOL HYDROCHLORIDE
DEXTROMETHORPHAN HYDROBROMIDE
DIAPERIDINE
DIBENZOTHIOPHENE
DIBUCAINA HYDROCHLORIDE
DICHLORPHENINE

(Continued)

Compounds from the PHARMAKON 1600 library used in this screen. (continued)
DICHLORVOS
DICLAZURIL
DICLOFENAC SODIUM
DICLOXACILLIN SODIUM
DICUMAROL
DICYCLOMINE HYDROCHLORIDE
DIENESTROL
DIETHYLCARBAMAZINE CITRATE
DIETHYSTILBESTROL
DIFLOXACIN HYDROCHLORIDE
DIFLUNISAL
DIGITOXIN
DIGOXIN
DIHYDROERGOTAMINE MESYLATE
DIHYDROSTREPTOMYCIN SULFATE
DILAZEP DIHYDROCHLORIDE
DIMENHYDRINATE
DIMERCAPROL
DIMETHADIONE
DIOXYBENZONE
DIPHENHYDRAMINE HYDROCHLORIDE
DIPHENYLPRALINE HYDROCHLORIDE
DIPYRIDAMOLE
DIPYRONE
DIRITHROMYCIN
DISOPYRAMIDE PHOSPHATE
DISULFIRAM
DOBUTAMINE HYDROCHLORIDE
DOCETAXEL
DONEPEZIL HYDROCHLORIDE
DOPAMINE HYDROCHLORIDE
DOXEPIN HYDROCHLORIDE
DOXOFYLLINE
DOXYCYCLINE HYDROCHLORIDE
DOXYLAMINE SUCINNATE
DROFENINE HYDROCHLORIDE
DROPERIDOL
DROSPIRENONE
DYCLOLONINE HYDROCHLORIDE
DYPHYLLINE
ECAMSULE TRIETHANOLAMINE
ECONAZOLE NITRATE
EDETATE DISODIUM
EDITOL
EDOXUDINE
EMETINE
ENALAPRIL MALEATE
ENALAPRILAT
ENOXACIN
ENROFLAXACIN
ENTACAPONE
EPHEDRINE (1R,2S) HYDROCHLORIDE
EPINEPHRINE BITARTRATE
EPRINOMECTIN
ERGOCALCIFEROL
ERGONOVINE MALEATE
ERYTHROMYCIN
ERYTHROMYCIN ESTOLATE
ERYTHROMYCIN ETHYLSCUCCINATE
ESCITALOPRAM OXALATE
ESOMEPRAZOLE POTASSIUM

(Continued)
Compound	Compound
ESTRADIOL	FLUVASTATIN
ESTRADIOL BENZOATE	FOLIC ACID
ESTRADIOL CYPIONATE	FOSCARNET SODIUM
ESTRADIOL DIPROPIONATE	FOSSOMYCIN CALCIUM
ESTRADIOL VALERATE	FTTAXILIDE
ESTRAMUSTINE	FULVESTRANT
ESTRIOLE	FURAZOLIDONE
ESTROPIRATE	FUROSEMIDE
ETHACRYNIC ACID	FUSIDIC ACID
ETHAMBUTOL HYDROCHLORIDE	GABOXADOL HYDROCHLORIDE
ETHAM VERINE HYDROCHLORIDE	GADOTERIDOL
ETHINYL ESTRADIOL	GALANTHAMINE
ETHIONAMIDE	GALLAMINE TRIETHIODIDE
ETHISTERONE	GANCICLOVIR
ETHOPROPAZINE HYDROCHLORIDE	GATIFLOXACIN
ETHYL PARaben	GEFTINIB
ETODOLAC	GEMFIBROZIL
ETOPOSIDE	GENTAMICIN SULFATE
EUCALYPTOL	GENTIAN VIOLET
EUCATROPINE HYDROCHLORIDE	GLIMEPIRIDE
EUGENOL	GLUCONOLACTONE
EVANS BLUE	GLUCOSAMINE HYDROCHLORIDE
EXEMESTANE	GLUTAMINE (D)
EZETIMIBE	GRAMICIDIN
FAMCICLOVIR	GRANISETRON HYDROCHLORIDE
FAMOTIDINE	GRISEOFULVIN
FAMPRIDINE	GUAIFENESIN
FASUDIL HYDROCHLORIDE	GUANABENZ ACETATE
FEBUXOSTAT	GUANETHIDINE SULFATE
FENBENDAZOLE	HALAZONE
FENBUFEN	HALCINONIDE
FENDILINE HYDROCHLORIDE	HALOPERIDOL
FENOFIBRATE	HEPTAMINOL HYDROCHLORIDE
FENOPROFEN	HETACILLIN POTASSIUM
FENOTROL HYDROBROMIDE	HEXACHLOROPHENE
FENOPIRIDE HYDROCHLORIDE	HEXYLMESORCINOL
FEXOFENADINE HYDROCHLORIDE	HISTAMINE DIHYDROCHLORIDE
FIPEXIDE HYDROCHLORIDE	HOMATROPINE BROMIDE
FIROCOXIB	HOMATROPINE METHYLBROMIDE
FLOXURIDINE	HOMOSALATE
FLUCONAZOLE	HYCANTHONE
FLUCORTISONE ACETATE	HYDRAZINE HYDROCHLORIDE
FLUFENAMIC ACID	HYDRASTINE (1R, 9S)
FLUNARIZINE HYDROCHLORIDE	HYDROCLOROTHIAZIDE
FLUNDAROL	HYDROCORTISONE
FLUMEQUINE	HYDROCORTISONE ACETATE
FLUMETHASONE	HYDROCORTISONE BUTYRATE
FLUMETHAZONE PIVALATE	HYDROCORTISONE HEMISUCCINATE
FLUNISOLIDE	HYDROCORTISONE PHOSPHATE TRIETHYLAMINE
FLUNIXIN MEGLUMINE	HYDROFLUMETHAIZIDE
FLUCINOLONE ACETONIDE	HYDROQUINONE
FLUCINONIDE	HYDROXYAMPHETAMINE HYDROBROMIDE
FLUOROMETHOLONE	HYDROXYCHLOROQUINE SULFATE
FLUOROURACIL	HYDROXYPROGESTERONE CAPROATE
FLUOXETINE	HYDROXYTOLUIC ACID
FLUPHENAZINE HYDROCHLORIDE	HYDROXYUREA
FLURANDRENOLIDE	HYDROXYZINE PAMOATE
FLURIPROFEN	HYOSCYAMINE
FLUROFAMIDE	IBANDRONATE SODIUM
FLUTAMIDE	IBUROFEN
	IDOXURDINE
IDOXURIDINE	LOMUSTINE
------------------------	-------------------
IMIPRAMINE HYDROCHLORIDE	LORATADINE
IMIQUIMOD	LORNOXICAM
INAMRINONE	LOSARTAN
INDAPAMIDE	LOVASTATIN
INDOMETHACIN	LUMIRACOXIB
INDOPOFEN	MANFENIDE HYDROCHLORIDE
INOSITOL	MALATHION
IODIPAMIDE	MANGAFODIPIR TRISODIUM
IODIXANOL	MANIDIPINE HYDROCHLORIDE
IODOQUINOL	MANNITOL
IOHEXOL	MAPIRTILINE HYDROCHLORIDE
IOPANIC ACID	MEBENDAZOLE
IOPTHALIC ACID	MEBEVERINE HYDROCHLORIDE
IOVERSOL	MEHYDROLIN NAPHTHALENESULFONATE
IOXILAN	MECAMYLAMINE HYDROCHLORIDE
IPRATROPIUM BROMIDE	MECHLORETAMINE
IRBESARTAN	MECLIZINE HYDROCHLORIDE
ISONIAZID	MECLOXYCLINE SULFOSALICYLATE
ISOPROPAMIDE IODIDE	MECLOFENAMATE SODIUM
ISOPROTERENOL HYDROCHLORIDE	MECLOFENOXATE HYDROCHLORIDE
ISOSORBIDE DINIRATE	MEDROXYPROGESTERONE ACETATE
ISOSORBIDE MONONITRATE	MEDRYSONE
ISOTRETINON	MEFENAMIC ACID
ISOXICAM	MEFEXAMIDE
ISOXSUPRINE HYDROCHLORIDE	MEfloQUINE
ITOPRIDE HYDROCHLORIDE	MEGESTROL ACETATE
IVERMECTIN	MEGLUMINE
KANAMYCIN A SULFATE	MELOXICAM SODIUM
KETOCONAZOLE	MELPERONE HYDROCHLORIDE
KETOPROFEN	MELPHALAN
KETOROLAC TROMETHAMINE	MEMANTINE HYDROCHLORIDE
KETOTIFEN FUMARATE	MENADIONE
Labetalol HYDROCHLORIDE	MEPARTRICIN
LACTULOSE	MEPENZOLATE BROMIDE
LAMIVUDINE	MEPHENESIN
LANATOSIDE C	MEPHENTERMINE SULFATE
LANSOPRAZOLE	MEPIVACAINE HYDROCHLORIDE
LEFLUNOMIDE	MEQUINOL
LETROZOLE	MERBROMIN
LEUCOVORIN CALCIUM	MERCAPTOPURINE
LEVAMISOLE HYDROCHLORIDE	MEROPENEM
LEVOCETIRIZINE DIHYDROCHLORIDE	MESNA
LEVOFLOXACIN	METO-ERYTHRITOL
LEVOMENTHOL	MESTRALON
LEVONORDEFRIN	METAPROTERENOL
LEVONORGESTREL	METARAMINOL BITARTRATE
LEVOSIMENANDAN	METAXALONE
LEVOTHYROXINE	METHACHOLINE CHLORIDE
LIDOCAINE HYDROCHLORIDE	METHACYCLINE HYDROCHLORIDE
LINCOMYCIN HYDROCHLORIDE	METHAPYRILENE HYDROCHLORIDE
LINDANE	METHAZOLAMIDE
LINEZOLID	METHENAMINE
LIOTHYRONINE	METHICILLIN SODIUM
LIOTHYRONINE (L- isomer) SODIUM	METHIMAZOL
LISINOPRIL	METHOCARBAMOL
LITHIUM CITRATE	METHOTREXATE(+/-)
LOBELINE HYDROCHLORIDE	METHOXAMINE HYDROCHLORIDE
LOFEXIDINE HYDROCHLORIDE	METHOXASALEN
LOMEFLOXACIN HYDROCHLORIDE	METHSCOPOLAMINE BROMIDE
LOMERIZINE HYDROCHLORIDE	METHYCLOTHIAZIDE

(Continued)
Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

Compound	Compound
METHYLBENZETHIONIUM CHLORIDE	NOMIFENSINE MALEATE
METHYLDOPA	NOREPINEPHRINE
METHYLERGONOVINE MALEATE	NORETHINDROME
METHYLPROPIOSULFATE	NORETHINDRONE ACETATE
METHYLPERDOSULFATE	NORETHYNOBREL
METHYLPERDOSULFATE SODIUM SUCCINATE	NORFLOXACIN
METHYLTHIOURACIL	NORGESTREL
METOCLOPRAMIDE HYDROCHLORIDE	NORTRIPTYLINE
METOPROLOL TARTRATE	NOSCAPINE HYDROCHLORIDE
METRONIDAZOLE	NOVOBIOCIN SODIUM
MEXILETINE HYDROCHLORIDE	NYLIDRIN HYDROCHLORIDE
MICONAZOLE NITRATE	NYSTATIN
MИDODRINE HYDROCHLORIDE	OCTOPAMINE HYDROCHLORIDE
MИGLITOL	OFLOXACIN
MИLNICIPRAN HYDROCHLORIDE	OLMESARTAN
MINAPRINE HYDROCHLORIDE	OLMESARTAN MЕDOXОMІL
MINOCYCLINE HYDROCHLORIDE	OLSALАЗINE SODIUM
MИNOXИDIL	OLSЕLTAMІVIR PHOSPHATE
MITОMYCIN C	OМЕGA-3-АСID ESTЕRS (ЕPA shown)
MITОTANE	OНDANSEТRON
МITOXАНTRONE HYDROCHLORIDE	ORLISTAT
MОLSІDОMІNE	ORPHЕNADRІNE CITRATE
MОNENSIN SODIUM (monensin A is shown)	QUАBAІN
MONOBENZОNE	OXАCILLІN SODIUM
MОРАNТЕL CITRATE	OXАLIPLATІN
MOXАLACTAM DISODIUM	OХАRBАZЕРІНЕ
MOXIFLOXАСІN HYDROCHLORIDE	ОХЕТХАЗАІНЕ
МYСОРОХЕНОLATE MОFЕTІL	ОХІВЕNДАZОLЕ
МYСОРОХЕНОLIC АСІD	ОХІDОPАMІNЕ HYDROCHLORIDE
NАBUMЕTONE	ОХІLІNІС ACІD
NАDІDІE	OXYBENZONE
NАДОLОL	OXYМЕТАZОLІNE HYDROCHLORIDE
NАFСІLLІN SODIUM	OXYPHЕНІNУТАZОNЕ
NАFRОNYL ОXАLАTE	OXYPHЕНІСYLІMІNE HYDROCHLORIDE
NАLBУPHІNЕ HYDРОСHLОРІDЕ	OXYQUІNOLІНЕ HЕМІSУLFАTE
NАLІDІСІC АСІD	OXYТЕТРАСУLІNЕ
NАLОXОNЕ HYDРОСHLОРІDЕ	PAНІТАXЕL
NАLТRХОNЕ HYDРОСHLОРІDЕ	PALІРЕDІОN
NАРАХОلزمE HYDРОСHLОРІDЕ	PAРААВЕRІNЕ HYDРОСHLОРІDЕ
NАРРОXЕN(+)	PARАСHLОРOPЕPHЕNOL
NАРРОXOЛ	PARАRОСАНІLІNЕ PАМОАТЕ
NАTEGІNІDІE	PARАGLYNE HYDРОСHLОРІDЕ
NЕFАZОDОNЕ HYDРОСHLОРІDЕ	PARОМОМОСYC SУLFAТЕ
NЕFОPAМ	PARӨXЕТІNЕ HYDРОСHLОРІDЕ
NЕLАRА BIN	PЕMЕТРЕХЕD
NЕОМІСИН SУLFAТЕ	PЕNСІСLOVІR
NЕОСТИГМІNЕ BРОMІDЕ	PЕNІСІLLАMІNЕ
NEВІRАPIN	PЕNІСІLІN G ПОТАSSІUM
NIАСІN	PЕNІСІLІN V ПОТАSSІUM
NIАРІDІРІNЕ HYDРОСHLОРІDЕ	PЕNТОLІNІUM TАRTRАTE
NIСЕРОLІNЕ	PЕNТОXІФІLІNЕ
NIСLОСАMІDЕ	PЕRGОLІDЕ MЕSYLАTE
NIСОTІNІVІL АLСОHОL TAРTRAТЕ	PЕRHЕXІLІNЕ MАLEАTE
NIФЕDІРІNЕ	PERІСІAZІNЕ
NIФUРСОL	PERІНDОРРІR ЕРBUМІNЕ
NIЛUТАМІDЕ	PЕРФЕNАZІNЕ
NIМОDІРІNЕ	PHЕNАСЕМІDЕ
NIТАZОХАNІDЕ	PHЕNАZОРРІRІDІNE HYDРОСHLОРІDЕ
NIТRЕНІDІNЕ	PHЕNЕLЗІNЕ SУLFAТЕ
NIТRОРАNТОІN	PHЕNІNІDІONE
NIТRУΡАZОNЕ	PHЕNІRАMІNЕ MАLEАTE
NIТРОMІDЕ	(Continued)

(Continued)
Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

Compound
PHENOLPHTHALEIN
PHENTOLAMINE HYDROCHLORIDE
PHENYL AMINOSALICYLATE
PHENYL BUTAZONE
PHENYLEPHRINE HYDROCHLORIDE
PHENYL MERCURIC ACETATE
PHENYLPROPANOLAMINE HYDROCHLORIDE
PHENYTOIN SODIUM
PHTHALYLSULFATHIAZOLE
PHYSOSTIGMINE SALICYLATE
PILOCARPINE NITRATE
PIMOZIDE
PINDOLOL
PIOGLITAZONE HYDROCHLORIDE
PIPERACETAZINE
PIPERACILIN SODIUM
PIPERAZINE
PIPERIDOLATE HYDROCHLORIDE
PIPERINE
PIPOBROMAN
PIRACETAM
PIRENERONE
PIRENZEPINE HYDROCHLORIDE
PIROCTONE OLAMINE
PIROXICAM
PITAVASTATIN CALCIUM
PIZOTYLINE MALATE
POLYMYSYN B SULFATE
POTASSIUM p-AMINOBENZOATE
PRAMIPEXOLE DIHYDROCHLORIDE
PRAMOXINE HYDROCHLORIDE
PRASUGREL
PRAZIQUANTEL
PRAZOSIN HYDROCHLORIDE
PREDNICARBATE
PREDNISOLONE
PREDNISOLONE ACETATE
PREDNISONE
PRILOCAINE HYDROCHLORIDE
PRIMAQUINE DIPHOSPHATE
PRIMIDONE
PROADIFEN HYDROCHLORIDE
PROBENEcid
PROBUCOL
PROCAINAMIDE HYDROCHLORIDE
PROCAINE HYDROCHLORIDE
PROCARBAZINE HYDROCHLORIDE
PROCHLORPERAZINE EDISYLATE
PROCYCLIDINE HYDROCHLORIDE
PROGESTERONE
PROGLUMIDE
PROMAZINE HYDROCHLORIDE
PROMETHAZINE HYDROCHLORIDE
PRONETALOL HYDROCHLORIDE
PROPafenONE HYDROCHLORIDE
PROPHETHINE BROMIDE
PROPIOLACTONE
PROPOFOL
PROPYLTHIOURACIL
PSEUDOEPHEDRINE HYDROCHLORIDE

(Continued)
Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

SILDENAFIL CITRATE
SIMVASTATIN
SIROLIMUS
SISOMICIN SULFATE
SODIUM DEHYDROCHOLATE
SODIUM NITROPRUSSIDE
SODIUM OXYBATE
SODIUM PHENYLACETATE
SODIUM PHENYLACETATE
SODIUM SALICYLATE
SPARFLOXACIN
SPARTEINE SULFATE
SPECTINOMYCIN HYDROCHLORIDE
SPIPERONE
SPIRAMYCIN
SPIRAPRIL HYDROCHLORIDE
SPIRONOLACTONE
STAVUDINE
STREPTOMYCIN SULFATE
STREPTOZOSIN
SUCINYL SULFATHIAZOLE
SULBACTAM
SULCONAZOLE NITRATE
SULFABENZAMIDE
SULFACETAMIDE
SULFACHLORPYRIDAZINE
SULFADIAZINE
SULFAMETHOXINE
SULFAMERAZINE
SULFAMETER
SULFAMETHAZINE
SULFAMETHIZOLE
SULFAMETHOXAZOLE
SULFAMETHOXYPYRIDAZINE
SULFAMONOMETHOXINE
SULFANILATE ZINC
SULFANITRAN
SULFAPYRINDINE
SULFAQUINOXALINE SODIUM
SULFASALAZINE
SULFATHIAZOLE
SULFINPYRAZONE
SULFISOXAZOLE
SULINDAC
SULMAZOLE
SULCOTIDIL
SULPIRIDE
SUPROFEN
SURAMIN
TACROLIMUS
TAMOXIFEN CITRATE
TANDUTINIB
TANNIC ACID
TAZOBACTAM
TEGASEROD MALEATE
TEMLISARTAN
TEMEFOS
TEMOCYLAMIDE
TENIPOSIDE
TENOXICAM
TERBUTALINE HEMISULFATE
TERCONAZOLE
TERFENADINE
TESTOSTERONE
TESTOSTERONE PROPIONATE
TETRACAINE HYDROCHLORIDE
TETRACYCLINE HYDROCHLORIDE
TETRAHYDROZOLINE HYDROCHLORIDE
TETROQUINONE
THALIDOMIDE
THEOBROMINE
THEOPHYLLINE
THIABENDAZOLE
THIAMPHENICOL
THIMEROSAL
THIOGUANINE
THIEMIDAZINE HYDROCHLORIDE
THIOPENTONE
THIOPENTONE
THIOTHIXENE
THIRAM
THONZONIUM BROMIDE
THONZYLAMINE HYDROCHLORIDE
TIAPRIDE HYDROCHLORIDE
TIBOLONE
TIGECYCLINE
TILARGININE HYDROCHLORIDE
TILETAMINE HYDROCHLORIDE
TILMICOSIN
TIMOLOL MALEATE
TINIDAZOLE
TOBRAMYCIN
TODRALAZINE HYDROCHLORIDE
TOLAZAMIDE
TOLAZOLINE HYDROCHLORIDE
TOLBUTAMIDE
TOLMETIN SODIUM
TOLNAFTATE
TOLPERISONE HYDROCHLORIDE
TOSYLCLORAMIDE SODIUM
TRANEXAMIC ACID
TRANLYCYPROMINE SULFATE
TRAZODONE HYDROCHLORIDE
TRETINOIN
TRIACETIN
TRIAMCINOLONE
TRIAMCINOLONE ACETONIDE
TRIAMCINOLONE DIACETATE
TRIAMTERENE
TRICHLORMETHIAZIDE
TRIFLUOPERAZINE HYDROCHLORIDE
TRIFLUROMAZINE HYDROCHLORIDE
TRIFLURIDINE
TRIHEXYPHENYLHYDROCHLORIDE
TRILOSTANE
TRIMEPRAZINE TARTRATE
TRIMETHOBENZAMIDE HYDROCHLORIDE
TRIMETHOPRIM
TRIMETOCINE
TRIMIPRAMINE MALEATE
TRIOXASALEN
TRIPELENAMINE CITRATE
(Continued)
were obtained from mutants bathed in embryo media, as described above; a second locomotion plot was then obtained following a solution change to a test compound and an equilibration period of 15–30 min. Criteria for a positive hit designation were as follows: (1) a decrease in mean velocity of ≥44% (e.g., a value based on the trial-to-trial variability measured in control tracking studies; Fig. 1c); and (2) a reduction to Stage 0 or Stage I seizure behavior in the locomotion plot for at least 50% of the test fish. Each test compound classified as a “positive hit” in the locomotion assay was confirmed, under direct visualization on a stereomicroscope, as the fish being alive and/or moving in response to external stimulation or a visible heartbeat following a 60 min drug exposure. Toxicity (or mortality) was defined as no visible heartbeat or movement in response to external stimulation in at least 50% of the test fish. Hyperexcitability was defined as a compound causing a ≥44% increase in swim velocity and/or Stage III seizure activity in at least 50% of the test fish. Hits identified in the primary locomotion screen were selected from the PHARMAKON 1600 library and re-screened using the method described above. Select compound stocks that were successful in two primary locomotion assays, and were not classified as toxic in two independent clutches of zebrafish, were then purchased separately from Sigma-Aldrich for further testing. Drug concentrations between 0.5 and 1 mM were used for electrophysiology assays to account for more limited diffusion in agar-embedded larvae.

Data analysis
Data are presented as the mean and SEM, unless stated otherwise. Pairwise statistical significance was determined with a Student’s two-tailed unpaired t test, ANOVA, or Mann–Whitney rank sum test, as appropriate, unless stated otherwise. Results were considered significant at $p < 0.05$, unless otherwise indicated.

Results
A first-stage behavioral screen for antiepileptic activity
Locomotion tracking is a reliable and rapid strategy with which to monitor behavioral seizures in freely swimming larval zebrafish (Baraban et al., 2005, 2013; Winter et al., 2013). In these locomotion plots, high-velocity movements of ≥20 mm/s correspond to paroxysmal whole-body convulsions, referred to as Stage III, and are consistently observed in unprovoked scn1Lab mutant larvae but not in age-matched wild-type siblings. Using automated locomotion tracking, we performed a phenotype-based screen to identify compounds that significantly reduce mutant swim behavior to levels associated with Stage 0 or Stage I (e.g., activity equivalent to that seen in normal untreated WT zebrafish). In a 96-well format, we tracked mutant swim activity at baseline, and then again after addition of a test compound (100 μM); each compound was tested on six individual mutant larvae (Fig. 1a), and larvae were sorted based on pigmentation differences (Fig. 1b). Mutant swim activity between two consecutive recording epochs in embryo media is tracked on every plate as an internal control. A box plot showing the change in swim velocity in untreated mutants is shown in Figure 1c ($n = 112$) and defined as the control. Based on an SD of 21.8 for these data, we set the detection threshold as any compound that inhibits movement (measured as a change in mean velocity) by >2 SDs (or ≥44%). This approach was previously validated using standard antiepileptic drugs in this model (Baraban et al., 2013). Next, we screened a repurposed library in which all compounds have reached the clinical evaluation stage (PHARMAKON 1600 Collection; http://www.msdiscoveý .com/pharma.html). Among the 1012 compounds screened (Fig. 1d) only 20 (or 1.97%) were found to significantly inhibit spontaneous seizure behavior in scn1Lab mutants. All 20 compounds were subsequently retested in a separate clutch of scn1Lab mutants at a concentration of 100 μM (Fig. 2a, trial 2; $N = 6$ fish/compound). A total of 154 compounds were classified as “toxic” (Table 2); 55 compounds were classified as “hyperexcitable” (Table 3). Representative locomotion tracking raw data plots for gemfibrozil, a toxic nonsteroid

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

Compound
TRIPROLIDINE HYDROCHLORIDE
TRISODIUM ETHYLENEDIAMINE TETRACETATE
TROLEANOMYCIN
TROPICAMIDE
TROPISETRON HYDROCHLORIDE
TRYPTOPHAN
TUA MineHEPTANE SULFATE
TUBOCURARINE CHLORIDE
TYROTHRICIN
URACIL
URAPIDIL HYDROCHLORIDE
UREA
URETHANE
URSODIOL
VALDECOXIB
VALGANCICLOVIR HYDROCHLORIDE
VALPROATE SODIUM
VALSARTAN
VANCOMYCIN HYDROCHLORIDE
VENLAFAXINE
VIDARABINE
VIBLASTINE SULFATE
VINORELBINE
VINPOCETINE
VIOMYCIN SULFATE
VORICONAZOLE
VORINOSTAT
WARFARIN
XYL AZINE
XYLOMETAZOLINE HYDROCHLORIDE
YOHIMBINE HYDROCHLORIDE
ZALCITABINE
ZAPRINAST
ZIDOVUDINE [AZT]
ZIPRASIDONE MESYLATE
ZOMEPIRAC SODIUM
ZOPICLOLINE

New Research 12 of 19
nuclear receptor ligand, and mepivacaine, a hyperexcitable proconvulsant anesthetic, are shown in Figure 2.

A second-stage electrophysiology assay for antiepileptic activity

Extracellular recording electrodes are a reliable, reproducible, and sensitive approach to monitor electroencephalographic activity in agar-immobilized larval zebrafish (Baraban et al., 2005; Baraban, 2013). Field electrodes offer high a signal-to-noise ratio and can be placed, using direct visualization in transparent larvae, into specific CNS structures (i.e., telencephalon or optic tectum). Using a local field electrode, we can efficiently monitor the occurrence of electrographic seizure events in the same zebrafish that were previously tested in the locomotion assay. Based on a positive nontoxic result in two independent locomotion assays, four drugs moved on to electrophysiology testing at concentrations between 500 μM and 1 mM (Fig. 3). Consistent with a “false-positive” classification, spontaneous epileptiform discharge activity was observed for three of these drugs: norfloxacin, theobromine, and cytarabine. Dimethadione, previously shown to inhibit spontaneous epileptiform discharges in thalamocortical slices at concentrations between 1 and 10 mM (Zhang et al., 1996), suppressed burst discharge activity in scn1Lab mutant larvae (Fig. 3a, b). To identify whether any of these four compounds exert nonspecific effects on behavior, they were also tested on freely swimming WT zebrafish larvae (5 dpf) at a concentration of 500 μM. Comparing the total distance moved during a 10 min recording epoch before, and after, the application of a test compound failed to reveal any significant changes in locomotor activity (Fig. 3c).

Figure 2. Positive hits identified in the locomotion assay. a, Heat map showing the results of individual zebrafish trials (1-6) for compounds tested at a concentration of 100 μM in the locomotion-tracking assay. Raw data values for individual fish are shown within the color-coded boxes for one sample trial. Mean velocity data are shown at right for “trial 1” and “trial 2”; six fish per trial. Note: only drugs highlighted in bold type were classified as positive nontoxic hits in two independent trials and moved on to further testing. b, Representative raw locomotion data plots for six individual scn1Lab mutant larvae at baseline (top) and following the addition of a compound resulting in fatality (bottom, gemfibrozil) or hyperactivity (bottom, mepivacaine). Movement is color coded, with low-velocity movements shown in yellow, and high velocity movements shown in red.
Table 2: List of compounds exhibiting toxicity.
ABACAVIR SULFATE
ACIPIMOX
ADENOSINE PHOSPHATE
ALAPROCLATE
AMLEXANOX
AMOROLFINE HYDROCHLORIDE
ANTAZOLINE PHOSPHATE
ARTEMETHER
ASCORBIC ACID
ATORVASTATIN CALCIUM
AUROTHIOGLUCOSE
AZELAIC ACID
BENORILATE
BENZONATE
BETAIN HYDROCHLORIDE
BETAMIPRON
BROMHEXINE HYDROCHLORIDE
BUDESONIDE
BUPIVACAINE HYDROCHLORIDE
BUSULFAN
BUTOCONAZOLE
CAPSAICIN
CARPROFEN
CEFORANIDE
CEFOTAXIME SODIUM
CEFOXITIN SODIUM
CEPHALEXIN
CHLORAMBUCIL
CHLORAMPHENICOL HEMISUCCINATE
CHLOORGUANIDE HYDROCHLORIDE
CHLORPHENIRAMINE (S) MALEATE
CINCHOPHEN
CINNARAZINE
CINTRIAMIDE
CIPROFLOXACIN
CLIDINIUM BROMIDE
CLOZAPINE
COLISTIMETHATE SODIUM
CRYOFLURANE
CYCLOPHOSPHAMIDE HYDRATE
CYCLOTHIAZIDE
CYPERMETHRIN
DAUNORUBICIN
DECIMEMIDE
DEXTROMETHORPHAN HYDROBROMIDE
DICHLOROPHEN
DIETHYLCARBAMAZINE CITRATE
DIOXYBENZONE
DIRITHROMYCIN
DISOPYRAMIDE PHOSPHATE
DISULFIRAM
ECONAZOLE NITRATE
EDETA TE DISODIUM
EMETINE
ENALAPRILAT
ERYTHROMYCIN
ETHINYL ESTRADIOL
ETHIONAMIDE
ETHOPROPAZINE HYDROCHLORIDE
ETHYL PARABEN
EUGENOL
FIPEXIDE HYDROCHLORIDE

(Continued)
Assessment of huperzine A and fenfluramine for antiepileptic activity

Next, we tested two additional compounds that were not in our drug library, but have recently been described as potential antiepileptic treatments for DS. Huperzine A, a small-molecule alkaloid isolated from Chinese club moss with NMDA-type receptor blocking and anticholinesterase activity, has purported antiepileptic actions against NMDA- or soman-induced seizures (Tonduli et al., 2001; Coleman et al., 2008). In the locomotion assay, huperzine A failed to significantly alter scn1Lab seizure behavior at any concentration tested (Fig. 4a,b). In contrast, huperzine A was effective at 1 mM in the acute pentylenetetrazole (PTZ) assay (Fig. 4b). Fenfluramine is an amphetamine-like compound that has been reported to successfully reduce seizure occurrence in children with DS as a low-dose add-on therapy (Ceulemans et al., 2012). In the locomotion assay, fenfluramine significantly reduced mutant mean swim velocity at concentrations between 100 and 500 μM (Fig. 4c,d). A 1 mM fenfluramine was toxic in the scn1Lab and PTZ assays (Fig. 4d). The fenfluramine-treated scn1Lab mutant exhibited a suppression of spontaneous electrographic seizure discharge to levels similar to controls at 500 μM, but only a partial reduction in electrographic activity at 250 μM (Fig. 4e).

Discussion

Zebrafish and humans share extensive genomic similarity. With regard to disease, 84% of genes known to be associated with disease states in humans have a zebrafish homolog (Howe et al., 2013). This genetic similarity and the characteristic of zebrafish larvae to exhibit quantifiable seizure behaviors or electrographic seizure discharge that is fundamentally similar to that recorded in humans (Jirsa et al., 2014) make this an ideal system for drug discovery. Behavioral assays customized for auto-

Table 2: List of compounds exhibiting toxicity.

| QUININE SULFATE | RETINYL PALMITATE | RIFAMPIN | RITONAVIR | ROFECOXIB | RUFOXACIN HYDROCHLORIDE | SACCHARIN | SALICIN | SENNOSIDE A | STAVUDINE | STREPTOMYCIN SULFATE | SULFADIAZINE | SULINDAC | SULOCTIDIL | TANNIC ACID | TELMISARTAN | TENOXICAM | THEOPHYLLINE | TILETAMINE HYDROCHLORIDE | TILMICOSIN | TIMOLOL MALEATE | TOLBUTAMIDE | TOLNAFTATE | TRAZODONE HYDROCHLORIDE | TRETOININ | TRIFLUPROMAZINE HYDROCHLORIDE | TROPISERON HYDROCHLORIDE | VALDECOXIB | VORINOSTAT | ZALCITABINE |

Table 3: List of compounds exhibiting hyperexcitable or pro-convulsant activity.

| ADENOSINE PHOSPHATE | ALBUTEROL (+/-) | ALEXIDINE HYDROCHLORIDE | AMANTADINE HYDROCHLORIDE | AMINOHIPPURIC ACID | AMINOLEVULINIC ACID HYDROCHLORIDE | AUROTHIOLIGLOSE | AZACITIDINE | BENZOYL PEROXIDE | BETAZOLE HYDROCHLORIDE | BROMHEXINE HYDROCHLORIDE | BUSULFAN | CEFSULODIN SODIUM | CEFUROXIME AXETIL | CHLOROQUININE HYDROCHLORIDE | CYSTHEAMINE HYDROCHLORIDE | ECAMSULE TRIETHANOLAMINE | ECONAZOLE NITRATE | EDOXUDINE | ENROFLOXACIN | ESTRADIOL CYPIONATE | ETHINYL ESTRADIOL | ETHOPROPAZINE HYDROCHLORIDE | ETOPOSIDE | FASUDIL HYDROCHLORIDE | FEBUXOSTAT | FLUMETHASONE | FLUOROMETHOLONE | FURAZOLIDONE | GANCICLOVIR | GLUCONOLACTONE | GRANISETRON HYDROCHLORIDE | HALAZONE | HEXACHLOROPHENE | IODIPAMIDE | LABETALOL HYDROCHLORIDE | MEPIVACAINE HYDROCHLORIDE | MITOXANTRONE HYDROCHLORIDE | MORANTEL CITRATE | NOCODAZOLE | OFLOXACIN | PENTOLINIUM TARTRATE | PERINDOPRIL ERBUMINE | PIOGLITAZONE HYDROCHLORIDE | PRAMIPEXOLE DIHYDROCHLORIDE | PROGLUMIDE | RIFAMPIN | SERATRODAST | SERTRALINE HYDROCHLORIDE | SIBUTRAMINE HYDROCHLORIDE | SUCINYLFLUORFIAZOLE | TACROLIMUS | TETROQUINONE | TIMOLOL MALEATE | UPACIL |
mated evaluation of locomotion (Winter et al., 2008; Creton, 2009; Baxendale et al., 2012; Baraban et al., 2013; Raftery et al., 2014) make moderate-to-high-throughput phenotype-based drug screening in zebrafish possible. Using this approach and a zebrafish \textit{scn1} mutant (Baraban et al., 2013), we successfully identified antiepileptic compounds. Here we report results from screening 1000 compounds from a repurposed drug library and present data that will be periodically updated on-line using this open-access publishing mechanism.

As a model system, the \textit{scn1}Lab mutant zebrafish has many advantages. First, in contrast to transient and variable knockdown of gene expression using antisense morpholino oligonucleotides (Teng et al., 2010; Finckbeiner et al., 2011; Mahmood et al., 2013), \textit{scn1}Lab mutants carry a stable and heritable amino acid substitution at position 1208 in the third domain of \textit{SCN1A} that shares 76% homology with humans (Schoonheim et al., 2010; Baraban et al., 2013). Mutations in this channel are one of the primary genetic causes underlying DS (Claes et al., 2003; Escayg and Goldin, 2010; De Jonghe, 2011; Saitoh et al., 2012). As zebrafish possess two \textit{scn1} genes (Novak et al., 2006), homozygous mutants for \textit{scn1}Lab are comparable to the haploinsufficient clinical condition, and there is no variability from larvae to larvae, or clutch to clutch, with respect to gene inactivation, as is commonly observed with morpholino injections (Kok et al., 2015). Although crosses of heterozygotes produce only one-quarter homozygous \textit{scn1}Lab mutants per mating, there are virtually no limitations on maintaining a large colony of healthy, adult breeders for these types of large-scale screens. Second, it is possible to observe and monitor seizure-like behavior consisting of rapid movements and whole-body convulsions in freely swimming \textit{scn1}Lab mutants as early as 4 dpf that persist for the life of the larvae (~12 dpf). These behaviors are comparable to those observed with exposure to a common convulsant agent (PTZ) and classified as Stage III (Baraban et al., 2005).

Figure 3. Electrophysiology assay to identify drugs that rescue the \textit{scn1}Lab mutant epilepsy phenotype. \textit{a}, Representative field electrode recording epochs (5 min in duration) are shown for the “positive” compounds identified in the locomotion assay. All recordings were obtained with an electrode placed in the forebrain of agar-immobilized \textit{scn1}Lab larvae that was previously tested in the locomotion assay. A suppression of epileptiform electrographic discharge activity was noted in mutants exposed to dimethadione. \textit{b}, Bar plot showing the mean number of epileptiform events in a 10 min recording epoch for \textit{scn1}Lab larvae exposed to cytarabine (N = 6), dimethadione (N = 6), theobromine (N = 6), and norfloxacin (N = 6). The mean ± SEM is shown. The fish shown were tested in the locomotion assay first. \textit{c}, Bar plot showing the total distance traveled before (black bars) and after (white bars) exposure to a test compound; 10 min recording epoch and six fish per drug. The mean ± SEM is shown.
addition, clear evidence for epileptiform discharge generated in the CNS of immobilized *scn1Lab* mutant larvae has been obtained at ages between 4 and 8 dpf (Baraban et al., 2013). Both zebrafish measures of seizure activity are sensitive to inhibition by AEDs commonly prescribed to children with DS (e.g., valproate, benzodiazepines, and stiripentol), but are resistant to many antiepileptic compounds (e.g., phenytoin, carbamazepine, ethosuximide, decimemide, tiletamine, primidone, phenacemide, and vigabatrin). Pharmacoresistance is defined as the inability to control seizure activity with at least two different AEDs (Berg, 2009), and, with demonstrated resistance to eight

Figure 4. Evaluation of putative antiepileptic drugs in *scn1Lab* mutants. a, Locomotion tracking plots for *scn1Lab* zebrafish at baseline and following huperzine A administration. Total movement is shown for a 10 min recording epoch. b, Plot showing the change in mean velocity for three different huperzine A concentrations (blue bars). Each bar is the mean change for six fish. The threshold for a positive hit is shown as a dashed line. WT fish exposed to PTZ and huperzine A are shown in red (*N* = 7). c, d, Same for fenfluramine. Note that 1 mM fenfluramine was toxic, as indicated. e, Representative field recordings from *scn1Lab* mutant larvae at 5 dpf. Electrophographic activity is shown for a 5 min recording epoch (top traces); high-resolution traces are shown below, as indicated. Note that abnormal burst discharge activity persists in *scn1Lab* mutants exposed to 250 μM fenfluramine. The fish shown were tested in the locomotion assay first.
AEDs, our model clearly fits this definition. This level of model validation has not been possible with morpholinos probably owing to the high degree of variability, or off-target effects, associated with this technique (Kok et al., 2015).

Our screening results highlight the stringency of our approach with a positive hit rate of only 1.97% on the first-stage locomotion assay, and successful identification of 1 compound (of 1012 compounds) with known antiepileptic activity (i.e., dimethadione, a T-type channel antagonist). In additional testing, we confirmed an antiepileptic action for fenfluramine (serotonin uptake inhibitor). Similar to ethosuximide, a reduction in regenerative burst discharges associated with neuronal T-type calcium currents could be the underlying mechanism for dimethadione in DS mutants; however, it is worth noting that T-type channel blockers ethosuximide and flunarizine were not similarly effective (Baraban et al. 2013; this article), and that dimethadione can cause arrhythmia owing to blockade of cardiac human ether-a-go-go-related gene potassium channels (Azarbayjani and Danielsson, 2002; Danielsson et al., 2007). Modulation of serotonin [5-hydroxytryptamine (5-HT)] signaling by blocking uptake or increasing release from neurons by acting as substrates for 5-HT transporter (sertraline) proteins (Fuller et al., 1988; Gobbi and Mennini, 1999; Baumann et al., 2000; Rothman et al., 2010) may be the mechanism of action for fenfluramine in patients with DS, though a detailed analysis of precisely how fenfluramine modulates excitability via this signaling pathway has not been performed. Nonetheless, both drugs probably exert a direct effect on network excitability (at neuronal or synaptic levels, respectively) to suppress electrographic discharge and the associated high-velocity seizure behavior seen in *scn1Lab* mutants, and may be potential targets for clinical use. In contrast, three other drugs identified in the primary locomotion assay were not effective in suppressing electrical events and were designated as false positives. This is not altogether surprising given that the xanthine alkaloid (theobromine), chemotherapeutic (cytarabine), and antibiotic (norfloxacin) mechanisms for these compounds would not be consistent with seizure inhibition. Moreover, the variability inherent in behavioral experiments performed on different zebrafish larvae, in different microplates, and on different days may contribute to these false-positive designations in locomotion assays, and is evident in the range of mean velocity values seen during tracking episodes from control studies (Fig. 1c) or in the failure of many of the initial 20 lead compounds to be confirmed on subsequent retesting (see Fig. 2a). This is a limitation of locomotion-based screening assays and is another reason why a secondary electrophysiology assay on the same zebrafish is a critical advantage of our approach.

An additional advantage of *in vivo* screening with zebrafish larvae is the simultaneous identification of compounds resulting in toxicity. Zebrafish-based anticonvulsant drug-screening assays based primarily on *in situ* hybridization detection of early gene expression at 2 dpf (Baxendale et al., 2012) do not routinely monitor spontan-eneous swim behavior, heart rate, or response to external stimuli. Lacking these real-time measures of toxicity, compounds observed to induce fatality in a freely swimming *scn1Lab*-based behavioral assay (e.g., gemfibrozil, sulocartil, pimozide, or doxycybenzone) were mistakenly classified as seizure-suppressing compounds in the PTZ-based c-Fos *in situ* hybridization assay. Indeed, 41% of the “anticonvulsant” compounds positively identified at 2 dpf in Baxendale et al. (2012) were toxic, proconvulsant, or simply not effective in *scn1Lab* mutant assays at 5–6 dpf. Similarly, it is critical to monitor blood flow and heart activity even in the agar-immobilized electrophysiology assay as compounds effective in suppressing electrical activity can also be toxic. These discrepancies highlight the potential problems associated with zebrafish drug-screening strategies that do not encompass multiple readouts and suggest the need for a note of caution when comparing screening results from different laboratory groups. While any lead compound identified in a zebrafish-based screening assay will, ultimately, need to be independently replicated and/or validated in additional mammalian model systems, the ability to rapidly identify such compounds, while simultaneously identifying potential negative side effects, makes genetically modified zebrafish a unique resource for drug discovery in an age of personalized medicine.

References

Ali S, Champagne DL, Spaink HP, Richardson MK (2011) Zebrafish embryos and larvae: a new generation of disease models and drug screens. Birth Defects Res C Embryo Today 93:115-133. CrossRef Medline

Azarbayjani F, Danielsson BR (2002) Embryonic arrhythmia by inhibition of HERG channels: a common hypoxia-related teratogenic mechanism for antiepileptic drugs? Epilepsia 43:457-468. Medline

Baraban SC, Dinday MT, Hortopan GA (2013) Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 4:2410. CrossRef Medline

Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentyleneetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131:759-768. CrossRef Medline

Baumann MH, Ayestas MA, Dersch CM, Brockington A, Rice KC, Rothman RB (2000) Effects of phentermine and fenfluramine on extracellular dopamine and serotonin in rat nucleus accumbens: therapeutic implications. Synapse 36:102-113. CrossRef Medline

Baxendale S, Holdsworth CJ, Meza Santoscoy PL, Harrison MR, Fox J, Parkin CA, Ingham PW, Cunliffe VT (2012) Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech 5:773-784. CrossRef Medline

Berg AT (2009) Identification of pharmacoresistant epilepsy. Neuror Clin 27:1003-1013. CrossRef Medline

Blasier M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2015) Progress report on new antiepileptic drugs: a summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res 111:85-141. CrossRef Medline

Boel M, Casera P (1996) Add-on therapy of fenfluramine in intractable self-induced epilepsy. Neuropediatrics 27:171-173. CrossRef Medline

Caraballo RH, Cersosimo RO, Sakr D, Cresta A, Escobal N, Fejerman N (2005) Ketogenic diet in patients with Dravet syndrome. Epilepsia 46:1539-1544. CrossRef Medline

Ceulemans B, Boel M, Leyssens K, Van Rossem C, Neels P, Jorens PG, Lagaee L (2012) Successful use of fenfluramine as an add-on treatment for Dravet syndrome. Epilepsia 53:1131-1139. CrossRef Medline
Chiron C, Dulac O (2011) The pharmacologic treatment of Dravet syndrome. Epilepsia 52 Suppl 2:72-75. CrossRef Medline

Claes L, Ceulemans B, Audenaert D, Smets K, Løfgren A, Del-Favero J, Ala-Mello S, Basel-Vanagatelle L, Plecko B, Raskin S, Thiry P, Wolf NI, Van Broeckhoven C, De Jonghe P (2003) De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat 21:615-621. CrossRef Medline

Coleman BR, Ratcliffe RH, Oguntayo SA, Shih YP, Gordon RK, Nambiar MP (2008) [+]Huperzine A treatment protects against N-methyl-D-aspartate-induced seizure/status epilepticus in rats. Chem Biol Interact 175:387-395. CrossRef Medline

De Jonghe P (2011) Molecular genetics of Dravet syndrome. Dev Med Child Neurol 53 Suppl 2:7-10. CrossRef Medline

Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O (2005) Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol 95: 71-102. Medline

Dressler A, Trimmel-Schwahofer P, Reithofer E, Mühlebner A, Gröp-Artur H, Leppert MF (1990) Gene mapping and other tools for discovery. The National Academy Press, Washington, DC; National Academy Press.

Epilepsia 31 [Suppl 3]:S11–S18. CrossRef Medline

Epilepsia 52 Suppl 2:72-75. CrossRef Medline

Leppert MF (1990) Gene mapping and other tools for discovery. Epilepsia 31 [Suppl 3]:S11–S18. Medline

Lowson S, Gent JP, Goodchild CS (1990) Anticonvulsant properties of propofol and thiopentone: comparison using two tests in laboratory mice. Br J Anaesth 64:59-63. Medline

Mahmood F, Mozere M, Zdebk AA, Stanescu HC, Tobin J, Beales PL, Kleta R, Bockenhauer D, Russell C (2013) Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome. Dis Model Mech 6:652-660. CrossRef Medline

Novak AE, Jost MC, Lu Y, Taylor AD, Zakon HH, Ribera AB (2006) Gene duplications and evolution of vertebrate voltage-gated sodium channels. J Mol Evol 63:208-221. CrossRef Medline

Ottmann R, Risch N (2012) Genetic epidemiology and gene discovery in epilepsy. In: Jasper’s basic mechanisms of the epilepsies (Noebels JL, Avoli M, Rogawski M, Olsen R, Delgado-Escueta A, eds). New York: Oxford UP, pp. 651-658.

Rafferty TD, Isales GM, Yozzo KL, Volz DC (2014) High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos. Environ Sci Technol 48:804-810. CrossRef Medline

Rothman RB, Baumann MH, Blough BE, Jacobson AE, Rice KC, Partilla JS (2010) Evidence for noncompetitive modulation of substrate-induced serotonin release. Synapse 64:862-869. CrossRef Medline

Schoolen PJ, Arrenberg AB, Del Bene F, Baier H (2010) Optogentic localization and genetic perturbation of saccade-generating neurons in zebrafish. J Neurosci 30:7111-7120. CrossRef Medline

Snowden M, Green DV (2008) The impact of diversity-based, high-throughput screening on drug discovery: “chance favours the prepared mind”. Curr Opin Drug Discov Devel 11:553-558. Medline

Teng Y, Xie X, Walker S, Rempala G, Kozlowski DJ, Mumm JS, Cowell JK (2010) Knockdown of zebrafish Lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype. Hum Mol Genet 19:4409-4420. CrossRef Medline

Tonduli LS, Testylier G, Masqueliez C, Lallement G, Monmaur P, Menard C, Vizeliot G, Boesmann J, de la Torre J, Albiez B, van der Schouw L, Delafontaine P, van den Brandt P, Ryhage R, Leineras A, Kettenmann H, van der Ven J, Furtado M, van der Weele P, van de Meene E, van der Heijden E, van der Sluijs J, van der Putten R, van der Donk W, van der Velden J, van der Meulen B, van der Laan M, van der Donk W (2011) Mutations of the SCN1A gene in acute encephalopathy. Epilepsia 53:558-564. CrossRef Medline

Teng Y, Xie X, Walker S, Rempala G, Kozlowski DJ, Mumm JS, Cowell JK (2010) Knockdown of zebrafish Lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype. Hum Mol Genet 19:4409-4420. CrossRef Medline

Tonduli LS, Testylier G, Masqueliez C, Lallement G, Monmaur P (2001) Effects of Huperzine used as pre-treatment against soman-induced seizures. Neurotoxicology 22:29-37. Medline

Tong Q, El-Rifai G, Al-Awadi D, Ahmed S, Smriga S, Ben-Joseph M, Delgado-Escueta A, Luskin M, Aviv H, Watanabe M, Watanabe M, Aviv H, Watanabe M (2010) Mutations of the SCN1A gene in acute encephalopathy. Epilepsia 53:558-564. CrossRef Medline

Wilmshurst JM, Berg AT, Lagae L, Newton CR, Cross JH (2014) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498-503. CrossRef Medline

Winter MJ, Redfern WS, Hayfield AJ, Owen SF, Valentin JP, Hutchinson TH (2008) Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J Pharmacol Toxicol Methods 57:176-187. CrossRef Medline

Zhang YF, Gibbs JW 3rd, Coulter DA (1996) Anticonvulsant drug effects on spontaneous thalamocortical rhythms in vitro: ethosuximide, trimethadione, and dimethadione. Epilepsy Res 23:15-36. CrossRef

Zhang YF, Gibbs JW 3rd, Coulter DA (1996) Anticonvulsant drug effects on spontaneous thalamocortical rhythms in vitro: ethosuximide, trimethadione, and dimethadione. Epilepsy Res 23:15-36. CrossRef

July/August 2015, 2(4) e0068-15.2015
eNeuro.sfn.org