SINGULARITY ANALYSIS TOWARDS NONINTEGRABILITY OF NONHOMOGENEOUS NONLINEAR LATTICES

KEN UMEINO
Frontier Research Program
The Institute of Physical and Chemical Research (RIKEN)
2-1 Hirosawa, Wako, Saitama 351-01, Japan

Abstract. We show non-integrability of the nonlinear lattice of Fermi-Pasta-Ulam type via singularity analysis of normal variational equations of Lamé type.

1. From a Nonlinear Lattice to Lamé Equations

We consider the following one-dimensional lattice:

\[H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \frac{1}{2} \sum_{i=1}^{n+1} v(q_{i-1} - q_i), \]

where

\[v(X) = \frac{\mu_2}{2} X^2 + \frac{\mu_4}{4} X^4 + \cdots + \frac{\mu_{2m}}{2m} X^{2m}. \]

(1)

Fermi-Pasta-Ulam (FPU) lattice [2] is a special type of the systems with the potential function (2) as follows:

\[H_{FPU} = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \frac{\mu_2}{2} \sum_{i=1}^{n+1} (q_{i-1} - q_i)^2 + \frac{\mu_4}{4} \sum_{i=1}^{n+1} (q_{i-1} - q_i)^4. \]

(3)

If we impose the fixed boundary condition as

\[q_0 = q_{n+1} = 0, \quad n = \text{odd}, \]

(4)

it is easy to check that

\[\Gamma : q_1 = C\phi(t), q_2 = 0, q_3 = -C\phi(t), \cdots, q_{n-1} = 0, q_n = (-1)^{n-1} C\phi(t) \]

(5)

is a special solution. Thus, the equation of \(\phi(t) \) is equivalent to the following Hamiltonian system with one degree of freedom:

\[\ddot{\phi} + 2\mu_2 \dot{\phi} + 2\mu_4 C^2 \phi^3 + \cdots + 2\mu_{2m} C^{2m-2} \phi^{2m-1} = 0, \]

(6)
where Hamiltonian is
\[H(\phi, \dot{\phi}) = \frac{1}{2}(\dot{\phi})^2 + \mu_2 \phi^2 + \frac{\mu_4 C^2}{2} \phi^4 + \cdots + \frac{\mu_{2m} C^{2m-2}}{m} \phi^{2m} = \text{Const.} \] (7)

Then the total energy \(\epsilon \) is given by
\[\epsilon = H = H(\phi, \dot{\phi}) \frac{n + 1}{2} C^2 = \frac{n + 1}{2} C^2 (\mu_2 + \frac{1}{2} \mu_4 C^2 + \cdots \frac{1}{m} \mu_{2m} C^{2m-2}) \] (8)

for the initial condition (5). In the case of the FPU lattice, we can determine \(C \) as follows:
\[C = \sqrt[\mu_4]{\frac{\mu_2^2 + 4\epsilon n + 1}{\mu_2 - \mu_2}}. \] (9)

By combining (7) with (8), the underlying equation of \(\phi(t) \) can be rewritten by the differential equation of \(\phi(t) \) as
\[\frac{1}{2}(\dot{\phi})^2 = \gamma_2 (1 - \phi^2) + \frac{\gamma_4}{2} (1 - \phi^4) + \cdots + \frac{\gamma_{2m}}{m} (1 - \phi^{2m}), \] (10)

where
\[\gamma_{2m}(\epsilon, \{\mu_{2j} | j = 1, \cdots, m\}) \equiv \mu_{2m} C^{2m-2}. \] (11)

In the case of the FPU lattices (3), the solution of this differential equation (10) with the condition
\[\gamma_{2m=4} \neq 0 \] (12)

is given explicitly by the elliptic function
\[\phi(t) = cn(k; \alpha t), \] (13)

where
\[\alpha = \sqrt{2\gamma_2 + 2\gamma_4}, \quad k = \sqrt[\gamma_4]{\frac{\gamma_4}{2\gamma_2 + 2\gamma_4}}, \] (14)

\(cn(k; \alpha t) \) is the Jacobi \(cn \) elliptic function, and \(k \) is the modulus of the elliptic integral.

We remark that because
\[\gamma_2 + \gamma_4 = \mu_2 + C^2 \mu_4 = \sqrt{\mu_2^2 + \frac{4\epsilon n + 1}{n + 1} \mu_4} > 0, \] (15)

holds for \(\mu_4 > 0, \mu_2 \geq 0 \), the modulus of the elliptic function \(k \) satisfies the following relation:
\[0 \leq k \leq \frac{1}{\sqrt{2}}. \] (16)

Thus, the special solutions of the FPU lattices for \(\mu_4 > 0, \mu_2 \geq 0 \) have the two fundamental periods in the complex time plane as follows:
\[T_1(\epsilon, \mu) = \frac{2K(k)}{\alpha}, \quad T_2(\epsilon, \mu) = \frac{2K(k) + 2iK'(k)}{\alpha}, \] (17)
where $K(k)$ and $K'(k)$ are the complete elliptic integrals of the first kind:

$$ K(k) = \int_0^1 \frac{dv}{\sqrt{(1 - v^2)(1 - k^2 v^2)}} , \quad K'(k) = \int_0^1 \frac{dv}{\sqrt{(1 - v^2)(1 - (1 - k^2)v^2)}} . \quad (18) $$

Poles are located at $t = \tau$, where $\tau = \frac{2K(k)}{a} + i \frac{K'(k)}{a} \pmod{T_1,T_2}$ in the parallelogram of each period cell. Let us consider the variational equations along these special solutions. The variational equations are obtained by

$$ \eta_j = \xi_j = -\sum_{k=1}^n \frac{\partial^2 V}{\partial \eta_k \partial \eta_j} \xi_k $$

$$ = -(\gamma_2 + 3 \gamma_4 \phi^2 + 5 \gamma_6 \phi^4 + \cdots + (2m - 1) \gamma_{2m} \phi^{2m-2}) (2\xi_j - \xi_{j-1} - \xi_{j+1}) \quad \text{for} \quad 1 \leq j \leq n , \quad (19) $$

where $\xi_0 = \xi_{n+1} = \eta_0 = \eta_{n+1} = 0$ and $\xi_j = \delta q_j, \eta_j = \delta p_j \quad (1 \leq j \leq n)$. Moreover, these linear variational equations in the form of the vector

$$ d^2 \xi \over dt^2 = -(\gamma_2 + \cdots + (2m - 1) \gamma_{2m} \phi^{2m-2}) [\begin{array}{cccccc} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & -1 & 2 \end{array}] \xi \quad (20) $$

can be decoupled as follows. After we note that the eigenvalues of the $n \times n$ symmetric matrix

$$ G = [\begin{array}{cccccc} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & -1 & 2 \end{array}] \quad (21) $$

are obtained as $\{ 4 \sin^2 (\frac{j \pi}{2(n+1)}) | 1 \leq j \leq n \}$ by a normal orthogonal transformation $G \to OGO^{-1}$, the variational equations (19) are rewritten in the decoupled form:

$$ \ddot{\xi}_j(t) = -4 \sin^2 (\frac{j \pi}{2(n+1)})(\gamma_2 + 3 \gamma_4 \phi^2 + \cdots + (2m - 1) \gamma_{2m} \phi^{2m-2}) \ddot{\xi}_j(t) \quad (1 \leq j \leq n) , \quad (22) $$

where $\xi' = O \xi$. Clearly, these equations are written in the form of vector Hill’s equation[3]

$$ \frac{d^2 \xi'}{dt^2} + A(t) \xi' = 0 , \quad A(t + T) = A(t) , \quad (23) $$

where $T = T_1, T_2$ in the case of $m = 2$. For $j = \frac{n+1}{2}$, we have the relation

$$ \xi_{n+1}' = \sqrt{\frac{2}{n+1}} (\xi_1 - \xi_3 + \xi_5 + \cdots + (-1)^{\frac{n-1}{2}} \xi_n) . \quad (24) $$

Thus, the corresponding variational equation

$$ \ddot{\xi}_{n+1}' = -2(\gamma_2 + 3 \gamma_4 \phi^2 + \cdots + (2m - 1) \gamma_{2m} \phi^{2m-2}) \xi_{n+1}'(t) \quad (25) $$
has a time-dependent integral \(I(\xi, \dot{\xi}; t) \equiv I(\xi, \eta; t) \) because

\[
I(\xi, \eta; t) = DH \equiv (\eta \cdot \frac{\partial}{\partial p} + \xi \cdot \frac{\partial}{\partial q})H = \eta \cdot p + \xi \cdot V_q
\]

\[
= C\dot{\phi}(\eta_1 - \eta_3 + \eta_5 + \cdots + (-1)^{\frac{n-1}{2}}\eta_n)
+ 2(C\gamma_2\phi + C\gamma_4\phi^3 + \cdots + C\gamma_{2m}\phi^{2m-1})(\xi_1 - \xi_3 + \xi_5 + \cdots + (-1)^{\frac{n-1}{2}}\xi_n),
\]

where

\[
\frac{1}{C} \frac{df}{dt} = \phi(\ddot{\xi}_1 - \ddot{\xi}_3 + \cdots + (-1)^{\frac{n-1}{2}}\ddot{\xi}_n)
+ 2\phi(\gamma_2 + 3\gamma_4\phi^2 + \cdots + (2m-1)\gamma_{2m}\phi^{2m-2})(\xi_1 - \xi_3 + \cdots + (-1)^{\frac{n-1}{2}}\xi_n) = 0.
\]

We call Eq. (25) the tangential variational equation. On the other hand, a \((2n-2)\)-dimensional normal variational equation (NVE) is given by the equation of (22) with the tangential variational equation (25) removed as follows:

\[
\begin{align*}
\dot{\eta}_j' &= -4\sin^2(\frac{j\pi}{2(n+1)})(\gamma_2 + 3\gamma_4\phi^2 + \cdots + (2m-1)\gamma_{2m}\phi^{2m-2})\xi_j', \\
\xi_j' &= \eta_j' \quad \text{for } 1 \leq j \neq \frac{n+1}{2} \leq n.
\end{align*}
\]

In case of the FPU lattice, the normal variational equation (28) becomes the Lamé equation [7]

\[
\frac{d^2y}{dt^2} - (E_1\sin^2(\frac{j\pi}{2(n+1)}) + E_2)y = 0,
\]

where \(E_1 = 12\frac{1}{\alpha^2k^2}\sin^2(\frac{j\pi}{2(n+1)}) \) and \(E_2 \) are constants.

2. Non-integrability Theorem

Morales and Simó obtained the following theorem on the non-integrability based on the application of Picard-Vessiot theory to Ziglin’s analysis [9, 10] for Hamiltonian systems with two degrees of freedom.

Theorem 1 (Morales and Simó [4], 1994) When the normal reduced variational equation is of Lamé type, if \(A \equiv E_1\alpha^2k^2 \neq m(m+1), \) \(m \in \mathbb{N} \) and the Lamé equation satisfying this condition on \(A \) is not algebraically solvable (Brioschi-Halphen-Crawford and Baldassarri solutions), then the initial Hamiltonian system does not have a first integral, meromorphic in a connected neighborhood of the integral curve \(\Gamma \), which is functionally independent together with \(H \).

In case of the present analysis, \(A \) is given by the following formula:

\[
A = E_1\alpha^2k^2 = 12\sin^2(\frac{j\pi}{2(n+1)}) = 6(1 - \cos(\frac{j\pi}{n+1})).
\]

\[\text{(30)}\]

We can easily check that \(\cos(\frac{j\pi}{n+1}) \notin \mathcal{Q} \) if and only if \(j \notin \{\frac{n+1}{3}, \frac{n+1}{2}, \frac{2(n+1)}{3}\} \). When \(A \notin \mathcal{Q} \), the above condition on the algebraic solvability of the Lamé equation is not satisfied. Thus, to check the algebraic solvability of the Lamé equations

\[
\frac{d^2\xi_j}{dt^2} - (12\sin^2(\frac{j\pi}{2(n+1)})\sin^2(k; \alpha t) + E_2)\xi_j = 0 \quad (j \neq \frac{n+1}{2}),
\]

\[\text{(31)}\]
it is sufficient to examine the following two cases:

\[A = 6\left(1 - \cos\left(\frac{\pi}{3}\right)\right) = 3, \quad A = 6\left(1 - \cos\left(\frac{2\pi}{3}\right)\right) = 9. \]

(32)

It is known [1] that the condition on \(A \) for the Brioschi-Halphen-Crawford solutions is given by

\[A = m(m+1), \quad m + \frac{1}{2} \in \mathbb{N}, \]

(33)

and that the condition on \(A \) for the Baldassarri solutions is given by

\[A = m(m+1), \quad m + \frac{1}{2} \in \frac{1}{3}\mathbb{Z} \cup \frac{1}{4}\mathbb{Z} \cup \frac{1}{5}\mathbb{Z} \setminus \mathbb{Z}. \]

(34)

However, the following relations

\[m(m+1) = 3 \rightarrow m = \frac{-1 \pm \sqrt{13}}{2} \notin \mathbb{Q}, \quad m(m+1) = 9 \rightarrow m = \frac{-1 \pm \sqrt{37}}{2} \notin \mathbb{Q} \]

(35)

hold, which guarantee that all \(n-1 \) Lamé equations (31) do not belong to the solvable case. In case of the systems with \(n \) degrees of freedom, we have \(n-1 \) Lamé equations which corresponds to \(n-1 \) normal variational equations.

Thus, according to the steps in Ref. [4] we obtain the following theorem:

Theorem 2 The FPU lattice for \(\mu_4 > 0, \mu_2 \geq 0 \) does not have \(n-1 \) first integrals, meromorphic in a connected neighbourhood of the integral curve \(\Gamma \), which are functionally independent together with \(H \).

We remark here that this theorem on the non-integrability does not depend on the total energy in contrast with the result about the non-integrability proof of the FPU lattice in the low energy limit [6] based on non-resonance checking [5] and the result about the non-integrability of the FPU lattice in the high energy limit based on the Kowalevski exponents of the homogeneous systems [8]. Here, it is conjectured that more general nonhomogeneous nonlinear lattice (1) would be also non-integrable in the sense of the present analysis.

Acknowledgements

The present author would like to thank Prof. S. Dovysh, Prof. J. J. Morales, Prof. J. Moser, and Prof. H. Yoshida for valuable discussions. He is grateful to Prof. C. Simó, Prof. A. Delshams, Prof. de la Llave and Prof. T. Konishi for their kind hospitality during the 3DHAM95 meeting. He thanks Prof. S. Amari for his continual encouragement. He appreciates support from the Special Researchers Program of Basic Science at the Institute of Physical and Chemical Research (RIKEN) and from the Program of the Complex Systems Workshop at the International Institute for Advanced Study (IIAS).

References

1. F. Baldassarri, "On algebraic solutions of Lamé differential equation", *J. Diff. Eq.* 41(1981)44-58.
2. E. Fermi, J. Pasta and S. Ulam, Los Alamos Report LA-1940(1955); in: *Analogies between Analogies: the mathematical reports of S.M. Ulam and his Los Alamos collaborators*, Edited by A.R. Bednarek and F. Ulam , (Univ. of California Press, 1990).
3. W. Magnus and S. Winkler, *Hill's Equation*, (Dover, New York, 1979).
4. J.J. Morales and C. Simó, "Picard-Vessiot theory and Ziglin's theorem", *J. Diff. Eq.* 104(1994)140-162.
5. K. Umeno, *Non-integrability proof in some Hamiltonian dynamical systems with three or more degrees of freedom*, doctoral dissertation, (University of Tokyo, 1994, December).
6. K. Umeno, "Non-perturbative non-integrability of non-homogeneous nonlinear lattices induced by non-resonance hypothesis, *Physica D* **94** (1996) 116-134.
7. E. T. Whittaker and G. N. Watson, *A Course of Modern Analysis*, (Cambridge Univ. Press, London/New York, 1969).
8. H. Yoshida,"A criterion for the non-existence of an additional analytic integral in Hamiltonian systems with n degrees of freedom", *Phys. Lett. A* **141** (1989):108-112.
9. S. L. Ziglin,"Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. I.", *Funct. Anal. Appl.* **16** (1983):181–189.
10. S. L. Ziglin, "Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. II." **17**(1983):6–17.