Solitary fibrous tumors (SFTs) are rare tumors, first described as pleural tumors of mesothelial origin. Extrapleural SFTs deriving from fibroblast-like cells are an even more unusual variant.

We report a case of leg SFT and provide some clues for preoperative diagnosis and treatment plan.

CASE REPORT

A 37-year-old man presented with 2 painful lumps on the distal third of his left leg, which had appeared 2 years before and had grown progressively. One was on the anterolateral surface (8.5 × 7 cm), the other in the medial supramalleolar region (6 × 5 cm); both had regular ill-defined margins, hard consistency, and were fixed to the deep structures while gliding on the skin. Clinical examination showed a pulse synchronous with the peripheral pulses and a corresponding systolic murmur, confirmed with an 8-MHz Doppler probe, that allowed to trace the anterior (ATV) and posterior tibial vessels (PTV) entering the mass and exiting from it distally, mimicking an arteriovenous malformation. A preoperative ultrasound was suggestive for liquid content of the mass.

The magnetic resonance imaging (MRI) scan showed an hourglass-shaped mass that seemed to involve the peroneal artery, 6.6-cm diameter, fed by branches of the ATV and PTV. The mass seemed to have clear-defined margins and expanding growth. Angiography showed the peroneal artery entering the mass and branches from the anterior and posterior tibial arteries nourishing it (Fig. 1). The preoperative diagnosis was of a tumoral mass of vascular origin. Transperoneal removal was planned through 3 accesses: lateral, demolitiv transperoneal approach for interosseous space and peroneal and tibial vessels exposure; anterior, to expose the anterior portion of the mass and the ATV; extended medial retromalleolar approach, to expose the mass and the PTV (Fig. 2).

During surgery, antibiotic prophylaxis was performed and a white, hard mass was exposed on the skin. Clinical examination showed a pulse synchronous with the peripheral pulses and a corresponding systolic murmur, confirmed with an 8-MHz Doppler probe, that allowed to trace the anterior (ATV) and posterior tibial vessels (PTV) entering the mass and exiting from it distally, mimicking an arteriovenous malformation. A preoperative ultrasound was suggestive for liquid content of the mass.

The magnetic resonance imaging (MRI) scan showed an hourglass-shaped mass that seemed to involve the peroneal artery, 6.6-cm diameter, fed by branches of the ATV and PTV. The mass seemed to have clear-defined margins and expanding growth. Angiography showed the peroneal artery entering the mass and branches from the anterior and posterior tibial arteries nourishing it (Fig. 1).

The preoperative diagnosis was of a tumoral mass of vascular origin. Transperoneal removal was planned through 3 accesses: lateral, demolitive transperoneal approach for interosseous space and peroneal and tibial vessels exposure; anterior, to expose the anterior portion of the mass and the ATV; extended medial retromalleolar approach, to expose the mass and the PTV (Fig. 2).

During surgery, antibiotic prophylaxis was performed and a white, hard mass was exposed on the skin. Clinical examination showed a pulse synchronous with the peripheral pulses and a corresponding systolic murmur, confirmed with an 8-MHz Doppler probe, that allowed to trace the anterior (ATV) and posterior tibial vessels (PTV) entering the mass and exiting from it distally, mimicking an arteriovenous malformation. A preoperative ultrasound was suggestive for liquid content of the mass.

The magnetic resonance imaging (MRI) scan showed an hourglass-shaped mass that seemed to involve the peroneal artery, 6.6-cm diameter, fed by branches of the ATV and PTV. The mass seemed to have clear-defined margins and expanding growth. Angiography showed the peroneal artery entering the mass and branches from the anterior and posterior tibial arteries nourishing it (Fig. 1).

The preoperative diagnosis was of a tumoral mass of vascular origin. Transperoneal removal was planned through 3 accesses: lateral, demolitive transperoneal approach for interosseous space and peroneal and tibial vessels exposure; anterior, to expose the anterior portion of the mass and the ATV; extended medial retromalleolar approach, to expose the mass and the PTV (Fig. 2).

During surgery, antibiotic prophylaxis was performed and a white, hard mass was exposed on the skin. Clinical examination showed a pulse synchronous with the peripheral pulses and a corresponding systolic murmur, confirmed with an 8-MHz Doppler probe, that allowed to trace the anterior (ATV) and posterior tibial vessels (PTV) entering the mass and exiting from it distally, mimicking an arteriovenous malformation. A preoperative ultrasound was suggestive for liquid content of the mass.

The magnetic resonance imaging (MRI) scan showed an hourglass-shaped mass that seemed to involve the peroneal artery, 6.6-cm diameter, fed by branches of the ATV and PTV. The mass seemed to have clear-defined margins and expanding growth. Angiography showed the peroneal artery entering the mass and branches from the anterior and posterior tibial arteries nourishing it (Fig. 1).

The preoperative diagnosis was of a tumoral mass of vascular origin. Transperoneal removal was planned through 3 accesses: lateral, demolitive transperoneal approach for interosseous space and peroneal and tibial vessels exposure; anterior, to expose the anterior portion of the mass and the ATV; extended medial retromalleolar approach, to expose the mass and the PTV (Fig. 2).

During surgery, antibiotic prophylaxis was performed and a white, hard mass was exposed on the skin. Clinical examination showed a pulse synchronous with the peripheral pulses and a corresponding systolic murmur, confirmed with an 8-MHz Doppler probe, that allowed to trace the anterior (ATV) and posterior tibial vessels (PTV) entering the mass and exiting from it distally, mimicking an arteriovenous malformation. A preoperative ultrasound was suggestive for liquid content of the mass.

The magnetic resonance imaging (MRI) scan showed an hourglass-shaped mass that seemed to involve the peroneal artery, 6.6-cm diameter, fed by branches of the ATV and PTV. The mass seemed to have clear-defined margins and expanding growth. Angiography showed the peroneal artery entering the mass and branches from the anterior and posterior tibial arteries nourishing it (Fig. 1).

The preoperative diagnosis was of a tumoral mass of vascular origin. Transperoneal removal was planned through 3 accesses: lateral, demolitive transperoneal approach for interosseous space and peroneal and tibial vessels exposure; anterior, to expose the anterior portion of the mass and the ATV; extended medial retromalleolar approach, to expose the mass and the PTV (Fig. 2).
Frozen sections revealed a tumoral lesion with a vascular component. The mass was radically removed and sent for definitive pathology. The patient was immobilized for 5 days with gradual resumption of load.

The final pathology report revealed an SFT of mixed cellularity with clear margins and the following immunohistochemistry profile: CD34+, Bcl-2+, CD99±, CD31−, CK7−, Ki67 <5%. The patient underwent postoperative radiotherapy (54 Gy). At a 5-year follow-up, the patient is alive and free from disease; he complains only of a slight functional limitation and a limb swelling and a feeling of heaviness after a prolonged period of standing. His postoperative Lower Extremity Functional Scale score is 72/80.

DISCUSSION

The case reported is a rare disease that can mimic more common lesions; it might pass unsuspected, making surgical planning inappropriate. The purpose of this manuscript is to raise awareness about SFT and provide clues for diagnosis and treatment in such difficult anatomic location. SFTs lack specific radiological features: on x-ray, they are radiopaque; on ultrasound, they seem as a nodule with well-defined edges and a homogenous echostructure. The case reported shows how clinical and imaging data might be misleading. MRI shows an intermediate signal intensity in T1 and a heterogeneous low signal with empty flow in T2 and contrast enhancement. Nonenhancing central areas and long, tortuous vessels support diagnosis. MRI allows differential diagnosis with vascular malformations (VMs): Low-flow VMs show heightened signal intensity on T2; high-flow VMs have an empty signal. A definitive diagnosis of SFT can only be achieved through histological and immunohistochemical studies. Histological features of soft tissue SFTs are frequently referred to as “patternless,” characterized by numerous thin-walled ramifying blood vessels, with a partial “staghorn” configuration, with spindle cell areas arranged in short, ill-defined fascicles, or randomly with areas of striking hyalinization with cells surrounding ramifying vascular network. CD34 immunoreactivity is strong.
and diffuse as well as positive for Bcl-2 and CD99. Negative immunohistochemical stainings for vimentin, cytokeratins, smooth muscle actin, epithelial antigen membrane, desmin, c-kit (CD117), and S-100 protein are sometimes useful for differential diagnosis of SFT from tumors of muscle, epithelial, or neural origin. The lack of a specific growth pattern in an SFT lesion makes the differential diagnosis often challenging. Due to the similar growth pattern, SFT and hemangiopericytomas are considered the same entity by Gengler and Guillou, Fletcher, and Fletcher et al., and the term hemangiopericytoma has been abandoned. SFTs are “typical” or “malignant” based on number of mitoses, cellular atypia, presence of necrosis, and hypercellularity. SFTs can occur in every anatomic location. Most case series showed almost equal distribution for male and female patients, with ages ranging from the third to the eighth or ninth decade with a maximum incidence in the fifth to sixth decade.

SFTs have a slow growth rate and rarely tend to metastatize, behaving aggressively in 10–31% of cases. Recurrences range from 20–36%. Incomplete resection leads to local and distant recurrences. Although they might seem encapsulated, these lesions cannot be just enucleated or the risk of recurrence will be too high. For a radical resection to be obtained, an appropriately wide exposure is mandatory. In this case, 3 incisions and removal of the fibula were necessary to remove the mass without disrupting it and causing potential spread or sacrificing radicality of resection. Furthermore, this exposure facilitates vessels exposure and control.

CONCLUSIONS

Leg SFTs are a rare occurrence and can mimic VM. These tumors must be taken into account in cases of hard masses of likely vascular origin that show uncertain features on MRI. In the interosseous region of the lower leg, wide exposure using a conservative transperoneal access and multiple incisions when needed allow to achieve good control of the mass.

Salvatore D’Arpa, MD, PhD
Plastic and Reconstructive Surgery
Department of Surgical Oncological and Stomatological Sciences
University of Palermo
Via del Vespro 129, 90127 Palermo, Italy
E-mail: salvatore.darpa@unipa.it

REFERENCES

1. Gengler C, Guillou L. Solitary fibrous tumour and haemangiopericytoma: evolution of a concept. Histopathology 2006;48:63–74.
2. Toia F, D’Arpa S, Massenti MF, et al. Perioperative antibiotic prophylaxis in plastic surgery: a prospective study of 1,100 adult patients. J Plast Reconstr Aesthet Surg. 2012;65:601–609.
3. Binkley JM, Stratford PW, Lott SA, et al. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. Phys Ther. 1999;79:371–383.
4. Bruzzone A, Varaldo M, Ferrarazzo C, et al. Solitary fibrous tumor. Rare Tumors. 2010;2:e64.
5. Fletcher CDM. The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 2006;3:3–12.
6. Fletcher CDM, Bridge JA, Hogendoorn P, et al. World Health Organization (WHO) Classification of Tumours of Soft tissue and Bone. Pathology and Genetics. Lyon: IARC Press; 2013.
7. Tenna S, Poccia I, Cagli B, et al. A locally aggressive solitary fibrous tumor of the leg: Case report and literature review. Int J Surg Case Rep. 2012;3:177–180.
8. Vallat-Decouvelaere AV, Dry SM, Fletcher CD. Atypical and malignant solitary fibrous tumors in extrathoracic locations: evidence of their comparability to intra-thoracic tumors. Am J Surg Pathol. 1998;22:1501–1511.
9. Samira Nikpour-Valishe S, Marcus Lim M, Patel B. An unusual abdominal mass in a young male. Grand Rounds 2011;11:92–97.