Experiential Learning Design of E-Learning Website

Sasmoko¹, Yogi Udjaja², Yasinta Indrianti³, Xiao Xiang Zhong⁴, Abu Yazid Abu Bakar⁵

¹Primary Teacher Education Department, Faculty of Humanities, Bina Nusantara University, Jakarta, Indonesia, 11480
²Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia 11480
³Research Interest Group in Educational Technology, Bina Nusantara University, Jakarta, Indonesia 11480
⁴Fujian Normal University, China
⁵Faculty of Education, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Corresponding author. Email: sasmoko@binus.edu

ABSTRACT

The 4.0 industry revolution needed to change the revolution in higher education which is characterized by increased literacy and self-transformation so that there is an effort to maximize blended learning. This effort will give a positive result because it can provide a pleasant learning experience through experiential learning. This research tries to build constructs through website sasmoko.com to present experiential learning through e-learning as an effort to meet the needs of today's students who belong to a millennial generation with the main character is highly integrated with technological progress. The method used are moonshot thinking, computer assisted education, gamification and challenge-based learning. The result of the research is the utilization of website sasmoko.com for e-learning so as to accommodate the needs of students in learning and facilitate and facilitate lecturers in delivering information online.

Keywords: Experiential learning, e-learning, website, sasmoko.com

1. INTRODUCTION

The 4.0 industry revolution is characterized by a collaboration between traditional industry forces and the development of modern technology that allows the integration of smart products into digital and physical industrial processes (Schmidt, 2015). This change also changed the business processes that exist in college. Previously, instructional technology had a significant impact on teaching, research and community service in college (Surry et al., 2005). The use of blended learning is one approach that is sufficiently able to integrate technology into pedagogy, with a general statement describing the condition through the term digital learning environment or computer learning environment where the learning process is focused on the delivery of information (Georgina & Olson, 2008).

Higher education is a part of education, where there are efforts and plans to create an atmosphere and learning process so as to develop the potential of students and students to be useful for students and students, as well as for society, nation and country (Udjaja et al., 2018). With the advancement of technology at this time it is time college participate improve teaching and learning process in accordance with the needs of millennial generation. A common characteristic of millennial generation is the ability to adapt to new technologies and new equipment quickly enough. They are very enthusiastic about instant messaging, videogames and file sharing (Godwin-Jones, 2005).

Based on the survey of students and college students now requires flexibility to the learning that can be done anywhere and anytime without reducing the quality of learning face-to-face. To achieve this, created a website that has the potential as a medium of learning that can be accessed anywhere and anytime. This research tries to present experiential learning implementation on website sasmoko.com, which is a concept where the tools and techniques provided provide a comprehensive learning experience for the users so that it can be utilized by lecturers and students through a website (Kolb & Kolb, 2005).

2. METHODS

Changes in the generation and rapid development of technology have various implications especially in the learning and training process. The most important thing is how to integrate various approaches that focus on the needs of the present generation so as to fulfill their commitment to growth and success (Robert & Newsline, 2005).

Experiential learning is a method that can attract a person's attention in terms of learning, so that the person can learn actively and can create a conducive learning experience, and produce specific scientific improvements, as studied (Ozogul, 2018). It also affects
the emotional and affective users, who are appointed based on the art of product design planning on interaction with users (Kristiadi et al., 2017).

In experiential learning, some methods are needed to support the objectives that are in line with the current industry revolution.

Moonshot Thinking
Moonshot Thinking operates with current problems and provides radical solutions, then utilizes some preliminary validation or breakthroughs that can make the solution less time-consuming (Knight, 2018).

Computer Assisted Education
With the existence of computer-assisted education, activities related to education become more effective and efficient (Ozdemir, 2017). It can also facilitate learning conditions, where with science transferred through technology, learning can be done anywhere, as well as more challenged users to use it. Science is transferred using an expert system, where the scholarship of an expert is used as the content of learning (Udjaja, 2018).

Gamification
Gamification, in this case, is used to attract attention and provide motivation to the user, in order to improve the effectiveness of the learning function or the contribution of knowledge contained in technology (Yanfi et al., 2018; Udjaja, 2018).

Challenge-Based Learning
Challenge-Based Learning (CBL) is an approach used for educational revolution which encourages technology users to actively learn with anyone in accordance with predetermined categories (Kohn et al., 2018).

3. RESULTS AND ANALYSIS

Table 1: E-Learning User Value Result from Website Sasmoko.com

No	Student ID	Value									
1	2110440	84.67	42	10021002	46.67	83	1401136960	93.33	124	1901526722	86.67
2	2110457	70.00	43	10021004	58.00	84	1501169650	80.67	125	2001549986	49.33
3	2110462	68.00	44	10021005	76.67	85	1501170381	52.67	126	2001553296	79.33
4	2110474	92.00	45	10021006	58.00	86	1501181366	68.00	127	2001554241	87.33
5	2111483	58.67	46	10021012	58.00	87	1501205750	72.00	128	2001554310	84.00
No	Student ID	Value	No	Student ID	Value	No	Student ID	Value			
----	------------	-------	----	------------	-------	----	------------	-------			
16	2112524	86.67	57	10091022	82.67	98	1601248006	87.33			
17	2112533	69.33	58	10091024	82.67	99	1601248574	96.67			
18	2112538	74.00	59	10091026	85.33	100	1601250244	68.67			
19	2113527	53.33	60	10091027	60.13	101	1601238215	74.00			
20	2113532	81.33	61	10091029	82.67	102	1601259956	87.33			
21	2113541	96.67	62	10091032	89.00	103	1601261815	83.33			
22	2113545	82.00	63	10091038	67.87	104	1601271886	93.33			
23	2113546	86.67	64	10091043	62.33	105	1601271892	68.00			
24	2113548	95.33	65	10091044	80.13	106	1601277031	74.67			
25	2114550	86.67	66	10091046	73.53	107	1601278482	88.67			
26	2114555	95.33	67	10091047	89.00	108	1601279440	62.00			
27	2114559	98.00	68	12011001	93.33	109	1601285235	92.67			
28	2114560	95.33	69	12011002	59.33	110	1601286130	81.33			
29	2114561	69.33	70	12011002	62.00	111	1601287934	68.00			
30	2210431	46.67	71	12011005	69.33	112	1601288306	58.67			
31	2212507	92.00	72	12011006	82.67	113	1901495532	74.00			
32	2213456	98.67	73	12011007	87.33	114	1901502086	68.67			
33	2213462	96.67	74	12012013	88.33	115	1901502786	84.00			
34	311087	55.33	75	12012013	88.33	116	1901503233	90.67			
35	3112091	54.00	76	12012016	88.33	117	1901510296	67.33			
36	3112095	52.67	77	12022003	88.33	118	1901512805	68.67			
37	3130906	96.67	78	31100889	64.00	119	1901512843	50.67			
38	3312096	96.67	79	123458789	66.67	120	1901512862	83.33			
39	30011001	92.00	80	1010310029	66.67	121	1901512875	80.67			
40	30011003	62.00	81	1301053175	88.67	122	1901514470	94.00			
41	30011006	94.00	82	1401135384	56.67	123	1901520460	83.33			

Table 2: Confidence Interval of Student understanding Using E-learning
This website creation stage begins with thinking of the idea of becoming the solution of the problem, then the solution is made to support the lectures assisted by the expert system as the transfer of knowledge from the experts into the technology and using gamification and CBL so that users feel motivated and challenged to learn in any circumstances. The results of the design model can be seen in figures 2 and 3.

Stages of e-learning database access website sasmoko.com can be seen in figure 4. The figure explains the flow of the administrator to make the material, make a problem, make corrections until the user to register the website to access the material and do the quiz answers submission.

Based on the results of testing for 6 months from 164 students or students the average learning outcomes from website sasmoko.com is 76.57%, where there is an increase in the user's knowledge from 42% - 99.33% (See table 1).

In proving the success of e-learning as a complement of learning, the researcher establishes 5 (five) categories of student understanding: (a) very bad, (b) not good, (c) sometimes good, sometimes not good, (d) good, and (e) very good. Data analysis was done with a confidence interval at significance level 5% and produced lower and upper boundary between 74,3161 to 78,8352 (see figure 5). Based on the results of the analysis, it can be concluded that students who use e-learning sasmoko.com tend to have a good understanding significantly at $\alpha <0.05$.

4. DISCUSSION AND CONCLUSIONS

Each stage based on the research method has covered all experiential learning required. Where the development of technology is directly proportional to the development of education. This can be seen in the website system created and the enhancement of the specific capabilities of the user. The improvement depends on the psychological aspects of a person and the high level of one's learning.

Some aspects of psychology that support the improvement of learning in the context of technological progress are:

- **Student Engagement**
 Utilization of computer games as one means of learning has been able to show an increase in student engagement because they as a generation who are familiar with the technology is able to use in a relatively long time. This, when combined with challenging tasks and requiring deep concentration, will increase their absorption of the learning process undertaken. The concept of engagement became a concept in game-based learning research (Hamari, 2016).

- **Student Satisfaction**
 Headings, or heads, are organizational devices that guide the Online learning is sufficient to assist students in exploring widely their learning spaces. in a study found the existence of three components of fundamental satisfaction that is engaged learning, agency and assessment (Dziuban, 2015).

- **Self-Regulated Learning**
 Independent learning is a major factor underlying the success of online learning because it is able to control themselves academically and emotionally so that it can automatically be applied in an independent learning process. A study exploring the association between academic emotions in learning was able to facilitate independent learning and other studies proved that will control was identified as one of the important constituents of this success (You &kang, 2014; Kizilcec&Halawa, 2015).

The future of technology maintenance will be evaluated using user experience and other testing methods as each technology will require development to
adapt to the increasingly complex needs of users. In the next stage of development, researchers will apply neuroresearch methods to enrich and deepen experiential learning studies to be more applicable for users. This research method will further maximize the integration of technology that is done because it is supported by three important stages, namely exploratory research that helps researchers to more up to date with studies of various scientific developments as appropriate, explanatory research as the testing stage for the development and confirmatory research so that researchers obtain clear confirmation of the validity and reliability of the development undertaken.

5. ACKNOWLEDGMENTS
This work is partially supported by Inixindo's Mentors, Yasib Abdi Polela, the students who helped develop the quiz system, Prof. Dr. Gerald Pola, M.Sc and Binus University. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES
Dziuban, C., Moskal, P., Thompson, J., Kramer, L., DeCantis, G., & Hermsdorfer, A. (2015). Student Satisfaction with Online Learning: Is It a Psychological Contract? Online Learning, 19(2), n2.
Georgina, D. A., & Olson, M. R. 2008. Integration of technology in higher education: A review of faculty self-perceptions. The Internet and Higher Education, 11(1), 1-8.
Godwin-Jones, R. 2005. Messaging, gaming, peer-to-peer sharing: Language learning strategies & tools for the millennial generation.
Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. 2016. Challenging games help students learn: An empirical study on engagement, flow and immersion in game-based learning. Computers in Human Behavior, 54, 170-179.
Kizilcec, R. F., & Halawa, S. 2015. Attrition and achievement gaps in online learning. In Proceedings of the Second (2015) ACM Conference on Learning@ Scale (pp. 57-66). ACM.
Kristiadi, D. P., Udjaja, Y., Supangat, B., Frameswara, R. Y., Warnars, H. L. H. S., Hervadi, Y., & Kusakunniran, W. 2017. The effect of UI, UX and GX on video games. In Cybernetics and Computational Intelligence (CyberneticsCom), 2017 IEEE International Conference on (pp. 158-163). IEEE.
Knight, P. T. 2018. Sufficiency, Sustainability, and Innovation Media Moonshot.
Kohn Räderberg, K., Lunduivist, U., Malmqvist, J., & Hagwall Svensson, O. 2018. From CDIO to challenge-based learning experiences-expanding student learning as well as societal impact?. European Journal of Engineering Education, 1-16.
Kolb, A. Y., & Kolb, D. A. 2005. Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of management learning & education, 4(2), 193-212.
Ozdemir, S. 2017. Basic Technology Competencies, Attitude towards Computer Assisted Education and Usage of Technologies in Turkish Lesson: A
Ozogul, G. 2018. Best Practices in Engaging Online Learners Through Active and Experiential Learning Strategies. Interdisciplinary Journal of Problem-Based Learning, 12(1), 11.

Robert, S., & Newsline, L. T. I. 2005. Millennial” learning: on demand strategies for generation x and beyond. Learning and Training Innovations, December, 14.

Schmidt, R., Möhring, M., Härtling, R. C., Reichstein, C., Neumaier, P., & Jozinović, P. 2015. Industry 4.0-potentials for creating smart products: empirical research results. In International Conference on Business Information Systems(pp. 16-27). Springer, Cham.

Surry, D. W., Ensminger, D. C., & Haab, M. 2005. A model for integrating instructional technology into higher education. British journal of educational technology, 36(2), 327-329.

Udjaja, Y., Guizot, V. S., & Chandra, N. 2018. Gamification for Elementary Mathematics Learning in Indonesia. International Journal of Electrical and Computer Engineering (IECE), 8(6).

Udjaja, Y. 2018. ANDROID APPLICATION FOR DETECTION OF SKIN CANCER USING EXPERT SYSTEM. Social Economics and Ecology International Journal (SEEIJ), 2(1), 1-8.

Udjaja, Y. 2018. Gamification Assisted Language Learning for Japanese Language Using Expert Point Cloud Recognizer. International Journal of Computer Games Technology, 2018.

Yanfi, Udjaja, Y., & Sari, A. C. 2017. A Gamification Interactive Typing for Primary School Visually Impaired Children in Indonesia. Procedia Computer Science, 116, 638-644.

You, J. W., & Kang, M. 2014. The role of academic emotions in the relationship between perceived academic control and self-regulated learning in online learning. Computers & Education, 77, 125-133.