1. Introduction

There is immense need to rehabilitate the existing old structures in many parts of the world. Strengthening or rehabilitation of the concrete structures is required due to design flaws of construction, structural degradation of the structure, deterioration of steel due to corrosion and ageing of the reinforced concrete members. Many new techniques have been developed in order to strengthen the deteriorating structures, out of which the external strengthening utilizing the FRP is the most widely used method. FRP is a complex material commonly consisting of carbon, aramid or glass fibres in resin matrix. The first FRP system was used in 1940 in aerospace industry. The main components of FRP are the fibres and the resin. There are two different types of externally bonded FRP system (a) Prefab system (b) Wet lay-up. Prefab system are pre-manufactured cured laminates which are installed using adhesives. Wet lay-up are FRP wrapping system in which dry uni-directional fibres sheets are directly applied into the resin that has been applied to the concrete surface. FRP wrapping techniques using synthetic fibres such as carbon fibres, aramid fibres and glass fibres enhances the tensile stresses. The various synthetic fibres such as acrylic, aramid, carbon, glass are costlier and cannot be used by a common man living in rural areas. Thus for over a long period of time many researches are being carried out on the natural available fibres such as wood, flax, hemp, jute, straw, wood fibres, rice husks, wheat, barley, oats, rye, cane. In this experiment investigation is being carried out using the polyester fibre. Polyester is a type of polymers that contain the ester functional group in their main chain. Polysters consists of naturally occurring chemicals, such as cutin of plant cuticles, and also synthetics through step-growth polymerization such as polybutyrate.
2. Previous Researches on FRP

Campione 1 used the wrapping technique of CFRP and found out the relation between the strength reduction and the increase in the length of the CFRP wrapped specimen. They studied the behavior of beams reinforced with GFRP and found an increase in ultimate load. They studied the effect of width of the GFRP strips on the deflection of the RC beam and observed that increasing the GFRP area controlled the cracking of concrete in flexure. They studied the strengthening of reinforced concrete beams using Prestressed GFRP and there was reduction in spalling in concrete beam reinforced with Prestressed GFRP. They studied experimentally the flexural strengthening of reinforced concrete beams by the Carbon Fibre Reinforced Polymer Composite (CFRPC) and found out that the stiffness and first crack load increased significantly. They studied the fatigue behavior of Reinforced Concrete Beams strengthened with Carbon Fibre Reinforced Plastic Laminates and concluded that the increase in stresses were not severe for the CFRP wrapped beam. They investigated the use of Ultra High Strength Cementious Composite and found out that pre-loaded fatigue beam had higher load carrying capacity compared to control beam.

3. Experimental Work

Reinforced Concrete beams of cross-sectional dimension 150mm x 150mm x 700 mm were used for experimental study. Reinforcement of 8 mm diameter were used as tension reinforcement at bottom and 6mm diameter shear reinforcement as stirrups were used at 125 mm spacing were used. Details of the reinforcement is shown in Figure 1.

3.1 Material Properties

The Concrete Mix proportion were done according to IS 10262:2009. The Water / Cement ratio of 0.5 was used for design of M20 grade of concrete. The design mix proportioning of concrete are given in Table 1.

Description	Cement	Sand (Fine Aggregate)	Coarse Aggregate	Water
Mix Proportion (by weight)	1	1.85	3.05	0.5
Quantities of material for one specimen (Kg)	6.73	12.44	20.53	3.36

3.2 Coarse Aggregate

The stone chips used in the experimental study were brought from Chutupali, for preparing concrete. The stone chips used were well graded 20 mm and down size were used. The results of physical tests conducted on coarse aggregate are tabulated in Table 2.

SL No.	Properties	Value
1.	Specific Gravity	2.63
2.	Fineness Modulus	4.08
3.	Water Absorption (24 hours)	0.26
4.	Bulk Density	1.61

3.3 Fine Aggregates

The sand used in the experiment were as per the provisions of IS 383:1970. The Fine aggregates that passed through 4.75 mm sieve were used. The results of physical tests conducted on fine aggregate are tabulated in Table 3.

SL No.	Properties	Value
1.	Specific Gravity	2.60
2.	Fineness Modulus	2.602
3.	Water Absorption (24 hours)	1.0
4.	Bulk Density	1.479

3.4 Cement

The cement used in the experiment was Portland Slag Cement conforming to IS 455:1989. Cement’s properties were tested in accordance with Indian Standard.
specifications (IS: 4031-1968) to know its appropriateness. The results of various tests conducted on cement are given in tabulated in table 4.

SL No.	Properties	Results
1	Fineness of Cement (%)	3.48 %
2	Standard Consistency (%)	32
3	Initial Setting Time (minutes)	50
4	Final Setting Time (minutes)	327
5	Specific gravity	3.14
6	Soundness Test(cm)	1

Table 4. Physical Tests on cement

3.5 Reinforcement Steel

The reinforcement steel used in the experiment were HYSD bars of Fe-500 of 8 mm diameter bars and 6 mm Fe-250 as shear reinforcement. The tensile testing of 8 mm diameter bars were done by Instron universal testing machine as shown in figure 2. The result of tensile test conducted on 8 mm diameter bars are tabulated in table 5.

Sample	Ultimate Tensile Strength(MPa)	Modulus of Elasticity (kN/mm²)
1	599.518	57.938
2	629.239	61.66

Table 5. Tensile test of 8 mm bars

4. Experimental Procedure

In this experimental study, 10 numbers of reinforced concrete beams were casted. They were cured for a period of 7 days and 28 days according to IS 516:1959. The specimens were dried after taking them out of the water. Then the sand paper was used to clean the surface of the beam. Then polyester fibre sheet was externally applied to the beam by using araldite epoxy resin and hardener and was tested after 24 hours.

4.1 Experimental Setup

The casted specimen reinforced with fibre were tested in the flexural testing machine using two point loading system. The load was being applied at the top of the beam. As the load was applied few visible cracks were seen; these were first crack load and the loading was noted. The loading continued till we got the ultimate crack. The flexural strength was calculated. Two point loading set-up is shown in the figures 3 to 6.

![Figure 3. Flexural Testing machine.](image)

![Figure 4. Two point loading beam.](image)

![Figure 5. Shear Force Diagram.](image)
5. Test Results

The results of the test conducted on beams are tabulated in tables 6 to 8. The load vs. deflection graph are represented in figures 7 and 8.

Table 6. Ultimate load and first crack load values for 7 days

SL No.	Beam Designation	First Crack Load(KN)	Ultimate Load(KN)
1	SD-1 [Control]	27	61.8
2	SD-2 [Control]	29.9	60.8
3	SD-3 [Single Bottom wrap]	34.3	67.7
4	SD-4 [Single Bottom wrap]	29.4	68.6
5	SD-5 [Single u-wrap]	45.1	71.0
6	SD-6 [Single u-wrap]	42.2	70.6

Table 7. Ultimate load and first crack load values for 28 days

SL No.	Beam Designation	First Crack Load(KN)	Ultimate Load(KN)
1	SD7-[Control]	49.0	81.4
2	SD-8[Control]	44.1	83.4
3	SD-9[Single Bottom wrap]	58.8	93.2
4	SD-10[Single Bottom wrap]	49.0	94.1

Table 8. Flexural Strength results for 7 days and 28 days

SL No.	Beam Designation	Flexural Strength (Mpa)	Increase in Flexural Strength (%)
1	SD-1-[Control]	18.81	
2	SD-2[Control]	18.51	
3	SD-3[Single Bottom wrap]	20.61	11.17
4	SD-4[Single Bottom wrap]	20.84	
5	SD-5[Single u-wrap]	21.49	15.48
6	SD-6 [Single u-wrap]	21.62	
7	SD7-[Control]	24.78	
8	SD-8[Control]	25.39	
9	SD-9 [Single Bottom wrap]	28.37	13.65
10	SD-10 [Single Bottom wrap]	28.64	

6. Conclusion

- In the experimental work reinforced concrete beams were strengthened using the FRP which resulted in increase of initial crack load and ultimate load.
- The flexure strength of the concrete increased 11.17 % for the single layer wrapping, 15.48 % for U-wrap for 7 days and 13.65% for single layers 28 days compared to the control beam.
7. References

1. Campione G. Influence of FRP wrapping techniques on the compressive behavior of concrete prisms. Cement & Concrete Composites. 2006; 28:497–505.
2. Pannirselvam N, Nagaradjane V, Chandramouli K. Strength behaviour of fibre reinforced polymer strengthened beam. ARPN Journal of Engineering and applied sciences. 2009 Nov; 4(9):34–9.
3. Adi AS, Karkare BS, Abbass MM. Effect of width and layers of GFRP strips on deflection of ReinforcedConcrete – GFRP Composite. International Journal of Engineering Science Invention. 2014 Oct; 3(10):71–5.
4. Lin HY, Hwei WJ, Tsong Y, Hsing HC, Yiching L. Strengthening reinforced concrete beams using prestressed glass. Journal of Zhejiang University Science. 2005; 6A(3):166–74.
5. Ramana V, Kant T, Morton S, Dutta P, Mukherjee A, Desai Y. Behavior of CFRPC strengthened reinforced concrete beams. Composites. 2000 Oct; 31(B):461–70.
6. Heffernan PJ, Erki MA. Fatigue Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Plastic. Journal of composites for construction. 2004 Apr; 8(2):132–40.
7. Pandian SJK, Murthy AR, Santhi MH. Investigations on RC Beams Retrofitted with UHSCC Overlay under Fatigue Loading. Indian Journal of Science and Technology. 2016 Feb; 9(5):1–5.