Yield and Some Macro-Morphological Characters of *Pleurotus pulmonarius* (Fries) Quel. Fruit Bodies Cultivated on HCl-Optimized Oil Palm Bunch Substrate

Okwulehie IC\(^1\), Nwoko MC\(^2\), Achufusi JN\(^3\), Onyeizu UR\(^4\) and Ezera VN\(^4\)

\(^1\)Department of Plant Science and Biotechnology, Michael Okpara University of Agriculture, Umudike, Nigeria
\(^2\)Department of Environmental Management and Toxicology, Michael Okpara University of Agriculture, Umudike, Nigeria
\(^3\)Department of Biology, Nwafor-orizu College of Education, Nsugbe, Anambra State, Nigeria

**Abstract**

This study was conducted to study the yield and some macro-morphological characters of *Pleurotus pulmonarius* fruit bodies cultivated on Hydrochloric acid (HCl) optimized oil palm bunch (OPB) substrate. Concentrated HCl was diluted in tap water at 0.1%, 0.2%, 0.3%, 0.4% and were used to induce changes on the initial pH (9.5) of OPB to 8.9, 8.2, 7.9, 6.2 and control (9.1) respectively; after soaking for 48 hrs. One way Analysis of variance (ANOVA) and Correlation test were adopted for data analysis. Mean separation was also done by Duncan Multiple Range Test (DMRT) at probability level of 5%. Results showed that 0.1%, 0.2%, 0.3% and 0.4% HCl treated OPB substrates produced *P. pulmonarius* primordia after 9, 9, 10, 11 and control (12 days) respectively. Results further revealed that 0.4% HCl treated OPB substrate induced the highest (900 g/kg) fruit body yield and Biological Efficiency (90%) while control (493 g/kg and B.E 49.3%) respectively, produced the lowest quantity of fruit bodies. Some macro-morphological characters of harvested fruit bodies revealed that mean cap size (C.Scm) and Weight (g/kg) of fruit bodies were highest (3.83 cm and 3.5 g/kg) in 0.4% HCl treated OPB respectively. Mean Stipe Length (S.Lcm) was highest (2.77 cm) in 0.3% OPB substrate and was significant at p ≤ 0.05. S.L and C.S of fruit bodies as well as C.S and Wt. were significantly correlated while there was no correlation between S.L and Wt. of fruit bodies. HCl was found as a suitable acid buffer for the optimization of the pH of the highly alkaline OPB for cultivation of *P. pulmonarius* fruit bodies. Oil palm bunch should therefore be adopted in the commercial production of the Oyster mushroom if certified safe for human consumption.

**Keywords:** *Pleurotus pulmonarius*; Substrate; pH; HCl

**Introduction**

Mushrooms are the reproductive structures of fleshy macro fungi which grow wild in the tropical and sub-tropical rainforest. They are capable of degrading lignin and hence are found naturally growing on different woody and non-woody agricultural residue regarded as substrates [1]. These substrate materials are usually by products from industries, households, agriculture etc, and are usually considered as wastes [2,3]. These wastes are actually resources in the wrong place at a particular time [4].

pH is an important factor for good production of oyster mushrooms. Most mushrooms grow and perform well at pH near to neutral or slightly acidic at 6.1 and 7.5 respectively [5]. In order to enhance fruit body production, Oyster mushroom growers prefer to use lime (CaCO\(_3\)) as an alkaline buffer to optimize pH of some acidic substrates [6]. On the other hand, many growers of oyster mushrooms have experienced difficulties in using oil palm bunch as substrate. Achufusi et al. [7] attempted using oil palm bunch as a substrate for the cultivation of *P. ostreatus*, but recorded no mycelium colonization as well as fruit body yield in the substrate and its supplementations. The substrate was contaminated by *Coprinus cinereus* (a competitor mushroom that contaminates mushroom beds). The pH of the substrate was later found to be high at 10.3 and was suggested as the reason for the growth of the competitor-*Coprinus* sp. and no yield of *P. ostreatus*.

In their separate investigations, Tabi et al. [8] and Lau et al. [9] also reported that *P. ostreatus* was unable to grow on palm empty fruit bunch (EFB) alone and this could be due to high alkaline content of the biomass which does not support mushroom growth. This investigation therefore aims to determine the most efficient means of exploiting Oil Palm Bunch as a substrate for Oyster mushroom production.
by Muhammad et al. [4,10]. Grains were subsequently packed 2/3 in heat resistant transparent bottles, tightly sealed with aluminum foil held tight with rubber band before sterilizing in an autoclave at 121°C for 30 minutes. After sterilization, bottles were allowed to cool before they were aseptically inoculated with actively growing mycelia of *P. pulmonarius* by grain to grain transfer and incubated in the dark (at 27 ± 2°C) until grains were fully colonized by *P. pulmonarius* mycelium [11,12] (Figure 1).

**Determination of pH of substrate**

The pH of solution containing 5% of sample substrates in 50 ml of distilled water was determined using Jenway 3070 portable automatic temperature compensation digital pH meter, calibrated with buffer 7-4 and 10. The pH value was read on the digital scale.

**Substrate preparation**

1 kg of Dry OPB substrate was soaked separately in 0.1%, 0.2% and 0.3% and 0.4% HCl solutions made in 1.5 lit. tap water for 48 hrs. Another 1 kg of OPB substrate was also soaked in same amount of tap water and this served as control, according to Colavolpe et al. The pH of each HCl+OPB substrate was determined after 48 hrs of soaking. All the HCl+OPB substrate levels were packed in an improvised metallic drum (IMD) and pasteurized for 2 hrs using industrial gas cooker as a local heat source and allowed to cool over night. Various HCl+OPB substrates were made into 5 replications and packed in 2.5 liter transparent plastic buckets perforated randomly from bottom to the top.

**Substrate inoculation**

30 g of grain based spawn of *P. pulmonarius* was spread across each 200 g of OPB substrate packed in perforated transparent plastic buckets during inoculation [3]. All inoculated substrates were placed on wooden racks in the culture room and covered during spawn run. Humidity of the cropping room was optimized by constantly flooding with tap water. Substrates were regularly checked to ensure optimum moisture content prior to primordial initiation.

**Measurement of morphological characters**

Mushrooms growing on substrate of various percentage solutions of HCl were harvested at maturity. Stipe length and cap size were measured in centimeter using meter rule [3]. Fresh weight of individual fruit bodies was also determined using digital weighing balance.

**Yield and biological efficiency**

Harvested fresh fruit bodies from each 5 replicate levels of HCl treated OPB were weighed using digital weighing balance while Biological efficiency (BE%) was determined using the method of Chang and Miles.

**Statistical analysis**

Data obtained during the experiment were statistically analyzed using Analysis of Variance (ANOVA), mean separation and tests of significance were carried out by Duncan Multiple Range Test (DMRT) at *p* ≤ 0.05 respectively [12].

**Results and Discussion**

Table 1 shows the effect of different concentrations of HCl acid solution on the pH of OPB and fruiting duration of *P. pulmonarius*. Result shows that the initial pH of OPB was found to be 9.5. Different percentage concentrations of HCl solution altered the pH of OPB in the following order: 0.1% (8.9), 0.2% (8.2), 0.3% (7.9) and 0.4% (6.2), while control was found at pH of 9.1 after soaking for 48 hrs. This shows that concentrated Hydrochloric acid simply acted as an acid buffer capable of optimizing the pH of an alkaline OPB substrate to support the growth of mushroom.

The fruiting duration recorded in this work shows that oil palm bunch has the ability of inducing earlier fruiting of *P. ostreatus* and does not conform with the work of Shah et al. which recorded longer fruiting time for *P. ostreatus* on saw dust, wheat straws and other agro wastes combinations. Khan et al. observed relatively shorter fruiting duration when oyster mushroom on different lignocellulosic substrates. They recorded that pin head formation started 7-8 days and matured between 10-12 days of substrates inoculation. This could be that the substrates used contained more nutrients that supported early primordial formation.

During spawn run, all the HCl+OPB substrates including the control were colonized by mycelium (Sudirman et al.). Although, *Coprinus cinereus*, a contaminant mushroom was seen growing on control and other HCl+OPB substrates after 6 days, except 0.4% HCl+OPB. *C. cinereus* is a major contaminant in OPB when used in mushroom cultivation, even though pasteurization time is increased. The result also proves that *C. cinereus* grows better in a high alkaline medium as 0.4% HCl solution was able to reduce the high alkalinity (pH 6.2) of the OPB as well as *C. cinereus* contamination of the substrate.

Duration of primordia initiation shows that 0.1%+OPB took 8 days, 0.2%+OPB (9 days), 0.3%+OPB (10 days) and 0.4% OPB (11 days) to produce mushroom primordia while control took the longest duration of 12 days. This result conforms to assertion of Khan et al. which maintained that most mushrooms grow better in pH approximately near to neutral i.e., 7.0, but differ with those of Quimio; Quimio and Sardsud which noted that fruit bodies of *P. ostreatus* grown on various substrates emerged within 3-4 weeks after substrate inoculation. According to them, various factors such as pH, temperature, nature of substrate and method of pasteurization can determine the fruiting time of oyster mushrooms.

Table 2 shows the effect of various HCl solution concentrations on the yield and B.E (%) of *P. pulmonarius* fruit bodies cultivated on OPB substrate. From the result, 0.4% HCl+OPB gave the highest (900 g) fruit body yield and B.E (90.00%), followed by 0.3% HCl+OPB (820 g), 0.2% HCl+OPB (774 g) and 0.1% (569 g) while control gave the lowest (493 g) with B.E of 49.30%. This result shows that as the concentration of Hydrochloric acid increased increased from 0.1 - 0.4%, yield and biological efficiency of *P. pulmonarius* increased from 569.00 g (56.9%)-900.00 g (90.00%) while control 493.00 g (49.3%) respectively. This trend was due to *Coprinus cinereus* which contaminated the substrate, from control to 0.3% Hcl OPB (Achufusi). Tabi et al. and Lau et al. [9] had similar experience and reported that *P. ostreatus* was unable to grow on palm empty fruit bunch (EFB) alone and this could be due to high alkaline content of the biomass which does not support mushroom growth. Report of Khan

**Table 1:** Effect of Percentage HCl Concentrations on the pH of OPB and Fruiting Duration of *P. pulmonarius*.
null
5. Khan MW, Ali MA, Khan NA, Khan MA, Rehman A, et al. (2013) Effect of different levels of lime and pH on mycelial growth and production efficiency of oyster mushroom (Pleurotus spp.). Pak J Bot 45: 297-302.

6. Chang ST, Miles PG (2004) Mushroom cultivation, nutritional value, medicinal effect and environmental impact. p: 451.

7. Achufusi JN (2016) Yield, heavy metals, nutritional evaluation, amino acid profile and lignocellulosic evaluation of Pleurotus ostreatus var florida (Eger) fruit bodies cultivated on three supplemented palm substrates in Umudike, Abia State, Michael Okpara University of Agriculture Umudike, Abia State. Nigeria, p: 40.

8. Tabi AN, Zakil FA, Fauzai MF, Ali N, Hassan O (2008) The usage of empty fruit bunch (EFB) and palm pressed fibre (PPF) as substrates for the cultivation of Pleurotus ostreatus. Journal Teknologi 49: 189-196.

9. Lau HL, Wong SK, Bong CFJ, Rabu A (2014) Suitability of Oil Palm Empty Fruit Bunch and Sago Waste for Auricularia polytricha Cultivation. Asian Journal of Plant Sciences 13: 111-119.

10. Ali MA, Siddiq M, Ahmad S, Hanif MA (2007) Protein and fat contents of various Pleurotus species raised on different waste material. Pak J Agric Sci 44: 140-143.

11. Shyam SP, Syed AA, Sureh MT, Mirza MV (2010) The nutritional value of mushroom.

12. Nwoko MC, Onyeizu UR, Chukunda FA, Ukolora HN (2017) Productivity, vitamins and heavy metals analysis of Pleurotus ostreatus (Jacq: fr) kumm. Fruit bodies cultivated on wood logs. International Journal of Information Research and Review 4: 3890-3894.

13. Okwulehie IC, Okwujiako IA, Edeoga HO (2008) Proximate, Macroelement and Vitamin Composition of the Fruit Bodies of Pleurotus ostreatus Var. Florida Eger. Grown on Different Substrates and Substrate Supplementation. Global Sci Books 2: 184-188.

14. Okoi AI, Iboh CI (2015) The effects of different substrates on sporophore yield, mineral and nutrient composition of Pleurotus tuberregium fries singer in Calabar, Nigeria. International Journal of Agricultural Science Research 4: 126-131.

15. Colavolpe MB, Santiago JM, Edgardo A (2015) Efficiency of treatment for controlling Trichodermasspp.During spawning in cultivation of Lignicolous mushroom. Braz Journal Microbial 45: 1263-1270.

16. Nwoko MC, Okwulehie IC, Achufusi JN (2016) Nutritional composition of Pleurotus ostreatus (Jacq.) kumm P. fruit bodies cultivated on deciduous tree logs in Umudike, Abia State, Nigeria. Intl J Res Tech 5: 102-108.

17. Quimio TH (2004) Why grow mushroom?. Mushroom Growers Handbook, Mushworld, p: 4-7.

18. Quimio TH, Sardsud U (1981) Nutritional requirements of Pleurotus ostreatus (Fr). Philippine Agriculture 64: 79-89.

19. Shah ZA, Ashraf M, Ishaque M (2004) Comparative study on cultivation and yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates (wheat straw, leaves, saw dust). Pakistan Journal of Nutrition 3: 158-160.

20. Sudirman LI, Sutrisna A, Lestyowati S, Fadli L, Tarigan BA (2011) The potency of oil palm plantation wastes for mushroom production. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, Arcachon, France, pp: 378-384.