Antibiotic resistance and typing of \textit{agr} locus in \textit{Staphylococcus aureus} isolated from clinical samples in Sanandaj, Western Iran

Samira Saedi 1, Safoura Derakhshan 2,3*, Ebrahim Ghaderi 3

1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
2 Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
3 Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

\textbf{Objective(s):} Infections by \textit{Staphylococcus aureus} remain an important health problem. The aims were to detect \textit{mecA}, staphylococcal cassette chromosome \textit{mec} (SCC\textit{mec}), \textit{accessory gene regulator} (\textit{agr}), and integrons in \textit{S. aureus} and to investigate the relationship of \textit{agr} types with antibiotic resistance of isolates.

\textbf{Materials and Methods:} In this cross-sectional study, 70 \textit{S. aureus} isolates were collected between December 2017 and May 2018 from clinical specimens of patients in two hospitals of Sanandaj, western Iran. Susceptibility was determined by disk diffusion for 9 antibiotics and by vancomycin E test. The \textit{mecA}, classes I-3 integrons, SCC\textit{mec} I-V, and \textit{agr} I-IV were detected by polymerase chain reaction. A \textit{P}-value<0.05 was considered significant.

\textbf{Results:} The most effective antibiotics were linezolid, vancomycin, and trimethoprim-sulfamethoxazole (above 90% sensitivity). Of the 70 isolates, 17.1% were methicillin-resistant \textit{S. aureus} (MRSA). 8.6% carried class 1 \textit{integron}, 11.4% carried \textit{mecA}, 17.1% carried \textit{agrI}, and 30% carried \textit{agr III}. SCC\textit{mec} III and SCC\textit{mec}V were detected. An association was found between resistance to certain antibiotics and the presence of \textit{agr I} (\textit{P}-value<0.05). Conversely, the prevalence of \textit{agr III} in susceptible strains was higher than non-susceptible strains, and no MRSA isolates belonged to \textit{agr III} (\textit{P}-value<0.05).

\textbf{Conclusion:} These data suggest that \textit{agr} activity may influence the resistance of \textit{S. aureus} to antibiotics. Although the prevalence of \textit{mecA} and \textit{integron} was relatively low, the identification of such strains calls for serious health concerns; thus highlights the need to monitor drug resistance in \textit{S. aureus}.

\textbf{Introduction}

\textit{Staphylococcus aureus} is one of the leading causes of bacterial infections in humans and is responsible for a wide range of diseases including septicemia, meningitis, endocarditis, osteomyelitis, septic arthritis, toxic shock syndrome and, food poisoning.

\textit{S. aureus} has become one of the most important antibiotic-resistant pathogens in hospitals and communities, worldwide (1). In the 1960s, methicillin was used to treat infections caused by \textit{S. aureus}, but after a short period, methicillin-resistant \textit{S. aureus} (MRSA) strains emerged (2). MRSA was first recognized as being acquired from the hospital settings (hospital-acquired, HA-MRSA), but the onset of MRSA infection in the community (community-acquired, CA-MRSA), has been described with increasing frequency (1).

Methicillin resistance in \textit{S. aureus} is mainly mediated by an acquired penicillin-binding protein (PBP), named PBP2A which has a low affinity for beta-lactam antibiotics. PBP2A is encoded by the \textit{mecA} gene, which is located on the \textit{S. aureus} chromosome as part of a large mobile genetic element called staphylococcal cassette chromosome \textit{mec}, or SCC\textit{mec} (3). SCC\textit{mec} consists of two main components: the \textit{ccr} gene complex, which causes the mobility of SCC\textit{mec}, and the \textit{mec} gene complex. Various types of SCC\textit{mec} have been identified, but the more dominant types are SCC\textit{mec} I-V (4). SCC\textit{mec} types I, IV, and V cause resistance to beta-lactam antibiotics, but types II and III determine resistance to multiple antibiotics. Methicillin-resistant strains of \textit{S. aureus} are clinically important and have gained the attention of researchers because a single genetic element confers resistance to beta-lactam antibiotics (1).

The expression of many virulence genes in \textit{S. aureus} is regulated by the accessory gene regulator (\textit{agr}) system which responds to cell density-dependent stimuli. At high cell densities, this quorum-sensing system downregulates the expression of surface virulence factors, while up-regulating the expression of secreted virulence factors. The activity of the \textit{agr} system involves two transcripts, RNAII and RNAIII, where RNAII encodes four proteins that generate the \textit{agr}-sensing mechanism and as a result of their activation, RNAIII (the effector molecule of the \textit{agr} locus) is produced and controls the expression of a large number of virulence genes (5). There are four types of \textit{agr} systems, referred to as \textit{agr I} through \textit{agr IV}. Under certain conditions, \textit{agr} activity may influence the type of infection and resistance of \textit{S. aureus} to antibiotics. For example, the association of \textit{agr IV} with the presence of exfoliative toxin genes and a link between the \textit{agr} types I and II with intermediate vancomycin resistance have been previously reported.

\footnote{Corresponding author: Safoura Derakhshan. Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran. Tel: +98-87-33668504; Email: s.derakhshan@muk.ac.ir}
The role of *agr* in human infections and particularly in antibiotic treatment is controversial (7).

The crucial role of integrons in the transfer of antibiotic resistance has been demonstrated. Integrons, the unit of genes, located in bacterial chromosome, plasmid or transposon, have the capacity to transfer antibiotic resistance genes. An integron consists of three elements: a gene (*intI*) that encodes integrase, a recombination site (*attI*), and a promoter gene (*81*). Among different classes of integrons, classes 1, 2, and 3 are most commonly associated with the spread of antibiotic resistance genes. Although the role of integrons in the spread of antibiotic resistance genes among Gram-negative bacteria has been well studied (9), less is known about the prevalence of integrons in Gram-positive bacteria, especially in *S. aureus*.

Considering the importance of *S. aureus* strains in the hospital and the community, this study was conducted to detect *mecA*, SCCmec types I-V, *agr* types I-IV and classes 1-3 integrons in *S. aureus* isolated from different clinical specimens in Sanandaj city, western Iran and to investigate the association of clinical specimens to vancomycin-resistant *S. aureus*.

Materials and Methods

Bacterial isolates and identification

A total of 70 non-duplicated *S. aureus* were isolated between December 2017 and May 2018 from different clinical specimens of patients in two teaching general hospitals affiliated to Kurdistan University of Medical Sciences in Sanandaj, Iran. Sanandaj is the capital of Kurdistan Province in western Iran. All isolates were identified by the standard biochemical tests for *S. aureus* such as gram stain, catalase, coagulase, DNase, and fermentation of mannitol (10).

A polymerase chain reaction (PCR) method was used to confirm the identification of *S. aureus*, using primers for *nuc* gene (encoding a thermostable nuclease); nuc1: 5’-GGTATGAGTTGATAAGCTT-3’ and nuc2: 5’-AGCCAGTCCTGCAGACTAACG-3’ (amplon size: 279 bp) (11). PCR conditions were as follows: initial denaturation at 94 °C for 5 min, then 35 cycles of denaturation at 94 °C for 1 min, annealing at different temperatures (Table 1) for 1 min, extension at 72 °C for 1 min and final elongation at 72 °C for 5 min. The crucial role of integrons in the transfer of antibiotic resistance has been demonstrated. Integrons, the unit of genes, located in bacterial chromosome, plasmid or transposon, have the capacity to transfer antibiotic resistance genes. An integron consists of three elements: a gene (*intI*) that encodes integrase, a recombination site (*attI*), and a promoter gene (*81*). Among different classes of integrons, classes 1, 2, and 3 are most commonly associated with the spread of antibiotic resistance genes. Although the role of integrons in the spread of antibiotic resistance genes among Gram-negative bacteria has been well studied (9), less is known about the prevalence of integrons in Gram-positive bacteria, especially in *S. aureus*.

A polymerase chain reaction (PCR) method was used to confirm the identification of *S. aureus*, using primers for *nuc* gene (encoding a thermostable nuclease); nuc1: 5’-GGTATGAGTTGATAAGCTT-3’ and nuc2: 5’-AGCCAGTCCTGCAGACTAACG-3’ (amplon size: 279 bp) (11). PCR conditions were as follows: initial denaturation at 94 °C for 5 min, then 35 cycles of denaturation at 94 °C for 1 min, annealing at different temperatures (Table 1) for 1 min, extension at 72 °C for 1 min and final elongation at 72 °C for 5 min. Electrophoresis was performed on 1.5% agarose gel in 0.5X Tris-Borate EDTA (TBE) buffer. A 100 bp Plus DNA ladder (SinaClon) was used as a size marker. The DNA fragments were stained with Safe stain (SinaClon) and visualized under UV transilluminator. The primers used are presented in Table 1.

Antibiotic susceptibility test

Antimicrobial susceptibility testing was performed by the disk diffusion method according to the 2019 Clinical and Laboratory Standards Institute (CLSI) guidelines (12) with the following 9 antibiotic disks (Rosco, Denmark): ceftoxitin (30 µg, for detection of MRSA), penicillin (10 units), erythromycin (15 µg), clindamycin (2 µg), gentamicin (10 µg), linezolid (30 µg), tetracycline (30 µg), trimethoprim-sulfamethoxazole (1.25-23.75), and ciprofloxacin (5 µg). Furthermore, the susceptibility of isolates to vancomycin was determined by the E-test (bioMerieux, France). Briefly, Mueller-Hinton agar (Q-Lab, US) plates were inoculated with the broth suspensions equivalent to 0.5 McFarland of each isolate. Disks and E. test strips were placed onto the plates and incubated at 35 °C for 16–18 hr (24 hr for vancomycin).

The inhibition zones were measured and interpreted according to the 2019 CLSI guidelines (12). *S. aureus ATCC25923 and S. aureus ATCC29213 strains were used as the quality controls.*

Genomic DNA extraction

Genomic DNA was extracted by the freeze-thaw method (13) and used as the template for PCR reactions. The suspensions of each isolate in Tris-EDTA (TE) buffer were boiled at 100 °C for 10 min and immediately placed on ice for 5 min. After three cycles of freezing-thawing, the tubes were centrifuged and the supernatants containing DNA were removed and stored at -20 °C. The quantity of each DNA extract was determined by measuring the absorbance at 260 nm to estimate the DNA concentration and by calculating the ratio of A260/A280 to determine purity. DNA samples within the range of 1.6–2 were considered pure (14).

Detection of genes

PCR assay was used to detect *mecA*, SCCmec types I-V, *agr* types I-IV, and classes 1-3 integrons by specific primers (Table 1). The reactions were done in a volume of 25 µl containing 1.5 mM MgCl₂, 0.2 mM of each dNTP, 1 U Taq polymerase, 1X reaction buffer, 0.4 µM of each primer (SinaClon, Iran), and 3 µl DNA template. PCR was performed in a thermal cycler (Eppendorf, Germany) under the following conditions: initial denaturation at 94 °C for 5 min, then 35 cycles of denaturation at 94 °C for 1 min, annealing at different temperatures (Table 1) for 1 min, extension at 72 °C for 1 min and final elongation at 72 °C for 5 min. Electrophoresis was performed on 1.5% agarose gel in 0.5X Tris-Borate EDTA (TBE) buffer. A 100 bp Plus DNA ladder (SinaClon) was used as a size marker. The DNA fragments were stained with Safe stain (SinaClon) and visualized under UV transilluminator. The primers used are presented in Table 1.

Statistical analysis

Data were analyzed using SPSS software (ver. 16). Multidrug-resistant (MDR) was defined as non-susceptible strains to at least one agent in three or more different antimicrobial categories and an MRSA is always considered MDR (19). Pearson's Chi-Squared test or Fisher's exact test where appropriate was used to determine significance. A P-value<0.05 was considered significant.

Results

Of the 70 isolates, 40 (57.1%) were isolated from males, therefore 30 (42.9%) were isolated from females. Fifteen of the 70 isolates (21.4%) were from outpatients and 55 (78.6%) from inpatients admitted to different wards, including infectious diseases (n=15), emergency (n=9), women (n=7), intensive care unit (ICU, n=6), men (n=5), burn (n=4), coronary care unit (CCU, n=2), cardiology (n=2), digestive (n=2), dialysis, nervous, and pediatric (n=1, each) wards. The average age of patients was approximately 56 years. The age range was from 13 years old (one patient) to 92 years old (two patients) and most patients were between 60–69 years old (13 of the 70 patients, 18.6%). The strains were mostly isolated from urine (n=43, 61.4%), followed by blood (n=16, 22.9%), wound (n=7, 10%), tracheal secretions
Iran J Basic Med Sci, Vol. 23, No. 10, Oct 2020

(2.9%), cerebrospinal fluid, and catheter (n=1, 1.4%; each).

Antibiotic susceptibility

The most effective antibiotics were linezolid, vancomycin, and trimethoprim-sulfamethoxazole (above 90% sensitivity) and the least effective antibiotics were penicillin and erythromycin (4.3% and 47.1% sensitivity, respectively). Twelve isolates (17.1%) were resistant to cefoxitin and were identified as MRSA; thus, 58 isolates (82.9%) were methicillin-sensitive S. aureus (MSSA). Of the 12 MRSA isolates, 7 (58.3%) were isolated from the outpatients and 5 (41.7%) from the inpatients. Interestingly, antibiotic susceptibility of the strains isolated from the in-patients was higher than the outpatients and a significant association according to Fisher’s exact test was seen for susceptibility to tetracycline, cefoxitin, and ciprofloxacin between the outpatients and inpatients. The susceptibility rate of the isolates to 10 antibiotics is presented in Table 2.

The vancomycin MIC, which was determined by the E. test, ranged from 0.25 to 3 µg/ml for all isolates. Most isolates had a MIC of 1.5 µg/ml (27 isolates) followed by 17 isolates with a MIC of 2 µg/ml. Four out of the 70 isolates (5.7%) had vancomycin MIC of 3 µg/ml and were classified as vancomycin-intermediate S. aureus (VISA) based on CLSI 2019 (12). Three of the 4 VISA strains were MSSA; thus, one isolate was determined as MRSA.

The vancomycin MIC, which was determined by the E. test, ranged from 0.25 to 3 µg/ml for all isolates. Most isolates had a MIC of 1.5 µg/ml (27 isolates) followed by 17 isolates with a MIC of 2 µg/ml. Four out of the 70 isolates (5.7%) had vancomycin MIC of 3 µg/ml and were classified as vancomycin-intermediate S. aureus (VISA) based on CLSI 2019 (12). Three of the 4 VISA strains were MSSA; thus, one isolate was determined as MRSA.

Twenty non-susceptibility patterns were identified among the 70 isolates. The patterns ranged from non-susceptibility only to one antibiotic to non-susceptibility against 9 of the 10 antibiotics. Of the 70 isolates, 27 isolates were non-susceptible to one antibiotic (38.6%), 30 were non-susceptible to 2 to 5 antibiotics (42.8%),

Target gene	Primer sequence (5′-3′)	Amplification product (bp)	Annealing temperature (°C)	Ref.
mecA	GTGACAGATATACGAGATAGT/	147	54	(15)
	ATGCCTATATATGAGGAT			
SCCmecI	CTGTTAAAGATTGGCTGCAGG/	613	62	(15)
	GTTCTTCTGATTGATGAGGTC			
SCCmecII	CTGTTAAGATTGGCTGCAGG/	398	54	(15)
	CAAAGAACATTGTTGAAGGGC			
SCCmecIII	CCATTGATGGATGATGAGG/	280	54	(15)
	CTGTTATAGTGGTGCACAGTG			
SCCmecIV	GCCCTTATTACCAAAAGCG/	776	56	(15)
	CTAGCTCTTGAAAAAGGCTG			
SCCmecV	GAAACTTGTACATTTGAATGAGC/	325	60	(15)
	TGAAGGGTACGTTTCGACACC			
agrI	ATGCACATGGTGCACTG/	440	61	(16)
	GTCAAACTGACTATAGAGGCGAT			
agrII	ATGCACATGGTGCACTG/	572	59	(16)
	GTATTCAACTATGGAAATGCGC			
agrIII	ATGCACATGGTGCACTG/	406	57	(16)
	CTGTTAAGGAGACATTAATAAGGCTC			
agrIV	ATGCACATGGTGCACTG/	588	56	(16)
	CGACAAGCCGATAATACCC			
intI	CAGTTGACATAGACCTGGT/	160	54	(17)
	CCCAGGCGATAGACGTAG			
int2	CAGGGATATGGGACAAAAAGGT/	709	60	(18)
	GTATGCAAAAGCGAGTGCAAGAAATG			
int3	GCCCTGCCGACGGCTTTGAAGT/	979	60	(18)
	AGGGATCTTGGCAACCTGACT			
Table 2. Antibiotic susceptibility of 70 Staphylococcus aureus isolates from outpatients and inpatients

Antibiotics	Total N= 70 (%)	Outpatients N= 15 (%)	Inpatients N= 55 (%)
LZ	70 (100)	15 (100)	55 (100)
TS	67 (95.7)	13 (86.7)	54 (98.2)
VA	66 (94.3)	13 (86.7)	53 (96.4)
GM	61 (87.1)	11 (73.3)	50 (90.9)
CX*	58 (82.9)	8 (53.3)	50 (90.9)
TE*	52 (74.3)	7 (46.7)	45 (81.8)
CC	49 (70)	7 (46.7)	42 (76.4)
CI*	49 (70)	6 (40)	43 (78.2)
E	33 (47.1)	4 (26.7)	29 (52.7)
P	5 (4.3)	0	3 (5.5)

*TS: trimethoprim-sulfamethoxazole; TE: tetracycline; P: penicillin; LZ: linezolid; GM: gentamicin; CX: cefoxitin; E: erythromycin; CC: clindamycin; CI: ciprofloxacin; VA: vancomycin
* P-value<0.05 according to Fisher’s exact test

Table 3. Antibiotic non-susceptibility patterns of 70 Staphylococcus aureus isolates from clinical samples

Non-susceptibility pattern	MRSA+ N= 12 (%)	MSSA+ N= 58 (%)	No. of isolates in Integrin l-positive isolates N= 6 (%)	Integrin l-negative isolates N= 64 (%)
P	0	27 (46.5)	3 (50)	24 (37.5)
P,CI	0	1 (1.7)	0	1 (1.6)
P,E	0	18 (17.2)	1 (16.7)	9 (14.1)
T, E	0	1 (1.7)	0	1 (1.6)
P, CX (MDR)*	1 (8.3)	0	1 (16.7)	0
P, E, VA (MDR)	0	1 (1.7)	0	1 (1.6)
T, E, PE (MDR)	0	1 (1.7)	0	1 (1.6)
P, DME (MDR)	0	1 (1.7)	0	1 (1.6)
P, E, E, CC (MDR)	0	3 (5.2)	0	3 (4.7)
P, E, E, CLA (MDR)	0	1 (1.7)	0	1 (1.6)
P, E, CCC (MDR)	0	2 (3.4)	0	2 (3.1)
T, E, CXE (MDR)	1 (8.3)	0	0	1 (1.6)
P, G, CXE, CI (MDR)	1 (8.3)	0	0	1 (1.6)
T, E, E, CCC (MDR)	0	6 (10.3)	0	6 (9.4)
T, E, E, CCC, VA (MDR)	0	1 (1.7)	0	1 (1.6)
P, G, CXE, CCC (MDR)	1 (8.3)	0	0	1 (1.6)
T, E, CXE, CCC (MDR)	2 (16.7)	0	0	2 (3.1)
T, E, G, CXE, CCC (MDR)	3 (25)	0	0	3 (4.7)
T, S, T, E, GM, CXE, CCC (MDR)	2 (16.7)	0	1 (16.7)	1 (1.6)
T, S, T, E, GM, CXE, CCC, VA (MDR)	1 (8.3)	0	0	1 (1.6)

*TS: trimethoprim-sulfamethoxazole; TE: tetracycline; P: penicillin; LZ: linezolid; GM: gentamicin; CX: cefoxitin; E: erythromycin; CC: clindamycin; CI: ciprofloxacin; VA: vancomycin
* MDR: multidrug-resistant (non-susceptible strains to at least 1 agent in 3 or more antimicrobial categories and an MRSA is considered MDR (19)

Distribution of integrons, mecA, SCCmec, and agr

PCR assay showed that 6 of the 70 isolates (8.6%) carried class 1 integron; classes 2 and 3 were not found. The major non-susceptibility pattern detected within
the 64 integron-negative isolates was non-susceptibility only to penicillin (n=24) followed by non-susceptibility to penicillin and erythromycin combination (n=9). Within the 6 integron-positive isolates, no pattern was dominant and the identified patterns were non-susceptibility to penicillin (n=3), penicillin and erythromycin (n=1), penicillin and cefoxitin (n=1), and one isolate was non-susceptible to all antibiotics except linezolid and vancomycin (Table 3). The mecA gene was found in 8 of the 70 isolates (11.4%); therefore, of the 12 isolates which were detected as MRSA by the cefoxitin disk diffusion test, 4 isolates were mecA-negative. Of the 8 mecA-positive isolates, 2 isolates carried SCCmec III, 2 isolates SCCmec V, and 4 isolates were non-typeable. SCCmec types I, II, and IV were not found. Five of the 8 mecA-positive isolates were from outpatients and 3 isolates were from inpatients.

Assays for detection of agr showed that 12 of the 70 isolates carried agr I (17.1%) and 21 isolates (30%) carried agr III. Types II and IV were not found. Of the four isolates with intermediate resistance to vancomycin, one isolate had agr I, and three isolates were non-typeable. The prevalence of both agr I and III was higher in the inpatients than the outpatients (10 of 12 agr I isolates (83.3%) and 19 of 21 agr III isolates (90.5%) were isolated from inpatients).

In general, the prevalence of agr I was higher in the non-susceptible isolates than in the susceptible isolates (because all isolates were susceptible to linezolid, this drug was excluded). There was an association shown by Fisher’s test between resistance to tetracycline, erythromycin, clindamycin, and ciprofloxacin with the presence of agr I (P-value < 0.05). The prevalence of agr I in the MSSA isolates was slightly higher than in the MRSA isolates (Figure 1). Conversely, the prevalence of agr III in the susceptible isolates was higher than in the non-susceptible isolates, and there was a significant relationship between sensitivity to tetracycline, gentamicin, cefoxitin, erythromycin, clindamycin, and ciprofloxacin with the presence of agr III (P-value < 0.05). The agr III isolates were significantly susceptible to cefoxitin (MSSA), gentamicin, and ciprofloxacin, each and no MRSA isolates belonged to agr group III (Figure 2).
Discussion

Between December 2017 and May 2018, we isolated 70 S. aureus from different clinical specimens of patients in two referral hospitals of Sanandaj, western Iran. The strains were mostly isolated from the inpatients and the majority of patients were between 60–69 years old, which can be explained by the fact that S. aureus infections occur more frequently in patients with decreased immunity or underlying diseases such as the elderly as well as in those hospitalized. Prolonged duration of therapy, extensive use of antibiotics, underlying illness, surgical wounds or burns, and decreased immunity are the main risk factors for the acquisition of S. aureus infections (1).

In the present study, the most effective antibiotics for S. aureus isolates were linezolid, trimethoprim-sulfamethoxazole, and vancomycin, and the least effective were penicillin and erythromycin, which is almost similar to other reports from Iran (20-22), China (23), and Pakistan (24). However, the prevalence of MRSA in our study was lower than that in the above studies. In our study, 17.1% of the isolates were MRSA and 40% of the isolates were MDR; while in a study from Iran in 2015 (22), 78.4% and 80.5% of 139 S. aureus isolates were MDR and MRSA, respectively or in another study from Iran in 2016 (21), of 80 S. aureus isolates, all were MDR and 86.2% were MRSA. In Pakistan in 2014, MRSA prevalence was found to be 51.1% according to the cefoxitin test (24). In China in 2014, a prevalence of 59.9% was found for MRSA isolated from urogenital tract infection (23). This variation in the prevalence rates may be explained in part by different local antibiotic prescriptions, infection control programs, transmission of resistant isolates, and studied population (25). Interestingly, in our study, the non-susceptibility rates in the isolates from the outpatients were higher than those in the isolates from the inpatients, especially for tetracycline, cefoxitin, and ciprofloxacin, likely due to the excessive and/or inappropriate use of these antimicrobials in the community, ineffective contact precautions for MRSA and the lack of stringent antibiotic policies in the community (25).

MRSA strains tend to be multi-resistant against many currently available antimicrobial drugs (1). Accordingly, the rates of resistance among our MRSA isolates were higher than those among the MSSA isolates and non-susceptibility to 6 or more antimicrobials was more frequently seen in the MRSA isolates, while the majority of the MSSA isolates were non-susceptible only to one or two antibiotics. Out of the 12 isolates which were detected as MRSA by the cefoxitin test, 4 isolates were mecA-negative. Mechanism of methicillin resistance other than mecA has been reported and includes a novel mecA homolog, mecC. Resistance due to mecC is rare and cannot be detected by the tests detecting mecA (12).

Vancomycin is one of the most effective treatment options for S. aureus infections (20). There are few reports about the isolation of S. aureus with reduced susceptibility to vancomycin in Iran. In 2015, Mirzaee et al. found 11 (2.65%) strains with intermediate resistance to vancomycin among 415 clinical isolates of S. aureus (26). Furthermore, out of the 30 MRSA isolated from Tehran in 2017, 2 strains were vancomycin-resistant with MIC higher than 128 μg/ml (27). In our study, out of the 70 isolates, 4 isolates (5.7%) with intermediate resistance to vancomycin were isolated from outpatient and hospitalized patients. Although the rate of vancomycin resistance in our study was low, it indicates the need for caution in the use of this antibiotic both in the community and in the hospital in Sanandaj.

Many factors are responsible for resistance of bacteria to antimicrobials including presence of mobile genetic elements such as integrons (9). A low prevalence of class 1 integron was identified in our isolates (8.6%) and classes 2 and 3 were not found. However, a high prevalence rate of 72.6% for class 1 integron and 35.2% for class 2 integrons in S. aureus isolates from Iran was reported (22). Furthermore, in another study in Iran, class 1 and 2 integrons were found in 56.3% and 18.7% of the isolates, respectively (21). In China, a prevalence rate of 53% for class 1 integrase was reported (28). Class 1 integrons in S. aureus were significantly associated with resistance to certain antibiotics, including aminoglycosides, beta-lactams, trimethoprim, and chloramphenicol (21, 28). Although we could not characterize the content of integrons due to some limitations, the characterization of non-susceptibility patterns in the integron-positive and -negative isolates may partly suggest the gene content of the integrons in the isolates.

agr typing showed that 30% and 17.1% of our isolates carried agr III and agr I, respectively. However, in several studies in Iran, such as those conducted. In Tehran in 2012 (29), in Isfahan and Shahrekord in 2019 (30), and in Tehran in 2017 (31) agr type I was the most dominant. Studies conducted in Korea in 2016 (32), in Turkey in 2017 (33), and in Pakistan in 2014 (24) indicated that agr I was the most predominant S. aureus type. This is more likely due to ecological and geographical differences. In our study, the agr III isolates showed more susceptibility to antibiotics than the agr I isolates, and agr III was not found in MRSA and the isolates non-susceptible to gentamicin and ciprofloxacin, each (P-value<0.05). The role of agr in antibiotic treatment is controversial. Data have demonstrated that the majority of MRSA in France belong to agr III (34). In Pakistan, agr III isolates showed higher antibiotic resistance than agr I isolates (24). In the study by Azimian et al. in Iran, most MRSA strains belonged to agr I and III, and most of MSSA strains belonged to agr II and IV (29). However, another study in Iran reported that most MRSA isolates belonged to agr I and none of them belonged to agr III; though, no significant difference was found regarding the presence of agr groups between MRSA and MSSA strains (35). Furthermore, a study conducted in Iran found a significant correlation between agr I and resistance to cefoxitin and erythromycin (P-value<0.05) (30).

Conclusion

Our study suggests that for treatment of patients with S. aureus infections, trimethoprim-sulfamethoxazole, vancomycin, or linezolid would be suitable agents. Although the prevalence of mecA and integrons in our study was relatively low, the identification of such strains calls for serious health concerns. These data suggest that agr activity already known to affect the production of virulence factors may also affect the resistance of S. aureus to antibiotics. Further studies with larger sample

1312

Iran J Basic Med Sci, Vol. 23, No. 10, Oct 2020

Saedi et al. Resistance and agr typing in Staphylococcus aureus
sizes and determination of MIC for all tested antibiotics provide more data about the prevalence of MRSA isolates and the effect of agr typing on the treatment of S. aureus infections in western Iran.

Ethical Code

IR.MUK.REC.1396.11, Research Ethics Committee (REC), Faculty of Medicine, Kurdistan University of Medical Sciences

Acknowledgment

This study was part of a Master’s thesis in Medical Microbiology and was supported by a grant [IR.MUK.REC.1396.11] from Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

1. Deurenberg RH, Vink C, Kalenic S, Friedrich A, Bruggeman C, Stobberingh E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2007;13:222-235.
2. Jevons MP. "Celbenin"-resistant staphylococci. Br Med J 1961;1:124-125.
3. Kim C, Milheiriço C, Gardete S, Holmes MA, Holden MT, de Lencastre H, et al. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. J Biol Chem 2012;287:36854-36863.
4. Turlaj A, Hrynewicz W, Empel J. Staphylococcal cassette chromosome mec (Scmec) classification and typing methods: an overview. Pol J Microbiol 2011;60:95-103.
5. Varwood JM, Schlievert PM. Quorum sensing in Staphylococcus infections. J Clin Invest 2003;112:1620-1625.
6. Wright JS, Traber KE, Corrigan R, Benson SA, Musser JM, Novick RP. The agr radiation: an early event in the evolution of staphylococci. J Bacteriol 2005;187:5585-5594.
7. Seidl K, Chen L, Bayer AS, Hady WA, Kreiswirth BN, Xiong YQ. Relationship of agr expression and function with virulence and vancomycin treatment outcomes in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011;55:5631-5639.
8. Dominguez S, da Silva GJ, Nielsen KM. Integrons: vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements 2012;2:211-223.
9. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, et al. Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob 2015;14:45-55.
10. Tille P. Bailey & Scott’s Diagnostic Microbiology: Elsevier Health Sciences; Mosby. 13th Edition; 2015.
11. Zhang K, Sparling J, Chow BL, Elsayed S, Hussain Z, Church MF. Relationship between adhesin genes and biofilm formation in vancomycin-resistant Staphylococcus aureus clinical isolates. Curr Microbiol 2015;70:665-670.
12. Yousefi M, Fallah F, Arshadi M, Pourmand MR, Hashemi A, Pourmand G. Identification of tigecycline-and vancomycin-resistant Staphylococcus aureus strains among patients with urinary tract infection in Iran. New Microbes New Infect 2017;19:8-12.
13. Azimian A, Najaf-Piraye S, Mirab-Samiee S, Naderi M. Occurrence of methicillin resistant Staphylococcus aureus (MRSA) among clinical samples in Tehran-Iran and its correlation with polymorphism of specific accessory gene regulator (AGR) groups. Braz J Microbiol 2012;43:779-785.
30. Javdan S, Narimani T, Abadi MSS, Gholipour A. Agr typing of *Staphylococcus aureus* species isolated from clinical samples in training hospitals of Isfahan and Shahrekord. BMC Res Notes 2019;12:363-368.
31. Cheraghi S, Pourgholi L, Shaafati M, Fesharaki SH, Jalali A, Nosrati R, *et al.* Analysis of virulence genes and accessory gene regulator (agr) types among methicillin-resistant *Staphylococcus aureus* strains in Iran. J Glob Antimicrob Resist 2017;10:315-320.
32. Kim SY, Park SH, Hwang SM. Prevalence and molecular characteristics of methicillin-resistant *Staphylococcus aureus* isolates in a neonatal intensive care unit. J Bacteriol Virol 2016;46:99-103.
33. Karbuza A, Karahan ZC, Aldemir-Kocabas B, Tekeli A, Özdemir H, Güriz H, *et al.* Evaluation of antimicrobial susceptibilities and virulence factors of *Staphylococcus aureus* strains isolated from community-acquired and health-care associated pediatric infections. Turk J Pediatr 2017;59:395-403.
34. Dufour P, Gillet Y, Bes M, Lina G, Vandenesch F, Floret D, *et al.* Community-acquired methicillin-resistant *Staphylococcus aureus* infections in France: emergence of a single clone that produces Panton-Valentine leukocidin. Clin Infect Dis 2002;35:819-824.
35. Ghaseemian A, Peerayeh SN, Bakhshi B, Mirzaee M. Detection of accessory gene regulator groups genes and cassette chromosome mec types among *Staphylococcus aureus* isolated from intensive care unit patients. Asian Pac J Trop Dis 2015;5:153-157.