I. INTRODUCTION

Cell membranes are responsible of the separation and exchange of cell contents from external environments. Membranes only allow the movement of compounds generally with small molecular size (within the nanometric range) in or out the cell. For such a reason, the knowledge of the mechanisms responsible for the exchange of small peptides and drugs inside the membrane are of greatest scientific interest. The principal components of human cellular membranes are phospholipids, cholesterol and proteins embedded in electrolyte aqueous solutions. Phospholipid membranes consist of two leaflets of amphiphilic lipids with a hydrophilic head and one or two hydrophobic tails which self-assemble to form a choline as a head-group and a tail-group formed by C-36, H72, NO8, P saturated phospholipids incorporating a choline as a head-group and a tail-group formed by two myristoyl chains. They are usually synthesised for research purposes (studies of liposomes and bilayer membranes). Their properties are very similar to those of dipalmitoylphosphatidylcholine (DPPC, C40, H80, NO4, P) which has the same structure but slightly longer tails, being a major constituent of pulmonary surfactants of lungs (about 40%). Differently, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, C44, H84, NO4, P) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS, C42, H77, NO10, P) are unsaturated species very common in the tissues forming the most essential human organs. Cholesterol (C27, H46, O), is a sterol playing a central role in maintaining the structure of the membrane and regulating their functions[3, 4]. It induces the membrane to adopt a liquid-ordered phase with positional disorder and high lateral mobility[2] and also regulates the fluidity of the membrane.

There exists a big variety of experimental techniques useful to explore membrane organisation and molecular interactions of small probes within the membrane, such as: NMR, neutron diffraction, X-ray scattering or IR, Raman and fluorescence spectroscopy[5-8]. Among the latest techniques, fluorescence-lifetime microscopy[9] can be combined with spectral information to report basic information of aspects such as metabolic profiles, photophysics or dipolar relaxations[10]. However, the direct information on atomic interactions and local structures can only be accessed by computer simulations at the all-atom level, as it is the aim of the present work.

Heterocyclic molecules play an important role in medicine and are closely related to human life[11-13], agriculture[14] and industry[15], as the main fields of application. Such compounds are common parts of commercial drugs having multiple applications based on the control of lipophilicity, polarity and molecular hydrogen bonding capacity. Among them, 3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide (C7, H6, N2, O2, S, DBD, benzothiadiazine from now on) is a bicyclic heterocyclic benzene derivative containing two nitrogen atoms and one sulphur within the heterocyclic group. Benzothiadiazine derivatives have wide pharmacological applications, such as diuretic[16, 17], antiviral[18-21], anti-inflammatory[22], anticancer[23, 24] or the regulation of the central nervous system[25, 26] to mention a few. Be-
cause of its importance as the main common structure of the DBD family, in this work we have selected the 3,4-
dihydro-1,2,4-benzothiadiazine-1,1-dioxide species as our
target to explore its affinity to the cell membrane and its
local structure and hydrogen-bonding characteristics. Up
to the best of our knowledge, no microscopical studies of
DBD at the interface of phospholipid membranes are yet
available. Therefore, the main goal of the present study
is to report structural and energetic results obtained from
all-atom computer simulations of three classes of mem-
branes interacting with DBD for the first time.

In this paper we provide the details of the simulations
in section II and explain the main results of the work
in section III, focusing our attention especially on the
local structures of DBD (section III A) and also on the
free-energy structures of DBD and specific atomic sites,
described in section III B. Finally, some concluding
remarks are outlined in section IV.

II. METHODS

Three models of lipid bilayer membranes in an aqueous
solution have been constructed using the CHARMM-GUI
web-based tool[27, 28]. In other words we have assumed
the CHARMM force field, as it will be explained below.
The membrane components and the amount of particles
of each class are summarised in Table I. The lipids have
been distributed in two leaflets embedded inside the elec-
trolyte solution. We have considered three different se-
tups, namely: (1) a bilayer membrane formed only by
DMPC, that we will label as 'system 1'; (2) a membrane
formed by neutral DOPC and DOPS, labelled as 'system
2'; and DOPS associated to Na$^{+}$, that we will label as 'system
3'. We have considered three different setups, namely: (1) a bilayer membrane formed only by
DMPC, that we will label as 'system 1'; (2) a membrane
formed by neutral DOPC and DOPS, labelled as 'system
2' and finally (3) a membrane made by neutral DOPC
and DOPS associated to Na$^{+}$, together with cholesterol
in ionic solution, labelled as 'system 3'. System 1 is the
simplest prototype cell membrane design, whereas sys-
tem 3 is the most realistic, complete one of the three,
including electrolyte sodium-chloride solution at 0.15 M
concentration, typical of human body. System 2 is a
model with two classes of lipids, a kind of intermediate
setup between the former two. Sketches of all species
are reported in Fig. 1. Each phospholipid was described
with atomic resolution (DMPC had 118 sites, DOPC 138
sites, DOPS 131 sites and cholesterol 74 sites). In all sim-
ulations, a single prototype drug, benzothiadiazine (20
sites, also represented in Fig. 1) has been chosen for the
evaluation of its interactions with the main components
of the membrane. Water has been represented by rigid
TIP3P[29] molecules. In all cases, we run the simulations
at the fixed pressure of 1 atm and at the temperature of
303.15 K, well above the crossover temperatures for pure
DMPC, DOPC and DOPS needed to be at the crystal
liquid phase (295, 253 and 262 K, respectively)[30]).

Molecular dynamics (MD) simulations have been re-
vealed to be a very reliable tool for the simulation of
the microscopic structure and dynamics of all sorts of
condensed systems, such as aqueous solutions in bulk
or under confinement [31–34] towards model cell mem-
branes in electrolyte solution[35–37] and, more recently,
small-molecule and protein systems attached to phos-
pholipid membranes [38–41]. Three sets of MD runs
were performed by means of the NAMD2 simulation
package[42]. In all cases, the temperature was controlled
by a Langevin thermostat[43] with a damping coefficient
of 1 ps$^{-1}$, whereas the pressure was controlled by a Nosé-
Hoover Langevin barostat[44] with a damping time of 50
fs. In the isobaric-isothermal ensemble, i.e. at the con-
dition of constant number of particles (N), pressure (P)
and temperature (T), equilibration periods for all simula-
tions were of more than 200 ns. In all cases, we recorded
statistically meaningful trajectories of more than 200 ns.
The simulation boxes had different sizes because of the
composition of the membrane. For instance, in system
1, the size was of 77.9 Å × 77.9 Å × 85.1 Å. For system
2 the size was of 87.1 Å × 87.1 Å × 72.9 Å, whereas for
system 3 it was of 71.3 Å × 71.3 Å × 101.7 Å. We have
considered periodic boundary conditions in the three di-
rections of space. The simulation time step was fixed to
2 fs.

The CHARMM36 force field[45, 46] was adopted for
lipid-lipid and lipid-protein interactions. In particu-
lar, we selected the version CHARMM36m[47], able
to reproduce the area per lipid for the most rele-
vant phospholipid membranes, in excellent agreement
with experimental data. The force field used in this
work includes the parameterisation of the species DBD
(it can be searched as "OBTZ" in the correspond-
ing CHARMM36m topology file: https://www.charmm-
gui.org/?doc=archive&lib=csml.) All bonds involving
hydrogens were set to fixed lengths, allowing fluctuations
of bond distances and angles for the remaining atoms.
Van der Waals interactions were cut off at 12 Å with
a smooth switching function starting at 10 Å. Finally, long
ranged electrostatic forces were computed using the par-
ticle mesh Ewald method[48], with a grid space of about
1 Å, updating such electrostatic interactions every time
step of each simulation.

III. RESULTS AND DISCUSSION

The three classes of bilayer phospholipid membranes
considered in this work were previously simulated and
their main characteristics were thoroughly analysed (see

System	Lipids	ions	A (Å)	Δz (Å)
1	200 DMPC	0	60.5	36.1
2	160 DOPC, 40 DOPS	0	75.0	35.5
3	112 DOPC, 28 DOPS, 60 Cholesterol	55 Na$^{+}$, 27 Cl$^{-}$	51.7	43.0
for instance Ref. [37] for DMPC and Ref.[49] for DOPC-DOPS), finding suitable values of the area per lipid A and thickness Δz of the membranes in good agreement with available experimental and simulation data. In the present work, we computed A and Δz in the same way: we considered the total surface along the XY plane (plane parallel to the bilayer surface) divided by the number of lipids (eventually plus cholesterol in system 3) in one leaflet[50] as the area per lipid and the difference between the z-coordinates of the phosphorus atoms of the two leaflets as the thickness of the membrane. The results are shown in Figure 2 and the averaged values corresponding to these production runs are reported in Table I.

The results shown in Figure 2 corroborate a good equilibration of the system in all cases. The comparison with previous results[37, 49] indicates that the effect of the DBD species on the area per lipid of the membrane is quite negligible: in the case of system 1 we obtained 60.5 Å² i.e. exactly the same value we obtained for the pure DMPC simulation[37] (this might be fortuitous), which matches perfectly well the experimental value of 60.6[51, 52]. For system 2, we obtained an average value of 75.0 Å², fairly close to the experimental value of 71 Å²[53] and finally for system 3 our averaged result of 51.7 Å² is also in good overall agreement with the previous reported value of 52 Å²[49] (where a large protein was embedded in the system) and also with the experimental value of 54.4 Å² given by Nagle et al.[54]. Accordingly, the analysis of the thickness of the membrane systems also indicates good qualitative agreement: from Figure 2 we can see that fluctuations are up to 10% in system 1 and smaller for systems 2 and 3. The average values (Table I) are in agreement with available data: $\Delta z = 36.1$ Å of system 1 compares very well to 35.5 Å obtained by Kucerka et al.[51] and $\Delta z = 35.5$ Å for system 2 is in overall agreement with the X-ray reflectivity measurements by Novakova et al.[55], who reported a value of 39.4 Å for the pure DOPC/DOPS system. Finally, the value reported in this work for system 3 of $\Delta z = 43.0$ Å matches well with previous simulations for the DOPC/DOPS/cholesterol membrane[49], where
the thickness was found to be between 42.3 and 43.5 Å, whereas measurements of Nagle et al.[54] reported a thickness close to 40 Å for the DOPC-cholesterol (30%) bilayer.

A. Local structure of benzothiadiazine

1. Radial distribution functions

The local structure of a multicomponent system is usually analysed by means of the (normalised) atomic radial distribution functions (RDF) \(g_{AB}(r)\). For a species \(B\) close to a tagged species \(A\), they are given by

\[
g_{AB}(r) = \frac{V \langle n_B(r) \rangle}{4 N_B \pi r^2 \Delta r}, \tag{1}
\]

where \(n_B(r)\) is the number of atoms of species \(B\) surrounding a given atom of species \(A\) inside a spherical shell of width \(\Delta r\). \(V\) stands for the total volume of the system and \(N_B\) is the total number of particles of species \(B\). \(g_{AB}(r)\) physical meaning stands for the probability of finding a particle \(B\) at a given distance \(r\) of a particle \(A\). With the usual normalisation taken here, RDF will tend to 1 at long distances, when reaching the average density of the system.

We have evaluated the local structure of the DBD molecule solvated by lipids and cholesterol. Among the myriad of possible RDFs that we can compute, we will restrict ourselves to report a selection of the most relevant ones. The results are presented in Figures 3, 5 and 6, corresponding to the simulated systems 1, 2 and 3 as described in Table I. All RDFs show some fluctuations in their profiles due to statistical noise. As a general feature, the active sites of DBD capable of forming hydrogen bonds (HB) are hydrogens 'H2' and 'H4' and oxygens 'O13' and 'O14' (see Fig. 1). We will see below that the role of such atomic sites is not unique, participating in a wide variety of HB of different lengths, ranging between 1.7 and 2.1 Å. We can observe a clear first coordination shell in all cases associated to the binding of DBD to lipid and cholesterol species (and eventually water as well in the case of system 3) together with lower second shells centred around 4 Å.

The structure of DBD in system 1 is the simplest, as expected. We can distinguish DBD’s hydrogens H2 and H4 both forming HB with DMPC. H2 is able to bind oxygens ‘O13’, ‘O22’ and ‘O11’ of DMPC, located in different regions of the lipid structure (see Fig. 1). In many cases, the HB length (location of first maximum of the RDF) is a short distance of 1.7 Å, typical of the binding of small-molecules to cell membranes, such as tryptophan to dipalmytoilphosphatidylcholine (DPPC, see for instance the review [56]). It should be pointed out that using fluorescence spectroscopy, Liu et al.[8] obtained values for the hydrogen-bond lengths of tryptophan-water between 1.6 and 2.1 Å, i.e of the same range than those reported here. The largest peak (see Fig. 3) corresponds to H2 forming HB with oxygens of the phosphoryl group O13 and O14, since both oxygen sites are sharing a negative charge and their contributions have been averaged and labelled ‘O13’, for the sake of simplicity. The same rule has been applied to oxygens ‘O22’ and ‘O32’, although labels ‘O11’ and ‘O12’ have been analysed separately, given their different location in the lipid structure. This way of grouping equivalent lipid sites has been applied to all lipid species (DMPC, DOPC and DOPS). Concerning hydrogens H4 of DBD, they can be either connected to O13 or O11, but not to O22. Interestingly, in the case of DBD’s H4, HB lengths are in the range of 2.2-2.1 Å, significantly longer than those formed by H2 (range around 1.6 to 1.8 Å). We have analysed the frequency of such HB and observed that they tend to occur in simultaneous pair structures, as it is sketched in Fig. 4. So, in plots (A), (B) and (C) we can observe that DBD’s H2 hydrogen-bonded to DMPC’s O13-O14 and DBD’s H4 bonded to DMPC’s O11 happen simultaneously. Further, the angles formed by O-H-N (oxygen from lipids and H-N from DBD) are essentially flat, with values around 180° ± 30° in a rough estimation. We observed such double bindings for periods of time longer than 5 ns (considering statistical average along the 200 ns long MD trajectory). The group of eight atomic sites involved in such double hydrogen-bond, closed-ring structures reassembles the special structure observed in some oncogenic proteins (KRas-4B) where salt bridges were found as the main responsible of the anchoring mechanism of the protein in the cell membrane[49]. This fact is qualitatively different from the single HB formed between small-molecules and lipid bilayer membranes observed in previous works (see Refs.[39, 57] for instance) where the small-molecule (melatonin or tryptophan) was

![FIG. 3. Radial distribution functions for DBD with DMPC (system 1).](image-url)
able to bridge several lipid units and keep them together for several ns, probably due to the relative large size of the small-molecule and to the situation of their binding sites quite far away each other, differently of the very close binding sites of DBD.

![FIG. 4. Snapshots of typical DBD-lipid and DBD-cholesterol bonds. Hydrogen bonds depicted in red, oxygens in red, nitrogen in blue, carbon in cyan, phosphorus in brown and sulphur in yellow. (A) DBD-DMPC, (B) DBD-DOPC, (C) DBD-DOPS, (D) DBD-cholesterol.]

Similar findings hold for system 2, where DBD is located at the interface of a DOPC-DOPS bilayer membrane. According to the results reported in Figure 5, we have distinguished three RDF for DBD-water, DBD-DOPC and DBD-DOPS. In this setup, DBD is able to be solvated by water for periods of the order of 20 ns. In such a case, we have located the corresponding HB formed by DBD’s H2 and oxygens of water, with the characteristic signature length of the water’s HB of 1.85 Å (see [58, 59]). We have not found significant evidence of H4-water oxygen hydrogen-bonding. Regarding DBD-lipid bindings, we have observed that DBD’s H2 is more likely to establish HB with DOPC’s O13 and O22, unlike with O11 or O12. When analysing DOPS, H2 is also able to hydrogen-bond to O13 but not to O22 and, conversely, it can produce stable HB with O11. So the interactions of DBD are slightly different regarding DOPC or DOPS. However, the binding of DBD’s H4 are essentially the same for the two lipid species: it can be bound to O13 and O11 in both cases. The signature HB distances have been determined to be almost the same as in the DMPC case: 1.75 Å for H2 bindings and 2.0 Å for the H4 ones. All secondary shells have been also found centred around 4 Å. In system 2 we have also detected double HB between DBD and the two lipid classes (see Fig. 5, snapshots (B) and (C) where DOPC and DOPS, respectively are shown): H2 with O13 together with H4 with O12.

![FIG. 5. Radial distribution functions for DBD with water, DOPC and DOPS (system 2).]

Finally, the most complete and more realistic setup with system 3 has revealed several RDF similar to system 2, but some new features: (1) DBD’s H2 is able to establish some HB with DOPC’s O11, but with maxima less marked than H2-O13; (2) H2 is only bound to O13 of DOPS and (3) H4 connections are less and weaker than in system 2. We believe that this general weakening of the DBD-DOPC and DBD-DOPS hydrogen-bond structures should be attributed to the presence of cholesterol. We have located three possible HB between DBD and cholesterol: for both H2 and H4 of DBD with hydroxyl’s oxygens of cholesterol as well as oxygens of DBD with hydroxyl’s hydrogen of cholesterol. The distances are still typical between 1.7 and 2.1 Å, but as it can be seen in snapshot (D) of Fig. 5, none of them is due to double HB but to single ones. These facts can be probably relevant regarding the interactions of drugs from the DBD family with cell membranes.

2. Atomic site-site distances

After evaluating local structure of DBD, we have made a first step into the analysis of HB dynamics estimating the lifetime of some of the HB reported by RDF. No other dynamical properties involving time-correlation functions such as power spectra [60, 61], relaxation times
FIG. 6. Radial distribution functions for DBD with water, DOPC, DOPS and cholesterol (system 3).

or self-diffusion coefficients [62, 63] have been considered here. In order to estimate the averaged time intervals for DBD-lipid association, we display the time evolution of selected atom-atom distances \(d(t) \) in Figures 7 and 8, for systems 1 and 3, respectively. We have selected representative intervals (of about 20 ns) from the full MD trajectory, where the typical formation and breaking of hydrogen bonds can be clearly seen. This means that such patterns have been systematically observed throughout the whole trajectory, all of them with quantitatively equivalent time lengths. Results for system 2 are in full agreement with those for system 3 and will be numerically reported in Table II. We can see that typical hydrogen-bonding distances between 1.7-2.1 Å are reached in all cases. For instance, sites O13 and O14 of DMPC are reported independently in order to provide information on the relative distances between DBD’s H2 site and these two zwitterion sites of DMPC. Interestingly, we can observe that DBD’s ‘H4’ is able to bind DMPC’s ‘O11’ but not ‘O12’. Typical HB time lengths of about 5 ns are observed. Conversely, the other two selected distances are significantly longer (12 ns for H2 bound to DMPC’s O22) or shorter (2 ns for H2 bound to O32) and correspond to limit boundaries. The values reported in Fig. 7 are representative of the average values collected in Table II over full trajectories. At the cholesterol-free membrane (system 1) we get typical HB lifetimes between 5 and 8 ns, whereas in systems 2 and 3 the range is broader, between 2 and 8 ns for lipids DOPC and DOPS and, interestingly, of only 1-2 ns for DBD-cholesterol hydrogen bonds. These shorter HB are represented in Fig. 8, where the HB dynamics indicates a larger extent of fluctuations, with bonds continuously formed and broken.

When analysing the hydrogen-bonding of DBD with cholesterol (system 3), we have observed that some periods of hydrogen-bonding are established between oxygens ‘O11’ and ‘O12’ of DBD and the hydroxyl’s hydrogen of cholesterol (‘H\text{Chol}.’). In order to compute more precise hydrogen-bond lifetimes, correlation functions should be used (see Ref.[64] for instance), but these are out of the scope of this paper. A closer look indicates that in the case of DBD-cholesterol interactions, the longest living are the HB formed by hydrogens of a DBD (H2, H4 acting as donors) and the oxygens of cholesterol, the acceptors. “Reverse” hydrogen-bonding composed by cholesterol’s hydrogen as the donors and oxygens O11-O12 of DBD (acceptors) is also possible but it is weaker than the former, with significantly smaller free-energy barriers as we will see below.
B. Potentials of mean force between DBD and lipids

The use of a variety of one-dimensional methods to compute the potentials of mean force (PMF) between two tagged species has been extensively discussed in the literature (see Ref. [65] for a review), where up to twelve methods were applied to the benchmark case of a methane pair in aqueous solution. The authors concluded that the best choice is a constraint-bias simulation combined with force averaging for Cartesian or internal degrees of freedom. The results from unbiased simulations, as those reported in the present work, were considered good at the qualitative level, with the PMF reasonably well reproduced. However, the use of one-dimensional reaction coordinates is simply an approximation to the real ones [66], which may be in general multidimensional, presumably involving a limited number of water molecules and, eventually coordinates or distances to the other species of the system. Methods which do not assume any preconceived reaction coordinates such as transition path sampling [67–69] or, those allowing to consider collective variables, such as metadynamics [49, 70] would be in order to obtain much more accurate free-energy landscapes but they require a huge amount of computational time. Since the determination of reaction coordinates for the binding of DBD at zwitterionic membranes is out of the scope of this paper, we will consider the radial distances between two species as our order parameters useful to work as reaction coordinates of unbiased simulations.

In such case, we can easily obtain a good approximation of the PMF through the so-called reversible work $W_{AB}(r)$ required to move two tagged particles (A,B) from infinite separation to a relative separation r (see for instance Ref. [71], chapter 7):

$$W_{AB}(r) = -\frac{1}{\beta} \ln g_{AB}(r), \quad (2)$$

where $\beta = 1/(k_B T)$ is the Boltzmann factor, k_B the Boltzmann constant and T the temperature. In the present calculation of PMFs, the radial distance r is the same distance defined in the corresponding RDFs (atom–atom), i.e. it is not related to the atom position relative to the center of the membrane. We show PMF for system 1 in Fig. 9. A free-energy barrier defined by a neat first minimum and a first maximum of $\Delta W(r)$ is clearly seen in all cases, with size ΔW_1 (H2 hydrogens of DBD) and ΔW_2 (H4 hydrogens of DBD). As expected the locations directly match the first maxima of the corresponding RDF. At first sight we can observe that $\Delta W_1 > \Delta W_2$ in all cases, which is a clear indication that H2 bonding is significantly stronger than that of H4. The full set of positions and free-energy barriers for the three systems has been reported in Table III. There we can observe overall barriers between 1.3 and 4.6 $k_B T$, what correspond to 0.77–2.74 kcal/mol. We observe stable binding distances very close to the typical hydrogen-bond distances. Furthermore, since the typical energy of water–water hydrogen-bonds estimated from ab-initio calculations is of about 5 kcal/mol [72], we could conclude that our result are probably underestimated.

Given the absence of DBD free-energy barriers in the literature (up to our knowledge), and for the sake of com-
comparison with other similar systems, the PMF of tryptophan in a di-oleoyl-phosphatidyl-choline bilayer membrane shows a barrier of the order of 4 kcal/mol[73], whereas the barrier for the movement of tryptophan attached to a poly-leucine α-helix inside a DPPC membrane was reported to be of 3 kcal/mol[74]. Finally, neurotransmitters such as glycine, acetylcholine or glutamate were reported to show small barriers of about 0.5-1.2 kcal/mol when located close to the lipid glycerol backbone[75]. These values could further indicate that our estimations match at least the order of magnitude of the free-energy barriers for other small-molecules of similar size.

IV. CONCLUDING REMARKS

A series of molecular dynamics simulations of a 3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide molecule embedded in phospholipid bilayer membranes in aqueous ionic solution have been performed by molecular dynamics using the CHARMM36m force field. We have focused our analysis on the local structure of DBD, when associated to lipids, water and cholesterol molecules. After the systematic analysis of meaningful data, we noted relevant changes in local structure and dynamics of DBD. The location of DBD in the interface of the membrane is permanent when the bilayer is formed only with DMPC lipids. However, when DOPC and DOPS replace the DMPC backbone of the membrane, DBD is able to make excursions to the solvent water. The same feature has been observed in the most realistic case, when a membrane formed by 56% of DOPC, 14% of DOPS and 30% of cholesterol in sodium chloride solution has been set.

We have computed radial distribution functions defined for the most reactive particles, namely hydrogens ‘H2’ and ‘H4’ and oxygens of DBD, according to labels defined in Figure 1 as well as selected sites of lipids and cholesterol able to form hydrogen bonds with DBD. Our data revealed the existence of a strong first coordination shell and a milder second coordination shell for DBD-lipid structures. Such first shell is due to hydrogen bonds of variable lengths, between 1.7 and 2.1 Å, in good agreement with experimental data obtained from fluorescence measurements[8] for similar small-molecule-membrane systems. A direct analysis based on monitoring the relative distances between tagged sites of DBD and lipids has revealed that the lifetime of such hydrogen bonds ranges (obtained by averaging data from the 200 ns MD trajectories simulated) between 1 ns for DBD-cholesterol and up to 8 ns in the case of the HB formed between H2 of DBD and sites O22 of DMPC and DOPC.

Our results indicate that most of stable bonds formed by DBD and lipids usually involve sites H2 and H4 of DBD in double bonding with selected sites, as indicated in Figure 4. Only in the case of DDB-cholesterol bonds these are formed in a single-bond status, either between the hydrogen from the hydroxyl group of cholesterol and DBD’s oxygens or between the oxygen from the hydroxyl group of cholesterol and DBD’s species H2 and H4. Finally, from the analysis of potentials of mean force based on reversible work calculations, we have estimated the

System	Site 1	Site 2	r_{min} (Å)	r_{max} (Å)	ΔW (k_B T)
1	H2	O13-O14 (DMPC)	1.75	2.46	3.9
1	H2	O22-O23 (DMPC)	1.75	2.67	3.8
1	H2	O11 (DMPC)	1.75	2.46	3.4
1	H4	O13-O14 (DMPC)	2.0	3.6	1.8
1	H4	O11 (DMPC)	2.0	3.44	2.0
2	H2	O (Water)	1.85	2.55	2.5
2	H2	O13-O14 (DOPC)	1.75	2.6	4.1
2	H2	O22-O23 (DOPC)	1.8	2.7	3.8
2	H2	O11 (DOPC)	1.75	2.5	2.9
2	H4	O13-O14 (DOPC)	1.95	3.56	2.4
2	H4	O11 (DOPC)	1.95	2.9	2.3
2	H2	O13-O14 (DOPS)	1.75	2.55	4.6
2	H2	O22-O23 (DOPS)	1.75	2.95	4.1
2	H2	O11 (DOPS)	2.0	2.8	1.3
2	H4	O13-O14 (DOPS)	2.0	3.56	1.7

TABLE III. Free-energy barriers ΔW for the binding of DBD to water and lipids. In order to quantify the height of all barriers, 1 k_B T = 0.596 kcal/mol. Site ‘1’ corresponds to DBD and ‘Site 2’ to water or a lipid.
free-energy barriers of the HB reported above (see Table III), where the strongest corresponded to the association between DBD’s H2 and oxygens sites O13-O14 of DOPS in the absence of cholesterol. The influence of cholesterol has been especially noted in the weakening of the DBD-lipid hydrogen bond connections and it may be a relevant factor when the interaction of drugs from the DBD family is considered from a pharmaceutical perspective.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support provided by the Spanish Ministry of Economy and Knowledge (grant PGC2018-099277-B-C21, funds MCIU/AEI/FEDER, UE). ZH is the recipient of a grant from the China Scholarship Council (number 202006230070).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

[1] J. F. Nagle and S. Tristram-Nagle, BBA-Rev. Biomembranes 1469, 159 (2000).
[2] O. G. Mouritsen, Life-As a Matter of Fat (Springer, 2005).
[3] H. Ohvo-Rekilä, B. Ramstedt, P. Leppimäki, and J. P. Slotte, Prog. Lipid Res. 41, 66 (2002).
[4] T. P. McMullen, R. N. Lewis, and R. N. McElhaney, Current opinion in colloid & interface science 8, 459 (2004).
[5] H. I. Petrache, S. W. Dodd, and M. F. Brown, Biophys. J. 79, 3172 (2000).
[6] K. M. Sanchez, G. Kang, B. Wu, and J. E. Kim, Biophys. J. 100, 2121 (2011).
[7] P. Leyton, J. Brunet, V. Silva, C. Paipa, M. V. Castillo, and S. A. Brandán, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 88, 162 (2012).
[8] H. Liu, H. Zhang, and B. Jin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 106, 54 (2013).
[9] M. A. Digman, V. R. Caiolfa, M. Zama, and E. Gratton, Biophys. J. 94, L14 (2008).
[10] L. Malacrida, D. M. Jameson, and E. Gratton, Scientific Reports 7, 9215 (2017).
[11] D. A. Horton, G. T. Bourne, and M. L. Smythe, Chemical reviews 103, 893 (2003).
[12] V. Sharma, R. Kamal, and V. Kumar, Current Topics in Medicinal Chemistry 17, 2482 (2017).
[13] R. Capdeville, E. Buchdunger, J. Zimmermann, and A. Matter, Nature reviews Drug discovery 1, 493 (2002).
[14] M. Matheron and M. Porchas, Plant Disease 88, 665 (2004).
[15] J.-P. Corbet and G. Mignani, Chemical reviews 106, 2651 (2006).
[16] M. A. Z. and M. Zama, and E. Gratton, Biophys. J. 94, L14 (2008).
[17] L. Malacrida, D. M. Jameson, and E. Gratton, Scientific Reports 7, 9215 (2017).
[18] D. A. Horton, G. T. Bourne, and M. L. Smythe, Chemical reviews 103, 893 (2003).
[19] V. Sharma, R. Kamal, and V. Kumar, Current Topics in Medicinal Chemistry 17, 2482 (2017).
[20] R. Capdeville, E. Buchdunger, J. Zimmermann, and A. Matter, Nature reviews Drug discovery 1, 493 (2002).
[21] M. Matheron and M. Porchas, Plant Disease 88, 665 (2004).
[22] J.-P. Corbet and G. Mignani, Chemical reviews 106, 2651 (2006).
[23] M. M. Plattis, British Medical Journal 1, 1565 (1959).
[24] R. M. Taylor and T. H. Maren, Journal of Pharmacology and Experimental Therapeutics 140, 249 (1963).
[25] A. Martinez, A. I. Esteban, A. Castro, C. Gil, S. Conde, G. Andrei, R. Snoeck, J. Balzarini, and E. De Clercq, Journal of medicinal chemistry 42, 1145 (1999).
[26] A. Martinez, C. Gil, A. Castro, C. Perez, M. Vitwrouw, C. Pannecouque, J. Balzarini, and E. De Clercq, Antiviral Chemistry and Chemotherapy 12, 347 (2001).
[27] D. Das, J. Hong, S.-H. Chen, G. Wang, L. Beigelman, S. D. Seiwert, and B. O. Buckman, Bioorganic & medicinal chemistry 19, 4690 (2011).
[28] V. M. Patil, S. Prakash Gupta, S. Samanta, and N. Masand, Medicinal Chemistry 8, 1099 (2012).
[29] A. Tait, A. Luppi, A. Hatzelmann, P. Fossa, and L. Mosti, Bioorganic & medicinal chemistry 13, 1393 (2005).
[30] A. Kamal, M. N. A. Khan, Y. Srikanth, K. S. Reddy, A. Juvekar, S. Sen, N. Kurian, and S. Zingde, Bioorganic & medicinal chemistry 16, 7804 (2008).
[31] X. Ma, J. Wei, C. Wang, D. Gu, Y. Hu, and R. Sheng, European journal of medicinal chemistry 170, 112 (2019).
[32] A.-B. Norholm, P. Francotte, L. Olsen, C. Krintel, K. Frydenvang, E. Goffin, S. Challal, L. Danober, I. Botez-Pop, P. Lestage, et al., Journal of Medicinal Chemistry 56, 8736 (2013).
[33] A. P. Larsen, P. Francotte, K. Frydenvang, D. Tapanen, E. Goffin, P. Fraikin, D.-H. Caignard, P. Lestage, L. Danober, B. Pirotte, et al., ACS Chemical Neuroscience 7, 378 (2016).
[34] S. Jo, T. Kim, V. G. Iyer, and W. Im, J. Comput. Chem. 29, 1859 (2008).
[35] S. Jo, J. B. Lim, J. B. Klauda, and W. Im, Biophys. J. 97, 50 (2009).
[36] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
[37] W. Chen, F. Duša, J. Witos, S.-K. Ruokonen, and S. K. Wiedmer, Scientific reports 8, 1 (2018).
[38] K. Heinzinger, in Computer modelling of fluids polymers and solids (Springer, 1990) pp. 357–394.
[39] J. P. Brodholt, Chemical Geology 151, 11 (1998).
[40] J. Sala, E. Guàrdia, and J. Martí, Physical Chemistry Chemical Physics 14, 10799 (2012).
[41] S. Chowdhuri and A. Chandra, The Journal of Chemical Physics 115, 3732 (2001).
[42] S. Joseph, R. J. Mashl, E. Jakobsson, and N. Aluru, Nano Letters 3, 1399 (2003).
[43] T. W. Allen, O. S. Andersen, and B. Roux, Biophysical chemistry 124, 251 (2006).
[44] J. Yang, C. Calero, and J. Martí, The Journal of chemical physics 140, 03B606,1 (2014).
[45] E. B. Sözer, Z. A. Levine, and P. T. Vernier, Scientific reports 7, 1 (2017).
[39] H. Lu and J. Martí, PloS one 14, e0224624 (2019).
[40] W. D. Bennett, S. He, C. L. Bilodeau, D. Jones, D. Sun, H. Kim, J. E. Allen, F. C. Lightstone, and H. I. Ingólfsson, Journal of Chemical Information and Modeling 60, 5375 (2020).
[41] H. Lu and J. Martí, Scientific reports 10, 1 (2020).
[42] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).
[43] H. Lu and J. Martí, The Journal of Physical Chemistry Letters 11, 9938 (2020).
[44] P. R. Pandey and S. Roy, J. Phys. Chem. B 115, 3155 (2011).
[45] N. Kučerka, Y. Liu, N. Chu, H. I. Petraceh, S. Tristram-Nagle, and J. F. Nagle, Biophysical journal 88, 2626 (2005).
[46] J. B. Klauda, N. Kučerka, B. R. Brooks, R. W. Pastor, and J. F. Nagle, Biophysical journal 90, 2796 (2006).
[47] C. Lütgebaucks, C. Macias-Romero, and S. Roke, The Journal of chemical physics 146, 044701 (2017).
[48] J. Pan, S. Tristram-Nagle, and J. F. Nagle, Physical Review E 80, 021931 (2009).
[49] E. Nováková, K. Giewekemeyer, and T. Salditt, Physical Review E 74, 051911 (2006).
[50] J. Martí and H. Lu, International journal of molecular sciences 22, 2842 (2021).