Trends in Bioinformatics

ISSN 1994-7941
Homology Modeling, Molecular Dynamic Simulations and Docking Studies of a New Cold Active Extracellular Lipase, EnL A from *Emericella nidulans* NFCCI 3643

1Suseela Lanka, 2Venkateswar Rao Talluri, 3V. Ganesh and 1J. Naveena Lavanya Latha

1Department of Biotechnology, Krishna University, Machilipatnam, Krishna district, A.P., India
2Department of Biotechnology, KL University, Vaddeswaram Guntur, A.P., India
3Department of Biotechnology, Research Scholar, KL University, Vaddeswaram, Guntur, A.P., India

Corresponding Author: J. Naveena Lavanya Latha, Department of Biotechnology, Krishna University, Machilipatnam, 521001, India Tel: 91-9502245034 Fax: 91-8672225960

ABSTRACT

A cold active lipase producing mesophilic fungus was isolated from Palm Oil Mill Effluent (POME) dump sites and identified by 28S rRNA molecular identification studies as *Emericella nidulans* NFCCI 3643. The BLAST P search with the sequence of the purified cold active lipase obtained by MALDI-TOF/MS analysis revealed that the protein is a hypothetical protein from *Emericella nidulans* with a gi number 67522685. Search of Lipase Engineering Database (LED) for this protein sequence revealed that this protein belongs to *Candida antarctica* lipase A like super family and to *Aspergillus* lipase like homologous family of class Y lipases. In the present study, a 3D structure of EnL A (*Emericella nidulans* lipase A) was built using homology modeling, the model was further optimized by molecular dynamic simulations and the optimized model was then docked with natural substrates. Secondary structure analysis of EnL A showed 37.11% of its content to be alpha helix making it stable for three dimensional structure modeling. Homology model of EnL A was constructed using the X-ray structure of *Candida antarctica* Lip A (3 guu.1.A) as a template with which EnL A showed 32.77% sequence identity. The stereo chemical quality and side chain environment of the model was validated by Ramachandran plot, ERRAT and Verify 3D. Natural substrates like tributyrin and trioctanoin were docked in to the optimized 3D model to further investigate the ligand-enzyme interactions.

Key words: Cold active lipase, palm oil mill effluent, *Emericella nidulans* NFCCI 3643, EnL A, homology modeling, molecular dynamic simulations, docking, Ramachandran plot

INTRODUCTION

Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3) are ubiquitous enzymes and are found in both prokaryotic and eukaryotic organisms with physiological significance. Lipases belong to the family of hydrolases acting on carboxylic ester bonds and responsible for catalyzing the hydrolysis of triglycerides to diglycerides, monoglycerides, fatty acids and glycerol (Gilbert, 1993). Among lipases, cold active lipases are gaining the attention of industrialists owing to their applications in various fields (Cavicchioli et al., 2002; Cavicchioli and Siddiqui, 2004) and due to their ability to catalyze the reactions at lower temperatures (Gerday et al., 2000; Cavicchioli et al., 2002; Feller and Gerday, 2003; Cavicchioli and Siddiqui, 2004). Cold active lipases are characterized by greater structural flexibility especially around the active site and this property can be best
Trends Bioinform., 8 (2): 37-51, 2015

exploited for improving the thermal stability of these enzymes (Joseph et al., 2008) which makes them suitable for various industrial applications. The thermal stability of cold active enzymes can be increased by chemical modification (Siddiqui and Cavicchioli, 2005) and as well by directed evolution (Zhang et al., 2003).

Bioinformatic applications provide insights in to sequence analysis and structure prediction of novel proteins. Structural predictions of microbial lipases have been in practice since 1980s. Ollis et al. (1992) for the first time reported α/β hydrolase fold in lipases based on the 3D folds. Most of the lipases contain ‘lid’, a helical segment that covers the active site and the opening and closing of this lid governs the accessibility and binding of the substrate to the active site (Derewenda et al., 1992; Van Tilbeurgh et al., 1993; Grochulski et al., 1994; Egloff et al., 1995). The active site contains the catalytic triad, usually Ser-Asp-His, in the hydrophobic environment.

Understanding the 3 dimensional structures will allow one to perform required modifications to suit various industrial applications. Molecular modeling is a valuable tool especially for medicinal chemists in the process of drug design. Computational biology is paving way to understand protein 3 dimensional structure and predict functions of novel proteins. Sequences of a number of lipases have been determined and their comparison is used for elucidating the structure-function relationship (Sinchaikul et al., 2001; Tyndall et al., 2002; Eggert et al., 2002; Tripathi et al., 2004).

In the field of molecular modeling, docking is one of the very important technique which allows one to predict the preferred orientation of one molecule relative to the other when both are binding to each other (Kumar et al., 2013) and this knowledge of preferred orientation in docking studies in turn predicts the binding affinity and strength of association between two molecules. In general, docking is used to predict the interactions between drug candidates (Kitchen et al., 2004) in drug designing process. In case of enzymes, docking can be employed to predict the substrate binding sites (active sites).

In the present study, Homology modeling was first applied to build a 3D structure of EnLA purified and characterized from Emericella nidulans NFCCI 3643 screened and isolated from Palm Oil Mill Effluent (POME) dump sites. Molecular Dynamic (MD) simulations were performed to further optimize the 3D model and docking studies were then performed to study ligand-enzyme interactions.

MATERIALS AND METHODS

BLAST P, multiple sequence alignment and phylogenetic tree construction: The amino acid sequence of the cold active lipase, EnLA, obtained by MALDI-TOF/MS analysis of the purified lipase from Emericella nidulans NFCCI, screened and isolated from Palm Oil Mill Effluent (POME) dump sites, Pedavegi, East Godavari District andhra Pradesh, India was used to scan the protein sequence databases using BLAST P algorithm to obtain homologous protein sequences from the available protein sequences of various organisms. The sequences so obtained were further subjected to multiple sequence alignment using CLUSTAL ω and a phylogenetic tree was then constructed using phylogeny.fr (http://www.phylogeny.fr/) to determine the evolutionary relationships.

EnLA and Lipase Engineering Database (LED): Lipase engineering database, a database of lipases, maintains information regarding lipase sequences including putative and hypothetical sequences from various organisms, organized into classes, super families and homologous families. Since LED (http://www.led.uni-stuttgart.de/) is a repository of lipase sequences from all possible sources it was searched for presence of EnLA sequence.
Secondary structure prediction of EnL A: Secondary structure of EnL A was predicted using SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html) tool in Expasy.

Homology modeling: The sequence of EnL A was downloaded from the universal protein resource (Uniprot KB) (http://www.uniprot.org/) (The UniProt Consortium, 2012) (entry ID: Q5BCD1). The suitable template for homology modeling was identified through searching EnL A on PDB using the BLAST P algorithm (Altschul et al., 1990). The 3D structure of Candida antarctica lipase A (Cal A) was downloaded from PDB (PDB ID: 3guu.1.A) as the template structure. The 3D model of EnL A was then built with Prime version 3.9 (Jacobson et al., 2002, 2004) in Schrödinger Suite 2015-1 (Schrodinger, LLC, New York, NY). The target (EnL A) and template (Cal A) sequences were aligned using the Clustal W method employed in Prime, followed by manual adjustment to avoid big gaps in the secondary structure domain.

Model validation: The quality of the homology model was validated by assessing the stereo chemical quality of the model using Ramachandran plot obtained from the RAMPAGE (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php) server (Lovell et al., 2002). Verify 3D (Bowie et al., 1991) and ERRAT (Colovos and Yeates, 1993) were used to assess the amino acid environment from the UCLA-DOE server (http://www.doe-mbi.ucla.edu/services).

Molecular Dynamic (MD) simulations: The initial 3D structure of EnL A obtained from homology modeling was further optimized using MD simulation. The MD simulations were performed using Desmond Molecular Dynamics module (Guo et al., 2010; Shivakumar et al., 2010) version 4.1 of Schrodinger with OPLS (Optimized Potentials for Liquid Simulations) 2005 force field. The 3D EnL A structure was surrounded by a truncated orthorhombic box of SPC water molecules with a margin of 10.0 Å along each dimension. The charge neutrality was maintained by adding sodium ions to the system. Energy of the prepared systems was minimized for 2000 iterations using steepest descent method. The default parameters in Desmond were applied for system equilibration. The 12 nsec (nano seconds) MD simulations were then carried out with the equilibrated systems at a temperature of 300 K and at a constant pressure of 1atm, under the NPT (normal pressure and normal temperature) ensemble with a time step of 2f sec (femto seconds).

Ligand preparation: The natural substrates of lipases like Tributyrin and Trioclanoin were selected as ligands for docking studies. The 3D structures for these ligands were built using Lig prep version 3.3 in Schrödinger Suite 2015-1 with an OPLS_2005 force field (Jorgensen and Tirado-Rives, 1988; Jorgensen et al., 1996; Shivakumar et al., 2010). Epik (Shelley et al., 2007; Greenwood et al., 2010) version 3.1 in Schrödinger Suite was used to generate their ionization states at pH7.0±2.0.

Active site identification, grid generation and molecular docking: Site Map (Halgren, 2007, 2009) version 3.4 in Schrödinger Suite was used to identify probable ligand binding sites. The optimized EnL A structure was prepared prior to molecular docking using Protein Preparation Wizard (Sastry et al., 2013) in Schrödinger Suite. Bond orders were assigned and hydrogen atoms were added to the protein. The OPLS_2005 force field was then used to minimize
the structure of the protein in order to reach the converged RMSD (root mean square deviation) 0.30 Å. Hydrophobic and hydrophilic field contour maps were then generated. This was then followed by dividing of hydrophilic maps in to donor, acceptor and metal binding regions. All the sites were finally assessed by calculating various properties. Receptor Grid Generation in Schrodinger Suite was then used to define a docking grid. Glide (Friesner et al., 2004; Halgren et al., 2004; Friesner et al., 2006), version 6.6 in Schrödinger Suite with extra precision (XP) was used to dock the optimized 3D structures of the two substrates (tributyrin and trioctanoin) in to docking grid in the optimized 3D structure of EnLA A.

RESULTS AND DISCUSSION

In view of growing demand for cold active lipases to use in various industrial applications, knowledge of 3 dimensional structures could pave the way to modify these enzymes as per the industrial needs. The 3D structure of proteins can be predicted by using homology modeling which uses experimentally determined protein structures as templates to predict the 3 D structure of a target protein based on target-template alignment. In the present study, homology modeling, MD simulation and docking studies were carried out with EnLA sequence obtained by the MALDI-TOF/MS analysis of the purified lipase from Emericella nidulans NFCCI 3643, screened and isolated from POME dump sites.

Scanning of protein sequence databases using BLAST P (Altschul et al., 1990) with the sequence obtained by MALDI-TOF/MS analysis of the purified lipase revealed that the protein is a hypothetical protein from Emericella nidulans with a gi number 67522685 and the protein is showing up to 64% similarity with hypothetical proteins and putative secretory lipases from various organisms especially from Aspergillus spp. The FASTA sequence of extracellular cold active lipase (EnLA A) retrieved from Uniprot KB was shown in Fig. 1. Multiple sequence alignment of sequences obtained by BLAST P analysis using Clustal ω revealed that EnLA A also contained a conserved GXSXG sequence that is characteristic of all lipases (Ollis et al., 1992) (Fig. 2). A phylogram constructed based on multiple sequence alignment using phylogeny.fr (Dereeper et al., 2008) revealed that EnLA A was closely related to a conserved hypothetical protein from Aspergillus terreus NIH 2624 (Fig. 3).

Fig. 1: Sequence of the purified lipase from UNIPROT KB
Fig. 2: Multiple sequence Alignment using CLUSTAL ω (Omega), multiple sequence alignment using CLUSTAL ω (omega) showing a GXSXG consensus sequence characteristic of lipases.

Fig. 3: Phylogenetic tree of EnL A, A phylogenetic tree of EnL A constructed using phylogeny.fr showing that EnL A is closely related to conserved hypothetical protein of Aspergillus terreus NIH 2624.

Since, LED is a repository of lipase sequences from all possible sources it was searched for the presence of EnL A sequence. The lipase sequence under current study belongs to Class Y lipases based on oxy anion hole forming amino acid i.e., tyrosine which included 5 super families, 8 homologous families, 1905 proteins, 2553 sequences and 225 structures. Of the 5 super families and 8 homologous families, EnL A belongs to Candida antarctica lipase A like super family (abH38)and to the homologous family of Aspergillus lipase like (abH38). The Aspergillus lipase
like homologous family contained 10 protein sequences including the EnL A sequence and most of them were hypothetical proteins/putative secretary lipases from different Aspergillus spp. Till now there were no resolved 3D structures for that homologous group (*Source-Lipase Engineering database, http://www.led.uni-stuttgart.de/).

Secondary structure of the target protein was predicted by using SOPMA tool in Expasy (Fig. 4). The results indicate that EnL A has 37.11% α-helix thus making it stable for homology modeling.

Since, there were no resolved 3D structures for the proteins of Aspergillus lipase like homologous group including EnL A, an attempt was made to build the 3D structure of EnL A using homology modeling. The first step in homology modeling involves identification of a suitable template. This was met by performing a BLAST P search against known protein structures deposited in PDB. The studies of Rost (1999) and Yang and Honig (2000) demonstrated that 3D structures will be similar if the sequence identity between target and template proteins is higher than 25%. Generally, a target which shares a sequence similarity of 30% or more to an experimentally solved protein structure (template) can only be employed for homology modeling (Marsden and Orengo, 2008). The crystal structure of Candida antarctica Lip A (3 guu.1.A) with a sequence identity of 32.77% to the target sequence was selected based on BLAST P search against PDB database (Fig. 5a). The sequence alignment between the template (3guu.1.A) and the target was shown in Fig. 5b. Homology modeling was done using Prime version 3.9 of Schrodinger Suite 2015-1. The homology model so obtained was further refined by Protein Prep (Protein preparation) wizard in Schrodinger software suite. This mainly involves stabilizing the protein by hydrogen bond
Fig. 5(a-b): BLAST P search against PDB and Target-Template alignment, (a) BLAST results of target sequence (EnL A) against PDB for the identification of template for homology modeling and (b) Alignment between target (EnL A) and template (Candida antarctica Lip A (3guu.1.A))

addition, structure optimization and energy minimization. Figure 6a and 6b shows the homology model of EnL A and the ribbon diagram of super imposed structures of the template and target, respectively.

Built homology models can be further refined by MD simulations (Raval et al., 2012). In the present study, the initial 3D structure of EnL A obtained by homology modeling was further optimized using MD simulation. In MD simulations, RMSD (Root Mean Square Deviation) serves
Fig. 6(a-b): Homology modeling of EnL A, (a) 3D Ribbon representation of structure of EnL A predicted using 3 guu.1.A as template based on target-template alignment using prime module of Schrodinger suite and (b) Ribbon representation of super imposed structures of initial homology model (blue) vs template (red)

Table 1: Ramachandran plot statistics

Amino acid residues and regions (%)	Percentage
Residues in most favored regions	85.7
Residues in the allowed	12.2
Residues in the outlier regions	2.1

Ramachandran Plot statistics for EnL A homology model using RAMPAGE server

as a measure to determine the stability of EnL A structure based on its deviation from the initial structure. The optimized 3D model was shown in Fig. 7a. The RMSD values of EnL A residues in the entire MD simulation trajectory were shown in Fig. 7b. The EnL A structure showed deviations up to 3 Å and then gave a stable trajectory beyond that. The 3D structure of EnL A reached to a stable state after 6 n sec. Figure 7c shows RMSF (root mean-square fluctuations) of EnL A structure generated during the MD simulation and these fluctuations were calculated to characterize the mobility of individual residues. Large fluctuations were reported to the side chain residues up to 80 with regard to their high peaks in the RMSF plot and beyond 80th residue the fluctuations reported were within 3 Å indicating that the amino acid fluctuations were in acceptable range. Figure 7d shows the super imposed structures of initial homology model and MD simulated model. The stereo chemical quality of the 3D model was validated by Ramachandran plot using RAMPAGE server. Figure 8a and Table 1 shows that around 97.9% residues were present in the allowed regions (85.7% in the favored region and 12.2% residues in the allowed regions) and only 2.1% residues were present in the outlier region indicating that the quality of the model was good. The amino acid environment was assessed by using ERRAT (Fig. 8b) and Verify 3D (Fig. 8c). ERRAT determines the overall quality of the model and higher scores implies higher quality. In general a range of >50 indicates high quality model (Colovos and Yeates, 1993). In the present study, the EnL A structure has a score 84.677 indicating the high quality of the model. The EnL A structure was also assessed by Verify 3D, which assesses the structure by analyzing the compatibility of a 3D model with its own 1D model. The scores generally range from -1 (bad score) to +1 (good score) (Guex and Peitsch, 1997).
Fig. 7(a-d): MD simulations of EnL A structure, (a) Ribbon representation of the optimized 3D model obtained by the 12 ns MD simulation run using Desmond module in Schrodinger suite, (b) RMSD (Root mean square deviations) of back bone residues of EnL A structure, (c) RMSF (Root mean square fluctuations) diagram showing fluctuations of amino acid residues and (d) Ribbon representation of the super imposed structures of initial homology model (blue) and MD simulated model (green)
Fig. 8(a-c): Validation of EnL A structure, (a) Stereo chemical quality of the EnL A structure assessed by Ramachandran plot using RAMPAGE server. The plot values showing number of residues in favoured, allowed and outlier region, (b) Amino acid environment assessed by ERRAT using UCLA-DOE Institute for Genomics and Proteomics Server. Black bars show the mis folded region located distantly from the active site, gray bars demonstrate the error region and the white bars indicate the region having less error rate for protein folding and (c) Verify 3D score diagram validating the EnL A a model

Among the 5 different active sites of EnL A structure determined by Site Map module of Schrodinger suite, Site 2 was further selected for molecular docking studies because of its big
Fig. 9: Active site prediction using Site Map, Active site 2 of EnL A structure predicted using Site Map. Closer view of site 2 displaying catalytic triad residues

Table 2: Energy values of the two substrates (Tributyrin and Trioctanoin)

Substrates	Formula	Energy value (kcal mol⁻¹)
Tributyrin	C₁₅H₂₆O₆	-70.67
Trioctanoin	C₂₇H₅₀O₆	-83.14

Binding energy values of the two substrates in kcal mol⁻¹ calculated based on their binding affinity to the active site of the enzyme (EnL A)

pocket size, enclosed catalytic triad residues (Ser-210, Asp-351 and His-383) and good D score (Fig. 9). The natural substrates of lipases like tributyrin (Chem spider ID: 13849665), trioctanoin (Chem spider ID: 10393) obtained from Chem spider database were used to dock the EnL A structure. The chemical structures and names of the substrates (ligands) used in this study were shown in Fig. 10a-b. The binding energies obtained were respectively -70.67 and -83.14 kcal mol⁻¹ for tributyrin and trioctanoin (Table 2). From this result it was clear that the most preferred substrate for EnL A is tributyrin since its binding energy is smallest. The docked substrates in the site 2 of the EnL A structure was shown in Fig. 10c (site 2 of EnL A docked with tributyrin) and 10 d (site 2 of EnL A docked with trioctanoin). The key amino acid residues involved in the ligand binding were shown in Fig. 10e and f. The key residues involved in the binding of tributyrin were found to be S210, F256, T257, L302, N301, D116, L259, Y305, F172, G258, L298, L443, T299, H383, S354, I353, V247. In case of trioctanoin, the key residues were found to be same as those involved in the binding of tributyrin but some additional amino acid residues were also involved in addition to those mentioned above.
Fig. 10(a-f): Chemical structures of the substrates (ligands), (a, b) Chemical structures of Tributyrin and Trioctanoin obtained from Chem spider database, (c-d) Active site 2 of EnLA structure docked with Tributyrin and Trioctanoin, respectively and (e-f) Active site amino acid residues of cold active lipase EnLA as investigated by docking studies with Glide XP module in Schrodinger suite.
CONCLUSION

In summary, a homology model of EnL A was constructed, further optimized by molecular dynamic simulations and validated by assessing stereo chemical and amino acid environment quality. Docking studies were performed with the natural substrates to investigate the key residues involved in the ligand binding.

ACKNOWLEDGMENTS

We are extremely thankful to the management of K L University for providing Schrodinger software for carrying out this work.

REFERENCES

Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman, 1990. Basic local alignment search tool. J. Mol. Biol., 215: 403-410.

Bowie, J.U., R. Luthy and D. Eisenberg, 1991. A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253: 164-170.

Cavicchioli, R., K.S. Siddiqui, D. Andrews and K.R. Sowers, 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol., 13: 253-261.

Cavicchioli, R. and K.S. Siddiqui, 2004. Cold-Adapted Enzymes. In: Enzyme Technology, Pandey, A., C. Webb, C.R. Soccol and C. Larroche (Eds.). Asia Tech Publishers, New Delhi, India, pp: 608-631.

Colovos, C. and T.O. Yeates, 1993. Veriﬁcation of protein structures: Patterns of nonbonded atomic interactions. Prot. Sci., 2: 1511-1519.

Dereeper, A., V. Guignon, G. Blanch, S. Audic and S. Buffet et al., 2008. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucl. Acids Res., 36: W465-W469.

Derewenda, U., A.M. Brzozowski, D.M. Lawson and Z.S. Derewenda, 1992. Catalysis at the interface: The anatomy of a conformational change in a triglyceride lipase. Biochemistry, 31: 1532-1541.

Eggert, T., G. van Pouderoyen, G. Pencreač’i, I. Douchet, R. Verger, B.W. Dijkstra and K.E. Jaeger, 2002. Biochemical properties and three-dimensional structures of two extracellular lipolytic enzymes from Bacillus subtilis. Colloids Surf. B: Biointerfaces, 26: 37-46.

Egloff, M.P., F. Marguet, G. Buono, R. Verger, C. Cambillau and H. van Tilbeurgh, 1995. The 2.46. ANG. Resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry, 34: 2751-2762.

Feller, G. and C. Gerday, 2003. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol., 1: 200-208.

Friesner, R.A., J.L. Banks, R.B. Murphy, T.A. Halgren and J.J. Klicic et al., 2004. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 47: 1739-1749.

Friesner, R.A., R.B. Murphy, M.P. Repasky, L.L. Frye and J.R. Greenwood et al., 2006. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 49: 6177-6196.

Gerday, C., M. Aittaleb, M. Bentahir, J.P. Chessa and P. Claverie et al., 2000. Cold-adapted enzymes: From fundamentals to biotechnology. Trends Biotechnol., 18: 103-107.

Gilbert, E.J., 1993. Pseudomonas lipases: Biochemical properties and molecular cloning. Enzyme Microb. Technol., 15: 634-645.
Greenwood, J.R., D. Calkins, A.P. Sullivan and J.C. Shelley, 2010. Towards the comprehensive, rapid and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 24: 591-604.

Grochulski, P., Y. Li, J.D. Schrag and M. Cygler, 1994. Two conformational states of Candida rugosa lipase. Protein Sci., 3: 82-91.

Guex, N. and M.C. Peitsch, 1997. SWISS-MODEL and the Swiss-PDB viewer: An environment for comparative protein modeling. Electrophoresis, 18: 2714-2723.

Guo, Z., U. Mohanty, J. Noehre, T.K. Sawyer, W. Sherman and G. Krilov, 2010. Probing the α-helical structural stability of stapled p53 peptides: Molecular dynamics simulations and analysis. Chem. Biol. Drug Des., 75: 348-359.

Halgren, T.A., R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard and J.L. Banks, 2004. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 47: 1750-1759.

Hauser, T., 2007. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des., 69: 146-148.

Hauser, T.A., 2009. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Mod., 49: 377-389.

Jacobson, M.P., R.A. Friesner, Z. Xiang and B. Honig, 2002. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol., 320: 597-608.

Jacobson, M.P., D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw and R.A. Friesner, 2004. A hierarchical approach to all-atom protein loop prediction. Proteins: Struct. Funct. Bioinf., 55: 351-367.

Jorgensen, W.L. and J. Tirado-Rives, 1988. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 110: 1657-1666.

Jorgensen, W.L., D.S. Maxwell and J. Tirado-Rives, 1996. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 118: 11225-11236.

Joseph, B., P.W. Ramteke and G. Thomas, 2008. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. Adv., 26: 457-470.

Kitchen, D.B., H. Decornez, J.R. Furr and J. Bajorath, 2004. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discovery, 3: 935-949.

Kumar, V., C.S. Kumar, G. Hari, N.K. Venugopal, P.D. Vijendra and G.B. Basappa, 2013. Homology modeling and docking studies on oxidosqualene cyclases associated with primary and secondary metabolism of Centella asiatica. Springer Plus., Vol. 2.

Lovell, S.C., I.W. Davis, W.B. Arendall III, P.I.W. de Bakker and J.M. Word et al., 2002. Structure validation by Ca geometry: φ,ψ and Cβ deviation. Proteins: Struct., Funct., Genet., 50: 437-450.

Marsden, R.L. and C.A. Orengo, 2008. Target selection for structural genomics: An overview. Methods Mol. Biol., 426: 3-25.

Ollis, D.L., E. Cheah, M. Cygler, B. Dijkstra and F. Frolow et al., 1992. The alpha/beta hydrolase fold. Protein Eng., 5: 197-211.

Raval, A., S. Piana, M.P. Eastwood, R.O. Dror and D.E. Shaw, 2012. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins: Struct. Funct. Bioinformatics, 80: 2071-2079.

Rost, B., 1999. Twilight zone of protein sequence alignments. Protein Eng., 12: 85-94.
Sastry, G.M., M. Adzhigirey, T. Day, R. Annabhimoju and W. Sherman, 2013. Protein and ligand preparation: Parameters, protocols and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 27: 221-234.

Shelley, J.C., A. Cholleti, L.L. Frye, J.R. Greenwood, M.R. Timlin and M. Uchimaya, 2007. Epik: A software program for pK_a prediction and protonation state generation for drug-like molecules. J. Comp. Aided Mol. Des., 21: 681-691.

Shivakumar, D., J. Williams, Y. Wu, W. Damm, J. Shelley and W. Sherman, 2010. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput., 6: 1509-1519.

Siddiqui, K.S. and R. Cavicchioli, 2005. Improved thermal stability and activity in the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides. Extremophiles, 9: 471-476.

Sinchaikul, S., B. Sookkheo, S. Phutrakul, Y.T. Wu, F.M. Pan and S.T. Chen, 2001. Structural modeling and characterization of a thermostable lipase from Bacillus stearothermophilus P1. Biochem. Biophys. Res. Commun., 283: 868-875.

The UniProt Consortium, 2012. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res., 40: D71-D75.

Tripathi, M.K, U. Roy, U.K. Jinwal, S.K. Jain and P.K. Roy, 2004. Cloning, sequencing and structural features of a novel Streptococcus lipase. Enzyme Microb. Technol., 34: 437-442.

Tyndall, J.D., S. Sinchaikul, L.A. Fothergill-Gilmore, P. Taylor and M.D. Walkinshaw, 2002. Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. J. Mol. Biol., 323: 859-869.

Van Tilbeurgh, H., M.P. Egloff, C. Martinez, N. Rugani and R. Verger, 1993. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature, 362: 814-820.

Yang, A.S. and B. Honig, 2000. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. J. Mol. Biol., 301: 691-711.

Zhang, N., W.C. Suen, W. Windsor, L. Xiao, V. Madison and A. Zaks, 2003. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Prot. Eng., 16: 599-605.