A bound concerning primordial non-Gaussianity

David H Lyth and Ignacio Zaballa

Physics Department, Lancaster University, Lancaster LA1 4YB, UK
E-mail: d.lyth@lancaster.ac.uk and i.zaballa@lancaster.ac.uk

Received 26 July 2005
Accepted 26 September 2005
Published 14 October 2005

Online at stacks.iop.org/JCAP/2005/i=10/a=005
doi:10.1088/1475-7516/2005/10/005

Abstract. Seery and Lidsey have calculated the three-point correlator of the light scalar fields, a few Hubble times after horizon exit during inflation. Lyth and Rodriguez have calculated the contribution of this correlator to the three-point correlator of the primordial curvature perturbation. We calculate an upper bound on that contribution, showing that it is too small to ever be observable.

Keywords: cosmological perturbation theory, inflation
1. Introduction

The study of non-Gaussianity features in the primordial curvature perturbation ζ has become a subject of growing interest, because they provide a valuable discriminator between different models for its origin [1]–[4]. While the relevant scales are outside the horizon, the curvature perturbation according to the δN formalism is given by [5,6] (see also [7]–[10])

$$\zeta(x, t) = \delta N(\phi_i(x), \rho(t))$$

$$= \sum_i N_i(t) \delta \phi_i(x) + \frac{1}{2} \sum_{ij} N_{ij}(t) \delta \phi_i(x) \delta \phi_j(x) + \cdots.$$

In this expression, N is the number of e-folds of expansion, from a flat slice of spacetime on which the light fields during inflation have values $\phi_i(x) = \phi_i + \delta \phi_i(x)$, and ending on a slice which has uniform energy density ρ. The initial slice is taken to be a few e-folds after the relevant scales have left the horizon. The final slice can be any time after ζ has settled down to the time-independent value which provides an initial condition for the evolution of perturbations after horizon entry, and is constrained by observation. We use the notation $N_i \equiv \partial N/\partial \phi_i$ and $N_{ij} \equiv \partial^2 N/\partial \phi_i \partial \phi_j$, the derivatives being evaluated with the fields at their unperturbed values ϕ_i.

According to first-order cosmological perturbation theory, the field perturbations $\delta \phi_i(x)$ are Gaussian, with spectrum $(H/2\pi)^2$ where H is the Hubble parameter during inflation. (In this paper we ignore the scale dependence of the spectrum.) Using this result, equation (2) gives the evolution of ζ without any further use of cosmological perturbation theory. The first term is Gaussian, and higher terms are responsible for any non-Gaussianity.

The question is whether it is permissible to ignore the non-Gaussianity of $\delta \phi_i$ which is generated at higher orders in cosmological perturbation theory. In this paper we answer the question in the affirmative, at least for the next order in cosmological perturbation theory and for the three-point correlator of ζ. Our starting point is a recent calculation of Seery and Lidsey [12].
2. The three-point correlator and f_{NL}

Since observation shows that ζ is almost Gaussian, equation (2) must be dominated by the first term. The spectrum of the curvature perturbation is therefore [5]

$$P_\zeta \simeq \left(\frac{H}{2\pi} \right)^2 \sum_{i=1}^{n} N_i^2. \quad (3)$$

The three-point correlator of ζ, or its bispectrum defined by $\langle \zeta_{k_1}, \zeta_{k_2}, \zeta_{k_3} \rangle = (2\pi)^3 B_\zeta \ \delta^3(k_1 + k_2 + k_3)$, is the lowest order signature of non-Gaussianity. Following Maldacena [11], we define $f_{\text{NL}}(k_1, k_2, k_3)$ by

$$B_\zeta (k_1, k_2, k_3) = \frac{6}{5} f_{\text{NL}} \left[P_\zeta (k_1) P_\zeta (k_2) + \text{cyclic} \right], \quad (4)$$

where $P_\zeta (k) = 2\pi^2 P_\zeta / k^3$.

At the level of first-order cosmological perturbation theory, the perturbations in the fields are Gaussian. Then f_{NL} is almost scale independent and given by [3, 4]

$$-\frac{6}{5} f_{\text{NL}} \simeq \frac{\sum_{i,j,k} N_i N_j N_k}{(\sum_i N_i^2)^2} + \mathcal{P}_\zeta \frac{\sum_{i,j,k} N_i N_j N_k}{(\sum_i N_i^2)^3}. \quad (5)$$

At the level of second-order cosmological perturbation, the field perturbations have non-Gaussianity which is specified entirely by their three-point correlator. This adds to f_{NL} the following contribution [3]1:

$$\Delta f_{\text{NL}} = \sum_{i,j,k} N_i N_j N_k f_{\text{NL}}^{ijk}(k_1, k_2, k_3), \quad (6)$$

where the $f_{\text{NL}}^{ijk}(k_1, k_2, k_3)$ functions are related to the three-point correlation functions of the fields by

$$B^{ijk}_\phi (k_1, k_2, k_3) = - \left(4\pi^4 \right) \frac{6}{5} f_{\text{NL}}^{ijk} (k_1, k_2, k_3) \left(\frac{H}{2\pi} \right)^3 \sum_i \frac{k_i^3}{\prod_i k_i^3}, \quad (7)$$

$$\langle \delta \phi_{k_1} \delta \phi_{k_2} \delta \phi_{k_3} \rangle = (2\pi)^3 B^{ijk}_\phi (k_1, k_2, k_3) \delta^3(k_1 + k_2 + k_3). \quad (8)$$

The quantity f_{NL} will eventually be observable [1] if $|f_{\text{NL}}| \gtrsim 1$. It will then be given accurately by equation (5), provided that $|\Delta f_{\text{NL}}| \ll 1$.

Seery and Lidsey [12] find from second-order cosmological perturbation theory

$$\langle \delta \phi_{k_1}^i \delta \phi_{k_2}^j \delta \phi_{k_3}^k \rangle = (2\pi)^3 \left(\sum_i k_i^3 \right) 4\pi^4 \left(\frac{H}{2\pi} \right)^4 \sum_{\sigma'} \frac{\phi_{k_1} \delta_{jk} M_{123}}{2H \delta_{jk} M_{123}}. \quad (9)$$

Here the sum σ' is over all the permutations of the indices i, j and k, at the same time their respective momenta k_1, k_2 and k_3, and

$$M_{123} (k_1, k_2, k_3) = \frac{1}{2} \left(-3 \frac{k_1^2 k_2^2}{k_t^2} - \frac{k_1 k_2 k_3^2}{k_t^2} (k_1 + 2k_3) + \frac{1}{2} k_1^3 - k_1 k_2^2 \right), \quad (10)$$

where $k_t = k_1 + k_2 + k_3$. Then Δf_{NL} can be read off from (7)–(9) resulting in

$$-\frac{6}{5} \Delta f_{\text{NL}} = \sum_i \frac{N_i \left(\frac{\phi_{k_1}}{2\pi} \right) \sum_{\sigma} M_{123}}{M_{p}^2 \sum_i N_i^2 \sum_i k_i^3}. \quad (11)$$

The sum over σ denotes the sum over the permutations of the three momenta only.

1 Other contributions will be studied in a separate paper, but are expected to be subdominant.
If the only relevant field perturbation is that of the inflaton in a single-component slow roll model of inflation, the sum of equations (5) and (11) reproduces [12] the result of Maldacena [11]. In that case $|f_{\text{NL}}| \ll 1$, making it too small to observe.

3. The maximum of the Δf_{NL} function for constant ζ

To maximize Δf_{NL} with fixed ζ we use the Lagrange multipliers method. To do this, first write equation (11) in the following form:

$$\frac{6}{5} \Delta f_{\text{NL}} \simeq \sum_i N_i V^i C (k_1, k_2, k_3),$$

(12)

where we have used the slow roll condition $3H^2 \phi \simeq -V^i$, and C is a function of the momenta only given by

$$C (k_1, k_2, k_3) = \frac{1}{6 H^2 M^2} \sum_{i} M_{123}.$$

(13)

Then, the differential of Δf_{NL} and the constraint are respectively

$$d (\Delta f_{\text{NL}}) = \frac{C}{\sum_i N_i^2} \sum_i V^i dN_i,$$

(14)

$$\sum_i 2 \lambda N^i dN_i = 0,$$

(15)

where λ is the Lagrange multiplier corresponding to the unique constraint of the problem, $\sum_i N_i^2 = \text{constant}$. Adding terms proportional to dN_i we find that

$$N_i = -\frac{C V_i}{2 \lambda \sum_i N_i^2}.$$

(16)

To find the value of λ we need to add all the N_i^2. After doing this one gets

$$\lambda = \pm \frac{C (\sum_i V_i^2)^{1/2}}{2 (\sum_i N_i^2)^{3/2}},$$

(17)

and therefore the extrema of the function correspond to the values

$$N_i = \pm \left(\sum_j N_j^2 \right)^{1/2} \frac{V_i}{(\sum_j V_j^2)^{1/2}} = \pm \frac{P_{\zeta}^{1/2}}{(H/2\pi)} \frac{V_i}{(\sum_j V_j^2)^{1/2}}.$$

(18)

To find the extrema of the non-linear function f_{NL} we substitute the value above of N_i in equation (12), which yields

$$\frac{6}{5} |\Delta f_{\text{NL}}|_{\text{max}} = \frac{1}{6} \left| \sum_{i} M_{123} \frac{(H/2\pi)}{P_{\zeta}^{1/2} M^2} \right| \left(\sum_i \frac{V_i}{H^2} \right)^2.$$

(19)
Writing explicitly the terms in the sum $\sum_{\sigma} M_{123}/\sum_{i} k_{i}^{3}$ one gets

$$\left| \sum_{\sigma} M_{123}(k_1, k_2, k_3)/\sum_{i} k_{i}^{3} \right| = \left| \frac{1}{2} - \frac{1}{2} \sum_{i\neq j} k_{j}^{2}/k_{i}^{2} - 4 \sum_{i>j} k_{i}^{2}/k_{j}^{2}/k_{i}^{2} \right|. \quad (20)$$

The maximum value of the quantity in brackets is $11/6$, achieved for $k_1 = k_2 = k_3$.

The slow roll parameter ϵ is defined along the steepest descent trajectory of the potential $V(\phi_i)$. That is,

$$\epsilon \equiv \frac{M_{P}^{2} |\nabla V|^{2}}{2 V^{2}} = \frac{1}{18 M_{P}^{2}} \sum_{i} \left(\frac{V_{i}}{H^{2}} \right)^{2}. \quad (21)$$

Then, Δf_{NL} can be written in the following form:

$$\frac{6}{5} |\Delta f_{NL}|_{\max} = \frac{11}{12} \frac{(H/2\pi)}{P_{\zeta}^{1/2} M_{P}} \sqrt{2\epsilon}. \quad (22)$$

The power spectrum of gravitational waves, $P_{G} = 8 M_{P}^{-2}(H/2\pi)^2$, is independent of the number of fields, and therefore we can express the tensor to scalar ratio r as

$$r = \frac{P_{G}}{P_{\zeta}} = \frac{8 (H/2\pi)^2}{M_{P}^{2} P_{\zeta}}. \quad (23)$$

Introducing r in equation (22) for Δf_{NL}, one gets

$$\frac{6}{5} |\Delta f_{NL}|_{\max} = \frac{11}{24} \sqrt{r\epsilon}. \quad (24)$$

We can use a recent analysis [13] of observations to bound r and ϵ. There is a direct bound $r < 0.46$. Also, the bound $|n - 1| < 0.04$ on the spectral tilt, combined with the prediction [14, 15] $n - 1 = 2\epsilon + \cdots$, gives $\epsilon \lesssim 0.02$ (barring an accurate cancellation in the last formula). This gives

$$\frac{6}{5} |\Delta f_{NL}| \lesssim 0.044. \quad (25)$$

We conclude that the three-point correlator of ζ can safely be calculated from equation (5) if it is big enough to be observable.

Acknowledgments

We thank the referee and Y Rodriguez for pointing out additional contributions to Δf_{NL}. DHL is supported by PPARC grants PPA/G/O/2002/00469, PPA/V/S/2003/00104, PPA/G/O/2002/00098 and PPA/S/2002/00272, and by EU grant MRTN-CT-2004-503369. IZ is partially supported by Lancaster University Physics Department.
A bound concerning primordial non-Gaussianity

References

[1] Bartolo N, Komatsu E, Mataresse S and Riotto A, Non-Gaussianity from inflation: theory and observations, 2004 Phys. Rep. 402 103 [SPIRES] [astro-ph/0406398]
[2] Lyth D H and Rodriguez Y, Non-Gaussianity from the second-order cosmological perturbation, 2005 Phys. Rev. D 71 123508 [SPIRES] [astro-ph/0502578]
[3] Lyth D H and Rodriguez Y, The inflationary prediction for primordial non-Gaussianity, 2005 Preprint astro-ph/0504045
[4] Boubekeur L and Lyth D H, Detecting a small perturbation through its non-Gaussianity, 2005 Preprint astro-ph/0504046
[5] Sasaki M and Stewart E D, A general analytic formula for the spectral index of the density perturbations produced during inflation, 1996 Prog. Theor. Phys. 95 71 [SPIRES] [astro-ph/9507001]
[6] Lyth D H, Malik K A and Sasaki M, A general proof of the conservation of the curvature perturbation, 2005 J. Cosmol. Astropart. Phys. JCAP05(2005)004 [SPIRES] [astro-ph/0411220]
[7] Starobinsky A A, Dynamics of phase transition in the new inflationary Universe scenario and generation of perturbations, 1982 Phys. Lett. B 117 175 [SPIRES]
[8] Hawking S W, The development of irregularities in a single bubble inflationary Universe, 1982 Phys. Lett. B 115 295 [SPIRES]
[9] Guth A H and Pi S Y, Fluctuations in the new inflationary Universe, 1982 Phys. Rev. Lett. 49 1110 [SPIRES]
[10] Starobinsky A A, 1985 Pis. Zh. Eksp. Teor. Fiz. 42 124
Starobinsky A A, Multicomponent De Sitter (inflationary) stages and the generation of perturbations, 1985 JETP Lett. 42 152 (translation)
[11] Maldacena J, Non-Gaussian features of primordial fluctuations in single field inflationary models, 2003 J. High Energy Phys. JHEP05(2003)013 [SPIRES] [astro-ph/0210603]
[12] Seery D and Lidsey J E, Primordial non-Gaussianity from multiple-field inflation, 2005 Preprint astro-ph/0506056
[13] Tegmark M et al (SDSS Collaboration), Cosmological parameters from SDSS and WMAP, 2004 Phys. Rev. D 69 103501 [SPIRES] [astro-ph/0310723]
[14] Lyth D H and Riotto A, Particle physics models of inflation and the cosmological density perturbation, 1999 Phys. Rep. 314 1 [SPIRES] [hep-ph/9807278]
[15] Liddle A R and Lyth D H, 2000 Cosmological Inflation and Large-Scale Structure (Cambridge: Cambridge University Press)