You might find this additional info useful...

This article cites 45 articles, 30 of which can be accessed free at:
http://ajprenal.physiology.org/content/299/2/F300.full.html#ref-list-1

This article has been cited by 3 other HighWire hosted articles

WNK4 inhibits NCC protein expression through MAPK ERK1/2 signaling pathway
Bo Zhou, Dexuan Wang, Xiuyan Feng, Yiqian Zhang, Yanhui Wang, Jieqiu Zhuang, Xuemei Zhang, Guangping Chen, Eric Delpire, Dingying Gu and Hui Cai
Am J Physiol Renal Physiol, March 1, 2012; 302 (5): F533-F539.
[Abstract] [Full Text] [PDF]

Nedd4-2 Modulates Renal Na\(^+\)-Cl\(^-\) Cotransporter via the Aldosterone-SGK1-Nedd4-2 Pathway
Juan Pablo Arroyo, Dagmara Lagnaz, Caroline Ronzaud, Norma Vázquez, Benjamin S. Ko, Lauren Moddes, Dorothée Ruffieux-Daidié, Pierrette Hausel, Robert Koesters, Baoli Yang, John B. Stokes, Robert S. Hoover, Gerardo Gamba and Olivier Staub
JASN, September , 2011; 22 (9): 1707-1719.
[Abstract] [Full Text] [PDF]

Constitutive endocytosis and recycling of NKCC2 in rat thick ascending limbs
Gustavo R. Ares and Pablo A. Ortiz
Am J Physiol Renal Physiol, November , 2010; 299 (5): F1193-F1202.
[Abstract] [Full Text] [PDF]

Updated information and services including high resolution figures, can be found at:
http://ajprenal.physiology.org/content/299/2/F300.full.html

Additional material and information about AJP - Renal Physiology can be found at:
http://www.the-aps.org/publications/ajprenal

This information is current as of July 11, 2012.
RasGRP1 stimulation enhances ubiquitination and endocytosis of the sodium-chloride cotransporter

Benjamin Ko, Erik-Jan Kamsteeg, Leslie L. Cooke, Lauren N. Moddes, Peter M. T. Deen, and Robert S. Hoover

1Department of Medicine, University of Chicago, Chicago, Illinois; and 2Department of Physiology, Radboud University, Nijmegen Medical Center, Nijmegen, The Netherlands

Submitted 31 July 2009; accepted in final form 12 April 2010

RasGRP1 stimulation enhances ubiquitination and endocytosis of the sodium-chloride cotransporter. Am J Physiol Renal Physiol 299:F300–F309, 2010. First published April 14, 2010; doi:10.1152/ajprenal.00441.2009.—The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the distal convoluted tubule. Recently, we described a novel pathway of NCC regulation in which phorbol esters (PE) stimulate Ras guanyl-releasing protein 1 (RasGRP1), triggering a cascade ultimately activating ERK1/2 MAPK and decreasing NCC cell surface expression (Ko B, Joshi LM, Cooke LL, Vazquez N, Musch MW, Hebert SC, Gamba G, Hoover RS. Proc Natl Acad Sci USA 104: 20120–20125, 2007). Little is known about the mechanisms which underlie these effects on NCC activity. Regulation of NCC via changes in NCC surface expression has been reported, but endocytosis of NCC has not been demonstrated. In this study, utilizing biotinylation, internalization assays, and a dynamin dominant-negative construct, we demonstrate that the regulation of NCC by PE occurs via an enhancement in internalization of NCC and is dynamin dependent. In addition, immunoprecipitation of NCC and subsequent immunoblotting for ubiquitin showed increased ubiquitination of NCC with phorbol ester treatment. MEK1/2 inhibitors and gene silencing of RasGRP1 indicated that this effect was dependent on RasGRP1 and ERK1/2 activation. Inhibition of ubiquitination prevents any PE-mediated decrease in NCC surface expression as measured by biotinylation or NCC activity as measured by radionuclide uptake. These findings confirmed that the PE effect on NCC is mediated by endocytosis of NCC. Furthermore, ubiquitination of NCC is essential for this process and this ubiquitination is dependent upon RasGRP1-mediated ERK1/2 activation.

ubiquitin; ERK1/2; MAPK

THE THIAZIDE-SENSITIVE sodium-chloride cotransporter (NCC), encoded by the SLC12A3 gene, in the distal convoluted tubule (DCT) of the kidney plays a key role in renal salt handling and blood pressure regulation. Residing in the DCT, NCC is responsible for the reabsorption of 5–10% of filtered sodium and chloride in the kidney (7). The cotransporter’s importance in sodium balance, and therefore blood pressure regulation, is demonstrated not only by the efficacy of thiazide diuretics but also by the hypotension seen with loss of NCC function (Gitelman’s syndrome) and the hypertension seen with increases in NCC activity (familial hyperkalemic hypertension or FHHt) (19, 27, 39). Recently, we identified a regulatory pathway for NCC, demonstrating that phorbol esters (PE) regulate NCC activity (12). Importantly, PE act as functional analogs of diacylglycerol (DAG) and do not act on NCC in this system via protein kinase C but instead mediate activation of Ras guanyl-releasing protein 1 (RasGRP1), ultimately leading to increased ERK1/2 MAPK activation. Following activation by DAG, RasGRP1 activates the small G protein Ras (specifically the isoform H-Ras in this system) by causing release of GDP from Ras. Ras then binds and is activated by GTP. Ras activates Raf, the first kinase in the ERK1/2 MAPK pathway. Raf then phosphorylates and activates MEK1/2, which in turn phosphorylates and activates ERK1/2. Activation of the Ras-MEK-ERK1/2 MAPK cascade by PE/RasGRP1 is necessary for the decreases in NCC activity seen with PE administration (12).

While the functional effect on NCC activity by PE correlates with a decrease in the amount of NCC expressed on the cell surface, the mechanisms by which this may occur are not known (12). Investigators exploring the modulation of NCC by other agents have found evidence that forward trafficking appears to be regulated (3, 9, 33). Whole animal studies have demonstrated the existence of a subapical pool of NCC and have shown a redistribution of NCC from the cell surface to this subapical pool under inhibition of the angiotensin-converted enzyme, but it is not clear whether this redistribution represents decreased forward trafficking or increased endocytosis (23, 24). Details of how these cell-trafficking events occur need to be further explored.

The role of ERK1/2 activation in the DAG/PE effect on NCC activity is of particular interest as ERK1/2 activation has been linked to ubiquitination of a number of proteins, including the epithelial sodium channel (ENaC) (1a, 13, 15, 18, 26, 28). Ubiquitin is an 8-kDa highly conserved protein that covalently attaches to lysine residues of target proteins either singly (monoubiquitination) or in polymerized chains (polyubiquitination). This attachment can tag a protein for endocytosis and/or degradation and is accomplished via the enzymes E1, E2, and E3, which act to transfer ubiquitin molecules to the target protein. In some systems, regulating the ubiquitination of a protein allows for modulation of that protein’s endocytosis and/or degradation. ERK1/2 MAPK has clearly been shown to play a role in the regulation of ubiquitination and subsequent degradation in a variety of settings, from the regulation of ENaC to programmed cell death (1a, 13, 15, 18, 26, 28).

We therefore theorized a potential role for ERK1/2 MAPK activation in regulating ubiquitination and sought to assess the role of ubiquitination in cell-trafficking events that result in decreased NCC surface expression. In this study, using both a mammalian cell model with native NCC function and a heterologous mammalian expression system, we demonstrate that the regulation of NCC by DAG/PE occurs due to a decrease in NCC surface expression via enhanced, dynamin-dependent endocytosis. Furthermore, we show that ubiquitination of NCC...
is essential for this process and that this ubiquitination is dependent upon RasGRP1-mediated ERK1/2 activation.

MATERIALS AND METHODS

Materials. Materials were purchased from Sigma-Aldrich (St. Louis, MO) unless stated otherwise. The mouse DCT (mDCT) cells were a gift from Dr. Peter Friedman. The K44A dynamin construct was a gift from Dr. Eugene Chang. The Madin-Darby canine kidney (MDCK) cell lines expressing Flag-NCC were a gift from Dr. René Bindels. The NCC antibody was a gift from Dr. Mark Knepper.

Cell culture and treatments. mDCT cells were plated on cell culture dishes and grown in high glucose medium containing a 50:50 mix of DMEM/F12, 5% heat-inactivated fetal bovine serum, and 1% penicillin/streptomycin/neomycin (P/S/N) at 37°C. Experiments were conducted when the cells reached 90–95% confluence. MDCK cell culture, immunocytochemistry, and the collection of images were performed as described elsewhere (5). Cells were treated with TPA (10−7 M) in culture medium where indicated and for the indicated time intervals.

Assessment of NCC function in mDCT cells. mDCT cells were seeded in 12-well plates and prepared as described. The cells were then incubated in a serum-free, preuptake medium (130 mM NaCl, 2 mM K gluconate, 1.0 mM Ca gluconate, 1 mM Mg gluconate, 5 mM HEPES/Tris pH 7.4, 1 mM amiloride, 0.1 mM bumentanide) for 30 min. For studies examining forward trafficking, the cells were incubated with 10 µM brefeldin A (BFA) for 1 h. During this time period, the cells were treated with the various agents of interest. Next, the cells were returned to ice, washed three times with ice-cold PBS-CM, treated three times for 20 min each with ice-cold 100 mM 2-sodium mercaptoethanesulfonic acid (MesNa) in 100 mM NaCl, 1 mM EDTA, 50 mM Tris (pH = 8.6), and 0.2% BSA. Excess MesNa was quenched for 10 min with ice-cold 120 mM iodoacetic acid in PBS-CM, and cells were lysed as for ubiquitination. Subsequently, all lysates were precleared by centrifugation at 14,000 g and incubated with 30-µl aliquots of prewashed streptavidin-conjugated beads (Pierce) for 16 h. Finally, the beads were washed twice with high-salt buffer [500 mM NaCl, 5 mM EDTA, 50 mM Tris (pH = 7.5), 0.1% Triton X-100], twice with lysis buffer, and once with 10 mM Tris (pH = 7.5) and resuspended in 30 µl Laemmli buffer.

Immunoblotting. For mDCT cells, a 7.5% polyacrylamide gel was used. Proteins were transferred electrophoretically to polyvinylidene difluoride membranes. After blocking with 3% BSA, the membranes were probed with corresponding primary antibodies (ubiquitin (Cell Signaling) 1:1,000, anti-RasGRP1 (Cell Signaling), dilution 1:200, or anti-NCC (Knepper) dilution 1:50,000) overnight at 4°C. The blots were washed in TBST. Signal detection for RasGRP1, NCC, and ubiquitin was done using IRDye800 goat anti-mouse IgG antibody, IRDye800 rabbit anti-goat IgG antibody, IRDye800 rabbit anti-rabbit antibody, and Odyssey Lysis buffer, and once with 10 mM Tris (pH = 7.5) and resuspended in 30 µl Laemmli buffer.

Immunocytochemistry. Essentially, immunocytochemistry and collection of images were performed as described previously (5), except that cells were not permeabilized with 1% Triton X-0.0 but with 1% saponin. Mouse Flag antibodies were diluted 1:100.

Immunoprecipitation. mDCT cells were grown to confluence, treated as indicated, lysed [1% Triton X-100, 150 mM NaCl, 25 mM HEPES (pH = 7.4), supplemented with protease inhibitors and 20 mM NEM] and spun down to remove nonsolubilized material. Fifteen-microliter equivalents of protein A-agarose were preincubated with either rabbit FLAG antibodies in IPP500 [500 mM NaCl, 10 mM Tris (pH = 8.0), 0.1% NP-40, 0.1% Tween 20], rabbit antibodies to RasGRP1 (Santa Cruz Biotechnology), or rabbit antibodies to NCC and 0.1% BSA, and washed three times with IPP500. The precleared lysates were incubated for 16 h at 4°C with the antibody-bound protein A beads. The beads were washed three times with lysis buffer, and proteins were eluted using 15 µl Laemmli buffer.

Dominant-negative dynamin transfection. mDCT cells were grown to 80% confluence in a medium containing a 50:50 mix of DMEM/F12 plus 5% heat-inactivated FBS, and 1% P/S/N. The heme agglutinin (HA)-K44A dynamin construct or wild-type dynamin was tran-
Dynamin dependence of the DAG/PE effect. Mock transfected dynamin dependent, mDCT cells were transfected with HA-

Therefore, to demonstrate that PE-induced NCC endocytosis is

immunocytochemistry. Subsequent confocal microscopy in

Flag-tagged NCC subjected to immunocytochemistry and con-

images obtained using MDCK cells stably transfected with

suggesting that NCC degradation does not occur in response to

time, total cellular NCC remained constant in both groups,

per uptake medium. During this time period, the cells were treated

Dynamin is a GTPase critical for endocytosis, an effect

confirmed in other systems to be regulated via affecting

Gene silencing. mDCT cells were grown to 80% confluence in a

medium containing a 50:50 mix of DMEM/F12 plus 5% heat-inacti-

ated FBS, and 1% P/S/N. Small interfering (si) RNA specific for

RasGRP1 (Dharmacon) was transfected into these cells using Gene-

Silencer siRNA Transfection Reagent per the manufacturer’s protocol (Genlantis). Nontargeting siRNA differing by a single base pair from

the siRNA for RasGRP1 (Dharmacon) was used as a control (1).

ERK1/2 phosphorylation assay. mDCT cells grown to 80% con-

fluence after transfection with siRNA were incubated for 30 min in a

preuptake medium. During this time period, the cells were treated

with 100 nM TPA for 15 min. Cells were subsequently lysed in 1 ml

of lysis buffer containing 50 mM Tris·HCl, pH 7.5, 150 mM NaCl, 1%

Nonidet P-40, 0.5% sodium deoxycholate, and 1 tablet of Complete

protease inhibitors (Roche). The lysates were homogenized by soni-

cation on ice. Protein determination and immunoblotting were then

performed as described above using antibodies for phospho-ERK1/2

(1:1,000, Cell Signaling) and ERK1/2 (1:200, Santa Cruz Biotechnol-

ogy). Densitometry was then performed, and relative densitometry

was reported by expressing each group as a fraction of its phosphor-

ylated form over total ERK1/2. Controls were then normalized to 1.

Statistical analysis. Statistical analysis was performed using the SigmaStat software package (Systat, San Jose, CA). Data was ana-

lyzed for statistical significance using ANOVA (Holm-Sidak). A

P value of <0.05 was taken as statistically significant.

RESULTS

PE enhance endocytosis of NCC. We previously demon-

strated that the reduction of NCC activity with DAG/PE

stimulation was tied to a decrease in NCC surface expression

(12). To assess the mechanism by which this occurs, we

performed internalization assays on mDCT cells. In this assay,

cell surface proteins are first biotinylated at 4°C before the cells

are rewarmed and treated with TPA. The cells are then treated

with MesNa, a cell-impermeable acid which cleaves the biotin-

protein attachments. Since MesNa is cell impermeable, any

remaining biotinylated protein represents internalized proteins.

This protocol is a well-established method for assessing inter-

nalization (5, 11, 21, 34). As shown in Fig. 1, treatment with

MesNa virtually eliminated surface-expressed NCC (control with MesNa at time 0) compared with vehicle (control at time

0 without MesNa). Increased internalization of NCC with

exposure to TPA (100 nM) vs. control (vehicle, DMSO) was

evident as early as 10 min after exposure (P < 0.01). Over this
time, total cellular NCC remained constant in both groups,
suggesting that NCC degradation does not occur in response to

PE in this time frame. These findings are consistent with
images obtained using MDCK cells stably transfected with
Flag-tagged NCC subjected to immunocytochemistry and con-

focal microscopy. These MDCK-Flag NCC cells were treated

with 100 nM TPA for 15 and 45 min before fixation and

immunocytochemistry. Subsequent confocal microscopy in

both the XY and XZ planes show decreased apical NCC surface

expression 15 and 45 min after treatment with TPA (Fig. 1B).

Dynamin is a GTPase critical for endocytosis, an effect

inhibited by the dominant-negative dynamin mutant K44A (4).

Therefore, to demonstrate that PE-induced NCC endocytosis is
dynamin dependent, mDCT cells were transfected with HA-
tagged dynamin dominant-negative construct to assess the

dynamin dependence of the DAG/PE effect. Mock transfected

cells behaved similarly to those observed in our previous
experiments, resulting in a 76 ± 4% reduction in NCC surface
expression with TPA compared with control, but mDCT cells

expressing the dominant-negative dynamin showed no change

in NCC surface expression with TPA administration (P < 0.05

vs. vehicle, Fig. 2). Cells transfected with wild-type dynamin

behave as control. Taken together, these data indicate that the

DAG/PE effect upon NCC occurs via enhancing dynamin-

dependent endocytosis of surface NCC.

Fig. 1. Internalization of sodium-chloride cotransporter (NCC) with TPA treatment. A: mouse distal convoluted tubule (mDCT) cells were grown to confluence, labeled with biotin at 4°C, then rewarmed at treated with 100 nM TPA or vehicle for the indicated times. Then, remaining surface biotin was stripped using mercaptoethanesulfonic acid (MesNa). Cells were lysed and biotinylated (internalized) proteins were recovered using streptavidin-agarose and immunoblotted for NCC. Densitometry is shown, normalized to total cellular NCC (n = 4). CM, time 0 control with MesNa; CN, time 0 control no MesNa; C5, DMSO control 5 min; C10, DMSO control 10 min; C20, DMSO control 20 min; T5, TPA 5 min; T10, TPA 10 min; T20, TPA 20 min. *P < 0.05 vs. control at similar time point. B: Madin-Darby canine kidney cells (MDCK) cells expressing Flag-NCC were grown to confluence on permeable supports, treated with TPA for 15 and 45 min (T15 and T45, respectively), fixed, and subjected to immunofluorescence using Flag antibodies. Confocal images were obtained in the XY and XZ planes.
forward trafficking of NCC to the plasma membrane (3, 9, 33). Therefore, we examined the ability of TPA to affect forward trafficking of NCC. BFA (10 μM) was used to inhibit forward trafficking of NCC. BFA blocks transport of new proteins from the endoplasmic reticulum/Golgi to the plasma membrane. As shown in Fig. 3A, NCC surface expression decreased by 24 ± 3% over control after 1 h of BFA incubation, indicating continued endocytosis with inhibition of exocytosis (P < 0.05). At 3 h, NCC surface expression decreased by 52 ± 4% over control (Fig. 3A, P < 0.05). This is consistent with previously published reports of BFA inhibition of NCC forward trafficking, which demonstrated an NCC surface half-life of approximately 30 min.

Fig. 3. Role of forward trafficking in TPA effect on surface expression and NCC activity. A: mDCT cells were grown to confluence, transfected with hemagglutinin-tagged either wild-type (DW) or K44A (DN) dynamin as described, then treated with 100 nM TPA (T) or vehicle (C) for 15 min before labeling with biotin at 4°C. Biotinylated (cell surface) proteins were recovered using streptavidin-agarose and immunoblotted for NCC. NC, no biotin control. Accompanying densitometry is shown (n = 4). *P < 0.05 compared with time 0. B: mDCT cells were grown to confluence, transfected with hemagglutinin-tagged either wild-type (DW) or K44A (DN) dynamin as described, then treated with 100 nM TPA (T) or vehicle (C) for 15 min before labeling with biotin at 4°C. Biotinylated (cell surface) proteins were recovered using streptavidin-agarose and immunoblotted for NCC. NC, no biotin control. Accompanying densitometry is shown (n = 4). *P < 0.05 compared with time 0. C: mDCT cells were grown to confluence, transfected with hemagglutinin-tagged either wild-type (DW) or K44A (DN) dynamin as described, then treated with 100 nM TPA (T) or vehicle (C) for 15 min before labeling with biotin at 4°C. Biotinylated (cell surface) proteins were recovered using streptavidin-agarose and immunoblotted for NCC. NC, no biotin control. Accompanying densitometry is shown (n = 4). *P < 0.05 compared with time 0.
of ~3 h (33). NCC activity showed a similar decrease with BFA treatment, 12.4 ± 3.2% of control at 1 h and 45.3 ± 1.3% of control at 3 h (Fig. 3C, 2 < 0.05). In mDCT cells treated with a 1-h BFA incubation, TPA treatment essentially eliminated NCC surface expression (Fig. 3B). This was similar to TPA alone, indicating that TPA does not significantly act on NCC by affecting forward trafficking (33). This is in contrast to WNK4’s effect on NCC, which acts via inhibition of forward trafficking (3, 9, 33). NCC activity was essentially eliminated by TPA compared with control by TPA alone or in groups treated with BFA for either 1 or 3 h (Fig. 3C, 2 < 0.05) There were no significant differences in surface expression between the TPA alone and the two BFA- and TPA-treated groups. This demonstrates that PE do not act on NCC via forward trafficking but instead via enhanced endocytosis.

PE enhance ubiquitination of NCC. As previously discussed, we theorized that a potential signal for endocytosis of NCC was ubiquitination. To investigate a possible role for ubiquitin in mediating internalization of NCC in response to DAG/PE, we assessed the ability of TPA to augment ubiquitination of NCC. mDCT cells were treated with 100 nM TPA for varying time periods minutes before lysis and immunoprecipitation. Immunoblotting showed a significant increase in ubiquitinated NCC by 10 min of TPA treatment and a nearly fivefold increase in ubiquitinated NCC over control after 20 min of TPA treatment (2 < 0.01 by ANOVA, n = 4, Fig. 4A). Ubiquitination of NCC was also assessed in the MDCK Flag-NCC cell line. These cells were treated with 100 nM TPA for 5 min, lysed, and immunoprecipitated with anti-FLAG antibody. Subsequent immunoblotting for ubiquitin clearly demonstrated a band centered around 140 kDa, representing ubiquitination of NCC (Fig. 4B). These data indicate that NCC is ubiquitinated after treatment with the PE TPA.

Ubiquitination of NCC is dependent on RasGRP1-mediated ERK1/2 activation. As we have previously demonstrated that PE regulate NCC via RasGRP1 activation of Ras, Raf, MEK1/2, and ultimately ERK1/2, presumably, DAG/PE act via this pathway to enhance NCC ubiquitination. To test this theory, we assessed the ability of TPA to enhance NCC ubiquitination while inhibiting portions of the pathway. mDCT cells were treated with 100 nM TPA for 15 min along with the MEK1/2 inhibitor U0126. Subsequent lysis, immunoprecipitation for NCC, and immunoblotting for ubiquitin demonstrated that while TPA alone results in a fivefold increase in ubiquitination (2 < 0.01 by ANOVA, n = 4), the presence of a MEK1/2 inhibitor prevents TPA-induced enhancement in ubiquitination compared with either vehicle or U0126 alone (Fig. 5A).

To verify the involvement of RasGRP1 in this process, mDCT cells were transfected with siRNA specific for RasGRP1. Cells treated in this manner were again treated with TPA and assayed for NCC ubiquitination as above. Cells transfected with nonspecific siRNA continued to demonstrate a nearly fivefold increase in ubiquitinated NCC (2 < 0.01). A 94 ± 5% reduction in RasGRP1 expression was achieved (Fig. 5B, 2 < 0.05 compared with transfection with nontargeting siRNA), and in these cells TPA did not have an effect on ubiquitination of NCC compared with cells transfected with nontargeting siRNA (Fig. 5A). These data indicate that TPA’s ability to enhance NCC ubiquitination is dependent upon activation of RasGRP1 and ERK1/2.
Inhibition of ubiquitination prevents effect of TPA on NCC activity. To determine whether ubiquitination of NCC was necessary for PE to modulate NCC surface expression and activity, the ubiquitin inhibitor UBEI-41 was used. In mDCT cells treated with TPA and biotinylated as described previously, the addition of UBEI-41 prevented the decrease in NCC surface expression seen with TPA alone (unchanged from baseline for TPA and UBEI-41 vs. 73 ± 4% decrease from baseline for TPA alone, Fig. 7A).

The impact of ubiquitination upon NCC function was then assessed by measuring NCC activity by a 22Na radiotracer uptake assay in the presence of 50 μM UBEI-41. Treatment with UBEI-41 for 15 min did not significantly alter the baseline.
Radioactive uptake was determined as in MATERIALS AND METHODS. UBEI-41 significantly suppressed NCC activity by enhancing the ubiquitination of NCC, triggering endocytosis, and thereby reducing its activity. Our data show that this is accomplished by PE-mediated activation of RasGRP1, triggering Ras, MEK1/2, and ERK1/2 MAPK activation. This ERK1/2 MAPK activation then leads to enhanced ubiquitination of NCC. The increased ubiquitinated NCC leads to increased endocytosis of NCC and decreased cell surface expression, ultimately leading to decreased NCC activity.

DISCUSSION

PE-mediated ERK1/2 activation almost completely suppresses NCC activity as measured by 22Na$^+$ studies, accompanied by an $\sim 70\%$ reduction in surface expression as measured by biotinylation (12). This finding was echoed by immunocytochemical staining and confocal microscopy of MDCK-FLAG NCC cells showing decreased apical cell surface expression with exposure to TPA (Fig. 1). In contrast to WNK4’s reported effects on NCC, the PE do not appear to affecting forward trafficking of the cotransporter (3, 9, 33). Additionally, this work demonstrates that ERK1/2 MAPK activation by a PE/RasGRP1-mediated pathway triggers endocytosis of NCC. Tracking internalized NCC after PE treatment using biotinylation and subsequent treatment with MesNa showed a marked increase in internalized NCC in response to PE treatment, indicating endocytosis. The dynamin dependence of this finding was confirmed by introducing the dominant-negative dynamin mutant K44A into the system, which inhibited that change in NCC surface expression, indicating that PE’s effect was via dynamin-dependent endocytosis of NCC. Using BFA to inhibit Golgi transport does not inhibit the effect of PE on surface expression, indicating that PE work primarily by stimulating endocytosis and not by affecting forward trafficking. To our knowledge, this is the first report of endocytosis of NCC.

In our mDCT cell model, NCC appears to be ubiquitinated and run as two ubiquitinated species (Fig. 4A). This is the first report of ubiquitination of NCC. Inhibition of ubiquitination with an E1 enzyme inhibitor eliminates the top band. This suggests that NCC may be constitutively ubiquitinated, with a second ubiquitination event mediated by PE stimulation. It is unclear whether this ubiquitination event represents short-chain polyubiquitination at the previous site or multiquabitination at different sites, and this issue merits further study. Of note, while baseline ubiquitination is observed in the mDCT model, the transfected MDCK model does not appear to demonstrate significant baseline ubiquitination. This may be due to an alteration in baseline ubiquitination, due to a number of potential mechanisms. In ENaC, alterations in baseline ubiquitination were seen depending on the level of expression of the E3 ligase Nedd4–2 (44). These models may simply have varying expressions of the relevant E3 ligase, or for that matter a deubiquitinating enzyme (DUB), resulting in the differences in baseline ubiquitination. Determining the mechanism behind these differences merits future study.

In a series of whole animal studies conducted by Sandberg et al. (23, 24), NCC was shown by immunoelectron microscopy to reside in an apical (cell surface expressed) pool as well as in subapical vesicles. NCC appeared to redistribute within these pools in response to the administration of an angiotensin-converting enzyme inhibitor or angiotensin II infusion. These studies, however, could not distinguish between a decrease in forward trafficking and insertion of NCC in the plasma...
membrane or an increase in endocytosis of NCC from the plasma membrane (23, 24). Experiments using the Xenopus laevis expression system to coexpress WNK4 and enhanced green fluorescent protein-NCC have demonstrated reduced NCC cell surface expression in the presence of WNK4, a kinase associated with the form of genetic hypertension known as FHHT (40, 41). In this case, further studies demonstrated that the addition of a K44A dynamin-dominant negative did not affect WNK4 inhibition of NCC cell surface expression. This ultimately led to work using inhibitors of Golgi transport and lysosomal degradation to show that WNK4 likely impacted NCC surface expression by impeding forward trafficking to the cell surface and enhancing lysosomal degradation (3, 9, 33).

While endocytosis of NCC has not been previously demonstrated, there are numerous examples of transport protein regulation via dynamin-dependent endocytosis, and ERK1/2 MAPK has also been shown to mediate changes in surface expression of ion transport proteins (10, 29, 35, 36, 43). We previously demonstrated that the RasGRP1-ERK1/2 MAPK pathway was essential for decreasing NCC surface expression and activity associated with DAG/PE (12). The PE TPA, a functional analog of DAG, activates RasGRP1, which in turn activates the small G protein Ras. Ras goes on to activate a cascade involving Raf and MEK1/2, which then phosphorylates ERK1/2, activating it. This cascade represents a novel pathway for endocytosis-mediated regulation of NCC. Certain heterotrimeric G proteins activate phospholipase C, releasing DAG and inositol 1,4,5-trisphosphate from the cell membrane, making G-coupled protein receptors expressed in the DCT such as the calcium-sensing receptor a likely possibility. In addition, any hormones with receptors in the DCT and effects on ERK1/2 are likely candidate hormones. Possible hormonal targets therefore include epidermal growth factor and aldosterone.

Here, we investigated a potential role of ubiquitin in the regulation of NCC via the ERK1/2 MAPK pathway and demonstrated that in both mDCT and transfected MDCK cells expressing FLAG-NCC, TPA administration causes a marked increase in ubiquitination (Fig. 5). This increase in ubiquitination is of a similar time course to the increase in internalized NCC as measured by the biotinylation/MesNa assay, suggesting a possible direct relationship between these findings (Fig. 5). We further investigated the role of ERK1/2 MAPK in the ubiquitination of NCC and showed that inhibiting ERK1/2 activation by either blocking MEK1/2 or gene silencing RasGRP1 prevented an increase in ubiquitinated NCC by TPA (Fig. 6). This clearly demonstrates that ERK1/2 phosphorylation is required for ubiquitination of NCC in a pathway starting with DAG/PE activation of RasGRP1.

By inhibiting ubiquitination of NCC via an E1 inhibitor, we were able to directly assess the role of ubiquitination in triggering endocytosis and therefore decreasing NCC activity in this system. Prevention of NCC ubiquitination eliminated any change in NCC surface expression with PE treatment (Fig. 7). ERK1/2 activation by TPA, however, remained intact, indicating that ERK1/2 MAPK alone is not sufficient for the usual observed DAG/PE effect on NCC (Fig. 7).

Ubiquitination of NCC has not been previously described, but ubiquitination has been demonstrated to play a role in the regulation of other transport proteins (11, 14, 15, 37). It is a highly conserved 76-amino acid polypeptide with an ever-growing list of cellular functions (32). Ubiquitin is covalently linked to its substrate by an isopeptide bond between its C-terminal glycine and the ε-amino group of lysine residues. This occurs via the actions of three enzymes. First, an ubiquitin-activating enzyme (E1) binds to ubiquitin before transfer to an ubiquitin-conjugating enzyme (E2). Next, the ubiquitin is transferred to the substrate protein with the aid of an ubiquitin ligase (E3), either by directly binding to the substrate from E2 in a reaction catalyzed by E3 or by forming an intermediate complex with E3.

In this system, the increase in NCC ubiquitination appears tied to ERK1/2 MAPK activation, but the actual mechanism by which this occurs is unclear, with a number of plausible mechanisms existing. These include direct phosphorylation of NCC (as is the case with ERK1/2 and ENaC), stimulation of an E3 ligase (described in many systems, such as regulation of the tumor suppressor protein p53), or inhibition of a DUB (1a, 2, 15, 20, 26, 28, 30, 31, 38). In addition to these possibilities, ERK1/2 enhancement of ubiquitination could be a multipstep process, with ERK1/2 activating a second mediator which then acts on NCC, a ubiquitin ligase, or other regulatory protein. Of these prospective pathways, the simplest would be direct phosphorylation of NCC by ERK1/2, thereby enhancing the action of an E3 ligase and thereby enhancing ubiquitination. NCC, however, contains no traditional consensus sites for ERK1/2 MAPK phosphorylation. While noncanonical phosphorylation sites certainly are possible and the other mechanisms have not been explicitly demonstrated in ERK1/2 MAPK, this raises the likelihood that ERK1/2 may act via a different mechanism (25).

Potential pathways involving E3 ligases, deubiquitinating enzymes, or other mediators provide attractive possible targets, and further work is merited to single out the possible effectors from the hundreds of E3 ligases, dozens of DUBs, and countless other kinases.

The lysine(s) on NCC to which ubiquitin attaches are unknown, and ubiquitination at these sites can carry unique regulatory implications (16). Similarly, the pattern of ubiquitination, be it monoubiquitination, polyubiquitination, or mult ubiquitination, can play a key determinant in regulation. For instance, monoubiquitination, ubiquitination at a single site by a single ubiquitin, can signal endocytosis and lysosomal degradation, with epidermal growth factor receptor and other tyrosine kinase receptors being good examples (17). Polyubiquitination, where a ubiquitin attached to a target protein is itself ubiquitinated at one of its own lysines, often forming long polymerized chains of ubiquitin molecules, is well studied. The sites at which ubiquitin polymerizes have been correlated with the degradation pathway for the ubiquitinated protein (6, 22). Multiubiquitination, or monoubiquitination at multiple sites on the target protein, has also been described in other systems and can serve as a signal for endocytosis (1a, 15, 15a, 20, 26, 28, 31, 38).

In this study, we have demonstrated that NCC is endocytosed in response to PE administration. Furthermore, we describe that NCC is ubiquitinated and that this ubiquitination is essential for the regulation of NCC by PE. Activation of ERK1/2 MAPK by a pathway involving RasGRP1, Ras, Raf, and MEK1/2 is essential for DAG/PE-mediated ubiquitination to occur. This work represents the first description of endocytosis of NCC. It is also the first report of ubiquitination of this
cotransporter, and future study is warranted to further explore this means of NCC regulation.

ACKNOWLEDGMENTS
We thank Eugene Chang and Mark Musch for advice and discussions.

GRANTS
This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases Grants K08 DK070668 (to R. S. Hoover) and K08 DK081728 (to B. Ko) and by grants from the Netherlands Organisation for Scientific Research NWO 916.36.122 (to E. J. Kamsteeg) and 865.07.002 (to P. M. T. Deen). P. N. T. Deen is a recipient of VICI grant 865.07.002 from the Netherlands Organisation for Scientific Research.

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the authors.

REFERENCES
1. Anonymous. Whither RNAi? Nat Cell Biol 5: 489–490, 2003.
2. Butterworth MB, Edinger RS, Ovaa H, Burg D, Johnson JP, Frizzell RA. The deubiquitinating enzyme UCH-L3 regulates the apical membrane recycling of the epithelial sodium channel. J Biol Chem 278: 38785–38793, 2007.
3. Cai H, Cebotaru V, Wang YH, Zhang XM, Cebotaru L, Guggino SE, Guggino WB. WNK4 kinase regulates surface expression of the human sodium chloride cotransporter in mammalian cells. Kidney Int 69: 2162–2170, 2006.
4. Damke H, Baba T, Warnock DE, Schmid SL. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127: 915–934, 1994.
5. Deen PMT, Van Balkom BWM, van Vloten WA, Rotin D. Role of ubiquitylation in cellular membrane transport. Physiol Rev 86: 669–707, 2006.
6. Moren A, Hellman U, Inada Y, Imamura T, Heldin CH, Moustakas A. Differential ubiquitination defines the functional status of the tumor suppressor Smad4. J Biol Chem 278: 33571–33582, 2003.
7. Moreen A, Hellman U, Inada Y, Imamura T, Heldin CH, Moustakas A. Differential ubiquitination defines the functional status of the tumor suppressor Smad4. J Biol Chem 278: 33571–33582, 2003.
8. Nie L, Xu M, Vladimirova A, Sun XH. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J 22: 5780–5792, 2003.
9. O'Shaughnessy KM, Karet FE. Salt handling and hypertension. J Clin Invest 113: 1075–1081, 2004.
10. Ogawa Y, Kishishita S, Ohtaka T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277: 21843–21850, 2002.
11. Peng Y, Amemiya M, Yang X, Fan L, Moe OW, Yin H, Preisig PA, Yang Z, Moe OW. Phorbol ester stimulation of RasGRP1 regulates COOH terminus is necessary but not sufficient for routing to the apical membrane. Am J Physiol Renal Physiol 286: F34–F42, 2004.
12. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503–533, 2001.
13. Sandberg MB, Maunsbach AB, McDonough AA. Redistribution of distal tubule Na+-Cl– cotransporter (NCC) in response to a high-salt diet. J Biol Chem 281: F503–F508, 2006.
14. Sandberg MB, Riquier AD, Pihakaski-Maunsbach K, McDonough AA, Maunsbach AB. ANG II provokes acute trafficking of distal tubule Na+-Cl– cotransporter to apical membrane. Am J Physiol Renal Physiol 293: F662–F669, 2007.
15. Sheridan DL, Kong Y, Parker SA, Dalby KN, Turk BE. Substrate discrimination among mitogen-activated protein kinases through distinct Cterminal sequence motifs. J Biol Chem 281: 19521–19520, 2006.
16. Shi H, Asher C, Chigae A, Yung Y, Revenu E, Seger R, Garty H. Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an ERK-mediated phosphorylation. J Biol Chem 277: 13559–13564, 2002.
17. Simon DB, Nelson-Williams C, Johnson Bia M, Ellison D, Karet FE, Morey Molina A, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitelman HJ, Lifton RP. Gitelman’s variant of Barter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive NaCl cotransporter. Nat Genet 12: 24–30, 1996.
18. Snyder PM, Steines JC, Olson DR. Relative contribution of Nedd4 and Nedd4–2 to ENaC regulation in epithelia determined by RNA interference. J Biol Chem 279: 5042–5046, 2004.
19. Sorribas V, Halañol N, Puttaparthi K, Rogers T, Cronin RE, Alcalde AI, Amayamona J, Sarasas M, Wang B, Wilson F, Zajicek H, Levi M. Gentamicin causes endocytosis of Na/Pi cotransporter protein (NaPi-2b). Kidney Int 59: 1024–1036, 2001.
20. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15: 2371–2380, 1996.
21. Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16: 6325–6336, 1997.
22. Staub O, Rotin D. Role of ubiquitination in cellular membrane transport. Physiol Rev 86: 669–707, 2006.
23. Subramanya AR, Liu J, Ellison DH, Wade JB, Welling PA. WNK4 diverts the thiazide-sensitive NaCl cotransporter to the lysosome and stimulates AP-3 interaction. J Biol Chem 284: 18471–18480, 2009.
24. van de Graaf SFJ, Rescher U, Hoenderop JG, Verlaat S, Bindel RJ, Gerke V. TRPV5 is internalized via clathrin-dependent endocytosis to enter a Ca2+–controlled recycling pathway. J Biol Chem 283: 4077–4086, 2008.
25. Wang H, Traub LM, Weixel KM, Hawryluk MJ, Shah N, Edinger RS, Perry CJ, Kester L, Butterworth MB, Peters KW, Kleyman TR, Frizzell RA, Johnson JP. Clathrin-mediated endocytosis of the epithelial Na+ channel: role of epsin. J Biol Chem 281: 14129–14135, 2006.
26. Wang WH, Lin DH, Sterling H. Regulation of ROMK channels by protein tyrosine kinase and tyrosine phosphatase. Trends Cardiovasc Med 12: 138–142, 2002.
37. Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin-proteasome pathway. *Cell* 83: 121–127, 1995.

38. Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. *Semin Cell Dev Biol* 11: 141–148, 2000.

39. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Ganel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. *Science* 293: 1107–1112, 2001.

40. Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. *Proc Natl Acad Sci USA* 100: 680–684, 2003.

41. Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. *J Clin Invest* 111: 1039–1045, 2003.

42. Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li CCH, Kenten JH, Beutler JA, Voussen KH, Weissman AM. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. *Cancer Res* 67: 9472–9481, 2007.

43. Zeng WZ, Babich V, Ortega B, Quigley R, White SJ, Welling PA, Huang CL. Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. *Am J Physiol Renal Physiol* 283: F630–F639, 2002.

44. Zhou R, Patel SV, Snyder PM. Nedd4–2 catalyzes ubiquitination and degradation of cell surface ENaC. *J Biol Chem* 282: 20207–20212, 2007.