Knight shift vs hole concentration in Hg1201 and Hg1212

Y. Itoh

1Department of Physics, Graduate School of Science, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku Kyoto 603-8555, Japan

(Dated: January 13, 2015)

We studied the hole concentration dependences of 63Cu Knight shifts in single-CuO$_2$-layer high-T_c cuprate superconductors HgBa$_2$CuO$_{4+\delta}$ and double-layer HgBa$_2$CaCu$_2$O$_{6+\delta}$. We found that the spin Knight shift at room temperature as a function of the hole concentration in the single-layer superconductor is different from that in the double-layer superconductor. Two type relations between the spin Knight shift and the hole doping level serve to estimate the individual hole concentrations of the non-equivalent CuO$_2$ planes in a unit cell.

PACS numbers:

I. INTRODUCTION

The doped hole carriers have been believed to distribute nonuniformly in the multi-layer cuprate superconductors. How to estimate the individual carrier doping levels of the non-equivalent CuO$_2$ planes in the multi-layer superconductors has been an issue. The bond valence sum associated with a local ionic valence has been adopted for the multi-layer systems. However, the uniform spin susceptibility per Cu spin in single-layer systems is known to be larger than those in double-layer systems. It should be noted that the difference in $^{63}K_{ab}$ of single-CuO$_2$-layer superconductor HgBa$_2$CuO$_{4+\delta}$ (Hg1201) and double-layer HgBa$_2$CaCu$_2$O$_{6+\delta}$ (Hg1212) has been overlooked. Thus, an issue how relevant the application of the single universal relation between $^{63}K_{ab}$ and p is for the multi-layer systems should be addressed.

The optimal T_cs of Hg1201 and Hg1212 are the highest among the single-layer and the double-layer systems. The structural flatness of the CuO$_2$ plane characterizes Hg1201 and Hg1212. Figure 1 shows the schematic crystal structures of Hg1201 (left) and Hg1212 (right). Figure 2 shows the 63Cu Knight shifts $^{63}K_{ab}$'s of Hg1201 (open symbols) and Hg1212 (closed symbols) in an external magnetic field along the ab planes, which are reproduced from [9, 11]. The doping levels are catego-
relations of S_1:

In [9–11]. From the least squares fits, we obtained two overdoped doping (c).

The 63^{Cu} Knight shift K_{ab} is given by $K_{ab} = K_s + K_{orb}$, where K_s is the spin Knight shift and K_{orb} is the orbital shift. K_s is proportional to the uniform spin susceptibility multiplied by the hyperfine coupling constant. K_{orb} is proportional to the Van Vleck orbital susceptibility. The temperature dependence of 63^{K} in the cuprate superconductors comes from that of the spin shift K_s. We have estimated $K_{orb} \sim 0.25\%$ for Hg1201 and $\sim 0.20\%$ for Hg1212 [9–11]. As seen in Fig. 2, K_s of Hg1201 is larger than that of Hg1212 at each doping regime.

Figure 3 shows the hole concentration p_h in [12] against K_{ab} (%) at room temperature of Hg1201 and Hg1212 in [3,11]. From the least squares fits, we obtained two relations of S1: $p_h = 0.63^{\text{K}}(RT) - 0.13$ (Hg1201) and D1, $p_h = 0.74^{\text{K}}(RT) - 0.04$ (Hg1212). The solid lines in Fig. 3 indicate the fit functions of S1 and D1. The extrapolations of S1 and D1 to $p_h = 0$ lead to $K_{ab} = 0.21\%$ (Hg1201) and 0.05% (Hg1212) at the phase boundary. The empirical functions of S1 and D1 are different from the previous fit functions F1 and F2. $K_s < 0.5\%$ adopted for the multi-layer systems in [3].

III. DISCUSSIONS

We discuss the hole concentration dependence upon the spin Knight shift for the other cuprate superconductors and the alternative estimation of the hole concentration.

Figure 4(a) shows p_h against K_{ab} (%) of Hg1201, LSCO [13]; Hg1212, Y1237 [14,15] and Y1248 [16,18]. We estimated K_{ab} at room temperature for LSCO by linear extrapolation from the existing data in [13]. The single-layer system LSCO is located close to S1. The double-layer systems of Y1237 and Y1248 are located close to the line D1.

In Fig. 4(b), we estimated the hole concentrations p_h by the parabolic curve of $T_c/T_{c,\text{max}} = 1 - 82.6(p - 0.16)^2$ in [19] after [5]. Figure 4(b) shows p against K_{ab} (%) of Hg1201, LSCO [13], Tl$_2$Ba$_2$CuO$_{6+\delta}$ (Tl2201) [20]; Hg1212, and Ba$_2$CaCu$_2$O$_{6-\delta}$ (0212F) [6]. In spite of the alternative estimation of the hole concentration, the p vs K_{ab} dependence of Hg1201 is different from that of Hg1212. The reason why K_{ab} of Hg1212 are smaller than those of Hg1201 at the respective doping levels in Figs. 2 and 3 may be due to the effect of the magnetic bi-

FIG. 2: 63^{Cu} Knight shifts K_{ab} for Hg1201 (open symbols) and Hg1212 (closed symbols) in the underdoped (a), the optimally doped (b), and the overdoped regimes (c), which are reproduced from [9–11]. The dashed lines indicate the individual T_c’s. The solid lines in (c) are visual guides.

FIG. 3: Hole concentration p_h against spin Knight shift K_{ab} (RT) (%) in Hg1201 and Hg1212. The solid lines are the fit functions of S1 and D1. The single-layer system LSCO is located close to S1. The double-layer systems of Y1237 and Y1248 are located close to the line D1.
layer coupling. The effect of the bilayer coupling has also been studied for the triple-layer superconductors. Thus, one should take into consideration which type relation is relevant S_1 or D_1 to estimate the individual hole concentrations of the non-equivalent CuO$_2$ planes in the multilayer superconductors.

IV. CONCLUSION

We found that the spin Knight shift $^{63}K_s^{ab}$ as a function of the hole concentration p_h in the single-layer superconductors Hg1201 is different from that in the double-layer superconductors Hg1212. Since we believe that Hg1201 and Hg1212 are the canonical systems, the p_h dependences upon $^{63}K_s^{ab}$ at room temperature in Hg1201 and Hg1212 should be standard to estimate the individual hole concentrations of the non-equivalent CuO$_2$ planes in a unit cell.

V. REFERENCES

[1] R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M. Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck Jr., L. W. Rupp Jr., Physica C 165 (1990) 419-433.
[2] I. D. Brown, J. Solid State Chem. 90 (1991) 155-167.
[3] Y. Tokura, J. B. Torrance, T. C. Huang, A. I. Nazzal, Phys. Rev. B 38 (1988) 7156-7159.
[4] J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitterman, J. D. Jorgensen, Phys. Rev. B 51 (1995) 12911-12914.
[5] H. Mukuda, S. Shimizu, A. Iyo, Y. Kitaoka, J. Phys. Soc. Jpn. 81 (2012) 011008.
[6] S. Shimizu, S. Iwai, S. Tabata, H. Mukuda, Y. Kitaoka, P. M. Shirage, H. Kito, A. Iyo, Phys. Rev. B 83 (2011) 144523.
[7] A. J. Millis, L. B. Ioffe, H. Monien, J. Phys. Chem. Solids, 56 (1995) 1641-1643.
[8] A. J. Millis, H. Monien, Phys. Rev. Lett. 70 (1993) 2810-2813.
[9] Y. Itoh, T. Machi, S. Adachi, A. Fukuoka, K. Tanabe, H. Yasuoka, J. Phys. Soc. Jpn. 67 (1998) 312-317.
[10] Y. Itoh, A. Tokiwa-Yamamoto, T. Machi, K. Tanabe, J. Phys. Soc. Jpn. 67 (1998) 2212-2214.
[11] Y. Itoh, T. Machi, in ”Superconducting Cuprates: Properties, Preparation and Applications,” ed. Koenraad N. Courtlandt (Nova Science Publisher, NY, 2009) p.p. 235 - 268.
[12] A. Fukuoka, A. Tokiwa-Yamamoto, M. Itoh, R. Usami, S. Adachi, K. Tanabe, Phys. Rev. B 55 (1997) 6612-6620.
[13] S. Ohsugi, Y. Kitaoka, K. Ishida, G.-q. Zheng, K. Asayama, J. Phys. Soc. Jpn. 63 (1994) 700-715.
[14] M. Takigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, J. L. Smith, R. B. Schwarz, Phys. Rev. B 39 (1989) 300-303.
[15] T. Shimizu, H. Aoki, H. Yatsuoka, T. Tsuda, Y. Ueda, K. Yoshimura, K. Kosuge, J. Phys. Soc. Jpn. 62 (1993) 3710-3720.
[16] T. Machi, I. Tomeno, T. Miyatake, N. Koshizuka, S. Tanaka, T. Imai, H. Yatsuoka, Physica C 173 (1991) 32-36.
[17] H. Zimmermann, M. Mali, I. Mangelschots, J. Roos, L. Psul, D. Brinkmann, J. Karpinski, S. Rusiecki, E. Kaldis, J. Less-Common Metals, 164-165 (1990) 138-145.
[18] H. Zimmermann, M. Mali, M. Bankay, D. Brinkmann, Physica C 185-189 (1991) 1145-1146.
[19] M. R. Presland, J. L. Tallon, R. G. Buckley, R. S. Liu, N. E. Flower, Physica C 176 (1991) 95-105.

[20] S. Kambe, H. Yasuoka, A. Hayashi, Y. Ueda, Phys. Rev.