Survey for the presence of *Neospora caninum* in frozen bull’s semen samples by PCR assay

Abbas Doosti*, Faham Khamesipour², Shahin Nekoei³, Ismar Lutfvikadic⁴

¹Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
²Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
³Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Shahrekord Branch, PO box 166, Shahrekord, Iran
⁴Veterinary Medicine at Veterinary Faculty, University of Sarajevo, Bosnia and Herzegovina

Peer reviewer
Dr. Kálmán Imre, DVM, PhD, Department of Food Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine Timișoara, Calea Aradului no. 119, 300645 Timișoara, Romania. Tel: +40–256277186, Fax: +40–256277118, E-mail: kalman_imre27@yahoo.com

Comments
This is a well conducted study in which the authors evaluated the occurrence of *N. caninum* in frozen semen of Iranian bulls based on molecular tools.

ABSTRACT

Objective: To evaluate the occurrence of *Neospora caninum* (*N. caninum*) DNA using polymerase chain reaction (PCR) technique in frozen semen samples of Iranian bulls that were used for artificial insemination.

Methods: In this study, 57 frozen bull’s semen samples were collected randomly from artificial insemination centers and genomic DNA was extracted. For detection of pNC-5 gene of *N. caninum* by oligonucleotide primers were amplified using PCR technique and 1% agarose gel electrophoresis used for visualization of amplified PCR products.

Results: The results of this study present 6 of 57 (10.53%) as positive samples. This show high presence of *N. caninum* infection and display importance of frozen semen samples of bulls, which were used for artificial insemination, in the spread of bovine neosporosis in Iran. These results present PCR as suitable technique for fast detection of this protozoan parasite in semen specimens.

Conclusions: According to these results control and eradication programs, for example prevent vaccinations, as reduction of economic losses caused by this protozoan infection in Iranian cattle seems to be necessary.

KEYWORDS
Artificial insemination, Bull, Iran, *Neospora caninum*, PCR, Semen

1. Introduction

Neospora caninum (*N. caninum*) is a global distributed protozoan obligate intracellular parasite classified in the kingdom Protista, phylum Apicomplexa, order Eucoccidiorida, and family Sarcocystidae. It is considered as the most important causative agent of repeated abortions in dairy cattle in numerous countries involving Iran and has got negative economic impact for their breeding, including reduced milk production, those attributed to a lengthened calving interval, falling stock value and an elevated culling rate among others[1–3]. *N. caninum* was the first time detected by Bjerkas et al. in a boxer dog litter in Norway[4].

N. caninum (neosporosis) life cycle includes canines as final hosts and ruminants, horses and several other species as intermediate hosts. Dogs (*Canis familiaris*), coyotes...
(Canis latrans) and grey wolves (Canis lupus) are usual final hosts of the parasite[1,2,5]. The coyotes shed in feces of the final host may perhaps infect the environment and serve as an origin of infection. Though, the most significant way is vertical transmission of the parasite from the mother to the fetus during mid gestation stage, resulting in obstinately or have no clinical signs[5,12]. Congenital transmission has been shown in other animals, for example sheep, goats, dogs, horses, rodents and rhinoceros, as well[7].

N. caninum has been shown to have two–host life cycles in which dogs and coyotes are the only recognized final hosts[1]. A wide range of intermediate hosts involving farm and free–living animals. Proof of usual infection have been found in cattle, sheep, deer, goats, water buffalo and a rhinoceros[8,9]. Trial infections have been attained in cats, rats, dogs, mice, foxes, goats, sheep, cattle, coyotes, pigs, gerbils and rabbits[5]. One of the most important goals of cattle examination for N. caninum infection is to detect the potential cause of abortion. According to previous goal, it must be considered other infectious and noninfectious diseases as a cause of abortion. Abortions due to N. caninum can be manifest as endemic and/or epidemic pattern and have been described in herds of cattle[10].

In addition, N. caninum may cause disease in calves infected during pregnancy[11]. At birth such calves may have neurological signs, be underweight, lacking ability to rise, or have no clinical signs[5,12]. N. caninum infection may also reduced milk production and shortened production life due to early culling[10]. Afterwards, naturally occurring ovine and bovine neosporosis has been reported globally, including Japan, South America, Australia, Switzerland, Italy, Spain, New Zealand and Iran[3,13–18].

The probability of N. caninum transmission by semen can indicate great depth repercussions on cattle semen trade. Artificial insemination is a significant procedure for the development of cattle production and millions of doses of frozen bovine semen are traded once a year all over the world. This fact increase possibility of many bovine diseases spreading[19].

Rapid diagnosis of neosporosis is significant for control and treatment for the reason that N. caninum is a significant agent in bovine abortion. Numerous tests have been used to detect the infectious agents in bovine semen such as microscopic agglutination test, enzyme linked immuno sorbent assay, immuno fluorescence assay, polymerase chain reaction (PCR) and other methods[3,20,21]. PCR provides a specific and sensitive test for N. caninum DNA that possibly present in tissue samples and body fluids for example vaginal secretion, saliva, amniotic or seminal fluid, and cerebrospinal fluid of aborted fetus. The sensitivity of PCR means that very small amounts of preliminary material are necessary and there are fewer false negative results[13,22]. The occasional detection of the parasite genome in semen samples of infected cattle was previously reported[23]. The increases of infections of contaminated semen have made necessary the precise identification of all microorganisms[24].

Frozen semen samples of bulls and artificial insemination is a significant way for transmission of N. caninum infection in Iranian cattle. The goal of current study was to detect N. caninum DNA in frozen semen samples of bulls that were used in Iranian artificial insemination centers.

2. Materials and methods

2.1. Sample collection

In present study, 57 frozen semen samples of bulls were collected randomly from artificial insemination centers in various parts of Iran, between August 2013 and September 2013. Semen samples were diluted according to standard procedures and sent to the Biotechnology Research Center of Islamic Azad University of Shahrekord Branch in a cooler with ice packs. Each of these samples was stored at −20°C for further use.

2.2. DNA purification

Genomic DNA was extracted from frozen semen samples using a DNA extraction kit (Cinagen, Tehran, Iran) according to manufacturer’s protocol. The used concentrations were from DNA manufacturer’s protocol, as well. The total DNA was measured at 260 nm optical density according to the technique described by Sambrook and Russell[25]. Only DNA by A260/280 ratios of 1.0 was kept for PCR analysis. The extracted DNA of each sample was kept frozen at −20°C until used.

2.3. PCR procedures

The oligonucleotide primers pNC–5–F: 5’–CCT CCC AAT GCG AAC GAA–3’ and pNC–5–R: 5’–GGG TGA ACC GAG GGA GTT G–3’ described by Baszler et al. were used in this research for firm decision of the presence of pNC–5 gene
of *N. caninum* in bull’s semen samples[26]. PCR was carried out in 25 µL total reaction volumes, each containing 100 ng of target DNA, 0.2 pmol/L of each primer, 2.5 µL of 10× PCR buffer (50 mmol/L KCl, 10 mmol/L Tris–HCl (pH 8.3), 0.1% Triton X–100), 1.5 mmol/L MgCl₂, 200 mmol/L DNTPs and 1 unit of *Taq* DNA polymerase (CinnaGen, Iran). PCR was performed in a Gradient Palm Cycler (Corbett Research, Australia). In PCR reaction *Neospora* DNA was used as the positive control. A negative control was made by adding 1 µL of sterile ultrapure deionized water. The protocol of PCR amplification reaction was 5 min of pre-denaturing at 94 °C, followed by 35 cycles of 1 min denaturation at 94 °C, 1 min annealing at 57 °C and 1 min extension at 72 °C and then by a final extension at 72 °C in 5 min.

2.4. Analysis of PCR products

The amplified products were detected in 1% agarose gel electrophoresis. The electrode buffer was TBE (Tris–base 10.8 g 89 mmol/L, Boric acid 5.5 g 2 mmol/L, ethylene diamine tetraacetic acid (pH 8.0) 4 mL of 0.5 mol/L ethylene diamine tetraacetic acid (pH 8.0), join all components in sufficient H₂O and stir to dissolve). Aliquots of 10 µL of PCR products were applied to the gel. Constant voltage of 80 V in 30 min was used for products separation. The DNA fragment size was compared by a standard molecular weight (100 bp DNA ladder of Fermentas, Germany). After electrophoresis, the amplicons were visualized by ultraviolet light after ethidium bromide (5 µg/mL) staining and photographed were obtained in UVIdoc gel documentation systems (UK).

2.5. Statistical analysis

Data analysis was performed by employing Statistical Package for Social Science (SPSS version 10.0).

3. Results

DNA was by successful manner extracted in high quality from frozen semen samples. Study of PCR products for presence of *pNC–5* gene of *N. caninum* on 1% agarose gel revealed a 275 bp (base pairs) fragment (Figure 1).

Samples which produced a band of the expected size (275 bp) were considered as positive and matched to the positive control but no product was observed for negative control. *N. caninum* DNA was detected in 6 (10.53%) of 57 frozen semen samples and 51 (89.47%) of 57 frozen semen samples was negative for *N. caninum*. The results of this study showed the high occurrence of *N. caninum* infection in frozen bull’s semen samples that were used for artificial insemination in Iranian Insemination Centers.

![Figure 1.](image)

4. Discussion

N. caninum is a causal agent of abortion all over the world[27,28]. It is considered that *N. caninum* lives into central nervous system. Dogs (and possibly foxes) as final hosts shedding oocysts in feces. For the intermediate hosts like cattle, the most important is congenital infection after ingested oocysts whilst transmission between animals does not occur[29]. In California it is estimated that losses reach about US$35 million per year[30].

The purpose of current study was to detection of *N. caninum* infection in frozen semen samples of bulls used in artificial insemination centers in Iran. The results showed 6 (10.53%) frozen semen sample infected by *N. caninum*.

Many studies were performed about neosporosis infection in bull’s semen and described its mutual relation by reproductive failure, reduced conception rates, abortion, milk yield, rebreeding and expenses associated by diagnosis of the diseases in cattle. In a serological study in Spain, beef farms had a lower prevalence of *N. caninum* infection than dairy farms being 55% and 83%, respectively[31]. Proof has been shown in New Zealand where beef cattle had a lower prevalence of *N. caninum* infection in comparison to dairy cattle[32]. The study of Baszler et al. in 1999 on detection of *N. caninum* in fetal tissues from spontaneous bovine abortions...
by PCR presented higher sensitivity of PCR in comparison to immunohistochemistry[26].

In Europe, *N. caninum* was detected by PCR in the brains of 21% of 242 aborted fetuses in Switzerland[33]. Although in Spain, the prevalence of *N. caninum* DNA was 15.3%[34]. The highest prevalence of *N. caninum* in bovine fetuses, by PCR, was obtained in Mexico (80%; 35/44)[35]. A similar prevalence by our study was found in China, where Yang et al. found *N. caninum* DNA in 31.3% of the bovine fetuses[36].

The study of Habibi et al. in Iran for diagnosis of *N. caninum* infection in cattle semi–nested PCR was designed based on specific ITS1 and 5.8S rRNA genomic DNA for detection of parasite in infected tissues. Their study is the first report which demonstrates the reliability of PCR–based assay to identify *N. caninum* infection in Iran[37]. The study of Sharifzadeh et al. (PCR assay for detection of *N. caninum* in fresh and frozen semen samples of Iranian bulls) showed results as only 30 of 175 (17.14%) semen samples in Iranian bulls were infected with *N. caninum* and the protozoan DNA was detected in 17 (9.71%) and 13 (7.43%) of fresh and frozen semen samples, respectively[35]. The second article we used was by Jozani et al. detection of non–spermatozoal cells of *N. caninum* in fresh semen of naturally infected bulls[21]. Razmi et al. in 2007 showed first report of *N. caninum*–associated bovine abortion using PCR, complemented with histopathology and immunohistochemistry (IHC) technique in Mashhad area, Iran[38]. Their study indicated that neosporosis is an important cause of abortion in dairy cattle of Iran[38].

According to Cobádiová et al., first molecular detection of *N. caninum* in European brown bear (*Ursus arctos*) and presence of *N. caninum* DNA was established in 24.4% (11/45) of 45 muscele, liver, or spleen samples of brown bear tested in different locations of Central Slovakia[39]. In Romania, Šuteu et al. reports molecular detection of *N. caninum* abortion in dairy cattle from different historical regions[40].

In Costa Rica neosporosis diagnosed and associated by bovine abortion has been reported since 1996[41,42]. One of the most effective ideas of preventing and controlling neosporosis would be by vaccination; nonetheless developing an effective vaccine presents numerous challenges. An effective vaccine against *N. caninum* should protect in an opposite position fetal loss and prohibit vertical transmission. Serological discrimination intermediate to vaccinated and infected animals would need to be available for infection control[28].

There are numerous different types of vaccines to prevent infectious diseases. Several may be broadly categorized as: killed, modified live and chemically or physically altered vaccines by each having advantages and disadvantages. A killed vaccine has been developed for the prevention of *N. caninum*–induced abortion. It has the following advantages over all others. It cannot revert to the virulent form of the disease, has slight risk of inducing abortion and the vaccine organism does not spread to other animals[43]. The killed vaccine is stable in storage and is an excellent stimulant of passive antibodies in colostrums. Notwithstanding the listed advantages, the killed vaccine has its pitfalls. It may not provide a long–lasting immunity to the animal and can cause allergy and vaccination reactions. The killed vaccine may not be effective in the presence of passive colostral immunity[44].

In study of Ortega–Mora et al., *N. caninum* DNA was detected in non–extended fresh semen samples and frozen extended semen straws by nested–PCR[20]. The molecular method for detection of *N. caninum* DNA was used in their study similar to current research.

The research of Munhoz et al. in Brazil showed that the abortion was provoked by the protozoan *N. caninum*, though this is the first report concerning cattle in the northeast region of São Paulo state[45].

In conclusion, the results of our study and earlier researches present that frozen semen samples, which used for artificial insemination in Iranian Insemination Centers, plays an important role in the spread of bovine neosporosis. Preventing the entrance of *N. caninum* to cattle is a significant aim of control programs. Based on this data, analysis of bull’s semen samples that used for artificial insemination to control and prevention of *N. caninum* infection is very important. The final examinations by high efficiency for diagnosis of *N. caninum* infection in bull’s semen samples to reduce the economic losses of this protozoan infection such as abortion, lost milk and meat in dairy industries, it appear to be necessary.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

This work was supported by the Islamic Azad University, Shahrekord Branch, Iran (Grant No. 92/9225).
Background

The protozoan parasite *N. caninum* is recognized as an important infectious cause of abortion, neonatal mortality and reduced milk production in cattle, worldwide. Annually, the median global economic losses of the disease it causes, neosporosis, are estimated around 1.300 million US $ for the dairy industry. The continuous follow-up of the cattle herds with valuable diagnostic tools like molecular methods, with special emphasis on the quality of the bull semen which can harbor the parasite, can contribute greatly to the disease control.

Research frontiers

The research was achieved to provide data on the occurrence of *N. caninum* in frozen bull semen, used for artificial insemination in Iran, using molecular tools.

Related reports

Information’s from the scientific literature regarding the presence of *N. caninum* in frozen bull semen used for artificial insemination are scanty. Therefore, additional studies using new generation, rapid, specific and sensitive diagnostic tools for *Neospora* infection are still required.

Innovations and breakthroughs

The authors demonstrated that the frozen bull semen can constitute an important way for the dissemination of neosporosis in the cattle herds. Moreover, the results highlight the importance of the analysis of bull’s semen samples for *N. caninum* before artificial insemination, in order to avoid the spread of the bovine neosporosis.

Applications

Results of the current survey showed that the PCR technique can be considered a valuable diagnostic tool for the evidence of *N. caninum* in frozen bull’s semen samples, highlighting, at the same time, the necessity of implementing of eradication and control programs in Iranian cattle herds.

Peer review

This is a well conducted study in which the authors evaluate the occurrence of *N. caninum* in frozen semen of Iranian bulls based on molecular tools. The results are noteworthy as important contribution to the knowledge of molecular epidemiology of bovine neosporosis.

References

[1] Gondim LF, Laski P, Gao L, McAllister MM. Variation of the internal transcribed spacer 1 sequence within individual strains and among different strains of *Neospora caninum*. *J Parasitol* 2004; 90(1): 119–122.

[2] Heuer C, Nicholson C, Russell D, Weston J. Intervet symposium: bovine neosporosis. *Vet Parasitol* 2004; 125: 137–146.

[3] Sharifzadeh A, Doosti A, Dehkordi PG. PCR assay for detection of *Neospora caninum* in fresh and frozen semen specimens of Iranian bulls. *World Appl Sci J* 2012; 17(6): 742–748.

[4] Bjerkås I, Mohn SF, Presthus J. Unidentified cyst-forming sporozoan causing encephalomyelitis and myocarditis in dogs. *Z Parasitenkd* 1984; 70: 271–274.

[5] Dubey JP, Schares G. Neosporosis in animals--the last five years. *Vet Parasitol* 2011; 180(1–2): 90–108.

[6] Dubey JP, Lindsay DS. A review of *Neospora caninum* and neosporosis. *Vet Parasitol* 1996; 67(1–2): 1–59.

[7] Williams DJ, Hartley CS, Bjørkman C, Trees AJ. Endogenous and exogenous transplacental transmission of *Neospora caninum*--how the route of transmission impacts on epidemiology and control of disease. *Parasitology* 2009; 136(4): 1895–1900.

[8] Dubey JP, Abbitt B, Topper MJ, Edwards JF. Hydrocephalus associated with *Neospora caninum* infection in an aborted bovine fetus. *J Comp Pathol* 1998; 118(2): 169–173.

[9] Williams JH, Espie I, van Wilpe E, Matthee A. Neosporosis in a white rhinoceros (*Ceratotherium simum*) calf. *J S Afr Vet Assoc* 2002; 73: 38–43.

[10] Thurmond MC, Hietala SK. Effect of *Neospora caninum* infection on milk production in first-lactation dairy cows. *J Am Vet Med Assoc* 1997; 210(5): 672–674.

[11] Barr BC, Anderson ML, Blanchard PC, Daft BM, Kinde H, Conrad PA. Bovine fetal encephalitis and myocarditis associated with protozoal infections. *Vet Pathol* 1998; 27(5): 354–361.

[12] Barr BC, Conrad PA, Breitmeyer R, Sverlow K, Anderson ML, Reynolds J, et al. Congenital *Neospora* infection in calves born from cows that had previously aborted *Neospora*-infected fetuses: four cases (1990–1992). *J Am Vet Med Assoc* 1993; 202(2): 113–117.

[13] Koyama T, Kobayashi Y, Yamada M, Furuoka H, Maeda R, et al. Isolation of *Neospora caninum* from the brain of a pregnant sheep. *J Parasitol* 2001; 87: 1486–1488.

[14] Okeoma CM, Williamson NB, Pomroy WE, Stowell KM, Gillespie LM. Isolation and molecular characterisation of *Neospora caninum* in cattle in New Zealand. *N Z Vet J* 2004; 52(6): 364–370.

[15] Moore DP. Neosporosis in South America. *Vet Parasitol* 2005; 127(3–4): 87–97.

[16] Howe L, West DM, Collett MG, Tattersfield G, Pattison RS, Pomroy WE, et al. The role of *Neospora caninum* in three cases of...
unexplained ewe abortions in the southern North Island of New Zealand. Small Ruminant Res 2008; 75(2): 115–122.

[17] Reichel MP, Ross GP, McAllister MM. Evaluation of an enzyme-linked immunosorbent assay for the serological diagnosis of Neospora caninum infection in sheep and determination of the apparent preva-lence of infection in New Zealand. Vet Parasitol 2008; 151(2–4): 323–326.

[18] Moreno B, Collantes–Fernandez E, Villa A, Navarro A, Regidor–Cerrillo J, Ortega–Mora LM. Occurrence of Neospora caninum and Toxoplasma gondii infections in ovine and caprine abortions. Vet Parasitol 2012; 187(1–2): 312–318.

[19] Philpott M. The dangers of disease transmission by artificial insemination and embryo transfer. Br Vet J 1993; 149(4): 339–369.

[20] Ortega–Mora LM, Ferre I, del–Pozo I, Caetano–Silva A, Collantes–Fernandez E, Regidor–Cerrillo J, et al. Detection of Neospora caninum in semen of bulls. Vet Parasitol 2003; 117(4): 301–308.

[21] Jozani RJ, Asadpour R, Nematolahi A, Hosseininejad M. Detection of non–spermatozoal cells of Neospora caninum in fresh semen of naturally infected bulls. Acta Sci Vet 2012; 40(2): 1034.

[22] Lasri S, De Meerschman F, Rettigner C, Focant C, Losson B. Comparison of three techniques for the serological diagnosis of Neospora caninum in the dog and their use for epidemiological studies. Vet Parasitol 2004; 125(1–2): 25–32.

[23] Landmann JK, JilHella D, O’Donoghue PJ, McGowan MR. Confirmation of the prevention of vertical transmission of Neospora caninum in cattle by the use of embryo transfer. Aust Vet J 2002; 80(5): 502–503.

[24] Khamesipour F, Doosti A, Shahraei AK, Goodarzi M. Molecular detection of bovine leukemia virus (BLV) in the frozen semen samples of bulls used for artificial insemination in Iran. Res Opin Anim Vet Sci 2013; 3(11): 412–416.

[25] Sambrook J, Russell DW. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2001.

[26] Baszler TV, Gay LJ, Long MT, Mathison BA. Detection by PCR of Neospora caninum in fetal tissues from spontaneous bovine abortions. J Clin Microbiol 1999; 37(12): 4059–4064.

[27] Jenkins M, Baszler T, Bjorkman C, Scharas G, Williams D. Diagnosis and seroepidemiology of Neospora caninum–associated bovine abortion. Int J Parasitol 2002; 32(5): 631–636.

[28] Dubey JP, Scharas G, Ortega–Mora LM. Epidemiology and control of neosporosis and Neospora caninum. Clin Microbiol Rev 2007; 20(3): 323–367.

[29] Anderson ML, Blanchard PC, Barr BC, Dubey JP, Hoffman RL, Conrad PA. Neospora–like protozoan infection as a major cause of abortion in California dairy cattle. J Am Vet Med Assoc 1991; 198(2): 241–244.

[30] Barr BC, Dubey JP, Lindsay DS, Reynolds JP, Wells SJ. Neosporosis: its prevalence and economic impact. Comp Cont Edu Pract Vet 1998; 20: 1–16.

[31] Quintanilla–Gozalo A, Pereira–Bueno J, Tabarés E, Innes EA, González–Paniello R, Ortega–Mora LM. Seroprevalence of Neospora caninum infection in dairy and beef cattle in Spain. Int J Parasitol 1999; 29(8): 1201–1208.

[32] Tennent–Brown RS, Ponroy WE, Reichel MP, Gray PL, Marshall TS, Moffat PA, et al. Prevalence of Neospora antibodies in beef cattle in New Zealand. N Z Vet J 2000; 48(5): 149–150.

[33] Sager H, Fischer I, Furrer K, Strasser M, Waldvogel A, Boerlin P, et al. A Swiss case–control study to assess Neospora caninum–associated bovine abortions by PCR, histopathology and serology. Vet Parasitol 2001; 102(1–2): 1–15.

[34] Pereira–Bueno J, Quintanilla–Gozalo A, Pérez–Pérez V, Espi–Felgueroso A, Alvarez–Garcia G, Collantes–Fernandez E, et al. Evaluation by different diagnostic techniques of bovine abortion associated with Neospora caninum in Spain. Vet Parasitol 2003; 111(2–3): 143–152.

[35] Medina L, Cruz–Vázquez C, Quezada T, Morales E, García–Vázquez Z. Survey of Neospora caninum infection by nested PCR in aborted fetuses from dairy farms in Aguascalientes, Mexico. Vet Parasitol 2006; 136(3–4): 187–191.

[36] Yang N, Cui X, Qian W, Yu S, Liu Q. Survey of nine abortifacient infectious agents in aborted bovine fetuses from dairy farms in Beijing, China, by PCR. Acta Vet Hung 2012; 60(1): 83–92.

[37] Habibi GR, Hashemi–Fesharki R, Dehbozorgi S, Bordbar N, Sadrebazzaz A. Seminested PCR for diagnosis of Neospora caninum infection in cattle. Arch Razi Inst 2005; 59: 55–64.

[38] Razmi GR, Maleki M, Farzaneh N, Talekhkan Garoussi M, Fallah AH. First report of Neospora caninum–associated bovine abortion in Mashhad area, Iran. Parasitol Res 2007; 100: 755–757.

[39] Cobădiovă A, Vichovă B, Maľáthovă V, Reiterovă K. First molecular detection of Neospora caninum in European brown bear (Ursus arctos). Vet Parasitol 2013; 197(1–2): 346–349.

[40] Şuete O, Paştiu A, Győrke A, Cozma V. Molecular detection of Neospora caninum abortion in dairy cattle from different historical regions of Romania. Sci Parasitol 2012; 13(4): 159–162.

[41] Perez–Zaballos FJ, Ortega–Mora LM, Alvarez–Garcia G, Collantes–Fernandez E, Navarro–Lozano V, Garcia–Villada L, et al. Adaptation of Neospora caninum isolates to cell–culture changes: an argument in favor of its clonal population structure. J Parasitol 2005; 91(3): 507–510.

[42] Romero JJ, Breda SV, Vargas B, Dolz G, Frankena K. Effect of neosporosis on productive and reproductive performance of dairy cattle in Costa Rica. Theriogenology 2005; 64(9): 1928–1939.

[43] Hall CA, Reichel MP, Exis JT. Neospora abortions in dairy cattle: diagnosis, mode of transmission and control. Vet Parasitol 2005; 128(3–4): 231–241.

[44] Haddad JP, Dohoo IR, VanLeeuwen JA. A review of Neospora caninum in dairy and beef cattle—a Canadian perspective. Can Vet J 2008; 49(6): 230–243.

[45] Munhoz AD, Jacintho AP, Machado RZ. Bovine abortion associated with Neospora caninum: diagnosis and epidemiological aspects of a dairy cattle herd in the northeast region of São Paulo state, Brazil. Braz J Vet Pathol 2011; 4(2): 112–116.