Superconductivity In Disordered Sr$_2$RuO$_4$

G. Litak
Department of Mechanics, Technical University of Lublin, 20-618 Lublin, Poland

J.F. Annett, B.L. Györffy
H.H. Wills Physics Laboratory, University of Bristol, Tyndall Ave, Bristol, BS8 1TL, UK

(December 25, 2021)

Abstract

We discuss the influence of disorder on the critical temperature T_C of a p-wave superconductor. To describe disordered Sr$_2$RuO$_4$ we use extended Hubbard model with random site energies treated in the Coherent Potential Approximation.

I. INTRODUCTION

Recent experimental evidence suggests that the Cooper pairs in superconducting Sr$_2$RuO$_4$ are triplets with p-wave internal symmetry, as in the case of superfluid 3He. One of characteristic features of this exotic state is the strong influence of impurities on its superconducting properties. Studies of the electronic structure in Sr$_2$RuO$_4$ have identified an extended van Hove singularity close to the Fermi energy E_F. In this note we investigate the interplay between the van Hove singularity and disorder in a model p-wave superconductor.

II. THE MODEL

We consider a simple extended Hubbard Hamiltonian.
\[
H = \sum_{i\sigma} (\varepsilon_i - \mu) \hat{n}_{i\sigma} + \sum_{ij\sigma} t_{ij} c_{i\sigma}^+ c_{j\sigma} + \frac{1}{2} \sum_{ij\sigma\sigma'} U_{ij} \hat{n}_{i\sigma} \hat{n}_{i\sigma'} \tag{1}
\]

where as usual \(c_{i\sigma}^+ \) and \(c_{i\sigma} \) are the Fermion creation and annihilation operators for an electron on site \(i \) with spin \(\sigma \), \(\hat{n}_{i\sigma} \) is the number operator and \(\mu \) is the chemical potential. Disorder is introduced into the problem by allowing the local site energy \(\varepsilon_i = \pm \delta/2 \) to vary randomly from site to site with equal probability. \(U_{ij} \) is the attractive interaction \((i \neq j)\) between nearest sites and \(t_{ij} \) is the hopping integral from site \(j \) to site \(i \) which takes nonzero values between nearest and next nearest sites. In \(k \)-space: \(\varepsilon_k = \sum_j t_{ij} \exp (i R_{ij} \cdot k) = -2t(\cos k_x + \cos k_y) - 4t' \cos k_x \cos k_y \), where the hopping parameter \(t' = 0.45t \) as well as the band filling \(n_\gamma/2 = 0.66 \) were fitted to the experimental cyclotron masses and corresponding carriers occupations for the \(\gamma \) band of Sr\(_2\)RuO\(_4\), the interaction \(U_{ij}/t = 0.446 \) was chosen to get \(T_C = 1.5K \).

III. DENSITY OF STATES AND \(T_C \)

The linearized gap equation for the critical temperature \(T_C \) of p-wave pairing from the Hamiltonian (1) reads:

\[
1 = \frac{|U|}{\pi} \int_{-\infty}^{\infty} dE \text{Tanh} \frac{E}{2k_BT_C} \text{Im} \frac{\overline{G}^p_{11}(E)}{2E - \text{Tr} \Sigma(E)}. \tag{2}
\]

where \(\overline{G}^p_{11}(E) \) is an averaged electron Green function which defines the weighted density of states (DOS) of p-wave electron states \(\overline{N}_p(E) \):

\[
\overline{N}_p(E) = -\frac{1}{\pi} \overline{G}^p_{11}(E) = -\frac{1}{\pi N} \sum_k \text{Im} \frac{2\sin^2 k_x}{E - \Sigma_{11}(E) - \varepsilon_k + \mu}, \tag{3}
\]

where \(\Sigma_{11}(E) \) is a Coherent Potential which describe the electron self energy in the disordered system.

In case of a clean system \((\text{Im} \Sigma_{11}(E) = 0) \) we get a conventional gap equation with the DOS \(N(E) \) substituted by \(\overline{N}_p(E) \) under the integral (Eq. 2). In Fig 1a we show \(N(E) \) and \(\overline{N}_p(E) \) for the clean system. Note that the van Hove singularity in \(N(E) \) produces the maximum in \(\overline{N}_p(E) \). The singularity in \(\overline{N}_p(E) \) is smeared by the presence of the term \(\sin^2 k_x \)
in Eq. 3. This leads to a maximum in T_C with changing n (Fig. 1a). Equations 2 and 3 are influenced by disorder by different effects. Firstly, the peak in $\overline{N}_p(E)$ is smeared (Fig. 1b) leading to small decrease of T_C. The second and more interesting effect arises from Eq. 2, where $\Sigma_{11}(E)$ acts as a pair breaker. Using the arguments of Ref. 5, Eq. 2 can be evaluated to yield:

$$\ln \left(\frac{T_C}{T_{C0}} \right) = \psi \left(\frac{1}{2} \right) - \psi \left(\frac{1}{2} + \frac{|\text{Im}\Sigma_{11}(0)|}{2\pi T_C} \right),$$

(4)

where T_{C0} denotes the critical temperature in a clean system. The full influence of disorder on $\overline{N}_p(E)$ is illustrated in Fig. 1b. Note that the position of the maximum value is not affected by small disorder. On the other hand the critical temperature T_C, plotted in Fig. 2a is degraded strongly with disorder. This is due to the pair-breaking term $-\text{Im}\Sigma_{11}(E)$, which is shown in Fig. 2b.

IV. SUMMARY

When the Fermi energy is close to a Van Hove singularity relatively weak disorder can cause very rapid T_C degradation in a p-wave superconductor. The case of Sr$_2$RuO$_4$ may be an example of this phenomenon.

ACKNOWLEDGMENTS

This work was partially founded by the Committee of Scientific Research (Poland) through the grant KBN 2P03B09018, and the Royal Society (UK).
REFERENCES

1 A.P. Mackenzie et. al., Phys Rev. Lett. 76, 3786 (1998).

2 D.H. Lu et. al., J. Low Temp. Phys. 105, 1587 (1996).

3 D.F. Agtenberg, T.M. Rice, M. Sigrist, Phys. Rev. Lett. 78, 3374 (1997).

4 G. Litak, J.F. Annett and B.L. Györffy, Acta Phys. Pol. A 97, 249 (2000).

5 A.M. Martin et. al., Phys Rev. B 60 7523 (1999).
FIG. 1. (a) $N(E)$ (1) and $N_p(E)$ (2) in a clean system, (b) $\overline{N}_p(E)$ for disordered system with $\delta/t = 0.0, 0.3, 0.6$ starting from the top line ($\mu = 0$).
FIG. 2. (a) T_C as a function of n for various values of disorder potential ($\delta/t = 0.0, 0.10, 0.13$ for curves 1, 2, 3 respectively, (b) Imaginary part of self energy for various values of disordered potential $\delta/t = 0.10, 0.13, 0.15$ starting form the bottom line ($\mu = 0$).