A Universal Isocyanide for Diverse Heterocycle Syntheses
Patil, Pravin; Dömling, Alexander; Khoury, Kareem; Herdtweck, Eberhardt

Published in:
Organic letters

DOI:
10.1021/ol5024882

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Patil, P., Dömling, A., Khoury, K., & Herdtweck, E. (2014). A Universal Isocyanide for Diverse Heterocycle Syntheses. Organic letters, 16(21), 5736-5739. https://doi.org/10.1021/ol5024882

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
A Universal Isocyanide for Diverse Heterocycle Syntheses

Pravin Patil,† Kareem Khoury,‡§ Eberhardt Herdtweck,∥ and Alexander Dömling*†

†Department of Drug Design, University of Groningen, Groningen, The Netherlands
‡School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
§Carmolex Inc., Pittsburgh, Pennsylvania 15219, United States
∥Technische Universität München, München, Germany

Supporting Information

ABSTRACT: Novel scaffolds are of uttermost importance for the discovery of functional material. Three different heterocyclic scaffolds easily accessible from isocyanoacetaldehyde dimethylacetal 1 by multicomponent reaction (MCR) are described. They can be efficiently synthesized by a Ugi tetrazole multicomponent reaction of 1. We discuss the synthesis, 3D structures, and other physicochemical properties.

Novel scaffolds form the basis for success in the discovery of bioactive compounds, which eventually can be developed to drugs for the treatment of unmet medical needs. A decade ago the NIH started an initiative (Molecular Libraries Program (MLP)) to assemble a large chemical library to be screened by academic institutions to yield, after optimization, in vitro tool compounds (molecular probes) for novel targets showing activity and selectivity in cell based systems.¹ These tool compounds can be accessed by interested researchers and are of importance to elucidate the interplay of novel targets in biology and disease.² The European Lead Factory (ELF), a public private partnership, is a complementary European initiative with similar targets aiming for a library of 500 000 novel compounds by 2017.³ The availability of molecular probes (small molecule or antibody) has been recently and impressively demonstrated to be a key determinant of progress in basic biology and disease areas.⁴

From a practical point of view the synthesis of medium sized high quality libraries is demanding. The use of a “universal building block” in the synthesis of different scaffolds has great advantages in the parallel synthesis of larger libraries. For example, unprotected α-amino acids have been used recently in different multicomponent reaction chemistry to stereoselectively afford a diversity of novel cyclic and acyclic scaffolds, including amido-aminophosphonates,⁵ boneratamide analogues,⁶ iminodiacarbamates,⁷ iminobenzazocineacetamides,⁸ boropeptides,⁹ thiolactone and thiomorpholino, diketopiperazines,¹⁰ seleno amino acid,¹¹ imidazol,¹² or indol derivatives.¹³ Isocyanide 1 as its diethyl acetal was first described by Hardtke in 1966 and now robust large scale syntheses exist.¹⁴

Received: September 23, 2014
Published: October 29, 2014
We envisioned that tetrazole annulated piperazine scaffold 2 could be accessed from the Ugi-tetrazole reaction using isocyanide building block 1, primary amines 5, aldehydes or ketones 6, and TMSN₃ 7 (Scheme 2) and subsequent cyclization/elimination via the secondary amine. In the optimization campaign the reaction is performed in methanol at ambient temperature. The Ugi adduct 8 was further treated with neat acetic acid at 80 °C but did not yield the cyclized product 2. Similar results were obtained with trifluoroacetic acid, methanesulfonic acid with and without solvents such as CH₂Cl₂, CH₃CN, and toluene at 50–80 °C. However, the Ugi-adduct 8 stirred with neat methanesulfonic acid for 18 h at ambient temperature afforded scaffold 2 in good yields.

In general, the Ugi reaction works well with aromatic and aliphatic aldehydes and ketones. In the post-Ugi reaction we observed that aliphatic aldehyde, ketones, and electron-deficient benzaldehydes could be used to give the product 2 in good yield. Electron-rich benzaldehydes also worked, however giving the desired product in low yields (2c). Typical examples are shown in Table 1.

When more electron-rich benzaldehydes (10) are used the intermediate Ugi tetratoze product undergoes a different cyclization pathway and can be further reacted to yield tetrazolo-phenyl-azepine scaffold 3 involving a o-phenol addition and elimination (Scheme 3). 3,5-Dimethoxy benzaldehyde gives better yields then 3,4,5-trimethoxy and 3,4-dimethoxy benzaldehydes. Generally both primary and secondary amines used gave moderate to good yields while the use of anilines caused the yield of our desired product to drop (3h). Typical examples and yields are shown in Table 2.

R-NH₂ (9)	Ugi adduct (11) (%)	cyclization (3) (%)
11a	92	3a 57
11b	83	3b 76
11c	63	3c 54
11d	95	3d 62
11e	70	3e 83
11f	93	3f 84
11g	87	3g 96
11h	99	3h 15
11i	95	3i 27
11j	73	3j 41

*Isolated yields for Ugi reaction and cyclization.

The use of electron-rich 2-(heteroaromatic)ethylamines 13 allows for access to polycyclic scaffold 4. The intermediate Ugi tetratoze 14 yet undergoes a different reaction pathway and can be further reacted in a Pictet–Spengler transformation according to Scheme 4. Various aldehydes and ketones were tested, and all generated the product in satisfactory yields (Table 3). In most cases the products were obtained as a single major diastereomer; however, in the case of tryptophan methyl ester the Ugi products were obtained as a diastereomeric mixture of 14i (3:2) and 14j (2:1) and corresponding cyclized products 4i (9:1) and 4j (2:1).

Next we investigated the structure of exemplary compounds of each scaffold in the solid state (Figure 1). We could grow three crystals of 2c, 3c, and 4f suitable for single crystal structure determination confirming the scaffold design and showing intermolecular interactions.

With the general synthesis of these scaffolds we set forth to create a virtual library of all three tetratozole reactions to analyze...
some of their general physicochemical features. We randomly generated 1000 examples of each scaffold. To visualize the distribution in a 3D chemical space unbiased molecular descriptors were analyzed by principal component analysis (PCA) (Figure 2B and Supplemental Figure 1). Interestingly, even though these scaffolds are all derived from the same first Ugi tetrazole multicomponent reaction they possess very different characteristics in terms of their chemical space due to their connectivity, substitution pattern, and ring sizes. To visualize this difference, 3D generation and alignment of the tetrazole ring on all three scaffolds was done (Figure 2A). As can be seen, due to the different rings that stem from the tetrazole base the three scaffolds each occupy a different space.

To study this concept further we performed the principal moment of inertia (PMI) analysis to compare the shape distribution of our virtual library of small molecules to that of 1000 randomly generated compounds of each of the three scaffolds described in this paper (Supplemental Figure 1). As expected, based on the previous data, the three scaffolds occupy different 3D spaces and tend to be more 3D in nature to compounds from the ZINC database. The three-dimensionality of lead compounds recently emerged as an important concept to provide “drug-like” properties, e.g. reduced promiscuity or water solubility. Interestingly, scaffold 2 occupies a wider array of space compared to scaffolds 3 and 4 which cluster closer together. This is most likely due to the substitution pattern on scaffold 2, using two widely variable starting materials.

Table 3. Typical Structures and Yields of Scaffold 4

R-NH₂ (13)	12	Ugi adduct* (14)(%)	cyclization* (4)(%)
MeO		14a 93	4a 57
MeO		14b 85	4b 89
MeO		14c 68	4c 77
MeO		14d 94	4d 53
MeO		14e 98	4e 95
MeO		14f 87	4f 72
MeO		14g 86	4g 32
MeO		14h 88	4h 58
MeO		14i 85 (dr: 3:2)	4i 85 (dr: 9:1)
MeO		14j 86 (dr: 3:2)	4j 74 (dr: 2:1)

*Isolated yields for Ugi reaction and cyclization. †Dr ratio was determined by SFC-MS and 1H NMR.
Work is ongoing to leverage the new chemical space to discover biologically active compounds and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

Physical and computational data can be found in the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: a.s.s.domling@rug.nl.

Notes

The authors declare the following competing financial interest(s): A.D. is founder, and K.K. is an employee of Carmolex.

ACKNOWLEDGMENTS

The work was financially supported from the NIH (1R01GM097082-01) and by Innovative Medicines Initiative (Grant Agreement No. 115489).

REFERENCES

(1) Wang, Y.; Suzek, T.; Zhang, J.; Wang, J.; He, S.; Cheng, T.; Shoemaker, B. A.; Gindulyte, A.; Bryant, S. H. *Nucleic Acids Res.* 2014, 42, D1075–D1082.

(2) (a) Hong, L.; Kenney, S. R.; Phillips, G. K.; Simpson, D.; Schroeder, C. E.; Nöth, J.; Romero, E.; Swanson, S.; Waller, A.; Strouse, J. J.; Carter, M.; Chigaev, A.; Uru, O.; Oprea, T.; Hjelle, B.; Golden, J. E.; Aubè, J.; Hudson, L. G.; Buranda, T.; Sklar, L. A.; Wandinger-Ness, A. *J. Biol. Chem.* 2013, 288, 8531–8543.

(b) Krishnan, N.; Koveal, D.; Miller, D. H.; Xue, B.; Akshinthala, S. D.; Kragelj, J.; Jensen, M. R.; Gaussian, C. M.; Page, R.; Blackledge, M.; Muthuswamy, S. K.; Petri, W.; Tonks, N. K. *Nat. Chem. Biol.* 2014, 10, 558–566.

(c) Liang, Q.; Dexheimer, T. S.; Zhang, P.; Rosenthal, A. S.; Villamol, M. A.; You, C.; Zhang, Q.; Chen, J.; Ott, C. A.; Sun, H.; Luca, D. K.; Yuan, B.; Simeonov, A.; Jadhav, A.; Xiao, H.; Wang, Y.; Maloney, T. D.; Zhubang, Z. *Nat. Chem. Biol.* 2014, 10, 298–304.

(d) Maddy, J. A.; Ananthan, S.; Goldman, R. C.; Hobrath, J. V.; Kwong, C. D.; Maddox, C.; Rasmussen, L.; Reynolds, R. C.; Secrist, J. A.; Sosa, M. I.; White, E. L.; Zhang, W. *Tuberculosis (Edinb).* 2009, 89, 354–363.

(e) Maddy, J. A.; Chen, X.; Jonsson, C. B.; Ananthan, S.; Hobrath, J.; Snee, D. F.; Noah, J. W.; Noah, D.; Xu, X.; Jia, F.; Maddox, C.; Sosa, M. I.; White, E. L.; Severson, W. E. *J. Biomol. Screen.* 2011, 16, 73–81. (f) Sun, Q.; Burke, J. P.; Phan, J.; Burns, M. C.; Olejniczak, E. T.; Watson, A. G.; Lee, T.; Rossanese, O. W.; Fesik, S. W. *Angew. Chem., Int. Ed.* 2012, 51, 6140–6143. (g) Weiwer, M.; Bittker, J. A.; Lewis, T. A.; Shimada, K.; Yang, W. S.; MacPherson, L.; Dandapani, S.; Palmer, M.; Stockwell, R. B.; Schreiber, S. L.; Munoz, B. *Bioorg. Med. Chem. Lett.* 2012, 22, 1822–1826. (h) Popovic-Muller, J.; Saunders, J.; Salituro, F.; Travins, J.; Yan, S.; Zhao, F.; Gross, S.; Dang, L.; Yen, K.; Yang, H.; Straley, K.; Jin, S.; Kunii, K.; Fantin, V.; Zhang, S.; Pan, Q.; Shi, D.; Biller, S.; Su, S. *ACS Med. Chem. Lett.* 2012, 3, 850–855.

(3) Mullard, A. *Nat. Rev. Drug Discovery* 2013, 12, 173–175.

(4) Edwards, A. M.; Isserlin, R.; Bader, G. D.; Frye, S. V.; Willson, T. M.; Yu, F. H. *Nature* 2011, 470, 163–165.

(5) Gargano, A. F. G.; Buchinger, S.; Kobout, M.; Lindner, W.; Lämmerhofer, M. J. *Org. Chem.* 2013, 78, 10077–10087.

(6) Saito, K.; Nishimori, A.; Kotsuki, H.; Nakano, K.; Ichikawa, Y. *Synlett.* 2013, 24, 757–761.

(7) Khoury, K.; Sinha, M. K.; Nagashima, T.; Herdtweck, E.; Domling, A. *Angew. Chem., Int. Ed.* 2012, 51, 10280–10283.