3.1 Introduction

CD4+ T helper cells are critical cells that mediate adaptive immune responses in the lung (Fig. 3.1). These cells are initially primed by antigen-presenting cells (APCs) that present peptide antigen in the context of class II major histocompatibility complexes engaged with the T-cell receptor (termed signal 1). Both APCs and T-cells express co-stimulatory molecules and receptors (termed signal 2) and this second signal is critical for both generating antigen-specific effector T-cells as well as memory cells. Antigen presentation without signal 2 can lead to T-cell anergy. CD4+ T-cell differentiation into specific effector lineages occurs under the influence of lineage-specific cytokines (signal 3) that can control both chromatin remodeling as well as the induction of lineage specific-transcription factors in CD4+ T-cells.

The profound role that CD4+ T-cells play in pulmonary host defense has clearly been demonstrated by the types of pulmonary infections that complicate congenital deficiencies in these cells or by their depletion in AIDS. Pulmonary infection with Pneumocystis was one of the first AIDS defining illnesses followed by bacteremic pneumococcal pneumonia (Centers for Disease Control (CDC) 1981; Gottlieb et al. 1981; Masur et al. 1981).
3.2 CD4+ T Helper Subsets

3.2.1 Th1

Th1 cells were first described by Mossman et al. (1986) by their ability to express interferon-gamma (IFN-\(\gamma\)). Th1 cell development requires the transcription factors T-bet (Szabo et al. 2000) and these cells can differentiate from naïve T-cell precursors in the presence of Th1-polarizing cytokines such as IL-12p70 which is a heterodimeric cytokine consisting of IL-12p35 and IL-12p40 (Wolf et al. 1991). Th1 responses can also occur independent of IL-12 and type I interferons have been...
shown to facilitate Th1 differentiation in certain situations (Longhi et al. 2009). IFN-γ once produced by differentiating Th1 cells can signal in an autocrine–paracrine fashion to further amplify Th1 differentiation and lineage commitment. IFN-γ signals via a receptor complex consisting of two IFN-γR1 and two IFN-γR2 chains which are widely expressed on myeloid-derived cells such as macrophages and dendritic cells as well as structural cells in the lung such as epithelial cells and fibroblasts (Gough et al. 2008). These receptors can activate Janus-associated kinases 1 and 2 which phosphorylate STAT1 which allows STAT1 homodimerization and translocation to the nucleus, followed by binding to gamma-activated sequences (GAS) that regulate gene transcription (Gough et al. 2008). IFN-γ regulates cellular immunity to many intracellular infections including *Mycobacterium tuberculosis*, *Listeria monocytogenes*, and *Salmonella typhimurium*. Patients with IL-12p40 mutations can develop BCG or *S. typhimurium* infection but some patients can be managed with antibiotics and theoretically they can respond to interferon (Picard et al. 2002). For example, patients with IFN-γ receptor mutations can develop disseminated infection with bacillus Calmette-Guerin (BCG) that is resistant to antibiotics and IFN-γ therapy (Dorman et al. 2004; Sologuren et al. 2011). Patients with IL-12p40 mutations can develop BCG or *S. typhimurium* infection but some patients can be managed with antibiotics and theoretically they can respond to interferon (Picard et al. 2002). Thus, there is strong evidence that this pathway is essential for human control of these intracellular pathogens.

3.2.2 Th2

Th2 cells differentiation requires the transcription factor GATA3 and STAT5 (Paul 2010), although initial differentiation and activation of these transcription factors can occur independently of IL-4. GATA3 binds to the *Il4* locus and IL-4 and signaling via STAT6 is critical for further TH2 proliferation and lineage commitment (Paul 2010). Th2 cells produce interleukin (IL)-4, IL-5, and IL-13 and mediate immunity against infections with helminths (Fig. 3.2). These cells also facilitate B-cell differentiation and antibody responses to T-cell dependent protein antigens (Willart and Hammad 2011). Deletion of *Gata3* in mice results in embryonic lethality but conditional deletion in T-cell confirms its essential role in Th2 differentiation and the expulsion of helminths from the gastrointestinal tract (Zhu et al. 2004). IL-5 is the principal growth factor that regulates eosinophilopoiesis and IL-5 deleted mice show marked reduction of peripheral and bone marrow eosinophils (Kopf et al. 1996; Fallon et al. 2002). Transgenic over-expression of IL-5 results in eosinophilia (Dent et al. 1990). IL-13 signaling via STAT6 in airway smooth muscle and in airway epithelium leads to airways hyperresponsiveness to methacholine (Wills-Karp et al. 1998; Grunig et al. 1998). Moreover IL-13 is a major factor in mucous production and goblet cell differentiation in the airway (Wills-Karp et al. 1998; Grunig et al. 1998). Th2 cell and their effector cytokines have been widely implicated in atopic diseases such as
allergic rhinitis, atopic dermatitis, and asthma (Barnes 2008). Furthermore, IL-13 has been implicated in fibrotic processes in the lung in response to drugs such as Bleomycin (Belperio et al. 2002; Liu et al. 2004; Jakubzick et al. 2003). It has been recently recognized that Th2 cell priming can be driven by a number of cytokines produced by lung epithelium including TSLP, IL-25, and IL-33 (Willart and Hammad 2011).

3.2.3 Th17

The initial dichotomy of T-cell subsets however could not explain all of the infections complications of CD4+ T-cell deficiency. For example, CD4+ T-cells are essential for host resistance to Pneumocystis pneumonia, however, mice deficient in IL-4 (Garvy et al. 1997a), IFN-γ (Garvy et al. 1997b), STAT4, and/or STAT6 (unpublished observations) all clear Pneumocystis suggesting additional CD4+ T effector populations. IL-17 was cloned in 1993 (Rouvier et al. 1993) and the first IL-17 receptor (IL-17RA) was cloned in 1996 (Yao et al. 1995). IL-17 mRNA was largely restricted to CD4 memory cells and early studies

Fig. 3.2 Th2 cells and immunity at the mucosa. Parasitic or helminth infection can induce TSLP and IL-25 in the epithelium which can support early IL-4 production leading to the differentiation of Th2 cells. IL-4 and IL-13 can support the induction of IgE as well as stimulate epithelial cells to increase mucous production. IL-5 induces eosinophilopoiesis. The combination of IgE-mediated degranulation of mast cells, the recruitment of eosinophils, and the changes in gene expression in epithelium can lead to host control of helminth infection.
using intracellular cytokine staining showed that T-cell that produced IL-17 were divergent than those that produced IFN-γ but often co-expressed TNF and GM-CSF (Infante-Duarte et al. 2000). Pivotal studies published in 2005 showed that these cells develop independently of STAT4 or STAT6 and the canonical Th transcription factors T-bet or GATA3 demonstrating that Th17 cells are a distinct CD4+ T-cell lineage (Harrington et al. 2005; Park et al. 2005). Subsequently it was demonstrated that Th17 development requires STAT3, and two nuclear hormone receptors RORA and RORC for development from naïve CD4+ T-cells (Yang et al. 2008; Ivanov et al. 2006). It was initially believed that one of the critical instructional cytokines for Th17 differentiation was IL-23 (Aggarwal et al. 2003); however, IL-23 receptor is not expressed on naïve CD4 T-cells. Several groups showed that a critical first step in Th17 differentiation is stimulation with TGF-β and IL-6 which allows induction of IL-23R (Veldhoen et al. 2006; Bettelli et al. 2006; Mangan et al. 2006). Signaling via IL-23 allows terminal differentiation and expansion of Th17 cells (McGeachy et al. 2009). Another critical effector cytokine produced by Th17 cells is IL-22 which is controlled by IL-23 as well as the transcription factor aryl hydrocarbon receptor (Ahr) (Veldhoen et al. 2008). Th17 cells also produce IL-21 (Nurieva et al. 2007; Korn et al. 2007) which can function in an autocrine manner to further expand Th17 differentiation (Fig. 3.1).

3.2.3.1 T-Follicular Helper Cells

T_{FH} cells are a subgroup of CD4+ T-cells that are found in the B-cell follicle region in secondary lymphoid tissues such as bronchial associated lymphoid tissues or lymph nodes in the lung. These cells are critical for T-cell-dependent B-cell activation through the expression of CD40L and IL-21 (Crotty 2011). Their transcriptional program is distinct from other CD4+ T-cell lineages and they develop after stimulation with ICOS. These cells also require the transcription factor Bcl-6 for development as well (Crotty 2011).

3.2.3.2 T-Regulatory Cells

Tregs develop under the transcription factors Foxp3 and STAT5 and are critical for mediating tolerance to inhaled antigen in the lung and preventing or reducing allergic inflammation (Josefowicz et al. 2012). They can suppress the effector activity of many T-helper subsets and can be thymically derived (natural Tregs) or induced in the periphery (iTregs). An exhaustive review of these cells is beyond the scope of this chapter but the reader is referred to an excellent thorough review of these cells if they seek a more in-depth description of these cells (Josefowicz et al. 2012; Ray et al. 2010).
3.3 Other Sources of Th1/Th2/Th17 Effector Cytokines in the Lung

3.3.1 γδ T-Cells

γδ T-cells are resident in lung tissue and produce a variety of effector cytokines including IFN-γ, IL-4, IL-17, and IL-22 (Bonneville et al. 2010). In the context of pulmonary infection with bacteria these cells provide a substantial amount of early IL-17 and are regulated by IL-23 and IL-1β (Lockhart et al. 2006; Shibata et al. 2007; Sutton et al. 2009; Martin et al. 2009; Chen et al. 2011). As these cells express the γδ T-cell receptor, it is unclear if these cells are responding directly to cytokine stimulation alone or whether they also require endogenous TCR-dependent signals as well in the lung. γδ T-cells have recently been shown to limit pathology in RSV infection (Dodd et al. 2009). These cells have also been shown to produce IL-10 and can play a regulatory role in other pulmonary infections such as Pneumocystis infection (Steele et al. 2000).

3.3.2 NKT-Cells

NKT-cells are another source of multiple effector cytokines in the lung including IL-4, IFNγ, and IL-17 (Michel et al. 2007). One population that has extensively studied is a population that expresses an invariant T-cell receptor (iNKT cells) that recognizes a galactolipid Sphingomonas, alpha-galactosylceramide (Brossay et al. 1998; Burdin et al. 1998). These cells have been found to be elevated in the bronchial alveolar lavage fluid of patients with asthma (Akbari et al. 2006; Pettersson et al. 1985). These cells can also produce IFNγ in response to Streptococcus pneumoniae pulmonary infection (Nakamatsu et al. 2007). These cells also produce IL-17 in response to Escherichia coli LPS (Michel et al. 2007) as well as ozone (Pichavant et al. 2008). NK cells can develop under the control of IL-15 and express antiviral molecules such as IFN-γ as well as cytotoxic molecules (Steel et al. 2012).

3.3.3 Innate Lymphoid Cells

Another cell population that produces effector cytokines in the lung is innate lymphoid cell. These cells are defined by lacking lineage markers, a lack of T-cell receptors but require IL-7 signaling for their development. Thus these cells are present in RAG1 or RAG2−/− mice but are lacking in RAG2, γC double-deleted mice (Halim et al. 2012; Spits and Cupedo 2012). RORγT expressing cells are critical for the formation of secondary lymphoid tissues (via regulation of lymphoxygen expression)
and play critical roles in mucosal immunology in the gastrointestinal tract through the production of IL-17 and IL-22 (Ouyang et al. 2008). Type 2 ILCs produce IL-5 and IL-13 and participate in the clearance of helminths from the GI tract (Neill and McKenzie 2011). These cells appear to be regulated by IL-25 (IL-17E) as well as IL-33, a member of the IL-1 family. Recently it has been demonstrated that a population of ILCs primes IL-13 in response to IL-33 induced by viral infection and these cells mediate in part, viral-induced exacerbation of allergic disease in the lung (Kim et al. 2012). In addition to viruses, these cells can also be activated by protease allergens to drive eosinophilic airways inflammation as well as airways hyperresponsiveness (Halim et al. 2012). In this allergen setting the activation of these cells required IL-33 and TSLP (Halim et al. 2012). Thus these cells recapitulate many aspects of CD4+ T-cell immunity in that there are subsets that express similar effector molecules, yet these cells are activated early and their activation is independent of TCR stimulation.

3.4 Effector Mechanisms of CD4+ T-Cell Effector Cytokines in the Lung

3.4.1 Type 1 Effectors

As mentioned above, receptors for IFNγ are expressed on a variety of lung cells including alveolar macrophages, dendritic cells, fibroblasts, and lung epithelial cells. There are several mechanisms of action by which IFN-γ is thought to be critical for control of lung immunity against intracellular pathogens. The first is through macrophage priming and the induction of intracellular microbicidal activity of macrophages (Murray 1988). IFN-γ priming of macrophages results in significantly increased TLR signaling (Schroder et al. 2006). IFN-γ also increases microbicidal activity in part, through the induction of inducible nitric oxide synthase which can increase the production of reactive nitrogen intermediates (Xie et al. 1992, 1993) as well as by increasing the production of reactive oxygen species. These activities may explain the therapeutic benefit of IFN-γ in patients with chronic granulomatous disease due to mutations in NADPH oxidase (Naderi et al. 2012; Segal et al. 2011; Fernandez-Boyanapalli et al. 2010). This increase in microbicidal activity has been termed classically activation of macrophages (Gordon 2003).

IFN-γ markedly upregulates class II MHC molecules as well as co-stimulatory molecules such as CD80 and CD86 which can augment antigen presentation to naïve T-cells. Of course, one of the IFN-γ’s first observed activities was its ability to suppress viral replication in many target cells including macrophages, fibroblasts, and lung epithelial cells (Hovanessian et al. 1980). This occurs in part though the induction of many anti-viral genes such as MxA (Ronni et al. 1995); however, other respiratory viruses such as SARS coronavirus are controlled by IFNγ via MxA independent mechanisms (Spiegel et al. 2004).
IFN-γ also induces chemokines such as CXCL9, CXCL10, and CXCL10 which are all ligands for CXCR3 which is expressed on Th1 cells and thus, IFN-γ can increase the recruitment of Th1 cells and this is critical for granuloma formation which is essential for control of many intracellular pathogens such as *M. tuberculosis* (Aly et al. 2007; Chakravarty et al. 2007). In fact both systemic and aerosolized IFN-γ have been investigated for the potential adjunctive treatment of TB. A recent meta-analysis showed that IFN-γ was well tolerated and associated with higher sputum sterilization rates (Gao et al. 2011); however, definitive randomized control trials are lacking to make firm conclusions on the efficacy of this cytokine.

3.4.2 Type 2 Effectors

Both IL-4 and IL-13 can activate STAT6 signaling in a variety of lung cells including alveolar macrophages, fibroblasts, airway smooth muscle, and airway epithelium. Activation of the STAT6 pathway leads to alternative macrophage activation characterized by the expression of arginase 1, YM1, YM2, and the macrophage mannose receptor (Gordon and Martinez 2010). IL-4 treatment of macrophages reduces their phagocytic ability although it increases the clearance of apoptotic neutrophils (Gordon and Martinez 2010). It has been suggested that AAMs have regulatory roles in helminth infection and can reduce immunopathology (Gordon and Martinez 2010). AAMs also have increased expression of Dectin-1 in addition to macrophage mannose receptor and thus they may have greater fungicidal activity. Recently it has been shown that *Francisella tularensis*, a virulent pathogen in the lung can subvert classical activation of macrophages and thus prolong its intracellular survival (Shirey et al. 2008).

IL-13 has profound effects on airway epithelium by increasing the expression of several mucin genes including *Muc5ac* and *Muc5b* as well as inducing goblet cell hyperplasia, by activation of STAT6 (Rose et al. 2000). These effects are critical for host defenses against helminths such as *Nippostrongylus brasiliensis* (Price et al. 2010) but contribute to pathology in allergy/asthma. During viral infection of the airways mucins can not only prevent viral spread but also may contribute to airway obstruction. Moreover IL-13 has recently been shown to increase the susceptibility of epithelial cells to infection with rhinovirus (Lachowicz-Scroggins et al. 2010).

3.4.3 Type 17 Effectors

Human bronchial epithelium express IL-17RA and IL-17RC which allow these cells to respond to IL-17A and IL-17F as well as IL-22R and IL-10R2, the receptors for IL-22 (Fig. 3.3) (McAllister et al. 2005; Aujla et al. 2008). Both IL-17A and IL-17F can induce ligands for CXCR2 such as IL-8 and granulopoietic growth
factors such as G-CSF which can be augmented in the presence of TNF-α (McAllister et al. 2005; Jones and Chan 2002). Since IL-17A and IL-17F can be co-expressed in the same cell, it has been reported that these two IL-17 family members can form three cytokines including IL-17A homodimers, IL-17A/F heterodimers which has intermediate activity compared to IL-17A homodimers, and IL-17F homodimers which has the least potent activity (Wright et al. 2007). IL-17 receptors are also expressed on lung fibroblasts, pulmonary vascular endothelium, and bronchial smooth muscle. Using CXCL1 as a model CXCR2 ligand, it has been shown that a major effect of IL-17 signaling is increasing mRNA stability of this transcript (Hartupee et al. 2007; Sun et al. 2011) resulting in augmented protein production. A similar activity has also been reported for IL-17-mediated increases in G-CSF production (Cai et al. 1998). IL-17RA is also abundantly expressed on myeloid
cells; however, these cells express very little IL-17RC and thus IL-17A and IL-17F have limited activity on myeloid cells. It has been reported that IL-17 can enhance IL-12p70 in alveolar macrophages (Lin et al. 2009) as well CCL2, CCL3, GM-CSF, IL-1β, and IL-9 in CD4+ T-cells (Ishigame et al. 2009). It has recently been shown that Th17 cells express IL-17RA and IL-17RE, the receptor for IL-17C and IL-17F, and increase the production of IL-17 by these cells (Song et al. 2011; Ramirez-Carrozzi et al. 2011; Chang et al. 2011). IL-17C can be expressed in lung epithelium (unpublished observations) and thus can serve as a feed forward mechanism by which the epithelium could influence interstitial T-cell responses. IL-17A can also augment apical bicarbonate anion transport in polarized NHBE cells and this activity may be important in mediated IL-17A’s antimicrobial effect in the lung as bicarbonate anion has been shown to greatly augment the bioactivity of human defensins (Kreindler et al. 2009). IL-17RA is required not only for host resistance to the extracellular pathogens Klebsiella pneumoniae (Ye et al. 2001) but also for the intracellular pathogen F. tularensis (Lin et al. 2009). In the former scenario, IL-17 regulates G-CSF and neutrophil recruitment (Ye et al. 2001) and dominant sources in primary infection are lung γδ T-cells (Chen et al. 2011). In the case of F. tularensis, IL-17 regulates IL-12p70 production by macrophages which are required for Th1 immunity which is ultimately the effector cell required for control of the pathogen (Lin et al. 2009).

IL-22 activates STAT3 in NHBE cells as well as increases their clonogenic potential in colony assays (Aujla et al. 2008). Moreover in mature epithelium IL-22 augments epithelial repair in response to mechanical injury (Fig. 3.3) (Aujla and Kolls 2009). IL-22 also induces antimicrobial genes in lung epithelium including lipocalin 2 (Aujla et al. 2008) and regenerating islet-derived protein three-γ (Zheng et al. 2008). Blockade of IL-22 during experimental K. pneumoniae lung infection results in rapid dissemination of bacteria from the lung and increased mortality due to bacteremia. In this model IL-22 is regulated by IL-23 and recombinant IL-22 can rescue IL-23-deficient mice (Aujla et al. 2008). IL-22 has also been shown to decrease lung leak in response to ventilator-induced lung injury (Hoegl et al. 2011). These data support a potential therapeutic role of IL-22 in diseases such as severe pneumonia or acute respiratory distress syndrome.

As stated above in primary infection, early sources of IL-17 and IL-22 can be from innate lymphoid cells (Crellin et al. 2010), NK or NKT cells (Crellin et al. 2010; Cella et al. 2009), or γδ T-cells (Lockhart et al. 2006; Shibata et al. 2007b; Simonian et al. 2009). Classic Th17 cells can also be elicited in the lung in the setting of vaccination and in this setting they play roles in protection against a diverse set of organisms including both intracellular and extracellular bacteria as well as fungi. Using an ESAT-6 peptide Khader et al. showed that Th17 cells are primed in the lung prior to robust Th1 responses and that Th17 cells regulated local expression of ligands for CXC chemokines (expressed on Th1 cells) and through this mechanism, Th17 cells could augment the recruitment of Th1 cells into the lung (Khader et al. 2007). Fungal-specific Th17 cells have also been shown to be critical for vaccine-induced protection against Coccidioides posadasii, Histoplasma capsulatum, and Blastomyces dermatitidis infection (Wuthrich et al. 2011). This protection was also
dependent on neutrophils. IL-17 has also been shown to mediate serotype-independent immunity using a whole cell polysaccharide vaccine from *S. pneumoniae* (Malley et al. 2006). Recently, Chen et al. showed that Th17 cells elicited by *K. pneumoniae* vaccination recognize conserved outer membrane proteins in the cell wall of the bacteria and these antigens could also provide serotype-independent immunity through Th17 cells that conferred heterologous protection against multiple serotypes of the organism (Chen et al. 2011). Again this protection was mediated by neutrophils. What is unclear from these studies to date are the specific aspects of Th17 function that are required for protection. For examples, what homing receptors are required to elicit these cells efficiently in the lung? Is only IL-17A required or is there a role for IL-17F or IL-17A/F heterodimers? Is IL-22 also important? What are the critical target cells that IL-17 is signaling in the lung to afford vaccine-induced immunity? What are the best Th17 adjuvants? Are there truly memory Th17 cells that can persist in the host or will these cells require periodic boosting to recall these responses? What is the role of plasticity in the function and fate of these cells?

3.5 Conclusions

CD4 T-cells play critical roles in lung immunity and when these cells are impacted by HIV or other modes of immunosuppression, the host is susceptible to many opportunistic infections by bacteria, fungi, and viruses. These cells will be critical targets to achieve therapeutic vaccines against intracellular pathogens such as *M. tuberculosis*. Furthermore these cells are now becoming attractive targets for other pathogens such as fungi and encapsulated bacteria. To this end, much work lies ahead to understand the generation of these cellular responses and how they can be manipulated therapeutically.

Acknowledgements Funding for this project was provided, in part, by R37HL079142 and P50HL084932 form the National Institutes of Health.

References

Aggarwal S, Ghilardi N, Xie MH, De Sauvage FJ, Gurney AL (2003) Interleukin 23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin 17. J Biol Chem 278(3):1910–1914

Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlstrom J, Kronenberg M et al (2006) CD4+ invariant T-cell-receptor + natural killer T cells in bronchial asthma. N Engl J Med 354:1117–1129

Aly S, Laskay T, Mages J, Malzan A, Lang R, Ehlers S (2007) Interferon-gamma-dependent mechanisms of mycobacteria-induced pulmonary immunopathology: the role of angiostasis and CXCR3-targeted chemokines for granuloma necrosis. J Pathol 212:295–305

Aujla SJ, Kolls JK (2009) IL-22: a critical mediator in mucosal host defense. J Mol Med 87:451–454
Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA et al (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14:275–281
Barnes PJ (2008) Role of GATA-3 in allergic diseases. Curr Mol Med 8:330–334
Belperio JA, Dy M, Burdick MD, Xue YY, Li K, Elias JA et al (2002) Interaction of IL-13 and C10 in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 27:419–427
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238
Bonneville M, O’Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478
Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P et al (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 188:1521–1528
Burdin N, Brossay L, Koezuka Y, Smiley ST, Grusby MJ, Gui M et al (1998) Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J Immunol 161:3271–3281
Cai XY, Gommoll CPJ, Justice L, Narula SK, Fine JS (1998) Regulation of granulocyte colony-stimulating factor gene expression by interleukin-17. ImmunoLett 62:51–58
Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK et al (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725
Centers for Disease Control (CDC) (1981) Pneumocystis pneumonia—Los Angeles. MMWR Morb Mortal Wkly Rep 30:250–252
Chakravarty SD, Xu J, Lu B, Gerard C, Flynn J, Chan J (2007) The chemokine receptor CXCR3 attenuates the control of chronic Mycobacterium tuberculosis infection in BALB/c mice. J Immunol 178:1723–1735
Chang SH, Reynolds JM, Pappu BP, Chen G, Martinez GJ, Dong C (2011) Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E. Immunity 35:611–621
Chen K, McAleer JP, Lin Y, Paterson DL, Zheng M, Alcorn JF et al (2011) Th17 cells mediate clade-specific, serotype-independent mucosal immunity. Immunity 35:997–1009
Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H (2010) Human Nkp44+IL-22+ cells and LTI-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J Exp Med 207:281–290
Crotty S (2011) Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621–663
Dent LA, Strath M, Mellor AL, Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172:1425–1431
Dodd J, Riffault S, Kodituwakku JS, Hayday AC, Openshaw PJ (2009) Pulmonary V gamma 4+ gamma delta T cells have proinflammatory and antiviral effects in viral lung disease. J Immunol 182:1174–1181
Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R et al (2004) Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet 364:2113–2121
Fallon PG, Jolin HE, Smith P, Emsom CL, Townsend MJ, Fallon R et al (2002) IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity 17:7–17
Fernandez-Boyanapalli R, McPhillips KA, Frasch SC, Janssen WJ, Dinauer MC, Riches DW et al (2010) Impaired phagocytosis of apoptotic cells by macrophages in chronic granulomatous disease is reversed by IFN-gamma in a nitric oxide-dependent manner. J Immunol 185:4030–4041
Gao XF, Yang ZW, Li J (2011) Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: a systematic review. Int J Infect Dis 15:e594–e600
Garvy BA, Wiley JA, Gigliotti F, Harmsen AG (1997a) Protection against Pneumocystis carinii pneumonia by antibodies generated from either T helper 1 or T helper 2 responses. Infect Immun 65:5052–5056
Garvy BA, Ezekowitz RA, Harmsen AG (1997b) Role of gamma interferon in the host immune and inflammatory responses to Pneumocystis carinii infection. Infect Immun 65:373–379
Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35
Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604
Gottlieb MS, Schrock R, Schanker HM, Weisman JD, Fan PT, Wolf RA et al (1981) Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 305:1425–1431
Gough DJ, Levy DE, Johnstone RW, Clarke CJ (2008) IFNgamma signaling-does it mean JAK-STAT? Cytokine Growth Factor Rev 19:383–394
Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM et al (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282:2261–2263
Halim TY, Krauss RH, Sun AC, Takei F (2012) Lung natural helper cells are a critical source of the cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36:451–463
Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al (2005) Interleukin-17-producing CD4+ effector T cells develop via a lineage distinct from the Th helper type 1 and 2 lineages. Nat Immunol 6:1123–1132
Hartupee J, Liu C, Novotny M, Li X, Hamilton T (2007) IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol 179:4135–4141
Hoegl S, Bachmann M, Scheiermann P, Goren I, Hofstetter C, Pfleischfutter J et al (2011) Protective properties of inhaled IL-22 in a model of ventilator-induced lung injury. Am J Respir Cell Mol Biol 44(3):369–376
Hovanessian AG, La BC, Falcoff E (1980) Action of murine Igamma 1 interferon on beta (fibroblast)-interferon resistant L 1210 and embryonal carcinoma cells. J Interferon Res 1:125–135
Infante-Duarte C, Horton HF, Byrne MC, Kamradt T (2000) Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 165:6107–6115
Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y et al (2009) Differential roles of interleukin-17A and -17F in host defense against mucocutaneous bacterial infection and allergic responses. Immunity 30:108–119
Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133
Jakubzick C, Choi ES, Joshi BH, Keane MP, Kunkel SL, Puri RK et al (2003) Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4 and IL-13-responsive cells. J Immunol 171:2684–2693
Jones CE, Chan K (2002) Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. Am J Respir Cell Mol Biol 26:748–753
Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564
Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE et al (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8:369–377
Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P et al (2012) Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 129:216–227
Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ et al (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24
Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487
Kreindler JL, Bertrand CA, Lee RJ, Karasic T, Aujila S, Pilewski JM et al (2009) Interleukin-17A induces bicarbonate secretion in normal human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 296:L257–L266
Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, Widdicombe JH (2010) Interleukin-13-induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection. Am J Respir Cell Mol Biol 43:652–661
Lin Y, Ritchie S, Logar A, Slight S, Messmer M, Rangel-Moreno J et al (2009) Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity 31:799–810
Liu T, Jin H, Ullenbruch M, Hu B, Hashimoto N, Moore B et al (2004) Regulation of found in inflammatory zone 1 expression in bleomycin-induced lung fibrosis: role of IL-4/IL-13 and mediation via STAT-6. J Immunol 173:3425–3431
Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177:4662–4669
Longhi MP, Trumpfeller C, Idoyaga J, Caskey M, Matos I, Kluger C et al (2009) Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 206:1589–1602
Malley R, Srivastava A, Lipsitch M, Thompson CM, Watkins C, Tzianabos A et al (2006) Antibody-independent, interleukin-17A-mediated, cross-gerotype immunity to pneumococci in mice immunized intranasally with the cell wall polysaccharide. Infect Immun 74:2187–2195
Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO et al (2006) Transforming growth factor-β induces development of the TH17 lineage. Nature 441:231–234
Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M (2009) Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–330
Masur H, Michalis MA, Greene JB, Onorato I, Stouwe RA, Holzman RS et al (1981) An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med 305:1431–1438
McAllister F, Henry A, Kreindler JL, Dubin PJ, Ulrich L, Steele C et al (2005) Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-α (alpha) and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol 175:404–412
McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324
Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB et al (2007) Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J Exp Med 204(5):996–1001
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357
Murray HW (1988) Interferon-gamma, the activated macrophage, and host defense against antimicrobial challenge. Ann Intern Med 108:595–608
Naderi BF, Fattahi F, Mirshafiey A, Ansari M, Mohsenzadegan M, Movahedi M et al (2012) Increased production of nitric oxide by neutrophils from patients with chronic granulomatous disease on interferon-gamma treatment. Int Immunopharmacol 12:689–693
Nakamatsu M, Yamamoto N, Hatta M, Nakasone C, Kinjo T, Miyagi K et al (2007) Role of interferon-gamma in Valpha14+ natural killer T cell-mediated host defense against Streptococcus pneumoniae infection in murine lungs. Microbes Infect 9:364–374
Neill DR, McKenzie AN (2011) Nuocytes and beyond: new insights into helminth expulsion. Trends Parasitol 27:214–221
Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483
Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28:454–467
Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141
Paul WE (2010) What determines Th2 differentiation, in vitro and in vivo? Immunol Cell Biol 88:236–239
Pettersson B, Curvall M, Enzell C (1985) The inhibitory effect of tobacco smoke compound on ciliary activity. Eur J Respir Dis Suppl 139:89–92
Picard C, Fieschi C, Altare F, Al-Jumaa AH, Al-Hajjar S, Feinberg J et al (2002) Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet 70:336–348
Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P et al (2008) Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205:385–393
Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ et al (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A 107:11489–11494
Ramirez-Carrozzi V, Sambandam A, Luis E, Lin Z, Jeet S, Lesch J et al (2011) IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat Immunol 12:1159–1166
Ray A, Khare A, Krishnamoorthy N, Qi Z, Ray P (2010) Regulatory T cells in many flavors control asthma. Mucosal Immunol 3:216–229
Ronni T, Sareneva T, Pirhonen J, Julkunen I (1995) Activation of IFN-alpha, IFN-gamma, MxA, and IFN regulatory factor 1 genes in influenza A virus-infected human peripheral blood mononuclear cells. J Immunol 154:2764–2774
Rose MC, Piazza FM, Chen YA, Alimam MZ, Bautista MV, Letwin N et al (2000) Model systems for investigating mucin gene expression in airway diseases. J Aerosol Med 13:245–261
Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 150:5445–5456
Schröder K, Sweet MJ, Hume DA (2006) Signal integration between IFNgamma and TLR signaling pathways in macrophages. Immunobiology 211:511–524
Segal BH, Veys P, Malech H, Cowan MJ (2011) Chronic granulomatous disease: lessons from a rare disorder. Biol Blood Marrow Transplant 17:S123–S131
Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y (2007) Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 178:4466–4472
Shirey KA, Cole LE, Keegan AD, Vogel SN (2008) Francisella tularensis live vaccine strain induces macrophage alternative activation as a survival mechanism. J Immunol 181:4159–4167
Simonian PL, Roark CL, Born WK, O’Brien RL, Fontenot AP (2009) Gammadelta T cells and Th17 cytokines in hypersensitivity pneumonitis and lung fibrosis. Transl Res 154:222–227
Solagnen I, Boisson-Dupuis S, Pestano J, Vincent QB, Fernandez-Perez L, Chappier A et al (2011) Partial recessive IFN-gammaR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet 20:1509–1523
Song X, Zhu S, Shi P, Liu Y, Shi Y, Levin SD et al (2011) IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat Immunol 12:1151–1158
Spiegel M, Pichlmaier A, Muhlberger E, Haller O, Weber F (2004) The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein. J Clin Virol 30:211–213
Spits H, Cupedo T (2012) Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 30:647–675
Steel JC, Waldmann TA, Morris JC (2012) Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 33:35–41
Steele CR, Oppenheim DE, Hayday AC (2000) Gamma(delta) T cells: non-classical ligands for non-classical cells. Curr Biol 10:R282–R285
Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T (2011) Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat Immunol 12:853–860
Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341

Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

Veldhoen M, Hocking RJ, Atkins CJ, Locksderm AM, Buer J, Dumoutier L, Renaud JC et al (2008) The aryl hydrocarbon receptor links T(H)17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109

Willart M, Hammad H (2011) Lung dendritic cell-epithelial cell crosstalk in Th2 responses to allergens. Curr Opin Immunol 23:772–777

Will-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL et al (1998) Interleukin-13: central mediator of allergic asthma. Science 282:2258–2261

Wolf SF, Temple PA, Kobayashi M, Young D, Dicig M, Lowe L et al (1991) Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 146:3074–3081

Wright JF, Guo Y, Quazi A, Luxenberg DP, Bennett F, Ross JF et al (2007) Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem 282:13447–13455

Wuthrich M, Gern B, Hung CY, Ersland K, Rocco N, Pick-Jacobs J et al (2011) Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J Clin Invest 121:554–568

Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD et al (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228

Xie QW, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177:1779–1784

Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39

Yao Z, Fanslow WC, Seldin MF, Rousseau A-M, Painter SL, Comeau MR et al (1995) Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to novel cytokine receptor. Immunity 3:811–821

Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P et al (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194:519–527

Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289

Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A, Wang Q et al (2004) Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol 5:1157–1165