Prevalence of aflatoxin in dried okra (*Abelmoschus esculentus*) and tomatoes (*Lycoperisicon esculentum*) commercialized in Ibadan metropolis

Okigbo RN and **Anene CM**

Botany Department, Nnamdi Azikiwe University Awka, P.M.B 5025, Awka Anambra State, Nigeria

Introduction

Aflatoxin as defined by Busby and Wogan [1] are group of carcinogenic, tetragenic and mutagenic mycotoxins commonly associated with fruits, vegetables and other products whilemycotoxins generally areadsed to be poisonous secondary metabolites produced by moulds when growing on different food products [2].

In West African sub-regions, aflatoxin B1, B2, G1 and G2 are the major ones because they are thermo-stable [3] and due to their high prevalence in nature and toxicity are said to be the most important mycotoxins in food and feeds [4].

Historically, scientific research on Aflatoxin started after the incidence that took place the year 1960 in England where a large number of turkey poults died after eating contaminated groundnut meal that was imported from Brazil, the atoxigenic fungus was identified as *Aspergillus flavus* and the toxic principle named Aflatoxin meaning Aspergillus toxin [5].

The significance of this study is to give insight on the causes of aflatoxicosis outbreak in Ibadan city. It also provides adequate information on the level of aflatoxins in the vegetables as they form a vital nutritious component of the daily diet of the citizens. It will also be vital in setting up prevention, control and management programs on aflatoxin contamination in Ibadan as a public health issues.

Aflatoxin contamination of food is said by Bhat and Miller [6] to be of serious problem as they bind to DNA and consequently prevent transcription of genetic information which eventually has an adverse effect in humans and other animals. More so, they have been reported by Stoloff [7] to be acutely and chronically toxic causing acute Liver damage, Liver cirrhosis, induction of tumors and teratogenic effects.

Report on the various infestations of Okra and tomatoes by *Aspergillus* species [4] and the ability of some *Aspergillus* strains to produce aflatoxin [8] justifies the need to determine the possible contamination of these vegetables with aflatoxin. The aim of this research work is to provide information on the natural occurrence of aflatoxin in the two vegetables sold in Ibadan metropolis in lieu of the very scarce data on it.

The objective of the study is to determine:

- The incidence and concentration of aflatoxins in these commodities and
- The occurrence of the fungi on the them

Materials and methods

Sterilization of materials used for the research

All materials used for the research work were sterilized and the media was prepared according to manufacturer’s instruction and autoclave at 121°C for 10 minutes [9-11].

Samples collection

Hundred grams of each sample were collected from the four markets namely Oje, Bodiga, Shasha and Orita-merin in five replicate of 20gram in separate airtight sterile polythene bag to prevent further contamination until aflatoxin analysis was done and subsequent isolation and identification of fungi.

Aflatoxins Extraction

Aflatoxins was extracted from the samples as described by Hell, et al. [12] with modifications employed due to different weight and dryness of the samples. Dichloromethan was used to extract the toxin and allowed to evaporate to dryness in laminar air flow-hood chamber for 48 hours until analysed.

Qualitative analysis

Four micro litres of the dissolved extract were spotted on the thin layer chromatography (TLC) plates 20*10cm with aflatoxin standards G and I and then allowed to develop in a tank containing diethyl ether, methanol and water at the ratio of 96: 3: 1 respectively. The spots intensities were visually compared with those of standards under ultraviolet light 366 nm wavelengths [13].

Quantitative analysis

Aflatoxin quantification was done by scanning with CAMAG TLC Scanner3 (densitometer), which measured the absorbance and fluorescence of the toxin extracted [14].

Isolation of fungi

Direct isolation method was employed for fungi isolation. The samples were surface sterilized in 70% ethanol for 10minutes and
Prevalence of aflatoxin in dried okra (Abelmoschus esculentus) and tomatoes (Lycopersicon esculentum) commercialized in Ibadan metropolis

Results

Aflatoxins (ppb) content of dried okra and tomato sampled from four markets in Ibadan

The aflatoxin content (ppb) in dried okra sampled from four markets in Ibadan is shown in Figure 1. The figure revealed that aflatoxin B1 was highest in samples from Oje market (33.490ppb) and lowest in samples from Bodija market (26.690ppb). Aflatoxin B2 was highest in samples from Bodija market (3.736) and lowest in samples from Ojota-merin market (0.932ppb). In all the markets, the percentage occurrence of aflatoxin B2 was highest in samples from Ojota-merin market (60%) and Shashs market (60%) while reported the highest occurrence in Bodija market (100 %) and Oje market (100%). A. niger recorded the highest occurrence in Oritamerin market (95%) while that of A. flavus was the least (50%). The aflatoxinproducing fungi showed a significant difference in their percentage occurrence between the various markets (p<0.05).

Percentage occurrence of aflatoxin producing fungi in okra and tomato sampled from various markets in Ibadan

The percentage occurrence of aflatoxin producing fungi in dried Okra sampled from four markets in Ibadan is shown in Table 1. A total of three aflatoxin producing fungi include A. flavus, A. niger and A. parasiticus were isolated from dried okra seed samples from the four markets. A. flavus reported the highest occurrence in Bodija market (100 %) and Oje market (100%). A. niger recorded the highest occurrence in Oritamerin market (60%) and Shashs market (60%) while A. parasiticus showed the highest occurrence in Oje market (80%) and Shashs market (80%). In all the markets, the percentage occurrence of A. flavus was the highest (95%) while that of A. Niger was the least (50%). The aflatoxinproducing fungi showed a significant difference in their percentage occurrence between the various markets (p<0.05).

The percentage occurrence of aflatoxin producing fungi in dried tomatoes sampled from four markets in Ibadan is shown in Table 2.

Identification of fungi

Isolates were identified based on colony characteristics, strain morphology, macroscopic feature and microscopic feature [16]. The pure cultures were characterized and subsequently identified with the aid of a compound microscope as the representatives of the different colonies/fungi [16].

Calculation of the percentage occurrence of the different fungi isolates were done to determine their frequencies from the 4 different markets. Five plates from each market were used, the number of occurrence of each of the isolates was recorded, the mean taken and calculated as a ratio of the total number of occurrence and then expressed as a percentage using the formula:

\[
\text{Percentage occurrence} = \frac{X}{N} \times 100
\]

Where:

- \(X\) = Total number of each isolate in all the market samples
- \(N\) = Total number of all isolates in all the market samples

Statistical analysis

The experimental design was a complete randomized one. The levels of aflatoxin contamination on the samples were illustrated with an error bar chart at 95% cl. The chart was obtained by plotting the aflatoxin concentrations against the different markets. The incidences of the fungi were determined by calculating their percentage frequency.

IBM SPSS Statistical data editor version 21.00 was used to perform the ANOVA and chi-square analysis at P<0.05 level of significance.

Table 1. Aflatoxin content (ppb) in dried okra sampled from four markets in Ibadan

Market	Aflatoxin B1 (ppb)	Aflatoxin G1 (ppb)	Aflatoxin G2 (ppb)	Aflatoxin B2 (ppb)
Oje Market	33.490	0.853	0.878	0.700
Oritamerin Market	26.690	9.011	9.583	0.878
Shasha Market	20.010	6.878	7.878	0.878
Bodija Market	16.980	5.878	6.878	0.878

Table 2. Aflatoxin content (ppb) in dried tomato sampled from four markets in Ibadan

Market	Aflatoxin B1 (ppb)	Aflatoxin G1 (ppb)	Aflatoxin G2 (ppb)	Aflatoxin B2 (ppb)
Oje Market	33.490	0.853	0.878	0.700
Oritamerin Market	26.690	9.011	9.583	0.878
Shasha Market	20.010	6.878	7.878	0.878
Bodija Market	16.980	5.878	6.878	0.878
Aflatoxin producing fungi were associated with production of aflatoxins in the dry commodities. The detection of aflatoxin in these samples might be due to the market sanitation and handling by the sellers. Okigbo, et al. [21] has also emphasized that factors such as harvesting method, handling, processing, storage and even climate can influence the presence and abundance of aflatoxins producing fungi in food products.

Conclusions and recommendation

Hazard analysis critical control point (HACCP) should be adopted at every point during food processing chain to help reduce fungal infection and subsequent aflatoxin contamination of food commodities.

Government should also enforce enlightenment programs to educate the citizens about food safety. Also, Mycotoxin regulations should be adopted in our country to help regulate the level of mycotoxin in locally consumed food to ensure food security which is basic for good health and better economy. There is also a need for further research on how best to prevent and control these toxins.

References

1. Busby Jr WF, Wogan GN (1981) Aflatoxins. In: Shank, R. C. (Ed.) Mycotoxins and N-nitroso Compounds: Environmental Risks. European University Association: CRC Press. London, pp: 3-28.
2. Zain F (2010) Impact of mycotoxins in human and animal. Journal of Saudi Chemical Society 15: 129-144.
3. Marasas WFO, Nelson PE (1987) Mycotoxycology E.U.A.: The Pennsylvania State University Press, pp: 550.
4. Makun HA, Dutton MF, Njohbe PB, Gbodi TA, Oghabu GH (2012) Aflatoxin contamination in foods and feeds: A special focus on Africa. In: Prof. Ayman A.E. (Ed.) Trends in Vital Food and Control Engineering. In Tech, pp: 299.
5. Bimoto WP (1961) Turkey ‘X’ disease. Journal of British Turkey Federation 9: 52-57.
6. Bhat RV, Miller JD (2010) Mycotoxins and Food Supply. Food Agriculture Organization corporate document repository. Accessed on 18th June 2016. http://www.fao.org/docrep/a3550t/a3550t0e.htm.
7. Stoloff L (1977) Aflatoxins - an overview. In: Rodricks JV, Heseltine CW, Mehlman MA (Eds.) Mycotoxins in Human and Animal Health. Park Forest South, IL: Pathotex, pp: 7-28.
8. Youssef MS, Abo-Dahab NF, abou-Seidah, A.A (2008). Mycoita and mycotoxins contamination of dried raisin in Egypt. African Journal of Mycology and Biotechnology 8: 69-86.
9. Postagte J (1992) Microbes and Man. 3rd edition. Cambridge university press, USA, pp: 906.
10. Cheesbrought M (2000) Medical Lab Manual for Tropical Countries Microbiology. Linzere house, Jordan Hill, Oxford, pp: 260.
11. Jawetz MA, Brook GF, Butel JS, Morse SA (2004) Medical Microbiology. 23rd edition. McGraw Hill companies, Inc. Singapore, pp: 818.
12. Hell K, Gnonlonfin BG1, Kedjogbe G, Lamboni Y, Aboudarhamane I1K (2009) Mycotoxla and occurrence of aflatoxin in dried vegetables in Benin, Mali and Togo, West Africa. International Journal of Food Microbiology 135: 99-104.
13. Soares LM, Rodrigues-Amaya D (1989) Survey of aflatoxins, ochratoxin A, zearalenone and sterigmatocystin in some Brazilian foods. Utilizing a multi-toxin thin layer chromatographic method. Journal of Association of official Analytical Chemists 72: 22-26.
14. Abolade FO, Ojediran VA (2006) Development and Quality Evaluation of Fortified “Amala” - Anti-Counterfeiting Trade Agreement Scientiam Polorumor Technology Alimentaria 5: 127-134.
Okigbo RN (2017) Prevalence of aflatoxin in dried okra (Abelmoschus esculentus) and tomatoes (Lycopersicon esculentum) commercialized in Ibadan metropolis

Integr Food Nutr Metab, 2017 doi: 10.15761/IFNM.1000206

15. Ritchie B (1991) Practical Technique in Plant Pathology. CAB Waling ford. UK, pp: 102.

16. Mutegi CK, Ngugi HK, Hendriks SL, Jones RB (2009) Prevalence and factors associated with aflatoxin contamination of peanuts from Western Kenya. International Journal of Food Microbiology 130: 27-34.

17. Segun GI, Michael DA, Oluwatoyin AA, Odunayo JO, Ayandiran DA (2016) Food value, fungi and aflatoxin detection in stored Ounla (Abelmoschus esculentus L. Moench) from Ibadan. Researcher 8: 7-16

18. Muhammad S, Shehu K, Amusa NA (2004) Survey of the market diseases and aflatoxin contamination of tomato (Lycopersicon esculentum MILL) fruits in Sokoto, northwestern Nigeria. Nutrition and Food Science 34: 72-76.

19. Martinez-Valverde I, Periag J, Provan G, Chesson A (2002) Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomatoes (lycoperiscon esculentum). Journal of the Science of Food and Agriculture 82: 323-330.

20. Ayalen A, Fehrmann H, Lepschy J, Beck R, Abate D (2006) Natural occurrence of mycotoxins in staple cereals from Ethiopia. Mycopathologia 162: 57-63

21. Okigbo RN, Amakworji CA, Okafor CO (2015) Assessment of mycotoxins occurrence in Manihot esculenta, Irvinga gabonensis, Citrullus colocynthes in Awka, Anambra State Nigeria Journal of Mycotoxicology 2: 22-27

22. Atehnkeng J, Ojiambo PS, Donner M, Ikotun T, Sikora RA, et al. (2008) Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. International Journal of Food 7:178-193.

Copyright: ©2017 Okigbo RN. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.