CAMELOT - Concept study and early results for onboard data processing and GPS-based timestamping

András Pál, László Mészáros, Norbert Tarcai, Norbert Werner, Jakub Řípa, Masanori Ohno, Kento Torigoe, Koji Tanaka, Nagomi Uchida, Gábor Galgóczi, Yasushi Fukazawa, Tsunefumi Mizuno, Hiromitsu Takahashi, Kazuhiro Nakazawa, Zsolt Várhegyi, Teruaki Enoto, Hirokazu Odaka, Yuto Ichinohe, Zsolt Frei, and László Kiss

aKonkoly Observatory, MTA Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Miklós út 15-17, Hungary
bDepartment of Astronomy, Eötvös Loránd University, Pázmány P. st. 1/A, Budapest, Hungary
cC3S Electronics Development LLC., Könyves Kálmán krt. 12-14., Budapest, 1097, Hungary
dMTA-Eötvös University Lendület Hot Universe Research Group, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
eDepartment of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
fSchool of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Japan
gCharles University, Faculty of Mathematics and Physics, Astronomical Institute, V Holešovicích 2, 180 00 Prague 8, Czech Republic
hInstitute of Physics, Eötvös University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
iDepartment of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
jThe Hakubi Center for Advanced Research and Department of Astronomy, Kyoto University, Kyoto 606-8302, Japan
kDepartment of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
lDepartment of Physics, Rikkyo University, Nishi Ikebukuro 3-34-1, Toshimaku, Tokyo 171-8501, Japan
mMTA-ELTE Astrophysics Research Group, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary

ABSTRACT

Due to recent advances in nanosatellite technology, it is now feasible to integrate scintillators with an effective area of hundreds of square-centimeters on a single three-unit cubesat. We present the early test results for the digital payload electronics developed for the proposed CAMELOT (Cubesats Applied for MEasuring and LOcalising Transients) mission. CAMELOT is a fleet of nanosatellites intended to do full-sky monitoring and perform accurate timing-based localization of gamma-ray transients. Here we present the early results on the GPS timestamping capabilities of the CAMELOT payload electronics, concluding that the investigated setup is capable to timestamp the received gamma-ray photons with an accuracy and precision better than 0.02 millisecond, which corresponds to a timing based localization accuracy of ∼ 3.5′. Further refinements will likely allow us to improve the timing accuracy down to the sub-microsecond level.

Keywords: nano-satellite, gamma-ray bursts, scintillators, MPPC, on-board data processing, GPS-based timestamping, digital signal processing

Further author information: A. Pál: E-mail: apal@szofi.net
1. INTRODUCTION

The rapid localization and characterization of the high energy phenomena associated with gamma-ray bursts (GRBs) are among the most important challenges of today’s observational astrophysics. The recent simultaneous detection of a GRB and the gravitational waves source GW1708171–3 further increased the interest in the rapid localization of the electromagnetic counterparts of GW sources. One of the many possible ways of localizing GRBs is based on their precise timing using numerous space-borne scintillator-based soft gamma-ray detectors evenly distributed in the low Earth orbit. Here, and in two companion papers submitted to this conference, we propose the CAMELOT (Cubesats Applied for MEasuring and LOcalising Transients) mission,4 which is a fleet of nanosatellites of the 3U cubesat standard equipped with such sensitive detectors.5 Recently, we demonstrated5, 6 that thin caesium iodide (CsI) crystals equipped with multi-pixel photon counters (MPPCs) can be integrated on 3U cubesats and used to detect and characterize GRBs.

Our nanosatellite design includes four separate CsI scintillation detectors on two perpendicular sides of the satellites. Each of the scintillator crystals is equipped with two separate MPPC sensors.4 This setup allows us to perform a readout supported by coincidence detection, and the detector geometry provides additional constraints on the localization, independently of timing. Therefore, to effectively achieve our scientific goals and in the same time provide redundancy, eight separate channels are needed to be monitored and analyzed simultaneously.

Due to the limited power, redundancy, reprogramming and reconfiguration requirements, heat production and the onboard space availability for the circuits, a careful trade-off analysis is needed to choose the most suitable components and configuration for the payload electronics. We study the use of field-programmable gate arrays and microcontroller units, including signal shaping, triggering, time-stamping as well as housekeeping, brownout and watchdog functionality. In addition, several separate components are also needed to be included within the payload electronics, most importantly a GPS receiver. The recent advancement of such receivers allows us to perform onboard time-keeping and time-stamping of GRB events with a sub-millisecond accuracy. Assuming low-Earth orbit and a timing accuracy of the order of tens of microseconds, the corresponding celestial position accuracy will be in the range of 10 arcminutes, which is well matched for rapid ground-based or space-borne follow-up campaigns.5

In this paper we summarize the key concepts of a GPS timestamping unit designed for precise and accurate retrieval of instances related to scintillation events inducted by gamma-ray photons. This unit is based on the PiNAV-L1 GPS receiver which provides a NMEA-compatible UART stream and has a Valid Position Pulse (VPP) output for which a timestamp is associated with a 100 ns resolution and better-than 1 µs accuracy (within 2-σ). Like in the case of many commercial GPS receivers, the PiNAV-L1 model provides both the NMEA sequences and the VPP output with a period of 1 seconds.

In order to make laboratory testing easier, we interfaced this unit with an onboard USB and Ethernet interface. The former one acts as the primary power supply of this GPS test unit as well as provides an RS485 interface for the host microcontroller (via an FT232 USB-UART bridge). The Ethernet subsystem is based on a 100Mbit, full-duplex and fully integrated TCP/UDP/IP/MAC/PHY core and allows a low-latency communication interface in order to compare the timestamping precision and accuracy with Network Time Protocol (NTP) and/or another UDP/IP based services.

2. THEORY OF OPERATIONS

The GPS timestamping unit is an essential part of the digital core logic of the CAMELOT payload. As it can be seen in Fig. 1, the functionalities of the timestamping and the digital signal processing are highly overlapping. Therefore, in the final (flight) version of the payload, we have to consider possibilities of merging these logics and/or the use of separate boards.

2.1 Features

In order to test the GPS characteristics of the indented receiver, we designed a board (GRB GPS test board, GGTT-board or GGTT for short) intended to provide the full functionality of the timestamping logic (see also the upper-right dotted box of Fig. 1). In the following, we summarize the most essential components of the GPS timestamping unit as well as the GGTT board. We refer here to Fig. 2, showing the block diagram of the circuit.
Figure 1. Simplified block diagram of the CAMELOT payload. The dashed box marks the “core logic” of the payload while the dotted box marks the logic relevant to the GPS timestamping unit. As it can be seen from this diagram, the logic of the GPS timestamping can be merged with the core logic, i.e. the implementation of all of the necessary features – mainly the digital signal processing and the timestamping – can be achieved in a single controller.

- The timestamping core is hosted by the FPGA which acts an SPI slave device. The timestamps are acquired during the falling edge of the #SS (slave select) line, i.e. in the #SS: 1 → 0 transitions.

- The corresponding timestamp is clocked out via the MISO line.

- The MCU parses the ASCII NMEA sequences, converts them to binary and uploads them to the FPGA every second.

- The MCU acts as a tester unit, i.e. capable to ask the FPGA for a timestamp and in parallel, ask a remote NTP server for a timestamp.

- The board hosts two precision temperature compensated crystal oscillators (TCXO’s) where one of these TCXOs can also be tuned (i.e. it is a voltage controlled temperature compensated crystal oscillator, VCTCXO). These oscillators are used as frequency standards between the subsequent VPPs and/or during the loss of GPS signal.

- The high-latency USB interface can be used to monitor the board. The MCU itself is interfaced using an UART-RS485 physical interface while the USB UART stream is also converted to RS485 signal levels. This dummy RS485 line will be used to simulate the satellite bus.

We note here that the third point above, i.e. the parsing of the NMEA sequences by the MCU and upload the binary timestamps to the FPGA does not decrease the accuracy and/or the precision of the unit at all. This
Figure 2. Block diagram of the CAMELOT GPS test board. The dashed line separates the parts which are essential for the actual timestamping (the left part, i.e. where the equivalent functionality is needed to be implemented on a flight model as well) and the blocks used for ground-based testing (most importantly, USB and Ethernet downlink connectors and physical interfaces).

kind of implementation just makes the development and the testing phase easier. In addition, this can also be considered as a temporal feature since the FPGA itself can be programmed to parse the NMEA stream.

The GRB GPS test board is shown in Fig. 3. The actual size of the board is 86 × 93 mm, which corresponds to the cubesat standards. See the figure caption for more details.

2.2 Interfacing

The core of the GPS timestamping unit is implemented in an FPGA hardware where the corresponding IP core can be directly wired to the I/O ports of the chip and can be re-used in more complex FPGA-hosted firmwares. The primary interface signaling, i.e. the SPI slave operations (chip select, clocking, data lines, etc.) can be seen in Fig. 4.

3. TEST RESULTS

We divide the following section into two parts. First, we discuss the results of the timestamping precision compared with NTP servers while in the second part, we compare the accuracy of the receiver timestamps and algorithm with an independent off-the-shelf low-resolution timestamping module provided by Finger Lakes Instrumentation (FLI). This latter module was designed to perform timestamping of CCD images (beginning and ending instances of exposures, open and close times of shutters, etc.) in astronomical imaging applications, where accurate timing information is needed.7
3.1 Comparison of the precision with NTP-based reference clocks

The testing of the GGTT device was conducted as follows: an NTP query is issued via the integrated UDP/IP/MAC/PHY stack and the FPGA is asked to perform a timestamping just before sending the appropriate NTP query UDP packet and right after receiving the NTP answer packet. Let us denote these timestamps by T_1 and T_2 while the returned NTP timestamp is denoted by T. The precision of the process can be characterized by the scatter of the $\Delta T = T - (T_1 + T_2)/2$ value while the overall accuracy is limited by the long-term trends. The process needs in total $T_2 - T_1$ time.

In Fig. 5 we plotted the values of ΔT and $T_2 - T_1$ during a 50-min long test series where the NTP queries and the corresponding timestamps have been executed subsequently with a random delay between 1 and 2 seconds. For the tests, we used an off-site Stratum 1 NTP server, located physically a few kilometers away from the test site and within a topological distance of 6 hops. In Fig. 6 we show the differences between a very crude MCU-based implementation of the timestamping as well as the FPGA-based timestamping algorithm.

We note here that the systematics offset of ~ 0.75 milliseconds in the ΔT values are well below the intended accuracy of NTP – which states a ~ 10 millisecond limit in the case of off-site servers and a few milliseconds in the case of on-site, local area network (LAN) servers. In the near future, it is worth to repeat the experiment involving an off-the-shelf Stratum 1 server on the same LAN.

3.2 Comparison of the accuracy with low-precision GPS timestamp units

We also performed a comparison of our timestamping algorithm with an independent, low-precision GPS timestamping unit provided by Finger Lakes Instrumentation. This GPS module of FLI accepts LVTTL input signals and is designed to capture two time events, corresponding to CCD image exposures and/or shutter open-close instances. Namely, the first timestamp is caught during the rising edge of the input signal while the second timestamp is caught during the falling edge of the input signal. We used this dual feature to capture the instances corresponding to the send and receive times of the NTP/UDP packets.

This module provided by FLI has a resolution limited to 12 bits, i.e. its effective resolution is 1/4000 seconds. However, besides this precision and the measured level of frequency offsets of its internal oscillators, we found that the accuracy of the PiNAV-L1 module and the FLI GPS unit is within a few microseconds. In addition, considering the systematic drifts due to the limited precision and interpreting the residuals as pure statistical noise, the precision is in the range of 0.1 milliseconds (which coincides with the standard deviation of the $[-1/8000, +1/8000]$ interval implied by the effective resolution of this module). See also Fig. 7 for more details.

4. TRADE-OFFS

Even in this simple test board system, several questions arise regarding to various trade-offs of a future flight model of the board. These problems are related to the implementation, redundancy and interfacing. In the following, we summarize the main points of these trade-offs.

- **FPGA vs. MCU.** In the current implementation, timestamping can be implemented both by the FPGA and the MCU. While the theoretical accuracy and precision of the timestamping is in the range of the FPGA master clocks (in the order of few tens of MHz), the accuracy of the MCU is much lower. While a complex MCU (such as the ATmega128A used in our experiments) hosts interfaces and features such as an Input Capture Pin, the overhead associated with the parsing of the corresponding registers yields a much slower response and many additional circumspections (for instance, handling the overflows in the timer counters, etc.)

- **MCU type and architecture.** In the current implementation, an 8-bit AVR ATmega128A controller is used to acts as the "main computer" of this board. It is worth to investigate the accommodation of other types of MCUs, likely 32-bit ARM processors for this purpose. The MCU should host at least two

We note here that the hop distance does not take into account the number of switching elements. In our experiment, there were 3 additional network switches in the local area network, i.e. between the GGTT board and the core uplink router.
independent UARTs in order to interface both with the GPS receiver and the satellite bus. The minimal peripheral requirements for the MCU are hence:

- 2 UARTs;
- 1 SPI master;
- 1 input capture line and/or 1 input change interrupt line.

Of course, test models like this unit might be needed to feature additional interfaces, such as Ethernet or CAN. Besides RS485, CAN bus can also be considered as the primary interface to the satellite platform.

- **FPGA bitstream and configuration.** In the current implementation of our GGTT board, the FPGA bitstream is stored in the flash memory of the microcontroller, allowing to upload the bitstream of in slave or peripheral mode (as viewed from the side of the FPGA). While this setup eliminates the need of an additional mission-critical part (i.e. a serial flash memory storing the FPGA bitstream) as well as makes the interfacing and the remote firmware upgrade easier (i.e. there is no need for a multi-master SPI wiring), the cons include the fact that both the MCU and the FPGA needs to operate in a seamless manner. It is worth to investigate whether a simple multiplexer (possibly implemented in the form of open-drain logic on the MISO/MOSI lines with stand-alone transistors) can be inserted in the circuit in order to allow both peripheral-mode and processor-mode configuration of the FPGA CRAM.

- **Congestion.** While the time stamping information can be clocked out quite fast (within a few microseconds), it might be an issue that two overlapping events occur within the timeframe of the SPI operations. This is unlikely due to the nature of the scintillator detections and the expected gamma photon rate but the full system needs to handle it at some level (e.g. associate the same timestamp for more events but count the scintillation events properly). This issue is beyond the capabilities of a simple SPI interface.
Figure 4. The Serial Peripheral Interface (SPI) communication as implemented in the timestamping module. This implementation follows the SPI mode 3 (CPOL=1, CPHA=1) standard, hence, the SPI master must be configured according to this mode. In the MOSI line, the master must issue a single-byte command, followed by a 8-byte long optional parameter set. In the MISO line, the slave clocks the actual timestamp, followed by an 8-bit CRC. Currently, two commands are implemented. The command \(C[7:0]=0b00000000\) returns the timestamp corresponding to the falling edge of the slave select (\#SS) line. In addition, the command \(C[7:0]=0b01010101=0x55\) sets the reference timestamp to \(U[63:0]\) for the previous rising edge of the GPS 1PPS signal. The timestamps are always considered in TAI in the units of UNIX time. The upper part, \(D[63:32]\) are for seconds, while the lower part \(D[31:0]\) is for fractions of the second. In other words, \(D[63:0]\) is a fixed-point floating number with a resolution of \(2^{-32}\) seconds. In the current implementation, the actual resolution is close to 1 \(\mu\)s, i.e. the lower 12 bits are zero: \(D[11:0]=0b000000000000\). We note that the format is exactly the same as it is used in the Network Time Protocol (besides the zero-point, which is 1900-01-01 in the case of NTP and 1970-01-01 here). The 8-bit CRC output of \(CRC[7:0]\) is computed using the CRC-8-CCITT standard, i.e. using the polynomial \(x^8 + x^2 + x^1 + 1\).

Figure 5. Left panel: The difference between the NTP timestamp and the mean of the GPS timestamps before and after the NTP query. The scatter of the plot (i.e. the overall precision) is 19 microseconds while the systematic offset (with a slight long-term drift) is \(\sim 0.75\) milliseconds. Right panel: The \(T_2 - T_1\) time, i.e. the time needed for the NTP query during the test run. The horizontal structure is due to the quantized polling of the UDP/IP/MAC/PHY interface. The overall scatter of this quantity is \(\sim 75\) microseconds, far more than the \(\sim 13\) microsecond polling period.
Figure 6. The differences between the MCU-based and the FPGA-based timestamps before (left panel) and after (right panel) the execution of the NTP queries. The scatter of both plots is around 4.3 microseconds. The slight offset of 3.9 microseconds between the two values are simply due to the relatively lengthy overflow-bit checking procedure of the process related to the timer counter sampling. The scatter itself is due to the fact that the rising edge of the GPS VPP output is sampled in a loop instead of triggering an input capture event and/or input change interrupt.

Figure 7. The difference between the PiNAV-L1 timestamping and the FLI GPS timestamp unit for a longer run of ~12 hours. Although the resolution of the latter module is limited to 0.25 milliseconds and its local oscillator has a frequency offset of 0.2 – 0.3 ppm (depending on the ambient temperature), its accuracy compared with the PiNAV-L1 output is within 2 – 3 microseconds.
5. CONCLUSIONS

As a conclusion, we confirm that the investigated setup is capable to timestamp the received gamma-ray photons with an accuracy and precision better than \(\sim 0.02 \) milliseconds. This value corresponds to a localization accuracy of \(10^{-3} \) radians, which is equivalent to \(\sim 3.5' \). We note here that additional refinements and further tests (by involving LAN-hosted Stratum 1 NTP servers and/or more precise independent timestamping units) will likely allow us to improve the timing accuracy down to the sub-microsecond level. Such improvements will allow us to measure the positions of bright sources with a sub-arcminute accuracy. However, we have to keep in mind that the timing accuracy also depends on the number of photons received, i.e. photon statistics – which does not allow sub-arcminute accuracy in the case of fainter GRBs.

ACKNOWLEDGMENTS

This work was supported by the Lendület LP2016-11 and LP2012-31 grants awarded by the Hungarian Academy of Sciences, as well as by the grant GINOP-2.3.2-15-2016-00033. This work was also supported by Hiroshima University, JSPS KAKENHI Grant Number 17H06362. In this project, we involved many free & open source software packages, including gEDA (for schematics and PCB design), AVR-GCC (for AVR MCU programming), the GCC ARM Embedded toolchain (for ARM Cortex-M MCU programming) and the Yosys Open Synthesis Suite with additional tools provided by Project IceStorm (including Arachne-PNR and IcePack). We also thank Finger Lakes Instrumentation for the support for the low-level programming of their GPS timestamping module.

REFERENCES

[1] Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Physical Review Letters 116, 061102 (Feb. 2016).
[2] Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., et al., “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence,” Physical Review Letters 116, 241103 (June 2016).
[3] Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., et al., “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence,” Physical Review Letters 119, 141101 (Oct. 2017).
[4] Werner, N., Řípa, J., Pál, A., Ohno, M., Tarcai, N., Torigoe, K., Tanaka, K., Uchida, N., Fukazawa, Y., Mizuno, T., Takahashi, H., Nakazawa, K., Várhegyi, Z., Enoto, T., Odaka, H., Ichinohe, Y., Frei, Z., and Kiss, L., “CAMELOT: Cubesats Applied for MEasuring and LOcalising Transients,” Proc. SPIE (2018).
[5] Ohno, M., Werner, N., Pál, A., Řípa, J., Galgoczi, G., Tarcai, N., Várhegyi, Z., Fukazawa, Y., Mizuno, T., Takahashi, H., Tanaka, K., Uchida, N., Torigoe, K., Nakazawa, K., Enoto, T., Odaka, H., Ichinohe, Y., Frei, Z., and Kiss, L., “Detector design and performance verification of fleet of nanosatellite for localization of gravitational wave sources,” Proc. SPIE (2018).
[6] Torigoe, K., Fukazawa, Y., Galgoczi, G., et al., “Performance Study of a Large CsI(Tl) Scintillator with an MPPC Readout for Nanosatellites used to Localize Gamma-Ray Bursts,” Nuclear Instruments and Methods or in Physics Research A. (2018).
[7] Hirt, C., Papp, G., Pál, A., Benedek, J., and Szűcs, E., “Expected accuracy of tilt measurements on a novel hexapod-based digital zenith camera system: a Monte-Carlo simulation study,” Measurement Science and Technology 25, 085004 (Aug. 2014).