COVID-19 in Children, Pregnancy and Neonates: A Review of Epidemiologic and Clinical Features

Petra Zimmermann, MD, PhD*†‡ and Nigel Curtis, FRCPCH, PhD†‡§

Abstract: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has spread rapidly across the globe. In contrast to initial reports, recent studies suggest that children are just as likely as adults to become infected with the virus but have fewer symptoms and less severe disease. In this review, we summarize the epidemiologic and clinical features of children infected with SARS-CoV-2 reported in pediatric case series to date. We also summarize the perinatal outcomes of neonates born to women infected with SARS-CoV-2 in pregnancy. We found 11 case series including a total of 333 infants and children. Overall, 83% of the children had a positive contact history, mostly with family members. The incubation period varied between 2 and 25 days with a mean of 7 days. The virus could be isolated from nasopharyngeal secretions for up to 22 days and from stool for more than 30 days. Co-infections were reported in up to 79% of children (mainly mycoplasma and influenza). Up to 35% of children were asymptomatic. The most common symptoms were cough (48%; range 19–100%), fever (42%; 11–100%) and pharyngitis (30%; 11–100%). Further symptoms were nasal congestion, rhinorrhea, tachypnoea, wheezing, diarrhea, vomiting, headache and fatigue. Laboratory test parameters were only minimally altered. Radiologic findings were unspecific and included unilateral or bilateral infiltrates with, in some cases, ground-glass opacities or consolidation with a surrounding halo sign. Children rarely needed admission to intensive care units (3%), although 9% of children had required mechanical ventilation. Children rarely needed admission to intensive care units (3%), although 9% of children had required mechanical ventilation. The incubation period varied between 2 and 25 days (mean 7 days, median 6 and 11 days, respectively).9,15,16 Several studies reported that the nasopharyngeal or throat swabs can be positive before the onset of symptoms.7,11,14 However, false-negative swabs have also been reported.10 We did not include single details17,24–26 or studies which were retracted.27 The age of the children ranged from 1 day to 16 years, 55% (183) were male. The majority of diagnoses were made by real-time polymerase chain reaction on nasopharyngeal or other respiratory samples. Overall, 83% (275, range 52–100%) of children had a positive contact history, mostly with family members. Three studies reported incubation periods which varied between 2 and 25 days (mean 7 days, median 6 and 11 days, respectively).9,15,16 Several studies reported that the nasopharyngeal or throat swabs can be positive before the onset of symptoms.7,11,14 However, false-negative swabs have also been described.10 There were 4 studies which did consecutive sampling: real-time polymerase chain reaction on respiratory samples remained positive between 1 and 22 days and in stool between 5 and over 30 days.8,9,14,17 Viral shedding from the gastrointestinal tract might last longer and also be greater than that from the respiratory tract.14

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the disease termed coronavirus disease 2019 (COVID-19), emerged in China in early December 2019.4 The outbreak was declared a public health emergency of international concern by the World Health Organization on January 30, 2020.2 The virus has rapidly spread causing a global pandemic with a major burden on the health care system and economy. During the early stages of the outbreak, it was thought that children were rarely affected by SARS-CoV-2 which could have been as a result of their lower nosocomial exposure and less frequent contact with animals.3 However, a number of reports suggest that children are just as likely as adults to become infected with SARS-CoV-2 but have fewer symptoms and less severe disease, as well as a much lower case-fatality rate.4,5 Many of the initial studies in China were done in adults hospitals, so it is not surprising that the numbers of children reported were small.9 Furthermore, as many children with mild disease might not be tested, the true rate of infection and viral carriage is likely underestimated.

In this review, we summarize the epidemiologic characteristics and clinical features of children infected with SARS-CoV-2 reported in pediatric case series to date. We also summarize perinatal outcomes of infants born to women infected with SARS-CoV-2 during pregnancy. Understanding the clinical presentation of this virus in this age group is important for early identification of children with SARS-CoV-2 to provide optimal medical care and to help control the pandemic.

PEDIATRIC CASE SERIES

We found 11 case series, including a total of 333 children (range 6–171 children) with confirmed SARS-CoV-2 infections (Tables 1–4).7–17 All of the series are from China. One case series included only infants3 and one only children who were admitted to an intensive care unit.16 In 2 of the studies, there were patients that overlapped14 and further duplicate reporting of patient could not be excluded in 2 other studies.7,11 We did not include single case reports,18–23 publications which did not give enough clinical details18–20 or studies which were retracted.11 The age of the children ranged from 1 day to 16 years, 55% (183) were male. The majority of diagnoses were made by real-time polymerase chain reaction on nasopharyngeal or other respiratory samples. Overall, 83% (275, range 52–100%) of children had a positive contact history, mostly with family members. Three studies reported incubation periods which varied between 2 and 25 days (mean 7 days, median 6 and 11 days, respectively).9,15,16 Several studies reported that the nasopharyngeal or throat swabs can be positive before the onset of symptoms.7,11 However, false-negative swabs have also been described.10 There were 4 studies which did consecutive sampling: real-time polymerase chain reaction on respiratory samples remained positive between 1 and 22 days and in stool between 5 and over 30 days.8,9,14,17 Viral shedding from the gastrointestinal tract might last longer and also be greater than that from the respiratory tract.14

Three studies investigated for co-infections (Table 1).11,16 One study only for influenza A and B, which was found in 1 of 8 children16 and the other 2 studies for a broader range of pathogens, which were found in 45% and 79% of children.11,15

From the *Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland; †Department of Paediatrics, The University of Melbourne, Parkville, Australia; ‡Infectious Disease Research Group, Murdoch Children’s Research Institute, Parkville, Australia; and §Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia.
P.Z. is supported by a Fellowship from the European Society of Paediatric Infectious Diseases.
The authors have no funding or conflicts of interest to disclose.
P.Z. drafted the initial manuscript. N.C. critically revised the manuscript and both authors approved the final manuscript as submitted.
Address for correspondence: Petra Zimmermann, MD, PhD, Faculty of Science and Medicine, University of Fribourg, Route des Armes 41, 1700 Fribourg, Switzerland. E-mail: petra.zimmermann@unifr.ch.
TABLE 1. Epidemiologic Features of Pediatric Patients With COVID-19 (as of March 27, 2020)

Number of children	Location	Time period	Age Range	Male (%)	Specimens for RT-PCR or RNA sequencing	Transmission	Incubation period Range	Shedding duration Range	Co-infections
171	Wuhan Children's Hospital, China	Jan 28 to Feb 26, 2020	Median 7 y	61% (104)	Pharyngeal	90% (154)	Mean 7 d 2–10 d	Median 12 d 3–22 d	Total
36	3 hospitals in Zhejiang, China	Jan 17 tp to March 1, 2020	Mean 8 y 1–16 y	36% (13)	NP or throat	89% (32)	NR	Median 6 d 18–30 d	Mycoplasma
10	Shanghai Children's Hospital, China	Jan 19 to Feb 3, 2020	Mean 6 y 3 m–11 y	40% (4)	NP or rectal, sputum, blood	80% (8)	Median 7 d 2–10 d	Median 12 d 18–30 d	Influenza A/B
26	Shenhen Third People's Hospital, China	Jan 16 to Feb 8, 2020	Mean 7 y 1–13 y	65% (17)	Throat	100% (26)	Median 11 d 8–25 d	Median 15 d 10–15 d	RSV
20	Wuhan Children's Hospital, China	Jan 23 to Feb 8, 2020	Median 2 y 1–15 y	65% (13)	NP	NR	Median 6 d 5–10 d	Median 28 d 23–33 d	CMV
9	Tongji Children's Hospital, China	Jan 7 to Jan 15, 2020	Median 3 y 1–7 y	33% (2)	NP or rectal	100% (9)	Median 11 d 8–25 d	Median 15 d 10–15 d	EBV
10	Nationwide study in China	Dec 8 to Feb 20, 2020	Median 7 m 2–11 m	22% (2)	Throat or lower respiratory	60% (6)	Median 6 d 5–10 d	Median 15 d 10–15 d	Parainfluenza
34	Guangzhou Children's Medical Center, China	Dec to Jan 1, 2020	Median 6 y 1–12 y	70% (7)	NP	52% (18)	Median 11 d 8–25 d	Median 15 d 10–15 d	Adenovirus
8	4 hospitals in Western China	Jan 24 to Feb 24, 2020	Median 3 y 2 m–15 y	41% (14)	Throat or lower respiratory	60% (6)	Median 6 d 5–10 d	Median 15 d 10–15 d	
3	Qingdao, Shandong Province, China	Jan 17 to Feb 23, 2020	Median 8 y 1–6 y	66% (2)	Throat, stool	100% (3)	NR	NR	

*Preprint.
†Patients in this study are possibly also reported in the study by Lu et al.
‡Three patients overlap with the study by Lu et al.
CMV, cytomegalovirus; EBV, Epstein-Barr virus; NR, not reported; NP, nasopharyngeal; RSV, respiratory syncytial virus; RT-PCR, real-time polymerase chain reaction.
China and further deaths have now been reported in Europe and an 14-year-old boy has been reported in an epidemiologic study from biotics and traditional Chinese medicine.8,10,12,15–17 The hospital (±lopinavir), interferon, glucocorticoids, immunoglobulin, anti-

surrounding halo sign in the latter (Table 3).

Typical laboratory findings were minor changes in white blood cell counts (reports of both increased and decreased lymphocyte and, less commonly, neutrophil counts), as well as mildly elevated inflammatory markers (erythrocyte sedimentation rate, C-reactive protein or procalcitonin), liver enzymes, creatine kinase, lactate dehydrogenase or D-dimers (Table 3).

SARS-CoV-2 Infection During Pregnancy, Vertical Transmission and Perinatal Outcomes

There are 9 small case series (all from China) and 2 case reports including a total of 65 pregnant women (67 neonates) who were infected with SARS-CoV-2 during pregnancy (Table 5). The number of women in each case series varied between 2 and 16 (median 7). Two women were infected at 25 and 27 weeks of pregnancy, the remaining during the third trimester. Three women were discharged, the remaining delivered between 30 and 40 weeks of pregnancy, mostly by Cesarean section (88% (56). Fetal distress was reported in 31% (20). A total of 38% (724) women delivered preterm. Maternal complications included premature rupture of membranes 12% (8), pre-eclampsia 3% (2), gestational hypertension 6% (4), gestational diabetes 5% (3), hypothyroidism 3% (2), tachycardia 2% (1) and abnormal umbilical cord 3% (2). Two women (3%) were admitted to intensive care unit for mechanical ventilation, one of whom developed multi-organ failure and died. A further death due to COVID-19 of a preexisting condition (leukemia and hydronephrosis, respectively). A 10-month-old girl admitted to an intensive care unit developed intussusception, encephalopathy, septic shock and multiple organ dysfunction, and died. A further death due to COVID-19 of a 14-year-old boy has been reported in an epidemiologic study from China and further deaths have now been reported in Europe and the USA.

DISCUSSION

This review confirms that, compared with adults, children with SARS-CoV-2 infection have milder clinical symptoms and fewer laboratory and radiologic abnormalities. The same findings...
Laboratory and Radiologic Findings of Pediatric Patients With COVID-19	Lu et al⁷	Qiu et al⁸	Cai et al⁹	Tang et al¹⁰‡	Xia et al¹¹†	Liu et al¹²	Wei et al¹³	Xu et al¹⁴	Zhang et al¹⁵*	Sun et al<sup>16</sup‡	Xing et al¹⁷*
Laboratory findings											
Leucocytosis	0 NR	20% (2)	15% (4)	10% (2)	0 NR	0 NR	0 NR	13% (1)	0 NR	0 NR	0 NR
(>12 G/L)											
Leukopenia	20% (45)	19% (7)	20% (2)	20% (5)	88% (5)	NR 30% (3)	NR 13% (1)	0 NR	0 NR	0 NR	
(<5.5 G/L)											
Neutrophilia	0 NR	10% (1)	NR 0 NR 0	0 NR	0 NR	0 NR	0 NR	13% (1)	0 NR	0 NR	
(>7 G/L)											
Neutropenia	0 NR	20% (2)	NR NR 0	20% (2)	50% (3)	NR 10% (1)	NR 26% (2)	3% (1)	3% (1)	3% (1)	
(<1.5 G/L)											
Lymphocytosis	0 NR	10% (1)	NR NR 0 NR 13%	15% (3)	0 NR	20% (2)	50% (17)	26% (2)	100% (3)	0 NR	
(>4 G/L)											
Lymphopenia	4% (6)	31% (11)	0 NR NR 35% (7)	15% (3)	0 NR	20% (2)	50% (17)	26% (2)	100% (3)	0 NR	
(<1.2 G/L)											
Thrombocytosis	NR NR	20% (2)	Abnormal in 31%	NR 0 NR 10% (1)	NR 0 NR	10% (1)	NR 38% (3)	0 NR			
(<350 G/L)											
Elevated ESR	NR 0	27% (7)	NR NR 33% (2)	30% (3)	0 NR	10% (1)	NR 38% (3)	0 NR			
(>15 mm/h)											
Elevated CRP	20% (33)	3% (1)	20% (2)	19% (5)	35% (7)	83% (5)	NR 30% (3)	63% (5)	33% (1)	0 NR	
(>10 mg/L)											
Elevated PCT	2% (0)	17% (6)	0 0	80% (14)	NR 0	50% (5)	NR 63% (5)	33% (1)	0 NR		
(>0.05 ng/mL)											
Elevated ALAT	12% (21)	6% (2)	10% (1)	12% (3)	25% (5)	17% (1)	NR 10% (1)	50% (4)	NR 25% (4)	0 NR	
(>45 U/L)											
Elevated ASAT	15% (25)	8% (3)	20% (2)	12% (3)	NR 67% (4)	20% (2)	0 NR	25% (2)	0 NR		
(>50 U/L)											
Elevated CK	3% (1)	NR 0 NR 0	NR NR 3% (1)	NR 0 NR	30% (3)	NR 0 NR	25% (2)	0 NR			
(>170 U/L)											
Elevated CK-MB	NR 31% (11)	50% (5)	NR 75% (15)	NR NR NR 50% (3)	10% (1)	NR 25% (2)	33% (1)	0 NR			
(>300 U/L)											
Elevated LDH	0 NR	30% (3)	46% (12)	NR 50% (3)	20% (2)	3% (1)	33% (1)	0 NR			
(>300 U/L)											
Elevated D-dimers	14% (21)	3% (3)	0 NR NR 50% (3)	10% (1)	NR 25% (2)	3% (1)	33% (1)	0 NR			
(>0.6 mg/L)											
Prolonged PT	0 NR	0 NR NR 0	NR NR 0	0 NR	0 NR	0 NR	0 NR				
(>0.6 mg/L)											
Chest CT findings											
Normal	0 NR	0	20% (4)	17% (1)	NR 50% (5)	18% (6)	0 NR	33% (1)			
Ground-glass opacities	33% (56)	53% (19)	31% (8)	60% (12)	33% (2)	50% (5)	3% (1)	75% (6)	33% (1)		
Bilateral infiltrates	19% (32)	NR 42% (11)	30% (6)	0 NR	41% (14)	25% (2)	33% (1)				
Interstitial abnormalities	12% (21)	NR 27% (7)	50% (19)	50% (3)	NR 41% (14)	75% (6)	0 NR				
Consolidation with surrounding halo sign	2% (2)	NR 0	50% (10)	0 NR	0 NR	0 NR	0 NR				
Nodules	0 NR	0	15% (3)	0 NR	0 NR	0 NR	0 NR				
'White-lung'	0 NR	0	0	0 NR	0 NR	0 NR	0 NR				
Preprint.											
*Patients in this study are possibly also reported in the study by Lu et al.†											
†These patients overlap with the study by Lu et al.‡											
§Specified normal values incorrect.¶											
Likely the wrong unit was specified.¶											
ALAT, alanine aminotransferase; ASAT, aspartate aminotransferase; CRP, C-reactive protein; CK, creatinine kinase; CT, computer tomography; ESR, erythrocyte sedimentation rate; LDH, lactate dehydrogenase; NR, not reported; ns, not specified; PCT, procalcitonin; PT, prothrombin time.											
TABLE 4. Management and Outcomes of Pediatric Patients With COVID-19

Study	ICU admission	Two co-existing conditions§	O2 requirement	Drug treatment	
Lu et al.7	1.8% (3)		2% (4)	NR	
Qiu et al.8	0		17% (6)	Interferon-alpha	
Cai et al.9	9% (3)		82% (28)	Antibiotics	
Tang et al.10*	100% (8)		17% (1)	Interferon-alpha	
Xia et al 11†	100% (8)		NR	Ribavirin	
Liu et al 12	0		75% (6)	Lopinavir/ribavirin	
Wei et al13	100% (8)		NR	Oseltamivir	
Xu et al14	100% (8)		NR	Glucocorticoids	
Zhang et al15*	100% (8)		NR	Immunoglobulin	
Sun et al 16‡	100% (8)		NR	Traditional Chinese medicine	
Xing et al 17*	100% (8)		NR	Interferon nebulization	
Duration of hospitalization	NR	Mean 13 d	Median 8 d	5.13 d	
Deaths	0% (0.6)	0	0	0	0

*Preprint. †Patients of this study are possibly also reported in the study by Lu et al.7 ‡Three patients overlaps with the study by Lu et al.7 §Hydronephrosis 1, leukemia on maintenance chemotherapy 1.

NR, not reported; NP, nasopharyngeal; ns, not specified.

Note: The sixth potential explanation related to angiotensin-converting enzyme 2 (ACE2) receptors that are one of the main receptors for the entry of SARS- and SARS-CoV-2 into human cells.59,60 It has been suggested that adults who are taking ACE inhibitors or angiotensin receptor blockers for arterial hypertension might have a higher number of ACE2 receptors, potential making them more susceptible to SARS-CoV-2.71 However, this theory remains controversial.53 It has been postulated that children have less ACE2 receptors with lower affinity compared with adults and therefore might be less affected by SARS-CoV-2.74 ACE2 is important in regulating the immune response, especially in the lungs. In animal studies, it has been shown to protect against SARS-CoV-1 and influenza-associated lung injury.75-77 For Pseudomonal lung infections, it has been shown that a dynamic variation of pulmonary ACE2 is required for protection against lung injury.78 The interaction between ACE2 concentration and the number and affinity of ACE2 receptor is likely complex and might also be influenced by genetics.79,80

There are several hypotheses for why children infected with SARS-CoV-2 have less severe symptoms (Table 6). One potential explanation is differences in the immune system between children and adults, especially elderly adults.52 Mice models of infections with SARS-CoV show that both CD4 and CD8 T cells, as well as antibodies, play an important role in virus clearance.48-50 Children have a stronger innate immune response, higher proportion of total lymphocytes and absolute numbers of T and B cells, as well as natural killer cells, which might help to fight the virus.53 However, children are often described to have an ‘immature’ immune system and, for infections with other respiratory tract viruses, for example, respiratory syncytial virus or influenza, infants and children are at higher risk for serious disease and hospital admission.52 This suggests that protective immunity against SARS-CoV-2 differs to that against other common respiratory viruses.

Furthermore, children have a less proinflammatory cytokine response and are less prone to develop acute respiratory distress syndrome.51,52 It is therefore possible that the cytokine storm which plays an important role in the pathogenesis of severe COVID-19 in adults, is attenuated in this age group.53

The second factor that may contribute to the reduced severity of COVID-19 is the lower prevalence in children of the co-morbidities that have been associated with severe disease, such as diabetes, chronic lung, heart and kidney problems or arterial hypertension.

The third potential explanation for the milder symptoms of SARS-CoV-2 infections in children is that common circulating coronaviruses are frequent in this age group, responsible for approximately 8% of acute respiratory tract infections.56-58 Pre-existing immunity and cross-reacting antibodies to SARS-CoV-2 may play a protective role. Despite the fact that most individuals develop antibodies to common circulation coronaviruses during childhood,59-62 reinfections later in life occur,63,64 suggesting waning immunity against coronaviruses and increased susceptibility in adults.

The fourth potential explanation is the higher mucosal colonization by viruses and bacteria, which could limit colonization and growth of SARS-CoV-2 through microbial interactions and competition.65,66

A fifth hypothesis for the less severe symptoms in children is that children are usually infected by an adult, which means that they are infected by a second or third generation of the virus. For SARS- and MERS-CoV, these following generations have been described to have decreased pathogenicity.67,68

The sixth potential explanation related to angiotensin-converting enzyme 2 (ACE2) receptors that are one of the main receptors for the entry of SARS- and SARS-CoV-2 into human cells.69,70 It has been suggested that adults who are taking ACE inhibitors or angiotensin receptor blockers for arterial hypertension might have a higher number of ACE2 receptors, potential making them more susceptible to SARS-CoV-2.71 However, this theory remains controversial.73 It has been postulated that children have less ACE2 receptors with lower affinity compared with adults and therefore might be less affected by SARS-CoV-2.74 ACE2 is important in regulating the immune response, especially in the lungs. In animal studies, it has been shown to protect against SARS-CoV-1 and influenza-associated lung injury.75-77 For Pseudomonal lung infections, it has been shown that a dynamic variation of pulmonary ACE2 is required for protection against lung injury.78 The interaction between ACE2 concentration and the number and affinity of ACE2 receptor is likely complex and might also be influenced by genetics.79,80
TABLE 5. Case Series of Pregnant Women With COVID-19 (as of March 27, 2020)

	Chen et al³⁰	Liu et al³⁵*	Li et al³¹*	Chen et al³²	Fan et al³³	Zhu et al³⁴	Wang et al³⁶	Yu et al³⁸	Zeng et al³⁷
Number of women	9	13	16	4	2	9	1	7	3
Number of infants	9	13	17	4	2	9	1	7	3
Location	Wuhan University Hospital, China	Different hospitals in China outside Wuhan	Hubei Provincial Maternal and Child Health Center, Wuhan, China	Tongji Medical College, Wuhan, China	Renmin Hospital of Wuhan University, China	Maternal and Child Health Hospital of Hubei Province, China	Sunnou Municipal Hospital, China	Tongji Medical College, Wuhan, China	Wuhan Children's Hospital, China
Time period	Jan 20 to Jan 31, 2020	Dec 8 to Feb 25, 2020	Jan 24 to Feb 29, 2020	ns	17 Jan to Feb 19, 2020	Feb 2, 2020	Jan 1 to Feb 8, 2020	Dec to Mar 10, 2020	
Gestational age	Median 37 + 2, Range 36 + 0 to 39 + 4	Median 30, 25–38	Mean 38 + 0, 33 + 6 to 40 + 4	Median 38 + 6, Range 37 + 2 to 39 + 0	Median 36 + 5 and 39 + 0	Median 34 + 5, 31 + 0 to 39 + 0	Median 39 + 1, 37 + 0 to 41 + 2		
Maternal complications	44% (4) PROM 22% (2) Pre-eclampsia 11% (1) Gestational hypertension 11% (1)	16% (2) PROM 8% (1) Admission to ICU for mechanical ventilation, multi-organ failure 8% (1)	69% (1) PROM 6% (1) Pre-eclampsia 6% (1) Gestational hypertension 19% (3) Gestational diabetes 19% (3) Hypothyroidism 12% (2) Tachycardia 6% (1)	0	0	56% (5) PROM 33% (3) Abnormal umbilical cord 22% (2) Admission to ICU for mechanical ventilation 100% (1)	0	33% (1) PROM 33% (1)	
Fetal distress	22% (7)	23% (3)	6% (1)	0	0	60% (6)	100% (1)	0	67% (2)
Cesarean section	100% (9)	77% (10)	88% (14)	75% (3)	100% (2)	70% (7)	100% (1)	100% (7)	100% (3)
Preterm deliveries (s<37 weeks)	44% (4)	46% (6)	24% (6)	0	0	60% (6)	100% (1)	0	67% (2)
Specimens for RTPCR	Amniotic fluid, cord blood, breast milk, neonatal throat swabs in 6, all negative	NR	Neonatal throat swabs in 3, all negative	Neonatal throat swab in 3, all negative	Vaginal swabs, amniotic fluid, placenta tissues, maternal serum, cord blood, breast milk, neonatal nasopharyngeal swabs in 3, all negative	Pharyngeal swabs in 9, all negative	Amniotic fluid, placenta tissues, cord blood, neonatal throat swab, gastric juice and stool negative	Neonatal throat swab in 3, 1 positive on day 2	Neonatal nasopharyngeal and anal swab positive in 3, positive on day 2 and 4
Fetal complications	Low birth weight 22% (2)	NR	18% (3)	0	0	20% (2)	NR	0	67% (2)
	Rash 0	NR	0	50% (2)	0	0	0	0	33% (1)
	Asphyxia 0	0	0	25% (1)	100% (2)	60% (6)	0	0	100% (3)
	Resp distress or pneumonia 0	0	0	25% (1)	NR	NR	0	0	NR
	O₂ requirement 0	0	0	25% (1)	NR	NR	0	0	33% (1)
	Mechanical ventilation 0	0	0	(noninvasive)	NR	NR	0	0	0
	DIC 0	0	0	0	0	20% (2)	0	0	0
	Death 0	0	8% (1)	0	0	10% (1)	0	0	0

*Preprint.
DIC, disseminated intravascular coagulation; ICU, intensive care unit; ns, not specified; PROM, premature rupture of membranes; RTPCR, real-time polymerase chain reaction.
The majority of children included in this review had a reported adult or family contact infected with SARS-CoV-2. It is still uncertain whether asymptomatic children transmit the virus and therefore the role of children as a reservoir for SARS-CoV-2 and for transmission of the virus remains unclear. However, it has been reported that even asymptomatic children can have high viral loads of SARS-CoV-2 and can excrete the virus in stool for a prolonged period. An unpublished data suggests that the clinical features of COVID-19 in children varies in different countries. While in Asian countries and Europe children have been reported to have milder disease, recent data from the US reports that, by March 27, 2020, at least 35 children needed mechanical ventilation and one infant died. It has been suggested that this could be due to differences in Bacillus-Calmette-Guérin vaccination policies, as this vaccine’s off-target immunomodulatory effects might alter the immune response to SARS-CoV-2.

The influence of SARS-CoV-2 infection on pregnancy and neonatal outcomes is also unclear. SARS- and MERS-CoV cause more severe disease in pregnant women compared with non-pregnant women. To date, this has not been reported for SARS-CoV-2. Nevertheless, 3% of pregnant women infected were reported adult or family contact infected with SARS-CoV-2. It is unclear if some of the reported maternal and neonatal complications are due to the virus or were iatrogenic (eg, decision for a Cesarean leading to preterm delivery and neonatal respiratory problems). Nevertheless, 1 case-control study reported that the number of pre-term deliveries were higher in SARS-CoV-2-infected women compared with non-infected women. Furthermore, fetal distress and preterm ruptures of membranes have been reported in SARS-CoV-2 infected women. The one healthy neonate and 3 neonates who developed pneumonia and tested positive for SARS-CoV-2 on day 2 of life and the three neonates who had Immunoglobulin M against SARS-CoV-2 at birth, despite strict infection control and prevention procedures during delivery and separation of mother and infants, suggests the possibility of vertical transmission of SARS-CoV-2.

There is no evidence for the presence of SARS-CoV-2 in genital fluids. However, the virus can be isolated from feces, meaning it is possible that vaginal delivery poses a greater risk for infection of the infant. Most of the women delivered by Cesarean section as recommended in Chinese guidelines. It is still unclear whether the virus can be transmitted through breast milk. However, close contact during breast-feeding, might risk droplet or contact transmission from the mother to the neonate.

References

1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. 2019. *N Engl J Med.* 2020;382:727–733.
2. WHO. Coronavirus disease 2019 (COVID-19) Situation Report - 11. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-11-covid-19-published.pdf?sfvrsn=de7c07f_4. Published 31 January 2020. Accessed March 23, 2020.
3. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. *JAMA.* 2020.
4. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in Shenzhen, China: analysis of 391 cases and 1,266 of their close contacts. *medRxiv.* 2020. https://doi.org/10.1101/2020.03.03.20028423
5. Zimmermann P, Curtis N. Coronavirus infections in children including COVID-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. *The Pediatric Infectious Disease Journal.* 2020.
6. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. *N Engl J Med.* 2020.
7. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. *N Engl J Med.* 2020.
8. Qiu H, Wu J, Hong L, et al. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. *The Lancet Infectious Diseases.* 2020.
9. Cai J, Xu J, Lin D, et al. A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. *Clin Infect Dis.* 2020; pii:ciaa198.
10. Tang A, Xu W, Shen m, et al. A retrospective study of the clinical characteristics of COVID-19 infection in 26 children. *medRxiv.* 2020. https://doi.org/10.1101/2020.03.08.20029710
11. Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. *Pediatr Pulmonol.* 2020.
12. Liu W, Zhang Q, Chen J, et al. Detection of covid-19 in children in early January 2020 in Wuhan, China. *N Engl J Med.* 2020.
13. Wei M, Yuan J, Liu Y, et al. Novel coronavirus infection in hospitalized infants under 1 year of age in China. *JAMA.* 2020.
14. Xu Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. *Nature Medicine.* 2020.
15. Zhang C, Gu J, Chen Q, et al. Clinical characteristics of 34 children with coronavirus disease-2019 in the West of China: a multiple-center case series. *medRxiv.* 2020. https://doi.org/10.1101/2020.03.12.20034686
16. Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. *World J Pediatr.* 2020.
17. Xing Y, Ni W, Wu Q, et al. Prolonged presence of SARS-CoV-2 in feces of pediatric patients during the convalescent phase. *medRxiv.* 2020. https://doi.org/10.1101/2020.03.11.20033158.
Clinical features of pediatric patients with COVID-19: a report of two family cluster cases. World J Pediatr. 2020.

Kam KQ, Yung CF, Cui L, et al. A well infant with coronavirus disease 2019 (COVID-19) with high viral load. Clin Infect Dis. 2020; pii: ciaa201.

Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020.

Zhang YH, Lin DJ, Xiao MF, et al. [2019 novel coronavirus infection in a three-month-old baby]. Zhonghua Er Ke Za Zhi. 2020; 58:182–184.

Cai JH, Wang XS, Ge YL, et al. [First case of 2019 novel coronavirus infection in children in Shanghai]. Zhonghua Er Ke Za Zhi. 2020; 58:E002.

Lou XX, Shi CX, Zhou CC, et al. Three children who recovered from novel coronavirus 2019 pneumonia. J Paediatr Child Health. 2020.

Li N, Liu J, Xie W, et al. Clinical and CT imaging features of the COVID-19 pneumonia: focus on pregnant women and children. J Infect. 2020; pii:S0163-4453(20)30118-3.

Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China. Clin Infect Dis. 2020; pii: ciaa207.

Wang XF, Yuan J, Zheng YJ, et al. [Retracted: clinical and epidemiological characteristics of 34 children with 2019 novel coronavirus infection in Shenzhen]. Zhonghua Er Ke Za Zhi. 2020; 58:E008.

Feng K, Yun XY, Wang XF, et al. [Analysis of CT features of 15 Children with 2019 novel coronavirus infection]. Zhonghua Er Ke Za Zhi. 2020; 58:E007.

Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020.

Chen H, Guo J, Wang C, et al. Clinical characteristics and intraseasonal vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet. 2020.

Li N, Han L, Peng M, et al. Maternal and neonatal outcomes of pregnant women with COVID-19 pneumonia: a case-control study. medRxiv. 2020; https://doi.org/10.1101/2020.03.10.20033605

Chen Y, Peng H, Wang L, et al. Infants Born to Mothers With A New Coronavirus (COVID-19). Frontiers in pediatrics. 2020;8:104.

Fan C, Lei D, Fang C, et al. Perinatal transmission of COVID-19 associated SARS-CoV-2: should we worry? Clin Infect Dis. 2020.

Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9:51–60.

Liu Y, Chen H, Tang K, et al. Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy. J Infect. 2020.

Wang X, Zhou Z, Zhang J, et al. A case of 2019 Novel Coronavirus in a pregnant woman with preterm delivery. Clin Infect Dis. 2020.

Zeng L, Xia S, Yuan W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA pediatrics. 2020.

Yu N, Li W, Kang Q, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. The Lancet Infectious Diseases. 2020; pii:S1473-3099(20)30176-6.

Dong L, Tian J, He S, et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA. 2020.

Zeng H, Xu C, Fan J, et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA. 2020.

Hon KL, Leung CW, Cheng WT, et al. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet. 2003;361:1701-1703.

Chiu WK, Cheung PC, Ng KL, et al. Severe acute respiratory syndrome in children: experience in a regional hospital in Hong Kong. Pediatr Crit Care Med. 2003;4:279-283.

Bittman A, Allen LI, Heuter H, et al. Other Members of the Hospital for Sick Children SARS Investigation Team. Children hospitalized with severe acute respiratory syndrome-related illness in Toronto. Pediatrics. 2003;112:e261.

Leung CW, Kwan YW, Ko PW, et al. Severe acute respiratory syndrome among children. Pediatrics. 2004;113:e535–e543.

Al-Tawfiq JA, Kattan RF, Memish ZA. Middle East respiratory syndrome coronavirus disease is rare in children: an update from Saudi Arabia. World J Clin Pediatr. 2016;5:391–396.

Alfaraj SH, Al-Tawfiq JA, Altuwaijri TA, et al. Middle East respiratory syndrome coronavirus in pediatrics: a report of seven cases from Saudi Arabia. Front Med. 2019;13:126–130.

Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282:20143085.

Zhao J, Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol. 2010;84:9318–9325.

Chen J, Lau YF, Lamirande EW, et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J Virol. 2010;84:1289–1301.

Zeng LP, Ge XY, Peng C, et al. Cross-neutralization of SARS coronavirus-specific antibodies against SARS-like coronaviruses. Sci China Life Sci. 2010;53:139–146.

Valathran R, Ashman M, Asthana D. Effects of ageing on the immune system: infants to elderly. Scand J Immunol. 2016;83:255–266.

Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2012;25:74–98.

Nye S, Whiteley RJ, Kong M. Viral infection in the development and progression of pediatric acute respiratory distress syndrome. Front Pediatr. 2016;4:128.

Mehta P, McAuley DF, Brown M, et al. HLH Across Speciality Collaboration, UK. COVID-19 consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034.

Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020.

Udinn SMI, Englund JA, Kyypys JY, et al. Burden and risk factors for coronavirus infections in infants in rural Nepal. Clin Infect Dis. 2018;67:1507–1514.

Taylor S, Lopez P, Weckx L, et al. Respiratory viruses and influenza-like illness: Epidemiology and outcomes in children aged 6 months to 10 years in a multi-country population sample. J Infect. 2017;74:29–41.

Gaunt ER, Hardie A, Claa EC, et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48:2940–2947.

Dijkman R, Jebrink MF, El Idrissi NB, et al. Human coronavirus NL63 infections in hong kong children. J Clin Virol. 2009;47:3486–3492.

Hasony HJ, Macnaughton MR. Prevalence of human coronavirus antibody in the population of southern Iraq. J Med Virol. 1982;9:209–216.

Tokuda M, Hosomi N. Seroepidemiologic survey of coronavirus (strain OC 43) related infections in a children’ s population. Arch Dis Child. 1974;48:152–156.

Xu X, Wang X, Wu Y, et al. Frequency of and relationship between outbreaks of coronavirus infection. Trans Med Microbiol. 2009;47:271–276.

Dowdle WR. Seroepidemiologic survey of coronavirus infection. Trans Med Microbiol. 2008;45:271–276.

Martin JG, Caro JJS, Min J, et al. Evolution of the immune system in humans from infancy to old age. Proc Natl Acad Sci U S A. 2016;113:14005–14010.

Rocourt S, Sebatian SR, Guerry S, et al. Transmissibility of human coronavirus OC43 in a multi-country population sample. J Infect. 2018;12:209–216.

Dyer RB, Weckx L, Kadish A, et al. Seroepidemiologic survey of coronavirus infection. Trans Med Microbiol. 2008;45:271–276.

Swiderek KM, Korgenski KE, Hunt JA, et al. Frequency of and relationship between outbreaks of coronavirus infection. Trans Med Microbiol. 2008;45:271–276.

Stevenson A, Klocke P, Brinkman ST, et al. Transmission characteristics of MERS coronavirus in pediatrics: a report of seven cases from Saudi Arabia. J Clin Virol. 2020;126:104152.

Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a novel coronavirus of probable bat origin. Nature. 2020;579:270–273.
70. Letko M, Marizi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nat Microbiol*. 2020;5:562–569.
71. Perico L, Benigni A, Remuzzi G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. *Nephron*. 2020:1–9.
72. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? *The Lancet Respiratory Medicine*. 2020.
73. Tignanelli CJ, Ingraham NE, Sparks MA, et al. Antihypertensive drugs and risk of COVID-19? *The Lancet Respiratory Medicine*. 2020.
74. Fang F, Luo XP. [Facing the pandemic of 2019 novel coronavirus infections: the pediatric perspectives]. *Zhonghua Er Ke Za Zhi*. 2020;58:81–85.
75. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. *Nature*. 2005;436:112–116.
76. Zou Z, Yan Y, Shu Y, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. *Nat Commun*. 2014;5:3594.
77. Wang J, Zhao S, Liu M, et al. ACE2 expression by colonic epithelial cells is associated with viral infection, immunity and energy metabolism. *medRxiv*. 2020. https://doi.org/10.1101/2020.02.05.20020545
78. Sodhi CP, Nguyen J, Yamaguchi Y, et al. A dynamic variation of pulmonary ACE2 is required to modulate neutrophilic inflammation in response to pseudomonas aeruginosa lung infection in mice. *J Immunol*. 2019;203:3000–3012.
79. Luo Y, Liu C, Guan T, et al. Association of ACE2 genetic polymorphisms with hypertension-related target organ damages in south Xinjiang. *Hypertens Res*. 2019;42:681–689.
80. Liu D, Chen Y, Zhang P, et al. Association between circulating levels of ACE2-Ang-(1-7)-MAS axis and ACE2 gene polymorphisms in hypertensive patients. *Medicine (Baltimore)*. 2016;95:e3876.
81. Miller A, Reandeldar MJ, Fasigilione K, et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. *medRxiv*. 2020. https://doi.org/10.1101/2020.03.24.20042937
82. Moorlag SJCFM, Arts RJW, van Crevel R, et al. Non-specific effects of BCG vaccine on viral infections. *Clin Microbiol Infect*. 2019;25:1473–1478.
83. Messina NL, Zimmermann P, Curtis N. The impact of vaccines on heterogons adaptive immunity. *Clin Microbiol Infect*. 2019;25:1484–1493.
84. Lam CM, Wong SF, Leung TN, et al. A case-controlled study comparing clinical course and outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome. *BJOG*. 2004;111:771–774.
85. Assiri A, Abedi GR, Al Masri M, et al. Middle east respiratory syndrome coronavirus infection during pregnancy: a report of 5 Cases From Saudi Arabia. *Clin Infect Dis*. 2016;63:951–953.
86. Liu D, Li L, Wu X, et al. Pregnancy and perinatal outcomes of women with coronavirus disease (COVID-19) pneumonia: a preliminary analysis. *AJR Am J Roentgenol*. 2020:1–6.
87. Wong SF, Chow KM, Leung TN, et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. *Am J Obstet Gynecol*. 2004;191:292–297.
88. Shek CC, Ng PC, Fung GP, et al. Infants born to mothers with severe acute respiratory syndrome. *Pediatrics*. 2005;112:e254.
89. Payne DC, Iblan I, Alqasrawi S, et al; Jordan MERS-CoV Investigation Team. Stillbirth during infection with Middle East respiratory syndrome coronavirus. *J Infect Dis*. 2014;209:1870–1872.
90. Alserehi H, Wali G, Alshukairi A, et al. Impact of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) on pregnancy and perinatal outcome. *BMC Infect Dis*. 2016;16:105.
91. Malik A, El Masry KM, Ravi M, et al. Middle east respiratory syndrome coronavirus during pregnancy, Abu Dhabi, United Arab Emirates, 2013. *Emerg Infect Dis*. 2016;22:515–517.