ABSTRACT: Heat effects for the addition of Co in bulk and nanosized forms into the liquid Sn-3.8Ag-0.7Cu alloy were studied using drop calorimetry at four temperatures between 673 and 1173 K. Significant differences in the heat effects between nano and bulk Co additions were observed. The considerably more exothermic values of the measured enthalpy for nano Co additions are connected with the loss of the surface enthalpy of the nanoparticles due to the elimination of the surface of the nanoparticles upon their dissolution in the liquid alloy. This effect is shown to be independent of the calorimeter temperature (it depends only on the dropping temperature through the temperature dependence of the surface energy of the nanoparticles). Integral and partial enthalpies of mixing for Co in the liquid SAC-alloy were evaluated from the experimental data.

1. INTRODUCTION

Unique physical–chemical properties and microstructure features make Sn–Ag–Cu (SAC) alloys the worldwide most used lead-free solders. In particular, the Sn-based Sn-3.8Ag-0.7Cu (wt %) alloy (SAC387), which corresponds to Sn-4.1Ag-1.3Cu (at. %), is employed extensively in the modern electronics industry. However, two main problems caused by using such type of lead-free solder are still not solved (i.e., the much higher melting temperature compared to traditional lead-containing solders and the extensive growth of brittle intermetallic layers). During the past decade, many attempts were made to decrease the melting temperature of lead-free solders and improve the mechanical reliability of the corresponding solder joints.

One of the most popular ways to achieve such improvements is the addition of a fourth element. According to investigations of the mechanical and thermodynamic properties and the microstructure, minor doping of active nanoparticles should be a promising solution of the above-mentioned problems.

Different heat effects are expected for the addition of Co in bulk and nanosized form into the liquid SAC387 alloy, and this difference is caused by the surface enthalpy of the nanoparticles. A number of studies have been dedicated to the investigations of the heat effects caused by the surface enthalpy of nanoparticles. However, most of these describe the heat effects for ceramic nanoparticles and/or are theoretical estimates.

The purpose of the present work is to provide experimental heat effect data for the addition of Co in bulk and nanosized form into the liquid SAC387 alloy using drop calorimetry. The integral and partial enthalpies of mixing for the quaternary Ag–Co–Cu–Sn system in the Sn-rich corner are estimated. At the same time, calculations are performed to predict the expected differences in the data obtained for bulk and nanosized Co caused by the surface enthalpy of Co nanoparticles.

2. EXPERIMENTAL DETAILS

The calorimetric measurements were carried out using a Calvet-type twin microcalorimeter system, based on a commercial wire wound resistance furnace (HTC-1000, SETARAM, Lyon, France) having two thermopiles with more than 200 thermocouples, equipped with a self-made automatic drop device for up to 30 drops; control and data evaluation were performed with Lab View and HiQ. This system was described in detail by Flandorfer et al. The measurements were performed in BN crucibles under Ar flow (99.999 vol %, purification from oxygen, approximately 30 mL/min). At the end of each series, the calorimeter was calibrated by five drops of standard α-Al₂O₃ provided by NIST (National Institute of Standards and Technology, Gaithersburg, MD). The time interval between individual drops was usually 40 min, and the acquisition interval of the heat flow was 0.5 s. The obtained signals were recorded and integrated. The measured enthalpy (integrated heat flow at constant pressure) is

\[\Delta H_{\text{signal}} = n_i \left(\Delta H_{\text{signal}}^i \right) = n_i \left(H_{m,i,T_a} - H_{m,i,T_f} \right) + \Delta H \]

(1)
Table 1A. Enthalpies of Mixing Data for the Addition of Bulk Co into the Liquid Sn–4.1Ag–1.3Cu Alloy; Standard States: Pure Liquid Metals; Values in Bold Font Refer to Liquid–Solid Two–State Region

n_{Co} (10^{-3} mol)	$\Delta H_{mix,i}^a$ (J mol^{-1})	x_{Co}i (at. %)	$\Delta_{mix,H_{mix}}$ (J mol^{-1})	$\Delta_{mix,H}$ (J mol^{-1})
1.0397	29717	0.0061	−19550	71
1.1484	29648	0.0188	−19619	−168
1.2295	29910	0.0322	−19357	0.0212
1.2441	30055	0.0458	−19212	0.0254
1.3018	30309	0.0594	−18958	0.0391
1.3480	30208	0.0731	−19059	0.0525
1.3978	30430	0.0869	−18837	0.0662
1.4419	30261	0.1008	−19006	0.0800
1.5194	30802	0.1148	−18465	0.0939
1.5253	30774	0.1288	−18493	−1738
1.5565	30461	0.1425	−18806	−2002
1.5776	30153	0.1559	−19114	−2263
1.7203	29854	0.1697	−19414	−2518
1.8087	29325	0.1839	−19942	−3307
1.9625	29857	0.1986	−19411	−3596

*Average of x_{Co} before and after drop; x^{b}_{Co} after drop

where n_i is the number of moles of the added element i, H_m denotes molar enthalpies, T_D is the drop temperature, $\Delta H_{mix,i}^a$ is the measured enthalpy in J mol^{-1}, and T_M is the calorimeter temperature of the respective measurement in Kelvin. The molar enthalpy difference ($H_{mix,T} - H_{mix,T_D}$) was calculated using the SGTE data for pure elements.20 Because of the rather small masses of added component i, partial enthalpies can be calculated directly as

$$\Delta_{mix,H} = \Delta H / n_i$$

The integral molar enthalpy of mixing, $\Delta_{mix,H}$, was calculated by summing the respective reaction enthalpies and division by the total molar amount of substance, where n_j stands for the molar amount of substance which was already present in the crucible:

$$\Delta_{mix,H} = \sum \Delta H / \sum n_i$$

Pure metals of high purity (99.99%, Alfa Aesar, Karlsruhe, Germany) were used without further purification as well as commercial nanosized Co (99.9%, average particle size 28 nm, IoLiTec Nanomaterials, Heilbronn, Germany). According to the technical data sheet,21 the BET surface area of the nanosized Co particles was about $A_{BET} = (50 \pm 10) \times 10^3$ m^2 kg^{-1}. The SAC387 alloys were prepared from pure components sealed in quartz ampoules and kept in the furnace at 1173 K for 2 weeks. All operations with nano Co were performed in a glovebox (M.Braun, LabMaster 130) in an atmosphere of purified Ar (O_2 and H_2O < 5 ppm each). The calorimetric measurements were carried out by the addition of solid Co in bulk and nanosized form into liquid SAC387 alloys at four different temperatures from 673 to 1173 K. In the second case, Co nanoparticles were first packed into a SAC387 foil with a thickness of about 50 µm which had been formed using a foil rolling mill. The measurements with additions of packed nano Co were started by dropping five pieces of SAC387 foil in order to determine and, subsequently, subtract the heat effect of the

n_{Co} (10^{-3} mol)	$\Delta H_{mix,i}^a$ (J mol^{-1})	x_{Co}i (at. %)	$\Delta_{mix,H_{mix}}$ (J mol^{-1})	$\Delta_{mix,H}$ (J mol^{-1})
0.3905	22407	0.0045	−23751	0.0991
0.4952	22988	0.0147	−23170	0.0204
0.4959	23166	0.0259	−22992	0.0315
0.5064	23313	0.0370	−22844	0.0425
0.5216	24022	0.0481	−22135	0.0536
0.5404	24058	0.0592	−22099	0.0649
0.5430	24322	0.0704	−21836	0.0759
0.5503	23879	0.0814	−22279	0.0868
0.5874	24786	0.0925	−21371	0.0982
0.5927	24008	0.1038	−22149	0.1094
0.6270	24938	0.1151	−21219	0.1209
0.6668	25388	0.1269	−20769	0.1329
0.6822	25189	0.1388	−20968	0.1448
0.6937	25524	0.1506	−20633	0.1565
0.7101	25931	0.1623	−20226	0.1681
0.7094	25903	0.1738	−21064	0.1795
0.7411	25737	0.1853	−20421	0.1910
0.7433	24797	0.1967	−21410	0.2023
0.7859	25706	0.2081	−20451	0.2139
0.7904	25082	0.2196	−21075	0.2252
0.8096	24683	0.2309	−21474	0.2365
0.8790	25622	0.2424	−20535	0.2483
0.9115	25117	0.2543	−21040	0.2603
0.9201	25341	0.2661	−20816	0.2719
1.0400	25304	0.2783	−20853	0.2846

*Average of x_{Co} before and after drop; x^{b}_{Co} after drop
Table 1C. Enthalpies of Mixing Data for the Addition of Bulk Co into the Liquid Sn—4.1Ag—1.3Cu Alloy; Standard States: Pure Liquid Metals; Values in Bold Font Refer to Liquid—Solid Two—State Region

mol Co dropped	measured enthalpy	partial molar enthalpy	integral molar enthalpy		
n_Co (10^{-3} mol)	ΔH_{mix} (J mol^{-1})	x_Co	ΔH_{vap} (J mol^{-1})	x_Co	ΔH_{mix} (J mol^{-1})
0.1237	22134	0.0014	−24049	0.0028	24
0.1946	22496	0.0049	−23686	0.0071	−78
0.2023	21999	0.0093	−24184	0.0115	−186
0.2372	22198	0.0141	−23985	0.0166	−310
0.2456	22835	0.0193	−23347	0.0219	−433
0.2786	22815	0.0248	−23368	0.0278	−571
0.2912	22842	0.0308	−23340	0.0338	−713
0.2998	22979	0.0369	−23203	0.0400	−856
0.3484	23528	0.0435	−22654	0.0470	−1016
0.4206	24054	0.0512	−22129	0.0554	−1201
0.4108	23968	0.0594	−22214	0.0634	−1379
0.4444	24200	0.0676	−21983	0.0719	−1566
0.4707	24095	0.0763	−22087	0.0807	−1761
0.4761	23903	0.0850	−22279	0.0894	−1955
0.4799	24240	0.0937	−21763	0.0980	−2142
0.5187	24391	0.1025	−21791	0.1071	−2340
0.6405	24739	0.1126	−21443	0.1181	−2576
0.6338	24509	0.1234	−21674	0.1287	−2804
0.7477	24354	0.1346	−21829	0.1406	−3065

Average of x_Co before and after drop; x_Co after drop

SAC387 foil from the obtained measured enthalpy. To prove the accuracy of this procedure, we also performed a few measurements by packing bulk Co into the SAC387 foil. For instance, the second measurement runs at 1073 and 873 K were performed in such a way. The starting values of ΔH_{mix} for the ternary Ag—Cu—Sn subsystem required for the evaluation of the integral molar enthalpy of mixing for quaternary liquid Ag—Co—Cu—Sn alloys were calculated by a Redlich–Kister–Muggianu polynomial using experimental data taken from Luef et al. 22

Random as well as systematic errors of drop calorimetry depend on the calorimeter construction, calibration procedure, signal integration, and “chemical errors”, for example, incomplete reaction or impurities. Considering many calibration measurements done by dropping NIST standard sapphire, the standard deviation can be estimated to be less than ±1%. The systematic errors are mainly caused by parasitic heat flows, baseline problems at signal integration, and dropping and mixing problems. One can estimate that the random error of the measured enthalpy is ±150 J.

Selected furnace-cooled alloys after calorimetric runs were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) to check for complete dissolution of the dropped component. The powder XRD measurements were done on a Bruker D8 diffractometer at ambient temperature using Ni-filtered Cu Kα radiation (accelerating voltage 40 kV, electron current 40 mA). The diffractometer operates in the 0/2θ mode. The powder was fixed with petroleum jelly on a single crystal silicon sample carrier which was rotated during the measurement. The detection unit was a Lynxeye strip

Table 1D. Enthalpies of Mixing Data for the Addition of Bulk Co into the Liquid Sn—4.1Ag—1.3Cu Alloy; Standard States: Pure Liquid Metals; Values in Bold Font Refer to Liquid—Solid Two—State Region

mol Co dropped	measured enthalpy	partial molar enthalpy	integral molar enthalpy		
n_Co (10^{-3} mol)	ΔH_{mix} (J mol^{-1})	x_Co	ΔH_{vap} (J mol^{-1})	x_Co	ΔH_{mix} (J mol^{-1})
0.1103	12678	0.0007	−27198	0.0014	113
0.1603	12460	0.0022	−27416	0.0031	66
0.1670	12315	0.0040	−27561	0.0048	17
0.1686	13049	0.0057	−26827	0.0066	−31
0.1697	12628	0.0075	−27248	0.0084	−80
0.1808	12417	0.0094	−27459	0.0103	−133
0.1863	12657	0.0113	−27219	0.0123	−186
0.2004	12782	0.0133	−27094	0.0143	−243
0.2009	13235	0.0154	−26642	0.0164	−299
0.2164	13704	0.0175	−26173	0.0187	−357
0.2170	13992	0.0198	−25885	0.0209	−415
0.2513	14338	0.0222	−25538	0.0235	−481
0.2524	14115	0.0247	−25762	0.0260	−548
0.2579	14328	0.0273	−25548	0.0286	−615
0.2592	15007	0.0299	−24870	0.0312	−680
0.2649	14327	0.0326	−25549	0.0339	−748
0.2801	15543	0.0353	−24333	0.0367	−816
0.2865	14673	0.0381	−25203	0.0395	−888
0.2931	15663	0.0410	−24213	0.0424	−958
0.3008	15421	0.0439	−24455	0.0453	−1030
0.2997	14938	0.0468	−24938	0.0482	−1130
0.3067	15275	0.0497	−24601	0.0512	−1176
0.3288	14860	0.0528	−25017	0.0544	−1255
0.3338	16233	0.0560	−23643	0.0575	−1330
0.4503	15343	0.0597	−24534	0.0618	−1435

Average of x_Co before and after drop; x_Co after drop
detector. Indexing of the phases was supported by the Inorganic Crystal Structural Database (ICSD). Rietveld refinement of the XRD patterns was done with the Topas3 software provided by Bruker AXS.

The electron microscope Zeiss Supra 55 VP was used for metallographic investigations. The excitation energy of the electron beam was 15–20 kV; backscattered electrons were detected in order to visualize the surfaces of the samples. The chemical analyses of the sample phases were performed using the energy dispersive X-ray (EDX) technique with the two characteristic spectral lines of Cu (K-line) and Sn (L-line). Standard deviations for the chemical compositions obtained from EDX were about ±1 at%.

3. RESULTS AND DISCUSSION

The molar enthalpy data for the additions of bulk Co into the liquid SAC387 alloy are presented in Tables 1A–1G. Since the Co additions in this paper are presented in at. %, the composition of the SAC387 master alloy is also given in at. % (Sn-4.1Ag-1.3Cu) below. A kink in the concentration dependencies of the integral enthalpies of mixing as well as constant partial enthalpy values indicate the transition of the investigated state region.

Table 1E. Enthalpies of Mixing Data for the Addition of Bulk Co into the Liquid Sn–4.1Ag–1.3Cu Alloy; Standard States: Pure Liquid Metals; Values in Bold Font Refer to Liquid–Solid Two–State Region

mol Co dropped \(n_{\text{Co}} \) (10\(^{-3}\) mol)	measured enthalpy \(\Delta H_{\text{pul}} \) (J mol\(^{-1}\))	partial molar enthalpy \(x_{\text{Co}}^a \) (at. %)	integral molar enthalpy \(\Delta_{\text{mix}}H \) (J mol\(^{-1}\))	integral molar enthalpy \(\Delta_{\text{mix}}H \) (J mol\(^{-1}\))	
0.1717	12595	0.0009	−27256	0.0018	150
0.1578	12641	0.0026	−27211	0.0035	55
0.1178	12324	0.0041	−27527	0.0047	21
0.1712	13503	0.0056	−26348	0.0065	−26
0.2830	13965	0.0079	−25887	0.0094	−103
0.2204	12976	0.0105	−26875	0.0116	−164
0.2047	12945	0.0127	−26906	0.0137	−220
0.1719	14368	0.0146	−25483	0.0155	−265
0.2965	14150	0.0169	−25702	0.0184	−342

\(^a \)Average of \(x_{\text{Co}} \) before and after drop; \(^b \) \(x_{\text{Co}} \) after drop

Table 1F. Enthalpies of Mixing Data for the Addition of Bulk Co into the Liquid Sn–4.1Ag–1.3Cu Alloy; Standard States: Pure Liquid Metals; Values in Bold Font Refer to Liquid–Solid Two–State Region

mol Co dropped \(n_{\text{Co}} \) (10\(^{-3}\) mol)	measured enthalpy \(\Delta H_{\text{pul}} \) (J mol\(^{-1}\))	partial molar enthalpy \(x_{\text{Co}}^a \) (at. %)	integral molar enthalpy \(\Delta_{\text{mix}}H \) (J mol\(^{-1}\))	integral molar enthalpy \(\Delta_{\text{mix}}H \) (J mol\(^{-1}\))	
0.1162	7236	0.0006	26715	0.0012	214
0.1653	7312	0.0021	−26638	0.0029	158
0.1807	7211	0.0038	−26740	0.0047	109
0.1816	7252	0.0056	−26699	0.0066	60
0.1812	7931	0.0075	−26200	0.0084	12
0.1937	7707	0.0093	−26243	0.0103	−39
0.2147	8337	0.0114	−25614	0.0124	−94
0.2155	7269	0.0135	−26882	0.0146	−151
0.2200	8147	0.0157	−25804	0.0167	−208
0.2185	8168	0.0178	−25782	0.0189	−264
0.2276	7937	0.0200	−26013	0.0211	−322
0.2415	8044	0.0223	−25446	0.0235	−382
0.2592	8186	0.0247	−25764	0.0260	−447
0.2791	9260	0.0273	−24691	0.0286	−514
0.2778	9706	0.0300	−24244	0.0313	−579
0.2887	9818	0.0327	−24133	0.0340	−646
0.2979	9164	0.0355	−24787	0.0369	−716
0.3231	9701	0.0384	−24250	0.0399	−791
0.3354	9818	0.0415	−24333	0.0430	−867
0.3889	9740	0.0448	−24211	0.0466	−955
0.4038	8487	0.0485	−25463	0.0504	−1050
0.4561	10152	0.0524	−23799	0.0545	−1150
0.5684	9480	0.0571	−24471	0.0597	−1277
0.6334	9904	0.0625	−24047	0.0653	−1414
0.8022	9839	0.0689	−24112	0.0724	−1586

\(^a \)Average of \(x_{\text{Co}} \) before and after drop; \(^b \) \(x_{\text{Co}} \) after drop
Table 1G. Enthalpies of Mixing Data for the Addition of Bulk Co into the Liquid Sn–4.1Ag–1.3Cu Alloy; Standard States: Pure Liquid Metals; Values in Bold Font Refer to Liquid–Solid Two–State Region

mol Co dropped	measured enthalpy	partial molar enthalpy	integral molar enthalpy		
n_{Co} (10$^{-3}$ mol)	ΔH_{mix} (J mol$^{-1}$)	x_{Co} (at. %)	$\Delta H_{mix}^\Delta H_{Co}$ (J mol$^{-1}$)	x_{Co} (at. %)	$\Delta H_{mix}^\Delta H_{mix}$ (J mol$^{-1}$)
0.2751	8225	0.0032	25755	0.0065	79
0.3334	8133	0.0103	25847	0.0142	122
0.3972	8661	0.0187	25339	0.0232	353
0.2731	8970	0.0262	25009	0.0293	507
0.6589	8894	0.0333	25085	0.0372	708
0.108	9329	0.0406	24651	0.0440	875
0.2502	9542	0.0466	24438	0.0493	1008
0.4219	9639	0.0538	24340	0.0582	1226
0.6968	9798	0.0621	24181	0.0659	1413
0.4347	10190	0.0703	23790	0.0748	1626
0.4302	10403	0.0791	23576	0.0834	1830
0.5006	10038	0.0883	23942	0.0932	2067
0.4516	10247	0.0975	23733	0.1019	2274
0.3842	10499	0.1055	23481	0.1091	2445
0.5271	10174	0.1140	23805	0.1189	2679
0.5367	10279	0.1237	23700	0.1286	2911
0.4103	9977	0.1322	24002	0.1359	3088
0.6428	10103	0.1415	23877	0.1471	3357
0.5926	10329	0.1521	23651	0.1571	3596
0.7167	10000	0.1630	23799	0.1690	3882
0.7146	10048	0.1747	23931	0.1804	4159
0.7337	10208	0.1862	23771	0.1919	4433
0.6751	10360	0.1970	23619	0.2022	4677
0.7507	10104	0.2077	23876	0.2133	4945
0.7850	10364	0.2189	28530	0.2246	4996

*Average of x_{Co} before and after drop; bx$_{Co}$ after drop.

Figure 1. Partial enthalpy of mixing of Co$_x$(Sn-4.1Ag-1.3Cu)$_{100-x}$ alloys (▲ = first measurement; red ▲ = second measurement) in comparison to Co$_x$Sn$_{100-x}$ alloys (○) at 873 K.\(^{23}\)

The Journal of Physical Chemistry C

were estimated at different temperatures. All values with the bold font in Tables 1A–1G refer to compositions outside the single-phase liquid state. It should also be noted that the obtained molar enthalpy data for quaternary Ag–Co–Cu–Sn alloys are practically identical to our recent data for the binary Co–Sn system.\(^{23}\) The difference between the partial enthalpies of mixing for the addition of bulk Co to liquid Sn and to the liquid Sn–4.1Ag–1.3Cu alloy does not exceed 1 kJ mol$^{-1}$ (cf. Figure 1). This is not surprising because of the high content of Sn in the SAC alloy.

It should be noted that in our measurements at 873 K, we observed an additional exothermic reaction immediately after the main endothermic reaction, whereas such effects were not observed at other temperatures. The total reaction time did not exceed 1500 s.

The resulting heat effects obtained for the addition of nanosized Co into the liquid Sn-4.1Ag-1.3Cu alloy show a marked difference compared to the values for bulk Co additions (Table 2A–2E). This difference is concentration independent.

Table 2A. Enthalpies of Mixing Data for the Addition of Nano Co into the Liquid Sn–4.1Ag–1.3Cu Alloy; Standard States: Pure Liquid Metals

mol “nanosized” Co dropped	measured enthalpy	partial molar enthalpy	integral molar enthalpy		
n_{Co} (10$^{-3}$ mol)	ΔH_{mix} (J mol$^{-1}$)	x_{Co} (at. %)	$\Delta H_{mix}^\Delta H_{Co}$ (J mol$^{-1}$)	x_{Co} (at. %)	$\Delta H_{mix}^\Delta H_{mix}$ (J mol$^{-1}$)
0.2355	20454	0.0026	21257	0.0051	38
0.2890	20273	0.0082	21439	0.0113	171
0.1514	20616	0.0129	21095	0.0145	239
0.1617	20589	0.0161	21122	0.0178	309
0.1676	20369	0.0195	21342	0.0212	382
0.1984	20120	0.0232	21592	0.0251	468
0.2029	20165	0.0271	21546	0.0291	555
0.1554	20766	0.0306	20945	0.0321	618
0.1447	21536	0.0335	20176	0.0348	673
0.1553	21004	0.0363	20707	0.0377	733
0.2231	20429	0.0398	21282	0.0419	822
0.1743	21924	0.0434	19787	0.0450	884
0.1924	21470	0.0467	20241	0.0484	954

*Average of x_{Co} before and after drop; bx$_{Co}$ after drop.

at the investigated temperatures and is equal to $(-7.5 \pm 1.0) \times 10^3$ J mol$^{-1}$ (cf. Figure 2a–c). It should be also noted that the average error of estimated data for ΔH_{Signal}^b and ΔH_{mix} does not exceed 1000 J mol$^{-1}$.

The measured enthalpy (ΔH_{Signal}) consists generally of two terms (see eq 1); however, we think that the additional heat effect resulting in less positive values of ΔH_{Signal} relates only to the first term of eq 1. The enthalpy of reaction (ΔH) corresponds to the heat effects for interactions between atoms of the added component, i.e. liquid Co (remember that the standard state in Tables 1A–1G and Table 2A–2E is metastable liquid Co), and the liquid Sn-4.1Ag-1.3Cu alloy.

Therefore, this term should be the same independently whether Co is added in bulk or in nanoform. We suggest that this difference is caused by the excess enthalpy of the Co
The addition of nano Co can be rewritten as

\[\Delta H_{\text{signal}} = \Delta H_{\text{signal}}^\text{Co} - \Delta H_{\text{signal}}^\text{bulk} \]

where \(\Delta H_{\text{signal}}^\text{Co} \) is the excess surface enthalpy of Co nanoparticles in J mol\(^{-1}\), which has a positive value. This additional term should be connected with the decrease in the melting temperature and latent heat of nanosized Co particles similarly to other metals in nanosized form.\(^{3,18,24}\) It is provided here with a negative sign (similar to \(H_{\text{mix, T}} \)), as the surface of the nanoparticles exists in these experiments only in the initial state.

Table 2B. Enthalpies of Mixing Data for the Addition of Nano Co into the Liquid Sn-4.1Ag-1.3Cu Alloy; Standard States: Pure Liquid Metals

mol “nanized” Co dropped	measured enthalpy \(\Delta H_{\text{signal}} \) (J mol\(^{-1}\))	partial molar enthalpy \(x_{C_{\text{co}}}a \) (at. %)	integral molar enthalpy \(\Delta_{\text{mix}}H \) (J mol\(^{-1}\))		
\(n_{0.1140} \) (10\(^{-3}\) mol)	13847	0.0013	−24772	0.0026	26 ± 3
\(0.0721 \)	12910	0.0034	−25710	0.0042	−16 ± 5
\(0.0740 \)	13482	0.0050	−25137	0.0059	−57 ± 8
\(0.1094 \)	14676	0.0115	−23944	0.0127	−224
\(0.1249 \)	16532	0.0140	−22087	0.0153	−283
\(0.0596 \)	14457	0.0160	−2162	0.0166	−314
\(0.0835 \)	17940	0.0175	−20679	0.0183	−350
\(0.1006 \)	15986	0.0194	−22633	0.0204	−398
\(0.0816 \)	16097	0.0213	−22522	0.0221	−436
\(0.1710 \)	17843	0.0239	−20776	0.0256	−509
\(0.1201 \)	15868	0.0268	−22752	0.0281	−565
\(0.1133 \)	16973	0.0292	−21646	0.0303	−613
\(0.0507 \)	16427	0.0307	−22192	0.0312	−634

Table 2C. Enthalpies of Mixing Data for the Addition of Nano Co into the Liquid Sn-4.1Ag-1.3Cu Alloy; Standard States: Pure Liquid Metals

mol “nanized” Co dropped	measured enthalpy \(\Delta H_{\text{signal}} \) (J mol\(^{-1}\))	partial molar enthalpy \(x_{C_{\text{co}}}a \) (at. %)	integral molar enthalpy \(\Delta_{\text{mix}}H \) (J mol\(^{-1}\))		
\(n_{0.0893} \) (10\(^{-3}\) mol)	13905	0.0010	−24715	0.0020	42
\(0.0809 \)	15734	0.0028	−22885	0.0037	1
\(0.0798 \)	14076	0.0046	−24544	0.0054	−41
\(0.0619 \)	15184	0.0061	−23435	0.0067	−72
\(0.0597 \)	15532	0.0073	−23087	0.0080	−101
\(0.1223 \)	16026	0.0092	−22593	0.0105	−159
\(0.0837 \)	13970	0.0114	−24649	0.0122	−202
\(0.1150 \)	15471	0.0134	−23148	0.0146	−257
\(0.1215 \)	16197	0.0158	−22422	0.0170	−312
\(0.1210 \)	13943	0.0182	−24676	0.0194	−371
\(0.1264 \)	16626	0.0206	−21993	0.0218	−426
\(0.1429 \)	14827	0.0232	−23792	0.0246	−492
\(0.1088 \)	13268	0.0256	−23531	0.0266	−545
\(0.1020 \)	14098	0.0276	−24521	0.0285	−592
\(0.1710 \)	16393	0.0301	−22227	0.0317	−663
\(0.4397 \)	16580	0.0358	−22039	0.0399	−843
\(0.1892 \)	18417	0.0415	−20202	0.0431	−909

Average of \(x_{C_{\text{co}}} \) before and after drop; \(b x_{C_{\text{co}}} \) after drop.

It should be also noted that Table 2A–2E shows the recalculated molar enthalpies values including the excess enthalpy of Co nanoparticles term.

The partial and integral enthalpies of mixing, after taking into account the surface effect, are in good agreement. This is shown in Figure 3 where, as an example, the partial (Figure 3a) and integral enthalpies of mixing (Figure 3b) for additions of Co in bulk and nanized form at 1073 K are plotted as a function of the Co content.

Crossing the liquidus line into a two-phase field is usually indicated by a kink in the integral enthalpy of mixing and by constant values in the partial mixing enthalpy. The relatively small difference in the heat effects for minor additions of Co nanoparticles. Thus, the corresponding equation for \(\Delta H_{\text{signal}} \) for the addition of nano Co can be rewritten as

\[
\Delta H_{\text{signal}} = \Delta H_{\text{signal}}^\text{bulk} - \Delta H_{\text{signal}}^\text{ex}
\]

where \(\Delta H_{\text{signal}}^\text{ex} \) is the excess surface enthalpy of Co nanoparticles in J mol\(^{-1}\), which has a positive value. This additional term should be connected with the decrease in the melting temperature and latent heat of nanosized Co particles similarly to other metals in nanosized form.\(^{3,18,24}\) It is provided here with a negative sign (similar to \(H_{\text{mix, T}} \)), as the surface of the nanoparticles exists in these experiments only in the initial state.
Table 2D. Enthalpies of Mixing Data for the Addition of Nano Co into the Liquid Sn-4.1Ag-1.3Cu Alloy; Standard States: Pure Liquid Metals

n_{Co} (10⁻³ mol)	measured enthalpy ΔH_{mix}^a (J mol^{−1})	partial molar enthalpy x_{Co}^a (at. %)	integral molar enthalpy Δ_{mix} H (J mol^{−1})	T = 873 K; first measurement; starting amount: n_{Ag} = 3.9667 × 10^{−3} mol; n_{Cu} = 1.2404 × 10^{−3} mol; n_{Sn} = 90.5884 × 10^{−3} mol	
0.3341	5474	0.0017	−26978	0.0035	150
0.2002	5889	0.0045	−26564	0.0055	56
0.3014	6206	0.0070	−26247	0.0085	1
0.2550	6117	0.0098	−26335	0.0111	−148
0.3680	6715	0.0129	−25738	0.0147	−243
0.2413	6506	0.0159	−25946	0.0171	−304
0.2579	6224	0.0183	−26229	0.0195	−370
0.4100	6809	0.0215	−25643	0.0234	−471
0.2713	7158	0.0247	−25294	0.0259	−535
0.1680	7386	0.0267	−25066	0.0275	−574
0.3068	7284	0.0289	−25168	0.0303	−645
0.3066	7196	0.0316	−25256	0.0330	−716
0.2079	7606	0.0339	−24846	0.0348	−761
0.2835	7208	0.0361	−25244	0.0373	−825

^aAverage of x_{Co} before and after drop; ^bx_{Co} after drop.

Table 2E. Enthalpies of Mixing Data for the Addition of Nano Co into the Liquid Sn-4.1Ag-1.3Cu Alloy; Standard States: Pure Liquid Metals

n_{Co} (10⁻³ mol)	measured enthalpy ΔH_{mix}^a (J mol^{−1})	partial molar enthalpy x_{Co}^a (at. %)	integral molar enthalpy Δ_{mix} H (J mol^{−1})	T = 873 K; second measurement; starting amount: n_{Ag} = 4.0365 × 10^{−3} mol; n_{Cu} = 1.2622 × 10^{−3} mol; n_{Sn} = 92.1782 × 10^{−3} mol	
0.4066	5492	0.0021	−26985	0.0041	150
0.3933	4969	0.0061	−27508	0.0081	37
0.3406	5628	0.0097	−26849	0.0114	−163
0.2384	5322	0.0126	−27156	0.0137	−226
0.3545	6575	0.0154	−25902	0.0171	−315
0.3477	7557	0.0187	−24921	0.0204	−398
0.2063	5470	0.0213	−27007	0.0223	−450
0.3867	7223	0.0241	−25254	0.0258	−541
0.4802	6574	0.0280	−25904	0.0302	−655
0.4334	7051	0.0321	−25426	0.0341	−754
0.4824	8586	0.0362	−23892	0.0383	−857
0.4315	6939	0.0402	−25538	0.0421	−953
0.4315	7846	0.0439	−24631	0.0457	−1044
0.2119	7299	0.0466	−25178	0.0474	−1087
0.2773	7041	0.0486	−25436	0.0497	−1145
0.3670	8884	0.0512	−23593	0.0527	−1216
0.4285	8910	0.0544	−23567	0.0562	−1299

^aAverage of x_{Co} before and after drop; ^bx_{Co} after drop.

both in the liquid and the semisolid Ag–Co–Cu–Sn alloys allows the estimation of the concentration of this transition only from the partial enthalpy of mixing data. These difficulties for the liquidus limit estimation were already pointed out for the investigation of the enthalpies of mixing in the binary Co–Sn system. The estimated limiting liquidus concentration values in the present study, approximately 2 at. % Co at 673 K, 4 at. % Co at 873 K, and 14 at. % Co at 1073 K are slightly larger (up to 1–2 at. %) than those for the binary Co–Sn system. However, it is still suggested that these transitions are connected with the precipitation of CoSn₂ (at 673 K) and CoSn (at 873 and 1073 K), in analogy to the corresponding binary phase diagram. In order to prove that all pieces of the solid component dropped into the liquid bath had completely dissolved, selected alloys were investigated by means of SEM-EDX and powder XRD measurements after the calorimeter had cooled. The results of phase analyses along with BSE images of two exemplary alloys can be found in Table 3. No residual pure Co was found in the investigated samples. However, even after slow cooling in the calorimeter, the samples are not in an equilibrium state. This is obvious by the presence of six different phases in a four-component system. Nevertheless, the absence of (Co) indicates full mixing and precipitation of Co-poor phases, either during measurement (beyond the liquidus limit) or during cooling after the measurement.
The XRD phase analysis fully confirmed the phases that had been found by SEM-EDX. Based on the SEM-EDX results Cu atoms replaced Co in the CoSn₃ compound, which was formed on cooling at 1226 ± 2 K.

4. THEORETICAL CONSIDERATIONS

In the present work, it is estimated that the term relating to the excess enthalpy of nanosized Co is practically the same for all investigated temperatures and equals to about (7.5 ± 1.0) · 10³ J·mol⁻¹. This term relates to the surface enthalpy of 1 mol of nanosized Co as

\[\Delta H_{i, \text{surf}} = \Delta H_{i, \text{surf}} A_s \]

where \(\Delta H_{i, \text{surf}} \) is the surface enthalpy in J m⁻² and \(A_s \) is the surface area for 1 mol of nanoparticles in the unit of m²·mol⁻¹. Assuming a strictly spherical shape of the nanoparticles, \(A_s \) can be expressed as

\[A_s = 3 \frac{V_M}{r} = 3 \frac{M}{\rho r} \]

where \(V_M \) is the molar volume; \(M \) is the molar mass; \(\rho \) is the density; and \(r \) is the radius of the particles. Inserting the corresponding values for Co, i.e. \(M = 58.933 \times 10^{-3} \) kg·mol⁻¹ and \(\rho = 8.890 \times 10^3 \) kg·m⁻³, and the radius of the Co nanoparticles (∼14 nm) results in a molar surface area of about 1.42 × 10⁵ m²·mol⁻¹. As mentioned above, the BET surface area of the Co nanopowder used here is equal to \(A_{\text{BET}} = (50 \pm 10)\times 10^3 \) m²·kg⁻¹ corresponding to \(A_s = (2.95 \pm 0.59) \times 10^3 \) m²·mol⁻¹. The obtained discrepancy between calculated and technical values is most probably caused by the variation in size (particle size range is given as 0–60 nm, with an average size of 28 nm) and shape of the employed nanoparticles; these values, in turn, combined with the experimental value of (7.5 ± 1.0) · 10³ J·mol⁻¹, give a surface enthalpy of about (2.85 ± 0.55) J·m⁻².

On the basis of the data presented above, it was decided to describe the observed phenomenon, related to the nano Co additions, according to the thermodynamic properties of nanosized particles. The molar enthalpy of nanoparticles can be expressed as

\[\Delta H_{i, \text{nano}} = H_{i, \text{bulk}} + \Delta H_{\text{ex}} \]

with

\[\Delta H_{\text{ex}} = A_{\text{spec}} V_{M,T_0} \sigma_{g,H,T_0} \]

where \(H_{i, \text{nano}} \) (J·mol⁻¹) is the molar enthalpy of the solid nanoparticles, \(H_{i, \text{bulk}} \) (J·mol⁻¹) is the molar enthalpy of the bulk solid; \(A_{\text{spec}} \) (m⁻¹) is the specific surface area of the nanoparticles defined as the ratio of their surface area to their volume, \(\sigma_{g,H,T_0} \) (J·m⁻²) is the enthalpy term of the surface energy of the solid nanoparticles at the dropping temperature. Although both molar volume and surface energy are T-dependent quantities, the total value of \(\Delta H_{\text{ex}} \) (as it is at the dropping temperature) is lost due to the elimination of the surface of the nanoparticles upon their dissolution in the liquid alloy, and therefore, the measured nanoheat-effect is not

Figure 2. Concentration dependencies of the measured enthalpy at 1173 K (a), 1073 K (b) and 873 K (c) (□ – for additions of bulk Co; ■ – for additions of nanosized Co; red ▲ – after addition of the excess enthalpy term (7.5 × 10³ J·mol⁻¹) to \(\Delta H_{\text{surf}} \) for nanosized Co additions).

Figure 3. Partial (a) and integral (b) enthalpies of mixing of liquid Sn-4.1Ag-1.3Cu₁₀₀₋ₓCoₓ alloys (■ – bulk Co (first measurement); green ■ – bulk Co (second measurement); red ▲ – nano Co (first measurement, recalculated); Δ – nano Co (second measurement, recalculated) at 1073 K.
The enthalpy of mixing of Co with a liquid Sn-4.1Ag-1.3Cu (SAC387) alloy was determined by drop calorimetry up to a temperature difference of about 14 at. % at 1173 K and 1073 K, 4 at. % at 873 K and 3 at. % at 673 K. A clear difference was observed in the immediately measured heat effect, depending on the type of Co which was added: when a Co nanopowder was used, the observed heat effect was by about 7.5×10^2 J·mol$^{-1}$ more negative than for the use of bulk Co. It is shown that this difference has nothing to do with the molar enthalpy of mixing of liquid components but is caused by the excess surface enthalpy of the Co nanoparticles, eliminated during the dissolution process. This quantity is not dependent on the calorimeter temperature; it is determined only by the drop temperature, as all surface heat introduced into the calorimeter at drop temperature disappears during the dissolution of the nanoparticles into the liquid alloy, due to full elimination of their initial surface area.

ACKNOWLEDGMENTS

Financial support for this study came from the Austrian Science Fund (FWF) under project nos. P 26304 and P 27049. The authors also want to acknowledge the help of Prof. M. Zehetbauer and Prof. E. Schafer from the Faculty of Physics, University of Vienna, with the Sn-4.1Ag-1.3Cu foil preparation and Dr. St. Puchegger of the Faculty of Physics, University of Vienna, with the SEM studies. The work by G.K. was performed in the Centre of Applied Materials Science and Engineering at the University of Miskolc and within the framework of the TA MOP-4.2.2.A-11/1/KONV-2012-0019 project, and is carried out as part of the TA MOP-4.2.2.D-15/1/KONV-2015-0017 project in the framework of the New Széchenyi Plan, supported by the European Union, and cofinanced by the European Social Fund.

REFERENCES

(1) Ahmad, I.; Jalar, A.; Majlis, B. Y.; Wagiran, R. Reliability of SAC405 and SAC387 as Lead-Free Solder Ball Material for Ball Grid Array Packages. *Int. J. Eng. Technol.* **2007**, *4*, 123–133.
(2) Subramanian, K. N.; Bieler, T. R.; Lucas, J. P. Microstructural Engineering of Solders. J. Electron. Mater. 1999, 28, 1176–1183.
(3) Kang, S. K.; Lauro, P. A.; Shih, D. Y.; Henderson, D. W.; Puttlitz, K. J. Microstructure and Mechanical Properties of Lead-Free Solders and Solder Joints Used in Microelectronic Applications. IBM J. Res. Dev. 2005, 49, 607–620.
(4) Suhir, E.; Lee, Y. C.; Wong, C. P. Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging. Springer: New York, 2007.
(5) Pang, J. H. L. Lead Free Solder: Mechanics and Reliability; Springer: New York, 2012.
(6) Gao, F.; Takemoto, T.; Nishikawa, H. Effects of Co and Ni Addition on Reactive Diffusion between Sn-3.5Ag Solder and Cu During Soldering and Annealing. Mater. Sci. Eng., A 2006, 420, 39–46.
(7) Anderson, I. E.; Cook, B. A.; Harringa, J.; Terpstra, R. L. Microstructural Modifications and Properties of Sn-Ag-Cu Solder Joints Induced by Alloying. J. Electron. Mater. 2002, 31, 1166–1174.
(8) Fima, P.; Ganczar, T.; Pstrus, J.; Bukat, K.; Sitek, J. Thermophysical Properties and Wetting Behavior on Cu of Selected SAC Alloys. Soldering Surf. Mount Technol. 2012, 24, 71–76.
(9) Kotadia, H. R.; Mokhtari, O.; Clode, M. P.; Green, M. A.; Master, S. H. Intermetallic Compound Growth Suppression at High Temperature in SAC Solder with Zn Addition on Cu and Ni-P Substrates. J. Alloys Compd. 2012, 511, 176–188.
(10) Haseeb, A. S. M. A.; Leng, T. S. Effects of Co Nanoparticle Addition to Sn-3.8Ag-0.7Cu Solder on Interfacial Structure after Reflow and Ageing. Intermetallics 2011, 19, 707–712.
(11) Gain, A. K.; Chan, Y. C. The Influence of a Small Amount of Al and Ni Nano-Particles on the Microstructure, Kinetics and Hardness of Sn-Ag-Cu Solder on OSP-Cu Pads. Intermetallics 2012, 29, 48–55.
(12) Noor, E. E. M.; Singh, A.; Yap, T. C. A Review: Influence of Nano Particles Reinforced on SAC Solder Alloy. Soldering Surf. Mount Technol. 2013, 25, 229–241.
(13) Hu, W.; Xiao, S.; Deng, H.; Luo, W.; Deng, L. Thermodynamic Properties of Nano-Silver and Alloy Particles. In Silver Nanoparticles; Perep, D. P., Ed.; InTech: Rijeka, Croatia, 2010.
(14) Navrotsky, A. Energetics of Nanoparticle Oxides: Interplay between Surface Energy and Polymorphism. Geochem. Trans. 2003, 4, 34–37.
(15) Lai, S. L.; Guo, J. Y.; Petrova, V.; Ramanath, G.; Allen, L. H. Size-Dependent Melting Properties of Small Tin Particles: Nano-calorimetric Measurements. Phys. Rev. Lett. 1996, 77, 99–102.
(16) Ningshougham, R. S.; Mishra, R.; Das, D.; Dey, G. K.; Kulshreshtha, S. K. Excess Enthalpy and Luminescence Studies of SnO Nanoparticles. J. Nanosci. Nanotechnol. 2008, 8, 4176–4180.
(17) Purton, J. A.; Parker, S. C.; Allan, N. L. Monte Carlo Simulation and Free Energies of Mixed Oxide Nanoparticles. Phys. Chem. Chem. Phys. 2013, 15, 6219–6225.
(18) Yang, S. Y.; Qi, W. H.; Cheng, Y. J.; Huang, B. Y.; Wang, M. P.; Li, Y. J. Universal Relation for Size Dependent Thermodynamic Properties of Metallic Nanoparticles. Phys. Chem. Chem. Phys. 2011, 13, 10652–10660.
(19) Flandorfer, H.; Gehringer, F.; Hayer, E. Individual Solutions for Control and Data Acquisition with the Ptc. Thermochim. Acta 2002, 382, 77–87.
(20) Dinsdale, A. T. SGTE Data for Pure Elements. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 1991, 15, 317–425.
(21) Technical Data Sheet, Cobalt Nanopowder, 28 nm; IoLiTec Ionic Liquids Technologies GmbH: Heilbronn, Germany, 2007; pp 1–3.
(22) Lue, C.; Flandorfer, H.; Ipser, H. Lead-Free Solder Materials: Experimental Enthalpies of Mixing in the Ag-Cu-Sn and Cu-Ni-Sn Ternary Systems. Z. Metallkd. 2004, 95, 151–163.
(23) Yakymovych, A.; Furttauer, S.; Elmahfoudi, A.; Ipser, H.; Flandorfer, H. Enthalpy of Mixing of Liquid Co-Sn Alloys. J. Chem. Thermodyn. 2014, 74, 269–285.
(24) Zhang, M.; Efremov, M. Y.; Schietekatte, F.; Olson, E. A.; Kwan, A. T.; Lai, S. L.; Wisleder, T.; Greene, J. E.; Allen, L. H. Size-Dependent Melting Point Depression of Nanostructures: Nano-calorimetric Measurements. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62, 10548–10557.
(25) Lang, A.; Jeitschko, W. Two New Phases in the System Cobalt-Tin: The Crystal Structures of α- and β-CoSn3. Z. Metallkd. 1996, 87, 759–764.
(26) Plevachuk, Y.; Skyrychuk, V.; Shtablavski, I.; Mudry, S.; Brillo, J.; Kobatake, H.; Yakymovych, A.; Furttauer, S.; Skołyszewska-Kuliberger, B.; Richter, K. W.; et al. Liquid Co-Sn Alloys at High Temperatures: Structure and Physical Properties. Phys. Chem. Liq. 2015, DOI: 10.1080/00319104.2015.1115327
(27) Kaptay, G. Nano-Calphad: Extension of the Calphad Method to Systems with Nano-Phases and Complexions. J. Mater. Sci. 2012, 47, 8320–8335.
(28) Kaptay, G. A Unified model for the Cohesive Enthalpy, Critical temperature, Surface Tension and Volume Thermal Expansion Coefficient of Liquid Metals of bcc, fcc and hcp Crystals. Mater. Sci. Eng., A 2008, 495, 19–26.
(29) Mezey, L. Z.; Giber, J. The Surface Free-Energies of Solid Chemical-Elements - Calculation from Internal Free Enthalpies of Atomization. Jpn. J. Appl. Phys. 1982, 21, 1569–1571.
(30) Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. JANAF Thermochemical Tables, Third Edition. J. Phys. Chem. Ref. Data 1985, 14 (Suppl. 1), 1–1856.
(31) Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D. Thermal Expansion; Metallic Elements and Alloys. In Thermophysical Properties of Matter, Vol. 12; Plenum Press: New York, 1975.

The Journal of Physical Chemistry C

DOI: 10.1021/acs.jpcch.5b09445
J. Phys. Chem. C 2016, 120, 1881–1890