Short Communication

Water-soluble ions in hailstones in northern and southwestern China

Xiaofei Li, Qinghong Zhang a,*, Tong Zhu b, Zejun Li c, Jipei Lin a, Tian Zou a

a Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
b SM-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
c National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

ARTICLE INFO

Article history:
Received 16 May 2018
Received in revised form 23 July 2018
Accepted 24 July 2018
Available online 2 August 2018

Abstract

Natural hailstones were collected and analyzed in the laboratory not only for their physical properties (e.g., structure, density, shape, and air bubbles), but also for their chemical properties (e.g., organic particles, biological particles, and water-soluble ions), which can help clear understanding on microphysics and development of hailstorms [1–4]. Aerosol particles were carried up from the atmospheric boundary layer to the free atmosphere into the cloud base by updrafts, and could be scavenged into cloud water droplets and ice particles to act as cloud condensation nuclei (CCN) and ice nuclei (IN) [5], further affecting hailstones formation. Interactions between aerosols and hailstones have been studied usually by models [6], because it is difficult to study the processes involved in this interaction in deep convective storms using instruments in the laboratory [7]. Water-soluble particles, which can initiate the liquid phase much more effectively than insoluble particles can, have been less well studied in hailstones [4]. This is particularly true in comparison with the number of studies undertaken to determine the levels of surface pollution. Understanding the role of these water-soluble matters in hailstorm is of great significance but remains a lack of evidence that what kind of particles could be scavenged by hailstone, including nucleation scavenging and impaction scavenging [4,5,7].

Considering the increasing concentrations of anthropogenic pollutants in eastern China [8], cloud microphysical and radiative properties may have been changed and an enormous amount of aerosols are likely to have been input to the atmosphere. It is essential to determine the concentrations of pollutants in hailstones in China. However, there have been almost no measurement of water-soluble ion concentrations in hailstones in China, except for a study in the Tianshan Mountains by Wang et al. [9]. The study found that the inhomogeneous ionic concentration of rainwater was higher than in hailstones, because hail forms at a higher altitude and different chemical uptake processes could occur in the ice phase than in rainwater during precipitation. However, the levels of pollutants in hailstones remain largely unknown from the perspective of water-soluble ions.

In this study, hailstone samples were collected from 15 different hailstorm events across China (Figs. S1, S2 online), each of which occurred on a different date in 2016 (Table S1 online). The concentrations of 10 water-soluble ions, consisting of 4 inorganic cations (Na+, K+, Mg2+, and Ca2+), 4 inorganic anions (Cl−, SO4 2−, NO3 −, and NO2 −), and 2 organic anions (HCOO− and CH3COO−), were determined in 15 hailstone samples (Figs. S3, S4 online). Inorganic cation concentrations in the melted hailstone samples ranged from 0.0 to 14.9 mg/L. Inorganic anion concentrations in the melted hailstone samples ranged from 0.0 to 16.4 mg/L. Organic anion concentrations in the melted hailstone samples ranged from 0.3 to 29.7 mg/L. Hailstones collected in Yucheng City (YC) and Langfang City (LF) were always in the top five when the 15 events were ranked in order from the highest to the lowest ion concentrations, while Quanzhou County (QZ) and Harbin City (HB) were always present at the lowest concentrations.

There are many sources of water-soluble ions in atmospheric precipitation both from natural and anthropogenic sources (e.g., soil dust coated with soluble materials, sea salt and sea spray, aerosols from biomass and fossil fuel combustion, product of the conversion of gaseous precursors) [10]. YC and LF were always in the top five with respect to the ranked order from the highest to the lowest concentrations of AOD (aerosol optical depth), PM10 (particulate matter with an aerodynamic diameter ≤ 10 μm) and PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) (Fig. S5 online), which was very similar to the order observed for the ions. To determine the sources of the ions, we calculated the Pearson correlation coefficients between the concentrations of the 10 ions and 6 surface environmental pollutants, as well as

* Corresponding author.
E-mail address: qxzhang@pku.edu.cn (Q. Zhang).

https://doi.org/10.1016/j.scib.2018.07.021
2095-9273/© 2018 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Table 1 Pearson correlation coefficients (R) and the results of significance tests (P) between the concentrations of ten ions and six environmental pollutants, as well as the aerosol optical depth (AOD) retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the 15 hailstorm events.

Ion	SO₂	NO₂	CO	O₃	PM₉₀	PM₂.₅	AOD
Na⁺	0.617	0.238	0.334	0.328	0.774	0.554	0.855
K⁺	0.014	0.393	0.223	0.233	0.001⁺	0.032	0.000⁺
Mg²⁺	0.620	0.220	0.340	0.311	0.756	0.533	0.850
Ca²⁺	0.014	0.431	0.215	0.259	0.001⁺	0.041	0.000⁺
Cl⁻	0.631	0.232	0.357	0.298	0.765	0.544	0.847
NO₃⁻	0.012	0.404	0.191	0.281	0.001⁺	0.036	0.000⁺
SO₄²⁻	0.629	0.179	0.330	0.265	0.760	0.545	0.826
HCOO⁻	0.012	0.523	0.230	0.341	0.001⁺	0.036	0.000⁺
CH₃COO⁻	0.023	0.377	0.140	0.242	0.001⁺	0.032	0.000⁺
Na⁺	0.510	0.114	0.052	0.424	0.156	0.407	0.795
K⁺	0.406	0.483	0.631	0.222	0.690	0.503	0.507
Mg²⁺	0.133	0.068	0.012	0.426	0.004⁺	0.056	0.054
Ca²⁺	0.420	0.218	0.391	0.391	0.672	0.480	0.779
Cl⁻	0.119	0.436	0.149	0.150	0.006⁺	0.070	0.001⁺
NO₃⁻	0.568	0.145	0.208	0.331	0.841	0.782	0.600
SO₄²⁻	0.027	0.607	0.456	0.228	0.000⁺	0.001⁺	0.018
HCOO⁻	0.617	0.222	0.341	0.320	0.783	0.569	0.847
CH₃COO⁻	0.014	0.427	0.214	0.245	0.001⁺	0.027	0.000⁺

* P < 0.01.

the AOD by using these 15 hail events data (Table 1). According to the correlation analysis, AOD had a strong positive correlation with the concentration of seven ions (Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, NO₃⁻, and CH₃COO⁻), while PM₁₀ had strong positive correlations with all ions (except NO₃⁻), and these correlations were significant at the 0.01 level. The correlation between PM₂.₅ and HCOO⁻ was also significant at the same level, while the correlations with the concentrations of the other environmental pollutants, i.e., SO₂, NO₂, CO, and O₃, were not significant, although there were positive correlations with all ions. The Pearson correlation analysis and the combined significance test in our study revealed that PM₁₀ was the most likely source of the water-soluble ions in the hailstone samples. The strong correlation between PM₁₀ and the ion concentrations pointed to a predominantly terrestrial source of atmospheric particles. The majority of PM₁₀ particles are usually condensed below the cloud base and are likely to be lifted by atmospheric ascending motions to a higher atmospheric elevation and partitioned into clouds in a convective storm [2,3]. PM₁₀ contains not only general CCN but also giant CCN (dry particle diameter > 5 µm), which may inhibit the activation of the smaller particles and therefore play a larger role in nucleation scavenging of aerosols above cloud base [5,10]. In addition, it is easier for large particles in PM₁₀ to deviate from the streamlines of air flowing around a hailstone than small particles during the impaction scavenging either inside the cloud or below cloud base [5].

However, in contrast to the concentrations of the ions in different hailstorm events, the concentrations of the ions in one hailstorm (Beijing, June 10, 2016) varied little (Figs. S6, S7 and Table S2 online). Following a possible explanation, the wind shear has a gradient in the different parts of a convective storm, which may result in a gradient distribution of aerosol concentration in this storm [2]. Meanwhile, the collisions between aerosols particles and hailstones as well as it between other hydrometeors and hailstones would be affected not only by wind speed but also by the radius of hailstone [5].

In summary, 10 ions were detected, but at different concentrations in 15 hailstone samples in China. The presence of these ions suggests that hailstones are likely to scavenge ions along its growth route, based on the correlation of ion concentrations with AOD. PM₁₀ was found to have the most significant positive correlation with all ions in hailstones (except NO₃⁻), which suggests that most of these detected ions in hailstones are likely originated from PM₁₀. This was a preliminary study designed to provide evidence of the presence of water-soluble ions and the possible sources in natural hailstones.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41330421 and 41461164006). The authors thank the editor and anonymous reviewers, whose valuable comments and suggestions significantly improved this article. The authors thank Cai Yao from Meteorological Bureau of Guangxi for special help in collecting hailstone samples in Guangxi. The authors thank all the anonymous volunteers for collecting hailstone samples.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.scib.2018.07.021.

References

[1] List R. Physical methods and instruments for characterizing hailstones. Bull Am Meteor Soc 1961;42:452–66.
[2] Ma J, Sverko E, Su Y, et al. Uptake and mobilization of organic chemicals with clouds: evidence from a hail sample. Environ Sci Technol 2013;47:9715–21.
[3] Michael AB, Dore JE, Leslie D, et al. Biological ice nucleation initiates hailstone formation. J Geophys Res Atmos 2014;119:186–212.
[4] Santoyo E, García R, Martínez-Frías J, et al. Capillary electrophoretic analysis of inorganic anions in atmospheric hailstone samples. J Chromatogr A 2002;956:279–86.
[5] Lamb D, Verlinde J. Physics and chemistry of clouds. Cambridge: Cambridge University Press; 2011. p. 337–490.
[6] Li XJ, Zhang QH, Xue HW. The role of initial cloud condensation nuclei concentration in hail using the WRF NSSL 2-moment microphysical scheme. Adv Atmos Sci 2017;34:1106–20.
[7] Rosenfeld D, Sherwood S, Wood R, et al. Climate effects of aerosol-cloud interactions. Science 2014;343:379–80.
[8] Streets DG, Yu C, Wu Y, et al. Aerosol trends over China, 1980–2000. Atmos Res 2008;88:174–82.
[9] Yong J, Ding YJ, Xu JL, et al. Hydrochemical characteristic analysis of melting water flow in Keqikaer Glacier, Tianshan (west) Mountains. Chin J Environ Sci 2006;27:1305–11.
[10] Andreae MO, Rosenfeld D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci Rev 2008;89:13–41.
Xiaofei Li received his B.S. degree from the College of Atmospheric Sciences, Lanzhou University in 2014. He is currently studying under the supervision of Prof. Qinghong Zhang in Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, China. His research interests mainly focus on the interactions between aerosol and hydrometeors in convective storms.

Qinghong Zhang received her Ph.D. degree at Peking University, China, in 1999. She is currently a Professor in Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, China. Her research is mainly focused on the severe weather and convective storms.