Isolated, but transnational: the *glocal* nature of Waldensian ethnobotany, Western Alps, NW Italy

Bellia and Pieroni
Isolated, but transnational: the glocal nature of Waldensian ethnobotany, Western Alps, NW Italy

Giada Bellia and Andrea Pieroni*

Abstract

Background: An ethnobotanical field study on the traditional uses of wild plants for food as well as medicinal and veterinary plants was conducted in four Waldensian valleys (Chisone, Germanasca, Angroina, and Pellice) in the Western Alps, Piedmont, NW Italy. Waldensians represent a religious Protestant Christian minority that originated in France and spread around 1,170 AD to the Italian side of Western Alps, where, although persecuted for centuries, approximately 20,000 believers still survive today, increasingly mixing with their Catholic neighbours.

Methods: Interviews with a total of 47 elderly informants, belonging to both Waldensian and Catholic religious groups, were undertaken in ten Western Alpine villages, using standard ethnobotanical methods.

Results: The uses of 85 wild and semi-domesticated food folk taxa, 96 medicinal folk taxa, and 45 veterinary folk taxa were recorded. Comparison of the collected data within the two religious communities shows that Waldensians had, or have retained, a more extensive ethnobotanical knowledge, and that approximately only half of the wild food and medicinal plants are known and used by both communities. Moreover, this convergence is greater for the wild food plant domain. Comparison of the collected data with ethnobotanical surveys conducted at the end of the 19th Century and the 1980s in one of studied valleys (Germanasca) shows that the majority of the plants recorded in the present study are used in the same or similar ways as they were decades ago. Idiosyncratic plant uses among Waldensians included both archaic uses, such as the fern Botrychium lunaria for skin problems, as well as uses that may be the result of local adaptions of Central and Northern European customs, including Veronica allionii and V. officinalis as recreational teas and Cetraria islandica in infusions to treat coughs.

Conclusions: The great resilience of plant knowledge among Waldensians may be the result of the long isolation and history of marginalisation that this group has faced during the last few centuries, although their ethnobotany present trans-national elements. Cross-cultural and ethno-historical approaches in ethnobotany may offer crucial data for understanding the trajectory of change of plant knowledge across time and space.

Keywords: Ethnobotany, Wild food plants, Medicinal plants, Alps, Italy

Introduction

Ethnobotanical studies of minority and diasporic groups are of crucial interest in contemporary ethnobiology to help identify those cultural and/or social factors which affect the perceptions and uses of plants and to understand how traditional plant knowledge evolves [1-8].

Moreover, diverse analyses conducted in Europe during the last decade have pointed out that a broad range of factors influence the resilience of ethnobotanical knowledge and are able to slow or accelerate its erosion, including environmental changes, internal (urbanisation) and external migrations, self-perception and that of others’ identities, language, religion, as well as economic or political externalities [9-16].

On the other hand, the Alps have been shown to still represent an important reservoir of local, folk plant knowledge, both in touristic [17,18] and especially in “peripheral” valleys [19-22], which have been less affected by the mass tourism industry.

Along these theoretical trajectories, our ethnobotanical research in recent years has focused on a number of
linguistic “isles” and cultural boundaries in mountainous areas of Italy and the Balkans; especially in the latter cultural region, we have also observed the effect that religious affiliation has on the vertical transmission of folk plant knowledge, as it remarkably shapes kinship relations within multi-lingual and multi-religion communities [23].

In order to further assess the role that religion plays in shaping folk plant knowledge, we decided to investigate the local ethnobotany of the Waldensian community and that of their Catholic neighbours in the Western Alps, NW Italy. Waldensians represent a religious Christian (and later Protestant Christian) minority that originated in France during the 12th Century which spread around 1,170 AD to the Italian side of the Cottian (Western) Alps. Harassed for centuries, Waldensians went through a long and dramatic history of persecutions, migrations and relocations, and, despite the isolation and marginalisation of their valleys, they built important ties to Protestant countries, notably England, the Netherlands, and Switzerland [24].

Nowadays, approximately 20,000 believers (Provençal/Occitan, Piedmontese and standard Italian speaking) still survive in these valleys, increasingly mixing with their Catholic neighbours.

The specific aims of this study were:

1. to record the local names and specific uses of wild food plants, as well as wild and non-wild plants for medicinal and veterinary practices in four Waldensians valleys;
2. to compare the ethnobotany of members belonging to the two faiths (Waldensians and Catholics); and
3. to diachronically compare the current data with those from the historical North Italian ethnobotanical data.

Methods

Selected sites

Figure 1 shows the location of the study sites, which were represented by four Waldensian valleys (Chisone, Germanasca, Angrogna, and Pellice) located in the Western Alps, Piedmont, NW Italy.

The valleys are characterized by chestnut (*Castanea sativa* Mill.), beech (*Fagus sylvatica* L.), and larch (*Larix decidua* Mill.) forests, with some Scots pine (*Pinus sylvestris* L.); the climate is alpine, with relevant annual precipitations (1000–2000 mm/year).

In particular, the following villages were visited: Fenes-trelle (1,138 m.a.s.l.), Montoulles (1,046 m.a.s.l.), Villaretto (986 m.a.s.l.), Pomaretto (619 m.a.s.l.), Campo La Salza (1,140 m.a.s.l.), Massello (1,187 m.a.s.l.), San Martino (1,063 m.a.s.l.), Villasecca (832 m.a.s.l.), Angrogna (582 m.a.s.l.), and Bobbio Pelice (762 m.a.s.l.).

All villages officially report a few hundred inhabitants (normally 300–500), but the actual figures are largely overestimated, as a significant portion of the current resident

![Figure 1](image-url)
populations lives in the lowland Piedmontese centres and Turin and comes back to the villages only during the summer or on the weekends.

The local economy, since a few decades, is no longer based on agro-pastoral activities, and the elderly inhabitants live off of their pensions and in their free time manage some home-gardens and/or small-scale agricultural activities. Young and mid generations work instead in the main lowlands centres and in Turin.

Mass tourism is absent, although some eco-touristic initiatives have been growing in recent years.

The original Waldensian inhabitants have increasingly mixed with their Catholic neighbours in the last few decades, and in most cases intermarriage leads to a family’s change of faith (from Waldensian to Catholic).

Nowadays the language spoken within the domestic arena is increasingly a mixture of the original Provençal/Occitan language with the Piedmontese variety of Italian. All inhabitants also speak standard Italian.

Field study
In the years 2010–2014, forty-seven elderly informants (nineteen Catholics and twenty-eight Waldensians, aged between 58 and 78 years) were selected, among those locals who could be identified as Traditional Knowledge holders (normally elderly small-scale farmers and shepherds), employing snowball sampling techniques. These individuals then were interviewed after Prior Informed Consent was verbally obtained.

The focus of the interviews, which were conducted in standard Italian, was the folk knowledge (name and use) of wild food plants and wild and non-wild medicinal and veterinary plants.

The Code of Ethics of the International Society of Ethnobiology [25] was strictly followed.

The wild plant species mentioned by the informants were collected, when available, identified according to Flora d’Italia [26], and finally stored at the Herbarium of the University of Gastronomic Sciences.

Plant family assignments follow the current Angiosperm Phylogeny Group designations [27].

The reported folk plant names were transcribed using the rules of the Provençal/Occitan and standard Italian languages.

Data analysis
We compared the data gathered among local Waldensians with those collected among Catholics in the same study sites.

Moreover, we compared our findings with those observed in two ethnobotanical field studies conducted in the same areas (Val Germanasca) at the end of the 19th Century and in the 1980s [28-30]. In particular, the first work represents one of the very first ethnobotanical studies in Italy as well as the whole of Europe, which was conducted by a Waldensian botanist working as a secondary school teacher, who died from an infectious disease in Uruguay, where he immigrated one year after the publication of his investigation [31].

Results and discussion
Wild food plants
Table 1 shows the recorded uses of the wild food and semi-domesticated plant taxa.

The collection of the young aerial parts of the following wild vegetables is still common in the study area: Borago officinalis, Primula spp., Lapsana communis, Chenopodium bonus-henricus, Rumex acetosa, Tragopogon pratensis, Urtica dioica, Silene vulgaris, Humulus lupulus, and Taraxacum officinale.

The above confirms what we already know about wild food plant consumption in Italy and in particular NW Italy, where the very common consumption of the young shoots of Humulus lupulus and Tragopogon pratensis can be considered a cultural marker of Piedmontese cuisine. While all these data confirm the observations reported nearly one century ago by Giovanni Mattirolo in his review of the wild plants of Piedmont [32], it appears that the practice of gathering and consuming the leaves/young shoots of Valerianella locusta, Phyteuma spp., Persicaria bistorta, and Aruncus dioicus continued only until the recent past and/or is less common today. The latter three species (in soups or boiled) in particular represent an important part of the slowly disappearing North Italian Alpine culinary “traditions” [17,33].

Among the wild plants exploited for seasoning, the use of Carum carvi, Thymus serpyllum, Juniperus communis, and Tanacetum vulgare is predominant. In particular, the common use of the leaves of the last species (Figure 2) – which has been widely reported not only in the Piedmont region but also recently in Occitan/Provençal and Alpine Ligurian areas [17,22,34,35] – as a crucial seasoning ingredient in omelettes, soups, and a home-made liqueur called arquebuse may be better investigated from a historical perspective. In fact, this species has a long history of folk use in Britain, especially in omelettes consumed during the fish-based diet of Lent [36], and Waldensians, even in the poorest villages, have maintained for many centuries intense cultural ties to Britain, due to the historical and theological proximity between the Protestant/Anglican and Waldensian faiths [23].

As in other areas of NW Italy ([17], and references therein), wild Artemisia genipi, A. glacialis, and A. umbelliformis flowering tops (genepi), Gentiana acaulis flowers (Figure 3) and roots, and G. lutea roots are commonly gathered and used for making home-made hydro-alcoholic macerates/digestive liqueurs.
Botanical taxon/family and voucher specimen code	Recorded local names	Plant part(s)	Local culinary use(s)	Wal	Cat	Citations	Notes
Achillea erba-rotta All. Asteraceae UNISGV/LACH	Routto Ruta di montagna	Aerial parts	Home-made liqueurs	+	*	C	
Achillea millefolium L. Asteraceae UNISGVGB025	Primmoflour	Leaves	Soups	+	*	P	
Alchemilla xanthochlora Rothm. Rosaceae UNISGVGB030	Leaves	Soups	+	+	*	P	
Allium schoenoprasum L. Amaryllidaceae UNISGV/LALL	Aiet	Leaves	Seasoning (salads)	+	*	C	
Allium ursinum L. Amaryllidaceae UNISGV/LALU	Amarenchie	Fruits	Eaten raw	+	*	P	
Angelica sylvestris L. Apiaceae UNISGVGB002	Angelica Roots	Home-made liqueurs	+	*	C		
Anthriscus sylvestris (L.) Hoffm. Apiaceae UNISGV/LANT	Chafoulhét	Leaves	Salads	+	*	P	
Arctostaphylus uva-ursi (L.) Spreng. Ericaceae UNISGV/LARC	Pan dé vouëlp Pinmerlés	Fruits	Jams	+	+	*	P
Arctium lappa L. Asteraceae UNISGVGB034	Grattéquioué Very young leaves	Soups	+	*	P		
Artemisia genipi Weber ex. Stechm., A.glacialis L., A. umbelliformis Lam. Asteraceae UNISGV/LAGE UNISGV/LAGL UNISGV/LARU	Genepi Génépi fumél (A. umbelliformis) Génépi macle (A.genipi)	Flowering tops	Home-made liqueurs	+	*	C	
Artemisia vulgaris L. Asteraceae UNISGVGB038	Arsemizë Eisente Ersmízo	Leaves Seasoning soups or omelettes	+	*	C		
Aruncus dioicus (W.)F. Rosaceae UNISGVGB040	Glaudia	Shoots	Boiled	+	+	**	P
Asparagus tenuifolius Lam. Asparagaceae UNISGV/LASP	Aspèrge selvagge	Shoots	Boiled	+	+	*	P
Bellis perennis L. Asteraceae UNISGV/LAL007	Magritin Margaritín	Leaves and flowers	Salads, soups, omelettes, risotto	+	*	C	
Beta vulgaris L. Berberidaceae UNISGV/LBER	Pittou	Fruits	Jams	+	+	**	P
Beta vulgaris L. Amaranthaceae	Bléo	Leaves	Cooked	+	*	C	
Borago officinalis L. Boraginaceae UNISGV/L013	Bouraës Bourai Bural	Leaves and flowers	Soups, salads, omelettes	+	+	***	C
Campanula rapunculus L. Campanulaceae UNISGV/LCAM	Rampoun	Leaves and roots	Salads	+	*	C	
Capsella bursa- pastoris (L.) Medik. Brassicaceae UNISGV/LCAP	Young leaves	Omelettes	+	*	P		
Carlina acutis L. Asteraceae UNISGV/LCAR	Chardouso	Flowers	Macerated in olive oil, the resulting oil used as seasoning	+	+	*	C
Carum carvi L. Apiaceae UNISGV/LCAU	Chiréli Cummel	Fruits	Seasoning, home-made liqueurs	+	+	**	C
Table 1 Local wild or semi-domesticated food plant uses recorded in the studied area (Continued)

Plant Name	Young leaves	Fruits	Salts	Spices	Plants			
Centaurea scabiosa L. Asteraceae	Young leaves	Soups	++	+	P			
Cerinthe sp. (?) Boraginaceae	Anhaoû grô	Leaves	Boiled	+	P			
Chenopodium album L. Amaranthaceae	Sénicle	Leaves	Soups, boiled, omelettes	+	+	*	P	
Chenopodium bonus-henricus L. Amaranthaceae	Orla Parch	Leaves	Soups, omelettes, boiled	+	+	***	C	
Cichorium intybus L. Asteraceae	Sicorio	Young leaves	Roots	Salads Roasted and grounds as coffee substitute	+	+	*	C
Corylus avellana L. Betulaceae	Seeds	Consumed raw	+	*	P			
Daucus carota L. Apiaceae	Carotto	Roots	Salads	+	*	C		
Dryas octopetala L. Rosaceae	Leaves and flowers	Consumed raw as a snack	+	*	P			
Fragaria vesca L. Rosaceae	Maiússa	Leaves	Fruits	Soups, salads	+	+	**	C
Gentiana acaulis L. Gentianaceae	Braio d’cucuc	Roots, flowers	Home-made liqueurs	+	+	**	C	
Gentiana lutea L. Gentianaceae	Argensiana	Roots	Home-made liqueurs (or wine macerates)	+	+	***	C	
Humulus lupulus L. Cannabaceae	Lüvèrtin	Shoots	Omelettes, boiled	+	+	***	C	
Juniperus communis L. Cupressaceae	Génèbbre	Galbules	Seasoning	+	+	***	C	
Lapsana communis L. Asteraceae	Jalino graso	Young leaves	Soups, omelettes, boiled	+	+	***	C	
Laurus nobili L. Lauraceae	Loriè	Leaves	Seasoning	+	*	C		
Leontodon japonicus (L.) (Asteraceae)	Plissa	Leaves	Salads, soups	+	*	P		
Leontopodium nivale (Ten.) Huet ex Hand-Mazz. Asteraceae	Stela alpina	Flowering tops	Home-made liqueurs	+	*	C		
Lonicera caerulea L. Caprifoliaceae	Èrza d’loup	Flowers	Eaten raw as a snack	+	*	P		
Malva sylvestris L. Malvaceae	Måëvè Malvo	Leaves	Soups	+	+	*	C	
Mentha longifolia (L.) L. Lamiaceae	Méntatré	Leaves	Seasoning (esp. soups and omelettes)	+	*	P		
Nasturtium officinale R.Br. Brassicaceae	Creisoun	Leaves	Salads	+	+	***	C	
Origanum vulgare L. Lamiaceae	Origano	Leaves	Seasoning	+	*	C		
Oxalis acetosella L. Oxalidaceae	Érbo dà cucuc	Leaves	Salads	+	*	C		
Parietaria officinalis L. Urticaceae	Pan-chaoudêt	Leaves	Soups	+	*	P		
Pedicularis foliosa L. Orobancheaceae	Creisoun	Flowers	Sucked as a snack (by children)	+	*	P		
Pennisetum bistorta L. Polygonaceae	Albubuine Arparô	Young leaves	Soups	+	+	**	C	
Plant Name	Family	Scientific Name	Habitat	Uses	Notes			
-----------------------------	-----------------	-----------------------	---------------	--	--------------------------------			
Pinus cembra L.	Pinaceae	Pinus cembra L.	Seeds	Consumed raw	+ ** P			
Pinus sylvestris L.	Pinaceae	Pinus sylvestris L.	Seeds	Consumed raw	+ * P			
Plantago major L.	Plantaginaceae	Plantago major L.	Leaves	Soups	+ + ** P			
Physalis alkekengi L.	Solanaceae	Physalis alkekengi L.	Fruits	Jams	+ * P			
Phyteuma spicatum L.	Campanulaceae	Phyteuma spicatum L.	Young leaves	Soups	+ * P			
Polypodium vulgare L.	Polypodiaceae	Polypodium vulgare L.	Roots	Consumed raw as a snack and as a seasoning for home-made beverages	+ + *** C			
Portulaca oleracea L.	Portulacaceae	Portulaca oleracea L.	Young leaves	Salads	+ * P			
Primula heliobor (L.) Hill,	Primulaceae	Primula heliobor (L.)	Young leaves	Salads, soups, omelettes	+ + *** C			
Prunus avium (L.)	Rosaceae	Prunus avium (L.)	Fruits	Consumed raw or in jams	+ * P			
Prunus brigantina Vill.	Rosaceae	Prunus brigantina Vill.	Fruits	Consumed raw or in jams	+ + * P			
Prunus spinosa L.	Rosaceae	Prunus spinosa L.	Fruits	Jams	+ + ** P			
Ribes alpinum L. L.	Grossulariaceae	Ribes alpinum L.	Fruits	Consumed raw or in jams	+ + ** P			
Ribes uva-crispa L.	Grossulariaceae	Ribes uva-crispa L.	Fruits	Consumed raw or in jams	+ * P			
Robinia pseudoacacia L.	Fabaceae	Robinia pseudoacacia L.	Flowers	Deep-fried (in batter)	+ * C			
Rosa canina L.	Rosaceae	Rosa canina L.	Fruits	Jams	+ + *** C			
Rubus ulmifolius L.	Rosaceae	Rubus ulmifolius L.	Young leaves	Soups	+ * P			
Rubus idaeus L.	Rosaceae	Rubus idaeus L.	Fruits	Jams	+ + ** C			
Rumex acetosella L.	Polygonaceae	Rumex acetosella L.	Stems	Consumed raw as a snack (stems); salads, soups, omelettes, boiled	+ + *** C			
Rumex alpinus L.	Polygonaceae	Rumex alpinus L.	Leaves	Soups	+ + * P			
Salvia pratensis L.	Labiatae	Salvia pratensis L.	Young leaves	Soups	+ + ** P			
Sambucus nigra L. and S.	Adoxaceae	Sambucus nigra L.	Flowers	Deep fried (in batter) or seasoning home-made beverages	+ + *** C			
Silene vulgaris (Moench.)	Caryophyllaceae	Silene vulgaris (Moench.)	Fruits	Jams				
Tanacetum vulgare L.	Asteraceae	Tanacetum vulgare L.	Leaves	Seasoning soups (esp. a local bread-based soup [suppo barbetta]), home-made liqueurs, omelettes	+ + *** C			
Among wild fruits, the gathering of the fruits/pseudo-fruits of *Rosa canina*, *Sambucus nigra* (and rarely *S. racesmosa*), and *Vaccinium myrtillus* is still commonly practiced.

Finally, the frequent use of the aerial parts of *Veronica* species (esp. the local *Veronica allionii*) as recreational teas in the study area, which has also been recorded in adjacent valleys [17], could be the result of cultural “contamination” from British and Northern/Central European customs. Waldensians, for example, have introduced in their valleys, and continue to practice today, the English custom of taking afternoon tea, which is extremely uncommon among the autochthonous Catholics in the study area as well as other areas of Italy.

In place of exotic and expensive colonial teas, the poor villagers may have opted for a “cheap”, local substitute, which may explain the use of the aerial parts of *Veronica* spp. even today. This tea – sometimes locally and more recently called “Occitan tea” - became in the last decade in the study area and also among the entire Occitan/Provençal community living in the Western Italian Alps an important cultural marker and seems to represent there one of the distinctive signs of the local identity.

On the other hand, the use of *Veronica officinalis* tea was very spread in France, Switzerland, and Northern Europe in the 19th Century [37].

Medicinal plants

Table 2 reports the locally recorded medicinal plant uses.

The most common wild medicinal plant-based remedies, which are used externally, comprise the flowers of *Arnica montana*, the aerial parts of *Artemisia absinthium*, the resin of *Abies alba*, and the fresh latex of *Chelidonium majus*. Apart from the last species, this finding confirms the recent

Table 1 Local wild or semi-domesticated food plant uses recorded in the studied area (Continued)

Scientific Name	Common Name	Use	Notes
Taraxacum officinale (L.) Weber	Girasole	Leaves	Salads, soups
Asteraceae	Moprousins	Roots	Roasted and ground as a substitute of coffee
Thymus serpyllum L. Lamiaceae	Serpoul	Flowers and leaves	Seasoning (also for cheese and a local bread-based soup [suppa barbetta]), home-made liquors
Tragopogon pratensis L. Asteraceae	Barbabouc	Young leaves	Soups, omelettes, boiled
Trifolium spp. Fabaceae	Fioun	Flowers	Deep fried (in batter)
Tussilago farfara L. Asteraceae	Pimpetta	Young leaves	Salads
Urtica dioica L. Urticaceae	Urtia	Leaves	Salads, omelettes, risotto
Vaccinium myrtillus L. Ericaceae	Erzaie	Fruits	Jams, syrups
Vaccinium vitis-idaea L. Ericaceae	Panféino	Fruits	Jams
Valerianella locusta (L.) Laterr.	Saladêt	Leaves	Salads
Veronica allionii Vill. Plantaginaceae	Érbë d’èt Giaspertere	Leaves and flowers	Recreational tea
Veronica officinalis L. Plantaginaceae	Érbë d’èt Tè svizzero	Leaves and flowers	Recreational tea
Viburnum fontana L. Adoxaceae	Tatoulie	Fruits	Consumed raw
Viola tricolor L. Violaceae	Violette	Leaves and flowers	Salads, soups
Unidentified taxon	Sparsi	Leaves and flowers	Salads, soups, omelettes

(Wal: use recorded among Waldensians; Cat: use recorded among Catholics. Notes: C: current use; P: past use. Citations: *quoted by 10% of the informants or less; **quoted by 11-39% of the informants; ***quoted by 40% of the informants or more.)
The most frequently mentioned local herbal infusions are instead prepared with plants that are commonly used throughout Italy and Europe: *Equisetum arvense, Hypericum perforatum, Parietaria officinalis, Malva sylvestris, Matricaria chamomilla, Thymus serpyllum, Tilia cordata, Viola tricolor, and Cetraria islandica*. The use of the last species is peculiar, however, as it is frequently found, in Italy, in the herbalism-based standardized phytotherapy, but not often in the local folk medical systems.

The remarkable tradition of gathering and using this wild lichen in Waldensian valleys may be, once again, the result of the historical ties that these communities retained with Central and Northern European customs.

The same lichen, gathered from the wild, is also nowadays one of the pillars of the resurgence of the traditional Waldensian cuisine, where it is sometimes used to prepare desserts in a few of the new restaurants in the area [40].

Finally, it is worth mentioning that the unusual herbal folk uses of *Cetraria islandica* and *Botrychium lunaria* find parallelisms in the Alpine Catalan ethnobotany [41,42], showing in this way interesting commonalities between the Catalan and Occitan ethnobotanies of the Alpine communities.

Veterinary plants

Nearly all the plants pertaining to the veterinary domain (plants used for both feeding and for curing animals, Table 3) were used primarily in the past, as current uses are sporadic and quotation indexes are very low.

This suggests that the socio-economic shift local communities have faced since the 1960s, in which most inhabitants have abandoned the traditional agro-pastoral activities and animal breeding has decreased, has also...
Botanical taxon/ family and voucher specimen code	Local names	Status	Plant parts	Preparation and administration	Folk medical use(s) or treated disease(s)	Wal	Cat	Citations	Notes
Abies alba Mill. Pinaceae UNISGVALABA	Bigiun Sap	W	Buds	Infusion, syrup	Cough Skin infections, arthritis, bruises	+	+	*** C	
	Sòp blanc		Resin	Topical application					
Acer pseudoplatanus L. Sapindaceae UNISGVALACE	Plai Plaie	W	Leaves	Infusion	Cough, flu	+	+	* P	
Achilles erba-rotta All. Asteraceae	See Table 1	W	Aerial parts	Infusion, liquor	Digestive, fever	+	+	* C	
Alchemilla xanthochlora Rothm. Rosaceae	W	Aerial parts	Infusion	Topical application	Anti-inflammatory Dystenorrhea	+	+	** P	
Allium ampeloprasum L. Amaryllidaceae	Pourètto	C	Roots	Decoction	To decrease the milk secretion	+		* P	
Allium sativum L. Amaryllidaceae	Alh	C	Bulb	Topical application	Corns Cough Worms	+	+	* P	
Aloysia citriodora Palau Verbenaceae	Limonella	C	Leaves	Infusion	Dysmenorrhea	+		* C	
Atractium lappa L. Asteraceae UNISGVB034	Grattëquioùe	W	Roots	Decoction	Respiratory infections, fever, "blood thinner"	+	+	** P	
Arctostaphylos uva-ursi (L.) Spreng. Ericaceae	See Table 1	W	Leaves	Infusion	Diuretic and inflammations of the urinary tract	+		* P	
Arnica montana L. Asteraceae UNISGWAL003	Tabacas Tabbacai	W	Flowers	Tincture or macerate in olive oil, externally applied	Rheumatisms, arthrits muscle pains, bruises	+	+	*** C	
Artemisia absinthium L. Asteraceae UNISGWAL004	Ûsenc	W	Aerial parts	Infusion	Bruises Fever, worms, digestive	+	+	*** P	
Artemisia ganipí Weber ex. Stechm., A.glacialis L., A. umbelliformis Lam. Asteraceae	See Table 1	W	Aerial parts	Liquor, infusion	Digestive, cough	+	+	*** C	
Artemisia vulgaris L. Asteraceae UNISGVB038	Arsenizè Érsèmizo	W	Aerial parts	Infusion	Dysmenorrhea Bruises	+	+	** P	
Beta vulgaris L. Amaranthaceae	Blèo	C	Leaves	Topical application	Joint pains, acne	+		* P	
Bosago officinalis L. Boraginaceae	Bourlaès Bourai	C	Flowers	Infusion	Pimples Eczema, psoriasis	+	+	** P	
Brassica oleracea L. Brassicaceae	Chól	C	Leaves	Topical application	Pimples, acne	+	+	** C	
Botrychium lunaria (L.) Sw. Ophioglossaceae UNISGVALBOT	Èrbo d’l’uo	W	Ripe sporangium	Topical application	Skin wounds Nose bleeding Internal bleeding	+		** P	
Brassica rapa L. Brassicaceae	Rabbo	C	Bulb	Syrup	Cough	+		* C	
Calendula officinalis L. Asteraceae	Courtézio	C	Flowers	Infusion	Dysmenorrhea, for promoting blood circulation	+		** C	
Capsella bursa-postoris (L.) Medik. Brassicaceae	W	Fruits	Topical application	Skin wounds		+		* P	
Carum carvi L. Apiaceae	See Table 1	W	Fruits	Infusion, liquor	Digestive, carminative	+	+	* C	
Cetraria islandica L.(Ach.) Parmeliaceae UNISGVALCET	Èrbo d’a vélio Licchia	W	Thallus	Decoction, syrup	Cough, bronchitis	+	+	*** C	
Table 2 Local medicinal plant uses recorded in the studied area (Continued)

Plant Name	Scientific Name	Family	Common Name(s)	Use(s)	Therapeutic Use(s)	Plant Part(s)	Infusion, Decoction, Topical Application, Syrup, Alcohol, etc.	P + C
Chelidonium majus L.	Papaveraceae	Sireunno	Latex	Fresh topical applied	Warts	+	C	
Conium maculatum L.	Apioideae	Sicutto	Aerial parts	Infusion	Abortive	+	P	
Crataegus monogyna Jacq.	Rosaceae	Prusét	Aerial parts	Infusion	Hypertensive, venous insufficiency	+	P	
Cyurus segetum Hill.	Asteraceae	UNISGVGB015	Flowers	Eyebaths	Conjunctivitis	+	P	
Cymodon dactylon L. (Pers.)	Poaceae	UNISVALCYN	Roots	Decoction	Diuretic	+	P	
Datura stramonium L.	Solanaceae	UNISGVALEUR	Leaves	Inhalation (dried powdered leaves)	Asthma	+	P	
Equisetum arvense L.	Equisetaceae	UNISGWAL020	Sterile stem	Decoction	Topical application	Diuretic, to prevent prostatic cancer, Skin inflammations	+	C
Erica carnea L.	Ericaceae	UNISGVALERI	Aerial parts	Infusion	Urinary tract infections, diarrhea	+	P	
Euphrasia alpina L.	Orobanchaceae	UNISGVALEUP	Flowers	Eyebaths	Conjunctivitis	+	P	
F. excelsior L.	Oleaceae	UNISGVGB022	Leaves	Infusion	Venous insufficiency, hypertension	+	P	
Fragaria vesca L.	Rosaceae	UNISGVALEUP	Leaves	Topical application	Pimples, acne	+	P	
Gentiana acaulis L.	Gentianaceae	UNISGVALA018	Whole plant	Liquor, infusion	Appetizing, digestive	+	*	
Gentiana lutea L.	Gentianaceae	UNISGVGB031	Roots	Liquor, macerated in wine	Appetizing, digestive	+	P	
Hypericum perforatum L.	Hypericaceae	UNISGWAL018	Flowering aerial parts	Macerate in oil	Skin inflammations, burns, arthritis	+	**	
Hyssopus officinalis L.	Lamiaceae	UNISGVGB031	Aerial parts	Infusion	Cough	+	P	
Juniperus communis L.	Cupressaceae	UNISGVALEUP	Fruits	Infusion, liquor	Digestive	+	C	
Lamium album L.	Lamiaceae	UNISGVALA018	Aerial parts	Infusion	Dysmenorrhea	+	P	
Larix decidua Mill.	Pinaceae	UNISGVGB031	Sprouts, Resin, Pine cones	Infusion, Topical application, Syrup	Expectorant, Skin inflammations (remove splinters), Respiratory infections	+	C	
Laurus nobilis L.	Lauraceae	UNISGVGB031	Leaves, Fruits	Infusion	Digestive	+	P	
Leontopodium nivale (Ten.) Huet ex Hand.-Mazz.	Asteraceae	UNISGVGB031	Flowering tops	Infusion	Digestive	+	P	
Linum usitatissimum L.	Linaceae	Lin	Seeds	Poultice, externally applied	Respiratory infections, Urinary infections, constipation	+	**	
Table 2 Local medicinal plant uses recorded in the studied area (Continued)

Plant Name	Common Name	Part Used	Preparation	Uses	Rating
Malva sylvestris L. Malvaceae	Malvo	Whole plant	Decoctions	Urinary and genital tract inflammations, digestive	+
Marrubium vulgare L. Lamiaceae	Marëfi	Whole plant	Infusion	Digestive	+
Matricaria chamomilla L. Asteraceae	Caramilho	Flowers	Infusion, externally applied in poultices Oleites	Urinary tract infections Bronchitis Earaches	+
Melissa officinalis L. Lamiaceae	Melissa	Leaves	Infusion	Neurorelaxant	+
Menta longifolia (L.) Huds. Lamiaceae	Méntatre	Leaves	Infusion	Digestive	+
Myristica fragrans Houtt. Myristicaceae	Noce moscata	Seeds	Grinded and ingested with sugar	Dysmenorrhoea	+
Ononis spinosa L. Fabaceae	Ratabuou	Roots	Decoction	Cystitis, in the prevention of prostate cancer	+
Origanum vulgare L. Lamiaceae	Oouriënt	Leaves	Infusion	Digestive	+
Parietaria officinalis L. Urticaceae	Pan-chaoudêt	Aerial parts	Infusion Urinary tract infections and for prevention prostate cancer	+	
Pelargonium zonale (L.) L'Hér. ex Aiton Geraniaceae	Geranio	Leaves	Topically applied (fresh)	Skin cuts, hamatomas, wounds	+
Pilosella officinarum Vaill. Asteraceae	Èrbo dâ runh Ourellë d'rattë	W Leaved	Topical ly applied (fresh)	Skin cuts and wounds	+
Pinus cembra L. Pinaceae	Èlvou	Cones, Sprouts	Syrup, Decoction	Expectorant Wounds	+
Pinus mugo Turra, P. sylvestris L. Pinaceae	Pin	Cones, Sprouts	Syrup, Decoction	Cough, bronchitis	+
Plantago major L., P. lanceolata L. Plantaginaceae	Plantanh Plantônhe	W Leaves	Infusion Baths Topically applied (fresh)	Urinary and genital infections To prevent prostate cancer Bruises and haematomas	+
Polygonum bistorta L. Polygononaceae	Èrparà	Aerial parts	Infusion	Diuretic	+
Polypodium vulgare L. Polypodiaceae	Èrgaliso Rizouzettë	Roots	Decoction	Cough, digestive	+
Potentilla reptans L. Rosaceae	Èrbo d’a sinquénò	Whole plant	Decoctions Baths	Urinary infections To prevent prostate cancer	+
Primula heliotro (L.) Hill, P. veris L., P. vulgaris Huds. Primulaceae	See Table 1	Flowers and roots	Infusion/Decoction	Diuretic, cough	+
Prunus avium (L.) L.	See Table 1	Stems	Infusion Topically applied	Diuretic Sprains	+
Prunus domestica L. Rosaceae	Dalmeizinie	Resin	Topically applied	Skin cuts and sprains	+
Table 2 Local medicinal plant uses recorded in the studied area (Continued)

Plant Name	Author	Common Name	Part Used	Use	Medicinal Properties
Prunus dulcis (Mill.) D.A. Webb Rosaceae	Amandoulie	Seeds	Fresh eaten	Galactagogue	+ * P
Rhododendron ferrugineum L. Ericaceae UNISGVGB035	Brousé	Gall	Oleolite	Muscle pains	+ * C
Rosa canina L. Rosaceae UNISGVGB018	Bosou Agoulénsia	Fruits	Jam Decoction Infusion, in external applications on the eyes	Intestinal astringent	+ + ** P
Rosa centifolia L. Rosaceae	Ruse	Petals	Infusion	Sore throat	+ * C
Rosmarinus officinalis L. Lamliaceae UNISGWAL030	Rousmarin	Leaves	Infusion	Digestive	+ + * C
Rubus ulmifolius L. Rosaceae UNISGWAL038	Rounzo	Leaves	Infusion	Sore throat and hoarseness, Acne and pimples, cicatrizing	+ + ** P
Rumex acetosa L. Polygonaceae	See Table 1	Leaves	Topically applied (fresh)	Insect bites	+ * P
Rumex alpinus L. Polygonaceae	Lavaso	Leaves	Infusion	Cough	+ * P
Salix alba L. Salicaceae	Gourie	Leaves	Infusion	Fever	+ * P
Salvia officinalis L. Lamliaceae	Salvio	Leaves	Infusion	Oral disinfectant and antibacterial, headaches, digestive	+ + ** C
Sambucus nigra L. Adoxaceae	See Table 1	Flowers Fruits	Infusion Applied (fresh) in the mouth Jam	Hypertension Tooth abscess "Blood cleanser"	+ + ** P
Satureja montana L. Lamliaceae	Séréa	Flowers	Infusion	Dysmenorrhea	+ * P
Sempervivum montanum L. Crassulaceae UNISGVGB029		Aerial parts	Topically applied (fresh)	Skin cuts and burns	+ * P
Silphium marianum (L.) Gaertn. Asteraceae UNISGVSYL	Pugn	Leaves Roots	Infusion Decoction	Diuretic, dysmenorrhea	+ * P
Symphytum officinalis L. Boraginaceae UNISGVSYM	Èrbo dà panariss	Roots	Topically applied (fresh)	Muscle pains and skin infections	+ * P
Tamacetum vulgare L. Asteraceae UNISGWAL006	Tanao	Aerial parts	Infusion	Dysmenorrhea	+ * P
Tanacetum officinalis L. Asteraceae UNISGWAL010	Girasole Morpoursin	Roots	Decoction	Diuretic "blood cleansing"	+ + * P
Teucrium chamaedrys L. Lamliaceae UNISGVGB019	Calamandréo	Aerial parts	Infusion	Hypertension, dysmenorrhea	+ + ** P
Thymus serpyllum L. Lamliaceae UNISGWAL029	Sérpoul	Aerial parts	Infusion	Digestive	+ + *** C
Tilia cordata Mill. Malvaceae UNISGVALTIL	Télh Tieul	Flowers	Infusion	Respiratory tract inflammations	+ + *** C
Trigonella caerulea (L.) Ser. Fabaceae	Thé d’hi’ort	Aerial parts	Infusion	Digestive	+ * C
Tussilago farfara L. Asteraceae	See Table 1	Aerial parts	Infusion	Respiratory tract inflammations, fever	+ + ** P
produced a dramatic loss of Traditional Knowledge concerning veterinary practices.

Waldensian versus Catholic ethnobotany: the possible role of cultural isolation from neighbours

Figure 4 illustrates the overlap between the ethnobotany of Waldensians and that of their Catholic neighbours in the three analysed domains (folk wild plant foods, medicines, and veterinary food plants and remedies).

The comparison shows that Waldensians had, or have retained, a more extensive ethnobotanical knowledge, and that approximately only half of the recorded wild food and medicinal plants are known and used by both communities. Moreover, this convergence is more marked for the wild food plant domain.

Despite the fact that Waldensians nowadays live together with Catholics, intermarriage between the two religious communities did not exist until a few decades ago. Given the fact that vertical transmission (from grandmother to mothers and from mothers to daughters) of ethnobotanical knowledge is related to kinship networks and these are determined by religious affiliation, this factor may explain the divergence of the two ethnobotanies.

Moreover, the fact that the plant knowledge among Waldensians appears to be more extensive than among the Catholic population may be related to a less marked erosion of the traditional customs and the strong sense of identity Waldensians retain. The historical isolation of the Waldensian community, which survived for many centuries cut off from the rest of their neighbours but at the same time fostered strong ties to Central and Northern Europe, may have facilitated unique patterns of plant perception and use.

However, in the last few decades intermarriage between members of the two communities has become more common (generally bringing the new family into the Catholic faith), and this will probably further hybridize the ethnobotany of the two groups.

On the other hand, a stronger overlap of the ethnobotanies of two culturally distinct groups in the specific wild food domain has also been observed in other mountainous regions of Europe, and may be regarded as a common strategy for coping with the food security-centred struggles that marginalised Alpine populations had to face in the past [1].

The Waldensian ethnobotany during the last century: a historical analysis

Table 4 illustrates the overlap of ethnobotanical data collected at the end of the 19th Century and in the 1980s in one of the study valleys (Germanasca Valley) [28-30] with our current data.

Although few plants were reported in the ethnobotanical study published in 1900 [28,29] and few taxa were reported with their local names in the survey published in 1984 [30] (thus suggesting maybe a sampling based mainly on trained herbalists), more than half of these species recorded in these two studies are used in the same of similar ways today.
Botanical taxon/ family and voucher specimen code #	Local name (folk taxon/generic)	Status Plant part(s)	Preparation and administration	Folk veterinary use(s) or treated disease(s)	Treated animals	Val Cat	Citations	Notes
Achillea erba-rotta All. Asteraceae	See Table 1	Aerial parts	Infusion	Rumination disorders	CA + + * P			
Aconitum napellus L. Ranunculaceae	Erbo toro	Whole plant	Eaten fresh	Abortive	CA + * P			
Alcea rosea L. Malvaceae	Malvone	Aerial parts	Infusion	Rumination disorders	CA + * P			
Artemisia absinthium L. Asteraceae	See Table 2	Aerial parts	Fodder or in infusions	Rumination disorders	CA, RA + + ** P			
Avena sativa L. Poaceae	Avéno	Aerial parts	Fodder (fresh)	Post-partum depurative	CA + * P			
Calendula officinalis L. Asteraceae	Courtézio	Flowers	Infusion	To facilitate pregnancy	CA + * P			
Cerastia islandica (L.) Ach. Parmeliaceae	See Table 2	Thallus	Decoction	Stomach disorders	CA + * P			
Equisetum arvense L. Equisetaceae	See Table 2	Aerial parts	Footbath	Infections of the paws	SH + * P			
Euphorbia cyparissias L. Euphorbiaceae	UNISGVGB009	Fruits	Fodder (dried)	Infections (esp. in the oral cavity)	CA, PO, SH + * P			
Fagopyrum esculentum Moench. Polygonaceae	Granéét	Aerial parts	Dried	Fodder	CA, PO, PI + * P			
Festuca ovina L. Poaceae	Grasoun	Aerial parts	Dried	Fodder	CA + * P			
Foeniculum vulgare Mill. Apiaceae	UNISGVGB012	Aerial parts	Fodder (fresh)	Galactagogue	CA + * P			
Fraxinus excélio L. Oleaceae	See Table 2	Leaves	Fresh	Fodder	CA + * P			
Galium verum L. Rubiaceae	UNISGVGALGAL	Flowering tops	Dried	As rennet	+ * P			
Gentiana lutea L. Gentianaceae	See Table 1	Roots	Decoction	Rumination disorders	CA, SH + * P			
Heracleum sphondylium L. Apiaceae	Plaoutasino	Aerial parts	Fresh or dried	Fodder	PO, RA + * P			
Juniperus communis L. Cupressaceae	See Table 1	Fruits	Fodder	To improve the skin health (making it shiny)	CA + * P			
Laburnum alpinum (Mill) Bercht. & J.Presl. Fabaceae	UNISGVGB037	Leaves	Fresh or dried	Fodder	RA + * P			
Larix decidua Mill. Pinaceae	See Table 2	Resin	Topically applied	Bruises, sprains, wounds	CA + + * C			
Linum usitatissimum L. Linaceae	See Table 2	Seeds	Fodder	“Blood cleansing”	CA + * P			
Malva sylvestris L. Malvaceae	See Table 2	Whole plant	Decoction	Depurative during the menstrual cycle	CA + * P			
Plant Name	Family	Part Used	Preparation	Use	Efficacy	CA	SH	C
----------------------------	--------------	-----------	-------------	----------------------	----------	----	----	----
Marrubium vulgare L. Lamiaceae	See Table 2	Whole plant	Infusion	Ruminations disorders	CA + *	P		
Matricaria chamomilla L. Asteraceae	See Table 2	Flowers	Infusion	Ruminations disorders	CA (calves) + *	P		
Medicago sativa L. Fabaceae	Luzerno	Aerial parts	Fresh or dried	Fodder	CA + + **	C		
Onobrychis vicifolia Scop. Fabaceae	Jalét	Aerial parts	Fresh or dried	Fodder	CA + *	P		
Ononis spinosa L. Fabaceae	See Table 2	Roots	Decoction	Depurative during the menstrual cycle	CA + *	P		
Oxalis acetosella L. Oxalidaceae	See Table 2	Leaves	Eaten fresh or dry	Fodder	PO, RA + *	P		
Parietaria officinalis L. Urticaceae	See Table 1	Aerial parts	Fresh	Fodder	PO + *	C		
Pilosella officinarum Vaill. Asteraceae	Ero bo ña runh	Whole plant	Fodder	Ruminations disorders	CA + *	P		
Plantago major L. P. lanceolata L. Plantaginaceae	See Table 2	Leaves	Fresh or dried	Fodder	PI + *	P		
Polyporus officinalis Fries. Poliporaceae	Panouflo	Fruiting body	Fodder (ground)	Ruminations disorders	CA + + **	P		
Quercus petraea (Matt.) Liebl. Fagaceae	Roure	Leaves	Fresh or dried	Fodder	GO + *	P		
Secale cereale L. Poaceae	Séel	Seeds→Flour	Fodder	Galactagogue	CA + + *	P		
Sedum album L. Crassulaceae	Picoulump	Leaves	Fresh	Fodder	PO + *	P		
Silene vulgaris (Moench) Garcke Caryophyllaceae	Eiclopèt	Leaves	Fresh or dried	Fodder	PO, RA + *	P		
Stellaria media (L.) Vill. Caryophyllaceae	Pavarino	Leaves	Fresh	Fodder	PO + *	P		
Silybum marianum (L.) Gaertn Asteraceae	Pugn	Roots	Decoction	Depurative during the menstrual cycle	CA + *	P		
Tanacetum vulgare L. Asteraceae	See Table 1	Aerial parts	Infusion	Ruminations disorders	CA + *	P		
Taraxacum officinalis F.H.Wigg. Asteraceae	See Table 1	Aerial parts	Fresh or dried	Fodder	PO + *	P		
Thymus serpyllum L. Lamiaceae	See Table 1	Aerial parts	Topically applied in the mouth	Ruminations disorders, infections of the oral cavity	CA, SH + + *	P		
Trifolium alpinum L. Fabaceae	Fioun	Aerial parts	Fresh or dried	Fodder	CA + *	P		
Triticum vulgare Vill. Poaceae	Frounént	Aerial parts	Fresh or dried	Fodder	CA + + *	P		
Ulmus glabra Huds. Ulmaceae	Ouelme	Leaves	Fresh or dried	Fodder	PI + *	P		
However, possible different research methods used in the current and past field studies make a detailed comparison very problematic, as in both of the past considered surveys, which were conducted by botanists, an exact description of the utilized sampling and ethnographic methods and, paradoxically, even an indication of collected plant vouchers are completely missing. The comparative analysis shows in any case a remarkable degree of resilience of traditional plant uses in the study area, despite the tremendous socio-economic changes that occurred during the last 120 years; other diachronic analyses recently conducted in the Balkans have also confirmed the survival of 19th Century folk plant uses to today [16,43].

Conclusions
Local plants have played, and still partially play, an important role in the context of food security and emic, domestic pathways of the management of human and animal health in the Western Alps.

A marked persistence of local knowledge regarding these plants among Waldensians confirms the importance of studying enclaves as well as cultural and linguistic “isles” in ethnobotany, which may represent both crucial reservoirs of folk knowledge and bio-cultural refugia [44].

On the other hand, the findings of this study indicate that a proper conservation of the bio-cultural heritage,
Botanical taxon and family	Local uses recorded in 1900 [27,28]	Local uses recorded in 1984 [29]*	Local uses nowadays (current study)
Allium cepa L. (Amaryllidaceae)	NR	Decoction of the bulbs a diuretic	NR
Amelanchier ovalis Medik. (Rosaceae)	Fruits consumed as a snack by boys	NR	=
Anemone hepatica L. (Ranunculaceae)	Leaves externally applied on women breast for treating inflammations	NR	NR
Arctium lappa L. (Asteraceae)	NR	Infusion of the dried roots, as a depurative	=
Arnica montana L. (Asteraceae)	Alcoholic macerate of the flowers externally applied for treating cuts, rheumatism, and muscle pains	=	
Artemisia genipi Weber ex Stechm. (Asteraceae)	NR	Aerial parts in infusion or alcoholic macerate (liquor) as a digestive	=
Beckwithia glacialis (L.) Á. Löve & D. Löve (Ranunculaceae)	Flowers in decoction, drunk as a diaphoretic	Decoction for treating toothaches	NR
Calendula officinalis L. (Asteraceae)	NR	Infusion of the dried flowers as a depurative	=
Campanula spicata L. (Campanulaceae)	NR	Fresh leaves, crashed, externally applied for treating cuts	NR
Cetraria islandica (L.) Ach. (Parmeliaceae)	NR	Decoction of the thallus as a digestive and expectorant	=
Chelidonius majus L. (Papaveraceae)	Latex externally applied on warts	NR	=
Crataegus ribidophylla Gand. (Rosaceae)	Fruits consumed	NR	≠
Gentiana acaulis L. (Gentianaceae)	NR	Whole plant or roots in infusion/decoction or wine macerate as appetizing and digestive	=
Hypericum perforatum L. (Hypericaceae)	Hung behind the house door, to prevent witcheries	Oil macerate of the fresh flowers as a cicatrizing	(as in 1984)
Laburnum anagyroides Medik. (Fabaceae)	Bark decocted and externally used for treating lice in cows and calves	NR	≠
Larix comosa officinalis (Vill) Kotl. & Pouzar (Fomitopsidaceae)	NR	The fruiting body, powdered, in infusion as a digestive	NR
Lathyrus sylvestris (Fabaceae)	Remedy (?) for cows when they calve	NR	NR
Lilium candidum L. (Liliaceae)	NR	Oil macerate of the fresh flowers as a cicatrizing	NR
Linum usitatissimum L. (Linaceae)	The seeds (in compresses?) as anti-rheumatic	NR	=
Malva sylvestris L. (Malvaceae)	Infusion of the leaves (?) as emollient, both for humans and animals	NR	=
Nasturtium officinale R.Br. (Brassicaceae)	Leaves consumed raw in salads	Leaves consumed raw in salads or in soup, as a depurative	NR
Onobrychis vicifolia Scop. (Fabaceae)	Fodder	NR	=
Oxalis acetosella L. (Oxalidaceae)	Leaves consumed raw in salads	NR	=
Papaver rhoes L. (Papaveraceae)	Flowers in decoction, drunk for treating toothache	NR	NR
such as the ethnobotanical one, requires strategies, which carefully consider natural landscapes and resources as well as cultural and religious customs, since plant folk knowledge systems are the result of a continuous interplay between these two domains over centuries.

Finally, these neglected local plant resources may represent a key issue for fostering a sustainable development in an area of the Alps, which has been largely untouched by mass tourism and is looking with particular interest at eco-touristic trajectories.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AP conceived the study; GB gathered the data in the field in the Germanasca and Chisone valleys, while AP gathered the data in the Pellice

Table 4 Comparison of the local plant uses recorded in the Germanasca Valley in 1900 and 1984 with those collected in the current study (Continued)

Plant Taxa	1900 Plant Use	1984 Plant Use	
Parietaria officinalis L. (Urticaceae)	Decoction of the dried aerial parts, as a diuretic and depurative	≈	
Polygonum aviculare L. (Polygonaceae)	Infusion of the dried aerial parts (?) as an astringent	NR	
Rosa canina L. (Rosaceae)	Flowers consumed as a snack by boys	Infusion of the flowers externally applied for treating eye inflammations	≈ (as in 1984)
Rosa centifolia L. (Rosaceae)	Petals (not clarified how) for treating eye inflammations	NR	≠
Rubus idaeus L. (Rosaceae)	Fruits consumed; leaves as fodder	NR	=
Rubus ulmifolius Schott (Rosaceae)	Fruits consumed	NR	=
Sorbus aria (L.) Crantz (Rosaceae)	Fruits consumed as a snack by boys	NR	≠
Tanacetum vulgare L. (Asteraceae)	Fresh aerial parts consumed in salads as a depurative	=	
Thymus serpyllum L. (Lamiaceae)	Infusion of the flowering tops as a digestive and anti-tussive	≈	
Tilia x europea L. (Malvaceae)	Flowers in diaphoretic decoctions; leaves as fodder	NR	=
Trifolium spp. (Fabaceae)	Fodder	NR	=
Tussilago farfara L. (Asteraceae)	Crashed fresh leaves, externally applied, as a suppurative	≠	
Urtica dioica L. (Urticaceae)	Young aerial parts consumed in soups as a depurative; dried roots and leaves, decocted, for treating alopecia; dried leaves used as fodder for hens for increasing the egg production	=	
Verbascum phlomoides L. (Scrophulariaceae)	Decoction of the flowers for treating catarrhs	=	
Verbena officinalis L. (Verbenaceae)	Fresh aerial parts, crashed and mixed with pork fat, externally applied for treating cuts	≠	
Veronica prostrata L. (Plantaginaceae)	Infusion for treating catarrhs and inflammations	=	
Viola biflora L. (Violaceae)	Infusion of the dried flowers for treating coughs and as an intestinal anti-inflammatory; mixed with milk and bread, externally applied, as a suppurative	NR	
Viola calcarata L. (Violaceae)	Leaves consumed in soups	Infusion of the dried flowers for treating coughs and as an intestinal anti-inflammatory; mixed with milk and bread, externally applied, as a suppurative	≈ (as in 1984)
Viola tricolor L. (Violaceae)	Not specified, the resulting preparation (decoction of the aerial parts?) considered good for those women, who had given a baby	Infusion of the dried flowers for treating coughs and as an intestinal anti-inflammatory; mixed with milk and bread, externally applied, as a suppurative	≠

*We considered folk uses referred only to those plant taxa, for which local names were reported.

(?): hypothesized plant use details.

NR: not recorded; = same use; = similar use; ≠ different uses.
and Angrogna valleys; AP and GB analysed the collected data; AP drafted the manuscript. Both authors read and approved the final manuscript.

Acknowledgements
Special thanks are due to all the study participants, who graciously agreed to share their folk plant knowledge and to the students of the University of Gastronomic Sciences Giovanni Marabese, Stefano Reverdito, Matteo Belloni, Adriano Piazza, Aurelia Blanc, and Riccardo Mazzoni, who gathered some of the data in the Angrogna Valley.

Author details
1 Via del Pino 108, Pinerolo (Torino) I-10064, Italy. 2 University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, Bra/Pollenzo I-12060, Italy.

Received: 24 March 2015 Accepted: 26 April 2015
Published online: 07 May 2015

References
1. Quave CL, Pieroni A. A reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans. Nat Plants. 2015;1:4021.
2. Pieroni A, Quave CL. Traditional pharmacopeiae and medicines among Albanians and Italians in southern Italy: a comparison. J Ethnopharmacol. 2005;101:258–70.
3. Menendez-Baceta G, Aceituno-Mata L, Molina M, Reyes-García V, Tardío J, Pardo-de-Santayana M. Medicinal plants traditionally used in the northwest of the Basque Country (Biscay and Alava), Iberian Peninsula. J Ethnopharmacol. 2014;152:113–34.
4. di Tito A, Luczaj LJ, Quave CL, Redzic S, Pieroni A. Traditional food and herbal uses of wild plants in the ancient South-Slavic diaspore of Mumdimatar/ Montemorto (Southern Italy). J Ethnobiol Ethnomed. 2012;8:21.
5. Pickr H, Haselmair R, Kuhn E, Schunko C, Vogl CR. Transformation of traditional knowledge of medicinal plants: the case of Tyroleans (Austria) who migrated to Australia, Brazil and Peru. J Ethnobiol Ethnomed. 2012;8:44.
6. Kujavka M, Hilgert NI. Phytotherapy of polish migrants in Misiones, Argentina. Legacy and acquired plant species. J Ethnopharmacol. 2014;153:810–30.
7. Kujavski M, Pieroni A. Plants used as food and medicine by polish migrants in Misiones, Argentina. Ecol Food Nutr. 2015;54:255–79.
8. Pieroni A, Cianfaglione K, Nedelcheva A, Hajdari A, Mustafa B, Quave CL. Resilience at the border: traditional botanical knowledge among Macedonians and Albanians living in Gollobordo, Eastern Albania. J Ethnobiol Ethnomed. 2014;10:131.
9. Ceuterick M, Vandeboek I, Pieroni A. Resilience of Andean urban ethnobotanies: a comparison of medicinal plant use among Bolivian and Peruvian migrants in the United Kingdom and in their countries of origin. J Ethnopharmacol. 2011;136:27–54.
10. Ceuterick M, Vandeboek I, Tony B, Pieroni A. Cross-cultural adaptation in urban ethnobotany: the Colombian folk pharmacopoeia in London. J Ethnopharmacol. 2008;120:342–59.
11. Luczaj L. Changes in the utilization of wild green vegetables in Poland since the 19th century: a comparison of four ethnobotanical surveys. J Ethnopharmacol. 2010;128:395–404.
12. Sökünd R, Kalle R. The use of teatamed in Estonia, 1880s-1990s. Appetite. 2012;59:23–30.
13. Sökünd R, Kalle R. Change in medical plant use in Estonian ethnomedicine: a historical comparison between 1888 and 1994. J Ethnopharmacol. 2011;135:251–60.
14. Pieroni A, Sheik QC, Ali W, Tony B. Traditional medicines used by Pakistani migrants from Mirpur living in Bradford, Northern England. Complement Ther Med. 2008;16:1–6.
15. Pieroni A, Gray C. Herbal and food folk medicines of the Russlanddeutschen living in Künzelsau/Täläcker, South-Western Germany. Phytother Res. 2008;22:889–901.
16. Pieroni A, Reishehi B, Nedelcheva A, Mustafa B, Hajdari A, Kolosova V, et al. One century later: the folk botanical knowledge of the last remaining Albanians of the upper Reka Valley, Mount Korab, Western Macedonia. J Ethnobiol Ethnomed. 2013;9:22.
17. Pieroni A, Giusti ME. Alpine ethnobotany in Italy: traditional knowledge of gastronomic and medicinal plants among the Occitans of the upper Varalta valley, Piedmont. J Ethnobiol Ethnomed. 2009;5:32.
18. Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy) - An alpine ethnobotanical study. J Ethnopharmacol. 2013;145:517–29.
19. Dei Cas L, Pugni F, Fico G. Tradition of use on medicinal species in Valfunva (Sondrio, Italy). J Ethnopharmacol. 2015;163:113–34.
20. Vitalini S, Tomé F, Fico G. Traditional uses of medicinal plants in Valvestino (Italy). J Ethnopharmacol. 2009;121:106–16.
21. Abbert C, Mayor R, Roguet D, Spichiger R, Hamburger M, Potterat O. Ethnobotanical survey on wild alpine food plants in Lower and Central Valais (Switzerland). J Ethnopharmacol. 2014;151:624–34.
22. Mattaila G, Quave CL, Pieroni A. Traditional uses of wild food and medicinal plants among Brigasc, Kylé, and Provençal communities on the Western Italian Alps. Genet Res Crop Evol. 2013;60:587–603.
23. Pieroni A, Giusti ME, Quave CL. Cross-cultural ethnobotany in the western Balkans: medical ethnobotany and ethnobotzoology among Albanians and Serbs in the Plettet Plateau, Sandzak, South-Western Serbia. Hum Ecol. 2011;39:333–49.
24. Tourn G, Valdés I. La singolare vicenda di un popolo-chiesa (1170–2008). Torino: Claudiana, 2008.
25. International Society of Ethnobiology. The ISE Code of Ethics. http://www.ethnobiology.net/what-we-do/core-programs/ise-ethics-program/code-of-ethics/ (2008). Accessed 25 Jan 2015.
26. Pignatti S. Flora d’Italia. Bologna: Edagricole, Bologna; 1997.
27. Stevens PF. Angiosperm Phylogeny Website. Version 13. http://www.mobot.org/MOBOT/Research/PAweb/ (2012). Accessed 12 March 2015.
28. Pons G. Primo contributo alla flora popolare valdese. Boll Soc Ital Bot. 1900;1:101–9.
29. Pons G. Flora popolare valdese, secondo contributo. Boll Soc Ital Bot. 1900;1:216–222.
30. Lomagno Caramelli R, Piervittori P, Lomagno PA, Rolando C. Fitosferapia popolare nelle valli Chisone e Germanasca. Nota prima: Valle Germanasca e bassa Val Chisone. Ann Fac Sci Agr Univ Torino. 1984;XXX:259–98.
31. Pieroni A, Quave CL. Pioneering ethnobotanists in Italy. In: Svanberg I, editors. Pioneers in European ethnobiology. Uppsala: Uppsala Universitet. 2014; p. 263–71.
32. Mattiolo G. “Phytoalimurgia Pedemontana” ossia Censimento delle Specie vegetali alimentari della Flora spontanea del Piemonte. Torino: Bona; 1918.
33. Ghirardini MP, Carli M, del Vecchio N, Rovati A, Cova G, Valigi F, et al. The importance of a taste. A comparative study on wild food plant consumption in twenty-one local communities in Italy. J Ethnobiol Ethnomed. 2007;3:22.
34. Musset D, Dorothy D. La mawe et l’erba bianca. Salagon: Musée départemental ethnologique de Haute-Provence; 2006.
35. Comara L, La Rocca A, Terrizzano L, Dente F, Mariotti MG. Ethnobotanical and phytomedical knowledge in the North-Western Ligurian Alps. J Ethnopharmacol. 2014;155:463–84.
36. Mabey R. Flora Britannica. The definitive new guide to wild flowers, plants and trees. London: Chatsworth & Winds; 1997.
37. Leyel CF. Herbal delights. London: Faber & Faber; 1937.
38. Guarerra PM, Usi e tradizioni della flora italiana. Medicina popolare ed etnobotanica. Roma: Aracne; 2006.
39. Warashina T, Urnheara K, Miyase T. Flavonoid glycosides from Botrychium tennum. Chem Pharm Bull (Tokyo). 2012;60:1561–73.
40. Pizzardi G, Eynard W, La Cucina Valdese. Torino: Claudiana; 2006.
41. Agelet A, Vallès J. Studies on pharmaceutical ethnobotany in the region of Pallars (Pyrenees, Catalonia, Iberian Peninsula). Part III. Medicinal uses of non-vascular plants. J Ethnopharmacol. 2003;84:229–34.
42. Rigat M, Bonet MA, Garcia S, Garnatje T, Vallès J. Studies on pharmaceutical ethnobotany in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula). J Ethnopharmacol. 2007;113:267–77.
43. Luczaj L, Dolina K. A hundred years of change in wild vegetable use in southern Herzegovina. J Ethnopharmacol. 2015;166:297–304.
44. Barthel S, Cramley CL, Svedin U. Biocultural refugia: combating the erosion of diversity in landscapes of food production. Ecol Soc. 2013;18:71.