Does the timing of adjuvant chemotherapy for gastric cancer influence patient outcome?

SEOK YUN KANG1,*, MI SUN AHN1,*, GA WON SONG1, YONG WON CHO1, HYUN WOO LEE1, SEONG HYUN JEONG1, JOON SEONG PARK1, YONG KWAN CHO2, SANG UK HAN2, SEUNG SOO SHEEN3, JAE HO HAN4 & JIN-HYUK CHOI1

1Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea, 2Department of Surgery, Ajou University School of Medicine, Suwon, Korea, 3Section of Clinical Epidemiology and Biostatistics in Clinical Trial Center, Ajou University School of Medicine, Suwon, Korea and 4Department of Pathology, Ajou University School of Medicine, Suwon, Korea

To the Editor,

Gastric cancer is the second most common cause of cancer-related deaths worldwide, despite a gradual decrease in incidence [1]. Although curative resection is the standard treatment for patients with locally advanced gastric cancer, it is associated with a high recurrence rate and poor survival [2]. Adjuvant chemotherapy has now become a standard therapy for patients with stage II/III gastric cancer, as demonstrated by the results of several meta-analyses and recent phase III trials [2–5]. Nevertheless, there is no report about the optimal timing for starting adjuvant chemotherapy for gastric cancer after surgical resection.

According to population-based or cohort studies and meta-analyses of colorectal and breast cancer, a delay in the start of adjuvant chemotherapy is usually associated with poor cancer-specific and overall survival (OS) rates, indicating that early initiation of adjuvant therapy results in better outcomes [6–12].

Patients and methods

Study population

We retrospectively identified patients treated with 5-fluorouracil (5-FU), mitomycin-C (MMC) and polysaccharide-K (PSK) (FM-PSK) adjuvant chemotherapy following curative resection at Ajou University Hospital, Suwon, Korea, between November 1996 and December 2004.

The criteria for eligibility were histologically proven gastric adenocarcinoma, curative resection [13], extended lymph node dissection (D2 dissection), and pathological stage II or III according to the 7th edition of American Joint Committee on Cancer (AJCC).

This research protocol was approved by the Institutional Review Board of Ajou University Hospital.

Adjuvant chemotherapy

In this study, data on all the patients who received FM-PSK chemotherapy with duration of 24 weeks

*Seok Yun Kang and Mi Sun Ahn contributed equally to this work as first authors.

Correspondence: J.-H. Choi, Department of Hematology-Oncology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 443-380, Korea. Tel: +82 31 2194920. Fax: +82 31 2195983. E-mail: jhchoimd@ajou.ac.kr

(Received 7 November 2014; accepted 14 December 2014)
were analyzed. Detailed protocols of chemotherapy and follow-up after treatment were previously described [14,15]. The chemotherapy was started according to the discretion of surgeons and medical oncologists.

The patients were divided into early or late initiation group using two predefined time points, median day from surgery to the start of chemotherapy and 28 days: time from surgery to chemotherapy before median day (early group), on and after median day (late group); time from surgery to chemotherapy before 28 days (group A), 28 days or more after surgery (group B). Fifty patients (12.2%) started chemotherapy ≤14 days after surgery, and 12 (2.9%) began treatment ≥42 days after surgery.

There were no significant differences in baseline clinicopathological characteristics between the early and late group except a higher proportion of total gastrectomy (28.7% vs. 39.7%; p = 0.022), and postoperative complications (0% vs. 11.6%; p < 0.0001) in the late group. The baseline characteristics were also well balanced between group A and B except for a higher proportion of postoperative complications in group B (Supplementary Table I to be found online at http://informahealthcare.com/doi/abs/10.3109/0284186X.2014.1000467).

Overall survival

At the time of analysis, the median follow-up duration was 150 months (97–195 months) for the survivors and no patient was lost to follow-up for survival status.

There was no difference in OS between the early (<21 days after surgery) and late (≥21 days after surgery) groups (10-year OS; 57.3% vs. 51.4%; p = 0.409; Supplementary Table II to be found online at http://informahealthcare.com/doi/abs/10.3109/0284186X.2014.1000467). However, the OS was significantly inferior in group B (≥28 days after surgery) compared with group A (<28 days after surgery) (10-year OS; 38.8% vs. 57.5%; p = 0.003; Supplementary Table II to be found online at http://informahealthcare.com/doi/abs/10.3109/0284186X.2014.1000467, Figure 1A). In
Addition, inferior 10-year OS in group B was observed in stage III (20.5% vs. 45.2%; p < 0.0001; Figure 1B), but not in stage II (69.0% vs. 80.8%; p = 0.326). Very early initiation of chemotherapy (≤14 days after surgery) was not associated with improved OS (10-year OS; 54.0% vs. 54.0%; p = 0.918). In multivariate analysis, independent prognostic factors of poor outcome were old age (p < 0.0001), large tumor size (p = 0.035), Borrmann type IV (p = 0.002), and advanced stages (p < 0.0001). In addition, initiation of adjuvant chemotherapy 28 days or more after surgery was also an independent prognostic factor of inferior OS (p = 0.008; HR 1.57; 95% CI 1.12–2.19).

Discussion

In the present study period, adjuvant chemoimmunotherapy using 5-FU, MMC, and PSK was used for most stage II or III gastric cancer patients at our institution, based on a report by Nakazato et al., in which the addition of PSK to FM adjuvant chemotherapy improved OS compared with FM alone [16]. Furthermore, mitomycin-based adjuvant chemotherapy regimens demonstrated improved OS compared with surgery alone in several studies [3,17,18]. Therefore, the FM-PSK used in the present study could be considered as a reasonable regimen for adjuvant chemotherapy during the period when the study patients had been treated. The outcome of our study cohort is comparable to that of adjuvant treatment studies in other Korean institutions [19,20].

In breast and colorectal cancers, many studies have demonstrated poor outcome of patients when adjuvant chemotherapy was initiated later than 4–12 weeks after surgery [6,8–12]. However, in routine clinical practice, it is not always possible to start adjuvant chemotherapy according to a regular schedule for a number of reasons, such as unexpected operation-related complications, slow recovery of performance status, time period for pathological assessment of specimens, the place of residence, and the time for referral to oncologists [9,11]. In breast and colorectal cancers, previous studies revealed that adjuvant chemotherapy usually began 4–7 weeks after surgery [6,7,10,11]. On the contrary, in the present study, the median time interval between surgery and the start of chemotherapy was 21 days, with a very low proportion of patients (2.9%) starting chemotherapy ≥ 6 weeks after surgery. This relatively short interval from surgery to the initiation of chemotherapy can be explained by the practice pattern for gastric cancer treatment in Korea. First, gastric cancer surgery is usually performed in university hospitals, in which a patient is referred to a medical oncologist as soon as the pathology results are reported. Second, surgeons and medical oncologists have tended to start adjuvant chemotherapy as early as possible [21]. Third, postoperative complication rates are generally very low compared with Western countries because of advanced surgical techniques [2,21].

The present study revealed that patients who started adjuvant chemotherapy 28 days or more after surgery had a significantly poor outcome. It is difficult to determine whether the association between the delay of chemotherapy initiation and poor outcome was attributable to the proliferation of micrometastasis resulting from the delay of chemotherapy or other patient-specific conditions related to the delay of chemotherapy. In the present study cohort, outcome-related factors, such as age, operation type, stage, and tumor size, did not differ significantly between group A and B except for a higher proportion of postoperative complications in group B (≥ 28 days after surgery). Moreover, the presence of postoperative complications itself was not associated with poor OS.

To our knowledge, this is the first report about the effect of the interval between surgery and the initiation of adjuvant chemotherapy on OS in gastric cancer. In addition, our study cohort consisted of a relatively large, homogeneous study population treated with D2 dissection and a uniform chemotherapy regimen with a fairly long follow-up period for survival status, analyzing all patients eligible for the study.

However, the present study has several limitations. First, all the patients in the study were from single institution. Second, detailed investigation of several patient-related factors, such as socioeconomic status and the change of performance status after surgery, was almost impossible due to the retrospective nature of the study. Third, this study did not analyze patients treated with S1 or capecitabine/oxaliplatin regimen currently established as the standard treatment after D2 dissection in Eastern Asian countries [4,5]. Finally, the number of patients who initiated chemotherapy after 28 days or more was relatively small (18.8%). However, implementation of randomized trials of the timing for adjuvant chemotherapy in gastric cancer would be almost impossible due to practical and ethical reasons. Therefore, to validate the results of the current study and to elucidate the exact cause of the association between the delay of chemotherapy and poor outcome, a retrospective study with a larger sample size or a prospective observational study using patient cohorts treated with S1 or capecitabine/oxaliplatin adjuvant chemotherapy is desirable.

Gastric cancer has different characteristics from other malignancies, such as breast cancer, in terms
of the initiation of adjuvant chemotherapy. First, abdominal surgery requires a relatively long recovery period [8]. Second, it takes a longer time to resume a normal diet after gastric cancer surgery. Third, chemotherapy-induced nausea and vomiting may occur more frequently in gastrectomy patients. The results of the present study, especially the lack of benefit of very early (≤ 14 days after surgery) chemotherapy initiation, suggest that patients may be encouraged to have a sufficient recovery time of 3–4 weeks before initiating adjuvant chemotherapy in gastric cancer.

In conclusion, it does not seem to be necessary to initiate adjuvant chemotherapy too early after gastric cancer surgery. However, it is desirable to start treatment within four weeks after surgery if patients have fully recovered, especially in those with stage III.

Acknowledgments
The authors are grateful to Geum Sook Jeong for administrative assistance in preparing and submitting the manuscript.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References
[1] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69–90.
[2] Macdonald JS. Adjuvant therapy for gastric cancer. Semin Oncol 2003;30:19–25.
[3] Paolotti X, Oba K, Burzykowski T, Michiels S, Ohashi Y, et al. Benefit of adjuvant chemotherapy for resectable gastric cancer: A meta-analysis. JAMA 2010;303:1279–37.
[4] Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol 2011;29:4387–93.
[5] Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): A phase 3 open-label, randomised controlled trial. Lancet 2012;379:315–21.
[6] Pronzato P, Campora E, Amoroso D, Bertelli G, Botto F, Conte PF, et al. Impact of administration-related factors on outcome of adjuvant chemotherapy for primary breast cancer. Am J Clin Oncol 1998;12:481–5.
[7] Colleoni M, Bonetti M, Coates AS, Castiglione-Gertsch M, Gelber RD, Price K, et al. Early start of adjuvant chemotherapy may improve treatment outcome for premenopausal breast cancer patients with tumors not expressing estrogen receptors. The International Breast Cancer Study Group. J Clin Oncol 2000;18:584–90.
[8] Hershman D, Hall MJ, Wang X, Jacobson JS, McBride R, Grann VR, et al. Timing of adjuvant chemotherapy initiation after surgery for stage III colon cancer. Cancer 2006;107:2581–8.
[9] Lohrisch C, Paltiel C, Gelmon K, Speers C, Taylor S, Barnett J, et al. Impact on survival of time from definitive surgery to initiation of adjuvant chemotherapy for early-stage breast cancer. J Clin Oncol 2006;24:4888–94.
[10] Cheung WY, Neville BA, Earle CC. Etiology of delays in the initiation of adjuvant chemotherapy and their impact on outcomes for Stage II and III rectal cancer. Dis Colon Rectum 2009;52:1054–63.
[11] Czyzykowski PM, Gill S, Kennecke HF, Gordon VL, Turner D. Adjuvant chemotherapy for stage III colon cancer: Does timing matter? Dis Colon Rectum 2011;54:1082–9.
[12] Yu KD, Huang S, Zhang JX, Liu GY, Shao ZM. Association between delayed initiation of adjuvant CMF or anthracycline-based chemotherapy and survival in breast cancer: A systematic review and meta-analysis. BMC Cancer 2013;13:240.
[13] Kajitani T. The general rules for the gastric cancer study in surgery and pathology. Part I. Clinical classification. Jpn J Surg 1981;11:127–39.
[14] Kang SY, Han JH, Ahn MS, Lee HW, Jeong SH, Park JS, et al. Helicobacter pylori infection as an independent prognostic factor for locally advanced gastric cancer patients treated with adjuvant chemotherapy after curative resection. Int J Cancer 2012;130:948–58.
[15] Ahn MS, Kang SY, Lee HW, Jeong SH, Park JS, Lee KJ, et al. 5-Fluorouracil, mitomycin-c, and polysaccharide-k versus uracil-florafur and polysaccharide-K as adjuvant chemiommunotherapy for patients with locally advanced gastric cancer with curative resection. Onkologie 2013;36:421–6.
[16] Nakazato H, Koike A, Saji S, Ogawa N, Sakamoto J. Efficacy of immunochemotherapy as adjuvant treatment after curative resection of gastric cancer. Study Group of Immunochemotherapy with PSK for Gastric Cancer. Lancet 1994;343:1122–6.
[17] Nakajima T, Ota K, Ishihara S, Oyama S, Nishi M, Hamashima N. Meta-analysis of 10 postoperative adjuvant chemotherapies for gastric cancer in CIH. Gan To Kagaku Ryoho 1994;21:1800–5.
[18] Cirera L, Balli A, Batiste-Alentorn E, Tusquets I, Cardona T, Arcusa A, et al. Randomized clinical trial of adjuvant mitomycin plus tegafur in patients with resected stage III gastric cancer. J Clin Oncol 1999;17:3810–5.
[19] Kim S, Lim DH, Lee J, Kang WK, MacDonald JS, Park CH, et al. An observational study suggesting clinical benefit for adjuvant postoperative chemoradiation in a population of over 500 cases after gastric resection with D2 nodal dissection for adenocarcinoma of the stomach. Int J Radiat Oncol Biol Phys 2005;63:1279–85.
[20] Kang YK, Chang HM, Yook JH, Ryu MH, Park I, Min YJ, et al. Adjuvant chemotherapy for gastric cancer: A randomised phase 3 trial of mitomycin-C plus either short-term doxifluridine or long-term doxifluoridine plus cisplatin after curative D2 gastrectomy (AMC0201). Br J Cancer 2013;108:1245–51.
[21] Kim JP, Kwon OJ, Oh ST, Yang HK. Results of surgery on 6589 gastric cancer patients and immunochemosurgery as the best treatment of advanced gastric cancer. Ann Surg 1992;216:269–78.

Supplementary material available online
Supplementary Tables I and II to be found online at http://informahealthcare.com/doi/abs/10.3109/0284186X.2014.1000467.