Mcm2 phosphorylation and the response to replicative stress

Brent E Stead, Christopher J Brandl, Matthew K Sandre and Megan J Davey*

Abstract

Background: The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm) proteins 2 through 7 (Mcm2-7) and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK). In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in *Saccharomyces cerevisiae* Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS) leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress.

Results: We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA) is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU) and to the base analogue 5-fluorouracil (5-FU) but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in *CAN1*, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE) the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate.

Conclusions: Together these observations point to a role for DDK-mediated phosphorylation of Mcm2 in the response to replicative stress, including some forms of DNA damage. We suggest that phosphorylation of Mcm2 modulates Mcm2-7 activity resulting in the stabilization of replication forks in response to replicative stress.

Background

DNA replication is tightly regulated to ensure that genomes are copied once and only once per cell division cycle [1]. In addition, cells must respond to assaults that damage DNA and/or disrupt replication forks by preventing the initiation of DNA replication and stabilizing active replication forks [2]. One of the targets for these regulatory events is the replicative helicase that unwinds DNA at the replication fork [3-8]. The catalytic core of the replicative helicase in eukaryotic cells is a heterohexameric complex comprised of the minichromosome maintenance proteins 2 through 7 (Mcm2-7; [9,10]). Mcm2-7 activity is tightly controlled during the initiation of DNA replication and is targeted in response to replicative stress [3,6-8,11-14].

In vivo, Mcm2-7 functions within the CMG complex comprised of Cdc45, Mcm2-7 and the tetrameric GINS complex (Sld5, Psf1, Psf2 and Psf3) [11,12]. The catalytic activity for DNA unwinding resides in Mcm2-7 with Cdc45 and GINS playing roles in limiting Mcm2-7 activity to S phase and providing scaffolding functions within the replisome [11,15-17]. CMG is isolated from replicating yeast cells as part of the RPC (replisome progression complex) that includes the checkpoint protein Mrc1, the fork pausing complex Tof1-Csm3, the histone chaperone FACT and the sister chromatid cohesion factor, Ctf4 [16]. Mcm2-7 activity is also regulated by phosphorylation. A recent study from our laboratory showed that
phosphorylation of *Saccharomyces cerevisiae* Mcm2 by the Dbf4-dependent kinase, Cdc7 (DDK) at S164 and S170 is important for a proper response to DNA damage [5]. Strains containing a non-phosphorylatable allele of *mcm2* (*mcm2AA*) grow similarly to wild type cells in normal growth conditions but are sensitive to the DNA alkylating agent, methyl methanesulfonate (MMS) and to caffeine. Caffeine is a purine analogue with pleiotropic effects. In general, caffeine inhibits PI3K-related kinases, which in yeast include TOR (Tor1 and Tor2), Mec1 and Tel1 [18-21]. TOR controls cell growth in response to nutrients and stress whereas Mec1 and Tel1 are both checkpoint kinases that also have roles in control of replication initiation (Mec1) and telomere maintenance (Tel1) [3,22-24].

Here, we show that in addition to MMS and caffeine, the *mcm2AA* strain is sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU) and the base analogue 5-fluorouracil (5-FU), but not phleomycin, a radiomimetic drug. The phosphomimetic glutamic acid substitutions at S164 and S170 suppress sensitivity to these drugs. We examined the genetic network within which *mcm2AA* functions and found 9 deletions that have synthetic slow growth or lethal interactions with *mcm2AA* and 16 deletions that suppress the caffeine sensitivity of *mcm2AA*. The identities of these gene deletions are consistent with a role for Mcm2 phosphorylation in the response to DNA damage and replicative stress and include two members of the RPC. A role in response to replicative stress is emphasized by the higher than wild type spontaneous mutation rate in the *mcm2AA* strain and a lower than wild type mutation rate with the *mcm2EE* phosphomimetic allele. Most of the gene deletions that suppressed the caffeine sensitivity of *mcm2AA* also relieved other phenotypes of *mcm2AA*. We propose that phosphorylation of Mcm2 by DDK is required in response to replicative stress to stabilize Mcm2-7 at replication forks.

Results

Growth of *mcm2AA* and *mcm2EE* cells in the presence of replicative stress

We examined the growth of the *mcm2AA* strain on media containing agents that cause replicative stress (Figure 1A & B). The *mcm2AA* strain had reduced growth relative to MCM2 on YPD plates containing MMS or 5-FU (Figure 1A), but not on plates containing phleomycin (Figure 1B). These agents have different effects on DNA stability in budding yeast. MMS damages DNA by methylating guanines and adenines [25]. The effects of 5-fluorouracil in yeast are twofold: it inhibits the pyrimidine biosynthesis pathway and results in misincorporation of uracil into nascent DNA [26]. Phleomycin is structurally similar to bleomycin, a radiomimetic drug that causes double stranded DNA breaks [27]. The *mcm2AA* strain also grows poorly upon constant exposure to the ribonucleotide reductase inhibitor, hydroxyurea (HU), which interferes with the integrity of DNA replication forks and induces an S phase checkpoint [28,29].

We noted previously that Mcm2 in which S164 and S170 are altered to glutamic acids (*mcm2EE*) acts like a phosphomimic, allowing growth of cells in the presence of caffeine and MMS, and has the same activity *in vitro* as phospho-Mcm2 [5]. If phosphorylation of Mcm2 is required in response to 5-FU and HU, then *mcm2EE* should be insensitive to these agents. As predicted, the *mcm2EE* strain grew similarly to wild type cells in the presence of 5-FU and HU (Figure 1C). Substitution of Glu for S at position 164 or 170 also resulted in wild type growth consistent with the requirement to mutate both Ser to Ala to obtain a phenotype [5].

Synthetic lethal/slow growth interactions with *mcm2AA*

The sensitivity of the *mcm2AA* strain to caffeine, MMS, 5-FU and HU suggests that phosphorylation of Mcm2 is required in response to replicative stress. Furthermore, the increased frequency of RPA foci in these cells [5] suggests disruption of replication forks or an inability to respond to replicative stress [30-32]. If our model is correct, then mutations that increase genomic instability will be synthetic lethal or slow growth with *mcm2AA*. After screening the *S. cerevisiae* non-essential deletion collection for synthetic lethal interactions with *mcm2AA* and confirming the interactions by tetrad dissection, we found 8 gene deletions that result in no or slow growth when combined with *mcm2AA* (Table 1 and Additional file 1). Three of the eight gene deletions that display synthetic lethal or slow growth interactions with *mcm2AA* affect cell stress responses or cell cycle. In particular, the synthetic interaction of *mcm2AA* with *chk1Δ*, a deletion in the gene encoding a checkpoint effector kinase is consistent with the idea that *mcm2AA* is important in response to replicative stress. In addition, *atf4Δ, sod1Δ* and *img1Δ* all lead to genomic instability or increase DNA damage [33-36] and their negative synthetic interactions with *mcm2AA* support the idea that Mcm2 phosphorylation is important in response to DNA damage.

Rad53 is phosphorylated in the *mcm2AA* strain

One potential role of Mcm2 phosphorylation in response to replicative stress is in the induction of a checkpoint signal leading to phosphorylation of Rad53, detected by decreased migration through SDS-PAGE. We examined Rad53 by Western blotting in the MCM2 and *mcm2AA* strains before and after treatment with 0.02% MMS, which triggers the S phase checkpoint. As seen in Figure 2, the migration of Rad53 is slower in the presence of MMS in both strains, suggesting that signalling in response to DNA
damage is intact and that phosphorylation of Mcm2 is not required to activate checkpoint. We also tested for a genetic interaction between mec2-1 and a checkpoint deficient allele of RAD53 (mec2-1 [24]). After mating the strains and generating spore progeny by tetrad dissection, none of the spore colonies contained both mutations indicating a synthetic lethal interaction, consistent with Mcm2 phosphorylation functioning in a parallel pathway to Rad53 (Additional file 1).

Increased mutation rate in mec2AA cells

If phosphorylation of Mcm2 is important in response to DNA damage and/or replicative stress, cells containing the non-phosphorylatable allele of mec2AA (mcm2AA) would be predicted to accumulate mutations at a higher rate than cells with MCM2 or mcm2EE. To test this, we utilized the CAN1 forward mutation assay in which a mutation rate is determined from the number of canavanine resistant colonies and the mutation rate using the method of the median [39,40]. The mutation rate was nearly two-fold higher in the mec2AA strain than with MCM2 or mcm2EE, consistent with an inability to respond properly to spontaneous DNA damage in the absence of Mcm2 phosphorylation. Significantly, the mutation rate in the mec2EE strain was half that of the MCM2 strain (1.6 x 10^{-7}).

Suppressors of the caffeine sensitivity of mec2AA

As mec2AA is predicted to interfere in the response to replicative stress, second site mutations that decrease DNA damage or increase the capacity for DNA repair would be expected to act as suppressors. We therefore screened the haploid deletion strain collection for gene deletions that suppress the caffeine sensitivity of mec2AA.

Table 1 Synthetic lethal or slow growth interactions with mcm2AA

Gene	ORF	Function	GO	growth
hml1Δ	YBR274W	Checkpoint Kinase	1,2,5	lethal
cta4Δ	YPR135W	Sister Chromatid Cohesion	1,2	lethal
ssp1Δ	YJR104C	Response to oxygen radicals	1,6,8	slow
bud23Δ	YCR047C	Bud site selection	2,3,4	lethal
pep3Δ	YLR148W	Vesicular docking/Vacuolar biogenesis	3,8	lethal
skn1Δ	YGR143W	Sphingolipid biosynthesis	7,8	slow
imp1Δ	YCR046C	Mitochondrial genome maintenance	9	lethal
vma13Δ	YPR036W	Subunit of Vacuolar ATPase	10	lethal

Genes are grouped by their GO term as annotated in the Saccharomyces cerevisiae database [37]. Gene ontology: (1) Response to cell stress/chemical stimuli (2) cell cycle, (3) transport, (4) RNA metabolic process, (5) signalling process/protein modification process, (6) transcription, (7) carbohydrate metabolic process, (8) cell wall, membrane, & vesicle mediated transport, (9) mitochondrial organization, and (10) other.
Sensitivity to caffeine was chosen because of the strong phenotype it elicits with mcm2\(\text{AA}\). Candidates were re-mated, isolated by tetrad dissection and re-tested on YPD with caffeine. Sixteen gene deletions were identified (Figure 3). We classified these genes by biological functions based on gene ontology annotations in the Saccharomyces Genome Database [37] as well as their reported functions in the literature (Table 2). These classifications yielded four groups of genes: cell stress, cell cycle, protein folding and "other" functions. Interestingly, half of the deletions, when independent of mcm2\(\text{AA}\), were sensitive to caffeine indicating roles for these genes in response to caffeine. Four of these, tof1\(\Delta\), mbp1\(\Delta\), ume6\(\Delta\) and sip18\(\Delta\) were as sensitive to caffeine as mcm2\(\text{AA}\). Others, such as rad9\(\Delta\), rad2\(\Delta\), pdr15\(\Delta\) and hrd1\(\Delta\), displayed an intermediate sensitivity. In addition, three showed decreased sensitivity to caffeine compared to wild type MCM2 (yhp1\(\Delta\), ssm4\(\Delta\) and rpl8b\(\Delta\)). We also note that some of the deletions, such as tof1\(\Delta\), rad9\(\Delta\) and pac10\(\Delta\), resulted in only partial suppression (Figure 3).

Our hypothesis predicts that deletions that suppress the caffeine sensitivity of mcm2\(\text{AA}\) will also decrease the mutation rate in the mcm2\(\text{AA}\) strain. Therefore, we repeated the CAN1 forward mutation assay on a subset of the deletion strains. As shown in Figure 4, seven of the 11 deletions tested decreased the mutation rate, both with the deletion alone and in the presence of mcm2\(\text{AA}\). The exceptions were tof1\(\Delta\), rad2\(\Delta\) and ume6\(\Delta\). Deletion of tof1 causes genomic instability [41-43] and rad2\(\Delta\) is deficient in nucleotide excision repair [44]. Ume6 is involved in the expression of several genes and deletion of ume6 increases homologous recombination [45-48].

To further evaluate the mechanisms by which the gene deletions suppress mcm2\(\text{AA}\), we spotted strains containing the suppressor deletions and either MCM2 or mcm2\(\text{AA}\) onto YPD plates containing MMS, 5-FU and HU (Figure 5, Table 3 and Additional file 1). All of the deletions that suppressed the caffeine sensitivity of mcm2\(\text{AA}\) also suppressed at least one other drug sensitivity of mcm2\(\text{AA}\), exemplified by rad2\(\Delta\) and ssm4\(\Delta\) (Figure 5). Many of the deletions in the cell stress group also lead to sensitivity to these drugs in the MCM2 background, thus likely accounting for the complex phenotypic patterns. For example, the srs2 and rad9 deletions do not suppress the sensitivity of mcm2\(\text{AA}\) to MMS or 5-FU and only partially suppress on HU (Figure 5). Some of the deletions decrease sensitivity to the drugs in an otherwise wild type background. For example, the yhp1\(\Delta\) strain grows faster than the wild type strain on plates containing MMS or 5-FU (Figure 5). This increased growth is also noted in the mcm2\(\text{AA}\) yhp1\(\Delta\) strain. Therefore, the yhp1 deletion likely functions non-specifically to suppress mcm2\(\text{AA}\). Of note, Yhp1 is a transcriptional repressor that along with Yox1 is involved in the cyclic transcription of a set of genes that includes MCM2-7 [49].
However, deletion of yhp1Δ alone did not affect expression of MCM3-lacZ and had little or no effect on cell growth [49]. The ett1Δ deletion on MMS or HU and sip18Δ on HU similarly increase growth of cells containing the wild type and mutated mcm2 alleles (Table 3 and Additional file 1).

Previously, we observed that the mcm2Δ strain has a higher frequency of cells with RPA foci [5]. RPA is the single-stranded DNA binding protein and thus foci represent generation of single stranded DNA. In wild type cells, RPA is diffuse in the nucleus (Figure 6A). In a low percentage of wild type cells, RPA foci will appear. Since a higher frequency of cells contain foci when treated with DNA damaging agents, the foci are thought to represent ongoing repair processes or disruption of the replication fork, both of which generate stretches of single stranded DNA [30-32]. Interestingly, in cells containing mcm2Δ, RPA foci appear in a much higher frequency of cells; ~20 percent (Figure 6A and B; [5]). As a means of determining the mechanisms by which the gene deletions suppress mcm2Δ, we tested whether they also suppress the increased frequency of cells with RPA foci. We transformed a plasmid encoding GFP-tagged Rpa1 into a subset of the suppressor strains and scored each for cells with RPA foci (Figure 6B). In isolation, the gene deletions had a higher ratio of cells with RPA foci than wild type (Figure 6B) with the tof1, rad9, mbp1, hrd1, ssm4, sip18, and rpl8b deletions having p values less than 0.05, reflecting the effect of these deletions on genomic stability. Despite this increase, deletion of most of the genes tested suppressed the increased frequency of RPA foci in the mcm2Δ strain; srs2Δ did not (p ≥ 0.05). Deletion of tof1 also did not suppress mcm2Δ. Indeed, tof1Δ in the

Gene	ORF	Function	GO
srs2Δ	YJL092C	DNA repair, helicase	1
mcr1Δ	YKL150W	Oxidative stress response	1
tof1Δ	YNL273W	Subunit of fork pausing complex	1,2,5
rad9Δ	YDR217C	Transmission of checkpoint signal	1,2,4,5,6
rad2Δ	YGR258C	Nucleotide excision repair	1,4,6
pdr75Δ	YDR406W	Cellular detoxification	1,3
rds2Δ	YPL133C	Transcription factor	1,6,7
yhp1Δ	YDR451C	Transcription factor/cell cycle	2,4,6
mbp1Δ	YDL056W	Transcription factor/cell cycle	2,4,6
ura6Δ	YDR207C	Transcription factor	2,4,5,6
hrd1Δ	YOL013C	Ubiquitin ligase/ER assoc. decay	8
ssr4Δ	YL030C	Ubiquitin ligase/ER assoc. decay	8
pac10Δ	YGR078C	Protein folding	8
sip18Δ	YMR175W	Osmotic stress	9
rpl8bΔ	YLL045C	Ribosomal protein	9
ett1Δ	YOR051C	Translation termination	9

Genes are grouped by their GO terms as annotated in the *Saccharomyces cerevisiae* database [37]. Horizontal lines separate different classes. Gene ontology: (1) Response to cell stress/chemical stimuli (2) cell cycle, (3) transport, (4) RNA metabolic process, (5) signalling process/protein modification process, (6) transcription, (7) carbohydrate metabolic process, (8) ER-mediated degradation & protein-folding and (9) other.

Figure 4 Mutation rates of mcm2 alleles and strains with gene deletions that suppress mcm2Δ. The mutation rates of MCM2 and mcm2Δ strains with and without gene deletions that suppress mcm2Δ were calculated as described [39,40] using the CAN1 forward mutation assay. Dark grey bars are the deletions in the MCM2 background; white bars are with mcm2Δ and the light grey bar (far left) is the mcm2Δ strain. The error bars represent the upper and lower confidence limits (95%) of the mutation rates and were calculated from the 95% confidence limits of the median determined from the binomial distribution [40].

Table 2 Suppressors of the caffeine sensitivity of mcm2Δ

Gene	ORF	Function	GO
srs2Δ	YJL092C	DNA repair, helicase	1
mcr1Δ	YKL150W	Oxidative stress response	1
tof1Δ	YNL273W	Subunit of fork pausing complex	1,2,5
rad9Δ	YDR217C	Transmission of checkpoint signal	1,2,4,5,6
rad2Δ	YGR258C	Nucleotide excision repair	1,4,6
pdr75Δ	YDR406W	Cellular detoxification	1,3
rds2Δ	YPL133C	Transcription factor	1,6,7
yhp1Δ	YDR451C	Transcription factor/cell cycle	2,4,6
mbp1Δ	YDL056W	Transcription factor/cell cycle	2,4,6
ura6Δ	YDR207C	Transcription factor	2,4,5,6
hrd1Δ	YOL013C	Ubiquitin ligase/ER assoc. decay	8
ssr4Δ	YL030C	Ubiquitin ligase/ER assoc. decay	8
pac10Δ	YGR078C	Protein folding	8
sip18Δ	YMR175W	Osmotic stress	9
rpl8bΔ	YLL045C	Ribosomal protein	9
ett1Δ	YOR051C	Translation termination	9

Genes are grouped by their GO terms as annotated in the *Saccharomyces cerevisiae* database [37]. Horizontal lines separate different classes.
wild type background greatly increases the frequency of cells with RPA foci. This increased frequency might be explained by the observation that disruption of the *tof1* ortholog in *S. pombe* (*swi1*) decouples polymerases, generating excess single stranded DNA [50-52].

Discussion

Our findings suggest a role for phosphorylation of Mcm2 by DDK in response to replicative stress. Specifically, we demonstrate that the *mcm2AA* strain is sensitive to drugs that cause replicative stress, has an increased mutation rate and that *mcm2AA* interacts with genes involved in the response to replicative stress. Along with our previous study showing that phosphorylation of Mcm2 at S164 and S170 slows DNA unwinding and results in enhanced DNA binding by Mcm2-7 *in vitro* [5], our results lead to a model in which phosphorylation of Mcm2 slows DNA unwinding by Mcm2-7 and/or stabilizes the replication fork as part of the proper response to replicative stress.

When a replication fork encounters DNA damage such as a base lesion or a break in the DNA strand, synthesis by the replicative polymerases at that fork halts. A series of events must then occur for replication to proceed [53]. While double stranded DNA breaks, base damage or nucleotide depletion each induce the S phase checkpoint, which inhibits further initiation of DNA replication and stabilizes replication forks, the form of the response differs depending on the type of perturbation [54,55]. Given the sensitivity of the *mcm2AA* strain to MMS and 5-FU, we propose that phosphorylation of Mcm2 by DDK is required to stabilize replication forks in response to DNA base damage. The lack of sensitivity to phleomycin with this strain suggests that Mcm2 phosphorylation may not be required in response to double strand breaks. That DDK phosphorylation would trigger Mcm2 participation in the response to

Table 3 Phenotypes of deletions that suppress the caffeine sensitivity of mcm2AA

mutation	Sensitivities	Suppression of mcm2AA							
	caf	MMS	5-FU	HU	MMS	5-FU	HU	RFA	mutation rate
srs2Δ	S	S	S	S	-	-	+	+	+
mcr1Δ	R	R	S	S	-	+	+	ND	ND
tof1Δ	S	S	R	S	+	+	+	ND	ND
rad9Δ	S	S	S	S	+	+	+	+	+
gat1Δ	S	R	S	R	+	+	+	+	+
rad2Δ	R	S	S	S	+	+	+	+	+
yhp1Δ	R+	R+	R+	R+	+	+	+	ND	ND
rth1Δ	S	R	R	S	+	+	+	-	-
sss4Δ	R+	R+	R+	R+	+	+	+	+	+
pac10Δ	R	S	S	S	+	+	+	ND	ND
sip18Δ	S	S	R	R+	+	+	+	+	+
rpl8Δ	R+	S	S	S	+	+	+	+	+
ett1Δ	R	R+	R+	R+	+	+	+	ND	ND

The sensitivities of the deletion strains (with wild type MCM2) to each drug is indicated by "R" for growth similar to wild type, "S" for growth slower than wild type or "R+" for better than wild type growth. For suppression of the phenotypes associated with *mcm2AA*, "-" indicates no suppression, "+" indicates suppression, "E" indicates epistasis and "ND" indicates that the test was not performed on that strain.
replicative stress is not surprising given DDK participates in responses to DNA damage and replicative stress and is a target of Rad53 during the S phase checkpoint [56-60].

Genetic interactions with mcm2AA

The genetic interactions with mcm2AA are most consistent with a requirement for Mcm2 phosphorylation in response to disruption of the replication fork. The effect of the suppressing deletions can be explained as either decreasing spontaneous DNA damage, which would otherwise disrupt replication forks or increasing the capacity for rescue of disrupted forks by recombination. In contrast, the deletions that result in synthetic lethal interactions increase spontaneous DNA damage, perturb the replication fork and/or are required for checkpoint responses. Mapping the interactions within the 25 genes connected to mcm2AA indicates that about 15 form a network independently of mcm2 (Figure 7). Most of the interacting genes have roles in response to DNA damage and replicative stress. Interestingly, several of the genes interact with CDC7 and DBF4, the genes encoding the two components of DDK (Figure 7).

Of the 25 genetic interactions with mcm2 that we isolated, only one was previously identified. Deletion of rad9 has a synthetic lethal interaction with mcm2-1, a temperature sensitive allele [63]. Interestingly, here rad9Δ suppresses some, but not all, of the phenotypes associated with mcm2AA. The difference may result from allele specificity; mcm2-1 is expected to affect Mcm2’s essential role in Mcm2-7 function whereas the mcm2AA allele affects Mcm2 activity in response to replicative stress.

Deletion of three genes, HRD1, SSM4 and PAC10 whose products are involved in targeting misfolded proteins for degradation [64,65], suppress mcm2AA. One possible mechanism for these suppressors is that misfolded proteins induce the unfolded protein response (UPR) which in turn provides protection against reactive oxygen species which can damage DNA [66]. However, the mechanism of suppression is more complex since mcm2AA is still sensitive to caffeine or MMS in the presence of tunicamycin, which induces the UPR (data not shown).

Regulating helicase progression in response to replicative stress

We propose that phosphorylation of Mcm2 by DDK is required in response to replicative stress. This role is not recognition of damage or replication fork collapse since the S phase checkpoint is intact at least up to Rad53 phosphorylation. Furthermore, mcm2AA has synthetic lethal
interactions with chk1Δ and mec2-1, mutations in the genes encoding the checkpoint effector kinases in yeast [2,67-69]. Synthetic lethal interactions often indicate function of the interacting genes in parallel pathways. Based on the previously observed biochemical activities of Mcm2-7 with DDK-phosphorylated or phosphomimetic Mcm2 [5], we surmise that phosphorylation of Mcm2 may stabilize Mcm2-7 on DNA and/or slow the helicase. DNA helicases are predicted to contact DNA through the sugar phosphate backbone, not the bases [70]. Therefore, unlike replicative polymerases that stall at sites with missing or damaged bases, the helicase will continue unwinding DNA and may decouple from the polymerase. Indeed single stranded DNA generated by decoupling of helicase from polymerase but rather is due to DNA damage triggered decoupling of the helicase. Lack of Tof1, a member of the RPC, slows replication forks [43], however this occurs only in the presence of replicative stress, such as seen in the presence of genotoxic agents [42].

Conclusions

Phosphorylation of Mcm2 by DDK is required for the proper response to replicative stress, but not to induce a checkpoint. This phosphorylation event likely slows the Mcm2-7 helicase and/or stabilizes replication forks. In the absence of Mcm2 phosphorylation, the mutation rate is increased.

Methods

Materials

Caffeine, HU and MMS were purchased from Sigma Aldrich (99% purity); geneticin (G418) from either United States Biological or Santa Cruz Biotechnology; phleomycin from Santa Cruz Biotechnology; 5-FU from Nutritional Biochemicals Corp. YPD is 1% yeast extract, 2% peptone and 2% D-glucose. The yeast strains MDY167 (MCM2-URA3), MDY169 (mcm2Δ-URA3) and MDY191 (mcm2Δ-URA3) are described in Stead et al. [5] and the mec2-1 strain in [24].

Synthetic lethal screen

The genetic screens were a modification of SGA analysis [89]. Manipulation of the gene arrays was performed manually using a 3.18-mm 48-pinner tool (V&P Scientific, San Diego, CA). Screens were performed using MDY169 (MATα mcm2Δ-URA3) or MDY167 (MATα MCM2-URA3 [5]) mated with the haploid yeast Magic Marker deletion collection generated from the diploid strain collection (Open Biosystems; [90]). Diploids were selected and then sporulated before selecting haploid cells
canavanine resistant cells per 10^7 cells. The mutation each plate were counted to determine the number of dilution swer ema de befo rep lating onYPD. Coloni es on mcm2AA compiled a list of 234 genes that had SSL interactions with rates reported previously [89]. From this initial screen, we (growth when the gene deletion is reported as lethal in Ura+). Plates were scanned on a HP Scanjet 3970 and col-

mcm2AA

dected if the colony size was smaller in the mcm2AA cross than in the MCM2 cross. A false positive rate (growth when the gene deletion is reported as lethal in SGD [37]) was roughly 5% and is similar to false positive rates reported previously [89]. From this initial screen, we compiled a list of 234 genes that had SSL interactions with mcm2AA. Next, the candidates were retested from the mating step in triplicate. Forty-one SSL interactions were identi-

ied in this step. The deletions were then re-tested for genetic interactions with mcm2AA by re-mating followed by tetrad dissection. SSL interactions were verified if Ura + deletions were re-mated in triplicate, haploids generated as described above) to YPD containing 15 mM caf-

The forward mutation assay was performed as described in [91]. Briefly, at least 20 colonies were inoculated into 2x1 08 –

20 colonies were inoculated into 10 x 1 ml YPD and the cultures grown overnight at 30°C to 1–2 x 10^6 cells/ml. Each culture was diluted to approximately 200 cells/1 ml YPD and grown to 1–2 x 10^8 cells/ml. Cells were then plated (~ 10^7) on CM-Arg plates containing 25 μg canavanine/ml and appropriate dilutions were made before plating on YPD. Colonies on each plate were counted to determine the number of canavanine resistant cells per 10^7 cells. The mutation rate was calculated using the method of the median [39,40].

References

1. Bell SP, Dutta A: DNA replication in eukaryotic cells. Annu Rev Biochem 2002, 71:333–374.
2. Segurado M, Tercero JA: The S-phase checkpoint: targeting the replication fork. Bio l Cell 2009, 101:617–627.
3. Randell JC, Fan A, Chan C, Francis LI, Heller RC, Galani K, Bell SP: Mec1 is one of multiple kinases that prime the MCM-2 helicase for phosphorylation by Cdc7. Mol Cell 2010, 40:333–343.
4. Sheu YJ, Stillman B: Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell 2006, 24:101–113.
5. Stead BE, Brandl CJ, Davey MJ: Phosphorylation of Mcm2 modulates MCM-2-7 activity and affects the cell’s response to DNA damage. Nucleic Acids Res 2011, 39:9003–9011.
6. Cortez D, Glick G, Elledge SJ: Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci U S A 2004, 101:10078–10083.
7. Montagnoli A, Valasina B, Brotherton D, Troiani S, Rainoldi S, Tenca P, Molinari A, Santocanale C: Identification of Mcm2 phosphorylation sites by 5-phase-regulating kinases. J Biol Chem 2006, 281:10281–10290.
8. Yoo HY, Shevchenko A, Dunphy WG: Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J Biol Chem 2004, 279:53333–53344.
9. Bochman ML, Schwacha A: The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 2009, 73:652–683.
10. Forsburg SL: Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev 2004, 68:109–131.
11. Moyer SE, Lewis PW, Botchan MR: Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 2004, 101:10236–10241.
12. Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC: Localization of MCM-2, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 2006, 24:34428–34441.
13. Sheu YJ, Stillman B: The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 2010, 463:113–117.
14. Ishimi Y, Komamura-Kohno Y: Phosphorylation of Mcm4 at specific sites by cyclin-dependent kinase leads to loss of Mcm4,6,7 helicase activity. J Biol Chem 2001, 276:34428–34433.
15. Costa A, Ilves I, Tarnberg N, Petrojevic T, Noegala E, Botchan MR, Berger JM: The structural basis for MCM-2 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 2011, 18:471–477.
16. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K: GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 2006, 8:334–338.
17. Ilves I, Petrojevic T, Pasavento U, Botchan MR: Activation of the Mcm2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 2010, 37:247–258.
18. Halt-Jones CA, Cross DA, Morrice N, Smythe C: ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 1999, 18:6707–6713.
19. Kuranda K, Leberre V, Sokol S, Palamarczyk G, Francois J: Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/CAMP signalling pathways. Mol Microbiol 2006, 61:1147–1166.
20. Reinke A, Chen JC, Aronova S, Powers T: Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 2006, 281:31616–31626.

Acknowledgements

This work was supported by a Canadian Institutes of Health Research Operating Grant (MOP 68926) to MJD and by funding from Schulich School of Medicine & Dentistry. BES was supported by a Natural Science and Engineering Research Council PGS-D fellowship.

Authors’ contributions

BES carried out the screens and drug assays with assistance from CJB and MKS and wrote a draft of the manuscript. MD did the microscopy, mutation assays, Rad53 blot and edited the manuscript with CJB. All authors read and approved the final manuscript.

Received: 29 January 2012 Accepted: 7 May 2012
Published: 7 May 2012

Additional file

Additional file 1: Stead et al., Supplemental Data.
21. Wanke V, Cameroni E, Urtola A, Piccolis M, Urban J, Loewith R, De Virgilio C: Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol 2008, 69:277–285.

22. Saiddi A, Resnick AC, Snowman AM, Wendland B, Snyder SH: Inositol phosphophates regulate cell death and telomere length through phosphoinositide 3-kinase–related protein kinases. Proc Natl Acad Sci U S A 2005, 102:1911–1914.

23. Tercero JA, Diffley JF: Regulation of DNA replication fork progression through damaged DNA by the Mcm1/Rad53 checkpoint. Nature 2001, 412:553–557.

24. Weinert TA, Kiser GL, Hartwell LH: Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 1994, 8:652–665.

25. Beranek DT: Distribution of methyl and ethyl adducts following alkylation by nonfunctional alkylating agents. Mutat Res 1990, 231:11–30.

26. Seiple L, Januga P, Dizdaroglu M, Stivers JT: Linking uracil base excision repair and 5-fluorouracil toxicity in yeast. Nucleic Acids Res 2006, 34:140–151.

27. Moore CW: Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and plasmocin. Cancer Res 1989, 49:6935–6940.

28. Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM: The transcription elongation factor Bur1-Bur2 interacts with intermediates is separable from its role in homologous recombinational repair. EMBO J 2003, 22:4325–4336.

29. St�hrner K, Menthiere C, Davis RW, Esposito RE: The transcription elongation factor 3: implications for nucleotide excision repair and Cockayne syndrome. Proc Natl Acad Sci U S A 1996, 93:10718–10722.

30. Williams RM, Prakash L, Prakash S: The genetic landscape of a cell.Nat Rev Mol Cell Biol 2004, 5:237–247.

31. Noguchi E, Noguchi C, McDonald WH, Yates JR 3rd, Russell P: Spindle checkpoint genes in budding yeast. Mol Cell Biol 2005, 25:2770–2784.

32. Santocanale C, Diffley JF: The transcription elongation factor Bur1-Bur2 interacts with replication A and maintains genome stability during replication stress. J Biol Chem 2010, 285:41665–41674.

33. Wu X, Shell SM, Zou Y: Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex with replication protein A in human cells. Oncogene 2005, 24:1717–1724.

34. Gralla EB, Valentine JS: Mitotic checkpoint genes in budding yeast. Methods for determining spontaneous mutation rates. Methods Mol Biol 2003, 185:5918–5930.

35. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 1989.

36. Cline MS, Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2013, 29:432–433.

37. Genschel J, Dalgaard JZ: Phase checkpoint protein Tof1 collaborates with the helicase Rrm3 and the transcription elongation factor Bur1-Bur2 to block replication forks. Nat Genet 2001, 29:398–402.

38. Foiani M, Liberi G, Piatti S, Plevani P: The transcription elongation factor Bur1-Bur2 interacts with replication A and maintains genome stability during replication stress. J Biol Chem 2010, 285:41665–41674.

39. Noguchi E, Noguchi C, McDonald WH, Yates JR 3rd, Russell P: Spindle checkpoint genes in budding yeast. Mol Cell Biol 2005, 25:2770–2784.

40. Santocanale C, Diffley JF: The transcription elongation factor Bur1-Bur2 interacts with replication A and maintains genome stability during replication stress. J Biol Chem 2010, 285:41665–41674.

41. Bairwa NK, Mohanty BK, Stamenova R, Curcio MJ, Bastia D: DNA topo II and DNA replication fork progression and recovery independently of Rad53. Mol Cell 2005, 19:699–706.

42. Gralla EB, Valentine JS: Mitotic checkpoint genes in budding yeast. Methods for determining spontaneous mutation rates. Methods Mol Biol 2003, 185:5918–5930.

43. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 1989.

44. Genschel J, Dalgaard JZ: Phase checkpoint protein Tof1 collaborates with the helicase Rrm3 and the transcription elongation factor Bur1-Bur2 to block replication forks. Nat Genet 2001, 29:398–402.
68. Liu Y, Vidanes G, Lin YC, Mori S, Sede W. Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA-damage-induced M-phase arrest. Mol Gen Genet 2000, 262:1113–1146.

69. Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage. Science 2003, 297:547–551.

70. Fiehn EJ, Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006, 442:270–275.

71. Byun TS, Paeck M, Yee MC, Walter JC, Cimprich KA. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 2005, 19:1040–1052.

72. Feng W, Collingswood D, Bocke ME, Fox LA, Alvino GM, Fangman WL, Raghuraman MK, Brewer BJ. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol 2006, 8:148–155.

73. Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, Foiani M. Checkpoint-mediated control of replicosome-fork association and signalling in response to replication pausing. Oncogene 2004, 23:1206–1213.

74. Nedelcheva MN, Roguev A, Dolapchiev LB, Shevchenko A, Taskov HB, Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003, 300:1542–1548.

75. Sogo JA, Lopes M, Foiani M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 2003, 297:599–602.

76. You Z, Kong L, Newport J. The role of single-stranded DNA and polymerase alpha in establishing the ATR, Hus1 DNA replication checkpoint. J Biol Chem 2002, 277:7088–7093.

77. Zhou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003, 300:1542–1548.

78. Nitani N, Yadani C, Yakubuhi H, Masukata H, Nakagawa T. MCM C-terminal domain of MCM helicase prevents excessive formation of single-stranded DNA at stalled replication forks. Proc Natl Acad Sci 2008, 105:12973–12978.

79. Hanna JS, Kroll ES, Lundblad V, Spencer FA. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 2001, 21:3144–3158.

80. Miles J, Formosa T. Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo. Mol Cell Biol 1992, 12:5724–5735.

81. Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 2009, 28:2992–3004.

82. Ando A, Nakamura T, Murata Y, Takagi H, Shimazoe I. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res 2007, 7:244–255.

83. Dudley AM, Janse DM, Tanay A, Shamir R, Church GM. A global view of pleiotropy and phenotypically derived gene function in yeast. Mol Syst Biol 2005, 1(2005):0001.

84. Paulovich AG, Margules RU, Ganvik BM, Hartwell LH. RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics 1997, 145:65–62.

85. Toh GW, Lowndes NF. Role of the Saccharomyces cerevisiae Rad5 protein in sensing and responding to DNA damage. Biochem Soc Trans 2003, 31:242–246.

86. Krejcí L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 2003, 423:305–309.

87. Veauze X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 2003, 423:309–312.

88. Howlett NG, Schiestl RH. Nucleotide excision repair deficiency causes elevated levels of chromosome gain in Saccharomyces cerevisiae. DNA Repair 2004, 3:127–134.

89. Tong A, Boone C. Synthetic Genetic Array (SGA) Analysis in Saccharomyces cerevisiae. Methods in Molecular Biology, Volume 313. Second Edition. Totowa, NJ, U. S. A: The Humana Press, Inc; 2005:171–192. Yeast Protocols.