The Architecture of the Adhesive Apparatus of Cultured Osteoclasts: From Podosome Formation to Sealing Zone Assembly

Chen Luxenburg1,2, Dafna Geblinger2, Eugenia Klein3, Karen Anderson4, Dorit Hanein5, Benny Geiger2, Lia Addadi2*

INTRODUCTION

Bone is a mineralized tissue with an ordered composite structure consisting of arrays of collagen fibers with inter-grown carbonated hydroxyapatite crystals. With maturation, the relative proportion of mineral increases and modifies the material properties of bone [1]. To preserve the tissue integrity and in response to physiological stimuli, bone is continually remodeled through the concerted activity of bone resorbing cells, the osteoclasts, which dissolve mature bone, and bone depositing cells, the osteoblasts, which lay down new bone. The complementary roles of these two cell types are thus central to the development, ordered growth and physiological stimuli, bone is continually remodeled through the sealing zone, at an unprecedented resolution. Podosomes are composed of an actin-bundle core, flanked by a ring containing adhesion proteins connected to the core via dome-like radial actin fibers. The sealing zone, hallmark of bone-resorbing osteoclasts, consists of a dense array of podosomes communicating through a network of actin filaments, parallel to the substrate and anchored to the adhesive plaque domain via radial actin fibers.

The resorptive activity of osteoclasts depends on their adhesion to the bone surface. The primary adhesion mediating structures of osteoclasts are dot-like actin-rich structures known as podosomes [6]. Podosomes are highly dynamic structures formed not only in osteoclasts, but also in other monocyte-derived cells, such as macrophages and dendritic cells, as well as in smooth muscle cells, endothelial cells, transformed fibroblasts and certain epithelial cells [7]. Based on fluorescence and EM studies [7–11], podosomes were shown to consist of a central core of actin filaments, ~0.3 μm in diameter and 0.6–1 μm high, surrounded by a ‘cloud’ of F-actin [12] and actin monomers [13], along with a variety of actin-associated proteins that regulate actin nucleation, severing, bundling and dynamics [14,15]. Dynamin is associated with a thin membrane invagination in the actin core center [16]. Around the core bundle, there is a peripheral ring with typical diameter of ~1 μm, containing integrins and a variety of associated adaptor and signaling proteins including paxillin, vinculin, talin and different kinases [17–20]. The architecture of the central core and the plaque, and in particular their connections one with the other, have not been elucidated at high resolution.

In cultured osteoclasts, podosomes undergo major reorganization during their maturation. From individual structures, scattered throughout the cell ventral membrane, via ordered clusters, they

* To whom correspondence should be addressed. E-mail: lia.addadi@weizmann.ac.il
Osteoclast Architecture

Individual podosomes are seen in fluorescence microscopy as isolated adhesion units [21] (Fig 1A, B arrow), with distinct actin cores and ring domains that are separated from those of other podosomes. When observed by scanning electron microscopy (SEM, Fig 1C, D), isolated podosomes consist of a densely packed, ~300 nm thick core bundle of distinct actin filaments, pointing in a direction more or less perpendicular to the substrate. The actin belt in the sealing zone of bone resorbing osteoclasts is ~2–3 μm wide actin belt surrounded by inner and outer plaque domains (Fig 3A–C). Quantitative fluorescence microscopy analysis shows that the actin intensity associated with the cores is now higher by only 20–40% compared with the actin intensity associated with the “cloud” located between neighboring podosomes. Podosome cores are, however, still detectable with the same basic architecture of an actin core and radial fibers (Fig 3C, D). However, these podosomes are highly interconnected. Multiple actin fibers connect adjacent podosome cores at all heights (Fig 3D), while the average distance between podosome cores is reduced to 480±140 nm (n = 197 podosome pairs from 6 cells). Densely distributed actin fibers radiate from the podosome core, establishing contact with the membrane (Fig 3C).

Interestingly, the density of fibers docking the structure to the ventral membrane is much higher on the side of the ring facing the outer plaque, relative to the inner side. This correlates well with the plaque fluorescence being much more intense in the external plaque domain (Fig 3A, B). The plaque is clearly shared between podosomes.

Bona fide sealing zones of polarized osteoclasts plated on bone (Fig 4A–F) are often associated with underlying resorption pits (Fig 4F). The ventral membranes of these cells are characterized by a highly convoluted membrane around the cell center, distinctly different from that found in cells growing on glass or EM grids (Fig 4C, arrowhead). This area presumably corresponds to the ruffled border, which is involved in the secretion of acid and proteolytic enzymes at the cell-bone interface [2,30].

The actin belt in the sealing zone of bone resorbing osteoclasts is ~3–6 μm wide, much thicker than that formed by cells cultured on glass (Fig 4C double headed arrow) and the actin network is considerably denser (Fig 4D, E). However, the basic architecture is clearly preserved. It consists of podosomal units, including F-actin pillars perpendicular to the substrate, connected by numerous inter-pillar filaments, running parallel to the substrate. The
Figure 1. Individual podosome. Intact osteoclast (A,B) or ventral membranes (C–E) fixed and stained for actin (A) or paxillin (B) or prepared for HR-SEM (C, D, E). Individual podosomes (A, B arrows) are isolated from nearby structures and show no overlap with neighboring podosomes in paxillin staining (B, arrow). The insert in (A) shows a merged image of actin/paxillin staining. (C) An isolated podosome showing a dense actin core at the center of the podosome and actin fibers radiating from it and interacting with the ventral membrane. Note membrane-associated clathrin pits (C, arrow) testimony of the excellent preservation of the sample. (D) Structures very similar to (C) are detected in osteoclasts plated on bone slices. (E) Higher magnification of a podosome shows tightly packed actin fibers at the actin core, many of which are almost perpendicular to the substrate (arrowhead). The occasionally observed concavity at the peak of the podosome (D,E) may reflect the underlying membrane invagination related to dynamin (16). The actin fibers radiating from the core show branching points (arrows).
doi:10.1371/journal.pone.0000179.g001
The average distance between actin cores in these cells is further reduced to 210±50 nm (n = 400 podosome pairs from 5 cells). Sealing zones of bone resorbing osteoclasts are highly dynamic (Fig 4A, B, Movie S1) suggesting high levels of actin remodeling [21].

To obtain a quantitative molecular insight into the organization of podosomes and podosome super-structures we have correlated fluorescence labeling patterns of ventral membranes by using light microscopy and high resolution SEM performed on the same samples. Ventral membranes, double-labeled for actin and paxillin were first examined by light microscopy, then critical-point dried and examined by SEM. Superposition of the fluorescence and SEM images shows that intense actin fluorescence is associated with the actin cores visualized by SEM, while the “actin cloud” corresponds to the radial actin cables, inter-connecting neighboring podosomes (compare Fig 5A to B, C); the plaque domains extend under the actin cloud, reaching up to the core (Fig 5G, D, E). The extraordinary state of preservation of the membrane allowed mapping of the location of the plaque protein paxillin also by immuno-gold labeling. The location of the protein was indicated by the strong back scattering signal of the colloidal gold particles (Fig 5F), and was then localized in the secondary electron images, relative to the other components (Fig 5G, H). In all states of podosome organization paxillin immuno-gold labeling was closely associated with actin fibers, either at fiber crossings or directly in contact with the cell membrane. The exclusive co-localization of actin and paxillin is illustrated in Fig 5A for intact osteoclasts and in Fig 5B for ventral membranes. High magnifications of super-structures of clustered podosomes (Fig 5C, D, E) demonstrate the close association and mutual interactions of the two protein networks.

Figure 2. Clustered podosomes. Intact osteoclast (A,B) or ventral membranes (C–E) fixed and stained for actin (A) or paxillin (B) or prepared for HR-SEM (C–E). (A) Actin pillars emanate from an “actin-cloud”. (B) Paxillin is largely shared by the cluster and overlaps with the “actin-cloud”. The insert in (A) shows a merged image of actin/paxillin staining. (C) SEM over-view of a cluster. The radial podosome actin fibers appear to correspond to the “actin-cloud”. (D) Higher magnification view of two clustered podosomes showing interactions between radial peripheral cables. There are no cables directly connecting between cores. (E) The same organization as in (D) is detected on bone.

doi:10.1371/journal.pone.0000179.g002
paxillin and actin at sites in close proximity with the ventral membrane suggests a direct interaction between podosome-associated actin and the plaque. This observation has far reaching implications to osteoclast activity, in particular to osteoclast communication and sensing of the substrate extracellular milieu, because it suggests that any modification in intra- or extra-cellular architecture is directly transmitted and sensed through the communication network by the whole structure.

DISCUSSION

The results reported here provide insight into the mechanism underlying the assembly of the sealing zone, the adhesion apparatus and diffusion barrier of bone resorbing osteoclasts. The spatial and temporal relations between podosomes and the sealing zone are controversial. While it has been suggested that isolated podosomes fuse to give rise to a continuous sealing zone
[23,31–33] there have also been claims that the sealing zone on bone has a different three-dimensional organization that is not derived from podosomes [28,34]. Here, we show that the sealing zone on bone is made of structural units clearly related to individual podosomes, which differ mainly in their densities and degree of inter-connectivity from the podosome belt observed on glass. It appears that while the elementary adhesion units are preserved all along the process of osteoclast maturation, there is a progressive process of consolidation of the podosomal scaffold, provided by the radial actin filaments, which initially anchor the core bundle to the neighboring membrane, and later also interconnect between podosome units. Whether this process is responsible for the progressive condensation of podosome cores, or is a consequence thereof is not clear yet.

The results presented here, together with information derived from our previous studies [20,21], are suggestive of a mechanism where podosomes proliferate and transform from individual dynamic structures, that can nucleate sporadic adhesions, to 2-dimensional arrays (“clusters”); from these much more highly dynamic rings are formed, which eventually stabilize. This transition correlates with enhanced actin reorganization and a 10-fold increase in the amounts of actin associated with the podosome unit, as well as a similar increase in the plaque protein levels [20,21]. As the podosome units remain largely unchanged, these increased rates and increased local actin levels are most likely attributable to the formation of an interconnecting actin network and to an increase in actin-core height. Interestingly, the intensity of the actin cloud relative to the core increases by a factor of 2–3 between the cluster...
and the scaling zone-like podosomes, indicating that the relative increase in the local levels of actin associated with the radial, interpillar fibers is even more dramatic (in the order of >20). This increase in actin cloud intensity, in addition to the shorter inter-pillar distance in the scaling zone, makes it virtually impossible to resolve individual podosome units by light microscopy.

We conclude that the podosome scaffold is the fundamental structural unit that provides the infrastructure directing the new wave of actin polymerization. Podosomes are thus preserved as fundamental building blocks at all stages of osteoclast development, adhesion and resorption activity, highlighting their key role in osteoclast function and malfunction.

The intimate structural relations between the plaque domain and the actin structures in individual podosomes and especially in the tightly interconnected sealing zone suggest that the local properties of the substrate may be transmitted through the adhesion receptors to the adhesion plaque proteins and then to the continuous actin network. The whole structure, including the adhesion plaque and the actin ring, would then operate as one functional unit, which can potentially sense the condition of the substrate and react to it accordingly, thus effectively regulating the resorption activity.

MATERIALS AND METHODS

Tissue culture, substrates and antibodies

RAW 264.7 cells were from the American Type Culture Collection (ATCC) (Manassas, VA, USA). To induce osteoclast differentiation 100 cells/mm² were plated on EM nickel grids (SPI, West Chester, PA, USA) or glass cover-slips in alpha MEM with Earle’s salts, L-glutamine and NaHCO₃ (Sigma Chemical Co., St. Louis, MO, USA) or glass cover-slips in alpha MEM with Earle’s salts, L-glutamine and NaHCO₃ (Sigma Chemical Co., St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) or glass cover-slips in alpha MEM with Earle’s salts, L-glutamine and NaHCO₃ (Sigma Chemical Co., St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) or glass cover-slips in alpha MEM with Earle’s salts, L-glutamine and NaHCO₃ (Sigma Chemical Co., St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA).

Fluorescence microscopy

Cells were fixed for 2 min in warm 3% paraformaldehyde (PFA) (Merck, Darmstadt, Germany)+0.5% Triton X-100 (Sigma Chemical Co., St. Louis, MO, USA) and then in PFA alone for additional 40 minutes. After fixation cells were washed 3 times with PBS, pH7.4 and incubated with primary antibody for 40 min, washed again 3 times in PBS and incubated for additional 40 min with the secondary antibodies.

For live cell imaging RAW cells stably expressing GFP-actin [21] were induced to differentiate in plastic dish and then plated on bone slices, as described.

All image analyses were carried out using Priism software for Linux operating systems (http://msg.ucsf.edu/IV/E/Download/).

Temporal ratios were produced as previously described [35]. Briefly, the temporal ratio frame t+4x was divided by t to produce a “spectral image” in which blue pixels indicated new positive pixels, red pixels indicated faded structures and the intermediate colors represented more stable structures.

Data were acquired with a DeltaVision system (Applied Precision Inc., Issaquah, WA, USA), consisting of an inverted microscope IX70 equipped with 60x/1.4 or 100x/1.3 objective (Olympus, Tokyo, Japan). The grey-scale wide-field pictures shown here are without any image filtration or manipulation.

Ventral membrane preparation (VMP) for SEM microscopy

We developed a sample preparation technique for high-resolution three-dimensional correlated fluorescence and electron microscopy characterization of adhesive structures in cellular environment, which we coined VMP for ventral membrane preparations (Anderson, Page, Beck, Nickell, Volkman and Hanein, manuscript in preparation). The procedure is an adaptation of published procedures [10,36], which involves unroofing the cell’s basal portion while the components preserve their three-dimensional organization and immunogenicity.

For the SEM samples, following the VMP preparations, cells were immediately fixed with warm 2% gluteraldehyde (GA) (EMS, Hatfield, PA, USA) in PBS for 30 min. Cells were then washed 3 times for 5 min. in PBS, and twice with cacodylate buffer (0.1M CaCO₃, 5mM CaCl₂ pH7.3) (Merck, Darmstadt, Germany), post-fixed with 1% OsO₄ (EMS, Hatfield, PA, USA) for 45 min, washed 3 times in cacodylate buffer and then twice with H₂O₂; the preparations were then incubated with 1% tannic acid (Merck, Darmstadt, Germany) for 5 min., washed 3 times in H₂O₂, incubated with 1% Uranyl Acetate (EMS, Hatfield, PA, USA) for 30 min, and washed 3 times with H₂O. Dehydration in increasing concentrations of reagents grade ethanol (2×5 min. for 25%, 50%, 70%, 95% and 2×10 min. for 100%) was followed by critical point drying using CPD30 (BAL TEC., Blakers, Lichtenstein), coated with 1–2 nm Cr using K575X (Emi Tech., Kent, England). The samples were visualized in the high-resolution SEM Ultra 55 (Zeiss, Oberkochen, Germany). For bone slices, the procedure was the same as for glass, excluding the incubation with Uranyl acetate.

Immuno-gold-labeling

For Immuno-gold-labeling VMPs were prepared as described and fixed with 3% PFA+0.05% GA in PBS. Samples were washed 3 times in PBS+0.1%Glycine (Sigma Chemical Co., St. Louis, MO, USA) and then incubated in blocking solution: 0.1%Glycine, 0.1%Gelatine, 0.1%BSA, 0.1%twin20 (all from EMS, Hatfield, PA, USA) for 3min. The preparations were then incubated with primary antibody overnight at 4°C, samples were washed as described and incubated with 15 nm colloidal gold secondary goat anti mouse antibody (EMS., Hatfield, PA, USA) for 1 hour. The samples were washed again 5 times in PBS, fixed in 0.05%GA for 15min., post fixed and prepared for the EM as described above.

SUPPORTING INFORMATION

Figure S1 Macrophages podosomes. Ventral membranes of IC21 macrophages were prepared for SEM. (A) An over-view of macrophage. (B) Higher magnification view of podosomes at the leading edge of the cell. Note the similarity in podosome organization to osteoclasts. Found at: doi:10.1371/journal.pone.0000179.s001 (1.99 MB TIF)

Figure S2 Relation between podosome radial fibers. Osteoclast ventral membrane were labeled for phallxin and actin, and simultaneously prepared for HR-SEM. (A) An over-view of a cluster
of podosomes, visualized under the HR-SEM. (B) fluorescence labeling of actin (green) and paxillin (red). (C) Merged image between (A) and (B). Note paxillin colocalization with podosome radial actin fibers.

Found at: doi:10.1371/journal.pone.0000179.s002 (2.63 MB TIF)

Movie S1 Sealing zone dynamics of a resorbing osteoclast. Movie taken on live GFP-actin osteoclasts plated on bone. Frames were recorded at 1 minute intervals by time-lapse microscopy for 3.5 hours.

Found at: doi:10.1371/journal.pone.0000179.s003 (0.98 MB MOV)

ACKNOWLEDGMENTS

We thank the electron microscopy unit staff, especially Helena Sabanay and Ora Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

Author Contributions

Conceived and designed the experiments: BG LA CL DG. Performed the experiments: CL DG. Analyzed the data: BG LA CL DG. Contributed reagents/materials/analysis tools: DH EK KA. Wrote the paper: BG LA CL.

Other: Group leader under whose supervision the work was designed and performed: BG. Group leader under whose supervision the work was designed and performed: DH. Group leader under whose supervision the work was designed and performed: LA. Senior PhD student who designed and performed the research from its inception: CL. MSC student who designed and performed the experiments on bone: DG. Helped with her know-how on HR-SEM: EK. Developed VMs methods and helped with osteoclast VMs: KA.

REFERENCES

1. Weiner W, Wagner HD (1998) The material bone: Structure mechanical function relations. Annu Rev Mater Sci 28: 271–298.

2. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(3484): 1504–1508.

3. Rodan GA (2003) The development and function of the skeleton and bone-metastases. Cancer 97(3 Suppl): 726–732.

4. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8): 638–649.

5. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289(5484): 1508–1514.

6. Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teri A, et al. (1994) Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 99(3): 1696–1705.

7. Linder S, Aepli Bacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13(7): 376–385.

8. Trotter JA (1981) The organization of actin in spreading macrophages. The Immunolabelling of cell-substratum adhesions (podosomes) in RSV-transformed BHK cells. J Cell Sci 94(Pt 1): 85–99.

9. Nemat MV, Eason P, Hirst EM, Kelle S (1991) Cell-substratum adhesions in RSV-transformed rat fibroblasts. Exp Cell Res 193(2): 382–392.

10. Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and Orna Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

11. Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment and Orna Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

12. Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment and Orna Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

13. Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment and Orna Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

14. Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment and Orna Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

15. Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment and Orna Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

16. Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment and Orna Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

17. Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment and Orna Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

18. Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment and Orna Yeger for their help. We thank Dr. Niels Volkmann for valuable comments on the manuscript. BG holds the Erwin Neter Professorial Chair in Cell and Tumor Immunology, and LA the Dorothy and Patrick Gorman Chair of Biological Ultrastructure.

19. Pfaff M, Jurid C (2001) Podosomes in osteoclast-like cells: structural analysis and cooperative roles of paxillin, proline-rich tyrosine kinase 2 (Pyk2) and integrin alphaVbeta3. J Cell Sci 114(Pt 15): 2775–2784.

20. Luxenberg C, Addadi L, Geiger B (2006) The molecular dynamics of osteoclast adhesions. Eur J Cell Biol 85(3–4): 203–211.

21. Luxenberg C, Parsons JT, Addadi L, Geiger B (2006) Involvement of the Src- cortactin pathway in podosome formation and turnover during polarization of cultured osteoclasts. J Cell Sci.

22. Zamponi-Zallone A, Teti A, Carano A, Marchisio PC (1998) A new distribution of podosomes in osteoclasts cultured on bone laminas: effect of retinoic acid. J Bone Miner Res 3(5): 517–523.

23. Lakkakorpi PT, Hellfich MH, Horton MA, Vaananen HK (1993) Spatial organization of microfilaments and vinculin receptor, alpha v, beta 3, in osteoclasts. A study using confocal laser scanning microscopy. J Cell Sci 104(Pt 3): 663–670.

24. Teri A, Migliazzo S, Taranta A, Bernardini S, De Rossi G, et al. (1999) Formation of actin-rich podosomes at the leading edge of osteoclasts: role of v-ATPase in the resorption cycle. J Cell Sci 112(Pt 11): 1655–1669.

25. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276(5310): 266–269.

26. Naoum J, Lehenkari P, Mulari M, Minakko K, Vaananen HK (1997) Removal of podosome bone resorption products by transcytosis. Science 276(5310): 270–273.

27. Chiusaroli R, Knobler H, Luxenberg C, Sanjay A, Granot-Astas S, et al. (2004) Tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo. Mol Biol Cell 15(1): 234–244. Epub 2003 Oct 2003.

28. Saltel F, Destaing O, Bard F, Eichert D, Jurid C (2004) Apatite-mediated Actin cytoskeleton. J Mol Biol 153(2): 361–379.

29. Evans JG, Correia I, Krasavina O, Watson N, Matsudaira P (2003) Macrophage tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo. Mol Biol Cell 14(1): 234–244. Epub 2003 Oct 2003.

30. Saltel F, Destaing O, Bard F, Eichert D, Jurid C (2004) Apatite-mediated Actin cytoskeleton. J Mol Biol 153(2): 361–379.

31. Evans JG, Correia I, Krasavina O, Watson N, Matsudaira P (2003) Macrophage tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo. Mol Biol Cell 14(1): 234–244. Epub 2003 Oct 2003.

32. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276(5310): 266–269.

33. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276(5310): 266–269.

34. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276(5310): 266–269.

35. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276(5310): 266–269.

36. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276(5310): 266–269.