Medicinal Applications of Coordination Complexes

Hasan Shamran Mohammed and Vishwa Deepak Tripathi

1. Department of Chemistry, Science College, University of Al-Qadisiyah, Al-Qadisiyah, Iraq.
2. Department of Chemistry, M. K. College (L. N. Mithila University), Darbhanga, Bihar. 846001

Abstract

Coordination compounds and organometallics have very special place in chemistry due to their different structural arrangements and application in various fields. They also play vital role in biological system particularly in human and plant life. The blood oxygen carrier haemoglobin is a coordination compound of iron which is essential for human life, also the chlorophyll is a coordination compound of magnesium essential for plant the life and the continuation of the life on this planet. These compounds are not only biologically important but also comprise a group of drug like molecules and medicines. Coordination compounds such as platinum, palladium and ruthenium complexes are anti-cancer drugs. Also, many of the coordination compounds are anti-bacterial. The coordination compounds have been showed effective behaviour against many diseases like Alzheimer's and malaria. Recently coordination compounds used as antiviruses such as coronavirus. In present review, we highlighted the most important coordination complexes that show a significant role in the field of medicine.

Keywords: Coordination compounds, complexes, cis platinum, antimalarial, anticancer, photosensitizer

Introduction

Coordination compounds and Organometallics are not very new in field of medicine and drug discovery but this area still does not get much attention by medicinal chemists. This area is at the interface between medicine and inorganic chemistry, it embraces metal-based therapeutically important compounds, metal sequestering or mobilizing agents, metal-containing diagnostic aids, and the medicinal recruitment of endogenous metal ions. Nevertheless, our body and biological system contains hundreds of inorganic complexes and metals in form of different enzymes and protein cofactors, which are essential for a normal biological process. It is the biological importance and their essential role in maintaining the vital biological processes which attracts chemists always to work in field of synthesis and application of coordination compounds and organometallics. Inspiring from these observations and the role of Coordination compounds in the area of medicine here we decided to compile a mini review with the discussion on the medicinal application of coordination compounds and organometallics.

Many coordination compounds exhibited biological activities against bacteria and fungi\(^{1-4}\). The mix ligands of piperacrine, acetaminophen and piperacrine, acetylsalicylic of copper II, cobalt II, zinc II, and iron II ions (Figure 1) exhibited biological activity against Escherichia coli and Staphylococcus aureus\(^5\).
Pyrazolinethiocarbamoyl palladium (Figure 2) exhibited high effect on *Entamoebahistolytica* more than the free ligand\(^6\).

On the other hand, nickel and copper ions with thiocarbamoyl dihydropyrazole (Figure 3) exhibited high inhibitory activity towards *Candida strains*\(^6\).

Many azo dyes and coordination compound of azo dye showed high evaluated contrary to the growth of bacteria and fungi\(^7\). The chelate ligand of 1\{[5mercapto1-H1,2,4triazole3yl]diazenyl]-naphthalen2-ol with metals of Mn\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\) and Cu\(^{2+}\) (Figure 4) exhibited high evaluated against the growth of (*Escherichia coli, Staphylococcus aureus, Aspergillus flavus*and *Candida albicans*)\(^8\).
Anticancer: The difference between the cis isomer and trans of [PtCl₂(NH₃)₂] is a geometry whereas cis isomer is biological activity and it uses as anticancer drug because the Cl ligand in cis isomer is active and it replaces by water molecule then the new product platinum complex with water reacts with DNA of the cancer cell by replacing water molecule which leads to inhibition growth the cells of cancer.

In the mice, the complex of Ti(IV) oxalate shown attractive effects such as improve the weight and reduction the growth the tumour. Titanium(IV) complexes such as badotitane (Figure 5) which is β-diketonato complexes of titanium and titanocene dichloride shown antitumor activity in human clinical trials like platinum complexes with low toxicity in many different cell lines but unfortunately these complexes are not stable.

There are many drug coordination compounds based on Schiff bases. The complexes of copper (II) with Schiff bases of (6-methyl-2-oxo-1,2-dihydroquinoline-3-carboxaldehyde semicarbazones) and (8-methyl-2-oxo-1,2-dihydroquinoline-3-carboxaldehyde semicarbazones) (Figure 6) exhibited satisfactory cytotoxic activity against A431 cancer cell line.
Complex \([\text{CuCl}_2(\text{Bipy})(L)]\) (Figure 7) is considered a drug for anti-Candida therapy and it exhibited fungicidal activity against planktonic and sessile cells.\(^{13}\)

The complex \([\text{CuLCl}_2]\) (Figure 8) exhibited activity against B16F10 mouse melanoma cells.\(^{14}\)

Antimalaria: The many metal complexes such as iron, gold, ruthenium, cobalt, rhodium, copper, cobalt, zinc, osmium, and palladium, etc., have shown effective anti-malarial.\(^{15,16}\) The complex of zinc (II) with amodiaquine (Figure 9) exhibited efficacy towards *Plasmodium berghei* with safety evaluation.\(^{17}\)
The malaria becomes more resistance to large antimalarial drugs. The ligands of o-vanillin-(4-methyl thiosemicarbazone) with Ga(III), Fe(III) and (III) (Figure 10) were shown activity against malaria\(^\text{18}\). The M(II) complexes of Mn, Co, Ni, Cu and Zn with cross bridge dtetrazamcrocyclic ligands were shown potential activity \textit{in vitro} against strains of chloroquine-resistant (W2) and chloroquine-sensitive (D6)\(^\text{19}\).

Ferrocene having Ferroquine (FQ or SSR97193) (Figure 11) was shown a unique organ active against the chloroquine-susceptible, chloroquine-resistant Plasmodium falciparum and P. vivax strains. Thus, it prefers that both ferrocene compounds took in one dose\(^\text{20-23}\).

Figure 9 Structure of zinc(II) with amodiaquine ligand

Figure 10 [Cu(L)(OAC)(PF\(_6\))]

Figure 11 Chemical structure of ferroquine (7-chloro-[(2'-N,N-dimethyl-aminomethyl) ferrocenylmethylamino]quinolone
Other compound of ferrocenyl carbohydrate (Figure 12) shown potential as an anti-malarial compound24-26.

![Figure 12 Ferrocenyl carbohydrate conjugate](image)

The complex of gold with chloroquine having formula Au(PPh\textsubscript{3})(CQ)\textsubscript{2}PF\textsubscript{6} (Figure 13) consider more active against two chloroquine-resistant strains of Plasmodium falciparum in vitro than CQ and besides active against Plasmodium berghei in \textit{vitro} and in \textit{vivo}27.

![Figure 13 Gold chloroquine [Au(CQ)(PPh\textsubscript{3})+](image)

Anti-Alzheimer: Metal complexes exhibited ability to blocking β-amyloid aggregation and scavenging its toxicity. Some complexes for ruthenium (III) exhibited significant role as anti-Alzheimer agents such as NAMI A, KP1019, and PMRU20 (Figure 14)28. In the same manner, some copper (II) and vanadium complexes exhibited remarks role in the \textit{vitro} as anti-Alzheimer29,30.

![Figure 14 Ruthenium compounds as anti-Alzheimer](image)

Antihypertensive: Sodium nitroprusside (Figure 15) uses a drug for arterial and venous vasodilation. It interacts with the sulfhydryl groups to deliver nitric oxide which causes fast vasodilation and acute lowering blood pressure31-33. Some studies mentioned to the capability of sodium nitroprusside to restrain platelet aggregation in \textit{vivo} and \textit{vitro}34. Pharmacists prefer the therapeutic results of
nitroprusside, but it is accompanied by the release of cyanide, so it is currently preferable only in severe cases.

![Figure 15 Structure of sodium nitroprusside](image)

Cosmetics

Chlorophyll is a complex for magnesium for porphyrin derivative and is hence a metal complex dye. It is key component in the leaves of green plants and is very crucial in the process of photosynthesis. Chlorophyll has very good solubility in fats and oils, also it is used essentially for dyeing and bleaching oils and soaps, and also for coloring mineral oils, waxes, essential oils and ointments. Water-soluble chlorophyll exhibited many applications in the food stuffs industry for colouring confectionery, gelatine products and beverages. In the cosmetics industry they are added to creams and soaps. Copper chlorophyllin (Figure 16) is a complex for copper producing by replace Mg$^{2+}$ by Cu$^{2+}$. This complex is a good food colorant, cosmetics and possibility anti carcinogenic and antioxidant. The great majority use of azo dyes and their complexes is in hair colouring, leather and fur especially coordination compounds of cobalt and chromium based azo dye.

![Figure 16 Structure of copper chlorophyllin](image)

Release bioactive ligands:

Small ligands such as nitric mono oxide and carbon mono oxide are toxic when we take them by nose while the body produces little amounts of them and they play large role biology in the body. Nitric mono oxide play a critical role as vasorelaxant, inhibitor of platelet aggregation, sexual dysfunction. We can get high concentration of nitric mono oxide locally to treat the cancer by photo-irradiation of metal nitrosyl like ruthenium nitrosyl complexes with pyridine, bipyridine, and terpyridine.

Photosensitizers for photodynamic therapy:

Photodynamic therapy (PDT) uses to therapy many diseases for instance cancer, microbial infections, fungal, skin diseases and esthetic. Recently this type of treatment has more interest to treat the viruses such as coronavirus (SARS-CoV-2), Ebola
virus, Middle East Respiratory Syndrome and anti-HIV. The PDT depends on the photosensitizer (PS) which is a compound acting by irradiation to form ROS and/or radicals leading to cell death. The PS is stable in dark conditions and not or so lower toxicity. Many PSs are coordination compounds and they showed favourable physico-chemical properties. They absorb in visible area and it is possible in the NIR area by absorption two-photon such as coordination compounds of bacteriochlorin and iridium dye (Figure 17) that means that less harmful and more penetration in the tissue of the body.

Conclusion: In this review, we have selected the reports containing application of coordination compounds (metal-based drug) in field of their application in medicine and drug discovery. We classified the metal based complex compounds depending on their application in the therapy of diverse diseases. We have shown the utilisation metal containing compounds in various biomolecules and their vital role in living systems. The use of metal based drug molecules are summarized against Cancer, Malaria, Anaemia and Alzheimer diseases. The essential roles of metal complexes in the field of cosmetics have also been incorporated. We believe that our review is very comprehensive and specific for the researchers who are working in the area of application of metal complexes in various fields.

References

[1]. Uivarosi, V. 2013 Metal Complexes of Quinolone Antibiotics and Their Applications: An Update. *Molecules* **18**, 11153–11197.
[2]. Chohan, Z. H., Shad, H. A., Youssoufi, M. H. & Ben Hadda, T. 2010 Some new biologically active metal-based sulfonamide. *European Journal of Medicinal Chemistry* **45**, 2893–2901.
[3]. Psomas, G., Tarushi, A., Efthimiadou, E. K., Sanakis, Y., Raptopoulou, C. P., & Katsaros, N. 2006 Synthesis, structure and biological activity of copper(II) complexes with oxolinic acid. *Journal of Inorganic Biochemistry* **100**, 1764–1773.
[4]. Efthimiadou, E. K., Katsarou, M. E., Karaliota, A. & Psomas, G. 2008 Copper(II) complexes with sparflloxacin and nitrogen-donor heterocyclic ligands: Structure–activity relationship. *Journal of Inorganic Biochemistry* **102**, 910–920.
[5]. Ayipo, Y. O., Obaleyje, J. A. & Badeggi, U. M. 2016 Novel metal complexes of mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid: Synthesis, characterization and antimicrobial activities. *Journal of the Turkish Chemical Society Section A: Chemistry*, **4**(1), 313-326.
[6]. Hossain, M. S., Zakaria, C. M. & Kudrat-E-Zahan, M. 2018 Metal Complexes as Potential Antimicrobial Agent: A Review. *American Journal of Heterocyclic Chemistry* **4**, 1-21.
[7]. Mohammed, H. S., Tripathi, V. D. & Darghouth, A. A. 2019 Synthesis, Characterization, DFT calculation and Antimicrobial Activity of Co (II) and Cu (II) complexes with azo dye. in *Journal of Physics: Conference Series* vol. 1294.
[8]. El-Ghamry, H. A., Fathalla, S. K. & Gaber, M. 2018 Synthesis, structural characterization and molecular modelling of bidentate azo dye metal complexes: DNA interaction to antimicrobial and anticancer activities. *Applied Organometallic Chemistry* **32**, e4136.

[9]. Kostova, I. 2006 Platinum complexes as anticancer agents. *Recent Pat Anticancer Drug Discov* **1**, 1–22.

[10]. Yaghoubi, S., Schwietert, C.W. and McCue, J.P. 2000 Biological roles of titanium. *Biological trace element research*, **78**, 205-217.

[11]. Buettner, K. M., & Valentine, A. M. 2012 Bioinorganic chemistry of titanium. *Chemical Reviews*, **112**(3), 1863-1881.

[12]. Caruso, F. and Rossi, M., 2004. Antitumor titanium compounds. *Mini reviews in medicinal chemistry*, **4**, 49-60.

[13]. Gomes da Silva Dantas F, Araújo de Almeida-Apolonio A, Pires de Araújo R, Regiane Vizolli Favarin L, Fukuda de Castilho P, de Oliveira Galvão F, Inez Estivalea Svidzinski T, Antônio Casagrande G, Mari Pires de Oliveira K. 2018 A Promising Copper(II) Complex as Antifungal and Antibiofilm Drug against Yeast Infection. *Molecules* **23**, 1856.

[14]. Goikhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. 2001 Copper complexes of carboxamidrazone derivatives as anticancer agents. 3. Synthesis, characterization and crystal structure of [Cu(appc)Cl₂], (appc=N 1-(2-acetylpyridine)pyridine-2-carboxamidrazone). *Inorganica Chimica Acta* **319**, 90–94.

[15]. Sánchez-Delgado, R. A., Navarro, M., Pérez, H. & Urbina, J. A. 1996 Toward a Novel Metal-Based Chemotherapy against Tropical Diseases. 2. Synthesis and Antimalarial Activity in Vitro and in Vivo of New Ruthenium– and Rhodium–Chloroquine Complexes. *J. Med. Chem.* **39**, 1095–1099.

[16]. Navarro M, Castro W, Madamet M, Alainvict R, 2014 Benoit N, Pradines B. Metal-chloroquine derivatives as possible anti-malarial drugs: evaluation of anti-malarial activity and mode of action. *Malaria Journal* **13**, 471.

[17]. Arise, R. O., Elizabeth, S.-N., Farohunbi, S. T., Nafiu, M. O. & Tella, A. C. 2017 Mechnochemical Synthesis, In vivo Anti-malarial and Safety Evaluation of Amodiaquine-zinc Complex. *Acta Facultatis Medicae Naissensis* **34**, 221–233.

[18]. Rafique, S., Idrees, M., Nasim, A., Akbar, H. & Athar, A. 2010 Transition metal complexes as potential therapeutic agents. *Biotechnology and Molecular Biology Reviews* **5**, 38–45.

[19]. Hubin TJ, Anoyaw PN, Roewe KD, Simpson NC, Maples RD, Freeman TN, Cain AN, Le JG, Archibald SJ, Khan SI, Tekwani BL. 2014 Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands. *Bioorg. Med. Chem.* **22**, 3239–3244.

[20]. Roux, C. and Biot, C. 2012 Ferrocene-based antimalarials. *Future Med Chem* **4**, 783–797.

[21]. W Daher, C Biot, T Fandeur, H Jouin, L Pelinski 2006 Malaria Journal, Assessment of Plasmodium falciparum resistance to ferroquine (SSR97193) in field isolates and in W2 strain under pressure. *Malar J* **5**, 11.

[22]. Barends, M., Jaidee, A., Khaohirun, N., Singhasivanon, P. & Nosten, F. 2007 In vitro activity of ferroquine (SSR 97193) against Plasmodium falciparum isolates from the Thai-Burmese border. *Malar. J.* **6**, 81.

[23]. Dubar, F., Khalife, J., Brocard, J., Dive, D. & Biot, C. Ferroquine, 2008 an Ingenious Antimalarial Drug –Thoughts on the Mechanism of Action. *Molecules* **13**, 2900–2907.

[24]. Herrmann C, Salas PF, Cawthray JF, de Kock C, Patrick BO, Smith PJ, Adam MJ, Orvig C. 2012, 1,1′-Disubstituted Ferrocenyl Carbohydrate Chloroquine Conjugates as Potential Antimalarials. *Organometallics* **31**, 5736–5747.

[25]. Ferreira CL, Ewart CB, Barta CA, Little S, Yardley V, Martins C, Polishchuk E, Smith PJ, Moss JR, Merkel M, Adam MJ. 2006 Synthesis, structure, and biological activity of ferrocenyl carbohydrate conjugates. *Inorg Chem* **45**, 8414–8422.

[26]. Patra, M., Gasser, G. & Metzler-Nolte, N. 2012 Small organometallic compounds as antibacterial agents. *Dalton Trans.* **41**, 6350–6358.

[27]. Navarro, M., Pérez, H. & Sánchez-Delgado, R. A. 1997 Toward a Novel Metal-Based Chemotherapy against Tropical Diseases. 3. Synthesis and Antimalarial Activity in Vitro and in Vivo of the New Gold–Chloroquine Complex [Au(PPh₃)(CQ)]PF₆. *J. Med. Chem.* **40**, 1937–1939.
[28]. Messori, L., Camarri, M., Ferraro, T., Gabbiani, C. & Franceschini, D. 2013 Promising in Vitro anti-Alzheimer Properties for a Ruthenium(III) Complex. *ACS Med. Chem. Lett.* 4, 329–332.

[29]. Bouguemh, I.-E., Beghidja, A., Khattabi, L., Long, J. & Beghidja, C. 2020 Monomeric and dimeric copper (II) complexes based on bidentate N’-(propan-2-ylidene) thiophene carbonylhydrazone Schiff base ligand: Synthesis, structure, magnetic properties, antioxidant and anti-Alzheimer activities. *Inorganica Chimica Acta* 507, 119519.

[30]. Dong Y, Stewart T, Zhang Y, Shi M, Tan C, Li X, Yuan L, Mehrrota A, Zhang J, Yang X.. 2019 Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition. *Sci China Life Sci* 62, 126–139.

[31]. Hottinger DG, Beebe DS, Kozhimannil T, Priellip RC, Belani KG. 2014 Sodium nitroprusside in 2014: A clinical concepts review. *Journal of anaesthesiology, clinical pharmacology*. 30, 462.

[32]. Speckyj A, Kosmopoulos M, Shekar K, Carlson C, Kalra R, Rees J, Auferheide TP, Bartos JA, Yannopoulos D. 2020 Sodium Nitroprusside–Enhanced Cardiopulmonary Resuscitation Improves Blood Flow by Pulmonary Vasodilation Leading to Higher Oxygen Requirements. *JACC: Basic to Translational Science*. 5, 183-192.

[33]. Villarreal EG, Flores S, Kriz C, Iranpour N, Bronicki RA, Loomba RS. 2020 Sodium nitroprusside versus nicardipine for hypertension management after surgery: A systematic review and meta-analysis. *J Card Surg*. doi:10.1111/jocs.14513.

[34]. Liu J, Duan Q, Wang J, Song Z, Qiao X, Wang H. 2015 Photocontrolled nitric oxide release from two nitrosylruthenium isomer complexes and their potential biomedical applications. *JBO* 20, 015004.

[35]. Tassé M, Mohammed HS, Sabourdy C, Mallet-Ladeira S, Lacroix PG, Malfant I. 2016 Synthesis, crystal structure, spectroscopic, and photoreactive properties of a ruthenium(II)-mononitrosyl complex. *Polyhedron* 119, 350–358.

[36]. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. 2018 Photodynamic therapy – mechanisms, photosensitizers and combinations. *Biomedicine & Pharmacotherapy* 106, 1098–1107.

[37]. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C. 2020 Effectiveness of convalescent plasma therapy in severe COVID-19 patients. *PNAS* 117, 9490-9496.

[38]. Wiehe A, O’Brien JM, Senge MO. 2019 Trends and targets in antiviral phototherapy. *Photochemical & Photobiological Sciences*. 18, 2565-2612.

[39]. Zhao, J., Meng, W., Miao, P., Yu, Z. & Li, G. 2008 Photodynamic Effect of Hypericin on the Conformation and Catalytic Activity of Hemoglobin. *Int J Mol Sci* 9, 145–153.

[40]. Costa L, Faustino MA, Neves MG, Cunha A, Almeida A. 2012 Photodynamic inactivation of mammalian viruses and bacteriophages. *Viruses*, 4, 1034-1074.
[48]. Wang, J., Potocny, A. M., Rosenthal, J. & Day, E. S. 2020 Gold Nanoshell-Linear Tetrapyrrole Conjugates for Near Infrared-Activated Dual Photodynamic and Photothermal Therapies. *ACS Omega* 5, 926–940.

[49]. Moore CM, Azzouzi AR, Barret E, Villers A, Muir GH, Barber NJ, Bott S, Trachtenberg J, Arumainayagam N, Gaillac B, Allen C. Moore CM, Azzouzi AR, Barret E, Villers A, Muir GH, Barber NJ, Bott S, Trachtenberg J, Arumainayagam N, Gaillac B, Allen C. 2015 Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. *BJU Int.* 116, 888–896.

[50]. Maggioni D, Galli M, D’Alfonso L, Inverso D, Dozzi MV, Sironi L, Iannacone M, Collini M, Ferruti P, Ranucci E, D’Alfonso G. A 2015 luminescent poly (amidoamine)–iridium complex as a new singlet-oxygen sensitizer for photodynamic therapy. *Inorganic chemistry*, 54, 544-553.

[51]. Abrahamse, H. & Hamblin, M. R. 2016 New photosensitizers for photodynamic therapy. *Biochem. J.* 473, 347–364.

[52]. Knoll, J. D. & Turro, C. 2015 Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. *Coord Chem Rev* 282, 110–126.