Noncoding RNAs: the shot callers in tumor immune escape

Lei Liu1, Qin Wang1, Zhilin Qiu1, Yujuan Kang1, Jiena Liu1, Shipeng Ning1, Yanling Yin1, Da Pang1,2 and Shouping Xu1

INTRODUCTION

According to the immunoediting theory, immune escape is the key to tumor survival.1 There are many mechanisms of tumor immune escape (TIE), including defects in tumor antigen presentation to escape recognition by the immune system, alterations in the tumor death pathways to achieve increased resistance to cytotoxic immune responses, metabolic alterations to promote TIE, and acquisition of stem cell-like phenotypes to escape immune-based recognition and destruction. In addition, some cytokines in the tumor microenvironment (TME), abnormal expression of immune checkpoint molecules on tumor or immune cell surfaces, and some immunosuppressive cells are all involved in TIE. Collectively, these factors may enable TIE, leading to a low response rate to immunotherapy in different malignancies.

Noncoding RNAs (ncRNAs), which cannot be translated into proteins, comprise 98% of the transcriptome. Generally, ncRNAs less than 50 nucleotides in length are defined as small ncRNAs (sncRNAs), including microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs) and small interfering RNAs (siRNAs).2 A recent study reported the presence of partial sncRNAs derived from tRNAs, such as tRNA halves (tiRNAs) and tRNA fragments (tRFs).3 ncRNAs with more than 200 nucleotides are defined as long ncRNAs (lncRNAs), including long or large intergenic ncRNAs (lincRNAs), some circular RNAs (circRNAs), and ribosomal RNAs (rRNAs).4 The biological functions of ncRNAs, such as regulating gene expression at the transcriptional and translational levels, guiding DNA synthesis or gene rearrangement, and protecting the genome from foreign nucleic acids, have been gradually elucidated.5 An increasing number of studies indicate that ncRNAs are indispensable in tumorigenesis by regulating the expression of tumor-related genes. Mechanistically, lncRNAs regulate gene expression mainly by acting as transcription factors, regulating chromatin remodeling, or participating in posttranscriptional regulation as ceRNAs.6 circRNAs can regulate gene expression at epigenetic, transcriptional, and posttranscriptional levels (primarily as ceRNAs).7 miRNAs mostly regulate gene expression at the posttranscriptional level through RNA interference by binding to the 3′ untranslated region (3′UTR) (rarely 5′UTR or coding sequence) of protein-coding mRNAs.8–10 In addition, some tRFs and tiRNAs can participate in gene regulation and gene silencing via complementary binding with target genes, and the mechanism is similar to that of miRNA.11

Currently, ncRNAs involved in TIE are gradually emerging and are promising potential targets of antitumor therapy. Several studies have reported that ncRNAs play pivotal roles in TIE.12,13 Therefore, it is essential to systematically elaborate the complex regulatory network of TIE regulated by ncRNAs. In this review, we provide a detailed account of the molecular regulatory mechanisms underlying ncRNA involvement in TIE. We hope this review will broaden our understanding of the relationship between ncRNAs and TIE and provide new insights to target ncRNAs in TIE-associated therapeutic strategies.

DEFECTIVE ANTIGEN PRESENTATION AND TIE

Tumor cells can achieve TIE by inhibiting antigen presentation, which enables T cells and/or natural killer (NK) cells to recognize and destroy target tumor cells. The regulation of the antigen processing and presenting machinery (APM) in tumor cells is dependent on the ubiquitin-protease system and the major histocompatibility complex (MHC) class I molecules. The mediation of the APM by MHC class I molecules is divided into four steps: (i) peptide generation and modification; (ii) peptide transport; (iii) assembly of the peptide-MHC class I complex; and (iv) antigen presentation (Fig. 1). ncRNAs have been reported to regulate the APM in tumors during these four steps. First, peptide generation and modification can be inhibited by low molecular...
mass protein 2 (LMP2), LMP7, and LMP10 in tumor cells. In liver cancer and gastric cancer, respectively, miR-23a and miR-502-5p, miR-451 has also been found to be able to directly regulate LMP7 in diabetic nephropathy, but whether such a regulatory relationship exists in tumors remains to be studied. Next, the expression of transporters associated with antigen processing (TAP) is blocked in tumors, thereby preventing peptide transport to the endoplasmic reticulum. miR-125a-5p and miR-148a-3p can reduce the levels of TAP2 and MHC molecules by binding to the 3′UTR of TAP2 mRNA in esophageal adenocarcinoma. miR-346 has been shown to bind to the 3′UTR of TAP1 mRNA and decrease TAP1 expression. Moreover, formation of the peptide-MHC class I complex is prevented via suppression of the expression of chaperone proteins (calnexin, ERP57, calreticulin, and tapasin) and the subsequent loading of peptides on MHC class I molecules. IncRNA RB1 can positively regulate calreticulin in multiple tumor cell lines. miR-27a has been found to downregulate the expression of calreticulin in colorectal cancer, esophageal adenocarcinoma, and nasopharyngeal carcinoma. miR-27a, miR-148a-3p, miR-125a-5p and miR-9 have been found to inhibit the surface expression of MHC class I molecules in colorectal cancer, esophageal adenocarcinoma and nasopharyngeal carcinoma. ncRNAs participating in the inhibition of tumor antigen presentation by repressing key proteins provide direct evidence that these ncRNAs play important roles in the development of TIE. Interfering with the roles of ncRNAs in tumor antigen presentation may provide a new direction for improving the effect of tumor immunotherapy.

TUMOR DEATH PATHWAYS AND TIE
By changing the balance between pro-death signals and anti-death signals, tumor cells can gain resistance to cytotoxic immune responses and thus achieve TIE. First, increased expression of various antiapoptotic proteins (BCL-2, BCL-xL, and MCL-1) in tumor cells can enhance the apoptotic resistance of tumor cells. Second, inhibition of the expression of apoptosis-related receptors (FAS, DR4, and DR5) and ligands (FASL and TRAIL) can also enable tumor cells to escape apoptotic pathway-induced cell death. Third, tumor cells can escape cytotoxic T lymphocyte (CTL)- and NK cell-mediated death by blocking the perforin/granzyme pathway in immune cells. For example, tumor cells can escape CTL-mediated cytotoxicity by overexpressing inhibitors of the perforin/granzyme pathway. Moreover, one study identified a receptor that acts as a decoy ligand, thereby protecting tumor cells from apoptosis. Several studies have confirmed that ncRNAs can assist tumors in achieving TIE by regulating the abovementioned molecules and proteins, which could disrupt the balance between anti-death and pro-death signals (Table 1). For example, miR-195, miR-24-2 and miR-365 can downregulate the expression of Bcl-2 and promote the apoptosis of tumor cells in breast cancer, while miR-125b and miR-106a can upregulate the expression of Bcl-2 to inhibit the apoptosis of leukemia cells and breast cancer cells and promote their proliferation and infiltration. In addition, lncRNA MAGI2-AS3 upregulates the expression of FAS and FASL and promotes apoptosis in osteosarcoma cells. Similarly, miR-25 inhibits DR4 expression in cholangiocarcinoma cells, thereby enabling these cells to escape apoptosis induced via TNF-related apoptosis-inducing ligand (TRAIL). In addition, IncRNA MAGI2-AS3 upregulates the expression of FAS and FASL and promotes apoptosis in breast cancer cells. In CTLs extracted from the pleural effusion of lung cancer patients, miR-23a was highly expressed and could inhibit the antitumor ability of CTLs by repressing the expression of granzyme B. These ncRNAs regulate the expression of death signal-related molecules and further help tumors achieve immune escape. Targeting these ncRNAs to reduce the interference of death signals may be of great significance to improve the efficiency of antitumor therapy.

ABNORMAL METABOLISM AND TIE
Aerobic glycolysis and TIE Owing to mitochondrial dysfunction and despite being in an aerobic environment, tumor cells prefer to produce energy through glycolysis, which is accompanied by the production of a
A large amount of lactate. Such aerobic glycolysis phenomenon is termed the Warburg effect. This particular mode of metabolism provides the energy and macromolecules essential for the rapid growth and invasion of tumor cells. Lactate produced by aerobic glycolysis acidifies the TME, which can lead to the dysfunction of immune cells (cytotoxic T cells, dendritic cells (DCs), NK cells, and macrophages) and inhibit the secretion and function of several antitumor response cytokines. These alterations can subsequently lead to immunosuppression and promote tumor cells to escape destruction by the immune system. An increasing number of studies have found that ncRNAs can regulate tumor aerobic glycolysis directly (by targeting enzymes related to aerobic glycolysis) or indirectly (by targeting HIF-1α or tricarboxylic acid cycle (TAC)-related enzymes) to help tumors achieve TIE.

Glucose transporters (GLUTs) are membrane proteins that transport glucose into cells. Abnormal GLUT expression on the tumor cell surface promotes glucose transport into the cell and increases aerobic glycolysis. ncRNAs have been found to be

ncRNAs	Target genes and function	Type of cancer	Refs.
miR-195, 24-2 and 365	Downregulate Bcl-2 and promote apoptosis of tumor cells	Breast cancer	37
miR-125b, miR-106a	Upregulate Bcl-2 and inhibit apoptosis of tumor cells	Leukemia, Breast cancer	38,39
miR-133a	Downregulates Bcl-xL and Mcl-1, and promotes apoptosis of tumor cells	Osteosarcoma	40
IncRNA HELH	Upregulates Bcl-xL, which mediated by miR-939, and inhibits apoptosis of tumor cells	Colorectal Cancer	288
IncRNA ASNR	Inhibits the degradation of Bcl-2 by targeting AUF1, and inhibits apoptosis of tumor cells	Stomach, Colon, Liver cancer, Lung cancer	289
IncRNA OPI5-AS1	Upregulates Bcl-2, which mediated by miR-448, and inhibits apoptosis of tumor cells	Lung adenocarcinoma	290
miR-125a-5p, 26a, 193b, 363, 101, 29a, 29b, 106a, 181b, 302b and 320	Downregulate MCL-1 and promote apoptosis of tumor cells	Colon cancer, Breast cancer, lymphomas, Multiple myeloma, Ovarian cancer, Acute myeloid leukemia, HCC, Cervical cancer	291–301
miR-205,133b and 218	upregulate MCL-1 and inhibit apoptosis of tumor cells	Lung cancer	302,303
miR-25	Downregulates DR4 and promotes apoptosis of tumor cells	Cholangiocarcinoma	41
miR-133b	Increases the sensitivity of tumor cells to TRAIL-mediated apoptosis by targeting FAIM	PC-3 and HeLa cell lines	304
miR-942	Reduces the sensitivity of tumor cells to TRAIL-mediated apoptosis by targeting ISG12a	Hepatocellular carcinoma, Gastric cancer	305
miR-221 and 222	Reduce the sensitivity to TRAIL-mediated apoptosis by targeting p27kip1	NSCLC	306
miR-212	Reduces the sensitivity of tumor cells to TRAIL-induced apoptosis by targeting PED	NSCLC, Liver cancer	307
miR-130a	Enhances the sensitivity of tumor cells to TRAIL-induced apoptosis by targeting MET	Lung cancer	308
miR-145, 216, 182 and 96	Reduce the sensitivity of tumor cells to TRAIL-induced apoptosis by targeting DR4/5, FADD	Breast cancer	309
miR-200c	Reduces the sensitivity of tumor cells to FAS-mediated apoptosis by targeting FAP-1	Human kidney clear cell cancer	310
miR-21	Downregulates FASL and inhibits apoptosis of tumor cells	Pancreatic cancer	311
miR-590 and 20a	Downregulate FASL and FAS, and inhibit apoptosis of tumor cells	Osteosarcoma	312
miR-128a	Downregulates FAS and inhibits apoptosis of tumor cells	Acute T-cell leukemia	313
IncRNA MAGI2-AS3	Upregulates FASL and FAS, and inhibits apoptosis of tumor cells	Breast cancer	42
miR-23a	Downregulates granzyme B and inhibits CTL-mediated death	Lung cancer	43
miR-27a	Downregulates granzyme B and perforin, inhibits CTL-mediated death	Colorectal cancer cell line sw260	314

* AUF1 ARE/poly (U)-binding/degradation factor 1, FAIM Fas apoptosis inhibitory molecule, ISG12a interferon stimulated gene 12a, PED PED/PEA-15, FADD Fas-associated death domain, FAP-1 Fas-associated phosphatase-1, NSCLC non-small cell lung cancer
involved in the regulation of GLUTs in human cancers (Table 2, Fig. 2). For example, miR-340, miR-1291, miR-495, miR-22, and miR-132 downregulate GLUT1 expression in various tumors,47–51 whereas miR-130b, miR-301a, 19a/b, IncRNA P21, IncRNA NBR2, IncRNA p23514, and miR-195-5p downregulate GLUT4 and GLUT3 expression in pancreatic cancer and bladder cancer, respectively.56,57

Several enzymes, such as hexokinase (HK), aldose enzyme, glucose phosphate isomerase (GPI), phosphofructokinase (PFK), aldolase (Aldo), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate mutase (PGM), enolase (Eno), and pyruvate kinase (PK), pyruvate dehydrogenase (PDH), and lactate dehydrogenase (LDH), are involved in glycolysis reactions. Abnormal expression of ncRNAs has been reported to alter the expression of these enzymes, thus accelerating the process of tumor glycolysis (Table 2, Fig. 2). miR-138 and miR-143 were found to regulate aerobic glycolysis in different types of tumor cells by directly targeting HK1 and HK2, respectively.58,59 miR-155 and lncRNA urothelial cancer associated 1 (lncRNA UCA1) can increase HK2 expression by inhibiting miR-143 in breast cancer and bladder cancer, respectively.60,61 In liver cancer, miR-199a-5p can directly target HK2 and repress HK2 expression to inhibit glycolysis.62

Table 2. ncRNAs influence TIE via regulating abnormal metabolism of tumor by targeting key enzymes

Target enzymes	ncRNAs	Function	Refs.
Aerobic glycolysis			
GLUT1	miR-495, 1291, 199a, 138, 150, 532, 22, 132, 218, 340 and 451	Downregulate GLUT1 and inhibit aerobic glycolysis	47–51,315–317
GLUT2	miR-143	Upregulate GLUT1 and promote aerobic glycolysis	52–55
GLUT3	miR-195 and miR-106a IncRNA NCI	Downregulates GLUT2 and inhibits aerobic glycolysis	318
GLUT4	miR-223, 93, 150, 192 and 106b IncRNA SNHG1	Downregulate GLUT4 and inhibit aerobic glycolysis	321–324
HK1	miR-138	Downregulates GLUT1 and inhibit aerobic glycolysis	59
HK2	miR-34a, 143, 125a/b, 497, 181b/c, 98, 445b and 199a-5p miR-153-3p, IncRNA SNHG1, IncRNA MALAT1,	Downregulate HK2 and inhibit aerobic glycolysis	62,325–332
GPI	miR-34a, 302b, 17-5p and 200 family	Upregulate HK2 and promote aerobic glycolysis	60,61,327
PFK	miR-350a, 320a, 106b, 26b and 20b	Downregulate GPI and inhibit aerobic glycolysis	333–335
Aldo	miR-34c, 122, 15a and 16-1	Downregulate Aldo and inhibit aerobic glycolysis	336–341
GAPDH	miR-644a	Downregulate GAPDH and inhibit aerobic glycolysis	342–345
PGK	miR-107, 29a, 1256 and 17-92 cluster	Downregulate PGK and inhibit aerobic glycolysis	346–349
PGM	let-7g, miR-29a, 33b and 21	Downregulate PGM and inhibit aerobic glycolysis	349–352
Eno	miR-19-72 cluster and miR-29a	Downregulate Eno and inhibit aerobic glycolysis	353–356
PK	miR-34a, 122, 133a-b, 326, 99a and 128	Downregulate PK and inhibit aerobic glycolysis	357–360
LDHA	miR-375, 23a, 210, 300, 34a-c, 374a, 383 and 4524a-b and 369	Downregulate LDHA and inhibit aerobic glycolysis	361–364
	IncRNA p21 and IncRNA CRYBG3	Upregulate LDHA and promote aerobic glycolysis	365
LDHB	mir-375	Downregulate LDHB and inhibits aerobic glycolysis	65
IDH	miR-183	Downregulates IDH, inhibits TAC and promotes aerobic glycolysis	70
SDH	miR-210	Downregulates SDH, inhibits TAC and promotes aerobic glycolysis	71
Cytochrome c oxidase 1 / 2	miR-181c and miR-338	Downregulate Cytochrome c oxidase 1 / 2, inhibit electron transport links and promotes aerobic glycolysis	366–369
HIF-1α	miR-17-92 cluster, 22, 33a, 107, 128, 138, 155, 186, 195, 516c and circEPHB4 IncRNA SNHG1, 00152, DANCR, miR-21 and circRNA PIP5KA	Downregulate HIF-1α and inhibit aerobic glycolysis	70,71,370,371
Arachidonic acid metabolism			
PGE2	miR-206	Downregulates PGE2 and inhibits arachidonic acid metabolism of tumor	88
COX-2	miR-128, 146a, 101 and 143	Downregulate COX-2 and inhibit arachidonic acid metabolism of tumor	89–92
Tryptophan metabolism			
IDO	miR-153-3p	Downregulates IDO and inhibits tryptophan metabolism of tumor	98
	IncRNA SNHG1, IncRNA MALAT1,	Upregulate IDO and promote tryptophan metabolism of tumor	99–101

For example, miR-340, miR-1291, miR-495, miR-22, and miR-132 downregulate GLUT1 expression in various tumors,47–51 whereas miR-130b, miR-301a, 19a/b, IncRNA p23514, IncRNA NBR2, and IncRNA p21 promote GLUT1 expression.52–55 miR-150 and miR-195-5p downregulation promotes GLUT4 and GLUT3 expression in pancreatic cancer and bladder cancer, respectively.56,57

Several enzymes, such as hexokinase (HK), aldose enzyme, glucose phosphate isomerase (GPI), phosphofructokinase (PFK), aldolase (Aldo), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate mutase (PGM), enolase (Eno), and pyruvate kinase (PK), pyruvate dehydrogenase (PDH), and lactate dehydrogenase (LDH), are involved in glycolysis reactions. Abnormal expression of ncRNAs has been reported to alter the expression of these enzymes, thus accelerating the process of tumor glycolysis (Table 2, Fig. 2). miR-138 and miR-143 were found to regulate aerobic glycolysis in different types of tumor cells by directly targeting HK1 and HK2, respectively.58,59 miR-155 and IncRNA urothelial cancer associated 1 (IncRNA UCA1) can increase HK2 expression by inhibiting miR-143 in breast cancer and bladder cancer, respectively.60,61 In liver cancer, miR-199a-5p can directly target HK2 and repress HK2 expression to inhibit glycolysis.62
Moreover, miR-122 targets the aldose enzyme in liver cells, and miR-326 downregulation is associated with increased PK2 expression in glioblastoma cells, both of which can inhibit aerobic glycolysis of tumor cells. PDH is the key enzyme that catalyzes the conversion of pyruvate to acetyl-CoA. Under conditions of aerobic glycolysis in tumor cells, such conversion of pyruvate to acetyl-CoA is inhibited, and pyruvate is converted to lactate by LDH, thus promoting TME acidification and TIE. LDHA is regulated by miR-375 and is increased in esophageal squamous cell carcinoma, whereas LDHA, which is also overexpressed in tumor cells, is regulated by miR-34a, miR-34c, miR-369-3p, miR-374a, and miR-4524a/b in colorectal cancer, leading to more lactate production. IncRNA p21 positively regulates LDHA, pyruvate dehydrogenase kinase 4 (PDHK4), pyruvate dehydrogenase complex (PDHX), PK2, and GPI simultaneously in different tumor cells to promote aerobic glycolysis and lactate production. PDH inhibition can reduce the tricarboxylic acid (TCA) cycle, thus promoting the conversion of pyruvate into lactic acid, miR-23a, miR-375, and miR-138-1 upregulate PDH expression by inhibiting PDK, which is a negative regulator of PDH. In most tumor cells, the TAC is inhibited, which results in pyruvate being unable to be metabolized through TAC and only converted to lactic acid, exacerbating the acidification of TME. miRNAs can target and inhibit enzymes involved in the TCA cycle and several components of the electron transport chain, thereby inhibiting mitochondrial function and further promoting aerobic glycolysis. For example, miR-183 and miR-210 can, respectively, target key enzymes isocitrate dehydrogenase (IDH) and succinic acid dehydrogenase (SDH) of the TCA cycle in glioma and lung cancer. miR-183 and miR-338 downregulate cytochrome c oxidase 1/2, respectively, which are components of the electron transport chain.

Recent studies demonstrated that hypoxia-inducible factor-1α (HIF-1α) can promote aerobic glycolysis in tumor cells and then promote TME acidification and TIE. First, activated HIF-1α can directly or indirectly increase the expression of all glycolysis-related enzymes and promote glycolysis. Second, HIF-1α prevents the conversion of pyruvate to acetyl-CoA, the raw material of the TCA cycle, by inhibiting PDH activity. Moreover, HIF-1α indirectly promotes glycolysis by inhibiting mitochondrial oxidative phosphorylation. ncRNAs have been found to regulate HIF-1α in tumors, which could promote aerobic glycolysis and TIE. For example, the miR-17-92 cluster, miR-22, and circRNA EPHB4 have been reported to downregulate HIF-1α expression in different types of tumors, while miR-21 can promote the expression of HIF-1α in prostate cancer cells; IncRNA SNHG1, IncRNA 00152 and circRNA PIP5K1A function as molecular sponges for miR-18a, miR-138 and miR-600, respectively, to promote HIF-1α expression in different tumors. It has not been reported that ncRNAs and HIF-1α can directly affect the immune escape of tumor cells through complex molecular networks, but this indirect evidence also suggests that this idea merits further exploration.

Arachidonic acid metabolism and TIE
Altered metabolism of arachidonic acid, an unsaturated fatty acid, is also a characteristic of tumors, especially those associated with inflammation, such as colorectal cancer, lung cancer and bladder cancer. Most of these tumors show increased expression of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2), two key
molecules of the arachidonic acid metabolic pathway. PGE2 and COX-2 overexpression in tumors may be one of the potential mechanisms underlying TIE. First, COX-2 induces DCs to secrete interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), which in turn activate regulatory T cells (Tregs) and promote immunosuppression. Second, PGE2 and COX-2 induce the expression of the Treg-specific transcription factor forkhead box P3 (FOXP3), thus increasing the activity of Tregs. In addition, PGE2 directly inhibits lymphocyte function by increasing cellular cAMP levels. miRNAs have been found to regulate the expression of ncRNA SNHG1 in breast cancer, which in turn regulates tumor proliferation and metastasis, providing an advantage for the occurrence of TIE. miR-218, miR-582-3p, miR-19a, miR-410, miR-200a, miR-320, miR-26a, miR-141, miR-128, miR-146a, miR-101, miR-143, miR-448, and miR-638, respectively, thereby activating the WNT pathway and promoting stem cell-like phenotypes in tumor cells. These three signaling pathways are abnormally activated in tumors to promote the transcription of target genes, thus improving the tumor stem cell-like phenotype. miR-1246 activates the WNT pathway and promotes tumor stemness by inhibiting two components of the WNT pathway, Axin2 and glycosyn synthase kinase 3β (GSK3β), in liver cancer. miRNA-1246 inhibits TDO, and Hedgehog signaling pathways are closely associated with the development of stem cell-like phenotypes in most tumor cells. These three signaling pathways are abnormally activated in tumors to promote the transcription of target genes, thus improving the tumor stem cell-like phenotype.

Tryptophan metabolism and TIE
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are the two key enzymes involved in tryptophan metabolism, and they can be manipulated by tumors to evade immune surveillance. IDO and TDO are highly expressed in tumor cells and can promote the recruitment of Tregs in the TME and induce immunosuppression via increased secretion of the immunosuppressive factors IL-6, IL-10, and TGF-β, which can help tumors achieve TIE. ncRNAs have been reported to regulate IDO and TDO expression in tumor cells.

Immunosuppression by IDO expression
IDO and TDO are the two key enzymes involved in tryptophan metabolism, and they can be manipulated by tumors to evade immune surveillance. IDO is highly expressed in tumor cells and promotes immunosuppression by inducing IDO expression. In addition, studies confirmed that miR-153-3p specifically inhibits IDO expression and participates in the development of acute graft-versus-host disease in vitro and in vivo. All of the above findings are based on protein level regulation research. Whether ncRNAs can regulate tryptophan metabolism at the functional level and further affect TIE may also become a new potential target research mechanism.

CANCER STEM CELL-LIKE PHENOTYPE AND TIE
Acquiring a stem cell-like phenotype is considered another strategy adopted by tumors to achieve TIE. This is attributed to the low immunogenicity of cancer stem cells, and their immunoregulatory properties can inhibit the antitumor immune response and help them evade immune recognition. The WNT, Notch, and Hedgehog signaling pathways are closely associated with the development of stem cell-like phenotypes in most tumor cells. These three signaling pathways are abnormally activated in tumors to promote the transcription of target genes, thus improving the tumor stem cell-like phenotype.

Fig. 3 Regulation of TIE-associated stem cell signaling pathways by ncRNAs. The pathways include the following: 1. WNT signaling pathway; 2. Hedgehog signaling pathway; and 3. Notch signaling pathway.
Table 3. ncRNAs influence TIE via regulating tumor stem cell-like phenotype by targeting stem cell pathway or stemness genes

ncRNAs	Target genes	Function	Type of cancer	Refs.
WNT signaling pathway				
miR-543-3p	WIF-1	Activates WNT pathway by inhibiting WTF-1, and promotes stem cell-like phenotype of tumor cells	Bladder cancer	372
miR-218 and miR-1301-3p	SFRP	Activate WNT pathway by inhibiting SFRP (an inhibitor of WNT pathway), and promote stem cell-like phenotype of tumor cells	Triple negative breast cancer, Prostate cancer	373,374
miR-543-3p, miR-217, circRNA 0006427 and circRNA 0000523	DDK1	Activate/inhibit the WNT pathway by up-/downregulate the WNT pathway inhibitor DDK1, and regulate stem cell-like phenotype of tumor cells	Bladder cancer, Hepatocellular carcinoma, Lung adenocarcinoma, Colorectal cancer	372,375–377
circRNA CBF8, 100290, 0000177 and NEK6	Frizzled receptor3/4/7/8	Activate Notch pathway by upregulating Frizzled receptor3/4/7/8, and promote stem cell-like phenotype of tumor cells	Chronic Lymphocytic Leukemia, Colorectal cancer, Glioma, Thyroid cancer	102,103,378,379
miR-1246, 410, 92a and 19	GSK-3β	Inhibit the WNT pathway by inhibiting the expression of GSK-3β, and inhibit stem cell-like phenotype of tumor cells	Liver cancer, NSCLC, Colorectal cancer, Lung cancer	101,380–382
miR-1246	Axin	Inhibits the WNT pathway by inhibiting the expression of Axin, and inhibits stem cell-like phenotype of tumor cells	Liver cancer	101
circRNA 0002052 and circRNA 0009361	APC	Inhibit the WNT pathway by promoting the expression of APC, and inhibit stem cell-like phenotype of tumor cells	Osteosarcoma	383,384
miR-320, miR-200a and IncRNA β-Catn	β-catenin	Inhibit/activate the WNT pathway by up-/downregulate β-catenin, and regulate stem cell-like phenotype of tumor cells	Prostate cancer, Liver cancer	385–387
IncRNA TCF7	TCF7	Activates the WNT pathway by upregulating the transcription factor TCF7, and promotes stem cell-like phenotype of tumor cells	Colorectal cancer	388
Hedgehog signaling pathway				
miR-324-5p	Smo, Gli	Inhibits the Hedgehog pathway by downregulate Smo and Gli, and inhibits stem cell-like phenotype of tumor cells	Multiple myeloma	105
miR-326	Smo	Inhibits the Hedgehog pathway by inhibiting Smo, and inhibits stem cell-like phenotype of tumor cells	Chronic myeloid leukemia	389
Notch signaling pathway				
miR-26a and miR-141	JAG1 (Notch ligand)	Inhibits the Notch pathway by inhibiting the expression of JAG1, and inhibits stem cell-like phenotype of tumor cells	Osteosarcoma, Glioblastoma	390,391
IncRNA HOTAIR, IncRNA NALT, circRNA NFIX, circRNA ASH2L	Notch1	Activates Notch pathway by upregulating the expression of Notch1, and promote stem cell-like phenotype of tumor cells	Intervertebral disc degeneration, Acute lymphoblastic leukemia, Glioma, Pancreatic ductal adenocarcinoma	392–395
miR-34a	Notch1	Inhibits Notch pathway by downregulating Notch1, and inhibits stem cell-like phenotype of tumor cells	Breast cancer	396
IncRNA LFAR	Notch2/3	Activates the Notch pathway by upregulate Notch2/3, and promote stem cell-like phenotype of tumor cells	Hepatic stellate cells	397
Stemness related genes				
miR-34a	SOX2, NANOG and OCT3/4	Downregulate SOX2, Nanog, and OCT3/4, thereby inhibiting stem cell-like phenotype of tumor cells	Head and neck squamous cell carcinoma	108
miR-208a	LIN28, SOX2	Upregulate LIN28, SOX2, thereby inhibiting stem cell-like phenotype of tumor cells	Breast cancer	398
let-7, miR-125, 9 and 30	LIN28	Downregulate LIN28, SOX2, thereby inhibiting stem cell-like phenotype of tumor cells	A2780, T47D, MCF7 and HeLa cancer cell lines	399
miR-21	OCT4	Downregulates OCT4, thereby inhibiting stem cell-like phenotype of tumor cells	Liver cancer	400
IncRNA DYNC2H1-4, SNHG20 and HOTTIP	LIN28, Nanog, SOX2 and OCT4	Upregulate LIN28, Nanog, SOX2 and OCT4, and promote stem cell-like phenotype of tumor cells	Pancreatic cancer, Oral squamous cell carcinoma, Pancreatic cancer	401–403
significantly reduce the activation of the Hedgehog pathway by inhibiting Smoothened (Smo) and Gli zinc-finger transcription factor-1 (Gli1), thereby inhibiting the stem-cell phenotype of multiple myeloma cells.105

Octamer transcription factor-3/4 (OCT3/4), SRY-box 2 (SOX2), Nanog and LIN28 are genes related to the tumor stem cell-like phenotype that have been proven to be related to TIE.106,107ncRNAs can also promote the tumor stem cell-like phenotype by directly or indirectly regulating those genes (Table 3). For example, miR-34a targets and inhibits the expression of SOX2, Nanog, and OCT3/4, thereby inhibiting the stem cell-like phenotype of head and neck squamous carcinoma cells.108 IncRNA H19 acts as a molecular sponge for let-7 to upregulate LIN28 and promote the stem cell-like phenotype of breast cancer cells.109 In a study of multiple myeloma, granulocyte-MDCSs increased the expression of SOX2, OCT4, and Nanog in multiple myeloma stem cells by promoting the expression of piRNA-823, which controlled tumor stemness through DNMT3B activation, thereby promoting the tumor stemness phenotype.110 The above research results provide preliminary evidence that these ncRNAs promote the development of TIE by targeting tumor stem cell-like phenotype-related pathways and genes. By inhibiting this process, we may be able to improve resistance to immunotherapy.

EPITHELIAL–MESENCHYMAL TRANSFORMATION (EMT) AND TIE

EMT involves molecular changes that transform epithelial cells into mesenchymal cells, and such transformation enables the cells to lose cell-cell adhesion and apical-basal polarity. Therefore, EMT in tumor cells is essential to promote the metastasis of epithelial tumors.111,112 Several studies have reported that EMT may also induce immunosuppression and help tumors achieve TIE. Snail-induced EMT stimulates the production of immunosuppressive factors such as TGF-β and thrombospondin-1 (TSP-1), which could damage DCs, decrease the expression of costimulatory molecules, and increase the expression of IDO, thus indirectly inducing Treg differentiation and promoting immunosuppression.113 A study also proved that Snail-induced EMT in melanoma cells are resistant to CTL lysis.113 Furthermore, compared with breast cancer epithelial cells, mesenchymal cells generated via EMT in breast cancer cells show low expression of MHC class I molecules and high expression of programmed death ligand 1 (PD-L1), thereby inducing immune resistance and promoting TIE.114 Therefore, tumor cell EMT can promote immunosuppression in many ways and become one of the potential driving forces of TIE.

EMT is mainly mediated by three transcription factors: zinc-finger E-box-binding 1 (ZEB1), Snail, and Twist1.115 These transcription factors can decrease epithelial cadherin (E-cadherin) and increase neural cadherin (N-cadherin) and vimentin, thereby promoting the occurrence of EMT.112 There is also evidence that these transcription factors are associated with immune escape.113,116 miRNAs such as miR-21, miR-137, miR-34a, and miR-106a/b are known to regulate EMT by targeting these transcription factors (Table 4). In colorectal cancer, miR-21 can downregulate the expression of Snail and E-cadherin to inhibit EMT.117 In ovarian cancer, miR-137 and miR-34a can also downregulate Snail expression to inhibit EMT,118 while miR-106a can upregulate the expression of Snail and promote EMT in glioma cells.119 In hepatocellular carcinoma (HCC), miR-106a/b can inhibit EMT by downregulating Twist1.120 In contrast, miR-23a can upregulate Twist1 expression and promote EMT and cisplatin resistance in tongue squamous cell carcinoma.121 In addition to miRNAs, other ncRNAs have also been found to modulate EMT by targeting these transcription factors. In pancreatic cancer, IncRNA PVT1 promotes EMT by upregulating the expression of ZEB1, Snail, and N-cadherin and downregulating E-cadherin expression.122 In bladder cancer, IncRNA UCA1 can promote EMT by upregulating the expression of N-cadherin, vimentin, and Snail and downregulating the expression of E-cadherin; however, as a competitive endogenous RNA (ceRNA) of miR-145, it also upregulates the expression of ZEB1.123 In melanoma, circRNA 0084043 upregulates Snail expression by acting as a ceRNA of miR-153-3p, thus promoting EMT.124 These dysregulated ncRNAs accelerate EMT by regulating transcription factors in tumors, but their further impact on TIE remains unknown. Whether blocking the mechanism by which these ncRNAs regulate EMT can be conducive to inhibiting TIE and improving the effect of immunotherapy is worth further study.

IMMUNOSUPPRESSIVE CELLS AND TIE

Tregs

Tregs, cells that act as immunosuppressive agents in the body, play important roles in TIE. First, Tregs produce immunosuppressive factors such as IL-10, IL-35, and TGF-β, which inhibit the function of antitumor T cells.125 Second, Tregs inhibit T cell function by expressing coinhibitory factors such as cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-L1.126 In addition to directly affecting T cells, Tregs can also inhibit T cell activation by targeting the maturation and activity of DCs.125 miRNAs play an essential role in Treg maintenance and function. Foxp3-dependent regulation of miR-155 contributes to the proliferative activity and competitive fitness of Tregs.127 miR-146a, highly expressed in Tregs, was found to be able to regulate Treg function, and loss of miR-146a led to increased production of the proinflammatory Th1 cytokine IFN-γ by Foxp317 Tregs, and transferring purified miR-146a-deficient Tregs together with Foxp3 KO CD417 effector T cells into lymphopenic recipients failed to repress Th1 responses.128 In tumors, abnormally expressed ncRNAs have been found to regulate Tregs. The miR-17-92 cluster is expressed in many human blood tumors, and studies have shown that the miR-17-92 cluster can regulate the number of Tregs by targeting Bim.129 Some IncRNAs are also involved in Treg regulation. IncRNA HULC, which is highly expressed in HCC, downregulates p18 in liver cirrhosis to affect Treg differentiation.130 In gastric cancer, IncRNA POU3F3 promotes the distribution of Tregs among surrounding T cells by recruiting TGF-β and activating the TGF-β pathway.131 IncRNA SNHG1 regulates Treg differentiation by targeting miR-448/IDO in breast cancer.96
Activity of MDSCs. Similarly, lncRNA HOTAIRM1 negatively regulates the immunosuppressive activity of MDSCs, and PVT1 knockdown significantly inhibits the immunosuppressive activity of MDSCs.

In conclusion, immunosuppressive Tregs, MDSCs and M2 macrophages achieve immunosuppression in many ways, thus reducing the recognition and killing of tumors by the immune system. However, these functions are utilized by ncRNAs to help tumors achieve TIE, which may be effective targets to prevent TIE and improve tumor immunotherapy.

IMMUNE CHECKPOINT MOLECULES AND TIE

Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining

Table 4. ncRNAs influence TIE via regulate EMT by targeting EMT- related transcription factors

Target genes	ncRNAs	Function	Type of cancer	Refs.
Twist1	miR-543, 300, 186, 137, 720, 580, 539, 33a, 33b, 520d-5p, 106b, 675,337-3p and 151-5p	Inhibit EMT of tumor cells by targeting and downregulating Twist1, an EMT related transcription factor	Endometrial cancer, Epithelial ovarian cancer, Gastrointestinal stromal tumor, Breast cancer, Osteosarcoma, Melanoma, endometrial carcinoma, HCC, Lung carcinoma	120,406–417
	miR-23a, IncRNA AK027294, IncRNA ROR and IncRNA AFAP1-AS1	Promote EMT of tumor cells by targeting and upregulating Twist1, an EMT related transcription factor	Tongue squamous cell carcinoma, Colorectal cancer, Gallbladder cancer	121,418–420
Snail	miR-21, 137, 34a, 491-5p, 22, 363, 30, 145, 153, 410-3p	Target and downregulate transcription factor Snail, and then inhibit EMT of tumor cells	Colorectal cancer, Ovarian cancer, Gastric cancer, Bladder cancer, Lung cancer, Osteosarcoma, HCC, Breast cancer	117,118,421–427
	miR-106a, circRNA 0084033, circRNA PRMT5, IncRNA PVT1 and IncRNA UCA1	Target and upregulate transcription factor Snail, and then promote EMT of tumor cells	Glioma, Melanoma, Bladder carcinoma, Pancreatic cancer, Breast cancer	119,122,124,428,429
ZEB1	miR-203, 873, 205-5p, 5702, 126, 186-5p	Target and downregulate transcription factor ZEB1, and then inhibit EMT of tumor cells	Gastric cancer, Breast cancer, Prostate cancer, NSCLC, Cervical cancer, Colorectal cancer	430–435
	IncRNA MALAT1, ZEB1-AS1, SNHG16, NNT-AS1, HOTTIP, NEAT1, ZNF469-3, TP73-AS1, circRNA TSPAN4 and circRNA PVT1	Target and upregulate transcription factor ZEB1, and then promote EMT of tumor cells	HCC, NSCLC, Osteosarcoma, Breast cancer, Glioma, Nasopharyngeal carcinoma, Lung adenocarcinoma, Gastric cancer	436–445

As a group of heterogeneous cells derived from the bone marrow, MDSCs are precursors of DCs, macrophages, and/or granulocytes. MDSCs can significantly inhibit the cellular immune response and are one of the important driving forces of TIE. First, MDSCs induced by HMGB1 and those with myeloid differentiation potential can mediate TIE by producing high levels of IL-10, inhibiting the activation of antigen-driven CD4+ and CD8+ T cells and the expression of L-selectin in circulating naive T cells. Second, tumor cells can also inhibit the function of T cells, NK cells, and DCs by altering the expression of cellular stress sensor C/EBP homologous protein (Chop) and the secretion of IL-6 by MDSCs. Moreover, the proliferation of CXCR2 +CD11b +Ly6G+ MDSCs induced by CXCR2 ligands produced by tumor cells inhibits T cell proliferation by l-arginine depletion and exerts local immunosuppressive effects. Furthermore, MDSCs can inhibit the host antitumor immune response by inducing Tregs. MDSC-derived NO reacts with superoxide to produce peroxynitrite (PNT), which directly inhibits T cells by nitrating the T cell receptors (TCRs) present on the surface of tumor-specific T cells and reducing the reactivity of the associated antigen-MHC complexes. ncRNAs have been found to be involved in regulating the immunosuppressive activity of MDSCs. In tumor-bearing mice, IncRNA PVT1 regulates the immunosuppressive activity of MDSCs, and IncRNA PVT1 knockdown significantly inhibits the immunosuppressive activity of MDSCs. Similarly, IncRNA HOTAIRM1 negatively regulates the immunosuppressive activity of MDSCs by targeting HOXA1 in lung cancer. In addition, some ncRNAs regulate the proliferation, differentiation, and recruitment of MDSCs. miR-34a promotes the proliferation of MDSCs by inhibiting their apoptosis, whereas miR-9 regulates the differentiation and function of MDSCs by targeting runt-related transcription factor 1 (Runx1). Conversely, the lack of miR-155 in B16-F10 melanoma and Lewis lung carcinoma cell lines leads to the recruitment of MDSCs in the TME and subsequently enhances immunosuppression.
self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues to minimize collateral tissue damage. It is now clear that tumors coopt certain immune checkpoint pathways as a major mechanism of tumoral immune resistance, particularly against T cells that are specific for tumor antigens. The expression of immune checkpoint proteins can be dysregulated in tumors as an important TIE mechanism. Therefore, the study of immune checkpoints is particularly essential to prevent TIE. The currently known TIE-related immune checkpoint molecules are CTLA-4, PD-1, PD-L1, T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and B and T lymphocyte attenuator (BTLA) (Fig. 4). Next, we will summarize the research progress on ncRNAs in the regulation of immune checkpoints (Table 5).

CTLA-4
Activated T cells play vital roles in antitumor immunity, and T cell activation depends on two signals: one involving an interaction between TCR and MHC molecules and another involving the costimulatory signal between CD28 and B7-1/2. To ensure a balance in the function of the immune system, CTLA-4, a homolog of CD28, binds to B7-1/2 and forms an inhibitory signal for T lymphocytes with activated TCRs. CTLA-4 binds to B7-1/2 with an affinity higher than that of CD28 and inhibits AKT phosphorylation by activating phosphatase protein phosphatase 2A (PP2A), thereby inhibiting subsequent T cell activation and function (Fig. 4). In addition, CTLA-4 inhibits the formation of ζ-chain-associated protein kinase 70 (Zap70), thereby affecting TCR signaling and ultimately inhibiting T cell function and promoting T cell apoptosis (Fig. 4). Therefore, overexpression of CTLA-4 on the surface of tumor-infiltrating T cells will enhance immune suppression by inhibiting the activation and function of T cells and promoting T cell apoptosis, thus helping tumor cells achieve TIE.

Some miRNAs with abnormal expression in tumor cells can regulate the surface expression of CTLA-4 in tumor-infiltrating T cells, thereby inhibiting the antitumor immune response mediated by T cells and promoting TIE (Table 5, Fig. 4). In mice with glioma, miR-138 significantly reduces the expression of CTLA-4 and PD-1 on the surface of tumor-infiltrating T cells. In mice with melanoma, miR-155 inhibits CTLA-4 expression on the surface of tumor-infiltrating T cells and promotes the host antitumor immune response.

PD-L1
PD-L1 (B7-H1) is a transmembrane protein expressed by T cells, B cells, and various tumor cells. Binding of PD-L1 with PD-1 on
Target gene	ncRNAs	Function	Type of cancer	Refs.
CTLA-4	miR-138 and miR-155	Downregulate CTLA-4 on tumor-infiltrating T cells directly, promote the recognition and killing of tumor cells by the immune system	Mouse gliomas, Mouse melanoma	151,152
PD-L1	miR-424, 16, 195, 34a, 15a, 15b, 16, 193a-3p, 873, 497-5p, 570, 152, 142-5p, 138-5p and IncRNA NKKX2-1-AS1	Downregulate PD-L1 on tumor cells directly, inhibit immunosuppression and preventing TIE	Ovarian cancer, Prostate cancer, AML, Malignant pleural mesothelioma, Breast cancer, Clear cell renal cell carcinoma, Gastric cancer, Pancreatic cancer, Colorectal cancer, Lung carcinoma	159–162,164,174,446–450
	circRNA CDR1-AS	Upregulates PD-L1 on tumor cells directly, promotes immunosuppression and TIE	Colon cancer	173
	IncRNA SNHG14	Upregulates PD-L1 by SNHG14/miR-5590-3p/ZEB1 positive feedback loop, promotes immunosuppression and TIE	Large B cell lymphoma	172
	miR-24-2 and miR-200c	Downregulate PD-L1 by inhibiting the IFN-γ signaling pathway, inhibit immunosuppression and TIE	Cervical cancer	165
	miR-186	Downregulates PD-L1 by inhibiting SHP-2 in the IFN-γ signaling pathway, inhibits immunosuppression and TIE	Oral squamous cell carcinoma	166
	miR-4510	Downregulates PD-L1 by inhibiting RAF1 in the IFN-γ signaling pathway, inhibits immunosuppression and TIE	HCC	451
	miR-101	Downregulates PD-L1 by inhibiting MEK1 in the IFN-γ signaling pathway, inhibits immunosuppression and TIE	Nasopharyngeal carcinoma	452
	miR-27a, 145, 150, 223 and 200c	Downregulate PD-L1 by inhibiting STAT1 in the IFN-γ signaling pathway, inhibit immunosuppression and TIE	Cervical cancer, Colon cancer, Adult T cell leukemia/lymphoma, Cervical cancer	165,167,453
	miR-383	Downregulates PD-L1 by inhibiting IRF1 in the IFN-γ signaling pathway, inhibit immunosuppression and TIE	Testicular embryonal carcinoma	454
	miR-101, 181b and 490-5p	Downregulate PD-L1 by inhibiting c-FOS in the IFN-γ signaling pathway, inhibit immunosuppression and TIE	Osteosarcoma, Glioma, Bladder cancer	455–457
	miR-10a, 19a, 19b, 106b, 221, 222, 20b, 21, 130b, 92a, 26a, 205, 214, 301a and 142-5p	Upregulate PD-L1 by inhibiting PTEN in PTEN/PI3K/AKT/mTOR pathway, promote immunosuppression and TIE	NSCLC, Gastric cancer, Colorectal cancer, Lung cancer, Nasopharyngeal carcinoma, Ovarian cancer, Breast cancer, NSCLC	168,169,458–466
	miR-100, 101, 199a-3p and 497	Upregulate PD-L1 by downregulating mTOR in PTEN/PI3K/AKT/mTOR pathway, promote immunosuppression and TIE	Bladder cancer, Osteosarcoma cell, Endometrial cancer cell, Ovarian cancer	170,467–469
	miR-216a	Upregulate PD-L1 by downregulating EIF4B in PTEN/PI3K/AKT/mTOR pathway, promotes immunosuppression and TIE	NSCLC	171
PD-1	miR-28, 138 and 4717	Downregulate PD-1 directly on tumor-infiltrating T cells, promotes the activity and function of T cells and inhibit TIE	Mouse melanoma, Mouse glioma, Chronic HBV	151,179,470
	ncRNA AFAP1-AS1	Upregulate PD-1 expression on tumor-infiltrating lymphocytes, inhibits the activity and function of lymphocytes and promotes TIE	Nasopharyngeal carcinoma	181
TIM-3	miR-28	Reduces T cell exhaustion and increasing TNF-α and IL-2 secretion by downregulating TIM-3 directly, thereby inhibiting TIE	Melanoma	179
	IncRNA Tim3	Exacerbates CD8+ T cell exhaustion by specifically binding to TIM-3, thereby promoting TIE	HCC	184
BTLA	miR-28 and miR-155	Downregulate BTLA directly and enhance antitumor immune response and inhibit TIE	Melanoma, CD4+ T cell	179,186
the surface of CTLs can inhibit the proliferation of CTLs and suppress the secretion of CTL cytokines such as IL-2, thereby affecting the function of CTLs and promoting TIE. The overexpression of PD-L1 on the surface of tumor cells through different mechanisms can enhance immunosuppression and promote immune escape. Currently, PD-L1 is the main target for tumor immunotherapy, and some PD-L1 monoclonal antibodies, such as durvalumab and atezolizumab, have shown good clinical therapeutic effects. In addition to factors that directly regulate PD-L1 mRNA, studies have shown that the transcription and expression of PD-L1 in tumor cells are strongly dependent on the interferon-γ (IFN-γ) signaling pathway (Fig. 4). In addition, PD-L1 is also regulated by the phosphatase and tensin homolog deleted on chromosome ten (PTEN)/phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in tumor cells (Fig. 4). The absence of PTEN promotes AKT and mTOR phosphorylation, which in turn leads to increased PD-L1 translation (Fig. 4). miRNAs can affect PD-L1 expression in tumor cells by directly targeting the PD-L1 mRNA or targeting the intermediate links of related signaling pathways (Table 5, Fig. 4). miRNAs such as miR-23a, miR-138-5p, miR-142-5p, miR-152-5p, miR-200b, and miR-424 directly inhibit PD-L1 by targeting PD-L1 mRNA in different tumor cells. In addition, miRNAs such as miR-24-2, miR-186, miR-27a, and miR-145 alter PD-L1 expression by regulating the IFN-γ signaling-mediated transcription and expression of PD-L1. Other miRNAs, such as miR-10a, miR-221, miR-100, and miR-216a, alter PD-L1 expression by targeting the PTEN/PI3K/AKT/mTOR signaling pathway. In addition to miRNAs, a number of lncRNAs and circRNAs are also involved in regulating the expression of PD-L1 (Table 5, Fig. 4). IncRNA SNHG14 activates PD-L1 expression at the transcriptional level via ZEB1 and miR-5590-3p, thus promoting immune escape of diffuse large B cell lymphoma. CircRNA CDR1-AS positively regulates PD-L1 levels and leads to poor prognosis in patients with colorectal cancer. IncRNA NKK2-1-AS1 inhibits PD-L1 expression in tumor cells at the transcriptional level, thus inhibiting immunosuppression and preventing TIE in lung carcinoma cells.

PD-1 is mainly expressed on the surface of activated T cells, B cells, and DCs. The interaction between PD-L1 and PD-1 inhibits TCR-mediated cell activation (Fig. 4) and is a significant mechanism of TIE. Mechanistically, when PD-L1 and PD-1 interact, intracellular tyrosine of the ligand-bound PD-1 is phosphorylated and thus activated. Src homology 2-containing protein tyrosine phosphatase 1 (SHP-1) and SHP-2 are then recruited to the C-terminal immunoreceptor tyrosine-based switch motif (ITSM) of PD-1, and they inhibit the activation of the Ras/extracellular signal-regulated kinase (ERK) signaling pathway via ZAP70 dephosphorylation (TCR activation signals). This promotes T cell apoptosis and inhibits the proliferation of T cells and secretion of cytokines such as IL-2 (Fig. 4). In addition, PD-1 can also activate PTEN, indirectly inhibiting the TCR-mediated PI3K/AKT signaling pathway (Fig. 4). Multiple miRNAs and IncRNAs have been found to regulate PD-1 expression on the surface of tumor-infiltrating T cells and promote immunosuppression, thus promoting TIE (Table 5, Fig. 4). In melanoma-bearing mice, mir-28 was found to specifically inhibit PD-1 expression on tumor-infiltrating T cells and prevent T cell exhaustion, which can enhance the antitumor immune response, whereas transfection with mir-28 inhibitors increased the number of PD-1-positive exhausted T cells. mir-138 inhibits the expression of PD-1 and CTLA-4 on tumor-infiltrating T cells, promotes the activity and function of T cells, and inhibits tumor development in mouse GL261 glioma cells. miR-4717 was found to inhibit PD-1 expression in the lymphocytes of patients with chronic HBV infection, the leading cause of HCC. In addition, IncRNA AAFAP1-A51 positively regulates PD-1 expression on tumor-infiltrating lymphocytes in nasopharyngeal carcinoma.

TIE-3
TIE-3 is an immune checkpoint molecule expressed on the surface of DCs, NK cells, Tregs, macrophages, and IFN-γ-producing T cells. TIE-3 inhibits the function of type 1 T helper cells and the secretion of several immune factors, such as IFN-γ and TNF. In addition, as an immune checkpoint molecule, TIE-3 can also inhibit antitumor immunity by depleting tumor-infiltrating T cells. Therefore, in tumors, regulating the expression of TIE-3 is also one of the mechanisms to achieve TIE, and ncRNAs are significant players in this regulation. For example, in HCC, IncRNA Tim3 can stimulate CD8+ T cell exhaustion and promote the survival of these exhausted CD8+ T cells by specifically binding to Tim3, thereby inhibiting the T cell-mediated antitumor immune response and promoting TIE. In melanoma, mir-28 inhibits the expression of Tim3, PD-1, and CTLA-4, thereby reducing T cell exhaustion and increasing TNF-α and IL-2 secretion, which could enhance the antitumor immune response and inhibit TIE (Table 5).

BTLA
BTLA is similar to PD-1 and CTLA-4. BTLA is also an inhibitory receptor on the surface of T cells, which could be used by tumors to achieve immune escape. It is expressed on both type 1 and type 2 T helper cells but is not expressed on highly polarized type 2 T helper cells. BTLA reduces IL-12 secretion by cross-linking with the antigen receptor, inducing its phosphorylation, and binding to the tyrosine phosphatase SHP-1/2 containing the Src homology 2 (SH2) domain. Moreover, BTLA-deficient T cells show increased proliferation. As mentioned in the previous section, in melanoma, mir-28 can inhibit the expression of BTLA, PD-1, and CTLA-4 in T cells, which could enhance the antitumor immune response and inhibit TIE. In addition, miR-155 can also inhibit BTLA expression, thereby weakening the inhibitory effect of BTLA on T cell activation (Table 5).

In summary, regulating the expression of immune checkpoints on the surface of tumor cells or immune cells is a significant strategy for tumors to achieve immune escape, and ncRNAs play essential roles in this process. It may be an important strategy to inhibit TIE and improve the efficiency of immunotherapy by inhibiting the expression of these ncRNAs. At present, anti-immune checkpoint molecular targeting drugs have been used in the clinic, and good results have been achieved. However, targeted therapy for these ncRNAs has not been reported and needs further study.

Cytokines in TME and TIE

TGF-β
The role of TGF-β in tumorigenesis and development is contradictory. The TGF-β signaling pathway can inhibit tumor growth because the downstream signals of TGF-β family receptors can regulate the expression of DAPK, GADD45β, BIM, SHIP, and other apoptosis genes, which can induce apoptosis of tumor cells. However, some studies have indicated that TGF-β signaling pathway activation can promote tumor growth and invasion and is critical for TIE. The mechanism is as follows: the TGF-β signaling pathway can induce the transcription of relevant target genes to inhibit the activation and/or functions of NK cells, DCs, and T cells and induce the differentiation of Tregs (Table 5). In NK cells, TGF-β signaling inhibits the expression of the transcription factor TBET, which inhibits IFN-γ expression, thereby inhibiting the function of NK cells. In DCs, TGF-β signaling inhibits MHC class II gene expression, thus inhibiting its antigen-presenting function. In T cells, TGF-β signaling silences the expression of TBET, thereby inhibiting the production of IFN-γ. TGF-β signaling also inhibits the expression of IL-2 and granzyme.
B,193,194 thereby preventing the antitumor immune function of T cells. TGF-β signaling can also induce Treg differentiation by inducing the expression of FOXP3, the main transcription factor essential for the Treg phenotype, and then increase immunosuppression.195 Moreover, the TGF-β signaling pathway can also induce the expression of the transcription factor Snail in tumor cells and promote EMT, which may be another mechanism of TGF-β-induced immune escape (Fig. 5).196 Recent research has demonstrated that TGF-β promotes TIE via a mechanism independent of the canonical TGF-β signaling pathway. Tumor progression results in the downregulation of TGFBRII in T cells, enabling TGF-β to directly enter T cells. Once inside the cell, TGF-β molecules bind the Smad protein in mitochondria and disrupt the ATP-coupled respiration of T cells, thereby inhibiting their function and promoting TIE.197

TGF-β receptors are serine/threonine kinase receptors divided into type I and type II (TGFBR I and TGFBR II) receptors. Binding of the ligand TGF-β to TGFBR II induces the assembly of TGFBRI and TGFBR II complexes, and TGFBR II phosphorylates and activates TGFBR I, which then phosphorylates the two C-terminal serine residues of smad2 and Smad3. Phosphorylated Smad2 and Smad3 form heterotrimeric complexes with Smad4; this activated Smad complex enters the nucleus, interacts with other transcription factors, and regulates the expression of the corresponding target genes. Smad7 can form a complex with Smurf1/2 to inhibit the activity of TGFBR I, thereby inhibiting the activity of the pathway (Fig. 5).

ncRNAs in tumors can target components of the TGF-β signaling pathway or directly regulate TGF-β target gene transcription in different tumors, thus inhibiting the antitumor immune response and promoting TIE (Table 6, Fig. 5). For example, miR-133,198 miR-141,199 IncRNA ANRIL200 and IncRNA 00974201 regulate the expression of TGF-β; Let-7,202 miR-141, and the miR-200 family203 target and regulate TGFBR I; miR-106b,204 miR-17-5p,205 miR-204,206 miR-20a,207 miR-21,208 miR-590209 and lncRNA MEG3210 target and regulate TGFBR II; miR-141, miR-200a/c, miR-30d211 and miR-155212 and lncRNA PVT1213 regulate the expression of Smad3 and Smad4, respectively; and miR-21 regulates the expression of Smad7 in cervical cancer.214 The abnormal expression of these ncRNAs in tumors can activate the TGF-β signaling pathway in different stages and then help tumors achieve immune escape by inhibiting a variety of immune cells, inducing the differentiation of immune cells and promoting EMT. According to this characteristic of tumors, blocking the activation of the TGF-β signaling pathway by targeting these ncRNAs may become a new direction for tumor immunotherapy.

IL-6

IL-6, commonly secreted by macrophages, DCs, MDSCs, and tumor cells, is a pleiotropic proinflammatory cytokine that is involved in almost all aspects of the immune system, from the infiltration of neutrophils at the site of infection to the generation of T cell responses. IL-6 can be rapidly induced and expressed in large quantities under the conditions of infection and autoimmunity and plays a key role in host defense by stimulating various cell populations (including promoting cytotoxic T cell differentiation, T cell population expansion and activation, and B cell differentiation).215 However, in addition to immune-stimulating effects, IL-6 can also lead to immunosuppression and TIE, most of which are mediated through the IL-6/JAK2/STAT3 signaling pathway. For example, the IL-6/JAK2/STAT3 signaling pathway can make the TME tend towards immunosuppression by attracting and activating MDSCs, TANs, and Tregs.216 In addition, the IL-6/JAK2/STAT3 signaling pathway has also been found to promote the tumor stem cell-like phenotype and EMT.217-219 In tumors, abnormal expression of ncRNAs can promote TIE by regulating the expression of IL-6 or the molecules involved in the IL-6/JAK2/STAT3 signaling pathway (Table 6), miR-33a220 miR-218,221 miR-125a,222 miR-34a,223 miR-217,224 miR-26a,225 miR-9,226 IncRNA HOTTIP,228 IncRNA 00460229 and IncRNA UICC230 directly regulate IL-6 in different cancers. miR-551b-3p directly downregulates STAT3 expression in ovarian cancer cells,231 whereas miR-18a inhibits STAT3 by negatively regulating the expression of...
the E3 SUMO protein ligase PIAS3 in gastric adenocarcinogenesis.32 miR-221 and miR-222 inhibit STAT3 expression by targeting PDZ and LIM domain protein 2 (PDLIM2) in colorectal cancer.33 Moreover, miR-30 promotes the activation of the JAK/STAT3 pathway by inhibiting the expression of suppressor of cytokine signaling 3 (SOCS3) in glioma stem cells.34 IncRNA 00518, IncRNA AB073614, and IncRNA HOST2 activate the JAK2/STAT3 signaling pathway in cervical cancer, colorectal cancer, and HCC, respectively.235–237 These ncRNAs enhance the immunosuppression of the TME by regulating IL-6 expression and activating

Target genes	ncRNAs	Function	Type of cancer	Refs.
TGF-β	miR-133 and miR-141	Downregulate TGF-β expression, inhibit immunosuppression and TIE, suppress tumor growth and invasion	Gastric cancer, Myocardial fibrosis	198,199
TGFBR I	IncRNA ANRIL and IncRNA 00974, Let-7, miR-141 and miR-200 family	Upregulate TGF-β expression, induce immunosuppression and TIE, promote tumor growth and invasion	Esophageal squamous cell carcinoma, HCC	200,201
TGFBR II	miR-106b, 17-5p, 204, 20a, 21, 590	Downregulate the expression of TGFBR, weaken TGF-β signal pathway, inhibit immunosuppression and TIE, suppress tumor growth and invasion	Thyroid carcinomas	202,203
Smad2	miR-141, 200a/c, 30d and 155	Downregulate the expression of Smad2, weaken TGF-β signal pathway, inhibit immunosuppression and TIE, suppress tumor growth and invasion	Alzheimer's disease, metastatic cancer, Lung cancer, Leiomyoma	205–209,471
Smad3	miR-140	Downregulate the expression of Smad3, weaken TGF-β signal pathway, inhibit immunosuppression and TIE, suppress tumor growth and invasion	Chondroma	210
Smad4	IncRNA PVT1	Downregulate the expression of Smad4, weaken TGF-β signal pathway, inhibit immunosuppression and TIE, suppress tumor growth and invasion	Colorectal cancer	213
Smad7	miR-21	Downregulate the expression of Smad4, strengthen TGF-β signal pathway, promote immunosuppression and TIE	Cervical cancer	214
IL-6	miR-33a, 218, 125a, 34a, 217, 26a, 98, and 9	Downregulate IL-6, inhibit immunosuppression and TIE, suppress tumor growth and invasion	Gallbladder cancer, Lung cancer, Breast cancer, Cardiac myxoma, HCC, Melanoma, HeLa cell line	220–227
IL-6	IncRNA HOTTIP, 00460 and UICC	Directly upregulate IL-6, induce immunosuppression and TIE, promote tumor growth and invasion	Ovarian cancer, Nasopharyngeal carcinoma, Cervical cancer	228–230
STAT3	miR-551b-3p,	Upregulates STAT3 expression directly, induce immunosuppression and TIE, promotes tumor growth and invasion	Ovarian cancer	231
IL-10	miR-221, 222 and 18a	Downregulate STAT3 expression by negatively regulating the PDLIM2 or PIAS3, inhibit immunosuppression and TIE, suppress tumor growth and invasion	Gastric adenocarcinoma, Colorectal cancer	232,233
IL-10	IncRNA 00518, AB073614 and HOST2	Activate the JAK2/STAT3 signaling pathway, induce immunosuppression and TIE, promote tumor growth and invasion	Cervical cancer, Colorectal cancer, HCC	235–237
VEGF	miR-98	Downregulates IL-10, inhibits immunosuppression and TIE, suppress tumor growth and invasion	HCC	247
VEGF	miR-194, miR-193b and IncRNA CCAT1	Upregulate IL-10, induce immunosuppression and TIE, promote tumor growth and invasion	Laryngeal cancer, Lymphoma, prostate cancer	248–250
VEGF	miR-638, 503, 497, 203, 200, 195, 190, 126, 93, 29b and 20	Downregulate VEGF directly, inhibit immunosuppression and TIE, suppress tumor growth and invasion	HCC, Cervical cancer, Lung cancer, Oral cancer, Breast cancer	254–263,265,266
VEGF	miR-22, 107, 519c, 26a and 145	Downregulate VEGF indirectly, inhibit immunosuppression and TIE, suppress tumor growth and invasion	Colorectal cancer, HCC	78,269–272
VEGF	IncRNA TDRG1 and IncRNA HOTAIR	Upregulate VEGF directly, induce immunosuppression and TIE, promote tumor growth and invasion	Endometrial carcinoma, Nasopharyngeal carcinoma	267,268
VEGF	IncRNA H19 and IncRNA GASS	Upregulate VEGF indirectly, induce immunosuppression and TIE, promote tumor growth and invasion	Mesenchymal stem cells, Cervical cancer	273,274

\(\text{PDZD2 PDZ and LIM domain protein 2, PIAS3 Protein inhibitor of activated signal transducer and activator of transcription}\)
the IL-6/JAK2/STAT3 pathway, thus helping tumors achieve immune escape, which may be another target to block TIE and improve the effect of immunotherapy.

IL-10

IL-10 is an immune cytokine produced by immune cells that plays a dual role in tumorogenesis and development. In the early tumor stage, the main role of IL-10 is to activate the immune system to kill tumor cells by stimulating NK cell- and CTL cell-mediated antitumor responses. However, with tumor development, some tumors (melanoma, lung cancer, and bladder cancer) have been found to be able to utilize the immunosuppressive effects of IL-10 to achieve TIE. Specific mechanisms are described below. First, IL-10 can inhibit the expression of MHC class II molecules on antigen-presenting cells and MHC class I molecules in tumor cells to inhibit tumor antigen presentation. Second, IL-10 can inhibit the activation of the CD28 costimulatory pathway in T cells, resulting in T cell dysfunction. Finally, tumor cells express IL-10 and IL-10 receptors by themselves, activate the downstream STAT3/Twist pathway by autocrine signaling, and promote EMT of tumor cells. It has been revealed that ncRNAs such as miR-98, miR-193b, miR-194, and IncRNA CCAT1 can directly or indirectly regulate IL-10 expression in different tumors to help achieve TIE. Through the abnormal expression of ncRNAs in tumors, the regulation of IL-10 is likely to be a strategy of tumors to achieve TIE. Therefore, we need to further study these mechanisms, which may become effective targets for cancer treatment in the future.

VEGF

Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is an angiogenesis inducer in a variety of in vivo models and has important physiological functions. In addition, plenty of evidence shows that VEGF is also an important regulator of pathological angiogenesis. In situ hybridization studies have shown that VEGF mRNA is expressed in most human tumors and can promote tumor progression and help tumors achieve TIE. Mechanistically, VEGF promotes the proliferation of immunosuppressive cells, inhibits the recruitment of T cells in the TME, and promotes the exhaustion of T cells, thus promoting TIE. VEGF can also act as a chemokine to recruit Tregs into the TME, thereby affecting the antitumor immune response of immune cells. In many tumors, it has been found that some abnormally expressed ncRNAs can directly or indirectly regulate the expression of VEGF to promote the development of tumors (Table 6). For example, miR-638, miR-502, miR-497, miR-203, miR-200, miR-195, miR-190, miR-126, miR-93, miR-29b, miR-20, IncRNA TDRG1, and IncRNA HOTAIR directly up/downregulate VEGF expression in various tumors. In contrast, miR-22, miR-107, miR-519c, miR-26a, miR-145, IncRNA H19, and IncRNA GAS5 were found indirectly to up/downregulate VEGF expression in different tumors. Therefore, similar to TGF-β, IL-6 and IL-10, tumors are likely to utilize the immunosuppressive function of VEGF through ncRNAs to finally achieve TIE. This is likely to become another target of antitumor immunotherapy.

TUMOR EXOSOMES (TEX) AND TIE

Exosomes are extracellular vesicles 40–150 nm in diameter that participate in intercellular communication. TEX can transport various ncRNAs and support the associated immunosuppressive functions. Currently, ncRNAs transported by exosomes from various tumor cells have been reported to be associated with immunosuppression and TIE (Table 7). For example, in HCC, miR-23a in TEX can inhibit the expression of PTEN and upregulate PD-L1 expression in macrophages, decrease antitumor immunity and promote TIE. Furthermore, miR-23a derived from hypoxic TEX can also act as an immunosuppressive factor that directly targets CD107 in NK cells, thus inhibiting the killing function of NK cells on tumors. Similarly, miR-24-3p, miR-891a, miR-106a-5p, miR-20a-5p, and miR-1980 in nasopharyngeal carcinoma-derived TEX were also found to promote immunosuppression and TIE. These miRNAs can induce the differentiation of Tregs and cause T cell dysfunction, including dysregulation of proliferation, differentiation, and cytokine secretion, by targeting the downregulation of the MAPK1 and JAK/STAT pathways. In mouse models of lung cancer and sarcoma, TEX-derived miR-214 inhibits PTEN and the signals downstream of PTEN (to some extent) in T cells, thereby promoting the differentiation of Tregs and enhancing immunosuppression. TEX-derived IncRNAs were also found to be associated with immunosuppression and TIE. IncRNA ZFAS1 from

Table 7. ncRNAs transferred by TEX participate in TIE
ncRNAs transferred by TEX

miR-24-3p, 891a, 106a-5p, 20a-5p and 1908
miR-214 and miR-214
miR-23a
miR-212-3p
miR-21 and miR-29a
IncRNA ZFAS1
IncRNA UCA1
IncRNA MALAT1

CML chronic myeloid leukemia
gastrectomy-derived TEX can suppress tumor cell apoptosis and promote EMT, which may help gastric cancer to achieve TIE.260 TEX isolated from the bladder cancer cell line 5637 show high IncRNA UCA1 expression, which promotes bladder cancer progression by promoting EMT in tumor cells.261 In addition, TEX derived from lung cancer show increased IncRNA MALAT1 expression, which promotes tumor growth and metastasis and inhibits tumor cell apoptosis.262 These TEX-derived ncRNAs can promote immunosuppression, inhibit tumor apoptosis and promote tumor EMT through a variety of mechanisms, which are significant driving forces for TIE. This may also be one of the potential causes of immunotherapy tolerance, which needs to be studied in depth.

CONCLUSIONS AND PERSPECTIVES

In this review, we discussed the different TIE mechanisms and summarized the regulatory roles of ncRNAs involved in these mechanisms. Although ncRNAs have been confirmed to be directly associated with TIE, the precise molecular mechanisms underlying such regulation are yet to be elucidated. Immunotherapy often results in low response rates owing to the multiple TIE mechanisms active in tumor cells, and the role of ncRNAs in TIE may be underestimated. Thus, ncRNAs may be considered potential candidates to therapeutically target such TIE mechanisms and are expected to be the key to overcoming the challenges associated with immunotherapy.

Several recent studies have reported the role of ncRNAs in tumor therapy, demonstrating the therapeutic potential of ncRNAs.283–286 For example, miR-122 expression is low in liver cancer cells, and delivery of miR-122 in liver tumor cells using LNP-DP1, a cationic lipid nanoparticle formulation, can effectively suppress tumor growth by inhibiting target genes and angiogenesis.287 Although the potential of ncRNAs as tumor therapeutic targets has been reported, no study or clinical experiment has reported whether ncRNAs can be considered targets to inhibit TIE. Therefore, considering the key role of ncRNAs in TIE, further research is warranted to explore such therapeutic approaches to improve the efficiency of tumor immunotherapy and reduce the associated side effects. Because ncRNAs are critical in promoting TIE, the potential of ncRNAs as targets for TIE therapy should not be underestimated.

This review summarizes the complex regulatory network of ncRNAs specific to TIE. Some studies provide direct evidence of the involvement of certain ncRNAs in TIE, whereas other studies report observations suggestive of the involvement of certain ncRNAs in the regulation of immune escape-related mechanisms. Although not conclusively investigated, these ncRNAs may be indirectly involved in TIE and can also be explored as potential targets for TIE therapy. Some ncRNAs have both tumorigenic and antitumorigenic properties, and studies involving such ncRNAs may provide new insights into TIE mechanisms and immunotherapies. Further studies verifying the regulatory relationship between ncRNAs and TIE will provide a direction for future studies aimed at developing novel cancer therapeutic approaches. Aside from miRNAs, IncRNAs, and circRNAs, other ncRNAs, such as tRNAs (including their derived tRNAs and TRFs), rRNAs, and snRNAs, have not been reported to be involved in the regulation of TIE, and further research in this area is essential.

ACKNOWLEDGEMENTS

This work was supported by funding from the Project N10 of Harbin Medical University Cancer Hospital (Grant Number Nn102017-02), National Natural Science Foundation of China (Grant Number 81602323, 81872149), Outstanding Youth Project of Heilongjiang Provincial Natural Science Foundation (Grant Number YQ2019H027), Distinguished Young Scholars of Harbin Medical University Cancer Hospital (Grant Number JCNK2018-03), Yong Elite Training Foundation Grant of Harbin Medical University Cancer Hospital (Grant Number JY2016-02) and Haiyan Fund Project of Harbin Medical University Cancer Hospital (Grant Number JYQN 2018-10).

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. Dunn, G. P., et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).
2. Shahrouki, P. & Larsson, E. The non-coding oncogene: a case of missing DNA evidence? Front Genet. 3, 170 (2012).
3. Green, D., Fraser, W. D. & Dalmay, T. Transfer RNA-derived small RNAs in the cancer transcriptome. Pflug. Arch. 468, 1041–1047 (2016).
4. Gibb, E. A., Brown, C. J. & Lam, W. L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer 10, 38 (2011).
5. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).
6. Yang, L., Froberg, J. & Lee, J. T. Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem. Sci. 39, 35–43 (2014).
7. Fu, L., et al. Circular RNAs in hepatocellular carcinoma: functions and implications. Cancer Med. 7, 3101–3109 (2018).
8. Ambros, V. The functions of animal micro RNAs. Nature 431, 350–355 (2004).
9. Huang, S. et al. MicroRNA-181a modulates gene expression of zinc finger family members by directly targeting their coding regions. Nucleic Acids Res. 38, 7211–7218 (2010).
10. Orom, U. A., Nielsen, F. C. & Lund, A. H. MicroRNA-10a binds the 5′UTR of ribosomal S5 and enhances their translation. Mol. Cell. 30, 460–471 (2008).
11. Shen, Y. et al. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases. J. Mol. Med. (Berl.) 96, 1167–1176 (2018).
12. Eichmuller, S., Osen, W., Mandelboim, O. & Seliger, B. Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J. Natl. Cancer Inst. 109, https://doi.org/10.1093/jnci/djp034 (2017).
13. Ding, L., Lu, S. & Li, Y. Regulation of PD-1/PD-L1 pathway in cancer by noncoding RNAs. Pathol. Oncol. Res. 26, 651–663 (2019).
14. Hoves, S. et al. In situ analysis of the antigen-processing machinery in acute myeloid leukaemic blasts by tissue microarray. Leukemia 23, 877–885 (2009).
15. Messner, M. et al. Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin. Cancer Res. 11, 2552–2560 (2005).
16. Ogino, T. et al. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res. 66, 9281–9289 (2006).
17. Yan, Y. et al. MicroRNA-23a downregulates the expression of interferon regulatory factor-1 in hepatocellular carcinoma cells. Oncol. Rep. 36, 633–640 (2016).
18. Wang, B. et al. Rs56288038 (C/G) in 3′UTR of IRF-1 regulated by miR-502-5p promotes gastric cancer development. Cell Physiol. Biochem. 40, 391–399 (2016).
19. Namiki, S. et al. IRF-1 mediates upregulation of LMP7 by IFN-gamma and concordant expression of immunosuppressants of the prostate. FEBS Lett. 579, 2781–2787 (2005).
20. Sun, Y. et al. miR-451 suppresses the NF-kappaB-mediated proinflammatory molecules expression through inhibiting LMP7 in diabetic nephropathy. Mol. Cell Endocrinol. 433, 75–86 (2016).
21. Hirasawa, T. et al. Characterization of the immune escape phenotype of human gastric cancers with and without high-frequency microsatellite instability. J. Pathol. 211, 516–523 (2007).
22. Marzi, L. et al. microRNA-25a regulates MHC-I expression on esophageal adenocarcinoma cells, associated with suppression of antitumor immune response and poor outcomes of patients. Gastroenterology 155, 784–798 (2018).
23. Bartoszewski, R. et al. The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expression that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory gene. J. Biol. Chem. 286, 41862–41870 (2011).
24. Musahl, A. S. et al. A long non-coding RNA links calreticulin-mediated immunogenetic cell removal to RB1 transcription. Oncogene 34, 5046–5054 (2015).
25. Colangelo, T. et al. Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer. Cell Death Dis. 7, e2120 (2016).
26. Maleno, I. et al. Distribution of HLA class I altered phenotypes in colorectal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Immunogenetics 56, 244–253 (2004).
118. Dong, P. et al. MicroRNA-106b modulates epithelial-mesenchymal transition by targeting TWIST1 in invasive endometrial cancer cell lines. Mol. Cancer Res. 35, 349–359 (2014).
119. Peng, F., Zhang, H., Du, Y. & Tan, P. miR-23a promotes cisplatin chemoresistance and protects against cisplatin-induced apoptosis in tongue squamous cell carcinoma cells through Twist. Oncol. Rep. 33, 942–950 (2015).
120. Wu, B. Q. et al. Long noncoding RNA PVT1 promotes EMT and cell proliferation and migration through downregulating p21 in pancreatic cancer cells. Technol. Cancer Res. Treat. 16, 819–827 (2017).
121. Xue, M. et al. Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-1/2- FSCN1 pathway. Cancer Sci. 107, 18–27 (2016).
122. Luan, W. et al. circRNA_0084043 promote malignant melanoma progression via miR-153-3p/Snail axis. Biochem. Biophys. Res. Commun. 502, 22–29 (2018).
123. Vignali, D. A. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 532–532 (2008).
124. Colonna, M. Immunology: an innate regulatory cell. Nature 498, 42–43 (2013).
125. Lu, L. F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting CD351 protein. Immunity 30, 80–91 (2009).
126. Lu, L. F. et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142, 914–929 (2010).
127. Barron, L. et al. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J. Immunol. 185, 6426–6430 (2010).
128. Zhao, J. et al. LncRNA HULC affects the differentiation of Treg in HBV-related liver cirrhosis. Int. Immunopharmacol. 28, 901–905 (2015).
129. Xiong, G., Yang, L., Chen, Y. & Fan, Z. Linc-POU3F3 promotes cell proliferation in gastric cancer via increasing T-reg distribution. Am. J. Transl. Res. 7, 2262–2269 (2015).
130. Parker, K. H. et al. HMG1B enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 74, 5723–5733 (2014).
131. Thevenot, P. et al. The stress-response sensor chp regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity 41, 389–401 (2014).
132. Highfill, S. L. et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 6, 237ra267 (2014).
133. Lindau, D. et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105–115 (2013).
134. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell immune evasion in cancer. Nat. Med. 13, 828–835 (2007).
135. Zheng, Y. et al. Long noncoding RNA Ptvt1 regulates the immunosuppressive activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Mol. Cancer 18, 61 (2019).
136. Tian, X. et al. Long non-coding RNA HOUX transcript antisense RNA myeloid-specific 1-HOXA1 axis downregulates the immunosuppressive activity of myeloid-derived suppressor cells in lung cancer. Front. Immunol. 9, 473 (2018).
137. Huang, A. et al. miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition. Exp. Cell Res. 326, 259–266 (2014).
138. Tian, J. et al. MicroRNA-9 regulates the differentiation and function of myeloid-derived suppressor cells via targeting Runx1. J. Immunol. 195, 1301–1311 (2015).
139. Wang, J. et al. MicroRNA-155 deficiency enhances the recruitment and functions of myeloid-derived suppressor cells in tumor microenvironment and promotes solid tumor growth. Int. J. Cancer 136, E602–E613 (2015).
140. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T-cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).
141. Alderton, G. K. Resistance: turning macrophages on, off and on again. Nat. Rev. Cancer 14, 154–155 (2014).
142. Tian, Y. et al. MicroRNA-342 inhibits tumor growth via targeting chemokine CXCXL2 involved in macrophages recruitment/activation. Genes Cells 23, 1009–1022 (2018).
143. Zhou, Y. X. et al. Long non-coding RNA NIFKAS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a. Int. J. Biochem. Cell Biol. 104, 25–33 (2018).
146. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. *Nat. Rev. Cancer* **12**, 252–264 (2012).
147. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. *Nat. Rev. Cancer* **16**, 275–287 (2016).
148. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. *J. Exp. Med.* **182**, 459–465 (1995).
149. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. *Mol. Cell Biol.* **25**, 9543–9553 (2005).
150. Schneider, H. et al. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. *Eur. J. Immunol.* **38**, 40–47 (2008).
151. Wei, J. et al. miR-138 exerts anti-glioma efficacy by targeting immune check- point. *Neuro Oncol.* **18**, 639–648 (2016).
152. Hufferak, T. B. et al. Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by immune checkpoint blockade. *J. Biol. Chem.* **292**, 18350–18351 (2017).
153. Wainwright, D. A. et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. *Clin. Cancer Res.* **20**, 5290–5301 (2014).
154. Alvarez-Argo, J. & Dasanu, C. A. Durvalumab in cancer medicine: a comprehensive review. *Expert Opin. Biol. Ther.* **19**, 927–935 (2019).
155. Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. *N. Engl. J. Med.* **379**, 2220–2228 (2018).
156. Ephimhier, M. J. et al. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. *Microcirculation* **9**, 133–145 (2002).
157. Muhlbaier, M. et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. *J. Hepatol.* **45**, 520–528 (2006).
158. Parsa, A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. *Nat. Med.* **13**, 84–88 (2007).
159. Wang, X. et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. *Cell Signal.* **27**, 443–452 (2015).
160. Zhao, L. et al. The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. *Oncotarget* **7**, 45370–45384 (2016).
161. Jia, L. et al. miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. *Biochem. Biophys. Res. Commun.* **488**, 425–431 (2017).
162. Wang, Y. et al. MicroRNA-152 regulates immune response via targeting B7-H1 in gastric carcinoma. *Oncotarget* **8**, 28125–28134 (2017).
163. Chen, L. et al. Metastasis is regulated via microRNA-200/ZEBi axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. *Nat. Commun.* **5**, 5241 (2014).
164. Xu, S. et al. miR-424/322 reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. *Nat. Commun.* **7**, 11406 (2016).
165. Wang, G. et al. Signal transducers and activators of transcription-1 (STAT1) regulates microRNA transcription in interferon-gamma-stimulated HeLa cells. *PLoS ONE* **6**, e15785 (2011).
166. Cai, Z., Hao, X. Y. & Liu, F. X. MicroRNA-186 serves as a tumor suppressor in oral squamous cell carcinoma by negatively regulating the protein tyrosine phosphatase SH2P expression. *Arch. Oral. Biol.* **89**, 20–25 (2018).
167. Gregersen, L. H. et al. MicroRNA-145 targets YES and STAT1 in colon cancer cells. *PLoS ONE* **5**, e8836 (2010).
168. Yu, T. et al. miRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN. *Oncotarget* **6**, 30239–30250 (2015).
169. Chun-Zhi, Z. et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. *BMC Cancer* **10**, 367 (2010).
170. Xu, C. et al. miRNA-100 inhibits human bladder urothelial carcinogenesis by directly targeting mTOR. *Mol. Cancer Ther.* **12**, 207–219 (2013).
171. Wang, R. T. et al. Decreased expression of mir216a contributes to non-small-cell lung cancer progression. *Clin. Cancer Res.* **20**, 4705–4716 (2014).
172. Zhao, L. et al. LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promotes diffuse large B cell lymphoma progression and immune evasion through regulating PD-L1/PD-L1 checkpoint. *Cell Death Dis.* **10**, 731 (2019).
173. Tanaka, E. et al. Expression of circular RNA CDRIAS1 in colon cancer cells increases cell surface PD-L1 protein levels. *Onco. Rep.* **22**, 1459–1466 (2019).
174. Kathuria, H. et al. NKX2-1-AS1 negatively regulates CD274/PD-L1, cell-cell interaction genes, and limits human lung carcinoma cell migration. *Sci. Rep.* **8**, 14418 (2018).
175. Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. *Int. Immunol.* **8**, 765–772 (1996).
Takahashi, Y. et al. Amplification of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. *Oncogene* **29**, 4237–4244 (2010).

Wang, H. et al. miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-beta type II receptor. *Brain Res.** 1537, 166–174 (2010).

Kogagiy, R. & Kang, Y. Targeting the transforming growth factor-beta signaling pathway in metastatic cancer. *Eur. J. Cancer*** 46, 1232–1240 (2010).

Wang, F. E. et al. MicroRNA-204-211 alters epithelial physiology. *FASEB J.*** 24, 1552–1571 (2010).

Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. *Proc. Natl Acad. Sci. USA*** 103, 2257–2261 (2006).

Pan, Q., Luo, X. & Chegini, N. microRNA 21: response to hormonal therapies and modulation of the extracellular matrix of chondrocytes in osteoarthritis via targeting miR-93/TGFBR2 axis. *Cell Death Differ.* https://doi.org/10.1038/s41418-019-0557-9 (2019).

Louafi, F., Martinez-Nunez, R. T. & Sanchez-Elsner, T. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-(beta). *J. Biol. Chem.* **285**, 41328–41336 (2010).

Chen, K., Zhu, H., Zheng, M. Q. & Dong, Q. R. Long nonRNA MEG3 inhibits the degradation of the extracellular matrix of chondrocytes in osteoarthritis via targeting miR-93/TGFBR2 axis. *Cell Death Differ.* https://doi.org/10.1038/s41418-019-0557-9 (2019).

Wang, H. et al. miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-beta type II receptor. *Brain Res.*** 1537, 166–174 (2010).

Liu, Q., Liu, S. & Wang, D. Overexpression of microRNA-21 decreased the senescence of human ductal breast carcinoma and normal mammary gland. *Oncotarget***, 117 (2017).

Yang, X. et al. MicroRNA-26a suppresses tumor growth and metastasis of human breast cancer cell lines in vitro. *Mol. Cancer***, 110 (2017).
260. Hao, Y. et al. The synergistic regulation of VEGF-mediated angiogenesis through miR-190 and target genes. RNA 20, 1328–1336 (2014).
261. Liu, B. et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 66, 169–175 (2009).
262. Sasahira, T. et al. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br. J. Cancer 107, 700–705 (2012).
263. Li, F. et al. Role of microRNA-93 in regulation of angiogenesis. Tumor Biol. 35, 10609–10613 (2014).
264. Long, J. et al. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hypoglycemic conditions. J. Biol. Chem. 285, 23457–23465 (2010).
265. Zhou, J. et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat. Cell Biol. 15, 201–213 (2013).
266. Lei, Z. et al. Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS ONE 4, e7629 (2009).
267. Chen, S. et al. LncRNA TDRG1 enhances tumorigenicity in endometrial carcinoma by binding and targeting VEGF-A protein. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 3013–3021 (2018).
268. Fu, W. M. et al. Long noncoding RNA Hotair mediated angiogenesis in nasopharyngeal carcinoma by direct and indirect signaling pathways. Oncotarget 7, 4712–4723 (2016).
269. Yamakuchi, M. et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc. Natl Acad. Sci. USA 107, 6334–6339 (2010).
270. Cha, S. T. et al. MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res. 70, 2675–2685 (2010).
271. Cha, Z. T. et al. MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PI3KCA2alpha/Akt/HIF-1alpha pathway in hepatocellular carcinoma. PLoS ONE 8, e77957 (2013).
272. Yin, Y. et al. Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim. Biophys. Acta 1829, 239–247 (2013).
273. Hou, J. et al. Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p. Stem Cell Res. Ther. 9, 109 (2018).
274. Li, Y. et al. Long non-coding RNA growth arrest specific transcript 5 acts as a tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression. Oncotarget 8, 13690–13702 (2017).
275. Sato-Kuwabara, Y., Melo, S. A., Soares, F. A. & Calin, G. A. The fusion of two tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression. Oncotarget 7, 11691–11699 (2016).
276. Liu, B. et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 66, 169–175 (2009).
277. Sasahira, T. et al. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br. J. Cancer 107, 700–705 (2012).
278. Li, F. et al. Role of microRNA-93 in regulation of angiogenesis. Tumor Biol. 35, 10609–10613 (2014).
279. Long, J. et al. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hypoglycemic conditions. J. Biol. Chem. 285, 23457–23465 (2010).
280. Zhou, J. et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat. Cell Biol. 15, 201–213 (2013).
281. Xue, M. et al. Hypoxic exosomes facilitate bladder tumor growth and development. Oncotarget 6, 31 (2014).
282. Cui, C. et al. Long noncoding RNA HEIH promotes colorectal cancer tumorigenesis via miR-93-mediated transcriptional repression of Bcl-xL. Cancer Res. Treat. 50, 992–1008 (2018).
283. Chen, J. et al. The long noncoding RNA ASNR regulates degradation of Bcl-2 mRNA through its interaction with AUFI. Sci. Rep. 6, 32189 (2016).
284. Deng, J. et al. Long non-coding RNA OIP5-A51 functions as an oncogene in lung adenocarcinoma through targeting miR-448/Bcl-2. BioMed. Pharmacother. 98, 102–110 (2018).
285. Gao, J. et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS ONE 8, e65138 (2013).
286. Long, J. et al. MiR-193b modulates resistance to doxorubicin in human breast cancer cells by downregulating MCL-1. Biomedi. Res. Int. 2015, 373574 (2015).
287. Zhang, R. et al. MiR-363 sensitizes cisplatin-induced apoptosis targeting in Mcl-1 in breast cancer. Med. Oncol. 31, 347 (2014).
288. Liu, X. et al. MicroRNA-101 inhibits cell proliferation and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triple-negative breast cancer. Oncotarget 6, 20070–20083 (2015).
289. Desjoubert, C. et al. MiR-29a down-regulation in AKL-positive anaplastic large cell lymphomas contributes to apoptosis blockade through MCL-1 overexpression. Blood 116, 6627–6633 (2011).
290. Zhang, Y. K. et al. Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1. Biochem. Biophys. Commun. 414, 233–239 (2011).
291. Rao, Y. M., Shi, H. R., J. M., & Chen, C. H. MiR-106a targets Mcl-1 to suppress cisplatin resistance of ovarian cancer A2780 cells. J. Huazhong Univ. Sci. Technol. Med. Sci. 33, 567–572 (2013).
292. Lu, F. et al. miR-181b increases drug sensitivity in acute myeloid leukaemia via targeting HMGB1 and Mcl-1. Int. J. Oncol. 45, 383–392 (2014).
293. Cai, D. et al. MicroRNA-302b enhances the sensitivity of hepatocellular carcinoma cell lines to 5-FU via targeting Mcl-1 and DPyD. Int. J. Mol. Sci. 16, 23668–23682 (2015).
294. Zhang, T. et al. Down-regulation of miR-320 associated with cancer progression and cell apoptosis via targeting Mcl-1 in cervical cancer. Tumour Biol. 37, 8931–8940 (2016).
295. Tong, Z. et al. miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomedi. Pharmacother. 75, 129–136 (2015).
296. Zarogoulidis, P. et al. MiR-205 and miR-218 expression is associated with c-Jun protein expression and cytokine secretion in human CD4 T cells. Mol. Cancer 15, 57 (2016).
297. Schickel, R., Park, S. M., Murmann, A. E. & Peter, M. E. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol. Cell. 38, 908–915 (2010).
298. Wang, P. et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting Fasl. Mol. Cell. Oncol. 7, 334–345 (2013).
299. Huang, G. et al. MiR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res. 72, 908–916 (2012).
300. Yamada, N. et al. Epigenetic regulation of microRNA-128a expression contributes to the apoptosis-resistance of human T-cell leukemia Jurkat cells by modulating expression of Fas-associated protein with death domain (FADD). Biochim. Biophys. Acta 1843, 590–602 (2014).
301. Kim, T. D. et al. Human microRNA-27a targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood 118, 5476–5486 (2011).
302. King, B. C. et al. CD46 activation regulates miR-150-mediated control of GLUT1 expression and cytokine secretion in human CD4+ T cells. J. Immunol. 196, 1636–1645 (2016).
22

316. Li, P. et al. MicroRNA-218 increases the sensitivity of bladder cancer cell to cisplatin by targeting Glut1. *Cell Physiol. Biochem.* 41, 921–932 (2017).

317. Guo, H. et al. miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glucose transporter 1. *Tumour Biol.* 37, 13751–13761 (2016).

318. Trakooljul, N., Hicks, J. A. & Liu, H. C. Identification of target genes and pathways associated with chicken microRNA miR-143. *Anim. Genet.* 41, 357–364 (2010).

319. Dai, D. W. et al. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM. *BMC Cancer* 13, 478 (2013).

320. Lauer, V. et al. Hypoxia drives glucose transporter 3 expression through HIF-mediated induction of the long non-coding RNA NICI. *J. Biol. Chem.* 295, 4065–4078 (2019).

321. Liu, H., Buchanan, R. J. & Cook, S. A. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. *Cardiovasc. Res.* 86, 410–420 (2010).

322. Karolina, D. S. et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. *PLoS ONE* 6, e22839 (2011).

323. Chen, Y. H. et al. miRNA-93 inhibits Glut4 and is overexpressed in adipose tissue of polygenic ovary syndrome patients and women with insulin resistance. *Diabetes* 62, 2278–2286 (2013).

324. Zhou, T. et al. Regulation of insulin resistance by multiple miRNAs via targeting the Glut4 signalling pathway. *Cell Physiol. Biochem.* 38, 2063–2078 (2016).

325. Zhao, S. et al. miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells. *Cancer Lett.* 333, 253–260 (2013).

326. Jiang, J. X. et al. Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II. *Mol. Med. Rep.* 10, 995–1002 (2014).

327. Song, J. et al. Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/ HK2 axis in osteosarcoma. *Biochem. Biophys. Res. Commun.* 490, 217–224 (2017).

328. Li, W. et al. Astragalin reduces hexokinase 2 through increasing miR-125b to downregulating glucose transporter 1. *PLoS ONE* 8, e46328 (2013).

329. Park, Y. Y. et al. Tat-activating regulatory DNA-binding protein regulates tumor proliferation and migration in breast cancer cells via PFKFB3 targeting. *Oncol. Rep.* 37, 89–97 (2017).

330. Han, R. L. et al. miR-383 inhibits ovarian cancer cell proliferation, invasion and apoptosis induction via the downregulation of 6-phosphofructokinase 2 and downregulates of miR-644a. *Onco. Biol.* 13, 1037–1131 (2017).

331. Chen, H. et al. Long non-coding RNA CRYBG3 regulates glycolysis of lung cancer cells by interacting with lactate dehydrogenase A. *J. Cancer* 9, 2580–2588 (2018).

332. Kulshreshtha, R. et al. A microRNA signature of hypoxic stress contributes to the inhibition of prostate cancer cell growth and invasion. *PLoS ONE* 11, e0154324 (2016).

333. Meng, S. et al. MicroRNA-107 partly inhibits endothelial progenitor cells differentiation and MRI-based tracking of transplanted cells. *BMC Biol.* 13, 5171–5181 (2017).

334. Bertozzi, D. et al. The natural inhibitor of DNA topoisomerase I, camptothecin, modulates HIF-1alpha activity by changing miR expression patterns in human cancer cells. *Mol. Cancer Ther.* 13, 239–248 (2014).

335. Hua, Z. et al. MiRNA-directed regulation of VEGF and other angiogenic factors in human carcinoma cells. *Oncol. Rep.* 37, 8543–8550 (2014).

336. Saumet, A. et al. Estrgen and retinoid acid antagonistically regulate several microRNA genes to control aerobic glycolysis in breast cancer cells. *Mol. Biosty.* 8, 3242–3253 (2012).

337. Chinn, M. et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. *Cell Proteome* 10, M111 010462 (2011).

338. Zhang, Y., Liu, G. & Gao, X. Attenuation of miR-34a protects cardiomyocytes against hypoxic stress through maintenance of glycolysis. *Biosci Rep.* 37, BSR20170925 (2017).

339. Li, L. et al. miR-30a-5p suppresses breast tumor growth and invasion by targeting AKT and ERK in breast cancer cells. *BMC Cancer* 14, 2517–2527 (2014).

340. Song, T. et al. MiR-138 suppresses expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in clear cell renal cell carcinoma 786-O cells. *Biochem. Biophys. Res. Commun.* 469, 37–43 (2016).

341. Lan, H. et al. miR-181c inhibits glycolysis by targeting hexokinase 2 in colon cancer-associated fibroblasts. *Biol. Cell Bio.* 111, 1619–1623 (2015).

342. Kim, H. R. et al. p53 regulates glucose metabolism by miR-34a. *Biochem. Biophys. Res. Commun.* 469, 225–231 (2016).

343. Rengaraj, D. et al. Regulation of glucose phosphate isomerase by the 3UTR-specific miRNAs miR-302b and miR-17-5p in chicken primordial germ cells. *Bio Reprod.* 89, 33 (2013).

344. Ahmad, A. et al. Phosphoglucose isomerase/autoimmune motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. *Cancer Cell* 21, 3450–3460 (2019).

345. Park, Y. et al. Target activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isomer of phosphofructokinase via microRNA 520. *Hepatology* 58, 182–191 (2013).

346. Tang, H. et al. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems. *FASEB J.* 26, 4710–4721 (2012).

347. White, N. M. et al. Dysregulation of kallikrein-related peptidases in renal cell carcinoma: potential targets of miRNAs. *Biol. Chem.* 391, 411–423 (2010).

348. Du, J. Y., Wang, L. F., Wang, Q. & Yu, L. D. miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven proliferation in osteosarcoma cells. *Oncol. Rep.* 33, 1890–1898 (2015).

349. Seliger, A. et al. Linkage of microRNA and proteome-based profiling data sets: a perspective for the prioritization of candidate biomarkers in renal cell carcinoma? *J. Proteome Res.* 10, 191–199 (2011).

350. Ge, X. et al. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. *Biochem. Biophys. Res. Commun.* 463, 1115–1121 (2015).

351. Savarimuthu Francis, S. M. et al. MicroRNA-34c is associated with epithymea severity and modulates SERPINE1 expression. *BMC Genet.* 15, 88 (2014).

352. Calin, G. A. et al. MiR-15a and miR-16-1 cluster functions in human leukemia. *Proc. Natl Acad. Sci. USA* 105, 5166–5171 (2008).

353. Boesch-Saadatmandi, C., Wagner, A. E., Wolffram, S. & Rimbach, G. Effect of quercetin on inflammatory gene expression in mice in vivo—role of redox factor 1, miRNA-122 and miRNA-125B. *Pharm. Res.* 65, 523–530 (2012).
374. Song, X. L. et al. miR-1301-3p promotes prostate cancer stem cell expansion by targeting SFRP1 and GSK3beta. *Biomed. Pharmacother.* **99**, 369–374 (2018).

375. Jiang, C. et al. miR-217 targeting DKK1 promotes cancer stem cell properties via activation of the Wnt signaling pathway in hepatocellular carcinoma. *OncoL Rep.* **38**, 2351–2359 (2017).

376. Yao, Y., Hua, Q. & Zhou, Y. Circular RNA has_circ_0006427 suppresses the progression and aggresiveness of adrenocarcinoma by regulating miR-6783-3p/DCX1 axis and inactivating Wnt/beta-catenin signaling pathway. *Biochem. Biophys. Res. Commun.* **508**, 37–45 (2019).

377. Jin, Y. et al. Circular RNA has_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. *Braz. J. Med. Biol. Res.* **51**, e78111 (2018).

378. In, J. et al. Circular RNA circ-CBFβ promotes proliferation and inhibits apoptosis in chronic lymphocytic leukemia through regulating miR-607/FD3/Wnt/beta-catenin pathway. *Biochem. Biophys. Res. Commun.* **503**, 385–390 (2018).

379. Chen, F. et al. Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. *Cancer Biol. Ther.* **19**, 1139–1152 (2018).

380. Ke, X. et al. miR-410 induces stemness by inhibiting Gsk3beta but upregulating beta-catenin in non-small cells lung cancer. *Oncotarget* **8**, 11356–11371 (2017).

381. Zhang, G. J. et al. MiR-92a promotes stem cell-like properties by activating Wnt/beta-catenin signaling in colorectal cancer. *Oncotarget* **8**, 101760–101770 (2017).

382. Zhu, J. et al. miR-19 targeting of GSK3beta mediates sulfonaphene suppression of lung cancer stem cells. *J. Nutr. Biochem.* **44**, 80–91 (2017).

383. Wu, Z., Shi, W. & Jiang, C. Overexpressing circular RNA has_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/beta-catenin pathway by regulating miR-1205/AC2 axis. *Biochem. Biophys. Res. Commun.* **502**, 465–471 (2018).

384. Geng, Y. et al. Hsa_circ_0009361 acts as the sponge of miR-582 to suppress endometrial cancer oncogenicity via targeting FAK and TWIST1 expression. *Arch. Gynecol. Obstet.* **290**, 533–541 (2014).

385. Liu, S. et al. MiR-137 stimulates epithelial-mesenchymal transition in gastrointestinal stromal tumor. *Tumour Biol.* **35**, 9131–9138 (2014).

386. Zhu, X. et al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. *Oncogene* **35**, 332–333 (2016).

387. Haga, C. L. & Phinney, D. G. MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. *J. Biol. Chem.* **287**, 42695–42707 (2012).

388. Nairismagi, M. L. et al. Translational control of TWIST1 expression in MCF-10A cells recapitulating breast cancer progression. *Oncogene* **31**, 4960–4966 (2012).

389. Li, L. et al. Circular RNA CASC2 promotes epithelial-mesenchymal transition via regulating Snail in colorectal cancer. *Sci. Rep.* **14** (2017).

390. Zhang, Y. F. et al. miR-410-3p suppresses breast cancer progression by targeting miR-330-3p. *Biochem. Biophys. Res. Commun.* **453**, 12150 (2014).

391. Zhang, P. et al. Cordycepin (3'-deoxyadenosine) suppressed HMGA2, Twist1 and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. *Oncotarget* **6**, 9834–9853 (2015).

392. Tsukerman, P. et al. MiR-520d-5p directly targets TWIST1 and downregulates the metastasim-10b. *Oncotarget* **5**, 12141–12150 (2014).

393. Cornejo, A. et al. Translational control of TWIST1 expression in MCF-10A cells recapitulating breast cancer progression. *Oncogene* **31**, 4960–4966 (2012).

394. Ma, F. et al. Overexpression of LncRNA AFFAI-AS1 predicts poor prognosis and promotes cell proliferation and invasion in gallbladder cancer. *Biomed. Pharmacother.* **84**, 1249–1255 (2016).

395. Wang, Y. et al. LncRNA NATL interaction with NOTCH1 promoted cell proliferation in pediatric T cell acute lymphoblastic leukemia. *Sci. Rep.* **5**, 13749 (2015).

396. Xiao, H. et al. NFOX circular RNA promotes glioma progression by regulating miR-222-3p via notch signaling pathway. *Front. Mol. Neurosci.* **11**, 225 (2018).

397. Chen, Y. et al. Circ-ASH2L promotes tumor progression by sponging miR-34a to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1. *Oncotarget* **6**, 32944–32954 (2015).

398. Zhang, X. et al. Identiﬁcation of microRNAs regulating reprogramming factor LIN2B in embryonic stem cells and cancer cells. *J. Biomed. Sci.* **28**, 41961–41971 (2010).

399. Jiang, J. et al. Overexpression of microRNA-21 strengthens stem cell-like characteris-tics in a hepatocellular carcinoma cell line. *World J. Surg. Oncol.* **14**, 278 (2016).

400. Gao, Y. et al. Linc-DYNC2H1-4 promotes EMT and CSC phenotypes by acting as a sponge of miR-145 in pancreatic cancer cells. *Cell Death Dis.* **8**, e2924 (2017).
Wang, G. et al. Loss of miR-873 contributes to gemcitabine resistance in triple-negative breast cancer via targeting ZEB1. Oncol. Lett. 18, 3837–3844 (2019).
Li, L. & Li, S. miR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1. Oncol. Lett. 16, 1715–1721 (2018).
Zhang, C., Xue, Q., Xu, Z. & Lu, C. MiR-5702 suppresses proliferation and invasion in non-small-cell lung cancer cells via up-regulation of PTEN. J. Biochem. Mol. Toxicol. e22163 https://doi.org/10.1002/jbt.22163 (2018).
Xu, J. et al. The inhibition of miR-126 in cell migration and invasion of cervical cancer through regulating ZEB1. Hereditas 156, 11 (2019).
Li, J. et al. MiR-186-5p upregulation inhibits proliferation, metastasis and epithelial-mesenchymal transition of colorectal cancer cell by targeting ZEB1. Arch. Biochem. Biophys. 640, 53–60 (2018).
Chen, L., Yao, H., Wang, K., Liu, X. & Long Non-Coding, R. N. A. MALAT1 Regulates TGF-beta Type I Receptor Signaling in Human Ovarian Carcinoma Cells. Mol. Cancer. 17, 118 (2018).