BEHAVIORAL RESPONSE OF BEMISIA TABACI (HEMIPTERA: ALEYRODIDAE) TOWARDS METARHIZIUM ANISOPLIAE VOLATILES

Md. Touhidul Islam

Agricultural Laboratory, School of Agriculture and Rural Development, Bangladesh Open University, Gazipur - 1705, Bangladesh
Corresponding Author Email: islamtuhin@yahoo.com

ABSTRACT
The aim of this study was to investigate the behavioral response of Bemisia tabaci towards Metarhizium anisopliae (isolates PR and GT) volatiles. Behavioral response of B. tabaci was investigated based on adult feeding and oviposition preference in eggplant Solanum melongena L. The highest mean number of adult (87) and egg (418) of B. tabaci were observed in the control plant, while the lowest mean number of adult (26) and egg (107) of B. tabaci were deposited in the PR- and GT-treated plant. There were 8 and 5 compounds identified from the isolates PR and GT, respectively. The highest amount of compounds of 1-Hydroxy-2-amino propane (61.96%) and 1,4-Dioxane-2-ol (5.418%) were released by PR, and GT, respectively. The results obtained so far revealed that whitefli avoided the eggplants provided with cultures of the Met. anisopliae isolates emanating the volatile organic compounds and suitability largely depended upon the volatile profile.

KEYWORDS
Entomopathogenic fungus, Whitefly, Adult feeding, Oviposition preference, IPM

1. INTRODUCTION

The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is considered as a significant pest of global agriculture which is one of the most destructive pests of many vegetable, horticultural and ornamental crops at the tropical and subtropical countries including Bangladesh (Khatun et al., 2018) in the world (Oliveria et al., 2001; Simmons et al., 2008). This insect damages plants through direct feeding on phloem (Islam and Ren, 2009). It is an extremely problematic to agricultural production, because it has a high propensity to develop resistance to insect growth regulators (Horowitz et al., 2003) and neonicotinoid insecticides (Elbert and Nauen, 2000; Horowitz et al., 2004).

Chemical control is an essential component of whitefly management programs worldwide (Ellsworth and Martinez-Carrillo, 2001). This insect has developed resistance to chemical insecticides; therefore, alternative pest control strategies including biological control agent viz. bacteria, viruses, fungi, nematodes and protozoa are needed to introduce for their ongoing spreading (Huang et al., 2016; Cuthbertson et al., 2011). The entomopathogenic fungus Metarhizium anisopliae an alternative approach to whitefly control has already developed in worldwide (Flores et al., 2012; Islam et al., 2014, 2016; Norhelina et al., 2013); because, there are approximately 200 species of insects, in a variety of different crops including greenhouse brown vegetables and ornamentals are infected by this entomopathogen (de Faria and Wraight, 2007). However, the entomopathogenic fungi can produce a wide assortment of metabolites, some of which are important to the host-specialization of this group of fungi.

Volatile organic compounds (VOCs) are a large group of carbon-based chemicals with low molecular weights and high vapor pressure produced by living organisms as part of their metabolic process (Bennett and Inamdar, 2015). Fungal metabolites are indicators of food and feed spoilage, flavor (Schmi’rer et al., 1999), as well as indoor building contamination (Sinensson et al., 1995). The information concerning the volatile organic compounds in relation to response the attraction or repellency of insect are available (Sami and Hassanai, 2007; Sullivan and Mori, 2009; Sun et al., 2010). The information concerning a strong positive correlation between virulence and repellency of entomopathogen towards the termite has been reported by Mburu et al. (2009). However, very few entomopathogenic fungi have been examined in detail for their metabolites and in even fewer cases is there information on the role of these metabolites in disease process.

A growing body of research indicates that insects respond to fungal volatile organic compounds associated with their sensory environment, but few fungal volatiles have been tested to date for activity in laboratory or natural settings (Davis et al., 2013). Electrophysiological and behavioral responses of Xylosandrus germanus volatiles associated with its fungal symbiont Ambrosiella grosmanniae was investigated (Ranger et al., 2015). Many fungal species produce low molecular weight volatile organic compounds (VOCs) with insect behavior modifying properties (Butt et al., 2016). Some compounds clearly possess pesticidal or repellent properties (Herrera et al., 2015; Holghaus and Rohlfis, 2016, 2019). Most notable are 1-octen-3-ol, 3-octanone and 1-octene, which are produced by a wide range of fungi including saprophytic molds, mushrooms and entomopathogenic fungi including species of Beauveria and Metarhizium

Cite the Article: Md. Touhidul Islam (2021). Behavioral Response of Bemisia Tabaci (Hemiptera: Aleyrodidae) Towards Metarhizium Anisopliae Volatiles. Acta Scientifica Malaysia, 5(2). 62-66.
Previous study indicates that the isolates PR1 and GT3 of M. anisopliae are virulent to B. tabaci (Islam et al., 2014, 2016), but which factors are involved for host preference and suitability of B. tabaci was unknown. Therefore, the present study was conducted to investigate the behavioral response based on adult feeding and oviposition preference of B. tabaci towards volatile organic compound (VOC) of the mentioned above two isolates of M. anisopliae.

2. MATERIALS AND METHODS

2.1 Study site

The experiment was conducted in the Laboratory of Toxicology, Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, JPM Serdang, Selangor, Malaysia. The present study was carried out under laboratory conditions at 25 ± 1 °C, 70 ± 10% relative humidity (r.h.), and 12 h light: 12 h dark photoperiod.

2.2 Insect and host plant

The sweet potato whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) biotype Q was used in this experiment (Islam et al., 2014). The population of B. tabaci was maintained on eggplants Solanum melongena L for at least two successive generations before being used in experiment. Seeds of eggplant (cv. Malaysian dark red) were obtained from Baker Creek Heirloom Seed Co Ltd., Malaysia. They were grown individually in 15 cm-diameter plastic pots containing 1 kg autoclaved fertile soil, and at the 4-5 leaf stage, they were used in the experiment. These pots were placed into cages (60 cm × 60 cm × 60 cm). Mixed fertilizer (N:P:K = 13:7:15) were used 7 days after transplanting at the rate of 1 g per pot.

2.3 Entomopathogenic fungi

The two strains- PR1 (accession number- JX041509) and GT3 (accession number- JX041511) of M. anisopliae originally isolated from Coptotermes gestroi (Rhinotermitidae: Isoptera) (Islam et al., 2014). The isolates were cultured on Sabouraud dextrose agar (SDA: 4% dextrose, 1% peptone, 2% agar) medium. Conidia of the isolates were collected from 15-day-old cultures (maintained at 25 ± 1°C, 70 ± 10% RH, and L12:D12 photoperiod) and were suspended in water containing 0.02% Tween 80 (Bio Basic Inc., Canada). The conidia were quantified using a hemocytometer and under a light microscope. The required fungal suspension (conidia/ml) was adjusted with regard to conidial viability (Islam et al., 2014).

2.4 Host preference and suitability of B. tabaci to M. anisopliae isolates

When eggplants were 6 weeks old (4-5 true leaves), the adaxial and abaxial leaf surfaces were sprayed with the isolates of M. anisopliae (10⁶ conidia/ml) until runoff. The plants were then arranged for a choice test with 3 plants (1 control + 1 PR1 + 1 GT3) per rearing cage; and after 3 h, approximately 200 adult whiteflies (2-d-old) were released onto each cage (Islam et al., 2010a). Tween 80, 0.02% without fungal suspension served as control. There were 10 cages for each treatment. After 48 h, which was sufficient time for the adult whiteflies to choose a plant and oviposit, the adult whiteflies that had settled on each plant were counted. The adults were then removed from the plants and the number of egg per plant was counted using a dissecting microscope at 40× magnifications.

2.5 Analysis of VOCs released by M. anisopliae isolates

One hundred fifty ml Erlenmeyer flasks containing 50 ml of medium were sterilized at 121 °C for 20 min. After cooling, 5 ml of a fungal suspension (10⁶ conidia/ml) were inoculated into each flask and shaking at 180 rpm with 30 °C for 5 d. There were 10 flasks for each treatment. After incubation period, the content of each flask was filtered through 0.2 μm mess filter paper (Gema Medical S.L.). The test tubes containing 1 ml of the filtrate culture were centrifuged at 12,000 g for 20 min (4 °C) and the compounds were identified using GC-MS (QP5050A, Shimadzu, Japan), equipped with Zebron ZB-FPA column (30 m × 0.25 mm ID., 0.25 μm film thickness). Helium (> 99% purity) was used as the carrier gas with a constant flow of 1.0 ml/min. The oven was held at 50 °C for 2 min. The temperature was then raised to 80 °C at a rate of 5 °C/min, followed by a gradient to 150 °C at a rate of 20 °C/min, held for 5 min. Finally, the temperature was raised to 250 °C at a rate of 30 °C/min, and held at 250 °C for 5 min. Mass spectra were repetitively scanned from 35–395 amu. Ionization was used in the electron impact mode (EI) at 70 eV. Compounds were identified by mass spectral matches to Wiley275.1 and NIST98 (National Institute of Standards and Technology, Gaithersburg, MD, USA) libraries. Three replicates for each fungal isolate were analyzed. The peaks observed in the control (medium) were deleted from the samples.

2.6 Data analysis

Data concerning number of adult and egg of B. tabaci were subjected to one-way ANOVA by using SAS software (SAS Institute, 2001). The means were separated using the Tukey’s honestly significant difference (HSD) test at 5% level of significance. The volatile organic compounds (VOCs) of the two isolates PR1 and GT3 of M. anisopliae were identified by GC-MS.

3. RESULTS AND DISCUSSION

Behavioral response of B. tabaci was investigated based on adult feeding and oviposition preference in eggplant. Extensive phenotypic variability was observed between the two isolates PR1 and GT3 of M. anisopliae. One-way ANOVA results showed significant differences according to the HSD test between the strains of M. anisopliae on two variables, including adult feeding (F = 437.38; df = 2, 89; P < 0.0001) and oviposition preference (F = 4487.99; df = 2, 89; P < 0.0001) of B. tabaci when compared with their respective controls (Figure 1). The highest mean number of adult (87) and egg (418) of B. tabaci were observed in the control plant, while the lowest mean number of adult (26) and egg (107) of B. tabaci were deposited in the PR1-treated plant (Figure 1). This study clearly demonstrates that the adult of B. tabaci will preferentially feed on non-treated plants when surrounding plants have been treated with the isolates of M. anisopliae. Several studies concerning adult feeding and oviposition preference of B. tabaci were investigated earlier (Nurdo et al., 1997; Hammad et al., 2000, 2001; Islam et al., 2010a, 2010b).

Cite the Article: Md. Touhidul Islam (2021). Behavioral Response of Bemisia Tabaci (Hemiptera: Aleyrodidae) Towards Metarhizium Anisopliae Volatiles. Acta Scientifica Malaysia, 5(2): 62-66.
The volatile organic compound production among entomopathogenic fungi may reflect the difference in their biological activities. There were 8 and 5 compounds identified from the isolates PR and GT, respectively (Table 1). The highest amount of compounds of 1-Hydroxy-2-aminopropane (61.96%) and 1, 4-Dioxane-2-ol (54.18%) released by the isolates PR, and GT, respectively (Table 1). These compounds are caused to reduce B. tabaci population. There were 13 compounds identified from M. anisopliae (isolate- EBCL 02049), including one alkene (1.25%), nine alkanes (73.38%), two ketones (23.30%), and one alcohol (2.07). The volatiles of M. anisopliae (isolate- EBCL 02049), which are mainly comprised of paraffins such as n-tetradecan (56.01%), were strong enough to cause a majority of live termites to increase their distance from the fungal source and aggregated in the container farthest from the fungal source (Hussain et al., 2010). For the different entomopathogenic fungi, the Beauveria bassiana strains tested, DB-2, caused changes in mole cricket behavior, including significantly less new surface tunneling, fewer vertical tunnels descending into the soil, less tunneling along the perimeter of the containers, and significantly more occurrences of the crickets remaining in an area that reduced exposure to the conidia (Thompson and Brandenburg, 2005).

The differential repellency, as depicted by RD50 (repellency dose for 50%) value of the fungi suggested qualitative and/or quantitative variations in the composition of volatile blends emitted by different strains (Mburu et al., 2009) that is similar with our study. Our data also agree with the study of Thompson and Brandenburg (2005) that the presence of environmentally friendly control agents, such as entomopathogenic fungi, may affect pest behavior and avoidance by the target insect. Previous laboratory concerning behavioral studies have shown that repellency is directly related to the isolates, and different isolates of entomopathogenic fungi may elicit different levels of repellent response in termites (Staples and Milner, 2000). Several behavioral studies of different insects towards VOCs of entomopathogenic fungi have also been conducted earlier (Gikonyo et al., 2003; Hountondji et al., 2005; Kepler and Bruck, 2006; De Bruyne and Baker, 2008; Crespo et al., 2008; Myrick et al., 2009; Mburu et al., 2011).

4. CONCLUSIONS

Both the isolates PR, and GT, of M. anisopliae are susceptible to B. tabaci. The study results also showed that the isolate PR, is the most suitable for B. tabaci as measured using adult feeding and oviposition preference; as well as VOCs of M. anisopliae. The results obtained so far revealed that whitefly avoided the eggplants provided with cultures of the M. anisopliae isolates emanating the volatile organic compounds and suitability largely depended upon the volatile profile. Further research is needed to investigate the compatibility of M. anisopliae with botanicals under field condition.

ACKNOWLEDGMENTS

The author is grateful to Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia for providing a Postdoctoral Research Fellowship for this research. He is grateful to Professor Dr. Dzolkhifli Omar, Department of Plant Protection, Faculty of Agriculture, UPM to revise the earlier version of this manuscript. He is also grateful to Professor Dr. Said Sajep, Department of Forest Management, UPM, for supplying the fungal isolates.

REFERENCES

Bennett, J.W., Inamdar, A.A., 2015. Are some fungal volatile organic compounds (VHCs) mycoxins? Toxins. 7, 3785-3804. https://doi.org/10.3390/toxins7093785

Bojke, A., Tlaczuk, C., Stepnowski, P., Golebiowski, M., 2018. Comparison of volatile compounds released by entomopathogenic fungi. Microbiol. Res. 214, 129-136. https://doi.org/10.1016/j.micres.2018.06.011

Butt, T.M., Coates, C.J., Dubovskiy, L.M., Ratcliffe N.A., 2016. Entomopathogenic fungi: new insights into host-pathogen interactions, in Advances in Genetics, Amsterdam, The Netherlands, Vol. 94. Academic Press, pp. 307-364.

Combat, E., Henderson, J., Eastwood, D.C., Burton, K.S., 2006. Eight-carbon volatiles in mushrooms and fungal properties, analysis, and biosynthesis. Mycoscience. 47, 317-326. https://doi.org/10.1007/S10267-006-0318-4

Crespo, R., Pedrini, N., Juárez, M.P., Dal Bello, G.M., 2008. Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol. Res. 163, 148-151. https://doi.org/10.1016/j.micres.2006.03.013

Cutforth, A.G.S., Blackburn, L.F., Eyre, D.P., Cannon, R.J.C., Millar, J., Northling, P., 2011. Bemisia tabaci: The current situation in the UK and the prospect of developing strategies for eradication using entomopathogens. Insect Sci. 18, 1-10.

Davis, T.S., Crippen, T.L., Hofstetter, R.W., Tomberlin, J.K., 2013. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39, 840-859. https://doi.org/10.1007/s10886-013-0306-z

de Bruyne, M., Baker, T.C., 2008. Odor detection in insects: volatile codes. J. Chem. Ecol. 34, 882-897. https://doi.org/10.1007/s10886-008-9485-4

de Faria, M.R., Wraight, S.P., 2007. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Contr. 43, 237-256. https://doi.org/10.1016/j.biocontrol.2007.08.001

Elbert, A., Nauen, R., 2000. Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Manage. Sci. 56, 60-64. https://doi.org/10.1002/(SICI)1525-4998(200001)56:1<60::AID-PSS88>3.0.CO;2-K

Ellsworth, P., Martinez-Carrillo, J.L., 2001. IPM for Bemisia tabaci: A case study from North American Crop Protec. 20, 853-869. https://doi.org/10.1016/S0261-2194(01)00116-8

Flores, M., Pucheta, D., Rodriguez, N., Torre, M., Ramos, L., 2012. Mycoinsecticide effects of Beauveria bassiana, Metarhizium anisopliae, and 5 compounds identified from the isolates of Metarhizium anisopliae at 10^4 conidia/ml grown on SDA medium

Table 1: Volatile organic compounds identified by GC-MS from the isolates of Metarhizium anisopliae at 10^4 conidia/ml grown on SDA medium

Isolate	Compounds	Molecular formula	Retention time (min)	Total area (%)
PR	1-Hydroxy-2-aminopropane	C₆H₁₂O	6.13	61.96
	N,N-dimethyl-Formamide	CH₁₄N₂O₃	9.78	0.12
	2-Hydroxypropanoic acid	C₄H₈O₂	13.07	0.09
	Propylene Glycol	C₆H₁₂O₂	13.17	0.09
	3-methyl-1, 2-Cyclopentanedi	CH₁₀O₃	15.05	0.25
	3-Methylcyclopentane	C₅H₁₀O	15.89	0.19
	Cyclohexanone	C₆H₁₂O	15.94	0.19
	2-methyl-3-chloro-2-Cyclohexen-1-one	C₆H₂₃ClO₅	19.60	0.10
GT	2-methylpropanoic acid	C₄H₈O₂	12.58	0.18
	1, 4-Dioxane-2-ol	C₆H₁₂O₂	12.08	54.18
	Benzeneacetaldehyde	C₆H₈O	13.68	0.40
	Phenylethyl alcohol	C₄H₁₀O	17.08	0.07
	6-butyl-3-methoxy-2-Cyclohexen-1-one	C₆H₁₄O₅	20.73	0.17
and *Isaria fumosorosea* on the whitely *Bemisia tabaci* (Homoptera: Aleyrodidae) in different strata of bean. Afr. J. Microbiol. Res. 6, 724-725. https://doi.org/10.5897/AJMB12.648

Gikonyo, N.K., Hassanali, A., Najji, P.G.N., Saini, R.K., 2003. Responses of *Glossina morsitans morsitans* to blends of electroantennographically active compounds in the odors of its preferred (Buffalo and Ox) and non-preferred (Water back) hosts. J. Chem. Ecol. 29, 2331-2345. https://doi.org/10.1023/a:1026230615877

Hammad, E.A.F., Nemer, N.M., Hawi, Z.K., Hanna, L.T., 2000. Responses of the sweetpotato whitefly, *Bemisia tabaci* to the chincherry tree (*Melia Azedarach L.*) and its extracts. Ann. Appl. Biol. 137, 79-88. https://doi.org/10.1111/j.1744-7348.2000.tb00393.x

Hammad, E.A.F., Zournaijan, H., Talhouk, S., 2011. Efficacy of extracts of *Melia azedarach L.* callus, leaves and fruits against adults of sweetpotato whitefly *Bemisia tabaci* (Hom., Aleyrodidae). J. Appl. Entomol. 125, 483-488. https://doi.org/10.1111/j.1439-0416.2010.01577.x

Herrera, J.M., Pizziolito, R.P., Zunino, M.P., Dambolena, J.S., Zygadlo, J.A., 2015. Effect of fungal volatile organic compounds on a fungus and an insect that damage stored maize. J. Stored Prod. Res. 62, 74-80. https://doi.org/10.1016/j.jspr.2015.04.006

Holghaus, G., Rohrs, M., 2016. Fungal allelochemicals in insect pest management. Appl. Microbiol. Biotechnol. 100, 5681-5689. https://doi.org/10.1007/s00253-016-7573-x

Holghaus, G., Rohrs, M., 2019. Volatile and non-volatile fungal oxylipins in fungus-invertebrate interactions. Fungal Ecol. 38, 28-36. https://doi.org/10.1016/j.funecc.2018.09.005

Horowitz, A., Gormon, K., Ross, G., Denholm, L., 2003. Inheritance of pyriproxyfen in the whitefly, *Bemisia tabaci* (Q biotype). Arch. Insect Biochem. Physiol. 54, 177-186. https://doi.org/10.1002/arch.10115

Horowitz, A.R., Kotsendal, S., Ishayya, I., 2004. Dynamics of resistance to the neemcoknidos acamipril and thiamethoxam in insect pest discrimination of mixed odor stands in overlapping plumes using an insect-antenna based chemosensor system. J. Ecol. 39, 1018-1024. https://doi.org/10.1016/j.jacsot.2010.07.021

Mburu, D.M., Maniania, N.K., Hassanali, A., 2013. Comparison of volatile blends and gene sequences of two *Beauveria bassiana* isolates of different virulence and repellency towards the termite *Macrotermes michaelseni*. J. Appl. Entomol. 125, 483-488. https://doi.org/10.1007/s00253-016-7573-x

Islam, M.T., Chen, X., 2009. Effect of sweetpotato whitefly, *Bemisia tabaci* (Homoptera: Aleyrodidae) on yield of eggplant (*Solanum melongena L.*). J. Pest Sci. 82, 211-215. https://doi.org/10.1007/s10340-008-0241-x

Kepler, R.M., Bruck, D.J., 2006. Examination of the interaction between the black vine weevil (*Coleoptera: Curculionidae*) and an entomopathogenic fungus reveals a new tritrophic interaction. Environ. Entomol. 35, 1021-1029. https://doi.org/10.1603/0046-225X-35.4.1021

Khatun, M.F., Jahan, S.M.H., Lee, S., Lee, K.Y., 2018. Genetic diversity and geographic distribution of the *Bemisia tabaci* species complex in Bangladesh. Acta Trop. 187, 28-36. https://doi.org/10.1016/j.actatropica.2018.07.021

Mburu, D.M., Mburu, D.M., Maniania, N.K., Hassanali, A., 2011. Comparison of volatile blends and gene sequences of two *Beauveria bassiana* isolates of different virulence and repellency toward the termite *Macrotermes michaelseni*. J. Exp. Biol. 214, 956-962. https://doi.org/10.1242/jeb.050419

Mburu, D.M., Ochoa, L., Maniania, N.K., Najji, P.G.N., Gitonga, L.W., Ndlungu, M.W., Wanjoey, A.K., 2009. Relationship between virulence and repellency of entomopathogenic isolates of *Metharizium anisopliae* and *Beauveria bassiana* to the termite *Macrotermes michaelseni*. J. Insect Physiol. 55, 774-780. https://doi.org/10.1016/j.jinsphys.2009.04.015

Myrick, A.J., Park, K.C., Hetling, J.R., Baker, T.C., 2009. Detection and discrimination of mixed odor stands in overlapping plumes using an insect-antenna based chemosensor system. J. Ecol. 35, 118-130. https://doi.org/10.1016/j.sbi.2008.12.011

Nardo, E.A.B., De Costa, A.S., Lourencco, A.L., 1997. *Melia azedarach* extract as an antifeedant to *Bemisia tabaci* (Homoptera: Aleyrodidae). Florida Entomol. 80, 92-94. https://doi.org/10.2307/3495981

Norhelina, L., Sajap, A.S., Mansour, S.A., Idris, A.B., 2013. Infectivity of five *Metharizium anisopliae* (Deuteromycota: Hyphomycetales) strains on whitely, *Bemisia tabaci* (Homoptera: Aleyrodidae) infecting the cassava green mite. J. Econ. Entomol. 130, 1029-1034. https://doi.org/10.1023/a:1026230615877

Oliveira, M.R.V., Hennaberry, T.J., Anderson, P., 2001. History, current status, and collaborative research projects for *Bemisia tabaci*. Crop Protoc. 20, 709-723. https://doi.org/10.1016/S0261-2194(01)00108-9

Ranger, C.M., Dzurendo, M., Barnett, J., Geddi, R., Castrillo, L., Ethington, M., Ginzel M.M., Addesso, K., Reding, M.E., 2021. Electrophysiological and behavioral responses of an ambrosia beetle to volatiles of its nutritional symbiont. *J. Chem. Ecol.* Online published on 24 March, 2021. https://doi.org/10.1007/s10886-021-01263-0

Saini, R., Hassanali, A., 2007. A 4-Alkyl-substituted analogue of Guaiacol shows greater repellency to savannah betise (*Glossina spp.*). J. Chem. Ecol. 33, 985-995. https://doi.org/10.1080/00917701.2007.1021232

SAS Institute. 2001. SAS/Stat user's guide, Version 8.1. SAS Institute, Cary, North Carolina, USA.

Schu¨rer, J., Olsson, J., Bokrjces, T., 1999. Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet. Biol. 27, 209-217. https://doi.org/10.1016/j.fgb.1999.1139

Simmons, A.M., Harrison, H.F., Ling, K.S., 2008. Forty-nine new host plant species for *Bemisia tabaci* (Homoptera: Aleyrodidae). Entomol. Sci. 11, 385-390. https://doi.org/10.1111/j.1479-8298.2008.00288.x

Staples, J.A., M¨ilner, R.J., 2000. A laboratory evaluation of the repellency of
Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera: Rhinotermitidae). Sociobiol. 36, 133-146.

Sullivan, B.T., Mori, K., 2009. Spatial displacement of release point can enhance activity of an attractant pheromone synergist of a bark beetle. J. Chem. Ecol. 35, 1222-1233. https://doi.org/10.1007/s10886-009-9705-6

Sun, X.L., Wang, G.C., Cai, X.M., Jin, S., Gao, Y., Chen, Z.C., 2010. The tea weevil, Mylocerinus aurolineatus, is attracted to volatiles induced by conspecifics. J. Chem. Ecol. 36, 388-395. https://doi.org/10.1007/s10886-010-9771-9

Sunesson, A.L., Vaes, W.H.J., Nilsson, C.A., Blomquist, G., Andersson, B., Carlson, R., 1995. Identification of volatile metabolites from five fungal species cultivated on two media. Appl. Environ. Microbiol. 61, 2911-2918. https://doi.org/10.1128/AEM.61.8.2911-2918.1995

Thompson, S.R., Brandenburg, R.L., 2005. Tunneling responses of mole crickets (Orthoptera: Gryllotalpidae) to the entomopathogenic fungus, Beauveria bassiana. Environ. Entomol. 34, 140-147. https://doi.org/10.1603/0046-225X-34.1.140

Yanagawa, A., Fujiwara-Tsujii, N., Akino, T., Yoshimura, T., Yanagawa, T., Shimizu S., 2011. Musty odor of entomopathogens enhances disease-prevention behaviors in the termite Coptotermes formosanus. J. Invertebr. Pathol. 108, 1-6. https://doi.org/10.1016/j.jip.2011.06.001

Yanagawa, A., Imai, T., Akino, T., Toh, Y., Yoshimura, T., 2015. Olfactory cues from pathogenic fungus affect the direction of motion of termites, Coptotermes formosanus. J. Chem. Ecol. 41, 1118-1126. https://doi.org/10.1007/s10886-015-0649-8.