Asymmetric blocking of cohesin loop reeling by boundary CTCF

CTCF binding site (CBS) orientation
CTCF protein
Cohesin complex

Asymmetric reeling of chromatin fiber
Boundary CBS inversion

Boundary CBS
Inverted boundary CBS

192x158mm (300 x 300 DPI)
Toward precision CRISPR DNA fragment editing and predictable 3D genome engineering

Qiang Wu* and Jia Shou

Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

* Correspondence to: Qiang Wu, E-mail: qwu123@gmail.com

Abstract

Ever since gene targeting or specific modification of genome sequences in mice was achieved in the early 1980s, the reverse genetic approach of precise editing of any genomic locus has greatly accelerated biomedical research and biotechnology development. In particular, the recent development of the CRISPR/Cas9 system has greatly expedited genetic dissection of three-dimensional (3D) genomes. CRISPR gene editing results from targeted genome cleavage by ectopic bacterial Cas9 nuclease followed by presumed random ligations via the host double-strand break (DSB) repair machineries. Recent studies revealed, however, that the CRISPR genome editing system is precise and predictable because of cohesive Cas9 cleavage of targeting DNA. Here, we synthesize the current understanding of CRISPR DNA fragment editing mechanisms and recent progress in predictable outcomes from precise genetic engineering of 3D genomes. Specifically, we first briefly describe historical genetic studies leading to CRISPR and 3D genome engineering. We then summarize different types of chromosomal rearrangements by DNA fragment editing. Finally, we review significant progress from precise one-dimensional (1D) gene editing toward predictable 3D genome engineering and synthetic biology. The exciting and rapid advances in this emerging field provide new opportunities and challenges to understand or digest 3D genomes.
Keywords: CRISPR, DNA fragment editing, 3D genome engineering, repair mechanisms, chromatin loops, precision modifications, predictable indels

Introduction
The successful finishing of the Human Genome Project ushers in a new era to understand and engineer genomes by reverse genetics. However, the folding of 3-billion bp one-dimensional (1D) mammalian genomes, which are ~2 meters long, into 3D structures within cell nuclei ~5 μm in diameter adds another layer of complexity. The secret of 3D genome coding likely resides in the noncoding regions — the 97.5% of mammalian genomes — that were once assumed to be ‘junk DNA’ but are now regarded as ‘crown jewels’. Specifically, high-throughput mapping of functional genomic sequences has revealed numerous noncoding DNA elements, up to 8.4 million in number (Neph et al., 2012). In addition, junk DNA transcribes so-called ‘junk RNA’ — numerous long noncoding RNA (lncRNAs) — whose functions are difficult to study (Cech and Steitz, 2014). The organizational and structural roles of these noncoding DNA elements in 3D genome regulation and function necessitate functional genetic experiments.

Trekking across time: the long journey of reverse genetics leading to CRISPR and 3D genome editing
Genetic research focuses on heredity and ‘mutants’ (Castle and Little, 1909; Muller, 1930). Some mutants arise spontaneously but specific mutants are usually generated through tedious forward genetic screening experiments (Acevedo-Arozena et al., 2008). Forward genetic screening in mice was performed before the mouse genome sequencing was finished, and greatly contributed to our understanding of human physiology (Kile and Hilton, 2005). However, reverse genetics that would generate specific alterations of mammalian genomic sequences or so-called gene targeting was a dream in the early days.

Transgenic: random integration in animal and plant genomes
Transgenes were originally derived from viruses and transposons or so-called jumping genes in animals and plants (McClintock, 1950; Jaenisch and Mintz, 1974; Bevan et al., 1983). A transgene can be integrated randomly into one or very few sites of the mouse genome and exhibits expression patterns with position-effect variegations (Figure 1A; Jaenisch and Mintz, 1974; Gordon et al., 1980; Brinster et al., 1981; Costantini and Lacy, 1981). Multiple copies of transgenes are typically integrated at a random genomic site in
tandem arrays as a head-to-tail concatemer (Figure 1A; Brinster et al., 1981; Folger et al., 1982). Homologous recombination was demonstrated convincingly to be the predominant mechanism of head-to-tail transgene integration (Folger et al., 1982). In fact, it is with this conviction that eventually led to the development of gene targeting in mice (Capecchi, 2005).

Gene targeting or knockout mice

Gene targeting is different from transgenic technologies and has greatly accelerated biological researches. Even before the completion of the mouse genome sequencing, the dream of specific modification of any mouse locus had been realized by so-called gene targeting (Figure 1A; Smithies et al., 1985; Thomas et al., 1986). The technique is achieved by constructing a targeting vector with designed modification in a specific locus, which is flanked by two homologous arms. This donor template is then introduced into mouse embryonic stem (ES) cells (Evans and Kaufman, 1981; Martin, 1981) and replace the endogenous sequences through homologous recombination (HR) (Figure 1A). Finally, the ES cell clones carrying the designed specific modification are then injected into the mouse blastocoel cavity to generate chimeric mice. Heterozygous or homozygous mice could then be obtained simply by breeding. The remarkable technique and general protocol for generating knockout mice with any gene targeted were quickly developed (Mansour et al., 1988).

Gene editing with ZFN, TALEN, and CRISPR

Targeted gene replacement through homologous recombination has also been achieved for other model organisms such as yeast and flies (Scherer and Davis, 1979; Rong and Golic, 2000). Since free DSB (double-strand break) ends greatly stimulate homologous recombination (Figure 1B; Orr-Weaver et al., 1981; Jasin and Berg, 1988), intense efforts were devoted to creating targeted DSBs. A series of programmable endonucleases, including zinc-finger nucleases (ZFNs) (Bibikova et al., 2003), transcription activator-like effector nucleases (TALENs) (Miller et al., 2011), and clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) (Gasiunas et al., 2012; Jinek et al., 2012; Cong et al., 2013; Mali et al., 2013), were found to be able to introduce not only targeted modifications across genomes but also targeted head-to-tail insertions (Figure 1B–D; Folger et al., 1982; Skryabin et al., 2020). CRISPR, in particular, has revolutionized targeted genome modification because of its simplicity and practicality.
CRISPR: clustered regularly interspaced short palindromic repeats

CRISPR/Cas9 is an RNA-guided adaptive immune system of bacteria and archaea, which defends against phage or virus infection and plasmid conjugation. The type II CRISPR/Cas9 system has been widely used for genome editing. The programmable CRISPR/Cas9 system consists of a synthetic single-guide RNA (sgRNA; derived from crRNA and tracrRNA) and RNA-guided Cas9 nuclease (Figure 1D; Jinek et al., 2012). Upon recognition of a protospacer adjacent motif (PAM, NGG for SpCas9 from *Streptococcus pyogenes*) downstream of the targeting sequence, Cas9 cleaves the complementary and non-complementary strands of the target DNA duplex by the HNH and RuvC nuclease domains, respectively (Garneau et al., 2010; Gasiunas et al., 2012; Jinek et al., 2012), resulting in presumed blunt-ended DSBs which are then ligated by cellular endogenous DNA repair machineries (Figure 1D).

Gene editing outcomes from single DSBs

There are numerous gene editing applications of single DSBs from CRISPR. The simplest application is the generation of frameshift mutations in the coding region of a protein-encoding gene. Cas9 can be reprogrammed by single sgRNAs to target a coding exon, generating one DSB that often leads to nucleotide insertions and/or deletions (indels). Two thirds of these indels can cause a shift in the open reading frame of a protein coding gene, resulting in truncated protein translation or null mutation through the nonsense-mediated mRNA decay. Recent studies demonstrated, however, that single DSBs also lead to large deletions from extended long resections (Li et al., 2015a; Shin et al., 2017; Kosicki et al., 2018; Jia et al., 2020; Kosicki et al., 2020). In addition, Cas9 with single sgRNAs cause frequent loss-of-heterozygosity or gene conversion as well as allele-specific chromosomal removal in human embryos (Alanis-Lobato et al., 2020; Liang et al., 2020; Zuccaro et al., 2020). Finally, if a donor DNA template is provided, single DSBs often leads to targeted precise gene insertions through homologous recombination (Figure 1B).

3D genome primer

Although genetic information is encoded in the finished linear 1D genomic sequences, the extremely long and thin DNA molecules do actually exist in Euclidean 3D space and are physically folded into a cell nucleus. Each interphase chromosome occupies a distinct territory and compartmentalizes further into multiple topologically associated domains (TADs). The recognition sites of architectural protein CCCTC binding factor (CTCF) are enriched at boundaries of chromatin domains; however, there are also numerous CTCF
sites located within topological domains or TADs. Exactly how 3D genomes are folded and regulated remains unknown; however, novel technological developments have enabled tremendous progress in 3D genomics (Banigan and Mirny, 2020; Li et al., 2020a; Zhang and Li, 2020). In particular, DNA fragment editing or CRISPR-induced chromosomal rearrangements have shed significant insights into the mechanisms of 3D genome folding (Liu and Wu, 2020).

There are numerous excellent reviews on CRISPR or 3D genomics (Doudna and Charpentier, 2014; Huang and Wu, 2016; Jiao and Gao, 2016; Yan and Li, 2019; Yang and Huang, 2019; Zhang, 2019; Anzalone et al., 2020; Li et al., 2020a; Yang and Chen, 2020; Zhang and Li, 2020; Zhang et al., 2020). Here, we focus on chromosomal rearrangements and 3D genome engineering by DNA fragment editing using Cas9 with dual sgRNAs.

Chromosomal rearrangements by CRISPR with dual sgRNAs

Structural chromosomal abnormalities or chromosomal rearrangements include DNA fragment deletions, inversions, duplications, translocations, and insertions (Figure 2; Shaffer and Lupski, 2000; Huang and Wu, 2016). Chromosomal rearrangements are estimated to occur at 0.6% of human newborns (Jacobs et al., 1992). In addition, recurrent chromosomal rearrangements are quite frequent in human neurological diseases (Weckselblatt and Rudd, 2015) and tumors (Rabbitts, 1994; Mitelman et al., 1997). Early studies to model human diseases generated large chromosomal rearrangements of up to tens of millions bp in mice through the combined technologies of gene targeting and Cre/LoxP recombination (Ramirez-Solis et al., 1995; Herault et al., 1998; Wu et al., 2007; and reviewed in Mills and Bradley, 2001; Yu and Bradley, 2001). ZFNs and TALENs have also been used to generate chromosomal rearrangements in human cells (Lee et al., 2010; Gupta et al., 2013; Nyquist et al., 2013; Xiao et al., 2013). In this section, we outline 3D genome engineering by modeling chromosomal rearrangements using the CRISPR/Cas9 system with dual sgRNAs (Figure 2; Li et al., 2015b).

Chromosomal rearrangements by DNA fragment editing

Disruption of a specific gene of interest could be easily achieved by Cas9 reprogrammed with single sgRNAs because two thirds of random indels at a DSB site within a protein coding region result in frameshifts. For noncoding elements, however, random indels induced by Cas9 with single sgRNAs are usually not enough. A practical way to characterize noncoding regions, of which there are estimated millions in mammalian
genomes, is to generate very large deletions containing defined regions with multiple noncoding elements (Wu et al., 2007). Engineering a large DNA fragment could be achieved by Cas9 reprogrammed with dual sgRNAs, which would generate two concurrent DSBs in a genome (Figure 2). Specifically, with the participation of cellular DNA repair proteins, the four DSBs ends generated by the two Cas9 cleavages are randomly ligated, resulting in DNA fragment deletion or inversion when concurrent DSBs occur on single chromosomes (Figure 2A and B) and DNA fragment duplication or translocation when the DSBs occur on different chromatids or chromosomes (Figure 2C and D).

DNA fragment deletion by CRISPR

It is well established that Cas9 with dual sgRNAs can easily generate DNA fragment deletions (Figure 2A; Huang and Wu, 2016). However, initial utilization of the CRISPR system with dual sgRNAs has been to mitigate off-target activity. The D10A Cas9 nickase guided by paired sgRNAs in proper configurations and optimized offsets generates double nicking and 5’ overhangs (Ran et al., 2013; Shen et al., 2014). Subsequent targeting of two separate intrachromosomal sites by wildtype Cas9 with dual sgRNAs results in the interstitial deletion of large DNA fragments in zebrafish (Gupta et al., 2013; Xiao et al., 2013), mammalian cells (Cong et al., 2013; Mali et al., 2013; Canver et al., 2014; Guo et al., 2015; He et al., 2015; Li et al., 2015c; Kim et al., 2017; Guo et al., 2018; Schmieder et al., 2018; Shou et al., 2018; Shi et al., 2019; Jia et al. 2020), mice (Zhou et al., 2014; Li et al., 2015c; Wu et al., 2019), rabbits (Song et al., 2016), worms (Chen et al., 2014), and plants (Pauwels et al., 2018; Schmidt et al., 2019) (Table 1).

DNA fragment inversion by CRISPR

In addition to DNA fragment deletions, DNA fragment inversion events also occur through double cutting, which is different from double nicking, within single chromosomes (Figure 2B). Different from DNA fragment deletion, in which there is only one junction after deleting the intervening sequences, DNA fragment inversion has an upstream junction and a downstream junction after inverting the intervening DNA fragment (Huang and Wu, 2016). DNA fragment inversions using Cas9 guided with dual sgRNAs can be easily achieved in cultured cells (Canver et al., 2014; Choi and Meyerson, 2014; Guo et al., 2015; Kraft et al., 2015; Li et al., 2015a; Park et al., 2015), mice (Blasco et al., 2014; Maddalo et al., 2014; Kraft et al., 2015; Li et al., 2015a; Serugia et al., 2015; Boroviak et al., 2016; Birling et al., 2017; Lu et al., 2019; Jia et al. 2020), rats (Birling et al., 2017), and plants (Schmidt et al., 2019). In particular, DNA fragment inversion results in the generation of an
oncogenic gene from fusion of two genes at an inversion junction in mouse somatic tissues that faithfully models human tumors (Blasco et al., 2014; Maddalo et al., 2014). Finally, Cas9 guided by dual sgRNAs has been used to study the role of the orientation of noncoding regulatory elements such as enhancers and insulators (Guo et al., 2015; Li et al., 2015a).

DNA fragment duplication by CRISPR

Chromosomal duplications can be generated by trans-allelic ligations of DSB ends in two homologous chromosomes or chromatids (Figure 2C; Golic and Golic, 1996; Wu et al., 2007; Li et al., 2015a). Specifically, DNA fragment duplications can be generated by complementary trans-chromatid ligations of paracentric DSB ends resulting from cleavages by Cas9 guided with dual sgRNAs after DNA replication during both mitosis and meiosis. Thus, Cas9 guided with dual sgRNAs induces DNA fragment duplications in cultured cells (Kraft et al., 2015; Li et al., 2015a). In addition, DNA fragment duplications in mice *in vivo* can be induced by Cas9 with dual sgRNAs through pronuclear microinjection (Li et al., 2015a; Korablyev et al., 2017). In particular, a tandem duplication of a 1211-bp DNA fragment was confirmed by Sanger sequencing of the entire duplicated segment (Li et al., 2015a). Finally, quantitative analyses revealed frequent segmental duplications by Cas9 with dual sgRNAs, though with lower efficiency compared with that of DNA fragment deletions and inversions (Li et al., 2015a).

Chromosomal translocation by CRISPR

Chromosomal translocations result from joining DSB ends in two distinct chromosomes (Figure 2D). Recurrent chromosomal translocations are frequent in many types of tumors especially in leukaemias (Lieber, 2016; Vanoli and Jasin, 2017; Brunet and Jasin, 2018; Cheong et al., 2018). Cas9 reprogrammed with dual sgRNAs that target specific loci in non-homologous chromosomes has been used to induce chromosomal translocations to model human Ewing’s sarcoma (ES), desmoplastic small round cell tumors, and acute myeloid leukaemia (AML) (Torres et al., 2014; Vanoli et al., 2017).

Relationship between DNA fragment size and editing frequency

Deletion frequencies at some loci are inversely correlated with the sizes of the intervening sequences between the two cleavage sites (Canver et al., 2014). However, at other loci, there is no inverse correlation between DNA-fragment-deletion frequency and the fragment size (Table 1; He et al., 2015; Kraft et al., 2015; Li et al., 2015a; Schmieder et al., 2015).
In addition, the frequencies of DNA-fragment inversion and DNA-fragment duplication have no relationship with fragment sizes (Table 1). The DNA fragment editing frequency may be related to the locus-specific 3D chromatin structure as well as the spatial distance between the two cutting sites, which is an unresolved problem requiring further studies.

DNA fragment insertion by CRISPR

DNA fragment insertion can be efficiently achieved through the CRISPR system using Cas9 with either dual sgRNAs or single sgRNAs (Figure 2E). Mechanistically, DNA fragment insertions can be achieved by either homologous recombination or nonhomologous end-joining (Suzuki et al., 2016). It is known that single cuts by Cas9 stimulate DNA fragment insertion through HR with a donor template harboring flanking homologous arms. One study carefully investigated the DNA fragment insertion efficiencies of HR by Cas9 with dual sgRNAs (Byrne et al., 2015). Moreover, Cas9 with dual sgRNAs targeting both the genome and donor template may be more efficient through homology-mediated end joining (HMEJ) (Yao et al., 2017). However, insertion needs careful screening for single-copy insertional clones or mice because any donor template could result in random head-to-tail tandem insertions just as transgenes (Folger et al., 1982; Skryabin et al., 2020). Thus, the DNA fragment insertion clones or mice are best screened by Southern blot analyses rather than by PCR only.

Many ways to cut and heal

The mutated sequences obtained from CRISPR/Cas9 editing result from eventual consequences of the opposite forces of Cas9 cleavage and cellular repair. Specifically, the observed random indels by Cas9 with single sgRNAs are eventual repaired outcomes after cycles of repeated ligation and cleavage of precisely ligated DNA ends. In addition to blunt-end cleavage, Cas9 can also cohesively cleave the DNA duplex generating staggered ends with 5’ overhangs. Thus, the cohesive cleavage of Cas9 actually generates diverse profiles of DSB ends with distinct 5’ overhangs. Finally, rapid progress in the field has made it possible to predict editing outcomes by manipulating DNA repair pathways (Long, 2019; Yeh et al., 2019).

Double cutting vs. single cutting

The plain difference between cleavages of double and single cutting is that double cutting generates four DSB ends. The combinatorial ligations of two of these four DSB ends result
in a variety of chromosomal rearrangements (Figure 2). The fundamental difference between double and single cutting is that in single cutting, after precise ligation of the two DSB ends, the repaired sequences still match the targeting sgRNA and thus can be recut. In contrast, the ligations of combinatorial two DSB ends out of the four ends from double cutting cannot be recut since the rearranged junctional sequences no longer match either of the two targeting sgRNAs (Huang and Wu, 2016; Shou et al., 2018; Shi et al., 2019). Therefore, dual-sgRNA-mediated chromosomal rearrangements maintain the integrity of Cas9-cleavage ends and make them less vulnerable to end-processing by repair enzymes (Figure 2). Hence, precise ligations upon direct rejoining of Cas9 blunt-cleavage ends after double cutting are much more frequent than after single cutting (Li et al., 2015a; Zhu et al., 2016b; Guo et al., 2018; Shou et al., 2018).

Cohesive Cas9 cleavage in vitro and in silico

Since the advent of Cas9-mediated genome editing, it has long been assumed that Cas9 cleaves the targeting DNA duplex at the -3 position upstream of the PAM site, generating blunted DSB ends with no overhang (Figure 1D; Gasiunas et al., 2012; Jinek et al., 2012). In contrast to the earlier finding that Cas9 has potential exonuclease activity, in silico molecular dynamics modeling and in vitro high-throughput sequencing suggest that Cas9 cleaves the noncomplementary strand at the -4 position upstream of the PAM site (Kim et al., 2016; Palermo et al., 2016; Zuo and Liu, 2016). In addition, in vitro cleavage of dsDNA, whose noncomplementary strand is labelled at the 3' ends, reveals both blunted and cohesive Cas9 cleavages (Shou et al., 2018; Stephenson et al., 2018). Specifically, in vitro cleavage of dsDNA duplex with the 3'-biotin-labelled noncomplementary strand reveals flexible cleavages at the -4 and -3 positions upstream of the PAM site (Shou et al., 2018). Finally, deep sequencing of in vitro Cas9-cleaved products reveals flexible cleavages of the noncomplementary strand at the -6, -5, -4, and -3 positions upstream of the PAM site but the exact cleavage of the complementary strand at the -3 position (Shi et al., 2019). Collectively, these studies clearly show that Cas9 endonucleolytically cleaves the noncomplementary strand at the -6, -5, -4, and -3 positions in vitro, generating cohesive DSB ends with 1-3 nt 5’ overhangs as well as blunted ends (Figure 3A).
Cohesive Cas9 cleavage in vivo

Overwhelming evidence suggests cohesive Cas9 cleavage in vivo. First, the predicted metal coordination distance to the -3 phosphate is much larger than expected for the typical RuvC catalysis (Figure 3B; Chen and Doudna, 2017). Second, Cas9-mediated nucleotide insertions at junctions of DNA fragment editing are strongly biased toward nucleotides at the -6, -5, and -4 positions upstream of the PAM site in vivo (Figure 3A; Shou et al., 2017; Shi et al., 2019). Finally, by engineering the Cas9 hinge regions located between the HNH and RuvC nuclease domains, rationally-designed Cas9 variants display R-loop dependent alterations of the scissile profile of the noncomplementary strand in vivo (Figure 3A; Shou et al., 2018). Taken together, these studies suggest that Cas9 cleaves targeting DNA duplex with flexibility on the noncomplementary strand, resulting in DSB ends with 5' overhangs.

Mechanism of cohesive Cas9 cleavage

Cas9 RuvC and HNH nuclease domains cleave noncomplementary and complementary strands via putative two-metal-ion and one-metal-ion mechanisms, respectively (Jinek et al., 2014; Nishimasu et al., 2014; Chen and Doudna, 2017). In both the two-metal-ion and one-metal-ion mechanisms, nucleophilic attack is always in-line from the 5' site of the phosphodiester bond, resulting in 5' phosphate and 3' hydroxyl groups (Figure 3B; Yang, 2010). Whereas one magnesium ion coordinates Cas9 HNH active sites to the scissile phosphate at exactly the -3 position upstream of NGG PAM after a large conformational change, two magnesium ions coordinate Cas9 RuvC active sites to the scissile phosphate at positions further upstream of PAM, resulting in flexible Cas9 cleavages with variable staggered 5' overhangs.

After cutting — DSB repair pathways

DNA damage response (DDR) pathways are activated after Cas9 cleavage to repair the resulting DSBs. The repair of mammalian DSBs involves three possible pathways: homologous recombination (HR), canonical nonhomologous end-joining (cNHEJ), and alternative nonhomologous end-joining (aNHEJ) which includes microhomology-mediated end joining (MMEJ) (Figure 3C; Chang et al., 2017). In mammalian cells, when a template donor is available, the HR repair pathway is used to achieve precise genome editing, including insertion or replacement of specific sequences. However, the low efficiency of
HR limits its usage (Ceccaldi et al., 2016a). When no donor is provided, both cNHEJ and aNHEJ (Figure 3C) are predominant pathways for repairing DSBs introduced by Cas9.

In the cNHEJ repair pathway, the Ku70–Ku80 heterodimer recognizes DSB ends to protect them from being processed by resection nucleases (Figure 3C; Deriano and Roth, 2013). The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and the endonuclease Artemis are then recruited to the Ku-DNA ends. They form an Artemis–PK–Ku complex at the DSB ends. Finally, precise ligations of the two DSB ends are catalyzed by the ligase IV–XRCC4–XLF complex (Deriano and Roth, 2013). Thus, cNHEJ is an accurate and precise DSB repair pathway (Shou et al., 2018).

The aNHEJ pathway was originally thought to be a backup repair mechanism for cNHEJ and it usually introduces small indels (Figure 3C). If the cNHEJ repair pathway is not available or is disrupted, the DSB ends will be repaired by the aNHEJ pathway, resulting in error-prone large indels or chromosomal rearrangements. Indeed, in species with no cNHEJ pathway, the genomes are prone to chromosomal rearrangements via aNHEJ (Deng et al., 2018).

In the aNHEJ pathway, extensive resections of DSB ends are catalyzed by several resection nucleases including the MRE11–RAD50–NBS1 (MRN) complex (Nijmegen breakage syndrome protein 1 or nibrin). These resections are facilitated by CtBP-interacting protein (CtIP or RBBP8) and FANCD2 (Ceccaldi et al., 2016b; Chang et al., 2017; Shou et al., 2018). The resection exposes single-stranded DNA (ssDNA) overhangs that could be annealed by complementary base pairing. The annealed DSB ends are then ligated by XRCC1 and DNA ligase III of the aNHEJ pathway, generating indels (Chang et al., 2017). Thus, cNHEJ- and aNHEJ- mediated DNA repairs either join the DSB ends directly or modify them slightly, resulting in precise ligation or small indels, respectively (Figure 3C).

Random vs. nonrandom indels
Initial gene editing by CRISPR indicates that prevalent random indels are induced by Cas9 cleavage programmed with single sgRNAs in heterologous systems (Cho et al., 2013; Cong et al., 2013; Jinek et al., 2013; Mali et al., 2013). Similarly, random small indels at the junctions of chromosomal rearrangements — or at the Cas9 cleavage site for the so-called scarring — are also introduced by DNA fragment editing with Cas9 reprogrammed with dual sgRNAs (Canver et al., 2014; Kraft et al., 2015; Li et al., 2015a). These random indels likely result from the NHEJ repair pathway (Figure 3C; Jiang and Marraffini, 2015; Huang and Wu, 2016).
Subsequent studies by Cas9 reprogrammed with dual sgRNAs show that, in addition to random indels or scarring at individual cleavage sites and rearranged junctions (Cong et al., 2013; Mali et al., 2013; Wang et al., 2013; Xiao et al., 2013; Canver et al., 2014; Guo et al., 2015; He et al., 2015; Kraft et al., 2015; Li et al., 2015a; Schmieder et al., 2018; Shou et al., 2018; Shi et al., 2019), there are predominant ligations at exactly the -3 positions and precise chromosomal rearrangements (Figure 4A; Canver et al., 2014; Guo et al., 2015; Li et al., 2015a; Huang and Wu, 2016; Zhu et al., 2016b). Moreover, profiling of DNA repair outcomes demonstrates that indels induced by Cas9 programmed with single sgRNAs are nonrandom and are related to sequences of the protospacer (van Overbeek et al., 2016). Finally, recent studies revealed that editing outcomes by the CRISPR/Cas9 system are precise (Figure 4A) and predictable (Figure 4B; Shou et al., 2017; Allen et al., 2018; Chakrabarti et al., 2018; Shen et al., 2018; Taheri-Ghahfarokhi et al., 2018; Chen et al., 2019; Iyer et al., 2019; Leenay et al., 2019; Long, 2019; Molla and Yang, 2020).

Predictable deletions

When homologous sequences near the DSB ends generated by Cas9 with single sgRNAs are direct repeats, small deletions could be generated via the MMEJ pathway (Figure 4B; McVey and Lee, 2008; Shou et al., 2018). Specifically, if resections expose short complementary sequences within 3’ overhangs, they will form a DNA duplex and the 3’ flap will be cleaved by flap endonuclease 1 (FEN1), resulting in predictable deletions (Figure 4B; Iyer et al., 2019). Similarly, when direct repeats flank the two cleavage sites of Cas9 targeted by dual sgRNAs, the intervening sequences could be deleted via the MMEJ pathway (Figure 4C; McVey and Lee, 2008; Shou et al., 2018).

Predictable nucleotide insertions at editing junctions

CRISPR editing technologies are moving forward at lightning speed. It used to be thought of as uncontrollable or unpredictable but now is considered predictable through machine learning approaches. For example, base editing outcomes have recently been shown to be predictable (Arbab et al., 2020). In this section, we focus on predictable nucleotide insertions based on the mechanistic understanding of cohesive or staggered Cas9 cleavage. In particular, the cohesive Cas9 cleavage mechanism has a profound impact on gene editing outcomes of the CRISPR system in a wide variety of scenarios and species. If Cas9 cleavage ends with single nucleotide 5’ overhangs are filled in and ligated, it will
result in duplications of the - 4 nucleotide (Table 2). Similarly, if Cas9 cleavage ends with 2 nt overhangs are filled in and ligated, it will lead to repetition of the dinucleotide of the - 5 and - 4 positions (Table 2). Finally, if Cas9 cleavage with 3 nt overhangs are filled in and ligated, it will produce repetition of the trinucleotide of the - 6, - 5, and - 4 positions (Table 2).

Predictable single nucleotide insertions at single cutting sites

Extensive studies have shown that Cas9-mediated single nucleotide insertions at repair junctions in budding yeast, mouse ES cells, mammalian cell lines, and mice are predictable (Figure 4D; Shou et al., 2017; Chakrabarti et al., 2018; Kalhor et al., 2018; Lemos et al., 2018; Shen et al., 2018; Taheri-Ghahfarokhi et al., 2018; Chen et al., 2019; Gisler et al., 2019; Leenay et al., 2019). When Cas9 reprogrammed with single sgRNAs cleaves the noncomplementary strand at the - 4 position, it will generate two cohesive ends with 1-nt 5' overhangs, which could be filled-in by an unknown polymerase (Figure 4D). The two filled-in DSB ends are then ligated directly, generating single nucleotide insertion which is the duplication of the - 4 nucleotide upstream of PAM (Figure 4D). This ligation mechanism is via the cNHEJ pathway since blocking XRCC4 results in a significant decrease of precise ligation in DNA fragment editing (Shou et al., 2018). In addition, knocking down of DNA ligase IV leads to a significant decrease of precise DNA-fragment-deletion efficiency, suggesting that cNHEJ is an error-free DNA repair pathway (Shou et al., 2018). Therefore, numerous cases of 1-bp insertions, which were reported as random insertions, actually result from Cas9 cohesive cleavage at the - 4 position (Table 2). For example, the Nana `+1' allele of CCR5 of the unethically edited baby (Ryder, 2018) is probably generated by cohesive Cas9 cleavage at the - 4 position, resulting in two DSB ends with 1 nt 5' overhang, which are then filled in and ligated precisely (Figure 4E). All in all, gene editing via Cas9 cohesive cleavage at the - 4 position generates predictable 1-bp insertions (Table 2).

Dinucleotide and trinucleotide insertions at single cutting sites

If Cas9 RuvC domain cleaves the noncomplementary strand at the - 5 or - 6 position
upstream of PAM, it will generate two cohesive DSB ends each with a dinucleotide or trinucleotide 5' overhang. After both of them get filled-in, these filled-in ends could be blunt-end ligated via the cNHEJ pathway. This will generate a dinucleotide or trinucleotide insertion, which is the tandem duplication of the dinucleotide or trinucleotide further upstream of the -3 position of PAM (Table 2; Figure 4F).

Prominent predictable nucleotide insertions at rearranged junctions of double cutting
Systematic analyses of the inserted nucleotides reveal predictable nucleotide insertions at the junctions of chromosomal rearrangements by Cas9 with dual sgRNAs (Table 3; Shou et al., 2018). Interestingly, the frequency of nucleotide insertions (1, 2, or 3 nt) is much higher at junctions of chromosomal rearrangements by double cutting than that by single cutting (Shi et al., 2019). The reason for the increased insertion frequency at rearranged junctions is that the ligated junctions of chromosomal rearrangement after Cas9 double cleavages cannot be recut. For single Cas9 cleavages, the two cohesive DSB ends are always complementary to each other (Figure 3A). After annealing of the cohesive ends and ligation by cellular repair machineries, it will be recut by Cas9 programmed with the same sgRNA. By contrast, any two DSB ends from chromosomal rearrangements, which have distinct 5’ overhangs, are rarely complementary to each other, and thus cannot be annealed and recut by Cas9 programmed with either of the two original sgRNAs.

There are barely any 2- or 3-bp insertions with Cas9 reprogrammed with single sgRNAs (Figure 4F; Allen et al., 2018; Shen et al., 2018; Chen et al., 2019; Leenay et al., 2019). In addition, Cas9 reprogrammed with single sgRNA shows significantly higher frequency of 1-bp insertions than 2- or 3-bp insertions (Chen et al., 2019; Shi et al., 2019). The reason that 2- or 3-bp insertions with Cas9 guided by single sgRNAs are much less observable (Allen et al., 2018; Shen et al., 2018; Leenay et al., 2019; Shi et al., 2019) than by dual sgRNAs (Shou et al., 2018; Shi et al., 2019) (Figure 4F) is that the annealing efficiencies of 2- or 3-bp overhangs after Cas9 single cleavages are much higher than that of 1-bp overhangs, and thus the repaired 2- or 3-bp cohesive overhangs are more frequent to be recut. Overall, predictable nucleotide insertions are easily observed at junctions of chromosome rearrangements by Cas9 with dual sgRNAs (Figure 5; Shou et al., 2018; Shi et al., 2019).

Toward precise and predictable genome editing
In order to achieve precise and predictable genome editing, the Cas9 endonuclease
effector needs first to be located precisely to a targeting site. Once targeted to a genome site, the Cas9 effector can make a predictable modification on the sequences of the targeting site. Novel derivative gene editing systems such as base editing and prime editing are developed rapidly (Anzalone et al., 2020; Yang and Chen, 2020). The base editing system is achieved by fusing dCas9 with a nucleobase deaminase such as cytidine deaminases of the APOBEC/AID family or adenosine deaminase (Komor et al., 2016; Gaudelli et al., 2017). The prime editing system is achieved by fusing H840A Cas9 with a reverse transcriptase and also fusing sgRNA with designed sequences functioning as a priming RNA template for reverse transcription, so-called prime editing guide RNA or pegRNA (Anzalone et al., 2019). Both of these new gene editing systems have advantages of precise editing without the requirement of DNA donor templates and DSBs. In this section, we focus only on precise and predictable genome editing derived from the mechanistic understanding of the Cas9 catalysis.

Factors influencing CRISPR genome editing
Various factors influence the complexity of DNA repair outcomes, including the type of DNA repair pathways chosen by host cells, the diversity of DSB ends from Cas9 cleavage, and the 3D genome sequence context surrounding the DSBs. In particular, inhibiting the aNHEJ pathway by knocking down of its component proteins of CtIP or FANCD2 enhances precise DNA fragment deletion since cNHEJ and aNHEJ compete with each other for repair substrates (Figure 3C; Shou et al., 2018). Conversely, overexpression of CtIP protein facilitates usage of the MMEJ pathway and results in predictable deletions (Figure 4B; Nakade et al., 2018). In addition, interplays between structures of DSB ends and cellular repair protein machineries (resection nucleases, polymerases, and ligases) likely determine end-joining patterns. Indeed, DSB polarity influences repair outcomes at the editing junctions of Cas9-induced artificial class switching and translocations in human B cells (So and Martin, 2019).

Mechanism for computer programs of machine learning
Precise and predictable Cas9-mediated genome editing could be achievable through machine learning. For example, computer programs with machine learning algorithms have been recently developed to predict repair outcomes and to achieve predictable genome editing (Allen et al., 2018; Shen et al., 2018; Chen et al., 2019; Leenay et al., 2019). Specifically, with editing using SpCas9 with the PAM site of NGG, the presence of a nucleotide of ‘T’ or ‘A’ at the -4 position tends to result in more predictable 1-bp insertions.
In contrast, the presence of a nucleotide of ‘G’ at the -4 position tends to generate more predictable deletions. The reason for this deletion preference is related to microhomology between the ‘G’ at the -4 position and the N’GG’ of the PAM site (Shi et al., 2019).

Predictable MMEJ-mediated DNA fragment inversion

Short inverted repeats flanking the two cleavage sites induce microhomology-mediated inversion of the intervening sequences. Namely, when homology sequences near the DSB ends are inverted repeats, the intervening sequences can be inverted via the MMEJ pathway (Figure 4G; McVey and Lee, 2008; Li et al., 2015a). Therefore, MMEJ-mediated precise DNA fragment editing may be predicted from microhomologous sequences around the two cleavage sites.

Toward predictable chromosomal rearrangements

Cas9 programmed with dual sgRNAs induces predictable junctional insertions of DNA fragments editing since specific PAM configurations can generate distinct combinations of DSB ends from cohesive Cas9 cleavages (Figure 5; Shou et al., 2018). For example, in the NGG–NGG PAM configuration, the flexible cleavage profile of Cas9 with sgRNA2 can be obtained by sequencing rearranged junctions of DNA fragment deletion. Similarly, the flexible cleavage profile of Cas9 with sgRNA1 can be obtained by sequencing rearranged junctions of DNA fragment duplication. The nucleotide insertions at the downstream junctions of DNA fragment inversion can be easily predicted by the combined cleavage profiles of both sgRNAs (Figure 5A). Note that the upstream junctions of DNA fragment inversion for the NGG–NGG PAM configuration are always precise (Figure 5A). Similarly, the rearranged junctions of DNA fragment deletion (Figure 5B), the downstream junctions of DNA fragment inversion (Figure 5C), and the rearranged junctions of DNA fragment duplication (Figure 5D) are always precise for the NGG–CCN, CCN–CCN, and CCN–NGG PAM configurations, respectively. In addition, the nucleotide insertions at rearranged junctions of DNA fragment duplication, the upstream junctions of DNA fragment inversion, and the rearranged junctions of DNA fragment deletion are predictable for the NGG–CCN, CCN–CCN, and CCN–NGG PAM configurations, respectively (Figure 5B–D). Understanding the mechanisms of chromosomal rearrangements will facilitate precise and predictable CRISPR DNA fragments editing.

Chromosomal rearrangement mechanisms in the context of 3D genome
After Cas9 cleavage, the histone H2AX within nucleosomes located in the regions flanking the DSB ends is phosphorylated by the ATM kinase, generating γH2AX (Iacovoni et al., 2010; Lee et al., 2014a). Interestingly, a recent study showed that Cas9 is a genome mutator and induces γH2AX accumulation (Xu et al., 2020). In addition, long-distance chromatin interactions are increased within the γH2AX chromatin domains (Aymard et al., 2017). However, whether these increased chromatin interactions influence the form of the so-called ‘DNA repair foci’ needs further exploration (Marnef and Legube, 2017).

Several recent studies have shown that CTCF participates in DSB repair through its interaction with the repair proteins of BRCA2, RAD51, Mre11, and CtIP (Han et al., 2017; Hilmi et al., 2017; Lang et al., 2017; Hwang et al., 2019). In addition, cohesin inhibits distal DSB end joining (Gelot et al., 2016). Because CTCF and cohesin are known prominent 3D genome architecture proteins (Merkenschlager and Nora, 2016), the recruitment of CTCF and its associated cohesin complex to the regions around DSB ends suggests that 3D genome architecture is closely related to DNA double-strand break repair.

3D motility of DSB ends in the nuclear space
In order to repair and ligate Cas9-induced DSB ends, they need to be brought into close spatial contact in the 3D nuclear space. Nuclear actin may play an important role in DSB motility required for both HR and NHEJ repairs (Caridi et al., 2018). Clustering of DSB ends and formation of a macro-repair center may be a prerequisite for proper chromosomal rearrangements by DNA fragment editing (Jasin and Rothstein, 2013; Aymard et al., 2017).

Toward precise and predictable 3D genome editing: from 1D to 3D
The higher-order chromatin structure is highly dynamic and is regulated by epigenetic processes of DNA methylation, histone modification, and chromatin remodeling, ensuring proper cellular processes such as DNA replication, RNA transcription, and DNA damage repair in response to developmental or physiological signals (Dekker and Mirny, 2016; Hansen et al., 2018; Bickmore, 2019). Structural variations or chromosomal rearrangements affect 3D genome organization and gene expression. Editing of higher-order chromatin structures or engineering chromosomal rearrangements to model genome structural variations not only sheds light on the fundamental mechanisms of 3D genome folding but also contributes to our understanding of aberrant 3D genome folding in human diseases (Wang et al., 2019b). Specifically, 3D genome engineering may pave the way to understanding vast GWAS data and CRISPR correction of aberrant alleles may lead to
human disease therapy in the future (Qian et al., 2019).

Proximity-igation-based chromosome conformation capture (3C) technologies, in conjunction with high-throughput next-generation sequencing, have led to tremendous progress in understanding 3D genome architecture (Dekker et al., 2002; Rao et al., 2014; Liu et al., 2017a; Tan et al., 2019; reviewed in Denker and de Laat, 2016; Zheng and Xie, 2019). In addition, fluorescence-labelled single-molecule imaging with super-resolution microscopy has shed significant light on the mechanisms of genome folding (Hansen et al., 2018; Sigal et al., 2018). Although genetic methods have long been used to investigate the position-effects variegations of chromatin organization (Lewis, 1950; McClintock, 1950), they have not been widely used to probe 3D genome organization compared to various chromosome conformation capture (3C, 4C, 5C, 6C, 7C, Hi-C, capture-C, etc.) ‘C’ technologies and imaging methods.

General principles of 3D genome organization

The 3D genomes in the nuclear space are thought to be assembled in a hierarchical manner composed of successive chromosomal territories, compartments or clustering regions, TADs or topological domains, and chromatin loops (Dekker and Mirny, 2016; Dixon et al., 2016; Bickmore, 2019). Briefly, each interphase chromosome occupies a distinct territory. Within a chromosome territory, chromatin fibers are segregated into active and inactive compartments with distinct histone modifications. Chromatin compartments are further divided into TADs or topological domains which are thought to be enriched in long-distance chromatin contacts or loops (Bonev and Cavalli, 2016). Emerging evidence suggests, however, that chromosome compartments are smaller than previously thought and could be the consequences of gene activity (Rowley and Corces, 2018). Nevertheless, chromatin loops are fundamental units of the higher-order chromatin structures.

CRISPR DNA fragment inversion reveals that the locations and relative orientations of CTCF sites determine the directionality of chromatin looping

Inversion of CTCF sites in the protocadherin alpha (Pcdhα) and β-globin clusters switches the directionality of chromatin looping (Guo et al., 2015; Shou et al., 2017; Jia et al., 2020). Specifically, the causality between orientation of mammalian insulators known as CTCF sites and directionality of long-distance chromatin looping is demonstrated by inverting CTCF sites using CRISPR DNA fragment editing methods (Figure 6A; Guo et al., 2015; Shou et al., 2017; Lu et al., 2019; Jia et al., 2020). In addition, haplotype variants that alter chromatin looping topology are linked to human disease risks (Tang et al., 2015). In the
Sox2 and Fbn2 loci, however, reinserting an inverted CTCF site in the original location does not form new chromatin loops (de Wit et al., 2015). Nevertheless, alterations of native chromatin loops have functional consequence on gene expression (de Wit et al., 2015; Guo et al., 2015). Moreover, genome-wide distributions of forward and reverse CTCF sites tend to be located in close 3D spaces (Rao et al., 2014; Guo et al., 2015). Thus, the relative orientations of CTCF sites determine the directionality of chromatin looping across mammalian genomes (Figure 6A). Specifically, there are strong long-distance chromatin interactions between forward and reverse convergent CTCF sites. However, there are weak long-distance chromatin interactions between two tandem CTCF sites in the same orientation. Finally, the configuration of reverse and forward CTCF sites constrains long-distance chromatin interactions between remote elements (Figure 6A). In summary, 3D genome structures could be predicted from 1D nucleotide sequences bases on this CTCF coding mechanism.

Mechanism of 3D genome folding by cohesin ‘loop extrusion’

The CTCF coding for the 3D genome could be explained by CTCF blocking of cohesin ‘loop extrusion’ along chromatin fibers (Guo et al., 2015; Nichols and Corces, 2015; Sanborn et al., 2015; Fudenberg et al., 2016; Merkenschlager and Nora, 2016; Li et al., 2020b). The current model for the formation of TADs or topological domains is the cohesin sliding-mediated ‘loop extrusion’ (Banigan and Mirny, 2020). Specifically, CTCF helps to establish TADs boundaries by stalling the sliding of cohesin on DNA fibers and thus facilitates chromatin loop formations by ‘two-headed’ cohesin complex (Jia et al., 2020). Therefore, the cohesin complex can bring distant DNA elements into close spatial contact by the so-called active ‘loop extrusion’, which requires ATP as an energy source (Davidson et al., 2019; Kim et al., 2019). The genome-wide colocalization of CTCF and cohesin as well as a strong tendency of long-distance chromatin interactions between forward-reverse convergent CTCF sites provide strong evidence for CTCF stalling of cohesin ‘loop extrusion’ (Parelho et al., 2008; Wendt et al., 2008; Rao et al., 2014; Guo et al., 2015). In addition, consistent with the model of cohesin ‘loop extrusion’, deletion of WAPL, a cohesin releasing factor, thus increasing cohesin enrichments on chromatin, results in a significant increase of TAD size (Gassler et al., 2017; Haarhuis et al., 2017; Wutz et al., 2017). Conversely, deletion of NIPBL, a cohesin loading factor, or deletion of cohesin directly, causes weakening or loss of chromatin loops (Rao et al., 2017; Schwarzer et al., 2017)
Asymmetric reeling of chromatin fibers by cohesin ‘loop extrusion’

In the Pcdh gene clusters, a large array of tandem forward CTCF sites in the variable region are followed by tandem reverse CTCF sites in the downstream super-enhancer (Guo et al., 2012; Zhai et al., 2016). CTCF/cohesin dependent long-distance chromatin interactions bridge the distal enhancer to its target promoters and activate transcription. The reverse CTCF sites in the downstream super-enhancer acts as a strong anchor to stall ‘one-head’ of cohesin complex. The other cohesin head still slides along the variable region and thus reels in chromatin fibers (Figure 6B). By inverting or deleting single or arrays of CTCF sites in the variable-promoter or super-enhancer regions of the clustered Pcdh genes and assaying the resulting architectural and functional consequences, asymmetric topological effects of long-distance chromatin contacts and disruption of Pcdh gene expression can be detected (Lu et al., 2019; Jia et al., 2020).

Topological selections of enhancer–promoter pairing

Genome editing technologies have facilitated our understanding of 3D chromatin architecture in specific enhancer–promoter contacts (reviewed in Schoenfelder and Fraser, 2019). CTCF/cohesin-mediated chromatin looping regulates the promoter selection of the Pcdh gene clusters and their neuron-specific expression patterns (Guo et al., 2012; Jiang et al., 2017; Allahyar et al., 2018; Wu et al., 2020). Specifically, the chromatin conformation capture 3C assay revealed that the enhancer element is spatially close to the promoter of the variable exon in the Pcdh gene cluster. In addition, the CTCF protein recognizes its conserved DNA binding sites with directionality (Guo et al., 2015; Yin et al., 2017; Xu et al., 2018). Finally, single CTCF sites function as traditional insulators to ensure proper activation of target promoters by cognate enhancers; while tandem CTCF sites function as topological insulators to balance spatial chromatin contacts and to allocate enhancer resources for promoter choice (Zhai et al., 2016; Jia et al., 2020; Wu et al., 2020).

Synthetic single-chromosome yeast

Double cutting by Cas9 guided by two sgRNAs, each targeting to a site close to the telomeres of two separate yeast chromosomes, lead to the fusion of the two chromosomes (Shao et al., 2018). Remarkably, a functional single-chromosome yeast was created by successive repeated fusions of all sixteen yeast chromosomes into one giant chromosome by this CRISPR double cutting method (Shao et al., 2018). The two ends of the single linear chromosome could be further fused to generate a single circular chromosome (Shao
et al., 2019). Apparently, both linear and circular single-chromosome yeasts have not been found in nature and thus are artificially synthesized yeast strains. This interesting observation indicates the power of targeted 3D genome engineering in synthetic biology by CRISPR with dual sgRNAs (Sadhu and Kruglyak, 2018).

3D genome synthetic biology
Programmed chromosomal fission and fusion by multiplexed CRISPR have generated synthetic genomes with nucleotide precision in bacteria (Wang et al., 2019a). In prokaryotic *E. coli*, artificial chromosomes in single cells can be fused into a single genome with precision translocation and scarless inversion (Wang et al., 2019a). In eukaryotic yeast, Hi-C experiments revealed that the large-scale 3D organization of the synthetic genome is unaffected by the removal of numerous repeated sequences (Mercy et al., 2017). Interestingly, Hi-C experiments demonstrated that the single linear-chromosome and circular-chromosome yeasts have similar globular 3D genome conformation (Shao et al., 2019). These studies suggest that global 3D genome structures have significant plasticity and can tolerate local genetic perturbations.

Perspective
We have sampled flavored highlights of some recent advances of genetic engineering of 3D genomes by CRISPR/Cas9 systems with various precision chromosomal rearrangements. Significant progress has been made recently in understanding the cleavage mechanisms of the CRISPR/Cas9 genome editing system (Chen and Doudna, 2017). In addition, rapid technological advances in predictable DSB repair outcomes of precision CRISPR DNA fragment editing may accelerate its applications in agriculture and biomedicine (Tang and Fu, 2018). Furthermore, recent multiplexing CRISPR epigenetic technologies inform and promise cross-disciplinary revolutions (McCarty et al., 2020). Finally, CRISPR off-targets remain a big challenge but detecting methods are improving rapidly (Wienert et al., 2019).

Genetic engineering of 3D genomes and predictable chromosomal rearrangements by DNA fragment editing require interdisciplinary research. Obviously, fully predictable 3D genome engineering has not been achieved despite rapid progress in precision CRISPR DNA fragment editing in the last few years. Because very little is known in this area, it is a typical genre of desert-wandering night science which is full of darkness but also may stumble into a gold mine if lucky. 3D genomics integrates live biology with physical geometry. Renaissance of understanding and designing 3D genomes in the future may
turn this night science into hypothesis-driven day science. Understanding the mechanisms of 3D genome folding will facilitate future precise and predictable CRISPR DNA fragment editing.

Acknowledgements
We apologize to our colleagues whose important contributions could not be cited due to space limitations.

Funding
This work was supported by grants from the National Natural Science Foundation of China (31630039 and 31700666), the Ministry of Science and Technology of China (2017YFA0504203 and 2018YFC1004504) and the Science and Technology Commission of Shanghai Municipality (19JC1412500).

Conflict of interest: none declared.
References

Ablain, J., Durand, E.M., Yang, S., et al. (2015). A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Developmental cell 32, 756-764.

Acevedo-Arozena, A., Wells, S., Potter, P., et al. (2008). ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 9, 49-69.

Alamis-Lobato, G., Zohren, J., McCarthy, A., et al. (2020). Frequent loss-of-heterozygosity in CRISPR-Cas9-edited early human embryos. BioRxiv 10.1101/2020.06.05.135913.

Ali, Z., Abulfaraj, A., Idris, A., et al. (2015). CRISPR/Cas9-mediated viral interference in plants. Genome biology 16, 238.

Allahyar, A., Vermeulen, C., Bouwman, B.A.M., et al. (2018). Enhancer hubs and loop collisions identified from single-allele topologies. Nat Genet 50, 1151-1160.

Allen, F., Crepaldi, L., Alsinet, C., et al. (2018). Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature biotechnology 37, 64-72.

Anzalone, A.V., Koblan, L.W., and Liu, D.R. (2020). Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nature biotechnology 38, 824-844.

Anzalone, A.V., Randolph, P.B., Davis, J.R., et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.

Arbab, M., Shen, M.W., Mok, B., et al. (2020). Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 1-18.

Aubrey, B.J., Kelly, G.L., Kueh, A.J., et al. (2015). An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell reports 10, 1422-1432.

Aymard, F., Aguirrebengoa, M., Guillou, E., et al. (2017). Genome-wide mapping of long-range contacts unveils clustering of DNA-strand breaks at damaged active genes. Nat Struct Mol Biol 24, 353-361.

Banigan, E.J., and Mirny, L.A. (2020). Loop extrusion: theory meets single-molecule experiments. Curr Opin Cell Biol 64, 124-138.

Bevan, M.W., Flavell, R.B., and Chilton, M.D. (1983). A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184-187.

Bibikova, M., Beumer, K., Trautman, J.K., et al. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.

Bickmore, W.A. (2019). Patterns in the genome. Heredity 123, 50-57.

Birling, M.C., Schaeffer, L., Andre, P., et al. (2017). Efficient and rapid generation of large genomic variants in rats and mice using CRISMER. Sci Rep 7, 43331.

Blasco, Rafael B., Karaca, E., Ambrogio, C., et al. (2014). Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell reports 9, 1219-1227.

Bonev, B., and Cavalli, G. (2016). Organization and function of the 3D genome. Nat Rev Genet 17, 661-678.

Boroviak, K., Doe, B., Banerjee, R., et al. (2016). Chromosome engineering in zygotes with CRISPR/Cas9. Cell reports 5, 78-85.

Brandl, C., Ortiz, O., Röttig, B., et al. (2015). Creation of targeted genomic deletions using TALEN or CRISPR/Cas nucleases pairs in one-cell mouse embryos. FEBS Open Bio 5, 26-35.

Brinster, R.L., Chen, H.Y., Trumbauer, M., et al. (1981). Somatic expression of herpes thymidine kinase in mammary cells following injection of a fusion gene into eggs. Cell 22, 231-235.

Brunet, E., and Jasin, M. (2018). Induction of chromosomal translocations with CRISPR-Cas9 and other nucleases: understanding the repair mechanisms that give rise to translocations. Adv Exp Med Biol 1044, 15-25.

Byrne, S.M., Ortiz, L., Mali, P., et al. (2015). Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic acids research 43, e21.

Cai, Y., Chen, L., Liu, X., et al. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10, e0136064.

Canver, M.C., Bauer, D.E., Dass, A., et al. (2014). Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 289, 21312-21324.

Capecchi, M.R. (2005). Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6, 507-512.

Caridi, C.P., D’Agostino, C., Ryu, T., et al. (2018). Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559, 54-60.

Castle, W.E., and Little, C.C. (1909). The peculiar inheritance of pink eyes among colored mice. Science 30, 313-314.

Ceccaldi, R., Rondinelli, B., and D’Andrea, A.D. (2016a). Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26, 52-64.

Ceccaldi, R., Sarangi, P., and D’Andrea, A.D. (2016b). The Fanconi anaemia pathway: new players and new...
functions. Nat Rev Mol Cell Biol 17, 337-349.
Cech, T.R., and Steitz, J.A. (2014). The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77-94.
Chakrabarti, A.M., Henser-Brownhill, T., Monserrat, J., et al. (2018). Target-specific precision of CRISPR-mediated genome editing. Molecular cell 73, 699-713.
Chang, H.H.Y., Pannunzio, N.R., Adachi, N., et al. (2017). Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18, 495-506.
Chen, J.S., and Doudna, J.A. (2017). The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry 1, 0075.
Chen, W., McKenna, A., Schreiber, J., et al. (2019). Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Nucleic acids research 47, 7989-8003.
Chen, X., Xu, F., Zhu, C., et al. (2014). Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Sci. Rep. 4, 7581.
Cheong, T.C., Biaso, R.B., and Chiarle, R. (2018). CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676-684.
Chong, L., Ran, F.A., Cox, D., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 823-829.
Choi, P.S., and Meyerson, M. (2014). Targeted genomic rearrangements using CRISPR/Cas9 technology. Nature communications 5, 5728.
Choi, S.W., Kim, S., Kim, J.M., et al. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature biotechnology 31, 230-232.
Choi, S.W., Kim, S., Kim, Y., et al. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24, 132-141.
Choi, P.S., and Meyerson, M. (2014). Targeted genomc rearrangements using CRISPR/Cas technology. Nature communications 5, 5728.
Cleves, P.A., Strader, M.E., Bay, L.K., et al. (2018). CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl Acad. Sci. USA 115, 5235-5240.
Cong, L., Ran, F.A., Cox, D., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 823-829.
Costantini, F., and Lacy, E. (1981). Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 244, 92-94.
Cradick, T.J., Fine, E.J., Antico, C.J., et al. (2013). CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic acids research 41, 9584-9592.
Daer, R.M., Cutts, J.P., Brafman, D.A., et al. (2017). The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS synthetic biology 6, 428-438.
Davidson, I.F., Bauer, B., Goetz, D., et al. (2019). DNA loop extrusion by human cohesin. Science 366, 1338-1345.
de Wit, E., Vos, E.S., Holwerda, S.J., et al. (2015). CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676-684.
Dekker, J., and Mirny, L. (2016). The 3D genome as modulator of chromosomal communication. Cell 164, 1110-1121.
Dekker, J., Rippe, K., Dekker, M., et al. (2002). Capturing chromosome conformation. Science 295, 1306-1311.
Deng, W., Henriet, S., and Chourrout, D. (2018). Prevalence of mutation-prone microhomology-mediated end joining in a chordate lacking the c-NHEJ DNA repair pathway. Curr Biol 28, 3337-3341 e3334.
Denker, A., and de Laat, W. (2016). The second decade of 3C technologies: detailed insights into nuclear organization. Genes & development 30, 1357-1392.
Deriano, L., and Roth, D.B. (2013). Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47, 433-455.
DiCarlo, J.E., Norville, J.E., Mali, P., et al. (2013). Genome engineering in saccharomyces cerevisiae using CRISPR–Cas systems. Nucleic acids research 41, 4336-4343.
Dixon, J.R., Gorkin, D.U., and Ren, B. (2016). Chromatin domains: the unit of chromosome organization. Molecular cell 62, 668-680.
Doudna, J.A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1259096.
Essletzbichler, P., Konopka, T., Santoro, F., et al. (2014). Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Research 24, 2059-2065.
Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156.
Folger, K.R., Wong, E.A., Wahl, G., et al. (1982). Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2, 1372-1387.
Fudenberg, G., Imakaev, M., Lu, C., et al. (2016). Formation of chromosomal domains by loop extrusion. Cell reports 15, 2038-2049.
Fujii, W., Kawasaki, K., Sugiura, K., et al. (2013). Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic acids research 41, e187.
Fujii, W., Onuma, A., Sugiuira, K., et al. (2014). One-step generation of phenotype-expressing triple-knockout mice with heritable mutated alleles by the CRISPR/Cas9 system. The Journal of reproduction and development 60, 324-327.

Gandhi, S., Piacentino, M.L., Vicelci, F.M., et al. (2017). Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo. Developmental biology 432, 86-97.

Gao, J., Wang, G., Ma, S., et al. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant molecular biology 87, 99-110.

Gao, S., Tong, Y., Zen, Z., et al. (2016). Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. Journal of industrial microbiology & biotechnology 43, 1085-1093.

Gao, W., Long, L., Tian, X., et al. (2017). Genome Editing in Cotton with the CRISPR/Cas9 System. Frontiers in plant science 8, 1364.

Garneau, J.E., Dupuis, M.E., Villion, M., et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71.

Gasiunas, G., Barrangou, R., Horvath, P., et al. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579-2586.

Gassler, J., Brandao, H.B., Imakaev, M., et al. (2017). A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 36, 3600-3618.

Gaudelli, N.M., Komor, A.C., Rees, H.A., et al. (2017). Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471.

Gelot, C., Guirouilh-Barbat, J., Le Guen, T., et al. (2016). The cohesin complex prevents the end joining of distant dna double-strand ends. Molecular cell 61, 15-26.

Gisler, S., Goncalves, J.P., Akhtar, W., et al. (2019). Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Nature communications 10, 1598.

Golic, K.G., and Golic, M.M. (1996). Engineering the Drosophila genome: chromosome rearrangements by design. Genetics 144, 1693-1711.

Gordon, J.W., Scangos, G.A., Plotkin, D.J., et al. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl Acad. Sci. USA 77, 7380-7384.

Gratz, S.J., Cummings, A.M., Nguyen, J.N., et al. (2013). Genome engineering of drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029+.

Gundry, M.C., Brunetti, L., Lin, A., et al. (2016). Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell reports 17, 1453-1461.

Gao, W., Long, L., Tian, X., et al. (2017). Genome Editing in Cotton with the CRISPR/Cas9 System. Frontiers in plant science 8, 1364.

Garcia, J.E., Dupuis, M.E., Villion, M., et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71.

Gasiunas, G., Barrangou, R., Horvath, P., et al. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579-2586.

Gassler, J., Brandao, H.B., Imakaev, M., et al. (2017). A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 36, 3600-3618.

Gaudelli, N.M., Komor, A.C., Rees, H.A., et al. (2017). Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471.

Gelot, C., Guirouilh-Barbat, J., Le Guen, T., et al. (2016). The cohesin complex prevents the end joining of distant dna double-strand ends. Molecular cell 61, 15-26.

Gisler, S., Goncalves, J.P., Akhtar, W., et al. (2019). Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Nature communications 10, 1598.

Golic, K.G., and Golic, M.M. (1996). Engineering the Drosophila genome: chromosome rearrangements by design. Genetics 144, 1693-1711.

Gordon, J.W., Scangos, G.A., Plotkin, D.J., et al. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl Acad. Sci. USA 77, 7380-7384.

Gratz, S.J., Cummings, A.M., Nguyen, J.N., et al. (2013). Genome engineering of drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029+.

Gundry, M.C., Brunetti, L., Lin, A., et al. (2016). Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell reports 17, 1453-1461.

Guo, T., Feng, Y.L., Xiao, J.J., et al. (2018). Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome biology 19, 170.

Guo, Y., Monahan, K., Wu, H., et al. (2012). CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice. Proc. Natl Acad. Sci. USA 109, 21081-21086.

Guo, Y., Xu, Q., Canzio, D., et al. (2015). CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900-910.

Gupta, A., Hall, V.L., Kok, F.O., et al. (2013). Targeted chromosomal deletions and inversions in zebrafish. Genome Res. 23, 1008-1017.

Haarhuis, J.H.I., van der Weide, R.H., Blomen, V.A., et al. (2017). The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693-707.e614.

Han, D., Chen, Q., Shi, J., et al. (2017). CTCF participates in DNA damage response via poly(ADP-ribosylation). Sci Rep 7, 43530.

Hansen, A.S., Cattoglio, C., Darzacq, X., et al. (2018). Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus 9, 20-32.

He, Z., Proudfoot, C., Mileham, A.J., et al. (2015). Highly efficient targeted chromosome deletions using CRISPR/Cas9. Biotechnology and Bioengineering 112, 1060-1064.

Herault, Y., Rassoulzadegan, M., Cuzin, F., et al. (1998). Engineerining chromosomes in mice through targeted meiotic recombination (TAMERE). Nat Genet 20, 381-384.

Hilmi, K., Jangal, M., Marques, M., et al. (2017). CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair. Science Advances 3, e1601898.

Horii, T., Arai, Y., Yamazaki, M., et al. (2014). Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 4, 4513.

Hou, P., Chen, S., Wang, S., et al. (2015). Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep 5, 15577.

Huang, H., and Wu, Q. (2016). CRISPR double cutting through the labyrinthine architecture of 3D genomes. J. Genet. Genomics 43, 273-288.

Hwang, S.Y., Kang, M.A., Baik, C.J., et al. (2019). CTCF cooperates with CtIP to drive homologous recombination repair of double-strand breaks. Nucleic acids research 47, 9160-9179.

Hwang, W.Y., Fu, Y.F., Reyon, D., et al. (2013). Heritable and precise zebrafish genome editing using a CRISPR–Cas system. Plos One 8, e68708.
Iacovoni, J.S., Caron, P., Lassadi, I., et al. (2010). High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J 29, 1446-1457.

Iaffaldano, B., Zhang, Y., and Cornish, K. (2016). CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection. Industrial Crops and Products 89, 356-362.

Incontro, S., Asensio, Cedric S., Edwards, Robert H., et al. (2014). Efficient, complete deletion of synaptic proteins using CRISPR. Neuron 83, 1051-1057.

Iyer, S., Suresh, S., Guo, D., et al. (2019). Precise therapeutic gene correction by a simple nuclease-induced double-stranded break. Nature 568, 561-565.

Jacobs, P.A., Browne, C., Gregson, N., et al. (1992). Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet 29, 103-108.

Jaenisch, R., and Mintz, B. (1974). Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc. Natl Acad. Sci. USA 71, 1250-1254.

Jarrett, K.E., Lee, C.M., Yeh, Y.H., et al. (2017). Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease. Sci Rep 7, 44624.

Jasin, M., and Berg, P. (1988). Homologous integration in mammalian cells without target gene selection. Genes & development 2, 1353-1363.

Jasin, M., and Rothstein, R. (2013). Repair of strand breaks by homologous recombination. Cold Spring Harbor perspectives in biology 5, a012740.

Jia, Z., Li, J., Ge, X., et al. (2020). Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection. Genome biology 21, 1-24. 10.1186/s13059-13020-01984-13057.

Jiang, W., and Marraffini, L.A. (2015). CRISPR–Cas: new tools for genetic manipulations from bacterial immunity systems. Annual review of microbiology 69, 209-228.

Jiang, Y., Loh, Y.E., Rajarajan, P., et al. (2017). The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat Genet 49, 1239-1250.

Jiao, R., and Gao, C. (2016). The CRISPR/Cas9 genome editing revolution. Journal of genetics and genomics = Yi chuan xue bao 43, 227-228.

Jinek, M., Chylinski, K., Fonfara, I., et al. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.

Jinek, M., East, A., Cheng, A., et al. (2013). RNA-programmed genome editing in human cells. eLife 2, e00471.

Jinek, M., Jiang, F., Taylor, D.W., et al. (2014). Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997.

Kalhor, R., Kalhor, K., Mejia, L., et al. (2018). Developmental barcoding of whole mouse via homing CRISPR. Science 361, eaat9804.

Kile, B.T., and Hilton, D.J. (2005). The art and design of genetic screens: mouse. Nat Rev Genet 6, 557-567.

Kim, D., Kim, J., Hur, J.K., et al. (2016). Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature biotechnology 34, 863-868.

Kim, H., Li, F., He, Q., et al. (2017). Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/Cas9 knockout cells. Cell discovery 3, 17034.

Kim, J.M., Kim, D., Kim, S., et al. (2014). Genotyping with CRISPR: Cas-derived RNA-guided endonucleases. Nature Communications 5, DOI: 10.1038/ncomms4157.

Kim, Y., Shi, Z., Zhang, H., et al. (2019). Human cohesin compacts DNA by loop extrusion. Science 366, 1345-1349.

Komor, A.C., Kim, Y.B., Packer, M.S., et al. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.

Korablev, A.N., Serova, I.A., and Serov, O.L. (2017). Generation of megabase-scale deletions, inversions and duplications involving the Contactin-6 gene in mice by CRISPR/Cas9 technology. BMC Genet 18, 112.

Kosicki, M., Allen, F., and Bradley, A. (2020). Cas9-induced large deletions and small indels are controlled in a convergent fashion. BioRxiv 10.1101/2020.08.05.216739.

Kosicki, M., Tomborg, K., and Bradley, A. (2018). Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature biotechnology 36, 765-771.

Kraft, K., Geuer, S., Will, A.J., et al. (2015). Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell reports 10, 833-839.

Lang, F., Li, X., Zheng, W., et al. (2017). CTCF prevents genomic instability by promoting homologous recombination-directed DNA double-strand break repair. Proc. Natl Acad. Sci. USA 114, 10912-10917.

Lawrenson, T., Shorinola, O., Stacey, N., et al. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nucleases. Genome biology 16, 258.

Lee, C.S., Lee, K., Legube, G., et al. (2014a). Dynamics of yeast histone H2A and H2B phosphorylation in...
response to a double-strand break. Nature Structural & Molecular Biology 21, 103-109.
Lee, H.J., Kim, E., and Kim, J.S. (2010). Targeted chromosomal deletions in human cells using zinc finger nuclease.s. Genome Res 20, 81-89.
Lee, J.S., Kwak, S.J., Kim, J., et al. (2014b). RNA-guided genome editing in Drosophila with the purified Cas9 protein. G3 4, 1291-1295.
Leenay, R.T., Aghazadeh, A., Hliatt, J., et al. (2019). Large dataset enables prediction of repair after CRISPR–Cas9 editing in primary T cells. Nature biotechnology 37, 1034-1037.
Lemmon, Z.H., Reem, N.T., Dalrymple, J., et al. (2018). Rapid improvement of domestication traits in an orphan crop by genome editing. Nature plants 4, 766-770.
Lemos, B.R., Kaplan, A.C., Bae, J.E., et al. (2018). CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc. Natl Acad. Sci. USA 115, E2040-E2047.
Lewis, E.B. (1950). The phenomenon of position effect. Adv Genet 3, 73-115.
Li, J., Shou, J., Guo, Y., et al. (2015a). Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. Journal of molecular cell biology 7, 284-298.
Li, J., Shou, J., and Wu, Q. (2015b). DNA fragment editing of genomes by CRISPR/Cas9. Yi chuan 37, 992-1002.
Li, J.F., Norville, J.E., Aach, J., et al. (2013a). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature biotechnology 31, 688-691.
Li, M., Gan, J., Sun, Y., et al. (2020a). Architectural proteins for the formation and maintenance of the 3D genome. Sci China Life Sci 63, 795-810.
Li, W., Teng, F., Li, T.D., et al. (2013b). Simultaneous generation and germline transmission of multiple mutations in rat using CRISPR–Cas systems. Nat Biotechnol 31, 684-686.
Li, Y., Haarhuis, J.H.I., Cacciatore, Å.S., et al. (2020b). The structural basis for cohesin–CTCF-anchored loops. Nature 578, 472-476.
Li, Y., Park, A.I., Mou, H., et al. (2015c). A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome biology 16, 111.
Liang, D., Gutierrez, N.M., Chen, T., et al. (2020). Frequent gene conversion in human embryos induced by double strand breaks. BioRxiv 10.1101/2020.06.19.162214.
Liang, Z., Chen, K., Li, T., et al. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature communications 8, 14261.
Liao, H.K., Gu, Y., Diaz, A., et al. (2015a). Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature communications 6, 6413.
Liao, S., Tammaro, M., and Yan, H. (2015b). Enriching CRISPR–Cas9 targeted cells by co-targeting the HPRT gene. Nucleic Acids Research, gkv675.
Lieber, M.R. (2016). Mechanisms of human lymphoid chromosomal translocations. Nat Rev Cancer 16, 387-398.
Liu, P.F., and Wu, Q. (2020). Probing 3D genome by CRISPR/Cas9. Yi Chuan 42, 18-31.
Liu, X., Zhang, Y., Chen, Y., et al. (2017a). In Situ Capture of Chromatin Interactions by Biotinylated dCas9. Cell 170, 1028-1043 e1019.
Liu, Z., Chen, S., Jin, X., et al. (2015b). Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR–Cas9 protects CD4+ T cells from HIV-1 infection. Cell & bioscience 7, 47.
Liu, Z., Hui, Y., Shi, L., et al. (2016). Efficient CRISPR/Cas9-mediated versatile, predictable, and donor-free gene knockout in human pluripotent stem cells. Stem Cell Reports 7, 496-507.
Long, C. (2019). God does not play dice, and neither does CRISPR/Cas9. National Science Review 6, 393-393.
Lowder, L.G., Zhang, D., Baltes, N.J., et al. (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant physiology 169, 971-985.
Lu, Y., Shou, J., Jia, Z., et al. (2019). Genetic evidence for asymmetric blocking of higher-order chromatin structure by CTCF/cohesin. Protein Cell 10, 914-920.
Ma, S., Chang, J., Wang, X., et al. (2014). CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep 4, 4489.
Maddalo, D., Manchado, E., Concepcion, C.P., et al. (2014). In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423-427.
Mali, P., Yang, L., Esvelt, K.M., et al. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823-826.
Mansour, S.L., Thomas, K.R., and Capecchi, M.R. (1988). Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348-352.
Marnef, A., and Legube, G. (2017). Organizing DNA repair in the nucleus: DSBs hit the road. Curr Opin Cell Biol 46, 1-8.
Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium 27
Rabbits, T.H. (1994). Chromosomal translocations in human cancer. Nature 372, 143-149.
Ramakrishna, S., Kwaku Dad, A.B., Beloor, J., et al. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24, 1020-1027.
Ramirez-Solis, R., Liu, P., and Bradley, A. (1995). Chromosome engineering in mice. Nature 378, 720-724.
Ran, F.A., Hsu, P.D., Lin, C.Y., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389.
Rao, S.S., Huntley, M.H., Durand, N.C., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680.
Rao, S.S.P., Huang, S.C., Glenn St Hilaire, B., et al. (2017). Cohesin loss eliminates all loop domains. Cell 171, 305-320.
Ren, C., Liu, X., Zhang, Z., et al. (2016). CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6, 32289.
Ren, J., Liu, X., Fang, C., et al. (2017). Multiplex genome editing to generate universal CAR T cells resistant to pd1 inhibition. Clinical cancer research 23, 2255-2266.
Rong, Y.S., and Golic, K.G. (2000). Gene targeting by homologous recombination in Drosophila. Science 288, 2013-2018.
Rowley, M.J., and Corces, V.G. (2018). Organizational principles of 3D genome architecture. Nat Rev Genet 19, 789-800.
Ryder, S.P. (2018). CRISPRbabies: notes on a scandal. Crispr J 1, 355-357.
Sadhu, M.J., and Kruglyak, L. (2018). How low can you go? Crispr J 1, 312-313.
Sakuma, T., Nishikawa, A., Kume, S., et al. (2014). Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4, 5400.
Sanborn, A.L., Rao, S.S., Huang, S.C., et al. (2015). Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456-6465.
Scherer, S., and Davis, R.W. (1979). Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl Acad. Sci. USA 76, 4951-4955.
Schmidt, C., Pacher, M., and Puchta, H. (2019). Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. Plant J 98, 577-589.
Schmieder, V., Bydlinski, N., Strasser, R., et al. (2018). Enhanced genome editing tools for multi-gene deletion knock-out approaches paired using CRISPR sgRNAs in CHO cells. Biotechnol J 13, e1700211.
Schoenfelder, S., and Fraser, P. (2019). Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20, 437-455.
Schwank, G., Koo, B.K., Sasselli, V., et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653-658.
Schwarz, W., Abdennur, N., Golobordko, A., et al. (2017). Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51-56.
Seruggia, D., Fernández, A., Cantero, M., et al. (2015). Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR–Cas9-mediated mutagenesis. Nucleic Acids Research 43, 4855-4867.
Shaffer, L.G., and Lupski, J.R. (2000). Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annual review of genetics 34, 297-329.
Shan, Q.W., Wang, Y.P., Li, J., et al. (2013). Targeted genome modification of crop plants using a CRISPR–Cas system. Nat Biotechnol 31, 686-688.
Shao, Y., Lu, N., Cai, C., et al. (2019). A single circular chromosome yeast. Cell Res 29, 87-89.
Shao, Y., Lu, N., Wu, Z., et al. (2018). Creating a functional single-chromosome yeast. Nature 560, 331-335.
Shen, B., Zhang, J., Wu, H., et al. (2013). Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23, 720-723.
Shen, B., Zhang, W., Zhang, J., et al. (2014). Efficient genome modification by CRISPR–Cas9 nickase with minimal off-target effects. Nature methods 11, 399-402.
Shen, M.W., Arbab, M., Hsu, J.Y., et al. (2018). Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646-651.
Shi, X., Shou, J., Mehryar, M.M., et al. (2019). Cas9 has no exonuclease activity resulting in staggered cleavage with overhangs and predictable di- and tri-nucleotide CRISPR insertions without template donor. Cell discovery 5, DOI: 10.1016/j.jgg.2016.1003.1006.
Shin, H.Y., Wang, C., Lee, H.K., et al. (2017). CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nature communications 8, 15464.
Shou, J., Li, J., Liu, Y., et al. (2018). Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion. Molecular cell 71, 498-509.
Shou, J., Li, J., and Wu, Q. (2017). Precise and predictable DNA fragment editing reveals principles of Cas9-mediated nucleotide insertion. BioRxiv DOI: 10.1101/135822.
Sigal, Y.M., Zhou, R., and Zhuang, X. (2018). Visualizing and discovering cellular structures with super-
resolution microscopy. Science 361, 880-887.

Skryabin, B.V., Kummerfeld, D.M., Gubarev, L., et al. (2020). Pervasive head-to-tail insertions of DNA templates mask desired CRISPR-Cas9-mediated genome editing events. Sci Adv 6, eaax2941.

Smithies, O., Gregg, R.G., Boggs, S.S., et al. (1985). Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317, 230-234.

So, C.C., and Martin, A. (2019). DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells. PLoS Genet 15, e1008101.

Song, Y., Yuan, L., Wang, Y., et al. (2016). Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cellular and molecular life sciences 73, 2959-2968.

Stephenson, A.A., Raper, A.T., and Suo, Z. (2018). Bidirectional degradation of DNA cleavage products catalyzed by CRISPR/Cas9. Journal of the American Chemical Society 140, 3743-3750.

Su, S., Hu, B., Shao, J., et al. (2016). CRISPR–Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6, 20070.

Sun, X., Hu, Z., Chen, R., et al. (2015). Targeted mutagenesis in soybean using the CRISPR–Cas9 system. Sci Rep 5, 10342.

Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., et al. (2016). In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144-149.

Svitashev, S., Schwartz, C., Lenderts, B., et al. (2016). Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature communications 7, 13274.

Taheri-Ghaftarokhi, A., Taylor, B.J.M., Nitsch, R., et al. (2018). Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic acids research 46, 8417-8434.

Tan, L., Xing, D., Daley, N., et al. (2019). Three-dimensional genome structures of single sensory neurons in mouse visual and olfactory systems. Nat Struct Mol Biol 26, 297-307.

Tang, Y., and Fu, Y. (2018). Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell & bioscience 8, 59.

Tang, Z., Luo, O.J., Li, X., et al. (2015). CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611-1627.

Thomas, K.R., Folger, K.R., and Capecchi, M.R. (1986). High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419-428.

Tian, S., Jiang, L., Gao, Q., et al. (2017). Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant cell reports 36, 399-406.

Torres, R., Martin, M.C., Garcia, A., et al. (2014). Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR–Cas9 system. Nat. Commun. 5, 3964.

van Diemen, F.R., Kruse, E.M., Hooykaas, M.J., et al. (2016). CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS pathogens 12, e1005701.

van Overbeek, M., Capurso, D., Carter, M.M., et al. (2016). DNA repair profiling reveals nonrandom outcomes at Cas9 targeted sites. Nucleic acids research 46, 7445-7457.

Vanoli, F., and Jasins, M. (2017). Generation of chromosomal translocations that lead to conditional fusion protein expression using CRISPR-Cas9 and homology-directed repair. Methods 121-122, 138-145.

Vanoli, F., Tomishima, M., Feng, W., et al. (2017). CRISPR–Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells. Proc. Natl Acad. Sci. USA 114, 3696-3701.

Wang, H., and Sun, W. (2017). CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer letters 385, 137-143.

Wang, H., Yang, H., Shivalila, C.S., et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR-Cas-mediated genome engineering. Cell 153, 910-918.

Wang, K., de la Torre, D., Robertson, W.E., et al. (2019a). Programmed chromosome fission and fusion enable precise large-scale genome rearrangement and assembly. Science 365, 922-926.

Wang, P., Zhang, J., Sun, L., et al. (2018). High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant biotechnology journal 16, 137-150.

Wang, W., Zhang, L., Wang, X., et al. (2019b). The advances in CRISPR technology and 3D genome. Semin Cell Dev Biol 90, 54-61.

Weber, J., Ollinger, R., Friedrich, M., et al. (2015). CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc. Natl Acad. Sci. USA 112, 13982-13987.

Weckselblatt, B., and Rudd, M.K. (2015). Human structural variation: mechanisms of chromosome rearrangements. Trends in genetics 31, 587-599.

Wendt, K.S., Yoshida, K., Itoh, T., et al. (2008). Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801.

Wienert, B., Wyman, S.K., Richardson, C.D., et al. (2019). Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286-289.

Woo, J.W., Kim, J., Kwon, S.I., et al. (2015). DNA-free genome editing in plants with preassembled CRISPR–Cas9 ribonucleoproteins. Nature biotechnology 33, 1162-1164.

Wu, J., Vilarino, M., Suzuki, K., et al. (2017). CRISPR–Cas9 mediated one-step disabling of
pancreatogenesis in pigs. Scientific Reports 7, DOI:10.1038/s41598-41017-08596-41595.

Wu, Q., Guo, Y., Lu, Y., et al. (2019). Tandem directional CTCF sites balance protocadherin promoter usage. BioRxiv DOI: 10.1101/525543.

Wu, S., Ying, G., Wu, Q., et al. (2007). Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet. 39, 922-930.

Wu, Y., Jia, Z., Ge, X., et al. (2020). Three-dimensional genome architectural CCCTC-binding factor makes choice in duplicated enhancers at Pcdhelphalpha locus. Sci China Life Sci 63, 835-844.

Wutz, G., Varnai, C., Nagasaka, K., et al. (2017). Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36, 3573-3599.

Xiao, A., Wang, Z., Hu, Y., et al. (2013). Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic acids research 41, e141.

Xie, K., Minkenberg, B., and Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous RNA-processing system. Proc. Natl Acad. Sci. USA 112, 3570-3575.

Xu, D., Ma, R., Zhang, J., et al. (2018). Dynamic nature of CTCF tandem 11 zinc fingers in multivalent recognition of DNA as revealed by NMR spectroscopy. J Phys Chem Lett 9, 4020-4028.

Xu, S., Kim, J., Tang, Q., et al. (2020). Cas9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway. Protein Cell 11, 352-365.

Xue, W., Chen, S., Yin, H., et al. (2014). CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380-384.

Yan, L., Wei, S., Wu, Y., et al. (2015). High-efficiency genome editing in arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Molecular plant 8, 1820-1823.

Yan, M., and Li, J. (2019). The evolving CRISPR technology. Protein Cell 10, 783-786.

Yang, G., and Huang, X. (2019). Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regen 8, 33-41.

Yang, L., and Chen, J. (2020). A tale of two moieties: rapidly evolving CRISPR/Cas-based genome editing. Trends Biochem Sci 10.1016/j.tibs.2020.06.003.

Yang, W. (2010). Nuclease: diversity of structure, function and mechanism. Quarterly Reviews of Biophysics 44, 1-93.

Yang, W., Liu, Y., Tu, Z., et al. (2019). CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Research 29, 334-336.

Yao, X., Wang, X., Hu, X., et al. (2017). Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 27, 801-814.

Yasue, A., Mitsui, S.N., Watanabe, T., et al. (2014). Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems. Scientific Reports 4, DOI: 10.1038/srep05705.

Yeh, C.D., Richardson, C.D., and Corn, J.E. (2019). Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21, 1468-1478.

Yen, S.T., Zhang, M., Deng, J.M., et al. (2014). Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Developmental biology 393, 3-9.

Yin, H., Song, C.Q., Dorkin, J.R., et al. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature biotechnology 34, 328-333.

Yin, K., Han, T., Liu, G., et al. (2015). A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5, 14928.

Yin, M., Wang, J., Wang, M., et al. (2017). Molecular mechanism of directional CTCF recognition of a diverse range of genomic sites. Cell Res 27, 1365-1377.

Yoshimi, K., Kaneko, T., Voigt, B., et al. (2014). Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nature Communications 5, DOI: 10.1038/ncomms85240.

Yu, Y., and Bradley, A. (2001). Engineering chromosomal rearrangements in mice. Nat. Rev. Genet. 2, 780-790.

Yuan, L., Sui, T., Chen, M., et al. (2016). CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci Rep 6, 22024.

Zhai, Y., Xu, Q., Guo, Y., et al. (2016). Characterization of a cluster of CTCF-binding sites in a protocadherin regulatory region. Yi Chuan 38, 323-336.

Zhang, F. (2019). Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics 52, 1-31.

Zhang, L., Jia, R., Palange, N.J., et al. (2015). Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PioS one 10, e0120396.

Zhang, Y., and Li, G. (2020). Advances in technologies for 3D genomics research. Sci China Life Sci 63, 811-824.

Zhang, Y., Liang, Z., Zong, Y., et al. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature communications 7, 12617.

Zhang, Y., Pribil, M., Palmgren, M., et al. (2020). A CRISPR way for accelerating improvement of food crops.

http://mc.manuscriptcentral.com/jmcb
Zheng, H., and Xie, W. (2019). The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 20, 535-550.
Zhong, H., Chen, Y., Li, Y., et al. (2015). CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes. Sci Rep 5, 8366.
Zhou, J., Wang, J., Shen, B., et al. (2014). Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS J 281, 1717-1725.
Zhu, J., Song, N., Sun, S., et al. (2016a). Efficiency and inheritance of targeted mutagenesis in maize using CRISPR–Cas9. Journal of genetics and genomics 43, 25-36.
Zhu, S., Li, W., Liu, J., et al. (2016b). Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nature biotechnology 34, 1279-1286.
Zhu, X., Xu, Y., Yu, S., et al. (2014). An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 4, 6420.
Zuccaro, M.V., Xu, J., Mitchell, C., et al. (2020). Reading frame restoration at the EYS locus, and allele-specific chromosome removal after Cas9 cleavage in human embryos. BioRxiv 10.1101/2020.06.17.149237.
Zuckermann, M., Hovestadt, V., Knobbe-Thomsen, C.B., et al. (2015). Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature communications 6, 7391.
Zuo, Z., and Liu, J. (2016). Cas9-catalyzed DNA cleavage generates staggered ends: evidence from molecular dynamics simulations. Sci Rep 5, 37584.
Figure legends

Figure 1 Schematic of genetic methods for specific genome modifications. (A) Gene targeting is achieved by sequence replacement with a donor template harboring designed sequences flanked by two homologous arms in a specific genome locus. In addition to targeted replacement, occasional random integration in a non-specific genome site results in transgenic insertion of a tandem concatemer. (B) DSB greatly stimulates gene targeting but not random transgenic integration. However, it can also result in targeted head-to-tail insertion at the DSB site. (C) A simplified illustration of gene editing by ZFNs and TALENs. In ZFNs, each zinc finger recognizes three specific nucleotides. In TALENs, each nucleotide is recognized by a TALE repeat, which carries two specific amino acids. ZFP, zinc finger protein. (D) The type II CRISPR/Cas9 system. Cas9 nuclease is programmed by CRISPR RNA (crRNA) and trans-activating CRISPR RNA (tracrRNA), which can be fused into a single synthetic guide RNA (sgRNA).

Figure 2 DNA fragment editing induces chromosomal rearrangements including large DNA fragment deletion (A), inversion (B), duplication (C), translocation (D), as well as insertion (E).

Figure 3 Mechanisms of cohesive Cas9 cleavage and repair. (A) Cas9 endonuclease reprogrammed by a synthetic guide RNA (sgRNA) can target any specific site in a genome through forming a structure composed of three strands of nucleic acid chains, known as R-loop. Specifically, the first 20 nucleotides of the sgRNA form a DNA–RNA hybrid with 20 nucleotides of the targeting DNA sequences through base-pairing with the complementary strand, displacing the noncomplementary strand (the original protospacer sequences) and resulting in a structure called R-loop. SgRNA guides Cas9 to the targeting site and Cas9 cleaves dsDNA at locations upstream of the PAM site. While the HNH domain of Cas9 cleaves the complementary strand at the exact - 3 position upstream of the PAM site, the RuvC domain of Cas9 flexibly cleaves the noncomplementary strand at the - 6, - 5, and - 4 positions as well as the - 3 position upstream of the PAM site, generating a diverse cohesive DSB ends with 1-, 2-, and 3-nt 5’ overhangs in addition to blunt ends. (B) Diagram of one-metal-ion cleavage mechanism for HNH and two-metal-ion cleavage mechanism for RuvC domain of Cas9 protein. (C) Schematic of NHEJ repair pathways for repairing of a targeted DSB. NHEJ includes two competing pathways known as classic or
canonical NHEJ (cNHEJ) and alternative NHEJ (aNHEJ). The cNHEJ pathway requires XRCC4 and DNA ligase IV. The aNHEJ pathway includes microhomology-mediated end joining (MMEJ). The cleaved DSB ends are ligated by cellular DNA repairing machineries using either the precision pathway of cNHEJ or the mutagenic pathway of MMEJ.

Figure 4 Mechanisms of precise and predictable CRISPR/Cas9 genome editing. (A) Precise chromosomal rearrangements by DNA fragment editing. cNHEJ-mediated precision DNA fragment deletion could be generated through directly ligation by XRCC4–DNA ligase IV of the two staggered or blunted DSB ends from Cas9 cleavage with NGG–CCN PAM configuration. In particular, perturbations of CtIP or FANCD2, two proteins involved in the aNHEJ pathway, enhance the cNHEJ-mediated precision DNA fragment deletion. (B) Predictable deletions. The cohesive and blunted DSB ends could be resected by the MRN complex, resulting in 3’ overhangs. This resection process could be facilitated by CtIP and FANCD2 proteins. Further resection by EXO1 and DNA2 nucleases exposes micro-homologous sequences in the vicinity of the cleavage site. Base-pairing between the microhomologous sequences and removal of the two 3’ overhanging flaps by FEN1 generate predictable deletions. (C) Large DNA fragment deletion could also be achieved by MMEJ. When there are direct repeats flanking the two cleavage sites by Cas9 with dual sgRNAs, MMEJ-mediated repair could induce deletion of the intervening sequences between the two direct repeats (rather than between the two cleavage sites through cNHEJ repair pathway). (D) Predictable single nucleotide insertions. Cleavage at the -4 position by Cas9 generates cohesive DSB ends with 1-nt 5’ overhangs. Fill-in and ends ligation by cellular repair machineries resulting in predictable 1-bp insertions, which are the duplication of the -4 nucleotide. (E) The Nana ‘+1’ allele of the human CCR5 gene in the CRISPR-edited baby probably results from cohesive Cas9 cleavage at the -4 position of the noncomplementary strand. (F) Predictable di- or tri-nucleotide insertions. Cleavage at the -5 (or -6) position by Cas9 generates cohesive DSB ends with 2-nt (or 3-nt) 5’ overhangs. Fill-in and ends ligation by cellular repair machineries resulting in predictable 2-bp insertions, which are the duplication of dinucleotide from the -5 and -4 positions. Thus, nucleotide insertions mediated by Cas9 reprogrammed with single sgRNAs manifest as tandem repeats. Finally, nucleotide insertions mediated by Cas9 reprogrammed with dual sgRNAs at various junctions of chromosomal rearrangements are
generated by filled-in of cohesive DSB ends. (G) Predictable DNA fragment inversion. Large DNA fragment inversion could also be achieved by MMEJ. When there are microhomologous inverted repeats flanking the cleavage sites by Cas9 with dual sgRNAs, MMEJ-mediated repair can induce predictable inversion of the intervening sequence between the inverted repeats (rather than between two cleavage sites through cNHEJ repair pathway).

Figure 5 Precise and predictable Cas9-mediated nucleotide insertions at the junctions of chromosome arrangements for the four PAM configurations by Cas9 with dual sgRNAs. (A) In the NGG–NGG PAM configuration, the nucleotide insertions at the downstream junctions of DNA fragment inversion could be predicted based on combined flexible cleavage profiles of Cas9 with sgRNA1 and sgRNA2. However, the upstream junctions of DNA fragment inversion in the NGG–NGG PAM configuration are precise. (B–D) Similarly, the nucleotide insertions at the junctions of DNA fragment duplication (B), at the upstream junctions of DNA fragment inversion (C), and at the junctions of DNA fragment deletion (D) are predictable in the NGG–CCN (B), CCN–CCN (C), and CCN–NGG (D) PAM configurations, respectively. In addition, the ligations at the junctions of DNA fragment deletion (B), at the downstream junctions of DNA fragment inversion (C), and at the junctions of DNA fragment duplication (D) are precise in the NGG–CCN (B), CCN–CCN (C), and CCN–NGG (D) PAM configurations, respectively.

Figure 6 Predictable 3D genome engineering. (A) CTCF coding from 1D genomic sequences to 3D genome organization. The topology and strength of chromatin loops can be predicted based on the locations and relative orientations of CTCF sites. (B) Schematic of asymmetric ‘loop extrusion’ model revealed by CRISPR inversion of boundary CTCF sites. Genetic manipulation of CTCF sites demonstrates asymmetric blocking of cohesin loop extrusion by directional CTCF binding to oriented CBS elements. Chromatin fibers are compacted by active cohesin ‘loop extrusion’ with ‘two heads’. Cohesin complex reels in chromatin fibers until anchored by oriented CTCF sites. If ‘one head’ of cohesin is anchored by CTCF sites, cohesin can continue to reel in chromatin fibers through the ‘other head’, resulting in so-called asymmetric ‘loop extrusion’.
Table 1. Chromosomal rearrangements by CRISPR with dual sgRNAs

Chromosomal rearrangement	Cell type or organism	Gene or region of interest	Targeting size (kb)	Targeting efficiency (%)	Efficiency measuring method	Reference
DNA fragment deletion	Mice	hypoxanthine phosphoribosyltransferase locus (HPRT)	10	9/27 (33.3%)	Mutant mice by zygote injection	(Fujii et al., 2013)
	Murine erythroleukemia (MEL) cells	ND	1.3	18/48 (37.5%)	Screening single cell clones	(Canver et al., 2014)
			2.0	60/234 (25.6%)		
			2.8	29/78 (37.2%)		
			4.5	14/122 (11.5%)		
			4.5	10/164 (6.1%)		
			7.3	59/332 (17.8%)		
			8.0	190/800 (23.8%)		
			13.5	20/160 (12.5%)		
			15.0	74/316 (23.4%)		
			19.0	2/68 (2.9%)		
			19.0	21/240 (8.8%)		
			20.3	34/140 (24.3%)		
			23.0	20/142 (14.1%)		
			23.0	5/54 (9.3%)		
			70.5	1/364 (0.3%)		
			1,025.3	1/266 (0.4%)		
			1,025.7	3/420 (0.7%)		
HAP1 cells	Chr 15: 61,105,000 to around Chr 15: 89,890,000	28,000	5/400 (1.3%)	Screening single cell clones		(Essletzbichler et al., 2014)
Mouse ESC	Dip2a	65	11/93 (11.8%)	Screening single cell clones		(Zhang et al., 2015)
Mice	Dip2a	65	3/14 (21.4%)	Mutant mice by zygote injection		(Zhang et al., 2015)
Mice	Rab38	3.2	10/27 (37%)	Mutant mice by zygote injection		(Brandl et al., 2015)
HEK293FT cells	HPRT		1.79	3.3%	Digital PCR analysis	(He et al., 2015)
			2.14	3.3%		
			13.33	10%		
			0.35	10%		
			11.54	10%		
			11.19	1%		
			63.07	10%		
			112.93	10%		
Cell Type	Gene/Region	Count	Percentage	Method	Source	
--------------------	---------------------	-------	------------	----------------------------	--------------------------------	
HEK293FT cells	hypoxanthine	513.60	10%	Screening single cell clones	(He et al., 2015)	
	phosphoribosyltransferase locus (HPRT)	1017.84	1%			
Mouse ESC	H2afy	1.189	11/288 (3.8%)	Screening single cell clones	(Kraft et al., 2015)	
	Bmp2	3.7	12/192 (6.3%)			
	Ihh	12.6	121/288 (42%)			
	Pitx1	32	9/288 (3.1%)			
	Lsf	353	38/288 (13.2%)			
	EphA4	1,672	4/192 (2.1%)			
HEK293T	β-globin RE1	0.709	(28.33 ± 6.19)%	Quantitative PCR	(Li et al., 2015a)	
	Pcdh RE1	1.272	(17.51 ± 1.04)%			
	β-globin RE2	6.277	(34.49 ± 3.57)%			
	HoxD	18.142	(9.15 ± 0.11)%			
	β-globin	80.732	(13.39 ± 0.80)%			
	Pcdhα cluster	256.744	(8.46 ± 0.24)%			
	Pcdh α, β, and γ clusters	807.480	(0.47 ± 0.08)%			
Mice	Pcdh locus 1	1.241	26/120 (21.7%)	Mutant mice by zygote injection	(Li et al., 2015a)	
	Pcdh locus 2	0.960	6/8 (75%)			
	Pcdh locus 3	29.401	5/26 (19.2%)			
Mice	Tyrosinase (Tyr) non-coding regulatory DNA elements	1.2	19/64 (29.7%)	Mutant mice by zygote injection	(Seruggia et al., 2015)	
Human Pluripotent Stem Cells (hESC)	MALAT1	0.5	7/12 (58.3%)	Screening single cell clones	(Liu et al., 2016)	
			1	6/8 (75%)		
			3	18/32 (56.3%)		
			8	18/39 (46.2%)		
Mice	Tyr	9.5	3/30 (10%)	Mutant mice by zygote injection	(Boroviak et al., 2016)	
	Tyr	65	13/81 (16%)			
	Nox4	155	11/46 (23.9%)			
	Grm5	545	12/68 (17.6%)			
	Nox4 to Grm5	1,150	14/48 (29.2%)			
Rats	Cbs	37.2	12/24 (50%)	Mutant rat by zygote injection	(Birling et al., 2017)	
	Dyrk1a	121.7	4/28 (14.3%)			
Species	Gene	Variant	Mutant frequency	Method		
-------------------------	--------	---------	------------------	--		
Mice	Hmgn1	16.8	4/8 (50%)	Mutant mice by zygote injection (Birling et al., 2017)		
	Tiam1	226	8/41 (19.5%)			
	Runx1-	1,100	1/34 (2.9%)			
CHO cells, (Chinese	α-1,6-	2.1	34%	Quantitative PCR (Schmieder et al., 2018)		
Hamster Ovary cells)	Fucosyltransferase 8	(FUT8)	12.5	30%		
Rabbits	Tyrosinase (Tyr)	105	3/17 (17.6%)	Mutant rabbits by zygote injection (Song et al., 2016)		
Rabbits	GJA8	0.054	11/11 (100%)	Mutant rabbits by zygote injection (Yuan et al., 2016)		
Pigs	PDX1	0.204	3/9 (33.3%)	Mutant pigs by zygote injection (Wu et al., 2017)		
Rhesus monkeys	PINK1	7.237	3/11 (27.3%)	Mutant monkeys by zygote injection (Yang et al., 2019)		
DNA fragment inversion	HEK293T	KIF5B–RET	11,000	1.6%	flow cytometry (Choi and Meyerson, 2014)	
		EML4–ALK	12,000	8%	flow cytometry (Blasco et al., 2014, Maddalo et al., 2014)	
Mice	EML4–ALK	11,000	1.5*10^-6	PCR		
Patient iPSCs	F8 gene	140	8/120 (6.7%)	Screening single cell clones (Park et al., 2015)		
		563	5/135 (3.7%)			
Murine erythroleukemia	ND	2	20/156 (12.8%)	Screening single cell clones (Canver et al., 2014)		
(MEL) cells		8	9/96 (9.4%)			
		15	17/164 (10.4%)			
		20.3	26/140 (18.6%)			
		1025.3	2/266 (0.8%)			
		1025.7	2/418 (0.5%)			
Mouse ESC	H2afy	1.189	2/288 (0.7%)	Mutant mice by zygote injection (Kraft et al., 2015)		
	Bmp2	3.7	3/192 (1.6%)			
	Ihh	12.6	7/288 (2.4%)			
	Pitx1	32	3/288 (1%)			
------------	----------	-------	-------------------------------------	------------------------	------------------------------	
HEK293T	Pcdh RE1	1.272	(23.28 ± 2.42)%	Quantitative PCR	(Li et al., 2015a)	
	Pcdh RE2	6.277	(23.13 ± 1.13)%			
	Pcdh RE3	18.142	(7.28 ± 1.60)%			
	β-globin	80.732	(5.96 ± 0.28)%			
	Pcdh α cluster	256.744	(5.48 ± 0.37)%			
	Pcdh α, β, and γ clusters	807.480	(0.71 ± 0.12)%			
Mice	Pcdh locus 1	1.241	6/120 (5%)	Mutant mice by zygote injection	(Li et al., 2015a)	
	Pcdh locus 2	0.96	8/8 (100%)			
	Pcdh locus 3	29.401	2/26 (7.7%)			
Mice	Tyrosinase (Tyr) non-coding regulatory DNA elements	1.2	7/64 (10.9%)	Mutant mice by zygote injection	(Seruggia et al., 2015)	
Mice	Nox4	155	14/46 (30.4%)	Mutant mice by zygote injection	(Boroviak et al., 2016)	
	Grm5	545	12/68 (17.6%)	Mutant mice by zygote injection	(Boroviak et al., 2016)	
	Nox4 to Grm5	1,150	10/48 (20.8%)	Mutant mice by zygote injection	(Boroviak et al., 2016)	
Rat	Cbs	37.2	7/24 (29.2%)	Mutant rat by zygote injection	(Birling et al., 2017)	
	Dyrk1a	121.7	3/28 (10.7%)	Mutant mice by zygote injection	(Birling et al., 2017)	
Mice	Runx1- Cbr1	1,100	1/34 (2.9%)	Mutant mice by zygote injection	(Birling et al., 2017)	
DNA fragment duplication	Mouse ESC	Pitx1	32	2/288 (0.7%)	Screening single cell clones	(Kraft et al., 2015)
	Laf4	353	81/288 (28.1%)			
HEK293T	Pcdh RE1	1.272	(0.23 ± 0.12)%	Quantitative PCR	(Li et al., 2015a)	
	Pcdh RE2	6.277	(5.30 ± 1.19)%			
	Pcdh RE3	18.142	(7.28 ± 1.60)%			
	β-globin	80.732	(5.97 ± 0.33)%			
	Pcdh α cluster	256.744	(0.61 ± 0.02)%			
	Pcdh α, β, and γ clusters	807.480	(0.17 ± 0.03)%			
Mice	Pcdh locus 1	1.241	1/26 (3.8%)	Mutant mice by zygote injection	(Li et al., 2015a)	
Mice	Nox4	155	1/46 (2.2%)	Mutant mice by zygote injection	(Boroviak et al., 2016)	
	Grm5	545	1/68 (1.5%)	Mutant mice by zygote injection	(Boroviak et al., 2016)	
Animal	Gene	Frequency	Mutant Frequency	Method of Generation	Reference	
---------	--------	-----------	------------------	----------------------	-----------------------------	
Rat	Cbs	37.2	1/24 (4.2%)	Mutant rat by zygote injection	(Birling et al., 2017)	
	Dyrk1a	121.7	2/28 (7.1%)			
	Lipi-Zfp295	24,499	1/9 (11.1%)			
Mice	Tiam1	226	1/41 (2.4%)	Mutant mice by zygote injection	(Birling et al., 2017)	
Table 2. Predictable nucleotide insertions by cohesive Cas9 cleavage with single sgRNAs

Cell line/Organism	Locus	Inserted nt	Reference sequence 5'-3', Mutant sequence 5'-3'	Cohesive cleavage	Reference	
Humans	EMX1	WT	GAGTCCGAGCAGAAGAAGAAAGG	aGAAGGG	(Cong et al., 2013)	
		(+1)	GAGTCCGAGCAGAAGAAGAAAGGG	CT2CCC		
Rats	Tet1	WT	ATGAAGACATTTGCTGGAGACTGTCG	atTGCTGG	(Li et al., 2013b)	
		(+2)	ATGAAGACATTTGCTGGAGACTGTCG	ACGACC		
Mice	Tet2	WT	GGCTGCTGTCAAGGAGCTCATGG	cTCATGG	(Wang et al., 2013)	
		(+1)	GGCTGCTGTCAAGGAGCTCATGG	AGTACC		
K562 cells	CCR5	WT	TGACATCAATTATATACATCGC	aCATCGG	(Cho et al., 2013)	
		(+1)	TGACATCAATTATATACATCGC	GTAGGCC		
	C4BPB	WT	AATGACCACATACACCTCAAGAGG	tCAAGGG	(Wang et al., 2013)	
		(+1)	AATGACCACATACACCTCAAGAGG	GTTCCC		
		(+2)	AATGACCACATACACCTCAAGAGG	cTCATGG	(Wang et al., 2013)	
HEK293T cells	HBB	WT	CCACGTTCACCTGGCCACAGGG	cACAGGG	(Cradick et al., 2013)	
		(+1)	CCACGTTCACCTGGCCACAGGG	GTTCCC		
	CCR2	WT	GTGTTCACTTTTGGTTTCTGGC	tTGCTGG	(Hwang et al., 2013)	
		(+1)	GTGTTCACTTTTGGTTTCTGGC	ACACCC		
		(+2)	GTGTTCACTTTTGGTTTCTGGC	tTGCTGG	(Hwang et al., 2013)	
				ACACCC		
Yeast	CAN1	WT	GATACGTCTCTCTATGGAGAGGTGG	aGGATGG	(DiCarlo et al., 2013)	
		(+1)	GATACGTCTCTCTATGGAGAGGTGG	CCTACC		
Zebrafish	fh	WT	CCCCGTGGCGCAGTACCAGCGCTCC	CCCCGG	(Hwang et al., 2013)	
		(+1)	CCCCGGTCAGCAGCCATGGCCTCC	GGGGCCa		
Arabidopsis	AtPDS3	WT	GGACTTTGTCAGCCATGGCCTGG	tGGTGCG	(Li et al., 2013a)	
		(+1)	GGACTTTGTCAGCCATGGCCTGG	CCAGCC		
Nicotiana benthamiana	NbPDS3	WT	GCCGTTAATTTGAGAGTCGACAGGG	tCCAAGGG	(Li et al., 2013a)	
		(+1)	GCCGTTAATTTGAGAGTCGACAGGG	GCTCC		
Rice	OsPDS	WT	GTGTTGACTCTTGGCTCTGCGAGAG	gCAGAGG	(Shan et al., 2013)	
		(+1)	GTGTTGACTCTTGGCTCTGCGAGAG	GCTCC		
Species/Type	Gene/Region	WT	(+1)	(+2)	(+3)	(+4)
----------------------	-------------	-------	--------	--------	--------	--------
Rice	CAO1	CCAAGCTTTGAGTTGTCGGGT	CCAAGCTCTTGAGGTGGTCCGGT	CCAGGC	GGTTCG	(Miao et al., 2013)
Mice intestinal stem cells	APC locus	CCAAGCAGGTTCTTTTGAAGTGCC	CCCTCAAGGTTCTTTTGAAGTGCC	CCCTCAAGGTTCTTTTGAAGTGCC	CCCTCAAGGTTCTTTTGAAGTGCC	(Schwank et al., 2013)
Mice	EGFP	GGACGCCACCATCTCTCTCAAGG	GGACGCCACATCTCTCTCAAGG	GGACGCCACATCTCTCTCAAGG	GGACGCCACATCTCTCTCAAGG	(Shen et al., 2013)
Mice neuron	GRIN1	AACCAGGCAATAAGGGAGAGCG	AACCAGGCAATAAGGGAGAGCG	AACCAGGCAATAAGGGAGAGCG	AACCAGGCAATAAGGGAGAGCG	(Incontro et al., 2014)
K562 cells	C4BPB	AATGACACTCAGACCTTGCAAGGG	AATGACACTCAGACCTTGCAAGGG	AATGACACTCAGACCTTGCAAGGG	AATGACACTCAGACCTTGCAAGGG	(Kim et al., 2014)
Mice	NeuN	CCTTCCGTTTCAGGGACCCCGAC	CCTTCCGTTTCAGGGACCCCGAC	CCTTCCGTTTCAGGGACCCCGAC	CCTTCCGTTTCAGGGACCCCGAC	(Platt et al., 2014)
Murine liver	Pten	AGATCGTTAGCAGAAACAAAAGG	AGATCGTTAGCAGAAACAAAAGG	AGATCGTTAGCAGAAACAAAAGG	AGATCGTTAGCAGAAACAAAAGG	(Xue et al., 2014)
	P53	GCCTCAGAGCTCTCTTGAGGCCAGG	GCCTCAGAGCTCTCTTGAGGCCAGG	GCCTCAGAGCTCTCTTGAGGCCAGG	GCCTCAGAGCTCTCTTGAGGCCAGG	
Mice	Fgf10	CCACCAGCACAAGTACATGACCGTGG	CCACCAGCACAAGTACATGACCGTGG	CCACCAGCACAAGTACATGACCGTGG	CCACCAGCACAAGTACATGACCGTGG	(Yasue et al., 2014)
Mice	Tyr	GGTTGAGTGACGCTAGGGAGGCTCTAGGG	GGTTGAGTGACGCTAGGGAGGCTCTAGGG	GGTTGAGTGACGCTAGGGAGGCTCTAGGG	GGTTGAGTGACGCTAGGGAGGCTCTAGGG	(Fujii et al., 2014)
Mice	Tet1	GGCTGCTGTCAGGGAGCTCATGG	GGCTGCTGTCAGGGAGCTCATGG	GGCTGCTGTCAGGGAGCTCATGG	GGCTGCTGTCAGGGAGCTCATGG	(Horii et al., 2014)
Drosophila	singed (sn)	GCCAGCGCAAGCGAACGTACATGaCCCG	GCCAGCGCAAGCGAACGTACATGaCCCG	GCCAGCGCAAGCGAACGTACATGaCCCG	GCCAGCGCAAGCGAACGTACATGaCCCG	(Lee et al., 2014b)
Bombyx mori	Bmku70	GCCATTGGCGCCACCTCTAACCTTACAGG	GCCATTGGCGCCACCTCTAACCTTACAGG	GCCATTGGCGCCACCTCTAACCTTACAGG	GCCATTGGCGCCACCTCTAACCTTACAGG	(Ma et al., 2014)
Species	Genotype	WT	(+1)	Reference		
----------------------	----------	--------	----------	--------------------------------		
Goat fibroblast	Prp	AACC...	aGGGAGG	(Ni et al., 2014)		
		GCTA...	CCCTCC			
Monkey	Ppar-g	CCCC...	aGGGAGG	(Niu et al., 2014)		
		TTCA...	GGAAGT			
HEK293T cells	CCR5	TGAC...	aCATCGG	(Ramakrishna et al., 2014)		
		ATCA...	GTAGCC			
Mice	Tyr	CCTA...	CCTATC	(Yen et al., 2014)		
		CGGC...	GGATAG			
Rats	Tyr	TTTC...	aTAGTGG	(Yoshimi et al., 2014)		
		ATG...	ATCACC			
Mice	Them2	CTTA...	CCTATG	(Zhu et al., 2014)		
		GTGAC...	GGATCa			
Mice	Pitx1	CCTA...	CCTATC	(Kraft et al., 2015)		
		CAGG...	GGACAc			
HCT116 cells	HPRT gene	CAGA...	CCAGAC	(Liao et al., 2015b)		
		CTCAG...	GGTCTGa			
HCT116 cells	Trex1	CGTG...	CCGTG...	(Ali et al., 2015)		
		TGGAC...	GGCACAc			
Zebrafish	urod	AGTT...	gGCA...	(Ablain et al., 2015)		
		CAGG...	GCTCCC			
Nicotiana benthamiana	tomato yellow leaf curl virus	GGG...	tTACCGG	(Ali et al., 2015)		
		CTA...	ATGGCC			
Murine myeloid progenitor cells	Bim	GACAAT...	tGAGAGG	(Aubrey et al., 2015)		
		TGGC...	CTCCTC			

http://mc.manuscriptcentral.com/jmcb
Species	Gene	WT Sequence	+1 Sequence	Reference
Soybean	GmFEI2	GGACCTATACCTGCTGATGG	cTGATGG ACTTACC	(Cai et al., 2015)
Tobacco	NIPDS	GGCGAAGAGATGTCTCTAGGG	tAGGTGTG TCCACC	(Gao et al., 2015)
Ghost cells	CXCR4	GAAGAACTGAGAGCATGACGG	aTGACGG ACTGCC	(Hou et al., 2015)
Jurkat T cells	CXCR4	GTTCAGGCTCTGCTGATGCG	aTCATGG AGTACC	
Barley (Hordeum vulgare)	HvPM19	GCTCTCCACTCCTGAGGG	tCTTGAG GAAAGCC	(Lawrenson et al., 2015)
HEK293 cells	GFP	GTGGCCACCAGTAGGG	gCAAGGG GTTCCC	(Liao et al., 2015a)
	LTR	GGGAGCTCTCCTGAGGG	aCTAGGG GATCCC	
Human intestinal organoids	SMAD4	CCCACCAACGCGATCTCGAC	CCACCA GGTGGTt	(Matano et al., 2015)
Soybean	Glyma06g14180	GTGAAATTAACCAGCTGATGGG	gCAGTGG GTCACC	(Sun et al., 2015)
Mice	Pten	CCACTCATAAGAGATCGTTAGCA	CCACTCA GGTGATa	(Weber et al., 2015)
Nicotiana attenuata	AOC	AAAAGACTGCTCAATCTCCTGAG	cCCCTGG GGAACC	(Woo et al., 2015)
Arabidopsis	BRI1	TTGGGTATACAGTAGATACCTGAG	tCTCTGG GAGACC	(Yan et al., 2015)
Nicotiana benthamiana	NbIspH	GAATGGATATGAGATACCTTGGG	aCTTGAG GAAACC	(Yin et al., 2015)
Mice	Kcnj13	CCTGCAGAGCGACTGATAGATG	CCTGCAG GGAAGCT	(Zhong et al., 2015)
Species/Lineage	Gene	WT/HT Region	WT/HT Sequence	Reference
----------------	------	--------------	----------------	-----------
Mice	Nf1	(WT)	ATGGACAGCAGTAATTG	(Zuckermann et al., 2015)
		(+1)	ATGGACACCGGAGAACAACAGG	
	Pten	(WT)	AAAGACTGAGTGATGATAGG	
		(+1)	AAAGACTGAGTGATGATAGG	
	Trp53	(WT)	ACAGCCATACATTCAGTGGG	
		(+1)	ACAGCCATACATTCAGTGGG	
HEK293T, K562, HCT116	noncoding region	(WT)	GGCAAGCGAGAAGATGAAAACTGG	(van Overbeek et al., 2016)
		(+1)	GGCAAGCGAGAAGATGAAAACTGG	
HEK293T, K562	chr1:65349091	(WT)	AAAGACTGAGTGATGATAAC	
		(+1)	AAAGACTGAGTGATGATAAC	
Yarrowia lipolytica	PEX10	(WT)	GAGGAGCTCCAAGAAGACTG	
		(+1)	GAGGAGCTCCAAGAAGACTG	
		(+2)	GAGGAGCTCCAAGAAGACTG	
Murine HSPCs	Eed	(WT)	TGCTTCAATTCGGAACATTCAGG	
		(+1)	TGCTTCAATTCGGAACATTCAGG	
Taraxacum	fructan 1-fructosyltransferase	(WT)	ACAACCCGTACGCACTATTG	
		(+1)	ACAACCCGTACGCACTATTG	
Apple	PDS	(WT)	ATGGGCTTACAGCTAAAGACTG	
		(+1)	ATGGGCTTACAGCTAAAGACTG	
Phaeodactylum tricornutum cells	CpsRP54	(WT)	CGGCCTTTCGTAAGCTACGTGG	
		(+1)	CGGCCTTTCGTAAGCTACGTGG	
Chardonnay	IdnDH	(WT)	GGAGGAAGAGAGGCAAAGCTGG	
		(+1)	GGAGGAAGAGAGGCAAAGCTGG	
Maize immature embryo cells	liguleless1 (LIG)	(WT)	ATACGGCTACCGGTACGTTAGG	
		(+1)	ATACGGCTACCGGTACGTTAGG	
SNU719 cells	EBV genomic locus of BART5	(WT)	CCTGCGGTTGGAATATAGCTGCCC	
		(+1)	CCTGCGGTTGGAATATAGCTGCCC	

http://mc.manuscriptcentral.com/jmcb
Species	Gene	WT	(+1)	(Yin et al., 2016)		
HEK293 cells	GFP	WT	GGCGAGGAGCTTACCCGAGGG	aCCGGGGGGGGCCC		
		(+1)	GGCGAGGAGCTTACCCGAGGG			
Wheat	TaGW2	WT	CCTCTAGAATGCCCCCATCTG	CCTCTAGAATGCCCCCATCTG	(Zhang et al., 2016)	
		(+1)	CCTCTAGAATGCCCCCATCTG			
Maize	PSY1	WT	GAGACCTTGAGGATCTGACGG	tTCACCGAGGATCGCCT		
		(+1)	GAGACCTTGAGGATCTGACGG			
Gal4EED HEK293	firefly luciferase	WT	AAGAGATACCCCTGTTGTCCTG	gTTTCCTGAGGATCGCCT		
		(+2)	AAGAGATACCCCTGTTGTCCTG			
Chicken DF-1 fibroblasts	Pax7	WT	CCACTGCGCTGACAGAATCTG	CCATGCGGTTACCGG		
		(+1)	CCACTGCGCTGACAGAATCTG			
Cotton	GhPDS	WT	GAAGCGAGAGATGTTCTAGG	tAGGTGGTCCACC		
		(+1)	GAAGCGAGAGATGTTCTAGG			
Mice liver	Ldlr	WT	TGCTGCTGCAAGAGACTGG	cATGCCTGAGGACGCT		
		(+1)	TGCTGCTGCAAGAGACTGG			
Bread wheat	TaGW2	WT	CCTCTAGAATGCCCCCATCTG	CCTCTAGAATGCCCCCATCTG	(Liang et al., 2017)	
		(+1)	CCTCTAGAATGCCCCCATCTG			
TZM-bl cells	CXCR4	WT	GCTTCTACCCCATGTGCTTGG	cTTGCTGAAACACC		
		(+1)	GCTTCTACCCCATGTGCTTGG			
Mice	Kcnk13	WT	CCTGAAAGGAGACAGACGGCTGCT	CCTGAAAGGAGACAGACGGCTGCT	(Mianne et al., 2017)	
		(+1)	CCTGAAAGGAGACAGACGGCTGCT			
Hexaploid Camelina sativa	FAD2	WT	TCAAGGCTGTGCTCTAACCCTGGG	tAACCGGGCTGGCC		
		(+1)	TCAAGGCTGTGCTCTAACCCTGGG			
T cells	TCR a	WT	TGTGCTAGATGAGGTGCTATGG	tCTATGCGGTACCC		
		(+1)	TGTGCTAGATGAGGTGCTATGG			
Watermelon	CIPDS	WT	ATGCAGCTAGAGGATGGTGCTGCCGG	tGCCCGGCAGGCCC		
		(+1)	ATGCAGCTAGAGGATGGTGCTGCCGG		(Tian et al., 2017)	
Tissue/Tissue culture model	Gene	WT	CTCTCC	AGTCC	Downloaded from https://academic.oup.com/jmcb/advance-article/doi/10.1093/jmcb/mjaa060/5943882 by guest on 01 November 2020	
-----------------------------	------	----	--------	-------	--	
MCF-7 cells	HER2	WT	GGGCATGGAGCCTTGAGCGAGG	cGAGAGG	(Wang and Sun, 2017)	
		(+1)	GGGCATGGAGCCTTGAGGcGAGG	CTCTCC		
Reef-building coral	RFP	WT	GTCTTCATGATATCCCTCAAGG	cTCAAGG	(Cleves et al., 2018)	
		(+1)	GTCTTCATGATATCCcTCAAGG	AGTCC		
Solanaceae crop	**Ppr-SP**	WT	CCTTCTTTAGTCACCTAAACC	CCTTCC	(Lemmon et al., 2018)	
Physalis pruinosa		(+1)	CCTTCTTTAGTCACCTAAACC	GGAAGGa		
K562 cells	ND	WT	GCATCGGCTGAAAGGATGGAGG	aGTGAGG	(Allen et al., 2018)	
		(+1)	GCATCGGCTGAAAGGcGTGGAGG	CACTCC		
HPS1 B-LCL cells	**HPS1**	WT	CAGCAGGGGAGGCCCGCAGCGG	cAGCAGG	(Iyer et al., 2019)	
		(+1)	CAGCAGGGGAGGCCCGcAGCGG	TCCTCC		
Cell line/Organism	Locus	Editing event	Inserted nt	Reference sequence 5’-3’, Mutant sequence 5’-3’	Cohesive cleavage	Reference
--------------------------	--------	---------------	-------------	--	-------------------	--------------------
Mice	Hprt	large-scale deletion	WT	CCCGTCATGCCGACCACGCACGAGTCC--//--AAAAAGTGTTTATTCCTCAGTG/G	cTCATGG	(Fuji et al., 2013)
		(1)		CCGCTTc---//------		
				AGGACC		
Drosophila	yellow gene	large-scale deletion	WT	CTCGATTACCCGAAACTGAAACC--//--GTCTAGGGGAGTAGTGG/G	CCTGATtacc-------CGG	(Gratz et al., 2013)
		(4)		CCGCTTc---//------		
Murine erythroleukemia cells	ND	large-scale deletion	WT	TGAGCAGGCACTAGACGGATGGACTAATGCTGTATGG/G	cTCGGGG	(Canver et al., 2014)
		(1)		AGGCACC		
		(2)		tcTCGGGG		
liver cancer cell line Huh7.50C	CSPG4 gene	large-scale deletion	WT	GTCTAGTGAGGGAAGCTCAGCTGTATGG/G	gAGGAGG	(Zhu et al., 2016b)
		(1)		AGGACC		
K562 cells	AAVS1 locus	large-scale deletion	WT	CCCAGACAGATGACACACATC--/1.05 kb //--GGCCGAAACTGCTCAGTG/G	ctCTCTCCGAGCTGAGGCAGACC	(Cho et al., 2014)
		(2)		CTCCGAGCTCAGCTGCTATGG/G		
HEK293T cells	APC	large-scale deletion	WT	CCAAGCCTGAGGTGCTGTAGAGAGTCTAGTGG/G	cCCCTGG	(Sakuma et al., 2014)
		(1)		GGGACC		
Tobacco	PDS	Inversion (downstream)	Referenc e	TTAGATGACTGCTGAGCTACCTGCACCTCACCTGCActGATGG/G	ATGAGG	(Gao et al., 2015)
		(1+1)		GGGACC		
Rice	OsYSA	large-scale deletion	WT	CCGCTTGGCCGCCAGGTTGGCGCCG--//--CCTCATGAGGCCTCTCGCGGC	cACACGG	(Lowder et al., 2013)
		(1)		GCCCTTc---//------		
		(2)		GGGCAAGgc		
Arabidopsis thaliana protoplasts	BRI1	large-scale deletion	WT	TTTGAAAGATGGAAGGCCGTTGG/G	cCACCGG	(Woo et al., 2013)
		(1)		TTTGAAAGATGGAAGGCCGTTGG/G		
Rice	MPK5	large-scale deletion	WT	CCCCTTGGCGAGGCGACGCCTGCAGG/G	cAGGAGGAGAGG	(Xie et al., 2015)
		(1)		CCCCTCCGAGGCGACGCCTGCAGG/G		
Human T cells	hPD-1 locus	deletion	WT	CCGCTTGGCTGTACACACACTGCCCACGCGCGG/G	aGGCAGG	(Su et al., 2016)
		(1)		CCGCTTGGCTGTACACACACTGCCCACGCGCGG/G		
Cotton	GhCLA1	large-scale deletion	WT	(Wang et al., 2018)		
--------	--------	----------------------	---------------------------	---------------------		
			CCAAGCAGGAGGTGGCGCTATG---/415 bp			
			/---GTTAGTGGAGGTGGCGCTATG---AGCAGG---AGG---AAGTGG---GTTCCGt			
(+1)			CCAAGC---GTTCCGt	CCAAGC		

HEC-1-B cells	Pcdh	large-scale deletion	WT	(Shou et al., 2018)
(+1)			GCCACACATCCAGGCTAGG---/1233 bp	
(+2)			---GAGG---GAGTGG---TTCACC	
(+3)			---GAGG---GAGTGG---TTCACC	

β-globin	large-scale deletion	WT	(Shou et al., 2018)
(+1)		ACCCAATGACCTAGGCTAGG---/6277 bp	
(+2)		---GAGG---GAGTGG---TTCACC	
(+3)		---GAGG---GAGTGG---TTCACC	
fig1

209x296mm (300 x 300 DPI)
fig2

215x279mm (300 x 300 DPI)
R-loop dependent conformation change is essential for cohesive Cas9 cleavage

One-metal-ion catalysis

Two-metal-ion catalysis

DSB

Classical NHEJ

Alternative NHEJ

Ku70/80

PARP1

Artemis

DNA-PK

FANCD2

CBP/MRN

Ligase IV-XRCC4-XLF

Precise

Ligase I-XRCC1

Deletion/Insertion

fig3

215x279mm (300 x 300 DPI)
A. cNHEJ-mediated precise chromosomal rearrangement

B. MMEJ or aNHEJ-mediated predictable deletion

C. Micorepeats-mediated DNA fragment deletion

D. Predictable insertion without donor and by cohesive cleavage of Cas9

E. Predictable di- or tri-nucleotide insertions

F. Predictable 2- or 3-nucleotide insertions

G. Micorepeats-mediated DNA fragment inversion

fig4

215x279mm (300 x 300 DPI)
fig5

279x215mm (300 x 300 DPI)
A CTCF site orientations determine predictable DNA looping

B Asymmetric blocking of cohesin loop reeling by boundary CTCF

fig6

215x279mm (300 x 300 DPI)