Effect of Vibration on Surface Roughness of Drilling on Glass Fiber Reinforced Plastic

M S Sureshkumar¹, S Krishna prasath¹*, C Lokeshkumar¹, S Loheshwaranath¹

¹Department of Mechanical Engineering, Sri Ramakrishna Engineering College, Coimbatore, India

E-mail: krishnaprasath.1604107@srec.ac.in

Abstract. In present scenario, Glass Fiber Reinforced Plastics (GFRP) has found to be highly influential in the field of manufacture of automotive and aerospace parts due to its high strength and lightweight characteristics. Processed GFRP components are assembled to the main structure by means of mainly rivets and fasteners. So, drilling in a GFRP material becomes inevitable in manufacturing for its wide applications. The purpose of this experiment is to conduct a study of the effect of vibration on surface roughness while drilling a GFRP plate using a 10mm HSS drill. The experiment has been implemented by varying the drill speed and feed accordingly in a 10mm thick GFRP plate and the respective vibration and surface roughness results were obtained. Furthermore, the results obtained have been processed in Minitab to provide a comprehensive understanding. ANOVA has been performed to establish a relation between the vibrations developed and surface roughness of the hole.

1. Introduction

GFRP are widely employed in automotive, aerospace and sporting equipment industries owing to its low weight, high strength and specific stiffness [1, 2]. A number of research papers have focused on the study of delamination, cutting force, thrust force and damage developed due to drilling in GFRP which have provided a broad understanding in machining GFRP. The surface roughness over a drilled hole in a GFRP is indispensable for assessing the hole quality as it affects the functionality of a component such as wear resistance, fatigue resistance and friction [3, 4]. Cutting speed, feed rate, thrust force, thickness of plate and drill point angle are some factors which have direct influence on surface roughness of the material [5, 6]. Among the various drilling parameters, feed and spindle speed are the major parameters affecting the surface roughness of the hole [7, 8]. Experiments determined that drilling methods and drill bits used also contribute significantly to the delamination of GFRP [9-11]. Analysis of Variance (ANOVA) has been utilized to study the effect of drilling parameters on surface roughness of the GFRP [12-14].

Suresh kumar M S [15] investigated surface roughness of drilled holes by varying the drill speed, feed, thickness of GFRP plate using Taguchi's L27 full factorial design. Further, ANOVA was performed to test the results and a mathematical model was designed based in Box-Behkn design method. The results indicated that low speed and low feed rate has less effect on surface roughness.

Isik Birhan [16] carried out experiments to investigate damage factor in drilling on hole entrance and exit using 8mm cemented carbide drill. The results revealed that the damage occurred at both hole...
entrance and exit were reduced when cutting speed is increased. On the other hand, increasing feed decreases hole quality at exit and affects inversely at hole entrance.

Ulas Hasan Basri [17] observed that the vibration developed in drilling process using HSS and carbide drill bit are directly proportional to the cutting speed and feed rate. It has been concluded that vibration effects should be minimized in order to maintain both precise dimensions and quality of the surface.

The vibration developed while drilling a GFRP cannot be eliminated but can be minimized to a considerable extent by selecting appropriate drilling parameters. When GFRP workpiece is subjected to external vibration, it has been found that the workpiece vibration affects thrust force and tool wear, which further influences the surface roughness of drilled holes [18, 19]. So, it is noticeable that excluding other factors, workpiece vibration also contributes towards surface roughness of a drilled hole. Experiments have been conducted by varying the speed and feed of the drill, and the respective vibrations occurred are noted. This study is aimed to find the direct effect of vibration on surface roughness developed while drilling a GFRP plate. Obtained results are interpreted via different forms of graph processed using Minitab and ANOVA has been performed to study the relationship between surface roughness and vibration occurred. Considering the quality of drilled holes, the results obtained from this study can be made use for dampening the workpiece vibration along a particular axis amplifying the surface quality of the drilled holes while maintaining other effective parameters.

2. Experimental work

2.1. Specimen preparation

The GFRP specimen used in this study is manufactured by hand lay-up technique. The glass fibers are reinforced with isophthalic resin with 30% of reinforcement and fiber length between 20mm to 30mm. The GFRP specimen size of 80mm × 120mm has been cut for conducting the experiment. Further, two 4mm holes were drilled alongside and tapped to fix the accelerometer rigidly with the help of screws.

![Figure 1. GFRP specimen plate.](image-url)
2.2. Methodology
The drilling experiments were carried out according to full factorial design consisting of 9 drilled holes on the GFRP plate. In this study, the drilling parameters, cutting speed and feed rate are used as control parameters and each parameter has three distinct levels as shown in Table 1. The workpiece has been drilled using a 10mm HSS drill bit in a vertical machining center(Siemens 802D) and the vibrations developed during drilling along x, y and z axes have been measured with the help of an accelerometer(Dytran 7543A). The vibrations were measured by placing the accelerometer as close as possible to the drilled holes to acquire precise measurements. Positioning the accelerometer at a different location does not directly affect the results but provides the results in terms of multiples and shows minimized values, so it is effective when placed close to the drilled hole. Finally, surface roughness tester(Mitutoyo SJ210) has been utilised to measure the surface roughness of each hole at the inner surface to ensure that the delamination at the rim does not affect the measurements. Three trials were taken for each hole and average of the three reading were considered for analysis.

Table 1. Control factors and three levels of variation.

Factors	Level 1	Level 2	Level 3
Speed (rpm)	1000	2000	3000
Feed (mm/min)	40	80	120

3. Results and discussion
The results obtained from the experimentation are represented in Table 2. The results are fed into Minitab for statistical analysis and to establish regression models. With the help of these analyses and mathematical models, the effect of control parameters was studied and optimum values are found.
Table 2. Experimental results.

Hole no.	Speed (rpm)	Feed (mm/min)	Vibration (mm)	Surface roughness (µm)			
			x-axis	y-axis	z-axis		
1	1000	40	-0.8069	1.561	9.42	6.648	
2	1000	80	-0.7571	1.627	10.21	7.635	
3	1000	120	-0.797	1.619	10.16	8.098	
4	2000	40	-0.792	1.627	10.50	7.961	
5	2000	80	-0.788	1.654	10.47	8.367	
6	2000	120	-0.807	1.770	10.69	5.496	
7	3000	40	-0.748	1.662	10.70	9.30	
8	3000	80	-0.826	1.639	15.17	7.981	
9	3000	120	-0.739	1.670	9.34	6.848	

3.1. Analysis Of Variance (ANOVA)

ANOVA is widely used to determine significant relationship between two groups of variables. Table 3 represent the results of ANOVA conducted between the vibrations developed along the three axes and surface roughness of the drilled holes. When considering vibration as a factor, number of external interferences such as the bed of drilling machine, acoustic noise and temperature may have some effect on measuring vibration. The probability values exhibit the reliability of the derived results. The coefficients obtained are used to derive the regression equation which is used to derive predicted results for the required inputs.

Table 3. Analysis of Variance table.

(a)

	Coefficients	Standard Error	t Stat	P-value
Intercept	37.45652	15.64965	2.393441	0.062123
x-axis	23.29576	14.44509	1.612711	0.167726
y-axis	-9.54506	6.519095	-1.46417	0.203028
z-axis	0.385479	0.248452	1.551523	0.181476

(b)

	DOF	SS	MS	F	Significance F
Regression	3	4.751306	1.583769	1.537689	0.313926
Residual	5	5.149834	1.029967		
Total	8	9.90114			
Figure 4 represents the normal probability plots in which the points lie closer to the normal line. The versus fit has a symmetrical section between the upper and lower section of the versus line. The histogram figures follow a curve similar to the normal curve. The residuals in the versus order follows a non-uniform pattern and shows no trend. Thus, the residual plots show that there is a significant relation between the vibration developed along each axis and surface roughness.

3.2. Mathematical model

\[R_a = 37.46 + 23.29(x\text{-axis}) - 9.54(y\text{-axis}) + 0.38(z\text{-axis}) \]

Equation (1) is the derived regression equation for surface roughness. The equation also indicates that vibration along x-axis has more influence over \(R_a \). Since significance F value is comparatively lower than F value, it is clear that null hypothesis can be rejected.

The regression equation has been utilized to predict the surface roughness of the hole, provided that the vibrations along the three axes are given which in this case, are the measured results. Under a similar case, when the position of the accelerometer is adjusted, it provides results which are of multiples to that of the original results. The differences between the measured and predicted results
indicate the residuals. The residual of each hole and the variance percentage between the measured and predicted are shown in Table 4. The maximum and minimum variance percentages are 15% and 5% respectively, and the variance percentage changes averaged to 9.2%. Figure 5 represents the measured vs. predicted graph indicating that the predicted line follows a similar path to that of the measured line.

Table 4. Residuals.

Measured	Predicted	Residuals	Variance percentage
6.648	7.390542	-0.74254	11%
7.635	8.225226	-0.59023	8%
8.098	7.352811	0.745189	-9%
7.961	7.523992	0.437008	-5%
8.367	7.347894	1.019106	-12%
5.496	5.882854	-0.38685	7%
9.3	8.292024	1.007976	-11%
7.981	8.417581	-0.43658	5%
6.848	7.901075	-1.05307	15%

![Figure 5. Measured results vs. predicted results.](image)

4. Conclusion

The relationship between the surface roughness of drilled holes and vibration developed in GFRP composite has been studied. Mathematical models were generated in order to provide analytical results and are found to be reliable. Regression equation decisively indicates that the vibration along the x-axis influences surface roughness to a greater degree. So, it is evident that reduced vibration along x-axis while drilling can provide better surface roughness of the hole. Investigations in vibration dampening of work piece would further emphasize the reduction of surface roughness leading to an improved quality of drilled holes. In addition to that, GFRP being highly abrasive in nature, tool wear
also plays a crucial role in producing surface quality. Further research can be done taking tool wear into consideration to attain high surface quality of drilled holes.

References
[1] Sureshkumar M S, Lakshmanan D and Murugarajan A 2014 Experimental investigation and mathematical modelling of drilling on GFRP composites Materials Research Innovations 18(sup1) S1-94-S1-97
[2] Shivangere Abhay, Sharma S and Goyal P 2018 Modelling of glass fibre reinforced polymer (Gfrp) for aerospace applications Journal of Engineering Science and Technology 13(11) 3710-28
[3] Wang M Y and Chang H Y 2004 Experimental study of surface roughness in slot end milling AL2014-T6 International Journal of Machine Tools and Manufacture 44(1) 51-57
[4] Latha B and Senthilkumar V S 2010 Modeling and analysis of surface roughness parameters in drilling GFRP composites using fuzzy logic Materials and Manufacturing Processes 25(8) 817-27
[5] Mohan N S, Shettar M and Hiremath P 2015 Influence of drilling conditions of Glass Fiber-Reinforced Plastic [GFRP] composite materials 4th World Conf. on Applied Sciences, Engineering & Technology 24-26
[6] Kilickap E 2010 Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite Expert systems with applications 37(8) 6116-22
[7] Shunmugesh K, Panneerselvam K and Jospaul Thomas 2014 Optimising drilling parameters of GFRP by using grey relational analysis International Journal of Research in Engineering and Technology 3(6) 302-05
[8] Palanikumar K 2011 Experimental investigation and optimisation in drilling of GFRP composites Measurement 44(10) 2138-48
[9] Kavad B V, Pandey A B, Tadavi M V and Jakharia H C 2014 A review paper on effects of drilling on glass fiber reinforced plastic Procedia Technology 14 457-64
[10] Hocheng H and Tsao C C 2003 Comprehensive analysis of delamination in drilling of composite materials with various drill bits Journal of materials processing technology 140(1-3) 335-39
[11] Hussain S A, Pandurangadu V and Kumar K P 2011 Machinability of glass fiber reinforced plastic (GFRP) composite materials International Journal of Engineering, Science and Technology 3(4) 103-18
[12] Vankanti V K and Ganta V 2014 Optimization of process parameters in drilling of GFRP composite using Taguchi method Journal of Materials Research and Technology 3(1) 35-41
[13] Davim J P, Reis P and António C C 2004 Drilling fiber reinforced plastics (FRPs) manufactured by hand lay-up: influence of matrix (Viapal VUP 9731 and ATLAC 382-05) Journal of Materials Processing Technology 155 1828-33
[14] Davim J P, Reis P and Antonio C C 2004 Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up Composites Science and Technology 64(2) 289-97
[15] Sureshkumar Manickam Shanmugasundram, Lakshmanan Damodhiran, Arunkumar Veluchamy, Vignesh Kathirvel, Vinothkumar Thirugnanam, Damodhiran L, Veluchamy A, Kathirvel, V and Thirugnanam V 2013 Experimental investigation and Mathematical modelling for Surface Roughness of drilling on GFRP composites Applied Mechanics and Materials 391 46-50
[16] İşik B and Ekici E 2010 Experimental investigations of damage analysis in drilling of woven glass fiber-reinforced plastic composites The International Journal of Advanced Manufacturing Technology 49(9-12) 861-69
[17] Ulas H B, Ozkan M T and Malkoc Y 2019 Vibration prediction in drilling processes with HSS and carbide drill bit by means of artificial neural networks Neural Computing and Applications
31(9) 5547-62

[18] Ogawa K, Aoyama E, Inoue H, Hirogaki T, Nobe H, Kitahara Y, Katayama T and Gunjima M 1997 Investigation on cutting mechanism in small diameter drilling for GFRP (thrust force and surface roughness at drilled hole wall) Composite Structures 38(1-4) 343-50

[19] Ramkumar J, Malhotra S K and Krishnamurthy R 2004 Effect of workpiece vibration on drilling of GFRP laminates Journal of Materials Processing Technology 152(3) 329-32