Hamburger Stand Support System Using Supervised Machine Learning Algorithms

J.Jeyabharathi, V.Sakthivel, R.Sivaramakrishnan

1 Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram, Guntur-522502
2 School of Computer Science and Engineering, Vellore Institute of Technology, Chennai-600127
3 Department of Computer Science and Engineering, KPR Institute of engineering and Technology, Coimbatore-641407

Abstract. Support System approaches form a pattern from a user’s over efforts as well as related conclusion created by other users. This form is then used to voting items that the user may have an interest in the particular product. It can propose the hamburger stand to the user based on the previous procure, voting and reports. Machine learning plays a vital role in hamburger stand support system, which process the user based on their old events. Here, hamburger stand support can be performed by reports, voting, reviews and restaurant reputation, tastes, which is given by the other users. This current support system typically combines one or more approaches into a hybrid system. This paper suggest a hybrid system for classifying the users by using the machine learning algorithms such as Naive Bayes and Support Vector Machine (SVM). It will improve the nourishment transaction, decreases the amount of work and imparts the user fulfillment.

Keywords: Support vector machine, Naïve bayes, hamburger support, classification, hybrid techniques.

1. Introduction
Support system is defined as system that can be used for recommending the products to the users build on their delight, inclination and various factors. Many companies like Myntra, Flipkart, Netflix are using this type of software tools for recommending products and movies to the users based on their previous activities. This system is considered as a software tool for giving the suggestion of products for the user by using the machine learning techniques.

Machine learning techniques is used for finding the similarities and possibilities of recommending the items for the users. It identifies the similarities between the user and the product and supports the products according to their interests. Machine learning algorithms such as support vector machine, naive Bayes, KNN, decision tree, random forest, etc. For example, recommendation system can be used to recommends books, article, products, restaurants, tourist places, movies, jobs, etc. In this paper, recommendation system can be applied to restaurants by using the hybrid based filtering technique. Here, SVM and naive Bayes algorithms are used for classifying the users found on some factors and recommend the needed details to the users.

2. Literature Survey
1) Mining customer product ratings for personalized marketing
In customer rating paper they applied the two machine learning methods for support system. The filtering techniques are used for support vector machine that is content based recommendation. The performances for superior comparison for the traditional content based techniques for equivalent flow keep away from the matter for feature selection. In collaborative technique extend the class models to
recommend that product for trained the set of data. The model based approach is effectively solve the problems.

2) The Use of Machine Learning Algorithms in Recommender Systems

Machine learning algorithm is recommender the system and identifies the research opportunities for the software engineering research analysis. Recommendation system is widely used algorithm Bayesian and decision tree. The phase of recommender system that are study the further research.

3) Product recommendations using data mining and machine learning algorithms

Food product recommender system to the user that supported the purchase, the dataset for the recommendation system like food items. Data mining techniques is used to recommend the product by using K-nutrient algorithm to understand the advice system. It gives more efficiency and time complexity.

4) An Intelligent Data Analysis for Recommendation Systems Using Machine Learning

The hotel recommendation system that deals with textual hotel having numerical ranks and number of video proposes the system. An intelligent technique approaches the large size heterogeneous data to fulfill our potential customers. The collaborative filtering is a popular techniques used in product recommendation system. The features for understand the sentiment towards the guest type family or couple by using different analysis like lexical, syntax, semantic. The proposed system recommender hotel based features and guest type recommendation system. We can develop the e platform using big data hadoop for the feature management and guest recommendation system.

5) The Use of Machine Learning Algorithms in Recommender Systems

Recommender system provide a use of machine learning algorithm for user can recently take research field of artificial intelligence based machine learning process. The proposed work for analysis the algorithm to help the product recommender with the research fields. The final study of the use of machine learning algorithm is Bayesian and decision tree algorithm are widely used for recommender system.

6) Recommendation and Classification Systems: A Systematic Mapping Study

Recommendation system is widely used in multiple sectors to increases the goal profits for more specialized services to the customers. The classification algorithm is difficult for detect people. The existing classification of the recommender machine learning system is helping the researchers. The combination of two algorithms that classified the recommender product to detect the business and analysis.

3. Algorithms Used

3.1 SUPPORT VECTOR MACHINE

Support vector machine is considered as the powerful machine learning algorithm, which can be used for regression and classification techniques. SVM is mainly based on classifying the data points by using the hyperplane. Hyperplane is nothing but the decision boundary in a n-dimensional space. It can be identified by plotting the classes as datapoints in a n-dimensional space, where this can be predicted by finding the distance between the datapoints.

The main aim of SVM is to divide the datasets into classes, so that the new upcoming data can be plotted based on the hyperplane. This algorithm will give an better accuracy for classifying the data points based on certain factors.

SVM is consists of two types , the linear one is based on straight line for classifying dataset into two classes, whereas non-linear SVM means it doesn't contain any straight line for classifying dataset into two classes.

3.2 NAIVE BAYES CLASSIFIER ALGORITHM

This algorithm is the effective one, which can be used for solving classification problems. It is mainly based on Bayes theorem. Bayes theorem works on the concept of conditional probabilities with the prior
experience. It is mainly used for text classification based on probabilities of results. It will predict the results quickly by using the concept of conditional probability. Conditional probability finds the results by the prior knowledge and predicts the final results based on maximum probability. Bayes' theorem can be written as:

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

4. Techniques Used

4.1 Content-Based Recommendation System
This system is one of the type of recommendation system, which is used the concept of comparing the existing data. For example, if a person is hearing the melody songs means the system will check the other songs related to the melody songs. By this way, the system can identify the user's interest and recommends the needed data.

It can also monitor the user's action like website surfing, product viewing, frequent viewing of pages, categories of items, spending time for a particular product, etc. After deciding the results, it make a profile for each customer and recommend products according to their need and interest.

4.2 Collaborative Filtering
It can be considered as a intelligent filtering technique, that works on the relationship between the users and the products in the online websites. This system recommends the products to the user based on their tastes and their purchasing behaviour. This technique will give an effective recommendation if the data about the user is higher.

This approach includes gathering and analysing of data about the user based on their interests, preferences and opinion. For example if a user X likes tandoori, Chinese and Indian food items and user Y likes Italian, tandoori and Chinese food items means the food recommendation recommends Italian foods to user X and Indian foods to user Y, by this the system can understand the similar taste of different users and recommends products according. The decision can be predicted by majority of similarities between the users. The KNN algorithm and Latent correlational analysis algorithm are the mostly used algorithms in this approach.

4.3 Hybrid recommendation systems

Hybrid technique can be done by many like finding predictions for content based filtering and collaborative filtering and merging them, by including content based features to collaborative approach or combining the two models into one approach.

5. System Design

This restaurant recommendation system is mainly based on recommending restaurant and food items to the customer based on previous purchases made by other customers. The customer's previous actions can be stored in a database. The database contains restaurant name, address, list of food items, feedback, ratings, reviews, frequently bought food items, etc. The restaurant and food items can be filtered by the technique called Hybrid filtering technique. It collects the customer's by tracking the customer action, behavior of the customer, preferences given by the customer to the specific food item and the similarities between the customers.

Machine learning technique such as classification is used for classifying the customer based on certain features. For classifying the customers, the two machine learning algorithms such as SVM and Naive Bayes are used in this approach. After classifying the customer, this System recommends the restaurant and food items to the customer according to their need. This system plays an prominent role for
increasing the restaurant sales, reduces workload and provides satisfaction for both customers and restaurant owners.

Fig 1: Architecture diagram

6. Results
In fig 2, the X axis represents the different types of filtering techniques that was applied to find the better accuracy. The different filtering techniques used in this paper are content based, collaborative and hybrid filtering. Here, the y axis represents the range of accuracy. From the three different filtering techniques, collaborative filtering gives 87% accuracy, content based filtering gives 93% accuracy and hybrid filtering gives 96% accuracy. Hence hybrid filtering technique is considered as a best technique for predicting accuracy, when comparing with other two filtering techniques.

FIG 2 . Comparison of Filtering Techniques

7. Conclusions
This paper proposes the Restaurant Recommendation system that helps the customer to identify the best Restaurant in the city and increases sales to the restaurant. The two machine learning algorithms are considered for classifying the customer, based on their interests and other factors. These two algorithms give the best accuracy results for classification technique than other machine learning algorithms.
Hybrid based filtering technique is used for filtering the needed information about the restaurant and the customer from the database. In future, Deep learning and neutral networks will be used together for finding the non-linear patterns and association between the inputs and the outputs for giving the better results.

8. References

[1] Visuri, R. Poguntke, and E. Kuosmanen, Proposing Design Recommendations for an Intelligent Recommender System Logging Stress, Association for Computing Machinery, New York, NY, USA, 2018.

[2] W. Yibo, M. Wang, and W. Xu, “A sentiment-enhanced hybrid recommender system for movie recommendation: a big data analytics framework.” Wireless Communications and Mobile Computing, vol. 2018, Article ID 8263704, 2018.

[3] P. Phorasim and L. Yu, “Movies recommendation system using collaborative filtering and k-means,” International Journal of Advanced Computer Research, 2017.

[4] T. Chen and Y. H. Chuang, “Fuzzy and nonlinear programming approach for optimizing the performance of ubiquitous hotel recommendation,” Journal of Ambient Intelligence and Humanized Computing, 2018.

[5] H. Jazayeriy, S. Mohammadi, and S. Shamshirband, “A fast recommender system for cold user using categorized items,” Mathematical and Computational Applications, 2018.

[6] G. S. Lal and A. S. Baghel, “Efficient feature extraction in sentiment classification for contrastive sentences,” International Journal of Modern Education and Computer Science, 2018.

[7] R. Sandeep, S. Sood, and V. Verma, “Twitter sentiment analysis of real-time customer experience feedback for predicting growth of Indian telecom companies,” in Proceedings of the 2018 4th International Conference on Computing Sciences (ICCS), 2018.

[8] Rajesh, N., Maneesha, T., Hafeez, S., Krishna, H. “Prediction of heart disease using machine learning algorithms”, International Journal of Engineering and Technology(UAE),2018.

[9] Sripada, N.K., Sirikonda, S., Kumar, N.V., Siruvoru, V. “Support vector machines to identify information towards fixed-dimensional vector space”, International Journal of Innovative Technology and Exploring Engineering,2019

[10] Tsapatsoulis, N., Agathokleous, M., Djouvas, C., & Mendez, F. “On the Design of Social Voting Recommendation Applications”, International Journal on Artificial Intelligence Tools, 2015

[11] S. Bag, S. K. Kumar, and M. K. Tiwari, “An efficient recommendation generation using relevant jaccard similarity,” Information Sciences, 2019

[12] S. Lu, B. Wang, H. Wang, and Q. Hong, “A hybrid collaborative filtering algorithm based on KNN and gradient boosting,” in Proceedings of the 13th International Conference on Computer Science and Education (ICCSE), Colombo, Sri Lanka, August 2018

[13] Srikanth Goud, B., Loveswara Rao, B “Review of optimization techniques for integrated hybrid distribution generation”, International Journal of Innovative Technology and Exploring Engineering,2019

[14] Satapathy, S.K., Mishra, S., Mallick, P.K., Badiginchala, L., Gudur, R.R., Guttha, S.C, “Classification of Features for detecting Phishing Web Sites based on Machine Learning Techniques, International Journal of Innovative Technology and Exploring Engineering,2019

[15] Veena, C., Vijaya Babu, B.A user-based recommendation with a scalable machine learning tool, International Journal of Electrical and Computer Engineering,2015

[16] Uma Ramya, V., Thirupathi Rao, K., “Sentiment analysis of movie review using machine learning techniques,” International Journal of Engineering and Technology(UAE), 2018

[17] Anila, M., Pradeepini, G., Study of prediction algorithms for selecting appropriate classifier in machine learning, Journal of Advanced Research in Dynamical and Control Systems, 2017

[18] Natarajan, B., Obaidat, M.S., Sadoun, B., Manoharan, R., Ramachandran, S. and Velusamy, N., 2020. New Clustering-Based Semantic Service Selection and User Preferential Model. IEEE
Systems Journal. DOI: 10.1109/JSYST.2020.3025407.

[19] Nataraj, S.K., Al-Turjman, F., Adom, A.H., Sitharthan, R., Rajesh, M. and Kumar, R., 2020. Intelligent Robotic Chair with Thought Control and Communication Aid Using Higher Order Spectra Band Features. IEEE Sensors Journal, DOI: 10.1109/JSEN.2020.3020971.

[20] Babu, R.G., Obaidat, M.S., Amudha, V., Manoharan, R. and Sitharthan, R., 2020. Comparative analysis of distributive linear and non-linear optimised spectrum sensing clustering techniques in cognitive radio network systems. IET Networks, DOI: 10.1049/iet-net.2020.0122.

[21] Sitharthan, R., Yuvaraj, S., Padmanabhan, S., Holm-Nielsen, J.B., Sujith, M., Rajesh, M., Prabaharan, N. and Vengatesan, K., 2021. Piezoelectric energy harvester converting wind aerodynamic energy into electrical energy for microelectronic application. IET Renewable Power Generation, DOI: 10.1049/rpg2.12119.

[22] Sitharthan, R., Sujatha Krishnamoorthy, Padmanaban Sanjeevikumar, Jens Bo Holm-Nielsen, Raja Singh, and M. Rajesh. "Torque ripple minimization of PMSM using an adaptive Elman neural network-controlled feedback linearization-based direct torque control strategy." International Transactions on Electrical Energy Systems 31, no. 1 (2021): e12685. DOI: 10.1002/2050-7038.12685.