Formate Oxidase (FOx) from Aspergillus oryzae
One Catalyst Enables Diverse H
\[\text{O} \]
\[\text{2} \]
-Dependent Biocatalytic Oxidation Reactions

Tieves, Florian; Willot, Sébastien Jean Paul; van Schie, Morten Martinus Cornelis Harald; Rauch, Marine Charlène Renée; Younes, Sabry Hamdy Hamed; Zhang, Wuyuan; Dong, Jia Jia; Gomez de Santos, Patricia; Hollmann, Frank

DOI
10.1002/anie.201902380

Publication date
2019

Document Version
Final published version

Published in
Angewandte Chemie - International Edition

Citation (APA)
Tieves, F., Willot, S. J. P., van Schie, M. M. C. H., Rauch, M. C. R., Younes, S. H. H., Zhang, W., Dong, J. J., Gomez de Santos, P., & Hollmann, F. (2019). Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H\(_2\)O\(_2\)-Dependent Biocatalytic Oxidation Reactions. Angewandte Chemie - International Edition, 58(23), 7873-7877. https://doi.org/10.1002/anie.201902380

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H₂O₂-Dependent Biocatalytic Oxidation Reactions

Florian Tieves†, Sébastien Jean-Paul Willot†, Morten Martinus Cornelis Harald van Schie, Marine Charlène Renée Rauch, Sabry Hamdy Hamed Younes, Wuyuan Zhang, JiaJia Dong, Patricia Gomez de Santos, John Mick Robbins, Bettina Bommarius, Miguel Alcalde, Andreas Sebastian Bommarius, and Frank Hollmann*

Abstract: An increasing number of biocatalytic oxidation reactions rely on H₂O₂ as a clean oxidant. The poor robustness of most enzymes towards H₂O₂, however, necessitates more efficient systems for in situ H₂O₂ generation. In analogy to the well-known formate dehydrogenase to promote NADH-dependent reactions, we here propose employing formate oxidase (FOx) to promote H₂O₂-dependent enzymatic oxidation reactions. Even under non-optimised conditions, high turnover numbers for coupled FOx/peroxygenase catalysis were achieved.

Enzymatic oxidation and oxyfunctionalisation reactions are currently receiving tremendous interest in the context of preparative organic chemistry.[1] Especially if selectivity is desired, enzymatic reactions often excel over the chemical counterparts. Amongst available biocatalysts, monoxygenases are of particular interest.[2] Monoxygenases, however, rely on molecular oxygen, which is reductively activated at the enzyme active site. The reducing equivalents required are mostly derived more or less directly from reduced nicotinamide cofactors (NAD(P)H). While issues regarding the in situ regeneration of NAD(P)H have largely been solved, so that it can be used catalytic amounts,[3] the so-called oxygen dilemma poses a more severe challenge:[4] many monoxygenases cannot utilise NAD(P)H directly but depend on single-electron mediators to transform the hydride transfer into two successive single-electron transport events. The reduced mediators, however, also directly interact with dissolved molecular oxygen and are re-oxidised (Scheme 1a). As a consequence, reactive oxygen species are formed in a futile cycle that uncouples the regeneration reaction from the oxygenation reaction. In extreme cases, up to 95% of the reducing equivalents provided by the co-substrate are wasted.[4]

A viable solution of the challenge outlined above is to make use of H₂O₂-dependent “Peroxizymes”. [5] By using H₂O₂, Peroxizymes actually make use of the oxygen dilemma instead of being hampered by it (Scheme 1b).

A range of enzymes are able to use H₂O₂. Peroxidases for example, represent model enzymes for H₂O₂-dependent oxidation,[6] polymerization,[7] or halogenation reactions.[8] More recently, peroxygenases have received a lot of attention for selective oxyfunctionalisation reactions.[9] In addition to these reactions, hydrolase-catalysed formation of peracids for H₂O₂-driven epoxidation[10] and Baeyer–Villiger oxidations[11] are becoming popular.

Enzymes, however, are also prone to oxidative inactivation by H₂O₂[12] which is why a broad range of in situ H₂O₂ generation methods have been investigated in recent years (Table S2 compares some established systems with respect to efficiency and waste generation). The goal is to provide the production enzymes with H₂O₂ at rates that allow high catalytic turnover while minimising the undesired oxidative inactivation by excess H₂O₂.[13] Today, glucose oxidase (GOx) is the catalyst of choice for in situ H₂O₂ generation.[14] It couples the oxidation of glucose to the reductive activation of O₂ to form H₂O₂ in a highly efficient and robust fashion. The GOx system, however, suffers from high levels of waste generation (196 g of glucose waste per mol H₂O₂ equivalent are generated).[15] Additionally, practical issues such as the high viscosity of the reaction medium have to be dealt with at larger reaction scales. Formate would be a more suitable reductant for the reductive activation of O₂ (generating only
44 g of volatile and therefore not accumulating CO₂ waste per mol H₂O₂ equivalent). The systems available today, however, either rely on bioincompatible transition-metal catalysts, or are too complex or too elaborate to be practical.

Recently, a formic acid oxidase from Aspergillus oryzae (AoFOx) has been reported as the first member of the glucose-methanol-choline (GMC) oxidoreductase superfamily that oxidizes formic acid instead of simple alcohols. This enzyme features an optimum pH range from 2.8–6.8 and a k_{cat} value of 82 s⁻¹ over that range. It contains an unusual 8-formyl flavin adenine dinucleotide (FAD) cofactor, which is formed in situ from FAD through self-oxidation. Its unique catalytic properties render AoFOx a promising candidate for H₂O₂-dependent enzymatic reactions. We therefore set out to evaluate the potential of AoFOx as a catalyst to promote H₂O₂-dependent biocatalytic oxidation reactions (Scheme 2).

AoFOx was prepared according to a previously published procedure. In short, AoFOx was expressed in recombinant Escherichia coli and partially purified to remove catalase. Overall, from 1 L culture broth, 38 mg of purified enzyme were obtained within 1 day (Figure S1 in the Supporting Information).

Having AoFOx in hand, we decided to first apply this enzyme for some selective oxyfunctionalisation reactions catalysed by the recombinant evolved unspecific peroxigenase from Agrocybe aegerita (rAaeUPO) heterologously expressed in Pichia pastoris. As model reaction, we first focused on the selective hydroxylation of ethyl benzene into (R)-1-phenylethanol. A preliminary optimisation of the reaction conditions (Figure 1) revealed that the biocatalytic cascade operates optimally in slightly acidic reaction media (pH 6, Figure 1a, Figure S2), which is in line with the reported preferences of the enzymes. An apparent optimal temperature of 25°C was determined (Figure 1b, Figure S3). Between 20 and 35°C, the initial rates of the overall system were largely temperature-independent (Figure S2) but the reaction ceased sooner at elevated temperatures. At 40°C for example, no further product formation was observed after 2 h. In contrast, steady product accumulation occurred at 30°C or lower. This behaviour can be attributed to the comparably poor thermal robustness of wt-AoFOx.

We determined an apparent optimal formate concentration of 200 mM (Figure 1d, Figure S4), which represents a compromise between the relatively high K_M value of wt-AoFOx at this pH and the decreasing peroxygenative activity of UPOs at higher formate concentrations.

Scheme 1. Biocatalytic oxyfunctionalisations using monooxygenases (a) or peroxymes (b). Monooxygenases often are prone to the oxygen dilemma while peroxymes productively make use of the oxygen dilemma.

Scheme 2. The formate oxidase from Aspergillus oryzae (AoFOx) enables in situ H₂O₂ generation from formate and ambient oxygen to promote a broad range of biocatalytic oxidation/oxfunctionalisation reactions.
The relative ratio of (H₂O₂-generating) AoFOx and (H₂O₂-consuming) rAaeUPO had a very pronounced effect on the efficiency of the overall reaction system (Figure 1c, Figure S5). The highest initial rate was observed at an equimolar ratio of the two enzymes, albeit at the expense of poor long-term stability of the overall system (after 5 h, no further product formation was observed; Figure S5). Lower ratios of AoFOx to rAaeUPO gave lower productivity but significantly greater robustness. At a ratio of 1:5, stable product formation for at least 24 h was observed.

The availability of molecular oxygen had a significant influence on the overall reaction (Figure 1e). Under ambient atmosphere without stirring, an O₂ transfer rate of 0.84 ± 0.03 mmol h⁻¹ was estimated (Figure S7), which limits the productivity of the overall system. Increasing the O₂ availability by increasing the O₂ partial pressure in the headspace of the reaction dramatically increased the productivity of the overall reaction more than ten-fold (Figure 1e, Figure S8).

It is worth mentioning that appropriate negative controls (i.e., reactions leaving out either one of the enzymes or reactions in the absence of formate) were performed for all of the reactions reported. With the sole exception of CytC-catalysed sulfoxidation, where traces of sulfoxide were also observed in the absence of CytC, the control reactions gave no product formation.

Next, we explored the enzyme and product scope of the AoFOx-catalysed H₂O₂ generation system to promote various H₂O₂-dependent biocatalytic oxidation reactions (Figure 2).

First, we investigated some peroxygenase-catalysed hydroxylation and epoxidation reactions. The proposed H₂O₂-generation system enabled excellent catalytic performance of the peroxygenase used. Both product concentrations and rAaeUPO-turnover numbers were at least as high as for previous methods using more complicated H₂O₂ generation systems.[15,18,20d,23]

The stereospecific hydroxylation of ethyl benzene was performed on a semi-preparative scale, yielding 434 mg of (R)-1-phenylethanol (>99% ee, see the Supporting Information for further details). A very satisfactory turnover number for the AoFOx of more than 30 000 was achieved, which suggests that this in situ H₂O₂ generation system is economically feasible. It is also worth mentioning that up to 31±3 mmol (R)-1-phenylethanol was produced (Figure S6), which is one of the highest numbers observed so far using rAaeUPO.[15] It should be mentioned here that in case of volatile reagents, imperfect mass balances were observed upon prolonged reaction times. We believe that this is a technical issue that will be overcome in future scale-up experiments.

Cytochrome C (CytC), another heme-containing protein capable of catalysing H₂O₂-driven oxygen transfer reactions, especially sulfoxidation, was evaluated next. Compared to the turnover numbers observed with rAaeUPO, the numbers achieved with CytC appear rather low. However, these numbers are still significantly higher than those achieved previously using other H₂O₂-generation systems.[36] The lack of enantioselectivity in the sulfoxidation of thioanisol is in accordance with previous reports.[36] It should be kept in mind here that the natural role of CytC is not that of an enzyme but rather that of an electron-transport protein.

Another important H₂O₂-driven reaction is the so-called perhydroxylation of lipases.[16,17] In short, a lipase catalyses the perhydrolysis of carboxylic (esters) to yield a reactive peracid, which in turn can undergo Baeyer–Villiger oxidations of ketones or Prilezhaev oxidations of C=C double bonds. Our proposed AoFOX H₂O₂-generation system proved to be applicable in principle to drive these reactions (Figure 2). Using the lipase B from Candida antarctica, CalB) together with octanoic acid as cocatalyst gave catalytic turnover in the chemoenzymatic Baeyer–Villiger oxidation of cyclohexanone as well as the chemoenzymatic epoxidation of styrene. However, compared to the other systems investigated here, rather low turnover numbers for the biocatalyst were observed. This can be attributed to the low affinity of CalB towards H₂O₂ in aqueous systems resulting in low CalB activity under the conditions chosen. Further investigations aiming at higher in situ H₂O₂ concentrations are currently ongoing.

Finally, we evaluated AoFOX to promote halogenation reactions catalysed by the V-dependent haloperoxidase from...
The hydroxyhalogenation of styrene gave acceptable results in terms of product yield and catalyst performance. Again, the volatility of the reagents impaired the final product concentration and thereby the catalytic numbers. A completely different picture evolved, however, when using 4-panenonic acid as starting material. Here, a perfect mass balance was observed and full conversion of the starting material into the desired bromolactone was observed. We also scaled up this reaction to the gram scale: Starting from 200 mm 4-panenonic acid, 150 mm of the desired bromolactone was obtained, which could be separated from the reaction mixture by simple extraction (Figure S14). Thus, 1.6 g of the pure product was obtained.[27]

In conclusion, we present herein the proof-of-concept for a simple H₂O₂ generation system based on formate oxidases such as the FoX from Aspergillus oryzae (AoFoX). This system stands out in terms of practical simplicity and excellent performance, even at this early stage of development. Furthermore, the turnover numbers achieved with AoFoX exceed those of established systems by orders of magnitude (Table S2).

Three decades ago, the introduction of formate dehydrogenases as NADH regeneration catalysts ushered in a new era in bioreduction catalysis.[28] We are convinced that formate oxidases will have a similar impact for biooxidation/function-alisation catalysis. Further developments in our laboratories will focus on further engineering AoFoX (in particular, a lower K_M value towards formate is highly desirable) and further characterisation and optimisation of the synthetic schemes to fully explore its synthetic potential.

Acknowledgements

The authors gratefully acknowledge funding by the European Research Commission (ERC consolidator grant, No. 648026), the European Union (H2020-BBI-PPP-2015-2-1-720297), the Netherlands Organisation for Scientific Research (VICI grant No. 724.014.003), the National Science Foundation (NSF) of the United States (grant IIP-1540017) and the Comunidad de Madrid Synergy CAM Project Y2018/BIO-4738-EVOCHI-MERA-CM.

Conflict of interest

The authors declare no conflict of interest.

Keywords: biocatalysis · formate oxidase · hydrogen peroxide · oxidation · oxo-functionalisation

How to cite: Angew. Chem. Int. Ed. 2019, 58, 7873–7877
Angew. Chem. 2019, 131, 7955–7959

[1] a) Y. Liang, J. Wei, X. Qiu, N. Jiao, Chem. Rev. 2018, 118, 4912–4945; b) J. Dong, E. Fernandez-Fuego, F. Hollmann, C. Paul, M. Pesic, S. Schmidt, Y. Wang, S. Younes, W. Zhang, Angew. Chem. Int. Ed. 2018, 57, 9238–9261; Angew. Chem. 2018, 130, 9380–9404; c) N. D. Fessner, ChemCatChem 2019, https://doi.org/10.1002/cctc.201801829.

[2] a) E. Roduner, W. Kaim, B. Sarkar, V. B. Urlacher, J. Pleis, R. Gläser, W.-D. Einicke, G. A. Sprenger, U. Beifuß, E. Klemm, C. Liebner, H. Hieronymus, S.-F. Hsu, B. Pletker, S. Laschat, ChemCatChem 2013, 5, 82–112; b) V. B. Urlacher, M. Girhard, Trends: Biotechnol. 2012, 30, 26–36; c) B. M. Nestl, S. C. Hammer, B. A. Nebel, B. Hauer, Angew. Chem. Int. Ed. 2014, 53, 3070–3095; Angew. Chem. 2014, 126, 3132–3158; d) R. Bernhardt, V. B. Urlacher, Appl. Microbiol. Biotechnol. 2014, 98, 6185–6203; e) R. Fasan, ACS Catal. 2012, 2, 647–666; f) S. T. Jung, R. Lauchli, F. H. Arnold, Curr. Opin. Biotechnol. 2011, 22, 809–817.

[3] a) S. K. Kar, J. H. Schröttwieser, F. Hollmann, M. B. Ansgere, Schumacher, Appl. Microbiol. Biotechnol. 2018, 94, 1517–1529; b) A. Weckbecker, H. Gröger, W. Hummel in Biosystems Engineering I: Creating Superior Biocatalysts, Vol. 120, Springer-Verlag Berlin, Berlin, 2010, pp. 195–242.

[4] D. Holtmann, F. Hollmann, ChemBioChem 2016, 17, 1391–1398.

[5] As Peroxizymes, we define all enzymes that (in principle) can use H₂O₂ as stoichiometric oxidant. Examples are the classical peroxidases and peroxynogenes but also other heme-containing biocatalysts such as P450 monooxygenases and also hydrolases.

[6] F. van Rantwijk, R. A. Sheldon, Curr. Opin. Biotechnol. 2000, 11, 554–564.

[7] F. Hollmann, I. W. C. E. Arends, Polymers 2012, 4, 759–793.

[8] a) C. J. Seel, A. Králík, M. Hacker, A. Frank, B. König, T. Gulder, ChemCatChem 2018, 10, 3960–3963; b) J. J. Dong, E. Fernandez-Fuego, J. Li, Z. Guo, R. Renirie, R. Wever, F. Hollmann, Chem. Commun. 2017, 53, 6207–6210; c) E. Fernández-Fuego, M. van Wingerden, R. Renirie, R. Wever, Y. Ni, D. Hollmann, F. Hollmann, ChemCatChem 2015, 7, 4035–4038; d) D. Wischang, J. Hartung, Tetrahedron 2012, 68, 9456–9463.

[9] a) M. Hofrichter, R. Ulrich, Curr. Opin. Chem. Biol. 2014, 19, 116–125; b) Y. Wang, D. Lan, R. Durrani, F. Hollmann, Curr. Opin. Chem. Biol. 2017, 37, 1–9.

[10] a) J. Meyer-Wassewitz, D. Hohmann, M. B. Ansgere-Schumacher, M. Kraume, A. Dreus, Biochem. Eng. J. 2017, 126, 68–77; b) P. Zhou, X. Wang, C. Zeng, W. Wang, B. Yang, F. Hollmann, Y. Wang, ChemCatChem 2017, 9, 934–936.

[11] a) M. Markiton, S. Boncel, D. Janas, A. Chrobok, ACS Sustain. Chem. Eng. 2017, 5, 1685–1691; b) A. R. S. Teixeira, A. Flouraut, A. M. Peru, F. Brunissen, F. Allais, Front. Chem. 2016, 4, 11; c) A. Drozdz, A. Chrobok, Chem. Commun. 2016, 52, 1230–1233.

[12] B. Valderrama, M. Ayala, R. Vazquez-Duhalt, Chem. Biol. 2002, 9, 555–565.

[13] F. Sabuzi, E. Churakova, P. Galloni, R. Wever, F. Hollmann, B. Floris, V. Conte, Eur. J. Inorg. Chem. 2015, 3519–3525.

[14] R. A. Sheldon, P. C. Pereira, Chem. Soc. Rev. 2017, 46, 2678–2691.

[15] Y. Ni, E. Fernández-Fuego, A. G. Baralbar, R. Ulrich, M. Hofrichter, Y. Hanse, M. Alcalde, W. J. H. van Berkel, F. Hollmann, Angew. Chem. Int. Ed. 2016, 55, 798–801; Angew. Chem. 2016, 128, 809–812.

[16] F. Hollmann, A. Schmid, J. Inorg. Biochem. 2009, 103, 313–315.

[17] J. Rocha-Martín, S. Velasco-Lozano, J. M. Guisan, F. Lopez-Gallego, Green Chem. 2014, 16, 303–311.

[18] a) W. Zhang, E. Fernandez-Fuego, Y. Ni, M. van Schie, J. Gacs, R. Renirie, R. Wever, F. G. Mutti, D. Rother, M. Alcalde, F. Hollmann, Nat. Catal. 2018, 1, 55–62; b) W. Zhang, B. O. Burek, E. Fernández-Fuego, M. Alcalde, J. Z. Bloh, F. Hollmann, Angew. Chem. Int. Ed. 2017, 56, 15451–15455; Angew. Chem. 2017, 129, 15654–15658.

[19] a) D. Doubayashi, T. Ootake, Y. Maeda, M. Oki, Y. Tokunaga, A. Sakurai, Y. Nagoasa, B. Mikami, H. Uchida, Biosci. Biotechnol. Biochem. 2011, 75, 1662–1667; b) Y. Maeda, D. Doubayashi, M. Oki, H. Nose, A. Sakurai, K. Isa, Y. Fujii, H.
[20] a) P. Molina-Espeja, E. Garcia-Ruiz, D. Gonzalez-Perez, R. Ullrich, M. Hofrichter, M. Alcalde, Appl. Environ. Microbiol. 2014, 80, 3496–3507; b) P. Molina-Espeja, P. G. de Santos, M. Alcalde in Directed Enzyme Evolution: Advances and Applications (Ed.: M. Alcalde), Springer International Publishing, Cham, 2017, pp. 127–143; c) P. Molina-Espeja, S. Ma, D. M. Mate, R. Ludwig, M. Alcalde, Enzyme Microb. Technol. 2015, 73–74, 29–33; d) P. Gomez de Santos, M. Canellas, F. Tieves, S. H. H. Younes, P. Molina-Espeja, M. Hofrichter, F. Hollmann, V. Guallar, M. Alcalde, ACS Catal. 2018, 8, 4789–4799.

[21] R. Ullrich, J. Nüske, K. Scheibner, J. Spantzel, M. Hofrichter, Appl. Environ. Microbiol. 2004, 70, 4575–4581.

[22] D. I. Perez, M. Mifsud Grau, I. W. C. E. Arends, F. Hollmann, Chem. Commun. 2009, 6848–6850.

[23] a) S. Peter, M. Kinne, R. Ullrich, G. Kayser, M. Hofrichter, Enzyme Microb. Technol. 2013, 52, 370–376; b) M. Kluge, R. Ullrich, K. Scheibner, M. Hofrichter, Green Chem. 2012, 14, 440–446.

[24] a) F. Björkling, H. Frykman, S. E. Godtfredsen, O. Kirk, Tetrahedron 1992, 48, 4587–4592; b) F. Björkling, S. E. Godtfredsen, O. Kirk, J. Chem. Soc. Chem. Commun. 1990, 1301–1303.

[25] a) Y. Ma, P. Li, S. J.-P. Willot, W. Zhang, D. Ribitsch, Y. H. Choi, T. Zhang, R. Verpoort, F. Hollmann, Y. Wang, ChemSusChem 2019, https://doi.org/10.1002/cssc.201900043; b) P. F. Zhou, D. M. Lan, G. M. Popowicz, X. P. Wang, B. Yang, Y. H. Wang, Appl. Microbiol. Biotechnol. 2017, 101, 5689–5697; c) P. Zhou, X. Wang, B. Yang, F. Hollmann, Y. Wang, RSC Adv. 2017, 7, 12518–12523.

[26] a) R. Wever, M. A. van der Horst, Dalton Trans. 2013, 42, 11778–11786; b) R. Wever, R. Renirie, Peroxidases and Catalases: Biochemistry Biophysics, Biotechnology, and Physiology, Wiley, Hoboken, 2010, pp. 363–385.

[27] This corresponds to a 45% yield of isolated product. However, upon performing a second extraction, more product (albeit contaminated with the starting material) was obtained.

[28] a) Z. Shaked, G. M. Whitesides, J. Am. Chem. Soc. 1980, 102, 7104–7105; b) V. O. Popov, V. S. Lamzin, Biochem. J. 1994, 301, 625–643; c) V. I. Tishkov, V. O. Popov, Biochemistry 2004, 69, 1252–1253; d) A. S. Bommarius, M. Schwarm, K. Stingl, M. Kottenhahn, K. Huthmacher, K. Drauz, Tetrahedron: Asymmetry 1995, 6, 2851–2888.