A single-cell atlas of the mouse and human prostate reveals heterogeneity and conservation of epithelial progenitors

Laura Crowley1,2,3,4,7,10, Francesco Cambuli1,2,3,4,7,10, Luis Aparicio4,5,7,10, Maho Shibata1,2,3,4,7,9, Brian D. Robinson8, Shouhong Xuan1,2,3,4,7, Weiping Li1,2,3,4,7, Hanina Hibshoosh6,7, Massimo Loda8, Raul Rabanan4,5,7,11, and Michael M. Shen1,2,3,4,7,11

1Department of Medicine, 2Department of Genetics and Development, 3Department of Urology, 4Department of Systems Biology, 5Department of Biomedical Informatics, 6Department of Pathology and Cell Biology, 7Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA

8Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA

9Present address: Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University Cancer Center, The George Washington University, Washington, DC 20052, USA

10Authors made equal contributions

11Correspondence: rr2579@cumc.columbia.edu, mshen@columbia.edu
Summary

Understanding the cellular constituents of the prostate is essential for identifying the cell of origin for benign prostatic hyperplasia and prostate adenocarcinoma. Here we describe a comprehensive single-cell atlas of the adult mouse prostate epithelium, which demonstrates extensive heterogeneity. We observe distinct lobe-specific luminal epithelial populations (LumA, LumD, LumL, and LumV) in the distal region of the four prostate lobes, a proximally-enriched luminal population (LumP) that is not lobe-specific, as well as a periurethral population (PrU) that shares both basal and luminal features. Functional analyses suggest that LumP and PrU cells have multipotent progenitor activity in organoid formation and tissue reconstitution assays. Furthermore, we show that mouse distal and proximal luminal cells are most similar to human acinar and ductal populations, that a PrU-like population is conserved between species, and that the mouse lateral prostate is most similar to the human peripheral zone. Our findings elucidate new prostate epithelial progenitors, and help resolve long-standing questions about the anatomical relationships between the mouse and human prostate.
The significant anatomical differences between the mouse and human prostate have long hindered analyses of mouse models of prostate diseases. The mouse prostate can be separated into anterior (AP), dorsal (DP), lateral (LP), and ventral (VP) lobes; the mouse dorsal and lateral lobes are often combined as the dorsolateral prostate (DLP) (Cunha et al., 1987; Shappell et al., 2004; Shen and Abate-Shen, 2010). In contrast, the human prostate lacks defined lobes, and instead is divided into different histological zones (central, transition, and peripheral); the peripheral zone represents the predominant site of prostate adenocarcinoma, whereas benign prostatic hyperplasia (BPH) occurs in the transition zone (Cunha et al., 2018; Ittmann, 2018; Shappell et al., 2004).

Moreover, unlike the mouse, the human prostate has distinct ductal and acinar regions. Although microarray gene expression profiling has suggested that the DLP is most similar to the human peripheral zone (Berquin et al., 2005), there is no consensus on the relationship between mouse lobes and human zones (Ittmann, 2018; Ittmann et al., 2013; Shappell et al., 2004).

The adult prostate epithelium is comprised of luminal, basal, and rare neuroendocrine cells (Shen and Abate-Shen, 2010; Toivanen and Shen, 2017), and cellular heterogeneity has been suggested within the luminal (Barros-Silva et al., 2018; Chua et al., 2014; Karthaus et al., 2020; Karthaus et al., 2014; Kwon et al., 2016; Liu et al., 2016) and basal compartments (Goldstein et al., 2008; Lawson et al., 2007; Wang et al., 2020). Lineage-tracing analyses have shown that the hormonally-intact adult prostate epithelium is maintained by unipotent progenitors within the basal and luminal epithelial compartments (Choi et al., 2012; Lu et al., 2013; Wang et al., 2013). However, following tissue dissociation, both basal and luminal cells can act as bipotent progenitors in organoid or tissue reconstitution assays (Chua et al., 2014; Karthaus et al., 2014). The progenitor properties of basal cells may reflect their ability to generate luminal progeny during tissue repair after wounding or inflammation (Kwon et al., 2014; Toivanen et al., 2016), but the role of presumptive luminal progenitors has been less clear. In particular, several studies have suggested increased progenitor potential in the proximal region of the prostate (nearest to the urethra) (Burger et al., 2005; Goto et al., 2006; Tsujimura et al., 2002), particularly for proximal luminal cells.
(Karthaus et al., 2020; Kwon et al., 2016; Wei et al., 2019; Zhang et al., 2018). However, the nature and distribution of these epithelial populations have been poorly characterized.

Distinct luminal epithelial populations in the mouse prostate

To examine cellular heterogeneity, we performed single-cell RNA-sequencing of whole prostates from adult wild-type mice at 10 weeks of age. We microdissected the full proximal-distal extent of each prostate lobe down to its junction with the urethral epithelium (Figure 1—figure supplement 1A-C). We noted that the anterior (AP), dorsal (DP), and lateral (LP) lobes joined the urethra in close proximity on the dorsal side, whereas the ventral lobe (VP) had a distinct junction ventrally. As previously described (Cunha et al., 1987; Shappell et al., 2004; Shen and Abate-Shen, 2010), each lobe has a characteristic morphology, pattern of ductal branching, and histological appearance (Figure 1—figure supplement 1D-F).

To analyze these datasets, we applied *Randomly*, an algorithm that uses random matrix theory to reduce noise in single-cell datasets (Aparicio et al., 2020). Using the universality property of random matrix theory on eigenvalues and eigenvectors of sparse matrices, *Randomly* discriminates biological signals from noise and sparsity-induced confounding signals (which typically comprise approximately 98% of the data, based on a survey of published single-cell datasets) (Aparicio et al., 2020). Processing by *Randomly* facilitated the identification of cell populations with distinct transcriptional signatures (Figure 1—figure supplement 2). As visualized in an aggregated dataset composed of 5,288 cells from two whole prostates, we found distinct luminal, basal, and neuroendocrine populations that were annotated based on the expression of marker genes (Figure 1A). Notably, we could identify five different luminal epithelial populations, a single basal population, rare neuroendocrine cells, and a small population of epithelial cells that expresses both basal and luminal markers. We could also identify distinct stromal and immune components, corresponding to two different stromal subsets (Kwon et al., 2019), as well as immune cells (macrophages, T cells, B cells); some datasets also contained small populations of contaminating vas deferens and seminal vesicle cells.
To assess whether some of these epithelial populations might be lobe-specific, we next performed single-cell RNA-seq analyses of individual lobes (Figure 1B). We found that four of the luminal populations identified in the aggregated dataset were highly lobe-specific; hence, we named these populations LumA (AP-specific), LumD (DP-specific), LumL (LP-specific), and LumV (VP-specific). The remaining luminal population was observed in the datasets for all four lobes, and was highly enriched in the proximal portion of each lobe; thus, we termed this population LumP (proximal) (Figure 1C).

Spatial localization and morphology of epithelial populations

To examine the lobe-specificity and spatial distribution of these luminal populations, we identified candidate markers based on gene expression patterns in our single-cell datasets (Fig. 1d). If suitable antibodies were available, we tested these candidate markers for their specificity by immunofluorescence staining of prostate sections (Figure 1D,E; Figure 1—figure supplement 3). For example, we found that the LumA and LumD marker *Tgm4* was highly expressed by luminal cells in the distal region of the AP and DP, and that the LumL marker *Msmb* marked distal luminal cells in the LP. In contrast, the LumP marker *Ppp1r1b* was highly enriched in luminal cells that were primarily found in the proximal regions of all four lobes (Figure 1D,E). However, more general luminal markers such as androgen receptor (*Ar*) were expressed in all luminal populations (Figure 1—figure supplement 3).

Next, we investigated the spatial localization of these luminal populations along the proximal-distal axis in each lobe. We found that the LumP-containing proximal region extended from inside the rhabdosphincter to the first major ductal branch point in the AP, DP, and VP, but not the LP, whereas the bulk of the lobes corresponded to distal regions (Figure 1C). In the AP and DP, we found a discrete boundary in the medial region between the proximal LumP population and distal LumA or LumD populations, respectively (Figure 2A,C; Figure 2—figure supplement 1A). In contrast, the LP had a population between the proximal and distal regions that expressed low levels of LumL markers (Figure 2A; Figure 2—figure supplement 1A). Histological analyses
revealed that distal luminal cells of each lobe had a tall columnar appearance consistent with secretory function, whereas proximal LumP cells typically had a cuboidal morphology. Notably, this analysis also revealed heterogeneity in the distal region of each lobe, with rare clusters of 1-10 LumP cells observed in the distal AP, DP, and LP, but larger LumP clusters in the distal VP (Figure 2B).

To clarify the phenotypic differences between proximal and distal luminal populations, we performed scanning electron microscopy of an 8-week old anterior lobe (Figure 2C; Figure 2—figure supplement 1B). LumA cells displayed dense regions of rough endoplasmic reticulum throughout the cytoplasm, many free ribosomes, and abundant secretory vesicles on the apical surface, typical of secretory cells. In contrast, LumP cells displayed areas of high mitochondrial density, complex membrane interdigitation, and no vesicles. At the proximal-distal boundary, we observed an abrupt transition between cellular morphologies that took place within 1-2 cell diameters. These ultrastructural differences indicate that the LumA and LumP populations represent distinct cell types, rather than cell states.

Next, we investigated the remaining epithelial population, which shares basal and luminal features in our single-cell RNA-seq analysis (Figure 1A). We found that this small population was enriched in the most proximal region of all four lobes, residing inside the rhabdosphincter and adjacent to the urethral junction (Figure 2D; Figure 1—figure supplement 1C); hence, we termed this novel population PrU (periurethral). Although this PrU population co-expresses some markers with LumP (Figure 1D), it also expresses several urothelial markers such as Ly6d and Aqp3 (Figure 2D).

The proximity of the PrU and LumP populations to the urethra and their co-expression of multiple markers led us to investigate their developmental origin. Consequently, we examined the expression of Nkx3-1, whose mRNA expression marks epithelial cells in ductal derivatives of the developing urogenital sinus, such as the prostate, but not the urothelium (Bhatia-Gaur et al., 1999); similarly, the Nkx3-1Cre driver also marks early prostate bud cells but not the urogenital sinus.
during development (Thomsen et al., 2008; Zhang et al., 2008). In the adult prostate, $Nkx3-1$ is
expressed by all four distal luminal populations (LumA, LumD, LumL, LumV), but is not
expressed by LumP (Figure 1—figure supplement 3). However, we found the $Nkx3-1^{Cre}$ driver
lineage-marks most of the cells in all of these populations, including LumP and PrU, but not the
urethra (Figure 2E). These data indicate that the LumP and PrU populations are derived from $Nkx3-
1$ expressing prostate epithelial cells, and are distinct from the urothelium.

Functional analysis of epithelial populations

We used an approach based on optimal transport theory (Wasserstein distance) to ascertain
the relationships of these prostate epithelial populations (see Methods). The pair-wise comparisons
(Figure 3A) can be captured by a neighbor-joining tree (Figure 3B), in which lower Wasserstein
distance indicates greater similarity. We found that the distal populations grouped together, with
the LumA and LumD populations being most closely related, followed by LumL and LumV. These
distal populations were next most closely related to LumP, which in turn was most similar to PrU,
followed by basal cells, suggesting a lineage relationship between LumP and distal luminal
populations.

To investigate the functional properties of each epithelial population, we developed
isolation strategies using microdissection and flow sorting (Figure 3C). We performed organoid
formation assays with isolated cell populations using the defined ENR-based medium (Drost et
al., 2016; Karthaus et al., 2014) as well as hepatocyte medium (HM), which has a more complex
composition including serum (Chua et al., 2014). Despite differences in overall efficiency between
media conditions, we consistently found that the PrU and basal populations were most efficient at
forming organoids, followed by LumP, whereas the efficiency of distal LumA, LumD, LumL, and
LumV was significantly lower (Figure 3D,E).

Next, we assessed the progenitor potential of isolated epithelial populations using *in vivo*
tissue reconstitution assays. These assays involve recombination of dissociated epithelial cells with
rat embryonic urogenital mesenchyme followed by renal grafting, and have been extensively
utilized for analysis of progenitor properties in the prostate (Lawson et al., 2007; Wang et al., 2013;
Xin et al., 2003). We observed significant variation in the frequency of graft formation depending
on the number and type of input epithelial cells (Figure 3F). Based on histological and
immunostaining analyses, we found that each epithelial population typically gave rise to cells of
the same type, but their ability to generate cells of other populations varied considerably (Figure
3G; Figure 3—figure supplement 1A). Notably, grafts using distal luminal cells required relatively
large numbers of input cells (approximately 30,000 cells) (Figure 3F), and were mostly composed
of the same population (i.e., LumA cells generated LumA cells) together with a normal or reduced
percentage of basal cells; additionally, these grafts could contain small patches of cells expressing
LumP markers on their periphery (Figure 3G; Figure 3—figure supplement 1A). Interestingly,
LumV cells had the lowest grafting efficiency and generally formed small ductal structures that
lacked basal cells. In contrast, LumP, PrU, and basal cells could produce grafts with significantly
lower input cell numbers (approximately 1,000 cells), which contained LumP cells together with
multiple distal luminal populations as well as a normal ratio of basal cells. We excluded
contribution of host cells and rat urogenital epithelium to grafts using control tissue reconstitution
assays with GFP-expressing donor epithelial cells (Figure 3—figure supplement 1B).

Taken together, these results suggest a spectrum of progenitor potential among the different
epithelial populations. Both PrU and basal cells possessed high progenitor activity in these assays,
with LumP cells also displaying enhanced activity. In contrast, the distal luminal populations are
much less efficient in these assays. These findings are consistent with the inferred relationships
between these populations based on molecular (Figure 3A,B) as well as histological and
ultrastructural analyses (Figure 2A,C).

Comparison of human and mouse prostate epithelial populations

To examine the conservation of epithelial populations between the mouse and human
prostate, we performed single-cell RNA-seq analyses of tissue samples from human
prostatectomies (Figure 4—source data). We identified two distinct luminal populations as well as a PrU-like population (Figure 4A-C), and examined their spatial distribution by immunostaining of benign human prostate tissue (Figure 4—source data). Using specific markers (KRT7, RARRES1), we found that one luminal population was primarily localized to ducts (Lum Ductal), whereas the second one, positive for MSMB and MME, was predominantly acinar (Lum Acinar), although some intermixing could be observed within ducts (Figure 4G). As in the mouse, the PrU-like population expressed both basal and luminal genes. Similarly, some PrU-like markers were shared with Lum Ductal, though these two populations are clearly distinguishable based on anatomical and histological features.

To extend this analysis, we computed the Wasserstein distances for each pair-wise comparison between epithelial and major non-epithelial populations identified (Figure 4D-F). This analysis showed that a PrU-like population was conserved between species. Furthermore, the human Lum Ductal cells are most closely related to mouse LumP, whereas the Lum Acinar cells are most closely related to LumL followed by LumV. Notably, these relationships were observed in each dataset.
Discussion

We have generated a comprehensive cellular atlas of the prostate epithelium and have defined spatial, morphological, and functional properties of each epithelial population. Our analyses have revealed spatial and functional heterogeneity primarily in the luminal epithelial compartment, including distinct cell populations along the proximal-distal axis as well as lobe-specific identities. Notably, we have shown marked differences in progenitor potential between cell identities, which likely correspond to distinct cell types rather than cell states (Morris, 2019). In tissue reconstitution assays, the ability of LumP and PrU cells to generate luminal distal and basal cells suggests that both populations have properties of multipotent progenitors. In contrast to the luminal compartment, basal cells appear relatively homogeneous, suggesting that previously reported basal heterogeneity (Goldstein et al., 2008; Lawson et al., 2007; Wang et al., 2020) may be more limited. Notably, the PrU population is not readily classified in either compartment as it is comprised of cells with both basal and luminal features.

Our findings also provide a broader context for other reports of epithelial heterogeneity. Recent single-cell RNA-seq analysis of the mouse anterior prostate identified three distinct luminal populations (Karthaus et al., 2020), where L1 appears to correspond to our LumA and L2 to LumP; we also identified a population expressing L3 genes in both mouse and human datasets, but have annotated this as ductus/vas deferens based on marker expression (Figures 1A, 4C), relying on previous findings (Blomqvist et al., 2006). Based on patterns of gene expression, we suggest that the LumP population corresponds to Sca1high luminal cells (Kwon et al., 2016) as well as Trop2 (Tacstd2) positive cells (Crowell et al., 2019), which have been described as proximal progenitor populations with scattered distal cells, and may also be responsible for the enhanced serial grafting efficiency of proximal prostate (Goto et al., 2006). In the human prostate, the progenitor activity of LumP and/or PrU-like cells may have been observed by retrospective lineage tracing using mitochondrial mutations (Moad et al., 2017). In addition, the LumP and PrU populations may share some similarities with the “hillock” and “club” cells originally described in a cellular atlas.
of the mouse lung (Montoro et al., 2018) and subsequently reported in the human prostate (Joseph et al., 2020), but the precise relationship of these populations is unclear.

Since LumP and PrU cells display multipotent progenitor activity in both organoid formation and tissue reconstitution assays, their spatial distribution may reflect the ability of the prostate to repair itself from a proximal to distal direction in response to extensive tissue damage as well as from distal progenitors in response to more localized injury. Our findings suggest that the novel PrU population in particular may play a role in prostate tissue repair and/or regeneration, consistent with the previous identification of Ly6d-positive cells as a castration-resistant progenitor (Barros-Silva et al., 2018). Notably, the ability of Nkx3.1Cre to lineage-mark both PrU and LumP, but not the urethra, suggests that these cell populations are distinct from the urothelium, despite the molecular similarities between the proximal prostate and the urethra noted in a recent report (Joseph et al., 2020). Nonetheless, our results imply that lineage relationships among the tissues derived from the urogenital sinus (Georgas et al., 2015) require careful elucidation, since they are of fundamental importance for understanding the genesis of congenital defects in the urogenital system.

Our findings help resolve a long-standing question about the relationship of the mouse and human prostates. Specifically, we speculate that mouse proximal and distal regions are most related to human ductal and acinar regions, respectively, and that the mouse LP is most similar to the human peripheral zone. Few if any studies have specifically assessed tumor phenotypes in the LP, as it is small and usually combined with the DP as the dorsolateral prostate (DLP); however, our analyses show that the DP differs significantly from the LP at the anatomical and molecular levels. Consequently, we suggest that a re-evaluation of tumor phenotypes in genetically-engineered mouse models may reveal a closer similarity to human prostate tumor histopathology than previously appreciated.

Finally, the elucidation of prostate epithelial heterogeneity has potentially significant implications for understanding the cell of origin for prostate adenocarcinoma. Previous studies
have suggested that luminal cells as well as basal cells can serve as the cell of origin for prostate
cancer (Wang et al., 2013; Wang et al., 2014; Xin, 2019), yet known differences in human prostate
cancer outcome (e.g., (Zhao et al., 2017)) cannot be simply explained on this basis. Therefore,
further analyses of epithelial heterogeneity and progenitor potential will likely lead to key insights
into prostate tumor initiation and progression.
Key Resources Table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information	
Strain, strain background (Mus musculus)	C57BL6/N (wild type)	Taconic	C57BL6/Ntac	8-10 week old males	
Strain, strain background (Mus musculus)	SW (wild type)	Taconic	Tac:SW	8-10 week old males	
Strain, strain background (Mus musculus)	UbC-GFP	Jackson Laboratory, JAX #004353	C57BL/6- Tg(UBC-GFP)30Scha/J	BL6 background, 8-13 week old males	
Strain, strain background (Mus musculus)	R26r-YFP	Jackson Laboratory, JAX #007903	B6.Cg– Gt(ROSA)26Sortm3(CAG–EYFP)Hze/J	8-13 week old males	
Strain, strain background (Mus musculus)	Nkx3-1Cre	Shen lab	Generated in our lab	BL6 background, 8-13 week old males	
Strain, strain background (Mus musculus)	R2G2	Envigo	B6;129-Rag2tm1FwaIl2rgtm1Rsky/DwHsd	8-15 week old males	
Strain, strain background (Mus musculus)	NOD/SCID	Jackson Laboratory, JAX #001303	NOD.Cg-Pkrdescid/J	8-15 week old males	
Strain, strain background (Rattus norvegicus domestica)	Sprague-Dawley embryos	Charles River #400	SAS Sprague Dawley	E18 embryos from pregnant females	
Antibody	anti-mouse Cd66a (CEACAM1)-PE	Miltenyi	cat 130-106-209, lot 5190208411	(FACS 1:100uL)	
Antibody	anti-mouse Tacstd2 (Trop2)-APC	R&D	cat FAB1122A, lot AAZB0117091	(FACS 1:100uL)	
Antibody	anti-mouse Ly-6a/e Sca-1 PE-Vio770	Miltenyi	cat 130-106-258, lots 5190308494 & 5180615495	(FACS 1:100uL)	
Antibody	anti-mouse Cd31 (Lin)-FITC	eBiosciences	cat 11-0311-82, lot 1978184, clone 390	(FACS 1:100uL)	
Antibody	anti-mouse Cd45 (Lin)-FITC	eBiosciences	cat 11-0451-82, lot 2015744, clone 30-F11	(FACS 1:100uL)	
Antibody	Description	Supplier	Catalog Number	Lot Number	Dilution
----------	-------------	----------	----------------	------------	----------
Antibody	anti-mouse Ter119 (Lin)-FITC	eBiosciences	cat 11-5921-82, lot 2009756, clone TER-119	(FACS 1:100uL)	
Antibody	anti-mouse Ly6d -APC-Vio770	Miltenyi	cat 130-115-315, lot 5190715088, clone REA A906	(FACS 1:100uL)	
Antibody	mouse anti-mouse DARPP-32 (Ppp1r1b)	SCBT	cat sc-271111, lot C2719, clone H-3	(IF 1:50uL)	
Antibody	rabbit anti-mouse DARPP-32 (Ppp1r1b)	Invitrogen	cat MA5-14968, lot VB2947074	(IF 1:400uL)	
Antibody	rabbit anti-mouse Trpv6	alomone labs	cat ACC-036, lot ACC036AN1002	(IF 1:100uL)	
Antibody	rabbit anti-mouse Lrrc26	alomone labs	cat APC-070, lot APC070AN0102	(IF 1:100uL)	
Antibody	rabbit anti-mouse Msmb	Abclonal	cat A10092, lot 204440101	(IF 1:100uL)	
Antibody	rabbit anti-mouse Cldn10	Invitrogen	cat 38-8400, lot UA279882	(IF 1:100uL)	
Antibody	rabbit anti-mouse Mgl1	Invitrogen	cat PA5-27915, lots TI2636340A & VB2935243A	(IF 1:250uL)	
Antibody	rabbit anti-mouse Tgm4	Invitrogen	cat PA5-42106, lot uc2737144	(IF 1:100uL)	
Antibody	rabbit anti-mouse Gsdma	abcam	cat ab230768, lot GR3212791-1	(IF 1:100uL)	
Antibody	rabbit anti-mouse Krt7	abcam	cat ab68459, lot GR40294-6	(IF 1:250-500uL)	
Antibody	rabbit anti-mouse Aqp3	Biorbyt	cat orb47955, lot B3440	(IF 1:500uL)	
Antibody	chicken anti-mouse Krt5	Biolegend	cat 905901, lot B271562	(IF 1:500uL)	
Antibody	rabbit anti-mouse p63	Biolegend	cat 619002, lot B262186	(IF 1:250uL)	
Antibody	rat anti-mouse Krt8/18	DSHB	Troma-I NA	(1:250uL, lot specific)	
Antibody	mouse anti-mouse Synaptophysin	BD Biosciences	cat BD611880, lot 82905342	(IF 1:500uL)	
Antibody	Rabbit anti-mouse Chromogranin A	Abcam	Cat ab15160, Lot GR3205971-2	(IF 1:500uL)	
----------	----------------------------------	-------	-------------------------------	--------------	
Antibody	Chicken anti-GFP	Abcam	Cat ab13970, Lot GR3190550-30	(IF 1:1000uL)	
Antibody	Rabbit anti-mouse Nkx3.1	Athena Enzymes	Cat "0315" 20316	(IF 1:100uL)	
Antibody	Rabbit anti-mouse Ki67	Abcam	Cat ab15580, Lot GR3198158	(IF 1:100uL)	
Antibody	Mouse anti-mouse Krt4	Invitrogen	Cat MA1-35558, Lot TB2524522	(IF 1:100uL)	
Antibody	Rabbit anti-mouse Clusterin	LS-Bio	Cat LS-331486, Lot 115142	(IF 1:100uL)	
Antibody	Rabbit anti-mouse Wifl2	Invitrogen	Cat PA5-80226, Lot TK2671201	(IF 1:100uL)	
Antibody	Rabbit anti-mouse AR (Androgen receptor)	Abcam	Cat ab133273, Lot GR3271456-1	(IF 1:100uL)	
Antibody	Mouse anti-human Krt7	Thermo Fisher	Cat MA1-06316, Lot OVT12/30	(IF 1:200uL)	
Antibody	Mouse anti-human Rarres1	Thermo Fisher	Cat MA5-26247, Lot OT11D2	(IF 1:200uL)	
Antibody	Mouse anti-human Mme (Cd10)	SCBT	Cat sc-46656, Clone F-4	(IF 1:100uL)	
Antibody	Rabbit anti-human Msmb	Abclonal	Cat A10092	(IF 1:200uL)	
Software, algorithm (code)	Random Matrix Theory	R. Rabadan Lab			
Software, algorithm (code)	Python Optimal Transport	Rémi Flamary and Nicolas Courty, POT Python Optimal Transport library			
Software, algorithm (code)	Phylogenetic tree analysis	Phangorn package			
Software, algorithm (code)	Leiden algorithm	F. A. Wolf, P. Angerer, and F. J. Theis, Genome Biology (2018). "SCANPY: large-scale single-cell gene expression data analysis"			
Materials and Methods

Mouse strains and genotyping

Wild type C57BL6/N (C57BL6/NTac, 8-10 weeks old) and Swiss-Webster (8-10 weeks) mice were purchased from Taconic. The *Ubc-GFP* (C57BL/6-Tg(UBC-GFP)30Scha/J, 8-13 weeks old; JAX #004353)(Schaefer et al., 2001) and *R26R–YFP* (B6.Cg–Gt(ROSA)26Sor<sup>tm3(CAG–EYFP)Hze/J; JAX #007903) (Madisen et al., 2010) mice were obtained from the Jackson Laboratory. The *Nkx3.1^{Cre}* allele has been previously described (Lin et al., 2007; Thomsen et al., 2008). As hosts for renal grafts, R2G2 mice (B6;129-Rag2^{tm1Fwa}Il2rg^{tm1Rsky}/DwIHsd, 8-15 weeks old) were purchased from Envigo, and NOD/SCID mice (NOD.Cg-*Prkdc^{scid}/J, 8-14 weeks old; JAX #001303) were purchased from the Jackson Laboratory. To obtain urogenital mesenchyme for tissue recombination and renal grafting, we used E18 Sprague-Dawley rat embryos from timed matings (Charles River #400). Animal studies were approved by and conducted according to standards set by the Columbia University Irving Medical Center (CUIMC) Institutional Animal Care and Use Committee (IACUC).

Isolation of mouse prostate tissue

The anterior (AP), dorsal (DP), lateral (LP), and ventral prostate (VP) lobes were dissected individually, using a transverse cut at the intersection of each lobe with the urethra to include the periurethral (PrU) region. For some analyses, we dissected PrU tissues in the most proximal regions (extending 0.5-2 mm from the connection of the lobes with the urethra), or the remainder of the proximal regions separately from the distal lobes. Paired lobes were collected from a single C57BL/6 mouse for each scRNA-seq experiment, or from 2-5 C57BL/6 mice for flow sorting, organoid culture, or tissue reconstitution experiments. For analyses of prostate anatomy, lobes were either dissected individually or a deep cut was made at the caudal end of the urethra for removal of entire urogenital apparatus.
Acquisition and pathological assessment of human prostate tissue samples

Human prostate tissue specimens were obtained from patients undergoing cystoprostatectomy for bladder cancer or radical prostatectomy at Columbia University Irving Medical Center or at Weill Cornell Medicine. Patients were aged 54-79 years old and gave informed consent under Institutional Review Board-approved protocols. The clinical characteristics of these patients are provided in Figure 4—source data. Following surgery, prostate tissue was submitted for gross pathological annotation and sectioning, with ischemic time less than one hour.

To acquire samples for single-cell RNA-sequencing, the prostate was transversely sectioned perpendicular to the urethra in three main parts (apex, mid and base), which were further divided based on laterality (left or right). Each part was cut in thick sections that included all three prostatic zones (peripheral, transversal and central). Thick sections with low or no tumor burden were selected for the study based on clinical findings and/or biopsies, and divided in three plates by performing two parallel cuts. The upper flanking plate was flash-frozen, cryosectioned, and a rapid review was performed by a board-certified surgical pathologist (H.H.) to provide preliminary assessment on the presence of benign prostate tissue/absence of carcinoma. The middle flanking plate was stored in RPMI medium with 5% FBS on ice, and immediately transferred to the research facility for single-cell RNA sequencing. The lower flanking plate was processed by formalin fixation and paraffin embedding, followed by sectioning and histological review to confirm presence of benign prostate tissue/absence of carcinoma.

For immunostaining analysis of prostate tissue sections, blocks previously assessed as containing benign prostate histology were selected by a surgical pathologist (B.D.R.). Paraffin sections were immunostained for markers of interest as well as CK5 to confirm the presence of basal cells, and adjacent sections were stained by H&E. H&E sections were then reviewed to confirm benign pathology.
Dissociation of mouse and human prostate tissue

Prostate tissues were minced with scissors and then incubated in papain (20 units/ml) with 0.1 mg/ml DNase I (Worthington LK003150) at 37°C with gentle agitation. After 45 minutes, samples were gently trituated, then incubated for another 20-45 minutes in papain as needed. Samples were gently trituated again, followed by quenching of the enzyme using 1 mg/ml ovomucoid/bovine serum albumin solution with 0.1 mg/ml DNase I (Worthington LK003150). Cells were passed through a 70 µm strainer (PluriSelect 43-10070-70) and washed with PBS-EDTA with 0.1 mg/ml DNase I (Corning MT-46034Cl). If needed, the samples were additionally digested in TrypLE Express (Invitrogen 12605-036) for 3-5 minutes at 37°C with gentle agitation. The samples were gently trituated and the TrypLE was inactivated by addition of HBSS with 10% FBS and 0.1 mg/ml DNase I. Samples were passed through a 40 µm strainer (PluriSelect 43-10040-70), washed in 1x PBS, and resuspended in appropriate buffers for downstream analyses.

Single-cell RNA-sequencing

Dissociated cells were washed twice in 1x PBS, passed twice through 20 µm strainers (Pluriselect 43-10020-70), and counted using the Countess™ II FL Automated Cell Counter (ThermoFisher). If the viability of samples was >80% and the single-cell fraction was >95%, the cells were resuspended in 1x PBS with 0.04% BSA at approximately 1 x 10^6 cells/ml. Samples were submitted to the Columbia JP Sulzberger Genome Center for single-cell RNA-sequencing on the 10x Genomics Chromium platform. Libraries were generated using the Chromium Single Cell 3’ Reagent Kit v2, with 12 cycles for cDNA amplification and 12 cycles for library construction. Samples were sequenced on a NovaSeq 6000 (r1 = 26, i1 = 8, r2 = 91). Sequencing data were aligned and quantified using the Cell Ranger Single-Cell Software Suite (v.2.1.1) using either the GRCm38 mouse or the GRCh38 human reference genomes.

For the mouse prostate, two independent biological replicate samples of whole prostate were submitted for scRNA-seq, with 2,361 and 2,927 cells sequenced. Two separate biological
replicates for individual lobes were also used for scRNA-seq, with 1,581-2,735 cells sequenced for sample. For human prostate (Figure 4—source data), three independent samples (#1-3) that corresponded to regions of benign histology were submitted for scRNA-seq, with 1,600, 2,303, and 2,825 cells sequenced, respectively. Single-cell datasets have been deposited in GEO under accession number GSE150692.

Flow cytometry

Dissociated cell suspensions were counted and resuspended in FACS buffer (1-3% fetal bovine serum in 1x PBS or HBSS, 1 mM EDTA, and 0.1 mg/ml DNase I). Pre-incubation was performed with Fc receptor blocking antibodies for some experiments. Primary antibodies were added at a final concentration of 1:100 and incubated at 4°C for 20-30 minutes. Samples were incubated with 1 µM propidium iodide for 15 minutes before sorting for dead cell exclusion. Cells were sorted using a BD Influx, using the widest nozzles and lowest pressure settings (140 µm nozzle and 7 psi for the Influx), and collected in low-binding tubes (Eppendorf 0030-108-116). Data analysis was conducted using FCS Express 7 software. A slightly modified strategy was used to sort prostate cells from *Ubc-GFP* mice.

Organoid culture

For ENR conditions (Karthaus et al., 2014), sorted cells from *Ubc-GFP* mice were resuspended at a final concentration of 1,000 cells per 30 µl droplet of Matrigel (Corning 354234), and placed in individual wells of a 24-well plate. The Matrigel was covered with 500 µl of ENR medium, supplemented with 10 nM dihydrotestosterone (DHT) and 10 µM Y-27632. Media were replenished at day 5 and organoids were imaged at day 10. Organoid measurements were performed using the Fiji Particle Analysis Plugin (Rueden et al., 2017; Schindelin et al., 2012), excluding particles with area < 2,000 µm² and roundness value < 0.5. If needed, Watershed was
applied to separate overlapping organoids/particles, with wells from at least 4 independent experiments analyzed.

For hepatocyte media (HM) conditions (Chua et al., 2014), sorted cells from wild-type C57BL/6 mice were plated at 2,000 and 5,000 cells per well in 5% Matrigel, 10 nM DHT, and 10 µM Y-27632 using ultra-low attachment 96-well plates (Corning 3474) and grown in hepatocyte media with 5% Matrigel, with media replenished every 5 days. Organoid formation efficiencies were calculated on day 12-13 of culture. Since LumV cells tended to form small structures containing 1-4 cells, we used a required minimum cut-off size; organoid images were analyzed using ImageJ. Data were collected from 3 biological replicate experiments, with a minimum of 2-3 technical replicates for each population in each experiment.

Renal grafting

For tissue reconstitution experiments, urogenital mesenchyme (UGM) cells were collected from embryonic day 18.5 rat embryos as described (Chua et al., 2018) and passed through a 100 µM filter (Pluriselect) before use. Sorted mouse epithelial cells were used at ranges from 250 to 60,000 cells depending on the specific population; since basal cells have been previously examined in graft experiments (e.g., Wang et al., 2013), we did not investigate the minimum number of basal cells required for graft growth in these experiments. Rat UGM cells and sorted mouse epithelial cells were combined at pre-determined ratios (e.g., 250,000 UGM:5,000 LumP cells) and resuspended in 10-15 µl buttons composed of 9:1 collagen 1 (Corning 354249):setting solution (10x EBSS, 0.2 M NaHCO₃, and 50 mM NaOH). After solidification of the collagen, the buttons were incubated in DMEM media with 10% FBS and 10 nM DHT overnight, followed by grafting under the kidney capsule of host immunodeficient mice on the next day. At the time of surgery, a slow-release testosterone pellet (12.5 mg testosterone, 90 day release; Innovative Research of America NA-151) was inserted subcutaneously in each host mouse. Grafts were analyzed 8-12 weeks after surgery.
Histology, immunostaining, and image analysis

For generation of paraffin blocks, prostate tissues were dissected in ice-cold HBSS and fixed in 10% formalin overnight, followed by processing through an ethanol gradient and embedding. For generation of frozen blocks, dissected tissues were fixed in 4% paraformaldehyde, immersed in sucrose overnight (30% in 1x PBS), embedded in OCT (Tissue-Tek 25608-930), and stored at -80°C. Alternatively, samples were flash-frozen in 2-methyl-butane (Sigma-Aldrich M32631) at -150°C for 1 hour, then stored at -80°C. Paraffin-embedded tissues were sectioned using a MICROM HM 325 microtome, and cryo-preserved tissues were sectioned using a Leica CM 1900 cryostat, at thicknesses of 5-13 μm.

For histological analyses, hematoxylin-eosin (H&E) staining was performed on paraffin sections using standard procedures. For immunofluorescence staining of paraffin sections, antigen retrieval was performed by boiling slides in citrate-based or Tris-based antigen unmasking buffer (Vector Labs H3300 and H3301) for 45 minutes. For immunofluorescence of cryosections, slides were rapidly fixed in either 4% paraformaldehyde or 10% NBF for 5 minutes after sectioning. Slides were washed, blocked in 5% animal serum for 1 hour, and incubated with primary antibodies overnight at 4°C. Slides were washed and incubated with Alexa Fluor secondary antibodies (Life Technologies) for one hour. Sections were stained with DAPI, and mounted (Vector Labs H-1200). Fluorescent images were acquired using a Leica TCS SP2, a Leica TCS SP5, or a Nikon Ti Eclipse inverted confocal microscope.

Electron microscopy

Prostate tissue from a C57BL/6 mouse at 8 weeks of age was dissected and fixed for 2 hours in 0.1 M sodium cacodylate buffer (pH 7.2) containing 2.5% glutaraldehyde and 2% paraformaldehyde. A portion of the AP lobe at the proximal-distal boundary was micro-dissected and post-fixed for two hours with 1% osmium tetroxide, contrasted with 1% aqueous uranyl acetate, dehydrated using an ethanol gradient and embedded in EMbed 812 (Electron Microscopy
Sciences, Hatfield, PA). 70 nm ultrathin sections were cut, mounted on formvar coated slot copper grids, and stained with uranyl acetate and lead citrate. Stained grids were imaged with a Zeiss Gemini300 scanning electron microscope using the STEM detector.

Statistical analysis

Prism v.8 was used for statistical analyses of functional data and for plot generation. For analyses of organoid formation efficiencies, the data passed the Shapiro-Wilk test for normal distribution (p>alpha=0.05), but did not pass the Bartlett’s test for equal variance (p<0.05). We therefore used the Brown-Forsythe and Welch One-way Analysis of Variance (ANOVA) to confirm statistically significant differences between organoid populations (p<0.0001 for both HM and ENR conditions). Since all populations have fewer than 50 data points per sample, we used the Dunnett’s T3 multiple comparisons test to determine which populations significantly differ (p<0.05). The p-values on the graphs indicate the least significant difference observed between compared populations.

For analyses of graft efficiency, the data did not pass the Shapiro-Wilk test for normal distribution (p<a=0.05), or Bartlett’s test for equal variance (p<0.05). We therefore used a non-parametric Kruskal-Wallis test to confirm statistically significant differences between graft input cell numbers by epithelial population (p<0.0001), followed by the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli (p<0.05). The p-value on the graph indicates the average significant difference between the up to 10 lowest input cell numbers for each distal luminal population compared to the LumP population.

Bioinformatic analysis of single-cell RNA-seq data

Filtering the expression matrix

The starting pool of cells in the mouse prostate analysis is 13,429 cells, which is composed of two whole prostate samples of 2,361 and 2,927 cells, and 4 samples corresponding to each of
the lobes at 2,735 (AP), 1,781 (DP), 2,044 (LP), and 1,581 (VP) cells. The starting pool of cells for human prostate analyses is 6,728 cells coming from three independent samples of 2,303, 1,600 and 2,825 cells each. When filtering the data, we removed cells with less than 500 genes detected and cells with >10% of total transcripts derived from mitochondrial-encoded genes. The expression matrices are normalized by $\log_2(1 + TPM)$, where TPM denotes transcripts per million.

Batch effect correction

For Figure 1A, we have aggregated the two samples corresponding to the whole mouse prostate. As a first step to remove the batch effect we have used the algorithm described in (Stuart et al., 2019), using default parameters.

Random Matrix Theory application to single-cell transcriptomics

Random Matrix Theory (RMT) is a field with many applications in different branches of mathematics and physics. The mathematical foundations of RMT were developed by the theoretical physicist Dyson in the 1960’s when he described heavy atomic nuclei energy levels. One of the deepest properties of RMT is universality, i.e., the insensitivity of certain statistical properties to variations of the probability distribution used to generate the random matrix. This property provides a unified and universal way to analyze single-cell data, where the gene and cell expression distributions are different for each cell. By using RMT universality, one can address the specific sparsity and noise of each single-cell dataset.

In this work we have used Randomly, an RMT-based algorithm (Aparicio et al., 2020). The idea of this algorithm is based on the fact that a single-cell dataset shows a threefold structure: a random matrix, a sparsity-induced (fake) signal and a biological signal. Indeed, 95% or more of the single-cell expression matrix is compatible with being a random matrix and hence, in such a case, with being pure noise (Aparicio et al., 2020). In order to detect the part of the expression matrix compatible with noise, Randomly uses the universality properties of RMT. More
specifically, let us suppose a $N \times P$ expression matrix X, where N is the number of cells and P is the number of genes, and where each column is independently drawn from a distribution with mean zero and variance σ, the corresponding Wishart matrix is defined as an $N \times N$ matrix:

$$ W = \frac{1}{P} XX^T $$

The eigenvalues λ_i and normalized eigenvectors ψ_i of the Wishart matrix where $i = 1, 2, \ldots, N$ are given by the following relation:

$$ W\psi_i = \lambda_i \psi_i $$

If X happens to be a random matrix (a matrix whose entries x_{ij} are randomly sampled from a given distribution), then W becomes a random covariance matrix and the properties of its eigenvalues and eigenvectors are described by Random Matrix Theory. Universality properties of RMT arise in the limit $N \to \infty$, $P \to \infty$, $\gamma = \frac{N}{P}$ fixed. One of the consequences of universality at the level of eigenvalues λ_i, is that empirical density of states converges to the so-called Marchenko-Pastur (MP) distribution:

$$ \rho_{MP}(\lambda) = \frac{1}{2\pi\gamma\sigma^2} \frac{\sqrt{(a_+ - \lambda)(\lambda - a_-)}}{\lambda} 1_{[a_-, a_+]} $$

where

$$ a_\pm = \sigma^2(1 \pm \sqrt{\gamma})^2 $$

and σ represents the variance of the probability distribution that generates each element in the random matrix ensemble. Any deviation of the eigenvalues from MP distribution would imply that the expression matrix X is not completely random, and therefore contains a signal that could be further analyzed.

One of the main novelties of the Randomly algorithm is the study of eigenvectors. At the level of eigenvectors, RMT universality is manifested through the so-called eigenvector delocalization, which implies that the norm of the eigenvectors ψ_i is equally distributed among all their components α:
Interestingly, the distribution of components for delocalized eigenvectors at large N approximates a Gaussian distribution with mean zero and $1/N$ variance

$$|\psi_i^{(\alpha)}| \sim \frac{1}{\sqrt{N}}$$

$$f(\psi) \sim \frac{N}{\sqrt{2\pi}} e\left(\frac{-N\psi^2}{2}\right)$$

The presence of any localized (non-delocalized) eigenvector implies that expression matrix X is not completely random, and hence the existence of a signal that carries information. However, in single-cell datasets, there is a very important subtlety due to the sparsity, which can generate a fake signal (Aparicio et al., 2020). At the single-cell analysis level, the presence of localized eigenvectors related with sparsity implies the existence of an undesired (fake) signal. The Randomly algorithm is able to eliminate the sparsity-induced (fake) signal and isolate the biological signal.

In Figure 1—figure supplement 2, we show one example of the performance of the Randomly algorithm performance. Figure 1—figure supplement 2E shows a comparison of the eigenvector localization with and without sparsity-induced signal in one of the single-cell mouse datasets. The number of eigenvectors that carries signal is larger for the case with sparsity-induced signal. After removal of the fake signal due to sparsity, Figure 1—figure supplement 2F shows the distribution of eigenvalues and the fraction behaving in agreement with the MP distribution. More than 95% of the expression matrix is compatible with a random matrix and therefore is equivalent to random noise. In Figure 1—figure supplement 2G and 2H, the algorithm projects the original expression matrix into the signal-like eigenvectors and the noise-like eigenvectors and performs a chi-squared test for the variance (normalized sample variance), which allows identification of the signal-like genes based on a false discovery rate.

The algorithm Randomly is a public Python package and can be found in https://rabadan.c2b2.columbia.edu/html/randomly/.
Cluster has been performed using the Leiden algorithm as is implemented in (Wolf et al., 2018). The selection of the number of clusters is based on the mean silhouette score. More specifically, we performed a set of clustering performances for different Leiden resolution parameters and compute the mean silhouette score for each case. The silhouette coefficient for a specific cell is given by:

\[s = \frac{b - a}{\max(a, b)} \]

where the \(a \) is the mean distance between a cell and all the other cells of the same class, and parameter \(b \) is the mean distance between a cell and all other cells in the next nearest cluster.

Figure 1—figure supplement 2I shows the mean silhouette score as a function of the Leiden resolution parameter and the number of clusters for each case. The strategy we follow is selecting the number of clusters that maximizes this correlation. In some cases, it could be also useful to sub-cluster some of the clusters, repeating the strategy just described for one specific cluster. The sub-clustering has been used to disentangle immune populations or the vas deferens and the seminal vesicle populations.

t-SNE representations and gene visualizations

In order to visualize single-cell clusters, we performed a further dimensional reduction to two dimensions using t-distributed Stochastic Neighbor Embedding (t-SNE) representation. We used the default parameters, which are: Learning rate = 1000, Perplexity = 30 and Early exaggeration = 12. The tSNE, dot-plots, and ridge-plots were generated using the visualization functions of the Randomly package (Aparicio et al., 2020).

Comparison of RMT with traditional pipelines based on PCA dimensional reduction

To show a comparison with traditional approaches based on PCA, we have followed the pipeline in a public tool (Wolf et al., 2018) often used for single-cell analysis. We have performed
a PCA reduction, selecting principal components (PCs) through accumulated variance changes across the different PCs (Figure 1—figure supplement 2A). In this case, only 10 PCs are selected following this approach. After the dimensional reduction, we performed a clustering following the strategy described in the previous section (Figure 1—figure supplement 2B), selecting the number of clusters that maximize the mean silhouette score. Comparing Figure 1—figure supplement 2B and 2I, it is clear that the RMT generates a better clustering performance: the maximum of the silhouette score curve is larger than that generated by the traditional PCA approach, and one of these clusters is able to capture the periurethral (PrU) population (Figure 1—figure supplement 2J). On the other hand, the method based on traditional PCA is not able to capture the PrU population even if we allow for larger Leiden resolutions (Figure 1—figure supplement 2C and 2D).

Differential expression analysis

To test for differentially expressed genes among the different populations of prostate luminal cells, we have used a t-test on the datasets after de-noising them with Randomly. The p-value have been corrected for multiple hypothesis using Benjamini-Hochberg. We have used the implementation of (Wolf et al., 2018) with overestimation of the variance and comparison with a Wilcoxon test. Based on this analysis, we have selected genes with a corrected p-value smaller than 0.001.

Mouse population similarity

To calculate the phenotypic similitude/distance between epithelial populations in the mouse prostate, we have performed an analysis based on Optimal Transport (OT) (Kolouri et al., 2017; Villani, 2003). More specifically, we have used the Wasserstein-1 distance as a measure for phenotypic distance between cell populations, i.e., among clusters in the latent space obtained after using Randomly. The Wasserstein-1 distance is defined as a distance function between probability
distributions in a given metric space. Assuming that the metric space is Euclidean, the Wasserstein-1 distance (Kolouri et al., 2017; Villani, 2003) is defined as:

\[W_1(\mu, \nu) = \min \left\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} \|y - x\| \gamma(dx, dy) : \gamma \in \text{couplings}(\mu, \nu) \right\} \]

It is also known as the earth mover’s distance, in which each probability distribution can be seen as an amount of dirt piled in the metric space, with the Wasserstein distance corresponding to the cost of turning one pile into the other. In our case, we would be evaluating the cost of transforming one population into another.

The optimization of the Wasserstein calculation can be turned into an OT problem, based on the Sinkhorn algorithm and the entropic regularization technique (Altschuler et al., 2017; Chizat et al., 2018; Cuturi, 2013; Schmitzer, 2016). We have used the Python implementation of the package POT Python Optimal Transport library (https://github.com/rflamary/POT), which solves the entropic regularization OT problem and return the loss \(W_1(\mu, \nu) \). We have used as metric cost matrix a Euclidean pairwise distance matrix and assumed that the cell populations correspond to uniform probability distributions defined in the latent space obtained after using Randomly.

To calculate the distances between populations, we have constructed a matrix of Wasserstein distances among the epithelial populations described in Figure 1 and visualized it using a heatmap and a hierarchical clustering (Figure 3A). We have also generated a tree-like visualization of all the information contained in the hierarchical clustering/heatmap using a neighbor joining algorithm (Schliep, 2011). The length of the branches in the tree is measured in units of the Wasserstein-1 distance (Figure 3B).

Cross-species analysis

We have performed a comparison between the epithelial populations in human and mouse based on OT and Wasserstein distance. To harmonize the human and mouse datasets, we first constructed a common latent space between the aggregated mouse data set and each of the three
human samples. To that end, we first looked for the mouse orthologous genes, and then normalized mouse and human separately using $log_2(1 + TPM)$. We filtered out any gene which has an average expression smaller than 0.1 for human or mouse, and merged the two corresponding human and mouse datasets. Finally, we used Randomly to generate the common latent space.

We have used the Wasserstein distance to calculate the similitude among the clusters of points previously identified with the different mouse and human populations in Figures 1 and 4. We have visualized this with a set of nested heatmaps (Figure 4D-F) to make explicit which populations have the minimum Wasserstein distance between each human population and mouse populations.

We then validated the accuracy of this strategy. The first validation test is that the conserved epithelial populations Basal and Lum P in human have a minimum in the Wasserstein distance with their mouse equivalents. A second test of the robustness is to compare cell types that are known to be well-conserved across species, such as immune cells. As with the conserved epithelial cell types, the human immune cell populations have also a minimum Wasserstein distance with respect to the corresponding mouse immune populations.
Data availability

Single-cell RNA-sequencing data from this study have been deposited in the Gene Expression Omnibus (GEO) under the accession number GSE150692. All other data are available from the authors upon reasonable request.

Acknowledgements

We would like to thank Reuben Akbas, Sarah Bergren, Mykola Bordyuh, Eva Leung, Bo Li, Maximilian Marhold, Agnieszka Pastula, Luis Pina, Roxanne Toivanen, and Sven Wenske for their assistance with this project, and Cory Abate-Shen and Jia Li for comments on the manuscript. We thank Erin Bush and Peter Sims for assistance with single-cell sequencing in the Columbia Genomics and High Throughput Screening Shared Resource of the Herbert Irving Comprehensive Cancer Center, as well as the resources of the Cancer Center Flow Core Facility, which are supported in part by the Cancer Center Support Grant P30CA013696. We also thank Michael Kissner and Daniel Troast for assistance with flow cytometry in the Columbia Stem Cell Initiative Flow Cytometry Core, which is supported in part by S10OD026845. For assistance with electron microscopy, we thank Alice Liang, Chris Petzold, and Joseph Sall at the New York University Langone Health DART Microscopy Lab, which is partially funded by NYU Cancer Center Support Grant P30CA016087 and by S10OD019974. These studies were supported by grants from the NIH R01CA238005 (M.M.S.), U54CA193313 (R.R. and M.M.S.), P50CA211024 (B.D.R., M.M.S., M.L.), K99CA194287 (M.S.), and by fellowships from the Department of Defense Prostate Cancer Research Program (W81XWH-18-1-0424; F.C.) and the National Science Foundation (L.C.).
Author contributions

Conceptualization (study design): R.R. and M.M.S.; Conceptualization (data interpretation and presentation): L.C., F.C., L.A., and M.M.S.; Methodology (computational): L.A.; Methodology (flow cytometry): F.C.; Investigation (single-cell analysis): L.A., L.C., F.C., and M.S.; Investigation (computational analysis): L.A.; Investigation (urogenital anatomy): L.C. and F.C.; Investigation (mouse prostate analysis): L.C., F.C., S.X., and W.L.; Investigation (flow cytometry): L.C. and F.C.; Investigation (organoid assays): F.C. and L.C.; Investigation (renal graft assays): L.C. and S.X.; Investigation (statistical analysis): L.C.; Investigation (human prostate analysis): F.C. and B.D.R.; Resources: H.H. and M.L.; Writing (original draft): L.C., L.A., F.C. and M.M.S.; Writing (review and editing): L.C., F.C. L.A., M.S., S.X., R.R., and M.M.S.; Supervision: R.R. and M.M.S.; Funding acquisition: L.C., F.C., M.S., M.L., R.R., and M.M.S.

Competing interests

The authors declare that they have no competing interests.
References

Altschuler J, Niles-Weed J, Rigollet P. 2017. Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration. *Advances in Neural Information Processing Systems* 30.

Aparicio L, Bordyuh M, Blumberg AJ, Rabadan R. 2020. A random matrix theory approach to denoise single-cell data. *Patterns* https://doi.org/10.1016/j.patter.2020.100035.

Barros-Silva JD, Linn DE, Steiner I, Guo G, Ali A, Pakula H, Ashton G, Peset I, Brown M, Clarke NW, Bronson RT, Yuan GC, Orkin SH, Li Z, Baena E. 2018. Single-cell analysis identifies LY6D as a marker linking castration-resistant prostate luminal cells to prostate progenitors and cancer. *Cell Rep* 25: 3504-3518 e3506. 10.1016/j.celrep.2018.11.069, PMID: 30566873

Berquin IM, Min Y, Wu R, Wu H, Chen YQ. 2005. Expression signature of the mouse prostate. *J Biol Chem* 280: 36442-36451. 10.1074/jbc.M504945200, PMID: 16055444

Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, Norton CR, Gridley T, Cardiff RD, Cunha GR, Abate-Shen C, Shen MM. 1999. Roles for *Nkx3.1* in prostate development and cancer. *Genes Dev* 13: 966-977. PMID: 10215624

Blomqvist SR, Vidarsson H, Soder O, Enerback S. 2006. Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility. *EMBO J* 25: 4131-4141. 10.1038/sj.emboj.7601272, PMID: 16932748

Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K, Wilson EL. 2005. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. *Proc Natl Acad Sci USA* 102: 7180-7185. PMID: 15899981

Chizat L, Peyre G, Schmitzer B, Vialard F-X. 2018. Scaling algorithms for unbalanced optimal transport problems. *Mathematics of Computation* 87: 2563-2609.
Choi N, Zhang B, Zhang L, Ittmann M, Xin L. 2012. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21: 253-265. 10.1016/j.ccr.2012.01.005, PMID: 22340597

Chua CW, Epsi NJ, Leung EY, Xuan S, Lei M, Li BI, Bergren SK, Hibshoosh H, Mitrofanova A, Shen MM. 2018. Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation. Elife 7. 10.7554/eLife.28768, PMID: 29334357

Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren SK, Badani KK, McKiernan JM, Benson MC, Hibshoosh H, Shen MM. 2014. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol 16: 951-961. 10.1038/ncb3047, PMID: 25241035

Crowell PD, Fox JJ, Hashimoto T, Diaz JA, Navarro HI, Henry GH, Feldmar BA, Lowe MG, Garcia AJ, Wu YE, Sajed DP, Strand DW, Goldstein AS. 2019. Expansion of luminal progenitor cells in the aging mouse and human prostate. Cell Rep 28: 1499-1510 e1496. 10.1016/j.celrep.2019.07.007, PMID: 31390564

Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, Sugimura Y. 1987. The endocrinology and developmental biology of the prostate. Endocr Rev 8: 338-362. 10.1210/edrv-8-3-338, PMID: 3308446

Cunha GR, Vezina CM, Isaacson D, Ricke WA, Timms BG, Cao M, Franco O, Baskin LS. 2018. Development of the human prostate. Differentiation 103: 24-45. 10.1016/j.diff.2018.08.005, PMID: 30224091

Cuturi M. 2013. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in Neural Information Processing Systems 26.
Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y, Clevers H. 2016. Organoid culture systems for prostate epithelial and cancer tissue. *Nat Protoc* **11**: 347-358. 10.1038/nprot.2016.006, PMID: 26797458

Georgas KM, Armstrong J, Keast JR, Larkins CE, McHugh KM, Southard-Smith EM, Cohn MJ, Batourina E, Dan H, Schneider K, Buehler DP, Wiese CB, Brennan J, Davies JA, Harding SD, Baldock RA, Little MH, Vezina CM, Mendelsohn C. 2015. An illustrated anatomical ontology of the developing mouse lower urogenital tract. *Development* **142**: 1893-1908. 10.1242/dev.117903, PMID: 25968320

Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON. 2008. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. *Proc Natl Acad Sci USA* **105**: 20882-20887. 10.1073/pnas.0811411106, PMID: 19088204

Goto K, Salm SN, Coetzee S, Xiong X, Burger PE, Shapiro E, Lepor H, Moscatelli D, Wilson EL. 2006. Proximal prostatic stem cells are programmed to regenerate a proximal-distal ductal axis. *Stem Cells* **24**: 1859-1868. PMID: 16644920

Ittmann M. 2018. Anatomy and histology of the human and murine prostate. *Cold Spring Harb Perspect Med* **8**. 10.1101/cshperspect.a030346, PMID: 29038334

Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R, Simons BW, Ward JM, Robinson BD, Chu GC, Loda M, Thomas G, Borowsky A, Cardiff RD. 2013. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. *Cancer Res* **73**: 2718-2736. 10.1158/0008-5472.CAN-12-4213, PMID: 23610450

Joseph DB, Henry GH, Malewska A, Iqbal NS, Rutten HM, Turco AE, Abler LL, Sandhu SK, Cadena MT, Malladi VS, Reese JC, Mauck RJ, Gahan JC, Hutchinson RC, Roehrborn CG, Baker LA, Vezina CM, Strand DW. 2020. Urethral luminal epithelia are castration-
insensitive progenitors of the proximal prostate. *bioRxiv*: 2020.2002.2019.937615. 10.1101/2020.02.19.937615,

Karthaus WR, Hofree M, Choi D, Linton EL, Turkel M, Bejnood A, Carver B, Gopalan A, Abida W, Laudone V, Biton M, Chaudhary O, Xu T, Masilionis I, Manova K, Mazutis L, Pe'er D, Regev A, Sawyers CL. 2020. Regenerative potential of prostate luminal cells revealed by single-cell analysis. *Science* **368**: 497-505. 10.1126/science.aay0267, PMID: 32355025

Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, Vries RG, Cuppen E, Chen Y, Sawyers CL, Clevers HC. 2014. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. *Cell* **159**: 163-175. 10.1016/j.cell.2014.08.017, PMID: 25201529

Kolouri S, Park S, Thorpe M, Slepcev D, Rohde GK. 2017. Optimal Mass Transport: Signal processing and machine-learning applications. *IEEE Signal Process Mag* **34**: 43-59. 10.1109/MSP.2017.2695801, PMID: 29962824

Kwon OJ, Zhang L, Ittmann MM, Xin L. 2014. Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. *Proc Natl Acad Sci USA* **111**: E592-600. 10.1073/pnas.1318157111, PMID: 24367088

Kwon OJ, Zhang L, Xin L. 2016. Stem Cell Antigen-1 identifies a distinct androgen-independent murine prostatic luminal cell lineage with bipotent potential. *Stem Cells* **34**: 191-202. 10.1002/stem.2217, PMID: 26418304

Kwon OJ, Zhang Y, Li Y, Wei X, Zhang L, Chen R, Creighton CJ, Xin L. 2019. Functional Heterogeneity of Mouse Prostate Stromal Cells Revealed by Single-Cell RNA-Seq. *iScience* **13**: 328-338. 10.1016/j.isci.2019.02.032, PMID: 30878879
Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON. 2007. Isolation and functional characterization of murine prostate stem cells. *Proc Natl Acad Sci USA* **104**: 181-186. 10.1073/pnas.0609684104, PMID: 17185413

Lin Y, Liu G, Zhang Y, Hu YP, Yu K, Lin C, McKeehan K, Xuan JW, Ornitz DM, Shen MM, Greenberg N, McKeehan WL, Wang F. 2007. Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis. *Development* **134**: 723-734. dev.02765, PMID: 17215304

Liu X, Grogan TR, Hieronymus H, Hashimoto T, Mottahedeh J, Cheng D, Zhang L, Huang K, Stoyanova T, Park JW, Shkhyan RO, Nowrooizadeh B, Rettig MB, Sawyers CL, Elashoff D, Horvath S, Huang J, Witte ON, Goldstein AS. 2016. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. *Cell Rep* **17**: 2596-2606. 10.1016/j.celrep.2016.11.010, PMID: 27926864

Lu TL, Huang YF, You LR, Chao NC, Su FY, Chang JL, Chen CM. 2013. Conditionally ablated Pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice. *Am J Pathol* **182**: 975-991. 10.1016/j.ajpath.2012.11.025, PMID: 23313138

Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H. 2010. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. *Nat Neurosci* **13**: 133-140. 10.1038/nn.2467, PMID: 20023653

Moad M, Hannezo E, Buczacki SJ, Wilson L, El-Sherif A, Sims D, Pickard R, Wright NA, Williamson SC, Turnbull DM, Taylor RW, Greaves L, Robson CN, Simons BD, Heer R. 2017. Multipotent basal stem cells, maintained in localized proximal niches, support
directed long-ranging epithelial flows in human prostates. *Cell Rep* 20: 1609-1622. 10.1016/j.celrep.2017.07.061, PMID: 28813673

Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, Yuan F, Chen S, Leung HM, Villoria J, Rogel N, Burgin G, Tsankov AM, Waghray A, Slyper M, Waldman J, Nguyen L, Dionne D, Rozenblatt-Rosen O, Tata PR, Mou H, Shivaraju M, Bihler H, Mense M, Tearney GJ, Rowe SM, Engelhardt JF, Regev A, Rajagopal J. 2018. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. *Nature* 560: 319-324. 10.1038/s41586-018-0393-7, PMID: 30069044

Morris SA. 2019. The evolving concept of cell identity in the single cell era. *Development* 146. 10.1242/dev.169748, PMID: 31249002

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. 2017. ImageJ2: ImageJ for the next generation of scientific image data. *BMC Bioinformatics* 18: 529. 10.1186/s12859-017-1934-z, PMID: 29187165

Schaefer BC, Schaefer ML, Kappler JW, Marrack P, Kedl RM. 2001. Observation of antigen-dependent CD8+ T-cell/ dendritic cell interactions in vivo. *Cell Immunol* 214: 110-122. 10.1006/cimm.2001.1895, PMID: 12088410

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. *Nat Methods* 9: 676-682. 10.1038/nmeth.2019, PMID: 22743772

Schliep KP. 2011. phangorn: phylogenetic analysis in R. *Bioinformatics* 27: 592-593. 10.1093/bioinformatics/btq706, PMID: 21169378

Schmitzer B. 2016. Stabilized sparse scaling algorithms for entropy regularized transport problems. *arXiv*. 1610:06519,
Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, Humphrey PA, Sundberg JP, Rozengurt N, Barrios R, Ward JM, Cardiff RD. 2004. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. *Cancer Res* **64**: 2270-2305. PMID: 15026373

Shen MM, Abate-Shen C. 2010. Molecular genetics of prostate cancer: new prospects for old challenges. *Genes Dev* **24**: 1967-2000. 10.1101/gad.1965810, PMID: 20844012

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. 2019. Comprehensive integration of single-cell data. *Cell* **177**: 1888-1902. 10.1016/j.cell.2019.05.031, PMID: 31178118

Thomsen MK, Butler CM, Shen MM, Swain A. 2008. Sox9 is required for prostate development. *Dev Biol* **316**: 302-311. 10.1016/j.ydbio.2008.01.030, PMID: 18325490

Toivanen R, Mohan A, Shen MM. 2016. Basal progenitors contribute to repair of the prostate epithelium following induced luminal anoikis. *Stem Cell Reports* **6**: 660-667. 10.1016/j.stemcr.2016.03.007, PMID: 27117783

Toivanen R, Shen MM. 2017. Prostate organogenesis: tissue induction, hormonal regulation and cell type specification. *Development* **144**: 1382-1398. 10.1242/dev.148270, PMID: 28400434

Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D, Shapiro E, Lepor H, Sun TT, Wilson EL. 2002. Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. *J Cell Biol* **157**: 1257-1265. PMID: 12082083

Villani C. 2003. Topics in optimal transportation. *American Mathematical Soc* **58**.

Wang X, Xu H, Cheng C, Ji Z, Zhao H, Sheng Y, Li X, Wang J, Shu Y, He Y, Fan L, Dong B, Xue W, Wai Chua C, Wu D, Gao WQ, He Zhu H. 2020. Identification of a Zeb1 expressing
basal stem cell subpopulation in the prostate. *Nat Commun* **11**: 706. 10.1038/s41467-020-14296-y, PMID: 32024836

Wang ZA, Mitrofanova A, Bergren SK, Abate-Shen C, Cardiff RD, Califano A, Shen MM. 2013. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. *Nat Cell Biol* **15**: 274-283. 10.1038/ncb2697, PMID: 23434823

Wang ZA, Toivanen R, Bergren SK, Chambon P, Shen MM. 2014. Luminal cells are favored as the cell of origin for prostate cancer. *Cell Rep* **8**: 1339-1346. 10.1016/j.celrep.2014.08.002, PMID: 25176651

Wei X, Zhang L, Zhou Z, Kwon OJ, Zhang Y, Nguyen H, Dumpit R, True L, Nelson P, Dong B, Xue W, Birchmeier W, Taketo MM, Xu F, Creighton CJ, Ittmann MM, Xin L. 2019. Spatially Restricted Stromal Wnt Signaling Restrains Prostate Epithelial Progenitor Growth through Direct and Indirect Mechanisms. *Cell Stem Cell* **24**: 753-768 e756. 10.1016/j.stem.2019.03.010, PMID: 30982770

Wolf FA, Angerer P, Theis FJ. 2018. SCANPY: large-scale single-cell gene expression data analysis. *Genome Biol* **19**: 15. 10.1186/s13059-017-1382-0, PMID: 29409532

Xin L. 2019. Cells of origin for prostate cancer. *Adv Exp Med Biol* **1210**: 67-86. 10.1007/978-3-030-32656-2_4, PMID: 31900905

Xin L, Ide H, Kim Y, Dubey P, Witte ON. 2003. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. *Proc Natl Acad Sci U S A* **100 Suppl 1**: 11896-11903. PMID: 12909713

Zhang D, Jeter C, Gong S, Tracz A, Lu Y, Shen J, Tang DG. 2018. Histone 2B-GFP label-retaining prostate luminal cells possess progenitor cell properties and are intrinsically resistant to castration. *Stem Cell Reports* **10**: 228-242. 10.1016/j.stemcr.2017.11.016, PMID: 29276153
Zhang Y, Zhang J, Lin Y, Lan Y, Lin C, Xuan JW, Shen MM, McKeehan WL, Greenberg NM, Wang F. 2008. Role of epithelial cell fibroblast growth factor receptor substrate 2alpha in prostate development, regeneration and tumorigenesis. Development 135: 775-784. dev.009910 10.1242/dev.009910, PMID: 18184727

Zhao SG, Chang SL, Erho N, Yu M, Lehrer J, Alshalalfa M, Speers C, Cooperberg MR, Kim W, Ryan CJ, Den RB, Freedland SJ, Posadas E, Sandler H, Klein EA, Black P, Seiler R, Tomlins SA, Chinnaiyan AM, Jenkins RB, Davicioni E, Ross AE, Schaeffer EM, Nguyen PL, Carroll PR, Karnes RJ, Spratt DE, Feng FY. 2017. Associations of luminal and basal subtyping of prostate cancer with prognosis and response to androgen deprivation therapy. JAMA Oncol 3: 1663-1672. 10.1001/jamaoncol.2017.0751, PMID: 28494073
Figure Legends

Figure 1. Single-cell analysis identifies prostate luminal epithelial heterogeneity. (A) t-distributed stochastic neighbor embedding (tSNE) plot of 5,288 cells from an aggregated dataset of two normal mouse prostates, processed by *Randomly* and clustered using the Leiden algorithm. (B) tSNE representation of each prostate lobe (AP: 2,735 cells; DP: 1,781 cells; LP: 2,044 cells; VP: 1,581 cells). (C) Schematic model of prostate lobes with the urethral rhabdosphincter partially removed, with the distribution of luminal epithelial populations indicated. (D) Dot plot of gene expression levels in each epithelial population for selected marker genes. (E) Ridge plots of marker genes showing expression in each population. (F) Hematoxylin-eosin (H&E) and immunofluorescence images of selected markers in serial sections; the periurethral/proximal region shown is from the AP and DP. Arrow in VP distal indicates distal cell with *Ppp1r1b* expression. Scale bars indicate 50 microns.

Figure 1—figure supplement 1. Anatomy and dissection of mouse prostate lobes. (A) Schematic of connections of prostate lobes to the urethra. Note that the AP, DP, and LP connect dorsally in close proximity, whereas the VP connects on the ventral side. (B) Whole-mount views of prostate lobe connections in *Ubc-GFP* mice. (C) H&E staining of transverse section through intact urogenital apparatus. The LP crosses the rhabdosphincter caudally (right), and the periurethral (PrU) region lies within the rhabdosphincter. (D,E) Bright-field and epifluorescence views of dissected prostate lobes from *Ubc-GFP* mouse. Proximal regions are oriented downwards; note that the LP is the smallest lobe and has a relatively long unbranched region. (F) H&E staining of sections from the indicated lobes. Scale bars in (B-E) indicate 2 mm, in (F) indicate 50 microns.
Figure 1—figure supplement 2. Random-matrix analysis of single-cell datasets. Comparison of dimensional reduction, clustering and visualization of 2,322 sequenced cells from the mouse anterior lobe, based on traditional PCA (A-D), and the Randomly algorithm (E-J). (A) “Elbow plot” describing the variance ratio of each principal component (PC) after a PCA reduction of the log2(1+TPM) transformed count matrix. (B) Mean silhouette scores of the clusters obtained for different values of the Leiden resolution after performing a clustering in the first 11 PCs using the Leiden algorithm (as implemented in (Wolf et al., 2018)). (C,D) tSNE visualizations of the 11 PCs and clustering for Leiden resolutions of 0.2 (7 clusters) and 0.3 (8 clusters) respectively. The LumA* cells have similar expression profiles as the LumA population, but display altered expression of ribosomal and mitochondrial genes, which is consistent with cellular stress. (E) Normality test to detect eigenvector localization in the 2,322 cell-eigenvectors of the z-scored log2(1+TPM) transformed count matrix. The red line corresponds to the sparse data before Randomly and the green line shows eigenvector behavior after elimination of the sparsity-induced signal. (F) Spectral distribution of the Wishart matrix for selected cells after elimination of the sparsity-induced signal (blue histogram) with a Marchenko-Pastur (MP) distribution fit (red line). Only 50 eigenvalues (~2% of the total) lie outside the MP distribution, and their corresponding eigenvectors carry true signal. The remaining ~98% of the data is comparable to a random matrix and is therefore noise. (G) Chi-squared test for the variance of the genes’ projection into different sets of eigenvectors. Blue, the 50 signal-like eigenvectors; pink, the eigenvectors corresponding to the last 50 MP eigenvalues; green, the eigenvectors corresponding to the first 50 MP eigenvalues; brown, projection on 50 2,322-dimensional random vectors. (H) Selection of the genes that are mostly responsible for the signal in this dataset (purple line). The number of genes (orange line) is calculated with a false discovery rate (FDR) using the ratio of the blue and pink distributions in (G) Approximately 5000 genes are responsible for the signal using FDR ≤ 0.001. (I) Mean silhouette score of the clusters obtained for different values of the Leiden resolution after processing with Randomly. In comparison with (B), the score is much higher, indicating better clustering. (J) tSNE visualization of the latent space generated by Randomly and clustering.
performed with the Leiden algorithm. For downstream analyses, we have combined the LumA* cells with the LumA population. The number of clusters selected corresponds to the maximum of the curve in (I). Randomly can assist in identification of populations (e.g., PrU) by removing noise and sparsity-induced signals, and by selecting genes responsible for the biological signal.

Figure 1—figure supplement 3. Additional marker validation for epithelial populations.

(Above) Ridge plots of marker genes show expression in each population. (Below) Immunofluorescence staining of marker expression in sections; the periurethral/proximal region shown is from the AP and DP. Scale bars indicate 50 microns.

Figure 2. Luminal epithelial populations display spatial and morphological heterogeneity.

(A) H&E and IF of serial sections from the DP and LP, showing expression of proximal (Ppp1r1b) and distal (Tgm4, Msmb) markers; note apparent differences in the boundary regions of the two lobes. (B) Detection of distally localized LumP cells (arrows) in all four lobes; these are most abundant in the VP. (C) Scanning electron micrographs of the boundary region of the AP; central low-power image is flanked by high-power images of boxed regions. Red arrow, mitochondria; black arrow, membrane interdigitation; blue arrow, Golgi apparatus; green arrow, rough endoplasmic reticulum. (D) Identification of the periurethral region. Cells in the periurethral region express Ly6d, Ck7, Aqp3, and Ppp1r1b; notably, Cldn10-expressing LumP cells decrease approaching the periurethral region (E) Lineage-marking in Nkx3.1Cre/+; R26R-YFP mice (n=3) shows widespread YFP expression in the periurethral, proximal, and distal AP; small patches remain unrecombined and lack YFP (arrows). Scale bars in (A,B,D,E) indicate 50 microns; scale bars in (C) indicate 2 microns.
Figure 2—figure supplement 1. Additional analysis of proximal-distal heterogeneity. (A) H&E and IF of serial sections from the AP and VP, showing expression of proximal (Ppp1r1b) and distal (Tgm4, Trpv6) markers. (B) Scanning electron micrographs of proximal and distal regions of the AP. *Left*: red arrows, mitochondria; black arrow, membrane interdigitation; *Right*: blue arrows, Golgi apparatus; green arrows, rough endoplasmic reticulum; yellow arrows, secretory vesicles near the apical surface. Scale bars in (A) indicate 50 microns; scale bars in (B) indicate 2 microns.

Figure 3. Functional analysis of epithelial populations in organoid and tissue reconstitution assays. (A) Heatmap visualization of the Wasserstein distance between epithelial populations with hierarchical clustering. (B) Tree visualization of Wasserstein distances. (C) Flow sorting of distinct epithelial populations from the AP lobe. (D) Organoid formation assays using sorted epithelial cells in two distinct culture conditions. ENR conditions: sorted cells from Ubc-GFP mice plated at 1,000 cells/well, imaged at day 10. Hepatocyte Media (HM) conditions: sorted cells from wild type C57BL/6 mice plated at 2,000-5,000 cells/well and imaged on day 12-13. Maximum p-values for each pair-wise comparison are indicated. (E) Organoid formation efficiency plots. (F) Grafting efficiency in tissue reconstitution assays. LumP, PrU, and Basal are significantly more efficient at generating grafts from smaller number of cells relative to distal luminal populations (average p-value shown). (G) H&E and IF of sections from fully-differentiated renal grafts; positive staining corresponds to results found in ≥3 independent grafts. Scale bars indicate 50 microns.

Figure 3—figure supplement 1. Additional marker analysis of renal grafts. (A) Immunofluorescence staining of grafts using the indicated markers; arrows indicate regions of patchy expression. The left-most two columns show fully-differentiated graft regions, whereas the right-most column shows less-differentiated regions that are relatively small, have less abundant
basal cells, are typically found on the periphery of the graft, and have fewer secretions. These less-differentiated regions tend to express the LumP marker Ppp1r1b. (B) Immunofluorescence detection of GFP in grafts from Ubc-GFP mice demonstrates donor origin of grafted epithelial cells.

Figure 4. Heterogeneity and conservation of luminal populations in the human prostate. (A-C) tSNE plot of scRNA-seq data (A, 1,600 cells; B, 2,303 cells; C, 2,825 cells) from three independent human prostatectomy samples. (D-F) Heatmap visualization of Wasserstein distances between the human and mouse prostate populations for each dataset. (G) H&E and IF images of serial sections from human prostate, showing regions of the prostatic utricle, central, transition, and peripheral zones. Arrows indicate regions of ductal morphology. Scale bars indicate 50 microns.

Figure 4—source data. Human prostate samples and corresponding clinical data.
Figure 1—figure supplement 1
Figure 1—figure supplement 2
Figure 4

A, B, C: Single-cell embedding with tSNE in Human #1, Human #2, and Human #3.

D, E, F: tSNE of Mouse, Human #2, and Human #3, respectively, with different cell types.

G: H&E and immunofluorescence staining images of Urethra, Periurethral, Central, Ductal, Ductal/Acinar, and Acinar areas in different stages.
Figure 4—source data. Human prostate samples and corresponding clinical data

Patient	Site	Age	Procedure	Overall diagnosis	Pathology of sample analyzed	Comments
1	Columbia	70	Cystoprostatectomy	High grade urothelial carcinoma of bladder	Benign prostatic hyperplasia with granulomatous prostatitis	scRNA-seq dataset #1 (mm037)
2	Columbia	68	Cystoprostatectomy	High grade urothelial carcinoma of bladder	Benign prostatic hyperplasia with chronic inflammation	scRNA-seq dataset #2 (mm033)
3	Columbia	63	Radical prostatectomy	Prostate adenocarcinoma (Gleason 3+3=6, pT2 N0)	Benign prostate with inflammation	scRNA-seq dataset #3 (mf002)
4	Cornell	54	Radical prostatectomy	Prostatic adenocarcinoma (Gleason 4+3=7, pT2 N0)	Benign prostate	
5	Cornell	65	Radical prostatectomy	Prostatic adenocarcinoma (Gleason score 3+4=7, pT3a N1)	Benign prostate	
6	Cornell	79	Cystoprostatectomy	High grade urothelial carcinoma of bladder	Benign prostate	