thereby decreasing disease-associated aggregates. Prior work in rodents and C. elegans has shown expression levels of the small heat shock protein 25 (HSP25) correlates with maximum lifespan potential. Increased levels of HSP25 extends lifespan in a transgenic C. elegans model. This lifespan extension is dependent on skn-1 with evidence suggesting an enrichment in several skn-1-related pathways, such as lysosomal genes. Concomitantly, proteasome activity declines while autolysosome activity increases. This observation might suggest a switch from proteasome degradation to autophagy as the main driver of protein degradation in C. elegans in this transgenic model. To investigate if a reduction of proteasome function and elevated lysosomal gene activation during aging and under proteotoxic stress are modulated by HSP25 we have crossed our HSP25-transgenic worm with an aggregating and non-aggregating tau worm model. This work will elucidate a possible mechanism that explains the change in the protein degradation response pathways potentially modulated by HSP25 during increased protein misfolding.

INDICES OF RESILIENCY IN CELLS FROM UM-HET3 MICE MAY CORRELATE WITH INDIVIDUAL FUTURE HEALTH OUTCOMES
Kennedy S. Mdaki,1 Yuhong Liu,1 and Adam B. Salmon1,
1. University of Texas Health at San Antonio, San Antonio, Texas, United States

The ability of an organism to respond to physical stresses and return to homeostasis (i.e. resilience) has been suggested to correlate with longevity. Here, we investigated whether this extends to resilience at a cellular level using primary fibroblasts isolated from tail skin of genetically heterogeneous young adult UM-HET3 mice. Cells isolated from each individual mouse (cell line) were tested in their response to concentrations of agents or conditions predicted to induce a cellular challenge, including paraquat, hydrogen peroxide, antimycin a, cadmium chloride, mdivi-1, thapsigargin, and nutrient starvation. Cell viability was monitored in real-time using an Incucyte S3 live cell analysis system and we addressed the response following challenge as a marker of resilience. Cellular uptake of ethidium homodimer-1 was used to determine the loss of viability. Cellular bioenergetics were assessed using a seahorse XF24. We found that cell lines that were resistant to paraquat were also resistant to antimycin a, and hydrogen peroxide. Cell lines that were resistant to nutrient starvation were also resistant to mdivi-1. Indices of cellular bioenergetics status including ATP production rate and cell respiratory control ratio, revealed potential relationships with resiliency. Taken together, our data indicate that skin fibroblasts retain individual physiological programs that may in part explain the patterns of resiliency or sensitivity to a stressor at the organismal level. Since the cell lines tested in this study were obtained from living mice, future work will investigate whether these patterns of resiliency change with age and elucidate their utility in predicting future health outcome.

THE ENDOPLASMIC RETICULUM PROTEIN QUALITY CONTROL ADAPTATION IN A LONG-LIVED C. ELEGANS PROTEASOMAL MUTANT
Meghna N. Chinchankar,1 Karl Rodriguez,1 and Alfred Fisher2,1. UT Health San Antonio, San Antonio, Texas, United States, 2. University of Nebraska Medical Center, Omaha, Nebraska, United States

Protein degradation mechanisms are integral to protein homeostasis. Their reduced efficiency during aging leads to accumulation of misfolded and aggregated proteins which potentiate proteotoxic disorders. Paradoxically, our lab reported that the Caenorhabditis elegans rpn-10(ok1865) proteasome mutant possesses enhanced proteostasis and extended lifespan. RPN-10/PSMD4 is a ubiquitin receptor of the 26S proteasome that targets polyubiquitinated substrates to its catalytic core for degradation. Proteasome dysfunction of the rpn-10 mutant is characterized by reduced, not inhibited, ubiquitin fusion degradation. We ascertained that upregulated autophagy and SKN-1/Nrf-mediated responses partially contribute to the robust rpn-10 mutant phenotype. Further investigation of its underlying mechanism revealed that several ERQC genes are transcriptionally upregulated in the rpn-10 mutant. Thus, we hypothesized that the rpn-10 mutant exhibits improved ER proteostasis which mediates its elevated cellular stress resistance. Accordingly, the rpn-10 mutant shows increased ER stress resistance and altered ER homeostasis. Complementarily, attenuated expression of the aggregation-prone α-1 antitrypsin (ATZ) reporter proves that ER proteostasis is ameliorated in the rpn-10 mutant. Via a genetic screen for suppressors of decreased ATZ aggregation in the rpn-10 mutant, we identified novel player H04D03.3, which is a homolog of the proteasome adaptor ECM29. This suggests that assembly of the rpn-10 mutant proteasome itself critically regulates its ER proteostasis. Moreover, we observed that cytosolic proteostasis and longevity depend on ER master chaperone hsp-3/-4(BiP) and ER ATPase cdc-48.2(p97/VCP), further highlighting ERQC significance in the rpn-10 mutant. Altogether, it appears that mild proteasomal dysfunction induces ERQC adaptation that underlies proteostasis and longevity benefits of the rpn-10 mutant.

THE LONGEVITY ASSOCIATED ALLELE OF FOXO3 PROTECTS AGAINST TELOMERE ATTRITION DURING AGING
Richard Allsopp,1 Philip Davy,1 Craig Willcox,2 Randi Chen,3 Michio Shimabukuro,4 Immaculata de Vivo,2 and Bradley J. Willcox4,1. University of Hawaii, Honolulu, Hawaii, United States, 2. Okinawa International University, Ginowan, Okinawa, Japan, 3. PHREI, Honolulu, Hawaii, United States, 4. Fukushima Medical University, Fukushima, Okinawa, Japan, 5. Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States, 6. Kuakini Medical Center, Honolulu, Hawaii, United States

Telomere attrition in proliferative tissues is a hallmark feature of human aging. To date, the genetic influence on the rate of telomere attrition is poorly understood. Previously we discovered a variant of the FOXO3 gene that is strongly associated with human longevity, an observation that has been now reproduced in over a dozen independent studies. In the present study, we sought to assess the effect of the longevity associated variant of FOXO3 (rs2802292 - G allele) on the rate of telomere attrition during aging. The results from a cohort of Okinawan-Japanese (N=121), ranging in age from 25 – 94 years, demonstrates carriers of 1 or 2 copies of the longevity-associated G allele of FOXO3 showed markedly reduced rates of telomere loss in peripheral blood leucocytes

GSA 2019 Annual Scientific Meeting
as compared to carriers of the more common FOXO3 variant (TT – common genotype, m= -33bp/year, P=0.008). Interestingly, telomere shortening was not observed as a function of age for G allele carriers (m= -2bp/year, P=0.1). In an independent study of women (N=6,565) from the Nurses’ Health Study cohort, ranging in age from 40 to 70 years, a similar observation was found. Notably, carriers of the TT or GT FOXO3 genotype showed a significant decline in telomere length with age (m= -15.5 bp/year, P0.1). These results mark the first validated longevity gene variant showing an association with negligible loss of telomere length with age in humans.

PICOLINIC ACID, A TRYPTOPHAN METABOLITE, DOESN’T AFFECT BONE MINERAL DENSITY BUT UPREGULATES LIPID STORAGE GENES

Carlos Isales,1 Meghan McGee-Lawrence,1 Mark Hamrick,1 William D. Hill,2 Wendy Bollag,3 Ke-Hong Ding,1 Xing-ming Shi,1 and Eileen Kennedy4, 1. Augusta University, Augusta, Georgia, United States, 2. Medical University of South Carolina, Charleston, South Carolina, United States, 3. University of Georgia, Athens, Georgia, United States

Tryptophan is an essential amino-acid broken down initially to kynurenine (kyn), an immunomodulatory metabolite that we have previously shown to promote bone loss. Kyn levels increase with aging and have also been associated with neurodegenerative disorders. Additional tryptophan metabolites include picolinic acid (PA); however, in contrast to kyn, PA is neuroprotective. Thus, we hypothesized that PA might be osteoprotective. In an IACUC-approved protocol, we fed PA to aged (23-month-old) C57BL/6 mice for eight weeks. In an effort to determine potential interactions of PA with dietary protein, we added PA to both a standard (18%) and a low protein diet (8%). The mice were divided into four groups: control (18% protein), +PA (700 ppm); low protein (8%), +PA (700 ppm). There was no difference in weight among the groups (36.1±4.1, 34.6±3.8, 32.8±3.2, 32.6±3.0 gm, (Means±SD, control vs +PA vs 8% vs +PA, p=ns; n=8-10/group). Mice were sacrificed and bones and stromal cells collected for analysis. We found that addition of PA to the diet had no impact on femoral BMC or BMD (BMD: 0.069±0.008 vs 0.075±0.007 vs 0.069±0.005 vs 0.070±0.007, p=ns). Addition of PA to the diet had no impact of % body fat as measured by DXA; however, stromal cells isolated from the PA-fed mice showed a significant increase in the expression of the lipid storage genes, Plin1 and Cidec. Thus, although PA is downstream of kyn, the kyn-induced detrimental effects on bone mass are no longer observed with PA but instead this kyn metabolite appears to impact energy balance.

HETEROGENEITY OF SENESCENT RIBOSOME COMPLEX AFFECTS THE TRANSLATIONAL EFFICIENCY OF SENESCENCE RELATED MRNAS

Joon Kim,1 Hag Dong Kim,2 and Hee Woong Yang1, 1. Korea University, Seoul, Korea, Republic of, 2. HAEL, Lab, Seoul, Korea, Republic of

The ribosome, a protein factory, has a lateral stalk known as the ribosomal P complex made up of rpLP0, rpLP1, and rpLP2. It plays an important role in translation by recruiting translational factors. One of these proteins, rpLP2, was decreased in translating ribosome when cellular senescence was induced. Additionally, Y-box binding protein-1 (YB-1), a multifunctional protein that regulates the transcription and translation, was also reduced in polysomal fraction of senescent cells. We have discovered that rpLP2 depletion in heterogeneous ribosome causes the detachment of YB-1 in polysomes and link to cellular senescence. Here, we also have found that a decrement of CK2α or GRK2 on senescent cells induced an increment of unphosphorylated rpLP2, resulting in the release of YB-1 from a ribosome complex. The heterogeneous senescent ribosome has different translational efficiency for some senescence related genes such as AHR, RAB27B, FEZ1, and DDIT4. Our results revealed that the decrease of rpLP1/rpLP2 and YB-1 in translating senescent ribosomes is not specific to cell type or stress type. Furthermore, the same phenomenon was observed in aged mouse liver. Taken together, our results suggest that the senescent ribosome complex appears to have low levels of rpLP1/rpLP2 and YB-1, resulting in the alteration of translational efficiency for senescence related genes. (Journals of Gerontology: Biological Sciences, 2019 in press)

PHYSICAL FRAILTY AND ITS ASSOCIATION WITH COGNITION: THE PREDICTIVE VALUE OF A SYNDROME BEYOND ITS COMPONENT PARTS

Nadia M Chu,1 Karen Bandeen-Roche,2 A. Richey Sharrett,3 Michelle C. Carlson,2 Qianli Xue,4 and Alden Gross5, 1. Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States, 2. Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States, 3. Johns Hopkins University, Baltimore, Maryland, United States, 4. Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States, 5. Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States

The extent to which frailty (PFP) affects cognitive performance and change beyond that expected from its component parts is uncertain. Leveraging NHATS, a nationally-representative cohort of U.S. Medicare beneficiaries, we quantified associations between each PFP criterion and global and domain-specific cognitive level and change (memory: immediate/delayed word-list test, executive function: clock drawing test (CDT), orientation: date, time, president-vice-resident naming), using adjusted mixed effects models with random slopes (time) and intercepts (person). We tested whether presence of frailty was associated with excess cognitive vulnerability (synergistic/excess effects, Cohen’s d) above and beyond those found for its criteria by adding an interaction term between each PFP criterion and frailty. Among 7,439 community-dwelling older adults (mean age=75.2 years) followed for a weighted mean of 3.2 years (SE= 0.03), 14.1% were frail. The most prevalent PFP criteria were low activity (30.5%) and exhaustion (29.8%). Associations were strongest for executive function, where frailty added predictive value beyond its criteria (excess effects, Cohen’s d) above and beyond those found for its criteria by adding an interaction term between each PFP criterion and frailty. Among 7,439 community-dwelling older adults (mean age=75.2 years) followed for a weighted mean of 3.2 years (SE= 0.03), 14.1% were frail. The most prevalent PFP criteria were low activity (30.5%) and exhaustion (29.8%). Associations were strongest for executive function, where frailty added predictive value beyond its criteria (excess effects, Cohen’s d) above and beyond those found for its criteria by adding an interaction term between each PFP criterion and frailty.