Several studies using microarrays have shown that changes in gene expression provide information about the mechanism of toxicity induced by xenobiotic agents. Nevertheless, the issue of whether gene expression profiles are reproducible across different laboratories remains to be determined. To address this question, several members of the Hepatoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute evaluated the liver gene expression profiles of rats treated with methapyrilene (MP). Animals were treated at one facility, and RNA was distributed to five different sites for gene expression analysis. A preliminary evaluation of the number of modulated genes uncovered striking differences between the five different sites. However, additional data analysis demonstrated that these differences had an effect on the absolute gene expression results but not on the outcome of the study. For all users, unsupervised algorithms showed that gene expression allows the distinction of the high dose of MP from controls and low dose. In addition, the use of a supervised analysis method (support vector machines) made it possible to correctly classify samples. In conclusion, the results show that, despite some variability, robust gene expression changes were consistent between sites. In addition, key expression changes related to the mechanism of MP-induced hepatotoxicity were identified. These results provide critical information regarding the consistency of microarray results across different laboratories and shed light on the strengths and limitations of expression profiling in drug safety analysis.

Key words: methapyrilene, microarray, support vector machine, toxicogenomics, unsupervised algorithms, variability. Environ Health Perspect 112:439–448(2004). doi:10.1289/txg.6643 available via http://dx.doi.org/ [Online 15 January 2004]
minimal expression of single-cell necrosis with minimal mononuclear infiltrate without associated changes in clinical chemistry parameters (Waring et al. 2001). Thus, in the present study we chose 100 mg/kg/day as the high dose expected to elicit hepatotoxicity. A dose of 10 mg/kg/day was selected as the low dose with the expectation that no hepatotoxic effect would be observed.

Male Sprague-Dawley rats were obtained from Charles River Laboratories, Inc. (Wilmington, MA). Rats were 57 days old and weighed 233.4–274.0 g at the start of the treatment. Upon arrival to Abbott Laboratories (Abbott Park, IL), all rats were acclimated for 6 days before treatment began. The two treatment groups comprising four rats each received the test compound at a concentration of 10 or 100 mg/kg, respectively. Animals in the equally sized control group received vehicle only.

Rats were dosed once daily by gavage for 7 days. The dose volume was 10 mL/kg. Doses were milligram salt per kilogram per day and were calculated for each rat on the basis of the most recent body weight data available. Rats were fasted overnight after their last treatment, euthanized under halothane anesthesia and submitted for necropsy. Each rat received its last treatment approximately 24 hr before scheduled necropsy.

In vivo observations, pathology, and sampling. All rats were observed twice each day during the pretreatment and treatment periods for survival and general condition. Blood samples were drawn from all rats, and clinical chemistry parameters were obtained for alanine aminotransferase (ALT), aspartate aminotransferase (AST), sorbitol dehydrogenase (SDH), alkaline phosphatase (ALKPHOS), total bilirubin (TBIL), glutathione (GSH), and triglycerides (TRIG). At necropsy, liver was weighed and the percent of body weight of each organ was calculated. One part of the liver (left lateral lobe) was fixed for potential histopathology in 10% formalin and subsequently sectioned and stained with hematoxylin and eosin, while the rest of the organ was rinsed in phosphate-buffered saline, immediately flash-frozen in liquid nitrogen, and kept frozen for subsequent RNA isolation.

RNA Isolation and Distribution

Approximately 100 mg of tissue from each liver was placed into TRIzol reagent (Invitrogen, Corp., Carlsbad, CA) and homogenized. Total RNA isolation was performed exactly according to the TRizol reagent protocol. The remaining portion of the liver was retained frozen. Following isolation, the RNA was quantitated using a BioRad SmartSpec 3000 spectrophotometer (BioRad, Hercules, CA), and the integrity of the RNA was determined using an Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA). The RNA from the four animals in each treatment group was then pooled using equivalent amounts from each sample. The RNA was aliquoted and precipitated in ethanol and ammonium acetate for shipment to the participating DNA microarray users. In addition, RNA from individual animals was shipped to some of the DNA microarray analysis laboratories.

DNA microarray analysis. RNA samples were analyzed independently by five different Affymetrix users: Boehringer-Ingelheim Pharmaceuticals, Novartis, Pfizer Inc, F. Hoffmann-La Roche AG, and Schering AG. Voucher samples used for the design of the microarray were derived from Build 34 of the UniGene database (http://www.ncbi.nih.gov/UniGene; created from Genbank 107/dbEST 11/18/98) and supplemented with additional annotated gene sequences from Genbank 110 (http://www.ncbi.nih.gov/GenBank/). UniGene clusters are represented by an example sequence that is the most complete and most 3’ sequence in the cluster. The oligonucleotide probes are 25mers and 16 probe pairs per sequence are used. Processing of RNA and GeneChip experiments was carried out basically as recommended by Affymetrix, with some user-specific variations (Table 1) (Lockhart et al. 1996). An initial amount of 5–20 µg total RNA was used for the synthesis of double-stranded cDNA with a commercially available kit (Superscript Choice System; Invitrogen Life Technologies or Roche Molecular Biochemicals, Mannheim, Germany) in the presence of a T7-(dT)24 DNA oligonucleotide primer. After synthesis, the cDNA was purified with phenol/chloroform/isoamylalcohol extraction and ethanol precipitation. The purified cDNA was then transcribed in vitro (Enzo Diagnostics, Inc. (Farmingdale, NY) or Ambion, Inc. (Austin, TX)) in the presence of biotinylated ribonucleotides to form biotin labeled cRNA. The labeled cRNA was then purified on an affinity resin (Rneasy: Qagen, Inc., Valencia, CA), quantified and fragmented. An amount of 10–20 µg labeled cRNA was hybridized for approximately 16 hr at 45°C to an expression probe array. The array was then washed, stained with streptavidin-R-phycocyanin (SAPE; Molecular Probes, Eugene, OR), and the signal amplified using a biotinylated goat anti-streptavidin antibody (Vector Laboratories, Burlingame, CA) followed by a final staining with SAPE. Arrays were stained using the GeneChip Fluidics Workstation 400 (Affymetrix) and then scanned twice using a confocal laser scanner (GeneArray Scanner 2500; Hewlett Packard (Palo Alto, CA) or Agilent Technologies), resulting in one average scanned image.

Data analysis. Tab-delimited files obtained from the Affymetrix Microarray Suite software, version 4.0, (*.cch files) and containing data on signal intensity [average difference (Avg Diff)] and categorical expression-level measurement (Absolute Call) were used for analysis. Data were normalized and further analyzed using Roche in-house developed software (RACE-A; F. Hoffmann-La Roche AG, Mannheim, Germany). Briefly, this software performs a normalization step on the signal intensities based on the average signal (Mean Avg Diff) of each microarray before calculating additional parameters. In the cases where biological replicates were included, RACE-A was also used to calculate the average signal (arithmetic mean), and SD for each probe set. Also, comparative analysis between control and treated was performed including fold change (Avg Diff Treated/Avg Diff Control) and a significance value (p-value), calculated using a two-tailed, unpaired t-test. Once the required statistical parameters were calculated, data were filtered and exported to MS-Excel 2002 (Microsoft Corp., Bellevue, WA) or additional software for visualization and further analysis.

In addition, methods comprising more sophisticated algorithms and designed

Table 1. Sample preparation methods used by the contributing companies.

Gene expression analysis site	Acronym	Sample type	cDNA	IVT
Boehringer Ingelheim	BI	Pool	SSI, Invitrogen	Enzo-Affymetrix
Pharmaceuticals				
Novartis Pharma AG	Nov	Pool	SSI, Invitrogen	Enzo-Affymetrix
Pfizer Inc	Pfi	Pool	SSI, Invitrogen	Enzo-Affymetrix
F. Hoffmann-La Roche	RO	Pool	AMV, Roche Molecular Biochemicals	Ambion, Inc.
F. Hoffmann-La Roche	RO	Individual	AMV, Roche Molecular Biochemicals	Ambion, Inc.
Schering AG	Sch	Pool	SSI, Invitrogen	Enzo-Affymetrix
Schering AG	Sch	Individual	SSI, Invitrogen	Enzo-Affymetrix

Abbreviations: AMV, avian myeloblastosis virus; Enzo-Affymetrix, Enzo Diagnostics, Inc. and Affymetrix, Inc.; IVT, in vitro transcription; SSI, Superscript II.
specifically for multivariate data analysis such as microarray data were employed. These methods share the characteristics of reducing the dimensionality of the data to a number of dimensions (components or vectors) that explain most of the variability in the data set. They are better suited to microarray analysis and generally superior in performance than gene-by-gene analysis with conventional statistical tests because they take into account the complex data structure. Such methods are known as unsupervised (hierarchical clustering and principal component analysis (PCA)) or supervised [support vector machines (SVMs)] multivariate analysis methods. Supervised methods such as SVMs are based on algorithms that learn from a selected training data set and use this previously acquired knowledge about classes to classify unknown data. The algorithm solves the classification problem while aiming to minimize the probability of false classifications for initially unknown test data. The basic idea of the SVM method and detailed explanations are described elsewhere (Cristianini and Shawe-Taylor 2000; Schölkopf et al. 1999).

Unsupervised methods such as clustering algorithms and PCA are commonly used to determine if gene expression patterns allow the discrimination of natural subpopulations that might bear a biological meaning such as treated/untreated or healthy/diseased. PCA is a mathematical technique that reduces the dimensionality of highly multivariate data. The reduced dimensions (or components) actually describe the major part of the variation in the samples and separate natural subpopulations without a priori knowledge (Liu et al. 2002).

Cluster analysis is a method used to organize primary data. Pairwise average-linkage cluster is a form of unsupervised hierarchical clustering commonly used for the analysis of microarray data. Relationships among objects such as experimental conditions or genes are represented by a tree whose branch lengths reflect the degree of similarity between the objects as assessed by a pairwise similarity function based on correlation coefficients (Eisen et al. 1998). The clustering tools and SVM used in this analysis are modules of RACE-A, whereas PCA was performed using SIMCA-P (Umetrics, Umea, Sweden).

The complete data set is currently being submitted to ArrayExpress (EMBL-European Bioinformatics Institute, Hinxton, UK: http://www.ebi.ac.uk/arrayexpress) and will be available for public download by the second quarter of 2004. Accession numbers referencing this data set will be available on the HESI website (http://hesi.iis.org/index.cfm?pubentityid=120).

Results

Clinical chemistry and histopathology. A significant change in both body weight and food consumption compared to that of control groups was seen in the high-dose, but not in the low-dose group (data not shown). Clinical chemistry values confirmed liver toxicity occurred in the high-dose rats (Table 2). There were no significant changes at the low dose. Significant increases in leakage enzyme (AST, SDH and ALKP) indicate both hepatocellular and cholangiolar injury. The dose-dependent decline in serum glucose and a trend toward a decrease in triglyceride levels might indicate compromise of hepatocellular metabolic function but may also have been influenced by reductions in food consumption.

No compound-related histopathological changes were found for the low-dose group, whereas several compound-related changes were seen in livers from rats treated at the high-dose level. These included cytoplasmic vacuolation of perisinusoid hepatocytes, minimal to mild necrosis of perisinusoid hepatocytes, increased infiltration of portal tracts by mononuclear inflammatory cells, and hyperplasia of oval cells along portal tracts.

Comparisons across users. After microarray analysis of the RNA, it was determined that different users obtained comparable results despite possible variation in the sample processing [from total RNA up to fragmented IVT (in vitro transcript)] and microarray hybridization protocols. In a preliminary round of analysis using rigid cutoff values to assess which genes were modulated, the number of genes detected as regulated in the pooled samples (2-fold increase or decrease) by each user were strikingly different (Table 3). All five users analyzing the pooled RNAs detected 254 genes that were regulated simultaneously, while each user recognized an excess of 1,000 genes as up- or downregulated. The data set generated at RO appeared to be a clear outlier with nearly twice the amount of modulated genes as the other users. This may be due to the modifications introduced in the sample preparation (Table 1), but no direct evidence is available in support of this.

Further microarray results demonstrated that when individual animals were analyzed, as opposed to pooled samples, the number of genes detected as induced/repressed was generally reduced. Table 3 shows the results from microarray analysis.

Table 2. Clinical chemistry values for methapyrilene-treated rats.

Rat no.	Dosage (mg/kg)	ALT (IU/L)	AST (IU/L)	SDH (IU/L)	ALKP(HOS) (IU/L)	TBL (mg/dL)	GLU (mg/dL)	TRIG (mg/dL)
1001	0	42	91	10.9	79	0.1	145	53
1003	0	25	106	6.6	170	0.1	136	19
1005	0	28	103	6.7	292	0.1	132	50
1007	0	30	90	7.3	197	0.1	121	48
Average	0	31.3	97.5	7.9	21.0	0.1	133.5	45.0
SD		7.46	8.2	2.0	56.1	0.0	10.0	18.0
2001	10	51	168	17.4	275	0.1	102	28
2003	10	24	97	9.5	217	0.1	111	50
2005	10	23	90	9.1	235	0.1	138	29
2007	10	30	92	12.1	255	0.1	97	19
Average	10	32.0	111.8	12.0	245.5	0.1	112	31.5
SD		13.0	37.6	3.8	25.1	0.1	18.3	13.1
3001	100	36	162	12.3	220	0.1	123	18
3003	100	56	179	12.9	283	0.4	100	28
3005	100	193 > 410	24.2	460	0.9	105	24	
3007	100	51	200	19.4	417	0.3	88	15
Average	100	84.0	180.3*	17.2*	345.0*	0.4	104.0*	21.2
SD		73.2	19.0	5.7	112.4	0.3	14.5	5.9

Abbreviations: ALKP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GLU, glucose; SDH, sorbitol dehydrogenase; TBL, total bilirubin; TRIG, triglycerides.

*Significantly different from the control group using two-tailed test (p-value < 0.05).

Table 3. Number of genes regulated by methapyrilene across the different companies in the pooled and individual samples at the high dose.

	Pooled RNA samples	Individual RNA samples
Common BI	RO	Sch
Common RO/Sch	All users	RO
RO/Sch	Sch	

Upregulation

BI	Nov	Pfi	RO	Sch	All users	RO	Sch	
Upregulation	691	785	621	1,325	692	282	352	120

Downregulation

BI	Nov	Pfi	RO	Sch	All users	RO	Sch	
Downregulation	480	283	728	292	405	130	75	262

Abbreviations: BI, Boehringer-Ingelheim Pharmaceuticals; Nov, Novartis Pharma AG; Pfi, Pfizer Inc; RO, F. Hoffmann-La Roche AG; Sch, Schering AG.

Cut-off values: 2-fold change, p-value < 0.05.
on pooled samples and individual animals conducted at RO and Sch. The inclusion of replicates very likely diminishes the influence of false signals. Nevertheless, there is still much disagreement among users when performing simple data analysis methods and defined cutoff values.

Whereas the gene expression analysis was not concordant between different laboratories, a critical question to be addressed is whether microarray results from all users reflected the observations from traditional toxicology markers and yielded similar mechanistic outcomes. When methapyrilene effects on the liver are examined, both histopathology and clinical chemistry analysis distinguished the high-dose animals from the low-dose and control animals. To determine if microarray analysis also distinguished between high and low dose, more sophisticated methods usually better suited to the analysis of highly multivariate microarray data were used. Among these methods, we chose to employ unsupervised as well as supervised approaches. Conversely, unsupervised methods are well suited to separate natural subpopulations in an unbiased manner. On the other hand, supervised methods allow incorporating knowledge obtained from the data (training set) to distinguish classes in the test data set. We analyzed the data using two unsupervised methods, namely PCA and hierarchical clustering. Using all expressed genes (4,846 probe sets), PCA analysis revealed a clear separation of the high-dose samples from controls and low-dose samples, despite the fact that the site differences are responsible for a large amount of variance. In this analysis, the second principal component (PC2; accounting for 15% of the variance) drives the treatment-related difference, as indicated by the arrows, whereas PC1 (accounting for 33% of the variance) showed a separation by site (Figure 1A, B). Excluding PC1 and relying exclusively on PC2 and PC3, a clear separation between high-dose–treated animals and the other two groups was achieved regardless of the site in which the sample processing was performed. Thus, the site-related differences do not mask the outcome of the classification. The low-dose samples could not be confidently distinguished from the vehicle-treated controls, a conclusion that accords with the clinical chemistry and histopathology findings.

To verify this latter conclusion, we grouped the data using another unsupervised clustering method, agglomerative hierarchical clustering. When we used the expressed genes employed for the PCA analysis, there was a tendency toward clustering by the site performing the microarray analysis (Figure 2A). An increase in statistical power

![Figure 1. Principal component analysis using all expressed genes (4,846 probe sets, Avg Diff Max ∼ 200, Mean Call ≥ 0.5). Abbreviations: BI, Boehringer-Ingelheim Pharmaceuticals; Nov, Novartis Pharma AG; Pfi, Pfizer Inc; RO, F. Hoffmann-La Roche AG; Sch, Schering AG; ind, individual; PC, principal component. All data points are from pooled samples unless otherwise indicated. (A) PC2 versus PC1, showing that PC1 is mainly driven by the site performing the microarray experiments. (B) PC3 versus PC2. Arrows show the separation of the high-dose samples from the vehicle and low-dose samples, mainly on the PC2.](image)

![Figure 2. Hierarchical clustering using either (A) probe sets that were detected (4,846) or (B) probe sets that showed concordant regulation in the analyses performed by the two sites using RNA from individual animals (193 probe sets). Abbreviations: BI, Boehringer-Ingelheim Pharmaceuticals; Nov, Novartis Pharma AG; Pfi, Pfizer Inc; RO, F. Hoffmann-La Roche AG; Sch, Schering AG; CONT, control; ind, individual. Each branch represents either a single chip (pooled samples) or the mean value of four replicates (individual samples). The correlation distance is represented by the distance between the samples in the dendrogram. Correlation coefficient values ranged between 0.854634 and 0.999306 in Figure 2A and between 0.490595 and 0.989861 in Figure 2B.](image)
can be achieved by including the confidence information obtained from the analysis of biological replicates (Lee et al. 2000). For most users conducting these experiments, individual replicates were not available, as the RNA had been pooled. However, replicates were available from the two sites that performed microarray analysis on individual animals. Thus, we performed hierarchical agglomerative clustering using the probe sets that were regulated in common by the high dose of MP from the individual replicates obtained by Sch and RO. With this smaller subset of genes, hierarchical clustering of the treatment groups allowed the high dose to be discriminated from the controls and low-dose–treated animals (Figure 2B). Similar to the PCA analysis, the low-dose samples could not be distinguished from the control samples.

To improve the discrimination between the groups, further analysis was performed using supervised methods. Because results from biological replicates were provided by two sites (RO and Sch), it was possible to generate a training set using the profiles obtained from the individual animals. This training set consisted of two analyses (one per site) that included 4 animals in each treatment group, amounting to 24 microarrays generated from 12 animals. This training set has the limitations of being rather small and of including in each group four biological replicates (independent) and for each of these independent replicates, two processing replicates from different sites (nonindependent). The data from individual animals were analyzed using the SVM to identify probe sets that were distinct for the three different classes of treatment (vehicle, low-dose, high-dose). The training of the SVMs and the subsequent classification were performed using all probe sets on the chip (8,799). Once the SVM was thus trained, the 15 microarrays obtained from the analysis of the pooled samples (5 controls, 5 low-dose, 5 high-dose) were used as test samples and classified. In this case, samples obtained from animals treated with low or high doses of MP were correctly classified. Classification of the control animals was relatively ambiguous, as only 2 animals were correctly classified as controls, whereas the other 3 showed no similarity to either group (Figure 3). An example of some of the genes that allow the distinction between control and treated animals (low- and high-dose) is shown in Figure 4. Thus, using supervised clustering, together with biological replicates, it was possible overall to distinguish not only the high-dose–treated group, but also the low-dose–treated group from the controls. This was not unequivocally possible using clinical chemistry, histopathology, or unsupervised clustering methods.

Genes affected by MP. More important than the number of regulated genes is the determination of the identity of the regulated genes, the affected cellular pathways, and their biological significance. Some genes described previously as regulated by MP or that are associated with the histopathology findings were consistently detected by all involved users. Genes associated with cell stress, cell damage or apoptosis, and

![Figure 3. Classification of the pooled samples using support vector machines. The program was trained with the individual analyses provided by RO and Sch; all five pooled analyses were used as test sets. Training and classification were performed using all probe sets on the microarray. All low-dose (blue bars) and high-dose (red bars) samples were correctly classified, as well as two of the five controls (black bars). Three additional pooled controls could not be classified in any of the training groups.](image)

![Figure 4. Examples of genes modulated at both the low and the high doses of MP. Dotted lines represent average values of the individual analyses by two users (RO and Sch) and solid lines each of the analyses of pooled samples by five users. For each panel, identification numbers in parentheses are Affymetrix probe set ID codes.](image)
Affymetrix probe set ID	Class	Gene	Max Signal	RD (individual)	Sch (individual)	Direction
X75207_s_at	Cell cycle	Cyclin D1	696	0.193	0.023	Down
D10414_g_at	Cell cycle	Cyclin D1	1,474	0.170	0.002	Down
D10414_at	Cell cycle	Cyclin D1	1,363	0.017	0.010	Down
X70671_at	Cell cycle	Cyclin D1	939	0.087	0.008	Down
E01184cds_s_at	Cyt P450	Cyt P450	4,296	0.003	0.003	Down
M72088_at	Cyt P450	CYP17	2,204	0.004	0.013	Up
K0241cds_at	Cyt P450	CYP1A2	2576	0.005	0.011	Down
J04187_at	Cyt P450	CYP2A2	11,191	0.007	0.011	Down
J02657_s_at	Cyt P450	CYP2C11	24,686	0.001	0.001	Down
M13633cds_at	Cyt P450	CYP2C11	7,563	0.012	0.000	Down
X79081mRNA_f_at	Cyt P450	CYP2C11	3,775	0.006	0.001	Down
J03786_g_at	Cyt P450	CYP2C12	7,156	0.021	0.000	Down
M33505cds_at	Cyt P450	CYP2C12	7,758	0.093	0.000	Down
rc_AA494573_f_at	Cyt P450	CYP2C39	16,174	0.009	0.015	Down
M30131mRNA_f_at	Cyt P450	CYP2C39	15,025	0.012	0.000	Down
M14177_s_at	Cyt P450	CYP2C7	17,548	0.000	0.010	Down
AB080424_s_at	Cyt P450	CYP2D3	15,558	0.003	0.012	Down
U46118_g_at	Cyt P450	CYP3A49	1,234	0.019	0.000	Down
M29853_at	Cyt P450	CYP5B1	2,149	0.128	0.042	Down
D00660_at	Glutathione	Glutathione synthetase	539	0.010	0.004	Down
L38615_g_at	Glutathione	Glutathione peroxidase	1,169	0.085	0.023	Down
rc_AA494582_at	Glutathione	Glutathione synthetase	1,049	0.019	0.010	Down
S75086_s_at	Glutathione	Glutathione synthetase	2,022	0.004	0.001	Down
S52522mRNA_f_at	Glutathione	Glutathione synthetase	7,568	0.000	0.000	Down
X98198_g_at	Lipid metabolism	Acyl-CoA oxidase	2,963	0.003	0.012	Down
AB010428_s_at	Lipid metabolism	Acyl-CoA thioesterase 1	4,424	0.011	0.002	Down
Y09333_g_at	Lipid metabolism	Acyl-CoA thioesterase 1	5,696	0.024	0.000	Down
Y09333_s_at	Lipid metabolism	Acyl-CoA thioesterase 1	5,411	0.032	0.000	Down
D43623_g_at	Lipid metabolism	Carnitine palmitoyltransferase	879	0.053	0.004	Down
M26125_g_at	Lipid metabolism	Epoxide hydrolase 1	18,841	0.023	0.000	Down
rc_AA883242_g_at	Lipid metabolism	Fatty acid-CoA ligase	2,968	0.012	0.000	Down
M29429cds_at	Lipid metabolism	HMG-CoA reductase	667	0.047	0.000	Down
X55286_g_at	Lipid metabolism	HMG-CoA reductase	235	0.010	0.000	Down
J02585_s_at	Lipid metabolism	Steroyl-CoA desaturase 1	3,206	0.017	0.008	Down
AB010429_s_at	Lipid metabolism	Very long chain acyl- CoA thioesterase	1,772	0.015	0.004	Down
L07114_g_at	Lipid transport	Apolipoprotein B binding protein	287	0.022	0.005	Down
AF07241_at	Lipid transport	CD36	1,077	0.005	0.000	Down
rc_AA935752_at	Lipid transport	CD36	1,446	0.003	0.000	Down
AB005743_g_at	Lipid transport	CD36	307	0.003	0.000	Down
AF072411_g_at	Lipid transport	CD36	1,979	0.004	0.000	Down
AB005743_s_at	Lipid transport	CD36	289	0.004	0.000	Down
K01190_at	Lipid transport	Fatty acid binding protein 2	321	0.100	0.000	Down
U02096_s_at	Lipid transport	Fatty acid binding protein 7	3,443	0.005	0.000	Down
L34649_g_at	Lipid transport	Megalin (LRP2)	977	0.001	0.000	Down
U89280_at	Phase 2 metabolism	17-β-Hydroxysteroid dehydrogenase	6,406	0.020	0.005	Down
AF045464_s_at	Phase 2 metabolism	Alfafoxin b1 dehydrogenase	9,840	0.016	0.000	Down
D30861oxon_s_at	Phase 2 metabolism	UG77-6	1,026	0.003	0.012	Down
S58538_s_at	Phase 2 metabolism	UG77-6	1,186	0.002	0.005	Down
D30861oxon_s_at	Phase 2 metabolism	UG77-6	507	0.003	0.010	Down
J02599rRNAf2 At	Phase 2 metabolism	UG7172	1,299	0.009	0.000	Down
rc_N181708_s_at	Phase 2 metabolism	UG7172	21,663	0.000	0.000	Down
rc_N180442_s_at	Phase 2 metabolism	Steroid metabolism	1,378	0.008	0.013	Down

Continued
Affymetrix probe set ID	Class	Gene	Max signal
M95951_g_at	Steroid metabolism	Farensyl diphosphate synthase	1,040
M95951_at	Steroid metabolism	Farensyl diphosphate synthase	2,011
M89945mRNA_g_at	Steroid metabolism	Farensyl diphosphate synthase	3,421
M89945mRNA_at	Steroid metabolism	Farensyl diphosphate synthase	4,531
M81225_at	Steroid metabolism	Farensyltransferase	1,063
U33500_at	Steroid metabolism	Retinol dehydrogenase type II	1,256
M19257_at	Steroid metabolism	Retinol-binding protein 1	3,941
D37920_at	Steroid metabolism	Squalene epoxidase	843
U30186_at	Stress/damage	GADD153	1,670
L23591gRNA_at	Stress/damage	GADD45a	1,015
L23591gRNA_g_at	Stress/damage	GADD45a	1,154
rc_A070295_g_at	Stress/damage	GADD45a	829
rc_A179599_at	Stress/damage	GADD45a	1,172
Y00299mRNA_at	Stress/damage	GADD45a	643
Y00299mRNA_g_at	Stress/damage	GADD45a	988
Y00299mRNA_g_at	Stress/damage	GADD45a	988
Y00299mRNA_g_at	Stress/damage	GADD45a	988
J002722c6s_at	Stress/damage	GADD45a	464
M25157mRNA_f_at	Sulfotransferase	Superoxide dismutase	4,406
S78511_s_at	Stress/damage	BAX	586
M60291_g_at	Stress/damage	B-cell translocation gene 2	551
rc_A9A41456_s_at	Stress/damage	B-cell translocation gene 2	1,934
U49729_at	Stress/damage	bcl12-associated X protein	285
M33292_f_at	Sulfotransferase	Alcohol sulfotransferase	6,794
X63410cds_f_at	Sulfotransferase	Alcohol sulfotransferase	9,853
S76498_s_at	Stress/damage	Estrogen synthase	10,020
D14988_f_at	Sulfotransferase	Hydroxysteroid sulfotransferase	5,378
rc_A1169695_f_at	Sulfotransferase	Hydroxysteroid sulfotransferase	5,836
D14988_f_at	Sulfotransferase	Hydroxysteroid sulfotransferase	13,597
D14987_f_at	Sulfotransferase	Hydroxysteroid sulfotransferase	10,861
rc_AA817987_f_at	Sulfotransferase	Hydroxysteroid sulfotransferase	8,115
M33133mRNA_f_at	Sulfotransferase	Hydroxysteroid sulfotransferase	14,611
rc_AA818122_f_at	Sulfotransferase	Hydroxysteroid sulfotransferase	12,159
rc_AA008836_at	Sulfotransferase	Hydroxysteroid sulfotransferase	602
L23339_at	Sulfotransferase	Phenol-prefering sulfotransferase	2,105
L23339_g_at	Sulfotransferase	Phenol-prefering sulfotransferase	15,648
AB010467_s_at	Transporter	Myosin-like protein 2	985
DB0088_s_at	Transporter	Myosin-like protein 2	4,083
MB1859_at	Transporter	P-glycoprotein/multi-drug resistance 1	5,082
M77479_at	Transporter	Sodium/bis acid con-transporter family	6,110
rc_AL125631_at	Unknown	Expressed sequence tag	795
rc_AL172452_at	Unknown	Expressed sequence tag	1,603
rc_AA866240_f_at	Unknown	Expressed sequence tag	8,131

Table 4. Continued.
metabolic pathway by the high dose was accompanied by downregulation of retinol dehydrogenase and retinol-binding protein 1 in the retinol metabolic pathway and of the androgen/estrogen metabolic pathways (Figure 5). In addition, MP produced a marked effect in some metabolic enzymes such as the upregulation of cytochrome P-450 (CYP)4B1, CYP2C12, and aflatoxin reductase and the downregulation of CYP1A1, CYP2A2, CYP2C11 and sulfotransferases (Ratra et al. 1998a). Additional genes involved in redox processes were affected by the treatment: glutathione S-transferase (GST)Σ-2, glutathione peroxidase, and glutathione synthetase were induced, whereas superoxide dismutase was repressed. A consistent induction of UDP-glucuronosyltransferase (UDPGT) 1–6 and a concomitant downregulation of UDPGT2B (3-hydroxyandrogen specific) were also observed. MP also seemed to have an effect on the expression levels of several transporters; MDR (P-glycoprotein), cMOAT1 (MRP2) and cMOAT2 (MRP3) were upregulated, whereas the expression of the sodium/taurocholate transporter was transcriptionally repressed.

As can be deduced from the cluster and PCA analyses (Figures 1 and 2), the effect of the low dose of MP is rather subtle, involving a small amount of regulated genes and moderate fold changes. This makes the distinction between low-dose treated animals and controls relatively difficult in a rather heterogeneous (different users, different protocols) set of samples comprising very few replicates to support statistical analysis (four biological replicates for individual sample analyses and five replicates for pooled samples). Nevertheless, some genes could be identified that are consistently modulated by the low dose of the compound. Among these genes, a dose-dependent decrease in acyl-CoA desaturase (Brunelle and Chandel 2002) and acl–acyl-CoA acyl-CoA desaturase, acyl-CoA synthase, farnesyl diphosphate FPP-transferase, FPP-synthase were upregulated, while acyl-CoA desaturase, acyl-CoA synthase, squalene epoxidase, farnesyl diphosphate synthase, mevalonate kinase, mevalonate pyrophosphate decarboxylase, 20-ketoacyl-CoA dehydrogenase, isopentenyl-diphosphate delta-isomerase, and farnesyl pyrophosphate synthase were downregulated (Ratra et al 1998b).

Figure 5. Projection of the gene expression results obtained using the individual animal data on the sterol/retinol metabolic pathways (KEGG). Red boxes indicate significant upregulation while blue boxes represent significant downregulation. Of the small colored boxes, boxes on the left represent the mean modulation by Roche (individual) and boxes on the right represent the mean modulation by Schering (individual). Nomenclature for the affected genes: farnesyl diphosphate farnesyltransferase (EC 2.5.1.21); farnesyl pyrophosphate synthase (EC 2.5.1.10); farnesyl pyrophosphate synthase (EC 2.5.1.1); 3-hydroxy-3-methylglutaryl-CoA reductase (EC 1.1.1.34); isopentenyl-diphosphate delta-isomerase (EC 5.5.3.2); mevalonate kinase (EC 2.7.1.38); mevalonate pyrophosphate decarboxylase (EC 4.1.1.33); NAD(P)H2 dehydrogenase, quinone (EC 1.6.99.2); retinol dehydrogenase (EC 1.1.1.108); squalene monoxygenase squalene (EC 1.1.108).

Figure 5. Projection of the gene expression results obtained using the individual animal data on the sterol/retinol metabolic pathways (KEGG). Red boxes indicate significant upregulation while blue boxes represent significant downregulation. Of the small colored boxes, boxes on the left represent the mean modulation by Roche (individual) and boxes on the right represent the mean modulation by Schering (individual). Nomenclature for the affected genes: farnesyl diphosphate farnesyltransferase (EC 2.5.1.21); farnesyl pyrophosphate synthase (EC 2.5.1.10); farnesyl pyrophosphate synthase (EC 2.5.1.1); 3-hydroxy-3-methylglutaryl-CoA reductase (EC 1.1.1.34); isopentenyl-diphosphate delta-isomerase (EC 5.5.3.2); mevalonate kinase (EC 2.7.1.38); mevalonate pyrophosphate decarboxylase (EC 4.1.1.33); NAD(P)H2 dehydrogenase, quinone (EC 1.6.99.2); retinol dehydrogenase (EC 1.1.1.108); squalene monoxygenase squalene (EC 1.1.108).
inhibitor) were observed, together with a very slight decrease in betaine–homocysteine S-methyltransferase (EC 2.1.1.5) and an increase in insulin-like growth factor binding protein 1 precursor (IGFBP-1) (Mohn et al. 1991).

Discussion

In this study, we were able to examine differences and similarities of results from microarray analysis obtained from a common source of RNA by several users. A preliminary evaluation of the number and identity of modulated genes uncovered striking differences between the five different Affymetrix users. This is in contrast to previous studies that have shown high reproducibility with microarray chips from the same RNA source (Waring et al. 2001).

In addition, our unpublished data show that the correlation between gene expression in the liver and in the kidney from samples obtained from the same animal and prepared by the same operator following a standardized protocol is only 44%, whereas two different liver samples show a correlation of 98%. In this study some of the differences between users are likely because of different user protocols. In support of this, RO shows the most striking difference in the absolute values of regulated genes and is also the user introducing the most modifications of the sample processing and hybridization protocol (different cDNA kit, different blocking solution, etc.). Other users employing the protocols recommended by Affymetrix show less variability among them. The remaining differences are probably attributable to minor protocol deviations as well as to an expected amount of false positives. In this case the number of false positives was undoubtedly high because the samples were pooled and thus the number of replicates was low.

Further data analysis with additional tools corroborated the finding that differences between users, sample processing, and hybridization protocols affected the absolute results, but that this did not distort the major conclusion of the study. Indeed, the PCA results showed that the PC1 (accounting for 33% of the variance) was mainly site driven (Figure 1A), but this variability did not mask the effects elicited by the high dose of MP. Despite the observed differences, all users obtained similar overall results that correlated with histopathology and clinical chemistry analysis. A clear differentiation between high-dose (toxic)–treated animals and controls and low-dose–treated animals was obtained by all users, as shown using unsupervised data analysis methods (cluster analysis and PCA). Moreover, in a supervised approach it was possible to identify animals treated with high and low doses in all the pooled samples analyzed by five different users on the basis of SVM trained with data obtained from the samples processed individually. Surprisingly, the status of the pooled control samples was not clearly assigned to any treatment group. There are two possible factors that could have led to this misclassification. On one hand, the training set is very small, and this type of model has an optimal performance with large data sets. Alternatively, the effects of 10 mg/kg MP are very subtle, thus making distinction of control and low-dose–treated animals rather difficult. This is even more pronounced in a heterogeneous set of data. For very slight effects a larger number of replicates might be required for optimal performance.

As stated by Hamadeh et al. (2002), the use of unsupervised analysis tools is essential to ensure that the data contain natural subpopulations and that no preconceived bias is introduced when classes of compounds are being identified. The results obtained using cluster analysis and PCA show that gene expression profiles allow the natural classification of the high dose of MP regardless of the variation introduced by the different users. Nevertheless, these unsupervised tools mainly allow the distinction of samples showing definitive histopathological findings (high-dose) from samples without findings (controls and low-dose samples). It might be argued that this is not sensitive enough for predictive toxicogenomics studies. However, using a supervised analysis method like SVM, it was possible to correctly categorize samples into vehicle, low- and high-dose classes, which was not possible with clinical chemistry or histopathology. Thus, similar to results obtained by Burczynski et al. (2000) and Thomas et al. (2001), the ability to correctly classify compounds using toxicogenomics can be greatly improved by selecting a smaller subset of the most predictive gene sets.

A number of the genes and pathways regulated by MP toxicity were similar across users. This is particularly true for the high-dose–treated animals in which the effects were more pronounced. The genes detected as transcriptionally induced or repressed are in good agreement with results from a similarly designed study by Hamadeh et al. (2002) using cDNA spotted arrays. In-depth analysis of the genes modulated by MP sheds light on the variety of cellular processes affected.

Our results provide ample proof that gene expression analysis is a suitable method to detect effects produced by a high dose (100 mg/kg) of MP. The results presented in this article are generally in good agreement with a similar study performed by Hamadeh et al. (2002) and also show signals characteristic of the compound under investigation. The decrease in cytochrome P450 after a high dose of MP was in agreement with results of previous studies that showed this compound decreased the content of CYP2C11, CYP3A and CY2A, possibly due to suicide substrate activation (Graichen et al. 1985, Ratra et al. 1998a). MP is also known to transcriptionally induce CYP2C12 and CYP4B1 (Hamadeh et al. 2002), as was also detected by all users analyzing the samples. In addition, several of the genes detected as modulated, including the GADD family, hem oxygenase and genes related to glutathione homeostasis are indicative of the oxidative stress known to be produced by MP (Ratra et al. 1998b). Also, several of the modulated genes indicate an effect of MP on lipid metabolism, which is one of the pathways affected by MP as shown in studies using *in vitro* approaches (Iype et al. 1985) and protein analysis (Man et al. 2002). Moreover, events indicative of lipid peroxidation were observed as previously published (Hamadeh et al. 2002). The induction of mitochondrial genes (i.e., *CPT1* and acyl-CoA thioester hydrase) is also indicative of the mitochondrial proliferation that has been previously related to MP (Iype et al. 1985).

In animals treated with a low dose of MP, some genes could be identified as already being modulated after 1-week treatment with 10 mg/kg/day MP. Among these, an induction of *IGFBP-1* (Affymetrix probe set ID M58634_at) and aflatoxin B1 aldehyde reductase (Affymetrix ID AF045464_s_at), as well as the downregulation of retinol dehydrogenase type 2 (Affymetrix ID U33500_g_at) were observed. As depicted in Figure 4C, the observed downregulation of retinol dehydrogenase 2 at both the low and high doses was accompanied by the downregulation of retinol-binding protein 1 (Affymetrix ID M19257_at; Figure 4D). *IGFBP-1* (Affymetrix ID M58634_at) appeared upregulated at both doses, whereas the growth-promoting insulin-like growth factor 1 (*IGF1*, Affymetrix ID M15481_at) appeared downregulated only after rats were exposed to a high dose of MP (Figure 4A, B). The upregulation of *IGFBP-1* might be a protective mechanism for the known carcinogenic effect of MP because the levels of *IGFBP-1* regulate the mitogenic effects of IGFs (Kelley et al. 1996). In fact, *IGFBP-1* has been shown to inhibit hepatic preneoplasia in mice (Lu and Archer 2003).
An additional cell protection mechanism that appears stimulated after treatment with 10 mg/kg/day of MP is aflatoxin B1 aldehyde reductase (Affymetrix ID AF045464_s_at; Figure 4E). This detoxifying enzyme shows only a slight induction at the low dose and an extensive induction at the high dose, which is in agreement with its previously reported induction by a high dose (100 mg/kg/day) of MP (Hamadeh et al. 2002). 17β-Hydroxysteroid dehydrogenase type 2 (17βHSD2; Affymetrix ID X91234_at) shows an interesting regulation pattern, as it appears upregulated by the low dose of MP and downregulated by the high dose (Figure 4F). This enzyme is involved in the steroid conversion pathway (Akinola et al. 1996), which is one of the pathways affected by the treatment with MP (Figure 5), but the biological meaning of this finding remains unclear.

In conclusion, a high degree of user/site variability was observed with microarray analysis using the same RNA processed at different sites. Despite this, all the microarray results showed that it was nonetheless possible to distinguish toxic (i.e., histopathological findings) versus nontoxic dose levels of MP. Moreover, regardless of the user, gene expression analysis using supervised data analysis tools allowed the correct identification of the samples treated with the low dose of MP, a distinction that was not apparent from clinical chemistry or histopathology analysis.

The observed site-to-site variability did not impair the detection of molecular effects elicited by MP. In addition, crucial gene expression changes, which most likely reflect the mechanism of toxicity for MP, were observed across all user groups. These results provide critical information regarding the consistency of microarray results across different laboratories and shed light on the strengths and limitations of expression profiling in drug safety analysis.

REFERENCES

Afshari, CA, Barrett JC. 1993. Cell cycle controls: potential targets for chemical carcinogens? Environ Health Perspect 101:9–14.

Akinola LA, Poutanen M, Viikko R. 1996. Cloning of rat 17β-hydroxysteroid dehydrogenase type 2 and characterization of tissue distribution and catalytic activity of rat type 1 and type 2 enzymes. Endocrinology 137:1572–1578.

Bauer I, Vollmar B, Jaeschke H, Rensing H, Kraemer T, Larsen R, et al. 2000. Transcriptional activation of heme oxygenase-1 and its functional significance in acetaminophen-induced hepatitis and hepatocellular injury in the rat. J Hepatol 33:395–406.

Brunelle JK, Chandel NS. 2002. Oxygen deprivation induced cell death: an update. Apoptosis 7:475–482.

Budros JD, Shadduck JO, Casciano DA. 1984. A study of the potential genotoxicity of methyraprene and related antiestrogens using the hepatocyte/DNA repair assay. Mutat Res 135:131–137.

Burczynski ME, McMillian M, Cirvo J, Li L, Parker JB, Dunn RT, et al. 2000. Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. Toxicol Sci 58:399–415.

Cristianini N, Shawe-Taylor J. 2000. An Introduction to Support Vector Machines. Cambridge, UK:Cambridge University Press.

Cunningham ML, Pippin LL, Anderson NL, Wenk ML. 1995. The hepatocarcinogen methyraprene but not the analog pyrilmide induces sustained hepatocellular replication and protein alterations in F344 rats in a 13-week feed study. Toxicol Appl Pharmacol 131:216–223.

Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868.

Graichen ME, Neptun DA, Dent JG, Popp JA, Leonard TB. 1985. Effects of methyraprene on rat hepatic xenobiotic metabolizing enzymes and liver morphology, Fundam Appl Toxicol 1:165–174.

Hamadeh HK, Knight BL, Haugen AC, Sieber S, Amin M. 1999. The hepatocarcinogen methyraprene but not the analog pyrilmide induces sustained hepatocellular replication and protein alterations in F344 rats in a 13-week feed study. Toxicol Appl Pharmacol 131:216–223.

Hernandez L, Petropoulos CJ, Hughes SH, Lijinsky W. 1991. DNA methyltransferase and oncogene expression in F344 rats in a 13-week feed study. Toxicol Appl Pharmacol 131:216–223.

Iype PT, Bucana CD, Kelley SP. 1985. Carcinogenesis by nonmutagenic chemicals: early response of rat liver cells induced by methyraprene. Cancer Res 45:2184-2191.

Kelley KM, On Y, Gargosky SE, Gucev Z, Matsumoto T, Hwa V, et al. 1996. Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol 28:619–637.

Lee M-LT, Kuo FC, Whitmore GA, Sklar J. 2000. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. PNAS 97:8348–8353.

Ljinsky W, Reuber MD, Blackwell BN. 1980. Liver tumors induced in rats by oral administration of the antihistaminic methapyrilene hydrochloride. J Natl Cancer Inst 64:597–615.

Mohn KL, Melby AE, Tewari DS, Laz TM, Taub R. 1991. The gene encoding rat insulinlike growth factor-binding protein 1 is rapidly and highly induced in regenerating liver. Mol Cell Biol 11:1393–1401.

Ratra GS, Cottrell S, Powell CJ. 1998a. Effects of induction and inhibition of cytochromes P450 on the hepatotoxicity of methyraprene. Toxicol Sci 46:185–196.

Ratra GS, Morgan WA, Mullerw J, Powell CJ, Wright MC. 1998b. Methyraprene hepatotoxicity is associated with oxidative stress, mitochondrial dysfunction and is prevented by the Ca2+ channel blocker verapamil. Toxicology 130:79–93.

Ratra GS, Powell CJ, Park BK, Maggs JL, Cottrell S. 2000. Methyraprene hepatotoxicity is associated with increased hepatic glutathione, the formation of glucuronide conjugates, and enterhepatic recirculation. Chem Biol Interact 129:279–295.

Reilly TF, Boudri M, Brady JN, Pise-Masison CA, Radonovich MF, George JW, et al. 2001. Expression profiling of acetaminophen liver toxicology in mice using microarray technology. Biochem Biophys Res Commun 282:321–328.

Schölkopf B, Burges C, Smola A. 1999. Advances in Kernel Methods—Support Vector Learning. Cambridge MA:MIT Press.

Steinmetz KL, Tyson CK, Meierhenry EF, Spalding JW, Miralis JC. 1988. Examination of genotoxicity, toxicity and morphologic alterations in hepatocytes following in vivo or in vitro exposure to methyraprene. Carcinogenesis 9:959–963.

Stokes AH, Freeman WM, Mitchell SG, Burnette TA, Hellmann GM, Vrana KE. 2002. Induction of GADD45 and GADD153 in neuroblastoma cells by dopamine-induced toxicity. Neurotoxicology 23:675–684.

Thomas RS, Rank DR, Penn SG, Zastrow GM, Hayes KR, Pandi-Perumal SR, et al. 2001. Identification of toxicologically predictive gene sets using cDNA microarrays. Mol Pharmacol 60:1189–1194.

Tirone F. 2001. The gene PCT(TS23/BTG2), prototype member of the PCT/BTG/TOF family: regulator in control of cell growth, differentiation, and DNA repair? J Cell Physiol 187:155–165.

Waring JF, Gum R, Morfit D, Jolly RA, Ciurlionis R, Heindel M, et al. 2002. Identifying toxic mechanisms using cDNA microarrays: evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology 181-182:537–550.

Waring JF, Halbert DN. 2002. The promise of toxicogenomics. Curr Opin Mol Ther 4:229–235.

Waring JF, Jolly RA, Ciurlionis R, Lum PY, Praetgaerd JT, Morfit DC, et al. 2001. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol Appl Pharmacol 175:28–42.

Man WJ, White IR, Bryant D, Bugelski P, Camilleri P, Cutler P, et al. 2002. Protein expression analysis of drug-mediated hepatotoxicity in the Sprague-Dawley rat. Proteomics 2:1577–1585.

Mohn KL, Melby AE, Tewari DS, Laz TM, Taub R. 1991. The gene encoding rat insulinlike growth factor-binding protein 1 is rapidly and highly induced in regenerating liver. Mol Cell Biol 11:1393–1401.