Oleylethanolamide Stimulates Lipolysis by Activating the Nuclear Receptor Peroxisome Proliferator-activated Receptor α (PPAR-α)*

Received for publication, April 13, 2004
Published, JBC Papers in Press, April 26, 2004, DOI 10.1074/jbc.M404087200

Manuel Guzmán‡‡, Jesse Lo Vermeé§§, Jin Fu†, Fariba Oveisip, Cristina Blázquez‡, and Daniele Piomelli**

From the ‡Department of Pharmacology, University of California, Irvine, California 92697-4260 and the §Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid 28040, Spain

Amides of fatty acids with ethanolamine (FAE) are biologically active lipids that participate in a variety of biological functions, including the regulation of feeding. The polyunsaturated FAE anandamide (arachidonylethanolamide) increases food intake by activating G protein-coupled cannabinoid receptors. On the other hand, the monounsaturated FAE oleylethanolamide (OEA) reduces feeding and body weight gain by activating the nuclear receptor PPAR-α (peroxisome proliferator-activated receptor α). In the present report, we examined whether OEA can also influence energy utilization. OEA (1–20 µM) stimulated glycerol and fatty acid release from freshly dissociated rat adipocytes in a concentration-dependent and structurally selective manner. Under the same conditions, OEA had no effect on glucose uptake or oxidation. OEA enhanced fatty acid oxidation in skeletal muscle strips, dissociated hepatocytes, and primary cardiac myocyte cultures. Administration of OEA in vivo (5 mg kg⁻¹, intraperitoneally) produced lipolysis in both rats and wild-type mice, but not in mice in which PPAR-α had been deleted by homologous recombination (PPAR-α⁻/⁻). Likewise, OEA was unable to enhance lipolysis in adipocytes or stimulate fatty acid oxidation in skeletal muscle strips isolated from PPAR-α mice. The synthetic PPAR-α agonist Wy-14643 produced similar effects, which also were dependent on the presence of PPAR-α. Subchronic treatment with OEA reduced body weight gain and triacylglycerol content in liver and adipose tissue of diet-induced obese rats and wild-type mice, but not in obese PPAR-α⁻/⁻ mice. The results suggest that OEA stimulates fat utilization through activation of PPAR-α and that this effect may contribute to its anti-obesity actions.

Amides of long-chain fatty acids with ethanolamine (FAE) are a family of lipid mediators produced through the concerted action of two enzymes present in mammalian cells: N-acetyltransferase, which transfers a fatty acid from the sn-1 position of a donor phospholipid to the free amine in phosphatidylethanolamine, producing N-acetylphosphatidylethanolamine; and phospholipase D, which converts N-acetylphosphatidylethanolamine to FAE (1, 2). The FAE are hydrolyzed intracellularly to fatty acids and ethanolamine by the action of fatty acid amide hydrolase enzymes (3–5).

Although the FAE were first described four decades ago (6), they did not attract much attention until the discovery that a polyunsaturated member of this family, anandamide (arachidonylethanolamide), is an endogenous ligand for cannabinoid receptors, G protein-coupled receptors targeted by the marijuana constituent Δ⁹-tetrahydrocannabinol (7). Anandamide is now established as a brain endocannabinoid messenger (8) and multiple roles for other FAE have also been proposed (9–11). One emerging function of these lipid mediators is the regulation of feeding behavior. Anandamide causes overeating in rats because of its ability to activate cannabinoid receptors (12). This action is of therapeutic relevance: cannabinoid agonists such as Δ⁹-tetrahydrocannabinol are currently used to alleviate anorexia and nausea in AIDS patients, whereas the CB₂ antagonist rimonabant (SR141716A) was recently found to be effective in late-stage clinical trials for the treatment of obesity (12).

In contrast to anandamide, the monounsaturated FAE oleylethanolamide (OEA) decreases food intake and body weight gain through a cannabinoid receptor-independent mechanism (11, 13). Pharmacological and molecular biological experiments have demonstrated that these effects result from the high affinity binding of OEA to, and consequent activation of, the nuclear receptor PPAR-α (peroxisome proliferator-activated receptor α) (14). Because PPAR-α serves an essential function in the regulation of lipid metabolism (15, 16) we investigated whether OEA may also influence nutrient utilization by altering fat storage and catabolism.

EXPERIMENTAL PROCEDURES

Chemicals—FAE synthesis was conducted as described (17). For in vitro experiments, drugs were dissolved in dimethyl sulfoxide and used at a final dimethyl sulfoxide concentration of 0.1–0.2% (v/v). For in vivo experiments, drugs were dissolved in a vehicle of 70% dimethyl sulfoxide/sterile saline (acute administrations) or 90% sterile saline, 5% polyethylene glycol, 5% Tween 80 (subchronic administrations).

Cell and Tissue Preparation—Hepatocytes (18) and epididymal adipocytes (19) were isolated by collagenase digestion of embryonic rat hearts and maintained in primary culture as described (20). Rat plasma was prepared by centrifugation of EDTA-treated (0.02 mM) blood obtained by cardiac puncture.

Lipolysis—Glycerol was determined spectrophotometrically in cell incubation media or plasma using a commercial kit (Sigma). Fatty acid release was measured in cells labeled by incubation with [³H]oleic acid (2 µCi per well, Amersham Biosciences) for 1 h at 37 °C. After labeling,
the cells were washed with ice-cold Krebs-Ringer buffer supplemented with 20 mM Hapes, 2 mM glucose, and 2% fatty acid-free bovine serum albumin (pH 7.4) and incubated for 30 min at 57 °C in 1 ml of buffer; the incubation medium was separated by centrifugation and fatty acids were isolated by solvent extraction followed by thin-layer chromatography (21). Plasma fatty acids were measured with a commercial kit (Wako Chemicals, Richmond, VA).

Fatty Acid Oxidation—Fatty acid oxidation was measured using [1-14C]oleic acid as a substrate (0.4 mM, 0.5 μCi per sample; American Radiolabeled Chemicals, St. Louis, MO). In soleus muscle strips and heart myocytes, fatty acid oxidation to CO2 was determined by trapping released [14C]CO2 as bicarbonate in wells containing filter paper soaked with benzenthionium hydroxide (1 M in methanol) (22). In hepatocytes, [14C]ketone bodies, which constitute about 90% of total fatty acid oxidation products, were determined as non-volatile acid-soluble products (23).

Glucose Uptake and Oxidation—Glucose uptake was measured by using 20 mM Hepes, 2 mM glucose, and 2% fatty acid-free bovine serum albumin (pH 7.4) and incubated for 30 min at 37 °C in 1 ml of buffer; the incubation medium was separated by centrifugation and fatty acids and glycerol, which was followed by a rise in the concentration of plasma glucose and 3-hydroxybutyrate (Sigma), as well as glucagon and insulin (Linco Research, St. Charles, MO).

RESULTS

OEA Stimulates Lipolysis in Vitro—Incubation of freshly dissociated rat adipocytes in the presence of OEA (10 μM, 30 min) significantly increased the release of non-esterified fatty acids and glycerol into the bathing medium (Fig. 1A). By contrast, OEA had no effect on adipocyte glucose uptake or oxidation, irrespective of whether the cells were isolated from free-feeding (Fig. 1A) or 18-h starved rats (data not shown). Moreover, OEA did not affect insulin-stimulated glucose uptake (insulin 100 nM, 6 h, 96 ± 17%; insulin plus OEA 10 μM, 79 ± 22% stimulation; n = 3). The lipolytic effects of OEA were concentration-dependent (half-maximal effective concentration, EC_{50} = ~2 μM (Fig. 1B) and structurally selective, as oleic acid and anandamide had no such effect (Fig. 1C).

Because lipolysis is primarily controlled through cAMP-dependent protein phosphorylation (25), we examined whether this second messenger pathway participates in the effects of OEA. At a concentration that produced maximal lipolysis (10 μM), OEA did not change either basal or forskolin-stimulated cAMP levels (in %; vehicle, 100 ± 11; OEA, 96 ± 8; forskolin, 0.5 μM, 127 ± 11; OEA plus forskolin, 0.5 μM, 124 ± 9; forskolin, 25 μM, 287 ± 40; OEA plus forskolin, 25 μM, 280 ± 70). Moreover, the Ca2+ ionophore ionomycin (5 μM) had no effect on basal, OEA-stimulated or forskolin-stimulated lipolysis (data not shown). The results suggest that OEA promotes lipolysis in isolated rat adipocytes through a mechanism that is independent of cAMP or Ca2+.

OEA Stimulates Lipolysis in Vivo—Systemic administration of OEA to rats (5 mg kg$^{-1}$, intraperitoneal) produced a rapid elevation in the circulating levels of non-esterified fatty acids and glycerol, which was followed by a rise in the concentration of 3-hydroxybutyrate, a marker of hepatic fatty acid oxidation (Fig. 2A). This response was dose-dependent (half-maximally effective dose, ED_{50} = ~2.6 mg kg$^{-1}$ (Fig. 2B) and accompanied by a decrease in the triacylglycerol content of epididymal fat

![Fig. 1. OEA stimulates lipolysis in vitro. A](4.00x2.77)

Fig. 1. OEA stimulates lipolysis in vitro. A Fatty acid release, glycerol release, glucose uptake, and glucose oxidation in isolated adipocytes. B, concentration-dependent effects of OEA on glycerol release from adipocytes. C, effects of vehicle (V), OEA, oleic acid (OA), or anandamide (AEA), each at 10 μM, on glycerol release from adipocytes. Significantly different from vehicle incubations: *, p < 0.05; **, p < 0.01; n = 4–6.
OLEOYLETHANOLAMIDE STIMULATES LIPOLYSIS BY ACTIVATING PPAR-α

and liver, but not skeletal muscle (Fig. 2C). By contrast, plasma glucose levels remained unchanged after OEA injection (Fig. 2A), as did those of insulin and glucagon (insulin, in ng ml⁻¹; vehicle, 1.7 ± 0.3; OEA, 30 min, 1.5 ± 0.1; OEA, 60 min, 1.6 ± 0.1; glucagon, in pg ml⁻¹; vehicle, 116.5 ± 8.3; OEA, 30 min, 135.7 ± 21.1; OEA, 60 min, 95.9 ± 13.6). Oleic acid and anandamide had no significant lipolytic effect in vivo at any of the doses tested (up to 20 mg kg⁻¹, intraperitoneal) (Fig. 2D).

PPAR-α Mediates OEA-induced Lipolysis—As previously seen in rats, administration of OEA (5 mg kg⁻¹, intraperitoneal) to C57Bl/6 mice significantly reduced liver triacylglycerol content 1 h after injection (Fig. 3A). To test the role of PPAR-α in this response we used three distinct approaches. First, we examined the effects of the synthetic PPAR-α agonist Wy-14643, which is structurally unrelated to OEA (26). At a dose that fully activates PPAR-α in vivo (20 mg kg⁻¹, intraperitoneal) (14), Wy-14643 reduced liver triacylglycerol levels to the same extent as did 5 mg kg⁻¹ OEA (Fig. 3A). Second, we examined whether genetic deletion of PPAR-α affects the lipolytic response to OEA and Wy-14643 in vivo. In striking contrast with their effects in wild-type mice, both drugs increased liver triacylglycerol levels in mice in which PPAR-α had been deleted by homologous recombination (PPAR-α⁻/⁻) (27) (Fig. 3A). We did not investigate the bases for this paradoxical stimulation, although an intriguing possibility is that, in the absence of PPAR-α, OEA might activate other lipogenic nuclear receptors (28). Third, we investigated whether genetic deletion of PPAR-α affects the lipolytic response to OEA or Wy-14643 in vitro. Incubation of adipocytes isolated from wild-type mice with either compound stimulated lipolysis (Fig. 3B), whereas no such effect was observed in adipocytes isolated from PPAR-α⁻/⁻ mice (Fig. 3B).

To further explore the role of PPAR-α in the response to OEA, we fed wild-type and PPAR-α⁻/⁻ mice for 7 weeks with a high-fat chow and then treated them for 4 additional weeks with OEA (5 mg kg⁻¹, once daily, intraperitoneal), a drug regimen that was previously shown to reduce body weight gain (14). In wild-type mice, this treatment caused a significant decrease in liver and fat triacylglycerol content (Fig. 3, C and D), but had no such effect in PPAR-α⁻/⁻ mice (Fig. 3, C and D). To investigate the mechanism by which these changes might occur, we assessed the effects of OEA on the expression of various genes involved in lipid metabolism. In rats, 6 h following a single injection of OEA (10 mg kg⁻¹ intraperitoneally), we found increased levels of PPAR-α mRNA in adipose tissue (Fig. 4A) and skeletal muscle (Fig. 4F). Concordantly, two downstream genes under the regulation of PPAR-α, fatty acid-binding protein, and fatty acid translocator (FAT/CD36), which encode for proteins that participate in the cellular transport of fatty acids (29), were elevated by OEA treatment in adipose tissue (Fig. 4, B and C) and muscle tissue (Fig. 4, G and H). These changes were paralleled by an increase in the expression of UCP-2 (Fig. 4, D and I), which is thought to play a key role in mitochondrial energy utilization (30, 31).

OEA Stimulates Fatty Acid Oxidation in Vitro—PPAR-α plays a pivotal role in the control of fatty acid oxidation, suggesting that OEA may also affect this process. In support of this possibility, we found that stimulation of rat soleus muscle strips with OEA enhanced fatty acid oxidation in a concentration-dependent manner (EC₅₀ ~ 2 μM) (Fig. 5, A and B), whereas having no effect on glucose uptake or oxidation (Fig. 5A). To test the role of PPAR-α in this response, we examined the effect of OEA on soleus muscle strips isolated from PPAR-α⁻/⁻ mice and wild-type controls. OEA stimulated fatty acid oxidation in tissue excised from wild-type (Fig. 5C), but not PPAR-α⁻/⁻ mice (Fig. 5C). As is the case with lipolysis, oleic acid and anandamide had no effect on fatty acid oxidation (Fig. 5D). The ability of OEA to enhance fatty acid oxidation was not limited to skeletal muscle, as similar results were obtained in primary cultures of rat heart myocytes and in dissociated rat hepatocytes (Fig. 5E). Although modest (21 ± 4% stimulation after a 30-min incubation), 10 μM OEA-induced ketogenesis in hepa-
The main finding of this study is that OEA stimulates lipolysis and fatty acid oxidation through activation of the nuclear receptor PPAR-α. The effects of OEA were observed both in vitro and in vivo, and the role of PPAR-α in such effects was supported by two complementary observations. First, OEA was potent at stimulating lipolysis and fatty acid oxidation in wild-type (+/-) or PPAR-α (-/-) mice. Second, the synthetic PPAR-α agonist Wy-14643 exerted similar effects, which were also contingent on PPAR-α expression. These results are consistent with the proposed role of OEA as a high affinity agonist for PPAR-α (14) and reveal a regulatory role of this lipid mediator in two distinct aspects of energy balance, namely feeding (11, 14) and fat utilization (present study).

We have previously (11, 14) reported that OEA, by activating PPAR-α, reduces body weight gain in lean rats primarily by inhibiting food intake (11). The actions of this compound in obese animals might involve a distinct mechanism, possibly linked to its ability to stimulate fatty acid oxidation.

DISCUSSION

Oleylethanolamide Stimulates Lipolysis by Activating PPAR-α

Role of Energy Utilization in the Anti-obesity Effects of OEA—Subchronic administration of OEA to obese rats or mice inhibits food intake and body weight gain (11, 14), however, it remains unclear whether the weight-suppressing effects of this compound may be entirely attributed to its anorexiant properties. To address this problem we first induced obesity in rats by feeding them with a high-fat diet for 8 weeks and then treating them once daily with OEA (5 mg kg⁻¹, intraperitoneal) or vehicle (11, 14) and reveal a regulatory role of this lipid mediator in two distinct aspects of energy balance, namely feeding (11, 14) and fat utilization (present study). We have previously (11, 14) reported that OEA, by activating PPAR-α, reduces body weight gain in lean rats primarily by inhibiting food intake (11). The actions of this compound in obese animals might involve a distinct mechanism, possibly linked to its ability to stimulate fatty acid oxidation.

DISCUSSION

The main finding of this study is that OEA stimulates lipolysis and fatty acid oxidation through activation of the nuclear receptor PPAR-α. The effects of OEA were observed both in vitro and in vivo, and the role of PPAR-α in such effects was supported by two complementary observations. First, OEA was potent at stimulating lipolysis and fatty acid oxidation in wild-type mice, not in mutant mice deficient in PPAR-α; second, the synthetic PPAR-α agonist Wy-14643 exerted similar effects, which were also contingent on PPAR-α expression. These results are consistent with the proposed role of OEA as a high affinity agonist for PPAR-α (14) and reveal a regulatory role of this lipid mediator in two distinct aspects of energy balance, namely feeding (11, 14) and fat utilization (present study). We have previously (11, 14) reported that OEA, by activating PPAR-α, reduces body weight gain in lean rats primarily by inhibiting food intake (11). The actions of this compound in obese animals might involve a distinct mechanism, possibly linked to its ability to stimulate fatty acid oxidation.

DISCUSSION

The main finding of this study is that OEA stimulates lipolysis and fatty acid oxidation through activation of the nuclear receptor PPAR-α. The effects of OEA were observed both in vitro and in vivo, and the role of PPAR-α in such effects was supported by two complementary observations. First, OEA was potent at stimulating lipolysis and fatty acid oxidation in wild-type mice, not in mutant mice deficient in PPAR-α; second, the synthetic PPAR-α agonist Wy-14643 exerted similar effects, which were also contingent on PPAR-α expression. These results are consistent with the proposed role of OEA as a high affinity agonist for PPAR-α (14) and reveal a regulatory role of this lipid mediator in two distinct aspects of energy balance, namely feeding (11, 14) and fat utilization (present study). We have previously (11, 14) reported that OEA, by activating PPAR-α, reduces body weight gain in lean rats primarily by inhibiting food intake (11). The actions of this compound in obese animals might involve a distinct mechanism, possibly linked to its ability to stimulate fatty acid oxidation.

DISCUSSION

The main finding of this study is that OEA stimulates lipolysis and fatty acid oxidation through activation of the nuclear receptor PPAR-α. The effects of OEA were observed both in vitro and in vivo, and the role of PPAR-α in such effects was supported by two complementary observations. First, OEA was potent at stimulating lipolysis and fatty acid oxidation in wild-type mice, not in mutant mice deficient in PPAR-α; second, the synthetic PPAR-α agonist Wy-14643 exerted similar effects, which were also contingent on PPAR-α expression. These results are consistent with the proposed role of OEA as a high affinity agonist for PPAR-α (14) and reveal a regulatory role of this lipid mediator in two distinct aspects of energy balance, namely feeding (11, 14) and fat utilization (present study). We have previously (11, 14) reported that OEA, by activating PPAR-α, reduces body weight gain in lean rats primarily by inhibiting food intake (11). The actions of this compound in obese animals might involve a distinct mechanism, possibly linked to its ability to stimulate fatty acid oxidation.
Oleoylthanolamide Stimulates Lipolysis by Activating PPAR-α

PPAR-α, reduces body weight gain in various rodent models. The present findings raise the question of whether PPAR-α-mediated fat utilization contributes to these effects (14). The answer to this question appears to depend on the particular model under consideration. Pair-feeding experiments indicate that induction of satiety may account for the weight-reducing effects of OEA found in lean rats (11), but not in rats made obese by a high-fat diet (present study). Thus, in the latter model OEA-mediated changes in lipid metabolism might play a role. This hypothermia is confirmed by the marked ability demonstrated by OEA to lower tissue triacylglycerol levels. The stimulatory effects of this lipid mediator on fatty acid oxidation may also be significant in this regard, as OEA is able to induce the expression of PPAR-α-regulated genes that participate in fatty acid utilization (FAT/CD36, FABP) and energy balance (UCP-2).

Another pressing question raised by our results relates to the molecular mechanism underlying the rapid onset lipolytic actions of OEA. Although PPAR-α activation regulates expression of lipid transporters and lipid-metabolizing enzymes (15, 16), the time course of OEA-induced lipolysis suggests that it may be initiated by non-genomic signaling events. Such events, and particularly the activation of membrane phosphatidylinositol-3-OH kinase, have been shown to contribute in important ways to the action of estrogen receptors (32), but they have not yet been documented for PPAR-α or other members of the PPAR family. Elucidating these events may not only help to understand the mechanism by which OEA induces lipolysis, but also provide important clues on the ability of the compound to induce satiety (11, 13).

The physiological significance of the metabolic actions of OEA is still undefined, although the relatively high levels of OEA found in white fat (rats, 106 ± 9 pmol/g; mice, 316 ± 46 pmol/g; n = 5–6) suggest that this compound may play a local modulatory role in this tissue, possibly complementary to those of adipocyte-derived signaling proteins such as leptin (33) and adiponectin (34). Noteworthy, the magnitude of OEA-induced stimulation of fatty acid oxidation in skeletal muscle, the tissue responsible for the bulk of whole body fatty acid oxidation, is comparable with that exerted by leptin (35) and adiponectin (36). However, the latter, our findings suggest that OEA may not have a significant impact on glucose metabolism.

Synthetic PPAR-α agonists such as the fibrates (e.g. fenfibrate) are currently used in the clinic as lipid-lowering and anti-atherogenic drugs. However, the potencies of these compounds at PPAR-α are 500–900 times lower than that of OEA (14) and, consequently, they do not significantly affect food intake (14, 37). The pharmacological profile of OEA suggests that this natural lipid may provide a scaffold for the design of novel anti-obesity drugs with combined anorexiant and lipolytic properties.

Acknowledgments—We thank Silvana Gaetani and Satish Kathuria for discussions and help with experiments.

REFERENCES

1. Schmid, H. H., Schmid, P. C., and Natarajan, V. (1996) Chem. Phys. Lipids 80, 133–142
2. Sun, Y. X., Tsuboi, K., Okamoto, Y., Tonai, T., Murakami, M., Kudo, I., and Ueda, N. (2004) Biochem. J. in press
3. Schmid, P. C., Zuzarte-Augustin, M. L., and Schmid, H. H. (1985) J. Biol. Chem. 260, 14145–14149
4. Cravatt, B. F., Giang, D. K., Mayfield, S. P., Boger, D. L., Lerner, R. A., and Gilula, N. B. (1996) Nature 384, 83–87
5. Ueda, H., and Hamabe, W. (2002) Nippon Yakurigaku Zasshi 119, 79–88
6. Colodzin, M., Bachur, N., Weissbach, H., and Udenfriend, S. (1963) Biochem. Biophys. Res. Commun. 10, 165–170
7. Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., Mandelbaum, A., Ringler, A., and Mechoulam, R. (1992) Science 258, 1946–1949
8. Piomelli, D. (2003) Nat. Rev. Neurosci. 4, 873–884
9. Maxarri, S., Canella, R., Marcelongo, G., and Leon, A. (1996) Eur. J. Pharmacol. 300, 227–236
10. Caligiano, A., La Rana, G., Giuffrida, A., and Piomelli, D. (1998) Nature 394, 277–281
11. Rodrigo de Fonseca, P., Navarro, M., Gomez, R., Esuredo, L., Nava, F., Fu, J., Muriello-Rodriguez, E., Giuffrida, A., LoVerme, J., Gaetani, S., Kathuria, S., Gall, C., and Piomelli, D. (2001) Nature 414, 209–212
12. Berry, E. M., and Mechoulam, R. (2002) Pharmacol. Ther. 85, 185–190
13. Gaetani, S., Oveisi, F., and Piomelli, D. (2003) Neuropharmacology 45, 1311–1316
14. Fu, J., Gaetani, S., Oveisi, F., LoVerme, J., Serrano, A., Rodrigo de Fonseca, F., Rosengarth, A., Laecke, H., Di Giaco, B., Tarzia, G., and Piomelli, D. (2003) Nature 425, 90–93
15. Berger, J., and Moller, D. E. (2002) Annu. Rev. Med. 53, 409–435
16. Bocher, V., Chinietti, G., Frachart, J. C., and Staub, S. (2002) J. Biol. Chem. 276, 47–52
17. Giuffrida, A., Rodrigo de Fonseca, F., and Piomelli, D. (2000) Anal. Biochem. 280, 87–93
18. Beynon, A. C., Vaartjes, W. J., and Geelen, M. J. (1979) Diabetes 28, 828–835
19. Rodbell, M. (1964) J. Biol. Chem. 239, 375–380
20. Fink, I. L., Edwards, J. G., Bahl, J. J., Liew, C. C., Lien, C. C., Sole, M., and Morkin, E. (1992) J. Biol. Chem. 267, 9917–9924
21. Blázquez, C., Galve-Roperh, I., and Guzmán, M. (2000) FASEB J. 14, 2315–2322
22. Blázquez, C., Sánchez, C., Velasco, G., and Guzmán, M. (1998) J. Neurochem. 71, 1597–1606
23. Guzmán, M., and Geelen, M. J. (1992) Biochem. J. 287, 487–492
24. Schmittgen, T. D., Zakrzewski, R. A., Mills, A. G., Gorn, V., Singer, M. J., and Reed, M. W. (2000) Anal. Biochem. 285, 194–204
25. Stráffors, P. (1967) J. Biol. Chem. 242, 11486–11489
26. Wilson, T. M., Brown, P. J., Sternbach, D. D., and Henke, B. R. (2000) J. Med. Chem. 43, 527–550
27. Lee, S. S., Pineau, T., Drago, J., Lee, E. J., Owens, J. W., Kroetz, D. L., Fernandez-Salgueiro, P. M., Westphal, H., and Gonzalez, F. J. (1999) Mol. Cell. Biol. 15, 3012–3022
28. Kersten, S. (2001) EMBO Rep. 2, 282–286
29. Strommel, W., Pohl, L., Ring, A., and Herrmann, T. (2001) Lipids 36, 981–989
30. Nakatani, T., Tsuchiya-Kasaoka, N., Takahashi, M., Miura, S., and Ezaki, O. (2002) J. Biol. Chem. 277, 9562–9569
Oleylethanolamide Stimulates Lipolysis by Activating PPAR-α

31. Samec, S., Seydoux, J., and Dulloo, A. G. (1998) FASEB J. 12, 715–724
32. Simoncini, T., Hafezi-Moghadam, A., Brazil, D. P., Ley, K., Chin, W. W., and Liao, J. K. (2000) Nature 407, 538–541
33. Unger, R. H. (2003) Annu. Rev. Physiol. 65, 333–347
34. Berg, A. H., Combs, T. P., and Scherer, P. E. (2002) Trends Endocrinol. Metab. 13, 84–89
35. Muoio, D. M., Dohn, G. L., Fiedorek, F. T., Jr., Tapscott, E. B., Coleman, R. A., and Dohn, G. L. (1997) Diabetes 46, 1360–1363
36. Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., Bihain, B. E., and Lodish, H. F. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 2005–2010
37. Winegar, D. A., Brown, P. J., Wilkison, W. O., Lewis, M. C., Ott, R. J., Tong, W. Q., Brown, H. R., Lehmann, J. M., Kliewer, S. A., Plunket, K. D., Way, J. M., Bedkin, N. L., and Hansen, B. C. (2001) J. Lipid Res. 42, 1543–1551