Longevity in mice: is stress resistance a common factor?

H. M. Brown-Borg

Received: 1 November 2005 / Accepted: 1 December 2005
© Springer Science + Business Media B.V. 2006

Abstract A positive relationship between stress resistance and longevity has been reported in a multitude of studies in organisms ranging from yeast to mice. Several mouse lines have been discovered or developed that exhibit extended longevities when compared with normal, wild-type mice of the same genetic background. These long-living lines include the Ames dwarf, Snell dwarf, growth hormone receptor knockout (Laron dwarf), IGF-1 receptor heterozygote, Little, α-MUPA knockout, p66shc knockout, FIRKO, mClk-1 heterozygote, thioredoxin transgenic, and most recently the Klotho transgenic mouse. These mice are described in terms of the reported extended lifespans and studies involving resistance to stress. In addition, caloric restriction (CR) and stress resistance are briefly addressed for comparison with genetically altered mice. Although many of the long-living mice have GH/IGF-1/insulin signaling-related alterations and enhanced stress resistance, there are some that exhibit life extension without an obvious link to this hormone pathway. Resistance to oxidative stress is by far the most common system studied in long-living mice, but there is evidence of enhancement of resistance in other systems as well. The differences in stress resistance between long-living mutant and normal mice result from complex inter-relationships among pathways that appear to coordinate signals of growth and metabolism, and subsequently result in differences in lifespan.

Key words mutant mice · lifespan · oxidative stress · hormesis

Introduction

In the aging research community it is well accepted that a positive relationship exists between stress resistance and longevity. There has been a flurry of effort to examine not only resistance to oxidative insults, but exposure to several other cellular environmental perturbations such as temperature, infectious substances, pH and ionic changes, heavy metals, and tumor invasion. These efforts expand our understanding beyond oxidative stress resistance and have heightened the search for the responsible mechanisms. Although there is a large volume of evidence for stress resistance in multiple species that have contributed to our overall understanding of the topic, this particular discussion will be limited to longevous mice.

Stress resistance includes both cellular and whole animal responses to a variety of oxidative and non-oxidative challenges. The initial concept of a link between oxidative stress resistance and longevity is likely derived from the long-standing
free radical theory on aging introduced by Harman (1956). Free radicals produced as by-products of normal metabolism can damage cells, which over time results in physiological decline. These free radicals, many of which are oxidative in nature, can adversely affect DNA, proteins, and lipids. Three main endogenous cellular systems exist to cope with the metabolically generated free radicals: enzymatic mechanisms, antioxidants, and metal chelators. In addition, a variety of systems within cells have been discovered that can repair damaged cellular components. Without this protection, maintenance of normal physiological function is compromised.

There is considerable evidence to prove that the accumulation of damage that has escaped cellular defense mechanisms ultimately leads to aging. In addition, the disposable soma theory of aging suggests that longer-lived species invest more in the durability of their somatic cells and tissues than short-lived species (Kirkwood 1977). Therefore, genes that regulate cell maintenance and repair including stress resistance mechanisms are major determinants of lifespan (Kirkwood 1977; Lithgow and Kirkwood 1996; Johnson et al. 1996; Finkel and Holbrook 2000).

Based on these aging hypotheses, the antioxidative defense capacities were among the first stress-related candidates to be evaluated in several animals with variable longevity and continue to be the first tested in new examples of extended lifespan. Enzymatic processes such as those driven by catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPX), as well as non-enzymatic mechanisms including glutathione (GSH), ascorbic acid, and metallothionein systems within cells and tissues, have been studied. In vivo and in vitro challenges have been utilized to examine resistance to both oxidative and non-oxidative stressors. Other stress resistance mechanisms have also been studied in some of the mice with extended lifespans.

Several mouse lines have been discovered or developed that exhibit extended longevities compared with normal, wild-type mice of the same genetic background. These long-living mutants include the Ames dwarf, Snell dwarf, growth hormone receptor knockout (Laron dwarf), IGF-1 receptor heterozygote, Little, α-MUPA knockout, p66shc knockout, FIRKO, mClk-1 heterozygote, thioredoxin transgenic, and most recently the Klotho transgenic mouse. Each will be described in terms of the reported extended lifespan and studies involving resistance to stress. Finally, caloric restriction (CR) and stress resistance will be addressed following the evidence in genetically altered mice.

Ames dwarf mice

Ames dwarf mice exhibit robust longevity with males and females living 49–68% longer than wild-type siblings respectively (Brown-Borg et al. 1996) and the survival curve data suggest that this increase in longevity is due to a delay in age-related mortality. Ames dwarf mice have a primary pituitary deficiency resulting in the absence of growth hormone (GH), prolactin, and thyrotropin. These deficiencies result from a point mutation in Prop-1, a gene that promotes appropriate differentiation of the anterior pituitary cells into somatotrophs, lactotrophs, and thyrotrophs (Sornson et al. 1996; Bartke 1979). A significant body of evidence indicates that oxidative stress is influenced by alterations in the GH/IGF-1/insulin signaling pathway. Several components of the antioxidative defense system have been evaluated in Ames mice and reflect an overall upregulated ability to counter oxidative stress. Catalase activity, protein content, and mRNA levels are significantly elevated in liver, kidney, and heart tissues in Ames compared with wild-type mice across the lifespan (Brown-Borg et al. 1999; Brown-Borg and Rakoczy 2000). Catalase and SOD1 (CuZnSOD) are also elevated in the hypothalamus of Ames mice (Hauck and Bartke 2000). The counterpart of catalase in the mitochondria, GPX, is increased in dwarf mouse kidney and liver tissue as is SOD2 (Brown-Borg and Rakoczy 2000 and unpublished data). Skeletal muscle GPX activity is maintained in dwarf mice at rest and following both acute and chronic exercise, yet it declines significantly with age in wild-type mice (Romanick et al. 2004).

In addition to enzymatic systems that counter free radicals, non-enzymatic antioxidant levels
also differ. For example, ascorbic acid levels are decreased in liver tissues of Ames dwarfs (Brown-Borg et al. 1999) while the GSH and metallothionein levels—both of which are capable of scavenging free radicals—are significantly higher in multiple tissues of dwarf mice at several ages relative to corresponding wild-type mice (Brown-Borg et al. 2001b; Meyer et al. 2003). Preliminary data also demonstrate significant increases in Coenzyme Q9 and Q10 levels in the cerebral cortex, striatum, and cerebellar cortex of dwarf mice (Brown-Borg and Sharma, unpublished data). Coenzyme Q10 is a major component of the oxidative phosphorylation and is known to have antioxidant properties.

The functional significance of enhanced ability to counter oxidative stress is apparent in oxidative challenge experiments. Following the administration of paraquat, a systemic oxidative stressor, Bartke and colleagues (2001) showed that dwarf mice survived significantly longer than their wild-type counterparts. Cells isolated from Ames mice also retain stress resistance in culture. Dermal fibroblasts from dwarf mice are markedly more resistant to cell death than fibroblasts from normal mice following treatment with hydrogen peroxide (H₂O₂), UV irradiation, and heavy metal exposure (cadmium; Salmon et al. 2005). In vitro resistance to paraquat toxicity was greater in fibroblasts from dwarf mice, but did not reach statistical significance compared with resistance in wild-type cells.

These enhanced defense abilities are coupled with reductions in oxidative damage to tissue. Inorganic peroxide levels are lower in liver and kidney tissues of Ames mice (Bartke et al. 1998; Carlson et al. 1999). Protein oxidative damage measured as carbonyl formation is nearly 50% lower in liver tissues from old dwarf mice compared with old wild-type mice (Brown-Borg et al. 2001a) and does not rise with age as observed in normal animals. Brain protein carbonyl levels are also lower in long-living dwarf mice. Evidence of differences in oxidative DNA damage has been reported (Brown-Borg et al. 2001a; Sanz et al. 2002). Sanz and co-workers found lower levels of oxidative mitochondrial DNA damage in heart and brain tissues of dwarf mice compared with wild-type mice. Recent data suggest that Ames mice also accumulate fewer somatic DNA mutations associated with oxidative stress (Jan Vijg, personal communication). Therefore, the observed upregulation in antioxidative defenses in Ames dwarf mice appears to counter reactive oxygen species (ROS) vigorously and reduce overall damage compared with normal animals, resulting in or contributing to extended longevity.

It is worthy of mention that GH administration to dwarf mice, in vivo and in vitro, downregulates the oxidative defense capacity (GPX, catalase, SOD2 [MnSOD]) of these mice (Brown-Borg et al. 2002, Brown-Borg and Rakocy 2003). In strong support of this work are reports indicating that GH overexpression in vivo suppresses catalase and SOD1, increases tissue oxidative damage, and significantly shortens lifespan (Brown-Borg and Rakocy 2000; Brown-Borg et al. 1999, 2001b, 2002; Hauck and Bartke 2001; Pendergrass et al. 1993; Wolf et al. 1993; Rollo et al. 1996). Furthermore, IGF-1 appears to regulate antioxidant defenses as the activities of catalase and SOD are suppressed in mouse hepatocytes exposed to GH or IGF-1 (Brown-Borg et al. 2002).

Indications of enhanced stress resistance are found in systems other than antioxidative defense as well. Metallothionein was mentioned as an antioxidant previously. This compound is also

![Figure 1](https://example.com/image1.png)
Figure 1 Glutathione-S-transferase activity (μmol/min/mg protein) in kidneys of 3-, 12-, and 24-month-old Ames dwarf and wild-type mice (n = 6 mice/genotype/age). Values represent means ± SEM. *p = 0.001.
well known as a chelator to counter heavy metal toxicity (cadmium, zinc). Levels of metallothionein are significantly elevated in liver, heart, kidney, and brain striatum of dwarf mice (measured immunocytochemically in tissues and by ELISA; Meyer et al. 2003; Swinscoe et al. 2006a, and unpublished data) relative to levels in age-matched normal animals. In addition, the distribution of various multimeric forms (tetramers, etc.) of metallothionein is different among dwarf, normal and GH transgenic mice (Swinscoe et al. 2006a, 2006b), the relevance of which is currently being evaluated.

Detoxification of endogenous and exogenous compounds are handled by glutathione-S-transferase (GST) enzyme activities. GST activity is significantly increased in dwarf kidney compared with age-matched wild-type mice, certainly contributing to overall stress resistance (Figure 1). In fact, protein expression and activities of multiple players in the GSH pathway are different in the Ames mouse (Brown-Borg and Rakoczy 2005) including reduced levels of γ-glutamyl transpeptidase (GGT), the enzyme responsible for GSH degradation in dwarf tissues. The administration of growth hormone opposes the beneficial effects of this pathway by downregulating GST and upregulating GGT activities (Brown-Borg et al. 2005). The overall upregulation in the GSH and the methionine (contributes the cysteine residues for GSH biosynthesis) metabolic pathways (Figure 2) is positively associated with the extended lifespan observed in these mice (Uthus and Brown-Borg 2003). Furthermore, heat shock protein expression is elevated in Ames mice, again suggesting an upregulation of stress defense mechanisms (evident in the kidney; Figure 3).

Additional support for enhanced resistance includes evidence that Ames dwarf mice exhibit significantly delayed occurrence of fatal neoplastic disease, reduced severity of both neoplastic and non-neoplastic lesions, and overall reduced disease burden compared with wild-type littermates (Ikeno et al. 2003).

Gene expression analysis also provides evidence of potential enhanced stress resistance in

Methionine & Glutathione Metabolism

![Methionine and glutathione metabolic pathways](image)

Figure 2 Methionine and glutathione metabolic pathways. *MAT* S-adenosyl methionine synthase, *SAM* S-adenosylmethionine, *SAH* S-adenosylhomocysteine, *CS* cystathionine synthase, *GCS* γ-glutamylcysteine synthetase, *GS* glutathione synthetase, *GGT* γ-glutamyl transpeptidase, *GPX* glutathione peroxidase, *GR* glutathione reductase, *GST* glutathione-S-transferase, *GSSG* glutathione disulfide
Ames dwarf mice. Hepatic expression of mRNA for several GST genes is significantly elevated in dwarf mice over those of wild-type mice (GSTm1, GSTm3, GSTp2, GSTa2, GSTa4; Tsuchiya et al. 2004). Other relevant elevated message levels observed in dwarf mice included GPX4, Gclc (rate-limiting enzyme in GSH metabolism), and several genes involved in both phase I and II xenobiotic metabolism. These findings support evidence that the Ames dwarf mouse exhibits an enhanced repertoire of mechanisms to counter genotoxic/metabolic insults.

At present, only one potential protein repair system has been evaluated in dwarf mice. The methionine sulfoxide reductase (Msr) enzymes function by reducing oxidized methionine (MetO) residues, acting as an antioxidant, and restoring function to damaged proteins. Msr proteins are highly expressed in liver and kidney tissues, suggesting their overall importance in detoxification and therefore maintenance of cellular resistance to oxidative protein damage (Moskovitz et al. 2001; Moskovitz 2005). The levels of MsrB (Selenoprotein B) protein are increased 200% and 115% respectively in liver and kidney tissues of 12-month-old dwarf mice compared with their normal counterparts (Figure 4). This indicates that dwarf mice may have an increased capacity to repair this particular type of protein damage. In contrast, the levels of MsrA protein are actually somewhat lower in dwarf tissues (54% and 23% for liver and kidney respectively; Figure 4). Preliminary studies indicate that the combined activities of MsrA and MsrB (measured as total Msr activity) of dwarf liver are not different from the wild-type animals, perhaps reflecting the varying protein levels. Further investigation of this protein repair system is underway.

Overall, it appears that many defense or protective systems are upregulated in the Ames dwarf mouse. Multiple components play a role in stress resistance, including antioxidative defense, heat shock protein 70 (HSP70) response (Figure 3), and Msr protein activities (Figure 4). These findings suggest a broader enhanced stress resistance profile in the Ames dwarf mouse compared with wild-type animals.
shock proteins, detoxification factors, and glutathione. Each likely contributes to life extension.

Interestingly, the significant extension of lifespan in Ames mice is further increased when caloric intake is restricted (Bartke et al. 2001). Whether resistance to stress is enhanced or tumor incidence is reduced in calorie-restricted Ames dwarf mice is a question that is currently being studied.

Snell dwarf mice

Another dwarf mutant with extended longevity is the Snell dwarf mouse. Early reports regarding Snell dwarf longevity were conflicting. Confounding factors such as husbandry, environment, and genetic background were likely responsible for the discrepancies, as several laboratories did not observe the reduced lifespans reported by Fabris and co-workers (1972; Silberberg 1972; Bartke et al. 1977; Schneider 1976; Shire 1973). Longevity studies have reported that Snell dwarf mice live on average 42% longer than wild-type siblings (Flurkey et al. 2001, 2002). Snell dwarf mice, like their Ames dwarf counterparts, are GH-, prolactin- and TSH-deficient. However, their deficiencies result from a mutation in Pit1 resulting in a non-functional protein (Li et al. 1990). Pit1 is a transcription factor downstream of Prop1 that directs fetal pituitary cell differentiation into somatotrophs, lactotrophs, and thyrotrophs. Similar phenotypically to the Ames dwarfs, these mice lack circulating levels of three anterior pituitary hormones resulting in significantly reduced body size, female sterility, and hypothyroidism (Bartke 1979). Some aspects of antioxidative defense have been addressed in Snell dwarf mice. Skin-derived fibroblasts from Snell mice are more resistant to multiple forms of cellular stress (Murakami et al. 2003). Percentage increases in LD50 values were observed in dwarf mice over those of wild-type mice following exposure to UV light (45%), H2O2 (147%), paraquat (53%), cadmium (180%), and heat (102%). These studies included both oxidative and non-oxidative challenges indicating an overall increase in stress resistance. To further examine whether this resistance was limited to oxidative insults, these studies were repeated in the presence of ascorbic acid or N-acetyl cysteine (NAC; Salmon et al. 2005). Both antioxidants protected against H2O2, paraquat, and cadmium-mediated cell death. However, no protection from cell death caused by UV irradiation was observed. Snell dwarf mouse fibroblasts were also exposed to other forms of stress, namely actinomycin D and methyl methanesulfonate (MMS). Dwarf fibroblasts were significantly more resistant (60% increase in LD50) to cell death induced by MMS than were fibroblasts from wild-type littermates (Salmon et al. 2005).

Madsen and co-workers (2004) took a different approach to studying oxidative stress resistance in Snell dwarf mice. These investigators challenged dwarf and wild-type mice with 3-nitropropionic acid, an inhibitor of succinate dehydrogenase (mitochondrial complex II), which causes free radical generation in tissues (Coles et al. 1979; Fu et al. 1995), and measured three kinase cascades in the MAP kinase pathway. Dwarf mice exhibited lower responses in the MEK-ERK kinase cascade and a lack of c-Jun Ser63 phosphorylation, suggesting altered management of oxidative stress in the long-lived dwarfs compared with the wild-type control mice. Although antioxidative defense enzymes have not been systematically examined in the Snell dwarf, an overall enhancement of this system is likely responsible for increased resistance to oxidative insult as found in phenotypically identical Ames dwarf mice.

At this time, gene expression studies in the Snell dwarf mice have contributed little information regarding stress resistance. In one study, it was shown that Snell dwarf liver tissue expressed less HSP70, HSP90, and HSP60 than was found in wild-type mice (Dozmorov et al. 2002). In addition, GSTp18 mRNA expression was lower in the dwarf than that in wild-type littermates.

Increased stress resistance may also contribute to differential neoplastic disease occurrence. GH/IGF-1-deficient Snell mice resist cancer development following administration of chemical carcinogens and exhibit reduced growth of transplanted tumors (Bielschowsky and Bielschowsky 1961; Chen et al. 1972; Rennels et al. 1965). Spontaneous tumors and severity are also reduced in hypopituitary dwarf mice (Flurkey et al. 2001).
Growth hormone receptor knockout mice

Growth hormone receptor knockout (GHR-KO) mice live 38–55% longer than their wild-type siblings (Coschigano et al. 2000). These mice lack functional GH receptors due to targeted gene disruption resulting in GH resistance and Laron dwarfism (Zhou et al. 1997). Characterization of stress resistance in these mice has revealed differences compared with Ames and Snell dwarf mice. Activity levels of GPX in kidney tissues were 25% higher in GHR-KO compared with wild-type mice (Hauck et al. 2002). Catalase and GPX activities, however, were decreased in the liver tissue of the GHR-KO mice. When challenged in vivo with paraquat, the wild-type males survived longer than the knockout males, while mean survival in female knockout and wild-type mice did not differ (Hauck et al. 2002). In agreement with data in other dwarf mutants, skin fibroblasts derived from GHR-KO mice were significantly more resistant to paraquat (47%), H$_2$O$_2$ (108%), and UV light (194%) compared with wild-type cells (Salmon et al. 2005). No differences in resistance to cadmium were observed. However, recent preliminary data show that GHR-KO mice have elevated kidney, liver, and heart metallothionein levels compared with wild-type mice (Swinscoe et al. 2006a). Differences in circulating hormone levels (KO: high GH vs. Ames and Snell dwarfs: non-detectable GH), genetic background, and tissue or cell type studies may partially explain the altered antioxidative defenses between these mutants.

Regarding gene expression, Al-Regaiey and colleagues (2005) reported an increase of nearly 50% in hepatic mRNA expression of SOD2 in GHR-KO mice presumably mediated via increased FOXO protein and decreased Akt expression. Increased activity of the FOXO transcription factor is suggestive of increased protection against cellular stress. Minimal differences were noted in liver gene expression patterns between GHR-KO and normal animals. In contrast, stress resistance-related gene expression differences were not observed between GHR-KO and normal mice (Miller et al. 2002). Similar to observations in Ames and Snell dwarf mice, the incidence of neoplastic disease is greatly reduced in GHR-KO mice (Ikeno and Bartke, unpublished data).

Little mice

Mutation of the receptor for the GH-releasing hormone also causes dwarfism in mice and extends lifespan by 23–25% (Eicher and Beamer 1976; Flurkey et al. 2001). These mice, termed “little,” exhibit GH deficiency and live longer if placed on a low-fat diet (Flurkey et al. 2001). However, no information regarding stress resistance in these mice has been reported.

IGF-1 receptor heterozygous mice

Although IGF1-R$^{+/−}$ knockout mice are not viable, the IGF1-R heterozygotes$^{+/−}$ created by Holzenberger and co-workers (2003) have a 50% reduction in IGF-1 receptors in several tissues and hence reduced signaling through this pathway. Female heterozygotes displayed a 33% increase in lifespan, while males had only a 16% increase, which was not statistically significant. Resistance to oxidative stress was evaluated in murine embryonic fibroblast (MEF) cultures. Cells cultured from the IGF1-R heterozygous mice were more resistant to H$_2$O$_2$ than wild-type cells. Similarly, an increased resistance to paraquat toxicity in the heterozygous KOs was observed relative to wild-type mice; however, this difference in sensitivity was found only in females. A similar mutant, the IGF1-R neo$^{+/−}$, displays a more severe reduction in IGF1 receptor expression and exhibits a higher capacity to endure and recover from oxidant-induced lung injury than mice expressing normal levels of IGF1 receptors (Ahamed et al. 2005). No differences in tumor incidence between IGF1-R $^{+/−}$ and wild-type mice were observed (Holzenberger et al. 2003).

P66shc mice

Growth hormone and IGF-1 downstream effector mutants have also been developed and express differences in longevity. An adaptor protein
called p66shc lies downstream of the IGF-1 receptor and modulates a p53-dependent oxidative stress response pathway that regulates intracellular ROS levels and oxidative stress-induced apoptosis (Trinei et al. 2002). p66shc couples receptor activation with downstream signaling molecules. Mice lacking expression of p66shc live 30% longer than wild-type mice (Migliaccio et al. 1999). These mutant mice express high levels of catalase and MEFs exposed to H2O2 and UV radiation are more resistant to cell death than cells from wild-type mice (Trinei et al. 2002). A reduction in oxidative damage to nuclear and mitochondrial DNA in several tissues along with decreased plasma isoprostane levels in p66shc mice is suggestive of increased protection against oxidative stress (Napoli et al. 2003). Resistance to oxidative stress is observed in different cell types (fibroblasts, endothelial cells, hematopoetic precursor cells) from p66shc mice. Paraquat administration to p66shc−/− mice results in longer survival times (40%) compared with wild-type control mice (Migliaccio et al. 1999; Napoli et al. 2003). Orsini and co-workers (2004) showed that p66shc knockout mice have an increased resistance to in vivo ischemic lesions compared with wild-type mice via increased FOXO protein activity and decreased Akt levels (Zaccagnini et al. 2004).

FIRKO mice

Another line of mice was generated with a defect in the GH/IGF-1/insulin signaling pathway by Bluher and colleagues (2003). These fat insulin receptor knockout (FIRKO) mice express a mutated insulin receptor gene in adipose tissue only and exhibit 85–90% reduction in the insulin receptor protein in fat tissues. FIRKO mice live 18% longer than wild-type counterparts, have lower body weights (15–25%), and exhibit a 50% reduction in fat mass (Bluher et al. 2003). No alterations in stress resistance-related gene expression were detected following extensive microarray analysis of adipocytes from FIRKO and normal mice (Bluher et al. 2004). No other information has been reported concerning resistance to oxidative or other forms of stress in this line of mice.

α-MUPA transgenic mice

Transgenic mice created to overexpress α-MUPA (urokinase-type plasminogen activator) in the brain were shown to live 20% longer, consume 20% less food and weigh 20% less than normal control mice (Miskin and Masos 1997). These observations are similar to those found in calorie-restricted mice. In addition, serum IGF-1 levels were 70% of normal levels in the transgenic mice. uPA is an extracellular serine protease and is a central component of the fibrinolytic system implicated in tissue remodeling, brain development, and plasticity (Sumi et al. 1992; Masos and Miskin 1997).

With regard to stress resistance, GSH levels were 31% higher in α-MUPA mitochondria, but total GSH levels in liver homogenates did not differ from those in wild-type mice (Tirosh et al. 2003). These transgenics exhibit lower basal levels of liver mitochondrial SOD2 mRNA and protein, lower SOD2 activity levels, reduced lipid oxidation, and increased aconitase activity in mitochondria compared with wild-type mice. However, the mutant mice maintain the capacity to upregulate SOD2 upon challenge (Tirosh et al. 2005). The activity of liver GPX was not different between α-MUPA and wild-type mice. Oddly, when challenged with paraquat, these mice were more vulnerable compared with normal mice (90% versus 10% mortality; Tirosh et al. 2005).

Spontaneous and induced tumor development is altered in α-MUPA mice. The incidence of spontaneous lung adenomas was significantly lower in α-MUPA mice compared with wild-type animals. Similarly, young α-MUPA mice showed lower numbers of premalignant aberrant cryptic foci in the colon following dimethylhydrazine (DMH) injections and lower incidence of dermal and gastric tumors following dimethylbenzanthracene (DMBA) injections (Tirosh et al. 2003, 2004, 2005).

Klotho transgenic mice

The most recent addition to the growing list of mice with extended longevity is the Klotho transgenic mouse. Overexpression of the KLOTHO
gene results in a 20–30% increase in lifespan of males and 18–19% increases in females in two different transgenic lines (Kuroso et al. 2005). KLOTHO inhibits the hormonal signaling of insulin and IGF-1 receptors. Activity of KLOTHO apart from this signaling pathway remains to be determined. Convincing evidence is presented for the ability of Klotho transgenic mice to resist oxidative stress (Yamamoto et al. 2005). Administration of the Klotho protein to HeLa cells significantly suppressed paraquat-induced lipid oxidation and promoted survival of cells treated with paraquat. DNA damage in Klotho transgenic mice was half of that of wild-type mice. In addition, these transgenic mice survived longer than normal mice following in vivo paraquat challenge. Klotho is thought to bind to cell surface receptors inhibiting FOXO and promoting its translocation. The nuclear FOXO binds to the SOD2 promoter and upregulates expression of SOD2 protein. Mechanistic studies revealed that Klotho stimulation of several cell types downregulated Akt and FOXO1, FOXO3a, and FOXO4 phosphorylation. SOD2 mRNA levels were increased in muscle tissues of Klotho transgenic mice as were SOD2 protein levels (234%) relative to normal mice. These investigators concluded that Klotho suppresses aging by inhibiting IGF-1 signaling and increasing resistance to oxidative stress. Further studies utilizing the Klotho protein and signaling pathway will likely enhance the present understanding of the relationship between tolerance to stress and lifespan.

Insulin receptor mutant mice

Additional evidence that depressed insulin signaling leads to increased stress resistance is drawn from a recent report where leucine was substituted for Proline-1195 in the insulin receptor using knock-in techniques in mice (Baba et al. 2005). The heterozygous mice (IR mutants) showed suppressed kinase activity of the insulin receptor with normal growth. Under hyperoxic conditions (80% O2) mutant female mice survived longer (33%) than wild-type females, while mutant males lived 18% longer than wild-type males. Higher levels of MnSOD, along with increased survival under oxidative stress, supports the role of insulin/IGF-1 signaling in stress resistance. Application of calorie restriction to these mice further extended survival under oxidative conditions, suggesting potential independent mechanisms to enhance stress resistance. Unfortunately, no data regarding lifespan under normoxic conditions were reported as these studies are not yet completed.

Other mice with extended lifespans

Mice with extended lifespans that do not exhibit a direct link to GH/IGF-1/insulin signaling are far fewer in number. Many of these phenotypes target oxidative stress resistance specifically. Transgenic mice overexpressing mitochondrial catalase (MCAT) live 17–21% longer than wild-type mice (Schriner et al. 2005). Catalase activity was significantly higher in heart mitochondria, skeletal muscle, and heart tissues from MCAT transgenic mice compared with normal mice. In turn, cardiac pathology was significantly reduced in the MCAT mice. These MCAT mice generate 25% less heart mitochondrial H2O2 and H2O2-induced aconitase inactivation, suggesting increased protection from ROS. Oxidative DNA damage was also lower in skeletal muscle and heart tissues of MCAT mice as were the numbers of mitochondrial deletions in 21-month-old MCAT skeletal muscle. No information is available at this time regarding resistance to other forms of stress or tumor incidence in these mice.

Transgenic mice overexpressing thioredoxin (TRX-tg) have been used to evaluate the role of this protein in stress resistance and longevity. Thioredoxin is a redox-active protein with diverse biological activity including antioxidant, growth-promoting, anti-apoptotic, and inflammation-modulating properties. Thioredoxin transgenic mice exhibit lifespan extensions of 22–35% (Mitsui et al. 2002) and are relatively resistant to ischemia-mediated brain damage compared with control mice. Bone marrow cells from TRX-tg mice were more resistant to UV radiation than those from normal mice. A significant
body of literature has been recently reviewed regarding the role of TRX in human health and disease (Burke-Gaffney et al. 2005). Additional studies of TRX-tg mice and aging will be of great interest, as these animals are promising subjects for exploring the role of oxidative stress in aging and lifespan.

Mice heterozygous for mClk1+/−, the murine homolog of clk-1, share similar characteristics with their nematode clk-1 mutant counterparts (Liu et al. 2005). Clk-1 is a factor involved in the biosynthetic pathway of ubiquinone (coenzyme Q). Although the complete knockout produces embryonic lethality, the heterozygous mice exhibit normal coenzyme Q levels and live 15–30% longer on average than wild-type mice (on at least two different backgrounds; Levavasseur et al. 2001; Liu et al. 2005). These investigators propose that a loss of heterozygosity occurs in old mClk1+/− mice. These old mice have reduced ubiquinone levels suggesting that the entire biosynthetic pathway of ubiquinone is turned off when Clk1 is absent. Similar events have been reported in yeast (Marbois and Clarke 1996). They also reported that mClk1 knockout embryonic stem (ES) cells lack ubiquinone, produce low levels of basal and induced ROS, and resist ROS-induced apoptosis. Furthermore, these cells were resistant to other cellular stressors such as etoposide, anisomycin, all-trans retinoic acid, and serum withdrawal. Coupled with lower levels of ROS, mClk1 cells had significantly lower oxidative damage to DNA and lipids compared with normal cells. Similarly, liver tissue from heterozygote mClk1 mice also displayed less DNA damage relative to normal animals. Since ubiquinone can be considered both a pro-oxidant and an antioxidant, these data suggest that coenzyme Q may participate in creating stress, and thus reducing its levels may favor increased resistance to oxidative damage. The results of this study provide further evidence that resistance to oxidative stress accompanies longevity.

Calorie restriction and methionine restriction

For comparison, the effects of calorie restriction (CR) and methionine restriction (Meth-R) on stress resistance will be addressed briefly. The life-extending effects of calorie restriction have been demonstrated in multiple animal species. Several studies have shown that CR lowers mitochondrial free radical generation in various tissues resulting in the reported decrease in oxidative damage to protein, DNA, and lipids. Examination of antioxidant defenses in CR animals yields conflicting data; some reports show increased antioxidant enzymes, while others have shown the opposite or that no discernible pattern has been observed (Luhtala et al. 1994; Yu 1996; Lass et al. 1998; Judge et al. 2004; Sohal et al. 1994). However, CR increases non-enzymatic antioxidants; in particular, GSH (Armeni et al. 1998). Calorie restriction does increase resistance to other stressors such as heat, toxic drugs, and inflammation (Heydari et al. 1993; Klebanov et al. 1995; Berg et al. 1994; Duffy et al. 1995; Keenan et al. 1997). DNA and protein repair mechanisms have also been shown to be altered by CR, in directions beneficial to the animal (Guo et al. 1998; Lewis et al. 1985; Selsby et al. 2005; Stuart et al. 2004). All in all, the lifespan of calorie-restricted rodents is extended by mechanisms that likely involve resistance to stress, resulting in reduced cellular damage.

Limiting intake of a single amino acid, methionine, also extends the lifespan of mice (Miller et al. 2005). Longevity in rats on methionine-restricted diets was previously shown (Orentreich et al. 1993; Richie et al. 1994). In the most recent study, methionine restriction induced lower circulating IGF-1, thyroxine, insulin, and glucose levels compared with control-fed mice. Mice fed the methionine-restricted diet were significantly less sensitive to acetaminophen (an agent that causes oxidant-induced liver damage) compared with mice fed the control diet. An increase in stress resistance is thus observed following both CR and Meth-R, possibly involving similar mechanisms.

Discussion

Several questions arise regarding the relationship between stress resistance and longevity. What are the mechanisms responsible for the overall upre-
gulation in defense capacity in these mutant mice? Is the major player in longevity antioxidant defense, or do all the defense systems participate equally? Are these defense mechanisms turned on as a group (one major signal) to overcome adversity encountered in natural environments (e.g., nutrient availability, temperature, disease) or does each system have a different “switch”? Also, do the increases in protective measures at the cellular level influence lifespan significantly, or are there yet undiscovered pathways at play?

Disparity in growth and related metabolic consequences are observed between the mutant mouse strains described. This review does not consider whether or not metabolic rate is altered; rather, it weighs differences in the activation of signal transduction pathways and changes in metabolism of various substrates. Alterations in metabolism are oftentimes accompanied by changes in respiratory chain activity. A decrease in activity of the electron transport chain leads to lower ROS production and, when coupled with enhanced antioxidant defense capacity, to lower levels of oxidative damage. These changes are often concurrently reported in long-living mutant mice.

Evidence in yeast, worms, and flies suggests that growth factors and factors that affect nutrient storage activate kinases that downregulate stress resistance transcription factors and consequently catalase, SOD, and heat shock proteins (Longo and Fabrizio 2002). Based on current evidence, it appears that similar mechanisms may be operating in mammalian systems. With a disruption in growth factor signaling, the demand for protein synthesis is decreased throughout the postnatal period and reproductive maturity. This lower demand for protein synthesis may cause an overall shift in resources away from growth and proliferation and more toward defense or protective systems. Thus enters the FOXO family. FOXO transcription factors are perhaps the most direct molecular link between longevity, stress resistance, and nutrient signaling. Stimulation of IGF-1/insulin signaling occurs in times of nutrient abundance and during periods of growth, thus promoting cellular proliferation, growth, and energy storage (Datta et al. 1999; Kops et al. 2002; Tatar et al. 2003; Brunet et al. 2004). FOXO transcription is inhibited by IGF-1/insulin signaling. However, when nutrients are scarce, growth factors are deficient, oxidative stress is present or signaling is impaired via mutations in the IGF-1/insulin receptors or their downstream effectors, phosphorylation of FOXO is inhibited, and its nuclear translocation is promoted. Nuclear FOXO binds directly to the SOD2 promoter and upregulates its expression, thus conferring resistance to oxidative stress. Therefore, there is a metabolic shift away from growth toward cytoprotection.

Nuclear FOXO likely binds to other promoters and consequently alters gene expression. There are several reports indicating that factors other than those within the IGF-1/insulin/PI3K/Akt signaling pathway are involved in the regulation of FOXO activity, including but not limited to serum and glucocorticoid-inducible kinase (SGK), jun-N-terminal kinase (JNK), and β-catenin (Brunet et al. 2001; Essers et al. 2004, 2005; Wang et al. 2005). FOXO factors also appear to play a role in tumor suppression in a variety of cancers (Greer and Brunet 2005). Therefore, FOXO may be the factor that integrates nutritional and stress signals to regulate growth, cellular proliferation, and stress resistance (Accili and Arden 2004).

An upregulation of heat shock proteins prevents proteins from unfolding, thus maintaining conformation and activity. In addition, irreparably damaged proteins are hastened for destruction by these molecular chaperones. In the face of a decrease in protein synthesis due to a lack of stimulation (via impaired GH/IGF-1 signaling), an altered heat shock protein response would aid in the preservation of overall functional protein levels. Alterations in this system, among others in long-living mice, emphasize that the lower demand for growth (and in many cases reproduction) may direct valuable resources toward cytoprotection.

Resistance to oxidative stress is often coupled with increased tolerance to other types of stress, suggesting that there are multiple inputs that control regulation of protective mechanisms. Although only limited information regarding resistance to different types of stressors is avail-
able in the growing list of longevous mice, there are hints in the data that indicate that at least some of these mice are more resistant to several types of stressors than their wild-type counterparts. For example, the Ames dwarf mouse not only exhibits enhanced antioxidative defenses, but several of its tissues exhibit increases in heat shock proteins, metallothionein, methionine sulf-oxide reductase protein, and glutathione-S-transferase activities, which are known to maintain protein conformation and activity and to counter endogenous and exogenous toxins. Similarly, in vitro data in Ames, Snell, and Laron dwarf mice indicate resistance to multiple forms of stress (Murakami et al. 2003; Salmon et al. 2005). The degree of stimulation via the IGF-1/insulin pathway is reflected in differences in growth and lifespan among the different types of mutant mice (i.e., IGF-1R heterozygote versus dwarf strains) while the degree of stress resistance conferred via this pathway is more difficult to ascertain.

Antioxidants and phase II drug-metabolizing enzymes act together to detoxify and eliminate substances that induce chemical stress and result in cellular damage. Constitutive expression of these enzymes is low under physiological conditions. Studies have shown that expression of these protective proteins is increased upon exposure to stress. Several of these components comprise a defense system (that includes GSH biosynthetic proteins), the induction of which is controlled by the transcription factor NF-E2-related factor (Nrf2), which acts via the antioxidant response element (ARE) to activate transcription (reviewed in Nguyen et al. 2003; Chanas et al. 2002; McMahon et al. 2001). Nrf2-dependent ARE-driven genes include those involved in glutathione homeostasis (γ-glutamylcysteine synthetase [Gclc], GSTs, glutathione reductase, GPX), detoxification of H$_2$O$_2$ (thioredoxin, peroxiredoxin, catalase, SOD), iron homeostasis (heme-oxygenase-1, ferritin), growth factor signaling, and NADPH homeostasis (transketolase, malate, glucose-6-phosphate dehydrogenase; Lee et al. 2003), among others. The function of several Nrf2-dependent genes is reliant upon GSH, and the expression of these genes is important to maintain cellular redox homeostasis and prevent cellular damage. Protein phosphorylation pathways, including MAPK, PI3K, and PKC, have been implicated in the regulation of ARE response to chemical stress (Nguyen et al. 2003). Several studies have suggested that the contribution of the MAPK pathways in regulating the ARE is dependent upon the type of inducing agent (Yu et al. 1999, 2000a, 2000b; Alam et al. 2000; Masuya et al. 1998). Within the p38MAPK pathway specifically, PPAR-gamma coactivator-1α (PGC-1α) appears to be one of the major links between energy metabolism and cytoprotection, the activity of which is modified by extracellular signals (reviewed in Melloul and Stoffel 2004). The PI3K pathway has been shown to be important in transducing cellular responses to phenolic antioxidants and oxidative stress through the ARE (Kang et al. 2000, 2001; Lee et al. 2001, 2002). Experiments evaluating the role of the PKC pathway provided the first evidence of a direct effect of a kinase on the activation of the ARE in an Nrf2-dependent mechanism (Huang et al. 2000). The nature of the inducing agent, the cell type, and the context of the ARE in the gene are equally important factors that determine responses to cellular stress (Nguyen et al. 2003). Sulhydryl chemistry may also be an important regulator of the ARE: the common factor linking compounds that induce ARE-driven transcription is that they can directly (or following metabolism) produce thiol-reactive compounds. Oxidative stress modifies cysteine residues on Nrf2 effector proteins and affects transactivation of the ARE (Itoh et al. 1999; Dhakshinamoorthy and Jaiswal 2001). Therefore, evidence exists of direct relationships and the potential for crosstalk between IGF-1/insulin signaling pathways and stress response pathways that affect the ability of organisms to react appropriately and counter stress effectively. The communication between these pathways is responsible for regulating cellular responses to growth-stimulating signals and stress responsiveness, and thus may serve as one of the major links between longevity and stress resistance.

Another potential candidate that integrates growth factor and nutrient signaling within the PI3K/Akt pathway is mammalian target of rapamycin (mTOR). Downregulation of the translation regulatory signaling pathways via PI3K/Akt/
mTOR in Ames mice provides evidence of the decreased protein synthesis, lack of growth, and, potentially, the decreased incidence of cancer in the face of increased food consumption (Sharp and Bartke 2005). In addition, the reduction in PI3K and mTOR signaling and subsequent attenuation of anabolism may simulate a stressful situation and upregulate general defense and repair systems, which, in the long term, extend lifespan.

A recent report showed that dwarf mice (including Ames, Laron, and Snell) exhibit constitutive expression of peroxisome proliferator-activated receptor α-regulated (PPAR-α) genes (Stauber et al. 2005). The PPARs are members of a nuclear receptor superfamily that are known to be involved in lipid metabolism, stress responses, and cardiovascular disease. Activation of these receptors by peroxisome proliferators (PP) increases the size and number of peroxisomes within the cell. Growth hormone has been shown to control the expression of many PP-regulated genes (Zhou and Waxman 1999a, 1999b; Zhou et al. 2002). The dwarf mutants display elevated levels of PPAR-α mRNA and protein findings that definitely assist in the overall understanding of tolerance to stress.

Finally, a small but growing body of literature exists regarding the role of “hormesis” in lifespan extension. Hormesis refers to the idea that low to moderate doses of typically detrimental agents (heat, radiation, chemicals) or stresses are beneficial (Furst 1987). Increased ability to cope with stressors, increased disease resistance, and increased longevity are considered beneficial responses or outcomes following exposure to such low-intensity insults. Agents with hormetic effects increase the activity of genes that increase defense mechanisms and protect cells from damage. There are multiple examples of this phenomenon (including calorie restriction) that may reflect an underlying physiological survival response that is conserved among species throughout evolution. Reduced signaling of the GH/IGF-1/insulin pathway in mice (and other species) leads to significant lifespan extension. Disturbing this hormonal system may be the hormetic mediator in these mutants that leads to the associated increase in stress resistance and resultant longevity.

Subtle differences between mutants, along with differences in the protocols used for evaluation of stress resistance, lead to some of the enormous differences reported in the literature. In addition, an interesting debate proposes that stress resistance is positively correlated with longevity only in stressful conditions, and that under non-stressful conditions, stimulating increased repair and defense capacity has yet to be strongly associated with extended longevity (Le Bourg 2002). A more systematic approach examining several mutants and utilizing similar endpoints will assist in the determination of degree of resistance in both stressful and non-stressful situations.

There appears to be an evolutionarily well-conserved mechanism that balances growth and metabolism with the cellular stress defenses that consequently regulate lifespan. FOXO may serve as the major translation program that coordinates physiological responses to environmental perturbation. The differences in longevity and stress resistance between long-living mutant mice result from complex interrelationships among pathways that coordinate these signals. Comparison of the mammalian system to other organisms utilized in aging research (fruit flies, nematodes, yeast) has and will continue to point toward conserved mechanisms common to many species. In addition, further investigation of stress resistance will suggest potential targets to create therapies to extend human health span, increase lifespan, and contribute to our collective understanding of the aging process.

Acknowledgements The author wishes to thank Sharlene Rakoczy for her expert technical assistance and dedication to these aging studies, Jackob Moskovitz for antibodies to MsrA, Vadim Gladyshev for antibodies to Selenoprotein R, and Kurt Borg for reviewing the manuscript.

References

Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426

Ahamed K, Epaud R, Holzenberger M, Bonora M, Flejou J, Puard J, Clement A, Henrion-Caude A (2005) Deficiency in type I insulin-like growth factor recep-
dant induction of NAD(P)H:quinone oxidoreductase 1 gene. Oncogene. 20:3906–3917

Dozmorov I, Galecki A, Chang Y, Krzesicki R, Vergara M, Miller RA (2002) Gene expression profile of long-lived Snell dwarf mice. J Gerontol Biol Sci 57A:B99–B108

Duffy PH, Feuers RJ, Pipkin JL, Berg TF, Leaky JEA, Tuturro A, Hart R (1995) The effect of dietary restriction and aging on physiological response to drugs. In: Hart RW, Neuman DA, Robertson RT (eds) Dietary restriction: implications for the design and interpretation of toxicity and carcinogenicity studies. ILSI, Washington DC, pp 125–140

Eicher EM, Beamer WG (1976) Inherited ateliotic dwarfism in mice. Characteristics of mutation, little, on chromosome 6. J Hered 67:87–91

Essers MA, Weijsen S, de Vries-Smits AM, Saarloos I, de Ruiter, ND, Bos JL, Burgering BM (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Rap and JNK. EMBO J 23:4802–4812

Furkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA 98:6736–6741

Flurkey K, Papaconstantinou J, Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase lifespan in mice. Mech Ageing Dev 123:121–130

Fu YT, He FS, Zhang SL, Zhang JS (1995) Lipid peroxidation in rats intoxicated with 3-nitropropionic acid. Toxicon 33:327–331

Furst A (1987) Hormetic effects in pharmacology: pharmacological inversions as prototypes for hormesis. Health Phys 52(5):527–530

Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24(50):7410–7425

Guo ZM, Heydari AR, Richardson A (1993) Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol Cell Biol 13:410–418

Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

Huang H-C, Nguyen T, Pickett CB (2000) Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2 related factor 2. Proc Natl Acad Sci USA 97:12475–12480

Ikeda Y, Bronson RT, Hubbard GB, Lee S, Bartke A (2003) Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol Biol Sci 58A:291–296

Itoh K, Wakabayashi N, Kato Y, Ishii T, Igarashi K et al (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

Johnson TE, Lithgow GJ, Murakami S (1996) Hypothesis: interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J Gerontol Biol Sci 51:B392–B395

Judge S, Judge A, Grune T, Leevenburgh C (2004) Short-term CR decreases cardiac mitochondrial oxidant production but increases carnobyl content. Am J Physiol Regul Integr Comp Physiol 286:R254–R259

Kang KW, Ryu JH, Kim SG (2000) The essential role of the phosphatidylinositol 3-kinase and the p38 mitogen-activated protein kinase activation in the antioxidant response element-mediated rGSTA2 induction by decreased glutathione in H4IIE hepatoma cells. Mol Pharmacol 58:1017–1025

Kang KW, Cho MK, Lee CH, Kim SG (2001) Activation of phosphatidylinositol 3-kinase and Akt by tert-butyl-hydroquinone is responsible for antioxidant response element-mediated rGSTA2 induction in H4IIE cells. Mol Pharmacol 59:1147–1156

Keenan KP, Ballam GC, Dixit R, Soper KA, Laroque F, Mattson BA, Adams SP, Coleman JB (1997) The effect of diet, overfeeding and moderate dietary restriction on Sprague-Dawley rat survival, disease and toxicology. J Nutr 127 [Suppl]:851S–856S

Kirkwood TBL (1977) Evolution of ageing. Nature 270:301–304

Klebanov S, Shehab D, Stavinoha WB, Yongman S, Nelson JF (1995) Hyperadrenocorticism attenuated inflammation, and life prolonging action of food restriction in mice. J Gerontol Biol Sci 50A:B78–B82

Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomur I, Takayama Y, Herz J, etc. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomur I, Takayama Y, Herz J, etc. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86
Kahn CR, Rosenblatt KP, Kuro-o M (2005) Suppression of aging in mice by the hormone klotho. Science 309:1829–1833

Lass A, Sohal BH, Weintraub R, Forster MJ, Sohal RS (1998) Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med 25:1089–1097

Le Bourg E (2002) Are stress resistance and longevity really linked in normal living conditions? Gerontology 48:109–111

Lee J-M, Hanson JM, Chu WA, Johnson JA (2001) Le Bourg E (2002) Are stress resistance and longevity Lass A, Sohal BH, Weindruch R, Forster MJ, Sohal RS (1998) Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med 25:1089–1097

Le Bourg E (2002) Are stress resistance and longevity really linked in normal living conditions? Gerontology 48:109–111

Lee J-M, Hanson JM, Chu WA, Johnson JA (2001) Phosphatidylinositol 3-kinase, not extracellular signal-regulated kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells. J Biol Chem 276:20001–20016

Lee J-M, Calkins MJ, Chan K, Kan YW, Johnson JA (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278:12029–12038

Levavasseur F, Miyadera H, Siros J, Tremblay ML, Kita K, Shoubridge E, Hekimi S (2001) Ubiquinone is necessary for mouse embryonic development but is not essential for mitochondrial respiration. J Biol Chem 276:46160–46164

Lewis S, Goldspink D, Phillips J, Merry B, Holehan A (1985) The effects of aging and chronic dietary restriction on whole body growth and protein turnover in the rat. Exp Gerontol 20:253–260

Li S, Crenshaw BE III, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG (1990) Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347:528–533

Li J, Lee J-M, Johnson JA (2002) Microarray analysis reveals an antioxidant responsive element-driven gene set involved in conferring protection from an oxidative stress-induced apoptosis in IMR-32 cells. J Biol Chem 277:389–394

Lithgow GJ, Kirkwood TBL (1996) Mechanisms and evolution of ageing. Science 273:80

Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, Hekimi S (2005) Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev 19:2424–2434

Longo VD, Fabrizio P (2002) Regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell Mol Life Sci 59:903–908

Luhltala TA, Roecker EB, Pugh T, Feuers RJ, Weintraub R (1994) Dietary restriction attenuates age-related increases in rat skeletal muscle antioxidant enzyme activities. J Gerontol 49:B231–B238

Madsen MA, Hsieh CC, Boylston WH, Flurkey K, Harrison D, Papaconstantinou J (2004) Altered oxidative stress response of the long-lived Snell dwarf mouse. Biochem Biophys Res Comm 318:998–1005

Marbois BN, Clarke CF (1996) The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone biosynthesis. J Biol Chem 271:2995–3004

Masos T, Miskin R (1997) mRNAs encoding urokinase-type plasminogen activator and plasminogen activator inhibitor-1 are elevated in the mouse brain following kainate-mediated excitation. Mol Brain Res 47:147–169

Masuya H, Hioki K, Tokunaga R, Taketani S (1998) Involvement of the tyrosine phosphorylation pathway in induction of human heme oxygenase-1 by hemin, sodium arsenite, and cadmium chloride. J Biochem 124:628–633

McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ et al (2001) The cap’n’ collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61:3299–3307

Melloul D, Stoﬀel M (2004) Regulation of transcriptional coactivator PGC-1α. Sci Aging Knowledge Environ 9:9

Meyer MM, SwinGOOD JC, Brown-Borg HM, Carlson EC (2003) Increased glomerular metallotheinonein accompanies reduced glomerular basement membrane thickening in the Ames dwarf mouse model of delayed aging. Exp Biol 217:1

Migliaccio E, Giorgio M, Mele S, Pellici G, Reboldi P, Pandolfi PP, Lanfrancone L, Pellici PG (1999) The P66sc adaptor protein controls oxidative stress response and lifespan in mammals. Nature 402:309–313

Miller RA, Chang Y, Galecki AT, Al-Ragaeiy K, Kopchick JJ, Bartke A (2002) Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol 16(11):2657–2666

Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deﬁcient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4(3):119–125

Miskin R, Masos T (1997) Transgenic mice overexpressing urokinase-type plasminogen activator in the brain exhibit reduced food consumption, body weight and size and increased longevity. J Gerontol Ser A Biol Sci Med Sci 52(2):B118–B124

Mitsui A, Hamuro J, Nakamura H, Kondo N, Hirabayashi Y, Ishizaki-Koisumi S, Hirakawa T, Inoue T, Yodoi J (2002) Overexpression of human thioredoxin in transgenic mice controls oxidative stress and lifespan. Antioxid Redox Signal 4:693–696

Moskovitz J (2005) Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta 1703:213–219

Moskovitz J, Bar Noy S, Williams W, Requena J, Berlett BS, Stadtman ER (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and life span in mammals. Proc Natl Acad Sci 98:12920–12925

Murakami S, Salmon A, Miller RA (2003) Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J 17:1565–1566

Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Dica G, De...
Rosa G, Pelicci P (2003) Deletion of the p66shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci 100:2112–2116

Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) Low methionine ingestion by rats extends lifespan. J Nutr 123:269–274

Orsini F, Migliaccio E, Moroni M, Contursi C, Raker VA, Piccini D, Martin-Padura I, Pelliccia G, Trinei M, Bono M, Puri C, Tacchetti C, Ferrini M, Mannucci R, Nicoletti I, Lanfrancone L, Giorgi M, Pellicci PG (2004) The lifespan determinant p66Shc localizes to mitochondria where it associates with the mitochondrial heat shock protein 70 and regulates transmembrane potential. J Biol Chem 279:25689–25695

Pendergrass WR, Li Y, Jiang D, Wolf NS (1993) Decrease in cellular replicative potential in giant mice transected with the bovine growth hormone gene correlates to shortened lifespan. J Cell Physiol 156:96–103

Rennels EG, Anistgeist DM, Anistgeist L (1965) A cumulative study of the growth of sarcoma 180 in anterior pituitary dwarf mice. Tex Rep Biol Med 23:776–781

Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8:1302–1307

Rollo CD, Carlson J, Sawada M (1996) Accelerated aging of giant transgenic mice is associated with elevated free radical processes. Can J Zool 74:606–620

Romanick MA, Rakoczy SG, Brown-Borg HM (2004) Long-lived Ames dwarf mouse exhibits increased antioxidant defense in skeletal muscle. Mech Ageing Dev 125(4):269–281

Salmon AB, Murakami S, Bartke A, Kopchick JJ, Yasumura K, Miller RA (2005) Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 289:E23–E29

Sanz A, Bartke A, Barja G (2002) Long-lived Ames dwarf mice: oxidative damage to mitochondrial DNA in heart and brain. J Am Aging Assoc 25:119–122

Schneider GB (1976) Immunological competence in Snell-Bagg pituitary dwarf mice: response to the contact-sensitizing agent oxazolone. Am J Anat 145:371–394

Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinoivitch PS (2005) Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science 208:1909–1911

Selsby JT, Judge AR, Yimlamai T, Leenewburgh C, Dodd SL (2005) Life long calorie restriction increases heat shock proteins and proteasome activity in soleus muscles of Fisher 344 rats. Exp Gerontol 40:37–42

Sharp DZ, Bartke A (2005) Evidence for down-regulation of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J Gerontol Biol Sci 60A:293–300

Shire JGM (1973) Growth hormone and premature ageing. Nature 245:215–216

Silberberg R (1972) Articular aging and osteoarthritis in dwarf mice. Pathol Microbiol 38:417–430

Sohal RS, Ku H-H, Agarwal S, Fortsr MJ, Lal H (1994) Oxidative damage, mitochondrial oxidant generation, and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74:121–133

Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carrière C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Anderson B, Beamer WG, Rosenfeld MG (1996) Pituitary lineage determination by the mitotic homeo domain defective in Ames dwarfism. Nature 384:327–333

Stauber AJ, Brown-Borg HM, Liu J, Waalkes MP, Laughter A, Staben RA, Coley JC, Swanson C, Voss KA, Kopchick JJ, Corton JC (2005) Constitutive expression of peroxisome-proliferator-activated receptor α-regulated genes in dwarf mice. Mol Pharmacol 67:681–694

Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2004) Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18:595–597

Sumi Y, Dent MA, Seeley PJ, Morris RJ (1992) The expression of tissue and urokinase-type plasminogen activators in neuronal development suggests different modes of proteolytic involvement in neuronal growth. Development 116:625–637

Swinscoe JC, Brown-Borg HM, Bartke A, Carlson EC (2006a) Metallothionein levels and multimeric forms in delayed and premature mouse models. Exp Biol Annual Meeting

Swinscoe JC, Meyer MM, Brown-Borg HM, Carlson EC (2006b) Identification and measurement of multimeric forms of metallothionein in mouse tissues utilizing the Ames dwarf model of delayed aging. Exp Biol Annual Meeting

Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

Tirosh O, Aronis A, Zusman I, Kossoy G, Yahav S, Shinder D, Abramovitz R, Muskin R (2003) Mitochondria-mediated apoptosis is enhanced in long-lived α-MUPA transgenic mice and calorically restricted wild-type mice. Exp Gerontol 38:955–963

Tirosh O, Schwartz B, Zusman I, Kossoy G, Yahav S, Miskin R (2004) Long-lived α-MUPA transgenic mice exhibit increased mitochondrin-mediated apoptotic capacity. Ann NY Acad Sci 1019:439–442

Tirosh O, Pardo M, Schwartz B, Miskin R (2005) Long-lived α-MUPA transgenic mice show reduced SOD2 expression, enhanced apoptosis and reduced susceptibility to the carcinogen dimethylyhydrazine. Mech Ageing Dev 126:1262–1273
Trinei M, Giorgio M, Cicaele A, Barozzi S, Ventura A, Migliaccio E, Milia E, Padura IM, Raker VA, Maccarana M, Petronilli V, Minucci S, Bernardi P, Lanfrancone L, Pelicci PG (2002) A p53-p66Shc signaling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21(24):3872–3878

Tsuchiya T, Dhahbi JM, Cui X, Mote PL, Bartke A, Spindler SR (2004) Additive regulation of the hepatic gene expression by dwarfism and caloric restriction. Physiol Genomics 17:307–315

Uthus EO, Brown-Borg HM (2003) Altered methionine metabolism in long-living Ames dwarf mice. Exp Gerontol 38:491–498

Wang MC, Bohmann D, Jasper H (2005) JNK extends lifespan and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121:115–125

Wolf E, Kahnt E, Ehrlein J, Hermanns W, Brem G, Wanke R (1993) Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: lessons from transgenic animal models. Mech Ageing Dev 68:71–87

Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kuros H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034

Yu BP (1996) Aging and oxidative stress: modulation by dietary restriction. Free Radic Biol Med 21:651–668

Yu R, Lei W, Mandlejar S, Weber MJ, Der CJ et al (1999) Role of the mitogenactivated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem 274:27545–27552

Yu R, Chen C, Mo Y-Y, Owuor ED, Tan T-H et al (2000a) Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J Biol Chem 275:39907–39913

Yu R, Mandlejar S, Lei W, Fahl WE, Tan T-H et al (2000b) p38 Mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens. J Biol Chem 275:2322–2327

Zaccagnini G, Martelli F, Fasanaro P, Magenta A, Gaetano C, Di Carlo A, Biglioli P, Giorgio M, Martin-Padura I, Pelicci PG, Capogrossi M (2004) p66hcA modulates tissue response to hindlimb ischemia. Circulation 109:2917–2923

Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Wagner TE, Cataldo LA, Coschigano K, Baumann G, Kopchick JJ (1997) A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Nat Acad Sci USA 94:13215–13220

Zhou YC, Waxman DJ (1999a) STAT5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 trans-activation domain. J Biol Chem 274:2672–2681

Zhou YC, Waxman DJ (1999b) STAT5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 trans-activation domain. J Biol Chem 274:29874–29882

Zhou YC, D unvey HW, McLachlan MJ, Xie T, Waxman DJ (2002) Elevated basal expression of liver peroxisomal beta-oxidation enzymes and CYP4A microsomal fatty acid omega-hydroxylase in STAT5b(−/−) mice: cross-talk in vivo between peroxisome proliferator-activated receptor and signal transducer and activator of transcription signaling pathways. Toxicol Appl Pharmacol 182:1–10