ASYMMETRIC-LEAVES2 and an ortholog of eukaryotic NudC domain proteins repress expression of AUXIN-RESPONSE-FACTOR and class 1 KNOX homeobox genes for development of flat symmetric leaves in Arabidopsis

Nanako Ishibashi1, Kyoko Kanamaru2, Yoshihisa Ueno1, Shoko Kojima3, Tetsuo Kobayashi2, Chiyoko Machida3 and Yasunori Machida1,4

1Division of Biological Sciences, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
2Department of Biological Mechanisms and Functions, Graduate School of Life Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
3Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
4Author for correspondence (yas@bio.nagoya-u.ac.jp)

Summary
Leaf primordia form around the shoot apical meristem, which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for appropriate lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many genes that specify such patterning have been identified, but regulation by upstream factors of the expression of relevant effector genes remains poorly understood. In Arabidopsis thaliana, ASYMMETRIC LEAVES2 (AS2) and AS1 play important roles in repressing transcription of class 1 KNOTTED1-like homeobox (KNOX) genes and leaf abaxial-determinant effector genes. We report here a mutation, designated enhancer of asymmetric leaves2 and asymmetric leaves1 (eal), that is associated with efficient generation of abaxialized filamentous leaves on the as2 or as1 background. Levels of transcripts of many abaxial-determinant genes, including ETTIN (ETT)/AUXIN RESPONSE FACTOR3 (ARF3), and all four class 1 KNOX genes were markedly elevated in as2 eal shoot apices. Rudimentary patterning in as2 eal leaves was suppressed by the ett mutation. EAL encodes BOBBER1 (BOB1), an Arabidopsis ortholog of eukaryotic NudC domain proteins. BOB1 was expressed in plant tissues with division potential and bob1 mutations resulted in lowered levels of transcripts of some cell-cycle genes and decreased rates of cell division in shoot and root apices. Coordinated cellular proliferation, supported by BOB1, and repression of all class 1 KNOX genes, ETT/ARF3 by AS2 (AS1) and BOB1 might be critical for repression of the indeterminate state and of aberrant abaxialization in the presumptive adaxial domain of leaf primordia, which might ensure the formation of flat symmetric leaves.

© 2012. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Key words: ASYMMETRIC LEAVES2 (AS2), AUXIN RESPONSE FACTOR (ARF), Arabidopsis thaliana, KNOX, NudC, Leaf polarity

Introduction
Leaf primordia are clusters of cells in a determinate state at the periphery of the shoot apical meristem (SAM), which contains aggregates of indeterminate stem cells. As each leaf grows, its morphology becomes established along three axes, the proximal-distal, adaxial-abaxial and medial-lateral axes. Adaxial-abaxial patterning at the initial stage, occurring in regions adjacent to the SAM, is critical for the lateral expansion of the lamina along the medial-lateral axis for formation of flat symmetric leaves (Sooeves and Sussex, 1989; Waites and Hudson, 1995; Tsukaya, 2006; Iwakawa et al., 2007; Szakonyi et al., 2010; Moon and Hake, 2010). Mechanisms that repress stem cell identity and control initial patterning for establishment of adaxial-abaxial polarity in the leaf primordium are obviously critical to plant development.

In Arabidopsis thaliana, three members of the family of class III homeodomain-leucine zipper (HD-ZIPIII) genes, namely PHABULOSA (PHB), PHAVOLUTA (PHV) and REVOLUTA (REV) are expressed in the leaf adaxial domain and determine adaxial cell fate (McConnell and Barton, 1998; McConnell et al., 2001; Emery et al., 2003) and levels of their transcripts are negatively regulated by microRNA165 (miR165) and miR166 (Bao and Barton, 2004; Mallory et al., 2004). Mutation of any HD-ZIPIII gene that confers resistance to miR165/166-mediated degradation of the corresponding transcript results in formation of radialized leaves with adaxial identity or trumpet-shaped leaves (McConnell et al., 2001; Emery et al., 2003; Mallory et al., 2004; Zhong and Ye, 2004). Genes in the YABBY (YAB) and KANADI (KAN) families promote the specification of leaf abaxial
fate (Sawa et al., 1999; Siegfried et al., 1999; Bowman and Smyth, 1999; Kerstetter et al., 2001; Eshed et al., 2001; Kumaran et al., 2002; Eshed et al., 2004; Wu et al., 2008; Sarojam et al., 2010). In addition, two functionally redundant genes, ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3) and ARF4, whose transcripts are degraded by a trans-acting small interfering RNA (ta-siRNA), designated tasiR-ARF, in the adaxial domain of the leaf primordium to limit their specific expression to the inner region and the abaxial domain of leaves (Montgomery et al., 2008; Chitwood et al., 2009; Schwab et al., 2009), play important roles in lateral growth, as well as in specification of the abaxial fate and heteroblasty of leaves (Pekker et al., 2005; Hunter et al., 2006). The results of investigations of these effectors support the hypothesis that the specification of adaxial-abaxial polarity is tightly coupled with lateral expansion (Waite and Hudson, 1995). However, upstream factors that control the expression of such direct effectors in polarity-controlling pathways remain to be identified.

The ASYMMETRIC LEAVES2 (AS2) and AS1 genes of Arabidopsis thaliana are key regulators of the formation of the flat symmetric leaves. AS2 and AS1 encode, respectively, a plant-specific nuclear protein with an AS2/LOB domain (Iwakawa et al., 2002; Shuai et al., 2002) and a nuclear protein with a myb domain (Byrne et al., 2000; Sun et al., 2002). The two proteins have been reported to form a complex (Xu et al., 2003; Yang et al., 2008) and effects of overexpression of AS2 are reported to depend on AS1 (Iwakawa et al., 2007). Mutations in these genes are associated with pleiotropic abnormalities in leaves along the three developmental axes (Rédei and Hirono, 1964; Tsukaya and Uchimiya, 1997; Byrne et al., 2000; Ori et al., 2000; Semiarti et al., 2001; Iwakawa et al., 2002). AS2 and AS1 repress the transcription of class 1 KNOX-like homeobox (KNOX) genes, namely, BREVIPECIDELLUS (BP)/KNAT1, KNAT2 and KNAT6, and with the exception of SHOOT-MERISTEMLESS (STM) (Byrne et al., 2000; Ori et al., 2000; Semiarti et al., 2001), which are exclusively expressed around the SAM and play roles in maintaining an indeterminate cell state (Hake et al., 2004). In addition, the AS1-AS2 complex directly represses the transcription of ETT/ARF3, KAN2 and YAB5 genes in shoot apices (Iwakawa et al., 2007), suggesting that AS2 and AS1 might be involved in adaxial development. However, genetic evidence in support of this suggestion remains to be demonstrated.

Although it has been proposed that AS2 and AS1 are involved in the establishment of adaxial polarity, abnormalities related to adaxial defects in leaves are not obvious in as2 and as1 single mutants. However, defects in polarity do develop in as2 and as1 leaves under certain growth conditions and, also, in conjunction with mutation of members of certain groups of genes (Qi et al., 2004; Inagaki et al., 2009; see Introduction of Kojima et al., 2011). These genes include several that mediate the biogenesis of tasiR-ARF (see above). Other relevant genes belong to several different groups: those for ribosome biogenesis; chromatin modification; the genome stability; and cell proliferation. While these observations do suggest genetic interactions between AS2 (also AS1) and each of these enhancer genes, our understanding of the mechanism of regulation of the expression of polarity-related effectors by AS2/AS1 is still limited.

In the present study, we report a novel enhancer mutation in Arabidopsis thaliana that causes marked defects in adaxial development, with generation of abaxialized filamentous leaves, on the as2 or the as1 background. In doubly mutant in AS2 (or AS1) and the enhancer gene, levels of transcripts of many abaxial-determining genes, including ETT/ARF3 and all four class 1 KNOX genes rose markedly. Furthermore, introduction of mutation of ETT/ARF3 into the double mutant significantly suppressed the formation of filamentous leaves, with formation of flat symmetric leaves. We propose that maintenance of low levels of transcripts of ETT/ARF3 and of all class 1 KNOX genes by AS2/AS1 and the enhancer gene must be critical. AS2/AS1 and the enhancer might temporally and spatially control the developmental transition from the indeterminate meristematic state to the determinate state in the shoot apex that might be required for the formation of flat symmetric leaves.

Results

The establishment of adaxial cell fate in as2-1 eal-1 and as1-1 eal-1 double-mutant leaves was defective

In a genetic screening for enhancers of the effect of the as1-1 mutation, we identified several mutations that generated filamentous leaves both on the as1-1 and on the as2-1 mutant background. We named one of these mutations enhancer of asymmetric leaves2 and asymmetric leaves1-1 (eal-1). The eal-1 single mutant formed flat, symmetric and pointed leaves, while the wild type and the as1, as2 and eal-1 single mutants did not have filamentous leaves (Fig. 1A–D, Table 1). In contrast to the single mutants, 18% and 2% of as1-1 eal-1 double-mutant plants had filamentous leaves and lotus-like leaves, respectively. The as2-1 eal-1 double-mutant plants produced filamentous leaves and lotus-like leaves at efficiencies of 76% and 14%, respectively.

![Fig. 1. The as1 eal and as2 eal double mutants generated filamentous leaves.](image-url)
Biology Open

As2 and BOB1 affect leaf growth

Table 1. Frequencies of plants with filamentous and lotus-like leaves

Genotype	Number of plants examined	Filamentous leaves	Lotus-like leaves
Col-0	64	0% (0)	0% (0)
as1-1	91	0% (0)	0% (0)
as2-1	91	0% (0)	0% (0)
eal-1	132	0% (0)	0% (0)
as1-1 eal-1	175	18% (32)	2% (0)
as2-1 eal-1	111	76% (84)	14% (16)

Frequency is defined as the ratio of the number of plants with more than one filamentous or lotus-like leaf to the total number of plants examined. The numbers of plants with filamentous or lotus-like leaves are indicated in parentheses. Plants were grown at 22°C.

(Fig. 1F–J, Table 1). Despite phenotypic similarity between the as2-1 eal-1 and as1-1 eal-1 double mutants, the frequency of formation of filamentous leaves by as2-1 eal-1 plants was much higher than that by as1-1 eal-1 plants. Therefore, as described below, we focused on the as2-1 eal-1 double mutant.

Using transverse sections of leaves, we analyzed vascular patterns in as2-1 eal-1 leaves and in corresponding single-mutant leaves (Fig. 2A–F). In wild-type, as2-1 and eal-1 plants, xylem and phloem tissues were similarly located on the adaxial and abaxial sides, respectively, of the vascular bundles (Fig. 2A–C). In the as2-1 eal-1 filamentous leaves, neither phloem nor xylem cells were obvious (Fig. 2D,E). In as2-1 eal-1 double-mutant lotus-like leaves, phloem tissue was observed around xylem tissue (Fig. 2F).

We investigated patterns of expression of cDNA for green fluorescent protein (GFP) under the control of the FIL promoter (the cDNA was designated FILp:GFP), which is expressed in abaxial cells of leaf primordia (Watanabe and Okada, 2003). We detected signals due to GFP only on the abaxial sides of wild-type, as2-1 and eal-1 leaves (Fig. 2G–I). By contrast, signals due to GFP were detected over the entire surface of the filamentous leaves of the as2-1 eal-1 double mutant (Fig. 2J), suggesting a defect in adaxialization.

Levels of transcripts of polarity-determining and class 1 KNOX genes were elevated in as2-1 eal-1 shoot apices

We performed real-time RT-PCR using RNA from the shoot apices of wild type, as2-1, eal-1 and as2-1 eal-1 double-mutant plants. We quantified transcripts of three families of transcription-related genes that are involved in the determination of adaxial-abaxial polarity, namely, KAN genes; FIL/YAB genes; and ARF genes, which separately and redundantly specify abaxial cell fate; genes in the HD-ZIP III family (PHB, PHV, and REV), which specify adaxial cell fate; and all the genes in the class 1 KNOX gene family, which are expressed in the SAM and its periphery in wild-type plants.

As shown in Fig. 3A, levels of transcripts of a number of genes that are involved in the establishment of abaxial cell fate (KAN1, KAN2, YAB5 and ETT/ARF3) were higher in the as2-1 eal-1 double mutant than in the wild type and in the corresponding single mutants. Levels of transcripts of ETT/ARF3, FIL and YAB5 were elevated in the eal-1 mutant, while those of KAN2, FIL, ETT/ARF3 and YAB5 were elevated in the as2-1 mutant. However, levels of HD-ZIP III transcripts in the double mutant were not significantly different from those in the wild type (Fig. 3B). These results suggest that the filamentous leaves of as2-1 eal-1 plants had accentuated abaxialized features. Levels of transcripts of all class 1 KNOX genes (BP, KNAT2, KNAT6 and STM) were also much higher in the as2-1 eal-1 double mutant than in the wild type and in the as2-1 and eal-1 single-mutant plants.

Since eal-1 is a weak allele and other eal alleles were embryonic-lethal (see below), we generated trans-heterozygotes (eal-1/eal-3; TH). The eal-1/eal-3 plants had a dwarf phenotype, with pointed leaves that were smaller than those of eal-1 plants (Fig. 1E). We examined the effects of the single mutation in the EAL gene on levels of transcripts of class 1 KNOX genes in shoot apices. As shown in Fig. 3C, levels of transcripts of all four class 1 KNOX genes were markedly elevated in eal-1/eal-3 (TH) shoot apices.

![Fig. 2. Filamentous leaves were abaxialized. (A–F) Defects in vascular patterning in as2 eal leaves. Transverse sections of rosette leaves of (A) wild-type Col-0, (B) as2-1, (C) eal-1 and (D–F) as2-1 eal-1 plants. Sections from filamentous leaves (D,E) and lotus-like leaves (F) of the as2 eal double mutant. (E) High-magnification view of the central region of leaves, which corresponds to the boxed region designated e in D. x, xylem; p, phloem. (G–J) Expression of FILp:GFP in transverse sections of developing leaves of (G) Col-0, (H) as2-1, (I) eal-1 and (J) as2-1 eal-1 plants. Green, signals due to GFP; red, autofluorescence. Scale bars: 10 μm in A-D and F; 50 μm in E and J; 100 μm in G-I.](image-url)
ETT/ARF3 was involved in the polarity defects in \(\textit{as2-1 eal-1} \) leaves

Since the transcript level of ETT/ARF3 was elevated in \(\textit{as2-1 eal-1} \), we examined effects of a mutation of ETT/ARF3 on phenotypes of \(\textit{as2-1 eal-1} \). We introduced the \(\textit{ett-13} \) mutation, into the \(\textit{as2-1 eal-1} \) double mutant to generate the \(\textit{as2-1 eal-1 ett-13} \) triple mutant. As shown in Figs 4A and 4B, the phenotype of \(\textit{eal-1 ett-13} \) mutant plant was similar to that of the \(\textit{eal-1} \) plant. Most of our \(\textit{as2-1 eal-1 ett-13} \) triple mutants (79%) had symmetrically expanded leaves and no filamentous or lotus-like leaves (Fig. 4C,D). Thus, the polarity defects of the \(\textit{as2-1 eal-1} \) double mutant were efficiently suppressed by the \(\textit{ett-13} \) mutation, indicating that increase in the level of ETT/ARF3 transcripts was responsible for the adaxial defect.

The \(\textit{eal-1} \) mutation was located in the \(\textit{BOBBER1 (BOB1)} \) gene that encodes a homolog of the NudC protein of \(\textit{Aspergillus nidulans} \). We identified the \(\textit{eal} \) mutation as a mutation in the \(\textit{BOB1} \) gene, which encodes 304 amino acid residues. \(\textit{BOB1} \) is homologous to \(\textit{nuclear distribution gene C (nudC)} \) of \(\textit{Aspergillus nidulans} \) (Fig. 5A, supplementary material Fig. S1) (Jurkuta et al., 2009).

We obtained two T-DNA insertion lines, \(\textit{eal-2} \) (SALK_001125) and \(\textit{eal-3} \) (GK_406_D03) (Fig. 5A, supplementary material Fig. S1). The \(\textit{eal-2} \) mutation was the same as \(\textit{bob1-2} \) (Jurkuta et al., 2009), while \(\textit{eal-3} \) was a new allele of \(\textit{BOB1} \). The embryonic development of \(\textit{eal-3} \) homozygotes was arrested at the globular stage, and this phenotype is similar to that of \(\textit{bob1-1} \) and \(\textit{bob1-2} \) homozygotes (supplementary material Fig. S2) (Jurkuta et al., 2009; Perez et al., 2009).

\(\textit{BOB1} \) was expressed in tissues with cell-division potential \(\textit{BOB1} \) transcripts accumulated in tissues, such as shoot apices, developing rosette leaves and roots, that contain division-competent cells (Fig. 5B). To prepare a functional reporter construct, we cloned the genomic DNA that contained the 2,181-bp 5' upstream region and the 1,796-bp coding region of \(\textit{BOB1} \). We fused this genomic DNA, in frame, to the \(\textit{GFP} \) reporter gene at the last codon of the \(\textit{BOB1} \) gene to create the fusion gene \(\textit{pBOB1::BOB1::GFP} \), which we then introduced into the \(\textit{eal-1} \) mutant. The fusion gene restored a normal phenotype and complemented the \(\textit{eal-1} \) mutation in all transgenic lines (supplementary material Fig. S3).

In the aerial parts of the transgenic plants, signals due to \(\textit{GFP} \) were most abundant in shoot apices with developing leaves (Fig. 5C), which contain strongly division-competent cells. We also examined patterns of expression of \(\textit{BOB1::GFP} \) in transverse sections of shoot apices (Fig. 5D). Although the detected signals throughout leaf primordia at early stages (P1-P3), the intensities of
signals in central regions and the epidermis were stronger than those from other cells at later stages (P4 and P5) (Fig. 5D). As the primordia grew, the intensity of signals fell rapidly (P6 and P7). We also observed signals due to GFP at the tips exclusively of those from other cells at later stages (P4 and P5) (Fig. 5D). As the primordia grew, the intensity of signals fell rapidly (P6 and P7). We also observed signals due to GFP at the tips exclusively of

BOB1 complemented defects in colony growth and the movement of nuclei in the **nudC3** mutant of **Aspergillus nidulans**

Colonies of the **nudC3** mutant of **A. nidulans** exhibit temperature-sensitive growth, and the migration of nuclei that normally occurs prior to the formation of cell plates during cytokinesis is also temperature-sensitive (Osmani et al., 1990; Chiu and Morris, 1995; Chiu and Morris, 1997). We examined whether **BOB1** might allow **nudC3** mutant cells to grow normally at an elevated temperature with normal movement of nuclei using **BOB1** cDNAs driven by the **alcA** promoter of **A. nidulans** (Fig. 6A).

Even at the permissive temperature (30°C), **nudC3** colonies were smaller than wild-type colonies (Fig. 6B, columns 1 and 2). At the restrictive temperature (42°C), the **nudC3** colonies were much smaller than the wild-type colonies. Wild-type **BOB1** cDNA fully reversed the defects in colony growth of **nudC3** cells at both temperatures (Fig. 6B, column 3). Moreover, **alcA**-1 cDNA also reversed the growth defects at 30°C and 42°C, but **alcA**-1 cDNA was slightly less effective than **BOB1** cDNA (Fig. 6B, column 4). As anticipated, **bob1-1** cDNA failed to reverse the growth defects at 30°C and 42°C (Fig. 6B, columns 2, 5, and 6).

As shown in Fig. 6C,D, **BOB1** cDNA rescued the defect in nuclear migration in **nudC3** cells at 42°C, and 84% of nuclei in **nudC3** cells that had been transformed with **BOB1** cDNA were normally distributed. By contrast, **alcA**-1 cDNA yielded only the background level of movement of nuclei.

Mutations in **BOB1 affected the progression of the cell cycle in shoot and root apices**

Using cross sections of shoot apices, we investigated the structure of the shoot apical meristem (SAM) in wild-type, **as2-1**, **alcA**-1, **as2-1** **alcA**-1 and **alcA**-1/alcA-3 trans-heterozygous (TH) plants. The number of cells in the L1 and L2 layers in the region of the SAM was depressed in the **alcA**-1 and **as2** **alcA**-1 mutants (Fig. 7A,B). In
addition, the structure of the as2-1 eal-1 SAM was disorganized. The number of cells in the SAM was reduced still further in the eal-1/eal-3 SAM, suggesting reduced cell-division ability in the eal-1/eal-3 SAM.

We quantified transcripts of genes that are involved in progression of the cell cycle in shoot apices of wild-type, eal-1, and eal-1/eal-3 plants. As shown in Fig. 7C, in eal-1, levels of transcripts of histone H4, MINICHROMOSOME MAINTENANCE-7 (MCM7), CYCLIN B1;2 (CYCB1;2), HINKEL and KNOILLE genes were slightly depressed, and the extent of such depression was much greater in eal-1/eal-3 plants. The eal-1 mutant had short roots and the eal-1/eal-3 mutant had even shorter roots (Fig. 7D). To examine the efficiency of cell division, we monitored the expression of CYCB1;2-β-glucuronidase (GUS), in which the CYCB1;2 genomic sequence containing the promoter region was fused to the GUS gene, which we used as a marker of the G2-M transition. In eal-1 and as2-1 eal-1 seedlings, the intensity and number of signals due to GUS were markedly lower than those in the wild type (Fig. 7F). These results suggest that cell-division ability is reduced in the eal-1 mutant.

We measured the ploidy of nuclei in the first two leaves of 18-day-old wild-type, as2-1, eal-1 and as2-1 eal-1 plants by flow cytometry (Fig. 7G). In wild-type and as2-1 leaves, patterns of ploidy from 2C to 16C were similar. However, the eal-1 mutant contained nuclei with higher ploidy (from 32C and 64C). The ploidy in the as2-1 eal-1 double mutant was even higher. Palisade cells of the eal-1 mutant were also more than twice the size of those of wild-type plants (Fig. 7H,I). These results indicate that mutations in BOB1 resulted in early entry into the endocycle and that increases in ploidy were exacerbated by the as2-1 mutation.

Discussion

Our present study showed that the eal-1 mutation in the BOB1 gene enhances defects in the adaxial development of as2 leaves, converting flat leaves to abaxialized filamentous leaves. This effect is attributable to elevated levels of transcripts of the ETT/
The BOB1 gene, in cooperation with the AS2 (AS1) gene, plays a crucial developmental role via repression of both the indeterminate state and the abaxial fate of cells in the presumptive adaxial domain of leaf primordia after the commitment to leaf initiation around the shoot apical meristem, promoting the establishment of the adaxial polarity of leaves (Fig. 8). Thus, repressive activity is required for the formation of flat symmetric leaves with appropriate adaxial-abaxial polarity.

BOB1 is involved in the repression of transcription of genes involved in leaf abaxialization via an unknown pathway that is independent of the AS2 (AS1) pathway

How do BOB1 and AS2 (AS1) act together to regulate the repression of levels of ETT/ARF3 transcripts? AS2 transcripts are detected in the adaxial region of leaf primordia and AS1 transcripts are detected in the inner region of leaves that includes the vasculature (Iwakawa et al., 2007). Regions of expression of BOB1 in leaf primordia are overlapped sites at which AS2 and AS1 transcripts were found (Fig. 5). The levels of the ETT/ARF3 transcript in shoot apices of as2-1 and eal-1 were higher than in the wild type, while that in the as2-1 eal-1 double mutant was even higher still (Fig. 3A). Let us consider the following two possibilities; BOB1 might act on the repression of transcription of the ETT/ARF3 gene via an unidentified pathway that might be independent of the AS2 (AS1)-mediated pathway (Fig. 8). Alternatively, both BOB1 and AS2 (AS1) might function in the same pathway. The overlap among regions of expression of the BOB1, AS2 and AS1 genes in the shoot apex (Fig. 5C,D) (Byrne et al., 2000; Iwakawa et al., 2007) supports both possibilities. However, our bob1 and as2 (as1) mutants had completely different morphology (Fig. 1), suggesting that the second possibility is unlikely. Similarly, it seems plausible that AS2 and BOB1 might repress the expression of class 1 KNOX genes via two independent pathways.
BOB1 acts together with AS2 (AS1) as a modulator in the formation of flat leaves

As discussed above, BOB1 plays positive roles in cell division, as well as in the establishment of adaxial polarity in leaves. Waites and Hudson (1995) proposed that the cell proliferation required for the lateral growth of the leaf lamina might be tightly coupled with the establishment of adaxial-abaxial polarity in the leaf primordium. As proposed in Fig. 8, the balance between leaf adaxialization and cell division might be coordinately controlled to ensure the development of flat symmetric leaves. Since BOB1 is involved in both the stimulation of cell division and the establishment of adaxialization, it might act, together with AS2 and BOB1 affect leaf growth
were grown at a permissive temperature of 30°C or at a restrictive temperature of 42°C in standard minimal medium (Rowlands and Turner, 1973) supplemented with appropriate requirements. The minimal medium for A773 was supplemented with 0.0002% pyridoxine HCl, 0.12% uridine and 0.11% uracil. The minimal medium for A779 was supplemented with 0.0002% niacin, 0.0002% p-amino benzoic acid, 0.12% uridine and 0.11% uracil (Morris et al., 1997). The promoter of alcA, the gene for alcohol dehydrogenase 1 of A. nidulans, was fused to full-length BOB1 cDNA and the fused construct and the PyrG coding sequence were subcloned into pBluescript II KS+ (Stratagene, La Jolla, CA, USA). The eal-1 and boh-1 mutations in BOB1 cDNA were induced with a QuikChange Multi Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA). A nidularus was transformed as described by Makita et al. (2009). Transformants were grown in liquid medium or on 1.4% agar-solidified medium, which were the minimal medium for A779 without uridine and uracil.

DAPI staining of nuclei
To stain nuclei of developing gernmlings, conidia of A779 and the transformants were incubated in 10 ml of each liquid standard minimal medium for 10 hours. Then, we added 4′,6-diamidino-2-phenylindole (DAPI) and Triton X-100 to final concentrations of 0.1 μg/ml and 0.1%, respectively, and incubated cells for a further 10 minutes. We observed DAPI fluorescence under an Olympus microscope (BX51TRF; Olympus, Tokyo, Japan).

BY-2 cells and synchronization
Maintenance of tobacco suspension-cultured BY-2 cells and synchronization of the BY-2 cell cycle at the G1/S boundary were performed as described previously (Nishihama et al., 2002). RNA was extracted from BY-2 cells with an RNeasy kit (QIAGEN, Hilden, Germany) and poly(A) RNA was isolated with Dynabeads (Dynal Biotech, Lake Success, NY, USA). Reverse transcription was performed with a First-Strand cDNA Synthesis Kit (GE Healthcare, Buckinghamshire, UK). Primer sets for qRT-PCR are listed in supplementary material Table S1. Results were normalized by reference to results for NtUBQ4.

Acknowledgements
The authors thank Dr Masaki Ito (Nagoya University, Japan) for helpful discussions and providing seeds of CYCB1;2-GUS and primer sets for qRT-PCR and Dr Ken Kosetsu (Nagoya University, Japan) for providing the cDNA samples of synchronized BY-2 cells. They thank Dr Yuval Eshed (Weizmann Institute of Science, Israel) for helpful discussions and providing seeds of the ett-13 mutant. They also thank Drs. Yoko Matsumura, Michiko Sasabe (Nagoya University, Japan), Ayami Nakagawa and Mayumi Iwasaki (Chubu University, Japan), and other members of Kobayashi and Machida laboratory for their encouragements and supports. This work was supported, in part, by a Grant-in-Aid for Scientific Research on Priority Areas (no. 19060003) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). N.I. was supported by a Grant-in-Aid for the Global Center of Excellence Program, awarded to the Division of Biological Science of Nagoya University from MEXT.

References
Aumann, J. P., Bowman, J. L., and Smyth, D. R. (1999). CRABS CLAW: a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126, 2387-2396.

Byrne, M. E., Barber, H., Curtis, M., Arroyo, J. M., Dunham, M., Hudson, A., and Martienssen, R. A. (2000). Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967-971.

Cappello, S., Monzo, P., and Vallee, R. B. (2011). NuRD is required for interkinetic nuclear migration and neuronal migration during neocortical development. Dev. Biol. 357, 326-335.

Chiu, Y. H. and Morris, N. R. (1995). Extragenic suppressors of nudC3, a mutation that blocks nuclear migration in Aspergillus nidulans. Genetics 141, 453-464.

AS2 and BOB1 affect leaf growth
Molecular cloning and identification of a gene product specifically required for nuclear movement in Arabidopsis thaliana. J. Cell Biol. 111, 543-553.

Pekker, I., Alvarez, J. P. and Eshed, Y. (2005). Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17, 289-299.

Perez, D. E., Hoyer, J. S., Johnson, A. L., Moody, Z. R., Lopez, J. and Kaplanlsky, N. J. (2009). BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol. 151, 241-252.

Qi, Y., Sun, Y., Xu, L., Xu, Y. and Huang, H. (2004). ERECTA is required for protection against heat-stress and cytokinin treatment in Arabidopsis. Plant Biol. 6, 270-276.

Redei, G. P. and Hirono, Y. (1964). Linkage studies. Arabidopsis Inf. Serv. 1, 9.

Rowlands, D. J. and Turner, G. (1973). Nuclear and extranuclear inheritance of organ growth and cell wall abnormalities in Aspergillus nidulans. Mol. Gen. Genet. 126, 201-209.

Sarajom, R., Sapp, P. G., Goldshmidt, A., Efroni, L., Floyd, S. K., Eshed, Y. and Bowman, J. L. (2010). Differentiating Arabidopsis shoots from leaves by YABBY activities. Plant Cell 22, 2113-2120.

Sawa, S., Watanabe, K., Koto, K., Kanay, E., Morita, H. and Okada, K. (1999). FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev. 13, 1079-1088.

Schwal, R., Maizel, A., Ruiz-Ferrer, V., Garcia, D., Bayer, M., Crespi, M., Voinett, G. and Martinenko, R. A. (2009). Endogenous tasRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana. PLoS ONE 4, e5980.

Semiarti, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C. and Machida, Y. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates leaf growth in the absence of a kinesin-like protein/MAPKKK complex. Plant Cell Physiol. 42, 476-487.

Ikezaki, M., Kojima, M., Sakakibara, H., Kojima, S., Ueno, Y., Machida, C. and Machida, Y. (2010). Genetic networks regulated by ASYMMETRIC LEAVES1 (AS1) and AS2 in leaf development in Arabidopsis thaliana: KNOX genes control five morphological events. Plant J. 61, 70-82.

Inagaki, S., Nakamura, K. and Morikami, A. (2009). A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of the RADICHI gene of Arabidopsis. PLoS Genetics 5, e1000613.

Iwakawa, H., Ueno, Y., Semiarti, E., Onouchi, H., Kojima, S., Tsukaya, H., Hasebe, M., Soma, T., Ikezaki, M., Machida, C. et al. (2002). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol. 43, 467-477.

Iwakawa, H., Iwaski, M., Kojima, S., Ueno, Y., Soma, T., Tanaka, H., Semiarti, E., Machida, C. and Machida, Y. (2007). Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J. 51, 173-184.

Jurkuta, R. J., Kaplinsky, N. J., Spindel, J. E. and Barton, M. K. (2009). Partitioning of the adaxial domain of the Arabidopsis embryo requires the BOBBER1 NudC domain. Plant Cell 21, 1957-1971.

Kerstetter, R. A., Bollman, K., Taylor, R. A., Bomblies, K. and Poethig, R. S. (2001). KANADI regulates organ polarity in Arabidopsis. Nature 411, 706-709.

Kojima, S., Iwaski, M., Takahashi, H., Imai, T., Matsumura, Y., Flenly, D., Van Lijp, B., Trettett, M., Macario, L. and Machida, C. (2001). ASYMMETRIC LEAVES2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. Plant Cell 12, 1259-1273.

Kumaran, M. K., Bowman, J. L. and Sundaresan, V. (2002). YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 14, 2761-2770.

Makita, T., Katsuysama, Y., Tani, S., Suzuki, H., Kato, N., Todd, R. B., Hynes, M. J., Tsukagoshi, K., Kato, M. and Kobayashi, T. (2009). Inducer-dependent nuclear localization of a ZfhHsCys transcriptional activator, AmyR, in Aspergillus nidulans. Biosci. Biotechnol. Biochem. 73, 391-399.

Mallory, A. C., Reinhardt, B. J., Jones-Rhoades, M. W., Tang, G., Zamore, P. D., McConnell, J. R. and Barton, M. K. (2004). MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23, 3356-3364.

McConnell, J. R. and Bartel, D. P. (2000). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in Arabidopsis. Nature 407, 709-713.

Miller, B. A., Zhang, M. Y., Goecke, C. D., De Souza, C., Osmani, A. H., Lynch, C., Davies, J., Bell, T. and Osmani, S. A. (1999). Homolog of the fungal nuclear migration gene nudC is involved in normal and malignant hematopoiesis. Exp. Hematol. 27, 742-750.

Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. C., Thick, N., Fahlgren, N., Allen, E. and Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128-141.

Moon, J. and Hake, S. (2010). How a leaf gets its shape. Curr. Opin. Plant Biol. 14, 1-7.
Xu, L., Xu, Y., Dong, A., Sun, Y., Pi, L., Xu, Y. and Huang, H. (2003). Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130, 4097-4107.

Yang, J. Y., Iwasaki, M., Machida, C., Machida, Y., Zhou, X. and Chua, N. H. (2008). ßC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid response. Genes Dev. 22, 2564-2577.

Zhang, M. Y., Huang, N. N., Clawson, G. A., Osmani, S. A., Pan, W., Xin, P., Razzaque, M. S. and Miller, B. A. (2002). Involvement of the fungal nuclear migration gene nudC human homolog in cell proliferation and mitotic spindle formation. Exp. Cell Res. 273, 73-84.

Zhong, R. and Ye, Z. H. (2004). Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol. 45, 369-385.

Zhou, T., Aumais, J. P., Liu, X., Yu-Lee, L. Y. and Erikson, R. L. (2003). A role for Plk1 phosphorylation of NudC in cytokinesis. Dev. Cell 5, 127-138.

Zhou, T., Zimmerman, W., Liu, X. and Erikson, R. L. (2006). A mammalian NudC-like protein essential for dynein stability and cell viability. Proc. Natl. Acad. Sci. USA 103, 9039-9044.

Zhu, X. J., Liu, X., Jin, Q., Cai, Y., Yang, Y. and Zhou, T. (2010). The L279P mutation of nuclear distribution gene C (NudC) influences its chaperone activity and lissencephaly protein 1 (LIS1) stability. J. Biol. Chem. 285, 29903-29910.