Subsampling for Knowledge Graph Embedding Explained

Hidetaka Kamigaito* and Katsuhiko Hayashi†

Abstract

In this article, we explain the recent advance of subsampling methods in knowledge graph embedding (KGE) starting from the original one used in word2vec.

1 Negative Sampling Loss

Knowledge graph completion (KGC) is a research topic for automatically inferring new links in a KG that are likely but not yet known to be true.

We denote a triplet representing entities e_i, e_j and their relation r_k as (e_i, r_k, e_j). In a typical KGC task, the model receives a query $(e_i, r_k, ?)$ or $(?, r_k, e_j)$ and predicts the entity corresponding to $\color{red}?\color{black}$.

Knowledge graph embedding (KGE) is a well-known scalable approach for KGC. In KGE, a KGE model scores a triplet (e_i, r_k, e_j) by using a scoring function $s_\theta(x, y)$. Due to the computational cost, training of $s_\theta(x, y)$ commonly relies on the following negative sampling loss function [Sun et al., 2019, Ahrabian et al., 2020]:

$$
\ell_{\text{base}} = -\frac{1}{|D|} \sum_{(x, y) \in D} \left[\log(\sigma(s_\theta(x, y) + \gamma)) + \frac{1}{\nu} \sum_{y_i \sim p_n(y_i | x)} \log(\sigma(-s_\theta(x, y_i) - \gamma)) \right],
$$

(1)

where $D = \{(x_1, y_1), \cdots, (x_n, y_n)\}$ represents observables that follow $p_d(x, y)$, $p_n(y|x)$ is the noise distribution, σ is the sigmoid function, ν is the number of negative samples per positive sample (x, y), and γ is a margin term.

2 Subsampling in Negative Sampling Loss

Eq. (1) is on the assumption that the NS loss function fits the model to the distribution $p_d(y|x)$ defined from the observed data. However, what the NS loss actually does is to fit the model to the true distribution $p'_d(y|x)$ that exists behind the observed data. To fill in the gap between $p_d(y|x)$ and $p'_d(y|x)$, Kamigaito and Hayashi [2022a,b] theoretically add $A(x, y)$ and $B(x)$ to Eq. (1) as follows:

$$
\ell_{\text{sub}} = -\frac{1}{|D|} \sum_{(x, y) \in D} \left[A(x, y) \log(\sigma(s_\theta(x, y) + \gamma)) + \frac{1}{\nu} \sum_{y_i \sim p_n(y_i | x)} B(x) \log(\sigma(-s_\theta(x, y_i) - \gamma)) \right].
$$

(2)

In this formulation, we can consider several assumptions for deciding $A(x, y)$ and $B(x)$. We introduce the assumptions in the following subsections.

2.1 Subsampling in word2vec (Base)

As a basic subsampling approach, Sun et al. [2019] used the original word2vec-based method for KGE learning defined as follows:

$$
A(x, y) = B(x, y) = \frac{1}{\sqrt{|\#(x, y)|}} \frac{|D|}{\sum_{(x', y') \in D} \sqrt{|\#(x', y')|}},
$$

(3)

* Nara Institute of Science and Technology (NAIST), Nara, Japan. kamigaito.h@is.naist.jp
† Hokkaido University, Hokkaido, Japan.

1 We include the detailed derivation of this function in Appendix A.
Table 1: Evaluation results of Kamigaito and Hayashi [2022b] for each subsampling method on the FB15k-237, WN18RR, and YAGO3-10 datasets. \textit{Sub.} denotes subsampling, \textit{None} denotes model that did not use subsampling, \textit{Base} denotes Eq. (3), \textit{Freq} denotes Eq. (5), and \textit{Uniq} denotes Eq. (6).

Model	Sub.	FB15k-237				WN18RR						YAGO3-10			
		MRR	Hits@			MRR	Hits@				MRR	Hits@			
		1	3	10			1	3	10			1	3	10	
RESCAL	None	17.2	9.9	18.1	31.8		41.5	39.0	42.3	45.9		-	-	-	-
	Base	22.3	13.9	24.2	39.8		43.3	40.7	44.5	48.2		-	-	-	-
	Freq	26.6	17.4	29.4	45.1		44.1	41.1	45.6	49.5		-	-	-	-
	Uniq	26.6	17.6	29.3	44.9		44.1	41.4	45.5	49.5		-	-	-	-
ComplEx	None	22.4	14.0	24.2	39.5		45.0	40.9	46.6	53.4		-	-	-	-
	Base	32.2	23.0	35.1	51.0		47.1	42.8	48.9	55.7		-	-	-	-
	Freq	32.8	23.6	36.1	51.2		47.6	43.3	49.3	56.3		-	-	-	-
	Uniq	32.7	23.5	35.8	51.3		47.6	43.2	49.5	56.3		-	-	-	-
DistMult	None	22.2	14.0	24.0	39.4		42.4	38.3	43.6	51.0		-	-	-	-
	Base	30.8	22.1	33.6	48.4		43.9	39.4	45.2	53.3		51.2	41.5	57.6	68.3
	Freq	29.9	21.2	32.7	47.5		44.6	40.0	45.9	54.4		-	-	-	-
	Uniq	29.1	20.3	31.8	46.6		44.6	39.9	46.2	54.3		-	-	-	-
TransE	None	33.0	22.8	37.2	53.0		22.6	1.8	40.1	52.3		56.6	40.9	56.6	67.7
	Base	32.9	23.0	36.8	52.7		22.4	2.4	40.1	53.0		52.1	41.5	57.6	68.3
	Freq	33.6	24.0	37.3	52.9		23.0	1.9	40.7	53.7		51.3	41.9	57.2	68.1
	Uniq	33.5	23.9	37.3	52.8		23.2	2.2	41.0	53.4		51.4	42.0	57.6	67.9
RotatE	None	33.1	23.1	37.1	53.1		47.3	42.6	49.1	56.7		50.6	41.1	56.5	67.8
	Base	33.6	23.9	37.4	53.2		47.6	43.1	49.5	56.6		50.8	41.8	56.5	67.6
	Freq	34.0	24.5	37.6	53.2		47.8	42.9	49.8	57.4		51.0	41.9	56.5	67.8
	Uniq	34.0	24.5	37.6	53.0		47.9	43.5	49.6	56.7		51.5	42.5	56.8	68.3
HAKE	None	32.3	21.6	36.9	53.2		49.1	44.5	51.1	57.8		53.4	44.9	58.7	68.4
	Base	34.5	24.7	38.2	54.3		49.8	45.3	51.6	58.2		54.3	46.1	59.5	69.2
	Freq	34.9	25.2	38.6	54.2		49.7	45.2	51.4	58.5		54.0	45.5	59.4	69.1
	Uniq	35.4	25.8	38.9	54.7		49.8	45.4	51.5	58.3		55.0	46.6	60.1	69.8

where \# is the symbol for frequency and \#(x, y) represents the frequency of (x, y)^2. Note that the actual (x, y) occurs at most once in the KG, so when (x, y) = (e_i, r_k, e_j), they approximate the frequency of (x, y) as follows:

\[
\#(x, y) \approx \#(e_i, r_k) + \#(r_k, e_j).
\]

Different from the form in Eq. (2), Eq. (3) use A(x, y) and B(x, y), instead of A(x, y) and B(x). Thus, their approach does not follow the theoretically induced loss function in Eq. (2).

2.2 Frequency-based Subsampling (Freq)

Frequency-based subsampling [Kamigaito and Hayashi, 2022b] is based on the assumption that in \(p_{\theta}(y|x) \), (x, y) originally has a frequency, but the observed one is at most 1. Since A(x, y) needs to discount the frequency of (x, y), and B(x) needs to discount that of x, we can derive the following subsampling method based on word2vec [Mikolov et al., 2013] as implemented by the previous work [Sun et al., 2019]^3:

\[
A(x, y) = \frac{1}{\sqrt{\#(x, y)}} |D|, \quad B(x) = \frac{1}{\sqrt{\#x}} |D| \sum_{x' \in D} \frac{1}{\sqrt{\#(x', y')}}.
\]

^2In the original word2vec, they randomly discard a word by a probability \(1 - \frac{1}{\sqrt{f}} \), where t is a constant value and f is a frequency of a word. This is similar to randomly keep a word with a probability \(\sqrt{f} \).

^3https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
2.3 Unique-based Subsampling (Uniq)

In the true distribution $p'_d(y|x)$, however, if we assume that (x, y) has frequency 1 at most, as in the observation, then $p'_d(y|x) = p'_d(x, y)/p'_d(x) \propto 1/p'_d(x)$, so $p'_d(y|x)$ is the same for an x independent from y. Therefore, under this assumption, we have only need to consider a discount for $p'_d(x)$ and can derive the unique-based subsampling [Kamigaito and Hayashi, 2022b] as follows:

$$A(x, y) = B(x) = \frac{1}{\sqrt{\sum_{x' \in D} 1/\sqrt{p'_d(x')}}}.$$

(6)

3 Effectiveness of Subsampling in KGE

We conducted experiments to evaluate our subsampling methods. We used FB15k-237 [Toutanova and Chen, 2015], WN18RR, and YAGO3-10 [Dettmers et al., 2018] for the evaluation. As comparison methods, we used ComplEx [Trouillon et al., 2016], RESCAL [Bordes et al., 2011], DistMult [Yang et al., 2015], TransE [Bordes et al., 2013], RotatE [Sun et al., 2019], and HAKE [Zhang et al., 2020]. We followed the original settings of Sun et al. [2019] for ComplEx, DistMult, TransE, and RotatE with their implementation\(^4\)\(^5\) and the original settings of Zhang et al. [2020] for HAKE with their implementation\(^5\). In RESCAL, we inherited the original setting of DistMult and set the dimension size to 500 for saving computational time. Since Kamigaito and Hayashi [2021] refer to the smoothing effect of self-adversarial negative sampling (SANS) [Sun et al., 2019] that is a role of subsampling, we applied subsampling on SANS for investigating the performance in practical settings.

Table 1 shows the result. We can see that subsampling improved KG completion performances from the methods without subsampling. Furthermore, frequency-based and unique-based subsampling basically outperformed the baseline subsampling.

References

Kian Ahrabian, Aarash Feizi, Yasmin Salehi, William L. Hamilton, and Avishek Joey Bose. Structure aware negative sampling in knowledge graphs. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6093–6101, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.492. URL https://aclanthology.org/2020.emnlp-main.492.

Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning structured embeddings of knowledge bases. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI’11, page 301–306. AAAI Press, 2011.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013, pages 2787–2795, 2013. URL https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge graph embeddings. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), pages 1811–1818, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366.

Hidetaka Kamigaito and Katsuhiko Hayashi. Unified interpretation of softmax cross-entropy and negative sampling: With case study for knowledge graph embedding. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 5517–5531, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.429. URL https://aclanthology.org/2021.acl-long.429.

Hidetaka Kamigaito and Katsuhiko Hayashi. Erratum to: Comprehensive analysis of negative sampling in knowledge graph representation learning. ResearchGate, 08 2022a. doi: 10.13140/RG.2.2.34839.44966/1.

\(^4\)https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

\(^5\)https://github.com/MIRALab-USTC/KGE-HAKE
Hidetaka Kamigaito and Katsuhiko Hayashi. Comprehensive analysis of negative sampling in knowledge graph representation learning. In Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 10661–10675. PMLR, 17–23 Jul 2022b. URL https://arxiv.org/abs/2206.10140.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality. CoRR, abs/1310.4546, 2013. URL http://arxiv.org/abs/1310.4546.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by relational rotation in complex space. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, 2019. URL https://openreview.net/forum?id=HkgEQnRqYQ.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pages 57–66, Beijing, China, July 2015. Association for Computational Linguistics. doi: 10.18653/v1/W15-4007. URL https://www.aclweb.org/anthology/W15-4007.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex embeddings for simple link prediction. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 2071–2080. JMLR.org, 2016. URL http://proceedings.mlr.press/v48/trouillon16.html.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, 2015. URL http://arxiv.org/abs/1412.6575.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. Learning hierarchy-aware knowledge graph embeddings for link prediction. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, (AAAI20), pages 3065–3072, 2020.
A The Detailed Derivation of Eq. (2)

We can reformulate the NS loss in Eq. (1) as follows:

\[
(1) = - \frac{1}{|D|} \sum_{(x,y) \in D} \left[\log(\sigma(s_\theta(x,y) + \gamma)) + \frac{1}{\nu} \sum_{y_i \sim p_n(y|x)} \log(\sigma(-s_\theta(x,y_i) - \gamma)) \right]
\]

\[
= - \frac{1}{|D|} \sum_{(x,y) \in D} \log(\sigma(s_\theta(x,y) + \gamma)) - \frac{1}{|D|} \sum_{(x,y) \in D} \frac{1}{\nu} \sum_{y_i \sim p_n(y|x)} \log(\sigma(-s_\theta(x,y_i) - \gamma)). \tag{7}
\]

Here, we can consider the following approximation based on the Monte Carlo method:

\[
\frac{1}{\nu} \sum_{y_i \sim p_n(y|x)} \log(\sigma(-s_\theta(x,y_i) - \gamma)) \approx \sum_y p_n(y|x) \log(\sigma(-s_\theta(x,y) - \gamma)). \tag{8}
\]

Using Eq. (8), we can reformulate Eq. (7) as follows:

\[
(7) \approx - \frac{1}{|D|} \sum_{(x,y) \in D} \log(\sigma(s_\theta(x,y) + \gamma)) - \frac{1}{|D|} \sum_{(x,y) \in D} \sum_{y'} p_n(y'|x) \log(\sigma(-s_\theta(x,y') - \gamma)). \tag{9}
\]

Similar to Eq. (8), we can consider the following approximation by the the Monte Carlo method:

\[
- \frac{1}{|D|} \sum_{(x,y) \in D} \log(\sigma(s_\theta(x,y) + \gamma)) \approx - \sum_{x,y} \log(\sigma(s_\theta(x,y) + \gamma)) p_d(x,y),
\]

\[
- \frac{1}{|D|} \sum_{(x,y) \in D} \sum_{y'} p_n(y'|x) \log(\sigma(-s_\theta(x,y') - \gamma)) \approx - \sum_x \sum_{y'} p_n(y'|x) \log(\sigma(-s_\theta(x,y') - \gamma)) p_d(x). \tag{10}
\]

Using Eq. (10), we can reformulate Eq. (9) as follows:

\[
(9) \approx - \sum_{x,y} \log(\sigma(s_\theta(x,y) + \gamma)) p_d(x,y) - \sum_{x,y} \sum_{y'} p_n(y'|x) \log(\sigma(-s_\theta(x,y') - \gamma)) p_d(x)
\]

\[
= - \sum_{x,y} \log(\sigma(s_\theta(x,y) + \gamma)) p_d(x,y) - \sum_{x,y} p_n(y|x) \log(\sigma(-s_\theta(x,y) - \gamma)) p_d(x)
\]

\[
= - \sum_{x,y} \left[\log(\sigma(s_\theta(x,y) + \gamma)) p_d(x,y) + p_n(y|x) \log(\sigma(-s_\theta(x,y) - \gamma)) p_d(x) \right]. \tag{11}
\]

Next, we consider replacements of \(p_d(x,y)\) with \(p_d'(x,y)\) and \(p_d(x)\) with \(p_d'(x)\). By assuming two functions, \(A(x,y)\) and \(B(x)\), that convert \(p_d(x,y)\) into \(p_d'(x,y)\) and \(p_d(x)\) into \(p_d'(x)\), we further reformulate Eq. (11) as follows:

\[
- \sum_{x,y} \left[\log(\sigma(s_\theta(x,y) + \gamma)) p_d'(x,y) + p_n(y|x) \log(\sigma(-s_\theta(x,y) - \gamma)) p_d'(x) \right]
\]

\[
= - \sum_{x,y} \left[\log(\sigma(s_\theta(x,y) + \gamma)) A(x,y) p_d'(x,y) + p_n(y|x) \log(\sigma(-s_\theta(x,y) - \gamma)) B(x) p_d'(x) \right]. \tag{12}
\]

Based on the similar derivation from Eq. (1) to Eq. (11), we can reformulate Eq. (12) as follows:

\[
(12) \approx - \frac{1}{|D|} \sum_{(x,y) \in D} \left[A(x,y) \log(\sigma(s_\theta(x,y) + \gamma)) + \frac{1}{\nu} \sum_{y_i \sim p_n(y|x)} B(x) \log(\sigma(-s_\theta(x,y_i) - \gamma)) \right]. \tag{13}
\]