Hazard Level of Slum Areas in Palembang City

Sukmaniar¹, Andri Kurniawan²*, and Agus Joko Pitoyo³

¹Student of Doctoral Program in Population Study of the Postgraduate School of Universitas Gadjah Mada and Lecturer of Geography Education Study Program FKIP University of PGRI Palembang
²Lecturer of Doctoral Program of Population Study Program at the Postgraduate School of Gadjah Mada University and Geography Study Program, Faculty of Geography, Gadjah Mada University and Researchers at the Center for Population and Policy Studies at Gadjah Mada University
³Lecturer of Doctoral Program of Population Study Program at the Postgraduate School of Gadjah Mada University and Geography Study Program, Faculty of Geography, Gadjah Mada University

*Corresponding Author: andri.kurniawan@ugm.ac.id

Abstract. The study aimed to identify the hazard level distribution in the slum areas in Palembang City. The research was a quantitative type with 382 families that live in the slums as the samples. The data were collected using proportional area random sampling and analyzed using the K-means Cluster test through SPSS 23. Spatial analysis through Arcgis was conducted to complete the understanding of the hazard distribution in the slum areas. The results showed that the hazard clusters formed by 64 areas could be categorized into three: low, medium, high. High level of hazards, reaching the one-third portion of the areas, dominated the slums in Palembang City. The cluster with a high hazard level was mostly in the city center, which was geographically located on the riverbanks, causing the areas to be vulnerable to flood, diseases, and crimes. The city center was known to offer high numbers of the job vacancy. People in the slums working in the city center were day laborers.

1. Introduction

Slums are areas with poor environmental quality, less qualified building materials, and low quality of life. On average, people living in the slums are under the poverty line. It has been a common phenomenon in cities of developed countries with poor quality of life and a high poverty rate [1]. People in the areas are from a low level of economy and education. The condition is continued from generation to generation. Slums quickly appear in the cities because of the high level of urbanization. The advances in technology and economic activities in the cities have triggered a population explosion. Unfortunately, technological advances were not followed by workforce absorption. Therefore, people who cannot compete and cannot find suitable occupations contribute to the increase of the new unemployment rate. Unemployment becomes one of the causes of slum emergence [2], [3].

Slum areas have provided affordable dwellings and living costs for people under the poverty line. However, they cannot prevent themselves from facing any kind of threat or hazard in the areas, such as natural disasters [4]. These people become vulnerable [5]. High vulnerability, especially in the economy, and the low capacity of the people have increased the disaster risk. For example, slum areas located on
the riverbanks can face numerous problems in several aspects, such as environment, social, and economy [6]. The issues are the hazards for the slum areas. They take the form of building damage, diseases, crimes, domestic conflict, drug abuse, promiscuity, unemployment, brawl/dispute, and drowning. Other kinds of hazards that may occur in the slum areas are fire [7] and flood [8]. Based on the types, the distribution of risks in the slum areas can be determined through mapping [9].

The study was significant; it can prevent the increase of poverty level and the spread of slums. Besides, it can also reduce the hazard upon those who live in the slum areas in Palembang cities. Therefore, the present study aimed to observe the hazard level in the slum areas in Palembang City.

2. Method
The research employed a quantitative method. The variables include floods, building fire, damage, epidemic, crimes, drug abuse, domestic conflict, promiscuity, and unemployment. The samples were 382 families living in the slum areas in Palembang City. The data were gathered through proportional area random sampling, of which the results were analyzed to categorize the hazard levels. The categorization was carried out using the K-means Cluster test of SPSS.23. The clusters of the hazard level were low, medium, or high, with different characteristics. The data were analyzed spatially using the Arcgis program to observe the hazard distribution in the slum areas of Palembang City.

3. Results and Discussion

3.1. The Hazard Distribution in the Slum Areas in Palembang City
The data of threats or dangers were gathered directly from the field because they were not available in the relevant agencies. The hazard level was determined by using the K-Means Cluster, of which the data were normally distributed based on the Kolmogorov-Smirnov formula. The normality test results were presented below.

No.	Hazard Variable	Kolmogorov-Smirnova		
		Statistic	df	Sig.
1.	Average number of flood cases per year	0.107	64	0.068
2.	The average number of building fire cases per year	0.110	64	0.053
3.	Average number of building damage cases per year	0.106	64	0.072
4.	Average number of epidemic cases per year	0.108	64	0.063
5.	Average number of crimes per year	0.077	64	0.200*
6.	Average number of domestic conflict cases per year	0.107	64	0.065
7.	The average number of drug abuse cases per year	0.106	64	0.072
8.	Average number of promiscuity cases per year	0.109	64	0.057
9.	Average number of unemployment case per year	0.107	64	0.068
10.	Average number of brawl/dispute cases per year	0.193	64	0.000
11.	Average number of drowning cases per year	0.534	64	0.000
Sources: Data analysis using *IBM SPSS 23*

Nine variables that were normally distributed were used, while the other two (dispute, drowning, and attacked by animals) were not. Based on the normality test, the research employed eleven variables with a significant value above 0.05 and the confidence rate of 5%. In other words, the nine variables were used for every 64 areas of the slums. Even so, data standardization was conducted to align the diverse data of each variable. To obtain accurate data, K-Means Cluster was employed to determine the area category based on the hazard level. From the calculation using *IBM SPSS 23*, the results were as follows.

Table 2. Iteration History

Iteration	Change in Cluster Centers	1	2	3
1		2.860	2.628	2.626
2		.245	.351	.203
3		.136	.131	.169
4		.000	.000	.000

a. Convergence achieved due to no or small change in cluster centers. The maximum absolute coordinate change for any center is .000. The current iteration is 4. The minimum distance between the initial centers is 6.175.

Source: Data analysis using *IBM SPSS 23*

Based on the table, it needed five data iteration to obtain accurate data. Further, the final cluster centers' values were presented in the following table.

Table 3. Final Cluster Centers

	Cluster	1	2	3
Zscore: Average number of flood cases per year		.48915	.02237	-.40832
Zscore: Average number of fire case per year		.66505	-.32214	-.28721
Zscore: Average number of damage cases per year		.86134	-.44301	-.35238
Zscore: Average number of epidemic cases per year		.88471	-.88041	-.03866
Zscore: Average numbers of crime cases per year		.72798	.21979	-.74943
Zscore: Average number of domestic conflict cases per year		.69245	-.20394	-.39897
Zscore: Average number of drug abuse cases per year		-.39426	1.14739	-.55661
Zscore: Average number of promiscuity cases per year		-.40450	1.12789	-.53360
Zscore: Average number of unemployment case per year		.79566	-.35380	-.36764

Source: Data analysis using *IBM SPSS 23*
The table showed the calculation results of Final Cluster Centers of the hazard variables with similar characteristics. The clusters were as below.

Characteristics of Hazard Clusters
Low Clusters (Cluster 3)
Low average number of flood cases per year
Medium average number of fire cases per year
Medium average number of damage cases per year
Medium average number of epidemic cases per year
Low average number of crime cases per year
Low average number of domestic conflict cases per year
Low average number of drug abuse cases per year
Low average number of promiscuity cases per year
Low average number of unemployment cases per year

Source: Research analysis results

Cluster 1: The variable hazard score was higher than cluster 2 and 3, or six out of nine variables. Those were flood, fire, damage, epidemic, crime, and domestic conflict. From the characteristics, it was assumed that people living in the slums were vulnerable to high hazard, evident in the highest score of the six variables. Two variables, which were drug abuse and promiscuity, were in the medium category. Meanwhile, only one division was in the low cluster (unemployment). The results were in line with [10], revealing that the slums along the riverbanks were highly vulnerable to danger because of poor health and occupation resulted in poor disaster risk management.

Cluster 2, The group consisted of two variables with a high score (drug abuse and promiscuity). Similar to [11], social hazards mostly occurred to those living on the riverbanks. The low significance value was occupied by three variables, which were fire, damage, and epidemic. The values were lowered compared to clusters 1 and 2 on the variables of the flood, crime, domestic dispute, and unemployment.

Cluster 3, The cluster did not contain the high value. Three variables were in the medium category (fire, damage, and epidemic). The flood had brought about diseases to humans and animals [12]. The characteristics indicated that people in the slums were vulnerable to flood, crime, domestic disputes, drug abuse, promiscuity, and unemployment. It can be concluded that the cluster has a low vulnerability.

Cluster	Error	F	Sig.

Table 5. Data analysis results from ANOVA.
The table revealed that nine variables of the present study had a significance rate above 0.05. It can be concluded that there were differences between the three clusters. The number of cases identified using K- Means Cluster and tested using ANOVA was presented as follows.

Table 6. Number of Cases in each Cluster.

Cluster	1	20.000
	2	19.000
	3	25.000
Valid		64.000
Missing	.000	

Source: Data analysis using IBM SPSS 23

The table showed that the highest number reached by cluster 3, which included 25 areas. It means that the areas had a low hazard level. Meanwhile, the lowest was in cluster 2, with 19 areas in the medium hazard category. Twenty areas in the high category showed that they were vulnerable to hazards. The results were presented in the following table.

Table 7. Slum Areas with Low Hazard Level.

No.	Name of the slums	Hazard Level	Notes
1.	1 Ilir A	1	Low
2.	2 Ulu & Tuan Kentang	1	Low
3.	5 Ulu B	1	Low
4.	9-10 Ulu	1	Low
5.	10 Ilir	1	Low
6.	Kampung Arab A	1	Low
7.	13 Ilir	1	Low
8.	16 Ulu A	1	Low
9.	16 Ulu B	1	Low
Twenty-five areas of the slums in Palembang City were in a low category. The rests were medium and high. In other words, there was only 39% showing a high vulnerability to hazard. Nevertheless, the people still need the government and Non-Government organizations to help them improve the physical and social conditions in the areas [13]. The medium category of the areas with hazard vulnerability was presented below.

Table 8. Slum Areas with Medium Hazard Level.

No.	Name	Hazard Level	Note
1.	1 Ilir B	2	Medium
2.	1 Ulu A	2	Medium
3.	2 Ilir A	2	Medium
4.	3 Ilir	2	Medium
5.	15 Ulu & Tuan Kentang	2	Medium
6.	32 Ilir B	2	Medium
7.	32 Ilir A	2	Medium
8.	Gandus B	2	Medium
9.	Gandus C	2	Medium
10.	Gandus D	2	Medium
11.	Gandus E	2	Medium
12.	Karang Jaya B	2	Medium
13.	Kebun Bunga D	2	Medium
14.	Kebun Bunga E	2	Medium
15.	Kemas Rindo Tepian Sungai	2	Medium
16.	Kemas Rindo Dataran Rendah	2	Medium
17.	Pulokerto A	2	Medium
18.	35 Ilir	2	Medium
19.	Sei Buah	2	Medium

Source: Data analysis using IBM SPSS 23

Nineteen areas, or 29.7%, were in the medium category. The results were different from [14], mentioning that people living on the riverbanks were highly vulnerable to hazards. However, the high hazard level was also spread in the slum areas in Palembang City, shown in the following table:
No.	Name	Hazard Level	Note
1.	2 Ilir B	3	High
2.	2 Ilir B 1	3	High
3.	Kampung Kapitan	3	High
4.	8 Ulu	3	High
5.	15 Ulu B	3	High
6.	36 Ilir A	3	High
7.	Karang Anyar A	3	High
8.	Karang Jaya A	3	High
9.	Karang Jaya C	3	High
10.	Karya Jaya B	3	High
11.	Kebun Bunga C	3	High
12.	Kemang Agung	3	High
13.	Kuto Batu & Lawang Kidul	3	High
14.	Keramasan A	3	High
15.	Ogan Baru A	3	High
16.	Kawasan Plaju Ulu	3	High
17.	Talang Putri	3	High
18.	23 Ilir & 18 Ilir	3	High
19.	30 Ilir	3	High
20.	Karya Jaya C	3	High

Source: Data analysis result using IBM SPSS 23

Twenty areas, or 31.3%, were highly vulnerable to hazard. The areas were dangerous to live in as the result of the illegal settlement, exposing the people to disasters. The condition was worsened by the poverty level [15]. Spatially, the hazard level map based on the slum area in Palembang City can be described through the map below:
The map showed that the slum areas with high hazard levels were in the middle of Palembang City. The areas were on the riverbanks, of which the waste management was poor. It worsened the slum areas. However, the strategic location with the economic center made the people stay for the sake of easy access to the market flow. Even so, the areas were prone to crimes. In total, almost all areas with a high level of hazard were on the main or branch riverbank depended on the tidal of the Musi River. The waste thrown to the rivers returned to the residence because of the tidal. Further, people were prone to floods and diseases. Slum areas were identical to the riverbank, where waste was thrown to the areas [16], which influenced the water quality [17], causing the areas vulnerable to flood [18], [19], [20], [21] and landslides [22]. Therefore, it is necessary to manage the waste in the area by establishing a proper waste management system and developing the people's awareness to process their household garbage [23].

4. Conclusion
The results and discussion revealed the clusters formed by the four areas of the slums. The areas were categorized into three groups: cluster 1 (low) consisted of 20 areas, cluster 2 (medium) 19 areas, and cluster 3 (high) 25 areas. Cluster 3 dominated the slum areas in Palembang City. Nearly one-third of the areas were highly vulnerable to hazard. The average danger or threat was the city center, which was located on the riverbanks. The geographical condition caused the areas susceptible to flood, disease, and crimes. The city center offered job opportunities for people. However, most of the people in the slum areas were day laborers.

Acknowledgments
The author would like to thank to Universitas Gadjah Mada for providing doctoral dissertation research funds in the 2019 fiscal year of RTA (Final Recognition) grant program.
References

[1] Gulyani S, Bassett E M and Talukdar D 2014 A tale of two cities: A multi-dimensional portrait of poverty and living conditions in the slums of Dakar and Nairobi Habitat International 43 98-107

[2] Hofmann P, Taubenböck H and Werthmann C 2015 Monitoring and modelling of informal settlements: A review on recent developments and challenges In 2015 joint urban remote sensing event 1-4

[3] Adedayo A F and Malik N A 2015 Factors influencing the growth of slums in Lagos metropolis, Nigeria Ethiopian Journal of Environmental Studies and Management 8(2) 113-119

[4] Satterthwaite D, Archer D, Colenbrander S, Dodman D, Hardoy J and Patel S 2018 Responding to climate change in cities and in their informal settlements and economies International Institute for Environment and Development, Edmonton, Canada

[5] Hossain M 2014 Pro-poor urban adaptation to climate change in Bangladesh: a study of urban extreme poverty, vulnerability and asset adaption Doctoral dissertation, Heriot-Watt University

[6] Rofiana V 2015 Dampak pemukiman kumuh terhadap kelestarian lingkungan Kota Malang (studi penelitian di jalan muharto kel jodipan kec blimbing, Kota Malang) The Indonesian Journal of Public Administration 1(1) 40-57

[7] Rachman D N and Harison D 2018 Kajian kondisi persampahan dan rencana penanganannya di kawasan padat penduduk kelurahan talang bubuk plaju Palembang Teknika: Jurnal Teknik 5(1) 66-80

[8] Jaswadi J, Rijanta R and Hadi M P 2012 Tingkat kerentanan dan kapasitas masyarakat dalam menghadapi risiko banjir di kecamatan pasarkliwon Kota Surakarta Majalah Geografi Indonesia 26(2) 119-149

[9] Hizbaron D R, Hadmoko D S, Wibawa S, Dalimunthe S A and Sartohadi J 2010 Tinjauan kerentanan, risiko dan zonasi rawan bahaya rockfall di Kulonprogo, Yogyakarta In Forum Geografi 24 (2) 119-136

[10] Ballesteros M M 2010 Linking poverty and the environment: Evidence from slums in Philippine cities PIDS Discussion Paper Series 2010 33.

[11] Rana M S and Nessa A M 2017 Impact of riverbank erosion on population migration and resettlement of Bangladesh Science Journal of Applied Mathematics and Statistics 5(2) 60-69

[12] Sarker M N I, Ali M A and Islam M S 2015 Causes and possible solutions of poverty perceived by char dwellers in Bangladesh. International Journal of Natural and Social Sciences 2(1) 37-41

[13] Hasan W and Mirwandoeno E 2007 Slum area on deli river bank. Proc. Int. Conf. On The Knowledge City: Spirit, Character, and Manifestation (Medan, Indonesia)

[14] Ghosh B K and Mahbub A Q M 2014 Riverbank erosion induced migration: a case study of Charbhadasan Upazila, Faridpur Oriental Geographer 58(1) 59-71

[15] Lein H 2000 Hazards and 'forced' migration in Bangladesh Norsk Geografisk Tidsskrift 54(3) 122-127

[16] Brueckner J K, Mation L and Nadalin V G 2019 Slums in Brazil: Where are they located, who lives in them, and do they 'squeeze' the formal housing market? Journal of Housing Economics 44 48-60

[17] Angriani P, Ruja I N and Bachri S 2018 River management: The importance of the roles of the public sector and community in river preservation in Banjarmasin (A case study of the Kuin River, Banjarmasin, South Kalimantan–Indonesia) Sustainable cities and society 43 11-20

[18] Huq M E and Hossain M A 2012 Flood Hazard and Vulnerability of Slum Dwellers in Dhaka Stanford Journal of Environment and Human Habitat 1 36-47

[19] Padawangi R, Turpin E, Prescott M F, Lee I and Shepherd A 2016 Mapping an alternative community river: The case of the Ciliwung Sustainable Cities and Society 20 147-157
[20] Amoateng P, Finlayson C M, Howard J and Wilson B 2018. A multi-faceted analysis of annual flood incidences in Kumasi, Ghana *International journal of disaster risk reduction* **27** 105-117

[21] Tarigan A K, Sagala S, Samsura D A A, Fiisabiilillah D F, Simarmata H A and Nababan, M 2016 Bandung City, Indonesia *Cities* **50** 100-110

[22] Thorn J, Thornton, T F and Helfgott A 2015 Autonomous adaptation to global environmental change in peri-urban settlements: Evidence of a growing culture of innovation and revitalisation in Mathare Valley Slums, Nairobi *Global Environmental Change* **31** 121-131

[23] Michiani M V and Asano J 2019 Physical upgrading plan for slum riverside settlement in traditional area: A case study in Kuin Utara, Banjarmasin, Indonesia *Frontiers of Architectural Research* **8(3)** 378-395