General machine-learning surrogate models for materials prediction

Chandramouli Nyshadham,1 Matthias Rupp,2 Brayden Bekker,1 Alexander V. Shapeev,3 Tim Mueller,4 Conrad W. Rosenbrock,3 Gábor Csányi,5 David W. Wingate,6 and Gus L. W. Hart1

1Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA
2Fritz Haber Institute of the Max Planck Society, Faradayweg 4–6, 14195 Berlin, Germany
3Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia
4Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
5Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
6Computer Science Department, Brigham Young University, Provo, UT 84602, USA

Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, NbNi) with 10 different species and all possible fcc, bcc and hcp structures up to 8 atoms in the unit cell, 15,950 structures in total. We find that prediction errors remain unaffected when increasing the number of simultaneously modeled alloys. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree, with prediction errors as low as 1 meV/atom.

I. INTRODUCTION

Advances in computational power and electronic structure methods have enabled large materials databases. Using high-throughput approaches, these databases have proven a useful tool to predict properties of materials. However, given the combinatorial nature of materials space, it is infeasible to compute properties for more than a tiny fraction of all possible materials using electronic structure methods such as density functional theory. A potential answer to this challenge lies in a new paradigm: surrogate machine-learning models for accurate materials predictions.

The key idea is to use machine learning to rapidly and accurately map electronic structure data onto a statistical representation of a basis set in that the predicted property is expanded as invariance to translation, rotation, and permutation of a set of features (as opposed to a data subset by electronic structure calculations). Such an “accelerated high-throughput” (AHT) approach could potentially increase the number of investigated materials by several orders of magnitude.

Traditionally, empirical interatomic potentials were used to reproduce macroscopic properties of materials faster than DFT. Well-known empirical interatomic potentials for periodic solids include Lennard-Jones potentials, the Stillinger-Weber potential and Embedded Atom Methods (EAM) for alloys. A problem with empirical interatomic potentials is that they are designed with a fixed number of parameters and cannot be systematically improved. In contrast, surrogate models which are empirical interatomic models based on machine learning, systematically improve with additional data.

We demonstrate the feasibility of accurate general (simultaneously interpolate energies of multiple different materials) surrogate machine-learning models for enthalpies of formation of materials across the composition, lattices, and structures. We find that five combinations of state-of-the-art representations and regression methods (Table I) all yield consistent predictions with errors in the low meV/atom range.

II. BACKGROUND

A surrogate machine-learning model replaces ab initio simulations by mapping a crystal structure to properties such as enthalpies, elastic constants or band gaps. Their importance lies in the fact that once the model is trained, properties of new materials can be predicted in time either constant or linear in the size of the material, with low pre-factor, typically in milliseconds.

The two major parts of a surrogate machine-learning model are the numerical representation of the input data and the learning algorithm. We use the term “representation” for a set of features (as opposed to a collection of unrelated or only loosely related descriptors) that satisfies certain physical requirements such as invariance to translation, rotation, and permutation of atoms, uniqueness, differentiability, and computational efficiency. The role of the representation is akin to that of a basis set in that the predicted property is expanded in terms of a set of reference structures.

The materials community has proposed several representations for crystal structures. Many do not fulfill the above properties or are restricted in practice to materials with a few different chemical elements. Consequently, surrogate models based on these representations are limited in their accuracy, due to the violation of the uniqueness requirement. We explore three state-of-the-art representations that fulfill above properties for construction of general surrogate models: Many-body tensor representation (MBTR), smooth overlap of atomic positions (SOAP) and moment tensor potential (MTP). Each...
Figure 1. The accelerated high-throughput approach. Candidate structures and properties are generated by surrogate machine-learning models based on reference electronic structure calculations in a materials repository. Selected structures are validated by electronic structure calculations, preventing false positive errors.

Table I. State-of-the-art surrogate machine-learning models investigated in this work.

Abbrev.	Surrogate model	Description
CE	Cluster Expansion	One of the early successful surrogate models developed in the materials community. A material’s ground state energy is expanded as an Ising-type model with constant expansion coefficients.
MBTR +KRR	Many-Body Tensor Representation	Materials are expanded in distributions of k-body terms stratified by chemical element species, using non-linear regression.
MBTR +DNN	Many-Body Tensor Representation + Deep Neural Network	MBTR is used as input for DNN to learn a new representation and predict using a parametric deep regression method.
SOAP +GPR	Smooth Overlap of Atomic Positions	Atomic environments represented as smoothened Gaussian densities of neighboring atoms expanded in a spherical harmonics basis, using non-parametric regression.
MTP	Moment Tensor Potentials (MTP) + Polynomial Regression	Atomic environments expanded in a tailored polynomial basis, computed via contractions of moment tensors.

representation is employed as proposed and implemented by its authors, including the regression method: Kernel ridge regression (KRR) for MBTR, Gaussian process regression (GPR) for SOAP, and polynomial regression for MTP. Since predictions (but not necessarily other properties) of the kernel-based KRR and GPR are identical, we will use the two terms interchangeably here. We also employed cluster expansion (CE) and Deep Neural Network (DNN) models.

CE models have been used for three decades to efficiently model ground state energies of metal alloys, but require that the atomic structure can be mapped to site occupancies on a fixed lattice. They are therefore less suited to model different materials. In this work, we use them as a baseline and build a separate CE model for each alloy.

DNNs are essentially recursively stacked layers of functions, the large number of layers being the major difference to conventional neural networks. They have been used to predict energies and to learn representations. While DNNs can learn representations (“end-to-end learning”, here from nuclear charges, atom positions and unit cell basis vectors to enthalpy of formation), this requires substantially more data than starting with a representation as input. We, therefore, provide the DNN with MBTR as input. The idea of using MBTR+DNN is to explore whether a representation-learning technique can improve upon a manually designed representation in conjunction with the standard Gaussian kernel (MBTR+KRR).

III. MATERIALS AND METHODS

A. Data

We created a dataset (DFT-10B) containing structures of the 10 binary alloys AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, NbNi. Each alloy system includes all possible unit cells with 1–8 atoms for face-centered cubic (fcc) and body-centered cubic (bcc) crystal types, and all possible unit cells with 2–8 atoms for the hexagonal close-packed (hcp) crystal type. This results in 631 fcc, 631 bcc and 333 hcp structures, yielding $1595 \cdot 10 = 15950$ unrelaxed structures in total. Crystal structures were generated using the enumeration algorithm by Hart and Forcade.

Lattice parameters for each crystal structure were
set according to Vegard’s law. Total energies were computed using density functional theory (DFT) with projector-augmented wave (PAW) potentials within the generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) as implemented in the Vienna Ab Initio Simulation Package (VASP).

B. Models

All single-alloy surrogate models were trained using 1000 randomly selected crystal structures and validated on the remaining 595 structures. Models trained on multiple alloys use the union of the individual alloy’s splits. Parametrization details of all surrogate models used in this work can be found in the appendix.

IV. RESULTS AND DISCUSSION

A. Energy predictions for single alloys

Prediction errors for enthalpies of formation of each of the five surrogate models on each binary alloy subset of the data are presented in Figure 2. Prediction errors of all surrogate models agree qualitatively on all subsets of the data. We interpret this consistency to be indicative of the validity of the machine learning approach to surrogate models of materials properties, independently of the parametrization details of the models.

For four binary systems (AgCu, AlMg, CoNi, CuNi) predictions errors are at or below 3 meV/atom. The prediction errors of all surrogate models on the remaining six systems (AlFe, AlNi, AlTi, CuFe, FeV, NbNi) are consistent, and it is not obvious as to why these systems are harder to learn. When generating the data, the same methodology and parameters were used for all alloys, and similar fitting procedures were employed for each surrogate model.

We point out that whenever the elements that constitute a binary alloy system belong to the same column of the periodic table or are close to each other in the periodic table in terms of atomic number, the surrogate models’ predictions are good and vice versa. Indeed, together these numbers explain 80% of the variance in prediction errors (Figure 3). A complementary observation is that while absolute errors vary from alloy to alloy, relative errors (δRMSE), expressed as a percentage of the range of energies of an alloy’s subset of the data, remains essentially constant at around 1%.

B. General models trained on all alloys

Surrogate models based on analytic expressions need to be fitted to each alloy system separately. For CE, the representation is naturally tied to a particular lattice (e.g. fcc, bcc), making it difficult to train on multiple alloy systems with different lattices at the same time. Here we train a cluster expansion on all alloys by constraining all 30 systems to use a single set of hyperparameters for regularization (i.e. all use the same prior probability distribution of ECI values). The machine-learning surrogate models based on MBTR, SOAP, and MTP do not suffer from the problem of representation being tied to a particular lattice. They express energy as a continuous function of distances and can be trained on multiple materials simultaneously.

We trained four of the five investigated surrogate models simultaneously on all 10 alloy systems and compared the mean absolute error (MAE) of these combined models with the average MAE when trained on each alloy system separately (Table I; note that RMSE would differ due to its non-linear nature). The quantitative agreement indicates that prediction errors remain unaffected when training on multiple systems. For the cluster expansion, these results suggest that there is a single set of parameters for generating a prior probability distribution over ECI values (provided in the supporting information) that works well across a variety of chemistries and lattice types.

We investigate simultaneous training of alloys in more detail for the MBTR+KRR model. Figure 3 presents deviations of the MAE of a single model trained on k alloy systems from the average MAE when the model is trained on each alloy system separately. In all of the possible \(\sum_{k=1}^{10} \binom{10}{k} = 1023 \) cases the deviation is below 1 meV/atom. These deviations are on the order one would expect from minor differences in hyperparameter values. We conclude that prediction errors remain consistently unaffected when increasing the number of simultaneously modeled alloys.

Surrogate Model	Mean Absolute Errors (meV/atom)	Average of Separate Models	Combined Model
CE	4.7	4.8	
MBTR+KRR	5.1	5.1	5.3
MBTR+DNN	5.1	5.1	4.6
SOAP+GP	4.5	4.5	—
MTP	3.1	3.4	
Figure 2. Comparison of five machine learning surrogate models on the DFT10-B dataset. Shown are the root mean squared error (RMSE) of predicted enthalpies of formation of each surrogate model on each binary alloy subset in meV/atom (colored bars) and as a percentage of energy range (gray bars). RMSE for MTP results is computed using pure atom total energies obtained from DFT. The consistency of errors across models indicates the validity of machine learning surrogate models to predict properties of materials—prediction errors are similar, independent of details of model parametrization. Note that relative error varies around 1% for all datasets.

Figure 3. Performance of MBTR+KRR model for multiple alloy systems. Shown are deviation of mean absolute error (MAE, vertical axis) of an MBTR+KRR surrogate model trained on \(k \) (horizontal axis) alloy systems simultaneously from the average MAE of \(k \) models trained on each alloy subsystem separately. Whiskers, boxes, horizontal line and numbers inside the plot show the range of values, quartiles, median and sample size, respectively. Difference in error between individual and combined models is always less than 1 meV/atom.

C. Caveat emptor

Are reported errors reliable estimates of future performance in applications? It depends. We discuss the role of training and validation set composition as an example of the intricacies of statistical validation of machine learning models.

In the limit of infinite independent and identically distributed data, one would simply sample a large enough validation set and measure prediction errors, with the law of large numbers ensuring the reliability of the estimates. Here, however, data are limited due to the costs of generating them via ab initio simulations, and are neither independent nor identically distributed. In such a setting, part of the available data is used for validation, either in the form of a hold-out set (as in this work) or via cross-validation, suited for even smaller datasets.

Prediction errors in machine learning models improve with data (otherwise it would not be machine learning). This implies that if only few training samples exist for a “subclass” of structures, prediction errors for similar structures will be high. For example, consider the number of atoms per unit cell in the DFT-10B dataset used here: There are only 11 structures for each alloy that have 1 or 2 atoms in the unit cell. Consequently, prediction errors are high for those (Figure 6).

For combinatorial reasons, the number of possible structures increases strongly with the number of atoms in the unit cell (Table III). This biases error statistics in two ways: As discussed, prediction errors will be lower for classes with more samples. At the same time, because these classes have more samples, they will contribute more to the measured errors, dominating averages such as the RMSE.

Table III. Size distribution in the DFT-10B dataset. Shown are the number of structures with \(k \) atoms in the unit cell, \(k \leq 10 \) (per alloy; multiply by 10 for the total dataset).

atoms/unit cell	1	2	3	4	5	6	7	8
#structures	4	7	12	48	56	210	208	1050

Figure 4 presents MBTR+KRR prediction errors (RMSE in meV/atom) for different but same-size splits.
of the data into training and validation sets. On the left, all structures with $|k|$ or fewer atoms in the unit cell are excluded from the training set (and therefore included in the validation set). This results in many high-error structures in the validation set, with the effect decreasing for smaller $|k|$. For $k = 0$, size does not influence the split. On the right, structures with $\leq k$ atoms are always included in the training set, resulting in fewer high-error structures in the validation set. The dashed line marks the value of $k = 2$ recommended in this work (see also Figure 6).

Retrospective errors reported in the literature should, therefore, be critically assessed. The design of such studies should favor “representative” validation sets over those tweaked to yield lowest possible errors to report. For combinatorial datasets, the smallest structures (those that can be considered to be outliers) should be included in the training set.

V. CONCLUSION AND OUTLOOK

We showed that it is possible to use machine learning to build general surrogate models that can predict the enthalpy of formation of crystal structures across 10 different binary alloy systems, for three lattice types (fcc, bcc, hcp) and for structures not in their ground state. In this, we find that the concept of using machine learning to predict materials properties is independent of the details of the used surrogate models as predictions of several state-of-the-art materials representations and learning algorithms were found to be in qualitative agreement. This observation also seems to be congruent with recent efforts towards a unifying mathematical framework for some of the used representations.

The ability to use a single general surrogate model has the potential to greatly simplify the use of surrogate models for exploration of materials spaces by avoiding the need to identify “homogeneous” subspaces and then building separate models for each of them. This also avoids problems such as discontinuities at the boundaries of separate models.

Is it possible to do better? Recent results suggest that it might be possible to exploit similarities between chemical element species to improve learning rates further. This requires either to explicitly account for element similarities in the representations or to learn element similarities from the data, for example with a DNN. While such alchemical learning is outside of the scope of this work, we do observe an improvement in prediction errors for the general MBTR+DNN model (Table II, Figure 7).

ACKNOWLEDGMENTS

CN is thankful to Kennedy Lincoln and Wiley Morgan for insightful discussions. CN, BB, CR, and GH acknowledge the funding from ONR (MURI N00014–13–1–0635). MR acknowledges funding from the EU Horizon 2020 program Grant 676580, The Novel Materials Discovery (NOMAD) Laboratory, a European Center of Excellence. AS was supported by the Russian Science Foundation (Grant No 18-13-00479). TM acknowledges funding from the National Science Foundation under award number DMR-1352373 and computational resources provided by the Maryland Advanced Research Computing Center (MARCC).

1 Stefano Curtarolo, Wahyu Setyawan, Shidong Wang, Junkai Xue, Kesong Yang, Richard H. Taylor, Lance J. Nelson, Gus L.W. Hart, Stefano Sanvito, Marco Buongiorne-Nardelli, Natalio Mingo, and Ohad Levy. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci., 58:227–235, 2012. doi:10.1016/j.commatsci.2012.02.002.

2 James E. Saal, Scott Kirklin, Muratahan Aykol, Bryce Meredig, and Chris Wolverton. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). J. Miner. Met. Mater. Soc., 65(11):1501–1509, 2013. doi:10.1007/s11837-013-0755-4.
Nicholas Lubbers, Justin S. Smith, and Kipton Barros. Hierarchical modeling of molecular energies using a deep neural network. *J. Chem. Phys.*, 148(24):241715, 2018. doi:10.1063/1.5011181

Kyle Mills, Michael Spanner, and Isaac Tamblyn. Deep learning and the Schroedinger equation. *Phys. Rev. A*, 96(4):042113, 2017. doi:10.1103/PhysRevA.96.042113

Justin S. Smith, Alexandr Iseayev, and Adrian E. Roitberg. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost. *Chem. Sci.*, 8(4):3192–3203, 2017. doi:10.1039/C6SC05720A

Kristof T. Schütz, Farhad Arbabzadah, Stefan Chmiela, Klaus R. Müller, and Alexandre Tkatchenko. Quantum-chemical insights from deep tensor neural networks. *Nat. Comm.*, 8:13890, 2017. doi:10.1038/ncomms13890

Matthew K. Matlock, Na Le Dang, and S. Joshua Swamidass. Learning a local-variable model of aromatic and conjugated systems. *ACS Cent. Sci.*, 4(1):52–62, 2018. doi:10.1021/acscentsci.7b00405

Xun Gao and Lu-Ming Duan. Efficient representation of quantum-many-body states with deep neural networks. *Nat. Commun.*, 8:662, 2017. doi:10.1038/ncomms17072

Gus L. W. Hart and Rodney W. Forcade. Vergard’s law. *Phys. Rev. A*, 43(6):3161, 1991. doi:10.1103/PhysRevA.43.3161

Georg Kresse and Daniel Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B*, 59(3):1758, 1999. doi:10.1103/PhysRevB.59.1758

Peter E. Blöchl. Projector augmented-wave method. *Phys. Rev. B*, 50(24):17953, 1994. doi:10.1103/PhysRevB.50.17953

Georg Kresse and Jürgen Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. *J. Phys. Condens. Matter*, 6(40):8245–8257, 1994. doi:10.1088/0953-8984/6/40/015

John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. *Phys. Rev. Lett.*, 77(18):3865–3868, 1996. doi:10.1103/PhysRevLett.77.3865

Georg Kresse and Jürgen Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.*, 6(1):15–50, 1996. doi:10.1016/0927-0256(96)00008-0

Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B*, 54(16):11169, 1996. doi:10.1103/PhysRevB.54.11169

Pandu Wisessa, Kyle A. McGill, and Tim Mueller. Efficient generation of generalized Monkhorst-Pack grids through the use of informatics. *Phys. Rev. B*, 93(15):155109, 2016.

Wiley S Morgan, Jeremy J Jorgensen, Bret C Hess, and Gus LW Hart. Efficiency of generalized regular (k,h)-point grids. *arXiv*, page 1804.04741, 2018. URL: https://arxiv.org/abs/1804.04741

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld. Fast and accurate modeling of molecular atomization energies with machine learning. *Phys. Rev. Lett.*, 108(5):05301, 2012. doi:10.1103/PhysRevLett.108.05301

Michael J. Willatt, Felix Musil, and Michele Ceriotti. Theory and practice of atom-density representations for machine learning. *arXiv*, 2018. URL: https://arxiv.org/abs/1807.00408

Felix A Faber, Anders S Christensen, Bing Huang, and O. Anatole von Lilienfeld. Alchemical and structural distribution based representation for universal quantum machine learning. *The Journal of Chemical Physics*, 148(24):241717, 2018. doi:10.1063/1.5020710

Martin Abdi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernando Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org. URL: https://www.tensorflow.org/

Noam Bernstein, Gábor Csányi, James Kermode, Albert Bartok-Partay, Livia Bartok-Partay, Federico Bianchini, Anke Butenuth, Marco Caccin, Silvia Cereda, Gabor Csányi, Alessio Comisso, Tom Daff, ST John, Chiara Gattinoni, Gianpietro Moras, James Kermode, Letif Mones, Alan Nichol, Lars Pastewka David Packwood, Giovanni Peralta, Ivan Solt, Oliver Strickson, Wojciech Szlachta, Csilla Varnai, and Steven Winfield. Quip, 2008–2018. Software available from libatoms.org. URL: http://www.libatoms.org/
SUPPLEMENTARY MATERIAL

A. Method details

1. Cluster expansion

To determine the cutoff distances for the cluster expansions and determine the initial parameters for the prior probability distributions, we used a length scale in which the edge of a bcc unit cell is 1 unit of length and assumed the hcp, bcc, and fcc crystal structures all had the same nearest-neighbor distance. The cutoff distances used to determine the set of clusters included in the expansion are as follows:

Number of sites in cluster	Maximum distance between sites
2	8
3	4
4	2
5	1.5
6	1.5

This resulted in a total of 791, 941, and 2870 distinct orbits of clusters in the bcc, fcc, and hcp expansions, respectively, including the empty cluster. These numbers were reduced after fitting by “trimming” the cluster expansions, in which cluster functions with very small ECI were removed from the expansion. To determine which clusters to remove, we used the fact that when the cluster functions are orthonormal, the expected squared error due to truncation, E_{error}, is given by

$$E_{\text{error}} = \sum_{b} V_{b}^{2}, \quad (1)$$

where V_{b} is the ECI for the b-th cluster function, the expectation of the squared error on the left is over all possible lattice decorations, and the sum on the right is over cluster functions excluded from the expansion. Thus removing an orbit of clusters with multiplicity m_{b} increases the expected squared error by $m_{b}V_{b}^{2}$. To trim clusters from the expansion with little loss of accuracy, we removed all orbits of cluster functions for which $\sqrt{m_{b}V_{b}^{2}} < 10^{-5}$ eV. The trimming procedure changed the final average root-mean-squared prediction errors on the training sets by less than 10^{-5} eV / atom and removed on average more than 70% of the ECIs in the expansions.

The ECIs for the cluster expansions were fit to the training data using the Bayesian approach with a multivariate Gaussian prior distribution \cite{ref11}. The inverse of the covariance matrix for the prior, Λ, was diagonal, with elements given by

$$\lambda_{\alpha\alpha} = \begin{cases} 0 & \text{for } n_{\alpha} = 0 \\ e^{-\lambda_{1}} & \text{for } n_{\alpha} = 1 \\ e^{-\lambda_{2} - \lambda_{3} r_{\alpha}} n_{\alpha}^{\lambda_{4}} & \text{for } n_{\alpha} > 1 \end{cases}, \quad (2)$$

where n_{α} is the number of sites in cluster function α and r_{α} is the maximum distance between sites in Angstroms. The parameters λ_{1}, λ_{2}, λ_{3}, and λ_{4} were initially set to 10, 10, 5, and 5 respectively then optimized by using a conjugate gradient algorithm to minimize the root mean square leave-one-out cross-validation error, an estimate of prediction error \cite{ref10}. For the combined fit, in which a single set of regularization parameters were used for all 30 cluster expansions, the optimized values of λ_{1}, λ_{2}, λ_{3}, and λ_{4} were 10.0, 20.8, 4.2, and 15.3 respectively.

2. MBTR+KRR

The Many-Body Tensor Representation (MBTR) numerically represents atomistic systems as distributions of many-body terms, such as atom counts, distances, and angles, stratified (separated) by chemical elements. For details please consult Ref. \cite{ref12} Kernel ridge regression \cite{ref13} with a Gaussian kernel was employed throughout. In this work, we use the following parametrization:

k geometry	weighting	discretization	σ
2 1/distance	identity 2 2	(0.0, 0.005, 90)	2$^{-17}$
2 1/distance	identity 2 2	(0.0, 0.005, 90)	2$^{-4.5}$
3 angle	1/dotdotdot 18	(0.15, $\pi/100$, 100)	2$^{-14}$

We did not use 1-body terms as enthalpies of formation are the result of a linear operation in atom counts already. Values for the σ hyperparameter above refer to Figure \cite{fig2} where we used fixed hyperparameter values (Gaussian kernel $\sigma = 2^{7}$, KRR regularization strength $\lambda = 2^{-20}$). For individual models, hyperparameters were optimized on a base-2 logarithmic grid.

3. MBTR+DNN

The mathematical details of the many-body tensor representation for the crystal structures are mentioned in Ref. \cite{ref12}. Each crystal structure is expanded in terms of distributions (k-body terms) of atom counts, (inverse) distances and angles. The Gaussian kernel with a variance (σ) of 11.3 was used for fitting. Each MBTR vector is 1450 long and was optimized using a grid search. The details of the weighting functions, smearing parameters for each k-body term are as follows:

k geometry	weighting	discretization	σ
1 atom count	1/identity	(0.5, 1, 25)	10$^{-4}$
2 1/distance	identity 2 2	(0.1, 0.005, 70)	2$^{-17}$
3 angle	1/dotdotdot 18	(0.1, 0.05, 140)	2$^{-8}$

MBTR+DNN model uses the same parameters as MBTR+KRR model for generating the representation. The only difference between the representations is that the k-body terms in MBTR+DNN model are stratified by all 10 elements instead of just two. This results in a
representation vector which is 147100 long. The architecture of the convolution neural network used in this work is listed in the table below.

Layer type	Specifications
Fully connected layer	(Size: 2048)
Fully connected layer	(Size: 1024)
Reshaping data	(Size: 4 x 4 x 64)
Convolution transposed layer	(Kernel: 5 x 5, 64 filters)
Convolution layer	(Kernel: 3 x 3, 64 filters)
Max pooling layer	(Pool size: 2 x 2; stride: 2 x 2)
Convolution layer	(Kernel: 3 x 3, 32 filters)
Reshaping data	(Size: 1 x 1024)
Fully connected layer	(Size: 128)
Fully connected layer	(Size: 64)
Fully connected layer	(Size: 4)
Fully connected layer	(Output; size: 1)

The DNN code is implemented using the Tensorflow framework53. The models were trained with a mini-batch size of 50 and the RMSE error is used as the cost function for optimizing the weights of the network.

4. SOAP+GP

GAP fits were generated for each alloy system using a 2-body + SOAP approach. The standard deviation (SD, parameter δ) of the Gaussian process for the 2-body GAP is set to match the SD in energies of the training set. After fitting the 2-body potential, another SOAP GAP is fit with its SD set to match the remaining RMSE of the 2-body GAP relative to the DFT energies in the training set. The fits were performed using teach_sparse54 with the following parameters for the 2-body GAP:

- **Parameter** Value
 - Cutoff 6.0 Å
 - Sparse points 10

For all alloy fits, the error hyperparameter δ was set to 1 meV for energies. Force and virial were not used in the fits. Because pure energies have a large effect on the predicted formation enthalpies, we increased the error hyperparameter to 10^{-4} for those training configurations that represented pure elements. This ensured accurate reproduction of the pure energies so that enthalpy errors closely match errors in total energy for configurations.

The parameter γ was calculated for each isolated atom by including a padding of 10 Å around a single atom and using the same pseudopotential as the bulk calculations discussed above. These energies were converged with respect to basis set size and used only the γ k-point.

5. MTP

MTP was introduced in Ref.11 for single-component system and in Refs.19,20 was extended to multicomponent systems. MTP partitions the predicted energy into contributions of environments of each atom. Around the central atom of an environment, the neighboring atoms form shells. In these shells, atoms are assigned fictitious weights depending on the distance to the central atom, their types, and the type of the central atom. These weights are free parameters fitted from data. An environment is described by moments of inertia of these shells. All possible contractions of one or more moment tensor to a scalar comprise an infinite sequence of basis functions. This sequence is truncated to yield a finite set of basis functions used in a particular MTP model. The contribution of an environment to the energy is, thus, a linear combination of basis function with coefficients which are also found from data. Refer to Ref.20 for more details.

In this work for binary systems, we used an MTP with about 300 basis functions. The cutoff for atomic environments was 7 Å. The environments were described by five shells, and the dependence of the weight of a neighbor on the distance to the central atom of the environment was described by eight basis functions. Thus, the total number of parameters in a binary MTP is $5 \times 8 \times 2^2 + 300 \approx 450$ (the factor 2^2 follows from the fact that there can be two types of the central atom and two types of each neighboring atoms). For the 10-component MTP, we
used six shells and 850 basis functions, totaling about $6 \times 8 \times 30 + 864 \approx 2300$ parameters, where the factor 30 is the number of interacting pairs of atoms.

B. \textit{k-point density}

Table IV. Shown are the minimum and maximum values of \textit{k}-point density across all structures for each of the alloys for computing the DFT total energies.

System	Maximum	Minimum
AgCu	550	516
AlFe	596	468
AlMg	635	478
AlNi	589	464
AlTi	535	399
CoNi	554	433
CuFe	568	444
CuNi	561	440
FeV	480	401
NbNi	516	472

Figure 5. \textit{Alchemical similarity explains prediction errors.} Shown are the logarithmized root mean squared error (RMSE; compare Figure 2) as a function of an analytic expression in the difference in row r and column c of the periodic table as well as atomic number z of the two chemical element species of a binary alloy. $R^2 = 0.81$.
Figure 6. Influence of unit cell size on errors. Shown are the absolute errors (meV/atom) as a function of the number of atoms in the unit cell for a validation set of 595 randomly chosen structures. The number in brackets and the dashed line indicate the root mean squared error (RMSE, meV/atom) and the median absolute error (meV/atom) on the same set. If small structures (one or two atoms in the unit cell) are not contained in the training data (that is, are shown in the plot) they tend to have larger errors, increasing overall RMSE as well. If all small structures are contained in the training data, the overall RMSE is low (AlMg, CoNi). Retraining models with small structures included in the training set improved RMSE in all cases, by an amount depending on how many structures were added.
Figure 7. Improvement of MBTR+DNN model on all alloys. Shown are the root mean squared error (RMSE) when trained on each alloy separately (blue bars) and on all alloys simultaneously (grey bars).