A Single-Step Sequencing Method for the Identification of *Mycobacterium tuberculosis* Complex Species

Zoheira Djelouadji¹, Didier Raoult¹, Mamadou Daffe², Michel Drancourt¹

¹ Unité des Rickettsies CNRS UMR6020, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France, ² Département de Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et Biologie structurale, Toulouse, France

Abstract

Background: The *Mycobacterium tuberculosis* complex (MTC) comprises closely related species responsible for strictly human and zoonotic tuberculosis. Accurate species determination is useful for the identification of outbreaks and epidemiological links. *Mycobacterium africanum* and *Mycobacterium canetti* are typically restricted to Africa and *M. bovis* is a re-emerging pathogen. Identification of these species is difficult and expensive.

Methodology/Principal Findings: The Exact Tandem Repeat D (ETR-D; alias Mycobacterial Interspersed Repetitive Unit 4) was sequenced in MTC species type strains and 110 clinical isolates, in parallel to reference polyphasic identification based on phenotype profiling and sequencing of *pncA*, oxyR, *hsp65*, gyrB genes and the major polymorphism tandem repeat. Inclusion of *M. tuberculosis* isolates in the expanding, antibiotic-resistant Beijing clone was determined by Rv0927c gene sequencing. The ETR-D (780-bp) sequence unambiguously identified MTC species type strain except *M. pinnipedii* and *M. microti* thanks to six single nucleotide polymorphisms, variable numbers (1–7 copies) of the tandem repeat and two deletions/insertions. The ETR-D sequencing agreed with phenotypic identification in 107/110 clinical isolates and with reference polyphasic molecular identification in all isolates, comprising 98 *M. tuberculosis*, 5 *M. bovis* BCG type, 5 *M. canetti*, and 2 *M. africanum*. For *M. tuberculosis* isolates, the ETR-D sequence was not significantly associated with the Beijing clone.

Conclusions/Significance: ETR-D sequencing allowed accurate, single-step identification of the MTC at the species level. It circumvented the current expensive, time-consuming polyphasic approach. It could be used to depict epidemiology of zoonotic and human tuberculosis, especially in African countries where several MTC species are emerging.

Introduction

The *Mycobacterium tuberculosis* complex (MTC) comprises several closely related species responsible for strictly human and zoonotic tuberculosis (Figure 1). In addition to *M. tuberculosis*, which represents the leading cause of human tuberculosis worldwide and is now emerging as extensively drug-resistant tuberculosis strains [1], other MTC species have been found in patients, typically in African countries (Figure 2). *Mycobacterium bovis* is a re-emerging, zoonotic agent of bovine tuberculosis [2] whose prevalence probably depends on variations in direct exposure to cattle and consumption of unpasteurised dairy products [3]. The prevalence of *Mycobacterium africanum* type I (West Africa) and type II (East Africa) [4] has decreased in several African countries over the last decades [5,6]. *Mycobacterium canetti*, a rare MTC species, has been isolated recently in patients exposed in Africa [7]. *Mycobacterium microti*, a vole and small rodent pathogen [8] that is closely related to the so-called Dassie-bacillus and infects small mammals in South Africa and the Middle East [9,10], has been isolated in humans [11]. *Mycobacterium caprae* is a rare cause of tuberculosis in cattle [12,13] and zoonotic tuberculosis in humans [14] while *Mycobacterium pinnipedii* has been isolated from seal lions and fur seals [15]. A recent description of the re-emergence of *M. bovis* in cattle, along with the direct interhuman transmission of this zoonotic organism [16] in a six-case cluster that included one death in United Kingdom [17], illustrates the potential of emerging and re-emerging zoonotic tuberculosis due to MTC species other than *M. tuberculosis* and the necessity for accurate species identification.

Accurate species identification of all MTC members is warranted in order to distinguish between strict human and zoonotic tuberculosis and to trace source exposure during epidemiological studies. Indeed, phenotypic methods of identification relying on colony morphology, oxygen preference, niacin accumulation, nitrate reductase activity, growth kinetics and resistance to thiophene-2-carboxylic acid hydrazide (TCH) and PZA [18] are hampered by slow growth of MTC members and subjective interpretation of colony morphology and cross-resistance to drugs [19]. They do not always allow unambiguous species identification in every case. Recent studies of MTC species responsible for animal and human tuberculosis in tropical countries have relied on molecular methods including mycobacterial interspersed repetitive-unit-variable-number tandem-repeat
Author Summary

The *Mycobacterium tuberculosis* complex (MTC) comprises several closely related species responsible for strictly human and zoonotic tuberculosis. Some of the species are restricted to Africa and were responsible for the high prevalence of tuberculosis. However, their identification at species level is difficult and expansive. Accurate species identification of all members is warranted in order to distinguish between strict human and zoonotic tuberculosis, to trace source exposure during epidemiological studies, and for the appropriate treatment of patients. In this paper, the Exact Tandem Repeat D (ETR-D) intergenic region was investigated in order to distinguish MTC species. The ETR-D sequencing unambiguously identified MTC species type strain except *M. pinnipedii* and *M. microti*, and the results agreed with phenotypic and molecular identification. This finding offers a new tool for the rapid and accurate identification of MTC species in a single sequencing reaction, replacing the current time-consuming polyphasic approach. Its use could assist public health interventions and aid in the control of zoonotic transmission in African countries, and could be of particular interest with the current emergence of multidrug-resistant and extended-resistance isolates.

(MIRU-VNTR) typing, IS6110-RFLP and spoligotyping [20–22]. Molecular differentiation of MTC members has been complicated by low sequence variability at the nucleotide level, illustrated by a 85–100% DNA/DNA relatedness and a 99–100% 16S rDNA sequence similarity [23,24]. Nucleic acid-based assays such as acridinium ester-labelled DNA probes (AccuProbe; Gene Probe Inc, San Diego, CA) have proven to be reliable tools for assigning an isolate to the MTC [25,26], but they do not allow for identification at the species level. Molecular identification based on deleted regions (RD), RD1, RD9 and RD10 [27], are limited by the necessity of interpreting negative results in the case of the absence of a specific deletion. The detection of single nucleotide polymorphisms (SNP) in the pncA gene [28], the oxyR locus [29], the *mitF-o* gene [30], and the restriction fragment length polymorphism of the *hupB* gene [31] differentiated *M. tuberculosis* from *M. bovis* but not from other MTC species. The major polymorphism of tandem repeat (MPTR) sequencing differentiated *M. tuberculosis* (Sequevar long), *M. bovis* and *M. microti* (Sequevar Med-G), *M. bovis* BCG (Sequevar Med-C) and *M. africanum* (Sequevar short), but other MTC species were not studied [32]. The *gyrB* gene proved to be an effective target [33,34], as an identification scheme has been proposed based on Pyrosequencing analysis of four single nucleotide polymorphism (SNPs) in *gyrB* [35], and a DNA strip based on *gyrB* is commercially available (HAIN Genotype MTBC DNAstrip test, Hain Lifescience, Nehren, Germany) [36]. Both approaches, however, fail to differentiate *M. tuberculosis* from *M. africanum* type II and *M. canetti*; and *M. africanum* type I from *M. pinnipedii*. IS6110-RFLP, VNTR typing and Spoligotyping [22,37] emerged as reference methods to study the diversity of MTC species in resource-limited countries, despite the fact that these methods may not recognize rarely encountered species and may not appreciate the entire genetic diversity of strains, as they are not based upon the sequencing of molecular targets [30].

When investigating intergenic spacers in the genotyping of *M. tuberculosis*, we found that one spacer, previously identified as the Exact Tandem Repeat D (ETR-D) [39] and aliased Mycobacterial Interspersed Repeat Unit 04 (MIRU04) [40], exhibited a variable sequence among *M. tuberculosis* isolates. Analysis of this spacer had been previously shown to distinguish between *M. bovis* and the *M. bovis* BCG type [41]. We therefore further investigated whether sequencing the ETR-D could identify all of the MTC at the species level. In this study, we demonstrate that ETR-D sequencing offers a new tool for the rapid and accurate identification of MTC species in a single reaction.

Figure 1. Distribution of rare *Mycobacterium tuberculosis* complex species in humans (filled circles) and animals (open circles). Green circles, *M. canetti*; blue circles, *M. caprae*; pink circles, *M. microti*; orange circles, *M. pinnipedii*. doi:10.1371/journal.pntd.0000253.g001
Methods

Bacterial isolates

M. tuberculosis CIP103471, M. bovis CIP105050, M. africanum CIP105147T (type I), M. bovis BCG vaccine strain type 105060, M. microti CIP104256T, M. canettii CIP104032T, M. pinnipedi ATCC BAA-688, and M. caprae CIP104256T reference strains were purchased from the Collection Institut Pasteur (CIP, Paris, France) and American Type Culture Collection (ATCC, Rockville, USA). The following non-tuberculosis mycobacteria were tested in order to assess the specificity of ETR-D spacer sequencing: Mycobacterium avium IWGMT49 T, Mycobacterium intracellulare CIP104243 T, Mycobacterium chimaera CIP105776 T, Mycobacterium colombiense CIP105776 T, Mycobacterium haemophilum CIP105049 T, Mycobacterium ulcerans CIP105425 T, Mycobacterium xenopi CIP104035 T, Mycobacterium abscessus CIP104536 T, Mycobacterium chelonae CIP104535 T, Mycobacterium fortuitum ATCC49404 and Mycobacterium mucogenicum CIP 105223 T. Quality of DNA was controlled by parallel partial rpoB PCR amplification as previously described [42]. One hundred and ten MTC clinical isolates (Table 1) recovered from Microbiology Laboratory in Marseille (n = 102), from Institut Pasteur in Djibouti (n = 3) and from Institut de Pharmacologie et Biologie Structurale, Toulouse (n = 5) were also analyzed. All isolates were identified as members of the MTC by phenotypic characterization and a gene probe assay according to the manufacturer (AccuProbe; Gene Probe Inc, San Diego, Calif). This study was approved by the ethics committee of the Institut Féfératif de Recherche 48, Marseilles, France.

Phenotypic identification

Phenotypic characterisation included colony morphology, a urease test controlled after 3 and 18 hour incubation, and oxygen consumption measured after inoculation of a 0.2 ml actively growing mycobacterial suspension into 40 ml of Middlebrook 7H10 into the Bactec 9000MB system (Becton and Dickinson, Le Pont de la Clai, France) after a 3-week incubation. Drug susceptibility tests for thiopeptide-2-carboxylic acid hydrazide (TCH) and PZA were performed as previously described [43].

Reference tests for molecular identification

The identification of reference strains and clinical isolates identified as M. bovis BCG type, M. canettii and M. africanum by ETR-D sequencing (see below) was confirmed by parallel reference molecular tests. Every isolate coated on beads was inactivated as previously described [44] and the DNA was extracted using a Qiagen kit (Qiagen, Courtaboeuf, France). DNA was used as a template for PCR amplification of pncA, oxyR, hsp65, gyrB genes and sequence analysis of MPTR was performed as previously described [28,29,32–34,45] In addition, we sequenced the Rv0927c-psstS intergenic region in all clinical isolates identified as M. tuberculosis in order to identify the Beijing genotype [46]. Amplified products were visualized by agarose gel electrophoresis and direct sequencing was performed as described above. Sequences were edited using the Auto assembler program (Applied Biosystems, Courtaboeuf, France) and aligned using CLUSTAL W (http://pbil.ibcp.fr). Original sequences were deposited into GenBank (http://www.ncbi.nlm.nih.gov/sites/entrez/).

ETR-D spacer sequencing

Amplification and sequencing of the ETR-D spacer located between the putative histidine kinase Ssox3 upstream and the sensory transduction protein Rspx3 downstream were done using direct primers: 5’-GTTGATCGAGGCCTATCACG-3’ and 5’-GAATAGGGCTTGGTTCAGTA-3’. The PCR mixture con-
Results

Phenotypic identification (Table 2)

As for reference strains, *M. tuberculosis* exhibited eugonic growth that was inhibited by the presence of PZA but not by TCH and showed aerophilic growth on Middlebrook agar positive urease at 18 hours. *M. bovis* and *M. bovis* BCG type strains exhibited microaerophilic dysgonic growth, did not grow in the presence of TCH, but were resistant to PZA and exhibited a positive urease at 18 hours. As for clinical isolates, 101/110 of isolates were phenotypically identified as *M. tuberculosis*, 5 as *M. canettii*, 3 as *M. bovis* BCG type and one as *M. africanum*.

Reference molecular identification (Table 3)

In all PCR experiments, negative controls remained negative. All reference strains and clinical isolates yielded an amplicon of the expected size when amplified for *pncA*, *oxyR*, *hsp65*, *gyrB* genes, *Rv0927c*-pstS3 intergenic region and MPTR. By comparison with *M. tuberculosis*, the 410-bp *oxyR* gene sequence exhibited a previously known A295G polymorphism in *M. bovis* and *M. bovis* BCG type [29] and a newly identified T136G polymorphism in *M. canettii*. The 561-bp *pncA* gene sequence exhibited a previously known G225C polymorphism in *M. bovis* and *M. bovis* BCG type [28] and a G222A polymorphism in *M. canettii* [47]. The 441-bp *hsp65* gene exhibited a previously known T235C polymorphism in *M. canettii* [45] and a newly identified G376C polymorphism in *M. africanum* type I. The 1,020-bp *gyrB* gene sequence exhibited an identical sequence in *M. tuberculosis*, *M. canettii* and *M. caprae*, a previously known A274G polymorphism in *M. bovis* and *M. bovis* BCG type, a T227C polymorphism in *M. microti*, and an identical sequence was identified in common with *M. africanum* type I and *M. pinnipedii* [34]. Sequence analysis of MPTR (300-bp) exhibited a unique sequence for *M. tuberculosis* (Sequevar Long), *M. africanum* type I strain (Sequevar Short), *M. bovis* and *M. microti* (Sequevar MED-G) and *M. bovis* BCG type (Sequevar MED-C) [32]; MPTR sequencing newly identified C68T, G114G and A295G polymorphisms in *M. canettii*; the *M. caprae* strain exhibited Sequevar Long in common with *M. pinnipedii* and *M. tuberculosis* reference strains. Original sequences found in this study were deposited in GenBank under the following accession numbers (GenBank: EF656461, EF656463, EF656464).

Sequence analysis of clinical isolates using the five previous targets yielded four different profiles. One profile comprised 98 isolates identified as *M. tuberculosis*, including three isolates identified as W-Beijing strains using a G127A polymorphism in *rpoC* and a T675C polymorphism in *Rv0927c*-pstS3 intergenic region and MPTR. By comparison with *M. tuberculosis* type I and *M. africanum* type I, the 410-bp *pncA* gene sequence exhibited three copies of a 77-bp repeat unit and three SNPs following the tandem repeat, six mutations and two deletions/insertions. *M. tuberculosis* exhibited three different alleles combining two or five copies of a 77-bp repeat unit and one T/G SNP at the fifth base of the tandem repeat, in addition to one 53-bp repeat unit. The *M. tuberculosis* reference strain exhibited five copies of a 77-bp repeat unit followed by one 53-bp repeat unit copy; *M. microti* and *M. pinnipedii* exhibited seven copies of a 77-bp repeat unit and three SNPs following the tandem repeat, six mutations and two deletions/insertions.

ETR-D sequence analysis

For all ETR-D experiments, negative controls remained negative. All the non-*tuberculosis* mycobacteria yielded a negative ETR-D PCR amplification whereas they yielded an amplicon of the expected size through *rpoB* PCR amplification. The size of PCR products obtained with MTC reference strains varied from 497-bp for *M. canettii*, 545-bp for *M. bovis*, 564-bp for *M. caprae*, 598-bp for *M. bovis* BCG type, 651-bp for *M. africanum* type I, 805-bp for *M. tuberculosis* and 959-bp for *M. microti* and *M. pinnipedii*. Each of the eight reference strains exhibited a unique ETR-D sequence, exhibiting one to seven copies of a tandem repeat, six mutations and two deletions/insertions.

M. tuberculosis exhibited three different alleles combining two or five copies of a 77-bp repeat unit and one T/G SNP at the fifth base of the tandem repeat, in addition to one 53-bp repeat unit. The *M. tuberculosis* reference strain exhibited five copies of a 77-bp repeat unit followed by one 53-bp repeat unit copy; *M. microti* and *M. pinnipedii* exhibited seven copies of a 77-bp repeat unit and one 53-bp repeat unit, *M. africanum* type I exhibited three copies of a 77-bp repeat unit and one 53-bp repeat unit, in addition to one T/G polymorphism at position 75. *M. bovis* exhibited four copies of a 77-bp repeat unit and one 53-bp repeat unit in addition to an A/G SNP at position 773; *M. bovis* BCG type exhibited three copies of a 77-bp repeat unit in addition to an A/G SNP at position 773. *M. caprae* exhibited three copies of a 77-bp repeat unit, a 34-bp deletion and one 53-bp repeat unit. *M. canettii* exhibited one copy of a 77-bp repeat unit and three SNPs following the tandem repeat in addition to a 53-bp repeat unit. ETR-D sequences of MTC type strains were deposited in GenBank under the following accession numbers (GenBank: EU180228-EU180234). ETR-D sequencing

Table 1. Origin of Mycobacterium tuberculosis complex reference strains and clinical isolates analyzed in this study

Isolates	Origin
M. tuberculosis	CIP103471
M. africanum	CIP105147
M. bovis	CIP105050
M. bovis BCG type	Vaccine strain105060
M. caprae	CIP105776
M. canettii	CIP10460001
M. microti	CIP104256
M. pinnipedii	ATCC BAA-688

Clinical isolates

n	Origin
57	Sputum
48	Lymph node
3	Pleural liquid
2	Abcess

* doi:10.1371/journal.pntd.0000253.t001
identified 98/110 MTC clinical isolates as *M. tuberculosis* including 45 isolates presenting allele 1, 26 isolates presenting allele 2, and 27 isolates presenting allele 3; the ETR-D allele did not correlate with Beijing genotype (*P* = 0.2). 5/110 isolates were identified as *M. bovis* BCG type, 5/110 isolates as *M. canettii*, and 2/110 isolates as *M. africanum* type I. All unique ETR-D sequences were deposited into our freely available database at <http://ifr48.timone.univ-mrs.fr/MST_Mtuberculosis/mst>. Comparison between ETR-D identification and reference phenotypic and molecular identifications of clinical isolates

ETR-D identification was in agreement with phenotypic identification in 107/110 (97.27%) of clinical isolates. Three isolates phenotypically identified as *M. tuberculosis* were identified by ETR-D sequencing and reference molecular methods as *M. bovis* BCG type in two cases and *M. africanum* type I in one case. Reference molecular identification agreed with ETR-D identification in 100% (110/110) of clinical isolates.

Discussion

Previous methods for MTC species identification either combined the amplification of several genomic regions in order to identify all species [27,48] or analyzed one gene polymorphism to distinguish between only two species. ETR-D spacer sequencing herein developed proved to be specific for the MTC and allowed the differentiation of the 7/8 MTC species in a single reaction. Indeed all the non-tuberculosis mycobacteria yielded a negative ETR-D PCR amplification as previously described [49]. The fact that *M. africanum* type II was not included in the present study may not modify this conclusion. In fact, the taxonomic status of *M. africanum* type II has been disputed [50], but it is now regarded as a phenotypic variant of *M. tuberculosis* (genotype Uganda) [51,52]. ETR-D sequencing agreed in all cases.

Table 2. Biochemical and antibiotic susceptibility profiles observed for *M. tuberculosis* complex reference strains and clinical isolates in this study

Isolates	Colony morphology	Urease 3 hours	test 18 hours	PZA sensitivity	TCH sensitivity	Oxygen preference
M. tuberculosis CIP103471	Eugonic	-	+	S	R	Aerophilic
M. bovis CIP105050	Dysgonic	-	+	R	S	Microaerophilic
M. bovis BCG type 105060	Dysgonic	+	+	R	S	Microaerophilic
M. africanum CIP105147	Dysgonic	-	+	S	S	Microaerophilic
M. canettii CIP140060001	Eugonic	+	+	R	R	Aerophilic
M. caprae CIP105776	Eugonic	-	+	S	S	Aerophilic
M. microti CIP104256	Eugonic	-	+	S	S	Aerophilic
M. pinnipedi ATCC BAA-688	Eugonic	-	+	S	S	Aerophilic

Clinical isolates

Isolates	Colony morphology	Urease 3 hours	test 18 hours	PZA sensitivity	TCH sensitivity	Oxygen preference
101	Eugonic	-	+	S	R	Aerophilic
1	Dysgonic	-	+	S	S	Microaerophilic
3	Dysgonic	+	+	R	S	Microaerophilic
5	Eugonic	+	+	R	R	Aerophilic

1: type strain, +: positive results, -: negative results, R: drug resistant, S: drug susceptible, TCH: thiophene-2-carboxylic acid hydrazide (5 μg/ml), PZA: pyrazinamide (50 μg/ml).

Table 3. Single nucleotide polymorphisms in five housekeeping genes and MPTR sequence analysis in eight MTC reference strains

Strains	oxyR	pncA	hsp65	gyrB	MPTR
	136	285	222	253	
M. tuberculosis CIP103471	G	G	A	C	C
	235	376	675	756	99
	C	C	C	G	T
	G	G	A	C	C
M. africanum CIP105147	C	G	A	C	C
	C	C	A	C	C
	C	C	G	G	A
M. bovis BCG type 105060	G	A	G	C	C
	G	G	A	C	C
	C	C	A	C	C
	C	C	C	G	T
M. caprae CIP105776	G	G	A	C	C
	G	G	A	C	C
	G	G	A	C	C
	G	G	A	C	C
	T	C	C	G	
M. microti CIP104256	G	G	A	C	C
	G	G	A	C	C
	G	G	A	C	C
	T	C	G	G	
M. canettii CIP140060001	T	G	G	C	C
	T	C	C	G	
M. pinnipedi ATCC 688	G	G	A	C	C
	G	G	A	C	C
	G	G	A	C	C
	G	G	A	C	C

1: type strain,
1: Polymorphism identified newly in this study.

doi:10.1371/journal.pntd.0000253.t002
with reference molecular identification. In this study, new mutations were identified because some genes were sequenced for the first time in some MTC species including the eglR gene and MPTR in *M. canetti* and the hop65 gene in *M. africanaum* type 1 (Table 3). ETR-D sequencing revealed that 3/110 clinical isolates identified as *M. tuberculosis* by phenotypic tests comprised two *M. bovis* BCG type isolate and one *M. africanaum* type isolate. The 497-659-bp size of ETR-D allows one-step sequencing using a modern capillary sequencer and software and may be easily sequenced using Pyrosequencing and additional internal primers. Cost was decreased in comparison with the current polyphasic approach and any microbiologist could compare the ETR-D sequence with those that we deposited in the versatile, freely accessible databank at http://ifr48.timone.univ-mrs.fr/MST_MTuberculosis/mst. This identification technique, based on PCR amplification, could be directly applied to clinical specimens exhibiting acid-fast bacilli.

ETR-D sequence identification relied not only on the variation in the number of tandem repeats illustrated by various PCR products, as previously described [39] for *M. tuberculosis*, *M. africanaum*, *M. bovis* group [41], but also on specific SNPs, which are stable events [53] accounting for 55.5% of genetic events observed in this study and on insertion/deletion events (accounting for 22.2% of genetic events). However, the ETR-D sequence was not correlated with the Beijing genotype as defined by Rv0927c-pstS3 intergenic region sequencing. This indicates that, although 3 ETR-D genotypes were found among *M. tuberculosis* isolates in this study, ETR-D sequencing alone cannot be used for genotyping. It is not surprising that the same, limited genomic region does not have the potential to identify at the species and strain levels. ETR-D sequencing provides, for the first time, a unique sequencing test capable of distinguishing all MTC species in a single step.

Accurate identification of MTC isolates at the species level is of particular interest in Africa where species other than *M. tuberculosis* were characterized in human tuberculosis and *M. bovis* remains a huge problem for cattle [21] (Figure 2). Their identification may have the potential to identify at the species and strain levels. ETR-D genotypes were found among *M. tuberculosis* isolates from Africa and tropical Asia would be of particular interest from the perspective of the current emergence of multidrug-resistant (MDR) strains [60,61]. In recent studies, variations in the reported prevalence of *M. africanaum* among various African countries may also reflect difficulties in accurate identification of this species (Figure 2). *M. microti*, *M. paratuberculosis*, *M. caprae* and *M. canetti* remain difficult to identify because of the extremely slow growth of these organisms, the difficulties with their identification under traditional bacteriological methods [62] and the fact that these recently described species have not been incorporated into current molecular identification schemes. ETR-D spacer sequencing offers a new tool for the rapid and accurate identification of all MTC species in a single sequencing reaction without the need for expensive, time-consuming and potentially harmful polyphasic approaches. Its use could assist public health interventions and aid in the control of zoonotic transmission in African countries. Accurate identification of MTC isolates from Africa and tropical Asia would be of particular interest from the perspective of the current emergence of multidrug resistant and extended resistance isolates in these countries [63].

Acknowledgments

The authors acknowledge the technical expertise of Christian Fontaine and Bernard Campagna. In addition, the authors recognize Dr. Christophe Guillot, Dr. Sylvain Godreuil, and Dr. Cristina Gutierrez for providing the *M. canetti* clinical isolates.

Author Contributions

Conceived and designed the experiments: Z. Djelouadjid. M. Drancourt. Performed the experiments: Z. Djelouadjid. Analyzed the data: Z. Djelouadjid D. Raoult M. Daffe M. Drancourt. Contributed reagents/materials/analysis tools: D. Raoult. Wrote the paper: Z. Djelouadjid D. Raoult M. Drancourt.

References

1. Shah NS, Wright A, Bai GH, Barrera L, Boulahbal F, et al. (2007) Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 13: 380–387.
2. Michel AL (2002) Implications of tuberculosis in African wildlife and livestock. Ann NY Acad Sci 969: 251–255.
3. Cosivi O, Grange JM, Daborn CJ, Raviglione MC, Fujikura T, et al. (1998) Zoonotic tuberculosis due to *Mycobacterium bovis* in developing countries. Emerg Infect Dis 4: 59–70.
4. Frothingham R, Strickland PL, Brettel G, Ramaswamy S, Musser JM, et al. (1998) Phenotypic and genotypic characterization of *Mycobacterium africanaum* isolates from West Africa. J Clin Microbiol 36: 1921–1926.
5. Godfroid S, Torrec G, Terru D, Cheyvet F, Drongouza S, et al. (2007) First molecular epidemiology study of *Mycobacterium tuberculosis* in Burkina Faso. J Clin Microbiol 45: 921–927.
6. Nkobe-Eyangoh SN, Kruahen C, Sorlin P, Curien P, Tisonnet J, et al. (2003) Genetic biodiversity of *Mycobacterium tuberculosis* complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol 41: 2547–2553.
7. van Soolingen D, Hoogenboezem T, de Haan PE, Hermans PW, Koedam MA, et al. (1997) Diagnosis of *Mycobacterium bovis* infection by using line-probe assay. J Gen Microbiol 143: 2513–2520.
8. WELS AQ (1953) *Mycobacterium tuberculosis* var. muris. J Gen Microbiol 9: 149.
9. Mostowy S, Cousins D, Behr MA (2004) Genomic interrogation of the dassie bacillus reveals it as a unique RD1 mutant within the *Mycobacterium tuberculosis* complex. J Bacteriol 186: 104–109.
10. Cousins DV, Pearl RL, Gaymard WT, Williams SN, Gow BL. (1994) Tuberculosis in imported hyrax (*Procavia capensis*) caused by an unusual variant belonging to the *Mycobacterium tuberculosis* complex. Vet Microbiol 42: 135–145.
11. van Soolingen D, van der Zanden AG, de Haan PF, Noordhoek GT, Kiers A, et al. (1998) Diagnosis of *Mycobacterium microti* infections among humans by using novel genetic markers. J Clin Microbiol 36: 1840–1845.
12. Aranaz A, Cousins D, Mateos A, Dominguez L. (1999) Elevation of *Mycobacterium bovis* primary manifestation of *Mycobacterium caprae* comb. nov., sp. nov. J Clin Microbiol 37: 2547–2553.
13. Aranaz A, Liebana E, Gomez-Mampaso E, Galan JC, Cousins D, et al. (1999) *Mycobacterium tuberculosis* subsp. caprae subsp. nov.: a taxonomic study of a new member of the *Mycobacterium tuberculosis* complex isolated from goats in Spain. Int J Syst Bacteriol 49 Pt 3: 1263–1273.
14. Aranaz A, Cousins D, Mateos A, Dominguez L. (2003) Elevation of *Mycobacterium tuberculosis* subsp. caprae Aranaz et al. 1999 to species rank as *Mycobacterium caprae* comb. nov., sp. nov. Int J Syst Evol Microbiol 53: 1785–1789.
15. Blau SH, Bohn S, Marin G, Ezler W, Ghiek T, et al. (2003) Pericarditis as primary manifestation of *Mycobacterium bovis* SSP. caprae infection. Diagn Microbiol Infect Dis 47: 431–433.
complex: Mycobacteria pinnipedia sp. nov. Int J Syst Evol Microbiol 53: 1303–1314.
16. van Soolingen D, de Haas PE, Haagmans J, Eger T, Hermans PW, et al. (1994) Use of various genetic markers in differentiation of Mycobacterium bovis bacille from animals and humans and for studying epidemiology of bovine tuberculosis. J Clin Microbiol 32: 2425–2433.
17. Evans JT, Smith EG, Banerjee A, Smith RM, Dale J, et al. (2007) Cluster of human tuberculosis caused by Mycobacterium bovis: evidence for person-to-person transmission in the UK. Lancet 369: 1270–1276.
18. Witebsky FG, Moguako P (1996) Identification by conventional methods. Clin Lab Med 16: 569–601.
19. Yates MD, Grange JM, Collins CH (1984) A study of the relationship between the resistance of Mycobacterium tuberculosis to isoniazid and to diethylenetetramine carboxylic acid hydrazide. Tubercle 65: 295–299.
20. Godfrey S, Torrea G, Tsur D, Chevret F, Diaibouaga S, et al. (2007) First molecular epidemiology study of Mycobacterium tuberculosis in Burkina Faso. J Clin Microbiol 45: 921–927.
21. Cadmus S, Palmer S, Okker M, Dale J, Gower K, et al. (2006) Molecular analysis of human and bovine tubercle bacilli from a local setting in Nigeria. J Clin Microbiol 44: 29–34.
22. Kallenius G, Ghebremichael S, Hoffner SE, Norberg R, et al. (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. J Clin Microbiol 37: 3872–3878.
23. Kniescher P, Spriger B, Vogel U, Meier A, Wrede A, et al. (1995) Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J Clin Microbiol 31: 2082–2089.
24. Frothingham R, Hill GJ, Wilcox KH (1994) Extensive DNA sequence conservation throughout the Mycobacterium tuberculosis complex. J Clin Microbiol 32: 1639–1643.
25. Woods GL (2001) Molecular techniques in mycobacterial detection. Arch Pathol Lab Med 125: 122–126.
26. Richter E, Weizenengeger M, Fahr AM, Rusch-Gerdes S (2004) Usefulness of the GenoType MTBC assay for differentiating species of the Mycobacterium tuberculosis complex in cultures obtained from clinical specimens. J Clin Microbiol 42: 4385–4386.
27. Parsons LM, Brosch R, Cole ST, Somoskovi A, Loder A, et al. (2002) Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J Clin Microbiol 40: 2339–2345.
28. Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/ mimetidine, coincide with resistance to the antituberculous drug pyrazinamide in tubercle bacilli. Nat Med 2: 662–667.
29. Screevatsan S, Escalante P, Pan X, Gilles DA, Siddiqui S, et al. (1996) Identification of a polymorphic nucleotide in aminiF, specific for Mycobacterium bovis. J Clin Microbiol 34: 2507–2510.
30. Liebana E, Arana F, Francis B, Cousins D (1996) Assessement of genetic markers for species differentiation within the Mycobacterium tuberculosis complex. J Clin Microbiol 34: 933–938.
31. Prabhaia SK, Mishra A, Singhal A, Katoch VM, Thakral SK, et al. (2004) Use of the hsp65 gene encoding a histone-like protein of Mycobacterium tuberculosis as a target for detection and differentiation of M. tuberculosis and M. bovis. J Clin Microbiol 42: 2724–2732.
32. Frothingham R (1995) Differentiation of strains in Mycobacterium tuberculosis complex by polymorphic sequence polymorphisms, including rapid identification of M. bovis BCG. J Clin Microbiol 33: 840–844.
33. Niemann S, Harmsen D, Rusch-Gerdes S, Richter E (2000) Differentiation of clinical Mycobacterium tuberculosis complex isolates by gyrB DNA sequence polymorphism analysis. J Clin Microbiol 38: 3231–3234.
34. Chimera E, Ferrezzoli L, Leao SC (2004) Mycobacterium tuberculosis complex differentiation using gyrB restriction fragment length polymorphism analysis. Mem Inst Oswaldo Cruz 99: 745–748.
35. Arnold C, Westland L, Moscat G, Underwood A, Magee J, et al. (2003) Single-nucleotide polymorphism-based differentiation and drug resistance detection in Mycobacterium tuberculosis from isolates or directly from sputum. Clin Microbiol Infect 11: 122–130.
36. Richter E, Weizenengeger M, Rusch-Gerdes S, Niemann S (2003) Evaluation of genotypic MTBC assay for differentiation of clinical Mycobacterium tuberculosis complex isolates. J Clin Microbiol 41: 2672–2675.
37. Viana-Niero C, Gutierrez C, Sola C, Filliol I, Boukhalfa F, et al. (2001) Genetic diversity of Mycobacterium africans clinical isolates based on IS6110 restriction fragment length polymorphism analysis, spoligotyping, and variable number of tandem DNA repeats. J Clin Microbiol 39: 57–65.
38. Ayle WY, Neill SD, Zimmag J, Weiss MG, Pavlik I (2004) Bovine tuberculosis: an old disease but a new threat to Africa. Int J Tuberc Lung Dis 8: 924–937.
39. Frothingham R, Meeker-O’Connell WA (1998) Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144 (Pt 5): 1189–1196.
40. Supply P, Magdalena J, Himpens S, Loot C (1997) Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol 26: 1001–1003.
41. Magdalena J, Supply P, Loot C (1998) Specific differentiation between Mycobacterium bovis BCG and virulent strains of the Mycobacterium tuberculosis complex. J Clin Microbiol 36: 2471–2476.
67. Mawak J, Gomwalk N, Bello C, Kandakai-Olukerni Y (2006) Human pulmonary infections with bovine and environment mycobacteria (atypical) in Jos, Nigeria. Ghana Med J 40: 132–136.

68. Niemann S, Rusch-Gerdes S, Joloba ML, Whalen CC, Guwatudde D, et al. (2002) Mycobacterium africanum subtype II is associated with two distinct genotypes and is a major cause of human tuberculosis in Kampala, Uganda. J Clin Microbiol 40: 3398–3405.

69. Niemann S, Kabica T, Bange FC, Adjei O, Browne EN, et al. (2004) The species Mycobacterium africanum in the light of new molecular markers. J Clin Microbiol 42: 3956–3962.

70. Niobe-Eyangoh SN, Kiabah C, Sorlin P, Cunin P, Thonnon J, et al. (2003) Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol 41: 2547–2553.