Ammonium metavanadate (NH₄VO₃): a highly efficient and eco-friendly catalyst for one-pot synthesis of pyridines and 1,4-dihydropyridines

Jamal Rahimi¹, Maryam Niksefat¹, Marzieh Heidari², Mehdi Naderi¹, Hadis Abbasi¹, Mohammad Tajik Ijdani¹ & Ali Maleki¹,
*email: maleki@iust.ac.ir

In this study, we reported the ammonium metavanadate (NH₄VO₃) as an efficient, cost-effective, and mild catalyst for the synthesis of substituted pyridines via a one-pot pseudo four-component reaction. Furthermore, we investigated Hantzsch 1,4-dihydropyridines (1,4-DHPs) synthesis and oxidation of 1,4-DHPs to their corresponding pyridines. The present approach offers a rapid methodology for accessing various pyridines with broad functional group tolerance and good yields using NH₄VO₃ catalyst as a green catalyst.

For several decades nitrogen-containing six-membered heterocyclic compounds have attracted the interest of synthetic organic chemists due to their pharmaceutical and biological properties. Among the nitrogen heterocycles, pyridine derivatives are well known as calcium channel blockers and exhibit therapeutic effects, such as vasodilator, bronchodilator, geroprotective, hepatoprotective, neuroprotective, and anti-tumor activity. For example, there are many pharmaceutical pyridine compounds (Fig. 1) such as (A) and (B), as selective modulators of human adenosine receptors implicated in asthma, Parkinson’s disease, epilepsy, kidney disease, and cancer, as well as cerivastatin (C) for the treatment of atherosclerosis and other coronary diseases. Pyridine derivatives are not only privileged scaffolds for drug discovery but also used as building blocks reagents in organic synthesis and ligands in coordination chemistry. Due to their importance, the development of novel synthetic methods for the preparation of pyridine derivatives is of interest.

The traditional so-called Hantzsch synthesis of 1,4-DHPs includes one-pot cyclocondensation of a β-ketoester with an aldehyde and a nitrogen source, which occurs either in acetic acid at room temperature or by refluxing in alcohols; this protocol has some drawbacks such as prolonged reaction times and low yields. Therefore, numerous modifications have been made to the original Hantzsch reaction, such as using microwave radiation, ionic liquid, SiO₂/NaHSO₄, metal triflates, I₂, ceric ammonium nitrate (CAN) and ZnO.

Recently, the oxidation of 1,4-DHPs was successfully carried out by using various oxidants, such as peroxysulfate-Co(II), silica-modified sulfuric acid/NaNO₂, Co-naphthenate, KBrO₃/SnCl₄.5H₂O, MnO₂, silica chromate, urea- hydrogen peroxide catalyzed by molecular iodine, b-cyclodextrin, silica-sulfuric acid and Al(NO₃)₃.9H₂O or Fe(NO₃)₃.9H₂O.

In recent years, the application of the bifunctional solid acid/noble metal Pd/C/K-10 catalyst was reported for the one-pot synthesis of pyridine derivatives. In addition, Khaskel and Barman reported the one-pot synthesis of pyridines in ethanol by benzyltrimethylammoniumfluoride hydrate (BTMAFH) and K₂S₂O₈. Ghosh et al. reported the direct synthesis of pyridine derivatives using visible light in aqueous media catalyzed by non-ionic surfactant Triton-X-100. Although, many of the reported methods for synthesis of pyridine derivatives offer distinct benefits, some of them still have some drawbacks, such as long reaction times, expensive reagents, harsh conditions, low product yields, tedious work-up, and by-products formation.

Hence, the development of a new procedure for the one-pot synthesis of pyridine derivatives would be highly desirable. Recently, NH₄VO₃ has been utilized as an inorganic acid and economical catalyst in organic reactions.
Furthermore, to the best of our knowledge the use of NH$_4$VO$_3$ in the synthesis of pyridine derivatives has been never reported before. In continuation of our previous works on the introduction of new catalysts in organic synthesis$^{37-43}$, herein, we report the use of NH$_4$VO$_3$ without any post-modification as an efficient, inexpensive, and eco-friendly catalyst for the synthesis of substituted pyridines via one-pot pseudo four-component reaction, including a combination of the Hantzsch synthesis and the subsequent oxidation step for the first time (Fig. 2).

Experimental

General. All solvents, chemicals, and reagents were purchased from Merck, Fluka, and Sigma-Aldrich chemical companies. Melting points were measured with an Electrothermal 9100 apparatus and are uncorrected. FT-IR spectra were obtained over 400–4000 cm$^{-1}$ with a Shimadzu IR-470 spectrometer using KBr pellets. 1H-NMR and 13C-NMR spectra were recorded by a Bruker Avance DRX 500 spectrometer. All the synthesized products were known, and the structure of the isolated products was confirmed by previously reported data.

General procedure for one-pot synthesis of pyridines. A mixture of an aldehyde 1 (1.0 mmol), ammonium acetate 2 (2.0 mmol), ethyl acetooacetate 3 (2.0 mmol), and ammonium metavanadate (NH$_4$VO$_3$) (117.0 mg) in 3.0 mL acetic acid was stirred under reflux condition for the appropriate time (Table 7). After completion of the reaction, as indicated by thin-layer chromatography (TLC), the catalyst (NH$_4$VO$_3$) was
separated by filtration. Then, products afforded by evaporation of the solvent, and recrystallized from diethyl ether to give the pure desired pyridines (5).

General procedure for preparation of 1,4-DHPs. A mixture of an aldehyde 1 (1.0 mmol), ammonium acetate 2 (2.0 mmol), ethyl acetoacetate 3 (2.0 mmol), and ammonium metavanadate (NH₄VO₃) (15.0 mg) in 3.0 mL ethanol was stirred under reflux condition, as indicated by thin-layer chromatography (TLC), the catalyst (NH₄VO₃) was separated by filtration, washed with ethanol, and reused five times in other fresh reactions without a considerable loss of activity. Then, products (4) are afforded by evaporation of the solvent, followed by recrystallization from ethanol.

General procedure for oxidative aromatization of 1,4-DHPs. To a solution of 1,4-DHPs 4 (1.0 mmol) in 3.0 mL of acetic acid, ammonium metavanadate (NH₄VO₃) (117.0 mg) was added. The resulting mixture was refluxed for an appropriate time (Table 5). After completion of the reaction (monitored by TLC), the mixture was cooled to room temperature and the catalyst was filtered off. Then the filtrate was evaporated and recrystallized from diethyl ether to give the pure desired pyridines (5).

Spectral data. Diethyl 4-(4-methoxyphenyl)-2,6-dimethyl-3,5-pyridinedicarboxylate (5d): FT-IR (KBr; υ/cm⁻¹): 2985, 2929, 1724, 1558, 1510, 1488, 1294, 1232, 1107, 1045, 860, 792; ¹H NMR (500 MHz, CDCl₃): δH (ppm) = 8.94 (s, 1H, NH), 7.47 (d, 2H, J = 8.4 Hz, H-Ar), 7.17 (d, 2H, J = 8.4 Hz, H-Ar), 6.90–6.97 (m, 2H), 5.97 (s, 1H, NH), 4.01–4.11 (m, 4H, CH₂), 2.33 (s, 6H, CH₃), 2.45 (s, 6H, CH₃), 1.38 (t, 6H, J = 7.1 Hz, CH₂), 0.97 (t, 6H, J = 7.1 Hz, CH₂).

Diethyl 4-(4-chloro-phenyl)-2,6-dimethyl-3,5-pyridinedicarboxylate (5f): FT-IR (KBr; υ/cm⁻¹): 2790, 2127, 1371, 1271, 1177, 1488, 1652, 1693, 2989, 3345, 3378; ¹H NMR (500 MHz, DMSO): δH (ppm) = 8.94 (s, 1H, NH), 7.17–7.23 (m, 3H, H-Ar), 6.01 (s, 1H, NH), 5.04 (s, 1H, CH₂), 4.16–4.24 (m, 4H, CH₂), 2.59 (s, 6H, CH₃), 1.85 (s, 3H, OCH₃), 1.33 (t, 6H, J = 7.1 Hz, CH₂), 0.90 (t, 6H, J = 7.1 Hz, CH₂).

Results and discussion

Regarding the fact that the one-pot approach to the synthesis of substituted pyridines through Hantzsch synthesis is hardly carried out and there are only a few literatures reported in this field. Hence, the efficiency of ammonium metavanadate (NH₄VO₃) was investigated in the one-pot synthesis of pyridine derivatives. In an initial attempt, the condensation of 4-chlorobenzaldehyde (1.0 mmol) with ethyl acetoacetate (2.0 mmol) and ammonium acetate (2.0 mmol) as a model reaction (Fig. 3) was examined in the presence of different catalytic amounts of NH₄VO₃ (Table 2). After completion of the reaction, as indicated by thin-layer chromatography (TLC), the catalyst (NH₄VO₃) was separated by filtration, washed with ethanol, and reused five times in other fresh reactions without a considerable loss of activity. Then, products (4) are afforded by evaporation of the solvent, followed by recrystallization from ethanol.

To optimize the amount of catalyst and reaction conditions for the one-pot synthesis of pyridines, the model reaction was examined in acetic acid (Table 1). As shown in Table 1, the best results were achieved when the reaction was carried out in the presence of 117.0 mg of NH₄VO₃ as the catalyst in acetic acid under reflux conditions (entry 1, Table 1). Increasing the amount of catalyst (117.0–120.0 mg) did not improve the yield of the desired product (entries 1–5, Table 1). In the absence of NH₄VO₃ catalyst, the reaction was not successful (entry 11, Table 1).
After optimizing the reaction conditions, to explore the scope of the reaction, a series of pyridine derivatives were synthesized by various aldehydes including both electron-donating and electron-withdrawing substituents (Table 7). All the aldehydes with both electron-withdrawing groups and electron-donating groups reacted very well, giving high yields of the desired products in short reaction times. Based on the results, we propose a plausible mechanism for the one-pot synthesis of pyridines (Fig. 4). This mechanistic pathway includes a combination of the Hantzsch synthesis and the subsequent oxidation step. First, the ammonium (NH$_4^+$) group in the structure of NH$_4$VO$_3$ activates the carbonyl functional groups of aldehyde and ethyl acetoacetate by hydrogen bonding. Therefore, it increases the carbonyl activity to Knoevenagel condensation with enol form of ethyl acetoacetate to give the corresponding Knoevenagel intermediate (I). In the next step, the reaction of the second molecule of ethyl acetoacetate with ammonium acetate gives the imine intermediate (II). The Michael addition of I with enamine form of II occurs to form intermediate III, which is activated through hydrogen bonding from NH$_4$VO$_3$ to facilitate cyclization and elimination of water, affording the desired 1,4-DHP derivatives. In continue, acetic acid using NH$_4$VO$_3$ as a catalyst is converted into acetate ion which is leading to an acid–base reaction with 1,4-DHPs. In the following, the negative charge of nitrogen of intermediate (IV) binds with the vacant “d” orbital of transition metal vanadium to achieve the stable oxidation state of vanadium. The last step might be progressed through unusual hydride transfer and H$_2$ releasing from (V). For proving this opinion, the reaction was evaluated under a nitrogen atmosphere (entry 2, Table 1). The results show that the oxidation reaction progressed in an atmosphere of nitrogen similar to the air or oxygen atmosphere condition (entries 1–3, Table 1). Due to electron-donating from the nitrogen lone pairs into the anti-bonding orbital of C–H (s^*_{C-H} orbital), the C–H bond is easily broken by reaction with a proton to afford molecular hydrogen. This phenomenon has been known as the anomeric effect.

Although there are a few literatures that reported on the direct approach for the one-pot synthesis of pyridines, this method is superior to the earlier methods in terms of yields, reaction time, and mild reaction conditions (Table 2).

To further confirm the possible mechanism, we also examined the efficiency of NH$_4$VO$_3$ as a catalyst for the one-pot synthesis of 1,4-DHPs. To optimize the reaction conditions. The condensation of 4-chlorobenaldehyde (1.0 mmol) with ethyl acetoacetate (2.0 mmol), ammonium acetate (2.0 mmol), AcOH (3.0 mL), under air condition. "Isolated yields." Under N$_2$ atmosphere. "Under O$_2$ atmosphere.

Table 1. Screening of the amount of catalyst and reaction conditions for the one-pot synthesis of pyridines. Reaction conditions: 4-chlorobenaldehyde (1.0 mmol), ethyl acetoacetate (2.0 mmol), ammonium acetate (2.0 mmol), AcOH (3.0 mL), under air condition. "Isolated yields." Under N$_2$ atmosphere. "Under O$_2$ atmosphere.

Entry	Solvent	Time(min)	Amount of catalyst (mg)	Temperature (°C)	Yielda (%)
1	Acetic acid	10	117	Reflux	96
2	Acetic acid	10	117	Reflux	96a
3	Acetic acid	10	117	Reflux	96b
4	Acetic acid	10	120	Reflux	96
5	Acetic acid	10	180	Reflux	96
6	Acetic acid	60	29	Reflux	67
7	Acetic acid	60	58	Reflux	73
8	Acetic acid	60	88	Reflux	85
9	Acetic acid	60	116	Reflux	90
10	Acetic acid	60	117	r.t	65
11	Acetic acid	60	–	Reflux	0c
In the absence of NH$_4$VO$_3$ as the catalyst, the reaction proceeded slowly with a low yield (entry 16, Table 3). As seen in Table 3 (entries 7–12) using 15.0–23.0 mg of the catalyst (NH$_4$VO$_3$) showed higher activity for the synthesis of 1,4-DHPs. However, when the amount of catalyst increased to 18.0–23.0 mg (entries 10–12, Table 3) the yield of the desired product (93%) did not improve. Among the investigated solvents, ethanol is the best choice with its short reaction time, high yield, cheapness, and being environmentally friendly for this reaction.

According to the results in Tables (1,3), it is obvious that in the absence of acetic acid and using other solvents the
1,4-DHPs form as the desired products. After optimizing the reaction conditions, the effect of substitution on the aldehydes has also been studied. As shown in Table 7 all the aromatic aldehydes with both electron-withdrawing groups and electron-donating groups reacted very well, giving high yields of the desired products. As expected substituted aldehydes with electron-withdrawing groups require a shorter reaction time in comparison to those with electron-donating groups.

Figure 5. Hantzsch synthesis of 1,4-DHPs catalyzed by NH₄VO₃.

Table 3. Optimization of the NH₄VO₃ catalyzed model reaction for the synthesis of Hantzsch 1,4-DHPs.

Entry	Solvent	Time(min)	Amount of catalyst (mg)	Temperature (°C)	Yielda (%)
1	Dimethyl sulfoxide	20	15	Reflux	75
2	Polyethylene glycol	45	15	Reflux	90
3	Dimethylformamide	20	15	Reflux	45
4	Tetrahydrofuran	45	15	Reflux	37
5	Acetonitrile	20	15	Reflux	85
6	Water	20	15	Reflux	55
7	Ethanol	20	15	Reflux	93
8	Ethanol	45	15	Reflux	93
9	Ethanol	45	15	r.t	65
10	Ethanol	20	18	Reflux	93
11	Ethanol	20	21	Reflux	93
12	Ethanol	20	23	Reflux	93
13	Ethanol	20	14	Reflux	85
14	Ethanol	45	13	Reflux	70
15	Ethanol	45	12	Reflux	58
16	Ethanol	45	–	Reflux	31

Table 4. Comparison of the efficiency of NH₄VO₃ with other catalysts for synthesizing 1,4-DHP (1f).

Entry	Catalyst (amount of catalyst)	Condition	Time (min)	Yielda (%)	References
1	Nano-ZnO (10 mol%)	EtOH/r.t	50	83	46
2	Nano-g-Alumina (10 mg)	EtOH/r.t	50	85	44
3	Nano-ZMS-5 (10 mg)	EtOH/r.t	55	90	44
4	Succinic acid (0.5 mmol)	EtOH: H₂O/80 (°C)	150	92	47
5	PPh₃ (20 mol%)	EtOH/reflux	5 h	82	49
6	PPh₃ (20 mol%)	EtOH/reflux	120	81	49
7	NH₄VO₃ (15 mg)	EtOH/reflux	20	93	

a Isolated yields.
Moreover, the catalytic activity of the NH₄VO₃ for the synthesis of 1,4-DHPs was compared to the other reported catalysts in Table 4.

We also extended our study to the oxidation of the synthesized 1,4-DHPs. Compound 4f (diethyl 4-(4-chlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate) was used as a model substrate to optimize the oxidation reaction conditions (Fig. 6).

As revealed in Table 5 (entries 1–8), the nature of the solvent is an important factor in the oxidation of 1,4-DHPs to the corresponding pyridines. The effect of the solvent in the oxidation reaction, in dichloromethane, ethanol, chloroform, H₂O, acetonitrile, formic acid, and tetrahydrofuran was investigated; no oxidation occurred in these solvents. While by addition of acetic acid as the solvent to the reaction mixture, the yield of the desired product reached 96% under reflux conditions (entry 8, Table 5), this observation suggests that acetic acid is

Table 5. Optimization of reaction conditions in the oxidation of 1,4-DHPs. Reaction conditions: 1,4-DHPs (1.0 mmol), solvent (3.0 mL). aIsolated yields. bUnder N₂ atmosphere. cUnder O₂ atmosphere.

Entry	Solvent	Time (min)	Amount of catalyst (mg)	Temperature	Yield (%)
1	Dichloromethane	1080	117	Reflux	0
2	Chloroform	1080	117	Reflux	0
3	Ethanol	1080	117	Reflux	0
4	Water	1080	117	Reflux	0
5	Acetonitrile	1080	117	Reflux	0
6	Formic acid	1080	117	Reflux	0
7	Tetrahydrofuran	1080	117	Reflux	0
8	Acetic acid	10	117	Reflux	96
9	Acetic acid	120	117	r. t	85
10	Acetic acid	10	117	Reflux	96
11	Acetic acid	60	58	Reflux	73
12	Acetic acid	60	88	Reflux	85
13	Acetic acid	60	116	Reflux	90
14	Acetic acid	10	120	Reflux	96
15	Acetic acid	10	180	Reflux	96
essential for the oxidation reaction. Additionally, the model substrate converts into the corresponding pyridine in acetic acid at room temperature (entry 9, Table 5). The model substrate was treated with 58.0–180.0 mg of NH₄VO₃ in the presence of acetic acid under reflux conditions (entries 10–16, Table 5). The satisfactory yield of the desired product can be obtained with 117.0 mg of NH₄VO₃ (entry 8, Table 5). The experiment was conducted in the oxygen, nitrogen, and air atmosphere (entries 8–11, Table 5), the oxidation reaction progressed in the nitrogen atmosphere the same as in normal reaction conditions using air or oxygen atmosphere.

Under the optimized reaction conditions, the catalytic performance of NH₄VO₃ was further evaluated for the oxidation reaction of various 1,4-DHPs containing electron-withdrawing and donating substituents (Table 7). The Hantzsch 1,4-DHPs including a variety of substituents were converted to the corresponding pyridines in excellent yield (Table 7). Based on the results for the oxidation of 1,4-DHPs by other catalysts reported previously (Table 6), the NH₄VO₃ can act as a highly efficient heterogeneous catalyst in oxidation reaction through a facile method (Table 7).

![Chemical structure](image)

Table 6. Comparison of the results for the oxidation of 1,4-DHP (4f.) using other catalysts. *Isolated yield.

Entry	Catalyst	Condition	Time	Yield* (%)	References
1	CuBr₂ (3 mmol)	CH₃COOCH₂CH₃/CHCl₃/reflux	2 h	81	58
2	TBA-eosinY/ K₂CO₃ (1 mol %)	Methanol/water/LED irradiation/Air	12 h	85	59
3	H₂O₂/V₂O₅ (5 mol %)	CH₃CN/rt	1 h	95	60
4	PhCH₂Ph₃PSO₅/BiCl₃ (1 eq/3 eq)	CH₃CN/rt	1/40 h	81	61
5	NH₄PF₆/Co(OAc)₂·4H₂O (20 mol %/0.5 mol %)	CH₃CN/Air/reflux	4 h	98	62
6	NH₄VO₃ (117 mg)	AcOH/reflux	10 min	98	This work

The Hantzsch 1,4-DHPs including a variety of substituents were converted to the corresponding pyridines in excellent yield (Table 7). Based on the results for the oxidation of 1,4-DHPs by other catalysts reported previously (Table 6), the NH₄VO₃ can act as a highly efficient heterogeneous catalyst in oxidation reaction through a facile method (Table 7).
Entry	Aldehyde (1)	Product (5) Path A^a	Product (5) Path B^b	Mp (°C) ref	Product (4)^c	Mp (°C) ref	
		Time (min)	Yield^d (%)				
1	Formaldehyde	5	99	5	98		
						69–70³⁵	(4a)
						165–168⁵⁴	
2	PhCHO	10	99	15	96		
						59–61³⁵	(4b)
						151–153⁵⁴	
3	4-(Me)_C6H₄CHO	10	95	15	97		
						71–73²⁹	(4c)
						133–136⁵⁴	
4	4-(O_{Me})_C6H₄CHO	10	100	25	96		
						57–58³⁴	(4d)
						163–165⁵⁴	
5	4-(Br)_C6H₄CHO	10	99	10	98		
						51–53²⁹	(4e)
						160–162⁵⁴	
6	4-(Cl)_C6H₄CHO	10	96	10	97		
						71–72²⁹	(4f)
						144–147⁵⁷	

Continued
Entry	Aldehyde (1)	Product (5) Path A⁺	Product (5) Path B⁺	Mp (°C) ref.	Product (4)^c	Mp (°C) ref.
		Time (min) Yield^d (%)	Time (min) Yield^d (%)		Time (min) Yield^d (%)	
7	4-(F)C₆H₄CHO	10 99	15 98	88–89²⁰	20 90	153–156⁴⁴
		![Image](5g)	![Image](4g)		![Image](5g)	![Image](4g)
8	4-(OH)C₆H₄CHO	15 99	20 95	171–174⁴⁶	60 85	227–230⁴⁴
		![Image](5h)	![Image](4h)		![Image](5h)	![Image](4h)
9	3-(OH)C₆H₄CHO	15 99	10 97	150–153³⁰	45 88	187–189⁴⁴
		![Image](5i)	![Image](4i)		![Image](5i)	![Image](4i)
10	3-(NO₂)C₆H₄CHO	10 98	30 95	60–61³³	40 91	163–166⁴⁴
		![Image](5j)	![Image](4j)		![Image](5j)	![Image](4j)
11	4-(CN)C₆H₄CHO	20 99	10 99	100–102²⁰	15 96	194–196⁴⁴
		![Image](5k)	![Image](4k)		![Image](5k)	![Image](4k)
12	Furan-2-car-	10 80	10 98		16 98	161–163⁴¹
	baldehyde	![Image](5l)	![Image](4l)		![Image](5l)	![Image](4l)

Continued
Conclusion
In conclusion, a novel and convenient approach for the one-pot synthesis of pyridine derivatives through the one-pot pseudo four-component reaction, and oxidation of 1,4-DHPs by using NH4VO3 as the catalyst has been developed. NH4VO3 is an efficient, commercially available, inexpensive, and eco-friendly catalyst for these reactions. These methods involve several remarkable advantages, such as simple procedure, mild reaction conditions, short reaction times, high yields, and ease of product isolation.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary information file. The data is also available through request from corresponding author.

Received: 10 April 2022; Accepted: 25 July 2022
Published online: 11 August 2022

References
1. Triggle, D. J. 1,4-dihydropyridine calcium channel ligands: Selectivity of action. The roles of pharmacokinetics, state-dependent interactions, channel isoforms, and other factors. Drug Dev. Res. 58, 5–17 (2003).
2. Liang, J.-C. et al. The new generation dihydropyridine type calcium blockers, bearing 4-phenyl oxyprenanolamine, display α-/β-Adrenoceptor antagonist and long-Acting antihypertensive activities. Bioorg. Med. Chem. 10, 719–730 (2002).
3. Edraki, N., Mehdipour, A. R., Khosheviszadeh, M. & Miri, R. Dihydropyridines: Evaluation of their current and future pharmacological applications. Drug Discov. Today 14, 1058–1066 (2009).

Table 7. Synthesis of pyridine derivatives and 1,4-DHPs in the presence of NH4VO3 as the catalyst a Reaction conditions: aldehyde (1.0 mmol), ethyl acetoacetate (2.0 mmol), ammonium acetate (2.0 mmol), AcOH (3.0 mL), NH4VO3 (117.0 mg), under air condition. bReaction conditions: 1,4-dihydropyridines (1.0 mmol), AcOH (3.0 mL), NH4VO3 (117.0 mg), under air condition. cReaction conditions: aldehyde (1.0 mmol), ethyl acetoacetate (2.0 mmol), ammonium acetate (2.0 mmol), EtOH (3.0 mL), NH4VO3 (15.0 mg). dIsolated yields.

Entry	Aldehyde (1)	Product (5) Path A	Product (5) Path B	Mp (°C) of Product (5)	Product (4)	Mp (°C) of Product (4)			
		Time (min)	Yieldd (%)						
13	Thiophen-2-carbaldehyde								
		40	75	10	98	15	97		
14	Cinnamaldehyde	10	65	25	80	20	98		
15	Terephthalaldehyde	180	83	180	90	30	97		
4. Nasr-Esfahani, M., Hoseini, S. J., Montazerzohoori, M., Mehrabi, R. & Nasrabad, H. Magnetic Fe₃O₄ nanoparticles: Efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Mol. Catal. A Chem. 382, 99–105 (2014).

5. Beukers, M. W. et al. New, non-adenosine, high-potency agonists for the human adenosine A₂a receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J. Med. Chem. 47, 3707–3709 (2004).

6. Chang, L. C. et al. A series of ligands displaying a remarkable agonistic–antagonistic profile at the adenosine A₁ receptor. J. Med. Chem. 48, 2845–2853 (2005).

7. Fredholm, B. B., Ijzemman, A. P., Jacobson, K. A., Klotz, K.-N. & Linden, J. International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53, 527–552 (2001).

8. Bischoff, H. et al. Cervivastatin: A formula of a novel synthetic and highly active HMG-CoA reductase inhibitor. Atherosclerosis 135, 119–130 (1997).

9. Kwong, H.-L. et al. Chiral pyridine-containing ligands in asymmetric catalysis. Coord. Chem. Rev. 251, 2188–2222 (2007).

10. Sepehrmansour, H., Zarei, M., Zolfgol, M., Babaee, S. & Rostamnia, S. Application of novel nanomagnetic metal–organic frameworks as a catalyst for the synthesis of new pyridines and 1,4-dihydropyridines via a cooperative vinylogous anomer based oxidation. Sci. Rep. 11, 5279 (2021).

11. Elmagarr, D. H. et al. Antiproliferative activity of some newly synthesized substituted nicotinamides candidates using pyridine-2(1H) thione derivatives as synthon. ACS Omega 7, 10304–10316 (2022).

12. Hantzsch, A. Uebere die synthese pyridinartiger verbindingen aus acetessigsaeter und aldheydammoniak. Eur. J. Org. Chem. 215, 1–82 (1882).

13. Khadikar, B. M., Gaikar, V. G. & Chitnavis, A. A. Aqueous hydrotrpoe solution as a safer medium for microwave enhanced hantzsch dihydropyridine ester synthesis. Tetrahedron Lett. 36, 8083–8086 (1995).

14. Agarwal, A. & Chauhan, P. M. Solid supported synthesis of structurally diverse dihydroxy[2,3-d]pyrimidines using microwave irradiation. Tetrahedron Lett. 46, 1345–1348 (2005).

15. Wang, L.-M. Magnetic Fe₃O₄ nanoparticles: Efficient catalysts for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Mol. Catal. A Chem. 382, 99–105 (2014).

16. Bagley, M. C. & Lubini, M. C. Microwave-assisted oxidative aromatization of Hantzsch 1,4-dihydropyridines using manganese dioxide. Synthesis 2006, 1283–1288 (2006).

17. Chari, M. A. & Syamasundar, K. Silica gel/NaHSO₄ catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Catal. Commun. 6, 624–626 (2005).

18. Ko, S., Sastry, M., Lin, C. & Yao, C.-F. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron Lett. 46, 7293–7299 (2005).

19. Moghadam, F. M., Saeidian, H., Mirjafary, S. & Sadeghi, A. Rapid and efficient one-pot synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives through the Hantzsch four component condensation by zinc oxide. J. Iran. Chem. Soc. 6, 317–324 (2009).

20. Anniyappan, M., Muralidharan, D. & Perumal, P. T. A novel application of the oxidizing properties of urea nitrate and peroxysulphate-cobalt(II): Aromatization of NAD(P)H model Hantzsch 1,4-dihydropyridines. Tetrahedron 58, 5069–5073 (2002).

21. Ali-Zolfaghi, M. & Ghorbani-Choghamarani, A. Silica modified sulfuric acid/NaNO₂ as a novel heterogeneous system for the oxidation of 1,4 dihydropyridines under mild conditions. Green Chem. 4, 562–564 (2002).

22. Chavan, S. P., Kharul, R. K., Kalkote, U. R. & Shivakumar, I. An efficient Co(II) catalyzed auto oxidation of 1,4-dihydropyridines. Synth. Commun. 33, 1333–1340 (2003).

23. Zeynizadeh, B., Dilmaghani, K. A. & Roohzoy, A. Oxidative-aromatization of Hantzsch ester 1,4-dihydropyridines by KBr/Fe(NO₃)₃·9H₂O under mild condition. Synth. Commun. 35, 557–562 (2005).

24. Bagley, M. C. & Lubini, M. C. Microwave-assisted oxidative aromatization of Hantzsch 1,4-dihydropyridines using manganese dioxide. Synthesis 2006, 1283–1288 (2006).

25. Zolfaghi, M. A., Salehi, P., Ghorbani-Choghamarani, A., Safaei, M. & Shahmammari, M. Silica chromate as a novel oxidizing agent for the oxidation of 1,4 dihydropyridines. Synth. Commun. 37, 1817–1823 (2007).

26. Filipino-Litić, M., Litić, M. & Vinković, V. An efficient, metal-free, room temperature aromatization of Hantzsch-1,4 dihydropyridines with Δ₂-hydroxy-2-oxoperoxide adduct, catalyzed by molecular iodine. Tetrahedron 64, 5649–5658 (2008).

27. Chen, J.-M. & Zeng, X.-M. β-Cyclodextrin-catalyzed mild aromatization of Hantzsch 1,4-dihydropyridines with o-iodoxybenzoic acid in water/aceton. Synth. Commun. 39, 3521–3526 (2009).

28. Ghorbani-Choghamarani, A. & Zatinvand, J. Aromatization of Hantzsch 1,4-dihydropyridines with Al(NO₃)₃·9H₂O and/or Fe(NO₃)₃·9H₂O in the presence of silica sulfuric acid under mild and heterogeneous conditions. Synth. Commun. 40, 2457–2463 (2010).

29. De Paolis, O., Boffo, I., Landge, S. M. & Toeroker, B. Multicomponent domino cyclization-oxidative aromatization of a bifunctional Ru/C/H₄-10 catalyst: An environmentally benign approach toward the synthesis of pyridines. Synthesis 2008, 3423–3428 (2008).

30. Pratim Ghosh, P., Mukherjee, P. & Das, A. P., Triton-X-100 catalyzed synthesis of 1,4 dihydropyridines and their aromatization to pyridines and a new one pot synthesis of pyridines using visible light in aqueous media. RSC Adv. 3, 8220–8226 (2013).

31. Sonar, S. S. et al. Ammonium metavanadate: An effective catalyst for synthesis of α-hydroxyphosphonates. ARKIVOC 2, 138–148 (2009).

32. nailav, G. R., Shaikh, M. U., Kale, R. P. & Gill, C. H. Ammonium metavanadate: A novel catalyst for synthesis of 2-substituted benzimidazol-2-ones derivatives. Chin. Chem. Lett. 20, 295–299 (2009).

33. Niralwad, K. S., Shingate, B. B. & Shingare, M. S. Microwave-assisted one-pot synthesis of octahydroquinazolinolone derivatives using ammonium metavanadate under solvent-free condition. Tetrahedron Lett. 51, 3616–3618 (2010).

34. Rahimi, J., Mirmohammadi, S. S. & Maleki, A. Trihydrazinotriazine-grafting Fe₃O₄/SiO₂ core-shell nanoparticles with expanded porous structure for organic reactions. Front. Chem. Sci. Eng. 15, 1008–1020 (2021).

35. Rahimi, J., Niksafat, M. & Maleki, A. Fabrication of Fe₂O₃/PVa-Cu nano composite and its application for facile and selective oxidation of alcohols. Front. Chem. 8, 615 (2020).

36. Rahimi, J. & Maleki, A. Preparation of a trihydrazinotriazine-functionalized core-shell nanocatalyst as an extremely efficient catalyst for the synthesis of benzoanthenes. Mater. Today Chem. 18, 100362 (2020).

37. Rahimi, J., Bahrami, N., Niksafat, M., Kamalzade, M. & Maleki, A. A novel biodegradable magnetic bionanocomposite based on tannic acid as a biological molecule for selective oxidation of alcohols. Solid State Sci. 105, 106284 (2020).

38. Maleki, A., Niksafat, M., Rahimi, J. & Azadegan, S. Facile synthesis of tetrazolo [1, 5-a] pyrimidine with the aid of an effective gallic acid nanomagnetic catalyst. Polyhedron 167, 103–110 (2019).
Zolfigol, M. A., Ghaemi, E., Madrakian, E. & Niknam, K. PEG-N2O4 system as an efficient reagent both for the rapid oxidation of

Adibi, H. & Hajipour, A. R. A convenient and efficient protocol for oxidative aromatization of Hantzsch 1,4-dihydropyridines

Publisher's note

Reprints and permissions information is available at www.nature.com/reprints.

is available at https://doi.org/10.1038/s41598-022-17378-7.

and requests for materials should be addressed to A.M.

Correspondence

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-17378-7

Additional information

Supplier’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgements

The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology.

Author contributions

J.R.: main researcher, first author, main laboratory’s performer, wrote the main manuscript and prepared all figures. M.N.: Formal analysis, Visualization, Writing - Review and Editing, Laboratory colleague and prepared all figures. M.H.: co-author in writing the main manuscript. M.N.: Laboratory colleague. H.A.: Laboratory colleague. M.T.I.: Laboratory colleague. A.M.: supervisor and main reviewer.

Competing interests

The authors declare no competing interests.
