Размеркаванне цэлых алгебраічных лікаў дадзенай ступені на рэчаіснай прамой

Каляда Д. У.

Анатацыя

У артыкуле атрымана асімптатычная формула для колькасці цэлых алгебраічных лікаў α зададзенай ступені n, якія маюць вышыню H(α) ≤ Q і ляжаць у прымержку I, пры неабмежаваным нарastaцці Q. Таксама паказана, што ёсць бесканечна многа прымержкаў, для якіх хібнасць асімптатычнай формулі мае парадак O(Q^{n−1}). Даказана, што з ростам Q размеркаванне алгебраічных цэлых ступені n імкнецца да размеркавання алгебраічных лікаў (n − 1)-й ступені.

1 Уводзіны і галоўныя вынікі

Размеркаванне алгебраічных лікаў і, у прыватнасці, алгебраічных цэлых цікавіць навукоўцаў даволі даўно. Сярод задач у гэтай галіне разглядаюцца прыбліжэнні рэчаісных лікаў алгебраічнымі. Тут натуральным чынам узнікае паняцце рэгулярных сістэмаў [6]. Вынікі [6] былі палепшаны ў артыкулах [7, 8]. Развіццём гэтага напрамку даследавання ўстваляны рэгіянальныя сістэмы алгебраічных цэлых лікаў [9].

Юсці штэрага, у якіх падлічваюцца асімптатычная колькасць алгебраічных лікаў з зададзенымі ступенемі і амбажаванымі мультыплікатыўнымі вышынямі, ёсць шэраг работ, у якіх падлічваюцца асімптатычная колькасць лікаў з зададзенымі ступенемі і амбажаванымі мультыплікатыўнымі вышынямі у палях пашыранняў поля рацыянальных лікаў [7–9]. У рабоце [10] даказана акцэнт для колькасці цэлалікатыўных магчымых задач размеркавання лікаў.

Аднак поўная карціна размеркавання для вызначаных ступеней даўгі час застаўалася нязвысветлена нават для рэчаісных алгебраічных лікаў другога ступені. Гэта адзначана ў пытанні 1885 годзе К. Малера ў пісьме У. Г. Спрынджу.
ступені n з вышынёй не больш за Q на прамежку $[a, b]$ раўняецца

$$Q^{n+1} \int_a^b \phi_n(t) \, dt + O(Q^n (\ln Q)^\delta(n)).$$

Тут функція $\phi_n(t)$ вызначаецца па формуле:

$$\phi_n(t) = \frac{1}{\zeta(n+1)} \int_{\Delta_n(t)} \left| \sum_{k=1}^n kp_k t^{k-1} \right| \, dp_1 \ldots dp_n, \quad t \in \mathbb{R},$$

дзе

$$\Delta_n(t) = \left\{ (p_n, \ldots, p_1) \in \mathbb{R}^n : \max_{1 \leq i \leq n} |p_i| \leq 1, \ p_n > 0, \ |p_n t^n + \ldots + p_1 t| \leq 1 \right\} ,$$

$\zeta(x)$ — дэта-функція Рымана. У астаткавым члене няўная сталая сімвала $O(\cdot)$ залежыць толькі ад ступені n, а паказчык ступені лагарыфма раўняецца:

$$\delta(n) = \begin{cases} 1, & n \leq 2, \\ 0, & n \geq 3. \end{cases}$$

Тут і далей у артыкуле пад вышынёю алгебраічнага ліку маецца на ўвазе т.зв. звычайная вышыня, якая вызначаецца як максімум абсалютных велiчынь каэфiцыентаў мiнiмальнага мнагачлена алгебраiчнага ліку.

У дадзенай працы даследуюць размеркаванне рэчаiсных цэлы х алгебраiчных лiкаў адвольнай ступенi. Па сутнасцi, будзе даказана, што алгебраiчныя цэлыя лiкi n-ай ступені і вышыні, не больш за Q, пры $Q \to \infty$ размяркоўваюцца на рэчаiснай восi амаль гэтак жа, як і алгебраiчныя лiкi $(n-1)$-ай ступені для тых жа вышынь.

Няхай $p(x) = a_n x^n + \ldots + a_1 x + a_0$ — мнагачлен ступені n, і няхай $H(p)$ — яго вышыня, вызначаная як $H(p) = \max_{0 \leq i \leq n} |a_i|$. Няхай $\alpha \in \mathbb{C}$ — алгебраiчны лiк. Мiнiмальньым мнагачленам алгебраiчнага ліку α будзем называць ненулявы мнагачлен p найменшай ступені $\deg(p)$ з цэлымi ўзаемна простымi каэфiцыентамi, такi што $p(\alpha) = 0$. Для алгебраiчнага ліку α яго ступень $\deg(\alpha)$ і вышыню $H(\alpha)$ вызначым як ступень i вышыню адпаведнага мiнiмальнага мнагачлена.

Запiс $\# M$ абазначае лiк элемэнаў у канечным мностве M, а $\text{mes}_k M$ абазначае k-мерную Лебегаву меру мноства $M \subset \mathbb{R}^d$ $(k \leq d)$. Даўжыню прамежка I будзем абазначаць праз $|I|$. Еўклідавая норма вектара $x \in \mathbb{R}^k$ абазначана праз $\|x\|$. Для абавязкавання асiмптатычных суадносiн памiж функцыйнi будзем карыстацца сiмвалам Вiнаградава \ll: выраз $f \ll g$ значыць, што $f \leq c g$, дзе c — сталая, якая залежыць толькi ад ступені n разглядаемых алгебраiчных лікаў. Запiс $f \asymp g$ выкарыстоўваецца для асiмптатычна эквiвалентных функцый, г. з.н. $g \ll f \ll g$. Суадносiны $f \ll_{x_1, x_2, \ldots} g$
падразумяваюць, што няўныя сталыя залежаць толькі ад велічынь x_1, x_2, \ldots. Асімп-
tатычная эквівалентнасць $f \sim_{x_1, x_2, \ldots} g$ вызначаецца аналагічна.

Няхай сімвал $A(p)$ абазначае мноства каранёў ненулявага мнагачлена $p(x)$. Вы-
значым $A(p)$ як кратнае мноства, дзе кожны кратны карань мнагачлена p ўклю-
чаны ў мноства столькі разоў, колькі яго кратнасць. Для мноства $I \subset \mathbb{R}$ пры
$A(p, I) := A(p) \cap I$ абазначым мноства каранёў мнагачлена p, што ляжаць у I (так-
сама з улікам кратнасці).

Няхай $n \in \mathbb{N}$, $Q > 1$. Вызначым наступнае мноства магічленаў:

$$U_n(Q) = \{ p(x) \in \mathbb{Z}[x] : \deg(p(x) - x^n) < n, H(p) \leq Q \}.$$

Няхай \mathcal{O}_n — мноства алгебраічных цэлых лікаў ступені n. Няхай $\Omega_n(Q, x)$ абазна-
чае колькасць рэчаісных цэлых алгебраічных лікаў ступені n з вышынёю не больш за Q, меншых за x:

$$\Omega_n(Q, x) := \# \{ \alpha \in \mathcal{O}_n \cap \mathbb{R} : H(\alpha) \leq Q, \alpha < x \}.$$

Варта заўважыць, што алгебраічныя цэлыя лікі першай ступені гэта проста рацыянальныя цэлыя лікі, мноства якіх нідзе не шчыльнае на рэчаісной восі. Таму далей усюды будзем лічыць, што $n \geq 2$.

Будуць даказаны наступнія дзве тэарэмы.

Тэарэма 1. Існуе дадатная функцыя $\omega_n(\xi, t)$, такая што для любых $a < b$ справяд-
ліва роўнасць:

$$\Omega_n(Q, b) - \Omega_n(Q, a) = Q^n \int_a^b \omega_n(Q^{-1}, t) \, dt + R_n(Q),$$

дзе $R_n(Q)$ — хібнасць, якая мае парадак

$$R_n(Q) \ll_n \begin{cases} Q^{n-1}, & n \geq 3, \\ Q \ln Q, & n = 2. \end{cases}$$

Пры гэтым існуюць прамежкі, для якіх астаткавы складнік $R_n(Q)$ мае парадак, не меншы за $O(Q^{n-1})$.

Функцыя $\omega_n(\xi, t)$ мае выгляд:

$$\omega_n(\xi, t) = \int_{\mathcal{D}_n(\xi, t)} \left| n \xi t^{n-1} + \sum_{k=1}^{n-1} kp_k t^{k-1} \right| \, dp_1 \ldots dp_{n-1},$$

дзе $\mathcal{D}_n(\xi, t) = \{ (p_1, \ldots, p_{n-1}) \in \mathbb{R}^{n-1} : |p_i| \leq 1, |\xi t^n + p_{n-1} t^{n-1} + \cdots + p_1 t| \leq 1 \}$.

3
Теорема 2. Для любого $t \in \mathbb{R}$ справедлива граничная равенство:

$$\lim_{\xi \to 0} \omega_n(\xi, t) = \psi_n(t),$$

где $\psi_n(t) := 2\zeta(n) \phi_{n-1}(t)$, $\zeta(t)$ — дзета-функция Римана, а $\phi_n(t)$ вычислена паводле (5).

При этом для $\xi < 1$ выполняется неравенство

$$|\omega_n(\xi, t) - \psi_n(t)| \ll n \xi,$$

где дадутые константы $\kappa_1(n)$, $\kappa_2(n)$ и няяўная стала \bar{V} сімвале Вінаградава за-лежачь толькі ад n.

Неравенство (3) показывает, что для любых рациональных t справедлива актняка $|\omega_n(\xi, t) - \psi_n(t)| \ll_n \xi$, т.е. функция $\omega_n(\xi, t)$ равнонарна сближается к $\psi_n(t)$ при имкненні ξ до нуля.

Таким чынам, па сутнасці, теорема 2 свярджае, што гранічная пышлянасць раз-меркавання рациональных цэлых алгебраічных лікаў ступені n супадае да пышлянасцю размеркавання рациональных алгебраічных лікаў ступені $n - 1$.

2 Дапаможныя сцвярджэнні

Лема 1. Няхай $U_{n}\ast(Q)$ — мноства прыводных унітарных цэлапікавых мнагачленоў ступені n з вышынёю, не большай за Q. Тады справедлива асимптотычная актняка:

$$\#U_{n}\ast(Q) \asymp_n \begin{cases} Q^{n-1}, & n \geq 3, \\ Q \ln Q, & n = 2. \end{cases}$$

Лема 1 даказваецца тым жа шляхам, што і лема 1 у [2].

Лема 2 ([6]). Няхай $D \subset \mathbb{R}^d$ — абмежаваны абсяг, які складаецца з усіх пунктаў (x_1, \ldots, x_d), якія задавальняюць канечнае мноства алгебраічных няроўнасцей

$$F_i(x_1, \ldots, x_d) \geq 0, \quad 1 \leq i \leq k,$$

dзе F_i — мнагачлен з рациональных крафтіцентамі ступені $\deg F_i \leq m$. Няхай

$$\Lambda(D) = D \cap \mathbb{Z}^d.$$

Тады

$$\# \Lambda(D) - \mes_d D \leq C \max(\bar{V}, 1),$$
дзе стала C залежыць толькі ад d, k, m, а V ёсць найбольшая r-мерная мера праекцый мноства D на ўсе каардынатныя падпрасторы, якія атрымліваюцца прыроўніваннем $d - r$ каардынат пунктаў у D нулю, r прабягае ўсе значенні ад 1 да $d - 1$, з.з.

$$V(D) := \max_{1 \leq r < d} \{ \tilde{V}_r(D) \}, \quad \tilde{V}_r(D) := \max_{J \subseteq \{1, \ldots, d\}, \#J = r} \{ \bar{V}_r(D) \},$$

dзе $\tilde{V}_r(D)$ — артаганальная праекцыя вобласці D на каардынатную падпрастору, утвораную каардынатамі з індэксамі ў J.

Лема 3. Няхай $n \geq 2$, ξ — сталы дадатны лік. Няхай вектары (a_n, \ldots, a_1, a_0) і ($b_{n-2}, \ldots, b_1, b_0, \alpha, \beta$) звязаны тоеасносю

$$\xi x^n + \sum_{k=0}^{n-1} a_k x^k = (x - \alpha)(x - \beta) \left(\xi x^{n-2} + \sum_{m=0}^{n-3} b_m x^m \right). \quad (4)$$

Тады ў матрычнай форме гэта сувязь выглядае наступным чынам:

$$\begin{pmatrix}
\xi \\
\alpha \\
\alpha \\
\ddots \\
\alpha \\
\alpha \\
0
\end{pmatrix}
\begin{pmatrix}
1 \\
-(\alpha + \beta) \\
\alpha \beta \\
\alpha \beta \\
\alpha \beta \\
1 \\
0
\end{pmatrix}
=
\begin{pmatrix}
\xi \\
\alpha \\
\alpha \\
\ddots \\
\alpha \\
\alpha \\
0
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
1 \\
\ddots \\
1 \\
\ldots \\
0 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
\xi \\
\beta \\
\beta \\
\ddots \\
\beta \\
\beta \\
0
\end{pmatrix}, \quad (5)$$

а якабіян такай замены каардынат раўняецца

$$\det J = \left| \frac{\partial(a_n, \ldots, a_1, a_0)}{\partial(b_{n-3}, \ldots, b_0; \alpha, \beta)} \right| = (\beta - \alpha) \cdot g(b, \alpha) \cdot g(b, \beta),$$

dзе $g(b, x) := \xi x^{n-2} + b_{n-3} x^{n-3} + \ldots + b_1 x + b_0$.

Замечанне: пры $n = 2$ якабіян роўны $\xi^2 (\beta - \alpha)$.

Доказ лемы 3 вядзеца па шляху доказаў лем 1, 2, 3 у [3].

Лема 4. Няхай $I \subset \mathbb{R}$ — канечны прымержак, $|I| \leq 1$. Няхай $\hat{G}_n(\xi, k, I)$ — мноства мнагачленаў ступені n і вышыні, не большай за 1, са старшим каэфіцьентам ξ, $0 < \xi \leq 1$, які маюць роўна k каранёў на мностве I. Тады

$$\mes_n \bigcup_{k=2}^n \hat{G}_n(\xi, k, I) \leq \lambda(n) \left(\xi + \rho^{-3} \right)^2 |I|^3,$$

дзе $\rho = \max(1, |\alpha + \beta|/2)$, а $\lambda(n)$ — пастаянная, якая залежыць толькі ад n. 5
Доказ. Абазначым $\mathcal{M} := \bigcup_{k=2}^{n} \tilde{G}_n(\xi, k, I)$. Ацэнім зверху аб’ём

$$\mathrm{mes}_n \mathcal{M} = \int_{\mathcal{M}} da.$$

Любы мнаўчатлен $p(x)$ з мноства \mathcal{M} можна запісаць у выглядзе

$$p(x) = \xi x^n + a_{n-1}x^{n-1} + \ldots + a_0 = (x - \alpha)(x - \beta)(\xi x^{n-2} + b_{n-3}x^{n-3} + \ldots + b_0),$$

dзе $\alpha, \beta \in I$.

Зробім замену каардынат (5). Пры гэтым умова

$$a \in \mathcal{M} \text{ раўназначная сістэме няроўнасцей}$$

$$\begin{cases}
|a_{n-1}| = |b_{n-3} - (\alpha + \beta)\xi| \leq 1, \\
|a_{n-2}| = |b_{n-4} - (\alpha + \beta)b_{n-3} + \alpha\beta\xi| \leq 1, \\
|a_k| = |b_{k-2} - (\alpha + \beta)b_{k-1} + \alpha\beta b_k| \leq 1, \quad k = 2, \ldots, n - 3, \\
|a_1| = |-(\alpha + \beta)b_0 + \alpha\beta b_1| \leq 1, \\
|a_0| = |\alpha b_0| \leq 1, \\
a \leq \alpha < b, \\
a \leq \beta < b.
\end{cases} \tag{6}$$

Згодна з лемаю 3 атрымліваем

$$\mathrm{mes}_{n+1} \mathcal{M}(I) \leq \int_{\mathcal{M}^*(I)} |\alpha - \beta| \cdot |g(b, \alpha) g(b, \beta)|\, db\, d\alpha\, d\beta, \tag{7}$$

dзе $\mathcal{M}^*(I) \text{ — новая вобласць інтэгральнага, вызначанага няроўнасцямі} \tag{6}$, а $g(b, x) = \xi x^{n-2} + \ldots + b_1x + b_0$. Варта падкрэсліць, што тут замест роўнасці стаіць няроўнасць. Прычына гэтага ў тым, што мнаўчатлен, у якога $k > 2 \text{ каранёў на прымежку} I$, можна прадставіць \tag{5} рознымі спосабамі y выглядзе \tag{4}.

Перапішам кратны інтэграл у (7) наступным чынам:

$$\mathrm{mes}_{n+1} \mathcal{M}(I) \leq \int_{I \times I} |\alpha - \beta| \cdot \int_{\mathcal{M}^*(\alpha, \beta)} |g(b, \alpha) g(b, \beta)|\, db\, d\alpha\, d\beta,$$

dзе $\mathcal{M}^*(\alpha, \beta) \text{ — мноства вектараў} b \in \mathbb{R}^{n-1}$, якія задавальняюць сістэму няроўнасцей \tag{6}.

Каб ацаніць унутраны інтэграл, дастаткова ацаніць зверху м еру

$$\mathrm{mes}_{n-2} \mathcal{M}^*(\alpha, \beta) \text{i функцыю} G(b, \alpha, \beta) := g(b, \alpha) g(b, \beta) \text{ для} b \in \mathcal{M}^*(\alpha, \beta). \text{ Разглядзім два выпадкі.}$$

1) Няхай $|a + b|/2 \leq 1$.

6
Ацэнім меру $\operatorname{mes}_{n-2} \mathcal{M}^*(\alpha, \beta)$ з дапамогай матрычнай роўнасці, якая вынікае непасрэдна з (5):

$$
\begin{pmatrix}
 a_{n-1} - c_1 \xi \\
 a_{n-2} - c_0 \xi \\
 \vdots \\
 a_3 \\
 a_2
\end{pmatrix} =
\begin{pmatrix}
 c_2 & 0 \\
 c_1 & c_2 \\
 \vdots & \vdots & \ddots \\
 c_0 & \cdots & \cdots & 0 \\
 \vdots & \vdots & \cdots & c_1 & c_2
\end{pmatrix} \cdot
\begin{pmatrix}
 b_{n-3} \\
 b_{n-4} \\
 \vdots \\
 b_1 \\
 b_0
\end{pmatrix},
$$

(8)

dзе $c_0 = \alpha \beta$, $c_1 = - (\alpha + \beta)$, $c_2 = 1$.

Вобраз вобласці $\mathcal{M}^*(\alpha, \beta)$ у каардынатах $(a_{n-1}, \ldots, a_3, a_2)$ пасля дамнаждэння на матрыцу ψ заключаны ψ паралелепіпедзе адзінкавага аб’ёму. Вызначнік матрыцы ψ раўняецца адзінцы. Адсюль мае верхнюю ацэнку для меры

$$
\operatorname{mes}_{n-2} \mathcal{M}^*(\alpha, \beta) \leq 1.
$$

Ацэнім цяпер абсалютную велічыню функцыі $G(b, \alpha, \beta)$ на мностве $b \in \mathcal{M}^*(\alpha, \beta)$. Для гэтага ацэнім найбуйнейшыя значэнні каардынат $b_{n-3}, \ldots, b_1, b_0$ у абсягу $\mathcal{M}^*(\alpha, \beta)$.

Улічваючы, што $|a + b|/2 \leq 1$ і $0 < b - a \leq 1$, має наступную ацэнку для каардынатаў матрыцы ψ тоеасці (5):

$$
\max_{0 \leq i \leq 2} |c_i| = O(1).
$$

Пачынаючы з b_{n-3}, паслядоўна выражаю кэфіцыенты b_i і па індукцыі атрымліваем

$$
\max_{0 \leq i \leq n-3} |b_i| \ll_n 1.
$$

Адсюль адрэzu ж вынікае, што $|G(b, \alpha, \beta)| \ll_n 1$ для любых $b \in \mathcal{M}^*(\alpha, \beta)$.

Такім чынам, пры $|a + b|/2 \leq 1$ для любых $\alpha, \beta \in (a, b)$ атрымліваем

$$
\int_{\mathcal{M}^*(\alpha, \beta)} |G(b, \alpha, \beta)| \, db \ll_n 1.
$$

У выніку, пры $|a + b|/2 \leq 1$ справядліва ацэнка

$$
\operatorname{mes}_{n+1} \mathcal{M}(I) \ll_n |I|^3.
$$

(9)

2) Няхай цяпер $|a + b|/2 > 1$.

З роўнасці (5) маём

$$
\begin{pmatrix}
 a_{n-3} \\
 a_{n-4} \\
 \vdots \\
 a_1 \\
 a_0
\end{pmatrix} =
\begin{pmatrix}
 c_0 & c_1 & \cdots \\
 c_0 & \cdots & \cdots \\
 \vdots & \vdots & \ddots \\
 \vdots & \vdots & \cdots & c_1 & c_2 \\
 0 & c_0 & c_1 & \cdots & c_0
\end{pmatrix} \cdot
\begin{pmatrix}
 b_{n-3} \\
 b_{n-4} \\
 \vdots \\
 b_1 \\
 b_0
\end{pmatrix},
$$

(10)
дзе \(c_0 = \alpha \beta, \ c_1 = -(\alpha + \beta), \ c_2 = 1 \).

Адсюль атрымліваем верхнюю ацэнку для меры
\[
\mes_{n-2} M^*(\alpha, \beta) \leq |\alpha \beta|^{-n+2}.
\]

Ацэнім найбольшае абсалютнае значэнне функцыі \(G(b, \alpha, \beta) \). Для гэтага зноў дзязем верхня ацэнкі абсалютных велічынь каэфіціентаў \(b_i \).

Для каэфіцыентаў \(c_i \) у (10) справядліва наступная ацэнка:
\[
c_0 \asymp \rho^2, \ c_1 = O(\rho), \ c_2 = 1,
\]
дзе \(\rho = |a + b|/2 \). Тут таксама ўлічаны, што \(0 < b - a \leq 1 \).

Цяпер па індукцыі ацэнім зверху каэфіціент \(b_i \). З (10) маем
\[
|b_0| = |c_0|^{-1}|a_0| = O(\rho^{-2}),
\]
\[
|b_1| = |c_0|^{-1}|a_1 - c_1 b_0| = O(\rho^{-2}) O(1 + \rho^{-1}) = O(\rho^{-2}).
\]

Працягваючы па індукцыі для \(i = 2, 3, \ldots, n - 3 \), атрымліваем
\[
|b_i| = |c_0|^{-1}|a_i - c_1 b_{i-1} - c_2 b_{i-2}| = O(\rho^{-2}) O(1 + \rho^{-1} + \rho^{-2}) = O(\rho^{-2}),
\]
дзе няяўныя сталыя ў сімвале \(O(\cdot) \) залежыць толькі ад \(n \).

Адсюль для любых \(x \in [a, b) \) атрымліваем
\[
|G(b, x)| = O(\xi \rho^n - 2 + \rho^{n-5}), \ i \ \xi \ \выніку
\]
\[
|G(b, \alpha, \beta)| = O \left(\rho^{2(n-2)} \left(\xi + \rho^{-3} \right)^2 \right).
\]

Такім чынам, атрымліваем
\[
\mes_n \ M \leq \lambda(n) \left(\xi + \rho^{-3} \right)^2 |I|^3.
\]
Лема даказана. \(\square \)

Лема 5 (2). Няхай \(\alpha = a/b \) — нескарачальны дроб, \(a \in \mathbb{Z}, \ b \in \mathbb{N} \). Тады на адрэзку
\([\alpha - r_0, \ \alpha + r_0], \ dзе \)
\[
r_0 = r_0(\alpha, Q) = \frac{\kappa(n)}{b^2 Q},
\]
\(\kappa(n) \) — эфектыўная пастаянная, няма ні аднаго алгебраічнага ліку \(n \)-й ступені з вышынёй, не большай за \(Q \).

Лема 6. Няхай \(V \subset \mathbb{R}^k \) — абмежаваная вобласць, сіметрычная адносна пачатку каардынат. Няхай \(\mathbf{v} = (v_1, \ldots, v_k) \) — некаторы сталы ненулявы вектар, \(a \in \mathbb{R} \) — некаторы лік. Тады
\[
0 < \int_V |\mathbf{v} \cdot \mathbf{x} + \varepsilon| \, d\mathbf{x} - \int_V |\mathbf{v} \cdot \mathbf{x}| \, d\mathbf{x} \leq \varepsilon \cdot \mes_k V(\varepsilon),
\]
дзе
\[
V(\varepsilon) := \{ \mathbf{x} \in V : |\mathbf{v} \cdot \mathbf{x}| \leq \varepsilon \}.
\]
8
Лема 7. Няхай \(a = (a_1, \ldots, a_k) \) і \(b = (b_1, \ldots, b_k) \) — некаторыя сталы некалінейныя вектары. Няхай вобласць \(V \subset \mathbb{R}^k \) зададзена сістэмай няроўнасцей

\[
\begin{align*}
|a \cdot x| & \leq H_1, \\
|b \cdot x| & \leq H_2,
\end{align*}
\]

dзе \(x = (x_1, \ldots, x_k) \in \mathbb{R}^k \) — радыус-вектар.

Тады плошча сячэння \(S \) вобласці \(V \) лінейнаю абалаўкай вектараў \(a \) і \(b \) раўняецца

\[
\text{mes}_2 S = \frac{4H_1H_2}{\sqrt{a^2b^2 - (a \cdot b)^2}},
\]

а для дыяметра сячэння справядліва няроўнасць

\[
\frac{\sqrt{b^2H_1^2 + a^2H_2^2}}{\sqrt{a^2b^2 - (a \cdot b)^2}} \leq \text{diam} S \leq \frac{\|b\|H_1 + \|a\|H_2}{\sqrt{a^2b^2 - (a \cdot b)^2}}.
\]

3 Доказ асноўнай тэарэмы

Няхай \(I = [\alpha, \beta) \) — канечны прамежак. Абазначым прыз \(\mathcal{N}_n(Q, k, I) \) колькасць непрыводных унітарных мнагачленаў \(n \)-й ступені з вышынёй не большай чым \(Q \), якія маюць роўна \(k \) каранёў на мностве \(I \). Нескладана заўважыць, што

\[
\Omega_n(Q, \beta) - \Omega_n(Q, \alpha) = \sum_{k=1}^{n} k \mathcal{N}_n(Q, k, I). \tag{11}
\]

Мнosta рэчаісных мнагачленаў ступені \(n \) і вышыні не больш чым 1 са старшым кэфiцыентам \(\xi \), якія маюць роўна \(k \) каранёў на мностве \(S \), абазначым як

\[
\mathcal{G}_n(\xi, k, S) := \{ p \in \mathbb{R}[x] : \deg(p(x) - \xi x^n) < n, \ H(p) \leq 1, \ \#A(p, S) = k \}.
\]

З лем \(\text{I} \) і \(\text{II} \) вынікае

\[
\mathcal{N}_n(Q, k, I) = Q^n \text{mes}_n \mathcal{G}_n(Q^{-1}, k, I) + R_n(Q), \tag{12}
\]

dзе \(R_n(Q) = O(Q^n) \) пры \(n \geq 3 \), і \(R_n(Q) = O(Q \ln Q) \) пры \(n = 2 \); няяўныя пастаянныя \(\gamma \) сімвале \(O(\cdot) \) залежаць толькі ад \(n \).

Нескладана пераканаць, што для любога \(0 < \xi \leq 1 \) функцыя

\[
\mathcal{Y}_n(\xi, S) := \sum_{k=1}^{n} k \text{mes}_n \mathcal{G}_n(\xi, k, S)
\]

9
адытвная і абмежаваная на множстве ўсіх падмностваў $S \subseteq \mathbb{R}$. Адсюль вынікае, што можна вызначыць функцыю

$$\tilde{\Omega}_n(\xi, x) := \Upsilon_n(\xi, (-\infty, x)),$$

для якой будзе справядліва

$$\tilde{\Omega}_n(\xi, \beta) - \tilde{\Omega}_n(\xi, \alpha) = \sum_{k=1}^{n} k \mes_n \tilde{\mathcal{G}}_n(\xi, k, I). \quad (13)$$

Пакажам, што $\tilde{\Omega}_n(\xi, x)$ дыферэнцавальная па x. Няхай

$$\mathcal{D}(I) = \mathcal{D}(\xi, I) = \{ p \in \mathbb{R}^{n+1} : p_n = \xi, p(\alpha)p(\beta) < 0, H(p) \leq 1 \},$$

dзе $p = (\xi, p_{n-1}, \ldots, p_1, p_0)$ — вектар каэфіцыентаў мнагачлена $p(x) = \xi x^n + \ldots + p_1 x + p_0$, а $\xi = Q^{-1}$. Відавочна, любы мнагачлен з вобласці \mathcal{D} мае няцотны лік каранёў на прамежку I.

З лемы [4] маєм

$$\tilde{\Omega}_n(\xi, \beta) - \tilde{\Omega}_n(\xi, \alpha) = \mes_n \mathcal{D}(\xi, I) + O(|I|^\beta), \quad (14)$$

dзе няяўная сталая ў сімвале $O(\cdot)$ залежыць толькі ад n.

Цяпер нам трэба вылічыць

$$\mes_n \mathcal{D}(\xi, I) = \int_{\mathcal{D}(\xi, I)} dp_0 dp_1 \ldots dp_{n-1}.$$

Вобласць $\mathcal{D}(\xi, I)$ можна вызначыць наступнай сістэмай няроўнасцей

$$\begin{cases}
\|p\|_{\infty} \leq 1, & p_n = \xi = Q^{-1}, \\
p_0 \geq \min\{-p_n\alpha^n - \ldots - p_1\alpha, -p_n\beta^n - \ldots - p_1\beta\}, \\
p_0 \leq \max\{-p_n\alpha^n - \ldots - p_1\alpha, -p_n\beta^n - \ldots - p_1\beta\}.
\end{cases}$$

Вызначым функцыю

$$h(p_n, \ldots, p_1) = h(I; p_n, \ldots, p_1) := \left| \sum_{k=1}^{n} p_k (\beta^k - \alpha^k) \right| = (\beta - \alpha) \left| \sum_{k=1}^{n} p_k \sum_{i=0}^{k-1} \alpha^i \beta^{k-i-1} \right|,$$

і разглядзім абсяг

$$\mathcal{D}(\xi, t) := \{(p_1, \ldots, p_{n-1}) \in \mathbb{R}^{n-1} : |p_i| \leq 1, |\xi t^n + p_{n-1} t^{n-1} + \ldots + p_1 t| \leq 1 \}.$$
Нескладана заўважыць, што
\[
\int_{\mathfrak{D}_*(\xi;\alpha,\beta)} h(\xi, p_{n-1}, \ldots, p_1) \, dp_{n-1} \ldots dp_1 \leq \text{mes}_n \mathcal{D}(I) \leq \int_{\mathfrak{D}^*(\xi;\alpha,\beta)} h(\xi, p_{n-1}, \ldots, p_1) \, dp_{n-1} \ldots dp_1,
\]
дзе
\[
\mathfrak{D}_*(\xi;\alpha,\beta) := \mathfrak{D}(\xi, \alpha) \cap \mathfrak{D}(\xi, \beta), \quad \mathfrak{D}^*(\xi;\alpha,\beta) := \mathfrak{D}(\xi, \alpha) \cup \mathfrak{D}(\xi, \beta).
\]
Няхай $\beta \to \alpha$. Пасля разлікаў атрымліваем для любога $\alpha \in \mathbb{R}$
\[
\lim_{\beta \to \alpha} \frac{\text{mes}_n \mathcal{D}(I)}{(\beta - \alpha)} = \int_{\mathfrak{D}(\xi,\alpha)} n\xi \alpha^{n-1} + \sum_{k=1}^{n-1} kp_k \alpha^{k-1} \, dp_{n-1} \ldots dp_1 > 0, \quad (15)
\]
або, інакш кажучы,
\[
\text{mes}_n \mathcal{D}(I) = \omega_n(\xi, \alpha)|I| + o(|I|),
\]
dзе $\omega_n(\xi, \alpha)$ мае выгляд (15).

Адсюль, улічваючы (14), атрымліваем, што функцыя $\Omega_n(\xi, x)$ дыферэнцавальная па x, і $\omega_n(\xi, x) — яе вытворная. Такім чынам, мае
\[
\Omega_n(\xi, \beta) - \Omega_n(\xi, \alpha) = \int_{\alpha}^{\beta} \omega_n(\xi, x) \, dx.
\]

У выніку, збіраючы разам (11), (12) і (13), атрымліваем сцвя рджэнне асноўнай тэарэмы. З лемы 5 вынікае, што існуе бесканечна многа прамежкаў I, для якіх пагрэшнасць асімптатычнай формулы (2) мае парадак $O(Q^{n-1})$.

4 Доказ гранічнай роўнасці

У гэтым раздзеле будзем лічыць $t \geq 0$. Улічваючы цотнасць функцыи $\omega_n(\xi, t)$, для адмоўных t усё будзе тое самое.

Каб спрасціць запіс разлікаў, увядзём наступныя абазначэнні
\[
p := (p_1, \ldots, p_{n-1}), \quad dp := dp_1 \, dp_2 \ldots dp_{n-1},
\]
\[
w(t) := (t, t^2, \ldots, t^{n-1}),
\]
\[
v(t) := (1, 2t, \ldots, (n-1)t^{n-2}) = \frac{d}{dt} w(t).
\]

Разглядзім функцыю
\[
\psi_n(t) := 2\zeta(n) \phi_{n-1}(t) = \int_{\mathfrak{D}_n(t)} |v(t) \cdot p| \, dp, \quad t \in \mathbb{R},
\]
дзе

$$\tilde{D}_n(t) = \{p \in \mathbb{R}^{n-1} : \|p\|_\infty \leq 1, \ |w(t) \cdot p| \leq 1\},$$

$$\zeta(x)$$ — дзэта-функцыя Рымана.

Заўвага: вобласць $$\tilde{D}_n(t)$$ адрозніваецца ад вобласці $$\Delta_{n-1}(t)$$ адсутнасцю ўмовы $$p_{n-1} > 0$$, а ад вобласці $$\tilde{D}_n(\xi, t)$$ адсутнасцю складніка $$\xi t^n$$ пад модулем у няроўнасці.

У інтэграле для функцыі $$\omega_n(\xi, t)$$ зробім замену зменных:

$$\begin{cases} p_i = q_i, & i = 1, \ldots, n - 2, \\ p_{n-1} = q_{n-1} - \xi t. \end{cases}$$

У выніку інтэграл прыме выгляд:

$$\omega_n(\xi, t) = \int_{\tilde{D}_n(t)} |\xi t^{n-1} + \sum_{k=1}^{n-1} k q_k t^{k-1}| \, dq_1 \ldots dq_{n-1}, \quad t \in \mathbb{R},$$

dзе

$$\tilde{G}_n(\xi, t) = \left\{ (q_1, \ldots, q_n) \in \mathbb{R}^{n-1} : \max_{1 \leq i \leq n-2} |q_i| \leq 1, \, |q_{n-1} - \xi t| \leq 1, \, |q_{n-1} t^{n-1} + \ldots + q_1 t| \leq 1 \right\}.$$

Распіваючы інтэграл на складнікі, маём

$$\omega_n(\xi, t) = \int_{\tilde{D}_n(t)} |\xi t^{n-1} + v(t)q| \, dq +$$

$$+ \int_{\tilde{G}_n^+(\xi, t)} |\xi t^{n-1} + v(t)q| \, dq - \int_{\tilde{G}_n^-(\xi, t)} |\xi t^{n-1} + v(t)q| \, dq,$$

dзе

$$\tilde{G}_n^+(\xi, t) = \left\{ q \in \mathbb{R}^{n-1} : |w(t)q| \leq 1, \, \max_{1 \leq i \leq n-2} |q_i| \leq 1, \, 1 < q_{n-1} \leq 1 + \xi t \right\},$$

$$\tilde{G}_n^-(\xi, t) = \left\{ q \in \mathbb{R}^{n-1} : |w(t)q| \leq 1, \, \max_{1 \leq i \leq n-2} |q_i| \leq 1, \, -1 \leq q_{n-1} < -1 + \xi t \right\}.$$

Дзея зручнасці абазначчы інтэграл па $$\tilde{D}_n(t)$$ праз $$J_1$$, па $$\tilde{G}_n^+(\xi, t)$$ — праз $$J_2$$, а па $$\tilde{G}_n^-(\xi, t)$$ — праз $$J_3$$. Такім чынам,

$$\omega_n(\xi, t) = J_1 + J_2 - J_3.$$

1) Ацэнка рознасці $$J_2 - J_3.$$
Для области $\mathcal{S}_n(\xi,t)$ имеем

$$
\begin{cases}
-1 + \xi t \leq q_{n-1} \leq 1 + \xi t, \\
\frac{-1 - q_1 t - \cdots - q_{n-2} t^{n-2}}{t^{n-1}} \leq q_{n-1} \leq \frac{1 - q_1 t - \cdots - q_{n-2} t^{n-2}}{t^{n-1}}.
\end{cases}
$$

Улучшая, что

$$
\min_{|q_i| \leq 1, 1 \leq i \leq n-2} \frac{-1 - q_1 t - \cdots - q_{n-2} t^{n-2}}{t^{n-1}} = -\sum_{k=1}^{n-1} t^{-k},
$$

атрибируем, что при выполнении условия

$$
- \sum_{i=1}^{n-1} t^{-k} \geq -1 + \xi t
$$

абсцессу $|q_{n-1} - \xi t| \leq 1$ будем залпиння.

Лёгка замечаем, что при $0 < \xi < 1/8$ неравенство (16) выражает промежуток $[t_1, t_2]$ на дадатной паукови. При именн ξ да нуля, для границ промежутка выконвающая асимптотичная суадносности

$$
t_1 \asymp 1, \quad t_2 \asymp \xi^{-1}.
$$

Разобьём значения t на трой промежутки: $[0, t_1)$, $[t_1, t_2)$, $[t_2, +\infty)$.

а) Няхай $0 \leq t < t_1$.

У интеграле J_2 зробім замену $q_{n-1} = 1 + \theta$. У интеграле J_3 паслядоўна ажыццявім замену $q \to -q$, а затым замену $q_{n-1} = 1 - \theta$. Пря гэтым $0 < \theta < \xi t$. У выніку атрымаем

$$
J_2 = \int_{\tilde{\mathcal{S}}_n^+(\xi,t)} \xi t^{n-1} + (n-1)(1+\theta)t^{n-2} + \sum_{k=1}^{n-2} k q_k t^{k-1} \, dq_1 dq_2 \cdots dq_{n-2} d\theta,
$$

$$
J_3 = \int_{\tilde{\mathcal{S}}_n^-(\xi,t)} -\xi t^{n-1} + (n-1)(1-\theta)t^{n-2} + \sum_{k=1}^{n-2} k q_k t^{k-1} \, dq_1 dq_2 \cdots dq_{n-2} d\theta,
$$

dзе

$$
\tilde{\mathcal{S}}_n^+(\xi,t) = \left\{ (q_1, \ldots, q_{n-2}, \theta) \in \mathbb{R}^{n-1} : \sum_{k=1}^{n-2} q_k t^k + (1+\theta)t^{n-1} \leq 1, \quad \max_{1 \leq i \leq n-2} |q_i| \leq 1, \quad 0 \leq \theta \leq \xi t \right\},
$$

$$
\tilde{\mathcal{S}}_n^-(\xi,t) = \left\{ (q_1, \ldots, q_{n-2}, \theta) \in \mathbb{R}^{n-1} : \sum_{k=1}^{n-2} q_k t^k + (1-\theta)t^{n-1} \leq 1, \quad \max_{1 \leq i \leq n-2} |q_i| \leq 1, \quad 0 \leq \theta \leq \xi t \right\}.
$$
Для меры симетричной разности и пересечения областей \(\tilde{\mathcal{S}}_n^-(\xi, t) \) и \(\tilde{\mathcal{S}}_n^+(\xi, t) \) справедливые неравенства

\[
\text{mes}_{n-1}\left(\tilde{\mathcal{S}}_n^-(\xi, t) \Delta \tilde{\mathcal{S}}_n^+(\xi, t)\right) \ll_n \xi^2 t^n, \\
\text{mes}_{n-1}\left(\tilde{\mathcal{S}}_n^- (\xi, t) \cap \tilde{\mathcal{S}}_n^+(\xi, t)\right) \ll_n \xi t.
\]

Разность подынтегральных функций по пересечению областей \(\tilde{\mathcal{S}}_n^-(\xi, t) \cap \tilde{\mathcal{S}}_n^+(\xi, t) \) не больше за \(2n\xi t^{n-1} \). Таму, улічваючы, што падынтегральные функции абмежаванья на областях інтэгравання, пры \(t \in [0, t_1) \) атрымліваем

\[
|J_2 - J_3| \ll_n \xi^2 t^n.
\]

б) Для \(t \in [t_1, t_2) \) справедлива равенство \(\mathcal{S}_n(\xi, t) = \tilde{\mathcal{S}}_n(t) \), і такім чынам,

\[
J_2 = J_3 = 0.
\]

в) Пры \(t \geq t_2 \) мае

\[
J_2 = 0, \quad 0 \leq J_3 \leq J_1.
\]

На гэтым прамежку інтэграл \(J_3 \) ацэньяцца як

\[
J_3 \leq \left(\xi t^{n-1} + \sum_{k=1}^{n-1} kt^{k-1}\right) \text{mes}_{n-1} \mathcal{S}_n^-(\xi, t) \ll_n \xi + \frac{1}{t} \ll_n \xi.
\]

Для \(t \geq t_3 \), дзе \(t_3 \) ёсць дадатны корань ураўнення

\[
\sum_{k=1}^{n-1} t^{-k} = -1 + \xi t,
\]

будзе выконвацца важнайне \(J_1 = J_3 \) і, як вынік, \(\omega_n(\xi, t) = 0 \). Для \(t_3 \) справедліва ацэнка

\[
t_3 \leq \frac{1}{\xi + \xi}.
\]

2) Ацэнка разнанцi \(J_1 - \psi_n(t) \).

Па леме \(\Box \) мае

\[
0 < J_1 - \psi_n(t) \leq \xi t^{n-1} \text{mes}_{n-1} U_n(\xi, t),
\]

dзе

\[
U_n(\xi, t) = \left\{ q \in \mathbb{R}^{n-1} : \|q\|_\infty \leq 1, \ |w(t)q| \leq 1, \ |v(t)q| \leq \xi t^{n-1} \right\}.
\]

Абазначам праз \(S \) сячненьне «бруска» \(\{ q \in \mathbb{R}^{n-1} : |w(t)q| \leq 1, \ |v(t)q| \leq \xi t^{n-1} \} \) ліней-наю абапанкой вектараў \(w(t) \) і \(v(t) \).
Скарыстаўшы тоенасць
\[
\left(\sum_{i=1}^{k} a_i^2 \right) \left(\sum_{i=1}^{k} b_i^2 \right) - \left(\sum_{i=1}^{k} a_i b_i \right)^2 = \sum_{1 \leq i < j \leq k} (a_i b_j - a_j b_i)^2,
\]
мае
\[
w(t)^2v(t)^2 - (w(t)v(t))^2 \geq t^{4(n-2)} + t^4 \geq \left(\frac{t^{2(n-2)} + t^2}{2} \right)^2.
\]
Па леме[7] ацэньвае дыяметр сячэння
\[
diam S \asymp_n \frac{(t^{n-2} + 1) + \xi t^{n-1}(t^{n-1} + t)}{t^{2(n-2)} + t^2}.
\]
а) Пры \(0 \leq t \leq 1/2\) умова \(|w(t)q| \leq 1\) выконваецца аўтаматычна і таму будзе залішняй. У выніку для такіх \(t\) будзе справядліва ацэнка
\[
mes_{n-1} U_n(\xi, t) \ll_n \xi t^{n-1}.
\]
б) Няхай \(1/2 < t \leq \kappa_1(n)/\sqrt{\xi}\). Верхняя мяжа для \(t\) вызначаецца з умовы, што дыяметр сячэння не большы за дыяметр куба
\[
diam S \ll_n 1.
\]
З лемы[7] атрымліваем
\[
mes_{n-1} U_n(\xi, t) \ll_n \frac{\xi t^{n-3}}{t^{2(n-3)} + 1}.
\]
в) Пры \(t > \kappa_1(n)/\sqrt{\xi}\) ацэнка па леме[7] будзе неэфектыўная. Таму ацэнім меру іначай
\[
mes_{n-1} U_n(\xi, t) \leq mes_{n-1} \{ q \in \mathbb{R}^{n-1} : ||q||_{\infty} \leq 1, \ |w(t)q| \leq 1 \} \ll_n t^{-n+1}.
\]
Збіраючы ўсе выпадкі разам, атрымліваем
\[
|J_1 - \psi_n(t)| \ll_n \begin{cases}
\frac{\xi^2 t^{2(n-1)}}{1}, & 0 \leq t \leq 1/2, \\
\frac{\xi^2 t^2}{1}, & 1/2 < t \leq \frac{\kappa_1(n)}{\sqrt{\xi}}, \\
\xi, & \frac{\kappa_1(n)}{\sqrt{\xi}} < t.
\end{cases}
\]
Пасля спрашчэння, улічваючы, што \(\omega_n(\xi, t) = 0\) для \(t \geq \xi^{-1} + \xi\), мае
\[
|\omega_n(\xi, t) - \psi_n(t)| \ll_n \begin{cases}
\frac{\xi^2 t^2}{1}, & |t| \leq \kappa_1(n)\xi^{-1/2}, \\
\xi, & \kappa_1(n)\xi^{-1/2} < |t| \leq \kappa_2(n)\xi^{-1}, \\
t^{-2}, & \kappa_2(n)\xi^{-1} < |t|.
\end{cases}
\]
Тэарэма[2] даказана.
Спис литературы

[1] Берник В. И. “Применение размерности Хаусдорфа в теории диофантовых приближений”. Acta Arith. 42 (1983), no. 3, 219–253.

[2] Каледа Д. У. “Аб размеркаваннi рэчаiсных алгебраiчных лiкаў дадзенай ступенi”. Доклады НАН Беларуси, 56:3 (2012), с. 28–33.

[3] Каледа Д. В. “О количестве многочленов с заданным числом корней на конечном промежутке”. Весцi НАН Беларусi. Сер. фiз.-мат. навук, № 1 (2013), с. 41–49.

[4] Каледа Д. В. “Распределение алгебраических чисел второй степени”. Весцi НАН Беларусi. Сер. фiз.-мат. навук, № 3 (2013). с. 54–63.

[5] Ленг С. Основы дифференциальной геометрии. — М.: Мир, 1986, 446 с.

[6] Baker A., and Schmidt W., “Diophantine approximation and Hausdorff dimension”. Proc. London Math. Soc. 21 (1970), no. 3, 1–11.

[7] Barroero F., “Counting algebraic integers of fixed degree and bounded height”. Monatshefte f¨ur Mathematik (2013): 1–17.

[8] Beresnevich V., “On approximation of real numbers by real algebraic numbers”. Acta Arith. 90 (1999), no. 2, 97–112.

[9] Bugeaud Y., “Approximation by Algebraic Integers and Hausdorff Dimension”, J. London Math. Soc. (2002) 65 (3): 547–559.

[10] Chern S.-J., and Vaaler J. D., “The distribution of values of Mahler’s measure”. J. Reine Angew. Math. 540 (2001), 1–47.

[11] Davenport H., “On a principle of Lipschitz”, J. London Math. Soc. 26 (1951), 179–183. Davenport H., Corrigendum: “On a principle of Lipschitz”, J. London Math. Soc. 39 (1964), 580.

[12] Kaliada D., “On the density function of the distribution of real algebraic numbers”. arXiv:1405.1627 [math.NT]

[13] Masser D., and Vaaler J. D., “Counting Algebraic Numbers with Large Height Γ”. Diophantine Approximation. Developments in Mathematics. Vol. 16, 2008, pp. 237–243.

Дзяніс Каледа
Інстытут матэматыкі, Нацыянальная акадэмія навук Беларусі,
220072 Мінск, Беларусь
Эл. пошта: koledad@rambler.ru