IN SILICO IDENTIFICATION OF NOVEL DRUG TARGETS IN ACINETOBACTER BAUMANNII BY SUBTRACTIVE GENOMIC APPROACH

MEENU GOYAL¹, CITU², NIDHI SINGH²*

¹Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India. ²Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India. Email: tanwar.nidhi7@gmail.com

Received: 19 July 2017, Revised and Accepted: 18 August 2017

ABSTRACT

Objective: Multiple drug resistance (MDR) in bacteria, particularly Gram-negative bacilli, has significantly hindered the treatment of infections caused by these bacteria. This results in the need for identifying new drugs and drug targets for these bacteria. The objective of this study was to identify novel drug targets in Acinetobacter baumannii which has emerged as a medically important pathogen due to an increasing number of infections caused by it and its MDR property.

Methods: In our study, we implemented in silico subtractive genomics approach to identify novel drug targets in A. baumannii American type culture collection 17978. Various databases and online software were used to build a systematic workflow involving comparative genomics, metabolic pathways analysis, and drug target prioritization to identify pathogen-specific novel drug targets.

Results: First, 458 essential proteins were retrieved from a database of essential genes, and by performing BLASTp against Homo sapiens, 246 human non-homologous essential proteins were selected of 458 proteins. Metabolic pathway analysis performed by Kyoto Encyclopedia of Genes and Genomes–Kyoto Automatic Annotation Server revealed that these 246 essential non-homologous proteins were involved in 66 metabolic pathways. Among these metabolic pathways, 12 pathways were found to be unique to Acinetobacter that involved 37 non-homologous essential proteins. Of these essential non-homologous proteins, 19 proteins were found in common as well as unique metabolic pathways and only 18 proteins were unique to Acinetobacter. Finally, these target proteins were filtered to 9 potential targets, based on subcellular localization and assessment of druggability using Drugbank, ChEMBL, and literature.

Conclusion: Our study identified nine potential drug targets which are novel targets in A. baumannii and can be used for designing drugs against these proteins. These drugs will be pathogen specific with no side effects on human host, as the potential drug targets are human non-homologous.

Keywords: Acinetobacter baumannii, Multiple drug resistance, Essential proteins, Metabolic pathway analysis, Druggability, Novel drug target.

INTRODUCTION

Some strains of bacteria are resistant to almost all available antibiotics, such as Acinetobacter baumannii, which is the focus of the present study. Antimicrobial resistance has been identified as one of the most important problems facing human health [1]. The most common and serious multiple drug-resistant (MDR) pathogens have been assigned within the acronym "ESKAPE," standing for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa, and Enterobacter spp. [2]. Treatment of infections due to these bacteria has become difficult, resulting in increased morbidity and mortality [3,4]. A. baumannii is one of these most problematic MDR species [5]. Therefore, the identification of new drug targets in A. baumannii is urgently needed.

A. baumannii is a Gram-negative bacillus that is aerobic, pleomorphic, and non-motile. It is an opportunistic pathogen which mainly affects immunocompromised individuals, particularly those who have experienced a prolonged (>90 day) hospital stay [6]. The respiratory tract, blood, pleural fluid, urinary tract, surgical wounds, central nervous system, skin, and eyes are sites for infection or colonization [7,8]. The types of infections caused by this pathogen include pneumonia, bacteremia, endocarditis, skin and soft tissue infections, urinary tract infections, and meningitis.

OmpA, a member of the outer membrane proteins (OMPs), contributes significantly to the disease-causing potential of A. baumannii [9]. OmpA, being the most abundant surface protein on the pathogen, is also involved in the formation of biofilms [10,11]. The ability to form biofilms allows it to grow persistently in unfavorable conditions and environments. Phospholipase D and C also contribute to virulence potential of A. baumannii [12,13].

A. baumannii is able to acquire antibiotic resistance mechanisms which allow this organism to persist in hospital environments and facilitated the global emergence of MDR strains. The rapid emergence of multi- and pandrug-resistant strains of Acinetobacter highlights the organism’s ability to quickly acclimatize to selective changes in environmental pressures. The three fundamental mechanisms of antimicrobial resistance are (1) enzymatic degradation of antibacterial drugs, (2) alteration of bacterial proteins that are antimicrobial targets, and (3) changes in membrane permeability to antibiotics. In recent years, it has been designated as a “red alert” human pathogen, arising largely from its extensive antibiotic resistance spectrum [14].

In the present post-genomics era, the possibilities of selecting targets using computational approaches with integrated “omics” data, such as genomics, proteomics, and metabolomics have been increasing continuously. In silico methods like comparative and subtractive genomics are being widely used for the prediction and identification of potential drug targets in numerous pathogenic bacteria [15]. This technique relies on comparisons between the genomic sequences of the pathogen with the host to include the protein-coding genes sequences that are (a) absent in the host (non-homologous) and (b) indispensable for pathogen survival [16,17]. In the present study, a computational
comparative metabolic pathway analysis of host *Homo sapiens* and *A. baumannii* has been carried out to identify potential novel drug targets.

METHODS

The systematic identification and characterization of the potential drug targets of *A. baumannii* American type culture collection 17978 was done sequentially by the following methods.

Retrieval of essential proteins of *A. baumannii*

At first, according to the database of essential genes (DEG) [18], 458 essential proteins of *A. baumannii* were retrieved from NCBI in FASTA format.

Identification of non-human homologous essential proteins in *A. baumannii*

To identify human non-homologous essential proteins of *A. baumannii*, these 458 essential proteins were subjected to BlastP at NCBI server against *H. sapiens* with default parameters. Proteins having identity ≤38% and e>0.005 were considered as non-homologous proteins.

Metabolic pathway analysis

The human non-homologous essential proteins of *A. baumannii* obtained through BlastP were then subjected to metabolic pathway analysis, which was done by Kyoto Automatic Annotation Server (Kyoto Encyclopedia of Genes and Genomes [KEGG] automatic annotation server) [19] server at KEGG [20]

Unique pathway identification

After this, unique metabolic pathways of Acinetobacter were identified through the manual comparison of metabolic pathways of both *Acinetobacter* and *H. sapiens* using KEGG Database.

Subcellular localization

Subcellular localization of metabolic proteins (essential non-human homologous protein involved only in unique pathways) of *A. baumannii* was done by PSORTb [21] to identify the cellular localization of these putative therapeutic targets.

Drug target prioritization

Drug targets were prioritized by following three approaches:

Drug bank

Druggability of potential drug targets of *A. baumannii* was identified by sequence similarity to targets of the Food and Drug Administration (FDA) approved and small drug molecule by utilizing the Drug Bank [22].

ChEMBL

Druggability of potential drug targets of *A. baumannii* was identified by sequence similarity to targets of small drug molecule by utilizing the ChEMBL [23]. The default parameters for BLASTp were used to line up the potential drug targets from *A. baumannii* against the list of protein targets of compounds found within the Drug Bank and ChEMBL.

LITERATURE

Druggability of potential drug targets was also assessed based on information in the literature [24-32] about their efficacy as drug targets in other organisms.

RESULTS AND DISCUSSION

The present study was aimed to identify novel drug targets in *A. baumannii*. We followed subtractive genomic approach (Fig. 1) to identify the good therapeutic target proteins which are essential for bacterial survival but cannot be found in the host.

Identification of non-homologous essential proteins

Druggability of putative therapeutic targets

Druggability of each of the non-homologous essential proteins of *A. baumannii* was identified by sequence similarity to targets of small drug molecule by utilizing ChEMBL Literature.
Essential non-homologous proteins	Involvement in pathways	Common pathway	
KO entry	**Definition**	**Unique pathway**	**Common pathway**
K01623	Fructose-bisphosphate aldolase, Class I	ko00680-Methane metabolism	ko00010-Glycolysis/gluconeogenesis ko00030-Pentose phosphate pathway ko00051-Fructose and mannose metabolism ko00710-Carbon fixation in photosynthetic organisms ko1200-Carbon metabolism ko1230-Biosynthesis of amino acids ko0010-Glycolysis/gluconeogenesis ko1230-Biosynthesis of amino acids ko00260-Glycine, serine, and threonine metabolism ko01200-Carbon metabolism ko00620-Pyruvate metabolism ko00720-Carbon fixation pathway in prokaryotes ko01200-Carbon metabolism
K15633	2,3-Bisphosphoglycerate-independent phosphoglycerate mutase	ko00680-Methane metabolism	ko00010-Glycolysis/gluconeogenesis ko00030-Pentose phosphate pathway ko00051-Fructose and mannose metabolism ko00710-Carbon fixation in photosynthetic organisms ko1200-Carbon metabolism ko1230-Biosynthesis of amino acids ko0010-Glycolysis/gluconeogenesis ko1230-Biosynthesis of amino acids ko00260-Glycine, serine, and threonine metabolism ko01200-Carbon metabolism ko00620-Pyruvate metabolism ko00720-Carbon fixation pathway in prokaryotes ko01200-Carbon metabolism
K01007	Pyruvate, water dikinase	ko00680-Methane metabolism	ko00010-Glycolysis/gluconeogenesis ko00030-Pentose phosphate pathway ko00051-Fructose and mannose metabolism ko00710-Carbon fixation in photosynthetic organisms ko1200-Carbon metabolism ko1230-Biosynthesis of amino acids ko0010-Glycolysis/gluconeogenesis ko1230-Biosynthesis of amino acids ko00260-Glycine, serine, and threonine metabolism ko01200-Carbon metabolism ko00620-Pyruvate metabolism ko00720-Carbon fixation pathway in prokaryotes ko01200-Carbon metabolism
K00677	UDP-N-acetylglucosamine acyltransferase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K02535	UDP-3-O-[3-hydroxyxylristoyl] N-acetylglucosamine deacetylase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K02536	UDP-3-O-[3-hydroxyxylristoyl] glucosamine N-acetyltransferase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K03269	UDP-2,3-diacetylglucosamine hydrolase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K00748	Lipid-A-disaccharide synthase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K00912	Tetraacyldisaccharide 4'-kinase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K02527	3-Deoxy-D-manno-octulosonic-acid transferase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K00979	3-Deoxy-manno-octulosonate cytidylyltransferase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K03270	3-Deoxy-D-manno-octulosonate 8-phosphate phosphatase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K06041	Arabinose-5-phosphate isomerase	ko00540-Lipopolysaccharide biosynthesis	ko01503-(cAMP) resistance ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis ko00540-Lipopolysaccharide biosynthesis
K01921	D-alanine-D-alanine ligase	ko00550-Peptidoglycan synthesis	ko01502-Vancomycin resistance ko00471-D glutamine and D glutamate metabolism ko00471-D glutamine and D glutamate metabolism ko00300-Lysine biosynthesis
K00790	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	ko00550-Peptidoglycan synthesis	ko01502-Vancomycin resistance ko00471-D glutamine and D glutamate metabolism ko00471-D glutamine and D glutamate metabolism ko00300-Lysine biosynthesis
K00075	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate ligase	ko00550-Peptidoglycan synthesis	ko01502-Vancomycin resistance ko00471-D glutamine and D glutamate metabolism ko00471-D glutamine and D glutamate metabolism ko00300-Lysine biosynthesis
K00075	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate ligase	ko00550-Peptidoglycan synthesis	ko01502-Vancomycin resistance ko00471-D glutamine and D glutamate metabolism ko00471-D glutamine and D glutamate metabolism ko00300-Lysine biosynthesis
K00075	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate ligase	ko00550-Peptidoglycan synthesis	ko01502-Vancomycin resistance ko00471-D glutamine and D glutamate metabolism ko00471-D glutamine and D glutamate metabolism ko00300-Lysine biosynthesis
K00075	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate ligase	ko00550-Peptidoglycan synthesis	ko01502-Vancomycin resistance ko00471-D glutamine and D glutamate metabolism ko00471-D glutamine and D glutamate metabolism ko00300-Lysine biosynthesis
K00075	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-diaminopimelate ligase	ko00550-Peptidoglycan synthesis	ko01502-Vancomycin resistance ko00471-D glutamine and D glutamate metabolism ko00471-D glutamine and D glutamate metabolism ko00300-Lysine biosynthesis
Goyal et al.
Asian J Pharm Clin Res, Vol 11, Issue 3, 2018, 230-236

small molecule drugs by utilizing the Drug Bank database, ChEMBL, literature. This led to the identification of nine A. baumannii proteins that were highly similar to the binding partners of FDA approved and small experimental molecule drugs (Table 3), and these can act as potential novel drug targets.

The above listed nine potential druggable targets are involved in seven metabolic pathways (two-component system, D-alanine metabolism, lipopolysaccharide biosynthesis, geraniol degradation, beta-lactam resistance, vancomycin resistance, and peptidoglycan synthesis pathways) and their potential as novel drug targets is discussed as follows:

D-alanine ligase
D-alanine ligase is involved in 3 bacterial pathways, i.e., peptidoglycan synthesis, D-alanine metabolism, and vancomycin resistance. Due to involvement in multiple pathways, it is a very good target for drug discovery. This enzyme is ubiquitous among prokaryotes and is absent in eukaryotes making this a logical target for the development of antibiotics. This enzyme has been used as target for many drugs against infectious bacteria. Bruning et al. have used this enzyme as target for drug D-cycloserine in Mycobacterium tuberculosis [24].

Table 1: (Continued)

Essential non-homologous proteins	Involvement in pathways
K03507 Cell division protein Ftsz	ko00550-Peptidoglycan synthesis
K13779 Isohexenylglutaconyl-CoA hydratase	ko01501-Beta-lactam resistance
K00928 Aspartate kinase	ko00281-Geraniol degradation
K00133 Aspartate-semialdehyde dehydrogenase	ko00261-Monobactam biosynthesis
K00215 4-Hydroxy-tetrahydrodipicolinate reductase	ko00261-Monobactam biosynthesis
K03072 Preprotein translocase subunit SecD	ko003070-Bacterial secretion system
K03076 Preprotein translocase subunit SecF	ko003070-Bacterial secretion system
K03073 Preprotein translocase subunit SecE	ko02024-Quorum sensing
K03210 Preprotein translocase subunit YajC	ko003070-Bacterial secretion system
K03217 YidC/Oxa1 family membrane protein insertase	ko02024-Quorum sensing
K07659 Two-component system, OmpR family, phosphate regulon response regulator OmpR	ko003070-Bacterial secretion system
K07638 Two-component system, OmpR family, osmolarity sensor histidine kinase EnvZ	ko02020-Two-component system
K01497 GTP Cyclohydrolase II	ko02024-Quorum sensing
K03100 Signal peptidase I	ko02024-Quorum sensing

K0: Guanosine triphosphate, cAMP: Cationic antimicrobial peptide

Table 2: Subcellular localization of proteins that are involved in only unique metabolic pathways

KO entry	DEG No.	Subcellular localization	Whether druggable
K01921	DEG10430441	Cytoplasmic	Yes
K00677	DEG10430227	Cytoplasmic	No
K02397	DEG10430473	Cytoplasmic	Yes
K02536	DEG10430230	Cytoplasmic	No
K00748	DEG10430208	Cytoplasmic	No
K00912	DEG10430193	Cytoplasmic	No
K02527	DEG10430432	Cytoplasmic	No
K00979	DEG10430194	Cytoplasmic	No
K03270	DEG10430173	Cytoplasmic	Yes
K02397	DEG10430172	Cytoplasmic	Yes
K03269	DEG10430248	Cytoplasmic	No
K01100	DEG10430418	Inner membrane	Yes
K02563	DEG10430443	Inner membrane	Yes
K03980	DEG10430010	Inner membrane	No
K03587	DEG10430438	Cytoplasmic	Yes
K13779	DEG10430368	Cytoplasmic	Yes
K07638	DEG10430428	Inner membrane	Yes
K07659	DEG10430427	Cytoplasmic	Yes
This enzyme has also been used as drug target by other researchers [25,26,33,34].

Osmolarity sensor histidine kinase EnvZ and phosphate regulon response regulator

These proteins are involved in two-component system and belong to OmpR family. Two-component regulatory systems enable bacteria to detect physical or chemical changes and are mediators of signal transduction. This pathway is essential for the survival of bacteria and any disruption in this pathway leads to bacterial cell death. Two-component system pathway has been targeted by many inhibitors in different bacteria [35-40], and therefore, it can be very potent drug target in Acinetobacter too.

Cell division protein FtsZ

This protein is involved in 2 important metabolic pathways of *A. baumannii*, namely, peptidoglycan synthesis and beta-lactam resistance pathways. Beta-lactam resistance pathway codes for beta-lactamases which play role in degradation of beta-lactam antibiotics and makes them inactive. Drugs targeting this protein can inactivate beta-lactam resistance pathway and hence making the pathogen sensitive to beta-lactam antibiotics. Furthermore, disruption of peptidoglycan synthesis leads to bacterial cell death. Hence, this protein is an effective drug target as it is involved in two crucial pathways of the bacterial pathogen. This is supported by many wet laboratory studies where drugs have been used against FtsZ [41-46]. Sun et al. [47] used berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity.

Arabinose-5-phosphate isomerase and UDP-3-O-[3-hydroxymyristoyl]-N-acetylglucosamine deacetylase

These proteins are involved in lipopolysaccharide synthesis. Lipopolysaccharides (e.g., lipid A) are essential constituents of bacterial endotoxin. Chemical inhibitors which can disrupt lipid A biosynthesis have the potential to act as antimicrobial agents. Lipid A biosynthesis occurs on the cytosolic surface of the inner membrane and is catalyzed by 10 unique enzymes. Arabinose-5-phosphate isomerase catalyzes first step in the synthesis of lipopolysaccharide and has been used as a drug target in many pathogens [27,48-50]. UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase catalyzes the hydrolysis of UDP-3-O-myrstyl-N-acetylglucosamine to form UDP-3-O-myrstoylglucosamine and acetate, the committed step in lipid A biosynthesis, and has been exploited as a drug target by various workers [31,32]. Inhibition of lipopolysaccharide biosynthesis, leading to a truncated lipopolysaccharide molecule, is a strategy for antibacterial drug development in which vital cellular structure is weakened [51].

Table 3: Proteins highly similar to the targets of FDA approved and small experimental molecule drugs

DEG Number	KO entry	Drug	Organism	Source
DEG10430441	K01921	d-Cycloderine	*M. tuberculosis*	Bruning et al. [24]
DEG10430441	-	Diazenedi carboxamides phosphonic acid	*E. coli*	Kovac et al. [25]
DEG10430172	K06041	4-Phosphoerthryroinic acid	*P. aeruginosa, S. faecalis*	Lacoste et al. [26]
DEG10430418	K01000	Amphinomyein Mureidomycin A	*B. megaterium*	Woodruff and Wolfenden [27]
DEG10430438	K03587	S'-Guanosine-diphosphate-monothiophosphate and citric acid	*E. coli*	Tanaka et al. [28]
DEG10430428	K07638	Thiopropylene	*P. aeruginosa*	ChEMBL
DEG10430437	K02535	DPA	-	Drug bank
DEG10430427	K07659	Ethylene diaminetetraacetic acid	-	Drug bank
DEG10430443	K02563	-	Zheng et al. [31]	
DEG10430368	K13779	Quercetin	ChEMBL	

ACKNOWLEDGMENT

Facilities provided by the Department of Biotechnology, Central University of Haryana are gratefully acknowledged.

AUTHOR CONTRIBUTIONS

Meenu Goyal designed the overall methodology, revised manuscript and supervised the carried out work. Citu carried out the work and helped in preparing the first draft of manuscript. Nidhi Singh assisted in designing methodology, conducting data analysis and participated in critically reviewing the manuscript.

CONCLUSION

As resistant to all available antibiotics is reported in most of Gram-negative bacteria, especially in *A. baumannii*. Hence, there is a need to develop antibiotics against new drug targets. Our study found nine potential druggable drugs that are novel drug targets in *A. baumannii* and can be used for designing drugs against them. All of these have the potential to be used as drug targets as these are involved in crucial metabolic pathways of the pathogen and have been targeted successfully in other organisms. The drug would be specific for the pathogen and would not be lethal to the host as subtractive genomic approach applied in this case which includes human non-homologous proteins only. Molecular modeling of the targets will help in drug discovery by in silico methods. Virtual screening against these novel drug targets might be useful in the discovery of potential therapeutic agents against *A. baumannii* and can help in dealing with MDR.
CONFLICT OF INTERESTS

The authors declare no conflicts of interest in this work.

REFERENCES

1. Arora D, Jindal N, Romit KR. Emerging antibiotic resistance in Pseudomonas aeruginosa. Int J Pharm Pharm Sci 2013;5:32-4.
2. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis 2008;197:1079-81.
3. Spellberg B, Bonomo RA. The deadly impact of extreme drug resistance in Acinetobacter baumannii. Crit Care Med 2014;42:1289-91.
4. Villar M, Cano ME, Gato E, Garnacho-Montero J, Miguel Giménez J, Ruiz de Alegría C, et al. Epidemiologic and clinical impact of Acinetobacter baumannii colonization and infection: A reappraisal. Medicine (Baltimore) 2014;93:202-10.
5. Garnacho-Montero J, Amaya-Villar R. Multiresistant Acinetobacter baumannii infections: Epidemiology and management. Curr Opin Infect Dis 2010;23:332-9.
6. Montefour K, Frieden J, Hurst S, Helmich C, Headley D, Martin M, et al. Acinetobacter baumannii: An emerging multidrug-resistant pathogen in critical care. Crit Care Nurse 2008;28:15-25.
7. Bayuga S, Zeana C, Sahni J, Della-Latta P, el-Sadr W, Larson E, et al. Resistance of Acinetobacter baumannii to outer membrane proteins. FEMS Microbiol Lett 2009;301:224-31.
8. Gusten WM, Hansen EA, Cunha BA. Acinetobacter baumannii pseudomeningitis. Heart Lung 2002;31:382-90.
9. Yoshizawa AC, Kanehisa M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007;35:D455-8.
10. Moriya Y, Itoh M, Okuda S, Huynen M, Dandekar T, Bork P. Differential genome analysis applied to prokaryotes and eukaryotes. Nucleic Acids Res 2004;32:599-607.
11. Kim SW, Choi CH, Moon DC, Jin JS, Lee JH, Shin JH, et al. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine decacetylace (LpxC) inhibitors: A new class of antibacterial agents. Curr Med Chem 2012;19:2038-50.
12. Jackman JE, Raetz CR, Fiereke CA. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine decacetylace of Escherichia coli is a zinc metalloenzyme. Biochemistry 1999;38:1907-16.
13. Okada A, Yotsh Y, Watanabe T, Okamoto S, Doi A, Usami R, et al. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 2010;13:232-9.
14. Barrett JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Chemother 1998;42:1529-36.
15. Usami R, Igarashi, M. Two-component signal transduction as attractive drug targets in pathogenic bacteria. Yakugaku zasshi J Pharm Soc Jpn 2011;132:51-8.
16. Okada A, Gotto Y, Watanabe T, Furuta E, Yamanoto K, Usami R. [19]Targeting two-component signal transduction: A novel drug discovery system. Methods Enzymol 2007;428:382-95.
17. Watanabe T, Okada A, Gotto Y, Usami R. Inhibitors targeting two-component signal transduction. Adv Exp Med Biol 2008;631:229-36.
18. Tiganova IG, Ilina TS, Romanova YM. Two-component bacterial regulatory systems: Targets of a search for new antibacterial drugs. Mol Genet Microbiol Virol 2014;29:93-103.
19. Stephenson K, Hoch JA. Developing inhibitors to selectively target two-component and phosphoryl signal transduction systems of pathogenic Chlamydia. Curr Opin Microbiol 2004;7:765-73.
20. Saps P, Brötz-Oesterhell H. Bacterial cell division as a target for new antibiotics. Curr Opin Microbiol 2013;16:522-30.
51. De Leon GP, Elowe NH, Koteva KP, Valvano MA, Wright GD. An *in vitro* screen of bacterial lipopolysaccharide biosynthetic enzymes identifies an inhibitor of ADP-heptose biosynthesis. Chem Biol 2006;13:437-41.

52. Bugg TD, Lloyd AJ, Roper DI. Phospho-murNAc-pentapeptide translocase (MraY) as a target for antibacterial agents and antibacterial proteins. Infect Disord Drug Targets 2006;6:85-106.

53. Ha S, Gross B, Walker S. *E. Coli* murG: A paradigm for a superfamily of glycosyltransferases. Curr Drug Targets Infect Disord 2001;1:201-13.

54. Ezhilarasan V, Sharma OP, Pan A. *In silico* identification of potential drug targets in *Clostridium difficile* R20291: Modeling and virtual screening analysis of a candidate enzyme MurG. Med Chem Res 2013;22:692-705.

55. Tripathi P, Tripathi V. Determination of murG transferase as a potential drug target in *Neisseria meningitides* by spectral graph theory approach. In: Perspectives in Environmental Toxicology. Cham: Springer International Publishing; 2017. p. 147-60.

56. Dineshkumar B, Vigneshkumar P, Bhuvaneswaran SP, Mitra A. Advanced drug designing softwares and their applications in medical research. Int J Pharm Pharm Sci 2010;2:16-8.