Physical foundation of optical smart antenna based on metamaterial and lithium niobate

K Vytovtov, E Barabanova and M Igumnov

Institute of information technologies and communications, Astrakhan State Technical University, Tatishcheva str. 16, Astrakhan, Russia, 414

e-mail: vytovtov_konstan@mail.ru

Abstract. In this work we present the main physical foundations of optical antenna array. This antenna array is based on the mirror system and lens system. To provide the necessary phase shift we propose two kind of structures: based on lithium neobate and on ferrite-garnet. The main analytical expressions describing system behaviour are found for the first time. The results of calculation of the lens system parameters in the program ZEMAX are presented also.

1. Introduction

Today optical communications are very perspective kinds of communication systems because of its high speed information transferring [1-10]. Now there are two main directions of optical system development: wireless [1-4] and fiber optic [5]. Optical fiber systems are quite developed for today, but we cannot say this about wireless optical systems. In particular in scientific literature it has been presented only one patent as for optical antenna array [4] in spite of the fact that this device is very important in communication lines. Obviously, optical antennas must be used in wireless optical communication systems for high speed signal transmission.

In modern technology optical antennas are used only for enhancing absorption cross sections and quantum yields in photovoltaics, releasing energy efficiently from nanoscale light-emitting devices, boosting the efficiency of photochemical or photophysical detectors, and increasing spatial resolution in optical microscopy. [6,9]. Also there are optical antenna - LED structure integrated into the chips of digital chips, enabling them to more quickly transmit information and increasing their computing power [6,10]. Such antennas have been called as optical nanoantennas. The detail description of nanoantennas can be found in [6]. The classification of optical nanoantennas has been given in that work also.

However note again that there is only one work that describes an optical antenna array for optical signal transmitting in telecommunication networks [4]. This antenna has been built as an open section of an optic cable. Each output of cable has been considered as an element of the antenna array. The main disadvantage of this antenna is it’s uncontrollability. Moreover, the results of radar power calculations have not been presented in that work.

One of the most important problems in optical antenna region is so call smart materials that allow us to control an antenna pattern. Such material have been described for example in [11-13].

In this work we present smart optical antenna array that can be projected by using well-known optical materials without nanostructure. The structure and operation principle are described in Section
2. The antenna components and the expressions for parameter calculation are presented in Section 3. The very important point in the antenna creating is the choice of smart material to control the pattern. This problem is discussed in detail in the paper too.

2. Structure

The structure of the presented here optical antenna array is shown in Fig.1. The one consists of the translucent mirrors 1,2,3,4,5; absolutely reflective mirror 6; phase shifters 7,8,9,10,11,12; collecting lens 13; diffusing lens 14; laser 15.

The light beam from the laser 15 enters the power divider (the mirror system 1-6). This system divides power into six equal parts. The rays reflected from the mirrors enter the phase shifters 7-12 which compensate for the phase shift due to difference in the paths of the rays and provide an additional phase shift to control the radiation pattern of the optical antenna array. Next, the rays arrive at the converging lens 13 which serves to focus the rays at the antenna output. Indeed, for efficient forming of a beam, the distance between the beams should be commensurate with a wavelength, but previous devices have much larger size for the effective signal processing. The diverging lens 14 serves to form a parallel beam of rays at the antenna output. Moreover, the outer surface of the diverging lens can be a two-dimensional diffraction grating of transparent holes, which allows to form the desired radiation pattern.

Figure 1. The structure of the smart antenna array of the optical domain: 1,2,3,4,5 are the semi-transparent mirrors; 6 is the fully reflective mirror; 7,8,9,10,11,12 is the phase shifters; 13 is the converging lens; 14 is diverging lens, 15 is the laser.

In the considered antenna array, the laser beam can be divided into even and odd number of beams. Early it has been shown that the use of more than 7 rays is impractical since further increase in the emitters practically does not lead to a narrowing of the radiation pattern. In the next sections the components of the antenna will be presented in detail.

3. Operational principle and mathematical model

3.1. The mirror system

The radiation of the laser source 15 incident on the semi-transparent mirror 1 with the power reflectance $R_1 = 1/N$, where N is the number of output of antenna array (in this case, $R_1 = 1/6 = 0.167$). A part of power that is equal to $T_2 = (N - 1)/N$ passes to the semi-transparent mirror 2, and a part that equal to $R_1 = 1/N$ (in this case $1/6 = 0.167$) passes to the phase shifter 7. The reflection coefficient of the mirror 2 is $R_2 = 1/(N - 1)$ (in this case, $1/5=0.2$). A beam with this fraction of power $(T_3R_2 = 1/N)$ goes to the phase shifter 8. That is same power signals is incident on the phase shifters 6 and 7. The part of power $(N - 2)/N$ (in this case, $4/6=2/3=0.6(6)$) of the total power passes to the mirror 3, etc. The mirror 3 has a reflection coefficient $R_3 = 1/(N - 2)$ (in this case, $R_3 = 1/4 =0.25$). Analogously, $R_4 = 1/(N - 3)$, $R_5 = 1/(N - 4)$, $R_6 = 1/(N - 5)$, etc. The reflection
coefficient of the last mirror is equal to unit (in this case, \(R_6 = 1/(N-5) = 1/(6-5) = 1 \)). It can be seen from this description that in the general case the reflection coefficient of the \(i \)-th mirror is

\[
R_i = \frac{1}{N-i+1}
\]

and the transmission coefficient is

\[
T_i = 1 - \frac{1}{N-i+1} = \frac{N-i}{N-i+1}
\]

Thus the radiation power within the mirror system is divided equally. Then the beams incident to the corresponding phases shifters 8-13. The mirrors must have small losses and small frequency dispersion in the operating wavelength domain 1550 ± 50 nm. Such a property can be obtained by using inhomogeneous dielectric structures. For practical applications usual quartz glass can be used to manufacture such the mirrors.

Of course, an interference pattern will be observed within the intervals between the mirrors. However, it is well-known in the theory of periodic structures that this phenomenon produces so-called bleaching of optics, in particular, the passbands in Bragg filters. Thus, the phenomenon of multiple reflections in this case is useful. Note also that the each mirror has two reflected interfaces and this may cause interference. However, it is always possible to choose the mirror thickness and distance between mirrors so that to eliminate influence these factors on antenna functioning.

3.2. The phase shifter

The phase shifters should compensate the phase shifts due to difference in the paths of the beams along different \(N \) paths and introduce an additional phase shift to control the direction of the main lobe of the antenna pattern.

The difference in travel due to propagate through each uniform mirror

\[
a = d \cos \alpha \frac{k_0^2 \sin^2 \alpha}{\sqrt{k^2 - k_0^2 \sin^2 \alpha}}
\]

where

\[
k_0 = \frac{\omega \varepsilon_0 \mu_0}{k = \omega \varepsilon \varepsilon_0 \mu \mu_0}
\]

Here \(\omega = 2\pi f \) is the angular frequency, \(d \) is the thickness of the previous mirror, \(\alpha \) is the angle of incidence of the beam on the mirror, \(\varepsilon_0 \) is the dielectric permittivity of vacuum, \(\mu_0 \) is the magnetic permeability of vacuum, \(\varepsilon \) is the relative dielectric permittivity of the mirror, \(\mu \) is the relative magnetic permeability of the mirror. Thus for the \(i \)-th mirror we have

\[
a_{i \text{ mirror}} = (i-1) \frac{dk_0 \cos \alpha \sin \alpha}{\sqrt{k^2 - k_0^2 \sin^2 \alpha}}
\]

Thus the phase shift for \(i \)-th mirror is

\[
\Delta_{i \text{ mirror}} = (i-1) \frac{dk_0 \cos \alpha \sin \alpha}{\sqrt{k^2 - k_0^2 \sin^2 \alpha}}
\]

The path difference due to the convergence of the rays between the converging and diverging lenses with an even number of rays

\[
a_{n \text{ lens}} = \frac{1}{2} \sqrt{(2n-1)^2(h_1 - h_2)^2 + 4b_n^2} - \sqrt{(h_1 - h_2)^2 + 4b_n^2}
\]

Here \(h_1 \) is the distance between the rays at the exit of the converging lens, \(h_2 \) is the distance between the rays at the input of the diverging lens, \(b_n \) is the distance between the lenses taking into account the curvature of their surfaces and the displacement of the beam. Here the number of the beam is counted from the axis of the lens in both directions. Then the phase shift for the \(n \)-th ray is

\[
\Delta_{n \text{ lens}} = \frac{k_0}{2} \sqrt{(2n-1)^2(h_1 - h_2)^2 + 4b_n^2} - \sqrt{(h_1 - h_2)^2 + 4b_n^2}
\]
The path difference due to the convergence of the rays between the converging and the diverging lenses and the corresponding phase shift with an odd number of rays are following

$$a_{n \ lenses} = \sqrt{(n - 1)^2 (h_1 - h_2)^2 + b_n^2 - b_1}$$ \hspace{1cm} (9)

$$\Delta_{n \ lenses} = k_0 \sqrt{(n - 1)^2 (h_1 - h_2)^2 + b_n^2 - b_1}$$ \hspace{1cm} (10)

The additional phase shift exists also in the lenses and depends on the thickness of the lens at the point of passage of the beam and the material parameters of the lens

$$\Delta_{n \ conv} = k_{conv} (y_{n \ conv} - y_{1 \ conv})$$ \hspace{1cm} (11)

$$\Delta_{n \ div} = k_{div} (y_{n \ div} - y_{1 \ div})$$ \hspace{1cm} (12)

Here

$$k_{conv} = \omega \sqrt{\varepsilon_{conv} \varepsilon_0 \mu_{conv} \mu_0}$$ \hspace{1cm} (13)

$$k_{div} = \omega \sqrt{\varepsilon_{div} \varepsilon_0 \mu_{div} \mu_0}$$ \hspace{1cm} (14)

are the wave propagation constants in the converging and diverging lenses, $y_{n \ conv}$, $y_{n \ div}$ are the thickness of the lenses at the points of passage of the n-th ray determined by the curvature of the lens surface.

As for the additional phase shift to control the antenna pattern, we need to use smart materials for this aim. The parameters of such materials depend on the value of the external control signal. Today only few such materials are known in optics. For example it is lithium niobate, the refractive index of which depends on the value of the external applied voltage, and garnet ferrites whose parameters are determined by the value of the external magnetic field. In particular, the dependence of the refractive indices for lithium niobate at a wavelength of 1581.9nm is represented in [11] (Fig.2).

As we can see, the dependence of the refractive index on the value of the external magnetic field is very weak.

The garnet is another smart material in the optical domain. The dependence of optical power on the magnetic field value (Fig.3) has been studied, for example, in [12].

![Figure 2. The dependences of LiNbO3 on electric field [11].](image)

Here we also present the dependence of the refractive index on the bias voltage (Fig.4a). The calculations are carried out for the slab thickness $1\mu m$. As we can see, the dependence is very weak.
The change of voltage from 0 to 18V gives us change in the refractive index from 1.8 to 1.7984. However the dependence of the phase shift on the voltage is very strong (Fig.4b). The voltage change within the domain 0-18V gives us the phase shift change in scope of 360 degrees. An increase in the layer thickness does not lead to an increase in the phase change as the refractive index deviation decreases in this case.

![Figure 3](image1.png)

Figure 3. The dependence of yttrium-iron garnet on magnetic field [12].

3.3. The lens system

The lens system must transform the beams from the phase shifter so that the distance between the outgoing rays is half the wavelength. Additionally the output beams must be parallel one to other. The example of such a system is presented in Fig.5. This system for wavelength 1550nm is obtained by using paraxial lenses in ZEMAX. We can see the usual multistage scheme. Each stage reduces a distance between the rays by approximately 5 times. Obviously, it is possible to obtain any spacing between output beams using multistage scheme.

![Figure 4](image2.png)

Figure 4. The dependence of a) refractive index on voltage; b) the additional phase shift on voltage.

The characteristics of presented system are presented in Fig.5. The cross-aberration graphics is given in Fig.5a, optical path difference for x- and y-plane is shown in Fig.5b. The results are found in the program ZEMAX.

The maximal transverse aberration (Fig.6a) in the considered case is 200μm. The differences of phases (Fig.6b) can be countervailed by using a correcting slab with variable refractive index. Note that it is possible to use mirrors [14] for our aim. However, in this construction we don’t form a parallel rays at output of the device. Therefore, the authors have chosen the lens system.
4. Conclusions
In this work we present the main physical foundations of optical antenna array. This antenna array is based on the mirror system and lens system. To provide the necessary phase shift we propose two kind of structures: based on lithium niobate and based on ferrite-garnet. The main analytical expressions describing system behaviour are found for the first time. The numerical calculations show that it is possible to change the phase in scope of 360 degrees. The results of calculation of the lens system parameters in the program ZEMAX are presented also.

5. References
[1] Zhao Y and Alù A 2013 Optical nanoantennas and their applications Proc. IEEE Radio and Wireless Symposium 58-60
[2] Hartland S S and John R 1948 Platt Principles of Optical Communication Systems General Properties of Non-Image Forming Projectors and Receivers Journal of the Optical Society of America 38(3) 269-278
[3] Smith W 2000 Modern optical engineering (New York: McGraw-Hill) p 618
[4] Verba V S, Vorontsov L V, Danilenko D A and Babailov A A 2015 *Optical phase antenna array* RU2552142C2

[5] Winzer P J, Neilson D T and Chraplyvy A R 2018 Fiber-optic transmission and networking: the previous 20 and the next 20 years *Optics Express* 26(18) 24190-24239

[6] Krasnok A E, Maximov I S and Denisyuk A I 2013 Optical nanoantennas *Usp. Phys. Nauk* 183(6) 561-589

[7] Vytovtov K A, Barabanova E A and Barabanov I O 2018 Next-generation switching system based on 8x8 self-turning optical cell *Proc. Int. Conf. on Actual Problems of Electron Devices Engineering* 306-110

[8] Vishnevskiy V 2010 Queueing system with alternating service rates for free space optics-radio hybrid channel *Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)* 6235 LNCS 79-90

[9] Bharadwaj P, Deutsch B and Novotny L 2009 Optical Antennas *Advances in Optics and Photonics* 438-483

[10] Eggleston M S 2015 Optical antenna enhanced nanoLEDs for on-chip optical interconnects *IEEE Summer Topicals Meeting Series (SUM)*

[11] Li G Z, Chen Y P, Jiang H W and Chen X-F 2015 Enhanced Kerr electro-optic nonlinearity and its application in controlling second-harmonic generation *Photonics Research* 3(4) 168-172

[12] Matyunina S A, Fedotova Y A, Babaeva O G, Wirchenko M K, Gusev M Y and Neustroev N S 2015 Fiber-optical sensors based on mono-crystal films of garnet ferrites for mechatronic systems *Procedia Engineering* 106 202-209

[13] Bulatov M F and Churikov D V 2019 On the Formation of Microheterogeneities in Epitaxial Films of Nonstoichiometric Ferrogarnets *Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques* 13(2) 206-209

[14] Doskolovich L L, Andreev E C and Byzov E V 2016 Analytical design of mirrors generating prescribed two-dimensional intensity distributions *Computer Optics* 40(3) 346-352 DOI: 10.18287/2412-617-2016-40-3-346-352