A note on a harmonic measure estimate and a conjecture of J. Velling

Alexander Fryntov

December 5, 2021

Abstract

Suppose that finitely many disjoint open arcs have been selected on the unit circle, each of length less than π. Let L_0 be a longest among them. One can treat the unit disk as a hyperbolic plane in the Poincare disk model. From this perspective each arc L of the selected set determines a hyperbolic half-plane bounded by the geodesic curve I joining endpoints of the arc L. Remove from the unit disk all these hyperbolic half-planes. The remaining domain is simply connected and contains the origin. Now map this domain conformally onto the unit disk so that the origin stays fixed. After this map, the boundaries of the hyperbolic half-planes appear as disjoint arcs on the unit circle. Let I'_0 be the conformal image of the boundary of the hyperbolic half plane determined by the arc L_0.

In [1] J. Velling conjectured that

$$|I'_0| \geq |L_0|,$$

where $|\cdot|$ stands for the Euclidean length. He proved some conditional theorems based on validity of this conjecture.

In this note we prove a theorem which implies the J. Velling conjecture and thus converts the conditional theorems in [1] into true ones.

Velling and Basic basic model domains.

All plane objects in this note are assumed embedded in the complex plane \mathbb{C}. So we use standard complex notations Δ for the unit disk and $\partial \Delta$ for its
boundary. The set νE is defined as

$$\nu E := \{ \nu z : z \in E \} , \quad \nu \in \mathbb{C}, \ E \subset \mathbb{C}.$$

Let E be a domain whose boundary consists of a finite set of smooth Jordan arcs, and let K be a closed subset of ∂E. Notations $\omega(z, K, E)$ and $g(z, \xi, E)$ are reserved for harmonic measures and Green functions. We remind that the harmonic measure of K at $z \in \mathbb{C}$ relative to E is a harmonic in $z \in E$ function that satisfies the boundary condition

$$\omega(z, K, E) = \begin{cases} 1 & : z \in K \\ 0 & : z \in \partial E \setminus K \end{cases}$$

If $E \subset E_1$, $K \subset \partial E$, and $K \subset K_1 \subset \partial E_1$ then the Maximum Principle for harmonic functions implies

$$\omega(z, K, E) \leq \omega(z, K_1, E_1),$$

and the inequality is strict unless $E = E_1$ and $K = K_1$. This inequality is known as the Domain Extension Principle.

The Green function of E is

$$g(z, \xi, E) = \log \frac{1}{|z - \xi|} + u_\xi(z), \quad z, \xi \in E,$$

where $u_\xi(z)$ is harmonic in $z \in E$ with the boundary condition

$$u_\xi(z) = \log |z - \xi|, \quad z \in \partial E.$$

The Maximum Principle and the definition imply that g is positive as $z \in E$ and vanishes as $z \in \partial E$.

It is known that

$$g(z, \xi, E) = g(\xi, z, E), \quad z, \xi \in E, \quad (2)$$

and the harmonic measure can be evaluated in terms of Green function as follows

$$\omega(z, K, E) = \frac{1}{2\pi} \int_K \frac{\partial g(z, \xi, E)}{\partial n} \, |d\xi|, \quad (3)$$

where $\cdot/\partial n$ is used for inward normal derivative in ξ relative to the domain E.

2
We reserve letter L for closed arcs of the unit circle $\partial \Delta$. The letter Λ is used to denote respective angles

$$\Lambda = \{ z \neq 0 : z/|z| \in L \}.$$ \hspace{1cm} (4)

Let L_k be a finite set of arcs of opening less than π with disjoint interiors, and $\bigcup L_k = \partial \Delta$. Suppose that L_0 is a longest among them. Let θ_k be the center of respective L_k. For definiteness we assume that $\theta_0 = 1$. Since the length of every arc L_k does not exceed that of L_0, then there exists η_k ($|\eta_k| = 1$, Im $\eta_k \geq 0$) such that

$$L_k = \theta_k \{ \eta_k L_0 \cap \bar{\eta}_k L_0 \}.$$ \hspace{1cm} (5)

Now we describe the Velling model domain D. For every arc L_k take the circular arc orthogonal to $\partial \Delta$ that joins the endpoints of L_k. Denote this arc by I_k. Define C_k as the closed set bounded by the pair of arcs L_k and I_k. We call the set

$$D := \Delta \setminus (\bigcup_k C_k)$$ \hspace{1cm} (6)

the Velling model domain supported by the arcs L_k.

![Diagram](image)

Figure 1:

Since I_0' is the image of the arc I_0 under a conformal map of D onto Δ that leaves the origin intact, then $|I_0'| = 2\pi \omega(0, I_0, D)$. Thus, inequality Π
becomes
\[
\omega(0, I_0, D) \geq \omega(0, L_0, \Delta).
\] (7)

In our construction the arcs \(L_k\) fill the whole unit circle, while in the original Velling conjecture it is not required. The Domain Extension Principle shows that removal of some arcs (except \(L_0\)) from the set \(L_k\) cannot reduce the harmonic measure in LHS of (7). So this extra condition imposed onto arcs \(L_k\) does not restrict generality.

Now we describe the basic model domain \(D^o\). Let \(L_k\) be the same arcs as in the previous model. A simply connected domain \(D^o \subset \Delta\) is called basic model domain if

\[
D^o_k = \theta_k(\eta_k D^o_0 \cap \tilde{\eta}_k D^o_0), \quad D^o := D^o \cap \Lambda_k,
\]

where \(\theta_k\) (centers) and \(\eta_k\) (deviations) are the same as in (5), while the arc

\[
I^o_0 := \partial D^o \cap \Lambda_0
\]

satisfies the special properties

a) \(I^o_0\) is symmetric relative to the positive ray;

b) \(\min\{|\xi| : \xi \in I^o_0\} = \rho_0 < 1\) is attained at \(\xi = 1\);

c) for every \(\rho \in (\rho_0, 1)\) the intersection \(I^o_0 \cap \{|z| = \rho\}\) consists exactly of two points.

We call \(I^o_0\) the basic arc of the domain \(D^o\).

Notice that if \(D\) is the Velling model domain then the arc \(I_0\) satisfies all the properties to be a basic arc. The basic domain \(D^o\) with the basic arc \(I^o_0 := I_0\) is evidently satisfy the property

\[
D^o \subset D.
\]

The Domain Extension Principle then implies that

\[
\omega(0, I_0, D) \geq \omega(0, I_0, D^o).
\] (8)
Harmonic Measure and Main Theorem.

Velling’s conjecture follows from

Theorem Let D° be a basic model domain then

$$\omega(0, I_0^\circ, D^\circ) \geq \omega(0, L_0, \Delta).$$

Moreover, the inequality is strict unless all the arcs have the same length.

Let

$$\omega_0 := \omega(0, L_0, \Delta). \quad (9)$$

Consider an auxiliary domain

$$\Omega := \{f(z) : z \in D_0^\circ \cup \{0\}, \quad (10)$$

where $f(z), z \in \mathbb{C} \setminus (-\infty, 0]$ is the branch of the function z^{1/ω_0} such that $f(1) = 1$.

We need some facts on the Green function $g(z, \xi, \Omega)$ which follow from

Lemma Let Ω be the domain defined above and let $g(z, \xi, \Omega)$ be its Green function. Then

$$g(z, 0, \Omega) = g(\bar{z}, 0, \Omega), \quad z \in \Omega, \quad (11)$$

and

$$\frac{\partial g(\rho e^{it}, 0, \Omega)}{\partial t} > 0, \quad (12)$$

for every $z = \rho e^{it} \in \Omega_+ = \Omega \cap \{\text{Im } z > 0\}$.

This lemma can be found in the paper by A. Baernstein [2, p.154, Corollary].

Now we give a sketch of this proof. Consider the function $u(z)$ in $\Omega_+ = \Omega \cap \{\text{Im } z > 0\}$ defined as follows

$$u(\rho e^{it}) = \frac{\partial g(\rho e^{it})}{\partial t}. \quad (12)$$

Simple evaluation of Laplacians in polar coordinates implies that $u(z)$ is harmonic. Property a) of the basic arc I_0° implies equation (11). Properties b) and c) imply that boundary values of u are positive on $\partial \Omega \cap \{\text{Im } z > 0\}$ and zero on the rest of $\partial \Omega_+$. The Maximum Principle then implies that $u \geq 0$. Since u is not identical zero then it is strictly positive.
Proof of the Theorem.

Let ϕ be a function such that

$$u(z) := \phi(z) - g(z, 0, D^0)$$

is continuous on the closure of D^0 and vanishes on the boundary ∂D^0. Suppose that $u(z)$ is subharmonic on D^0 and

$$\int_{I_0^0} \frac{\partial \phi(\xi)}{\partial n} |d\xi| = 2\pi \omega_0.$$

To prove the theorem it is enough to show that such a function ϕ does exist.

Indeed, by the Maximum Principle $u(z) \leq 0$ on D^0 and the inequality is strict everywhere on D^0 unless $u(z) \equiv 0$. It implies that $\partial u(\xi)/\partial n \neq 0$ at every regular point of ∂D^0. Since

$$\int_{I_0^0} \frac{\partial g(\xi, 0, D^0)}{\partial n} |d\xi| = 2\pi \omega(0, I_0^0, D^0), \quad \int_{I_0^0} \frac{\partial \phi(\xi)}{\partial n} |d\xi| = 2\pi \omega(0, L_0, \Delta),$$

then

$$\omega(0, I_0^0, D^0) \geq \omega(0, L_0, \Delta),$$

and the inequality is strict unless

$$\phi(z) \equiv g(z, 0, D^0). \quad (13)$$

Let us construct such a function $\phi(z)$ on D^0. In the sector D_0^0 define the function

$$\phi_0(z) := \omega_0 g(f(z), 0, \Omega), \quad z \in D_0^0. \quad (14)$$

where $f(z)$ is the branch of z^{1/ω_0} such that $f(1) = 1$. Notice that

$$\int_{I_0^0} \frac{\partial \phi_0(\xi)}{\partial n} |d\xi| = 2\pi \omega_0. \quad (15)$$

Take any $\eta \in L_0 \cap \{ \text{Im } z > 0 \}$ and define

$$\psi_\eta(z) := \phi_0(\eta z) \vee \phi_0(\bar{\eta} z) \quad z \in \eta D_0^0 \cap \bar{\eta} D_0^0. \quad (16)$$

According to the lemma $\psi_\eta(z) = \psi_\eta(\bar{z})$, and the maximum is $\phi_0(\eta z)$ as $\text{Im } z \geq 0$ and $\phi_0(z\bar{\eta})$ as $\text{Im } z \leq 0$. Therefore,

$$\psi_\eta(z) = \begin{cases} \phi_0(\eta z) : \text{Im } z \geq 0 \\ \phi_0(\bar{\eta} z) : \text{Im } z < 0 \end{cases}.$$ \hspace{1cm} (17)
Using θ_k and η_k (being the center and deviation of L_k) define
\[\phi_k(z) := \psi_\eta(\bar{\theta}z), \quad \text{where } \theta = \theta_k, \ \eta = \eta_k, \ z \in D_k^0. \]

Notice that ϕ_k is subharmonic inside of the sector D_k^0 as the maximum of two harmonic functions.

Notice that if the sets D_l^0 and D_m^0 do intersect then their intersection is an interval γ_{lm}, then ϕ_l and ϕ_m coincide on γ_{lm}. Therefore, there exists a function ϕ defined on $D^0 \setminus \{0\}$ and subharmonic inside of every D_k^0.

Now we will show that the function ϕ is harmonic on γ_{lm}. Let $\xi \in \gamma_{lm}$. Select $\delta > 0$ so that the ball $B_\delta(\xi) := \{z : |z - \xi| < \delta\}$ contains neither origin nor point of the rays $\{z : z/|z| = \theta_l\}$ and $\{z : z/|z| = \theta_m\}$. It follows from (17) and the definitions of ϕ_0 and ϕ_k that for every $z \in D_l^0$
\[\phi_l(z) = \phi_m(z^*), \tag{18} \]
where z^* is the reflection of z in γ_{lm}. On the other hand, the function ϕ_l admits a harmonic extension to the whole ball $B_\delta(\xi)$ such that
\[\phi_l(z^*) = \phi_l(z) \tag{19} \]
(this follows from the definitions of ϕ_0 and ϕ_l.) The equations (18) and (19) then imply that ϕ_m coincides with the harmonic extension of ϕ_l onto $B_\delta(\xi) \cap D_m^0$, and hence, $\phi(z)$ is harmonic at ξ.

Thus, the function ϕ is subharmonic on $D^0 \setminus \{0\}$. The function $u(z) = \phi(z) - g(z, 0, \Delta)$ as it follows from (14) is subharmonic on $D^0 \setminus \{0\}$ and behaves near the origin as
\[u(z) = o(|\log |z||), \quad z \to 0. \]

Thus, $u(z)$ is subharmonic at 0 as well. This completes the proof.

Remark.

The following harmonic measure estimate is another elementary corollary of this theorem (although I have no slightest idea whether this result is new.)

Corollary Let P_n be a bounded domain enclosed by a Euclidean polygon inscribed into the unit circle. Let I_0 be a side of the polygon of largest length and L_0 be the arc supporting this side. If $0 \in P_n$ then
\[\omega(0, I_0, P_n) \geq \omega(0, L_0, \Delta). \]
The results of this note was proven when I was a visiting professor at Virginia Tech. I would like to express my thanks for support and hospitality of Mathematics Department where the main results was made.

My special thanks are to A. Solynin and A. Eremenko who encouraged me to publish this material.

References

[1] Velling John A., *Harmonic measure, infinite kernels, and symmetrization*. (English. English summary) Proc. Amer. Math. Soc. 124 (1996), no. 12, 3739–3743.

[2] Baernstein Albert II., *Integral means, univalent functions and circular symmetrization*, Acta mathematica. 133(1974), pp.139–169.