Automatic Dialect Density Estimation for African American English

Alexander Johnson¹, Kevin Everson², Vijay Ravi¹, Anissa Gladney³, Mari Ostendorf⁶, Abeer Alwan¹

¹UCLA, Department of Electrical and Computer Engineering
²University of Washington, Department of Electrical and Computer Engineering
³UCLA, Department of Linguistics

{ajohnson49,vijaysumaravi,anissadg,alwan}@ucla.edu, {kpever,ostendor}@uw.edu

Abstract

In this paper, we explore automatic prediction of dialect density of the African American English (AAE) dialect, where dialect density is defined as the percentage of words in an utterance that contain characteristics of the non-standard dialect. We investigate several acoustic and language modeling features, including the commonly used X-vector representation and ComParE feature set, in addition to information extracted from ASR transcripts of the audio files and prosodic information. To address issues of limited labeled data, we use a weakly supervised model to project prosodic and X-vector features into low-dimensional task-relevant representations. An XGBoost model is then used to predict the speaker’s dialect density from these features and show which are most significant during inference. We evaluate the utility of these features both alone and in combination for the given task. This work, which does not rely on hand-labeled transcripts, is performed on audio segments from the CORAAL database. We show a significant correlation between our predicted and ground truth dialect density measures for AAE speech in this database and propose this work as a tool for explaining and mitigating bias in speech technology.

Index Terms: Dialect Density, Dialect Identification, African American English, Fairness in ASR, Low-Resource Tasks

1. Introduction

This paper¹ presents a novel framework for automatically assessing a speaker’s dialect density. Dialect density is the degree to which speech includes aspects of a dialect separate from the mainstream dialect of the language [1]. A commonly used dialect density measure is the number of non-standard dialect tokens that appear in an utterance divided by the number of words in the utterance. Previous literature [2] shows that high-dialect speakers often face more socioeconomic discrimination and bias in early education than their low-dialect counterparts. The work in [3] demonstrates that the performance of ASR systems trained to recognize General American English (GAE) degrades when performing recognition on high dialect density African American English (AAE). As dialectal changes are composed of both phonological and morphosyntactic aspects [4], dialect-heavy speech can present challenges to both the acoustic model and the language model (LM) of an ASR system. There is currently a lack of training data needed to train ASR systems to recognize AAE speech with the same fidelity they display for GAE speech, and no investigation on low-resource methods has been done in this area before. As a result, bias against speakers of AAE and other dialects can propagate through spoken language systems, creating inequitable outcomes in the technology.

To alleviate this issue, one could create an ASR system that first predicts the dialect density of its user given a small amount of speech and subsequently adjusts its model or model hyperparameters to best recognize speech of the target speaker’s dialect. This strategy has been applied with wide success to accented speech recognition [5, 6, 7]. However, several differences exist between accent and dialect identification that make it difficult to directly apply previous work to dialect density prediction: First, accents are generally considered to be a binary characteristic. That is, each speaker either does or does not have a given accent. Dialect density is considered to be a continuum in which some speakers of a dialect possess more dialectal attributes than others. As a result, previous work in accent-robust ASR typically only considers accent identification as a binary classification problem and does not lend itself well to identifying the degree of difference from mainstream speakers. Second, most accent identification systems do not explicitly consider grammar and within-language diction as relevant to their task. However, dialects can be composed of a variety of changes in pronunciation, grammar, and diction which make them difficult to characterize by looking at any one feature of speech individually. In addition, speakers may also consciously change the amount of dialect they use depending on social context (translanguaging or code switching) [8], making it difficult to assign a consistent dialect density measure to a long portion of a speaker’s speech as one would with a type of accent. For these reasons, new methods are needed in order for machines to accurately infer dialect density. Although a primary use of this technology is in dialect-robust ASR, dialect density estimation could also be beneficial in data mining speech of a particular dialect, ensuring fair training of speech-language technologies, and evaluating human bias against speakers of dialects. In this work, we propose a new method of automatic dialect density estimation for African American English from short utterances in a low-resource task. We first analyze the correlation of several commonly-used and novel speech features in predicting dialect density (Sec. 2). We then utilize a combination of the most effective of those features in order to create a model that best estimates the dialect density of a target speaker (Sec. 3). We follow our results with a discussion (Sec. 4) and conclusions (Sec. 5) on the usefulness of the features in predicting dialect density.

2. Methods

2.1. Data

We use speech samples from the Corpus of Regional African American Language (CORAAL) [9]. This database contains spontaneous interactions between an interviewer and an interviewee who speaks a regional variant of AAE. The set of speakers range in age from approximately 20 to 80 years old and con-
tains roughly equal numbers of male and female identifying participants. The original sampling frequency is 44.1kHz. We down-sampled the audio files to 16kHz in all experiments. We used the following numbers of speakers with regional AAE dialects from five US cities: 22 speakers from Washington DC (DCB), 10 speakers from Princeville, NC (PRV), 11 speakers from Rochester, NY (ROC), 10 speakers from Lower East Side Manhattan, NY (LES), and 12 speakers from Valdosta, GA (VLD). For each speaker, several utterances with good audio quality ranging in length from 5sec to 1min were selected, and their dialect densities were scored by hand as ground truths. The subset of speakers from DCB, PRV, and ROC were chosen because their dialect densities were annotated by the authors of [3]. All speakers from VLD and LES were used, and their dialect densities were scored by the authors of this paper. We report an inter-annotator agreement of 73%. The annotated data set includes a total of approximately 3 hours of dialect density-scored utterances from 65 speakers. This data set was split into speaker independent sets for which 70% was used in training, 15% was used in validation, and 15% was used in testing.

2.2. Feature Extraction

From each utterance, we extracted the following six feature sets:

1. **Wav2Vec2.0 Transcripts:** For the first three feature sets, we generated ASR transcripts using a pretrained Wav2Vec2.0 model [10] trained on the 960hr LibriSpeech database [11]. While these transcripts contained errors and misrepresented the out-of-vocabulary (OOV) words, we implicitly attempted to utilize consistent errors and accurate portions of the transcripts to identify useful phonetic and grammatical information.

2. **ASR Output Character Combination Frequency:** The frequency of each sequence of two characters (bigram) in the transcript was counted and used as a feature. The Wav2Vec2.0 model can output 31 different characters leading this feature to be a 961 x 1 vector which can be thought of as the flattened 31 x 31 matrix in which the element in row i and column j is the number of times character i was followed directly by character j in the generated transcript for the given utterance. We hypothesize that this feature will capture consonant clusters that commonly occur in a particular dialect.

3. **ASR Output Character Duration:** From the output logits of the Wav2Vec2.0 model, the average duration of each output character was computed. We hypothesize that this feature will be useful in determining which sounds are more or less frequently spoken or stressed by speakers of a particular dialect.

4. **ASR Output Language Modeling:** In addition to the previously mentioned features, we were interested in how neural language modeling techniques could be applied to automatically generated transcripts of speech in order to predict dialect density. We noticed that, of the most commonly noted features of AAE [1, 3], language differences relating to the tense, collocation, and negation of verbs (e.g. absence of copula, negative concord, generalization of “is” and “was” to use with plural and second person subjects, etc.) were especially prevalent. This led us to pay particular attention to verbs. First, the verbs in each utterance were found using a pre-trained FLAIR part-of-speech tagging model [12, 13]. We then used the Fisher corpus [14], consisting largely of GAE conversations, to train word- and character-based LSTM language models, which provide probability distributions over the next word or character in an utterance given the history. To measure mismatch of verbs in the GAE training data and AAE testing data, we then extracted the verb OOV rate (using the word-based model vocabulary) and the average verb surprisal [15] (using the character-based model) for each utterance, where the surprisal of the i-th word \(S(w_i) \) is calculated from the letter LM as:

\[
S(w_i) = -\log(p(w_i|w_{i-1}, \ldots, w_1)) - \frac{1}{l_i} \sum_{c_{ij}} \log(p(c_{ij}|c_{i,j-1}, \ldots, c_{1,j-1}))
\]

where \(l_i \) is the length of the word \(w_i \) with characters \(c_{ij} \).

We also calculate the overall utterance perplexity from the character-based model \(\log p(p_{

4. **ComParE16 Features:** The widely used ComParE16 features [16] were extracted from the audio segments using the OpenSmile toolkit [17]. This set includes pitch, energy, spectral, cepstral coefficients (MFCCs) and voicing related frame-level features which are referred to as low-level descriptors (LLDs). It also includes the zero crossing rate, jitter, shimmer, the harmonic-to-noise ratio (HNR), spectral harmonicity and psychoacoustic spectral sharpness. In total, this feature set contains 6373 features resulting from the computation of various statistics, polynomial regression coefficients, and transformations calculated over the low-level descriptor contours.

Weak Supervision: To create the following two feature sets, we employed a weakly-supervised learning technique. We noticed that the five cities used from the CORAAL database have widely varying average dialect densities, with the averages from PRV and VLD being much higher than those from ROC and LES, and with the DCB average in between. Therefore, we believed that an utterance’s city of origin could serve as a weak label in a preliminary step before dialect density estimation. We gathered the set of utterances from the entirety of the 200hr CORAAL database from the five cities of interest that matched the following criteria: 1) Contained at least 10 words to have enough speech to estimate dialect density, 2) Contained no interruptions from the interviewer 3) Were not contained in the set of dialect density-scored utterances. We then used shallow neural networks to map larger input feature vectors into 5-dimensional vectors for which the ith element represents the probability that the utterance was spoken by a speaker from the ith city in the database. This step is intended to project larger sources of information into smaller features vectors which contain only relevant dialect information. The idea is that training a model to classify diverse utterances by region would prompt it to learn region-specific information such as dialectal traits without the need to label the dialect density of all of the utterances in the training set. The output 5-dimensional vector is then used as the representative feature.

5. **X-Vector:** The popular X-vector was incorporated to capture speaker-specific information [18]. These 512-dimensional neural network-generated embeddings contain speaker-specific information that may relate to dialect. As described earlier, the 512-dimensional vectors were projected into 5-dimensional feature vectors using the fully connected network shown in Figure 1. This network achieved a validation accuracy of 72.6%.

6. **Prosodic Embedding:** Inspired by [19], four pitch and energy features were extracted across time from the utterances; F0 (extracted with Praat [20]), the total energy in the frame, the energy in the spectrum below 1kHz, and the energy in the spectrum above 1kHz. These features were then normalized.
and used as the input to a CNN (as shown in Figure 1) that was trained to predict the region of origin of the speaker. This forces the CNN to classify region specific information from only the prosodic information contained in the speaker’s changes in pitch and energy. This CNN achieved a validation accuracy of 70.7%. The output probability vector was then used as the final prosodic embedding.

Figure 1: The architecture for the fully connected (FC) network used to project the X-vectors (left) and the CNN used to project the prosodic information (right). The inputs to the CNN are the pitch (F0) and three energy contours of the utterance. The output of both networks is a vector whose elements represent the probability of the speaker belonging to each of the cities used from the CORAAL database.

2.3. Model Training

First, one distinct XGBoost model [21] was trained for each of the six feature sets. This boosted decision tree model has the advantage of allowing us to easily measure the impact of the input features on the output value for explainability. Each of the six models was trained to predict dialect density scores from one of the given input feature sets. Then the correlation between the predicted dialect density labels and actual dialect density labels was calculated. We chose correlation as the performance metric because human-performed dialect density assessments are subject to possibly high inter-rater variability within the ranges of their scores [22], and so evaluation methods that rely heavily on the absolute value of the dialect density may be subject to measurement noise. However, raters do tend to assign higher or lower scores to the same speakers, and so we expect correlation between predicted and ground truth scores to be meaningful. As some features may only correlate with phonological aspects or only correlate with morphosyntactic aspects of dialect density, we train each model to predict each of the three types of dialect density scores:

\[DDM_{phon} = \frac{N_{ph}}{N} \]
\[DDM_{gram} = \frac{N_{ms}}{N} \]
\[DDM = \frac{N_{ph} + N_{ms}}{N} \]

where \(N_{ph} \) is the number of phonological AAE tokens in the utterance, \(N_{ms} \) is the number of morphosyntactic AAE tokens in the utterance, and \(N \) is the total number of words in the utterance. The average dialect density for each city used is shown in Table 1.

Table 1: Average dialect density by city for each of the dialect density measures shown.

	DDMphon	DDMgram	DDM
DCB	0.083	0.004	0.088
ROC	0.041	0.006	0.047
PRV	0.166	0.028	0.194
LES	0.018	0.025	0.042
VLD	0.122	0.029	0.141

Finally, we used the set of all features as the input to the XGBoost model, as shown in Figure 2. As the ComParE feature set was large, only the most impactful 10 ComParE features were used in the combined feature set.

3. Results

Table 2 gives the Pearson Correlation of the predicted dialect density measure with the ground truth labels for the test set for an XGBoost model trained on the listed feature sets. We also include the SHAP value plots [23] which give the relative importance of each feature to the model during prediction. Figures 2 and 3 give the SHAP value plots for the models trained on all features for predicting DDMphon and DDMgram, respectively. As the DDMphon term dominates the total dialect density measure, the SHAP value plot for DDM is nearly identical to that of DDMphon. In these plots, the Wav2Vec2.0 Character Combinations and Wav2Vec2.0 LM features were especially effective in estimating dialect density. Many of the character combinations appear to relate to word initial and word final sounds (e.g. \(N_{space} \) is the frequency of the “N” character being followed by a space character), and the Wav2Vec2.0 Char Dur features are listed as the character whose duration was used as the input feature from the letters A-Z, period, apostrophe, space, or silence (sil) characters.

In order to demonstrate the reliability of our results, we also perform random hold out on the highest performing features. Here, we randomly select speaker-independent train and test split (80% train, 20% test) from the data 200 times and report the average scores over all runs in Table 3.

4. Discussion

Looking at the individual features, we note that the Wav2Vec2.0 Character Combinations and Wav2Vec2.0 LM features were especially effective in estimating dialect density. Many of the character combinations appear to relate to word initial and word final sounds (e.g. \(N_{space} \) frequency of an “N” followed by a space character in the ASR transcripts), \(F_{space} \) (frequency of
Table 2: Pearson Correlation between actual and predicted dialect density measures for each of the three metrics: Only the phonological component of the dialect density (DDMphon), only the morphosyntactic component of the dialect density measure (DDMgram), and the entire dialect density measure (DDM). The results for the model trained on six feature sets individually as well as the model trained on the combination of all of the features are shown.

Correlation	DDMphon	DDMgram	DDM
Wav2Vec2.0	0.382	-0.013	0.359
Char Dur.	0.303	0.124	0.503
Wav2Vec2.0	0.520	0.108	0.637
X-vector	0.404	0.392	0.369
ComParE	0.102	0.189	0.443
All features	0.552	0.430	0.718

Table 3: Average Pearson Correlation between actual and predicted dialect density measures for each of the three DDMs over 200 iterations of Random Hold Out validation.

Correlation	DDMphon	DDMgram	DDM
Wav2Vec2.0	0.339	0.126	0.495
Char Comb	0.502	0.173	0.629
Wav2Vec2.0	0.569	0.385	0.678

Figure 3: SHAP value plot for the XGBoost model trained to predict DDMphon from the set of all features. The features are listed from top to bottom in order of significance.

Figure 4: SHAP value plot for the XGBoost model trained to predict DDMgram from the set of all features. The features are listed from top to bottom in order of significance.

5. Conclusions

In this work, we are able to predict dialect density with a high correlation (68%) between the predicted and ground truth labels as well as explain a possible combination of factors that make up dialectal differences in ASR. The results may improve when other factors are considered such as finer aspects of prosody or within-speaker variability. The system may also improve with more accurate ASR transcripts. Overall, we have created a novel framework from which to later explore these factors. Future work includes further exploring the role of prosody in dialect, applying this framework to other dialects, and applying this work in dialect-robust ASR systems.
6. References

[1] J. A. Washington, L. Branum-Martin, C. Sun, and R. Lee-James, “The impact of dialect density on the growth of language and reading in African American children.” Language, speech, and hearing services in schools, 49(2), pp. 232-247, 2018.

[2] C. Puranik, L. Branum-Martin, and J. A. Washington, J.A, “The relation between dialect density and the codevelopment of writing and reading in African American children.” Child Development, 91(4), e866–e882. PMID: 31612998

[3] A. Koennecke, A Nam, E. Lake, J. Nudell, M. Quartey, Z. Mengesha, C. Toups, J. R. Rickford, D. Jurafsky, and S. Goel, “Racial disparities in automated speech recognition.” Proceedings of the National Academy of Sciences Apr 2020, 117 (14) 7684-7689, DOI: 10.1073/pnas.1915768117

[4] S. Lanehart and Ayesh M. Malik, “Language use in African American communities: An introduction.” The Oxford handbook of African American language, ed. by Sonja Lanehart, pp. 1–19. Oxford: Oxford University Press. 2015.

[5] S. Li, B. Ouyang, D. Liao, S. Xia, L. Li and Q. Hong, “End-To-End Multi-Accent Speech Recognition with Unsupervised Accent Modelling.” ICASSP 2021 – 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 6413-6417, doi: 10.1109/ICASSP39728.2021.9414471.

[6] T. Tan, Y. Lu, R. Ma, S. Zhu, J. Guo and Y. Qian, “AISpeech-VERSPEECH 2016 Computational Paralinguistics Challenge,” ICASSP 2017 – 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 433–437, doi: 10.1109/ICASSP.2017.7952165.

[7] R. Huang, J. H. L. Hansen and P. Angkititrakul, “Dialect/Accent Classification Using Unrestricted Audio,” in IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 2, pp. 453-464, Feb. 2007, doi: 10.1109/TASL.2006.881695.

[8] O. García, and L. Wei, (2014). “Translanguaging and education. In Translanguaging: Language, bilingualism and education,” pp. 63-77. Palgrave Pivot, London, 2014.

[9] Tyler Kendall and Charlie Farrington, “The Corpus of Regional African American Language. Version 2020.05.” Eugene, OR: The Online Resources for African American Language Project. 2020 http://oraal.uoregon.edu/oraal.

[10] Alexei Baevski, Yahao Zhou, Abdelrahman Mohamed, Michael Auli, “Wav2Vec2.0: A Framework for Self-Supervised Learning of Speech Representations.” NeurIPS 2020

[11] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: an asr corpus based on public domain audio books.” In Proc. of ICASSP, pages 5206–5210. IEEE, 2015.

[12] A. Akbik, D. Blythe and R. Vollgraf, “Contextual String Embeddings for Sequence Labeling,” in Proceedings of the 27th International Conference on Computational Linguistics, 2018.

[13] A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter and R. Vollgraf, “FLAIR: An easy-to-use framework for state-of-the-art NLP.” 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), 2019.

[14] C. Cieri, D. Graff, O. Kimball, D. Miller, and K. Walker. “Fisher English Training Speech Part 1 Transcripts, LDC2004T19.” Web Download. Philadelphia: Linguistic Data Consortium, 2004.

[15] John Hale, “A probabilistic earley parser as a psycholinguistic model.” In Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies, pages 1–8. Association for Computational Linguistics, 2001.

[16] B. Schuller, S. Steidl, A. Batliner, J. Hirschberg, J. K. Burgsoon, A. Baird, A. Elkins, Y. Zhang, E. Coutinho, and K. Evanini, “The INTERSPEECH 2016 Computational Paralinguistics Challenge: Deception, Sincerity & Native Language,” in Proc. Interspeech, 2016, pp. 2001–2005.

[17] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile: the Munich Versatile and Fast Open-Source Audio Feature Extractor,” in Proc. ACM Multimedia, Firenze, Italy, 2010, pp. 1459–1462.

[18] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey and S. Khudanpur, “X-Vectors: Robust DNN Embeddings for Speaker Recognition,” 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 5329-5333, doi: 10.1109/ICASSP.2018.8461375.

[19] Trang Tran, Shubham Toshniwal, Mohit Bansal, Kevin Gimpel, Karen Livescu, and Mari Ostendorf. 2018. Parsing Speech: A Neur-al Approach to Integrating Lexical and Acoustic-Prosodic Information. In Proc. Conf. North American Chapter Assoc. for Computational Linguistics (NAACL)

[20] P. Boersma, “Praat, a system for doing phonetics by computer,” Glot International 5:9/10, pp. 341-345.

[21] Tianqi Chen and Carlos Guestrin, “XGBoost: A Scalable Tree Boosting System.” Unpublished manuscript.

[22] Cynthia Puranik, Lee Branum-Martin, and Julie Washington, “The Relation Between Dialect Density and the Codevelopment of Writing and Reading in African American Children.” Child Development. 2019. 91. 10.1111/cdev.13318.

[23] S. M. Lundberg and S. I. Lee, “A unified approach to interpreting model predictions,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 4768–4777.

[24] H. Hermansky and N. Morgan, “RASTA processing of speech,” in IEEE Transactions on Speech and Audio Processing, vol. 2, no. 4, pp. 578-589, Oct. 1994, doi: 10.1109/89.326616.