REAL HYPERSURFACES IN COMPLEX TWO-PLANE
GRASSMANNIANS WITH COMMUTING RESTRICTED
JACOBI OPERATORS

EUNMI PAK, YOUNG JIN SUH AND CHANGHWA WOO

Abstract. In this paper, we have considered a new commuting condition,
that is, \((R_\xi \phi)S = S(R_\xi \phi)\) (resp. \((R_N \phi)S = S(R_N \phi)\)) between the restricted
Jacobi operator \(R_\xi \phi\) (resp. \(R_N \phi\)), and the Ricci tensor \(S\) for real hypersurfaces
\(M\) in \(G_2(\mathbb{C}^{m+2})\). In terms of this condition we give a complete classification
for Hopf hypersurfaces \(M\) in \(G_2(\mathbb{C}^{m+2})\).

Introduction

The complex two-plane Grassmannians \(G_2(\mathbb{C}^{m+2})\) are defined as the set of all
complex two-dimensional linear subspaces in \(\mathbb{C}^{m+2}\). It is a Hermitian symmetric
space of rank 2 with compact irreducible type. Remarkably, it is equipped with
both a Kähler structure \(J\) and a quaternionic Kähler structure \(\mathcal{J}\) (not containing
\(J\)) satisfying \(JJ_\nu = J_\nu J\) \((\nu = 1, 2, 3)\), where \(\{J_\nu\}_{\nu=1,2,3}\) is an orthonormal basis of
\(\mathcal{J}\). In this paper, we assume \(m \geq 3\) (see Berndt and Suh [3] and [4]).

Let \(M\) be a real hypersurface in \(G_2(\mathbb{C}^{m+2})\) and \(N\) denote a local unit normal
vector field to \(M\). By using the Kähler structure \(J\) of \(G_2(\mathbb{C}^{m+2})\), we can define a
structure vector field by \(\xi = -JN\), which is said to be a Reeb vector field. If \(\xi\) is
invariant under the shape operator \(A\), it is said to be Hopf. In addition, \(M\) is said
to be a Hopf hypersurface if every integral curve of \(M\) is totally geodesic. By the
formulas in [7, Section 2], it can be easily seen that \(\xi\) is Hopf if and only if \(M\) is
Hopf. From the quaternionic Kähler structure \(\mathcal{J}\) of \(G_2(\mathbb{C}^{m+2})\), there naturally exist
almost contact 3-structure vector fields defined by \(\xi_\nu = -J_\nu J\nu\), \(\nu = 1, 2, 3\). Next,
let us denote by \(Q^\perp = \text{Span}\{\xi_1, \xi_2, \xi_3\}\) a 3-dimensional distribution in a tangent
space \(T_pM\) at \(p \in M\), where \(Q\) stands for the orthogonal complement of \(Q^\perp\) in
\(T_pM\). Thus the tangent space of \(M\) at \(p \in M\) consists of the direct sum of \(Q\) and
\(Q^\perp\), that is, \(T_pM = Q \oplus Q^\perp\).

For two distributions \([\xi]\) = \(\text{Span}\{\xi\}\) and \(Q^\perp\), we may consider two natural
invariant geometric properties under the shape operator \(A\) of \(M\), that is, \(A[\xi] \subset [\xi]\)
and \(AQ^\perp \subset Q^\perp\). By using the result of Alekseevskii [1], Berndt and Suh [2];

1. 2010 Mathematics Subject Classification: Primary 53C40; Secondary 53C15.
2. Key words: real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, structure
 Jacobi operator, normal Jacobi operator, Ricci tensor, commuting condition.
3. This work was supported by Grant Proj. No. NRF-2011-220-C00002 from National Research
 Foundation of Korea. The first author by Grant Proj. No. NRF-2012-R1A2A2A01043023 and the
 third author is supported by NRF Grant funded by the Korean Government (NRF-2013-Fostering
 Core Leaders of Future Basic Science Program).
have classified all real hypersurfaces with these invariant properties in \(G_2(C^{m+2}) \) as follows:

Theorem A. Let \(M \) be a real hypersurface in \(G_2(C^{m+2}) \), \(m \geq 3 \). Then both \(\xi \) and \(Q^\perp \) are invariant under the shape operator of \(M \) if and only if

(A) \(M \) is an open part of a tube around a totally geodesic \(G_2(C^{m+1}) \) in \(G_2(C^{m+2}) \), or

(B) \(m \) is even, say \(m = 2n \), and \(M \) is an open part of a tube around a totally geodesic \(\mathbb{H}P^n \) in \(G_2(C^{m+2}) \).

In the case of (A) in Theorem A, we want to say \(M \) is of Type (A). Similarly, in the case of (B) in Theorem A, we say \(M \) is of Type (B).

Until now, by using Theorem A, many geometers have investigated some characterizations of Hopf hypersurfaces in \(G_2(C^{m+2}) \) with geometric quantities like shape operator, structure (or normal) Jacobi operator, Ricci tensor, and so on. Commuting Ricci tensor means that the Ricci tensor \(S \) and the structure tensor field \(\phi \) commute each other, that is, \(S\phi = \phi S \). From such a point of view, Suh [13] has given a characterization of real hypersurfaces of Type (A) with commuting Ricci tensor

On the other hand, a Jacobi field along geodesics of a given Riemannian manifold \((\tilde{M}, \tilde{g})\) is an important role in the study of differential geometry. It satisfies a well-known differential equation which inspires Jacobi operators. It is defined by \((\tilde{R}_X(Y))(p) = (\tilde{R}(Y,X))X)(p)\), where \(\tilde{R} \) denotes the curvature tensor of \(\tilde{M} \) and \(X, Y \) denote any vector fields on \(\tilde{M} \). It is known to be a self-adjoint endomorphism on the tangent space \(T_p\tilde{M}, p \in \tilde{M} \). Clearly, each tangent vector field \(X \) to \(\tilde{M} \) provides a Jacobi operator with respect to \(X \). Thus the Jacobi operator on a real hypersurface \(M \) of \(G_2(C^{m+2}) \) with respect to \(\xi \) (resp. \(N \)) is said to be a structure Jacobi operator (resp. normal Jacobi operator) and will be denoted by \(R_\xi \) (resp. \(R_N \)).

For a commuting problem concerned with structure Jacobi operator \(R_\xi \) and structure tensor \(\phi \) of \(M \) in \(G_2(C^{m+2}) \), that is, \(R_\xi \phi = \phi R_\xi \), Suh and Yang [14] gave a characterization of a real hypersurface of Type (A) in \(G_2(C^{m+2}) \). Also, concerned with commuting problem for the normal Jacobi operator \(\tilde{R}_N \), Pérez, Jeong and Suh [11] gave a characterization of a real hypersurface of Type (A) in \(G_2(C^{m+2}) \).

On the other hand, another commuting problem \((R_\xi \phi)A = A(R_\xi \phi)\) (resp. \((\tilde{R}_N \phi)A = A(\tilde{R}_N \phi)\)) related to the shape operator \(A \) and the restricted structure Jacobi operator \(R_\xi \phi \) (resp. the restricted normal Jacobi operator \(\tilde{R}_N \phi \)), which can be only defined in the orthogonal complement \([\xi]^\perp\) of the Reeb vector field \([\xi]\), was recently classified in [10].

Motivated by these results, let us consider the Ricci tensor \(S \) instead of the shape operator \(A \) for \(M \) in \(G_2(C^{m+2}) \). Then as a generalization, naturally, we consider a new commuting condition for the restricted structure Jacobi operator \(R_\xi \phi \) and the Ricci tensor \(S \) defined in such a way that

\[
(R_\xi \phi)S = S(R_\xi \phi).
\]

The geometric meaning of (C-1) can be explained in such a way that any eigenspace of \(R_\xi \) on the distribution \(\mathfrak{h} = \{ X \in T_xM \mid X \perp \xi \} \), \(x \in M \), is invariant by the
Ricci tensor S of M in $G_2(\mathbb{C}^{m+2})$. Now we want to give a complete classification of Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with (C-1) as follows:

Theorem 1. Let M be a Hopf hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m \geq 3$ with $(R_\xi \phi)S = S(R_\xi \phi)$. If the smooth function $\alpha = g(A\xi, \xi)$ is constant along the direction of ξ, then M is locally congruent with an open part of a tube of some radius $r \in (0, \frac{\pi}{2\sqrt{2}})$ around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

Next, we want to consider another commuting condition between the restricted normal Jacobi operator $\bar{R}_N\phi$ and the Ricci tensor S defined by

(C-2) \hspace{1cm} (\bar{R}_N\phi)S = S(\bar{R}_N\phi),

and give a classification of Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with (C-2) as follows:

Theorem 2. Let M be a Hopf hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m \geq 3$ with $(\bar{R}_N\phi)S = S(\bar{R}_N\phi)$. If the smooth function $\alpha = g(A\xi, \xi)$ is constant along the direction of ξ, then M is locally congruent to an open part of a tube of some radius $r \in (0, \frac{\pi}{2\sqrt{2}})$ around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

Actually, according to the geometric meaning of the condition (C-1) (resp. (C-2)), we also assert that any eigenspaces of the Ricci tensor S on M in $G_2(\mathbb{C}^{m+2})$ are invariant under the restricted structure Jacobi operator $R_\xi \phi$ (resp. the restricted normal Jacobi operator $\bar{R}_N\phi$). In Sections 1 and 2 we give a complete proof of Theorems 1 and 2, respectively. We refer to [1], [3], [4] and [9] for Riemannian geometric structures of $G_2(\mathbb{C}^{m+2})$, $m \geq 3$.

1. Proof of Theorem 1

In this section, by using geometric quantities in [13] and [14], we give a complete proof of Theorem 1. To prove it, we assume that M is a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ with (C-1), that is,

(1.1) \hspace{1cm} (R_\xi \phi)SX = S(R_\xi \phi)X.

From now on, X, Y and Z always stand for any tangent vector fields on M.

Let us introduce the Ricci tensor S and structure Jacobi operator R_ξ, briefly. The curvature tensor $R(X, Y)Z$ of M in $G_2(\mathbb{C}^{m+2})$ can be derived from the curvature tensor $\bar{R}(X, Y)Z$ of $G_2(\mathbb{C}^{m+2})$. Then by contracting and using the geometric structure $JJ_\nu = J_\nu J$ ($\nu = 1, 2, 3$) related to the Kähler structure J and the quaternionic Kähler structure J_ν ($\nu = 1, 2, 3$), we can derive the Ricci tensor S given by

$$g(SX, Y) = \sum_{i=1}^{4m-1} g(R(e_i, X)Y, e_i),$$

where $\{e_1, \ldots, e_{4m-1}\}$ denotes a basis of the tangent space T_xM of M at $x \in M$, in $G_2(\mathbb{C}^{m+2})$ (see [13]).
From the definition of the Ricci tensor S and fundamental formulas in [13, section 2], we have
\[
SX = \sum_{i=1}^{4m-1} R(X, e_i)e_i
\]
(1.2)
\[
= (4m + 7)X - 3\eta(X)\xi + hAX - A^2 X
\]
\[
+ \sum_{\nu=1}^{3} \left\{ -3\eta_{\nu}(X)\xi_{\nu} + \eta_{\nu}(\xi)\phi_{\nu}X - \eta(\phi_{\nu}X)\phi_{\nu}\xi - \eta(X)\eta_{\nu}(\xi)\xi_{\nu} \right\},
\]
where h denotes the trace of A, that is, $h = TrA$ (see [12, (1.4)]). By inserting $Y = Z = \xi$ into the curvature tensor $R(X,Y)Z$ and using the condition of being Hopf, the structure Jacobi operator R_{ξ} becomes
\[
R_{\xi}(X) = R(X,\xi)\xi
\]
(1.3)
\[
= X - \eta(X)\xi - \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(X)\xi_{\nu} - \eta(X)\eta_{\nu}(\xi)\xi_{\nu} \right\} + 3g(\phi_{\nu}X,\xi)\phi_{\nu}\xi + \eta_{\nu}(\xi)\phi_{\nu}X + \alpha AX - \alpha^2 \eta(X)\xi
\]
(see [3, section 4]).

Using these equations (1.1), (1.2) and (1.3), we prove that the Reeb vector field ξ of M belongs to either Q or Q^\perp.

Lemma 1.1. Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with (C.1). If the principal curvature $\alpha = g(A\xi,\xi)$ is constant along the direction of ξ, then ξ belongs to either the distribution Q or the distribution Q^\perp.

Proof. In order to prove this lemma, we put
\[
(1.4) \quad \xi = \eta(X_{0})X_{0} + \eta(\xi_{1})\xi_{1}
\]
for some unit vectors $X_{0} \in Q$, $\xi_{1} \in Q^\perp$ and $\eta(X_{0})\eta(\xi_{1}) \neq 0$.

In the case of $\alpha = 0$, by virtue of $Y_\alpha = \langle \xi, \eta(Y) \rangle - 4\sum_{\nu=1}^{3} \eta_{\nu}(\xi)\eta_{\nu}(\phi Y)$ in [3, Lemma 1], we obtain easily that ξ belongs to either Q or Q^\perp.

Thus, we consider the next case $\alpha \neq 0$. Putting $X = \xi$ in (1.1) and using the fact $\phi\xi = 0$, it follows that
\[
(1.5) \quad (R_{\xi}\phi)S\xi = 0.
\]

From (1.2) and (1.4), we have
\[
(1.6) \quad S\phi X_{0} = \sigma \phi X_{0},
\]
\[
(1.7) \quad SX_{0} = (4m + 7 + h\alpha - \alpha^2)X_{0} + \eta_{1}^{2}(\xi)X_{0} - \eta(X_{0})X_{0},
\]
\[
(1.8) \quad S\xi = (4m + 4 + h\alpha - \alpha^2)\xi - 4\eta_{1}(\xi)\xi_{1},
\]
where $\sigma := 4m + 8 + h\kappa + \kappa^2$.

Multiplying ϕ to (1.8), we have
\[
(1.9) \quad \phi S\xi = -4\eta(\xi_{1})\phi\xi_{1}.
\]

From $\phi\xi = 0$, we obtain $\phi_{1}\xi = \eta(X_{0})\phi_{1}X_{0}$ and $\phi X_{0} = -\eta(\xi_{1})\phi_{1}X_{0}$. Because of $\eta(X_{0})\eta(\xi_{1}) \neq 0$ and (1.9), (1.5) becomes
\[
(1.10) \quad 0 = R_{\xi}(\phi\xi_{1}) = R_{\xi}(\phi_{1}X_{0}) = R_{\xi}(\phi X_{0}).
\]
By substituting $X = \phi X_0$ into (1.3) and using (1.11), we get

\begin{equation}
A\phi X_0 = -\frac{4\eta^2(X_0)}{\alpha} \phi X_0. \tag{1.11}
\end{equation}

Due to \cite{5} Equation (2.10), $A\xi_1 = \alpha \xi_1$ is derived from $\alpha = 0$. This leads to

\begin{equation}
A\phi X_0 = \kappa \phi X_0, \tag{1.12}
\end{equation}

where $\kappa = a^2 + 4a^2X_0$ (see \cite{5} section 4).

Combining (1.11) and (1.12), we obtain

\begin{equation*}
\{\alpha^2 + 8\eta^2(X_0)\} \phi X_0 = 0.
\end{equation*}

This means $\phi X_0 = 0$ which gives rise to a contradiction. Thus this lemma is proved. \hfill \Box

Now, we shall divide our consideration into two cases that ξ belongs to either Q^\perp or Q, respectively. Next, we further study the case $\xi \in Q^\perp$. We may put $\xi = \xi_1 \in Q^\perp$ for our convenience sake.

Lemma 1.2. Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$. If the Reeb vector field ξ belongs to Q^\perp, then the Ricci tensor κ commutes with the shape operator A, that is, $SA = AS$.

Proof. Differentiating $\xi = \xi_1$ along any direction $X \in TM$ and using \cite{8} section 2, (2.2) and (2.3), it gives us

\begin{equation}
\phi AX = \nabla_X \xi = \nabla_X \xi_1 = q_3(X)\xi_2 - q_2(X)\xi_3 + \phi_1 A\xi. \tag{1.13}
\end{equation}

Taking the inner product with ξ_2 and ξ_3 in (1.13), respectively gives $q_3(X) = 2\eta_3(A\xi)$ and $q_2(X) = 2\eta_2(A\xi)$. Then (1.13) can be revised:

\begin{equation}
\phi AX = 2\eta_3(A\xi)\xi_2 - 2\eta_2(A\xi)\xi_3 + \phi_1 A\xi. \tag{1.14}
\end{equation}

From this, by applying the inner product with any tangent vector Y, we have

\begin{equation*}
g(\phi AX, Y) = 2\eta_3(A\xi)g(\xi_2, Y) - 2\eta_2(A\xi)g(\xi_3, Y) + g(\phi_1 A\xi, Y).
\end{equation*}

Then, by using the symmetric (resp. skew-symmetric) property of the shape operator A (resp. the structure tensor field ϕ), we have

\begin{equation}
-g(\xi, A\phi Y) = 2g(\xi, A\xi_3)g(\xi_2, Y) - 2g(\xi, A\xi_2)g(\xi_3, Y) - g(Y, A\phi_1 X) \tag{1.15}
\end{equation}

for any tangent vector fields X and Y on M. Then it can be rewritten as below:

\begin{equation}
A\phi X = 2\eta_3(A\xi)\xi_2 - 2\eta_2(A\xi)\xi_3 + A\phi_1 X. \tag{1.16}
\end{equation}

Note. Hereafter, the process used from (1.14) to (1.15) will be expressed as “taking a symmetric part of (1.14)”. Bearing in mind that $\xi = \xi_1 \in Q^\perp$, (1.2) is simplified:

\begin{equation}
SX = (4m + 7)X - 7\eta(X)\xi - 2\eta_2(X)\xi_2 - 2\eta_3(X)\xi_3 + \phi_1 \phi X + hAX - \alpha^2 X. \tag{1.16}
\end{equation}

Multiplying ϕ_1 to (1.16) and using basic formulas in \cite{7} Section 2, we have

\begin{equation}
\phi_1 \phi AX = 2\eta_3(A\xi)\xi_3 + 2\eta_2(A\xi)\xi_2 - AX + \alpha\eta(X)\xi. \tag{1.17}
\end{equation}

By replacing X as AX into (1.16) and using (1.17), we obtain

\begin{equation}
SAX = (4m + 6)AX - 6\alpha\eta(X)\xi + hA^2X - A^3 X \tag{1.18}
\end{equation}
and taking a symmetric part of (1.18) again, we get
(1.19) \[ASX = (4m + 6)AX - 6\alpha \eta(X)\xi + hA^2X - A^3X. \]

Comparing (1.18) and (1.19), we conclude that
\[SAX = ASX \]
for any tangent \(X \).

By the way, we have equations (1.13) and (1.15) for the Ricci tensor likewise related to the shape operator. We may consider similar ones about the Ricci tensor as below:

Lemma 1.3. Let \(M \) be a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2}) \). If the Reeb vector field \(\xi \) belongs to \(Q^\perp \), we have the following formulas

(i) \(\phi SX = 2n_3(SX)\xi_2 - 2n_2(SX)\xi_3 + \phi_1 SX + \text{Rem}(X) \)

(ii) \(S\phi X = 2n_3(SX)\xi_2 - 2n_2(SX)\xi_3 + S\phi_1 X + \text{Rem}(X) \),

where the remainder term \(\text{Rem}(X) \) is denoted by
\[
\text{Rem}(X) = 4(m + 2)\{2n_2(X)\xi_3 - 2n_3(X)\xi_2 + \phi X - \phi_1 X\}.
\]

Proof. Multiplying \(\phi \) to (1.16), we get the equivalent equation of the Left side of (i) as follows:
\[
\phi SX = (4m + 7)\phi X - \phi_1 X + 2n_2(X)\xi_3 - 2n_3(X)\xi_2 + h\phi AX - \phi_1 AX.
\]

Using (1.14), and (1.15), the right side of (i) is can be replaced by
\[
\begin{align*}
\phi SX &= 2n_3(SX)\xi_2 - 2n_2(SX)\xi_3 + \phi_1 SX + \text{Rem}(X) \\
&= 2n_3((4m + 7)X - 2n_3(X)\xi_3 + \phi_1 \phi X + hAX - A^2X)\xi_2 \\
&\quad - 2n_2((4m + 7)X - 2n_2(X)\xi_2 + \phi_1 \phi X + hAX - A^2X)\xi_3 \\
&\quad + (4m + 7)\phi_1 X - 2n_2(X)\xi_2 + 2n_3(X)\xi_3 - \phi X + h\phi_1 AX - \phi_1 A^2X \\
&\quad + \text{Rem}(X) \\
&= (4m + 7)\phi X - \phi_1 X + 2n_2(X)\xi_3 - 2n_3(X)\xi_2 + h\phi AX - \phi_1 AX.
\end{align*}
\]

Combining (1.20) and (1.21), we get the equation (i). In addition, (ii) can be obtained by taking a symmetric part of (i).

By virtue of Lemmas 1.2 and 1.3, we assert the following:

Lemma 1.4. Let \(M \) be a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2}) \) with (C-1). If \(\xi \in Q^\perp \), we have \(A(\phi S - S\phi) = (\phi S - S\phi)A \).

Proof. By (i) (resp. (ii)) in Lemma 1.3, we have the left side of (1.1) (the right side of (1.1)) as follows:
\[
\begin{align*}
R_\xi \phi SX &= 2\phi SX + \alpha A\phi SX + \text{Rem}(X), \\
SR_\xi \phi X &= 2S\phi X + \alpha SA\phi X + \text{Rem}(X).
\end{align*}
\]

Combining equations in (1.22), we have
(1.23) \[R_\xi \phi SX - SR_\xi \phi X = 2\phi SX + \alpha A\phi SX - 2S\phi X - \alpha SA\phi X = 0. \]
Case 1: $\alpha = 0$. Equation (1.23) becomes $S\phi X = \phi SX$. By virtue of Theorem [13], we conclude that if M is a Hopf hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ with (1.1), then M satisfies the condition of Type (A).

Thus, we may assume the following case.

Case 2: $\alpha \neq 0$.

Using Lemma 1.2 becomes

\[(1.24) \quad 2(\phi S - S\phi) + \alpha(A\phi S - AS\phi) = 0.\]

Taking a symmetric part of (1.24), we have

\[(1.25) \quad 2(\phi S - S\phi) - \alpha(S\phi A - \phi SA) = 0.\]

Combining (1.24) and (1.25), we know

\[(1.26) \quad A(\phi S - S\phi) = (\phi S - S\phi)A.\]

Lemma 1.5. Let M be a Hopf real hypersurface in $G_2(\mathbb{C}^{m+2})$. If M satisfies $A(\phi S - S\phi) = (\phi S - S\phi)A$ and $\xi \in Q^\perp$, then we have $S\phi X = \phi SX$.

Proof. Since the shape operator A and the tensor $\phi S - S\phi$ are both symmetric operators and commute with each other, they are diagonalizable. So there exists a common basis $\{E_1, E_2, ..., E_{4m-1}\}$ such that the shape operator A and the tensor $\phi S - S\phi$ both can be diagonalizable. In other words, $AE_i = \lambda_i E_i$ and $(\phi S - S\phi)E_i = \beta_i E_i$, where λ_i and β_i are scalars for all $i \in 1, 2, ..., 4m-1$.

Here replacing X by ϕX in (1.16) (resp. multiplying ϕ to (1.16)), we have

\[(1.27) \quad \begin{cases} S\phi X = (4m + 7)\phi X - \phi_1 X + 2\eta_2(X)\xi_3 - 2\eta_3(X)\xi_2 + hA\phi X - A^2\phi X, \\
\phi SX = (4m + 7)\phi X - \phi_1 X + 2\eta_2(X)\xi_3 - 2\eta_3(X)\xi_2 + h\phi AX - \phi A^2 X. \end{cases}\]

Combining equations in (1.27), we get

\[(1.28) \quad S\phi X - \phi SX = hA\phi X - A^2\phi X - h\phi AX + \phi A^2 X.\]

Putting $X = E_i$ into (1.28) and using $AE_i = \lambda_i E_i$, we obtain

\[(1.29) \quad (S\phi - \phi S)E_i = hA\phi E_i - A^2\phi E_i - h\lambda_i\phi E_i + \phi \lambda_i^2 E_i.\]

Taking the inner product with E_i into (1.29), we have

\[\beta_ig(E_i, E_i) = h\lambda_i g(\phi E_i, E_i) - \lambda_i^2 g(\phi E_i, E_i) = 0.\]

Since $g(E_i, E_i) \neq 0$, $\beta_i = 0$ for all $i \in 1, 2, ..., 4m-1$. This is equivalent to $(S\phi - \phi S)E_i = 0$ for all $i \in 1, 2, ..., 4m-1$. It follows that $S\phi X = \phi SX$ for any tangent vector field X on M.

Summing up Lemmas [1.2, 1.3, 1.4, 1.5] and [13, Theorem], we conclude that if M is a Hopf hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ satisfying (C-1), then M satisfies the condition of Type (A).

Hereafter, let us check whether the Ricci tensor of a model space of Type (A) satisfies the commuting condition (C-1).
From (1.2) and [3, Proposition 3], we obtain the following equations:

\[
SX = \begin{cases}
(4m + h\alpha - \alpha^2)\xi & \text{if } X = \xi \in T_\alpha \\
(4m + 6 + h\beta - \beta^2)\xi_\nu & \text{if } X = \xi_\nu \in T_\beta \\
(4m + 6 + h\lambda - \lambda^2)X & \text{if } X \in T_\lambda \\
(4m + 8)X & \text{if } X \in T_\mu
\end{cases}
\]

\[
R_\xi(X) = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
(\alpha\beta + 2)\xi_\nu & \text{if } X = \xi_\nu \in T_\beta \\
(\alpha\lambda + 2)\phi X & \text{if } X \in T_\lambda \\
0 & \text{if } X \in T_\mu
\end{cases}
\]

\[
(R_\xi\phi)X = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
(\alpha\beta + 2)\phi_\nu & \text{if } X = \xi_\nu \in T_\beta \\
(\alpha\lambda + 2)\phi X & \text{if } X \in T_\lambda \\
0 & \text{if } X \in T_\mu
\end{cases}
\]

Combining above three formulas, it follows that

\[
(R_\xi\phi)SX - S(R_\xi\phi)X = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
0 & \text{if } X = \xi_\nu \in T_\beta \\
0 & \text{if } X \in T_\lambda \\
0 & \text{if } X \in T_\mu.
\end{cases}
\]

Remark 1.6. When \(\xi \in Q^{-1} \), a Hopf hypersurface \(M \) in \(G_2(C^{m+2}) \) with (C-1) is locally congruent to of Type (A) by virtue of [13, Theorem].

When \(\xi \in Q \), a Hopf hypersurface \(M \) in \(G_2(C^{m+2}) \) with (C-1) is locally congruent to of Type (B) by virtue of [13, Main Theorem].

Now let us consider our problem for a model space of Type (B) which will be denoted by \(M_B \). In order to do this, let us calculate \((R_\xi\phi)S = SR_\xi\phi \) related to the \(M_B \). On \(T_xM_B, x \in M_B \), the equations (1.2) and (1.3) are reduced to the following equations, respectively:

\[
(1.30) \quad SX = (4m + 7)X - 3\eta(X)\xi + hAX - A^2X - \sum_{\nu=1}^{3}\{3\eta_\nu(X)\xi_\nu + \eta(\phi_\nu X)\phi_\nu \xi\}
\]

\[
(1.31) \quad R_\xi(X) = X - \eta(X)\xi + \alpha AX - \alpha^2\eta(X)\xi - \sum_{\nu=1}^{3}\{\eta_\nu(X)\xi_\nu + 3\eta_\nu(\phi X)\phi_\nu \xi\}.
\]

From (1.30) and (1.31) and [3, Proposition 2], we obtain the following

\[
(1.32) \quad SX = \begin{cases}
(4m + 4 + h\alpha - \alpha^2)\xi & \text{if } X = \xi \in T_\alpha \\
(4m + 4 + h\beta - \beta^2)\xi_\nu & \text{if } X = \xi_\nu \in T_\beta \\
(4m + 8)\phi_\nu & \text{if } X = \phi_\nu \in T_\gamma \\
(4m + 7 + h\lambda - \lambda^2)X & \text{if } X \in T_\lambda \\
(4m + 7 + h\mu - \mu^2)X & \text{if } X \in T_\mu
\end{cases}
\]
\[R_\xi(X) = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
\alpha \beta \xi_\ell & \text{if } X = \xi_\ell \in T_\beta \\
4\phi_\xi & \text{if } X = \phi_\xi \in T_\gamma \\
(1 + \alpha \lambda)\phi X & \text{if } X \in T_\lambda \\
(1 + \alpha \mu)\phi X & \text{if } X \in T_\mu
\end{cases} \]

\[(R_\xi \phi)X = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
4\phi_\xi & \text{if } X = \xi_\ell \in T_\beta \\
-\alpha \beta \xi_\ell & \text{if } X = \phi_\xi \in T_\gamma \\
(1 + \alpha \mu)(\lambda - \mu)(h - \lambda - \mu)\phi X & \text{if } X \in T_\lambda \\
(1 + \alpha \lambda)(\mu - \lambda)(h - \lambda - \mu)\phi X & \text{if } X \in T_\mu.
\end{cases} \]

From (1.32), (1.33) and (1.34), it follows that

\[(R_\xi \phi)SX - SR_\xi \phi X = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
4(h\beta - \beta^2 - 4)\phi_\xi & \text{if } X = \xi_\ell \in T_\beta \\
\alpha \beta(4h\beta - \beta^2 - 4)\xi_\ell & \text{if } X = \phi_\xi \in T_\gamma \\
(1 + \alpha \mu)(\lambda - \mu)(h - \lambda - \mu)\phi X & \text{if } X \in T_\lambda \\
(1 + \alpha \lambda)(\mu - \lambda)(h - \lambda - \mu)\phi X & \text{if } X \in T_\mu.
\end{cases} \]

By calculation, we have \(\lambda + \mu = \beta \) on \(M_B \). From (1.35), we see that \(M_B \) satisfies (C-1), only when \(h = \beta \) and \(h\beta - \beta^2 - 4 = 0 \). This gives us to a contradiction.

Hence, we give a complete proof of Theorem 1.

2. Proof of Theorem 2

For a commuting problem in quaternionic space forms Berndt [2] has introduced the notion of normal Jacobi operator \(\tilde{R}(X,N)N \in T_xM, \ x \in M \) for real hypersurfaces \(M \) in quaternionic projective space \(QP^m \) or in quaternionic hyperbolic space \(QH^m \), where \(\tilde{R} \) denotes the curvature tensor of \(QP^m \) or of \(QH^m \). He [2] has also shown that the curvature adaptedness, when the normal Jacobi operator commutes the shape operator \(A \), is equivalent to the fact that the distributions \(Q \) and \(Q^A = \text{Span}\{\xi_1, \xi_2, \xi_3\} \) are invariant by the shape operator \(A \) of \(M \), where \(T_xM = Q \oplus Q^\perp, \ x \in M \). In this section, by using the notion of normal Jacobi operator \(\tilde{R}(X,N)N \in T_xM, \ x \in M \) for real hypersurfaces \(M \) in \(G_2(\mathbb{C}^{m+2}) \) and geometric quantities in [11] and [13], we give a complete proof of Theorem 2.

From now on, let \(M \) be a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2}) \) with

\[\tilde{R}(X,N)X = S(\tilde{R}(X,N)X) \]

for any tangent vector field \(X \) on \(M \). The normal Jacobi operator \(\tilde{R}_N \) of \(M \) is defined by \(\tilde{R}_N(X) = \tilde{R}(X,N)N \) for any tangent vector \(X \in T_xM, \ x \in M \). In [11] Introduction, we obtain the following equation

\[\tilde{R}_N(X) = X + 3\eta(X)\xi + 3 \sum_{\nu=1}^3 \eta_{\nu}(X)\xi_{\nu} \]

\[- \sum_{\nu=1}^3 \{ \eta_{\nu}(\xi)\phi_{\nu}X - \eta_{\nu}(\xi)\eta(X)\xi_{\nu} - \eta_{\nu}(\phi_{\nu}X)\phi_{\nu}\xi \}. \]
Lemma 2.1. Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with $\sigma(\xi) = g(A\xi, \xi)$ is constant along the direction of ξ, then ξ belongs to either the distribution Q or the distribution Q^\perp.

Proof. In order to prove this lemma, we assume (1.4) again, for some unit vectors $X_0 \in Q, \xi_1 \in Q^\perp$ and $\eta(X_0)\eta(\xi_1) \neq 0$.

On the other hand, from (2.2) and (1.4), we have
\begin{align}
(2.3) & \quad \hat{R}_N X_0 = 4\eta^2(X_0)X_0 + 4\eta(\xi)\eta(X_0)\xi_1 \\
(2.4) & \quad \hat{R}_N \xi = 4\xi + 4\eta(\xi)\xi_1.
\end{align}

Using (1.7), (1.8), (2.3), (2.4) and inserting $X = \phi X_0$ into (2.1), we have the following equations:

the left side of (2.1) = $(\hat{R}_N \phi)S\phi X_0 = \sigma \hat{R}_N \phi^2 X_0$
\begin{align}
&= -\sigma \hat{R}_N X_0 + \eta(X_0)\hat{R}_N \xi \\
&= -\sigma \{4\eta^2(X_0)X_0 + 4\eta(\xi)\eta(X_0)\xi_1\} \\
&\quad + \sigma \{4\eta(X_0)\xi + 4\eta(X_0)\eta(\xi)\xi_1\} \\
&= 4\sigma\eta(X_0)\eta_1(\xi)\xi_1
\end{align}

the right side of (2.1) = $S\hat{R}_N(\phi^2 X_0) = -S\hat{R}_N X_0 + \eta(X_0)S\hat{R}_N \xi$
\begin{align}
&= -4\eta^2(X_0)SX_0 - 4\eta(\xi)\eta(X_0)S\xi_1 \\
&\quad + 4\eta(X_0)S\xi + 4\eta(X_0)\eta(\xi)S\xi_1 \\
&= -4\eta^2(X_0)\{4m + 7 + \alpha h - \alpha^2\}X_0 - 3\eta(X_0)\xi \\
&\quad + \eta_1(\xi)X_0 - \eta(X_0)\eta_1(\xi)\xi_1 \\
&\quad + 4\eta(X_0)\{4m + 4 + \alpha h - \alpha^2\}\xi - 4\eta_1(\xi)\xi_1,
\end{align}

where $\sigma := 4m + 8 + h\kappa + \kappa^2$. Recalling that $\eta(X_0) \neq 0$ and combining (2.4) and (2.6), we have
\begin{align}
4\sigma\eta(X_0)\eta_1(\xi)\xi_1 &= -4\eta^2(X_0)\{4m + 7 + \alpha h - \alpha^2\}X_0 - 3\eta(X_0)\xi \\
&\quad + \eta_1^2(\xi)X_0 - \eta(X_0)\eta_1(\xi)\xi_1 \\
&\quad + 4\eta(X_0)\{4m + 4 + \alpha h - \alpha^2\}\xi - 4\eta_1(\xi)\xi_1.
\end{align}

Taking the inner product of above equation with X_0, we get
\begin{align}
0 &= -4\eta(X_0)\{4m + 7 + \alpha h - \alpha^2\} - 3\eta^2(X_0) + \eta_1^2(\xi) \\
&\quad + 4\{4m + 4 + \alpha h - \alpha^2\}\eta(X_0) \\
&= -4\eta(X_0)\{3 - 3\eta^2(\xi) + \eta_1^2(\xi)\} \\
&= -16\eta(X_0)\eta_1^2(\xi).
\end{align}

This gives a contradiction. Thus, we give a complete proof of this lemma. \(\Box \)

Now this case implies that ξ belongs to the distribution Q^\perp.

Lemma 2.2. Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ with (2.1). If $\xi \in Q^\perp$, we have $S\phi = \phi S$.

Proof. Putting $\xi = \xi_1 \in Q^\perp$ for our convenience sake, (2.2) becomes
\[\bar{R}_N(X) = X + 7\eta(X)\xi + 2\eta_2(X)\xi_2 + 2\eta_3(X)\xi_3 - \phi_1 \phi X. \]

Because of (i) and (ii) in lemma 1.3 we have the following equations:
\begin{equation}
\begin{cases}
\bar{R}_N \phi SX = 2\phi SX - \text{Rem}(X), \\
S\bar{R}_N \phi X = 2S\phi X - \text{Rem}(X),
\end{cases}
\tag{2.7}
\end{equation}

where \(\text{Rem}(X) = 4(m + 2)\{2\eta_2(X)\xi_3 - 2\eta_3(X)\xi_2 + \phi X - \phi_1 X\} \).

Combining equations in (2.7), we conclude that (2.1) is equivalent to \(S\phi X = \phi SX \). \(\square \)

In the case of $\xi \in Q^\perp$, by using (i) and (ii) in Lemma 1.3, and Lemma 2.2, we can be easily seen that the commuting condition \(S\phi = \phi S \) is equivalent to \((\bar{R}_N \phi)S = S(\bar{R}_N \phi) \).

Therefore, by Lemma 2.2 and [13, Theorem], we can assert that:

Remark 2.3. Real hypersurfaces of Type (A) in $G_2(C^{m+2})$ satisfies the condition (C-2).

When $\xi \in Q$, a Hopf hypersurface M in $G_2(C^{m+2})$ with (C-2) is locally congruent to of Type (B) by virtue of [9, Main Theorem].

Let us consider our problem for a model space of Type (B) which will be denoted by M_B. In order to do this, let us calculate \((\bar{R}_N \phi)S = S(\bar{R}_N \phi) \) of M_B. From [3, Proposition 2], we obtain
\begin{equation}
\bar{R}_N(X) = \begin{cases}
4\xi & \text{if } X = \xi \in T_\alpha \\
4\xi_\ell & \text{if } X = \xi_\ell \in T_\beta \\
0 & \text{if } X = \phi \xi_\ell \in T_\gamma \\
X & \text{if } X \in T_\lambda, \\
X & \text{if } X \in T_\mu,
\end{cases}
\tag{2.8}
\end{equation}

\begin{equation}
(\bar{R}_N \phi)X = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
0 & \text{if } X = \xi_\ell \in T_\beta \\
-4\xi_\ell & \text{if } X = \phi \xi_\ell \in T_\gamma \\
\phi X & \text{if } X \in T_\lambda \\
\phi X & \text{if } X \in T_\mu.
\end{cases}
\tag{2.9}
\end{equation}

From (2.8) and (2.9), it follows that
\begin{equation}
(\bar{R}_N \phi)SX - S(\bar{R}_N \phi)X = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
0 & \text{if } X = \xi_\ell \in T_\beta \\
4(h\beta - \beta^2 - 4)\xi_\ell & \text{if } X = \phi \xi_\ell \in T_\gamma \\
(\lambda - \mu)(h - \lambda - \mu)\phi X & \text{if } X \in T_\lambda \\
(\mu - \lambda)(h - \lambda - \mu)\phi X & \text{if } X \in T_\mu.
\end{cases}
\end{equation}

We see that M_B satisfies (C-2), only when $h = \beta$ and $h\beta - \beta^2 - 4 = 0$. This gives us to a contradiction.

Thus, we can give a complete proof of Theorem 2 in the introduction.
References

[1] D. V. Alekseevskii, Compact quaternion spaces, Func. Anal. Appl. 2 (1966), 106–114.
[2] J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9–26.
[3] J. Berndt and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math. 127 (1999), 1–14.
[4] J. Berndt and Y.J. Suh, Isometric flows on real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math. 137 (2002), 87–98.
[5] I. Jeong, Machado, Carlos J. D. Pérez and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with D^4-parallel structure Jacobi operator, Inter. J. Math. 22 (2011), no. 5, 655–673.
[6] I. Jeong, Y. J. Suh, and M. M. Tripathi, Real hypersurfaces of Type A in complex two-plane Grassmannians related to the normal Jacobi operator, Bull. Korean Math. Soc. 49 (2012), no. 2, 423–434.
[7] H. Lee, Y.S. Choi, and C. Woo, Hopf hypersurfaces in complex two-plane Grassmannians with Reeb parallel shape operator, Bull. Malaysian Math. Soc. (2014) (in press).
[8] H. Lee, S. Kim, and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition, Czechoslovak Math. J. 62 (2012), no. 3, 849–861.
[9] H. Lee and Y.J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector, Bull. Korean Math. Soc. 47 (2010), no. 3, 551–561.
[10] H. Lee, Y.J. Suh and C. Woo, Real hypersurfaces with commuting Jacobi operators in complex two-plane Grassmannians, Houston J. Math. (2014) (in press).
[11] J. D. Pérez, I. Jeong and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator, Acta Math. Hungar. 117 (2007), 201–217.
[12] J.D. Pérez and Y.J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. Korean Math. Soc. 44 (2007), 211–235.
[13] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor, J. Geom. Phys. 60 (2010), 1792–1806.
[14] Y. J. Suh and H. Y. Yang, Real hypersurfaces in complex two-plane Grassmannians with commuting structure Jacobi operator, Bull. Korean Math. Soc. 45 (2008), no. 3, 495–507.

EUNMI PAK, YOUNG JIN SUH AND CHANGHWA WOO
DEPARTMENT OF MATHEMATICS,
KYUNGPOOK NATIONAL UNIVERSITY,
DAEGU 702-701, REPUBLIC OF KOREA
E-mail address: empak@knu.ac.kr
E-mail address: yjsuh@knu.ac.kr
E-mail address: legalgwch@knu.ac.kr