Riluzole: A neuroprotective drug with potential as a novel anti-cancer agent (Review)

ANGELINA BLYUFER1*, SONAM LHAMO1*, CASSEY TAM1*, IFFAT TARIQ1*, THONGTHAI THA VORNWATANAYONG2 and SHAHANA S. MAHAJAN1-4

1Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010; 2PhD Program in Biology, 3PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016; 4Brain Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA

Received August 26, 2021; Accepted October 11, 2021

DOI: 10.3892/ijo.2021.5275

Abstract. Riluzole, a glutamate release inhibitor, has been in use for the treatment of amyotrophic lateral sclerosis for over two decades since its approval by the Food and Drug Administration. Recently, riluzole has been evaluated in cancer cells and indicated to block cell proliferation and/or induce cell death. Riluzole has been proven effective as an anti-neoplastic drug in cancers of various tissue origins, including the skin, breast, pancreas, colon, liver, bone, brain, lung and nasopharynx. While cancer cells expressing glutamate receptors frequently respond to riluzole treatment, numerous types of cancer cell lacking glutamate receptors unexpectedly responded to riluzole treatment as well. Riluzole was demonstrated to interfere with glutamate secretion, growth signaling pathways, Ca2+ homeostasis, glutathione synthesis, reactive oxygen species generation and integrity of DNA, as well as autophagic and apoptotic pathways. Of note, riluzole is highly effective in inducing cell death in cisplatin-resistant lung cancer cells. Furthermore, riluzole pretreatment sensitizes glioma and melanoma to radiation therapy. In addition, in triple-negative breast cancer, colorectal cancer, melanoma and glioblastoma, riluzole has synergistic effects in combination with select drugs. In an effort to highlight the therapeutic potential of riluzole, the current study reviewed the effect and outcome of riluzole treatment on numerous cancer types investigated thus far. The mechanism of action and the various molecular pathways affected by riluzole are discussed.

Contents

1. Introduction
2. Mechanisms of action of riluzole
3. Riluzole in cancer treatment
4. Conclusion

1. Introduction

The drug riluzole [2-amino 6 (trifluoromethoxy)benzothiazole], due to its neuroprotective qualities, was Food and Drug Administration-approved in 1995 for the treatment and management of amyotrophic lateral sclerosis (1). Riluzole was indicated to block voltage-dependent sodium channels in a dose-dependent manner (2,3). While the precise mechanism of action of riluzole is still under investigation, numerous studies have demonstrated that the effect of riluzole is derived from its ability to block glutamate release and enhance glutamate reuptake (4), thus leading to the inhibition of glutamate-dependent signaling. Glutamate signaling is hyperactive in numerous neurological diseases in which riluzole may have beneficial effects (5). Of note, cancers of numerous tissues also rely on glutamate signaling to survive and proliferate (6). Consequently, several investigations have explored the efficacy of riluzole treatment in different cancers types, both in vitro and in vivo (Table I). Due to its efficacy, low toxicity and tolerability, riluzole became a potential treatment for a number of cancer types (7-9). Numerous studies have uncovered multiple mechanisms by which riluzole targets each specific cell type. An understanding of the molecular targets of riluzole and underlying mechanism in specific cancer types may improve the current application of riluzole in cancer treatment. The present review focused on all available data pertaining to the effects of riluzole in cancers of various tissue origins and its potential as a therapeutic agent, as represented in Fig. 1.

2. Mechanisms of action of riluzole

Consequences of blocking glutamate secretion with riluzole. Glutamate signaling is frequently mentioned in the context of
GRM1 in melanomas and GRM3 in glioma cells by agonists 
in vitro 
by small interfering RNA in glioma decreased glutamate secretion of glutamate by glioma causes neurotoxicity to glutamate secretion via the xCT transporter (18). Excessive levels of EAAT2, while simultaneously increasing amino acid transporter 1 (EAAT1) to the nucleus and decreasing essential ions such as Ca$^{2+}$, which is responsible for maintaining cellular homeostasis. The metabotropic glutamate receptors are G protein-coupled receptors, which mediate signal transduction pathways involved in several cellular processes, such as cell stress response, survival, growth and proliferation (5).

Cystine-glutamate antiporter (xCT) is a glutamate cystine antiporter that regulates the antioxidant system in cells that contributes to growth, metastasis and invasion of cancer cells (15). In this context, cancer cell lines of multiple tissue origin have been indicated to secrete glutamate via the xCT transporter (16,17). Of note, gliomas increase glutamate levels in the extracellular space by mislocalized excitatory amino acid transporter 1 (EAAT1) to the nucleus and decreasing the levels of EAAT2, while simultaneously increasing glutamate secretion via the xCT transporter (18). Excessive secretion of glutamate by glioma causes neurotoxicity to facilitate glioma growth (19). The silencing of the xCT by small interfering RNA in glioma decreased glutamate secretion, neurodegeneration and brain edema (20). Of note, riluzole induced cytotoxicity in GRM3-expressing glioma in vitro and reduced tumor size in xenograft mice (7). In melanoma, riluzole dose-dependently decreased cell proliferation in vitro. It is noteworthy that downregulation of the xCT was observed in xenograft-bearing animals that were treated with riluzole, suggesting that xCT is a possible molecular target of riluzole (21). Another remarkable study suggested riluzole's growth inhibitory effect on cisplatin-resistant small cell lung cancer cells in vitro via the upregulation of both the xCT and CD44 variant, of which CD44 is known to stabilize xCT (22). Although riluzole reduced tumor size in vivo, the effects of riluzole were indicated to be independent of glutamate signaling (22). Thus, blocking xCT and subsequent inhibition of glutamate receptors may be one of the mechanisms by which riluzole prevents cell growth.

Riluzole modulates glutamate-dependent and glutamate-independent intracellular signaling pathways. In numerous cancer cell types, glutamate receptors are overexpressed to enhance cancer cell survival and proliferation (9). Tumorigenesis is linked to several major intracellular signaling pathways, including the PI3K/Akt/mTOR, Ras-MAP-ERK and MAPK/ERK pathways (23-26). A genomic study revealed a high frequency of mutations across pathways, suggesting potential broad cancer-targeting strategies (27). For instance, GRM1 is overexpressed in melanoma cells, whereas the GRM3 receptor is expressed in gliomas (7,28). Stimulation of GRM1 in melanomas and GRM3 in glioma cells by agonists leads to the activation of MAPK signaling, more specifically to the phosphorylation of ERK (7,28). In malignant melanoma, GRM3 is mutated, resulting in hypersensitivity of the MEK-MAPK pathway, and overexpression of GRM5 increased the activation of the MAPK pathway (29,30). In melanoma, treatment with riluzole effectively suppressed MAPK/ERK and PI3K/AKT pathway hyperactivity and related cellular processes, including cell proliferation in vitro, as well as in a phase 0 clinical trial (28,31). While the efficacy of riluzole was observed in melanoma, it appears that the presence of mutations in N-Ras, B-Raf or phosphatase and tensin homolog (PTEN) was able to hinder the effect of the drug (31,32). Of note, riluzole in combination with a drug for mTOR, a downstream effector of PI3K/AKT, improved the effect of riluzole on melanoma cells with these mutations (32).

In human brain tumor-like stem cells (BTSCs) derived from glioblastoma, riluzole inhibited cell growth by decreasing GLUT3 transporter expression. Decreased GLUT3 expression resulted in lower uptake of glucose by the BTSCs, which heavily rely on aerobic glycolysis. Consequently, riluzole-induced decrease in GLUT3 was indicated to depend on the decrease in phosphorylated (p)-AKT, leading to a decrease in the induction of hypoxia-inducible factor (HIF) expression (33). HIF1α is a transcriptional regulator of the SLC2A3 gene, which encodes for GLUT3 glucose transporter. Therefore, riluzole modulates metabolic activity of cells by altering phosphorylation of AKT. Of note, poor prognosis of glioblastoma is dependent on the overexpression of DNA (cytosine-5-)‑methyltransferase 1 (DNMT1), which causes hypermethylation of tumor suppressor genes (34). Riluzole was indicated to decrease DNMT1 gene expression as a consequence of decreased GLUT3 expression and reduced tumor size in mice (33). Therefore, riluzole inhibited cell growth by altering AKT phosphorylation to control glucose metabolism in BTSCs and indirectly altering the expression of tumor suppressor genes to inhibit growth in glioblastoma cells. Furthermore, in osteosarcoma expressing GRM5, riluzole blocked cell proliferation by altering phosphorylation of AKT (at both T308 and S473) and p70 S6 kinase at threonine 389, a hallmark of mTOR activation, suggesting the activation of the PI3K/AKT/mTOR pathway in osteosarcoma growth. In addition, riluzole altered phosphorylation at ERK1/2 and JNK1/2 kinases in osteosarcoma (35). Another key pathway linked to oncogenesis is Wnt/β-catenin signaling, which regulates the amount of the transcriptional co-activator β-catenin (36). In malignant melanoma, downregulation of β-catenin has an important role in disease progression and contributes to poor prognosis (37). Of note, in melanoma, riluzole increased the levels of WNT3A protein involved in the stimulation of the Wnt/β-catenin pathway and melanocyte differentiation, subsequently leading to decreased cell proliferation both in vivo and in vitro (38). Thus, riluzole targets multiple signaling pathways to block cell proliferation in glioma, osteosarcoma and melanoma.

Riluzole regulates intracellular Ca$^{2+}$ in both cancerous and non-cancerous cells. In the endoplasmic reticulum (ER), calcium levels influence protein folding and trafficking, whereas in mitochondria, calcium influences mitochondrial permeability, which contributes to the modulation of
Table I. Effects of riluzole on cancer cells.

| Cancer type/cell lines | Mechanism | (Refs.) |
|------------------------|-----------|---------|
| Pancreatic cancer       |           |         |
| PANC1, SW1990, BXPC3, ASPC1 | Autophagy | (67) |
|                        | G2/M cell cycle arrest | |
|                        | Apoptosis | |
| Colorectal cancer       |           |         |
| HCT116, H630, HCT8, CACO2 and HT29 | Sensitizes cells to cisplatin reduces cell viability in vitro and polyp development in vivo | (77,92) |
|                        | G2/M arrest, apoptosis | |
| Hepatocellular carcinoma|           |         |
| SNU449, Huh-7          | G2/M cell cycle arrest | (52) |
|                        | Apoptosis | |
| Melanoma               |           |         |
| SKMEL2, C8161, UACC903 and 1205Lu | G2/M cell cycle arrest MAPK/PI3K/AKT signaling DNA damage Apoptosis | (28,32,38,53) |
| Prostate cancer         |           |         |
| LNCaP-androgen-dependent| ER stress | (44,71) |
| C4-2-androgen-independent| Autophagy | |
| 22Rv1                  | Apoptosis | |
| VCaP                   |           |         |
| CWR1-R1ca              |           |         |
| Breast cancer           |           |         |
| SUM149                 | Apoptosis | (79,91) |
| SUM102                 | ER stress | |
| SUM229                 |           |         |
| Glioblastoma           |           |         |
| LN229, T98G, short term PDX patient-derived line | Translational control | (57) |
| GBM6                   |           |         |
| U87MG glioblastoma     |           |         |
| Neuroblastoma          |           |         |
| Neuron-neuroblastoma hybrid (NSC-34D), IM32 neuroblastoma cells | Calcium levels | (41) |
| Lung cancer            |           |         |
| A549                   | G2/M arrest, apoptosis | (63) |
| Glioma                 |           |         |
| U87MG glioma cells, U118MG & LN229 | Cytotoxicity, tumor suppression, DNA damage | (7,33) |
| Brain tumor stem-like cell lines used: 11SP and 64SP | Autophagy Sensitizes to radiation G2/M arrest, apoptosis  | (63) |
| C6 cells               |           |         |
| Human nasopharyngeal carcinoma | ATM/P53 | (64) |
| CNE1, CNE2 and HNE1    | G2/M arrest | |
|                        | Sensitizes to radiation | |
| Osteosarcoma           |           |         |
| LM7 and OS482          | Inhibits cell proliferation | (35) |
| LM7                    | Apoptosis | |
|                        | cAbl kinase activation | |
|                        | YAP phosphorylation at Y357, binding to p73 and Bax promoter activation | |

ER, endoplasmic reticulum; YAP, YES-associated protein.
intracellular reactive oxygen species (ROS) levels and may have a direct effect on mitochondrial-mediated apoptosis inside the cell (39). Although riluzole is known to inhibit glutamate release and hence block glutamate signaling, certain studies reported its potential for targeting Ca²⁺ signaling in cells. In one of these studies, riluzole inhibited spontaneous Ca²⁺ signaling in the immortalized growth hormone-secreting pituitary cell line GH3 (40). In another study using the neuroblastoma-spinal motor neuron fusion cell line NSC-34D (non-cancerous), riluzole counteracted the upregulation of Ca²⁺ increase and cell death induced by thapsigargin, a known inhibitor of sarcoplasmic calcium ATPase (41). While the exact mechanism for Ca²⁺ inhibition by riluzole still remains to be determined in cancer cells, riluzole was reported to block glutamate release and glutamate regulated Ca²⁺ entry in leukemic megakaryoblasts and promoted differentiation by...
blocking cell proliferation (42). Contrary to this effect, riluzole increased cytosolic Ca\(^{2+}\) increase in prostate cancer cells that increased ER stress, and increased Ca\(^{2+}\) levels in MG63 osteosarcoma cells through an unidentified pathway (43,44). These results suggested that intracellular Ca\(^{2+}\) regulation is one of the cellular processes in cancer that may be affected by riluzole.

**Riluzole increases oxidative stress.** Typically, the cell is thought to be under oxidative stress when the intracellular levels of reactive oxygen species (ROS), such as hydrogen peroxide (H\(_2\)O\(_2\)) and ion species (O\(_2\)\(^{-}\), OH\(^{-}\)), exceed the levels of antioxidants. Tumor cells have comparatively higher metabolic requirements and altered metabolism; consequently, they generate increased ROS, which are employed by the cells for survival, cell motility and metastasis, tumor progression and angiogenesis (45,46). Glutathione (GSH) is a well-known antioxidant that reduces oxidative stress and ROS levels by accepting an electron from a free radical on ROS (47). Of note, GSH synthesis is directly linked to glutamate release, since glutamate serves as one of the precursors of GSH. The reduction in GSH leads to a marked reduction in antioxidants. Of note, in hepatocellular carcinoma (HCC), riluzole treatment was indicated to cause an increase in cellular glutamate content, which led to a decrease in GSH production as a consequence of a decrease in cysteine uptake by the cells. This further resulted in the accumulation of ROS, leading to apoptosis. In addition, administration of riluzole inhibited growth in HCC xenografts, and reduced GSH and increased ROS levels in the tumors (52). In osteosarcoma, riluzole increased ROS production, leading to the activation of cAbl kinase, which participates in events leading to apoptosis (55). Of note, the increased ROS in cisplatin-resistant lung cancer cells were further enhanced by riluzole to induce cell death, making it the only agent so far to successfully kill cisplatin-resistant cells (22). It is noteworthy that in cancer cells where glutamate secretion occurs via xCT, riluzole may increase intracellular levels of glutamate to cause glutamate-induced oxidative stress while simultaneously blocking GSH synthesis due to deficiency of cysteine by blocking xCT (21). While the mechanism remains to be fully elucidated, the available studies suggested that in numerous cancer types, glutamate release inhibition by riluzole contributes to ROS production.

**Riluzole and protein translation.** In glioblastoma, inhibitors of mTOR kinase have been indicated to enhance IRES-dependent protein synthesis of key regulators of the cell cycle, leading to resistance to the mTOR inhibitors. Furthermore, IRES-dependent translation was reported to have a key role in tumor growth and resistance. One of the significant proteins involved in response to the accumulation of misfolded protein is IRES trans-acting factor (ITAF) heterogenous nuclear ribonucleoprotein A1 (hnRNP A1). hnRNA A1 has been indicated to regulate IRES-dependent translation of c-myc and cyclin D1 genes (56). In a recent study using surface plasmon resonance imaging, riluzole was indicated to directly bind to hnRNP A1 through its specific binding site to prevent IRES RNA binding. This was the first report to demonstrate the interaction of riluzole with a protein directly to regulate its activity (57). In a recent study, riluzole was indicated to downregulate ITAF hnRNP A1 activity to decrease translation of c-myc and cyclin D1 genes, and as a result, to assist in offsetting the resistance to mTOR inhibitor in glioblastoma (57). Thus, riluzole may exert its effect through direct interactions with proteins outside of the glutamate metabolic and signaling pathway, such as ITAF hnRNP A1.

**Riluzole induces DNA damage.** A cell may be able to sustain DNA damage from intracellular factors such as oxidative stress and replication errors to extracellular factors such as ultraviolet radiation and chemical carcinogens (58). There are two prominent classifications of DNA damage: Single-strand breaks (SSBs) and double-strand breaks (DSBs) (59). It is well known that cells have adopted several strategies to repair DNA damage; for instance, SSBs are repaired through a base excision repair pathway, whereas for DSBs, the homologous recombination repair or the non-homologous end-joining pathways are utilized. Damages that arise at a particular nucleotide also have specialized repair mechanisms, such as the nucleotide excision repair and mismatch repair pathways. Cell cycle checkpoints serve as a protective mechanism against DNA damage. Together, these pathways comprise the cellular DNA damage response (DDR) (59,60). Dysregulation of DDR is a common finding in various cancers and is typically associated with mutations of specific proteins in a given pathway. For instance, mutation in p53 allows the damaged cell to pass the cell cycle checkpoint and proliferate despite not satisfying the checkpoint requirements. Cells with DDR defects frequently become desensitized to radiation and chemotherapy (59).

Multiple lines of evidence suggest that riluzole causes damaged cells to accumulate at cell cycle checkpoints, eventually triggering apoptosis. Specifically, riluzole treatment in glioma and melanoma cells produce increased levels of DDR proteins, such as poly(adenosine diphosphate ribose) polymerase (PARP) and H2AX (7,53). These two biomarkers are frequently used to assess drug efficacy, since both are frequently present when DNA is damaged. The DSBs are known to induce the phosphorylation of histone H2AX, while PARP cleavage is associated with activation of SSB repair (59). Furthermore, the accumulation of DNA damage is also associated with a reduction in glutamate release and GSH levels.
suggesting that the production of ROS stimulated by riluzole treatment is the main contributor to the DNA damage in these cancer cells (7,53). A similar increase in phosphorylation of H2AX was also observed in a phase II clinical trial for advanced melanoma (61). These studies strongly suggest that riluzole may cause DNA damage, most likely due to induction of ROS in cancer cells.

_Riluzole causes G2/M cell cycle arrest._ In numerous studies, riluzole has been indicated to cause G2/M cell cycle arrest in cancer cells. For instance, the HCC cell lines SNU 449 and Huh-7 exhibited cell cycle arrest in G2/M phase upon exposure to riluzole. Riluzole was indicated to elevate the expression of cyclin B1 and depress the expression of p21 and p-cdc2, leading to G2/M cell cycle inhibition in these cells (35). Riluzole also induced G2/M phase arrest in the pancreatic cancer cell lines PANC1 and ASPC1 in a dose-dependent manner, while concomitantly decreasing the levels of the regulatory protein cyclin-dependent kinase 1 (40). In an _in vivo_ brain metastasis study using GRM1-expressing human melanoma cells, riluzole caused G2/M phase arrest and DNA damage. In addition, Riluzole increased radiosensitivity, resulting in enhanced DNA damage and reduced metastases in an animal model (62). Riluzole also induced cell cycle arrest in A549 cells (lung cancer), as well as glioma and colorectal adenocarcinoma cells (63). Furthermore, in studies involving human nasopharyngeal carcinoma, Riluzole induced G2/M arrest and apoptosis (64). In summary, these studies provide evidence that riluzole causes cell cycle arrest in G2/M phase in HCC, pancreatic cancer, melanoma and nasopharyngeal carcinoma cells.

_Autophagy._ Autophagy, also known as ‘self-digestion’, is a process of elimination of misfolded proteins and damaged organelles. It is characterized by the autophagosome formation around the components and the fusion of autophagosome with the lysosome for degradation (65). Of note, intracellular calcium and ROS levels are also implicated in autophagy regulation. In normal cells, basal regulation of autophagy contributes to homeostasis; however, in cancer, autophagy dysregulation is linked to uncontrolled cell growth and proliferation, making it a desirable target for cancer therapy (65,66). As observed in pancreatic cell lines, riluzole resulted in the upregulation of an autophagy substrate, p62, as well as cell death in a dose-dependent manner (67). In another study using a castrate-resistant prostate cancer cell line expressing GRM1, riluzole upregulated intracellular Ca^{2+} levels and increased the expression of autophagy markers such as Beclin 1, LC3AI/II (microtubule associated protein1 light chain 3A1/II) and p62, leading to autophagy-mediated degradation of androgen receptor (44). Furthermore, in glioma, riluzole caused downregulation of PI3K/Akt signaling and GLUT3 expression, which led to autophagic cell death (33). Together, these studies indicated that riluzole interferes with autophagic pathways to induce cell death in various cancers types.

_Riluzole induces apoptosis._ Typically, upregulated PI3K/Akt and MAPK/ERK pathways contribute to cancer survival via activated Akt, mTOR, ERK, Ras and Braf proteins that down-regulate pro-apoptotic proteins while activating anti-apoptotic proteins. Apoptosis is induced via the intrinsic apoptotic pathway or externally by ligand binding to the cell receptor via the extrinsic apoptotic pathway (68). Both pathways include sequential caspase cleavage, with slight differences in caspases involved in the process. The intrinsic apoptotic pathway is generally triggered in cells under oxidative stress or when DNA sustains serious unreparable damage. The process is regulated by pro-apoptotic proteins such as Bax and Bak, and anti-apoptotic proteins like Bcl-2 and Bcl-xl. When the apoptotic processes are initiated, the apoptosome is formed, which is made up of Apaf-1 and cytochrome c (released from mitochondria), as well as pro-caspase-9. The formation of this complex then cleaves and activates caspase 9 to further activate downstream caspases (caspases3/6/7) to induce apoptotic cell death (68). In cancer cells, aberrant downregulation of apoptotic proteins and inhibition of apoptosis is common.

In certain studies on melanoma, HCC, pancreatic cancer, prostate cancer and breast cancer, riluzole treatment was indicated to induce apoptotic cell death by alteration of different cellular processes, ranging from oxidative stress induction, autophagy inhibition, and downregulation of survival intracellular signaling pathways (7,52,67,69). In a number of these studies, apoptosis was assessed by detecting caspase-3 and caspase-9 levels, which are common apoptotic markers. In HCC, cleaved caspase-3 and -9, as well as PARP, were increased with riluzole treatment (52). Similarly, pancreatic cancer cells also exhibited an increase in caspase-3 (67). Furthermore, in melanomas, both GRM1-positive and GRM1-negative, an increased amount of cleaved PARP and caspase-3 was observed following treatment with riluzole and radiation (70). In prostate cancer cell lines, independent of their androgen-dependent status, riluzole decreased cell viability by activation of caspase-3, -8 and -9 (71). In addition, riluzole was also indicated to induce apoptosis following cell cycle arrest via the activation of the ATM/p53 pathway in nasopharyngeal carcinoma (64). A recent study by our group suggested that in osteosarcoma, riluzole activated c-Abl kinase, which is typically activated during DNA damage response. Activated c-Abl kinase was indicated to phosphorylate YE-s-associated protein (60), a transcription coactivator, to facilitate its interaction with P73, a homolog of P53. Riluzole-mediated YAP and P73 complex was reported to activate Bax promoter to regulate pro-apoptotic activity (55). Previous studies by our group also suggested that iron oxide nanoparticle-delivered riluzole induced apoptosis _in vitro_ in osteosarcoma cells and shrank osteosarcoma tumors in a xenograft mouse model (72,73). Since apoptosis ultimately leads to the elimination of cancer cells, a better understanding of the induction of riluzole-mediated cell death, the effects of riluzole on different cellular processes and how they are related to apoptosis may further improve the use of riluzole in different cancer types.

3. Riluzole in cancer treatment

_Mono- and combined therapy._ A better understanding of cancer biology, particularly the regulation of key factors and processes fueling cell growth and metastasis, will bring advancements in cancer treatment. Cancer cells are known to harbor multiple mutations across different pathways to promote cell proliferation and metastasis (74). While monotherapy with single drugs...
Table II. Combination therapy with riluzole.

| Subjects/samples | Cancer type | Therapeutic agents combined with riluzole | Mechanism | Observed effects with riluzole (Refs.) |
|------------------|-------------|------------------------------------------|-----------|---------------------------------------|
| Primary HCC from 4 patients | HCC | Sorafenib | Multikinase inhibitor targets angiogenesis (Raf-1, b-Raf) target proliferation (VEGF, PDGFB receptors) | Additive effect on cell growth inhibition (52) |
| MDA-MB-231, SUM149, SUM229 in vitro and in xenograft | Triple-negative breast cancer | Paclitaxel | Inhibitor of tubulin, inhibit mitotic spindle assembly involved in chromosome segregation and cell division, induced apoptosis | Synergistic cell growth inhibition, induced apoptosis (79) |
| HCT116 with knocked down hERG expression | Colorectal cancer | Cisplatin | Binds to DNA and inhibits replication, promotes DNA damage, inhibits mitosis | Synergistic effect in reduced viability of cisplatin-resistant cells due to hERG1 overexpression (77) |
| TREK+/−/C7/BL6 mice with knocked down hERG expression | Not cancerous | Oxaliplatin | Inhibits DNA synthesis, DNA replication and transcription, induces apoptosis. Neurotoxic side effects (elevated glutamate release) | Reduced neurotoxic side effects due to TREK-1 potassium channel (92) |
| Melanoma cell lines for In vitro C8161 (WT BRAF & NRAS), UACC903, UACC930, HT144 (BRAF & PTEN mt) SKMEL2 (NRAS mt) For in vivo C8161 UACC903 UACC930 | Melanoma | Rapamycin | mTOR inhibitor Combination therapy was more effective than with individual agent | Decreased anchorage-independent growth and tumor growth in xenograft. Combination therapy effective regardless of BRAF mutation and PI (32) |
| Melanoma cell line expressing GRM1: UAC903, 1205Lu, C8161 with either B-RAF WT or mt, in vitro and xenograft | Melanoma | Sorafenib | Multikinase inhibitor targets angiogenesis (Raf-1, b-Raf) target proliferation (VEGF, PDGFB receptors) | Synergistic effect on C8161, additive effect on UAC903 and 1205Lu Synergistic effect but less efficacy compares to with sorafenib (78) |
| Melanoma cell line expressing GRM1: UAC903, 1205Lu, C8161 with either B-RAF WT or mt, In vitro and xenograft | Melanoma | PLX4720 | Inhibit B-RafV600E | |
| Intracranially injected melanoma C8161-luc' GRM3 expressing cell line U87, and T98G cell line, patients' primary samples with detectable GRM3 expression | Melanoma | Radiation | Increased apoptosis | Enhanced the effect of radiation (62) |
| Glioma | Radiation | ROS, DNA damage, apoptosis | Enhanced ROS accumulation, reduced PI3K/Akt and MAPK/ERK signaling and DNA damage and apoptosis induction (7) |
is still in use, it is slowly being replaced by newer and more efficient combinatorial treatments. In addition to traditional radiation and chemotherapy, newer advanced methods of cancer treatment are gaining momentum. Immunotherapy, nanoparticles and gene therapy using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) gene editing system are among the most promising (75,76). According to studies by our group, when delivered via iron oxide nanocage particles, riluzole caused the highest reduction in osteosarcoma tumor size in nude mouse xenografts (72,73).

In keeping with its promising potency and efficacy, riluzole is being tested in combination with other drugs to enhance its actions. Riluzole is frequently observed to have synergistic effects with other drugs to decrease cell proliferation and viability while also promoting apoptosis. Select drug combinations may amplify these effects in different cancer cell lines. For instance, riluzole in combination with paclitaxel in triple-negative breast cancer, or cisplatin in colorectal cancer, or sorafenib in melanoma, was demonstrated to have synergistic effects in different cancer cell lines. For instance, riluzole in combination with paclitaxel in triple-negative breast cancer, or cisplatin in colorectal cancer, or sorafenib in melanoma, was demonstrated to have synergistic effects (77-79). Combinatorial treatment with riluzole and GRM3 antagonist LY341495 blocked the MAPK signaling pathway in glioma, sensitized glioma to radiation and decreased anchorage-independent colony growth (7). In an in vivo study in mice with intracranially injected melanoma cells, combinatorial treatment led to a significant decrease in tumor volume (62). In melanoma, a combination of sorafenib with riluzole was tested in comparison to another potent inhibitor, PLX4720, with riluzole. While both combinations had synergistic effects, the inhibitory effects of sorafenib and riluzole on cell proliferation were the strongest (78). In HCC, riluzole with sorafenib had an additive effect in decreasing cell proliferation (52). Melanomas harboring PTEN and NRAS mutations exhibit resistance to the action of riluzole after prolonged treatment (19). Of note, riluzole in combination with mTOR or AKT inhibitors had promising results in vitro and in xenograft studies in melanoma with these mutations, and in glioblastoma (32,57). Table II provides a summary of noteworthy experiments that include riluzole in combination with other drugs. While the majority of these studies are limited and confined to animal experiments at the most, they may provide information on mechanisms of action of riluzole or possibly lead to clinical trials in the future.

Riluzole as a radiosensitizer. Aside from using riluzole in combination with other drugs, it may be used as a radiosensitizer to produce favorable effects against cancer. The use of riluzole and radiation therapy revealed a synergistic effect in vitro and in vivo in both melanoma and glioma cell lines (7,70). Malignant melanomas, which typically metastasize into the lungs and brain, are particularly dangerous. Despite several scientific advancements, the prognosis for advanced-stage melanoma patients remains bleak. According to the American Cancer Society, the 5-year relative survival rate for metastatic melanoma patients is only 27% and these tumors are frequently resistant to chemotherapy and radiation treatment, which makes them even more dangerous and prone to reoccurrence. In an in vivo study in mice injected intracranially with melanoma cells, riluzole in combination with radiation led to a significant decrease in tumor volume (62). In another in vitro study on BTSCs, a lower dose of riluzole in combination with radiation therapy unexpectedly resulted in enhanced growth inhibition compared to a higher dose of the drug (33). However, a higher dose of riluzole with radiation therapy proved to be more effective in vivo (33). In addition, riluzole sensitized human nasopharyngeal carcinoma

| Subjects/samples | Cancer type | Therapeutic agents combined with riluzole | Mechanism | Observed effects with riluzole | Refs. |
|------------------|-------------|------------------------------------------|-----------|-----------------------------|------|
| LN229 and T98G cell lines | Glioblastoma | pp242 | mTOR inhibitor | Synergistic effect on proliferation inhibition, enhanced cell cycle arrest and apoptosis induction | (57) |
| T98G and UG87 | Glioblastoma | TMZ | TMZ-induced O6-methylguanine DNA methyltransferase (MGMT expression) | Synergistic effect in T98G cells but not UG87 Suppressed intracranial tumor growth | (93) |
| LM7 | Osteosarcoma | Iron oxide nanocage | Apoptosis | Iron oxide nanocage-delivered riluzole was most effective on inducing apoptosis both in vitro and in vivo | (72,73) |

HCC, hepatocellular carcinoma; TMZ, temozolomide; ROS, reactive oxygen species; WT, wild-type; mt, mutant type; GRM1, metabotropic glutamate receptor 1; ERG1, ether-a-go-go-related 1 ion channel; PDGFB, platelet-derived growth factor B; NRAS, neuroblastoma RAS; B-RAF, B-raf proto-oncogene; PTEN, phosphatase and tensin-like protein.
cells to radiation through the ATM/P53 signaling pathway and cytotoxicity was enhanced compared to groups treated with riluzole alone both in vivo and in vitro (64).

Toxicity and adverse effects of riluzole. Riluzole was observed to have low toxicity in patients with amyotrophic lateral sclerosis (ALS) treated with a daily oral dose of ~50 mg (80). The area under the curve for the serum concentration at 24 h was ~2,000 ng/ml (81,82). Riluzole is well tolerated, with the most common adverse effect observed being headache (83). Other significant side effects were nausea, vertigo, somnolence and asthenia, which were indicated to be dose-related (84,85). Elevation of alanine aminotransferase was also commonly observed in patients (86). Rare and less frequently reported side effects are acute hepatitis, leukopenia and methemoglobinemia (87). Much rarer cases of hypersensitivity pneumonitis and multi-organ autoimmune syndrome were also reported (88). More recently, interstitial pneumonia was observed in 21% of 92 patients enrolled (89). In patients with ALS, riluzole prolonged tracheostomy-free survival by 3-6 months; however, the long-term toxicity of riluzole requires to be determined for cancer patients considering their longer survival expectancy. In a study performed in Europe and North America, riluzole was reported to be well-tolerated for up to 7 years (90). Further studies require to be performed to assess the long-term tolerability and side effects of riluzole.

Limitations of riluzole. In breast cancer cells, riluzole-induced DNA damage is independent of mGluR1 expression or ER status (8,91). Of note, riluzole-induced DNA damage was not observed in the breast cancer cell line MCF-7, which expresses wild-type P53, whereas other cell lines expressing mutant P53 exhibited riluzole-induced DNA damage (8). On the contrary, in melanoma, riluzole induced DNA damage in an mGluR-dependent manner (53). However, it remains to be determined whether cell line-specific differences in riluzole sensitivity, as observed in breast cancer, are dependent on replicative stress induced by other mutations in cell lines besides mutations in P53 (8). In any particular cancer type, it requires to be determined whether the response to riluzole is dependent on the mutational profile of the cell line, particularly those mutations that predispose the cells to oxidative or replicative stress.

3. Conclusion

The current review presents up-to-date information of the mechanisms of action of riluzole. Riluzole has been reported to interfere with diverse cellular processes, such as stress-related response, survival and apoptosis. Various noteworthy studies have demonstrated the cytotoxic effects of riluzole in the following scenarios: i) Cisplatin-resistant lung cancer cells; ii) mTOR inhibitor-resistant glioblastoma; iii) triple-negative breast cancer cells in combination with paclitaxel; iv) sensitizing effect on melanoma, gliomas and nasopharyngeal carcinoma to radiation. Riluzole thus holds great promise for cancers that are challenging to treat effectively. Investigations into the efficacy of riluzole in cancers exhibiting drug resistance may be an effective strategy for circumventing drug resistance in cancer. A deeper insight into the specific mechanisms of riluzole alone and in combination with other drugs in a cell type-dependent manner may improve the efficacy of riluzole and facilitate translation into clinical use.

Acknowledgements

The authors are grateful for the critical comments provided by Dr Muktar Mahajan (Department of Medical Laboratory Sciences, Hunter College, New York, USA) as well as the careful reviewing of the manuscript by Ms Syeda Maryam Azeem (The Graduate Center, City University of New York, New York, USA) and Ms Shraddha ChandThakuri (Department of Medical Laboratory Sciences, Hunter College, New York, USA). The authors also thank Ms Syeda Maryam Azeem (The Graduate Center, City University of New York, New York, USA) for rendering the schematic representation in Fig. 1 using Biorender.com.

Funding

The study was funded by the following grants: National Institute of General Medical Sciences, National Institute of Health (grant no. 1 SCI GM131929-01A1) and the Professional Staff Congress and The City University of New York (grant no. 62504 00 50).

Availability of data and materials

Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.

Authors' contributions

All authors (AB, SL, CT, IT, TT, SSM) performed literature searches and wrote and edited the article. All authors read and approved the final manuscript. Data authentication is not applicable.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors have no competing interests to declare.

References

1. Doble A: The pharmacology and mechanism of action of riluzole. Neurology 47 (6 Suppl 4): S233-S241, 1996.
2. Urbani A and Belluzzi O: Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 12: 3567-3574, 2000.
3. Zona C, Siniscalchi A, Mercuri NB and Bernardi G: Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neuroscience 85: 931-938, 1998.
4. Cheah BC, Vucic S, Krishnan AV and Kiernan MC: Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 17: 1924-1999, 2010.
5. Willard SS, Yang KM and Murray SP: Glutamate signaling in benign and malignant disorders: Current status, future perspectives, and therapeutic implications. Int J Biol Sci 9: 728-742, 2013.
6. Yu LJ, Wall BA, Wangari-Talbot J and Chen S: Metabotropic glutamate receptors in cancer. Neuropharmacology 113: 193-202, 2016.
7. Kwon JA, LaCava S, Mehta M, Schiff D, Thandoni A, Ijwuar S, Danish S, Haffty BG and Chen S: The glutamate release inhibitor riluzole increases DNA damage and enhances cytotoxicity in human glioma cells, in vitro and in vivo. Oncotarget 10: 2824-2834, 2019.
8. Dolfi SC, Martin DJ, Karedalua A, Paratala B, Rose A, Dhami J, Chen S, Ganesan S, Mackay G, Vazquez A and Hirshfeld KM: Riluzole exerts distinct antitumor effects from a metabotropic glutamate receptor 1-specific inhibitor on breast cancer cells. Oncotarget 8: 44639-44653, 2017.
9. Prickett TD and Samuels Y: Molecular pathways: Dysregulated glutamate signaling pathways in cancer. Clin Cancer Res 18: 4240-4246, 2012.
10. Skerry TM and Genever PG: Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci 22: 174-181, 2001.
11. Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y and Yoneda Y: Glutamate signaling in peripheral tissues. Eur J Biochem 271: 1-13, 2004.
12. Cowan RW, Seidlitz EP and Singh G: Glutamate signaling in healthy and diseased bone. Front Endocrinol (Lausanne) 3: 89, 2012.
13. Holfmann M and Heinemann S: Cloned glutamate receptors. Annu Rev Neurosci 17: 31-108, 1994.
14. Reiner A and Levitz J: Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neurot 98: 1080-1098, 2018.
15. Lin W, Wang C, Liu G, Bi C, Wang X, Zhou Q and Jin H: SLC7A11/xCT in cancer: Biological functions and therapeutic implications. Am J Cancer Res 10: 3106-3126, 2020.
16. Muir A, Danai LV, Gui DY, Waingarten CY, Lewis CA and Vander Heiden MG: Environmental cystine drives glutaminolysis and sensitizes cancer cells to glutaminase inhibition. Cell 168: 985-999, 2017.
17. Prickett TD, Tandy SV, Warden T, Matsuyama K, Saido TC and O’Toole T: Loss of beta-catenin expression associated with disease progression in malignant melanoma. Br J Dermatol 145: 210-216, 2001.
18. Hemendinger RA, Armstrong EJ III, Radio N and Brooks BR: Neurotoxic injury pathways in differentiated mouse neuron-neuroblastoma hybrid (PC12-D34) cells in vitro: limited effect of riluzole on thapsigargin, but not staurosporine, hydrogen peroxide and homocysteine neurotoxicity. Toxicol Appl Pharmacol 258: 208-215, 2012.
19. Kamal T, Green TN, Morel-Kopp MC, Ward CM, McGregor AL, McGlashan SR, Bohlander SK, Browett PJ, Teague L, During MJ, et al: Inhibition of glutamate regulated calcium entry into leukemic megakaryoblasts reduces cell proliferation and supports differentiation. Cell Signal 27: 1860-1872, 2015.
20. Jan CR, Lu YC, Tsai HC and Huang JK: Effect of riluzole on cytotoxic Ca2+ increase in human osteosarcoma cells. Pharmacology 66: 120-127, 2002.
21. Wada HK, Shouhrud M, Goodrich DW and Koochekpour S: Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate 79: 140-150, 2019.
22. Lieu CY and Storz P: Natural and synthetic oxygen species in cancer. Free Radic Res 44: 479-496, 2010.
23. Pellicano H, Carney D and Huang P: ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 17: 97-110, 2014.
24. Chakravarthi S, Jessop CE and Bulleid NJ: The role of glutathione and therapeutic implications. Drug Resist Updat 7: 97-110, 2004.
25. Janáky R, Ogita K, Pasqualotto BA, Bains JS, Osa SS, Yoneda Y and Shaw CA: Glutathione and signal transduction in the mammalian CNS. J Neurochem 73: 889-902, 1999.
26. Osa SS and Kaufmann SHF: Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21: 396-413, 2014.
27. Hayes JD, Dinkova-Kostova AT and Tew KD: Oxidative stress in cancer. Cancer Cell 38: 167-197, 2020.
28. Kennedy L, Sandhu Jatake KM, Puddu ME and Cuperovich-Culf M: Role of glutathione in cancer: From mechanisms to therapies. Biomolecules 10: 1429, 2020.
52. Seol HS, Lee SE, Song JS, Lee HY, Park S, Kim I, Singh SR, Chang S and Jang SJ: Glutamate release inhibitor, Riluzole, inhibited proliferation of human hepatocellular carcinoma cells through autophagy death. Int J Mol Sci 21: 2334, 2020.
53. Wall BA, Wangari-Talbot J, Shin SS, Schiff D, Sierra J, Yu LJ, Khan A, Haffty B, Goydos JS and Chen S: Disruption of GRM1-mediated signalling using riluzole results in DNA damage in melanoma cells. Pigment Cell Melanoma Res 27: 194–203, 2014.
54. Cerchio R Jr, Marinaro C, Foo TK, Xia B and Chen S: Nonhomologous end-joining repair is likely involved in the repair of double-stranded DNA breaks induced by riluzole in melanoma cells. Melanoma Res 30: 303-308, 2020.
55. Raghubir M, Azeem SM, Hasnat R, Rahman CN, Wong L, Yan S, Zhang W, Zhang X, Bhuyan A, Tagg I, et al: Riluzole-induced apoptosis in osteosarcoma is mediated through Yes-activated protein upon phosphorylation by c-Abl Kinase. Sci Rep 11: 20974, 2021.
56. Jo OD, Martin J, Bernath A, Masri J, Lichtenstein A and Gera J: Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosomal entry site function through Akt signaling. J Biol Chem 283: 23274–23287, 2008.
57. Benavides-Serrat O, Saunders JT, Holmes B, Nishimura RN, Lichtenstein A and Gera J: Repurposing potential of Riluzole as an ITAF Inhibitor in mTOR therapy resistant glioblastoma. Int J Mol Sci 21: 3438, 2020.
58. Basu AK: DNA Damage, mutagenesis and cancer. Int J Mol Sci 19: 790, 2018.
59. O'Connor MJ: Targeting the DNA damage response in cancer. Nat Rev Clin Oncol 17: 395-417, 2020.
60. Srinivas US, Tan BWQ, Vellayappan BA and Jeyasekharan AD: The effect of cage formulation on the pharmacokinetics and tolerability of riluzole in healthy volunteers. J Clin Pharmacol 39: 480-486, 1999.
61. Miller RG, Mitchell JD, Lyon M and Moore DH: Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotrophic Lateral Sclerosis & Other Motor Neuron Disorders 4: 191-206, 2003.
62. Grant P, Song JY and Swedo SE: Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 20: 309-315, 2010.
63. Sorenson EF: An acute, life-threatening, hypersensitivity reaction to riluzole. Neurology 67: 2260-2261, 2006.
64. Inoue-Shibui A, Kato M, Suzuki N, Kobayashi J, Takai Y, Izumi R, Kawauchi Y, Kuroda H, Warita H and Aoki M: Interstitial pneumonia and other adverse events in riluzole-administered amyotrophic lateral sclerosis patients: A retrospective observational study. BMC Neurol 19: 72, 2019.
65. Lacomblez L, Bensimon G, Leigh PN, Debove C, Bejjui R, Truffinet P and Meiningier V: ALS Study Groups I and II: Long-term safety of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis & Other Motor Neuron Disorders 3: 23-29, 2002.
66. Speyers CL, Carbon AH, Bukhsh MA, Jafry WS, Khan RM and Gorski DH: Riluzole mediates anti-tumor properties in breast cancer cells independent of metabolotropic glutamate receptor-1. Breast Cancer Res Treat 17: 4-31, 2011.
67. Sun R, He X, Jiang X and Tao H: The new role of riluzole in treating amyotrophic lateral sclerosis. What have we learned in the last decade? CNS Neurosci Ther 17: 4-31, 2011.
68. Lan Onn MC: A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis. Therapie 67: 346-353, 2012.
69. Otsuki Y: Riluzole induces apoptotic cell death in human prostate cancer cells. Jpn J Clin Oncol 35: 686-690, 2005.
70. Cohen-Solal KA and Goydos JS: Riluzole enhances ionizing radiation-induced cytotoxicity in human melanoma cells that exhibit radiation resistance. Int J Radiat Oncol Biol Phys 40: 239-249, 1998.
71. Khan AJ, Wall BA, Ahlawat S, Green C, Schiff D, Mehnert JM, Chen S and Haffty B: Riluzole enhances ionizing radiation-induced cytotoxicity in human melanoma cells that exhibit radiation resistance. Int J Radiat Oncol Biol Phys 40: 239-249, 1998.
72. DeBose-Boyd RA: Autophagy death: A new play in the treatment of cancer. Cancer Biol Ther 12: 863-868, 2011.
73. Raghunath M, Rahman CN, Fang J, Matsui H and Mahajan SS: Osteosarcoma growth suppression by riluzole delivery via iron oxide nanocage in nude mice. Oncol Rep 43: 169-176, 2020.
74. Bayat Mokhtari R, Homayouni TS, Baluch N, Morgataska E, Kumar S, Das B and Yeger H: Combination therapy in combating cancer. Oncotarget 8: 38022-38043, 2017.
75. Pucci C, Martinoia M and Scarfano G: Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecamericalscience 13: 961, 2019.
76. Falzone L, Salomone S and Libra M: Evolution of cancer pharmacological treatments at the turn of the Third Millennium. Front Pharmacol 9: 1308, 2018.