Specific Responses of *Salmonella enterica* to Tomato Varieties and Fruit Ripeness Identified by *In Vivo* Expression Technology

Jason T. Noel¹, Nabil Arrach²,³, Ali Alagely¹, Michael McClelland²,⁴, Max Teplitski¹*

¹ Soil and Water Science Department, Genetics Institute, University of Florida, Gainesville, Florida, United States of America, ² Vaccine Research Institute of San Diego, La Jolla, California, United States of America, ³ Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America, ⁴ Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America

Abstract

Background: Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood.

Methodology/Principal Findings: To better understand interactions between *Salmonella enterica* sv. Typhimurium and tomatoes, a *gfp*-tagged *Salmonella* promoter library was screened inside red ripe fruits. Fifty-one unique constructs that were potentially differentially regulated in tomato relative to *in vitro* growth were identified. The expression of a subset of these promoters was tested *in planta* using recombinase-based *in vivo* expression technology (RIVET) and fitness of the corresponding mutants was tested. Gene expression in *Salmonella* was affected by fruit maturity and tomato cultivar. A putative *fadH* promoter was upregulated most strongly in immature tomatoes. Expression of the *fadH* construct depended on the presence of linoleic acid, which is consistent with the reduced accumulation of this compound in mature tomato fruits. The *cysB* construct was activated in the fruit of cv. Hawaii 7997 (resistant to a race of *Ralstonia solanacearum*) more strongly than in the universally susceptible tomato cv. Bonny Best. Known *Salmonella* motility and animal virulence genes (*hilA, rhDC, hilF* and those encoded on the pSLT virulence plasmid) did not contribute significantly to fitness of the bacteria inside tomatoes, even though deletions of *sirA* and *motA* modestly increased fitness of *Salmonella* inside tomatoes.

Conclusions/Significance: This study reveals the genetic basis of the interactions of *Salmonella* with plant hosts. *Salmonella* relies on a distinct set of metabolic and regulatory genes, which are differentially regulated *in planta* in response to host genotype and fruit maturity. This enteric pathogen colonizes tissues of tomatoes differently than plant pathogens, and relies little on its animal virulence genes for persistence within the fruit.

Introduction

The increase in produce-associated gastroenteritis outbreaks indicates that non-typhoidal serovars of *Salmonella enterica* and enteroovirulent *E. coli* can contaminate fruits, vegetables and sprouts [1–3]. *S. enterica* (including sv. Typhimurium 14028) and enteroovirulent *E. coli* were found to colonize internal tissues of tomato, lettuce, alfalfa, cilantro, where they reach population levels as high as $10^7–10^9$ cfu/g of plant tissue under field and/or laboratory conditions [4–7]. These populations are approximately two orders of magnitude lower than those reached by dedicated phytopathogens like *Pectobacterium carotovorum* [7]. These observations indicate that under most biologically relevant conditions, *Salmonella* can efficiently utilize nutrients found within plant tissues. However, behaviors and nutrition of enterics inside plants are not well understood.

Unlike closely related plant-associated members of the *Enterobacteriaceae*, *Salmonella enterica* and *E. coli* do not produce enzymes capable of degrading plant cell wall polymers and their genomes do not encode homologs of known pectinases or hemicellulases [8,9]. Therefore, to proliferate inside plant tissues, these enteric pathogens may rely on their ability to acquire simpler carbon sources. This hypothesis was recently supported by a transcriptomic analysis of the *E. coli* O157:H7 growth on lettuce leaf lysates [10]. Tomato fruits contain simple sugars, sugar alcohols, organic and fatty acids, and amino acids, which could be utilized by...
Salmonella. The amounts of these metabolites differ among cultivars and also depend on the maturity stage of fruit [11,12].

To formulate a hypothesis about behavior of S. enterica within plant tissues, we analyzed reports of gene regulation in plant pathogens during their interactions with plant hosts. In planta gene expression has been documented for Xanthomonas campestris pv vesicatoria during formation of a leaf spot on tomato [13],Ralstonia solanacearum during bacterial wilt of tomato [14], the fire blight pathogen Erwinia amylovora during rot of immature pear fruits [15], Pseudomonas syringae pv syringae during colonization of bean phyllosphere [16] and P. syringae pv tomato during growth inside tissues of Arabidopsis thaliana [17]. Even though screen conditions differed, all of these phytopathogens were found to express a common set of ~5–15% of their genes during interactions with plant hosts. These commonly expressed genes included those for type III secretion systems and effectors translocated by them, as well as genes involved in the degradation of plant polymers. A significant number of differentially regulated genes were involved in stress resistance and responses to antibiotics, uptake of iron, and also depend on the maturity stage of fruit [11,12].

To test whether ATCC 14028 colonizes tomato fruit tissues as well as the strains isolated from the salmonellosis outbreaks linked to the tomato consumption, proliferation of this strain inside red ripe tomatoes (cv. Campari) was compared with that of the six-strain cocktail containing of S. enterica sv. Newport, Braenderup, Javiana and Montevideo, which were isolated from tomato-related salmonellosis outbreaks or from tomato fields on the Eastern Shore of Virginia (Table S1).

As shown in Fig. 1, S. enterica sv. Typhimurium ATCC 14028, the model for this research, reached approximately 10^9 c.f.u./g of tomato tissue, and grew inside tomatoes to the same final densities as the outbreak strains (Fig. 1). These observations are consistent with the report that another isolate of S. Typhimurium colonized tomato fruits similarly to the strains, which have been linked to the gastroenteritis outbreaks [28]. While it is likely that there exist strain-specific differences in the regulation of some Salmonella genes during colonization of tomatoes, the ability of ATCC 14028 to proliferate inside tomatoes as efficiently as the outbreak strains indicates that the data obtained using this model will be useful in understanding the role of non-host environments in the ecology of Salmonella.

Survey of Salmonella genes induced in tomato fruit

To identify promoters that are strongly regulated in Salmonella during colonization of tomato fruits, two promoter-gfp libraries were screened and tomato-specific constructs were isolated. Two hundred eighty-eight clones containing differentially regulated promoters were identified and sequenced. Fifty-one unique promoters were identified in different tomato cultivars or maturity stages was tested. Below, we will consider only those select reporters that were validated by RIVET assays.

The promoter adjacent to fadH is differentially expressed in green vs red fruits

The resolution of the RIVET reporter (S. enterica sv. Typhimurium JTN24) in the promoter adjacent to fadH was strongly reduced in red ripe tomatoes compared to the soft agar LB (Fig. 3A). Consistent with the FACS experiments, there was no resolution of the construct in LB broth (data not shown). The fadH gene encodes 2,4-dienoyl-CoA reductase, an iron-sulfur flavoenzyme required for the metabolism of unsaturated fatty acids with double bonds at even carbon positions [30]. In fruits that are green when immature and turn red when mature (tomato cvs. Hawaii 7997, Bonny Best; jalapeno and red bell pepper), the resolution of the fadH RIVET reporter was significantly higher in green fruit compared to red ripe fruit. Interestingly, in bell pepper cv. Diamond (ivory when immature, red when mature), resolution of the reporter was strong in mature and immature fruit (Fig. 3A). In fruit of tomato and bell pepper that are green when immature and yellow when mature, expression was low and not statistically different between fruits of different cultivars (Fig. 3A). The reporter was not resolved on surfaces of leaves of tomato cvs Bonny Best or Hawaii 7997 (data not shown). These observations suggested that the reporter responds either positively or negatively to the presence of chemical cues in fruit at different maturity stages.

To test the hypothesis that the expression of the promoter upstream of fadH depended on the presence of carotenoid pigments, which accumulate as the fruits ripen and turn red, hydrophobic pigments were extracted with chloroform. Resolution of the reporter was tested in soft LB agar (0.3%) supplemented with the tomato extract. No difference in the activity of the
reporter was observed in response to the hydrophobic extract of red ripe tomatoes: 80±7% (± standard error) in soft LB agar with tomato extract vs 74±6% in soft LB agar. This indicates that it was not non-polar compounds found in ripe tomatoes, which down-regulated the reporter. Rather, it is likely to be a substance present in green tomatoes that activated the reporter.

Linoleic acid upregulates Salmonella promoter adjacent to fadH

In red ripe fruit, sucrose content decreases while glucose increases. Palmitic and linoleic acids, myo-inositol, mannitol, glycine, arginine and arabinose are found in higher amounts in immature fruit (compared to a red ripe fruit) [11]. To test whether any of these compounds affect expression of the fadH+fadH::tnpR RIVET reporter JTN24, bioassays were carried out with each of these compounds spotted on glass fiber disks and placed on the surface of soft agar based on M9 minimal medium seeded with the reporter. As an additional control, one of the assays contained glycerol (its concentration in the tomato fruit does not change as the fruit matures [11]). As shown in Fig. 3B, the basal level of the reporter resolution in M9 soft agar was approximately 20%. The addition of sucrose (which is not metabolized by S. enterica [31]), mannitol or glycerol did not affect regulation of the reporter (Fig. 3B). Partial induction was observed in the presence of other tomato metabolites (arabinose, arginine, glucose, glycine, myo-inositol and palmitate) known to differentially accumulate in green (and not ripe) tomatoes. The addition of linoleic acid fully induced the reporter (Fig. 3B) indicating that this is likely the cue that triggers the expression of the fadH RIVET reporter in green, and not red ripe tomatoes.

Tomato genotype contributes to the regulation of Salmonella cysB

A fragment spanning the cysB promoter [32] was identified as differentially regulated inside tomatoes (Fig.2). Consistent with this, resolution of the cysB RIVET reporter (S. enterica sv. Typhimurium JTN69) in LB broth was 2±2% and was increased in tomato fruits (Fig. 4). No resolution of the reporter was observed in the phyllosphere of cvs. Bonny Best or Hawaii 7997 (data not shown). The cysB gene encodes a regulator of an operon involved in cysteine acquisition [32,33]. Cysteine accumulates in red ripe tomatoes [11], therefore we tested whether the expression of the cysB RIVET reporter would depend on the maturity of the fruit. As shown in Fig. 4, regulation of the cysB reporter was not affected by maturity of the fruit; rather it depended on the cultivar in which the reporter was tested. The expression of cysB was highest in the fruit of cv. Hawaii 7997 which is resistant to a race of a vascular pathogen R. solanacearum [34]. Expression of the cysB reporter was lower in the fruits of cvs. Campari and Bonny Best which are both susceptible to a number of bacterial and fungal pathogens. The correlation between the expression of cysB and tomato disease-resistant genotype is intriguing because one of the cysB-dependent phenotypes in S. enterica is resistance to antibiotics (although the mechanism by which L-cysteine and cysB affect this behavior is not entirely clear) [33]. Interestingly, genes involved in cysteine synthesis were differentially regulated in P. syringae on bean leaf surfaces [16] and in E. coli O157:H7 in response to lettuce leaf lysates [10]. These observations suggest a conserved function for the cysteine synthesis genes in the interactions of enterics and plant pathogens with their plant hosts.

Regulation of STM2006

STM2006 is predicted to encode a DNA-binding prophage protein, which is found in the genomes of some salmonellae, with a close homologue in Pectobacterium carotovorum, a plant-associated member of Enterobacteriaceae. Expression of the STM2006 RIVET reporter (S. enterica sv. Typhimurium JTN69) was 3-to-4 fold higher inside red or green tomatoes of three cultivars compared to the LB control (Fig. 5). No resolution of the reporter was observed on tomato leaf surfaces (data not shown). Because orthologs of STM2006 are annotated as amino acid transporters in some Salmonella published genomes, we tested whether supplementation of M9-glucose medium with any of the 20 amino acids or γ-aminobutyric acid would mimic the increased expression observed.
Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
3385884:3386218	fadD (STM219)	NADH dehydrogenase		RIVET	reporter differentially
1053294:1052870	pFLA (STM9070)	pyruvate formate lyase			regulated in tomatoes
2719565:2719401	STM2573	dehydroquinase reductase			
78613:78275	curB (STM6067)	phosphate synthase			
807104:806821	sucD (STM7039)	sucrose-6-phosphate synthase			
192906:193228	pdkA (STM1653)	4-hydroxy-3-phosphatase dehydrogen			
3425926:3425892	argF (STM2900)	arginine/ornithine synthase			
3470433:3470070	argE (STM3301)	GTP-binding protein			
2042873:2043033	yecO (STM1953)	D-lysine dehydratase			
3822098:3822488	yihW (STM3635)	phosphoethanolamine transferase			
2623544:2623107	ynaC (STM2310)	riboflavin metabolism			
3902673:3902431	ycbF (STM7077)	putative glycycol transferase			
1846824:1846771	thk (STM4514)	thymidine kinase			

Protein synthesis and degradation

Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
4115239:4114917	fbd (STM9050)	threonine dehydratase		RIVET	reporter not resolved in
1345464:1345774	STM1262	tRNA			LB soft agar or tomatoes
1794777:1794415	rnb (STM1702)	exoribonuclease II			
4363851:4363589	rplA (STM4150)	50S ribosomal protein			
3235881:3256392	rpmB (STM3094)	16S ribosomal RNA methyltransferase			
3454233:3453897	rrb (STM2156)	translation initiation factor			
2491412:2491626	mcn (STM2379)	5-methylaminomethyl-2-thioridyl methyltrans.			

Regulation

Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
1809738:1809596	cynB (STM1713)	regulator of cysteine operon and antibiotic resist.		RIVET	reporter differentially
1349088:1349259	STM1266	putative transcriptional regulator			regulated in tomato
216372:216623	dksA (STM9186)	transcriptional regulator			

Transport

Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
3744733:3744305	wzt (STM3576)	PhoC/Zu//Hg transporter		RIVET	reporter not resolved in
399109:3999916	rdpp (STM3790)	sugar uptake regulator			LB soft agar or tomatoes
3816358:3816185	dpp (STM3630)	dipeptide transporter			
1343730:1343830	STM1259	ABC-type transport system ATPase component		RIVET	reporter differentially
2085326:2085832	STM2006	amino acid transport			regulated in tomato

Virulence

Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
3634465:3634915	higC (STM3478)	putative surface-exposed virulence protein		RIVET	reporter not resolved in
2066259:2065922	fiQ (STM1980)	anti-sense fiQ message contributes to regulation of virulence and motility genes			soft agar or tomatoes

Attachment

Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
3827572:3827837	lrgA (STM2640)	long polar fimbria precursor		RIVET	reporter not resolved in
379020:379567	shf (STM4036)	chaperone, usher for Type 1 fimbria			soft agar or tomatoes
3802370:3802035	bcsA (STM2619)	cellulosic fimbria			

Stress response

Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
1920125:1919777	yosA (STM1821)	SOS repair helicase		RIVET	reporter not resolved in
3391851:3392147	yscT (STM2224)	tellurite resistance			soft agar or tomatoes

Cell envelope

Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
2452240:2452657	yfcC (STM2339)	putative inner membrane protein		RIVET	reporter not resolved in
4769022:4768917	yidl (STM4314)	putative inner membrane protein			soft agar or tomatoes
4437196:4437420	STM4218	putative inner membrane protein			
2513789:2513620	STM2400	putative inner membrane protein			

Extrachromosomal elements, pseudogenes

Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
2756267:2756544	STM2608	terminase-like large protein		RIVET	reporter not resolved in
2737846:2737442	STM2589	specificity protein-J-like			soft agar or tomatoes
2747616:2747165	STM2597	major tail-like protein			
1135727:1136132	STM1049	major tail fiber protein			
4697078:4697376	treB (STM4454)	pseudogene			

Unknown functions

Coordinates of the probe	Nearest Gene	Putative Function of the Nearest Gene	General Metabolism	Probe Orientation	Comments
1713839:1714224	STM1624	putative cytoplasmic protein		RIVET	reporter not resolved in
2423218:2422856	STM4429	unknown			soft agar or tomatoes

RIVET reporter not resolved in soft agar or tomatoes
in tomatoes. None of tested amino acids (at 0.5–1 mM) affected expression of the reporter in STM2006 to an appreciable degree (data not shown). Therefore, while STM2006 is clearly upregulated inside tomatoes, the mechanism of this differential regulation is not yet clear.

Cryptic genes

The analysis of the genomic context revealed that only eleven of the clones identified by FACS included known promoters (Fig. 2). The other constructs represent intergenic regions or “cryptic” genes, in which a differentially regulated fragment overlaps the ORF or is in the opposite orientation (Fig. 2). This was not unexpected. Such cryptic constructs are commonly identified using in vivo expression analyses and represent a sizable proportion of the in vivo expressed genes [13,14,16,35]. We do not yet know whether these sequences are simply “noise” inherent to high-throughput assays or whether these are indications of niche-specific gene regulation through alternate mechanisms.

To test whether fragments found within ORFs, including those in “backwards” orientations, acted as inducible promoters, chromosomal RIVET reporters were constructed in fliQ, hgiA, STM4429, STM2608 and lpfA (Fig. 2). Regulation of these single copy reporters was tested in soft LB agar (0.3%) and in tomatoes. The single copy chromosomal reporters in hgiA, STM4429 and STM2608 did not resolve inside red ripe tomato or in soft LB agar (Fig. 2). The RIVET reporter corresponding to the antisense fliQ transcript was resolved at ~13% in soft LB agar and in tomatoes (Fig. 2). This is consistent with the report by Wang and Harshley (2009), which identified low level antisense transcription of the fliPQR cistron [36].

The “backwards” RIVET reporter in lpfA was expressed at 5±3% in LB broth and at 49±5% in soft LB agar (0.3%) (data not shown). Expression of this reporter was reduced inside tomatoes, the regulation of the cryptic promoter within lpfA was not affected by the cultivar or maturity of the tomato. The mechanism of this regulation inside tomatoes is not yet clear, nor is it clear how important the anti-sense regulation is to the regulation of the cryptic promoter within lpfA.

Fitness of the mutants in the tomato-dependent genes

We constructed individual deletion mutants in fadH, cysB and in the first genes in the following putative cistrons: STM2006-
STM2008; and lpfABCD, hgiA, STM4429, STM2608 and lpfA (Fig. 2). Regulation of these single copy reporters was tested in soft LB agar (0.3%) and in tomatoes. The single copy chromosomal reporters in hgiA, STM4429 and STM2608 did not resolve inside red ripe tomato or in soft LB agar (Fig. 2). The RIVET reporter corresponding to the antisense fliQ transcript was resolved at ~13% in soft LB agar and in tomatoes (Fig. 2). This is consistent with the report by Wang and Harshley (2009), which identified low level antisense transcription of the fliPQR cistron [36].

The “backwards” RIVET reporter in lpfA was expressed at 5±3% in LB broth and at 49±5% in soft LB agar (0.3%) (data not shown). Expression of this reporter was reduced inside tomatoes, the regulation of the cryptic promoter within lpfA was not affected by the cultivar or maturity of the tomato. The mechanism of this regulation inside tomatoes is not yet clear, nor is it clear how important the anti-sense regulation is to the interactions of Salmonella with its hosts.

Role of known virulence, motility and attachment genes in persistence within fruit

In E. coli O157:H7, known virulence genes were upregulated within the first 15–30 minutes of exposure to lettuce leaf exudates [10]. Salmonella virulence gene were also involved in the colonization of alfalfa seedlings [19,38], however promoters of the Salmonella virulence genes were largely absent from the list in Fig. 2. This could be explained by the fact that animal virulence genes were not differentially regulated inside tomato fruit. Alternatively, the corresponding constructs may have been eliminated during the pre-sorting step (after growth in LB broth and prior to inoculation into tomatoes) because many virulence genes are expressed in LB medium and the corresponding promoter probes would have been eliminated during the pre-sorting step.

The majority of Salmonella strains recovered from fruit- or vegetable-related outbreaks produced curli [23]. Genes encoding aggregative fimbriae (curli) were shown to be involved in binding of Salmonella and some E. coli strains to alfalfa seedlings and lettuce leaves [18–22]. However, none of the genes in the agf operon were identified in our screen. To test whether aggregative fimbriae were involved in the persistence of Salmonella within tomatoes, we constructed a mutant with deletions in the agfC and agfB genes, and tested the expression of the agf RIVET reporter (S. enterica sv. Typhimurium JTN204) inside tomatoes. The resolution of the JTN204 RIVET reporter in LB shake cultures was 46±9%, while inside red ripe Campari tomatoes the resolution was significantly lower (5±2%). This lack of up-regulation of the reporter inside the tomato is consistent with the results of the FACS sort, which did not identify agf promoter as differentially regulated inside tomato.

Competitive fitness of the mutant lacking agfB and agfC was indistinguishable from that of the wild type (Table 2), consistent with the lack of expression of the gene inside tomatoes. Conversely, a RIVET reporter in the yikT gene (S. enterica sv. Typhimurium JTN205) encoding an aldolase involved in capsule synthesis was expressed in red ripe Campari tomatoes (27±4%), but not in LB. However, deletion of yikT or of the entire yikT-ompL region did not reduce competitive fitness of the strain in red ripe tomatoes (Table 2). These results indicate that even though aggregative fimbriae and capsule gene were involved in attachment to plant surfaces in other studies, they are not critical to persistence within tomatoes.

To test whether known Salmonella virulence genes have a role in colonization and persistence within tomato fruits, equal numbers of the wild type Salmonella 14028 and isogenic mutants were inoculated onto wounded tomato fruits (Table 2). Deletion of the entire virulence plasmid pSLT had no effect on the competitive fitness of Salmonella within red ripe tomatoes (Table 2). In addition to the tra and spo genes, pSLT carries pef and rek operons that are controlled by the Salmonella N-Acyl homoserine lactone receptor SdiA [39]. The lack of the phenotype for pSLT in these experiments is consistent with the earlier report that the Salmonella SdiA regulon is dispensable during persistence within tomato fruits [7].
In *Salmonella*, the global regulatory system BarA/SirA-Csr controls invasion genes located on *Salmonella* Pathogenicity Island (SPI)-1, SPI-4 and SPI-5 by activating transcription of small RNA genes *csrB* and *csrC* [40–42]. The BarA/SirA-Csr system, therefore, plays a role in some animal models of virulence and also is crucial for attachment to abiotic surfaces [40,41,43].

Figure 3. *fadH* expression depends on fruit ripeness and a specific metabolite. (A) To test regulation of *fadH* inside fruits of tomatoes and peppers, *fadH*+ *fadH::tnpR res1-tet-res1* reporter was seeded onto shallow wounds in mature and immature fruits of tomatoes and peppers. Activity of the reporter was scored as the loss of the tetracycline marker in the recovered bacteria (resolution). Averages of at least two biological and three technical replications are shown, error bars are standard errors. Fruits of each cultivar at different maturity stages were collected from the same plant. In LB broth, resolution of the *fadH* RIVET reporter was 0%. (B) To test which metabolite from red or green tomatoes affects the *fadH* RIVET reporter, resolution of the reporter was measured in soft M9 agar (0.3%) supplemented with the metabolites present in tomato fruits. An upward white arrow at the bottom of each bar indicates that the metabolite increases as tomato matures, a downward arrow indicates that the metabolite decreases with the maturity of the fruit [11]. Glycerol is present at the same amounts in red and green fruit [11], and therefore is not marked with an arrow. The control sample contained no carbon sources. The experiment was repeated twice, with two technical replications. Data from the second experiment are shown, error bars are standard errors.

doi:10.1371/journal.pone.0012406.g003
Furthermore, the sirA ortholog of *Erwinia amylovora* was upregulated during the infection of a pear fruit [15]. Our results indicated that the sirA mutant was 1.8-fold more competitive than the wild type in tomato (Table 2). Deletion of both regulatory *csr* sRNAs (which are known to be controlled by SirA [41,43,44]) resulted in a phenotype with a competitive index of 1.57, however this was not significantly different from either the wild type or a sirA mutation. In an LB broth co-culture with the wild type *S. enterica* sv Typhimurium 14028, competitive fitness of the sirA mutant was statistically indistinguishable from the fitness of a wild type strain marked with an antibiotic resistance gene in a neutral site of the genome (data not shown). Deletion of *hilA* tended to increase the competitive fitness of the mutant, consistent with the earlier reports for the function of *SPI-1* effectors in endophytic fitness within alfalfa seedlings [38]. However, the *hilA* phenotype was highly variable between biological replicates and therefore was not statistically significantly different from the wild type overall (Table 2).

As an additional control, competitive fitness was also tested for the mutants in *hns*, a gene encoding a histone-like protein that is known to be expressed in tomatoes [7] and *ana4*, a gene encoding 5-enolpyruvylshikimate-3-phosphate synthase. Both mutants were strongly outcompeted by the wild type in tomatoes, consistent with their pleiotropic phenotypes. However, in LB broth shake cultures under experimental conditions used in this study, competitive fitness of the mutants was not statistically significantly different from the competitive fitness of the wild type marked with an antibiotic resistance (data not shown).

In IVET screens with plant pathogens, flagellar genes have not been detected as upregulated inside plant tissues [13–17]. Consistent with the reports that bacterial flagella elicit plant defense responses, flagellar genes reduced endophytic fitness of *S. enterica* sv. Typhimurium 14028 in alfalfa seedlings [38]. To test whether *Salmonella* flagella have a function in competitive persistence within tomato fruits, phenotypes of regulatory and structural flagellar mutants were compared. A mutation in *fliDC*, the master regulator of the flagellar regulon had no effect on competitive fitness within red ripe tomatoes (Table 2). Deletion of *fliB* results in a non-flagellated mutant with a functional motor, this mutant was as competitive as the wild type. Disruption of *motA* mutant was as competitive as the wild type (data not shown). *motA* mutant was functional in tomato fruit tissues better than the wild type competitive index 2.57, Table 2 while in LB shake cultures, *motA* mutant was as competitive as the wild type (data not shown). The conclusion that the presence of a flagellum, even if it is not functional (as in the *motA* mutant) reduces competitive fitness of *Salmonella* in tomatoes is consistent with the reduced endophytic fitness of flagellated *Salmonella* strains within alfalfa sprouts [38].

Discussion

Despite improvements in agricultural and management practices, leafy greens, tomatoes, cucurbits, peppers and nuts were among the foods linked to outbreaks of gastrointestinal illnesses caused by *Escherichia coli* O157:H7 and non-typhoidal serovars of *Salmonella enterica*, causing thousands of hospitalizations and multi-million dollar damage to the produce industry. This is consistent with an ability of enterics to colonize plants as alternate hosts [1].

Figure 4. Tomato cultivar-dependent regulation of *Salmonella* cysB. Activity of the chromosomal cysB+ cysB::tnpR res1-tet-res1 reporter was scored as the loss (‘resolution’) of tetracycline marker flanked by res sites in reporter cells recovered from red and green tomatoes of three cultivars and soft LB agar. Resolution of the reporter in LB broth was 2±2%. Averages of at least two biological and three technical replications are shown, error bars are standard errors. Data points that are significantly different are indicated by different upper case letters; statistical significance was established by 1-way ANOVA and Tukey’s Honestly Significant Difference (HSD) for post hoc comparison of means. All statistical tests were performed using JMP 5.1.2 (SAS Institute, Inc).

Figure 5. Activity of the STM2006 RIVET reporter in tomatoes. *cis* merodiploid chromosomal RIVET reporter in STM2006 was upregulated in tomatoes, compared to soft LB agar. Averages of the two biological and three technical replications are shown; tomatoes of each cultivar at different maturity stages were harvested from the same plant at the same time. Data points that are significantly different are indicated by different upper case letters; statistical significance was established by 1-way ANOVA and Tukey’s Honestly Significant Difference (HSD) for post hoc comparison of means. All statistical tests were performed using JMP 5.1.2 (SAS Institute, Inc).

--

See the full text file for reference links and more detailed information.
Activity of the antisense Ipfa reporter in tomatoes

Figure 6. Regulation of the RIVET reporter in the internal antisense fragment of Ipfa in tomatoes. A chromosomal RIVET reporter constructed within Ipfa and in the antisense orientation was strongly expressed in soft LB agar and down-regulated in tomatoes, regardless of the maturity state or the cultivar. In LB broth, the reporter was resolved at 5±3%. Averages of the two biological and three technical replications are shown; tomatoes of each cultivar at different maturity stages were harvested from the same plant at the same time. Data points that are significantly different are indicated by different letter case letters; statistical significance was established by 1-way ANOVA and Tukey’s Honestly Significant Difference (HSD) for post hoc comparison of means.

doi:10.1371/journal.pone.0012406.g006

However, it is not yet clear whether, how and to what extent enteric may have evolved to use plants as environmental reservoirs or alternate hosts.

If non-typhoidal salmonelae have indeed been selected to utilize plants as alternate hosts, then such evolution should result in effective colonization of plant tissues by these bacteria and in specifically altered patterns of bacterial gene expression in response to chemical signals and nutritional cues encountered during their colonization of plant tissues. The results presented here identify a significant set of genes in S. enterica sv. Typhimurium 14028 that are differentially regulated during colonization of the internal tissues of the tomato fruit. There appears to be no appreciable overlap of this set of “tomato-regulated” genes with the set of genes in Salmonella required for its infection and colonization of animals, or with the set of common genes in phytopathogenic bacteria required for their infection and colonization of plant tissues.

The differences in colonization of plant cultivars by different Salmonella serovars [28,38,45,46] and the differences in responses of Salmonella RIVET reporters to the tomatoes of different cultivars (Fig. 4) raise the intriguing possibility that these interactions are co-evolved, with adaptations of eachpartner to the other. Previous studies have indicated that plant hosts recognize human enteric pathogens and initiate defenses to limit colonization by these bacteria. For example, PR1, a defense-related protein commonly used as a reporter of inducible plant defenses, was upregulated after inoculation with Salmonella in both Arabidopsis and in lettuce [6,38]. Our results showed that the cysB reporter was differentially regulated in the tomato cultivars Hawaii 7997 and Bonny Best. The cysB gene contributes to the resistance of Salmonella swarms to antibiotics [33]. However, the connections between cysB expression and mechanism of resistance in plants are not yet known. Further characterization of the genetic mechanisms that determine the specificity of interactions between Salmonella and crop cultivars may lead to the identification of plant genotypes that are less conducive to the proliferation of Salmonella within plant tissues and thus to enhanced food safety.

Materials and Methods

Strain construction

All strains are listed in Table S1. Deletion mutants were constructed using the one-step mutagenesis procedure of Datsenko and Wanner (2000) with primers listed in Tables S1 and S2. Mutants were confirmed by PCR and then transduced into the wild type S. enterica sv Typhimurium 14028 using phage P22-mediated transduction. When necessary, frt-kan-frt cassettes were removed as in [47], and confirmed by PCR with a set of outside primers (Table S2). The mutation in cysB was also confirmed phenotypically; the mutant was a cysteine auxotroph unable to utilize methionine, consistent with previous reports [48]. To construct TIM174, Δlpfa30, ΔfadH15, ASTM2006 and ΔcysB22::kan mutations were introduced sequentially into JSG1748 using P22 phage transductions.

To construct RIVET reporters, putative promoters of interest were PCR amplified using primers specified in Table S2 using genomic DNA of S. enterica sv Typhimurium 14028 as a template. PCR products were first cloned into pCR2.1, and then sub-cloned into pGOA1193 [49]. The resulting constructs were sequenced at the University of Florida Biotechnology Core facilities, and then mated into S. enterica sv Typhimurium JS246. Integration was validated by PCR, using the “third” primer (see Tables S1, S2). As indicated in Table S1, some RIVET reporters were constructed using pCE70 or pCE71, which integrate into the frt scar generated by the excision of the frt-kan-frt cassette [29].

Plant materials

All assays were initially conducted in unwaxed red ripe tomatoes cv. Campari purchased at local supermarkets. Follow-up experiments, as indicated in text, were carried out with green or red-ripe tomatoes of cvs. Bonny Best and Hawaii 7997 grown in a roof-top greenhouse. Plants were grown from seed in Miracle-Gro Potting Soil, fertilized biweekly with Miracle-Gro Tomato Plant Food (18-21-21) (Marysville, OH). Seeds of Hawaii 7997 were from Dr. Jeffrey B. Jones (Department of Plant Pathology, University of Florida). Seeds of cv. Bonny Best were purchased from Millington Seed Co (Millington, MI). Peppers and other tomato cultivars were grown in the field under organic-like conditions on a private farm outside of Archer, FL, from locally purchased seeds. Fruits were harvested individually from the field- and greenhouse-grown plants, ensuring that ripe and unripe fruit are from the same plants; they were inoculated with Salmonella within 3-4 hrs of harvest.

For experiments on Salmonella gene regulation in tomato phyllosphere, tomatoes cvs. Bonny Best and Hawaii 7997 were grown on a private farm outside of Archer, FL. Two days prior to the inoculation, secondary stems were excised from the field-grown plants, transferred to the laboratory, and were partially
Table 1. Fitness of Salmonella enterica mutants in red ripe tomatoes, cv Campari.

Genotypes	Mean of the log competitive index ± standard error
tfadH15::kan	0.170±0.330
lbc::kan	−0.156±0.145
lcyb22::kan¹	−0.276±0.086
lplfA30::kan	−0.010±0.280
STM2006::kan	0.300±0.310
lbc::lplfA30::tfadH15	−0.510±0.010

¹—boldface shading indicates that the strain is less competitive than the wild type, based on a two-tailed t-test (p<0.05) of log competitive indices as described in Materials and Methods.

doi:10.1371/journal.pone.0012406.t001

Table 2. Competitive fitness of Salmonella enterica mutants in virulence, motility and attachment genes within red ripe tomatoes.

S. enterica genotype	Mean of the log competitive index ± standard error
sirA3::cam¹	0.244±0.044
AcrrB20::Acrc30::kan	0.183±0.043
fthDC::Tn10	−0.133±0.094
motA::Tn10	0.338±0.101
nil::kan	0.070±0.060
hilA1550::MudJ	0.334±0.172
14028 pSLT	−0.038±0.122
aroA::Tn10²	−1.251±0.183
hns::kan	N/A³
JaggB36::frt, JaggC37::kan	−0.08±0.15
Jyvht27::kan	0.05±0.07
Jyvht27::ompL19::frt	−0.002±0.13

¹—underline indicates that the strain is more competitive than the wild type, based on a two-tailed t-test (p<0.05) of log competitive indices as described in Materials and Methods.

²—boldface indicates that the strain is less competitive than the wild type, based on a two-tailed t-test (p<0.05) of log competitive indices as described in Materials and Methods.

³—the hns mutant was completely unfit, none were recovered from tomatoes.

doi:10.1371/journal.pone.0012406.t002

submerged into sterile de-ionized water in light at room temperature.

Promoter-probe screen

To harvest promoters that were differentially regulated inside red ripe Campari tomatoes, two promoter probe-gfp libraries were used [50]. One library was constructed with stable Turbo-GFP (Evrogen, Inc) and another library was constructed with Turbo-GFP that was destabilized by an LVA C-terminal tag [50]. Libraries were transformed back into S. enterica sv Typhimurium 14028 by electroporation. Fluorescent activated cell sorting (FACS) was done on FACS Aria-I cell sorter (BD Biosciences, San Jose, CA) supported by Diva 6.2 software. Green fluorescent cells were detected at 488 nm with 525/10 band path filter. Conditions for the cell sort were established first by defining the parameters for pTurbo-gfp (non-fluorescent negative control), blended filtered tomato pulp (negative control), a strongly fluorescent construct carrying promoter for dppA (positive control) and filtered tomato pulp spiked with the dppA-gfp construct (Fig. 7).

For the fluorescence-activated cell sorts, libraries were grown in LB broth or in M9 medium with ampicillin and glucose as the sole carbon source. The libraries were then sorted to remove constructs that were strongly expressed in vitro. “Dint” constructs were collected, washed in PBS to remove the carrier buffer and then inoculated into shallow wounds made in red ripe tomatoes cv. Campari or field grown tomatoes as described in [7]. Infected tomatoes were incubated for 2 days at room temperature; fruits were then ground on ice in Phosphate-Buffered Saline (PBS) with a mortar and pestle. Pulp was filtered through Whatman #1 filter paper. The resulting suspension was then centrifuged at 24,000 g for 10 min, the supernatant was removed and the pellet was resuspended in 7 ml of PBS. The resulting suspension was then sorted into the P1 gate (Fig. 7) to isolate fluorescent constructs. These were plated on LB with ampicillin. Six hundred individual colonies resulting from three independent experiments were picked and transferred into wells of microtiter 96-well plates. Lack of strong fluorescence during growth in LB broth or in M9 with glucose was confirmed with a multimode Victor-2 microtiter plate reader. Colony PCR with primers InsertR and TurboF was carried out to identify unique constructs. Plasmids extracted from 298 individual colonies were individually transformed into chemically competent E. coli DH5a, from which they were extracted using Qiagen Plasmid miniprep kit and then submitted for sequencing with either InsertR or TurboF.

Culture conditions and reporter assays

Strain construction is described above, strains are listed in Table S1, additional constructs [51–53] were shared by colleagues. All strains were maintained as frozen glycerol stocks, and were subcultured into LB with appropriate antibiotics (50 μg/ml kanamycin, 200 μg/ml ampicillin, and 10 μg/ml tetracycline) prior to the experiments. For plate assays, bacteria were seeded into soft LB or M9 agar (0.3% agar) with or without X-gal (40 μg/ml) as indicated in text. Linoleic acid purchased from MP Biomedical, Solon, OH, USA.

For the RIVET assays in tomatoes, Salmonella cultures were grown at 37°C overnight in LB supplemented with tetracycline. Bacterial cultures were then pelleted, washed three times in an equal volume of sterile PBS and diluted to 10⁵ cfu/ml. Approximately 10⁵ cfu (in 3 μl of PBS) were inoculated onto superficial 1 mm wounds on surfaces of unwaxed immature or mature fruits. At least three technical and six biological replications were carried out for each experiment. All RIVET assays were carried out for a week. To harvest samples, unless otherwise indicated in text, cores 15 mm × 0.5 mm were removed from fruits, homogenized in PBS and aliquots were then plated on xylose-lysine deoxycholate (XLD) agar (Oxoid). Individual colonies were patched on LB agar with tetracycline to detect constructs in which TnpR recombinase was active. Regulation of the reporters in tomato phyllosphere was carried essentially as above, except 10 μl of the bacterial suspension in sterile water were spotted onto the abaxial surface of tomato leaves and incubated in light at room temperature for two days. Leaves were then gently blotted on XLD, and then assayed for the TnpR recombinase activity.
To calculate a competitive index, wild type *S. enterica* sv. Typhimurium 14028 and isogenic mutants were seeded at 10^5 cfu/infection, roughly at a 1:1 ratio into tomatoes. In parallel, *S. enterica* sv. Typhimurium 14028 and its isogenic tetracycline-resistant derivative JS246 were similarly inoculated onto eight tomato fruits, two wounds per fruit. To establish *in vitro* baselines, individual mutants and the wild type (strain ATCC 14028) were grown in LB to OD$_{600}$ 0.3–0.9, washed in PBS, diluted to OD$_{600}$ 0.05 in LB, mixed 1:1 and incubated for 3 hrs at 22°C in 5 ml tubes on a shaker (160 rpm). All samples were incubated and harvested using similar protocols. The relative ratios of the strains in the inocula and in the recovered samples were calculated by dilution plating and patching on antibiotic containing media. Competitive indices were calculated for each treatment using the formula (M$_{\text{out}}$/WT$_{\text{out}}$)/(M$_{\text{in}}$/WT$_{\text{in}}$), where M is the proportion of mutant cell and WT is the proportion of the wild type cells in the inocula (in) or in the recovered samples (out). Statistical and biological significance of each competitive index were established by comparing log values of the competitive indices of each pair to the log of competitive index similarly calculated for ATCC 14028 vs JS246 (0.03±0.089), using a two-tailed t-test with unequal variances (p<0.05).

Extraction of hydrophobic components from red tomatoes

Tomatoes cv. Campari were blended and mixed with two volumes of chloroform. The organic phase was washed with 50:50 ethanol:water, rotary evaporated to dryness and re-dissolved in chloroform. For bioassays, aliquots were dried down in a Spin/Vac and then resuspended in canola oil. Approximately 0.4 tomato equivalents were added to the LB 0.3% agar plates for the bioassays.

Supporting Information

Table S1 Strains and Plasmids used in the study. Found at: doi:10.1371/journal.pone.0012406.s001 (0.11 MB DOC)

Table S2 Primers used in the study. Found at: doi:10.1371/journal.pone.0012406.s002 (0.07 MB DOC)

Acknowledgments

We thank D. Kaganov for his contribution to the assays of *Salmonella* mutants within tomatoes during initial phases of the project; R. Harshey and K. Klose for sharing unpublished strains; J. B. Jones for seeds of Hawaii 7997; W. D. Bauer for insightful comments during the preparation of the manuscript.

Author Contributions

Conceived and designed the experiments: JTN MM MT. Performed the experiments: JTN AA. Analyzed the data: JTN MM MT. Contributed reagents/materials/analysis tools: NA MM MT. Wrote the paper: MT.

References

1. Lynch MF, Tauxe RV, Hedberg CW (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137: 307–315.

2. Brandl MT (2006) Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol 44: 367–392.
26. Gallegos-Robles MA, Morales-Loredo A, Alvarez-Ojeda G, Vega PA, Bidol SA, Daly ER, Ricker RE, Hill TA, Taylor TH, et al. (2007) Multistate growth of different Salmonella serovars with lettuce cultivars and competition by Enterobacter asburiae. Appl Environ Microbiol 73: 1783–1790.

28. Shi X, Namavr A, Kostrzynska M, Hora R, Warriner K (2007) Persistence and survival of Salmonella enterica serovar Typhimurium in soil. J Food Prot 70: 1339–1345.

29. Zeng X, Lam Q, Schulz H, Kim JF (2003) The crystal structure and functional mechanism of Escherichia coli 2,4-dienoyl-CoA reductase. J Biol Chem 278: 37553–37560.

30. Aloum N, Suthers PF, Jones GI, Carter BR, Saunders MP, et al. (2009) Genome scale reconstruction of a Salmonella metabolic model: comparison of similarity and differences with a commensal Escherichia coli strain. J Bacteriol 284: 29480–29488.

31. Turnbull AL, Surette MG (2008) L-Cysteine is required for induced antibiotic resistance and characterization of its role in virulence of Salmonella enterica serovar Typhimurium. Microbiology 154: 3410–3419.

32. Chellami DO, Dankers HA, Olson SM, Hodge NC, Scott JW (1994) Evaluating bacterial wilt-resistant tomato genotypes using a regional approach. J Am Soc Hort Science 119: 325–329.

33. Silby MW, Levy SB (2004) Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens in soil. Microbiol 150: 3571–3579.

34. Chellemi DO, Dankers HA, Olson SM, Hodge NC, Scott JW (1994) Evaluating bacterial wilt-resistant tomato genotypes using a regional approach. J Am Soc Hort Science 119: 325–329.

35. Silby MW, Levy SB (2004) Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens in soil. Microbiol 150: 3571–3579.

36. Brown DG, Allen C (2004) Pathogenesis of the KdgR regulon in Salmonella enterica serovar Typhimurium. Mol Microbiol 76: 1375–1387.

37. Prouty AM, Schwesinger WH, Gunn JS (2002) Biofilm formation and virulence gene expression in Escherichia coli O157:H7 exposed to lysates of lettuce leaves. Appl Environ Microbiol 68: 4905–4914.

38. Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, et al. (2005) Regulation of virulence determinants in Salmonella enterica serovar Typhi. Mol Microbiol 154: 3410–3419.

39. Teplitski M, Goodier RI, Ahmer BM (2003) Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella enterica serovar Typhimurium. Microbiology 150: 3571–3579.

40. Teplitski M, Goodier RI, Ahmer BM (2003) Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella enterica serovar Typhimurium. Microbiology 150: 3571–3579.

41. Teplitski M, Al-Agely A, Ahmer BM (2006) Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiol 71: 5685–5691.

42. Teplitski M, Ahmer BM (2004) The control of secondary metabolism, motility, and virulence by the two-component regulatory system Bar/SirA of Salmonella and other gamma-proteobacteria. In: Pruss BM, ed. Global Regulatory Networks in Enteric Bacteria Research Signpost.

43. Teplitski M, Al-Agely A, Ahmer BM (2006) Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiol 71: 5685–5691.

44. Teplitski M, Ahmer BM (2004) The control of secondary metabolism, motility, and virulence by the two-component regulatory system Bar/SirA of Salmonella and other gamma-proteobacteria. In: Pruss BM, ed. Global Regulatory Networks in Enteric Bacteria Research Signpost.

45. Teplitski M, Al-Agely A, Ahmer BM (2006) Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiol 71: 5685–5691.

46. Teplitski M, Goodier RI, Ahmer BM (2003) Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella enterica serovar Typhimurium. Microbiology 150: 3571–3579.