A novel population of composite mounds: their initiation, growth and demise. San Emiliano Formation, Cantabrian Mountains, Spain

Steven L. Rogers

Abstract

Purpose Mounds from the Pennsylvanian aged San Emiliano Formation (Cantabrian Mountains, Spain) are commonly well exposed. These mounds range from 2 to 50 m in height and are observed to be primary geological features. The mounds are described and classified and the factors and controls of mound nucleation, growth and demise have been established.

Methods Microfacies analysis of 177 thin sections has revealed the composition of the mounds and surrounding carbonates.

Results Composite mounds, exhibiting characteristic components of both Cluster mounds and Agglutinated Microbial mounds are described. The mounds are skeletal-microbial/pack-wackestones. Peloidal, homogenous and clotted micrites are the main sedimentological constituents of the mounds. Microfossils are dominant with Donezella, Claricrusta, Rothpletzella and Girvanella being common. Small foraminifera, bryozoans, corals and algae are all present within the mounds, but are more common within off-mound carbonates.

Conclusions The formation of the mounds was controlled by a dynamic relationship between Donezellacean algae, and microscopic encrusters, a bio-mechanism not observed in mud mounds elsewhere. Fluctuating environmental conditions lead to the alternate dominance between the two groups, resulting in accretion and stabilisation of carbonate muds. These mounds are compositionally different to their Pennsylvanian counterparts.

Keywords Composite mound · Agglutinated microbial mound · Cluster mound · Donezella · Encrusting biota · Microfacies analysis · Pennsylvanian

Resumen

Propósito Los montículos de la Formación San Emiliano de edad Pensilvaniense (Cantabrian Mountains, España) están comúnmente bien expuestos. Estos montículos tienen una altura de 2 a 50 m y se observa que son rasgos geológicos primarios. El los montículos se describen y clasifican y los factores y controles de la nucleación, el crecimiento y la fallecimiento tienen que ver con los siguientes factores se ha establecido.

Métodos El análisis de microfacias de 177 sección delgada ha revelado la composición de los montículos y carbonatos circundantes.

Resultados Montículos compuestos, que exhiben los componentes característicos de ambos montículos Cluster y Microbial aglutinado. Se describen los montículos. Los montículos son esqueléticos-microbianos lodogranular/lodosa. Peloides, homogéneo y coagulado micrites son los principales componentes sedimentológicos de los montículos. Los microfósiles dominan con Donezella, Claricrusta, Rothpletzella y Girvanella son comunes. Pequeños foraminíferos, briozoarios, corales y algas son todos ellos presente dentro de los montículos, pero son más comunes dentro de los carbonatos fuera del montículos.

Conclusiones La formación de los montículos estaba controlada por una relación dinámica entre las algas donezellaceanas, y incrustaciones microscópicas, un mecanismo biológico no observado en montículos de lodo en otras partes. Medio ambiente fluctuante condiciones conducen a la dominación alternada entre los dos grupos, resultando en la creación y estabilización de lodos de carbonato. Estos montículos son composicionalmente diferentes a sus contrapartes de Pensilvaniense.

Palabras claves Montículo compuesto · Montículo microbiano aglutinado · Montículo de cúmulos · Donezella · Biota incrustante · Análisis de microfacias · Pensilvaniense
1 Introduction

Carbonate mud mounds are a type of marine buildup which originate by the successive vertical and lateral accretion of carbonate muds (Monty 1995). This type of buildup became increasingly recognised during the 1970s and 1980s when it was found that various mound types, and their associated structures, microfacies and biotas extended a diverse geological range and often included features which were poorly understood or unknown at the time (Wilson 1975; James 1980; Longman 1981; James 1983; Lees 1988; Monty et al. 1988; Swennen 1988). Mud mounds are complex structures which respond to facies changes and have been found to record shifts in lithofacies and biofacies (Monty 1995).

A wide variety of reef and mound types, ranging from Waulsortian-type mounds, bioclastic and microbial mounds, stromatactoid mounds, Tepee Buttes and a variety of others, have been reported both temporally and spatially (e.g. Monty 1995; Pratt 1995; Kaufmann et al. 1996; Neuweiler et al. 2001; Krause et al. 2004; Hebbeln and Samankassou 2015). Riding (2002) reviewed the historical classification of organic reefs, in an attempt at the standardisation of what is a fraught nomenclature. The mounds described here are classified according to that standardisation. Individual populations of mounds are generally distinguished by their varying biological, sedimentological and tectonic settings, a distinction between Palaeozoic and Mesozoic mounds also exists (Schmidt et al. 2001). Due to the polygenetic nature of reefs and mud mounds, analysis of individual populations is fundamental to understanding the factors influencing their presence (e.g. Flajs et al. 1995). The nomenclature of Riding (2002) is based on reef structure. Presented here is a population of mounds from the Pennsylvanian aged San Emiliano Formation, Cantabrian Mountains, Spain. These mounds have a unique growth dynamic controlled by two competing ecological assemblages which has not yet been described. The mounds observed fall into the category, as defined by Riding (2002), of Cluster mounds, although small volumes of the mounds, dominated by encrusting biota are considered as Agglutinated Microbial mound components. Due to this overlap, the term ‘Composite mound’ is used to encapsulate the differing structures observed. The nucleation of, growth and subsequent demise of these San Emiliano Fm. mounds is also discussed.

Pennsylvanian ‘carbonate mud mounds’ from the Cantabrian Mountains have been described by Bowman (1979), Riding (1979) and Samankassou (2001) additionally. Hensen et al. (1995) described both primary and diageneric mounds from the area.

1.1 Geological setting

The San Emiliano Formation is located within the Cantabrian Mountains (Fig. 1), León Province, Northern Spain, around the small rural town from which it takes its name. The area sits within the Iberian Massif, which itself has been informally arranged into six tectonostratigraphic units. These units were based upon differences in facies associations, structural styles, metamorphism and magmatism (Lotze 1945). The northern most of these units is where the study area is located and is called the Cantabrian zone (Lotze 1945; Pérez-Estaún et al. 1988). The Cantabrian zone consists of an incomplete Cambrian–Ordovician sedimentary sequence, a Silurian and Devonian sequence which is complete toward the west but is missing elsewhere and several thousand metres of strata spanning the Tourmaisan to the Gzhelian Stages (Bahamonde et al. 2002). The Cantabrian zone (Lotze 1945; Pérez-Estaún et al. 1988) is further subdivided into five tectonic units: the Fold and Nappe, Central Asturian Coalfield, Ponga Nappe, Picos de Europa and Pisuerga-Carrión provinces. The San Emiliano Formation belongs to the La Sobia-Bodón/Aramo units of the Fold and Nappe Province (Pérez-Estaún et al. 1988; Bahamonde et al. 2002). The formation was deposited within the foredeep depozone of a Variscan foreland basin.

The San Emiliano Fm. (Figure 2) consists of at least 1800 m (Bowman 1982) of Pennsylvanian aged (Bashkirian to Moscovian), alternating deltaic clastics and shallow marine carbonates, with rare, thin coal bands (Bowman 1979). At the San Emiliano type locality (i.e. the San
Studied mound locations, mound imaged in 'B'

- Fractured/‘rubble’
- Poorly Bedded
- Trees
- Bedding laps onto Mounds
- Mounds
- Poorly Bedded
- Mounds
- Trees
- Mounds
- Fractured/‘rubble’

- Mounds
- Mounds
- Mounds
- Mounds
- Mounds
- Mounds

- Alluvium and Mass Movement

- Devonian Undivided
- Barcaliente Fm.
- San Pedro Fm.
- Formigoso Fm.
- Barrios Fm.
- Ovile Fm.
- Lancara Fm.
Emiliano valley) Bowman (1982) subdivided the formation into three constituent members, based upon the proportions of clastic and carbonate sediments. These are the [1] Pinos, [2] La Majúa and [3] Candemuela Members. The [1] Pinos Member consists of black shales passing into siltstones with thin sandstone interbeds; the member is approximately 250 m thick. The [2] La Majúa Member consists of alternating regressive deltaic and shallow marine clastics (with some thin coal bands) separated by eight major limestone units (Bowman 1979); the member is approximately 1050 m thick. Fusulinid Foraminifera collected from the upper part of the La Majúa Member have indicated a late Bashkirian age (van Ginkel and Villa 1996). Mud mounds (Fig. 1) are not observed within all eight of the limestone units of the La Majúa Member and seem to be confined to units 1, 4 and 8 (Fig. 2). Non-mound bearing units ranged from off-mound carbonates typical of the formation or ‘Phylloid’ algal bearing wackestones. The [3] Candemuela Member consists of deltaic and shallow marine clastics with coal beds and seatearths; the member is approximately 500 m thick.

Thirty kilometres east of the San Emiliano Valley, in the Bernesga Valley, a Moscovian aged succession, comprising mainly turbidites, carbonate debris flows and shallow water siltstones can be found exposed in the northern flank of the Cármenes syncline (Bowman 1982; van Ginkel and Villa 1996).
This sedimentary succession is commonly known as the Lois-Cigüera Formation (Rácz 1964; Brouwer and van Ginkel 1964; de Meijer 1971; Van De Graaf, 1971; Bowman, 1982, 1985), and is a stratigraphic equivalent to the San Emiliano Fm. The Lois-Cigüera Fm. consists of the basal Villanueva Beds, the middle “Caliza masiva” unit and the top Villamanín Beds. Brouwer and van Ginkel (1964) erected the Lois-Cigüera Fm. on the basis that the sediments were mostly detrital (turbiditic and debris flow). Moore et al. (1971) and Bowman (1982) reported the San Emiliano Formation as missing or reduced along the northern limb of the Cármenes syncline, and reported that the “rhythmic units” of the San Emiliano Fm. (as observed in the vicinity of San Emiliano) are not found in the Villamanín area and are absent (or reduced) as a result of uplift and erosion, the responsible uplift believed to be associated with the Cantabrian Block (as defined by Radig 1962). Bowman (1982) reports several lithologies (turbidites, shallow water siltstones and carbonate debris) which are recognised as being the same age as the San Emiliano Fm. Due to the sufficiently distinct facies and distribution the Lois-Cigüera Fm. is separated from their San Emiliano valley counterparts (Bowman 1982; van Ginkel and Villa 1996). The San Emiliano Fm. was often mistakenly reported from the Villamanín area previous to Moore et al. (1971) and Bowman (1982). The distinction is still not recognised by some authors (Riding 1979; Samankassou 2001).

Outcrops that were investigated and sampled for this study are along the well exposed limestone ridges of the La Majúa Mb. located within the San Emiliano Valley. 277 Samples were obtained from a total of 24 locations across the valley. The majority of samples were taken across the laterally extensive exposure of the uppermost carbonate unit of the La Majúa Member (unit 8, Fig. 2) of the San Emiliano Fm. (Figure 1c) in addition to detailed sampling at localities where mounds are well exposed and accessible (Fig. 1a). Sampling included coverage of the basal, mound, capping and off-mound facies, where possible. The results presented are based on a detailed microfacies analysis of 177 thin sections.

2 Microfacies analysis

Mound bearing units exhibit similar vertical profiles, consisting of approximately 30 cm to 3 m of bedded limestones (basal facies), followed by 2–50 m of carbonate mud mound/s (mound facies) lacking in primary geological features, which is in turn overlain by further bedded (up to 10 m) limestones (capping facies). In places, a bed of 10–30 cm thick siliciclastic rich carbonate can be observed to onlap and drape over the mounds (see Fig. 1b for a typical example). The basal facies, mound facies and capping facies and the relationship between them are all considered here.

Carbonate units from the San Emiliano Fm. which are barren of carbonate mud mounds are also, briefly, considered.

2.1 The basal facies

The basal facies often consists of approximately 1 m of bedded limestones, individual beds range from 13 to 32 cm thick. In hand specimen the basal facies appears as a blue-grey colour. Numerous macro fossils are visible, with shelly fauna, rugose and auloporid corals and algae identified. The limestones are micritic and exhibit a porcelaneous fracture. The basal microfacies is a skeletal-microbial bafflestone consisting of intertwining (often bio-cemented) thickets of branching Donezella (with some Beresella) thalli, associated with birdseye, fenestral and some poorly developed primary cavity fabrics filled with sparite. Calcimicrobes found within some of the cavities occur as clumps of sheaths within a homogenous and peloidal micrite. The primary cavities appear to be part of an irregular, porous network within the Donezella thickets. Areas around the Donezella thickets are dominated by bodies of encrusting Claracrusta, Donezella, Girvanella and probably encrusting foraminifera (Fig. 3a). The encrusting appears non-selective and coats algae, foraminifera, Girvanella and mudchips. Cortoids (Fig. 3b) and cyanoliths are present within the samples particularly where mudchips have undergone encrustation. Donezella thalli are mostly well preserved can be observed as either: in situ as a three dimensional “shrub” like framework with abundant baffled micritic sediment and free floating microfossils (Fig. 3b), or as broken fragments, these fragments show little sign of wear. The micrite-walled calcimicrobe Girvanella is commonly well preserved as small tanged clumps within thin layers of microspar which acts as a bio-cement between algal thalli, a micritic envelope is present on most bioclasts (Fig. 3a, b). Other than the dominant Donnezellaceans and associated encrusting calcimicrobes (Girvanella and Rothpletzella), Archaeolithophyllum, Petschoria, Komia (and Ungdarella), Beresellids, Tuberitidae and rare, small foraminifera’s (including Tetrataxis) and ostracods are found.

2.2 The mound facies

The Composite mounds of the San Emiliano Fm. are a union of mound structures: carbonate mud with in-place skeletal elements (Cluster mound component) with subordinate volumes of laminar sediment trapping and binding microbial elements (Agglutinated Microbial mound component). The sediments are best described as a skeletal-microbial pack-wackestone often associated with fenestral cavities (Fig. 3c, e) and occasional stromatoid cavities (Fig. 3f). The mounds vary in size ranging from 2 to 50 m in thickness and are steep sided, lens to mound shaped. Mounds appear
algae directly responsible for the construction of the cavity frame-
cavity fabrics from this study show the same relationship, with the
tissues appears surrounded by Donezellacean algae, many examples of
base of the next. A stromatactoid cavity. This example of stromatac-
tics are very closely spaced, with the top of one set of cavities forming the
fibrous and blocky calcite cements. In this example the cavities are
characteristic flat bases, undulose roofs, internal sedimentary fill and both
cemented together with clotted micrite and bio-cement. A cortoid
ences.
Sub-rounded micritic grains.
surface on which the base of the cavity network has formed, with the
mound from the San Emiliano Formation. Benthos can be found at 29T 738867.33 461336.25) towards the west of the
formation (near the village of Robledo de Babia.)
The geometry of the cavities (flat base, undulating roofs) in the
bottom half of the figure may suggest some sort of hard ground or
surface on which the base of the cavity network has formed, with the
roof being defined by algal growth. d Sub-rounded micritic grains.
Some areas consist of poorly sorted grains with distinct size differences.
e Several examples of laminar stromatatics cavities, with char-
acteristic flat bases, undulose roofs, internal sedimentary fill and both
fibrous and blocky calcite cements. In this example the cavities are
very closely spaced, with the top of one set of cavities forming the
base of the next. f A stromatactoid cavity. This example of stromatac-
tis appears surrounded by Donezellacean algae, many examples of
cavity fabrics from this study show the same relationship, with the
algae directly responsible for the construction of the cavity frame-
work
as either isolated buildups or as superimposed complexes
of two or more mounds (Fig. 1c). Individual mounds do not
show any evidence of asymmetry, preferred orientation or
thickness changes. Mounds are micritic and in hand speci-
men are lighter in colour than the basal and capping facies
counterparts. Rare occurrences of silicilastic conglomera-
tes were observed within mounds (an accessible outcrop can be
found at 29T 738867.33 461336.25) towards the west of the
formation (near the village of Robledo de Babia.)

The mound facies is a fenestral packstones (Fig. 3c)
characterised by non-laminated peloidal and clotted mic-
rite (Fig. 3d) associated with variously sized fenestral cav-
ities and bioclasts. Cavities are spar-filled and range from
small ‘birdseye’ to larger, irregular voids (Fig. 3c, e). Sev-
ceral cavities have a stromatactoid fabric; flat based voids
with undulating roofs, often with fine sediment fill at the
bottom (Fig. 3f). Isolated clasts of sedimentary framework
can be found within some of the larger cavities, as can a
rare, sparse, coating of pyrite. The sedimentary framework
consists of both sparitic and mictitic peloids, the latter
associated with a relative abundance of encrusted Donez-
ella (with some accessory Beresella and Dvinella) thalli,
peloids are often thrombooidal or aligned. Homogenous
micrite occurs exhibiting no obvious fossil content and
little in the way of sedimentary fabrics, in association with
Donezellaceans (Fig. 3d). In places a clotted texture can be
observed within the micrite (Fig. 3d–f). Several cyanolith
like growths and encrusting sheets are observed; individual
algae thalli are rarely encrusted, although in situ thickets
or ‘shrub-like’ growths are (Fig. 3a). Encrusting sheets
occur in a repetitive manor in association with alternating
Donezellacean growths. Biodiversity observed within
this facies is low; associated with the highly dominant
Donezellaceans are rare Tuberritinae and foraminifera,
plus Komia, Archaeolithoporella and encrusting Clarac-
rusta, Rothpletzella and others (Fig. 4a). Some selective
dolomitisation has occurred, often as contact or floating
equigranular rhombic to non-rhombic crystals within the
blocky cement filling the fenestral cavities.

Microfacies investigation of the mounds revealed two
sub-facies that occur in a repetitive pattern. The first
sub-facies (sub-facies a) is a fenestral pack-wackestone
characterised by non-laminated peloidal and clotted micrite and encrusted Donezellacean thalli (Fig. 3c, d).
The sedimentary framework consists of both sparitic and
micritic peloids and although they are non-laminated they
are often thrombooidal or ordered. Clotted micrite
occurs in places, as does homogenous micrite, both are
commonly found as cavity fill. Donezella (and accessory
Beresella) are well preserved and relatively large, form-
ing isolated and aligned thickets, sub-facies a forms the
Cluster mound (Riding 2002) component of the mounds.
The second sub-facies (sub-facies b) is characterised
by encrusting calcimicrobes, namely, Rothpletzella and
Claracrusta with occasional Girvanella and Wetherea-
della growths (Fig. 4a–c). These encrustations occur as
laminar sheets of branching filaments; both tightly, and
loosely packed growths with homogenous and peloidal
micrite and some sparpy cement between individual lam-
inae occur. Rare foraminifera (mostly Tetrataxis, Lasio-
discus and very rare Bradyina) have been observed, often
between entwined Donezella thalli. Sub-facies b forms the
Agglutinated Microbial mound (Riding 2002) component of the mounds. Sub-facies b is volumetrically less signi-
ficant than sub-facies a, with encrusting sheets often being
micron to millimetre in scale (Fig. 4a–c).

2.3 The capping facies and off-mound facies

The capping facies and off-mound facies (those carbonates
flanking or occupying space between mound bearing strata)
consist of bedded carbonates. The beds directly above the
mounds often have a high clastic component, they are a
dark grey in colour and are observed to drape over/onlap
the mounds. The contact between the capping facies and
the mound facies is sharp. Beds are thinner than those of
the basal facies, ranging from 5 to 25 cm thick. The clastic-
rich bed directly above the mounds are grain supported
packstones consisting of broken and transported fossil
fragments, sparpy calcite crystals and an insoluble clastic/
organic material sedimentary framework (Fig. 4d). Calcite
crystals occur interspersed within a poorly laminated very
fine quartz and insoluble organic framework. Bioclasts are dominantly broken Donezellacean fragments, the orientation of which is slightly imbricated. *Tuberitina* are observed as well as some encrusting *Komia* and large fragments of bryozoan fronds. Several flattened, opaque lenses occur, these are possibly plant fragments which have been compacted by further sedimentation, shell fragments also appear slightly flattened. Above these beds the carbonates are classified between a wacke- and packstone. These are characterised by a homogenous to slightly peloidal micrite sedimentary framework, partially baffled by branching Donezellaceans and partly supporting large bioclasts (over 1 mm in size) and
A community of microscopic encrusters consisting of Wetheredella (We.), Girvanella (Gi.), Rothpletzella (Ro.) and Sharmaovella (Sh.) in association with the dominant encruster, the algae incertae sedis, Claracrusta (Cl.). The dark micritic patches at the centre of the calcimicrobial dome exhibits some branching features and several components that most resemble micritized cyanobacterial colonies. The cortoids in these samples are spherical in nature and resemble ooids but for the lack of any laminae, they generally consist of a recrystallized spherical nucleus surrounded by a micritic rim. Foraminifera and calcimicrobes are well preserved and appear with relatively high biodiversity, both mobile and attached forms of Tuberitinidae are also well preserved and relatively abundant. A few rare echinoid plates are present. Calcimicrobial assemblages range from small isolated clumps, to larger encrustations involving several organisms. The cortoids in these samples are spherical in nature and resemble ooids but for the lack of any laminae, they generally consist of a recrystallized spherical nucleus with a micritic rim exhibiting calcimicrobial growth. These samples show a biodiversity higher than samples from the mound facies, the microfossils present within these samples are well preserved.

2.4 Non-mound bearing units

Several of the carbonate units of the La Majúa Mb. were observed to be barren of mud mounds. These units resembled either the basal facies or consist of bedded whole fossil wackestones and bioclastic packstones. The latter units appear as dark buff grey beds approximately 20 cm in thickness. Bedding is wavy in places and the limestones can often be observed to transition into marls toward the top of the beds. ‘Phyllloid’ algae are common, found as laminar, to cyathiform and ‘leaf’-like growths (e.g. the encrusted clast in Fig. 4c). Other macro-fossils include rugose and auloporid corals, brachiopods and gastropods. Archaeolithophyllum, Petschoria, Komia (and Ungdarella), Donezella and several types of encrusting calcimicrobe are present.

3 Discussion

The basal facies is characterised by well-preserved, dense thickets of Donezella and Beresella, which were common in Bashkirian and Moscovian age carbonates (see Sect. 3.1). These carbonates typically occur as low relief mounds or banks within marine lagoonal settings (Flügel 2004). Cortoids and cyanoliths suggest a shallow subtidal back-reef environment—in the geological setting of these sediments (i.e. a foreland basin) it is envisaged that a tectonic structure (e.g. a blind thrust or the forebulge) may act as a barrier in the place of a ‘traditional’ reef. The Barcaliente and Valdeteja Formations (which were deposited to the north and south of the San Emiliano Fm.) may also have acted as a barrier. Behind these, a lagoonal (or lagoon-like) environment is interpreted to have formed. The low-diversity of the microfossils would suggest a relatively stressed environment, the high number of algae and little else may suggest a brackish environment. Although rare, the occurrence of attached Tetrataxis is further evidence for a stressed environment (Cossey and Mundy 1990). The low diversity and simple nature of the taxa observed may indicate a pioneer community. The biological niche the organisms have filled is certainly newly opened—as evident in the shift in lithology (from clastic dominated to carbonate dominated). The disparity of microfacies evident between the basal and mounds facies indicates a change in environmental conditions or possibly ecological tiering, whereby the Donezella dominated mounds successfully establish themselves in the newly opened niche.

The light colour of the mounds (when compared to the darker basal, capping and off-mound beds) may indicate a lower Total Organic Content value, perhaps alluding to a shorter formation period. The shape of the mounds doesn’t suggest any asymmetry. The boundary between mounds and onlapping (or draping) beds—may also indicate that the mound accumulated faster than the surrounding capping and basal facies. The mound facies is dominated by various packstones, containing mostly Donezellaceans. Peloidal micrite and homogenous micrite are more common than in the basal beds, and in some cases are the major constituents. Much of the peloidal micrite is nonlaminated and appears as clotted growths and other “shrub” like forms. The presence of what are quite possibly calcified filamentous cyanobacterial sheaths suggests that peloids are possibly micritised remains of these and of the calcareous algae. Homogenous
micrite is often in association with faint thrombolytic textures, perhaps hinting at a microbial or algal origin. The heterolithic nature of the mound facies possibly indicates a considerable variation in current flow, energy conditions, sea levels and/or nutrient levels during the deposition of the mud mounds. The biota associated with this facies remains mostly the same as the basal assemblage and is dominated by non-complex alga and encrusting cyanobacterial forms. This association of biota suggest a restricted, shallow, low energy environment. Evidence for changing conditions is present along with some higher energy events, although the environment is interpreted to remain dominantly restricted, shallow and low energy throughout the deposition of the mounds. The capping facies consists of three distinct lithologies: a packstone characterised by its lithoclastic component in addition to its bioclastic component which is found ‘draped’ over several of the mounds. Above that is a wacke-packstone with accessory bioclasts which include taxa typical of metazoan dominated carbonates. The relatively large, reworked and broken bioclasts within the unit draped over the mounds, plus the presence of increased clastics indicate a higher energy depositional environment than that of the mounds. Some imbrication of bioclasts and lamination is evident, suggesting stronger current activity. The occurrence of several different foraminifera, bryozoans and more *Tuberitina* may indicate the environment is becoming less restricted. Donezellaceans are absent or found as broken and transported clasts within most of the capping facies. However, the occurrence of a similar biological community, and the presence of mud chips, it is envisaged that the depositional depth of the last unit was similar to the depth of mound formation or slightly deeper, but with a higher energy level. The higher energy may be a result of the environment becoming more open, making it difficult for the algae to establish and grow into shrub like thickets. The mounds are thought to have been smothered by the draping (capping) units as a result of an increase of clastic material to the basin, probably as a result of thrust propagation (causing the migration of the foreland basin and increased clastic supply.) The bedded units on top of the mounds indicate a relative sea-level rise; this is interpreted to be flexure related basin subsidence. The changes in microfacies throughout the mounds suggest a steady sea level rise throughout deposition.

The presence of stromatactoid and fenestral cavities with internal early marine cement implies that there was constant movement of water through the carbonates when they were partially lithified, which would suggest the presence of a current or wave activity. The peloids, bioclasts, microfossils and cavities show little sign of compression, which may indicate an early lithification.

3.1 Palaeoecology of the mounds

The mounds have a distinct biological community consisting of *Donezella* (Fig. 3b, c) and several encrusting forms including: *Rothpletzella, Claracrusta, Girvanella* and occasionally *Witheredella* and *Shamovella* (Fig. 4a). In some examples *Girvanella* (Fig. 4e) can be observed between entwined *Donezella* thalli. In other cases, *Rothpletzella* and *Claracrusta* can be found to encrust, bind and assumingly stabilise *Donezella* thickets. Evidence of calcimicrobial bial sheaths encrusting Donezellaceans is present (Fig. 4f). *Donezella, Claracrusta* and *Rothpletzella* are described in some detail before considering the biological assemblage as a whole.

Donezella is observed as either whole, bush- or shrub-like growths often up to several centimetres in diameter, as sheet like encrustations of entwined thalli which appear to encrust the subjacent surface or as broken thalli which have been reworked. There are two common species observed: the type species, *Donezella lutugini* Maslov and *Donezella lunaensis* Rácz. Thalli are found to range from 50 to 275 μm in diameter with an average diameter of 140 μm. *Donezella* is generally observed within the mound and basal facies of the observed mounds. Where *Donezella* is found in situ (as either a shrub like growth or as an encrusting sheet) it is always the dominant biota with very few other biotas found in association. Maslov (1929) originally assigned *Donezella* to the red algae (Johnson 1963), however, in successive subsequent studies *Donezella* has been considered to be: green (Codiaceae) alga (Rácz 1964), alga *incertae sedis* (Rich 1967), Foraminifera (Riding 1979), calcareous sponges (Ternier et al. 1977), microproblematica (Riding 1979; Chuvashov and Riding 1984), green (Paleosiphonocladales) algae (Shuysky 1985; Ivanova 1999), green algae of *incertae familiae* (Groves, 1986), green (Dasycladales) algae (Deloffre, 1988) and pseudo-algae (Vachard et al. 1989). Recent work regarding *Donezella* refers to the genus as green (Chlorophycephyta) algae (Mamet and Villa 2004), algae *incertae sedis* (Mamet and Zhu 2005), algospongia (Vachard and Cózar) or more commonly, microproblematica (Samankassou 2001; Della Porta et al. 2002; Choh and Kirkland 2006; Corrochano et al. 2012). *Donezella* accumulations are often interpreted to have grown within a warm, shallow (low to moderate energy, below fair-weather wave base) environment but have been shown to thrive over a range of water depths up to 200 m (Della Porta et al. 2002; Choh and Kirkland 2006; Corrochano et al. 2012). Environmental conditions from quiet to quite agitated have been interpreted (Rácz 1964; Bowman 1979). *Donezella* growths have been found to form in a range of environments ranging from platform interiors to deep-slopes (Della Porta et al. 2002). This cosmopolitan habit and ability of *Donezella* to occupy a variety of environments, quickly establishing itself...
and growing to maturity suggest that *Donezella* may be an example of the “opportunist” species of Connell and Slatyer (1977). The dominant occurrence of *Donezella* in the studied samples indicates that it played a direct role in the formation of the carbonates of the San Emiliano Formation, it is observed to both facilitate and bind (in association with several encrusting organisms, specifically *Claracrusta*, *Rothpletzella* and *Girvanella*) and at a millimetre scale may be considered to be a constructor (Fig. 3c). In association with microscopic encrusters, *Donezella* was a successful baffler, binder and constructor, in regards to mound formation, *Donezella* must be considered as an integral component and directly linked to the nucleation, growth and success of carbonate mud mound formation within the San Emiliano Fm. *Beresella* and *Dvinella* are both found in association with *Donezella*, although they are rare. This important skeletal element of the mounds leads to the classification of this mound component to be that of a Cluster mound (Riding 2002).

Specimens of *Claracrusta* (Fig. 3a) are observed as laminar rows of irregular, often bean and ovoid to sub-quadratic shaped cells which have a honey or yellow coloured calcite wall. The cells have been referred to as tubular (Cózar 2005, and elsewhere), but here, appear to be ovoid or subquadratic, agreeing with Mamet and Villa (2004). Individual cells have been observed to range from 10 to 110 μm but the average cell size is around 50 μm. Encrustations have the characteristic growth form of a concordant first lamination with subsequent encrusting laminations becoming more and more undulating; the space between laminations is generally filled with homogenous micrite or more rarely, other encrusting forms. *Claracrusta* appears to be non-selective in what it encrusts, although *Donezella* and *Archaeolithophyllum* appear to be the most commonly encrusted objects. Several examples of entire *Donezella* florets being encrusted have been observed and the preservation level is usually particularly high for these *Donezella* specimens (Fig. 3a). These florets are generally associated with homogeneous micrite and constructed cavities which have been selectively dolomitised. *Claracrusta* in association with *Rothpletzella*, *Girvanella* and to a lesser extent *Wetheredella* (Fig. 4a), are considered to be important binders and stabilisers of *Donezella* growths and therefore the role they play within the formation of carbonate mounds within the San Emiliano Formation (particularly within the San Emiliano Valley) is very important.

Rothpletzella (Fig. 4a) is characterised by laminar sheet-like growths of branching tubes which lie parallel to the substrate. In transverse sections *Rothpletzella* often resembles a chain or bead like structure with individual filaments ovoid in shape, often resembling beans or sausages. Individual filaments have been reported to range from 13 to 37 μm (Adachi et al. 2007) in diameter. Longitudinal cuts reveal dichotomous branching of filaments. Filaments branch often and can form fan like structures. Filaments have a thin micritic wall and are filled with clear sparry cement. *Rothpletzella* grows as thin crusts and oncoids (Feng et al. 2010) and platy growths (Wood 2000). Growths are laminar and undulate to mimic the subjacent micro-topography (Fig. 4b).

Rothpletzella, *Wetheredella* and *Girvanella* in combination have been known to grow together symbiotically (Wood 1948) forming what is essentially a microbial organism where boundaries between the various components are impossible to see with the naked eye/optical microscope. This microbial organism was mistakenly interpreted as a single fossil and named *Sphaerocodium* (Wood 1948; Adachi et al. 2007). *Rothpletzella* is a commonly observed calcimicrobe in this study and is often found as well preserved laminations of juxtaposed ovoid filaments. The genus is often found in association with other encrusting alga and calcimicrobes, especially *Claracrusta* and *Girvanella* and more rarely *Wetheredella*. These calcimicrobes often form variously layered growths. Several examples have a microsparitic wall and are filled with micrite with the filaments measuring up to 50 μm in height (width was not measured as it is unsure if the cutting angle is completely perpendicular to the filament). Several of the laminar growths of *Rothpletzella* reach up to a millimetre in height. The genus is usually found encrusting various bioclasts, in particular *Donezella* thickets (Fig. 4b) and ‘phylloid’ algae (Fig. 4c). This association of encrusting forms is interpreted to play an important role in the binding and stabilisation of *Donezella* thickets within the San Emiliano Fm. mounds, although minimal in volume, these micron to millimetre build-ups play a vital role, and are considered as Agglutinated Microbial mound (Riding 2002) elements. Both of the biological assemblage’s present form build-ups of sediment with unique characteristics. These are individually interpreted as a Cluster mound element and an Agglutinated Microbial mound element. The introduction, and use of the term, ‘Composite mound’ to encapsulate this overlapping of mound structure allows for the appreciation of both of these important structural features of the mounds, without giving gratuitous emphasis to the volumetrically dominant element (i.e. in this case, the Cluster mound element).

The association of biotas presumably formed wave resistant, topographic mounds. The presence of bound and stabilised *Donezella* encruster assemblages may have encouraged consecutive colonisation of the same area by subsequent *Donezella* and encrusters by acting as a substrate (Fig. 4b, 5). Other biota observed consist of low diversity assemblages and often consist of biota which may represent organisms living in a stressed environment (e.g. attached *Tetrataxis*). The concentration of *Donezella* and its ally taxa may have directly contributed to the low biological diversity; low diversity assemblages characterised by dominant
algal communities have been attributed to the exclusion of other biota from the living space via both chemical defence (poisons produced by the algae) and through the occupation of all available living space (Toomey 1976, 1991; Forsythe et al. 2002; Samankassou and West 2003; Enpu et al. 2007). *Petschoria*, *Archaeolithophyllum*, *Komia* and *Ungdarella* were all observed to be present within the mound facies, in far lesser numbers than the dominant biotas described above. There appears to be a reduced population or complete lack of grazers within environments where they would normally be expected. Bryozoans, corals and other biota often associated with Pennsylvanian aged carbonate deposits are generally restricted to the mixed clastic and bedded carbonate lithologies and are rarely seen within mounds within the San Emiliano Valley. Dasyclad algae, foraminifera, bryozoans, corals and other shelly fauna are more common within the Bernesga Valley mounds (Samankassou 2001). *Thartharella* and calcisponges, which were reported as a main component of mounds from the Bernesga Valley (Samankassou 2001) are absent, or greatly reduced, from the San Emiliano Valley. Several, distinct palaeoecological assemblages are recognisable from the studied material. Mound and off-mound carbonates (i.e. those carbonates found within the same unit as mounds) exhibit similar biological communities, however, distinct variations were observed between the abundance of certain biota between the communities. Bedded lithologies are associated with a palaeoecological assemblage distinct to those from mound bearing strata.

3.2 Initiation, growth and demise of the mounds

The Composite mounds from the type locality of the San Emiliano Fm. initiated as the result of several interacting factors. The combination of a newly opened niche within a restricted, warm and shallow basin encouraged the growth of pioneer or opportunistic organisms. The absence of detrital clastic input allowed for carbonate producers to fully

Fig. 5 A schematic representation of mound formation. (1) *Donezella* grows and is broken and abraded by local wave action and currents. (2) *Donezella* grows on top of the accumulated, broken *Donezella*. (3) Environmental conditions deteriorate and laminar encrusters colonise the substrate provided by the *Donezella* thickets. (4, 5 and 6) Environmental conditions continue to fluctuate resulting in the repetition of *Donezella* growth, and stabilisation by encrusting forms. (7) A close up of the area circled in (6), schematic representation of the interaction of *Donezella* growths and laminar encrusters. Note that it is not individual *Donezella* thalli that are encrusted, but the ‘shrub’ like growths as a whole. The approximate scales for the individual components differ, Cluster mound elements range from millimetre to centimetre in vertical profile, Agglutinated Microbe mound components are often micron to millimetre in vertical profile. The area shown in 7 is approx. 2 mm across.
establish themselves, resulting in an ‘in house’ production of carbonate mud. Growth of the mounds resulted from the interaction of the genus *Donezella* and several encrusting forms including the genera *Rothpletzella* and *Claracrusta*. Fluctuating environmental conditions allowed the encrusting forms to bind and stabilise the framework building and carbonate mud baffling *Donezella* growths. *Donezella* grew during ‘normal’ environmental conditions within the basin whilst the encrusters, which were direct competitors for the environmental niche, flourished during deteriorating conditions (Fig. 5). Adachi et al. (2007) observed a similar relationship between *Graticula*-like red algae, *Rothpletzella* and laminar stromatoporoids in Lower Devonian age bindstones. The resulting stabilised (and likely wave/current resistant), encrusted *Donezella* thickets provided a substrate for further *Donezella* growth when environmental conditions became more tolerable. The mounds ceased to form when detrital sediment deposition returned to the basin. Microfacies analysis indicated that when detrital input increased the environment became less restricted with encrusting forms becoming less common whilst (relatively) large and mobile metazoans became more common. The *Donezella*/encruster relationship ceased and mounds could no longer form. The major factors responsible for mound formation can be attributed to: a] biological community present, b] a restricted basin and c] a lack of clastic input.

Table 1 Summary of documented occurrences of *Donezella* related buildups

Mound description	Age	Location	References
Low-energy buildups	Lower Permian	Central Texas (USA)	Wiggins (1986)
Donezella mounds with siliceous sponges, *Archaeolithophyllum* and worm tubes	Lower Permian	Ouachita Mountains (Oklahoma, USA)	Choh and Kirkland (2000)
Donezella—Siliceous sponge dominated carbonate buildups with worm tubes	Lower Pennsylvanian	Ouachita Mountains (Oklahoma, USA)	Choh and Kirkland (2006)
"Donezella" low bank to mound controlled by water depth and energy	Moscovian	Hueco Mountains (W Texas and SE New Mexico)	Lambert (1986) and Lambert and Stanton (1988)
Skeletal microbial *Donezella—Tubiphytes (= Shamovella)* biostromes	Bashkirian	California (USA)	Watkins (1999)
Donezella baffled mounds associated with *Petschoria*, *Komia* and *Archaeolithophyllum*	Bashkirian—Moscovian	Cantabrian Mountains (Spain)	Rácz (1964)
Donezella mounds with *Komia*, *Ungdarella*, encrusting foraminifers, 'phyllloid algae' and dasyyclads	Bashkirian—Moscovian	Cantabrian Mountains (Spain)	Bowman (1979)
Mounds sparse of *Donezella* (5–10%)	Bashkirian—Moscovian	Cantabrian Mountains (Spain)	Riding (1979)
Donezella mounds with *Petschoria*, *Komia*, *Ungdarella*, encrusting foraminifers, *Archaeolithophyllum* and bryozoans	Bashkirian—Moscovian	Cantabrian Mountains (Spain)	Eichmüller (1985)
Skeletal-microbial boundstone. *Donezella*, agglutinated worm tubes and calcisponges	Bashkirian—Moscovian	Cantabrian Mountains (Spain)	Samankassou (2001)
Skeletal microbial *Donezella—Tubiphytes (= Shamovella)* mounds	Bashkirian—Moscovian	Cantabrian Mountains (Spain)	Samankassou (2001)
Clotted microbial peloids with *Donezella* and ‘phyllloid algae’	Pennsylvanian	Cantabrian Mountains (Spain)	Samankassou et al. (2013)
Donezella pack-wackestones mounds with *Rothpletzella* and *Claracrusta* (Composite mound)	Bashkirian—Moscovian	Cantabrian Mountains (Spain)	This study
Donezella mounds with *Beresella*, *Komia*/*Ungdarella*, bryozoans, crinoids, encrusting foraminifers and ostracods	Late Surpukhovian to early Bashkirian	Ellesmere Island (Canadian Arctic Archipelago)	Davies and Nassichuk (1989)
Skeletal *Donezella—Tubiphytes (= Shamovella)* mounds	Carboniferous	Kazakhstan	Cook et al. (2007)
Donezella and *Ungdarella* buildups	Bashkirian	Western Urals (Russia)	Proust et al. (1996)

Mounds, bioherms and biostromes are all included in this table. It should be noted that Riding (1979) concluded that *Donezella* was not responsible for the formation of the studied mounds. Mounds are grouped into geographical locations.
3.3 Comparison to other mounds

Throughout the Pennsylvanian Series, carbonate units associated with a dominance of Donezella growths are relatively common. Several examples also exist from the Permian, although these are far less abundant. These carbonates have been reported to form a wide variety of geometries and features including mud mounds (of various classifications), bioherms, biostromes and as carbonate ramps and platforms (Della Porta et al. 2002; Choh and Kirkland 2006 and references within). Other mounds (including bioherms and biostromes) containing Donezella are summarised in Table 1 and are loosely grouped into geographical location. Several common biological associations are apparent. An association with Petschoria, Archaeolithophyllum, Komia and Ungdarella is plain to see within the majority of these mounds. Several of the mounds, including those from the Bernesga Valley, are associated with worm tubes and siliceous sponges. No other mounds (other than those in this study), bioherms or biostromes have a reported biological association between Donezella, Claracrusta, Rothpletzella, Girvanella and other microscopic encrusting forms. The Composite mounds of the San Emiliano Valley have compositional and formational mechanisms that are unique when compared to other mounds with a dominant Donezella component, as well as other known populations of mounds from the Carboniferous. The depth and/or environmental setting at which the San Emiliano mounds formed may be the cause for this unique biological assemblage, most other Donezella mounds have been interpreted to form at a greater depth below sea level.

4 Conclusions

Three distinctive microfacies are recognised between the basal, mound and capping material of the carbonate units of the San Emiliano Fm. at its type point, plus an addition a fourth facies; carbonate units which are barren of mounds. Composite mounds from the San Emiliano Fm. are interpreted as skeletal-microbial pack-wackestones with various types of cavity networks. The dominant palaeontological communities were low diversity assemblages representing a pioneer or opportunist community living in a newly opened (relatively restricted) niche.

The dominant mound communities were: a Donezella community, with rare foraminifera (Tetrataxis and Lasiodiscus) (forming a Cluster mound component) and a laminar encrusting community comprising mostly of the genera Rothpletzella, Claracrusta and Girvanella (forming an Agglutinated Microbial mound component). These two communities competed for habitat and had a dynamic relationship controlled by fluctuating environmental conditions. Off mound sediments (basal and capping facies) were commonly associated with higher biodiversity, including biota such as bryozoans, corals and foraminifera. Sedimentary deposition of the mounds was characterised by autochthonous micrite, in the “in-house” manner, typical of many microbial mounds. The process identified as being responsible for the nucleation and growth of the mounds is a dynamic relationship between the Donezella dominated community and the laminar encrusting form dominated community. As indicated by microfacies analysis the environmental conditions of deposition fluctuated. Where conditions were near ‘normal’, Donezella flourished, acting as a microscopic framework builder as well as a baffler. Environmental ‘degradation’ led to the encruster guild becoming dominant. Laminar encrusters grew in a non-selective manner covering the majority of grain types. Commonly the encrusters could be found atop of Donezella thickets, stabilising and protecting the (supposedly) delicate Donezella thalli. When environmental conditions returned to suit Donezella the laminar encrusters provide a suitable substrate for new growth. The Composite mounds ceased to form due to drowning by a deepening sea-level or by an increase in clastic sediment resulting in a clastic-rich bed draped over the mound. The mechanism responsible for mud mound production within the San Emiliano Fm. is unique for known Donezella dominated mounds, and comparable Carboniferous mounds in general. The term Composite mound is used here to describe mounds bearing two or more of the structural characteristics defined by Riding (2002).

Acknowledgements The author would like to express his gratitude to the technical staff in GGE at Keele University for the preparation of all thin sections used. This study forms part of a PhD completed in 2015 at the University of Keele under the supervision of Dr Michael Montenari. The author is grateful to Sergio Rodriguez for providing constructive comments which greatly improved the manuscript. Javier Martín-Chivelet is thanked for his editorial assistance when this manuscript became a ghost in the system. Alex Nobajas is thanked for his assistance with the Spanish translation of the abstract.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Adachi, N., Ezaki, Y., & Pickett, J. W. (2007). Interrelations between framework-building and encrusting skeletal organisms and microbes: more-refined growth history of Lower Devonian bindstones. Sedimentology, 54, 89–105.
Bahamonde, J. R., Colmenaro, J. R., Fernández, L. P., Moreno, C., Barba, P., Heredia, M., et al. (2002). Carboniferous. In W. Gibbons & M. T. Moreno (Eds.), The geology of Spain (pp. 93–116). London: Geological Society.

Bowman, M. B. J. (1979). The depositional environments of a limestone unit from the San Emiliano Formation (Namurian/Westphalian), Cantabrian Mts., NW Spain. Sedimentary Geology, 24, 25–43.

Bowman, M. B. J. (1982). The Stratigraphy of the San Emiliano Formation and its relationship to other Namurian/Westphalian A sequences in the Cantabrian Mts., N W Spain. Trabajos de Geologia, 12, 23–35.

Bowman, M. B. J. (1985). The sedimentology and paleogeographic setting of late Namurian-Westphalian A. A basin-fill succession in the San Emiliano and Cármenes areas of NW Leon, Cantabrian Mountains, NW Spain. In: Lemos de Sousa, H. J. & Wagner, R. H. (eds), Papers on the Carboniferous of the Iberian Peninsula (Sedimentology, Stratigraphy, Paleontology, Tectonics and Geochemistry), Annales da Faculdade de Ciências, Universidade do Porto, Special Supplement to Vol. 64, 117–168.

Brouwer, A. & van Ginkel, A. C. (1964). La succession Carbonifère dans la partie méridionale des montagnes Cantabriques (Espagne Nord-Ouest). CR, Sèmes Congrès sur la Carbonifère, Paris, 1, 307–319.

Carballeira, J., Corrales, I., Valladares, I., Naval, A., Ruiz, F., Lorenzo S., Martínez Chacón, M. L., Mendez, C., Sanchez De Posada, L. C. & Truyols, J. (1985). Aportaciones al conocimiento de la estratigrafía de la Formación San Emíliano (Carbonífero, Cordilera Cantábrica) en su área-tipo, Compte Rendu 10ème Congrès sur le Carbonifère, Madrid, 1983, 1, 345–362.

Choh, S-J. & Kirkland, B. L. (2000). Microfacies, biota, and depositional environment of an early Pennsylvanian (Morrowan) Donezella-siliceous sponge dominated bioherm, Frontal Ouachita Thrust Belt, Oklahoma, USA (abstract). SEPM-IAS Research Conference on Permo-Carboniferous Platforms and Reefs, El Paso, Texas, 15–16 May 2000, 37.

Choh, S-J., & Kirkland, B. L. (2006). Sedimentological role of micropromblematica Donezella in a Lower Pennsylvanian Donezella-siliceous sponge-dominated carbonate buildup, frontal Ouachita thrust belt, Oklahoma, U.S.A. Journal of Sedimentary Research, 76, 152–161.

Chuvashov, B., & Riding, R. (1984). Principal florals of Palaeozoic marine calcareous algae. Palaeontologia, 27, 487–500.

Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 111, 1119–1144.

Cook, H. E., Zhemchuzhnikov, V. G., Zumpolch, W. G., Lehmann, P. J., Alexeiev, D. V. Ya. Zhaimina, V. & Ye. Zorin, A. (2007). Devonian and Carboniferous Carbonate Platform Facies in the Bolshoi Karatau, Southern Kazakhstan: Outcrop Analoges for Coeval Carbonate Oil and Gas Fields in the North Caspian Basin. In: Yilmaz, James N. P. (1980), Reef Environments. In: Scholle, P. A., Bebout, D. G. & Moore, C. H. (Eds), Carbonate Depositional Environments, AAPG Memoir 33, 346–444.

James, N. P. (1983). Reefs. In: Walker, R. G. (ed.) Facies models geo-science Canada. Reprint series. 1, 121–132

Johnson, J. H. (1963). Pennsylvanian and Permian algae. Colorado School of Mines, Quarterly, 58, 1–211.

Kaufmann, B., Arthur, M. A., Howe, B., & Scholle, P. A. (1996). Wide-spread venting of methane-rich fluids in late Cretaceous (Campanian) submarine springs (Teepee Buttes) Western Interior seaway, USA. Geology, 24, 799–802.

Krause, F. F., Scotese, C. R., Nieto, C., Sayegh, S. G., Hopkins, J. C., & Meyer, R. O. (2004). Paleozoicstromatolites and zebra carbonate mud-mounds: Global abundance and palaeoecological distribution. Geology, 32, 181–184.

Lambert, L. L. (1986). Growth habit of the micropromblematical genus Donezella in the middle Magdalena, Hucro Mountains, West Texas. Geological Society of America Abstracts with Programs, 18, 250–251.

Lambert, L. L., & Stanton, R. J., Jr. (1988). Carbonate facies and stratigraphic framework of the middle Magdalena (Middle Pennsylvanian), Hucro Mountains, West Texas. AAPG Bulletin, 72, 101.

Lees, A. (1988). The Waulsortian buildups of the Dinant area. In: Herbosch, A. (ed.), IAS 9th European Regional Meeting Excursion Guidebook Lueven-Belgium, Belgian Geological Survey, 177–185.
Samankassou, E. (2001). Internal structure and depositional environment of Late Carboniferous mounds from the San Emiliano Formation, Cármenes Syncline, Cantabrian Mountains, North Spain. *Sedimentary Geology*, 145, 235–252.

Samankassou, E., Von Allmen, K., & Bahamonde, J. R. (2013). Growth Dynamics of Pennsylvanian Carbonate Mounds From A Mixed Terrigenous-Carbonate Ramp In The Pueblo De Lillo Area, Cantabrian Mountains, Northern Spain. *Journal of Sedimentary Research*, 83, 1099–1112.

Samankassou, E. & West, R. R. (2003). Constructional and accumulative modes of fabrics in selected Pennsylvania algal dominated buildups in eastern Kansas, Midcontinent, USA. In: Ahr, W. M., Harris, P. M., Morgan, W. A. & Somerville, I. D (eds), *Permo-Carboniferous platforms and reefs*. SEPM/AAPG Special Publication, SEPM/AAPG Special Publication 78, 219–237.

Schmidt, D. U., Leinfelder, R. R., & Nose, M. (2001). Growth dynamics and ecology of Upper Jurassic mounds, with comparisons to Mid-Palaeozoic mounds. *Sedimentary Geology*, 145, 343–376.

Shuysky, V. P. (1985). On the position of the Paleoheresellids and other segmented algae from the Siphonophyceae. New data on the geology, biostatigraphy and paleontology of the Ursals. Akad. Nauk. SSSR, Ural. Nauchn. Centr. Inst. Geol. Geochem. Akad. Nauk. SSSR, Ural. Nauchn. Centr. Inst. Geol. Geochem. Akad. Nauk. SSSR, Ural. Nauchn. Centr. Inst. Geol. Geochem. 86–95.

Stockmans, F., & Williér, Y. (1965). Documents paléobotaniques pour l’étude du Houiller dans le Nord-Ouest de l’Espagne. *Mémoires de l’Institut Royal des Sciences Naturelles de Belgique*, 79, 1–106.

Swennen, R. (1988). *IAS 9th European Regional Meeting Abstracts* *Louvain-Belgium*. Belgian Geological Survey, 245.

Ternier, H., Ternier, G., & Vachard, D. (1977). On Morvanminoida and Aoujgalidia (Porrifera, Ichyosporangia): upper Paleozoic “Pseudo Algae”. In E. Flügel (Ed.), *Fossil Algae—Recent Results and Developments* (pp. 215–219), Berlin: Springer-Verlag.

Toomey, D. F. (1976). Paleosynecology of a Permian plant dominated marine community. *Neues Jahrbuch für Geologie und Paläontologie Abhandlungen*, 152, 1–18.

Toomey, D. F. (1991). Late Permian reefs of southern Tunisia: Facies patterns and comparison with the Capitell Reef, southwestern United States. *Facies*, 25, 119–145.

Vachard, D., & Cózar, P. (2010). An attempt of classification of the Palaeozoic *incertae sedis* Algaspongia. *Revista Española de Micropaleontología*, 42, 129–241.

Vachard, D., Perret, M. F., & Delvolvé, J. J. (1989). Algues, pseudalgues et foraminifères des niveaux buffékiens dans les secteurs d’Escarra et Aragon Subordan (Pyrénées aragonaises, Espagne). *Geobios*, 22, 697–723.

Van De Graaf, W. J. E. (1971). The Piedrasluengas limestone, a possible model of limestone facies distribution in the Carboniferous of the Cantabrian Mountains. *Trabajos de Geología*, 3, 151–159.

van Ginkel, A. C., & Villa, E. (1996). Palaeontological data of the San Emiliano Formation (Cantabrian Mountains, Spain) and their significance in the Carboniferous chronostratigraphy. *Geobios*, 29, 149–170.

Wagner, R. H. (1959). Flora fossil y estratigrafía del Carbonífero de España NW y Portugal N. *Estudios Geológicos*, 15, 393–420.

Wagner, R. H., & Bowman, M. B. J. (1983). The position of Bashkirian/Moscovian boundary in West European chronostratigraphy. *Newsletter on Stratigraphy*, 12, 132–161.

Watts, R. (1999). Upper Paleozoic biostromes in island-arc carbonates of the eastern Klamath terrane, California. *Paleontological Research*, 3, 151–161.

Wiggins, D. W. (1986). Geochemical signature in carbonate matrix and their relation to deposition and diagenesis, Pennsylvanian Marble Falls Limestone, Central Texas. *Journal of Sedimentary Petrology*, 56, 771–783.

Wilson, J. L. (1975). *Carbonate Facies in Geologic History* (p. 379). Berlin: Springer.

Wood, A. (1948). “Sphaerocodium”, a misinterpreted fossil from the Wenlock Limestone. *Proceedings of the Geological Association*, 59, 9–22.

Wood, R. (2000). Novel paleoecology of a post extinction reef: Famenian (Late Devonian) of the Canning basin, southwestern Australia. *Geology*, 28, 987–990.
Affiliations

Steven L. Rogers

Steven L. Rogers
s.l.rogers@keele.ac.uk

1 School of Geography, Geology and the Environment, University of Keele, William Smith Building, Keele, Staffordshire ST5 5BG, UK