Central Limit Theorems for Open Quantum Random Walks and Quantum Measurement Records

Stéphane Attal, Nadine Guillotin-Plantard and Christophe Sabot

Abstract. Open Quantum Random Walks, as developed in Attal et al. (J. Stat. Phys. 147(4):832–852, 2012), are a quantum generalization of Markov chains on finite graphs or on lattices. These random walks are typically quantum in their behavior, step by step, but they seem to show up a rather classical asymptotic behavior, as opposed to the quantum random walks usually considered in quantum information theory (such as the well-known Hadamard random walk). Typically, in the case of open quantum random walks on lattices, their distribution seems to always converge to a Gaussian distribution or a mixture of Gaussian distributions. In the case of nearest neighbors homogeneous open quantum random walks on \mathbb{Z}^d, we prove such a central limit theorem, in the case where only one Gaussian distribution appears in the limit. Through the quantum trajectory point of view on quantum master equations, we transform the problem into studying a certain functional of a Markov chain on \mathbb{Z}^d times the Banach space of quantum states. The main difficulty is that we know nothing about the invariant measures of this Markov chain, even their existence. Surprisingly enough, we are able to produce a central limit theorem with explicit drift and explicit covariance matrix. The interesting point which appears with our construction and result is that it applies actually to a wider setup: it provides a central limit theorem for the sequence of record- ings of the quantum trajectories associated with any completely positive map. This is what we show and develop as an application of our result. In a second step we are able to extend our Central Limit Theorem to the case of several asymptotic Gaussians, in the case where the operator coefficients of the quantum walk are block diagonal in a common basis.
1. Introduction

Quantum random walks, such as the Hadamard quantum random walk, are nowadays a very active subject of investigation, with applications in quantum information theory in particular (see [6] for a survey). These quantum random walks are particular discrete-time quantum dynamics on a state space of the form $\mathcal{H} \otimes \mathbb{C}^{\mathbb{Z}^d}$. The space $\mathbb{C}^{\mathbb{Z}^d}$ stands for a state space labeled by a lattice \mathbb{Z}^d, while the space \mathcal{H} stands for the degrees of freedom given on each point of the lattice. The quantum evolution concerns pure states of the system which are of the form

$$|\Psi\rangle = \sum_{i \in \mathbb{Z}^d} |\varphi_i\rangle \otimes |i\rangle.$$

After one step of the dynamics, this state is transformed into another pure state,

$$|\Psi'\rangle = \sum_{i \in \mathbb{Z}^d} |\varphi'_i\rangle \otimes |i\rangle.$$

Each of these two states gives rise to a probability distribution on \mathbb{Z}^d, the one we would obtain by measuring the position on $\mathbb{C}^{\mathbb{Z}^d}$:

$$\text{Prob} \left(\{i\} \right) = \|\varphi_i\|^2.$$

The point is that the probability distribution associated with $|\Psi'\rangle$ cannot be deduced from the distribution associated with $|\Psi\rangle$ by “classical rules”, that is, there is no classical probabilistic model (such as a Markov transition kernel, or similar) which gives the distribution of $|\Psi'\rangle$ in terms of the one of $|\Psi\rangle$. One needs to know the whole state $|\Psi\rangle$ to compute the distribution of $|\Psi'\rangle$.

These quantum random walks have been successful for they give rise to strange behaviors of the probability distribution as time goes to infinity. In particular, one can prove that they satisfy a rather surprising central limit theorem whose speed is n, instead of \sqrt{n} as usual, and the limit distribution is not Gaussian, but more like functions of the form (see [8])

$$x \mapsto \frac{\sqrt{1 - a^2} (1 - \lambda x)}{\pi (1 - x^2) \sqrt{a^2 - x^2}},$$

where a and λ are constants.

In the article [2] is introduced a new family of quantum random walks, called open quantum random walks. These random walks deal with density matrices instead of pure states, that is, on a state space $\mathcal{H} \otimes \mathbb{C}^{\mathbb{Z}^d}$ they consider density matrices of the form

$$\rho = \sum_{i \in \mathbb{Z}^d} \rho_i \otimes |i\rangle \langle i|.$$

To this density matrix is attached a probability distribution, associated with the values one would obtain by measuring the position:

$$\text{Prob} \left(\{i\} \right) = \text{Tr} (\rho_i).$$
After one step of the dynamics, the density matrix evolves to another state of the same form
\[\rho' = \sum_{i \in \mathbb{Z}^d} \rho'_i \otimes |i\rangle \langle i|, \]
with the associated new distribution.

In [2] it is proved that these open quantum random walks are a non-commutative extension of all the classical Markov chains, that is, they contain all the classical Markov chains as particular cases, but they also describe typically quantum behaviors.

However, as shown on simulations in the same article, it seems that open quantum random walks of infinite lattices such as \(\mathbb{Z}^d \) exhibit a rather classical behavior in the limit, that is, their limit distribution seems to always converge to a Gaussian distribution, or to a mixture of Gaussian distributions (including the case of Dirac masses as particular cases of Gaussian distributions). While the quantum random walk, step by step, seems to be very quantum, that is, the distribution at time \(n + 1 \) has nothing to do with the distribution at time \(n \) (at least it cannot be deduced from it without the complete information of the full density matrix), it appears that asymptotically the quantum random walks become more and more classical.

The aim of this article is to prove, under some conditions, a central limit theorem for these open quantum random walks and to compute explicitly the characteristics of the associated Gaussian distribution: drift and covariance matrix.

This article is structured as follows. In Sect. 2 we recall a certain number of notations and concepts which are very common in the context of quantum mechanics: states, density matrices, completely positive maps, etc. Sect. 3 is then devoted to presenting the general mathematical structure of open quantum random walks and their probability distributions. We end this section with a series of examples and numerical simulations which illustrate our definitions and which will be covered later on by our central limit theorems. In Sect. 4 we explain the quantum trajectory approach to quantum master equations. This approach, which is nowadays very important in the study of open quantum systems, gives a method for open quantum random walks to be simulated by means of a particular Banach space-valued classical Markov process. In the same section we recall an important ergodic property of quantum trajectories, as proved in [7].

The last sections are the ones where the main theorems are proved. First of all the main central limit theorem is proved in the context of a single asymptotic Gaussian distribution. The proof is based on proving a central limit theorem for a particular martingale associated with the quantum trajectories. This martingale is obtained by the usual method of solving the Poisson equation, which surprisingly can be implemented explicitly in our context, even though we do not have any information on the existence of an invariant measure for the Markov chain associated with quantum trajectories. Furthermore, the parameters of the limit Gaussian distribution are explicitly obtained.
We then show how our main theorem applies to a wider context: a central limit theorem for the measurement records of a discrete-time trajectory.

We finally extend the central limit theorem to a context with several asymptotic Gaussians, but with block-diagonal coefficients for the open quantum random walk. We prove that, in this case, the open quantum random walk behaves like a mixture of open quantum random walks with single Gaussian, that is, up to conditioning the trajectories at the beginning, we get a behavior of an OQRW with a single asymptotic Gaussian. We compute several examples which illustrate the different situations of our theorems and the associated asymptotic parameters.

2. General Notations

We recall here some useful notations and terminologies that shall be used in this article.

All our Hilbert spaces are on the complex field and are separable (if not finite dimensional). For all Hilbert space \mathcal{H} we denote by $\mathcal{B}(\mathcal{H})$ the Banach space of bounded operators on \mathcal{H} equipped with the usual operator norm that we denote by $\|\cdot\|_\infty$. We denote by $\mathcal{L}_1(\mathcal{H})$ the Banach space of trace-class operators on \mathcal{H}, equipped with the trace norm $\|\cdot\|_1$.

Let \mathcal{H} be a Hilbert space. For any $\phi \in \mathcal{H}$ we put $|\phi\rangle$ to simply denote the element ϕ of \mathcal{H} (more rigorously, it should be the operator $\lambda \mapsto \lambda \phi$ from \mathbb{C} to \mathcal{H}). We define

$$
\langle \phi | : \mathcal{H} \longrightarrow \mathbb{C} \\
\quad x \longmapsto \langle \phi, x \rangle.
$$

As a consequence of these definitions, the operator $|\phi\rangle\langle\phi|$ is the orthogonal projector onto $\mathbb{C}\phi$.

Recall that a density matrix ρ on some Hilbert space \mathcal{H} is a trace-class, positive operator such that $\text{Tr}(\rho) = 1$. The convex set of all density matrices on \mathcal{H} will be denoted by $\mathcal{E}(\mathcal{H})$. The extreme points of this convex set are the pure states, that is, the rank one orthogonal projectors:

$$
\rho = |\phi\rangle\langle\phi|,
$$

with $\phi \in \mathcal{H}$, $\|\phi\| = 1$. The set of pure states on \mathcal{H} will be denoted by $\mathcal{S}(\mathcal{H})$.

Let \mathcal{N} stand for a finite or a countable set of indices. If $\{A_i ; i \in \mathcal{N}\}$ is a family of bounded operators on \mathcal{H} such that

$$
\sum_{i \in \mathcal{N}} A_i^* A_i = I,
$$

where the convergence above is understood for the weak topology, then the mapping

$$
\rho \mapsto M(\rho) = \sum_{i \in \mathcal{N}} A_i \rho A_i^*,
$$

is well defined, for the series is $\|\cdot\|_1$-convergent, and the mapping preserves the property of being a density matrix. It is a so-called completely positive map.
Note that such a completely positive map admits an adjoint map \mathcal{M}^* acting on the bounded operators on \mathcal{H}. More precisely, the mapping

$$\mathcal{M}^*(X) = \sum_{i \in \mathcal{N}} A_i^* X A_i,$$

is a strongly convergent series and satisfies

$$\text{Tr} (\mathcal{M}(\rho) X) = \text{Tr} (\rho \mathcal{M}^*(X))$$

for all density matrix ρ and all bounded operator X.

3. Open Quantum Random Walks

3.1. General Setup

Let us explain here the setup in which we shall be working. It consists of special cases of open quantum random walks as described in [2], namely, the case of nearest neighbors, stationary quantum random walks on \mathbb{Z}^d. Our presentation here is slightly different from the one of [2], for we have adapted our notations to the simpler context that we are studying here.

On \mathbb{Z}^d we consider the canonical basis $\{e_1, \ldots, e_d\}$ and we put $e_{d+j} = -e_j$ for all $j = 1, \ldots, d$. For each $i \in \mathbb{Z}^d$ we denote by $N(i)$ the set of its $2d$ nearest neighbors, that is $N(i) = \{i + e_j; \ j = 1, \ldots, 2d\}$.

We consider the space $\mathcal{K} = \mathbb{C}^{2^d}$, that is, any separable Hilbert space with an orthonormal basis indexed by \mathbb{Z}^d. We fix an orthonormal basis of \mathcal{K} which we shall denote by $(|i\rangle)_{i \in \mathbb{Z}^d}$. Let \mathcal{H} be a separable Hilbert space; it stands for the space of degrees of freedom given at each point of \mathbb{Z}^d. In the rest of the article we always assume that \mathcal{H} is finite dimensional. Consider the space $\mathcal{H} \otimes \mathcal{K}$.

We are given a family $\{A_1, \ldots, A_{2d}\}$ of bounded operators on \mathcal{H} which satisfies

$$\sum_{j=1}^{2d} A_j^* A_j = I.$$

The idea is that the operator A_j stands for the effect of passing from any point $i \in \mathbb{Z}^d$ to its neighbor $i + e_j$. The constraint above has to be understood as follows: “the sum of all the effects leaving the site i is I”. It is the same idea as the one for transition matrices associated with Markov chains: “the sum of the probabilities leaving a site i is 1”.

To the family $\{A_1, \ldots, A_{2d}\}$ is then associated a completely positive map on \mathcal{H}, namely:

$$\mathcal{L}(\rho) = \sum_{j=1}^{2d} A_j \rho A_j^*.$$
To the family \(\{A_1, \ldots, A_{2d}\} \) is also associated a completely positive map on \(\mathcal{H} \otimes \mathcal{K} \) as follows. We put
\[
L_i^j = A_j \otimes |i + e_j\rangle \langle i|
\]
for all \(i \in \mathbb{Z}^d \), all \(j = 1, \ldots, 2d \). The operator \(L_i^j \) emphasizes the idea that while one is passing from site \(|i\rangle \) to its neighbor \(|i + e_j\rangle \) in \(\mathcal{K} \), the effect on \(\mathcal{H} \) is the operator \(A_j \). It is easy to check that
\[
\sum_{i \in \mathbb{Z}^d} \sum_{j=1}^{2d} L_i^j L_i^j* = I,
\]
where the above series is strongly convergent. Hence, there is a natural completely positive map on \(\mathcal{H} \otimes \mathcal{K} \) associated with these \(L_i^j \)'s, by putting
\[
\mathcal{M}(\rho) = \sum_{i \in \mathbb{Z}^d} \sum_{j=1}^{2d} L_i^j \rho L_i^j*
\]
for all density matrix \(\rho \) on \(\mathcal{H} \otimes \mathcal{K} \). Recall that the series above is convergent in trace norm.

In the following, we shall be interested in iterations \(\mathcal{M}^n \) of \(\mathcal{M} \) applied to density matrices of \(\mathcal{H} \otimes \mathcal{K} \). We shall especially be interested in density matrices on \(\mathcal{H} \otimes \mathcal{K} \) with the particular form
\[
\rho = \sum_{i \in \mathbb{Z}^d} \rho_i \otimes |i\rangle \langle i|,
\]
where each \(\rho_i \) is not exactly a density matrix on \(\mathcal{H} \): it is a positive (and trace-class operator), but its trace is not 1. Indeed, the condition that \(\rho \) is a state aims to
\[
\sum_{i \in \mathbb{Z}^d} \text{Tr} (\rho_i) = 1.
\]
The reason for such a specialization is that any application of \(\mathcal{M} \) to any density matrix \(\rho \) on \(\mathcal{H} \otimes \mathcal{K} \) leads to a state of the form (1). This form (1) then stays stable under the dynamics. Hence, the dynamics only deals with states of the form (1).

If \(\rho \) is a state on \(\mathcal{H} \otimes \mathcal{K} \) of the form
\[
\rho = \sum_{i} \rho_i \otimes |i\rangle \langle i|,
\]
then a measurement of the “position” in \(\mathcal{K} \), that is, a measurement along the orthonormal basis \((|i\rangle)_{i \in \mathcal{V}} \), would give the value \(|i\rangle \) with probability \(p(i) = \text{Tr} (\rho_i) \).

After applying the completely positive map \(\mathcal{M} \), the state of the system \(\mathcal{H} \otimes \mathcal{K} \) can be easily checked to be
\[
\mathcal{M}(\rho) = \sum_{i \in \mathbb{Z}^d} \left(\sum_{j=1}^{2d} A_j \rho_i e_j A_j^* \right) \otimes |i\rangle \langle i|.
\]
Hence, a measurement of the position in \(K \) would give that each site \(i \) is occupied with probability

\[
\begin{align*}
p'(i) &= \sum_{j=1}^{2d} \text{Tr} \left(A_j \rho_{i-e_j} A_j^* \right).
\end{align*}
\]

(4)

So, by repeatedly applying \(M \) to the initial state, we obtain a sequence of probability measures on \(\mathbb{Z}^d \) which, in general, cannot be described in terms of a classical random walk. Indeed, the probability distribution at step \(n+1 \) cannot be deduced from the probability distribution at step \(n \); we need to know the whole states \(\rho_i^{(n)} \) and not only their traces \(\text{Tr} \left(\rho_i^{(n)} \right) \).

3.2. Examples

Let us illustrate the setup above, with some examples.

In the case \(d = 1 \), we describe a quantum random walk on \(\mathbb{Z} \) with the help of only two bounded operators \(B \) and \(C \) on \(\mathcal{H} \), satisfying

\[
B^* B + C^* C = I.
\]

The operator \(B \) stands for the jumps to the left (it corresponds to the operator \(A_2 \) with the notations of previous subsection) and \(C \) stands for the jumps to the right (it corresponds to the operator \(A_1 \)).

Starting with an initial state \(\rho^{(0)} = \rho_0 \otimes |0\rangle \langle 0| \), after one step we have the state

\[
\rho^{(1)} = B \rho_0 B^* \otimes |{-1}\rangle \langle {-1}| + C \rho_0 C^* \otimes |1\rangle \langle 1|.
\]

The probability of presence in \(|{-1}\rangle \) is \(\text{Tr} \left(B \rho_0 B^* \right) \) and the probability of presence in \(|1\rangle \) is \(\text{Tr} \left(C \rho_0 C^* \right) \).

After the second step, the state of the system is

\[
\rho^{(2)} = B^2 \rho_0 B^{2*} \otimes |{-2}\rangle \langle {-2}| + C^2 \rho_0 C^{2*} \otimes |2\rangle \langle 2| + \left(C B \rho_0 B^{*} C^* + B C \rho_0 C^{*} B^* \right) \otimes |0\rangle \langle 0|.
\]

The associated probabilities for the presence in \(|{-2}\rangle, |0\rangle, |2\rangle \) are then

\[
\text{Tr} \left(B^2 \rho_0 B^{2*} \right), \quad \text{Tr} \left(C B \rho_0 B^{*} C^* + B C \rho_0 C^{*} B^* \right) \quad \text{and} \quad \text{Tr} \left(C^2 \rho_0 C^{2*} \right),
\]

respectively.

One can iterate the above procedure and generate our open quantum random walk on \(\mathbb{Z} \).

As further example, take

\[
B = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad C = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.
\]

The operators \(B \) and \(C \) do satisfy \(B^* B + C^* C = I \). Let us consider the associated open quantum random walk on \(\mathbb{Z} \). Starting with the state

\[
\rho^{(0)} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes |0\rangle \langle 0|,
\]
we find the following probabilities for the four first steps:

\[
\begin{array}{cccccccc}
| -4 \rangle & | -3 \rangle & | -2 \rangle & | -1 \rangle & | 0 \rangle & | +1 \rangle & | +2 \rangle & | +3 \rangle & | +4 \rangle \\
n = 0 & & & & & & & & 1 \\
n = 1 & & & & & & & \frac{1}{3} & \frac{2}{3} \\
n = 2 & & \frac{1}{9} & & \frac{5}{9} & & \frac{11}{27} & & \frac{10}{27} \\
n = 3 & & & \frac{5}{27} & & \frac{26}{81} & & \frac{17}{81} \\
n = 4 & & & & \frac{27}{81} & & & & \frac{17}{81}
\end{array}
\]

The distribution obviously starts as asymmetric, uncentered and rather wild. The interesting point is that, while keeping its quantum behavior time after time, simulations show clearly a tendency to converge to a normal centered distribution. Figure 1 shows the distribution obtained at times \(n = 4, n = 8 \) and \(n = 20 \).

A much more trivial example on \(\mathbb{Z} \) is obtained by taking

\[
B = \begin{pmatrix}
0 & \sqrt{p} \\
0 & 0
\end{pmatrix}
\quad \text{and} \quad
C = \begin{pmatrix}
1 & 0 \\
0 & \sqrt{1-p}
\end{pmatrix},
\]

It is easy to compute the associated quantum trajectories and show that they have the behavior of a random walk which goes straight to the right, with only one possible random jump to the left. This example will illustrate our central limit theorem for the particular case where the Gaussian is degenerate.

It is easy to produce open quantum random walks on \(\mathbb{Z}^2 \) by specifying four matrices \(N, W, S, E \) on \(\mathcal{H} \) which satisfy

\[
N^*N + W^*W + S^*S + E^*E = I.
\] (5)

Then, we ask the random walk to jump from any site to the four nearest neighbors, following \(N, W, S \) or \(E \), respectively.

One can for example combine two one-dimensional open quantum random walks by asking them to act on the different coordinate axis. For example, take

\[
N = \sqrt{\lambda} \frac{1}{\sqrt{3}} \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\quad \text{and} \quad
S = \sqrt{\lambda} \frac{1}{\sqrt{3}} \begin{pmatrix}
1 & 0 \\
-1 & 1
\end{pmatrix}
\]
Figure 2. An O.Q.R.W. on \mathbb{Z}^2 which exhibits a single Gaussian asymptotically (at time $n = 50$) together with

$$W = \sqrt{(1 - \lambda)} \begin{pmatrix} 0 & \alpha \\ 0 & \beta \end{pmatrix} \quad \text{and} \quad E = \sqrt{(1 - \lambda)} \begin{pmatrix} 1 & 0 \\ 0 & \gamma \end{pmatrix},$$

with $\alpha^2 + \beta^2 + \gamma^2 = 1$ and for some $\lambda \in [0, 1]$.

One can obtain behaviors with a single Gaussian, as in Fig. 2, with $\lambda = 3/4$, $\alpha = 1/4$ and $\beta = 1/4$.

The aim of the theorems to come now are to prove such central limit theorems and to identify the elements of the limiting Gaussian distribution.

4. Quantum Trajectories

4.1. Simulation of O.Q.R.W.

Open quantum random walks have the very nice property of admitting a quantum trajectory approach, that is, a classical process simulating the evolution of the density matrix. This approach to open quantum random walks is the one that allows us to prove a central limit theorem. Let us explain here this approach.

Starting from any initial state ρ on $\mathcal{H} \otimes \mathcal{K}$ we apply the mapping \mathcal{M} and then a measurement of the position in \mathcal{K}, following the axioms of quantum mechanics. We end up with a random result for the measurement, and a
reduction of the wave packet gives rise to a random state on $\mathcal{H} \otimes \mathcal{K}$ of the form

$$\rho_i \otimes |i\rangle \langle i|.$$

We then apply the procedure again: an action of the mapping \mathcal{M} and a measurement of the position in \mathcal{K}. The following result is proved in [2].

Theorem 4.1. By repeatedly applying the completely positive map \mathcal{M} and a measurement of the position on \mathcal{K}, one obtains a sequence of random states on $\mathcal{H} \otimes \mathcal{K}$. This sequence is a homogeneous Markov chain with the law being described as follows. If the state of the chain at time n is $\omega^{(n)} = \rho \otimes |i\rangle \langle i|$, then at time $n+1$ it jumps to one of the values

$$\omega^{(n+1)} = \frac{1}{p(j)} A_j \rho A_j^* \otimes |i + e_j\rangle \langle i + e_j|, \quad j = 1, \ldots, 2d,$$

with probability

$$p(j) = \text{Tr}(A_j \rho A_j^*).$$

This Markov chain $(\omega^{(n)})$ is a simulation of the master equation driven by \mathcal{M}, that is,

$$\mathbb{E}\left[\omega^{(n+1)} \mid \omega^{(n)}\right] = \mathcal{M}(\omega^{(n)}).$$

Furthermore, if the initial state is a pure state, then $\omega^{(n)}$ stays valued in pure states and the Markov chain is described as follows. If the state of the chain at time n is the pure state $|\varphi\rangle \otimes |i\rangle$, then at time $n+1$ it jumps to one of the values

$$\frac{1}{\sqrt{p(j)}} A_j |\varphi\rangle \otimes |i + e_j\rangle, \quad i \in \mathcal{V},$$

with probability

$$p(j) = \|A_j |\varphi\rangle\|^2.$$

In a more usual probabilistic language, this means that we have a Markov chain $(\rho_n, X_n)_{n \in \mathbb{N}}$ with values in $\mathcal{E}(\mathcal{H}) \times \mathbb{Z}^d$ which is described as follows: from any position (ρ, X) one can only jump to one of the $2d$ different values

$$\left(\frac{1}{p(j)} A_j \rho A_j^*, X + e_j\right)$$

with probability

$$p(j) = \text{Tr}(A_j \rho A_j^*).$$

What Theorem 4.1 says is that the law of the random variable X_n coincides with the distribution on \mathbb{Z}^d of our open quantum random walk at time n, when starting with the initial state $\rho_0 \otimes |X_0\rangle \langle X_0|$. Theorem 4.1 also says that if the initial condition is in $\mathcal{S}(\mathcal{H}) \otimes \mathbb{Z}^d$ then the Markov chain always stays in $\mathcal{S}(\mathcal{H}) \otimes \mathbb{Z}^d$.
4.2. Ergodic Property
We now recall an ergodic theorem for quantum trajectories, as proved in [7], that we adapt to our context and notations. Recall the completely positive map on \mathcal{H} associated with the operators A_1, \ldots, A_{2d}:

$$\mathcal{L}(\rho) = \sum_{i=1}^{2d} A_i \rho A_i^*.$$

Theorem 4.2. If (ρ_n, X_n) is the Markov chain obtained by the quantum trajectory procedure as in Theorem 4.1, then the sequence

$$\frac{1}{n} \sum_{i=1}^{n} \rho_i$$

converges almost surely to a random variable θ_∞ which is valued in the set of invariant states for \mathcal{L}.

In particular, if \mathcal{L} admits a unique invariant state ρ_∞, then the above Cesaro mean converges almost surely to ρ_∞.

5. The Central Limit Theorem
5.1. The Main Theorem
In this section we make the following hypothesis on \mathcal{L}:

(H1) : \mathcal{L} admits a unique invariant state ρ_∞.

We start with some notations. We put

$$m = \sum_{i=1}^{2d} \text{Tr} \left(A_i \rho_\infty A_i^* \right) e_i$$

which is an element of \mathbb{R}^d.

In the following we shall denote by $x \cdot y$ the usual scalar product on \mathbb{R}^d. We denote by $m_i, i = 1, \ldots, d$, the coordinates of m in \mathbb{R}^d, that is $m_i = m \cdot e_i$ for $i = 1, \ldots, d$.

Lemma 5.1. For every $l \in \mathbb{R}^d$, the equation

$$(L - \mathcal{L}^*(L)) = \sum_{i=1}^{2d} A_i^* A_i (e_i \cdot l) - (m \cdot l) I$$

admits a solution. The difference between any two solutions of (12) is a multiple of the identity.

Proof. By definition of m we have, for every $l \in \mathbb{R}^d$

$$\sum_{i=1}^{2d} \text{Tr} \left(A_i \rho_\infty A_i^* \right) e_i \cdot l = m \cdot l,$$
hence
\[
\text{Tr} \left(\rho_{\infty} \left(\sum_{i=1}^{2d} A_i^* A_i (e_i \cdot l) - (m \cdot l) I \right) \right) = 0.
\]

We have proved that \(\sum_{i=1}^{2d} A_i^* A_i (e_i \cdot l) - (m \cdot l) I \) belongs to \(\{ \rho_{\infty} \}^\perp \). But \(\{ \rho_{\infty} \}^\perp \) is equal to \(\text{Ker} (I - \mathcal{L})^\perp \), by Hypothesis (H1). Furthermore, \(\text{Ker} (I - \mathcal{L})^\perp \) is equal to the range of \(I - \mathcal{L}^* \). We have proved that \(\sum_{i=1}^{2d} A_i^* A_i (e_i \cdot l) - (m \cdot l) I \) belongs to the range of \(I - \mathcal{L}^* \). This gives the announced existence.

If \(L' \) is any other solution of (12), then putting \(H = L - L' \) gives
\[
H - \mathcal{L}^*(H) = 0.
\]

This is to say that \(H \) is an eigenvector of \(\mathcal{L}^* \) for the eigenvalue 1. By the hypothesis (H1), the eigenspace of \(\mathcal{L} \) for the eigenvalue 1 is of dimension 1. Hence the eigenspace of \(\mathcal{L}^* \) for the same eigenvalue is also one dimensional. As we have \(\mathcal{L}^*(I) = I \), this means that all eigenvectors of \(\mathcal{L}^* \) for the eigenvalue 1 are multiples of the identity. Hence, \(H \) is a multiple of the identity. \(\square \)

In the following we shall denote by \(L_l \) a solution of (12) associated with \(l \in \mathbb{R}^d \). In the case where \(l = e_i \), for some \(i = 1, \ldots, d \), we denote \(L_l \) by \(L_i \) simply. In terms of the coordinates \((l_i) \) of \(l \), note that we have
\[
L_l = \sum_{i=1}^d l_i L_i.
\]

We can now formulate our main central limit theorem.

Theorem 5.2. Consider the stationary open quantum random walk on \(\mathbb{Z}^d \) associated with the operators \(\{ A_1, \ldots, A_{2d} \} \). We assume that the completely positive map
\[
\mathcal{L}(\rho) = \sum_{i=1}^{2d} A_i \rho A_i^*
\]
admits a unique invariant state \(\rho_{\infty} \). Let \((\rho_n, X_n)_{n \geq 0} \) be the quantum trajectory process associated with this open quantum random walk, then
\[
\lim_{n \to \infty} \frac{X_n}{n} = m, \quad \text{a.s.}
\]
and
\[
\frac{X_n - n m}{\sqrt{n}}
\]
converges in law to the Gaussian distribution $\mathcal{N}(0, C)$ in \mathbb{R}^d, with covariance matrix

$$C_{ij} = \delta_{ij} \left(\text{Tr} \left(A_i \rho_\infty A_i^* \right) + \text{Tr} \left(A_{i+d} \rho_\infty A_{i+d}^* \right) \right) - m_i m_j$$

$$+ \left(\text{Tr} \left(A_i \rho_\infty A_i^* L_j \right) + \text{Tr} \left(A_j \rho_\infty A_j^* L_i \right) \right)$$

$$- \left(\text{Tr} \left(A_{i+d} \rho_\infty A_{i+d}^* L_j \right) - \text{Tr} \left(A_{j+d} \rho_\infty A_{j+d}^* L_i \right) \right)$$

$$- (m_i \text{Tr} \left(\rho_\infty L_j \right) + m_j \text{Tr} \left(\rho_\infty L_i \right)).$$

Proof. Consider the Markov chain $(\rho_n, X_n)_{n \in \mathbb{N}}$, with values in $\mathcal{E}(\mathcal{H}) \times \mathbb{Z}^d$, associated with the quantum trajectories of \mathcal{M}. We put $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ and $\Delta X_n = X_n - X_{n-1}$, for all $n \in \mathbb{N}^*$ and we consider the stochastic process $(\rho_n, \Delta X_n)_{n \in \mathbb{N}^*}$, which is also a Markov chain, but with values in $\mathcal{E}(\mathcal{H}) \times \{e_1, \ldots, e_{2d}\}$. Its transition probabilities are given by

$$P \left[(\rho, e_i); (\rho', e_j) \right] = \begin{cases} \text{Tr} \left(A_j \rho A_j^* \right) & \text{if } \rho' = A_j \rho A_j^* \frac{\text{Tr} (A_j \rho A_j^*)}{\text{Tr} (A_j \rho A_j^*)}, \\ 0 & \text{otherwise}, \end{cases}$$

for all $i, j \in \{1, \ldots, 2d\}$.

We are given a fixed $l \in \mathbb{R}^d$ and we wish to write a central limit theorem for $(X_n \cdot l)_{n \in \mathbb{N}}$. Our first step is to find a solution to the so-called Poisson equation, that is, we wish to find a function f on $\mathcal{E}(\mathcal{H}) \times \{e_1, \ldots, e_{2d}\}$ such that

$$(I - P)f(\rho, x) = x \cdot l - m \cdot l. \quad (7)$$

Lemma 5.3. A solution of (7) is given by

$$f(\rho, x) = \text{Tr} \left(\rho L_l \right) + x \cdot l. \quad (8)$$

Proof of Lemma 5.3. If we define f by

$$f(\rho, x) = \text{Tr} \left(\rho L_l \right) + x \cdot l,$$

we get

$$(I - P)f(\rho, x) = \text{Tr} \left(\rho L_l \right) + x \cdot l - \left(\sum_{i=1}^{2d} \text{Tr} \left(A_i \rho A_i^* L_l \right) \right)$$

$$+ \left(\sum_{i=1}^{2d} \text{Tr} \left(A_i \rho A_i^* \right) e_i \cdot l \right)$$

$$= \text{Tr} \left(\rho \left(L_l - L_l^*(L_l) \right) - \sum_{i=1}^{2d} A_i^* A_i e_i \cdot l \right) + x \cdot l$$

$$= -m \cdot l + x \cdot l.$$

That is, the function f is a solution of the Poisson equation.

The second step of the proof consists in carrying the problem of our central limit theorem to a central limit theorem for a martingale.
With the help of the Poisson equation, we have

\[
X_n \cdot l - n(m \cdot l) = X_0 \cdot l + \sum_{k=1}^{n} ((X_k - X_{k-1}) - m) \cdot l
\]

\[
= X_0 \cdot l + \sum_{k=1}^{n} (I - P)f(\rho_k, \Delta X_k)
\]

\[
= X_0 \cdot l + \sum_{k=2}^{n} (f(\rho_k, \Delta X_k) - Pf(\rho_{k-1}, \Delta X_{k-1}))
\]

\[
+ f(\rho_1, \Delta X_1) - Pf(\rho_n, \Delta X_n).
\]

We put

\[
M_n = \sum_{k=2}^{n} f(\rho_k, \Delta X_k) - Pf(\rho_{k-1}, \Delta X_{k-1}).
\]

Clearly, \((M_n)_{n \geq 2}\) is a centered martingale, with respect to the filtration \((\mathcal{F}_n)_{n \geq 2}\), where \(\mathcal{F}_n = \sigma\{(\rho_k, X_k) ; k \leq n\}\). Indeed,

\[
\mathbb{E}[\Delta M_n | \mathcal{F}_{n-1}] = \mathbb{E}[f(\rho_n, \Delta X_n) | (\rho_{n-1}, \Delta X_{n-1})] - Pf(\rho_{n-1}, \Delta X_{n-1}) = 0
\]

from the definition of \(P\).

We put

\[
R_n = X_0 \cdot l + f(\rho_1, \Delta X_1) - Pf(\rho_n, \Delta X_n).
\]

We claim that \(\{|R_n|\}_{n \in \mathbb{N}}\) is bounded. Indeed, by Eqs. (7) and (8), we have

\[
Pf(\rho_n, \Delta X_n) = \text{Tr}(\rho_n L_l) + m \cdot l
\]

and \(|\text{Tr}(\rho_n L_l)|\) is bounded independently of \(n\) by

\[
\|\rho_n\|_1 \|L_l\|_\infty = \|L_l\|_\infty.
\]

This means that the term \(R_n\) has no contribution to the law of large number or to the central limit theorem. It is thus sufficient to obtain a law of large number and a central limit theorem for the martingale \((M_n)_{n \in \mathbb{N}}\). We recall the form of the central limit theorem for martingales that we shall use here.

Theorem 5.4. (cf [3], Theorem 3.2 and Corollary 3.1) Let \((M_n)_{n \in \mathbb{N}}\) be a centered, square integrable, real martingale for the filtration \((\mathcal{F}_n)_{n \in \mathbb{N}}\). If, for all \(\varepsilon > 0\), we have the following convergences in probability:

\[
\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[(\Delta M_k)^2 \mathbb{1}_{|\Delta M_k| \geq \varepsilon \sqrt{n}} | \mathcal{F}_{k-1}\right] = 0 \tag{9}
\]

and

\[
\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[(\Delta M_k)^2 | \mathcal{F}_{k-1}\right] = \sigma^2 \tag{10}
\]

for some \(\sigma \geq 0\), then \(M_n/\sqrt{n}\) converges in distribution to a \(\mathcal{N}(0, \sigma^2)\) distribution.
As a third step of our proof we shall prove that \((M_n)_{n \geq 2}\) satisfies the property (9). We have

\[\Delta M_k = f(p_k, \Delta X_k) - Pf(p_{k-1}, \Delta X_{k-1}) \]
\[= \text{Tr} (p_k L_l) + \Delta X_k \cdot l - m \cdot l - \text{Tr} (p_{k-1} \cdot L_l). \]

In particular, \(\Delta M_k\) is bounded independently of \(k\) for

\[|\Delta M_k| \leq \|p_k\|_1 \|L_l\|_\infty + \|\Delta X_k\| \|l\| + \|m\| \|l\| + \|p_{k-1}\|_1 \|L_l\|_\infty \]
\[\leq 2 \|L_l\|_\infty + \|l\| + \|m\| \|l\|. \]

Concerning the law of large number, since \(M_n\) has bounded increments it implies that \(M_n/n \to 0\) a.s. by Azuma’s inequality and Borel Cantelli lemma. This implies the law of large numbers for \((X_n)\), since \(|R_n|\) is bounded.

Remark now that the condition (9) is then obviously satisfied as \(\mathbb{1}_{|\Delta M_k| \geq \epsilon \sqrt{n}}\) vanishes for \(n\) large enough.

The fourth step of the proof consists in computing the quantity

\[\mathbb{E} \left[(\Delta M_k)^2 | \mathcal{F}_{k-1} \right], \]

to verify that Condition (10) is satisfied. We have

\[\Delta M_k = \text{Tr} (p_k L_l) - \text{Tr} (p_{k-1} L_l) + (\Delta X_k - m) \cdot l \]

so that

\[(\Delta M_k)^2 = \text{Tr} (p_k L_l)^2 - \text{Tr} (p_{k-1} L_l)^2 \]
\[- 2 \text{Tr} (p_{k-1} L_l) [\text{Tr} (p_k L_l) - \text{Tr} (p_{k-1} L_l) + (\Delta X_k - m) \cdot l] \]
\[+ (\Delta X_k \cdot l - m \cdot l)^2 + 2 \text{Tr} (p_k L_l) (\Delta X_k \cdot l - m \cdot l). \]

We denote by \(T_1, T_2\) and \(T_3\), respectively, the three lines appearing in the right hand side above. The term \(\mathbb{E}[T_1 | \mathcal{F}_{k-1}]\) is equal to

\[\mathbb{E}[\text{Tr} (p_k L_l)^2 | \mathcal{F}_{k-1}] - \text{Tr} (p_k L_l)^2 + \text{Tr} (p_k L_l)^2 - \text{Tr} (p_{k-1} L_l)^2. \]

The term \(\mathbb{E}[\text{Tr} (p_k L_l)^2 | \mathcal{F}_{k-1}] - \text{Tr} (p_k L_l)^2\) is the increment of a martingale \((Y_n)\) and it is bounded independently of \(k\) (using the same kind of estimates as for \(|R_n|\) above). Hence, \(Y_n/n\) converges almost surely to 0.

The term \(\text{Tr} (p_k L_l)^2 - \text{Tr} (p_{k-1} L_l)^2\), when summed up to \(n\) gives \(\text{Tr} (p_k L_l)^2 - \text{Tr} (p_1 L_l)^2\) and hence converges to 0 when divided by \(n\).

The term \(\mathbb{E}[T_2 | \mathcal{F}_{k-1}]\) clearly vanishes for it makes appearing the conditional expectation of the increment of the martingale \((M_n)\).
We finally compute \(E[T_3 | \mathcal{F}_{k-1}] \). We get

\[
E[T_3 | \mathcal{F}_{k-1}] = E \left[(\Delta X_k \cdot l)^2 - 2(m \cdot l)(\Delta X_k \cdot l) + (m \cdot l)^2 \right.
\]
\[
+ 2 \text{Tr} (\rho_k L_l) (\Delta X_k \cdot l - m \cdot l) | \mathcal{F}_{k-1} \right]
\]
\[
= \sum_{i=1}^{2d} \text{Tr} (A_i \rho_{k-1} A_i^*) \left[(e_i \cdot l)^2 - 2(m \cdot l)(e_i \cdot l) \right]
\]
\[
+ 2 \sum_{i=1}^{2d} \text{Tr} (A_i \rho_{k-1} A_i^* L_l) (e_i \cdot l - m \cdot l) + (m \cdot l)^2
\]
\[
= \text{Tr} \left(\rho_{k-1} \left(\sum_{i=1}^{2d} A_i^* A_i (e_i \cdot l - m \cdot l)^2 \right.
ight.
\]
\[
\left. + 2 A_i^* L_l A_i (e_i \cdot l - m \cdot l) \right) \right).
\]

We put
\[
\Gamma_l = \sum_{i=1}^{2d} A_i^* A_i (e_i \cdot l - m \cdot l)^2 + 2 A_i^* L_l A_i (e_i \cdot l - m \cdot l).
\]

Putting everything together, from the fact that \(Y_n/n \) converges to 0 and by the Ergodic Theorem \(4.2 \), we get that

\[
\frac{1}{n} \sum_{k=3}^{n} E \left[(\Delta M_k)^2 | \mathcal{F}_{k-1} \right]
\]

converges almost surely to

\[
\sigma_l^2 = \text{Tr} (\rho_\infty \Gamma_l).
\]

The fifth and last step of the proof consists in rewriting the variance \(\sigma_l^2 \) to make the covariance matrix \(C \) appear. We have

\[
\Gamma_l = \sum_{i=1}^{2d} A_i^* A_i (e_i \cdot l - m \cdot l)^2 + 2 \sum_{i=1}^{2d} A_i^* L_l A_i (e_i \cdot l - m \cdot l)
\]
\[
= \sum_{i=1}^{2d} A_i^* A_i (e_i \cdot l)^2 - 2(m \cdot l) \sum_{i=1}^{2d} A_i^* A_i (e_i \cdot l) + (m \cdot l)^2
\]
\[
+ 2 \sum_{i=1}^{2d} A_i^* L_l A_i (e_i \cdot l) - 2(m \cdot l) \mathcal{L}^*(L_l).
\]
Hence, this gives
\[
\text{Tr}(\rho_\infty \Gamma_l) = \sum_{i=1}^{2d} \text{Tr}(A_i \rho_\infty A_i^*)(e_i \cdot l)^2 - 2(m \cdot l)^2 + (m \cdot l)^2 \\
+ 2\sum_{i=1}^{2d} \text{Tr}(A_i \rho_\infty A_i^* L_l)(e_i \cdot l) - 2(m \cdot l) \text{Tr}(\mathcal{L}(\rho_\infty) L_l) \\
= -(m \cdot l)^2 + \sum_{i=1}^{2d} \text{Tr}(A_i \rho_\infty A_i^*)(e_i \cdot l)^2 + 2\sum_{i=1}^{2d} \text{Tr}(A_i \rho_\infty A_i^* L_l)(e_i \cdot l) \\
- 2(m \cdot l) \text{Tr}(\rho_\infty L_l).
\]

This gives
\[
\sigma_l^2 = - \sum_{i,j=1}^{d} m_i m_j l_i l_j + \sum_{i=1}^{d} l_i^2 \left(\text{Tr}(A_i \rho_\infty A_i^*) + \text{Tr}(A_{i+d} \rho_\infty A_{i+d}^*) \right) \\
+ 2\sum_{i,j=1}^{d} l_i l_j \left(\text{Tr}(A_i \rho_\infty A_i^* L_j) - \text{Tr}(A_{i+d} \rho_\infty A_{i+d}^* L_j) \right) \\
- 2\sum_{i,j=1}^{d} l_i l_j m_i \text{Tr}(\rho_\infty L_j).
\]

This proves that
\[
\sigma_l^2 = \sum_{i,j=1}^{d} l_i l_j C_{ij},
\]
where the matrix \(\sigma\) is the one given in the theorem statement. The central limit theorem is proved. \(\square\)

Note that there appears a key point in our proof: all the quadratic terms in \(\rho_k\) disappear in the limit; this is crucial because otherwise it would have been impossible to handle them without information on the invariant measure of the Markov chain \((\rho_n)\).

5.2. The One-Dimensional Case

The one-dimensional case is a useful one; in this case the formulas we have obtained above are made simpler.

In the case where the dimension is \(d = 1\), there are only two jump operators \(A_1\) and \(A_2\), which satisfy
\[
A_1^* A_1 + A_2^* A_2 = I.
\]

We have
\[
m = \text{Tr}(A_1 \rho_\infty A_1^*) - \text{Tr}(A_2 \rho_\infty A_2^*).
\]

In dimension 1 there is only one operator \(L_i\), the operator \(L_1\), which we denote here by \(L\) simply and which is a solution of
\[
L - L^*(L) = A_1^* A_1 - A_2^* A_2 - mI = 2A_1^* A_1 - (1 + m)I.
\]
Finally, following the theorem above, we have
\[m = 1 - 2 \text{Tr} \left(A_2 \rho_\infty A_2^* \right) \]
and
\[
\sigma^2 = \text{Tr} \left(A_1 \rho_\infty A_1^* + A_2 \rho_\infty A_2^* \right) - m^2 \\
+ 2 \text{Tr} \left([A_1 \rho_\infty A_1^* - A_2 \rho_\infty A_2^*] L \right) - 2m \text{Tr} (\rho_\infty L) \\
= 1 - m^2 - 2m \text{Tr} (\rho_\infty L) + 2 \text{Tr} \left([A_1 \rho_\infty A_1^* - A_2 \rho_\infty A_2^*] L \right) \\
= 1 - m^2 + 2(1 - m) \text{Tr} (\rho_\infty L) - 4 \text{Tr} \left[\rho_\infty A_2^* L A_2 \right] \\
= 1 - m^2 + 4 \left(\text{Tr} \left(A_2 \rho_\infty A_2^* \right) \text{Tr} (\rho_\infty L) - \text{Tr} \left(\rho_\infty A_2^* L A_2 \right) \right),
\]
or equivalently
\[
\sigma^2 = 1 - m^2 + 4 \left(\text{Tr} (\rho_\infty A_2^* L A_1) - \text{Tr} \left(A_1 \rho_\infty A_1^* \right) \text{Tr} (\rho_\infty L) \right).
\]

5.3. Examples
We shall now explore several examples to illustrate our central limit theorem. Let us first start with two examples on \(\mathbb{Z} \). The example
\[
B = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad C = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}
\]
that we mentioned earlier falls in the scope of our theorem for it admits a unique invariant state
\[
\rho_\infty = \frac{1}{2} I.
\]
In particular, we have
\[
m = \text{Tr} \left(C \rho_\infty C^* \right) - \text{Tr} \left(B \rho_\infty B^* \right) = 0.
\]
We recover here that the limit Gaussian distribution is centered, as was observed in the simulations above.

The operator \(L \), given by Lemma 5.1, is
\[
L = \frac{1}{3} \begin{pmatrix} -5 & 1 \\ 1 & 0 \end{pmatrix} + \lambda I.
\]
This gives
\[
\sigma^2 = \frac{8}{9}.
\]
Let us compute the case of our trivial example on \(\mathbb{Z} \) obtained by taking
\[
B = \begin{pmatrix} 0 & \sqrt{p} \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}.
\]
In that case, the unique invariant state is
\[
\rho_\infty = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
\]
We find \(m = 1 \) in that case, which is compatible with the behavior we described for this example.
The operator L in this case is

$$L = \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix} + \lambda I.$$

This gives $\sigma^2 = 0$. We recover that the asymptotic behavior of this open quantum random walk is degenerate, with drift $+1$.

Let us end this illustration with the two-dimensional example mentioned in Sect. 3.2:

$$N = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad S = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad W = \frac{1}{8} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix},$$

$$E = \frac{1}{4} \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{\frac{7}{2}} \end{pmatrix}.$$

We find a unique invariant state

$$\rho_\infty = \frac{1}{33} \begin{pmatrix} 17 & 0 \\ 0 & 16 \end{pmatrix}.$$

The average is

$$m = \begin{pmatrix} \frac{29}{132} & -1 \\ \frac{1}{132} \end{pmatrix}.$$

The two solutions of Eq. (12) are then

$$L_1 = \begin{pmatrix} 0 & \frac{68(16+\sqrt{14})}{3993} \\ \frac{68(16+\sqrt{14})}{3993} & \frac{8(16+\sqrt{14})}{3993} \end{pmatrix}, \quad L_2 = \begin{pmatrix} 0 & \frac{8(16+\sqrt{14})}{3993} \\ \frac{8(16+\sqrt{14})}{3993} & \frac{3993}{3993} \end{pmatrix},$$

and we find the following covariance matrix

$$C = \begin{pmatrix} 0.675 & 0.008 \\ 0.008 & 0.211 \end{pmatrix},$$

approximately.

6. Application to Quantum Measurement Records

In this section we leave for a while the setup of open quantum random walks to show that our central limit theorem actually applies to a wider situation: the recording of successive measurements in quantum trajectories.

6.1. Quantum Trajectory Setup

The setup we shall present here is the one of recording quantum trajectories in discrete time: we actually speak of repeated measurements. This setup of repeated quantum measurements, based on the repeated quantum interaction scheme developed in [1], has been introduced and studied mathematically in [9] and [10]; it corresponds to actual important physical experiments such as the ones performed by S. Haroche’s ([4,5]) team on the indirect observation of photons in a cavity.
Very quickly resumed, the setup is the following. A quantum system \mathcal{H}_S is performing an interaction with a quantum environment which has the form of a chain of identical copies of a quantum system \mathcal{K}, that is,

$$\mathcal{H}_E = \bigotimes_{n \in \mathbb{N}^*} \mathcal{K}.$$

The dynamics between \mathcal{H}_S and \mathcal{H}_E is obtained as follows. The small system \mathcal{H}_S interacts with the first copy \mathcal{K} of the chain during an interval $[0, h]$ of time and following some Hamiltonian H_{tot} on $\mathcal{H}_S \otimes \mathcal{K}$. That is, the two systems evolve together following the unitary operator

$$U = e^{-i h H_{\text{tot}}}.$$

After this first interaction, the small system \mathcal{H}_S stops interacting with the first copy and starts an interaction with the second copy which was left unchanged until then. This second interaction follows the same unitary operator U. So, the small system \mathcal{H}_0 interacts repeatedly with the elements of the chain one after the other, following the same unitary evolution U.

We are given an orthonormal basis $\{e_1, \ldots, e_n\}$ of \mathcal{K}. Assume that the initial state in \mathcal{K} before the interaction is $|e_1\rangle \langle e_1|$, and the initial state of \mathcal{H}_S is ρ. The whole state after interaction is

$$U (\rho \otimes |e_1\rangle \langle e_1|) U^*.$$

The quantum channel on \mathcal{H} associated with that evolution is then given by

$$\mathcal{L}(\rho) = \text{Tr}_\mathcal{K} (U (\rho \otimes |e_1\rangle \langle e_1|) U^*) = \sum_{i=1}^n M_i \rho M_i^*;$$

where the M_is are given by $M_i = U_i^1$, the coefficients of the first column of U seen as a block matrix in the basis $\{e_1, \ldots, e_n\}$ of \mathcal{K}.

In particular, notice that this setup is as general as possible, for any given quantum channel $\mathcal{L}(\rho) = \sum_{i=1}^n M_i \rho M_i^*$ on \mathcal{H} could be obtained this way, by choosing a unitary U with the prescribed first column.

Now performing a measurement of any observable X of \mathcal{K} which is diagonal with respect to the basis $\{e_1, \ldots, e_n\}$ gives rise to n different possible values, obtained with respective probability

$$p_i = \text{Tr} (M_i \rho M_i^*).$$

The state of the whole system after the corresponding measurement is then

$$\frac{1}{p_i} M_i \rho M_i^* \otimes |e_i\rangle \langle e_i|.$$

Regarding only the system \mathcal{H}_S, the resulting state is $\rho_1 = \frac{1}{p_i} M_i \rho M_i^*$.

Now repeating the procedure, via the repeated interaction scheme, we see that we obtain a Markov chain $(\rho_n, X_n)_{n \in \mathbb{N}}$, where ρ_n evolves in the set of density matrices of \mathcal{H}_S, and X_n evolves in the set $\{e_1, \ldots, e_n\}$. The law of the
Markov chain is described as follows: if the chain at time \(n \) is at \((\rho, X)\), then at time \(n + 1 \) it jumps to one of the values
\[
\left(\frac{1}{p_i} M_i \rho M_i^*, e_i \right),
\]
i = 1, \ldots, n, with respective probability
\[
p_i = \text{Tr} (M_i \rho M_i^*).
\]
This is the so-called quantum trajectory associated with the quantum channel \(\mathcal{L} \), as obtained by repeated interaction and repeated measurement scheme.

We are interested in the recording of the different random choices for these successive measurements. That is, we are looking at the sequence of values \((X_n)_{n \in \mathbb{N}}\) and we wish to write a central limit theorem for the associated random walk \(S_n = \sum_{i=1}^n X_i \).

6.2. T.C.L. for Quantum Measurement Recordings

Comparing this setup to the one we have developed for the quantum trajectories associated with open quantum random walks shows that it is exactly the same as in Theorem 4.1, for \(d = n \) and

\[
A_1 = M_1, \ldots, A_n = M_n, \quad \text{and} \quad A_{n+1} = \cdots = A_{2n} = 0.
\]

To apply our previous result, we make the same important assumption here:

(H1) : \(\mathcal{L} \) admits a unique invariant state \(\rho_\infty \).

We put
\[
m = \sum_{i=1}^n \text{Tr} (M_i \rho_\infty M_i^*) e_i \in \mathbb{R}^n.
\]

The Lemma 5.1 applies.

Lemma 6.1. For every \(l \in \mathbb{R}^n \), the equation
\[
(L - \mathcal{L}^*(L)) = \sum_{i=1}^n M_i^* M_i (e_i \cdot l) - (m \cdot l) I
\]

admits a solution. The difference between any two solutions of (12) is a multiple of the identity.

As in our main theorem, we denote by \(L_l \) a solution of (12) associated with \(l \in \mathbb{R}^d \). In the case where \(l = e_i \), for \(i = 1, \ldots, d \), we denote \(L_l \) by \(L_i \) simply.

The central limit theorem for measurement records now reads as follows, as a direct application of Theorem 6.2.

Theorem 6.2. Consider the quantum channel
\[
\mathcal{L} (\rho) = \sum_{i=1}^n M_i \rho M_i^*.
\]
on \mathcal{H}, which we assume to admit a unique invariant state ρ_∞. Consider the quantum random walk $(S_n)_{n \in \mathbb{N}}$ on \mathbb{Z}^n associated with the successive measurements associated with the quantum trajectory of \mathcal{L}. Let m and L_is be given as described above. Then $\lim_{n \to \infty} S_n/n = m$ a.s. and

$$\frac{S_n - nm}{\sqrt{n}}$$

converges in law to the Gaussian distribution $\mathcal{N}(0, C)$ in \mathbb{R}^n, with covariance matrix

$$C_{ij} = \delta_{ij} \text{Tr} (M_i \rho_\infty M_i^*) - m_i m_j$$

$$+ (\text{Tr} (M_i \rho_\infty M_i^* L_j) + \text{Tr} (M_j \rho_\infty M_j^* L_i))$$

$$- (m_i \text{Tr} (\rho_\infty L_j) + m_j \text{Tr} (\rho_\infty L_i)).$$

6.3. Examples

One of the simplest interesting example of a quantum trajectory simulating some quantum channel is the one associated with spontaneous emission. In that model, the systems \mathcal{H}_S and \mathcal{K} are both two-level systems, that is, \mathbb{C}^2. The Hamiltonian, in the simplest configuration, is

$$H_{\text{tot}} = i \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - i \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

The associated unitary evolution is

$$U = e^{-ihH_{\text{tot}}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(h) & -\sin(h) & 0 \\ 0 & \sin(h) & \cos(h) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The quantum channel is

$$\mathcal{L}(\rho) = M_1 \rho M_1^* + M_2 \rho M_2^*$$

with

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & \cos(h) \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 & \sin(h) \\ 0 & 0 \end{pmatrix}.\]$$

In what follows we assume that $\cos^2(h) \neq 1$, for otherwise the dynamics is completely trivial.

This quantum channel has a unique invariant state

$$\rho_\infty = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

The quantum trajectories are easy to describe. Given a state

$$\rho = \begin{pmatrix} \alpha & z \\ \bar{z} & \beta \end{pmatrix}$$
and a position X, the next measurement leads to the state
\[
\frac{1}{\alpha + \cos^2(h)\beta} \begin{pmatrix} \alpha & \cos(h)z \\ \cos(h)z & \cos^2(h)\beta \end{pmatrix}
\]
and the position $X + e_1$, with probability $\alpha + \cos^2(h)\beta$, or to the state
\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
\]
and the position $X + e_2$, with probability $\sin^2(h)\beta$.

In the case it reaches the second value above, the quantum trajectory will not change anymore, that is, the state remains
\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
\]
with probability 1, giving always a step along e_1 for the random walk.

Computing m as described above gives
\[
m = e_1, \quad L_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad L_2 = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}.
\]
In the central limit theorem, the covariance matrix is then the null one, which is what could be expected regarding the description we gave for the quantum trajectories of this quantum channel.

One can also compute the central limit theorem with a less trivial example. Consider the quantum channel that we have already met
\[
\mathcal{L}(\rho) = B \rho B^* + C \rho C^*,
\]
with
\[
B = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad C = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.
\]
We find
\[
m = \frac{1}{2}(e_1 + e_2), \quad L_1 = \frac{1}{6} \begin{pmatrix} -5 & 1 \\ 1 & 0 \end{pmatrix}, \quad L_2 = \frac{1}{6} \begin{pmatrix} 5 & -1 \\ -1 & 0 \end{pmatrix}.
\]
This gives the covariance matrix
\[
C = \frac{2}{9} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.
\]

7. The Block-Diagonal Case

7.1. The Main Theorem

The central limit theorem proved above does not concern the case where \mathcal{L} admits several invariant states. This is typically the case when the asymptotic behavior shows up several Gaussian contributions. The proof we have obtained above does not adapt to the general case. However, there is one situation, with several Gaussians which we are able to treat. Let us describe it now.
Consider the operators A_1, \ldots, A_{2d} satisfying
\[\sum_{i=1}^{2d} A_i^* A_i = I, \]
as previously. We now assume that there exists a decomposition
\[\mathcal{H} = E_1 \oplus E_2 \oplus \cdots \oplus E_N \]
of \mathcal{H} into orthogonal subspaces such that all the A_is are block diagonal with respect to this decomposition. That is,
\[A_i(E_j) \subset E_j \]
for all $i = 1, \ldots, 2d$, all $j = 1, \ldots, N$. This hypothesis is denoted by (H1') in the rest of this section. We denote by P_j the orthogonal projector onto E_j. Note that the condition above is equivalent to
\[P_j A_i = A_i P_j \]
for all $i = 1, \ldots, 2d$, all $j = 1, \ldots, N$. We put
\[A_i^{(j)} = A_i P_j = P_j A_i P_j. \]
In the same way, we denote by $L_i^{(j)}$ the completely positive map associated with the operators $(A_i^{(j)})_{i=1}^{2d}$. On each subspace E_j, we have
\[\sum_{i=1}^{2d} A_i^{(j)*} A_i^{(j)} = \sum_{i=1}^{2d} P_j A_i^* A_i P_j = P_j = I_{E_j}. \]
If ρ is a density matrix on \mathcal{H}, we put
\[\rho^{(j)} = P_j \rho P_j. \]

Lemma 7.1. The process $(\rho^{(j)})_{n \geq 0}$ is a martingale for the filtration
\[\mathcal{F}_n = \sigma((\rho_k, X_k), k \leq n). \]
Proof. We have
\[
\mathbb{E}_\rho \left[p_{n+1}^{(j)} \mid F_n \right] = \sum_i \text{Tr} \left(P_j A_i \rho_n A_i^* \right) \\
= \sum_i \text{Tr} \left(P_j A_i \rho_n A_i^* P_j \right) \\
= \sum_i \text{Tr} \left(A_i P_j \rho_n P_j A_i^* \right) \\
= \sum_i \text{Tr} \left(A_i^* A_i \rho_n^{(j)} \right) \\
= \text{Tr} \left(\rho_n^{(j)} \right) = p_n^{(j)}.
\]

Since \((p_n^{(j)})\) is non-negative and bounded, it converges a.s. and in \(L^1\) to a limit that we denote
\[
p^\infty_{\rho_n} = \lim p_n^{(j)}.
\]
\[
\sum_{j=1}^N p^\infty_{\rho_n} = 1 \quad \text{since} \quad \sum_{j=1}^N p_n^{(j)} = 1 \quad \text{for all} \quad n.
\]
As \((p_n^{(j)})\) is a martingale we can consider the associated Girsanov transform (that is, the \(h\)-process). We define \(\mathbb{P}_\rho^{(j)}\) to be the law on the trajectories, which is given on the length \(n\) trajectories by
\[
\mathbb{P}_\rho^{(j)} = \frac{p_n^{(j)}}{p_0^{(j)}} \mathbb{P}_n
\]
where \(\mathbb{P}_n\) is the law on the trajectories with length \(n\). In other words,
\[
\mathbb{P}_\rho^{(j)} = \frac{p^\infty_{\rho_n}}{p_0^{(j)}} \mathbb{P}_\rho.
\]

Proposition 7.2. Under the law \(\mathbb{P}_\rho^{(j)}\) the sequence
\[
\left(\frac{\rho_n^{(j)}}{\text{Tr} \left(\rho_n^{(j)} \right)}, X_n \right)_{n \geq 0}
\]
has the law of the quantum trajectories associated with the family of operators \((A_i^{(j)})_{i=1,\ldots,2d}\) and starting from the state \(\rho_0^{(j)}\).

Proof. The sequence \(p_n^{(j)} = \text{Tr} \left(P_j \rho_n \right), n \in \mathbb{N}\), is a function of \((\rho_n)\). The chain \((\rho_n, X_n)\) under \(\mathbb{P}^{(j)}\) is thus a \(h\)-process of the initial chain for the harmonic function \(p^{(j)}(\rho) = \text{Tr} \left(P_j \rho \right)\). We thus have that \((\rho_n, X_n)\) is a Markov chain under \(\mathbb{P}^{(j)}\) with transition probabilities:
\[
\begin{cases}
\rho_{n+1} = \frac{A_i \rho_n A_i^*}{\text{Tr} \left(A_i \rho_n A_i^* \right)} \\
X_{n+1} = X_n + e_i
\end{cases}
\]
with probability
\[
p_{n+1}^{(j)} \frac{\rho_n^{(j)}}{\rho_n^{(j)}} \text{Tr} (A_i \rho_n A_i^*).
\]
But we have
\[
\frac{p_{n+1}^{(j)}}{p_n^{(j)}} \text{Tr} (A_i \rho_n A_i^*) = \frac{\text{Tr} (P_j \rho_{n+1})}{\text{Tr} (P_j \rho_n)} \text{Tr} (A_i \rho_n A_i^*) = \frac{\text{Tr} (P_j A_i \rho_n A_i^*)}{\text{Tr} (P_j \rho_n)} = \frac{\text{Tr} \left(A_i^{(j)} \rho_n^{(j)} A_i^{(j)*} \right)}{\text{Tr} (P_j \rho_n)}.
\]
We see that the transition probabilities only depend on the component \(\rho_n^{(j)} \). If we consider the sequence
\[
\tilde{\rho}_n^{(j)} = \frac{\rho_n^{(j)}}{\text{Tr} (\rho_n^{(j)})}
\]
we have
\[
\begin{cases}
\tilde{\rho}_n^{(j)} = \frac{A_i^{(j)} \tilde{\rho}_n^{(j)} A_i^{(j)*}}{\text{Tr} \left(A_i^{(j)} \tilde{\rho}_n^{(j)} A_i^{(j)*} \right)} \\
X_{n+1} = X_n + e_i
\end{cases}
\]
with probability
\[
\frac{\text{Tr} \left(A_i^{(j)} \tilde{\rho}_n^{(j)} A_i^{(j)*} \right)}{\text{Tr} (\tilde{\rho}_n^{(j)})}.
\]
This exactly means that the sequence \((\tilde{\rho}_n^{(j)}, X_n)_{n \geq 0} \) under \(\mathbb{P}^{(j)} \) has the law of the quantum trajectories associated with the family \((A_i^{(j)})_{i=1}^{2d} \). \(\square \)

We now make the following hypothesis.

(H2) Each of the mappings \(\mathcal{L}^{(j)} \) admits a unique invariant state \(\rho^{(j)}_{\infty} \).
We then put \(m^{(j)} = (m_1^{(j)}, \ldots, m_{2d}^{(j)}) \) where \(m_k^{(j)} = \text{Tr} (A_k \rho^{(j)}_{\infty} A_k^*) \).

(H3) The \(m^{(j)} \)s are all different.

Under these hypotheses, we have the following result.

Theorem 7.3. Under the hypotheses (H1’), (H2) and (H3), we have the following properties.

1. For all \(j = 1, \ldots, N \),
\[
\mathbb{P}_\rho \left[p_0^{(j)} = 1 \right] = p_0^{(j)} = 1 - \mathbb{P}_\rho \left[p_0^{(j)} = 0 \right],
\]
that is, the vector \(\tilde{p}_n = (p_1^{(1)}, \ldots, p_n^{(N)}) \) converges to \((0, \ldots, 0, 1_j, 0, \ldots, 0) \) with probability \(p_0^{(j)} \) (note that \(\sum_j p_0^{(j)} = 1 \)).
(2) Conditionally to \(p^{(j)}_\infty = 1 \) (that is, under the measure \(\mathbb{P}_\rho \left[\cdot \mid p^{(j)}_\infty = 1 \right] = \mathbb{P}^{(j)}_\rho \)) we have that \((\tilde{\rho}^{(j)}_n, X_n)\) has the law of the quantum trajectories associated with the family of matrices \((A_i^{(j)})_{i=1}^{2d}\). In particular, under this conditional law, the process

\[
\frac{(X_n - nm^{(j)})}{\sqrt{n}}
\]

converges in distribution to the Gaussian distribution \(\mathcal{N}(0, C^{(j)}) \), where \(C^{(j)} \) is given by the same formula as in Theorem 5.2, but for the family \((A_i^{(j)})\).

Note that the theorem above concretely means that the quantum trajectories in that case are a mixture of open quantum random walks of the form of Theorem 5.2. The associated stochastic process can be obtained as follows: with probability \(p^{(0)}_j \) the process \((X_n)\) follows the law of the open quantum random walks with associated matrices \(A_i^{(j)} \) and then satisfies the corresponding central limit theorem with mean \(m^{(j)} \) and covariance matrix \(C^{(j)} \).

Proof. By proposition 7.2, we know that under \(\mathbb{P}^{(j)}_\rho \) the sequence \((\tilde{\rho}^{(j)}_n, X_n)\) has the law of the quantum trajectories associated with the family \((A_i^{(j)})\). As the mapping \(\mathcal{L}^{(i)} \) admits a unique invariant state, we also know that if we consider \(N_n(i) \) to be the number of jumps \(e_i \) made by the quantum trajectory up to time \(n \), then we have

\[
\lim \frac{1}{n} N_n(i) = m^{(j)}_i \quad \text{almost surely for the measure } \mathbb{P}^{(j)}_\rho \text{ using the law of large numbers for quantum measurements of Theorem 6.2. This implies that the measures } \mathbb{P}^{(j)}_\rho \text{ are all singular since the } m^{(j)}_i \text{'s are all different by hypothesis (H3). Indeed, let } \]

\[
\mathcal{A}_j = \left\{ \lim \frac{1}{n} N_n = m^{(j)} \right\}.
\]

Then, if \(j \neq j' \), obviously \(\mathcal{A}_j \cap \mathcal{A}_{j'} = \emptyset \) and \(\mathbb{P}^{(j)}_\rho (\mathcal{A}_j) = 1, \mathbb{P}^{(j')}_\rho (\mathcal{A}_{j'}) = 1 \). Consider now the sets

\[
\Omega^{(j)} = \{ p^{(j)}_\infty > 0 \}.
\]

Then, if \(j \neq j' \),

\[
\mathbb{P}_\rho (\Omega_j \cap \Omega_{j'}) = 0.
\]

Indeed, otherwise since \(\mathbb{P}^{(j)}_\rho = \frac{p^{(j)}_\infty}{p^{(j)}_0} \mathbb{P}_\rho \), it would imply that \(\mathbb{P}^{(j)}_\rho (\Omega_j \cap \Omega_{j'}) > 0 \) and \(\mathbb{P}^{(j')}_\rho (\Omega_j \cap \Omega_{j'}) > 0 \). This is impossible since \(\mathbb{P}^{(j)}_\rho \) and \(\mathbb{P}^{(j')}_\rho \) are singular.
Finally, since $\sum_{j=1}^N p^{(j)}_\infty = 1$, it implies that \mathbb{P}_ρ a.s. one of the $p^{(j)}_\infty$ is 1 and the others 0. In particular, it implies that for all j

$$\mathbb{P}_\rho(p^{(j)}_\infty = 0 \text{ or } 1) = 1.$$

This implies that we have

$$\mathbb{P}^{(j)}_\rho = \mathbb{P}_\rho \left[\cdot \mid p^{(j)}_\infty = 1 \right]$$

for

$$\mathbb{P}_\rho \left[\cdot \mid p^{(j)}_\infty = 1 \right] = \frac{p^{(j)}_\rho p^{(j)}_\rho}{\mathbb{P}_\rho \left[p^{(j)}_\infty = 1 \right]},$$

but $\mathbb{P} \left[p^{(j)}_\infty = 1 \right] = p^{(j)}_0$ since $(p^{(j)}_n)$ is a martingale.

The conclusion now is a direct consequence of the central limit theorem established for the chain (X_n), but now associated with the family $(A^{(j)}_i)_{i=1}^{2d}$ using previous Proposition 7.2.

References

[1] Attal, S., Pautrat, Y.: From repeated to continuous quantum interactions. Annales Henri Poincaré. J. Theor. Math. Phys. 7, 59–104 (2006)

[2] Attal, S., Petruccione, F., Sabot, C., Sinayskiy, I.: Open quantum random walks. J. Stat. Phys. 147(4), 832–852 (2012)

[3] Hall, P., Heyde, C.C.: Martingale Limit Theory and its Applications. Academic Press, New York (1980)

[4] Haroche, S., Gleyzes, S., Kuhr, S., Guerlin, C., Bernu, J., Deléglise, S., Busk-Hoff, U., Brune, M., Raimond, J.-M.: Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297 (2007)

[5] Haroche, S., Sayrin, C., Dotsenko, I., Zhou, X.X., Peaudecerf, B., Rybarczyk, T., Gleyzes, S., Rouchon, P., Mirrahimi, M., Amini, H., Brune, M., Raimond, J.-M.: Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73 (2011)

[6] Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

[7] Kummerer, B., Maassen, H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A Math. Gen. 37, 11889–11896 (2004)

[8] Konno, N.: A new type of limit theorems for one-dimensional quantum random walks. J. Math. Soc. Jap. 57, 1179–1195 (2005)

[9] Pellegrini, C.: Existence, uniqueness and approximation of a stochastic Schrödinger equation: the diffusive case. Ann. Probab. 36(6), 2332–2353 (2008)
[10] Pellegrini, C.: Existence, Uniqueness and Approximation of the jump-type Stochastic Schrödinger Equation for two-level systems. Stochast. Process Appl. 120(9), 1722–1747 (2010)

Stéphane Attal, Nadine Guillotin-Plantard and Christophe Sabot
Institut Camille Jordan
Université de Lyon
Université de Lyon 1, C.N.R.S
21, av. Claude Bernard
69622 Villeurbanne Cedex, France
e-mail: attal@math.univ-lyon1.fr;
nadine.guillotin-plantard@univ-lyon1.fr;
sabot@math.univ-lyon1.fr

Communicated by Denis Bernard.
Received: April 29, 2013.
Accepted: December 18, 2013.