Neurospora crassa Female Development Requires the PACC and Other Signal Transduction Pathways, Transcription Factors, Chromatin Remodeling, Cell-To-Cell Fusion, and Autophagy

Jennifer L. Chinnici, Ci Fu, Lauren M. Caccamise, Jason W. Arnold, Stephen J. Free*

Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America

Abstract

Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecium. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.

Introduction

From the viewpoint of a developmental biologist, the study of perithecial development in Neurospora crassa, and in the related ascomycetes Sordaria macrospora, Podospora anserina, and Gibberella zeae (anamorph Fusarium graminearum) has several advantages [1]. The morphological stages of perithecial development have been carefully cataloged by Lord and Read [2]. The perithecium is a reasonably simple structure with a limited number of different cell types [3]. Large numbers of perithecia can be generated and studied as they go through six days of development in a somewhat synchronous manner [4,5]. The genomes of these ascomycetes have been sequenced [6,7]. The expression pattern of the entire N. crassa genome has been examined by RNAseq during perithecium maturation [4]. Similarly, genome-wide expression patterns have been extensively analyzed during the development of S. macrospora and Gibberella zeae [5,8,9]. The organisms are haploid except during mating when a dikaryotic ascogenous tissue is generated and a diploid cell, which immediately undergoes meiosis, is formed. The haploid nature of the organisms facilitates the isolation and characterization of mutants affected in female development [1,10–12]. Most importantly, the creation of the N. crassa single gene deletion library provides a unique opportunity to carry out a comprehensive genetic analysis of female development in a filamentous fungus [6,13,14].

The morphological events that occur during female development have been well documented in N. crassa, S. macrospora, P. anserina, and G. zeae [1,2,11,15–21]. Female development can be initiated in N. crassa by nitrogen deprivation [22]. At the onset of female development a specialized coiled hyphal structure, called an ascogonium, is generated from a vegetative hypha. The ascogonium grows into a tightly woven spherically-shaped...
structure called a protoperithecium. The protoperithecium contains two types of cells, the ascogenous hyphae in the middle of the structure, and an outer layer of protective hyphae called the peridium. The ascogenous hyphae are generated from the ascogonium, but some of the hyphal elements of the peridium are thought to be generated by hyphae from the vegetative tissue that join with the ascogonium hyphae to create the protective outer layer. A long hypha, termed a trichogyne, is generated from the ascogenous hyphae and grows out of the protoperithecium. The trichogyne is attracted to a pheromone released by conidia and hyphae of the opposite mating type, and is able to undergo a cell fusion event with a cell of the opposite mating type to generate a dikaryon (a cell with two different types of nuclei) [23]. The pheromones and pheromone receptors that function in the chemotrophic growth of the trichogyne to a cell of the opposite mating type have been identified and characterized [24–27]. The movement of the male nucleus from the trichogyne into the ascogenous tissue, and the nuclear events within the ascogenous hyphae have been carefully characterized in N. crassa by Raja [23]. The male nucleus travels down the trichogyne into the ascogenous hyphae, where it undergoes several rounds of nuclear division. Hyphae having the shape of a “shepherd’s crook” (an upside down J called crosiers, are generated within the ascogenous tissue. A single ascus cell containing a female and a male nucleus is generated at the top of the “crook” within each of these crosiers. Nuclear fusion occurs in the ascus cell, followed immediately by a meiotic division and a single mitotic division to generate a linear array of four pairs of nuclei. These then mature into eight ascospores. While the male nuclei are being replicated and ascospore formation occurs, the other cell types in the peritheium undergo development. The fertilized peritheium dramatically increases in size and becomes flask shaped. The outer layers of the peridium become highly melanized [10]. Specialized cells called paraphyses, which are thought to help support the development of the ascospores, are generated from the inner layer of the peridium and grow between the developing asci [2]. As peritheium development nears completion, an ostiolar pore (opening) is generated at the top of the flask-shaped peritheium. At the end of female development the mature ascospores are ejected through the ostiolar pore.

During the 1970s, studies demonstrated that N. crassa female development was amenable to genetic analysis. Johnson [10] isolated a large number of mutants affected in female development and ordered these mutants based on the size of the developing protoperithecium. Vijgusson and Weiliger [28], Tan and Ho [29], and Mylyk and Thelkeld [30] also isolated female sterile mutants. Some of the mutations were mapped onto the N. crassa genetic map, while others were unmapped. Although these female developmental mutants were deposited in the Fungal Genetics Stock Center, only recently have any of the genes defined by these mutants been identified. Four of these “classical” female developmental genes, ff-1 (female fertile-1), fs-n (female sterile-n), ty-1/ste-50 (tyrosinaseless-1 or sterile-50), and per-1 (perithecial-1) were recently identified by whole genome sequencing of the N. crassa single gene deletion strain was [31]. The ff-1 gene (NCU01543) encodes a LIM domain-containing protein with homology to Pat1p, a topoisomerase II-associated protein. The mutation in the fs-n strain was shown to be in the so/ham-1 gene (NCU02794), a WW domain-containing protein that has been shown to be needed for cell-to-cell fusion as well as for female development [32]. The per-1 mutation affects the melanization of the peritheca, and the mutant was initially identified by the presence of an unmelanized peritheca [33]. The per-1 gene (NCU03384) encodes a polyketide synthase, and probably functions in a melanin biosynthetic pathway. The ty-1/ste-50 mutant has a complex phenotype. It produces short aerial hyphae (flat conidiation), is female infertile, and is “tyrosinaseless” [34]. The ty-1/ste-50 gene (NCU00453) encodes a homolog of the S. cerevisiae Ste50 protein, a scaffold protein for the MAP kinase pathways.

In addition to a large number of N. crassa genes that have been identified as being needed for female development, many additional female development genes have been identified and characterized in S. macrospora, P. anserina, Magnaporthe grisea, and Aspergillus nidulans (see review by Poggeler et al. [1]). These additional genes include transcription factors, signal transduction pathway proteins, and autophagy proteins, and provide a wealth of information on female development in filamentous fungi.

In this report, a morphological screening of the N. crassa single gene deletion library was used to identify the genes that are needed for the development of protoperithecia and their subsequent maturation into perithecia. In characterizing the mutants identified in this screening, we identified 68 genes that are needed for female development. One of the more interesting findings from the screening experiments was that the PACC signal transduction pathway is required for female development in N. crassa.

Results and Discussion

Isolation of protoperithecia-defective mutants and co-segregation experiments

To identify genes that are required for female development in N. crassa, a large-scale mutant screening experiment was carried out. As described in Materials and Methods, each of the 10,000 isolates in plates 1 to 119 of the N. crassa single gene deletion library was tested for the ability to produce protoperithecia and perithecia on a 3 ml slant of synthetic crossing medium (Figure 1). This screening was done in addition to our previous screening of the library to identify cell-to-cell fusion mutants, which were shown to be defective in protoperitheium development [35]. The purpose of the screening experiments described in this report was to identify other types of genes that are needed for female development. In these screening experiments we identified 649 mutants (representing 300 genes) that were either protoperithecidae-defective or perithecia-defective. Co-segregation experiments were done for 443 of these genes. Co-segregation experiments were not done for most of the genes that encoded a known function not directly related to female development (genes important for mitochondrial ATP synthesis, ribosome functions, vesicular trafficking, etc.; see Table S1) and genes where the library contained two deletion isolates and only one of the isolates displayed the mutant phenotype. These co-segregation experiments showed that for 123 of the genes, the mutant phenotype co-segregated with the gene deletion, suggesting that the deletion might be responsible for the female-defective phenotype. Included in these genes were 31 genes that had been previously identified as being required for N. crassa female development (see Tables 1–3). This demonstrates that the screening and co-segregation experiments effectively identified genes that function in the process of female development. For 320 of the genes identified in the screening experiments, the co-segregation experiments showed that the female developmental defect did not co-segregate with the gene deletion, indicating that these mutants had additional mutations that were responsible for the mutant phenotype. Excel files showing the results of our screening, co-segregation, complementation, and RIP experiments can be accessed at our website [http://wwwbiology.buffalo.edu/Faculty/Free/KO_list_2014/KO_Li.html].
Among the mutants we identified in the screening experiment were several mutants that grew very poorly and had mutations in mitochondrial proteins, in general transcription proteins, in protein translation functions, in vesicular trafficking, and other "general cellular health" functions. Co-segregation experiments on a few of these mutants showed that the "general health" mutation did co-segregate with the female-defective phenotype. A list of these genes is found in Table S1, and, for the most part, these genes were not further characterized in our study. These mutants demonstrate that the hyphae must be "healthy" in order to participate in female development. We also noted that our experiments identified 18 genes that function in chromatin assembly and remodeling. The co-segregation experiments, along with some complementation experiments, clearly demonstrated that chromatin assembly and remodeling are required for female development. Others have previously shown chromatin assembly and remodeling mutants are defective in female development [36–39]. We have listed these chromatin organization genes in Table S2. Although a study of how chromatin remodeling is involved in directing female development is a very interesting topic, we did not focus on these mutants in our current study.

Complementation and RIP experiments

Complementation or RIP experiments were carried out on a majority of the putative female developmental genes defined by the co-segregation experiments. However, for some of the genes, pre-existing definitive information showing that the gene was required for female development had been previously published, and complementation experiments were not carried out on these mutants. In these situations, the publication citation showing that the gene was needed for the protoperithecium development or maturation is provided in Tables 2 through 5. As described in Materials and Methods, the complementation experiments used wild type copies of the putative female developmental genes to transform the deletion mutants. The ability of the wild type gene to restore a wild type phenotype to a deletion mutant was taken as definite proof that the gene was needed for female development.

In cases where the complementation experiment was difficult because the mutant did not produce conidia, the cell type used in the transformation experiments, RIP experiments were used to generate additional mutated copies of the gene. In these cases, one or more of the RIP alleles were PCR amplified and sequenced to verify that the mutant allele(s) had multiple RIP mutations. As a result of our co-segregation, complementation, and RIP experiments, we identified 68 genes that are needed for female development. While many of these genes had been previously reported as being needed for female development, our studies identified 32 genes that had not been previously identified as being required for female development in *N. crassa* (denoted as being defined by this report in Tables 1 through 5). The results of our screening, cosegregation, and complementation experiments demonstrate the value of a careful screening of the *N. crassa* single gene deletion library in characterizing the biology of the model filamentous fungus. Our research also highlights the importance of using co-segregation and complementation exper-

Table 1. Genes from the PacC pathway are required for female development.

Genes	NCU#/	Co-segregation	Complementation	Reference information
pacC	00090	Yes	Yes	This report
palA	05876	Yes	Yes	This report
palB	00317	Yes	Yes	This report
palC	03316	Yes	Yes	This report
palH	00007	Yes	Yes	This report
palF	03021	Yes	Yes	This report

A notation of "This report" in the reference information column indicates that the gene was identified as being needed for *N. crassa* development by our experiments. doi:10.1371/journal.pone.0110603.t001
Table 2. Signal transduction pathway genes are required for female development.

Gene name	NCU #	Co-segregation	Complementation	Reference information
MAP kinases				
mik-1	02234*	Yes	PP	Maerz et al. [110]; Park et al. [105]
mek-1	06419*	Yes	PP	Maerz et al. [110]; Park et al. [105]
mak-1	09842*	Yes	PP	Maerz et al. [110]; Park et al. [105]
nrc-1	06182*	Yes	PP	Kothe and Free [64]; Maerz et al. [110]; Pandey et al. [63]
mek-2	04612*	Yes	PP	Maerz et al. [110]; Pandey et al. [63]
mak-2	02393*	Yes	PP	Maerz et al. [110]; Pandey et al. [63]; Li et al. [111]
os-2	07024	Yes	PP	Lichius et al. [45]
os-4	03071	Yes	PP	Lichius et al. [45]
os-5	00587	Yes	PP	Lichius et al. [45]
Genes encoding MAPK pathway components				
ste-50 or ty-1	00455	Yes	PP	McCluskey et al. [31]
hym-1	03576	Yes	PP	Dettmann et al. [112]
rac-1	02160*	Yes	PP	Araujo-Palomares et al. [113]; Fu et al. [35]
rho-1	01484	NA	PP	Richthammer et al. [114]
rgf-1	00668	NA(het)	PP	Richthammer et al. [114]
lrg-1	02689	Yes	PP	Vogt and Seiler [115]
pp-2A	06563*	Yes	–	This report
PP2A activator	03269*	Yes	–	This report
pp-1	00340*	NA(het)	PP	Leeder et al. [91]; Li et al. [111]
iso, ft-n or ham-1	02794*	Yes	PP	Fleissner et al. [32]; Engh et al. [116]
ham-2	03727*	Yes	PP	Xiang et al. [42]; Bloemendal et al. [75]
ham-3	08741*	Yes	PP	Dettmann et al. [43]; Simonin et al. [117]; Bloemendal et al. [118]
ham-4	00528*	Yes	PP	Dettmann et al. [43]; Simonin et al. [117]
mob-3	07674*	Yes	PP	Dettmann et al. [43]; Maerz et al. [41]
ham-5	01789*	Yes	PP	Aldabbous et al. [86]
ham-6	02767*	Yes	PP	Fu et al. [35]; Nowrousian [119]
ham-7	00881*	Yes	PP	Fu et al. [35]; Maddi et al. [120]
ham-8	02811*	Yes	PP	Fu et al. [35]
ham-9	07389*	Yes	PP	Fu et al. [35]
amph-1	01069*	Yes	PP	Fu et al. [35]
whi-2	10518*	Yes	Yes	This report
prs-1	08380*	Yes	Yes	This report
rng-1	01895	–	PP	Jones et al. [121]
Nox pathway genes				
nox-1	02110*	Yes	PP	Cano-Dominguez et al. [69]
nor-1	07850*	NA(het)	PP	Cano-Dominguez et al. [69]
Pheromone signaling genes				
mfa-1	16992	NA	PP	Kim and Borkovich [24]
pre-1	00138	–	PP	Kim and Borkovich [24]; Poggeler et al. [122]
ccg-4	02500	–	PP	Kim and Borkovich [24]
pre-2	05758	–	PP	Kim and Borkovich [24]; Poggeler et al. [122]
Septation initiation network				
cdc-7	01335	Yes	PP	Park et al. [48]; Heilig et al. [76]
sid-1	04096	–	PP	Heilig et al. [76]
dbf-2	09071	–	PP	Heilig et al. [76]
Calcium signaling				
iments in verifying that the deletions identified in screening the deletion library give rise to the observed mutant phenotypes. As demonstrated by our study, the presence of secondary mutations in some isolates in the library does not detract from the value and importance of the single gene deletion library in analyzing \textit{N. crassa} gene functions.

Cell-to-cell fusion assays
To further characterize our mutants, the ability of the mutants to participate in cell-to-cell fusion was assessed with the CAT fusion assay [40]. We and others have previously shown that cell-to-cell fusion is needed for female development [42]. The genes required for cell-to-cell fusion are designated with an asterisk (*) in Table 2. Interestingly, we found that all of the cell-to-cell fusion genes that we identified encode proteins that are either confirmed or likely participants in one of three closely related signaling pathways: 1) the STRIPAK signaling complex, which is required for the movement of MAK-1 into the nucleus in a MAK-2-dependent manner; 2) the MAK-1 cell wall integrity signal transduction pathway; and 3) the MAK-2 hyphal growth signal transduction pathway used to direct the growth of fusion hyphae towards each other [35,43,44].

\begin{table}[h]
\centering
\caption{Transcription factors needed for female development.}
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Gene} & \textbf{NCU} & \textbf{Co-segregation} & \textbf{Complementation} & \textbf{Reference information} \\
\hline
pacC & 00090 & Yes & Yes & This report \\
asm-1 & 01414 & NA (het) & PP & Aramayo et al. [85] \\
rco-1 & 06205 & Yes & PP & Yamashiro et al. [128]; Aldabbous et al. [86] \\
rcm-1 & 06842 & NA (het) & PP & Kim and Lee [129]; Aldabbous et al. [86] \\
ada-1 & 00499 & Yes & Yes & Colot et al. [84]; This report \\
adv-1 & 07392 & Yes & Yes & Colot et al. [84]; Fu et al. [35] \\
bsd-1 & 09915 & Yes & PP & Hutchinson and Glass [90] \\
fnt-1 & 09387 & – & PP & Iyer et al. [89] \\
mcm-1 & 07430 & NA & PP & Nolting and Poeggeler [93,94] \\
pp-1 & 00340 & NA (het) & PP & Leeder et al. [91] \\
\hline
\end{tabular}
\end{table}

PP – Previously published data demonstrated that the gene was needed for female development.
NA – a deletion strain is not available in the single gene deletion library.
NA (het) – the deletion strain in the single gene deletion library is a heterokaryon and a homokaryon isolate was not available during the screening experiments.
RIP – a RIP experiment was used to verify that the gene is required for female development.
An * by the NCU number indicates that the gene is needed for CAT (conidia anastomosis tube) formation (a cell fusion phenotype) and is likely to be a component of either the MAK-1 or MAK-2 signal pathway.
A notation of ”This report” in the reference information column indicates that the gene was either newly identified or verified by co-segregation and complementation analysis as being needed for \textit{N. crassa} development by our experiments.

\textit{N. crassa} Female Development

doi:10.1371/journal.pone.0110603.t003
Ascogonia formation

Female development begins with the formation of the ascogonium, a specialized coiled hyphae structure. To determine whether the mutants were affected in ascogonia formation, mutant conidia were used to inoculate either synthetic crossing medium with sucrose or cellophane filters placed on synthetic crossing medium (without an additional added carbon/energy source), and the formation of ascogonia was assessed under a compound microscope. The PACC pathway mutants (palA, palB, palC, palF, palH, and pacC) had a rather interesting ascogonia formation phenotype. We found that they were unable to produce ascogonia on the synthetic crossing medium with sucrose but were able to form ascogonia on cellophane.

In the ascogonia formation on cellophane experiments, we found that 17 of the mutants were affected in the formation of ascogonia. These included the mutants for the OS MAP kinase pathway gene os-2, os-4, and os-5 genes, which have been previously shown to be defective in ascogonia formation by Lichius et al. [45]. We also found that deletion mutants for the transcription factor rco-1 (NCU06205) and 3 calcium signaling genes, cnb-1 (NCU03833), camk-1 (NCU09123), and ham-10 (NCU02833) were affected in ascogonia formation. This suggests that Cad++ signaling may be required for the initiation of female development in N. crassa. Previous work on each of these genes has shown that they are needed for female development [46–48]. The other 10 genes affecting ascogonia formation were rac-1 (NCU02160), div-1 (NCU04426), stk-16 (NCU00914), stk-22 (NCU03523), stk-47 (NCU006683), fem-1 (NCU05389), fem-4 (NCU06243), fem-5 (NCU02073), fem-6 (NCU09052), and fem-7 (NCU03985). Most of these mutants produced an abundance of conidia instead of making ascogonia on the cellophane filter. These mutants also shared a second phenotypic characteristic, a hyper-production of conidia when grown on slants containing synthetic crossing medium with sucrose. We hypothesize that these genes may function in allowing the fungus to choose between two alternative developmental pathways, a sexual pathway leading to female development and the asexual pathway leading to conidiation. These genes may well define a signal transduction pathway needed for initiating female development.

Perithecia grafting experiments

Female development on synthetic crossing medium occurs in response to nitrogen limitation, a condition in which the fungus may be restricted in the synthesis of new amino acids, and need to rely on pre-existing amino acids for the synthesis of new proteins. We developed a perithecia grafting assay (see Materials and Methods) that allowed us to ask whether the vegetative hyphae from the mutants we identified in our screening experiments were able to support the development of newly fertilized wild type perithecia (Figure 2). The results of the perithecia grafting experiments were quite instructive. We found that deletion mutants for virtually all of the genes known to be needed for growth under neutral-to-alkaline pH conditions, such as those encoding proteins that are likely to function in other signal transduction pathways, including the three N. crassa MAP kinase pathways, the STRIPAK pathway, the pheromone-responsive pathway, the NOX pathway, the heterotrimeric G protein signaling pathway, the septation initiation network (SIN), a Cad++ signaling pathway, and perhaps other signaling pathways; 3) Genes encoding probable transcription factors; 4) Genes that are required for autophagy; and 5) a few miscellaneous genes that don’t fit into the other categories. These genes are listed in Tables 1 through 5 respectively, along with details about the mutant phenotypes. To provide a somewhat comprehensive gene list, we have included a number of additional genes that have been shown by others to be involved in female development. In most of these cases, the deletion mutants for these genes weren’t identified in our screening experiments because they were not available in the library or they were found as heterokaryons in the library. These “added” genes include mfa-1 (NCU06992), pre-1 (NCU00138), ceg-4 (NCU02500), pre-2 (NCU05758), asrn-1 (NCU01414), fmf-1 (NCU09387), pp-1 (NCU00340), rho-1 (NCU01484), nor-1 (NCU07850), gnu-1 (NCU06493), gng-1 (NCU00041), cnb-1 (NCU03833), cpe-2 (NCU05810), mcm-1 (NCU07430), per-1 (NCU03584), rgl-1 (NCU06668), rgg-1 (NCU01895), rcm-1 (NCU06842) and tyrosinase (NCU00776). Citations for the publications that demonstrated that these genes play roles in female development are included in Tables 2, 3, and 5. We will examine each category of mutants one at a time and describe their phenotypes and how they might function in supporting or directing female development.

Category #1: The PACC signal transduction pathway

The PacC/rim101 signal transduction pathway has been well characterized in A. nidulans and S. cerevisiae, where the pathway is regulated by the pH of the medium [49–53]. A representation of the pathway with the components we have identified in N. crassa is shown in Figure 3. In S. cerevisiae and A. nidulans, the pathway is activated at neutral-to-alkaline pHs, and the PACC protein functions as a transcription factor to activate expression of a number of genes needed for growth under neutral-to-alkaline pH conditions. The PALH protein, a seven transmembrane protein found in the plasma membrane, functions as the receptor or pH sensor for the pathway. PALH is found in a complex with the same in order for the host to be able to support graft development, suggesting that the vegetative incompatibility system is operating between the host and graft tissues. In addition to providing an assessment of whether a mutant “host” supported a wild type “graft”, we noted a second unexpected phenomenon in the grafting experiments. When testing the PACC pathway mutants (palA, palB, palC, palF, palH, and pacC) as hosts, we found that the presence of wild type perithecia grafts of either mating type were able to induce protoperithecia formation in the host hyphal network surrounding the graft (Figure 2). We conclude that the PACC pathway operates to allow the fungus to choose the female developmental pathway in response to environmental/nitrogen limitation cues present in synthetic crossing medium. However, the fungus apparently has other pathways for inducing female development, and one of these pathways is responsive to the presence of nearby perithecia.

Functional grouping of the genes required for female development

An examination of the genes defined by the deletion mutants showed that we could assign the genes into five different categories. These were: 1) Genes encoding proteins which have been found to function in the PACC signal transduction pathway; 2) Genes encoding proteins that are likely to function in other signal transduction pathways, including the three N. crassa MAP kinase pathways, the STRIPAK pathway, the pheromone-responsive pathway, the NOX pathway, the heterotrimeric G protein signaling pathway, the septation initiation network (SIN), a Cad++ signaling pathway, and perhaps other signaling pathways; 3) Genes encoding probable transcription factors; 4) Genes that are required for autophagy; and 5) a few miscellaneous genes that don’t fit into the other categories. These genes are listed in Tables 1 through 5 respectively, along with details about the mutant phenotypes. To provide a somewhat comprehensive gene list, we have included a number of additional genes that have been shown by others to be involved in female development. In most of these cases, the deletion mutants for these genes weren’t identified in our screening experiments because they were not available in the library or they were found as heterokaryons in the library. These “added” genes include mfa-1 (NCU06992), pre-1 (NCU00138), ceg-4 (NCU02500), pre-2 (NCU05758), asrn-1 (NCU01414), fmf-1 (NCU09387), pp-1 (NCU00340), rho-1 (NCU01484), nor-1 (NCU07850), gnu-1 (NCU06493), gng-1 (NCU00041), cnb-1 (NCU03833), cpe-2 (NCU05810), mcm-1 (NCU07430), per-1 (NCU03584), rgl-1 (NCU06668), rgg-1 (NCU01895), rcm-1 (NCU06842) and tyrosinase (NCU00776). Citations for the publications that demonstrated that these genes play roles in female development are included in Tables 2, 3, and 5. We will examine each category of mutants one at a time and describe their phenotypes and how they might function in supporting or directing female development.
Table 1). The PacC pathway has been well-defined in the model fungus, N. crassa. The best of our knowledge, this is the first report demonstrating that the pathway is required for protoperithecial development. We found that the pacC mutant of S. cerevisiae has been classified as a pH-dependent protein that is phosphorylated and ubiquitinylated. These modifications to PALF lead to the endocytosis of PALH protein, which joins with the PALA, PALB, PALC, and PACC proteins to create a multimeric signaling center within the ESCRT (endosomal sorting complexes required for transport) complex. Within the signaling center, PALB functions as a processing protease and cleaves an inhibitory C terminal domain from the PACC transcription factor. The activated PACC is released from the ESCRT complex and enters the nucleus. Since the PACC pathway has been characterized as a pH-dependent pathway, finding that it was required for female development in N. crassa, which occurs during nitrogen deprivation, was unexpected.

We found that the ΔpalA, ΔpalB, ΔpalC, ΔpalF, ΔpalH, and ΔpacC mutants are all defective in protoperithecial development. We were unable to identify any ascogonia, the initial stage of ascogonia production, by growing mutant hyphae on synthetic crossing medium, while ascogonia and protoperithecia were observed in wild type hyphae. Complementation analysis for these PACC pathway mutants verified that each of the genes was needed for protoperithecia formation. (Figure 1, Table 1). The PacC pathway has been well-defined in A. nidulans, S. cerevisiae, and C. albicans as being required to regulate genes involved in growth in neutral-to-alkaline media [49–52,54–60]. To the best of our knowledge, this is the first report demonstrating that the pathway is required for protoperithecial development. However, the PacC mutant of Sclerotinia sclerotium has been found to be defective in the formation of sclerotia, melanized structures that can remain dormant for many years and give rise to apothecia, the female structure for this species [61].

As noted in the ascogonia formation and perithecia formation experiments, the PacC pathway deletion mutants were unable to generate ascogonia and protoperithecia on synthetic crossing medium, but could produce protoperithecia in response to a signal from nearby fertilized perithecia from either mating type (Figure 2) or when grown on cellophane. We also tested for protoperithecia production on corn meal agar, a medium containing complex carbohydrates which can be used for N. crassa matings, and found that the PAC mutants produced protoperithecia on this medium. Our data shows that the PAC pathway is needed for the induction of female development (ascogonial development) only when female development is induced by growth on synthetic crossing medium, a medium that is generally ascribed as inducing female development in response to nitrogen deprivation, but that other environmental cues can induce female development in PACC pathway mutants. It is interesting to note that the environmental conditions inducing female development differ for different fungal species [1], which may reflect differences in their life cycles. We hypothesize that PACC induction of ascogonia production may be restricted to those fungi that induce female development in response to nitrogen limitation.

To determine whether the protoperithecia produced by PacC pathway deletion mutants were fully functional, we fertilized protoperithecia that had been induced by the presence of nearby perithecia or growth on corn meal agar. Upon fertilization, the mutant perithecia increased in size and began to melanize. However, the perithecia did not complete development and eject ascospores. Several of these mutant perithecia were examined, and we found that the perithecia did not grow as large as wild type perithecia. They also did not become as melanized as wild type perithecia. Microscopic examination of squashed mutant perithecia shows that they do not generate ascI (Figure 4). Thus, we find that the PACC pathway is used at two different stages of female development, first during the initial induction of protoperithecial development in response to environmental cues, and then later in the maturing perithecia during the development of ascI from the ascogenous tissue.

To determine whether the removal of the C terminal inhibitory domain of PACC was sufficient to direct N. crassa cells into the female developmental pathway, we prepared a version of pacC in which a stop codon was inserted into the gene at amino acid 492. The truncated protein made from this construct would lack the predicted inhibitory C terminus domain, and would be predicted to give rise to a constitutively active form of PACC. Transformation of wild type isolates with the plasmid encoding this constitutively active PACC resulted in the abundant formation of protoperithecia, even in the Vogel’s medium where female development is normally repressed. Transformants of the ΔpalA, ΔpalB, ΔpalC, ΔpalF, and ΔpalH with plasmid encoding the
constitutive active form of PACC, also produced an abundance of protoperithecia (Figure 5). This demonstrates that PALA, PALB, PALC, PALF, and PALH are all upstream of PACC within the signaling pathway. We conclude that the activation of PACC is a major event in triggering female development in N. crassa, and that activation of PACC is sufficient to direct cells to undergo female development, even in the absence of the normal nitrogen limitation cue.

To examine whether the PACC pathway has the same characteristics in N. crassa that have been previously identified in the A. nidulans and S. cerevisiae systems, we decided to examine the intracellular location of PACC pathway components in wild type and mutant isolates. Endogenous promoter-driven GFP-tagged versions of PALA, PALC, and PALH were prepared using the pMF272 vector [62]. The GFP-tagged versions of PALC and PALH did not complement the deletion mutants and we were unable to detect a GFP signal, suggesting that the GFP-tagged proteins were rapidly degraded. However, the GFP-tagged PALA fully complemented the deletion mutation and gave a faint, but detectable intracellular signal in conidia and germlings. The faint signal was localized in a punctate pattern near the periphery of the conidia and germlings. We were unable to detect a signal from the GFP-tagged PALA within early developing protoperithecia (ascogenous coils), suggesting that the signal was weak. We also prepared a ccg-1 promoter-driven GFP-tagged palA vector as described in Materials and Methods. Transformation with the ccg-1 promoter-driven GFP-tagged palA provided for a stronger signal in wild type and ApalA isolates (Figure 6). Examination of the GFP-tagged PALA in germinating conidia showed that the protein was localized in a punctate pattern near the cell surface. The data

Figure 3. Schematic representation of the N. crassa PACC pathway. The PACC signal transduction pathway elements found in N. crassa, and the model for how the pathway might function are depicted. The PALH and PALF proteins are thought to be found at the plasma membrane. PALH is a seven transmembrane receptor which is sensitive to environmental cues. PALF is an arrestin type protein that associates with PALH. PALF is phosphorylated and ubiquitinated in response to the environmental cues. These events lead to the endocytosis of the PALH/PALF complex. Following endocytosis, the PALH is directed into an ESCRT compartment, where it enters into a signaling complex containing PALA, PALB, PALC, and PACC. Within the signaling complex, PALB functions as a protease which cleaves PACC. This cleavage event removes a C-terminal inhibitory domain from the PACC transcription factor, and the processed PACC is released from the signaling complex. The activated PACC then enters the nucleus and directs transcriptional activity leading to the formation of the protoperithecium.

doi:10.1371/journal.pone.0110603.g003
suggests that the *N. crassa* PACC pathway is localized to the ESCRT complex, just as was previously shown to occur for the *A. nidulans* and *S. cerevisiae* pathways [51,52]. Our findings are consistent with the *N. crassa* PACC pathway functioning like the canonical PACC pathway defined in *A. nidulans* and *S. cerevisiae*. In *S. cerevisiae*, the PACC homolog, Rim101p, has been shown to be required for meiosis [55,57], and the inability of the PACC pathway mutants to produce ascis would suggest that the *N. crassa* PACC pathway may function in an analogous manner during the later stages of female development.

Category #2: Genes encoding other signal transduction pathway elements

Table 2 lists 53 genes that are likely components of signal transduction pathways. An extensive analysis of the serine-threonine kinases encoded in the *N. crassa* genome was recently published, and many of the kinases we identify in Table 2 were also found to be defective in female development in that study [48]. Fourteen of these signal transduction pathway genes were previously defined as being required for cell-to-cell fusion in our previous study [35]. All three of the MAP kinase pathways encoded in *N. crassa* genome have been previously shown to be needed for female development [45]. Table 2 contains 25 genes required for the production of CATs (conidial anastomosis tubes), the cell type needed for cell-to-cell fusion. Most of these genes are known to be components of either the MIK-1/MEK-1/MAK-1 cell wall integrity pathway, the NRC-1/MEK-2/MAK-2 hyphal growth pathway, or the NOX pathway. These pathways have been identified as being needed for cell-to-cell fusion [32,35,43,63,64]. Table 2 contains three newly identified genes, *pp-2A activator* (NCU03269), *whi-2* (NCU10518) and *prs-1* (NCU08380), which are required for the CAT formation and therefore likely components or regulators of the MAK-1 or MAK-2 pathways. The PP-2A activator (NCU03269) is likely associated with PP-2A (NCU06563), which has been shown to be a member of the STRIPAK complex that regulates the movement of MAK-1 into the nucleus [43]. WHI-2 is a homolog of a yeast general stress regulator [65–68]. Recent work in our laboratory has shown that MAK-1 and MAK-2 pathways are affected in the *N. crassa* whi-2 mutant [47]. PRS-1 is a putative membrane-associated protein phosphatase and forms a complex with WHI-2 [65]. In yeast, Whi2p and Psr1p have roles in autophagy and in responding to mitochondrial dysfunction [68]. Given the probable association between the PP2A activator and the STRIPAK complex and between PRS-1 and WHI-2, it seems likely that PP2A activator and PRS-1 are also involved in regulating the MAK-1 and MAK-2 pathways in *N. crassa*. Those signal transduction pathway components found in Table 2 that do not

Figure 4. The PACC pathway is required for the development of ascis. Fertilized perithecia from wild type (left panel/A) and ΔpalA (right panel/B) were allowed to develop for 7 days. The perithecia were squashed between a glass slide and a glass coverslip and examined with a transmitted light microscope. The wild type perithecia has generated ascospores (arrow) while the ΔpalA perithecia is defective in ascospore formation. The arrow in the left panel points to an ascospore.

Figure 5. Constitutively active PACC activates female development. Cells were inoculated onto agar slants and allowed to grow for 10 days at room temperature. The left panel (A) shows a ΔpalC isolate on Vogel’s sucrose medium. The middle panel (B) shows a ΔpalC isolate that has been transformed with the constitutively activated PACC construct growing on synthetic crossing medium. The right panel (C) shows a ΔpalC isolate that has been transformed with the constitutively activated PACC construct growing on Vogel’s sucrose medium, a medium that represses female development. Note that the constitutively activated PACC caused protoperithecia production in the absence of PALC on both media. The arrows in the middle and right panels point to protoperithecia.

affect CAT formation are unlikely to be part of the MAK-1 and MAK-2 pathways, and are more likely to be functioning in some other pathway.

We noted that our list of signal transduction genes included the nox-1 (NCU02110) and nor-1 (NCU07830) genes, which function in superoxide production and signaling [69–71]. These genes have been previously identified by others as being needed for protoperithecia formation, and may play a key role in cell-to-cell signaling during female development [69,72,73].

The mfa-1 (NCU016992) and ccg-4 (NCU02500) pheromone genes and the genes encoding their receptors, pre-1 (NCU000138) and pre-2 (NCU005758), have been previously identified as playing vital functions during mating and peritheciurn maturation in N. crassa and S. macrospora [24,27,74]. The PRE-1 and PRE-2 receptors have been previously shown to function in directing growth of the trichogyne toward conidia of the opposite mating type to facilitate the fertilization event [27]. The signal transduction pathway(s) through which the PRE-1 and PRE-2 receptors function has not been characterized. Further analysis will be needed to characterize how this pathway functions.

Mutants that are affected in the process of septation formation have been previously shown to be unable to generate protoperithecia in S. macrospora and N. crassa [41,75–77]. Our screening experiments corroborate the need for septation during female development. We identified cdc-7 (NCU01335), sid-1 (NCU04096), and dbf-2 (NCU09071) as being needed for protoperithecia formation (Table 2). Several other genes encoding components of the N. crassa separation initiation network (SIN) have been shown to be needed for female development [76–80], but the deletion mutants were either absent from the single gene deletion library or found as heterokaryons, and these genes are not listed in Table 2.

Table 2 lists three genes involved in calcium signaling that were identified in our experiments. These are the gene for the calciuretin subunit b, cnh-1 (NCU03833), the calcium/calmodulin-dependent protein kinase cactk-1 (NCU09123), and ham-10 (NCU02833), which encodes a C2 domain-containing protein. C2 domains are thought to function as calcium-dependent lipid-binding domains involved in vesicular trafficking. All three of these genes have been previously identified as affecting female development [46–48].

In addition to the components of the three MAP kinase pathways, the PACC pathway, the NOX-1 pathway, the septation initiation network, the pheromone pathway, and the calcium signaling pathway, Table 2 also contains five additional kinases. These kinases are fi (NCU04990), div-1 (NCU04426), stk-16 (NCU00914), stk-22 (NCU03232), and stk-17 (NCU06685). Four of these kinases, div-1, stk-16, stk-22 and stk-17 are needed for ascogonia formation, and may be part of a signaling pathway regulating entry into female development. However, further work is needed to characterize how these kinases function during protoperithecia formation and maturation.

Category #3: Transcription factors

Table 3 lists the 10 transcription factor genes that we have identified as being needed for female development. Although not listed in Table 3, the genes at the two mating alleles encode transcription factors that have been well characterized and are known to play critical roles in regulating transcriptional activity during female development [81]. In P. anserina, a group of ten HMG-box proteins, including the mating type proteins, have been shown to function in directing peritheciurn development [82,83]. Except for pacC, all of the transcription factors in Table 3 have been previously identified as being involved in female development by others [84]. The asm-1 (NCU01414) transcription factor was previously identified by Aramayo et al. [83] as being needed for protoperithecia development. The rco-1 (NCU06205), rcm-1 (NCU06842) and adv-1 (NCU07392) genes had been previously identified as encoding transcription factors needed for cell-to-cell fusion [33]. The rco-1 (NCU06205) and rcm-1 (NCU06842) genes are homologs of the S. cerevisiae SSN6 and TUP1 genes, which encode the subunits of a general dimeric transcription factor. RCO-1 and RCM-1 have been previously identified as being needed for female development [86]. ADV-1 is a homolog of the S. macrospora PRO-1 protein, which has been shown to be needed for female development [87,88]. The ada-1 (NCU00499) and adv-1 (NCU07392) genes were identified as transcription factors needed for both asexual and sexual development [84], and we verified their importance for female development by complementation experiments. The fnf-1 (NCU09387) gene was previously characterized by Iyer et al. [89] as a homolog of the S. pombe Ste11p, a transcription factor involved in the expression of genes involved in pheromone signaling. Hutchinson and Glass [90]
previously reported that the fsd-1 (NCU09915) gene was needed for the transition from protoperitheciu to a mature peritheciu. The pp-1 (NCU00340) and pacC (NCU00090) genes encode transcription factors that are known to function in the MAK-2 and PACC signal transcription pathways [31,52,91,92]. In addition to these transcription factors that had been previously identified and characterized in N. crassa, one additional transcription factor for female development, MCM-1 (NCU07430) is listed in Table 3. The deletion mutant for mcm-1 is not found in the first 119 plates of the library, but a mcm-1 mutant has been characterized in the closely related S. macrospora and shown to be unable to produce perithecia [93,94]. The S. macrospora MCM-1 has been shown to associate with a protein encoded by the mating type locus gene, and to regulate gene expression during peritheciu development [93].

Category #4: Autophagy genes

The identification of 10 genes in our screening and co-segregation experiments that are required for autophagy (Table 4), clearly demonstrates that autophagy is a required activity during female development. Previous work from the Poggeler laboratory has demonstrated the importance of autophagy during S. macrospora female development [95–98]. The atg-4, atg-7, atg-8, vps-34 and vps15 genes have each been shown to be required for peritheciu development in S. macrospora. Autophagy has been studied in Magnaporthe oryzae, where it has been shown to be important for asexual development, peritheciu development, and appressorium formation [99,100]. In Aspergillus oryzae, the deletion of autophagy genes was shown to affect the conidiation process [101]. Complementation experiments with 2 of our autophagy genes, atg-3 and atg-8, verified that autophagy was required for the development of N. crassa protoperitheciu. Some of our autophagy mutants were initially identified as being protoperitheciu-defective while others were identified as being peritheciu-defective. However, careful examination of the autophagy mutants shows that these mutants can initiate female development (produce ascogonia) and make a few small protoperitheciu. Thus, the autophagy mutants might be best described as being able to initiate protoperitheciu development, but unable to fully support subsequent female development. The protoperitheciu grafting experiments demonstrate that autophagy is required within the vegetative hyphal network. We found that fertilized autophagy mutant peritheciu were able to complete female development and produced ascospores when grafted onto a wild type host. We conclude that the autophagy mutants are affected in female development because the vegetative hyphal network is unable to provide an adequate supply of nutrients to the developing female.

Category #5: Miscellaneous genes

There were 10 genes that are required for female development which didn’t fall into one of the 4 categories discussed above (Table 5). Among the miscellaneous genes we identified as being needed for female development were 3 genes that were annotated as encoding enzymes that are likely to function in melanin biosynthesis. Tyrosinase, which is encoded by the T gene (NCU00776), catalyzes the formation of melanin from dihydroxyphenylalanine (DOPA), and has been previously shown to be needed for protoperitheciu formation [102]. In addition to tyrosinase, the per-1 gene (NCU03584), which encodes a polyketide synthase that is probably needed for the production of melanin from dihydroxyxynaphthalene (DHN), is needed for peritheciu melanization. The Δper-1 mutant has an unmelanized peritheciu phenotype [31]. We also found that an aldo-keto reductase gene (NCU01703) was needed for female development. The aldo-keto reductase may function in the pathway with the polyketide synthase for the production of DHN melanin. A polyketide synthase gene cluster has also been shown to be important for S. macrospora peritheciu development [103,104].

Table 5 lists 7 genes that were annotated as encoding “hypothetical proteins” or “conserved hypothetical proteins” in the N. crassa genome site at the Broad Institute website. These genes have been verified by complementation as being needed for female development (Table 5). We have named these genes as fem genes to designate that they are required for female development. Some of the encoded hypothetical proteins are highly conserved in the genomes of the filamentous fungi, suggesting that the genes play important roles in the life cycles of the filamentous fungi. As mentioned in the ascogonia formation section, fem-1, fem-4, fem-5, fem-6, and fem-7 may function with the div-4, stk-22, stk-17 kinases in a signal transduction pathway regulating the choice between asexual and sexual developmental programs. As the annotation of the N. crassa genome improves and further research is done, we hope that we will be able to identify functions for many of these conserved hypothetical proteins.

Conclusions

Our research demonstrates that a rather large number of signal transduction pathways and transcription factors are required to regulate female development (Tables 1, 2 and 3). Our analysis, in conjunction with other previously published studies, points to the involvement of at least nine different signal transduction pathways regulating female development. These are: 1) the MIK-1/MEK-1/MAK-1 cell wall integrity MAP kinase pathway; 2) the HAM-2/HAM-3/HAM-4/MB-3 striatin pathway involved in making a complex on the nuclear envelope and in directing the movement of MAK-1 into the nucleus in a MAK-2 dependent manner; 3) the NRC-1/MEK-2/MAK-2 hyphal growth MAP kinase pathway; 4) the OS-2/OS-4/OS-5 osmotic stress MAP kinase pathway; 5) the NOX-1/NOR-1 superoxide pathway; 6) the PDC-1/PDC-2 pheomone signal transduction pathway; 7) the septation initiation network (SIN), 8) a calcium signaling pathway, and 9) the PACC signal transduction pathway, which functions during the induction of protoperitheciu development and during the maturation of the peritheciu. Our experiments suggest that there is a signaling pathway that regulates the choice between sexual development and asexual development, and points to several genes that are likely to function in the pathway. We also found that chromatin remodeling was needed for female developments. Our experiments highlighted the role of autophagy and cell-to-cell fusion in the neighboring vegetative hyphae, which functions to provide nutrients to the developing female. What is clear from the analysis is that female development requires the coordinated activities of a number of signaling pathways.

Materials and Methods

Strains and growth conditions

Strains were routinely grown on Vogel’s minimal medium with 2% sucrose or on synthetic crossing medium with 0.5% sucrose [22]. The single gene deletion library was obtained from the Fungal Genetics Stock Center (Kansas City, MO). The ApacC mutant was a kind gift from Dr. Maria Bertolini (Sao Paulo, Brazil) [92]. To provide the strains needed for the complementation experiments with the pBM60/pBM61 vector system, deletion mutants were mated with a his-3 mutant of the opposite mating type /his-3, mat-A FGSC#6103 or a his-3, mat-a isolate obtained
by mating FGSC#6103 with wild-type mat-a and his-3 isolates containing the deletion mutation were isolated from among the progeny. These mating experiments were carried out as described in Davis and DeSerres [22].

To determine whether mutant isolates could form ascogonia, cellophane filters overlaid on synthetic crossing medium (without carbon/energy supplementation) were inoculated with conidia. Two to three days post-inoculum, pieces of cellophane were cut from the filters and the presence of ascogonia was assessed by observation under a compound microscope at 200 X magnification. Ascogonia formation was also assessed by inoculating synthetic crossing medium containing 0.1% sucrose with conidia and allows the cells to grow for one to three days. Agar samples were then removed from the culture and examined for ascogonia under the compound microscope.

Screening the library
A screening procedure was used to identify mutants in the Neurospora deletion library that were defective in the formation of protoperithecia or for their subsequent development into mature perithecia. Plates 1 through 119 of the library contain approximately 10,000 haploid deletion mutants. Each of these mutants was individually inoculated into a glass test tube (16 × 100 mm) containing a 3 ml synthetic crossing medium agar slant. The isolates were allowed to grow for 10 days at room temperature, and examined for the presence of protoperithecia under the dissecting microscope. Protoperithecia were readily observed on the glass test tube near the edge of the synthetic crossing medium (Figure 1). After screening for protoperithecia formation, we added approximately 500 μl of water containing conidia of both mat-A and mat-a mating types to each of the slants to fertilize the protoperithecia and induce perithecium development. The slants were visually screened for the development of melanized perithecia three to four days after adding the conidial suspension. The haploid mutants isolated by the screening procedure would be considered as maternal or female developmental mutants. Most of the deletion mutants were tested for complementation in heterokaryons, and the deletion mutations found to be recessive.

Co-segregation analysis
Many of the isolates in the N. crassa single gene deletion library have mutations in addition to the targeted deletion [35]. To help

Gene	NCU#	Co-segregation	Complementation	Reference information
atg-3	01955	Yes	Yes	This report
atg-8	01545	Yes	Yes (RIP)	Fu et al. [35]; Voigt et al. [97]; Liu et al. [100]
atg-12	10049	Yes	–	This report
atg-7	06672	Yes	–	Noiting et al. [98]; This report
atg-9	02422	Yes	–	This report
atg-10	02779	Yes	–	This report
atg-1	00188	Yes	–	This report
atg-5	04662	Yes	–	This report
atg-13	04840	Yes	–	Kikuma and Kitamoto [101]; This report
atg-18	03441	Yes	–	This report

RIP – a RIP experiment was used to verify that the gene is required for female development.
A notation of “This report” in the reference information column indicates that the gene was identified as being needed for N. crassa development by our experiments.

doi:10.1371/journal.pone.0110603.t004

Table 5. Miscellaneous genes needed for female development.

Gene	NCU#	Co-segregation	Complementation	Reference information
Tyrosinase	00776	NA	PP	Fuentes et al. [102]
per-1 polyketide synthase	03584	NA(het)	PP	McCluskey et al. [31]
Aldo-keto reductase	01703	Yes	Yes	This report
fem-1 Hypothetical	03589	Yes	Yes	This report
fem-2 Hypothetical	07135	Yes	Yes	This report
fem-3 Hypothetical	03588	Yes	Yes	This report
fem-4 Hypothetical	06243	Yes	Yes	This report
fem-5 Hypothetical	02073	Yes	Yes	This report
fem-6 Hypothetical	09052	Yes	Yes	This report
fem-7 Hypothetical	03985	Yes	Yes	This report

PP – Previously published data demonstrated that the gene was needed for female development.
NA – a deletion strain is not available in the single gene deletion library.
NA(het) – the deletion strain in the single gene deletion library is a heterokaryon and a homokaryon isolate was not available during the screening experiments.
A notation of “This report” in the reference information column indicates that the gene was identified as being needed for N. crassa development by our experiments.
doi:10.1371/journal.pone.0110603.t005
determine if the deletion mutations were responsible for the protoperithecia-defective and perithecia-defective phenotypes observed in the screening procedure, the mutants were subjected to a co-segregation analysis. The mutants were mated with a wild type isolate of the opposite mating type and ascospore progeny from these matings were collected [22]. Because all of the mutants were defective in female development, the mutant isolates were used as the conidial (male) partners in these matings. Ascospores from each of the matings were activated and 24 single ascospore progeny were isolated using standard procedures [22]. Each of the progeny were tested for hygromycin resistance and for the ability to form protoperithecia or perithecia with the same procedure used in the initial screening. The deletion mutations are marked by the insertion of the hygromycin resistance cassette in replacement of the deleted gene [84]. The co-segregation of hygromycin resistance with the mutant phenotype was taken as preliminary evidence that the deletion mutation was responsible for the mutant phenotype. The mutant phenotype was ascribed to a mutation other than the deletion in those cases where the mutant phenotype did not co-segregate with hygromycin resistance.

Many of the deletion mutations are represented by two isolates in the single gene deletion library, one of each mating type. In screening the library for protoperithecia-defective and perithecia-defective mutants, we found several cases where only one of the two deletion isolates in the library was defective in female development. Prior experience doing co-segregation analysis with the library showed that in such cases, the mutant phenotype invariably does not co-segregate with the deletion mutation [35]. Thus, the phenotype was assumed to be due to a mutation other than the deletion in those cases where the library contained two isolates and only one of the isolates had a mutant phenotype.

Cell-to-cell fusion assays

A number of the previously characterized cell-to-cell fusion (anastomosis) mutants have been previously shown to be affected in female development [32,35,42,45,105]. To identify cell-to-cell fusion mutants among the mutants affected in female development, the mutants were individually tested for the ability to participate in cell-to-cell fusion with the conidial anastomosis tube fusion (CAT fusion) assay as previously described by Fu et al. [35]. The CAT fusion assay was originally described and developed by Roca et al. [40].

Perithicia grafting experiments

The primary purpose of the protoperithecia grafting experiments was to determine whether a mutant vegetative hyphal network could support the development of transplanted wild type perithecia. A *P. anserina* perithecia grafting technique, which consists of transferring perithecia directly onto a host hyphal network has been previously described [106,107]. In using this technique with *N. crassa*, we found that complementation between a wild type graft and a mutant host resulted in the production of multiple perithecia at the graft site. It was very difficult to differentiate between the grafted perithecia and perithecia produced by complementation within the mutant host hyphae. We therefore used a modification of the *Podospora* grafting techniques to evaluate *N. crassa* female development. To perform the grafting experiments, mutant isolates were grown on an agar plates containing SCM with 0.5% sucrose for ten days to provide “hosts” for the grafted perithecia. Wild type isolates were grown for 10 days at room temperature on a cellophane filters that had been overlaid on Petri dishes containing SCM with 0.5% sucrose agar medium. An abundance of wild type protoperithecia developed on the cellophane. A conidial suspension of the opposite mating type was then used to fertilize these wild type protoperithecia. Twenty four hours after fertilization, small pieces of cellophane (approximately 0.5 cm squares) with fertilized “graft” perithecia were cut from the filter with a sterilized razor blade and transferred onto the Petri dishes containing mutant “host” vegetative hyphae. Three or four small pieces of cellophane containing fertilized wild type perithecia were transferred to each “host” Petri dish (Figure 2). The ability of the mutant vegetative hyphae to support development of the “graft” wild type fertilized perithecia was determined by whether or not the perithecia on the cellophane filter ripened and shot ascospores.

In doing these grafting experiments, we determined that the host and graft had to be of the same mating type in order for the host to support perithecial development in the graft, suggesting that the vegetative incompatibility phenomenon was operative during the grafting experiments. This is in contrast with the *P. anserina* grafting experiments, in which hosts of either mating type could sustain the development of the grafted perithecia [106].

The perithecia grafting experiments allowed us to evaluate two different aspects of female development. First and foremost, we allowed us to determine whether a mutant host vegetative hyphal network could support the development of fertilized graft perithecia of the same mating type. Second, we found that grafted wild type perithecia could induce protoperithecia formation in a vegetative hyphal network of some of our mutants.

Cloning, complementation, and RIP analysis

Complementation experiments were used to definitely demonstrate that a gene identified in the deletion library was required for female development. These complementation experiments were carried out with the pBM60/pBM61 cloning system as previously described [35]. To test for complementation, PCR primers were used to amplify the putative female development genes along with approximately 1500 base pairs of upstream sequence and 500 base pairs of downstream sequence, and the genes were cloned into the pBM60 and pBM61 vectors [108]. The primers were designed so that they contained restriction enzyme sites that allowed for the cloning of the genes into a multicloning site in the plasmids. The primers used in cloning the PACCl pathway genes are given in Table S3. The pBM60 and pBM61 vectors are designed for the targeted insertion of plasmid sequences into the intergenic region downstream of the *his-3* locus. pBM60 or pBM61-derived plasmids for each of the cloned genes were used to transform an isolate having the gene deletion in a *his-3* background. Insertion of the plasmid sequences by homologous recombination generated a wild-type copy of the *his-3* gene, and allowed for the isolation of the transformant. Several transformants for each of the cloned genes were isolated and tested for the ability to make protoperithecia or perithecia on 3 ml slants of synthetic crossing medium. The ability of the cloned wild type gene to complement the deletion mutation was taken as definite proof that the gene was needed for female development.

For those mutants that did not produce conidia, the cell type used in the transformation experiments for the complementation analysis, we carried out RIP (repeat induced point mutation) analyses to verify that the mutant phenotype was due to the mutation of the targeted gene. RIP is a phenomenon in which genes that are present in two or more copies in a haploid genome are extensively mutated during the *N. crassa* sexual cycle [109]. Both copies of a duplicated gene receive multiple C to T (G to A) mutations during the RIP process. The RIP experiments were performed by cloning genes into the pBM60 or pBM61 as described above. The plasmids were used to transform *his-3* conidia to generate a strain having two copies of the cloned gene.
These transformants were then mated with a his-3 strain of the opposite mating type to activate the RIP process. Individual his-3 progeny with the mutant phenotype were then isolated. Being his-3 isolates, these progeny will have a single copy of the gene in question (they don’t have the “second copy” of the gene which was targeted into the his-3 locus during the transformation). The gene was then PCR amplified and sequenced to determine if the mutant phenotype was the result of RIP mutations within the gene.

Constitutively activated version of PACC

A constitutively activated version of PACC was created by introducing a stop codon into the pacC gene. The stop codon was placed such that the encoded protein lacked the C terminal 129 amino acids. This construct was generated by using the Gibson Assembly Master Mix kit (New England BioLabs, Ipswich, MA). Primers pacC-F and pacC-activated-R (Table S3) were used to amplify the 5’UTR and pacC coding region through the added stop codon region. Primers pacC-activated-F and pacC-R (Table S3) were used to amplify the region beginning with the stop codon and containing 3’ UTR sequences. The two PCR products were mixed with XbaI and EcoRI digested pBM60 and the Gibson Assembly Master Mix to generate a full length pacC containing the early stop codon.

Intracellular localization of GFP-tagged PALA

Two versions of GFP-tagged PALA were generated to examine the localization of PALA in wild type and mutant backgrounds. Both versions were created in the pMF272 vector [62] and contain the complete PALA coding region followed by the GFP coding sequence. The two versions differed in the promoter region used to drive expression of the protein. One of the versions contained the cgg-1 promoter found in pMF272 to drive high level expression of PALA, while the other version contained the normal palA promoter. For the palA promoter version, PCR primers palA-GFP-F and palA-GFP-R (Table S3) were used to amplify the region from 1374 base pairs upstream of the coding region to the amino acid preceding the stop codon for PALA. The PCR primers contained restriction enzyme sites to facilitate the cloning of the amplified gene and its upstream regulatory sequence immediately preceding, and in frame with, the GFP sequences in pMF272. To construct the cgg-1 promoter version of palA, primers pal-GFP-ccg-1-F and pal-GFP-ccg-1-R (Table S3) were used to amplify and clone the coding region of palA into pMF272. The pMF272 vector is designed to facilitate the insertion of the cloned sequences into the intergenic region downstream of the his-3 gene by homologous recombination [62]. The GFP-tagged palA plasmid constructs were used to transform the ApalA, his-3 mutant to demonstrate by complementation that the GFP-tagged PALA was fully functional. The location of the GFP-tagged PALA was assessed by fluorescence confocal microscopy. Similar GFP tagging experiments were carried out to produce GFP versions of PALC and PALH, but these GFP-tagged proteins failed to complement their deletion mutants.

Confocal microscopy

Confocal laser scanning microscopy was performed using a Zeiss LSM 710 Confocal Microscope (Carl Zeiss, Inc., USA).

References

1. Poggerle S, Nowrousian M, Kuck U (2006) Fruiting-Body Development in Ascomycetes. Kues U, Fischer R, editors: Springer Berlin Heidelberg.
2. Lord KM, Read ND (2011) Perithecium morphogenesis in Sordaria macrospora. Fungal Genet Biol 48: 308–309.
3. Bistis GN, Perkins DD, Read ND (2003) Different cell types in Neurospora crassa. Fungal Genet Newsl 50: 17–19.
4. Wang Z, Lopez-Giraldez F, Lehr N, Farre M, Common R, et al. (2014) Global gene expression and focused knockout analysis reveals genes associated with
fungal fruiting body development in Neurospora crassa. Eukaryot Cell 13: 154–169.
5. Hallen HE, Huebner M, Shin SH, Guldenre U, Trail F (2007) Gene expression shifts during perithecial development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet Biol 44: 1146–1156.
6. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 573–586.
7. Nowrousian M, Stajich JE, Cha M, Engh I, Espagne E, et al. (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6: e1000891.
8. Teichert I, Wulf G, Kuck U, Nowrousian M (2012) Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics 13: 511.
9. Nowrousian M, Ringelberg C, Dunlap JC, Loros JJ, Kuck U (2005) Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol Genet Genomics 273: 137–149.
10. Johnson TE (1976) Isolation and characterization of perithecial development mutants in Neurospora. Genetics 85: 27–47.
11. Engh I, Nowrousian M, Kuck U (2010) Sordaria macrospora, a model organism to study fungal cellular development. Eur J Cell Biol 89: 864–872.
12. Nowrousian M, Teichert I, Masloff S, Kuck U (2012) Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes. G3 (Bethesda) 2: 261–270.
13. Collopy PD, Colot HV, Park G, Ringelberg C, Crew CM, et al. (2010) High-throughput construction of gene deletion cassettes for generation of Neurospora crassa knockout strains. Methods Mol Biol 638: 33–40.
14. Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, et al. (2004) Losses from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68: 1–108.
15. Debuchy R, Bertiaux-Lecellier V, Sila P (2010) Mating systems and sexual morphogenesis in Ascomycetes. In: Borkovich KA, Ebbole DJ, editors. Cellular and Molecular Biology of Filamentous Fungi. Washington, D.C.: ASM Press. 501–535.
16. Scalea T (1973) Life cycle of Neurospora crassa visaed by scanning electron microscopy. J Bacteriol 113: 1015–1025.
17. Harris JL, Howe HB, Roth IL (1975) Scanning electron microscopy of surface and internal features of developing perithecia of Neurospora crassa. J Bacteriol 122: 1295–1246.
18. Read ND (1983) A scanning electron microscopic study of the external features of perithecial development in Sordaria macrospora. Canad J Bot 61: 3217–3229.
19. Bai SH (1976) Morphological studies in Podostera aenzerina. Amer J Bot 63: 821–825.
20. Guegh GB, Trair F (2005) The development and differentiation of Gibberella zeae (anamorph Fusarium graminearum) during colonization of wheat. Mycologia 97: 229–237.
21. Trair F, Common R (2000) Perithecial development by Gibberella zeae: a light microscopy study. Mycologia 92: 130–130.
22. Davis RH, DeSeres IF (1970) Genetic and microbiological research techniques for Neurospora crassa. Meth Enzymol 27: 143–149.
23. Raju NB (1992) Genetic control of the sexual cycle of Neurospora. Mycologia 86: 241–262.
24. Kim H, Borkovich KA (2004) Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot Cell 5: 544–554.
25. Kim H, Borkovich KA (2006) Pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 52: 1761–1768.
26. Kim H, Metzenberg RL, Nelson MA (2002) Multiple functions of mfa-1, a putative pheromone precursor gene of Neurospora crassa. Eukaryot Cell 1: 867–999.
27. Kim H, Wright SJ, Park G, Ouyang S, Krystofova S, et al. (2012) Roles for receptors, pheromones, G proteins, and mating type genes during sexual reproduction in Neurospora crassa. Genetics 190: 1389–1400.
28. Vlagouss NV, Weijer J (1972) Sexuality in Neurospora crassa. II. Genes affecting the sexual development cycle. Genet Res 19: 205–211.
29. Tan ST, Ho CC (1970) A gene controlling the early development of protoperithecia in Neurospora crassa. Mol Gen Genet 107: 158–161.
30. Mylly OM, Threlkeld SF (1974) A genetic study of female sterility in Neurospora crassa. Genet Res 24: 91–102.
31. McLachley K, Kiest AE, Grigoriev IV, Lipzen A, Martin J, et al. (2011) Rediscovery by Whole Genome Sequencing of Classical Mutations and Genome Polymorphisms in Neurospora crassa. G3 (Bethesda) 1: 303–306.
32. Fleischer A, Sarkar S, Jacobson DJ, Roca MG, Read ND, et al. (2005) The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell 4: 920–930.
33. Hower HB, Benson EW (1974) A perithecial color mutant of Neurospora crassa. Mol Gen Genet 131: 79–83.
84. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, et al. (2006) A high-throughput method for a complex and regular STR-identified gene. Fungal Genet Biol 36: 543–552.

85. Leedder AG, Jenner W, Li J, Glass NL (2013) Early colony establishment in Neurospora crassa requires a MAP kinase regulatory network. Genetics 195: 883–898.

86. Cupertino FB, Freitas FZ, de Paula RM, Bertolino MC (2012) Ambient pH conditions controlling glyoxysyn expression in Neurospora crassa. New insights into the pH signaling pathway. PLoS One 7: e42548.

87. Nolting N, Poggele S (2006) A MADS box protein interacts with a mating-type protein and is required for mating body development in the homothallic ascomycete Sordaria macrospora. Eukaryot Cell 5: 1045–1056.

88. Nolting N, Poggele S (2006) A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis. Mol Microbiol 62: 368–378.

89. Voigt O, Herzog B, Jakobschagen A, Poggele S (2013) bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg1 and is required for fruiting-body development and vegetative growth in Sordaria macrospora. Fungal Genet Biol 61: 50–60.

90. Voigt O, Herzog B, Jakobschagen A, Poggele S (2014) Autophagic genes SmVPS34 and SmVPS15 are required for viability in the filamentous ascomycete Sordaria macrospora. Microbiol Res 169: 120–130.

91. Leedder AG, Jenner W, Li J, Glass NL (2013) Early colony establishment in Neurospora crassa requires a MAP kinase regulatory network. Genetics 195: 883–898.
119. Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, et al. (2007) The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 64: 923–937.
120. Maddi A, Dettman A, Fu C, Seiler S, Free SJ (2012) WSC-1 and HAM-7 are MAK-1 MAP kinase pathway sensors required for cell wall integrity and hyphal fusion in Neurospora crassa. PLoS One 7: e42374.
121. Jones CA, Greer-Phillips SE, Borkovich KA (2007) The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol Biol Cell 18: 2123–2136.
122. Poggeler S (2000) Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora. Curr Genet 37: 403–411.
123. Ivey FD, Kays AM, Borkovich KA (2002) Shared and independent roles for a Galpha(i) protein and adenylyl cyclase in regulating development and stress responses in Neurospora crassa. Eukaryot Cell 1: 634–642.
124. Kamereswerd J, Jansson M, Nowrousian M, Poggeler S, Kuck U (2008) Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora. Genetics 180: 191–206.
125. Yang Q, Poole SI, Borkovich KA (2002) A G-protein beta subunit required for sexual and vegetative development and maintenance of normal G alpha protein levels in Neurospora crassa. Eukaryot Cell 1: 378–380.
126. Krystofova S, Borkovich KA (2005) The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gbetagamma dimer required for normal female fertility, asexual development, and galpha protein levels in Neurospora crassa. Eukaryot Cell 4: 365–378.
127. Muller F, Kruger D, Sattlegger E, Hoffmann B, Ballario P, et al. (1995) The cpc-2 gene of Neurospora crassa encodes a protein entirely composed of WD-repeat segments that is involved in general amino acid control and female fertility. Mol Gen Genet 248: 162–173.
128. Yamashiro CT, Ebbole DJ, Lee BU, Brown RE, Bourland C, et al. (1996) Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae. Mol Cell Biol 16: 6218–6228.
129. Kim SR, Lee B-U (2005) Characterization of the Neurospora crassa rcm-1 mutant. Kor J Microbiol 41: 246–254.