We give polynomial-time randomized algorithms for computing the girth and the cogirth of binary matroids that are low-rank perturbations of graphic matroids.

1. Introduction

The girth of a matroid is the length of its shortest circuit; if the matroid has no circuit, the girth is defined to be ∞. The following two theorems are our main results:

Theorem 1.1. Let t be a positive integer and let $\epsilon > 0$. There is a randomized algorithm that, given matrices $A, P \in \text{GF}(2)^{r \times n}$ where A is the incidence matrix of a graph and rank$(P) \leq t$, will, with probability at least $1 - \epsilon$, correctly compute the girth of $M(A + P)$ in time $O(r^7 \log^2 r + nr)$.

The cogirth of a matroid is the girth of its dual.

Theorem 1.2. Let t be a positive integer and let $\epsilon > 0$. There is a randomized algorithm that, given matrices $A, P \in \text{GF}(2)^{r \times n}$ where A is the incidence matrix of a graph and rank$(P) \leq t$, will, with probability at least $1 - \epsilon$, correctly compute the cogirth of $M(A + P)$ in time $O(r^5 n)$.

Mathematics Subject Classification (2010): 05B35, 94B05, 90C27

This research was partially supported by a grant from the Office of Naval Research [N00014-10-1-0851].
Cycles and cocycles

Let \(A \in \text{GF}(2)^{r \times E} \). A cycle of \(M(A) \) is a subset \(C \) of \(E \) such that the columns of \(A \) indexed by \(C \) sum to zero. Thus \(C \) is a cycle if and only if it is a disjoint union of circuits. The girth of \(M(A) \) is the size of the smallest non-empty cycle; this turns out, for the purpose of this paper, to be the most convenient way to view girth.

A cocycle of \(M(A) \) is a set whose characteristic vector is in the row-span of \(A \). Equivalently, \(C^* \) is a cocycle of \(M(A) \) if and only if it is a cycle of \(M(A)^* \). So the cogirth of \(M(A) \) is the size of the smallest non-empty cocycle. Again, for this paper, this is the most convenient way to view cogirth.

Motivation

The problem of computing the girth of a binary matroid has received a lot of attention due to its well-known connection with coding theory. If \(A \) is the parity-check matrix of a binary linear code \(C \), then the distance of \(C \) is equal to the girth of the binary matroid \(M(A) \). In a landmark paper, Vardy [13] proved that the problem of computing girth in binary matroids is \(\mathcal{NP} \)-hard. On the other hand, there are significant classes of binary matroids in which one can efficiently compute girth; for example, the class of graphic matroids and the class of cographic matroids. Geelen, Gerards, and Whittle [3] posed the following conjecture.

Conjecture 1.1. For any proper minor-closed class \(\mathcal{M} \) of binary matroids, there is a polynomial-time algorithm for computing the girth of matroids in \(\mathcal{M} \).

Here a minor-closed class of binary matroids is called *proper* if it does not, up to isomorphism, contain all binary matroids. In the same paper, Geelen, Gerards, and Whittle announced (without proof) the following result:

Theorem 1.3. For each proper minor-closed class \(\mathcal{M} \) of binary matroids, there exist non-negative integers \(k \) and \(t \) such that, for each vertically \(k \)-connected matroid \(M \in \mathcal{M} \), there exist matrices \(A, P \in \text{GF}(2)^{r \times n} \) such that \(A \) is the incidence matrix of a graph, \(\text{rank}(P) \leq t \), and either \(M = M(A + P) \) or \(M = M(A + P)^* \).

In light of this result, our Theorems 1.1 and 1.2 give significant support to Conjecture 1.1; their main shortcomings being: (1) they only apply to sufficiently connected matroids in a minor-closed class, and (2) they only give randomized algorithms.
Related work

Barahona and Conforti [1] studied both the girth and cogirth problems for the class of “even-cycle matroids”. Let M_1 and M_2 be binary matroids on the same ground set. We call M_1 a rank-t perturbation of M_2 if M_1 has a representation A and M_2 has a representation B such that $B-A$ has rank t. We call M_1 an even-cycle matroid if it is a rank-1 perturbation of a graphic matroid M_2 and $r(M_1) = r(M_2) + 1$.

Barahona and Conforti gave an efficient deterministic algorithm for computing girth of even-cycle matroids. They also noted that the problem of computing cogirth for these matroids is closely related to the max-cut problem; however, they neither found an efficient algorithm for the cogirth problem nor proved that it is NP-hard.

This paper

Perturbations of graphic matroids can be encoded as labelled graphs; see Lemma 4.1. Using this result we reduce Theorem 1.1 to the t-Dimensional Parity Join Problem, discussed in Section 6, which we reduce, in turn, to the t-Dimensional Parity Perfect Matching Problem, discussed in Section 5. We solve the t-Dimensional Parity Perfect Matching Problem using a variant of the Mulmuley, Vazirani, and Vazirani algorithm [8] for the exact matching problem.

We then employ Lemma 4.1 again to reduce Theorem 1.2 to the t-Dimensional Even Cut Problem, which we solve, in Section 3, by a variant of Karger’s algorithm [5] for the global minimum cut problem.

It is curious that, while our two algorithms are quite different from each other, they both require randomization. Finding efficient deterministic algorithms seems to be quite difficult; below we discuss two particular bottlenecks.

Even-cut problem

Let k be a fixed non-negative integer. An instance of the k-set even-cut problem consists of a triple $(G; T_1, \ldots, T_k)$ where T_1, \ldots, T_k are even-cardinality subsets of $V(G)$. The problem is, among all non-empty proper subsets X of $V(G)$ with $|T_1 \cap X|, \ldots, |T_k \cap X|$ all even, to minimize the size of the cut $\delta_G(X)$. Here $\delta_G(X)$ denotes the set of all edges of G that have one end in X and one end in $V(G) - X$.
We give a polynomial-time randomized algorithm for the k-set even-cut problem; see Section 2. Conforti and Rao [2] found an efficient deterministic algorithm for the one-set even-cut problem, but we have not been able to find a deterministic solution for the two-set version.

A parity matching problem

An instance of the weighted even perfect matching problem consists of a triple (G, Σ, w) where G is a graph, $\Sigma \subseteq E(G)$, and $w: E(G) \to \{0, 1\}$ is an edge weighting. The problem is, among all perfect matchings M of G with $|M \cap \Sigma|$ even, to minimize $\sum (w(e) : e \in M)$.

Anyone who is familiar with the Mulmuley, Vazirani, and Vazirani [8] matrix formulation of the exact matching problem (see [8]) will recognize that the weighted even perfect matching problem can be solved by an efficient randomized algorithm. However, it is not even clear how one might solve the feasibility problem deterministically.

The relationship between the two problems above and the problem of computing girth will become clear.

2. Even cuts

In this section we give an efficient randomized algorithm for the t-Set Even-Cut Problem. This section is peripheral to the rest of paper and may freely be skipped by the reader. We include the material since we believe that this problem is of independent interest.

The t-Set Even-Cut Problem

Instance: A tuple $(G; T_1, \ldots, T_t)$ where G is a graph and T_1, \ldots, T_t are even-cardinality subsets of $V(G)$.

Problem: Among all non-empty proper subsets X of $V(G)$ with $|T_1 \cap X|, \ldots, |T_t \cap X|$ all even, minimize the size of the cut $\delta_G(X)$.

Let $(G; T_1, \ldots, T_t)$ be an instance of the t-Set Even-Cut Problem. A (T_1, \ldots, T_t)-even cut is a cut $\delta(X)$ such that $\emptyset \subset X \subset V(G)$ and each of $|T_1 \cap X|, \ldots, |T_t \cap X|$ is even. Note that (T_1, \ldots, T_t)-even cuts do not always exist; for example, the problem is infeasible when $|V(G)| = 2$ and $T_1 = V(G)$. However, it is easy to check feasibility. To see this, consider the matrix $A \in \mathbb{GF}(2)^t \times V(G)$ where the i-th row of A is the characteristic vector of the set T_i. For $X \subseteq V(G)$, the cut $\delta(X)$ is (T_1, \ldots, T_t)-even if and only if X is a cycle of $M(A)$ and $\emptyset \subset X \subset V(G)$. Thus $(G; T_1, \ldots, T_t)$ is feasible unless $V(G)$
is a circuit of $M(A)$ (note that, since $|T_1|, \ldots, |T_t|$ are even $V(G)$ is itself a cycle of $M(A)$). In particular, if $|V(G)| \geq t+2$, then the instance is feasible.

The following is a randomized algorithm for solving the t-Set Even-Cut Problem. The algorithm, as well as the analysis that follows, is based on a randomized algorithm for finding minimum cuts due to Karger [5]. First we need some notation.

Let e be an edge with ends x and y in G, and let G/e denote the graph obtained by contracting e to a new vertex z. For each $i \in \{1, \ldots, t\}$, there is a unique even-cardinality subset T'_i of G/e such that $T_i - \{x, y\} = T'_i - \{z\}$. We denote the tuple $(G/e; T'_1, \ldots, T'_t)$ by $(G; T_1, \ldots, T_t)/e$.

Random Contraction Algorithm

INPUT: A feasible instance $(G; T_1, \ldots, T_t)$ of the t-Set Even-Cut Problem.

STEP 1. Delete the loops of G.

STEP 2. If $|V(G)| \leq 2^t + 4$, find a minimum cardinality (T_1, \ldots, T_t)-even cut C by exhaustive search and then stop and return C.

STEP 3. If G has no edge stop and return \emptyset.

STEP 4. Choose an edge e of G uniformly at random and replace the instance $(G; T_1, \ldots, T_t)$ with $(G; T_1, \ldots, T_t)/e$. Then repeat from Step 1.

For an n-vertex m-edge graph, the Random Contraction Algorithm takes $O(nm)$ time (actually Karger’s algorithm can be executed even faster than this; see [6]).

Lemma 2.1. Let $(G; T_1, \ldots, T_t)$ be a feasible instance of the t-Set Even-Cut Problem and let k be the minimum size of a (T_1, \ldots, T_t)-even cut in G. Then $(|V(G)| - 2^t)k \leq 4|E(G)|$.

Proof. Define an equivalence relation $(V(G), \sim)$ where $u \sim v$ if and only if, for each $i \in \{1, \ldots, t\}$, the set T_i contains either none or both of u and v. Now let Π be the partition of $V(G)$ into equivalence classes; note that $|\Pi| \leq 2^t$. For each set $P \in \Pi$, fix an ordering $(v_1, \ldots, v_{|P|})$ of the elements of P and let $X_P = \{v_i, v_{i+1} : 1 \leq i < |P|\}$. Note that, for each $X \in X_P$, the cut $\delta(X)$ is (T_1, \ldots, T_t)-even. Moreover, each vertex of P appears in at most two of the sets in X_P, so each edge of G appears in at most four of cuts $(\delta(X) : P \in \Pi, X \in X_P)$. Therefore, $4|E(G)| \geq \sum(|\delta(X)| : P \in \Pi, X \in X_P) \geq (|V(G)| - 2^t)k$. $lacksquare$

Lemma 2.2. Let $(G; T_1, \ldots, T_t)$ be a feasible instance of the t-Set Even-Cut Problem and let k be the minimum size of a (T_1, \ldots, T_t)-even cut. Then the Random Contraction Algorithm returns a cut of size k with probability at least $\frac{24}{|V(G)|^2}$.

Step 1. Delete the loops of G.

Step 2. If $|V(G)| \leq 2^t + 4$, find a minimum cardinality (T_1, \ldots, T_t)-even cut C by exhaustive search and then stop and return C.

Step 3. If G has no edge stop and return \emptyset.

Step 4. Choose an edge e of G uniformly at random and replace the instance $(G; T_1, \ldots, T_t)$ with $(G; T_1, \ldots, T_t)/e$. Then repeat from Step 1.
Proof. Let C^* be a minimum cardinality (T_1,\ldots,T_t)-even cut and let $n = |V(G)|$. Consider an edge e chosen in Step 4. Note that, if $e \not\in C^*$, then C^* remains optimal for the instance $(G;T_1,\ldots,T_t)/e$. By Lemma 2.1,

$$\text{Prob}[e \not\in C^*] = 1 - \frac{k}{|E(G)|} \geq \frac{n - 2^t - 4}{n - 2^t}.$$

We repeat Step 4 a total of $n - 2^t - 4$ times on successively smaller graphs; the probability that we never choose an edge of C^* is at least:

$$\frac{n - 2^t - 4}{n - 2^t} \cdot \frac{n - 2^t - 5}{n - 2^t - 1} \cdots \frac{1}{5} = \frac{4!}{(n - 2^t) \cdots (n - 2^t - 3)} > \frac{24}{n^4},$$

as required.

The bound $\frac{24}{|V(G)|^4}$ may not be that impressive, but this can be improved through repetition. Observe that, if we apply the Random Contraction Algorithm to a feasible instance $(G;T_1,\ldots,T_t)$, then the algorithm returns an even (T_1,\ldots,T_t)-cut. We can repeatedly apply the algorithm, keeping the smallest of these cuts, to reduce the error-probability.

Theorem 2.3. Let t and c be positive integers. Let $(G;T_1,\ldots,T_t)$ be a feasible instance of the t-Set Even-Cut Problem and let k be the minimum size of a (T_1,\ldots,T_t)-even cut. Then in $c|V(G)|^4$ repetitions of the Random Contraction Algorithm, the probability that we fail to find a (T_1,\ldots,T_t)-even cut of size k is at most e^{-24c}.

Proof. Let $n = |V(G)|$. By Lemma 2.2, the error-probability is at most

$$\left(1 - \frac{24}{n^4}\right)^{cn^4} \leq \left(e^{-\frac{24}{n^4}}\right)^{cn^4} = e^{-24c}.$$

Given that we can solve the t-Set Even-Cut Problem efficiently (with randomization), it is natural to consider the following variation.

The t-Set Odd-Cut Problem

Instance: A tuple $(G;T_1,\ldots,T_t)$ where G is a graph and T_1,\ldots,T_t are even-cardinality subsets of $V(G)$.

Problem: Among all proper subsets X of $V(G)$ with $|T_1 \cap X|,\ldots,|T_t \cap X|$ all odd, minimize the size of the cut $\delta_G(X)$.

Padberg and Rao [10] give a polynomial-time algorithm for the 1-Set Odd-Cut Problem, and the same method extends easily to the 2-Set Odd-Cut Problem, but the complexity of the 3-Set Odd-Cut Problem remains open.
3. A variation on even cuts

To solve the cogirth problem on perturbed graphic matroids we will reduce it to a variation on the t-Set Even Cut Problem; in this section we will solve that variant. The methods in this section are similar to those in the previous section, but we will use different notation.

Let G be a graph and $\tau: V(G) \to \text{GF}(2)^t$. We denote $\sum(\tau(v): v \in X)$ by $\tau(X)$.

The t-Dimensional Even-Cut Problem

Instance: A tuple $(G, \tau, \Sigma, \alpha)$ where G is a graph, $\tau: V(G) \to \text{GF}(2)^t$, $\Sigma \subseteq E(G)$, and $\alpha \in \text{GF}(2)^t$.

Problem: Find the minimum size of a non-empty set $\delta_G(X) \Delta \Sigma'$ where $(\Sigma', \alpha') \in \{(\Sigma, \alpha), (\emptyset, 0)\}$ and $X \subseteq V(G)$ with $\tau(X) = \alpha'$.

Consider an instance $(G; T_1, \ldots, T_t)$ of the t-Set Even-Cut Problem where G is connected. For each $v \in V(G)$ we let $\tau(v) \in \text{GF}(2)^t$ where, for each $i \in \{1, \ldots, t\}$, we let $\tau(v)_i = 1$ if $v \in T_i$. This reduces our instance to an instance $(G, \tau, \emptyset, 0)$ of the t-Dimensional Even-Cut Problem. When G is not connected the problems are not related, since, for the t-Dimensional Even-Cut Problem we explicitly require a non-empty set as a solution. This difference between the problems adds a layer of difficulty. Another key difference between the problems is that, for the t-Set Even-Cut Problem, we require the sets T_1, \ldots, T_t to be even, but for the t-Dimensional Even-Cut Problem we do not require $\tau(V(G)) = 0$. Thus, for a set $X \subseteq V(G)$, it may not be the case that $\tau(X) = \tau(V(G) - X)$. This lack of symmetry seems a little unnatural, but it does not cause any additional difficulty. A final difference between the problems is the role of Σ, which does not add to the difficulty at all.

Cogirth

We start by drawing a connection between this problem and the problem of computing the cogirth of a binary matroid. Consider an instance $(G, \tau, \Sigma, \alpha)$ of the t-Dimensional Even-Cut Problem. Let $T = \{1, \ldots, t\}$ and let $A(G)$ be the incidence matrix of G. Now let $B \in \text{GF}(2)^{V(G) \times T}$ where the row of B indexed by $v \in V(G)$ is $\tau(v)$, let $\sigma \in \text{GF}(2)^{|E(G)|}$ be the characteristic vector of Σ, and let

$$A = \begin{pmatrix} E(G) & T \\ V(G) & A(G) \\ \sigma & \alpha \\ B \end{pmatrix}.$$

We call \(A \) the incidence matrix of \((G, \tau, \Sigma, \alpha)\), and we denote \(M(A)/T \) by \(M(G, \tau, \Sigma, \alpha) \). The next lemma is an easy consequence of these definitions.

Lemma 3.1. Let \((G, \tau, \Sigma, \alpha)\) be an instance of the \(t \)-Dimensional Even-Cut Problem. Then a set \(C \subseteq E(G) \) is a cocycle of \(M(G, \tau, \Sigma, \alpha) \) if and only if there exists \((\Sigma', \alpha') \in \{(\Sigma, \alpha), (\emptyset, 0)\} \) and \(X \subseteq V(G) \) with \(\tau(X) = \alpha' \) such that \(C = \delta_G(X) \Delta \Sigma' \).

Proof. A set \(C \subseteq E(G) \) is a cocycle of \(M(A)/T \) if and only if it is a cocycle of \(M(A) \). Therefore, the set of cocycles of \(M(A)/T \) consists of the set of all sets obtained by taking the support of a vector \(x \) in the rowspace of \(A \) with \(x|T = 0 \). Consider \(\sigma' \in GF(2)^E(G) \) and \(\alpha' \in GF(2)^T \), and let \(\Sigma' \) be the support of \(\sigma' \). Note that \((\sigma', \alpha')\) is in the row space of \((A(G), B)\) if and only if there exists \(X \subseteq V(G) \) such that \(\delta_G(X) = \Sigma' \) and \(\tau(X) = \alpha' \). Now the result follows easily.

So the \(t \)-Dimensional Even-Cut Problem is simply the problem of determining the cogirth of \(M(G, \tau, \Sigma, \alpha) \).

Connectivity reductions

A connected instance of the \(t \)-Dimensional Even-Cut Problem is an instance \((G, \tau, \Sigma, \alpha)\) such that \(G \) is connected. We will describe two reductions that, together, reduce an instance \((G, \tau, \Sigma, \alpha)\) of the \(t \)-Dimensional Even-Cut Problem to connected instances.

We call a component of a graph trivial if it has exactly one vertex. The first reduction reduces us to an instance \((G', \tau', \Sigma, \alpha)\) in which \(G' \) has at most one non-trivial component. Let \(H_1, \ldots, H_c \) denote the components of \(G \) and, for each \(i \in \{1, \ldots, c\} \), choose a vertex \(v_i \) of \(H_i \). Let \(G' \) be the graph obtained from \(G \) by identifying the set of vertices \(\{v_1, \ldots, v_c\} \) to a single vertex \(v_1 \) and then adding new isolated vertices \(v_2, \ldots, v_c \). Now for each \(v \in V(G') \) we define

\[
\tau'(v) = \begin{cases}
\tau(v), & v \notin \{v_1, \ldots, v_c\} \\
\tau(v_1) + \cdots + \tau(v_c), & v = v_1 \\
\sum(\tau(w) : w \in V(H_i)), & v = v_i.
\end{cases}
\]

Lemma 3.2. \(M(G, \tau, \Sigma, \alpha) = M(G', \tau', \Sigma, \alpha) \).

Proof. Let \(A \) be the incidence matrix of \((G, \tau, \Sigma, \alpha)\) and let \(A' \) be the incidence matrix of \((G', \tau', \Sigma, \alpha)\). Note that \(A' \) is obtained from \(A \) by a sequence of elementary row operations. Thus \(M(A) = M(A') \) and, hence, \(M(G, \tau, \Sigma, \alpha) = M(G', \tau', \Sigma, \alpha) \).
We may assume that G' has a non-trivial component, say G'', since otherwise we can easily compute the cogirth of $M(G', \tau', \Sigma, \alpha)$. Let τ'' be the restriction of τ' to $V(G'')$.

Lemma 3.3. The cogirth of $M(G', \tau', \Sigma, \alpha)$ is equal to the minimum of the cogirths of $M(G'', \tau'', \Sigma, \alpha + \beta)$ taken over all β in the span of $(\tau(v): v \in V(G') - V(G''))$.

Proof. Let A' be the incidence matrix of $(G', \tau', \Sigma, \alpha)$ and, for a vector β in the span of $(\tau(v): v \in V(G') - V(G''))$, let A_β be the incidence matrix of $(G'', \tau'', \Sigma, \alpha + \beta)$. It is easy to see that:

- each cocycle of $M(A_\beta)$ is a cocycle of $M(A')$, and
- for each cocycle C of $M(A')$ there is a vector β in the span of $(\tau(v): v \in V(G') - V(G''))$ such that C is a cocycle of $M(A_\beta)$.

Hence the result follows easily.

Lemmas 3.2 and 3.3 give a linear time reduction of an instance of the t-Dimensional Even-Cut Problem to at most 2^t connected instances.

Feasibility

By Lemma 3.1, an instance $(G, \tau, \Sigma, \alpha)$ of the t-Dimensional Even-Cut Problem is feasible if and only if $M(G, \tau, \Sigma, \alpha)$ has positive rank; the following result gives a simple sufficient condition.

Lemma 3.4. Let $(G, \tau, \Sigma, \alpha)$ be a connected instance of the t-Dimensional Even-Cut Problem. If $|V(G)| \geq t + 2$, then $(G, \tau, \Sigma, \alpha)$ is feasible.

Proof. Let A be the incidence matrix of $(G, \tau, \Sigma, \alpha)$. Now, if $|V(G)| \geq t + 2$, then

$$\text{rank}(A) \geq |V(G)| - 1 > t.$$

Therefore $M(A)/T$ has positive rank, and, hence, $M(G, \tau, \Sigma, \alpha)$ has a non-empty cocycle.

The algorithm

Consider an instance $(G, \tau, \Sigma, \alpha)$ of the t-Dimensional Even-Cut Problem. Let A be the incidence matrix of $(G, \tau, \Sigma, \alpha)$ and let e be an edge with ends x and y in G. We will describe a new instance $(G', \tau', \Sigma', \alpha')$, with incidence
matrix A', such that $M(A)/e = M(A')$. Let G/e denote the graph obtained by contracting e to a new vertex z. For each $v \in V(G')$, we define

$$
\tau'(v) = \begin{cases}
\tau(x) + \tau(y), & v = z \\
\tau(v), & \text{otherwise.}
\end{cases}
$$

If $e \notin \Sigma$, we let $\Sigma' = \Sigma$ and $\alpha' = \alpha$. If $e \in \Sigma$, we let $\Sigma' = \Sigma \Delta \delta_G(x)$ and $\alpha' = \alpha + \tau(x)$. We denote $(G', \tau', \Sigma', \alpha')$ by $(G, \tau, \Sigma, \alpha)/e$; note that there is some ambiguity here since x plays a distinguished role, but it does not matter which end of e we choose for the algorithm. The following lemma is easy, we omit the proof.

Lemma 3.5. Let A be the incidence matrix of $(G, \tau, \Sigma, \alpha)$ and let A' be the incidence matrix of $(G, \tau, \Sigma, \alpha)/e$. Then $M(A)/e = M(A')$.

With this notation in place, we can state our algorithm.

Random Contraction Algorithm (revised)

Input: A feasible connected instance $(G, \tau, \Sigma, \alpha)$ of the t-Dimensional Even-Cut Problem.

Step 1. If $|V(G)| \leq 2^t + 4$, find a minimum cardinality cocycle C of $M(G, \tau, \Sigma, \alpha)$ by exhaustive search and then stop and return C.

Step 2. Choose a non-loop edge e of G uniformly at random and replace the instance $(G, \tau, \Sigma, \alpha)$ with $(G, \tau, \Sigma, \alpha)/e$. Then repeat from Step 1.

For an n-vertex m-edge graph, the Random Contraction Algorithm takes $O(nm)$ time (note that Step 1 can be done efficiently because $M(G, \tau, \Sigma, \alpha)$ has rank at most $|V(G)| + 1$). The following analysis is the same as for the t-Set Even-Cut Problem.

Lemma 3.6. Let $(G, \tau, \Sigma, \alpha)$ be a feasible connected instance of the t-Dimensional Even-Cut Problem and let k be the optimal value. If ℓ is the number of loops in G, then $(|V(G)| - 2^t)k \leq 4(|E(G)| - \ell)$.

Proof. Let Π be the partition of $V(G)$ into sets with equal τ-value; thus $|\Pi| \leq 2^t$. For each set $P \in \Pi$, fix an ordering $(v_1, \ldots, v_{|P|})$ of the elements of P and let $X_P = \{v_i, v_{i+1} : 1 \leq i < |P|\}$. Note that, for each $X \in X_P$, the cut $\delta(X)$ is a cocycle of $M(G, \tau, \Sigma, \alpha)$, and, hence, $|\delta(X)| \geq k$. Moreover, each vertex of P appears in at most two of the sets in X_P, so each edge of G appears in at most four of the cocycles $(\delta(X) : P \in \Pi, X \in X_P)$. Therefore, $4(|E(G)| - \ell) \geq \sum(|\delta(X)| : P \in \Pi, X \in X_P) \geq (|V(G)| - 2^t)k$. \[\square\]
Lemma 3.7. Let \((G, \tau, \Sigma, \alpha)\) be a feasible connected instance of the \(t\)-Dimensional Even-Cut Problem and let \(k\) be the optimal value. Then the Random Contraction Algorithm returns a cocycle of size \(k\) with probability at least \(\frac{24}{|V(G)|^t}\).

Proof. Let \(C^*\) be a minimum cardinality non-empty cocycle of \(M(G, \tau, \Sigma, \alpha)\) and let \(n = |V(G)|\). Consider an edge \(e\) chosen in Step 2. Note that, if \(e \notin C^*\), then \(C^*\) remains optimal for the instance \((G, \tau, \Sigma, \alpha)/e\). Let \(\ell\) be the number of loops in \(G\). By Lemma 3.6,
\[
\text{Prob}[e \notin C^*] \geq 1 - \frac{k}{|E(G)| - \ell} \geq \frac{n - 2^t - 4}{n - 2^t}.
\]

We repeat Step 2 a total of \(n - 2^t - 4\) times on successively smaller graphs; the probability that we never choose an edge of \(C^*\) is at least:
\[
\frac{n - 2^t - 4}{n - 2^t} \cdot \frac{n - 2^t - 5}{n - 2^t - 1} \cdot \frac{1}{5} = \frac{4!}{(n - 2^t) \cdot (n - 2^t - 3)} > \frac{24}{n^4},
\]
as required.

Observe that, if we apply the Random Contraction Algorithm to a feasible instance \((G, \tau, \Sigma, \alpha)\), then the algorithm returns a cocycle of \(M(G, \tau, \Sigma, \alpha)\). We can repeatedly apply the algorithm, keeping the smallest of these cocycles, to reduce the error-probability.

Theorem 3.8. Let \(t\) and \(c\) be positive integers. Let \((G, \tau, \Sigma, \alpha)\) be a feasible connected instance of the \(t\)-Dimensional Even-Cut Problem and let \(k\) be the optimal value. Then, in \(c|V(G)|^4\) repetitions of the Random Contraction Algorithm, the probability that we fail to find a cocycle of \(M(G, \tau, \Sigma, \alpha)\) of size \(k\) is at most \(e^{-24c}\).

Proof. Let \(n = |V(G)|\). By Lemma 3.7, the error-probability is at most
\[
\left(1 - \frac{24}{n^4}\right)^{cn^4} \leq \left(e^{-\frac{24}{n^4}}\right)^{cn^4} = e^{-24c}.
\]

Combining the connectivity reduction with Theorem 3.8 gives the following result.

Theorem 3.9. Let \(t\) be a positive integer and let \(\epsilon > 0\). There is a randomized algorithm that, given an instance of the \(t\)-Dimensional Even-Cut Problem with \(n\) vertices and \(m\) edges will, with probability at least \(1 - \epsilon\), correctly compute the optimal value in \(O(n^5m)\) time.
4. Perturbations of graphic matroids

In this section we will see how to “represent” perturbations of graphic matroids by certain labelled graphs. Let \(s \) and \(t \) be non-negative integers. An \((s,t)\)-signed-graft is a tuple \((G,S,T,B,C,D)\) such that:

- \(G \) is a graph,
- \(S \) is an \(s \)-element set disjoint from \(V(G) \),
- \(T \) is a \(t \)-element set disjoint from \(E(G) \),
- \(B \in \text{GF}(2)^{V(G) \times T} \),
- \(C \in \text{GF}(2)^{S \times E(G)} \), and
- \(D \in \text{GF}(2)^{S \times T} \).

The incidence matrix of an \((s,t)\)-signed-graft \((G,S,T,B,C,D)\) is the matrix

\[
A = \begin{pmatrix}
E(G) & T \\
S & V(G) \\
C & D \\
A(G) & B
\end{pmatrix},
\]

where \(A(G) \) is the incidence matrix of \(G \). We denote the matroid \(M(A) \) by \(M(G,S,T,B,C,D) \). The following result is well-known but does not, to the best of our knowledge, appear in print.

Lemma 4.1. Let \(G \) be a graph and let \(P \in \text{GF}(2)^{V(G) \times E(G)} \) be a rank-\(t \) matrix. Then there is a \((t,t)\)-signed-graft \((G,S,T,B,C,D)\) such that

\[
M(A(G) + P) = M(G,S,T,B,C,D)/T.
\]

Proof. Let \(S \) be a \(t \)-element set disjoint from both \(V(G) \) and \(E(G) \). We can find matrices \(B \in \text{GF}(2)^{V(G) \times S} \) and \(C \in \text{GF}(2)^{S \times E(G)} \) such that

\[
P = BC.
\]

Now the incidence matrix of the \((t,t)\)-signed-graft \((G,S,S,B,C,−I)\) is

\[
A = \begin{pmatrix}
E(G) & S \\
S & V(G) \\
C & -I \\
A(G) & B
\end{pmatrix}.
\]

Note that \(A \) is equivalent, up to row operations, to

\[
S \begin{pmatrix}
E(G) & S \\
C & -I \\
A(G) + P & 0
\end{pmatrix}.
\]

Thus \(M(A)/S = M(A(G) + P) \), as required.
Thus, given an \((s,t)\)-signed-graft \((G,S,T,B,C,D)\), we are interested in computing the girth and the cogirth of \(M(G,S,T,B,C,D)/T\). For computing cogirth, we can reduce the problem to instances with \(s = 1\).

Lemma 4.2. Let \((G,S,T,B,C,D)\) be an \((s,t)\)-signed-graft and let \(S'\) be a one-element set disjoint from \(V(G)\). The cogirth of \(M(G,S,T,B,C,D)/T\) is the minimum of the cogirths of the matroids \(M(G,S',T,B,yC,yD)/T\) taken over all vectors \(y \in \text{GF}(2)^{S' \times S}\).

Proof. Note that:

- each cocycle of \(M(G,S',T,B,yC,yD)\) is a cocycle of \(M(G,S,T,B,C,D)\), and
- for each cocycle \(C^*\) of \(M(G,S,T,B,C,D)\), there exists \(y \in \text{GF}(2)^{S' \times S}\), such that \(C^*\) is also a cocycle of \(M(G,S',T,B,yC,yD)\).

The result now follows easily.

Given Lemma 4.2, we can take the cogirth problem given by an \((s,t)\)-signed-graft and reduce it to \(2^s\) cogirth problems on \((1,t)\)-signed-grafts. Moreover, given a \((1,t)\)-signed-graft \((G,S,T,B,C,D)\), we can, by Lemma 3.1, formulate the problem of computing the girth of \(M(G,S,T,B,C,D)/T\) as a \(t\)-Dimensional Even-Cut Problem. Now, combining Theorem 3.9 with Lemmas 4.1 and 4.2, we obtain Theorem 1.2.

Analogous with Lemma 4.2, the girth problem given by an \((s,t)\)-signed-graft reduces to \(2^t\) girth problems on \((s,1)\)-signed-grafts.

Lemma 4.3. Let \((G,S,T,B,C,D)\) be an \((s,t)\)-signed-graft and let \(T'\) be a one-element set disjoint from \(E(G)\). The girth of \(M(G,S,T',Bx,C,Dx)/T'\) is the minimum of the girths of the matroids \(M(G,S,T',Bx,C,Dx)/T'\) taken over all vectors \(x \in \text{GF}(2)^{T \times T'}\).

Proof. If \(W\) is a cycle of \(M(G,S,T,B,C,D)/T\) then there exists a cycle \(W'\) of \(M(G,S,T,B,C,D)\) with \(W \subseteq W' \subseteq W \cup T\). If \(x \in \text{GF}(2)^{T \times T'}\) is the characteristic vector of \(W' \cap T\), then \(W\) is a cycle of \(M(G,S,T',Bx,C,Dx)/T'\).

Conversely, suppose that \(x \in \text{GF}(2)^{T \times T'}\) and that \(W\) is a cycle of \(M(G,S,T',Bx,C,Dx)/T'\). There is a cycle \(W'\) of \(M(G,S,T',Bx,C,Dx)\) with \(W \subseteq W' \subseteq W \cup T'\). Note that \(|T'| = 1\); suppose that \(T' = \{v\}\). If \(v \notin W'\) then \(W' = W\), so \(W\) is a cycle of \(M(G,S,T,B,C,D)\) and, hence, also of \(M(G,S,T,B,C,D)/T\). We may therefore suppose that \(v \in W'\). Let \(X \subseteq T\) such that \(x\) is the characteristic vector of \(X\). Now \(W \cup X\) is a cycle of \(M(G,S,T,B,C,D)\) and, hence, \(W\) is a cycle of \(M(G,S,T,B,C,D)/T\).

It remains to find an algorithm that, given an \((s,1)\)-signed-graft \((G,S,T,B,C,D)\), computes the girth of \(M(G,S,T,B,C,D)/T\).
5. Perfect matching with parity constraints

The problem of computing the girth in a perturbed graphic matroid will be reduced to a minimum T-join problem with parity constraints; that problem, in turn, reduces to a minimum-weight perfect matching problem with parity constraints. We will solve that matching problem in this section. Before stating the problem precisely, we need some notation.

Let G be a graph with edge-weights $(w(e): e \in E(G))$ in some commutative ring (usually \mathbb{Z} or $\text{GF}(2)^t$) and let $M \subseteq E(G)$. We denote the sum $\sum (w(e): e \in M)$ by $w(M)$.

The t-Dimensional Parity Perfect Matching Problem

Instance: A graph G, unary edge-weights $w: E(G) \to \mathbb{Z}_{\geq 0}$, edge-parities $\gamma: E(G) \to \text{GF}(2)^t$, and a parity demand $\alpha \in \text{GF}(2)^t$.

Problem: Find a perfect matching M of G minimizing $w(M)$ subject to $\gamma(M) = \alpha$.

We note that the graphs we are considering may have parallel edges, although we may assume that each parallel class contains at most 2^t edges, one for each element of $\text{GF}(2)^t$. Our solution is closely related to the randomized algorithm, of Mulmuley, Vazirani, and Vazirani [8], for the Exact Matching Problem.

The running time of our algorithm is $O(w_{\max} n^7 \log^2 n)$ where $n = |V(G)|$ and $w_{\max} = \max(w(e): e \in E(G))$. Due to the dependence on w_{\max} this is not a polynomial-time algorithm, but it suffices for our intended application.

The Tutte matrix

We review the related concepts of Tutte matrices and Pfaffians that we will use to solve the t-Dimensional Parity Perfect Matching Problem. Let $G = (V, E)$ be a graph with $V = \{1, \ldots, n\}$. Let $x = (x_e: e \in E)$ be a collection of algebraically independent commuting indeterminates over \mathbb{R}. The graph G need not be simple; for vertices $u, v \in V$, we let E_{uv} denote the set of edges with u and v as its ends. The Tutte matrix of G is the matrix $T(x) = (t_{uv})_{V \times V}$ where, for $u, v \in V$,

$$t_{uv} = \begin{cases} \sum_{e \in E_{uv}} x_e, & u < v \\ -\sum_{e \in E_{uv}} x_e, & u > v \\ 0, & u = v. \end{cases}$$

Note that $T(x)$ is skew-symmetric; that is, $T(x)$ is equal to the negative of its transpose. The Pfaffian of a skew-symmetric matrix A, denoted $\text{Pf}(A)$,
is a square-root of its determinant; the Pfaffian of A has an expansion that is analogous to the permutation expansion of a determinant; see Godsil [4].

Let M be a perfect matching of G. We denote the product of $(x_e : e \in M)$ by x^M.

Let $e = u_1u_2$ and $f = v_1v_2$ be edges of G with $u_1 \leq u_2$ and $v_1 \leq v_2$. We say that e and f cross if either $u_1 < v_1 < u_2 < v_2$ or $v_1 < u_1 < v_2 < u_2$. The sign of M, denoted σ_M, is $(-1)^k$ where k is the number of pairs of edges in M that cross. Tutte [12] observed that

$$\text{Pf}(T(x)) = \sum_M \sigma_M x^M,$$

where the sum is taken over the set of all perfect matchings M of G.

The Pfaffian of $T(x)$ is in the ring $\mathbb{Z}[x]$ of polynomials. We will extend this by additional indeterminates z and $y = (y_1, \ldots, y_t)$ where x, y, and z are all algebraically independent and commute. Now we define the quotient ring

$$R = \mathbb{Z}[x, y, z]/\langle y_1^2 - 1, \ldots, y_t^2 - 1 \rangle.$$

Since $y_i^2 = 1$, we will consider the exponents of y_i as elements of $\text{GF}(2)$. For $\rho \in \text{GF}(2)^t$, we denote $y_1^{\rho_1}y_2^{\rho_2} \cdots y_t^{\rho_t}$ by y^ρ.

Let (G, w, γ, α) be an instance of t-Dimensional Parity Perfect Matching Problem. We may assume that $V(G) = \{1, \ldots, n\}$. Let $T(x)$ be the Tutte matrix of G. Now we define the Tutte matrix of (G, w, γ, α) to be the matrix $T(x, y, z)$ over R obtained from $T(x)$ by replacing each indeterminate x_e with $x_e y^{\gamma(e)} z^{w(e)}$. Thus

$$\text{Pf}(T(x, y, z)) = \sum_M \sigma_M x^M y^{\gamma(M)} z^{w(M)},$$

where the sum is taken over the set of all perfect matchings M of G. Now, by collecting like terms we can define a collection of polynomials $(p_\beta(x, z) : \beta \in \text{GF}(2)^t)$ such that

$$\text{Pf}(T(x, y, z)) = \sum_{\beta \in \text{GF}(2)^t} p_\beta(x, z) y^\beta.$$

Given a polynomial $p(x, z)$ in $\mathbb{Z}[x, z]$, we denote the minimum exponent of z among all terms of the polynomial $p(x, z)$ by $\text{mindeg}_z(p(x, z))$; if $p(x, z) = 0$ the we let $\text{mindeg}_z(p(x, z)) = \infty$. The following lemma follows immediately from the definitions; we omit the proof.

Lemma 5.1. There is a perfect matching M with $\gamma(M) = \alpha$ if and only if $p_\alpha(x, z) \neq 0$. Moreover, if $p_\alpha(x, z) \neq 0$, then $\text{mindeg}_z(p_\alpha(x, z))$ is the minimum of $w(M)$ taken over all perfect matchings M with $\gamma(M) = \alpha$.

Evaluations

Let \(p \) be a polynomial in \(\mathbb{Z}[x_1, \ldots, x_m] \). If \(p(x) \neq 0 \), then we are unlikely to get \(p(\tilde{x}) = 0 \) if we choose \(\tilde{x} \in \mathbb{Z}^m \) “at random”. We start by making this precise. The degree of \(p \) is the maximum, taken over all terms of \(p \), of the sum of the exponents of \(x_1, \ldots, x_m \) in the term. The following result was proved independently by Schwartz [11] and Zippel [14].

Lemma 5.2 (Schwartz-Zippel Lemma). Let \(p \) be a non-zero polynomial in \(\mathbb{Z}[x_1, \ldots, x_m] \) with degree at most \(d \), and let \(S \) be a finite subset of \(\mathbb{Z} \). If \(\tilde{x} \in S^m \) is chosen randomly, with uniform probability, then \(p(\tilde{x}) \neq 0 \) with probability at least \(1 - \frac{d}{|S|} \).

Let \(n = |V(G)| \) and let \(c \) be a positive integer. We will choose an \(\tilde{x} \in \{1, \ldots, cn\}^E(G) \). Note that

\[
\text{Pf}(T(\tilde{x}, y, z)) = \sum_{\beta \in \text{GF}(2)^t} p_{\beta}(\tilde{x}, z)y^\beta.
\]

Using the Schwartz-Zippel Lemma we get the following:

Lemma 5.3. Let \(c \) be a positive integer. If \(\tilde{x} \in \{1, \ldots, c|V(G)|\} \) is chosen randomly, with uniform probability, then \(\text{mindeg}_z(p_{\alpha}(\tilde{x}, z)) = \text{mindeg}_z(p_{\alpha}(x, z)) \) with probability at least \(1 - \frac{1}{2^c} \).

Proof. We may assume that \(p_{\alpha}(x, z) \neq 0 \) since otherwise the result is trivial. Let \(k = \text{mindeg}_z(p_{\alpha}(x, z)) \). Collect \(p_{\alpha}(x, z) \) in like powers of \(z \) and let \(q(x) \) be the coefficient of \(z^k \). Thus \(q(x) \neq 0 \) and \(\text{mindeg}_z(p_{\alpha}(\tilde{x}, z)) = \text{mindeg}_z(p_{\alpha}(x, z)) \) if and only if \(q(\tilde{x}) \neq 0 \). Now \(q(x) \) has degree \(\frac{1}{2}|V(G)| \), so, by the Schwartz-Zippel Lemma, \(q(\tilde{x}) \neq 0 \) with probability at least \(1 - \frac{1}{2^c} \), as required.

Now the algorithm is obvious.

Random Evaluation Algorithm

Input: An instance \((G, w, \gamma, \alpha)\) of the \(t \)-Dimension Parity Perfect Matching Problem and a positive integer \(c \).

Step 1. Choose \(\tilde{x} \in \{1, \ldots, c|V(G)|\}^E(G) \) uniformly at random.

Step 2. Compute \(\text{Pf}(T(\tilde{x}, y, z)) \) and extract \(p_{\alpha}(\tilde{x}, z) \).

Step 3. Return \(\text{mindeg}_z(p_{\alpha}(\tilde{x}, z)) \).

By Lemmas 5.1 and 5.3, the algorithm will give the correct answer with probability at least \(1 - \frac{1}{2^c} \).

How does one compute \(\text{Pf}(T(\tilde{x}, y, z)) \)? The easy answer is to first compute it over the ring \(\mathbb{Z}[y, z] \) before applying the quotient. This can be done
by applying row and column eliminations; see Godsil [4]. The intermediate matrices would have entries in the field of rational functions in y and z. That would result in a running time of $O(w_{\text{max}}n^{t+4})$.

Note that $\text{Pf}(T(\tilde{x}, y, z))$ is in the ring

$$\tilde{R} = \mathbb{Z}[y, z]/\langle y_1^2 - 1, \ldots, y_t^2 - 1 \rangle.$$

We can reduce the complexity to $O(w_{\text{max}}n^7 \log^2 n)$ by computing $\text{Pf}(T(\tilde{x}, y, z))$ in the ring \tilde{R}; this is, however, not straightforward.

Computing the Pfaffian over a commutative ring

Mahajan, Subramanya, and Vinay [9] give an algorithm for computing Pfaffians over arbitrary commutative rings; here we will only focus on the ring \tilde{R}. Their algorithm takes polynomially-many ring operations. We need to prove that if we use it to compute $\text{Pf}(T(\tilde{x}, y, z))$ then each of these ring operations can be done efficiently, so that the whole algorithm runs in polynomial time.

Let D be an $n \times n$ skew-symmetric matrix over the ring \tilde{R}. Given D, Mahajan et al. construct a directed graph H_D with edge weights $\text{wt}(e)$ in \tilde{R} and with three special vertices s, t^-, and t^+. The construction of H_D and wt is given explicitly in the Appendix; here we will only summarize the properties that are relevant to the subsequent discussion.

(H1) H_D is an acyclic digraph with $2n^3 + 3$ vertices,
(H2) each vertex in H_D has in-degree at most n,
(H3) each directed path in H_D has at most $n+1$ edges, and
(H4) the weight of each edge is either equal to an entry of D or to one.

Given a directed path P in H_D, we define $\text{wt}^P = \prod_{e \in E(P)} \text{wt}(e)$. For vertices x and y of H_D, let $\mathcal{P}(x, y)$ denote the set of all directed (x, y)-paths. They prove the following.

Theorem 5.4 ([9, Theorem 12]). Let D be a skew-symmetric matrix and H_D the graph described in the Appendix. Then

$$\text{Pf}(D) = \sum_{P \in \mathcal{P}(s, t^+)} \text{wt}^P - \sum_{Q \in \mathcal{P}(s, t^-)} \text{wt}^Q.$$
Using this result, we will show that $\text{Pf}(T(\tilde{x}, y, z))$ can be computed efficiently. For an element r of \tilde{R} we write $\deg_z(r)$ for the degree of r in the variable z and $|r|$ for the largest absolute value of its integer coefficients. We assume that multiplying two integers a and b takes time $O(\log a \log b)$ and that adding them takes time $O(\max\{\log a, \log b\})$.

Lemma 5.5. Let t be a fixed non-negative integer. Now let $D = (d_{ij})$ be an $n \times n$ matrix over \tilde{R}, $k = \max\{\deg_z(d_{ij}) : 1 \leq i, j \leq n\}$, and $c = \max\{|d_{ij}| : 1 \leq i, j \leq n\}$. If each entry of D has at most 2^t terms and $c \leq n$, then we can compute $\text{Pf}(D)$ in $O(n^7k\log^2 n)$ time.

Proof. Let H_D be the directed graph associated with D described in the Appendix. For each node v of H_D, let $f(v) = \sum_{P \in \mathcal{P}(s,v)} \text{wt}^P$. By Theorem 5.4 we need only compute $f(t^+)$ and $f(t^-)$. Since H_D is acyclic, there is an ordering $(v_1, v_2, \ldots, v_{2n^3+3})$ such that for each edge $e = v_i v_j$ of H_D we have $i < j$. We denote by $\delta^-(v)$ the set of vertices that are tails of arcs with head v. Note that $f(v) = \sum_{u \in \delta^-(v)} f(u) \text{wt}(uv)$ and for each $v_i \in \delta^-(v_j)$ we have $i < j$. So this formula allows us to compute $f(v_1), f(v_2), \ldots, f(v_{2n^3+3})$ in that order.

By property (H4), for each edge e we have $|\text{wt}(e)| \leq c$ and $\deg_z(\text{wt}(e)) \leq k$. Then, by property (H3), for each $v \in V(H_D)$, we have $\deg_z(f(v)) \leq (n+1)k$. Moreover, by properties (H2) and (H3) we have $|\mathcal{P}(s,v)| \leq (n-1)^n$ and, hence, $|f(v)| \leq c^{n+1}(n+1)^n$.

To compute each $f(v)$, we first do $O(n)$ multiplications of the form $f(u) \text{wt}(uv)$. Since each $\text{wt}(uv)$ has a constant number of terms, each multiplication takes time $O(\deg_z(f_u)\log |f_u| \log |\text{wt}(uv)|)$ or $O(n^2k\log(cn) \log c)$. We then do $O(n)$ additions of these terms, each of which takes time $O(nk\log(c^{n+1}(n+1)^n))$ or $O(n^2k\log(cn))$. So computing each $f(v)$ takes time $O(n^3k\log(cn) \log c)$.

Since there are $O(n^3)$ nodes in H_D and $c \leq n$, the total time taken is $O(n^6k\log^2 n)$.

Given an instance (G, w, γ, α) of t-Dimensional Parity Perfect Matching Problem, we may assume that, for each $\beta \in \text{GF}(2)^t$, there is at most one edge e with $\gamma(e) = \beta$ between any two given vertices, since otherwise we could delete all but the one of minimum weight. This gives the following result.

Theorem 5.6. Let t be a non-negative integer and $\epsilon > 0$. There is a randomized algorithm that, given an instance of the t-Dimensional Parity Perfect Matching Problem with n vertices and maximum edge weight w_{max}, correctly solves the problem, with probability at least $1 - \epsilon$, in time $O(w_{\text{max}}n^6\log^2 n)$.

6. Walks, cycles, and joins with parity constraints

Let G be a graph, let $\gamma \in \text{GF}(2)^{E(G)}$, and let $u, v \in V(G)$. A (u, v)-walk in G is a sequence $(v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k)$ such that

- v_0, v_1, \ldots, v_k are vertices with $v_0 = u$ and $v_k = v$, and
- for each $i \in \{1, \ldots, k\}$, the element e_i is an edge with ends $\{v_{i-1}, v_i\}$.

If $W = (v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k)$ is a walk, then the length of W is k and the parity of W, denoted $\gamma(W)$, is $\gamma(e_1) + \cdots + \gamma(e_k)$. We denote by $E_{\text{odd}}(W)$ the set of edges that occur an odd number of times in W; note that $\gamma(E_{\text{odd}}(W)) = \gamma(W)$ and $|E_{\text{odd}}(W)| \leq k$.

The first problem that we solve in this section is:

The t-Dimensional Parity Walk Problem

INSTANCE: A tuple $(G, \gamma, \alpha, u, v)$ where G is a graph and u and v are vertices of G, $\gamma : E(G) \rightarrow \text{GF}(2)^t$, and $\alpha \in \text{GF}(2)^t$.

PROBLEM: Find a minimum length (u, v)-walk W in G of parity α.

We define a simple graph G^γ as follows. The vertex set of G^γ is $V(G) \times \text{GF}(2)^t$. Vertices (u, β) and (v, β') are adjacent if and only if there is an edge $e = uv$ of G with $\gamma(e) = \beta + \beta'$. Note that $|V(G^\gamma)| = 2^t|V(G)|$ and $|E(G^\gamma)| \leq 2^t|E(G)|$ (with equality unless there are two edges in G with both the same ends and the same parity). The following result is an easy consequence of this construction.

Lemma 6.1. Let $(G, \gamma, \alpha, u, v)$ be an instance of the t-Dimensional Parity Walk Problem. Then there is a (u, v)-walk in G of length k and parity α if and only if there is a $((u, 0), (v, \alpha))$-walk in G^γ of length k.

Now, by Lemma 6.1, the t-Dimensional Parity Walk Problem can be solved in linear time.

Cycles with parity constraints

Next we consider the following problem.

The t-Dimensional Parity Cycle Problem

INSTANCE: A tuple (G, γ, α) where G is a graph, $\gamma : E(G) \rightarrow \text{GF}(2)^t$, and $\alpha \in \text{GF}(2)^t$.

PROBLEM: Find a minimum cardinality cycle C of G with $\gamma(C) = \alpha$.

Note that we do not require C to be non-empty.

Let (G, γ, α) be an instance of the t-Dimensional Parity Cycle Problem. A closed walk in a graph is a (u, u)-walk for any vertex u. For each $\beta \in \text{GF}(2)^t$,
let \(w(\beta) \) be the minimum length of a closed walk of parity \(\beta \); if there is no such walk we define \(w(\beta) = \infty \). Note that, if \(G \) has \(n \) vertices and \(m \) edges, then we can compute \(w(\beta) \) in \(O(nm) \) time. Now we define \(\bar{w}(\beta) \) to be the minimum of \(\sum (w(\alpha) : \alpha \in S) \) taken over all subsets \(S \subseteq \text{GF}(2)^t \) with \(\sum (\alpha : \alpha \in S) = \beta \). Since we treat \(t \) as constant, we can compute \(\bar{w}(\beta) \) in \(O(nm) \) time.

Lemma 6.2. Let \((G, \gamma, \alpha) \) be an instance of the \(t \)-Dimensional Parity Cycle Problem. Then the optimal value is \(\bar{w}(\alpha) \).

Proof. Let \(C \) be a smallest cycle with \(\gamma(C) = \alpha \). Since the symmetric difference of two cycles is a cycle, \(|C| \leq \bar{w}(\alpha) \). On the other hand, consider a partition \((C_1, \ldots, C_k) \) of \(C \) into circuits. For each \(i \in \{1, \ldots, k\} \), let \(\beta_i = \gamma(C_i) \); note that \(|C_i| \geq w(\beta_i) \). So \(|C| \geq w(\{\beta_1, \ldots, \beta_k\}) \geq \bar{w}(\alpha) \). By Lemma 6.2, we can solve the \(t \)-Dimensional Parity Cycle Problem in \(O(nm) \) time.

Joins with parity constraints

Let \(G = (V, E) \) be a graph and let \(T \subseteq V \). A \(T \)-join is a set \(J \subseteq E \) such that \(T \) is the set of odd-degree vertices of the subgraph \(G[V, J] \). Since graphs have an even number of vertices of odd degree, there do not exist \(T \)-joins unless \(|T| \) is even. Now consider the following problem.

The \(t \)-Dimensional Parity Join Problem

INSTANCE: A tuple \((G, T, \gamma, \alpha) \) where \(G \) is a graph, \(T \subseteq V(G) \), \(\gamma : E(G) \to \text{GF}(2)^t \), and \(\alpha \in \text{GF}(2)^t \).

PROBLEM: Find a minimum size \(T \)-join \(J \) of \(G \) with \(\gamma(J) = \alpha \).

Let \(G \) be a graph, \(T \subseteq V(G) \), and \(\gamma : E(G) \to \text{GF}(2)^t \). For \(\beta \in \text{GF}(2)^t \), we let \(\bar{w}_T(\beta) \) denote the minimum size of a \(T \)-join \(J \) of \(G \) with \(\gamma(J) = \beta \); if there is no \(T \)-join \(J \) with \(\gamma(J) = \beta \), then we let \(\bar{w}_T(\beta) = \infty \).

Note that an \(\emptyset \)-join is a cycle, so \(\bar{w}_\emptyset(\beta) = \bar{w}(\beta) \). Thus, when \(T = \emptyset \), the \(t \)-Dimensional Parity Join Problem is just the \(t \)-Dimensional Parity Cycle Problem, which is solved above.

We will start by considering instances \((G, T, \gamma, \alpha) \) with \(|T| = 2 \). For \(u, v \in V(G) \) and \(\beta \in \text{GF}(2)^t \), we let \(w_{uv}(\beta) \) denote the minimum length of a \((u, v)\)-walk of parity \(\beta \); we let \(w_{uv}(\beta) = \infty \) if no such walk exists.

Lemma 6.3. Let \((G, T, \gamma, \alpha) \) be an instance of the \(t \)-Dimensional Parity Join Problem with \(T = \{u, v\} \). Then \(\bar{w}_T(\alpha) \) is equal to the minimum of \(w_{uv}(\beta) + \bar{w}(\alpha + \beta) \) taken over all \(\beta \in \text{GF}(2)^t \).
Proof. If W is a (u,v)-walk with $\gamma(W) = \beta$ and C is a cycle with $\gamma(C) = \alpha + \beta$ then $E_{\text{odd}}(W) \Delta C$ is a $\{u,v\}$-join with $\gamma(E_{\text{odd}}(W) \Delta C) = \alpha$. Thus

$$\tilde{w}_T(\alpha) \leq w_{uv}(\beta) + \tilde{w}(\alpha + \beta).$$

Conversely, consider a $\{u,v\}$-join J with $\gamma(J) = \alpha$ and $|J| = \tilde{w}_T(\alpha)$. Since u and v are the only odd-degree vertices in $G[V,J]$, there is a (u,v)-path in $G[V,J]$; let P be the edge set of such a path and let $\beta = \gamma(P)$. Now $|P| \geq w_{uv}(\beta)$ and, since $J - P$ is a cycle with $\gamma(J - P) = \alpha + \beta$, we have $|J - P| \geq \tilde{w}(\alpha + \beta)$. Thus

$$\tilde{w}_T(\alpha) \geq w_{uv}(\beta) + \tilde{w}(\alpha + \beta);$$

which completes the proof.

Then, as an immediate corollary, we get the following result.

Theorem 6.4. There is an algorithm that, given an instance (G,T,γ,α) of the t-Dimensional Parity Join Problem with n vertices and m edges and with $|T| \leq 2$, finds the optimal value in time $O(mn)$.

We also need the following bound on $\tilde{w}_{\{u,v\}}(\beta)$.

Lemma 6.5. Let (G,T,γ,α) be an instance of the t-Dimensional Parity Join Problem with $|T| = 2$. If $\tilde{w}_T(\alpha)$ is finite, then $\tilde{w}_T(\alpha) \leq 2^t|V(G)|$.

Proof. Let $T = \{u,v\}$. Let J be a T-join with $\gamma(J) = \alpha$. We can partition J into sets (P,C_1,\ldots,C_k) where P is the edge set of a (u,v)-path and C_1,\ldots,C_k are the edge sets of circuits. We may assume that:

- for each $i \in \{1,\ldots,k\}$, we have $\gamma(C_i) \neq 0$ (since otherwise $J - C_i$ is a T-join with $\gamma(J - C_i) = \alpha$), and
- for each $1 \leq i < j \leq k$, we have $\gamma(C_i) \neq \gamma(C_j)$ (since otherwise $J - C_i - C_j$ is a T-join with $\gamma(J - C_i - C_j) = \alpha$).

Thus $k \leq 2^t - 1$ and hence $|J| \leq 2^t|V(G)|$.

We now return to the general case. Let (G,T,γ,α) be an instance of the t-Dimensional Parity Join Problem. Let T^2 denote the set of 2-element subsets of T. We define a graph $H(G,T)$ with vertex set T and edge set $T^2 \times GF(2)^t$ where the edge $(\{u,v\},\beta)$ has ends u and v. Given an edge $e = (\{u,v\},\beta)$ we define $\tilde{w}(e) = \tilde{w}_{\{u,v\}}(\beta)$ and $\tilde{\gamma}(e) = \beta$. We can construct $H(G,T)$ and all of its associated “edge weights”, $\tilde{w}(e)$ and $\tilde{\gamma}(e)$, in $O(n^2m)$ time.

Lemma 6.6. Let (G,T,γ,α) be an instance of the t-Dimensional Parity Join Problem with $|T| > 0$ even. Then $\tilde{w}_T(\alpha)$ is equal to the minimum of $\tilde{w}(M)$ taken over all perfect matchings M of $H(G,T)$ with $\tilde{\gamma}(M) = \alpha$.

Theorem 6.7. Let t be a non-negative integer and $\epsilon > 0$. There is a randomized algorithm that, given an instance of the t-Dimensional Parity Join Problem with n vertices, correctly solves the problem, with probability at least $1 - \epsilon$, in time $O(n^7 \log^2 n)$.

7. Computing girth

This brings us to the final step.

Theorem 7.1. Let t be a non-negative integer and $\epsilon > 0$. There is a randomized algorithm that, given a $(t,1)$-signed-graft (G,S,T,B,C,D) with n vertices and m edges, correctly computes the girth of the matroid $M(G,S,T,B,C,D)/T$, with probability at least $1 - \epsilon$, in time $O(n^7 \log^2 n + mn)$.
Proof. In $O(mn)$ time we can check whether $M(G,S,T,B,C,D)/T$ has a loop. If not, but $m > 2\binom{n}{2}$, then its girth is two, so we may assume that $m = O(n^2)$. In $O(n^3)$ time we can check if $M(G,S,T,B,C,D)/T$ has any parallel pairs, so we may assume that it is simple.

Suppose that $T = \{e\}$. Let k_2 be the girth of $M(G,S,T,B,C,D) \setminus T$ and let $k_2 + 1$ be the size of the smallest cycle of $M(G,S,T,B,C,D)$ that contains e. If $k_2 = 0$, then the girth of $M(G,S,T,B,C,D)/T$ is k_1 and, if $k_2 > 0$, then the girth of $M(G,S,T,B,C,D)/T$ is $\min(k_1,k_2)$. In either case, it suffices to compute k_1 and k_2.

We may assume that $S = \{1, \ldots, t\}$. For each edge f of G we let $\gamma(f)$ denote the column of C indexed by f. Let α be the unique column of D, and let $\tilde{T} \subseteq \mathcal{V}(G)$ be the set whose characteristic vector is the unique column of B.

Claim 7.1.1. We can compute k_1 in $O(m^2n)$ time.

Proof of Claim. Let f be an edge of G, and let $\beta = \gamma(f)$. If f is not a loop, then let T' be the set of ends of e. If f is a loop, let $T' = \emptyset$. For $J \subseteq E(G) \setminus \{f\}$, the set $J \cup \{f\}$ is a cycle of $M(G,S,T,B,C,D) \setminus T$ if and only if J is a T'-join in $G - f$ with $\gamma(J) = \beta$. So, by Lemma 6.4, we can compute the size of the shortest cycle in $M(G,S,T,B,C,D) \setminus T$ that contains f in $O(mn)$ time. Thus we can compute the girth of $M(G,S,T,B,C,D) \setminus T$ by repeating this for each edge of G.

For $J \subseteq E(G)$, the set $J \cup \{e\}$ is a cycle of $M(G,S,T,B,C,D)$ if and only if J is a \tilde{T}-join in G with $\gamma(J) = \alpha$. Then, by Theorem 6.7, there is a randomized algorithm that will correctly compute k_2, with probability at least $1 - \epsilon$, in $O(n^7 \log^2 n)$ time.

Note that Theorem 1.1 follows from Lemmas 4.1 and 4.3 and Theorem 7.1.

Acknowledgement. We thank Bert Gerards and Geoff Whittle, with whom we have enjoyed many fruitful discussions on this topic. We also thank the referee for their suggestions.

References

[1] F. Barahona and M. Conforti: A construction for binary matroids, Discrete Math. 66 (1987), 213–218.

[2] M. Conforti and M. R. Rao: Some new matroids on graphs: Cut sets and the max cut problem, Math. Oper. Res. 12 (1987), 193–204.
Let $D = (d_{ij})$ be an n by n skew-symmetric matrix with entries in a ring R. We may assume that the rows and columns are indexed by $\{1, \ldots, n\}$. If n is odd, then the Pfaffian is zero, so we may assume that n is even. Let

$$X = \{0, 1\} \times \{1, \ldots, n\} \times \{1, \ldots, n\} \times \{0, \ldots, n-1\}.$$

Now let $H_D = (V, E)$ be the edge-weighted directed graph where $V = \{s, t^-, t^+\} \cup X$ and E consists of the following edges:

1. For each $a \in \{1, 3, \ldots, n-1\}$, there is an edge $e = sv$ where $v = (0, a, a, 0)$ with $\text{wt}(e) = 1$.
2. For each $v \in X$ with $v_4 \in \{2, 4, \ldots, n\}$ and $v_3 > v_2$, and for each $a \in \{1, \ldots, n\} - \{v_3\}$, if $a < v_3$ there is an edge $e = uv$ where $u = (1-v_1, v_2, a, v_4-1)$ with $\text{wt}(e) = d_{u_4,v_4}$, and if $a > v_3$ there is an edge $e = uv$ where $u = (v_1, v_2, a, v_4-1)$ with $\text{wt}(e) = d_{v_4,u_4}$.
3. For each $v \in X$ with v_3 and v_4 both even and with $v_2 < v_3-1$, there is an edge $e = uv$ where $u = (1-v_1, v_2, v_3-1, v_4-1)$ with $\text{wt}(e) = 1$.
4. For each \(v \in X \) with \(v_3 \) odd, \(v_4 \) even and with \(v_2 < v_3 \), there \(u_1 = v_1 \), \(u_2 = v_2 \), \(u_3 = v_3 + 1 \), and \(u_4 = v_4 - 1 \), there is an edge \(e = uv \) where \(u = (v_1, v_2, v_3 + 1, v_4 - 1) \) with \(\text{wt}(e) = 1 \).

5. For each \(v \in X \) with \(v_3 \) odd, \(v_4 \) even, and \(v_3 = v_2 \), and for each \(a \in \{1, \ldots, v_2 - 1\} \) there is an edge \(e = uv \) where \(u = (1 - v_1, a, a + 1, v_4 - 1) \) with \(\text{wt}(e) = 1 \).

6. For each \(a \in \{1, 3, \ldots, n - 1\} \) there is an edge \(e = ut^- \) where \(u = (0, a, a + 1, n - 1) \) with \(\text{wt}(e) = 1 \).

7. For each \(a \in \{1, 3, \ldots, n - 1\} \) there is an edge \(e = ut^+ \) where \(u = (1, a, a + 1, n - 1) \) with \(\text{wt}(e) = 1 \).

Lemma A.1. The directed graph \(H_D \) satisfies the following:

- (H1) \(H_D \) is an acyclic digraph with \(2n^3 + 3 \) vertices
- (H2) each vertex in \(H_D \) has in-degree at most \(n \),
- (H3) each directed path in \(H_D \) has at most \(n + 1 \) edges, and
- (H4) the weight of each edge is either equal to an entry of \(D \) or to one.

Proof. Note that, by definition, \(H_D \) has \(2n + 3 \) vertices and (H4) holds. Let \(X_0 = \{s\}, X_{n_1} = \{t^-, t^+\} \), and, for each \(i \in \{0, \ldots, n\} \), let

\[X_i = \{0, 1\} \times \{1, \ldots, n\} \times \{1, \ldots, n\} \times \{i - 1\}. \]

For each edge \(e = uv \) there exists \(i \in \{0, \ldots, n\} \) such that \(u \in X_i \) and \(v \in X_{i+1} \). It follows that \(H_D \) is acyclic and has no directed path with more than \(n + 1 \) edges. Thus (H1) and (H3) hold.

Consider a vertex \(v \) of \(H_D \). Each edge \(e = uv \) entering \(v \) is of one of the types (1),\ldots,(7). Note that there are at most \(n \) edges of any given type entering \(v \) and that there is at most one type of edge entering \(v \). For example, if there is an edge \(e = uv \) of type (2) entering \(v \) then \(v \in X \) and \(v_4 \in \{2, 4, \ldots, n\} \), which precludes the existence of other types of edges entering \(v \). Thus \(v \) has in-degree at most \(n \).

Jim Geelen
Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario, Canada
jim.geelen@uwaterloo.ca

Rohan Kapadia
Department of Computer Science and Software Engineering
Concordia University Montréal, Québec, Canada
rohan.f.kapadia@gmail.com