Multifunctional Alkalophilic α-Amylase With Diverse Raw Seaweed Degrading Activities

xiaoqian gu
First Institute of Oceanography, Ministry of Natural Resources https://orcid.org/0000-0002-5374-093X

Liping Fu
First Institute of Oceanography, Ministry of Natural Resources

Aihong Pan
First Institute of Oceanography, Ministry of Natural Resources

Yuanyuan Gui
College of Environmental Science and Engineering Qingdao University

Qian Zhang
First Institute of Oceanography, Ministry of Natural Resources

Jiang Li (lijiang@fio.org.cn)
First Institute of Oceanography, Ministry of Natural Resources

Original article

Keywords: metagenomic, α-amylase, multifunctional enzyme, enzymatic digestion

DOI: https://doi.org/10.21203/rs.3.rs-702876/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Uncultured microbes are an important resource for the discovery of novel enzymes. In this study, an amylase gene (*amy2587*) that codes a protein with 587 amino acids (Amy2587) was obtained from the metagenomic library of macroalgae-associated bacteria. Recombinant Amy2587 was expressed in *Escherichia coli* BL21 (DE3) and was found to simultaneously possess α-amylase, agarase, carrageenase, cellulase, and alginate lyase activities, moreover, recombinant Amy2587 showed high thermostability and alkali resistance which are important characteristics for industrial application. To investigate the multifunctional mechanism of Amy2587, three motifs (functional domains) in the Amy2587 sequence were deleted to generate three truncated Amy2587 variants. The results showed that, although these functional domains affected the multiple substrates degrading activity of Amy2587, they did not wholly explain its multifunctional characteristics. To apply the multifunctional activity of Amy2587, three seaweed substrates (*Grateloupia licina*, *Chondrus ocellatus*, and *Scagassum*) were digested using Amy2587. After 2 h, 6 h, and 24 h of digestion, 121.2 ± 4 µg/ml, 134.8 ± 6 µg/ml, and 70.3 ± 3.5 µg/ml of reducing sugars were released, respectively. These results show that Amy2587 directly and effectively degraded three kinds of raw seaweeds. This finding provides a theoretical basis for one-step enzymatic digestion of raw seaweeds to obtain seaweed oligosaccharides.

Introduction

α-Amylases hydrolyze their substrate by breaking the α-1,4-glycosidic bonds in starch molecules releasing glucose, maltose, and oligosaccharide chains as the products (Gupta et al. 2003; Kandra 2003; Rajagopalan and Krishnan 2008). This enzymatic process is one of the earliest to be applied industrially for the production of sugars. α-Amylases also are common in animals, plants, and microorganisms (Souza and Magalhães 2010; Yang et al. 2010; Kandra 2003).

Traditionally, enzymes were believed to have high selectivity or specificity for their substrates and reactions (Dan 2020). However, enzymes with cross-reactivity or promiscuity have been discovered and characterized (Liu et al. 2016; Khersonsky et al. 2006; Pocker and Stone 1965), and increasing numbers of multifunctional enzymes that can hydrolyze various substrates to produce oligosaccharides have been reported.

Multifunctional enzymes (also called moonlighting enzymes or promiscuous enzymes) may be a common mechanism of communication and cooperation between different functions and pathways (Carbonell 2011; Jeffery 2003; Jeffery and Constance 2003; Huberts and Klei 2010). Two important characteristics of moonlighting proteins are multiple functions and independency of each function (Huberts and Klei 2010; Cheng et al. 2012).

Macroalgae surfaces harbor large numbers of microbes (Cundell et al. 1977), and the enzymes produced by these microbes are not only involved in the degradation of macroalgae but also are key factors in the
oceans’ carbon cycle. Bacteria, especially those associated with macroalgae, are an important resource for the discovery of novel enzymes (Michel et al. 2013).

The large numbers of microbes on algae surfaces have been shown to synthesize a large number of compounds that possess a wide variety of biological activities, including antitumor, antiviral, antibiotic, dehalogenase, and algae-specific polysaccharide-degrading enzyme (e.g., agarases, carrageenases, and alginate lyases) activities (Martin et al. 2014). These findings show the great potential of these compounds for applications in biomedicine, environmental protection, and biological products research.

Screening the activities of proteins isolated from culturable microbes is still the main method for obtaining novel enzymes. However, the application of metagenomic technologies to explore marine environments has provided a new way to screen for novel enzymes, especially those produced by uncultured microbes (Tian et al. 2012; Bhattacharyya et al. 2014). Uncultured microbes have long been considered as an important resource for the discovery of novel amylases.

Marine algae have been used extensively in medicine, cosmetics, and food, mostly because of the abundant polysaccharides that they contain. Furthermore, algal oligosaccharides have been found to specifically inhibit viruses (Cáceres et al. 2000; Ji et al. 2010), tumors (Hiroishi et al. 2001), and the coagulation process (Alban et al. 2002). Thus, new methods for obtaining oligosaccharides are of interest in several fields. Marine algae have high gelling and viscosity properties, which have limited their further utilization (Li et al. 2019). Traditional methods to prepare oligosaccharides include hydrolysis by acids, oxidation, radiation, microwave, and enzymatic digestion (Duan et al. 2016), but an initial step was required to extract polysaccharide substrates from seaweeds before enzymic degradation, which can cause structural damage. Considering efficiency and cost, enzymes with multiple degradation activities are very attractive for use in industry. Furthermore, the discovery of enzymes that can directly and effectively degrade raw seaweeds will provide a theoretical basis for one-step enzymatic digestion to obtain seaweed oligosaccharides.

Bacillus sp. SYR4, which was isolated from a sandbar, has been used for the reuse of red algae waste (Kang and Kim 2015), and three marine _Ulva lactuca_-associated bacteria (DM1, DM5, and DM 15) were shown to effectively degrade _Sargassum_ waste (Naik et al. 2018). To the best of our knowledge, a multifunctional enzyme that can directly and effectively degrade raw seaweed to obtain seaweed oligosaccharides has not been reported so far.

In this study, we report a novel multifunctional α-amylase (Amy2587) with agarase, carrageenase, cellulase, and alginate lyase activities that we discovered by screening a macroalgae-associated bacteria metagenomic library. The purified Amy2587 was characterized and its multifunctional mechanism was explored by deleting three motifs in its sequence to obtain truncated proteins. The aim of this study is to discover a simple method to prepare oligosaccharides directly from raw seaweed using the novel multifunctional α-amylase Amy2587.
Materials And Methods

Construction of the metagenomic library

Macroalgae samples (Grateloupia filicina, Chondrus ocellatus, and Scagassum) were collected from Halmahera Island (0° 36’N, 127° 52’E), Indonesia. The samples were washed with sterilized seawater, then cut into pieces and placed in a sterile tube. Sterile water was added and shaken three times with a vortex oscillator for 2 min each time. Then, sterile filter membranes (50 mm, 0.22-μm pore size) were used to collect the bacteria for later use. A FastDNA Spin Kit for Soil (MP Bio) was used to extract the genomic DNA from the collected bacteria samples. After testing, the qualified genomic DNA was sent to Jingneng Biotechnology Co., Ltd. (Shanghai, China) for sequencing, assembly, and functional annotation.

Plasmids, vectors, and substrates

Plasmid pET-30a (+) and E. coli BL21 (DE3) were purchased from Tiangen Biotech Co., Ltd. (Beijing, China). Soluble starch, agarose, carrageen, sodium cellulose, and alginate were purchased from Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, china). Grateloupia filicina, Chondrus ocellatus, and Scagassum were collected from Yangkou Beach in Qingdao, China.

Gene synthesis and sequence analysis of Amy2587

The metagenomic data of the macroalgae-associated bacteria samples were analyzed and the amy2587 gene sequence was obtained by screening the metagenomic library and used as the template to synthesize the target gene. The gene was synthetized by Nanjing Kingsley Biotechnology Co., Ltd. (Nanjing, China). BLAST Search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were used to identify the amy2587 sequence and the DNAMAN software package (http://www.lynnon.com/) was used for multiple sequence alignment. And the motifs were analyzed using Motif Search (http://www.genome.jp/tools/motif/).

Expression of amy2587 and purification of Amy2587

The amy2587 gene and pET-30(a) were digested by BamHI and XbaI endonucleases respectively, then ligated by T4 DNA ligase to construct the recombinant plasmid Amy2587+pET-30(a). The recombinant Amy2587 was expressed in E. coli BL21 (DE3). The obtained transformants were incubated on LB medium (50 μg/ml kanamycin) with constant shaking at 150 rpm at 37°C. Isopropyl-β-D-thiogalactopyranoside (IPTG) (0.5 mM) was added to express the fusion protein when the OD600 reached 0.6. After induction for 16 h at 16°C, the cells were collected, placed on ice, and crushed using an ultrasonic cell crushing apparatus.

An Ni-NTA His Tag Kit (Novagen) was used to purify the recombinant Amy2587. First, binding buffer (10 mM imidazole, 50 mM NaH2PO4, 300 mM NaCl, pH 8.0) was used to wash the recombinant Amy2587, then elution buffer with different concentrations of imidazole (20 mM, 80 mM, 140 mM, and 200 mM) was used to elute the recombinant Amy2587 (Riera et al. 2003). Finally, the target protein Amy2587 was
assessed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) (Blakesley and Boezi 1977).

Substrate specificity of Amy2587

To determine the multifunctionality of Amy2587, we studied its substrate specificity. 100 μl purified Amy2587 (0.2 mg/ml) and 900 μl substrate (0.1% soluble starch, 0.1% agarose, 0.1% carrageen, 0.1% sodium cellulose, and 0.1% alginate) were incubated for 40 min at 50°C, and the Amy2587 activity was measured by the 3,5-dinitrosalicylic acid (DNS) method (Chi et al. 2014).

Characterization of Amy2587

To determine the effect of pH on Amy2587 activity, 100 μl purified Amy2587 (0.2 mg/ml) and 900 μl substrate (0.1% soluble starch, 0.1% agarose, 0.1% carrageen, 0.1% sodium cellulose, and 0.1% alginate) were incubated in different buffer systems from pH 4.0–11.0 (pH 4.0–7.0, Na₂HPO₄-citric acid; pH 7.1–8.9, Tris-HCl; pH 9.0–10.6, glycine-NaOH) for 40 min at 50°C. Amy2587 activity was determined by the DNS method. The highest detected enzyme activity was defined as 100%.

To determine the effect of temperature on Amy2587 activity, 100 μl purified Amy2587 (0.2 mg/ml) and 900 μl substrate (0.1% soluble starch, 0.1% agarose, 0.1% carrageen, 0.1% sodium cellulose, and 0.1% alginate) were incubated at 10°C, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, and 80°C for 40 min. The highest detected enzyme activity was defined as 100%.

To determine the thermostability of Amy2587, 100 μl purified Amy2587 (0.2 mg/ml), which had been preincubated at 40°C, 50°C, and 60°C for 0 to 24 h, and 900 μl substrate (0.1% soluble starch, 0.1% agarose, 0.1% carrageen, 0.1% sodium cellulose, and 0.1% alginate) were incubated for 40 min. The highest detected enzyme activity was defined as 100%.

To determine the effect of metal ions (2 mM) on Amy2587, metal cations (Sr²⁺, Ni²⁺, Ca²⁺, Ba²⁺, Mn²⁺, Mg²⁺, Fe²⁺, Fe³⁺, K⁺, Cu²⁺, Na⁺) were added to the corresponding reaction mixtures and incubated for 40 min at 50°C and pH 7.0, the standard assay conditions. The enzyme activity in the absence of metal ions was defined as 100%.

Kinetic parameters assay

The concentrations of the five substrates in the assay system were changed, and changes in the enzymatic reaction rates were measured under the standard assay conditions. The Lineweaver-Burk double-reciprocal method (Morrison 2002) was used to obtain the kinetic parameters and determine the kinetic behaviors of Amy2587.

Variant assay of Amy2587
To explore the multifunctionality of Amy2587, a motif search program was used to analyze the sequence. Three truncates of Amy2587 were constructed in which the α-amylase_N, α-amylase, and Glyco_hydro_66 motifs were each deleted separately; the truncates were named $amy2587a$ (1428 bp), $amy2587b$ (918 bp), and $amy2587c$ (1491 bp), respectively. The three genes were cloned and heterologously expressed in $E. coli$ BL21 cells.

Raw seaweeds digestion using Amy2587

We employed one-step enzymatic digestion method to obtain oligosaccharides directly from raw seaweed using the novel multifunctional α-amylase Amy2587 as follows. Purified enzyme solution (0.2 mg/ml) was added to artificial seawater containing 2% (w/v) of dried red seaweeds, *Grateloupia filicina*, which mainly produces carrageenan, and *Chondrus ocellatus*, which mainly produces agar, and dried brown seaweed, *Scagassum*, which mainly produces alginate. The reaction mixtures were incubated for 0.25 h, 0.5 h, 1 h, 2 h, 6 h, 12 h, and 24 h at 50°C under the constant shaking at 150 rpm. The ability of Amy2587 to digest the three raw seaweed substrates was demonstrated by measuring the reducing sugar content using the 3,5-dinitrosalicylic acid (DNS) method (Kang and Kim 2015).

GenBank accession number

The complete open reading frame of Amy2587 has been deposited in the GenBank database under accession number MW839461.

Results

Sequence analysis of Amy2587

A novel amylase gene $amy2587$ was screened from the metagenomic analysis of macroalgae-associated bacteria. The $amy2587$ gene was 1785-bp long and coded a 587-amino acid long protein with a theoretical molecular weight of 67.46 kDa. Sequence analysis (Fig. 1) showed that the encoded protein had three Pfam motifs: α-amylase_N, α-amylase, and Glyco_hydro_66. And the Amy2587 protein sequences were compared with those of the reported amylase (Fig. 2): WP_011201572.1, WP_105980757.1 and WP_032731646.1 showed that the deduced amino acid sequence of $amy2587$ had high similarity (78%–100%). Based on multiple sequence comparison, Amy2587 had 12 active sites: His209-Tyr211-His251-Met296-Asp329-Val330-Glu358-Trp360-His424-Asp425-Asp469-Arg473 and 3 catalytic sites: Asp329-Glu358-Asp425.

Expression of $amy2587$ and purification of Amy2587

The SDS–PAGE analysis (Fig. 3) showed that a single target band of protein (approximate 68 kDa) was purified when the concentration of the target protein in the imidazole eluent was 80 mM. With IPTG induction (0.5 mM), the expression level of $amy2587$ was significantly increased and the soluble expression ratio was very high, which confirmed the correct expression of $amy2587$ in $E. coli$ BL21 cells.
Multifunctionality of recombinant Amy2587

The purified Amy2587 exhibited specific activity levels of 63.38 ± 0.02 U/mg, 18.37 ± 0.04 U/mg, 18.22 ± 0.02 U/mg, 14.51 ± 0.03 U/mg, and 17.74 ± 0.03 U/mg toward five substrates (soluble starch, agar, carrageen, sodium cellulose, and alginate) (Table 1). These results confirmed that Amy2587 was a multifunctional α-amylase that possessed amylase, agarase, carrageenase, cellulase, and alginate lyase activities simultaneously.

Biochemical characterization of recombinant Amy2587

The highest activities for the α-amylase, agarase, carrageenase, cellulase, and alginate lyase were obtained at 50°C, with about 50% initial activity retained at 40–60°C (Fig. 4a). Notably, Amy2587 showed high thermostability with almost 85% of its original activity retained after incubation at 50°C for 4 h. With increasing incubation times, the enzyme activity gradually decreased, but was still more than 60% after 24 h of incubation (Fig. 4b).

The highest activities for the α-amylase, agarase, carrageenase, cellulase, and alginate lyase were obtained at pH 10.0 (Fig. 4c). Notably, Amy2587 showed high multifunctional activity, with almost 70% of its original activity retained after incubation at pH 11.0 for 24 h. The results indicated that Amy2587 was an alkaliphile enzyme, and such enzymes play important roles in industrial biotransformations.

The metal ions had different effects on Amy2587 activity (Fig. 4d). Mn^{2+}, Fe^{2+}, K^+, and Na^+ had different degrees of promoting effects, and Sr^{2+}, Ni^{2+}, Ca^{2+}, Ba^{2+}, Mg^{2+}, and Fe^{3+} had different degrees of inhibiting effects on Amy2587 activity. Notably, Cu^{2+} dramatically reduced Amy2587 activity, and all the multifunctional enzyme activities were almost completely lost.

Kinetic parameters of Amy2587

The K_m values of Amy2587 for the five substrates, soluble starch, agarose, carrageen, sodium cellulose, and alginate, were 4.06 ± 0.04 mg/mL, 10.10 ± 0.03 mg/mL, 12.25 ± 0.04 mg/mL, 11.54 ± 0.06 mg/mL and 14.91 ± 0.06 mg/mL, respectively (Fig. 5).

Variant assay of Amy2587

To further understand the multifunctionality of Amy2587, three functional domains coded in the $amy2587$ sequence were knocked out. The truncated Amy2587 variants $amy2587a$ (1428 bp), $amy2587b$ (918 bp), and $amy2587c$ (1491 bp) were successfully expressed and purified. The enzymatic activity of Amy2587 was higher than that of the three truncated Amy2587 variants (Amy2587a, Amy2587b, and Amy2587c) for all five substrates, soluble starch, agarose, carrageen, sodium cellulose, and alginate (Table 1).

Digestion of raw seaweeds by Amy2587
Amy2587 showed high ability to digest raw seaweeds after incubating for 0.25 h, 0.5 h, 1 h, 2 h, 6 h, 12 h, and 24 h under the standard assay conditions (Fig. 6). During the degradation of the seaweed substrates, *Grateloupia filicina*, *Chondrus ocellatus*, and *Scagassum*, Amy2587 released 121.2±4 μg/ml, 134.8±6 μg/ml, and 70.3±3.5 μg/ml of reducing sugars after 12 h, 6 h, and 24 h, respectively (Fig. 7).

Discussion

Active screening of culturable microorganisms is still the main method used to obtain polysaccharide-degrading enzymes. However, the recent explosion of metagenomic data has provided a new way of screening for polysaccharide-degrading enzymes, especially novel enzymes produced by unculturable microorganisms. In this study, an amylase gene *amy2587* was screened from metagenomic library from macroalgae-associated bacteria.

Recombinant Amy2587 was expressed in *E. coli* BL21 (DE3) and characterized. To determine the multifunctionality of Amy2587, we studied its substrate specificity and found that it exhibited strong α-amylase, agarase, carrageenase, cellulase, and alginate lyase activities, simultaneously. Other amylases have been reported to have multifunctional functions. For example, the multifunctional amylase Amy440 produced by *Aquimarinia agarilytica* ZC1 was reported to show amylase and agarase activities (Lin et al. 2017); the multifunctional amylase Amy63 produced by *Vibrio alginolyticus* 63 was reported to show amylase, agarase, and carrageenase activities (Liu et al. 2016); and the multifunctional amylase Amy19 produced by *Bacillus* Bl-19 was reported to show agarase, carrageenase, and cellulase activities (Li et al. 2019). To the best of our knowledge, Amy2587 is the first multifunctional enzyme found to have five enzyme activities at the same time. Considering efficiency and cost, enzymes that exhibit amylase, agarase, carrageenase, cellulase, and alginate lyase activities would have wide industrial applications (Chai et al. 2020).

Amy2587 showed high thermostability and was alkalophilic, which are important characteristics for enzymes that play important roles in biotransformations and industrial production because polysaccharide substrates are colloidal and viscous at low temperatures or high concentrations, which impedes the efficiency of binding between enzymes and substrates (Li et al. 2019).

The effects of the metal ions on Amy2587 activity were not identical. In particular, Cu$^{2+}$ dramatically reduced Amy2587 activity, and all the multifunctional activities were almost lost. Similar results for the effect of Cu$^{2+}$ have been reported for other enzymes, including Amy19 (Li et al. 2019) in the GH70 family and AgaXa (Xie et al. 2013) in the GH118 family. Cu$^{2+}$ decreases enzyme activity by binding with the thiol group in the active site of enzymes (Murashima et al. 2002).

The K_m value of Amy2587 with soluble starch was similar to the K_m value for the amylase from *Thermus filiformis* 0rk A2 (5.0 mg/ml) (Egas et al. 1998), and lower than the K_m values for the amylases from *Bacillus alcalophilus* JN21 (9.64 mg/ml) (Yang et al. 2011) and *Thermococcus* HJ21(45.0 mg/ml) (Wang...
The K_m value of Amy2587 with agarose was similar to the K_m value for the agarase obtained from *Catenovulum* sp. X3 (10.50 mg/ml) (Xie et al. 2013), and lower than the K_m values for the agarases from *Agarivorans albus* OAY02 (15.38 mg/ml) (Yang et al. 2014) and *Saccharophagus degradans* 2–40 (41.90 mg/ml) (Dong et al. 2016). The K_m value of Amy2587 with carrageen was higher than the K_m values for carrageenases from *Vibrio* sp. (2.54 mg/ml) (Zhu et al. 2016) and *Pseudoalteromonas* sp. (9.80 mg/ml) (Ma et al. 2010), and lower than the K_m value for the carrageenase from *Shewanella* sp. Kz7 (716.8 mg/ml) (Wang et al. 2015). The K_m value of Amy2587 with sodium cellulose was higher than the K_m values for the cellulases from *Bacillus subtilis* SU40 (1.97 mg/ml) (Asha et al. 2014) and *Bacillus subtilis* I15 (3.59 mg/ml) (Yang et al. 2010). The K_m value of Amy2587 with alginate was higher than the K_m value for the alginate lyase from *Vibrio furnissii* H1 (2.28 mg/ml) (Zhu et al. 2018). These results show that Amy2587 had good affinity for all five substrates.

To further understand the multifunctionality of Amy2587, three motifs, Alpha-amylase_N, Alpha-amylase, or Glyco_hydro_66, in the Amy2587 sequence were deleted. The results showed that these functional domains affected the multiple substrates degrading activity of Amy2587, but the multifunctional characteristics were not fully explained. The Amy2587 activity decreased to different degrees in the truncated enzymes, but the amylase activity was not lost and, although the agarase, carrageenase, cellulase, and alginate lyase activities were affected, the multifunctional activities of Amy2587 remained.

To apply the multifunctional activity of Amy2587, three seaweed substrates (*Grateloupia filicina*, *Chondrus ocellatus* and *Scagassum*) were digested using Amy2587. The amount of reducing sugars released by Amy2587 digestion was much higher than the amount released by *Microbulbifer* strain CMC-5 digestion of red seaweed for 10 days (60 µg/ml) (Jonnadula et al. 2009) and higher than the amount released by *Bacillus* sp. SYR4 digestion of seaweed for 120 h (24 µg/ml) (Kang and Kim 2015), but lower than the amount released by bacteria DM1, DM5, and DM15 utilization of *Sargassum* after 72 h (503.3 ± 17.5 µg/ml, 491.6 ± 20 µg/ml, and 376.6 ± 16 µg/ml respectively). These results suggest that the novel multifunctional α-amylase Amy2587 has high potential for seaweed degradation. To our knowledge, this is the first report of an enzyme, not bacteria, that can directly and effectively degrade different kinds of raw seaweeds to obtain seaweed oligosaccharides. Therefore, eco-friendly degradation for the production of oligosaccharides directly from raw seaweed may be possible using Amy2587. This finding provides a theoretical basis for one-step enzymatic digestion of raw seaweeds.

Declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate
All listed authors have approved the manuscript before submission, including the names and order of authors.

Consent for publication

All authors have reviewed the final version of the manuscript and approve it for publication.

Availability of data and material

The complete open reading frame of Amy2587 has been deposited in the GenBank database under accession number MW839461.

Conflicts of interest

The authors declare no competing interest.

Funding

This research was supported by the Key Research and Development Program of Shandong Province, China (2018GHY115013), Impact and Response of Antarctic Seas to Climate Change (RFSOCC2020-2022).

Authors' contributions

JL and XG designed the experiment, interpreted the data, and finalized conclusions. XG, AP and LF conducted experimental work and drafted the manuscript. YG and QZ assisted with experiments. All authors read and approved the manuscript.

Acknowledgment

We thank Margaret Biswas, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

1. Alban S, Schauerte A, Franz G (2002) Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure–activity relationships of new pullulan sulfates. Carbohyd Polym 47:267–276.
2. Asha BM, Sakthivel N (2014) Production, purification and characterization of a new cellulase from *Bacillus subtilis* that exhibit halophilic, alkalophilic and solvent-tolerant properties. Ann Microbiol 64:1839–1848.
3. Bhattacharyya PN, Tanti B, Barman P, Jhn DK (2014) Culture-independent metagenomic approach to characterize the surface and subsurface soil bacterial community in the Brahmaputra valley, Assam, North-East India, an Indo-Burma mega-biodiversity hotspot. World J Microb Biot 30:519–528.
4. Blakesley RW and Boezi JA (1977) A new staining technique for proteins in polyacrylamide gels using coomassie brilliant blue G250. Anal Biochem 82:580–582.

5. Cáceres PJ, Carlucci MJ, Damonte EB, Matsuhiro B, Zuñiga EA (2000) Carrageenans from chilean samples of Stenogramme interrupta (phyllophoraceae): structural analysis and biological activity. Phytochemistry 53:81–86.

6. Carbonell P, Lecointre G, Faulon JL (2011) Origins of specificity and promiscuity in metabolic networks. J Biol Chem 286:43994–44004.

7. Chai S, Zhang X, Jia Z, Xu X, Feng Z (2020) Identification and characterization of a novel bifunctional cellulase/hemicellulase from a soil metagenomic library. Appl Microbiol Biot 104(Database). doi:10.1007/s00253-020-10766-x.

8. Cheng XY, Huang WJ, Hu SC, Zhang HL, Wang H, Zhang JX, Lin HH, Chen YZ, Zou Q, Ji ZL (2012) A global characterization and identification of multifunctional enzymes. PLoS One 7:e38979. doi:10.1371/journal.pone.0038979.

9. Chi WJ, Da YP, Seo YB, Yong KC, Lee SY, Hong SK (2014) Cloning, expression, and biochemical characterization of a novel gh16 β-agarase AgaG1 from alteromonas sp. GNUM-1. Appl. Microbiol. Biotechnol 98:4545-4555.

10. Cundell AM, Sleeter TD, Mitchell R (1977) Microbial populations associated with the surface of the brown alga Ascophyllum nodosum. Microb Ecol 4:81–91.

11. Dan ST (2020) Enzyme promiscuity and evolution in light of cellular metabolism. FEBS J 287:1260-1261.

12. Dong Q, Ruan LW, Shi H (2016) A β-agarase with high pH stability from Flammeovirga sp. SJP92. Carbohyd Res 432:1–8.

13. Duan F, Yu Y, Liu Z, Tian L, Mou H (2016) An effective method for the preparation of carrageenan oligosaccharides directly from eucheuma cottonii using cellulase and recombinant κ-carrageenase. Algal Res 15:93-99.

14. Egas MCV, Costa MSD, Cowan DA (1998) Extracellularα-amylase from Thermus filiformis Ork A2: purification and biochemical characterization. Extremophiles 2:23-32.

15. Gupta R, Gigras P, Mohapatra H, Goswami V.K, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616.

16. Hiroishi S, Sugie K, Yoshida T, Morimoto J, Taniguchi Y, Imai S, Kurebayashi J (2001) Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga. Cancer Lett 167:145–150.

17. Huberts DH, Klei IJVD (2010) Moonlighting proteins: an intriguing mode of multitasking. Acta Bioch Bioph Sin 1803:520–525.

18. Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19:415–417.

19. Jeffery, CJ (2003) Multifunctional proteins: examples of gene sharing. Ann Med 35:28-35.
20. Ji J, Wang LC, Wu H, Luan H (2010) Bio-function summary of marine oligosaccharides. Int J Biol 3:74–86.

21. Jonnadula RC, Verma P, Shouche YS, Ghadi SC (2009) Characterization of Microbulbifer Strain CMC-5, a new biochemical variant of Microbulbifer elongatus type strain DSM6810T isolated from decomposing seaweeds. Curr Microbiol 59:600–607.

22. Kandra L (2003) α-Amylases of medical and industrial importance. J Mol Struct 1:487–498.

23. Kang S, Kim JK (2015) Reuse of red seaweed waste by a novel bacterium, Bacillus sp. SYR4 isolated from a sandbar. World J Microb Biot 31:209–217.

24. Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin. Chem Biol 10:498–508.

25. Li J, Gu XG, Pan AH (2018) Multifunctional α-amylase Amy19 possesses agarase, carrageenase, and cellulase activities. Int J Biol Macromol 126:585-594.

26. Lin BK, Song Y, Lu GY, Zhao M, Zhong M, Zhong HU (2017) Expression and analysis of an amylase with agarase activity from a marine bacterium. Biot Bull 33:125–130.

27. Liu G, Wu SM, Jin WH, Sun CM (2016) Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities. Sci Rep 6:1–12.

28. Ma YX, Dong SL, Jiang XL, Li J, Mou HJ (2010) Purification and characterization of kappa-carrageenase from marine bacterium mutant strain Pseudoalteromonas sp. AJ5-13 and its degraded products. J Food Biochem 34:661–678.

29. Martin M, Portetelle D, Michel G, Vandenbol M (2014) Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biot 98:2917–2935.

30. Michel G, Czjzek M, Trincone A (2013) Polysaccharide-degrading enzymes from marine bacteria. Marine Enzymes for Biocatalysis 429–464.

31. Morrison JF (2002) Lineweaver–Burk Plot. Encyclopedia of Molecular Biology John Wiley & Sons, Inc. doi:10.1002/047120918X.emb0849.

32. Murashima K, Nishimura T, Nakamura Y, Kuga J, Simuda N (2002) Purification and characterization of new endo-1, 4-β-Dglucanases from Rhisopus oryzae. Enzyme and Microb Tech 30:319–326.

33. Naik MM, Naik D, Charya L, Mujawar SY & Vaingankar DC (2018) Application of marine bacteria associated with seaweed, Ulva lactuca, for degradation of algal waste. Proc Natl Acad Sci, India, Sect B: Biol Sci 89:1153–1160.

34. Pocker Y, Stone JT (1965) The catalytic versatility of erythrocyte carbonic anhydrase. The enzyme-catalyzed hydrolysis of rhonitrophenyl acetate. J Am Chem Soc 87:5497–5498.

35. Rajagopalan G, Krishnan C (2008) Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresource Technol 99:3044-3050.

36. Riera M, Pages M, Issinger OG and Guerra B (2003) Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli. Protein Expres Purif 29: 0–32.
37. Souza PMD, Pérola de Oliveira e Magalhes (2010) Application of microbial α-amylase in industry-a review. Braz J Microbiol 41:850-861.

38. Tian XP, Long LJ, Wang FZ, Xu Y, Li J, Zhang J, Zhang CS, Zhang S, Li WJ (2012) Streptomyces nanhaiensis sp. nov. a marine streptomycete isolated from a deep-sea sediment. Int J Syst Evol Micr 62:864–868.

39. Wang LN, Li SY, Zhang SL, Li JJ, Yu WG, Gong QH (2015) A new κ-Carrageenase CgkS from marine bacterium Shewanella sp. Kz7. J Ocean U China 14:759–763.

40. Wang SJ, Lu ZX, Lu MS, Qin S, Liu HF, Deng XY, Lin Q, Chen JN (2008) Identification of archaeon-producing hyperthermophilic α-amylase and characterization of the α-amylase. Appl Microbiol Biot 80:605–614.

41. Xie W, Lin B, Zhou ZR, Lu GY, Lun JS, Xia CY, Li SK, Hu Z (2013) Characterization of a novel β-agarase from an agar-degrading bacterium Catenovulum sp. X3. Appl Microbiol Biot. 97:4907–4915.

42. Yang CH, Huang YC, Chen CY, Wen CY (2010) Expression of thermobifida fusca thermostable raw starch digesting alpha-amylase in Pichia pastoris and its application in raw sago starch hydrolysis. J Ind Microbiol Biot 37:401-406.

43. Yang DL, Weng HB, Wang MG, Xu WH, Li YZ, Yang HL (2010) Cloning and expression of a novel thermostable cellulose from newly isolated Bacillus subtilis strain I15. Mol Biol Rep 37:1923–1929.

44. Yang H, Liu L, Li J, Du G, Chen J (2011) Heterologous expression, biochemical characterization, and overproduction of alkaline a-amylase from Bacillus alcalophilus in Bacillus subtilis. Microb Cell Fact 10:77–85.

45. Yang M, Mao X, Liu N, Qiu Y, Xue C (2014) Purification and characterization of two agarases from Agarivorans albus OAY02. Process Biochem 49:905–912.

46. Zhu BW, Ning LM (2015) Purification and characterization of a new κ-carrageenase from the marine bacterium Vibrio sp. NJ-2. J Microbiol Biotechn 26:255–262.

47. Zhu X, Li X, Hao S, Zhou J, Tan Z, Yuan M, Peng Y, Liu X (2018) Characterization of a novel alginate lyase from marine bacterium Vibrio furnissii H1. Mar Drugs 16:30–39.

Tables

Table 1 Specific activity levels (U/mg) of Amy2587 and three truncated Amy2587 variants with different substrates
Substrates	Amy2587	Amy2587a	Amy2587b	Amy2587c
Soluble starch	63.38 ± 0.02	44.30 ± 0.03	37.43 ± 0.03	30.26 ± 0.01
Agar	18.38 ± 0.04	5.86 ± 0.02	5.82 ± 0.03	9.16 ± 0.01
Carrageen	18.22 ± 0.02	9.09 ± 0.02	5.17 ± 0.02	6.76 ± 0.03
Sodium cellulose	14.51 ± 0.03	8.68 ± 0.05	9.79 ± 0.01	7.88 ± 0.02
Alginate	17.44 ± 0.03	9.87 ± 0.03	5.73 ± 0.02	9.89 ± 0.02

The truncated Amy2587 variants, Amy2587a, Amy2587b, and Amy2587c have had the α-amylase_N motif, α-amylase, and Glyco_hydro_66 motifs deleted, respectively.

Figures

Figure 1

Sequence analysis of the α-amylase Amy2587. The Pfam motifs are indicated by blue lines.
Figure 2

Multiple sequence comparison of the α-amylase Amy2587
Figure 3

SDS–PAGE analysis of the target protein Amy2587 M: Protein marker; Lane 1: Whole-cell of recombinant Escherichia coli BL21 (DE3) cells harboring pET-30(a)-amy2587 before induction; Lane 2: Whole-cell of recombinant Escherichia coli BL21 (DE3) cells harboring pET-30(a)-amy2587 after induction; Lane 3: Supernatant of recombinant Escherichia coli BL21 (DE3) cells harboring pET-30(a)-amy2587 before induction; Lane 4: Supernatant of recombinant Escherichia coli BL21 (DE3) cells harboring pET-30(a)-amy2587 after induction; Lane 5: Precipitate of recombinant Escherichia coli BL21 (DE3) cells harboring pET-30(a)-amy2587 before induction; Lane 6: Precipitate of recombinant Escherichia coli BL21 (DE3) cells harboring pET-30(a)-amy2587 after induction; Lane 7: Purified Amy2587.
Figure 4

Effects of temperature, pH and metal ions on the activity of Amy2587 with different substrates (a) Effects of temperature on the activity of Amy2587 with different substrates; (b) Thermostability of Amy2587 at different temperatures and time points with different substrates; (c) Effects of pH on the activity of Amy2587 with different substrates; (d) Effects of metal ions and metal salts on the activity of Amy2587 with different substrates.
Figure 5

Kinetic parameters of Amy2587 with different substrates (a) Amylase activity; (b) Agarase activity; (c) Carrageenase activity; (d) Cellulase activity; (e) Alginate lyase activity.
Figure 6

Relative activity of Amy2587 during degradation of three seaweed substrates, Grateloupia filicina, Chondrus ocellatus, and Scagassum

![Graph showing sugar released during Amy2587 degradation](image)

Figure 7

Reducing sugars released during Amy2587 degradation of three seaweed substrates, Grateloupia filicina, Chondrus ocellatus, and Scagassum, after 12 h, 6 h, and 24 h, respectively

![Graph showing reducing sugars released](image)