Assessment of Cardiac Amyloidosis With 99MTC-pyrophosphate (PYP) Quantitative Spect

Chao Ren
Peking Union Medical College Hospital

Jingyun Ren
Peking Union Medical College Hospital

Zhuang Tian
Peking Union Medical College Hospital

Yanrong Du
Peking Union Medical College Hospital

Zhixin Hao
Peking Union Medical College Hospital

Zongyao Zhang
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Wei Fang
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Fang Li
Peking Union Medical College Hospital

Shuyang Zhang
Peking Union Medical College Hospital

Bailing Hsu
University of Missouri-Columbia

Li Huo (✉ huoli@pumch.cn)
Peking Union Medical College Hospital https://orcid.org/0000-0003-1216-083X

Original research

Keywords: ATTR cardiomyopathy, 99mTc-PYP quantitative SPECT, standardized uptake value, diagnostic feasibility, the operator reproducibility

DOI: https://doi.org/10.21203/rs.3.rs-32649/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: 99mTc-PYP scintigraphy provides differential diagnosis of ATTR cardiomyopathy (ATTR-CM) from lightchain cardiac amyloidosis and other myocardial disorders without biopsy. This study was aimed to assess the diagnostic feasibility and the operator reproducibility of 99mTc-PYP quantitative SPECT.

Method: Thirty-seven consecutive patients underwent a 99mTc-PYP thorax planar scan followed by SPECT and CT scans to diagnose suspected ATTR-CM were enrolled. For the quantitative SPECT, phantom studies were initially performed to determine the image conversion factor (ICF) and partial volume correction (PVC) factor to recover 99mTc-PYP activity concentration in myocardium for calculating the standardized uptake value (SUV) (unit: g/ml). SUV$_{\text{max}}$ was compared among groups of ATTR-CM, AL cardiac amyloidosis, and other pathogens (Others), and among categories of Perugini visual scores (Grade: 0-3). The intra- and inter-operator reproducibility of quantitative SPECT was verified, and the corresponded repeatability coefficient (RPC) was calculated.

Results: The ICF was 79,327 Bq/ml to convert count rate in pixel to 99mTc activity concentration. PVC factor as a function of the measured activity concentration ratio in myocardium and blood-pool was $y=1.424\times(1-\exp(-0.759\times x))+0.104$. SUV$_{\text{max}}$ of ATTR-CM (7.50±2.68) was significantly higher than those of AL (1.96±0.35) and Others (2.00±0.74) (all p<0.05). SUV$_{\text{max}}$ of Grade 3 (8.95±1.89) and Grade 2 (4.71±0.23) were also significantly higher than those of Grade 1 (1.92±0.31) and Grade 0 (1.59±0.39) (all p<0.05). Correlation coefficient (R^2) of SUV$_{\text{max}}$ reached 0.966 to 0.978 with only small systematic difference (intra=-0.14; inter=-0.23) between two repeated measurements. Intra- and inter-operator RPCs were 0.688 and 0.877.

Conclusions: 99mTc-PYP quantitative SPECT is a reliable method to quantitatively and objectively assess the burden of cardiac amyloidosis for diagnosis of ATTR-CM.

Background

Cardiac amyloidosis is related to the pathogen that the primary interstitial protein deposition occurs in the extracellular space of myocardium, leading to impairment of myocardial wall contractility, systolic/diastolic dysfunction, arrhythmia and eventually heart failure to cause high morbidity and mortality [1]. Main types of cardiac amyloidosis include monoclonal immunoglobulin light chain (AL) and transthyretin amyloidosis cardiomyopathy (ATTR-CM), of which ATTR-CM can be subtyped by pathogenic mutations in the transthyretin gene (ATTRm) or by the accumulation of amyloid fibrils composed of wild-type transthyretin protein (ATTRwt) [2–4]. AL cardiac amyloidosis is the most common type of amyloidosis with the annual incidence approximately 0.8 per 100 000 population[5–6]. The prevalence of ATTR is related to the age, gender, races and types of amyloidosis as up to 25% of individuals > 80 years old can present ATTR deposit in Autopsy [5–6]. ATTRm is particularly prevalent in certain races as 1.0%-3.4% prevalence in African-American and Northern Ireland populations respectively.
The prevalence of ATTRwt is recently found in 10–16% in elderly males showing preserved heart failure with ejection fraction (HFpEF), hypertrophy or aortic stenosis [9, 10]. Differential diagnosis of cardiac amyloidosis is often challenging. The most reliable approach to diagnose AL cardiac amyloidosis depends on blood and urine tests for serum/urine immunofixation electrophoresis (IFE) and serum free light chain (sFLC) assay [11]. The traditional standard for diagnosis of cardiac ATTR amyloidosis relies on echocardiography (ECG) or cardiac magnetic resonance (CMR) along with that the deposit of cardiac amyloidosis should also be proved in an endomyocardial biopsy coupled with immunohistochemistry or mass spectroscopy [12–13]. Nuclear medicine imaging can help to differentiate ATTR-CM from AL cardiac amyloidosis and other myocardial disorders without the need of biopsy. Positron emission tomography (PET) with β-amyloid specific imaging tracers such as 18F-Florbetapir, 18F-Flutemetamol and 11C-PIB enables the quantitative scheme to evaluate cardiac amyloidosis [14–16]. However, this quantitative imaging tool is not yet ready for routine clinical utilization. In recent years, systematic evaluation of the scintigraphy with 99mTc-labeled phosphates tracers (e.g. Technetium-99m 3, 3-diphospho-1, 2-propanodicarboxylic acid (99mTc-DPD), technetium-99m pyrophosphate (99mTc-PYP) or 99mTc-Hydroxymethylene diphosphonate (99mTc-HMDP)) has been reported as an outstanding non-invasive imaging tool to distinguish ATTR-CM from AL cardiac amyloidosis with excellent performance in differential diagnosis (sensitivity 84%-97%, specificity 94%-100%) [17–19]. The diagnostic method is based primarily on visual evaluation or the semi-quantitative analysis to derive relative indices by heart uptake normalized to bone or other uptake in planar images [17, 20]. At the UK National Amyloidosis Centre (NAC), 99mTc-DPD scintigraphy has been routinely carried out on patients with suspected or histologically proven cardiac amyloidosis in order to exclude diagnoses of ATTR-CM and to monitor disease burden [18]. American Society of Nuclear Cardiology (ASNC) recommends 99mTc-PYP scintigraphy as one of the critical components for the evaluation of ATTR-CM [17]. Although the scintigraphy with 99mTc-labeled phosphates tracers has demonstrated its effectiveness for diagnosis of ATTR-CM, there still exists relevant limitations in further identifying subgroups who may present different prognosis [21]. The method of quantitative single-photon Emission computed tomography (SPECT) has recently been developed to provide the quantitative assessment of amyloid burden adjunct to the visual interpretation of planar images. Several studies have further confirmed that quantitative SPECT possesses a potential in diagnosis of ATTR-CM independently [22–24]. The aim of our study is set to report the feasibility and the reproducibility of 99mTc-PYP quantitative SPECT in differential diagnosis of cardiac amyloidosis when SPECT images were reconstructed with full physical corrections and the correction for partial volume effect in myocardium developed from a cardiac phantom study and integrated into the quantitation process.

Methods

Study Cohorts
Between December 2018 to December 2019, thirty-seven consecutive patients underwent a 99mTc-PYP thorax planar scan followed by SPECT and CT scans to diagnose suspected ATTR-CM. For each study subject, routine examinations were carried out to record comprehensive clinical data accordingly. This study was complied with the amended Declaration of Helsinki approved by the Institutional Review Board of Peking Union Medical College Hospital. All participants provided the informed written consent. According to the previous research study [18], patients were divided into three groups primarily based on clinical features, immunohistochemical or proteomics typing of amyloid, ECG, Perugini visual scores, genetic analyses and biopsy as the clinical routine for assessment of cardiac amyloidosis. Diagnosis of ATTR-CM included abnormal ECG finding and suggestive amyloidosis by visual grading of 99mTc-PYP planar images equal to 2 or 3 with absence of a detectable monoclonal protein despite serum/urine IFE and sFLC assay. Group A: ATTR-CM (n = 6) was based on clinical examination, ECG finding, positive 99mTc-PYP finding in planar images with Perugini visual scores ≥ 2 and absence of abnormal serum/urine (IFE and sFLC). This diagnostic criterion identified one patient with ATTRwt and five patients with ATTRm. Heterogenous types of TTR mutations included Val50Gly (n = 1), Val50Met (n = 1), Gly73Glu (n = 1), Asp38Asn (n = 1) and Ala117Ser (n = 1). Group B: AL-CM (n = 10) was solely determined according to the presence of abnormal serum/urine (IFE or sFLC) as in lambda (λ)-light chain type (n = 7) and kappa (κ)-light chain type (n = 3). Group C: Others (n = 21) that disqualified to fit into the diagnostic criteria of group A and group B. Several of them were ATTR mutation carriers from family history (n = 13) as Ala117Ser (n = 7), Val50Met (n = 3), Ser97Tyr (n = 2) and Asp38Asn (n = 1) by genetic analyses but without an evidence of showing the burden of cardiac amyloidosis. The remaining patients included hypertrophic cardiomyopathy (n = 2) and idiopathic cardiomyopathy (n = 5). Patient characteristic of these three groups are listed in Table 1.
Table 1

Patient characteristics Including demography, clinical Data, laboratory data, echocardiography and others.

Groups	Total (n = 37)	Group A: ATTR cardiac amyloidosis (n = 6)	Group B: AL cardiac amyloidosis (n = 10)	Group C: Others (n = 21)	p Value
Demographics					
Age (years)	57.7 ± 13.2	58 ± 6	61 ± 3	56 ± 2	0.579
Male Sex (%)	70.3	66.7	90.0	61.9	0.327
BMI (kg/m²)	23.7 ± 3.6	22.4 ± 1.7	22.7 ± 0.9	24.5 ± 0.8	0.256
Biopsy					
EMB (%)	16.2	16.7	40.0	4.8	0.028
Other Tissue (%)	27.0	33.3	50.0	14.3	0.049
Laboratory					
Abnormal serum/urine IFE (%)	10.8	0.0	40.0	0.0	0.006
Abnormal sFLC (%)	24.3	0.0	90.0	0.0	< 0.0001
Echocardiography					
Abnormal (%)	10.8	83.3	80.0	19.0	< 0.0001
LVEF < 50% (%)	5.4	0.0	20	0.0	0.090
IVS or LVPW > 12 mm (%)	54.1	83.3	100.0	23.8	< 0.0001
Others					
Heart Rate (beats per min)	82.2 ± 13.6	81.8 ± 3.0	83.9 ± 4.0	81.57 ± 3.4	0.908
Hypertension (%)	16.2	0.0	30.0	14.4	0.402

Continuous data are expressed as mean ± SD, and categorical data are expressed as percentages. BMI, body mass index; EMB, endomyocardial biopsy; IFE, immunofixation electrophoresis; sFLC, serum free light chain; LVEF, left ventricle ejection fraction; IVS, interventricular septal thickness; LVPW, left ventricular posterior wall thickness.
Phantom Experiment

For image quantitation, the experiment to derive the image conversion factor (ICF) to convert pixel value in quantitatively reconstructed SPECT images to 99mTc activity concentration was initially conducted by filling \sim 740 MBq of 99mTc water solution into a cylindrical phantom (radius 16 cm, height 20 cm). A standard cardiac insert phantom (Data Spectrum Corporation, Hillsborough, NC, USA) representing a 3-dimensional model of the left ventricle containing regions of the myocardial wall (\sim 110 ml) and ventricle (\sim 60 ml) was then utilized to measure partial volume effect and to derive partial volume correction (PVC) factor under various activity concentration ratio (ACR) between myocardium (Myo) and blood-pool (BP) in ventricle cavity (0.15-10.0). Acquisition parameters of SPECT scans for the phantom experiment were identical to those used in the patient scanning protocol as indicated in the next section.

Image Data Acquisition

Each study subject was intravenously injected with a \sim 740 MBq 99mTc-PYP dose prepared by Beijing SHIHONG Pharmaceutical Center and calibrated by a radioactivity meter (CRC-25R, CAPINTEC, USA). Relevant parameters including injection dose, time and site were properly recorded. Post the 99mTc-PYP injection for one hour, a planar scan was performed in anterior and left lateral views for 10 minute and then followed by a SPECT scan in the thorax position on a dual-head SPECT camera (Discovery 630, GE Healthcare, Haifa, Israel). The SPECT camera consists of low-energy high-resolution collimator with 9.53 mm thickness of NaI(Tl) scintillation crystal. With patient’s heart positioned in the center field of view, planar images were acquired for a total of 750,000 counts with 256 \times 256 matrix and 1.46 zoom factor. Imaging parameters for SPECT acquisition utilized 128 \times 128 matrix, circular orbit (radius 30 cm), 180° arc, step-and-shoot, 30 steps at 40 secs/step, zoom = 1.0 and multiple energy windows (126–154 keV and 109–125 keV). After the completion of SPECT acquisition, a low-dose CT scan (120 keV, 35 mA, 12 sec) was separately acquired on a dedicated PET/CT scanner (Sinounion Polar Star m660, Beijing, China) for attenuation correction of SPECT images and image fusion. The patient positioning between two scans was optimally consistent to avoid non-translational misregistration.

Image Processing of Quantitative SPECT

In this study, image reconstruction and data analysis of quantitative SPECT were performed using a cardiac software package (MyoFlowQ, Taipei, Taiwan). This software incorporates image reconstruction and subsequent image analysis on a single platform to measure 99mTc or 99mTc-PYP activity concentration in regions of myocardial wall and ventricle cavity. For the quantitative image reconstruction of SPECT, projection data were pre-corrected for 99mTc isotope decay according to time points of rotation angles, and reconstructed by ordered subsets expectation maximization (OSEM) (4 iterations, 12 subsets) with full physical corrections for photon attenuation, scatter, collimator resolution and Poisson count-statistics as described previously [25–27]. Prior to the quantitative image reconstruction, a rapid image reconstruction with filtered back-projection (FBP) was preliminarily executed to provide SPECT images for the assessment of registration with CT images. SPECT-CT misregistration was verified visually and
manually corrected by applying 3D translation to SPECT images. In the phantom experiment, a consistent region of interest (ROI) was drawn on SPECT images of the cylindrical phantom to count rate in pixel (unit: counts/sec/pixel) to 99mTc activity concentration (Bq/ml). To measure myocardial activity of the cardiac insert phantom, SPECT images were manually reoriented into the short-axis view. A threshold of 25% of peak activity was chosen to effectively differentiate between myocardial and ventricle regions. The myocardial centerline contour was automatically detected and refined by using an ellipsoid-approximated geometry with manually determined mitral valve plane to create the polar map. A consistent sampled region $(1.0 \leq 1.0 \leq 2.0 \text{ cm}^3)$ was automatically placed in ventricle to measure the activity concentration of Bp. PVC factor defined as the true 99mTc activity concentration divided by the measured 99mTc activity concentration from quantitative SPECT was presented in the scatter plot (y-axis = PVC factor, x-axis = measured Myo/Bp ACR) and regressed with an exponential recovery model to derive analytic PVC factor as a function of measured Myo/Bp ACR [28]. For the analysis of patients’ 99mTc-PYP SPECT images, the same processing steps, including image reorientation, myocardial centerline contour, creation of polar map and the placement of sampled region in ventricle cavity were performed identically to those processing steps of cardiac insert phantom. Under the situation when the determination of myocardial centerline contour was failed due to ultralow or no uptake of 99mTc-PYP in myocardium, a ROI $(1.0 \leq 1.0 \leq 1.0 \text{ cm}^3)$ was manually placed in the insertion point between left and right ventricles. Post the recovery to absolute 99mTc-PYP uptake using PVC factor derived from the phantom experiment, standardized uptake value (SUV) was calculated with factors of injected 99mTc-PYP dose and patient’s body weight. Additionally, the skeletal SUV to normalize myocardial SUV$_{max}$ was obtained by placing the same ROI in the 4th vertebrosternal ribs on the right side of lungs.

Interpretation of Planar Images and Semi-quantitative Measurement

Both anterior and lateral views of 99mTc-PYP planar images were evaluated by two consensus nuclear readers in nuclear cardiology to grade using the visual grading rule reported by Perugini and et. al. as: grade 0 = cardiac uptake not visible; grade 1 = mild cardiac uptake visible but inferior to skeletal uptake; grade 2 = moderate cardiac uptake visible equal to or greater than skeletal uptake; grade 3 = strong cardiac uptake with little or no skeletal uptake. The semi-quantitative analysis of planar images was performed by drawing a patient-specific circular ROI on the heart and mirror it to the contralateral chest in order to calculate the heart-to-contralateral (H/CL) ratio from the quotient of the mean counts [17].

Measurement of Intra- and Inter-operator Reproducibility

Correlations of image processing for semi-quantitative and quantitative parameters by the 1st operator (OP1) and the 2nd operator (OP2) were verified by linear regression. OP1 had twenty years of experience in image processing of nuclear cardiology, and OP2 encompassed three years of experience. To test the intra-reproducibility, OP1 processed all image data twice in four weeks apart. To test the inter-reproducibility, OP2 processed the same image data sets independently.
Results

Phantom Experiment

Through the cylindrical phantom experiment, the ICF to convert the pixel value to the corresponded activity concentration in quantitative SPECT images was 79,327 Bq/ml per cps/pixel. Activity concentrations in Myo and Bp regions were measured in the unit of Bq/ml and then applied to derive PVC factor. Figure 1a shows the scatter plot of PVC factor vs the measured Myo/Bp ACR from 0.15 to 10.0. While the data of scatter plot were fitted with an exponential recovery model, a strong correlation coefficient (R²) as 0.998 was observed to generate an analytic curve as: \(y = a(1 - \exp(-b \times x)) + c \), where parameter a, b and c were 1.424, 0.759 and 0.104 respectively. In the curve, the PVC factor stayed as a constant (1.31) when the measured Myo/Bp ACR was \(\geq 4.0 \) (PVC = 1.260 as 95.4% of 1.31), and it declined dramatically below the turning point.

99m Tc-PYP Image Findings

Image findings of planar and quantitative SPECT for diagnosed ATTR-CM, AL cardiac amyloidosis and Others are summarized in Table 2. In Group A diagnosed as ATTR-CM, 66.7% of them had Perugini scores = 3 and 33% for Perugini visual scores = 2 while 100% of Group B diagnosed as AL cardiac amyloidosis had Perugini visual scores = 1. In Group C diagnosed by other pathogens, Perugini visual scores was dispersed from 0 to 2. From 99mTc-PYP planar images, H/CL ratio of Group A (1.98 ± 0.29) was significantly higher than those of Group B (1.28 ± 0.16) and Group C (1.38 ± 0.19) (p < 0.0001). From 99mTc-PYP quantitative SPECT, the measured Myo/Bp ACR ranged from 0.665 to 5.542 to give PVC factor from 0.46 to 1.30 (Fig. 1b). With the recovery of activity concentration in myocardium for all study subjects using PVC factor derived from the cardiac phantom experiment, SUV\(_{\text{max}}\) of Group A (7.50 ± 2.68 g/ml) was also significantly higher than those of Group B (1.96 ± 0.35) and Group C (2.00 ± 0.74) (all p < 0.05). Similar findings were observed for SUV\(_{\text{median}}\) and SUV\(_{\text{mean}}\) as listed in Table 2. For SUV\(_{\text{bone}}\),

Statistics Analysis

Continuous variables were presented as mean ± SD, whereas categorical variables were expressed as actual numbers and percentage. For the comparison between study subgroups, differences in continuous variables were analyzed using the one-way ANOVA with post hoc Bonferroni correction when the Levene's pre-test for homogeneity of variances meet the requirement, otherwise the one-way Welch ANOVA with post hoc Games-Howell correction was applied. Differences in categorical variables were analyzed using the \(\chi^2 \) test or Fisher exact test. The correlation of HC/L ratio and quantitative parameters, including SUV\(_{\text{max}}\) and nSUV\(_{\text{max}}\) from OP1 and OP2 were obtained by the linear regression. Difference of correlation coefficient between two measurement was tested by the Z-test. Bland-Altman statistics were utilized to verify the systematic difference with a 95% confidence interval (CI) for semi-quantitative and quantitative parameters. The repeatability coefficient (RPC) representing intra- and inter-operator reproducibility was calculated as: RPC = 1.96 × SD of difference between the two measurements [29]. All p values used were two sided with P < 0.05 considered statistically significant.
significant difference was only observed between Group B and Group C (p < 0.05). While SUV$_{\text{max}}$ was normalized with SUV$_{\text{bone}}$ (nSUV$_{\text{max}}$), Group A (7.51 ± 4.70) had significantly higher values than those of Group B (1.55 ± 0.28) and Group C (2.09 ± 0.59) (all p < 0.05). Figure 2 shows box plots of HC/L ratio, SUV$_{\text{max}}$, SUV$_{\text{median}}$, SUV$_{\text{mean}}$ and nSUV$_{\text{max}}$ for these three groups. Image findings of planar and quantitative SPECT categorized by Perugini visual scores (Grade 0 to 3) are summarized in Table 3. From the semi-quantitative analysis of 99mTc-PYP planar images, Grade 0 and 1 had significantly lower H/CL ratio (1.29 ± 0.81 and 1.34 ± 0.18) than those of Grade 2 and 3 (1.78 ± 0.21 and 2.06 ± 0.29). Furthermore, there was no significant difference between either Grade 0 and 1, or Grade 2 and 3 (all p < 0.05). From 99mTc-PYP quantitative SPECT, SUV$_{\text{max}}$ of Grade 3 (8.95 ± 1.89 g/ml) and Grade 2 (4.71 ± 0.23) were also significantly higher than those of Grade 1 (1.92 ± 0.31) and Grade 0 (1.59 ± 0.39) (all p < 0.05). Additionally, neither difference between Grade 3 and 2, nor difference between Grade 1 and 0 was significant. Figure 4 shows representative patients with planar images acquired in anterior and lateral views to measure HC/L ratio, and corresponded quantitative SPECT images to derive SUV$_{\text{max}}$ in myocardium. For the measurement of SUV$_{\text{median}}$ and SUV$_{\text{mean}}$, similar findings were observed, and no significant difference was determined for SUV$_{\text{bone}}$ among these four groups. While SUV$_{\text{max}}$ normalized to SUV$_{\text{bone}}$, there existed difference between Grade 2 and 0, and Grade 2 and 1, but no significant difference to Grade 3 for any of them.
Table 2

99mTc-PYP findings from planar and quantitative SPECT.

Groups	Total (n = 37)	Group A: ATTR cardiac amyloidosis (n = 6)	Group B: AL cardiac amyloidosis (n = 10)	Group C: Others (n = 21)	p Value
Planar					
Visual scores (%)					
0	8.1	0	0	14.3	< 0.0001
1	73	0	100	81	
2	8.1	33.3	0	4.8	
3	10.8	66.7	0	0	
H/CL ratio	1.45 ± 0.31	1.98 ± 0.29	1.28 ± 0.16*	1.38 ± 0.19*	< 0.0001
Quantitative SPECT					
\(\text{SUV}_{\text{max}} \)	2.88 ± 2.36	7.50 ± 2.68\(^{^\wedge, ^{^\wedge}}\)	1.96 ± 0.35	2.00 ± 0.74	0.002
\(\text{SUV}_{\text{median}} \)	2.38 ± 1.90	6.17 ± 1.92\(^{^\wedge, ^{^\wedge}}\)	1.65 ± 0.39	1.65 ± 0.60	0.001
\(\text{SUV}_{\text{mean}} \)	2.36 ± 1.90	6.16 ± 1.90\(^{^\wedge, ^{^\wedge}}\)	1.61 ± 0.40	1.63 ± 0.60	0.001
\(\text{SUV}_{\text{bone}} \)	1.09 ± 0.29	1.17 ± 0.34	1.28 ± 0.22\(^{^{**}}\)	0.97 ± 0.25	0.01
\(\text{nSUV}_{\text{max}} \)	2.82 ± 2.78	7.51 ± 4.70\(^{^{^\wedge, ^{^\wedge}}\wedge}}\)	1.55 ± 0.28	2.09 ± 0.59	0.003

Continuous data are expressed as mean ± SD, and categorical data are expressed as percentages.

*: \(p < 0.05 \) by ANOVA with Bonferroni correction in comparison to Group B

**: \(p < 0.05 \) by ANOVA with Bonferroni correction in comparison to Group C.

\(^\wedge\): \(p < 0.05 \) by Welch ANOVA with Games-Howell correction in comparison to Group B.

\(^{^\wedge, ^{^\wedge}}\): \(p < 0.05 \) by Welch ANOVA with Games-Howell correction in comparison to Group C.
Table 3
99mTc-PYP Findings from planar and quantitative SPECT/CT Images for groups divided by Perugini visual scores

Groups	Total (n = 37)	Grade-0 (n = 3)	Grade-1 (n = 27)	Grade-2 (n = 3)	Grade-3 (n = 4)	p Value
Planar						
H/CL ratio	1.45 ± 0.31	1.29 ± 0.81***	1.34 ± 0.18***	1.78 ± 0.21	2.06 ± 0.29	< 0.0001
Quantitative SPECT/CT						
SUV_{max}	2.90 ± 2.35	1.59 ± 0.39^^	1.92 ± 0.31^^	4.71 ± 0.23	8.95 ± 1.89	< 0.0001
SUV_{median}	2.41 ± 1.90	1.33 ± 0.30^^^	1.60 ± 0.34^^^	4.06 ± 0.28	7.18 ± 1.43	< 0.0001
SUV_{mean}	2.39 ± 1.90	1.34 ± 0.30^^^	1.57 ± 0.33^^^	4.08 ± 0.28	7.16 ± 1.39	< 0.0001
SUV_{bone}	1.00 ± 0.28	1.10 ± 0.13	1.05 ± 0.29	1.42 ± 0.10	1.05 ± 0.37	0.226
nSUV_{max}	3.10 ± 2.77	1.43 ± 0.19^	1.92 ± 0.52^	3.32 ± 0.10	9.60 ± 4.39	< 0.0001

Continuous data are expressed as mean ± SD, and categorical data are expressed as percentages.

* : P < 0.05 by ANOVA with Bonferroni correction in comparison to Grade-2.
**: P < 0.05 by ANOVA with Bonferroni correction in comparison to Grade-3.
^^: p < 0.05 by Welch ANOVA with Games-Howell correction in comparison to Grade-2.
^^^: p < 0.05 by Welch ANOVA with Games-Howell correction in comparison to Grade-3.

Intra- and Inter-operator Reproducibility
Figure 5 shows linear regression and Bland-Altman plots of H/CL ratio, SUV_{max} and nSUV_{max} from the OP1 who processed 99mTc-PYP planar and quantitative SPECT images twice in four weeks apart. The linear regression demonstrated that excellent corrections existed for OP1 to process H/CL ratio (R² = 0.861), SUV_{max} (R² = 0.978) and nSUV_{max} (R² = 0.908) repeatedly. Differences in correlation coefficients for either HC/L ratio and SUV_{max} (Z scores=-3.921, p < 0.0001), or SUV_{max} and nSUV_{max} (Z scores=-3.017, p = 0.0025) were significant, and no difference for HC/L ratio and nSUV_{max} (Z scores = 0.904, p = 0.366).
From the Bland-Altman plots, mean difference of HC/L was 0.06 (95% CI= -0.18–0.30) and determined as -0.14 (95% CI= -0.82–0.55) and – 0.06 (95% CI= -1.73–1.61) for SUV_{max} and nSUV_{max}. Values of the intra-operator RPC for HC/L ratio, SUV_{max} and nSUV_{max} were 0.241, 0.688 g/ml and 1.670 respectively.
Figure 6 shows linear regression and Bland-Altman plots of H/CL ratio, SUV_{max} and nSUV_{max} from OP1.
and OP2 who processed 99mTc-PYP planar and quantitative SPECT images independently. The linear regression demonstrated that excellent corrections also existed for OP1 and OP2 to process H/CL ratio ($R^2 = 0.811$), SUV_{max} ($R^2 = 0.966$) and $nSUV_{\text{max}}$ ($R^2 = 0.931$). Differences in correlation coefficients for either HC/L ratio and SUV_{max} (Z scores=-0.3716, p = 0.0002), or HC/L ratio and $nSUV_{\text{max}}$ were significant (Z scores=-2.214, p = 0.0267), and no difference between SUV_{max} and $nSUV_{\text{max}}$ (Z scores = 1.501, p = 0.134). From the Bland-Altman plots, mean difference of HC/L was − 0.05 (95% CI= -0.23–0.33) and determined as -0.23 (95% CI= -1.11–0.65) and − 0.11 (95% CI= -1.59–1.37) for SUV_{max} and $nSUV_{\text{max}}$. Values of the inter-operator RPC for HC/L ratio, SUV_{max} and $nSUV_{\text{max}}$ were 0.280, 0.877 g/ml and 1.482.

Discussion

In this study, we initially conducted the phantom study to obtain the ICF for quantitative SPECT and to derive PVC factor for recovering true activity concentration in myocardium. Indeed, the unique characteristic of PVC factor curve as a function of the measured Myo/Bp ACR elucidated that in order to accurately compensate for partial volume effect in myocardium, the coupled effect from Bp activity should take into account while the ratio is below 4.0. In our 99mTc-PYP quantitative SPECT data, we found PVC factor varied in a large range from 0.46 to 1.30 across the entire population (Fig. 1b). If only single PVC factor was utilized or no correction at all, erroneous assessment of activity concentration in myocardium can simply occur to impact on the subsequent calculation of quantitative parameters. While the patient specific Myo/Bp ACR was measured to derive the individual’s PVC factor based on the recovery curve, we found SUV_{max}, SUV_{median}, SUV_{mean} and $nSUV_{\text{max}}$ were able to distinguish the ATTR-CM group from groups of AL cardiac amyloidosis and Others. For the same cohorts categorized by Perugini visual scores, SUV_{max}, SUV_{median}, SUV_{mean} were able to distinguish groups of Grade 2 and 3 from Grade 0 and 1, but not for $nSUV_{\text{max}}$. Part of reasons may be due to amplified variation after the normalization with SUV_{bone}. So far, there has not been a systematic study to evaluate the reproducibility of 99mTc-PYP quantitative SPECT. To our knowledge, this is the first study to provide the relevant information. In our study, the intra- and inter-reproducibility of the quantitative method were excellent as R^2 reached 0.902 to 0.978 with only small systematic difference (intra= -0.14 to -0.06; inter= -0.23 to -0.11) between two repeated measurements. The intra- and inter-reproducibility of quantitative SPECT outperformed that of the semi-quantitative method (R^2: 0.811–0.861, all p < 0.0267). Consequently, the 99mTc-PYP quantitative SPECT developed in this study can be a reliable method to measure quantitative parameters, and the reproducibility of SUV_{max} is additionally better than that of $nSUV_{\text{max}}$.

Because of the non-quantitative fashion to evaluate cardiac uptake in 99mTc-PYP planar images, a strategy to reference uptake in other tissues must be conducted to determine disease stages. The most widely used gage was a visual comparison of myocardium to ribs as reported by Perugini [20]. Although Perugini visual scores can differentiate ATTR-CM from AL cardiac amyloidosis, they have not proven useful in risk stratification for individuals with proven ATTR-CM [21, 30]. The visual interpretation can be relatively too subjective to precisely categorize groups with different risks although obvious increase in
regional ^{99m}Tc-PYP uptake in myocardium can be an indicator for mortality [31]. It has also been shown that H/CL ratio measured from ^{99m}Tc-PYP planar images may provide prognostic value with slightly higher cutoff (1.6) than the diagnostic criterion (1.5) [32]. Technically, the diagnostic certainty of either visual scores or semi-quantitative measurement can be degraded if intense extra-cardiac uptake exists to impact on the evaluation of both myocardial and bone uptakes [33]. It has been proposed that absolute quantitation of myocardial uptake using quantitative SPECT should help overcome these shortcomings. In our study, we demonstrated that the quantitative SPECT can be useful not only to differentiate myocardial uptake from blood-pool or bone overlay as a rescue to visual interpretation, but also to quantitatively and objectively measure the burn of amyloid deposit in myocardium as demonstrated.

Previous studies reported that nuclear scintigraphy with ^{99m}Tc-labeled phosphates tracers (e.g., ^{99m}Tc-DPD, ^{99m}Tc-PYP, ^{99m}Tc-HMDP) can be utilized as an outstanding non-invasive imaging tool to distinguish AL cardiac amyloidosis from ATTR-CM with excellent diagnosis performance [17–19]. Nonetheless, images produced by these three tracers are not actually identical for the diagnostic purpose [34]. It has been reported that in patients with ATTR-CM, ^{99m}Tc-DPD scintigraphy can show deposit of amyloid in gluteal, shoulder, chest and abdominal wall regions beyond myocardium, and ^{99m}TcHMDP scintigraphy can show extensive retention in lungs, whereas ^{99m}Tc-PYP normally doesn’t show extra-cardiac amyloid infiltration [35] [36] [37]. The capability of ^{99m}Tc-PYP to distinguish ATTR from AL amyloidosis is mainly based on two unique mechanisms: 1) ^{99m}Tc-PYP binds more intensively to TTR amyloid fibers which contains higher related calcium compounds and 2) ^{99m}Tc-PYP only reveals in affected tissues with a long period of amyloid accumulation. As compared to the quantitative SPECT study with other amyloid tracers (e.g., ^{99m}Tc-DPD), we recognized the reversed pattern of increased SUV_{max} in the group of grade = 3 vs the group of grade = 2 by Perugini visual scores [24]. This pattern may provoke the additional value in prognosis for ATTR-CM using ^{99m}Tc-PYP quantitative SPECT. Recently quantitative PET with bone scan agent, 18Fluorine-labeled sodium fluoride (18F-NaF), has not been proved to be useful as a single-photon radiopharmaceutical in evaluating ATTR-CM [38]. Quantitative PET with β-amylloid specific imaging tracers such as 18F-Florbetapir, 18F-Flutemetamol and 11C-PIB enables the quantitative scheme to evaluate cardiac ATTR amyloidosis [14–16]. However, this PET quantitative imaging tool for diagnosis and with a potential in prognosis of AL amyloidosis is not yet ready for routine clinical utilization [39]. As ^{99m}Tc-labeled phosphates tracers are widely available, the usage of quantitative SPECT as an accurate measurement technique is not only capable in diagnosis for ATTR-CM, but also the assessment for prognosis that will still need larger studies to confirm this potential. Moreover, it provides a quantitative tool to monitor the disease progression for individual with ATTR mutation carriers from family history who not yet presents clinically relevant symptoms. It also enables quantitative assessment of treatment response to proven therapy as well as helpful in conducting trials of new therapeutic agents.

Study Limitations
In this study, there was only limited sample size for the ATTR-CM (n = 6) group was available. This limitation restricted to further statistically differentiate the group of Perugini visual scores = 3 from the group of Perugini visual scores = 2 by using the quantitative parameter, SUV_{max} although the pattern was observable as shown in our data. Future study should focus to resolve this limitation by increasing the sample size of ATTR group. Another limitation is that no prognosis data were available. Whether SUV_{max} or the heterogeneity of SUV_{max} can provide better prognosis than Perugini visual scores or HC/L ratio cannot be answered by this study. Other related technical limitation may be addressed by SPECT and CT data acquired on separate scanners. When non-translational misregistration between SPECT and CT images (e.g. rotational misregistration) may occur, the current program can’t compensate to correct for the type of error. Nonetheless, in our study, no study subject actually showed non-translational misregistration when careful patient positioning between SPECT and CT scans was carried out.

Conclusions

\(^{99m}\text{Tc-PYP}\) quantitative SPECT is a reliable method to quantitatively and objectively assess the burden of cardiac amyloidosis for diagnosis of ATTR-CM.

Abbreviations

ACR
Activity concentration ratio; AL:Light chain amyloidosis; ATTR:Amyloid transthyretin; ECG:Echocardiography; EMB:Endomyocardial biopsy; FBP:Filtered back-projection; H/CL:Heart-to-contralateral; HFpEF:Heart failure with ejection fraction; ICF:Image conversion factor; IFE:Immunofixation electrophoresis; IVS:Interventricular septal; LVEF:Left ventricle ejection fraction; LVPW:Left ventricular posterior wall; OSEM:Ordered subsets expectation maximization; PET:Positron emission tomography; PVC:Partial volume correction; PYP:Pyrophosphate; RPC:Repeatability coefficient; sFLC:serum Free light chain; SPECT:Single-photon Emission computed tomography; SUV:Standardized uptake value; \(^{99m}\text{Tc}\):\(^{99m}\text{Technetium}\).

Declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication
Availability of data and material

The datasets used and/or analyzed during the current study were available from corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was sponsored by several funding sources as: The CAMS initiative for innovative medicine (Grant No. CAMS-2018-I2M-3-001) and The National Key Research and Development Program of China (Grant No. 2016YFC0901500 and 2016YFC0901502).

Authors' contributions

CR was responsible for the data acquisition and manuscript drafting. JR, ZT, YD and ZZ assisted on the data acquisition. ZH assisted on the data analysis. WF and BH performed the data interpretation and the manuscript editing. LF, SZ and LH contributed to the study design. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Fontana M, Corovic A, Scully P, Moon JC. Myocardial Amyloidosis: The Exemplar Interstitial Disease. JACC Cardiovasc Imaging. 2019;12:2345–56. doi:10.1016/j.jcmg.2019.06.023.
2. Strouse C, Briasoulis A, Fonseca R, Jethava Y. Approach to a patient with cardiac amyloidosis. J Geriatr Cardiol. 2019;16:567–74. doi:10.11909/j.issn.1671-5411.2019.07.010.
3. Rapezzi C, Quarta CC, Riva L, Longhi S, Gallelli I, Lorenzini M, et al. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol. 2010;7:398–408. doi:10.1038/nrcardio.2010.67.
4. Maurer MS, Hanna M, Grogan M, Dispenzieri A, Witteles R, Drachman B, et al. Genotype and Phenotype of Transthyretin Cardiac Amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J
5. Pinney JH, Smith CJ, Taube JB, Lachmann HJ, Venner CP, Gibbs SD, et al. Systemic amyloidosis in England: an epidemiological study. Br J Haematol. 2013;161:525–32. doi:10.1111/bjh.12286.

6. Tanskanen M, Peuralinna T, Polvikoski T, Notkola IL, Sulkava R, Hardy J, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med. 2008;40:232–9. doi:10.1080/07853890701842988.

7. Jacobson DR, Alexander AA, Tagoe C, Buxbaum JN. Prevalence of the amyloidogenic transthyretin (TTR) V122I allele in 14 333 African-Americans. Amyloid. 2015;22:171–4. doi:10.3109/13506129.2015.1051219.

8. Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126:1286–300. doi:10.1161/CIRCULATIONAHA.111.078915.

9. Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36:2585–94. doi:10.1093/eurheartj/ehv338.

10. Castano A, Narotsky DL, Hamid N, Khalique OK, Morgenstem R, DeLuca A, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J. 2017;38:2879–87. doi:10.1093/eurheartj/ehx350.

11. CL Z, KN JF, CL SWS, XF Z. H, et al. The diagnostic and prognostic values of serum free light chain in patients with primary light chain amyloidosis. Zhonghua xueyexue zazhi. 2016;37:942–5. doi:10.3760/cma.j.issn.0253-2727.2016.11.003.

12. AA S. Y E, A H, S B, G N, A D, et al. Strong transthyretin immunostaining: potential pitfall in cardiac amyloid typing. Am J Surg Pathol. 2011;35:1685–90. doi:10.1097/PAS.0b013e3182263d74.

13. Vrana JA, Gamez JD, Madden BJ, Theis JD, Bergen HR 3rd, Dogan A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood. 2009;114:4957–9. doi:10.1182/blood-2009-07-230722.

14. Park MA, Padera RF, Belanger A, Dubey S, Hwang DH, Veeranna V, et al. 18F-Florbetapir Binds Specifically to Myocardial Light Chain and Transthyretin Amyloid Deposits: Autoradiography Study. Circ Cardiovasc Imaging. 2015;8. doi:10.1161/CIRCIMAGING.114.002954.

15. Lee SP, Lee ES, Choi H, Im HJ, Koh Y, Lee MH, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015;8:50–9. doi:10.1016/j.jcmg.2014.09.018.

16. S D, R N. Amyloid PET imaging in cardiac amyloidosis: a pilot study using F-flutemetamol positron emission tomography. Annals of nuclear medicine. 2019;33:624–8. doi:10.1007/s12149-019-01372-7.

17. Bokhari S, Morgenstern R, Weinberg R, Kinkhabwala M, Panagiotou D, Castano A, et al. Standardization of (99 m)Technetium pyrophosphate imaging methodology to diagnose TTR cardiac amyloidosis. J Nucl Cardiol. 2018;25:181–90. doi:10.1007/s12350-016-0610-4.
18. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation. 2016;133:2404–12. doi:10.1161/CIRCULATIONAHA.116.021612.

19. Cappelli F, Gallini C, Di Mario C, Costanzo EN, Vaggelli L, Tutino F, et al. Accuracy of 99mTc-Hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol. 2019;26:497–504. doi:10.1007/s12350-017-0922-z.

20. Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46:1076–84. doi:10.1016/j.jacc.2005.05.073.

21. DF H, AM MFMB, JC QAP, R, et al. Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. Eur Heart J Cardiovasc Imaging. 2017;18:1344–50. doi:10.1093/ehjci/jew325.

22. Ramsay SC, Lindsay K, Fong W, Patford S, Younger J, Atherton J. Tc-HDP quantitative SPECT/CT in transthyretin cardiac amyloid and the development of a reference interval for myocardial uptake in the non-affected population. Eur J Hybrid Imaging. 2018;2:17. doi:10.1186/s41824-018-0035-1.

23. Caobelli F, Braun M, Haaf P, Wild D, Zellweger MJ. Quantitative (99 m)Tc-DPD SPECT/CT in patients with suspected ATTR cardiac amyloidosis: Feasibility and correlation with visual scores. J Nucl Cardiol. 2019. doi:10.1007/s12350-019-01893-8.

24. Ross JC, Hutt DF, Burninston M, Page J, Steeden JA, Gillmore JD, et al. Quantitation of (99 m)Tc-DPD uptake in patients with transthyretin-related cardiac amyloidosis. Amyloid. 2018;25:203–10. doi:10.1080/13506129.2018.1520087.

25. FC BH, TC C, WS W, PN H, CC H. C, et al. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. Eur J Nucl Med Mol Imaging. 2014;41:2294–306. doi:10.1007/s00259-014-2881-9.

26. LH BH, BH H, LC Y, YK C, CH C. T, et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with N-Ammonia PET myocardial blood flow quantitation. Eur J Nucl Med Mol Imaging. 2017;44:117–28. doi:10.1007/s00259-016-3491-5.

27. Ma R, Wang L, Wu D, Wang M, Sun X, Hsu B, et al. Myocardial blood flow quantitation in patients with congestive heart failure: head-to-head comparison between rapid-rotating gantry SPECT and CZT SPECT. J Nucl Cardiol. 2019. doi:10.1007/s12350-019-01621-2.

28. Liu H, Chan C, Grobshtein Y, Ma T, Liu Y, Wang S, et al. Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT. Phys Med Biol. 2015;60:6751–73. doi:10.1088/0031-9155/60/17/6751.

29. GU RK, TC H, WS W. H, D L, RA d, et al. Feasibility and operator variability of myocardial blood flow and reserve measurements with â¹mTc-sestamibi quantitative dynamic SPECT/CT imaging. Journal of nuclear cardiology: official publication of the American Society of Nuclear Cardiology. 2014;21:1075–88. doi:10.1007/s12350-014-9971-8.
30. Vranian MN, Sperry BW, Hanna M, Hachamovitch R, Ikram A, Brunken RC, et al. Technetium pyrophosphate uptake in transthyretin cardiac amyloidosis: Associations with echocardiographic disease severity and outcomes. Journal of Nuclear Cardiology.

31. Sperry BW, Vranian MN, Tower-Rader A, Hachamovitch R, Hanna M, Brunken R, et al. Regional Variation in Technetium Pyrophosphate Uptake in Transthyretin Cardiac Amyloidosis and Impact on Mortality. JACC Cardiovasc Imaging. 2018;11:234–42. doi:10.1016/j.jcmg.2017.06.020.

32. Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter Study of Planar Technetium 99 m Pyrophosphate Cardiac Imaging: Predicting Survival for Patients With ATTR Cardiac Amyloidosis. JAMA Cardiol. 2016;1:880–9. doi:10.1001/jamacardio.2016.2839.

33. Ramsay SC, Cuscaden C. The current status of quantitative SPECT/CT in the assessment of transthyretin cardiac amyloidosis. Journal of Nuclear Cardiology. 2019. doi:10.1007/s12350-019-01935-1.

34. Rapezzi C, Gagliardi C, Milandri A. Analogies and disparities among scintigraphic bone tracers in the diagnosis of cardiac and non-cardiac ATTR amyloidosis. J Nucl Cardiol. 2019;26:1638–41. doi:10.1007/s12350-018-1235-6.

35. Hutt DF, Quigley AM, Page J, Hall ML, Burniston M, Gopaul D, et al. Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur Heart J Cardiovasc Imaging. 2014;15:1289–98. doi:10.1093/ehjci/jeu107.

36. Cappelli F, Gallini C, Costanzo EN, Tutino F, Ciaccio A, Vaggelli L, et al. Lung uptake during 99mTc-hydroxymethylene diphosphonate scintigraphy in patient with TTR cardiac amyloidosis: An underestimated phenomenon. Int J Cardiol. 2018;254:346–50. doi:10.1016/j.ijcard.2017.10.027.

37. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99 m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6:195–201. doi:10.1161/CIRCIMAGING.112.000132.

38. Martineau P, Finnerty V, Giraldeau G, Authier S, Harel F, Pelletier-Galarneau M. Examining the sensitivity of 18F-NaF PET for the imaging of cardiac amyloidosis. J Nucl Cardiol. 2019. doi:10.1007/s12350-019-01675-2.

39. Slart R, Glaudemans A, Noordzij W, Bijzet J, Hazenberg BPC, Nienhuis HLA. Time for new imaging and therapeutic approaches in cardiac amyloidosis. Eur J Nucl Med Mol Imaging. 2019;46:1402–6. doi:10.1007/s00259-019-04325-4.
Turning point

\[y = a(1 - \exp(-b \times x)) + c \]

\[a = 1.424; \ b = 0.759; \ c = -0.104; \ R^2 = 0.989 \]

a.

Measured Myo/Bp ACR

b.

Value

Study Subject

Measured Myo/Bp ACR

PVC Factor
Figure 1

a) PVC factor to recover as a function of measured activity concentration ratio (ACR) inMyo and Bp regions; b) measuredMyo/Bp ACR and corresponded PCV factor for individual study subject.

Figure 2

The box plots of HC/L ratio, SUVmax, SUVmedian, SUVmean and nSUVmax among ATTR-CM (Group A), AL cardiac amyloidosis (Group B) and Others (Group C).
Figure 3

The box plots of HC/L ratio, SUVmax, SUVmedian, SUVmean and nSUVmax among groups of Perugini visual scores (Grade: 0-3).
Figure 4

Representative images of 99mTc-PYP planar and quantitative SPECT. a) Grade=3 in Perugini visual scores with HC/L ratio=2.10 and SUVmax= 10.64 ml/g in b); c) Grade=2 with HC/L ratio=1.87 and SUVmax= 4.74 g/ml in d); e) Grade=1 with HC/L ratio=1.39 and SUVmax= 1.90 g/ml in f); e) Grade=0 with HC/L ratio=1.20 and SUVmax= 1.98 g/ml in h);
Figure 5

Linear regression and Bland-Altman plots of HC/L ratio, SUVmax and nSUVmax measured by Op1 who processed the same image sets in four weeks apart.
Figure 6

1. $y = 0.96x, R^2 = 0.811$

2. $y = 0.93x, R^2 = 0.966$

3. $y = 0.86x, R^2 = 0.931$
Linear regression and Bland-Altmaen plots of HC/L ratio, SUVmax and nSUVmax measured by OP1 and OP2 who processed the same image sets independently.