Supplement of Atmos. Chem. Phys., 19, 649–661, 2019
https://doi.org/10.5194/acp-19-649-2019-supplement
© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

A potential source of atmospheric sulfate from O_2^--induced SO_2 oxidation by ozone

Narcisse Tchinda Tsona and Lin Du

Correspondence to: Lin Du (lindu@sdu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
S1 Determination of unimolecular rate constants and atmospheric lifetimes

The unimolecular rate constants of $\text{O}_2\cdots\text{O}_2\cdots\text{O}_3\cdots(\text{H}_2\text{O})_{0.1}$ reaction (in reaction (R3)) are determined as:

$$k_{\text{uni}} = \frac{k_B T}{h} \times \exp\left(\frac{-\Delta G^0}{RT}\right) \tag{S1}$$

where ΔG^0 is the Gibbs free energy barrier separating $\text{O}_2\cdots\text{O}_2\cdots\text{O}_3\cdots(\text{H}_2\text{O})_{0.1}$ and the products, h is the Planck’s constant, k_B is the Boltzmann constant and R is the molar gas constant. Based on these rate constants, the atmospheric lifetimes of $\text{O}_2\cdots\text{O}_2\cdots\text{O}_3\cdots(\text{H}_2\text{O})_{0.1}$ are determined as

$$\tau = \frac{1}{k_{\text{uni}}} \tag{S2}$$

S2 Details on the determination of K_{eq} and p_{H_2O}

For the $\text{O}_2\text{SOO}^\cdots\text{H}_2\text{O}$ formation according to the equation

$$\text{O}_2\text{SOO}^\cdots + \text{H}_2\text{O} \leftrightarrow \text{O}_2\text{SOO}^\cdots\text{H}_2\text{O}, \tag{S3}$$

the equilibrium constant at different temperatures is calculated as

$$K_{eq} = \left(\frac{k_B T}{p^0}\right) \times \exp(-\Delta G/RT) \tag{S4}$$

where ΔG is the Gibbs free energy change for the $\text{O}_2\text{SOO}^\cdots\text{H}_2\text{O}$ formation, k_B is the Boltzmann’s constant, R is the molar gas constants and p^0 is the atmospheric pressure.

The water vapor pressure is determined as $p_{H2O} = RH/100 \times p_{H2O}^{eq}$, where RH is the relative humidity and p_{H2O}^{eq} is the equilibrium water vapor pressure calculated using the parametrization of Wagner and Prus (Wagner and Pruss, 1993), revised by Murphy and Koop (Murphy and Koop, 2005) as given below:

$$\ln p_{H2O}^{eq} = 54.842763 - \frac{6763.322}{T} - 4.210 \times \ln T + 0.000367 T + \tanh(0.0415(T - 218.8)) \left(53.878 - \frac{1331.22}{T} - 9.44523 \times \ln T + 0.014025 T\right) \tag{S5}$$

This parametrization fits suitably to all temperatures encountered in the atmosphere ($123 < T < 332$ K).
S3 Units of constants and variables used in Eqs. (4), (5)

Constants and variables	CGS units	SI units
T	298 K	298 K
k_B	1.38×10^{-16} erg K$^{-1}$	1.38×10^{-23} J K$^{-1}$
\hbar	6.63×10^{-27} erg s	6.63×10^{-34} J s
q	4.80×10^{-10} statC	1.60×10^{-19} C
ε_0	$(1/(4\pi))$	8.85×10^{-12} F m$^{-1}$
μ (unhydrated)	5.32×10^{-23} g	5.32×10^{-26} kg
μ (monohydrated)	5.61×10^{-23} g	5.61×10^{-26} kg
α	2.60×10^{-24} cm3	2.34×10^{-8} F m2
α_D	5.30×10^{-19} StatC cm	1.77×10^{-30} C.m

Table S1: Outer rate constants (k_{out}) and inner rate constants (k_{in}) of the O$_2$SOO$^+$ + O$_3$ reaction both in the absence and in the presence of water, calculated at 298.15 K using Equations (4) and (5), respectively, given in the main manuscript. Units are cm3 molecule$^{-1}$s$^{-1}$.

	k_{out}	k_{in}
Unhydrated reaction	8.25×10^{-10}	1.27×10^{-14}
Monohydrated reaction	8.03×10^{-10}	-

Figure S1 Optimized structures of the different reactants species in reaction (R1), calculated with the M06-2X/aug-cc-pVTZ method.
Figure S2 Formation of the O₃···O₂SOO⁻···H₂O from O₃ and O₂SOO⁻···H₂O collision. The spin density indicates the migration of the extra charge from O₂SOO in the reactant state to O₃ in the product state.

Cartesian coordinates and actual values of the expectation value of the \hat{S}^2 operator ($\langle \hat{S}^2 \rangle$) for all species in Fig. 1 and Fig.2 in the main manuscript

RC1 = O₃···O₂SOO⁻, $\langle \hat{S}^2 \rangle = 0.7586$

Atom	x	y	z
O	-0.88915	1.20794	0.62611
O	-0.11707	1.94739	-0.0965
S	-1.55912	-0.27516	-0.42147
O	-0.3465	-1.10626	-0.47054
O	-2.55494	-0.75015	0.54717
O	2.00879	-0.01164	0.19102
O	2.49143	-0.84249	0.96308
O	2.52567	0.10552	-0.91741

RC2 = O₂···O₂S–O₃⁻, $\langle \hat{S}^2 \rangle = 1.7622$

Atom	x	y	z
O	3.21447	0.04233	-0.3778
O	3.52629	-1.03545	0.01499
S	-0.04943	0.35018	-0.20367
O	0.40973	-0.55845	0.85324
O	0.36378	1.744	-0.00485
O	-2.50542	-0.60536	0.3645
O	-1.86328	0.6353	0.30245
O	-3.04672	-0.92273	-0.74518

TS2, $\langle \hat{S}^2 \rangle = 2.2166$

Atom	x	y	z
O	2.92464	-1.00425	-0.18039
O	1.98318	-1.54671	0.30002
S	-0.07317	1.21684	-0.12087
O	0.38207	0.52086	-1.34299
O	0.98952	1.35384	0.9071
O	-2.10061	-0.71917	-0.38046
O	-0.90411	-0.05163	0.7495
O	-3.12835	-0.98662	0.18897
\[PC_2 = SO_3 + 2O_2, \quad \langle \hat{S}^2 \rangle = 2.7874 \]

O	0.40581	-2.56797	0.18275
O	0.95455	-1.66405	-0.36104
S	-1.52768	0.72525	0.17335
O	-0.85736	0.17204	1.37341
O	-1.88873	-0.43834	-0.8086
O	2.15538	0.85125	0.58195
O	-0.45143	1.15446	-0.87683
O	2.73713	1.04211	-0.43834

\[RCW_1 = O_3\cdots SOO\cdots H_2O, \quad \langle \hat{S}^2 \rangle = 0.7581 \]

O	-0.64085	-1.68754	-0.80368
O	0.61579	-1.9498	-0.9284
S	-0.92016	-0.53559	0.67699
O	-0.25762	0.68486	0.17685
O	-2.38924	-0.47173	0.57476
O	-2.6674	2.19035	-0.60188
H	-2.9713	1.33186	-0.27703
H	-1.71279	2.06043	-0.52979
O	2.41812	0.35228	-0.16394
O	2.65848	0.02323	0.99512
O	2.68856	1.50551	-0.50195

\[RCW_2 = O_2\cdots O_2S\cdots O_3\cdots H_2O, \quad \langle \hat{S}^2 \rangle = 1.7622 \]

O	-1.2241	1.9624	-0.55509
O	-0.47401	2.47577	0.21045
S	0.14657	-1.23777	0.06723
O	-0.42759	-0.50464	1.20878
O	-0.79176	-1.36644	-1.06126
O	-3.22024	-0.45534	0.3167
H	-2.71162	-0.77756	-0.43962
H	-2.49605	-0.27271	0.93019
O	2.11674	0.55001	0.21218
O	3.18673	-0.13675	0.20954
O	1.19206	0.08181	-0.73709

\[TSW_2, \quad \langle \hat{S}^2 \rangle = 2.1889 \]

O	-0.28481	2.14309	-0.55001
O	0.70281	2.27976	0.09662
S	-0.4068	-1.35567	0.14863
O	-0.65781	-0.35796	1.21852
O	-1.37621	-1.24222	-0.97505
O	-3.14476	0.75693	0.21226
H	-2.83508	0.15707	-0.48105
References

Murphy, D. M., and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, *Q. J. R. Meteorol. Soc.*, 131, 1539-1565, doi:10.1256/qj.04.94, 2005.

Wagner, W., and Pruss, A.: International Equations for the Saturation Properties of Ordinary Water Substance. Revised According to the International Temperature Scale of 1990. (VOL 16, PG 893, 1987), *J. Phys. Chem. Ref. Data*, 22, 783-787, doi:10.1063/1.555926, 1993.