ATF4 (activating transcription factor 4) is an osteoblast-enriched transcription factor that regulates terminal osteoblast differentiation and bone formation. ATF4 knock-out mice have reduced bone mass (severe osteoporosis) throughout life. Runx2 (runt-related transcription factor 2) is a runt domain-containing transcription factor that is essential for bone formation during embryogenesis and postnatal life. In this study, we identified general transcription factor IIA-γ (TFIIA-γ) as a Runx2-interacting factor in a yeast two-hybrid screen. Immunoprecipitation assays confirmed that TFIIA-γ interacts with Runx2 and RUNX2 when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immu...
and OSE2 (osteoblast-specific element 2, also known as nuclear matrix protein 2 or NMP2-binding site) sites in the promoter (23–25).

One of the most striking characteristics of ATF4 protein is its very short half-life (30–60 min) in many cell types (26). ATF4 is rapidly degraded via a ubiquitin/proteasomal pathway. This degradation requires the presence of the serine residue 219 in the context of DSGXXXS within the ATF4 molecule and its phosphorylation by an unknown kinase. This phosphorylation was shown to be required for subsequent recognition by the SCF^{ATF4} and degradation by the 26 S proteasome (27). Although ATF4 mRNA is ubiquitously expressed, ATF4 protein preferentially accumulates in osteoblasts (28). This accumulation is explained by a selective reduction of proteasomal degradation in osteoblasts. Indeed, inhibition of the ubiquitin/proteasomal pathway by MG115, which blocks the N-terminal threonine in the active site of β-subunit of 26 S proteasome complex (29, 30), led to ATF4 accumulation and induced Ocn mRNA expression in non-osteoblastic cells (28). These observations suggest that modulation of ATF4 stability constitutes an important step to control its protein level and activity and, ultimately, osteoblast-specific gene expression and bone formation.

Transcription factor II A (TFIIA) is a general transcription factor consisting of three subunits designated TFIIAα, TFIIAβ, and TFIIAγ (31). TFIIA interacts with and stabilizes TFIID (also known as TBP, TATA box-binding protein) to DNA and activates transcription (32, 33). Although TFIIA was classified as a general transcription factor when it was first identified, more and more evidence shows that this elusive factor may play an important role in the regulation of tissue-specific gene expression via interactions with tissue- or cell type-specific transcription factors (34–36).

The Ocn promoter has been the major paradigm for unraveling the mechanisms mediating osteoblast-specific gene expression and defining a number of key transcription factors or cofactors (13, 14, 23–25, 37–41). However, very few studies have focused on how tissue-specific transcription factors interface with general transcriptional initiation factors in osteoblasts. In this study, by using a combination of a yeast two-hybrid system and pulldown assays as well as functional assays, we show that TFIIAγ, the smallest subunit (12 kDa) of TFIIA (42), interacts with both Runx2 and ATF4. TFIIAγ delays ATF4 protein degradation and increases its activity. Together with ATF4 and Runx2, TFIIAγ enhances osteoblast-specific Ocn gene expression.

EXPERIMENTAL PROCEDURES

Reagents—Tissue culture media were purchased from Invitrogen and fetal bovine serum from HyClone (Logan, UT). Other reagents were obtained from the following sources: antibodies against TFIIA-α, TFIIA-γ, ATF4, Runx2, and horseradish peroxidase-conjugated mouse or goat IgG from Santa Cruz Biotechnology (Santa Cruz, CA), mouse monoclonal antibody against β-actin from Sigma, and GST antibody from Amersham Biosciences. All other chemicals were of analytical grade.

Cell Cultures—Mouse MC3T3-E1 subclone 4 (MC-4) cells were described previously (43, 44) and maintained in ascobic acid-free α-modified Eagle’s medium, 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin and were not used beyond passage 15. C2C12 myoblasts, a gift from Dr. Daniel Goldman (University of Michigan, Ann Arbor, MI), C3H10T1/2 fibroblasts (American Type Culture Collection), and 3T3-L1 mouse preadipocytes (American Type Culture Collection) were maintained in Dulbecco’s modified Eagle’s medium, 10% FBS. F9 teratocarcinoma cells (American Type Culture Collection) and rat ROS17/2.8 osteosarcoma cells (gift from Dr. Laurie McCauley, University of Michigan School of Dentistry) were grown in modified Eagle’s medium, 10% FBS.

Yeast Two-hybrid Analysis—A yeast pLexA two-hybrid system (Clontech) was used to identify proteins that bind to mouse Runx2. A cDNA fragment encoding the aa-263–351 region of Runx2 was subcloned into the BamHI/Xhol sites of pLexA, creating an in-frame fusion with the DNA binding domain of the LexA gene that is controlled by the strong yeast ADH1 promoter. The resultant plasmid pLexA-Runx2 (aa 263–351) was then transformed into a yeast reporter strain (YM4271), and the transformed cells (1 × 10⁶) were mated for 24 h with cells (2.5 × 10⁹) of a pretransformed two-hybrid library made from human brain cDNA. The resultant mating mixture was spread on 20 × 10-cm plates to select for expression of the LEU2 and lacZ reporter genes. Approximately 2 × 10⁶ colonies were screened. Sixty four positive colonies were isolated. The prey plasmids were extracted from the positive colonies and the cDNA inserts in the plasmids were amplified by PCR and sequenced. Of the 64 positive colonies, 5 are the full-length TFIIAγ cDNAs, and the rest contained 16 different cDNAs.

DNA Constructs and Transfection—p657mOG2-luc, p657mOG2OSE1mt-luc, p657mOG2OSE2mt-luc, p657mOG2-OSCE1+2mt-luc, p4OSE1-luc, p4OSE1mt-luc, p6OSE2-luc, p6OSE2mt-luc, pCMV/β-galactosidase, pCMV/ATF4, pCMV/Runx2, pCMV/FLAG-Runx2 and its deletion mutants (aa 1–330, aa 1–286, and aa 258), GST-Runx2 and GST-ATF4 fusion protein expression vectors were described previously (1, 13, 23, 25, 45). The full-length cDNA of human TFIIAγ was cloned by an RT-PCR strategy using total RNA from human Saos2 osteoblastic cells as a template and specific primers (forward, 5'-ATG GCA TAT CAG TTA TAC AGA AA-3', and reverse, 5'-TTC TGT AGT ATG TTA GCC ATG A-3'). Digested PCR products were purified and subcloned into the NotI/BamHI sites of the pFLAG-5a expression vector (Sigma). Addition of a C-terminal FLAG sequence into the TFIIAγ cDNA facilitates monitoring of expression levels and immunoprecipitation using M2 antibody (Sigma). GST-TFIIAγ fusion protein expression plasmid was constructed by subcloning the full-length TFIIAγ cDNA into the glutathione S-transferase fusion gene vector pGEX-4T-1 (Amersham Biosciences) in correct reading frame. The accuracy of DNA sequences was verified by automatic sequencing. The size of expressed proteins was confirmed by Western blot analysis using specific antibodies. For expression and functional studies, cells were plated on 35-mm dishes at a density of 5 × 10⁴ cells/cm². After 24 h, cells were transfected with the indicated plasmid DNAs (0.01 μg of pRL-SV40, 0.25 μg of test luciferase reporter, and 1.0 μg of expression plasmids balanced as necessary with β-galactosidase expression plasmid such that the total DNA was constant).
and Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions. After 36 h, whole cell extracts were prepared and used for Western blot analysis or dual luciferase assay using the dual luciferase assay kit (Promega, Madison, WI) on a Veritas™ microplate luminometer (Turner Biosystem, Inc., Sunnyvale, CA). Firefly luciferase activity was normalized to Renilla luciferase activity for transfection efficiency.

RNA Isolation and Reverse Transcription (RT)—Total RNA was isolated using TRIzol reagent (Invitrogen) according to the manufacturer’s protocol. RT was performed using 2 μg of denatured RNA and 100 pmol of random hexamers (Applied Biosystem, Foster, CA) in a total volume of 25 μl containing 12.5 units of MultiScribe reverse transcriptase (Applied Biosystem, Foster, CA) according to the manufacturer’s instructions.

Regular PCR—Regular PCR was performed on a 2720 Thermal Cycler (Applied Biosystem, Foster, CA), using 2.5 μl of cDNA (equivalent to 0.2 μg of RNA) and AmpliTaq DNA polymerase (Applied Biosystems, Foster City, CA) in a 25-μl reaction according to the manufacturer’s instructions. The DNA sequences of primers used for PCR were as follows: mouse/rat TFIIαγ, 5'-ATG GCA TAT TTA TAC AAT ACA-3' (forward), 5'-GTT ATT TTT ACC ATC ACA GCC T-3' (reverse); mouse/rat Atf4, 5'-ATG GCT TGG CCA GTG CCT CAG A-3' (forward), 5'-GCT CGT GAG TGG AAG ACA GAA C-3' (reverse); mouse/rat Hprt, 5'-GTT GAG AGA TCA TCT CCA CC-3' (forward), 5'-AGC GAT GAT GAA CCA GGT TA-3' (reverse). For all primers the amplification was performed as follows: initial denaturation at 95 °C for 30 s followed by 31 cycles of 95 °C for 15 s, 60 °C for 30 s, 72 °C for 30 s and extension at 72 °C for 7 min. The amplified PCR products were run on a 1.2% agarose gel and visualized by ethidium bromide staining.

Quantitative Real Time PCR—Quantitative real time PCR was performed on an iCycler (Bio-Rad) using a SYBR® Green PCR core kit (Applied Biosystem, Foster, CA) and cDNA equivalent to 10 ng of RNA in a 50-μl reaction according to the manufacturer’s instructions. The DNA sequences of primers used for real time PCR were as follows: mouse Ocn, 5'-TAG TGA ACA GAC TCC GCC GCT A-3' (forward), 5'-TGT AGG CGG TCT TCA AGC CAT-3' (reverse); mouse and rat 18 S rRNA, 5'-CGT CTG CCC TAT CAA CTT TCG ATG GTA G-3' (forward), 5'-GCC TGC TGC CTT CTC TGG ATG TCT-3' (reverse); mouse and rat TFIIαγ, 5'-TGG GGA ACA TTC TCC AAG AGA GCC T-3' (forward), 5'-TTT CTG AGT CTC TCA GCC AAT GCT G-3' (reverse); rat Ocn, 5'-TGG TGA ATA GAC TCC GCC GCT ACC T-3' (forward), 5'-GGT GAA AGA ACC CAA TGT GGT CCG-3' (reverse); rat Bsp: 5'-GGC TGG AGA TGG AGA GGA GCC C-3' (forward), 5'-TGC TGG TGG TGC CTA CGA CCT T-3' (reverse); rat Opn, 5'-TGG TGA ATA GAC TCC GCC GCT ACC T-3' (forward), 5'-CCT GGA AGC CAA TGT GGT CCG-3' (reverse). For all primers the amplification was performed as follows: initial denaturation at 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s and 60 °C for 60 s. Melting curve analysis was used to confirm the specificity of the PCR products. Six samples were run for each primer set. The levels of mRNA were calculated by the ΔCT method (46). Ocn, Bsp, TFIIαγ, osteopontin (Opn), and Atf4 mRNAs were normalized to 18 S rRNA mRNA.

Western Blot Analysis—Cells were washed with cold 1× phosphate-buffered saline and lysed in 1× Passive Buffer (Promega, Madison, WI) at room temperature for 20 min. Lysates were clarified by centrifugation (20 min, 13,000 × g, 4 °C). Protein concentrations were determined by the method developed by Bio-Rad. Twenty μg of total protein were fractionated on a 10% SDS-polyacrylamide gel and transferred onto nitrocellulose membranes (Schleicher & Schuell). The membrane was blocked in 5% nonfat milk in Tris-buffered saline/Tween 20 (TBST) buffer, probed with antibodies against TFIIαγ (1:200), TFIIαα (1:1000), Atf4 (1:1000), Runx2 (1:1000), Fra-1 (1:1000), GST (1:5000), or M2 (1:2000) followed by incubation with anti-goat-mouse or -rabbit antibodies conjugated with horseradish peroxidase (1:5000) and visualized using an enhanced chemiluminescence kit (Pierce). Finally, blots were stripped two times in buffer containing 65 mM Tris-Cl, pH 6.8, 2% SDS, and 0.7% (v/v) β-mercaptoethanol at 65 °C for 15 min and re-probed with β-actin antibody (1:5000) for normalization.

Immunoprecipitation—GST, GST-TFIIαγ, GST-Atf4, and GST-Runx2 fusion proteins were purified using the Bulk GST purification module kit (Amersham Biosciences) according to the manufacturer’s instructions. Whole cell extracts (500 μg), nuclear extracts (200 μg), or GST fusion proteins (1.0 μg) were pre-cleaned twice with 50 μl of protein A/G-agarose beads (Strategene, La Jolla, CA) for 30 min followed by pelleting of beads. The protein A/G-agarose beads were blocked with 10 μg/ml bovine serum albumin in 1× phosphate-buffered saline for 1 h before use to reduce nonspecific binding of proteins. Five μg of respective antibody was added and incubated for 2 h at 4 °C with gentle rocking. The immune complexes were collected by addition of 30 μl of protein A/G-agarose beads and incubation for 1 h at 4 °C followed by centrifugation. Precipitates were washed five times with 1× washing buffer (20 μM HEPES, pH 7.6, 50 mM KCl, 1 mM dithiothreitol, 0.25% Nonidet P-40, 5 mM NaF, 1 mM EGTA, 5 mM MgCl₂, 0.25 mM phenylmethylsulfonyl fluoride), and the immunoprecipitated complexes were suspended in SDS sample buffer and analyzed by SDS-PAGE followed by Western blot analysis using the indicated antibodies.

ChIP Assays—ChIP assays were performed as described previously (41) using a protocol kindly provided by Dr. Dwight Towler (Washington University) (47). After sonication, the amount of chromatin was quantified using the PicoGreen double-stranded DNA quantitation assay (Molecular Probes) according to the manufacturer’s instructions. The equivalent of 10 μg of DNA was used as starting material (input) in each ChIP reaction with 2 μg of the appropriate antibody (TFIIαγ, or control rabbit IgG). Fractions of the purified ChIP DNA (5%) or inputs (0.02–0.05%) were used for PCR analysis. The reaction was performed with AmpliTaq Gold DNA polymerase (Applied Biosystems) for 35 cycles of 60 s at 95 °C, 90 s at 58 °C, and 120 s at 68 °C. PCR primer pairs were generated to detect DNA segments located near the Runx2-binding site at −137/−131 (primers P1 and P2), ATF4-binding site at −55/−48 (primers P3 and P4) in mouse osteocalcin gene 2 (mOg2) proximal promoter, or the Runx2-binding site located between −370 and −42 in the proximal mouse Runx2 promoter region (primers
TFIIAγ Interacts with ATF4 and Runx2

A: COS-7

1	2	3	4	5	6
-Runx2	-ATF4	-TFIIAγ	-FLAG-TFIIAγ		

-IP: IgG(1), TFIIAγ(2), IgG(3), Runx2(4), IgG(5), ATF4(6)

B: ROS17/2.8

1	2	3	4	5
-Runx2	-ATF4	-TFIIAγ	-FLAG-TFIIAγ	

-IP: IgG(1), TFIIAγ(2), IgG(3), Runx2(4), IgG(5), ATF4(6)

C: GST fusion proteins

1	2	3	4
-GST	-GST-ATF4	-GST-Runx2	-GST-TFIIAγ

-IP: TFIIAγ

D: Runx2 deletions

1	2	3	4	5	6
-Runx2	-IG HC	-Runx2(aa1-330)	-Runx2(aa1-286)	-Runx2(aa1-258)	

-IP: TFIIAγ; WB: M2

Input: 5% IP

TFIIAγ Interacts with Runx2 and ATF4—A yeast pLexA two-hybrid system (Clontech) was used to identify proteins that bind to mouse Runx2. cDNA fragments encoding several C-terminal regions of Runx2 were subcloned into the BamHI/XhoI sites of pLexA, creating in-frame fusions with the DNA binding domain of the LexA gene that is controlled by the strong yeast ADH1 promoter. Preliminary experiments using relatively larger regions of Runx2 (aa 232–391, aa 222–428, and aa 222–517) as baits were not successful because of their ability to autoactivate the lacZ reporter gene in yeast. In contrast, by using the aa 263–351 region of Runx2 as a bait, we identified TFIIAγ, a general transcription factor involved in the initiation step of eukaryotic transcription, as a Runx2-interacting factor. A diagram and a picture of a positive colony are shown in Fig. S1.

RESULTS

TFIIAγ Interacts with Runx2 and ATF4—A yeast pLexA two-hybrid system was used to identify proteins that bind to mouse Runx2. cDNA fragments encoding several C-terminal regions of Runx2 were subcloned into the BamHI/XhoI sites of pLexA, creating in-frame fusions with the DNA binding domain of the LexA gene that is controlled by the strong yeast ADH1 promoter. Preliminary experiments using relatively larger regions of Runx2 (aa 232–391, aa 222–428, and aa 222–517) as baits were not successful because of their ability to autoactivate the lacZ reporter gene in yeast. In contrast, by using the aa 263–351 region of Runx2 as a bait, we identified TFIIAγ, a general transcription factor involved in the initiation step of eukaryotic transcription, as a Runx2-interacting factor. A diagram and a picture of a positive colony are shown in Fig. S1.

To verify the TFIIAγ-Runx2 interaction identified by yeast two-hybrid system, we conducted pulldown assays. COS-7 cells were transiently transfected with expression vectors for FLAG-TFIIAγ, Runx2, and ATF4 (a recently identified Runx2-interacting factor). After 36 h, whole cell extracts were prepared for immunoprecipitation (IP) assay using a TFIIAγ antibody followed by Western blot analysis for Runx2 and ATF4. As seen in Fig. 1A (lane 2), Runx2 protein was present in a TFIIAγ anti-
TFIIAγ Interacts with ATF4 and Runx2

A Osteocalcin promoter

B Primers: IP-Ab: P1-P2 -350 bp P3-P4 -105 bp P5-P6 -329 bp P7-P8 -338 bp

FIGURE 2. ChIP analysis of TFIIAγ interaction with Runx2/ATF4 binding sites-containing chromatin fragments of mOG2 promoter in MC-4 cells. A, schematic representation of relevant regions of the mOG2 promoter, mouse Runx2 promoter, and mOG2 gene. P1, P2, P3, P4, P5, P6, P7, and P8 indicate PCR primers used to analyze ChIP DNAs. The positions of these primers and the size of the fragments they amplify are indicated at the top or bottom of the figure. B, MC-4 cells were seeded at a density of 50,000 cells/cm² in 35-mm dishes, cultured in 10% FBS medium overnight, and cross-linked with formaldehyde for ChIP assays. IPs were conducted with TFIIAγ antibody or normal control IgG. PCR products were run on 3% agarose gel and stained with ethidium bromide. Purified input chromatin was used to perform parallel PCRs with the respective primer pairs. Experiments were repeated three times with similar results.

TABLE 1

PCR primers used in ChIP assay	Oligonucleotide name	Sequence
P1	CGGTCCTAAGGCGAC	
P2	AGCCTAGCTCCAGGACTTAT	
P3	CACGAGATCTGGAGATC	
P4	TACGGCTACTGCTGCTCTGA	
P5	GCCATAACCTTTTCAATGCGAG	
P6	ACGCTATTACTTGAGAGCAAGTTATC	
P7	TATGGAACAGAAGCTCGGCTTA	
P8	TATGGAACAGAAGCTCGGCTTA	

As a first step to identify the TFIIAγ-binding domain, FLAG-Runx2 deletion mutant expression vectors (wild type aa 1–528, aa 1–330, aa 1–286, and aa 1–258) were transfected into COS-7 cells because of the high transfection efficiency. Nuclear extracts were prepared 36 h later, mixed with equal amounts of nuclear extracts of ROS17/2.8 (which contain large amounts of endogenous TFIIAγ), and immunoprecipitated using anti-TFIIAγ antibody followed by Western blot analysis for Runx2 (M2 antibody). As shown in Fig. 1D, deletion of Runx2 from aa 528 to aa 286 did not reduce TFIIAγ binding. However, further deletion from aa 286 to aa 258 completely abrogated TFIIAγ/Runx2 complex formation. These data clearly demonstrate the following: (i) endogenous TFIIAγ can interact with overexpressed FLAG-Runx2 proteins in vitro; and (ii) the aa 258–286 region of Runx2 is required for TFIIAγ binding. Interestingly, this same region is required for ATF4-Runx2 interactions (25).

To determine whether, in intact cells, TFIIAγ is associated with the endogenous osteocalcin gene 2 (mOG2) promoter region that has been shown to bind Runx2 and ATF4, we performed the chromatin immunoprecipitation (ChIP) assay using MC3T3-E1 (clone MC-4) preosteoblast cells. After shearing, soluble chromatin was immunoprecipitated with either an antibody against TFIIAγ or control IgG. The positions and sequences of primers used for PCR analysis of ChIP DNAs are shown in Fig. 2A and Table 1. As shown in Fig. 2B, the PCR bands amplified with primers P1/P2 and P3/P4 and corresponding to ChIP DNAs immunoprecipitated with TFIIAγ antibody revealed that TFIIAγ specifically interacts with chromatin fragments of the proximal mOG2 promoter that contain Runx2- or ATF4-binding sites. Furthermore, TFIIAγ antibody
also immunoprecipitated a Runx2-binding site-containing chromatin fragment of the proximal Runx2 promoter (primers P5/P6). In contrast, TFIIAγ antibody failed to immunoprecipitate a chromatin fragment of mO2G2 gene that contains no Runx2- or ATF4-binding sites (primers P7/P8). Taken together, these data show that TFIIAγ is recruited to a chromatin fragment of the mO2G2 promoter that was previously demonstrated to be bound by Runx2 and ATF4 in osteoblasts (13, 22).

FIGURE 3. TFIIAγ increases ATF4 but not Runx2 transcriptional activity. A and B, 10T1/2 cells were transiently transfected with p6OSE2-luc (A) or p6OSE2mt-luc (B) and pRL-SV40 (for normalization) and expression plasmids for β-galactosidase, TFIIAγ, Runx2, or Runx2 plus TFIIAγ. After 36 h, cells were harvested for dual luciferase assay. Firefly luciferase was normalized to *Rotylenchulus reniformis* luciferase to control the transfection efficiency (*, p < 0.01, β-galactosidase versus Runx2 or Runx2 + TFIIAγ). C and D, 10T1/2 cells were transiently transfected with p4OSE2-luc (C) or p4OSE2mt-luc (D) and pRL-SV40 and expression plasmids for β-galactosidase, TFIIAγ, ATF4, or ATF4 plus TFIIAγ (*, p < 0.01, β-galactosidase versus ATF4 or ATF4 + TFIIAγ); #, p < 0.01 (ATF4 versus ATF4 + TFIIAγ). E, 10T1/2 cells were transiently transfected with –34/+13 mO2G2-luc and pRL-SV40 and expression plasmids for β-galactosidase, TFIIAγ, ATF4, or Runx2. F, dose-response experiment, 10T1/2 cells were transiently transfected with p4OSE1-luc and pRL-SV40 and ATF4 expression plasmid and increasing amounts of TFIIAγ plasmid (*, p < 0.01, β-galactosidase versus TFIIAγ). G and H, C2C12 (G) and COS-7 cells (H) were transiently transfected with p4OSE2-luc and pRL-SV40 and expression plasmids for β-galactosidase, TFIIAγ, ATF4, or ATF4 plus TFIIAγ (*, p < 0.01, β-galactosidase versus ATF4 or ATF4 + TFIIAγ). Data represent mean ± S.D. Experiments were repeated three times and qualitatively identical results were obtained. Note the expanded scale for the mutant reporters (B, D, and E) because of low basal activity to enable visualization of any potential differences as a consequence of cotransfection with the expression vectors noted above.

TFIIAγ Increases ATF4 but Not Runx2-dependent Transcriptional Activity—To determine whether TFIIAγ increases Runx2- and ATF4-dependent transcriptional activity, we measured the ability of TFIIAγ to stimulate transcription of p6OSE2-luc, a reporter plasmid containing 6 copies of the Runx2-binding element OSE2 upstream of a minimal 34-bp mO2G2 promoter (13, 43, 49) or p4OSE1-luc, a reporter plasmid that contains four copies of OSE1 (a specific ATF4-binding element) upstream of a minimal 34-bp mO2G2 promoter (22, 25). For these studies, we used C3H10T1/2 fibroblasts because they contain undetectable levels of both endogenous Runx2 and ATF4 proteins (28, 49). As shown in Fig. 3A, as expected, Runx2 alone increased OSE2 transcriptional activity by 11-fold. This stimulation was abolished in the 6OSE2mt-luc in which the OSE2 core sequence was mutated (25) (Fig. 3B). Although we have shown above that TFIIAγ interacts with Runx2, TFIIAγ transfection did not activate basal or Runx2-dependent OSE2 transcription (Fig. 3A). As shown in Fig. 3C, ATF4 activated OSE1 activity about 2-fold (p < 0.01, β-galactosidase versus ATF4). Although TFIIAγ alone was unable to activate OSE1 activity, unexpectedly, when coexpressed with ATF4, it dramatically increased OSE1 activity 5-fold above ATF4 alone. This stimulation was abolished in 4OSE1mt-luc, in which the OSE1 core sequence was mutated from TTACATCA to TTAGTACA in the reporter plasmid (45) (Fig. 3D). Note: TFIIAγ, Runx2, or ATF4 failed to activate a minimal 34-bp mO2G2 promoter that contains a TATA box (23, 50) (Fig. 3E). Fig. 3F shows that TFIIAγ activated ATF4 transcription activity in a dose-dependent manner in C3H10T1/2 cells. TFIIAγ similarly stimulated ATF4-directed OSE1 activity in C2C12 myoblasts (3-fold) and COS-7 cells (4.3-fold) (Fig. 3, G and H).

TFIIAγ Expression in Different Cell Lines—The levels of TFIIAγ mRNAs and proteins were determined in different cell lines by RT-PCR and Western blot analysis, respectively. As shown in Fig. 4, Western blot analysis shows that TFIIAγ protein was expressed at high levels in osteoblastic cells (MC-4
Silencing of TFIIAγ Markedly Reduces Levels of Endogenous Ocn and Bsp mRNAs and ATF4 Protein in Osteoblasts—To determine whether TFIIAγ is required for the endogenous Ocn mRNA expression in osteoblasts, we knocked down the endogenous TFIIAγ transcripts by siRNA. ROS17/2.8 osteoblast-like cells, which express high levels of TFIIAγ and Ocn and Bsp mRNAs, were transiently transfected with TFIIAγ siRNA reagent from Santa Cruz Biotechnology according to the manufacturer’s instructions. This siRNA is a pool of three specific 20–25-nucleotide siRNA targeting both mouse and rat TFIIAγ. As shown in Fig. 6A, quantitative real time RT-PCR analysis showed that levels of TFIIAγ mRNA were efficiently reduced by TFIIAγ siRNA in a dose-dependent manner. The level of Ocn mRNA was reduced greater than 50% by TFIIAγ siRNA (p < 0.01, control versus TFIIAγ siRNA). Interestingly, Bsp mRNA, another ATF4 downstream target gene (22), was also reduced by 50% (p < 0.01, control versus TFIIAγ siRNA). This inhibition was specific because levels of Ocn and Atf4 mRNAs were not reduced by TFIIAγ siRNA. In contrast, as shown in Fig. 6B, levels of all these mRNAs were not reduced by the negative control siRNA (Invitrogen). Although Atf4 mRNA was not altered by TFIIAγ siRNA, the level of endogenous ATF4 protein was significantly reduced by silencing TFIIAγ in osteoblasts (Fig. 6C). Similar results were obtained when a different set of TFIIAγ siRNA was used (Fig. S2).

Overexpression of TFIIAγ Increases the Levels of ATF4 Protein—The above studies clearly demonstrated that TFIIAγ increased ATF4-dependent transcription activity and Ocn gene expression probably by targeting ATF4 protein. To further study the mechanism of this regulation, we determined the effect of TFIIAγ overexpression on the levels of ATF4 protein. C3H10T1/2 cells, which express undetectable level of endogenous ATF4 protein (28), were transiently transfected with 1.0 μg of ATF4 expression plasmid and increasing amounts of TFIIAγ expression plasmid (0, 0.5, 1, and 2 μg). After 36 h, cells were harvested for Western blot analysis. As shown in Fig. 7A, overexpression of TFIIAγ in C3H10T1/2 cells increased the levels of ATF4 protein in a dose-dependent manner. This increase in ATF4 protein was specific because levels of Runx2 were not altered by TFIIAγ. TFIIAγ similarly elevated levels of ATF4 protein in COS-7 cells (Fig. 7B). Next, we determined if TFIIAγ could increase the levels of endogenous ATF4 proteins in osteoblasts. ROS17/2.8 cells were transiently transfected with indicated amount of TFIIAγ expression vector. Western blot analysis shows that TFIIAγ dose-dependently increased levels of endogenous ATF4 protein in ROS17/2.8 cells (Fig. 7C). Similar results were obtained in MC-4 cells (Fig. 7D). Interestingly, overexpression of TFIIAγ did not increase the levels of Atf4 mRNA in all these cells examined (bottom, Fig. 7, A–D). Taken collectively, TFIIAγ markedly increased levels of ATF4 proteins in osteoblasts and non-osteoblasts.

TFIIAγ Increases ATF4 Protein Stability—Lassot et al. (51) recently showed that acetylase p300 markedly increased the levels of ATF4 protein and ATF4-dependent transcriptional activity by inhibiting ATF4 protein degradation via a proteasomal ubiquitin pathway. As an initial step to determine whether TFIIAγ alters ATF4 protein stability, C3H10T1/2 cells were
transiently transfected with ATF4 expression vector in the presence of β-galactosidase (β-gal), TFIIAγ, ATF4, Runx2, Runx2/TFIIAγ, ATF4/TFIIAγ, ATF4/Runx2, or ATF4/TFIIAγ/Runx2. After 36 h, the cells were transfected with p657mOG2-Luc or p657mOG2OSEmt-luc or p657mOG2OSE(1+2)mt-luc or pRL-SV40, and expression plasmids for β-galactosidase, TFIIAγ, ATF4, Runx2, Runx2/TFIIAγ, ATF4/TFIIAγ, ATF4/Runx2, or ATF4/TFIIAγ/Runx2. After 36 h, the cells were harvested for dual luciferase assay. *, p < 0.01 (β-galactosidase versus Runx2, or ATF4 + Runx2 or ATF4 + Runx2 + TFIIAγ); #, p < 0.01 (ATF4 + Runx2 versus ATF4 + Runx2 + TFIIAγ). Data represent mean ± S.D. Experiments were repeated 3–4 times and qualitatively identical results were obtained.

DISCUSSION

This study identifies TFIIAγ as a bridging molecule between Runx2, ATF4, and the transcription machinery in osteoblasts. Although Runx2 and ATF4 interact in osteoblasts or when coexpressed in COS-7 cells, IPs using purified GST fusion proteins were unable to demonstrate a direct physical interaction between ATF4 and Runx2 (25). Thus, accessory factors are likely involved in bridging these two molecules. Several lines of evidence support that TFIIAγ may be a factor linking Runx2 and ATF4. (i) TFIIAγ forms complexes with both Runx2 and ATF4 in osteoblasts and when coexpressed in COS-7 cells. (ii) The same region of Runx2 (i.e. aa 258–286) is required for both TFIIAγ-Runx2 and ATF4-Runx2 interactions. (iii) Purified GST-TFIIAγ fusion protein directly binds to both purified GST-Runx2 and GST-ATF4 fusion proteins. (iv) Overexpression of TFIIAγ in 10T1/2 cells dramatically enhances endogenous Ocn gene expression and the 657-bp mOG2 promoter activity in the presence of ATF4 and Runx2. (v) siRNA knockdown of TFIIAγ mRNA markedly reduces osteoblast-specific Ocn and Bsp expression.

Accumulating evidence establishes that ubiquitin-proteasome pathways control osteoblast differentiation and bone formation. For example, the proteasome inhibitors epoxomicin and proteasome inhibitor-1, when administered systemically to mice, strongly stimulated bone volume and bone formation rates by greater than 70% after only 5 days of treatment (52). Although the mechanism of this regulation remains unclear, critical bone transcription factors seem to be targets for the ubiquitin-proteasomal pathway. Zhao and co-workers (52, 53) recently showed that Smurf1, an E3 ubiquitin-protein isopeptide ligase, accelerated Runx2 ubiquitin-proteasomal degradation and inhibited osteoblast differentiation and bone forma-
ATF4 directly binds to specific DNA sequences in their target gene and activates OSE1, it alone is not sufficient for activation of the endogenous Ocn gene or the 657-bp mOG2 promoter which contains sufficient information for the bone-specific expression of Ocn in vivo (54). Instead, ATF4 stimulation of Ocn is dependent on the presence of Runx2 as demonstrated by our recent study (25). ATF4 interacts with Runx2 and activates Runx2-dependent transcriptional activity. A recent study shows that SATB2, a nuclear matrix protein that directly interacts with both ATF4 and Runx2, activates osteoblast differentiation and controls craniofacial patterning in vivo (55). This study shows that although TFIIAγ interacts with Runx2, it does not directly activate Runx2. Like ATF4, TFIIAγ alone is not sufficient to activate transcription from either the Ocn gene or the 657-bp mOG2 promoter. In fact, even TFIIAγ and ATF4 together are not sufficient for Ocn gene expression without the presence of Runx2 (Fig. 5). However, in the presence of both ATF4 and Runx2, TFIIAγ greatly activates Ocn gene expression.

General transcription factors were originally defined as such because they were thought to be universally required for transcription. In eukaryotic cells, initiation of transcription is a complex process, which requires RNA polymerase II and many other basal transcription factors and/or co-factors, including TFIIA, TFIIH, TFIIID (TBP or TATA box-binding protein), TFIIIE, TFIIIF, and TFIIH (56–59). Binding of TBP to the TATA box is the first step, which is regulated by TFIIA. TFIIA enhances transcription by interacting with TBP and stabilizing its binding to DNA (32, 33). More and more evidence shows that general transcription factors play unique roles in the regulation of tissue-specific gene expression under physiological and pathological conditions. For example, the androgen receptor, via its N-terminal AF1 domain, interacts with basal transcription factors TBP and TFIIA and activates tissue-specific transcription in target tissues and cells (60). Likewise, TAFII17 (a component of the TFIIID complex), via specific protein-protein interactions with the vitamin D receptor (VDR), increases osteoclast formation from osteoclast precursors in response to 1,25-dihydroxvitamin D₃ in patients with Paget disease (61). In osteoblasts, bone transcription factors such as Runx2 and ATF4 directly bind to specific DNA sequences in their target gene promoters (i.e. OSE2 or NMP2 and OSE1, respectively) and activate osteoblast-specific gene expression, osteoblast differentiation, and bone formation (1, 10–14, 24, 43). Obviously,

FIGURE 6. TFIIAγ siRNA blocks endogenous Ocn mRNA expression in osteoblastic cells. ROS17/2.8 osteoblast-like cells were transiently transfected with TFIIAγ siRNA (A) or negative control (Ctrl) siRNAs (B). After 36 h, total RNA or whole cell extracts were prepared for quantitative real time RT-PCR analysis for TFIIAγ, Ocn, Bsp, Opm, and ATF4 mRNAs which were normalized to the 18 S rRNA mRNAs or Western blot analysis for ATF4, TFIIAγ, and β-actin (C and D). *, p < 0.01 (control versus siRNA). Data represent mean ± S.D. Experiments were repeated three times with similar results.

...
cooperative interactions between osteoblast-specific transcription factors and basal (general) transcriptional machinery are essential for achieving maximal transcription of osteoblast-specific genes. However, little is known about these interactions. Experiments from this study demonstrate that TFIIAγ, which is expressed at high level in osteoblasts, facilitates osteoblast-specific gene expression via two mechanisms. 1) TFIIAγ stabilizes ATF4 and increases the levels of ATF4 proteins. The increased levels of ATF4 further activate Runx2 activity and Ocn transcription (25). 2) Through its ability to directly interact with both ATF4 and Runx2, TFIIAγ could recruit these two critical bone transcription factors to the basal transcriptional machinery and greatly enhance osteoblast-specific gene expression. In support of our observation, Guo and Stein (62) showed that Yin Yang-1 (YY1) regulates vitamin D enhancement of Ocn gene transcription by interfering with interactions of the VDR with both the VDR element and TFIIB. TFIIB interacts with both VDR and YY1 (63). Likewise, Newberry et al. (64) showed that TFIIF (RAP74 and RAP30) mediates Msx2 (a homeobox transcription factor required for craniofacial development) inhibition of Ocn promoter activity. Finally, a recent study showed that TFIIB could directly bind to the transactivation domain of Osterix, another important osteoblast transcription factor (65).

TFIIAγ interacts with ATF4 and Runx2

A: 10T1/2
ATF4(μg): 1.0 1.0 1.0
TFIIAγ(μg): 0 0.5 1.0 2.0

B: COS-7
ATF4(μg): 1.0 1.0 1.0
TFIIAγ(μg): 0 0.5 1.0 2.0

C: ROS17/2.8
TFIIAγ(μg): 0 0.5 1.0 2.0

D: MC-4
TFIIAγ(μg): 0 0.5 1.0 2.0

FIGURE 7. TFIIAγ increases the levels of ATF4 protein. C3H10T1/2 (A) and COS-7 (B) cells were transfected with 1 μg of pCMV/ATF4 or pCMV/Runx2 and increasing amounts of FLAG-TFIIAγ expression vector (0, 0.5, 1, 2 μg) followed by Western blotting for ATF4, TFIIAγ, Runx2, and β-actin (top) or RNA preparation and RT-PCR for Atf4 and Hprt mRNA (bottom). ROS17/2.8 (C) and MC-4 (D) cells were transfected with increasing amounts of FLAG-TFIIAγ expression vector (0, 0.5, 1, and 2 μg). Experiments were repeated three times with similar results.

FIGURE 8. TFIIAγ increases ATF4 protein stability. C3H10T1/2 cells were transfected with 1.0 μg ATF4 (A) or Runx2 (B) expression vector with and without 1.0 μg of TFIIAγ expression vector. After 36 h, cells were treated with 50 μg/ml of protein synthesis inhibitor cycloheximide (CHX) and harvested at different time points (0, 1, and 3 h) followed by Western blot analysis for ATF4 and Runx2. Experiments were repeated three times with similar results.

It should be noted that although TFIIAγ belongs to the family of general transcription factors, its expression seems to show some tissue or cell specificity. Osteoblastic cells (MC-4 cells and ROS17/2.8), C3H10T1/2 fibroblasts, and L1 preadipocytes express high levels of TFIIAγ proteins. In contrast, the levels of TFIIAγ protein were undetectable in F9 teratocarcinoma cells.
and COS-7 on Western blots. The meaning of this observation remains unknown.

These findings suggest that TFIIAγ is a critical factor regulating ATF4 stability and functions as a molecular linker between ATF4 and Runx2 and the basal transcriptional machinery. TFIIAγ may play a unique role in the regulation of osteoblast-specific gene expression and ultimately osteoblast differentiation and bone formation. A working model is proposed in Fig. 9, which summarizes the role of TFIIAγ in osteoblast-specific mOG2 gene expression. Future study aimed at identifying factors that affect levels and activity of TFIIAγ will allow us to address the functional significance of TFIIAγ in osteoblast function in greater detail.

Acknowledgments—We thank Drs. G. David Roodman (University of Pittsburgh) and Renny T. Franceschi (University of Michigan) for critical reading of the manuscript.

REFERENCES

1. Yang, S., Wei, D., Wang, D., Phimphilai, M., Krebsbach, P. H., and Franceschi, R. T. (2003) J. Bone Miner. Res. 18, 705–715
2. Xiao, G., Jiang, D., Gopalakrishnan, R., and Franceschi, R. T. (2002) J. Biol. Chem. 277, 36181–36187
3. Gilbert, L., He, X., Farmer, P., Rubin, J., Drissi, H., van Wijnen, A. J., Lian, J. B., Stein, G. S., and Nan, M. S. (2002) J. Biol. Chem. 277, 2695–2701
4. Krishnan, V., Moore, T. L., Ma, Y. L., Helvering, L. M., Frolik, C. A., Valasek, K. M., Duy, P., and Geiser, A. G. (2003) Mol. Endocrinol. 17, 423–435
5. Xiao, G., Gopalakrishnan, R., Jiang, D., Reith, E., Benson, M. D., and Franceschi, R. T. (2002) J. Bone Miner. Res. 17, 101–110
6. Zhang, X., Sobue, T., and Hurley, M. M. (2002) Biochem. Biophys. Res. Commun. 290, 526–531
7. Hurley, M. M., Tetradis, S., Huang, Y. F., Hock, J., Kream, B. E., Raisz, L. G., and Sabbieiti, M. G. (1999) J. Bone Miner. Res. 14, 776–783
8. Montero, A., Okada, Y., Tomita, M., Ito, M., Tsukurumi, H., Nakamura, T., Doetschman, T., Coffin, J. D., and Hurley, M. M. (2000) J. Clin. Investig. 105, 1085–1093
9. Yakar, S., Rosen, C. J., Beamer, W. G., Ackert-Bicknell, C. L., Wu, Y., Liu, J. L., Ooi, G. T., Setser, J., Frystyk, J., Boisclair, Y. R., and LeRoith, D. (2002) J. Clin. Investig. 110, 771–781
10. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S., and Kishimoto, T. (1997) Cell 89, 755–764
11. Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., Stamp, G. W., Beddington, R. S., Mundlos, S., Olsen, B. R., Selby, P. B., and Owen, M. J. (1997) Cell 89, 765–771
12. Mundlos, S., Otto, F., Mundlos, C., Mulliken, J. B., Aylsworth, A. S., Albright, S., Lindhout, D., Cole, W. G., Henw, N., Knoll, J. H., Owen, M. J., Mertelsmann, R., Zabel, B. U., and Olsen, B. R. (1997) Cell 89, 773–779
13. Duy, P., Zhang, R., Geoffroy, V., Ridall, A. L., and Karsenty, G. (1997) Cell 89, 747–754
14. Banerjee, C., McCabe, L. R., Choi, J. Y., Hiebert, S. W., Stein, J. L., Stein, G. S., and Lian, I. B. (1997) J. Cell. Biochem. 66, 1–8
15. Karpinski, B. A., Morle, G. D., Huggenvik, J., Uhler, M. D., and Leiden, J. M. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 4820–4824
16. Tsujimoto, A., Nyunoya, H., Morita, T., Sato, T., and Shimotohno, K. (1991) J. Virol. 65, 1420–1426
17. Bridle, P. K., and Montminy, M. R. (1992) Curr. Opin. Genet. Dev. 2, 199–204
18. Hai, T., Wolfgang, C. D., Marsee, D. K., Allen, A. E., and Sivaprasad, U. (1999) Gene Expr. 7, 321–335
19. Meyer, T. E., and Habener, J. F. (1993) Endocr. Rev. 14, 269–290
20. Sassone-Corsi, P. (1994) EMBO J. 13, 4717–4728
21. Ziff, E. B. (1990) Trends Genet. 6, 69–72
22. Yang, X., Matuda, K., Bialek, P., Jacquot, S., Masuoka, H. C., Schinke, T., Li, L., Brancosini, S., Sassone-Corsi, P., Townes, T. M., Hanauer, A., and Karsenty, G. (2004) Cell 117, 387–398
23. Duy, P., and Karsenty, G. (1995) Mol. Cell. Biol 15, 1858–1869
24. Merriman, H. L., van Wijnen, A. J., Hiebert, S., Bidwell, J. P., Fey, E., Lian, I., Stein, J., and Stein, G. S. (1995) Biochemistry 34, 13125–13132
25. Xiao, G., Jiang, D., Ge, C., Zhao, Z., Lai, Y., Boules, H., Phimphilai, M., Yang, X., Karsenty, G., and Franceschi, R. T. (2005) J. Biol. Chem. 280, 30689–30696
26. Hai, T., and Hartman, M. G. (2001) Gene (Amst.) 273, 1–11
27. Lassot, I., Segeral, E., Berlioz-Torrent, C., Durand, H., Groussou, L., Hai, T., Benarous, R., and Margottin-Goguet, F. (2001) Mol. Cell Biol. 21, 2192–2202
28. Yang, X., and Karsenty, G. (2004) J. Biol. Chem. 279, 47109–47114
29. Lee, D. H., and Goldberg, A. L. (1996) J. Biol. Chem. 271, 27280–27284
30. Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. (1994) Cell 78, 761–771
31. Holby, T., Zhou, H., Mitsiou, D. J., and Stunnenberg, H. G. (2007) Biochim. Biophys. Acta 1769, 429–436
32. Zhou, H., Spicuglia, S., Hsieh, J. J., Mitsiou, D. J., Holby, T., Veenstra, G. J., Korsmeyer, S. J., and Stunnenberg, H. G. (2006) Mol. Cell. Biol. 26, 2728–2735
33. Holby, T., Mitsiou, D. J., Zhou, H., Erdjument-Bromage, H., Tempst, P., and Stunnenberg, H. G. (2004) EMBO J. 23, 3083–3091
34. De Cesare, D., Fimia, G. M., Brancosini, S., Parvinen, M., and Sassone-Corsi, P. (2003) Mol. Endocrinol. 17, 2554–2565
35. Duvall, J. F., Kashanchi, F., Cvekl, A., Radonovich, M. F., Piras, G., and Brady, J. N. (1995) J. Virol. 69, 5077–5086
36. Zhao, C., Irie, N., Takada, Y., Shimoda, K., Miyamoto, T., Nishiwaki, T., Suda, T., and Matsuo, K. (2006) Cell Metab. 4, 111–121
37. Geoffroy, V., Duy, P., and Karsenty, G. (1995) J. Biol. Chem. 270, 30973–30979
38. Stein, G. S., Lian, J. B., van Wijnen, A. J., and Stein, J. L. (1997) Mol. Biol. Rep. 24, 185–196
39. Banerjee, C., Hiebert, S. W., Stein, J. L., Lian, J. B., and Stein, G. S. (1996) J. Bone Miner. Res. 11, 1555–1562

FIGURE 9. Role of TFIIAγ in osteoblast-specific Ocn gene expression. In osteoblasts, when the level of TFIIAγ is high (A), ATF4 and Runx2 are recruited to the transcriptional initiation complex of the mOG2 promoter through direct binding to TFIIAγ, which in complex with RNA polymerase II and many other basal transcription factors and/or cofactors, including TFIIA, TFIIH, TBP (TFIID), TFIIE, TFIIF, and TFIIH, leads to an increase in transcription. In contrast, when the level of TFIIAγ is low (B), ATF4 and Runx2 are not recruited to the basal transcriptional machinery, resulting in a decrease in transcription. Level of TFIIAγ can be regulated by factors to be defined.
TFIIαγ Interacts with ATF4 and Runx2

40. Lian, J. B., and Stein, G. S. (2003) *Curr. Pharm. Des.* 9, 2677–2685
41. Roca, H., Phimphilai, M., Gopalakrishnan, R., Xioa, G., and Franceschi, R. T. (2005) *J. Biol. Chem.* 280, 30845–30855
42. DeJong, J., Bernstein, R., and Roeder, R. G. (1995) *Proc. Natl. Acad. Sci. U. S. A.* 92, 3313–3317
43. Xiao, G., Cui, Y., Ducy, P., Karsenty, G., and Franceschi, R. T. (1997) *Mol. Endocrinol.* 11, 1103–1113
44. Wang, D., Christensen, K., Chawla, K., Xiao, G., Krebsbach, P. H., and Franceschi, R. T. (1999) *J. Bone Miner. Res.* 14, 893–903
45. Jiang, D., Franceschi, R. T., Boules, H., and Xiao, G. (2004) *J. Biol. Chem.* 279, 5329–5337
46. Wang, J., Xi, L., Hunt, J. L., Gooding, W., Whiteside, T. L., Chen, Z., Godfrey, T. E., and Ferris, R. L. (2004) *Cancer Res.* 64, 1861–1866
47. Willis, D. M., Loewy, A. P., Charlton-Kachigian, N., Shao, J. S., Ornitz, D. M., and Towler, D. A. (2002) *J. Biol. Chem.* 277, 37280–37291
48. Xiao, Z. S., Liu, S. G., Hinson, T. K., and Quarles, L. D. (2001) *J. Biol. Chem.* 276, 647–659
49. Xiao, G., Jiang, D., Thomas, P., Benson, M. D., Guan, K., Karsenty, G., and Franceschi, R. T. (2000) *J. Biol. Chem.* 275, 4453–4459
50. Meyer, T., Carlstedt-Duke, J., and Starr, D. B. (1997) *J. Biol. Chem.* 272, 30709–30714
51. Lassot, I., Estrabaud, E., Emiliani, S., Benkirane, M., Benarous, R., and Margottin-Goguet, F. (2005) *J. Biol. Chem.* 280, 41537–41545
52. Garrett, I. R., Chen, D., Gutierrez, G., Zhao, M., Escobedo, A., Rossini, G., Harris, S. E., Gallwitz, W., Kim, K. B., Hu, S., Crews, C. M., and Mundy, G. R. (2003) *J. Clin. Invest.* 111, 1771–1782
53. Zhao, M., Qiao, M., Harris, S. E., Oyajobi, B. O., Mundy, G. R., and Chen, D. (2004) *J. Biol. Chem.* 279, 12854–12859
54. Frendo, J. L., Xiao, G., Fuchs, S., Franceschi, R. T., Karsenty, G., and Ducy, P. (1998) *J. Biol. Chem.* 273, 30509–30516
55. Dobreva, G., Chahrour, M., Dautzenberg, M., Chirivella, L., Kanzler, B., Farinas, I., Karsenty, G., and Grosschedl, R. (2006) *Cell* 125, 971–986
56. Nakajima, N., Horikoshi, M., and Roeder, R. G. (1988) *Mol. Cell. Biol.* 8, 4028–4040
57. Buratowski, S., Hahn, S., Guarente, L., and Sharp, P. A. (1989) *Cell* 56, 549–561
58. Conaway, R. C., and Conaway, J. W. (1989) *Proc. Natl. Acad. Sci. U. S. A.* 86, 7356–7360
59. Maldonado, E., Ha, I., Cortes, P., Weis, L., and Reinberg, D. (1990) *Mol. Cell. Biol.* 10, 6335–6347
60. Lavery, D. N., and McEwan, I. J. (2006) *Biochem. Soc. Trans.* 34, 1054–1057
61. Kurihara, N., Reddy, S. V., Araki, N., Ishizuka, S., Ozono, K., Cornish, J., Cundy, T., Singer, F. R., and Roodman, G. D. (2004) *J. Bone Miner. Res.* 19, 1154–1164
62. Guo, B., Aslam, F., van Wijnen, A. J., Roberts, S. G., Frenkel, B., Green, M. R., DeLuca, H., Lian, J. B., Stein, G. S., and Stein, J. L. (1997) *Proc. Natl. Acad. Sci. U. S. A.* 94, 121–126
63. Jurutka, P. W., Hsieh, J. C., Remus, L. S., Whitfield, G. K., Thompson, P. D., Haussler, C. A., Blanco, J. C., Ozato, K., and Haussler, M. R. (1997) *J. Biol. Chem.* 272, 14592–14599
64. Newberry, E. P., Latifi, T., Battaile, J. T., and Towler, D. A. (1997) *Biochemistry* 36, 10451–10462
65. Hatta, M., Yoshimura, Y., Deyama, Y., Fukamizu, A., and Suzuki, K. (2006) *Int. J. Mol. Med.* 17, 425–430
66. Clemens, K. E., Piras, G., Radonovich, M. F., Choi, K. S., Duvall, J. F., DeJong, J., Roeder, R., and Brady, J. N. (1996) *Mol. Cell. Biol.* 16, 4656–4664