Radon-222: A Potential Short-Term Earthquake Precursor

Petraki E1, Nikolopoulos D2*, Panagiotaras D1, Cantzos D1, Yannakopoulous P1, Nomicos C5 and Stonham J1

1Brunel University, Department of Engineering and Design, Kingston Lane, Uxbridge, Middlesex UB8 3PH, London, UK
2TEI of Piraeus, Department of Electronic Computer Systems Engineering, Petrou Ralli and Thivon 250, GR-12244 Aigaleo, Athens, Greece
3Department of Mechanical Engineering, Technological Educational Institute (TEI) of Western Greece, Alexandrou 1, 263 34 Patras, Greece
4TEI of Piraeus, Department of Automation Engineering, Petrou Ralli and Thivon 250, GR-12244 Aigaleo, Greece
5TEI of Athens, Department of Electronic Engineering, Agiou Spyridonos, GR-12423, Aigaleo, Athens, Greece

Abstract

This paper attempts to survey and catalog published short-term pre-earthquake precursors based on radon gas emissions. A series of papers were searched to collect relevant data, such as the epicentral distance, the extent, time and duration of the radon disturbance and to analyze the precursory value of each observable. In general, enhanced radon emissions have been observed prior to earthquakes and this has been recorded all over the world. The abnormal radon exhalation from the interior of earth has been associated with earthquakes and is considered an important field of research. The proposed physical models attempt to relate the observed radon disturbances with deformations occurring in the earth’s crust prior to forthcoming earthquakes. While the models provide some physical explanations, there are many parameters that require further investigation.

Keywords: Earthquake precursors; Radon; Review

Introduction

Radon is a natural radioactive noble gas. It is generated by the decay of radium. There are thirty nine known isotopes of radon from 218Rn to 212Rn [1]. The most stable isotope is 222Rn (hereafter radon) with a half-life of 3.823 days. Four isotopes, 222Rn, 220Rn, 219Rn and 218Rn occur in trace quantities in nature as decay products of, respectively, 226Ra, 222Ra, 220Ra and 219At [1,2]. 222Rn and 218Rn are intermediate steps in the decay chain of 226U. 219Rn is an intermediate step in the decay chain of 235U and 220Rn occurs in the decay chain of 235Th [1-3]. 222Rn is also known as thoron. The half-life of thoron is 54.5 seconds [1]. Due to the short half-life, thoron disintegrates very quickly. For this reason, it is usually traced in smaller quantities compared to radon. 222Rn is also called actionin [1]. It has lesser half-life time than 222Rn and 220Rn (3.92 seconds). It is traced in earth and atmosphere in smaller quantities in respect to radon and thoron [2,3]. Most of the radioactivity in the atmosphere at sea level is due to radon [3]. Radon is released primarily from the soil [1,3,4]. Approximately 10% of the radon in soil is diluted to the atmosphere [3]. Apart from soil, radon is present in fragmented rock, building materials, underground and surface waters [3,4]. While in fluids all generated radon atoms are diluted, in porous media and fragmented rock only a percentage of radon emanates, enters the volume of the pores and dissolves into the pore’s fluid [1,4]. Once there, a macroscopic transport is possible, either by molecular diffusion advection or convection [1]. This transport is achieved through interconnected pores and water aquifers [4-6]. When the pores are saturated with water, radon is dissolved into water and is transported by it [1]. The transportation is achieved by means of fluid flow present in soil and fragmented rock [1,4,5]. Through these processes radon can travel to short, medium or long distances reaching water aquifers and air [7]. Various factors affect the whole process. The most important factors are the permeability of the soil, the temperature gradients and the pressure differences [3,7,8]. Radon is very important from radiological point of view, since it accounts for more than half of the natural exposure of the general public [2,6]. It is well known that among natural radioactivity (not man-made), the most dominant component is radon and, therefore, it is the major contributor to the effective dose equivalent.

Radon Signals and Earthquake Prediction Overview

Radon has been used as a trace gas in several studies of Earth, hydrogeology and atmosphere, because of its ability to travel to comparatively long distances from host rocks as well as the efficiency of detecting it at very low levels [9]. Significant variations of radon and progeny have been observed in geothermal fields [10], thermal spas [11], active faults [12-16], soil experiments [17], volcanic processes [18,19] and seismotectonic environments [5,7,17,20-29]. Due to its importance, radon monitoring has become a continuously growing study area in the search of premonitory signals prior to earthquakes [5]. This falls more or less, in the general area of seismology where one most elusive goals is the short-term earthquake prediction [20]. By the mid-1970s the seismological community was confident that the short-term earthquake prediction would be achieved within a short period of time [20]. One area that may hold promise in advancing the science of short-term earthquake prediction is the study of earthquake precursors [20]. In fact, the short-term predictions are typically based on observations of these types of phenomena [20]. The term earthquake precursor is used to describe a wide variety of physical phenomena that reportedly precede at least some earthquakes [20]. Under this perspective, the real time radon monitoring can be viewed as an interesting possibility for credible earthquake precursors. However, the problem of earthquake prediction still remains unsolved. All the same, positive precursors recorded prior to earthquakes indicate there is evidence that they can be used for forecasting. For example, the strain changes occurring within the earth’s surface during an earthquake enhance the radon concentration in soil gas [5,25-27] and this renders impressive development in the study of the earth’s crust which permits...
the estimate on the probabilities of earthquake risks [5]. In general, during earthquake rupture, certain precursory activity can be expected if the observation is made in the near vicinity of causative fracture [20]. The problem of the earthquake prediction however consists of the consecutive, step-by-step, narrowing of the time interval, space and magnitude ranges, where a strong earthquake should be expected [30,31]. In this sense, several investigators have attempted connections between earthquake-relating parameters (e.g. magnitude, precursory time, epicentral distance) and time-series characteristics (e.g. range, duration, number of radon anomalies) [5,20,32-36].

The prediction of earthquakes is usually distinguished in five stages. The background stage provides maps with the territorial distribution of the maximum possible magnitude and recurrence time of destructive earthquake of different magnitudes. The four subsequent stages, fuzzily divided, include the time prediction; they are as follows [31]: long-term (10^3 years); intermediate-term (1 year); short-term (10^-1 to 10^-2 years), and immediate-term (10^-3 years or less). Such division into stages is dictated by the character of the process that leads to a strong earthquake and by the needs of earthquake preparedness; the latter comprises an arsenal of safety measures for each stage of prediction [30]. According to the classification of Hayakawa and Hobara [32] the prediction of earthquakes is grouped into three categories: long-term (timescale of 10 to 100 years); intermediate-term (time-scale of 1 to 10 years); short-term. Note, that even in short-term prediction there is no one-to-one correspondence between anomalies in the observations and the earthquake events [25-27,33]. Although much more difficult than the long-term and intermediate-term predictions, the short-term prediction of earthquakes on a time-scale of hours, days or weeks, is believed to be of the highest priority for social demands in seismically active countries.

Following the classification [32] and in agreement to the aspects expressed by [30] and several other researchers [5,20], radon can be considered as a short-term earthquake precursor. Under this perspective, related research should continue and check further potential associations between radon and earthquakes [25,31-33]. Nevertheless, no universal model exists to serve as a pre-earthquake signature [34-39]. Moreover, there is no definite rule to link any kind of pre-earthquake anomaly to a specific forthcoming seismic event, either if this is intense or mild [25-27,38,39]. In addition, despite the scientific efforts, the preparation and evolution of earthquakes is not delineated yet [40]. A significant reason is that there is restricted knowledge of the fracture mechanisms of the crust [38,41-56]. This is reinforced by the fact that each earthquake is particular and happens in large-scale. Accounting that the fracture of heterogeneous materials is not sufficiently described yet, despite the tremendous up-to-date effort at laboratory, theoretical and numerical level [38], it may be understood why the description of the genesis of earthquakes is still limited [38,41-56]. According to [38] one should expect that the preparatory processes of earthquakes have various facets, which may be potentially observed before the final catastrophe at geological, geochemical, hydrological and environmental scales.

In the following, specific scientific evidence is presented regarding the possibilities of forecasting of earthquakes in terms of monitoring of radon gas emissions. The analysis is focused is on the short-term precursors of general failure since these are considered of higher prognostic value in terms of societal demands.

Radon Gas Emission and Pre-Earthquake Activity

In the late 1960s and early 1970s reports primarily from Russia and China indicated that concentrations of radon gas in the earth apparently changed prior to the occurrences of nearby earthquakes [34]. This stimulated a number of experiments in other parts of the world to monitor underground radon with time and to look for radon changes associated with earthquakes [20]. Table 1 presents a collection of recent important data including: (1) the earthquake details; (2) the % (6α) disturbance or detected disturbances in radon concentration; (3) the duration of the detected anomaly or the recorded anomalies; (4) the precursory time; (5) the epicentral distance (6) the related references from 1980 and after.

In general, the anomalous radon variations observed prior to earthquakes have been reported in groundwater, soil gas, atmosphere and thermal spas [5,20,21,28,57-62]. The seismological data of Table 1 are related to radon concentration data of wide fluctuations, peaks and downturns [25-27]. The earthquake-related connections of Table 1, namely the connections between the magnitude, the precursory time and the epicentral distance with the time-series characteristics, viz., the range, the duration and the number of radon anomalies vary significantly [5,20,33,34]. For example, the reported precursory times range from 3 months to some days prior to the earthquake event, whilst the epicentral distances range between 10 and 100 km. Similar ranges have been published also in [20] and [5] (please see also references therein). It is very important to note here that many precursory signals have been derived only with passive techniques [25-27] which integrate radon concentrations over long time intervals (at least 1-4 weeks), i.e., they provide coarse time-series estimations. This is a significant disadvantage for the reported estimations. On the other hand, the reported precursory signals with active techniques are limited. Note that the active techniques enable high radon recording rates (between 1/min and 1/hour) and in this manner they provide fine radon signals [5,9,16,20,25-27]. Important is that there are also other parameters that affect and alter the radon-earthquake estimations. For example, radon concentration levels are influenced by geological and geophysical conditions, the seasonal variations and atmospheric changes such as the rainfall and the barometric pressure alterations (please see e.g. [1,2,20,25-27,33,34]). For this reason the related time-series data are usually presented in parallel to the radon precursory signals [5,20,25-27]. As can be observed from Table 1, the majority of the associations between radon and earthquakes are based on events of small or intermediate magnitudes. This restricts the estimations more, since, up-to-date there seems not to exist, not only for the mild, but even for the intense earthquakes, a universal model to serve as a signature of a specific forthcoming seismic event [38-57].

Most of the disturbances of Table 1 were determined in terms of visual or simple statistical analysis. The most usual statistical criterion employed is the ±2σ one. Through this criterion, a radon disturbance is identified as such if it contains parts above the ±2σ zone. Although simple, this approach was used extensively in many papers of Table 1. Only few signals of Table 1 were analyzed through advanced techniques [25-27,57,58]. These reports are recent. They were published in the last five years, namely 2012 and after. Worth to notice is that the analysis was implemented in fine active signals recorded after significant earthquakes of near epicenters [25-27] fact which enhances the estimates of these reports further. A fact that reinforces the estimates of these reports is that the corresponding radon disturbances lasted long, i.e., between five and fifteen days. One of the advanced techniques of these reports [25-27,57,58] is the temporal Fractal Analysis based on a windowed version of the short-time wavelet transform of the density of the power spectrum in each window [25-27]. Note that the method was applied in both mono- fractals [25-27,57] and multifractals [58]. Another
Place	Magnitude	Date(s)	δα (%) or technique	Duration (days)	Precursory time (days)	ED (km)	References			
Single events										
USA										
Kettleman Hill	5.6	8-4-85	+	100	Not reported	300	[87]			
Aladale, California	3.7	June/1983	+	1200	3	15	13			
P.R. China										
Pohai Bay	7.4	6/18/1969	+	60	170	Not reported	170 [70,71]			
Ningshin	4.3	5-8-71	+	200	40	Not reported	42 [71]			
Hsingtang	4.9	6-6-74	+	290	16	Not reported	18 [71]			
Haicheng	7.3	4-2-75	+	38	270	Not reported	50 [71]			
Haicheng	7.3	4-2-75	+	17	50	Not reported	50 [71]			
Haicheng	7.3	4-2-75	-	43	66	Not reported	140 [71]			
Haicheng	7.3	4-2-75	+	20	8	Not reported	140 [71]			
Haicheng	7.3	4-2-75								
Liaoyang	4.8	Not reported	+	70	3	1	200 [73]			
Tangshan	7.8	6/27/1976	+	15	970	Not reported	50 [71]			
Tangshan	7.8	6/27/1976	+	50	15	Not reported	100 [71]			
Tangshan	7.8	6/27/1976	-	40	1370	Not reported	130 [71]			
Tangshan	7.8	6/27/1976	+	27	162	Not reported	130 [71]			
Tangshan	7.8	6/27/1976	+	200	12	Not reported	200 [71]			
Chienan	6.0	3/7/1977	+	70	3	1	200 [73]			
Sabtieh	5.2	4/8/1972	+	55	12	Not reported	70 [73]			
Takung	5.8	9/27/1972	+	34	12	Not reported	54 [73]			
Luhuo	7.9	2/6/1973	+	120	9	Not reported	200 [74]			
Yiliang	5.2	4/22/1973	+	41	14	Not reported	340 [73]			
Songpan	5.2	5/8/1973	+	40	14	Not reported	345 [71]			
Mapien	5.5	6/29/1973	+	89	9	Not reported	200 [74]			
Lungfing	7.5	5/29/1976	+	20	510	Not reported	20 [71]			
Lungfing	7.5	5/29/1976	+	15	425	Not reported	190 [71]			
Lungfing	7.5	5/29/1976	+	8	160	Not reported	210 [71]			
Lungfing	7.5	5/29/1976	+	12	130	Not reported	215 [71]			
Lungfing	7.5	5/29/1976	+	7	75	Not reported	360 [71]			
Lungfing	7.5	5/29/1976	+	20	290	Not reported	420 [71]			
Lungfing	7.5	5/29/1976	+	200	12	Not reported	450 [71]			
Songpan-Pingwu	7.2	8/16/1976	+	29	480	Not reported	40 [71]			
Songpan-Pingwu	7.2	8/16/1976	+	11	420	Not reported	100 [71]			
Songpan-Pingwu	7.2	8/16/1976	+	20	190	Not reported	100 [71]			
Songpan-Pingwu	7.2	8/16/1976	+	70	1	Not reported	320 [73]			
Songpan-Pingwu	7.2	8/16/1976	-	12	200	Not reported	320 [71]			
Songpan-Pingwu	7.2	8/16/1976	+	90	48	Not reported	340 [71]			
Songpan-Pingwu	7.2	8/16/1976	-	60	160	Not reported	340 [71]			
Songpan-Pingwu	7.2	8/16/1976	+	55	160	Not reported	390 [71]			
Songpan-Pingwu	7.2	8/16/1976	+	110	34	Not reported	560 [71]			
Songpan	7.2	8/16/1976	+	100	1.5	10	350 [75]			
Ex-USSR										
Taschkent	Ex-USSR	5.3	4/26/1966	+	20	400	Not reported	5 [71]		
Taschkent	Ex-USSR	4.0	3/24/1967	+	100	11	Not reported	5 [71]		
Taschkent	Ex-USSR	3.5	6/20/1967	+	23	3	Not reported	5 [71]		
Taschkent	Ex-USSR	3.5	7/22/1967	+	20	3	Not reported	5 [71]		
Taschkent	Ex-USSR	3.0	11/9/1967	+	23	8	Not reported	5 [71]		
Taschkent	Ex-USSR	3.3	11/17/1967	+	23	7	Not reported	5 [71]		
Taschkent	Ex-USSR	3.0	12/17/1967	+	23	4	Not reported	5 [71]		
Uzbekistan	Ex-USSR	4.7	2/13/1973	+	47	5	Not reported	130 [71]		
Markansu	Ex-USSR	7.3	8/11/1974	+	100	100	Not reported	530 [71]		
Tien Shan	Ex-USSR	5.3	2/12/1975	+	10	110	Not reported	100 [71]		
Location	Region	Magnitude	Date	Instrument	U-238 Bq/l	U-234 Bq/l	U-232 Bq/l	Notes		
-------------------	----------	-----------	------------	------------	------------	------------	------------	------------------		
Gazli	Ex-USSR	7.3	5/17/1976	+	220	4	470	[71]		
Gazli	Ex-USSR	7.3	5/17/1976	+	25	90	550	[71]		
Not reported	Ex-USSR	7.0	Not reported	Not reported	Not reported	Not reported	Not reported	700 [72]		
Gazli	Ex-USSR	7.3	5/17/1976	+	220	4	470	[71]		
Isfarin-Batnen	Ex-USSR	6.6	1/31/1977	−	30	60	190	[71,72]		
Isfarin-Batnen	Ex-USSR	6.6	1/31/1977	−	20	125	200	[71]		
Alma-Ata	Ex-USSR	7.1	3/24/1978	+	32	50	65	[71]		
Zaalai	Ex-USSR	6.7	11/1/1978	−	30	470	270	[71]		
Zaalai	Ex-USSR	6.7	11/1/1978	−	40	470	300	[71]		
Zaalai	Ex-USSR	6.7	11/1/1978	+	20	75	150	[71]		
Zaalai	Ex-USSR	6.7	11/1/1978	−	20	70	150	[71]		
Italy										
Irpinia	Italy	6.5	11/23/1980	+	25	150	150	220 [76]		
Mt Etna	Italy	3.5(Md)	3-11-01	Not reported	170	180	180	200 [76]		
India										
Uttarkashi	India	7.0	10-20-91	+	200	7	15	450 [77]		
Uttarkashi	India	7.0	10-20-91	+	300	7	15	270 [77]		
Uttarkashi	India	7.0	10/20/1991	+	180	7	3	330 [77]		
Maheshwaram	India	<1	4/17/2002	+	100	<1	Not reported	30 [78]		
Chamoli	India	6.8	3/29/1999	+	69.66 Bq/l	Not reported	2	Not reported [79]		
Chamoli	India	6.8	3/29/1999	+	46.63 Bq/l	Not reported	2	Not reported [79]		
France										
Ligurian Sea	France	3.9	1-5-86	+	100	5	3	56 [20]		
Japan										
Izu-Oshima	Japan	6.8	01/14/1978	+	7	230	Not reported	25 [80,20]		
Izu-Oshima	Japan	6.8	01/14/1978	−	8	7	Not reported	25 [80,20]		
Izu-Oshima-kinkai	Japan	7.0	01/14/1978	−	8	7	Not reported	25 [24]		
Fukushima	Japan	6.6	Jan 1987	−	2	0	0	260 [80]		
Fukushima	Japan	6.7	Feb 1987	−	11	0	0	130 [80]		
Fukushima	Japan	6.6	Apr 1987	−	9	0	0	110 [80]		
Kobe	Japan	7.2	1/17/1995	+	99	Not reported	60	20 [81]		
Kobe	Japan	7.2	01/17/1995	2 sd above	Not reported	2 months	Not reported			
Kobe	Japan	7.2	1/17/1995	−	5	Not reported	260	[82]		
Taiwan										
Chengkung	Taiwan	6.8	10-12-03	−	57.8%	Not reported	65	20 [83]		
Antung	Taiwan	5.0(Mw)	Feb/2008	Not reported	Not reported	Not reported	Not reported			
Chengkung	Taiwan	6.8(Mw)	10-12-03	Not reported	Not reported	Not reported	Not reported			
Taitung	Taiwan	6.1(Mw)	1-4-06	Not reported	Not reported	Not reported	Not reported			
Philippines										
Mindoro	Philippines	7.1	11/14/1994	+	600	7	22	48 [84]		
Uzbekistan										
Tashkent	Uzbekistan	Not reported	12/13/1980	Not reported	Not reported	Not reported	Not reported			
Turkmenistan										
Akhhabad	Turkmenistan	5.7	3/14/1983	Not reported	Not reported	Not reported	Not reported			
Antarctica										
Scotia sea	Antarctica	7.5(Ms)	4-8-03	Not reported	Not reported	Not reported	6	1176 [87]		
Location	Country	Magnitude	Date	Method	Duration	Magnitude	Date	Method	Duration	Ref.
-------------------	------------------	-----------	--------------	-----------------	----------------	------------	--------------	-----------------	----------------	------
Boumerdes	Algeria	6.7 (ML)	5/21/2003							[88]
Kato Achaia,	Greece	6.5 (ML)	6-8-08	Other techniques	3-5 days	20				[7]
Kato Achaia,	Greece	6.5 (ML)	6-8-08	Other techniques	3-5 days	20				[26]
Kato Achaia,	Greece	6.5 (ML)	6-8-08	Other techniques	3-5 days	20				[27]
Kato Achaia,	Greece	6.5 (ML)	6-8-08	Other techniques	3-5 days	20				[25]
Mytilene, Lesvos Island	Greece	5.0 (ML)		Other techniques	3-5 days	20				[25]

Multiple events

Location	Country	Magnitude	Date	Method	Duration	Magnitude	Date	Method	Duration	Ref.
Southern	Iceland	2.7	7/3/1978							[89]
Iceland	Iceland	3.4	8/28/1978							[89]
Seismic	Iceland	3.4	8/28/1978							[89]
Seismic	Iceland	4.3	11/19/1978							[89]
Seismic	Iceland	1.9	6/29/1979							[89]
Seismic	Iceland	2.8	9/5/1979							[89]
Seismic	Iceland	2.8	9/5/1979							[89]
Tjörnes Facture Zone	Iceland	4.1	12/15/1979							[89]

USA

Location	Country	Magnitude	Date	Method	Duration	Magnitude	Date	Method	Duration	Ref.
South California	USA	2.9	9/24/1977							[90]
South California	USA	2.8	12/20/1977							[90]
Malibu	USA	4.6	1/1/1979	4 spikes	4 spikes					[90]
Pasadena	USA	2.9	9/24/1977							[90]
Pasadena	USA	2.8	12/20/1977							[90]
Malibu	USA	4.7	1/1/1979							[90]
Imperial Valley	USA	6.6	10/15/1979							[72]
Raquette Lake	USA	3.9								[72]
Blue Mountain Lake	USA	1.5								[72]
Pearblossom	USA	3.5	11/22/1976							[71]
Jocasse	USA	2.3	2/23/1977							[71]
Malibu	USA	4.7	1/1/1979							[71]
Big Bear	USA	5	6/28/1979							[71]
Big Bear	USA	5	6/28/1979							[71]
Imperial Valley	USA	6.6	10/15/1979							[71]
Imperial Valley	USA	6.6	10/15/1979							[71]
Imperial Valley	USA	6.6	10/15/1979							[71]
Imperial Valley	USA	6.6	10/15/1979	Not reported	1 year					[71]
Caruthersville,	USA	4.0	Aug/1981							[91]
Central Arkansas	USA	4.0–4.5	Jan/1982							[91]
SW Illinois	USA	4.2	5/15/1983							[91]
New Madrid	USA	3.5	1/28/1983							[91]
San Andreas fault	USA	4	12/15/1977							[92]
San Andreas fault	USA	4.2	8/29/1978							[92]
Kettleman Hills	California	5.6	4-8-85							[67]
San Bernadino	California	5	1-10-85	Not reported	2 weeks					[67]

Equador

Location	Country	Magnitude	Date	Method	Duration	Magnitude	Date	Method	Duration	Ref.
Reventador	Equador	6.9	6-3-87							[93]
Location	Event Details	Reported Earthquakes	Preceding Seismic Activity	Seismic Activity Duration	References					
---------------------------	---------------	----------------------	-----------------------------	---------------------------	------------					
Reventador, Ecuador	6.9, 6-3-87	* 230	Not reported	15-50	377					
Reventador, Ecuador	6.9, 6-3-87	* 400	Not reported	15-35	339					
Reventador, Ecuador	6.9, 6-3-87	* 100	Not reported	15-40	388					
Reventador, Ecuador	6.9, 6-3-87	* 100	Not reported	15-40	183					
Reventador, Ecuador	6.9, 6-3-87	* 300	Not reported	15-40	350					
Japan										
Subducted zone, Japan	7.9, 6-3-84		Not reported	15-40	1000					
Not reported, Japan	6.7, 6-2-87		Not reported	15-40	130					
Taiwan										
Northern Taiwan, Taiwan	5.8, 10/18/1980	Not reported	Not reported	19	39					
Northern Taiwan, Taiwan	5.2, 5/14/1981	Not reported	Not reported	11	23					
Northern Taiwan, Taiwan	4.6, 6/21/1981	Not reported	Not reported	15	14					
Northern Taiwan, Taiwan	5.0, 7/18/1981	Not reported	Not reported	4	37					
Northern Taiwan, Taiwan	5.3, 10/31/1982	Not reported	Not reported	51	45					
Near the Auntung hot spring, Taiwan	5.2-6.2, Dec/2003-April/2006	Not reported	Not reported	11.0-65.0						
India										
North Andaman, India	5.0, 01/14/2005	Not reported	Not reported	1215						
Uttarkashi, India	7.0(Ms), 10/20/1991	Not reported	Not reported	5	293					
Chamoli, India	6.5(Ms), 03/29/1999	Not reported	Not reported	Not reported	393					
Chamba, India	5.1(Ms), 03/24/1995	Not reported	Not reported	3	10					
Kharsali, India	4.9, 07/23/2007	Not reported	Not reported	Few days	60					
Indonesia										
Indonesia, Indonesia	9.1, 12/26/2004	Not reported	Not reported	2275						
West Sumatra, Indonesia	5.8, 9-2-05	Not reported	Not reported	2120						
North Sumatra, Indonesia	5.1, 6-1-05	Not reported	Not reported	2070						
Turkey										
Western Turkey, Turkey	3, 4-6-07	Not reported	Not reported	Not reported						
Western Turkey, Turkey	4.2, 11-11-07	Not reported	Not reported	Not reported						
Greece										
Chalkida, Evia Island, Greece	5.1(ML), 11-17-14	Other techniques	15 days	1-3 weeks	80					
Seismic Periods										
India										
Kangra Valley & Hindu Kush area, India	3.8-6.8, 3/23/1984-3/17/1987	6 spikes	Not reported	150-400						
Kangra Valley & Hindu Kush area, India	Not reported, March/1984-July/1987	7 spikes	Not reported	Not reported						
Hindu Kush area, India	4.2-6.4, Oct/1988-Dec/1991	9 spikes	Not reported	Not reported						
Kangra Valley, India	2.8-6.6, Aug/1989-Dec/1991	4 spikes	Not reported	Not reported						
Location	Country	Range	Events	Spikes	Duration	Peaks	Magnitude	Notes		
--------------------------------------	------------------	---------------	--------	--------	--------------	---------	-----------	---------------		
Sunder Nagar & Himachal Pradesh	India	3.2-5.4	3	3 spikes	15-66 days	1-2	Not reported	Not reported		
North-West Himalayas (25 events)	India	2.1-6.8	1992-1999	Not reported	Not reported	Not reported	Not reported	53-393		
Tehri Garhwal, Himalaya (20 events)	India	1.2-5.7	3/11/2004-12/26/2004	Not reported	Not reported	Not reported	Not reported	16-250		
Tehri Garhwal, Himalaya (21 events)	India	1.5-3.7	1/01/2005-12/20/2005	Not reported	Not reported	Not reported	Not reported	16-250		
North-West Himalayas (9 events)	India	2.6-4.6	1/02/2006-5/12/2006	Not reported	Not reported	Not reported	Not reported	16-250		
North-West Himalayas (3 events)	India	2.2-5.0	March/2007-June/2008	*	2.6-72.8	Not reported	2-13 days	19-196		
North-West Himalayas (8 events)	India	2.2-5.0	Dec/2006-Dec/2007	*	49-61	Not reported	4-13 days	97-201		
North-West Himalayas (6 events)	India	2.2-5.0	Dec/2006-Dec/2007	*	18.2-47.3	Not reported	3-14 days	22-339		
Not reported	India	Not reported	Nov/2005-Nov/2008	Not reported						
Japan										
Earthquakes nearby the Fukushima	Japan	6.0-6.7	Jan/1984-July/1988	Not reported	Not reported	Few days	100-130 & 400			
Prefecture (16 events)										
Croatia & Bosnia-Herzegovina										
Modrica, Medvednica mountain	Croatia and	2.7-3.8	April/1998-April/2000	Not reported	Not reported	30	70-320			
Croatia & Bosnia-Herzegovina										
Not reported	Croatia	2.6-4.9	01/27/2003-12/15/2006	Not reported	Not reported	Not reported	47-199			
Not reported	Croatia	2.7-4.9	6/02/2005-5/28/2007	Not reported	Not reported	Not reported	4.0-295.0			
Not reported	Slovenia	0.7-3.2	1999-2001	Not reported	Not reported	2.0-33.0	Re/Rd from 0.4 to 2.0			
Slovenia										
Taiwan										
Taiwan (30 events)	Taiwan	4.5-6.6	03/01/2003-06/30/2004	16 peaks	0.2-12	1.3-20.0	4.9-174.2			
Taiwan (37 events)	Taiwan	3.7-6.7	11/01/2000-05/11/2003	Not reported	Not reported	1.12-13.00	1.5-257.5			
United Kingdom										
English Channel (1 event), Dudley	U.K.	1.2-5.0	08/26/2002-10/29/2002	Not reported	6-9-h spikes	Not reported	90.1-250.2			
(3 events), Manchester (11 events)										
Spain										
Tenerife Island	Spain	Greater than 2.5	From April 2004-2005	Not reported	Not reported	Several months	Not reported			
Iceland										
South Iceland	Iceland	6.5(MW)/2	June/2000	Not reported	Not reported	40-144	90.0			
Taiwan										
advanced approach is the detrended fluctuation analysis (DFA) [27,57].
According to the reports [27,57] and several other papers [38,51] the
detrended fluctuation analysis is the most advantageous technique to
trace the long-memory of a system driven to rupture. Significant other
techniques are the time-evolution of the fractal dimension [26] and the
Hurst exponent [25-27,57] and the temporal changes of various metrics of
entropy [26]. Note that the techniques can trace patterns of long-
memory that are hidden in the pre-earthquake time-series. They can
also identify features related to the self-organization of the earthquake
generating system. It is also important to note that the vast majority
of papers of Table 1 refer to measurement of radon in soil. Only some
papers refer to radon in underground or thermal water and only one
to radon detected in atmosphere prior to earthquakes [62]. Note that
in this paper advanced Fourier based approach was implemented for a
significant long-lasting signal retrieved prior to the Kobe earthquake,
Japan.

Various physical mechanisms have been reported to relate the sub-surface physical changes with the variation in radon emanations [25].
Regarding modelling, the available models propose explanations in
terms of strain changes within the earth’s crust during preparation of
earthquakes [5,33,34,40]. It is the displacement of rock mass under
tectonic stress that opens up various pathways and exposes new
surfaces when cracks open. The stress-strain developed within the
earth’s crust before earthquakes leads to changes in gas transportation
from the deep earth to surface [41,42]. As a result, unusual quantities of
radon emerge out of the pores and fractures of the rocks on the surface.
Due to the seismic activity, changes in underground fluid flow may also render anomalous changes in concentration of radon and its progeny
[43]. Under the so called compression model, according to [63] and
[64] a small change in velocity of gas into or out of the ground causes
a significant change in radon concentration at shallow soil depth as
changes in gas flow disturb the strong radon concentration gradient
that exists between the soil and the atmosphere. A slight compression
of pore volume causes gas to flow out of the soil resulting to an increase
in radon level. Similarly, when pore volume increases, gas flows into
the soil from the atmosphere. Thus, an increased radon concentration
occurs in the region of compression and radon concentration decreases
in the region of dilation. As small changes in gas flow velocity causes
significant change in radon concentration, soil radon monitoring is
thus an important way to detect the changes in compression or dilation
associated with an earthquake event.

Among the various theoretical models, the dilatancy diffusion
model proposed by Martinelli [5,65] is a noteworthy approach.
According to this model [5,25-27] the earthquake generating medium
is considered to consist of porous cracked saturated rocks. When a
tectonic stress develops, the cracks extend and appear near the pores
with the opening of favourably oriented cracks [5,25-27]. As a result,
the pore pressure decreases in the total preparation zone and water
from surrounding medium diffuses into the zone. At the end of the
diffusion period the main rupture occurs due to the appearance of pore
pressure and increase in cracks [5,25-27].

A well-accepted model is the the Crack-Avalanche model [5,25-
27,66]. According to the Crack-Avalanche model as tectonic stress
increases during the earthquake preparation, a zone of cracked rocks
is formed in the region of a future earthquake focal zone under the
influence of the tectonic stresses. In the study of the surrounding
medium this region may be considered as a solid inclusion with
altered moduli. The inclusion appearance causes a redistribution of
the stresses accompanied by corresponding deformations. As the
tectonic stresses change with time, the shape and size of the zone change as well. According to the theory of stress corrosion, the anomalous behavior
of radon concentration may be associated with this slow crack growth,
which is controlled by the stress corrosion in the rock matrix saturated
by groundwater.

A very recent model has been proposed by [25-27] based on the
aspects expressed by [38,39]. This model is called asperity model.
According to the asperity model, the focal area consists of a backbone
of strong and large asperities that sustain the earthquake-generating
system. A strongly heterogeneous medium surrounds the family of
strong asperities. The fracture of the heterogeneous system in the focal
area obstructs the backbone of asperities. At this stage, critical anti-
persistent MHz electromagnetic anomalies and radon anomalies occur
[25-27,38,39].

Comparing the aforementioned models, it can be claimed that as
an earthquake approaches a region of several cracks is formed [8]. The
earthquake is associated with deformations and as a result short or long term precursory phenomena like anomalies in radon concentration may occur. As mentioned already, radon can be considered as a short-term earthquake precursor. Nevertheless, no universal model exists to serve as pre-earthquake signature [25-27,38,39]. Moreover, there is no definite rule to link any kind of pre-earthquake anomaly to a specific forthcoming seismic event, either if this is intense or mild [25-27,38,39]. For these reasons, despite the fairly abundant circumstantial evidence, the scientific community still debates the precursory value of premonitory anomalies detected prior to earthquakes [38]. On the other hand, well established criteria exist to identify pre-earthquake patterns hidden in time-series, which are based on the concepts of fractality, self-organisation, non-extensivity and entropy [25,27,38-38]. Especially according to [38], certain questions still remain: (i) How can a certain observation be recognised as pre-seismic? (ii) How can an individual precursor be linked to a distinctive stage of an earthquake preparation process? (iii) How can certain precursory symptoms in anomalous observations be identified so as to indicate that the occurrence of an earthquake is unavoidable? The above issues clearly indicate that radon monitoring in soil is a very important field of research from geological point of view.

References
1. Nazaroff W, Nero A (1988) Radon and its decay products in indoor air. Wiley, New York.
2. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2008) Sources and effects of ionizing radiation. UNSCEAR, New York.
3. Vogiannis E, Nikolopoulos D (2015) Radon sources and associated risk in terms of exposure and dose. Front Pub Heal Env Heal 2: 1-10.
4. Nikolopoulos D, Louizis A (2008) Study of indoor radon and radon in drinking water in Greece and Cyprus: implications to exposure and dose. Rad Meas 43: 1305-1314.
5. Gholsh D, Deb A, Sengupta R (2009) Anomalous radon emission as precursor of earthquake. J App Geophys 69: 67-81.
6. Khayrat AH, Oliver MA, Durrani SA (2001) The effect of soil particle size on soil radon concentration. Rad Meas 34: 365-371.
7. Nikolopoulos D, Petrajho E, Marouski A, Potrikas S, Koulouras G et al. (2012) Environmental monitoring of radon in soil during a very seismically active period occurred in South West Greece. J Env Mon 14: 564-578.
8. National Council on Radiation Protection and Measurements (NCRP) (1988) Measurements in Radon and Radon Daughters in Air. NCRP Report 97, NCRP Publications, Bethesda MD.
9. Richon P, Bernard P, Labed V, Sabroux J, Benello A, et al. (2007) Results of monitoring 222Rn in soil gas of the Gulf of Corinth region, Greece. Rad Meas 42: 87-93.
10. Whitehead NE, Barry BJ, Ditchburn RG, Morris CJ, Stewart MK (2007) Systematics of radon at the Wairakei geothermal region, New Zealand. J Env Rad 92: 16-29.
11. Bogiannis E, Nikolopoulos D (2008) Modelling of radon concentration peaks in thermal spas: Application to Polichnitos and Eftalou spas (Lesvos Island-Greece). Sc Tov Env 405: 36-44.
12. Al-Tamimi MH, Abumura KM (2001) Radon anomalies along faults in North of Jordan. Rad Meas 34: 397-409.
13. King CY (1985) Impulsive radon emanation on a creeping segment of the San Andreas fault, California. Pure App Geophys 122: 340-352.
14. King CY (1980) Epidodic radon changes in Subsurface soil gas along active faults and possible relation to earthquakes. J Geophys Res 85: 3065-3078.
15. Tansi C, Tallarico A, Lovine G, Gallo MF, Falcone G (2005) Interpretation of radon anomalies in seismonectonic and tectonic-gravitationnal settings: the south-eastern Crati graben (Northern Calabria, Italy). Tectonophysics 396: 181-193.
16. Walla V, Yang T, Hong W, Lin S, Fu C, et al. (2009) Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsinchueng fault in NW Taiwan. App Rad Isot 67: 1855-1863.
17. Zafir H, Steinitz G, Malik U, Haquin G, Gazit-Yaari N (2009) Response of Radon in a seismic calibration explosion, Israel. Rad Meas 44: 193-198.
18. Imme G, Dell SL, Ngrow SL, Morelli D, Patane G (2005) Gas radon emission related to geodynamic activity on Mt. Etna. Ann Geophys 48: 85-71.
19. Morelli D, Martino SD, Imme G, Deff A, Ngrow SL et al. (2006) Evidence of soil radon as tracer of magma uprising in Mt. Etna. Rad Meas 41: 721-725.
20. Ciccarese R, Ebel J, Britton J (2009) A systematic compilation of earthquake precursors. Tectonophysics 476: 371-398.
21. Chyi L, Quick T, Yang T, Chen C (2005) Soil gas radon spectra and earthquakes. Ter Ablm Oc Sci 6: 763-774.
22. Gholsh D, Deb A, Dutta S, Sengupta R (2012) Multifractality of radon concentration variation in earthquake related signal. Fractals 20: 33-39.
23. Kuo T, Lin C, Fan K, Chang G, Lewis C et al. (2009) Radon anomalies precursory to the 2003 Mw = 6.8 Chengkung and 2006 Mw = 6.1 Tailung earthquakes in Taiwan. Radiation Measurements 44: 295-299.
24. Majumdar K (2004) A study of fluctuation in radon concentration behaviour as an earthquake precursor. Curr Sci 86: 1288-1292.
25. Nikolopoulos D, Petrajho E, Vogiannis E, Chaleeas Y, Giannakopoulos P et al. (2014) Traces of self-organisation and long-range memory in variations of environmental radon in soil: Comparative results from monitoring in Lesvos Island and Ilisia (Greece). J Rad Nuc Chem 299: 203-219.
26. Petrajho E, Nikolopoulos D, Fotopoulou A, Panagiotaras D, Nomikos C et al. (2013) Long-range memory patterns in variations of environmental radon in soil. Anal Meth 5: 4010-4020.
27. Petrajho E, Nikolopoulos D, Fotopoulou A, Panagiotaras D, Koulouras G et al. (2013) Self-organised critical features in soil radon and MHz electromagnetic disturbances: Results from environmental monitoring in Greece. App Rad Isot 72: 39-53.
28. Singh M, Ramola R, Singh B, Singh S, Yvik H (1991) Subsurface soil gas radon changes associated with earthquakes. Nuc Trac Rad Meas 19: 417-420.
29. Singh S, Kumar A, Singh BB, Mahajan S, Kumar V et al. (2010) Radon Monitoring in Soil Gas and Ground Water for Earthquake Prediction Studies in North West Himalayas, India. Terr Ablm Oc Sci 21: 685-695.
30. Kellis-Borok VI, Solovey AA (2003) Nonlinear Dynamics of the Lithosphere and Earthquake Precipitation. Springer, Heidelberg, p. 348.
31. Kellis-Borok V (2002) Earthquake Precipitation: State-of-the-Art and Emerging Possibilities. Ann Rev Earth Plan Sci 30: 1-33.
32. Hashemi S, Negarestani A, Namvaran M, Nasab SMM (2013) An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes. J Radioanal Nucl Chem 295: 2249-2262.
33. Namvaran M, Negarestani A (2012) Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). J Radioanal Nucl Chem 298: 1-8.
34. Zoran M, Savastra R, Savaustra D, Chitara C, Baschir L, et al. (2012) Monitoring of radon anomalies in South-Eastern part of Romania for earthquake surveillance. J Radioanal Nucl Chem 293: 769-781.
35. Mogro-Campero A, Fleischer R (1979) Search for long-distance migration of subsurface radon. US Department of Energy, Washington.
36. Rikitake T (1987) Earthquake precursors in Japan: Precursor time and detectability. Tectonophysica 130: 265-292.
37. Hayakawa M, Hobara Y (2010) Current status of seismo-electromagnetics for short-term earthquake prediction. Geom Nat Haz Res 1: 115-155.
38. Efthaxias K (2010) Footprints of non-extensive Tsallis statistics, self-affinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission. Physica A 389: 133-140.
39. Efthaxias K, Contoyiannis Y, Balasis G, Karamanos K, Kopanas J et al. (2008) Evidence of fractional-Brownian-motion-type asperity model for earthquake generation in candidate pre-seismic electromagnetic emissions. Nat Haz Earth Sys 8: 657-669.
40. Petrajho E, Nikolopoulos D, Nomikos C, Stonham J, Cantzos D, et al. (2015)
Electromagnetic Pre-earthquake Precursors: Mechanisms, Data and Models-A Review. J Earth Sci Clim Change 6: 1-11.

41. Efthaxias K, Kapiris P, Polygiannakis J, Bogris N, Kopanagas K, et al. (2001) Signature of pending earthquake from electromagnetic anomalies. Geophys Res Let 29: 3321-3324.

42. Hadjiconits V, Mavromatou C, Efthaxias K (2002) Preseismic earth’s field anomalies recorded at Lesvos station, north-eastern Aegean. Acta Geophys Pol 50: 151-158.

43. Efthaxias K, Kapiris P, Dologlou E, Kopanagas K, Bogris N, et al. (2002) EM anomalies before the Kozani earthquake: a study of their behavior through laboratory experiments. Geophys Res Let 29: 69-1-69-4.

44. Kapiris P, Polygiannakis J, Peratzakis A, Nomicos K, Efthaxias K (2002) VHF-electromagnetic evidence of the underlying pre-seismic critical stage. Earth Plan Space, 54: 1237-1246.

45. Kapiris P, Efthaxias K, Nomicos K, Polygiannakis J, Dologlou E, et al. (2003) Evolving towards a critical point: a possible electromagnetic way in which the critical regime is reached as the rupture approaches. Nonlinear Proces Geophys 10: 511-524.

46. Efthaxias K, Eftaxias K, Chelidze T (2004) Electromagnetic Signature of Prefracture Criticality in Heterogeneous Media. Phys Rev Let 92: 065702.

47. Contoyiannis Y, Kapiris P, Efthaxias K (2005) Monitoring of a preseismic phase from its electromagnetic precursors. Phys Rev E Stat Nonlin Soft Matter Phys 71: 066123.

48. Efthaxias K, Kapiris P, Balasis G, Peratzakis A, Karamanos K, et al. (2006) Unified approach to catastrophic events: from the normal state to geological or biological shock in terms of spectral fractal and nonlinear analysis. Nat Haz and Earth Sys Sci 6: 205-228.

49. Efthaxias K, Panin V, Deryugin Y (2007) Evolution-EM signals before earthquakes in terms of meso-mechanics and complexity. Tectonophysics 431: 273-300.

50. Contoyiannis Y, Efthaxias K (2008) Tsallis and Levy statistics in the preparation of an earthquake. Nonlinear Proces Geophys 15: 379-388.

51. Eftaxias K, Athanasopoulou L, Balasis G, Kalimeri M, Nikolopoulos S, et al. (2009) Unfolding the procedure of characterizing recorded ultra low frequency, kHz and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones - Part 1. Nat Haz Earth Sys Sci 9: 1953-1971.

52. Efthaxias K, Balasis G, Contoyiannis Y, Papadimitriou C, Kalimeri M, et al. (2010) Unfolding the procedure of characterizing recorded ultra low frequency, kHz and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones - Part 2. Nat Haz Earth Sys Sci 10: 275-294.

53. Minadakis G, Potirakis S, Nomicos C, Eftaxias K (2012) Linking electromagnetic precursors with earthquake dynamics: An approach based on non-extensive fragment and self-affine asperity models. Physica A 391: 2232-2244.

54. Potirakis S, Minadakis G, Efthaxias K (2012) Analysis of electromagnetic pre-seismic emissions using Fisher information and Tsallis entropy. Physica A 391: 300-306.

55. Balasis G, Mandra M (2007) Can electromagnetic disturbances related to the recent great earthquakes be detected by satellite magnetometers? Tectonophysics 431: 173-195.

56. Balasis G, Daglis I, Papadimitriou C, Kalimeri M, Anastasiadis A, et al. (2008) Dynamical similarity in Dst time series using non-extensive Tsallis entropy. Geophys Res Lett 35: L14102 (1-6).

57. Nikolopoulos D, Petraki E, Nomicos C, Koulouras G, Papakonstantis I (2015) Long- Memory Trends in Disturbances of Radon in Soil Prior ML=5.1 Earthquakes of 17 November 2014 Greece. J Earth Sci Clim Change 6: 1-10.

58. Ghosh D, Deb A, Dutta S, Sengupta R, Samanta S (2012) Multifractality of radon concentration fluctuation in earthquake related signal. Fractals 20: 33-39.

59. Lomnitz C (1994) Fundamentals of Earthquake Prediction. John Wiley & Sons, New York pp. 326.

60. Choubey V, Kumar N, Arora B (2009) Precursory signatures in the radon and geohydrogeological borehole data for M6.9 Kharasai earthquake of Garwhal Himalaya. Sci Total Environ 407: 5877-5883.

61. Erees F, Aytas S, Sac M, Yener G, Salk M (2007) Radon concentrations in thermal waters related to seismic events along faults in the Denizli Basin, Western Turkey. Rad Meas 42: 80-86.

62. Yasuoka Y, Igarashi G, Ishikawa T, Tokonami S, Shinogi M (2006) Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration. Appl Geochim 21: 1054-1072.

63. Grammackov, AG (1936) On the influence of some factors in the spreading of radioactive emanations under natural conditions. Zeitschrift für Geofizik 6: 123-148.

64. Clements WE (1974) The effect of atmospheric pressure variation on the transport of 222Rn from the soil to the atmosphere. Ph.D dissertation, N. Mex. Inst of Mining and Tech. Soccoro.

65. Martinelli G (1991) Isotopic and geochemical precursors of earthquakes and volcanic eruptions. IAEA Vienna, p. 155.

66. Dobrovolsky I, Zubkov S, Miachkin V (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117: 1025-1044.

67. Teng TL, Sun LF (1986) Research on groundwater radon as a fluid phase precursor to earthquakes. J Geophys Res 91: 305-313.

68. Shapiro MH, Rice A, Mendenhall MH, Melvin JD, Tombrello TA (1985) Recognition of environmentally caused variations in radon time series. Pure Appl Geophys 122: 309-326.

69. Shapiro MH, Melvin JD, Tombrello TA, Mendenhall MH, Larson PB et al.(1981) Relationship of the 1979 Southern California radon anomaly to a possible regional strain event. J Geoph Res 86: 1725.

70. Hamilton RM (1975) Earthquake studies in China — a massive earthquake prediction effort is under way. Earthquake Inf. Bull. 7: 3-8.

71. Hauksson E (1981) Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. J Geophys Res 86: 9397-9410.

72. Fleischer RL (1981) Dislocation model for radon response to distant earthquakes. Geophys Res Lett 8: 477-480.

73. Teng TL (1980) Some recent studies on groundwater radon content as an earthquake precursor. J Geophys Res 85: 3089-3099.

74. Wakita H, Nakamura Y, Sano Y (1988) Short-term and intermediate-term geochemical precursors. Pure Appl Geophys 126: 267-278.

75. Jiang FL, Li GR (1981) The application of geochemical methods in earthquake prediction in China. Geophys Res Lett 8: 469-472.

76. Allegri L, Bella F, Della Monica G, Ermini A, Improta S et al.(1983) Radon and tilt anomalies detected before the Irpinia (south Italy) earthquake of November 23, 1980 at great distances from the epicenter. Geophys Res Lett 10: 269-272.

77. Virk HS, Baljinder S (1994) Radon recording of Uttarkashi earthquake. Geophys Res Lett 21: 737-740.

78. Reddy DV, Suhjka BS, Nagabushanam P, Kumar D (2004) A clear case of radon anomaly associated with a microearthquake event in a stable continental region. Geophys Res Lett 31: L06069.

79. Virk HS, Walia V, Kumar N (2001) Helium/radon precursor anomalies of Chamoli earthquake, Garwhal Himalaya, India. J Geodyn 31: 201-210.

80. Igarashi G, Wakita H, Notsu K (1990) Groundwater observations at KSM site in northeast Japan: a most sensitive site to earthquake occurrence. Tokuho Geophys J 33: 163-175.

81. Yasuoka Y, Shinogi M (1995) Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys 7: 759-761.

82. Ohno M, Wakita H (1996) Cosericsemic radon changes of the 1995 Hyogo-ken Nanbu earthquake. J Phys Earth 44: 391-395.

83. Kuo T, Fan K, Kuochen H, Han Y, Chu H, Lee Y (2006) Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung earthquake. J Environ Radioactv 88: 101-106.

84. Richon P, Sabroux JC, Haltwachs M, Vendemeulebrock J, Pousielgue N et al.(2003) Radon anomaly in the soil of Taal volcano, the Philippines: a likely precursor of the M7.1 Mindoro earthquake (1994). Geophys Res Let 30: 1481.

85. Pulinets S A, Alekseeva VA, Legen’ka AD, Kbegai VV (1997). Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification. Adv Space Res 20: 2173-2176.

86. Alekseeva VA, Alekseeva NG, Jchankuileller J (1995) Radiat Meas 25: 637-639.
