Symplectic integrators for spin systems

Robert I McLachlan,†‡ Klas Modin,‡ and Olivier Verdier†

Abstract: We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in \(\mathbb{R}^3 \). Unlike splitting methods, it is defined for all Hamiltonians and is \(O(3) \)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretization of the spinning top.

Symplectic integrators for the computer simulation of Hamiltonian dynamics are widely used in computational physics [1,2]. For canonical Hamiltonian systems, with phase space \(\mathbb{R}^{2N} \) and canonical coordinates \((q_i, p_i)\), simple and effective symplectic integrators are known. For noncanonical systems, like spin systems with phase space \((S^2)^N\), some symplectic integrators are known. These are, however, either (i) based on local coordinates and not rotationally invariant, (ii) defined only for special Hamiltonians, or (iii) excessively complicated with many auxiliary variables. Here we solve the computational physics problem of providing a globally-defined, rotationally invariant, minimal-variable symplectic integrator for general spin systems. The method is surprisingly simple and depends only on the vector field of the system at hand. It is a rare example of the generating function for symplectic maps on a noncanonical phase space: a noncanonical analogue of the Poincaré generating function of classical mechanics. The method produces new discrete-time physical models, such as a new completely integrable discrete spinning top, and unveils new directions for symplectic integrators, discrete physics, and symplectic geometry.

Classical spin systems are a class of noncanonical Hamiltonian systems with phase space \((S^2)^N\) and symplectic form the sum of the standard area elements on each sphere. If the spheres are realized as \(\mathbb{R}^3\), and \(H\) is the Hamiltonian on \((S^2)^N\) arbitrarily extended to \((\mathbb{R}^3)^N\), the equations of motion take the form

\[
\begin{align*}
\dot{s}_i &= s_i \times \nabla_{s_i} H(s_1, \ldots, s_N), \\
\mathbf{f}_i(s_1, \ldots, s_N) &= H(s_1, \ldots, s_N).
\end{align*}
\]

Spin systems include the classical limit of quantum (e.g., Heisenberg) spin chains, (discretizations of) the Landau–Lifshitz equation of micromagnetics [3], and point vortices on the sphere [4]. Single-spin systems include the reduced motion of a spinning top (free rigid body) [5] and the motion of a particle advected by an incompressible 2D fluid on a sphere.

Our main result is a new integrator for (1) given by

\[
\begin{align*}
\frac{s_{i,n+1} - s_{i,n}}{\Delta t} &= \mathbf{f}_i(u_1, \ldots, u_N), \\
u_i &= \frac{s_{i,n} + s_{i,n+1}}{\|s_{i,n} + s_{i,n+1}\|}.
\end{align*}
\]

This spherical midpoint method is globally defined and preserves many structural properties of the exact flow. Before explaining these properties we review symplectic integrators for canonical and noncanonical systems.

Symplectic integrators for canonical Hamiltonian systems fall into two main classes: explicit methods, based on splitting the Hamiltonian into integrable terms and composing their flows, and implicit methods, typically based on generating functions. (Discrete Lagrangians can generate both types of method.) The leapfrog or Störmer–Verlet method, almost universally used in molecular dynamics, is an example of an explicit method, whereas the classical midpoint method

\[
\frac{z_{n+1} - z_n}{\Delta t} = F\left(\frac{z_n + z_{n+1}}{2}\right),
\]

for \(\tilde{z} = F(z) \) with \(z \in \mathbb{R}^{2N} \), is an example of an implicit method. The classical midpoint method [3] has a number of striking features: (i) it is defined for all Hamiltonians in a uniform way (splitting methods are only defined for separable Hamiltonians); (ii) it conserves quadratic invariants; (iii) it is equivariant with respect to all affine maps of phase space (that is, it is intrinsically defined on the affine phase space and does not depend on the choice of affine coordinates; it does not require canonical coordinates); (iv) it preserves all affine symmetries and foliations; (v) it is unconditionally stable for linear systems, which confers somewhat improved stability for nonlinear systems; (vi) it is self-adjoint under \(t \to -t \) and preserves all affine time-reversing symmetries; (vii) it is symplectic for all constant symplectic structures, Poisson for all systems with constant Poisson structure, and presymplectic for all systems with constant pre-symplectic structure [4]; (viii) it is a Runge–Kutta method, which allows the application of an extensive body of numerical analysis including forward and backward error analysis and the construction of the modified (numerical) Hamiltonian; and (ix) it is a symplectic map associated with...
the Poincaré generating function \[\text{[7] vol. III, §319} \]
\[
\Omega(z_{n+1} - z_n) = \nabla G \left(\frac{z_n + z_{n+1}}{2} \right), \quad \Omega = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \quad (4)
\]
with the generating function \(G \) chosen to be the product of the time step and the Hamiltonian. Because of these properties, the classical midpoint method has a claim to be the ‘natural’ discrete time analogue of Hamiltonian vector fields on symplectic vector spaces; it is indeed extensively used in computational physics [3][15].

Symplectic integrators are known for some noncanonical Hamiltonian systems. The most commonly used approach is splitting [16][21]; as in the canonical case, this requires the Hamiltonian to have a special structure and the splitting to be designed by hand. Current general-purpose methods for Lie–Poisson systems for general Hamiltonians tend to be complicated and involve implicit equations involving infinite series of Lie brackets [22][24] and extra variables [25][27]. The classical midpoint method itself is not symplectic when applied to spin systems [1]; this was noted already in the single spin case in [28]. Despite this, it has been used in some applications to spin systems, for its other favorable properties [29][30]: it is \(O(3) \)-equivariant (it commutes with rotations and reflections; its dynamics are independent of the choice of coordinates), preserves the spin lengths \(\|s_i\| \), and is linearly stable for all \(\Delta t \). More generally, there is a lack of generating functions—the most fundamental tool in classical mechanics—for noncanonical phase spaces.

We now discuss properties of the new method (2). First, a key observation: our method coincides with the classical midpoint method applied to the vector field

\[
g_i(s_1, \ldots, s_N) := f_i \left(\frac{s_1}{\|s_1\|}, \ldots, \frac{s_N}{\|s_N\|} \right).
\]

This immediately implies several properties: (i) it preserves the spin lengths \(\|s_i\| \); (ii) it is \(O(3) \)-equivariant; (iii) it is second-order accurate; (iv) it is self-adjoint; and (v) it preserves arbitrary linear symmetries, arbitrary linear integrals, and single-spin homogeneous quadratic integrals \(s_i^2 s_j \). Symplecticity is not, however, an immediate result, since the symplectic structure of \((S^2)^N \subset \mathbb{R}^{3N}\) is nonlinear. Nevertheless, the method is symplectic. There are two ways to show this: a direct proof incorporating new techniques based on ray constant Hamiltonians and linearity of the Lie–Poisson structure, and a geometric proof based on the extended Hopf map and realization of the spherical midpoint method as a collective symplectic method [27]. Both proofs are given in [31]. Because of its symplecticity, the spherical midpoint method can be interpreted as a generating function on \((S^2)^N\), analogous to the Poincaré generating function [1] on \(\mathbb{R}^{2N}\).

Let us briefly consider single-spin systems, i.e., \(N = 1 \). If \(H \) is of the form \(H(s) = \sum_{j=1}^{3} s_j^2/(2I_j) \) with \(I_j > 0 \) (spinning top), then the spherical midpoint method exactly conserves \(H \) (since it is a homogeneous quadratic invariant). Since the method is symplectic and also conserves the total angular momentum \(\|s\| \), the corresponding discrete dynamical system \(s_n \mapsto s_{n+1} \) is completely integrable. This situation may be compared to the Moser–Veselov discretization [32] of the spinning top [33]. This hugely influential discretization of tops, and more generally of any Lie-Poisson system on the dual of the Lie algebra \(g \) of a Lie group \(G \), suspends the continuous Lagrangian to \(TG \) and constructs a discrete Lagrangian on \(G \times G \) by embedding \(G \) in a linear space of matrices and discretize velocities \(Q \) by \((Q_{n+1} - Q_n)/\Delta t \). The final algorithm requires solving nonlinear equations in \(G \) (\(SO(3) \) for the spinning top, \(SO(3)^N \) for spin systems) and is closely related to the rattle method of molecular dynamics [1][20]. Remarkably, the Moser–Veselov discretization is completely integrable for many systems including the spinning top. It also describes the eigenstates of certain quantum spin chains. Its relationship to other integrable discrete physics models, in this context it is striking that the spherical midpoint method gives a different integrable discrete version of the spinning top, arising not from a variational principle but from a standard numerical integrator, related to the fundamental Poincaré generating function for canonical systems.

Two brief examples illustrate the behavior of the method on an integrable and a nonintegrable single-spin system. The first has Hamiltonian

\[
H(s) = \frac{1}{2} \sum_{j=1}^{3} \frac{1}{I_j} (s_j^2 + \frac{2}{3}s_3^2), \quad I = (1, 2, 4),
\]

and is a nonlinear perturbation of a spinning top. Like the spinning top, all orbits are periodic, as shown by the phase diagram in Fig. 1. Computed trajectories for the spherical and classical midpoint methods are shown in Fig. 2. Trajectories lie on smooth curves for the spherical midpoint method but not for the classical midpoint method. Energy errors are shown in Fig. 3: the energy error is bounded for the spherical midpoint method but grow in time for the classical midpoint method. These results are consistent with the symplecticity (or lack thereof) of the methods.

Our second example is a periodically forced spinning top with Hamiltonian

\[
H(s, t) = \frac{1}{2} \sum_{j=1}^{3} \frac{s_j^2}{I_j} + \varepsilon \sin(t)s_3, \quad I = (1, \frac{4}{3}, 2).
\]

The phase portrait of the 1-period (Poincaré) map obtained using the spherical midpoint method with timestep length \(2\pi/k \), \(k = 20 \), is shown in Fig. 4 and illustrates the breakup of heteroclinic and periodic orbits, and a transition to chaos, typical of this class of systems.

The spherical midpoint method is implicit. Implicit methods are most often used on stiff systems, like reaction–diffusion and fluid systems, that contain widely-varying timescales. In these cases sophisticated solvers are needed. For the present case, and in other applications of the classical midpoint method [3][15], the fixed-point iteration

\[
z_{n+1}^{(0)} = z_n, \quad z_{n+1}^{(k+1)} = z_n + \Delta t F((z_n + z_{n+1}^{(k)})/2), \quad k \geq 0
\]
applied to $\|z^{(k+1)} - z^{(k)}\|$ is often sufficient, terminating when $\|z^{(k+1)} - z^{(k)}\|$ is less than some chosen tolerance. For typical time steps this can take 5–10 iterations. However, more sophisticated iterations are possible and can lead to implementations that use 2 evaluations of the vector field (here, F) per time step. Special termination criteria can improve the propagation of roundoff error.

The method (2) is the first equivariant symplectic integrator for spin systems that does not contain auxiliary variables. Since the spin lengths $\|s_i\|$ are preserved, effectively the method requires the solution of $2N$ nonlinear equations per step, which is just the dimension of the phase space. Not only is (2) very simple, it does not depend on or even require a formula for f: in some applications, for example to the advection of particles by an incompressible fluid on the sphere, f may be provided by a ‘black box’ which may involve experimental data, local or global interpolation, or the output of a separate CFD code. Further details and properties of the method, including its connection to collective symplectic integrators and Riemannian integrators, and numerical experiments, may be found in [31].

The method extends in the obvious way to arbitrary spin–liquid systems with phase space $(T^\ast \mathbb{R}^3 \times S^3)^N$. The method can be generalized to yield symplectic integrators for Nambu-type systems $\dot{s}_i = \nabla C_i(s_i) \times \nabla_i H(s_1, \ldots, s_N)$, where each C_i is a homogeneous quadratic; the phase space is a product of classical conic sections. It is an open question as to for which symplectic manifolds such an integrator (or generating function) exists.

[1] Benedict Leimkuhler and Sebastian Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, 2004).
[2] Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Vol. 31 (Springer, Berlin, 2006).
[3] M Lakshmanan, “The fascinating world of the Landau–Lifshitz–Gilbert equation: an overview,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 1280–1300 (2011).
[4] Sergey Pekarsky and Jerrold E Marsden, “Point vortices on a sphere: stability of relative equilibria,” Journal of Mathematical Physics 39, 5894 (1998).
[5] Jerrold E Marsden and Tudor S Ratiu, Introduction to Mechanics and Symmetry: a Basic Exposition of Classical Mechanical Systems, 2nd ed. (Springer, Berlin, 1999).
[6] Robert I McLachlan, Klas Modin, Olivier Verdier, and Matt Williams, “Symplectic integrators for index 1 constraints,” SIAM Journal on Scientific Computing 35, 2150–2162 (2013).
[7] Henri Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste (Gauthier–Villars, 1892) transl. in New Methods of Celestial Mechanics, Daniel Goroff, ed. (AIP Press, 1993).
[8] Margaret Mandziuk and Tamar Schlick, “Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme,” Chemical physics letters 237, 525–535 (1995).
[9] Miguel Preto and Prasenjit Saha, “On post-Newtonian orbits and the galactic-center stars,” The Astrophysical Journal 703, 1743 (2009).
[10] Nicholas P Schafer, Radu Serban, and Dan Negrut, “Implicit integration in molecular dynamics simulation,” in ASME 2008 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2008) pp. 1177–1186.
[11] Svetlana Dubinkina and Jason Frank, “Statistical mechanics of Arakawa’s discretizations,” Journal of Computational Physics 227, 1286–1305 (2007).
[12] Christian Hellström and Seppo Mikkola, “Satellite attitude dynamics and estimation with the implicit midpoint method,” New Astronomy 14, 467–477 (2009).
[13] J David Brown, “Midpoint rule as a variational-symplectic integrator: Hamiltonian systems,” Physical Review D 73, 024001 (2006).
[14] Shuang-Ying Zhong, Xin Wu, San-Qiu Liu, and Xin-Fa Deng, “Global symplectic structure-preserving integrators for spinning compact binaries,” Physical Review D 82, 124040 (2010).
[15] Xin Wu and Yi Xie, “Symplectic structure of post-newtonian hamiltonian for spinning compact binaries,” Physical Review D 81, 084045 (2010).
[16] Robert I McLachlan, “Explicit Lie–Poission integration and the Euler equations,” Physical Review Letters 71, 3043 (1993).
[17] Jihad Touma and Jack Wisdom, “Lie–Poisson integrators for rigid body dynamics in the solar system,” The Astronomical Journal 107, 1189–1202 (1994).
[18] Jason Frank, Weizhang Huang, and Benedict Leimkuhler, “Geometric integrators for classical spin systems,” Journal of Computational Physics 133, 160–172 (1997).
[19] Andreas Dullweber, Benedict Leimkuhler, and Robert McLachlan, “Symplectic splitting methods for rigid body molecular dynamics,” The Journal of Chemical Physics 107, 5840 (1997).
[20] IP Omelyan, IM Mryglod, and R Folk, “Algorithm for molecular dynamics simulations of spin liquids,” Physical Review Letters 86, 898 (2001).
[21] Matthew A Meineke, Charles F Vardeman, Teng Lin, Christopher J Fennell, and J Daniel Gezelter, “OOPSE: An object-oriented parallel simulation engine for molecular dynamics,” Journal of Computational Chemistry 26, 252–271 (2005), see also www.oopse.org.
[22] Ge Zhong and Jerrold E Marsden, “Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators,” Physics Letters A 133, 134–139 (1988).
[23] PJ Channell and JC Scovel, “Integrators for Lie–Poisson dynamical systems,” Physica D: Nonlinear Phenomena 50, 80–88 (1991).
[24] Jerrold E Marsden, Sergey Pekarsky, and Steve Shkoller, “Discrete Euler–Poincaré and Lie–Poisson equations,” Nonlinearity 12, 1647 (1999).
[25] Sebastian Reich, “Momentum conserving symplectic integrators,” Physica D: Nonlinear Phenomena 76, 375–
Robert I McLachlan and Clint Scovel, “Equivariant constrained symplectic integration,” Journal of Nonlinear Science 5, 233–256 (1995).

Robert I McLachlan, Klas Modin, and Olivier Verdier, “Collective Lie–Poisson integrators on $\mathbb{R}^3,$” IMA J. Numer. Anal. (2014), arXiv:1307.2387.

Mark A Austin, PS Krishnaprasad, and Li-Sheng Wang, “Almost Poisson integration of rigid body systems,” Journal of Computational Physics 107, 105–117 (1993).

M dAquino, C Serpico, G Coppola, ID Mayergoyz, and G Bertotti, “Midpoint numerical technique for stochastic Landau–Lifshitz–Gilbert dynamics,” Journal of applied physics 99, 08B905 (2006).

JH Mentink, MV Tretyakov, A Fasolino, MI Katsnelson, and Th Rasing, “Stable and fast semi-implicit integration of the stochastic Landau–Lifshitz equation,” Journal of Physics: Condensed Matter 22, 176001 (2010).

Robert I McLachlan, Klas Modin, and Olivier Verdier, “Discrete time Hamiltonian spin systems,” (2014), arXiv.org/1402.3334 [math.MP].

Jürgen Moser and Alexander P Veselov, “Discrete versions of some classical integrable systems and factorization of matrix polynomials,” Communications in Mathematical Physics 139, 217–243 (1991).

Ernst Hairer and Gilles Vilmart, “Preprocessed discrete Moser–Veselov algorithm for the full dynamics of a rigid body,” Journal of Physics A: Mathematical and General 39, 13225 (2006).

Robert I McLachlan, “A new implementation of symplectic Runge–Kutta methods,” SIAM Journal on Scientific Computing 29, 1637–1649 (2007).

Ernst Hairer, Robert I McLachlan, and Alain Raza-Privat, “Achieving Brouwer’s law with implicit Runge–Kutta methods,” BIT Numerical Mathematics 48, 231–243 (2008).
FIG. 1. The sphere $\|s\| = 1$ is shown together with the phase portrait of the single-spin system with Hamiltonian (5). τ steps with $\Delta t = \tau$ are shown for different initial conditions, resulting in 13 periodic orbits and 6 equilibria.

FIG. 2. Discrete trajectories for the single-spin system with Hamiltonian (5) obtained using the classical midpoint method (dots) and the spherical midpoint method (thick line). The initial condition is $s_0 = (0, 0.7248, -0.6889)$. The time step is $\Delta t = 0.5$. The trajectory is periodic for the symplectic spherical midpoint method (correct behavior), but non-periodic for the nonsymplectic classical midpoint method (incorrect behavior).
FIG. 3. Energy error versus time for the classical and spherical midpoint methods applied to the single-spin system with Hamiltonian (5). The initial condition is \(s_0 = (0, 0.7248, -0.6889) \). The time step is \(\Delta t = 0.5 \). The energy drifts for the classical midpoint method, but remains bounded for the spherical midpoint method.

FIG. 4. Poincaré section (one-period map) of the periodically forced spinning top system with Hamiltonian (6) with \(\varepsilon = 0.07 \), approximated by the spherical midpoint method with 20 time steps per period.