Digenic inheritance of MSH6 and MUTYH variants in familial colorectal cancer
Schubert, S.A.; Ruano, D.; Tiersma, Y.; Drost, M.; Wind, N. de; Nielsen, M.; ...; Wezel, T. van

Citation
Schubert, S. A., Ruano, D., Tiersma, Y., Drost, M., Wind, N. de, Nielsen, M., ... Wezel, T. van. (2020). Digenic inheritance of MSH6 and MUTYH variants in familial colorectal cancer. *Genes, Chromosomes And Cancer, 59*(12), 697-701. doi:10.1002/gcc.22883

Version: Publisher's Version
License: [Creative Commons CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/)
Downloaded from: https://hdl.handle.net/1887/3181895

Note: To cite this publication please use the final published version (if applicable).
Digeneic inheritance of MSH6 and MUTYH variants in familial colorectal cancer

Stephanie A. Schubert | Dina Ruano | Yvonne Tiersma | Mark Drost | Niels de Wind | Maartje Nielsen | Liselotte P. van Hest | Hans Morreau | Noel F. C. de Miranda | Tom van Wezel

1Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
2Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
3Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
4Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Correspondence
Tom van Wezel, Department of Pathology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
Email: t.van_wezel@lumc.nl

Funding information
KWF Kankerbestrijding, Grant/Award Number: 2015-7664; Maag Lever Darm Stichting, Grant/Award Number: MLDS FP13-13; Stichting Sacha Swarttouw-Hijmans; ZonMw Veni, Grant/Award Number: 016.176.144; European Cooperation in Science and Technology (COST); Leiden University Fund/Nypels-van der Zee Fonds

Abstract
We describe a family severely affected by colorectal cancer (CRC) where whole-exome sequencing identified the coinheritance of the germline variants encoding MSH6 pThr1100Met and MUTYH p.Tyr179Cys in, at least, three CRC patients diagnosed before 60 years of age. Digeneic inheritance of monoallelic MSH6 variants of uncertain significance and MUTYH variants has been suggested to predispose to Lynch syndrome-associated cancers; however, cosegregation with disease in the familial setting has not yet been established. The identification of individuals carrying multiple potential cancer risk variants is expected to rise with the increased application of whole-genome sequencing and large multigene panel testing in clinical genetic counseling of familial cancer patients. Here we demonstrate the coinheritance of monoallelic variants in MSH6 and MUTYH consistent with cosegregation with CRC, further supporting a role for digeneic inheritance in cancer predisposition.

KEYWORDS
digeneic inheritance, familial colorectal cancer, Lynch syndrome, MSH6, MUTYH, whole-exome sequencing

1 | INTRODUCTION

Approximately 25% of colorectal cancers (CRCs) are diagnosed in patients with a family history of CRC. However, the majority of familial CRC cannot be explained by clear-cut genetic defects, which hampers appropriate genetic counselling.1 The most frequent form of hereditary CRC is Lynch syndrome (OMIM#120435), which predisposes to cancers that develop in a context of DNA mismatch repair (MMR) deficiency, including CRC and endometrial cancer. It is caused by heterozygous, pathogenic variants affecting the DNA MMR genes, MLH1, MSH2, MSH6, or PMS2. MUTYH-associated polyposis (MAP; OMIM#608456) is a recessively inherited CRC syndrome caused by biallelic variants in the base-excision repair gene MUTYH. The potential of monoallelic, pathogenic MUTYH variants to predispose to CRC remains debatable.1 Some MUTYH variants confer greater functional defects in vitro and are associated with more severe clinical phenotypes, such as the variant encoding p.Tyr179Cys compared to p.Gly396Asp.2,3

Digeneic inheritance of monoallelic MSH6 and MUTYH variants has been suggested to predispose to Lynch syndrome-associated cancers;
however, cosegregation of both variants within CRC families has not yet been demonstrated. Here, we demonstrate, for the first time, the coinheritance of monoallelic variants in MSH6 and MUTYH consistent with the cosegregation with CRC, further supporting a role for digenic inheritance in cancer predisposition.

2 | MATERIALS AND METHODS

2.1 | Patients

Clinicopathological data of family members was obtained during consultations at the department of Clinical Genetics of the Amsterdam University Medical Centre, Vrije Universiteit Amsterdam. DNA was extracted from peripheral blood and formalin-fixed paraffin-imbedded tissues using standard techniques. All patients provided written informed consent. The study was approved by the Medical Ethical Committee of the Leiden University Medical Center, The Netherlands (protocol P01.019).

2.2 | Whole-exome sequencing

Whole-exome sequencing was outsourced to BGI (BGI-Shenzhen, Shenzhen, China); exome libraries were constructed with the BGI capture kit, followed by sequencing on the Complete Genomics’ Sequencing Platform (Complete Genomics Inc., San Jose, California). Filtering and variant prioritization was performed as previously described. All variants were selected based on a maximum population frequency <0.01 (in 1000 Genomes phase 3, ExAC 1.0, ESP6500SI-V2 or GoNL release 5).

2.3 | Variant screening

The MSH6 (p.Thr1100Met) and MUTYH (p.Tyr179Cys) variants were validated and investigated in additional family members by using Sanger sequencing of PCR products obtained under standard PCR conditions. The following M13-tailed primer sets were used: 5′-TGT AAA ACG ACG GCC AGT AAA ACC CCC AAA CGA TGA A-3′ and 5′-CAG GAA ACA GCT ATG ACC ACC GCC ATC-3′ for MSH6, and 5′-GAC GGT ATA AAA CGA CGG CCA GTC CCT AGG GTA GGG GAA ATA GG-3′ and 5′-CAG GAA ACA GCT ATG ACC ATG AGT TCC TAC CCT GCC ATC-3′ for MUTYH (M13-tails are underlined).

2.4 | Tumor analysis

MMR deficiency in tumor samples was assessed by microsatellite instability analysis and immunohistochemical detection of the four MMR proteins (MLH1, MSH2, MSH6, and PMS2). KRAS codon 12/13 mutations were screened with Sanger sequencing.

2.5 | Functional MMR assay

In vitro MMR activity assay was performed as previously described.

3 | RESULTS

We performed germline whole-exome sequencing on three CRC patients diagnosed before 60 years of age (III-1, III-7, III-8, Figure 1A).
Chr	Gene	RefSeq accession number	mRNA change	Protein change	Population frequency^a	ClinVar classification^b	Franklin classification^c	Cancer gene census
1	EBNAP2	NM_001159936	c.1034A > T	p.Asn345Ile	0.006009	—	—	—
1	MUTYH	NM_001128425	c.536A > G	p.Tyr179Cys	0.001538	Pathogenic	Pathogenic	Yes
1	TEK2	NM_007170	c.983A > G	p.Gln328Arg	0.0006052	—	VUS	—
1	CAPN9	NM_006615	c.55G > T	p.Ala19Ser	0.0006365	—	VUS	—
2	MSH6	NM_000179	c.3299C > T	p.Thr1100Met	0.0004243	Uncertain	—	—
3	M3or20	NM_032137	c.1746C > G	p.Phe582Leu	0.005847	—	Likely benign	—
5	DNAH5	NM_001369	c.1781A > G	p.Glu594Gly	—	—	VUS	—
7	KIAA1324L	NM_001142749	c.2369 T > C	p.Val790Ala	0.0006585	—	VUS	—
7	TRIP6	NM_003302	c.822G > C	p.Glu274Asp	0.0009893	—	VUS	—
7	CUX1	NM_001202543	c.1438A > G	p.Ser480Gly	0.001128	—	Likely benign	Yes
7	ZNF783	NM_001195220	c.46A > G	p.Thr16Ala	0.001083	—	VUS	—
8	PDP1	NM_018444	c.283A > C	p.Ser95Arg	—	—	VUS	—
9	NMRK1	NM_017881	c.304C > G	p.Leu102Val	0.001419	—	VUS	—
9	GAPVD1	NM_015635	c.850G > A	p.Val284Met	0.003596	—	Benign	—
11	INT5	NM_030628	c.1436A > G	p.Asn479Ser	0.00004607	—	VUS	—
11	GAL3T3	NM_033036	c.326G > A	p.Arg109His	0.00004731	—	VUS	—
11	SORL1	NM_003105	c.3346A > G	p.Ile1116Val	0.005308	—	VUS	—
14	LTB2P2	NM_000428	c.1226G > A	p.Arg409His	0.0000203	—	VUS	—
15	RYR3	NM_001036	c.7812C > G	p.Asn2604Lys	0.002144	Likely benign	Likely benign	—
15	DAPK2	NM_014326	c.179G > A	p.Arg60Gln	0.003725	—	Likely benign	—
16	NLRC5	NM_032206	c.1219G > A	p.Ala407Thr	0.000003542	—	VUS	—
20	C2orf85	NM_178456	c.101G > A	p.Arg34Gln	0.00192	—	Likely benign	—

Abbreviations: Chr, chromosome; VUS, variant of uncertain significance.

^aPopulation frequency (gnomAD 2.1.1).
^bClinVar clinical significance (ClinVar database version August 5, 2019).
^cFranklin by Genoox (accessed on May 20, 2020).
and who belonged to a CRC family comprising of seven cancer patients divided over two generations. Twenty-two rare variants were shared by the three patients (Tables 1 and S1), including variants in the MSH6 (NM_000179.2: c.3299C > T, p.Thr1100Met) and MUTYH (NM_001128425.1: c.536A > G, p.Tyr179Cys) genes, while the other 20 genes could not be clearly linked to cancer predisposition. The identified MSH6 variant was classified as a variant of uncertain significance (VUS) in the Leiden Open Variant Database and the InSiGHT DNA Variant Database. The MUTYH variant is the most common pathogenic variant found in the Netherlands.2

Fourteen relatives, all unaffected by cancer or polyposis, were genotyped for these MSH6 and MUTYH variants, identifying one additional carrier of both variants, five MSH6-only carriers and four MUTYH-only carriers. In all probability, the mothers of the sequenced patients, II-1 and II-2, who were affected by ovarian cancer below age 74 and CRC at 38 years old respectively, were obligate carriers of both variants; however, DNA was unavailable for testing and, formally, inheritance through the fathers to the sequenced individuals was suggested. The male offspring (VUS) in the Leiden Open Variant Database and the InSiGHT DNA Variant Database.14,15 The MUTYH variant is classified as VUS. 21 TRIP6 promotes cell migration and invasion through Wnt/β-catenin signaling and was shown to be upregulated in colorectal tumors.24 Therefore, TRIP6 variants that increase protein stability or expression could potentially stimulate colorectal tumorigenesis. In addition, lost-of-function variants in CAPN9 might promote tumor formation, as Calpain-9 induces cell cycle arrest and apoptosis, and low expression predicts a poorer prognosis in gastric cancer patients.25 The contribution of the genetic variants, other than MSH6 and MUTYH, to cancer risk cannot be completely excluded. However, none of these variants have been functionally investigated and especially the variants predicted as benign are less likely to contribute to an increased cancer risk. Besides, none of these genes have, to date, been associated with a genetic predisposition to any types of cancer.

In conclusion, with the increased application of whole-genome sequencing or large multigene panel testing in clinical genetic counseling, the number of identified individuals carrying multiple potential risk variants is expected to rise. Here, we demonstrate the coinheritance of MSH6 and MUTYH variants consistent with the cosegregation with cancer, further supporting a role for digenic inheritance in CRC predisposition. Our results reiterate that digenic inheritance should be considered as cause of genetic diseases.

ACKNOWLEDGMENTS
The authors thank Juul T. Wijnen for the collection of clinicopathological data and samples. The authors also thank Julia van Hees and Anniek van Veen for their technical support. The authors are thankful to the Leiden University Fund/Nypels-van der Zee Fonds. This project was funded by research grants from the Dutch Digestive Foundation (MLDS FP13-13) and Stichting Sacha Swarttouw-Hijmans awarded to T.v.W. N.F.C.C.d.M. is supported by the KWF Bas Mulder Award UL (2015-7664) and the ZonMw Veni grant (016.176.I44). This article is based upon work from COST Action CA17118, supported by European Cooperation in Science and Technology (COST).

CONFLICT OF INTEREST
The authors declare no conflicts of interest.
AUTHOR CONTRIBUTIONS
Tom van Wezel, Noel F. C. C. de Miranda, and Hans Morreau conceived and designed the study. Dina Ruano performed next-generation sequencing analyses. Noel F. C. C. de Miranda and Stephanie A. Schubert performed analysis and interpretation of whole-exome sequencing data. Mark Drost and Yvonne Tiersma performed functional analysis. Maartje Nielsen and Liselotte P. van Hest performed patient counseling and clinical data acquisition. Hans Morreau performed the pathology review of the samples. Tom van Wezel, Noel F. C. C. de Miranda, Mark Drost, and Niels de Wind supervised the work. Stephanie A. Schubert, Noel F. C. C. de Miranda, and Tom van Wezel wrote the manuscript. All authors read and approved the manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request. The data are not publicly available due to privacy restrictions.

ORCID
Stephanie A. Schubert https://orcid.org/0000-0002-8655-1350
Niels de Wind https://orcid.org/0000-0002-3143-5061
Maartje Nielsen https://orcid.org/0000-0002-5351-1870
Noel F. C. C. de Miranda https://orcid.org/0000-0001-6122-1024
Tom van Wezel https://orcid.org/0000-0001-5773-7730

REFERENCES
1. Schubert SA, Morreau H, de Miranda NFCC, van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis. 2020;35(3):221-231.
2. Nielsen M, Joerink-van de Beld MC, Jones N, et al. Analysis of MUTYH genotypes and colorectal phenotypes in patients with MUTYH-associated polyposis. Gastroenterology. 2009;136(2):471-476.
3. Komine K, Shiodaira H, Takaok M, et al. Functional complementation assay for 47 MUTYH variants in a MutY-disrupted Escherichia coli strain. Mutat. Res. 2015;36(7):704-711.
4. Niessen RC, Sijmons RH, Ou J, et al. MUTYH and the mismatch repair system: partners in crime? Hum Mutat. 2006;36(7):587-592.
5. Steinke V, Rahner N, Morak M, et al. No association between MUTYH and MSH6 germline mutations in 64 HNPCC patients. Eur J Hum Genet. 2009;16(5):587-592.
6. Gilraldez MD, Balaguer F, Caldes T, et al. Association of MUTYH and MSH6 germline mutations in colorectal cancer patients. Fam Cancer. 2009;8(4):525-531.
7. Gilraldez MD, Balaguer F, Bujanda L, et al. MSH6 and MUTYH deficiency is a frequent event in early-onset colorectal cancer. Clin Cancer Res. 2010;16(22):5402-5413.
8. van Puijenbroek M, Nielsen M, Reinards THCM, et al. The natural history of a combined defect in MSH6 and MUTYH in a HNPCC family. Fam Cancer. 2007;6(1):43-51.
9. Win AK, Reece JC, Buchanan DD, et al. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene. Fam Cancer. 2015;14(4):575-583.
10. Schubert SA, Ruano D, Elsayed FA, et al. Evidence for genetic association between chromosome 1q loci and predisposition to colorectal neoplasia. Br J Cancer. 2017;117(6):1215-1223.
11. de Jong AE, van Puijenbroek M, Hendriks Y, et al. Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin Cancer Res. 2004;10(3):972-980.
12. Nielsen M, Poley JW, Verhoef S, et al. Duodenal carcinoma in MUTYH-associated polyposis. J Clin Pathol. 2006;59(11):1212-1215.
13. Drost M, Tiersma Y, Glubb D, et al. Two integrated and highly predictive functional analysis-based procedures for the classification of MSH6 variants in Lynch syndrome. Genet Med. 2020;22(5):847-856.
14. LOVD. Leiden Open Variant Database v.3.0 Build 22. https://www.lovd.nl. Accessed May 11, 2020.
15. InSiGHT. DNA Variant Database. http://insight-database.org/. Accessed May 11, 2020.
16. Gu Y, Parker A, Wilson TM, Bai H, Chang DY, Lu AL. Human MuT homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem. 2002;277(13):11135-11142.
17. Morak M, Massdorf T, Sykora H, Kerscher M, Holinski-Feder E. First evidence for digenic inheritance in hereditary colorectal cancer by mutations in the base excision repair genes. Eur J Cancer. 2011;47(7):1046-1055.
18. Wong CC, Martincorena I, Rust AG, et al. Inactivating CUX1 mutations promote tumorigenesis. Nat Genet. 2014;46(1):33-38.
19. Darsigny M, St-Jean S, Boudreau F. Cux1 transcription factor is induced in inflammatory bowel disease and protects against experimental colitis. Inflamm Bowel Dis. 2010;16(10):1739-1750.
20. Ramdzan ZM, Vaidnais C, Pal R, et al. RAS transformation requires CUX1-dependent repair of oxidative DNA damage. PloS Biol. 2014;12(3):e1001807.
21. Franklin, franklin.genoox.com. Accessed May 20, 2020.
22. Chae YS, Kim JG, Kang BW, et al. Functional polymorphism in the TRIP6, a novel molecular tumorigenesis. Fam Cancer. 2020;19(4):587-592.
23. Liao P, Wang W, Shen M, et al. A positive feedback loop between EB2 and c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis. Cell Death Dis. 2014;5(1):e1032.
24. Chastre E, Abdessamad M, Kruglov A, et al. TRIP6, a novel molecular partner of the MAGI-1 scaffolding molecule, promotes invasiveness. FASEB J. 2009;23(3):916-928.
25. Peng P, Wu W, Zhao J, et al. Decreased expression of Calpain-9 predicts unfavorable prognosis in patients with gastric cancer. Sci Rep. 2016;6:29604.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.