A 2.75-approximation algorithm for the unconstrained traveling tournament problem

Shinji Imahori · Tomomi Matsui · Ryuhei Miyashiro

Abstract A 2.75-approximation algorithm is proposed for the unconstrained traveling tournament problem, which is a variant of the traveling tournament problem. For the unconstrained traveling tournament problem, this is the first proposal of an approximation algorithm with a constant approximation ratio. In addition, the proposed algorithm yields a solution that meets both the no-repeater and mirrored constraints. Computational experiments show that the algorithm generates solutions of good quality.

Keywords Timetable · Sports scheduling · Traveling tournament problem · Approximation algorithm

1 Introduction

In the field of tournament timetabling, the traveling tournament problem (TTP) is a well-known benchmark problem established by Easton et al. (2001). The present paper considers the unconstrained traveling tournament problem (UTTP), which is a variant of the TTP. In the following, some terminology and the TTP are introduced. The UTTP is then defined at the end of this section.

The present study was supported in part by Grants-in-Aid for Scientific Research, by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

S. Imahori
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
E-mail: imahori@na.cse.nagoya-u.ac.jp

T. Matsui (✉)
Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
E-mail: matsui@ise.chuo-u.ac.jp

R. Miyashiro
Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
E-mail: r-miya@cc.tuat.ac.jp
Given a set \(T \) of \(n \) teams, where \(n \geq 4 \) and is even, a game is specified by an ordered pair of teams. Each team in \(T \) has its home venue. A double round-robin tournament is a set of games in which every team plays every other team once at its home venue and once as an away game (i.e., a game held at the home venue of the opponent). Consequently, \(2(n - 1) \) slots are necessary to complete a double round-robin tournament.

Each team stays at its home venue before a tournament and then travels to play its games at the chosen venues. After a tournament, each team returns to its home venue if the last game is played as an away game. When a team plays two consecutive away games, the team goes directly from the venue of the first opponent to the venue of another opponent without returning to its home venue.

For any pair of teams \(i, j \in T \), \(d_{ij} \geq 0 \) denotes the distance between the home venues of \(i \) and \(j \). Throughout the present paper, we assume that triangle inequality \((d_{ij} + d_{jk} \geq d_{ik}) \), symmetry \((d_{ij} = d_{ji}) \), and \(d_{ii} = 0 \) hold for any teams \(i, j, k \in T \).

Denote the distance matrix \((d_{ij})\) by \(D \). Given an integer parameter \(u \geq 2 \), the traveling tournament problem (Easton et al. 2001) is defined as follows.

Traveling Tournament Problem (TTP\((u)\))

Input: A set of teams \(T \) and a distance matrix \(D = (d_{ij}) \).

Output: A double round-robin schedule of \(n \) teams such that

- C1. No team plays more than \(u \) consecutive away games,
- C2. No team plays more than \(u \) consecutive home games,
- C3. Game \(i \) at \(j \) immediately followed by game \(j \) at \(i \) is prohibited,
- C4. The total distance traveled by the teams is minimized.

Constraints C1 and C2 are referred to as the *atmost* constraints, and Constraint C3 is referred to as the *no-repeater* constraint.

Various studies on the TTP have been conducted in recent years (see Kendall et al. 2010; Rasmussen and Trick 2008; Trick 2011 for detail), and most of these studies considered TTP(3) (Trick 2010), which was recently proved to be NP-hard by Thielen and Westphal (2011). Almost all of the best upper bounds of TTP instances are obtained using metaheuristic algorithms. On the other hand, little research on approximation algorithms has been conducted for the TTP. Miyashiro et al. (2012) proposed a \((2 + O(1/n))\)-approximation algorithm for TTP(3). Yamaguchi et al. (2011) proposed an approximation algorithm for TTP\((u)\), where \(3 \leq u \ll n \). Westphal and Noparlik (2010) proposed\(^1\) a 5.875-approximation algorithm for TTP\((u)\), where \(3 \leq u \). For TTP(3), the approximation ratio of Yamaguchi et al. (2011) is the best among them. In addition, Thielen and Westphal (2010) proposed a \((1.5 + O(1/n))\)-approximation algorithm for TTP(2).

The TTP is a simplification of an actual sports scheduling problem. Some further simplified variants of the TTP have been studied (Trick 2010). The circular distance TTP and the constant distance TTP are the problems which have specific distance matrices. For the constant distance TTP, Fujiwara et al. (2007) proposed approximation algorithms.

The unconstrained traveling tournament problem (UTTP) is another variant of the TTP, in which Constraints C1 through C3 are eliminated. In other words, the UTTP is equivalent to TTP\((n - 1)\) without the no-repeater constraint. On some actual sports scheduling

\(^1\)Westphal and Noparlik’s paper (Westphal and Noparlik 2010) and the conference version of the present paper (Imahori et al. 2010) appeared in the same conference (PATAT, 2010).
problems, the atmost constraints ($u = 3$ in particular) and the no-repeater constraint are considered. However, these constraints are not necessarily imposed, and the UTTP is a suitable simplified model for some practical scheduling problems. When we deal with a round-robin schedule for minor or amateur league sports, there usually exists a strict budget constraint and thus a solution of the UTTP is preferred in some cases.

Urrutia and Ribeiro (2006) discussed the UTTP and its connection to the break maximization problem. Bhattacharyya (2009) recently showed NP-hardness of the UTTP. Although the UTTP is simpler than the TTP, no approximation algorithm has yet been proposed for the UTTP. The method proposed in Yamaguchi et al. (2011) cannot be applied to the UTTP because the condition $u \ll n$ is necessary. The method in Miyashiro et al. (2012), proposed for TTP(3), can be applied to the UTTP with a few modifications. However, this leads to a $((2/3)n + O(1))$-approximation algorithm for the UTTP, which is not a constant approximation ratio with regard to n.

In the present paper, we propose a 2.75-approximation algorithm for the UTTP. In addition, the solution obtained by the algorithm meets both the no-repeater and mirrored constraints, which are sometimes required in practice. This property indicates that our algorithm also works for TTP$(n - 1)$, which eliminates the atmost constraints but considers the no-repeater constraint.

2 Algorithm

In this section, we propose an approximation algorithm for the UTTP. A key concept of the algorithm is the use of the circle method and a shortest Hamilton cycle. The classical schedule obtained by the circle method satisfies the property that, for all teams but one, the orders of opponents are very similar to a mutual cyclic order. Roughly speaking, the proposed algorithm constructs a short Hamilton cycle passing all venues, and finds a permutation of teams such that the above cyclic order corresponds to the Hamilton cycle.

Let $G = (V, E)$ be a complete undirected graph with the vertex set V and edge set E, where $|V| = n$. We assume that there exists a bijection between the vertex set V and the set of teams T. We put the length of edge $\{v, v'\} \in E$, denoted by $d_{vv'}$, to the distance between the home venues of the corresponding teams $t, t' \in T$. First, we assign aliases $0, 1, \ldots, n - 1$ to teams in T as follows.

1. For each $v \in V$, compute $\sum_{v' \in V \backslash \{v\}} d_{vv'}$.
2. Let v^* be a vertex that attains $\min_{v \in V} \sum_{v' \in V \backslash \{v\}} d_{vv'}$, and designate the team corresponding to v^* as team $n - 1$.
3. Using Christofides’ 1.5-approximation algorithm (Christofides 1976) for the traveling salesman problem with triangle inequality and symmetry, construct a Hamilton cycle on the complete graph induced by $V \setminus \{v^*\}$. For the obtained cycle $(v_0, v_1, \ldots, v_{n-2})$, denote the corresponding teams by $(0, 1, \ldots, n - 2)$.

In the rest of this paper, we define that the set of teams $T = \{0, 1, 2, \ldots, n - 1\}$ and the vertex set $V = \{v_0, v_1, \ldots, v_{n-2}, v^*\}$. We identify the vertex v_{n-1} with v_0 (not v^*) and the vertex v_{-1} with v_{n-2} (not v^*).

Next, we construct a single round-robin schedule. In the following, a “schedule without HA-assignment” refers to a “round-robin schedule without the concepts of home game, away game, and venue.” Denote the set of $n - 1$ slots by $S = \{0, 1, \ldots, n - 2\}$. A single
Each number corresponds to the opponent and away (home) game is denoted by A (H).

Fig. 1 The schedule K^{DRR} with 10 teams

round-robin schedule without HA-assignment is a matrix K of which $(t, s) \in T \times S$ element, say $K(t, s)$, denotes the opponent of team t in slot s. Let K^* be a matrix defined by

$$K^*(t, s) = \begin{cases}
 s - t \pmod{n - 1} & (t \neq n - 1 \text{ and } s - t \neq t \pmod{n - 1}), \\
 n - 1 & (t \neq n - 1 \text{ and } s - t = t \pmod{n - 1}), \\
 s/2 & (t = n - 1 \text{ and } s \text{ is even}), \\
 (s + n - 1)/2 & (t = n - 1 \text{ and } s \text{ is odd}).
\end{cases}$$

Lemma 1 (Yamaguchi et al. 2011) The matrix K^* is a single round-robin schedule without HA-assignment. In addition, K^* is essentially equivalent to the classical schedule obtained by the circle method.

Then, by the mirroring procedure, we form K^* into a double round-robin schedule without HA-assignment. More precisely, construct a matrix $(K^*|K^*)$ whose rows are index by teams and columns are index by a sequence of slots $(0, 1, \ldots, n - 2, n - 1, n, \ldots, 2n - 3)$. So as to complete a double round-robin schedule, “home” and “away” are assigned to games of $(K^*|K^*)$ as follows:

- For team $t \in \{0, 1, \ldots, n/2 - 1\}$, let the games in slots $2t, 2t + 1, \ldots, n + 2t - 2$ be home games, and let the other games be away games.
- For team $t \in \{n/2, n/2 + 1, \ldots, n - 2\}$, let the games in slots $2t - n + 2, 2t - n + 3, \ldots, 2t$ be away games, and let the other games be home games.
- For team $n - 1$, let the games in slots $0, 1, \ldots, n - 2$ be away games, and let the other games be home games.

The obtained double round-robin schedule is denoted by K^{DRR}_*.

Lemma 2 The double round-robin schedule K^{DRR}_* is feasible.

Proof $(K^*|K^*)$ is a consistent double round-robin schedule without HA-assignment, which satisfies the mirrored constraint. We check the feasibility of HA-assignment to games. Teams i and j ($i < j < n - 1$) have a game at slot $i + j$. By the rule to assign home and away to games, team i plays a home game and team j plays an away game at slot $i + j$. Teams i and j ($i < j = n - 1$) have a game at slot $2i$, and the rule assigns consistent home/away to the teams. Another game between teams i and j is held at the opposite venue. □
In addition, for each \(m \in \{0, 1, \ldots, 2n - 3\} \), we construct a double round-robin schedule by rotating slots of \(K^*_\text{DRR} \) through \(m \) cyclically. It means that games of \(K^*_\text{DRR}(m) \) (\(m \in \{0, 1, \ldots, 2n - 3\} \)) at slot \(s \) are equal to games of \(K^*_\text{DRR} \) at slot \(s + m \pmod{2n - 2} \). Obviously, all of the schedules \(K^*_\text{DRR}(m) \) (\(m \in \{0, 1, \ldots, 2n - 3\} \)) meet both the no-repeater and mirrored constraints. Finally, output a best solution among \(K^*_\text{DRR}(m) \) (\(m \in \{0, 1, \ldots, 2n - 3\} \)).

Here, we determine the time complexity of the algorithm. Christofides’ algorithm requires \(O(n^3) \) time to construct a Hamilton cycle on the complete graph induced by \(V \setminus \{v^*\} \). For the constructed Hamilton cycle, there are \(2(n - 1) \) possibilities to assign teams. For each assignment of teams, we consider \(2^n - 2 \) possibilities of \(m \in \{0, 1, \ldots, 2n - 3\} \). Each double round-robin schedule can be evaluated in \(O(n) \) time on average. Thus, the time complexity of the algorithm is bounded by \(O(n^3) \).

In the next section, we prove that the proposed algorithm guarantees an approximation ratio 2.75.

3 Approximation ratio

In this section, we describe the proof of the approximation ratio of the proposed algorithm. Designate the length of a shortest Hamilton cycle on \(G \) as \(\tau \).

Lemma 3 The following propositions hold for \(G \).

1. The length of any edge is bounded by \(\tau/2 \).
2. The length of any Hamilton cycle on \(G \) is bounded by \(n\tau/2 \).
3. \(\sum_{v \in V} \sum_{v' \in V \setminus \{v\}} d_{vv'} \leq n^2 \tau/4 \).
4. \(\sum_{v \in V \setminus \{v^*\}} d_{vv^*} \leq n\tau/4 \).

Proof

1. For the edges \([i, j] \) and \([j, i] \), the sum of their lengths is at most the length of a shortest Hamilton cycle. Thus, the length of the edge \([i, j] \) is bounded by \(\tau/2 \) with symmetry.

2. This immediately follows from Property (1).

3. Given a shortest Hamilton cycle \(H = (u_0, u_1, \ldots, u_{n-1}) \) on \(G \), let

\[
\begin{align*}
h_{u_i,u_j} &= \begin{cases}
 d_{u_i,u_{i+1}} + d_{u_{i+1},u_{i+2}} + \cdots + d_{u_{j-1},u_j} & (j - i \pmod{n} \leq n/2), \\
 d_{u_i,u_{j-1}} + d_{u_{j-1},u_{j-2}} + \cdots + d_{u_{j+1},u_j} & (j - i \pmod{n} > n/2).
\end{cases}
\end{align*}
\]

Then, we have:

\[
\sum_{v \in V} \sum_{v' \in V \setminus \{v\}} d_{vv'} = \sum_{i=0}^{n-1} \sum_{k=1}^{n-1} d_{u_i,u_{i+k}(\pmod{n})}
\leq \sum_{k=1}^{n/2-1} \sum_{i=0}^{n-1} h_{u_i,u_{i+k}(\pmod{n})}
= \sum_{k=1}^{n/2-1} \sum_{i=0}^{n-1} (d_{u_i,u_{i+1}} + d_{u_{i+1},u_{i+2}} + \cdots + d_{u_{i+k-1},u_{i+k}})
+ \sum_{k=n/2+1}^{n-1} \sum_{i=0}^{n-1} (d_{u_i,u_{i-1}} + d_{u_{i-1},u_{i-2}} + \cdots + d_{u_{i-k+1},u_{i-k+2}})
\]
Assumption A guarantees that a route of each team in before the first slot and after the last slot.

Assumption A

If a team plays away games at both the first and last slots, then the team moves from the venue of the last opponent to that of the first opponent, instead of the moves from the venue of the last opponent to that of the first opponent. For simplicity of the analysis of the approximation ratio, we temporarily replace the at home constraint with the following assumption.

Lemma 4 Under Assumption A, the traveling distance of team t in $K^*_\text{DRR}(m)$ is bounded by

$$
\begin{align*}
&\tau' + d_{v_t,v^{*}_t} + d_{v^{*}_{t+1},v_{t+1}} - d_{v_t,v_{t+1}} \quad (t \in \{0,1,\ldots,n/2 - 1\}), \\
&\tau' + d_{v_{t-1},v^{*}_{t-1}} + d_{v^{*}_t,v_{t}} - d_{v_{t-1},v_t} \quad (t \in \{n/2,n/2+1,\ldots,n-2\}), \\
&n\tau/2 \quad (t = n-1).
\end{align*}
$$

Proof

When $t \in \{0,1,2,\ldots,n/2 - 1\}$, team t moves along a Hamilton cycle $(v_t, v^{*}_{t}, v_{t+1},\ldots,v_{n-2}, v_0, v_1, v_2,\ldots,v_{t-1})$. Consequently, the length of the tour is $\tau' + d_{v_t,v^{*}_t} + d_{v^{*}_{t+1},v_{t+1}} - d_{v_t,v_{t+1}}$.

When $t \in \{n/2,n/2+1,\ldots,n-2\}$, a tour of team t is a Hamilton cycle $(v_{t+1},\ldots,v_{n-2}, v_0, v_1, v_2,\ldots,v_{t-1}, v^{*})$, and thus the length is $\tau' + d_{v_{t-1},v^{*}_{t-1}} + d_{v^{*}_t,v_{t}} - d_{v_{t-1},v_t}$.

Since a tour of team $n-1$ is Hamiltonian, Lemma 3(2) implies the desired result.

The above lemma implies an upper bound of the traveling distance of K^*_DRR.

Lemma 5 Under Assumption A, the traveling distance of K^*_DRR is bounded by

$$(n-2)\tau' + 2 \sum_{v \in V \setminus \{v^{*}\}} d_{v,v^{*}} + (3/2)\tau + n\tau/2.$$
Proof Consider the sum total of upper bounds obtained in Lemma 4

\[(n - 1)\tau' + L + n\tau/2\]

where

\[L \overset{\text{def.}}{=} \sum_{t \in \{0, 1, \ldots, n/2 - 1\}} (d_{v_t, v^*} + d_{v^*, v_{t+1}} - d_{v_t, v_{t+1}})\]

\[+ \sum_{t \in \{n/2, n/2 + 1, \ldots, n-2\}} (d_{v_{t-1}, v^*} + d_{v^*, v_t} - d_{v_{t-1}, v_t}).\]

It is easy to see that

\[L = \left(\sum_{t \in \{0, 1, \ldots, n/2 - 1\}} d_{v_t, v^*} \right) + \left(\sum_{t \in \{1, 2, \ldots, n/2\}} d_{v_t, v^*} \right)\]

\[- \left(\sum_{t \in \{0, 1, \ldots, n/2 - 1\}} d_{v_t, v_{t+1}} \right) + \left(\sum_{t \in \{n/2-1, n/2, \ldots, n-3\}} d_{v_t, v^*} \right)\]

\[+ \left(\sum_{t \in \{n/2, n/2 + 1, \ldots, n-2\}} d_{v_t, v_{t+1}} \right) - \left(\sum_{t \in \{n/2-1, n/2, \ldots, n-3\}} d_{v_t, v_{t+1}} \right)\]

\[\leq 2 \sum_{v \in V \setminus \{v^*\}} d_{v_{v^*}} - \sum_{t \in \{0, 1, \ldots, n-2\}} \left(d_{v_{t, v_{t+1}}} + d_{v_{t-1, v^*}} + d_{v_{t-1, v^*}} + d_{v_{t, v^*}} \right)\]

\[\leq 2 \sum_{v \in V \setminus \{v^*\}} d_{v_{v^*}} - \tau' + (3/2)\tau\]

where the last inequality follows from Lemma 3(1). From the above, the lemma holds. \qed

Here we drop Assumption A and restore the at-home constraint, and consider the increase of the traveling distance in the following lemma.

Lemma 6 For each team \(t\), let \(\ell_A(t)\) be the traveling distance of \(t\) in \(K^*_{\text{DRR}}\) under Assumption A. Then, with the at-home constraint the average of the traveling distances of team \(t\) among \(K^*_{\text{DRR}}(m)\) \((m \in \{0, 1, \ldots, 2n-3\})\) is bounded by \(\ell_A(t) + \sum_{v' \in V \setminus \{v\}} d_{v_{v'}}/(n - 1)\), where \(v\) is the home venue of \(t\).

Proof For a choice \(m \in \{0, 1, \ldots, 2n-3\}\), every team \(t'\) different from \(t\) plays away game with \(t\) at first slot just once. Thus, the average length of the moves of team \(t\) before the first slot is bounded by \(\sum_{v' \in V \setminus \{v\}} d_{v_{v'}}/(2n - 2)\). Similarly, the average length of the moves of team \(t\) after the last slot is bounded by \(\sum_{v' \in V \setminus \{v\}} d_{v_{v'}}/(2n - 2)\). Thus, the average of the traveling distances of team \(t\) is bounded by \(\ell_A(t) + \sum_{v' \in V \setminus \{v\}} d_{v_{v'}}/(n - 1)\). \qed

Summarizing the above lemmas, we have the following theorem.

Theorem 1 The average of the total traveling distances of schedules \(K^*_{\text{DRR}}(m)\) \((m \in \{0, 1, \ldots, 2n-3\})\) is bounded by

\[(n - 2)\tau' + 2 \sum_{v \in V \setminus \{v^*\}} d_{v_{v^*}} + (3/2)\tau + n\tau/2 + \sum_{v \in V} \sum_{v' \in V \setminus \{v\}} d_{v_{v'}}/(n - 1).\]

Lastly we show the approximation ratio of the proposed algorithm.
Lemma 3 implies that the average of total traveling distances of schedules, say z^*, obtained by the proposed algorithm is bounded by

$$z^* \leq (n - 2)\tau' + 2 \sum_{v \in V \setminus \{v^*\}} d_{v^*v} + \frac{3}{2}\tau + \frac{n}{2} + \sum_{v \in V} \sum_{v' \in V \setminus \{v\}} d_{vv'}/(n - 1)$$

$$\leq (n - 2)\left(\frac{3}{2}\tau + 2n\tau/4 + \frac{3}{2}\tau + \frac{n}{2} + \frac{n^2\tau/4}{(n - 1)}\right)$$

$$= (3/2)n\tau - 3\tau + (1/2)n\tau + (3/2)\tau + (1/2)n\tau + (1/4)n\tau + (1/4)n\tau/(n - 1)$$

$$= (11/4)n\tau - (3/2)\tau + (1/4)n\tau/n - 1) \leq (11/4)n\tau.$$

Let us consider a case that we have a shortest Hamilton cycle H on G. In this situation, the following corollary holds.

Corollary 1 If a shortest Hamilton cycle H on G is given, there exists a 2.25-approximation algorithm for the UTTP.

Proof We replace a cycle obtained by Christofides’ method in the proposed algorithm with a cycle obtained from H by skipping vertex v^*. Theorem 1 implies that the average of total traveling distances of schedules, say z^{**}, obtained by the proposed algorithm is bounded by

$$z^{**} \leq (n - 2)\tau + 2 \sum_{v \in V \setminus \{v^*\}} d_{v^*v} + \frac{3}{2}\tau + \frac{n}{2} + \sum_{v \in V} \sum_{v' \in V \setminus \{v\}} d_{vv'}/(n - 1)$$

$$\leq n\tau - 2\tau + 2n\tau/4 + (3/2)\tau + \frac{n}{2} + \frac{n^2\tau/4}{(n - 1)}$$

$$= (9/4)n\tau - \tau/2 + (1/4)n\tau/n - 1) \leq (9/4)n\tau.$$

Thus, the approximation ratio is bounded by 2.25 in this case. □

4 Computational results

In this section, we describe the results of computational experiments using the proposed approximation algorithm.

For the experiments, we took the distance matrices of NL and galaxy instances from the website (Trick 2010), because they are the most popular instances and one having the largest distance matrix (up to 40 teams), respectively. We ran the proposed algorithm for the UTTP version of these instances; to find a short Hamilton cycle, we use Concorde TSP solver (Cook 2011). It took less than one second to obtain a shortest Hamilton cycle even for the largest case ($n = 40$).

To evaluate the quality of obtained solutions, we also tried to find optimal solutions of UTTP instances with integer programming. Computations using integer programming were performed on the following PC: Intel Xeon 3.33 GHz * 2, 24 GB RAM, Windows 7 64 bit, and Gurobi Optimizer 4.5.1 (Gurobi Optimization 2011) with 16 threads as an integer programming solver. For both NL and galaxy instances: for $n = 4, 6, 8$ optimal solutions were obtained; for $n = 10$, after 500,000 seconds of computations, branch-and-bound procedures
Tables 1 and 2 show the results of experiments for NL and galaxy instances, respectively. The first columns of tables denote the number of teams, \(n \). The second ones are the total traveling distance obtained by the proposed algorithm. The third ones are the value of \(n \times \) the distance of a shortest Hamilton cycle, as a simple lower bound. The fourth ones are the percentages of the gap between the second and third columns. The fifth ones are the total traveling distance obtained by integer programming. The sixth ones are the percentages of the gap between the obtained and the optimal values if optimal solutions are available.

Like most theoretical approximation algorithms, the obtained gaps are much better than the theoretical approximation ratio 2.75 (175% gap). For the NL instances and the galaxy instances of up to 20 teams, the gap is around 25%. For the galaxy instances of more than 20 teams, the gap is less than 20%. Note that the gaps shown in the fourth columns of the tables are from the ratio of the obtained distance to a simple lower bound, but not to optimal distance. The gaps between the obtained distance and the optimal value are still better than the gaps shown in the fourth columns of the tables (a limited number of results are shown in the sixth columns of the tables).

5 Conclusion

This paper proposed an approximation algorithm for the unconstrained traveling tournament problem, which is a variant of the traveling tournament problem. The approximation ratio of the proposed algorithm is 2.75, and the algorithm yields a solution satisfying the no-repeater and mirrored constraints. If a shortest Hamilton cycle on the home venues of the teams is available, the approximation ratio is improved to 2.25. Computational experiments showed that the algorithm generates solutions of good quality; the gap between the obtained solution and a simple lower bound is around 25% for small instances (up to 20 teams) and is less than 20% for larger instances. Moreover, the gap between the obtained and the optimal solutions is still better (less than 10% for small instances).
Table 2 Results for the UTTP version of galaxy instances

n	Approx.	n * TSP	gap (%)†	best UB	opt_gap (%)‡
4	416	412	1.0	416*	0.0
6	1197	1068	12.1	1178*	1.6
8	2076	1672	24.2	1890*	9.8
10	3676	3020	21.7	3570○	
12	5514	4524	21.9		
14	7611	6216	22.4		
16	9295	7408	25.5		
18	12320	10026	22.9		
20	14739	11880	24.1		
22	19525	16522	18.2		
24	25026	21216	18.0		
26	32250	27846	15.8		
28	41843	36708	14.0		
30	52073	46410	12.2		
32	62093	55104	12.7		
34	77392	69326	11.6		
36	88721	78624	12.8		
38	103988	92568	12.3		
40	120895	107800	12.1		

† gap is obtained by \(\frac{\text{approx.}}{\text{n * TSP}} - 1 \) * 100.0

‡ opt_gap is obtained by \(\frac{\text{approx.}}{\text{optimal value}} - 1 \) * 100.0

*optimal
○best incumbent solution after 500,000 seconds

A remained open problem is an existence of approximation algorithm (with a constant approximation ratio) for the UTTP of a single round-robin tournament. In a single round-robin case, we do not have the Hamilton cycle lower bound. Another direction of future research is to reveal the approximability of UTTP and TTP\((u)\); designing better approximation algorithms (or PTAS) is one side, showing the inapproximability is another side.

References

Bhattacharyya, R. (2009). A note on complexity of traveling tournament problem. Available from Optimization Online, Web page. http://www.optimization-online.org/.

Christofides, N. (1976). Worst-case analysis of a new heuristic for the traveling salesman problem (Report 388). Graduate School of Industrial Administration, Carnegie-Mellon University.

Cook, W. (2011). Concorde TSP solver. Web page, as of http://www.tsp.gatech.edu/concorde.html.

Easton, K., Nemhauser, G., & Trick, M. (2001). The traveling tournament problem: description and benchmarks. In Lecture notes in computer science (Vol. 2239, pp. 580–584).

Fujiwara, N., Imahori, S., Matsui, T., & Miyashiro, R. (2007). Constructive algorithms for the constant distance traveling tournament problem. In Lecture notes in computer science (Vol. 3867, pp. 135–146).

Gurobi Optimization (2011). Gurobi Optimizer 4.5.1. http://www.gurobi.com/.

Imahori, S., Matsui, T., & Miyashiro, R. (2010). An approximation algorithm for the unconstrained traveling tournament problem. In Proceedings of the 8th international conference on the practice and theory of automated timetabling (PATAT) (pp. 508–512).
Kendall, G., Knust, S., Ribeiro, C. C., & Urrutia, S. (2010). Scheduling in sports: an annotated bibliography. *Computers and Operations Research, 37*, 1–19.

Miyashiro, R., Matsui, T., & Imahori, S. (2012). An approximation algorithm for the traveling tournament problem. *Annals of Operations Research, 194*, 317–324.

Rasmussen, R. V., & Trick, M. A. (2008). Round robin scheduling—a survey. *European Journal of Operational Research, 188*, 617–636.

Thielen, C., & Westphal, S. (2010). Approximating the traveling tournament problem with maximum tour length 2. In *Lecture notes in computer science* (Vol. 6507, pp. 303–314).

Thielen, C., & Westphal, S. (2011). Complexity of the traveling tournament problem. *Theoretical Computer Science, 412*, 345–351.

Trick, M. (2010). Challenge traveling tournament problems. Web page, as of http://mat.gsia.cmu.edu/TOURN/.

Trick, M. A. (2011). Sports scheduling. In *Springer optimization and its applications: Vol. 45. Hybrid optimization* (pp. 489–508).

Urrutia, S., & Ribeiro, C. C. (2006). Maximizing breaks and bounding solutions to the mirrored traveling tournament problem. *Discrete Applied Mathematics, 154*, 1932–1938.

Westphal, S., & Noparlik, K. (2010). A 5.875-approximation for the traveling tournament problem. In *Proceedings of the 8th international conference on the practice and theory of automated timetabling (PATAT)* (pp. 417–426).

Yamaguchi, D., Imahori, S., Miyashiro, R., & Matsui, T. (2011). An improved approximation algorithm for the traveling tournament problem. *Algorithmica, 61*, 1077–1091.