Secure Frameproof Code Through Biclique Cover

Hossein Hajiabolhassan* and Farokhlagha Moazami†

*Department of Mathematical Sciences
Shahid Beheshti University, G.C.
P.O. Box 1983963113, Tehran, Iran
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
P.O. Box 193955746, Tehran, Iran
hhaji@sbu.ac.ir
†Department of Mathematics
Alzahra University
P.O. Box 1993891176, Tehran, Iran
f.moazami@alzahra.ac.ir

Abstract

For a binary code Γ of length v, a v-word w produces by a set of codewords \{w^1, \ldots, w^r\} ⊆ Γ if for all i = 1, \ldots, v, we have \(w_i \in \{w^1_i, \ldots, w^r_i\}\). We call a code r-secure frameproof of size t if |Γ| = t and for any v-word that is produced by two sets \(C_1\) and \(C_2\) of size at most r then the intersection of these sets is nonempty. A d-biclique cover of size v of a graph G is a collection of v-complete bipartite subgraphs of G such that each edge of G belongs to at least d of these complete bipartite subgraphs. In this paper, we show that for \(t \geq 2r\), an r-secure frameproof code of size t and length v exists if and only if there exists a 1-biclique cover of size v for the Kneser graph KG(t, r) whose vertices are all r-subsets of a t-element set and two r-subsets are adjacent if their intersection is empty. Then we investigate some connection between the minimum size of d-biclique covers of Kneser graphs and cover-free families, where an \((r, w; d)\) cover-free family is a family of subsets of a finite set such that the intersection of any r members of the family contains at least d elements that are not in the union of any other w members. Also, we present an upper bound for 1-biclique covering number of Kneser graphs.

Key words: cover-free family, secure frameproof code, biclique cover, Hadamard matrix.

Subject classification: 05B40.

1 Introduction

Frameproof codes were first introduced by Boneh and Shaw [2]. Let \(\Gamma \subseteq \{0, 1\}^v\) and |\(\Gamma| = t\). \(\Gamma\) is called a \((v, t)\)-code and every element of \(\Gamma\) is said to be a code word. We write \(w_i\) for the ith component of a word \(w\). Also, the incidence matrix of \(\Gamma\) is a \(t \times v\) matrix whose rows are the codewords in \(\Gamma\). Suppose \(C = \{w^{(u_1)}, w^{(u_2)}, \ldots, w^{(u_d)}\}\) ⊆ \(\Gamma \subseteq \{0, 1\}^v\). For \(i \in \{1, 2, \ldots, v\}\), the ith component is said undetectable for \(C\) if

\[w_i^{(u_1)} = w_i^{(u_2)} = \cdots = w_i^{(u_d)}.\]

*This research was in part supported by a grant from IPM (No. 90050114).
Let $U(C)$ be the set of undetectable components for C. The set
$$F(C) = \{x \in \{0, 1\}^v : x|_{U(C)} = w^{(u_i)}|_{U(C)} \text{ for all } w^{(u_i)} \in C\}$$
represents all possible v-tuples that could be produced by the coalition C by comparing the d codewords they jointly hold.

Definition 1. An r-frameproof code is a subset $\Gamma \subseteq \{0, 1\}^v$ such that for every $C \subseteq \Gamma$ where $|C| \leq r$, we have $F(C) \cap \Gamma = C$.

See [1] [2] [6] [8] [9] for more details about frameproof codes. The following theorem was proved by Stinson and Wei [5].

Theorem A. [5] Suppose Γ is an r-FPC(v, b) with $b > 2r - 1$. Suppose $D \subseteq \Gamma$, where $|D| = 2r - 1$. Then there exists an unregistered word, say $\text{maj}(D) \in \{0, 1\}^v$, such that $\text{maj}(D) \in F(C)$ for any $C \subseteq D$ with $|C| = r$.

In view of the aforementioned theorem, it is not possible to identify a pirate user in an r-FPC(v, b). So they were considered a weaker condition and defined secure frameproof codes in which distributor is able to identify at least one pirate of the guilty coalitions.

Definition 2. Suppose that Γ is a (v, t)-code. Γ is said to be an r-secure frameproof code if for any $C_1, C_2 \subseteq \Gamma$ with $|C_1| \leq r$, $|C_2| \leq r$, and $C_1 \cap C_2 = \emptyset$, we have $F(C_1) \cap F(C_2) = \emptyset$. Also, Γ is termed an r-SFPC(v, t), for short.

Stinson and Wei in [5] studied the relationship between binary secure frameproof codes and combinatorial aspects. In this paper, we establish the relationship between this concept and biclique cover. By a biclique we mean a bipartite graph with vertex set (X, Y) such that every vertex in X is adjacent to every vertex in Y. Note that every empty graph is a biclique. A d-biclique cover of a graph G of size s is a collection of s bicliques of G such that each edge of G is in at least d of the bicliques. The d-biclique covering number of G, denoted by $bc_d(G)$, is defined to be the minimum number of s such that there exists a d-biclique cover of size s for the graph G.

Definition 3. Let X be an n-set and $\mathcal{F} = \{B_1, \ldots, B_t\}$ be a family of subsets of X. \mathcal{F} is called an $(r, w; d)$-cover-free family if for any two subsets $I, J \in [t]$ such that $|I| = r$, $|J| = w$, and $I \cap J = \emptyset$ the following condition holds
$$\bigcap_{i \in I} B_i \nsubseteq \bigcup_{j \in J} B_j.$$ We denote it briefly by $(r, w) - \text{CFF}(n, t)$.

The minimum number of elements for which there exists an $(r, w; d) - \text{CFF}$ with t blocks is denoted by $N((r, w; d), t)$. The incidence matrix of an $(r, w; d) - \text{CFF}$ is a $t \times n$ binary matrix A such that $a_{ij} = 1$ whenever $j \in B_i$ and $a_{ij} = 0$ otherwise. As usual, we denote by $[t]$ the set $\{1, 2, \ldots, t\}$, and denote by $\binom{[t]}{r}$ the collection of all r-subsets of $[t]$. The graph $I_t(r, w)$ is a bipartite graph with the vertex set $(\binom{[t]}{w}, \binom{[t]}{r})$ which a w-subset is adjacent to an r-subset whenever their intersection is empty.
Theorem B. [4] For any positive integers \(r, w, d, \) and \(t \), where \(t \geq r + w \), we have
\[
N((r, w; d), t) = bc_d(I_t(r, w)).
\]

For abbreviation, let \(bc(G) \) stand for \(bc_1(G) \). The Kneser graph \(KG(t, r) \) is the graph with vertex set \(\binom{[t]}{r} \), and \(A \) is adjacent to \(B \) if \(A \cap B = \emptyset \). Throughout this paper, we only consider finite simple graphs. For a graph \(G \), let \(V(G) \) and \(E(G) \) denote its vertex and edge sets, respectively. A homomorphism from \(G \) to \(H \) is a map \(\phi : V(G) \to V(H) \) such that adjacent vertices in \(G \) are mapped into adjacent vertices in \(H \), i.e., \(uv \in E(G) \) implies \(\phi(u)\phi(v) \in E(H) \). In addition, if any edge in \(H \) is the image of some edge in \(G \), then \(\phi \) is termed an onto-edge homomorphism. In this paper, by \(A^c \) we mean the complement of the set \(A \). In the next section, we show that for \(t \geq 2r \), an \(r \)-secure frameproof code of size \(t \) and length \(v \) exists if and only if there exists a 1-biclique cover of size \(v \) for the Kneser graph \(KG(t, r) \). Also, we wish to investigate some connection between the \(d \)-biclique covering number of Kneser graphs and cover-free families. Finally, we present an upper bound for the biclique covering number of Kneser graphs.

\section{Secure Frameproof Codes}

For a subset \(A_i \) of \([t] \), the indicator vector of \(A_i \) is the vector \(v_{A_i} = (v_1, \ldots, v_t) \), where \(v_j = 1 \) if \(j \in A_i \) and \(v_j = 0 \) otherwise.

Theorem 1. Let \(r, t, \) and \(v \) be positive integers, where \(t \geq 2r \). An \(r \)-SFPC\((v, t) \) exists if and only if there exists a biclique cover of size \(v \) for the Kneser graph \(KG(t, r) \).

Proof. Assume that \(A \) is the incidence matrix of an \(r \)-SFPC\((v, t) \). Assign to the \(j \)th column of \(A \), the set \(A_j \) as follows
\[
A_j \overset{\text{def}}{=} \{ i | 1 \leq i \leq t, a_{ij} = 1 \}.
\]

Now, for \(1 \leq j \leq v \), construct the bicliques \(G_j \) with vertex set \((X_j, Y_j) \), where the vertices of \(X_j \) are all \(r \)-subsets of \(A_j \) and the vertices of \(Y_j \) are all \(r \)-subsets of \(A^c_j \) i.e., \([t] \setminus A_j \). It is easily seen that \(G_j \), for \(1 \leq j \leq v \), is a complete bipartite graph of \(KG(t, r) \). Let \(C_1C_2 \) be an arbitrary edge of \(KG(t, r) \). So \(C_1, C_2 \subseteq [t] \), and \(C_1 \cap C_2 = \emptyset \). Since \(A \) is the incidence matrix of an \(r \)-SFPC\((v, t) \), we have \(F(C_1) \cap F(C_2) = \emptyset \). This means that there exists a bit position \(i \) such that the \(i \)th bit of all code words of \(C_1 \) is \(c_i \), for some \(c_i \in \{0, 1\} \), and also the \(i \)th bit of all codewords of \(C_2 \) is \(c_i + 1 \) (mod 2). So there exists a column of \(A \) such that all entries corresponding to the rows of \(C_1 \) are equal to 1 and all entries corresponding to the rows of \(C_2 \) are equal to 0, or vice versa. Hence, \(C_1C_2 \in E(G_t) \). Conversely, assume that we have a biclique cover of size \(v \) for the graph \(KG(t, r) \). Our objective is to construct an \(r \)-SFPC. Label graphs in this biclique cover with \(G_1, \ldots, G_v \), where \(G_i \) has as its vertex set \((X_i, Y_i) \). Let \(A_i \) be the union of sets that lie in \(X_i \). Consider the indicator vectors of \(A_i \), for \(1 \leq i \leq v \), and construct the matrix \(A \) whose columns are these vectors. Assume that \(C_1 \) and \(C_2 \) are two disjoint subsets of \([t] \) of size \(r \), i.e,
Let G_i be the complete bipartite graph that covers the edge C_1C_2. Then in the ith column of the matrix A all entries corresponding to the rows of C_1 are equal to 1 and all entries corresponding to the rows of C_2 are equal to 0, or vice versa. Consequently, $F(C_1) \cap F(C_2) = \emptyset$.

A covering of a graph G is a subset K of $V(G)$ such that every edge of G has at least one end in K. The number of vertices in a minimum covering of G is called the covering number of G and denoted by $\beta(G)$. In [5], Stinson, Trung, and Wei construct an r-SFPC($2^{(2r-1)/r}, 2r+1$).

Corollary 1. [5] For any integer $r \geq 0$, there exists an r-SFPC($2^{(2r-1)/r}, 2r+1$).

Proof. Easily, one can check that the biclique covering number of a graph G without C_4 as a subgraph is equal to the covering number of G. On the other hand KG($2r+1, r$) does not contain C_4 as a subgraph. So $bc(KG(2r+1, r)) = \beta(KG(2r+1, r))$. Also, it is a well-known fact that $\beta(KG(t, r)) = \frac{t + r}{t - 1}$. An easy computation confirms the assertion.

In the next theorem, we show the relationship between the d-biclique cover of Kneser graphs and cover-free families.

Theorem 2. For any positive integers r, d, and t, where $t \geq 2r$, it holds that

$$bc_{2d}(KG(t, r)) \leq N((r, r; d), t) \leq 2bc_d(KG(t, r)).$$

Proof. First, assume that we have an optimal $(r, r; d) = CFF(n, t)$, i.e., $n = N((r, r; d), t)$ with incidence matrix A. Assign to the jth column of A the set A_j as follows

$$A_j \equiv \{i | 1 \leq i \leq t, \ a_{ij} = 1\}.$$

Consider the biclique G_j with vertex set (X_j, Y_j), where the vertices of X_j are all r-subsets of A_j and the vertices of Y_j are all r-subsets of A_j^c. Also, two vertices are adjacent if the subsets corresponding to these vertices are disjoint. It is not difficult to see that G_j’s, for $1 \leq j \leq t$, form a $2d$-biclique cover of $KG(t, r)$. So $bc_{2d}(KG(t, r)) \leq N((r, r; d), t)$.

Conversely, assume that we have a d-biclique cover of $KG(t, r)$. Label graphs in this biclique cover with G_1, \ldots, G_t, where G_i has as its vertex set (X_i, Y_i). Let A_i be the union of sets that lie in X_i and B_i be the union of sets that lie in Y_i. Obviously, A_i and B_i are disjoint. Consider the indicator vectors of A_i’s and B_i’s, for $i = 1, \ldots, l$. Construct the matrix A whose columns are these vectors. Then A is the incidence matrix of an $(r, r; d) = CFF(2l, t)$. So $N((r, r; d), t) \leq 2bc_d(KG(t, r))$.

By the aforementioned results, it may be of interest to find some bounds for the biclique covering number of Kneser graphs.

Theorem 3. For any positive integers d, r, s, and t, where $t > 2r$ and $r > s$, we have

$$bc_d(KG(t, r)) \geq bc_m(KG(t, s)),$$

where $m = N((r - s, r - s; d), t - 2s)$.

4
The aforementioned results motivate us to consider the following question.

\[\text{then} \]

\[\text{\{three. Hence, in view of Lemma 1, if} \]

\[KG(\text{is simple to check that the subgraph induced by the inverse image of any edge of} \]

\[\text{set} \]

\[A \]

\[2 \]

\[\text{Proof.} \]

\[\text{Let} \]

\[\text{assume that} \]

\[G_i \]

\[\text{has as its vertex set} \]

\[(X_i, Y_i) \]. \text{Let} \[A_i \] \text{and} \[B_i \] \text{be the union of sets that lie in} \[X_i \] \text{and} \[Y_i \], respectively. \text{For any} \[1 \leq i \leq l \], \text{consider the bijection} \[G_i' \], as a subgraph of \[KG(t, s) \], with vertex set \[(X_i', Y_i') \], where \[X_i' \] \text{is the set of all} \[s \]-subsets of \[A_i \] \text{and} \[Y_i' \] \text{is the set of all} \[s \]-subsets of \[B_i \]. \text{One can check that} \[G_i' \] \text{s cover all edges of} \[KG(t, s) \]. \text{Moreover, any edge} \[UV \in E(KG(t, s)) \] \text{is contained in at least} \[m \]-bicliques, where \[m = N((r - s, r - s; d), t - 2s) \]. \text{To see this, consider the bipartite graph} \[I_{U,V} \] \text{as an induced subgraph of} \[KG(t, r) \] \text{with vertex set} \[(X_U, Y_V) \], \text{where} \[
\begin{align*}
X_U &= \{W \mid U \subseteq W \subseteq \{t\}, W \cap V = \emptyset, |W| = r\} \\
Y_V &= \{W \mid V \subseteq W \subseteq \{t\}, W \cup U = \emptyset, |W| = r\}.
\end{align*}
\]

\text{It is a simple matter to check that} \[I_{U,V} \] \text{and} \[I_{U-2s} \] \text{are isomorphic. Also, if} \[G_j \] \text{covers any edge of} \[I_{U,V} \], \text{then} \[UV \] \text{is contained in} \[G_j' \]. \text{Consequently, by Theorem 3, the assertion follows.} \]

In view of the proof of Theorem 3, similarly, one can extend any biclique of \[I_i(r, w) \] to a biclique of \[I_i(r - i, w - j) \]. \text{Consequently, we have the following corollary.}

\textbf{Corollary 2.} \textit{Let} \[d, r, w, \text{and} t \] \textit{be positive integers, where} \[t \geq r + w \]. \textit{For any} \[1 \leq i < r \] \textit{and} \[1 \leq j < w \], \textit{we have} \[N((r, w; d), t) \geq N((r - i, w - j; m), t) \], \textit{where} \[m = N((i, j; d), t - r - w + i + j) \].

\textbf{Lemma 1.} \textit{Let} \[G \] \textit{and} \[H \] \textit{be two graphs and} \[\phi : G \to H \] \textit{be an onto-edge homomorphism. Also, assume that} \[d \] \textit{and} \[t \] \textit{are positive integers and for any edge} \[e \in E(H) \], \[bc_d(\phi^{-1}(e)) \geq t \]. \textit{Then} \[bc_d(G) \geq bc_d(H) \].

\textbf{Proof.} \textit{Let} \[\{K_1, K_2, \ldots, K_l\} \] \textit{be an optimal} \[d \]-biclique cover of \[G \]. \textit{One can check that for any} \[0 \leq i \leq l \], \[\phi(K_i) \] \textit{is a biclique and the family} \[\{\phi(K_1), \phi(K_2), \ldots, \phi(K_l)\} \] \textit{is a} \[t \]-biclique cover of \[H \]. \]

\textbf{Theorem 4.} \textit{For any positive integers} \[t \] \textit{and} \[r \], \textit{where} \[t > 2r \], \textit{we have} \[
bc_d(KG(t, r)) \geq bc_{3d}(KG(t - 2, r - 1)).
\]

\textbf{Proof.} \textit{First, we present an onto-edge homomorphism} \[\phi \] \textit{from} \[KG(t, r) \] \textit{to} \[KG(t - 2, r - 1) \]. \textit{To see this, for every vertex} \[A \] \textit{of} \[KG(t, r) \], \textit{define} \[\phi(A) := A' \] \textit{as follows. If} \[A \] \textit{does not contain both} \[t \] \textit{and} \[t - 1 \], \textit{then define} \[A' := A \setminus \{\max A\} \]. \textit{Otherwise, set} \[A' := \{x\} \cup A \setminus \{t, t - 1\} \], \textit{where} \[x \] \textit{is the maximum element absent from} \[A \]. \textit{It is simple to check that the subgraph induced by the inverse image of any edge of} \[KG(t - 2, r - 1) \] \textit{contains an induced cycle of size six or an induced matching of size three. Hence, in view of Lemma 1, if} \[\{K_1, \ldots, K_l\} \] \textit{is a} \[d \]-biclique cover of \[KG(t, r) \], \textit{then} \[\{\phi(K_1), \ldots, \phi(K_l)\} \] \textit{is a} \[3d \]-biclique cover of \[KG(t - 2, r - 1) \]. \]

The aforementioned results motivate us to consider the following question.
Question 1. Let d, r, and t be positive integers, where $t > 2r$. What is the exact value of $bc_d(KG(t,r))$?

An $n \times n$ matrix H with entries $+1$ and -1 is called a Hadamard matrix of order n whenever $HH^T = nI$. It is not difficult to see that any two columns of H are also orthogonal. If we permute rows or columns or if we multiply some rows or columns by -1 then this property does not change. Two such Hadamard matrices are called equivalent. For a given Hadamard matrix, we can find an equivalent one for which the first row and the first column consist entirely of $+1$s. Such a Hadamard matrix is called normalized. We will denote by $K^\sim_{m,m}$ the complete bipartite graph with a perfect matching removed. Obviously, $K^\sim_{m,m}$ is isomorphic to $I_m(1,1)$.

Theorem 5. Let d be a positive integer such that there exists a Hadamard matrix of order $4d$, then

1. $bc_{2d}(K_{8d}) = 4d$.
2. $N((1,1;d), 8d - 2) = bc_d(K_{8d-2,8d-2}) = 4d$.

Proof. Let $H = [h_{ij}]$ be a Hadamard matrix of order $4d$. Suppose that K_{8d} has \{u_1, \ldots, u_{4d}, v_1, \ldots, v_{4d}\} as its vertex set. For the jth column of H, two sets X_j and Y_j are defined as follows

$$X_j := \{u_i|h_{ij} = +1\} \cup \{v_i|h_{ij} = -1\} \quad \& \quad Y_j := \{u_i|h_{ij} = -1\} \cup \{v_i|h_{ij} = +1\}.$$

By constructing a bipartite graph G_j with vertex set (X_j, Y_j) indeed we assign a biclique to each column. It is well-known that for any two rows of a Hadamard matrix, the number of columns for which corresponding entries are $+1$ and -1 are different in sign, are equal to $2d$. So, for $i \neq j$ the edges u_iu_j, v_iv_j and u_iv_j of the graph K_{8d} are covered by $2d$ bicliques. Finally, consider the edge u_iv_i, then there exist $4d$ bicliques that cover it. According to the above argument every edge is covered at least $2d$ times, so $bc_{2d}(K_{8d}) \leq 4d$. On the other hand, for every graph G we have $\frac{|E(G)|}{\beta(G)} \leq \frac{bc_d(G)}{d}$, therefore

$$4d - \frac{1}{2} \leq bc_{2d}(K_{8d}).$$

Since $bc_{2d}(K_{8d})$ is an integer, we have $4d \leq bc_{2d}(K_{8d})$ which completes the proof. For the proof of the second part, assume that H is a normalized Hadamard matrix of order $4d$. Delete the first row of H and denote it by $H' = [h'_{ij}]$. Also, assume that $K_{8d-2,8d-2}$ has (X,Y) as its vertex set where $X = \{u_1, \ldots, u_{4d-1}, v_1, \ldots, v_{4d-1}\}$, $Y = \{u'_1, \ldots, u'_{4d-1}, v'_1, \ldots, v'_{4d-1}\}$ and $u_iu'_i, v_iv'_i \notin E(K_{8d-2,8d-2})$. Assign to the jth column of H', two sets X_j and Y_j as follows

$$X_j := \{u_i|h'_{ij} = +1\} \cup \{v_i|h'_{ij} = -1\} \quad \& \quad Y_j := \{u'_i|h'_{ij} = -1\} \cup \{v'_i|h'_{ij} = +1\}.$$

By the same argument in the first part of the proof and using the well-known fact that in H' every two distinct rows i, j have exactly d columns that the corresponding entries are $+1$ and -1 in the rows i and j, respectively, one can see that every edge is covered at least d times. So $bc_d(K_{8d-2,8d-2}) \leq 4d$. On the other hand $4d - \frac{2d}{4d-1} \leq bc_d(K_{8d-2,8d-2})$, and $\frac{2d}{4d-1} < 1$. Therefore $4d \leq bc_d(K_{8d-2,8d-2})$ which establishes the second part.
Stinson et al. [5], using the probabilistic method, obtain an upper bound for SFPC. In the next theorem, we present a slight improvement of this upper bound.

Theorem 6. Let \(r \) and \(t \) be positive integers. If \(t \) is sufficiently large respect to \(r \) then there exists an \(r - SFPC(v, t) \) where

\[
v \leq \frac{\left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right)}{2\left(\frac{t-2r}{\lfloor \frac{t}{2} \rfloor - r}\right)} \left(1 + \ln\left(\frac{\left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right)}{r}\right)\right)
\]

Proof. We show that if \(v \geq \frac{\left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right)}{2\left(\frac{t-2r}{\lfloor \frac{t}{2} \rfloor - r}\right)} \left(1 + \ln\left(\frac{\left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right)}{r}\right)\right) \) then there exists a biclique cover of size \(v \) for the Kneser graph \(KG(t, r) \). Let \(A \) be \(\left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right) \). For every member of \(A \), say \(A_i \), we can construct the biclique \(G_i \) with vertex set \((X_i, Y_i) \), where the vertices of \(X_i \) are all \(r \)-subsets of \(A_i \) and the vertices of \(Y_i \) are all \(r \)-subsets of \(A_i^c \). We define \(B \) to be the collection contains all of these bicliques. Let \(p \in [0, 1] \) be arbitrary, later, we specify an optimized value for \(p \). Let us pick, randomly and independently, each biclique of \(B \) with probability \(p \) and \(F \) be the random set of all bicliques picked and let \(Y_F \) be the set of all edges \(AB \) of the graph \(KG(t, r) \) which are not covered by the set \(F \). The expected value of \(|F| \) is clearly \(\left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right) \). For every edge \(AB \), \(pr(AB \in Y_F) = (1-p)^t \) where \(l = 2\left(\frac{t-2r}{\lfloor \frac{t}{2} \rfloor - r}\right) \). So the expected value of the \(|F| + |Y_F| \) is at most

\[
\left(\frac{t}{\lfloor \frac{t}{2} \rfloor}\right)p + \frac{1}{2}\left(\frac{t}{r}\right)\left(\frac{t-r}{r}\right)(1-p)^{2\left(\frac{t-2r}{\lfloor \frac{t}{2} \rfloor - r}\right)}.
\]

If we set \(F' = F \cup Y_F \), then clearly all edges of the graph \(KG(t, r) \) are covered by \(F' \). So we want to estimate \(p \) such that \(|F'| \) is minimum. For convenient, we bound \(1-p \leq e^{-p} \) to obtain

\[
E(|F| + |Y_F|) \leq \left(\frac{t}{\lfloor \frac{t}{2} \rfloor}\right)p + \frac{1}{2}\left(\frac{t}{r}\right)\left(\frac{t-r}{r}\right)e^{-2\left(\frac{t-2r}{\lfloor \frac{t}{2} \rfloor - r}\right)}p.
\]

The right hand side is minimized at \(p = \frac{\ln(\alpha)}{\beta} \), which \(\alpha = \left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right)\left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right) \) and \(\beta = 2\left(\frac{t-2r}{\lfloor \frac{t}{2} \rfloor - r}\right) \) where \(p \in [0, 1] \) if \(t \) is sufficiently large respect to \(r \). So we have an \(r - SFPC(v, t) \) that

\[
v \leq \frac{\left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right)}{2\left(\frac{t-2r}{\lfloor \frac{t}{2} \rfloor - r}\right)} \left(1 + \ln\left(\frac{\left(\begin{array}{c}
t \\ \lfloor \frac{t}{2} \rfloor \end{array}\right)}{r}\right)\right).
\]

\[
\blacksquare
\]

References

[1] Simon R. Blackburn. Frameproof codes. *SIAM J. Discrete Math.*, 16(3):499–510 (electronic), 2003.

[2] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. *IEEE Trans. Inform. Theory*, 44(5):1897–1905, 1998.
[3] D. Deng, D. R. Stinson, and R. Wei. The Lovász local lemma and its applications to some combinatorial arrays. *Des. Codes Cryptogr.*, 32(1-3):121–134, 2004.

[4] H. Hajiabolhassan and F. Moazami. Some new bounds for cover-free families through biclique cover. Manuscript 2011.

[5] D. R. Stinson, Tran van Trung, and R. Wei. Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. *J. Statist. Plann. Inference*, 86(2):595–617, 2000. Special issue in honor of Professor Ralph Stanton.

[6] D. R. Stinson and R. Wei. Combinatorial properties and constructions of traceability schemes and frameproof codes. *SIAM J. Discrete Math.*, 11(1):41–53 (electronic), 1998.

[7] D. R. Stinson and R. Wei. Generalized cover-free families. *Discrete Math.*, 279(1-3):463–477, 2004. In honour of Zhu Lie.

[8] Gábor Tardos. Optimal probabilistic fingerprint codes. In *Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing*, pages 116–125 (electronic), New York, 2003. ACM.

[9] Gábor Tardos. Optimal probabilistic fingerprint codes. *J. ACM*, 55(2):Art. 10, 24, 2008.