Acute Transverse Myelitis and Dengue: A Systematic Review

Adriano Miranda de Sousa1,2,*, André Landucci Politani1, Gilberto Zaquine de Souza Júnior2, Raissa Mansilla Cabrera Rodrigues2 and Regina Maria Papais Alvarenga3

1Department of Pharmacology - Federal University of Juiz de Fora (UFJF), Brazil
2Medicine Students - Faculty of Medical Sciences and Health of Juiz de Fora (FCMS/JF-SUPREMA), Brazil
3Post-graduate Degree in Neurology of the Federal University of Rio de Janeiro State (UNI RIO), Brazil

Abstract

Introduction: Dengue is the most common arboviral infection in humans, being a serious public health problem in tropical and subtropical countries. Neurological manifestations of this condition include acute infectious processes by direct action of the virus or post-infectious immune-mediated inflammatory processes. Despite its epidemiological characteristics and its main clinical signs and symptoms being widely known, there are few studies on the neurological manifestations of the disease, a number that is even lower when its association with transverse myelitis is investigated.

Objectives: To identify the association between dengue and transverse myelitis described in the literature through a systematic review, and compare the reported clinical, laboratory and epidemiological data.

Methods: It was performed a systematic review of the literature using the Pubmed, Lilacs and SciELO databases by the keywords: "transverse myelitis", dengue and "dengue hemorrhagic fever", including articles published up to October 2014. After applying the inclusion and exclusion criteria, two researchers worked independently and then had a consensus meeting to resolve any differences of opinion. Seven articles were selected for analysis.

Results: From the seven selected articles we could observe that the transverse myelitis related to dengue was mostly post-infectious, being that the most affected medullary segment was the thoracic and the majority of the clinical outcomes were favorable either spontaneously or after the use of methylprednisolone for the more severe cases.

Conclusion: Transverse myelitis and dengue fever are a rare combination; however, the dengue virus should be part of the differential diagnosis for infectious and post-infectious myelitis.

Keywords: Transverse myelitis; Dengue; Dengue hemorrhagic fever

Introduction

Dengue is a viral infection, whose etiologic agent is an arbovirus of the genus Flavivirus and Flaviridae family. This is the arbovirus that most affects the human being, affecting approximately 100 million people per year in the world. Epidemics occur frequently in tropical and subtropical countries, making it a serious public health problem [1,2].

Transverse Myelitis (TM), in turn, is a neurological syndrome that reaches from one to four people in 1 million inhabitants and its clinical diagnosis is defined by varying degrees of motor, sensory and autonomic dysfunction. The TM can be associated with different types of diseases, among which stand out systemic diseases, infections, vaccinations, radiation and vascular accidents. The idiopathic inflammatory demyelinating diseases (IIDD) of the central nervous system (CNS), may monophasically or recurrently evolve or be the initial manifestation of other conditions such as neumyelitits optica (NMO) multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM) [3].

The neurological manifestations related to dengue are exceptional occurrences and little described by literature. They may be justified by metabolic, hematological and hemodynamic changes that have occurred in the acute phase of the disease, by direct aggression of the virus to the CNS or by immunomediated processes [4-6]. Considering the epidemiological importance of dengue and its possible complications in tropical and subtropical countries, we seek to identify, by means of a systematic review, the associations between dengue and transverse myelitis described in literature, as well as to compare the clinical data, laboratory and epidemiological reported by these publications.

Methods

A systematic review of the literature was performed, without meta-analysis, in Pubmed, Scielo and Lilacs, using the key words “transverse myelitis”, “dengue” and “dengue hemorrhagic fever”. The employed search strategies were: 1) In Lilacs: transverse myelitis (words) and dengue (words); 2) In SciElO: Dengue (All indices) and transverse myelitis (All indices); 3) In Pubmed: “Transverse, Myelites”[MeSH] AND (Dengue[MeSH] OR “Dengue Hemorrhagic Fever”[MeSH]), sensitized with the use of its “entry terms” “entry terms” - (“Transverse Myelopathy Syndrome” OR “Transverse Myelopathy Syndromes” OR “Transverse Myelitis” OR “Myelitis, Acute Transverse” OR “Acute Transverse Myelitis” OR “Transverse Myelitis, Acute” OR “Myelitis, Subacute Transverse” OR “Myelitides, Subacute Transverse” OR “Subacute Transverse Myelitis” OR “Transverse Myelitis, Subacute” OR “Myelitis, Paraneoplastic” OR “Paraneoplastic Myelitis” OR “Myelitis, Postinfectious” OR “Postinfectious Myelitis” OR “Myelitis, Postvaccinal”

*Corresponding author: Adriano Miranda de Sousa, Department of Pharmacology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer - Martelos, Juiz de Fora - MG, 36036-330, Brazil, Tel. +55 21 2264-2123; E-mail: adriano.miranda@hotmail.com

Received November 26, 2014; Accepted December 22, 2014; Published December 26, 2014

Citation: Sousa AM, Politani AL, Júnior GZS, Rodrigues RMC, Alvarenga RMP (2014) Acute Transverse Myelitis and Dengue: A Systematic Review. Trop Med Surg 3: 178. doi:10.4172/2329-9088.1000178

Copyright: © 2014 Sousa AM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Results and Discussion

By the strategy of the initial search, conducted in the month of October 2014, 11 articles were identified. After applying the exclusion criteria, the remaining 9 articles were independently assessed by two authors. The Kappa statistical test showed total concordance between the authors, even so, a consensus meeting was held, not changing the result of the exclusion of two articles that had already been previously excluded. The characteristics of selected and excluded studies are arranged in Table 1. Thus, as detailed in Figure 1, were included only seven studies in the final selection, which contemplated the methodological criteria, stipulated for the proposed objective of this review. The comparison between the studies is summarized in Table 2.

From the selected studies five were case reports, one was characterized as a series of 10 cases, in which three were related with the proposed subject, and other was a survey of medical records with 26 cases, which amounts to the publication thirty-four cases regarding the proposed subject, and other was a survey of medical records with other was a survey of medical records with 26 cases, which amounts to the publication thirty-four cases regarding. They were found in the range of 2002 to 2014. The reports showed a slight predominance of the classification in females (1.43:1) and the age ranged from 11 to 71 years, with an average age of 36 to 24 years.

The quantity of studies found reveals the scarcity of scientific literature on the topic, which indicates the rare relationship between the dengue virus and the transverse myelitis, should not ignore the fact that the late post-infectious myelitis may lead to possible underreporting. The geographical origin of the articles confirmed the predominance of dengue in tropical regions. The small number of cases considerably impaired the association between age and genre for the classification in the study, with emphasis on the case of neuromyelitis optica reported by Miranda de Sousa et al. [7] to be the sole pediatric report.

Despite of the apparent controversy in the literature regarding the clinical form of dengue and neurological manifestations [8,9] the clinical classification of classical dengue was clearly defined by articles, not being described hemorrhagic complications. The myelitis was characterized by varying degrees of motor, sensory and sphincteric dysfunction, according to the clinical criteria proposed by “Transverse Myelitis Consortium Working Group” [3]. With respect to the installation of myelitis, they were in their majority (94.1% of cases) post infectious, arriving to manifest itself until 30 days after the onset of infection by dengue [10].

These manifestations reinforce the hypothesis of immune mediated mechanism where the virus could act as a trigger of the inflammatory process that has as its target forming cells of the myelin sheath. The cluster of post-dengue transverse myelitis with favorable clinical outcome corroborate this mechanism [7,11].

The titration of IgM antibodies against the dengue virus using the ELISA method is highly sensitive, confirming the laboratory diagnosis of dengue infection in all cases. The polymerase chain reaction (PCR) technique for detection of the viral genome was performed only by Leao et al. [12], however, this technique is not used routinely for epidemiological purposes [1,2].

The resonance examination of the spinal cord has confirmed the abnormalities of the neurological exam in 41.1% of the cases. The normal MRI was found in two thirds of the patients surveyed by Miranda de Sousa et al. [11], in one case described by Leao et al. [12], in one by Seet et al. [13] and in other by Puccioni Sohler et al. [10], a normal MRI does not invalidate the clinical diagnosis of transverse myelitis. The thoracic spinal cord was the most affected and T9 segment was slightly more associated with the disease compared to other spinal

Table 1: References included in the systematic review of agreement with authors, year, title of Article, periodical and data base.

Authors	Year	Article Title	Periodical	Type of Study	Inclusion/Exclusion
Leão RN et al. [12]	2002	Isolation of dengue 2 virus from a patient with central nervous system involvement (transverse myelitis).	Rev Bras Med Trop	Case Report	Included
Seet RC et al. [13]	2006	Acute transverse myelitis following dengue virus infection.	Journal of Clinical Virology	Case Report	Included
Miranda de Sousa A et al. [7,11]	2006	Post-dengue neuromyelitis optica: case report of a Japanese-descendent Brazilian child.	J Infect Chemother	Case Report	Included
Puccioni-Sohler M et al. [10]	2009	Neurologic dengue manifestations associated with intrathecal specific immune response.	Neurology	Case Report	Included
Chanthamat N et al. [6]	2010	Acute transverse myelitis associated with dengue viral infection.	J Spinal Cord Med	Case Report	Included
Gutch M et al.	2010	Hypokalemic quadriparesis: An unusual manifestation of dengue fever.	J Spinal Cord Med	Case Report	Included
Larik A et al. [14]	2012	Longitudinally extensive transverse myelitis associated with dengue fever.	BMJ Case Rep	Case Report	Included
Shinvantan MC et al.	2012	Paralytic spunkt due to abducens nerve palsy: a rare consequence of dengue fever.	BMC Infect Dis	Case Report	Excluded
Miranda de Sousa A et al. [7,11]	2014	A cluster of transverse myelitis following dengue virus infection in the brazilian amazon region	Tropical Medicine and Health	Retrospective Study	Included
Authors 1, 2 and 3: Methodological Planning
Definition of search strategy; keywords, database, inclusion and exclusion criteria.

Database: PubMed
Keywords: “Transverse Myelites” [MeSH] AND (Dengue [MeSH] OR Dengue Hemorrhagic Fever [MeSH]) sensitized with the use of its “entry terms”. N = 09

Database: Scielo
Keywords: Dengue [All indices] and transverse myelitis [All indices] N = 01

Database: Ulacs
Keywords: transverse myelites [Words] and Dengue [Words] N = 1

RESULTS FROM SEARCHES (N = 11)
Excluded articles (N=2)
Reason: duplication

SELECTED ARTICLES (N = 9)

Author 2: Reading the abstracts and application of inclusion / exclusion (2 articles excluded)
Author 3: Reading the abstracts and application of inclusion / exclusion (2 articles excluded)

Author 2 and 3 (Consensus Meeting): 2 articles excluded (because they are not directly related to the subject); 7 articles included for reading and systematization. N=7.

Case Report (N = 5)
Series of Cases (N = 2)
Critical analysis and evaluation of the studies included in the review.

Figure 1: Flowchart used for systematization of studies.
Table 2: Diagnosis of Dengue in Transverse Myelitis Patients

Case Report	Age	Gender	Clinical Presentations	Laboratory Results	Imaging Findings	Intervention	Outcome	
Miranda de Sousa et al (2014)	M / 71 years old	Fever, orbital and articular pain, headache and vomiting.	Dengue IgM and IgG*.	Weakness in the lower limbs, paraplegia and urinary incontinence. Neurological Examination: spastic paraplegia, Babinski sign bilateral, hyperreflexia and aquilla, sensorial level T4.	Hyperintense Signal on T2 sequence between T2-T10. Dengue IgM and IgG +; abnormal Protein.	Acute lumbar Pain, sphincter dysfunction, paraparesis and weakness in the lower limbs. Neurological Examination: spastic paraplegia, Babinski sign bilateral paresis, hyperreflexia and aquilla, sensorial level T8.	Post-infection	After 6 months remained only the paresis of the lower limbs.
F / 40 years old	Headache, skin rash, fever and myalgia.	Dengue IgM and IgG +	Paraparesis and urinary retention. Neurological Examination: spastic paraparesis, generalized hyperreflexia, hypotension of lower limbs (up to the level of the thigh).	Without changes. Dengue IgM and IgG +; abnormal Protein.	Hyperintense Signal on T2 sequence between T3-T5 and T11-T12, with same results in C5-C6.	Dengue IgM and IgG +; abnormal Protein.	Post-infection	Methylprednisolone 1g/day for 5 days.
F / 28 years old	Myalgia, headache and fever.	Dengue IgM and IgG +	Acute lumbar Pain, sphincter dysfunction, paraparesis and weakness in the lower limbs. Neurological Examination: spastic paraplegia, Babinski sign bilateral paresis, hyperreflexia and aquilla, sensorial level T8.	Hyperintense Signal on T2 sequence, the dorsal part of the thoracic spinal cord at the level of T8-T10. Clear with opening pressure of 13 cmH2O, without cells; Dengue IgM and IgG +; Protein: 61.4MG/dl; Negative for bacteria and fungi.	Dengue IgM and IgG +; abnormal Protein.	Hyperintense Signal in the cervical cord at T1-T2 sequence, diffusely spread inside the spinal cord up to T9.	Post-infection	Methylprednisolone 1g/day - 3 consecutive days.
Case Report	F / 61 years old	Fever, headache and generalized petechiae in lower limbs.	Hemagglutinin inhibition Test 1:10240; Hematocrit 40%, normal leukocytes, platelet count of 20miil/mm3.	Acute urinary Retention, paraplegia, hypotension. Neurological Examination: weakness of lower limbs grade 2/5 and hypotonia; Babinski sign bilateral hyperreflexia, patalett and aquilla; sensorial deficit at the level of T10; sensation of articular position lower limbs impaired; absence of anal sphincter tone.	Hyperintense Signal to T2 sequence, diffuse T2 hyperintense signal on T2 sequence diffusely spread inside the spinal cord up to T9.	Urinary retension, weakness of the lower limbs, bilateral sphincteral functions preserved. Neurological Examination: facioct abd paresis, deep tendon reflex absent in legs and reflection of Babinski unchanged bilaterally, sensorial level in T4.	Post-infection	Methylprednisolone 1g/day - 3 consecutive days.
Case Report	M / 43 years old	Fever, rash, generalized myalgia.	Dengue IgM and RNA + / -.	Urinary retention, weakness of the lower limbs, bilateral sphincteral functions preserved. Neurological Examination: weakness of lower limbs grade 2/5 and hypotonia; Babinski sign bilateral hyperreflexia, patalett and aquilla; sensorial deficit at the level of T10; sensation of articular position lower limbs impaired; absence of anal sphincter tone.	Urinary retention, weakness of the lower limbs, bilateral sphincteral functions preserved. Neurological Examination: weakness of lower limbs grade 2/5 and hypotonia; Babinski sign bilateral hyperreflexia, patalett and aquilla; sensorial deficit at the level of T10; sensation of articular position lower limbs impaired; absence of anal sphincter tone.	Urinary retention, weakness of the lower limbs, bilateral sphincteral functions preserved. Neurological Examination: weakness of lower limbs grade 2/5 and hypotonia; Babinski sign bilateral hyperreflexia, patalett and aquilla; sensorial deficit at the level of T10; sensation of articular position lower limbs impaired; absence of anal sphincter tone.	Post-infection	Methylprednisolone 1g/day - 3 consecutive days.

Legend: (*) We studied 10 patients in this study, of these, only three had transverse myelitis associated with dengue (*"1*) days after the onset of dengue infection, from the first day proodrome (*"1") Days after the discharge when post-infectious (*"4") Days after the end of the fever; mean 4.2 days.

Table 2: Analysis of the studies included in the review, country, type of study, patients, diagnosis of dengue, diagnosis of transverse myelitis, stage of the infection, intervention and outcome.
spontaneously or after methylprednisolone pulse therapy. Whereas dengue epidemics are frequent in tropical and subtropical countries, the dengue virus should always be part of the differential diagnosis for infectious and post-infectious myelitis.

References

1. Guzmán MG, Kouri G (2002) Dengue: an update. Lancet Infect Dis 2: 33-42.
2. Rigau-Pérez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, et al. (1998) Dengue and dengue haemorrhagic fever. Lancet 352: 971-977.
3. Transverse Myelitis Consortium Working Group (2002) Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 59: 499-505.
4. Solomon T, Dung NM, Vaughn DW, Kneen R, Thao LT, et al. (2000) Neurological manifestations of dengue infection. Lancet 355: 1053-1059.
5. Yamamoto Y, Takasaki T, Yamada K, Kimura M, Washizaki K, et al. (2002) Acute disseminated encephalomyelitis following dengue fever. J Infect Chemother 8: 175-177.
6. Chanthamat N, Sathirapanya P (2010) Acute transverse myelitis associated with dengue viral infection. J Spinal Cord Med 33: 425-427.
7. Miranda de Sousa A, Puccioni-Sohler M, Dias Borges A, Fernandes Adorno L, Papaiz Alvarenga M, et al. (2006) Post-dengue neuromyelitis optica: case report of a Japanese-descendent Brazilian child. J Infect Chemother 12: 396-398.
8. Cam BV, Fonsmark L, Hue NB, Phuong NT, Poulsen A, et al. (2001) Prospective case-control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg 65: 848-851.
9. Ramos C, Sánchez G, Pando RH, Baquera J, Hernández D, et al. (1998) Dengue virus in the brain of a fatal case of hemorrhagic dengue fever. J Neurovirol 4: 465-468.
10. Puccioni-Sohler M, Soares CN, Papaiz-Alvarenga R, Castro MJ, Faria LC, et al. (2009) Neurologic dengue manifestations associated with intrathecal specific immune response. Neurology 73: 1413-1417.
11. Miranda de Sousa A, Alvarenga MP, Alvarenga RM (2014) A cluster of transverse myelitis following dengue virus infection in the brazilian Amazon region. Trop Med Health 42: 115-120.
12. Leão RN, Oikawa T, Rosa ES, Yamaki JT, Rodrigues SG, et al. (2002) Isolation of dengue 2 virus from a patient with central nervous system involvement (transverse myelitis). Rev Soc Bras Med Trop 35: 401-404.
13. Seet RC, Lim EC, Wilder-Smith EP (2006) Acute transverse myelitis following dengue virus infection. J Clin Virol 35: 310-312.
14. Larik A, Chiong Y, Lee LC, Ng YS (2012) Longitudinally extensive transverse myelitis associated with dengue fever. BMJ Case Rep 2012.