Long-term prognosis in breast cancer is associated with residual disease after neoadjuvant systemic therapy but not with initial nodal status

L. Zetterlund (1,2), F. Celebioglu (1,3), T. Hatschek (4), J. Frisell (5), and J. de Boniface (2,5)

1Department of Clinical Science and Education, Karolinska Institutet, Southern General Hospital Stockholm, Sweden
2Department of Surgery, Breast Unit, Capio St Göran’s Hospital, Stockholm, Sweden
3Department of Surgery, Southern General Hospital, Stockholm, Sweden
4Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet and University Hospital, Stockholm, Sweden
5Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Abstract

Background: This follow-up analysis of a Swedish prospective multicentre trial had the primary aim to determine invasive disease-free (IDFS), breast cancer-specific (BCSS) and overall survival (OS) rates, and their association with axillary staging results before and after neoadjuvant systemic therapy for breast cancer.

Methods: Women who underwent neoadjuvant systemic therapy for clinically node-positive (cN+) or -negative (cN0) primary breast cancer between 2010 and 2015 were included. Patients had a sentinel lymph node biopsy before and/or after neoadjuvant systemic therapy, and all underwent completion axillary lymph node dissection. Follow-up was until February 2019. The main outcome measures were IDFS, BCSS and OS. Univariable and multivariable Cox regression analyses were used to identify independent factors associated with survival.

Results: The study included a total of 417 women. Median follow-up was 48 (range 7–114) months. Nodal status after neoadjuvant systemic therapy, but not before, was significantly associated with crude survival: residual nodal disease (ypN+) associated with survival.

Conclusion: The present findings underline the prognostic significance of nodal status after neoadjuvant systemic therapy. This confirms the clinical value of surgical axillary staging after neoadjuvant systemic therapy.

Introduction

Neoadjuvant systemic therapy (NAST) was traditionally given to patients with inoperable locally advanced breast cancer, inflammatory breast cancer or when fixed or matted axillary lymph nodes were present. The majority of these women had lymph node-positive disease at diagnosis, and axillary lymph node dissection (ALND) was performed routinely both as a staging and therapeutic procedure.

NAST is increasingly being offered to women with early breast cancer, especially when aggressive tumour biology has been identified. The axillary lymph nodes are negative in more than half of these patients, but even among those with clinically node-positive (cN+) disease, an average of 40 per cent have a pathological complete response (pCR) in the nodes after NAST, with specific subgroups such as human epidermal growth factor receptor 2 (HER2)-positive tumours showing pCR rates as high as 70 per cent. Accordingly, less extensive axillary staging methods, such as sentinel lymph node biopsy (SLNB) or targeted axillary dissection, are implemented in the neoadjuvant setting to spare women the significant morbidity associated with ALND. In patients with clinically node-negative (cN0) tumours, some debate remains regarding whether SLNB should be performed before or after the completion of NAST. By performing axillary staging after NAST an additional operation is avoided and the downstaging effect of NAST can be evaluated. Zetterlund and colleagues, however, showed that 50 per cent of patients with cN0 disease had a positive SLNB before NAST, with potential implications for adjuvant treatment.

There is significant agreement between nodal pCR (ypNO) and pCR in the breast (ypTO/Tis), especially in cN0 disease. Results
from the prospective multicentre GANE A 2 trial showed that both a residual breast tumour size of at least 5 mm and lymphovascular invasion remained independent predictors of a false-negative SLNB after NAST in patients with cN+ disease. In an Italian retrospective cohort study, a negative SLNB after NAST was a favourable prognostic factor in all patients except those with residual disease in the breast, thus indicating unidentified residual nodal disease. Even though an increased false-negative rate of SLNB after NAST has been shown repeatedly, the implication for oncological outcome remains unclear, as there is a lack of follow-up data on the consequences of omitting ALND after NAST.

The primary aim of the trial from which the present data originate was the validation of SLNB in the neoadjuvant setting and so ALND was performed in all patients. The present analysis is a follow-up of the Swedish prospective multicentre trial, with the primary aim to determine invasive disease-free (IDFS), breast cancer-specific (BCSS) and overall survival (OS) rates and their association with axillary staging results before and after NAST.

Methods

The Swedish prospective multicentre trial included 419 patients with primary biopsy-proven invasive breast cancer planned for NAST. All patients underwent completion ALND after NAST. A total of 224 patients with cN0 disease at diagnosis had SLNB before NAST and optionally repeated after NAST. The remaining 195 patients with cytologically confirmed cN+ disease underwent SLNB after completion of NAST. Exclusion criteria were allergy to blue dye or radioactive tracer and inability to provide informed consent. Inflammatory breast cancer was an exclusion criterion for the cN0 arm only.

Patients were recruited from 16 Swedish hospitals between 1 October 2010 and 31 December 2015. Clinical nodal status was determined at diagnosis by clinical examination and axillary ultrasonography. In the event of suspicious lymph nodes, a fine-needle aspiration biopsy was taken. Surgeons were instructed to perform dual mapping of sentinel lymph nodes with blue dye and isotope; this was done before NAST in 95–5 per cent of women with cN0 disease and after NAST in 87–5 per cent of women with cN+ disease. Nodal status before NAST was divided into three groups: cN0(pN0(sn), cN0(pN+)(sn) and cN1. Response evaluation included clinical assessment, imaging and histopathology for breast and lymph nodes separately. Pathological staging (ypTNM) after NAST was based on the seventh edition of the AJCC staging system. A pCR was defined by the absence of residual invasive disease in the breast (ypT0/Tis) or axillary lymph nodes (ypN0). The presence of isolated tumour cells in axillary lymph nodes after NAST was thus not considered nodal pCR. Patients were considered hormone receptor (HR)-positive if oestrogen receptor (ER)- and/or progesterone receptor (PR)-positive. As expression of the proliferation marker Ki-67 could not be used reliably owing to uncertainty about historical local cut-off levels, surrogate molecular tumour subtypes were based solely on immunohistochemical analysis of ER, PR and HER2 status on core needle biopsy at the time of diagnosis. Patients were classified into one of four subgroups: HR+/HER2+, HR+/HER2+, HR+/HER2+ and triple-negative breast cancer (TNBC). Follow-up was until February 2019. Follow-up intervals were not prespecified in the protocol because the present analysis was not planned at the start of the trial.

Local recurrence was defined as a histologically confirmed invasive breast cancer recurrence in the ipsilateral breast or chest wall. Regional recurrence was defined as a recurrence in the ipsilateral or contralateral axillary, ipsilateral infraclavicular or supraclavicular, interpectoral or internal mammary lymph nodes. Distant recurrence was defined as breast cancer recurrence at any other site. Morphological confirmation of distant recurrence was desirable but not mandatory. The site of first recurrence was registered. If a patient presented with concurrent multiple recurrences, any distant recurrence was registered as first recurrence, then any regional and finally any local recurrence.

Adjuvant therapy was not stipulated in the trial protocol. The standard target for locoregional radiotherapy included ipsilateral axillary level 2 and 3 as well as supraclavicular/infraclavicular nodal basins; a few centres routinely included axillary level 1 as well. Para-astral lymph nodes were not routinely included in the radiotherapy target in Sweden during the study interval.

The study was approved by the Regional Ethics Committee at Stockholm County (Dnr 2010/441-31/4) and the Radiation Protection Committee at Southern General Hospital Stockholm (Dnr 6/10) in 2010, and amended in 2018 (Dnr 2018-387/32). It was registered at ClinicalTrials.gov (NCT02031042). Written informed consent was obtained from all participants before enrolment.

Statistical analysis

Categorical variables are reported as numbers with percentages and continuous data as median (range). Pearson’s χ² test was used to compare the distribution of categorical variables between cohorts.

The main outcome measures were IDFS, BCSS and OS. IDFS encompasses local, regional, distant and contralateral invasive breast cancer recurrences as well as death from any cause. All in situ events were excluded. Data on other primary non-breast invasive tumours, which were included in the IDFS definition by Hudis and colleagues, were not available. Survival was calculated from the date of diagnosis until the date of any first recurrence or death (IDFS), death from breast cancer (BCSS) or death from any cause (OS). Patients with no events were censored at the date of latest medical chart review.

Five-year survival rates were calculated by the Kaplan–Meier method, and the log rank test was used to compare groups. To assess the impact of different co-variables on survival, univariable and multivariable Cox regression analyses were carried out. The clinically most relevant co-variables were chosen avoiding potentially co-linear combinations. Cox proportional hazards model assumptions were checked graphically. Patients with any missing data on the chosen co-variables were excluded from both models. As there were few deaths, multivariable analyses were undertaken only for the outcome IDFS. Co-variables entered into both univariable and multivariable analyses were age (no more than 40, 41–50, at least 51 years), clinical nodal stage (cN0, cN+), clinical tumour stage (cT1–2, cT3–4), tumour subtypes (HR+/HER2-, HR+/HER2+, HR+/HER2+, TNBC), pCR in the breast (ypT0/Tis; no, yes), pathological complete response in the lymph nodes (ypN0; no, yes) and radiotherapy (none, breast or chest wall, locoregional). Results are presented as hazard ratios with 95 per cent confidence intervals. P values from Cox models were based on Wald tests. P < 0.050 was considered statistically significant. A test of interaction between all significant variables included in the multivariable regression model was performed. If an interaction effect was identified between two variables, its effect on the outcome was assessed by computing an interaction variable and comparing the hazard ratios for different values of the two interacting variables. Statistical analyses were done using SPSS® version 25 (IBM, Armonk, New York, USA).
Results

Data from 417 patients were available for follow-up; two patients from the original trial were excluded from follow-up analyses as they developed distant metastases during NAST. Median follow-up after the date of breast cancer diagnosis was 48 (range 7–114) months. The 5-year OS rate was 87·8 per cent and the BCSS rate was 88·3 per cent. Patient and tumour characteristics as well as neoadjuvant and adjuvant therapy are summarized in Table 1.

Sixty-six of 224 women (29·5 per cent) with cN0 disease initially and 60 of 195 (30·8 per cent) with cN+ disease initially had no residual invasive disease in the breast (ypT0/Tis) after NAST. The proportion of patients with both ypN0 and ypT0/Tis was significantly smaller in cN+ than in cN0 disease (49 of 60 (82 per cent) versus 64 of 66 (97 per cent) respectively; \(P = 0·005 \)). The pCR rates in the breast varied significantly between tumour subtypes: 66 per cent for HR−/HER2+, 42 per cent for TNBC, 41 per cent for HR+/HER2+ and 10·1 per cent for HR+/HER2− (\(P < 0·001 \)). The corresponding values for nodal pCR in the cN+ group were 64, 55, 51 and 12·7 per cent respectively (\(P < 0·001 \)).

During follow-up, 92 of 417 patients (22·1 per cent) experienced recurrence. First events were local in six (7 per cent), regional in 11 (12 per cent), distant in 71 (77 per cent) and contralateral in four (4 per cent) women. Median time to any first recurrence was 26 (range 5–82) months. Of all 92 patients with recurrence, 45 (49 per cent) died from breast cancer during follow-up. Two patients had non-breast-related deaths and no previous recurrences.

Ten of eleven regional recurrences developed in women with cN+ disease at diagnosis. Seven of these had residual nodal disease after NAST and there was one false-negative SLNB. All seven women eventually developed distant recurrence, resulting in three deaths during follow-up. In addition, one patient without residual nodal disease after NAST developed distant recurrence.

Unadjusted survival curves for IDFS according to clinical nodal status before NAST (cN), pathological nodal status after NAST (ypN) and surrogate molecular subtype are shown in Fig. 1. In contrast to cN status, ypN status was significantly associated with all survival rates including IDFS, BCSS and OS. The 5-year OS rate was 90·0 versus 85·5 per cent for cN0 versus cN+ (\(P = 0·198 \)), but 83·3 versus 91·0 per cent for ypN+ versus ypN0 (\(P = 0·017 \)).

Surrogate molecular tumour subtype was a strong prognostic factor; unadjusted 5-year BCSS rates were 73 per cent in TNBC, 87 per cent in HR−/HER2+, 90·6 per cent in HR+/HER2− and 100 per cent in HR+/HER2+ subtypes (\(P < 0·001 \)). Corresponding rates for 5-year OS were 73, 87, 89·6 and 100 per cent (\(P < 0·001 \)).

There were 94 events, and 45 and 47 deaths among 417 women for the survival outcomes IDFS, BCSS and OS respectively. One patient was excluded from analyses because a value was missing for one of the co-variables. In multivariable Cox regression analysis, pCR in the axillary lymph nodes (hazard ratio 0·41, 95 per cent c.i. 0·22 to 0·74; \(P = 0·003 \)) and adjuvant radiotherapy to the breast or chest wall (hazard ratio 0·23, 0·08 to 0·64; \(P = 0·005 \)) were independently associated with improved IDFS, whereas TNBC subtype (hazard ratio 2·87, 1·72 to 4·79; \(P < 0·001 \)) had an independent association with worse survival (Table 2).

There was a statistically significant interaction effect between ypN and adjuvant radiotherapy for the outcome IDFS. The hazard ratio for radiotherapy was further decreased when nodal pCR was achieved.

In univariable Cox regression analysis, nodal pCR and HR+/HER2+ subtype were associated with improved BCSS and OS, whereas TNBC subtype was associated with both worse BCSS and OS (Table 3).

Discussion

This follow-up analysis based on data from a Swedish prospective multicentre trial evaluating SLNB in the neoadjuvant setting
showed a lack of association between nodal status before NAST and survival outcomes. Instead, axillary staging results after NAST predicted survival, thus confirming the prognostic importance of axillary status after NAST and supporting the practice of surgical axillary staging after NAST in all patients.

In patients with cN0 disease, SLNB is increasingly being performed after completion of NAST worldwide. This choice of timing takes advantage of the downstaging effect of NAST and an extra surgical procedure is avoided before NAST. In Sweden, however, until recently the recommended procedure has been SLNB before NAST, as it is perceived that nodal staging before NAST allows locoregional treatment decisions to be made without the risk of undertreatment; this is further underlined by the sensitivity of axillary ultrasonography and needle biopsy in patients with suspicious lymph nodes being only approximately 25 per cent. In addition, SLNB identification rates are somewhat lower and false-negative rates higher after NAST in patients with cN0 disease, but even more so in those with cN+ status. Still, at the 2017 St Gallen conference, only 20 per cent supported SLNB before NAST in patients with clinically node-negative disease.

In 2012, Mamounas and colleagues reported predictors of locoregional recurrence based on a combined analysis of the National Surgical Adjuvant Breast and Bowel Project B-18 and B-27 trials and concluded that, in addition to age and clinical stage at diagnosis, pathological nodal status and breast tumour response after NAST were the predictors with the greatest impact on locoregional recurrence rates. Of note, these trials did not allow chest wall radiotherapy after mastectomy or regional nodal radiotherapy. In the present study, nodal status before NAST was not associated with survival, but residual nodal disease after NAST was, supporting findings reported by Kuerer and co-workers in 1999. In 2002, Rouzier et al. suggested axillary status after NAST to be of greater prognostic significance than the response of the primary tumour itself. In the present analysis,

Fig. 1 Kaplan–Meier survival curves for invasive disease-free survival
Invasive disease-free survival according to a cN status before neoadjuvant systemic therapy (NAST) (417 patients, 94 events), b ypN status after NAST (417 patients, 94 events) and c surrogate molecular tumour subtype (416 patients, 93 events). sn, sentinel node; pCR, pathological complete response; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer. a P = 0.078, b P < 0.001, c P = 0.003 (log rank test).
Table 2 Univariable and multivariable Cox regression analyses for invasive disease-free survival

	No. of patients (n = 416)	No. of events (n = 93)	Univariable analysis	Multivariable analysis	
	Hazard ratio*	P	Hazard ratio*	P	
Age (years)					
< 40	111	28 (25.2)	1.00 (reference)	0.669	0.338
41–50	118	27 (22.9)	0.86 (0.51, 1.46)	0.571	0.260
≥ 51	187	38 (20.3)	0.80 (0.49, 1.31)	0.573	0.160
cN status					
cN0	221	39 (17.6)	1.00 (reference)	0.021	1.00 (reference)
cN+	195	54 (27.7)	1.62 (1.07, 2.45)	0.021	1.09 (0.64, 1.86)
cT status					
cT1–2	285	61 (21.4)	1.00 (reference)	0.097	0.95 (0.61, 1.47)
cT3–4d	131	32 (24.4)	1.06 (0.74, 1.71)	0.097	0.806
Tumour subtype					
HR+/HER2–	186	44 (23.7)	1.00 (reference)	0.005	< 0.001
HR–/HER2+	50	9 (18)	0.81 (0.40, 1.67)	0.572	1.64 (0.76, 3.53)
HR+/HER2+	84	9 (11)	0.44 (0.22, 0.91)	0.026	0.56 (0.27, 1.17)
TNBC	96	31 (52)	1.59 (1.00, 2.52)	0.049	2.87 (1.72, 4.79)
ypT0/Tis					
No	290	77 (26.6)	1.00 (reference)	0.006	0.54 (0.29, 1.00)
Yes	126	16 (12.7)	0.47 (0.28, 0.81)	0.006	0.54 (0.29, 1.00)
ypN0					
No	168	55 (32.7)	1.00 (reference)	0.016	0.63 (0.33, 1.20)
Yes	248	38 (15.3)	0.45 (0.30, 0.68)	< 0.001	0.41 (0.22, 0.74)
Radiotherapy					
No	32	9 (28)	1.00 (reference)	0.037	0.019
Breast/chest wall	68	6 (9)	0.28 (0.10, 0.79)	0.016	0.23 (0.08, 0.64)
Locoregional	316	78 (24.7)	0.78 (0.39, 1.55)	0.472	0.48 (0.21, 1.09)

Values in parentheses are percentages unless indicated otherwise; *values are 95 per cent confidence intervals. Includes patients with data available for all co-variables; analyses are based on 416 patients and 93 events owing to missing information on human epidermal growth factor receptor 2 (HER2) status for one patient. HR, hormone receptor; TNBC, triple-negative breast cancer; ypT0/Tis, no residual invasive tumour in the breast; ypN0, no residual axillary disease.

Table 3 Univariable Cox regression analyses for breast cancer-specific and overall survival

	No. of patients (n = 416)	Breast cancer-specific survival	Overall survival			
	No. of deaths (n = 44)	Hazard ratio*	P	No. of deaths (n = 46)	Hazard ratio*	P
Age (years)						
< 40	111	12 (10.8)	1.00 (reference)	0.917	0.931	
41–50	118	12 (10.2)	0.91 (0.41, 2.04)	0.822	1.11 (0.55, 2.27)	
≥ 51	187	20 (10.7)	1.06 (0.52, 2.04)	0.870	21 (11.2)	
cN status						
cN0	221	18 (8.1)	1.00 (reference)	0.121	20 (9.0)	
cN+	195	26 (13.3)	1.61 (0.88, 2.96)	0.121	26 (13.3)	
cT status						
cT1–2	285	29 (10.2)	1.00 (reference)	0.119	16 (12.2)	
cT3–4d	131	15 (11.5)	1.08 (0.59, 1.97)	0.883	16 (12.2)	
Tumour subtype						
HR+/HER2–	186	18 (9.7)	1.00 (reference)	0.002	20 (10.8)	
HR–/HER2+	50	5 (10)	1.15 (0.42, 3.10)	0.785	5 (10)	
HR+/HER2+	84	1 (1)	0.13 (0.02, 0.95)	0.044	1 (1)	
TNBC	96	20 (21)	2.60 (1.37, 4.94)	0.004	20 (21)	
ypT0/Tis						
No	290	37 (12.8)	1.00 (reference)	0.056	39 (13.4)	
Yes	126	7 (5.6)	0.45 (0.20, 1.02)	0.056	7 (5.6)	
ypN0						
No	168	25 (14.9)	1.00 (reference)	0.078	26 (15.5)	
Yes	248	19 (7.7)	0.50 (0.27, 0.91)	0.022	20 (8.1)	
Radiotherapy						
No	32	1 (3)	1.00 (reference)	0.078	2 (6)	
Breast/chest wall	68	2 (3)	0.83 (0.07, 9.19)	0.879	2 (3)	
Locoregional	316	41 (13.0)	3.41 (0.47, 24.83)	0.226	42 (13.3)	

Values in parentheses are percentages unless indicated otherwise; *values are 95 per cent confidence intervals. Includes patients with data available for all co-variables; analyses are based on 416 patients and 46 deaths respectively in 416 patients owing to missing information on tumour subtype (HER2 status) in one patient. HR, hormone receptor; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; ypT0/Tis, no residual invasive tumour in the breast; ypN0, no residual axillary disease.
lymph nodes, especially in patients with initial cN0 status. This cant agreement between response rates in the breast and axillary of whether SLNB was performed before or after NAST.

Less common in patients with a false-negative SLNB, regardless complete pathological response in the breast was significantly but false-negative rates have been unacceptably high. Efforts women can now be spared an ALND. In those with biopsy-proven patients with cN0 disease and a negative SLNB after NAST, most Zetterlund and co-workers showed that a complete or near-complete pathological response in the breast was significantly less common in patients with a false-negative SLNB, regardless of whether SLNB was performed before or after NAST.

Several studies have recently presented data showing a significant agreement between response rates in the breast and axillary lymph nodes, especially in patients with initial cN0 status. This association was confirmed in the present study. Tadros et al. concluded that the risk of missing nodal metastases if surgical axillary staging is omitted is very small in patients with initial cN0 status and no residual disease in the breast, especially in the triple-negative and HER2-positive subgroups. In the light of de-escalated surgery, risk scoring systems are emerging with the aim of identifying women with the highest likelihood of nodal conversion who might be spared any axillary surgery after NAST.

In patients with cN0 disease and a negative SLNB after NAST, most women can now be spared an ALND. In those with biopsy-proven cN+ status, SLNB may be performed after completion of NAST, but false-negative rates have been unacceptably high. Efforts have been made to decrease the false-negative rates by selecting patients with ycN0 status after NAST, performing dual mapping, trying to remove at least two sentinel nodes, and marking the positive lymph nodes before NAST and removing them in combination with SLNB after NAST (targeted axillary dissection).

As all participants in the present trial underwent completion ALND after NAST, the prognostic impact of de-escalated axillary staging in the neoadjuvant setting could not be evaluated and was not the aim of the analysis. More data can be expected from two ongoing RCTs investigating de-escalation in axillary treatment after NAST in patients with cN+ disease.

This long-term follow-up study of a prospective national cohort of patients with breast cancer who had NAST supports axillary staging after NAST in all patients, and has confirmed the significant association between pCR in the breast and axillary lymph nodes, especially in women with initial cN0 status.

Acknowledgements

The authors thank all staff involved at the participating hospitals, including coordinating breast surgeons and breast care nurses for invaluable help in collecting data at Halsmstad Hospital (F. Graffenri), Helsingborg Hospital (A-K. Falck), Kristianstad Hospital (T. Svensjö), Linköping University Hospital (E. Vikhe Patil), Skåne University Hospital/Lund (K. A. Isaksson, H. Erixon), Skåne University Hospital/Malmö (L. Rydén, H. Erixon), Sahlgrenska University Hospital (S. Janeva), Sundsvall Hospital (L. Wadsten), Umeå University Hospital (M. Sund), Västerås Hospital (Y. Andersson), Uddevalla Hospital (C. Wångblad), Uppsala University Hospital (F. Wärb) and Örebro University Hospital (H. Floed). The authors also thank biostatistician H. Pettersson for professional statistical support.

This research was supported by grants from Stockholm County Council (ALF project) and the Swedish Breast Cancer Association (BRO). Neither organization took part in the design of the study, or in the preparation, review, approval or decision to submit the manuscript for publication. J. d. B. is supported by a Junior Clinical Investigator Award from the Swedish Cancer Foundation. T. H. previously had a consulting role for Roche Sweden, Pfizer Sweden and Pierre Fabre, and has received research funding from Roche and Pfizer and financial support from Roche with travel or accommodation expenses. None of these companies were involved in the design of the present study or in the preparation, review, approval or decision to submit the manuscript for publication.

Disclosure: The authors declare no other conflict of interest.

References

1. Kuerer HM, Newman LA, Buzdar AU, Hunt KK, Dhingra K, Buchholz TA et al. Residual metastatic axillary lymph nodes following neoadjuvant chemotherapy predict disease-free survival in patients with locally advanced breast cancer. Am J Surg 1998; 176:502–509.

2. Bayraktar S, Gonzalez-Angulo AM, Lei X, Buzdar AU, Valero V, Melhem-Bertrandt A et al. Efficacy of neoadjuvant therapy with trastuzumab concurrent with anthracycline- and nonanthracycline-based regimens for HER2-positive breast cancer. Cancer 2012; 118:2385–2393.

3. Boughey JC, McCall LM, Ballman KV, Mittendorf EA, Ahrendt GM, Wilke LG et al. Tumour biology correlates with rates of breast-conserving surgery and pathologic complete response after neoadjuvant chemotherapy for breast cancer: findings from the ACOSOG Z1071 (Alliance) Prospective Multicentre Clinical Trial. Ann Surg 2014; 260:608–616.

4. Caulfield AS, Yang WT, Krishnamurthy S, Mittendorf EA, Black DM, Gilcrease MZ et al. Improved axillary evaluation following neoadjuvant therapy for patients with node-positive breast cancer using selective evaluation of clipped nodes: implementation of targeted axillary dissection. J Clin Oncol 2016; 34:1072–1078.

5. Sackey H, Magnuson A, Sandelin K, Liljegren G, Bergkvist L, Fülop Z et al. Arm lymphoedema after axillary surgery in women with invasive breast cancer. Br J Surg 2014; 101:390–397.

6. Kühn T, Classe JM, Gentili OD, Tinterri C, Peintinger F, de Boniface J. Current status and future perspectives of axillary management in the neoadjuvant setting. Breast Care 2018; 13:337–341.

7. Zetterlund L, Celebioglu F, Axelsson R, de Boniface J, Frisell J. Swedish prospective multicentre trial on the accuracy and clinical relevance of sentinel lymph node biopsy before neoadjuvant systemic therapy in breast cancer. Breast Cancer Res Treat 2017; 163:93–101.

8. Samiei S, van Nijnatten TJ, de Munck L, Keymeulen KBM, Simons JM, Kooreman LFS et al. Correlation between pathologic complete response in the breast and absence of axillary lymph node metastases after neoadjuvant systemic therapy. Ann Surg 2020; 271:574–580.

9. Tadros AB, Yang WT, Krishnamurthy S, Rauch GM, Smith BD, Valero V et al. Identification of patients with documented ypN0 was not an independent prognostic factor for BCSS and OS, however, it was independently associated with improved IDFS, as was local radiotherapy. Earlier studies also demonstrated the importance of radiotherapy for locoregional control, but without a significant effect on survival. In the present trial, radiotherapy after NAST was not stipulated in the protocol, and the results should be regarded in the light of this limitation. Patients eligible for NAST, however, can be assumed to be suitable for guideline-compliant radiotherapy also if they have not received radiotherapy previously.
pathologic complete response in the breast after neoadjuvant chemotherapy for omission of axillary surgery. JAMA Surg 2017;152:665–670.
10. Classe J-M, Loaec C, Gimbergues P, Alran S, de Lara CT, Dupre PF et al. Sentinel lymph node biopsy without axillary lymphadenectomy after neoadjuvant chemotherapy is accurate and safe for selected patients: the GANEA 2 study. Breast Cancer Res Treat 2019;173:343–352.
11. Galimberti V, Ribeiro Fontana SK, Maisonneuve P, Steccanella F, Vento AR et al. Sentinel node biopsy after neoadjuvant treatment in breast cancer: five-year follow-up of patients with clinically node-negative or node-positive disease before treatment. Eur J Surg Oncol 2016;42:361–368.
12. van Nijatten TJ, Schipper RJ, Lobbes MBI, Nelemans PJ, Beets-Tan RGH, Smidt ML. The diagnostic performance of sentinel lymph node biopsy in pathologically confirmed node positive breast cancer patients after neoadjuvant systemic therapy: a systematic review and meta-analysis. Eur J Surg Oncol 2015;41:1278–1287.
13. Zetterlund LH, Frisell J, Zouzos A, Axelsson R, Hatschek T, de Boniface J et al. Swedish prospective multicentre trial evaluating sentinel lymph node biopsy after neoadjuvant systemic therapy in clinically node-positive breast cancer. Breast Cancer Res Treat 2017;163:103–110.
14. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 2010;17:1471–1474.
15. Bossuyt V, Provenzano E, Symmans WF, Boughery JC, Coles C, Curigliano G et al.; Breast International Group–North American Breast Cancer Group (BIG-NABCG) collaboration. Recommendations for standardized pathological characterization of residual disease for neoadjuvant clinical trials of breast cancer by the BIG-NABCG collaboration. Ann Oncol 2015;26:1280–1291.
16. AJCC. Purposes and Principles of Cancer Staging. Springer: New York, 2010.
17. Herold CI, Gaughan EM, Lamb CC, Tung NM. Second primary ipsilateral breast cancer with contralateral axillary involvement: a case report and literature review. Clin Breast Cancer 2011;11:406–408.
18. Hudis CA, Barlow WE, Costantino JP, Gray RJ, Pritchard KI, Chapman JA et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J Clin Oncol 2007;25:2127–2132.
19. Leenders MWH, Broeders M, Groene C, Richir MC, Go HLS, Langenhorst BLAM et al. Ultrasound and fine needle aspiration cytology of axillary lymph nodes in breast cancer. To do or not to do? Breast 2012;21:578–583.
20. Classe J-M, Bordes V, Campion L, Mignotte H, Dravet F, Leveque J et al. Sentinel lymph node biopsy after neoadjuvant chemotherapy for advanced breast cancer: results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. J Clin Oncol 2012;30:3960–3966.
21. Curigliano G, Burstine HJ, Winer EP, Gnant M, Dubsky P, Loibl S et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen international expert consensus conference on the primary therapy of early breast cancer 2017. Ann Oncol 2017;28:1700–1712.
22. Mamounas EP, Anderson SJ, Dignam JJ, Bear HD, Julian TB, Geyer CE et al. Predictors of locoregional recurrence after neoadjuvant chemotherapy: results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. J Clin Oncol 2012;30:3960–3966.
23. Kuerer HM, Sahin AA, Hunt KK, Newman LA, Breslin TM, Ames FC et al. Incidence and impact of documented eradication of breast cancer axillary lymph node metastases before surgery in patients treated with neoadjuvant chemotherapy. Ann Surg 1999;230:72–78.
24. Rouzier R, Extra JM, Klijianienko J, Falcou MC, Asselain B, Vincent-Salomon A et al. Incidence and prognostic significance of complete axillary downstaging after primary chemotherapy in breast cancer patients with T1 to T3 tumours and cytopathologically proven axillary metastatic lymph nodes. J Clin Oncol 2002;20:1304–1310.
25. Whelan TJ, Olivotto IA, Parulekar WR, Ackerman I, Chua BH, Nabid A et al. Regional nodal irradiation in early-stage breast cancer. New Engl J Med 2015;373:307–316.
26. Ouldamer L, Chas M, Arbion F, Body G, Cirier J, Ballester M et al. Risk scoring system for predicting axillary response after neoadjuvant chemotherapy in initially node-positive women with breast cancer. Surg Oncol 2018;27:158–165.
27. Kuehn T, Bauerfeind I, Fehm T, Fleige B, Hausschild M, Helms G et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy: a French prospective multicentric study. J Clin Oncol 2019;37:726–732.
28. Chapman CH, Jaggi R. Postmastectomy radiotherapy after neoadjuvant chemotherapy: a review of the evidence. Oncology 2015;29:657–666.