N-(5-Nitropyridin-2-yl)-5H-dibenzo-[d,f][1,3]diazepine-6-carboxamide

Tomasz Seidler,* Marlena Gryl, Bartosz Trzewik and Katarzyna Stadnicka

Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Kraków, Poland
Correspondence e-mail: seidler@chemia.uj.edu.pl

Received 9 May 2011; accepted 16 May 2011

Key indicators: single-crystal X-ray study; T = 110 K; mean σ(C–C) = 0.001 Å; R factor = 0.036; wR factor = 0.110; data-to-parameter ratio = 18.3.

The title compound, C_{19}H_{13}N_{5}O_{3}, can be obtained from the corresponding α-amido-α-aminonitrone in a reaction with biphenyl-2,2′-diamine. The amido–amine core has distinct geometrical parameters including: an outstandingly long Csp^2–Csp^2 single bond of 1.5276 (13) Å and an amidine N–C–N angle of 130.55 (9)°. Intramolecular N–H···O, N–H···N and C–H···O hydrogen bonds occur. In the crystal, molecules form layers parallel to (001) via weak intermolecular C–H···N interactions. The layers are linked via N–H···O hydrogen bonds and π–π interactions along [001].

Related literature

For the synthesis of the title compound, see: Trzewik et al. (2008). For the reaction mechanism, see: Trzewik et al. (2010). For similar structures, see: Zaleska et al. (2007); Hodorowicz et al. (2007). For hydrogen bond graph-set analysis, see: Bernstein et al. (1995).

Experimental

Crystal data

C_{19}H_{13}N_{5}O_{3}	M_r = 359.34	
monoclinic, P2_1/c	a = 12.9702 (2) Å	
b = 9.2104 (1) Å	c = 13.4145 (2) Å	
β = 100.692 (1)°	V = 1574.68 (3) Å^3	
Z = 4		
Mo Kα radiation	μ = 0.11 mm^-1	
T = 110 K	0.30 × 0.20 × 0.15 mm	

Data collection

Oxford Diffraction SuperNova
Dual Cu at zero Atlas diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford, 2009)

Refinement

R[F^2 > 2σ(F^2)]	0.036
wR(F^2)	0.110
S	1.06
4577 reflections	250 parameters
2 restraints	

H atoms treated by a mixture of independent and constrained refinement

Δρ_{max} = 0.39 e Å^-3
Δρ_{min} = −0.21 e Å^-3

Table 1 Hydrogen-bond geometry (Å, °).

D–H···A	D–H	D···A	D–A	D–H···A
N2–H2···O4	0.89 (1)	2.24 (1)	2.7041 (11)	112 (1)
N2–H2···O4'	0.89 (1)	2.26 (1)	3.0725 (11)	152 (1)
N5–H5···N3	0.88 (1)	2.11 (1)	2.6191 (11)	156 (1)
C55–H55···O4	0.95	2.33	2.9266 (12)	120
C32–H32···N51	0.95	2.47	3.3000 (13)	116

Symmetry codes: (i) x, −y, z + 2; (ii) x, y, −z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

TS gratefully acknowledges the support from a Project operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2095).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 355.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Hodorowicz, M., Stadnicka, K., Trzewik, B. & Zaleska, B. (2007). Acta Cryst. E63, o4115.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Nardelli, M. (1995). J. Appl. Cryst. 28, 585.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Trzewik, B., Ciez, D., Hodorowicz, M. & Stadnicka, K. (2008). Synthesis, pp. 2977–2985.

Trzewik, B., Seidler, T., Brocławik, E. & Stadnicka, K. (2010). New J. Chem. 34, 2220–2228.

Zaleska, B., Karelus, M., Trzewik, B. & Serda, P. (2007). J. Chem. Res. pp. 195–199.
N-(5-Nitropyridin-2-yl)-5H-dibenzo[d,f][1,3]diazepine-6-carboxamide

Tomasz Seidler, Marlena Gryl, Bartosz Trzewik and Katarzyna Stadnicka

S1. Comment

The current report is a continuation of an earlier joint theoretical and X-ray study upon the versatile reactivity of α-amido-α-aminonitrone, having several reactivity centers of different types and yielding various products in reactions with electrophilic and nucleophilic reagents (Trzewik et al., 2008). Among them 5H-dibenzo[d,f][1,3]diazepines, the synthesis and structures of which were described elsewhere (Trzewik et al., 2008, 2010), are unique from the viewpoint of their geometrical features.

The overall shape of the title molecule is shown in Figure 1. The two benzene rings within the diazepine moiety are twisted by torsion angle $C25—C26—C36—C35 = -28.63 (13)^\circ$. The r.m.s. deviation for the best plane through atoms $C21-C26$ is significantly greater than that for $C31-C36$ (0.0166 and 0.0040 Å, respectively) due to steric hindrance between $H25$ and $H35$ ($H25\cdots H35$ distance 2.12 Å).

The puckering parameters of the seven-membered ring (atoms in $C3$, $N2$, $C31$, $C36$, $C26$, $C21$, $N3$ sequence): $q_2 = 0.5324 (9)$, $q_3 = 0.0832 (9)$, $QT = 0.5389 (9)$, $\varphi_2 = 87.6 (1)$, $\varphi_3 = 12.4 (7)$, $\theta_2 = 81.1 (1)^\circ$, indicate a twisted-boat conformation with a pseudo-twofold axis ($C2$) through the $C3$ atom and the centre of $C36—C26$ bond with the deviation of 0.0369 (4) Å, whereas a pseudo-mirror plane (Cs) through $N2$ atom and centre of $C21—C26$ is described by the deviation of 0.0491 (5) Å ($PARST$: Nardelli, 1995).

The rest of the molecule is almost perfectly planar (r.m.s. deviation of fitted atoms equals 0.0181 Å). The fragment of the molecule, relevant from both crystallographic and chemical perspectives, is the amido-amidine core [—N5(—H5)—C4(=O4)—C3(=N3—)—N2(—H2)—]. Within the core distinctive geometrical features of the molecule can be seen: a long $C3(sp^2)—C4(sp^2)$ bond of 1.528 (1) Å and $N2—C3—N3$ angle of 130.55 (9)°. We expect that the planarity of the core moiety possibly results from intramolecular interactions: $N5—H5\cdots N3$, $N2—H2\cdots O4$ and $C55—H55\cdots O4$ (Table 1).

In order to verify the existence of such interactions the analysis of topological properties of electron density distribution is in progress and will be published elsewhere.

The packing of the molecules is organized into layers parallel to (001). Within the layer the molecules are joint by hydrogen bonds of C–H···N type and weak interactions (Figure 2, Table 1). The layers are joined together by $\pi—\pi$ interactions with $Cg1$ ($C31—C36$) and $Cg2$ ($N51—C56$) [-x, $y + 1/2$, -$z + 3/2$] = 3.672 Å (Figure 3); and hydrogen bonds of N —H···O type. The N—H···O hydrogen bond together with its centrosymmetric counterpart form a ring motif with descriptor $R2(10)$ according to graph-set theory (Bernstein et al., 1995). The ring motif is marked in Figure 4.

S2. Experimental

The title compound was synthesized using the procedure already described in literature (Trzewik et al., 2008). Single crystals suitable for X-ray diffraction were grown by slow evaporation from the mixture of methanol and acetonitrile (1:2) solution at ambient conditions.
S3. Refinement

All hydrogen atoms of N—H groups were found in difference Fourier maps and refined in a riding model assuming N—H = 0.88 (2) Å and $U_{iso} = 1.2U_{eq}$ of the parent atom. Aromatic hydrogen atoms were found in difference Fourier maps and refined from geometrical positions assuming C—H = 0.95 Å and using riding model with $U_{iso} = 1.2U_{eq}$.

Figure 1

Asymmetric unit of the title compound showing the atom displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
Figure 2
The hydrogen bond scheme in the layer parallel to (001) cut for z in the range 0.75 to 1.00 (symmetry code: (ii) x, y-1, z).
Figure 3
A diagram of π—π interactions between Cg_1 (C31–C36) and Cg_2^i (N51–C56) (symmetry code: (i) $-x, \frac{y}{2}, -z + \frac{3}{2}$).

Figure 4
View of the packing along [001] showing hydrogen bonds between the layers and the ring motif with descriptor $R_2^2(10)$.
N-(5-Nitropyridin-2-yl)-5H-dibenzo[d,f][1,3]diazepine-6-carboxamide

Crystal data
C_{19}H_{13}N_{5}O_{3}
$F(000) = 744$

$M_r = 359.34$

Monoclinic, $P2_1/c$

Hall symbol: $-P 2ybc$

$a = 12.9702 (2) \text{ Å}$

$b = 9.2104 (1) \text{ Å}$

$c = 13.4145 (2) \text{ Å}$

$\beta = 100.692 (1)^\circ$

$V = 1574.68 (3) \text{ Å}^3$

$Z = 4$

$F(000) = 744$

$D_x = 1.516 \text{ Mg m}^{-3}$

Melting point = 477–478 K

$\lambda = 0.71073 \text{ Å}$

$\theta = 3.0–44.5^\circ$

$\mu = 0.11 \text{ mm}^{-1}$

$T = 110 \text{ K}$

0.30 × 0.20 × 0.15 mm

Data collection

Oxford Diffraction SuperNova Dual Cu at zero

Atlas diffractometer

Radiation source: Oxford Diffraction SuperNova (Mo) X-ray Source

Mirror monochromator

Detector resolution: 10.3756 pixels mm$^{-1}$

ω scans

Absorption correction: multi-scan

(CrysAlis PRO; Oxford Diffraction, 2009)

Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.036$

$wR(F^2) = 0.110$

$S = 1.06$

4577 reflections

250 parameters

2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map

H atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F_c^2) + (0.0729P)^2 + 0.1623P]$

where $P = (F_c^2 + 2F_s^2)/3$

$(\Delta\sigma)_{\text{max}} < 0.001$

$\Delta p_{\text{max}} = 0.39 e \text{ Å}^{-3}$

$\Delta p_{\text{min}} = -0.21 e \text{ Å}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008)

Extinction coefficient: 0

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.66. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2009).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

x	y	z	Uiso*/Ueq	
N2	0.15616 (7)	0.02467 (9)	0.92909 (6)	0.01621 (17)
H2	0.1014 (9)	−0.0115 (14)	0.9524 (9)	0.019*
C3	0.14265 (7)	0.16642 (10)	0.90162 (7)	0.01300 (18)
N3	0.20711 (6)	0.25840 (9)	0.87513 (6)	0.01359 (16)
C4	0.03385 (7)	0.22423 (10)	0.90872 (7)	0.01420 (18)
O4	−0.03207 (5)	0.14658 (8)	0.93589 (6)	0.02028 (17)
N5	0.02224 (6)	0.36682 (9)	0.88352 (6)	0.01523 (17)
H5	0.0796 (9)	0.4033 (13)	0.8674 (9)	0.018*
C21	0.31624 (7)	0.23319 (10)	0.88312 (7)	0.01323 (18)
C22	0.37511 (8)	0.36134 (11)	0.89410 (7)	0.0173 (2)
H22	0.3397	0.4520	0.8913	0.021*
C23	0.48377 (8)	0.35967 (12)	0.90890 (8)	0.0207 (2)
H23	0.5223	0.4479	0.9161	0.025*
C24	0.53540 (8)	0.22716 (12)	0.91305 (8)	0.0202 (2)
H24	0.6099	0.2239	0.9260	0.024*
C25	0.47790 (7)	0.09954 (11)	0.89823 (7)	0.0172 (2)
H25	0.5143	0.0098	0.8995	0.021*
C26	0.36771 (7)	0.09835 (10)	0.88136 (7)	0.01375 (18)
C31	0.21410 (7)	−0.07550 (10)	0.88061 (7)	0.01417 (18)
C32	0.16788 (8)	−0.21063 (11)	0.85663 (8)	0.0187 (2)
H32	0.1011	−0.2310	0.8730	0.022*
C33	0.21824 (9)	−0.31577 (11)	0.80897 (8)	0.0219 (2)
H33	0.1863	−0.4078	0.7930	0.026*
C34	0.31554 (9)	−0.28566 (11)	0.78484 (8)	0.0218 (2)
H34	0.3509	−0.3571	0.7527	0.026*
C35	0.36072 (8)	−0.15065 (11)	0.80807 (8)	0.0181 (2)
H35	0.4267	−0.1305	0.7900	0.022*
C36	0.31255 (7)	−0.04244 (10)	0.85732 (7)	0.01404 (18)
N51	−0.04575 (6)	0.59431 (9)	0.85591 (6)	0.01663 (18)
C52	−0.12294 (8)	0.69109 (11)	0.85240 (7)	0.01701 (19)
H52	−0.1109	0.7889	0.8352	0.020*
C53	−0.21986 (8)	0.65325 (11)	0.87304 (7)	0.01609 (19)
C54	−0.23889 (8)	0.51174 (11)	0.90003 (8)	0.0181 (2)
H54	−0.3054	0.4849	0.9143	0.022*
C55	−0.15953 (7)	0.41067 (11)	0.90574 (8)	0.01687 (19)
H55	−0.1691	0.3131	0.9251	0.020*
C56	−0.06433 (7)	0.45741 (10)	0.88190 (7)	0.01390 (18)
N57	−0.30275 (7)	0.76288 (10)	0.86450 (7)	0.02042 (19)
O58	−0.39181 (6)	0.72147 (10)	0.86834 (7)	0.0296 (2)
O59	−0.27849 (7)	0.89005 (9)	0.85351 (7)	0.02897 (19)

Atomic displacement parameters (Å²)

U11	U22	U33	U12	U13	U23	
N2	0.0173 (4)	0.0141 (4)	0.0190 (4)	0.0005 (3)	0.0079 (3)	0.0029 (3)

Acta Cryst. (2011). E67, o1507
C3	0.0147 (4)	0.0141 (4)	0.0099 (4)	0.0007 (3)	0.0014 (3)	0.0000 (3)
N3	0.0138 (4)	0.0149 (4)	0.0119 (4)	−0.0002 (3)	0.0020 (3)	−0.0001 (3)
C4	0.0150 (4)	0.0153 (4)	0.0119 (4)	0.0004 (3)	0.0014 (3)	0.0005 (3)
O4	0.0173 (3)	0.0184 (3)	0.0263 (4)	−0.0001 (3)	0.0073 (3)	0.0053 (3)
N5	0.0124 (4)	0.0150 (4)	0.0187 (4)	−0.0001 (3)	0.0039 (3)	0.0016 (3)
C21	0.0137 (4)	0.0162 (4)	0.0096 (4)	−0.0006 (3)	0.0015 (3)	0.0010 (3)
C22	0.0191 (5)	0.0161 (4)	0.0173 (5)	−0.0019 (3)	0.0049 (4)	−0.0011 (4)
C23	0.0189 (5)	0.0223 (5)	0.0217 (5)	−0.0066 (4)	0.0055 (4)	−0.0032 (4)
C24	0.0138 (4)	0.0281 (5)	0.0186 (5)	−0.0021 (4)	0.0024 (4)	0.0007 (4)
C25	0.0154 (4)	0.0212 (5)	0.0152 (4)	0.0021 (4)	0.0030 (3)	0.0035 (4)
C26	0.0156 (4)	0.0159 (4)	0.0097 (4)	0.0004 (3)	0.0021 (3)	0.0023 (3)
C31	0.0161 (4)	0.0135 (4)	0.0130 (4)	0.0018 (3)	0.0028 (3)	0.0028 (3)
C32	0.0199 (5)	0.0153 (4)	0.0211 (5)	−0.0014 (4)	0.0041 (4)	0.0028 (4)
C33	0.0280 (5)	0.0139 (4)	0.0239 (5)	−0.0009 (4)	0.0054 (4)	0.0021 (4)
C34	0.0294 (5)	0.0156 (5)	0.0222 (5)	0.0044 (4)	0.0093 (4)	0.0017 (4)
C35	0.0197 (4)	0.0170 (4)	0.0184 (5)	0.0039 (4)	0.0057 (4)	0.0035 (4)
C36	0.0155 (4)	0.0134 (4)	0.0128 (4)	0.0015 (3)	0.0014 (3)	0.0037 (3)
N51	0.0172 (4)	0.0150 (4)	0.0171 (4)	0.0001 (3)	0.0017 (3)	0.0015 (3)
C52	0.0201 (4)	0.0158 (4)	0.0139 (4)	0.0010 (4)	−0.0001 (3)	0.0002 (3)
C53	0.0168 (4)	0.0192 (5)	0.0109 (4)	0.0048 (3)	−0.0012 (3)	−0.0018 (3)
C54	0.0146 (4)	0.0223 (5)	0.0173 (5)	0.0006 (4)	0.0024 (3)	−0.0004 (4)
C55	0.0151 (4)	0.0174 (4)	0.0180 (5)	−0.0011 (3)	0.0028 (4)	0.0010 (4)
C56	0.0142 (4)	0.0148 (4)	0.0118 (4)	0.0006 (3)	0.0001 (3)	0.0000 (3)
N57	0.0221 (4)	0.0247 (4)	0.0131 (4)	0.0081 (3)	−0.0003 (3)	−0.0017 (3)
O58	0.0187 (4)	0.0389 (5)	0.0316 (5)	0.0099 (3)	0.0057 (3)	0.0046 (4)
O59	0.0345 (5)	0.0193 (4)	0.0306 (5)	0.0084 (3)	−0.0002 (3)	−0.0015 (3)

Geometric parameters (Å, °)

N2—C3	1.3591 (12)	C31—C36	1.4031 (13)				
N2—C31	1.4213 (12)	C32—C33	1.3891 (14)				
N2—H2	0.892 (11)	C32—H32	0.9500				
C3—N3	1.2858 (12)	C33—C34	1.3878 (15)				
C3—C4	1.5276 (13)	C33—H33	0.9500				
N3—C21	1.4186 (12)	C34—C35	1.3853 (15)				
C4—O4	1.2211 (11)	C34—H34	0.9500				
C4—N5	1.3575 (12)	C35—C36	1.4048 (13)				
N5—C56	1.3958 (12)	C35—H35	0.9500				
N5—H5	0.879 (11)	N51—C52	1.3348 (13)				
C21—C22	1.3987 (13)	N51—C56	1.3419 (12)				
C21—C26	1.4122 (13)	C52—C53	1.3812 (14)				
C22—C23	1.3864 (14)	C52—H52	0.9500				
C22—H22	0.9500	C53—C54	1.3870 (14)				
C23—C24	1.3883 (15)	C53—N57	1.4639 (13)				
C23—H23	0.9500	C54—C55	1.3794 (13)				
C24—C25	1.3864 (14)	C54—H54	0.9500				
C24—H24	0.9500	C55—C56	1.3996 (13)				
C25—C26	1.4050 (13)	C55—H55	0.9500				
Bond/Angle	Distance/°	Bond/Distance/°	Distance/°				
------------	------------	-----------------	------------				
C25—H25	0.9500	N57—O58	1.2265 (12)				
C26—C36	1.4872 (13)	N57—O59	1.2288 (13)				
C31—C32	1.3933 (13)						
C3—N2—C31	123.51 (8)	C33—C32—C31	120.63 (9)				
C3—N2—H2	112.5 (8)	C33—C32—H32	119.7				
C31—N2—H2	116.2 (8)	C31—C32—H32	119.7				
N3—C3—N2	130.55 (9)	C34—C33—C32	119.62 (10)				
N3—C3—C4	116.30 (8)	C34—C33—H33	120.2				
N2—C3—C4	113.09 (8)	C32—C33—H33	120.2				
C3—N3—C21	124.20 (8)	C35—C34—C33	119.47 (9)				
C3—N5—C51	111.8 (8)	C36—C35—C34	120.3				
C4—N5—C56	118.9 (8)	C33—C34—C35	120.3				
C4—N5—H5	118.9 (8)	C31—C34—C35	116.95 (9)				
C56—N5—H5	119.56 (8)	C31—C36—C35	124.20 (8)				
C22—C21—C26	119.79 (8)	C35—C36—C32	118.85 (8)				
C22—C21—N3	127.65 (8)	C52—N51—C56	117.84 (8)				
C23—C22—C21	121.75 (9)	N51—C52—C53	121.94 (9)				
C23—C22—H22	119.1	N51—C52—H22	119.0				
C22—C23—C24	119.05 (9)	C53—C52—H22	119.0				
C22—C23—C24	120.5	C52—C53—C54	120.14 (9)				
C22—C23—H23	120.5	C52—C53—N57	119.53 (9)				
C24—C23—C23	119.80 (9)	C54—C53—N57	120.33 (9)				
C24—C23—C24	120.1	C55—C54—C53	118.79 (9)				
C25—C24—C24	120.1	C55—C54—C53	120.6				
C25—C24—H24	122.26 (9)	C54—C55—C56	120.6				
C24—C25—H24	118.9	C54—C55—C56	121.3				
C26—C25—H25	118.9	C56—C55—H55	121.3				
C25—C26—C21	117.41 (9)	N51—C56—N5	112.52 (8)				
C25—C26—C36	118.41 (8)	N51—C56—C55	123.85 (9)				
C21—C26—C36	124.09 (8)	N5—C56—C55	123.63 (9)				
C32—C31—C36	120.89 (9)	O58—N57—O59	124.44 (9)				
C32—C31—N2	116.34 (8)	O58—N57—C53	117.77 (9)				
C36—C31—N2	122.77 (9)	O59—N57—C53	117.79 (9)				
C31—N2—C3—N3	−40.22 (16)	C32—C33—C34—C35	−0.43 (16)				
C31—N2—C3—C4	142.83 (9)	C33—C34—C35—C36	1.23 (16)				
N2—C3—N3—C21	−9.51 (16)	C32—C31—C36—C35	0.77 (14)				
C4—C3—N3—C21	167.36 (8)	N2—C31—C36—C35	−179.14 (9)				
N3—C3—C4—O4	−177.99 (9)	C32—C31—C36—C26	−179.29 (9)				
N2—C3—C4—O4	−0.58 (13)	N2—C31—C36—C26	0.80 (14)				
N3—C3—C4—N5	1.05 (12)	C34—C35—C36—C31	−1.38 (14)				
N2—C3—C4—N5	178.47 (8)	C34—C35—C36—C26	178.68 (9)				
O4—C4—N5—C56	−0.22 (17)	C25—C26—C36—C31	151.43 (9)				
C3—C4—N5—C56 −179.21 (9) C21—C26—C36—C31 −32.08 (14)
C3—N3—C21—C22 −153.01 (9) C25—C26—C36—C35 −28.63 (13)
C3—N3—C21—C26 26.82 (15) C21—C26—C36—C35 147.86 (9)
C26—C21—C22—C23 −3.56 (15) C56—N51—C52—C53 −0.98 (14)
N3—C21—C22—C23 176.28 (9) N51—C52—C53—C54 1.09 (15)
C21—C22—C23—C24 −0.09 (15) N51—C52—C53—N57 −177.84 (9)
C22—C23—C24—C25 2.66 (15) C52—C53—C54—C55 0.01 (15)
C23—C24—C25—C26 −1.61 (15) C52—N51—C56—N5 −179.63 (8)
C24—C25—C26—C21 −1.98 (14) C52—N51—C56—C55 −0.22 (15)
C24—C25—C26—C36 174.74 (9) C4—N5—C56—N51 177.97 (9)
C22—C21—C26—C25 4.48 (13) C4—N5—C56—C55 −1.44 (16)
N3—C21—C26—C25 −175.34 (9) C54—C55—C56—N51 1.27 (15)
C22—C21—C26—C36 −172.04 (9) C54—C55—C56—N5 −179.39 (9)
N3—C21—C26—C36 8.14 (15) C54—C55—C56—N51 1.27 (15)
C3—N2—C31—C32 −134.33 (10) C54—C55—C56—N5 −179.39 (9)
C3—N2—C31—C36 45.58 (14) C52—C53—N57—O58 169.30 (9)
C36—C31—C32—C33 −0.04 (15) C54—C53—N57—O58 −9.64 (14)
N2—C31—C32—C33 179.87 (10) C52—C53—N57—O59 −10.38 (14)
C31—C32—C33—C34 −0.14 (16) C54—C53—N57—O59 170.68 (9)

Hydrogen-bond geometry (Å, º)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H2···O4	0.89 (1)	2.24 (1)	2.7041 (11)	112 (1)
N2—H2···O4i	0.89 (1)	2.26 (1)	3.0725 (11)	152 (1)
N5—H5···N3	0.88 (1)	2.11 (1)	2.6191 (11)	116 (1)
C55—H55···O4	0.95	2.33	2.9266 (12)	120
C32—H32···N51i	0.95	2.47	3.3000 (13)	146

Symmetry codes: (i) −x, −y, −z+2; (ii) x, y−1, z.