ALGEBRAS OF SYMBOLS ASSOCIATED WITH THE WEYL CALCULUS FOR LIE GROUP REPRESENTATIONS

INGRID BELTIȚĂ AND DANIEL BELTIȚĂ

ABSTRACT. We develop our earlier approach to the Weyl calculus for representations of infinite-dimensional Lie groups by establishing continuity properties of the Moyal product for symbols belonging to various modulation spaces. For instance, we prove that the modulation space of symbols $M^{∞,1}$ is an associative Banach algebra and the corresponding operators are bounded. We then apply the abstract results to two classes of representations, namely the unitary irreducible representations of nilpotent Lie groups, and the natural representations of the semidirect product groups that govern the magnetic Weyl calculus. The classical Weyl-Hörmander calculus is obtained for the Schrödinger representations of the finite-dimensional Heisenberg groups, and in this case we recover the results obtained by J. Sjöstrand in 1994.

CONTENTS

1. Introduction . 1
2. Sjöstrand’s algebra of symbols in an abstract setting 2
3. Applications to the magnetic Weyl calculus 11
4. Applications to representations of nilpotent Lie groups 12
References . 15

1. INTRODUCTION

A quite important class of symbols for pseudo-differential operators was introduced by J. Sjöstrand in [Sj94] (see also [Sj95]). He denoted this class by $S(1)$ and pointed out that it has a number of remarkable properties, such as:

(1) For every symbol $a \in S(1)$ the corresponding operator $\text{Op}(a)$ obtained by the pseudo-differential Weyl calculus is bounded on $L^2(\mathbb{R}^n)$.

(2) The class $S(1)$ has a natural structure of unital involutive associative Banach algebra such that the mapping $\text{Op}: S(1) \to B(L^2(\mathbb{R}^n))$ is a continuous $*$-homomorphism.

(3) If a symbol $a \in S(1)$ has the property that the operator $\text{Op}(a)$ is invertible in $B(L^2(\mathbb{R}^n))$, then there exists $b \in S(1)$ such that $\text{Op}(a)^{-1} = \text{Op}(b)$.

Date: February 7, 2011.
2000 Mathematics Subject Classification. Primary 47G30; Secondary 22E25, 22E65, 47G10.
Key words and phrases. Weyl calculus; involutive Banach algebra; Wiener property; Lie group; modulation spaces.
It was later realized that the class $S(1)$ is actually the modulation space $M^{\infty,1}(\mathbb{R}^{2n})$ (see for instance [Gr01] for a broad discussion), and thus the above three properties become as many statements in representation theory of the Heisenberg groups.

The aim of the present paper is to present the deep representation theoretic background of properties (1)–(3), in the sense that we obtain below, in Theorem 2.15, their appropriate versions for some representations of infinite-dimensional Lie groups and their localized Weyl calculus proposed in our earlier papers [BB09a] and [BB10c]. We then apply these abstract results to two classes of representations:

— Representations of some infinite-dimensional Lie groups constructed as semidirect products of Lie groups and invariant function spaces thereon. We have pointed out in [BB09a] and [BB10a] that these semidirect products are the symmetry groups of the magnetic Weyl calculus developed for instance in [MP04], [IMP07], [MP10] and [IMP10], and we thus find versions of the aforementioned properties in this setting.

— Unitary irreducible representations of arbitrary nilpotent Lie groups. The Weyl correspondence for these representations was developed by [Pe94], and we have later introduced in [BB10b] the modulation spaces in this framework and established continuity properties of the operators constructed by the corresponding Weyl calculus. In particular we found a space of symbols, which for the Heisenberg group reduces to Sjöstrand’s class, and gives rise to bounded operators. We now show that that space of symbols has all the above properties (1)–(3) in the case of an arbitrary irreducible representation of a nilpotent Lie group.

The present paper is a sequel to [BB10c] and relies on the methods developed there. In addition, we use some ideas contained in the deep analysis of Sjöstrand’s class in [Gr06].

2. Sjöstrand’s algebra of symbols in an abstract setting

In this section we rely on some terminology and results of [BB10c]. For the reader’s convenience we recall in the first subsection (‘Preliminaries’) the framework and the basic ideas needed in the sequel. Sections 3 and 4 are devoted to discussing wide classes of examples satisfying the assumptions of this abstract framework.

Preliminaries.

Setting 2.1. Throughout this section we keep the following notation:

(1) M is a locally convex Lie group (see [Ne06]) with a smooth exponential mapping $\exp_M: L(M) = m \to M$.

(2) $\pi: M \to \mathcal{B}(H)$ is a twice nuclearly smooth unitary representation ([BB10c Def. 2.2]). For instance, π may be any unitary irreducible representation of a nilpotent Lie group. See Section 3 for another class of examples.

(3) Ξ is a finite-dimensional vector space with a Lebesgue measure and Ξ^* is a manifold with a polynomial structure (see [Pe89]) and a Radon measure, endowed with a function $\langle \cdot, \cdot \rangle: \Xi^* \times \Xi \to \mathbb{R}$ which is linear in the second variable and such that the “Fourier transform”

$$\hat{\cdot}: L^1(\Xi) \to L^\infty(\Xi^*), \quad b(\cdot) \mapsto \hat{b}(\cdot) = \int_{\Xi} e^{-i\langle \cdot, x \rangle} b(x) \, dx$$

gives a linear topological isomorphism $\mathcal{S}(\Xi) \to \mathcal{S}(\Xi^*)$ and a unitary operator $L^2(\Xi) \to L^2(\Xi^*)$. The inverse of this transform is denoted by $a \mapsto \check{a}$.
Remark 2.2. The setting of [BB10c] is actually slightly narrower in the sense that \(Ξ^* \) was supposed to be a finite-dimensional linear space and \(\langle \cdot , \cdot \rangle : Ξ^* × Ξ \to \mathbb{R} \) was supposed to be a duality pairing. However, it is easily seen that the above setting ensures that the main results of [BB10c] hold true.

Notation 2.3. Here we summarize some additional notation related to the above setting:

1. \(\mathcal{H}_∞ \) is the space of smooth vectors for the representation \(π \), which has a structure of nuclear Fréchet space.
2. \(\mathcal{H}_{−∞} \) is the space of continuous antilinear functionals on \(\mathcal{H}_∞ \), endowed with the topology of uniform convergence on the bounded sets. There exist the dense embeddings \(\mathcal{H}_∞ \hookrightarrow \mathcal{H} \hookrightarrow \mathcal{H}_{−∞} \), and the duality pairing \(⟨ \cdot , \cdot ⟩ : \mathcal{H}_{−∞} × \mathcal{H}_∞ \to \mathbb{C} \) agrees with the scalar product of \(\mathcal{H} \).
3. \(\mathcal{B}(\mathcal{H})_∞ \) is the space of smooth vectors for the unitary representation

\[
π ⊗ π : M × M \to \mathcal{B}(\mathfrak{S}_2(\mathcal{H})), \quad (π ⊗ π)(m_1, m_2)T = π(m_1)Tπ(m_2)^{-1}.
\]

This is also a nuclear Fréchet space since \(\mathcal{B}(\mathcal{H})_∞ \simeq \mathcal{H}_∞ \widehat{⊗} \mathcal{H}_∞ \) (see [BB10c Eq. (2.1)]).
4. \(A_{\phi}^{\pi,\theta}f : C(Ξ) \cap S'(Ξ) \) is the ambiguity function for the representation \(π \) along the mapping \(θ \), defined for \(φ ∈ \mathcal{H}_∞ \) and \(f ∈ \mathcal{H}_{−∞} \) by the formula

\[
A_{\phi}^{\pi,\theta}f : Ξ \to \mathbb{C}, \quad (A_{\phi}^{\pi,\theta}f)(⋅) = (f | π(\exp(θ(⋅)))φ).
\]
5. \(\mathcal{W}(f, φ) ∈ S'(Ξ^*) \) is the cross-Wigner distribution for \(π \) along \(θ \), defined by the formula \(\mathcal{W}(f, φ) = A_{\phi}^{\pi,\theta}f \) for \(φ ∈ \mathcal{H}_∞ \) and \(f ∈ \mathcal{H}_{−∞} \).
6. \(M_{ϕ}^{p,q}(π,θ) \) are the modulation spaces constructed for \(p,q ∈ [1,∞] \) with respect to a decomposition into a direct sum of subspaces \(Ξ = Ξ_1 + Ξ_2 \) and the window vector \(φ ∈ \mathcal{H}_∞ \setminus \{0\} \). Specifically, for any measurable function \(F : Ξ \simeq Ξ_1 × Ξ_2 \to \mathbb{C} \) define

\[
\|F\|_{L^{p,q}(Ξ_1 × Ξ_2)} := \left(\int_{Ξ_1} \left(\int_{Ξ_2} |F(X_1, X_2)|^p dX_1 \right)^{q/p} dX_2 \right)^{1/q} \in [0,∞]
\]

with the usual conventions if \(p \) or \(q \) is infinite. Then

\[
M_{ϕ}^{p,q}(π,θ) := \{ f ∈ \mathcal{H}_{−∞} | \|f\|_{M_{ϕ}^{p,q}(π,θ)} := \|A_{ϕ}^{π,θ}f\|_{L^{p,q}(Ξ_1 × Ξ_2)} < ∞ \}.
\]

If \(1 ≤ p_1 ≤ p_2 ≤ ∞ \) and \(1 ≤ q_1 ≤ q_2 ≤ ∞ \), then

\[
M_{ϕ}^{p_1,q_1}(π,θ) ∩ M_{ϕ}^{∞,∞}(π,θ) ⊆ M_{ϕ}^{p_2,q_2}(π,θ) ∩ M_{ϕ}^{∞,∞}(π,θ), \quad (2.1)
\]

since \(L^{p_1,q_1}(Ξ_1 × Ξ_2) \cap L^{∞,∞}(Ξ) \subseteq L^{p_2,q_2}(Ξ_1 × Ξ_2) ∩ L^{∞,∞}(Ξ). \) □
Remark 2.4. We recall that the localized Weyl calculus for π along θ is the mapping $\text{Op}^\theta : L^1(\Xi) \to \mathcal{B}(\mathcal{H})$ given by

\[\text{Op}^\theta(a) = \int \hat{a}(X)\pi(\exp(\theta(X))) \, dX \]

(2.2)

for $a \in L^1(\Xi)$, where we use weakly convergent integrals. Under the present assumptions, it follows by [BB10c, Prop. 3.12] that the localized Weyl calculus defines a linear topological isomorphism $\text{Op}^\theta : \mathcal{S}(\Xi^*) \to \mathcal{B}(\mathcal{H}_\infty, \mathcal{H}_\infty)$, its dual topological isomorphism $\mathcal{O}^\theta : \mathcal{S}(\Xi^*) \to \mathcal{L}(\mathcal{H}_\infty, \mathcal{H}_\infty)$, and the mapping

\[\text{Op}^\theta : L^2(\Xi^*) \to \mathfrak{S}_2(\mathcal{H}), \]

(2.3)

which is a unitary operator.

If $a, b \in \mathcal{S}(\Xi^*)$ and the operator product $\text{Op}^\theta(a)\text{Op}^\theta(b) \in \mathcal{L}(\mathcal{H}_\infty, \mathcal{H}_\infty)$ is well defined, then the Moyal product $a \# b \in \mathcal{S}(\Xi^*)$ is uniquely determined by the condition

\[\text{Op}^\theta(a \# b) = \text{Op}^\theta(a)\text{Op}^\theta(b). \]

Thus the Moyal product defines bilinear mappings $\mathcal{S}(\Xi^*) \times \mathcal{S}(\Xi^*) \to \mathcal{S}(\Xi^*)$ and $L^2(\Xi^*) \times L^2(\Xi^*) \to L^2(\Xi^*)$. \hfill \Box

Definition 2.5. Let us consider the semi-direct product $M \rtimes M$ defined by the action of M on itself by inner automorphisms. Thus $M \rtimes M$ is a locally convex Lie group whose underlying manifold is $M \times M$ and the group operation is

\[(m_1, m_2)(n_1, n_2) = (m_1n_1, n_1^{-1}m_2n_1n_2) \]

for all $m_1, m_2, n_1, n_2 \in M$. There exists the natural continuous unitary representation

\[\pi^\times : M \rtimes M \to \mathcal{B}(\mathfrak{S}_2(\mathcal{H})), \quad \pi^\times(m_1, m_2)T = \pi(m_1m_2)T\pi(m_1)^{-1}. \]

By using the unitary operator (2.3), we can construct the unitarily equivalent representation $\pi^\#: M \rtimes M \to \mathcal{B}(L^2(\Xi^*))$ (see [BB10c, Def. 3.13]). \hfill \Box

Remark 2.6. The representation $\pi^\#: M \rtimes M \to \mathcal{B}(L^2(\Xi^*))$ has the following useful properties.

1. For every $X_1, X_2 \in \Xi$ and $f \in L^2(\Xi^*)$ we have [BB10c, Remark 3.14(2)]

\[\pi^\#(\exp_{M \rtimes M}(\theta(X_1), \theta(X_2)))f = e^{i\cdot(X_1+X_2)}\#_\theta f \# e^{-i\cdot(X_1)}. \]

(2.4)

2. For $F \in \mathcal{S}'(\Xi^*)$ and $\Phi \in \mathcal{S}(\Xi^*)$ we can consider the ambiguity function $\mathcal{A}_{\phi}^{\# \times \theta} : \Xi \times \Xi \to \mathbb{C}$ of the representation $\pi^\#$ along the linear mapping $\theta \times \theta : \Xi \times \Xi \to \mathfrak{m} \times \mathfrak{m}$, just as in Notation 2.3(4), by the formula

\[(\mathcal{A}_{\phi}^{\# \times \theta} F)(X_1, X_2) = (F \ | \ \pi^\#(\exp_{M \rtimes M}(\theta(X_1), \theta(X_2))\Phi)) \]

for all $X_1, X_2 \in \Xi$. We also define

\[\|F\|_{M^s_{\phi}^{\# \times \theta}} = \left(\int_{\Xi} \int_{\Xi} |(\mathcal{A}_{\phi}^{\# \times \theta} F)(X_1, X_2)|^r \, dX_1 \, dX_2 \right)^{1/s} \in [0, \infty] \]

with the usual conventions if r or s is infinite. The space $M^s_{\phi}^{\# \times \theta} : \{ F \in \mathcal{S}'(\Xi^*) \ | \ \|F\|_{M^s_{\phi}^{\# \times \theta}} < \infty \}$.
is a modulation space of symbols for the localized Weyl calculus Op^θ associated with the unitary representation $\pi: M \to \mathcal{B}(\mathcal{H})$ along with the linear mapping $\theta: \Xi \to \mathfrak{m}$ for the window vector $\Phi \in S(\Xi^*) \setminus \{0\}$.

\[\square \]

Ambiguity functions and matrix coefficients. Here is a general version of the usual covariance property of the cross-Wigner distribution (see [Gr01, Prop. 4.3.2]).

Lemma 2.7. For all $f_1, f_2 \in \mathcal{H}_{-\infty}$ and $X_1, X_2 \in \Xi$ we have the equation

\[
\mathcal{W}(\pi(\exp_M(\theta(X_1))))f_1, \pi(\exp_M(\theta(X_2)))f_2
\]

\[= \pi^\#(\exp_{M\times M}(\theta(X_2), \theta(X_1 - X_2)))\mathcal{W}(f_1, f_2) \]

in $S'(\Xi^*)$.

Proof. We have

\[
\text{Op}^\theta(\mathcal{W}(\pi(\exp_M(\theta(X_1))))f_1, \pi(\exp_M(\theta(X_2)))f_2)
\]

\[= (\cdot | \pi(\exp_M(\theta(X_2)))f_2)\pi(\exp_M(\theta(X_1)))f_1
\]

\[= \pi(\exp_M(\theta(X_1)))((\cdot | f_2)f_1)\pi(\exp_M(\theta(-X_2)))
\]

\[= \text{Op}^\theta(e^{i\langle\cdot, X_1\rangle})\text{Op}^\theta(\mathcal{W}(f_1, f_2))\text{Op}^\theta(e^{-i\langle\cdot, X_2\rangle})
\]

\[= \text{Op}^\theta(e^{i\langle\cdot, X_1\rangle}#^\theta\mathcal{W}(f_1, f_2))#^\theta e^{-i\langle\cdot, X_2\rangle}
\]

\[= \text{Op}^\theta(\pi^\#(\exp_{M\times M}(\theta(X_2), \theta(X_1 - X_2)))\mathcal{W}(f_1, f_2)),
\]

where the latter equality relies on (2.4). Then the assertion follows since $\text{Op}^\theta: S'(\Xi^*) \to \mathcal{L}(\mathcal{H}_\infty, \mathcal{H}_{-\infty})$ is a linear topological isomorphism.

\[\square \]

Theorem 2.8. If $\phi \in \mathcal{H}_\infty$ and $a \in S'(\Xi^*)$, then for all $X_1, X_2 \in \Xi$ we have

\[
(A_{\mathcal{W}(\phi^\#, \phi)}^\pi, \theta \times \theta)(X_1, X_2) = (\text{Op}^\theta(a)\phi_{X_1} \mid \phi_{X_1 + X_2})
\]

where we denote $\phi_X := \pi(\exp_M(\theta(X)))\phi \in \mathcal{H}_\infty$ for each $X \in \Xi$.

Proof. First note that

\[
\pi(\exp_M(\theta(-X_1 - X_2)))\text{Op}^\theta(a)\pi(\exp_M(\theta(X_1)))
\]

\[= \text{Op}^\theta(e^{-i\langle\cdot, X_1 + X_2\rangle}#^\theta a #^\theta e^{i\langle\cdot, X_1\rangle})
\]

\[= \text{Op}^\theta(\pi^\#(\exp_{M\times M}(\theta(-X_1), \theta(-X_2)))a)
\]

by (2.4). Therefore

\[
(\text{Op}^\theta(a)\phi_{X_1} \mid \phi_{X_1 + X_2}) = (\pi(\exp_M(\theta(-X_1 - X_2)))\text{Op}^\theta(a)\pi(\exp_M(\theta(X_1)))\phi \mid \phi)
\]

\[= (\text{Op}^\theta(\pi^\#(\exp_{M\times M}(\theta(-X_1), \theta(-X_2)))a) \mid \phi)
\]

\[= (\text{Op}^\theta(\pi^\#(\exp_{M\times M}(\theta(-X_1), \theta(-X_2)))a) \mid (\cdot \mid \phi)\phi)
\]

\[= (\text{Op}^\theta(\pi^\#(\exp_{M\times M}(\theta(-X_1), \theta(-X_2)))a) \mid \text{Op}^\theta(\mathcal{W}(\phi, \phi)))
\]

\[= (\pi^\#(\exp_{M\times M}(\theta(-X_1), \theta(-X_2)))a \mid \mathcal{W}(\phi, \phi))
\]

\[= (a \mid \pi^\#(\exp_{M\times M}(\theta(X_1), \theta(X_2)))\mathcal{W}(\phi, \phi))
\]

\[= (A_{\mathcal{W}(\phi^\#, \phi)}^\pi, \theta \times \theta)(X_1, X_2),
\]

and this completes the proof.

\[\square \]
Corollary 2.9. Let $\phi \in \mathcal{H}_\infty$ and denote $\phi_X := \pi(\exp_M(\theta(X)))\phi \in \mathcal{H}_\infty$ for each $X \in \Xi$. Also let $p, q \in [1, \infty]$. For $a \in S'(\Xi^*)$ denote by B_a the set of all measurable functions $\beta : \Xi \to [0, \infty]$ satisfying the condition
\[
(\forall X \in \Xi) \quad \|(\text{Op}_p^\theta(a)\phi^\bullet | \phi^\bullet + X)\|_{L^p(\Xi)} \leq \beta(X). \tag{2.5}
\]
Also define
\[
\beta_a : \Xi \to [0, \infty], \quad \beta_a(X) = \|(\text{Op}_p^\theta(a)\phi^\bullet | \phi^\bullet + X)\|_{L^p(\Xi)}.
\]
Then we have $a \in M_{W(\phi, \phi)}^{p,q}(\pi^#, \theta \times \theta)$ if and only if $B_a \cap L^q(\Xi) \neq \emptyset$, and in this case $\beta_a \in B_a \cap L^q(\Xi)$ and
\[
\|a\|_{M_{W(\phi, \phi)}^{p,q}(\pi^#, \theta \times \theta)} = \inf_{\beta \in B_a \cap L^q(\Xi)} \|\beta\|_{L^q(\Xi)} = \|\beta_a\|_{L^q(\Xi)}. \tag{2.6}
\]
Proof. If $a \in M_{W(\phi, \phi)}^{p,q}(\pi^#, \theta \times \theta)$, then the function $a_0 : \Xi \to [0, \infty]$ defined by $a_0(Y) := \|A_{W(\phi, \phi)}^\theta(a)(Y)\|_{L^p(\Xi)}$ has the property $a_0 \in L^q(\Xi)$ and moreover it follows at once by Theorem 2.8 that $\|(\text{Op}_p^\theta(a)\phi^\bullet | \phi^\bullet + X)\|_{L^p(\Xi)} \leq a_0(X)$ for $X \in \Xi$. Hence condition (2.7) is satisfied for $\beta := a_0$.

Conversely, if (2.5) holds, then we get by Theorem 2.8 again that for all $Y \in \Xi$ we have $a_0(Y) \leq \beta(Y)$, whence $\|a_0\|_{L^q(\Xi)} \leq \|\beta\|_{L^q(\Xi)} < \infty$, and then $a \in M_{W(\phi, \phi)}^{p,q}(\pi^#, \theta \times \theta)$ and $\|a\|_{M_{W(\phi, \phi)}^{p,q}(\pi^#, \theta \times \theta)} \leq \|\beta\|_{L^q(\Xi)}$.

Equality (2.6) is a by-product of the above reasoning, hence the proof is complete. \hfill \Box

Remark 2.10. By using Corollary 2.9 for $p = \infty$ we get the following abstract version of the almost diagonalization theorem established in [Gro66 Th. 3.2]:

Let $\phi \in \mathcal{H}_\infty$ and denote as above $\phi_X := \pi(\exp_M(\theta(X)))\phi \in \mathcal{H}_\infty$ for each $X \in \Xi$. For $a \in S'(\Xi^*)$ let B_a be the set of all measurable functions $\beta : \Xi \to [0, \infty]$ satisfying the condition
\[
(\forall X_1, X_2 \in \Xi) \quad \|(\text{Op}_p^\theta(a)\phi_X | \phi_X)\| \leq \beta(X_1 - X_2). \tag{2.7}
\]
Also define
\[
\beta_a : \Xi \to [0, \infty], \quad \beta_a(X) = \sup_{Y \in \Xi} \|(\text{Op}_p^\theta(a)\phi_{X+Y} | \phi_X)\|
\]
Then we have $a \in M_{W(\phi, \phi)}^{p,q}(\pi^#, \theta \times \theta)$ if and only if $B_a \cap L^q(\Xi) \neq \emptyset$, and in this case $\beta_a \in B_a \cap L^q(\Xi)$ and
\[
\|a\|_{M_{W(\phi, \phi)}^{p,q}(\pi^#, \theta \times \theta)} = \inf_{\beta \in B_a \cap L^q(\Xi)} \|\beta\|_{L^q(\Xi)} = \|\beta_a\|_{L^q(\Xi)}. \tag{2.8}
\]
whenever $1 \leq q \leq \infty$. \hfill \Box

Definition 2.11. Let $\phi \in \mathcal{H}_\infty$ with $\|\phi\| = 1$ and $\phi_X = \pi(\exp_M(\theta(X)))\phi \in \mathcal{H}_\infty$ for each $X \in \Xi$. For every $a \in S'(\Xi^*)$ we define
\[
C_a : \Xi \times \Xi \to \mathbb{C}, \quad C_a(X, Y) := \langle \text{Op}_p^\theta(a)\phi_X | \phi_Y \rangle
\]
and the integral operator in $L^2(\Xi)$ defined by the integral kernel C_a will be denoted by
\[
T_a : \mathcal{D}(T_a) \to L^2(\Xi).
\]
Let us also denote by $V := A_\phi : \mathcal{H} \to L^2(\Xi)$ the isometry defined by the ambiguity functions. Note that the constant function $1 \in S'(\Xi^*)$ gives rise to the orthogonal
projection $T_1 = T_1^*(T_1)^2 \in \mathcal{B}(L^2(\Xi))$ with Ran $T_1 = \text{Ran} V$ and $T_1 T_a = T_a T_1 = T_a$ for every $a \in S'(\Xi)$. \hfill \Box

We now present the main idea which allows to use integral operators on Ξ for the study of operators $\text{Op}^\theta(a) : \mathcal{H}_\infty \to \mathcal{H}_{-\infty}$, $a \in S'(\Xi^*)$.

Lemma 2.12. For arbitrary $a \in S'(\Xi)$ we have

$$\text{Op}^\theta(a) = V^* T_a V : \mathcal{D}(\text{Op}^\theta(a)) \to \mathcal{H}$$

on the domain

$$\mathcal{D}(\text{Op}^\theta(a)) = \{ f \in \mathcal{H} | Vf \in \mathcal{D}(T_a) \}.$$

In particular, $T_a \in \mathcal{B}(L^2(\Xi))$ if and only if $\text{Op}^\theta(a) \in \mathcal{B}(\mathcal{H})$.

Proof. Use Definition 2.11 along with the fact that the representation $\pi \otimes \bar{\pi} : M \times M \to \mathcal{B}(\mathfrak{S}_2(\mathcal{H}))$ satisfies the orthogonality relations along the linear mapping $\theta \times \theta : \Xi \times \Xi \to m \times m$ (see [BB10c] Lemma 3.8(1)). \hfill \Box

Remark 2.13. If $a_1, a_2 \in S'(\Xi)$ and the operator product $T_{a_1} T_{a_2}$ is well defined in $L^2(\Xi)$, so that $\text{Op}^\theta(a_1) \text{Op}^\theta(a_2) = V^* T_{a_1} T_{a_2} V \in \mathcal{L}(\mathcal{H}_\infty, \mathcal{H}_{-\infty})$ is well defined, then the Moyal product $a_1 \#^\theta a_2 \in S'(\Xi^*)$ makes sense and we have

$$C_{a_1 \#^\theta a_2}(X, Z) = \int_{\Xi} C_{a_1}(X, Y) C_{a_2}(Y, Z) dY$$

(2.9)

for all $X, Z \in \Xi$. In fact, it follows by [BB10c] Lemma 3.19(4)] that for $X \in \Xi$ we have the integral $\text{Op}^\theta(a_2) \phi_X = \int_{\Xi} (\text{Op}^\theta(a_2) \phi_X | \phi_Y) \phi_Y dY$ convergent in $\mathcal{H}_{-\infty}$.

Therefore, if $\text{Op}^\theta(a_2) \phi_X \in \mathcal{D}(\text{Op}^\theta(a_1))$, then

$$\text{Op}^\theta(a_1) \text{Op}^\theta(a_2) \phi_X = \int_{\Xi} (\text{Op}^\theta(a_2) \phi_X | \phi_Y) \text{Op}^\theta(a_1) \phi_Y dY.$$

Hence we have

$$(\text{Op}^\theta(a_1) \text{Op}^\theta(a_2) \phi_X | \phi_Z) = \int_{\Xi} (\text{Op}^\theta(a_2) \phi_X | \phi_Y)(\text{Op}^\theta(a_1) \phi_Y | \phi_Z) dY$$

for all $X, Z \in \Xi$. \hfill \Box

The next result is a generalization of the version of [HTW07] Prop. 0.1] without weights, which is recovered in the special case when π is the Schrödinger representation of the Heisenberg group.

Corollary 2.14. Let $\phi \in \mathcal{H}_\infty$ and $p_1, p_2, p, q_1, q_2, q \in [1, \infty]$ such that $\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p}$ and $\frac{1}{q_1} + \frac{1}{q_2} = 1 + \frac{1}{q}$. Then the Moyal product $#^\theta$ defines a continuous bilinear map

$$M_{\mathcal{W}(\phi, \phi)}^{p_1, q_1}(\pi^#, \theta \times \theta) \times M_{\mathcal{W}(\phi, \phi)}^{p_2, q_2}(\pi^#, \theta \times \theta) \to M_{\mathcal{W}(\phi, \phi)}^{p, q}(\pi^#, \theta \times \theta).$$

Proof. For $j = 1, 2$ let $a_j \in M_{\mathcal{W}(\phi, \phi)}^{p_j, q_j}(\pi^#, \theta \times \theta)$. We shall use the notation of Definition 2.11.
Then there exists $\beta_j \in L^q(\Xi)$ such that $\|C_{a_j}(\cdot, \cdot + Y)\|_{L^p(\Xi)} \leq \beta_j(Y)$ for every $Y \in \Xi$. On the other hand, it follows by $\|x\|_{L^p} \leq \|x\|_{L^q}$ that for $X_1, X_2 \in \Xi$ we have

$$C_{a_1 \# a_2}(X_1, X_1 + X_2) = \int_{\Xi} C_{a_1}(X_1, Y) C_{a_2}(Y, X_1 + X_2) \, dY$$

$$= \int_{\Xi} C_{a_1}(X_1, X_1 + Y) C_{a_2}(X_1 + Y, X_1 + X_2) \, dY$$

hence by Minkowski’s inequality, and then Hölder’s inequality, we get

$$\|C_{a_1 \# a_2}(\cdot, \cdot + X_2)\|_{L^p(\Xi)} \leq \int_{\Xi} \|C_{a_1}(\cdot, \cdot + Y)\|_{L^p(\Xi)} \|C_{a_2}(\cdot + Y, \cdot + X_2)\|_{L^p(\Xi)} \, dY$$

$$\leq \int_{\Xi} \|C_{a_1}(\cdot, \cdot + Y)\|_{L^p(\Xi)} \|C_{a_2}(\cdot + Y, \cdot + X_2 - Y)\|_{L^p(\Xi)} \, dY$$

$$\leq \beta_1(Y) \beta_2(X_2 - Y) \, dY$$

$$= : \beta(X_2)$$

Since $\beta_j \in L^q(\Xi)$ for $j = 1, 2$, we have $\beta \in L^q(\Xi)$ and

$$\|a_1 \# a_2\|_{M^{p, q}_{W(\phi, \phi)}(\Xi, \pi^\# , \theta \times \theta)} \leq \|\beta\|_{L^q(\Xi)} \leq \|\beta_1\|_{L^q(\Xi)} \|\beta_2\|_{L^q(\Xi)}.$$

By using Corollary 2.10, it then follows that $a_1 \# a_2 \in M^{p, q}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)$ and

$$\|a_1 \# a_2\|_{M^{p, q}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)} \leq \|a_1\|_{M^{p, q}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)} \|a_2\|_{M^{p, q}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)} \, dY,$$

which ends the proof. □

The abstract version of Sjöstrand’s algebra. We can now prove the main result of the paper.

Theorem 2.15. If $\phi \in \mathcal{H}_\infty$, then the following assertions hold:

1. For every $a \in M^{\infty, 1}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)$ we have $\text{Op}^\theta(a) \in \mathcal{B}(\mathcal{H})$ and moreover $\|\text{Op}^\theta(a)\| \leq \|a\|_{M^{\infty, 1}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)}.$

2. The Moyal product $\#^\theta$ makes the modulation space $M^{\infty, 1}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)$ into an involutive associative Banach algebra.

3. Let

$$M^{\infty, 1}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta) = \mathbb{C}1 + M^{\infty, 1}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta).$$

If $a_0 \in M^{\infty, 1}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)$ and the operator $\text{Op}^\theta(a_0)$ is invertible in $\mathcal{B}(\mathcal{H})$, then there exists $b_0 \in M^{\infty, 1}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)$ such that $\text{Op}^\theta(a_0)^{-1} = \text{Op}^\theta(b_0)$.

Proof. To prove Assertion (1), let $a \in M^{\infty, 1}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)$ arbitrary and denote $\phi_X := \pi(\exp_{\mathcal{A}}(\theta(X)))\phi \in \mathcal{H}_\infty$ for each $X \in \Xi$. It follows by Corollary 2.11 that there exists $\beta_0 \in L^1(\Xi)$ such that $\|a\|_{M^{\infty, 1}_{W(\phi, \phi)}(\pi^\# , \theta \times \theta)} = \|\beta_0\|_{L^1(\Xi)}$ and

$$\forall X_1, X_2 \in \Xi \quad \|\text{Op}^\theta(a) \phi_{X_1} | \phi_{X_2}\| \leq \beta_0(X_1 - X_2).$$
Now let \(f \in \mathcal{H}_\infty \) and recall from [BB10c, Lemma 3.19] that \(f = \int (f | \phi_X) \phi_X \, dX \), hence
\[
|\langle \text{Op}^\theta(a) f, \phi_Y \rangle| \leq \int |\langle f, \phi_X \rangle| \cdot |\langle \text{Op}^\theta(a) \phi_X, \phi_Y \rangle| \, dX \\
\leq \int |\langle f, \phi_X \rangle| \cdot \beta_a(X - Y) \, dX.
\]
That is, \(|\langle A^\pi_{\phi} (\text{Op}^\theta(a)) f \rangle(Y) | \leq |\langle A^\pi_{\phi} (\text{Op}^\theta(a)) f \rangle | \cdot \beta_a(Y) \) for all \(Y \in \Xi \). Therefore,
\[
\| \text{Op}^\theta(a) f \| = \| \langle A^\pi_{\phi} (\text{Op}^\theta(a)) f \rangle \|_{L^2(\Xi)} \leq \| A^\pi_{\phi} (\text{Op}^\theta(a)) \|_{L^2(\Xi)} \| \beta_a \|_{L^1(\Xi)}
\]
Since \(f \in \mathcal{H}_\infty \) is arbitrary and \(\mathcal{H}_\infty \) is dense in \(\mathcal{H} \), the assertion follows.

For Assertion (2), to see that \(M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta) \) is closed under the Moyal product, just use Corollary 2.14 for \(p_1 = p_2 = p \) and \(q_1 = q_2 = q \). Next note that if \(\| a \|_{M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta)} = 0 \), then \(A^\pi_{\mathcal{W}(\phi, \phi)}(a) = 0 \), and then it is straightforward to check that \(a = 0 \). To prove that the norm of \(M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta) \) is complete, it suffices to check that any Cauchy sequence \(\{ a_j \}_{j \geq 1} \) has a convergent subsequence. By selecting a suitable subsequence, we may assume that \(\| a_{j+1} - a_j \|_{M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta)} < \frac{1}{j} \) for every \(j \geq 0 \), where \(a_0 := 0 \). It follows by Corollary 2.10 that there exists \(\beta_{j+1} \in L^1(\Xi) \) such that \(\| \beta_{j+1} \|_{L^1(\Xi)} < \frac{1}{2^j} \) and
\[
(\forall X_1, X_2 \in \Xi) \quad |\langle \text{Op}^\theta(a_{j+1} - a_j) \phi_{X_1}, \phi_{X_2} \rangle| \leq \beta_{j+1}(X_1 - X_2).
\]
Note that \(\beta := \sum_{j=1}^{\infty} \beta_j \in L^1(\Xi) \) and, by summing up the above inequalities for \(j = 0, \ldots, k - 1 \) we get
\[
(\forall X_1, X_2 \in \Xi) \quad |\langle \text{Op}^\theta(a_{k}) \phi_{X_1}, \phi_{X_2} \rangle| \leq (\beta_1 + \cdots + \beta_k)(X_1 - X_2) \leq \beta(X_1 - X_2).
\]
On the other hand, since \(\{ a_k \}_{k \geq 1} \) is a Cauchy sequence in \(M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta) \), it follows by Assertion (1) that there exists an operator \(T \in \mathcal{B}(\mathcal{H}) \) such that \(\lim_{k \to \infty} \| \text{Op}^\theta(a_k) - T \| = 0 \). It follows by the above inequalities for \(k \to \infty \) that
\[
(\forall X_1, X_2 \in \Xi) \quad |\langle T \phi_{X_1}, \phi_{X_2} \rangle| \leq \beta(X_1 - X_2).
\]
Moreover, it follows by Remark 2.2 that \(T = \text{Op}^\theta(a) \) for some \(a \in \mathcal{S}'(\Xi^*) \), and then \(a \in M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta) \) by the above inequality along with Corollary 2.10. Finally, by summing up the inequalities (2.11) for \(j = k, k+1, \ldots \) and using Corollary 2.10 again, we get \(\| a - a_k \|_{M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta)} \leq \sum_{j=k}^{\infty} \frac{1}{2^j} = \frac{1}{2^{k-1}} \) for arbitrary \(k \geq 1 \), hence
\[
a = \lim_{k \to \infty} a_k \in M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta).
\]
For Assertion (3) let \(a_0 \in M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta) \) and assume that the operator \(\text{Op}^\theta(a_0) \) is invertible in \(\mathcal{B}(\mathcal{H}) \). There exist \(\alpha \in \mathbb{C} \) and \(a_{00} \in M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta) \) such that \(a_0 = \alpha + a_{00} \). We shall use the notation of Definition 2.11 and also recall that for the symbol 1 \(\in M^{\infty,1}_{\mathcal{W}(\phi, \phi)}(\pi^\#, \theta \times \theta) \) we get the operator \(T_1 \in \mathcal{B}(L^2(\Xi)) \) with the properties \(T_1 = T_1^* = (T_1)^2 \) and \(\text{Ran}T_1 = \text{Ran}V \). Moreover, for every
Given \(a \in \mathcal{M}^{\infty,1}_{W(\phi,\theta)}(\pi^#, \theta \times \theta) \) we have \(T_aT_1 = T_1T_a = T_a \), and in particular \(T_a \) vanishes on \((\text{Ran } T_1)^\perp\).

It then follows that if \(z \in \mathbb{C} \setminus \{\alpha\} \) and the operator

\[
 z1 - \text{Op}^\theta(a) = \text{Op}^\theta(z - a) = \text{Op}^\theta(z - \alpha - a_00)
\]

is invertible in \(\mathcal{B}(\mathcal{H}) \), then \((z - \alpha)(1 - T_1) + T_{z - \alpha - a_00} = (z - \alpha)1 - T_{a_00} \) is invertible in \(\mathcal{B}(L^2(\Xi)) \). On the other hand, since \(a_00 \in \mathcal{M}^{\infty,1}_{W(\phi,\theta)}(\pi^#, \theta \times \theta) \), it follows by Remark 2.10 that there exists \(\beta_0 \in L^1(\Xi) \) such that the integral kernel \(C_{a_00} \) of \(T_{a_00} \) satisfies the estimate \(|C_{a_00}(X - Y)| \leq \beta_0(X - Y)\) for all \(X, Y \in \Xi \). Then we get by [Ku99, Th. 5.4.7] (see also [Ku01]) that \((z - \alpha)1 - T_{a_00} \)^{-1} = \((z - \alpha)^{-1}1 - N_z \), where \(N_z \in \mathcal{B}(L^2(\Xi)) \) is an integral operator whose kernel \(K_{N_z} \) satisfies a similar estimate \(|K_{N_z}(X - Y)| \leq \beta_0(X - Y)\) for all \(X, Y \in \Xi \) and a suitable function \(\beta_0 \in L^1(\Xi) \).

Moreover, the estimates satisfied by the integral kernel of \(N_z \) show that actually
\(z \mapsto b_z \in \mathcal{S}(\Xi^*) \) such that \(\text{Op}^\theta(b_z) \in \mathcal{B}(\mathcal{H}) \) and \(T_{b_z} = N_z \). We then get \(b_z \in \mathcal{S}(\Xi^*) \) such that \(\text{Op}^\theta(b_z) \in \mathcal{B}(\mathcal{H}) \) and \(T_{b_z} = N_z \). Moreover, the estimates satisfied by the integral kernel of \(N_z \) show that actually \(b_z \in \mathcal{M}^{\infty,1}_{W(\phi,\theta)}(\pi^#, \theta \times \theta) \) by Remark 2.10 again.

We have thus shown that if \(z \in \mathbb{C} \setminus \{\alpha\} \) and \(z1 - \text{Op}^\theta(a_00) \) (which is equal to \(\text{Op}^\theta(z - a_00) \)) is invertible in \(\mathcal{B}(\mathcal{H}) \), then there exists \(b_z \in \mathcal{M}^{\infty,1}_{W(\phi,\theta)}(\pi^#, \theta \times \theta) \) such that \(\text{Op}^\theta(z - a_00)^{-1} = \text{Op}^\theta((z - \alpha)^{-1} - b_z) \). Thus we can see that \(z - a_00 \) is invertible in the unital Banach algebra \(\mathcal{M}^{\infty,1}_{W(\phi,\theta)}(\pi^#, \theta \times \theta) \) and its inverse is \((z - \alpha)^{-1} - b_z \).

In particular, \(z \mapsto b_z \) is a holomorphic mapping from the complement of the spectrum of \(\text{Op}^\theta(a_0) \) into \(\mathcal{M}^{\infty,1}_{W(\phi,\theta)}(\pi^#, \theta \times \theta) \). Now, since \(\text{Op}^\theta(a_0) \in \mathcal{B}(\mathcal{H}) \) is an invertible operator, there exists a piecewise smooth closed curve that does not contain \(\alpha \) and surrounds the spectrum of \(\text{Op}^\theta(a_0) \), and we have by holomorphic functional calculus

\[
\text{Op}^\theta(a_0)^{-1} = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z} (z - \text{Op}^\theta(a_0))^{-1} dz.
\]

Since \(\mathcal{M}^{\infty,1}_{W(\phi,\theta)}(\pi^#, \theta \times \theta) \) is a unital Banach algebra, we can define

\[
b_0 := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z} ((z - \alpha)^{-1} - b_z) dz \in \mathcal{M}^{\infty,1}_{W(\phi,\theta)}(\pi^#, \theta \times \theta).
\]

Then

\[
\text{Op}^\theta(b_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z} \text{Op}^\theta((z - \alpha)^{-1} - b_z) dz = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z} (z - \text{Op}^\theta(a_0))^{-1} dz = \text{Op}^\theta(a_0)^{-1},
\]

which completes the proof. \(\square \)

Remark 2.16. A more general result on the continuity of the operators \(\text{Op}^\theta(a) \) on modulation spaces was obtained in [BB10c] by a completely different method based on continuity properties of the cross-Wigner distribution. \(\square \)
3. Applications to the magnetic Weyl calculus

Notation 3.1. Let G be a simply connected, nilpotent Lie group with the Lie algebra \mathfrak{g} and the inverse of the exponential map denoted by $\log_G: G \to \mathfrak{g}$. We denote by $\lambda: G \to \text{End}(\mathcal{C}^\infty(G))$, $g \mapsto \lambda_g$, the left regular representation defined by $(\lambda_g \phi)(x) = \phi(g^{-1} x)$ for every $x, g \in G$ and $\phi \in \mathcal{C}^\infty(G)$. Moreover, we denote by $\mathbf{1}$ the constant function which is identically equal to 1 on G. (This should not be confused with the unit element of G, which is denoted in the same way.)

If the space of globally defined smooth vector fields on G (that is, global sections in its tangent bundle) is denoted by $\mathfrak{X}(G)$ and the space of globally defined smooth 1-forms (that is, global sections in its cotangent bundle) is denoted by $\Omega^1(G)$, then there exists a natural bilinear map

$$\langle \cdot, \cdot \rangle: \Omega^1(G) \times \mathfrak{X}(G) \to \mathcal{C}^\infty(G)$$

defined as usually by evaluations at every point of G.

For arbitrary $g \in G$ we denote the corresponding right-translation mapping by $R_g: G \to G$, $h \mapsto hg$. Then we define the injective linear mapping

$$i^R: \mathfrak{g} \to \mathfrak{X}(G)$$

by $(i^R g)(x) = (T_1(R_g))X \in T_g G$ for all $g \in G$ and $X \in \mathfrak{g}$.

Moreover, we define

$$\Xi = \Xi^* := \mathfrak{g} \times \mathfrak{g}^*$$

and the symplectic duality pairing

$$\langle \cdot, \cdot \rangle: \Xi^* \times \Xi \to \mathbb{R}, \quad ((X_1, \xi_1), (X_2, \xi_2)) \mapsto \langle \xi_1, X_2 \rangle - \langle \xi_2, X_1 \rangle$$

where $\langle \cdot, \cdot \rangle: \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R}$ is the natural duality pairing. □

Setting 3.2. Throughout this section we denote by \mathcal{F} a linear space of real functions on the Lie group G which is endowed with a sequentially complete, locally convex topology and satisfies the following conditions:

1. The linear space \mathcal{F} is invariant under the representation of G by left translations, that is, if $\phi \in \mathcal{F}$ and $g \in G$ then $\lambda_g \phi \in \mathcal{F}$.
2. There exist the continuous inclusion maps $\mathfrak{g}^* \hookrightarrow \mathcal{F} \hookrightarrow \mathcal{C}^\infty_{\text{pol}}(G)$, where the embedding $\mathfrak{g}^* \hookrightarrow \mathcal{F}$ is given by $\xi \mapsto \xi \circ \log_G$.
3. The mapping $G \times \mathcal{F} \to \mathcal{F}$, $(g, \phi) \mapsto \lambda_g \phi$ is smooth. For every $\phi \in \mathcal{F}$ we denote by $\hat{\lambda}(\cdot)\phi: g \to \mathcal{F}$ the differential of the mapping $g \mapsto \lambda_g \phi$ at the point $\mathbf{1} \in G$.

For instance, the function space $\mathcal{C}^\infty_{\text{pol}}(G)$ is admissible. Here $\mathcal{C}^\infty_{\text{pol}}(G)$ is the space of smooth functions $\phi: G \to \mathbb{R}$ such that the function $\phi \circ \log_G: \mathfrak{g} \to \mathbb{R}$ and its partial derivatives have polynomial growth. □

Definition 3.3. We define the semidirect product $M = \mathcal{F} \ltimes \chi G$, which is a locally convex Lie group, and the unitary representation

$$\pi: M \to \mathcal{B}(L^2(G)), \quad \pi(\phi, g) f = e^{i\phi} \lambda_g f \quad \text{for} \quad \phi \in \mathcal{F}, g \in G, \quad \text{and} \quad f \in L^2(G).$$

If we have $A \in \Omega^1(G)$ with \mathcal{F}-growth, in the sense that $(A, i^R X) \in \mathcal{F}$ whenever $X \in \mathfrak{g}$, then we define the linear mapping

$$\theta^A: \mathfrak{g} \times \mathfrak{g}^* \to \mathfrak{m} = \mathcal{F} \ltimes \chi \mathfrak{g}, \quad (X, \xi) \mapsto (\xi \circ \log_G + (A, i^R X), X).$$

□
Remark 3.4. The representation \(\pi \) is twice nuclearly smooth and its space of smooth vectors is the Schwartz space \(S(G) \) ([BB10c Cor.4.5]) and the following assertions hold for every 1-form \(A \in \Omega^1(G) \) with \(F \)-growth:

1. The representation \(\pi \) satisfies the orthogonality relations along the mapping \(\theta^A \).
2. The representation \(\pi \) satisfies the density condition along \(\theta^A \).
3. The localized Weyl calculus for \(\pi \) along \(\theta^A \) is regular and defines a unitary operator \(\text{Op}^{\theta^A} : L^2(\mathfrak{g} \times \mathfrak{g}^*) \to \mathcal{S}_2(L^2(G)) \).
4. If \(u \in \text{U}(\mathfrak{m}_C) \) and \(\phi \in \mathcal{S}(G) \), the function \(\|d\pi(\text{Ad}_{U(\mathfrak{m}_C)}(\exp\theta^A(\cdot)))u\phi\| \) has polynomial growth on \(\mathfrak{g} \times \mathfrak{g}^* \).

These properties have been established in [BB10c Cor.4.5], and it thus follows that all of the conditions of Setting 2.1 are satisfied in the present setting provided by the representation \(\pi \) and the linear mapping \(\theta^A \).

Just as in [BB99a] we shall denote the corresponding Moyal product \(\#^A \) simply by \(\theta^A \) and localized Weyl calculus for \(\pi \) along \(\theta^A \) is denoted by \(\text{Op}^A(\cdot) \) and is called the magnetic Weyl calculus associated with the magnetic potential \(A \in \Omega^1(G) \). The corresponding magnetic field is \(B := dA \in \Omega^2(G) \).

Theorem 3.5. If \(\phi \in \mathcal{S}(G) \), then the following assertions hold:

1. For every \(a \in M_{W(\phi,\phi)}^\infty(\pi^\#, \theta^A \times \theta^A) \) we have \(\text{Op}^A(a) \in \mathcal{B}(L^2(G)) \) and moreover \(\|\text{Op}^A(a)\| \leq \|a\|_{M_{W(\phi,\phi)}^\infty(\pi^\#, \theta^A \times \theta^A)} \).
2. The Moyal product \(\#^A \) makes the modulation space \(M_{W(\phi,\phi)}^\infty(\pi^\#, \theta^A \times \theta^A) \) into an associative Banach algebra.
3. If \(a_0 \in M_{W(\phi,\phi)}^\infty(\pi^\#, \theta^A \times \theta^A) \) and \(\text{Op}^A(a_0) \in \mathcal{B}(L^2(G)) \) is invertible, then there exists \(b_0 \in M_{W(\phi,\phi)}^\infty(\pi^\#, \theta^A \times \theta^A) \) such that \(\text{Op}^A(a_0)^{-1} = \text{Op}^A(b_0) \).

Proof. The above Remark 3.4 shows that Corollary 2.14 and Theorem 2.15 apply, and then the assertions follow.

4. Applications to representations of nilpotent Lie groups

All of the conditions of Setting 2.1 are satisfied if \(M \) is a finite-dimensional nilpotent Lie group, \(\pi \) is a unitary irreducible representation with the corresponding coadjoint orbit \(\Xi^* \), \(\Xi \) is a predual of the coadjoint orbit \(\Xi \) (in the sense of [BB10b]) and \(\theta : \Xi \hookrightarrow \mathfrak{m} \) is the embedding map. This will be the setting of the present section, and our point here is to describe how the abstract results of Section 2 can be specialized in this framework, and also to point out how they can be further sharpened in the special case when \(\pi \) is a square-integrable representation modulo the center.

Setting 4.1. Throughout this section we shall use the following notation:

1. Let \(G \) be a connected, simply connected, nilpotent Lie group with Lie algebra \(\mathfrak{g} \). Then the exponential map \(\exp_G : \mathfrak{g} \to G \) is a diffeomorphism with the inverse denoted by \(\log_G : G \to \mathfrak{g} \).
2. We denote by \(\mathfrak{g}^* \) the linear dual space to \(\mathfrak{g} \) and by \(\langle \cdot, \cdot \rangle : \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R} \) the natural duality pairing.
3. Let \(\xi_0 \in \mathfrak{g}^* \) with the corresponding coadjoint orbit \(\mathcal{O} := \text{Ad}_G^{\xi_0}(G) \xi_0 \subseteq \mathfrak{g}^* \).
4. Let \(\pi : G \to \mathcal{B}(\mathcal{H}) \) be any unitary irreducible representations associated with the coadjoint orbit \(\mathcal{O} \) by Kirillov’s theorem ([K52]).
(5) The isotropy group at ξ_0 is $G_{\xi_0} := \{ g \in G \mid \text{Ad}^*_G(g)\xi_0 = \xi_0 \}$ with the corresponding isotropy Lie algebra $\mathfrak{g}_{\xi_0} = \{ X \in \mathfrak{g} \mid \xi_0 \circ \text{ad}_gX = 0 \}$. If we denote the center of \mathfrak{g} by $\mathfrak{z} := \{ X \in \mathfrak{g} \mid [X, \mathfrak{g}] = \{0\} \}$, then $\mathfrak{z} \subseteq \mathfrak{g}_{\xi_0}$.

(6) Let $n := \dim \mathfrak{g}$ and fix a sequence of ideals in \mathfrak{g},
$$ \{0\} = \mathfrak{g}_0 \subseteq \mathfrak{g}_1 \subseteq \cdots \subseteq \mathfrak{g}_n = \mathfrak{g} $$

such that $\dim(\mathfrak{g}_j/\mathfrak{g}_{j-1}) = 1$ and $[\mathfrak{g}, \mathfrak{g}_j] \subseteq \mathfrak{g}_{j-1}$ for $j = 1, \ldots, n$.

(7) Pick any $X_j \in \mathfrak{g}_j \setminus \mathfrak{g}_{j-1}$ for $j = 1, \ldots, n$, so that the set $\{X_1, \ldots, X_n\}$ will be a Jordan-Hölder basis in \mathfrak{g}.

Also consider the set of jump indices of the coadjoint orbit O with respect to the aforementioned Jordan-Hölder basis,
$$ e := \{ j \in \{1, \ldots, n\} \mid \mathfrak{g}_j \not\subseteq \mathfrak{g}_{j-1} + \mathfrak{g}_{\xi_0} \} = \{ j \in \{1, \ldots, n\} \mid X_j \not\subseteq \mathfrak{g}_{j-1} + \mathfrak{g}_{\xi_0} \} $$

and then define the corresponding predual of the coadjoint orbit O,
$$ \mathfrak{g}_e := \text{span}\{X_j \mid j \in e\} \subseteq \mathfrak{g}. $$

We note the direct sum decomposition $\mathfrak{g} = \mathfrak{g}_{\xi_0} + \mathfrak{g}_e$. \hfill \square

Theorem 4.2. If the representation π is square integrable modulo the center, then the following assertions hold:

1. If $p_1, p_2, p, q_1, q_2, q \in [1, \infty]$ satisfy the conditions $\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p}$ and $\frac{1}{q_1} + \frac{1}{q_2} = 1 + \frac{1}{q}$, then the Moyal product $\#^\theta$ defines a continuous bilinear map
$$ M^{p_1, q_1}(\pi^\#) \times M^{p_2, q_2}(\pi^\#) \rightarrow M^{p, q}(\pi^\#). $$

2. The Moyal product $\#^\theta$ makes the modulation space $M^{\infty, \infty}(\pi^\#)$ into an associative involutive Banach algebra and the Weyl calculus defines an injective continuous \ast-homomorphism $\text{Op} : M^{\infty, \infty}(\pi^\#) \rightarrow \mathcal{B}(\mathcal{H})$.

3. If $a_0 \in M^{\infty, \infty}(\pi^\#)$ and $\text{Op}^\theta(a_0) \in \mathcal{B}(\mathcal{H})$ is an invertible operator, then there exists $b_0 \in M^{\infty, \infty}(\pi^\#)$ such that $\text{Op}^\theta(a_0)^{-1} = \text{Op}^\theta(b_0)$.

Proof. Recall that the modulation spaces of symbols $M^{p, q}(\pi^\#)$ are independent on the choice of a window vector by [BB10b, Example 3.4(2)]. Then the assertions follow by the above Corollary [2.1.4] and Theorem [2.1.5]. \hfill \square

Theorem 4.3. Assume that the representation π is square integrable modulo the center of G and let $\mathfrak{g}_e = \mathfrak{g}_e^1 + \mathfrak{g}_e^2$ be any decomposition of the predual into a direct sum of linear subspaces. If $\phi \in \mathcal{H}_\infty$ and we have $1 \leq p_1 \leq p_2 \leq \infty$ and $1 \leq q_1 \leq q_2 \leq \infty$, then $M^{p_1, q_1}(\pi) \subseteq M^{p_2, q_2}(\pi)$. \hfill \square

Proof. It follows by [2.1.4] that the proof will be complete as soon as we have proved that if $p, q \in [1, \infty]$ and $f \in M^{p, \infty}(\pi)$, then $f \in M^{\infty, \infty}(\pi)$, that is, $\mathcal{A}_\phi f \in L^{\infty}(\mathfrak{g}_e)$.

In fact, let us define
$$ R_{\phi} : \mathfrak{g}_e \times \mathfrak{g}_e \rightarrow \mathbb{C}, \quad R_{\phi}(X, Y) = (\pi(\exp_G X)\phi \mid \pi(\exp_G Y)\phi) = (\mathcal{A}_\phi(\pi(\exp_G \phi)))(Y). $$

Now let us denote by \ast_e the Baker-Campbell-Hausdorff multiplication on the nilpotent Lie algebra $\mathfrak{g}_e \simeq \mathfrak{g}/\mathfrak{z}$. There exists a polynomial map $\alpha : \mathfrak{g}_e \times \mathfrak{g}_e \rightarrow \mathbb{R}$ such that $\pi(\exp_G((X) \ast_e Y)) = e^{i\alpha(-X,Y)\pi(\exp_G((X) \ast_e Y))}$ (see for instance [Ma07]), hence
$$ R_{\phi}(X, Y) = e^{-i\alpha(-X,Y)\phi \mid \pi(\exp_G((X) \ast_e Y))\phi} $$
$$ = e^{-i\alpha(-X,Y)(\mathcal{A}_\phi \phi)((X) \ast_e Y)}. $$
Since $A_{\phi}f \in S(g_e)$ (see \cite{Pe94}) and the Lebesgue measure on g_e coincides with the Haar measure on the nilpotent Lie group (g_e, \ast_e), it then follows that
\[
(\forall r, s \in [1, \infty]) \sup_{X \in g_e} \|R(X, \cdot)\|_{L^{r,s}(g_e^1 \times g_e^2)} < \infty. \tag{4.1}
\]
On the other hand, note that $R_{\phi}(X,Y) = (A_{\phi}(\pi(\exp_G \phi)))(Y)$, hence
\[
(A_{\phi}f)(X) = (f | \pi(\exp_G X)\phi) = (f | \int_{g_e} (A_{\phi}(\pi(\exp_G \phi)))(Y)\pi(\exp_G Y)\phi dY)
\]
\[
= (f | \int_{g_e} R_{\phi}(X,Y)\pi(\exp_G Y)\phi dY) = \int_{g_e} R_{\phi}(X,Y)(f | \pi(\exp_G Y)\phi) dY
\]
whence
\[
(\forall X \in g_e) \quad (A_{\phi}f)(X) = (A_{\phi}f | R(X, \cdot)), \tag{4.2}
\]
where the right-hand side makes sense since $A_{\phi}f \in C(g_e) \cap S'(g_e)$ by \cite{BB10b} Cor. 2.9(1), while $R(X, \cdot) \in S(g_e)$ by \cite{Pe94}. If $f \in M_p^{1,1}(\pi^\#)$, then it follows by (4.2) along with Hölder’s inequality in mixed-norm spaces (see \cite{BP61}) and (4.1) that
\[
\sup_{X \in g_e} |(A_{\phi}f)(X)| \leq \sup_{X \in g_e} (\|A_{\phi}f\|_{L^{p,q}(g_e^1 \times g_e^2)}) \|R(X, \cdot)\|_{L^{p',q'}(g_e^1 \times g_e^2)}) < \infty,
\]
where $\frac{1}{p} + \frac{1}{p'} = \frac{1}{q} + \frac{1}{q'} = 1$. Thus $A_{\phi}f \in L^\infty(g_e)$, and this completes the proof, in view of the beginning remark. \hfill \Box

Corollary 4.4. If the representation π is square integrable modulo the center of G, then for every $p \in [1, \infty]$ the modulation space $M_p^{1,1}(\pi^\#)$ is a subalgebra of $M_\infty^{1,1}(\pi^\#)$ endowed with the Moyal product \ast. \hfill \Box

Proof. As noted in \cite{BB10}, Example 3.4(2) and Remark 3.7, the representation $\pi^\#: G \times G \to B(L^2(\mathcal{O}))$ is square integrable (modulo the center) and its modulation spaces are independent on the choice of the window vector. Thus the above Theorem 4.3 applies for the representation $\pi^\#$ instead of π, and it follows that $M_{p_1,q_1}(\pi^\#) \subseteq M_{p_2,q_2}(\pi^\#)$ whenever $1 \leq p_1 \leq p_2 \leq \infty$ and $1 \leq q_1 \leq q_2 \leq \infty$.

In particular we have $M_p^{1,1}(\pi^\#) \subseteq M_\infty^{1,1}(\pi^\#)$ if $1 \leq p \leq \infty$. Moreover, it follows by Corollary 2.14 that if $a_1, a_2 \in M_p^{1,1}(\pi^\#)$, then $a_1 \# a_2 \in M_{p}^{1,1}(\pi^\#) \subseteq M_{p_1}^{1,1}(\pi^\#)$, and this completes the proof. \hfill \Box

In the special case when π is the Schrödinger representation of the Heisenberg group, the above result goes back to \cite{Teo01}; see also \cite{HTW07}. We also note that in this case we have $M_\infty^{1,1}(\pi^\#) = M_\infty^{1,1}(\pi^\#)$.

Acknowledgment. The second-named author acknowledges partial financial support from the Project MTM2007-61446, DGI-FEDER, of the MCYT, Spain, and from the grant PNII - Programme “Idei” (code 1194).
References

[BB09a] I. Beltiță, D. Beltiță, Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups. Ann. Global Anal. Geom. 36 (2009), no. 3, 293–322.

[BB10a] I. Beltiță, D. Beltiță, Uncertainty principles for magnetic structures on certain coadjoint orbits. J. Geom. Phys. 60 (2010), no. 1, 81–95.

[BB10b] I. Beltiță, D. Beltiță, Modulation spaces of symbols for representations of nilpotent Lie groups. J. Fourier Anal. Appl. (to appear).

[BB10c] I. Beltiță, D. Beltiță, Continuity of magnetic Weyl calculus. Preprint arXiv: 1006.0585v3 [math.AP].

[BP61] A. Benedek, R. Panzone, The space L^p, with mixed norm. Duke Math. J. 28 (1961), 301–324.

[Gr01] K. Gröchenig, Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA, 2001.

[Gr06] K. Gröchenig, Time-frequency analysis of Sjöstrand’s class. Rev. Mat. Iberoam. 22 (2006), no. 2, 703–724.

[HTW07] A. Holst, J. Toft, P. Wahlberg, Weyl product algebras and modulation spaces. J. Funct. Anal. 251 (2007), no. 2, 463–491.

[IMP07] V. Iftime, M. Măntoiu, R. Purice, Magnetic pseudodifferential operators. Publ. Res. Inst. Math. Sci. 43 (2007), no. 3, 585–623.

[IMP10] V. Iftime, M. Măntoiu, R. Purice, Commutator criteria for magnetic pseudodifferential operators Comm. Partial Differential Equations 35 (2010), no. 6, 1058-1094.

[Ki62] A.A. Kirillov, Unitary representations of nilpotent Lie groups. (Russian) Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110.

[Ku99] V.G. Kurbanov, Functional-Differential Operators and Equations. Mathematics and its Applications, 473. Kluwer Academic Publishers, Dordrecht, 1999.

[Ku01] V.G. Kurbanov, Some algebras of operators majorized by a convolution. Funct. Differ. Equ. 8 (2001), no. 3-4, 323–333.

[Ma07] J.-M. Maillass, Explicit star products on orbits of nilpotent Lie groups with square integrable representations. J. Math. Phys. 48 (2007), no. 7, 073504.

[MP04] M. Măntoiu, R. Purice, The magnetic Weyl calculus. J. Math. Phys. 45 (2004), no. 4, 1394–1417.

[MP10] M. Măntoiu, R. Purice, The modulation mapping for magnetic symbols and operators. Proc. Amer. Math. Soc. 138 (2010), no. 8, 2839–2852.

[Ne06] K.-H. Neeb, Towards a Lie theory of locally convex groups. Japanese J. Math. 1 (2006), no. 2, 291–468.

[Pe89] N.V. Pedersen, Geometric quantization and the universal enveloping algebra of a nilpotent Lie group. Trans. Amer. Math. Soc. 315 (1989), no. 2, 511–563.

[Pe94] N.V. Pedersen, Matrix coefficients and a Weyl correspondence for nilpotent Lie groups. Invent. Math. 118 (1994), no. 1, 1–36.

[Sj94] J. Sjöstrand, An algebra of pseudodifferential operators. Math. Res. Lett. 1 (1994), no. 2, 185–192.

[Sj95] J. Sjöstrand, Wiener type algebras of pseudodifferential operators. In: Séminaire sur les Équations aux Dérivées Partielles, 1994–1995, Exp. No. IV, 21 pp., École Polytech., Palaiseau, 1995.

[To01] J. Toft, Subalgebras to a Wiener type algebra of pseudo-differential operators. Ann. Inst. Fourier (Grenoble) 51 (2001), no. 5, 1347–1383.

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, Bucharest, Romania

E-mail address: Ingrid.Beltita@imar.ro
E-mail address: Daniel.Beltita@imar.ro