Case reports

Safety and efficacy of graded dosing of Pfizer-BioNTech mRNA COVID-19 vaccine after an immediate hypersensitivity reaction to first dose

Prudhvi Regula, MD, a David Rosenstreich, MD, a Elina Jerschow, MD, MSc, a Manish Ramesh, MD, PhD, a Denise Ferastaaroaru, MD, a Jessica Oh, MD, a Daniella S. Aivazi, BS, b Jonathan M. Aivazi, BA, c and Golda Hudes, MD, PhD a

Bronx, New York, and Glen Head, NY

Current guidelines do not recommend subsequent mRNA COVID-19 vaccination in patients who experience immediate allergic reactions to the first dose. Our findings indicate that graded dosing of this vaccine is safe, efficacious, and useful for treating these individuals with allergy. (J Allergy Clin Immunol Global 2022;1:175-7.)

Key words: Graded dosing of vaccine, vaccine desensitization, mRNA vaccine allergy, vaccine hesitancy, COVID-19 vaccines

Emerging data on the recently approved Moderna and Pfizer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA coronavirus disease 2019 (COVID-19) vaccines have demonstrated that they are a critical tool in combating the spread of and mortality and morbidity due to COVID-19 infection. A large population-based study on non–COVID-19 vaccine reactions reported the incidence of anaphylaxis as 1.3 cases per 1 million administered doses, whereas the initial reports of mRNA COVID-19 vaccination estimated the incidence of anaphylaxis to be 2.5 to 4.7 cases per million doses. This higher anaphylaxis rate than that associated with other vaccines has led to a significant amount of vaccine hesitancy. Current US Centers for Disease Control and Prevention guidelines state that individuals who have experienced a severe reaction to the first dose are contraindicated from receiving further doses. Documented pre-existing hypersensitivity to excipients, such as polyethylene glycol (PEG) or polysorbate 80, are also contraindications, although recent studies have shown that the role of excipient skin testing in determining PEG allergy is limited. There are no clear guidelines on how to proceed with the management of these patients.

A US Centers for Disease Control and Prevention working group has speculated that patients with an adverse allergic reaction to the first dose of mRNA COVID-19 vaccines could consider a subsequent dose of the Janssen adenovirus-based vaccine, but the safety and efficacy of a mixed series have not been adequately studied, and the thrombosis risk associated with the Janssen vaccine is an additional concern. For patients who develop anaphylaxis after receiving a non–COVID-19 vaccine and need subsequent vaccine doses, the current guidelines recommend graded vaccine administration for those with a positive vaccine skin test result. However, because mRNA is unstable, there is some concern about the effectiveness of graded administration of this type of vaccine. Currently, the data on the immunogenicity of graded administration of mRNA COVID-19 vaccines in patients who experienced an immediate hypersensitivity reaction to a first dose of mRNA COVID-19 vaccine are limited to 1 case series of 15 patients reported by Tuong et al. This group demonstrated the efficacy of graded dosing by comparing post-graded dosing spike antibody levels with antibody levels in healthy subjects who received both doses of an mRNA COVID-19 vaccine.

We report our experience with graded dosing to a second dose of Pfizer vaccine in patients who experienced an immediate hypersensitivity reaction (within 4 hours) to a first dose of any mRNA COVID-19 vaccine. This was a retrospective observational study approved by the Institutional Review Board at Montefiore Medical Center/Albert Einstein College of Medicine (IRB #: 2021-12803). Ten patients seen at our allergy clinic who met these criteria were identified by retrospective chart review. We compared COVID-19 spike antibody levels before and after administration of the vaccine using graded vaccine dosing. Details of the characteristics of all the patients are described in Table I. Patients were predominantly female (90%) and of diverse racial backgrounds; their mean age was 42 years. Most of the patients (80%) had at least 1 allergic comorbidity. Two patients (20%) had a history of an allergic reaction to influenza vaccine.

Abbreviations used
COVID-19: Coronavirus disease 2019
PEG: Polyethylene glycol
SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2

From a the Division of Allergy and Immunology, Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx; b the CUNY School of Medicine, the Sophie Davis School of Biomedical Education Program, New York; and c the New York Institute of Technology College of Osteopathic Medicine, Glen Head.

Disclosure of potential conflict of interest: The authors declare that they have no relevant conflicts of interest.

Received for publication March 7, 2022; revised April 6, 2022; accepted for publication April 11, 2022.

Available online April 30, 2022.

Corresponding author: Prudhvi Regula, MD, 1776 Eastchester Rd, Ste-247, Bronx, NY 10461. E-mail: pregula@montefiore.org.

The CrossMark symbol notifies online readers when updates have been made to the article such as errata or minor corrections 2772-8293
© 2022 The Author(s). Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/), https://doi.org/10.1016/j.jaci.2022.04.005

175
The Pfizer-BioNTech mRNA COVID-19 vaccine was the first dose vaccine in the majority (70%) of patients. Six patients (60%) had developed anaphylaxis (based on the 2020 World Allergy Organization anaphylaxis criteria), and 4 required epinephrine treatment. Because the Moderna mRNA COVID-19 vaccine was not available at our center, all of these patients, regardless of their first dose vaccine, received the Pfizer mRNA COVID-19 vaccine in incremental doses at 30-minute intervals to a cumulative dose of 0.3 mL (Table II). The protocol used for graded dosing varied owing to physician judgment. All patients were premedicated with a second-generation H1 antihistamine on the day of vaccination, and all patients were observed for 1 hour after the final vaccine dose. COVID-19 spike antibody levels were measured at least 2 weeks after the procedure.

Only one patient (10%) developed mild symptoms during graded dosing (Table II), whereas the rest tolerated the procedure without any allergic or adverse reactions. The incidence and severity of allergic reactions during graded dosing (10%) in this patient cohort were lower and milder than those reported by Tuong et al (33%).1 Premedication with antihistamine in our cohort may have contributed to this lower incidence of allergic reactions during graded dosing. Post-graded dosing COVID-19 spike antibody measurements were available for 8 patients, and all of those patients exhibited significant antibody levels. These findings confirm the findings of the previously published report of Tuong et al10 on the efficacy of graded dosing of mRNA vaccines. Both pre-graded and post-graded dose administration COVID-19 spike antibody levels were available for 6 patients, and all of them demonstrated a significant rise after graded dosing (Table I). Among these patients, 2 patients with undetectable COVID-19 spike antibodies before graded dosing seroconverted, further confirming the efficacy of graded dosing.

In our case series, only 2 patients had exigent skin testing with medications containing PEG; the rest underwent graded dosing without excipient testing. All of the patients in our series tolerated the procedure regardless of testing, suggesting that graded vaccine administration without excipient testing is safe. Because 2 (or more) doses of these mRNA vaccines are crucial for protection against the SARS-CoV-2 virus, graded dosing is imperative for those experiencing immediate hypersensitivity reactions. Customizing the graded dose protocol on the basis of severity of the prior reaction did not change the outcome. The same protocol can be also used for administrating booster doses to these patients. This graded vaccine dosing regimen should be an effective tool for promoting complete vaccination and booster doses and for mitigation of vaccine hesitancy in patients who had developed an immediate allergic reaction to the first dose.

To our knowledge, this is the first case series to report the safety of graded dosing of COVID-19 mRNA vaccine by using a customized protocol for each patient and also for demonstrating the efficacy of graded dosing by comparing pre-graded and post-graded dose administration antibody levels in patients who had an
immediate reaction to the first dose. Our findings confirm and complement the findings of Toung et al.9 Health care providers should consider referring patients who experienced a severe, immediate allergic reaction to an mRNA COVID-19 vaccine to allergists for evaluation and possible graded vaccine dosing. Including recommendations for graded COVID-19 vaccine dosing in the guidelines for management of patients with COVID-19 vaccine allergy would be useful for vaccine-hesitant individuals.

TABLE II. Graded dosing protocols for all patients and their outcomes

Patient No.	Sequential doses (mL) of vaccine to complete a cumulative dose of 0.3 mL	Cumulative time (h)	Reactions during graded dosing
1	0.03, 0.04, 0.05, 0.06, 0.06, 0.06	3.5	None
2	0.05-0.25	1.5	None
3	0.03, 0.06, 0.06, 0.06, 0.09	3	None
4	0.05, 0.1, 0.05, 0.1	2.5	Throat itching after second fractional dose of 0.1 mL. Resolved with diphenhydramine, after which protocol was continued
5	0.05-0.10-0.15	2.5	None
6	0.03, 0.06, 0.06, 0.06, 0.09	3	None
7	0.03, 0.06, 0.06, 0.06, 0.06, 0.09	3	None
8	0.06, 0.24	1.5	None
9	0.06, 0.24	1.5	None
10	0.03, 0.06, 0.06, 0.06, 0.06, 0.09	3	None

REFERENCES
1. Tenforde MW, Olson SM, Self WH, Talbot HK, Lindell CJ, Steingrub JS, et al. Effectiveness of Pfizer-BioNTech and Moderna vaccines against COVID-19 among hospitalized adults aged ≥65 years — United States, January–March 2021. MMWR Morbid Mortal Wkly Rep 2021;70:674-9.
2. McNeil MM, Weintraub ES, Duffy J, Sukumaran L, Jacobsen SJ, Klein NP, et al. Risk of anaphylaxis after vaccination in children and adults. J Allergy Clin Immunol 2016;137:868-78.
3. Shimabukuro TT, Cole M, Su JR. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US—December 14, 2020-January 18, 2021. JAMA 2021;325:1101.
4. Rief W. Fear of adverse effects and COVID-19 vaccine hesitancy: recommendations of the treatment expectation expert group. JAMA Health Forum 2021;2:e210804.
5. Contraindications and precautions for use of COVID-19 vaccines in the United States. Atlanta, Ga: US Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html. Accessed April 3, 2022.
6. Wolfson AR, Robinson LB, Li L, McMahon AE, Cogan AS, Fu X, et al. First-dose mRNA COVID-19 vaccine allergic reactions: limited role for excipient skin testing. J Allergy Clin Immunol Pract 2021;9:3308-20.e3.
7. Krantz MS, Kwah JH, Stone CA, Phillips EL, Ortega G, Banerji A, et al. Safety evaluation of the second dose of messenger RNA COVID-19 vaccines in patients with immediate reactions to the first dose. JAMA Intern Med 2021;181:1530.
8. Kelso JM, Greenhawt MJ, Li JT, Nicklas RA, Bernstein DI, Blessing-Moore J, et al. Adverse reactions to vaccines practice parameter 2012 update. J Allergy Clin Immunol 2012;130:25-43.
9. Tuong L-AC, Capucilli P, Staicu M, Ramsey A, Walsh EE, Shahzad Mustafa S. Graded administration of second dose of Moderna and Pfizer-BioNTech COVID-19 mRNA vaccines in patients with hypersensitivity to first dose. Open Forum Infect Dis 2021;8:ofab507.