Energy dependence of the prompt γ-ray emission from the (d,p)-induced fission of 234U* and 240Pu*

S.J. Rose,1,*, F. Zeiser,1,† J.N. Wilson,2 A. Oberstedt,3 S. Oberstedt,4 S. Siem,1 G.M. Tveten,1 L.A. Bernstein,5,6 D.L. Bleuel,7 J.A. Brown,5 L. Crespo Campo,1 F. Giacoppo,1,† A. Görken,1 M. Guttormsen,1 K. Hadyńska,1 A. Hafreager,1 T.W. Hagen,1 M. Klintefjord,1 T.A. Laplace,6,7 A.C. Larsen,1 T. Renström,1 E. Sahin,1 C. Schmitt,8 T.G. Tornyi,1 and M. Wiedeking9

1 Department of Physics, University of Oslo, 0316 Oslo, Norway
2 Institut de Physique Nucléaire d’Orsay, CNRS/ Univ. Paris-Sud, Université Paris Saclay, 91406 Orsay Cedex, France
3 Extreme Light Infrastructure - Nuclear Physics (ELI-NP) / Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 077125 Bucharest-Magurele, Romania
4 European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Unit G.2 Standards for Nuclear Safety, Security and Safeguards, 2440 Geel, Belgium
5 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
6 University of California - Berkeley Dept. of Nuclear Engineering, Berkeley CA 94720, USA
7 Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
8 Grand Accélérateur National d’Ions Lourds, Bd Henri Becquerel, BP 55027 - 14076 CAEN Cedex 05, France
9 iThemba LABS, P.O. Box 722, 7129 Somerset West, South Africa

(Dated: July 7, 2017)

Prompt fission γ-rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modelling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission, for the first time as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the 233U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the 235Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energy above the fission barrier, despite the fact that an extra \sim5 MeV of energy is potentially available in the excited fragments for γ-decay. The measured results are compared to model calculations made for prompt γ-ray emission with the fission model code GEF. Further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.

PACS numbers: 25.85.Ge 24.75.+i 07.85.Nc

I. INTRODUCTION

Nuclear fission was discovered some 70 years ago [1–3], but still there remain some intriguing mysteries about this complex process. One of the least measured parts of the energy that is released in fission is the contribution that is carried away via prompt γ-ray emission. This accounts for roughly 8 MeV [4, 5], or around 5% of the total energy released in fission. In addition, prompt energy is dissipated via the Coulomb repulsion of the fragments, and the emission of prompt neutrons. Prompt fission γ-rays (PFG) are emitted, typically within a few nanoseconds of scission of the fragments; about 70% of the prompt PFGs are emitted within 60 ps [6], and about 95% within 3 ns [7]. PFGs are one of the least understood parts of the fission process [8].

The investigation of PFG emission addresses questions in nuclear structure and reaction physics. One question deals with the de-excitation of nuclei through the emission of neutrons and γ-rays. The theoretical description of the de-excitation of neutron-rich isotopes, as being produced in neutron-induced fission, shows significant deficits in describing the neutron and γ-ray spectral shape [8]. To some extent this deficiency seems to be related to a limited understanding of the competing process of prompt neutron and γ emission. Prompt fission γ-ray spectral (PFGS) data, measured as a function of excitation energy of the compound nucleus may provide important information to benchmark different models, allowing eventually arrival at a consistent description of prompt fission neutron and γ-ray emission. Furthermore, PFGs are certainly among the most sensitive observables for studying angular momentum generation in fission [8, 9].

Understanding the PFG emission is not only useful for complete modelling of the fission process, but it also has some important practical applications for nuclear reactors. In recent years, requests for more accurate PFGS data have motivated a series of measurements to obtain new precise values of the γ-ray multiplicities and mean photon energy release per fission in the thermal-neutron induced fission of 235U [10, 11] and 239Pu [11, 12]. With

* Corresponding author: sunniva.rose@fys.uio.no
† Corresponding author: fabio.zeiser@fys.uio.no
‡ Current affiliation: a) Helmholtz Institute Mainz, 55099 Mainz, Germany b) GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
the development of advanced Generation-IV nuclear reactors, the need of new PFGS data becomes important. Since four out of six contemplated Generation-IV reactors require a fast-neutron spectrum, a wider range of incident neutron energies has to be considered [13]. Modelling of the geometrical distribution of γ-heating, in and around the reactor core, shows local deviations up to 28% as compared to measured heat distributions, whereas accuracy within 7.5% is mandatory [14]. These deviations remain mainly, despite experiment campaigns in the 1970s [4, 15–17], due to the uncertainties on the existing PFGS data [10, 18, 19]. For 240Pu*, this work also responds to the high-priority request published through the OECD/NEA [14].

In this paper we report about the first measurements of PFG emission from 234U* in the 233U(d,pf) reaction, and 240Pu* in the 239Pu(d,pf) reaction. Both target nuclei represent the fissile key nuclei for the thorium/uranium and uranium/plutonium fuel cycles, respectively. The (d,pf) reaction serves hereby as a surrogate for the neutron induced fission [20]. Charged-particle induced reactions allow measurements of fission observables for isotopes not easily accessible to neutron beam experiments, or for excitation energies below the neutron binding energy. They also facilitate the study of PFG characteristics as a function of compound nucleus excitation energy. We study the dependence of PFG characteristics on compound nucleus excitation energy, and possible differences between surrogate and neutron-induced fission reactions.

II. EXPERIMENTAL DETAILS

Two experiments, denoted by (A) and (B), were carried out at the Oslo Cyclotron Laboratory (OCL) of the University of Oslo, using deuterium beams, delivered by a MC-35 Scanditronix cyclotron. The γ-detector array CACTUS [21] together with the SiRi charged particle detectors [22] and the NIFF detector [23] were used to detect triple coincident events of a proton, one of the two fission fragments (FF) and γ-rays.

Experiment (A) utilized a 12.5 MeV beam incident on a 235U target, and experiment (B) had a 12 MeV beam on a 239Pu target (detailed target specifications are listed in Table I). The targets were cleaned from decay products and other chemical impurities with an anion-exchange resin column procedure [24], and then electroplated on a backing made of 9Be.

For these particular experiments, the SiRi detectors were mounted in backward direction, and the NIFF detectors in forward direction, relative to the beam direction (see Fig. 1). This setup was chosen for several reasons: Due to the thick beryllium backing, the targets had to face NIFF, to enable detection of any fission events, thereby also avoiding FF in the SiRi detector. However, the light, outgoing particles could easily penetrate the beryllium, and be detected in SiRi. Backward direction of SiRi also reduces the intensity of the elastic peak, and minimizes the exposure to protons from deuteron breakup in the target. SiRi was covered by a 21 μm thick aluminum foil, to attenuate δ-electrons in the telescopes.

SiRi consists of 64 ΔE (front) and 8 E (back) silicon detectors with thicknesses of 130 μm and 1550 μm, respectively. The detectors cover eight angles from $\theta \approx 126^\circ$ to 140° relative to the beam axis, in a lampshade geometry facing the target at a distance of 5 cm at an angle of 133°. The total solid angle coverage is about 9% of 4π. In experiment (A) twenty-five, and in experiment (B) twenty-six, 12.7 cm \times 12.7 cm ($5'' \times 5''$) NaI(Tl) crystals were mounted on the spherical CACTUS frame, 22 cm away from the target. At a γ-ray energy of 1.33 MeV, the crystals detect γ-rays with a total efficiency of 13.6(1)% (A), and 14.2(1)% (B), respectively. In order to reduce the amount of Compton scattering, the detectors were collimated with lead cones. NIFF, consisting of four Parallel Plate Avalanche Counters (PPAC), covering 41% of 2π, were used for tagging of fission events. For this, it is sufficient to detect one of the two fission fragments, which are emitted back-to-back. The PPACs are placed at an angle of 45° with respect to the beam axis, at a distance of about 5 cm from the centre of the target. Taking into account angular anisotropy effects in the center-of-mass system, Ref. [26] found a total efficiency of about 48%. The particle and fission detectors were mounted in the reaction chamber, surrounded by the CACTUS array (Fig. 1). The experiments were running for one week each, with a typical beam current of 1 nA.

The experimental setup enables particle-FF-γ coincidences that, together with energy and time information, are sorted event-by-event. In the present work, we focused on the 233U(d,pf) and the 239Pu(d,pf) reactions. The detection of a charged particle in SiRi was the event trigger. In a timing interval of \sim20 ns we require a γ-signal in CACTUS and a FF in NIFF.

From kinematics the measured energy of the outgoing, charged particle is converted into initial excitation energy, E_x, of the fissioning system. In our cases, we measure the deposited energy of the proton in the particle telescope, thereby selecting 234U* and 240Pu* as the fissioning system, for experiments (A) and (B), respectively. The excitation energy was reconstructed event-

Target	233U (A)	239Pu (B)
Chemical composition	metallic	metallic
Active diameter	1 cm	1 cm
9Be backing (mg/cm2)	2.3	1.8
Total area density (mg/cm2)	0.2	0.4
Reaction	(d,pf)	(d,pf)
Beam energy (MeV)	12.5	12
Inner fission barrier, $B_{F,a}$ (MeV)	4.80	6.05
Outer fission barrier, $B_{F,b}$ (MeV)	5.50	5.15
by-event from the detected proton energy and emission angle, and accounting for energy losses in the target and backing. For each energy bin in E_x, a correction for the neutron contribution to the γ-ray spectrum is performed, which is detailed in the next section. Finally, the raw γ-spectra are corrected for the detector response to produce a set of unfolded PFGS. The applied unfolding process, which has the advantage that the original, statistical fluctuations are preserved, is fully described in [27]. NaI response functions are based on in-beam γ-lines from excited states in 56,57Fe, 28Si, 17O, and 13C, which were re-measured in 2012 [28].

A. Correction for neutron contribution

In the fission process, both neutrons and γ-rays are emitted. Neutrons can interact with the NaI crystals of CACTUS, depositing energy mostly in the form of γ-rays from (n,n$'\gamma$) reactions. Unfortunately, the timing gate (20 ns) of the current set-up (Fig. 1) only allows for discrimination between γ-rays and neutrons via time-of-flight (TOF) for the slowest neutrons, i.e., with energies lower than 600 keV. However, the majority of prompt neutrons emitted in fission have higher energy than this. To obtain PFGS, a correction for the neutron component needs to be made, with subtraction of counts arising from energy deposition by neutrons.

Our neutron correction method relies on using a neutron response spectrum of a NaI detector, which is most representative of that for fission neutrons. Normalizing this to the known average neutron multiplicity emitted in fission for a particular compound nucleus excitation energy allows estimation of the neutron component in the total measured PFGS at this energy. This component is then subtracted. In this work we used a spectrum [29] for 2.3 MeV neutrons, which is close to the average fission neutron energy.

The response of 7.6 cm\times7.6 cm ($3'' \times 3''$) NaI detectors to incident neutrons at energies between 0.4 and 10 MeV has been measured by Häusser et al. [29], using a TOF discrimination with quasi-monoenergetic neutrons produced in the 7Li(p,n) and 197Au(p,n) reactions. They find that the neutron response is dominated by (n,n$'\gamma$) reactions. For the energies most prominent from fission neutrons, 1-2.5 MeV, most counts in the NaI detectors are observed between 0.4 and 1 MeV. For 2.3 MeV neutrons, they report 0.13(5) triggers per incident neutron. Since the CACTUS detectors are longer (12.5 cm), we scale the number of triggers to 0.21(8) triggers per incident neutron. We assume that the intrinsic detection efficiency, ϵ_{int}, for γ-rays from fission is the same as those created in the detector by (n,n$'\gamma$) reactions. The γ-ray multiplicity, M, for neutron contribution correction purposes is taken as 6.31 for 234U* [17] and 7.15 for 240Pu* [30].

The relative contribution, f, of neutrons to the measured data $N_{\text{tot}}(E_x, E_\gamma)$ for each excitation energy E_x and γ-ray energy bin E_γ can be estimated by the detection efficiencies. Taking into account the ratio of neutron and γ-ray multiplicities we find

$$ f = \frac{\epsilon_{\text{int}, n}\bar{\nu}}{\epsilon_{\text{int}, n}\bar{\nu} + \bar{M}}. $$

The neutron multiplicity $\bar{\nu}$ is known to vary approximately linearly as a function of the incident neutron energy E_n [31–33]. Taking into account the neutron separation energy S_n, the same dependence is assumed for the compound nucleus excitation energy E_x with the parameters given in Table II, such that $\bar{\nu}(E_x) = a(E_x - S_n) + b$. The total contribution to the data caused by neutrons is estimated as a fraction of counts, $f(E_x)$, that is weighted as a function of E_γ by Häusser’s neutron spectrum $H(E_\gamma)$, i.e.

$$ N_n(E_x, E_\gamma) = N_{\text{tot}}(E_x)f(E_x)H(E_\gamma), $$

![FIG. 1. (Color online) Schematic view of the experimental set-up for experiment (A), showing the SiRi (ΔE+E) telescope, and the NIFF (PPAC) detectors, inside the reaction chamber, surrounded by the CACTUS NaI array. SiRi measures the energy of the outgoing charged-particles; NIFF detects fission fragments (FF), and CACTUS detects γ-rays all in coincidence, within a time interval of 20 ns. The 233U target (0.2 mg/cm2, green), on the 9Be backing (2.3 mg/cm2, orange) was facing NIFF, and SiRi was in the backward direction relative to the beam direction (dotted, purple arrow). The setup for the 239Pu experiment was identical, except for CACTUS having 26 crystals instead of 25.](image)
TABLE III. Values used for calculating the neutrons in the CACTUS detectors. The average neutron energies were calculated from ENDF/B VII.1 [34]. Neutron multiplicities \(\bar{\nu} \) are taken from Ref. [31, 32] and \(\gamma \)-ray multiplicities \(\bar{M} \), from Ref. [17] \((^{234}\text{U}^*)\) and Ref. [30] \((^{240}\text{Pu}^*)\).

	A \((^{234}\text{U}^*)\)	B \((^{240}\text{Pu}^*)\)
Average neutron energy (MeV)	2.0	2.1
Intrinsic neutron efficiency (triggers/neutron)	0.21(8)	0.21(8)
Neutron multiplicities \((@ \text{thermal fission})\)	2.5	2.9
\(\gamma \)-ray multiplicities	6.31(30)	7.15(9)
Relative contribution \((@ \text{thermal fission})\)	0.0768	0.078

where \(N_{\text{tot}}(E_x) \) is the projection of the \(\gamma \)-matrix onto \(E_x \)

\[
N_{\text{tot}}(E_x) = \sum_{E_\gamma} N_{\text{tot}}(E_x, E_\gamma). \tag{3}
\]

\(N_{\text{tot}}(E_x, E_\gamma) \) is the matrix element in the \(\gamma \)-matrix. \(H(E_\gamma) \) is normalized so that \(\sum_{E_\gamma} H(E_\gamma) = 1 \). The \(\gamma \)-ray spectrum \(N_{\gamma}(E_x, E_\gamma) \) is obtained by subtracting the neutron contribution \(N_n(E_x, E_\gamma) \) from the measured data \(N_{\text{tot}}(E_x, E_\gamma) \)

\[
N_{\gamma}(E_x, E_\gamma) = N_{\text{tot}}(E_x, E_\gamma) - N_n(E_x, E_\gamma). \tag{4}
\]

The results of the subtraction procedure can be seen graphically in Fig. 2, where the raw spectrum, neutron contribution and corrected spectrum are shown. Since inelastic scattering is the main energy deposition mechanism for neutrons, which occurs mostly on low-lying states in sodium and iodine nuclei, the neutron contribution is largest in the low energy part of the spectrum. However, overall, the correction for neutron contribution in our experiments remains small (see Table III).

B. Extrapolation of spectra towards zero energy

Detectors used in experiments that attempt to measure PFGS will always have an energy threshold to prevent rapid triggering on noise. Below this threshold \(\gamma \)-ray detection is impossible, so the lowest energy \(\gamma \)-rays emitted in fission will not be detected. As a consequence, this will introduce a systematic uncertainty in the deduction of average spectral quantities: Measured multiplicities \(\bar{M} \) and total \(\gamma \)-energy \(E_{\text{tot}} \) will thus be lower, and measured average \(\gamma \)-ray energy \(E_{\text{av}} \) released per fission will be higher, than their actual values. In fact, such systematic uncertainties from threshold effects may explain discrepancies between previous PFG experimental results, [10, 35]. To account for the undetected \(\gamma \)-rays below threshold, it is necessary to make an extrapolation towards zero energy, such as e.g. that performed in Ref. [36]. In our case the detection threshold was rather high, at 450 keV. As the shape of the \(\gamma \)-ray spectrum is not known for the low \(\gamma \)-ray energies, we chose a constant value for the bins below threshold. A reasonable extrapolation of each spectrum was made by averaging over the first three \(\gamma \)-ray bins above the threshold. The uncertainty was estimated by the minimum and maximum values in these bins, including their uncertainties. This results in an average value of about 5.5 \(\pm 2 \) photons per MeV \((^{234}\text{U}^*)\), below threshold. By assuming a non-zero value for this energy bin, the extrapolation reduces the uncertainty, but it does not eliminate it entirely. In our case it is still the dominant source of uncertainty on the absolute values of the average spectral quantities deduced. Since we compare our data with thermal neutron induced fission experiments, we chose the same cutoff of the PFGS as Ref. [16], of \(E_\gamma =140 \) keV.

III. Predictions with the GEF code

We compare our data to predictions from the semi-empirical GEneral Fission model (GEF) [37]. GEF is based on the observation of a number of regularities in fission observables, revealed by experimental studies, combined with general laws of statistical and quantum mechanics. It provides a general description of essentially all fission observables (fission-fragment yields and kinetic energies, prompt and delayed neutrons and \(\gamma \)-rays, and isomeric ratios) in a consistent way while preserving the correlations between all of them. GEF has shown to be able to explain in an unprecendented good manner fis-
sion fragment and neutron properties over a wide range, running from spontaneous fission to induced fission up to an excitation energy of about 100 MeV for $Z = 80$ to $Z = 112$ [37]. Modelling of γ-rays in fission has been implemented most recently. In contrast to other existing codes in the field, GEF provides also reliable predictions for nuclei for which no experimental data exist. This is particularly important in our case, since no experimental data on the fragment properties exist for the majority of the excitation energies we are investigating.

Calculations were performed for fission of both $^{234}\text{U}^*$ and $^{240}\text{Pu}^*$, applying the same cutoff of the PFGS as for the experimental data, of 140 keV, as described in section II B. The total angular momentum $J = I_0 + L_{\text{trans}}$ is the sum of the target nucleus ground state spin I_0 and the angular momentum L_{trans} transferred in the (d,p) reaction. The distribution in the GEF v.2016/1.1 calculations is given by

$$\rho(J) \propto (2J + 1) \exp((-J(J + 1)/J_{\text{rms}}^2), \quad (5)$$

where we used the root mean square (rms) of the total angular momentum.$^1 J_{\text{rms}}$ and the excitation energy to describe the fissioning system as input. The maximum value for J_{rms} of 12 was obtained from $J_{\text{rms}} = \sqrt{2T/\hbar}$, [38] where the nuclear temperature was chosen to be $T \approx 0.45$ MeV in line with other actinide nuclei [39, 40]. The rigid body of moment of inertia I is given by $I = A/2$, where the latter facilitates the comparison to neutron induced reactions, which transfer little angular momentum. Additionally we performed calculations for a energy dependent J_{rms}, which was adopted from the systematics of Ref. [41]

$$J_{\text{rms}}^2(E_x) = 2 \times 0.0146 A^{5/3} \left[1 + \frac{1 + 4a(E_x - E_1)}{2a}\right], \quad (6)$$

where the level density parameter a and the energy backshift E_1 are obtained from a fit to experimental data [41].

IV. EXPERIMENTAL RESULTS

A. The $^{234}\text{U}^*$ case

Fig. 3 shows a three-dimensional overview of the data set where, for a given compound nucleus excitation energy, the corresponding raw detected PFGS (prior to unfolding the response function) is displayed with the neutron contribution subtracted. The excitation energy range, over which the data are collected, can be seen more closely in Fig. 4., which histograms the double coincidences of protons and fission fragments (d,pf) and triple coincidences of protons, fission fragments and γ-rays $(d,pf\gamma)$ as a function of E_x. In the case of $^{234}\text{U}^*$, only a few very sub-threshold fission events occur below the inner fission barrier [25] at $E_x = 4.8$ MeV, which is 2 MeV below the neutron separation energy at 6.85 MeV [42]. The $^{233}\text{U}(d,pf)$ reaction at 12.5 MeV incident energy populates compound nuclear excitation energies up to a maximum of 10 MeV in this case.

The E_x range is divided into 8 bins, each with a width of 650 keV to obtain a sufficient statistics PFGS for each bin. Each spectrum is unfolded for the CACTUS response, and normalized to the number of fission events detected in that excitation energy bin. The set of eight normalized spectra is overlaid in Fig. 5, and they exhibit similar spectral shapes.

The average spectral quantities after extrapolation to zero energy are then deduced and plotted as a function of the excitation energy. These results are plotted in Fig. 6 with their corresponding statistical error bars and compared with calculations from the GEF code. The wider band denoted by the dash-dotted lines indicates the sum of the statistical uncertainties on each data point plus the systematic uncertainty on the absolute values.
due to the presence of the detection threshold.

B. The 240Pu* case

The same analysis was performed for the 239Pu(d,pf) reaction. The (d,pf) and the (d,pfγ) reactions are histogrammed as functions of excitation energy (Fig. 7). In the 240Pu* case, there appears to be a significant amount of sub-barrier fission, which is in accordance with observations in Refs. [43, 44]. This can be explained in the double-humped fission barrier picture; by the resonant population of states in the second potential minimum of the 240Pu* nucleus and a tunnelling through the outer fission barrier.

The overlay of the unfolded PFGS for the 239Pu(d,pf) reaction is shown in Fig. 8. The spectral shapes are all observed to be similar. However, the PFGS for the two lowest compound nucleus excitation energy bins starting at 4.65 MeV and 5.45 MeV appear to be significantly lower than the others. This effect also manifests itself in the average photon multiplicity \(\bar{M} \) and total energy \(E_{\text{tot}} \) release at this energy (see Fig. 9). We note that this is...
The inner and outer fission barrier, $B_{F,a}$ at 6.05 MeV and $B_{F,b}$ at 5.15 MeV, and the neutron separation energy, S_n, at 6.53 MeV are shown. The dotted lines indicate the minimum and maximum E_x of the analysed area. The lower limit of E_x is at 4.8 MeV, which is more than 1 MeV below the fission barrier due to sub barrier fission.

In this study, both experiments reveal an approximately constant behaviour of average γ-ray energy E_{av}, M, and E_{tot}, as a function of E_x of the fissioning system.

V. DISCUSSION

In this study, both experiments reveal an approximately constant behaviour of average γ-ray energy E_{av}, M, and E_{tot}, as a function of E_x of the fissioning system.
A comparison of the 239Pu(d,pf) PFGs measured at $E_x \sim S_n$ (red), the PFGS for thermal neutron induced fission 239Pu(n,f) from Verbinski et al.\cite{16} (black points), and the calculations by GEF for $J_{\text{rms}} = 8$ and $E_x = 6.35(\text{blue}).$

VI. CONCLUSION

Emission of prompt γ-rays from nuclear fission induced via the 233U(d,pf) and 239Pu(d,pf) reactions have been

...
studied. PFGS have been extracted as functions of the compound nucleus excitation energy for both nuclei. The average spectral characteristics have been deduced and trends as a function of excitation energy have been studied and compared with calculations by the GEF code.

We observe an approximately constant behaviour of the spectral properties as a function of energy for both nuclei. However, a much lower multiplicity is seen in the sub-barrier fission of $^{240}\text{Pu}^*$. More detailed studies are needed to understand why sub-barrier fission results in emission of low multiplicities of prompt γ-rays from the excited fission fragments. Furthermore, we observe an excess of γ-rays above 2 MeV emitted in the surrogate $^{239}\text{Pu}(d,pf)\gamma$ reaction when comparing to the neutron induced PFGS measured by Verbinski et al. This effect is not yet understood, but may be as due to higher angular moments involved in the transfer-induced reactions as compared to the neutron-induced one, over the energy range of our study. This conjecture is supported by GEF calculations.

Our measured γ ray multiplicities and total γ energies are higher than those observed for the neutron induced reactions from Verbinski et al. and Pleasonton. This difference may be explained as due to higher J by comparing to the GEF calculations.

In the future we hope to revisit these types of measurements with the OSCAR array of 26 large volume LaBr$_3$ detectors currently being constructed at the Oslo Cyclotron Laboratory. These will not only provide a much better γ-ray energy resolution and lower energy thresholds, but an excellent timing resolution which will allow for discrimination of neutrons from γ-rays via time of flight.

ACKNOWLEDGMENTS

We would like to thank J. Müller, E. A. Olsen, and A. Semchenkov for providing excellent beams during the experiments. We would also like to thank Beatriz Jurado and Karl-Heinz Schmidt for fruitful discussions. A.C. Larsen gratefully acknowledges funding through ERC-STG-2014, grant agreement no. 637686. G.M.T. and S. Siem gratefully acknowledge funding through the Research Council of Norway, Project No. 222287 and grant no. 210007, respectively. We would like to thank Lawrence Livermore National Laboratory for providing the ^{233}U and ^{239}Pu targets. This work was performed under the auspices of the University of California Office of the President Laboratory Fees Research Program under Award No. 12-LR-238745, the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Berkeley National Laboratory under Contract No. DEAC02-05CH11231, and the National Research Foundation of South Africa under Grant Nos. 92789 and 83671. M. Wiedeking acknowledges funding from the National Research Foundation of South Africa under Grant Nos. 92989 and 83867.

[1] L. Meitner and O. R. Frisch, Nature 143, 239240 (1939).
[2] O. Hahn and F. Strassmann, Die Naturwissenschaften 27, 11 (1939).
[3] N. Bohr and J. A. Wheeler, Physical Review 56, 426450 (1939).
[4] F. Pleasonton, R. L. Ferguson, and H. Schmitt, Physical Review C 6, 1023 (1972).
[5] H. Bowman and S. Thompson, The prompt radiations in the spontaneous fission of ^{252}Cf, Tech. Rep. (California. Univ., Livermore. Radiation Lab., 1958).
[6] H. Albinsson, Physica Scripta 3, 113 (1971).
[7] P. Talou, T. Kawano, I. Stetcu, J. P. Lestone, E. McKigney, and M. B. Chadwick, Phys. Rev. C 94, 064613 (2016).
[8] I. Stetcu, P. Talou, T. Kawano, and M. Jandel, Physical Review C 90, 024617 (2014).
[9] R. Schmitt, G. Mouchaty, and D. Haenni, Nuclear Physics A 427, 614 (1984).
[10] A. Oberstedt, T. Belgya, R. Billnert, R. Borcea, T. Bryš, W. Geerts, A. Göök, F.-J. Hambisch, Z. Kis, T. Martinez, S. Oberstedt, L. Szentmiklósi, K. Takács, and M. Vidali, Phys. Rev. C 87, 051602 (2013).
[11] A. Chyž, C. Y. Wu, E. Kwan, R. A. Henderson, J. M. Gostic, T. A. Bredeweg, A. Couture, R. C. Haight, A. C. Hayes-Sterbenz, M. Jandel, H. Y. Lee, J. M. O’Donnell, and J. L. Ullmann, Phys. Rev. C 87, 034620 (2013).
[12] A. Gatera, T. Belgya, W. Geerts, A. Göök, F.-J. Hambisch, M. Lebois, B. Marót, A. Moens, A. Oberstedt, S. Oberstedt, F. Postelt, L. Qi, L. Szentmiklósi, G. Sibbens, D. VanLeeuw, M. Vidali, and F. Zeiser, Phys. Rev. C 95, 064609 (2017).
[13] I. Pioro, in Handbook of Generation {IV} Nuclear Reactors, Woodhead Publishing Series in Energy, edited by I. L. Pioro (Woodhead Publishing, 2016) pp. 37 – 54.
[14] “Nuclear Data High Priority Request List of the NEA (req. id: H.3) http://www.oecd-nea.org/dbdata/hprl/hprlview.pl?id=421,”.
[15] R. Pelle and F. Maienschein, Phys. Rev. C, 373 (1971).
[16] V. Verbinski, H. Weber, and R. Sund, Physical Review C 7, 1173 (1973).
[17] F. Pleasonton, Nuclear Physics A 213, 413 (1973).
[18] M. Salvatore et al., Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations, Tech. Rep. Volume 26 (OECD/NEA WPEC, 2008).
[19] R. Billnert, F.-J. Hambisch, A. Oberstedt, and S. Oberstedt, Physical Review C 87, 024601 (2013).
[20] J. Cramer and H. Britt, Nuclear Science and Engineering 41, 177 (1970).
[21] M. Guttmersen, A. Atac, G. Løvhoiden, S. Messelt, T. Ramsoy, J. Rekstad, T. Thorsteinsen, T. Tveter, and Z. Zelazny, Physica Scripta 1990, 54 (1990).
[22] M. Guttormsen, A. Bürger, T. Hansen, and N. Lietaer, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 648, 168 (2011).

[23] T. G. Tornyi, A. Görgen, M. Guttormsen, A.-C. Larsen, S. Siem, A. Krasznahorkay, and L. Csige, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 738, 6 (2014).

[24] R. Henderson, J. Gostic, J. Burke, S. Fisher, and C. Wu, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 655, 6671 (2011).

[25] R. Capote, M. Herman, P. Obložinský, P. Young, S. Goriey, T. Beluga, A. Ignatyuk, A. J. Koning, S. Hilaire, V. A. Plujko, et al., Nuclear Data Sheets 110, 3107 (2009).

[26] Q. Ducasse, B. Jurado, M. Aïche, P. Marini, L. Mathieu, A. Görgen, M. Guttormsen, A. Larsen, T. Tornyi, J. Wilson, et al., arXiv preprint arXiv:1512.06334 (2015).

[27] M. Guttormsen, T. Tveter, L. Bergholt, F. Ingebretsen, and J. Rekstad, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 374, 371 (1996).

[28] L. Crespo Campo, F. L. Bello Garrote, T. K. Eriksen, A. Görgen, M. Guttormsen, K. Hadynska-Klek, M. Klintefjord, A. C. Larsen, T. Renstrøm, E. Sahin, S. Siem, A. Springer, T. G. Tornyi, and G. M. Tveten, Phys. Rev. C 94, 044321 (2016).

[29] O. Haeusser, M. Lone, T. Alexander, S. Kushneriuk, and J. Gascon, Nuclear Instruments and Methods in Physics Research 213, 301 (1983).

[30] J. Ullmann, E. Bond, T. Bredeweg, A. Couture, R. Haight, M. Jandel, T. Kawano, H. Lee, J. ODonnell, A. Hayes, et al., Physical Review C 87, 044607 (2013).

[31] ENDF/B-VII.1 Evaluated Nuclear Data Files, ZA=92233, NSUB=10(N), MT=456, www.nndc.bnl.gov/exfor/endf02.jsp (2011).

[32] ENDF/B-VII.1 Evaluated Nuclear Data Files, ZA=94239, NSUB=10(N), MT=456, www.nndc.bnl.gov/exfor/endf02.jsp (2011).

[33] D. Madland, Nuclear Physics A 772, 113 (2006).

[34] M. Chadwick, M. Herman, P. Oblozinsky, M. E. Dunn, Y. Danon, A. Kahler, D. L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, et al., Nuclear Data Sheets 112, 2887 (2011).

[35] A. Chyzh, C. Wu, E. Kwan, R. Henderson, J. Gostic, T. Bredeweg, R. Haight, A. Hayes-Sterbenz, M. Jandel, J. ODonnell, et al., Physical Review C 85, 021601 (2012).

[36] M. Lebois, J. Wilson, P. Halipré, A. Oberstedt, S. Oberstedt, P. Marini, C. Schmitt, S. Rose, S. Siem, M. Fallot, et al., Physical Review C 92, 034618 (2015).

[37] K.-H. Schmidt, B. Jurado, C. Amouroux, and C. Schmitt, Nuclear Data Sheets 131, 107 (2016).

[38] T. Ericson, Advances in Physics 9, 425511 (1960).

[39] M. Guttormsen, B. Jurado, J. Wilson, M. Aiche, L. Bernstein, Q. Ducasse, F. Giacoppo, A. Görgen, F. Gunzing, T. Hagen, et al., Physical Review C 85, 021601 (2012).

[40] M. Guttormsen, L. Bernstein, A. Görgen, B. Jurado, S. Siem, M. Aiche, Q. Ducasse, F. Giacoppo, F. Gunzing, T. Hagen, et al., Physical Review C 89, 014302 (2014).

[41] D. Bucurescu and T. von Egidy, Journal of Physics G: Nuclear and Particle Physics 31, S1675 (2005).

[42] E. Browne and J. Tuli, Nuclear Data Sheets 108, 681 (2007).

[43] M. Hunyadi, D. Gassmann, A. Krasznahorkay, D. Habs, P. Thirolf, M. Csatlós, Y. Eisserman, T. Faestermann, G. Graw, J. Gulyás, et al., Physics Letters B 505, 27 (2001).

[44] P. Glässel, H. Rösler, and H. Specht, Nuclear Physics A 256, 220 (1976).

[45] G. Boutoux, B. Jurado, V. Méot, O. Roig, L. Mathieu, M. Aiche, G. Barreau, N. Capellan, I. Companis, S. Czajkowski, et al., Physics Letters B 712, 319 (2012).

[46] J. E. Escher, J. T. Burke, F. S. Dietrich, N. D. Scielzo, I. J. Thompson, and W. Yones, Reviews of modern physics 84, 353 (2012).

[47] W. Hauser and H. Feshbach, Physical review 87, 366 (1952).