Step-by-step documentation for HMM fitting procedure

In this supplement, we go step-by-step through the fitting procedure of hidden Markov models for an individual male bear, W0612, and the selection of dates for the dispersal process.

Load required packages:

```r
library(moveHMM)
library(doBy)
library(ggplot2)
library(plyr)
library(plotly)
```

Importing and prepping the data

Import geolocations* from one male bear (W0612)

```r
W0612 <- readRDS("C:/Users/jeh/Documents/USN-PhD/Analysis/Bear_Movement/Trajectory_Splitting/W0612_anon.rds")
# subset to active season, 01 April - 01 October
W0612 <- subset(W0612, format(GMT.date, "%m%d")>="04-01" & format(GMT.date, "%m%d")<="10-02")
```

Create a ‘move’ object from geolocations. This will calculate distance traveled between each step as well as turning angles of movement.

```r
W0612Move <- prepData(W0612, type = "UTM", coordNames = c("x1", "y1"))
```

We keep only steps that are separated by an hour. This prevents unrealistic step lengths and turning angles from being included in the modeling procedure.

```r
# copy to a new object called "W0612Reg"
W0612Reg <- W0612Move
# get time differences between each step
W0612Reg$diffHour <- difftime(W0612Move$GMT.date[1:length(W0612Move$GMT.date)],
```
Fitting HMMs

In the following section, we fit three models with two behavioral states, representing short and long movement patterns. Each set of initial parameters are different, which increases the chance of finding the global maximum (citation).

Fitting a hidden Markov model to movement data requires four starting parameters specified for n behavioral states. The first parameter is mean step length distance, mu. The second is the standard deviation for each mean, sigma. The third parameter is the mean turning angle, angleMean. The final parameter is kappa, concentration of the turning angle.

The first set of initial parameters were chosen by looking at summaries of the step lengths and turning angles, histograms and density plots. The second set of initial parameters were “wider” (smaller/larger) values than the first set. The initial parameters for the third model were the estimated parameters from the previous model.

There is no exact science behind the selection of initial parameters, but [practical guidance] (https://cran.r-project.org/web/packages/moveHMM/vignettes/moveHMM-starting-values.pdf) is available.

The model specification is as follows:

fitHMM(move_object, number of behavior states, initial parameters, theoretical distribution for step lengths, theoretical distribution for turning angles)

We selected the gamma distribution for the step lengths and the vonMises distribution for the turning angles.

first set of initial parameters
mu2a <- c(10, 1000)
sigma2a <- c(20, 2000)
angleMean2a <- c(pi, 0.005)
kappa2a <- c(0.2, 2)
stepPar2a <- c(mu2a, sigma2a)
anglePar2a <- c(angleMean2a, kappa2a)

fit the first 2-state HMM
W0612_2a <- fitHMM(W0612Reg, nbStates = 2, stepPar0 = stepPar2a, anglePar0 = anglePar2a, stepDist = "gamma", angleDist = "vm")
W0612_2a
state 1 state 2
mean 17.00918 1042.0373
sd 14.02674 924.3737

Turning angle parameters:

state 1 state 2
mean -2.9787585 -0.01945528
concentration 0.4975304 0.93201121

Regression coeffs for the transition probabilities:

1 -> 2 2 -> 1
intercept -1.281184 -1.476296

Transition probability matrix:

[,1] [,2]
[1,] 0.7826513 0.2173487
[2,] 0.1859875 0.8140125

Initial distribution:

[1] 1.154684e-06 9.999988e-01

calculate confidence intervals and plot the fitted model results
W0612_2_a <- CI(W0612_2a)
plot(W0612_2a, plotCI = TRUE)

Decoding states sequence... DONE
Density	All animals	State 1	State 2	Total
0.00				
0.10				
0.20				
0.30				

Densities from -\(\pi\) to \(\pi\) radians.

Diagram:

- **All animals:**
 - State 1
 - State 2
 - Total

- **X-axis:** turning angle (radians) from \(-\pi\) to \(\pi\)
- **Y-axis:** Density from 0.00 to 0.30

- Lines: Orange, blue, and dashed line for total.
The Viterbi algorithm (Zucchini and MacDonald 2009) assigns probable behavioral states to each step. The plotStates function returns a plow showing the probability of being in a particular state at each observation index location (step).

```r
head(viterbi(W0612_2a), n = 20)
```

```r
## [1] 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
```

```r
plotStates(W0612_2a)
```

```r
## Decoding states sequence... DONE
## Computing states probabilities... DONE
```
The final step of the process is to look at the residuals to assess the fit of the model to the data. Plotting the model object directly will show the time series, qq-plots, and sample ACF functions of the pseudo-residuals for steps and turning angles. We also produced histograms of the pseudo-residuals for step lengths and turning angles.

```r
plotPR(W0612_2a)
```

```
## Computing pseudo-residuals... DONE
```
W0612_2a_res <- pseudoRes(W0612_2a)
hist(W0612_2a_res$stepRes)
hist(W0612_2a_res$stepRes)
We fit the remaining two models with different initial parameters.

```r
# second set of parameters (wider values)
mu2b <- c(5, 2000)
sigma2b <- c(8, 1000)
angleMean2b <- c(pi, -0.005)
kappa2b <- c(0.1, 1)
stepPar2b <- c(mu2b, sigma2b)
anglePar2b <- c(angleMean2b, kappa2b)

# fit the second 2-state HMM
W0612_2b <- fitHMM(W0612Reg, nbStates = 2, stepPar0 = stepPar2b, anglePar0 = anglePar2b,
                    stepDist = "gamma", angleDist = "vm")
W0612_2b
```

```
## Value of the maximum log-likelihood: -26234.64
##
## Step length parameters:
## ----------------------
## state 1  state 2
## mean 17.00917 1042.0356
## sd 14.02674 924.3724
##
##```
# Turning angle parameters:
# ------------------------
# state 1  state 2
# mean   -2.9787801 -0.01945568
# concentration 0.4975309 0.93201136
#
# Regression coeffs for the transition probabilities:
# --------------------------------------------------
# 1 -> 2  2 -> 1
# intercept -1.281185 -1.476297
#
# Transition probability matrix:
# -----------------------------
# [,1] [,2]
# [1,] 0.7826515 0.2173485
# [2,] 0.1859874 0.8140126
#
# Initial distribution:
# ---------------------
# [1] 4.445916e-07 9.999996e-01

# third set of parameters (estimated parameters from previous model)
mu2c <- c(17, 1042)
sigma2c <- c(14, 924)
angleMean2c <- c(-2.98, -0.02)
kappa2c <- c(0.5, 0.93)
stepPar2c <- c(mu2c, sigma2c)
anglePar2c <- c(angleMean2c, kappa2c)

# fit the third 2-state HMM
W0612_2c <- fitHMM(W0612Reg, nbStates = 2, stepPar0 = stepPar2c, anglePar0 = anglePar2c,
                     stepDist = "gamma", angleDist = "vm")
W0612_2c

## Value of the maximum log-likelihood: -26234.64
#
# Step length parameters:
# ------------------------
# state 1  state 2
# mean   17.00917 1042.0380
# sd     14.02674 924.3724
#
# Turning angle parameters:
# ------------------------
# state 1  state 2
# mean   -2.978775 -0.0194565
# concentration 0.497498 0.9320255
#
# Regression coeffs for the transition probabilities:
# --------------------------------------------------
# 1 -> 2  2 -> 1
Results of the 2-state modeling indicated a poor fit of step lengths in the model. We continue with fitting a 3-state model with the following behaviors: resting, foraging/short-distance movement, and directed, long-distance traveling.

Fitting of the 3-state HMM is the same as for a 2-state except that we have three values for each parameter that represent the behavioral states. Initial parameter values for the 3-state HMMs were chosen as follows:

1. Educated guess based on step length and turning angle summaries.
2. Creating three equal bins for the distributions.
3. From a combination histogram-density plot in ggplot2.
4. The estimated parameters from the previous model.

```r
initial parameters for 3-state model
mu3a <- c(4, 200, 3500)
sigma3a <- c(5, 300, 1500)
angleMean3a <- c(pi, 0.005, 0.05)
kappa3a <- c(0.1, 0.5, 1)
stepPar3a <- c(mu3a, sigma3a)
anglePar3a <- c(angleMean3a, kappa3a)

fit the first 3-state HMM
W0612_3a <- fitHMM(W0612Reg, nbStates = 3, stepPar0 = stepPar3a, anglePar0 = anglePar3a,
 stepDist = "gamma", angleDist = "vm")
W0612_3a
```

## Value of the maximum log-likelihood: -25864.43

## Step length parameters:

```r
state 1 state 2 state 3
mean 13.87421 388.2844 1604.8023
sd 10.06471 396.6112 749.0172
```

## Turning angle parameters:

```r
state 1 state 2 state 3
mean -2.9698675 -0.1243276 -0.005814789
concentration 0.5097004 0.2057111 1.868910436
```
### Regression coeffs for the transition probabilities:

- 1 -> 2: -1.289126
- 1 -> 3: -3.098643
- 2 -> 1: -0.6737897
- 2 -> 3: -0.9160029
- 3 -> 1: -2.426462
- 3 -> 2: -1.161481

### Transition probability matrix:

	[,1]	[,2]	[,3]	
[1,]	0.757	0.209	0.034	0.063
[2,]	0.267	0.524	0.209	0.063
[3,]	0.063	0.223	0.714	0.063

### Initial distribution:

- [1]: 1.873944e-06 9.999981e-01 3.746110e-09

---

# calculate confidence intervals and plot the fitted model results

W0612_3a_CI <- CI(W0612_3a)

plot(W0612_3a, plotCI = TRUE)

---

## Decoding states sequence... DONE

---

All animals

- State 1
- State 2
- State 3
- Total

---

step length

Density

0.0000 0.0010 0.0015 0.0005 0.0000

All animals

0 1000 2000 3000 4000 5000

0.0015 0.0010 0.0005 0.0000
All animals

Density

0.00 0.10 0.20 0.30

− π − π/2 0 π/2 π

State 1

State 2

State 3

Total

turning angle (radians)
As before, we use the Viterbi algorithm to classify the states for each step.

```r
head(viterbi(W0612_3a), n = 20)
```

```r
[1] 2 3 3 3 3 2 1 1 1 1 1 1 1 1 2 3 3 3
```

```r
plotStates(W0612_3a)
```

## Decoding states sequence... DONE
## Computing states probabilities... DONE
Animal ID: W0612

Inspect the pseudo-residuals for model fit.

plotPR(W0612_3a)

## Computing pseudo-residuals... DONE
W0612_3a_res <- pseudoRes(W0612_3a)
hist(W0612_3a_res$stepRes)
Histogram of W0612_3a_res$stepRes

```
hist(W0612_3a_res$angleRes)
```
Fit the remaining three 3-state HMMs.

```r
second set of parameters (from equal binning)
mu3b <- c(10, 300, 2000)
sigma3b <- c(5, 150, 750)
angleMean3b <- c(pi,-0.005974, 1.57)
kappa3b <- c(1, 1, 1)
stepPar3b <- c(mu3b, sigma3b)
anglePar3b <- c(angleMean3b, kappa3b)

fit the second 3-state HMM
W0612_3b <- fitHMM(W0612Reg, nbStates = 3, stepPar0 = stepPar3b, anglePar0 = anglePar3b,
 stepDist = "gamma", angleDist = "vm")
W0612_3b
```

## Value of the maximum log-likelihood: -25864.43
##
## Step length parameters:
## ----------------------
## state 1 state 2 state 3
## mean 13.87423 388.2872 1604.803
## sd  10.06474 396.6137 749.017
##
## Turning angle parameters:
## ------------------------
## state 1    state 2    state 3
## mean      -2.969865 -0.1243188 -0.005815661
## concentration 0.509698 0.2057129 1.86891138
##
## Regression coeffs for the transition probabilities:
## --------------------------------------------------
## 1 -> 2  1 -> 3  2 -> 1  2 -> 3  3 -> 1  3 -> 2
## intercept -1.28913 -3.098652 -0.6737915 -0.9160046 -2.426423 -1.161484
##
## Transition probability matrix:
## -----------------------------
##     [,1] [,2] [,3]
## [1,] 0.7572199 0.2086219 0.03415817
## [2,] 0.2669122 0.5235913 0.20949646
## [3,] 0.0630469 0.2233675 0.71358556
##
## Initial distribution:
## --------------------
## [1] 5.665121e-07 9.999994e-01 6.391494e-10

# third set of parameters (from histogram-density plot in ggplot2)
mu3c <- c(25, 500, 1500)
sigma3c <- c(30, 300, 750)
angleMean3c <- c(pi,-0.005974, 1.57)
kappa3c <- c(0.5, 0.75, 1)
stepPar3c <- c(mu3c, sigma3c)
anglePar3c <- c(angleMean3c, kappa3c)

# fit the third 3-state HMM
W0612_3c <- fitHMM(W0612Reg, nbStates = 3, stepPar0 = stepPar3c, anglePar0 = anglePar3c, stepDist = "gamma", angleDist = "vm")
W0612_3c

## Value of the maximum log-likelihood: -25864.43
##
## # Step length parameters:
## # -----------------------
## # state 1 state 2 state 3
## # mean 13.87423 388.2859 1604.8017
## # sd 10.06474 396.6122 749.0182
##
## # Turning angle parameters:
## # -------------------------
## # state 1 state 2 state 3
## # mean -2.9698641 -0.1243471 -0.005813025
## # concentration 0.5096999 0.2057083 1.868919615
##
## # Regression coeffs for the transition probabilities:
## # -----------------------------------------------
## # 1 -> 2  1 -> 3  2 -> 1  2 -> 3  3 -> 1  3 -> 2
## # intercept -1.289134 -3.098638 -0.6737915 -0.9160046 -2.426423 -1.161486

20
## Transition probability matrix:
---

	[,1]	[,2]	[,3]
1	0.75722019	0.2086212	0.03415866
2	0.26691128	0.5235903	0.20949839
3	0.06304689	0.2233671	0.71358598

## Initial distribution:
---

1	1.291640e-05

# fourth set of parameters (the estimated parameters of the previous model)

```r
mu3d <- c(14, 388, 1605)
sigma3d <- c(10, 397, 749)
angleMean3d <- c(-2.97, -0.124, -0.006)
kappa3d <- c(0.51, 0.21, 1.87)
stepPar3d <- c(mu3d, sigma3d)
anglePar3d <- c(angleMean3d, kappa3d)
```

# fit the fourth 3-state HMM

```r
W0612_3d <- fitHMM(W0612Reg, nbStates = 3, stepPar0 = stepPar3d, anglePar0 = anglePar3d,
 stepDist = "gamma", angleDist = "vm")
W0612_3d
```

## Value of the maximum log-likelihood: -25864.43

## Step length parameters:
---

	state 1	state 2	state 3
mean	13.87421	388.2857	1604.8032
sd	10.06471	396.6125	749.0181

## Turning angle parameters:
---

	state 1	state 2	state 3
mean	-2.9698623	-0.1243197	-0.005814957
concentration	0.5096991	0.2057115	1.868915061

## Regression coefficients for the transition probabilities:
---

	1 -> 2	1 -> 3	2 -> 1	2 -> 3	3 -> 1	3 -> 2
intercept	-1.289122	-3.098663	-0.6737882	-0.9159975	-2.426431	-1.16148

## Transition probability matrix:
---

	[,1]	[,2]	[,3]
1	0.75722189	0.2086233	0.03415775
2	0.2669125	0.5235901	0.20949745
3	0.0630464	0.2233683	0.71358529

## Initial distribution:
---

1	1.291640e-05

21
Model selection and assigning behavioral states to steps

We use Akaike’s Information Criterion (AIC) to determine which model has the best fit to the data.

```
AIC(W0612_2a, W0612_2b, W0612_2c, W0612_3a, W0612_3b, W0612_3c, W0612_3d)
```

All 3-state models have an equally good fit, so we arbitrarily select the final model as the “best” model.

```
store behavioral states in new data column for best model
W0612Reg$state <- viterbi(W0612_3d)

extract date from GMT.date into individual date column
W0612Reg$date <- as.Date(W0612Reg$GMT.date)

get step length and turning angle means for each behavior state
bxStepMeans <- aggregate(step ~ state, W0612Reg, mean)
bxStepMeans
```

```
state step
1 1 13.69453
2 2 371.89280
3 3 1618.44929
```

```
bxTurnMeans <- aggregate(angle ~ state, W0612Reg, mean)
bxTurnMeans
```

```
state angle
1 1 -0.16628247
2 2 -0.01961102
3 3 0.01435323
```

Diagnostic plotting of behavioral states

We constructed a dataframe that summarizes the states per day before plotting.
allBx <- summaryBy(state ~ date + state + ID, FUN=length, data = W0612Reg)

prop <- function(x) x/sum(x)

allBx <- ddply(allBx, "date", transform, share = prop(state.length))

allBx$state <- as.factor(allBx$state)

We plot the data in ggplot to look at how the proportion of time in each state changes over time. We look only at the second and third behavioral states, as resting is not important in determining whether or not dispersal is occurring.

bxPlot <- ggplot(allBx, aes(x=date, y=share, group=state, colour=state)) +
  geom_hline(yintercept = 0.5, linetype = "solid", color = "grey25", size = .8) +
  geom_line(aes(linetype = state), subset(allBx, state != "1")) +
  scale_color_manual(values = c("#C4961A", "#293352")) +
  xlab("Bx State by Date") +
  ylab("Proportion of day") +
  ggtitle("Diagnostic Plot for W0612")

bxPlot

# interactive plot in plotly

ggplotly(bxPlot)
Find the dates where the individual spends at least half of the day in the third behavior, representing a dispersal state.

dates <- allBx[allBx$state == "3" & allBx$share >= 0.5, ]
dates

# 2 2009-04-23 3 W0612 1 0.5000000
# 74 2009-05-18 3 W0612 11 0.6875000
# 89 2009-05-23 3 W0612 10 0.5000000
# 92 2009-05-24 3 W0612 12 0.6000000
# 106 2009-05-29 3 W0612 12 0.5000000
# 112 2009-05-31 3 W0612 11 0.5000000
# 157 2009-06-15 3 W0612 14 0.6363636
# 166 2009-06-18 3 W0612 10 0.5555556
# 169 2009-06-19 3 W0612 12 0.6666667
# 199 2009-06-29 3 W0612 11 0.6111111
# 208 2009-07-02 3 W0612 12 0.6315789
# 302 2009-08-03 3 W0612 10 0.5555556
# 305 2009-08-04 3 W0612 11 0.5000000
# 349 2009-08-19 3 W0612 11 0.6111111
The final step was completed in the geographic information system (GIS) software, QGIS. We looked at a shapefile of the geolocations classified by behavior states. Based on the plots, date summaries, and inspection in QGIS, we selected 29 April - 02 July as the dates the individual was dispersing.

* geolocations have been anonymized; their spatial relationships remain unchanged

References

Zucchini, W. and MacDonald, I.L. 2009. Hidden Markov Models for Time Series: An Introduction Using R. Chapman & Hall (London).