Genome Sequence of *Rhizobium jaguaris* CCGE525^T, a Strain Isolated from *Calliandra grandiflora* Nodules from a Rain Forest in Mexico

Luis E. Servín-Garcidueñas,a Gabriela Guerrero,b Marco A. Rogel-Hernández,b Esperanza Martínez-Romero^b

aLaboratorio de Microbiómica, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacan, Mexico

bCentro de Ciencias Genómicas, Departamento de Ecología Genómica, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico

ABSTRACT We present the genome sequence of *Rhizobium jaguaris* CCGE525^T, a nitrogen-fixing bacterium isolated from nodules of *Calliandra grandiflora*. CCGE525^T belongs to *Rhizobium tropici* group A, represents the symbiovar calliandrae, and forms nitrogen-fixing nodules in *Phaseolus vulgaris*. Genome-based metrics and phylogenomic approaches support *Rhizobium jaguaris* as a novel species.

Rhizobium jaguaris CCGE525^T was isolated from nodules of the medicinal legume *Calliandra grandiflora* growing in a rain forest in Chiapas, Mexico, and was described as related to *Rhizobium tropici* group A (1). *R. tropici* group A was defined by 16S rRNA gene sequences and distinctive phenotypic characteristics (2). We report the genome sequence of strain CCGE525, the type strain of *Rhizobium jaguaris*.

A single colony from a freeze-dried culture sample of *R. jaguaris* CCGE525^T was incubated on peptone yeast (PY) medium (5 g/liter peptone, 3 g/liter yeast extract, and 0.6 g/liter CaCl₂) for 3 days at 30°C. DNA was extracted from 3 ml of culture using a kit for cells and tissues (Roche Applied Science, Germany). A SMRTbell library of 15- to 20-kb insert size was constructed using standard protocols. The library was sequenced on a PacBio RS II sequencer (3) using P6-C4 chemistry, which yielded 3.4 Gb of data. Reads were filtered and assembled de novo using Canu v.1.5 (4). Annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (https://www.ncbi.nlm.nih.gov/genome/annotation_prok/) (5). Amino acid sequences served as input to PhyloPhlAn (6) to predict evolutionary relationships. The progressive Mauve tool was used for genome alignments (7). DNA-DNA hybridization (DDH) values were computed using the Genome-to-Genome Distance Calculator v.2.1 (8). Average nucleotide identity (ANI) values were calculated as previously proposed (9) using the ANI calculator from the Konstantinidis Lab (http://enve-omics.ce.gatech.edu/ani/) (10). Default parameters were used for all programs.

The genome of *R. jaguaris* CCGE525^T (8,025,568 bp, 58.95% G+C content, and ~278-fold coverage) consisted of a chromosome (4,575,315 bp), a chromid (2,584,926 bp), a symbiotic plasmid required for establishing interactions with legumes (550,563 bp), and an additional plasmid (314,764 bp). The genome coded for 8,400 predicted genes.

The *R. tropici* group A affiliation of *R. jaguaris* CCGE525^T was supported by its position in a genome tree (Fig. 1A). This phylogenomic approach increased resolution and confirmed the placement of *R. jaguaris* CCGE525^T as an isolated branch in the vicinity of *Rhizobium leucaenae* USDA 9039^T.

R. jaguaris CCGE525^T is classified within the symbiovar calliandrae and has the capacity to form nitrogen-fixing nodules with common bean (1). A multiple sequence alignment revealed that the symbiotic plasmid of *R. jaguaris* CCGE525^T was less conserved, with a higher fraction of low identity regions compared to the chromosomal and chromid DNA, consistent with the observed lower DDH values.
conserved and presented rearrangements compared to the similar symbiotic plasmids of *Rhizobium tropici* CIAT 899\(^T\) and *R. leucaenae* USDA 9039\(^T\) (Fig. 1B).

Sequence comparisons between the symbiotic plasmid of *R. jaguaris* CCGE525\(^T\) and the counterparts of *R. tropici* CIAT 899\(^T\) and *R. leucaenae* USDA 9039\(^T\) revealed ANI values of 85.40% and 85.48%, respectively. DDH estimates were 29.00% and 29.20% between the corresponding symbiotic plasmids. Thus, the symbiovar calliandrae is further validated.

Full-genome comparisons of *R. jaguaris* CCGE525\(^T\) revealed DDH estimates of 33.90% and 35.00% against *R. leucaenae* USDA 9039\(^T\) and *Rhizobium* sp. strain NXC24, respectively. ANI values of 87.07% and 87.50% were obtained when performing the same comparisons. These DDH and ANI values are below the thresholds for species boundaries of 70% and 95 to 96%, respectively (8, 9, 11–13). Thus, genome-based metrics allowed an accurate taxonomic circumscription of *Rhizobium jaguaris*.

Data availability. The genome sequence was deposited in GenBank under accession numbers CP032694 to CP032697. Raw sequences were submitted to the SRA database under accession number SRP174341.
ACKNOWLEDGMENTS

This research was supported by CONACyT 253116 and PAPIIT IN207718 from UNAM.

REFERENCES

1. Rincón-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martínez J, Ormeño-Orrillo E, Martínez-Romero E. 2013. Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int J Syst Evol Microbiol 63:3423–3429. https://doi.org/10.1099/ijs.0.048249-0.

2. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA. 1991. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426. https://doi.org/10.1099/00207713-41-3-417.

3. Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, Gray JJ, Holden D, Saxena R, Wegener J, Turner SW. 2010. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol 472:431–455. https://doi.org/10.1016/S0076-6879(10)72001-2.

4. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. https://doi.org/10.1101/gr.215087.116.

5. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569.

6. Segata N, Börnigen D, Morgan XC, Huttenhower C. 2013. phylophlan is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:2304. https://doi.org/10.1038/ncomms3304.

7. Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704.

8. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60.

9. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0.

10. Rodriguez-R LM, Konstantinidis KT. 2016. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 4:e1900v1. https://doi.org/10.7287/peerj.preprints.1900v1.

11. Meier-Kolthoff JP, Klenk H-P, Göker M. 2014. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. https://doi.org/10.1099/ijs.0.056994-0.

12. Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106.

13. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. https://doi.org/10.1099/ijs.0.016949-0.