Counterexample for the 2-approximation of finding partitions of rectilinear polygons with minimum stabbing number

Breno Piva¹ and Cid C. de Souza²

¹ Universidade Federal de Sergipe, Departamento de Computação, Av. Marechal Rondon, s/n Jardim Rosa Elze, 49100-000, São Cristóvão, Sergipe, Brasil.
bpiva@ufs.br

² Universidade de Campinas, Instituto de Computação, Campinas, São Paulo, Brasil.
cid@ic.unicamp.br

Abstract. This paper presents a counterexample for the approximation algorithm proposed by Durocher and Mehrabi [1] for the general problem of finding a rectangular partition of a rectilinear polygon with minimum stabbing number.

1 Introduction

Given a rectilinear polygon \(P \) and a rectangular partition \(R \) of \(P \), a segment is said to be rectilinear relative to \(P \) if it is parallel to one of \(P \)’s sides. Let \(s \) be a maximal rectilinear line segment inside \(P \). The stabbing number of \(s \) relative to \(R \) is defined as the number of rectangles of \(R \) that \(s \) intersects. The stabbing number of \(R \) is the largest stabbing number of a maximal rectilinear line segment inside \(P \). The Minimum Stabbing Rectangular Partition Problem (MSRPP) consists in finding a rectangular partition \(R \) of \(P \) having the smallest possible stabbing number. Figure 1 illustrates these definitions.

Variants of the problem arise from restricting the set of rectangular partitions that are considered to be valid. One of these variants is called the conforming case, in which every edge in the solution must be maximal, i.e., both of its endpoints must touch the border of the polygon. For this problem, in [1], Durocher et al. propose an integer programming model for the conforming case where there are exactly two edges (that can be in the solution) having each reflex vertex as endpoint. Thus, there are also precisely two variables associated to each reflex vertex.

In [1] a 2-approximation algorithm is presented for the conforming case of partitions of rectilinear polygons with minimum stabbing number. That approximation algorithm is based in a rounding of the variables. In the Conclusion section of the article, it is stated that the algorithm could be extended for the general case using a formulation described informally and the same rounding rules used in the conforming case.

In this paper we show that the algorithm as described in [1] cannot give a 2-approximation for the general case of the (MSRPP). This is done by means of a counterexample to the referred algorithm.
random−20−17

Fig. 1: A rectilinear polygon with a rectangular partition of stabbing number 4. The dashed lines represent maximal rectilinear line segments inside the polygon. Segment r has stabbing number 4 while segment s has stabbing number 3.

2 IP Models

The MSRPP can be modelled via integer programming in a number of different ways. In this section we present two such models for the general case of MSRPP in an attempt to formalize the description given in [1]. But first, we need some definitions.

Let P be a rectilinear polygon, input of the MSRPP. Define as V^P_r the set of reflex vertices of P, i.e., those having internal angles equal to $3\pi/2$. Let V^P_c be the set of vertices of P that are not reflex. Denote by grid(P), the set of all maximal rectilinear line segments in the interior of P having a vertex in V^P_r as one of its endpoints. Let V^P_s be the set of points in the intersection of two segments in grid(P). We refer to these points as Steiner Vertices. The points that are not in V^P_r or V^P_c and are in the intersection of a segment in grid(P) and the border of P compose the set V^P_b. Denote by V^P the set resulting from the union of all the point sets defined before, i.e., $V^P = V^P_r \cup V^P_c \cup V^P_s \cup V^P_b$.

Define E^P_{ih} as the set of line segments in the border of P having only two points in V^P which are its extremities. Any fragment of a segment in grid(P) containing exactly two vertices in V^P is called an internal edge. The set of all internal edges is E^P_i and the set of all edges in P is $E^P = E^P_{ih} \cup E^P_i$. A subset E'^P of E^P defines a knee in a vertex $u \in V^P_s \cup V^P_r$ if exactly two edges in E'^P have u as an endpoint and these edges are orthogonal. A subset E'^P of E^P is said to define an island in a vertex $u \in V^P_r$ if only one edge of E'^P have u as an endpoint. At last, if ua and ub are two edges in E^P having a common endpoint u, we denote the angle between ua and ub by $\theta(ua, ub)$.
Now, we can formalize the model described in [1] as follows:

\[
(RPST) \quad z = \min k \tag{1}
\]

subject to

\[
x_{ua} + x_{ub} \geq 1, \quad \forall u \in V_i^p \land ua, ub \in E_i^p, \tag{2}
\]

\[
x_{ua} + x_{ub} - x_{uc} \geq 0, \quad \forall u \in V_s^p, \forall ua, ub, uc \in E_i^p\]

with \(\theta(ua, ub) = \pi/2\), \tag{3}

\[
\sum_{uv \in E_i^p \cap s \neq \emptyset} x_{uv} \leq k - 1, \quad \forall s \in L, \tag{4}
\]

\[
x_{uv} \in \mathbb{B} \quad \forall uv \in E_i^p, \tag{5}
\]

\[
k \in \mathbb{Z}. \tag{6}
\]

In the model above, we have one binary variable \(x_{uv}\) for each internal edge \(uv\) in \(P\) which is set to 1 if and only if the corresponding edge is in the rectangular partition of \(P\). Constraints (2) ensure that the solution does not contain a knee in a reflex vertex. Inequalities (3) impose that the solution does not form a knee or an island in a Steiner vertex. Inequalities (4) relate the \(x\) variables with variable \(k\), which represents the stabbing number of the solution. As a consequence, the objective function (1) is to minimize \(k\). Finally, (5) and (6) are integrality restrictions for the variables. Figure 2 shows an instance of the MSRPP (called random-20-17) with 62 internal edges and their corresponding variables.

![Random instance random-20-17](image-url)

Fig. 2: Instance random-20-17 with 62 internal edges and the corresponding variables.
As stated before, the (RPST) model above is not the only model for the problem and next we show another way of modelling it. However, to guarantee the correctness of the model we must first prove a property of optimal solutions for the MSRPP. The following proposition is a generalization of Observation 1 in [1].

Proposition 1. Any rectilinear polygon P has an optimal rectangular partition R in which every maximal segment of R has at least one reflex vertex of P as an endpoint.

Proof. Let R be a rectangular partition of a rectilinear polygon P. Let e be a maximal segment in R having a and b as its endpoints. Suppose neither a nor b are reflex vertices. Since e is maximal and R is a rectangular partition, both endpoints of e must lie in segments perpendicular to e.

Now, since R is a rectangular partition, e defines two minimal rectangles (each one possibly containing other rectangles) having e as one of its sides, let us denote them by r_1 and r_2. There are three cases to consider.

The first case consists of r_1 and r_2 been empty rectangles, i.e., neither r_1 nor r_2 contain other rectangles. Therefore, the removal of e unite these rectangles, composing a single rectangle. Therefore, $R \setminus e$ is still a rectangular partition. It is clear that removing a segment cannot increase the stabbing number of the solution. Thus, if R is an optimal solution, so is $R \setminus e$.

The second case to consider is when only one of r_1 or r_2 contains other rectangles. Suppose without loss of generality that r_1 is the one containing other rectangles. Now, we can drag e towards r_1, shrinking any segment with an endpoint in e, until e meets a reflex vertex or the border of P. In the latter case, e is merged to the border of P. It is easy to see that the result of this dragging operation is also a rectangular partition besides, the only stabbing segments affected by this operation are the ones parallel to e and their stabbing number cannot increase. Therefore, as R is optimal, so must be the new solution.

At last, we must consider the case where both r_1 and r_2 contain other rectangles. Suppose without loss of generality that the number of segments in r_1 having an endpoint in e (thus, perpendicular to it) is greater or equal than the number of segments with these characteristics in r_2. Then, again, we can drag e towards r_1, shrinking any segment with an endpoint in e, until e meets either a segment parallel to e or a reflex vertex or the border of P. If a parallel segment is met, e is merged to it and the process is repeated until a reflex vertex or the border of P is met. In case the border of P is met, e ceases to exist together with the segments in the space between e and the border. Once again, the dragging operation results in a rectangular partition of P and the only stabbing segments affected by this operation are parallel to e. But, as the number of segments in r_1 is greater or equal than the number of segments in r_2, one can see that the stabbing number of the new rectangular partition cannot be greater than that of R.

Ergo, there is always an optimal rectangular partition where every maximal segment has at least one reflex vertex of P as an endpoint. \square
In the next model, given the same definitions as before, we consider the set \(E^P_e \) of rectilinear segments \(uv \) where \(u \in V^P_r \) and \(v \in V^P_s \). Notice that a segment of \(E^P_e \) can be comprised of several consecutive segments of \(E^P_i \). Hence, we call \(E^P_e \) the extended edge set. In the formulation below, we have a variable \(x_{uv} \) for each edge in \(E^P_e \) and from Proposition 1 it is easy to notice that this set of variables is sufficient to provide optimal rectangular partitions.

\[
(RPST2) \quad z = \min_k \sum_{u \in V^P_r} x_{uu} \geq 1, \quad \forall \ u \in V^P_r \tag{8}
\]

\[
x_{ab} + x_{uv} \leq 1, \quad \forall \ ab, uv : ab \cap uv \neq \emptyset \land \ b \neq u \land b \neq v \tag{9}
\]

\[
\sum_{u \in E^P_e} x_{uv} - x_{ab} \geq 0, \quad \forall \ a \in V^P_r, b \in V^P_s \tag{10}
\]

\[
\sum_{u \in E^P_e : uv \notin s} x_{uv} \leq k - 1, \quad \forall \ s \in L \tag{11}
\]

\[
x_{uv} \in \mathbb{B} \quad \forall \ uv \in E^P_e \tag{12}
\]

\[
k \in \mathbb{Z} \tag{13}
\]

In this model, inequalities (8) guarantee that the solution does not contain a knee in a reflex vertex. Constraints (9) enforce planarity (two segments of the partition can only intersect at their extremes). Constraints (10) prevent the existence of knees and islands in a Steiner vertex. Finally, (11) are the stabbing constraints and (12) and (13) are integrality constraints. Figure 3 shows instance random-20-17 with 42 internal edges and the corresponding variables.

3 The Counterexample

Before discussing the counterexample, we first present the rounding scheme proposed in [1] for the conforming case. Once the optimum of the linear relaxation is computed, the rules for rounding variables in the conforming case are really simple: a variable corresponding to a horizontal segment is rounded down to zero if its value is smaller than or equal to 0.5 and is rounded up to one if its value is greater than 0.5. A variable corresponding to a vertical segment is rounded down to zero if its value is smaller than 0.5 and is rounded up to one if its value is greater than or equal to 0.5.

In the Conclusion section of [1], a model for the general (non-conforming) case is described informally. From the discussion, apparently such model is equivalent to the (RPST) formulation given in Section 2. According to the authors, the same rounding rules used in the conforming case provide a 2-approximation for the general case.
Fig. 3: Instance random-20-17 with its extended edges and corresponding variables.
The rounding rules do not mention what should be done for Steiner vertices, and no guarantee is given that applying them directly in these situations will avoid the formation of a knee or an island. In fact, the instance displayed in Figure 4 shows that this cannot always be done without sacrificing feasibility. In this figure, the optimal values of the variables corresponding to edges incident to Steiner vertex v39 (see Figure 3) after solving the linear relaxation associated to instance random-20-17 are given. As only the variable corresponding to one vertical edge incident to that vertex has value equal to 0.5 and the other three are smaller than 0.5, rounding according to that rule would result in an island at v37. Therefore, the set of edges obtaining after rounding does not form a rectangular partition.

![Fig. 4: Values of variables corresponding to edges incident to a Steiner vertex after solving linear relaxation.](image)

It is however possible that we misinterpreted the model the authors were thinking of (although there is evidence in contrary) and the idea is actually to define variables corresponding to all edges having a reflex vertex as one of its endpoints. If so, the formulation would look like (RPST2) model in the previous section. In this alternative formulation, rounding the variables using that rule does not cause the same problem as before since every variable correspond to an edge having a reflex vertex as endpoint.

Contrary to what happens in the conforming case, however, the reflex vertices here have more than two incident edges. Therefore, it is possible that the solution of the linear relaxation result in values smaller than 0.5 for all the variables corresponding to the edges incident to a certain reflex vertex. Thus, the rounding of such solution would result in a partition having a knee in a reflex vertex.
The situation described above occurs in practice with instance \texttt{random-20-17}, as shown in Figure\ref{fig:values}. Consider the edges incident to vertex v_5. All the associated variables incident to this vertex have value smaller than 0.5. As consequence, they will be rounded to zero, resulting in the formation of a knee at v_5 and, therefore, in an infeasible solution.

![Diagram of random-20-17](image)

Fig. 5: Values of variables corresponding to edges incident to a reflex vertex after solving linear relaxation.

4 Conclusion

From the counterexample presented in Section\ref{sec:counterexample} we conclude that it remains open whether a 2-approximation for the MSRPP in the general case exists. It is, however, noteworthy that many other contributions are presented in \cite{durocher2012computing} and none of them are diminished by this counterexample.

References

1. Stephane Durocher and Saeed Mehrabi. Computing partitions of rectilinear polygons with minimum stabbing number. In Joachim Gudmundsson, Julián Mestre, and Taso Viglas, editors, \textit{Computing and Combinatorics}, volume 7434 of \textit{Lecture Notes in Computer Science}, pages 228–239. Springer Berlin Heidelberg, 2012.
Appendix

File name: random-20-17.rect
Model: RPST
Vertex number: 59
Edge number: 62

Reading Problem stab
Problem Statistics
 231 (0 spare) rows
 63 (0 spare) structural columns
 752 (0 spare) non-zero elements
Global Statistics
 63 entities 0 sets 0 set members
Minimizing MILP stab
Original problem has:
 231 rows 63 cols 752 elements 63 globals

Its	Obj Value	S	Ninf	Nneg	Sum Inf	Time
0	0.000000	D	1	0	24.000000	0
74	2.416667	D	0	0	0.000000	0

Optimal solution found
 *** Search unfinished *** Time: 0
Number of integer feasible solutions found is 0
Best bound is 2.416667

Solution:

X1 = 0.583333 X2 = 0.416667 X3 = 0.095238 X4 = 0.916667 X5 = 0.666667
X6 = 0.333333 X7 = 0.428571 X8 = 0.571429 X9 = 0.904762 X10 = 0.845238
X11 = 1.000000 X12 = 0.571429 X13 = 0.000000 X14 = 1.000000 X15 = 0.000000
X16 = 1.000000 X17 = 0.000000 X18 = 0.500000 X19 = 0.238095 X20 = 0.000000
X21 = -0.000000 X22 = 0.333333 X23 = 0.428571 X24 = 1.000000 X25 = 0.238095
X26 = -0.000000 X27 = 0.285714 X28 = 0.130952 X29 = 0.500000 X30 = 0.333333
X31 = 0.333333 X32 = 0.333333 X33 = 0.333333 X34 = 0.333333 X35 = 0.095238
X36 = 0.583333 X37 = 0.333333 X38 = 0.500000 X39 = 0.500000 X40 = 0.297619
X41 = 0.285714 X42 = 0.583333 X43 = 0.285714 X44 = 0.285714 X45 = 0.333333
X46 = 0.333333 X47 = 0.333333 X48 = 0.285714 X49 = 0.285714 X50 = 0.285714
X51 = 0.285714 X52 = 0.571429 X53 = 0.285714 X54 = 0.285714 X55 = 0.571429
X56 = 0.000000 X57 = 0.714286 X58 = 1.000000 X59 = 0.000000 X60 = 0.500000
X61 = 0.285714 X62 = 1.000000 X63 = 3.000000

File name: random-20-17.rect
Model: RPST2
Vertex number: 59
Edge number: 62
Reading Problem stab
Problem Statistics
 336 (0 spare) rows
 63 (0 spare) structural columns
 996 (0 spare) non-zero elements
Global Statistics
 63 entities 0 sets 0 set members
Minimizing MILP stab
Original problem has:
 336 rows 63 cols 996 elements 63 globals
Crash basis containing 13 structural columns created

Its	Obj Value	S	Ninf	Nneg	Sum Inf	Time
0	0.000000	D	1	0	24.000000	0
66	2.413793	D	0	0	.000000	0

Optimal solution found
*** Search unfinished *** Time: 0
Number of integer feasible solutions found is 0
Best bound is 2.413793

Solution:

X1 = 0.190476 X2 = 0.380952 X3 = 0.142857 X4 = -0.000000 X5 = -0.000000
X6 = -0.000000 X7 = -0.000000 X8 = -0.000000 X9 = 0.285714 X10 = -0.000000
X11 = 0.142857 X12 = 0.142857 X13 = -0.000000 X14 = 0.000000 X15 = 0.523810
X16 = -0.000000 X17 = -0.000000 X18 = 0.190476 X19 = 0.238095 X20 = 0.095238
X21 = 0.000000 X22 = -0.000000 X23 = 0.476190 X24 = -0.000000 X25 = 0.190476
X26 = 0.380952 X27 = 0.190476 X28 = 0.000000 X29 = 0.238095 X30 = -0.000000
X31 = -0.000000 X32 = 0.190476 X33 = 0.523810 X34 = 0.809524 X35 = -0.000000
X36 = 0.285714 X37 = 0.380952 X38 = 0.000000 X39 = 0.000000 X40 = 0.190476
X41 = 0.619048 X42 = -0.000000 X43 = -0.000000 X44 = 0.142857 X45 = -0.000000
X46 = -0.000000 X47 = -0.000000 X48 = 0.380952 X49 = 0.000000 X50 = 0.380952
X51 = -0.000000 X52 = 0.619048 X53 = -0.000000 X54 = -0.000000 X55 = 0.095238
X56 = 0.142857 X57 = -0.000000 X58 = -0.000000 X59 = 0.380952 X60 = -0.000000
X61 = 0.000000 X62 = 0.380952 X63 = 3.000000