Structure and evolution of a rocksalt-mudrock-tectonite: The haselgebirge in the Northern Calcareous Alps

Christoph Leitner a,*, Franz Neubauer a, János L. Urai b, Johannes Schoenherr c

a Fachbereich für Geographie und Geologie, Universität Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
b Geologie-Endogene Dynamik, RWTH Aachen, Lothenerstraße 4-20, 52056 Aachen, Germany
c Exxon Mobil Upstream Research Company, Carbonate Reservoir Performance Prediction, 3319 Mercer Street, Houston, TX 77027, USA

ARTICLE INFO

Article history:
Received 7 June 2010
Received in revised form
1 February 2011
Accepted 18 February 2011
Available online 9 March 2011

Keywords:
Haselgebirge
Rocksalt
Halite
Hydrofracturing of mudrock
Northern Calcareous Alps

ABSTRACT

The Northern Calcareous Alps are part of the Eastern Alps in Austria and Germany. The Mesozoic units of this fold-and-thrust belt were detached, thrusted and stacked along the evaporitic Haselgebirge Formation. Exposed in salt mines, rocksalt and mudrock form a two component tectonite: The rock type “haselgebirge” consists of 10–70 wt % halite with silt- to gravel- or block-sized components within a halite matrix, and the “kernegebirge” with >70 wt % halite. All rock types studied are fault rocks. By use of a temperature-independent subgrain size piezometer, the paleo-differential stress of halite was calculated at ca. 2.5 MPa in Altaussee and ca. 4.5 MPa in Berchtesgaden. Including data from a grain-size piezometer, temperatures were estimated at ca. 150 ± 20 °C and 110 ± 10 °C. This implies very high strain rates, which are about 10−10−10−9 s−1. During the tectonic movement, the halite deformed, recrystallized, and crystallized as veins in mudrock fractures. We interpret high overpressure of the pore fluid to have significantly contributed to fracturing of the mudrock.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Formations comprising rocksalt or other evaporites at the basis of thrusting cover units exist for instance, in the Appalachians (Davis and Engelder, 1985), Swiss Jura (Sommaruga, 1999), the Salt Range in Pakistan (Jadoon and Frisch, 1997) and in the Zagros Mountains (Alavi, 2007). The taper of thrust wedge may be very small (≈ 1°), providing shallow overthrusts (Davis and Engelder, 1985). The Northern Calcareous Alps (NCA, Fig. 1a) form a fold-and-thrust belt within the Austroalpine unit of the Austrian Eastern Alps. The rheologically weak evaporitic series at the base act as one of the major detachment levels of nappes in high structural levels within NCA (e.g. Linzer et al., 1995).

The Haselgebirge Formation (Buch, 1802) is an evaporitic succession, which was formed as a rift sequence close to the lithostratigraphic base of the NCA succession. Operating salt mines provide subsurface exposures, where the salt has been mined in central sectors of the Northern Calcareous Alps (Salzkammergut, Fig. 1a–b) for more than 3000 years (Stöllner, 2003; Klein, 2006; Grabner et al., 2007). Halite, mudrock and subadinate anhydrite and polyhalite form an evaporitic mélange (Schauberger, 1931, 1949, 1986). The foliation visible in underground mines was first interpreted as sedimentary (Schauberger, 1953), but structures pointing to ductile deformation and folds combined with brittle deformation of the mudrock suggested a tectonic origin of the layering (Mayerhofer, 1955; Spötl, 1989a). The average halite content ranges between ca. 30–65 vol % (Schauberger, 1986). This rock type is called “haselgebirge” (nomenclature after Schauberger, 1986).

The central sectors of the Northern Calcareous Alps underwent strong diagenetic modifications to low-grade metamorphic conditions during the Late Jurassic to early Late Cretaceous. Maximum temperatures at around 200–300 °C were estimated (Kralik et al., 1987; Spötl, 1992; Götzinger and Grum, 1992; Gawlick et al., 1994; Wiesheu and Grundmann, 1994; Spötl et al., 1996, 1998a, 1998b; Wiesheu, 1997; Spötl and Hasenhüttl, 1998; Rantitsch and Russegger, 2005). Maximum temperatures increase towards the south, while cooling ages get younger towards the southern margin. Age estimates for this thermal peak range between 150 Ma and 90 Ma (Kirchner, 1980; Kralik et al., 1987; Hej und Grundmann, 1989; Götzinger and Grum, 1992; Gawlick et al., 1994; Spötl et al., 1996, 1998a, 1998b; Gawlick and Höpfer, 1996; Rantitsch and Russegger, 2005; Frank and Schlager, 2006).

The aim of this study is to constrain the conditions and the mechanisms by which the haselgebirge developed. Underground
observations were combined with thin section analysis, and paleostress and strain rate were calculated using experimental calibrations.

2. Mechanical behaviour of rocksalt and mudrock

In the following, “halite” is used as the name of the mineral, “rocksalt” refers to the monomineralic rock of halite with only minor xenolithic inclusions, “salt rock” refers to rocks with various halite contents and “salt” is an undifferentiated expression.

Piezometers relate subgrain and grain size and differential stress during deformation. The piezometer for halite (Carter et al., 1993; Schléder and Urai, 2005, 2007) relates differential stress to the steady-state subgrain size in halite:

$$D = 215\sigma^{-1.15}$$ \hspace{1cm} (1)

where D is the average diameter of the subgrains and σ is the differential stress. It is almost temperature-independent. The new piezometer of Ter Heege et al. (2005) relates the actual grain size to differential stress and temperature. Armann (2008) observed the evolution of different grain sizes by recovery processes during deformation in simple shear experiments.

A creep law relates differential stress and strain rate. For rocksalt, deformation by dislocation creep the strain rate $\dot{\varepsilon}$ can be related to the flow stress ($\Delta\sigma$) using a power law creep equation:

$$\dot{\varepsilon} = A \exp\left(-\frac{Q}{RT}\right)\Delta\sigma^n$$ \hspace{1cm} (2)

where the pre-exponential constant A has the dimensions $M \, Pa^{-n} \, s^{-1}$, Q is the apparent activation energy for creep in $J \, mol^{-1}$, R is the gas constant in $J \, mol^{-1} \, K^{-1}$, T is the temperature in K, $\Delta\sigma = \sigma_1 - \sigma_3$ is the differential stress in MPa and n is the dimensionless stress exponent. Extrapolation is only valid, if the deformation...
mechanisms remain the same in experiment and in nature. Several studies on natural halite indicate that, at geological strain rates, salt is in the transition regime where both dislocation creep and solution-precipitation creep mechanisms operate:

\[\dot{\varepsilon} = \dot{\varepsilon}_{DC} + \dot{\varepsilon}_{PS} \]
(Spiers and Carter, 1998; Urai et al., 2008)

\[\dot{\varepsilon}_{DC} = 8.1 \times 10^{-5} \exp(-51600/RT)\Delta\sigma^{3.4} \]
(Carter et al., 1993)

\[\dot{\varepsilon}_{PS} = 4.7 \times 10^{-4} \exp(-24530/RT) \Delta\sigma/TG^{3} \]
(Spiers et al., 1990)

G is the grain size diameter in mm.

Water weakening of ductile rock is usually related to intracrystalline effects on dislocation mobility or lattice diffusion, or intercrystalline effects such as enhanced grain boundary diffusion, enhanced grain boundary sliding, or solution-precipitation effects (e.g. Ter Heege et al., 2005). The content of fluid inclusions is 1–2 vol % in original bedded pure halite salt (Roedder, 1984). In naturally deformed samples, brine is present in fluid inclusions along grain boundaries. Synthetic rocksalt shows differences in deformation mechanisms, depending on whether it is “wet” (>20 ppm) or “dry” (<10 ppm) (Trimby et al., 2000a). In wet mobile grain boundaries, a fluid film was proposed with a thickness of <50 nm (Schenk and Urai, 2004, 2005; de Meer et al., 2005). Permeability of natural rocksalt is around \(K = 10^{-20}\) m (e.g. Lux, 2005; Peach and Spiers, 1996). Compared with other rock types, rocksalt contains only trace amounts of water, but for halite this enhances fluid-assisted grain-boundary migration and pressure solution.

The nature of the relation between the effective stress, differential stress and permeability was studied in a series of experiments (Urai et al., 1986; Peach and Spiers, 1996; Peach et al., 2001; Popp et al., 2001). The permeability of rocksalt increases by five orders of magnitude if deformed at low temperatures and mean
effective stress due to microcracking and dilatancy. Similar dilatancy was reported for sealed liquid-filled salt cavities by Lux (2005), who noted that diffuse dilatancy occurs with dilated grain boundaries when the fluid pressure slightly exceeds σ_3, while hydrofracturing occurs when the fluid pressure significantly exceeds σ_3. Under the mentioned conditions, water is expelled from the salt rock. Natural occurrence of diffuse dilatancy was reported in rocksalt samples from the vicinity of oil fields of the Oman salt basin (Schoenherr et al., 2007a). Oil was entrapped along cleavage planes in halite and at grain boundaries. In the presence of high fluid pressure the effective stress was decreased so that dilatancy was reached. After pressure reduction the infiltration stopped. A different process, leading to increased permeability of salt was reported by Lewis and Holness (1996). The contact angle between halite and brine is 70°. This leads to the closure of grain boundaries by halite precipitation in laboratory conditions (Schenk and Urai, 2004). Lewis and Holness measured the equilibrium water-halite dihedral angles in grain boundary triple junctions. At temperatures <100 °C these were higher than 60°, so that the small amounts of brine present in the salt are distributed in micrometer-sized isolated fluid inclusions. At temperatures >100 °C and pressures of 70 MPa this value decreases below 60°, leading to a redistribution of the fluid into a thermodynamically stable network of connected, fluid-filled channels at grain boundary triple junctions. Peach and Spiers (1996) proposed that hydraulic fracturing or dilatancy of rocksalt could occur under low effective stress during natural deformation of rocksalt at great depth and high pore-fluid pressure.

Fig. 4. Berchtesgaden mine. Thick salt layers can be traced through leach caverns. Overview from Kellerbauer (1996); abbreviations: ggrts - grüngrauer Tonstein, grwh - rötlich grünes Haselgebirge, gs - graues Kernsalz, sh - Kerngebirge, bh- buntes Haselgebirge (Schauberger, 1986).

Fig. 5. (a, b) Nearly pure rocksalt with an ultramylonitic to mylonitic fabric, sample BDG-13. (c, d) Haselgebirge with a protocataclastic to cataclastic fabric, sample BDG-bh. (e, f) Mudrock with a low matrix content and a high degree of coherence of clasts, sample BDG-ts. In the series (a)-(c)-(e) the halite content diminishes from 100 via 40 to 10%, whereas the fitting of mudrock components increases from 0 via 10–90%.
Besides the release of water from fluid inclusions, the fluids in rocksalt may be externally derived, from sedimentary successions underneath or lateral to the salt bodies. Alternatively, the fluids may be generated inside the salt body, e.g. by the gypsum-to-anhydrite conversion (Borchert and Muir, 1964). This reaction would result in a release of 40 vol % structural water. The carnallite-to-sylvite transition releases 40 vol % of water (Borchert and Muir, 1964). The porosity of mudrock/shale decreases rapidly with depth (Magara, 1980; Deng et al., 1996; Tucker, 1991). The release of water by the smectite to illite transition of mixed-layer clays (S-I-transition) is most sensitive to changes in temperature between 60 and 90 °C (e.g. Deng et al., 1996; Couzens-Schultz and Witschko, 2000; Charpentier et al., 2003; Saffer et al., 2008).

The system halite-water-mudrock has been shown to induce enhanced pressure solution of halite and hydrofracturing of mudrock. The strong influence of mudrock/shale decreases rapidly with depth (Magara, 1980; Deng et al., 1996; Tucker, 1991). The release of water by the smectite to illite transition of mixed-layer clays (S-I-transition) is most sensitive to changes in temperature between 60 and 90 °C (e.g. Deng et al., 1996; Couzens-Schultz and Witschko, 2000; Charpentier et al., 2003; Saffer et al., 2008).

The system halite-water-mudrock has been shown to induce enhanced pressure solution of halite and hydrofracturing of mudrock. The strong influence of mudrock/shale decreases rapidly with depth (Magara, 1980; Deng et al., 1996; Tucker, 1991). The release of water by the smectite to illite transition of mixed-layer clays (S-I-transition) is most sensitive to changes in temperature between 60 and 90 °C (e.g. Deng et al., 1996; Couzens-Schultz and Witschko, 2000; Charpentier et al., 2003; Saffer et al., 2008).

The system halite-water-mudrock has been shown to induce enhanced pressure solution of halite and hydrofracturing of mudrock. The strong influence of mudrock/shale decreases rapidly with depth (Magara, 1980; Deng et al., 1996; Tucker, 1991). The release of water by the smectite to illite transition of mixed-layer clays (S-I-transition) is most sensitive to changes in temperature between 60 and 90 °C (e.g. Deng et al., 1996; Couzens-Schultz and Witschko, 2000; Charpentier et al., 2003; Saffer et al., 2008).

The system halite-water-mudrock has been shown to induce enhanced pressure solution of halite and hydrofracturing of mudrock. The strong influence of mudrock/shale decreases rapidly with depth (Magara, 1980; Deng et al., 1996; Tucker, 1991). The release of water by the smectite to illite transition of mixed-layer clays (S-I-transition) is most sensitive to changes in temperature between 60 and 90 °C (e.g. Deng et al., 1996; Couzens-Schultz and Witschko, 2000; Charpentier et al., 2003; Saffer et al., 2008).

Table 1
Nomenclature of salt rocks after Schauburger (1986), simplified. On the right, the well-established structural classification of fault rocks.

Rock type (according to Schauburger, 1986)	Salt in wt %	In terms of textural classification of fault rocks (e.g. Wise et al., 1984)
Rocksalt (nearly pure)	100 – 90	Ultramylonite
Kerngebirge (rich in rock salt)	90 – 70	Mylonite
Haselgebirge (medium content of rock salt)	70 – 10	Protocataclasite, cataclasite, protomylonite, mylonite
Shale (deformed/ undeformed)	10 – 0	Crush breccia
Table 2
Salt rock samples for thin section analysis. ALT — Altaussee, BDG — Berchtesgaden, DÜ — Dürrenberg.

Sample	Location	Depth	Rock name	Meso-lithology
DÜ-4C	Wolf-Dietrich, next Leth Schacht	365 m	Haselgebirge	Grey mudrock, red = white halite
BDG-mbsh	TB-258, 192m, Keder-Brandstatt-Scholle	250 m	Kernengebirge	Black + red mudrock, polyhalite, red = white halite
BDG-gmh	TB-258, 91m, Keder-Brandstatt-Scholle	200 m	Haselgebirge	Grey mudrock, subordinate polyhalite, red + white halite
BDG-ggwh	TB-258, 231m, Keder-Brandstatt-Scholle	250 m	Haselgebirge	Grey + green = red mudrock, dark + white halite, subordinate polyhalite
BDG-bsh	B-3, 3m, next BW84	300 m	Haselgebirge	Grey + black mudrock, anhydrite, red halite
BDG-bsh	B-4, 11m, next BW91	325 m	Kernengebirge	Grey mudrock, subordinate anhydrite + polyhalite, dark-red halite
ALT-3	Erbstollen, next to the planed cavern E6	525 m	Rocksalt	Halite with dark and red layers from fine mudrock and polyhalite
ALT-26	Blindhorizont, Brechwerk	370 m	Rocksalt	Halite, contaminated with mudrock and polyhalite particles
ALT-30	Franzberg, cross Jorkasch-Koch/Lemberg	325 m	Rocksalt	Halite, layers of red and dark colour from polyhalite/mudrock
ALT-37A	Franzberg, Danner Werk Ablass	380 m	Rocksalt	Red halite, contaminated with mudrock and polyhalite particles
ALT-39	Franzberg, Jorkasch-Koch, Flucht/Wetter	430 m	Rocksalt	Halite, blured layers of red and grey colour from polyhalite/mudrock
ALT-3C	Untersteinberg, top of Backhaus Rolle	190 m	Rocksalt	Dirty red halite, nebulos, polyhalite and mudrock particles
DÜ-24A	Jabobberg, bottom of Haupolter Schurf	230 m	Rocksalt	Grey halite, from anhydrite and mudrock
DÜ-30	Obersteinberg, next Schiller Schurf	160 m	Rocksalt	Intense red halite, blurred layers, single pieces of mudrock
DÜ-41D	Georgenberg, Zubah Werk Nr.12	110 m	Rocksalt	Halite with dark and red streams from fine mudrock and polyhalite
BDG-10	BW22, 7.Vermessung (20.07.2006)	320 m	Rocksalt	Pure, clear halite, small euhedral anhydrite

5. Results

5.1. Nomenclature of salt rocks from the Haselgebirge Formation

The nomenclature of Schaubberger (1986) was developed for the mining practice with no genetic interpretation (Table 1). It classifies rocks by halite content and the colour of mudrock. For example “green red haselgebirge” means a content of 10–70 wt % rocksalt with green and red mudrock components. Below 20 wt % the rock is usually component-supported, while above 20 wt % it is matrix-supported (Kellerbauer, 1996). Mayerhofer (1955) and Spötl (1989a) interpreted the salt rocks of the Haselgebirge Formation to be of tectonic origin, but no structural classification was proposed.

We found that all of the salt rocks of the Haselgebirge Formation exposed in the mines of Altaussee, Berchtesgaden and Dürrenberg represent various types of fault rocks ranging from cataclasites to mylonites (Fig. 5a–f). Here, we juxtapose the nomenclature of Schaubberger (1986) to the structural classification commonly used in structural geology (e.g., Wise et al., 1984). While all the rocksalt we observed was foliated, the mudrock was usually internally undeformed. In terms of the structural classification of fault rocks, haselgebirge with up to 50 wt % halite is mainly protocataclasite. The higher the halite content, the more foliated the rock appears. The halite-rich kernelegebirge is, therefore, always a mylonite in the structural classification (Table 1).

Sedimentologically, conglomerates and breccias are classified according to the relative proportion of rock fragments and matrix, as well as the degree of roundness and fitting of the detrital components. The amount of matrix is equal to the halite content in the case of the nomenclature of Schauberger (1986). Fitting is described as the relative movement of clasts. On the basis of Richter and Fichtbauer (1981), we quantified the fitting as vol % of fitting clasts of the present clasts. According to the nomenclature of tectonic breccias after Richter and Fichtbauer (1981), haselgebirge is a “mélange”.

5.2. Haselgebirge and rocksalt in underground mining

The salt rock exposes all types of transitions from nearly undeformed mudrock to nearly pure rocksalt. Haselgebirge can reach different stages of homogenisation or maturity. In a stage of high maturity, the mudrock components are not larger than equi-dimensional pieces of gravel (Deutsches Institut für Normung e.V., 2004; Fig. 6a). The matrix consists of red and white rocksalt. The components are often covered with a dark slickensided rim. Up to meter-sized clasts of anhydrite, polyhalite rock and mudrock are sometimes found within haselgebirge. These rocks often preserved
structures from sedimentation, diagenesis or early tectonic destruction. Strain shadows, filled with halite, occur locally at all scales. The appearance of colour and structure of the salt rock often changes along the galleries within a few meters (compare Schaubberger, 1931, 1949, 1953, 1986; Spötl, 1989a).

Rocksalt is usually internally stretched, folded and thinned, with a mylonitic foliation. The lineation of shape-preferred halite grains and aligned particles of mudrock, anhydrite and polyhalite have the same preferred orientation. Locally, this orientation often follows the shape of incorporated rigid blocks. S-tectonites are common, with platy halite grains. Sense of shear indicators, are rare. L-tectonites were also observed in distinct shear zones with lineation of stretched coloured rocksalt. The distinguishable layers are reduced to centimeter-scale (Liniensalz in German). Most folds in rocksalt are isoclinal in a scale of meters.

Fig. 7. (a) Irradiated thin section of sample BDG-bsh (haselgebirge, type 1). Dotted lines mark direction of mineral lineation in the rocksalt matrix. (b) Fibrous region with elongated halite crystals. (c) “Bursted mudrock”, destruction in several steps, indicated by differently coloured halite. (d) Fractured mudrock with fibrous growth of halite. (e) Blocky region with equigranular grains. Note the grain, where the seam exposes partly an internally fibrous structure. The old shape fits perfectly to the piece of mudrock, indicating material support at the mudrock.

Bodies of pure rocksalt within haselgebirge show characteristic features. Their outer shape is typical with concave rounding towards the centre, exposing elongated corners (Fig. 6). Black laminae of finely distributed clay suggest that salt moved from these into the surrounding rock. Halite crystallized within the surrounding haselgebirge in veins. Large rocksalt bodies contain structures like traceable foliation by red to dark-coloured banding and isoclinal folds (Fig. 6b).

5.3. Thin section analysis: haselgebirge (type 1, sample BDG-bsh)

The thin section contains halite, mudrock clasts and minor quantities of quartz, anhydrite, opaque minerals and polyhalite. The halite content is about 55 wt %, with a matrix-supported.
Clusters of these anhydrite grains give the rock a grey colour.

- **Euhedral grains** overlapping the core-rim subgrain type (Fig. 8d) structures. These structures occur within the grain centres, in part bounding grain boundaries, giving the rock a fringed appearance (Fig. 8a). A second type of subgrains occurs mostly within core-mantle structures along grain boundaries with substructure-free grains growing over grains with subgrains. Some of the grains show evidence for grain boundary migration by shape-preferred orientation (SPO). The grains contain subgrains. Grains sometimes show a gamma irradiation-decorated rim, giving the rock a grey colour.

- The microstructure is dominated by shape-preferred orientation of halite grains. The regions of the block-shaped halite grains show lobate grain boundaries with substructure-free grains growing over grains with subgrains. Grains sometimes show a gamma irradiation-decorated rim, giving the rock a grey colour.

- The sample is almost pure rocksalt (98 wt %, Fig. 8). It was taken from a recently excavated cavern below the level Erste Tiefbausohle. The average halite grain size is 0.3 mm and ranges from 0.2 to 0.5 mm.

- There are two types of rocksalt microstructures in haselgebirge. The regions of the block-shaped halite grains show lobate grain boundaries with substructure-free grains growing over grains with subgrains. Grains sometimes show a gamma irradiation-decorated rim, giving the rock a grey colour.

- The size of mudrock can be several millimetres, decreasing to silt. Intact mudrock exposes layers enriched with anhydrite. Anhydrite occurs as subhedral single grains (up to 0.6 mm in diameter), sometimes together with euhedral quartz (grain size 0.05 mm). The anhydrite exposes round solution structures. Polyhalite was found sometimes together with euhedral quartz (grain size 0.05 mm). The microstructure is dominated by shape-preferred orientation (SPO). The grains contain subgrains. Some of the grains show evidence for grain boundary migration (GBM; Fig. 8b) and occasionally euhedral grain growth (e.g. Fig. 8c). In both deposits subgrain rotation recrystallization (SGR) and GBM is common (e.g. Fig. 10c–d).

- In rocksalt of Dürrenberg-Berchtesgaden, halite matrix grains are ca. 1.0 mm in size (Table 4). Isolated large grains form a visible SPO (2–10 mm). All gamma-irradiated samples from Dürrenberg-Berchtesgaden expose light-yellow grain boundaries and a core-mantle structure of subgrains. In samples from Altaussee this feature is absent (Figs. 8 and 10). Two thin sections from Berchtesgaden-Dürrnberg are special: In sample Dü-24A, grains are nearly equigranular, 0.8 mm in size, with a polygonal microstructure and no SPO. Slip planes exist in abundance. Subgrain structures are only subordinate. Sample DÜ-30 exposes euhedral, quadratic halite grains with visible growth rims (Fig. 8c).

- In the rocksalt of Altaussee, the average grain size of halite is ca. 2.0 mm, with large grains of around 10–20 mm (Table 4; e.g. Fig. 10a). Occasionally mudrock was observed inside large single halite crystals (Fig. 10b). In sample ALT-30, slip bands clearly cross the core to rim border, which makes them younger than the growth of the rim. All samples from Altaussee show slip planes (Table 4). Fibrous halite developed only around xenolithic components. In both deposits, euhedral polyhalite crystals occur as single prismatic-shaped grains or as cloudy-red aggregates. Yellow-coloured lines with fluid inclusions and yellow or colourless swarm bubbles exist in various amounts. They cross grain boundaries, thus postdating them.

5.5. Thin section analysis: Berchtesgaden, Dürrenberg and Altaussee (rocksalt samples)

- The rocksalt samples from Dürrenberg-Berchtesgaden and Altaussee were used for paleo flow stress estimations (piezometry). In both deposits subgrain rotation recrystallization (SGR) and GBM is common (e.g. Fig. 10c–d).

5.6. Stress-piezometry, temperature-piezometry and strain rate

- The differential stress was calculated using a temperature-independent piezometer, Eq. (1). The differential stress values range between 2.0 MPa and 5.4 MPa, with an average of 2.4 ± 0.1 MPa in Altaussee and 4.6 ± 0.1 MPa in Berchtesgaden (error law of Gauss, Table 5).

- We estimated the paleo-temperature in Alpine salt deposits. Differential stress, grain size and temperature relate to each other in a characteristic way (e.g. Passchier and Trouw, 2005). Ter Heege used results from triaxial deformation experiments on synthetic rocksalt with confining pressures of around 50 MPa and strain rates at 5×10^{-7} s$^{-1}$ and faster for calibrating a temperature-dependent
grain size piezometer (Ter Heege et al., 2005). Because we observed similar microstructures in Alpine rocksalt, which shows that the same deformation mechanisms were active, GBM and SGR, we extrapolated the prediction of rocksalt behaviour to higher differential stresses and grain sizes in Fig. 11.

The average grain size of Alpine deposits is small compared to other salt deposits, for instance the Zechstein salt in Klodawa, Poland (5–20 mm, e.g. Schléder, 2006). The grain size data is based on samples from field investigations, whereby only selected ones were used for thin section analysis. Halite grain size in Berchtesgaden is in the range of 0.8–1.2 mm in portions with no impurities along grain boundaries. Samples from Altaussee exhibit slightly larger grain sizes, around 1.5–2.5 mm. The upper and lower boundaries for grain size under the microscope were seen as equal to standard deviation and from this a 95% confidence was calculated (Table 6).

The ratio grain size/stress is similar for Berchtesgaden-Dürnberg and Altaussee and allows an estimation of paleo-temperatures: Altaussee 150 ± 20 °C and Berchtesgaden 110 ± 10 °C (Fig. 11).

In equation, Eq. (2), we used median values for A, Q and n, from Schoenherr et al. (2007b; Table 7). The Institut für Gebirgsmechanik GmbH, Leipzig (Ifg) carried out several triaxial tests on Alpine rocksalt, respectively from Berchtesgaden and Altaussee (Ifg, 2002, 2003, 2004, 2007). For the purpose of comparison they were done all under the same strain rate of $\dot{\varepsilon} = 1 \times 10^{-5}$ s$^{-1}$ at room temperature. Confining pressure did not exceed 10 MPa, the differential stress was around $\Delta\sigma = 50$ MPa. The results indicate that the Alpine rocksalt has properties comparable to an “average” rocksalt (Table 7).

The range of possible temperatures — 130–170 °C for Altaussee and 100–120 °C for Berchtesgaden — reveal a range of possible strain rates: 5.7×10^{-10} to 1.8×10^{-9} s$^{-1}$ for Altaussee and

Fig. 8. (a) Irradiated thin section of sample BDG-10 with white grain boundaries (rocksalt type 2). (b) Reflected-light image: interacting GBM and SGR, arrow shows subgrain-free part consuming subgrain-rich neighboring grain. Black dots are artefacts from preparation. (c) Sample DU-30 with many subgrains and subgrain-free young euhedral halite grains. (d, e) Detail of BDG-10, reflected-light image and transmitted-light image of irradiated thin section. The new grain on the left side suffered SGR already itself. The light-yellow subgrain borders exist primarily at the grain boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
3.0 \times 10^{-9} to 5.0 \times 10^{-9} \text{ s}^{-1} for Berchtesgaden. For Altaussee, with a mean temperature of 150 {\degree}C, the strain rate is estimated to be 1.0 \times 10^{-9} and for Berchtesgaden, with a mean temperature of 110 {\degree}C, the strain rate is estimated to be 3.8 \times 10^{-9} (Table 8).

6. Discussion

Our observations contribute to new interpretations of the Alpine evaporites. The main results are: (1) All rock types studied are fault rocks. (2) By use of a temperature-independent subgrain size piezometer of halite mylonites, the paleo-differential stress of halite was calculated to be ca. 2.5 MPa in Altaussee and ca. 4.5 MPa in Berchtesgaden and high strain rates compared to other rocksalt types can be deduced (see below).

6.1. Structures of haselgebirge, deformation mechanisms of mudrock

In our interpretation, haselgebirge is a protocataclasite, which originated by the interaction of recrystallisation of halite and the (hydro)fracturing of mudrock under tectonic deformation. Generally, rocksalt acts as a perfect seal for fluids (e.g. hydrocarbons) due to its low permeability and the near-isotropic stress state in rocksalt bodies provides resistance to hydrofracturing of rocksalt (Peach and Spiers, 1996; Lux, 2005; Nollet et al., 2005; Schoenherr et al., 2007a). During brecciation of mudrock, we infer that water played a key role as a provider of pore pressure and transport agent. A possible source for the hydrous fluid is mudrock or gypsum dehydration (Borchert and Muir, 1964; Tucker, 1991). Mudrock may have hydrofractured into a crush breccia under very low effective stress.

In halite, both recovery processes are present, subgrain rotation recrystallization (SGR) and grain boundary migration (GBM). Growth banding (types 1, 2), and the development of fibres (mainly in haselgebirge, microstructural type 1) indicate solution—precipitation processes. We observed that halite accumulates around mudrock components, which results in a matrix-supported structure. Halite fibres crystallize at the contact to the mudrock (Fig. 9c). The occurrence of such fibres points to precipitation from a hydrous fluid during opening of a fracture (Schléder and Urai, 2007), documenting the migration of halite into haselgebirge (compare Fig. 6b). During cataclastic flow, the clasts form lens-like clusters perpendicular to the transport direction and parallel to the plain strain direction, which is marked by the SPO of the halite.
Fig. 10. (a) Overview micrograph of gamma-irradiated sample ALT-3. Note large, old halite grains with SPO, flakes are polyhalite and mudrock. (b) The large halite grains include mudrock with bizarre shapes, which formed intergranular between former halite grains. (c) Interacting GBM and SGR: microstructure of polygonal, equigranular matrix. Grain boundaries appear as dark lines, the subgrains as white polygonal lines. (d) Detailed view of a lobate-shaped grain boundary, which bulge into the subgrain-rich old grain.

Table 4
Microfabrics recognized in thin section of rock-salt samples from Dürrnberg-Berchtesgaden and Altaussee. The salt bodies differ in grain size. Altaussee halite is characterised by slip lines, Dürrnberg-Berchtesgaden by SGR and light-yellow grain boundaries. B = bloedite, further abbreviations and explanations as in Table 3.

Sample	SPO	Grain size Ø [mm]	Maximum grain size [mm]	Chevrons	Slip lines	Old grains	SGR	GBM	New grains	Light-yellow grain boundaries	Core-rim by GBM	Core-rim by SGR	Fibres	Yellow lines/swarm bubbles	Non-halite minerals	Special features
ALT-3	2x	1.5	12.0	–	x	x	x	x	–	x	–	–	–	–	C, P, A	Polygonal appearance, blue subgrain borders
ALT-37A	x	2.0	5.0	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Euhedral new grains, intergranular mudrock
ALT-26	x	2.5	10.0	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Blue subgrain borders
ALT-37A	x	2.5	10.0	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Euhedral new grains, intergranular mudrock
ALT-39	x	0.7	6.0	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Blue subgrain borders
DU-7C	x	0.8	1.8	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Euhedral new grains, intergranular mudrock
DU-24A	x	1.1	2.5	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Blue subgrain borders
DU-30	x	1.8	6.0	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Euhedral new grains, intergranular mudrock
DU-41D	x	2.5	6.0	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Blue subgrain borders
BDG-10	x	1.7	4.5	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Euhedral new grains, intergranular mudrock
BDG-13	x	1.0	2.0	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Blue subgrain borders
BDG-19A	x	1.2	1.5	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Euhedral new grains, intergranular mudrock
BDG-10	x	1.2	1.5	–	x	–	x	x	–	x	–	–	–	–	C, P, A	Blue subgrain borders

Table 5
Calculated differential stress. The estimate of subgrain size and calculation of differential stress was made as described in Schléder and Urai (2005).

Sample	Grain size diameter [μm]	Number of subgrains	Subgrain size diameter [μm]	Subgrain size standard dev. [μm]	Mean Δσ (95% confidence) [MPa]	Δσ [MPa]	Mean value [MPa]
ALT-3	1571	168	99	70	1.8−2.2	2.0 ± 0.2	ALT: 2.4 ± 0.1
ALT-37A	1439	259	71	55	2.4−2.9	2.6 ± 0.2	
ALT-26	1455	309	69	46	2.5−2.9	2.7 ± 0.2	
ALT-gh	603	121	44	33	3.6−4.5	4.0 ± 0.5	
BDG-10	781	328	36	24	4.5−5.1	4.7 ± 0.2	
BDG-13	535	218	31	19	5.2−5.6	5.4 ± 0.2	
BDG-20A	1657	390	66	52	2.6−3.0	2.8 ± 0.2	
DU-41	600	267	31	20	5.1−5.8	5.4 ± 0.3	
are different from other rocksalt types: salt diapir rise temperatures and the deduced strain rates of our samples studied and Peach, 2002; Ter Heege et al., 2005; Fig. 13). The deduced mean values with error estimates of grain size from thin section.

Table 6

Sample	Grain size (95% confidence)	Grain size [mm]	Mean value [mm]
ALT-3	1.3-1.7	1.5 ± 0.2	ALT: 2.0 ± 0.1
ALT-26	1.4-1.6	1.5 ± 0.1	
ALT-30	1.6-2.2	2.0 ± 0.2	
ALT-39	2.4-2.6	2.5 ± 0.1	
BDG-10	1.1-1.3	1.2 ± 0.1	
BDG-7C	0.5-0.8	0.7 ± 0.1	
BDG-24A	0.7-0.9	0.8 ± 0.1	
BDG-30	0.9-1.1	1.1 ± 0.2	
BDG-41D	0.9-1.1	1.0 ± 0.1	
DÜ-41D	0.9-1.1	1.0 ± 0.1	
DÜ-7C	0.6-0.8	0.7 ± 0.1	
DÜ-24A	0.7-0.9	0.8 ± 0.1	
DÜ-30	0.9-1.1	1.1 ± 0.2	
DÜ-41D	0.9-1.1	1.0 ± 0.1	
DÜ-7C	0.6-0.8	0.7 ± 0.1	
DÜ-24A	0.7-0.9	0.8 ± 0.1	
DÜ-30	0.9-1.1	1.1 ± 0.2	
DÜ-41D	0.9-1.1	1.0 ± 0.1	
DÜ-7C	0.6-0.8	0.7 ± 0.1	
DÜ-24A	0.7-0.9	0.8 ± 0.1	
DÜ-30	0.9-1.1	1.1 ± 0.2	
DÜ-41D	0.9-1.1	1.0 ± 0.1	
BDG-10	1.1-1.3	1.2 ± 0.1	

Table 7

Salt rock	A (MPa s⁻¹)	Q (J mol⁻¹)	n (–)
Maximum	7.8 × 10⁻³	74530	5.3
Minimum	1.8 × 10⁻⁹	32400	3.4
Mean value	1.0 × 10⁻³	56747	4.7
Median	5.6 × 10⁻⁵	54380	5.0
In halite, we did not find parallel bands or chevrons-like patterns of fluid inclusions. Such arrangements are interpreted as primary diurnal crystal growth structures and common in sedimentary salt rocks (e.g. Roedder, 1984). Therefore, halite must have recrystallized more or less completely.

Based on a variety of geothermometers, the Haselgebirge Formation reached temperatures of 180 °C in Hallstatt (Spötl and Hasenbüttl, 1998) and even more than 250 °C in Bad Ischl, Altaussee (Wiesheu and Grundmann, 1994) and Berchtesgaden (Kralik et al., 1987). Similar temperatures were found in gypsum/anhydrite deposits of central NCA. One of the most reliable temperature measurements was conducted with fluid inclusions in quartz, which revealed 220–260 °C (Spötl et al., 1998b). The Alpine mudrock consists mainly of illite/muscovite, chlorite and mixed-layered clays (Glück, in press). In the mine of Hall in Tyrol, mixed-layered clays contain less than 5% smectite (Spötl, 1992). This is further evidence that temperatures necessary for maximum water expulsion were reached – at least once in the history of the mudrock. At a temperature >100 °C, when fluid was present and mobile, we speculate the starting point for (further) halokinesis and detachment of the Jurassic units from their basement and the onset of intense mudrock fracturing (compare Lewis and Holness, 1996).

The main nappe stacking started at the beginning of Late Jurassic and lasted to the Middle Cretaceous (e.g. Mandl, 2000; Spötl et al., 1998a, 1998b). In the middle Early Cretaceous, at 125 Ma, fluorite precipitated from saline waters forming veins providing interesting constraints on the conditions of deformation of the surrounding more connected halite.

Table 8

Formula	Altaussee	Berchtesgaden-Dürrnberg
\(\dot{\varepsilon}^{\text{pl}} + \dot{\varepsilon}^{\text{bc}} \)	\(5.7 \times 10^{-10} \) (min. 130 °C)	\(3.0 \times 10^{-9} \) (min. 100 °C)
\(\dot{\varepsilon}^{\text{ps}} + \dot{\varepsilon}^{\text{bc}} \)	\(1.8 \times 10^{-9} \) (max. 170 °C)	\(5.0 \times 10^{-9} \) (max. 120 °C)
\(\dot{\varepsilon}^{\text{ps}} + \dot{\varepsilon}^{\text{ps}} \)	\(3.1 \times 10^{-10} \) (mean 150 °C)	\(2.5 \times 10^{-9} \) (mean 110 °C)
\(\dot{\varepsilon}^{\text{dislocation creep}} \)	\(7.0 \times 10^{-10} \) (mean 150 °C)	\(1.3 \times 10^{-9} \) (mean 110 °C)
\(\dot{\varepsilon}^{\text{compound}} \)	\(1.0 \times 10^{-9} \) (mean 150 °C)	\(3.8 \times 10^{-9} \) (mean 110 °C)
\(\langle -\dot{\varepsilon}^{\text{ps}} + \dot{\varepsilon}^{\text{ps}} \rangle \)	\(8.6 \times 10^{-10} \) (mean 150 °C)	\(4.0 \times 10^{-9} \) (mean 110 °C)

6.2. The Haselgebirge Formation

In halite, we did not find parallel bands or chevrons-like patterns of fluid inclusions. Such arrangements are interpreted as primary diurnal crystal growth structures and common in sedimentary salt rocks (e.g. Roedder, 1984). Therefore, halite must have recrystallized more or less completely.

Figs. 1 and 2. The accurate age of tectonic deformation within the Haselgebirge is not well constrained and may include several stages between the Late Jurassic and Neogene. Many of the old anhydrite and polyhalite structures were preserved (e.g. veins with fibrous polyhalite, folded anhydrite). When small euhedral anhydrite and prismatic polyhalite crystals were completely overgrown and incorporated into the halite, fluids migrated through the salt body. In the Late Jurassic, at 145–154 Ma, the growth of feldspar documents the movement of hot brines within the Haselgebirge unit (Spötl et al., 1998a, 1998b). In the middle Early Cretaceous, at 125 Ma, fluorite precipitated from saline waters forming veins

7. Conclusions

- Haselgebirge is mostly a protocataclasite, whereas kerngebirge and pure rocksalt are mostly mylonites and ultramylonites.
- No primary features like linear arrangements of fluid inclusions, chevrons or parallel lines were identified in Alpine salt samples.
- Halite, therefore, recrystallized more or less completely.
- The flow stress is the highest measured so far in rocksalt, deduced from a temperature-independent subgrain piezometer. The
estimated mean temperatures are 150 ± 20 °C in Altaussee and 110 ± 10 °C in Berchtesgaden.

• The estimated deformation rate is about 10⁻⁶–10⁻⁹ s⁻¹.
• Mudrock was fractured under deviatoric stress and high fluid pressure. The mudrock disintegrated to the present-day haselgebirge with clast-size between micrometers to ca. 10 cm.

Acknowledgements

We acknowledge detailed and constructive reviews by Christoph Spötl, Gernold Zulauf and Thomas Blenkinsop. Isabella Merschdorf proofread the final manuscript. The final work was supported by grant P22728 of the Austrian Research Agency (FWF).

References

Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of Science 307, 1064–1095.

Arnmann, M., 2008. Mineralogical and Textural Development in Synthetic Rock-salt Deformed in Torsion. Dissertation No. 17663. University ETH Zürich.

Arnberger, K., 2006. Detachment Folding above the Permian Haselgebirge: Palinspastic Reconstruction of Alpine West-directed Thrusting (Plassen, Hallstatt, Austria). Diploma thesis. University of Vienna.

Borchert, H., Muir, R.O., 1964. The Origin, Metamorphism and Deformation of the Permian Haselgebirge of the Berchtesgaden region, Germany. Siegerland, Berlin.

Brichta, R., M. R., 1971. The Origin, Metamorphism and Deformation of Evaporites. In: Salt Deposits. Van Nostrand, London, New York, Toronto.

Braun, R., 1989. Die Geologie des Hohen Gollis. National Park Berchtesgaden Forschungsbericht 40.

Buch, L.V., 1982. Geognostische Beobachtungen auf Reisen durch Deutschland und Italien. Band 1. Haude und Spencer, Berlin.

Carter, N.L., Handin, J., Russell, J.E., Horseman, S.T., 1993. Rheology of rocksalt. Journal of Structural Geology 15, 1257–1271.

Charpentier, D., Worden, R.H., Dillon, C.G., Aplin, A.C., 2003. Fabric development and the smectite to illite transition in Gulf of Mexico mudstones: an image analysis approach. Journal of Geochemical Exploration 78–79, 459–463.

Cozens-Schulz, B.A., Witschko, D.V., 2000. The control of the smectite-illite transition on passive-rod duplex formation: Canadian Rocks Fouillois, Alberta. Journal of Structural Geology 22, 207–230.

Dallmeyer, R.D., Neubauer, F., Fritz, H., 2008. The Meliata Suture in the Carpathians: Regional Significance and Implications for the Evolution of High-pressure Wedges within Collisional Orogen. In: Siegesmund, S., Fögenschuh, B., Froitzheim, N. (Eds.), Tectonic Aspects of the Alpine-Dinaride-Carpathian System. Geological Society Special Publications, London, vol. 298, pp. 101–115.

Davis, D.M., Engelder, T., 1985. The role of salt in Fold-and-Thrust Belts. Tectono-physics 119, 67–88.

de Meer, S., Spiers, C.J., Nakashima, S., 2005. Structure and diffusive properties of fluid-filled grain boundaries: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 232, 403–414.

Deng, X., Sun, Y., Lei, X., Lu, Q., 1996. Il-lite/Smectite diagenesis in the NanXiang, Yitong, and north China Permian – Carboniferous basins: application to Petroleum exploration in China. AAPG Bulletin 80 (2), 157–173.

Deutsches Institut für Normung e.V., 2004. DIN EN ISO 14688-2: Geotechnische Untersuchungen für Sonderkonstruktionen. Cenelec, Technical report.

Gawlick, H-J., Krystyn, L., Lein, R., 1994. Conodont colour alteration indices – palaeotemperatures and metamorphism in the Northern Calcareous Alps – a regional view. The Geologist 22, 660–662.

Götzinger, M.A., Grum, W., 1992. Die Pb-Zn-F-Mineralisationen in der Umgebung des Ischler Salzbergs und einem neuer Ansatz zu physikalischer Modellierung und numerischer Simulation. Theoretische und laborative Grundlagen. Erdöl Erdgas Kohle 117, 127–185.

Götzinger, M.A., Grum, W., 1992. Die Pb-Zn-F-Mineralisationen in der Umgebung des Ischler Salzbergs und einem neuer Ansatz zu physikalischer Modellierung und numerischer Simulation. Theoretische und laborative Grundlagen. Erdöl Erdgas Kohle 117, 127–185.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.

Hickman, S.H., Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces: an in-situ study using infrared (micro) spectros-copy. Earth and Planetary Science Letters 132, 1–14.
