New and recent records of hawk moths (Lepidoptera: Sphingidae) from Seychelles, with a description of a new insular subspecies

IVAN N. BOLOTOV, YULIA S. KOLOSOVA, ELIZAVETA A. SPITSYNA & VITALY M. SPITSYN*

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences,
Northern Dvina Emb. 23, 163000, Arkhangelsk, Russia
*Corresponding author: spitsyn.v.m.91993@yandex.ru

Received 24 January 2021 | Accepted by V. Pešić: 15 February 2021 | Published online 17 February 2021.

Abstract
In this study, we examine a recent sample containing two hawk moth species (Lepidoptera: Sphingidae) from Praslin and Mahé, Seychelles. It was widely accepted that the hawk moth species Temnora peckoveri (Butler, 1876) has a disjunctive range covering Madagascar and the Inner Seychelles. However, the Seychelles population of what was thought to be Temnora peckoveri shares a set of diagnostic morphological differences from both this species and T. fumosa (Walker, 1856) in the male genitalia structure. In particular, it remotely resembles Temnora fumosa based on the structure of aedeagus but differs from T. fumosa and T. peckoveri with respect to the harpe shape. Based on this evidence, we describe Temnora fumosa seychellensis Bolotov & Spitsyn ssp. nov. as a subspecies with restricted range, being endemic to the Inner Seychelles. The range of this subspecies covers Praslin (first record), Mahé, Silhouette, La Digue, Cousine, and Denis. Additionally, we report on recent occurrences of Agrius convolvuli from Praslin (second record) and Mahé. The adult moths were recorded feeding on inflorescences of Dracaena reflexa var. angustifolia Baker (Asparagaceae) for the first time. Finally, we present a complete list of Temnora fumosa seychellensis ssp. nov. and Agrius convolvuli occurrences from Seychelles.

Key words: Western Indian Ocean Islands, Inner Seychelles, granitic islands, island biogeography, endemism, speciation, insular subspecies, flower visitation, Dracaena.

Introduction
The Lepidoptera fauna of Seychelles is rather well known, with the maximum species richness on the country’s largest island, Mahé (Legrand 1966; Gerlach and Matyot 2006; Lawrence 2014). However, a growing body of faunal surveys revealed that the number of Lepidoptera species on smaller granitic islands such as Praslin and La Digue was largely underestimated (Bolotov et al. 2014b, 2015; Lawrence 2015; Bippus 2016; De Prins and Mazzei 2016). Several endemic species described from Mahé were recorded recently from Praslin (Bolotov et al. 2014a, 2016; Bippus 2016). Furthermore, alien Lepidoptera species arriving to Mahé could likely spread over surrounding islands of the archipelago (Kolosova and Bolotov 2020).
The hawk moths (Sphingidae) are among the largest and most attractive insects in Seychelles (Matyot 2005). The fauna of this family on the granitic and coralline islands was studied in detail, although the regional distribution patterns within the archipelago need further research (Legrand 1966; Matyot 2005; Gerlach and Matyot 2006; Lawrence and Henwood 2009). Moreover, there was a recent record of a hawk moth species new to the fauna of Seychelles (Lawrence 2015). In total, the hawk moth fauna of Seychelles contains 15 species, while the granitic islands house 10 species in this group (Gerlach and Matyot 2006; Lawrence 2015).

Figure 1. Occurrences of Temnora fumosa seychellensis ssp. nov.: (1) La Plaine Hollandaise, Praslin [the type locality]; (2) Beau Vallon, Mahé; (3) Marie-Laure, Bel Ombre District, Mahé; (4) Hermitage, Mont Fleuri District, Mahé; (5) L’Harmonie, La Misère, Mahé; (6) Anse Nord-Est, Mahé; (7) Silhouette; (8) Calou Guest House, La Digue; (9) Cousine; (10) Denis (see Table 1 for detail)
In this correspondence, we report on records of two hawk moth taxa, *Temnora fumosa seychellensis* ssp. nov. and *Agrius convolvuli* (Linnaeus, 1758), from the Inner Seychelles. The discovery of the first taxon was completely unexpected. It shares clear differences from *Temnora peckoveri* (Butler, 1876) and *T. fumosa fumosa* (Walker, 1856) in the male genitalia structure. This new insular subspecies is described here.

Materials and methods

The pinned specimens were studied in the RMBH – Russian Museum of Biodiversity Hotspots, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia. The genitalia were dissected, mounted on temporary glass slides with 70% ethanol and photographed using a research stereomicroscope (AXIO Zoom.V16, Carl Zeiss, Germany). The genitalia are kept in a micro-tube with glycerin pinned to the specimen. Images of specimens were taken with a Canon EOS 7D camera (Canon Inc., Tokyo, Japan). Available occurrences of the two target species on the islands of Seychelles were collected from published sources, and the localities were georeferenced using Google Earth v. 9.129.0.1 (Tables 1-2).

Table 1. Occurrences of *Temnora fumosa seychellensis* ssp. nov. from Seychelles.

Island	Locality	Latitude	Longitude	Date	Collector	N	Reference
Praslin	La Plaine Hollandaise	-4.3234	55.7262	08.ii.2016	I. Bolotov	1♂	This study
Mahé	N/A	N/A	N/A	1892	Philibert	1	De Joannis (1894); Gerlach and Matyot (2006)
Mahé	N/A	N/A	N/A	1909	N/A	1	Fryer (1912)
Mahé	Beau Vallon	-4.6153	55.4283	1960	M. Gerber	1	Legrand (1966)
Mahé	Marie-Laure, Bel Ombre District	-4.6158	55.4162	N/A	P. Matyot	1	Matyot (2005)
Mahé	Hermitage, Mont Fleur District	-4.6322	55.4535	ii.1998	P. Matyot	1	Matyot (2005)
Mahé	L’Harmonie, La Misère	-4.6658	55.4686	29.viii.1999	P. Matyot	1	Matyot (2005)
Mahé	Anse Nord-Est	-4.5740	55.4610	02.iii.2005	P. Matyot	1**	Matyot (2005)
Silhouette	N/A	-4.4848**	55.2314**	1908	N/A	1	Fryer (1912)
Silhouette	N/A	-4.4848**	55.2314**	1999	J. Gerlach	1	Matyot (2005); Gerlach and Matyot (2006)
La Digue	Calou Guest House	-4.3524	55.8348	13.viii.2009	P. Mazzei	1	De Prins and Mazzei (2016)
La Digue	Calou Guest House	-4.3524	55.8348	26.iv.2014	P. Mazzei	1	De Prins and Mazzei (2016)
Cousine	The northern coastal plateau of the island	-4.3479	55.6469	25.iv.2009	J. Lawrence	1	Lawrence and Henwood (2009)
Denis	N/A	-3.8035	55.6668	2003	J. Gerlach	1**	Matyot (2005)

*Approximate coordinates. **Larva (the others are imago). N/A – not available.
Table 2. Occurrences of *Agrius convolvuli* from Seychelles.

Island	Locality	Latitude	Longitude	Date	Collector	N	Reference
Praslin	Anse Kerlan	-4.3126	55.6850	27.viii.2016	I. Bolotov	1♂	This study
Praslin	Anse Boudin, main road, junction to	-4.2986	55.7097	04.vii.2014	M. Bippus	1♂	Bippus (2016)
Mahé	Anse Forbans	-4.7809	55.5235	11.i.2020	Y. Kolosova	1♀	This study
Mahé	Anse Forbans	-4.7815	55.5229	13.i.2020	I. Bolotov	1♂	This study
Mahé	N/A	N/A	N/A	1892	Philibert	1	Philibert (1894); Gerlach and Matyot (2006)
Mahé	Port Victoria	-4.6206	55.4580	1909	N/A	2♀	Fryer (1912); Legrand (1966); Gerlach and
							Matyot (2006)
Mahé	Beau Vallon	-4.6153	55.4283	1956, 1959	A. Dauban	5	Legrand (1966)
Mahé	Saint Louis	-4.6261	55.4411	1959	A. Delhomme	1	Legrand (1966)
Mahé	Mount Fleuri	-4.6352	55.4583	1959	Seychelles	1**	Legrand (1966)
Mahé	Hermitage, Mont Fleur District	-4.6322	55.4535	N/A	P. Matyot	≥1	Matyot (2005)
Mahé	La Misère	-4.6658	55.4686	N/A	P. Matyot	≥1	Matyot (2005)
Silhouette	N/A	-4.4848**	55.2314**	1908	N/A	1♂	Fryer (1912); Gerlach and Matyot (2006)
Silhouette	N/A	-4.4848**	55.2314**	01.iv.1999	J. Gerlach	1	Matyot (2005)
Silhouette	N/A	-4.4848**	55.2314**	04.ix.2002	J. Gerlach	1	Matyot (2005)
Aride	N/A	-4.2127	55.6662	1991, 1992, 2004	N/A	≥5	Bowler et al. (1999); Gerlach and Matyot
							(2006)
Cousine	The coastal flat on the NE side of the	-4.3484	55.6480	xi.1996	J. Lawrence	1	Lawrence (2005)
	island						
Cousine	The coastal flat on the NE side of the	-4.3484	55.6480	21.iii.1998	J. Lawrence	1	Lawrence (2005)
	island						
Cousine	The coastal flat on the NE side of the	-4.3484	55.6480	xii.2002	J. Lawrence	1**	Lawrence (2005)
	island						
Alphonse	N/A	-7.0040	52.7304	1997	R. & G. Gerlach	1**	Matyot (2005); Gerlach and Matyot (2006)
Aldabra	Picard (West) Island	-9.4013	46.2063	ix.1971 – vii.1972	D. W. Frith	8	Frith (1979); Matyot (2005)
Atoll	Island						
Aldabra	Picard (West) Island, Station	-9.4013	46.2063	12.iii.1976	N/A	1	Matyot (2005)
Farquhar	N/A	-10.1217	51.1624	29.ix.1905	T. B. Fletcher	1**	Fletcher (1910)

*Approximate coordinates. **Larva (the others are imago). N/A – not available.

Taxonomy

Family Sphingidae Latreille, 1802

Genus *Temnora* Walker, 1856

Type species: *Temnora natalis* Walker, 1856 [subsequent designation by Kirby, 1892] (De Prins and De Prins 2021).
Figure 2. Holotype male of *Temnora fumosa seychellensisssp. nov.* from La Plaine Hollandaise, Praslin, Seychelles, 08 February 2016. (A) Upperside. (B) Underside. Scale bar = 10 mm. (Photos: Elizaveta A. Spitsyna).
Temnora fumosa seychellensis Bolotov & Spitsyn ssp. nov.

= **Diodosida peckoveri** De Joannis (1894): 432 [Mahé].

= **Temnora fumosa peckoveri** Fryer (1912): 15 [Mahé, Silhouette]; Legrand (1966): 169, pl. 13, fig. 2 [Mahé, Silhouette]; Matyot (2005): 67 [Mahé, Silhouette, Denis]; Gerlach & Matyot (2006): 91 [Mahé, Silhouette, Denis].

= **Temnora peckoveri** Lawrence & Henwood (2009): 50, figs 1-2; De Prins & Mazzei (2016): 26, fig. 25 [La Digue].

Figs 1-5, Table 1.

Type material. Holotype male RMBH Sph0913 SEYCHELLES: Praslin Island, La Plaine Hollandaise, 4.3234°S, 55.7262°E, alt. 120 m, sedge-fern swamp with pandanus trees surrounded by palm-cinnamon forest, 08 February 2016, at UV light, Bolotov leg. (Fig. 2A-B).

Diagnosis. The new subspecies could be distinguished from *Temnora fumosa fumosa* based on the structure of harpe (Figs. 3-4). *T. fumosa fumosa* shares a long, narrow, sickle-shaped harpe (Fig. 4D). In contrast, the new subspecies shares a much wider and shorter, straight harpe with an upcurved, claw-like end (Fig. 4E). Furthermore, both the new subspecies and *T. fumosa fumosa* differ from *T. peckoveri* by the lack of a strong long tooth at the distal end of aedeagus (compare Fig. 4A, 4B, and 4C). The harpe of the new subspecies is much broader proximally and narrower distally compared with that of *T. peckoveri* (Fig. 4F).

Figure 3. Male genitalia and aedeagus of *Temnora fumosa seychellensis* ssp. nov. (holotype) from La Plaine Hollandaise, Praslin, Seychelles, 08 February 2016. (A) Male genitalia (lateral view). (B) Aedeagus (lateral view). (Photos: Elizaveta A. Spitsyna).
Description. Male (Fig. 2): Wingspan 50 mm, forewing length 25 mm. Eye, antenna, and head dark olive. Labial palpus somewhat elongated (approximately two eye’s diameter), dark olive dorsally, light grey ventrally. Thorax, patagium, and tegula dark olive. Legs light grey, slightly darkened dorsally. Forewing outer margin with deep, rounded excavation below apex. Forewing upperside dark olive with broad darker brown antemedial and postmedial bands; postmarginal area greyish olive, with a dark, inconspicuous zig zag subterminal band and a small white spot at costa subterminally. Small white discal spot present. Forewing underside dark olive, with unclear blackish or dark brown triangular patch from the base to the discal area. Hindwing upperside uniformly dark brown with long dark olive scales. Hindwing underside dark olive, with a row of submarginal black spots and a dark patch between veins CuA1 and CuA2. Abdomen dark olive.

Male genitalia (Figs 3-4): Tegumen very broad, strongly sclerotized. Uncus bifurcated apically; uncus and gnathos form a typical macroglossine “bird-beak” structure. Valva slightly elongated, rounded apically. Harpe broad, straight, upcurved and pointed near the distal end. The base of harpe very broad. Aedeagus long, straight, with an oblique densely serrated ridge. Vesica long, with a bunch of ultra-elongate spines.

Female: Not examined.

Etymology. This subspecies is named after the Seychelles Archipelago, where it is distributed.

Figure 4. Comparative analysis of the male genitalia and aedeagi of *Temnora fumosa fumosa*, *T. fumosa seychellensis ssp. nov.* (holotype), and *T. peckoveri* (Butler, 1876). (A-C) Distal end of the aedeagus (lateral view): (A) *T. fumosa fumosa*; (B) *T. fumosa seychellensis ssp. nov.*; and (C) *T. peckoveri*. (D-F) Valva and harpe (lateral view): (D) *T. fumosa fumosa*; (E) *T. fumosa seychellensis ssp. nov.*; and (F) *T. peckoveri*. The red arrow indicates a strong long tooth at the distal end of *T. peckoveri* aedeagus, a diagnostic feature of this species. (Photos: I. J. Kitching, Sphingidae Taxonomic Inventory Portal, Natural History Museum, London, UK [A, C, D, F; Kitching 2020a, b] and Elizaveta A. Spitsyna [B, E]).
Distribution. Endemic to the Inner Seychelles (Fig. 1). So far it is known to occur on the granitic islands of Mahé (De Joannis 1894), Silhouette (Fryer 1912), La Digue (De Prins and Mazzei 2016), Cousine (Lawrence and Henwood 2009), and Praslin (this study), and on the coralline island of Denis (Matyot 2005).

Habitat. The holotype was collected from a somewhat unusual habitat, i.e. at the middle of a continuous highland wetland densely covered by Ferns *Dicranopteris linearis* (Burm. f.) Underw. (Gleicheniaceae) and Bog Bulrush *Schoenoplectella mucronata* (L.) Jung & Choi (Cyperaceae), with patches of Nutrush *Scleria sumatrensis* Retz. (Cyperaceae) and groups of Horne’s Pandanus *Martellidendron hornei* (Balf. f.) Callm. & Chassot (Pandanaceae) (Fig. 5). However, the moth most likely came from the edge of surrounding mixed secondary forest dominated by various endemic palms and cinnamon trees. This forest patch also houses Indian Mulberry *Morinda citrifolia* L. (Rubiaceae), a host plant of this taxon on the Inner Seychelles (Matyot 2005).

Figure 5. Type locality and habitat of *Temnora fumosa seychellensis* ssp. nov.: sedge-fern swamp with pandanus trees surrounded by palm-cinnamon forest at La Plaine Hollandaise, Praslin, Seychelles. (Photo: Ivan N. Bolotov).

Conservation. The new subspecies appears to be Endangered [EN B1, B2 + ac(iii)]. It has an estimated extent of occurrence (EOO) of 330 km² and an area of occupancy (AOO) of 174 km² (Gerlach and Matyot 2006). Furthermore, it has a highly fragmented range, is known to occur on a few islands, and shares extreme fluctuations in number of subpopulations. Previously, this subspecies was accessed as Vulnerable [VU B1abiii, B2abiii] in Seychelles but that assessment was based on its earlier treatment as a population of the more widespread taxon *Temnora peckoveri* (see Gerlach and Matyot 2006).

Genus *Agrius* Hübner, 1819

Type species: *Sphinx cingulata* Fabricius, 1775 [subsequent designation by Tutt, 1902] (De Prins and De Prins 2021).
Agrius convolvuli (Linnaeus, 1758)

=Phlegetontius convolvuli De Joannis (1894): 432 [Mahé].

=Herse convolvuli Fletcher (1910): 282 [Farquhar]; Fryer (1912): 15 [Mahé, Silhouette]; Legrand (1966): 167 [Mahé, Silhouette, Farquhar]; Bowler et al. (1999): 51 [Aride]; Lawrence (2005): 96 [Cousine].

=Agrius convolvuli Frith (1979): 4 [Aldabra]; Matyot (2005): 60 [Mahé, Silhouette, Aride, Cousine, Alphonse, Farquhar, Aldabra]; Gerlach & Matyot (2006): 88 [Mahé, Silhouette, Aride, Cousine, Alphonse, Farquhar, Aldabra]; Bippus (2016): 36, pl. 1, fig. 4 [Praslin].

Table 2.

Material examined. SEYCHELLES: Praslin Island, Anse Kerlan, 4.3126°S, 55.6850°E, garden, 27 August 2016, at UV light, 1♂, Bolotov leg.; Mahé Island, Anse Forbans, 4.7809°S, 55.5235°E, ocean coast, in water after heavy rainfall, 11 January 2020, 1♀, Kolosova leg.; Mahé Island, Anse Forbans, 4.7815°S, 55.5229°E, garden, feeding on inflorescences of Dracaena reflexa var. angustifolia Baker, 13 January 2020, 1♂, Bolotov leg.

Distribution. Migratory species, which is widespread throughout Eurasia, Africa, Australia, Oceania (Pittaway 2020; Pittaway and Kitching 2020; De Prins and De Prins 2021), and islands of the Western Indian Ocean such as Seychelles, Mascarenes, Comoros, and Madagascar (Matyot 2005; De Prins and De Prins 2021). However, in several mainland regions it occurs rarely due to unknown reasons (Yakovlev et al. 2015; Knyazev 2020; Yakovlev and Volgin 2020). In Seychelles, it is known to occur on Mahé (De Joannis 1894), Praslin (Bippus 2016), Silhouette (Fryer 1912), Cousine (Lawrence 2005), Aride (Bowler et al. 1999), Alphonse (Matyot 2005), Aldabra (Frith 1979), and Farquhar (Fletcher 1910).

Flower visitation. We observed several individuals (one of which was collected) feeding on inflorescences of Dracaena reflexa var. angustifolia Baker (Asparagaceae) every evening during the period of 04–20 January 2020 (Anse Forbans, Mahé; Ivan Bolotov, pers. observ.). This observation expands the data on flower visitation of this species in Seychelles. It was noted that adult moths were observed hovering over Crinum asiaticum L. (Amaryllidaceae) and feeding from Hippobroma longiflora (L.) G. Don (Campanulaceae) flowers on Mahé (Matyot 2005). Lawrence (2005) observed adults feeding from flowers of Hymenocallis littoralis (Jacq.) Salisb. (Amaryllidaceae) on Cousine.

Comments. Second record from Praslin. In contrast, it frequently occurs on Mahé (Matyot 2005; this study).

Discussion

Initially, the Seychelles Temnora population was identified as belonging to the Madagascar species T. peckoveri using external diagnostic features alone (De Joannis 1894; Fryer 1912; Legrand 1966). Neither those earlier scholars nor recent researchers (e.g. Matyot 2005; Gerlach and Matyot 2006; Lawrence and Henwood 2009) have examined the male genitalia of this insular taxon. Our study revealed that it could easily be distinguished from both Temnora peckoveri and T. fumosa based on the harpe shape and aedeagus structure. These features are widely used to delineate species-level taxa within the genus Temnora (e.g. Kitching 2020c). However, we hesitate to establish a new species-level taxon in the absence of available molecular data, and prefer to consider it as an insular subspecies of Temnora fumosa for now. Future DNA-based studies are urgently needed to estimate the phylogenetic distinctiveness and biogeographic affinities of this subspecies from the Inner Seychelles.

There are four subspecies of Temnora fumosa (Walker, 1856): the nominate (mainland Sub-Saharan Africa: Burkina Faso, Cote d’Ivoire, Ghana, Nigeria, Cameroon, Gabon, Central African Republic, Congo, Uganda, Kenya, Rwanda, Tanzania, Zambia, and South Africa); T. fumosa albuquerqueae Darge, 1970 (São Tomé & Príncipe), T. fumosa chanudeti Turlin, 1996 (Comoros: Grande Comore and Mayotte) (Darge 1970; Turlin 1996; Kitching 2020b; De Prins and De Prins 2021), and T. fumosa seychellensis ssp. nov. (Inner Seychelles) (this study). In its turn, the range of Temnora peckoveri (Butler, 1876) seems to be restricted to Madagascar and its small satellite islands such as Nosy Bé (Saalmüller 1884; Butler 1876; De Prins and De Prins 2021). None of the Temnora species is known to occur on the Mascarenes (Attie et al. 2010) and the southern coralline islands of Seychelles (Matyot 2005; Gerlach and Matyot 2006; Lawrence 2015) that supports our taxonomic hypothesis on T. fumosa seychellensis ssp. nov. as a geographically isolated insular race.
It was shown that the butterfly fauna of the Inner Seychelles shares a closer affinity to continental Africa than to Madagascar and Comoros (Lawrence 2014). The hawk moth fauna of these islands also reflects this biogeographic pattern, with four endemic taxa: *Nephele leighi* Joicey & Talbot, 1921, *Cephonodes tamsi* Griveaud, 1960, *Macroglossum alluaudi* De Joannis, 1893, and *Temnora fumosa seychellensis* ssp. nov. (Matyot 2005; Gerlach and Matyot 2006; Lawrence 2015; this study). The first species appears to have become extinct around the 1970s (Gerlach 2012), while the others are highly threatened by anthropogenic activities such as habitat loss and using of pesticides, and need special conservation efforts (Gerlach and Matyot 2006; this study). The *Temnora fumosa – T. peckoveri* species complex appears to be an exciting model of lepidopteran insular radiation through the Western Indian Ocean islands that must be a focus of future phylogenetic, biogeographic, and taxonomic research.

Most Seychelles specimens of *Agrius convolvuli* were collected during the north-west monsoon (November to February) that may indicate its migrant origin on the archipelago (Matyot 2005). However, records from Praslin in July 2014 (Bippus 2016) and August 2016 (this study) do not align with this hypothesis. Our observation of adults feeding from *Dracaena reflexa* var. *angustifolia* inflorescence on Mahé seems to be useful for pollination ecology because *Agrius convolvuli* may serve as a pollinator of this tree, which is native to the Malagasy Subregion (Buerki et al. 2009). Several features of Dracaenas such as nocturnal flowering, strong fragrance during the late evening, and copious production of nectar on the inflorescence may be linked to pollination by animals having a nocturnal activity (Bos 1998). It was assumed that certain but unidentified hawk moth species are likely to serve as pollinators of *Dracaena* in Africa (Bos 1984, 1998). Conversely, *Agrius convolvuli* shares a long tongue and it may function as a nectar thief for plants with shorter flower tubes (Alexandersson and Johnson 2002). To the best of our knowledge, here we present the first evidence that the widespread *Agrius convolvuli* may be associated with Dracaenas as nectar sources.

Acknowledgements

This study was partly supported by the Ministry of Science and Higher Education of the Russian Federation (projects 0409-2019-0042 to V.M.S., E.A.S., and Y.S.K; and 0409-2019-0041 to I.N.B.), and Russian Foundation for Basic Research (project 19-34-90012 to V.M.S. and I.N.B.). We are grateful to an anonymous reviewer who helped us to improve an earlier version of this paper.

References

Alexandersson, R. & Johnson, S. D. (2002) Pollinator–mediated selection on flower–tube length in a hawkmoth–pollinated *Gladiolus* (Iridaceae). *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 269(1491), 631-636. https://doi.org/10.1098/rspb.2001.1928

Attie, M., Kitching, I. J. & Veslot, J. (2010) Patterns of larval hostplant usage among hawkmoths (Lepidoptera, Sphingidae) from La Réunion, with a comparison of the Mascarenes with other regions of the world. *Revue d’Ecologie (La Terre et la Vie)*, 65, 3–44.

Bippus, M. (2016) Notes on Lepidoptera from the Seychelles. *Phelsuma*, 24, 35–71.

Bolotov, I. N., Frolov, A. A., Kolosova, Y. S. & Kondakov, A. V. (2014a) The male of *Sauris mouliniei* (Legrand, 1971) comb. n. (Lepidoptera: Geometridae: Larentiinae: Trichopterygini), an endemic Inner Seychelles moth. *Zootaxa*, 3765(4), 397–400. https://doi.org/10.11646/zootaxa.3765.4.8

Bolotov, I. N., Spitsyn, V. M., Kolosova, Y. S. & Frolov, A. A. (2014b) Occurrence of the viable population of *Chasmina candida* (Walker, 1865) (Lepidoptera: Noctuidae: Bagisarinae) on Praslin Island, Seychelles. *Phelsuma*, 22, 1–5.

Bolotov, I., Spitsyn, V., Kolosova Y. & Vlasova A. (2015) New and recent records of moth and butterfly species (Insecta: Lepidoptera) from Praslin and Mahé Islands, Seychelles. *Check List*, 11(5), 1752. https://doi.org/10.15560/11.5.1752

Bolotov, I. N., Matyot, P., Bippus, M., Spitsyn, V. M., Kolosova, Y. S. & Kondakov, A. V. (2016) Redescription of *Thalassodes antithetica* Herbulot, 1962, an endemic moth from Inner Seychelles (Lepidoptera: Geometridae: Geometrinae). *Zootaxa*, 4139(1), 135–139. https://doi.org/10.11646/zootaxa.4139.1.1

Bos, J. J. (1984) *Dracaena* in West Africa. *Agricultural University Wageningen Papers*, 84(1), 1–126.
Bos, J. J. (1998) Dracaenaceae. In: Kubitzki K. (Ed.) Flowering Plants. Monocotyledons. The Families and Genera of Vascular Plants, Vol. 3. Springer, Berlin, Heidelberg, pp. 238–241. https://doi.org/10.1007/978-3-662-03533-7_30

Bowler, J., Bullock, I., Cadbury, J., Gerlach, J. & Hunter, J. (1999) The ecology and conservation of Aride Island, Seychelles. *Phelsuma*, 7, 37–55.

Buerki, S., Callmader, M. W., Schüpf, F., Ravokatra, M., Küpfer, P. & Alvarez, N. (2009) Malagasy *Drapaca* Vand. ex L. (Ruscaceae): an investigation of discrepancies between morphological features and spatial genetic structure at a small evolutionary scale. *Plant Systematics and Evolution*, 280, 15–28. https://doi.org/10.1007/s00606-009-0162-z

Butler, A. G. (1876) Revision of the Heterocerous Lepidoptera of the family Sphingidae. *Transactions of the zoological Society of London*, 9(10), 511–644. https://doi.org/10.1111/f.1096-3642.1876.tb00236.x

Darge, P. (1970) Lépidoptères Attacidae et Sphingidae de l'île de São Tomé. *Bulletin de l'Institut fondamental d'Afrique noire* (A), 32(2), 495–500.

De Joannis, J. (1894) Mission scientifique de Ch. Alluaud des îles Seychelles (Mars - Avril - Mai 1892). 1er Memoire (1). Lépidoptères. *Annales de la Société entomologique de France*, 63, 425–438.

De Prins, J. & De Prins, W. (2021) *Afromoths*, online database of Afrotropical moth species (Lepidoptera). Royal Belgian Institute of Natural Sciences, Brussels, Belgium. Available from: www.afromoths.net (accession date: 04 February 2021).

De Prins, W. & Mazzei, P. (2016) Some faunistic notes on selected moth species (Lepidoptera) from the Seychelles. *Phelsuma*, 24, 21–34.

Fletcher, T. B. (1910) Lepidoptera exclusive of the Tortricidae and Tineidae, with some remarks on their distribution and means of dispersal among the islands of the Indian Ocean. The Percy Sladen Trust Expedition to the Indian Ocean in 1905. *Transactions of the Linnaean Society of London, Zoology*, 13, 265–324.

Frith, D. W. (1979) A list of insects caught in light traps on West Island, Aldabra Atoll, Indian Ocean. *Atoll Research Bulletin*, 225, 1–12.

Fryer, J. C. F. (1912) The Lepidoptera of Seychelles and Aldabra, exclusive of the Orneodidae and Pterophoridae and of the Tortricina and Tineina. *Transactions of the Linnaean Society of London, Zoology*, 15, 1–28.

Gerlach, J. (2012) Red Listing reveals the true state of biodiversity: a comprehensive assessment of Seychelles biodiversity. *Phelsuma*, 20, 9–22.

Gerlach, J. & Matyot, P. (2006) *Lepidoptera of the Seychelles Islands*, Backhuys Publishers, Leiden, 130 pp.

Kitching, I. J. (2020a) *Temnora peckoveri* (Butler, 1876). In: *Sphingidae Taxonomic Inventory*. The Natural History Museum, London, UK. Available from: http://sphingidae.myspecies.info/taxonomy/term/2741/media (accession date: 08 February 2021).

Kitching, I. J. (2020b) *Temnora fumosa* (Walker, 1856). In: *Sphingidae Taxonomic Inventory*. The Natural History Museum, London, UK. Available from: http://sphingidae.myspecies.info/taxonomy/term/2707/media (accession date: 08 February 2021).

Kitching, I. J. (2020c) *Temnora Walker*, 1856. In: *Sphingidae Taxonomic Inventory*. The Natural History Museum, London, UK. Available from: http://sphingidae.myspecies.info/taxonomy/term/2681 (accession date: 08 February 2021).

Knyazev, S. A. (2020) Catalogue of Lepidoptera of Omsk Oblast (Russia). Macrolepidoptera. Families: Hesperidae, Brachodidae, Cossidae, Sesiididae, Limacodidae, Zygaenidae, Thyrididae, Drepanidae, Uranidae, Geometridae, Lasiocampidae, Lemoniidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Lymantriidae, Arctiidae, Syntomidae, Erebidae, Nolidae, Noctuidae, Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Nymphalidae, Satyridae. *Acta Biologica Sibirica*, 6, 139–226. https://doi.org/10.3897/abs.6.e53005

Kolosova, Y. S. & Bolotov, I. N. (2020) Recent invasion of the Lime Swallowtail *Papilio demoleus* (Lepidoptera: Papilionidae) to Seychelles. *Ecologica Montenegrina*, 28, 31–39. https://doi.org/10.37828/em.2020.28.7

Lawrence, J. M. (2005) The Lepidoptera of Cousine Island, Seychelles. *Phelsuma*, 13, 94–101.

Lawrence, J. M. (2014) *Field Guide to Butterflies of Seychelles: Their Natural History and Conservation*. Siri Scientific Press, Rochdale (UK), 125 pp.

Lawrence, J. M. (2015) First record of *Euchloron megaera* (Linneaus, 1758) (Sphingidae) from Seychelles. *The Journal of the Lepidopterists' Society*, 69(2), 144–146.
Lawrence, J. M. & Henwood, J. (2009) First record of the threatened hawkmoth *Temnora peckoveri* from Cousine Island, Seychelles. *Phelsuma*, 17, 50–52.

Legrand, H. (1966) Lépidoptères des îles Seychelles et d’Aldabra. *Mémoires du Muséum National D’Historie Naturelle, Paris A* 37, 1–210.

Matyot, P. (2005) The hawkmoths (Lepidoptera: Sphingidae) of Seychelles: identification, historical background, distribution, food plants and ecological considerations. *Phelsuma*, 13, 55–80.

Pittaway, A. R. & Kitching, I. J. (2020) *Sphingidae of the Eastern Palearctic (including Siberia, the Russian Far East, Mongolia, China, Taiwan, the Korean Peninsula and Japan)*. The Natural History Museum, London, UK. Available from: http://tpittaway.tripod.com/china/china.htm (accession date: 04 February 2021).

Pittaway, A. R. (2020) *Sphingidae of Western Palearctic*. The Natural History Museum, London, UK. Available from: http://tpittaway.tripod.com/sphinx/list.htm (accession date: 04 February 2021).

Saalmüller, M. (1884) Lepidopteren von Madagascar. Erste Abteilung. *Rhopalocera, Heterocera: Sphinges et Bombyces*, 1–246.

Turlin, B. (1996) Faune lépidoptérologique de l’Archipel des Comores (Océan Indien) (Rhopalocères, Sphingidae, Attacidae) (8). *Lambillionea*, 96(1), 159–173.

Yakovlev, R. V., Gus’kova, E. V., Doroshkin, V. V. & Titov, S. V. (2015) Sphingidae of the Mongolian Altai (Lepidoptera: Sphingidae). *SHILAP Revista lepidopterologia*, 43(171), 467–478.

Yakovlev, R. V. & Volgin, I. (2020) New finding of Convolvulus hawkmoth – *Agrius convolvuli* (Linnaeus, 1758) (Lepidoptera, Sphingidae) in the south of Western Siberia. *Ecologica Montenegrina*, 38, 155–157. https://doi.org/10.37828/em.2020.38.23