Spectrum of candidate gene mutations associated with Indian familial oculocutaneous and ocular albinism

Kathirvel Renugadevi,1 Asim Kumar Sil,2 Vijayalakshmi Perumalsamy,3 Periasamy Sundaresan1

1Department of Genetics, Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamil Nadu, India; 2Netra Niramay Niketan, Vivekananda Mission Asram, Viveknagar, Chaitanyapur, West Bengal, India; 3Paediatric Clinic, Aravind Eye Care System, Aravind Eye Hospital, Madurai, Tamil Nadu, India

Purpose: Albinism is a group of genetic disorders, showing a broad spectrum of different phenotypes. The purpose of this study was to screen known candidate genes for oculocutaneous albinism (OCA) and ocular albinism (OA) mutations in Indian patients.

Methods: Blood samples were collected from 23 probands and 13 affected family members from 23 genetically unrelated Indian families (22 diagnosed as OCA and 1 diagnosed as OA) and analyzed by bidirectional DNA sequencing of the classic OCA genes—tyrosinase (TYR), or oculocutaneous albinism IA), pink eyed dilution (P; or oculocutaneous albinism II (OCA2)), tyrosinase-related protein 1 (TYRP1), solute carrier family 45, member 2 (SLC45A2; or membrane-associated transporter protein [MATP])—and the OA1 gene, G protein-coupled receptor 143 (GPR143).

Results: Three missense mutations, c. 715 C>T (R239W), c. 896 G>A (R299H), c.1255 G>A (G419R), and one termination c. 832 C>T (R278X), were identified in TYR, as well as one novel mutation, c.1453 G>A (G485R) in P. One novel single nucleotide polymorphism (SNP) was identified in both TYR and P; few reported SNPs were identified. The G>A base substitution caused relatively conservative amino acid changes, which altered glycine to arginine residues within the topological domain. The novel OCA2 mutation was not present in 100 control samples. This study identified two probands carrying mutations alone, 16 probands carrying SNPs alone, 4 probands carrying both mutations and SNPs and only one proband carrying neither mutations nor SNPs.

Conclusions: Although sequence analysis was performed with all five candidate genes, only four (17.39%) of the 23 probands showed mutations in TYR and 2 probands (8.69%) showed an unreported novel mutation in P. Genetic counseling for phenotypical diagnosis and genetic mutation screening of these genes will help to minimize the incidence of OCA and OA in future generations.

Albinism is an autosomal recessive inherited condition present at birth. The phenotype ranges from a complete lack of pigmentation in the skin, hair and iris, called oculocutaneous albinism (OCA), or a lack of pigmentation in the iris alone, termed ocular albinism (OA). Several independent defects can cause albinism including a complete lack of melanocytes or few pigmented cells, interference in the migration of the cells to their proper location during embryo development, and failure of the cells to produce melanin due to a lack of tyrosinase or abnormalities within the cells. Albinism is associated with severe photosensitivity to ultraviolet radiation and characteristic abnormalities in the visual system include reduced vision, nystagmus, macular/foveal hypoplasia, misrouting of optic fibers at the chiasm, and greatly decreased visual acuity.

Melanin, a dark pigment, plays an important role in the eyes and brain; it occurs in two forms-black-brown known as eumelanin and yellow-red known as pheomelanin. Both forms are dependent on the activity of the tyrosinase (TYR) gene (mutations in TYR are responsible for OCA1; OMIM 203100). This gene, which is a copper-containing enzyme located on chromosome 11q14.3 [1], is expressed in melanocytes and controls the major steps in pigment production.

Mutations in the pink eyed dilution gene (P; or oculocutaneous albinism II [OCA2]) gene (OMIM 203200) cause the OCA type 2 phenotype [2]. The OCA2 protein is important for normal biogenesis of melanosomes [3,4] and normal processing and transport of melanosomal proteins such as TYR and tyrosinase-related protein 1 (TYRP1) [5,6]. It is thought to control the melanosomal pH value, thus, regulating TYR activity and melanosomal distribution [7-9].

OCA type 3 (OMIM 203290) is caused by mutations in TYRPI, which is located on chromosome 9p23 [10]. The protein, which is encoded by the brown locus, exhibits more than 50% sequence identity with tyrosinase [11] and shows some tyrosine hydroxylase activity; it may specifically act as 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase [12,13].
| Patient ID | Age/ Sex | Visual Acuity                  | Photo Phobia | Iris Pigmentation | Type of Refraction Error | Fundus                      | Foveal Hypoplasia | Nys | Hair color | Skin color | Con |
|------------|---------|-------------------------------|--------------|------------------|--------------------------|-----------------------------|-------------------|----|------------|------------|-----|
| 5–1        | 7/M     | NA                            | No           | Yes               | Hypopigmented            | NA                          | Albinotic        | +  | brown      | white      | Con |
| 11–1       | 24/M    | NA                            | No           | Yes               | Blue with gray           | NA                          | Albinotic        | -  | Reddish Brown | Milky      | white | Con |
| 14–1       | 12/M    | NA                            | No           | Yes               | Hypopigmented            | NA                          | Albinotic        | -  | brown      | white      | white | Con |
| 16–1       | 19/F    | NA                            | No           | Yes               | Hypopigmented            | NA                          | Albinotic        | -  | Golden white | Milky      | white | Con |
| 17–1       | 6/F     | 2/60                          | 2/60         | Yes               | Hypopigmented            | Compound Myopic Astigmatism | Albinotic        | +  | brown      | white      | Con |
| 21–1       | 9/F     | 2/60                          | 2/60         | Yes               | Hypopigmented            | Simple Myopic Astigmatism  | Albinotic        | +  | brown      | white      | Con |
| 24–1       | 15/M    | NA                            | No           | Yes               | Hypopigmented            | NA                          | Albinotic        | -  | white       | white      | Non  |
| 25–1       | 31/M    | NA                            | No           | Yes               | Hypopigmented            | NA                          | Albinotic        | -  | Mild silver | brown      | Non  |
| 32–1       | 14/M    | NA                            | No           | Yes               | Hypopigmented            | NA                          | Albinotic        | -  | Golden white | white      | Non  |
| 35–1       | 9 Months/F | UP                          | UP           | Yes               | Hypopigmented            | Compound Hypermetropic Astigmatism | Albinotic        | - (CC) | brown      | white      | Con |
| 39–1       | 6/M     | 6/36                          | 4/60         | Yes               | Normally Pigmented       | Compound Hypermetropic Astigmatism | Albinotic        | -  | red with brown | white      | Con |
| 40–1       | 5/M     | NA                            | No           | Yes               | Hypopigmented            | NA                          | Albinotic        | -  | brown      | white      | Non  |
| 41–1       | 3.5/M   | NA                            | No           | Yes               | Hypopigmented            | NA                          | Albinotic        | -  | brown      | white      | Con |
| 42–1       | 13/M    | 6/24                          | 6/18         | Yes               | Hypopigmented            | Simple Hypermetropic Astigmatism | Albinotic        | +  | brown      | white      | Con |
| 44–1       | 9/M     | 5/60                          | 5/60         | Yes               | Hypopigmented            | Simple Hypermetropic Astigmatism | Albinotic        | +  | brown      | white      | Con |
| 46–1       | 11/M    | 6/60                          | 6/36         | Yes               | Hypopigmented            | Compound & Simple Hypermetropic Astigmatism | Albinotic        | +  | Golden white | Milky      | Con |
| 49–1       | 24/M    | NA                            | No           | Yes               | Hypopigmented            | NA                          | Albinotic        | -  | red with brown | white      | Con |
| 50–1       | 6 Months/F | UP                           | UP           | Yes               | Hypopigmented            | Simple myopic Astigmatism  | Albinotic        | +  | Gold normal | white      | white | Con |
| 52–1       | 16/F    | 3/60                          | 3/60         | Yes               | Hypopigmented            | Compound Hypermetropic Astigmatism | Albinotic        | +  | brown      | white      | Con |
| 54–1       | 2.5/F   | UP                            | UP           | Yes               | Hypopigmented            | Simple Hypermetropic Astigmatism | Albinotic        | +  | brown      | white      | Con |
| 55–1       | 1.5/M   | 4/60                          | 4/60         | Yes               | Hypopigmented            | Simple Hypermetropia        | Albinotic        | +  | white       | white      | NC   |
| 58–1       | 9/M     | 5/60                          | 5/60         | Yes               | Hypopigmented            | Compound Hypermetropic Astigmatism | Albinotic        | +  | brown      | white      | Con |
| 62–1       | 22/F    | 6/60                          | 6/60         | Yes               | Hypopigmented            | Compound Hypermetropic Astigmatism | Albinotic        | +  | brown      | white      | NC   |

In the table, M-Male; F-Female; CC-Congenital Cataract; Nys-Nystagmus; Con-Consanguineous; NC-Non Consanguineous; UP-Un Predictable (because two patients were 6 and 9 months old); NA-Not Available (Since the patients clinical details was not retrievable because they lost their follow up).
Human solute carrier family 45, member 2 (SLC45A2/ membrane-associated transporter protein [MATP]) (OMIM 606574)—a novel malignant melanoma-associated gene mapping to chromosomal 5p13.3 located in the melanosomal membrane—probably functions as a membrane transporter directing melanosomal protein traffic and other substances to melanosomes [14,15].

Ocular albinism is caused by mutations in the ocular albinism 1 (OA1) or G protein-coupled receptor 143 (GPR143) gene (OMIM 300500). The protein product is thought to be a melanosomal transmembrane protein [16]. OA1 is expressed in eye and epidermal melanocytes.

We present a molecular analysis of TYR, P, TYRP1, MATP and GPR143, well known candidate genes for OCA and OA1 types, in 23 (OCA-22 and OA-1) South Indian families (36 affected individuals with a positive history of albinism).

METHODS

The study group: All participants (16 consanguineous and 7 non-consanguineous familial cases) were referred for molecular analysis by investigators from the Paediatric Clinic, Aravind Eye Hospital, Madurai, Tamil Nadu and Netra Niramay Niketan, Vivekananda Mission Asram, Chaitanyapur, West Bengal, India. The study adhered to the Declaration of Helsinki criteria and was approved by the institutional review board; an informed consent form was obtained from each patient following an explanation of the nature of the study. All the patients were diagnosed using the ophthalmologic examinations detailed in Table 1. Data were also obtained on other ocular conditions such as cataracts, glaucoma, and retinal disease. The controls were selected from 100 healthy individuals with no family history of ocular abnormalities.

Preparation of genomic DNA: Approximately 5 ml of blood was collected from each proband and members of their family. Genomic DNA was prepared from peripheral blood leukocytes using the salting-out method [17] and dissolved in TE buffer (1 M Tris-pH 8.0; 0.5 M EDTA-pH 8.0). The DNA was quantified using a Nano spectrophotometer (NanoDrop Technologies, Inc.Wilmington, DL) and subjected to mutation screening analysis.

PCR amplification of genomic DNA: The genomic DNA was amplified using PCR (MJ Research-PTC-200; Peltier Thermal cycles, Taunton, MA; Eppendorf Mastercycler, Westbury, NY) containing 50 ng of genomic DNA, 0.2 mM concentration of each primer, 200 mM dNTPs (Medox, Biotech PVT.LTD, Chennai, India), 10 mM Tris-HCL (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂ and 0.2 U of Taq DNA polymerase (Sigma Aldrich, St. Louis, MO) in 20 ul volume reaction mix. The primer sequences for the intron-exon boundaries and exonic regions were selected for the TYR [18,19], P [20], TYRP1 [21], MATP [22], and GPR143 [23] genes. Primer sequences are presented in Table 2. For all amplicons, the genomic DNA was denatured at 94 °C for 5 min followed by 28 cycles of denaturation at 94 °C for 30 s; the annealing temperature differed according to the Tm value of each primer set, extension at 72 °C for 45 s, and final extension at 72 °C for 10 min.

Mutational analysis: The PCR products were purified using the gel elution kit method (Bio Basic Inc., Toronto, Canada). Bi-directional DNA sequencing for known candidate genes of OCA and OA (for exon- intron boundaries and exonic regions) was performed for all the probands and affected family members. Big dye termination chemistry was employed (3130 Genetic Analyzer; Applied Biosystems, Foster City, CA). The sequencing results were compared to the gene sequences of TYR, P, TYRP1, MATP, and GPR143 using Finch TV and Chromas softwares.

The presence of novel mutations that were identified in the probands was examined in 100 unrelated healthy persons with normal phenotypes to exclude the possibility of polymorphisms. All the mutations were reconfirmed by sequencing with the new PCR product. Heterozygous patients were systematically resequenced to ensure that the screening had not overlooked mutations. To compare the impact of these genes on 22 OCA samples and 1 OA sample, OCA and OA known candidate gene screening was performed for all samples.

Among the families selected, each affected individual (proband) was analyzed for sequence changes in the selected candidate genes. If a sequence change was identified that resulted in alterations in the amino acid sequence in the protein encoded by the gene, the rest of the family members were analyzed for co-segregation of the genotype.

Evolutionary conservation of human variant amino acid residues was evaluated using Expsasy tools by alignment to pig (Sus scrofa), mouse (Mus musculus), oryla (Oryzias latipes), astfá (Astyanax fasciatus), and nemve (Nematostella vectensis).

Restriction enzyme cleavage analysis: The presence or absence of a restriction site was used to detect the co-segregation of sequence variations in family members and the control population. Free online software (Insilico) was used to identify the appropriate restriction enzyme. Restriction digestion of PCR products was performed as per the recommendations of the respective manufacturers (New England BioLabs, Beverly, MA). For 1 ug of DNA, 10 units of restriction enzyme was used and incubated at the recommended temperature overnight and analyzed using 2% pre-stained agarose gel.

RESULTS

Clinical criteria: A summary of the available clinical data are given in Table 1. Few families alone lack the clinical details that include visual acuity and type of refraction error. Most
| PCR primers | PCR primer sequence (5'-3') | Melting temperature (°C) | PCR product size (bp) |
|-------------|-----------------------------|------------------------|----------------------|
| Tyrosinase (Tyr) gene [18,19] | | | |
| Exon 1-1 | F-CAAACCTGAAATTCAATAACATATAAG R-GTGACAGCATCCCTTCTCC | 63 | 678 |
| Exon 1-2 | F-TCAGAGGATGAAAGCTTAAGATATAAG R-CGTCTCTCTGTGAGTTGG | 62 | 521 |
| Exon 1-3 | F-CAGGCGATTCCCTTCTAGAC R-CGACGCAACAAGAAGAGGTC | 59 | 605 |
| Exon 1-4 | F-CATCTTGTGGTTGTGAGTGGCC R-CTGCTCCAGAAAGAGTATT | 60 | 514 |
| Exon 1-5 | F-CATCCATTCAAGCAATCATCA R-GCCAGTCCAAATATGGAAATA | 59 | 225 |
| Exon 1-6 | F-GACTTCTCTTGTGGCGTGGA R-CCCTGCTGAGGAAATGTATT | 60 | 252 |
| Exon 2 | F-CCACACATTCTCTGCTTCTCC R-CAGCTCTGCTAGTCGAT | 60 | 442 |
| Exon 3 | F-AGTTATAAATCAAGATGGAGATACTA R-ACATTGTAGAGGACCCCTCT | 60 | 296 |
| Exon 4 | F-CTGTGTTCATATGGAGTATAGTTAATAC R-TACAAAAAGCTGCTAGTAAAGC | 55 | 790 |
| Exon 5 | F-TGTCCTACTCAAAAGACTGT R-GGCACCTAGCTGAGTATT | 59 | 924 |
| Pink eyed dilution (P) gene [20] | | | |
| Exon 1 | F-GAGTCTCTTACCTTCGA R-TAAACCTTCTCTGCTTCTC | 52 | 172 |
| Exon 2 | F-GAGTCAAGATTAGTCTCAG R-CCAAATCTGTGTAAGTCTC | 60 | 359 |
| Exon 3 | F-CAGGGAACACATCAATTATT R-GTGCAATGCTCAGAACCTTC | 56 | 209 |
| Exon 4 | F-AAGCTTGCTTGTGTAAGCATT R-CAGATGTGCAGCCACCGCTG | 65 | 300 |
| Exon 5 | F-GAAGATGTCTAGTGCAGTTCGC R-GTTCCGAGGTTGTAGGTTT | 62 | 177 |
| Exon 6 | F-ATTATTACCTCTACTGTGTCCTC R-TTCAGATCTAGCCAGACGC | 58 | 183 |
| Exon 7 | F-GGACATGGGGTTTCTCCTGT R-TGAGATGAATGAGATTTCAC | 59 | 264 |
| Exon 8 | F-AGATCCAGATGTGTCTCACA R-AAGTCAGACTTCTTAAAACG | 59 | 213 |
| Exon 9 | F-GAGAAGGGAGGTCCTCTAATCTG R-ATCTCAACCTCCTCTGACTG | 63 | 272 |
| Exon 10 | F-CCTTCGTGTGTGCTAATCTCC R-ACATCTTTGAGCTGACATCC | 57 | 195 |
| Exon 11 | F-GCAAGCCTCTTATAGGCTCA R-GGGCCAGAGAGGCTGCTTTA | 64 | 201 |
| Exon 12 | F-GTGCTTTTAAATATGTGTGGCC R-CCTGCGAAGCAACCTTTATA | 56 | 256 |
| Exon 13 | F-GCCTCTCTCTCCTGACTG R-TGCCAGAAACCTGGCCGCA | 63 | 231 |
| Exon 14 | F-CTCACGATTGTGTATAAGTGGG R-AAAGTGAGGTGTGCTGTTTC | 59 | 239 |
| Exon 15 | F-GATTACAGCGCTGAGCCACC R-AACCCTCAACACAGATACCTC | 61 | 293 |
| Exon 16 | F-GAGAAGGTGTGCTGATATCTG R-GAATGTTCTGCTGCACACCA | 60 | 260 |
| Exon 17 | F-AAGCTCAGATGCTGCAGGACG | 62 | 219 |
| Exon 18 | F-AGTGGCGTAGTGTAGTACAC R-CCCCTCAGAATGTCGACAAA | 58 | 235 |
| Exon 19 | F-GTTTATGTTTTGACAGGCCCT R-AATCACCACAAATACAAATTGA | 58 | 197 |
| PCR primers | PCR primer sequence (5'-3') | Melting temperature (°C) | PCR product size (bp) |
|-------------|----------------------------|--------------------------|-----------------------|
| Exon 20     | F-GAATCGGTGTGTTAAACAGTG    | 59                       | 266                   |
|             | R-GTAGGCTTTTTCCATTCACC     |                          |                       |
| Exon 21     | F-GCCTACCTTATGTTCAGTGTC   | 58                       | 212                   |
|             | R-AATCAAAAGAACAGTGCGTGG   |                          |                       |
| Exon 22     | F-TCGTTGGTGCTGACCCCTAAGT  | 59                       | 219                   |
|             | R-AGGCTATGCTCCAGGCTAAAG   |                          |                       |
| Exon 23     | F-ACAGATGGCAGCTCTCTGTG    | 59                       | 229                   |
|             | R-CTAACTGTTTGGCTTGGCTG    |                          |                       |
| Exon 24     | F-GAGAAACAGAGCTTACACCAC   | 55                       | 204                   |
|             | R-GCTTAGAGAATAGACAGTCTTA  |                          |                       |
| Exon 25     | F-CGTATCTCTAGAGCCTTACCC   | 58                       | 574                   |
|             | R-AGCATAAACATTGAATGCTG    |                          |                       |

Tyrosinase-related protein 1 (TYRP1) gene [21]

| PCR primers | PCR primer sequence (5'-3') | Melting temperature (°C) | PCR product size (bp) |
|-------------|----------------------------|--------------------------|-----------------------|
| Exon 1      | F-AGGAAGTTCCACCAAGACACATC | 50                       | 189                   |
|             | R-TCAACCATCATATTACATT     |                          |                       |
| Exon 2      | F-CGTGCTCTACGGCTCTCTACA   | 59                       | 490                   |
|             | R-GCAAGGCCTTATGAACCTTATC  |                          |                       |
| Exon 3      | F-CGCAAAGCCAGATGTTCATG    | 59                       | 416                   |
|             | R-AAAGACATCTTGGCTTGAAAGA  |                          |                       |
| Exon 4      | F-AGACAAACAGAAATGAATA     | 47                       | 305                   |
|             | R-AAATTCTGACCTCGAACATTC   |                          |                       |
| Exon 5      | F-AAAGGAGCGAATAAAGACAC    | 50                       | 319                   |
|             | R-AAAGCCTCTCAAAAGAAAATCT  |                          |                       |
| Exon 6      | F-TTGCTATTACCTGGAAAAATGT  | 51                       | 275                   |
|             | R-TGCAAAAAAGCATGAAAAATG   |                          |                       |
| Exon 7      | F-ATAACGTGTTCTTTGGAAATAT  | 51                       | 252                   |
|             | R-ATAACGGTGATTACTCTTCTTG  |                          |                       |
| Exon 8      | F-TGTCACATTGTGTTGATAAC    | 50                       | 323                   |
|             | R-ATTCAACCAGGTTTGTGTTG    |                          |                       |

Membrane-associated transporter protein (MATP) gene [22]

| PCR primers | PCR primer sequence (5'-3') | Melting temperature (°C) | PCR product size (bp) |
|-------------|----------------------------|--------------------------|-----------------------|
| Exon 1-1    | F-AGGGCTCCACGTGCAAATCCAG   | 63                       | 260                   |
|             | R-GTGACCATACGCTGCTCCA      |                          |                       |
| Exon 1-2    | F-CAGACTCACATGACAGCA       | 58                       | 252                   |
|             | R-ATGCCACAGACATCATGAC      |                          |                       |
| Exon 1-3    | F-CAGCATTGTGCGTCTCTCA      | 58                       | 261                   |
|             | R-GTGCAACACACTGAACATGCTC   |                          |                       |
| Exon 2      | F-AAACCGGATATCTCAAAACAGGA  | 65                       | 280                   |
|             | R-CCTATTGCTCCAGGAGGCTGA    |                          |                       |
| Exon 3-1    | F-GGGAGTGTCTATGCTAGAGG     | 65                       | 324                   |
|             | R-GATAGAACCATACTGTACATCC   |                          |                       |
| Exon 3-2    | F-GCCCACTCTAAGGTTGTC       | 63                       | 224                   |
|             | R-CAACAAAGCAGCAAAATTTTCCTTG |                     |                       |
| Exon 4      | F-AGCTGCTGGCTGTTCTGCA      | 62                       | 265                   |
|             | R-CCTAACAGGTTAATGGAGG      |                          |                       |
| Exon 5      | F-AGAGCTGGAGAAGCAGATG      | 64                       | 236                   |
|             | R-GAAGACATCCTCCTAGGAGAG    |                          |                       |
| Exon 6      | F-ATGAGGCACCTCCAGCCTGTA    | 64                       | 286                   |
|             | R-CCCAAGGCGAGGTTTCAATG     |                          |                       |
| Exon 7      | F-GCCCTAAATGACAGTGTCCTTG   | 58                       | 326                   |
|             | R-TTGCGCTTCACTGTCAGTG      |                          |                       |
patients exhibited hypopigmented iris, nystagmus, photophobia, refractive error with combined myopic or hypermetropic astigmatism, and albinotic fundus with foveal hypoplasia.

Identification of mutations: Bi-directional DNA sequence analysis revealed four mutations (R239W, R278X, R299H, and G419R) in OCA type I ($TYR$) and one novel mutation (G485R) in OCA type II ($OCA2$) among 23 probands and 13 affected individuals from the 23 familial cases (recruited from 80 families). As shown in Table 3, four probands showed mutations in $TYR$ (17.39%), and two probands expressed the same novel mutation in $OCA2$ (8.69%).

In family 55, 11 members (two affected and nine unaffected) underwent bi-directional DNA sequencing analysis. The analysis revealed that the proband (55–1) was homozygous for a c.715C>T mutation. This mutation was also identified as homozygous in the proband’s maternal grandmother who had albinism. Both parents showing the normal phenotype were heterozygous for the mutation. The genotype status was further confirmed by SsiI restriction enzyme digestion of exon 2 PCR product amplified from the DNA of the proband’s unaffected parents. Both parents were confirmed to be heterozygous for the c.715C>T mutation. The maternal grandfather and grandmother were heterozygous and mutant homozygous, respectively. The remaining unaffected members of the family exhibited a wild type of the mutation. The wild type sample following SsiI restriction enzyme digestion revealed three (166 bp, 72 bp, and 14 bp) fragments, whereas the mutant sample showed only two fragments (238 bp and 14 bp), as a result of the loss of one SsiI digestion site (data not shown).

In family 35, base changes in the c.832C>T mutation were observed in both alleles, that codon results (R278X) termination of protein synthesis in proband (35–1). Bi-directional sequence analysis of exon 2 PCR-amplified DNA of the proband’s unaffected mother and maternal grandmother revealed the carrier status of (R278X) stop codon.

In family 40, a c.896G>A transition was identified on both alleles in the proband (40–1), and the proband’s unaffected father was heterozygous for the stop codon with carrier genotype.

Similarly in family 24, the c.1255G>A transition was identified in exon 4 of the proband (24–1) as homozygous; no other family members were willing to undergo further analysis.

Interestingly, the probands from families 11 (Figure 1A; V:1) and 52 (Figure 1B; VII:1) were found to be homozygous for the novel mutation c.1453G>A identified in exon 14 of the $P$ gene, responsible for OCA type II. One hundred individuals with normal phenotypes were screened for this novel mutation to exclude the possibility of polymorphisms. The degree of consanguinity in both families was high, with both parents marrying first-degree relatives. The family members of pedigree 11 were not willing to participate in this study so no further analysis could be undertaken. We, therefore, have no
proof of G485R inheritance in family 11 alone. However, in family 52 the diseased allele was heterozygous in the proband’s unaffected father, mother, maternal grandmother, and first younger sister.

Identification of polymorphisms: Although bi-directional DNA sequencing revealed five different polymorphisms in the exon, intron, and 3’UTR region of TYR, P, TYRP1, MATP, and GPR143, no pathological gene mutations were detected among the selected candidate genes in a few probands. Thus, we report on the polymorphisms we identified. In the study group, two probands (55–1, 49–1) exhibited an I222V polymorphism and one proband (32–1) had I222V and R402Q polymorphisms in TYR (13.04%). All three probands exhibited heterozygous patterns for these SNPs in the regions analyzed. Both of the SNPs in TYR were not observed in any of the control samples. In P, the SNP IVSXX+4 A/G was observed in nine different probands (39.13%) in the heterozygous form; similarly, heterozygosity was observed in three of the 100 controls used in the analysis. In TYRP1, proband 25–1 (4.34%) alone showed an R87R polymorphism in one allele; this SNP was not identified in the 100 healthy controls. In MATP, 13 different (56.52%) probands exhibited polymorphisms. Eleven probands carried the SNP T329T (two probands were homozygous and nine probands were heterozygous). This SNP was also detected in 16 of the 100 controls. Apart from this polymorphism one proband 42–1 carried the SNP, Leu374Phe, in exon-5 and rs45552240 (SNP) was observed in 32-1 on exon 7. Similarly, nine different (39.13%) probands exhibited IVSV1+10C/G polymorphisms in GPR143 (eight probands from OCA-24–1; 46–1; 49–1; 54–1; 21–1; 32–1; 52–1 and one proband from OA-50–1). Table 3 represents a list of the mutations and polymorphisms.

**DISCUSSION**

There is an increased awareness of genetic diseases in all of the races. Identification of mutations in candidate genes will facilitate DNA-based diagnosis of albinism. Molecular analysis of pathological mutations to reveal the origin of mutated alleles in a study population is useful under certain circumstances such as understanding the nature and severity of mutations to deliver genetic counseling. We identified four
known mutations in TYR and one novel mutation in P in 23 unrelated families. The clinical categorization of an individual has become more unique and complex. Clinical references are useful and are sufficiently precise for initial diagnosis and family counseling. Accurate diagnosis of most genetic disorders is only possible with candidate gene analysis. Of the four mutations identified in the patients with albinism, three were missense and one was a nonsense (termination) mutation. These mutations were mainly clustered in exons 1, 2, and 4 (Table 3) of TYR. In the entire proband sample, four of 23 (17.39%) individuals were homozygous for a TYR mutation; consanguinity was associated with two of these four mutations.

The R239W missense substitution in TYR in a patient (55–1) from family 55 with tyrosinase-negative OCA was previously reported in Japanese patients, 100%, 6.25%, respectively [24,25], and Chinese patients, 0.83% [26]. The 4.34% frequency we identified in our study group does not match any of these earlier findings.

In proband 35–1, the exon 2 direct sequence reveals a homozygous change, c.832C>T, that would create a premature stop codon, R278X, resulting in a truncated and completely inactive enzyme lacking one potential copper-binding region. This mutation was previously reported in various ethnic groups Guayanan, 12.5% [27]; Jewish, 2.6% [7]; Japanese, 100%, 12.5%, 22.2%, respectively [8,25,28]; European, 2.5% [26]; Mexican, 0.83% [26]; Indian, 0.83% [26]; Syrian, 0.83% [26]; Eastern Indian, 25%, 100%, 8.3%, respectively [18,29,30]; Indian, 80% [31]; and Chinese, 18.75% [32]. The frequency of the mutation in our study, 4.34%, does not match any of these earlier findings.

We identified a novel missense mutation, c.1453G>A (G485R) in P of two genetically unrelated patients. In family 52, the proband’s parents, maternal grandmother and first younger sister are carriers of the mutation. The finding sheds new light on the P gene mutation and highlights the importance of analyzing this gene in Indian patients. Our results also indicate that the frequency of mutations in the OCA2 gene in Indian patients is to some extent comparable to that seen in Caucasian patients [35]. The presence of this mutation in the OCA2 gene is the first report in an Indian patient [36]. A novel c.1454G>T (p.G485V) mutation has been recently reported in a Danish population [37] in the same codon.
We observed one heterozygous novel SNP c.664A>G (I222V) in TYR in three different patients (32–1, 49–1, 55–1). The SNP rs34878847 (c.665T>C) has been reported in the same codon. In family 32, the proband 32–1 and his affected father were heterozygous for a c.1205G>A transition, (R402Q), in exon 4 of TYR. The heterozygosities was confirmed using Hpy188I RFLP analysis, in which mutation results in the loss of one restriction site; digestion reveals 368 bp, 182 bp, 150 bp, 50 bp, and 41 bp products in wild-type samples, whereas in heterozygous individuals it produces 368 bp, 223 bp, 182 bp, 150 bp, 50 bp, and 41 bp fragments. In both instances, products below 100 bp were not clearly visible in agarose gel electrophoresis (data not shown). R402Q, a common non-pathological polymorphism of the human tyrosinase gene, was previously reported in Caucasians [38]. Here, the substitution of glutamine for arginine at codon 402 results in moderate thermoinstability of the corresponding tyrosinase polypeptide [38].

One novel intronic SNP IVSXX+4 A/G was heterozygous in P from nine different probands. The rs34509359 (R87R) SNP has been previously reported in TYR/P1 [39]. We detected the same SNP in patient 25–1 as heterozygous.

In MATP, we identified a common synonymous SNP rs2287949, (T329T), in exon 4 as homozygous in two different patients and heterozygous in another nine patients. In the same gene, a non-synonymous SNP rs16891982, (L374F), in exon 5 was homozygous in one patient (Table 3). Both these SNPs have been previously reported in a Turkish population and an East Indian population [40,41]. L374 significantly increases the possibility of having black hair and, thus, may be considered a future marker for the prediction of black hair color [42]. In the MATP coding sequence, one 3′UTR SNP, rs45552240, was heterozygous in patient 32–1.

In GPR143, the intronic SNP rs3788938 was heterozygous in four patients and homozygous in five others.

Taken together, our results indicate that six probands harbored five mutations (four reported and one novel in two probands) and that more than half of affected individuals who were tested (29 among 36) exhibited no apparent pathological mutations in the selected candidate genes. However, homozygous and heterozygous polymorphisms were distributed among the selected candidate genes across most of those with the disease, except one patient (39–1) who showed normal iris pigmentation. The prevalence of inherited ophthalmological diseases in our study is associated with the high rate of consanguineous marriage that we observed. Our study contributes to the development of mutation detection methods for OCA and OA in South Indian families. The identification of prevalent or novel alterations in candidate genes will shed new light on studies of expression analysis and may reveal alterations in mutated alleles suitable for further functional studies. Further analyses are needed to provide insight into the structure-function relationships of mutations involved in the candidate genes for albinism.

ACKNOWLEDGMENTS
The authors thank all patients and their family members and the other volunteers for their participation in this study. We thank the Department of Biotechnology for its financial support and Saravanan Vijayan for technical assistance.

REFERENCES
1. Tomita Y, Takeda A, Okinaga S, Tagami H, Shibahara S. Human oculocutaneous albinism caused by single base insertion in the tyrosinase gene. Biochem Biophys Res Commun 1989; 164:990-6. [PMID: 2511845]
2. Rinchik EM, Bultman SJ, Horsthemke B, Lee ST, Strunk KM, Spritz RA, Avidano KM, Jong MTC. A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature 1993; 361:72-6. [PMID: 8421497]
3. Orlow SJ, Brilliant MH. The pink-eyed dilution locus controls the biogenesis of melanosomes and levels of melanosomal proteins in the eye. Exp Eye Res 1999; 68:147-54. [PMID: 10068480]
4. Rosemblat S, Sviderskaya EV, Easty DJ, Wilson A, Kwon BS, Bennett DC, Orlow SJ. Melanosomal defects in melanocytes from mice lacking expression of the pink-eyed dilution gene: correction by culture in the presence of excess tyrosine. Exp Cell Res 1998; 239:344-52. [PMID: 9521852]
5. Puri N, Gardner JM, Brilliant MH. Aberrant pH of melanosomes in pink-eyed dilution (p) mutant melanocytes. J Invest Dermatol 2000; 115:607-13. [PMID: 10998131]
6. Chen K, Manga P, Orlow SJ. Pink-eyed dilution protein controls the processing of tyrosinase. Mol Biol Cell 2002; 13:1953-64. [PMID: 12058062]
7. Gershoni-Baruch R, Rosemann A, Droetto S, Holmes S, Tripathi RK, Spritz RA. Mutations of the tyrosinase gene in patients with oculocutaneous albinism from various ethnic groups in Israel. Am J Hum Genet 1994; 54:586-94. [PMID: 8128955]
8. Matsunaga J, Dakeishi-Hara M, Miyamura Y, Nakamura E, Tanita KM, Satomura, Y. Tomita. Sequence-based diagnosis of tyrosinase-related oculocutaneous albinism: successful sequence analysis of the tyrosinase gene from blood spots dried on filter paper. Dermatology 1998; 196:189-93. [PMID: 9568405]
9. Preising MN, Forster H, Tan H, Lorenz B, de Jong PT, Plomp A. Mutation analysis in a family with oculocutaneous albinism manifesting in the same generation of three branches. Mol Vis 2007; 13:1851-5. [PMID: 17960121]
10. Boissy RE, Zhao H, Oetting WS, Austin LM, Wildenberg SC, Boissy YL, Zhao Y, Sturm RA, Hearing VJ, King RA, Nordlund JJ. Mutation in and lack of expression of tyrosinase-related protein-1 (TRP-1) in melanosocytes from an individual with brown oculocutaneous albinism: a new subtype of albinism classified as “OCA3”. Am J Hum Genet 1996; 58:1145-56. [PMID: 8651291]
11. Cohen T, Muller RM, Tomita Y, Shibahara S. Nucleotide sequence of the cDNA encoding human tyrosinase-related
24. Nakamura E, Miyamura Y, Matsunaga J, Kano Y, Dakeishi-Hara M, Tanita M, Kono M, Tomita Y. A novel mutation of the tyrosinase gene causing oculocutaneous albinism type 1 (OCA1). J Dermatol Sci 2002; 28:102-5. [PMID: 11858948]

25. Tanita M, Matsunaga J, Miyamura Y, Dakeishi M, Nakamura E, Kono M, Shimizu H, Tagami H, Tomita Y. Polymorphic sequences of the tyrosinase gene: allele analysis on 16 OCA1 patients in Japan indicate that three polymorphic sequences in the tyrosinase gene promotor could be powerful markers for indirect gene diagnosis. J Hum Genet 2002; 47:1-6. [PMID: 11829136]

26. King RA, Pietsch J, Fryer JP, Savage S, Brot JJ, Russell-Eggitt I, Summers CG, Oetting WS. Tyrosinase gene mutations in oculocutaneous albinism 1 (OCA1): definition of the phenotype. Hum Genet 2003; 113:502-13. [PMID: 13680365]

27. Tripathi RA, Bundey S, Musarella MA, Droetto S, Strunk KM, Holmes SA, Spritz RA. Mutations of the tyrosinase gene in Indo-Pakistani patients with type 1 (tyrosinase-deficient) oculocutaneous albinism (OCA). Am J Hum Genet 1993; 53:1173-9. [PMID: 7902671]

28. Goto M, Sato-Matsumura K, Sawamura D, Yokota K, Nakamura H, Shimizu H. Tyrosinase gene analysis in Japanese patients with oculocutaneous albinism. J Dermatol Sci 2004; 35:215-20. [PMID: 15381243]

29. Chaki M, Mukhopadhyay A, Chatterjee S, Das M, Samanta S, Ray K. Higher prevalence of OCA1 in an ethnic group of eastern India is due to a founder mutation in the tyrosinase gene. Mol Vis 2005; 11:531-4. [PMID: 16056219a]

30. Chaki M, Sengupta M, Mukhopadhyay A, Subba Rao I, Majumder PP, Das M, Samanta S, Ray K. OCA1 in Different Ethnic Groups of India is Primarily Due to Founder Mutations in the Tyrosinase Gene. Ann Hum Genet 2006; 70:623-30. [PMID: 16907708]

31. Miyamura Y, Verma IC, Saxena R, Hoshi M, Murase A, Nakamura E, Kono M, Suzuki T, Yasue S, Shibata SI, Sakakibara A, Tomita Y. Five novel mutations in tyrosinase gene of Japanese and Indian patients with Oculocutaneous albinism type I (OCA1). J Invest Dermatol 2005; 125:397-8. [PMID: 16098056]

32. Wang, Yu. Xiaoqi Guo, Wei Li, Shi Lian. Four novel mutations of TYR gene in Chinese OCA1 patients. J Dermatol Sci 2009; 53:80-1. [PMID: 18701257]

33. Tripathi RK, Strunk KM, Giebel LB, Weleber RG, Spritz RA. Tyrosinase gene mutations in type I (Tyrosinase-deficient) oculocutaneous albinism define two clusters of missense substitutions. Am J Med Genet 1992; 43:865-71. [PMID: 1642278]

34. Cahed L, Zahreddine H, Rebeiz BN, Shahar N, Haddad PZF. Molecular basis of oculocutaneous albinism type 1 in Lebanese patients. J Hum Genet 2005; 50:317-9. [PMID: 15937636]

35. Hutton SM, Spritz RA. A Comprehensive Genetic Study of Autosomal Recessive Ocular Albinism in Caucasian patients. Invest Ophthalmol Vis Sci 2008; 49:686-72. [PMID: 18326704]

36. Renugadevi K, Sil AK, Perumalsamy V, Sundaresan P. Novel human pathological mutations. Gene symbol: OCA2. Disease: Albinism, Oculocutaneous II. Hum Genet 2009; 125:340. [PMID: 19309806]

37. Grønskov K, Ek J, Sand A, Scheller R, Bygum A, Brixen K, Brondum-Nielsen K, Rosenberg T. Birth prevalence and mutation spectrum in Danish patients with autosomal recessive albinism. Invest Ophthalmol Vis Sci 2009; 50:1058-64. [PMID: 19060277]

38. Tripathi RK, Giebel LB, Strunk KM, Spritz RA. A polymorphism of the human tyrosinase gene is associated
39. Lynch S, Yamage G, DelBono E, Wiggs JL. DNA sequence variants in the tyrosinase-related protein 1 (TYRP1) gene are not associated with human pigmentary glaucoma. Mol Vis 2002; 8:127-9. [PMID: 12011806]

40. Newton JM, Cohen-Barak O, Hagiwara N, Gardner JM, Davisson MT, King RA, Brilliant MH. Mutations in the human orthologue of the mouse underwhite gene (Uw) underlie a new form of oculocutaneous albinism, OCA4. Am J Hum Genet 2001; 69:981-8. [PMID: 11574907]

41. Sengupta M, Chaki M, Arti N, Ray K. SLC45A2 variations in Indian oculocutaneous albinism patients. Mol Vis 2007; 13:1406-11. [PMID: 17768386]

42. Branicki W, Brudnik U, Draus-Barini J, Kupiec T, Wojas-Pelc A. Association of the SLC45A2 gene with physiological human hair color variation. J Hum Genet 2008; 53:966-71. [PMID: 18806926]