Decreased adhesion to endothelial cells and matrix proteins of H-2Kb gene transfected tumour cells

D. Lauri1, C. De Giovanni2, T. Biondelli1, E. Lalli3, L. Landuzzi2, A. Facchini1, G. Nicoletti2,5, P. Nanni2, E. Dejana1 & P.-L. Lollini2

1Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, 2Istituto di Oncologia, University of Bologna, 3Istituto di Citomorfologia del C.N.R., Chieti, 4Istituto Scientifico Rizzoli, Bologna and 5I.S.T.-Biotechnology Satellite Unit, Bologna, Italy.

Summary

Transfection of murine metastatic B78H1 cells (derived from B16 melanoma) with a syngeneic H-2Kb gene was used to study the effect of Major Histocompatibility Complex (MHC) gene products on tumour cell adhesion to endothelial cells and matrix proteins and the involvement of the metastatic process. H-2Kb-expressing transfectants showed a reduced adhesion to endothelial surfaces of different origin (four murine endotheliomas and human umbilical vein endothelial cells) when compared to parental B78H1 cells and to controls transfected with pSV_neo alone. On the average a 50 - 70\% reduction in adhesion to endothelial cells was observed among H-2Kb transfectants. H-2Kb transfectants had a reduced expression of the \alpha\textsubscript{4} integrin subunit, moreover the adhesion of Neo-transfected clones to endothelial cells was reduced to the levels of H-2Kb transfectants by antibodies directed against the \beta\textsubscript{1} subunit and the endothelial VCAM-1 molecule, thus suggesting an impairment of the VLA-4/VCAM-1 interaction in H-2Kb transfectants. Adhesion to extracellular matrix components was also strongly decreased: in general the adhesion of H-2Kb cells showed a 50 - 75\% inhibition with respect to Neo or parental controls. The highest difference was observed in adhesion to vitronectin and laminin, the lowest in adhesion to fibronectin. Reduction in adhesive properties of H-2Kb-expressing transfectants could be involved in the reduced metastatic ability, evaluated by means of intravenous injection of cells: H-2Kb transfectants yielded less than ten lung colonies, while all controls produced more than 100. Our data indicate that expression of a single class I MHC gene can significantly alter the metastatic phenotype of MHC-negative tumour cells and this could be related to a general alteration of tumour cell adhesive interactions.

The malignancy of tumour cells can be affected by alterations of major histocompatibility complex (MHC) class I glycoprotein expression (Wallich \textit{et al.}, 1985; Tanaka \textit{et al.}, 1988; Elliott \textit{et al.}, 1989; Gopas \textit{et al.}, 1989). In particular it is known that T lymphocytes do not interact with MHC-negative cells (Doherty \textit{et al.}, 1984) and it has been hypothesised that natural killer cells selectively recognise MHC-negative cells (Lluggren & Karre, 1990).

It has been suggested that MHC molecules might play a role also in phenomena not mediated by the immune system, such as cell proliferation (Gattoni-Celli \textit{et al.}, 1989; Sunday \textit{et al.}, 1989) and cell-cell interactions (Hailiotis \textit{et al.}, 1990).

We have previously observed that H-2 negative cells transfected with a syngeneic H-2Kb gene showed a greatly reduced metastatic ability in mice. This effect was not fully explained by immune-mediated properties of transfectants; other causes might contribute to the strong decrease in metastatic ability, as shown by the correlation with a reduced homotypic adhesion (De Giovanni \textit{et al.}, 1991).

Tumour cell adhesion to extracellular matrix and to endothelial cells appears to be an important step in metastasis formation. A correlation between metastatic ability in vivo and adhesive behaviour in vitro of tumour cells has been reported by different groups (Nicolson, 1982; Varani \textit{et al.}, 1985; Korach \textit{et al.}, 1986; Auerbach \textit{et al.}, 1987; Humphries \textit{et al.}, 1988; Belloni & Tressler, 1989; Giavazzi \textit{et al.}, 1990). Therefore in the present study we investigated whether transfection of a MHC gene could lead to alterations in adhesive ability of tumour cells to vascular endothelium and subendothelial components.

To study the effect of MHC gene products on tumour cell adhesion and the relation with metastatic ability, we used H-2Kb-positive transfectants and control clones (transfected with pSV_neo gene only) obtained from a murine melanoma clone (derived from B16 cell line) showing no class I H-2a expression (De Giovanni \textit{et al.}, 1991).

Materials and methods

Tumour cells

B78H1 is an amelanotic clone originally obtained in the laboratory of S. Silagi from B16 melanoma (Graf \textit{et al.}, 1984); it shows no H-2 expression even after interferon-\gamma treatment. The derivation of control (transfected with pSV_neo gene encoding resistance to the neomycin analogue G418) and H-2Kb transfectants has been described previously (De Giovanni \textit{et al.}, 1991).

In the present study, H-2-negative B78H1 and four control clones were compared to five H-2Kb transfectants, one of which (Kb-G56) showed a poor, even though interferon-inducible, H-2Kb expression.

Cells were cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% heat-inactivated foetal calf serum (FCS) and 500 \(\mu \text{g ml}^{-1} \) G418 (except for parental B78H1) and were maintained at 37°C in a humidified atmosphere of 5% CO\textsubscript{2} in air. All the cells used in the experiments reported here were >90% viable as judged by Trypan blue dye exclusion.

Immunofluorescence studies

Indirect immunofluorescence on cells suspended by trypsin-EDTA treatment (for H-2 expression) or 5 mM EGTA in Ca2+/Mg2+-free PBS (for integrin expression) was performed as described (De Giovanni \textit{et al.}, 1991) and subjected to flow cytometric analysis (FACSstar plus, Becton Dickinson, Mountain View, CA, USA). Results from individual experiments are shown but these are representative of at least three similar individual experiments.

H-2a expression was determined by means of monoclonal antibody H-142-23 (anti-H-2Ka), obtained from Serotec, Bicester, UK; FITC-conjugated goat Fab anti-mouse immunoglobulins were purchased from Technogenetics, Milano, Italy.

Goat serum to human \(\alpha\beta \) fibronectin receptor (which recognises the \(\beta\text{integrin subfamily} \) was prepared in our laboratory (Conforti \textit{et al.}, 1989). FITC-conjugated mouse...
(F(ab)2; anti-goat IgG was purchased from New England Corporation, Boston, Mass., USA. Expression of α5 integrin subunit was determined by means of anti-mouse L-PAM-1 rat monoclonal antibody (Phar-}

mingen, San Diego, CA, USA) and FITC-conjugated rabbit anti-rat immunoglobulins (Dakopatts, Glostrup, Denmark).

Endothelial cells

The murine endothelial cell lines used in this study were obtained through the courtesy of Dr E.F. Wagner (IMP, Wien, Austria) (Williams et al., 1988; Williams et al., 1989). These endothelioma cell lines, originally derived from a subcutaneous (sEnd.1), thymic (tEnd.1), embryonal (eEnd.1) and brain (bEnd.1) hemangioma, express the polyoma middle T antigen, have cobblestone-like morphology, express von Willebrand factor and cause hemangiomas in vivo. Cells were maintained in DMEM containing 15% FCS and 750 μg ml⁻¹ G418.

Human endothelial cells (HEC), obtained from human umbilical vein and cultured as previously described (Dejana et al., 1987), were routinely characterised by immunofluorescence techniques using rabbit anti-human factor VIII antigen (Beckman, Fullerton, CA, USA, 1990). Cells were cultured in medium 199 (M199) supplemented with 20% FCS, 50 μg ml⁻¹ endothelial cell growth supplement (prepared from bovine brain), 100 μg ml⁻¹ heparin (Sigma Chemical Co., St. Louis, MO, USA), 50 U ml⁻¹ penicillin, 50 μg ml⁻¹ streptomycin, 2.5 μg ml⁻¹ fungizone at 37°C. All culture reagents were purchased from Gibco Europe, Paisley, Scotland. Tissue culture plates and flasks were obtained from Falcon (Becton Dickinson, Plymouth, UK).

Adhesion assay

Murine endothelial cell lines grown to confluent monolayers in 96 well plates were washed twice with fresh DMEM containing 15% FCS. The same procedure was utilised in the experiments on HEC using M199 plus 20% FCS. In these experiments HEC were also activated with 20 U ml⁻¹ of human recombinant interleukin-1β (specific activity 10⁵ U μg⁻¹; Scavo, Siena, Italy).

In other experiments, tumour cell adhesion to endothelial cell matrix or to extracellular matrix proteins (fibronectin, vitronectin and laminin) was studied. Subendothelial matrix was exposed by washing endothelial cell monolayers with PBS without Ca²⁺/Mg²⁺ and subsequent incubation with 5 mM EGTA in PBS without Ca²⁺/Mg²⁺ for 10 min. Endothelial cell detachment was assessed by light microscopy. The exposed matrix was then washed twice with PBS before adhesion. Fibronectin, vitronectin and laminin were prepared and used for coating the adhesion plate wells at 4°C overnight as described (Lampugnani et al., 1991).

Tumour cells were radiolabelled for 18 h with ³¹Iododeoxyuridine (Amersham International, Amersham, UK) (1 μCi ml⁻¹) and then washed twice with PBS without Ca²⁺/Mg²⁺ before detachment by incubation for 15 min with 5 mM EGTA in PBS without Ca²⁺/Mg²⁺. Cells were washed twice with DMEM plus 10% FCS and finally resuspended at 4 × 10⁵ cells ml⁻¹ either in M199 plus 20% FCS (adhesion on HEC) or in DMEM plus 15% FCS (when utilised for adhesion on murine endothelial cell lines).

Radiolabelled tumour cells suspension (100 μl of 4 × 10⁵ cells ml⁻¹) was added to each well and then incubated for 30 min at 37°C. Non-adherent cells were then removed by washing the plates three times with PBS plus 2% FCS. The content of each well was solubilised with 100 μl of 1 M NaOH 1% SDS and the lysate counted in a gamma 5500 counter (Beckman, Fullerton, California, USA).

In some experiments, adhesion assay was performed also in the presence of the following neutralising antibodies. Anti-ICAM-1 mAb 6.5BS (Wellicome et al., 1990), obtained through the courtesy of Dr Haskard (Hammersmith Hospital, London), the antibody, in the form of supernatant, was used at 1:20 dilution. Anti-VCAM-1 (B) 4B9 was a nice gift of Dr Harlan (Carlos et al., 1990); the antibody in the form of purified IgG was used at 10 μg ml⁻¹. Anti-β₁ goat antisemur, described above, has been used at 1:100 dilution. These concentrations of the antibodies have been selected since they gave maximal inhibition in the appropriate assays as specified in the respective references.

Mice and in vivo treatments

C57BL/6AnNcrlBr (referred to as C57BL/6) male mice were purchased from Charles River, Calco, Italy. Experimental lung metastases were counted 28 days after the intravenous (i.v.) injections of 5 × 10⁵ B78H1 or transfectant cells suspended in PBS into a lateral tail vein of 8–12 week-old mice. Lung nodules produced by melanotic cells were contrasted with black India ink as described (Wexler, 1966). All metastasis counts were performed on dissected lung lobes under a stereoscopic microscope.

Statistical analysis

Statistical analysis was performed by Student's t-test (cell adhesion experiments) and by the non-parametric Wilcoxon test (experimental metastasis study).

Results

A greatly reduced metastatic ability of H-2Kb transfected cells has been reported in a previous paper (De Giovanni et al., 1991), where some of the clones hereafter studied were characterized. For the present study, a wider panel of H-2Kb-transfectant cells (referred to as 'Kb' clones) and control clones (transfected with pSVneo alone, 'Neo' clones) has been used. H-2Kb expression (Figure 1) and metastatic ability (Table 1) of all the clones used throughout the study is reported for comparison. Four H-2Kb-expressing transfectant and a Kb clone (Kb-G56) with a poor basal H-2Kb expression (Figure 1) were compared to H-2Kb-negative parental B78H1 cells and to four control 'Neo' clones. The experimental metastatic capacity of Kb clones was strikingly reduced in comparison to Neo controls as reported (Table 1).

We examined adhesion of parental, Neo and H-2Kb transfected melanoma clones to murine endothelial cells (bEnd). As shown in Figure 2, adhesion to bEnd cells of all the H-2Kb-expressing clones was significantly lower than parental and Neo clones; Kb-G56 showed an intermediate behaviour. This adhesive pattern is in accordance with the decreased experimental metastatic ability of H-2Kb-expressing transfected cells (Table 1). The fact that Kb-G56 was significantly more adhesive and more metastatic than H-2Kb-expressing transfectants confirms that H-2 expression, rather than gene transfection per se, determined the inhibition of adhesion and of metastatic ability.

Similarly to the results observed on bEnd, we found a significantly decreased adhesion of the H-2Kb-transfected clone Kb-G56.

Clone	H-2Kb	Incidence	Lung colonies	Medium	Range
B78H1	6/6	>200	>200		
Neo-C1A	8/8	156	55–200		
Neo-C1C	8/8	146	52–200		
Neo-C23	8/8	118	70–165		
Neo-C29	7/7	129	65–200		
Kb-G56	±	8/8	44	12–123	
Kb-D1A	+	4/8	1	0–6	
Kb-D34	+	7/8	3	0–8	
Kb-G62	+	7/7	6	1–15	
Kb-G60	+	3/8	0	0–2	
cells to other murine endothelial cell lines of subcutaneous (sEnd) and thymic (tEnd) origin (Figure 3) compared to parental and Neo clones. Adhesion to the embryo-derived eEnd cell line was very low, and no significant difference was observed.

We also tested adhesion to human umbilical vein endothelial cells (HEC), under resting condition and after cytokine activation. Tumour cell adhesion to HEC, similarly to leucocyte adhesion, is significantly increased by treatment of the endothelium with inflammatory cytokines as interleukin-1 (IL-1) and tumour necrosis factor (Dejana et al., 1988; Rice et al., 1989; Lauri et al., 1990; Martin-Padura et al., 1991). Adhesion of parental, control and Kb clones to resting and IL-1-activated HEC is shown in Figure 4. Consistently with the results obtained using murine endothelial cells, B78H1 and Neo-C23 adhesion to resting HEC is higher than Kb-D34 cells. Adhesion to IL-1-activated HEC of B78H1 and Neo-C23 clones was significantly increased, as expected; on the contrary Kb-D34 cells did not enhance their adhesion after endothelial activation.

Adhesive interaction between melanoma and endothelial cells could be mediated by the binding of VLA-4 integrin receptor to the endothelial VCAM-1 counterpart. When cells were studied by cytofluorimetric analysis, control Neo cells were found to express α4 subunit, although at a low level, whereas Kb-transfectant cells were almost α4-negative (Table II). This difference could not be attributed to a smaller dimension of Kb cells (Table II) or to a generalised decrease in the expression of adhesion molecules, since Kb and Neo
Table II Expression of α4 and CD44 by Neo and H-2Kb-transfected clones

Clone	H-2Kb	α4	CD44	
Neo-C1A	–	14.7	16	32
Neo-C1C	–	15.2	10	24
Neo-C23	–	13.4	13	25
Neo-C29	–	13.4	16	21
Neo clones, mean ± s.e.	14.2 ± 0.5	13.8 ± 1.4	25.5 ± 2.3	
Kb-D1A	+	13.9	6	22
Kb-D34	+	14.3	5	28
Kb-G62	+	15.2	2	33
Kb-G60	+	15.4	4	14
Kb clones, Mean ± s.e.	14.7 ± 0.4	4.3 ± 0.9	24.3 ± 4.1	
Difference between Neo and Kb	n.s.	P < 0.01	n.s.	

Integrin α4 subunit and CD44 expression were measured by flow cytometry; results are expressed as median log fluorescence channel in arbitrary units. Cell diameter was measured microscopically. Student’s t-test was used to compare Neo and Kb clones.

Adhesion assay was performed also in the presence of neutralising antibodies (Figure 5): both anti-VCAM-1 and anti-β1 subunit significantly inhibited adhesion of Neo-C23 cells. The adhesion of Neo-C23 cells to endothelial cells was reduced by these neutralising antibodies to levels similar to H-2Kb transfecteds, thus confirming the role played by the VLA-4/VCAM-1 interaction.

We then tested whether adhesion impairment of H-2Kb transfected cells was specific to endothelial cells or common to other adhesive substrata. Therefore we compared adhesion to endothelial cell matrix and to purified extracellular matrix proteins such as fibronectin, vitronectin and laminin. Table III shows that H-2Kb transfected cells have a significant decrease in adhesiveness to all the substrata tested compared to B78H1 and Neo-C23 cells.

Finally to verify if the adhesive behaviour of H-2Kb transfected cells was due to an abnormal cytoskeletal organisation we compared, by phallolidin-rhodamine staining of paraformaldehyde-fixed cell monolayers, the actin filament distribution of Neo-C23 and Kb-D34 cells. No significant difference was observed (data not shown): actin microfilament organisation and cell spreading were comparable in the two cell types.

Discussion

Our data show that transfection of the H-2Kb gene altered adhesion of tumour cells to different endothelial surfaces (namely three murine endothelial cell lines and HEC). Adhesion of H-2Kb transfecteds to extracellular matrix components was also strongly decreased in respect to control clones.

MHC class I glycoprotein expression is required for recognition of tumour cells by the immune system of the host (Doherty et al., 1984). Moreover MHC gene products can be involved in other functions potentially relevant to the metastatic process, such as cell-cell interactions (Bartlett & Edidin, 1978; Curtis & Rooney, 1979; Schirrmacher et al., 1980; Honda & Rostami, 1989), homotypic cell adhesion (De Giovanni et al., 1991) and lectin-binding ability (Gorrelk et al., 1991). Our observations support the idea that H-2Kb glycoprotein expression profoundly affects the adhesive capacity of the cell, since a general decrease of tumour cell adhesion to different adhesive substrata was observed.

Several lines of evidence show that tumour cell interaction with extracellular matrix is relevant and related to the meta-

Table III Adhesion of H-2Kb transfected and control melanoma cells to various adhesive substrates

Tumour cells	EC matrix	Substrate of adhesion	FN (%)	VN (%)	LM (%)
B78H1	5138 ± 475	6082 ± 350	6052 ± 339	5726 ± 278	
Neo-C23	3665 ± 619	5923 ± 278	5318 ± 714	5334 ± 92	
Kb-D34	710 ± 396	3908 ± 702	1278 ± 510	1428 ± 168	

Results are expressed as number of adherent tumour cells well, mean ± s.d., eight replicates from two experiments. In % is expressed the percentage of adherent cells respect to the total number of cells added well. Adhesion time was 30 min. FN = fibronectin, VN = vitronectin, LM = laminin.
Tumour cell adhesion to endothelial cells is also important for the metastatic process. Some authors found a positive correlation between cell adhesion to endothelial cells or to subendothelial matrix proteins and metastatic potential of tumour cell lines (Belloni & Tressler, 1989) and in particular of melanoma cells (including B16) (Chang et al., 1992; Kojima et al., 1992; Zhu et al., 1992). In these papers, inhibition of both adhesion and metastasis was achieved by specific antibodies blocking different adhesion molecules. Here we showed that H-2Kb gene transfected in H-2-negative melanoma cells leads to both a decreased adhesion to endothelial cells and matrix proteins and to a dramatic reduction in the metastatic ability.

It has been previously reported that melanoma cells adhere more efficiently to IL-1-treated endothelium (Rice & Bevilacqua, 1989) and specific adhesion was related to an increase in the number and incidence of artificial and spontaneous metastasis in IL-1-treated animals injected with melanoma cell lines (Giavazzi et al., 1990). We reported here that, in contrast to the parental line and Neo clones, IL-1 treatment of the endothelium did not change the ability of H-2Kb transfectants to adhere to it.

The augmentation of melanoma adhesiveness to cytokine-treated HEC has been proven to be mediated by the recognition of the endothelial membrane protein VCAM-1 by melanoma counter receptor VLA-4 (Rice & Bevilacqua, 1989; Martin-Padura et al., 1991). Since α4 expression was indeed depressed in H-2Kb transfectants, it is likely that H-2Kb transfection impairs VLA-4/VCAM-1 typical recognition.

The mechanism underlying the profound depression of adhesion both to the endothelium and matrix proteins observed in H-2Kb transfectants cannot however be completely explained by an inhibition of αvβ3 expression. This integrin can bind fibronectin but there is no evidence that it can interact with laminin and vitronectin. Furthermore VCAM-1 is expressed on resting endothelium only in minimal amounts (Rice et al., 1990). This suggests that also other mechanisms play a role in H-2Kb-induced decrease of adhesive functions. Actin cytoskeletal organisation was not important since H-2Kb transfectants showed a normal microfilament pattern and spreading. A possibility could be that H-2 glycoproteins sterically hinder cell adhesion molecules required for melanoma adhesion to endothelial cells and to extracellular matrix. We are currently expanding the panel of available reagents recognising murine adhesion molecules, to obtain a comprehensive evaluation of the differences between Neo and Kb cells.

In conclusion our data confirm that expression of a single class I MHC gene can significantly alter tumour cell adhesive interactions. This alteration, along with the reported interference with the immune system of the hosts, could contribute to determine the decreased metastatic ability.

This study was supported by grants from Associazione Italiana per la Ricerca sul Cancro, Milan, from Ministero dell’Università e della Ricerca Scientifica e Tecnologica, Roma, and from the National Research Council, Special Project ‘Applicazioni Cliniche della Ricerca Oncologica’. Italy. L.L. is in receipt of a Ph.D. fellowship from Ministero dell’Università e della Ricerca Scientifica e Tecnologica, Italy.

References

ALBEDA, S.M., METTE, S.A., ELDER, D.E., STEWART, R.M., DAM-JANOVICH, L., HERLYN, M. & BUCK, C. (1990) Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res., 50, 6757–6764.

AUBERBACH, R., LU, W., PARDON, E., GUMOWSKI, F., KAMINSKI, G. & KAMINSKI, M. (1987) Specificity of adhesion between murine tumour cells and murine and rat endothelium in vitro: correlate of preferential metastasis in vivo. Cancer Res., 47, 1492–1496.

BALCOSI, G. & DEJANA, E. (1986). Cultivation of endothelial cell. Linearity and perspective. Med. Biol., 64, 231–245.

BARTLLETT, P.F. & EDDIN, M. (1978). Expression of the H-2 gene complex rates of fibroblast intercellular adhesion. J. Cell Biol., 77, 377–388.

BELLONI, P.N. & TRESSLER, R.J. (1989). Microvascular endothelial cell heterogeneity: interactions with leukocytes and tumor cells. Cancer Metast. Rev., 8, 353–389.

CARLOS, T.M., SCHWARTZ, B.R., KOVACH, N.L., YEE, E., ROSA, M., OSBORN, L., CHIROSSO, G., NEWMAN, B., LOBB, R. & HARLAN, J.M. (1990). Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine activated cultured human endothelial cells. Blood, 76, 965–970.

CHANG, Y.S., CHEN, Y.Q., TIMAR, J., NELSON, K.K., GROSSI, I.M., FITZGERALD, L.A., DIGLIO, C.A. & HONN, K.V. (1992) Increased expression of αHβ2 integrin in subpopulations of murine melanoma cells with high lung-colonizing ability. Int. J. Cancer, 51, 445–451.

CONFORTI, G., ZANETTI, A., COLELLA, S., ABBADINI, M., MARCISHIO, P.C., PYTLE, R., GIANNOTTI, F.G., TARONE, G., LANGUING, L.R. & DEJANA, E. (1989). Interaction of fibroconitin with cultured human endothelial cells. Characterisation of the specific receptor. Blood, 73, 1576–1582.

CURTIS, A.S.G. & ROONEY, P. (1979). H-2 restriction of contact inhibition of epithelial cells. Nature, 281, 222–223.

DE GIOVANNI, C., PALMIERI, G., NICOLETTI, G., LANDUZZI, L., SCOTLANDI, K., BONTADINI, A., TAZZARI, P.L., SENSI, M., SANTONI, A., NANNI, P. & LOLLINI, P.L. (1991) Immunological and nonimmunological influence of H-2Kb gene transfection on the metastatic ability of B16 melanoma cells. Int. J. Cancer, 48, 270–276.
HALIOTIS, T., CARLOW, D.A. & ELLIOTT, B.E. (1990). Nonimmunological aspects of MHC function in the regulation of cell proliferation and the malignant phenotype. Cancer Cells, 2, 86–90.

HONDA, H. & ROSTAMI, A. (1989). Expression of major histocompatibility complex class I antigens in rat muscle cultures: the possible developmental role in myogenesis. Proc. Natl Acad. Sci. USA, 86, 7007–7011.

HUMPHRIES, M.J., YAMADA, K.M. & OLDEN, K. (1988). Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16-F10 murine melanoma cells. J. Clin. Invest., 81, 782–790.

HYNES, R.O. (1987). Integrins: a family of cell surface receptors. Cell, 48, 549–554.

KOJIMA, N., SHIOTA, M., SADAHIRA, Y., HANDA, K. & HAKOMORI, S. (1992). Cell adhesion in a dynamic flow system as compared to static system. Glycosphingolipid interaction in the dynamic system predominates over lectin- or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells. J. Biol. Chem., 267, 17264–17270.

KORACH, S., POUPON, M.F., DUVILLARD, J.A. & BECKER, M. (1986). Differential adhesiveness of rhabdomyosarcoma-derived cloned metastatic cell lines to vascular endothelial monolayers. Cancer Res., 46, 3624–3629.

LAMPUGNANI, M.G., RESNATI, M., DEJANA, E. & MARCHISIO, P.C. (1991). The role of integrins in maintenance of endothelial monolayer integrity. J. Cell. Biol., 112, 479–490.

LAURI, D., BERTOMEU, M.C., ORR, F.W., BASTIDA, E., SAUDE, D. & BUCHANAN, M.R. (1990). Interleukin-1 increases tumor cell adhesion to endothelial cells through an RGD dependent mechanism: in vitro and in vivo studies. Clin. Exp. Metastasis, 8, 27–32.

LIJUNGREN, H.G. & KARRE, K. (1990). In search of the 'missing self': MHC molecules and NK recognition. Immunol. Today, 11, 237–244.

MARTIN-PADURA, I., MORTARINI, R., LAURI, D., BERNASCONI, S., SANCHEZ-MADRIGAL, F., PARMIANI, G., MANTOVANI, A., ANICHI, A. & DEJANA, E. (1991). Heterogeneity in human melanoma cell adhesion to cytokine activated endothelial cells correlates with VLA4 expression. Cancer Res., 51, 2239–2241.

MCCARTHY, J.B., BASARA, M.L., PALM, S.L., SAS, D.F. & FURCHT, L.T. (1985). The role of cell adhesion proteins laminin and fibronectin in the movement of malignant and metastatic cells. Cancer Metastasis Rev., 4, 125–152.

NICOLSON, G.L. (1982). Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers. J. Histochem. Cytochem., 30, 214–220.

NICOLSON, G.L. (1988). Organ specificity of tumor metastasis: role of preferential adhesion, invasion, and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev., 7, 143–188.

RICE, G.E., GIMBRONE, M.A. Jr & BEVILACQUA, M.P. (1989). Tumor cell-endothelial cell interactions. Increased adhesiveness of human melanoma cells to activated vascular endothelium. Am. J. Pathol., 133, 204–210.

RICE, G.E., MUNRO, M.J. & BEVILACQUA, M.P. (1990). Inducible cell adhesion molecule 110 (INCAM-110) is an endothelial receptor for lymphocytes: a CD11/CD18 independent adhesion mechanism. J. Exp. Med., 171, 1369–1371.

RICE, G.R. & BEVILACQUA, M.P. (1989). An inducible cell surface glycoprotein mediates melanoma adhesion. Science, 246, 1303.

ROUSLAHTI, E. & GIANCOTTI, F.G. (1989). Integrins and tumor cell dissemination. Cancer Cells, 1, 119–126.

SAIKI, I., IDA, J., MURATA, J., OGAWA, R., NISHI, N., SUGIMURA, K., TOKURA, S. & AZUMA, I. (1989). Inhibition of the metastasis of murine malignant melanoma by synthetic polymeric peptides containing core sequences of cell adhesive molecules. Cancer Res., 49, 3815–3822.

SCHIRMACHER, V., CHEINSONG-POPOV, R. & ARNHEITER, H. (1980). Hepatocyte-tumor cell interaction in vitro. I. Conditions for rosette formation and inhibition by anti-H2 antibody. J. Exp. Med., 151, 984–989.

SUNDAY, M.E., ISSELBACHER, K.J., GATTONI-CELLI, S. & WILLETT, C.G. (1989). Altered growth of a human neuroendocrine carcinoma line after transfection of a major histocompatibility complex class I gene. Proc. Natl Acad. Sci. USA, 86, 4700–4704.

TANAKA, K., YOSHIOKA, T., BIERBERICH, C. & JAY, G. (1988). Role of the major histocompatibility complex class I antigens in tumor growth and metastasis. Ann. Rev. Immunol., 6, 359–380.

VARANI, J., GRIMSTAD, I.A., KNIBBS, R.N., HOVIG, T. & MCCOY, J.P. (1985). Attachment, spreading, and growth in vitro of highly malignant and low malignant murine fibrosarcoma cells. Clin. Expl. Metastasis, 3, 45–59.

WALLICH, R., BULBUC, N., HAENMERLING, G.J., KATZAV, S., SEGAL, S. & FELDMAN, M. (1985). Abrogation of metastatic properties of tumour cells by de novo expression of H-2K antigens following H-2 gene transfection. Nature, 315, 301.

WELLCOME, S.M., THORNHILL, M.H., PITRALIS, C., THOMAS, D.S., LANCHESTER, J.S.S., PANAYI, G.S. & HASKARD, D.Q. (1990). A monoclonal antibody that detects a novel antigen on endothelial cells that is induced by tumor necrosis factor, IL-1 or polysaccharide. J. Immunol., 144, 2558–2563.

WEIXLER, H. (1966). Accurate identification of experimental pulmonary metastases. J. Natl. Cancer Inst., 36, 641–645.

WILLIAMS, R.L., COURTNIDGE, S.A. & WAGNER, E.F. (1988). Embryonic lethality and endothelial tumors in chimeric mice expressing polyoma virus middle T oncogene. Cell, 52, 121–131.

WILLIAMS, R.L., RISAU, W., ZERWES, H.G., DREXLER, H., AGUZZI, A. & WAGNER, E.F. (1989). Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell, 57, 1053–1063.

ZHOU, D., CHENG, C.F. & PAULI, R.U. (1992). Blocking of lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) inhibits murine melanoma lung metastasis. J. Clin. Invest., 89, 1718–1724.