DISCRETE COCOMPACT SUBGROUPS OF $G_{5,3}$
AND RELATED C^*-ALGEBRAS

P. MILNES AND S. WALTERS

February 17, 2001

Abstract. The discrete cocompact subgroups of the 5-dimensional Lie group $G_{5,3}$ are determined up to isomorphism. Each of their group C^*-algebras is studied by determining all of its simple infinite dimensional quotient C^*-algebras. The K-groups and trace invariants of the latter are also obtained.

§1. Introduction.
Consider the Lie group $G_{5,3}$ equal to \mathbb{R}^5 as a set with multiplication given by

$$(h, j, k, m, n)(h', j', k', m', n') = (h + h' + nj' + m'n(n - 1)/2 + mk', j + j' + nm', k + k', m + m', n + n').$$

and inverse

$$(h, j, k, m, n)^{-1} = (-h + nj + mk - mn(n - 1)/2, -j + nm, -k, -m, -n).$$

The group $G_{5,3}$ is one of only six nilpotent, connected, simply connected, 5-dimensional Lie groups; it seemed the most tractable of them for our present purposes. (Our notation is as in Nielsen [7], where a detailed catalogue of Lie groups like this one is given.) In [5, Section 3] the authors have studied a natural discrete cocompact subgroup $H_{5,3}$, the lattice subgroup $H_{5,3} = \mathbb{Z}^5 \subset G_{5,3}$. In section 2 of this paper we study the group $G_{5,3}$ more closely, determining the isomorphism classes of all its discrete cocompact subgroups (Theorem 1). These are given by five integer parameters $\alpha, \beta, \gamma, \delta, \epsilon$ that satisfy certain conditions (see (*) and (**) of Theorem 1), and are denoted by $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$. It is shown that each such subgroup is isomorphic to a cofinite subgroup of $H_{5,3} = H_{5,3}(1, 0, 1, 1, 0)$. Conversely, each cofinite subgroup of $H_{5,3} \subset G_{5,3}$ is a discrete cocompact subgroup of $G_{5,3}$. In sections 3 and 4 the group C^*-algebras of the $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$’s are examined by obtaining their simple infinite dimensional quotients. These are shown to be crossed products of certain types of Heisenberg C^*-algebras (in Packer’s terminology [10]) and the rest are matrix algebras over irrational rotation algebras (Theorem 5). In section 5 the K-groups of the simple quotients are calculated (Theorem 6) as are their trace invariants (Theorem 8). The paper ends with a discussion of the classification of the simple quotients.

1991 Mathematics Subject Classification. 22E40, 46L35, 46L80, 46L55.

Key words and phrases. 5-dimensional nilpotent Lie groups, discrete cocompact subgroups, group C^*-algebras, C^*-crossed product, K-theory.

Research partly supported by NSERC grants A7857 and OGP0169928
We use the conventional notation for crossed products as in, for example, [11] or [16]. Hence, if a discrete group G acts on a C^*-algebra A, we write $C^*(A,G)$ to denote the associated C^*-crossed product algebra. We use a similar notation for twisted crossed products, i.e. when there is a cocycle instead of an action (as in Theorem 2). (See the Preliminaries of [5] for more details.)

§2. Determination of the Discrete Cocompact Subgroups.

1. **Theorem.** Every discrete cocompact subgroup H of $G_{5,3}$ has the following form: there are integers $\alpha, \beta, \gamma, \delta$ and ϵ satisfying $\alpha, \gamma, \delta > 0$, and

\[
0 \leq \epsilon \leq \gcd\{\gamma, \delta\}/2 \quad \text{and}
\]

\[
0 \leq \beta \leq \gcd\{\alpha, \gamma, \delta, \epsilon\}/2,
\]

yielding $H \cong H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$ (= \mathbb{Z}^5 as a set) with multiplication

\[
(h, j, k, m, n)(h', j', k', m', n') =
\]

\[
\begin{cases}
(h + h' + \gamma n j' + \alpha \gamma m' n (n-1)/2 + \beta n m' + \delta m k' + \epsilon n k', \\
j + j' + \alpha m m', k + k', m + m', n + n').
\end{cases}
\]

Different choices for $\alpha, \beta, \gamma, \delta$ and ϵ give non-isomorphic groups. Each such group is, in fact, isomorphic to a cofinite subgroup of $H_{5,3}$ (the lattice subgroup of $G_{5,3}$), and each cofinite subgroup of $H_{5,3}$ is isomorphic to some $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$.

PROOF. Using the discreteness and cocompactness as in [6], the second commutator subgroup of H tells us that there is a member (with entries that don’t need to be identified indicated by *)

$e_5 = (\ast, \ast, \ast, a, z)$

of H, where $z > 0$ is the smallest positive number that can appear as the last coordinate of a member of H. Continuing in this vein, we get

$e_4 = (\ast, \ast, \ast, y, 0)$,

$e_3 = (\ast, b, x, 0, 0)$,

$e_2 = (\ast, w, 0, 0, 0)$ and

$e_1 = (v, 0, 0, 0, 0)$,

where $x > 0$ is the smallest positive number that can appear as the 3rd coordinate of a member of H whose last 2 coordinates are 0, and similarly for v, w and y. Also, all other coordinates are ≥ 0, and the bottom non-zero coordinate in each column is greater than the coordinates above it, e.g., $w > b > 0$ and w is also greater than the 2nd coordinate of e_5 or of e_4. These considerations show that the map

$\pi : (h, j, k, m, n) \mapsto e_1^h e_2^j e_3^k e_4^m e_5^n, \ \mathbb{Z}^5 \rightarrow H,$

is 1 − 1 and onto. We want the multiplication (m) for \mathbb{Z}^5 that makes π a homomorphism (hence an isomorphism); (m) is determined using the commutators,

\[
\begin{aligned}
[e_5, e_4] &= (\ast, zy, 0, 0, 0) = e_1^\beta e_2^\alpha, \quad [e_5, e_3] = (zb + xa, 0, 0, 0, 0) = e_1^\epsilon, \\
[e_5, e_2] &= (zw, 0, 0, 0) = e_1^\gamma, \quad \text{and} \quad [e_4, e_3] = (xy, 0, 0, 0) = e_1^\delta,
\end{aligned}
\]
for some integers \(\alpha, \beta, \gamma, \delta, \epsilon \) (other pairs of \(e \)'s commuting). Using the commutators to collect terms in
\[
(e_1^b e_2^j e_3^k e_4^m e_5^n)(e_1^{b'} e_2^{j'} e_3^{k'} e_4^{m'} e_5^{n'})
\]
gives the multiplication formula \((m)\) for \(\mathbb{Z}^5 \), and also the equation
\[
e_5^n e_4^{m'} = e_1^{\alpha \gamma m'n(n-1)/2+\beta nm'} e_2^{\alpha m'n} e_4^{m'} e_5^n,
\]
which the reader may find helpful in checking computations later.

For a start in putting the restrictions on \(\alpha, \beta, \gamma, \delta, \epsilon \), \((C)\) tells us that \(\alpha, \gamma, \delta > 0 \) (since \(v, w, x, y \) and \(z > 0 \)). Let \(Z \) denote the center of \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \), \(Z = (\mathbb{Z}, 0, 0, 0, 0) \).
Then, as for \(G_4 \), with quotients and subgroups it is shown that different (positive) \(\alpha, \gamma, \delta \) give non-isomorphic groups, e.g., \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)/Z \) gives \(\alpha \), then \(Z \) modulo the second commutator subgroup gives \(\gamma \), and also, with \(K_3, K_4 \subset H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \) as defined below,
\[
Z \supset (\delta \mathbb{Z}, 0, 0, 0, 0) = \{ xy^{-1} y^{-1} \mid x \in K_3, \ y \in K_4 \}
\]
and \(\mathbb{Z}/(\delta \mathbb{Z}, 0, 0, 0, 0) = \mathbb{Z}_\delta \), the cyclic group of order \(\delta \).

Then we have an isomorphism of \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \) onto \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon + d\gamma + e\delta) \), which is simpler to give in terms of generators,
\[
(\otimes) \quad e_3 \mapsto e_3', \ e_5 \mapsto e_5' = e_4^e e_5, \text{ and } e_i \mapsto e_i' = e_i \text{ otherwise}.
\]
Here we are merely changing the basis for \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \), and the only commutator (using \((m)\) and \((C)\)) that changes is \([e_5', e_3'] = e_1^{\epsilon + \delta + d\gamma} \), so the resulting isomorphism is of \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \) onto \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon + d\gamma + e\delta) \), which shows we can require
\[
0 \leq \epsilon < \gcd \{ \gamma, \delta \}.
\]
This, accompanied by another isomorphism,
\[
(\otimes') \quad (h, j, k, m, n) \mapsto (-h, -j, k, -m, n), \quad H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \rightarrow H_{5,3}(\alpha, \beta, \gamma, \delta, -\epsilon),
\]
assures that we can have
\[
(\ast) \quad 0 \leq \epsilon \leq \gcd \{ \gamma, \delta \}/2,
\]
the required range for \(\epsilon \).

Now, to control \(\beta \),
\[
(\dagger) \quad \begin{cases} e_1 \mapsto e_1' = e_1', & e_2 \mapsto e_1^{-q} e_2 = e_2', \ e_3 \mapsto e_3 = e_3', \\ e_4 \mapsto e_4^r e_3^q e_4 \text{ and } e_5 \mapsto e_3^{-f} e_5 = e_5' & \end{cases}
\]
is an isomorphism of \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \) onto \(H_{5,3}(\alpha, \beta + q\alpha + r\gamma + f\delta + g\epsilon, \gamma, \delta, \epsilon) \), which yields
\[
0 \leq \beta < \gcd\{\alpha, \gamma, \delta, \epsilon\}.
\]
Then the isomorphism

\[(\phi') \quad (h, j, k, m, n) \mapsto (-h, j, k, -m, -n)\]

of $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$ onto $H_{5,3}(\alpha, -\beta + \alpha \gamma, \gamma, \delta, \epsilon)$ leads to the conclusion

\[(**): \quad 0 \leq \beta \leq \gcd \{\alpha, \gamma, \delta, \epsilon\}/2.\]

It must still be shown that changing ϵ or β within the allowed limits (namely, ϵ and β must satisfy $(*)$ and $(**)$, respectively) gives a non-isomorphic group.

So, suppose that $\varphi : H = H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \to H_{5,3}(\alpha, \beta', \gamma, \delta, \epsilon') = H'$ is an isomorphism. Then

\[\varphi : Z = K_1 = (\mathbb{Z}, 0, 0, 0, 0) \to (\mathbb{Z}, 0, 0, 0, 0) = K'_1 = Z',\]

\[K_2 = (\mathbb{Z}, \mathbb{Z}, 0, 0, 0) \to (\mathbb{Z}, \mathbb{Z}, 0, 0, 0) = K'_2,\]

\[K_3 = (\mathbb{Z}, \mathbb{Z}, \mathbb{Z}, 0, 0) \to (\mathbb{Z}, \mathbb{Z}, \mathbb{Z}, 0, 0) = K'_3,\]

and

\[K_4 = (\mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z}, 0) \to (\mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z}, 0) = K'_4,\]

since the Z's are the centers, the K_2's consist of those $s \in H$ for which s^r is in the commutator subgroup of H for some $r \in \mathbb{Z}$, the K_3's are the largest subsets for which all commutators are central (e.g., $xyx^{-1}y^{-1} \in Z$ for all $x \in K_3$ and $y \in H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$), and the K_4's are the centralizers of the commutator subgroups. So we must have

\[\varphi(0, 0, 0, 0, 1) = (*, *, -f, e, a) = S_5 \text{ with } a = \pm 1,\]

\[\varphi(0, 0, 0, 1, 0) = (*, r, g, b, 0) = S_4 \text{ with } b = \pm 1, \text{ and}\]

\[\varphi(0, 0, 1, 0, 0) = (*, d, c, 0, 0) = S_3 \text{ with } c = \pm 1;\]

furthermore, commutators give

\[\varphi(\beta, \alpha, 0, 0, 0) = [S_5, S_4] = S_5S_4S_5^{-1}S_4^{-1} = (*, \alpha ab, 0, 0, 0),\]

hence $\varphi(0, 1, 0, 0, 0) = (q, ab, 0, 0, 0) = S_2$, and

\[\varphi(\gamma, 0, 0, 0, 0) = [S_5, S_2] = (\gamma a^2 b, 0, 0, 0, 0),\]

so $\varphi(1, 0, 0, 0, 0) = (b, 0, 0, 0, 0) = S_1$, but also

\[\varphi(\delta, 0, 0, 0, 0) = [S_4, S_3] = (\delta bc, 0, 0, 0, 0),\]

so $c = 1$. Furthermore, $\varphi(\epsilon, 0, 0, 0, 0) = [S_5, S_3] = (ae + e\delta + ad \gamma, 0, 0, 0, 0)$, which shows that the manipulations at (\otimes) and (\otimes') above give the only way of changing ϵ in $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$; that is, if

\[(*) \quad 0 \leq \epsilon, \epsilon' \leq \gcd \{\gamma, \delta\}/2\]
and $\epsilon = \pm \epsilon' + a_1 \delta + a_2 \gamma$ with $a_1, a_2 \in \mathbb{Z}$, then $\epsilon = \epsilon'$. Now consider
\[
\varphi(h, j, k, m, n) = \varphi((h, 0, 0, 0, 0)(0, j, 0, 0, 0)(0, k, 0, 0, 0)(0, 0, 0, m, 0)(0, 0, 0, 0, n))
= (hS_1) \cdot (jS_2) \cdot (kS_3) \cdot S_4^m \cdot S_5^n = hS_1 + jS_2 + kS_3 + S_4^m S_5^n \in H'.
\]
Note that $S_5^n \neq nS_5$, but $S_5^n = (\ast, \ast, -nf, ne, na)$, and also $S_4^m = (\ast, mr, mg, mb, 0)$; further, the (jS_2) term puts a jq in the first entry of $\varphi(h, j, k, m, n)$, so also $(j + j' + \alpha nm')q$ in the first entry of $\varphi(h, j, k, m, n) \cdot \varphi(h', j', k', m', n')$ (product in $H_{5,3}(\alpha, \beta', \gamma, \delta, \epsilon)$). Then, equating the coefficients of the nm' terms in the first entry of
\[
\varphi(e_5^n e_4^{m'}) \quad \text{and} \quad \varphi(e_4^n e_3^{m'}) = S_5^n S_4^{m'}
\]
gives
\[
b(-\alpha \gamma / 2 + \beta) + qa = ab\beta' - ab\alpha \gamma / 2 + a\gamma \epsilon + ar\gamma + (eg + bf)\delta, \quad \text{or}
\]
\[
\beta = \pm \beta' + a_1 \alpha + a_2 \gamma + a_3 \delta + a_4 \epsilon \quad \text{for some} \quad a_i \in \mathbb{Z}, \quad 1 \leq i \leq 4,
\]
which shows that the manipulations at \((\dagger)\) and \((\dagger')\) above give the only way of changing just β in $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$.

Here is an isomorphism φ of $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$ into the lattice subgroup $H_{5,3} = \mathbb{Z}^5 \subset G_{5,3}$ in terms of generators; $H_{5,3}$ has multiplication
\[
(h, j, k, m, n)(h', j', k', m', n') = \begin{cases}
(h + h' + nj + m'n(n - 1)/2 + mk', \\
\quad j + j' + nm'n, k + k', m + m', n + n')
\end{cases}
\]
(i.e., $\alpha = \gamma = \delta = 1$ and $\beta = \epsilon = 0$). First suppose $\epsilon > 0$. Then, with $\vartheta = \alpha \gamma \epsilon$ and generators
\[
e_1 = (1, 0, 0, 0, 0), \quad e_2 = (0, 1, 0, 0, 0), \quad \ldots, \quad e_5 = (0, 0, 0, 0, 1)
\]
for $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$ satisfying
\[
(C) \quad [e_5, e_4] = e_4^\delta e_2^\alpha, \quad [e_5, e_3] = e_1^\epsilon, \quad [e_5, e_2] = e_1^\gamma, \quad \text{and} \quad [e_4, e_3] = e_1^\delta,
\]
φ is given by
\[
\varphi : e_1 \mapsto e_1' = (\delta \vartheta^2, 0, 0, 0, 0), \quad e_2 \mapsto e_2' = (\gamma \delta \vartheta (\vartheta - 1)/2, \gamma \delta \vartheta, 0, 0, 0),
\]
\[
e_3 \mapsto e_3' = (0, \delta \vartheta, \delta \epsilon \vartheta, 0, 0), \quad e_4 \mapsto e_4' = (0, \beta \delta \vartheta, 0, \alpha \gamma \delta, 0),
\]
and $e_5 \mapsto e_5' = (0, 0, 0, 0, 0)$. That φ is an isomorphism is verified by showing that $\{e_1', e_2', e_3', e_4', e_5'\} \subset H_{5,3}$ satisfy (C). (Here φ is given by
\[
(h, j, k, m, n) \mapsto (\delta \vartheta^2 h + (\gamma \delta \vartheta (\vartheta - 1)/2) j, \gamma \delta \vartheta j + \delta \epsilon \vartheta k + \beta \delta \vartheta m, \delta \epsilon \vartheta k, \alpha \gamma \delta m, \vartheta n).
\]
When $\epsilon = 0$, use $\vartheta = \alpha \gamma$ and $e_3' = (0, 0, \delta \vartheta, 0, 0)$.
It is easy to see that the image \(H_1 = \varphi(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)) \) is cofinite in \(H_{5,3} \). Consider the coset \(sH_1 \) for \(s = (h, j, k, m, n) \in H_{5,3} \); since \(e'_5 = (0, 0, 0, 0, 0) \), we can choose \(r_5 \in \mathbb{Z} \) so that \(se'_5r_5 \) has its last coordinate in \([0, \delta]\). Then choose \(r_4 \in \mathbb{Z} \) so that \(se'_5r_5e'_4r_4 \) has its second last coordinate in \([0, \alpha \gamma \delta]\). Continuing like this, we arrive at

\[
s e'_5r_5 e'_4r_4 e'_3r_3 e'_2r_2 e'_1 r_1 \in K = \left([0, \delta^2] \times [0, \alpha \gamma \delta]\right) \cap \mathbb{Z}^5 \subset H_{5,3}
\]

so every coset \(sH_1, s \in H_{5,3} \), has a representative in \(K \), which is a finite set. It follows that the quotient map \(H_{5,3} \to H_{5,3}/H_1 \) maps \(K \) onto \(H_{5,3}/H_1 \), which is therefore finite. (A similar argument shows that \(G_{5,3}/H_1 \) is cocompact.)

Finally, note that since any cofinite subgroup of \(H_{5,3} \) is also a discrete cocompact subgroup of \(G_{5,3} \), it must therefore be isomorphic to some \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \). This completes the proof. \(\square \)

REMARKS.

1. The image \(H_1 = \varphi(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)) \) above is not a normal subgroup of \(H_{5,3} \), e.g.,

\[
(0, 0, 1, 0, 0)e'_5(0, 0, -1, 0, 0) = (\delta, 0, 0, 0, 0) \notin H_1.
\]

This makes it seem unlikely that \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \) can be embedded in \(H_{5,3} \) as a normal subgroup; however, the existence of such an embedding is still a possiblity.

2. The theorem gives an isomorphism \(\varphi \) of \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \) into \(H_{5,3} \); conversely, there is always an isomorphism \(\varphi' \) of \(H_{5,3} \) into \(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \), and as for \(\varphi \), it is easier to give \(\varphi' \) in terms of the generators \(e_i, 1 \leq i \leq 5 \), of \(H_{5,3} \), which satisfy

\[
(C') \quad [e_5, e_4] = e_2, \quad [e_5, e_2] = e_1 = [e_4, e_3].
\]

Then

\[
\varphi' : e_1 \mapsto e'_1 = (\alpha \gamma^2 \delta^2, 0, 0, 0, 0), \quad e_2 \mapsto e'_2 = (\alpha \gamma^2 \delta(\delta - 1)/2, \alpha \gamma \delta, 0, 0, 0),
\]

\[
e_3 \mapsto e'_3 = (0, -\alpha \delta \epsilon, \alpha \delta \gamma, 0, 0), \quad e_4 \mapsto e'_4 = (0, -\beta, 0, \gamma, 0), \quad \text{and} \quad e_5 \mapsto e'_5 = (0, 0, 0, 0, \delta).
\]

That \(\varphi' \) is an isomorphism is verified by showing that \(\{e'_1, e'_2, e'_3, e'_4, e'_5\} \subset H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \) satisfy \((C') \). (Here \(\varphi' \) is given by

\[
(h, j, k, m, n) \mapsto (\alpha \gamma^2 \delta^2 h + j \alpha \gamma^2 \delta(\delta - 1)/2, \alpha \gamma \delta j - \alpha \delta \epsilon k - \beta m, \alpha \gamma \delta k, \gamma m, \delta n).
\]

So, as for the 3-dimensional groups \(H_3(p) \) and the 4-dimensional groups \(H_4(p_1, p_2, p_3) \), here we have an infinite family of non-isomorphic groups, each of which is isomorphic to a subgroup of any other one.
§3. Infinite Dimensional Simple Quotients of $C^*(H_{5,3}(\alpha,\beta,\gamma,\delta,\epsilon))$.

We begin by obtaining concrete representations on $L^2(\mathbb{T}^2)$ of the faithful simple quotients (i.e., those arising from a faithful representation of $H_{5,3}(\alpha,\beta,\gamma,\delta,\epsilon)$), and consider first the case $\epsilon = 0$. In this case $H_{5,3}(\alpha,\beta,\gamma,\delta,0)$ has an abelian normal subgroup $N = (\mathbb{Z},\mathbb{Z},0,\mathbb{Z},0)$, with quotient

$$H_{5,3}(\alpha,\beta,\gamma,\delta,0)/N \cong (0,0,\mathbb{Z},0,\mathbb{Z}) = \mathbb{Z}^2,$$

also abelian and embedded in $H_{5,3}(\alpha,\beta,\gamma,\delta,0)$ as a subgroup, so that $H_{5,3}(\alpha,\beta,\gamma,\delta,0)$ is isomorphic to a semidirect product $N \times \mathbb{Z}^2$; in this situation, the simple quotients of $C^*(H_{5,3}(\alpha,\beta,\gamma,\delta,0))$ can be presented as C^*-crossed products using flows from commuting homeomorphisms, as follows.

Let $\lambda = e^{2\pi i \theta}$ for an irrational θ, and consider the flow $\mathcal{F}' = (\mathbb{Z}^2, \mathbb{T}^2)$ generated by the commuting homeomorphisms

$$\psi_1' : (w,v) \mapsto (\lambda^\gamma w, \lambda^\beta w^\alpha v) \quad \text{and} \quad \psi_2' : (w,v) \mapsto (w, \lambda^{-\delta} v).$$

\mathcal{F}' is minimal, so the C^*-crossed product $C' = C^*(C(\mathbb{T}^2), \mathbb{Z}^2)$ is simple [1, Corollary 5.16].

Let v and w denote (as well as members of \mathbb{T}) the functions in $C(\mathbb{T}^2)$ defined by

$$(w,v) \mapsto v \text{ and } w,$$

respectively. Define unitaries U, V, W and X on $L^2(\mathbb{T}^2)$ by

$$(U') \quad U : f \mapsto f \circ \psi_1', \quad V : f \mapsto vf, \quad W : f \mapsto f \circ \psi_2' \quad \text{and} \quad X : f \mapsto wf.$$

These unitaries satisfy

$$(CR') \quad UV = \lambda^\beta X^\alpha VU, \quad UX = \lambda^\gamma XU, \quad \text{and} \quad VW = \lambda^\delta WV$$

(other pairs of unitaries commuting), equations which ensure that

$$\pi : (h,j,k,m,n) \mapsto \lambda^h X^j W^k V^m U^n$$

is a representation of $H_{5,3}(\alpha,\beta,\gamma,\delta,0)$. Denote by $A_{\theta}^{5,3}(\alpha,\beta,\gamma,\delta,0)$ the C^*-subalgebra of $B(L^2(\mathbb{T}^2))$ generated by π, i.e., by U, V, W and X. Since $A_{\theta}^{5,3}(\alpha,\beta,\gamma,\delta,0)$ is generated by a representation of $H_{5,3}(\alpha,\beta,\gamma,\delta,0)$, it is a quotient of the group C^*-algebra $C^*(H_{5,3}(\alpha,\beta,\gamma,\delta,0))$. It follows readily that $A_{\theta}^{5,3}(\alpha,\beta,\gamma,\delta,0)$ is isomorphic to the simple C^*-crossed product C' above, and hence is simple.

However, when $0 < \epsilon \leq \gcd \{\gamma,\delta\}/2$ (which implies $\gamma > 1$, by \ast), $H_{5,3}(\alpha,\beta,\gamma,\delta,\epsilon)$ is only an extension $(\mathbb{Z},\mathbb{Z},0,\mathbb{Z},0) \times (0,0,\mathbb{Z},0,\mathbb{Z}) = N \times \mathbb{Z}^2$, and not a semidirect product. Nonetheless, we can modify the flow \mathcal{F}' representing $A_{\theta}^{5,3}(\alpha,\beta,\gamma,\delta,0)$ above to get a concrete representation of $A_{\theta}^{5,3}(\alpha,\beta,\gamma,\delta,\epsilon)$. Consider the flow $\mathcal{F} = (\mathbb{Z}^2, \mathbb{T}^2)$ generated by the commuting homeomorphisms

$$\psi_1 : (w,v) \mapsto (\lambda w, \lambda^\beta w^\alpha v) \quad \text{and} \quad \psi_2 : (w,v) \mapsto (w, \lambda^{-\delta} v).$$
\mathcal{F} is minimal, so the C^*-crossed product $\mathcal{C} = C^*(\mathbb{C}(\mathbb{T}^2), \mathbb{Z}^2)$ is simple. Define unitaries on $L^2(\mathbb{T}^2)$ by

$$(U) \quad U : f \mapsto f \circ \psi_1, \quad V : f \mapsto \psi f, \quad W : f \mapsto w^f \circ \psi_2 \text{ and } X : f \mapsto w^\gamma f.$$

These unitaries satisfy

$$(CR) \quad UV = \lambda^\beta X^\alpha U, \quad UX = \lambda^\gamma XU, \quad WV = \lambda^\delta WV \text{ and } UW = \lambda^\epsilon WU,$$

equations which ensure that

$$\pi : (h, j, k, m, n) \mapsto \lambda^h X^j W^k V^m U^n$$

is a representation of $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$. Denote by $A^5,3_{\theta}(\alpha, \beta, \gamma, \delta, \epsilon)$ the C^*-subalgebra of $B(L^2(\mathbb{T}^2))$ generated by π. Now $A^5,3_{\theta}(\alpha, \beta, \gamma, \delta, \epsilon)$ is isomorphic only to a subalgebra of \mathcal{C} (as may be shown using conditional expectations); a unitary that is missing is $X' : f \mapsto w f$ (since $\gamma > 1$).

NOTE. The reason we did not use \mathcal{F} when $\epsilon = 0$ (and $\gamma > 1$) is that $A^5,3_{\theta}(\alpha, \beta, \gamma, \delta, 0)$ seems to be isomorphic only to a subalgebra of \mathcal{C} in that case too, whereas with \mathcal{F}', $A^5,3_{\theta}(\alpha, \beta, \gamma, \delta, 0) \cong \mathcal{C}'$.

Since the flow method can no longer be used to prove the simplicity of the algebra $A^5,3_{\theta}(\alpha, \beta, \gamma, \delta, \epsilon)$ (when $0 < \epsilon \leq \gcd \{\gamma, \delta\}/2$), we use the strong result of Packer [9].

2. **Theorem.** Let $\lambda = e^{2\pi i \theta}$ for an irrational θ.

(a) There is a unique (up to isomorphism) simple C^*-algebra $A^5,3_{\theta}(\alpha, \beta, \gamma, \delta, \epsilon)$ generated by unitaries U, V, W and X satisfying

$$(CR) \quad UV = \lambda^\beta X^\alpha U, \quad UX = \lambda^\gamma XU, \quad WV = \lambda^\delta WV \text{ and } UW = \lambda^\epsilon WU,$$

Furthermore, for a suitable \mathbb{C}-valued cocycle on $H_3(\alpha) \times \mathbb{Z}$,

$$A^5,3_{\theta}(\alpha, \beta, \gamma, \delta, \epsilon) \cong C^*(\mathbb{C}, H_3(\alpha) \times \mathbb{Z}).$$

(b) Let π' be a representation of $H'_{5,3} = H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$ such that $\pi = \pi'$ (as scalars) on the center $(\mathbb{Z}, 0, 0, 0, 0)$ of $H'_{5,3}$, and let A be the C^*-algebra generated by π'. Then $A \cong A^5,3_{\theta}(\alpha, \beta, \gamma, \delta, \epsilon) = A^{5,3}_{\theta}$ (say) via a unique isomorphism ω such that the following diagram commutes.

$$\begin{array}{ccc}
H'_{5,3} & \xrightarrow{\pi} & A_{6,3}^{5,3} \\
\pi' \downarrow & \searrow & \downarrow \omega \\
A & & A
\end{array}$$

PROOF. To use Packer's result, we regard $H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$ as an extension

$$H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon) \cong \mathbb{Z} \times (0, \mathbb{Z}, \mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z} \times (H_3(\alpha) \times \mathbb{Z})$$

(with $H_3(\alpha) \cong (0, \mathbb{Z}, 0, \mathbb{Z}, \mathbb{Z}) \subset H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$); this extension has cocycle

$$[s, s'] = [(j, k, m, n), (j', k', m', n')] = \lambda^{mj' + \alpha mn(n-1)/2 + \beta nm' + \delta mk' + \epsilon nk'},$$
(H_3(\alpha) \times \mathbb{Z}, H_3(\alpha) \times \mathbb{Z}) \to \mathbb{T}.

The application of Packer’s result requires the consideration of the related function
\[\chi^{s'}(s) = [s', s][s, s^{-1}s'] \quad s, s' \in (0, \mathbb{Z}, \mathbb{Z}, \mathbb{Z}) \cong H_3(\alpha) \times \mathbb{Z}. \]

It must be shown that \(\chi^{s'} \) is non-trivial on the centralizer of \(s' \) in \(H_3(\alpha) \times \mathbb{Z} \) if \(s' \) has finite conjugacy class in \(H_3(\alpha) \times \mathbb{Z} \); this is easy because the only elements of \(H_3(\alpha) \times \mathbb{Z} \) that have finite conjugacy class are in the center \(Z_3 = (\mathbb{Z}, \mathbb{Z}, 0, 0) \) of \(H_3(\alpha) \times \mathbb{Z} \), so their centralizer is all of \(H_3(\alpha) \times \mathbb{Z} \). Thus the \(C^* \)-crossed product \(C^*(\mathbb{C}, H_3(\alpha) \times \mathbb{Z}) \) is simple; it is isomorphic to \(A_{5,3}^3(\alpha, \beta, \gamma, \delta, \epsilon) \) because, with basis members
\[e_1 = (1, 0, 0, 0), \quad e_2 = (0, 1, 0, 0), \quad e_3 = (0, 0, 1, 0) \quad \text{and} \quad e_4 = (0, 0, 0, 1) \]

for \(H_3(\alpha) \times \mathbb{Z} \), the unitaries
\[U' = \delta_{e_4}, \quad V' = \delta_{e_4}, \quad W' = \delta_{e_2} \quad \text{and} \quad X' = \delta_{e_1} \]
in \(\ell_1(H_3(\alpha) \times \mathbb{Z}) \subset C^*(\mathbb{C}, H_3(\alpha) \times \mathbb{Z}) \) satisfy (CR). \(\Box \)

The theorem showed \(A_{5,3}^3(\alpha, \beta, \gamma, \delta, \epsilon) \) was simple by showing it was isomorphic to the simple \(C^* \)-crossed product \(C^*(\mathbb{C}, H_3(\alpha) \times \mathbb{Z}) \). It follows that \(A_{5,3}^3(\alpha, \beta, \gamma, \delta, \epsilon) \) is isomorphic to a number of other \(C^* \)-crossed products (much as in [3; Theorem 3]), one of which has been derived from a flow at the beginning of the section for the case \(\epsilon = 0 \). Here are 2 other \(C^* \)-crossed products that can be used to establish the simplicity of \(A_{5,3}^3(\alpha, \beta, \gamma, \delta, \epsilon) \). The variable change for the second one will be used again, in the proof of Theorem 3 below.

1. Take the \(C^* \)-algebra \(B \) generated by \(U, V \) and \(X \) from (CR), satisfying
\[UV = \lambda^2 X^\alpha VU, \quad UX = \lambda^\gamma UX, \quad \text{and} \quad VX = XV. \]
The algebra \(B \) is a faithful simple quotient of a discrete cocompact subgroup \(H_4(\beta, \alpha, \gamma) \) of \(H_4 \), the connected 4-dimensional nilpotent group [6; Theorem 2]. Then the rest of (CR) gives an action of \(\mathbb{Z} \) on \(B \) generated by \(\text{Ad}_W \); it follows that \(A_{5,3}^3(\alpha, \beta, \gamma, \delta, \epsilon) \cong C^*(B, \mathbb{Z}) \). The simplicity of \(C^*(B, \mathbb{Z}) \) can be proved directly by showing that \((\text{Ad}_W)^r = \text{Ad}_{W^r} \) is outer on \(B \) if \(r \neq 0 \) [8].

2. First, we change the variables in (CR). Pick relatively prime integers \(c, d \) such that \(d\delta + ac = 0 \) and let \(a, b \) be integers such that \(ad - bc = 1 \). Put
\[U' = U^aV^b \quad \text{and} \quad V' = U^cV^d. \]

Then keeping \(X \) and \(W \) the same, (CR) becomes
\[(\text{CR}') \begin{cases} U'V' = \lambda^{\beta'} X^\alpha V'U', \quad U'X = \lambda^{\gamma} Xu', \\ U'W = \lambda^{\delta'} Wu', \quad \text{and} \quad V'X = \lambda^{\epsilon'} XV' \end{cases} \]

(other pairs of unitaries commuting) for some integer \(\beta' \) and \(\delta' = b\delta + ac \). Note that \(A_{5,3}^3(\alpha, \beta, \gamma, \delta, \epsilon) \) is generated by \(U', V', W, X \) (since \(ad - bc = 1 \)). Consider the \(C^* \)-algebra \(B' = A_{5,3}^3 \otimes \mathcal{C}(T) \) generated by unitaries \(V', W \) and \(X_1 \) satisfying
\[V'X = \lambda^{\gamma} XV', \quad V'W = WV' \quad \text{and} \quad WX_1 = X_1W; \]
here \(e^{2\pi i \theta'} = \lambda^{\gamma} \). Then the rest of (CR') gives an action of \(\mathbb{Z} \) on \(B' \) generated by \(\text{Ad}_{W'} \), and it follows that \(C^*(B', \mathbb{Z}) \cong A_{5,3}^3(\alpha, \beta, \gamma, \delta, \epsilon) \). One can prove the simplicity of \(C^*(B', \mathbb{Z}) \) directly; the method of proof is to show that the Connes spectrum of \(\text{Ad}_{U'} \) is \(\mathbb{T} \), which follows from Theorem 2 and [11; 8.11.12].
§4. Other Simple Quotients of \(C^*(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)) \).

Now assume that \(\lambda \) is a primitive \(q \)th root of unity and that \(U, V, W \) and \(X \) are unitaries generating a simple quotient \(A \) of \(C^*(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)) \), i.e., they satisfy

\[
(UV = \lambda^\beta X^\alpha VU, \quad UX = \lambda^\gamma XU, \quad VW = \lambda^\delta WV \quad \text{and} \quad UW = \lambda^\epsilon UW).
\]

We may assume that \(A \) is irreducibly represented. Then, if

\[
\begin{align*}
q_1 & \text{ is the order of } \lambda^\gamma \text{ and} \\
q_2 & \text{ is the lcm of the orders of } \lambda^\delta \text{ and } \lambda^\epsilon,
\end{align*}
\]

\(W^{q_2} \) and \(X^{q_1} \) are scalar multiples of the identity (by irreducibility). Since \(W \) can be multiplied by a scalar without changing (CR), we may assume \(W^{q_2} = 1 \). However, \(X^{q_1} = \mu' \), a multiple of the identity. Put \(X = \mu X_1 \) for \(\mu^{q_1} = \mu' \), so that \(X_1^{q_1} = 1 \), and substitute \(X = \mu X_1 \) in (CR) to get

\[
(UV = \lambda^\beta \mu^\alpha X_1^{q_1} VU, \quad UX_1 = \lambda^\gamma X_1 U, \quad V'X_1^{q_1} = 1, \quad UV' = \lambda^\gamma X_1 U' \quad \text{and} \quad W^{q_2} = 1 = X_1^{q_1}.
\]

1. If \(\mu \) is also a root of unity, then (CR) (along with irreducibility) shows that \(U \) and \(V \), as well as \(W \) and \(X \), are (multiples of) unipotent unitaries, so \(A \) is finite dimensional.

2. If \(\mu \) is not a root of unity, the flow \(F = (\mathbb{Z}^2, \mathbb{T}^2) \) used above to get a concrete representation of \(A_5^{\alpha, \beta, \gamma, \delta, \epsilon} \) can be modified to get a concrete representation of \(A \) on \(L^2(\mathbb{Z}_{q_1} \times \mathbb{T}) \) (where \(\mathbb{Z}_{q_1} \) is the subgroup of \(\mathbb{T} \) with \(q_1 \) elements). The proof of the simplicity of \(A \) comes next.

First consider the universal \(C^* \)-algebra \(\mathfrak{A} \) generated by unitaries satisfying

\[
(UV = \lambda^\beta \mu^\alpha X_1^{q_1} VU, \quad UX_1 = \lambda^\gamma X_1 U, \quad V'X_1^{q_1} = 1, \quad UV' = \lambda^\gamma X_1 U' \quad \text{and} \quad W^{q_2} = 1 = X_1^{q_1}.
\]

A change of variables is useful. Pick relatively prime integers \(c, d \) such that \(d\delta + ce = 0 \) and let \(a, b \) be integers such that \(ad - bc = 1 \). Put

\[
U' = U^a V^b \quad \text{and} \quad V' = U^c V^d.
\]

Then keeping \(X \) and \(W \) the same, (CR) becomes

\[
(UV' = \xi X_1^{q_1} V'U', \quad UX_1 = \lambda^\gamma X_1 U', \quad U'X = \lambda^{c\gamma} X' V' \quad \text{and} \quad W^{q_2} = 1 = X_1^{q_1}\]

(other pairs of unitaries commuting), where \(\xi = \lambda^\beta \mu^\alpha \lambda^s \) for some integer \(s \), and \(\delta' = b\delta + a\epsilon \).

It is clear that \(\lambda^{\delta'} \) is a primitive \(q_2 \)-th root of unity and that the algebra \(\mathfrak{A} \) is generated by \(U', V', W \) and \(X_1 \), since \(ad - bc = 1 \).
Let $B = C^*(X_1, V')$ and let $C(Z_{q_2}) = C^*(W)$ be the C^*-algebra generated by W. Since W commutes with X_1 and V', we can form the tensor product algebra $B \otimes C(Z_{q_2}) = C^*(X_1, V', W)$. The automorphism $\text{Ad}_{U'}$ acts on this tensor product as $\sigma \otimes \tau$, where σ and τ are automorphisms of B and $C(Z_{q_2})$, respectively, given by

$$\sigma(X_1) = \lambda^{a\gamma}X_1, \quad \sigma(V') = \xi_1X_1^\alpha V' \quad \text{and} \quad \tau(W) = \zeta W.$$

Therefore, by the universality of \mathfrak{A} and of the C^*-crossed product $C^*(B \otimes C(Z_{q_2}), Z)$, these algebras are isomorphic. By Rieffel’s Proposition 1.2 [14], the latter of these is isomorphic to $M_{q_2}(D)$, where $D = C^*(B, Z) = C^*(X_1, V', U'^{q_2})$, and the action of Z on B is generated by σ^{q_2}.

Now, the unitaries X_1, V' and U'^{q_2} generating D satisfy

$$(*) \quad \left\{ \begin{array}{lcl} U'^{q_2}V' &=& \xi_2^{q_2}\lambda^{s'}X_1^{a^{q_2}v'}U'^{q_2}, \\ U'^{q_2}X_1 &=& \lambda^{\gamma q_2}X_1U'^{q_2} \quad \text{and} \quad X_1^{q_1} = 1, \end{array} \right.$$

for some $s' \in \mathbb{Z}$.

Now we apply another change of variables. Choose relatively prime integers c', d' such that $cd' + aq_2c' = 0$, then pick integers a', b' with $a'd' - b'c' = 1$, and put

$$U'' = U'^{q_2a'}V'^{b'} \quad \text{and} \quad V'' = U'^{q_2c'}V'^{d'}.$$

Then $(*)$ becomes (keeping X_1 the same)

$$(***) \quad \left\{ \begin{array}{lcl} U''V'' &=& \xi_1X_1^{a^{q_2}v''}U'', \\ U''X_1 &=& \lambda'X_1U'' \quad \text{and} \quad X_1^{q_1} = 1, \end{array} \right.$$

where $\xi_1 = \xi^{q_2}\lambda^{s'}$ for some integer s', $\lambda' = \lambda^{\gamma (aq_2a'+cb')}$ has order q_3 dividing q_1 (the order of λ^γ), and perhaps $q_3 \neq q_1$.

Now, with $\mathbb{Z}_{q_1} \subset \mathbb{T}$ representing the subgroup with q_1 members, one observes that D is isomorphic to the crossed product of $C^*(C(\mathbb{Z}_{q_1} \times \mathbb{T}), \mathbb{Z})$ from the flow generated by $\phi(w, v) = (\lambda'w, \xi_1\lambda^{-aq_2v})$. (Note that the flow is not minimal unless the order of λ' is exactly q_1.) This proves the following.

3. Theorem. The universal C^*-algebra \mathfrak{A} generated by unitaries U, V, W and X_1 satisfying (CR_1) as for 2 (see also (c')) is isomorphic to $M_{q_2}(D)$, where $D = C^*(C(\mathbb{Z}_{q_1} \times \mathbb{T}), \mathbb{Z})$, as above.

Therefore, we now obtain all simple algebras satisfying (CR_1).

4. Corollary. Every simple C^*-algebra generated by unitaries satisfying (CR_1) is isomorphic to a matrix algebra over an irrational rotation algebra.

PROOF. By Theorem 3, any such simple algebra Q is a quotient of $M_{q_2}(D)$. Hence $Q = M_{q_2}(Q')$ where Q' is a simple quotient of D. But such a Q' is generated by unitaries satisfying $(***)$, but with X_1 (of order q_1) replaced by another unitary X_2, which after suitable rescaling, has order equal to the order of λ'. But this algebra is known to be a matrix algebra over an irrational rotation algebra (see for example Theorem 3 of [4]). \[\square\]
We state

5. Theorem. A C^*-algebra A is isomorphic to a simple infinite dimensional quotient of $C^*(H_{5,3}(\alpha, \beta, \gamma, \delta, \epsilon))$ if and only if A is isomorphic to $A_5^{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$ for an irrational θ, or to an algebra as in Corollary 4.

The matrix algebra presentation for the simple C^*-algebra A generated by unitaries satisfying (CR$_1$) is not given in a definite form in the proof of Corollary 4. Here is an explicit matrix presentation. First, as near the beginning of the section, change the variables so that (CR$_1$) becomes

$$
\begin{align*}
(CR_2) & \quad U'V' = \xi X_1^{\alpha} V' U', \quad U' X_1 = \lambda^{a\gamma} X_1 U', \\
& \quad U' W = \lambda^{\delta} W U', \quad V' X = \lambda^{c\gamma} X V' \quad \text{and} \quad W^{q_2} = 1 = X_1^{q_1}
\end{align*}
$$

Now we shall present the algebra A by unitaries in a matrix algebra as follows. Consider the C^*-algebra B_1 generated by unitaries u, v and x enjoying the relations

$$
uv = \xi' x^{q_2} v u, \quad ux = \lambda^{q_2 a\gamma} x u, \quad vx = \lambda^{c\gamma} x v \quad \text{and} \quad x^{q_3} = 1,
$$

where q_3 is the least common multiple of the orders of $\lambda^{q_2 a\gamma}$ and $\lambda^{c\gamma}$, and ξ' is to be determined below. Clearly, q_3 divides q_1 so that also $x^{q_1} = 1$. It was shown in the proof of Theorem 6.4 of [6] that B_1 is isomorphic to a $q_3 \times q_3$ matrix algebra over an irrational rotation algebra, when ξ' is not a root of unity. Hence it will suffice to show that A is isomorphic to $M_{q_2}(B)$ (so that $Q = q_2 q_3$). Indeed, let

$$
U' = \begin{pmatrix}
0 & 0 & \cdots & 0 & u \\
1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{pmatrix}
$$

(so $U' \text{diag}(K_1, K_2, \ldots, K_{q_2}) U'^* = \text{diag}(u K_{q_2} u^*, K_1, K_2, \ldots, K_{q_2-1})$),

$$
V' = \text{diag}(\tau_1 v, \tau_2 x^{-\alpha} v, \tau_3 x^{-2\alpha} v, \ldots, \tau_{q_2} x^{-(q_2-1)\alpha} v),
$$

$$
W = \text{diag}(1, \xi^{-1}, \xi^{-2}, \ldots, \xi^{-(q_2-1)}),
$$

$$
X = \text{diag}(x, \lambda^{-a\gamma} x, \lambda^{-2a\gamma} x, \ldots, \lambda^{-(q_2-1)a\gamma} x),
$$

where

$$
\tau_j = \lambda^a \xi^j \tau_1^{-j+1}, \quad 1 \leq j \leq q_2, \quad \text{and} \quad \tau_{q_2} \xi' \lambda^{q_2(q_2-1)a^2\gamma} = \xi_1.
$$

One now checks that these unitaries satisfy (CR$_2$). It is also evident that they generate $M_{q_2}(B)$. □
§5. K-Theory and the Trace Invariant. In this section we shall calculate the K-groups of the C*-algebra $A := A^5_0(\alpha, \beta, \gamma, \delta, \epsilon)$ by means of the Pimsner-Voiculescu six term exact sequence [13]. Since one of the groups in the sequence turns out to have torsion elements, the application of this result requires careful examination.

6. Theorem. For the C*-algebra $A^5_0(\alpha, \beta, \gamma, \delta, \epsilon)$, one has $K_0 = K_1 = \mathbb{Z}^6 \oplus \mathbb{Z}_\alpha$.

PROOF. To prove this theorem, we combine two applications of the PV sequence corresponding to two presentations P1 and P2 of A as follows.

P1. In view of (CR), let $B_1 = \mathcal{C}(X, V, U)$ and let Ad_W, with

$$\text{Ad}_W(X) = X, \quad \text{Ad}_W(V) = \lambda^{-\delta}V, \quad \text{Ad}_W(U) = \lambda^{-\epsilon}U,$$

generate an action of \mathbb{Z} on B_1, so that $A = \mathcal{C}(B_1, \mathbb{Z})$. Applying the PV sequence to B_1, viewed as the crossed product of $\mathcal{C}(\mathbb{T}^2) = \mathcal{C}(X, V)$ by the automorphism Ad_U, it is not hard to see that $K_0(B_1) = \mathbb{Z}^3$ and $K_1(B_1) = \mathbb{Z}^3 \oplus \mathbb{Z}_\alpha$. Since Ad_W is homotopic to the identity, the PV sequence immediately gives

$$K_1(A) = \mathbb{Z}^6 \oplus \mathbb{Z}_\alpha.$$

However, since in the short exact sequence

$$0 \longrightarrow K_0(B_1) \xrightarrow{i} K_0(A) \xrightarrow{\delta} K_1(B_1) \longrightarrow 0$$

$K_1(B_1)$ has torsion, we cannot readily obtain $K_0(A)$. For this, the next presentation will help.

P2. In view of (CR), we can also let $B_2 = \mathcal{C}(X, V, W) = \mathcal{C}(\mathbb{T}) \otimes A_{\delta \theta}$, where $\mathcal{C}(\mathbb{T}) = \mathcal{C}(X)$ and $A_{\delta \theta} = \mathcal{C}(V, W)$. Let $\sigma = \text{Ad}_U$, with

$$\sigma(X) = \lambda^\gamma X, \quad \sigma(V) = \lambda^3 X^\alpha V, \quad \sigma(W) = \lambda^\epsilon W,$$

generate an action of \mathbb{Z} on B_2, so that $A = \mathcal{C}(B_2, \mathbb{Z})$. In this case the PV sequence becomes

$$K_0(B_2) \xrightarrow{id_* - \sigma_*} K_0(A) \xrightarrow{i_*} K_0(A) \xrightarrow{\delta_0} K_1(B_2) \xrightarrow{id_* - \sigma_*} K_1(B_2)$$

(*)

It is not hard to see that a basis for $K_1(B_2) = \mathbb{Z}^4$ is given by $\{[[X], [V], [W], [\xi]]\}$ where $\xi = X \otimes e + 1 \otimes (1 - e)$ and $e = e(V, W)$ is a Rieffel projection in $A_{\delta \theta}$ of trace $\delta \theta$ mod 1. Also, a basis of $K_0(B_2) = \mathbb{Z}^4$ is given by $\{[1], [e], B_{XV}, B_{WX}\}$ where $B_{XV} = [P_{XV}] - [1]$ is the Bott element in X, V and P_{XV} the usual Bott projection in the commuting variables X, V. The action of $id_* - \sigma_*$ on $K_1(B_2)$ is given by

$$id_* - \sigma_* : \begin{align*}
[X] &\mapsto 0, & [V] &\mapsto -\alpha[X], & [W] &\mapsto 0, & [\xi] &\mapsto m\alpha[X]
\end{align*}$$

for some integer m, as shown by the following lemma. The action of $id_* - \sigma_*$ on $K_0(B_2)$ is given by

$$id_* - \sigma_* : \begin{align*}
[1] &\mapsto 0, & [e] &\mapsto \alpha B_{XW}, & B_{XW} &\mapsto 0, & B_{XV} &\mapsto 0.\n\end{align*}$$

The action on $[e]$ is also shown in the following

DISCRETE COCOMPACT SUBGROUPS OF $G_{5,3}$

13
7. **Lemma.** We have $\sigma[e] = [e] - \alpha B_{XW}$ in $K_0(B_2)$, and $\sigma[\xi] = [\xi] + m\alpha[X]$ for some integer m.

PROOF. The proof of the first equality can be established using an argument quite similar to that of the proof of Lemma 4.2 of [15]. Hence the kernel of $id_* - \sigma_*$ on $K_0(B_2)$ is Z^3. For the second equality, let $\eta = (id_* - \sigma_*)[\xi]$. From P1 and (*) we have

$$Z^6 \oplus Z_\alpha = K_1(A) = Z^3 \oplus \text{Im}(i_*) = Z^3 \oplus \frac{K_1(B_2)}{\text{Im}(id_* - \sigma_*)} = Z^3 \oplus \frac{K_1(B_2)}{Z\alpha[X] + Z\eta}.$$

Thus

$$\frac{K_1(B_2)}{Z\alpha[X] + Z\eta} = Z^3 \oplus Z_\alpha.$$

But since $K_1(B_2) = Z^4$, it follows that the subgroup $Z\alpha[X] + Z\eta$ must have rank one.\(^1\) Therefore, $Z\alpha[X] + Z\eta = Zd[X]$ for some integer d. Substituting this into (***) one gets $d = \alpha$ and so $\eta \in Z\alpha[X]$. □

It now follows that in $K_1(B_2)$ one has $\text{Im}(id_* - \sigma_*) = Z\alpha[X]$ and that $\text{Ker}(id_* - \sigma_*) = Z^3$ whether m is zero or not. Therefore, from the exactness of (*) we obtain $\text{Im}(\delta_0) = Z^3$ and hence by Lemma 7

$$K_0(A) = Z^3 \oplus \text{Im}(i_*) = Z^3 \oplus \frac{K_0(B_2)}{\text{Im}(id_* - \sigma_*)} = Z^3 \oplus \frac{K_0(B_2)}{Z\alpha B_{XW}} = Z^6 \oplus Z_\alpha$$

which completes the proof of Theorem 6. □

The Trace Invariant.

8. **Theorem.** The range of the unique trace on $K_0(A_g^{5,3}(\alpha, \beta, \gamma, \delta, \epsilon))$ is $Z + Z\rho \theta + Z\gamma \delta \theta^2$ where $\rho = \gcd\{\gamma, \delta, \epsilon\}$.

Note that this agrees with the the trace invariant $Z + Z\theta + Z\theta^2$ of the algebra $A_g^{5,3}$ as done in [15], section 2, in the case $(\alpha, \beta, \gamma, \delta, \epsilon) = (1, 0, 1, 1, 0)$.

PROOF. First we make an appropriate change of variables for the unitary generators of the algebra $A_g^{5,3}(\alpha, \beta, \gamma, \delta, \epsilon)$. Referring back to the defining relations (CR), pick integers a, b, c, d such that $b\delta + a\epsilon = 0$, $ad - bc = 1$, and let

$$U' = U^aV^b, \quad V' = U^cV^d.$$

Then the commutation relations (CR), with W remaining the same and X suitably scaled, become

$$U'V' = X^\alpha V'U', \quad U'X = \lambda^\alpha\gamma XU', \quad V'W = \lambda^{d\delta + e\epsilon}WV',$$

$$U'W = WU', \quad V'X = \lambda^{\gamma} XV', \quad WX = XW$$

\(^1\)If $0 \to F_1 \to G \to F_2 \oplus H \to 0$ is a short exact sequence of finitely generated Abelian groups, where F_1, F_2 are free groups and H is torsion, then $\text{rank}(G) = \text{rank}(F_1) + \text{rank}(F_2)$. This can be seen from the naturally obtained short exact sequence $0 \to F_1 \oplus F_2 \to G \to H \to 0$, from which the result follows. (If G has rank greater than that of a subgroup K, then G/K contains a non-torsion element.)
Let $B = C^*(X, U', V')$. It is isomorphic to the crossed product of $C^*(X, U') = A_{a\gamma\theta}$ by \mathbb{Z} and automorphism $\text{Ad}_{V'}$. An easy application of Pimsner’s trace formula shows that

$$\tau_*K_0(B) = \mathbb{Z} + \mathbb{Z}a\gamma\theta + \mathbb{Z}c\gamma\theta = \mathbb{Z} + \mathbb{Z}\gamma\theta,$$

since $(a,c) = 1$. Next, it is not hard to see that an application of the Pimsner-Voiculescu sequence to the above crossed product presentation of B gives the basis $\{[X],[V'],[U'],[\xi]\}$ for $K_1(B)$, where $[X]$ has order α, $\xi = 1 - e + ew^*V'^*e$ is a unitary in B, e is a Rieffel projection in $A_{a\gamma\theta}$ of trace $(a\gamma\theta)$mod1, and w is a unitary in $A_{a\gamma\theta}$ such that $V'^*eV' = wew^*$ (which exists by Rieffel’s Cancellation Theorem [14]). The underlying connecting homomorphism $\partial : K_1(B) \to K_0(A_{a\gamma\theta})$ gives $\partial[\xi] = [c]$ and $\partial[V'] = [1]$, the usual basis of $K_0(A_{a\gamma\theta})$.

To apply Pimsner’s trace formula, one calculates the usual “determinant” on the aforementioned basis, since the kernel of $id_* - (\text{Ad}_W)_*$ is all of $K_1(B)$ (since Ad_W is homotopic to the identity). It is easy to see that this determinant (whose values are in $\mathbb{R}/\tau_*K_0(B)$) on the elements $[X],[V'],[U']$ gives the respective values 1, $(d\delta + ce)\theta, 1$. For the ξ, since now Ad_W fixes $A_{a\gamma\theta}$ (and in particular e and w), one obtains

$$\text{Ad}_W(\xi)\xi^* = (1 - e + \lambda^{d\delta + ce}ew^*V'^*e)(1 - e + eV'we) = 1 - e + \lambda^{d\delta + ce}e.$$

Now a simple homotopy path connecting this element to 1 is just $t \mapsto 1 - e + e^{2\pi i\theta(d\delta + ce)}t e$, and the corresponding determinant gives the value $(d\delta + ce)\theta\tau(e)$. Since $\tau(e) = a\gamma\theta \mod 1$, the range of the trace is

$$\tau_*K_0(A) = \mathbb{Z} + \mathbb{Z}\gamma\theta + \mathbb{Z}(d\delta + ce)\theta + \mathbb{Z}(d\delta + ce)\theta^2.$$

Now $a(d\delta + ce) = ad\delta + ace - c(b\delta + ae) = \delta$, and similarly $-b(d\delta + ce) = \epsilon$, thus showing that $d\delta + ce = \gcd\{\delta, \epsilon\}$. Therefore, one gets $\tau_*K_0(A) = \mathbb{Z} + \mathbb{Z}\gcd\{\gamma, \delta, \epsilon\}\theta + \mathbb{Z}\gamma\delta\theta^2$. □

Discussion of Classification.

Next, let us consider briefly the classification of the algebras $A^{5,3}_{\theta}(\alpha, \beta, \gamma, \delta, \epsilon)$. First, it is easy to show that $A^{5,3}_{\theta}(\alpha, \beta, \gamma, \delta, \epsilon) \cong A^{5,3}_{\theta'}(\alpha, \beta, \gamma, \delta, \epsilon)$. Second, we note that the simple quotients $A^{5,3}_{\theta} = A^{5,3}_{\theta}(1, 0, 1, 1, 0)$ have been almost completely classified in [15]; specifically, they have been classified for all non-quartic irrationals (which are those that are not zeros of any polynomial of degree at most 4 with integer coefficients). But generally, with $\lambda = e^{2\pi i\theta}$ for an irrational θ, the operator equations

$$(\text{CR}) \quad UV = \lambda^\beta X^\alpha U, \quad UX = \lambda^\gamma XU, \quad VW = \lambda^\delta WV \quad \text{and} \quad UW = \lambda^\epsilon UW,$$

for $A^{5,3}_{\theta}(\alpha, \beta, \gamma, \delta, \epsilon)$ can be modified by changing some of the variables, i.e., by substituting $X_0 = e^{2\pi i\theta\beta/\alpha}X$ and putting $\lambda_0 = \lambda^p$, where $p = \gcd\{\gamma, \delta, \epsilon\}$, and then $\gamma_0 = \gamma/p$, $\delta_0 = \delta/p$ and $\epsilon_0 = \epsilon/p$ with $\gcd\{\gamma_0, \delta_0, \epsilon_0\} = 1$. The equations (CR) become

$$(\text{CR}_0) \quad \begin{cases} UV = X_0^\alpha U, & UX_0 = \lambda_0^\alpha X_0 U, & VW = \lambda_0^\delta^* WV \quad \text{and} \quad UW = \lambda_0^\epsilon^* WU \quad \text{with} \quad \gcd\{\gamma_0, \delta_0, \epsilon_0\} = 1, \end{cases}$$
which are the equations for $A^{5,3}_{\rho\theta}(\alpha, 0, \gamma_0, \delta_0, \epsilon_0)$, so

$$A^{5,3}_{\rho\theta}(\alpha, \beta, \gamma, \delta, \epsilon) \cong A^{5,3}_{\rho\theta}(\alpha, 0, \gamma_0, \delta_0, \epsilon_0)$$

where $\gcd\{\gamma_0, \delta_0, \epsilon_0\} = 1$. This reduces the classification to the class of algebras $A^{5,3}_{\rho\theta}(\alpha, 0, \gamma, \delta, \epsilon)$ where $\gcd\{\gamma, \delta, \epsilon\} = 1$.

If two such C^*-algebras $A_j = A^{5,3}_{\rho_j\theta_j}(\alpha_j, 0, \gamma_j, \delta_j, \epsilon_j), \ j = 1, 2$, are isomorphic, where now $\rho_j = \gcd\{\gamma_j, \delta_j, \epsilon_j\} = 1$, what constraints must hold between their respective parameters? As we observed in Theorem 6, one must have $\alpha_1 = \alpha_2$. By Theorem 8, one has

$$Z + Z\theta_1 + Z\gamma_1 \delta_1 \theta_1^2 = Z + Z\theta_2 + Z\gamma_2 \delta_2 \theta_2^2.$$

One can show that if one assumes that θ_j are non-quadratic irrationals, then these trace invariants are equal if, and only if, there is a matrix $S \in \text{GL}(2, \mathbb{Z})$ such that

$$\begin{pmatrix} \theta_2 \\ \gamma_2 \delta_2 \theta_2^2 \end{pmatrix} = S \begin{pmatrix} \theta_1 \\ \gamma_1 \delta_1 \theta_1^2 \end{pmatrix} \mod \left(\frac{\mathbb{Z}}{\mathbb{Z}}\right).$$

Further, one can more easily show that if θ_j are non-quartic irrationals (i.e., not roots of polynomials over \mathbb{Z} of degree at most four), then the trace invariants are equal if, and only if,

$$\theta_2 = (\pm \theta_1) \mod 1, \quad \text{and} \quad \gamma_2 \delta_2 \theta_2^2 = (\pm \gamma_1 \delta_1 \theta_1^2 + m \theta_1) \mod 1,$$

for some integer m. An interesting special situation can be considered. For example, if one fixes θ (assumed non-quartic for simplicity) and varies the other parameters, then the above shows that $\gamma_1 \delta_1 = \gamma_2 \delta_2$ will follow from $A_1 \cong A_2$. At this point it is not clear if the parameters can be determined more precisely than this. For example, is it possible, if θ is held fixed, that the equalities $\gamma_1 = \gamma_2$ and $\delta_1 = \delta_2$ could fail to hold? This is unclear. However, the following heuristic argument (based only on canonical considerations) suggests that perhaps γ_j, δ_j are uniquely determined.

Let us attempt to apply a canonical transformation of the unitary generators of the form

$$U_1 = U^{a_1} V^{b_1} W^{c_1}, \quad V_1 = U^{a_2} V^{b_2} W^{c_2}, \quad W_1 = U^{a_3} V^{b_3} W^{c_3},$$

in the hope of changing γ, δ, by working out the commutation relations and ensuring that they are preserved. (We have kept X the same since it is the only auxiliary unitary that can occur if one looks at the most general transformation of the form $U_1 = U^{a_1} V^{b_1} W^{c_1} X^{d_1}, V_1 = U^{a_2} V^{b_2} W^{c_2} X^{d_2}$ — in fact, the commutator $[U_1, V_1]$ is a scalar multiple of $X^{a(a_1 b_2 - a_2 b_1)}$.)

The 3 by 3 matrix T with rows a_j, b_j, c_j should have determinant ± 1 for the new unitaries to generate the same C^*-algebra. The first relation in (CR) demands that $a_1 b_2 - a_2 b_1 = 1$ so as to keep X^α the same. Also, since $VX = VX$ and $WX = WX$ must be preserved, we should have $V_1 X = X V_1$ and $W_1 X = X W_1$. However, it is easy to see that these imply that $a_2 = 0$ and $a_3 = 0$, respectively (since U does not commute with X). Since the relation between V_1 and W_1 does not contain X, one must have $a_2 b_3 - a_3 b_2 = 0$, which is already satisfied. Similarly, for the relation between U_1 and W_1 one must have $a_1 b_3 - a_3 b_1 = 0$. But
since $a_3 = 0$ this gives $b_3 = 0$. This means that the matrix T is upper triangular with 1 or
-1 on its diagonal, hence the transformation is reduced to

$$U_1 = U^\pm V^{b_1}W^{c_1}, \quad V_1 = V^\pm W^{c_2}, \quad W_1 = W^\pm.$$

(where the third ± here is independent of the first two, which should both be 1 or both -1).

In view of this transformation, however, the new commutation relations are now forced to take the following form

$$U_1V_1 = X^\alpha V_1U_1, \quad U_1X = \lambda^{\pm \gamma} XU_1, \quad V_1W_1 = \lambda^{\pm \delta} W_1V_1, \quad U_1W_1 = \lambda^{\delta b_1 \pm \epsilon} W_1U_1,$$

(and of course $V_1X = XV_1$, $W_1X = XW_1$, and after one rescales X). These are exactly in the same form as the relations (CR). In particular, the integer parameters γ and δ, since they are assumed to be positive, have remained unchanged. (Also unchanged is ϵ, since it is, by (\ast) of Theorem 1, smaller than δ.) This seems to suggest that γ and δ (and hence also ϵ) are uniquely determined in an isomorphism classification theorem. The broad scope of this classification problem, however, must be left to another time; the fact that γ and δ are not clearly singled out in the invariants considered here, but appear mixed, seems to present an obstacle to the classification of these C^*-algebras. (The authors doubt that the Ext invariant of Brown-Douglas-Fillmore contains any more information, though they have not checked this in detail.)
References

[1] E.G. Effros and F. Hahn, *Locally compact transformation groups and C*-algebras*, Mem. Amer. Math. Soc. No. 75, Providence, RI (1967).

[2] H. Furstenberg, *Recurrence in Ergodic Theory and Combinatorial Number Theory*, Princeton University Press, Princeton, NJ, 1981.

[3] A. Malcev, *On a class of homogeneous spaces*, Izvestia Acad. Nauk SSSR Ser. Mat. 13 (1949), 9–32.

[4] P. Milnes and S. Walters, *Simple quotients of the group C*-algebra of a discrete 4-dimensional nilpotent group*, Houston J. Math. 19 (1993), 615–636.

[5] P. Milnes and S. Walters, *Simple infinite dimensional quotients of C*(G) for discrete 5-dimensional nilpotent groups G*, Illinois J. Math. 41 (1997), 315–340.

[6] P. Milnes and S. Walters, *Discrete cocompact subgroups of the 4-dimensional nilpotent connected Lie group and their group C*-algebras*, J. Math. Anal. Appl. 253 (2001), no. 1, 224–242.

[7] O. Nielsen, *Unitary Representations and Coadjoint Orbits of Low Dimensional Nilpotent Lie Groups*, Queen’s Papers in Pure and Applied Mathematics, Queen’s University 63 (1983).

[8] D. Olesen and G. K. Pedersen, *Applications of the Connes spectrum to C*-dynamical systems*, J. Funct. Anal. 30 (1978), 179–197.

[9] J.A. Packer, *Twisted group C*-algebras corresponding to nipotent discrete groups*, Math. Scand. 64 (1989), 109–122.

[10] Judith Packer, *Strong Morita equivalence for Heisenberg C*-algebras and the positive cones of their K0-groups*, Canad. J. Math. 40 (1988), no. 4, 833–864.

[11] G.K. Pedersen, *C*-Algebras and their Automorphism Groups*, Academic Press, New York, 1979.

[12] M. Pimsner, *Ranges of traces on K0 of reduced crossed products by free groups*, Lecture Notes in Mathematics (Springer-Verlag), vol. 1132, 1985, pp. 374–408.

[13] M. Pimsner and D. Voiculescu, *Exact sequences for K-groups and Ext-groups of certain crossed product C*-algebras*, J. Operator Theory 4 (1980), 93–118.

[14] M. Rieffel, *The cancellation theorem for projective modules over irrational rotation algebras*, Proc. London Math. Soc. 47 (1983), no. 3, 285–302.

[15] S. Walters, *K-groups and classification of simple quotients of group C*-algebras of certain discrete 5-dimensional nilpotent Lie groups*, to appear in Pacific J. Math..

[16] G. Zeller-Meier, *Produits croisés d’une C*-algèbre par un groupe d’automorphismes*, J. Math. pures et appl. 47 (1968), 101–239.

Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada
E-mail address: milnes@uwo.ca

Department of Mathematics and Computer Science, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
E-mail address: walters@hilbert.unbc.ca
Home page: http://hilbert.unbc.ca/walters