Studies on the Substructures of the Lysozyme-rich Secretory Granule of the Serous Cell in the Human Nasal Gland

Mitsuo Machino,1 Hiroyuki Morioka,2 Masayoshi Tachibana, Takashi Tsuruoka and Osamu Mizukoshi1

Department of Otorhinolaryngology (Prof. O. Mizukoshi)1 and Laboratory of Electronmicroscopy (Director: Dr. H. Morioka),2 Kyoto Prefectural University of Medicine, Kyoto, Japan

Received March 28, 1984

Summary. Using a protein A-gold immunohistochemical technique, the lysozyme rich core and the lysozyme free peripheral rim were differentiated in the secretory granule of the serous cell in the human nasal mucosa, under the electronmicroscope. The spherical lysozyme rich core, which had been excreted into the gland lumen, was also wrapped with the peripheral rim. This finding suggests that the peripheral rim defends the integrity of the core and inhibits the release of lysozyme from the core.

It has been elucidated that the central core of the serous cell granule is rich in enzymes such as pepsinogen (Zeitoun et al., 1972) and lysozyme (Bowes and Corrin, 1977; Tachibana et al., 1984). This paper deals with the function of the peripheral rim in regard to one of these enzymes (lysozyme) in the central core of the serous granule in the human nasal gland.

MATERIALS AND METHODS

The method will be described elsewhere (Tachibana et al., 1985). In short, human nasal mucosa of the inferior turbinate was obtained surgically. Specimens were fixed in 1% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4 for 2 hr at 4°C. After fixation, tissues were rinsed with the same buffer, dehydrated with ethanol and embedded in Epon. Ultrathin sections were mounted on nickel grids. Sections were incubated with 1% ovalbumin in phosphate-buffered saline (pH 7.4) for 5 min at room temperature, then with goat antiserum to human lysozyme (diluted 1:400–4,000) and for control with antiserum previously absorbed by the antigen for 48 hr at 4°C, and finally with the pAg (protein A-gold) solution (Roth, 1982) for 30 min at room temperature. The sections were stained with uranyl acetate and lead citrate before observation.
RESULTS AND DISCUSSION

In the serous cell of the human nasal gland, secretory granules were conspicuous (Fig. 1). These granules were membrane limited, ovoid in shape and measured 400-1,000 nm in diameter. The matrix of the serous secretory granule revealed two substructures: a central core and peripheral rim. The central core with high electron density was located centrally or eccentrically in the matrix of the granule. An electron lucent peripheral rim of varying thicknesses enveloped the central core.

Protein A-gold (pAg) particles were densely deposited on the central core of serous granules in the cytoplasm but not on the peripheral rim of the granules (Fig. 1, small arrows). In the intercellular canalicule and in the larger lumen of the gland, an extruded serous secretory granule without a limiting membrane was observed. “Without limiting membrane” means that the matrix of the secretory granules was extruded to the outside of the cell through the mechanism classically called exocytosis (NAGASAWA,
Substructures of the Serous Secretory Granule

pAg particles were also densely deposited on the central core of extruded serous granules, but the surrounding "halo" was devoid of pAg particles (Fig. 1, large arrows and inset, arrow heads).

The central core and the peripheral rim are generally accepted as substructures of a serous secretory granule. The central core of the serous granule was described as being rich in proteins (ICHIKAWA and ICHIKAWA, 1977), such as pepsinogen (ZEITOUN et al., 1972). On the other hand, the peripheral rim has revealed mucosubstances (SPICER, 1965) or sialomucins (QUINTARELLI et al., 1964; ICHIKAWA and ICHIKAWA, 1977). Thus the peripheral rim seems to constitute a mucinous envelope for the protein-rich central core (ICHIKAWA and ICHIKAWA, 1977). The present results showing that the antigenic site of lysozyme was found on the central core but not on the peripheral rim confirms the above mentioned relationship.

A salient point of the finding is that some serous secretory granules, if not all, which are extruded by way of exocytosis are likely to keep this central core-peripheral rim relationship in the extracellular space. The halo observed around the granules (Fig. 1, inset) in varying thicknesses is most likely identical to the remnant of the peripheral rim. The mucinous peripheral rim may play a role in protecting the central core from disintegration and in inhibiting the release of lysozyme, and possibly various other enzymes also, out of the central core.

REFERENCES

Bowes, D. and B. Corrin: Ultrastructural immunocytochemical localization of lysozyme in human bronchial glands. Thorax 32:163-170 (1977).

ICHIKAWA, M. and A. ICHIKAWA: Light and electron microscopic histochemistry of the serous granules in the salivary glandular cells of the Mongolian gerbil (Mongolian meridianus) and rhesus monkey (Macaca irus). Anat. Rec. 189: 125-140 (1977).

Nagasawa, J: Exocytosis: the common release mechanism of secretory granules in glandular cells, neurosecretory cells, neuron and paraneurons. Arch. histol. jap. 40, Suppl.: 31-47 (1977).

QUINTARELLI, G., J. E. SCOTT and M. C. DELLOVO: The chemical and histochemical properties of alcian blue. II. Dye binding of tissue polyanions. Histochemie 4: 86-98 (1964).

Roth, J.: The preparation of protein A-gold complexes with 3 nm and 15 nm gold particles and their use in labelling multiple antigens on ultrathin sections. Histochemie 14: 791-801 (1982).

SPEICEE, S. S.: Diamine methods for differentiating mucosubstances histochemically. J. Histochem. Cytochem. 13: 211-234 (1965).

TACHIBANA, M., H. MORIOKA, T. TSURUOKA, M. MACHINO and O. MIZUKOSHI: Ultrastructural localization of lysozyme in the human nasal gland by protein A-gold technique. Acta histochem. cytochem. (1985, in press).

ZEITOUN, P., N. DUCLERT, F. LIAUTAUD, F. POTET and L. ZYLBERGEN: Intracellular localization of pepsinogen in guinea pig pyloric mucosa by immunohistochemistry. Lab. Invest. 27: 218-225 (1972).