Repurposing inhibitors for SARS-CoV2 main protease

Kumar Sharp (ksharp0016@gmail.com)
Government Medical College and Hospital, Jalgaon

https://orcid.org/0000-0002-5034-8326

Research Article

Keywords: SARS-CoV2, drug repurposing, FDA, chemotherapeutic, anti-retroviral

DOI: https://doi.org/10.21203/rs.3.rs-41342/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

SARS-CoV2 main protease is important for viral replication and one of the most potential targets for drug development in this current pandemic. Drug repurposing is a promising field to provide potential short-term acceptable therapy for management of coronavirus till a specific anti-viral for coronavirus is developed. In-silico drug repurposing screening is the current fastest way to repurpose drugs by targeting active sites in fraction of seconds. In this study, SARS-CoV2 main protease is being targeted by 1050 FDA-approved drugs to inhibit its activity thereby interfering with viral replication. Chemotherapeutic drugs and anti-retroviral drugs have shown potential binding as inhibitor. In-vitro and clinical trials required to establish final fact.

Introduction

SARS-CoV2 main protease is important for viral replication and one of the most potential targets for drug development in this current pandemic. Discovery of new drugs takes years of development and trials. The current pandemic situation makes it more difficult to arrange resources and conduct studies. Drug repurposing is a promising field to provide potential short-term acceptable therapy for management of coronavirus till a specific anti-viral for coronavirus is developed. In-silico drug repurposing screening is the current fastest way to repurpose drugs by targeting active sites in fraction of seconds. In this study, SARS-CoV2 main protease is being targeted by 1050 FDA-approved drugs to inhibit its activity thereby interfering with viral replication. Choosing FDA-approved drugs for this study is important, so that any potential result obtained can be procured easily without delay.

Methodology

The procedure used in this study had been defined in a previous study [1] and necessary permission was obtained to reproduce it here. (see Procedure in the Supplementary Files)

The three-dimensional structure of SARS-CoV2 main protease with inhibitor was downloaded from Protein Data Bank (PDB id: 6WTT) [2].

Figure 1: SARS-CoV2 main protease 6WTT tertiary structure visualised in UCSF Chimera [3] software. Ligands are marked in red.

For molecular docking, three-dimensional structures of 841 compounds were obtained from Zinc15 database [4]. The compounds constituted only those which were approved by FDA. This step was taken so as to facilitate easy availability after clinical trials.

6WTT structure constitutes three chains A, B and C. In order to obtain the active site of the receptor, Drug Discovery Studio software [5] was utilised to find the interactions between the inhibitor and amino acids. These amino acids would serve as the desired target in molecular docking.
PyRx software which includes within itself Autodock Vina and Open Babel was used for molecular docking [6][7][8]. Since all three chains and their corresponding ligands were similar, only one chain was used as the target. The chain was extracted from the entire structure and it was cleared of all ligands and water molecules. The cleaned structure was converted into an Autodock macromolecule by addition of hydrogen atoms and partial charges. The ligand compounds from Zinc15 database were brought to the minimum energy configuration and were converted in Autodock ligands by using Open Babel.

The Vina search space parameters were set to the following values so as to include all target amino acids:

\[
\begin{align*}
\text{center}_x &= 2.92116253491 \\
\text{center}_y &= 26.9617112837 \\
\text{center}_z &= -10.4416644449 \\
\text{size}_x &= 18.1979693434 \\
\text{size}_y &= 19.9112571778 \\
\text{size}_z &= 28.9662108454
\end{align*}
\]

Exhaustiveness was set to 4 for faster computation. All the above operations were performed on a Windows 10 64-bit operating system. The entire docking took about 8 hours with 100% CPU utilization.

Figure 2: Receptor chain is represented in lines. Target amino acids are highlighted in pink. Cuboid indicates the restricted search space including all target amino acids.

The results of docking obtained were sorted on basis of binding affinity. Lower the binding affinity, more stringer is the interaction. For every ligand configuration, only those which had root mean square deviation (RMSD) value 0.0 were chosen. The interactions of receptor with every ligand was visualized using Drug Discovery Studio. The number of desired target amino acids interacted were noted and final result was obtained. If any ligand showed unfavourable interactions, it was excluded to improve accuracy of the study.

Results

The pocket site of the inhibitor was visualized and the following amino acids were found to be constituting the active site. Standard amino acid abbreviations are used. Numbers indicate their position in the sequence.

1. Pro 168
2. Gln 189
3. Met 49
4. Phe 140
5. His 41
6. His 172
7. Glu 166
8. His 164

Figure 3: Standard inhibitor in pocket site of protease chain. Conventional hydrogen bonds are represented in green. Alkyl and pi-alkyl bonds are in pink. Carbon hydrogen bonds are in light blue. Unfavourable bonds are marked in red. Van der Waal forces are not represented with lines but amino acids are shown in light green.

The above standard abbreviations are: Asn: Asparagine; Gly: Glycine; Thr: Threonine; Leu: Leucine; Phe: Phenylalanine; Gln: Glutamine; Lys: Lysine; Pro: Proline; Met: Methionine; Arg: Arginine; Asp: Aspartate; His: Histidine; Ser: Serine; Glu: Glutamic acid; Cys: Cysteine.

Figure 4: Standard inhibitor in pocket site of receptor represented by hydrophobicity surface.

The binding affinity of top 20 of 841 ligands docked with receptor chain are arranged in the table below (Table 1) along with number of target amino acids it is bound to out of 8 mentioned above. It is first sorted on the basis of decreasing order of interactions, then on the basis of increasing order of binding affinity up to -8.1 kcal/mol. The current therapeutic use has also been mentioned.
Ligand	Binding Affinity	Name	Use	active site out of 8
chain_A_ZINC0000003817234_u ff_E=983.51	-8.5	Celsentri	HIV	5
chain_A_ZINC0000003914596_u ff_E=525.60	-9.1	Saquinavir	HIV	4
chain_A_ZINC0000006716957_u ff_E=651.98	-8.3	Nilotinib	chemother apy	4
chain_A_ZINC0000003816292_u ff_E=1638.28	-8.1	Lenvatinib	chemother apy	4
chain_A_ZINC0000003827556_u ff_E=1074.02	-8.1	Delafloxacin	anti-biotic	4
chain_A_ZINC0000004074875_u ff_E=1089.05	-8.1	Candesartan	Hypertensi on	4
chain_A_ZINC0000003816514_u ff_E=531.67	-9	Rolapitant	anti- emetic	3
chain_A_ZINC0000003978005_u ff_E=940.58	-8.7	Dihydroergotamine	Migraine	3
chain_A_ZINC0000012503187_u ff_E=1067.62	-8.6	Conivaptan	Hyponatre mia	3
chain_A_ZINC0000003927822_u ff_E=1108.64	-8.5	Lurasidone	mental disorder	3
chain_A_ZINC0000004214700_u ff_E=566.16	-8.5	Palperidone	mental disorder	3
chain_A_ZINC000000538312_u ff_E=544.51	-8.3	Risperdal	mental disorder	3
chain_A_ZINC0000003920266_u ff_E=480.19	-8.3	Idarubicin	Chemothe rapy	3
chain_A_ZINC0000014210642_u ff_E=1228.10	-8.3	Edarbi	Hypertensi on	3
chain_A_ZINC000000601229_u ff_E=407.32	-8.2	Azelastine	anti- histaminic	3
chain_A_ZINC000000537805_u ff_E=659.74	-8.1	Diabeta	type 2 diabetes	3
chain_A_ZINC0000003938684_u ff_E=968.87	-9.8	Toposar	Chemothe rapy	2
chain_A_ZINC0000004175630_u ff_E=542.57	-8.5	Orap	Tourette Synd	2
chain_A_ZINC0000003917708_u ff_E=550.40	-8.3	Daunorubicin	Chemothe rapy	2
chain_A_ZINC0000003807172_u ff_E=822.43	-8.1	Aragatroban	Anticoagulant	2

Table 1: Top 20 ligands with name according to Zinc15 database arranged according to number of active site interactions and binding affinity.

Their interactions are depicted below in figures 5-22 with amino acids of receptor chain (circles with sequence position of that amino acid).

Figure 5: Saquinavir
For all the above interactions, green bonds are the conventional hydrogen bonds. Pi-alkyl bonds are depicted in pink. Pi-sulphur bonds are depicted in yellow. Pi-donor hydrogen bond is depicted in light blue. Pi-Pi T shaped bonds are depicted in magenta. Halogen bond is depicted in blue. Carbon-Hydrogen bonds are depicted in light blue. Pi-sigma bond is depicted in purple.

Discussion

Literature review of the obtained drugs was conducted to establish any known studies proving its efficacy against coronavirus. Celsentri, saquinavir, nilotinib and risperdal had been reported to even inhibit SARS-CoV2 entry by targeting the receptor-binding domain [1]. Celsentri, lurasidone, paliperidone, argatroban, azelastine, dihydroergotamine, conivaptan, rolapitant and saquinavir have also been reported in other in-silico studies to inhibit protease [9][11][13][14][15][16][17][18]. Nilotinib has shown to inhibit
MERS-CoV at 5.5 micromolar and SARS-CoV at 2.1 micromolar concentration [11]. Candesartan has been theoretically studied for treatment of SARS-CoV2 [12]. However, there were no relevant studies found for rest of the drugs linking them to coronavirus. These drugs must be pushed to in-vitro screening and clinical trials as treatment options or chemoprophylaxis.

Conclusion

In this study I have screened a large library of FDA-approved drugs and put forth promising results. At times of this ongoing pandemic, this study might contribute in the fight against coronavirus. The results though encouraging, must be tested in laboratory before proceeding with human trials and public use because of the limitations of in-silico approach.

Declarations

Source of funding: Nil

Ethical approval: Not required

Conflict of interest: The author hereby declares no conflict of interests.

References

1. Sharp, K., Dange, S. In-silico FDA-approved drug repurposing to find the possible treatment of Coronavirus Disease-19 (COVID-19). Indian J. Biotech. Pharm. Res. 2020; 8(2): 1 –
2. Bank PD. Protein data bank. Nature New Biol. 1971; 233:223.
3. UCSF Chimera
4. Sterling T, Irwin JJ. ZINC 15–ligand discovery for everyone. Journal of chemical information and modelling. 2015 Nov 23;55(11):2324-37.
5. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systèmes, 2016.
6. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. InChemical biology 2015 (pp. 243-250). Humana Press, New York,
7. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry. 2010 Jan 30;31(2):455-61.
8. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. Journal of cheminformatics. 2011 Dec;3(1):33.
9. Jiménez-Alberto A, Ribas-Aparicio RM, Aparicio-Ozores G, Castelán-Vega JA. Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Computational Biology and Chemistry. 2020 Jun 25:107325.
10. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI journal. 2020;19:400.

11. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, Johnson RF, Olinger GG, Jahrling PB, Laidlaw M, Johansen LM. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrobial agents and chemotherapy. 2014 Aug 1;58(8):4885-93.

12. Mostafa MA. Role of Zidovudine and Candesartan in the Novel SARS-CoV-2 Treatment Trials; Theoretical Study. AIJR Preprints. 2020 Apr

13. Liu H, Jiang T, Liu W, Zheng Z. Computational Evaluation of the COVID-19 3c-like Protease Inhibition Mechanism, and Drug Repurposing

14. Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. In silico screening of FDA approved drugs reveals ergotamine and dihydroergotamine as potential coronavirus main protease enzyme inhibitors. Saudi Journal of Biological Sciences. 2020 Jun

15. Odhar HA, Ahjel SW, Albeer AA, Hashim AF, Rayshan AM, Humadi SS. Molecular docking and dynamics simulation of FDA approved drugs with the main protease from 2019 novel coronavirus. Bioinformation. 2020;16(3):236.

16. Elmezayen AD, Al-Obaidi A, Şahin AT, Yelekçi K. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics. 2020 Apr 24:1-3.

17. Gul S, Ozcan O, Okyar A, Bans I, Kavakli IH. In Silico Identification of Widely Used and Well Tolerated Drugs That May Inhibit SARS-CoV-2 3C-like Protease and Viral RNA-Dependent RNA Polymerase Activities, and May Have Potential to Be Directly Used in Clinical

18. Sarkar A, Shilkar D, Maity A, Sardar S, Debnath S, Sen D, Jayaprakash V. Virtual screening assisted identification of small molecule against 2019 novel coronavirus protease enzyme. JOURNAL OF PHARMACEUTICAL CHEMISTRY. 2020 May 6;7.

Figures
Figure 1

SARS-CoV2 main protease 6WTT tertiary structure visualised in UCSF Chimera [3] software. Ligands are marked in red.

Figure 2

Receptor chain is represented in lines. Target amino acids are highlighted in pink. Cuboid indicates the restricted search space including all target amino acids.
Figure 3

Standard inhibitor in pocket site of protease chain. Conventional hydrogen bonds are represented in green. Alkyl and pi-alkyl bonds are in pink. Carbon hydrogen bonds are in light blue. Unfavourable bonds are marked in red. Van der Waal forces are not represented with lines but amino acids are shown in light green.

Figure 4

Standard inhibitor in pocket site of receptor represented by hydrophobicity surface.
Figure 5
Saquinavir

Figure 6
Rolapitant
Figure 7
Dihydroergotamine

Figure 8
Conivaptan
Figure 9
Celsentri

Figure 10
Lurasidone

Figure 11
Orap
Figure 12
Palperidone

Figure 13
Risperdal

Figure 14
Daunorubicin
Figure 15
Idarubicin

Figure 16
Nilotinib

Figure 17
Edarbi
Figure 18

Azelastine

Figure 19

Argatroban

Figure 20

Lenvatinib
Figure 21

Delafloxacin

Figure 22

Candesartan

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Procedure.pdf