Double Rotors with Fluxional Axles: Domino Rotation and Azide–Alkyne Huisgen Cycloaddition Catalysis

Abir Goswami and Michael Schmittel*

In memory of Rolf Huisgen

Abstract: The simple preparation of the multicomponent devices \([\text{Cu}_2(\text{A})]^{2+}\) and \([\text{Cu}_2(\text{A})(\text{B})]^{2+}\), both rotors with fluxional axles undergoing domino rotation, highlights the potential of self-sorting. The concept of domino rotation requires the interconversion of axle and rotator, allowing the spatiotemporal decoupling of two degenerate exchange processes in \([\text{Cu}_2(\text{A})]^{2+}\) occurring at 142 kHz. Addition of two equiv of B to rotor \([\text{Cu}_2(\text{A})]^{2+}\) afforded the heteromeric two-axle rotor \([\text{Cu}_2(\text{A})(\text{B})]^{2+}\) with two distinct exchange processes (64.0 kHz and 0.55 kHz). The motion requiring a pyridine–zinc porphyrin bond cleavage is 1.2 \times 10^{14} times faster than that operating via a terpyridine–Cu phenanthroline complexation. Finally, both rotors are catalysts due to their copper(I) content. The fast domino rotor (142 kHz) was shown to suppress product inhibition in the catalysis of the azide–alkyne Huisgen cycloaddition.

Dynamical functional devices composed of multiple molecular components are attracting ever-increasing interest for two major reasons. Firstly, the impressive properties of multicomponent machines have been amply demonstrated by nature, and secondly, the facile exchange of components in such systems opens the door for self-repair during operation or even evolution toward novel emerging properties.

Correlated motion and transmission of movement have inspired the creativity of chemists and have led to exciting devices, such as molecular motors and gears. Ball bearings, molecular muscles, rotaxanes, molecular turnstiles, caterpillar tracks and rotary transduction modules. In all cases, though, the correlated motions happen simultaneously.

While fluxional molecules involving bond cleavage/formation have a long-standing history, related dynamics within multiple degenerate structures in supramolecular multicomponent devices are scarce. Herein, for the first time, multicomponent rotors are equipped with fluxional axles allowing them to undergo domino rotation. Such domino rotors are characterized by a unique feature: the rotator arm of the first rotor subunit intra(supra)molecularly interconverts into the axle of the second rotor subunit. The homodimeric double rotor \([\text{Cu}_2(\text{A})]^{2+}\) is held together by two pyridine–zinc porphyrin interactions (HETPYP binding) and phenanthroline complexation. Two further copper(I) phenanthroline sites without additional ligands serve as recipient stations for the rotator arm (Scheme 1).

In order to generate two diverse domino rotational exchange processes with distinct activation barriers, we constructed the heteromeric double rotor \([\text{Cu}_2(\text{A})(\text{B})]^{2+}\) using two different binding motifs, a HETTAP (Hetero-Ligand Terpyridine and Phenanthroline complexation) and a pyridine–zinc porphyrin \([\text{N}_{2py}–\text{ZnPor}]^{2+}\) coordination. Finally, in both rotors the effect of rotational motion on suppression of product inhibition was probed in a copper(I)-catalyzed azide–alkyne Huisgen cycloaddition. Although both rotors have the same kind of copper(I) centers, their catalytic activity is different due to dissimilar rotational rates.

The design of ligands A and B was guided by the geometric fit at the coordination sites in both aggregates \([\text{Cu}_2(\text{A})]^{2+}\) and \([\text{Cu}_2(\text{A})(\text{B})]^{2+}\). With ligand B being known from former work, we had only to synthesize ligand A, in which two shielded phenanthrolines and one pyridyl unit are held together by two HETTAP binding motifs.

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.202002739.

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Figure 1. A) Partial variable-temperature (VT) 1H NMR spectra of homodimeric rotor [Cu$_2$(A)$_2$]$^{2+}$ in CD$_2$Cl$_2$. Experimental and theoretical splitting of proton signal 12-H furnished rate data for rotation at different temperatures. B) UV/Vis spectral changes with time after addition of 0.5 equiv of [Cu$_4$(A)$_4$]$^{2+}$ to B (1.2 x 10$^{-3}$ M). Inset: Change of absorbance at $A = 537$ nm with time. Half-life $t_{1/2} = 30$ s.

Kinetic analysis provided the exchange frequency (\dot{k}) at different temperatures with $k_{298} = 142$ kHz (at 298 K). The activation data were determined as $\Delta H^* = 51.1 \pm 0.7$ kJ mol$^{-1}$, $\Delta S^* = 25.5 \pm 3.0$ J mol$^{-1}$ K$^{-1}$, and $\Delta G^*_{298} = 43.5$ kJ mol$^{-1}$ (Supporting Information, Figure S24). Since the kinetic data for exchange in [Cu$_4$(A)$_4$]$^{2+}$ are very similar to those of previously reported nanorotors that operate via single N_{py}-[Cu(phenAr$_2$)]$^{2+}$ dissociation ($\Delta G^*_{298} = 46.6$ kJ mol$^{-1}$) [28], there is convincing evidence that only one HETPYP interaction is cleaved at any given time in [Cu$_4$(A)$_4$]$^{2+}$. Hence, the mechanism of exchange seems to follow an intramolecular non-directional rotation involving two axles with dissociation of one N_{py}-[Cu(phenAr$_2$)]$^{2+}$ interaction being the rate-limiting step. Due to symmetry, both rotational axes in the homodimeric rotor [Cu$_4$(A)$_4$]$^{2+}$ have equal probability to dissociate.

For the heteromeric rotor, we have chosen ligands A and B held together by two orthogonal dynamic interactions [29] that is, the weak N_{py}−ZnPor interaction (Scheme 2; [2] \rightarrow [4]), $\log K_{2\rightarrow4} = 4.3$ and the robust HETTAP linkage (for [Cu(I)(3)]$^{2+}$, $\log \beta = 9.3$). [19] Ligand B was designed in a way that the pyridine terminus of ligand A should bind to the ZnPor of B, while the tridentate terpyridine (tpy) ligand of B is connected with the copper(I) phenanthroline unit of A. When the HETTAP complex is intact it will serve as rotational axle, leading to an exchange of the pyridine terminus of A between both ZnPor sites of B. Similarly, when the N_{py}−ZnPor interaction serves as rotational axle, both copper(I)-loaded phenanthrolines will exchange their position by HETTAP dissociation/association. The N_{py}−ZnPor bond cleavage should have a rather low energy of activation, [20] whereas the HETTAP binding is known for its slow dynamics as demonstrated by Sauvage using interlocked molecular machines. [28a]

The heteromeric rotors [Cu$_4$(A)(B)]$^{2+}$ may be prepared directly from all reactants or via reshuffling of components by adding 2.0 equiv of B to [Cu$_4$(A)$_4$]$^{2+}$ in d_2-dichloromethane at 25°C (Figure 2). A time-dependent UV/Vis spectroscopic study confirmed that conversion of the homodimeric [Cu$_4$(A)$_4$]$^{2+}$ to the heteromeric [Cu$_4$(A)(B)]$^{2+}$ took 6 min at room temperature (Figure 1B). The overall equilibrium constant for this transformation was determined as $\log \beta = 5.98$ per reacted [Cu$_4$(A)$_4$]$^{2+}$ from a UV/Vis titration of [Cu$_4$(A)$_4$]$^{2+}$ to B using a multivariate spectrophotometric analysis (Supporting Information, Figure S41). Formation of [Cu$_4$(A)(B)]$^{2+}$ was ascertained by spectroscopic data (1H NMR, 1H−1H COSY, UV/Vis, ESI-MS) and elemental analysis. For instance, the ESI mass spectrum of the solution showed a single peak at m/z = 1486.1 with the expected isotopic distribution (Supporting Information, Figure S39). In the 1H NMR spectrum, the chemical shift of the terpyridine protons (a-H, b-H, c-H, d-H, e-H) of B indicated the presence of a HETTAP interaction site. The upfield shift of the pyridine protons a-H and b-H of ligand A from 6.93 and 7.23 ppm to 2.20 and 5.44 ppm, respectively, verified the N_{py}−ZnPor binding. This coordina-

Scheme 2. Heteroleptic binding motifs used to set up fluxional axles.

Figure 2. PM6-optimized structures of [Cu$_4$(A)(B)]$^{2+}$ and [Cu$_4$(A)$_4$]$^{2+}$. The transformation of rotors is exergonic: $2 \times$ HETPYP \rightarrow HETTAP + N_{py}−ZnPor. For stability constants (log/β/K) see Figure 1 and ref. [19].

Angew. Chem. Int. Ed. 2020, 59, 12362–12366 © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 12363
tion motif was further validated by a redshift of the ZnPor’s Q-band from 537 to 544 nm in the UV/Vis spectrum (Supporting Information, Figure S43). Finally, DOSY and elemental analysis confirmed quantitative formation of [Cu2-(A)(B)]T (Supporting Information, Figure S22).

Rapid exchange of the pyridyl head of A between both ZnPor sites of B in [Cu2(A)(B)]T was indicated by a single set of ZnPor signals in the 1H NMR spectrum. In contrast, two individual signal sets for both phenanthrolines suggested that exchange at the HETTAP site was slow on the NMR timescale (at 25°C).

In order to measure the fast rotational dynamics in rotor [Cu2(A)(B)]T we analyzed the 1H NMR signal of the porphyrin protons r-H. While it showed up as a sharp singlet (δ = 10.23 ppm) at room temperature (Figure 3 A), it diagnostically separated into two singlets (1:1) at δ = 10.22 and 10.19 ppm at −75°C. The signal at δ = 10.19 ppm was assigned to the pyridine-coordinated ZnPor, whereas the conformationally unrestricted second zinc porphyrin furnished a signal at δ = 10.22 ppm. A kinetic analysis provided the exchange frequency (k) as kex = 64.0 x 10³ s⁻¹ at 298 K (Supporting Information, Figure S23). Using the kinetic data over the whole temperature range furnished the activation parameters as ΔH° = 46.9 ± 0.4 kJ mol⁻¹ and ΔS° = 4.8 ± 1.2 J mol⁻¹ K⁻¹ and the activation free energy for spinning at 298 K as ΔG°₂₉₈ = 45.5 kJ mol⁻¹ (Supporting Information, Figure S23).

The kinetics of the slow exchange requiring cleavage at the HETTAP site was evaluated by a 1H–1H ROESY (Figure 3B) experiment in CD₂Cl₂/CD₃CN (5:1) because a cross correlation was observed between proton 9u-H of the copper(I)-loaded phenanthroline (at δ = 6.96 ppm) and proton 9c-H of the HETTAP complexed phenanthroline signal (at δ = 5.98 ppm).

The activation parameters for the corresponding exchange were determined at 298 K (k₂₉₈ = 0.55 s⁻¹ and ΔG°₂₉₈ = 74.8 kJ mol⁻¹) (SI, Figure S25).

From the activation data of rotor [Cu2(A)(B)]T (ΔG°₂₉₈ = 45.5 kJ mol⁻¹) and those of previously reported rotors (46.6 kJ mol⁻¹), we may safely conclude that the fast exchange is the result of the cleavage of a single axial Npy → ZnPor interaction. In order to achieve a better understanding of the rate-limiting step in the slow exchange process involving the HETTAP site, we self-assembled the monocopper complex [Cu(A)(B)]+ from [Cu(CH₃CN)₄]PF₆ and ligands A and B in 1:1:1 ratio in d₂-chloroform at 25°C. Two sets of phenanthroline signals and a single set of ZnPor signals were observed in the 1H NMR spectrum (Figure 4) of [Cu(A)(B)]+ at room temperature similar to double rotor [Cu2(A)(B)]T. However, there was no cross correlation between the copper(I)-loaded and free phenanthroline signals of rotor [Cu(A)(B)]+ in the 1H–1H ROESY spectrum (Supporting Information, Figure S26). This finding suggested that the copper(I) ion does not travel along with the terpyridine (tpy) unit. Thus, in [Cu(A)(B)]T the tpy → [Cu(phenAr₂)]+ dissociation seems to be relevant in the rate-limiting step of exchange at the HETTAP site and not the phenAr₂ → [Cu(tpy)]+ dissociation. This interpretation is in line with the relative binding constants in mixed terpyridine–phenanthroline copper(I) complexes, since phenanthroline is more strongly bound (logK₃[Cu(tpy)]+ = 5.1) than terpyridine (logK₃[Cu(tpy)]+ = 4.2).

After a successful demonstration of the dynamic behavior of homodimeric and heterodimeric domino rotors, their catalytic activity as catalysts was tested. Both two-axle rotors display at any given time coordinatively free copper(I) phenanthroline units that have the potential to catalyze a click reaction. Thus, a mixture of [Cu2(A)]T (0.90 mm), 5, and 6 in a 1:20:20 ratio was dissolved in CD₂Cl₂/CD₃CN (5:1) and heated at 50°C (Figure 5). After 2 h of heating, 63% of the click product 7 was detected by 1H NMR analysis (Supporting Information, Chapter 6). Analogously, [Cu(1)]T (3.6 mm; the fourfold concentration accounts for a proper comparison with [Cu2(A)]T containing four copper centers) as reference catalyst, 5, and 6 in a 1:5:5 ratio were dissolved in...
Exchange frequency of catalysts, their catalytic reaction yields, and the rates \(v_0 \) at time \(t = 0 \).

Catalyst	Speed/Hz	Yield/\(\% \)	\(v_0/M\cdot L^{-1}\cdot s^{-1} \)
\([\text{Cu(A)}]^{2+}\)	142 \times 10^3	63%	4.2 \times 10^4
\([\text{Cu(AB)}]^{2+}\)	0.55	28%	1.8 \times 10^4
\([\text{Cu(I)}]^{2+}\)	0	28%	1.4 \times 10^4

[a] Yields determined from three independent runs. For conditions see text and the Supporting Information, Chapter 6.

In comparison, a mixture of the heteromeric two-axle rotor \([\text{Cu(A)}(\text{B})]^{2+}\) (1.8 mm), 5, and 6 in a 1:10:10 ratio of furnished rather low yield (28%) under analogous conditions. This effect on the yield and the low rotational exchange (\(k_{rot} = 0.55 \text{ s}^{-1} \)) at the copper(I) sites are consonant to those of the reference reaction; apparently a slow motion does not provide a significant reduction of product inhibition. The faster the rotational exchange at the active copper(I)-loaded phenanthroline stations, the higher the catalytic activity,[32] actually also with other acetylenes (Figure S33).

In conclusion, we have fabricated a new class of domino nanorotors with two fluxional axes. The rotational dynamics in the homodimeric two-axle double rotor is governed by the dissociation of the \(N_{py} - [\text{Cu(phenAr}^2]^{2+} \) interaction. The full exchange at all four copper phenanthroline sites requires that both pyridine arms act as fluxional axes. In the case of the heteromeric two-axle rotor, rotational exchange at the HETTAP site is \(1.2 \times 10^4 \) times slower than the swapping of the pyridine arm between the two ZnPor units. Here we were able to individually control both fluxional axes and their dynamics.

Finally, we have utilized the speed change on going from the homodimeric to heteromeric two-axle rotor to modulate the product inhibition of a click reaction. Attractive future goals are to modify the distinct rotational modes in heteromorphic domino rotors by changing the components (A or B or metal ions, for example, Ag\(^{+}\), Zn\(^{2+}\)) and to implement more than two fluxional axes in domino rotation.

Acknowledgement

We are grateful to the Deutsche Forschungsgemeinschaft (SCHM 647/20-2) and the University of Siegen for financial support. We thank Dr. T. Paululat (Siegen) for recording the VT\(^{1}H\) NMR spectra.

Conflict of interest

The authors declare no conflict of interest.

Keywords: catalysis · multicomponent assembly · rotational exchange · self-sorting · supramolecular machines

References

[1] a) A. J. McConnell, C. S. Wood, P. P. Ncelakandan, J. R. Nitschke, *Chem. Rev.* 2015, 115, 7729–7793; b) A. Goswami, M. Schmittel, *Coord. Chem. Rev.* 2018, 376, 478–505.
[2] A. Goswami, S. Saha, P. K. Biswas, M. Schmittel, *Chem. Rev.* 2020, 120, 125–199.
[3] a) S. Hiraoka, M. Shiro, M. Shionoya, *J. Am. Chem. Soc.* 2004, 126, 1214–1218; b) S. Hiraoka, E. Okuno, T. Tanaka, M. Shiro, M. Shionoya, *J. Am. Chem. Soc.* 2008, 130, 9089–9098.
[4] a) P. D. Boyer, *Annu. Rev. Biochem.* 1997, 66, 717–749; b) H. C. Berg, *Annu. Rev. Biochem.* 2003, 72, 19–54.
[5] a) E. Uhl, S. Thumser, P. Mayer, H. Dube, *Angew. Chem. Int. Ed.* 2018, 57, 11064–11068; *Angew. Chem.* 2018, 130, 11231–11235; b) Y. Wang, Y. Tian, Y.-Z. Chen, L.-Y. Niu, L.-Z. Wu, C.-H. Tung, O.-Z. Yang, R. Boulavot, *Chem. Commun.* 2018, 54, 7991–7994; c) P. Štacko, J. C. M. Kistemaker, T. van Leeuwen, M.-C.
