Abstract: Endophytic fungi are an important group of microorganisms and one of the least studied. They enhance their host’s resistance against abiotic stress, disease, insects, pathogens and mammalian herbivores by producing secondary metabolites with a wide spectrum of biological activity. Therefore, they could be an alternative source of secondary metabolites for applications in medicine, pharmacy and agriculture. In this review, we analyzed patents related to the production of secondary metabolites and biotransformation processes through endophytic fungi and their fields of application. We examined 245 patents (224 related to secondary metabolite production and 21 for biotransformation). The most patented fungi in the development of these applications belong to the Aspergillus, Fusarium, Trichoderma, Penicillium, and Phomopsis genera and cover uses in the biomedicine, agriculture, food, and biotechnology industries.

Keywords: endophytic fungi; patents; secondary metabolites; biotransformation; biological activity

1. Introduction

The term endophyte refers to any organism (bacteria or fungi) that lives in the internal tissues of a host. This endophyte–host association is complex: it is normally driven without causing harm or apparent disease symptoms and provides benefits in survival, fitness, biodiversity, and ecosystem function for both parties by enhancing the response to environmental stress and producing the same or similar compounds that originate in the host [1–3]. In particular, fungal endophytes have been the focus of many studies due to their prospective promise in the production of secondary metabolites with pharmacological, agricultural, industrial, or biotechnological applications [4–6].

Endophytic fungi were discovered over a century ago; however, it was not until about three decades ago, with the discovery of the taxol-producing endophytic fungus Taxomyces andreanae, that they gained remarkable relevance due to the abovementioned production of active secondary metabolites [7–10].

As was the case with taxol, the process for the isolation and purification of metabolites in adequate yields remains a major concern; low yields due to the exploitation of the host for the extraction process of metabolites are also associated with environmental impacts, and new strategies such as involving the use of endophytic microorganisms instead of the host themselves have offered new niches that should be meticulously investigated and used as a base for sustainable research and development [11,12].
in the process of finding new drug candidates or precursors for the synthesis of new molecules. We also cover the production of secondary metabolites in biotransformation processes by using endophytic fungi.

2. Materials and Methods

This review was conducted mainly through searches of the databases Scifinder® and Google Patents. Our search was made under the subjects “endophytic fungi” and “patents” covering the period from 2001 to 2019. 4670 references were found. After removing duplicates, we selected those related to the production of secondary metabolites and biotransformation. Resulting in 245 documents from which 224 were related to any kind of secondary metabolite derived from endophytic fungi and 21 detail biotransformation processes of metabolites through endophytic fungi. The patents covered in this study are described in Tables 1 and 2.

3. Results

The description and analysis of patents was divided into two sections: those that are connected to the production of secondary metabolites and those associated with biotransformation processes. Likewise, two tables were constructed in which the main generalities of each patent are summarized.

3.1. Production of Secondary Metabolites

Early patents consisted mainly of registering the endophytic strains capable of producing specific compounds or those that represented a novel source of active metabolites (chanoclavine in EP1142986A2; resveratrol in CN1948459A; gallic acid in CN101280279A; taxol in CN101486974A) and very few applications. However, over time, patents were developed to include the registration of methods and procedures to produce and recover the compounds of interest (with a known biomedical application) or to optimize or increase their production (podophyllotoxin in US20040248265A1; taxol in CN1624103A; camptothecin in US20060134762A1; huperzine A in CN101275116A). In the last ten years, patents have been focused on using novel or enhanced fermentation processes to obtain high yields of products and provide possible applications for the metabolites (alpha-pyrone in CN110563740A; epimedins A–C in CN10511876A; differanisole A in CN109971655A; 5, 8-ergosterol epoxide in CN109971651A). The distribution of the patents in relation with the principal areas of application are illustrated in Figure 1. The production of taxol and huperzine A were considered as other application outside of their anticancer and anti-Alzheimer property respectively, due to the number of patents and economic importance.

The principal applications consist on providing metabolites that are precursors of bioactive molecules (baccatin III and cephalomannine in CN103194502A) and those that can be use as anticancer, antitumor, antineoplastic or immunosuppressive agents (anthraquinone compounds in CN102586355A; cerrenin D in CN109456191A; alterporriol P in CN102633616A; dalesconol A and B in CN104031948A; quinazolone alkaid compound in CN103570744A); in pesticides, insecticidal, algcal control (diterpene alkaid-like compounds in CN102190699A); as antibacterial, antibiotic, antimicrobial, bacteriostatic (beauvericin in CN101240249A; diterpene alkaid compound in CN102190612A); as antifungal and antymycotics (Trichoderma acid in CN103083290A); in neurodegenerative diseases and neuroprotective agent (huperzine A in CN102191294A); as agents in pharmacy, food, cosmetics, agriculture and health care products (pseutorin A in CN104774774A; alterlactone in CN110093838A); antioxidant (flavipin in CN103087923A); anti-inflammatory and anti-rrheumatic (1,4-napthoquinones in CN109293494A); in cardiovascular diseases (breviscapine in CN1421522A); anti-diabetes (2 isabolen sesiquiterpenes in CN109096056A); anti-tuberculosis (enniatin compounds in CN101469939A); antiviral (alterporriol Q and R in CN102643186A); as pigments; hepatoprotective agents (pyrrole-type compounds in CN103667073A); in biofuels. Table 1 displays the patents, endophytic fungi, host organism, secondary metabolites, and disclosed applications. The structures of the compounds listed in Tables 1 and 2 are shown in Figure S1 (see the Supplementary Information).
The principal endophytic fungi reported in this section of patents belong to the genera *Aspergillus*, *Fusarium*, *Trichoderma*, *Penicillium*, and *Phomopsis* with 31, 24, 18, 16, and 8 patents, respectively, and compounds such as taxol or paclitaxel, huperzine A, camptothecin, podophyllotoxin, and resveratrol. Methods for enhancing their production represented most of the registered applications. Furthermore, the diversity of compound structures demonstrates the capability of fungi to synthesize simple or very complex molecules.

Mostly, *Aspergillus* endophytes from plants of the genera *Taxus* and *Torreya* are described as having applications related to obtaining the highest yield of paclitaxel or its precursors, like baccatin III and cephalomannine, due to their anticancer activity. Endophytes from *Huperzia serrata* have been linked to the production of huperzine A and its analogs due to their anti-senile dementia and anti-neurodegenerative applications. Plant endophytes such as *Nothapodytes nimmoniana* and *Camptotheca acuminata* have been linked to the production of the antineoplastic agent camptothecin and some analogs. Production of the lignan-type compound podophyllotoxin has been described for several endophytes. This compound has high biomedical potential as an anticancer, antiviral, and antibacterial agent, among others, and is the precursor of the anticancer drugs etoposide and teniposide. The stilbenoid compound found on grape skin, resveratrol, could have promising therapeutic actions against obesity, type II diabetes mellitus, metabolic syndrome, cancer, autism, dementia, and Alzheimer’s disease [13]. Therefore, a number of patents involving endophytes of the genera *Cladosporium*, *Fusarium*, *Alternaria*, and *Penicillium* for its production were registered. The demand for natural resveratrol has gained traction in various end-use industries.
Table 1. Endophytic fungi and their methods of production of natural products.

Patent No.	Endophyte	Host	Patent Details	Ref.
EP1342986A2	Neotyphodium sp.	Not disclosed	Channoclavine (1)-production.	[14]
US6329193B1	Cladosporium macrocarpon	Taxus spp.	Production of taxol.	[15]
CN1421522A	Alternaria sp.	Erigeron sp.	Production of brevescapine B (2) and other flavonoids for the treatment of cardiovascular diseases and for preparing antitumor medicine.	[16]
US6638742B1	Alternaria sp.	Alnus rubra, Corylus sp., Cytisus scoparius, Ginkgo sp.	Methods for obtaining and recovering taxanes, including paclitaxel (3), from novel sources.	[17]
US6137388B1	Cryptosporiopsis cf. quercina	Tripterygium wilfordii	Isolation of cryptocandin possessing antifungal activity.	[18]
US20040185031A1	Muscodor vitigenus	Paullinia paullinoides	Novel fungi that produces naphthaleine and applications.	[19]
US20040206997A1	Muscodor albus	Cinnamomum tree	Novel fungi and production of organic volatile antibiotics effective in the treatment of human and animal waste.	[20]
US20040249365A1	Phialocephala fortinii	Podophyllum sp.	Identification of podophyllotoxin-producing fungi and methods for recovering podophyllotoxin (4) from such fungi.	[21]
WO2004106487A1	Neotyphodium lolii	Pooidae grass	Preparation of the sesquiterpenoids trichotec-9-en-4-ol, 12, 13, epoxy-, and 4-epoxy-7,12,13-trihydroxy-5a,8α-epoxytetraol (17), and succinic acid (18) as antimicrobial active ingredients.	[40]
CN1624103A	Mix of Taxus endophytes	Taxus chinensis	Increase the production of taxol and taxol precursors.	[41]
US6911338B2	Muscodor sp.	Cinnamomum zeylanicum, Grevillea pteridifolia	Preparing of compound 2,3-diamino-6-hydroxy-benzoic acid-2-ethyl-hexyl ester (10), including method, and its application in pharmacy.	[30]
CN1850765A	Halosorrellina sp.	mangrove	Preparation of sesquiterpenoids trichotec-9-en-4-ol, 12, 13, epoxy-, and 4β-acebacil (11) as pesticides.	[31]
US2006034762A1	Fungal strain MTCC 5124	Mappia sp.	Preparation of the sesquiterpenoids trichotec-9-en-4-ol, 12, 13, epoxy-, and 4β-acebacil (11) as pesticides.	[32]
US707985B2	Muscodor albus	Cinnamomum zeylanicum	Novel fungi and production of organic volatile antibiotics effective in the treatment of human and animal waste products.	[27]
CN1896232A	Fusarium sp.	Ginkgo biloba	Production of plasmin.	[28]
CN1894859A	Cladosporium sp.	Parthenocissus tricuspidatae	Production of resveratrol (9).	[29]
CN1951907A	Aspergillus niger	Euphorbia sp.	Preparation of compound 2,3-diamino-6-hydroxy-benzoic acid-2-ethyl-hexyl ester (10), including method, and its application in pharmacy.	[30]
CN101037656A	Trichoderma harzianum	Bux cornuta	Preparation of the sesquiterpenoids trichotec-9-en-4-ol, 12, 13, epoxy-, and 4β-acebacil (11) as pesticides.	[31]
CN101041840A	Trichoderma harzianum	Bux cornuta	Preparation of the sesquiterpenoids trichotec-9-en-4-ol, 12, 13, epoxy-, and 4β-acebacil (11) as pesticides.	[32]
US7192939B2	Pestalotiosis microspora	Terminalia morbenesis	Novel fungi strains capable of producing novel antioxidant and antiviral agents.	[33]
CN101195804A	Acremonium endophytes	Huperzia serrata	Production of huperzine A (12) analogous through strain liquid fermentation of the endophytic fungi.	[34]
CN101239451A	Aspergillus clavatothecum	mangrove	Preparation of bipherol compound (13) including preparation method and application.	[35]
CN101275036A	Mix of endophytes	Huperzia serrata	Preparation of huperzine A.	[36]
CN101240249A	Fusarium sp.	Dioscorea zingiberensis	Production of beauvericin (14) description of its antibacterial activity.	[37]
CN101280279A	Phomopsis sp.	Acer ginnala	Production of gallic acid (15).	[38]
US7341862B2	Muscodor albus	Cinnamomum zeylanicum	Novel fungi and production of organic volatile antibiotics effective in the treatment of human and animal waste products.	[39]
CN10142971A	Fusarium sp.	Paris polyphylla var. yunnanensis	Production of 5α, 8α-ergosterol peroxide-6, 22-diene-3β-ol (16), ergosterol-8(9), 22-diene-3β, 5α, 6β, 7α-tetraol (17), and succinic acid (18) as antimicrobial active ingredients.	[40]
CN101468977A	Phomopsis sp.	Asadricha indica	Novel pseudo-phomallactone (19) antibacterial compound from fermentation products of an endophytic fungus strain.	[41]
CN101468996A	Phomopsis sp.	Asadricha indica	Source of ten-membered lactone 7α-acetoxy-multipolide A (20) and its applications.	[42]
CN101481379A	Cladosporium globoseum	Ginkgo biloba	Obtaining chaetomugilin D (21) from an acetic acid ethyl ester extract of fermentation liquor.	[43]
CN101486974A	Aspergillus niger	Taxus cuspidata	Production of taxol from endophytic fungus.	[44]
CN101503658A	Not disclosed	Locoweed	Separation of an endophytic fungus producing swainsonine (22).	[45]
Table 1. Cont.

Patent No.	Endophyte	Host ¹	Patent Details	Ref.
CN101525611A	Fusarium sp.	Chrysanthemum sp.	Plasmin preparation.	[46]
CN101586082A	Aspergillus candidus	Taxus x media	Production of taxol. A method for preparing taxol is also given.	[47]
US20090142816A	Gloeocadium sp.	Eucryphia cordifolia	Production of volatile compounds and hydrocarbons to generate biofuels.	[48]
CN101619291A	Chaetomium cupreum	Macaranga cordata	Preparatin of 3,6'-tetrahydroxy-4,4'-dimethyl-2-hexa-2,5-diene-2,5,5'-tetraone (23) with antitumor properties.	[49]
CN101669939A	Not disclosed	Mangrove	Ennatin compound (24) that aids in the preparation of anti-tubercle drugs.	[50]
CN10170120A	Fusarium proliferatum	Mangrove	Improving the output of anticancer anthraquinone compound (25) by utilizing different vaccination methods.	[51]
CN101875905A	Shiraia bambusicola	Phyllostachys edulis seed	High-yield hypocrellin-producing strain that carries out hypocrellin (26) production by fermentation.	[52]
CN101914452A	Penicillium chrysogenum	Not disclosed	Huperzine A-producing strain.	[53]
KR201004252A	Scolosbasidium tohaeyschae	Soybean	Gibberellin (27) production using soybean endophyte.	[54]
WO2010062199A	Aspergillus sp.	Garcinia scorchtini	Cyclic peptides with utility in anticancer treatments.	[55]
CN101942393A	Shiraia sp.	Taxus serrata	Production of huperzine A.	[56]
CN102080110A	Not disclosed	Neothamnopsis minnimana	Technical process for synthesizing a camptothecin sugar derivative.	[57]
CN102187870A	Colletotrichum gloeosporioides	Huperzia serrata	High-producing strain and method for huperzine A production.	[61]
CN102168017A	Aspergillus oryzae	Red algae	Use of diterpenoidal alkaloid (31) secondary metabolites as pesticides.	[62]
CN102190612A	Aspergillus oryzae	Red algae	Preparation of diterpenoidal alkaloid (32) with bacteriostatic activity that can be used for preparing antimicrobial agents.	[63]
CN102190614A	Aspergillus oryzae	Red algae	Use of diterpenoidal alkaloid (33) as an insecticide agent.	[64]
CN102190608A	Aspergillus oryzae	Marine algae	Preparation and application of alga endophytic fungi diterpenoidal alkaloid compound (34).	[65]
CN102191294A	Azcomonium endophyllum	Huperzia serrata	Production of huperzine A as an anti- senile dementia pharmaceutical ingredient.	[66]
CN10220247A	Verticillium dahlia	Radix glycyrrhizae	Preparation of diterpene alkaloid (35) for use as an insecticide.	[67]
IN201004117A	Phomopsis wenchengensis	Not disclosed	Production of glycyrrhetic acid (36).	[68]
JP2011051953A	Colletotrichum gloeosporioides	Heterosiphonia sp.	Manufacture of neohexa-hydro-curcumin (37).	[70]
WO201114634A	Hypoxylon sp./Nodulisporium sp./Dalmania sp./Nasudora sp.	Persia indica	Production of volatile organic compounds from these fungi.	[71]
CA2766412A	Fungal endophyte of Pinus strobus	Pinus strobus	Antifungal metabolites (38–44).	[72]
CN102525154A	Penicillium steckii	Trysterigmatium wilfordii	Production of triptolide (45).	[73]
CN10241783A	Phomopsis sp.	Camptotheca acuminata	Production and method for preparation of camptothecin.	[74]
CN10246643A	Trichoderma atroviride	Cephalotaxus fortunei	New compound (46) in secondary metabolites of C. fortunei endophytic fungi and its preparation method and application thereof.	[75]
CN102595917A	Fusarium sp.	Podophyllum hexadrum	Preparation of podophyllotoxin.	[76]
CN102596355A	Fusarium proliferatum	Mangrove	Method for producing anticancer anthraquinone compounds.	[77]
CN102628018A	Aspergillus niger	Sclerotium chinense	Improved production of the main components schisandrol A (47), schisandrin A (48), deoxyschizandrin (49), schisandrin B (50) from S. chinensis through fermentation.	[78]
CN102633616A	Alternaria sp.	Sarcopteryx sp.	Preparation of the anthraquinone dimer allopodol PI (51) as an antineoplastic agent.	[79]
CN102643167A	Alternaria versicolor	Marine algae	Fermentation preparation and application as an antibacterial and insecticidal agent of albicans-11,14-diol (52).	[80]
CN102643186A	Alternaria sp.	Sarcopteryx sp.	Preparation of the anthraquinone dimers allopodol Q (53) and allopodol R (54) for antiviral drugs.	[81]
Table 1. Cont.

Patent No.	Endophyte	Host	Patent Details	Ref.
CN102643755A	Penicillium chrysogenum	Glycyrrhiza glabra	Endophytic fungus that improves the content of glycyrrhetinic acid by fermenting licorice.	[82]
CN102653720A	Colletotrichum gloeosporioides	Huperzia serrata	Endophytic fungus capable of generating huperzine A.	[83]
CN102660466A	Aspergillus penicillioides	Schizandra chinensis	Improves the content of the active ingredients of S. chinensis: schizandrin, schisantherin, deoxyschizandrin, and schisandrin B.	[84]
CN102660467A	Fusarium oxysporum	Glycyrrhiza glabra	Fungal strain that produces glycryrrhetic acid.	[85]
CN102676992A	Trichoderma atroviride	Salvia miltiorrhiza	Endophytic fungus that aids in the production of tanshinone I (55) and tanshinone IIa (56).	[86]
CN102701935A	Trichoderma longibrachiatum	Seaweed	Preparation of tetrinuclear diterpenoid (57) with pesticidal and bacteriostatic activity.	[87]
CN102703327A	Cladosporium sp.	Aconitum leucomeatum	Fungal strain capable of synthesizing aconitine (58) for the preparation of antitumor, anti-inflammatory, and antihypertensive drugs.	[88]
CN102719362A	Alternaria sp.	Merlot grapes	Fungal strain capable of producing a large amount of resveratrol in the fermentation process.	[89]
CN10272427A	Fusarium proliferatum	Ceythropia glabra	Separation method for swainsonine-producing endophytic fungus.	[90]
CN10272428A	Fusarium oxysporum	Cajanus cajan	Endophytic fungal strain with a high yield of cajaniin C24 acid (59).	[91]
CN10276077A	Acrocomium sp.	Sophora alopecuroides	Synthesis of matrine (60).	[92]
WO2012020364A1	Fungal strain MTCC 5544	Pongamia pinnata	Preparation of 2',4'-dihydroxy-6'-methoxyl-3',5'-dimethylhydroquinone (61).	[93]
CN103073527A	Phomopsis sp.	Illgera odorata	Dipetide derivative (62) for the treatment of cancer.	[94]
CN103074236A	Trichoderma atroviride	Camptotheca acuminata	Preparation of libertellone G (63) as a novel medicine for treating Alzheimer’s disease.	[95]
CN103083290A	Trichoderma sp.	Not disclosed	Production and application of camptothecin.	[96]
CN103085574A	Chaosporium globosum	Cinquefoil biloba	Trichoderma acid (64) is involved in the preparation of antifungal agents.	[97]
CN103087923A	Colletotrichum sp.	Not disclosed	The endophytic fungus and metabolite flavipin (65) acts as an antioxidant.	[98]
CN103103134A	Colletotrichum sp.	Not disclosed	Production of huperzine A.	[99]
CN103134950A	Nodulisporium syzygiforme	Taxus sp.	Separation and purification of taxol by biological fermentation as well as precursors such as baccatin III (66) and cephalomannine (67).	[100]
CN103288807A	Not disclosed	Trepertigium wifidii	Separation of alkaloids (68–70) with pharmaceutical application.	[101]
CN103360531A	Xylaria sp.	Asatrafurin indica	Obtaining three isopimarane diterpenoid compounds (71–73) with antifungal activity and potential applications in new agricultural or medical antifungal medications.	[102]
CN103436451A	Colletotrichum sp.	Cyclopseudospora	Production of haematochrome, including its production via a fermentation method.	[103]
IN2011DE03381A	Diaporthe sp.	Pandanus amaryllifolius	Antitubercular diaportheone B analogs (74–75) and their synthesis.	[104]
WO2012020364A1	Fungal strain MTCC 5544	Myroxylon balsamum, Taxodium distichum	System and method for producing volatile organic compounds.	[105]
US2013013713A1	Colletotrichum sp.	Persica indica	Production of antifungal and immunosuppressive compounds.	[106]
US20130224315A	Colletotrichum sp.	Pterospermum sp.	Production of volatile organic compounds and methods of use.	[107]
US20130252289A1	Muscodor strobili	Not disclosed	Production of volatile organic compounds from microorganisms.	[108]
US20130252289A1	Several fungi such as Nodulisporium sp., Hypoxylon sp., Sclerotinia sp., Daldinia sp., Xylaria sp.	Thelypteris angustifolia, Persica indica, Citrus aurantiifolia, Myrobalan balsamum, Taxodium distichum	Production of volatile organic compounds from microorganisms.	[109]
US20130302480A1	Muscodor crispans	Ananas sp., Ananas annosamoides	Production of compounds with wide range of applications in agriculture, industrial, building, pharmaceutical and/or personal care products.	[110]
WO2013161834A1	Fusarium solani	Taxis celebica	Cost-effective process for commercial production of paclitaxel.	[111]
CN10357044A	Scopulariopsis sp.	Carioa sp.	Preparation method for the quinazoline alkaloid compound (76) and its application as a tumor cell growth inhibitor.	[112]
CN1036203726A	Fungal strain L1 CGMCC No. 4558	Polygophum cuspidatum	Extraction of resveratrol from fermented liquor.	[113]
CN103642864A	Shiria bhamciculara	Huperzia serrata	Preparation of hypocrocin compounds.	[114]
CN10366070A	Trichoderma sp.	Huperzia serrata	Preparation and application of huperzine A.	[115]
CN10366070A	Colletotrichum sp.	Huperzia serrata	Preparation of 4α,13α-epoxy-huperzine A (77).	[116]
CN103670073A	Penicillium laticzella	Huperzia serrata	Preparation of pyrrole type (78) liver-protecting medicines.	[117]
Table 1. Cont.

Patent No.	Endophyte	Host	Patent Details	Ref.
CN103620332A	Pycnoporus sanguineus	Huperzia serrata	Production of huperzine A.	[118]
CN103911293A	Betrysophila dorthea	Taxus chinensis	Strain with a high paclitaxel yield and method for producing paclitaxel.	[119]
CN103966109A	Aspergillus fumigatus	Schizandra chinensis fruit	Endophytic fungus that is capable of producing protocatechuic aldehyde (79).	[120]
CN104031948A	Daedonia eschscholtzii	Ginkgo biloba	Preparation of a spiro-dinaphthalene compound (83).	[124]
CN104059044A	Trichoderma sp.	Mangrove	Preparation of a xanthine derivative (82) as a microbial pesticide and fungicide.	[122]
CN104073529A	Not disclosed	Taxus x media seed	Preparation of taxol.	[123]
CN104086522A	Lasiodiplodia	Camptotheca acuminata	Preparation and dyeing of red pigment haematocrome.	[125]
CN104096991A	Not disclosed	Ginkgo biloba	Preparation of taxol.	[123]
US20140082271A	Not disclosed	Lobatis fraseri or Nothofagus cunninghamii	Isolation of antibiotic compound.	[126]
CN10425678A	Cladosporium cladosporioides	Fumigatus sp.	Production of forsythoside A (84), forsythoside B (85), and forsythin (86) and their applications.	[127]
CN104357525A	Acremonium dichromosporum	Clyropyricia sp.	Production of glycyrrhetinic acid by using microbial fermentation.	[128]
CN104450558A	Not disclosed	Gardenia jasminoides	Method for isolation and screening of endophytic fungi and for large-scale preparation of high-purity genipin (87).	[129]
CN104450331A	Fusarium tricinctum	Fritillaria cirrhosa	Obtains pemminine (88) and peimimisine (89) alkaloids.	[130]
CN104593443A	Botrysophila rhodina	Aquilaria sinensis	Preparation of aglawood chromone (90–94) components.	[131]
CN104726345A	Mixture of fungi including	Taxus spp.	High production of baccatin III.	[132]
CN10476728A	Not disclosed	Gastrodia elata	Preparation of gastrodin (95).	[133]
CN104774771A	Aspergillus fumigatus	Glycyrrhiza sp.	Production of pseutorin A (96) as a food preservative.	[134]
CN104789613A	Alternaria sp.	Spiraea salicifolia	Extraction and separation of bacteriostatic component (97) from fermentation broth.	[135]
CN104805017A	Fusarium solani	Penicillia sp.	Generation and application of β-glucosidase.	[136]
CN104877910A	Alternaria sp.	Nothapodytes pittosporoides	Preparation of breveldin (98). The compound has antifungal and insecticide activity and is an ideal veterinary and agriculture candidate drug.	[137]
CN105009173A	Mortierella sp.	Huperzia serrata	Preparation of taxol.	[123]
CN105009174A	Fusarium sp.	Paonia sp.	Production of paenol (99).	[139]
CN105009175A	Talaromyces sp.	Paonia sp.	Production of paenol.	[140]
CN105009176A	Fusarium sp.	Paonia sp.	Production of paenol.	[141]
CN105200091A	Geomyces sp.	Nerium indicum	Preparation and application of ethyl vincamine (100).	[142]
US20150073048A	Aspergillus fumigatus	Ananas ananassoides	Preparation of antimicrobial composition and methods of use.	[143]
WO20150928869A	Trichoderma longibrachiatum	Bousselia serrata	Preparation of brachatin D (101).	[144]
CN105238697A	Chaetomium sp.	Paonia sp.	Production of baccatin with endophytic fungus from peony.	[145]
CN105238700A	Epicoccum nigrum	Wild soybean	High yielding oleonic acid endophyte.	[146]
CN105274005A	Aspergillus fumigatus	Taxus x media	Taxol production.	[147]
CN105316238A	Trichoderma sp.	Taxus chinensis	Method for culturing and screening taxol-producing fungus.	[148]
CN105349431A	Phoma glomerata	Salvia miltiorrhiza	Generation and application of salvianolic acid C (102).	[149]
CN105488024A	Fusarium mautre	Taxus x media/Vilateria jatamansi	Increases the yield of paclitaxel in an endophytic fungus fermentation product.	[150]
CN105507896A	Phoma glomerata	Salvia miltiorrhiza	Generation of ergosterol (103).	[151]
CN10550821A	Aspergillus sp.	Not disclosed	Preparation of taxol-containing culture.	[152]
CN10562040A	Mucor racemosus	Huperzia serrata	Application of a fungal strain with highly efficient expression of huperzine A.	[153]
CN10563861A	Chaetomium globosum	Cajanus cajan	Application of a fungal strain with a high yield of flavin.	[154]
CN105925546A	Phomopsis liquidambari	Magnoflorus	Preparation method for cytochalasin H (104).	[155]
CN106010990A	Phoma glomerata	Acrida cinerea	Strain capable of producing of perlolyrine (105) and a method for preparation.	[156]
CN106047715A	Trichoderma sp.	Nothapodytes pittosporoides	Extraction of camptothecin.	[157]
WO2016034751A	Aspergillus fumigatus	Schisandra chinensis	Production of taxol.	[123]
Patent No.	Endophyte	Host	Patent Details	
------------------	---------------------------	------	--	
CN106433416A	Penicillium citrinum		Preparation of penicillins (107–113) as antibiotic drugs.	
CN106343361A	Aspergillus niger		Preparation of indane derivatives (114–115).	
CN106497803A	Fusarium verticillioides		Fungal strain with hyperzine A-producing function and its use in the biosynthesis	
			of medicine for treating Alzheimer's disease and vascular dementia.	
CN10668984A	Fusarium oxysporum		Production of hyperzine A and its application in the treatment of dementia.	
CN10658894A	Neocrypta sp.		Preparation of compound (116) derived from Tibetian medicine endophytic fungi.	
CN106662647A	Not disclosed		Fermentation extraction of azadirachtin (117).	
CN106701994A	Neoclynostrum sp.		Production of pyrocide A (118) and pyrocide B (119).	
CN106946955A	Pezicula sp.		Production of mycosubaric compounds (120–124) that aid in the preparation of	
			drugs for preventing and controlling plant fungal disease.	
CN10696722A	Aspergillus flavus		Paclitaxel production.	
CN10696762A	Aspergillus niger		Production of taxane compound baccatin III.	
CN106783856A	Nigrospora sphaerica		Production of large amounts of bostrycin (125).	
CN107054145A	Pestalotiopsis visnate		In vitro production of nucleosides, preferably, adenosine, guanylyl, uridine,	
			and inosine.	
CN107098118A	Aspergillus aculeatus		Efficient taxol producing endophytic fungi.	
CN107138972A	Epicoccum nigrum		Endophytic fungus capable of generating pectin through liquid fermentation.	
CN107129936A	Penicillium sp.		Production of paclitaxel.	
CN107254504A	Fusarium sp.		Increasing the scutellarin (126) content with microbial agents.	
CN107354182A	Purpureocillium llacatum		Preparation of (±)-4-benzyl-2-oxazolidinone (127) by fermentation.	
WO2017049353A	Daldinia sp.		Production of volatile organic compounds as insecticidal and antifungal agents.	
WO2017066233A	Stemphyllum solani		To obtain compounds (128–129) for use as biocides.	
CN107066817A	Ascomycota sp.		Production of ascomylactam compounds (130–131).	
CN107072345A	Fusarium sp.		Endophytic fungi and application in the steroids saponin diosgenin (132) and	
			ruscogenin (133).	
CN107072346A	Penicillium oxalicum		Endophytic fungi and application in the steroid saponin diosgenin and ruscogenin.	
CN107072347A	Cladosporium sp.		Endophytic fungi and application in the steroid saponin diosgenin and ruscogenin.	
CN107072348A	Penicillium sp.		Endophytic fungi and application in the steroid saponin diosgenin and ruscogenin.	
CN1070729716A	Penicillium sp.		Endophytic fungi and application in the steroid saponin diosgenin and ruscogenin.	
CN1070729717A	Schizopyllum sp.		Endophytic fungi and application in the steroid saponin diosgenin and ruscogenin.	
CN1070797918A	Aspergillus sp.		Endophytic fungi and application in the steroid saponin diosgenin and ruscogenin.	
CN107095579A	Aspergillus niger		Application in the preparation of the steroid saponin diosgenin and ruscogenin.	
CN108264473A	Penicillium decumbens		Preparation of 8α, 15α-epoxy-huperzine A, which has a curative neuroprotective effect.	
CN108277164A	Diaporthe sp.		Preparation of the steroid saponin.	
CN108388831A	Aspergillus tabungensis		Indene derivative (136) that aids in the preparation of an anti-inflammatory drug.	
CN108667989A	Trichoderma asperellum		Production of furance (137) derivative with good antibacterial activity.	
CN10858636A	Aspergillus tabungensis		Preparation of diketopiperazine compound (138), which has antibacterial application.	
CN10866497A	Dalania aschdoltii		Extraction method and application of a bicoumarin derivative (139).	
CN108723867A	Phoma sp.		Preparation and application of polyketides (140–141).	
CN108913731A	Pestalotiopsis sp.		Preparation of antibacterial compounds (142–143).	
CN10902445A	Fusarium proliferatum		Preparation and application of pestalotistone M (144) which has	
			immunosuppressive activity.	
CN10906056A	Aspergillus flavus		Preparation of bisabolane sesquiterpene compounds (154–155) as anti-type II diabetes mellitus drugs.	
IN201641023516A	Phomopsis sp.		Method of producing colchicine (156) from an endophyte using epigenetic modifiers.	
IN201721003410A	Phoma sp.		Isolation, fermentation, purification, and characterization of the antibacterial compound 2'-hydroxyoxygenstein (157).	
Table 1. Cont.

Patent No.	Endophyte	Host	Patent Details	Ref.
CN109776561A	Cytopora rhizophorae	Morinda officinalis	Preparation of cytozolin B (200) and C (201) that are applied in the preparation of antitumor drugs.	[216]
CN109810906A	Bionectria pityrodes	Tammarix sp.	Preparation of phenolic acid compound (202) through fermentation.	[219]
CN109968668A	Penicillium notatum	Gastrodia elata	Fermentation and production of penicilllic acid (182).	[215]
CN110053428A	Trichoderma asperellum	Seaweed	Preparation of 5,8-peroxyde of ergosterol.	[218]
CN110053053A	Trichoderma asperellum	Seaweed	Production of dihydroxyquinone C (206) that is used as an antineoplastic drug for treating human pulmonary squamous carcinoma and breast carcinoma.	[219]
CN110093363A	Alterania sp.	Polysomyx corymbosa	Preparation of compound alterlactone (207) that is used as a disinfectant in agriculture.	[220]
CN110218020A	Pseudopithomyces sp.	Sonnentidae ceauslaris	Preparation of desippeptide compound (208).	[221]
CN11029127A	fungal strain TGM112	Mangrove	Preparation of butyrolactone compounds (209–211).	[222]
CN110257255A	Dalinia escholzitzi	Mangrove	Preparation of chrome derivatives (212–216).	[223]
CN110257260A	Boeremia exigua	Atractylodes macrocephala	Preparation of the Atractylodes lactones I (217) and II (218).	[224]
CN110272928A	Colletotrichum boninense	Hupera serrata	New microbe resource for the production of hupizine A industrial fermentation.	[225]
CN110285728A	Dalinia escholzitzi	Mangrove	Preparation of tetraedrine derivatives (219–223).	[226]
CN1102915116A	Aspergillus sp.	Tammarix sp.	Production of a variety of fatty acids and their application.	[227]
CN110302215A	Penicillium sp.	Taxus x media	Fungal crude extract, it's applications, e.g., as being a source of paclitaxel analog.	[228]
CN110438015A	Aspergillus miamrii	Citron orange fruit	Fungal strain its fermentation to produce hesperidinase.	[229]
CN110438018A	Acremonium pilosum	Malania sp.	Preparation of fusidic acid (224).	[230]
CN110518876A	Aspergillus fumigatus	Koken Epimedium	The culture method of this fungal strain and its metabolites epimers A–C (225–227).	[231]
CN110537040A	Fusarium oxysporum	Edgeworthia chrysanth/	Methods for preparation and application of alpha-pyrone (228).	[232]
CP0271200132A	Aspergillus japonicus	Achyranthes aspera	Production of the novel antibacterial compound fraxidin (229).	[233]

1 Some patents just provided a common name for the host organism.
3.2. Biotransformation by Endophytic Fungi

Biotechnological processes enable the production of useful molecules with a decrease in the generation of pollutants, reducing the use of solvents and reagents, minimizing the consumption of energy, and providing a way to obtain active compounds with greater specificity and efficiency. The use of endophytic fungi in biotechnological processes, such as biotransformation, is in its early stages of development and has some limitations [238]. However, there have been some reports of fungi that have been used in biotransformation [239–242].

Table 2 lists a group of patents that illustrate the efforts toward using endophytic fungi to obtain molecules of biological importance such as the ginsenosides [243] and glycyrrhetinic acid monoglucuronide [244].

Fungi from the genera Absidia, Zygorhynchus, Xylaria, and Fusarium have been patented to obtain ginsenoside Rd by the transformation of ginsenoside Rb1. Fungi from the genera Microsphaeropsis, Aspergillus, and Chaetomium have been patented for the biotransformation of glycyrrhizinic acid into glycyrrhetinic acid monoglucuronide.
Table 2. Endophytic fungi applied for biotransformation.

Patent No.	Endophyte	Host	Patent Details	Ref.
CN102080348A	*Absidia glauca*	*Panax gingsen*	Conversion of ginsenoside Rb1 (230) to prepare ginsenoside Rd (231).	[245]
CN102080349A	*Zygophyllum moelleri*	*Panax gingsen*	Preparation of ginsenoside Rd from ginsenoside Rb1.	[246]
CN102154123A	*Fusarium sp.*	*Dioscorea nipponica*	Biotransformation conversion conditions of diosgenin saponins.	[247]
CN102199548A	*Penicillium exiguum*	*Polygonum cuspidatum*	Microbial transformation of resveratrol from polydatin (232).	[248]
CN10221486A	*Penicillium exiguum*	*Polygonum cuspidatum*	Conversion of polydatin into resveratrol.	[249]
CN102363350A	*Penicillium sp.*	*Not disclosed*	Biotransformation of raisin extract. Preparation and application in flavoring.	[250]
CN10275443A	*Penicillium purpurogenum*	*Dipsacus sp.* or *Sabina vulgaris*	Separation and purification method for bioconversion of podophyllotoxin into sulfur-substituted derivatives.	[251]
CN103695476A	*fungal strain L1 CCMCC No. 4558*	*Not disclosed*	Conversion of polydatin to resveratrol.	[252]
CN103981104A	*Microphallus arundinis*	*wild rice*	Biotransformation of glycyrrhizic acid (233) into liquiritin (234).	[253]
CN103992953A	*Aspergillus flavus*	*wild rice*	Transform glycyrrhizic acid into glycyrrhetinic acid monoglucuronide.	[254]
CN106591142A	*Xylariales sp.*	*Not disclosed*	Conversion of Panax notoginseng saponin to prepare vina-ginsenoside R13 (236), notoginsenoside J (237) and American saponin ginseng L16 (238).	[255]
CN106893677A	*Fusarium sp.*	*Herba Andrographis*	Conversion of glycyrrhizic acid into glycyrrhetinic acid monoglucuronide.	[256]
CN109536561A	*Fusarium oxysporum*	*Gentiana sp.*	Transformation of andrographolide diterpenoids (239–242).	[257]
CN109731270A	*Fusarium proliferatum*	*Cajanus cajan*	Conversion of gentiopicroside (243) into two separate compounds with hepatoprotective activity.	[258]
CN108705553A	*Plectosphaerella cucumerina*	*Huperzia serrata*	Efficient conversion of androstenedione to testolactone and androstone diene diketone.	[259]
CN10936561A	*Fusarium oxysporum*	*Not disclosed*	Conversion of ginsenoside Rb1 into ginsenoside Rd and its application.	[260]
CN110527632A	*Phomopsis sp.*	*Not disclosed*	Bioconversion of betulinic acid (245).	[261]
CN110423469A	*Lasiodiplodia pseudotheobromae*	*Illicium verum*	trans-trans-Anethole (246) conversion to generate different vanillic acids (247).	[262]
WO2019024295A1	*Oxotropia truncata*	*Curcuma sp.*	Microbial bioconversion of curcuminoinds to caletine A (248).	[263]
WO2019070219A2	*Alternaria euryceras*	*Astragalus condensatus, A. angustifolius*	Production of a telomerase activator, biotransformation with endophytic fungi to obtain new/molecular molecules from the saponins from natural sources and method for discovery molecules that increase telomerase enzyme activation.	[264]

1 Some patents just provided a common name for the host organism.
4. Discussion

The study of endophytic fungi as a source of bioactive secondary metabolites has its first beginnings in 1993 with the discovery of taxol [4], until then, the primary sources of active natural molecules were isolated mainly from plants [266]. About two decades ago, the study of endophytic fungi as producers of active molecules has been emphasized due to obtaining compounds originally produced by plants or due to the production of novel secondary metabolites [11,267]. Thus, fungi from genus Aspergillus, Fusarium, Penicillium and Pestalotiopsis has been recognized as producers of anticancer compounds and having pharmaceutical potential [12,268]. It is estimated that only around 1% of the microorganisms have been cultivated, and within this groups, endophytic fungi corresponded to the least studied [269].

Through this review, we have demonstrated the wide number of endophytic fungi involved in the development of methods and techniques for the application of isolation and fermentation to obtain secondary metabolites with high potential and applications in biomedicine, agriculture, and biotechnology processes. Figure 2 shows the number of patents registered for secondary metabolites and biotransformation processes through endophytic fungi for the period from 2001 to 2019. We found 224 patents related to secondary metabolites and 21 patents related to biotransformation. Aspergillus, Fusarium, Trichoderma, Penicillium, and Phomopsis were the most representative genera for secondary metabolites.

![Figure 2. Number of registered patents from 2001 to 2019 linked to endophytic secondary metabolites and biotransformation processes through endophytic fungi.](image)

Fusarium and Penicillium were the most commonly registered endophytic fungi genera among the 21 patents reviewed for biotransformation processes. Figure 3 shows the number of patented genera. The most notable applications patented were antimicrobial, antibacterial, anticancer, and those related to neurodegenerative diseases. For biotransformation processes, the conversion of ginsenosides and glycyrrhizinic acid were the most patentable applications due to their importance and potential in the pharmaceutical and food industries.

Tables 1 and 2 showed that the majority of the endophytic fungi were derived from plants, but we could also find patents where the host was soft corals or insects.
Figure 3. Number of patents reported for various endophytic fungi by genera.

The global market for compounds like taxol is expected to reach USD $99 million by 2021 [270], and for resveratrol, the projected growth from 2018 to 2028 in revenue terms is 8.1% from USD $97.7 million [271]. Under the objectives of the 1992 Convention on Biological Diversity for the sustainable use of its components and the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable sharing of benefits derived from the use of genetic resources [272], endophytic fungi and their derived compounds could open a new set of industries and economics in development countries with high biodiversity for the low-cost yield of high-profit molecules that can be applied in the fields discussed in this review.

Supplementary Materials: The following are available online at http://www.mdpi.com/2309-608X/6/2/58/s1, Figure S1: Structures of the secondary metabolites listed in Tables 1 and 2.

Author Contributions: D.T.-M. and H.E.O. Performed the data search and analysis, visualized and wrote the manuscript, L.C.-R. conceptualized, visualized, supervised, wrote and review the manuscript. All authors read and approved the final manuscript.

Funding: This project was supported by the National System of Research (SNI) and the National Secretariat for Science and Technology of Panama (SENACYT).

Acknowledgments: The authors want to thank University of Sao Paulo, Brazil, for granted access to “Portal de Periodicos CAPES/MEC” and to Phyllis D. Coley for critical review of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Wani, Z.A.; Ashraf, N.; Mohiuddin, T.; Riyaz-Ul-Hassan, S. Plant-endophyte symbiosis, an ecological perspective. *Appl. Microbiol. Biotechnol.* 2015, 99, 2955–2965. [CrossRef] [PubMed]
2. Zeilinger, S.; Gupta, V.K.; Dahms, T.E.S.; Silva, R.N.; Singh, H.B.; Upadhyay, R.S.; Gomes, E.V.; Tsui, C.K.M.; Chandra Nayak, S. Friends or foes? Emerging insights from fungal interactions with plants. *FEMS Microbiol. Rev.* 2016, 40, 182–207. [CrossRef] [PubMed]
3. Yan, L.; Zhu, J.; Zhao, X.; Shi, J.; Jiang, C.; Shao, D. Beneficial effects of endophytic fungi colonization on plants. *Appl. Microbiol. Biotechnol.* 2019, 103, 3327–3340. [CrossRef] [PubMed]
4. Newman, D.J.; Cragg, G.M. Endophytic and epiphytic microbes as “sources” of bioactive agents. *Front. Chem.* 2015, 3, 1–13. [CrossRef] [PubMed]
5. Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. *Microb. Pathog.* 2015, 82, 50–59. [CrossRef]
6. Savi, D.C.; Aluizio, R.; Glienke, C. Brazilian plants: An unexplored source of endophytes as producers of active metabolites. *Planta Med.* **2019**, *65*, 619–636. [CrossRef]

7. Radič, N.; Štrukelj, B. Endophytic fungi—The treasure chest of antibacterial substances. *Phytomedicine* **2012**, *85*, 619–636. [CrossRef]

8. Zhang, Y.; Han, T.; Ming, Q.; Wu, L.; Rahman, K.; Qin, L. Alkaloids produced by endophytic fungi: A review. *Nat. Prod. Commun.* **2012**, *7*, 963–968. [CrossRef]

9. Zhi-Lin, Y.; Yi-Cun, C.; Bai-Long, Z. Current perspectives on the volatile-producing fungal endophytes. *Crit. Rev. Biotechnol.* **2012**, *32*, 363–373. [CrossRef]

10. Savidov, N.; Gloriozova, T.A.; Poroikov, V.V.; Dembitsky, V.M. Highly oxygenated isoprenoid lipids derived from fungi and fungal endophytes: Origin and biological activities. *Steroids* **2018**, *140*, 114–124. [CrossRef]

11. Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. *Biotechnol. Adv.* **2020**, *39*, 107462. [CrossRef] [PubMed]

12. Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. *Biotechnol. Adv.* **2020**, *39*, 107462. [CrossRef] [PubMed]

13. Repossi, G.; Das, U.N.; Eynard, A.R. Molecular basis of the beneficial actions of resveratrol. *Arch. Med. Res.* **2020**. [CrossRef] [PubMed]

14. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

15. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

16. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

17. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

18. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

19. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

20. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

21. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

22. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

23. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

24. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

25. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

26. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

27. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

28. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

29. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.

30. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. *U.S. Patent 6911338 B2*, 4 July 2006.
31. Yu, X.; Shentu, X. Trichoderma Harzianum Rifai Strain l (Cgmcc No.1780) Grown in Ilex Cornuta (Gougu). CN Patent 101037656 A, 19 September 2007.

32. Yu, X.; Shen, T.; Chen, L. Method for Preparing Sesquiterpene Compound Trichothe-9-En-4-OL,12,13-Epoxy-,Acetate,(4β)-(8CI,9CI) from Trichoderma Harzianum. CN Patent 101041840 A, 26 September 2007.

33. Strobel, G.; Ford, E.; Harper, J.K. Pestalotiopsis Microspora Isolates and Compounds Derived Therefrom. U.S. Patent 7192939 B2, 20 March 2007.

34. Li, W.; Hu, Z.; Zhou, J.; Wang, Z. Acremonium Endophytum Grown in Huperzia Serrata (Sezushan) and Its Application in Producing Huperzine A Analogs. CN Patent 101195804 A, 11 June 2008.

35. Shen, Y.; Du, X.; Lu, C.; Huang, Y.; Zheng, Z.; Su, W. Method for Preparing Biphenyl Compounds with Antitumor and Antioxidation Effects. CN Patent 101234951 A, 6 August 2008.

36. Hong, Y.; Liu, Z.; Xiao, L. Mixed Endophyte Separated from Lycopodium Serratum (Qiancengta), and Method for Preparing Huperzine A from the Endophyte. CN Patent 101275116 A, 1 October 2008.

37. Zhou, L.; Jiang, W.; Peng, Y.; Wang, M.; Xu, L.; Huang, Y.; Zhao, J. Beauvericin-Producing Dioscorea Zingiberensis Endophytic Fusarium Sp. and Its Antibacterial Activity. CN Patent 101240249 A, 13 August 2008.

38. Zhan, Y.; Qi, F.; Jing, T.; Zeng, F.; Fan, G.; You, X. Phomopsis Strain for Producing Gallic Acid. CN Patent 101280279 A, 8 October 2008.

39. Strobel, G.A.; Ezra, D. Application of Volatile Antibiotics and Non-Volatile Inhibitors from Muscodor Spp. to Control Harmful Microbes in Human and Animal Wastes. U.S. Patent 7341862 B2, 11 March 2008.

40. Zhou, L.; Wang, J.; Ma, Z.; Li, X.; Huang, Y.; Wang, M.; Zhao, J. Paris Polyphylla Endophytic Fusarium Sp. Capable of Generating Antibacterial Active Components. CN Patent 101412971 A, 22 April 2009.

41. Wu, S.; Chen, Y.; Li, Z.; Yang, L.; Li, S. Phenylpropanol Compounds with Some Inhibitory Action on Phytopathogenic Fungi. CN Patent 101468977 A, 1 July 2009.

42. Wu, S.; Chen, Y.; Li, Z.; Yang, L.; Li, S. 7α-Acetoxy-Multiplolide A and Its Application to Preparation of Antimicrobial Drug. CN Patent 101468996 A, 1 July 2009.

43. Gao, J.; Qin, J.; Zhang, Y.; Zhang, A. Compound Separated from Ethyl Acetate Extract of Fermented Solution of Chaetomium Globosum. CN Patent 101481379 A, 15 July 2009.

44. Zhao, K.; Zhou, D.; Ping, W.; Li, Q. An Endophytic Fungus Aspergillus Niger Var. Taxi HD86-9 Producing Paclitaxel. CN Patent 101486974 A, 22 July 2009.

45. Zhao, B.; Lai, H.; Ma, Y.; He, W.; Liu, B. Method for Separating Endogenous Fungi Producing Spherosin. CN Patent 101503658 A, 12 August 2009.

46. Wu, B.; Wu, L.; Chen, D.; Xia, Y.; Ge, M.; Luo, M.; Yin, Y.; Yang, Z.; Yang, T.; Jin, W. Preparation of Fibrinolysin from Fusarium and Its Use as Thrombolytic Drugs. CN Patent 101525611 A, 9 September 2009.

47. Zhang, P.; Yu, L.; Zhou, P. Method for Manufacturing Paclitaxel with Endophytic Fungus Aspergillus Candidus HUST-RBB3. CN Patent 101586082 A, 25 November 2009.

48. Strobel, G. Gliocladium Isolate C-13 and Methods of Its Use for Producing Volatile Compounds and Hydrocarbons. U.S. Patent 20090142816 A1, 4 June 2009.

49. Chen, S.; Huang, C.; Zhang, C.; Lin, F. Application of Chaetomium Cupreum Strain in Antitumor Areas. CN Patent 101619291 A, 6 January 2010.

50. Lai, X.; Wang, J.; Lin, Y.; She, Z.; Chen, Y. Medical Application of Enniatins Compounds for Treating Drug-Resistant Mycobacterium Avium-Intracellulare Infection. CN Patent 101669939 A, 17 March 2010.

51. Zhou, X.; Zhang, Y.; Yu, C.; Kang, L.; Sun, X.; Zou, W. Method for Enhancing Yield of Antitumor Anthraquinone-like Compounds from Fusarium Proliferatum by Adaption of Various Inoculation Methods. CN Patent 101701230 A, 5 May 2010.

52. Hou, C.; Li, X. High-Yield Hypocrellin-Producing Shiraia Bambusica Strain ZZZ-817 and Its Application in Producing Hypocrellin by Fermentation. CN Patent 101875905 A, 3 November 2010.

53. Hong, Y.; Liu, D.; Cheng, P.; Liu, Z.; Xiao, L. Huperzine A-Producing Endophyte TCM-01 Strain. CN Patent 101914452 A, 15 December 2010.

54. Lee, I.J.; Muhammed, H.; Hwang, Y.H.; Shin, D.H.; Na, C.I. Gibberellin Production Using Soybean Endophyte Scleocobasidium Tshawyschtsae P-4-3. KR Patent 2010104252 A, 29 September 2010.
55. Blunt, J.; Cole, T.; Munro, M.; Sun, L.; Weber, J.-F.R.; Ramasamy, K.; Abu Bakar, H.; Abdul Majeed, A.B.B. Bioactive Compounds Derived from Endophytic Aspergillus Fungus Strain Isolated from Garcinia Scortechinii. WO Patent 2010062159 A1, 3 June 2010.

56. Zhu, D.; Zhang, Z.; Zeng, Q.; Yan, M.; Wang, J. Huperzine A-Producing Huperzia Serrata Endophytic Shiraia Strain. CN Patent 101942393 A, 12 January 2011.

57. Zhang, Y. Induction of Nothapodytes Nimmoniana Endophyte to Produce Sugar Derivative of Camptothecin. CN Patent 102080110 A, 1 June 2011.

58. Zhang, Y. Method for Inducing Nothapodytes Nimmoniana Endophyte to Produce 10-Hydroxy Camptothecin. CN Patent 102080111 A, 1 June 2011.

59. Zhang, Y. Induction of Nothapodytes Nimmoniana Endophyte to Manufacture 9-Methoxy camptothecin. CN Patent 102080112 A, 1 June 2011.

60. Wang, G.; Zhang, C.; Lin, F.; Xia, J.; Zhou, Z. Endophytic Fungus Phomopsis Wenchengensis ZJWCF252 for Manufacture of Agricultural Fungicide 2,3-Dihydro-2-Hydroxy-2,4-Dimethyl-5-Trans-Propenylfuran-3-One. CN Patent 102154116 A, 17 August 2011.

61. Yu, L.; Shi, Y.; Liu, Z.; Huang, J.; Hu, W. Fermentation Method for Manufacturing Huperzine A with Colletotrichum Gloeosporioides YLJ-13. CN Patent 102168017 A, 31 August 2011.

62. Ji, N.; Qiao, M. Application of Diterpene Alkaloids, Secondary Metabolite of Alga Endophytic Fungi, as Insecticide. CN Patent 102187870 A, 21 September 2011.

63. Ji, N.; Qiao, M. Diterpene Alkaloid Compound from Natural Algae Endophytic Fungus and Preparation and Application Thereof. CN Patent 102190612 A, 21 September 2011.

64. Ji, N.; Qiao, M. Agricultural Application of Diterpenoid Alkaloid of Endophytic Fungi of Algae. CN Patent 102190614 A, 21 September 2011.

65. Ji, N.; Qiao, M. Manufacture of Insecticidal Diterpene Alkaloid from Endophytic Fungus Aspergillus Oryzae. CN Patent 102190698 A, 21 September 2011.

66. Lan, S.; Xiao, H.; Wang, L. Method for Manufacture of Huperzine A with Endophytic Fungus by Fermentation. CN Patent 102191294 A, 21 September 2011.

67. Ji, N.; Qiao, M. A Diterpene Alkaloid-like Compound of Endophytic Fungus of Marine Algae, and Its Preparation and Application as Insecticide. CN Patent 102190699 A, 21 September 2011.

68. Zheng, C.; Sun, T.; Bai, C.; Sun, Y.; Tan, J. Verticillium Dahliae for Producing Glycyrrhetinic Acid. CN Patent 102220247 A, 19 October 2011.

69. Bora, T.C.; Mazumder, S.; Gogoi, B.K.; Rao, P.G.; Mondhe, D.M.; Saxena, A.K. Antimicrobial and Anti-Cancer Lactone Metabolite from Aspergillus Elegans, Growing in Asparagus Racemosus, Willd, and the Process for Production Thereof. IN Patent 2010DE00131 A, 9 December 2011.

70. Shibuya, H.; Ohashi, K.; Nakoshi, T. Colorless Antioxidant Neohexahydrocurcumin and Its Manufacture with Diaporthe. JP Patent 2011051953 A, 17 March 2011.

71. Strobel, G.A.; Tomsheck, A.R. Volatile Organic Compound Production by Endophytic Fungi Isolated from Persea Indica. WO Patent 2011146634 A1, 24 November 2011.

72. Miller, J.D.; Adams, G.W.; Sumarah, M. Antifungal Metabolites from Fungal Endophytes of Pinus Strobus. CA Patent 2766412 A1, 28 July 2012.

73. Feng, L.; Song, P.; Hong, W.; Wu, C.; Zhu, L. Penicillium Steckii for Manufacture of Triptolide. CN Patent 102321545 A, 18 January 2012.

74. Chen, H.; Wang, Y. Screening of New Camptothecin-Producing Fungus for Manufacture of Camptothecin. CN Patent 102417883 A, 18 April 2012.

75. Zheng, C.; Sun, P.; Han, T.; Ma, W.; Sun, H. Trichodermin b in Secondary Metabolites of Cephalotaxus Fortunei Endogenous Fungi, Its Preparation Method and Application to Prepare Antifungal, Antiviral and Antitumor Drugs. CN Patent 102464634 A, 23 May 2012.

76. Zhao, C.; Zhu, Y.; Liang, Z.; Zhang, J.; Qian, Z. One Endophytic Fungi from Sinopodophyllum Emodi and the Application Thereof. CN Patent 102559517 A, 11 July 2012.

77. Zhou, X.; Zhou, W.; Cai, M.; Zhang, Y. Culture Medium and Method for Producing Anticancer Anthraquinone-like Compounds with Marine Mangrove Endophytic Fungus. CN Patent 102586355 A, 18 July 2012.

78. Zheng, C.; Liu, Y.; Lu, X. Endophytic Fungi for Improving Main Active Ingredient Contents of Schisandra Chinensis by Fermentation. CN Patent 102628018 A, 8 August 2012.
79. Wang, C.; Shao, C.; Zheng, C. Anthraquinone Dimer Derivative Alterporriol P with Antitumor Activity and Its Preparation and Application. CN Patent 102633616 A, 15 August 2012.

80. Ji, N.; Liu, X.; Miao, F. Sesquiterpenoid Compound, Albican-11,14-Diol, in Endophytic Fungus of Algae, Aspergillus Versicolor, and Its Fermentation Preparation and Application as Antibacterial Agents and Insecticides. CN Patent 102643167 A, 22 August 2012.

81. Wang, C.; Shao, C.; Zheng, C. Two Anthraquinone Dimer Derivatives, Their Preparation Method and Application in Preparing Antiviral Drugs. CN Patent 102643186 A, 22 August 2012.

82. Zheng, C.; Sun, Y.; Bai, C.; Kong, D.; Tan, J. Penicillium Chrysogenum Effectively Increasing Glycyrrhetinic Acid Content of Radix Glycyrrhiza through Fermentation. CN Patent 102643755 A, 22 August 2012.

83. Wang, M.; Xu, X.; Zhao, X.; Shu, S.; Xu, H. No Title Huperzine A-Producing Endophytic Fungi Colletotrichum Gloeosporioides ES026 of Huperzia Serrata. CN Patent 102653720 A, 5 September 2012.

84. Zheng, C.; Liu, Y.; Lu, X. Endophytic Aspergillus Penicillioides Capable of Increasing Main Active Components of Schisandra Chinensis through Fermentation. CN Patent 102660466 A, 12 September 2012.

85. Zheng, C.; Tan, J.; Bai, C.; Sun, Y.; Kong, D. Endophytic Fusarium Oxysporum of Glycyrrhiza for Generating Glycyrrhetic Acid. CN Patent 102660467 A, 12 September 2012.

86. Han, T.; Ming, Q.; Qin, L.; Zhang, Q.; Huang, B.; Zhang, H.; Zheng, C.; Huang, F. Endophytic Trichoderma Atroviride of Salvia Miltiorrhiza for Manufacture of Tanshinone I and Tanshinone Ila. CN Patent 102676392 A, 19 September 2012.

87. Ji, N.; Miao, F. Tetracyclic Diterpenoid Compound and Preparation for Biopesticide. CN Patent 102701935 A, 3 October 2012.

88. Li, Q.; Yang, K.; Liang, J.; Kong, X.; Xia, S. Cladosporium Sp. XJ-AC03 for Manufacture of Aconitine. CN Patent 102703327 A, 3 October 2012.

89. Shi, J. Alternaria for Promotion of Resveratrol in Wine Fermentation. CN Patent 102719362 A, 10 October 2012.

90. Zhao, B.; Liu, S.; Su, D.; Lu, W.; Chen, J.; Hu, B.; Liu, T.; Chen, Y.; Liu, Y. Method for Separating Swainsonine-Producing Endophytic Fungi from Oxytropis Glabra. CN Patent 102732427 A, 17 October 2012.

91. Fu, Y.; Zu, Y.; Zhao, J.; Gao, Y.; Luo, M.; Gu, C. Cajaninstilbene Acid-Producing Fusarium Oxysporum, an Endophytic Fungus in Cajanus Cajan. CN Patent 102732428 A, 17 October 2012.

92. Yu, Y. Sophora Alopecuroides Endophytic Fungi for Producing Matrine as Bactericide. CN Patent 102787077 A, 21 November 2012.

93. Lu, Y.; Wang, J. Application of Ceriporia Lacerata DMC1106 for Manufacture of Antitumor 2',4',6'-Dihydroxy-6'-Methoxy-3',5'-Dimethyl Chalcone. CN Patent 102807956 A, 5 December 2012.

94. Deshmukh, S.K.J.R.; Verekar, S.A.; Mishra, P.D.; Eyyammadichiyil, S.S.; Joshi, K.S.; Kelter, G. Dipeptide Derivative for the Treatment of Cancer Produced by an Endophytic Fungi. WO Patent 2012020364 A1, 16 February 2012.

95. Tan, R.; Wei, W.; Jiang, R.; Zhao, G. Libertellenone G Having Inhibition on Acetylcholinesterase, Its Preparation Method and Use for Preparing Drugs for Treating Alzheimer Disease. CN Patent 103073527 A, 1 May 2013.

96. Luo, Y.; Pu, X.; Qu, X.; Chen, F.; Zhang, G. Fermentative Camptothecin Production by Endophytic Trichoderma Viride Strain. CN Patent 103074236 A, 1 May 2013.

97. Li, H.; Li, D.; Zhang, W. Application of Trichodermic Acid in Preparation of Antifungal Drugs. CN Patent 103083290 A, 8 May 2013.

98. Ye, Y.; Xiao, Y.; Li, H.; Li, C.; Liu, J. Chaetomium Globosum, an Endophytic Fungus in Gingko Biloba, for Manufacture of Antioxidant Flavipin. CN Patent 103087923 A, 8 May 2013.

99. Wu, S.; Wang, M.; Liu, H. Huperzia Serrata Endophytic Fungi Colletotrichum for Manufacture of Huperzine A. CN Patent 103103134 A, 15 May 2013.

100. Zhao, K. Manufacture of Paclitaxel and Precursor with Endophytic Fungus HDFS4-26 of Nodulisporium Sylviforme. CN Patent 103194502 A, 10 July 2013.

101. Wang, J.; Song, Y.; Liu, H. Manufacture of Alkaloid with Endophytic Fungus of Tripterygium Wilfordii. CN Patent 103288807 A, 11 September 2013.

102. Wu, S.; Chen, Y.; Miao, C. Manufacture of Isopimaranine Diterpene Fungicides with Endophytic Fungus of Neem. CN Patent 103360351 A, 23 October 2013.

103. Fan, G.; Wu, C.; Fang, S.; Wang, J.; Li, L.; Xie, N. Endophytic Fungus Colletotrichum of Cyclocarya Paliurus for Manufacture of Red Pigment. CN Patent 103436451 A, 11 December 2013.
104. Reddy, D.S.; Raut, G.N.; Pandrangi, S.S. Antitubercular Diaportheone B Analogs and Synthesis Thereof. IN Patent 2011DE03381 A, 31 May 2013.

105. Strobel, G.A.; Tomsheck, A.R. System and Method of Producing Volatile Organic Compounds from Fungi. U.S. Patent 20130137131 A1, 30 May 2013.

106. Strobel, G.A.; Ren, Y.; Teplow, D.B. Endophytic Fungi from Pteromischum Sp. Plant, Compounds and Methods of Use. U.S. Patent 20130177796 A1, 11 July 2013.

107. Green, W.A.; Strobel, G.A. Compositions of Volatile Organic Compounds and Methods of Use for Treating, Inhibiting or Preventing Plant Pathogenic Disease. U.S. Patent 20130224315 A1, 29 August 2013.

108. Strobel, G.A.; Tomsheck, A.R. Production of Volatile Organic Compounds by Endophytic Fungi. U.S. Patent 20130252289 A1, 26 September 2013.

109. Gandhi, N.R.; Palmer Skebba, V.; Strobel, G.A. Antimicrobial Compositions and Related Methods of Use. U.S. Patent 20130302480 A1, 14 November 2013.

110. Chelliah, J.; Jayeeta, P. Cost-Effective Process for Commercial Production of Paclitaxel by Fusarium Solani. WO Patent 2013164834 A1, 7 November 2013.

111. Shao, C.; Wang, C.; Xu, R. Alkaloid Compound, Its Preparation Method and Application as Tumor Cell Growth Inhibitor. CN Patent 103570744 A, 12 February 2014.

112. Liu, S. Isolation of Resveratrol with High Purity from Polygonum Cupidatium Fermentation Broth. CN Patent 103627736 A, 12 March 2014.

113. Zhang, Z.; Li, P.; Zhu, D.; Yan, R.; Wang, Y.; Yang, H. Manufacture of Perylenequinone Compounds with Endophytic Fungus Shiraia Sp. Slf-14. CN Patent 103642864 A, 12 March 2014.

114. Dong, L.; Ling, Q. Endophytic Fungi in Huperzia Serrata for Manufacture of Huperzine A. CN Patent 103667070 A, 26 March 2014.

115. Shan, W.; Ying, Y.; Zhan, Z. Endophytic Fungus of Huperzia Serrata for Preparation of 8α,15α-Epoxy Huperzine A. CN Patent 103667072 A, 26 March 2014.

116. Shan, W.; Ying, Y.; Zhan, Z. Endophytic Fungi of Huperzia Serrata and Its Application in Azole Drug for Liver Protection. CN Patent 103667073 A, 26 March 2014.

117. Wu, S.; Zhang, F.; Zheng, Y.; Liu, H. Endophytic Fungi Ceriporia Lacerata MY183 and Hypoxylon Investiens MY311 of Phlegmariurus for Manufacture of Huperzine A. CN Patent 103820331 A, 28 May 2014.

118. Wu, S.; Zheng, Y.; Zhang, F.; Liu, H. Endophytic Fungus of Huperzia Serrata for Manufacture of Huperzine A. CN Patent 103820332 A, 28 May 2014.

119. Liu, M.; Duan, Z.; Lv, Z. High Paclitaxel-Producing Endophytic Fungi Botryosphaeria Dothisidea for Manufacture of Paclitaxel. CN Patent 103911293 A, 9 July 2014.

120. Zheng, C.; Jiaojia, C.; Lu, X.; Zhang, P. Schisandra Chinensis Fruit Endophytic Fungi Producing Protocatechu醛ddehye. CN Patent 103966109 A, 6 August 2014.

121. Lu, Y.; Pan, Z.; Tan, R.; Jiao, R.; Zhao, G. Manufacture of Immunosuppressive Compound with Marine Endophytic Fungi. CN Patent 104031948 A, 10 September 2014.

122. Li, C.; Ding, W. Xanthone Derivative, Its Preparation Method by Fermentation, Extraction and Recrystallization, and Application Thereof in Preparing Microbicide for Controlling Phytopathogenic Fungi. CN Patent 104059044 A, 24 September 2014.

123. Mu, H. Manufacture of Taxol with Endophytic Fungi of Chinese Yew Seed. CN Patent 104073529 A, 1 October 2014.

124. Bai, J.; Pei, Y.; Hua, H.; Li, Z.; Chen, G.; Lv, X. Spiro-Dinaphthyl Compound, Preparation Method and Application. CN Patent 104086522 A, 8 October 2014.

125. Yu, Z.; Li, H.; Nan, X.; Cheng, R. Manufacture of Red Pigment with Ginkgo Leaf Endophyte for Use as Dye. CN Patent 104109691 A, 22 October 2014.

126. Spangenberg, G.C.; Sawbridge, T.I.; Rochfort, S.J.; Mattner, S.W.; Mann, R.C. Fungi and Products Thereof. U.S. Patent 20140082771 A1, 20 March 2014.

127. Niu, M.; Wan, P.; Zhang, T.; Li, X.; Qin, C.; Gong, Q.; Zhang, M.; Sun, J.; Li, X. Forsythia Suspensa Endogenous Fungus for Producing Forsythoside A, B and Phillyrin as Antibacterial Substances. CN Patent 104293678 A, 21 January 2015.

128. Zheng, C.; Zhang, P.; Kong, D.; Zhai, L. Manufacture of Glycyrrhetinic Acid with Endophytic Fungus. CN Patent 104357525 A, 18 February 2015.
129. Qi, H.; Shi, Y.; Wang, X. Method for Separating and Screening Endophytic Fungi of Gardenia Jasminoides. CN Patent 104450528 A, 25 March 2015.

130. Wu, W.; Pan, F.; Su, X.; Wang, N.; Cai, S.; Hou, K. No Title Fusarium Tricinctum CBY4 as Fritillaria Cirrhosa Endophytic Fungus and Its Application in Preparing Peimisine and Peimidine. CN Patent 104450531 A, 25 March 2015.

131. Zhang, W.; Zhang, Y.; Tao, M.; Li, H. A Kind of Preparation Method of Agalloch Eaglewood Chromone Constituents via Inoculation of Aquilaria Sinensis Sawdust with Botryosphaeria Rhodina, Solid Fermentation, and Extraction. CN Patent 104593443 A, 6 May 2015.

132. Li, Y.; Zhou, X.; Yang, J.; Jian, Z.; Meng, L. Endophytic Fungi of Taxus for Efficient Manufacture of Baccatin III. CN Patent 104726345 A, 24 June 2015.

133. Feng, Y. Preparation Method of Gastrodin by Symbiotic Fermentation of Gastrodia Endophyte and Armillaria Mellea. CN Patent 104762348 A, 8 July 2015.

134. Zhang, W.; Zhang, P.; Zhai, L.; Xu, H. Endophytic Aspergillus Fumigatus GRP13 Capable of Producing Pseurotin A as Food Preservative. CN Patent 104774774 A, 15 July 2015.

135. Hua, R.; Fu, W.; Lv, P.; Bai, Y.; Wu, X.; Shi, T. Manufacture of Antimicrobial with Spiroaa Salicifolia Endophytic Fungus and Isolation of the Antimicrobial. CN Patent 104789613 A, 22 July 2015.

136. Zhao, B.; Yan, S.; Chen, B.; Qian, H.; Huang, X.; Zhu, Y. Plant-Derived Endophytic Fungus for Producing β-Glucosidase, and Application Thereof. CN Patent 104805017 A, 29 July 2015.

137. Pan, H.; Hu, J.; Wang, S. Plant Endophytic Fungus Eupenicillium Brefeldianum F4a for Manufacture of Brefeldin A. CN Patent 104877910 A, 2 September 2015.

138. Guo, B.; Feng, S.; Chen, X.; He, M.; He, W.; Wei, Y. One Kind of Endophytic Mortierella of Huperzia Serrata and Its Application. CN Patent 105039173 A, 11 November 2015.

139. Yang, G.; Dong, F.; Li, P.; Qiu, Y.; Bai, X. Paeonol-Producing Endophytic Fungus of Paeonia and Its Application. CN Patent 105039174 A, 11 November 2015.

140. Yang, G.; Dong, F.; Yang, F.; Qiu, Y.; Bai, X.; Lin, L. Paeonol Producing Peony Endophytic Fungi and Its Application. CN Patent 105039175 A, 11 November 2015.

141. Yang, G.; Meng, L.; Li, P.; Dong, F.; Qiu, Y.; Lin, L. Peony Endophytic Fungi and Its Application. CN Patent 105039176 A, 11 November 2015.

142. Liu, J.; Peng, Y.; Hong, J.; Yin, Z.; Liu, X.; Ren, N. Apocynaceae Endophytic Fungi CH1 Producing Ethyl Vincamine and Application Thereof. CN Patent 105200091 A, 30 December 2015.

143. Gandhi, N.R.; Palmer Skebba, V.; Strobel, G.A. Antimicrobial Compositions and Related Methods of Use. U.S. Patent 20150073048 A1, 12 March 2015.

144. Singh, D.; Sharma, J.P.; Jaglan, S.; Dar, A.H.; Khajuria, A.; Singh, V.P.; Vishwakarma, R.A. Brachiatin D and Process for Production Thereof. WO Patent 20150073048 A1, 12 March 2015.

145. Yang, G.; Li, P.; Dong, F.; Qiu, Y.; Lin, L. Paeonol Endophytic Fungi and Technique of Producing Paeonol Using It. CN Patent 105238697 A, 13 January 2016.

146. Xiao, J.; Lai, Y.; Li, W.; Bi, Y.; Li, W.; Li, Q.; Ji, B.; Dong, H.; Sun, L.; Bian, S. A Wild Soybean Endophytic Fungi with High Yield of Oleanolic Acid. CN Patent 105238700 A, 13 January 2016.

147. Yang, S.; Fang, R.; Tang, C. Aspergillus Fumigatus Fungus TMS-26 for Producing Taxol. CN Patent 105274005 A, 27 January 2016.

148. Wang, Y.; Fan, M.; Ma, Z.; Hu, F.; Zhang, X.; Tian, C.; Lu, R. A Method for Cultivating and Screening Taxol-Producing Bacteria from Yew. CN Patent 105316238 A, 10 February 2016.

149. Zheng, C.; Qin, L.; Li, X.; Han, T.; Zhang, Q.; Jiang, Y.; Jia, M. Salvia Miltiorrhiza Endophytic Fungi and Application Thereof. CN Patent 105349431 A, 24 February 2016.

150. Cheng, J.; He, L.; Wei, H.; Hu, C.; Fang, R.; Li, H. Method for Improving Paclitaxel Yield in Endophytic Fungi Fermented Product. CN Patent 105400842 A, 16 March 2016.

151. Zheng, C.; Qin, L.; Li, X.; Han, T.; Xin, H.; Zhang, Q.; Jiang, Y. Endophytic Fungi for Producing Ergosterol and Application Thereof. CN Patent 105505798 A, 20 April 2016.

152. Cheng, J.; He, L.; Hu, C.; Wei, H.; Fang, R.; Zou, J.; Li, H. Culture Composition Containing Paclitaxel and the Preparation Method Thereof. CN Patent 105506021 A, 20 April 2016.

153. Han, W.; Li, W.; Han, Z.; Jia, M.; Zhang, H.; Sun, J.; Wu, Y.; Zhou, Y. Mucor Racemosus Nsh-d with Efficient Expression of Huperzine a and Its Application. CN Patent 105670940 A, 15 June 2016.
154. Fu, Y.; Yao, M.; Gao, C.; Sun, J.; Wang, W.; Zhao, C.; Gu, C. A Pigeonpea Endophytic Fungi for High Yielding of Flavipin and Its Application. CN Patent 105838613 A, 10 August 2016.

155. Tang, X.; Wu, X.; Liu, X.; Ma, Y.; Feng, X. Method for Preparing Cytochalasin H from Mangrove Endophytic Fungi. CN Patent 105925656 A, 7 September 2016.

156. Liu, C.; Guo, Z.; Wei, X.; He, H.; Xue, Y.; Zou, K. Endophytic Fungi Paraconiothyrium Brasiliense Used for Preparing Perlylyrane and Preparation Method Thereof. CN Patent 106010980 A, 12 October 2016.

157. Lei, B.; Kang, J.; Wu, X.; Qian, Y.; Wen, T.; Zhou, S. Nothapodytes Pittosporoides Endophyte Trichoderma Strain and Camptothecin Extraction Method Thereof. CN Patent 106047715 A, 26 October 2016.

158. Gonzales Coloma, A.; Diaz Hernandez, C.E.; Andres Yeves, M.; Fraga Gonzalez, B.M.; Bolanos Gonzalez, P.; Cabrera Perez, R.; Gimenez Marino, C. Fungal Biocidal Products and Their Use for Control of Phytopathogens and Plant Pests. WO Patent 2016034751 A1, 10 March 2016.

159. Zheng, C.; Huang, G.; Chen, G.; Zheng, C.; Zhou, X.; Bai, M.; Liu, Y. Anti-Vibrios Active Compounds Isolation from Bruguiera Sexangula Endophytic Fungi Useful in Treatment Bacterial Infection. CN Patent 106432168 A, 22 February 2017.

160. She, Z.; Liu, Z.; Tan, C.; Chen, S. Marine Fungus Derived Indene Derivative and Preparation Method and Application Thereof. CN Patent 106434361 A, 22 February 2017.

161. Han, W.; Han, Z.; Li, W.; Jia, M.; Sun, J.; Han, B.; He, J.; Zhou, Y. Fusarium Verticillioides with Huperzine-Producing Function, and Its Use in the Biosynthesis of the Medicine for Treating Alzheimer’s Disease and Vascular Dementia. CN Patent 106497903 A, 15 March 2017.

162. Han, W.; Han, Z.; Li, W.; Jia, M.; Sun, J.; Jia, M.; Yang, M.; Zhou, Y. A Kind of Fermentation Product for Treating Dementia Fungal Strain and Its Application. CN Patent 106497804 A, 15 March 2017.

163. Liu, L.; Chen, B.; Xu, J.; Li, J.; Lin, Y.; Li, M.; Yuan, J. Compound Derived from Tibetan Medicine Endophytic Fungi and Preparation Method and Application Thereof. CN Patent 106588944 A, 26 April 2017.

164. Xu, L. Fermentation and Extraction Method for Azadiractin. CN Patent 106636247 A, 10 May 2017.

165. Chen, B.; Liu, L.; Jiang, S.; Xu, J.; Xu, A.; Pubu, D.; Li, J. Meconopsis Grandis Endogenous Fungus DH24 and Application of Producing Pyrrocidines Compounds. CN Patent 106701594 A, 24 May 2017.

166. Xu, L.; Duan, X.; Wei, X.; Xue, J.; Feng, L.; Wu, P. Fungal Tri-Glycolipid Compounds and Application Thereof in Preventing and Treating Fungal Diseases. CN Patent 106946955 A, 14 July 2017.

167. Cao, J.; Tu, Y.; Jia, W. Paclitaxel-Producing Aspergillus Flavus Bp6t2 and Application Thereof. CN Patent 106967622 A, 21 July 2017.

168. Cao, J. Aspergillus Niger Producing Taxane Compound Baccatin III, and Application Thereof. CN Patent 106967623 A, 21 July 2017.

169. Wang, M.; Gao, C.; Wang, Z.; Jie, J.; Han, T.; Xiao, F.; Yang, Q.; Shi, Y. Artemisia Argyi Endophytic Fungus HCH285 Producing Bosctryn. CN Patent 106978356 A, 25 July 2017.

170. Wang, Y.; Ye, R.; Sun, L. Pestalotiopsis Vismiae CAMT 66351 and Application Thereof. CN Patent 107034145 A, 11 August 2017.

171. Qiao, W.; Ling, F.; Xie, Z.; Xia, H.; Ge, X.; Bai, H.; Liu, H.; Wang, T. Highly Effective Paclitaxel-Producing Endophytic Fungi Aspergillus Aculatus Tax-6 and Its Application. CN Patent 107058118 A, 18 August 2017.

172. Wang, N.; Zhao, Z.; Sun, X.; Chu, Y.; Yao, T.; Liu, Y. Solidago Canadensis Endophytic Fungi Capable of Producing Pectin by Liquid Fermentation and Application Thereof. CN Patent 107118972 A, 1 September 2017.

173. Cao, J.; Jin, W.; Tu, Y. Penicillium Sp. BP6T3 Producing Paclitaxel and Application Thereof. CN Patent 107129936 A, 5 September 2017.

174. Lai, Y.; Zhang, J.; Cui, X.; Xiao, W.; Wang, Y.; Li, Z.; Bu, Y. Method for Improving Scutellarin Content with Microbial Agent. CN Patent 107254504 A, 17 October 2017.

175. Ding, W.; Li, Y.; Li, Y.; Liu, S. Method for Preparing (R)-4-Benzyl-2-Oxazolidinone by Fermentation with Purpureocillium Lilacinum TPL04. CN Patent 107354182 A, 17 November 2017.

176. Mann, R.; Spangenberg, G.C.; Auer, D.; Krill, C.; Sawbridge, T.I.; Edwards, J.; Rochfort, S.J. Novel Endophytic Daldinia Strain Producing Antifungal and Insecticidal Volatile Organic Compounds. WO Patent 2017049353 A1, 30 March 2017.

177. Gonzales Coloma, A.; Andres Yeves, M.F.; Diaz Hernandez, C.E.; Reina Artilles, M.; Lacret Pimienta, R.; Cabrera Perez, R.; Gimenez Marino, C.; Kaushik, N. Natural Broad-Spectrum Biocides. WO Patent 2017068223 A1, 27 April 2017.
178. She, Z.; Chen, Y.; Yuan, J.; Wang, L.; Liu, Z.; Huang, Y. Ascomycota Sp. CYSK-4 and Application of Ascomylactam Produced by the Same in Preparation of Antineoplastic. CN Patent 107686817 A, 13 February 2018.

179. Yu, H.; Ye, G.; Pan, W.; Huang, L. Liriope spicata var. prolifera-Endogenous Fusarium and Application to Steroidal Saponin Preparation. CN Patent 107723245 A, 23 February 2018.

180. Yu, H.; Ye, G.; Pan, W.; Huang, L. Liriope spicata var. prolifera Endogenous Penicillium Oxalicum and Its Application in Preparation of Steroidal Saponin. CN Patent 107723246 A, 23 February 2018.

181. Yu, H.; Ye, G.; Pan, W.; Huang, L. Liriope spicata var. prolifera-Endogenous Cladosporium and Application to Steroidal Saponin Preparation. CN Patent 107723247 A, 23 February 2018.

182. Yu, H.; Ye, G.; Pan, W.; Huang, L. Liriope spicata var. prolifera-Endogenous Penicillium and Application to Steroidal Saponins. CN Patent 107739716 A, 27 February 2018.

183. Yu, H.; Ye, G.; Pan, W.; Huang, L. Liriope aspicata var. prolifera-Endogenous Schizophyllum and Its Application in Preparing Steroidal Saponins. CN Patent 107739717 A, 27 February 2018.

184. Zhan, Z.; Zhang, C.; Ying, Y.; Shan, W. Plant Endophytic Fungus Bjerkandera Adusta ZJUT-HS8 and Its Application in Preparing α,15α-Huperzine A Epoxide. CN Patent 107868757 A, 3 April 2018.

185. Yu, H.; Ye, G.; Pan, W.; Huang, L. Liriope Spicata Endophytic Aspergillus Niger and Application Thereof in Preparing Steroid Saponin. CN Patent 107953593 A, 24 April 2018.

186. Li, J.; Wang, X.; Yu, S.; Li, J. 1-Anilino-2-Pyrrolidone Compound, Its Preparation Method and Application as Antitumor Drug. CN Patent 108264473 A, 10 July 2018.

187. She, Z.; Cui, H.; Pan, Y.; Huang, X.; Liu, H.; Li, C.; Mei, X. Indene Derivative Derived from Diaporthe Sp. SYSU-HQ3, and Application Thereof in Preparation of Anti-Inflammatory Drug. CN Patent 108277164 A, 13 July 2018.

188. Yang, X.; Wang, N.; Kang, Y.; Ma, Y.; Luo, J.; Cao, X.; Xue, L.; Wu, Y. Preparation of the Furanone Derivative and Its Medical Application. CN Patent 108383811 A, 10 August 2018.

189. Ji, N.; Song, Y. Diketopiperazine Compound and Its Preparation Method and Application. CN Patent 108467398 A, 31 August 2018.

190. Yang, X.; Wang, N.; Chen, D.; Kang, Y.; Ma, Y.; Luo, J.; Shi, B.; Long, Y. Preparation of Dicoumarin Derivative as Antimicrobial and Antitumor Agent. CN Patent 108503616 A, 7 September 2018.

191. Zheng, C.; Liao, H.; Huang, G.; Chen, G.; Luo, Y. Method for Preparing Polyketone Compound from Endophytic Fungi of Mangrove, and Application Thereof. CN Patent 108640897 A, 12 October 2018.

192. Wang, C.; Shao, C.; Shi, T.; Qi, J. Marine Fungi Derived from Dichotella Gemmacea and Its Application in Preparing Antimicrobial Drug. CN Patent 108728367 A, 2 November 2018.

193. Xu, J. Pestalotiopyrone M with Immunosuppressive Activity and Preparation Method and Application Thereof. CN Patent 108913731 A, 30 November 2018.

194. He, Q.; Zeng, Q.; Liu, S.; Zhou, H.; Meng, J.; Qi, S.; Zhang, H.; Shao, Y. Metabolite Product of Fusarium Proliferatum as Endophytic Fungus of Ginkgo Biloba and Application Thereof in Antibiosis. CN Patent 109082445 A, 25 December 2018.

195. She, Z.; Wu, Y.; Liu, Z.; Huang, X. Mangrove Endophytic Fungus-Derived Bisabolane Sesquiterpene Compounds and Preparation Method and Application Thereof in Preparation of Anti-Type II Diabetes Drug. CN Patent 109096056 A, 28 December 2018.

196. Murali, T.S.; Satyamoorthy, K.; Bhat, D.V. A Method of Producing Colchicine from an Endophytic Phomopsis Using Epigenetic Modifiers. IN Patent 201641023516 A, 12 January 2018.

197. Aharwal, R.P.; Kumar, S.; Sandhu, S.S. 2′-Hydroxygenistein: Novel Antibacterial Compound from Phoma Sp. R1 and Production Thereon. IN Patent 201721003140 A, 8 March 2018.

198. He, Q.; Zeng, Q.; Liu, S.; Zhou, H.; Meng, J.; Qi, S.; Zhang, H.; Shao, Y. Metabolite Product of Fusarium Proliferatum as Endophytic Fungus of Ginkgo Biloba and Application Thereof in Antibiosis. CN Patent 109082445 A, 25 December 2018.
202. Yan, C.; Liu, H.; Liu, W.; Li, J. Method for Preparing Diphenolic Acid Compound Derived from Santalum Album Endophytic Fungi, and Application Thereof in Preparing Antimicrobial Drug. CN Patent 109206337 A, 15 January 2019.

203. Zhu, X.; Shi, A.; Chen, W.; Tan, L.; Liu, L. Fusarium Oxysporum DCLZJ-4 Strain Producing Paris Polyphylla Saponins and Application Thereof in Preparing Hemostatic Drugs. CN Patent 109234175 A, 18 January 2019.

204. Mao, Z.; Shan, T.; Wang, J.; Zhang, W.; Sun, C.; Wu, H.; Zhang, C. Rapid Separation Method of Secondary Metabolite from Endophytic Fungi of Eucalyptus Exserta, and Its Application in Resistance to Pseudomonas Syringae and Pseudomonas Solanacearum. CN Patent 109265397 A, 25 January 2019.

205. Liu, H.; Yan, C.; Li, J. Method for Preparing 1,4-Naphthoquinone Compound Derived from Mangrove Endophytic Fungi, and Application as Anti-Inflammatory Agents. CN Patent 109293494 A, 1 February 2019.

206. Zhang, C.; Wei, X.; Liu, B.; Feng, C. Microbial Preparation Method of Suberogorgin. CN Patent 109439705 A, 8 March 2019.

207. Liu, H.; Zhang, W.; Tan, H.; Chen, Y.; Li, S.; Li, H. Compound Cerrenin D, Preparing Method Thereof, and Application Thereof in Preparing Antitumor Drug. CN Patent 109456191 A, 12 March 2019.

208. Zheng, C.; Huang, G.; Bai, M.; Chen, G.; Wang, B. Endophytic Fungi of Bruguiera Sexangula Var.Rynchopetala and Its Application in Preparation of Active Terpenoids Crystal Compounds with Insecticidal Effect. CN Patent 109486685 A, 19 March 2019.

209. Ji, N.; Song, Y. Nitrogen-Containing Cyclonerolane Sesquiterpene Derivative, Its Preparation and Application. CN Patent 109503414 A, 22 March 2019.

210. Ji, N.; Song, Y. Cyclonerolane Type Hydroxamic Acid Derivative and Its Preparation and Application. CN Patent 109503428 A, 22 March 2019.

211. Ji, N.; Song, Y. Preparation of Bicyclic Cyclonerolane Type Sesquiterpene Derivative for Inhibiting Microalgae. CN Patent 109503535 A, 22 March 2019.

212. Li, H.; Chen, S.; Zhang, W.; Liu, H.; Li, S. Process for Preparation of Guanacastane Compounds, and Their Application in Preparation of Antibacterial Drugs. CN Patent 109503623 A, 22 March 2019.

213. Zhong, C.; Huang, G.; Bai, M.; Chen, G.; Wang, B. Preparation of Isocoumarins from Mangrove Endophytic Fungi as Pesticides. CN Patent 109553600 A, 2 April 2019.

214. He, L.; Huang, X.; She, Z. Anthraquinone Metabolite Derived from Endophytic Fungi of Mangrove Forest in the South China Sea and Its Preparation Method and Application in Preparation of Dye. CN Patent 10965125 A, 19 April 2019.

215. Liu, H.; Tang, H.; Chen, Y.; Guo, H.; Li, H.; Li, S.; Liu, Z. Compounds Cytorhizin B and Cytorhizin C, and Its Preparation Method and Application in Preparing Drug for Treating Tumor. CN Patent 109776561 A, 21 May 2019.

216. Tian, Y.; Li, Y. Endophytic Chaetomium Globosum HQ-1 from Astragalus Propinquus and Application in Antifungal and Antibacterial. CN Patent 109971655 A, 5 July 2019.

217. Gao, K.; Long, Y.; Tang, T.; Zhou, M. Compound Bipolahydroquinone C, Its Preparation from Lycium Barbarum Endophytic Fungus Bipolaris Sp.L1-2 Fermentation Culture and Application in Antineoplastic Drug for Treating Human Pulmonary Squamous Carcinoma and Breast Carcinoma. CN Patent 109988181 A, 9 July 2019.

218. Ye, Y.; Zhao, S.; Yan, W. Preparation of Alterlactone and Its Application as Agricultural Bactericide for Controlling Plant Diseases. CN Patent 110093383 A, 6 August 2019.
225. Wen, L.; Chen, G.; Wu, G. Cyclic Depsipeptide Compound in Endophytic Fungi of Mangrove, and Its Preparation Method and Application in Preparing Drug for Treating Tumor. CN Patent 110218200 A, 10 September 2019.

226. Zheng, C.; Huang, G.; Bai, M.; Chen, G. Preparation of Butyrolactones Derived from Mangrove Endophytic Fungi. CN Patent 110229127 A, 13 September 2019.

227. Zheng, C.; Huang, G.; Liao, H.; Mei, R. Bruguiera Sexangula Var. Rhynchopetala Endophytic Fungi Derived Benzopyrone Derivative and Preparation Method and Application Thereof. CN Patent 110257255 A, 20 September 2019.

228. Zhu, B.; Qin, L.; Zhang, Q.; Yang, K.; Wu, W.; Yang, Y.; Dong, S.; Ma, X. Atractyloides Macrocephala Endophytic Fungi and Application Thereof. CN Patent 110257260 A, 20 September 2019.

229. Shu, S.; Cui, L.; Yan, L. Endogenetic Colletotrichum Boninense of Huperzia Serrata for Producing Huperzine A. CN Patent 110272828 A, 24 September 2019.

230. Huang, G.; Zheng, C.; Liao, H.; Mei, R. Tetralone Derivative from Rhizophora Apiculata Blume b. Sexangula Var. Rhynchopetala Endophytic Fungi and Preparation Method and Application Thereof. CN Patent 110283728 A, 27 September 2019.

231. Yin, J.; Xiao, J.; Zhan, Y.; Xu, Z.; Li, L.; Wang, Y.; Zhang, Y.; Li, Y. Endophytic Fungus Strain for Producing Multiple Fatty Acids and Application Thereof. CN Patent 110295116 A, 1 October 2019.

232. Chen, Y.; Yang, X.; Xiao, J.; Lu, H.; Zhou, R.; Liang, M.; Li, Q.; Deng, S.; Tan, Y. Taxus Media Endophytic Fungus Crude Extract and Application Thereof. CN Patent 110302215 A, 8 October 2019.

233. Li, H.; Zhang, Y.; Wang, K.; Li, Z.; Dong, X.; Li, X.; Li, P.; Shan, Y. Endophytic Fungus of Citrus Aurantium Capable of Producing Hesperidin Enzyme and Method for Producing Hesperidin Enzyme by Fermentation Thereof. CN Patent 110438015 A, 12 November 2019.

234. Lou, H.; Li, G.; Tian, C.; Gao, H. Method of Fermentation of Plant Endophytic Fungi to Produce Fusidic Acid. CN Patent 110484588 A, 22 November 2019.

235. Xiao, J.; Liu, J.; Liu, Y.; Qin, J.; Yan, L.; Guo, J.; Nian, M.; Luan, H.; Li, R.; Jiang, D.; et al. A Kind of Herba Epimedii Endophytic Bacteria, Culture Method and Its Metabolite. CN Patent 110511876 A, 29 November 2019.

236. Zhang, H.; Pan, R.; Hua, Y.; Chen, J.; Wei, B.; Wang, H. α-Pyrone Compound, Its Preparation Method, Strain and Application in Tumor Cell Activity Inhibitor Preparation. CN Patent 110563740 A, 13 December 2019.

237. Kumar, S.; Prasad, A.R.; Sandhu, S.S. Production of Novel Antibacterial Compound Fraxidin from Aspergillus Japonicus Skl. IN Patent 201721002537 A, 24 May 2019.

238. Kusari, S.; Singh, S.; Jayabaskaran, C. Biotechnological Potential of Plant-Associated Endophytic Fungi: Hope versus Hype. Trends Biotechnol. 2014, 32, 297–303. [CrossRef] [PubMed]

239. Luo, S.-L.; Dang, L.-Z.; Li, J.-F.; Zou, C.-G.; Zhang, K.-Q.; Li, G.-H. Biotransformation of Saponins by Endophytes Isolated from Panax Notoginseng. Chem. Biodivers. 2013, 10, 2021–2031. [CrossRef]

240. Ying, Y.-M.; Shan, W.-G.; Zhan, Z.-J. Biotransformation of Huperzine A by a Fungal Endophyte of Huperzia Serrata Furnished Sesquiterpenoid–Alkaloid Hybrids. J. Nat. Prod. 2014, 77, 2054–2059. [CrossRef]

241. Zeng, W.L.; Li, W.K.; Han, H.; Tao, Y.Y.; Yang, L.; Wang, Z.T.; Chen, K.X. Microbial Biotransformation of Gentiopicroside by the Endophytic Fungus Penicillium Crustosum 2T01Y01. Appl. Environ. Microbiol. 2014, 80, 184–192. [CrossRef]

242. Bier, M.C.J.; Medeiros, A.B.P.; Soccol, C.R. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. Fungal Biol. 2017, 121, 137–144. [CrossRef]

243. Kim, Y.J.; Zhang, D.; Yang, D.C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv. 2015, 33, 717–735. [CrossRef]

244. Li, B.; Yang, Y.; Chen, L.; Chen, S.; Zhang, J.; Tang, W. 18α-glycyrrhetinic acid monoglucuronide as an anti-inflammatory agent through suppression of the NF-KB and MAPK signaling pathway. Medchemcomm 2017, 8, 1498–1504. [CrossRef]

245. Lv, G.; Zhang, W.; Sun, X. Ginseng Endophytic Absidia Glauc a and Its Application to Prepare Ginsenoside Rd by Transformation of Ginsenoside Rb1. CN Patent 102080048 A, 1 June 2011.

246. Lv, G.; Zhang, W.; Sun, X. Manufacture of Ginsenoside Rd from Rb1 with Ginseng Endophyte Zygorhynchus Moelleri. CN Patent 102080049 A, 1 June 2011.

247. Du, X.; Mou, J.; Meng, F. Fusarium Sp. C39 Isolated from Dioscorea Nipponica and Its Application in Preparing Diosgenin. CN Patent 102154123 A, 1 June 2011.
248. Yi, Y.; Liu, H.; Xia, B. Microbial Transformation of Resveratrol from Polygonin in Polygonum Cuspidatum by Fermentation with Penicillium Oxalicum. CN Patent 102199548 A, 28 September 2011.
249. Yi, Y.; Liu, H.; Xia, B. Polygonum Cuspidatum Stem Endophyte Penicillium Oxalicum J1 with Activity to Transform Polydatin into Resveratrol. CN Patent 102212486 A, 12 October 2011.
250. Zhao, G.; Yang, H.; Liu, J.; Lu, H. Preparation of Tobacco Spice by Biotransformation of Raisin Extract with Penicillium sp. EFCI-24. CN Patent 102392050 A, 28 March 2012.
251. Tang, Y.; Bai, J. Thio-Substituted Podophyllotoxin-like Derivative with Antitumor Activity, Its Biotransformation, Separation and Purification Method. CN Patent 102757443 A, 31 October 2012.
252. Liu, S. Method for Transforming Polydatin into Resveratrol. CN Patent 102392050 A, 28 March 2012.
253. Zhao, G.; Yang, H.; Liu, J.; Lu, H. Preparation of Tobacco Spice by Biotransformation of Raisin Extract with Penicillium sp. EFCI-24. CN Patent 102392050 A, 28 March 2012.
254. Zhan, Z.; Gao, B.; Zhu, D.; Li, P.; Yan, R.; Wang, Y. An Endophytic Fungus for Bioconversion of Glycyrrhizic Acid into Glycyrrhetinic Acid Glucuronide. CN Patent 103981104 A, 13 August 2014.
255. Zhu, D.; Li, P.; Zhang, Z.; Gao, B. Oryza Rufipogon Endophytic Fungus for Converting Glycyrrhizic Acid to GAMG. CN Patent 103992953 A, 20 August 2014.
256. Zhan, Z.; Gao, B.; Zhu, D.; Li, P.; Zhang, Z.; Gao, B. Oryza Rufipogon Endophytic Fungus for Converting Glycyrrhizic Acid to GAMG. CN Patent 103992953 A, 20 August 2014.
257. Li, W.; Wang, L.; Wang, J.; Zhang, C.; Tang, C.; Wang, J. Transformation of Andrographolide Diterpenoids by Endophytic Fungi. CN Patent 106893677 A, 27 June 2017.
258. Xu, L.; Wang, Z.; Yang, L.; Li, W.; Han, H. Method for Biotransformation by Using Dian Radix Gentianae Endophytic Fungi. CN Patent 107034253 A, 11 August 2017.
259. Fu, Y.; Niu, L.; Ge, Q.; Jiao, J.; Guo, N.; Wang, X.; Wang, W. Fusarium Proliferatum for Efficiently Converting Panax Notoginseng Ginsenoside Rb1 to Rd and Application. CN Patent 107312720 A, 3 November 2017.
260. Zhao, J.; Wu, J.; Niu, S.; Liu, Q.; Zhu, Y. Bacterial Strain for Specifically Synthesizing Testolactone and ADD by Efficiently Converting 4AD and Application Thereof. CN Patent 108707553 A, 26 October 2018.
261. Lei, F.; Zhang, A.; Chen, C.; Zhang, L. Method for Converting Ginsenoside Rb1 into Rare Ginsenoside by Panax Ginseng Endophyte. CN Patent 109366561 A, 29 March 2019.
262. Xin, J.; Zhan, Y.; Xiao, J.; Xu, Z.; Sun, J.; Zhang, Y.; Wang, Y.; Li, Y. Endophytic Fungus Strain for Efficiently Bioconverting Betulinic Acid and Application Thereof. CN Patent 110527632 A, 3 December 2019.
263. Li, H.; Zhang, Y.; Wang, K.; Li, Z.; Dong, X.; Li, X.; Li, P.; Shan, Y. Octagonal Endophytic Fungus and Method for Converting Trans-Anethole into Isovanillic Acid by Using Same. CN Patent 110423697 A, 8 November 2019.
264. Majeed, M.; Majeed, A.; Thajuddin, N.; Arumugam, S.; Nagabhushanam, K.; Ali, F.; Adams, S.J.; Thomas, S.M.; Krishnamurthy, K.V.; Moothedath, J.; et al. Microbial Bioconversion of Curcumin to Calebin A. U.S. Patent 20190264295 A1, 29 August 2019.
265. Bedir, E.; Ballar Kirmizibayrak, P.; Ekiz, G.; Yilmaz, S.; Duman, S.; Kucuksolak, M. Production Method of Telomerase Activators by Biotransformation with Endophytic Fungi and Telomerase Activators Obtained by This Method. WO Patent 2019070219 A2, 11 April 2019.
266. Newman, D.J.; Cragg, G.M. Plant Endophytes and Epiphytes: Burgeoning Sources of Known and “Unknown” Cytotoxic and Antibiotic Agents? *Planta Med.* 2020. [CrossRef] [PubMed]
267. Cragg, G.M.; Newman, D.J. Natural Products: A Continuing Source of Novel Drug Leads. *Biochim. et Biophys. Acta-Gen. Subj.* 2013, 1830, 3670–3695. [CrossRef] [PubMed]
268. Chen, L.; Zhang, Q.Y.; Jia, M.; Ming, Q.L.; Yue, W.; Rahman, K.; Qin, L.P.; Han, T. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. *Crit. Rev. Microbiol.* 2016, 42, 454–473. [CrossRef] [PubMed]
269. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. *J. Nat. Prod.* 2020, 83, 770–803. [CrossRef]
270. Paclitaxel Market Size, Share, Forecast to 2021 | Research Cosmos. Available online: https://www.researchcosmos.com/reports/paclitaxel-market-report-by-indications-breast-cancer-ovarian-cancer-cervical-cancer-prostat/9759991 (accessed on 16 March 2020).
271. Resveratrol Market-Global Industry Analysis, Size and Forecast, 2018 to 2028. Available online: https://www.futuremarketinsights.com/reports/resveratrol-market (accessed on 16 March 2020).

272. Protocolo de Nagoya sobre Acceso a los Recursos Genéticos y Participación Justa y Equitativa en los Beneficios que se Deriven de su Utilización al Convenio sobre la Diversidad Biológica; Secretaría del Convenio sobre la Diversidad Biológica; Programa de las Naciones Unidas para el Medio Ambiente: Montreal, QC, Canada, 2011.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).