Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy

Adit Ben-Baruch *

The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

Keywords: cancer, personalized therapy, tumor necrosis factor α/TNFα, TNFR1, TNFR2

INTRODUCTION – THE LONG AND WINDING ROAD OF TNFα IN CANCER THERAPY

The potent pro-inflammatory cytokine tumor necrosis factor α (TNFα) has been connected to cancer progression and treatment ever since its discovery as a major factor contributing to the anti-tumor activities of Coley’s toxins (1, 2). TNFα cloning in 1984/1985 (3, 4) and of its TNFR1 and TNFR2 receptors in 1990 (5–8) was followed by a spurt of studies demonstrating that TNFα has anti-malignancy activities. The beneficial effects of TNFα were observed in vivo primarily when the cytokine was administered at relatively high concentrations locally and repeatedly; the cytokine inhibited tumor growth by damaging the tumor vasculature and by directly inducing cancer cell killing, at times clearly seen when NF-κB and JNK activation was impaired (3, 9–16). Moreover, TNFα could improve the efficacy of drugs/chemotherapy in cancer treatment, e.g., by promoting blood vessel permeability (16, 17).

In clinical trials (primarily in sarcomas), TNFα was often administered locally, in order to generate high tumor concentration of the cytokine; although these trials have led to tumor regression (to various extents in the different trials), usually they did not have a pronounced ability to induce complete remission (16, 18, 19). To enable local activity of TNFα, antibody-TNFα fusion proteins (immunocytokines) were also assayed, with a relatively good efficacy in mouse cancer models, and in a small cohort of glioblastoma patients (20–23). Other cancer clinical studies have used systemic administration of TNFα, demonstrating low efficiency and giving rise to multiple side effects (15, 24, 25).

In parallel to these findings, other reports have emerged, connecting the presence of TNFα in tumors with pro-malignancy effects, and demonstrating that higher endogenous TNFα expression levels were associated with more advanced disease in cancer patients (2, 26–31). TNFα was found to be expressed in tumors from early stages of disease and on, and its continuous presence contributed to chronic inflammation, considered the Seventh Hallmark of Cancer (31–38). Moreover, the expression of TNFα by tumor cells, leukocytes and stromal cells has led to production of inflammatory chemokines that recruited leukocytes with pro-metastatic effects (26, 28, 31, 35, 38–41). Immune-suppression was also connected to TNFα presence in cancer and studies in animal models have greatly supported its tumor- and metastasis-promoting roles (2, 42–46).

Adding to these observations, numerous studies indicated that TNFα can act directly on cancer cells to promote their pro-metastatic characteristics and functions, including the generation of cancer stem cells, epithelial-to-mesenchymal transition, invasion, resistance to therapy and metabolic changes (27–31, 37, 47–51).

As research in this direction advanced, TNFα has been identified as a most powerful pro-cancer cytokine in many malignancies, suggesting that inhibitors of TNFα and/or its receptors (TNFR) could be applied in cancer treatment, alone or together with other modes of therapy.
THE COMPLEXITY OF THE TNFα-TNFR NETWORK – WHAT IS THE ROAD MADE OF?

In trying to understand the opposing observations on TNFα in cancer, it is important to consider that the TNFα-TNFR network includes many different members, generating intricate interactions that are spatially and temporally regulated, leading to diverse consequences under different conditions.

Many reviews have described in detail the complexity and flexibility of the TNFα-TNFR network [e.g., (27, 52–54)]. In a nutshell, the system is identified by the following characteristics: (1) It includes a soluble and a membrane form of TNFα (mTNFα); while the receptor TNFR1 (p55) binds soluble TNFα and mTNFα, TNFR2 (p75) is fully activated by mTNFα; (2) TNFR1 is constitutively expressed by almost all cells, whereas TNFR2 expression is noted primarily in hematopoietic, endothelial and neuronal cells. (3) TNF binding to its receptors gives rise to their trimerization, followed by unique signaling patterns of each of the receptors. Following the formation of a core signaling complex and regulation by additional intracellular components/events, TNFR1 can induce cell apoptosis and necroptosis via activation of its death domain; however, under different settings, TNFR1 can lead via activation of the NF-κB, JNK and p38 pathways to transcription of potent pro-inflammatory genes, cell survival, proliferation and motility. TNFR2, on the other hand, ultimately leads to expression of pro-inflammatory genes, cell survival and proliferation by activating canonical and non-canonical NF-κB pathways; (4) TNFR1 and TNFR2 can interact at several levels, including the ability of TNFR2 to promote the pro-apoptotic activities of TNFR1 (55, 56). (5) TNFR1 and TNFR2 have soluble forms (sTNFR1 and sTNFR2), whose activities and clinical implications are far from being fully resolved. It was suggested that at high concentrations the soluble receptors serve as sinks that reduce TNF levels and thus inhibit its activities, while low levels of the soluble receptors enhance TNFα functions (57, 58), possibly through induction of reverse signaling following binding to mTNFα (27, 54, 59).

This very diverse array of molecular elements and events suggests that at particular settings, members of the network can lead to opposing effects. For instance, activation of TNFR1 by TNFα can lead to tumor cell death but under a different set of conditions it can contribute to cancer inflammation and enhance tumor progression. A similar enigma was observed for TNFR2+ tumor-infiltrating lymphocytes (TILs): TNFR2-mediated signals support the survival/activation of CD4+ T regulatory cells (Tregs) and aggravate disease course (46, 60–67); however, in triple-negative breast cancer (TNBC) patients, TNFR2+ TILs were associated with improved patient survival. In parallel, mouse studies have connected reduced TNBC growth after chemotherapy with elevated presence of CD8+ TNFR2+ TILs, presumably cytotoxic T cells (CTLs) (68, 69), agreeing with TNFR2 being required for cytotoxic activities of CD8+ T cells (66). Moreover, unlike several publications connecting TNFR2 expression by cancer cells to pro-tumor phenotypes (63, 70–72), TNFR2 was found to be protective in breast cancer, as demonstrated by using a mouse model with the loss of one of the TNFR2 alleles (73).

The balance and interactions between the different members of the TNFα-TNFR family – as well as their cross-talk with other factors of the TME and with different therapy modes – may dictate the path that this network takes in terms of cancer progression.

THE TNFα-TNFR ROAD IN CANCER THERAPY – THE POSSIBLE INTER-CONNECTION OF THE “THERAPY” LANE AND THE “TARGET” LANE

The information obtained so far regarding the roles of TNFα and its receptors in cancer has split the scientific and clinical communities between those who consider TNFα as “therapy” and those who regard the different members of the TNFα-TNFR family as “targets”. In practice, it is possible that these two lanes of the TNFα-TNFR road are strongly connected to each other. For example, when TNFα fails to limit metastasis in a specific setting, this may be due to selection of cytotoxicity-resistant cells that also have acquired stronger pro-metastatic functions, such as increased invasiveness or production of angiogenic factors. Moreover, many reports have demonstrated that cells treated by TNFα acquired chemoresistance, endocrine resistance and reduced sensitivity to other therapy modes (27, 30, 47, 50, 74).

These observations connect the limited therapeutic potential of TNFα to selection of cancer cells that express improved pro-metastatic functions, leading to enhanced tumor progression. Thus, treating cancer patients with TNFα may eventually give rise to devastating metastasis-promoting effects, and may prove harmful rather than beneficial.

This scenario, and the strong evidence on the pro-metastatic roles of TNFα and its receptors in many cancer types, suggest that the pro-cancer and pro-metastatic functions of the TNFα-TNFR network dominate over their protective functions in malignancy. Supporting this possibility are many studies of patients suffering of autoimmune/inflammatory diseases, demonstrating that inhibition of the TNFα-TNFR pathway was not significantly associated with increased tumor risk or recurrence (with some, yet unsubstantiated, reservations regarding non-melanoma skin cancer and lymphoma) (75–81).

Taken together, the findings obtained so far suggest that when the TNFα-TNFR network is considered in cancer therapy, the “target” approach may apply better than the “therapy” tactic. Yet, to date, only a very limited number of clinical studies had analyzed the therapeutic value of TNFα-TNFR antagonists in cancer treatment. In several phase I and phase II trials, patients at locally advanced or metastatic stages of different malignant diseases were treated by antibodies against TNFα (infliximab) or soluble TNFR2 (etanercept). Partial or complete responses were noted only in a renal cell carcinoma study, but disease stabilization was observed in some of the patients in the other studies (82–85). In addition, a recent phase Ib clinical trial demonstrated relatively high response rates following the use of the TNFα inhibitor certolizumab together with anti-PD-1 and anti-CTLA-4 in melanoma patients (86).

Overall, as these clinical trials have been performed under unfavorable conditions – the cohort patients were at the most
advanced stages of disease, and their immune system has been already manipulated by repeated therapies – their findings suggest that TNFα-TNFR-directed treatments may be effective in cancer. It is possible that if inhibitors of the TNFα-TNFR family members will be given the most optimal conditions to act, and if the targets will be carefully selected, better therapeutic indices could be achieved.

DISCUSSION – THE (PERSONALIZED) ROAD AHEAD

To reach the aim of safe and effective use of TNFα-TNFR manipulations in cancer therapy, we need to consider the possibility that one type of TNFα-TNFR-directed therapy is not suitable to all cancer types and to all cancer patients; moreover, a specific therapy mode that applies to one cancer type/subtype may be detrimental in another.

Rather, the typical characteristics of tumor heterogeneity – inter-tumor and intra-tumor – call for a personalized approach that will carefully adjust the therapy mode and the treatment conditions to each malignancy type. First, it may be important to pre-select the patients who will most probably benefit from the modulation of TNFα-TNFR family members, and to start therapy as early as possible, to prevent the pro-metastatic activities of the network. For example, favorable candidates for treatment may be patients diagnosed at the early stage of breast ductal carcinoma *in situ*, whose tumors express TNFα (about half of the patients) (31).

Then, the roles of each family member should be precisely identified in each cancer type/subtype, prior to treating patients with modulators of the pathway. This can be well-exemplified by taking the TNFR2+ TIL population as a test case: the fact that unlike published reports on the Treg identify of CD4+ TNFR2+ lymphocytes (46, 60–67), TNFR2+ TILs were connected to improved survival in TNBC patients and with potential cytotoxic activities of CD8+ TNFR2+ TILs in mouse TNBC tumors (68, 69), suggests that targeting TNFR2 in chemotherapy-treated TNBC patients may be harmful; administration of TNFα inhibitors may reduce the proliferation of CD8+ TNFR2+ CTLs and limit the potential of raising potent immune activities against the cancer cells. The detrimental consequence that may be driven by such treatments may explain the findings obtained in TNFα−/− mice that could not mount T cell-mediated anti-tumor effects (87). Rather, the use of TNFR2 agonists (53, 54) may apply in order to promote the proliferation of cytotoxic CD8+ TNFR2+ TILs; alternatively, selective inhibitors of TNFR1 [(once clinically-approved (53, 54)] may be best suited in therapy as they may limit the chronic inflammation that is strongly induced by TNFα in the tumors.

Thus, when manipulation of members of the TNFα-TNFR family is considered in cancer therapy, one needs to determine many aspects in a most specific manner (Figure 1): who are the patients who can benefit from the treatment? Which TNFα-

![Figure 1](image-url)
TNF family member – in its membrane or soluble form – or its down-stream intracellular regulators, should be targeted? Do the various network members affect similarly different types of cells in a specific tumor type/subtype: cancer cells, endothelial cells, leukocytes and others? How TNF-α activities are affected by other factors of the TME and regulate them [e.g., estrogen, EGF and TGFβ (30, 49, 50, 88, 89)]? Can TNF-α-TNF-α directed therapies reach improved impacts when administered with other treatments, as reported recently to be the case with immune checkpoint blockades (86, 90, 91)?

To conclude, the two seemingly opposing effects of the TNF-α-TNF-α network on cancer progression may be actually inter-connected, and eventually the pro-metastatic functions of the TNF-α-TNF-α family members possibly dominate their anti-malignancy effects. Moreover, the “one therapy mode suits all” approach in targeting the TNF-α-TNF-α pathway in cancer needs to be re-evaluated, and emphasis should be given to extensive research that will identify the most appropriate therapeutic mode for each malignancy type/subtype, in a specific and personalized manner.

REFERENCES

1. Coley WB. the Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus Erysipelae and the Bacillus Prodigiosus). Proc R Soc Med (1910) 3(Surg Sect):1–48. doi: 10.1177/003591571000301601
2. Balkwill F. Tumour Necrosis Factor and Cancer. Nat Rev Cancer (2009) 9 (5):361–71. doi: 10.1038/nrc2628
3. Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, et al. Human Tumour Necrosis Factor Precursor: Structure, Expression and Homology to Lymphotixin. Nature (1984) 312(5996):724–9. doi: 10.1038/31274a0
4. Marmenout A, Fransen L, Tavernier J, van der Heyden J, Tizard R, Kawashima E, et al. Molecular Cloning and Expression of Human Tumor Necrosis Factor and Comparison With Mouse Tumor Necrosis Factor. Eur J Biochem (1985) 152(3):515–22. doi: 10.1111/j.1432-1033.1985.tb09226.x
5. Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, et al. Molecular Cloning and Expression of the Human 55 Kd Tumor Necrosis Factor Receptor. Cell (1990) 61(2):351–9. doi: 10.1016/0092-8674(90)90815-V
6. Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, et al. Molecular Cloning and Expression of a Receptor for Human Tumor Necrosis Factor. Cell (1990) 61(2):361–70. doi: 10.1016/0092-8674(90)90816-W
7. Heller RA, Song K, Onasch MA, Fischer WH, Chang D, Ringold GM. Complementary DNA Cloning of a Receptor for Tumor Necrosis Factor and Demonstration of a Shed Form of the Receptor. Proc Natl Acad Sci USA (1990) 87(16):6151–5. doi: 10.1073/pnas.87.16.6151
8. Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerey R, et al. A Receptor for Tumor Necrosis Factor Defines an Unusual Family of Cellular and Viral Proteins. Science (1990) 248(4958):1019–23. doi: 10.1126/science.2160731
9. Brouckaert PG, Leroux-Roels GG, Guisez Y, Tavernier J, Fiers W. Ben-Baruch TNF-α-TNF-β and TNF-β-TNF-α Interactions in Immune Response. J Immunol (2004) 172(6):3930–9. doi: 10.4049/jimmunol.172.6.3930

AUTHOR CONTRIBUTIONS

AB has designed the article, drafted all versions and is responsible for its contents.

FUNDING

Studies in the Ben-Baruch laboratory on the TNF-α-TNF-α network in cancer were supported during the last three years by DKFZ-MOST Cooperation in Cancer Research, Israel Cancer Research Fund, Federico Foundation and Israel Science Foundation.

ACKNOWLEDGMENTS

The author thanks the members of her team, at present and in the past, for their contribution to studies addressing the roles of TNF-α-TNF-α in cancer, that were performed in her laboratory.
23. Zifferds B, Pretto F, Neri D. Intratumoral Administration of IL-2- and TNF-Based Fusion Proteins Cures Cancer Without Establishing Prostate Immunity. Immunotherapy (2018) 10(3):177–88. doi: 10.2217/imt-2017-0119

24. Creagan ET, Kovach JS, Moertel CG, Fyrthal S, Kvellos IK. A Phase I Clinical Trial of Recombinant Human Tumor Necrosis Factor. *Cancer* (1988) 62(12):2467–71. doi: 10.1002/1097-0142(19881215)62:12<2467::AID-CNCR2820621202>3.0.CO;2-S

25. Brown TD, Goodman P, Fleming T, Macdonald JS, Hersh EM, Braun TJ. A Phase II Trial of Recombinant Tumor Necrosis Factor in Patients With Adenocarcinoma of the Pancreas: A Southwest Oncology Group Study. *J Immunother* (1991) 10(5):376–8. doi: 10.1097/00002371-199110000-00010

26. Maccio A, Madera C. Inflammation and Ovarian Cancer. *Cytokine* (2012) 58(2):133–47. doi: 10.1016/j.cytjo.2012.01.015

27. Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor Alpha Blockade: An Opportunity to Tackle Breast Cancer. *Front Oncol* (2020) 10:584. doi: 10.3389/fonc.2020.00558

28. Powell IJ, Chinni SR, Reddy SS, Zaslavsky A, Gavande N. Pro-Inflammatory Cytokines and Chemokines Initiate Multiple Prostate Cancer Biological Pathways of Cellular Proliferation, Heterogeneity and Metastasis in a Racially Diverse Population and Underlie the Genetic/Biologic Mechanism of Racial Disparity: Update. *Urol Oncol* (2021) 39(1):34–40. doi: 10.1016/j.juroonc.2020.08.019

29. Crucieru D, Baldasari O, Balaccescu O, Berindan-Neagoe I. The Dual Role of Tumor Necrosis Factor-Alpha (TNF-Alpha) in Breast Cancer: Molecular Insights and Therapeutic Approaches. *Cell Oncol (Dordr)* (2020) 43(1):1–18. doi: 10.1007/s13402-019-00489-1

30. Gong K, Guo G, Beckley N, Zhang Y, Yang X, Sharma M, et al. Tumor Necrosis Factor in Lung Cancer: Complex Roles in Biology and Resistance to Treatment. *Neoplasia* (2021) 23(2):189–96. doi: 10.1016/j.neo.2020.12.006

31. Soria G, Ofiri-Shahak M, Haas I, Yaal-Hahosen N, Leider-Trejo L, Leibovich-Rivkin T, et al. Inflammatory Mediators in Breast Cancer: Coordinated Expression of Tnflpha & IL-1Beta With CCL2 & CCL5 and Effects on Epithelial-to-Mesenchymal Transition. *BCMCancer* (2011) 11(130): doi: 10.1186/1471-2407-11-130

32. Colotta F, Allavera P, Sica A, Garlanda C, Mantovani A. Cancer-Related Inflammation, the Seventh Hallmark of Cancer: Links to Genetic Instability. *Carcinogenesis* (2009) 30(7):1073–81. doi: 10.1039/c9cnc12177

33. Sethi G, Sung B, Aggarwal BB. TNF: A Master Switch for Inflammation to Cancer. *Front Biosci* (2013) 18:5309–14. doi: 10.2743/10.366

34. Muthusami S, Ramachandran IK, Babu KN, Krishnamoorthy S, Guruswamy N, et al. TNFR2 in Cancer Therapy. *Nat Rev Clin Oncol* (2017) 14(10):611–29. doi: 10.1038/nrclinonc.2017.44

35. Gough P, Myles I.A. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects. *Front Immunol* (2020) 11:585880. doi: 10.3389/fimmu.2020.585880

36. Fischer R, Kontermann RE, Pfizenmaier K. Selective Targeting of TNF Receptors as a Novel Therapeutic Approach. *Front Cell Dev Biol* (2020) 8:401. doi: 10.3389/fcell.2020.00401

37. Steeland S, Libert C, Vandenbroucke RE. A New Venue of TNF Targeting. *Int J Mol Sci* (2018) 19(5):1442. doi: 10.3390/ijms19051442

38. Naude PJ, den Boer JA, Luiten PG, Eisel UL. Tumor Necrosis Factor Receptor Cross-Talk. *FEBS J* (2011) 278(6):888–98. doi: 10.1111/j.1742-4658.2011.08017.x

39. Grell M, Zimmermann G, Gottfried E, Chen CM, Grunwald U, Huang DC, et al.: Induction of Cell Death by Tumour Necrosis Factor (TNF) Receptor 2, CD40 and CD36: A Role for TNF-R1 Activation by Endogenous Membrane-Anchored TNF. *EMBO J* (1999) 18(11):3034–43. doi: 10.1093/emboj/18.11.3034

40. Aderka D, Engelmann H, Mao Y, Brakebusch C, Wallach D. Stabilization of the Bioactivity of Tumor Necrosis Factor by its Soluble Receptors. *J Exp Med* (1992) 175(2):323–9. doi: 10.1084/jem.175.2.323

41. Van Zee KJ, Kohno T, Fischer E, Rock CS, Moldawer LL, Lowry SF. Tumor Necrosis Factor Receptor Type 2 Promotes Expansion and Function of Mouse CD4+CD25+ T Regulatory Cells. *J Immunol* (2007) 179(1):154–61. doi: 10.4049/jimmunol.179.1.154
63. Torrey H, Butterworth J, Mera T, Okubo Y, Wang L, Baum D, et al. Targeting TNFR2 With Antagonistic Antibodies Inhibits Proliferation of Ovarian Cancer Cells and Tumor-Associated Tregs. Sci Signalining (2017) 10(462): eaaf6608. doi: 10.1126/scisignal.aaf6608

64. He J, Li R, Chen Y, Hu Y, Chen X. TNFR2-Expression CD4+(+)Foxp3+(+) Regulatory T Cells in Cancer Immunounology and Immunotherapy. Prog Mol Biol Trans Sci (2019) 164:101–17. doi: 10.1016/bs.pmbts.2019.03.010

65. Chen X, Hamano R, Subleksi JH, Hurwitz AA, Howard OM, Oppenheim JJ. Expression of Costimulatory TNFR2 Induces Resistance of CD4+Foxp3- Conventional T Cells to Suppression by CD4+Foxp3+ Regulatory T Cells. J Immunol (2010) 185(1):174–82. doi: 10.4049/jimmunol.0903548

66. Ye LL, Wei XS, Zhang M, Niu YR, Zhou Q. The Significance of TNFR2 Promotes Adriamycin Resistance in Breast Cancer Cells. Mol Med Rep (2017) 15(8):1373–91. doi: 10.3892/mmr.2017.8387

67. Chen Y, Friedman M, Liu G, Deodhar A, Chu CQ. Do Tumor Necrosis Factor Modulate Neutrophilic Inflammation in Rheumatoid Arthritis? Arthritis Res Ther (2021) 23(2):197. doi: 10.1186/s13075-021-02410-3

68. Antoon JW, Lai R, Struckhoff AP, Nitschke AM, Elliott S, Martin EC, et al. Risk of Solid Cancers Overall and by Subtypes in Patients With Psoriatic Arthritis: Lymphoma Risk and Characteristics After Exposure to Tumour Necrosis Factor Antagonists. Ann Rheum Dis (2005) 64(10):1414–20. doi: 10.1136/ard.2004.033241

69. Dadiani M, Necula D, Kahana-Edwin S, Oren N, Baram T, Marin I, et al. Tumor Necrosis Factor-Alpha Inhibitor in Patients With Metastatic Breast Cancer. Clin Cancer Res (2004) 10(19):6528–34. doi: 10.1158/1078-0432.CCR-04-0730

70. Madhusudan S, Muthuramasam SR, Braybrooke JP, Wilner S, Kaur K, et al. A Phase II Study of Etanercept (Enbrel), A Tumor Necrosis Factor-Alpha Inhibitor, in Recurrent Ovarian Cancer. J Clin Oncol (2005) 23(25):5990–9. doi: 10.1200/JCO.2005.04.127

71. Brown ER, Charles KA, Hoare SA, Rye RL, Jordell DI, Aird RE, et al. A Clinical Study Assessing the Tolerability and Biological Effects of Infliximab, A TNF-Alpha Inhibitor, in Patients With Advanced Cancer. Ann Oncol (2008) 19(7):1340–6. doi: 10.1093/annonc/mdn054

72. Harrison ML, Obermuller E, Maisey NR, Hoare S, Edmonds K, Li NF, et al. Tumor Necrosis Factor Alpha as a New Target for Renal Cell Carcinoma: Two Sequential Phase II Trials of Infliximab at Standard and High Dose. J Clin Oncol (2007) 25(29):4542–9. doi: 10.1200/JCO.2007.11.2136

73. Montfort A, Filleron T, Viraza M, Dufau C, Milhes J, Pages C, et al. Combining Nivolumab and Ipilimumab With Infliximab or Cetolizumab in Patients With Advanced Melanoma: First Results of a Phase Ib Clinical Trial. Clin Cancer Res (2021) 27(14):1037–47. doi: 10.1158/1078-0432.CCR-20-3449

74. Baxevanis CN, Voutsas IF, Tsiplitsis OE, Tsilatsas ML, Gritzapis AD, Papamichail M. Compromised Anti-Tumor Responses in Tumor Necrosis Factor-Alpha Knockout Mice. Eur J Immunol (2000) 30(7):1957–66. doi: 10.1002/1521-4141(200007)30:7<1957::AID-IMMU1957>3.0.CO;2-7

75. Li Y, Zhu G, Zhai H, Jia J, Yang W, Li X, et al. Simultaneous Stimulation With Tumor Necrosis Factor-Alpha and Transforming Growth Factor-Beta1 Induces Epithelial-Mesenchymal Transition in Colon Cancer Cells via the NF-kappab Pathway. Oncol Lett (2018) 15(5):6873–80. doi: 10.3892/ol.2018.8230

76. Weitzenfeld P, Kossower O, Korner C, Meshel T, Wiemann S, Seliktar D, et al. Chemokine Axes in Breast Cancer: Factors of the Tumor Microenvironment Reshape the CCR7-Driven Metastatic Spread of Luminal-a Breast Tumors. J Leukoc Biol (2016) 99(6):1009–25. doi: 10.1189/jlb.201605-057RR

77. Case K, Tran L, Yang M, Zheng H, Kuhtreiber WM, Faustman DL. TNFR2 Blockade Alone or in Combination With PD-1 Blockade Shows Therapeutic Efficacy in Murine Cancer Models. J Leukoc Biol (2020) 107(6):981–91. doi: 10.1002/JLB.3MA0420-375RRR

78. Zhang X, Lao M, Xu J, Duan Y, Yang H, Li M, et al. Combination Cancer Immunotherapy Targeting TNFR2 and PD-1/PD-L1 Signaling Reduces Immunosuppressive Effects in the Microenvironment of Pancreatic Tumors. J Immunother Cancer (2022) 10(3):e003982. doi: 10.1136/jitc-2022-003982

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.