Sensitivity of gustatory functions is affected by age and some habitual factors such as smoking and alcohol consumption (1–3). Decrease in taste sensitivity has been reported to be associated with zinc deficiency and intake of some minerals and vitamins (4–7). Other studies have suggested that taste intensities are associated with food preference and consumption patterns (8,9). For instance, taste perception for bitterness may be affected by intake of food and beverages containing alcohol, caffeine, and other bitter compounds. However, there are many differences between individuals in taste acceptability, with some subjects showing no association between differential threshold and preference for bitterness (8, 10).

Physiological and psychological conditions such as mood and temper have been demonstrated to affect food preference and taste sensory function. According to a Greek epidemiological study, anxiety is a factor affecting food choice in healthy adults (11). Christensen and Brooks reported that women were more likely to consume sweet foods after a sad event (12), while human interventional studies showed mental and physical stress may alter bitter, sour and sweet taste perceptions (13). In contrast, Scinska et al. showed in a non-clinical human population that symptoms of depression may not determine taste responses (14).

Recently, there has been increased concern regarding dietary problems such as excessive dieting and unbalanced dietary intake in young women in Japan. Gustatory functions may be adversely altered by inappropriate dietary habits, and mental health may play an important role in taste perception. To date, only a small number of studies have demonstrated the effect of mood states on the sensitivity of gustatory functions in healthy young women. The aim of this cross-sectional study was to examine preliminarily the effect of dietary habits, nutrient intake, and mental and mood states on taste sensitivity in a homogeneous population of non-smoking healthy young women.

Methods

Subjects. The study included 127 students from a women’s junior college in Tokyo, aged 18 to 29 y with a mean age of 19.2 y. All participants were non-smokers and did not use pills. None suffered from neurological disorders or depression.

All subjects agreed to participate and provided informed consent. The study was approved by the Teikyo Junior College Ethics Committee (date of approval: December 25, 2009) and was conducted in accordance with the Declaration of Helsinki (1989) of the World Medical Association.

Note

Factors Associated with Dietary Habits and Mood States Affecting Taste Sensitivity in Japanese College Women

Kanae KARITA1, Matsuko HARADA2, Masao YOSHIDA1 and Akatsuki KOKAZE3

1Department of Public Health, Kyorin University School of Medicine, Mitaka, Tokyo 181–8611, Japan
2Department of Living Science, Teikyo Junior College, Shibuya-ku, Tokyo 151–0071, Japan
3Department of Public Health, Showa University School of Medicine, Shinagawa-ku, Tokyo 142–8555, Japan

(Received February 17, 2012)

Summary We conducted a cross-sectional survey to evaluate the factors associated with dietary habits and mood states affecting taste sensitivity in 127 Japanese college women with a mean age of 19.2 y. Differential thresholds for the four basic tastes on the tongue were determined by the filter paper disc method, while dietary intake was assessed using a food frequency questionnaire. Psychological mood states were evaluated by the Profile of Mood State (POMS) questionnaire. Differential thresholds for saltiness and bitterness in alcohol drinkers were higher than those in alcohol non drinkers, whereas differential thresholds for the other tastes did not differ significantly between any of the stratified groups. Canonical correlation analysis revealed that among the five POMS mood states, POMS fatigue scores showed relatively stronger association with combined variables of taste thresholds. Logistic regression analysis revealed significant involvement of zinc and iron intake, and that POMS fatigue and anger scores affected the differential threshold for sourness. Specific mood and dietary factors were shown to be associated with sensitivity to sourness and bitterness. Among the five POMS mood states, high POMS fatigue scores and low POMS anger scores appeared to be associated with decreased taste sensitivity.

Key Words taste sensitivity, differential threshold, dietary habits, mood state, college women

E-mail: kanae@ks.kyorin-u.ac.jp
Taste Sensitivity Related to Dietary and Mood States

Taste threshold measurement. Differential thresholds for the four basic tastes were determined by a forced-choice, staircase procedure using filter paper discs (15). Materials used for testing included 5-mm diameter filter paper discs and taste solutions, which were diluted sequentially with distilled water to produce five dilutions of each basic taste, i.e., sucrose for sweetness, sodium chloride for saltiness, tartaric acid for sourness, and quinine hydrochloride for bitterness. Concentrations (%) used for testing differential thresholds from Level 1 to Level 5 were 0.3, 2.5, 10, 20, 80 for sucrose, 0.3, 1.25, 5, 10, 20 for sodium chloride, 0.02, 0.2, 2, 4, 8 for tartaric acid, and 0.001, 0.02, 0.1, 0.5, 4 for quinine hydrochloride. Differential thresholds for the four basic tastes were determined by testing increasing concentrations of each solution in four locations of the mouth (on the right and left sides of the tip of the tongue and the soft palate), followed by rinses with water between tests. Incorrect identification of the solution led to administration of the next higher concentration, while correct identification led to administration of a taste sample at the next lower concentration, until all four tastes had been examined.

Dietary assessment. All subjects were requested to answer a “meal menu and intake time-based semi-quantitative food frequency questionnaire” (MMITQ). MMITQ includes all major food groups, dishes, sweets, drinks, and alcoholic beverages that contribute to over 90% of the energy and macronutrients present in the Japanese diet (16). In particular, consumptions of 161 food items and their portion sizes were recorded as averages per week over the previous year.

Psychological assessment. The Profile of Mood States (POMS) questionnaire (17) was used to evaluate the mood states of the participants. Reliability and validity of POMS have been established in the Japanese population (18). The subjects answered 65 questions using a five-point category scale and the composite score was computed by summing the subscale scores of tension-anxiety (anxiety), depression-dejection (depression), anger-hostility (anger), fatigue-inertia (fatigue), and confusion-bewilderment (confusion). The positive POMS scale of vigor-activity was eliminated from analysis to avoid multicollinearity.

Statistical analysis. Differential thresholds of the right and left sides of the tongue and the soft palate

Taste (Solvent)	Distribution for detected concentrations1 (n, number)	n for those higher than mode value	n for low-sensitivity group					
	Level 1	Level 2	Level 3	Level 4	Level 5			
Sweetness (Sucrose)	Tip	10	47	**54**	12	4	16	49
Saltiness (Sodium chloride)	Tip	52	55	18	1	1	20	32
Sourness (Tartaric acid)	Tip	15	36	**65**	11	0	11	35
Bitterness (Quinine hydrochloride)	Tip	24	72	24	7	0	31	42

1 The mode value is indicated by a boldface number.

Table 2. Characteristics, nutrient intake and dietary habits of the subjects (n=127).

Characteristics	Mean±SD
Age (y)	19.2±1.6
Height (cm)	158.1±5.2
Weight (kg)	51.0±6.4
Body mass index (kg/m²)	20.4±2.3
Nutrient and mineral intake	
Protein (g)	71±36
Carbohydrate (g)	262±130
Sodium (mg)	4,983±2,622
Potassium (mg)	2,492±1,284
Magnesium (mg)	256±130
Calcium (mg)	525±262
Phosphorus (mg)	1,043±522
Iron (mg)	7.9±4.1
Zinc (mg)	9.4±4.8
Copper (mg)	1.2±0.7
Dietary habits	% (n)
Alcohol consumption; >1 d/wk	13.4 (17)
Dining out; >1 d/wk	57.5 (73)
Bedtime snack: >10 pm, regularly	29.1 (37)
Supplement user1	23.6 (30)
Skipping breakfast every day	10.2 (13)
Unbalanced diet2	34.6 (44)
Sufficient energy intake1	56.7 (72)
Sufficient vitamin intake1	48.9 (62)

1 Subjects taking supplements such as vitamins, DHA or minerals regularly.
2 Subjects scored more than 7 in a 10-point unbalanced diet scale [1 (excellent) to 10 (worst)].
3 Subjects satisfied the Japanese dietary recommended allowance for women aged 18 to 29 y.

Table 1. Distribution of differential thresholds for the four basic tastes on the tip of the tongue and the soft palate (SP) among the subjects.

Taste (Solvent)	Tip	SP	Tip	SP	Tip	SP
Sweetness (Sucrose)	10	47	54	12	4	16
Saltiness (Sodium chloride)	52	55	18	1	1	20
Sourness (Tartaric acid)	15	36	65	11	0	11
Bitterness (Quinine hydrochloride)	24	72	24	7	0	31
were averaged, and the study subjects were classified into two groups for each of the four basic tastes. The high-sensitivity group included subjects whose differential thresholds of either tongue location were equal or lower than the total mode value of each threshold test. The low-sensitivity group included the remaining subjects whose differential thresholds of either or both locations were higher than the mode value. In other words, the low-sensitivity group included those who identified tastes even at the mode level on one location but the higher level than mode on the other location. Semi-quantitative information obtained from MMITQ was transformed into quantitative data using the median of the food-intake classes.

To evaluate how mood factors were associated with the sensitivity of the four basic tastes, data sets were compared using canonical correlation analysis (CCA), a technique used for analyzing associations between two sets of variables that uses partial least square regression for each separate attribute (19). Backward multiple logistic regression analysis was used to evaluate the effect of dietary and mood factors on decreased sensitivity of each taste by calculating the multiple adjusted odds ratio (OR) and 95% confidence interval (CI). The exclusion criterion was set at 20% and 95% CIs was based on likelihood test statistics. Analysis was performed using the Statistical Package for the Biosciences (SPBS ver. 9.5) (19).

Results

Distribution of differential thresholds of the four basic tastes in the study subjects is shown in Table 1, along with the number in each low-sensitivity group. The respective mode and median threshold concentrations for the taste solutions were 1.25% for sodium chloride and 0.02% for quinine hydrochloride on both the tip of the tongue and the soft palate, and 2.5% and 0.2% for sucrose and tartaric acid on the soft palate and 10% and 2% on the tip of the tongue. The percentage of subjects in the low-sensitivity group was 39% for sweetness, 25%
for saltiness, 28% for sourness and 33% for bitterness. Table 2 summarizes the characteristics of the study participants. Intake of minerals below the Japanese dietary recommended allowance was observed for calcium and iron in all subjects. The physical characteristics, major nutrient intakes and dietary habits of the subjects did not differ significantly between the high- and low-sensitivity groups. As shown in Table 3, subjects who habitually consumed alcohol more than once a week (n=17) were less sensitive to saltiness and bitterness on the tip of the tongue (p=0.0097, and 0.0014 respectively calculated by Mann-Whitney U-test). No differences in median thresholds were noted at any location of the tongue for sweetness or sourness between non-drinkers and drinkers.

Table 4 shows the mean values and standard deviation (SD) of POMS scores and daily mineral intakes in the low-sensitivity groups for sweetness, saltiness, sourness, and bitterness. To examine sensitivity of gustatory functions for the four basic tastes with POMS negative scores, the mean and standard deviation of POMS scores and daily mineral intakes in the low-sensitivity groups for sourness and bitterness are shown in Table 3.

Discussion

Since taste sensitivity may depend to some degree on the mental and physical state, we used CCA in this study to examine the independent statistical associations that existed between the sets of variables. The results of CCA suggested that psychological factors including anxiety, anger and fatigue may affect the differential thresholds for the four basic tastes. In addition, results of our logistic regression analyses indicated that factors contributing to the low-sensitivity group for sourness included dietary intake of iron and zinc and POMS anger and fatigue scores. Low sensitivity for sourness was affected by higher POMS fatigue scores and lower POMS anger scores as well as less dietary intake of iron and zinc. Another model for analysis showed alcohol consumption and unbalanced diet as factors with a positive predictive score in the low-sensitivity group for bitter taste (Table 6). There were no clear explanatory factors observed in models for the low-sensitivity group for either sweetness or saltiness (data not shown).

Table 5. Canonical correlations between differential thresholds for the four basic tastes and scores of the five POMS categories.

Variables	First	Second
Taste thresholds	0.102	-0.662**
Saltiness	0.510**	0.034
Sourness	0.961**	-0.057
Bitterness	0.594**	-0.680**
POMS scores	0.248**	-0.468**
Anxiety	0.112	-0.385**
Depression	0.224*	-0.322**
Anger	-0.448**	-0.692**
Fatigue	0.028	-0.826**
Confusion		
Canonical correlation: R	0.448**	0.258

**p<0.01, *p<0.05.

Table 6. Results of the multiple logistic regression model in the low-sensitivity groups for sourness and bitterness associated with significant dietary and psychological factors.

Criterion: Low-sensitivity group for sourness	Odds ratio (95% confidence interval)	p-value
Explanatory variable: Iron intake	0.742 (0.579–0.949)	0.018
Zinc intake	0.722 (0.561–0.929)	0.011
POMS fatigue score	1.093 (1.123–1.969)	0.006
POMS anger score	0.935 (0.880–0.993)	0.029

Criterion: Low-sensitivity group for bitterness	Odds ratio (95% confidence interval)	p-value
Explanatory variable: Habit of alcohol consumption	3.644 (1.254–10.59)	0.018
Unbalanced diet score	1.087 (1.009–1.171)	0.028

1 Only the results of the criterion for the low-sensitivity groups for sourness and bitterness are shown, as no other factors were found to be statistically significant.
tions in mood states (20), with a person’s sense of taste responding to changes at the neurotransmitter level during different mood states (21). In this study, mood states of fatigue, anxiety, and anger assessed by POMS appeared to have the potential to affect taste sensitivity. Heath et al. demonstrated that mood states of depression or anxiety altered serotonin and noradrenaline concentrations, which changes may be associated with taste disturbances (21). Glendinning showed that proline-rich proteins (PRPs) in human saliva carry lipo-philic proteins of compounds such as bitter compounds. An experimental study in mice showed PRPs were increased in the saliva of mice who had received chronic treatment with a β-agonist (22). Therefore, mental stress may possibly increase the concentration of bitter compound carriers in saliva. Further investigations into the biochemical mechanisms involved in the association between taste sensitivity and moods are required in the future.

A higher threshold for the bitterness of quinine hydrochloride was associated with frequent alcohol consumption in our study. It has been reported that receptors for bitterness belong to the G protein-coupled receptors, and there is evidence that the taste receptors, TAS2Rs, coupled to G proteins are responsible for the ability of humans to taste bitter compounds (23). Guinard et al. reported that intake of bitter substances was higher in people who often consumed beer than that in people who did not, although it was not a major determinant for the taste response to bitter isohumulones (8). Previous reports in children and middle-aged women (24, 25) showed that sensitivity to the bitterness of 6-n-propylthiouracil was also affected by body mass index (BMI) after adjustment for demographic characteristics. However, we found no such tendencies in our study, probably as a consequence of the narrow range of BMIs in the subjects.

This study had several limitations. First, women in this study attended a single college in Tokyo and the results were obtained from measurements performed in day in a limited population. The cross-sectional nature of the study does not permit us to draw any conclusions about any causal associations between mood status and taste sensitivity. Second, CCA was conducted to interpret synthetically the multi-correlation between POMS outcomes and sensitivities of the four basic tastes in multiple dimensions; however, the canonical coefficient expressed as R was rather small. Since POMS scores alone may be insufficient to evaluate mood states, other scales or biochemical indicators may be required to confirm the potential associations. With regard to the taste sensitivity test, the filter paper disc method provides a constant intensity and range of stimulation. Nevertheless, other methods such as the whole-mouth method or electrogustometry should be used to examine the accuracy and reliability of the filter paper disc method. Finally, because there may be associations between genetic taste markers and eating habits (26), the reproducibility of our results need to be examined in further studies that consider other essential confounders, such as genetic variations and hormonal effects.

In conclusion, it is possible that dietary habits and mood states may affect the differential thresholds for sourness and bitterness. Further precise information on factors that affect taste perception would contribute to the maintenance of a good quality of life in women.

REFERENCES

1) Suto K, Endo S, Tomita H. 2002. Sensitivity of three loci on the tongue and soft palate to four basic tastes in smokers and non-smokers. Acta Otolaryngol Suppl 546: 74–82.
2) Welge-Lüssen A. 2009. Ageing, neurodegeneration, and olfactory and gustatory loss. B-ENT 5 (Suppl 13): 129–132.
3) Lelievre G, Le Floch JP, Pellemounter L, Peynègre R. 1989. Taste in healthy subjects. Influence of alcohol and tobacco consumption. Ann Otolaryngol Chir Cervicofac 106: 541–546 (in French).
4) Ueda C, Takaoka T, Sarukura N, Matsuda K, Kitamura Y, Toda N, Tanaka T, Yamamoto S, Takeda N. 2006. Zinc nutrition in healthy subjects and patients with taste impairment from the view point of zinc ingestion, serum zinc concentration and angiotensin converting enzyme activity. Auris Nasus Larynx 33: 283–288.
5) Henkin RI, Hoetker JD. 2003. Deficient dietary intake of vitamin E in patients with taste and smell dysfunctions: is vitamin E a cofactor in taste bud and olfactory epithelium apoptosis and in stem cell maturation and development? Nutrition 19: 1013–1021.
6) Ishida H, Takahashi H, Suzuki H, Hongo T, Suzuki T, Shidoji Y, Yoon KH. 1985. Interrelationship of some selected nutritional parameters relevant to taste for salt in a group of college-aged women. J Nutr Sci Vitaminol 31: 585–598.
7) Suzuki T, Ishida H, Suzuki H, Hongo T, Kobayashi K, Yoshinaga J, Ohba T. 1988. Minerals and vitamin-A status in relation to gustatory functions for salt in healthy female college students. J Nutr Sci Vitaminol 34: 209–222.
8) Guinard JX, Zoumas-Morse C, Dietz J, Goldberg S, Holz M, Heck E, Amoros A. 1996. Does consumption of beer, alcohol, and bitter substances affect bitterness perception? Physiol Behav 59: 625–631.
9) Mattes RD. 1997. Physiologic responses to sensory stimulation by food: nutritional implications. J Am Diet Assoc 97: 406–413.
10) Keast RS, Bourneazal MM, Breslin PA. 2003. A psychophysical investigation of binary bitter-compound interactions. Chem Senses 28: 301–313.
11) Yannakoulia M, Panagiotakos DB, Pitsavos C, Tsitselou E, Fappa E, Papageorgiou C, Stefanadis C. 2008. Eating habits in relations to anxiety symptoms among apparently healthy adults. A pattern analysis from the ATTICA Study. Appetite 51: 519–525.
12) Christensen L, Brooks A. 2006. Changing food preference as a function of mood. J Psychol 140: 293–306.
13) Nakagawa M, Mizuma K, Inui T. 1996. Changes in taste perception following mental or physical stress. Chem Senses 21: 195–200.
14) Scinska A, Sklenkiewicz-Jarosz H, Kuran W, Ryllewicz D, Rogowski A, Wrobel E, Korkosz A, Kukwa A, Kostowski W, Bienkowski P. 2004. Depressive symptoms and taste reactivity in humans. Physiol Behav 82: 899–904.
15) Okuda Y. 1980. The method of gustatory test by fil-
Human taste thresholds are modulated by serotonin and noradrenaline. J Neurosci 26: 12664–12671.

22) Glendinning JL. 1992. Effect of salivary prolin-rich proteins on ingestive responses to tannic acid in mice. Chem Senses 17: 1–12.

23) Conte C, Ebeling M, Marcuz A, Nef P, Andres-Barquin PJ. 2002. Identification and characterization of human taste receptor genes belonging to the TAS2R family. Cytogenet Genome Res 98: 45–53.

24) Baranowski JC, Baranowski T, Beltran A, Watson KB, Jago R, Callie M, Missaghian M, Tepper BJ. 2010. 6-n-Propylthiouracil sensitivity and obesity status among ethnically diverse children. Public Health Nutr 13: 1587–1592.

25) Tepper BJ, Ullrich NV. 2002. Influence of genetic taste sensitivity to 6-n-propylthiouracil (PROP), dietary restraint and disinhibition on body mass index in middle-aged women. Physiol Behav 75: 305–312.

26) Drewnowski A, Henderson SA, Levine A, Hann C. 1999. Taste and food preferences as predictors of dietary practices in young women. Public Health Nutr 2: 513–519.