Fibril-forming Collagens in Lamprey

Joanne Kelly†, Shizuko Tanaka†, Thomas Hardt, Eric F. Eikenberry§, and Barbara Brodsky††

From the †Department of Biochemistry and the §Department of Pathology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854

Five types of collagen with triple-helical regions approximately 300 nm in length were found in lamprey tissues which show characteristic D-periodic collagen fibrils. These collagens are members of the fibril-forming family of this primitive vertebrate. Lamprey collagens were characterized with respect to solubility, mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, carboxymethyl-cellulose chromatography, peptide digestion patterns, composition, susceptibility to vertebrate collagenase, thermal stability, and segment long spacing-banding pattern. Comparison with fibril-forming collagens in higher vertebrates (types I, II, III, V, and XI) identified three lamprey collagens as types II, V, and XI. Both lamprey dermis and major body wall collagens had properties similar to type I but not the typical heterotrimeric composition. Dermis molecules had only α1(I)-like chains, while body wall molecules had α2(I)-like chains combined with chains resembling lamprey type II. Neither collagen exhibited the interchain disulfide linkages or solubility properties of type III. The conservation of fibril organization in type II/type XI tissues in contrast to the major developments in type I and type III tissues after the divergence of lamprey and higher vertebrates is consistent with these results. The presence of type II and type I-like molecules as major collagens and types V and XI as minor collagens in the lamprey, and the differential susceptibility of these molecules to vertebrate collagenase is analogous to the findings in higher vertebrates.

The family of collagen molecules in higher animals with uninterrupted (Gly-X-Y), triple-helical regions 300 nm in length and with the capacity to aggregate into fibrils with an axial period of D = 67 nm includes five distinct types of collagens: types I, II, III, V, and XI (1α, 2α, 3α) (1–3). These five collagens have been designated the fibril-forming or group I collagens (1). Although these collagens show some sequence homology, especially in the distribution of charged residues (4–6), each genetic type has identifying characteristics, such as chain composition, amino acid composition, and the amount of hydroxylysine and hydroxylysine-linked disaccharides resulting from post-translational modification (7–9, see Table V). Group I collagens also differ in their susceptibility to vertebrate collagenase (10, 11): types I and III are cleaved rapidly and completely, while type II undergoes a slower, incomplete degradation and types V and XI are resistant to any cleavage.

Type I and II collagens are always major tissue components, while types V and XI constitute minor collagens in a tissue (1, 9). Type I is the predominant collagen in bone, tendon, and cornea, while type V is found as a minor component (usually less than 5%). Type II is the major collagen in cartilage, vitreous, and notochord, with type XI present in small amounts (less than 10%). Type III is found together with type I in skin, reticular tissues, and vascular tissues, where it constitutes 15–40% of total collagen.

Fibril-forming collagens evolved early in the development of multicellular animals. D-periodic fibrils containing molecules with a characteristic distribution of charged residues are found in many invertebrates (12–14). In the specialized tissues of vertebrates, a family of distinct fibril-forming types is seen. Lampreys, a member of the most primitive vertebrate class, have a collagen with α1(I)-like chains in the dermis (15, 16), and have type II and XI collagens in the notochord (17, 18). Types I and II have been identified in sharks and bony fish (12, 19, 20), but it is only in avian and mammalian species that all five types (I, II, III, V, XI) have been reported (7, 8, 21, 22).

We report here the collagens present in three tissues of the lamprey which contain D-periodic collagen fibrils: the dermis, notochord, and body wall. Five types of collagen with triple-helical regions 300 nm in length were found. Of these, three types were identifiable as II, V, and XI by their solubility, chain composition, amino acid composition, and susceptibility to vertebrate collagenase. The other two lamprey collagen molecules did not correspond to types I and III of higher vertebrates in their chain composition.

MATERIALS AND METHODS

Extraction and Purification—Mature lampreys (Petromyzon marinus) were obtained from the New Hampshire Fish and Game Commission. Tissues were dissected and diced on ice and all procedures were done at 4 °C (unless otherwise stated). Acid extraction of dermis and pepsin extraction of notochord and subcutaneous tissues were carried out as previously described (17, 23). Salt fractionation at neutral pH was performed on collagen solutions in 1 M NaCl, 0.05 M Tris, pH 7.5, by bringing the NaCl concentration in steps to 1.7, 2.0, 2.6, and 5.0 M, with precipitates collected by centrifugation at 15,000 rpm for 1 h in a Sorvall SS-34 rotor. Differential salt fractionation at acid pH was performed by bringing collagen solutions in 0.5 M acetic acid to 0.9 M NaCl and then to 1.2 M NaCl, with precipitates collected by centrifugation as above (7).

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out as described (24, 25). Gels were stained with 25% Coomassie Blue, 10% trichloroacetic acid and destained with 7.5% acetic acid, 15% methanol. To reduce disulfide cross-links, 5% β-mercaptoethanol was added to the SDS sample buffer and the sample boiled for 3–4 min prior to electrophoresis.

1 The abbreviations used are: SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; CNBr, cyanogen bromide; SLS, segment long spacing; CMC, carboxymethylcellulose chromatography.
Fibril-forming Collagens in Lamprey

To separate polypeptide chains, carboxymethyl-cellulose chromatography (CMC) was carried out at 42 °C as described (7). Molecular sieve chromatography was performed on a 2.7 × 60-cm column of Sepharose CL-6B (Pharmacia LKB Biotechnology Inc.) (16). Samples were dissolved in 6 M urea, 1.0 M CaCl₂, 0.05 M Tris, pH 7.5, applied to the column, and eluted with 1.0 M CaCl₂, 0.05 M Tris, pH 7.5 at a flow rate of 15 ml/h.

Cyanogen Bromide and V-8 Protease Digestion—For cyanogen bromide (CNBr) digestion, 500 μg of lyophilized collagen was dissolved in 100 μl of nitrogen-purged 70% formic acid containing 50–100 mg/ml CNBr, and incubated for 4 h at 30 °C. The samples were evaporated to dryness then rehydrated with cold distilled water and lyophilized three times.

For V-8 protease digestion, 500 μg of lyophilized collagen was dissolved in 125 μl of buffer containing 0.125 M Tris, pH 6.8, 10% glycerol, 1% SDS, 0.0005% Bromphenol Blue, 1 mM EDTA. Staphylococcus aureus V-8 protease (250 μl of 100 μg/ml from Miles Laboratories Inc.) was added and samples were incubated at 37 °C for 24 h (20). The reaction was terminated by adding 20% SDS and boiling for 3 min.

Vertebrate Collagen Digestion—Lyophilized collagen (100 μg) was dissolved in 100 μl of 100 mM Tris, 150 mM NaCl, 10 mM CaCl₂, pH 7.5. Thirty microliters of human skin fibroblast collagenase (120 μg/ml) generously provided by Dr. John Jeffrey was activated by incubation with 10 μl of 0.5 mg/ml trypsin at room temperature for 15 min; then 10 μl of 2 mg/ml soybean trypsin inhibitor was added and the sample kept at room temperature for 10 min (11). The samples were incubated with the enzyme at 18 or 25 °C, using the lower temperature for collagens with a lower thermal stability. Aliquots were examined at 6 and 30 h. The reaction was stopped by adding 20 μl of 0.125 M Tris, pH 6.8, 6% SDS, 30% glycerol, 0.015% Bromphenol Blue and boiling for 3 min. The samples were then dialyzed against 0.125 M Tris, pH 6.8, 2% SDS, 10% glycerol, 0.001% Bromphenol Blue before being applied to SDS-PAGE.

Circular Dichroism Spectroscopy—Circular dichroism spectra were recorded on a Cary 61 instrument. To obtain melting curves, the wavelength was fixed at the ellipticity maximum near 221 nm, and the temperature was increased at a rate of 20–30 °C/h. All spectra and melting profiles were recorded with samples dissolved in 0.01 M acetic acid.

Amino Acid Analysis—Amino acid analyses were performed by Dr. Michel van der Rest on a Dionex model D-500 amino acid analyzer using samples hydrolyzed in 6 M HCl under nitrogen for 6, 12, and 24 h at 110 °C. The resulting amino acid composition data were extrapolated to zero time of hydrolysis. If there was only enough purified collagen for one sample, it was hydrolyzed for 12 h.

Segment Long Spacings—Segment long spacing (SLS) crystallites were formed, stained, and examined as previously described (17).

RESULTS

We report the characterization of collagens in the dermis, body wall, and notochord of the lamprey.

Dermis Collagen

The skin of the lamprey consists of a surface epidermal layer, a dermis, and a subcutaneous layer (Fig. 1). The dermis is composed of lamellae of homogenous diameter collagen fibrils (27), and all dermis collagen is solubilized by acid or neutral salt solutions (15, 28, 29). The dermis of the mature lamprey is unusual in the high solubility of its collagen, and in containing only one collagen type, with no minor components. Sequential salt precipitation studies carried out on acid-extracted collagen at neutral pH indicated no precipitation at 1.7 M NaCl, while substantial amounts came out at 2.0 M NaCl (37% of total), 2.3 M NaCl (17%), and 2.6 M NaCl (46%). Raising the salt concentration to 5.0 M NaCl precipitated little additional collagen (1%). Dermis collagen shows on gel electrophoresis (Fig. 2, lane 1) a single major band in the α-region, running slightly faster than the α(1) chain of higher vertebrates, and one major band in the β region, which we assume to represent cross-linked dimers, as previously reported (15, 28, 29). The polypeptides corresponding to the α and β bands could not be resolved on carboxymethyl-cellulose chromatography, in contrast to a report on another lamprey species (15), but were separated on a Sepharose CL-6B molecular sieve column (not shown). Comparison of the cyanogen bromide digestion patterns and purified V-8 digestion patterns of purified α chains and purified β component showed distinct peptide patterns (Fig. 3A, lanes 3 and 4; Fig. 3B, lanes 4 and 5). The presence of peptides in the β component not seen for α indicates that β contains at least one polypeptide chain distinct from the dermis monomer chains. Since the β-component lacks a number of CNBr and V-8 peptides seen for the α component, the β dimers must not include one chain in the α pool. The amino acid compositions of α and β are, however, very similar (Table I), suggesting the chains, as expected from their similar elution position on carboxymethyl-cellulose, are closely related. The dermis collagen molecule is thus a heterotrimer with two closely related polypeptide chains, as reported for a different lamprey species by Kimura et al. (15, 16).

Dermis α and β have amino acid compositions expected for a primitive α(1) chain, showing similarities to other vertebrate α(1) chains, together with lower hydroxyproline and higher serine contents (Table II; 12, 15). Dermis collagen is digested very efficiently by human skin collagenase, at a rate comparable to that of rat tail tendon type I collagen, which also supports its type I-like or type III-like character (Fig. 4). Its SLS-banding pattern is indistinguishable from that of higher vertebrate type I collagen (Fig. 5). The molecule had a characteristic triple-helical circular dichroism spectrum and melted at 28.5 °C with a sharp transition.

Since higher vertebrate skin contains type III collagen, with disulfide bonds linking the three polypeptide chains in a molecule, as well as type I, we compared the gel electrophoresis patterns of dermis collagen with and without reduction and saw no difference. Similar experiments on the other
Fibril-forming Collagens in Lamprey

Body Wall (or Subcutaneous) Collagen

The subcutaneous layer of lamprey skin joins the muscle layer and is continuous with tissue surrounding the spinal cord and notochord sheath. Collagen in this layer is not solubilized by acid or neutral salt solution but can be extracted by pepsin treatment. Pepsin extraction of subcutaneous tissue yielded one major collagen and a minor component. The major collagen had a solubility similar to type I, precipitating at 0.9 M NaCl at acid pH. During sequential salt fractionation at neutral pH, little collagen came out below 2.6 M NaCl (6%), with the majority precipitating at 2.6 M NaCl (47%) and 3.0 M NaCl (41%). On SDS-PAGE this collagen shows two bands running near $\alpha_1(I)$ which are often not resolved, and one band near $\alpha_2(I)$ (Fig. 2, lane 2). We denote these three chains as α_1, α_1', and α_2, respectively. A small amount of material was also seen in the β region.

On carboxymethyl-cellulose chromatography, α_1' eluted just after α_1 (at a salt concentration near 0.03 M NaCl), while α_2 eluted at a significantly higher salt concentration (0.065 M NaCl) (Fig. 6). The individual chains were isolated chromatographically and further characterized. The amino acid compositions of α_1 and α_1' are similar (Table I). The CNBr and V-8 protease digestion patterns of α_1' chains which appeared pure on electrophoresis (Fig. 6, inset), showed the major bands present in α_1 but also had some distinct bands (Fig. 3A, lanes 7, and 8; Fig. 3B, lanes 8 and 9). These results suggest that α_1 and α_1' are polypeptide chains related by degradation, variation in post-translational modification, or as products of duplicated genes. The amino acid compositions of the α_1 and α_1' chains differ from lamprey dermis collagen and from $\alpha_1(I)$ chains of higher and lower vertebrates in their...
Fibril-forming Collagens in Lamprey

TABLE I
Amino acid compositions of lamprey collagens

Major body wall	Major body wall	Dermis	Minor body wall	Minor notochord component*						
al(II)	a1	a2	α	β						
Hydroxyproline	74	67	51	67	59	69	61	56	79	
Aspartic acid	47	42	59	53	47	57	58	52	46	
Threonine	27	20	23	18	17	27	24	28	26	
Serine	38	51	73	63	69	56	42	43	42	
Glutamic acid	99	103	97	74	67	68	96	105	100	102
Proline	115	116	99	69	93	91	87	106	96	121
Glycine	330	362	363	380	367	376	345	352	360	325
Alanine	104	84	94	75	128	122	55	69	65	102
Valine	12	10	12	21	23	26	30	30	25	12
Isolecucine	11	8	20	9	10	19	19	16	9	9
Leucine	29	30	32	42	22	24	45	46	44	27
Tyrosine	2	<2	<2	2	2	2	4	<2	<2	2
Phenylalanine	12	14	13	9	10	12	8	9	9	13
Histidine	4	4	5	3	4	10	8	8	5	
Hydroxylysine	22	11	11	6	5	34	31	37	22	
Lysine	16	23	25	18	21	20	21	17	16	
Arginine	51	48	50	49	54	52	46	42	43	52

*This composition is for the slower mobility band of the minor subcutaneous component. The faster mobility band was contaminated with al(II).

These chains were previously called a1α, 2α, and 3α.

Methionine values were not measured because of the problem with oxidation.

TABLE II
Comparison of lamprey dermis α and body wall α chain with α1(I) chains of various vertebrates

α1 lampey	α1 lampey	α1(I)	α1(I)	α1(I)	α1(I)			
body wall*	dermis*	shark skin*	carp skin*	mackerel skin*	human skin*			
al(I)	al(I)	al(I)	al(I)	al(I)	al(I)			
Hydroxyproline	72	67	60	71	68	108	92	127
Aspartic acid	42	53	45	44	43	42	43	43
Threonine	20	18	23	28	27	19	17	13
Serine	51	65	51	36	43	27	37	39
Glutamic acid	103	67	69	75	76	77	77	72
Proline	116	93	108	113	110	120	135	109
Glycine	362	367	343	338	339	328	332	354
Alanine	84	128	117	132	130	129	115	97
Valine	10	21	26	16	18	14	21	14
Methionine	N.D.*	N.D.	18	15	N.D.	N.D.	N.D.	N.D.
Isolecucine	8	9	15	11	8	6	7	13
Leucine	30	22	19	17	18	20	20	22
Tyrosine	<2	2	2	1	1	2	2	3
Phenylalanine	14	10	12	14	16	12	12	8
Histidine	4	3	6	4	3	2	2	2
Hydroxylysine	11	6	9	4	5	5	4	5
Lysine	23	21	28	31	27	30	30	30
Arginine	48	54	51	53	53	50	50	47

*a This work.

b Ref. 30.

c Ref. 16.

d Ref. 31.

e Ref. 32.

f Ref. 33.

N.D., not determined.

high glutamic acid, leucine, and hydroxylysine and low alanine and valine content (Tables I and II). The unusual composition features (Table I) and overall digestion patterns (Fig. 3) of the α1 and α1' chains bear some resemblance to lamprey type II collagen.

The peptide maps of α2 differed markedly from those for α1 and α1' (Fig. 3A, lane 6; Fig. 3B, lane 7), and α2 had a very different composition, notable in its low content of imino acids and alanine and high content of histidine and hydrophobic residues (Table I). The α2 composition resembled that of the collagen chain in dogfish shark skin identified as α2(I) (30) (Table III). These experiments indicate for the first time that a chain with an electrophoretic mobility on SDS-PAGE, a high salt elution position on CMC chromatography, and an amino acid composition similar to α2(I) is present in the lamprey.

Pepsin digestion of the tissue surrounding the notochord (perinotochord), the body wall, and the muscle layer yielded collagen chains with electrophoretic mobilities and V-8 protease digestion patterns identical to that found in the subcutaneous layer, indicating this continuous connective tissue has a uniform collagen composition (data not shown). We shall refer to this collagen as body wall collagen.

The minor collagen component of the subcutaneous layer (less than 10% total collagen) showed two bands on SDS-PAGE, with the faster band slightly slower than rat α1(I) (Fig. 2, lane 5). The collagen was soluble at 2.6 M NaCl, but precipitated at 4.4 M NaCl at neutral pH. Most of the minor
collagen; and represents digestion at and tebrate collagenase digestion of the five lamprey collagens.

shown), and its amino acid composition showed the low alanine and high hydrophobic amino acid contents of a type a small amount of relatively pure minor collagen was soluble in the lamprey body wall tissue was digested at 18 °C for 0 and 30 h (lanes 10 and 11) and at 25 °C for 30 h (lane 12); chick type II collagen was digested at 25 °C for 0, 6, and 30 h (lanes 13-15); lamprey notochord type II was digested at 25 °C for 0, 6, and 30 h (lanes 16-18); and the lamprey notochord minor component (type XI) was digested at 25 °C for 0, 6, and 30 h (lanes 19-21).

collagen precipitated at 0.9 M NaCl in 0.5 M acetic acid, but a small amount of relatively pure minor collagen was soluble at this salt concentration and precipitated at 1.2 M NaCl. The chain with slower mobility could be separated on CMC (not shown), and its amino acid composition showed the low alanine and high hydrophobic amino acid contents of a type V collagen (Table IV, (5)) together with the lower hydroxyproline and higher serine expected for a primitive vertebrate (12). Studies of the faster moving band were hindered by contamination with the major a1 chain.

The major subcutaneous collagen underwent incomplete cleavage by human skin collagenase at a rate slower than that of type I and similar to that of type II collagen (Fig. 4, lanes 7-9). The minor component was not susceptible to digestion by this enzyme, a property which is characteristic of type V collagen (Fig. 4, lanes 10-12). The major collagen had a sharp thermal transition near 28.5 °C, while the minor subcutaneous collagen melted near 32 °C, with a broader melting profile. The major subcutaneous collagen formed SLS crystallites with characteristic type I-bandings patterns (Fig. 5). Although the minor collagen formed SLS crystallites, we were unable to obtain staining adequate for comparisons.

Notochord Collagen

Characterization of collagens in the notochord sheath of the lamprey was previously reported (17, 18). The major collagen was identified as type II, based on its electrophoretic mobility, solubility properties, and amino acid composition. We compared type II to other lamprey collagens, with respect to composition, CNBr peptide pattern, V-8 protease digestion patterns, and thermal stability (Fig. 3; and Table I). A minor collagen also present in notochord corresponds in its features to type XI collagen in higher vertebrate cartilage (Table IV).

Lamprey type II collagen was partially digested by human skin collagenase, at a rate similar to that seen for chick type II (Fig. 4), which is slower than that for mammalian and avian types I and III (10, 11). The minor notochord collagen was not digested, even after long time periods (Fig. 4, lanes 19-21). Both notochord collagens melted at 33 °C, showing broad melting transitions and both collagens showed SLS crystallite patterns similar to those seen for higher vertebrate types I and II collagens (Fig. 5).

DISCUSSION

Vertebrates first appeared in the fossil record about 500 million years ago. The earliest vertebrates (class Agnatha) were jawless fish with a notochord as the axial supporting structure (12), and lamprey and hagfish are contemporary survivors of this class. Lamprey tissues exhibiting D-periodic collagen fibrils were found to contain five collagen types with a pepsin-resistant triple-helical region of approximately 1000 residues as estimated from electrophoretic mobility on SDS-PAGE. These observations imply that at an early stage of vertebrate evolution the fibril-forming collagen family contained at least five members. The three major types form SLS crystallites with staining patterns indistinguishable from higher vertebrate type I. These observations support the hypothesis of a critical role for charge distribution and length

FIG. 6. Carboxymethyl-cellulose chromatography of the body wall major collagen. The column was equilibrated with 0.04 M sodium acetate containing 6 M urea, pH 4.8, at 42 °C and was eluted with an 0-0.10 M NaCl gradient. The a1 chains eluted at a lower salt concentration than a2 chains (0.032 M NaCl and 0.064 M NaCl, respectively). The inset shows SDS-PAGE (6% polyacrylamide gel) of selected fractions (circles on chromatogram): lane 1, rat tail tendon type I; lane 2, lamprey body wall collagen; lane 3, fraction 33; lane 4, fraction 43; lane 5, fraction 52; lane 6, fraction 64.

FIG. 5. SLS crystallite patterns of (a) lamprey body wall collagen; (b) lamprey dermis collagen; (c) lamprey notochord collagen; and (d) rat tail tendon type I collagen. The bar represents 50 nm.
of the triple-helical region in formation of D-periodic fibrils
(4).

The conserved features of charge distribution and triple-
helix length contrast with the variations in thermal stability
among lower vertebrate skin collagens, where melting tem-
perature is correlated with upper environmental temperature
(34). In lamprey the two notochord collagens and the minor
body wall collagens melt at 32–33 °C, while the major dermis
and body wall collagens melt at 28 °C. Fibril diameters and
organization are another characteristic which varies markedly
in the three lamprey tissues studied. Both fibril morphology
and thermal stability are important to function, and it is
likely that the presence of distinct genetic types is necessary
to mediate these tissue-specific properties.

Comparison of lamprey collagens with higher vertebrate
collagens with respect to tissue distribution, number of dis-
tinct chains per molecule, electrophoretic mobilities on SDS-
PAGE, amino acid composition, post-translational modifica-
tion, solubility properties, and susceptibility to vertebrate
collagenase allows us to identify the major collagen in noto-
chord as type II, the minor collagen in notochord, as type XI,
and the minor collagen in the body wall as type V (Table IV).

The conservation of so many features for these three collagens
implies that the characteristic features of types II, XI, and V
were already established in the earliest vertebrates and that
these features have been highly conserved in the divergent
evolutionary development of the modern lamprey and higher
vertebrates over 500 million years. The high degree of conserv-
ation of type II has been suggested by previous reports (19,
35). The relation of the major collagens in the lamprey dermis
and body wall to members of group I collagens in higher
vertebrates is less direct. Lamprey dermis collagen is related
to type I collagen on the basis of its presence in D-periodic
fibrils in skin, its SLS-banding pattern (12), its a1(I)-like

Table III

Lamprey body wall a2	Dogfish shark skin	Carp skin	Mackerel skin	Chick skin	Human skin	
Hydroxyproline	51	48	69	66	98	83
Aspartic acid	59	41	56	53	50	47
Threonine	23	26	25	24	20	20
Serine	73	78	38	41	31	35
Glutamic acid	74	67	64	63	67	68
Proline	69	81	112	100	117	120
Glycine	380	345	337	348	328	337
Alanine	75	93	114	122	104	105
Valine	25	32	27	22	28	33
Methionine	N.D.	17	10	13	5	5
Isoleucine	20	19	10	11	16	15
Leucine	42	37	31	27	32	30
Tyrosine	2	3	4	5	2	5
Phenylalanine	9	13	10	10	13	12
Histidine	19	19	8	8	8	10
Hydroxylysine	11	7	22	21	10	8
Lysine	18	20	7	8	21	22
Arginine	49	56	56	57	50	51

*This work.

Table IV

Lamprey body wall, minor component	Human	Lamprey notochord	Human cartilage	
	a1(V)	a2(V)	a1(II)	a2(II)
Hydroxyproline	69	107	61	56
Aspartic acid	57	48	58	52
Threonine	27	19	24	28
Serine	56	33	42	43
Glutamic acid	96	91	105	100
Proline	87	118	106	96
Glycine	343	334	332	360
Alanine	55	46	69	65
Valine	26	23	30	25
Isoleucine	19	18	19	16
Leucine	45	38	46	44
Tyrosine	4	1	<2	<2
Phenylalanine	9	11	8	9
Histidine	10	8	8	8
Hydroxylysine	34	35	31	37
Lysine	20	20	21	17
Arginine	46	44	42	43

*This work.

2 B. Brodey, E. F. Eikenberry, K. BelBruno, and T. Hardt, manuscript in preparation.
amino acid composition (15), and its digestion by vertebrate collagenase. The molecular packing in lamprey dermis fibrils exhibits distinctive features found in mammalian skin fibrils, including a shorter axial period near 65 nm (36). Kimura (15, 16) has suggested that the presence of two distinct chain types in dermis collagen supports its type I nature, but this molecule differs from type I in not being associated with a minor type V component and in lacking the usual heterotrimeric nature of type I since both of its chains are similar to a1(1) rather than one chain having features of a2(I). Features of dermis collagen are consistent with a relationship to type III collagen, including its presence in skin, its nonheterotrimeric nature, and its rapid digestion by vertebrate collagenase. However, the distinctive properties that distinguish type III from type I, such as disulfide bonding within the triple-helix and precipitation at 1.7 M NaCl at neutral pH (9), are not found in dermis collagen, suggesting these characteristics may have developed after the lamprey evolved. Alternatively, it is possible that type III collagen in lamprey is particularly sensitive to degradation and was not solubilized intact in our preparations.

Studies of dermis collagen led to the suggestion that identifiable a2(I) chains did not evolve until after the divergence of the lamprey. However, we have identified a collagen type in the body wall which contains a chain with a2(I) characteristics. The presence of this a2(I)-like chain suggests that a2(I) as seen in skins of sharks, fish, and all higher vertebrates did not evolve from one of the dermis chains (15, 16) but was already present in recognizable form in the lamprey. In addition to its heterotrimeric nature, the major body wall collagen resembles type I in being widely distributed in different tissues, in being associated with a minor type V-like collagen, and in the similarity of its axial and lateral molecular packing to that seen in fibrils of bone and some tendons. However, its a1(a1') chains are distinct from a1(I) in amino acid composition and resemble lamprey type II chains in terms of composition, V-8 protease, and CNBr peptide patterns and digestion by vertebrate collagenase. Thus, dermis collagen and body wall collagen both have some characteristics resembling type I collagens, but neither has a traditional chain composition, since the dermis molecule contains only a1(I)-like chains while the body wall molecule contains an a2(I)-like chain in the same triple-helix as a chain different from a1(I).

Homology between the sequences of a1(I), a2(I), a1(II), a1(V) (or a2(V)), a1(III), a2(II), and a3(III) and a2(V) suggest these chains diverged at least 500 million years ago (37, 38). Our finding of a1(II), a2(II), a1(II), a1(I), a2(V), a2(II), and a3(III) suggests that the group 1 polyproline chains may have diverged and been present at the time vertebrates evolved, type I chains may not have been present in the same triple-helices we find today. The presence of a1(II) in lamprey collagen consists of an a2(I) chain closely related to the a chain in lamprey dermis and an a2(I) chain closely resembling the a2 chain of lamprey body wall raises the possibility that after the divergence of lamprey and higher vertebrates these chains may have joined to form the type I molecule of higher vertebrates (Table V). Such an association would require changes in the C-propeptides which are thought to govern chain selection (1).

The presence of type II collagen in notochord and type I-related molecules in the dermis and body wall suggests that different genetic types were involved in tissue specialization in early vertebrates. The status of type II and type I-related molecules as major collagenous components and types V and X as minor components is apparent only by the time the lamprey evolved and has been maintained in modern lampreys and mammals. Collagen molecules with amino acid compositions similar to type V are found as the major component in some invertebrate tissues with D-periodic fibrils (39), suggesting that relegation of type V to a minor status may have occurred as vertebrates developed. No lamprey collagen occupies the higher vertebrate type III niche, where type III comprises 15–40% of total collagen in specific tissues such as skin.

The degree of susceptibility of the five lamprey collagens to vertebrate collagenase digestion was a useful property to compare with mammalian collagen types. The resistance of the minor type V and XI collagens to cleavage and the digestibility of the three major lamprey collagens is strikingly similar to the situation in mammals and may relate to mechanisms of degradation established early in vertebrate evolution. We believe our data characterize the lowest vertebrate collagen known to be cleaved by vertebrate collagenase.

The data on lamprey and higher vertebrate collagens reflect proteins that have evolved separately for over 500 million years. We believe that the structure of lamprey collagens closely reflects early vertebrate forms since the body morphology of the lamprey today is similar to that seen in fossils from 300 million years ago (40). During the development of higher vertebrates from their primitive ancestors, there have been major changes in body morphology and connective tissues, with the appearance of bone and tendon (with largely type I collagen) and marked changes in collagen organization in skin. The conservation of fibril diameter, molecular packing, and morphology seen for type II fibrils throughout the vertebrates is consistent with the conservation of type II molecular features. In contrast, types I and III collagens have undergone substantial evolution in molecular composition since early vertebrates, and this is consistent with the dramatic changes in tissues containing these types.

Acknowledgments—We are grateful to Dr. Michael van der Rest of the Shriners Hospital in Montreal who carried out the amino acid analyses. The vertebrate collagenase was generously provided by Dr. John Jeffrey of Washington University School of Medicine in St. Louis. We thank Dr. Martin Mathews for his suggestion of studying the lamprey and his many contributions to this work. In particular...
his observations of distinct α1 and α2 chains in pepsin extracts of lamprey skin while only α1 chains were seen in acid extracts stimulated us to pursue the collagen types in the lamprey. Dr. Kathy Cassidy BelBruno and Dr. Dan Broek helped in early stages of this work, and Bob Fawcett of the New Hampshire Fish and Game Commission generously helped us obtain the lampreys.

REFERENCES
1. Miller, E. J. (1985) Ann. N. Y. Acad. Sci. 460, 1–13
2. Adachi, E., and Hayashi, T. (1985) Coll. Rel. Res. 5, 225–232
3. Smith, G. N., Jr., Williams, J. M., and Brandt, K. D. (1985) J. Biol. Chem. 260, 10761–10767
4. Kuhn, K. (1982) Biochem. Physiol. Ado. Chem. Physiol. 21, 537–555
5. Myers, J. C., Loidl, H. R., Stolle, C. A., and Seyer, J. M. (1985) J. Biol. Chem. 260, 5533–5541
6. Weil, D., Bernard, M., Gargano, S., and Ramirez, F. (1987) Nucleic Acids Res. 15, 181–197
7. Burgeson, R. E., and Hollister, D. W. (1979) Biochem. Biophys. Res. Commun. 87, 1124–1131
8. Burgeson, R. E., Hebda, P. A., Morris, N. P., and Hollister, D. W. (1982) J. Biol. Chem. 257, 7852–7856
9. Miller, E. J. (1984) Extracellular Matrix Biochemistry (Piez, K. A., and Reddi, A. H., eds) pp. 41–81, Elsevier Scientific Publishing Co., New York
10. Woolley, D. E. (1984) Extracellular Matrix Biochemistry (Piez, K. A., and Reddi, A. H., eds) pp. 119–157, Elsevier Scientific Publishing Co., New York
11. Weigus, H. G., Jeffrey, J. J., and Eisen, A. Z. (1981) J. Biol. Chem. 256, 9511–9515
12. Mathews, M. B. (1975) Connective Tissue: Macromolecular Structure and Evolution, Springer, New York
13. Nordwig, A., and Hayduki, V. (1969) J. Mol. Biol. 44, 161–172
14. Baccetti, B. (1985) Biology of Invertebrate and Lower Vertebrate Collagens (Bairati, A., and Garrone, R., eds) pp. 29–47, Plenum Press, New York
15. Kimura, S., Kamimura, T., Takema, Y., and Kubota, M. (1981) Biochim. Biophys. Acta 689, 251–257
16. Kimura, S. (1983) Comp. Biochem. Physiol. 73B, 525–528
17. Sheren, S. B., Eikenberry, E. F., Broek, D. L., Van der Rest, M., Doering, T., Kelly, J., Hardt, T., and Brodsky, B. (1986) Comp. Biochem. Physiol. 85B, 5–14
18. Kimura, S., and Kamimura, T. (1982) Comp. Biochem. Physiol. 73B, 335–339
19. Conrad, G. W., Kelly, P. T., Von der Mark, K., and Edelhauser, H. F. (1981) Exp. Eye Res. 32, 659–672
20. Rama, S., and Chandrakasan, G. (1984) Conn. Tissue Res. 12, 111–118
21. Von der Mark, K., Van Menzel, M., and Weidemann, H. (1982) Eur. J. Biochem. 124, 57–62
22. Elstow, S. F., and Weiss, J. B. (1983) Coll. Rel. Res. 3, 181–194
23. Broe, D. L., Madri, J., Eikenberry, E. F., and Brodsky, B. (1985) J. Biol. Chem. 260, 555–562
24. Laemmli, U. K. (1970) Nature 227, 680–686
25. Studler, F. W. (1973) J. Mol. Biol. 79, 237–248
26. Cleveland, D. W., Fischer, S. G., Kirschner, M. W., and Laemmli, U. K. (1977) J. Biol. Chem. 252, 1102–1106
27. Porter, K. (1964) Biophys. J. 4, 167–196
28. Pikkarainen, J., and Kulonen, E. (1965) Acta Chem. Scand. 19, 290
29. Pikkarainen, J. (1968) Acta Physiol. Scand. Suppl. 309, 1–72
30. Lewis, M. S., and Piez, K. A. (1964) J. Biol. Chem. 239, 3336–3340
31. Kang, A. H., Piez, K. A., and Gross, J. (1969) Biochemistry 8, 3648–3655
32. Bornstein, P., and Piez, K. A. (1964) J. Clin. Invest. 43, 1813–1823
33. Chung, E., Keele, E. M., and Miller, E. J. (1974) Biochemistry 13, 3459–3464
34. Rigby, B. J. (1971) Adv. Chem. Phys. 21, 537–555
35. Miller, E. J., and Mathews, M. B. (1974) Biochem. Biophys. Res. Commun. 60, 424–430
36. Brodsky, B., Eikenberry, E. F., and Cassidy, K. (1980) Biochim. Biophys. Acta 821, 162–166
37. Mathews, M. B. (1985) Biology of Invertebrate and Lower Vertebrate Collagens (Bairati, A., and Garrone, R., eds) pp. 545–560, Plenum Press, New York
38. Bernard, M. P., Chu, M.-L., Myers, J. C., Ramirez, F., Eikenberry, E. F., and Prockop, D. J. (1983) Biochemistry 22, 5213–5223
39. Miyura, S., and Kimura, S. (1985) J. Biol. Chem. 260, 15352–15356
40. Bardack, D., and Zangerl, R. (1971) in The Biology of Lampreys (Hardisty, M. W., and Potter, I. C., eds) Vol. I, pp. 67–84, Academic Press, London