SUPPLEMENTARY MATERIAL

Benzophenone glycosides from the pericarps of Aquilaria yunnanensis S. C. Huang

Hui Sun, Yun-Feng Zhang, Hui-Xia Huo, Peng-Wei Guan, Chao-Chao Wang, Hui-Na Yao, Yun-Fang Zhao, Peng-Fei Tu and Jun Li*

Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People’ Republic of China

CONTACT
Jun Li, drlj666@163.com
ABSTRACT
Two new benzophenone glycosides, aquilarisides A (1) and B (2), together with six known analogues (3–8) were isolated from the pericarps of Aquilaria yunnanensis S. C. Huang. Their structures were elucidated on the basis of 1D and 2D NMR and mass spectroscopic analyses, and the absolute configuration of compound 1 was determined by experimental and calculated electronic circular dichroism (ECD) spectra. Anti-inflammatory activities of all compounds 1–8 were evaluated for their inhibitory activities against lipopolysaccharide (LPS)-stimulated induced nitric oxide (NO) production in RAW 264.7 cells using the Griess assay. Compound 2 indicated a weak inhibition of NO production.

KEYWORDS
Aquilaria yunnanensis; aquilarisides A and B; benzophenone glycoside; anti-inflammatory; nitric oxide; Griess assay
Figure S1 HRESIMS spectrum of compound 1

Figure S2 IR spectrum of compound 1
Figure S3 \(^1\)H NMR spectrum of compound 1 (500 MHz, methanol-\(d_4\))

Figure S4 Enlarged (\(\delta\) 2.8-4.5) \(^1\)H NMR spectrum of compound 1 (500 MHz, methanol-\(d_4\))
Figure S5 Enlarged (δ 6.0-7.8) 1H NMR spectrum of compound 1 (500 MHz, methanol-d_4)

Figure S6 13C NMR spectrum of compound 1 (125 MHz, methanol-d_4)
Figure S7 HMBC spectrum of compound 1 (500 MHz, methanol-d_4)

Figure S8 NOESY spectrum of compound 1 (500 MHz, methanol-d_4)
Figure S9 Experimental, calculated ECD spectra (in MeOH) of compound 1

Figure S10 HRESIMS spectrum of compound 2
Figure S11 IR spectrum of compound 2

Figure S12 1H NMR spectrum of compound 2 (500 MHz, methanol-d_4)
Figure S13 13C NMR spectrum of compound 2 (125 MHz, methanol-d_4)

Figure S14 HMBC spectrum of compound 2 (500 MHz, methanol-d_4)
Table S1: 1H (500 MHz) and 13C (125 MHz) NMR spectroscopic data (δ in ppm) of compounds 1 and 2 (in methanol-d$_4$)

position	1 δ_H mult. (J in Hz)	δ_C	2 δ_H mult. (J in Hz)	δ_C
1	158.2		109.6	
2	107.1		157.9	
3	165.7		6.25 d (2.0)	95.1
4	6.36 s	90.1		
4a	159.2			
5	6.73 s	103.2	6.08 d (2.0)	98.1
5a	158.2			
6	145.9		160.5	
7	7.39 s	154.0	197.6	
8		107.9		
8a		112.5		
9		181.3		
9a		104.3		
1'a	3.55 d (17.0)	32.3		132.9
1'b	3.03 d (17.0)			
2'	122.8		7.62 d (8.5)	132.7
3'	4.21 d (2.5)	82.7	6.84 d (8.5)	116.2
4'	4.03 m	78.7		163.4
5'	4.09 m	86.2	6.84 d (8.5)	116.2
6'a	3.77 m	62.8	7.62 d (8.5)	132.7
6'b	3.67 m			
1''		5.29 s	99.8	
2''		3.51 m	71.5	
3''		3.13 dd (9.5,3.0)	69.8	
4''		4.86 m	75.0	
5''		3.51 m	68.7	
6''		1.09 d (6.0)	17.9	
1'''			172.2	
2'''		2.72 s	46.3	
3'''			70.9	
4'''		2.69 d (4.5)	45.9	
5'''			173.2	
6'''		1.38 s	28.0	
7'''		3.67 s	52.0	
Table S2 1H and 13C NMR spectroscopic data (δ in ppm) of iriflophenone 2-O-α-L-[4$''$-O-$[3''''(S)-hydroxy-methylglutaryl]]-rhamnopyranoside and compound 3

Position	δH mult. (J in Hz)	δC	δH mult. (J in Hz)	δC
1	108.1	109.5		
2	156.5	158.0		
3	6.25 d (2.0)	6.25 d (2.0)	93.6	95.0
4	161.5	163.0		
5	6.08 d (2.0)	6.09 d (2.0)	96.6	98.1
6	159.1	160.6		
7	196.2	197.7		
1'	131.5	132.9		
2',6'	7.61 d (8.8)	7.61 d (8.5)	131.2	132.6
3',5'	6.84 d (8.8)	6.86 d (8.5)	114.8	116.2
4'	161.9	163.4		
1''	5.28 d (1.6)	5.28 d (1.6)	98.3	99.7
2''	3.51 m	3.52 m	70.1	71.5
3''	3.11 dd (9.8,3.4)	68.4	3.09 dd (9.5,3.0)	69.8
4''	4.84 m	4.84 m	73.6	75.1
5''	3.51 m	3.49 m	67.3	68.7
6''	1.08 d (6.2)	1.09 d (6.0)	16.5	17.9
1'''	170.9			
2'''	2.72 s	2.68 s	44.9	46.9
3'''		69.4		
4'''	2.63 d (15.2)	2.53 d (15.0)	44.4	46.7
5'''	2.68 d (15.2)	2.61 d (15.0)	173.3	173.8
6'''	1.39 s	1.37 s	26.5	27.9
Table S3 1H and 13C NMR spectroscopic data (δ in ppm) of iriflophenone 2-\(O\)-\(\beta\)-D-xylopyranoside and compound 4

position	iriflophenone 2-\(O\)-\(\beta\)-D-xylopyranoside (500 and 125 MHz, methanol-\(d_4\))	4 (500 and 125 MHz, methanol-\(d_4\))		
	δH mult. (J in Hz)	δC	δH mult. (J in Hz)	δC
1	108.7	110.0		
2	157.2	158.7		
3	6.17 d (2.0)	94.3	6.16 d (2.0)	95.8
4	161.2	163.1		
5	6.06 d (2.0)	96.8	6.06 d (2.0)	98.3
6	158.6	160.2		
7	196.0	197.4		
1'	130.9	132.3		
2',6'	7.65 d (8.8)	131.9	7.65 d (8.0)	133.4
3',5'	6.78 d (8.8)	114.3	6.77 d (8.0)	115.8
4'	162.1	163.8		
1''	4.79 d (7.3)	101.2	4.79 d (7.5)	102.6
2''	3.04 dd (8.9,7.3)	73.0	3.04 m	74.4
3''	3.30 m	75.9	3.30 m	77.4
4''	3.44 m	69.4	3.43 m	70.8
5''	3.27 dd (11.4,9.8)	65.4	3.26 m	66.9
	3.85 dd (11.4,5.2)	3.85 dd (11.5,5.0)		
Table S4 \(^1\)H and \(^{13}\)C NMR spectroscopic data (δ in ppm) of iriflophenone 2-\(\alpha\)-\(\text{L}\)-rhamnoside and compound 5

position	\(\delta_\text{H}\) mult. (\(J\) in Hz)	\(\delta_\text{C}\)	\(\delta_\text{H}\) mult. (\(J\) in Hz)	\(\delta_\text{C}\)
1	109.6		109.5	
2	160.5		158.4	
3	6.34 d (2.0)	95.6	6.29 d (2.0)	95.7
4	163.4		163.5	
5	6.11 d (2.0)	98.0	6.07 d (2.0)	98.1
6	158.4		158.4	
7	197.6		197.6	
1\(^{\prime}\)	128.8		130.9	
2\(^{\prime}\),6\(^{\prime}\)	7.65 d (8.5)	132.7	7.61 d (8.5)	132.7
3\(^{\prime}\),5\(^{\prime}\)	6.85 d (8.5)	116.1	6.81 d (8.5)	116.1
4\(^{\prime}\)	163.0		163.3	
1\(^{\prime\prime}\)	5.26 d (1.0)	100.5	5.22 d (1.0)	100.5
2\(^{\prime\prime}\)	3.45-3.50 m	71.6	3.43 m	71.6
3\(^{\prime\prime}\)	3.16 dd (9.5,3.0)	71.9	3.12 dd (9.5,3.5)	71.9
4\(^{\prime\prime}\)	3.32 dd (9.5,3.0)	73.6	3.28 dd (9.5,3.5)	73.6
5\(^{\prime\prime}\)	3.45-3.50 m	70.8	3.40 m	70.8
6\(^{\prime\prime}\)	1.23 d (6.0)	18.0	1.19 d (6.0)	18.0
Table S5 1H and 13C NMR spectroscopic data (δ in ppm) of iriflophenone 2-O-β-D-glucopyranoside and compound 6

Position	δ_H (in ppm)	Mult. (J in Hz)	δ_C (in ppm)	δ_H (in ppm)	Mult. (J in Hz)	δ_C (in ppm)
1	110.3			110.2		
2	158.7			158.8		
3	6.24 d (1.8)	95.8	6.24 d (1.8)	96.0		
4	162.4		98.1	6.06 d (1.8)	162.9	
5	159.6		197.5	159.9		
6	7	132.1	133.5	7.68 d (8.8)	132.2	
1'	132.1			7.67 d (8.4)	133.5	
2',6'	6.78 d (8.8)	115.8	6.78 d (8.4)	115.9		
3',5'	163.6			163.9		
4'	163.6			163.9		
1''	4.82 d (7.6)	102.2	4.82 d (7.8)	102.3		
2''	3.09 dd (8.8,7.6)	74.6	3.08 t (9.0)	74.7		
3''	3.37 dd (9.3,8.8)	77.7	3.36 m	77.8		
4''	3.27 t (9.3)	71.0	3.27 t (9.6)	71.1		
5''	3.33-3.37 m	78.1	3.35 m	78.2		
6''	3.67 dd (12.3,5.3)	62.4	3.86 dd (12.0,5.4)	62.5		
	3.67 dd (12.3,5.3)					
Position	1H mult. (J in Hz)	13C	1H mult. (J in Hz)	13C		
----------	-------------------	-----	-------------------	-----		
1	6.25 d (2.0)	95.1	6.22 d (2.0)	94.9		
2		158.0		157.8		
3	6.08 d (2.0)	98.1	6.06 d (2.0)	97.9		
4		160.6		160.3		
5		197.7		197.6		
6		133.1		132.8		
7		7.60 d (8.7)	132.8	7.60 d (8.5)	132.7	
8		6.80 d (8.7)	116.3	6.81 d (8.5)	116.1	
9		163.1		163.4		
10	5.29 d (1.4)	99.8	5.26 d (1.4)	99.6		
11	3.52 m	71.6	3.49 m	71.5		
12	3.09 m	69.9	3.07 m	69.7		
13	3.79 m	79.2	4.78 m	75.0		
14	3.48 m	68.8	3.45 m	68.7		
15	1.05 d (6.0)	17.9	1.03 d (6.0)	17.8		
16	2.0 s	21.1	2.0 s	21.0		
17		172.7		172.5		
Table S7

Position	δ_H	mult. (J in Hz)	δ_C	δ_H	mult. (J in Hz)	δ_C
1	1.079		109.2			
2	156.6		158.1			
3	6.23 d (1.9)	93.5	6.23 d (1.5)	95.0		
4	161.9		163.5			
5	6.07 d (1.9)	96.6	6.07 d (1.5)	98.1		
6	159.3		160.9			
7	196.3		197.7			
1'	131.7		133.0			
2',6'	7.58 d (8.7)	131.1	7.58 d (9.0)	132.5		
3',5'	6.81 d (8.7)	115.1	6.81 d (8.5)	116.3		
4'	161.7		163.5			
1''	5.27 br s (d, 1.4)a	98.2	5.27 br s	99.7		
2''	3.51 m		70.0	71.4		
3''	3.02 dd (9.8,3.4)	68.3	3.03 dd (9.5,3.0)	69.7		
4''	4.86 m		74.5	75.9		
5''	3.48 m		67.2	68.7		
6''	1.08 d (6.2)	16.3	1.09 d (6.0)	17.8		
1'''	168.0		169.4			
2'''	4.02 d (15.7)a	45.8a	4.11 d (15.7)a	193.7	193.7	
3'''	192.3					
4'''	127.7					
5'''	7.89 d (8.7)	131.1	7.90 d (8.5)	132.5		
6'''	6.87 d (8.7)	114.8	6.86 d (8.5)	116.6		
7'''	163.1		165.0			
8'''	6.87 d (8.7)	114.8	6.86 d (8.5)	116.6		
9'''	7.89 d (8.7)	131.1	7.90 d (8.5)	132.5		

Note: aObserved in acetonitrile-d_3
Reference:
Lee SS, Tseng CC, Chen CK. 2010. Three new benzophenone glucosides from the leaves of *Planchonella obovata*. Helv Chim Acta. 93:522–529.
Sun J, Wang S, Xia F, Wang KY, Chen JM, Tu PF. 2014. Five new benzophenone glycosides from the leaves of *Aquilaria sinensis* (Lour.) Gilg. Chin Chem Lett. 25:1573–1576.
Xia F, Sun J, Jiang Y, Tu PF. 2013. Further chemical investigation of leaves of *Aquilaria sinensis*. Chin J Chin Mater Med. 38:3299–3303.
Yuan HW, Zhao JP, Wang M, Khan SI, Zhai CM, Xu QM, Huang JH, Peng YG, Xiong GH, Wang M, et al. 2017. Benzophenone glycosides from the flower buds of *Aquilaria sinensis*. Fitoterapia. 121:170–174.