Determination of matter radius and neutron skin of ^{58}Ni from reaction cross section of proton+^{58}Ni scattering based on chiral g-matrix model

Shingo Tagami
Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

Maya Takechi
Niigata University, Niigata 950-2181, Japan

Jun Matsui
Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

Tomotsugu Wakasa
Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

Masanobu Yahiro
Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

(Dated: December 17, 2020)

Background: Using the chiral (Kyushu) g-matrix folding model with the densities calculated with Gogny-HFB (GHFB) with the angular momentum projection (AMP), we determined the central values of matter radius and neutron skin from the central values of reaction cross sections $\sigma_R(\text{EXP})$ of p+$^{40,48}\text{Ca}$ and p+^{208}Pb scattering. As for p+^{58}Ni scattering, $\sigma_R(\text{EXP})$ are available as a function of incident energy E_{in}.

Aim: Our aim is to determine matter radius r_m and skin radius r_{skin} for ^{58}Ni from the $\sigma_R(\text{EXP})$ of p+^{58}Ni scattering by using the Kyushu g-matrix folding model with the GHFB+AMP densities.

Results: For p+^{58}Ni scattering, the Kyushu g-matrix folding model with the GHFB+AMP densities reproduces $\sigma_R(\text{EXP})$ in $8.8 \leq E_{\text{in}} \leq 81\text{MeV}$. For $E_{\text{in}} = 81\text{MeV}$, we define the factor F as $F = \sigma_R(\text{EXP})/\sigma_R(\text{AMP}) = 0.9775$. The $F\sigma_R(\text{AMP})$ be much the same as the center values of $\sigma_R(\text{EXP})$ in $8.8 \leq E_{\text{in}} \leq 81\text{MeV}$. We then determine $r_m(\text{EXP})$ from the center values of $\sigma_R(\text{EXP})$, using $\sigma_R(\text{EXP}) = C r_m^2(\text{EXP})$ with $C = r_m^2(\text{AMP})/(F\sigma_R(\text{AMP}))$. The $r_m(\text{EXP})$ thus obtained are averaged over E_{in}. The averaged value is $r_m(\text{EXP}) = 3.697\text{fm}$. Eventually, we obtain $r_{\text{skin}}(\text{EXP}) = 0.023\text{fm}$ from $r_m = 3.697\text{fm}$ and $r_p(\text{EXP}) = 3.685\text{fm}$ of electron scattering.

I. INTRODUCTION AND CONCLUSION

Background: A novel method for measuring nuclear reactions in inverse kinematics with stored beam ions was successfully used to extract the matter radius of ^{58}Ni [1]. The experiment was performed at the experimental heavy-ion storage ring at the GSI facility. Their results determined from the differential cross section for ^{58}Ni+^4He scattering are $r_m(\text{GSI}) = 3.70(7)\text{fm}$, $r_p(\text{GSI}) = 3.68\text{fm}$, $r_n(\text{GSI}) = 3.71(12)$, $r_{\text{skin}}(\text{GSI}) = 0.03(12)\text{fm}$.

Reaction cross section σ_R and interaction cross sections σ_I are a standard observable to determine a central value of matter radius r_m. In fact, we deduced the matter radii r_m for Ne isotopes [2] and for Mg isotopes [3]. One can then evaluate r_{skin} and r_n from the r_m and the $r_p(\text{EXP})$ [4] of the electron scattering. Eventually, one can determine r_m and r_{skin} from the central value of $\sigma_R(\text{EXP})$. Recently, we have determined r_m and r_{skin} for ^{208}Pb [5] and $^{40,48}\text{Ca}$ [6,7], using the chiral (Kyushu) g-matrix folding model with the densities calculated with Gogny-D1S-HFB (GHFB) with the angular momentum projection (AMP). As for ^{58}Ni, the data on σ_R are available for p+^{58}Ni scattering [8–12].

The g-matrix folding model is a standard way of obtaining microscopic optical potential for proton scattering and nucleus-nucleus scattering [13–22]. Applying the folding model with the Melbourne g-matrix [16] for σ_I for Ne isotopes and σ_R for Mg isotopes, we found that ^{31}Ne is a deformed halo nucleus [23], and determined the matter radii r_m for Ne isotopes [2] and for Mg isotopes [3].

Kohno calculated the g matrix for the symmetric nuclear matter, using the Brueckner-Hartree-Fock method with chiral N3LO 2NFs and NNLO 3NFs [24]. He set $c_D = -2.5$ and $c_E = 0.25$ so that the energy per nucleon can become minimum at $\rho = \rho_0$. Toyokawa et al. localized the non-local chiral g matrix into three-range Gaussian forms [21], using the localization method proposed by the Melbourne group [16, 25, 26]. The resulting local g matrix is referred to as “Kyushu g-matrix”.

The Kyushu g-matrix folding model is successful in reproducing σ_R and differential cross sections $d\sigma/dQ$ for ^4He scattering in $E_{\text{lab}} = 30 \sim 200\text{MeV}$ per nucleon [21]. The success is true for proton scattering at $E_{\text{lab}} = 65\text{MeV}$ [19].

Proton and neutron densities used in the folding model: In Ref. [22], GHFB and GHFB+AMP reproduce the one-neutron separation energy S_1 and the two-neutron separation energy S_2 in $^{41–58}\text{Ca}$ [27,29]. We found, with S_1 and S_2, that ^{64}Ca
is an even-dripline nucleus and 59Ca is an odd-dripline nucleus. Our results are consistent with the data [2] in $^{40-58}$Ca for the binding energy E_B. This means that the proton and neutron densities are good.

Aim: Our aim is to determine matter radius r_m and skin radius r_{skin} for 58Ni from the $\sigma_R(\text{EXP})$ of $p+^{58}$Ni scattering by using the Kyushu g-matrix folding model with the GHFB+AMP densities.

Results: For $p+^{58}$Ni scattering, the Kyushu g-matrix folding model with the GHFB+AMP densities reproduces $\sigma_R(\text{EXP})$ in $8.8 \leq E_{in} \leq 81$ MeV. As a fine-tuning, for $E_{in} = 81$ MeV, we define the factor F as $F = \sigma_R(\text{EXP})/\sigma_R(\text{AMP}) = 0.9775$. The $F \sigma_R(\text{AMP})$ is much the same as the center values of $\sigma_R(\text{EXP})$ in $8.8 \leq E_{in} \leq 81$ MeV. We then determine $r_m(\text{EXP})$ from the center values of $\sigma_R(\text{EXP})$, using $\sigma_R(\text{EXP}) = C r_m^2(\text{EXP})$ with $C = \sigma_R(\text{AMP})/(F \sigma_R(\text{AMP}))$. The $r_m(\text{EXP})$ thus obtained are averaged over E_{in}. The averaged value is $r_m(\text{EXP}) = 3.697$ fm. Eventually, we obtain $r_{skin}(\text{EXP}) = 0.023$ fm from $r_m = 3.697$ fm and $r_p(\text{PCNP}) = 3.685$ fm of electron scattering.

Conclusion: Our conclusion is that the central value of $r_m(\text{EXP})$ is 3.697 fm and that of $r_{skin}(\text{EXP})$ is 0.023 fm. Our results are close to with those shown in Ref. [1].

II. MODEL

Our model is the Kyushu g-matrix folding model [21] with densities calculated with GHFB+AMP [22]. The folding model itself is clearly shown in Ref. [18]. The Kyushu g-matrix is constructed from chiral interaction with the cutoff 550 MeV.

III. RESULTS

Figure 1 shows reaction cross sections σ_R as a function of incident energy E_{in} for $p+^{58}$Ni scattering. In 2-σ level, the Kyushu g-matrix folding model with the GHFB+AMP densities (closed circles) reproduces $\sigma_R(\text{EXP})$ [8-12] in $8.8 \leq E_{in} \leq 81$ MeV; note that the data has high accuracy of 2.7 %.

Now, we introduce the fine-tuning factor F. We consider $E_{in} = 81$ MeV, since total cross section of nucleon-nucleon scattering is smallest in $8.8 \leq E_{in} \leq 81$ MeV. For $E_{in} = 81$ MeV, we define the factor F as $F = \sigma_R(\text{EXP})/\sigma_R(\text{AMP}) = 0.9775$. The $F \sigma_R(\text{AMP})$ (open circles) are much the same as the center values of $\sigma_R(\text{EXP})$ in $8.8 \leq E_{in} \leq 81$ MeV. We then determine $r_m(\text{EXP})$ from the center values of $\sigma_R(\text{EXP})$, using $\sigma_R(\text{EXP}) = C r_m^2(\text{EXP})$ with $C = \sigma_R(\text{AMP})/(F \sigma_R(\text{AMP}))$. The $r_m(\text{EXP})$ thus obtained are averaged over E_{in}. The averaged value is $r_m(\text{EXP}) = 3.697$ fm. We then obtain $r_{skin}(\text{EXP}) = 0.023$ fm. The $r_p(\text{PCNP}) = 3.685$ fm of electron scattering. Our results agree with $r_m(\text{GSI}) = 3.707$(7) fm, $r_p(\text{GSI}) = 3.685$, $r_n(\text{GSI}) = 3.71(12)$, and $r_{skin}(\text{GSI}) = 0.03(12)$ fm.

ACKNOWLEDGMENTS

We would like to thank Dr. Toyokawa for providing his code.
3

and L. Kurth Kerr, et al. Nucl. Phys. A 653, 341-354 (1999) doi:10.1016/S0375-9474(99)00236-5
[10] T. Eliyakut-Roshko, R. H. McCamis, W. T. H. van Oers, R. F. Carlson and A. J. Cox, Phys. Rev. C 51, 1295-1305 (1995) doi:10.1103/PhysRevC.51.1295
[11] J. F. Dicello, G. J. Igo and M. L. Roush, Phys. Rev. 157, 1001-1015 (1967) doi:10.1103/PhysRev.157.1001
[12] P. J. Bulman, G. W. Greenlees and M. J. Sametband, Nucl. Phys. 69, 536-544 (1965).
[13] F. A. Brieva and J. R. Rook, Nucl. Phys. A 291, 299 (1977); *ibid.* 291, 317 (1977); *ibid.* 297, 206 (1978).
[14] G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979); G. R. Satchler, “Direct Nuclear Reactions”, Oxford University Press, (1983).
[15] N. Yamaguchi, S. Nagata, and T. Matsuda, Progress of Theoretical Physics 70, 459 (1983); S. Nagata, M. Kamimura, and N. Yamaguchi, Progress of Theoretical Physics 73, 512 (1985); N. Yamaguchi, S. Nagata, and J. Michiyama, Progress of Theoretical Physics 76, 1289 (1986).
[16] K. Amos, P. J. Dortmans, H. V. Von Geramb, S. Karataglidis, and J. Raynal, in *Advances in Nuclear Physics*, edited by J. W. Negele and E. Vogt (Plenum, New York, 2000) Vol. 25, p. 275.
[17] T. Furumoto, Y. Sakuragi, and Y. Yamamoto, Phys. Rev. C 78, 044610 (2008); *ibid.*, 79, 011601(R) (2009); *ibid.*, 80, 044614 (2009).
[18] K. Egashira, K. Minomo, M. Toyokawa, T. Matsumoto and M. Yahirow, Phys. Rev. C 89, no. 6, 064611 (2014), [arXiv:1404.2735 [nucl-th]].
[19] M. Toyokawa, K. Minomo, M. Kohno, and M. Yahirow, J. Phys. G 42, no. 2, 025104 (2015), Erratum: [J. Phys. G 44, no. 7, 079502 (2017)] [arXiv:1404.6895 [nucl-th]].
[20] M. Toyokawa, M. Yahirow, T. Matsumoto, K. Minomo, K. Ogata and M. Kohno, Phys. Rev. C 92, no. 2, 024618 (2015), Erratum: [Phys. Rev. C 96, no. 5, 059905 (2017)], [arXiv:1507.02807 [nucl-th]].
[21] M. Toyokawa, M. Yahirow, T. Matsumoto and M. Kohno, PTEP 2018, 023D03 (2018), [arXiv:1712.07033 [nucl-th]]. See http://www.nt.phys.kyushu-u.ac.jp/english/gmatrix.html for Kyushu g-matrix.
[22] S. Tagami, M. Tanaka, M. Takechi, M. Fukuda and M. Yahirow, Phys. Rev. C 101, no. 1, 014620 (2020), [arXiv:1911.05417 [nucl-th]].
[23] K. Minomo, T. Sumi, M. Kimura, K. Ogata, Y. R. Shimizu and M. Yahirow, Phys. Rev. Lett. 108, 052503 (2012), [arXiv:1110.3867 [nucl-th]].
[24] M. Kohno, Phys. Rev. C 88, 064005 (2013).
[25] M. Kohno, Phys. Rev. C 96, 059903(E) (2017).
[26] H. V. von Geramb, K. Amos, L. Berge, S. Bräutigam, H. Kohlhoff and Ingemarsson, Phys. Rev. C 44, 73 (1991).
[27] the National Nuclear Data Center, NuDat 2.7; https://nucleus.iaea.org/Pages/nu-dat-2.aspx.
[28] O. B. Tarasov et al., Phys. Rev. Lett. 121, 022501 (2018).
[29] S. Michimasa et al., Phys. Rev. Lett. 121, 022506 (2018).