Materials Research Express

PAPER

MnAs and MnFeP\(_{1-x}\)As\(_x\)-based magnetic refrigerants: a review

Ume e Habiba\(^1\), Khurram Shehzad Khattak\(^{2,4}\), Shahid Ali\(^1\) and Zawar Hussain Khan\(^3\)

\(^1\) Materials Research Laboratory, Department of Physics, University of Peshawar, Peshawar, 25120, Pakistan
\(^2\) Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
\(^3\) Department of Electrical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan

E-mail: ume.habiba15@yahoo.com, khurram.s.khattak@uetpeshawar.edu.pk, drshahidali@uop.edu.pk and zawarkhan@nwfpuet.edu.pk

Keywords: magnetic refrigerants, magnetic refrigeration, magnetocaloric effect, Curie temperature, magnetic entropy change, Adiabatic temperature change

Abstract

This paper presents a comparative analysis of MnAs and MnFeP\(_{1-x}\)As\(_x\) family and its alloys from magnetic refrigeration perspective. A thorough literature review was undertaken and to the best of authors knowledge, all samples (~100 samples) with their Curie temperature (\(T_c\)) in the range 260–340 K have been reported. For contrastive analysis, samples have been grouped based on their structural and experimental conditions such as magnetic field and sample composition etc. For comparative analysis, all variables of magnetocaloric effect (MCE), e.g., \(T_c\), magnetic entropy change (\(\Delta S_m\)), adiabatic temperature change (\(\Delta T_{ad}\)) and relative cooling power (RCP) have been considered with calculated missing variables, wherever possible. The first objective of this paper was to perform a comparative analysis of different fabrication variables (e.g., particle size, shape, morphology, chemical composition, structure, purity of starting materials, homogeneity, annealing, and synthesis methods) on the overall MCE properties of the aforementioned family. In addition, the best fabrication practices for further improvement in MCE properties are proposed. The second objective was to observe different material’s doping (e.g., Cr, Si, Ge, B) in hysteresis loss mitigation and MCE properties enhancement. Best doping materials were suggested for the compositions, which were displaying optimum MCE properties for further MCE enhancement. Lastly, but most importantly, to propose a high performing magnetic refrigerant by: (1) shortlisting a composition with optimum MCE properties; (2) further enhancement in MCE through adopting best fabrication processes for the said magnetic refrigerant; (3) suggesting best doping material for hysteresis loss mitigation and MCE enhancement; and most importantly (4) fabricating the proposed magnetic refrigerant as a nanostructure; thus, improving MCE properties through broadening of \(T_c\) curve.

1. Introduction

The existence of MCE has been known for over 100 years, interest in its physics and applications in magnetic refrigeration has been growing at a rapid pace due to increasing concerns about energy efficiency and environment [1–5]. An ideal material for magnetic refrigeration should be composed of relatively inexpensive raw materials, have a high MCE and have a little or no irreversible hysteresis losses [6–8]. For a large MCE to exist, there must be a large change in \(\Delta S_m\) over a small temperature range. Families exhibiting giant magnetocaloric effect (GMCE) can be attributed to a first-order phase transition (FOPT) in combination with magnetic ordering and electronic band structure changes [9–11]. High performing families such as La(Fe\(_x\)Si\(_{1-x}\))\(_3\) and Gd\(_2\)(Si\(_x\)Ge\(_{1-x}\))\(_3\), exhibiting much higher \(\Delta S_m\), undergo structural transition in combination with magnetic ordering and electronic band structure changes in addition to magnetic transition [12–14].

Instead of searching for new magnetic refrigerants, a working magnetic refrigerant can be fabricated from one of the well-established high performing families such as MnAs and MnFeP\(_{1-x}\)As\(_x\) [14–18] by: (1) shortlisting...
best performing composition with Tc between 260–340 K; (2) MCE enhancement through adopting best fabrication processes (e.g., particle size, shape, morphology, chemical composition, structure, purity of starting materials, homogeneity, annealing and synthesis methods) for the said composition; (3) MCE enhancement by using best doping material for hysteresis mitigation; and (4) fabricating the said composition as nanostructure (3–50nm, depending upon composition), thus, further improving MCE properties through broadening of the Tc curve [13]. An example is of MnAs0.97P0.03 where hysteresis was reduced by 60% from 10 K at Tc for an annealed sample with a mean size of 23 nm to 2 K for as-milled sample with a mean size of 100 nm.

1.1. MnAs alloys

MnAs is a ferromagnetic with hexagonal NiAs-type crystal structure below its Tc at 318 K, which changes to paramagnetic with orthorhombic MnP-type structure [9, 14, 15, 19–22]. At about 378 K, it undergoes SOPT, changing again from Mn-P type to NiAs type, with MnP-type structure stable only in the thermal range of 318–378 K [20, 23]. MnAs with magnetization saturation of 3.4 μB/Mn exhibits ∆SM and ∆Tad as large as 30 J/kg K and ~13 K, under a magnetic field (H) of 5 T, as can be seen in table 1 [19].

The entropic magnetic limit for MCE in MnAs is given by ∆SM = R ln (2J + 1) = 103 J/kg K, where R is the gas constant and J is the total angular momentum of the magnetic ion, assuming magnetic field independence of lattice and electronic entropy contributions [20, 21, 41]. Using Maxwell relation to calculate ∆SM as a function of ΔH works seamlessly for second-order phase transition (SOPT) but results in big errors for FOPT due to thermal hysteresis and discontinuity in magnetization, often resulting into a ‘spike’ at Tc, as reported for MnAs [9, 19, 40]. Bratko et al [31] preferred calorimeters for MCE measurement instead of the indirect approach involving isothermal magnetization measurements and the Maxwell relation to counter spurious results. Through careful use of the Maxwell relation and Clausius-Clapeyron equation a more realistic MCE estimations can be achieved. For example, Mn0.99 Fe0.01 As where ∆SM with and without Clausius-Clapeyron equation is 26 J/kg K [32] and 325 J/kg K [33] respectively as can be seen in table 1. Second example of aforementioned phenomena is ∆SM of Mn0.995 Pr0.005 As, which was 30.2 J/kg K instead of 135 J/kg K after using the Clausius-Clapeyron equation [39]. When a system undergoes a first-order transformation, the entropy of the system as a function of temperature exhibits a discontinuity related to the entropy transformation Str. On the other hand, application of a magnetic field promotes a shift in the transformation temperature expressed by the Clausius-Clapeyron equation. If the effect of the magnetic field is large enough to cause transformation of the first order, but its effect on the heat capacities of the two phases is low, it should be assumed that the limit value of the MCE with ∆S ∼ ∆S0 should be as high as possible. The isothermal entropy change ∆S caused by the applied magnetic field is obtained by numerical integration of the Maxwell relation from isothermal magnetization curves M(H)/T. In the case of magnetostuctural transitions of first-order, this procedure was controversial because of the existence of transformation hysteresis. It is now known that the use of Maxwells relation for the first order system in the vicinity of the Curie temperature is not true if the experimental data are typically obtained in nonequilibrium condition as a result of metamagnetic transition.

The magnetization and magnetic domains of ferromagnetic MnAs nanocounters (NCs) located at a relatively close range in a bended MnAs / InAs heterojunction nanowire (NW), sometimes observed in NWs with multiple MnAs NCs, based on the structural and magnetization characterization results. In particular, in the case of MnAs NCs formed in the nearly straight (or slightly bending) NWs, the magnetization of MnAs NCs was oriented along the external magnetic field directions. Nevertheless, magnetic force microscopy tip magnetization sometimes guided the magnetization of a MnAs NC at the distinctly bending position of heterojunction NWs. The decrease in NC coercion may have played an important role in switching magnetization directions in the NCs at the heterojunction NW’s bending position [42].

MnAs present high MCE properties under hydrostatic pressure, which is absent in other well-known families such as Gd2Ge2Si2 [12, 43]. Effects of hydrostatic pressure on MnAs were studied concluding: (1) Tc decreases as pressure increase, and (2) directly proportional exponential increase in MCE with pressure, culminating at ∆SM of 267 J/kg K for 2.23 kbar after which the effect starts diminishing and becoming deleterious after 2.64 kbar [21]. Wada et al [25] also studied the effect of pressure by noting an improvement in MCE of MnAs with ∆SM = 36 J/kg K at 2.09 kbar and ∆SM = 30 J/kg K for MnAs0.93 Sb0.07 at 3.37 kbar. The deleterious effect after a certain pressure was due to the broadening of magnetic transition under high pressure [21, 25].

Importance of purity of the starting materials has already been established in literature [13, 21, 44]. This is further validated by comparing experimental data of eight different MnAs samples, as reported in table 1. The highest ∆SM of 47 J/kg K is because of starting material’s purity (prepared with Mn = 99.999% and As = 99.9999% purity) [21]. Effect of starting material’s purity on MnAs MCE curve can be seen graphically in figure 1. A direct relation between composition’s heterogeneity, grain size, synthesis, defects, thermal hysteresis and a narrow interval for the transition around the Tc values had been established [9, 13]. In this regard, 'Shock
| Sample | T_c (K) | $|\Delta S_m|$ (J/kgK) | ΔT_{ad} (K) | ΔH (kOe) | RCP (J/Kg) | ΔT_{hys} (K) | References |
|-------------------|-----------|-------------------------|---------------------|------------------|------------|----------------------|------------|
| MnAs | 318 | 47 | 50 | 50 | | | |
| | 281 | 267 | 50 | | | | |
| | 326 | 21.96 | 50 | 5–10 | | | |
| | 305 | 29.3 | 10.27 | 755 | | | |
| | 318 | 41 | 13 | 5 | | | |
| | 311 | 15 | 100 | | | | |
| | 285a | 36 | 20 | 6 | | | |
| | 318a | 31 | 20 | 124a | | | |
| | 318a | 38a | 50 | 418a | | | |
| MnP | 290 | 2.2 | 10 | | | | |
| | | 3.3 | 20 | | | | |
| | | 6 | 50 | | | | |
| MnAs$_{0.99}$P$_{0.01}$ | 301a | 40 | 13 | 140 | | | |
| MnAs$_{0.98}$P$_{0.02}$ | 296a | 50 | 15 | 140 | 400a | | |
| MnAs$_{0.97}$P$_{0.03}$ | 275 | 14 | 50 | 294a | | | |
| Fe$_{0.8}$Mn$_{1.5}$As | 287.5 | 6.2 | 50 | 92a | | | |
| Mn$_{0.99}$Fe$_{0.01}$As | 295 | 16.4 | 80 | 300a | | | |
| Mn$_{0.99}$Fe$_{0.01}$As | 294 | 26 | 20 | | | | |
| Mn$_{0.99}$Fe$_{0.01}$As | 289 | 29.3 | 50 | | | | |
| Mn$_{0.99}$Fe$_{0.01}$As | 272a | 90a | 50 | | | | |
Table 1. (Continued.)

| Sample | T_c (K) | $|\Delta S_{ad}|$ (J/kgK) | ΔT_{ad} (K) | ΔH (kJ/Kg) | RCP (J/Kg) | ΔT_{hys} (K) | References |
|-------------------------|-----------|-----------------------------|---------------------|-------------------|------------|----------------------|------------|
| Mn$_{0.9875}$Fe$_{0.0125}$As | 286a | 275a | | | | | |
| Mn$_{0.99}$Fe$_{0.01}$As | 295a | 325a | | | | | |
| Mn$_{0.9285}$Fe$_{0.0175}$As | 272a | 90a | | | | | |
| Mn$_{0.9875}$Fe$_{0.0125}$As | 286a | 275a | | | | | |
| Mn$_{0.99}$Fe$_{0.01}$As | 295a | 325a | | | | | |
| Mn$_{0.994}$Fe$_{0.006}$As | 310a | 240a | | | | | [33] |
| Mn$_{0.997}$Fe$_{0.003}$As | 310a | 330a | | | | | |
| Mn$_{0.94}$Cu$_{0.06}$As | 308.3 | 21 | | | | | [23] |
| Mn$_{0.97}$Cu$_{0.03}$As | 317a | 174a | | | | | [34] |
| Mn$_{0.94}$Cu$_{0.06}$As | 316a | 159a | | | | | |
| Mn$_{0.97}$Cu$_{0.03}$As | 317a | 164a | | | | | [20] |
| MnAs$_{0.9}$Sb$_{0.1}$ | 280 | 30 | | | | | |
| MnAs$_{0.95}$Sb$_{0.05}$ | 310a | 31a | | | | | [35] |
| MnAs$_{0.97}$Sb$_{0.03}$ | 295a | 10.2a | | | | | |
| MnAs$_{0.93}$Sb$_{0.07}$ | 308a | 14a | | | | | |
| MnAs$_{0.97}$Sb$_{0.03}$ | 305a | 27.5a | | | | | |
Table 1. (Continued.)

| Sample | T_1 (K) | $|ΔS_m|_m$ (J/kgK) | $ΔT_{ad}$ (K) | $ΔH$ (kOe) | RCP (J/Kg) | $ΔT_hys$ (K) | References |
|-------------------------|-----------|------------------|--------------|------------|-----------|--------------|------------|
| MnAs$_{0.927}$ Sb$_{0.073}$ | 310a | 11a | 10 | | 33a | | |
| MnAs$_{0.93}$ Sb$_{0.07}$ | 273a | 30a | 20 | | 260a | | |
| Mn$_{0.9875}$ Cr$_{0.0125}$ As | 315a | 38 | 15a | 50 | 893 | 12.3 | [35] |
| Mn$_{0.9875}$ Cr$_{0.0065}$ Fe$_{0.006}$ As | 287a | 42 | 13.5a | 50 | 730 | 13.7 | |
| Mn$_{0.994}$ Cr$_{0.006}$ As | 292 | 13.7 | 50 | | \(\ldots\) | 5 | [37] |
| Mn$_{0.9}$ Cr$_{0.1}$ As | 267 | 20.2 | 50 | | 283b | 10–30 | |
| MnAs$_{0.94}$ Si$_{0.06}$ N | 263 | 12.8 | 50 | | 319 | | [38] |
| MnAs$_{0.91}$ Si$_{0.09}$ N | 285 | 10.6 | 50 | | 274 | 0 | |
| Mn$_{0.99}$ Pr$_{0.005}$ As | 318 | 30.2 | 50 | | 20 | | [39] |
| Mn$_{0.99}$ Pr$_{0.01}$ As | 320 | 27.9 | 50 | | | | |
| Mn$_{0.99}$ Pr$_{0.01}$ As | 321 | 25.2 | 50 | | | | |
| Mn$_{0.99}$ Pr$_{0.02}$ As | 320 | 23.3 | 50 | | | | |
| Mn$_{0.99}$ Co$_{0.01}$ As | 316 | 32.1 | 17.7 | 60 | | | [40] |
| Mn$_{0.9}$ Ti$_{0.05}$ V$_{0.05}$ As | 266 | 30 | 20 | | 120c | | [26] |
| Mn$_{0.9}$ Ti$_{0.05}$ V$_{0.05}$ As | 266c | 36c | 50 | | 250c | | |

a Approximation from the figures in the cited papers.

b Calculated from the figures in the cited papers.
compaction' although making manufacturing process more efficient, affect MCE deleteriously because of compositional heterogeneity. An example is MnAs$_1$Sb$_x$ ($x = 0.068, 0.073$) before and after shock compaction, as can be seen in table 1 [35]. Paganotti et al [45] reported in their work that the thermal hysteresis is independent of the formed phase fraction. In a temperature interval around the magnetic transition temperature, the study was conducted using a differential scanning calorimeter and different heating rates. The experiment consisted of two procedures, the first of which analyzed at different heating rates the onset and peak temperatures of the thermal event associated with the magnetic transition. The second procedure consisted of studying the formation and decomposition of the process associated with the magnetic transition as a function of the temperature by means of thermal event enthalpy. The results showed that the onset temperatures during cooling increased almost linearly with cooling rate and the onset temperatures during heating are almost constant. In addition, the transition enthalpy varied with heating rate and progress of reaction, showed various behaviors during heating and cooling, indicated two different mechanisms for the transition phase.

Large thermal and magnetic hysteresis dependence upon composition and magnetic field is a major drawback for MnAs family [25, 31, 37]. A lot of effort has gone into hysteresis mitigation and MCE enhancement through doping/substitution of different materials such as S, Se, Te, Bi, and P with unsatisfactory results because of low solubility with MnAs. Substitution of Fe and Cu for Mn resulted in better MCE because of their solubility, smaller atomic radii and external pressure effect emulation [34, 41, 46]. Doping of Sb, Cr and interstitial N have a positive effect on hysteresis reduction. Substitution of small amount of Sb for As can be used to lower T_c and more importantly thermal hysteresis to about 1 K, while maintaining NiAs-type structure and FOPT [20, 25, 32]. The interstitial nitrogen results in an increase in T_c and slight enhancement of MCE, while Si results in T_c decrease [38]. Thermal and magnetic hysteresis are both reduced to nearly zero with the silicon content in MnAs$_{1-x}$Si$_x$N$_x$. On the downside, Si, Sb and N doped materials though reducing hysteresis does not show marked improvement in MCE properties for this family, as can be observed in table 1. The reduction in T_c for T (Co, Ni and Cu) content is independent of the transition metal species and independent of the position they occupy [Fe(3f)/Mn(3g)], suggesting that the ferromagnetic FM interaction with transition metal substitution is weakened. However, the slopes of the curves are different. T_c is most sensitive to Cu substitution and least sensitive to Co substitution. As for the same transition metal replacement at different sites, when a transition metal is replaced by Fe, T_c is more sensitive than Mn. This can be easily understood with mixed magnetism, since the reconstruction of electron density leads to the first-order phase transition in Fe$_2$P-based (Mn, Fe)$_2$P$_2$Si compounds in the bond between Fe and P/Si. In addition, we found that with increasing T (Co, Ni and Cu) content, the lattice parameter ratio c/a increases. It is known that the interaction between the nearest 3f–3g inter-layer is responsible for FM ordering in Mn–Fe–P–Si compounds and is more sensitive to changes in the c/a ratio than to the parameters a and c in the lattice itself, resulting in a linear relationship between T_c and the c/a ratio. However, substitution alters not only the interatomic distances but also the electron density, which is a key factor in Fe$_2$P-based compounds [47].

Substitution of Mn by Cr reduces (or even eliminates depending upon substitution) both T_c and thermal hysteresis while having positive effect on overall MCE [29, 36, 37]. An example is thermal hysteresis elimination in Mn$_{0.994}$Cr$_{0.006}$As and its reduction to ~5 K in Mn$_{0.99}$Cr$_{0.01}$As [4]. The Fe substitution in the Mn$_{0.9875}$
Cr$_{0.0065}$ Fe$_{0.006}$ As compound results in an increase and decrease in thermal hysteresis and RCP, respectively, as compared to the Mn$_{0.9875}$ Cr$_{0.0125}$ As; however, high values of $|\Delta S|_{ad}$ are still obtained [36].

Mn$_{0.9875}$ Cr$_{0.0125}$ As and Mn$_{0.9875}$ Cr$_{0.0065}$ Fe$_{0.006}$ As are thus the best performing composition in this family exhibiting highest RCP, ΔT_{ad} and $|\Delta S|_{ad}$ values with lowest hysteresis. Furthermore, Mn$_{0.99}$ Co$_{0.01}$ As is also of interest as it possess the highest reported ΔT_{ad}. It is therefore proposed that from MnAs and its alloys, these should be synthesized as nanostructures with high purity starting materials to achieve a further improvement in MCE of at least 40% [13, 48].

1.2. MnFe(P, As) Alloys

The poisonous nature of As has compelled to develop arsenic-free alloys with the same outstanding MCE properties. MnFeP$_{1-x}$As$_x$ crystalllographic structure and physical properties are strongly influenced by the relative atomic size, valence-electron concentrations and are highly sensitive to P/As ratio [49–53]. These alloys with Fe$_2$P-type structure not only exhibit excellent MCE properties around room temperature but also have a tailorable T_c as a function of x and inexpensive constituents as compared to rare-earth containing materials [54].

In the intermediate 0.15 $< x < 0.65$ composition range, the compounds crystallize in the Fe$_2$P-type structure and the magnetic moments of the Mn and Fe atoms order ferromagnetically, with T_c increasing with x up to 332 K for $x = 0.65$ [50].

Besides toxicity of As, thermal hysteresis (~15–22 K) inherent of FOPT is another major drawback for this family [55, 56]. On the first account, As was replaced with Si and/or Ge exhibiting promising results, as can be seen in table 2. Substitution of Si results in an increase in T_c and MCE properties while also increasing thermal hysteresis on the downside [50, 57, 58]. For MnFeP$_{1-x}$Si$_x$ compounds, a hexagonal Fe$_2$P-type structure was observed for 0.28 $< x < 0.64$ with a very large $|\Delta S|_{ad}$ of 30 J/kgK for MnFeP$_{0.5}$ Si$_{0.5}$ accompanied by a large thermal hysteresis (above 20 K) [52].

Thermal hysteresis mitigation while maintaining large MCE properties can be achieved by varying P:Si ratio and keeping high Mn ratio, such as Mn$_{1.4}$ Fe$_{0.6}$ Si$_{0.5}$ P$_{0.5}$ with virtually no thermal hysteresis [58]. The same can also be accomplished by increasing Mn:Fe ratio with reported thermal hysteresis to less than 1 K [61].

Mn$_{1.2}$ Fe$_{0.8}$ P$_{1-x}$Si$_x$B$_{0.05}$ is a prime example, where a stepwise thermal hysteresis of 10, 8 and 0.4 is obtained for $x = 0.4, 0.5$ and 0.55, respectively [63]. Ni substitutions reduces thermal hysteresis while Cu substitution increases it. Co substitution for Mn reduces thermal hysteresis while when substituted for Fe, results in hardly any change, although it has displayed highest $|\Delta S|_{ad}$ for MnFePSi alloys, as can be seen in table 2 [47]. On the other hand, substitution of Ru/Ni for Fe in (Mn, Fe)$_2$PSi was effective in thermal hysteresis reduction to less than 2 K [62, 71]. FOPT and thus high MCE properties for (Mn, Fe)$_2$(P, Si) alloys can be preserved by; i) tuning Mn/Fe and P/Si ratios, ii) performing varied heat treatment and/or iii) introducing doping atoms such as B, C and N exhibiting different effects on thermal/magnetic hysteresis and magnetic interactions [47].

Ge-substituted compounds retain Fe$_2$P-type crystal structure, but reorientation of lattice parameter leads to changes in inter-atomic distances and exchange interactions between Mn-Mn, Fe-Fe, and Mn-Fe ions. This results in an increase in T_c, linearly proportional to Ge contents and with magnetic transition becoming second-order [54, 64, 70]. Although hysteretic behavior is characteristic of FOPT, in MnFe(P, Ge) it can be reduced by changing Mn/Fe ratio, as shown for bulk samples of Mn$_{2-y}$Fe$_y$P$_{0.75}$Ge$_{0.25}$ ($y = 0.84, 0.82, 0.80, 0.74$) [64].
Table 2. All compositions of MnFe(P, As) and its alloys as reported in literature with Curie Temperature in the range of 260–340 K.

Sample	T_c (K)		ΔS₀	(J/kgK)	ΔT_{ad}(K)	ΔH (kOe)	RCP (J/Kg)	ΔT_{hys}(K)	References
MnFeP_{0.5} As_{0.5}	282	18^a	30	252^b				[59]	
	282^c	18	50	290^b				[51]	
	282 ^c	16	30	256^b		20		[57]	
MnFeP_{0.45} As_{0.55}	303	18^c	6^c	50				[53]	
MnFeP_{0.45} As_{0.55}	306	14	4	20				[14]	
MnFeP_{0.47} As_{0.53}	296	12.5	3.4	20					[14]
Mn_{1.1}Fe_{0.9}P_{0.5} As_{0.5}	264^c	21.5	50	300^b				[51]	
Mn_{1.1}Fe_{0.9}P_{0.47} As_{0.53}	292	21	4.2	20				[14]	
MnFeP_{0.5} Si_{0.5}	299	0.5						[50]	
MnFeP_{0.5} Si_{0.4}	303	30	240^b					[57]	
MnFeP_{0.5} Si_{0.3}	294	32	30	192^a					[53]
MnFeP_{0.5} Si_{0.2}	280	21	30	210^b					[52]
MnFeP_{0.5} Si_{0.1}	268	10	20			21			[52]
MnFeP_{0.5} Si_{0.5}	332	30	20	150^b		23			[52]
Table 2. (Continued.)

| Sample | T_c (K) | $|\Delta S_f|$ (J/kgK) | ΔT_{ad} (K) | ΔH (kJOe) | RCP (J/Kg) | ΔT_{hys} (K) | References |
|--------|-----------|---------------------|-----------------|-----------------|-------------|-------------------|------------|
| Mn$_{1.20}$Fe$_{0.75}$P$_{0.50}$Si$_{0.50}$ | 299 | 26° | 20 | 260° | | | [61] |
| Mn$_{1.22}$Fe$_{0.7}$P$_{0.50}$Si$_{0.50}$ | 285° | 22° | 20 | 176° | | | |
| Mn$_{1.20}$Fe$_{0.65}$P$_{0.50}$Si$_{0.50}$ | 268° | 15° | 20 | 90° | | | |
| Mn$_{1.24}$Fe$_{0.6}$Si$_{0.5}$P$_{0.5}$ | 332 | 28.6 | 50 | | | | [58] |
| Mn$_{1.24}$Fe$_{0.6}$Si$_{0.5}$P$_{0.5}$ | 302 | 22.9 | 50 | | | | |
| Mn$_{1.24}$Fe$_{0.6}$Si$_{0.5}$P$_{0.5}$ | 267 | 14.5 | 50 | | | | |
| Mn$_{1.24}$Fe$_{0.4}$P$_{0.5}$Si$_{0.5}$ | 320° | 13° | 20 | 78° | | < 2.5 | [62] |
| Mn$_{1.24}$Fe$_{0.5}$Ru$_{0.15}$P$_{0.5}$Si$_{0.5}$ | 290° | 15° | 20 | 35° | | | |
| Mn$_{1.24}$Fe$_{0.7}$Ru$_{0.1}$P$_{0.5}$Si$_{0.5}$ | 272° | 13° | 20 | 65° | | | |
| Mn$_{1.24}$Fe$_{0.73}$Ru$_{0.05}$P$_{0.5}$Si$_{0.5}$ | 305° | 11° | 20 | 100° | | | |
| Mn$_{1.24}$Fe$_{0.7}$Ni$_{0.10}$P$_{0.5}$Si$_{0.5}$ | 270° | 12° | 20 | | | | [62] |
Table 2. (Continued.)

| Sample | T_c (K) | $|\Delta S_v|$ (J/kgK) | ΔT_{ad} (K) | ΔH (kOe) | RCP (J/Kg) | ΔT_{hys} (K) | References |
|-----------------|-----------|------------------------|---------------------|------------------|------------|----------------------|------------|
| Mn$_{1.2}$Fe$_{0.75}$Ni$_{0.02}$P$_{0.5}$Si$_{0.5}$ | 300a | 8a | 20 | | | | [47] |
| Mn$_{1.2}$Fe$_{0.74}$Ni$_{0.01}$P$_{0.5}$Si$_{0.5}$ | 310b | 8b | 20 | | | | [47] |
| Mn$_{0.8}$Co$_{0.16}$P$_{0.5}$Si$_{0.5}$ | 281b | 30b | 50 | 300b | | <1 | [47] |
| Mn$_{0.9}$Co$_{0.2}$Fe$_{0.95}$P$_{0.5}$Si$_{0.5}$ | 325b | 19b | 50 | 380b | | | [47] |
| Mn$_{1.2}$Fe$_{0.8}$P$_{0.45}$Si$_{0.55}$B$_{0.05}$ | 280 | 11.1 | 50 | 270 | | 0.8 | [63] |
| MnFeP$_{0.67}$Si$_{0.22}$Ge$_{0.11}$ | 270 | 14 | 50 | 266b | | | [55] |
| MnFeP$_{0.45}$Si$_{0.26}$Ge$_{0.11}$ | 292 | 16 | 50 | 384b | | | [55] |
| MnFeP$_{0.38}$Si$_{0.3}$Ge$_{0.11}$ | 288 | 14 | 50 | 238b | | | [55] |
| MnFeP$_{0.36}$Si$_{0.33}$Ge$_{0.11}$ | 260 | 13 | 50 | 221b | | | [55] |
| MnFeP$_{0.3}$As$_{0.44}$Ge$_{0.06}$ | 312b | 11.5a | 30 | 207b | | | [59] |
| MnFeP$_{0.3}$As$_{0.78}$Ge$_{0.22}$ | 280 | 38b | 50 | 760b | | | [54] |
Table 2. (Continued.)

| Sample | \(T_\text{c} \) (K) | \(|\Delta S_\text{c}\)| (J/kgK) | \(\Delta T_{\text{ad}} \) (K) | \(\Delta H \) (kOe) | RCP (J/Kg) | \(\Delta T_{\text{hys}} \) (K) | References |
|----------------|------------------|----------------|----------------|----------------|-------------|----------------|-------------|
| MnFeP_{0.9}As_{0.77}Ge_{0.23} | 309^a 31^b | 50 465^b | | | | | |
| MnFe_{0.9}P_{0.81}Ge_{0.19} | 260 | 13.8 | 20 | 276^b | [64] | | | |
| MnFe_{0.9}P_{0.78}Ge_{0.22} | 296 | 20 | 20 | 200^b | | | | |
| MnFe_{0.9}P_{0.75}Ge_{0.25} | 330 | 13 | 20 | 117^b | | | | |
| MnFe_{0.9}P_{0.75}Ge_{0.25} | 320 | 24.5 | 20 | … | | | | |
| Mn_{1.2}Fe_{0.8}P_{0.75}Ge_{0.25} | 288 | 20.3 | 20 | 151 | | | | |
| Mn_{1.22}Fe_{0.78}P_{0.72}Ge_{0.25} | 274 | 15.3 | 20 | 162 | | | | |
| Mn_{1.1}Fe_{0.9}P_{0.81}Ge_{0.19} | 260 | 14 | 6 | 20 | 115^b | | | | 65
| Mn_{1.1}Fe_{0.8}P_{0.78}Ge_{0.22} | 298 | 20 | 4 | 20 | 160^b | | | | |
| Mn_{1.1}Fe_{0.9}P_{0.75}Ge_{0.25} | 330 | 13 | 2 | 20 | 130^b | | | | |
| Mn_{1.1}Fe_{0.9}P_{0.8}Ge_{0.2} | 267.5 | 29 | 20 | 75^b | 9-16 | | | | | 66
| Mn_{1.1}Fe_{0.9}P_{0.78}Ge_{0.24} | 280^a 46.5 | 50 558^b | | | | | | |
| Sample | T_c (K) | $|\Delta S_m|$ (J/kgK) | ΔT_{ad} (K) | ΔH (kJOe) | RCP (J/kg) | ΔT_{hys} (K) | References |
|-----------------------------|-----------|------------------------|---------------------|------------------|--------------|------------------------|------------|
| Mn$_{1.1}$Fe$_{0.9}$P$_{0.7}$Ge$_{0.24}$ (Ribbon) | 317 | 35.4 | 50 | 496b | | | [56] |
| Mn$_{1.1}$Fe$_{0.9}$P$_{0.7}$Ge$_{0.24}$ (Bulk) | 299 | 26.1 | 50 | 522a | | | |
| Mn$_{1.2}$Fe$_{0.8}$P$_{0.7}$Ge$_{0.26}$ | 337c | 44.9 | 50 | \sim10 | | | [68] |
| Mn$_{1.2}$Fe$_{0.8}$P$_{0.7}$Ge$_{0.24}$ | 298 | 11.7 | 20 | 175b | | | [69] |
| Mn$_{1.2}$Fe$_{0.8}$P$_{0.7}$Ge$_{0.3}$ | 290 | 12.2 | 50 | 365b | | | [70] |

a Approximation from the figures in the cited papers.

b Calculated from the figures in the cited papers.
Thermal hysteresis for $\text{Mn}_{1.1} \text{Fe}_{0.9} \text{P}_{x} \text{Ge}_{y}$ ($x = 0.19, 0.22, 0.25$) were reported at 6, 4, and 2 K, respectively [65], while for $\text{Mn}_{1.2} \text{Fe}_{0.8} \text{P}_{0.76} \text{Ge}_{0.24}$ it was observed to be 8 K [69]. In order to clarify the nature of magnetic and structural transition and measure the associated $|\Delta S|$, $\text{Mn}_{1.1} \text{Fe}_{0.9} \text{P}_{0.76} \text{Ge}_{0.24}$ was studied using differential scanning calorimetry (DSC) [67]. It is also the best performing alloy in this family, as can be seen in table 2.

Improvement in MCE properties and thermal hysteresis reduction can be achieved through homogenization of chemical composition and crystal structures through heat treatment and annealing [12, 13, 72]. It was further validated with 22% improvement in MCE properties and a reduction in thermal hysteresis from 15 K to 9 K for $\text{Mn}_{1.1} \text{Fe}_{0.9} \text{P}_{0.8} \text{Ge}_{0.2}$ [66]. Another example is of $\text{Mn}_{1.1} \text{Fe}_{0.9} \text{P}_{0.76} \text{Ge}_{0.24}$, where $|\Delta S|$ was improved by 73% through a more homogenous element distribution achieved by very high cooling rate during melt-spinning [56, 73]. While $|\Delta S|$ is nearly doubled for $\text{MnFe}_{0.9} \text{P}_{0.75} \text{Ge}_{0.25}$ by increasing quenching time, although hysteresis increased from 2 K to 5 K as can be seen in table 2 [64].

2. Conclusions

For a working magnetic refrigerant, authors are of the opinion that instead of searching for new materials, already well-established families exhibiting high MCE properties should be further investigated. For this purpose, this literature review was undertaken and all compositions of MnAs, MnFeP$_{1-x}$As$_x$ and their alloys with their T_1 in the range 260–340 K were tabulated. In the case of MnAs and its alloys, Mn$_{0.9875}$Cr$_{0.0125}$As and Mn$_{0.9875}$G$_{0.0083}$Fe$_{0.009}$As are the best performing compositions with highest RCP, ΔT_{ad} and $|\Delta S|$ values reported in literature. It is also proposed that Mn$_{0.99}$Co$_{0.01}$As should be further scrutinized as it has displayed the highest ΔT_{ad} in this family. One of the major drawbacks of this family is the toxicity of As, which can be overcome by replacing As with Si and/or Ge, which exhibited promising results as well as hysteresis reduction. Mn$_{1.1}$Fe$_{0.9}$P$_{0.76}$Ge$_{0.24}$ and Mn$_{1.1}$Fe$_{0.9}$P$_{0.74}$Ge$_{0.26}$ are the best performing compositions in MnFeP(As/Si/Ge) family as evident from the table 2. It is therefore proposed that these compounds should be prepared with high purity starting materials and synthesized as nanostructures to further improve already promising MCE properties all the while lowering hysteresis.

A contrastive analysis of different doping/substitution materials was done for hysteresis mitigation. A large hysteresis (∼5–30 K), depending upon composition and magnetic field, is a major drawback for this family. For MnAs, different doping/substitution materials such as S, Se, Te, Bi, and P were used with unsatisfactory results because of their low solubility with MnAs. Doping of Sb, Si and interstitial N have a positive effect on the hysteresis reduction; however, MCE properties were compromised. Substitution of a small amount of Sb reduced the thermal hysteresis to about 1 K, while Si reduced it to nearly zero. For MnAs, the most successful substitution materials was done for hysteresis mitigation. A large hysteresis (∼5–30 K), depending upon composition and magnetic field, is a major drawback for this family. For MnAs, different doping/substitution materials such as S, Se, Te, Bi, and P were used with unsatisfactory results because of their low solubility with MnAs. Doping of Sb, Si and interstitial N have a positive effect on the hysteresis reduction; however, MCE properties were compromised. Substitution of a small amount of Sb reduced the thermal hysteresis to about 1 K, while Si reduced it to nearly zero. For MnAs, the most successful

Acknowledgments

The authors acknowledge the financial support extended by the Higher Education Commission of Pakistan via NRPU Project No. 8148/2017.

ORCID iDs

Shahid Ali https://orcid.org/0000-0002-4152-3743

References

[1] Tishin A M and Spichkin Y I 2016 The Magnetocaloric Effect and its Applications (Bristol and Philadelphia: IOP Publishing)
[2] Krenke T, Dunman E, Acet M, Wassermann E F, Moya X, Manosa L and Planes A 2005 Inverse magnetocaloric effect in ferromagnetic Ni–Mn alloys Nat. Mater. 4 450
[3] Nikitin S A, Myalikulyev G, Tishin A M, Annaorazov M P, Asatryan K A and Tyurin A L 1990 The magnetocaloric effect in Fe$_x$Rh$_{1-x}$ compound Phys. Lett. A 148 363–6
[4] Samanta T, Das I and Banerjee S 2007 Giant magnetocaloric effect in antiferromagnetic ErRu$_2$Si$_2$ compound J. Magn. Magn. Mater. 309 455–6
[5] Chen J, Shen B G, Dong Q Y, Hu F X and Sun J R 2010 Giant reversible magnetocaloric effect in metamagnetic HoCu$_2$Si$_2$ compound Appl. Phys. Lett. 96 152501
[6] Hashimoto T, Kuzuhara T, Sahashi M, Inomata K and Yayama H 1987 New application of complex magnetic materials to the magnetic refrigerant in an Ericsson magnetic refrigerator J. Appl. Phys. 62 3873–8
[7] Smaili A and Chahine R 1997 Composite materials for Ericsson-like magnetic refrigeration cycle J. Appl. Phys. 81 824–9
[8] Zimm C, Jastrab A, Sternberg A, Pecharsky V, Gschneidner K, Osborne M and Anderson I 1998 Advances in Cryogenic Engineering (Boston: Springer)
[9] Tocado L, Palacios E and Burriel R 2009 Entropy determinations and magnetocaloric parameters in systems with first-order transitions: Study of MnAs J. Appl. Phys. 105 093918

[10] Das S, Amaral J S and Amaral V S 2010 Prediction of realistic entropy behavior from mixed state magnetization data for first order phase transition materials J. Appl. Phys. 107 09A912

[11] Recarte V, Perez-Landazabal J I, Kustov S and Sanders E 2010 Entropy change linked to the magnetic field induced martensitic transformation in a Ni-Mn-In-Co shape memory alloy J. Appl. Phys. 107 053501

[12] Khattak K S and Torres E D 2017 A Contrastive Analysis of Gd7(Si0.4Ge0.6)1−x Based Alloys Useful for Magnetic Refrigeration Int. J. Appl. Electrom. 3 010

[13] Khattak K S, Aslani A, Nwokoye C A, Siddique A, Bennett L H and Della E T 2015 Magnetocaloric properties of metallic nanostructures Cogent Eng. 2 1050324

[14] Il'in M I, Spickchin Y Y, Surikov V V and Tishin A M 2007 Magnetocaloric effect near the first-order phase transitions in compounds of rare earth and transition metals Bull. Russ. Acad. Sci.: Phys. 71 1528–9

[15] Tocado L, Palacios E and Burriel R 2006 Adiabatic measurement of the giant magnetocaloric effect in MnAs J. Therm. Anal. Calorim. 84 213–7

[16] Liu D, Yue M, Zhang J, McQueen T M, Lynn J W and Aloutnian Z 2009 Origin and tuning of the magnetocaloric effect in the magnetic refrigerant Mn1−xFexAs(0.5Ge0.5)2 Phys. Rev. B. 79 014435

[17] Xiang G Y, Tegus O and Li G E 2012 Magnetocaloric effects in Mn1−xFexAs, Si1−x compounds Chin. Phys. B. 21 037504

[18] Zach R, Guillot M and Tobola J 2012 History dependence of directly observed magnetocaloric effect in MnFe0.95P0.50Si0.50 magnetocaloric compounds J. Appl. Phys. 83 7237–9

[19] Arejidal M, Bahmad I and Benyousef A 2017 The calculated magnetic properties and magneto-caloric effect in compound MnAs J. Supercond. Nov. Magn. 30 1565–74

[20] Wada H and Tanabe Y 2001 Giant magnetocaloric effect of MnAs1−xSbx Appl. Phys. Lett. 79 3302–4

[21] Gama S, Coelho A A, de Campos A, Carvalho A M G, Gandra F C V, von Ranke P J and de Oliveira N A 2004 Pressure-induced colossal magnetocaloric effect in MnAs Phys. Rev. Lett. 93 237202

[22] Das S, Amaral J S and Amaral V S 2010 Handling mixed-state magnetization data for magnetocaloric studies—a solution to achieve realistic entropy behavior J. Phys. D. 43 152002

[23] Lima Sharma A L, Gama S, Coelho A A and De Campos A 2008 Irreversibility in cooling and heating processes in the magnetocaloric MnAs and alloys Appl. Phys. Lett. 93 631910

[24] Koshkide K Y S, Dilmieva E T, Cwik J, Rogacki K, Kowalska D, Kamantsev A P and Golovchan A V 2019 Giant reversible adiabatic temperature change and isothermal heat transfer of MnAs single crystals studied by direct method in high magnetic fields J. Alloys Compd. 798 810–9

[25] Wada H, Matsuo S and Mitsuda A 2009 Pressure dependence of magnetic entropy change and magnetic transition in MnAs1−xSbx Phys. Rev. B. 79 092407

[26] Balli M, Fruchtch D, Gigognoux D, Dupuis C, Kedous-Lebouc A and Zach R 2008 Giant magnetocaloric effect in Mn1−xAs(x), As: Experiments and calculations J. Appl. Phys. 103 193098

[27] Booth R A and Majetich S A 2009 Crystallographic orientation and the magnetocaloric effect in MnP J. Appl. Phys. 105 07A926

[28] Mitsuuki V L, Govor G A and Budzyński M 2013 Phase transitions and magnetocaloric effect in MnAs, Mn0.9Fe0.1P0.01 and Mn0.8P0.2 single crystals Inorg. Mater. 49 14–7

[29] Sun N K, Liu F, Gao Y B, Cai Z Q, Du B S, Xu S N and Si P Z 2012 Effect of microstrain on the magnetism and magnetocaloric properties of MnAs0.99P0.01 Appl. Phys. Lett. 101 112407

[30] Sun N K, Ma S, Zhang Q, Du J and Zhang Z D 2007 Large room-temperature magnetocaloric effects in Fe80Mn20As Appl. Phys. Lett. 91 112503

[31] Bratko M, Morrison K, de Campos A, Gama S, Cohen I F and Sandeman K G 2012 History dependence of directly observed magnetocaloric effects in (Mn, Fe)As Appl. Phys. Lett. 100 252409

[32] Balli M, Fruchtch D, Gigognoux D and Zach R 2009 The colossal magnetocaloric effect in Mn1−xFe As Appl. Phys. Lett. 95 072509

[33] De Campos et al 2006 Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFexAs Nat. Rev. 5 802

[34] De Campos A, Rocco D L, Carvalho A M G, Caron L, Coelho A A, Gama S and Von Ranke P J 2006 Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFexAs Nat. Mater. 5 402

[35] Kim Y K, Wada H and Inthi J 2007 Shock compaction of MnAs–Sb2 powder using underwater shock wave In AIP Conference Proceedings

[36] Mejia C S, Gomes A M, Reis M S and Rocco D L 2011 Fe/Cr substitution in MnAs compound: Increase in the relative cooling power Appl. Phys. Lett. 98 102515

[37] Sun N K, Cui W B, Li D, Geng D Y, Yang F and Zhang Z D 2008 Giant room-temperature magnetocaloric effect in Mn1−xCox As Appl. Phys. Lett. 92 072504

[38] Cui W B, Lv X K, Yang F, Yu Y, Skornski R, Zhao X G and Zhang Z D 2010 Intersitial-nitrogen effect on phase transition and magnetocaloric effect in Mn(As, Si) J. Appl. Phys. 107 09A938

[39] Gu Z F, Xu C F, Hong L J, Cheng G, Hu K and Lin R S 2017 Influence of minor P substitution on the magnetocaloric effect of Mn1−xPex As Int. Mater. Sci.: Mater. Electron. 28 6806–11

[40] Wang G, Palacios E, Coelho A A, Gama S and Burriel R 2014 Comparative analysis of magnetic and caloric determinations of the magnetocaloric effect in Mn0.95Co0.05As in EDP Web of Conferences EDP Sciences 75 04003

[41] Mosca D H, Vidal F and Eigens V H 2008 Strain engineering of the magnetocaloric effect in MnAs epilayers Phys. Rev. Lett. 101 125033

[42] Kodaira R, Horiguchi R and Hara S 2019 Magnetization characterization of MnAs nanochasers at close range in bended MnAs/InAs heterojunction nanowires J. Cryst. Growth. 507 241–5

[43] Von Ranke P J, Gama S, Coelho A A, de Campos A, Carvalho A M G, Gandra F C G and De Oliveira N A 2006 Theoretical description of the colossal entropic magnetocaloric effect: Application to MnAs Phys. Rev. B. 73 014415

[44] Carvalho A M G et al 2005 The magnetic and magnetocaloric properties of Gd7Ge2Si2 compound under hydrostatic pressure J. Appl. Phys. 97 10M530

[45] Paganiotti A, Bessa C V X, Ferreira I D R, Gama S and Silva R A G 2019 Thermal hysteresis evaluation of the MnAs compound near room temperature Mater Chem Phys. 231 281–5

[46] Speziani C et al 2015 Thermally induced magnetization switching in Fe/MnAs/GaAs (001): selectable magnetic configurations by temperature and field control Sci. Rep. 5 8120

[47] Ou Z Q, Dung N H, Zhang L, Caron L, Torun E, Van Dijk N H and Bruck E 2018 Transition metal substitution in Fe8−P−based Mn8−P−Co−Sb–As magnetocaloric compounds J. Alloys Compd. 730 392–9
[48] Franco V and Conde A 2012 Magnetic refrigerants with continuous phase transitions: Amorphous and nanostructured materials Scr. Mater. 67 594–9

[49] Bruck E H, Li X W, Tegus O, Zhang L, Dagula W and Buschow K H J 2003 Magnetic properties of MnFeP0.3As0.1Ge0.6, IEEE Trans. Magn. 39 3148–50

[50] Tegus O, Bruck E, Dagula W, Li X W, Zhang L, Buschow K H J and de Boer F R 2003 On the first-order phase transition in MnFeP0.3As0.1Ge0.6 J. Appl. Phys. 93 7655–7

[51] Gribanov I F, Golovchan A V, Varyukhin D V, Val’kov V I, Kamenev V I, Sivachenko A P and Mityuk V I 2009 Magnetic and magnetocaloric properties of the alloys MnFeP0.3As0.1Ge0.6 (0 ≤ x ≤ 0.5) J. Low. Temp. Phys. 153 786–91

[52] Cam Thanh D T, Bruck E, Trung N T, Klaasse J C P, Buschow K H J, Ou Z Q and Caron L 2008 Structure, magnetism, and magnetocaloric properties of MnFeP0.3Si0.1 compounds J. Appl. Phys. 103 07B318

[53] de Oliveira N A and von Ranke P J 2005 Theoretical calculations of the magnetocaloric effect in MnFeP0.45As0.55: a model of itinerant electrons J. Phys. Condens. Matter. 17 3325

[54] Tegus O, Fuquan B, Dagula W, Zhang L, Bruck E, Si P Z and Buschow K H J 2005 Magnetic-entropy change in Yttrium-iron garnets J. Alloys. Compd. 396 6–9

[55] Cam Thanh D T, Bruck E, Tegus O, Klaasse J C P, Dortenmulder T J and Buschow K H J 2006 Magnetocaloric effect in MnFeP0.3 (Si, Ge) compounds J. Appl. Phys. 99 08Q107

[56] Yan A, Müller K H, Schultz L and Gutfleisch O 2006 Magnetic entropy change in melt-spun MnFePGe J. Appl. Phys. 99 08K903

[57] Dagula W, Tegus O, Li X W, Song L, Bruck E, Cam Thanh D T and Buschow K H J 2006 Magnetic properties and magnetic-entropy change of MnFeP0.3As0.1Si0.2 (x = 0–0.3) compounds J. Appl. Phys. 99 08Q105

[58] He A, Svitlyk V and Mozharivskyj Y 2017 Synthetic approach for (Mn, Fe)3(Si, P) magnetocaloric materials: purity, structural, magnetic, and magnetocaloric properties Inorg. Chem. 56 2827–33

[59] Li X W, Tegus O, Zhang L, Dagula W, Bruck E, and Buschow K H J and de Boer F R 2003 Magnetic properties of MnFeP0.3As0.1Ge0.6, IEEE Trans. Magn. 39 3148–50

[60] Engelbrecht K, Nielsen K K, Bach C R, Carroll C P and van Asten D 2013 Material properties and modeling characteristics for MnFeP0.3As0.1Si0.6 compounds for application in magnetic refrigeration J. Appl. Phys. 113 1137310

[61] Dung N H, Zhang L, Ou Z Q and Bruck E 2011 From first-order magneto-elastic to magneto-structural transition in (Mn, Fe)3(Si, P) compounds J. Appl. Phys. Lett. 99 092511

[62] Wada H, Takahara T, Katagiri K, Ohtsuki T, Soejima K and Yamashita K 2015 Recent progress of magnetocaloric effect and magnetic refrigerant materials of Mn compounds J. Appl. Phys. 117 172606

[63] Zheng Z G, Tan Z C, Yu H Y, Zhang J L, Zeng D C and Franco V 2016 Structural, magnetic properties and magnetocaloric effect of Mn0.7Fe0.3P0.3Si0.3Ge0.3 compounds J. Appl. Phys. 117 29–34

[64] Trung N T, Ou Z Q, Gortenmulder T J, Tegus O, Buschow K H J and Bruck E 2009 Tunable thermal hysteresis in MnFeP (Ge) compounds Appl. Phys. Lett. 94 102513

[65] Sougrati M T, Hermann R P, Grandjean F, Long G J, Bruck E, Tegus O and Buschow K H J 2008 A structural, magnetic and Mossbauer spectral study of the magnetocaloric Mn1-xFe0.5P0.5-xSi0.5 compounds J. Phys. Condens. Matter. 20 475206

[66] Yue M, Li Z Q, Xu H, Huang Q Z, Liu B X, Liu D M and Zhang J X 2010 Effect of annealing on the structure and magnetic properties of MnFeP0.3Ge0.7 compounds J. Appl. Phys. 107 09A939

[67] Yue M et al. 2013 Structure evolution and entropy change of temperature and magnetic field induced magneto-structural transition in MnFeP0.3Ge0.7 compounds J. Appl. Phys. 113 043925

[68] Chen X and Ramasubban R V 2015 The magnetic phase transition in MnFe0.3P0.3Ge0.4 magnetocaloric alloys J. Appl. Phys. 117 063909

[69] Xu H, Yue M, Zhao C, Zhang D and Zhang J 2012 Structure and magnetic properties of MnFe0.3P0.3Ge0.4 annealed alloy Rare Metals. 31 336–8

[70] Ou Z Q, Wang G F, Lin S, Tegus O, Bruck E and Buschow K H J 2006 Magnetic properties and magnetocaloric effects in MnFeP0.3Si0.1(Ge0.7Si0.3) compounds J. Magn. Mater. 20 1811577

[71] Ohnishi T, Soejima K, Yamashita K and Wada H 2017 Magnetocaloric properties of (MnFeRu)2 (Si) as magnetic refrigerants near room temperature Magnetochemistry 36

[72] Pecharsky V K and Cochennier K A Jr 1999 Magnetocaloric effect and magnetic refrigeration J. Magn. Magn. Mater. 200 44–56

[73] Ma S C, Cao Q Q, Xuan H C, Zhang C L, Shen L J, Wang D H and Ou Y W 2011 Magnetic and magnetocaloric properties in melt-spun and annealed Ni42.7Mn40.8Co5.2Sn11.3 ribbons J. Alloys. Compd. 509 1111–4