Linfócitos T auxiliares foliculares humanos: células essenciais para a resposta de anticorpos

Human follicular helper T lymphocytes critical players in antibody responses

Giovana Toledo Alonso¹, Denilson Stork Fomin¹, Luiz Vicente Rizzo¹

¹ Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.

DOI: 10.31744/einstein_journal/2021RB6077

RESUMO

Linfócitos T auxiliares foliculares são uma subpopulação de linfócitos T CD4+ identificada inicialmente nos centros germinativos dos foliculos dos órgãos linfoides secundários. Sua função primordial é auxiliar os linfócitos B na produção de anticorpos. A mudança de classe e de afinidade dos anticorpos, a diferenciação das células B e a geração de memória dependem da cooperação entre os linfócitos T auxiliares foliculares e as células B. No sangue, recebem o nome de linfócitos T auxiliares circulantes. Considera-se que possuem especificidades semelhantes às desenvolvidas nos órgãos linfoides secundários. O fenótipo dos linfócitos T auxiliares humanos é dado pela expressão conjunta dos marcadores CXCR5, Bcl-6, CD40L, PD-1 e ICOS. Nos foliculos, linfócitos T auxiliares sintetizam a interleucina 21 como citocina predominante. No sangue, subpopulações de linfócitos T auxiliares circulantes com expressões variadas dos marcadores clássicos de linfócitos T auxiliares, além de poderem agregar outros, como CXCR3 e CCR6. Existe um enorme interesse no estudo de linfócitos T auxiliares humanos e linfócitos T auxiliares circulantes, para a avaliação de eficácia de vacinação. São também investigados como possíveis marcadores de atividade em muitas doenças e potenciais intervenções terapêuticas. Esta breve revisão descreve aspectos da imunobiologia e da quantificação de linfócitos T auxiliares humanos e linfócitos T auxiliares circulantes, além de apresentar alguns achados relacionados em lúpus eritematoso sistêmico, artrite reumatoide, infecção por HIV e vacinação.

Descritores: Células T CD4 foliculares; Centro germinativo; Linfócitos B; Linfócitos T; Anticorpos

ABSTRACT

Follicular helper T lymphocytes are a subpopulation of CD4+ T lymphocytes initially identified in germinal centers of follicles found in secondary lymphoid organs. The primary function of follicular helper T lymphocytes is to help B lymphocytes’ antibody production. Changing of antibody class and affinity, B cell differentiation and memory generation depend on cooperation between follicular helper T lymphocytes and B cells. In blood, follicular helper T lymphocytes are called circulating follicular helper T lymphocytes. They are considered to have specificities similar to those developed in the secondary lymphoid organs. The phenotype of human follicular helper T lymphocytes is given by simultaneous expression of the markers CXCR5, Bcl-6, CD40L, PD-1 and ICOS. In germinal centers, follicular helper T lymphocytes synthesize interleukin 21 as predominant cytokine. In blood, subpopulations of circulating follicular helper T lymphocytes can be recognized, with different expressions of the classical follicular helper T lymphocytes markers and, in addition, can express other markers such as CXCR3 and CCR6. Presently, there is great interest in follicular helper T lymphocytes and circulating follicular helper T lymphocytes in vaccination studies as indicators of immunization efficacy. In addition, follicular helper T lymphocytes are investigated as possible markers of activity in many diseases and potential therapeutic intervention. This
short review describes aspects of immunobiology and quantification of follicular helper T lymphocytes and circulating follicular helper T lymphocytes, and presents a few examples of related findings in systemic lupus erythematosus, rheumatoid arthritis, HIV infection and vaccination.

Keywords: Follicular CD4 T cells; Germinal center; B-lymphocytes; T-lymphocytes; Antibodies

INTRODUÇÃO

Um estudo de Miller et al.,(1) demonstrou que uma população de células chamadas “linfócitos T auxiliares” (Th) colabora com os linfócitos B na ativação e na produção de anticorpos. Nas três décadas seguintes a esse estudo, foram descobertas diversas atividades dos linfócitos Th relacionadas às respostas de linfócitos B e T. A capacidade de sintetizar diversas citocinas levou à descrição de várias subpopulações de linfócitos Th CD4+, como Th1, Th2 e Th17, e cada uma delas é caracterizada pela síntese de padrões específicos de citocinas, denominadas “citocinas de assinatura”. Essas subpopulações foram encontradas em órgãos linfoides, em sítios inflamatórios e no sangue periférico.(2)

No ano 2000, dois grupos de pesquisa independentes, um de Breitfeld et al.,(3) e outro de Schaerli et al.,(4) identificaram, nas áreas foliculares dos órgãos linfoides, uma nova subpopulação de linfócitos Th CD4+ com maior capacidade de ativar linfócitos B para produção de anticorpos específicos. Essa subpopulação de linfócitos foi denominada “linfócitos T auxiliares foliculares” (Tfh).

Os linfócitos Tfh apresentam, em sua superfície, o receptor de quimiocina CXCR5, uma molécula coestimuladora induzível de linfócitos T (ICOS - inducible T-cell costimulatory),(5) a molécula coestimuladora de CD40L(6) e a proteína reguladora de checkpoint, PD-1. Além disso, os linfócitos Tfh possuem o fator de transcrição Bcl-6(7) como marcador interno. O receptor de quimiocina CXCR3 também é expresso na população de linfócitos Tfh CXCR5+PD-1+.(8)

Nenhum dos marcadores mencionados é exclusivo dos linfócitos Tfh já que também podem ser encontrados em outras populações de linfócitos. O fenótipo dos linfócitos Tfh é definido pela coexpressão desses marcadores. Ainda, os linfócitos Tfh não se coram e têm perfil Th1; os Tfh sanguíneos com fenótipo Th1, Th2 e Th17, mas sintetizam as interleucinas (IL) 4 e 21, que também são fatores de crescimento de linfócitos Tfh.(9)

As atividades de estimulação dos linfócitos B por linfócitos Tfh dependem de interações mútuas adicionais entre receptor e ligante (CD40L-CD40 e PD1-PD-1L), da liberação de moléculas solúveis ativadoras, como IL-21, IL-4 e o fator de ativação de linfócitos B (BAFF). Essas atividades ocorrem no microambiente das áreas foliculares dos órgãos linfoides secundários e levam à proliferação de linfócitos B e à estimulação da mudança de classe dos anticorpos.(10) O fator de transcrição Bcl-6 é considerado o marcador determinante dos linfócitos Tfh, sendo essencial para a formação do centros germinativos (CG) nos foliculos e para a maturation da afinidade dos anticorpos. O fator Bcl-6 inibe a diferenciação dos linfócitos Tfh em Th1, Th2 e Th17.(9)

Há diferenças fenotípicas entre os linfócitos Tfh encontrados na circulação e os linfócitos Tfh CG. Em geral, os linfócitos Tfh sanguíneos são CXCR5+ e também expressam Bcl-6, embora em níveis mais baixos, e têm algumas das características funcionais dos Tfh CG.(11)

Os linfócitos Tfh são encontrados nos foliculos dos órgãos linfoides secundários (Tfh CG). Contudo, linfócitos TCD4+ e CXCR5+ também estão presentes no sangue periférico e acredita-se que eles derivam de populações de Tfh com origem em órgãos linfoides secundários.(12)

Existem diferenças funcionais importantes entre os linfócitos Tfh sanguíneos e os linfócitos Tfh CG. Enquanto os Tfh CG possuem alta capacidade de auxiliar os linfócitos B, essa função nos linfócitos Tfh sanguíneos é complexa e não está ainda completamente compreendida.(13) Recentemente, a maioria dos autores tem concordado que as populações de Tfh sanguíneos possuem capacidade de auxílio e de memória.(14,15)

Ademais, os Tfh sanguíneos sintetizam citocinas, e seus perfis de citocinas foram correlacionados com fenótipos distintos. Os linfócitos Tfh com fenótipo CXCR3⁺CCR6⁺ produzem interferon-gama (IFN-γ) e têm perfil Th1; os Tfh sanguíneos com fenótipo...
(CXCR3 CCR6) podem produzir IL-4 e possuem perfil Th2, enquanto o perfil Th17 está associado a linfócitos Tfh sanguíneos CXCR3 CCR6. O fato de uma subpopulação de linfócitos Tfh sanguíneos apresentar os marcadores de ativação Ki67 e PD1 evidencia que suas células foram recentemente ativadas pela exposição a antígenos secundários.

O reconhecimento de que os linfócitos Tfh também estão presentes no sangue foi seguido pela consideração de que os linfócitos Tfh sanguíneos podem refletir a atividade do CG em todo o corpo. As dificuldades de se investigar essa premissa em humanos são claras. Por esse motivo, muitas vezes, os pesquisadores da área preferem estudar as tonsilas palatinas removidas em cirurgia do que as amostras sanguíneas do mesmo doador. A identificação, a quantificação e as funções dos linfócitos Tfh sanguíneos, comparadas com as dos linfócitos Tfh CG, são de interesse tanto para imunologia básica quanto para estudos clínicos.

Estudos sobre a biologia dos linfócitos T CXCR5 CD4+ sanguíneos em humanos são relativamente recentes. A maioria deles concorda que os linfócitos T CXCR5 CD4+ no sangue humano são células de memória circulantes. Estudos sobre células de memória, bem como estudos focados em linfócitos Tfh de memória, revelaram subconjuntos de células fenotípica e funcionalmente distintas. Os estudos mais antigos usavam combinações de marcadores para definir os linfócitos Tfh sanguíneos diferentes das combinações usadas por estudos mais recentes, o que levou a diferentes propostas de fenótipos para os linfócitos Tfh no sangue humano. Até o momento, ainda não há consenso absoluto sobre os marcadores de superfície celular para subpopulações de células Tfh sanguíneas em humanos.

Ter uma definição clara do fenótipo dos subconjuntos de linfócitos Tfh sanguíneos é importante não apenas para compreender melhor sua funcionalidade em relação aos linfócitos Tfh CG, mas também para identificar potenciais biomarcadores para rastreamento das respostas de anticorpos. Isso é importante, por exemplo, após vacinas ou infecções, para avaliar respostas desreguladas de anticorpos em doenças autoimunes.

Correlacionar as funcionalidades de auxílio e memória dos linfócitos Tfh sanguíneos com respostas imunológicas em andamento, desencadeadas por doenças ou pela vacinação, torna-se tarefa ainda mais complexa pela existência de outra população de linfócitos T foliculares CD4+ com propriedades regulatórias. Essas células possuem o marcador intracelular Foxp3 e têm função de atenuar as respostas imunológicas. São denominadas células T foliculares regulatórias (Tfhreg) e também estão presentes no sangue. Esta breve revisão não aborda essas células de forma detalhada, mas devemos lembrar seu potencial de determinar o desfecho das respostas imunológicas auxiliadas por linfócitos Tfh.

A maioria dos linfócitos Tfh do sangue são células de memória em repouso que recirculam entre os diferentes órgãos linfoides, a linfa e o sangue. A maior parte dos autores usa o termo “linfócitos Tfh circulantes” para designar as células Tfh presentes no sangue, mas alguns preferem o termo “linfócitos Tfh sanguíneos”. Nesta revisão, nós nos referiremos a elas como linfócitos cTfh.

As frequências relativas dos linfócitos cTfh positivos para diferentes marcadores de Tfh são muito mais baixas e diversas do que as dos linfócitos Tfh encontrados em órgãos linfoides secundários. Além disso, as frequências variam de acordo com os marcadores escolhidos pelo investigador para compor o fenótipo. Isso dificulta a interpretação dos resultados publicados. Um exemplo disso são os nossos próprios resultados (Tabela 1) que comparam as frequências de linfócitos positivos para os marcadores clássicos de Tfh em tonsilas palatinas e no sangue venoso de indivíduos saudáveis. A frequência média de linfócitos Tfh CD4+ que expressam CXCR5 no sangue foi 5,4% (desvio-padrão de 3,6) e deve-se lembrar de que os linfócitos Tfh são relativamente escassos em comparação com os linfócitos Th CD4+ clássicos.

Apesar das dificuldades de definir os fenótipos de linfócitos cTfh no sangue e das variações acentuadas nos números dessas células observadas entre indivíduos, a quantidade de artigos relatando alterações dos linfócitos cTfh em doenças aumentou exponencialmente nos últimos 10 anos. Como os linfócitos cTfh auxiliam na síntese de anticorpos, eles são o foco de um grande número de estudos acerca de doenças autoimunes e outras doenças em que anticorpos estão envolvidos na patogênese. Há excelentes revisões recentes e abrangentes sobre os linfócitos Tfh e as doenças.

Tabela 1: Frequências de linfócitos T auxiliares foliculares que exibem marcadores clássicos e adicionais em tonsilas palatinas e no sangue venoso

Células T CD4+ CXCR5+ positivas para marcadores Tfh adicionais*	Bcl-6†	IL-21R	CD40L	PD-1	ICOS
Tonsilas palatinas	42,4 (28,4)	6,5 (8,1)	5,0 (3,5)	7,8 (4,5)	84,9 (29,1)
Sangue venoso	16,6 (19,1)	47,9 (29,6)	16,1 (12,5)	6,5 (6,3)	70,1 (38,9)
Valor de p²	<0,05	<0,05	<0,05	NS	NS

* Média em % e (desvio-padrão) de amostras pareadas de 12 doadores saudáveis com idades entre 24 e 50 anos (sete homens e cinco mulheres) que foram submetidos a tonsilectomia por problemas respiratórios e/ou dificuldade de deglutição. † Intensidade de fluorescência alta e média. ‡ Valores de p não significativos.
As informações disponíveis sugerem que os linfócitos Tfh podem contribuir para doenças autoimunes, facilitando a geração de autoanticorpos. Entre as doenças autoimunes com níveis elevados de autoanticorpos, o lúpus eritematoso sistêmico (LES) e a artrite reumatóide (AR) foram as mais pesquisadas. Há intensa investigação sobre os marcadores de atividade da doença, e a inibição da atividade celular dos Tfh é considerada um potencial alvo terapêutico.

No LES, o depósito de complexos antígeno-antígeno tem papel importante na patogênese da doença, e o número elevado de linfócitos cTfh ativados nesse tecido se correlaciona com níveis mais altos de autoanticorpos. No entanto, a correlação direta com a atividade da doença ainda não está clara. Ainda assim, a inibição de linfócitos Tfh é um potencial alvo terapêutico.

Linfócitos cTfh ativados são vistos em maior número nas fases ativas da AR, e considera-se que eles participam de sua patogênese. Na AR, há desenvolvimento de tecido linfóide ectópico, o que ocorre com menor frequência no LES. Os foliculos desses tecidos contêm grande número de linfócitos Tfh, e acredita-se que essas células facilitam a formação e a manutenção de foliculos ectópicos. Porém, na AR, assim como em outras situações, o resultado depende do equilíbrio entre linfócitos Tfh e Tfreg.

A fisiopatologia dos linfócitos Tfh foi estudada em diversas doenças autoimunes. Excelentes informações e discussões sobre aspectos específicos podem ser encontradas em revisões recentes.

Outro grupo de doenças em que os linfócitos Tfh tornaram-se um tópico de pesquisa é o das infecções. Entre elas, mencionaremos aqui brevemente o HIV-AIDS, devido ao grande número de estudos sobre essas células na infecção por HIV. Os linfócitos Tfh podem ser infectados pelo HIV-1 e passam a servir de reservatório para o vírus. Acredita-se que uma subpopulação de precursores de Tfh CCR5+ seja suscetível ao vírus. No entanto, enquanto os linfócitos T CD4+ clássicos são mortos pelo vírus, o número de Tfh em linfonodos aumenta paradoxalmente durante a infeção.

A vacinação é outra área em que os linfócitos Tfh tornaram-se um tópico de pesquisa e o das infecções. Entre elas, mencionaremos aqui brevemente o HIV-AIDS, devido ao grande número de estudos sobre essas células na infecção por HIV.

Finalmente, as pesquisas sobre linfócitos Tfh devem aprofundar nosso conhecimento básico das vias que regulam as funções de expansão e memória dos linfócitos B. Há muito interesse em linfócitos cTfh como marcadores de uma indução efetiva de memória em estudos sobre vacinação. Além disso, pode ser possível inibir a ativação danosa de linfócitos Tfh em algumas doenças, como as autoimunes, as alérgicas mediadas por IgE e o câncer.

AGRADECIMENTOS

Ao Dr. Ises de Almeida Abrahamson, pelas sugestões valiosas e pelo auxílio na redação deste artigo. Giovana Toledo Alonso recebeu uma bolsa de estudos da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ministério da Educação do Brasil.

INFORMAÇÃO DOS AUTORES

Alonso GT: http://orcid.org/0000-0001-6364-870X
Fomin DS: http://orcid.org/0000-0003-1048-4910
Rizzo LV: http://orcid.org/0000-0001-9949-9849

REFERÊNCIAS

1. Miller JF, Mitchell GF. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J Exp Med. 1968;128(4):801-20.
2. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their helper function. J Exp Med. 2000;192(11):1553-62.
3. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B-helper T cells express CXCR5 and support immunoglobulin production. J Exp Med. 2000;192(11):1545-52.
4. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXCR5+ and CXCR5+ and ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol. 2005;175(1):64-71. Review.
5. Ma CS, Deenick EK. Human T follicular helper (Tfh) cells and disease. Immunol Cell Biol. 2014;92(1):64-71. Review.
6. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, et al. Regulatory B cells in autoimmunity and inflammatory diseases. Cytokine. 2005;74(1):5-17. Review.
7. Akiba H, Takeda K, Kojima Y, Usui Y, Harada N, Yamazaki T, et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol. 2005;175(4):2340-8.
8. Brenna E, Deydov AN, Ladell K, McLaren JE, Bonaiuti P, Metzger M, et al. CD4(+) T follicular helper cells in human tonsils and blood are clonally convergent but divergent from non-Tfh CD4(+) cells. Cell Rep. 2020;30(1):137-52.e5.
9. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29(1):138-49.

10. Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol. 2010;11(6):535-42.

11. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22-33. Review.

12. Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997;276(5312):589-92.

13. Avery DT, Bryant VL, Ma CS, de Waal Malefyt R, Tangye SG. IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J Immunol. 2008;181(3):1767-79.

14. Song W, Craft J. T follicular helper cell heterogeneity: time, space, and function. Immunol Rev. 2019;288(1):85-96. Review.

15. Allen CD, Okada T, Cyster JG. Germinal-center organization and cellular dynamics. Immunity. 2007;27(2):190-202. Review.

16. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34(1):108-21. Erratum in: Immunity. 2011;34(1):135.

17. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41(4):529-42. Review.

18. Tubo NJ, Fife BT, Pagan AJ, Kotov DI, Goldberg MF, Jenkins MK. Most microbe-specific naïve CD4⁺ T cells produce memory cells during infection. Science. 2016;351(6272):514-18.

19. Bentebibel SE, Lopez S, Obermoser G, Schmitt N, Mueller C, Harrod C, et al. Induction of ICOS + CXCR3 + CXCR5 + TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med. 2013;5(176):176ra32.

20. Bentebibel SE, Schmitt N, Banchereau J, Ueno H. Human tonsil B-cell lymphoma 6 (BCL6)-expressing CD4⁺ T-cell subset specialized for B-cell help outside germinal centers. Proc Natl Acad Sci USA. 2011;108(33):E488-97.

21. Schmitt N, Bentebibel SE, Ueno H. Phenotype and functions of memory Tfh cells in human blood. Trends Immunol. 2014;35(9):436-42. Review.

22. Nguyen QP, Deng TZ, Witherden DA, Goldrath AW. Origins of CD4⁺ circulating and tissue-resident memory T-cells Immunology. 2019;157(1):3-12. Review.

23. Fonseca VR, Ribeiro E, Graca L. T follicular regulatory (Tfr) cells: dissecting the complexity of Tfr-cell compartments. Immunol Rev. 2019;288(1):112-27. Review.

24. Alonso GT. Caracterização do perfil das células T folículoares do centro germinativo e circulantes [tese]. São Paulo: Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein; 2020. 71f.

25. Ueno H, Banchereau J, Vinuesa CG. Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol. 2015;16(2):142-52. Review.

26. Seth A, Craft J. Spatial and functional heterogeneity of follicular helper T cells in autoimmunity. Curr Opin Immunol. 2019;61:1-9. Review.

27. Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, et al. T Follicular helper cells in autoimmune disorders. Front Immunol. 2018;9:1637. Review.

28. Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunology. 2019;50(5):1132-48. Review.

29. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular helper t cells. Annu Rev Immunol. 2016;34:335-68. Review.

30. Cao G, Chi S, Wang X, Sun J, Zhang Y. CD4⁺CXCR5⁺PD-1⁺ T follicular helper cells play a pivotal role in the development of rheumatoid arthritis. Med Sci Monit. 2019;25:3032-40.

31. Deng J, Wei Y, Fonseca VR, Graca L, Yu D. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol. 2019;15(8):475-90. Review.

32. Mesquita D Jr, Cruvinel WM, Resende LS, Mesquita FV, Silva NP, Câmara NO, et al. Follicular helper T cell in immunity and autoimmunity. Braz J Med Biol Res. 2016;49(5):e5209. Review.

33. Zaunders J, Xu Y, Kent SJ, Koelsch KK, Kelcheher AD. Divergent expression of CXCR5 and CCR5 on CD4⁺ T cells and the paradoxical accumulation of T follicular helper cells during HIV infection. Front Immunol. 2017;8:495. Review.