Z2-INDEX OF THE GRASSMANIAN G_{2n}^n

R.N. KARASEV

Abstract. We study the real Grassmann manifold G_{2n}^n (of n-subspaces in \mathbb{R}^{2n}), and the action of Z_2 on it by taking the orthogonal complement. The homological index of this action is estimated from above and from below. In case n is a power of two it is shown that $\text{ind} \ G_{2n}^n = 2^n - 1$.

1. Introduction

The topology of real Grassmannians has many applications in the discrete and convex geometry. For example, the Schubert calculus and other topological facts (e.g. from [3, 5]) can be applied to obtain some existence theorems for flat transversals (affine flats intersecting all members of a given family of sets), see [4, 15, 8, 12] for example.

In this paper we consider the Grassmannian G_{2n}^n of n-dimensional subspaces of \mathbb{R}^{2n}. This space has a natural Z_2-action (involution) by taking the orthogonal complement of the subspace. The well-known invariant of Z_2-spaces is homological index, introduced and studied in [9, 13, 3], see also the book [10] for a simplified introduction to the index and its many applications to combinatorics and geometry.

The following theorem gives an estimate for the index of the Grassmannian.

Theorem 1. If $n = 2^l(2m+1)$, then

$$2^{l+1} - 1 \leq \text{ind} \ G_{2n}^n \leq 2n - 1,$$

for $n = 2m + 1$ the index equals 1, for $n = 2(2m + 1)$ the index equals 3.

The lower and the upper bounds coincide for $n = 2^l$, odd n, $n = 2(2m + 1)$. In other cases there is still some gap between them. This result easily produces some geometric consequences. Here is one example (it also uses Lemma 1 below).

Corollary 2. Let $n = 2^l(2m+1)$, $k = 2^{l+1} - 1$. Consider some k continuous (in the Hausdorff metric) $O(n)$-invariant functions $\alpha_1, \ldots, \alpha_k$

2000 Mathematics Subject Classification. 52A38, 55M35, 55R25, 57S25.

Key words and phrases. Grassmannian, involution, homology index.

This research is supported by the Dynasty Foundation, the President’s of Russian Federation grant MK-113.2010.1, the Russian Foundation for Basic Research grants 10-01-00096 and 10-01-00139.
on (convex) compacts in \mathbb{R}^n. Then for any (convex) compact $K \subseteq \mathbb{R}^{2n}$ there exist a pair of orthogonal n-dimensional subspaces L and M, such that for their respective orthogonal projections π_L and π_M we have

$$\forall i = 1, \ldots, k \alpha_i(\pi_L(K)) = \alpha_i(\pi_M(K)).$$

In this corollary α_i can be the Steiner measures (volume, the boundary measure, the mean width, etc.) for example. The same statement holds if we consider a point $x \in K$ and sections of K by mutually orthogonal affine n-subspaces L and M through x, instead of projections to L and M.

The author thanks O.R. Musin for drawing attention to the problem of calculating the Z_2-index of G^n_{2n} and for the discussion.

2. Preliminary observations

Let us state some topological definitions on spaces with group action, see [6] for more detailed discussion.

Definition 1. Let G be a compact Lie group or a finite group. A space X with continuous action of G is called a G-space. A continuous map of G-spaces, commuting with the action of G is called a G-map or an equivariant map. A G-space is called free if the action of G is free.

There exists the universal free G-space EG such that any other G-space maps uniquely (up to G-homotopy) to EG. The space EG is homotopy trivial, the quotient space is denoted $BG = EG/G$. For any G-space X and an Abelian group A the equivariant cohomology $H^*_G(X, A) = H^*(X \times_G EG, A)$ is defined, and for free G-spaces the equality $H^*_G(X, A) = H^*(X/G, A)$ holds.

Consider the case $G = Z_2$. Note that

$$H^*_Z(pt, Z_2) = H^*(\mathbb{R}P^\infty, Z_2) = Z_2[c] = \Lambda,$$

where the dimension of the generator is $\dim c = 1$. Since any G-space X can be mapped to the point $\pi_X : X \to pt$, we have a natural map $\pi_X^* : \Lambda \to H^*_G(X, Z_2)$, the image c under this map will be denoted by c, if it does not make a confusion. The generator element of Z_2 will be denoted by σ.

Definition 2. The cohomology index of a Z_2-space X is the maximal n such that the power $c^n \neq 0$ in $H^*_G(X, Z_2)$. If there is no maximum, we consider the index equal to ∞. Denote the index of X by $\text{ind} X$.

Let us state the following well-known lemma.

Lemma 1 (The generalized Borsuk-Ulam theorem for odd maps). If there exists an equivariant map $f : X \to Y$, then $\text{ind} X \leq \text{ind} Y$.

Now we are ready to prove the upper bound in Theorem [1].
Lemma 2.
\[\text{ind } G_{2n}^n \leq 2n - 1. \]

Proof. Let us parameterize \(G_{2n}^n \) by the orthogonal projection matrices \(P \). These matrices are characterized by the equations
\[P^t = P, \quad P^2 = P, \quad \text{tr} \ P = n. \]
The action of \(Z_2 \) is given by (\(E \) is the unit matrix)
\[\sigma(P) = E - P. \]
Now consider the map \(f : G_{2n}^n \to \mathbb{R}^{2n} \), defined by the coordinates
\[f_1(P) = P_{11} - 1/2, \quad f_i(P) = P_{1i}, \quad (i = 2, \ldots, 2n). \]
This map is \(Z_2 \)-equivariant, if the action on \(\mathbb{R}^{2n} \) is antipodal, i.e. \(\sigma : x \mapsto -x \). Note also that \(f(P) \) is never zero, otherwise \(P \) would have an eigenvalue \(1/2 \), which is not true. Hence \(f \) composed with the projection \(\mathbb{R}^{2n} \setminus \{0\} \to S^{2n-1} \) gives the equivariant map
\[\tilde{f} : G_{2n}^n \to S^{2n-1}, \]
and the result follows by Lemma 1.

Lemma 3. Suppose \(n = ds \) for some positive integers \(d, s \). Then
\[\text{ind } G_{2n}^n \geq \text{ind } G_{2d}^d. \]

Proof. Let us decompose
\[\mathbb{R}^{2n} = \mathbb{R}^{2d} \oplus \cdots \oplus \mathbb{R}^{2d} \]
into \(s \) summands. Consider a \(d \)-subspace \(L \in G_{2d}^d \), and define with the above decomposition
\[f(L) = L \oplus \cdots \oplus L \subset \mathbb{R}^{2n}. \]
The map \(f : G_{2d}^d \to G_{2n}^n \) is evidently equivariant and by Lemma 1 we obtain the inequality.

In order to prove Theorem 1 it remains to prove the following lemmas.

Lemma 4. If \(n \) is odd, then \(\text{ind } G_{2n}^n = 1 \), if \(n = 2 \mod 4 \), then \(\text{ind } G_{2n}^n = 3 \).

Lemma 5. If \(n = 2^l \), then \(\text{ind } G_{2n}^n = 2n - 1 \).
3. External Steenrod squares

In order to prove Lemma 5, we have to describe the cohomology of the subgroup \(G \subset O(2n) \), generated by the subgroup \(O(n) \times O(n) \) (from some decomposition \(\mathbb{R}^{2n} = \mathbb{R}^n \oplus \mathbb{R}^n \)), and \(Z_2 \) that interchanges the summands \(\mathbb{R}^n \). This group is the wreath product \(O(n) \wr Z_2 = (O(n) \times O(n)) \rtimes Z_2 \).

In order to describe the cohomology of a wreath product, we have to use the construction of external Steenrod squares. We mostly follow [2, Ch. V], where the Steenrod squares were defined in the unoriented cobordism. The cobordism was defined using mock bundles, if we allow the mock bundles to have codimension 2 singularities, we obtain ordinary cohomology modulo 2. In the sequel we consider the cohomology modulo 2 and omit the coefficients in notation. This construction is known and was used in [7] to describe the modulo 2 cohomology of the symmetric group and configuration spaces. Still, for reader’s convenience we give a short and self-contained explanation here.

The construction of the external Steenrod squares on a polyhedron \(K \) starts with the fiber bundle (for some integer \(n > 0 \))

\[
\sigma_K : (K \times K \times S^n)/Z_2 \to S^n/Z_2 = \mathbb{R}P^n.
\]

The group \(Z_2 \) acts by permuting \(K \times K \), and antipodally on \(S^n \). Consider a cohomology class \(\xi \in H^*(K) \), represented by a mock bundle \(\xi : E(\xi) \to K \). Then the mock bundle

\[
(\xi \times \xi \times S^n)/Z_2 \to (K \times K \times S^n)/Z_2
\]

is the external Steenrod square \(\text{Sq}_e \xi \). The operation \(\text{Sq}_e \) is evidently multiplicative, in [2, Ch. V, Proposition 3.3] it is claimed that \(\text{Sq}_e \) is also additive. We are going to show that it is not true, first we need a definition.

Definition 3. The difference \(\text{Sq}_e(\xi + \eta) - \text{Sq}_e \xi - \text{Sq}_e \eta \) is represented by the mock bundle

\[
\xi \odot \eta = (\xi \times \eta \times S^n + \eta \times \xi \times S^n)/Z_2,
\]

where \(Z_2 \) exchanges the components \(\xi \times \eta \) and \(\eta \times \xi \).

Since the fiber of \(\sigma_K \) is \(K \times K \), the restriction of \(\xi \odot \eta \) to the fiber is \(\xi \times \eta + \eta \times \xi \), which is nonzero if \(\eta \neq \xi \) as cohomology classes. Thus the operation \(\odot \) is not trivial.

We need a lemma about the \(\odot \)-multiplication.

Lemma 6. Denote \(c \) the hyperplane class in \(H^1(\mathbb{R}P^n) \). Then for any \(\xi, \eta \in H^*(K) \) the product

\[
(\xi \odot \eta) \odot \sigma_K^*(c) = 0
\]

in \(H^*((K \times K \times S^n)/Z_2) \).
Proof. Consider the mock bundle
\[
\alpha = \xi \times \eta \times S^{n-1} + \eta \times \xi \times S^{n-1},
\]
which has the natural \mathbb{Z}_2-action, it represents $(\xi \odot \eta) \sim \sigma_K^*(c)$ after taking the quotient by the \mathbb{Z}_2-action.

Now divide S^n into the upper and the lower half-spheres H^+ and H^-. Consider the mock bundle (with boundary)
\[
\beta = \xi \times \eta \times H^+ + \eta \times \xi \times H^-,
\]
over $K \times K \times S^n$. The action of \mathbb{Z}_2 on β is defined by permuting the summands and the antipodal identification of H^+ and H^-. Now it is clear that α is the boundary of β, and α/\mathbb{Z}_2 is the boundary of β/\mathbb{Z}_2. Hence it is zero in the cohomology, and the similar statement is true for the unoriented bordism. □

We have to introduce another operation.

Definition 4. Let $\xi : E(\xi) \to K$, $\eta : E(\eta) \to K$ be two mock bundles. Let p_+, p_- be the north and the south poles of S^n. Denote the mock bundle over $(K \times K \times S^n)/\mathbb{Z}_2$
\[
\iota(\xi \times \eta) = (\xi \times \eta \times \{p_+\} + \eta \times \xi \times \{p_+\})/\mathbb{Z}_2.
\]
It is obvious from the definition that we have relation
\[
\iota(\xi \times \eta) \sim \sigma_K^*(c) = 0,
\]
it is also obvious that
\[
\iota(\xi \times \xi) = \mathrm{Sq}_e \xi \sim \sigma_K^*(c)^n.
\]
Let us describe the \sim-multiplication of the Steenrod squares, \odot, and $\iota(\ldots)$ classes. The following formulas are obvious from the definition:
\[
(\xi \odot \eta) \sim (\xi \odot \chi) = (\xi \sim \zeta) \odot (\eta \sim \chi) + (\xi \sim \chi) \odot (\eta \sim \zeta),
\]
\[
(\xi \odot \eta) \sim (\mathrm{Sq}_e \zeta) = (\xi \sim \zeta) \odot (\eta \sim \zeta),
\]
\[
(\xi \odot \eta) \sim \iota(\xi \odot \chi) = \iota((\xi \sim \zeta) \times (\eta \sim \chi)) + \iota((\xi \sim \chi) \times (\eta \sim \zeta)),
\]
\[
\mathrm{Sq}_e \xi \sim \mathrm{Sq}_e \xi \eta = \mathrm{Sq}_e(\xi \sim \eta),
\]
\[
\mathrm{Sq}_e \xi \sim \iota(\eta \times \xi) = \iota((\xi \sim \eta) \times (\xi \sim \zeta)),
\]
\[
\iota(\xi \times \eta) \sim \iota(\xi \times \chi) = 0.
\]
Now we can describe the structure of the cohomology $H^*((K \times K \times S^n)/\mathbb{Z}_2)$.

Definition 5. Consider a \mathbb{Z}_2-algebra A with linear basis v_1, \ldots, v_n. Denote $A \odot A$ the subalgebra of $A \otimes A$, invariant w.r.t. \mathbb{Z}_2-action by permutation. The linear base of A is
\[
\{v_i \odot v_j\}_{i=1}^n, \quad \{v_i \odot v_j + v_j \odot v_i\}_{i<j}.
\]

Definition 6. Consider a \mathbb{Z}_2-algebra A with linear basis v_1, \ldots, v_n. Denote $\iota(A \otimes A)$ the quotient vector space $A \otimes A/(v_i \odot v_j + v_j \odot v_i)$. As \mathbb{Z}_2-algebra it has zero multiplication.
Lemma 7. The maps Sq_e, \otimes, map the algebra $H^*(K) \otimes H^*(K)$ to $H^*((K \times K \times S^n)/Z_2)$. The map ι maps $\iota(H^*(K) \otimes H^*(K))$ to $H^*((K \times K \times S^n)/Z_2)$. The images of these maps generate the cohomology $H^*((K \times K \times S^n)/Z_2)$.

The latter cohomology can be described as the quotient of $H^*(K) \otimes H^*(K) \otimes \mathbb{Z}[c] \oplus \iota(H^*(K) \otimes H^*(K))$ by the relations
\[c^{n+1} = 0, \ (\xi \otimes \eta) \otimes c = 0, \ Sq_e \xi \otimes c^n = \iota(\xi \otimes \xi). \]

The c is the preimage of the hyperplane class in $H^1(\mathbb{R}P^n)$.

Note the important particular case: if $n \to \infty$, we image of $\iota(\ldots)$ disappears, and we also can take the quotient of $H^*(K) \otimes H^*(K)$ by the linear span of all $\xi \otimes \eta$ for $\xi, \eta \in H^*(K)$. Hence, the cohomology $H^*((K \times K \times S^\infty)/Z_2)$ has a quotient isomorphic to $Sq_e(H^*(K)) \otimes \mathbb{Z}[c]$. Here $Sq_e(H^*(K))$ is the same algebra as $H^*(K)$, but with twice larger degrees.

Proof. The Leray-Serre spectral sequence for σ_K starts with
\[E_2^{p,q} = H^p(\mathbb{R}P^n, \mathcal{H}^q(K \times K)). \]

Let us describe the sheaf $\mathcal{H}^*(K \times K)$. If v_1, \ldots, v_n is the linear basis of $H^*(K)$, then an element $v_i \otimes v_i$ gives a subsheaf, isomorphic to the constant sheaf \mathbb{Z}_2. The two elements $v_i \otimes v_j$ and $v_j \otimes v_i$ generate a non-constant sheaf $\mathcal{A} = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ with permutation action of $\pi_1(\mathbb{R}P^n)$. The cohomology $H^*(\mathbb{R}P^n, \mathcal{A}) = H^*(S^n, \mathbb{Z}_2)$, since \mathcal{A} is the direct image of \mathbb{Z}_2 under the natural projection $\pi: S^n \to \mathbb{R}P^n$. Thus we know the structure of $E_2^{p,q}$.

The first column of E_2 is the \mathbb{Z}_2-invariant elements of $H^*(K \times K)$, and all these elements are the restrictions of either $Sq_e \xi$ or $\xi \otimes \eta$ to the fiber. Hence all the differentials of the spectral sequence are zero on the first column. The columns between the first and the last (n-th) are generated by multiplication with c, and the differentials are zero on them too. The last column is isomorphic to $\iota(H^*(K) \otimes H^*(K))$, the differentials are zero on it from the dimension considerations.

Hence in this spectral sequence $E_2 = E_\infty$. Denote v_1, \ldots, v_n the linear base of $H^*(K)$. The first column of E_2 has the linear base
\[\{v_i \times v_i\}_{i=1}^n, \ \{v_i \times v_j + v_j \times v_i\}_{i<j}, \]
the columns $j = 1, 2, \ldots, n-1$ have the linear base
\[\{(v_i \times v_i)c^j\}_{i=1}^n, \]
and the last column has the linear base
\[\{\iota(v_i \times v_j)\}_{i,j=1}^n. \]

From the definition of Sq_e, \otimes, and $\iota(\ldots)$ the final cohomology $H^*((K \times K \times S^n)/Z_2)$ is described the same way with $v_i \times v_i$ replaced by $Sq_e v_i$, and $v_i \times v_j + v_j \times v_i$ replaced by $v_i \otimes v_j$. \qed
Now consider a vector bundle \(\nu : E(\nu) \to K \) and define
\[
\text{Sq}_e \nu : (E(\nu) \times E(\nu) \times S^n)/\mathbb{Z}_2 \to (K \times K \times S^n)/\mathbb{Z}_2.
\]
The Stiefel-Whitney classes of \(\text{Sq}_e \nu \) are described by the following lemma.

Lemma 8. Let \(\dim \nu = k \), and let the Stiefel-Whitney class of \(\nu \) be
\[
w(\nu) = w_0 + w_1 + \ldots + w_k.
\]
Then
\[
w(\text{Sq}_e \nu) = \sum_{0 \leq i < j \leq k} w_i \odot w_j + \sum_{i=0}^{k} (1 + c)^{k-i} \text{Sq}_w w_i,
\]
where \(c \) is the image of the hyperplane class in \(H^1(\mathbb{R}P^n) \).

Proof. Consider the case of one-dimensional \(\nu \) first. Taking \(n \) large enough we do not have to consider the image of \(\iota(\ldots) \), then we can return to lesser \(n \) by the natural inclusion
\[
(K \times K \times S^n)/\mathbb{Z}_2 \to (K \times K \times S^{n+m})/\mathbb{Z}_2.
\]
The restriction of \(\text{Sq}_e \nu \) to the fiber \(K \times K \) has the Stiefel-Whitney class
\[
w(\nu \times \nu) = 1 + w_1(\nu) \times 1 + 1 \times w_1(\nu) + w_1(\nu) \times w_1(\nu).
\]
Hence \(w(\text{Sq}_e \nu) \) is either \(1 + w_1(\nu) \odot 1 + \text{Sq}_w w_1(\nu), \) or \(1 + w_1(\nu) \odot 1 + c + \text{Sq}_w w_1(\nu) \).
Any point \(x \in K \) gives a natural section
\[
s : S^n/\mathbb{Z}_2 \to (\{x\} \times \{x\} \times S^n)/\mathbb{Z}_2
\]
of the bundle \(\sigma_K \), and the bundle \(s^* (\text{Sq}_e \nu) \) over \(\mathbb{R}P^n \) is isomorphic to \(\gamma \oplus \varepsilon \), where \(\gamma \) is the canonical bundle of the projective space, \(\varepsilon \) is the trivial bundle. Hence we should have
\[
w(\text{Sq}_e \nu) = 1 + w_1(\nu) \odot 1 + c + \text{Sq}_w w_1(\nu).
\]
The general formula for \(k > 1 \) follows from the splitting principle, suppose \(\nu = \tau_1 \oplus \cdots \oplus \tau_k \), then
\[
w(\text{Sq}_e \nu) = \prod_{i=1}^{k} (1 + w_1(\tau_i) \odot 1 + c + \text{Sq}_w w_1(\tau_i)),
\]
and the result follows by removing parentheses. \(\square \)

4. THE PROOF OF LEMMAS 4 AND 5

In order to calculate the index of \(G_{2n}^n \), we describe the cohomology of \(G_{2n}^n/\mathbb{Z}_2 \). Consider the subgroup \(G = O(n) \wr \mathbb{Z}_2 \) of \(O(2n) \), that is generated by two copies of \(O(n) \) for some decomposition \(\mathbb{R}^{2n} = \mathbb{R}^n \oplus \mathbb{R}^n \), and by the operator \(\sigma \) that interchanges the summands of the decomposition. It is clear that \(G_{2n}^n/\mathbb{Z}_2 = O(2n)/G \).
The cohomology of $BO(n)$ is the polynomial algebra in Stiefel-Whitney classes
$$H^*(BO(n)) = \mathbb{Z}_2[w_1, \ldots, w_n].$$

The group cohomology $H^*(BG)$ (by Lemma 7) is generated by the external Steenrod squares $Sq e w_1, \ldots, Sq e w_n$, the generator $c \in H^1(B\mathbb{Z}_2)$, and some combinations $x \odot y$ for $x, y \in H^*(BO(n))$, the relations are $(x \odot y)c = 0$.

Let us find the kernel of the natural map $\pi^* : H^*(BG) \to H^*(O(2n)/G)$. The cohomology $H^*(O(2n)/G)$ can be calculated by considering the Leray-Serre spectral sequence with the term $E_2^{p,q} = H^p(BG, H^q(O(2n)))$, see [11, Section 11.4]. The kernel of π^* is given by the images of the differentials d_r of this spectral sequence in its bottom row.

Note that the action of G on $O(2n)$ is induced by the inclusion $G \subset O(2n)$, and the cohomology of $O(2n)$ is acted on by G through its factor group G/G^+ of order 2. Here G^+ denotes the elements of G with positive determinant. Hence we can replace G by G^+ and simultaneously pass from the sheaf $\mathcal{H}^q(O(2n))$ to the cohomology $H^q(SO(2n))$ (see [1], Ch. III, Proposition 6.2), thus obtaining
$$E_2^{p,q} = H^p(BG, H^q(O(2n))) = H^p(BG^+, H^q(SO(2n))).$$

In order to find the images of d_r’s, note that the fiber bundle
$$SO(2n) \longrightarrow SO(2n) \times_G EG^+ \longrightarrow BG^+$$
is induced from the fiber bundle
$$SO(2n) \longrightarrow ESO(2n) \longrightarrow BSO(2n)$$
by the inclusion $G^+ \to SO(2n)$. In the spectral sequence of the latter fiber bundle all the primitive generators of $H^*(SO(2n))$ are transgressive. They are mapped to the bottom row by the corresponding differentials d_r, their images being the Stiefel-Whitney classes of $O(2n)$. Thus, in the considered spectral sequence, the differentials d_r are generated by the transgressions that send the primitive generators of $H^*(SO(2n))$ to the Stiefel-Whitney classes of the representation of G^+ on \mathbb{R}^{2n}. Denote this representation W_{2n}.

Let us summarize as follows.

Lemma 9. The kernel of the natural map $\pi^* : H^*(BG) \to H^*(O(2n)/G)$ is generated by the homogeneous components of positive degree of the
expression
\[\sum_{0 \leq i < j \leq n} w_i \odot w_j + \sum_{i=0}^{n} (1 + c)^{n-i} \text{Sq}_e w_i. \]

Proof. In the bottom row of the spectral sequence passing from $H^*(BG)$ to $H^*(BG^+)$ “kills” the element $w_1(W_{2n})$ and the ideal generated by it. The other differentials “kill” the other classes $w_r(W_{2n})$ by the above considerations.

It remains to calculate the Stiefel-Whitney classes of W_{2n}. Remind that by the Stiefel-Whitney classes of a representation we mean the Stiefel-Whitney classes of the vector bundle $\eta : (W_{2n} \times EG)/G \to BG$. Denote V_n the natural representation of $O(n)$, and consider its corresponding bundle $\xi : (V_n \times EO(n))/O(n) \to BO(n)$. It can be checked by definition that $\eta = \text{Sq}_e \xi$ and the claim follows by applying Lemma 8. \square

Now the proof of Lemma 4 is finished as follows: we have to find the nilpotency degree of c in $H^*(BG)/\ker \pi^*$. If n is odd, then the one-dimensional generator of $\ker \pi^*$ is $c + w_1 \odot 1$,

hence $c \neq 0$, $c^2 = 0$ by Lemma 6 and $\text{ind} G_{2n}^n = 1$ in this case.

If $n \equiv 2 \mod 4$, then we have the relations in dimensions 2 and 3
\[c^2 + \text{Sq}_e w_1 + 1 \odot w_2 = 0 \]
\[c \text{Sq}_e w_1 + 1 \odot w_3 + w_1 \odot w_2 = 0. \]

Substituting $\text{Sq}_e w_1 = c^2 + 1 \odot w_2$ from the first relation to the second we obtain
\[c^3 = 1 \odot w_3 + w_1 \odot w_2, \]

hence $c^4 = 0$ by Lemma 6 and $\text{ind} G_{2n}^n = 3$ in this case.

Now let us turn to Lemma 5. Let $n = 2^l$, and let us add the additional relations of the form $w_i = 0$ for all i except $i = 2^l - 2^k$ ($k = 0, \ldots, l$) and $i = 2^l$. In this case the remaining relations in $\ker \pi^*$ are
\[c^{2^l} = \text{Sq}_e w_{2^l-2^{l-1}} + 1 \odot w_{2^l} \]
\[c^{2^{l-1}} \text{Sq}_e w_{2^l-2^{l-1}} = \text{Sq}_e w_{2^l-2^{l-2}} + w_{2^l-2^{l-1}} \odot w_{2^l} \]
\[\ldots \]
\[c^2 \text{Sq}_e w_{2^l-2} = \text{Sq}_e w_{2^{l-1}} + w_{2^l-2} \odot w_{2^l} \]
\[c \text{Sq}_e w_{2^{l-1}} = w_{2^{l-1}} \odot w_{2^l} \]
\[\text{Sq}_e w_{2^l} = 0, \]

along with the relations of the form
\[w_{2^l-2^k} \odot w_{2^l-2^m} = 0, \ 0 \leq k < m \leq l. \]
Thus we obtain $c^{2l+1-1} = c^{2n-1} = w_2 \otimes w_{2l-1} \neq 0$. Also, we must have $c^{2n} = 0$ by the upper bound $\text{ind} G_{2n}^m \leq 2n - 1$, without any additional relations. Therefore, $\text{ind} G_{2n}^m = 2n - 1$ in this case.

References

[1] K. Brown. Cohomology of groups. Graduate Texts in Mathematics, 87, New York: Springer-Verlag, 1982.
[2] S. Buoncristiano, C.P. Rourke, B.J. Sanderson. A geometric approach to homology theory. Cambridge University Press, 1976.
[3] P.E. Conner, E.E. Floyd. Fixed point free involutions and equivariant maps. // Bull. Amer. Math. Soc., 66(6), 1960, 416–441.
[4] V.L. Dol’nikov. Transversals of families of sets in \mathbb{R}^n and a connection between the Helly and Borsuk theorems (In Russian). // Sb., Math. 79(1), 1994, 93–107; translation from Mat. Sb., 184(5), 1993, 111–132.
[5] H.L. Hiller. On the cohomology of real Grassmannians. // Trans. Amer. Math. Soc., 257(2), 1980, 521–533.
[6] Wu Yi Hsiang. Cohomology theory of topological transformation groups. Berlin-Heidelberg-New-York, Springer Verlag, 1975.
[7] Nguyên H.V. Hung. The mod 2 equivariant cohomology algebras of configuration spaces. // Pacific Jour. Math., 143(2), 1990, 251–286.
[8] R.N. Karasev. Theorems of Borsuk-Ulam type for flats and common transversals (In Russian). // Math. Sbornik, 200(10), 2009, 39–58; translated in arXiv:0905.2747.
[9] M.A. Krasnosel’skii. On the estimation of the number of critical points of functionals (In Russian). // Uspehi Mat. Nauk, 7(2), 1952, 157–164.
[10] J. Matoušek. Using the Borsuk-Ulam theorem. // Berlin-Heidelberg, Springer Verlag, 2003.
[11] J. McCleary. A user’s guide to spectral sequences. Cambridge University Press, 2001.
[12] L. Montejano, R.N. Karasev. Topological transversals to a family of convex sets. // arXiv:1006.0103 2010.
[13] A.S. Schwarz. Some estimates of the genus of a topological space in the sense of Krasnosel’skii. (In Russian) // Uspehi Mat. Nauk, 12:4(76), 1957, 209–214.
[14] N.E. Steenrod, D.B. Epstein. Cohomology operations. Princeton University Press, 1962.
[15] R. Živaljević. Topological methods. // Handbook of Discrete and Computational Geometry, ed. by J.E. Goodman, J. O’Rourke, CRC, Boca Raton, 2004.

E-mail address: r_n_karasev@mail.ru

Roman Karasev, Dept. of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Russia 141700