The small G protein RAS2 is involved in the metabolic compensation of the circadian clock in the circadian model *Neurospora crassa*

Norbert Gyöngyösi¹², Anita Szőke¹², Krisztina Ella¹, and Krisztina Káldi¹

¹Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Hungary, H-1094
²These authors contributed equally to this work.

Running title: Metabolic compensation of the clock by RAS2

Keywords: Circadian rhythm / Entrainment / Glucose compensation / Small GTPase / *Neurospora* / Cyclic AMP (cAMP) / Ras protein

Corresponding author: Krisztina Káldi
Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, Hungary, H-1094 Tel: +36-1-459-1500/60411 Fax: +36-1-266-7480
kaldi.krisztina@med.semmelweis-univ.hu

ABSTRACT

Accumulating evidence from both experimental and clinical investigations indicate a tight interaction between metabolism and circadian timekeeping; however, knowledge of the underlying mechanism is still incomplete. Metabolic compensation allows circadian oscillators to run with a constant speed at different substrate levels and therefore is a substantial criterion of a robust rhythm in a changing environment. Because previous data have suggested a central role of RAS2-mediated signaling in the adaptation of yeast to different nutritional environments, we examined the involvement of RAS2 in the metabolic regulation of the clock in the circadian model organism *Neurospora crassa*. We show that in a ras2-deficient strain, the period is longer than in the control. Moreover, unlike in wild type (wt), in Δras2 operation of the circadian clock was affected by glucose: compared with starvation conditions, the period was longer and the oscillation of expression of the frequency (frq) gene was dampened. In constant darkness the delayed phosphorylation of the FRQ protein and the long-lasting accumulation of FRQ in the nucleus were in accordance with the longer period and the less robust rhythm in the mutant. Whereas glucose did not affect the subcellular distribution of FRQ in wt, highly elevated FRQ levels were detected in the nucleus in Δras2. RAS2 interacted with the RAS-binding domain of the adenylate cyclase *in vitro*, and the cAMP analogue 8-Br-cAMP partially rescued the circadian phenotype *in vivo*. We propose therefore that RAS2 acts via a cAMP-dependent pathway and exerts significant metabolic control on the *Neurospora* circadian clock.

INTRODUCTION

Circadian rhythms are endogenously generated at the cellular level. Core clock mechanisms control rhythmic expression of a large set of genes, which in turn regulate various biological processes including cell growth, proliferation and metabolism. An important feature of the circadian clock is the ability to display an endogenous rhythm with a constant period length under different environmental conditions. Among these adaptation mechanisms the most intensively investigated process is temperature compensation. Although a tight interaction between metabolism and the circadian clock has been shown at almost all levels of organisms (1-3), it is still poorly understood how molecular timekeeping is compensated against changes in nutrient availability. *Neurospora crassa* belongs to the most extensively examined model systems in the field of circadian research and has proved to serve as a
useful tool for the investigation of different aspects of circadian regulation including metabolic compensation of the circadian clock (4). Monitorization of the conidiation rhythm, the time-dependent formation of asexual spores allows easy study of the effect of genetic changes or pharmacologic manipulations on the output of the circadian oscillator (5). The molecular clockwork of *Neurospora* is well characterized (recently reviewed in (6,7)). The transcription factors White Collar-1 (WC-1) and WC-2 and the negative factor Frequency (FRQ) represent the core clock components. Other important regulators of the molecular oscillator include kinases, phosphatases, exosome components and factors controlling the chromatin status (e.g. (8-13)). WC-1 and WC-2 form the WC complex (WCC) that supports expression of *frq*. The FRQ protein interacts with an RNA helicase (FRH) and the casein kinase 1a (9,14) and inhibits the activity of the WCC by facilitating its phosphorylation. FRQ undergoes several steps of phosphorylation that affect distinct functions of the protein (15-17). Shortly after its synthesis, low levels of hypophosphorylated FRQ forms are accumulated in the nucleus and are efficient in the negative feedback. In later phases of the circadian cycle hyperphosphorylation of FRQ interferes with nuclear import of the protein and the cytoplasmic FRQ supports accumulation of the WCC, thereby forming the positive feedback loop. Hyperphosphorylated FRQ interacts with FWD-1 (F-box/WD-40 repeat-containing protein) that facilitates ubiquitination and thus degradation of the protein (18). When FRQ is cleared from the nucleus, the WCC is gradually released from the inhibition and a new cycle starts. Besides, the WCC is the main photoreceptor of *Neurospora* controlling transcription of light-inducible genes and transducing light inputs to the circadian oscillator (19-22). In light/dark cycles, the light-inducible blue-light receptor VIVID inhibits the light-activated WCC by forming an additional negative feedback loop (23-25).

Regarding the interconnections between metabolism and circadian timekeeping, period of the *Neurospora* clock was shown to be independent of the glucose concentration of the medium and CSP1 (conidial separation 1), an important regulator of energy metabolism was characterized as a key component of the adaptation of clock function to different sugar availability (4). According to the model of metabolic compensation proposed by Sancar et al. (4), glucose generally increases the rate of protein synthesis and thus translation of WC-1, the limiting subunit of the WCC. Glucose-dependent suppression of *wc-1* transcription by CSP1, however, compensates for the translation elevation, resulting in glucose-independent expression of the WCC and thus stabilization of the period. Recently, PERIOD-1 (PRD-1), an RNA helicase was also found to control the cycle length in the presence of glucose (26,27).

In yeast, the RAS-mediated pathway is central in the signal transduction of glucose sensing. This pathway controls the transcription of at least one hundred genes and thus contributes to the adaptation of cellular functions to changes in the metabolic environment (28,29). Since yeast cells and *Neurospora* express similar RAS proteins (30) and the *Neurospora* clock is thoroughly characterized at the molecular level, *Neurospora* may represent a good tool for the investigation of the interactions between RAS-signaling and metabolic regulation of the circadian clock.

RAS small G-proteins are universal eukaryotic signal transducers that belong to the superfamily of small monomeric GTPases. In most organisms several RAS isoforms are expressed. Although they share common sets of upstream regulators and downstream effectors, various experimental data support the functional specificity of the different RAS isoforms (31). RAS proteins play a critical role in the regulation of metabolism, cell growth, proliferation and oncogenic transformation (32,33), all representing processes that are interlinked with the circadian rhythm. Indeed, increasing body of evidence suggest interconnections between RAS-mediated pathways and the circadian clock in different organisms. Expression of RAS family members was found to be regulated by the circadian clock in some mammalian tissues (34-36), and functional analysis also revealed that the RAS/MAPK pathway may serve as output and/or is able to modulate outputs of the circadian clock (37-45). In *Neurospora*, activating mutation of RAS-1 (present in the *band* (*bd*) strain) enhances the conidiation rhythm and the light-induced transcription of the positive factor WC-1 (46).
Moreover, we recently showed that the phase of conidiation is more sensitive to temperature changes in the *bd* strain than in *wt* (47). Although in most cases the molecular basis is not well understood, RAS GTPases seem to be involved in clock control mechanisms in higher organisms as well. In *Drosophila*, RAS regulates the activity of the positive clock factor CLOCK/CYCLE (48). In mice, the dexamethasone-induced RAS protein 1 (DEXRAS1) is suggested to be an input factor of the circadian clock (49-52). Both experimental data and bioinformatic analysis suggest that oncogenic RAS proteins are involved in the deregulation of the circadian clock in cancer cells (53). Finally, it was recently shown that RAS-signaling affects the circadian clock in the suprachiasmatic nucleus of mice acting, at least partially, via ERK and glycogen synthase kinase (GSK), and thereby fine-tunes the circadian period (54).

Our goal in this study was to investigate whether RAS2 is involved in the metabolic compensation of the circadian clock of *Neurospora crassa*. Our results indicate that stability of the molecular clock function against changes in glucose availability is dependent on RAS2. We show that both phosphorylation and subcellular localization of FRQ are dependent on RAS2. We propose that RAS2 acting via a cAMP-dependent pathway links the molecular oscillator to the glucose sensing pathway and thereby is an important component of the nutritional compensation of the circadian period.

RESULTS

The ras2 mutation affects conidiation rhythm

To study the possible interplay between the RAS2-mediated signal transduction pathway and the circadian clock, we aimed to examine the circadian behavior of the ras2 deletion strain. Δras2 (FGSC #12467) was generated during the Neurospora Genome Project (55) and had a phenotype similar to that of the *smco7* mutant described earlier (56). On agar slants, Δras2 formed less aerial hyphae than *wt* and accordingly, produced relatively few conidia located primarily in a crescent form at the upper top of the medium (Fig 1A). When inoculated in liquid medium, Δras2 grew slowly compared to *wt* and produced mycelia dominantly in colonial form (small balls) instead of mycelial mats (Fig S1A).

To confirm that deletion of ras2 is responsible for the morphological defects of the mutant, we generated a strain expressing a tagged form of RAS2 under the control of the *cpc-1* promoter in the Δras2 background. Comparable ras2 transcript levels were detected in Δras2, cpc-1-ras2 and *wt* and an anti-FLAG antibody recognized a protein band with the expected molecular weight (29.5 kDa) in the total cell lysates of Δras2, cpc-1-ras2, but detected no signal in the lysates prepared from either Δras2 or *wt* cells (Fig 1B). Expression of RAS2FLAG rescued the morphological defects observed in the mutant, indicating that the fusion protein is functionally active and the altered morphology was a consequence of ras2 deficiency (Fig 1A, Fig S1A).

To analyze the conidiation rhythm of Δras2, race tube assays were performed under constant conditions (Fig 1C). Similarly to the *smco7* mutant (56), Δras2 had a reduced growth rate compared to *wt*. In accordance with literature data (7,46), *wt* Neurospora did not display conidiation rhythm on minimal medium but showed sustained banding when the reactive oxygen species generator menadione was present. In Δras2, however, no conidiation rhythm was detected even when high concentrations (100 μM) of menadione were applied, suggesting that deletion of ras2 affects the rhythmic output.

Since entrained conditions generally support conidiation rhythm (47), we incubated race tube cultures in 12/12-hours light/dark cycles. Under these conditions, also Δras2 displayed sustained banding for several days (Fig S1B). However, when the phase of conidiation was thoroughly analyzed and compared with that of *wt*, a significant delay was observed in Δras2, suggesting that RAS2 activity affects the clock function also under entrained conditions (Fig 1D).

In Δras2, cpc-1-ras2 the phase of banding was similar to the phase detected in *wt*, indicating that expression of RAS2FLAG in the mutant background results in rescue of the clock function.

Involvement of RAS2 in glucose compensation of the circadian clock

To further analyze the effect of ras2 deficiency on clock function, we generated a Δras2 strain that expressed luciferase under the control of the *frq* promoter. In the first experiments, we used a
medium containing no glucose and followed the rhythm of \textit{frq}-promoter activity in constant darkness (Fig 2A, upper panel). Although a robust rhythm was detected in both the \textit{Δ}ras2 and the \textit{wt} background, the circadian period was significantly longer in the mutant than in the control strain suggesting that the RAS2-mediated signaling interacts with the molecular clock (Fig 2B). As it was expected from earlier data (4), addition of glucose to the medium did not affect either the robustness or period of the rhythm in \textit{wt} (Fig 2A, lower panel and Fig 2B). In the \textit{ras2} deficient strain, however, a dampening in the amplitude was observed and the period was more than two hours longer compared to \textit{wt}. These data indicate that compensation of the oscillator function against glucose requires the action of RAS2.

Next, we examined whether expression of \textit{ras2} is controlled by the circadian clock in \textit{wt}. As shown in Fig 3, whereas \textit{frq} levels displayed rhythmic changes in our samples, \textit{ras2} mRNA did not oscillate indicating that \textit{ras2} is not a clock-controlled gene in \textit{Neurospora}.

Expression and phosphorylation of the molecular clock components is affected by the \textit{ras2} mutation

In the next experiments we compared expression and phosphorylation of the main clock components in \textit{wt} and \textit{Δ}ras2. Electrophoretic mobility of the core clock proteins FRQ, WC-1 and WC-2 is dependent on their phosphorylation status, \textit{i.e.} phosphorylation is reflected by the presence of protein forms with slower electrophoretic mobility (57,58). On the other hand, activity of the clock components correlates with their phosphorylation status; \textit{i.e.} hypophosphorylated nuclear FRQ is active in the negative feedback by supporting phosphorylation and thus inactivation of the WCC (16).

As the results of the \textit{in vivo} luciferase measurements suggested that impact of the \textit{ras2} mutation on the clock function depends on glucose, \textit{Neurospora} was inoculated in glucose containing standard medium. In constant light (LL), only a slight difference in FRQ protein level was detected and this was represented by a higher accumulation of hypophosphorylated FRQ forms in \textit{Δ}ras2 (Fig 4A, left panel). WC-1 levels were higher and the hyperphosphorylated fraction of the protein dominated in \textit{Δ}ras2 compared to \textit{wt}. Although WC-2 expression levels were similar in both strains, a slightly higher fraction of the hyperphosphorylated forms was detected in \textit{Δ}ras2.

To further examine the effect of the \textit{ras2} mutation on the molecular clock, we performed subcellular fractionation and analyzed the expression of clock proteins in cytosol and nucleus (Fig 4A, right panel). A higher fraction of the hypophosphorylated FRQ forms was detected in the nucleus of \textit{Δ}ras2 compared to \textit{wt}. In accordance with the higher activity of hypophosphorylated FRQ in promoting phosphorylation of the WCC, hyperphosphorylated forms of both WC proteins dominated in \textit{Δ}ras2 nuclei. Moreover, a substantial fraction of WC-1 was detected in the cytosol of the mutant, indicating that the excess of WC-1 in \textit{Δ}ras2 is mainly present in an inactive cytosolic form.

To further investigate the molecular oscillator, we analyzed the expression of FRQ in cultures grown in constant darkness (DD). Although both strains displayed time-dependent changes in FRQ levels on the first day (Fig 4B, Fig S2A), FRQ signals peaked later in \textit{Δ}ras2 than in \textit{wt}. This difference was also well represented by the reduced \textit{frq} RNA expression and the very low level of newly synthesized hypophosphorylated FRQ forms in \textit{Δ}ras2 at DD12 (Fig 4C). During the second circadian cycle both the levels and the phosphorylation of FRQ displayed oscillation in the \textit{wt}, whereas less pronounced changes in the phosphorylation and expression of the protein were detected in \textit{Δ}ras2 (Fig 4B, Fig S2A). In \textit{wt} newly synthesized FRQ becomes progressively phosphorylated from DD16, therefore we investigated both expression levels and phosphorylation of FRQ between DD16 and DD26 with a more detailed resolution on the same gel (Fig 4D). Overall FRQ levels were lower in \textit{Δ}ras2 than in \textit{wt}. To assess FRQ levels in \textit{Δ}ras2 relative to \textit{wt}, we constructed a calibration line by loading the gel with increasing quantities (25-125 \%) of the \textit{wt} protein extracts and determined relative FRQ levels at DD16 when newly synthesized FRQ is already well detectable in both strains (Fig S2B, Fig 4E left panel). We found significantly lower FRQ expression in \textit{Δ}ras2 lysates compared with \textit{wt} samples. In addition, whereas in \textit{wt} FRQ was gradually and continuously shifted towards the
hyperphosphorylated forms, in Δras2 this shift was slow and the highly phosphorylated forms of the protein were absent even at DD26 (Fig 4D). When the ratio of hypo- and hyperphosphorylated FRQ forms was determined, the results indicated that distribution of these FRQ forms displayed a marked difference over time in the two strains (significant time x strain interaction of Repeated Measures ANOVA) (Fig 4E right panel). Thus, absence of RAS2 affects phosphorylation of FRQ also under constant conditions.

According to data in the literature, rhythm of WC-1 expression is — in most cases — not as robust as that of FRQ (59,60). While WC-1 showed time-dependent changes in wt in our hands with the first trough and peak phases similar to those reported by others (59,61), no rhythm of WC-1 expression could be detected in Δras2 (Fig S2C and D). This finding also suggests that the molecular clock function is less robust in the mutant than in wt. We quantified and compared WC-1-specific signals in wt and Δras2 at DD24 and found no significant difference (Fig S2E).

Since phosphorylation of FRQ may influence nuclear accumulation of the protein, we analyzed cytosolic and nuclear FRQ fractions during a circadian cycle in wt and the ras2 deficient strain (Fig 5). Following the LD transition, in the first 8 hours in both strains a similar decrease of FRQ levels was observed in both cellular compartments. In wt FRQ levels peaked at DD16 and then became rapidly reduced with a kinetics similar to that described earlier (62). In accordance with the delayed synthesis of FRQ, cytosolic protein levels increased more slowly in Δras2 than in the wt. Increase of the nuclear amount of the protein was, however, similar to that in the wt, and instead of a rapid reduction of nuclear FRQ levels seen in wt, a substantial fraction of FRQ was detected in the nucleus even at DD24. To analyze this difference, we determined nuclear/cytosolic FRQ-specific signal ratios. At both DD16 and DD20 significantly higher ratios were obtained for Δras2 than for wt. (Fig 5). In addition, Repeated Measures ANOVA with two factors (time and strain) showed significant strain effect for the whole period analyzed (Fig S3). In summary, above data suggest that RAS2 is involved in the control of subcellular localization of FRQ under constant conditions.

Response of the molecular clock to glucose is dependent on RAS2

Based on our results showing that the circadian phenotype of Δras2 is dependent on glucose, we aimed to examine how FRQ expression and subcellular distribution respond to glucose in Δras2 and wt. We cultured mycelia in starvation medium overnight in LL and then treated them with different levels of glucose for four hours (Fig 6). When a relatively low concentration (0.5%) of glucose was applied, high levels of FRQ accumulated in the nucleus of Δras2, whereas nuclear FRQ levels remained low in wt. Addition of glucose in higher concentration (4%) effectively increased the accumulation of hypophosphorylated and thus total levels of FRQ in wt as well. However, when protein signals were quantified, significantly higher fraction of FRQ was detected in the nuclei of Δras2 than in the nuclei of wt. To exclude the possibility that osmotic changes contributed to the observed effect of high glucose levels in Δras2, we repeated the experiment by adding NaCl instead of glucose in the same osmotic concentration. NaCl did not affect the nuclear levels of FRQ in Δras2 (Fig S4A). Moreover, FRQ was also shifted towards the nucleus in Δras2 when cultures were incubated overnight in a glucose containing medium (Fig S4B). Our observations indicate that RAS2 plays an important role in the control of nuclear levels of the oscillator protein in response to glucose.

Analysis of the signaling pathway between RAS2 and the circadian clock

RAS2 was found to control both a MAP kinase cascade and the adenylate cyclase-dependent pathway in Saccharomyces cerevisiae (63-65). The MAPK component of the cascade is represented by Kss1. Therefore, we examined the levels of the active forms of MAK2, the Neurospora ortholog of Kss1 (66,67). Based on the sequence homology (67), we used a phospho-specific commercial antibody that recognizes the phosphorylated and thus active form of the mammalian MAPK (ERK). According to data in the literature (67,68), a protein band with the approximate molecular weight of 43 kDa could be detected in both strains (Fig S5). Although phosho-MAK2 levels showed relative large variations when independent cultures were
compared, we found no consistent strain-specific differences. Based on the data showing that RAS2 activates adenylate cyclase in yeast (28), in the next experiments we addressed whether Neurospora RAS2 similarly interacts with the adenylate cyclase. We generated an E. coli strain expressing a fusion protein containing the RAS-binding domain of adenylate cyclase and an N-terminal GST-tag. The fusion protein was coupled to glutathione agarose and the resin was incubated with the lysate of Δras2, cpc-1-Δras2 containing RAS2\textsubscript{FLAG}. RAS2\textsubscript{FLAG} was specifically bound to the resin, suggesting that RAS2 may be an interaction partner of the adenylate cyclase (Fig S6A). To further examine the possible involvement of the RAS/adenylate cyclase-mediated pathway in the glucose response of the clock, we tested the effect of the cell-permeable and relatively stable cAMP analogue 8-Br-cAMP in the presence of glucose. 8-Br-cAMP had no effect on the rhythm in wt, frq-luc (Fig 7A), whereas it slightly but significantly shortened the period in Δras2, frq-luc (Fig 7B). Thus, presence of the cAMP analogue partially rescued the impaired function of the circadian clock of Δras2. Moreover, addition of 8-Br-cAMP reduced the glucose-induced nuclear accumulation of FRQ in the mutant (Fig S6B), also suggesting that a cAMP-mediated pathway may link RAS2 to the molecular clock.

DISCUSSION

From fungi to mammals RAS family GTPases play important roles in signaling systems controlling cellular metabolism, cell growth and differentiation (32,33). In mammals, importance of RAS proteins as regulators of cell growth is emphasized by the prevalence of upregulation of RAS-mediated signaling in many tumor types (69). Expression of the mammalian RAS protein can rescue the loss of endogenous RAS in yeast, suggesting the functional conservation of RAS proteins among eukaryotic organisms (70). We found that in Neurospora the circadian period is significantly longer in the Δras2 mutant than in wt, suggesting that RAS2 activity is crucial for normal function of the circadian clock. Moreover, in contrast to wt both the period and robustness of the rhythm were sensitive to glucose in Δras2; the period was significantly increased and the oscillation became dampened in glucose-containing medium. These findings indicate that activation of RAS2-mediated signaling is part of the compensatory mechanisms needed for robust clock function under different metabolic conditions. Both expression and phosphorylation of molecular clock components are characteristically affected by the deletion of ras2. Increased abundance in Δras2 of the hypophosphorylated forms of FRQ — which are therefore more active in the negative feedback — is in accordance with the enhanced accumulation of the hyperphosphorylated and thus inactive forms of the WCC. In a recent work the speed of the phosphorylation cascade affecting FRQ activity in the negative feedback was proposed as the key factor determining circadian period (15). Our data showing delayed phosphorylation of FRQ in DD in Δras2 together with a longer period are in good accordance with this model. Based on the data presented in this study we propose that RAS2 may fine-tune the circadian clock by controlling a cAMP-dependent pathway. In our model, elevation of glucose levels could lead to both increased translation rate and thus accumulation of newly synthesized hypophosphorylated FRQ forms and enhanced activity of the RAS2-dependent pathway. As a distal component of this pathway, PKA could directly or indirectly support phosphorylation of FRQ and thereby counteract the nuclear accumulation of FRQ forms active in the negative feedback. Conversely, in the ras2 deletion strain in the presence of glucose, the tardy clearance of FRQ from the nucleus may result in prolonged inhibition of the WCC and thus an increase of the period and a dampening of the oscillation.

FRQ can be phosphorylated by PKA in vitro (71), suggesting that FRQ may be a direct substrate of the kinase. Moreover, the pkac-1ko strain lacking the major catalytic subunit of PKA partially resembles the phenotype of the Δras2 strain. Reduced growth rate and dampened rhythm of FRQ oscillation, although to different extents, were detected in both strains. However, expression of the WCC was differentially affected by the lack of PKAC-1 and RAS2. Whereas in pkac-1ko expression of the WCs was low, WC-1 levels in Δras2 were elevated in LL and were similar to the
wt levels in DD, suggesting that RAS2-independent PKA activity is sufficient to support expression of the WC proteins in the mutant. Expression of WC-1 is controlled by both light-dependent and light-independent mechanisms and is posttranslationally supported by FRQ (16,19,61,72,73). How the absence of RAS2 influences this complex regulation is still unclear. Beside the cAMP-mediated signaling, a MAPK kinase module homologous to the mammalian Raf/Mek/Erk pathway can also be activated by the RAS system in different fungi (66,74). However, we did not find a clear difference in MAK2 activity between Δras2 and wt in our samples. As MAP kinases other than Erk (Jun amino-terminal kinase (JNK) and p38) were also described as downstream effectors of RAS GTPases in higher eukaryotes and their homologous are present also in Neurospora (5,75), a role of these pathways in the metabolic regulation of the clock of Neurospora cannot be excluded. Moreover, as MAP kinases are usually sensitive to the metabolic state of the cell (e.g. (76)), their contribution to the control of the circadian clock may be dependent on culturing conditions.

While data from the literature already implied that RAS-mediated pathways affect circadian timekeeping in different organisms, our study indicates for the first time that RAS GTPases may constitute a link between metabolism and the molecular clock. Our data suggest that in Neurospora RAS2 is required to maintain a robust rhythm with constant circadian period independent of changes in glucose availability in the environment. We propose that in addition to CSP1 and PRD-1 (4,26,27), RAS2 is a mediator of metabolic compensation of the Neurospora clock. While loss of CSP1 shortens the period in response to glucose, prd-1 and ras2 mutants show period lengthening under these conditions. This suggests that operation of counteracting systems may be required for stabilization of the circadian period in changing metabolic environment. The molecular mechanisms underlying this metabolic control are only partially understood and a plausible model has only been provided for the action of CSP1. Whereas CSP1 controls WC-1 levels, the RAS2-mediated pathway seems to influence primarily the action of FRQ in a glucose-dependent manner.

EXPERIMENTAL PROCEDURES

Plasmid construction

cpc-1-Flag-Strep-ras2 was constructed in two steps. By using *Neurospora* genomic DNA as template, a PCR product including the coding region of ras2 and nucleotides coding for an N-terminal Strep-tag was amplified and inserted between the XbaI and HindIII sites of a p3XFLAG-CMV™-7.1 vector (Sigma Aldrich). This construct served as a template for the PCR product containing the coding region of ras2 and nucleotides coding for two N-terminal FLAG-tags and a STREP-tag. This product was cloned as an AscI-SpeI fragment into cpc-1-vvd-Strep (25) resulting in replacement of the vvd-Strep region with the Flag(2x)-Strep-ras2 fragment.

Neurospora Strains and Culture Conditions

The strains used in this study were the wt strain (FGSC #2489), wt, his3 (FGSC #6103), wt, frq-luc (47), the Δras2 (FGSC #12467) mutant deriving from the Neurospora Genome Project (55), the Δras2, frq-luc and the Δras2, cpc-1-ras2 strains. For generation of Δras2, frq-luc, a Δras2, his3 strain was first generated by crossing wt, his3 and Δras2 according to the protocol published on the home page of the Fungal Genetics Stock Center (URL: http://www.fgsc.net/neurospora/NeurosporaProtoc olGuide.htm) and pBM60-Pfrq-luc-trpC (generous gift of M. Brunner, (77)) was integrated into the his-3 locus of Δras2, his3 by electroporation (78). Δras2, cpc-1-ras2 was generated by the integration of cpc-1-Flag-Strep-ras2 into the his-3 locus of the Δras2, his3 strain.

Liquid cultures were incubated at 90 rpm and 30°C if not indicated otherwise. Vogel’s media were supplemented with 0.5% L-arginine, 10 ng/ml biotin and the indicated amount of glucose. The standard liquid medium contained 2% glucose. Race tubes were prepared as described (72). When indicated, the race tube medium was supplemented with menadione. Race tubes were incubated at 30°C. Analysis of race tubes was performed by densitometry using the ChronOSX 1.0.7 β software (T. Roenneberg, LMU Munich) and according to the protocol described (47). The first day of the entrainment was excluded from the analysis of race tubes. In each series of
experiments data deriving from the same days were analyzed for all race tubes. 8-Br-cAMP was dissolved in NH$_4$OH and pH of the medium was restored by the addition of HCl.

Protein analysis

Extraction of *Neurospora* protein and Western blots were performed as described (13,47). For the subcellular fractionation the method described by Luo et al. (79) was used with slight modification. Briefly, buffer volumes were reduced to 1/10 and the centrifugation step to separate cytosol and nuclei was modified to 8800 g for 2 minutes at 4°C. 450 and 300 µg protein from cytosolic and nuclear fractions were analysed by SDS-PAGE, respectively. Detection of total protein levels (TP) by Ponceau staining was used as loading control. Detection of RGB-1 as a cytosolic marker was used to control the subcellular fractionation. For the analysis of protein levels optical density of protein bands was quantified using the ImageJ software. Density values were corrected for loading differences using a well-defined region of the total protein stain as described (80). When all replicates could not be loaded onto the same gel, values obtained in Δras2 samples were normalized to the control values determined in the corresponding wt or untreated samples on the same Western blot.

RNA analysis

Total RNA was extracted with the TriPure Isolation Reagent (Roche) and transcript levels were quantified as described earlier (47) and in the Appendix Supplementary Methods.

In vivo luciferase assay

96-well white plates with solid media containing Vogel’s salt solution, 0.1% L-sorbose, 1% agarose, 10 ng/ml biotin and 150 μM beetle luciferin (Promega) were inoculated with the luciferase-expressing strains. When indicated, 0.05% glucose and 1 mM 8-bromo-cAMP were added to the medium. Cultures were incubated for one day in constant darkness and subsequently for one day in constant light at 30°C. Following a light-dark transfer, luminescence was detected for 4-5 days and data were analyzed as described (47).

Statistical analysis

For statistical analysis, the STATISTICA 7.0 (Statsoft Inc., Tulsa, OK, USA) software was used. Data in all figures are presented as mean ± SEM. Results were considered to be statistically significant if p value was < 0.05.

ACKNOWLEDGMENTS

We thank Krisztina Makara for excellent technical assistance and Ágnes Südy for critical reading of the manuscript. We are especially grateful to Michael Brunner for providing antibodies against WC-1, WC-2 and FRQ. We gratefully acknowledge the Fungal Genetics Stock Center and the *Neurospora* Genome Project for providing *Neurospora* strains. This work was supported by an EMBO-HHMI startup grant to K.K. and the National Research, Development and Innovation Office - NKFIH (K115953). K.K. is a Merit Scholar of the Semmelweis University.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS

N.G. and K.K. designed the experiments and wrote the manuscript. N.G., A.S. and K.E. performed the experiments.
REFERENCES

1. Eckel-Mahan, K., and Sassone-Corsi, P. (2013) Metabolism and the circadian clock converge. *Physiol Rev* **93**, 107-135
2. Shi, M., and Zheng, X. (2013) Interactions between the circadian clock and metabolism: there are good times and bad times. *Acta Biochim Biophys Sin (Shanghai)* **45**, 61-69
3. Hurley, J. M., Loros, J. J., and Dunlap, J. C. (2015) The circadian system as an organizer of metabolism. *Fungal Genet Biol*
4. Sancar, G., Sancar, C., and Brunner, M. (2012) Metabolic compensation of the Neurospora clock by a glucose-dependent feedback of the circadian repressor CSP1 on the core oscillator. *Genes Dev* **26**, 2435-2442
5. Borkovich, K. A., Alex, L. A., Yarden, O., Freitag, M., Turner, G. E., Read, N. D., Seiler, S., Bell-Pedersen, D., Paietta, J., Plesofsky, N., Plamann, M., Goodrich-Tanrikulu, M., Schulte, U., Mannhaupt, G., Nargang, F. E., Radford, A., Selitrennikoff, C., Galagan, J. E., Dunlap, J. C., Loros, J. J., Catcheside, D., Inoue, H., Arai, Y., Polyinenis, M., Selker, E. U., Sachs, M. S., Marzluf, G. A., Paulsen, I., Davis, R., Ebbole, D. J., Zelter, A., Kalkman, E. R., O'Rourke, R., Bowring, F., Ye, A., Ishii, C., Suzuki, K., Sakai, W., and Pratt, R. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. *Microbiol Mol Biol Rev* **68**, 1-108
6. Baker, C. L., Loros, J. J., and Dunlap, J. C. (2012) The circadian clock of Neurospora crassa. *FEMS Microbiol Rev* **36**, 95-110
7. Gyongyosi, N., and Kaldi, K. (2014) Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa. *Antioxid Redox Signal* **20**, 3007-3023
8. Cha, J., Zhou, M., and Liu, Y. (2013) CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. *EMBO Rep* **14**, 923-930
9. Gorl, M., Merrow, M., Huttner, B., Johnson, J., Roenneberg, T., and Brunner, M. (2001) A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa. *EMBO J* **20**, 7074-7084
10. Guo, J., Cheng, P., Yuan, H., and Liu, Y. (2009) The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. *Cell* **138**, 1236-1246
11. Mehra, A., Shi, M., Baker, C. L., Colot, H. V., Loros, J. J., and Dunlap, J. C. (2009) A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. *Cell* **137**, 749-760
12. Pregueiro, A. M., Liu, Q., Baker, C. L., Dunlap, J. C., and Loros, J. J. (2006) The Neurospora checkpoint kinase 2: a regulatory link between the circadian and cell cycles. *Science* **313**, 644-649
13. Schafmeier, T., Haase, A., Kaldi, K., Scholz, J., Fuchs, M., and Brunner, M. (2005) Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. *Cell* **122**, 235-246
14. Cheng, P., He, Q., He, Q., Wang, L., and Liu, Y. (2005) Regulation of the Neurospora circadian clock by an RNA helicase. *Genes Dev* **19**, 234-241
15. Larrondo, L. F., Olivares-Yanez, C., Baker, C. L., Loros, J. J., and Dunlap, J. C. (2015) Circadian rhythms: Decoupling circadian clock protein turnover from circadian period determination. *Science* **347**, 1257277
16. Schafmeier, T., Kaldi, K., Diernfellner, A., Mohr, C., and Brunner, M. (2006) Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. *Genes Dev* **20**, 297-306
17. Querfurth, C., Diernfellner, A. C., Gin, E., Malzahn, E., Hofer, T., and Brunner, M. (2011) Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. *Mol Cell* **43**, 713-722
Metabolic compensation of the clock by RAS2

18. He, Q., Cheng, P., Yang, Y., Yu, H., and Liu, Y. (2003) FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. *Embo J* 22, 4421-4430

19. Ballario, P., Vittorioso, P., Magrelli, A., Talora, C., Cabibbo, A., and Macino, G. (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. *Embo J* 15, 1650-1657

20. Froehlich, A. C., Liu, Y., Loros, J. J., and Dunlap, J. C. (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. *Science* 297, 815-819

21. Linden, H., and Macino, G. (1997) White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. *Embo J* 16, 98-109

22. Merrow, M., Franchi, L., Dragovic, Z., Gorl, M., Johnson, J., Brunner, M., Macino, G., and Roenneberg, T. (2001) Circadian regulation of the light input pathway in Neurospora crassa. *Embo J* 20, 307-315

23. Chen, C. H., DeMay, B. S., Gladfelter, A. S., Dunlap, J. C., and Loros, J. J. (2010) Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. *Proc Natl Acad Sci U S A* 107, 16715-16720

24. Dasgupta, A., Chen, C. H., Lee, C., Gladfelter, A. S., Dunlap, J. C., and Loros, J. J. (2015) Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity. *PLoS Genet* 11, e1005215

25. Malzahn, E., Ciprianidis, S., Kaldi, K., Schafmeier, T., and Brunner, M. (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. *Cell* 142, 762-772

26. Emerson, J. M., Bartholomai, B. M., Ringelberg, C. S., Baker, S. E., Loros, J. J., and Dunlap, J. C. (2015) period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock. *Proc Natl Acad Sci U S A* 112, 15707-15712

27. Adhvaryu, K., Firoozi, G., Motavaze, K., and Lakin-Thomas, P. (2016) PRD-1, a Component of the Circadian System of Neurospora crassa, Is a Member of the DEAD-box RNA Helicase Family. *J Biol Rhythms* 31, 258-271

28. Conrad, M., Schothorst, J., Kankipati, H. N., Van Zeebroeck, G., Rubio-Texeira, M., and Thevelein, J. M. (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. *FEMS Microbiol Rev* 38, 254-299

29. Santangelo, G. M. (2006) Glucose signaling in Saccharomyces cerevisiae. *Microbiol Mol Biol Rev* 70, 253-282

30. Lee, N., and Kronstad, J. W. (2002) ras2 Controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. *Eukaryot Cell* 1, 954-966

31. Castellano, E., and Santos, E. (2011) Functional specificity of ras isoforms: so similar but so different. *Genes Cancer* 2, 216-231

32. Buday, L., and Downward, J. (2008) Many faces of Ras activation. *Biochim Biophys Acta* 1786, 178-187

33. Weeks, G., and Spiegelman, G. B. (2003) Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. *Cell Signal* 15, 901-909

34. Duffield, G. E., Best, J. D., Meurers, B. H., Bittner, A., Loros, J. J., and Dunlap, J. C. (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. *Curr Biol* 12, 551-557

35. Gerstner, J. R., Vander Heyden, W. M., Lavaute, T. M., and Landry, C. F. (2006) Profiles of novel diurnally regulated genes in mouse hypothalamus: expression analysis of the cysteine and histidine-rich domain-containing, zinc-binding protein 1, the fatty acid-binding protein 7 and the GTPase, ras-like family member 11b. *Neuroscience* 139, 1435-1448

36. Takahashi, H., Umeda, N., Tsutsumi, Y., Fukumura, R., Ohkaze, H., Sujino, M., van der Horst, G., Yasui, A., Inouye, S. T., Fujimori, A., Ohhata, T., Araki, R., and Abe, M. (2003) Mouse
dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. *Brain Res Mol Brain Res* **110**, 1-6

37. Eckel-Mahan, K. L., Phan, T., Han, S., Wang, H., Chan, G. C., Scheiner, Z. S., and Storm, D. R. (2008) Circadian oscillation of hippocampal MAPK activity and cAMP: implications for memory persistence. *Nat Neurosci* **11**, 1074-1082

38. Hayashi, Y., Sanada, K., and Fukada, Y. (2001) Circadian and photic regulation of MAP kinase by Ras- and protein phosphatase-dependent pathways in the chick pineal gland. *FEBS Lett* **491**, 71-75

39. Huang, C. C., Ko, M. L., Vernikovskaya, D. L., and Ko, G. Y. (2012) Calcineurin serves in the circadian output pathway to regulate the daily rhythm of L-type voltage-gated calcium channels in the retina. *J Cell Biochem* **113**, 911-922

40. Ko, G. Y., Ko, M. L., and Dryer, S. E. (2004) Circadian regulation of cGMP-gated channels of vertebrate cone photoreceptors: role of cAMP and Ras. *J Neurosci* **24**, 1296-1304

41. Ko, M. L., Liu, Y., Dryer, S. E., and Ko, G. Y. (2007) The expression of L-type voltage-gated calcium channels in retinal photoreceptors is under circadian control. *J Neurochem* **103**, 784-792

42. Ko, M. L., Liu, Y., Shi, L., Trump, D., and Ko, G. Y. (2008) Circadian regulation of retinoschisin in the chick retina. *Invest Ophthalmol Vis Sci* **49**, 1615-1621

43. Shimizu, K., Okada, M., Nagai, K., and Fukada, Y. (2003) Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. *J Biol Chem* **278**, 14920-14925

44. Tsuchiya, Y., Minami, I., Kadotani, H., Todo, T., and Nishida, E. (2013) Circadian clock-controlled diurnal oscillation of Ras/ERK signaling in mouse liver. *Proc Jpn Acad Ser B Phys Biol Sci* **89**, 59-65

45. Williams, J. A., Su, H. S., Bernards, A., Field, J., and Sehgal, A. (2001) A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. *Science* **293**, 2251-2256

46. Belden, W. J., Larrondo, L. F., Froehlich, A. C., Shi, M., Chen, C. H., Loro, J. J., and Dunlap, J. C. (2007) The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. *Genes Dev* **21**, 1494-1505

47. Gyongyosi, N., Nagy, D., Makara, K., Ella, K., and Kaldi, K. (2013) Reactive oxygen species can modulate circadian phase and period in Neurospora crassa. *Free Radic Biol Med* **58**, 134-143

48. Weber, F., Hung, H. C., Maurer, C., and Kay, S. A. (2006) Second messenger and Ras/MAPK signalling pathways regulate CLOCK/CYCLE-dependent transcription. *J Neurochem* **98**, 248-257

49. Bouchard-Cannon, P., and Cheng, H. Y. (2012) Scheduled feeding alters the timing of the suprachiasmatic nucleus circadian clock in dextras1-deficient mice. *Chronobiol Int* **29**, 965-981

50. Cheng, H. Y., Dziema, H., Papp, J., Mathur, D. P., Koletar, M., Ralph, M. R., Penninger, J. M., and Obrietan, K. (2006) The molecular gatekeeper Dextras1 sculpts the photic responsiveness of the mammalian circadian clock. *J Neurosci* **26**, 12984-12995

51. Cheng, H. Y., and Obrietan, K. (2006) Dextras1: shaping the responsiveness of the circadian clock. *Semin Cell Dev Biol* **17**, 345-351

52. Koletar, M. M., Cheng, H. Y., Penninger, J. M., and Ralph, M. R. (2011) Loss of dextras1 alters nonphotic circadian phase shifts and reveals a role for the intergeniculate leaflet (IGL) in gene-targeted mice. *Chronobiol Int* **28**, 553-562

53. Relogio, A., Thomas, P., Medina-Perez, P., Reischl, S., Bervoets, S., Gloc, E., Riemer, P., Mang-Fatehi, S., Maier, B., Schafer, R., Leser, U., Herzl, H., Kramer, A., and Sers, C. (2014) Ras-mediated deregulation of the circadian clock in cancer. *PLoS Genet* **10**, e1004338

54. Serchov, T., Ji, J., Wolf, C. T., Radtke, I., Stehle, J. H., and Heumann, R. (2015) Ras Activity Oscillates in the Mouse Suprachiasmatic Nucleus and Modulates Circadian Clock Dynamics. *Mol Neurobiol*

55. Colot, H. V., Park, G., Turner, G. E., Ringelberg, C., Crew, C. M., Litvinkova, L., Weiss, R. L., Borkovich, K. A., and Dunlap, J. C. (2006) A high-throughput gene knockout procedure for
Neurospora reveals functions for multiple transcription factors. *Proc Natl Acad Sci U S A* **103**, 10352-10357

56. Kana-uchi, A., Yamashiro, C. T., Tanabe, S., and Murayama, T. (1997) A ras homologue of Neurospora crassa regulates morphology. *Mol Gen Genet* **254**, 427-432

57. Liu, Y., Loros, J., and Dunlap, J. C. (2000) Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. *Proc Natl Acad Sci U S A* **97**, 234-239

58. Talora, C., Franchi, L., Linden, H., Ballario, P., and Macino, G. (1999) Role of a white collar-1-white collar-2 complex in blue-light signal transduction. *Embo J* **18**, 4961-4968

59. Cheng, P., Yang, Y., and Liu, Y. (2001) Interlocked feedback loops contribute to the robustness of the Neurospora circadian system. *Science* **289**, 107-110

60. Lee, K., Loros, J. J., and Dunlap, J. C. (2000) Interconnected feedback loops in the Neurospora circadian system. *Science* **289**, 107-110

61. Luo, C., Loros, J. J., and Dunlap, J. C. (1998) Nuclear localization is required for function of the essential clock protein FRQ. *EMBO J* **17**, 1228-1235

62. Hohmann, S. (2002) Osmotic stress signaling and osmoadaptation in yeasts. *Microbiol Mol Biol Rev* **66**, 300-372

63. Johnson, C., Kweon, H. K., Sheidy, D., Shively, C. A., Mellacheruvu, D., Nesvizhskii, A. I., Andrews, P. C., and Kumar, A. (2014) The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response. *PLoS Genet* **10**, e1004183

64. Raman, M., Chen, W., and Cobb, M. H. (2007) Differential regulation and properties of MAPKs. *Oncogene* **26**, 3100-3112
FIGURE LEGENDS

FIGURE 1.
RAS2 controls conidiation rhythm in Neurospora crassa. (A) The growth phenotype of Δras2 is characteristically different from that of wt and is rescued by the expression of RAS2FLAG in the Δras2, cpc-1-ras2 strain. Representative slants of the indicated strains are shown. (B) Expression of the tagged version of RAS2 in the Δras2 background. Left panel: ras2 RNA levels in the indicated strains grown on slants were determined relative to actin RNA by qPCR (n=4, SEM). Right panel: Indicated strains were grown in liquid cultures in LL. Whole cell extracts were analyzed by Western blotting using an anti-FLAG antibody. *: unspecific band, TP: total protein. (C) Menadione does not induce conidiation rhythm in Δras2. Race tubes were inoculated with wt and Δras2 and contained menadione, as indicated. Following incubation in constant light for two days, race tubes were transferred to constant darkness. Representative race tubes are shown. The first black line on each race tube marked the growth front at the time point of the LD transition. (D) Phase of banding is delayed in Δras2 under entrained conditions. Race tubes inoculated with conidia of Δras2, wt or Δras2, cpc-1-ras2 were incubated in 12/12-hours light/dark cycles. For better comparison of the position of conidial bands, images were fitted so that the daily growth distances were similar in the parallel samples. Representative race tubes are shown. Average phases of the peak of conidiation were calculated and statistically analyzed (n=7 (wt), 18 (Δras2), 14 (Δras2, cpc-1-ras2), SEM, ***p < 0.005, two sample t-test).

FIGURE 2.
RAS2 controls the circadian clock in a glucose-dependent manner. (A) The ras2 mutation affects the period and robustness of the oscillation of frq promoter activity. In vivo luciferase assay was performed on the indicated strains with (lower panel) or without (upper panel) glucose in the medium. Time-dependent changes in luciferase activity as averaged curves are shown from parallel measurements (10-14 samples) of a representative experiment. Black and red arrows indicate peak phases of luciferase activity in wt, frq-luc and Δras2, frq-luc, respectively. (B) The circadian period is increased and shows glucose sensitivity in Δras2. Time-dependent changes of bioluminescence in the indicated strains were detected as described in (A) and periods were analyzed with the Chrono program (n=22-28, SEM, **p < 0.01, two-way ANOVA, Tukey HSD test).

FIGURE 3.
Expression of ras2 is not rhythmic. Liquid cultures of wt were synchronized by a light-dark transfer and harvested at the indicated time points in DD. Levels of frq (black line) and ras2 (gray line) RNA were determined relative to actin RNA by qPCR (n=3, SEM).
FIGURE 4.
Expression and oscillation of the molecular clock components are altered in Δras2. (A) RAS2 affects both expression and phosphorylation of FRQ and the WC proteins in LL. Liquid cultures were inoculated with the indicated strains and incubated in constant light for 3 days. Whole cell extracts (left panel) or cytosolic (C) and nuclear (N) fractions (right panel) were analyzed by Western blotting. Solid and dashed arrows indicate hyper- and hypophosphorylated forms of the proteins, respectively. RGB-1 was detected as a cytosolic marker (81). In the right panel for WC-2 both long (l) and short (s) exposures are shown. (B) FRQ oscillation is different in wt and Δras2. Cultures of wt and Δras2 were harvested at the indicated time points in DD and protein expression was analyzed by Western blotting. Representative Western blots are shown. (TP: total protein) (C) Reduced expression of frq RNA and hypophosphorylated FRQ forms in Δras2 at DD12. RNA (upper panel) and protein extracts (lower panel) were prepared from cultures harvested at DD12. RNA levels were determined relative to actin (n=4, SEM, \(*p < 0.05\), two sample t-test). Protein levels were analyzed by Western blotting. Representative Western blot is shown. The dashed arrow indicates newly synthesized hypophosphorylated forms of FRQ. (D) Phosphorylation of FRQ is affected by RAS2 in constant darkness. Experimental details as described for (B). Protein expression was analyzed by Western blotting. The dashed line indicates the midpoint of the electrophoretic mobility of FRQ at DD16 in wt. Protein signals above and below the dashed line at all time points were considered as hyper- and hypophosphorylated protein forms, respectively. (E) Quantification of FRQ expression and phosphorylation. Left panel: FRQ levels at DD16 in Δras2 relative to wt were determined by densitometry. A calibration curve (Fig S2B) was constructed by loading the gel with different quantities (25-125 %) of wt protein extract and FRQ levels in Δras2 relative to wt were calculated. 100 % corresponded to mean FRQ levels in the wt samples (n=4, SEM, \(**p < 0.005\), paired t-test). Right panel: Hyper- and hypophosphorylated FRQ forms (see Fig 4D) were quantified by densitometry and the ratio of hyper- and hypophosphorylated protein forms in wt and Δras2 is shown at the indicated time points (n=3, SEM, \(**p < 0.005\), significant time x strain interaction (ANOVA with two factors, time: repeated, strain: non-repeated), Tukey HSD test).

FIGURE 5.
RAS2 is involved in regulation of nuclear FRQ levels in DD. Cultures of wt and Δras2 were harvested at the indicated time points in DD. Cytosolic (C) and nuclear (N) fractions were prepared and FRQ levels were analyzed by Western blotting. Left panel: Representative Western blots are shown. RGB-1 was detected as a cytosolic marker. (TP: total protein) Right panel: Nuclear/cytosolic signal ratios were calculated, and values of Δras2 samples were normalized to the control ratio determined for the corresponding wt sample on the same Western blot (n=3-4, SEM, \(*p < 0.05, **p < 0.01\), one sample t-test).

FIGURE 6.
RAS2 prevents glucose-dependent accumulation of FRQ in the nucleus. wt and Δras2 mycelia grown in standard liquid medium were transferred into a medium containing no glucose. Following an incubation for 16 hours, cultures were treated with either 0.5% or 4% glucose for four hours, as indicated. The experiment was performed in LL. FRQ expression in whole cell extracts (T) or cytosolic (C) and nuclear (N) fractions were analyzed by Western blotting. Left panel: Representative Western blots are shown. RGB-1 was detected as a cytosolic marker. (TP: total protein) Right panel: Nuclear/total signal ratios were calculated for the samples incubated without glucose or with 4 % glucose, as indicated. Values of Δras2 samples were normalized to the control ratio determined for the corresponding wt sample on the same Western blot (n=4, SEM, \(*p < 0.05\), one sample t-test).

FIGURE 7.
A cAMP analogue affects the circadian rhythm of the ras2-deficient strain. (A) 8-Br-cAMP does not influence the rhythm of frq-promoter activity in wt. 1 mM 8-Br-cAMP was added to the glucose-containing medium. Left panel: Time-dependent changes in luciferase activity as averaged curves are
shown from a representative experiment (n=6). Right panel: Periods were analyzed with the Chrono program (n=24, SEM). (B) Shorter circadian period of Δras2 in the presence of 8-Br-cAMP. For experimental details see (A). (Left panel: n=4; right panel: n=19-20, SEM, ***p < 0.005, two sample t-test)
Fig 1

(A) Photograph of samples labeled as `wt`, `Δras2`, and `Δras2, cpc-1-ras2`.

(B) Bar graph showing relative ras2 levels (a.u.) with error bars.

(C) Gel images for `wt`, `Δras2`, `wt`, and `Δras2` under conditions of no men, 30 μM men, and 100 μM men in DD.

(D) Phase (ZT) analysis with labeled ZT values and significance levels (***, **, *).

Supplementary Text

- **Δ ras2, cpc-1-ras2**
- **wt**
- **Δ ras2**
- **wt**
- **Δ ras2**
- **wt**
- **Δ ras2**
- **wt**

Additional Text

- **RAS2**
- **FLAG**
- **TP**
- **42 kDa**
- **26 kDa**

Legend

- *: Significant difference
- **: Highly significant difference
- ***: Extremely significant difference

Note: Specific experimental conditions and significance levels are indicated in the images and text.
Fig 2

A

no glucose

+ glucose

B
FRQ

Time in darkness (hours)	wt C	N	Δras2 C	N	wt C	N	Δras2 C	N
4	![Image](image1)	![Image](image2)	![Image](image3)	![Image](image4)	![Image](image5)	![Image](image6)	![Image](image7)	![Image](image8)
8	![Image](image9)	![Image](image10)	![Image](image11)	![Image](image12)	![Image](image13)	![Image](image14)	![Image](image15)	![Image](image16)
12	![Image](image17)	![Image](image18)	![Image](image19)	![Image](image20)	![Image](image21)	![Image](image22)	![Image](image23)	![Image](image24)
16	![Image](image25)	![Image](image26)	![Image](image27)	![Image](image28)	![Image](image29)	![Image](image30)	![Image](image31)	![Image](image32)
20	![Image](image33)	![Image](image34)	![Image](image35)	![Image](image36)	![Image](image37)	![Image](image38)	![Image](image39)	![Image](image40)
24	![Image](image41)	![Image](image42)	![Image](image43)	![Image](image44)	![Image](image45)	![Image](image46)	![Image](image47)	![Image](image48)
28	![Image](image49)	![Image](image50)	![Image](image51)	![Image](image52)	![Image](image53)	![Image](image54)	![Image](image55)	![Image](image56)
32	![Image](image57)	![Image](image58)	![Image](image59)	![Image](image60)	![Image](image61)	![Image](image62)	![Image](image63)	![Image](image64)

Relative nuclear/cytosolic signal

- **DD16**
 - wt: ![Image](image65)
 - Δras2: ![Image](image66)
 - Significance: *

- **DD20**
 - wt: ![Image](image67)
 - Δras2: ![Image](image68)
 - Significance: **

Fig 5
Table: Relative Nuclear/Total Signal

	wt	C	N	Δras2	T	C	N
glucose							
FRQ							
0.5 %							
4 %							
RGB-1							
0.5 %							
4 %							
TP							
0.5 %							
4 %							

Figures

Figure 6

- **0 % glucose**
 - n.s.
- **4 % glucose**
 - *
Fig 7

A

wt, frq-luc

![Graph showing bioluminescence (a.u.) vs. hours after LD transfer for wt, frq-luc with control and 8-Br-cAMP treatments.]

B

Δras2, frq-luc

![Graph showing bioluminescence (a.u.) vs. hours after LD transfer for Δras2, frq-luc with control and 8-Br-cAMP treatments.]

Period (hours) for 8-Br-cAMP:
- Control: 18.8 ± 0.2
- 8-Br-cAMP: 20 ± 0.2

Significance:
- n.s.
- ***
The small G protein RAS2 is involved in the metabolic compensation of the circadian clock in the circadian model Neurospora crassa
Norbert Gyöngyösi, Anita Szöke, Krisztina Ella and Krisztina Káldi

J. Biol. Chem. published online July 20, 2017

Access the most updated version of this article at doi: 10.1074/jbc.M117.804922

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2017/07/20/M117.804922.DC1