A Plactic Algebra Action on Bosonic Particle Configurations

Joanna Meinel

Received: 6 July 2020 / Accepted: 15 October 2020 / Published online: 1 December 2020
© The Author(s) 2020

Abstract
We study an action of the plactic algebra on bosonic particle configurations. These particle configurations together with the action of the plactic generators can be identified with crystals of the quantum analogue of the symmetric tensor representations of the special linear Lie algebra \(\mathfrak{sl}_N \). It turns out that this action factors through a quotient algebra that we call partic algebra, whose induced action on bosonic particle configurations is faithful. We describe a basis of the partic algebra explicitly in terms of a normal form for monomials, and we compute the center of the partic algebra.

Keywords Plactic algebra · Bosonic particle configurations · Kashiwara crystals · Center · Normal form

Mathematics Subject Classification (2010) 05E10 (81R10, 17B37, 20G42)

Introduction
The plactic monoid defined by Knuth relations in [13] appears in many different guises in combinatorics and representation theory. In particular it arises from Kashiwara crystals [10] of the quantum analogue of the special linear Lie algebra \(\mathfrak{sl}_N(\mathbb{C}) \) and their realisation in terms of semistandard Young tableaux, see [7, Section 2.1] and [9] for background, details and references: The plactic monoid is isomorphic to the monoid of semistandard Young tableaux with entries 1, \ldots, \(N-1 \) and multiplication defined by row bumping. Relations among Kashiwara crystal operators are usually different and more difficult to describe. For abstract crystals of simply laced finite and affine type these relations were studied e.g. by Stembridge in [18] where a list of relations is given which are necessary and sufficient for the abstract crystal graph to be a crystal graph of an integrable highest weight representation.

We are particularly interested in the crystal \(\mathcal{B}(k\omega_1) \) of the quantum analogue for the symmetric representation \(\text{Sym}^k(\mathbb{C}^N) \) of \(\mathfrak{sl}_N(\mathbb{C}) \). Here it is known that the Kashiwara crystal

Presented by: Peter Littelmann

Joanna Meinel
joanna@math.uni-bonn.de

1 Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
The path algebra k relation also appears as the generic Hall monoid or “quantic monoid” of type A except commute.

Reineke defines the structure of a monoid on isomorphism classes of modules over M of M plactic algebra are given in terms of enumerations of the roots [17, Theorem 2.10]. If not possible since k_i of bosonic particle configurations studied by Korff and Stroppel in [11]. Combinatorially, a M configuration and their k configurations and their k-span by lowering k_i by 1 and increasing k_{i+1} by 1, if possible. If not possible since k_i = 0, the result is 0. This action corresponds to propagation of a particle from position i to $i + 1$. One can directly identify bosonic particle configurations with Young diagrams by placing a particle at position i for each box labelled i in the Young tableau. Then the operator a_i acts by adding a box in the $(i + 1)$-st row of the Young diagram, if possible, and by 0 otherwise. Up to an index shift and switching rows and columns, this is the same as the action on Young diagrams by Schur operators from [5]. We will also identify the k-span of bosonic particle configurations with the vector space of polynomials $k[x_1, \ldots, x_{N-1}, x_0]$ so that a particle configuration $(k_1, \ldots, k_{N-1}, k_0)$ corresponds to a
monomial $x_1^{k_1} \cdots x_{N-1}^{k_{N-1}} x_0^{k_0}$. Then the generator a_i of the plactic algebra acts by lowering the exponent of x_i by 1 and raising the exponent of x_{i+1} by 1. Note that this action is combinatorial in the sense of [5] (Fig. 1).

Similarly, the crystal $B(\omega_k)$ for the quantum analogue of the alternating representation can be identified with fermionic particle configurations together with the action of the generators of the local plactic algebra. This action is known to factor through the nilTemperley-Lieb algebra which acts faithfully on the linear span of fermionic particle configurations [11, Proposition 9.1], [5, Example 2.4], [1, Proposition 2.4.1], [2]. In [3] the case of affine fermionic particle configurations was studied, including a description of a normal form for monomials in the affine nilTemperley-Lieb algebra and its center. Motivated by these results we study the representation of the plactic algebra and the local plactic algebra on bosonic particle configurations more closely in this paper. Our main goal is to identify the kernel of this representation and to describe the resulting algebra. We show that the action of the (local) plactic algebra on bosonic particle configurations satisfies the additional family of relations given by

$$a_i a_{i-1} a_{i+1} a_i = a_{i+1} a_i a_{i-1} a_i$$

for $2 \leq i \leq N - 2$.

In fact, these relations suffice to describe the kernel of the representation: For $N \geq 3$ we define the partic algebra $\mathcal{P}_N^{\text{part}}$ to be the unital associative k-algebra generated by a_1, \ldots, a_{N-1} over some ground field k subject to the relations

$$a_i a_{i-1} a_i = a_{i-1} a_i a_i$$
for $2 \leq i \leq N - 1$,

$$a_i a_{i+1} a_i = a_{i+1} a_i a_{i+1}$$
for $1 \leq i \leq N - 2$,

$$a_i a_j = a_j a_i$$
for $|i - j| > 1$,

$$a_i a_{i-1} a_{i+1} a_i = a_{i+1} a_i a_{i-1} a_i$$
for $2 \leq i \leq N - 2$.

and we prove that it acts faithfully on the bosonic particle configurations. For Young diagrams our results can be interpreted as a full list of generating relations among the Schur operators. For crystals they can be interpreted as relations satisfied by the Kashiwara operators \tilde{f}_i on crystals of the form $B(k\omega_1)$. Note that in an independent recent work Liu and Smith arrive at an equivalent description of the algebra of Schur operators on Young diagrams [14]. It is also interesting that the ‘partic’ relation $a_i a_{i-1} a_{i+1} a_i = a_{i+1} a_i a_{i-1} a_i$ has been observed before in the monoid of quasi-ribbon tableaux [12]. It is one of the defining relations of the hypoplactic algebra which has a basis given in terms of quasi-ribbon words [12, Theorem 4.18] and which is isomorphic to the quantum diagonal algebra at $q = 0$, i.e. the diagonal subalgebra in a quantization of the polynomial functions on $(N-1) \times (N-1)$-matrices that allows to specialize $q = 0$ due to assymmetric relations [12, Theorem 4.23].

In [4] also a quasi-crystal interpretation of the hypoplactic monoid is given. Notice however that not all of the hypoplactic relations are satisfied by the action of the plactic algebra on bosonic particle configurations.

Outline of the paper In Section 1 we define the partic algebra $\mathcal{P}_N^{\text{part}}$ and we establish some technical tools. In Section 2 we construct a normal form of the monomials in the partic algebra, leading to the Basis Theorem 2.1:

Fig. 1 Example for $N = 8$: A bosonic particle configuration on a line segment given by the tuple $(4, 0, 0, 1, 0, 1, 2, 2)$
Theorem The partic algebra P_{part}^N has a basis given by monomials of the form
\[\{a_{N-1}^{d_{N-1}} \ldots a_2^{d_2} a_1^{k_1} a_2^{k_2} \ldots a_{N-1}^{k_{N-1}} \mid d_i \leq d_{i-1} + k_{i-1} \text{ for all } 3 \leq i \leq N-1, \ d_2 \leq k_1\}\]
where $d_i, k_i \in \mathbb{Z}_{\geq 0}$ for all $1 \leq i \leq N-1$.

The action of the plactic, local plactic and partic algebras on the bosonic particle configurations which we realize as an action on the polynomial ring $\mathbb{k}[x_1, \ldots, x_{N-1}, x_0]$ is defined in Section 3. As our main result we obtain in Theorem 3.2:

Theorem The action of the partic algebra P_{part}^N on $\mathbb{k}[x_1, \ldots, x_{N-1}, x_0]$ is faithful.

In Section 4 we describe the center of the partic algebra in terms of Theorem 4.1:

Theorem The center of the partic algebra P_{part}^N is given by the \mathbb{k}-span of the elements
\[\{a_{N-1}^r a_{N-2}^r \ldots a_2^r a_1^r \mid r \geq 0\}.

Note that all our results can be adapted to monoids and for algebras over any rings. In Theorem 4.1 we need to assume that the ground ring is commutative. For simplicity we choose to work over a ground field.

This paper goes back to the author’s PhD thesis: Most of Sections 1, 2, 3 and 4 can be found in [15, Chapter I.3].

1 The Partic Algebra

Let \mathbb{k} be a field and fix an integer $N \geq 3$.

Definition 1.1 We define the partic algebra P_{part}^N to be the unital associative \mathbb{k}-algebra generated by a_1, \ldots, a_{N-1} subject to the relations
\[a_i a_{i-1} a_i = a_{i-1} a_i a_i \quad \text{for } 2 \leq i \leq N-1, \quad (1)
\[a_i a_{i+1} a_i = a_{i+1} a_i a_i \quad \text{for } 1 \leq i \leq N-2, \quad (2)
\[a_i a_j = a_j a_i \quad \text{for } |i - j| > 1, \quad (3)
\[a_i a_{i-1} a_{i+1} a_i = a_{i+1} a_i a_{i-1} a_i \quad \text{for } 2 \leq i \leq N-2. \quad (4)

Note that one can interpret the plactic relations Eq. 1, Eq. 2 as commutativity of the product $(a_{i+1} a_i)$ with the generators a_{i+1} and a_i. Relation Eq. 4 together with Eq. 1 implies in particular that $(a_{i+1} a_i)$ and $(a_i a_{i-1})$ commute.

Remark 1.2 This relation appears naturally in the study of bosonic particle configurations, see Section 3. In contrast, in the Hall monoid of finite type A_{N-1} one cannot expect $[S_{i+1} * S_i]$ and $[S_i * S_{i-1}]$ to commute. This is because precisely one of $S_{i+1} * S_i * S_i * S_{i-1}$, $S_i * S_{i-1} * S_{i+1} * S_i$ is a nontrivial extension of $S_{i+1} * S_i$ and $S_i * S_{i-1}$ (it depends on the choice of orientation which one is nontrivial) – in much the same way as $[S_i]$ and $[S_{i \pm 1}]$ do not commute.

Remark 1.3 We have two gradings on both the plactic and the partic algebra:
1. All relations preserve the length of monomials, hence \mathcal{P}_N and $\mathcal{P}_N^{\text{part}}$ can be equipped with a \mathbb{Z}-grading by the length of monomials.

2. All relations preserve the number of different generators in a monomial, hence \mathcal{P}_N and $\mathcal{P}_N^{\text{part}}$ can be equipped with a \mathbb{Z}^{N-1}-grading that assigns to the generator a_i the degree e_i, the i-th standard basis vector in \mathbb{Z}^{N-1}. This is a refinement of the above length grading.

Lemma 1.4 In the plactic (and hence also in the partic) algebra, the following relations hold:

i) For all generators a_i, a_{i-1}, $2 \leq i \leq N-1$ and all $m \geq 0$, we have

$$a_i^m a_{i-1}^m = (a_i a_{i-1})^m, \quad (5)$$

$$a_i (a_i^m a_{i-1}^m) = (a_i^m a_{i-1}^m) a_i.$$

ii) For all $i \geq k \geq j$ we have

$$(a_i a_{i-1} \ldots a_{j+1} a_j) a_k = a_k (a_i a_{i-1} \ldots a_{j+1} a_j). \quad (6)$$

Proof 1. The second equation of Lemma 1.4 follows from the first by the plactic relation Eq. 1. By induction, $a_i^m a_{i-1}^m = a_i (a_i a_{i-1})^{m-1} a_{i-1} = (a_i a_{i-1})^{m-1} a_i a_{i-1} = (a_i a_{i-1})^m$.

2. This equality follows from the calculation

$$(a_i a_{i-1} \ldots a_{j+1} a_j) a_k \quad \text{Eq. 3} \quad \equiv \quad a_i a_{i-1} \ldots a_{k+1} a_k a_{k-1} a_k \ldots a_{j+1} a_j \quad \text{Eq. 1} \equiv \quad a_i a_{i-1} \ldots a_{k+1} a_k a_{k-1} \ldots a_{j+1} a_j \quad \text{Eq. 2} \equiv \quad a_i a_{i-1} \ldots a_{k} a_{k+1} a_{k-1} \ldots a_{j+1} a_j \quad \text{Eq. 3} \equiv \quad a_k (a_i a_{i-1} \ldots a_{j+1} a_j).$$

2 A Basis of the Partic Algebra

In this section we formulate the following main theorem:

Theorem 2.1 The partic algebra $\mathcal{P}_N^{\text{part}}$ has a basis given by monomials of the form

$$\{a_1^{d_1} a_2^{d_2} \ldots a_{N-1}^{d_{N-1}} | d_i \leq d_{i-1} + k_{i-1} \text{ for all } 3 \leq i \leq N-1, \quad d_2 \leq k_1 \} \quad (7)$$

where $d_i, k_i \in \mathbb{Z}_{\geq 0}$ for all $1 \leq i \leq N-1$.

Our approach is based on the observation that it suffices to construct a normal form for monomials to obtain a k-basis for an algebra given by generators and monomial relations. This follows from [8, Proposition 2] where it is proven that an algebra of the form

$$\mathbb{K}[X]/(m - m' \mid m, m' \text{ certain words in the generators in } X)$$
is isomorphic to the semigroup algebra \(\mathbb{k}[S] \) for the semigroup \(S \) defined by the same set of generators \(X \) and relations \(m = m' \) for all \(m - m' \) that generate the ideal. By definition \(\mathbb{k}[S] \) has a basis given by elements in \(S \) which can be represented by monomials in \(X \).

Remark 2.2 This approach also works more generally for algebras of the form

\[
A = \mathbb{k}[X]/(m, m' - m'' | m, m', m'' \text{ certain words in the generators in } X).
\]

The corresponding semigroup \(S \) is given by generators \(X \cup \{\emptyset\} \), where \(\emptyset \) denotes the absorbing element, and the relations are of the form \(m = \emptyset, m' = m'' \) where \(m, m' - m'' \) are generators of the ideal. Then \(A \cong \mathbb{k}[S]/(\emptyset) \), and a basis of \(A \) is given by a normal form for the elements in \(S \setminus \{\emptyset\} \) (see [15, Remark I.2.5.1]).

In this Section we show that every monomial in the partic algebra is equivalent to a monomial of the form given in Eq. 7. In Section 3 we observe that these monomials act pairwise differently on the particle configuration module, and we conclude that they must be distinct.

Proposition 2.3 Every monomial in the partic algebra \(\mathcal{P}_{\text{part}} \) is equivalent to a monomial of the form given in Eq. 7, i.e. \(a_{d_{N-1}}^1 \cdots a_{2}^{d_2} a_1^{k_1} a_2^{k_2} \cdots a_{N-1}^{k_{N-1}} \) with \(d_i \leq d_{i-1} + k_{i-1} \) for all \(3 \leq i \leq N - 1 \) and \(d_2 \leq k_1 \).

Proof The proof works by induction on the length of monomials. If the length is equal to 1, we have \(a_i = a_i^{k_i} \) for \(k_i = 1 \), and the condition from Eq. 7 is preserved. For the induction step our goal is to show that

\[
a_i \cdot \left(a_{d_{N-1}}^1 \cdots a_{2}^{d_2} a_1^{k_1} a_2^{k_2} \cdots a_{N-1}^{k_{N-1}} \right) = a_{d_{N-1}}^1 \cdots a_i^{d_i'} a_{i+1}^{d_{i+1}} a_1^{k_1} a_2^{k_2} \cdots a_{N-1}^{k_{N-1}} \cdot \quad (8)
\]

where \(d_i' = d_i \) and \(k_i' = k_i + 1 \), or \(d_i' = d_i + 1 \) and \(k_i' = k_i \) are such that the inequality condition Eq. 7 is preserved. Since we can commute \(a_i \) with all \(a_j \) as long as \(j \neq i \pm 1 \), we only need to consider

\[
a_i \cdot \left(a_{i+1}^{d_{i+1}} a_i^{d_i'} a_{i+1}^{d_{i+1}} a_{i-1}^{d_{i-1}} \cdots a_1^{k_1} k_i' \right).
\]

In order to prove that this can be rewritten as in Eq. 8, we have to show that either we can pass \(a_i \) through to the right hand side, increasing the exponent \(k_i \) by one, or we leave it at the left hand side, increasing \(d_i \) by one.

1. Case \(d_{i+1} = d_i = d_{i-1} = k_{i-1} = 0 \): Set \(k_i' = k_i + 1 \). The inequality condition Eq. 7 is automatically satisfied if we increase one of the \(k \)'s, so there is nothing to check. The equality Eq. 8 is obvious since we only apply the commutativity relation Eq. 3.

2. Case \(d_{i+1} = d_i = d_{i-1} = 0, k_{i-1} > 0 \): Set \(d_i' = 1 \). The inequality condition Eq. 7 is preserved since \(k_{i-1} \geq 1 \), and again we only apply the commutativity relation Eq. 3.

3. Case \(d_{i+1} = d_i = 0, d_{i-1} > 0, k_{i-1} \) arbitrary: Set \(d_i' = 1 \). The inequality condition Eq. 7 is preserved since \(d_{i-1} \geq 1 \), and as before we only apply the commutativity relation Eq. 3.
4. Case $d_{i+1} = 0$, $d_i > 0$, d_{i-1} and k_{i-1} arbitrary so that $d_i \leq d_{i-1} + k_{i-1}$:

- $d_i < d_{i-1} + k_{i-1}$: Set $d'_i = d_i + 1$.
- $d_i = d_{i-1} + k_{i-1}$: We cannot increase d_i, hence we have to show that we can commute a_i past d'_{i-1} and k_{i-1} to increase k_i. Indeed, we can apply equality Eq. 5 from Lemma 1.4 to obtain

\[
a_i \left(a_i^{d_{i-1}} a_{i-1}^{d_{i-1}} \ldots a_{i-1}^{d_i} a_i^{k_i} \right) = a_i^{d_{i-1}+k_{i-1}+1} a_{i-1}^{d_{i-1}} \ldots a_{i-1}^{d_i} a_i^{k_i} \\
= a_i^{k_{i-1}+1} (a; a_{i-1})^{d_{i-1}} \ldots a_{i-1}^{d_i} a_i^{k_i} \\
= (a; a_{i-1})^{d_{i-1}} a_i^{k_{i-1}+1} \ldots a_{i-1}^{d_i} a_i^{k_i} \\
= (a; a_{i-1})^{d_{i-1}} \ldots a_{i-1}^{k_{i-1}+1} a_{i-1}^{k_i} a_i^{k_i} \\
= (a; a_{i-1})^{d_{i-1}} a_{i-1}^{k_{i-1}+1} \ldots a_{i-1}^{k_i} a_i^{k_i} \\
= a_i^{d_{i-1}+k_{i-1}} a_{i-1}^{d_{i-1}} \ldots a_{i-1}^{d_i} a_i^{k_i}.
\]

5. Case $d_{i+1} > 0$, d_i, k_i and d_{i-1}, k_{i-1} arbitrary so that $d_{i+1} \leq d_i + k_i$, $d_i \leq d_{i-1} + k_{i-1}$: We reduce to the previous cases by proving

\[
a_i a_{i+1}^{d_{i+1}} a_{i-1}^{d_{i-1}} \ldots a_{i+1}^{d_i} a_i^{k_i} = a_{i+1}^{d_{i+1}} a_i \left(a_i^{d_{i+1}} a_{i-1}^{d_{i-1}} \ldots a_{i+1}^{d_i} a_i^{k_i} \right).
\]

- $d_{i+1} \leq d_i$: Here we can apply Lemma 1.4 to obtain

\[
a_i a_{i+1}^{d_{i+1}} a_i^{d_i} = a_i (a_{i+1} a_i)^{d_{i+1}} a_i^{d_i-d_{i+1}} = (a_{i+1} a_i)^{d_{i+1}} a_i^{d_i-d_{i+1}} = a_{i+1} a_i^{d_i}.
\]

- $d_{i+1} > d_i$: In this case we have $k_i \geq d_{i+1} - d_i > 0$. It suffices to prove that

\[
a_i a_{i+1}^{m} a_{i-1}^{d_{i-1}} \ldots a_{i+1}^{d_i} a_i^{m} = a_i a_{i+1}^{m} a_{i-1}^{d_{i-1}} \ldots a_{i+1}^{d_i} a_i^{m}
\]

for any $m > 0$. Then the desired statement follows using equality Eq. 5 from Lemma 1.4:

\[
a_i a_{i+1}^{d_{i+1}} a_i^{d_i} a_{i-1}^{d_{i-1}} \ldots a_{i+1}^{d_i} a_i^{k_i} = (a_{i+1} a_i)^{d_i} \left(a_i^{d_{i+1}-d_i} a_{i+1}^{d_{i-1}} \ldots a_{i+1}^{d_i} a_i^{k_i-d_{i+1}} \right) a_i^{k_i-d_{i+1}} \\
= (a_{i+1} a_i)^{d_i} \left(a_i^{d_{i+1}-d_i} a_{i+1}^{d_{i-1}} \ldots a_{i+1}^{d_i} a_i^{k_i-d_{i+1}} \right) a_i^{k_i-d_{i+1}} \\
= a_{i+1}^{d_{i+1}} a_i^{d_i} a_{i+1}^{d_{i-1}} \ldots a_{i+1}^{d_i} a_i^{k_i}.
\]
Now for \(d_{i-1}, d_{i-2}, \ldots, d_j > 0\) and \(d_{j-1} = 0\) (possibly \(j = i, \text{or } j = 1\)), we apply equations 3, 4, 5 and 6 to pass the factor \(a_i\) (distinguished by bold print) through the whole expression, thereby proving the desired equality:

\[
\begin{align*}
\mathbf{a}_1 \mathbf{a}_m^m \mathbf{a}_{i-1}^{d_1-1} \mathbf{a}_{i-2}^{d_2-1} \cdots \mathbf{a}_j^{d_j-2} \mathbf{a}_{j-1}^{k_{j-1}} \mathbf{a}_j^{k_j} \cdots \mathbf{a}_i^{k_i-1} \mathbf{a}_i^m
\end{align*}
\]

Eq. 3

\[
\begin{align*}
\mathbf{a}_1 \mathbf{a}_i^{d_1-1} \mathbf{a}_{i-1}^{d_2-1} \cdots \mathbf{a}_j^{d_j-2} \mathbf{a}_{j-1}^{k_{j-1}} \mathbf{a}_j^{k_j} \cdots \mathbf{a}_i^{k_i-1}
\end{align*}
\]

Eq. 4

\[
\begin{align*}
\mathbf{a}_1 \mathbf{a}_i^{d_1-2} \mathbf{a}_{i-1}^{d_2-1} \cdots \mathbf{a}_j^{d_j-2} \mathbf{a}_{j-1}^{k_{j-1}} \mathbf{a}_j^{k_j} \cdots \mathbf{a}_i^{k_i-1} \mathbf{a}_i^{m}
\end{align*}
\]

Eq. 5

\[
\begin{align*}
\mathbf{a}_1 \mathbf{a}_i^{d_1-2} \mathbf{a}_{i-1}^{d_2-2} \cdots \mathbf{a}_j^{d_j-2} \mathbf{a}_{j-1}^{k_{j-1}} \cdot k_j \cdot k_i \mathbf{a}_i^{m}
\end{align*}
\]

Eq. 6

This concludes the proof of Proposition 2.3.

Note that the relation special for the partic algebra Eq. 4 was only used once in the proof of Proposition 2.3, namely in the long computation at the end. All other steps have been carried out using only the commutativity relation Eq. 3 and the plactic relations Eq. 1 and Eq. 2. The following corollary recaps what we obtained for the multiplication in the partic algebra:

Corollary 2.4 Assume we are given a monomial \(\mathbf{a}_N^{-1} \cdots \mathbf{a}_1^{-1} \mathbf{a}_2^{-1} \cdots \mathbf{a}_N^{-1}\) of the form given in Eq. 7 in the partic algebra. Then left multiplication with \(a_i\) gives

\[
\mathbf{a}_i \cdot \left(\mathbf{a}_N^{-1} \cdots \mathbf{a}_1^{-1} \mathbf{a}_2^{-1} \cdots \mathbf{a}_N^{-1}\right) = \begin{cases} \\
\mathbf{a}_N^{-1} \cdots \mathbf{a}_1^{-1} \mathbf{a}_2^{-1} \cdots \mathbf{a}_i^{-1} \mathbf{a}_i^{-1} \mathbf{a}_1^{-1} \cdots \mathbf{a}_N^{-1} & \text{if } d_i = d_i + k_i - 1, \\
\mathbf{a}_N^{-1} \cdots \mathbf{a}_i^{-1} \mathbf{a}_{i-1}^{-1} \mathbf{a}_i^{-1} \mathbf{a}_i^{-1} \mathbf{a}_1^{-1} \cdots \mathbf{a}_N^{-1} & \text{if } a_i < d_i + k_i - 1.
\end{cases}
\]

Springer
Right multiplication with a_i gives

$$
(a_{N-1}^{d_{N-1}} \ldots a_2^{d_2} a_1^{d_1} a_2^{k_2} \ldots a_{N-1}^{k_{N-1}}) \cdot a_i
= \begin{cases}
(a_{N-1}^{d_{N-1}} \ldots d_i a_i a_{i+1}^{d_{i+1}} \ldots a_2^{d_2} a_1^{k_1} a_2^{k_2} \ldots a_i^{d_i} a_i^{k_{i+1}} \ldots a_{N-1}^{k_{N-1}}) & \text{if } k_{i+1} \geq 1, \\
(a_{N-1}^{d_{N-1}} \ldots d_i a_i a_{i+1}^{d_{i+1}} \ldots a_2^{d_2} a_1^{k_1} a_2^{k_2} \ldots a_i^{d_i} a_i^{k_{i+1}} \ldots a_{N-1}^{k_{N-1}}) & \text{if } k_{i+1} = 0,
\end{cases}
$$

with the result written again in the normal form given in Eq. 7.

Proof For the left multiplication, Eq. 9 is contained in the proof of Proposition 2.3. For the right multiplication, Eq. 10 follows from the repeated application of the rule for left multiplication of $a_{N-1}^{d_{N-1}} \ldots a_2^{d_2} a_1^{d_1} a_2^{k_2} \ldots a_{N-1}^{k_{N-1}}$ to a_i.

Example 2.5 It is easy to construct zero divisors in the partic algebra, e.g. in $\mathcal{P}_3^{\text{part}}$,

$$
a_2 \cdot \left(a_3^5 a_2^8 a_1^8 a_2^3 a_3^1 - a_3^5 a_2^8 a_1^8 a_2^3 a_3^1 \right) = a_3^5 a_2^8 a_1^8 a_2^3 a_3^1 - a_3^5 a_2^8 a_1^8 a_2^3 a_3^1 = 0
$$

(it follows from Theorem 2.1 that $a_3^5 a_2^8 a_1^8 a_2^3 a_3^1 - a_3^5 a_2^8 a_1^8 a_2^3 a_3^1 \neq 0$).

Remark 2.6 Let us compare our normal form with the monomial bases of the plactic algebra from [17]: The plactic algebra \mathcal{P}_N surjects onto the partic algebra $\mathcal{P}_N^{\text{part}}$, mapping generators to generators and hence monomials to monomials. Given a monomial of the normal form in Proposition 2.3, finding the (finitely many) preimages of basis monomials in the plactic algebra amounts to solving a system of linear equations over the nonnegative integers, i.e. finding lattice points inside a polyhedron.

For example, consider the basis of the plactic algebra \mathcal{P}_5 from [17, Theorem 2.10] given by monomials

$$(a_1)^{n_1} (a_2 a_1)^{n_2} (a_3 a_2 a_1)^{n_3} (a_3 a_2)^{n_4} (a_4 a_3 a_2 a_1)^{n_5} (a_4 a_3 a_2)^{n_6} (a_4 a_3)^{n_7}$$

where all $n_i \in \mathbb{Z}_{\geq 0}$ and compare it with the basis of the partic algebra $\mathcal{P}_5^{\text{part}}$ from Proposition 2.3

$$\{ a_4^{d_4} a_3^{d_3} a_2^{d_2} a_1^{k_1} a_2^{k_2} a_3^{k_3} a_4^{k_4} \mid \text{all } k_i, d_i \in \mathbb{Z}_{\geq 0}, d_i \leq d_{i-1} + k_{i-1} \}.$$

While $a_1 a_2 a_3 a_4 \in \mathcal{P}_5^{\text{part}}$ has only one preimage, namely $(a_1)^1 (a_2 a_1)^1 (a_3)^1 (a_4)^1 \in \mathcal{P}_5$, we find two preimages of $a_4 a_3 a_2 a_1 a_2 \in \mathcal{P}_5^{\text{part}}$, namely $(a_2)^1 (a_2 a_3 a_2 a_1)^1, (a_2 a_1)^1 (a_4 a_3 a_2)^1 \in \mathcal{P}_5$. This corresponds to the number of possible applications of the additional partic relation Eq. 4.

3 The Action on Bosonic Particle Configurations

In this section we discuss an action of the plactic algebra \mathcal{P}_N on the polynomial ring $k[x_1, \ldots, x_{N-1}, x_0] = \mathcal{P}_N$ in N variables. It was defined in [11, Proposition 5.8]. We recall the definition here: Let $x_1^{k_1} \ldots x_{N-1}^{k_{N-1}} x_0^{k_0}$ be a monomial in $k[x_1, \ldots, x_{N-1}, x_0]$. Set

$$a_i \cdot x_1^{k_1} \ldots x_{N-1}^{k_{N-1}} x_0^{k_0} = \begin{cases}
x_1^{k_1} \ldots x_{i-1}^{k_{i-1}} x_i^{k_{i+1}} \ldots x_{N-1}^{k_{N-1}} x_0^{k_0} & \text{if } k_i > 0, \\
0 & \text{else},
\end{cases}$$

$$a_{N-1} \cdot x_1^{k_1} \ldots x_{N-1}^{k_{N-1}} x_0^{k_0} = \begin{cases}
x_1^{k_1} \ldots x_{N-1}^{k_{N-1}} x_0^{k_0+1} & \text{if } k_{N-1} > 0, \\
0 & \text{else}.
\end{cases}$$

Springer
This defines an action of the plactic algebra which factors over the partic algebra:

Lemma 3.1 Equations 11 and 12 define an action of the plactic algebra \(\mathcal{P}_N \) on the polynomial ring \(\mathbb{k}[x_1, \ldots, x_{N-1}, x_0] \). This action factors over an action of the partic algebra \(\mathcal{P}_N^{\text{part}} \).

Proof This can be verified by direct computation. \(\square \)

In this section our goal is the proof of the following main theorem:

Theorem 3.2 The action of the partic algebra \(\mathcal{P}_N^{\text{part}} \) on \(\mathbb{k}[x_1, \ldots, x_{N-1}, x_0] \) defined by equations 11 and 12 is faithful.

Remark 3.3 In [11, Proposition 5.8] it is stated incorrectly that the action of the local plactic algebra \(\mathcal{P}_N \) on \(\mathbb{k}[x_1, \ldots, x_{N-1}, x_0] \) is faithful.

Definition 3.4 We introduce the shorthand notation \(I := (k_1, \ldots, k_{N-1}, k_0) \in \mathbb{Z}^N_{\geq 0} \) for the monomial \(v(I) := x_1^{k_1} \cdots x_{N-1}^{k_{N-1}} x_0^{k_0} \).

One can think of the monomial \(x_1^{k_1} \cdots x_{N-1}^{k_{N-1}} x_0^{k_0} \) or the tuple \((k_1, \ldots, k_{N-1}, k_0) \) as a configuration of particles on a line with \(N \) positions, with \(k_i \) particles at the \(i \)-th position. The 0-th position is regarded as the deposit for particles moved to the end of the line. Then \(a_i \) moves a particle from position \(i \) to position \(i+1 \). We call \(\mathbb{k}[x_1, \ldots, x_{N-1}, x_0] \) with the above action the (classical bosonic) particle configuration module of \(\mathcal{P}_N \) or \(\mathcal{P}_N^{\text{part}} \), and we refer to the monomials inside \(\mathbb{k}[x_1, \ldots, x_{N-1}, x_0] \) as (classical bosonic) particle configurations (Fig. 2).

Now we investigate the action of the partic algebra on the particle configuration module.

Proposition 3.5 Fix a monomial \(a_{d_{N-1}} \ldots a_3 a_2 a_1 a_{k_1} k_2 k_3 \ldots a_{N-1} \) in the partic algebra satisfying condition Eq. 7. There is a unique particle configuration with the number of particles minimal, i.e. a monomial in \(\mathbb{k}[x_1, \ldots, x_{N-1}, x_0] \) of minimal degree, so that the monomial acts nontrivially on it. This minimal particle configuration is given by \(I_{\text{in}} = (k_1, k_2, k_3, \ldots, k_{N-1}, 0) \).

The image of \(I_{\text{in}} \) under the action of \(a_{d_{N-1}} \ldots a_3 a_2 a_1 a_{k_1} k_2 k_3 \ldots a_{N-1} \) is given by \(I_{\text{out}} = (0, k_1 - d_2, k_2 + d_2 - d_3, \ldots, k_{N-2} + d_{N-2} - d_{N-1}, k_{N-1} + d_{N-1}) \).

![Fig. 2](image-url) Example for \(N = 9 \): The particle configuration \((3, 0, 0, 1, 0, 1, 2, 0, 1) \) corresponding to the monomial \(x_1^3 x_2^0 x_3^0 x_4^1 x_5^0 x_6^1 x_7^2 x_8^0 x_9^1 \), and the element \(a_6 a_5 a_4 \) acting on it.
Proof First we show that \(a_1^{k_1}a_2^{k_2}a_3^{k_3} \ldots a_{N-1}^{k_{N-1}}\) annihilates any particle configuration \((r_1, r_2, r_3, \ldots, r_{N-1}, r_0)\) with \(r_i < k_i\) for some \(i\). We compute
\[
d_1^{k_1}d_2^{k_2} \ldots d_{j-1}^{k_{j-1}}d_j^{k_j}d_{j+1}^{k_{j+1}} \ldots a_{N-1}^{k_{N-1}}(x_1^{r_1}x_2^{r_2} \ldots x_j^{r_j}x_{j+1}^{r_{j+1}} \ldots x_{N-1}^{r_{N-1}}x_0^{r_0}) = \begin{cases}
\left\{ \begin{array}{l}
d_1^{k_1}d_2^{k_2} \ldots d_{j-1}^{k_{j-1}}(x_1^{r_1}x_2^{r_2} \ldots x_j^{r_j}x_{j+1}^{r_{j+1}} \ldots x_{N-1}^{r_{N-1}}x_0^{r_0}) \\
0
\end{array} \right.
\end{cases}
\]
with \(j = k_j\) for \(1 \leq j \leq N-1\) and \(j = r_j\) for \(1 \leq j \leq N-1\). Hence the following is well-defined:
\[
\sum_{I} a_1^{d_1}a_2^{d_2}a_3^{d_3} \ldots a_{N-1}^{d_{N-1}}
\]
where \(I\) describes a normal form for the monomials in the partic algebra
\[
P\text{part}
\]
and the output particle configuration \(I\) of the monomials on \(J\)
\[
J = (k_1, k_2, k_3, \ldots, k_{N-1}, 0).
\]

This proves Proposition 3.5.

Proof of Theorem 2.1 By Proposition 2.3 any monomial in the partic algebra is equivalent to one of the form Eq. 7. We have shown in Proposition 3.5 that the action on the particle configuration module distinguishes any two monomials of the form Eq. 7, hence Eq. 7 describes a normal form for the monomials in the partic algebra \(P_N\text{part}\), hence a basis of \(P_N\text{part}\).

Now Theorem 3.2 follows as a corollary from Proposition 3.5:

Proof of Theorem 3.2 We have seen in Proposition 3.5 that the normal form monomials, hence the basis elements in \(P_N\text{part}\), act by linearly independent operators on the particle configurations. In other words, the action of \(P_N\text{part}\) is faithful.

Remark 3.6 The faithfulness of the action of the algebra \(P_N\text{part}\) on the particle configuration module motivates us to give \(P_N\text{part}\) the name “partic” algebra.

By Proposition 2.3 and Proposition 3.5, we can identify each monomial in the partic algebra uniquely by the minimal particle configuration \(J\) \(\in \mathbb{Z}_{\geq 0}^N\) on which it acts nontrivially and the output particle configuration \(I\) \(\in \mathbb{Z}_{\geq 0}^N\) that one gets back from the action of the monomial on \(J\). Hence the following is well-defined:

Definition 3.7 Given a monomial in normal form with \(d_i \leq d_{i-1} + k_{i-1}\) for all \(3 \leq i \leq N - 1\) and \(d_2 \leq k_1\), see Proposition 3.5, we write
\[
a_{\underline{I}} = a_{N-1}^{d_{N-1}} \ldots a_2^{d_2}a_1^{k_1}a_2^{k_2} \ldots a_{N-1}^{k_{N-1}}
\]
for bosonic particle configurations \(I\) \(\equiv (0, k_1 - d_2, k_2 + d_2 - d_3, \ldots, k_{N-2} + d_{N-2} - d_{N-1}, k_{N-1} + d_{N-1})\) and \(J\) \(\equiv (k_1, k_2, k_3, \ldots, k_{N-1}, 0)\). The number of particles \(|I| = |J| = \sum_i k_i\) in \(I\) and \(J\) is the same.
This labelling is made so that \(a_I \cdot v(J) = v(I)\) in the notation of Definition 3.4.

Definition 3.8 For \(I = (r_1, \ldots, r_{N-1}, r_0) \in \mathbb{Z}_{\geq 0}^N\), we set
\[
I \cup \{i\} = (r_1, \ldots, r_i + 1, \ldots, r_{N-1}, r_0), \quad I \setminus \{i\} = (r_1, \ldots, r_i - 1, \ldots, r_{N-1}, r_0),
\]
where the latter is only defined for \(r_i > 0\).

With this notation we can rewrite Corollary 2.4 to obtain the following multiplication rule.

Corollary 3.9 Let \(a_I\) be a monomial in normal form as in Definition 3.7. Then left and right multiplication by some generator \(a_i \in P_N^{\text{part}}\) are given by
\[
a_i a_I = \begin{cases}
a_I v & \text{if } i \in I \\
a_I v & \text{if } i \notin I,
\end{cases}
\]
\[
a_I a_i = \begin{cases}
a_I v & \text{if } i + 1 \in I \\
a_I v & \text{if } i + 1 \notin I.
\end{cases}
\]

Here we denote
\[
I' = I \cup \{i+1\} \quad I'' = (I \setminus \{i\}) \cup \{i+1\} \quad I''' = I
\]
\[
I' = I \cup \{i\} \quad I'' = I \quad I''' = (I \setminus \{i+1\}) \cup \{i\}.
\]

Example 3.10 Let \(N = 6\), and consider the monomial \(a_I = a_1^3 a_2^2 a_3 a_4^2\) with minimal input configuration \(J = (0, 2, 1, 2, 0, 0)\) and output configuration \(I = (0, 0, 2, 1, 1, 1)\). Now consider the left and right multiplication with \(a_i\) for \(i = 3\):
\[
a_3 \cdot a_{(0,0,2,1,1,1)(0,2,1,2,0,0)} = a_{(0,0,1,2,1,1)(0,2,1,2,0,0)},
\]
with \(I'' = (0, 0, 1, 2, 1, 1), \quad I''' = (0, 2, 1, 2, 0, 0), \quad a_{(0,0,2,1,1,1)(0,2,1,2,0,0)} a_3 = a_{(0,0,2,1,1,1)(0,2,2,1,0,0)},
\]
with \(I'' = (0, 0, 2, 1, 1, 1), \quad I''' = (0, 2, 2, 1, 0, 0).\)

In contrast, left and right multiplication with \(a_i\) for \(i = 1\) gives
\[
a_1 \cdot a_{(0,0,2,1,1,1)(0,2,1,2,0,0)} = a_{(1,1,1,2,1,1)(1,2,1,2,0,0)},
\]
with \(I' = (0, 1, 1, 2, 1, 1), \quad I' = (1, 2, 1, 2, 0, 0), \quad a_{(0,0,2,1,1,1)(0,2,1,2,0,0)} a_1 = a_{(0,0,2,1,1,1)(1,1,1,2,0,0)},
\]
with \(I'' = (0, 0, 2, 1, 1, 1), \quad I''' = (1, 1, 1, 2, 0, 0).\)

We observe that the product \(a_1 \cdot a_{(0,0,2,1,1,1)(0,2,1,2,0,0)}\) requires an additional particle at position 1, so that the cardinality of the minimal particle configuration of the product \(a_1 \cdot a_{(0,0,2,1,1,1)(0,2,1,2,0,0)}\) is that of \(a_{(0,0,2,1,1,1)(0,2,1,2,0,0)}\) plus one.
4 The Center of the Partic Algebra

Now that we have a basis of the partic algebra with a convenient labelling at our disposal, the goal of this section is to describe the center of the partic algebra P_{part}^N.

Theorem 4.1 The center of the partic algebra P_{part}^N is given by the k-span of the elements

$$\{a_{N-r}^r a_{N-2}^r \ldots a_r^r \mid r \geq 0\}.$$

The monomial $a_{N-r}^r a_{N-2}^r \ldots a_r^r = (a_{N-r} a_{N-2} \ldots a_2 a_1)^r = a_{(0,\ldots,0,r)(r,0,\ldots,0)}$ acts on the bosonic particle configurations by moving r particles from the first position 1 to the last position 0 if there are at least r particles at position 1, and it acts by zero if there are less than r particles at position 1. This action can be visualized as depicted in Fig. 3.

Proof Let $z := \sum_{I,J} c_{I,J} a_{I,J}$ be an element in the center, where we label the monomial $a_{I,J}$ by minimal input and output particle configurations as in Definition 3.7, with coefficients $c_{I,J} \in k$. Notice that $a_{(0,\ldots,0,r)(r,0,\ldots,0)}$ commutes with all a_i by Eq. 6 from Lemma 1.4. We show that $c_{I,J} = 0$ for all J that contain some $i \neq 1$, and for all I that contain some $i \neq 0$.

Let $i \geq 2$. First we prove that $c_{I,J} = 0$ for all J that contain a particle at position i. Since $z = \sum_{I,J} c_{I,J} a_{I,J}$ is central, it commutes in particular with $a_{i-1} a_{i-2} \ldots a_2 a_1$. Using Corollary 3.9 we compute

$$(a_{i-1} a_{i-2} \ldots a_2 a_1) a_{I,J} = a_{(I \cup \{i\})(J \cup \{1\})},$$

$$a_{I,J} (a_{i-1} a_{i-2} \ldots a_2 a_1) = \begin{cases} a_{(I \cup \{i\})(J \cup \{1\})} & \text{if } i \notin J, \\ a_{I,(J \setminus \{i\})(J \cup \{1\})} & \text{if } i \in J. \end{cases}$$

Therefore $(a_{i-1} a_{i-2} \ldots a_2 a_1) a_{I,J} = a_{I,J} (a_{i-1} a_{i-2} \ldots a_2 a_1)$ for $i \notin J$. This we use to deduce that we have $(a_{i-1} a_{i-2} \ldots a_2 a_1) z = z (a_{i-1} a_{i-2} \ldots a_2 a_1)$ if and only if

$$(a_{i-1} a_{i-2} \ldots a_2 a_1) \left(\sum_{\substack{I,J \ni \{i\} \ni \{1\} \ni I \cup J}} c_{I,J} a_{I,J} + \sum_{\substack{I,J \ni \{i\} \ni \{1\} \not\ni I \cup J}} c_{I,J} a_{I,J} \right) = \left(\sum_{\substack{I,J \ni \{i\} \ni \{1\} \ni I \cup J}} c_{I,J} a_{I,J} + \sum_{\substack{I,J \ni \{i\} \ni \{1\} \not\ni I \cup J}} c_{I,J} a_{I,J} \right) (a_{i-1} a_{i-2} \ldots a_2 a_1),$$

Fig. 3 Example for $N = 9$: The action of the central element $(a_8 a_7 a_6 a_5 a_4 a_3 a_2 a_1)^5$ on the particle configuration $(5, 0, 0, 0, 0, 0, 0, 0)$.
which holds if and only if
\[
(a_{i-1}a_{i-2} \ldots a_2 a_1) \left(\sum_{\frac{i}{2}} c_{\frac{i}{2}a_{\frac{i}{2}}} \right) = \left(\sum_{\frac{i}{2}} c_{\frac{i}{2}a_{\frac{i}{2}}} \right) (a_{i-1}a_{i-2} \ldots a_2 a_1).
\]

The latter is precisely the equality
\[
\sum_{\frac{i}{2}} c_{\frac{i}{2}a_{\frac{i}{2}}} (J_1) = \sum_{\frac{i}{2}} c_{\frac{i}{2}a_{\frac{i}{2}}} (J_2) \quad (13)
\]

Observe on the other hand that for fixed \(i\) the set of monomials
\[
\{a_{\frac{i}{2}a_{\frac{i}{2}}} | I, J \text{ such that } i \in J\}
\]
is linearly independent since the sets \((I \setminus \{i\}) \cup \{1\}\) are all distinct for distinct \(J\).

Next, we show by induction on the number \(k_i\) of particles at position \(i\) in \(J\) that all coefficients \(c_{\frac{i}{2}}\) are zero for \(k_i \geq 1\):
For \(k_i = 1\), the set \((J \setminus \{i\}) \cup \{1\}\) does not contain any particle at position \(i\) any more. Hence the monomial \(a_{\frac{i}{2}a_{\frac{i}{2}}} (J_1)\) cannot appear in the left sum in Eq. 13, and so its coefficient \(c_{\frac{i}{2}}\) must have been zero. For the induction step, assume that the coefficient \(c_{\frac{i}{2}}\) is zero for all \(a_{\frac{i}{2}}\) with at most \(k_i\) particles at position \(i\) in the minimal input particle configuration \(J\). Consider some \(a_{\frac{i}{2}}\) with \(k_i + 1\) particles at position \(i\) in \(J\). So the set \((J \setminus \{i\}) \cup \{1\}\) contains \(k_i\) particles at position \(i\) in \(J\), and so the monomial \(a_{\frac{i}{2}a_{\frac{i}{2}}} (J_1)\) cannot appear in the sum Eq. 13. Therefore we see that the coefficient \(c_{\frac{i}{2}}\) must have been zero.

We have shown that any central element in \(P^\text{part}_N\) is of the form
\[
z = \sum_{\frac{i}{2}} c_{\frac{i}{2}a_{\frac{i}{2}}},
\]
where the particle configurations \(J\) are of the form \((r, 0, \ldots, 0), r \in \mathbb{Z}_{\geq 0}\). We use the convention that \(i + 1 = 0\) for \(i = N - 1\) which matches our definition of the action of the partic algebra \(P^\text{part}_N\) on the bosonic particle configuration module. Notice that \(0\) is never contained in the minimal input particle configuration, so that for \(1 \leq i \leq N - 1\) we have that \(i + 1 \notin J\) for all \(c_{\frac{i}{2}} \neq 0\).

Now we use a similar induction argument to show that \(c_{\frac{i}{2}} = 0\) for all \(I\) that contain a particle at position \(i \neq 0\). So let \(1 \leq i \leq N - 1\). Using Corollary 3.9 we calculate that
\[
a_{\frac{i}{2}} a_{\frac{i}{2}} = \begin{cases} a_{\frac{i}{2}(\frac{i}{2}+1)(\frac{i}{2})} & \text{if } i \notin J, \\ a_{\frac{i}{2}(\frac{i}{2})(\frac{i}{2}+1)} & \text{if } i \in J. \end{cases}
\]
\[
a_{\frac{i}{2}} a_{\frac{i}{2}} = \begin{cases} a_{\frac{i}{2}(\frac{i}{2}+1)(\frac{i}{2})} & \text{if } i + 1 \notin J, \\ a_{\frac{i}{2}(\frac{i}{2}+1)} & \text{if } i + 1 \in J. \end{cases}
\]

Since we have shown already that \(i + 1 \notin J\), we know that \(a_{i} z = z a_{i}\) is nothing but the equality
\[
a_{\frac{i}{2}} \left(\sum_{\frac{i}{2}} c_{\frac{i}{2}a_{\frac{i}{2}}} + \sum_{\frac{i}{2}} c_{\frac{i}{2}a_{\frac{i}{2}}} \right) = \left(\sum_{\frac{i}{2}} c_{\frac{i}{2}a_{\frac{i}{2}}} + \sum_{\frac{i}{2}} c_{\frac{i}{2}a_{\frac{i}{2}}} \right) a_{\frac{i}{2}}.
\]
This in turn is equivalent to the equality
\[
\sum_{\frac{I}{J} \in I} c_{I} a_{I} = \left(\sum_{\frac{I}{J} \in I} c_{I} a_{I} \right) a_{I},
\]
which can be rewritten as
\[
\sum_{\frac{I}{J} \in I} c_{I} a_{(I \setminus \{i\}) \cup \{i+1\}} = \sum_{\frac{I}{J} \in I} c_{I} a_{(I \cup \{i+1\}) \cup \{i\}}. \tag{14}
\]
Again, we observe that the set of monomials \(\{a_{(I \setminus \{i\}) \cup \{i+1\}} \mid i + 1 \notin J, i \in I\}\) is linearly independent for fixed \(i\).

By induction on the number \(k'\) of particles at position \(i\) in \(I\) we see that all coefficients \(c_{I}\) are zero for \(k' \geq 1\): For \(k' = 1\), the set \((I \setminus \{i\}) \cup \{i+1\}\) does not contain any particle at position \(i\) any more. Hence the monomial \(a_{(I \setminus \{i\}) \cup \{i+1\}}\) cannot appear in the right sum in Eq. 14, and its coefficient \(c_{I}\) must have been zero. For the induction step we assume that the coefficients for all \(a_{I}\) with at most \(k'\) particles at position \(i\) in the output particle configuration \(I\) are zero. Consider some \(a_{I}\) with \(k' + 1\) particles at position \(i\) in \(I\). So the set \((I \setminus \{i\}) \cup \{i + 1\}\) contains \(k'\) particles at position \(i\) in \(J\), and the monomial \(a_{(I \setminus \{i\}) \cup \{i+1\}}\) cannot appear in the sum Eq. 13. Again we see that its coefficient \(c_{I}\) must have been zero.

We have deduced now that only those monomials labelled by minimal input particle configurations \(J = (r, 0, \ldots, 0)\) and output particle configuration \(I = (0, \ldots, 0, s)\) may have nonzero coefficients. Since the number of particles has to be the same in \(I\) and \(J\), any central element is of the form
\[
\sum_{r \in \mathbb{Z} \geq 0} c_{(0, \ldots, 0, r)} a_{(0, \ldots, 0, r)} a_{(0, \ldots, 0)}
\]
as claimed. \(\square\)

Remark 4.2 In the proof of Theorem 4.1 one has to be careful: One cannot simply compare the coefficients in equalities of the form
\[
a_{I} \left(\sum c_{I} a_{I} \right) = \left(\sum c_{I} a_{I} \right) a_{I}
\]
since the partic algebra \(P_{N}^{\text{part}}\) has zero divisors, see Example 2.5. Therefore, when we consider the coefficients \(c_{I}\), we first have to determine linearly independent sets of monomials, e.g. of the form
\[
\{a_{(I \setminus \{i\}) \cup \{i+1\}} \mid i + 1 \notin J, i \in I\}.
\]
This is in fact an application of the faithfulness result from Theorem 3.2 combined with the normal form for monomials from Theorem 2.1.

Remark 4.3 The partic algebra is not finitely generated over its center: The center is concentrated in degree \(\mathbb{Z} \geq 0 \cdot (1, \ldots, 1)\) with respect to the \(\mathbb{Z}^{N-1}\)-grading from Remark 1.3. On the other hand one can see from the normal form in Proposition 2.3 that all \(\mathbb{Z}^{N-1}\)-graded components of the partic algebra are nontrivial, hence the partic algebra cannot be finitely generated over its degree \(\mathbb{Z} \geq 0 \cdot (1, \ldots, 1)\) component.
Acknowledgments I would like to thank the Max Planck Institute for Mathematics and the Hausdorff Center for Mathematics for excellent research conditions and funding the project through IMPRS/BIGS. I thank Catharina Stroppel for supervising the thesis, and I am grateful to Marcelo Aguiar, Michael Ehrig and Daniel Tubbenhauer for helpful discussions.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability Statement Data sharing not applicable to this article as no datasets were generated or analysed.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices. Adv. Math. 122(1), 49–149 (1996)
2. Billey, S.C., Jockusch, W., Stanley, R.P.: Some combinatorial properties of Schubert polynomials. J. Algebraic Combin. 2(4), 345–374 (1993)
3. Benkart, G., Meinel, J.: The center of the affine niltemperley-Lieb algebra. Math. Z. 284(1-2), 413–439 (2016)
4. Cain, A.J., Malheiro, A.: Crystallizing the hypoplactic monoid: from quasi-Kashiwara operators to the Robinson-Schensted-Knuth-type correspondence for quasi-ribbon tableaux. J. Algebraic Combin. 45(2), 475–524 (2017)
5. Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193(1-3), 179–200 (1998)
6. Fomin, S.: Schur, operators and Knuth correspondences. J. Combin. Theory ser. A 72(2), 277–292 (1995)
7. Fulton, W.: Young tableaux London mathematical society student texts, vol. 35. Cambridge University Press, Cambridge (1997)
8. Heyworth, A.: Rewriting as a special case of non-commutative Gröbner basis theory, Computational and geometric aspects of modern algebra (Edinburgh, 1998), London Math. Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, pp 101–105 (2000)
9. Hong, J., Kang, S.-J.: Introduction to Quantum Groups and Crystal Bases Graduate Studies in Mathematics, vol. 42. American Mathematical Society, Providence (2002)
10. Kashiwara, M.: Crystalizing the q-analogue of universal enveloping algebras. Comm. Math. Phys. 133(2), 249–260 (1990)
11. Korff, C., Stroppel, C.: The $\tilde{s}(n)_k$-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268 (2010)
12. Krook, D., Thibon, J.-Y.: Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at $q = 0$. J. Algebraic Combin. 6, 339–376 (1997)
13. Lascoux, A., Schützenberger, M.-P.: Le monoide plaxique, Noncommutative structures in algebra and geometric combinatorics (Naples, 1978), Quad. “Ricerca Sci.”, vol. 109, CNR, Rome, pp 129–156 (1981)
14. Liu, R.I., Smith, C.: The algebra of Schur operators. European J. Combin. 87, 103130 (2020)
15. Meinel, J.: Affine NilTemperley-Lieb Algebras and Generalized Weyl Algebras: Combinatorics and Representation Theory, Dissertation, University of Bonn (2016)
16. Reineke, M.: Generic extensions and multiplicative bases of quantum groups at $q = 0$. Represent. Theory 5, 147–163 (2001). (electronic)
17. Reineke, M.: The quantic monoid and degenerate quantized enveloping algebras arXiv/math/0206095 (2002)

18. Stembridge, J.R.: A local characterization of simply-laced crystals. Trans. Amer. Math. Soc. 355(12), 4807–4823 (2003). (electronic)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.