Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Evaluation of antirotavirus activity of flavonoids

Luciane Anita Savi a, Thiago Caon a, Ana Paula de Oliveira b, Andrea Michel Sobottka c, Wolfgang Werner d, Flávio Henrique Reginatto b, Eloir Paulo Schenkel b, Célio Regina Monte Barardi a, Cláudia Maria Oliveira Simões b,⁎

a Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88.040-970, Brazil
b Laboratório de Virologia Aplicada, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88.040-970, Brazil
c Curso de Farmácia, Universidade de Passo Fundo, Passo Fundo, RS, 99.001-970, Brazil
d Department of Pharmaceutical Chemistry, University of Münster, Hittorfstrasse 58-62, D-48149, Münster, Germany

Article info
Article history:
Received 2 March 2010
Received in revised form 18 July 2010
Accepted 20 July 2010
Available online 24 July 2010

Keywords:
Antiviral screening
Flavonoids
Rotavirus
SAR

Abstract
Flavonoids are dietary components and the most ubiquitous phenolic compounds found in nature, showing a range of pharmacological activities including antiviral action. This study describes the antiviral screening of 60 different flavones and flavonols against human rotavirus (Wa-1 strain) as well as their cytotoxicity in MA104 cells. Cytotoxicity was investigated by cell morphology assessment and antirotavirus activity by cytopathic effect inhibition. Results were expressed as CC50 and IC50, respectively, in order to calculate the selectivity index (SI = CC50/IC50) of each compound. Structure–activity relationships (SAR) were proposed based on antirotavirus activity.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Flavonoids are polyphenolic compounds that can be found as dietary components such as food products, beverages and herbal medicines with different health benefits shown in a large number of studies [1]. Several pharmacological activities have been described for flavonoids such as antitumor [2], antibacterial [2–4], antifungal [3,4], antiallergic, estrogenic, anti-inflammatory [2], prevention of cardiovascular diseases [5] and antiviral [3,4,6]. In addition, they are well-known antioxidants and metal ion-chelators [4,7].

Natural products have shown to be an important source of useful compounds in antiviral chemotherapy [8,9]. Compounds with promising activity can be used directly as drugs or as leads for the synthesis of new drugs. During the last few years, efforts have been made to increase the number of compounds with antiviral activity. Clinical use of the currently available antiviral drugs has use restrictions as narrow spectrum of activity, limited therapeutic usefulness and variable degrees of toxicity [10]. Furthermore, the therapeutic potency of most of the antiviral agents encountered so far is counterbalanced by their severe side effects in humans and, in some cases; the efficacy of these drugs is limited by increase of viral resistance [11]. Therefore, the search for antiviral compounds with high efficacy, low toxicity and minor side effects must continue to improve drug therapy.

Flavonoids have been investigated for antiviral activity, for instance, against human cytomegalovirus [12,13], herpes simplex virus types 1 and 2 [14–17], influenza virus, respiratory syncytial virus, adenovirus, varicella zoster virus [12], poliovirus [14,18,19], rhinovirus [19], sindbis virus [20], coronavirus, parainfluenzavirus, coxsackievirus B [8], HIV [21] and rotavirus [6].

Among enteric viruses, rotaviruses are the major cause of severe diarrhea and it is believed that they would account for about 30 to 80% of pediatric hospitalizations for acute gastroenteritis. Rotaviruses affect nearly the population
Flavones identified as 8, 10, 12, 20, 21, 28, 29, 31, 32 and 34 were purchased from Sigma and others were synthesized [26]. Flavonols identified as 49, 54, 55 and 57 were synthesized [26] and others were purchased from Sigma.

Compounds were assayed for their toxicity to MA104 cells by microscopical morphology evaluation [27,28] and for their antiviral activity (Wa-1 strain) by cytopathogenicity inhibition [29]. They were dissolved in 1% of dimethyl sulfoxide (DMSO, Merck, Darmstadt, Germany) diluted in 199 medium (Sigma Chemical Co., St. Louis, MO, USA) and filtered through 0.22 μm membranes (Millipore, Bedford, MA, USA). All stock solutions were stored at 4 °C protected from light until used. The used cell line was MA104 cells (Biological Science Institute, University of São Paulo, Brazil), grown in 199 Medium (Sigma Chemical Co., St. Louis, MO, USA) and supplemented with 10% fetal bovine serum (Gibco BRL, New York, USA), penicillin G (100 U/ml), streptomycin (100 µg/ml) and amphotericin B (0.025 µg/ml) (Gibco BRL, New York, USA). The cell cultures were maintained at 37 °C in a humidified 5% CO2 atmosphere. The human rotavirus Wa-1 (ATCC: VR2018) was used and it was propagated in MA104 cells in the presence of trypsin (Sigma, 5 µg/ml). Stock viruses were prepared as previously described by Barardi et al. [27] and the supernatant fluids were harvested, titrated and stored at −80 °C until used. Virus titers were estimated from cytopathogenicity by the limit-dilution method and expressed as 50% tissue culture infectious dose per ml (TCID50/ml).

The CC50 (cytotoxic concentration for 50% of cells) and IC50 (inhibitory concentration for 50% of infected cells) values were estimated from concentration–effect curves after linear regression analysis, and represent the mean values of three independent experiments.

The selectivity index (SI = CC50/IC50) was calculated for each tested flavonoid. According to Sidwell [30], when SI ≥ 4 promising antiviral activity must be considered.

3. Results

The selectivity indexes (SI) were calculated from the cytotoxic and inhibitor concentrations (Tables 1 and 2) and the values obtained were considered to propose a structure–activity relationship. In tests with non-cytotoxic concentrations, the compounds showed different degrees of antiviral activity, excepting the flavonols 1, 3, 5, 7, 8, 14–16 and 28–30, and the flavones 35, 44–46, 48 and 55. The majority of tested flavonoids and flavonones demonstrated SI ≥ 4, indicating a favorable activity against human rotavirus (Wa-1 strain).

4. Discussion

In the present study, the cytotoxicity and antiviral action of 60 flavonoids were evaluated on MA104 cells, which have susceptibility to human rotavirus. Taking into account these results, the selectivity index for each compound was calculated and these values were considered to describe SAR. The tested flavonoids were divided in groups according to their similar structural characteristics and some SAR were proposed considering the conformational effects exerted by the substituents.
Antiviral activity was provided for compounds with one substituent ethoxyl in A ring (1, 3 and 5) did not grant antiviral activity, but not when it was in meta position (2, 4 and 6). Considering just one methoxyl in B ring (7 and 8), antiviral activity was not observed, in contrast to the existence of two (9 and 10) or three (11 and 12) methoxyl radicals in B ring. A considerable antitrovirus action was detected in the presence of benzoxyl radical in the same ring (13, 19 and 20). In view of ethoxyl radicals in B ring (14–18), the promising antiviral activity was linked to the presence of two of this radical in meta position (18). Compounds with butoxyl radicals in B ring (22–26) also showed activity, with higher activity for orto/meta positions of this radical (25).

Antiviral activity was provided for compounds with one butoxyl group in A ring (38), one ethyl radical in B ring (21) and one benzoxyl radical simultaneously in A and B rings (39).

When A ring has one methoxyl group (29–34), the antiviral activity was detected only if the B ring also has a methoxyl at the R4’ position (31–34).

With one substituent ethoxyl in A ring (35–37), an antiviral activity was detected only in the presence of one ethoxyl radical in B ring at the R3’ or R4’ position (36 and 37).

In view of the A and B rings containing two hydroxyl groups each one (28), the antiviral activity was not observed. The same result was observed when the flavonol comprised only one hydroxyl in B ring and no substituent in A ring (3).

For the flavonols, the presence of two or more methoxyl and ethoxyl radicals, one or two butoxyl radicals, and one benzoxyl radical showed antiviral activity while compounds containing only one methoxyl or ethoxyl radical did not reduce the rotavirus infection.

In view of the role that sialic acid has in infection by rotavirus, Fazli et al. [31] evaluated the antiviral effect of flavonoids, the presence of two or more methoxyl and ethoxyl radicals, one or two butoxyl radicals, and one benzoxyl radical showed antiviral activity while compounds containing only one methoxyl or ethoxyl radical did not reduce the rotavirus infection.

In view of the role that sialic acid has in infection by rotavirus, Fazli et al. [31] evaluated the antiviral effect of flavonoids, the presence of two or more methoxyl and ethoxyl radicals, one or two butoxyl radicals, and one benzoxyl radical showed antiviral activity while compounds containing only one methoxyl or ethoxyl radical did not reduce the rotavirus infection.
Concerning the tested flavonoids, an antiviral action was shown when the B and C rings did not have methoxyl substituents (40–42) and had one hydroxyl and hydroxyl radicals in A ring.

In the case of flavonoids without methoxyl substituents in A and B rings (43–47), the presence of O-rhamnose and O-rhamno-glucose at R3 position (44 and 45, respectively) or the absence of radical (46) in C ring did not provide antiviral activity. Bae et al. [32] tested the in vitro inhibitory action of different rhamnoglycosides on rotavirus infection in that dosmin and hesperidin had a higher activity (IC₅₀ = 10 μM); however, the presence of methoxyl groups in A ring is relevant to antiviral activity when these compounds were compared.

Considering the same A and C rings (49 and 55), the absence of methoxyl in R5 position of A ring (49) could explain the antiviral activity when these compounds were compared.

For the tested flavonoids, the SAR analysis suggests that the presence of methoxyl group in A ring is relevant to antiviral action, nevertheless, the characteristics about the other rings also need to be considered to each compound.

Table 2
Substitution patterns of tested flavonoids and their cytotoxic (CC₅₀) and viral inhibitory (EC₅₀) concentrations, as well as their selective indices (SI = CC₅₀/IC₅₀).

Number	R3′	R4′	R5′	R3	R5	R6	R7	MW	CC₅₀	IC₅₀	SI
40	H	OH	H	H	OH	OCH₃	OCH₃	344.0	22.67	7.56	3.0
41	H	OH	H	H	OH	OCH₃	OCH₃	316.0	49.37	12.34	4.0
42	H	OH	H	H	OH	OCH₃	OCH₃	284.6	54.81	18.27	3.0
43	OH	OH	H	OCH₃	OH	H	OH	316.26	49.33	12.33	4.0
44	OH	OH	H	O-RHAMNOSE	OH	H	OH	448.38	69.58	NA	-
45	OH	OH	H	O-RHAMNO-GLUCOSE	OH	H	OH	610.51	51.10	NA	-
46	OH	OH	H	H	OH	H	OH	286.24	27.25	NA	-
47	OH	OH	H	O-SO₃	OH	H	OH	381.3	40.91	10.23	4.0
48	H	OCH₃	H	H	H	OCH₃	OCH₃	357.38	21.83	NA	-
49	H	OCH₃	H	H	OCH₃	OCH₃	OCH₃	372.37	167.84	28.20	6.0
50	H	OCH₃	H	H	OH	H	OCH₃	298.0	52.35	13.09	4.0
51	H	OCH₃	H	H	OH	OCH₃	OCH₃	358.0	43.58	7.26	6.0
52	H	OCH₃	H	H	OH	OCH₃	OCH₃	328.0	23.78	15.55	1.5
53	H	OCH₃	OCH₃	H	OH	OCH₃	OCH₃	342.4	45.58	17.53	2.6
54	H	OCH₃	OCH₃	H	OCH₃	OCH₃	OCH₃	372.37	41.89	6.98	6.0
55	H	OCH₃	OCH₃	H	OCH₃	OCH₃	OCH₃	402.4	38.77	NA	-
56	H	OCH₃	OCH₃	OCH₃	OH	H	OH	342.4	45.58	7.60	1.5
57	H	OCH₃	OCH₃	OCH₃	OCH₃	OH	OCH₃	432.42	36.08	18.04	2.0
58	OCH₃	H	H	OH	OCH₃	OCH₃	OCH₃	376.34	124.62	31.09	4.0
59	OCH₃	OH	H	OCH₃	OH	H	OCH₃	374.34	41.67	6.95	6.0
60	OH	OCH₃	H	OCH₃	OH	OCH₃	OCH₃	404.37	77.16	77.16	1.0

MW = molecular weight; NA = no antiviral activity; CC₅₀ (μM); MA104 cells; IC₅₀ (μM); human rotavirus. Substances 49, 54, 55 and 57 were synthesized [26] and others were purchased from Sigma.

L.A. Savi et al. / Fitoterapia 81 (2010) 1142–1146

1145

... flavonoids can degrade to variable extents in the digestive tract.
tract. A screening of bioactive compounds, synthetic or isolated from natural sources, and the evaluation of their SAR, allied to technological advances, are required to develop more effective and safer new drugs than those already available.

Acknowledgments

C.M.O. Simões, E.P. Schenkel, C.R.M. Barardi and T. Caon give thanks to CNPq/MCT/Brazil, and L.A. Savi and A.M. Sobottka thanks CAPES/MEC/Brazil for their research fellowships.

References

[1] Li N, Liu JH, Zhang J, Yu BY. Comparative evaluation of cytotoxicity and antioxidantive activity of 20 flavonoids. J Agric Food Chem 2008;56:3876–83.
[2] Das S, Rosazza JP. Microbial and enzymatic transformations of flavonoids. J Nat Prod 2006;69:499–508.
[3] Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005;26:343–56.
[4] Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 2007;51:116–34.
[5] Nardini M, Natella F, Scaccini C. Role of dietary polyphenols in platelet aggregation. A review of the supplementation studies. Platelets 2007;18:224–43.
[6] Bae EA, Han MJ, Lee M, Kim DH. In vitro inhibitory effect of some flavonoids on rotavirus infectivity. Biol Pharm Bull 2000;23:1122–4.
[7] Stevenson DE, Hurst KD. Polyphenolic phytotoxins—just antioxids or much more? Curr Mol Life Sci 2007;64:1732–42.
[8] Chattopadhyay D. Antivirals of ethnomedicinal origin: structure–activity relationship and scope. Mini Rev Med Chem 2007;7:275–301.
[9] Potterat O, Hamburger M. Drug discovery and development with plant-derived compounds. Prog Drug Res 2008;65:47–118.
[10] Martin KW, Ernst E. Antiviral agents from plants and herbs: a systematic review. Antivir Ther 2003;8:77–90.
[11] Balfour HH. Antiviral drugs. N Engl J Med 1999;340:1255–68.
[12] Lin YM, Flavin MT, Schure R, Chen FC, Sidwell R, Barnard DL, Huffman JH, Kern ER. Antiviral activities of biflavonoids. Planta Med 1999;65:120–5.
[13] Evers DL, Chao CF, Wang X, Zhang Z, Huong SM, Huang ES. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action. Antiviral Res 2005;68:124–34.
[14] Kaul TN, Middleton E, Ogra PL. Antiviral effect of flavonoids on human viruses. J Med Virol 1985;15:71–9.
[15] Amoros M, Simões CM, Girre L, Sauvager F, Cormier M. Synergistic effect of flavones and flavonoids against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis. J Nat Prod 1992;55:1732–40.
[16] Khan MT, Ather A, Thompson KD, Gambari R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res 2005;67:107–19.
[17] Savi LA, Barardi CR, Simões CM. Evaluation of antiverticella and genotoxic effects of tea catechin derivatives. J Agric Food Chem 2006;54:2552–7.
[18] Vrijen R, Everaert L, Van Hoof LM, Vlietinck AJ, Vanden Berghe DA, Boeyé A. The poliovirus-induced shut-off of cellular protein synthesis persists in the presence of 3-methylquercetin, a flavonoid which blocks viral protein and RNA synthesis. Antiviral Res 1987;7:35–42.
[19] De Meyer N, Haemers A, Mishra L, Pandey HK, Pieters LA, Vanden Berghe DA, Vlietinck AJ. 4’-Hydroxy-3-methoxyflavones with potent antipicornavirus activity. J Med Chem 1991;34:736–46.
[20] Païrades A, Alzu M, Mendes J, Rodríguez-Ortega M. Anti-Sindbis activity of flavanones hesperetin and naringenin. Biol Pharm Bull 2003;26:108–9.
[21] D’Agostino J. Considerations in assessing the clinical course and severity of rotavirus gastroenteritis. Clin Pediatr (Phila) 2006;45:203–12.
[22] Dennehy PH. Rotavirus vaccines: an overview. Clin Microbiol Rev 2008;21:198–208.
[23] Takahashi K, Ohashi K, Abe Y, Mori S, Taniguchi K, Ebina T, Nakagomi O, Terada M, Shigeta S. Protective efficacy of a sulfated sialyl lipid (NMS03) against human rotavirus-induced diarrhea in a mouse model. Antimicrob Agents Chemother 2002;46:420–4.
[24] Coulson BS, Loundrigan SL, Lee DJ. Rotavirus contains integrin ligands and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci U S A 1997;94:5389–94.
[25] Liakatos A, Kiefl MJ, Fleming F, Coulson B, von Itzstein M. The synthesis and biological evaluation of lactose-based sialyl mimetics as inhibitors of rotaviral infection. Bioorg Med Chem 2006;14:739–57.
[26] Sobottka AM, Werner W, Blaschke G, Kiefer W, Nove U, Dannhardt G, Schapoval EE, Schenkel EP, Scriba GK. Effect of flavonoid derivatives on the carrageeenan-induced paw edema in the rat and inhibition of cycloxygenase-1 and 5-lipoxygenase in vitro. Arch Pharm (Weinheim) 2000;34:205–10.
[27] Barardi CR, Emslie KR, Vesey G, Williams KL. Development of a rapid and sensitive quantitative assay for rotavirus based on flow cytometry. J Virol Methods 1998;74:31–8.
[28] Andrighetti-Fröhner CR, Antonio RV, CRECZYNski-PASA TB, BARARDI CR, SIMÕES CM. Cytotoxicity and potential antiviral evaluation of violacein and sialylmimetics as inhibitors of rotaviral infection. Bioorg Med Chem 2006;14:739–57.
[29] Simões CM, AMOROS M, Girre L. Mechanism of antiviral activity of triterpenoid saponins. Phytother Res 1999;13:323–8.
[30] Sidwell RW. Determination of antiviral activity. Drugs Pharm Sci 1986;27:433–80.
[31] Fazli A, Bradley SJ, Kiefl MJ, Jolly C, Holmes IH, von Itzstein MJ. Synthesis and biological evaluation of sialyl mimetics as rotavirus inhibitors. J Med Chem 2001;44:3292–301.
[32] Bae EA, Han MJ, Lee M, Kim DH. In vitro inhibitory effect of some flavonoids on rotavirus infectivity. Biol Pharm Bull 2000;23:1122–4.
[33] Jolly CL, BEISNER BM, Holmes IH. Rotavirus infection of MA104 cells is inhibited by Ricinus lectin and separately expressed single binding domains. Virology 2000;275:89–97.