Affecting Factors on Community Based Mangrove Replantation Programs in Semarang Coastal Area

Submitted: 29 January 2020
Accepted: 28 October 2020
Available Online: 31 October 2020

Bintang Septiarani¹, Reny Yesiana²

¹,²Department of Urban and Regional Planning, Universitas Diponegoro, Semarang, Indonesia
bintang.septiarani18@pwk.undip.ac.id

Abstract

Climate change is no longer seen as a natural process when it has been correlated with human behavior, especially from increasingly rapid development activities. In Semarang, climate change has been affecting people’s activity, especially in the coastal area. Coastal communities that depend on coastal resources feel the effects of climate change. Fishers, mangrove farmers, and fishpond farmers are vulnerable groups to the impacts of climate change because the coastal resources in quality and quantity decrease and affect their lives. Stakeholders make efforts through mangroves rehabilitation programs all over the coastal line, including the community approach to increase the mangrove growth rate. However, mangrove seeds planted in Semarang coastal area have different levels of life and growth rate in each planting location. Based on Environmental Agency of Central Java Province data in 2013, 8,594.89 ha of 11,732 ha mangrove vegetation in the North Coast of Central Java Province are in damaged condition. Hence, this paper aims to elaborate on the key factors of community-based mangrove replantation affecting the mangrove growth in the Semarang coastal area. Five mangroves rehabilitation areas in Semarang namely in Kelurahan Mangkang Kulon, Mangkang Wetan, Mangunharjo, Tugurejo and Kelurahan Trimulyo are observed throughout 2015-2016. The results show that suitability between mangrove species and the location is very influential on mangrove growth rates in Semarang Coastal. The community effort in each location also becomes the external factor affecting the growth of mangroves in Semarang Coastal Area. By understanding the factors of mangrove growth rate on the community-based mangrove replantation, better results of mangrove replantation programs can be acquired in the future.

Keywords: climate change; coastal area; mangrove; Semarang

1. Introduction

The north coast of Central Java is one of the most vulnerable regions to climate change in Indonesia (Marfai, 2011). One of the impacts caused by climate change is an increase in sea level, which affects changes in ocean currents in coastal areas and results in damage to the mangrove ecosystem. (Suhelmi & Prihatno, 2014). The degraded mangrove belts less effectively protect the coast (Luom, Phong, Smithers, & Tai, 2021). Mangroves can become one of the solutions for climate change adaptation and mitigation (Gilani et al., 2021) as they can absorb pollutants (Duan et al., 2020), create an ecosystem in the coastal area (Gilani et al., 2021) and maintain estuarine water quality as a habitat for many commercially important species of fish and prawns (Kusmana, 2011).

In order to reduce the risk of coastal erosion in Semarang, in the one hand, the government has implemented structural measures, i.e., constructing walls, Poulder (flood pond), and wave breakers along the coast. However, this measure takes time to solve the entire problem of coastal erosion in Semarang finally. Those efforts are mostly done with a conventional approach that tends to be top-down and not fully

¹ Corresponding Author: Department of Urban and Regional Planning, Universitas Diponegoro, Semarang, Indonesia
Email: bintang.septiarani18@pwk.undip.ac.id
appropriate to the local resources. Therefore, some conflict occurs in the development of the hard structure, like in the land acquisition problem in Banger Pond development.

Semarang City is the capital city of Central Java Province, located on the north coast of Java Island. This coastal city is the major city of Metropolitan Semarang (Handayani et al., 2020) which has a coastal line length of ± 13.6 kilometers (if it is pulled straight from east to west ends). If the coastline is measured from the outer part of it, it changes each year due to coastal abrasion, accretion, or reclamation. Based on the data that has been processed by the Office of Marine and Fisheries of the City of Semarang, in 2008 there was an increase in sea level which caused economic losses due to mangrove damage of 729 million per year, as many as 2,889 ha of damaged pond area and caused economic losses of 110 million (Fauziah, 2014).

The area of mangrove vegetation in the coastal area of Semarang City based on data from the Department of Marine and Fisheries of Semarang (2013) is 94.39 ha. Based on the administration area, the largest mangrove vegetation is in Tugu Sub-district 46.19 ha (48.93%); the second widest is Genuk Sub-district of 22.72 ha (24.47%), the third is Semarang Barat Sub-district with an area of 13.40 ha (14.20%) and the least is in Semarang Utara Sub-district with an area of 12.07 ha (12.79%) (Environment Agency of Central Java Province, 2013). The condition of the mangrove vegetation is uneven and tends to decrease due to the insistence on the needs of coastal land use, still lack of law enforcement, and insistence on various interests in the use of residential land, industrial estates, basic facilities, and infrastructure in coastal areas.

Base on this fact, stakeholders, have carried out mangrove rehabilitation starting from nurseries to mangrove planting since 2009. This program is carried out by the government and collaboration with the private sector, academics, and community involvement. One of the collaborative programs carried out by these stakeholders is Asian Cities Climate Change Resilience Network (ACCCRN): Enhancing Coastal Community Resilience by Strengthening Mangrove Ecosystem Services and Developing Sustainable Livelihoods in Semarang City. Rockefeller Foundation funds this program.

Non-structural approaches like mangrove replantation (Kongkeaw, Kittitornkool, Vandergeest, & Kittiwatanaawong, 2019) and community-based measures in the coastal area (Septiarani and Handayani 2020) have become promising ways to conserve the coastal area. Also, the fact that permanent migration has not yet been an option for adaptation in dealing with environmental hazards in Java (Handayani & Kumalasari, 2015) and adaptation are still the preferred option for the community (Buchori, Pramitasari, Sugiri, Maryono, & Basuki, 2018) has to lead the vulnerable people to the only option which is to adapt with the condition.

Conducting mangrove rehabilitation efforts is not an easy task in Semarang coastal area. The mangrove seedlings planted have different life success and growth rates in each planting location. Therefore, the involvement of stakeholders has become one option in increasing the mangrove growth rate. The community’s involvement in plantation effort has significantly increased the chance of their success (Kongkeaw et al., 2019). Not only the replantation, Kongkeaw et al. (2019) also demonstrate the successful mangrove management through a community-based approach in Thailand. Hence, efforts need to be made to improve the success of those efforts in all planting locations by monitoring mangrove growth and identifying the causes of differences in the growth rates in each planting location. This paper aims to elaborate on the key factors of community-based mangrove replantation that affect the mangrove growth in Semarang coastal area so the results can contribute to the next planting effort in Semarang coastal area.

Conducting mangrove reforestation efforts in the future can be more effective, and the halting factors can be avoided to increase the success rate of mangrove plantation.

2. Research Method

This research was conducted in two sub-districts: Tugu Sub-district (Mangkang Kulon Village, Mangkang Wetan Village, Mangunharjo Village, Tugurejo Village) Genuk Sub-district (Trimulyo Village), which directly bordered with the Java Sea. The research location was determined based on the planting results carried out by local community groups that had been involved in the Asian Cities Climate Change Resilience Network (ACCCRN) program. The calculated mangrove life level is the result of planting stages 1-3. The list of community groups that involve can be seen in Table 1.

Community Group	Location
Kyai Wakak II	Mangkang Kulon
Tunas Harapan, Kali Santren	Mangkang Wetan
Sumber Rejeki Makmur	Mangunharjo
Prenjak	Tapak
Srimgin	Trimulyo
2.1 Identifying the Mangrove Growth Rate

This study was conducted by doing a census of the mangrove on plantation area, counting one by one mangrove seedlings that live with the help of community groups as the verification to find out the number of successes planted mangrove seeds. The classification of seeds that live in this activity are seeds that still have green or chlorophyll color and show no wilting symptoms. To find out the measurement of seedling fragility using the transect measuring 1 m x 1 m. In each plot, data collection was carried out in the form of seedlings, a number of seedlings, stem diameter (0 – 0.9 cm) height of less than 1 meter. These seeds are seeds planted through the Asian Cities Climate Change Resilient Network (ACCCRN) program in 2016. The transect's starting point and endpoint are marked by using the Global Positioning System (GPS) for mapping.

Seeds categorized as good are seeds that have intact leaves, while seeds categorized as damaged include seeds whose leaf ends are missing or the absence of leaves, but the propagule (growing seeds) conditions and stems are still green. Mangrove seeds that have damaged conditions can still grow.

Figure 1. Sampling Location
(Source: Google Earth, 2016)

Vegetation data taken from each location were analyzed using the Mueller-Dombois & Ellenberg (1974) methods, including Density (D), which is the number of individuals per unit area (Mueller-Dombois & Ellenberg, 1974). The density value shows with an ind/ha unit, using the equation (1):

\[
D = \frac{ni}{A}
\]

Notes: \(D = \) Density; \(ni = \) total number of species \(i\); \(A = \) total area of data collection plot area

Basal Area (BA), is the result of measurements of transverse tree stem (Mueller-Dombois & Ellenberg, 1974). The larger the stem diameter of a tree, the greater the area closure by the tree canopy is determined in the calculation of Relative Domination (RDn). The stem diameter of each type is then converted into a basal area using equation (2).

\[
BA = \frac{\pi d^2}{4} \text{cm}^2
\]

Notes: \(BA = \) Density; \(\pi = 3.14; d = \) Stem diameter

Relative Density (RD), is the percentage density of each type in the transect (Mueller-Dombois & Ellenberg, 1974). The relative density value is obtained using equation (3).

\[
RD = \frac{D_{ind}}{D_{tot}} \times 100\%
\]

Notes: \(RD = \) Relative Density; \(D_{ind} = \) Density of individual species \(i\); \(D_{tot} = \) Total density
Relative Domination (RDn) is the percentage of the closure of a species to a mangrove area obtained from the basal area for the tree category (Mueller-Dombois & Ellenberg, 1974), using the equation (4).

\[
RDn = \frac{BA_i}{BA} \times 100\%
\]
(4)

Notes: RDn = Relative Domination; BAi = Total of basal area of species I; BA = Total of basal area of all species.

Important Value (IV) in equation (5), obtained to determine the type that dominates a mangrove area. This important value is obtained by summing the value of Relative Density (RD) and Relative Domination (RDn) (Curtis, 1959).

\[
IV = RD + RDn
\]
(5)

Notes: IV = Important Value; RD = Relative Density; RDn = Relative Domination

2.2 Analyzing the Community Participation in Mangrove Replantation Program

Analysis was conducted to see the performance of each community group based on some criteria that have been identified. Six community groups were assessed on this step. The assessment was conducted in two steps: the scoring from replantation readiness criteria and the second through the scaling of community performance. The score was obtained through the interview with community facilitators during the ACCCRN program. Three facilitators were asked to score the community performance of each indicators. The indicators and scaling were explained on Table 2.

In the scoring of readiness criteria, respondents were asked to score based on criteria for each indicator. After that, they were asked to score the community performance based on a scale 1-10. Both readiness criteria and community performance indicators will then be analyzed using descriptive analysis to determine the most affecting factors to community-based replantation in the Semarang coastal area.

Table 2: Readiness Criteria for Community Assessment

No.	Indicator	Criteria	Score
1	Mangrove life span from the community replantation	≥76%	4
		51-75	3
		26-50	2
		≤25%	1
2	Community response to the program activities	Fast response	3
		Response with offering	2
		Unresponsive with various reasons	1
3	Community commitment for mangrove maintenance	Every week	3
		Every month	2
		No maintenance	1
4	Transfer of knowledge process from the leader to community group member	Good (democratic, everyone could speak up through regular meeting)	3
		Fair (democratic or regular meeting)	2
		Poor (no transfer of knowledge mechanism)	1
		High (there is self-providing for additional seeds and self-initiative labor)	3
		Fair (there is self-providing for additional seeds or self-initiative labor)	2
		Low (paid labor)	1
5	Self-subsistent level	Available without rent	3
		Available with rent	2
		Not available	1

Table 3: Indicator of Community Performance

No.	Indicator
A	Response for Mangrove Planting and Nursery Activities
1	Fast response or action by each group to mangrove planting and nursery activities
2	the implementation of activities by each group when viewed from the punctuality of time
3	community initiatives in providing input to groups related to the implementation of activities
3. Result and Discussion

3.1 Mangrove Growth Rate for 2013-2016

This discussion is a recapitulation of the results of the mangrove growth rates of all groups during the period of 2013-2016. The following is a comparison of the results of mangrove growth grouped by planting period.

The total planting of mangroves from phases 1-3 counted 332,500 stems, and those are still alive counted 132,437 stems, or 40% of the total planted mangrove. The highest growth rate is the result of planting from Sringin Group on the Trimulyo Village. During the three periods of mangrove planting, the highest growth rate is in the first planting period. The second planting rate decreased by 20%. Besides the suitability of the planting location with the type of mangrove, the planting time is also one of the things that must be considered in planting. When planting, it should be done six months before the tide occurs. For example, in June, high tide, the previous six months must have been planted so that the roots are strong and not easily carried away.

Table 4: Recapitulation of the Mangrove Growth Rate from the Phase 1-3 of Planting Process

Community Group	Total Planting	Total Alive	Percentage
Prenjak	55.000	22.019	40%
Kyai Wakak II	63.000	16.107	26%
Kali Santren	48.500	14.015	29%
Tunas Harapan	54.000	15.616	29%
Sumber Rejeki Makmur	93.000	51.399	55%
Sringin	19.000	13.281	70%
Total Phase 1-3	**332.500**	**132.437**	**40%**

Planting also needs to pay attention to the slope of the substrate. Substrates that are too low cause mangrove seedlings to be submerged most of the day, due to high tides. The minimum height of seeds planted should be at least 40cm and have 2-4 pairs of leaves. The fundamental principle that needs to be improved by the community is more on the community’s openness in receiving input/improvements related to the planting of mangroves. So far, the community feels they can plant, so it is difficult to receive input related to improvements that must be made. The community is also less able to care for the mangroves that have been planted. This indicates that the community is more oriented to assistance than care.

3.2 The Density of Mangroves in Tugu And Genuk Sub-Districts of Semarang City in 2016

The highest density of seedlings (stem diameter <1 cm) is in Trimulyo Village location with 28,889 ind/ha and the lowest is in Mangunharjo Village with a density of 11,111 ind/ha. This data collection of seedling mangroves shows the high availability of mangrove seedlings in certain locations and shows the availability of land for rehabilitation activities.

The mangrove densities can show how mangrove itself survive in certain environment condition. The total number of individuals (Ni), density (D), relative density (RD), relative domination (RDn) and important value index (IVI) of seedling categories in the coastal city of Semarang can be seen in Table 3 and Figure 2.

Table 5: Mangrove Distribution in Tugu and Genuk Sub-district, 2016

Sampling location	Species	Ni	D (Ind/Ha)	RD (%)	RDn (%)	IVI
Mangkang Kulon	Rhizophora mucronata	4	15.555	100	100	200
Affecting Factors on Community Based Mangrove Replantation Programs in Semarang Coastal Area

Table 5 Continued

Sampling location	Species	Ni	D (Ind/Ha)	RD (%)	RDn (%)	IVI
Mangkang Wetan	Rhizophora mucronata	4	15.555	100	100	200
	Avicennia marina					
	Bruguiera gymnorriza					
Mangunharjo	Rhizophora mucronata	5	11.111	100	100	200
	Avicennia marina					
Tapak	Rhizophora mucronata	3	11.333	100	100	200
	Bruguiera gymnorriza					
Trimulyo	Avicennia marina	9	28.889	100	100	200
Mean			16.489			

Figure 2. Distribution of Mangrove Density

3.3 Community Participation in Mangrove Replantation

Successful mangrove replantation has been the key to preserving the coastal area. To conduct the replantation, all the stakeholders should be in charge, especially those who play the leading actor in coastal management. The coastal community has been seen as the most vulnerable people to climate change (Buchori et al., 2018). Therefore, their existence is also important in leveraging their environment. This analysis in community participation shows the performance and indicator for readiness criteria for each community group. Based on the scoring results in assessments I and II, the total score was obtained as shown in Table 4. Each group was ranked according to the order of the total value obtained, and the value range was not used, because the number of groups was only a few (6 groups). Kali Santren group got the highest score in assessment I mean that Kali Santren group has more score in readiness criteria and can be said that Kali Santren group is more ready in term of the local condition in receiving mangrove replantation program than the other groups. Meanwhile, the highest score in Assessment II is Prenjak means that Prenjak has the highest community performance among all community groups.

Table 6: Community Group Score Based on the Assessment

No.	Community Group	Assessment I	Assessment II		
	Score	Rank	Score	Rank	
1	Prenjak	12	II	291	I
2	Kyai Wakak II	9	IV	212	VI
3	Kali Santren	13	I	276	II
4	Tunas Harapan	11	III	251	IV
5	Sumber Rejeki Makmur	12	II	243	V
6	Sringin	11	III	271	III

Community performance is the key to a thriving community-based mangrove replantation program (Kongkeaw et al., 2019). Among the top three community groups with the highest performance score (assessment II) are Prenjak, Kali Santren, and Sringin. Table 5 showing the readiness criteria indicator for each group in the top three highest performance. It shows that the community with the highest performance rank has the highest score for community response to program activities (indicator 2) which is also in line with their performance (Table 6). It also can be seen from indicator number 6 that the availability of the land does not hamper community performance (they mostly do not own the land for seedling and replantation). It shows by the high score for their performance in assessment II despite the availability of the land to conduct the seedling and replantation.
The mangrove growth substance does not mainly affect the growth rate of the mangrove. It can be seen in table 6, the mangrove growth rate for a location that has the high readiness criteria is that most have a higher mangrove growth rate percentage (> 40%). Meanwhile, the community performance does not seem to have an effect on the mangrove growth rate. It can be seen in table 6 that the high score in assessment II does not in line with the higher level of mangrove growth rate percentage. This means that although the performance is high, the mangrove growth level is not only affected by the performance. It can also be because of the low level of transfer knowledge among community group members that cause the growth rate to be not optimized. The community group also seems best at doing the replantation for Avicennia Marina and Bruguiera gymnorriza (Table 8). It can be seen from the high growth rate percentage of that species and with a high performance of community group and readiness criteria level. This is also because community both of mangrove species has been introduced so many times in replantation program both by government or NGO because of its compatibility to Semarang coastal substrate condition.

The mangrove growth substance does not mainly affect the growth rate of the mangrove. It can be seen in table 6, the mangrove growth rate for a location that has the high readiness criteria is that most have a higher mangrove growth rate percentage (> 40%). Meanwhile, the community performance does not seem to have an effect on the mangrove growth rate. It can be seen in table 6 that the high score in assessment II does not in line with the higher level of mangrove growth rate percentage. This means that although the performance is high, the mangrove growth level is not only affected by the performance. It can also be because of the low level of transfer knowledge among community group members that cause the growth rate to be not optimized. The community group also seems best at doing the replantation for Avicennia Marina and Bruguiera gymnorriza (Table 8). It can be seen from the high growth rate percentage of that species and with a high performance of community group and readiness criteria level. This is also because community both of mangrove species has been introduced so many times in replantation program both by government or NGO because of its compatibility to Semarang coastal substrate condition.

Table 7: Top Three Groups with Highest Performance Seeing from the Readiness Criteria of Mangrove Plantation

No	Community Group	Indicator	Total Score
1	Prenjak	2 3 2 2 1 12	
2	Kali Santren	2 3 2 2 2 13	
3	Sringin	3 2 2 2 1 11	

Table 8: Community Level of Participation Compared with The Mangrove Growth Rate and Density

Sampling location	Community group	Assessment I (readiness criteria)	Assessment II (community performance)	Species	Mangrove Growth rate percentage	D (Ind/Ha)
Mangkang Kulon	Kyai Wakak II	IV	VI	Rhizophora mucronata	28%	15.555
				Avicennia marina	29%	15.555
				Avicennia marina	29%	15.555
Mangkang Wetan	Tunas Harapan	III	IV	Rhizophora mucronata	29%	15.555
	Kali Santren	I	II	Avicennia marina	29%	15.555
				Bruguiera gymnorriza	55%	11.111
				Rhizophora mucronata	40%	11.333
				Avicennia marina	70%	28.889
Mangunharjo	Sumber Rejeki	II	V	Bruguiera gymnorriza	55%	11.111
	Makmur	I	I	Avicennia marina	40%	11.333
Tapak	Prenjak	III	III	Avicennia marina	70%	28.889
Trimulyo	Sringin	III	III	Avicennia marina	70%	28.889

4. Conclusion

In general, mangrove vegetation in Semarang has been degraded due to natural and human factors. Mangrove planting activities in Semarang have many obstacles. To find out the constraints, it is necessary to monitor the results of planting, including monitoring the level of life and the density of mangroves. Based on the field survey, several obstacles caused the death of the planted mangrove seedlings, namely caterpillar pests, high tides, buried pond embankments, and carried by flood currents.

Monitoring the level of life of the mangroves is an improvement from the planting stage because through this monitoring, the number of mangrove seedlings planted is still alive, good, bad or dead so that the program that has been implemented is successful. The monitoring survey results (census) of a total of 332,500 seeds planted in phases 1, 2, and 3, the number of surviving seedlings planted was 132,437 (40%).

Monitoring the density level of mangrove species is a parameter to estimate the density in a community. Species density in an area can provide an overview of the availability and potential of mangrove plants. The survey results in the field obtained an average value of the density of mangroves planted in Mangkang Kulon, Mangunharjo, Mangkang Wetan, Tugurejo, and Trimulyo Villages of 16.333 ind/ha with a diversity of mangrove species including Rhizophora mucronata, Avicennia marina, and Bruguiera gymnorrhiza.

Of the five villages that have been monitored, the village that most needs planting and adding mangrove planting is the Mangkang Kulon Village because the level of mangrove damage there is higher than other areas, besides the mangrove vegetation in the area is converted into ponds and the area is directly bordered with the sea which makes it more vulnerable to abrasion. The results of the survey in the field, mud substrate which is located not far from the shoreline should be planted with Rhizophora sp., The location of sand substrates not far from the coastline should be planted with Avicennia sp., While Bruguiera sp. preferably planted on mud substrates far from the shoreline.

A community group has been seen as the leading actor in mangrove replantation (Kongkeaw et al., 2019; Septiarani & Handayani, 2020). The readiness criteria of each community group show that the land availability does not affect the community’s will to perform a mangrove replantation program. However, the
community commitment and response in the program have been important in affecting the mangrove growth rate. Also, community knowledge in planting the specific mangrove species has been seen as affecting the mangrove growth rate in their area.

References
Buchori, I., Pramitasari, A., Sugiri, A., Maryono, M., & Basuki, Y. (2018). Adaptation to coastal flooding and inundation: Mitigations and migration pattern in Semarang City, Indonesia. Ocean and Coastal Management, 163, 445–455. doi:10.1016/j.ocecoaman.2018.07.017.

Curtis, J. T. (1959). The vegetation of Wisconsin an ordination of plant communities. University of Wisconsin Press, Medison.

Department of Marine and Fisheries of Semarang. (2013). Statistik perikanan Kota Semarang 2013. Semarang.

Duan, J., Han, J., Cheung, S. G., Richard, K. Y. C., Lo, C.-M., Lee, F. W.-F., ... Zhou, H. (2020). How mangrove plants affect microplastic distribution in sediments of coastal wetlands: Case study in Shenzhen Bay, South China. Science of The Total Environment, 767, 144695. doi:10.1016/j.scitotenv.2020.144695.

Environment Agency of Central Java Province. (2013). Luas kawasan mangrove per kabupaten di Provinsi Jawa Tengah Tahun 2013. Semarang.

Fauziah, A. N. (2014). Kajian kerentanan iklim: Sebuah Penilaian kembali di wilayah pesisir Kota Semarang. Jurnal Pembangunan Wilayah dan Kota, 10(3), 316. doi:10.14710/pwk.v10i3.7788.

Gilani, H., Naz, H. I., Arshad, M., Nazim, K., Akram, U., Abrar, A., & Asif, M. (2021). Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan. Estuarine, Coastal and Shelf Science, 249. doi:10.1016/j.ecss.2020.107128.

Handayani, W., & Kumalasar, N. R. (2015). Migration as future adaptive capacity: The case of Java-Indonesia. Environmental Change, Adaptation and Migration: Bringing in the Region, 117–138. doi:10.1057/9781137538918_7.

Handayani, W., Setiadi, R., Septiarani, B., Lewis, L., Mehrotra, S., Lewis, L., ... Olberding, B. (2020). Metropolitan Semarang: Clustering and connecting locally championed metropolitan solutions. World Bank.

Kongkeaw, C., Kittitornkool, J., Vandergeest, P., & Kittiwatanawong, K. (2019). Explaining success in community based mangrove management: Four coastal communities along the Andaman Sea, Thailand. Ocean and Coastal Management, 178(May), 104822. doi:10.1016/j.ocecoaman.2019.104822.

Kusmana, C. (2011). Management of mangrove ecosystem in Indonesia. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, 1(2), 152–157. doi:10.29244/jpssl.1.2.152.

Luom, T. T., Phong, N. T., Smithers, S., & Tai, T. Van. (2021). Protected mangrove forests and aquaculture development for livelihoods (pp. 1–10). pp. 1–10.

Marfai, M. A. (2011). The hazards of coastal erosion in Central Java, Indonesia: An overview. Geografi, 3(3), 1–9.

Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology. John Wiley and Sons.

Septiarani, B., & Handayani, W. (2020). Community group networking on the community-based adaptation measure in Tapak Village, Semarang Coastal Area. Indonesian Journal of Geography, 52(2), 181–189. doi:10.22146/ijg.39053.

Suhelmi, I. R., & Prihatno, H. (2014). Model spasial dinamik genangan akibat kenaikan muka air laut di Pesisir Semarang (Spatial Dynamic Model of Inundated area due to Sea Level rise at Semarang coastal Area). Jurnal Manusa Dan Lingkungan, 21(1), 15–20. doi:10.22146/jml.18506.