STABILITY OF FROBENIUS DIRECT IMAGES OVER SURFACES

CONGJUN LIU; MINGSUO ZHOU

Abstract. Let X be a smooth projective surface over an algebraically closed field k of characteristic $p > 0$ with Ω^1_X semistable and $\mu(\Omega^1_X) > 0$. For any semistable (resp. stable) bundle W of rank r, we prove that F_*W is semistable (resp. stable) when $p \geq r(r-1)^2 + 1$.

1. Introduction

Let X be a smooth projective variety of dimension n over an algebraically closed field k with $\text{char}(k) = p > 0$. The absolute Frobenius morphism $F_{\text{abs}} : X \to X$ is induced by $O_X \to O_X, f \mapsto f^p$. Let $F : X \to X := X \times_k k$ denote the relative Frobenius morphism over k. This simple endomorphism of X is of fundamental importance in algebraic geometry over characteristic $p > 0$. One of the themes is to study its action on the geometric objects on X.

Recall that a torsion free sheaf E is called semistable (resp. stable) if $\mu(E') \leq \mu(E)$ (resp. $\mu(E') < \mu(E)$) for any nontrivial proper subsheaf, where $\mu(E)$ is the slope of E (see Definition 1 in Section 2). Semistable sheaves are basic constituents of torsion free sheaves in the sense that for any torsion free sheaf E admits a unique filtration

$$HN_*(E) : 0 = HN_0(E) \subset HN_1(E) \subset \cdots \subset HN_k(E) = E,$$

which is the so called Harder-Narasimhan filtration, such that

1. $\text{gr}_1^{HN}(E) := HN_i(E)/HN_{i-1}(E)$ (1 \leq i \leq k) are semistable;
2. $\mu(\text{gr}_1^{HN}(E)) > \mu(\text{gr}_2^{HN}(E)) > \cdots > \mu(\text{gr}_k^{HN}(E))$.

The rational number $I(E) := \mu(\text{gr}_1^{HN}(E)) - \mu(\text{gr}_k^{HN}(E))$, which measures how far a torsion free sheaf from being semistable, is called the instability of E. It is clear that E is semistable if and only if $I(E) = 0$.

It is well known that F_* preserves the stability of vector bundles on curves of genus $g \geq 1$ (see [5], [6], [7]). For the high dimension case, it is proved by X. Sun that instability of F_*W is bounded by instability of $W \otimes \Omega^\ell_X(\Omega^1_X)$ ($0 \leq \ell \leq n(p-1)$) for any vector bundle W (see [6], [7]), and an upper bound of the instability $I(W \otimes \Omega^\ell_X(\Omega^1_X))$ is given in [4]. Especially for a surface X with Ω^1_X semistable and $\mu(\Omega^1_X) > 0$, the
stability of $F_\ast L$ for a line bundle L is proved by X. Sun (see [6]). But it is unknown whether F_\ast preserves the stability of a high rank vector bundle over a smooth projective surface. In this note, we prove that $F_\ast W$ is semistable (resp. stable) when W is semistable (resp. stable) with some restriction on the characteristic p as following:

Theorem 1. Let X be a smooth projective surface over an algebraically closed field k of characteristic p with Ω^1_X semistable and $\mu(\Omega^1_X) > 0$. Let W be a semistable (resp. stable) vector bundle of rank r, then $F_\ast W$ is also semistable (resp. stable) if $p \geq r(r-1)^2 + 1$.

Here, we sketch the proof. By [6], there exists a canonical filtration of $F_\ast(F_\ast W)$:

$$0 = V_{2(p-1)+1} \subset V_{2(p-1)} \subset \cdots \subset V_1 \subset V_0 = F_\ast(F_\ast W)$$

with $V_\ell/V_{\ell+1} \cong W \otimes T^\ell(\Omega^1_X)$ for $0 \leq \ell \leq 2(p-1)$. Let $E \subset F_\ast W$ be a nontrivial subsheaf such that $F_\ast W/E$ is torsion free, then the above filtration induces the following filtration (we assume $V_m \cap F_\ast E \neq 0$ and $V_{m+1} \cap F_\ast E = 0$)

$$0 \subset V_m \cap F_\ast E \subset \cdots \subset V_1 \cap F_\ast E \subset V_0 \cap F_\ast E = F_\ast E.$$

Let

$$\mathcal{F}_\ell := \frac{V_\ell \cap F_\ast E}{V_{\ell+1} \cap F_\ast E} \subset \frac{V_\ell}{V_{\ell+1}}, \quad r_\ell = \text{rk}(\mathcal{F}_\ell).$$

Then, taking $n = 2$ in the formula (4.10) of [7], we have

$$\mu(E) - \mu(F_\ast W) = \sum_{\ell=0}^m r_\ell \frac{\mu(\mathcal{F}_\ell) - \mu(\frac{V_\ell}{V_{\ell+1}})}{p \cdot \text{rk}(E)} - \frac{\mu(\Omega^1_X)}{p \cdot \text{rk}(E)} \sum_{\ell=0}^m (p-1-\ell)r_\ell.$$

If $r_{2(p-1)} = r_0$, there exists a subsheaf $W' \subset W$ of rank $r_{2(p-1)}$ such that $\mathcal{F}_\ell \supseteq W' \otimes T^\ell(\Omega^1_X)$ for $0 \leq \ell \leq 2(p-1)$ by [7]. The local computations in the proof of Theoren 4.7 of [7] imply $r_\ell = \text{rk}(W' \otimes T^\ell(\Omega^1_X))$ for $0 \leq \ell \leq 2(p-1)$. Then, by (4.22) of [7], we have

$$\mu(E) - \mu(F_\ast W) \leq \frac{r_{2(p-1)}(\text{rk}(F_\ast W) - \text{rk}(E))}{p \cdot \text{rk}(E) \cdot \text{rk}(W)}(\mu(W') - \mu(W/W')).$$

Otherwise, we have $r_0 > r_{2(p-1)}$ and

$$\mu(E) - \mu(F_\ast W) \leq \sum_{\ell=0}^m r_\ell \frac{\mu(\mathcal{F}_\ell) - \mu(\frac{V_\ell}{V_{\ell+1}})}{p \cdot \text{rk}(E)} - \frac{(p-1)\mu(\Omega^1_X)}{p \cdot \text{rk}(E)}$$

by (4.10), (4.11) and (4.12) of [7].
The main part of this note is to give an upper bound of
\[\sum_{\ell=0}^{m} r_{\ell}(\mu(F_{\ell}) - \mu(V_{\ell + 1})), \]
which depends only on \(r \) and \(\mu(\Omega_{X}^{1}) \).

2. Preliminaries

Let \(X \) be a smooth projective surface. Fixed an ample divisor \(H \), for a torsion free sheaf \(E \) on \(X \), we define the slope of \(E \) by:
\[\mu(E) = \frac{c_{1}(E) \cdot H}{\text{rk}(E)}, \]
where \(c_{1}(E) \) is the first Chern class of \(E \) and \(\text{rk}(E) \) is the rank of \(E \).

Definition 1. A torsion free sheaf \(E \) on \(X \) is called semistable (resp. stable) if for any subsheaf \(0 \neq E' \subset E \) with \(E/E' \) torsion free, we have
\[\mu(E') \leq \mu(E) \quad (\text{resp. } \mu(E') < \mu(E)). \]

Let \(F : X \to X_{1} \) be the relative \(k \)-linear Frobenius morphism, where \(X_{1} := X \times_{k} k \) is the base change of \(X/k \) under the Frobenius \(\text{Spec}(k) \to \text{Spec}(k) \). Let \(W \) be a vector bundle on \(X \) and \(V = F^{*}(F_{*}W) \).

Definition 2. Let \(V_{0} := V = F^{*}(F_{*}W), V_{1} = \ker(F_{*}F_{*}W) \to W) \)
\[V_{\ell + 1} := \ker(V_{\ell} \sum V \otimes_{S} \Omega_{X}^{1} \to (V/V_{\ell}) \otimes_{S} \Omega_{X}^{1}) \]
where \(\nabla : V \to V \otimes_{S} \Omega_{X}^{1} \) is the canonical connection (see [1, Theorem 5.1]).

The above filtration has been fully studied in [6, Section 3], and the following theorem is a special case of [6, Theorem 3.7, Corollary 3.8] for surfaces.

Theorem 2. [6, Theorem 3.7, Corollary 3.8] Let \(X \) be a smooth projective surface over \(k \), then the filtration defined above is
\[0 = V_{2(p-1)+1} \subset V_{2(p-1)} \subset \cdots \subset V_{1} \subset V_{0} = V = F^{*}(F_{*}W) \] (1)
which has the following properties

(i) \(\nabla(V_{\ell}) \subset V_{\ell-1} \otimes \Omega_{X}^{1} \) for \(\ell \geq 1 \), and \(V_{0}/V_{1} \cong W \).

(ii) \(V_{\ell}/V_{\ell+1} \sum (V_{\ell-1}/V_{\ell}) \otimes \Omega_{X}^{1} \) are injective morphisms of vector bundles for \(1 \leq \ell \leq 2(p-1) \), which induced isomorphisms
\[V_{\ell}/V_{\ell+1} = W \otimes T^{\ell}(\Omega_{X}^{1}) \]
where
\[T^{\ell}(\Omega_{X}^{1}) = \begin{cases} \text{Sym}^{\ell}(\Omega_{X}^{1}) & \text{when } \ell < p \\ \text{Sym}^{2(p-1)-\ell}(\Omega_{X}^{1}) \otimes \omega_{X}^{p-1} & \text{when } \ell \geq p. \end{cases} \]
Let \(\mathcal{E} \subset F_*W \) be a nontrivial subsheaf such that \(F_*W/\mathcal{E} \) is torsion free, then the canonical filtration (1) induces the filtration (we assume \(V_m \cap F^*\mathcal{E} \neq 0 \) and \(V_{m+1} \cap F^*\mathcal{E} = 0 \))

\[
0 \subset V_m \cap F^*\mathcal{E} \subset \cdots \subset V_1 \cap F^*\mathcal{E} \subset V_0 \cap F^*\mathcal{E} = F^*\mathcal{E}. \tag{2}
\]

Let

\[
\mathcal{F}_\ell := \frac{V_\ell \cap F^*\mathcal{E}}{V_{\ell+1} \cap F^*\mathcal{E}} \subset \frac{V_\ell}{V_{\ell+1}}, \quad r_\ell = \text{rk}(\mathcal{F}_\ell).
\]

Then \(\mu(F^*\mathcal{E}) = \frac{1}{\text{rk}(\mathcal{E})} \sum_{\ell=0}^{m} r_\ell \cdot \mu(\mathcal{F}_\ell) \) and

\[
\mu(\mathcal{E}) - \mu(F_*W) = \frac{1}{p \cdot \text{rk}(\mathcal{E})} \sum_{\ell=0}^{m} r_\ell (\mu(\mathcal{F}_\ell) - \mu(F^*F_*W)). \tag{3}
\]

Lemma 1. ([7, Lemma 4.5]) With the same notations in Theorem 2, we have

\[
\mu(F^*F_*W) = p \cdot \mu(F_*W) = \frac{p-1}{2} K_X \cdot H + \mu(W),
\]

\[
\mu(V_\ell/V_{\ell+1}) = \mu(W \otimes T^\ell(\Omega^1_X)) = \frac{\ell}{2} K_X \cdot H + \mu(W).
\]

By using the above lemma, we have

Lemma 2. ([6, Lemma 4.4]) Keep the above notations. Then we have

\[
\mu(\mathcal{E}) - \mu(F_*W) = \sum_{\ell=0}^{m} r_\ell \frac{\mu(\mathcal{F}_\ell) - \mu(V_\ell)}{p \cdot \text{rk}(\mathcal{E})} - \frac{\mu(\Omega^1_X)}{p \cdot \text{rk}(\mathcal{E})} \sum_{\ell=0}^{m} (p - 1 - \ell) r_\ell. \tag{4}
\]

The numbers \(r_\ell (0 \leq \ell \leq m) \) are related by the following fact that \(V_\ell/V_{\ell+1} \to (V_{\ell-1}/V_\ell) \otimes \Omega^1_X \) induces injective morphisms

\[
\mathcal{F}_\ell \to \mathcal{F}_{\ell-1} \otimes \Omega^1_X \quad (1 \leq \ell \leq m).
\]

Using this fact, it is proved in [6] that

\[
r_{2(p-1)-\ell} r_\ell \geq 0 \quad (\ell \geq p - 1).
\]

Especially for \(\ell = 2(p - 1) \), we have \(r_0 \geq r_{2(p-1)} \). The following lemma is implicit in [7, Lemma 4.6].

Lemma 3. If \(r_0 > r_{2(p-1)} \), then we have

\[
\sum_{\ell=0}^{m} (p - 1 - \ell) r_\ell \geq (p - 1).
\]

Proof. When \(m \leq p - 1 \), it is (4.11) of [7]. When \(m > p - 1 \), it follows from (4.12) of [7] and the assumption \(r_0 > r_{2(p-1)} \). \(\square \)
Lemma 4. If \(r_0 = r_{2(p-1)} \), then there exists a subsheaf \(W' \subset W \), such that
\[
\mu(E) - \mu(F_\ell W) \leq \frac{r_{2(p-1)}(\text{rk}(F_\ell W) - \text{rk}(E))}{p \cdot \text{rk}(E) \cdot \text{rk}(W)} (\mu(W') - \mu(W/W'))
\]

Proof. It is proved in [7] that there exists a subsheaf \(W' \subset W \) of rank \(r_{2(p-1)} \) such that \(F_\ell^2 (\Omega^1_X) \cong W' \otimes T^{2(p-1)}(\Omega^1_X) \) and \(W' \otimes T^\ell(\Omega^1_X) \hookrightarrow F_\ell \).

By (4.22) of [7], it is enough to show \(r'_\ell = 0 \), i.e. \(\text{rk}(F_\ell) = \text{rk}(W' \otimes T^\ell(\Omega^1_X)) \), which follows from the local computations in the proof of Theorem 4.7 of [7].

For the convenience of readers, we repeat the arguments here. To show the assertion is a local problem. Let \(K = K(X) \) be the function field of \(X \) and consider the \(K \)-algebra
\[
R = \frac{K[\alpha_1, \alpha_2]}{(\alpha_1^p, \alpha_2^p)} = \bigoplus_{\ell=0}^{2(p-1)} R^\ell,
\]
where \(R^\ell \) is the \(K \)-linear space generated by
\[
\{ \alpha_1^{k_1} \alpha_2^{k_2} | k_1 + k_2 = \ell, 0 \leq k_i \leq p - 1 \}.
\]
The quotients in the filtration (1) can be described locally
\[
V_\ell/V_{\ell+1} = W \otimes_K R^\ell
\]
as \(K \)-vector spaces. Then the homomorphism
\[
\nabla : W \otimes_K R^\ell \rightarrow W \otimes_K R^{\ell-1} \otimes_K \Omega^1_X
\]
in Theorem 2 is locally the \(k \)-linear homomorphism defined by
\[
\nabla(w \otimes \alpha_1^{k_1} \alpha_2^{k_2}) = -w \otimes k_1 \alpha_1^{k_1-1} \alpha_2^{k_2} \otimes_K dx_1 - w \otimes k_2 \alpha_1^{k_1} \alpha_2^{k_2-1} \otimes_K dx_2.
\]
And the fact that \(F_\ell \nabla \rightarrow F_{\ell-1} \otimes \Omega^1_X \) for \(F_\ell \subset W \otimes R^\ell \) is equivalent to
\[
\forall \sum_j w_j \otimes f_j \in F_\ell \Rightarrow \sum_j w_j \otimes \frac{\partial f_j}{\partial \alpha_i} \in F_{\ell-1} (1 \leq i \leq 2).
\]

The polynomial ring \(P = K[\partial_{\alpha_1}, \partial_{\alpha_2}] \) acts on \(R \) through partial derivations, which induces a D-module structure on \(R \), where
\[
D = \frac{K[\partial_{\alpha_1}, \partial_{\alpha_2}]}{(\partial_{\alpha_1}^\ell, \partial_{\alpha_2}^\ell)} = \bigoplus_{\ell=0}^{2(p-1)} D^\ell
\]
and \(D_\ell \) is the linear space of degree \(\ell \) homogeneous elements. In particular, \(W \otimes R \) has the induced D-module structure with \(D \) acts on \(W \) trivially. Using this notation, (5) is equivalent to \(D_1 \cdot F_\ell \subseteq F_{\ell-1} \).
Locally, \(\mathcal{F}_{2(p-1)} \) is equal to \(W' \otimes R^{2(p-1)} \) as \(K \)-vector spaces. Combining with \(D_1 \cdot \mathcal{F}_\ell \subseteq \mathcal{F}_{\ell-1} \), we have

\[
D_\ell \cdot \mathcal{F}_{2(p-1)} = W' \otimes D_\ell \cdot R^{2(p-1)} = W' \otimes R^{2(p-1)-\ell} \subseteq \mathcal{F}_{2(p-1)-\ell}
\]

(6)

for \(0 \leq \ell \leq 2(p-1) \), and the following sequence

\[
W' = D_{2(p-1)} \cdot \mathcal{F}_{2(p-1)} \subseteq D_{2(p-1)-1} \cdot \mathcal{F}_{2(p-1)-1} \subseteq \cdots \subseteq D_1 \cdot \mathcal{F}_1 \subseteq \mathcal{F}_0.
\]

But \(r_0 = r_{2(p-1)} \), so \(\mathcal{F}_0 = W' \) and \(D_\ell \cdot \mathcal{F}_\ell = \mathcal{F}_0 \) for \(1 \leq \ell \leq 2(p-1) \). For any element \(\alpha \in \mathcal{F}_\ell \subseteq W \otimes R^\ell \), it can be written as

\[
\alpha = \sum w_{i_1 i_2} \otimes (\alpha_1^{i_1} \alpha_2^{i_2}),
\]

where \(w_{i_1 i_2} \in W \) and the sum runs over \(i_1 + i_2 = \ell, 0 \leq i_1, i_2 \leq p - 1 \). Meanwhile, we have

\[
\partial_{\alpha_1}^{i_1} \partial_{\alpha_2}^{i_2} \cdot \sum w_{i_1 i_2} \otimes (\alpha_1^{i_1} \alpha_2^{i_2}) = w_{i_1 i_2} \in \mathcal{F}_0 = W'
\]

from \(D_\ell \cdot \mathcal{F}_\ell = \mathcal{F}_0 \). Consequently, \(\alpha \in W' \otimes R^\ell \), which implies that

\[
\mathcal{F}_\ell \subseteq W' \otimes R^\ell.
\]

Together with the conclusion \(W' \otimes R^\ell \subseteq \mathcal{F}_\ell \) in (6), we have

\[
\mathcal{F}_\ell = W' \otimes R^\ell
\]

for \(0 \leq \ell \leq 2(p-1) \). Thus \(\text{rk}(\mathcal{F}_\ell) = \text{rk}(W' \otimes T^\ell(\Omega_1^X)) \) for \(0 \leq \ell \leq 2(p-1) \).

3. Proof of the main theorem

For any torsion free sheaf \(\mathcal{E} \), we denote

\[
s(\mathcal{E}) = \max_{\mathcal{F}} \{ \text{rk}(\mathcal{F})(\mu(\mathcal{F}) - \mu(\mathcal{E})) \mid \mathcal{F} \subseteq \mathcal{E} \}.
\]

Then it is easy to see that \(s(\mathcal{E}) \geq 0 \) and \(\mathcal{E} \) is semistable if and only if \(s(\mathcal{E}) = 0 \).

In this section, we always assume that \(X \) is a surface with \(\Omega_X^1 \) semistable and \(\mu(\Omega_X^1) > 0 \), \(W \) is a semistable bundle on \(X \) with \(\text{rk}(W) = r \). In order to simplify the symbols, we denote \(A_\ell = \text{Sym}^\ell(\Omega_X^1) \otimes W \) and \(s(\ell) = s(A_\ell) \) for all \(\ell \), then we have the following lemmas.

Lemma 5. As the above notations, we have

\[
s(\ell) - s(\ell - 1) \leq s(\ell + 1) - s(\ell).
\]

Proof. Consider the exact sequence

\[
0 \to A_{\ell-1} \otimes \omega_X \to A_\ell \otimes \Omega_X^1 \to A_{\ell+1} \to 0
\]
where all of the bundles have the same slope \((\ell + 1) \cdot \mu(\Omega^1_X) + \mu(W)\).

Assume \(E_\ell\) is the subsheaf of \(A_\ell\) such that
\[
\text{rk}(E_\ell) \cdot (\mu(E_\ell) - \mu(A_\ell)) = s(\ell).
\]
Then the above exact sequence induces an exact sequence
\[
0 \to E'_\ell \to E_\ell \otimes \Omega^1_X \to E''_\ell \to 0,
\]
where
\[
E'_\ell \subset A_{\ell-1} \otimes \omega_X, \quad E''_\ell \subset A_{\ell+1}.
\]
A direct computation implies
\[
\text{rk}(E_\ell \otimes \Omega^1_X)\mu(E_\ell \otimes \Omega^1_X) - \mu(A_\ell \otimes \Omega^1_X)) = \text{rk}(E'_\ell)(\mu(E'_\ell) - \mu(A_{\ell-1} \otimes \omega_X)) + \text{rk}(E''_\ell)(\mu(E''_\ell) - \mu(A_{\ell+1})))
\]
Consequently, we have
\[
2s(\ell) \leq s(\ell - 1) + s(\ell + 1)
\]
by the definition of \(s(\ell)\). Thus
\[
s(\ell) - s(\ell - 1) \leq s(\ell + 1) - s(\ell).
\]

Taking \(\ell = p\) in (ii) of Proposition 3.5 of \cite{6}, we have the following exact sequence
\[
0 \to W \otimes F^*\Omega^1_X \to A_p \to A_{p-2} \otimes \omega_X \to 0,
\]
we obtain a upper bound for \(s(\ell)\) by using the above exact sequence. For simplicity, we define \(t = s(W \otimes F^*\Omega^1_X)\).

Lemma 6. Assume \(p \geq r\). Then we have
\[
s(\ell) \leq \frac{t}{2} \cdot (\ell - (p - r))
\]
for \(p - r \leq \ell \leq p - 1\).

Proof. Consider the exact sequence
\[
0 \to W \otimes F^*\Omega^1_X \to A_p \to A_{p-2} \otimes \omega_X \to 0
\]
where all the bundles have the same slope \(p \cdot \mu(\Omega^1_X) + \mu(W)\). As the same argument in Lemma 5, we have \(s(p) \leq t + s(p - 2)\). Combining with \(2s(p - 1) \leq s(p) + s(p - 2)\), we have
\[
s(p - 1) - s(p - 2) \leq \frac{s(p) + s(p - 2)}{2} - s(p - 2) \leq \frac{t}{2}.
\]
Then Lemma 5 implies that
\[
s(\ell) - s(\ell - 1) \leq s(\ell + 1) - s(\ell) \leq \cdots \leq s(p - 1) - s(p - 2) \leq \frac{t}{2}.
\]
But $\text{Sym}^\ell(\Omega^1_X)$ is semistable for $\ell \leq p - 1$ and
$$\text{rk}(\text{Sym}^\ell(\Omega^1_X)) + \text{rk}(W) = \ell + 1 + r \leq p + 1$$
for $\ell \leq p - r$, thus we have A_ℓ is semistable for $\ell \leq p - r$ by a theorem of Ilangovan-Mehta-Parameswaran (see Section 6 of [3] for the precise statement): If E_1, E_2 are semistable with $\text{rk}(E_1) + \text{rk}(E_2) \leq p + 1$, then $E_1 \otimes E_2$ is semistable. Consequently, we have $s(\ell) = 0$ for $\ell \leq p - r$. Then the result is a direct computation.

Lemma 7. Assume $p \geq r + 1$. Then we have
$$t \leq (2r - 1) \cdot \mu(\Omega^1_X).$$

Proof. By the proposition 3.9 of [7], We have $I(F^*\Omega^1_X) \leq \mu(\Omega^1_X)$, If $p \geq r + 1$, then it is easy to check that
$$I(W \otimes F^*\Omega^1_X) = I(F^*\Omega^1_X).$$
Thus we have
$$t \leq (2r - 1) \cdot I(W \otimes F^*\Omega^1_X) \leq (2r - 1) \cdot \mu(\Omega^1_X).$$

Now, we finish the proof of Theorem 1.

Proof of Theorem 1: Let us assume that W is semistable firstly.
If $r_0 = r_{2(p-1)}$, then Lemma 4 implies that there exists a subsheaf $W' \subset W$ such that
$$\mu(\mathcal{E}) - \mu(F_\ell W) \leq \frac{r_{2(p-1)}(\text{rk}(F_\ell W) - \text{rk}(\mathcal{E}))}{p \cdot \text{rk}(\mathcal{E}) \cdot \text{rk}(W)}(\mu(W') - \mu(W/W')) \leq 0$$
If $r_0 > r_{2(p-1)}$, then we have
$$\sum_{\ell=0}^m (p - 1 - \ell)r_\ell \geq (p - 1)$$
by Lemma 3. Consider formula (4), it is enough to prove that
$$\sum_{\ell=0}^m r_\ell(\mu(F_\ell) - \mu(\frac{V_\ell}{V_{\ell+1}})) \leq (p - 1) \cdot \mu(\Omega^1_X).$$
Recall that $V_\ell/V_{\ell+1} = W \otimes T^\ell(\Omega^1_X)$, where
$$T^\ell(\Omega^1_X) = \begin{cases}
\text{Sym}^\ell(\Omega^1_X) & \text{when } \ell < p \\
\text{Sym}^{2(p-1)-\ell}(\Omega^1_X) \otimes \omega_X^{\ell-(p-1)} & \text{when } \ell \geq p.
\end{cases}$$
Consequently, we have $V_\ell/V_{\ell+1}$ is semistable for $\ell \leq p - r$ and $\ell \geq p + r - 2$, and we only need to prove
\[
\sum_{\ell=p-r+1}^{p+r-3} r_\ell (\mu(F_\ell) - \mu(V_\ell/V_{\ell+1})) \leq (p-1) \cdot \mu(\Omega^1_X).
\]

But
\[
r_\ell (\mu(F_\ell) - \mu(V_\ell/V_{\ell+1})) \leq s(2(p-1) - \ell)
\]
for $p \leq \ell \leq p + r - 3$. Combining with Lemma 6 and Lemma 7, we obtain that
\[
\sum_{\ell=p-r+1}^{p+r-3} r_\ell (\mu(F_\ell) - \mu(V_\ell/V_{\ell+1})) = \sum_{\ell=p-r+1}^{p-1} r_\ell (\mu(F_\ell) - \mu(V_\ell/V_{\ell+1})) + \sum_{\ell=p}^{p+r-3} r_\ell (\mu(F_\ell) - \mu(V_\ell/V_{\ell+1}))
\]
\[
\leq \sum_{\ell=p-r+1}^{p-1} s(\ell) + \sum_{\ell=p}^{p+r-3} s(2(p-1) - \ell)
\]
\[
\leq \frac{t}{2} \cdot (1 + \cdots + r - 1) + \frac{t}{2} \cdot (r - 2 + \cdots + 1)
\]
\[
\leq \frac{1}{2}(2r - 1)(r - 1)^2 \cdot \mu(\Omega^1_X)
\]
\[
\leq (p-1) \cdot \mu(\Omega^1_X)
\]

If W is stable, we can prove that F_*W is stable similarly. The proof is completed.

\[\square\]

Remark 1. *Keep the assumption of Theorem 1. For $r = 1$, the stability of F_*W is proved by X. Sun in [7]. As a slightly generalized version of [2, Theorem 3.1], it is proved by X. Sun that $F_*(L \otimes \Omega^1_X)$ is semistable when L is a line bundle; moreover, if Ω^1_X is stable, then $F_*(L \otimes \Omega^1_X)$ is stable (see [7, Theorem 4.9]). There is no restriction on the characteristic p for these results.*

Acknowledgements

The authors would like to thank the Professor Xiaotao Sun for careful reading of this manuscript and for helpful comments, which improve the paper both in mathematics and presentations.

References

[1] N.Katz, Nilpotent connection and the monodromy theorem: Application of a result of Turrittin, I.H.E.S. Publ. Math., 39 (1970), 175-232

[2] Y.Kitadai and H.Sumihiro, Canonical filtrations and stability of direct images by Frobenius morphisms II, Hiroshima Math. J., 38 (2008), 243-261.
[3] A. Langer, Semistable sheaves in positive characteristic, Ann. of Math. (2), 159 (2004), 251-276.
[4] L. Li and F. Yu, Instability of truncated symmetric powers of sheaves, J. Algebra, 386 (2013), 176-189.
[5] V. Mehta and C. Pauly, Semistability of Frobenius direct images over curves, Bull. Soc. Math. France, 135 (2007), 105-117.
[6] X. Sun, Direct images of bundles under Frobenius morphism, Invent. Math., 173 (2008), 427-447.
[7] X. Sun, Frobenius morphism and semistable bundles, Advanced Studies in Pure Mathematics 60 (2010), Algebraic Geometry in East Asia-Seoul (2008), 161-182.

Congjun Liu: Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P. R. of China.
Email: liucongjun@amss.ac.cn
Mingshuo Zhou: Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P. R. of China.
Email: zhoumingshuo@amss.ac.cn