OPTIMAL CONDITIONS FOR \(L^\infty \)-REGULARITY AND A PRIORI ESTIMATES FOR ELLIPTIC SYSTEMS, I: TWO COMPONENTS

LI YUXIANG

Abstract. In this paper we present a new bootstrap procedure for elliptic systems with two unknown functions. Combining with the \(L^p \)-\(L^q \)-estimates, it yields the optimal \(L^\infty \)-regularity conditions for the three well-known types of weak solutions: \(H^1_0 \)-solutions, \(L^1 \)-solutions and \(L^1_\delta \)-solutions. Thanks to the linear theory in \(L^p_\delta(\Omega) \), it also yields the optimal conditions for a priori estimates for \(L^1_\delta \)-solutions. Based on the a priori estimates, we improve known existence theorems for some classes of elliptic systems.

1. Introduction

The aim of this paper is to present a new alternate-bootstrap procedure to obtain \(L^\infty \)-regularity and a priori estimates for solutions of semilinear elliptic systems. This method enables us to obtain the optimal \(L^\infty \)-regularity conditions for the three well-known types of weak solutions: \(H^1_0 \)-solutions, \(L^1 \)-solutions and \(L^1_\delta \)-solutions of elliptic systems (for their definitions, see Section 2). Combining with the linear theory in \(L^p_\delta \)-spaces, our method also enables us to obtain a priori estimates for \(L^1_\delta \)-solutions, therefore to improve existence theorems for various classes of elliptic systems.

Let us consider the Dirichlet system of the form

\[
\begin{align*}
-\Delta u &= f(x, u, v), \quad \text{in } \Omega, \\
-\Delta v &= g(x, u, v), \quad \text{in } \Omega, \\
u &= v = 0, \quad \text{on } \partial \Omega,
\end{align*}
\]

where \(\Omega \subset \mathbb{R}^n \) is a smoothly bounded domain and \(f, g : \Omega \times \mathbb{R}^2 \to \mathbb{R} \) are Carathéodory functions. A typical case is

\[
\begin{align*}
-\Delta u &= u^r v^p, \quad \text{in } \Omega, \\
-\Delta v &= u^s v^q, \quad \text{in } \Omega, \\
u &= v = 0, \quad \text{on } \partial \Omega,
\end{align*}
\]

where \(r, s \geq 0, \ p, q > 0 \).

As a motivation, let us mention that in an important recent article [QS], Quittner & Souplet developed an alternate-bootstrap method in the scale of weighted Lebesgue spaces \(L^p_\delta(\Omega) \). Their bootstrap procedure works well for system (1.1) with

\[
\begin{align*}
-h_1(x) \leq f &\leq C_1(|v|^p + |u|^q) + h_2(x), \quad u, v \in \mathbb{R}, \ x \in \Omega, \\
-h_1(x) \leq g &\leq C_1(|u|^q + |v|^p) + h_2(x), \quad u, v \in \mathbb{R}, \ x \in \Omega,
\end{align*}
\]

2000 Mathematics Subject Classification. 35J25, 35J55, 35J60, 35B45, 35B65.

Key words and phrases. Elliptic systems, optimality, \(L^\infty \)-regularity, a priori estimates, existence.

Supported in part by National Natural Science Foundation of China 10601012 and Southeast University Award Program for Outstanding Young Teachers 2005.
where \(p, q > 0, \ pq > 1, \ \gamma, \sigma \geq 1, \ C_1 > 0, \ h_1 \in L^1_\theta(\Omega), \ h_2 \in L^\theta \) with \(\theta > n/2 \). They obtained the optimal conditions for \(L^\infty \)-regularity and a priori estimates for \(L^1_\delta \)-solutions, see [QS Theorem 2.1]. The optimality was shown by Souplet [S, Theorem 3.3]. Using this method, they obtained new existence theorems for various classes of elliptic systems.

Our bootstrap procedure works for system (1.1) with \(f, g \) satisfying more general assumptions

\[
|f| \leq C_1(|u|^p + |u|\gamma) + h(x), \\
|g| \leq C_1(|u|^\sigma + |v|^\delta) + h(x), \quad u, v \in \mathbb{R}, \ x \in \Omega, \tag{1.4}
\]

where \(r, s, \gamma, \sigma \geq 0, \ p, q > 0, \ C_1 > 0 \) and the regularity of \(h \) will be specified later. The bootstrap procedure is only based on the \(L^m-L^k \)-estimates in the linear theories of weak solutions. So we are able to obtain the optimal \(L^\infty \)-regularity conditions for the three well-known types of weak solutions: \(H^1_0 \)-solutions, \(L^1 \)-solutions and \(L^1_\delta \)-solutions of elliptic systems. Under some additional appropriate conditions on \(f, g \), this method also enables us to obtain a priori estimates for \(L^1_\delta \)-solutions.

1.1. Optimal conditions for \(L^\infty \)-regularity. First we consider the case where \(pq > (1-r)(1-s) \). Set

\[
\alpha = \frac{p+1-s}{pq - (1-r)(1-s)}, \quad \beta = \frac{q+1-r}{pq - (1-r)(1-s)}. \tag{1.5}
\]

Note that \((\alpha, \beta) \) is the solution of

\[
\begin{bmatrix}
 r-1 \\
 q \\
 s-1
\end{bmatrix}
\begin{bmatrix}
 \alpha \\
 \beta
\end{bmatrix}
= \begin{bmatrix}
 1 \\
 1
\end{bmatrix}.
\]

Throughout this paper, we assume that \(\alpha, \beta > 0 \), which is obvious if \(r, s \leq 1 \). The numbers \(\alpha, \beta \) are related to its scaling properties of system (1.2) (see for instance [CFMT]). For the parabolic counterpart of (1.2), these numbers appear for instance in [DE, Wang, Zh] in the study of blow-up.

For the \(L^\infty \)-regularity, we obtain the following theorems.

Theorem 1.1. (Optimal \(L^\infty \)-regularity for \(H^1_0 \)-solutions)

Assume that \(f, g \) satisfy (1.4) with \(pq > (1-r)(1-s) \).

(i) If

\[
\max\{\alpha, \beta\} > \frac{n-2}{4}, \quad r, s, \gamma, \sigma < \frac{n+2}{n-2}, \tag{1.6}
\]

then any \(H^1_0 \)-solution of system (1.1) belongs to \(L^\infty(\Omega) \);

(ii) If \(n \geq 3 \) and

\[
\max\{\alpha, \beta\} < \frac{n-2}{4}, \tag{1.7}
\]

system (1.1) in \(B_1 \), the unit ball in \(\mathbb{R}^n \), with \(f = (u+c_1)^r(v+c_2)^p \) and \(g = (u+c_1)^\sigma(v+c_2)^\delta \) for some \(c_1, c_2 > 0 \) admits a positive \(H^1_0 \)-solution \((u, v)\) such that \(u \notin L^\infty(B_1) \) and \(v \notin L^\infty(B_1) \).

Theorem 1.2. (Optimal \(L^\infty \)-regularity for \(L^1 \)-solutions)

Assume that \(f, g \) satisfy (1.4) with \(pq > (1-r)(1-s) \).
(i) If
\[\max\{\alpha, \beta\} > \frac{n-2}{2}, \quad r, s, \gamma, \sigma < \frac{n}{n-2}, \]
\[\min\{p + r, q + s\} < \frac{n}{n-2}, \quad h \in L^\theta(\Omega), \quad \theta > \frac{n}{2}, \]
then any \(L^1 \)-solution of system (1.1) belongs to \(L^\infty(\Omega) \);

(ii) If \(n \geq 3 \) and
\[\max\{\alpha, \beta\} < \frac{n-2}{2}, \]
system (1.1) in \(B_1 \), the unit ball in \(\mathbb{R}^n \), with \(f = (u+c_1)^r(v+c_2)^p \) and \(g = (u+c_1)^q(v+c_2)^s \) for some \(c_1, c_2 > 0 \) admits a positive \(L^1 \)-solution \((u, v)\) such that \(u \notin L^\infty(B_1) \) and \(v \notin L^\infty(\Omega) \).

Theorem 1.3. (Optimal \(L^\infty \)-regularity for \(L^1_\delta \)-solutions)
Assume that \(f, g \) satisfy (1.4) with \(pq > (1-r)(1-s) \).

(i) If
\[\max\{\alpha, \beta\} > \frac{n-1}{2}, \quad r, s, \gamma, \sigma < \frac{n+1}{n-1}, \]
\[\min\{p + r, q + s\} < \frac{n+1}{n-1}, \quad h \in L^\theta(\Omega), \quad \theta > \frac{n+1}{2}, \]
then any \(L^1_\delta \)-solution of system (1.1) belongs to \(L^\infty(\Omega) \);

(ii) If \(n \geq 2 \) and
\[\max\{\alpha, \beta\} < \frac{n-1}{2}, \]
there exist functions \(a, b \in L^\infty(\Omega) \), \(a, b > 0 \) such that system (1.1) with \(f = a(x)u^rv^p \) and \(g = b(x)u^qv^s \) admits a positive \(L^1_\delta \)-solution \((u, v)\) such that \(u \notin L^\infty(\Omega) \) and \(v \notin L^\infty(\Omega) \).

Our theorems are closely related to the three critical exponents:

\[p_S := \begin{cases} \infty & \text{if } n \leq 2, \\ (n+2)/(n-2) & \text{if } n \geq 3, \end{cases} \]

\[p_{sg} := \begin{cases} \infty & \text{if } n \leq 2, \\ n/(n-2) & \text{if } n \geq 3, \end{cases} \]

\[p_{BT} := \begin{cases} \infty & \text{if } n \leq 1, \\ (n+1)/(n-1) & \text{if } n \geq 2. \end{cases} \]

\(p_S \) is the Sobolev exponent. \(p_{sg} \) and \(p_{BT} \) appear in study of \(L^1 \)-solutions and \(L^1_\delta \)-solutions of scalar elliptic equations respectively. Note that

\[\frac{n-2}{4} = \frac{1}{p_S - 1}, \quad \frac{n-2}{2} = \frac{1}{p_{sg} - 1}, \quad \frac{n-1}{2} = \frac{1}{p_{BT} - 1}. \]

So if we write each critical exponent as \(p_c \), the optimal conditions for \(L^\infty \)-regularity of the above three types of weak solutions have a consistent form \(\max\{\alpha, \beta\} > 1/(p_c - 1) \) and \(r, s, \gamma, \sigma, \min\{p + r, q + s\} < p_c \).
Remark 1.1. If \(r, s \leq 1 \), \(\min\{p + r, q + s\} < p_c \) in Theorem 1.1-1.3 (i) is superfluous, see Remark 2.2.

For \(pq \leq (1 - r)(1 - s) \), we have the following theorem.

Theorem 1.4. Assume that \(f, g \) satisfy (1.4) with \(pq \leq (1 - r)(1 - s) \). Then Theorem 1.1-1.3 (i) also hold if \(\max\{\alpha, \beta\} > 1/(p_c - 1) \) is replaced by \(pq - (1 - r)(1 - s) < (p_c - 1) \max\{p + 1 - s, q + 1 - r\} \).

In order to justify the above theorems, let us recall the optimal \(L^\infty \)-regularity for the scalar equation

\[
-\Delta u = f(x, u), \quad \text{in } \Omega, \\
u = 0, \quad \text{on } \partial \Omega,
\]

(1.12)

where \(|f| \leq C(1 + |u|^p)\) with \(p \geq 1 \). It is well-known that the Sobolev exponent \(p_S \) plays an important role in the optimal \(L^\infty \)-regularity and a priori estimates of the \(H^1_0 \)-solutions, see [FLN, GS, JL, ZZ] and the references therein. Any \(H^1_0 \)-solution of (1.12) belongs to \(L^\infty (\Omega) \) if and only if \(p \leq p_S \), see for instance [BK, SI]. For the \(L^1 \)-solutions, the critical exponent is \(p_{sg} \). Any \(L^1 \)-solution of (1.12) belongs to \(L^\infty (\Omega) \) if and only if \(p < p_{sg} \), see for instance [A, NS, P].

The critical exponent \(p_{BT} \) first appeared in the work of Brézis & Turner in [BT]. They obtained a priori estimates for all positive \(H^1_0 \)-solutions of (1.12) for \(p < p_{BT} \) using the method of Hardy-Sobolev inequalities. However the meaning of \(p_{BT} \) was clarified only recently. It was shown by Souplet [S, Theorem 3.1] that \(p_{BT} \) is the critical exponent for the \(L^\infty \)-regularity of \(L^1 \)-solutions of (1.12) by constructing an unbounded solution with \(f = a(x)u^p \) for some \(a \in L^\infty (\Omega), a \geq 0 \) if \(p > p_{BT} \). The critical case \(p = p_{BT} \) was recently shown to belong to the singular case for \(f = u^p \), see [DMP], also [MR] for related results. Moreover, the results of [S] was extended to the case \(f = u^p \) when \(p > p_{BT} \) is close to \(p_{BT} \).

If we set \(\alpha = 1/(p - 1) \), i.e., the solution of \((p - 1)\alpha = 1\), the optimal conditions for \(L^\infty \)-regularity of the above three types of weak solutions also have a consistent form \(\alpha > 1/(p_c - 1) \). For more detailed discussions, we refer to the book [QS2, Chapter I].

Using the bootstrap procedure they developed based on linear theory in \(L^1_0(\Omega) \), Quittner \& Souplet [QS, Theorem 2.1] obtained similar \(L^\infty \)-regularity condition as Theorem 1.3 (i) assuming that \(f, g \) satisfy (1.3). In [S, Theorem 3.3], Souplet proved a similar result as in Theorem 1.3 (ii) in the case \(f = a(x)v^p \) and \(g = b(x)w^q \) for some functions \(a, b \in L^\infty (\Omega), a, b \geq 0 \).

Remark 1.2. Using the method of moving planes and Pohozaev-type identities, in the case \(f = v^p \) and \(g = w^q \), \(p, q > 1 \), it is proved if \(\Omega \) is convex and bounded, and \(\alpha + \beta > (n - 2)/2 \), then there exists a positive classical solution of (1.1); If \(n \geq 3 \), \(\Omega \) is starshaped and bounded, and \(\alpha + \beta \leq (n - 2)/2 \), then (1.1) has no positive solution, see [CFM, M2]. Note that the optimal \(L^\infty \)-regularity condition in Theorem 1.1 is weaker than the existence condition, i.e., the so-called Sobolev hyperbola.

Remark 1.3. We shall use a bootstrap procedure to prove the above theorems. Based on another bootstrap procedure, using the method of Rellich-Pohozaev identities and moving planes, [CFM, Lemma 2.2] obtained a priori estimates for \(H^1_0 \)-solutions of (1.1) with \(f, g \) satisfying some conditions similar to (1.3).
1.2. Optimal conditions for a priori estimates and existence theorems. Combining with the linear theory in L^p_δ-spaces, developed in [FSW], see also [BV], our bootstrap procedure enables us to obtain a priori estimates for system (1.1) with f,g satisfying (1.4) and

$$f + g \geq -C_2(u + v) - h_1(x), \quad u, v \in \mathbb{R}, \quad x \in \Omega,$$

where $C_2 > 0$, $h_1 \in L^1_\delta(\Omega)$. By an a priori estimate, we mean an estimate of the form

$$\|u\|_{L^\infty} \leq C, \quad \|v\|_{L^\infty} \leq C$$

for all possible nonnegative solutions of (1.1) (in a given set of functions), with some constant C independent of (u, v). Our main result of the a priori estimates is the following theorem.

Theorem 1.5. Let f,g satisfy (1.4) and (1.13) with $pq > (1 - r)(1 - s)$ and (1.10). Then there exists $C > 0$ such that for any nonnegative solution (u, v) of (1.1) satisfying

$$\|u\|_{L^1_\delta} + \|v\|_{L^1_\delta} \leq M,$$

it follows that $u, v \in L^\infty(\Omega)$ and

$$\|u\|_{L^\infty} + \|v\|_{L^\infty} \leq C.$$

The constant C depends only on $M, \Omega, p, q, r, s, \gamma, \sigma, C_1, C_2$.

(1.10) is optimal for the a priori estimates for the L^1_δ-solutions of the system (1.1) under the assumptions (1.4) and (1.13), see Theorem 1.3 (ii).

There are several methods for the derivation of a priori estimates: The method of Rellich-Pohozaev identities and moving planes, see [CFM, FLN]; The scaling or blow-up methods, which proceeds by contradiction with some known Liouville-type theorems, see [BM, CFMT, FY, GS, Lou, So, Zou] and references therein, for the related Liouville-type results, see [BM, BuM, CMM, FF, M, PQS, RZ, Sa, SZ, SZ2] and the references therein; The method of Hardy-Sobolev inequalities, see [BT, CFM2, C, CFS, GW]. For the detailed comments of the above methods and the advantages of the bootstrap methods, we refer to [QS], see also a survey paper [S2].

A similar theorem for system (1.1) with f,g satisfying (1.3) was proved by Quittner & Souplet [QS, Theorem 2.1]. Based on their a priori estimates, they obtained new existence theorems for various classes of elliptic systems.

Theorem 1.6. Assume that f,g satisfy (1.4) and (1.10) with $pq > (1 - r)(1 - s)$ and (1.10). Then

(a) any nonnegative L^1_δ-solution (u, v) of (1.1) belongs to $L^\infty(\Omega)$ and satisfies the a priori estimate (1.14);

(b) system (1.1) admits a positive L^1_δ-solution (u, v) if in addition f, g satisfy

$$f + g = o(u + v), \quad \text{as } u, v \to 0^+,$$

uniformly in $x \in \Omega$.
Remark 1.4. If \(pq > (1 - r)(1 - s) \) and \(\max\{\alpha, \beta\} > \frac{n-1}{2} \) are replaced by \(pq \leq (1 - r)(1 - s) \) and \(pq - (1 - r)(1 - s) < \frac{2}{n-1} \max\{p + 1 - s, q + 1 - r\} \) respectively, then the conclusions of Theorem 1.5 and 1.6 also hold.

Remark 1.5. Consider system (1.1) with boundary conditions of the form \(u_\nu = au, v_\nu = bv \), where \(a, b \in \mathbb{R} \) and \(u_\nu \) denotes the derivative of \(u \) with respect to the outer unit normal on \(\partial \Omega \). If, for example, \(f, g \) satisfy
\[
 f + g \geq C_1 (\lambda_1(a)u + \lambda_1(b)v) - C_2, \quad u, v \geq 0, \; x \in \Omega,
\]
where \(C_1 > 1, C_2 \geq 0 \) and \(\lambda_1(a) \) denotes the first eigenvalue of \(-\Delta\) with boundary conditions \(u_\nu = au \), then it is easy to deduce that
\[
 \|u\|_{L^1} + \|v\|_{L^1} \leq M,
\]
with \(M \) independent of \(u, v \). The proof of Theorem 2.4 (in Section 2) implies (1.14). Using this a priori estimate, we also have a similar existence theorem of \(L^1 \)-solutions of system (1.1) with Neumann conditions as Theorem 1.6.

If \(r = s = 0 \), under assumptions (1.3), (1.16), the system (1.1) was studied by several authors. Using another bootstrap method, similar results as the above theorem was obtained in [QS, Theorem 1.1], see also [CFM2, F, FY, Zou] for more related results.

The second existence theorem is about the system
\[
\begin{align*}
-\Delta u &= a(x)u^r v^p - c(x)u, \quad \text{in } \Omega, \\
-\Delta v &= b(x)u^q v^s - d(x)v, \quad \text{in } \Omega, \\
u &= v = 0, \quad \text{on } \partial \Omega,
\end{align*}
\]
where \(r, s \leq 1, pq > (1 - r)(1 - s), a, b, c, d \in L^\infty(\Omega), a, b \geq 0, \int_\Omega a, \int_\Omega b > 0, \inf\{\text{spec}(-\Delta + c)\} > 0, \inf\{\text{spec}(-\Delta + d)\} > 0.\)

Theorem 1.7. Assume that
\[
\max\{\alpha, \beta\} > \frac{n-1}{2}. \tag{1.19}
\]
Then
(a) any nonnegative \(L^1_c \)-solution \((u, v)\) of (1.18) belongs to \(L^\infty(\Omega) \) and satisfies the a priori estimate (1.14);
(b) system (1.18) admits a positive \(L^1_c \)-solution \((u, v)\).

From the above theorem, we obtain the existence theorem for system (1.2).

Corollary 1.8. Assume that \(r, s \leq 1, pq > (1 - r)(1 - s) \) and (1.19) holds. Then system (1.2) admits a positive classical solution \((u, v)\).

A similar existence result was proved in [QS, Theorem 1.4] but under more stronger assumptions. Set
\[
\begin{align*}
\hat{p} &= \frac{(n+1)p}{n+1-(n-1)r}, \quad \hat{q} = \frac{(n+1)q}{n+1-(n-1)s}, \\
\hat{\alpha} &= \frac{\hat{p}+1}{(\hat{p}\hat{q}-1)_+}, \quad \hat{\beta} = \frac{\hat{q}+1}{(\hat{p}\hat{q}-1)_+}.
\end{align*}
\]
Instead of (1.19), they required that \(\max\{\hat{\alpha}, \hat{\beta}\} > (n - 1)/2 \). The a priori estimates and existence of positive solutions for (1.2) was studied in [CFMT] in the case when \(\Omega = B_R(0) \) and the parameters satisfy \(0 \leq r, s \leq 1 \), \(pq \geq (1 - r)(1 - s) \), plus some additional conditions. Note that the results there also cover the case when the Laplace operators are replaced by \(\Delta_m u, \Delta_n u \), \(m, n > 1 \). We refer to [M, RZ, TV, Zh, B] for existence/nonexistence results for (1.2) and to [DE, Li, Wang, Zh] and the references therein for related results on the associated parabolic systems.

Remark 1.6. It was shown in [RZ] that system (1.2) has no positive solutions if \(p, q, r, s \geq 1 \), \(\min\{p + r, q + s\} \geq (n + 2)/(n - 2)_+ \) and \(\Omega \) is star-shaped. It was also proved in [Zou2] that system (1.2) has a positive solution if \(r, s \geq 1 \), \(pq > (r - 1)(s - 1) \) and

\[
\max\{p + r, q + s\} \leq (n + 2)/(n - 2)_+, \tag{1.20}
\]

see also [Zou]. Our result is that system (1.2) has a positive solution if \(0 \leq r, s \leq 1 \), \(pq > (1 - r)(1 - s) \) and (1.19) holds. If \(r = s = 0 \), for the existence of positive solutions of the system (1.2), we have the optimal condition \(\alpha + \beta > (n - 2)/2 \), see Remark 1.2. We would like to point out that

(i) \(\max\{p + r, q + s\} \leq (n + 1)/(n - 1) \) implies (1.19), but (1.20) does not;
(ii) (1.19) is much more general than (1.20). (1.19) allows very large \(p \) or \(q \);
(iii) If \(r = s = 0 \), (1.19) is stronger than \(\alpha + \beta > (n - 2)/2 \).

So it is still a widely open question what should be the optimal conditions on \(p, q, r, s, n \) for existence of positive solutions to system (1.2).

A special case of (1.18) is the following model of a nuclear reactor

\[
\begin{align*}
-\Delta u &= uv - au, & \text{in } \Omega, \\
-\Delta v &= bu, & \text{in } \Omega, \\
u &= v &= 0, & \text{on } \partial \Omega,
\end{align*}
\tag{1.21}
\]

where \(u, v \) present the neutron flux and the temperature, respectively. This system and the corresponding parabolic system were studied in [Ch, GW, GW2, Q, QS, QS2]. In [GW2], the existence and a priori estimate were obtained under the assumption \(n \leq 3 \), or \(\Omega \) convex and \(n \leq 5 \). In [QS Theorem 1.2] and [QS2 Theorem 31.17], the existence and a priori estimate were obtained under weaker assumption \(n \leq 4 \) without assuming \(\Omega \) convex. Our theorem recover their result since \(\max\{\alpha, \beta\} = 2 > (n - 1)/2 \) implies \(n < 5 \).

In next section, we present our bootstrap procedure. In Section 3, we prove Theorem 1.1-1.3. In Section 4, we prove Theorem 1.5-1.7

2. The Bootstrap Procedure

In what follows we give the definitions of three types of weak solutions of system (1.1), see [QS2 Chapter I].

Definition 2.1. (i) By an \(H^1_0 \)-solution of system (1.1), we mean a couple \((u, v)\) with

\[
u, v \in H^1_0(\Omega), \quad f, g \in H^{-1}(\Omega),
\]
satisfying
\[\int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f \varphi, \quad \int_{\Omega} \nabla v \cdot \nabla \varphi = \int_{\Omega} g \varphi, \]
for all \(\varphi \in H^1_0(\Omega) \).

(ii) By an \(L^1 \)-solution of system (1.1), we mean a couple \((u, v)\) with
\(u, v \in L^1(\Omega), \quad f, g \in L^1(\Omega) \),
satisfying
\[-\int_{\Omega} u \Delta \varphi = \int_{\Omega} f \varphi, \quad -\int_{\Omega} v \Delta \varphi = \int_{\Omega} g \varphi, \]
for all \(\varphi \in C^2(\Omega), \quad \varphi \vert_{\partial \Omega} = 0 \).

(iii) Set \(\delta(x) := \text{dist}(x, \partial \Omega) \) and \(L^1_\delta(\Omega) := L^1(\Omega; \delta(x)dx) \). By an \(L^1_\delta \)-solution of system (1.1), we mean a couple \((u, v)\) with
\(u, v \in L^1(\Omega), \quad f, g \in L^1_\delta(\Omega) \),
satisfying (2.1). The three types of weak solutions of the scalar equation (1.1 2) and the linear equation
\[-\Delta u = \phi, \quad \text{in } \Omega; \quad u = 0, \quad \text{on } \partial \Omega, \]
are defined similarly. According to [BCMR, Lemma 1], if \(\phi \in L^1_\delta(\Omega) \), (2.2) admits a unique \(L^1_\delta \)-solution \(u \in L^1(\Omega) \). Moreover, \(\|u\|_{L^1_{\delta}} \leq C(\Omega, m, k) \|\phi\|_{L^m} \). But \(\phi \in L^m(B_1) \) and \(U \notin L^k(B_1) \), see also [QS2, Chapter I].

Obviously, Proposition 2.1 holds for the \(H^1_0 \)-solution of (2.2). But it is not convenient to derive the optimal condition for \(L^\infty \)-regularity of the \(H^1_0 \)-solutions of system (1.1). For our purpose, we develop an \(L^m-L^k \)-estimate for the \(H^1_0 \)-solution of (2.2). It is an invariant of Proposition 2.1. Let \(n \geq 3 \), set \(2_* := 2n/(n + 2) \). It is the conjugate number of the Sobolev imbedding exponent, \(2n/(n - 2) \).

Proposition 2.2. Let \(1 \leq m \leq k \leq \infty \) satisfy
\[\frac{1}{m} - \frac{1}{k} < \frac{4}{n + 2}. \]

Let \(u \in H^1_0(\Omega) \) be the unique \(H^1_0 \)-solution of (2.2). If \(\phi \in L^{2_*}(\Omega) \), then \(u \in L^{2_*}(\Omega) \) and satisfies the estimate \(\|u\|_{L^{2_*}} \leq C(\Omega, m, k) \|\phi\|_{L^{2_*}} \).
The above proposition in hand, the L^∞-regularity of the H^1_0-solutions of (1.12) with $|f| \leq C(1 + |u|^p)$ with $1 \leq p < p_S$ follows immediately from a simple bootstrap argument. It is much simpler than the usual proof, see [BK, St, QS].

For all $1 \leq k \leq \infty$, define the spaces $L^k_\delta(\Omega) = L^k(\Omega; \delta(x)dx)$. For $1 \leq k < \infty$, $L^k_\delta(\Omega)$ is endowed with the norm
\[\|u\|_{L^k_\delta} = \left(\int_{\Omega} |u(x)|^k \delta(x)dx \right)^{1/k}. \]

Note that $L^\infty_\delta(\Omega) = L^\infty(\Omega; dx)$, with the same norm $\|u\|_\infty$. For the L^1_δ-solutions, we have the following regularity result.

Proposition 2.3. (see [FSW], also [QS, QS]) Let $1 \leq m \leq k \leq \infty$ satisfy
\[\frac{1}{m} - \frac{1}{k} < \frac{2}{n + 1}. \] (2.5)
Let $u \in L^1(\Omega)$ be the unique L^1_δ-solution of (2.2). If $\phi \in L^m_\delta(\Omega)$, then $u \in L^k_\delta(\Omega)$ and satisfies the estimate $\|u\|_{L^k_\delta} \leq C(\Omega, m, k)\|\phi\|_{L^m_\delta}$.

The condition (2.5) is optimal, since for $1 \leq m < k \leq \infty$ and $1/m - 1/k > 2/(n + 1)$, there exists $\phi \in L^m_\delta(\Omega)$ such that $u \notin L^k_\delta(\Omega)$, where u is the unique L^1_δ-solution of (2.2), see [S, Theorem 2.1].

Remark 2.1. According to Proposition 2.1-2.3, the assumptions of h in Theorem 1.1-1.3 are natural.

In order to give a uniform proof of Theorem 1.1-1.3 (i), we write the three critical exponents p_S, p_{sg}, p_{BT} as p_c. Denote B^k the spaces $L^{2+k}(\Omega)$, $L^k(\Omega)$, $L^k_\delta(\Omega)$, and $\|\cdot\|_{B^k}$ in B^k the norms $\|\cdot\|_{L^{2+k}}$, $\|\cdot\|_{L^k}$, $\|\cdot\|_{L^k_\delta}$. Note that (2.3)-(2.5) can be written in one form
\[\frac{1}{m} - \frac{1}{k} < \frac{1}{p'_c}, \] (2.6)
where $1/p'_c + 1/p_c = 1$. The optimal conditions of L^∞-regularity in Theorem 1.1-1.3 (i) can also be written in one form
\[\max\{\alpha, \beta\} > \frac{1}{p_c - 1}, \quad r, s, \gamma, \sigma < p_c, \] \[\min\{p + r, q + s\} < p_c, \quad h \in B^\theta, \quad \theta > p'_c. \] (2.7)

We shall prove the following theorem.

Theorem 2.4. Assume that f, g satisfy (1.4) with (2.4). Then there exists $C > 0$ such that for any $(H^1_0, \ L^1, \ L^1_\delta)$-solution (u, v) of (1.1) satisfying
\[\|u\|_{B^k} + \|v\|_{B^k} \leq M_1(k), \quad \text{for all } 1 \leq k < p_c, \] (2.8)
it follows that $u, v \in L^\infty(\Omega)$ and
\[\|u\|_{L^\infty} + \|v\|_{L^\infty} \leq C. \]

The constant C depends only on $M_1(k), \Omega, p, q, r, s, \gamma, \sigma, C_1$.

Without loss of generality, we assume that \(q + s \geq p + r \). Then \(\beta \geq \alpha \). From (2.7), we have
\[
\beta > \frac{1}{p_c - 1},
\] (2.9)
and
\[
p + r < p_c.
\] (2.10)

Remark 2.2. If \(r \leq 1 \), (2.10) can be deduced by (2.9). In fact, we have
\[
p + r - 1 \leq \frac{pq - (1 - r)(1 - s)}{q + 1 - r} = \frac{1}{\beta} < p_c - 1.
\]

We first prove two lemmas, which assert that by bootstrap only on the first equation of system (1.1), the integrability of \(u \) can be improved to such an extent that the bootstrap on the second equation is possible. In the following, \(C = C(M_1, r, s, p, q, \gamma, \sigma, \Omega, C_1) \) is different from line to line, but it is independent of \((u, v) \) satisfying (2.8). For simplicity, we denote by \(| \cdot |_k \) the norm \(\| \cdot \|_{B^k} \).

Lemma 2.5. Let \(f, g \) satisfy (1.4) with (2.7). If
\[
p < p_c/p'_c,
\] (2.11)
then \(|u|_\infty \leq C \).

Proof. We shall carry out the bootstrap only on the first equation of system (1.1) to prove \(|u|_\infty \leq C \).

Case I. \(r < 1 \).

Thanks to (2.7), (2.10) and (2.11) there exists \(k \) such that
\[
(p + r) \wedge \gamma < k < p_c, \quad \frac{p}{k} < \frac{1}{p'_c}.
\] (2.12)

For such \(k \) fixed, there exists \(\varepsilon > 0 \) small enough to satisfy
\[
\frac{\gamma}{k + m\varepsilon} - \frac{1}{k + (m + 1)\varepsilon} < \frac{1}{p'_c}, \quad \text{for any integer } m \geq 0,
\] (2.13)
and
\[
r < \frac{k}{k + \varepsilon},
\] (2.14)
since \(r < 1 \). From (2.12) and (2.14), we have
\[
\frac{r}{k + m\varepsilon} + \frac{p}{k} - \frac{1}{k + (m + 1)\varepsilon} < \frac{1}{p'_c}, \quad \text{for any integer } m \geq 0.
\] (2.15)

For \(m \geq 0 \), set
\[
\rho_m = \frac{r}{k + m\varepsilon} + \frac{p}{k} < 1, \quad \frac{\gamma}{k + m\varepsilon} < 1.
\]

From (2.12), when \(m \) is large enough, we have \(\rho_m \wedge \varepsilon_m > p'_c \). Denote \(m_0 = \min\{m : \rho_m \wedge \varepsilon_m > p'_c\} \). We claim that after \(m_0 \)-th bootstrap on the first equation, we arrive at the desired result \(|u|_\infty \leq C \).
According to (2.8), we have \(|u|_k \leq C, |v|_k \leq C\). If \(m_0 = 0\), we can take \(k\) such that \(p'_c < \rho_0 \cup \theta_0 = k/(p + r + \gamma) \leq \theta\) and (2.12) holds. Then applying Proposition 2.1-2.3 using the first equation of system (1.1), we obtain

\[
|u|_\infty \leq C|f|_{\rho_0 \cup \theta_0} \\
\leq C(||u||^p|_{\rho_0 \cup \theta_0} + ||u||^\gamma|_{\rho_0 \cup \theta_0}) + |h|_{\rho_0 \cup \theta_0} \\
\leq C(||u||^p|_{\rho_0} + ||u||^\gamma|_{\theta_0} + 1) \\
\leq C(|u|_m^p + |u|_m^\gamma + 1) \\
\leq C. \tag{2.16}
\]

Now we consider \(m_0 > 0\). If we have got the estimate \(|u|_{k+m_0} \leq C\) for some \(0 \leq m < m_0\), then applying Proposition 2.1-2.3 using (2.13), (2.15) and the first equation of system (1.1), we obtain

\[
|u|_{k+m_0} \leq C|f|_{\rho_m \cup \theta_m} \\
\leq C(||u||^p|_{\rho_m \cup \theta_m} + ||u||^\gamma|_{\rho_m \cup \theta_m}) + |h|_{\rho_m \cup \theta_m} \\
\leq C(||u||^p|_{\rho_m} + ||u||^\gamma|_{\theta_m} + 1) \\
\leq C(|u|_{k+m_0}^p + |u|_{k+m_0}^\gamma + 1) \\
\leq C. \tag{2.17}
\]

So we have \(|u|_{k+m_0} \leq C\). We can take \(m : m_0 - 1 < m \leq m_0\) such that \(p'_c < \rho_m \cup \theta_m \leq \theta\). A similar argument to (2.16) yields \(|u|_\infty \leq C\).

Case II. \(r \geq 1\).

Since \((p + r) \cup \gamma < p_c\), there exist

\[
k : (p + r) \cup \gamma < k < p_c, \\
\eta : \eta > 1, \text{ close enough to } 1,
\]

such that

\[
\frac{r}{k} + \frac{p}{k} - \frac{1}{\eta k} < \frac{1}{p'_c}, \\
\frac{\gamma}{k} - \frac{1}{\eta k} < \frac{1}{p'_c}
\]

from which we obtain

\[
\frac{r}{\eta^m k} + \frac{p}{k} - \frac{1}{\eta^{m+1} k} < \frac{2}{n + 1}, \\
\frac{\gamma}{\eta^m k} - \frac{1}{\eta^{m+1} k} < \frac{2}{n + 1}
\]

for any integer \(m \geq 0\). Similarly to the arguments of Case I, we also have \(|u|_\infty \leq C\).

The proof of the lemma is complete. \(\square\)

Lemma 2.6. Let \(f, g\) satisfy (1.4) with (2.7). If

\[
p \geq p_c/p'_c. \tag{2.18}
\]

Let \(k^* : p_c < k^* \leq \infty\) be the solution of

\[
\frac{r}{k^*} + \frac{p}{p_c} - \frac{1}{k^*} = \frac{1}{p'_c}. \tag{2.19}
\]
Then for any $1 \leq k_1 < k^*$, we have $|u|_{k_1} \leq C$.

Proof. According to (2.10) and (2.18), we necessarily have $r < 1$. We shall also carry out the bootstrap only on the first equation of system (1.1) to prove $|u|_{k_1} \leq C$. We first consider the case where $p > p_c/p'_c$. So $p_c < k^* < \infty$. For any $\varepsilon : 0 < \varepsilon \ll 1$, set $k_\varepsilon = k^* - \varepsilon$. Thanks to (2.10) and (2.19), we shall also carry out the bootstrap only on the first equation of system (1.1) to prove $|u|_{k_1} \leq C$. We shall also carry out the bootstrap only on the first equation of system (1.1) to prove $|u|_{k_1} \leq C$. We first consider the case where $p > p_c/p'_c$. So $p_c < k^* < \infty$. For any $\varepsilon : 0 < \varepsilon \ll 1$, set $k_\varepsilon = k^* - \varepsilon$. Thanks to (2.10) and (2.19), since $r < 1$, there exist

$$
k : (p + r) \lor \gamma < k < p_c,
$$

such that

$$
\frac{r}{k_\varepsilon} + \frac{p}{k} - \frac{1}{k_\varepsilon} < \frac{1}{p'_c},
$$

(2.20)

$$
\frac{r k_\varepsilon^\gamma}{k_\varepsilon} < \tau k,
$$

(2.21)

$$
\frac{\gamma}{k} - \frac{1}{k_\varepsilon} < \frac{1}{p'_c},
$$

(2.22)

where $k_\varepsilon^m = k_\varepsilon - \tau^m (k_\varepsilon - k)$ for $m \geq 0$. In fact, (2.20) is a small perturbation of (2.19) with respect to k^* and, (2.21) is a small perturbation of itself with $\tau = 1$. A careful computation yields that

$$
\frac{r}{k_\varepsilon^m} - \frac{1}{k_\varepsilon^m+1} < \frac{r}{k_\varepsilon} - \frac{1}{k_\varepsilon}, \quad \text{for any integer } m \geq 0, \quad \text{(using (2.21))}
$$

$$
\frac{\gamma}{k_\varepsilon^m} - \frac{1}{k_\varepsilon^m+1} < \frac{\gamma}{k_\varepsilon^m-1} - \frac{1}{k_\varepsilon^m}, \quad \text{for any integer } m \geq 1. \quad \text{(using } \gamma \geq 1)\n$$

So, according to (2.20) and (2.22), we have

$$
\frac{r}{k_\varepsilon^m} + \frac{p}{k} - \frac{1}{k_\varepsilon^m+1} < \frac{1}{p'_c},
$$

(2.23)

$$
\frac{\gamma}{k_\varepsilon^m} - \frac{1}{k_\varepsilon^m+1} < \frac{1}{p'_c},
$$

(2.24)

for any integer $m \geq 0$.

Set

$$
\frac{1}{\rho_m} = \frac{r}{k_\varepsilon^m} + \frac{p}{k} < 1, \quad \frac{1}{\varrho_m} = \frac{\gamma}{k_\varepsilon^m} < 1.
$$

Note that

$$
\frac{1}{\varrho} = \frac{r}{k_\varepsilon} + \frac{p}{k} > \frac{r}{k^*} + \frac{p}{p_c} \geq \frac{1}{p'_c}.
$$

So $\rho_m \land \varrho_m < \varrho < p'_c$. Then $|h|_{\rho_m \land \varrho_m} \leq C |h|_\varrho \leq C$ for all $m \geq 0$.

We already have $|u|_k \leq C$, $|v|_k \leq C$ from (2.8). If we have got $|u|_{k_\varepsilon^m} \leq C$ for some $m \geq 0$, applying Proposition 2.1-2.3, using (2.23), (2.24) and the first equation of system (1.1), similarly to (2.17), we obtain $|u|_{k_\varepsilon^{m+1}} \leq C$. So, for any integer $m \geq 0$, there holds $|u|_{k_\varepsilon^m} \leq C$. Noting that $k_\varepsilon^m \to k_\varepsilon$ as $m \to \infty$, we prove the lemma for $p > p_c/p'_c$.

If $p = p_c/p'_c$, we have $k^* = \infty$. The above proof is also valid when k_ε is replaced by any arbitrary large number. The proof is complete. □
Lemma 2.5 and 2.6 in hand, we can prove Theorem 2.4.

Proof of Theorem 2.4

Case I. $p < p_c/p_c'$.
According to Lemma 2.5, $|u|_\infty \leq C$. Since $s, \sigma < p_c$, a simple bootstrap argument on the second equation yields that $|v|_\infty \leq C$.

Case II. $p = p_c/p_c'$.
According to Lemma 2.6, $|u|_{k_1} \leq C$ for any $k_1 \geq 1$. Take k_1 large enough and $k : s \lor \sigma < k < p_c$ such that

$$\frac{q}{k_1} < \frac{1}{p_c}, \quad \frac{q}{k_1} + \frac{s}{k} < 1.$$

Similarly to the proof of Lemma 2.5 we have $|v|_\infty \leq C$. So we also have $|u|_\infty \leq C$ since $r, \gamma < p_c$.

Case III. $p > p_c/p_c'$. In this case we necessarily have $r < 1$.

According to (2.9) and (2.19), there exist

- $k_1 : p_c < k_1 < k^*$, close enough to k^*,
- $k : (p + r) \lor \gamma \lor \sigma < k < p_c$, close enough to p_c,
- $\eta : \eta > 1$ close enough to 1,

such that

$$\frac{q}{k_1} + \frac{s}{k} < 1, \quad \frac{q}{k_1} + \frac{s}{k} - \frac{1}{\eta k} < \frac{1}{p_c'}, \quad \frac{q}{k_1} + \frac{s}{k} - \frac{1}{\eta k} + \frac{1}{\eta k_1} < \frac{1}{p_c'}.$$

(2.25)

In fact, (2.27) is equivalent to (2.25). (2.25) with $k_1 = k^*$ and $k = p_{BT}$ is exactly (2.9). So, (2.25) and (2.27) are just small perturbations of (2.9). (2.26) is a small perturbation of (2.19). Multiplying the LHS of (2.26)-(2.29) by $1/\eta^m$, we have

$$\frac{r}{\eta^m k_1} + \frac{p}{\eta^{m+1} k_1} - \frac{1}{\eta^{m+1} k_1} - \frac{1}{\eta^{m+1} k_1} < \frac{1}{p_c'}, \quad \frac{\gamma}{\eta^m k_1} - \frac{1}{\eta^{m+1} k_1} - \frac{1}{\eta^{m+1} k_1} < \frac{1}{p_c'}, \quad \frac{\sigma}{\eta^m k_1} - \frac{1}{\eta^{m+1} k_1} - \frac{1}{\eta^{m+1} k_1} < \frac{1}{p_c'}, \quad \frac{\rho}{\eta^m k_1} + \frac{s}{\eta^{m+1} k_1} < 1, \quad \frac{\rho}{\eta^m k_1} + \frac{s}{\eta^{m+1} k_1} < 1.$$

(2.30)

(2.31)

for any integer $m \geq 0$.

Set

$$\begin{align*}
\frac{1}{\mu_m} &= \frac{r}{\eta^m k_1} + \frac{p}{\eta^{m+1} k_1} < 1, \quad \frac{1}{\nu_m} = \frac{\gamma}{\eta^m k_1} < 1, \\
\frac{1}{\rho_m} &= \frac{q}{\eta^m k_1} + \frac{s}{\eta^{m+1} k_1} < 1, \quad \frac{1}{\varphi_m} = \frac{\sigma}{\eta^m k_1} < 1.
\end{align*}$$

(2.30)

(2.31)
Since \(\eta > 1 \), for \(m \) large enough, we have \(\rho_m \land q_m > p'_c \) and \(\mu_m \land \nu_m > p'_c \). Denote \(m_0 = \min\{m : (\rho_m \land q_m) \lor (\mu_m \land \nu_m) > p'_c\} \). We may assume that \(\rho_{m_0} \land q_{m_0} > p'_c \). We claim that after \(m_0 \)-th alternate bootstrap on system (1.1), we shall arrive at the desired result \(|v|_\infty \leq C \).

We already have \(|u|_{k_1} \leq C \) (from Lemma 2.6) and \(|v|_k \leq C \) (from (2.8)). If \(m_0 = 0 \), we can take \(k, k_1 \) such that \(p'_c < \rho_0 \land q_0 \leq \theta \). Then applying Proposition 2.1-2.3 using the second equation of system (1.1), a similar argument to (2.17) yields that \(|v|_\infty \leq C \). So we also have \(|u|_\infty \leq C \) since \(r, \gamma < p_c \).

Now we consider \(m_0 > 0 \). If we have got the estimate \(|u|_{\eta^m k_1} + |v|_{\eta^m k} \leq C \) for some \(0 \leq m < m_0 \), then applying Proposition 2.1-2.3 using (2.31) and the second equation of system (1.1), a similar argument to (2.17) yields that \(|v|_{\eta^{m+1} k} \leq C \). Then using (2.30) and the first equation of system (1.1), we obtain \(|u|_{\eta^{m+1} k} \leq C \). So we have \(|u|_{\eta^m k} + |v|_{\eta^m k} \leq C \). We can take \(m : m_0 - 1 < m \leq m_0 \) such that \(p'_c < \rho_m \land q_m \leq \theta \). A similar argument to (2.16) yields \(|v|_\infty \leq C \). So we also have \(|u|_\infty \leq C \) since \(r, \gamma < p_c \). The proof is complete.

\[\square \]

Theorem 2.7 also holds if \(pq \leq (1 - r)(1 - s) \) in (1.4), we have the following theorem.

Theorem 2.7. Assume that \(f, g \) satisfy (1.4) with \(pq \leq (1 - r)(1 - s) \) and (2.7) where \(\max\{\alpha, \beta\} > 1/(p_c - 1) \) is replaced by \(pq - (1 - r)(1 - s) < (p_c - 1) \max\{p + 1 - s, q + 1 - r\} \). Then the conclusion of Theorem 2.4 holds.

Proof. Assume that \(q + s \geq q + r \). Note that

\[\frac{q}{k^s} + \frac{s}{pc} < 1 \]

is equivalent to \(pq - (1 - r)(1 - s) < (p_c - 1) \max\{p + 1 - s, q + 1 - r\} \). So the proof is essentially word by word the same as the proof of Theorem 2.4 \(\square \)

3. \(L^\infty \)-regularity

In this section, we prove Theorem 1.1-1.3.

Proof of Theorem 1.1.

(i) If \(n = 1, 2 \), the \(L^\infty \)-regularity of \(H^1_0 \)-solutions follows directly from the Sobolev imbedding theorem and Proposition 2.1. If \(n \geq 3 \), since \(u, v \in H^1_0(\Omega) \), we have (2.8) from the Sobolev imbedding theorem. Then the \(L^\infty \)-regularity follows from Theorem 2.4 with \(p_c = (n + 2)/(n - 2) \) and \(B^1 = L^2(\Omega) \) according to (1.6).

(ii) Let \((u, v) = (c_1|x|^{-2a} - c_1, c_2|x|^{-2\beta} - c_2) \), where \(c_1, c_2 \) are determined by \(c_1^{r-1}c_1^p = 2\alpha(n - 2 - 2\alpha) \), \(c_1^{s-1}c_2^p = 2\beta(n - 2 - 2\beta) \). Since \(\alpha, \beta < (n - 2)/4 < (n - 2)/2 \), we have \(c_1, c_2 > 0 \). Obviously,

\[-\Delta u = 2c_1\alpha(n - 2 - 2\alpha)|x|^{-2a-2} = c_1^{r-1}|x|^{-2\alpha r-2\beta p}(u + c_1)^r(v + c_2)^p, \]

\[-\Delta v = 2c_2\beta(n - 2 - 2\beta)|x|^{-2\beta-2} = c_2^{s-1}|x|^{-2\alpha q-2\beta s}(u + c_1)^q(v + c_2)^s. \]

It is easy to verify that \((u, v) \) is an \(H^1_0 \)-solution of system (1.1) in \(B_1 \) with \(f = (u + c_1)^r(v + c_2)^p, g = (u + c_1)^q(v + c_2)^s. \) \(\square \)

Proof of Theorem 1.2.

(i) If \(n = 1, 2 \), the \(L^\infty \)-regularity of \(L^1 \)-solutions follows directly from Proposition 2.1. If \(n \geq 3 \), since \(f(\cdot, u, v), g(\cdot, u, v) \in L^1(\Omega) \), we have (2.8) from Proposition 2.1. Then the
L^∞-regularity follows from Theorem 2.3 with $p_c = n/(n-2)$ and $B^1 = L^1(\Omega)$ according to (1.8). (ii) Since $\alpha, \beta < (n-2)/2$, (u,v) constructed in the proof of Theorem 1.1 (ii) is also a L^1-solution of system (1.1) in B_1 with $f = (u + c_1)^p(v + c_2)^p, g = (u + c_1)^q(v + c_2)^q$. □

Proof of Theorem 1.3.
(i) If $n = 1$, the L^∞-regularity of L^1_δ-solutions follows directly from Proposition 2.3. If $n \geq 2$, we have (2.8) since $f(\cdot, u, v), g(\cdot, u, v) \in L^1_\delta(\Omega)$ from Proposition 2.3. Then the L^∞-regularity follows from Theorem 2.4 with $p = n/(n-1)$ and according to [S, Lemma 5.1], the solution L^1-solutions follows directly from Proposition 2.3. If $\phi = |x|^{-2(\alpha+1)}1_\Sigma$ and $\psi = |x|^{-2(\beta+1)}1_\Sigma$, and $u, v > 0$ be the corresponding solutions of (2.2).

Proof of Theorem 1.4.
The proof is word by word the same as the proof of Theorem 1.1, 1.3 (i). □

4. A priori estimates of L^1_δ-solutions and existence theorems

In order to prove Theorem 1.5, we recall a special property of the L^1_δ-solutions, which is a consequence of Proposition 2.3, see [QS, Proposition 2.2, 2.3].

Proposition 4.1. Let (u, v) be the L^1_δ-solution of system (1.1) with f, g satisfying (1.13) and let $1 \leq k < p_{BT}$. Then, $u, v \in L^k_\delta(\Omega)$ and satisfies the estimate \[\|u\|_{L^k_\delta} + \|v\|_{L^k_\delta} \leq C(\Omega, k, C_2)(\|u\|_{L^k_\delta} + \|v\|_{L^k_\delta} + \|h_1\|_{L^k_\delta}). \]

Proof. The proof is similar to that of [QS, Proposition 2.2]. Let $\varphi_1(x)$ be the first eigenfunction of $-\Delta$ in $H^1_\delta(\Omega)$. Recall that \[c_1\delta(x) \leq \varphi_1(x) \leq c_2\delta(x), \quad x \in \Omega, \]
for some $c_1, c_2 > 0$. We have

\[
\int_\Omega (|f| + |g|)\varphi_1 = \int_\Omega (|\Delta u| + |\Delta v|)\varphi_1 = 2\int_\Omega ((\Delta u)_+ + (\Delta v)_+)\varphi_1 - \int_\Omega \varphi_1(\Delta u + \Delta v) \\
\leq 2\int_\Omega (C_2(u_+ + v_+ + h_+))\varphi_1 + \lambda_1\int_\Omega (u + v)\varphi_1 \\
\leq C(\Omega, C_2)(\|u_+\|_{L^k_\delta} + \|v_+\|_{L^k_\delta} + \|h_+\|_{L^k_\delta}) \\
\leq C(\Omega, C_2)(\|u\|_{L^k_\delta} + \|v\|_{L^k_\delta} + \|h\|_{L^k_\delta}).
\]
Applying Proposition 2.3 with $m = 1$, we have
\[
\|u\|_{L_k^1} + \|v\|_{L_k^1} \leq C(\Omega, k, C_2)(\|u\|_{L_\delta^1} + \|v\|_{L_\delta^1} + \|h_1\|_{L_\delta^1}).
\]

Proof of Theorem 1.5.
Since f, g satisfy (1.13), from Proposition 4.1, (2.8) can be deduced by (1.15). So this theorem follows immediately from Theorem 2.4 with $p_c = (n + 1)/(n - 1)$ and $B^1 = L_\delta^1(\Omega)$.

From Theorem 1.5, in order to obtain the a priori estimate (1.14), we only have to obtain, for all L_δ^1-solutions (u, v) of system (1.1),
\[
\|u\|_{L_1^\delta} + \|v\|_{L_1^\delta} \leq M
\]
for some M independent of u, v. In the following we give some propositions which assert the a priori estimate (1.14).

Proposition 4.2. [QS, Proposition 3.1] If f, g satisfy (1.16) with $\lambda > \lambda_1$, then any nonnegative L_δ^1-solution of system (1.1) satisfies (1.15) with M independent of u, v.

Proposition 4.3. [QS, Proposition 3.2] If f, g satisfy
\[
\begin{align*}
f &\geq C_1 u^r v^q - C_2 u, \\
g &\geq C_1 u^q v^s - C_2 v,
\end{align*}
\]
where $r, s < 1$, $pq > (1 - r)(1 - s)$. Then any nonnegative L_δ^1-solution of system (1.1) in $H^1_0 \cap L^\infty$ satisfies (1.15) with M independent of u, v.

Proposition 4.3 can be extended to some case where $r, s \geq 1$, see [QS, Proposition 3.5], see also [QS, Theorem 1.4 (ii), (iii)] for the precise assumptions.

The following proposition gives the uniform L_δ^1-estimates of the L_δ^1-solutions of system (1.18) where $r, s \leq 1$.

Proposition 4.4. Any nonnegative L_δ^1-solution (u, v) of system (1.18) satisfies (1.15) with M independent of u, v.

Proof. We use the idea of [S, Proposition 4.1]. Denote $G(x, y), V(x, y)$ the Green functions in Ω for $-\Delta$ and $-\Delta + q(x)$. If $\inf\{\text{spec}(-\Delta + q)\} > 0$, by [Zhao, Theorem 8], there exists a positive constant $C = C(\Omega, q)$ such that
\[
\frac{1}{C}G(x, y) \leq V(x, y) \leq CG(x, y).
\]
By [BC, Lemma 3.2], we know that
\[
G(x, y) \geq C\delta(x)\delta(y) \quad \text{for } x, y \in \overline{\Omega}.
\]
So we also have
\[
V(x, y) \geq C\delta(x)\delta(y) \quad \text{for } x, y \in \overline{\Omega},
\]
for some constant $C > 0$. Denote $\varphi_q(x)$ the first eigenfunction of $-\Delta + q(x)$ in $H^1_0(\Omega)$ and λ_q the first eigenvalue. Recall that
\[
c_1 \delta(x) \leq \varphi_q(x) \leq c_2 \delta(x), \quad x \in \Omega,
\]
for some $c_1, c_2 > 0$. Let w be the solution of the linear equation
\[
-\Delta w + q(x)w = \phi(x), \quad x \in \Omega; \quad w = 0, \quad x \in \partial \Omega.
\]
If \(\phi \in L^1_\delta \) is nonnegative, then we have
\[
w = \int_\Omega V(x, y)\phi(x) \geq C(\int_\Omega \phi\delta)\delta \geq C(\int_\Omega \phi \varphi_q)\varphi_q
\]
with \(C \) depending only on \(\Omega, q(x) \). Let \((u, v) \) be a nonnegative \(L^1_\delta \)-solution of (1.18). Set
\[
A = \int_\Omega a(x)u^r v^s \varphi_c, \quad B = \int_\Omega b(x)u^q v^s \varphi_d.
\]
Then we have
\[
u \geq CA \varphi_c, \quad v \geq CB \varphi_d.
\]
Therefore we obtain
\[
A \geq C \int_\Omega a \varphi_c^{r+1} \varphi_d^q A^r B^p \geq CA^r B^p, \quad (4.2)
\]
\[
B \geq C \int_\Omega b \varphi_c^{q+1} \varphi_d^q A^q B^s \geq CA^q B^s. \quad (4.3)
\]
If \(r = 1 \) or \(s = 1 \), \(A, B \leq C \) obviously. We consider \(r < 1 \). From (4.2), we have \(A^{1-r} \geq CB^p \). So combining with (4.3), we obtain \(B \geq CB^p/(1-r)+s \). Since \(pq > (1-r)(1+s) \), we have \(B \leq C \). From (4.3), we also have \(A \leq C \). Using \(\varphi_c \) as a testing function in the first equation of (1.18) and \(\varphi_d \) in the second equation, this yields that
\[
\int_\Omega u \varphi_c = \int_\Omega a(x)u^r v^s \varphi_c = A \leq C, \\
\int_\Omega v \varphi_d = \int_\Omega b(x)u^q v^s \varphi_d = B \leq C.
\]
The proof is complete. \(\square \)

Now we can prove our existence theorems. The proof is standard, see [QS]. For the readers’ convenience, we give the details.

Proof of Theorem 1.6.

(a) This is a direct consequence of Theorem 1.5 and Proposition 4.2.

(b) Let \(K \) be the positive cone in \(X := L^\infty(\Omega) \times L^\infty(\Omega) \) and let \(S : X \to X : (\phi, \psi) \mapsto (u, v) \) be the solution operator of the linear problem
\[
-\Delta u = \phi, \quad -\Delta v = \psi, \quad \text{in } \Omega, \\
u = v = 0, \quad \text{on } \partial \Omega.
\]
Since any nonnegative \(L^1_\delta \)-solution of (1.1) is in \(L^\infty \) by part (a), the system (1.1) is equivalent to the equation \((u, v) = T(u, v) \), where \(T : X \to X \) is a compact operator defined by \(T(u, v) = S(f(\cdot, u, v), g(\cdot, u, v)) \). Let \(W \subset K \) be relatively open, \(Tz \neq z \) for \(z \in W \setminus W \), and let \(i_K(T, W) \) be the fixed point index of \(T \) with respect to \(W \) and \(K \) (see [AF] the definition and basic properties of this index).

If \(W_\varepsilon = \{(u, v) \in K : \|u, v\|_X < \varepsilon \} \) and \(\varepsilon > 0 \) is small enough, then (1.17) guarantees \(H_1(\mu, u, v) \neq (u, v) \) for any \(\mu \in [0, 1] \) and \((u, v) \in W_\varepsilon \setminus W_\varepsilon \), where
\[
H_1(\mu, u, v) = \mu T(u, v) = S(\mu f(\cdot, u, v), \mu g(\cdot, u, v)).
\]
Consequently,
\[
i_K(T, W_\varepsilon) = i_K(H_1(1, \cdot, \cdot), W_\varepsilon) = i_K(H_1(0, \cdot, \cdot), W_\varepsilon) = i_K(0, W_\varepsilon) = 1.
\]
On the other hand, if $R > 0$ is large, then our a priori estimates guarantee $H_2(\mu, u, v) \neq (u, v)$ for any $\mu \in [0, C_1 + 1]$ and $(u, v) \in \overline{W_R} \setminus W_R$, where

$$H_2(\mu, u, v) = S(f(\cdot, u, v) + \mu, g(\cdot, u, v)).$$

Using φ_1 as a testing function we easily see that $H_2(C_1 + 1, u, v) = (u, v)$ does not possess nonnegative solutions, hence

$$i_K(T, W_R) = i_K(H_2(C_1 + 1, \cdot, \cdot), W_R) = 0.$$

Consequently, $i_K(T, W_R \setminus \overline{W_\varepsilon}) = -1$, which implies existence of a positive solution of (1.1). The proof is complete. □

Proof of Theorem 1.7.

(a) This is a direct consequence of Theorem 1.5 and Proposition 4.4.

(b) Let K, X, W_ε be the same as in the proof of Theorem 1.6 (b), let S be the solution operator of the linear problem

$$-\Delta u + c(x)u = \phi, \quad \text{in } \Omega,$$

$$-\Delta v + d(x)v = \psi, \quad \text{in } \Omega,$$

$$u = v = 0, \quad \text{on } \partial \Omega.$$ Let us show that $H_1(\mu, u, v) \neq (u, v)$ for any $\mu \in (0, 1]$ and $(u, v) \in \overline{W_\varepsilon} \setminus W_\varepsilon$ for ε small. Assume by contrary $(u, v) \in \overline{W_\varepsilon} \setminus W_\varepsilon$, $H_1(\mu, u, v) = (u, v)$. Then $u \neq 0$, $v \neq 0$ and the standard L^2-estimates (with $z > n/2$) guarantee

$$\|u\|_\infty \leq C\|u\|_\infty^r \|v\|_\infty^p, \quad \|v\|_\infty \leq C\|u\|_\infty^q \|v\|_\infty^s.$$ Hence

$$\|u\|_{\infty}^{(1-r)(1-s)} \leq C\|u\|_{\infty}^{pq},$$

which contradicts $pq > (1 - r)(1 - s)$ if ε is small enough.

On the other hand, if $R > 0$ is large, then our a priori estimates guarantee $H_2(\mu, u, v) \neq (u, v)$ for any $\mu \in [0, \lambda_c]$ and $(u, v) \in \overline{W_R} \setminus W_R$, where

$$H_2(\mu, u, v) = S(f(\cdot, u, v) + \mu(u + 1), g(\cdot, u, v)).$$

and λ_c is the first eigenvalue of $-\Delta + c(x)$ in $H_0^1(\Omega)$. Using φ_ε as a testing function we easily see that $H_2(\lambda_c, u, v) = (u, v)$ does not possess nonnegative solutions, hence

$$i_K(T, W_R) = i_K(H_2(\lambda_c, \cdot, \cdot), W_R) = 0.$$ Consequently, $i_K(T, W_R \setminus \overline{W_\varepsilon}) = -1$, which implies existence of a positive solution of (1.18). The proof is complete. □

Acknowledgements. Li Yuxiang is grateful to Professor Philippe Souplet for many helpful discussions and remarks during the preparation of this paper and, for his warm reception and many helps when Li visited the second address.

References

[A] Aviles, P., *On isolated singularities in some nonlinear partial differential equations*, Indiana Univ. Math. J. **32** (1983), 773-791. MR0711867

[AF] Alves, C.O. and de Figueiredo, D.G., *Nonvariational elliptic systems*, Discrete Contin. Dyn. Syst. **8** (2002), 289-302. MR1897684

[B] Bechah, A., *Positive solutions for a nonvariational quasilinear elliptic system in \mathbb{R}^N*, Rev. R. Acad. Cienc. Exactas Fs. Nat. (Esp.) **94** (2000), 1-7. MR1829496
[JL] Joseph, D.D. and Lundgren, T.S., **Quasilinear Dirichlet problems driven by positive sources**, Arch. Ration. Mech. Anal. **49** (1972/73), 241-269. MR0340701

[M] Mitidieri, E., **Nonexistence of positive solutions of semilinear elliptic systems in** \(\mathbb{R}^N \), Differential Integral Equations **9** (1996), 465-479. MR1371702

[M2] Mitidieri, E., **A Rellich type identity and applications**, Comm. Partial Differential Equations **18** (1993), 125-151. MR1211727

[MR] McKenna, P.J. and Reichel, J., **A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains**, J. Funct. Anal. **244** (2007), 220-246. MR2294482

[NS] Ni, W.-M. and Sacks, P., **Singular behavior in nonlinear parabolic equations**, Trans. Amer. Math. Soc. **287** (1985), 657-671. MR0768731

[P] Pacard, F., **Existence and convergence of positive weak solutions of** \(-\Delta u = u^{n/(n-2)}\) **in bounded domains of** \(\mathbb{R}^n \), n ≥ 3, Calc. Var. Partial Differential Equations **1** (1993), 243-265. MR1261546

[QS2] Quittner, P. and Souplet, Ph., **Superlinear parabolic problems: blow-up, global existence and steady states**, Birkhäuser Advanced Texts, Basel, Boston, Berlin, 2007.

[RZ] Reichel, W. and Zou, H.-H., **Non-existence results for semilinear cooperative elliptic systems via moving spheres**, J. Differential Equations **161** (2000), 219-243. MR1740363

[S] Souplet, Ph., **Optimal regularity conditions for elliptic problems via** \(L^p_\delta \)-spaces, Duke Math. J. **127** (2005), 175-192. MR2126499

[S2] Souplet, Ph., **A survey on** \(L^p_\delta \) **spaces and their applications to nonlinear elliptic and parabolic problems**, GAKUTO International Ser. Math. Sci. Appl. (Nonlinear Partial Differential Equations Their Appl.) **20** (2004), 464-479. MR2087491

[St] Struwe, M., Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer, Berlin, 2000.

[S2] Serrin, J. and Zou, H.-H., **Existence of positive solutions of the Lane-Emden system**, Atti Sem. Mat. Fis. Univ. Modena **46** suppl. (1998), 369-380. MR1645728

[Wang] Wang, M.-X., **Global existence and finite time blow up for a reaction-diffusion system, Z. Angew. Math. Phys.** **51** (2000), 160-167. MR1745297

[Zou] Zou, H.-H., **A priori estimates for a semilinear elliptic systems without variational structure and their applications**, Math. Ann. **323** (2002), 713-735. MR1924277

[Zou2] Zou, H.-H., **A priori estimates and existence for strongly coupled semilinear cooperative elliptic systems**, Comm. Partial Differential Equations **31** (2006), 735-773. MR2233039

[Zh] Zheng, S.-N., **Nonexistence of positive solutions to a semilinear elliptic system and blowup estimates for a reaction-diffusion system**, J. Math. Anal. Appl. **232** (1999), 293-311. MR1683140

[Zhao] Zhao, Z.-X., **Green function for Schrödinger operator and conditioned Feynman-Kac gauge**, J. Math. Anal. Appl. **116** (1986), 309-334. MR0842803

[ZZ] Zhao, P.-H. and Zhong, C.-K., **On the infinitely many positive solutions of a supercritical elliptic problem**, Nonlinear Anal. **44** (2001), 123-139. MR1815695
DEPARTMENT OF MATHEMATICS, SOUTHEAST UNIVERSITY, NANJING 210096, P. R. CHINA, AND, LABORATOIRE ANALYSE, GÉOMÉTRIE ET APPLICATIONS, INSTITUT GALILÉE, UNIVERSITÉ PARIS-NORD 93430 VILLETANEUSE, FRANCE

E-mail address: lieyx@seu.edu.cn