Inexact Newton’s method to nonlinear functions with values in a cone

O. P. Ferreira∗ G. N. Silva †

April 21, 2016

Abstract

The problem of finding a solution of nonlinear inclusion problems in Banach space is considered in this paper. Using convex optimization techniques introduced by Robinson (Numer. Math., Vol. 19, 1972, pp. 341-347), a robust convergence theorem for inexact Newton’s method is proved. As an application, an affine invariant version of Kantorovich’s theorem and Smale’s α-theorem for inexact Newton’s method is obtained.

Keywords: Inclusion problems, inexact Newton’s method, majorant condition, semi-local convergence.

1 Introduction

In this paper we study the inexact Newton’s method for solving the nonlinear inclusion problem

$$F(x) \in C,$$

where $F : \Omega \to \mathbb{Y}$ is a nonlinear continuously differentiable function, \mathbb{X} and \mathbb{Y} are Banach spaces, \mathbb{X} is reflexive, $\Omega \subseteq \mathbb{X}$ an open set and $C \subseteq \mathbb{Y}$ a nonempty closed convex cone. The idea of solving a nonlinear inclusion problems of the form (1), plays a huge role in classical analysis and its applications. For instance, the special case in which C is the degenerate cone $\{0\} \subseteq \mathbb{Y}$, the inclusion problem in (1) corresponds to a nonlinear equation. In the case for which $\mathbb{X} = \mathbb{R}^n$, $\mathbb{Y} = \mathbb{R}^{p+q}$ and $C = \mathbb{R}^p \times \{0\}$ is the product of the nonpositive orthant in \mathbb{R}^p with the origin in \mathbb{R}^q, the inclusion problem in (1) corresponds to a nonlinear system of p inequalities and q equalities, for example see [3], [8], [5], [9], [10], [17], [20], [21] and [24].

In order to solving (1), in [25] the following Newton-type iterative method was proposed:

$$x_{k+1} = x_k + d_k, \quad d_k \in \arg \min_{d \in \mathbb{X}} \{\|d\| : F(x_k) + F'(x_k)d \in C\}, \quad k = 0, 1, \ldots$$

(2)

In general, this algorithm may fail to converge and may even fail to be well defined. To ensure that the method is well defined and converges to a solution of the nonlinear inclusion, S. M. Robinson, made two important assumptions:

H1. There exists $x_0 \in \mathbb{X}$ such that $\text{rge } T_{x_0} = \mathbb{Y}$, where $T_{x_0} : \mathbb{X} \Rightarrow \mathbb{Y}$ is the convex process given by

$$T_{x_0}d := F'(x_0)d - C, \quad d \in \mathbb{X},$$

and $\text{rge } T_{x_0} = \{y \in \mathbb{Y} : y \in T_{x_0}(x) \text{ for some } x \in \mathbb{X}\}$, see [10] for additional details.

∗IME/UFG, CP-131, CEP 74001-970 - Goiânia, GO, Brazil (Email: orizon@ufg.br). The author was supported in part by CAPES (Projeto 019/2011- Cooperação Internacional Brasil-China), CNPq Grants 471815/2012-8, 444134/2014-0 and 305158/2014-7, PRONEX-Optimization(FAPERJ/CNPq) and FAPEG/GO.

†CCET/UFOB, CEP 47808-021 - Barreiras, BA, Brazil (Email: gilson.silva@ufob.edu.br). The author was supported in part by CAPES.
H2. F' is Lipschitz continuous with modulo L, i.e., $\|F'(x) - F'(y)\| \leq L \| x - y \|$, for all $x, y, \in \mathbb{X}$.

Under these assumptions, it was proved in [25], that the sequence $\{x_k\}$ generated by (2) is well defined and converges to x_* satisfying $F(x_*) \in C$, provided that following convergence criterion is satisfied:

$$\|x_1 - x_0\| \leq \frac{1}{2L\|T_{x_0}^{-1}\|}.$$

The first affine invariant version of this result was presented in [21]. In [22] they introduced the notion of the weak-Robinson condition for convex processes and presented an extension of the results of [21] under an L-average Lipschitz condition. As applications, two special cases were provided, namely, the convergence result of the method under Lipschitz’s condition and Smale’s condition. In [13], under an affine majorant condition, a robust analysis of this method were established. As in [21], the analysis under Lipschitz’s condition and Smale’s condition are also obtained as special case, see also [1], [6].

The inexact Newton method, for solving nonlinear equation $F(x) = 0$, was introduced in [7] for denoting any method which, given an initial point x_0, generates the sequence $\{x_k\}$ as follows:

$$\|F(x_k) + F'(x_k)(x_{k+1} - x_k)\| \leq \eta_k \|F(x_k)\|, \quad k = 0, 1, \ldots,$$

and $\{\eta_k\}$ is a sequence of forcing terms such that $0 \leq \eta_k < 1$; for others variants of this method see [2], [12], [16]. In [7] was proved, under suitable assumptions, that $\{x_k\}$ is convergent to a solution with super-linear rate. In [19] numerical issues about this method are discussed. In the present paper, we extend the inexact Newton’s method [2], for solving nonlinear inclusion, as any method which, given an initial point x_0, generates a sequence $\{x_k\}$ as follows:

$$x_{k+1} = x_k + d_k, \quad d_k \in \arg \min_{d \in \mathbb{X}} \{\|d\| : F(x_k) + F'(x_k)d + r_k \in C\},$$

$$\max_{w \in [-r_k, r_k]} \|T_{x_0}^{-1}w\| \leq \theta \|T_{x_0}^{-1}[-F(x_k)]\|,$$

for $k = 0, 1, \ldots$, $0 \leq \theta < 1$ is a fixed suitable tolerance, and $T_{x_0}^{-1}(y) := \{d \in \mathbb{X} : F'(x_0)d - y \in C\}$, for $y \in \mathbb{Y}$. We point out that, if $\theta = 0$ then (4) reduces to extended Newton method [2] for solving (1) and, in the case, $C = \{0\}$ it reduces to affine invariant version of (3), which was also studied in [16].

It is worth noting that (1) is a particular instance of the following generalized equation

$$F(x) + T(x) \ni 0,$$

when $T(x) \equiv -C$ and $T : \mathbb{X} \Rightarrow \mathbb{Y}$ is a set valued mapping. In [12] (see also [41]), they proposed the following Newton-type method for solving (3):

$$(F(x_k) + F'(x_k)(x_{k+1} - x_k) + T(x_{k+1})) \cap R_k(x_k, x_{k+1}) \neq \emptyset, \quad k = 0, 1, \ldots,$$

where $R_k : \mathbb{X} \times \mathbb{X} \Rightarrow \mathbb{Y}$ is a sequence of set-value mappings with closed graphs. Note that, in the case, when $C(x) \equiv 0$, $\theta \equiv \eta_k$ and

$$R_k(x_k, x_{k+1}) \equiv B_{\eta_k\|F(x_k)\|}(0),$$

the iteration (7) reduces to (3). We also remark that, in the particular case $T(x) \equiv -C$, the iteration (7) has (4)-(5) as a minimal norm affine invariant version. Therefore, in some sense, our method is a particular instance of [12]. However, the analysis presented in [12] is local, i.e., it is made assumption at a solution, while in our analysis we will not assume existence of solution. In fact, our aim is to prove a robust Kantorovich’s Theorem for (4)-(5), under assumption $\textbf{H1}$ and an affine invariant majorant condition generalizing $\textbf{H2}$, which in particular, prove existence of solution for (1). Moreover, the analysis presented, shows that the robust analysis of the inexact Newton’s method for solving nonlinear inclusion problems, under affine Lipschitz-like and affine Smale’s conditions, can be obtained as a special case of
the general theory. Besides, for the degenerate cone, which the nonlinear inclusion becomes a nonlinear equation, our analysis retrieves the classical results on semi-local analysis of inexact Newton’s method; [16]. Up to our knowledge, this is the first time that the inexact Newton method to solving cone inclusion equation, our analysis retrieves the classical results on semi-local analysis of inexact Newton’s method; the general theory. Besides, for the degenerate cone, which the nonlinear inclusion becomes a nonlinear equation, our analysis retrieves the classical results on semi-local analysis of inexact Newton’s method; the general theory.

The organization of the paper is as follows. In Section 1.1 some notations and basic results used in the paper are presented. In Section 2 the main results are stated and in Section 2.1 some properties of the majorant function are established and the main relationships between the majorant function and the nonlinear operator used in the paper are presented. In Section 3 the main results are proved and the applications of this results are given in Section 4. Some final remarks are made in Section 5.

1.1 Notation and auxiliary results

Let X be a Banach space. The open and closed ball at x with radius $\delta > 0$ are denoted, respectively, by $B(x, \delta) := \{ y \in X : \| x - y \| < \delta \}$ and $B[x, \delta] := \{ y \in X : \| x - y \| \leq \delta \}$. A set valued mapping $T : X \rightrightarrows Y$ is called sublinear or convex process when its graph is a convex cone, i.e.,

$$0 \in T(0), \quad T(\lambda x) = \lambda T(x), \quad \lambda > 0, \quad T(x + x') \supseteq T(x) + T(x'), \quad x, x' \in X, \quad (8)$$

(sublinear mapping has been extensively studied in [10], [26], [27] and [28]). The domain and range of a sublinear mapping T are defined, respectively, by $\text{dom} T := \{ d \in X : Td \neq \emptyset \}$, and $\text{rge} T := \{ y \in Y : y \in T(x) \text{ for some } x \in X \}$. The norm (or inner norm as is called in [10]) of a sublinear mapping T is defined by

$$\| T \| := \sup \{ \|Td\| : d \in \text{dom} T, \| d \| \leq 1 \}, \quad (9)$$

where $\|Td\| := \inf \{ \| v \| : v \in Td \}$ for $Td \neq \emptyset$. We use the convention $\|Td\| = +\infty$ for $Td = \emptyset$, it will be also convenient to use the convention $Td + \emptyset = \emptyset$ for all $d \in X$. Let $S, T : X \rightrightarrows Y$ and $U : Y \rightrightarrows Z$ be sublinear mappings. The scalar multiplication, addition and composition of sublinear mappings are sublinear mappings defined, respectively, by $(\alpha S)(x) := \alpha S(x)$, $(S + T)(x) := S(x) + T(x)$, and $UT(x) := \cup \{ U(y) : y \in T(x) \}$, for all $x \in X$ and $\alpha > 0$ and the following norm properties there hold $\| \alpha S \| = |\alpha| \| S \|$, $\| S + T \| \leq \| S \| + \| T \|$ and $\| UT \| \leq \| U \| \| T \|$.

Remark 1. Note that definition of the norm in [19] implies that if $\text{dom} T = X$ and A is a linear mapping from Z to X then $\| T(-A) \| = \| TA \|$.

Let $\Omega \subseteq X$ be an open set and $F : \Omega \rightarrow Y$ a continuously Fréchet differentiable function. The linear map $F'(x) : X \rightarrow Y$ denotes the Fréchet derivative of $F : \Omega \rightarrow Y$ at $x \in \Omega$. Let $C \subseteq Y$ be a nonempty closed convex cone, $z \in \Omega$ and $T_z : X \rightrightarrows Y$ a mapping defined as

$$T_z d := F'(z)d - C. \quad (10)$$

It is well known that the mappings T_z and T_z^{-1} are sublinear with closed graph, $\text{dom} T_z = X$, $\| T_z \| < +\infty$ and, moreover, $\text{rge} T_z = Y$ if and only if $\| T_z^{-1} \| < +\infty$ (see Lemma 3 above and Corollary 4A.7, Corollary 5C.2 and Example 5C.4 of [10]). Note that

$$T_z^{-1}y := \{ d \in X : F'(z)d - y \in C \}, \quad z \in \Omega, \ y \in Y. \quad (11)$$

Lemma 1. There holds $T_z^{-1}F'(v)T_v^{-1}w \subseteq T_z^{-1}w$, for all $v, z \in \Omega$, $w \in Y$. As a consequence,

$$\| T_z^{-1} [F'(y) - F'(x)] \| \leq \| T_z^{-1}F'(v)T_v^{-1} [F'(y) - F'(x)] \|, \quad v, x, y, z \in \Omega. \quad \square$$

Proof. See [13].
2 Inexact Newton’s method

Our goal is to state and prove a robust semi-local affine invariant theorem for inexact Newton’s method to solve nonlinear inclusion of the form (1), for state this theorem we need some definitions.

Let X, Y be Banach spaces, X reflexive, $\Omega \subseteq X$ an open set, $F : \Omega \to Y$ a continuously Fréchet differentiable function. The function F satisfies the Robinson’s Condition at $x_0 \in \Omega$ if

$$\text{rge} T_{x_0} = Y,$$

where $T_{x_0} : X \to Y$ is a sublinear mapping as defined in (11). Let $R > 0$ a scalar constant. A continuously differentiable function $f : [0, R) \to \mathbb{R}$ is a majorant function at a point $x_0 \in \Omega$ for F if

$$B(x_0, R) \subseteq \Omega, \quad \left\| T_{x_0}^{-1} \left[F'(y) - F'(x) \right] \right\| \leq f'(\|x - x_0\| + \|y - x\|) - f'(\|x - x_0\|),$$

(12)

for all $x, y \in B(x_0, R)$ such that $\|x - x_0\| + \|y - x\| < R$ and satisfies the following conditions:

h1) $f(0) > 0, f'(0) = -1$;

h2) f' is convex and strictly increasing;

h3) $f(t) = 0$ for some $t \in (0, R)$.

We also need of the following condition on the majorant condition f which will be considered to hold only when explicitly stated.

h4) $f(t) < 0$ for some $t \in (0, R)$.

Note that the condition h4 implies the condition h3.

The sequence $\{z_k\}$ generated by inexact Newton’s method for solving the inclusion $F(x) \in C$ with starting point z_0 and residual relative error tolerance θ is defined by: $z_{k+1} := z_k + d_k,$

$$d_k \in \arg \min_{d \in X} \left\{ \|d\| : F(z_k) + F'(z_k)d + \tau_k \in C \right\}, \quad \max_{w \in \{-\tau_k, \tau_k\}} \left\| T_{x_0}^{-1} w \right\| \leq \theta \left\| T_{x_0}^{-1}(-F(z_k)) \right\|,$$

for $k = 0, 1, \ldots$. The statement of the our main theorem is:

Theorem 2. Let $C \subset Y$ a nonempty closed convex cone, $R > 0$. Suppose that $x_0 \in \Omega$, F satisfies the Robinson’s condition at x_0, f is a majorant function for F at x_0 and

$$\left\| T_{x_0}^{-1}[-F(x_0)] \right\| \leq f(0).$$

(13)

Let $\beta := \sup \{-f(t) : t \in [0, R]\}$. Take $0 \leq \rho < \beta/2$ and define the constants

$$\kappa_\rho := \sup_{\rho \leq t \leq R} \frac{-f(t) + 2\rho}{f'(t) - (t - \rho)}, \quad \lambda_\rho := \sup\{t \in [\rho, R) : \kappa_\rho + f'(t) < 0\}, \quad \hat{\theta}_\rho := \frac{\kappa_\rho}{2 - \kappa_\rho},$$

(14)

Then for any $\theta \in [0, \hat{\theta}_\rho]$ and $z_0 \in B(x_0, \rho)$, the sequence $\{z_k\}$, is well defined, for any particular choice of each d_k,

$$\left\| T_{x_0}^{-1}[-F(z_k)] \right\| \leq \left(\frac{1 + \theta^2}{2} \right)^k |f(0) + 2\rho|,$$

(15)

$\{z_k\}$ is contained in $B(z_0, \lambda_\rho)$ and converges to a point $x_* \in B[x_0, \lambda_\rho]$ such that $F(x_*) \in C$. Moreover, if

h5) $\lambda_\rho < R - \rho,$
then the sequence \(\{z_k\} \) satisfies, for \(k = 0, 1, \ldots \),
\[
\|z_k - z_{k+1}\| \leq \frac{1 + \theta}{1 - \theta} \left[\frac{1 + \theta D^{-1}f'[(\lambda_0 + \rho)]}{2} \right] \|z_k - z_{k-1}\| + \theta \frac{2|f'(|\rho|) + f'[(\lambda_0 + \rho)]|}{|f'[(\lambda_0 + \rho)]|} \|z_k - z_{k-1}\|.
\]

If, additionally, \(0 \leq \theta \leq \frac{1}{2} \), \(C = \{0\} \) and \(\theta \) is strictly convex and \(f(t) \) has a smallest root \(t_* \) such that \(f(t) < 0 \) and \(f'(t) < 0 \), then the sequence \(\{z_k\} \) converges Q-linearly as follows
\[
\limsup_{k \to \infty} \frac{\|x^*_k - z_{k+1}\|}{\|z_k - z_{k-1}\|} \leq \frac{1 + \theta}{1 - \theta} \left[\frac{1 + \theta + 2\theta}{2\rho} \right], \quad k = 0, 1, \ldots.
\]

Remark 2. In Theorem 2 if \(\theta = 0 \) we obtain the exact Newton method as in [16] and its convergence properties. Now, taking \(\theta = \theta_k \) in each iteration and letting \(\theta_k \) goes to zero as \(k \) goes to infinity, inequality (16) implies that the sequence \(\{z_k\} \) converges to the solution of (1) with asymptotic superlinear rate. If \(C = \emptyset \) we obtain the inexact Newton method as in [16] and its convergence properties are similar.

Henceforth we assume that the assumption on Theorem 2 holds, except h5 which will be considered to hold only when explicitly stated.

2.1 Preliminary results

We will first prove Theorem 2 for the case \(\rho = 0 \) and \(z_0 = x_0 \). In order to simplify the notation in the case \(\rho = 0 \), we will use \(\kappa, \lambda \) and \(\theta \) instead of \(\kappa_0, \lambda_0 \) and \(\theta_0 \) respectively:
\[
\kappa := \sup_{0 < t < R} \frac{-f(t)}{t}, \quad \lambda := \sup\{t \in [0, R) : \kappa + f'(t) < 0\}, \quad \bar{\theta} := \frac{\kappa}{2 - \kappa}.
\]

2.1.1 The majorant function

In this section we will prove the main results about the majorant function. Define
\[
t_* := \min f^{-1}(\{0\}), \quad \bar{t} := \sup\{t \in [0, R) : f'(t) < 0\}.
\]

Then we have the following remark about the above constants which was proved in [16] Proposition 2.4:

Remark 3. For \(\kappa, \lambda, \theta \) as in (15) it holds that \(0 < \kappa < 1 \), \(0 < \theta < 1 \) and \(t_* < \lambda = \bar{t} \). Moreover, \(f'(t) + \kappa < 0 \), for \(t \in [0, \lambda) \) and \(\inf_{0 \leq t \leq R} (f(t) + \kappa t) = \lim_{t \to \lambda^-} (f(t) + \kappa t) = 0 \).

The following proposition was proved in [16] Propositions 2.3 and 5.2 and [15] Proposition 3.

Proposition 3. The majorant function \(f \) has a smallest root \(t_* \in (0, R) \), is strictly convex and \(f(t) > 0 \), \(f'(t) < 0 \) and \(t < t - f(t)/f'(t) < t_* \), for all \(t \in [0, t^*) \). Moreover, \(f'(t) \leq 0 \) and \(f'(t) < 0 \) if, and only if, there exists \(t \in (t_*, R) \) such that \(f(t) < 0 \). If, additionally, \(f \) satisfies h4 then \(f'(t) < 0 \) for any \(t \in [0, \bar{t}) \), \(0 < t_* < \bar{t} \) and \(f(t) < 0 \). Moreover, \(f'_* > \beta > 0 \) and \(f'_* \) is positive for \(\beta < 0 \) and \(\beta = \lim_{t \to \lambda^-} f(t) \), \(0 < \beta < \bar{t} \) and \(\beta > 0 \) then \(\lim_{t \to \lambda^-} f(t) = \lim_{t \to \bar{t}^-} f(t) = 0 \).

Take \(0 \leq \theta \) and \(0 \leq \varepsilon \). We will need of the following auxiliary mapping, which is associated to the inexact newton iteration applied to the majorant function, \(n_{\theta} : [0, \bar{t}) \times [0, \infty) \to \mathbb{R} \times \mathbb{R} \),
\[
n_{\theta}(t, \varepsilon) := \left(t - (1 + \theta) \frac{f(t) + \varepsilon}{f'(t)}, \varepsilon + 2\theta(f(t) + \varepsilon) \right).
\]

The following auxiliary set will be important for establishes the convergence of the inexact newton sequence associated to the majorant function
\[
\mathcal{A} := \{(t, \varepsilon) \in \mathbb{R} \times \mathbb{R} : 0 \leq t < \lambda, 0 \leq \varepsilon \leq \kappa t, 0 < f(t) + \varepsilon\}.
\]

The following lemma was proved in [16] Lemma 4.2.
Lemma 4. If \(0 \leq \theta \leq \tilde{\theta}\), \((t, \varepsilon) \in \mathcal{A}\) and \((t_+, \varepsilon_+) := n_\theta(t, \varepsilon)\), that is, \(t_+ := t - (1 + \theta)(f(t) + \varepsilon)/f'(t)\) and \(\varepsilon_+ := \varepsilon + 2(\varepsilon_+)(f(t) + \varepsilon)\), then \(n_\theta(t, \varepsilon) \in \mathcal{A}\), \(t < t_+\) and \(\varepsilon \leq \varepsilon_+\). Moreover, \(f(t_+) + \varepsilon_+ < \frac{(1 + \theta^2)}{2}(f(t) + \varepsilon)\).

Define the linearization error of the majorant function associated to \(F\) as follows
\[
e_f(v, t) := f(v) - \left[f(t) + f'(t)(v - t)\right], \quad t, s \in [0, R).
\] (21)

We will need the following result about the linearization error, for proving it see \[16, Lemma 3.3\].

Lemma 5. If \(0 \leq b \leq t\), \(0 \leq a \leq s\) and \(t + s < R\), then there holds:
\[
e_f(a + b, b) \leq \max \left\{ e_f(t + s, t), \frac{1}{2} f'(t + s) - f'(t) s^2 \right\}, \quad s \neq 0.
\]

2.1.2 Relationships between the majorant and nonlinear functions

In this section, we will present the main relationships between the majorant function \(f\) and the nonlinear function \(F\) that we need for proving Theorem \[2\]. Note that Robinson’s condition, namely, \(\text{rge} \ T_{x_0} = \mathbb{Y}\) implies that \(\text{dom} \ T_{x_0}^{-1} = \mathbb{Y}\).

Proposition 6. If \(\|x - x_0\| \leq t < \bar{t}\) then \(\text{dom} \ [T_{x_0}^{-1} F'(x_0)] = \mathbb{X}\) and there holds \(\|T_{x_0}^{-1} F'(x_0)\| \leq -1/f'(t)\).

As a consequence, \(\text{rge} \ T_x = \mathbb{Y}\).

Proof. See \[13, Proposition 12\].

Newton’s iteration at a point \(x \in \Omega\) happens to be a solution of the linearization of the inclusion \(F(y) \in C\) at such a point, namely, a solution of the linear inclusion \(F(x) + F'(x)(x - y) \in C\). Thus, we study the linearization error of \(F\) at a point in \(\Omega\)
\[
E_F(y, x) := F(y) - \left[F(x) + F'(x)(y - x)\right], \quad y, x \in \Omega.
\] (22)

We will bound this error by \[21\], the error in the linearization on the majorant function associated to \(F\).

Lemma 7. If \(x, y \in \mathbb{X}\) and \(\|x - x_0\| + \|y - x\| < R\) then \(\|T_{x_0}^{-1} E_F(y, x)\| \leq e_f(\|x - x_0\| + \|y - x\|, \|x - x_0\|)\).

Proof. As \(x, y \in B(x_0, R)\) and the ball is convex \(x + \tau(y - x) \in B(x_0, R)\), for all \(\tau \in [0, 1]\). Since, by assumption, \(\text{rge} \ T_{x_0} = \mathbb{Y}\) we obtain that \(\text{dom} \ T_{x_0}^{-1} = \mathbb{Y}\). Thus, using that \(F'(x)\) is a linear mapping for each \(x \in \mathbb{X}\), we conclude
\[
\|T_{x_0}^{-1} \left[F'(x + \mathcal{E}(y - x)) - F'(x)(y - x)\right]\| \leq \|T_{x_0}^{-1} \left[F'(x + \mathcal{E}(y - x)) - F'(x)\right]\| \|y - x\|,
\]
for all \(\tau \in [0, 1]\). Hence, as \(f\) is a majorant function for \(F\) at \(x_0\), using \[12\] and last inequality we have
\[
\|T_{x_0}^{-1} \left[F'(x + \tau(y - x)) - F'(x)(y - x)\right]\| \leq \left[f'(\|x - x_0\| + \tau \|y - x\|) - f'(\|x - x_0\|)\right] \|y - x\|,
\]
for all \(\tau \in [0, 1]\). Thus, since \(\text{dom} \ T_{x_0}^{-1} = \mathbb{Y}\), we apply Lemma 2.1 of \[21\] with \(U = T_{x_0}^{-1}\) and the functions \(G(\tau)\) and \(g(\tau)\) equals to the expressions in the last inequality, in parentheses on the left hand side and on the right hand side, respectively, obtaining
\[
\|T_{x_0}^{-1} \int_0^1 [F'(x + \mathcal{E}(y - x)) - F'(x)(y - x)] \ d\tau\|
\]
\[
\leq \int_0^1 [f'(\|x - x_0\| + \tau \|y - x\|) - f'(\|x - x_0\|)] \|y - x\| \ d\tau,
\]
which, after performing the integration of the right hand side, taking into account the definition of \(e_f(v, t)\) in \[21\] and that \[22\] is equivalent to
\[
E_F(y, x) = \int_0^1 [F'(x + \mathcal{E}(y - x)) - F'(x)(y - x)] \ d\tau,
\]
yields the desired inequality. \[\square\]
Lemma 8. If \(x, y \in \mathbb{X}\) and \(\|x-x_0\| + \|y-x\| < R\) then \(\|T_{x_0}^{-1}[-E_F(y, x)]\| \leq e_f(\|x-x_0\| + \|y-x\|, \|x-x_0\|)\).

Proof. To prove this lemma we follow the same arguments used in the proof of Lemma 7, by taking into account Remark [1].

Corollary 9. If \(x, y \in \mathbb{X}\), \(\|x-x_0\| \leq t\), \(\|y-x\| \leq s\) and \(s + t < R\) then

\[
\max \left\{ \|T_{x_0}^{-1}[-E_F(y, x)]\|, \|T_{x_0}^{-1}E_F(y, x)\| \right\} \leq \max \left\{ e_f(t+s, t), \frac{1}{2} f'(s+t) - f'(t) \right\} \|y-x\|^2, \quad s \neq 0.
\]

Proof. The results follows by direct combination of the Lemmas [7, 8] and [5] by taking \(b = \|x-x_0\|\) and \(a = \|y-x\|\).

Lemma 10. If \(x \in \mathbb{X}\) and \(\|x-x_0\| \leq t < R\) then \(\|T_{x_0}^{-1}F'(x)\| \leq 2 + f'(t)\).

Proof. First of all, we use Definition of sublinear mapping in (6) to obtain

\[
T_{x_0}^{-1}F'(x) \geq T_{x_0}^{-1}[F'(x) - F'(x_0)] + T_{x_0}^{-1}F'(x_0).
\]

Hence, taking into account properties of the norm, we conclude from above inclusion that

\[
\|T_{x_0}^{-1}F'(x)\| \leq \|T_{x_0}^{-1}[F'(x) - F'(x_0)]\| + \|T_{x_0}^{-1}F'(x_0)\|.
\]

Since \(T_{x_0}^{-1}F'(x_0) \geq F'(x_0) - F'(x_0)\) we have \(\|T_{x_0}^{-1}F'(x_0)\| \leq 1\). Thus, using assumption (12), the last inequality becomes

\[
\|T_{x_0}^{-1}F'(x)\| \leq f'(\|x-x_0\|) - f'(0) + 1.
\]

Therefore, assumptions \(h1, h2\) and the last inequality imply the statement of the lemma.

The next result will be used to show that inexact Newton’s method is robust with respect to the initial iterate, its prove can be found in [13, Proposition 16].

Proposition 11. If \(y \in B(x_0, R)\) then \(\|T_{x_0}^{-1}[-F(y)]\| \leq f(\|y-x\|) + 2\|y-x\|\).

3 Convergence analysis of the inexact Newton Method

In this section we will prove Theorem 2. Before proving Theorem 2 we need to study the inexact Newton’s iteration, associated to the function \(F\), and prove Theorem 2 for the case \(\rho = 0\) and \(z_0 = x_0\).

3.1 The inexact Newton iteration

The outcome of an inexact Newton iteration is any point satisfying some error tolerance. Hence, instead of a mapping for inexact Newton iteration, we shall deal with a family of mappings, describing all possible inexact iterations. Before defining the inexact Newton iteration mapping, we need to define the inexact Newton’s step mapping, \(D_{F,C,\theta} : B(x_0, \tilde{t}) \rightrightarrows \mathbb{X}\),

\[
D_{F,C,\theta}(x) := \arg\min_{d \in \mathbb{X}} \{ \|d\| : F(x) + T_{x_0}^{-1}F'(x)d + r \in C \}; \quad \max_{w \in \{-r, r\}} \|T_{x_0}^{-1}w\| \leq \theta \|T_{x_0}^{-1}[-F(x)]\|, \quad (23)
\]

associated to \(F, C\) and \(\theta\). Since \(\mathbb{X}\) is reflexive, second part of Proposition 6 guarantees, in particular, that exact Newton’s step \(D_{F,C,0}(x)\) is nonempty, for each \(x \in B(x_0, \tilde{t})\). Since \(D_{F,C,0}(x) \subseteq D_{F,C,\theta}(x)\), we conclude \(D_{F,C,\theta}(x) \neq \emptyset\), for \(x \in B(x_0, \tilde{t})\). Therefore, for \(0 \leq \theta \leq \tilde{\theta}\), we can define \(N_{\theta}\) the family of inexact Newton iteration mapping, \(N_{F,C,\theta} : B(x_0, \tilde{t}) \rightrightarrows \mathbb{X}\),

\[
N_{F,C,\theta}(x) := x + D_{F,C,\theta}(x). \tag{24}
\]
One can apply a single Newton’s iteration on any \(x \in B(x_0, \bar{t}) \) to obtain the set \(N_{F,C,\theta}(x) \), which may not be contained to \(B(x_0, \bar{t}) \), or even may not be in the domain of \(F \). Therefore, this is enough to guarantee the well-definedness of only one iteration. To ensure that inexact Newtonian iteration mapping may be repeated indefinitely, we need some additional results. First, define some subsets of \(B \). Take Proposition 12.

To ensure that in exact Newtonian iteration mapping may be repeated indefinitely, we need some additional results. First, define some subsets of \(B \). Take 0

\[
K(t, \varepsilon) := \{ x \in \mathbb{R} : \| x - x_0 \| \leq t, \| T_{x_0}^{-1}[-F(x)] \| \leq f(t) + \varepsilon \},
\]

and

\[
\mathcal{K} := \bigcup_{(t, \varepsilon) \in \mathcal{A}} K(t, \varepsilon).
\]

Proposition 12. Take \(0 \leq \theta \leq \bar{\theta} \) and \(N_{F,C,\theta} \in N_{\theta} \). Then, for any \((t, \varepsilon) \in \mathcal{A} \) and \(x \in K(t, \varepsilon) \)

\[
\| y - x \| \leq t_+ - t,
\]

where \(y \in N_{F,C,\theta}(x) \) and \(t_+ \) is the first component of the function \(n_{\theta}(t, \varepsilon) \) defined in (19). Moreover,

\[
N_{F,C,\theta}(K(t, \varepsilon)) \subseteq K(n_{\theta}(t, \varepsilon)).
\]

As a consequence,

\[
n_{\theta}(\mathcal{A}) \subset \mathcal{A}, \quad N_{F,C,\theta}(\mathcal{K}) \subset \mathcal{K}.
\]

Proof. Take \(0 \leq \theta \), \((t, \varepsilon) \in \mathcal{A} \) and \(x \in K(t, \varepsilon) \). Thus, the definitions of the sets \(\mathcal{A} \) in (20), \(K(t, \varepsilon) \) in (25) together with Lemma 3 imply that

\[
\| x - x_0 \| \leq t < \bar{t}, \quad \| T_{x_0}^{-1}[-F(x)] \| \leq f(t) + \varepsilon, \quad t - (1 + \theta) \frac{f(t) + \varepsilon}{f'(t)} < \lambda \leq R.
\]

Take \(y \in N_{F,C,\theta}(x) \) and \(r \) as in (23). Using the third property of convex process in (8), we have

\[
T_x^{-1}[-F(x) - r] \supseteq T_x^{-1}[-F(x)] + T_x^{-1}[-r].
\]

Applying Lemma 1 in each term in the right hand side of last inclusion, one with \(w = -r, z = x \) and \(v = x_0 \), and the other one with \(w = -F(x), z = x \) and \(v = x_0 \), we obtain

\[
T_x^{-1}[-F(x) - r] \supseteq T_x^{-1}F'(x_0)T_{x_0}^{-1}[-F(x)] + T_x^{-1}F'(x_0)T_{x_0}^{-1}[-r].
\]

Hence, taking norm in both sides of last inclusion and using the properties of the norm yields

\[
\| T_x^{-1}[-F(x) - r] \| \leq \| T_x^{-1}F'(x_0) \| \| T_{x_0}^{-1}[-F(x)] \| + \| T_x^{-1}F'(x_0) \| \| T_{x_0}^{-1}[-r] \|.
\]

Considering that \(y - x \in D_{F,C,\theta}(x) \), we obtain that \(\| y - x \| = \| T_x^{-1}[-F(x) - r] \|. \) Thus, combining last inequality with Proposition 6 and the third inequality in (30), after some manipulation taking into account (23), we have

\[
\| y - x \| \leq (1 + \theta) \frac{f(t) + \varepsilon}{f'(t)},
\]

which, using definition of \(t_+ \), is equivalent to (27).

Since \(\| y - x_0 \| \leq \| y - x \| + \| x - x_0 \| \), thus (31), the first and the last inequality in (31) give

\[
\| y - x_0 \| \leq t - (1 + \theta) \frac{f(t) + \varepsilon}{f'(t)} < \lambda \leq R.
\]

On the other hand, the linearization error in (22) and the third property of convex process in (8) imply

\[
T_{x_0}^{-1}[-F(y)] \supseteq T_{x_0}^{-1}E_F(y, x) + T_{x_0}^{-1}[-F(x) - F'(x)(y - x)].
\]
Thus, taking norm in both sides of last inclusion and using the triangle inequality we obtain
\[
\|T_{x_0}^{-1}[-F(y)]\| \leq \|T_{x_0}^{-1}[-E_F(y, x)]\| + \|T_{x_0}^{-1}[-F(x) - F'(x)(y-x)]\|.
\]
Since \(y \in N_{F,C,\theta}(x)\) we have \(T_{x_0}^{-1}[r] \subset T_{x_0}^{-1}[-F(x) - F'(x)(y-x)]\), where \(r\) satisfies \(F(x) + F'(x)(y-x) + r \in C\) and (23). Then, last inequality implies
\[
\|T_{x_0}^{-1}[-F(y)]\| \leq \|T_{x_0}^{-1}[-E_F(y, x)]\| + \theta \|T_{x_0}^{-1}[-F(x)]\|.
\]
The second term in the right hand side of last inequality is bound by third inequality in (30). Thus, letting \(s = -(1+\theta)(f(t) + \varepsilon)/f'(t)\), using (31), first and last inequality (30), we can apply Corollary 9 to conclude that
\[
\|T_{x_0}^{-1}[-F(y)]\| \leq e_f \left(t - (1 + \theta) \frac{f(t) + \varepsilon}{f'(t)}, t\right) + \theta(f(t) + \varepsilon).
\]
Therefore, combining the last inequality with the definition in (21), we easily obtain that
\[
\|T_{x_0}^{-1}[-F(y)]\| \leq f \left(t - (1 + \theta) \frac{f(t) + \varepsilon}{f'(t)}\right) + \varepsilon + 2\theta(f(t) + \varepsilon).
\]
Finally, (32), last inequality, definitions (19) and (24) proof that the inclusion (25) holds.

The inclusions in (29) are an immediate consequence of Lemma 1, (28) and the definitions in (20) and (26). Thus, the proof of the proposition is concluded. □

3.2 Convergence analysis

In this section we will proof Theorem 2. First we will show that the sequence generated by inexact Newton method is well behaved with respect to the set defined in (25).

Theorem 13. Take \(0 \leq \theta \leq \tilde\theta\) and \(N_{F,C,\theta} \subset N_0\). For any \((t_0, \varepsilon_0) \in \mathcal{A}\) and \(y_0 \in K(t_0, \varepsilon_0)\) the sequences
\[
y_{k+1} \in N_{F,C,\theta}(y_k), \quad (t_{k+1}, \varepsilon_{k+1}) = n_\theta(t_k, \varepsilon_k), \quad k = 0, 1, \ldots, (33)
\]
are well defined,
\[
y_k \in K(t_k, \varepsilon_k), \quad (t_k, \varepsilon_k) \in \mathcal{A} \quad k = 0, 1, \ldots, (34)
\]
the sequence \(\{t_k\}\) is strictly increasing and converges to some \(\tilde{t} \in (0, \lambda]\), the sequence \(\{\varepsilon_k\}\) is non-decreasing and converges to some \(\tilde{\varepsilon} \in [0, \kappa]\),
\[
\|T_{x_0}^{-1}[-F(y_k)]\| \leq f(t_k) + \varepsilon_k \leq \left(1 + \frac{\theta^2}{2}\right)^k(f(t_0) + \varepsilon_0), \quad k = 0, 1, \ldots, (35)
\]
\(\{y_k\}\) is contained in \(B(x_0, \lambda]\), converges to a point \(x* \in B[x_0, \lambda]\) such that \(F(x*) \in C\), and satisfies
\[
\|y_{k+1} - y_k\| \leq t_{k+1} - t_k, \quad \|x* - y_k\| \leq \tilde{t} - t_k, \quad k = 0, 1, \ldots, (36)
\]
Moreover, if

\[h5') \lambda < R,\]

then the sequence \(\{y_k\}\) satisfies
\[
\|y_k - y_{k+1}\| \leq \frac{1 + \theta}{1 - \theta} \left[1 + \theta \frac{D^{-f'(\lambda)}}{2} \|y_k - y_{k-1}\| + \theta \frac{2 + f'(\lambda)}{|f'(\lambda)|} \|y_k - y_{k-1}\|\right] \|y_k - y_{k-1}\|, \quad k = 0, 1, \ldots, (37)
\]
If, additionally, \(0 \leq \theta < -2(\kappa + 1) + \sqrt{4(\kappa + 1)^2 + \kappa(4 + \kappa)/(4 + \kappa)}\) then \(\{y_k\}\) converges \(Q\)-linearly as follows
\[
\limsup_{k \to \infty} \frac{\|x* - y_{k+1}\|}{\|x* - y_k\|} \leq \frac{1 + \theta}{1 - \theta} \left[\frac{1 + \theta}{2} + \frac{2\theta}{\kappa}\right], \quad k = 0, 1, \ldots, (38)
\]
Proof. Since $0 \leq \theta \leq \bar{\theta}$, $(t_0, \varepsilon_0) \in \mathcal{A}$ and $y_0 \in K(t_0, \varepsilon_0)$, the well definition of the sequences $\{(t_k, \varepsilon_k)\}$ and $\{y_k\}$, as defined in (33), follow from the two last inclusions (29) in Proposition 12. Moreover, since (34) holds for $k = 0$, using the first inclusion in Proposition 12, first inclusion in (29) and induction on k, we conclude that (34) holds for all k. The first inequality in (36) follows from (27) in Proposition 12 and (34), while the first inequality in (35) follows from (34) and the definition of $K(t, \varepsilon)$ in (25).

The definition of \mathcal{A} in (20) implies $\mathcal{A} \subset [0, \lambda) \times [0, \kappa \lambda)$. Therefore, using (34) and the definition of $K(t, \varepsilon)$ we have

$$t_k \in [0, \lambda), \quad \varepsilon_k \in [0, \kappa \lambda), \quad y_k \in B(x_0, \lambda), \quad k = 0, 1, \ldots.$$ Using (20) and Lemma 4 we conclude that $\{t_k\}$ is strictly increasing, $\{\varepsilon_k\}$ is non-decreasing and the second equality in (35) holds for all k. Therefore, in view of the first two above inclusions, $\{t_k\}$ and $\{\varepsilon_k\}$ converge, respectively, to some $\bar{t} \in (0, \lambda]$ and $\bar{\varepsilon} \in [0, \kappa \lambda]$. The convergence of $\{t_k\}$ to \bar{t}, together with the first inequality in (36) and the inclusion $y_k \in B(x_0, \lambda)$ implies that y_k converges to some $x_\star \in B[0, \lambda]$ and that the second inequality on (36) holds for all k. Moreover, taking the limit in (35), as k goes to $+\infty$, we conclude that

$$\lim_{k \to +\infty} \left\| T_{x_0}^{-1}[-F(y_k)] \right\| = 0.$$

Thus, there exists $\{d_k\} \subset \mathbb{R}$ such that $d_k \in T_{x_0}^{-1}[-F(y_k)]$, for all $k = 0, 1, \ldots$, with $\lim_{k \to +\infty} d_k = 0$. Since $d_k \in T_{x_0}^{-1}[-F(y_k)]$, for all $k = 0, 1, \ldots$, the definition (11) implies that $F'(x_0)d_k + F(y_k) \in \mathcal{C}$, for all $k = 0, 1, \ldots$. Hence, letting k goes to $+\infty$ in last inclusion and taking into account that \mathcal{C} is closed and $\{y_k\}$ converges to x_\star, we conclude that $F(x_\star) \in \mathcal{C}$.

We are going to prove (37). Since $y_{k+1} \in N_{F,C,\theta}(y_k)$, for $k = 0, 1, \ldots$, we have

$$\left\| y_{k+1} - y_k \right\| = \left\| T_{y_k}^{-1}[-F(y_k) - r_k] \right\|,$$

where $r_k = T_{y_k}^{-1}[-F(y_k)] - T_{y_k}^{-1}[-F(y)]$.

The third property in (8) implies $T_{y_k}^{-1}[-F(y_k) - r_k] \supseteq T_{y_k}^{-1}[-F(y_k)] + T_{y_k}^{-1}[-r_k]$. Then applying twice Lemma 1 one with $z = y_k$, $v = x_0$ and $w = -F(y_k)$ and, the other one, with $z = y_k$, $v = x_0$ and $w = -r_k$, we obtain that

$$T_{y_k}^{-1}[-F(y_k) - r_k] \supseteq T_{y_k}^{-1}F'(x_0)T_{x_0}^{-1}[-F(y_k)] + T_{y_k}^{-1}F'(y_k)T_{x_0}^{-1}[-r_k].$$

Combining last inclusion with (30) and properties of the norm we conclude, after some algebra, that

$$\left\| y_{k+1} - y_k \right\| \leq (1 + \theta) \left\| T_{y_k}^{-1}F'(x_0) \right\| \left\| T_{x_0}^{-1}[-F(y_k)] \right\|.$$

Using (22), the third property in (8) and triangular inequality, after some manipulation, we have

$$\left\| T_{x_0}^{-1}[-F(y_k)] \right\| \leq \left\| T_{x_0}^{-1}[-E_F(y_k, y_{k-1})] \right\| + \left\| T_{x_0}^{-1}[-F(y_{k-1})] - F'(y_{k-1})(y_k - y_{k-1}) \right\|. $$

On the other hand, because $y_k \in N_{F,C,\theta}(y_{k-1})$ we have $T_{x_0}^{-1}r_{k-1} \subset T_{x_0}^{-1}[-F(y_{k-1}) - F'(y_{k-1})(y_k - y_{k-1})]$, where r_{k-1} satisfies

$$\left\| T_{x_0}^{-1}r_{k-1} \right\| \leq \theta \left\| T_{x_0}^{-1}[-F(y_{k-1})] \right\|.$$

Therefore, we have

$$\left\| T_{x_0}^{-1}[-F(y_{k-1}) - F'(y_{k-1})(y_k - y_{k-1})] \right\| \leq \theta \left\| T_{x_0}^{-1}[-F(y_{k-1})] \right\|,$$

which combined with the inequalities in (40) and (41) yields

$$\left\| y_{k+1} - y_k \right\| \leq (1 + \theta) \left\| T_{y_k}^{-1}F'(x_0) \right\| \left[\left\| T_{x_0}^{-1}[-E_F(y_k, y_{k-1})] \right\| + \theta \left\| T_{x_0}^{-1}[-F(y_{k-1})] \right\| \right].$$

Using again (22), the third property in (8) and triangular inequality, we obtain after some algebra that

$$\left\| T_{x_0}^{-1}[-F(y_{k-1})] \right\| \leq \left\| T_{x_0}^{-1}E_F(y_k, y_{k-1}) \right\| + \left\| T_{x_0}^{-1}[-F(y_k)] \right\| + \left\| T_{x_0}^{-1}F'(y_{k-1})(y_k - y_{k-1}) \right\|.$$
Combining the last inequality with the inequalities in (41) and (42) we conclude that
\[\|T_{x_0}^{-1}[-F(y_{k-1})]\| \leq \frac{1}{1 - \theta} \left[\|T_{x_0}^{-1}[E_F(y_k, y_{k-1})]\| + \|T_{x_0}^{-1}[-E_F(y_k, y_{k-1})]\| + \|T_{x_0}^{-1}F'(y_{k-1})(y_k - y_{k-1})\| \right] . \]

Inequality in (43) combined with last inequality becomes
\[\|y_{k+1} - y_k\| \leq \frac{1 + \theta}{1 - \theta} \|T_{y_k}^{-1}F'(x_0)\| \left[\|T_{x_0}^{-1}[-E_F(y_k, y_{k-1})]\| + \theta \left(\|T_{x_0}^{-1}[E_F(y_k, y_{k-1})]\| + \|T_{x_0}^{-1}F'(y_{k-1})(y_k - y_{k-1})\| \right) \right] . \]

Therefore, combining last inequality with Proposition 6, Lemma 13 and Corollary 9 with \(x = y_{k-1}, y = y_k, s = t_k - t_{k-1} \) and \(t = t_{k-1} \), we have
\[\|y_k - y_{k+1}\| \leq \frac{1 + \theta}{1 - \theta} \frac{1}{2} \frac{1 + \theta}{t_k - t_{k-1}} \|y_{k-1} - y_k\| + \theta \left[2 + f'(t_{k-1}) \right] \|y_{k-1} - y_k\| , \]
for \(k = 0, 1, \ldots \). Since \(\|y_{k-1} - y_k\| \leq t_k - t_{k-1} \), see (36), \(f' < -\kappa < 0 \) in \([0, \lambda]\), (38) follows from last inequality. Using h5' and Theorem 4.1.1 on p. 21 of [18] and taking into account that \(|f'| \) is decreasing in \([0, \lambda]\), \(f' \) is increasing in \([0, \lambda]\) and \(\{t_k\} \subset [0, \lambda] \), we obtain that (37) follows from above inequality.

For concluding the proof, it remains to prove that \(\{y_k\} \) converges Q-linearly as in (38). First note that \(\|y_{k-1} - y_k\| \leq t_k - t_{k-1} \) and \(f'(t_{k-1}) \leq f'(t_k) < 0 \). Thus, we conclude from (45) that
\[\|y_k - y_{k+1}\| \leq \frac{1 + \theta}{1 - \theta} \left[\frac{1 + \theta}{2} + \frac{20}{\kappa} \right] \|y_{k-1} - y_k\| , \quad k = 0, 1, \ldots . \]
which, from Proposition 2 of [14], implies that (39) holds. Since \(0 \leq \theta < -2(\kappa+1)+\sqrt{4(\kappa+1)^2 + \kappa(4+\kappa)}/(4+\kappa) \), the quantity in the right hand side of (39) is less than one. Hence \(\{y_k\} \) converges Q-linearly, which conclude the proof.

Proposition 14. Let \(R > 0 \) and \(f : [0, R) \to \mathbb{R} \) a continuously differentiable function. Suppose that \(x_0 \in \Omega \), \(f \) is a majorant function for \(F \) at \(x_0 \) and satisfies h4. If \(0 \leq \rho < \beta/2 \), then for any \(z_0 \in B(x_0, \rho) \) the scalar function \(g : [0, R - \rho) \to \mathbb{R} \), defined by
\[g(t) := \frac{-1}{f'(\rho)} [f(t + \rho) + 2\rho] , \]
is a majorant function for \(F \) at \(z_0 \) and also satisfies condition h4.

Proof. To prove see Proposition 17 of [13].

Proof of Theorem 2. First we will prove Theorem 2 with \(\rho = 0 \) and \(z_0 = x_0 \). Note that, from the definition in (18), we have
\[\kappa_0 = \kappa , \quad \lambda_0 = \lambda , \quad \tilde{\theta}_0 = \tilde{\theta} . \]
The assumption (13) implies that \(x_0 \in K(0, 0) \). Since \((t_0, \varepsilon_0) = (0, 0) \in A \) and \(y_0 = x_0 \in K(0, 0) \), we apply Theorem 13 with \(z_k = y_k \), for \(k = 0, 1, \ldots , \) to conclude that Theorem 2 holds for \(\rho = 0 \) and \(z_0 = x_0 \).

We are going to prove the general case. From Proposition 3 we have \(\rho < \tilde{t} \), which implies that \(\|z_0 - x_0\| < \rho < \tilde{t} \). Thus, we can apply Proposition 8 to obtain
\[\|T_{x_0}^{-1}F'(x_0)\| \leq \frac{-1}{f'(\rho)} . \]
Moreover, the point \(z_0 \) satisfies the Robinson’s condition, namely,
\[\text{rge}T_{z_0} = \mathbb{Y} . \]
Then, using Lemma 11, property of the norm, \(47\) and Proposition 11 with \(y = z_0\) we have
\[
\|T_{z_0}^{-1}[-F(z_0)]\| \leq \|T_{z_0}^{-1}F'(x_0)\| \|T_{x_0}^{-1}[-F(z_0)]\| \\
\leq \frac{-1}{f'(\rho)}[f(\|z_0 - x_0\|) + 2\|z_0 - x_0\|].
\]
Since \(f' \geq -1\), the function \(t \mapsto f(t) + 2t\) is (strictly) increasing. Thus, combining this fact with the last inequality, the inequality \(\|z_0 - x_0\| < \rho\) and \(46\) we conclude that
\[
\|T_{z_0}^{-1}[-F'(z_0)]\| \leq g(0).
\]
Proposition 14 implies that \(g\), defined in \(46\), is a majorant function for \(F\) at point \(z_0\) and also satisfies condition \(h4\). Moreover, \(46\) and \(\kappa_\rho, \lambda_\rho\) and \(\tilde{\theta}_\rho\) as defined in \(13\) imply
\[
\kappa_\rho = \sup_{0 < t < R - \rho} \frac{-g(t)}{t}, \quad \lambda_\rho = \sup\{t \in [0, R - \rho) : \kappa_\rho + g'(t) < 0\}, \quad \tilde{\theta}_\rho = \frac{\kappa_\rho}{2 - \kappa_\rho},
\]
which are the same as \(14\) with \(g\) instead of \(f\), then we can apply Theorem 13 for \(F\) and the majorant function \(g\) at point \(z_0\) and \(\rho = 0\), to concluding that the sequence \(\{z_k\}\) is well defined, remains in \(B(z_0, \lambda_\rho)\), satisfies \(15\) and converges to some \(x_\ast \in B[z_0, \lambda_\rho]\) with \(F(x_\ast) \in C\). Furthermore, since
\[
g'(t) = f'(t + \rho)/|f'(\rho)|, \quad D^-g'(t) = D^-f'(t + \rho)/|f'(\rho)|, \quad t \in [0, R - \rho),
\]
after some algebra, we conclude that inequalities \(16\) and \(17\) also hold. Therefore, the proof of theorem is concluded.

\[\square\]

4 Special cases

In this section we will use Theorem 2 to analyze the convergence of the inexact Newton’s method for cone inclusion problems under affine invariant Lipschitz condition and in the setting of Smale’s \(\alpha\)-theory. Up to our knowledge, this is the first time that the inexact Newton method for cone inclusion problems with a relative error tolerance under Lipschitz’s condition and Smale’s condition are analyzed.

4.1 Under affine invariant Lipschitz condition

In this section we present the convergence analysis of the inexact Newton’s method for cone inclusion problems under affine invariant Lipschitz condition. Let \(X, Y\) be Banach spaces, \(X\) reflexive, \(\Omega \subseteq X\) an open set, \(x_0 \in \Omega\) and \(L > 0\). A continuously Fréchet differentiable function \(F : \Omega \to Y\) satisfies the affine invariant Lipschitz condition with constant \(L\) at \(x_0\), if \(B(x_0, 1/L) \subset \Omega\) and
\[
\|T_{x_0}^{-1} [F'(y) - F'(x)]\| \leq L\|x - y\|, \quad x, y \in B(x_0, 1/L).
\]

Theorem 15. Let \(C \subset Y\) a nonempty closed convex cone. Suppose that \(x_0 \in \Omega\) and \(F\) satisfies the Robinson’s and the affine invariant Lipschitz condition with constant \(L > 0\) at \(x_0\) and
\[
\|T_{x_0}^{-1}F(x_0)\| \leq b, \quad 0 \leq \theta \leq (1 - \sqrt{2bL})/(1 + \sqrt{2bL}).
\]
Then, \(\{x_k\}\) generated by the inexact Newton method for solving \(F(x) \in C\) with starting point \(x_0\) and residual relative error tolerance \(\theta\): \(x_{k+1} := x_k + d_k\),
\[
d_k \in \arg \min_{d \in X} \{\|d\| : F(x_k) + F'(x_k)d + r_k \in C\}, \quad \max_{w \in \{-r_k, r_k\}} \|T_{x_0}^{-1}w\| \leq \theta \|T_{x_0}^{-1}[-F(x_k)]\|,
\]
\[12\]
for all $k = 0, 1, \ldots$, is well defined, for any particular choice of each d_k, $\|T_{x_0}^{-1}[-F(x_k)]\| \leq [(1 + \theta^2)/2]^k b$, for all $k = 0, 1, \ldots$, \{x_k\} is contained in $B(x_0, \lambda)$, converges to a point $x* \in B[x_0, \lambda]$, where $\lambda := \sqrt{2bL}/L$. Moreover, \{x_k\} satisfies

$$\|x_k - x_{k+1}\| \leq \frac{1 + \theta}{1 - \theta} \left\{ \frac{1 + \theta}{2} \frac{L}{1 - \sqrt{2bL}} \|x_{k-1} - x_k\| + \frac{1 + \sqrt{2bL}}{1 - \sqrt{2bL}} \|x_{k-1} - x_k\|, \right.$$

$k = 0, 1, \ldots$. If, additionally, $0 \leq \theta < \left(-2(2 - \sqrt{2bL}) + \sqrt{10bL - 14\sqrt{2bL} + 21}\right)/(5 - \sqrt{2bL})$ then \{x_k\} converges Q-linearly as follows

$$\limsup_{k \to \infty} \|x_k - x_k+1\| \leq \frac{1 + \theta}{1 - \theta} \left[\frac{1 + \theta}{2} + \frac{2\theta}{1 - \sqrt{2bL}} \right], \quad k = 0, 1, \ldots.$$

Proof. Take $\theta = (1 - \sqrt{2bL})/(1 + \sqrt{2bL})$. Since $f : [0, 1/L] \to \mathbb{R}$, defined by $f(t) := (L/2)t^2 - t + b$, is a majorant function for F at point x_0, all result follow from Theorem 2, applied to this particular context.

Remark 4. In Theorem 15, if $\theta = 0$ and $C = \{0\}$ then we obtain, [13, Theorem 18] for the exact Newton method and [16, Theorem 6.3] for the inexact Newton method, respectively.

4.2 Under affine invariant Smale’s condition

In this section we present the convergence analysis of the inexact Newton’s method for cone inclusion problems under affine invariant Smale’s condition.

Let X and Y be Banach spaces, $\Omega \subseteq X$ and $x_0 \in \Omega$. A continuous function $F : \Omega \to Y$ and analytic in $int(\Omega)$ satisfies the affine invariant Smale’s condition with constant γ at x_0, if $B(x_0, 1/\gamma) \subseteq \Omega$ and

$$\gamma := \sup_{n > 1} \left\| \frac{T_{x_0}^{-1}F^{(n)}(x_0)}{n!} \right\|^{1/(n-1)} < +\infty.$$

Theorem 16. Let $C \subseteq Y$ a nonempty closed convex cone. Suppose that $x_0 \in \Omega$ and F satisfies the Robinson’s and the affine invariant Smale’s condition with constant γ at x_0 and there exists $b > 0$ such that

$$\|T_{x_0}^{-1}[-F(x_0)]\| \leq b, \quad b \gamma < 3 - 2\sqrt{2}, \quad 0 \leq \theta \leq [1 - 2\sqrt{b - \gamma b}]/[1 + 2\sqrt{b} + \gamma b].$$

Then, \{x_k\} generated by the inexact Newton method for solving $F(x) \in C$ with starting point x_0 and residual relative error tolerance θ: $x_{k+1} = x_k + d_k$,

$$d_k \in \text{argmin} \left\{ \|d\| : d \in X, \ F(x_k) + F'(x_k)d + r_k \in C \right\}, \quad \max_{w \in \{-r_k, r_k\}} \|T_{x_0}^{-1}w\| \leq \theta \|T_{x_0}^{-1}[-F(x_k)]\|,$$

for all $k = 0, 1, \ldots$, is well defined, for any particular choice of each d_k, $\|T_{x_0}^{-1}[-F(x_k)]\| \leq [(1 + \theta^2)/2]^k b$, for all $k = 0, 1, \ldots$, \{x_k\} is contained in $B(x_0, \lambda)$ and converges to a point $x* \in B[x_0, \lambda]$ such that $F(x* \in C$, where $\lambda := b/[\sqrt{\gamma}b + \gamma b]$. Moreover, letting $f : [0, 1/\gamma) \to \mathbb{R}$ be defined by $f(t) = t/(1 - \gamma t) - 2t + b$, the sequence \{x_k\} satisfies

$$\|x_k - x_{k+1}\| \leq \frac{1 + \theta}{1 - \theta} \left[\frac{1 + \theta}{2} \frac{D - f'(\lambda)}{|f'(\lambda)|} \|x_{k-1} - x_k\| + \theta \frac{2 + f'(\lambda)}{|f'(\lambda)|} \|x_{k-1} - x_k\|, \right.$$

$k = 0, 1, \ldots$. If, additionally, $0 \leq \theta < \left(-2(2 - \sqrt{b} - \gamma b) + \sqrt{5\gamma^2 b^2 - 44\sqrt{b} + 20\gamma b\sqrt{b} - 2\gamma b + 21}\right)/(5 - 2\sqrt{b} - \gamma b)$ then \{x_k\} converges Q-linearly as follows

$$\limsup_{k \to \infty} \frac{\|x_k - x_{k+1}\|}{\|x_k - x_k\|} \leq \frac{1 + \theta}{1 - \theta} \left[\frac{1 + \theta}{2} + \frac{2\theta}{1 - 2\sqrt{b} - \gamma b} \right], \quad k = 0, 1, \ldots.
Proof. Take $\tilde{\theta} = (1 - 2\sqrt{b} - \gamma b)/(1 + 2\sqrt{b} + \gamma b)$. Use Lemma 20 of [13] to prove that $f : [0, 1/\gamma) \to \mathbb{R}$ defined by $f(t) = t/(1 - \gamma t) - 2t + b$, is a majorant function for F in x_0, see [15]. Therefore, all results follow from Theorem 2 applied to this particular context.

Remark 5. In Theorem 16, if $\theta = 0$ and $C = \{0\}$ then we obtain, in the setting of Smale’s α-theory, [13, Theorem 21] for the exact Newton method and [16, Theorem 6.1] for the inexact Newton method, respectively.

5 Final remarks

In this paper we have established a semi-local convergence analysis for inexact Newton’s method for cone inclusion problem under affine invariant majorant condition. Following the same idea of this paper, as future works, we propose to study the exact and inexact Newton’s method to the problem

$$F(x) + C(x) \ni 0,$$

(48)
described, respectively, by

$$F(x_k) + F'(x_k)(x_{k+1} - x_k) + C(x_{k+1}) \ni 0 \quad k = 0, 1, \ldots$$

and

$$(F(x_k) + F'(x_k)(x_{k+1} - x_k) + C(x_{k+1})) \cap R_k(x_k, x_{k+1}) \neq \emptyset, \quad k = 0, 1, \ldots,$$

where $C : X \times X \rightrightarrows Y$ is now a set-value mapping and $R_k : X \times X \rightrightarrows Y$ is a sequence of set-value mappings with closed graphs. The problem (48) is a generalization to problem (1), which is called generalized equations, and it has been the subject of many new research, see [4, 10, 11, 12, 23]. Furthermore, it will be interesting to study these two above methods under a majorant condition.

References

[1] F. Alvarez, J. Bolte, and J. Munier. A unifying local convergence result for newton’s method in riemannian manifolds. Foundations of Computational Mathematics, 8(2):197–226, 2008.

[2] I. K. Argyros and S. Hilout. Inexact Newton-type methods. J. Complexity, 26(6):577–590, 2010.

[3] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp.

[4] R. Cibulka, A. Dontchev, and M. H. Geoffroy. Inexact Newton Methods and Dennis–Moré Theorems for Nonsmooth Generalized Equations. SIAM J. Control Optim., 53(2):1003–1019, 2015.

[5] J. W. Daniel. Newton’s method for nonlinear inequalities. Numer. Math., 21:381–387, 1973.

[6] J.-P. Dedieu, P. Priouret, and G. Malajovich. Newton’s method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal., 23(3):395–419, 2003.

[7] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal., 19(2):400–408, 1982.

[8] J. E. Dennis, Jr. and R. B. Schnabel. Numerical methods for unconstrained optimization and nonlinear equations, volume 16 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Corrected reprint of the 1983 original.

[9] P. Deuflhard. Newton methods for nonlinear problems, volume 35 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2004. Affine invariance and adaptive algorithms.
[10] A. L. Dontchev and R. T. Rockafellar. *Implicit functions and solution mappings*. Springer Monographs in Mathematics. Springer, Dordrecht, 2009. A view from variational analysis.

[11] A. L. Dontchev and R. T. Rockafellar. Newton’s method for generalized equations: a sequential implicit function theorem. *Math. Program.*, 123(1, Ser. B):139–159, 2010.

[12] A. L. Dontchev and R. T. Rockafellar. Convergence of inexact Newton methods for generalized equations. *Math. Program.*, 139(1-2, Ser. B):115–137, 2013.

[13] O. Ferreira. A robust semi-local convergence analysis of newton’s method for cone inclusion problems in banach spaces under affine invariant majorant condition. *Journal of Computational and Applied Mathematics*, 279(0):318 – 335, 2015.

[14] O. P. Ferreira, M. L. N. Gonçalves, and P. R. Oliveira. Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition. *SIAM J. Optim.*, 23(3):1757–1783, 2013.

[15] O. P. Ferreira and B. F. Svaiter. Kantorovich’s majorants principle for Newton’s method. *Comput. Optim. Appl.*, 42(2):213–229, 2009.

[16] O. P. Ferreira and B. F. Svaiter. A robust Kantorovich’s theorem on the inexact Newton method with relative residual error tolerance. *J. Complexity*, 28(3):346–363, 2012.

[17] Y. He and J. Sun. Error bounds for degenerate cone inclusion problems. *Math. Oper. Res.*, 30(3):701–717, 2005.

[18] J.-B. Hiriart-Urruty and C. Lemaréchal. *Convex analysis and minimization algorithms. I*, volume 305 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 1993. Fundamentals.

[19] C. Kelley. *Solving Nonlinear Equations with Newton’s Method*. Society for Industrial and Applied Mathematics, 2003.

[20] S. G. Krantz and H. R. Parks. *The implicit function theorem*. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2013. History, theory, and applications, Reprint of the 2003 edition.

[21] C. Li and K. F. Ng. Convergence analysis of the Gauss-Newton method for convex inclusion and convex-composite optimization problems. *J. Math. Anal. Appl.*, 389(1):469–485, 2012.

[22] C. Li and K. F. Ng. Convergence analysis of the gauss-newton method for convex inclusion problems and convex composite optimization. *Preprint.*, pages 1–29, 2013.

[23] A. Pietrus and C. Jean-Alexis. Newton-secant method for functions with values in a cone. *Serdica Math. J.*, 39(3-4):271–286, 2013.

[24] B. N. Pšeníčnyi. A Newton method for the solution of systems of equalities and inequalities. *Mat. Zametki*, 8:635–640, 1970.

[25] S. M. Robinson. Extension of Newton’s method to nonlinear functions with values in a cone. *Numer. Math.*, 19:341–347, 1972.

[26] S. M. Robinson. Normed convex processes. *Trans. Amer. Math. Soc.*, 174:127–140, 1972.

[27] R. T. Rockafellar. *Monotone processes of convex and concave type*. Memoirs of the American Mathematical Society, No. 77. American Mathematical Society, Providence, R.I., 1967.

[28] R. T. Rockafellar. *Convex analysis*. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J., 1970.