INTRODUCTION

Plant cells need to maintain the functional integrity of their cell walls during cell morphogenesis and exposure to biotic/abiotic stress. The available evidence suggests that a dedicated plant cell wall integrity (CWI) maintenance mechanism exists (Wolf et al., 2011). While our understanding of the mechanisms regulating stress responses and morphogenesis has increased significantly, our knowledge regarding the processes maintaining CWI is still limited. In the last few years, several reviews have been published on the plant CWI maintenance mechanism illustrating the increased interest in this area (Humphrey et al., 2007; Hematy et al., 2009; Ringli, 2010; Seifert and Blaukopf, 2010). A recently published review focuses on CWI maintenance during plant cell wall morphogenesis (Wolf et al., 2011). Similarities between the yeast and plant CWI maintenance mechanisms have also been reviewed (Hamann and Denness, 2011). Therefore, the available knowledge regarding CWI maintenance during plant development and in response to stress will be covered here only briefly to provide a conceptual framework regarding cellular processes involved and to illustrate the degree of functional conservation between species. This review will briefly summarize recent developments regarding the role of CWI maintenance during biotic stress responses. It will discuss how CWI maintenance could have a previously unrecognized role in the perception of and response to biotic stress.

SIMILARITIES AND DIFFERENCES BETWEEN YEAST AND PLANT CELL WALL INTEGRITY MAINTENANCE MECHANISMS

While both plant and yeast cells are enveloped by cell walls, certain important differences exist that affect the biological role and function of the plant CWI maintenance mechanism. Yeast Unlike plant cells, do not have to deal with biotic stress. In addition, plant cell walls are structurally and chemically more complex than the yeast cell wall. This means that in plant cells the sheer number of cell wall-related signaling events during development and plant–environment interaction could disguise the activity of a dedicated plant CWI maintenance mechanism.

The yeast CWI monitoring and maintenance network is quite complex, providing an indication of the possible complexity of the plant CWI maintenance network. By combining inputs from a turgor pressure sensor (SLN1), mecano-perception (MID1/CCH1), and dedicated cell wall damage (CWD) sensors (WSC1, 2, 3, MID2, MTL1) the yeast CWI maintenance network generates signals that permit highly specific responses to any challenge that impairs the functional integrity of the yeast cell wall. The available phenotypic and genetic data also implicate turgor pressure, mecano-perception, and CWD detection in plant CWI maintenance (Hamann et al., 2009; Denness et al., 2011). Interestingly, ARABIDOPSIS HISTIDINE KINASE1 (AHK1) and CYTOKININ RECEPTOR1/ARABIDOPSIS HISTIDINE KINASE4 (CRE1/AHK4) can at least partially rescue a yeast strain with a loss of function allele in SLN1 (Uraga et al., 1999; Inoue et al., 2001). In addition, expression of the Arabidopsis thaliana MID1 COMPLEMENTING ACTIVITY 1 and 2 (MCA1, 2) genes rescues a MDC1-deficient yeast strain suggesting that they could function as stretch-activated calcium channels (Nakagawa et al., 2007; Yamasaka et al., 2010). Up to now no functional homologues for the yeast CWD sensors have been identified in plants. In yeast, the signals generated by the sensors are relayed to the response genes via different signaling cascades involving CALCIUM/ Ca2+ (MID1/CCH1), RHO1/MPK1 (WSC1, MID2), and YPD1 (SLN1) (Levin, 2005). Transcription factors mediating the response are SNK7, RLM1, and SWI4/6 (Levin, 2005). The response can involve activation of genes required for cell wall biosynthetic processes, remodeling of the cytoskeleton, and cell cycle progression. The available data suggest both organizational and functional
similarities between the yeast and plant CWI maintenance mechanism while also highlighting how signals from mechanical and chemical sensors regulate jointly the CWD response.

COMPOSITION AND STRUCTURE OF THE PLANT CELL WALL

The plant cell wall is comparable to an exoskeleton surrounding the plant cell and providing both structural support and protection from biotic as well as abiotic stresses. It consists of cellulose microfibrils, pectin, hemicelluloses, proteins, and in certain cases lignin (Somerville et al., 2004). Plant cell walls are divided into primary (laid down during cell elongation/differentiation) and secondary (formed after cell morphogenesis is concluded) walls. In parallel, dependent on the presence of certain polysaccharides type I and type II cell walls are distinguished (Popper et al., 2011). Cellulose microfibrils are the main load bearing elements, which are cross-linked to hemicelluloses and pectin also form direct links creating a matrix in which the microfibrils are embedded like the steel mesh in a concrete wall. Pectic polysaccharides like homogalacturonic acid (HG) are connected by calcium bridges between dimethyl-esterified parts of the molecules or through borate ester linkages in the case of rhomogalacturonan II (RG II). They represent important cell wall components during morphogenesis facilitating cell expansion and plant-pathogen interaction (Hahn et al., 1981; Bellincampi et al., 1996). In the latter situation they are targeted by pathogen-derived cell wall degrading enzymes (polygalacturonases), which generate oligogalacturonic acids (OGAs) from HG (Hahn et al., 1981; Kuo et al., 2003). Biologically active OGAs consist of chains of 9–15 galacturonic acid (GalA) monomers and can function as signaling molecules (see below).

During secondary cell wall formation monolignols (precursors for lignin) are secreted into the cell wall space and randomly cross-linked (Vanholme et al., 2010). The cross-linking is dependent on the availability of reactive oxygen species (ROS) generated by laccases and peroxidases. This process reinforces the wall against pathogen infection, waterproofs it, and increases structural integrity (Thonchet et al., 2010; Vanholme et al., 2010). Reduction of cellulose biosynthesis during primary cell wall formation through genetic or chemical means leads to lignin production (Ellis et al., 2002; Hamann et al., 2009). This highlights the ability of the cell to adapt to changes in cell wall composition and provides evidence for the existence of a CWI maintenance mechanism.

THE PLANT CWI MAINTENANCE MECHANISM AS A COMPONENT OF THE BIOTIC STRESS RESPONSE

Plant cell walls are capable of adjusting their composition and structure in response to pathogen infection (Dong et al., 2002). A mutation in \textit{CELLULOSE SYNTHASEA, CESAA} (Somerville et al., 2008) or a pectate lyase (Vogel et al., 2003). Biologically active OGAs consist of chains of 9–15 galacturonic acid (GalA) monomers and can function as signaling molecules (see below).

During secondary cell wall formation monolignols (precursors for lignin) are secreted into the cell wall space and randomly cross-linked (Vanholme et al., 2010). The cross-linking is dependent on the availability of reactive oxygen species (ROS) generated by laccases and peroxidases. This process reinforces the wall against pathogen infection, waterproofs it, and increases structural integrity (Thonchet et al., 2010; Vanholme et al., 2010). Reduction of cellulose biosynthesis during primary cell wall formation through genetic or chemical means leads to lignin production (Ellis et al., 2002; Hamann et al., 2009). This highlights the ability of the cell to adapt to changes in cell wall composition and provides evidence for the existence of a CWI maintenance mechanism.

THE PLANT CWI MAINTENANCE MECHANISM AS A COMPONENT OF THE BIOTIC STRESS RESPONSE

Plant cell walls are capable of adjusting their composition and structure in response to pathogen infection (Dong et al., 2002). A mutation in \textit{CELLULOSE SYNTHASEA, CESAA} (Somerville et al., 2008) or a pectate lyase (Vogel et al., 2003). Biologically active OGAs consist of chains of 9–15 galacturonic acid (GalA) monomers and can function as signaling molecules (see below).

During secondary cell wall formation monolignols (precursors for lignin) are secreted into the cell wall space and randomly cross-linked (Vanholme et al., 2010). The cross-linking is dependent on the availability of reactive oxygen species (ROS) generated by laccases and peroxidases. This process reinforces the wall against pathogen infection, waterproofs it, and increases structural integrity (Thonchet et al., 2010; Vanholme et al., 2010). Reduction of cellulose biosynthesis during primary cell wall formation through genetic or chemical means leads to lignin production (Ellis et al., 2002; Hamann et al., 2009). This highlights the ability of the cell to adapt to changes in cell wall composition and provides evidence for the existence of a CWI maintenance mechanism.

THE PLANT CWI MAINTENANCE MECHANISM AS A COMPONENT OF THE BIOTIC STRESS RESPONSE

Plant cell walls are capable of adjusting their composition and structure in response to pathogen infection (Dong et al., 2002). A mutation in \textit{CELLULOSE SYNTHASEA, CESAA} (Somerville et al., 2008) or a pectate lyase (Vogel et al., 2003). Biologically active OGAs consist of chains of 9–15 galacturonic acid (GalA) monomers and can function as signaling molecules (see below).

During secondary cell wall formation monolignols (precursors for lignin) are secreted into the cell wall space and randomly cross-linked (Vanholme et al., 2010). The cross-linking is dependent on the availability of reactive oxygen species (ROS) generated by laccases and peroxidases. This process reinforces the wall against pathogen infection, waterproofs it, and increases structural integrity (Thonchet et al., 2010; Vanholme et al., 2010). Reduction of cellulose biosynthesis during primary cell wall formation through genetic or chemical means leads to lignin production (Ellis et al., 2002; Hamann et al., 2009). This highlights the ability of the cell to adapt to changes in cell wall composition and provides evidence for the existence of a CWI maintenance mechanism.

THE PLANT CWI MAINTENANCE MECHANISM AS A COMPONENT OF THE BIOTIC STRESS RESPONSE

Plant cell walls are capable of adjusting their composition and structure in response to pathogen infection (Dong et al., 2002). A mutation in \textit{CELLULOSE SYNTHASEA, CESAA} (Somerville et al., 2008) or a pectate lyase (Vogel et al., 2003). Biologically active OGAs consist of chains of 9–15 galacturonic acid (GalA) monomers and can function as signaling molecules (see below).

During secondary cell wall formation monolignols (precursors for lignin) are secreted into the cell wall space and randomly cross-linked (Vanholme et al., 2010). The cross-linking is dependent on the availability of reactive oxygen species (ROS) generated by laccases and peroxidases. This process reinforces the wall against pathogen infection, waterproofs it, and increases structural integrity (Thonchet et al., 2010; Vanholme et al., 2010). Reduction of cellulose biosynthesis during primary cell wall formation through genetic or chemical means leads to lignin production (Ellis et al., 2002; Hamann et al., 2009). This highlights the ability of the cell to adapt to changes in cell wall composition and provides evidence for the existence of a CWI maintenance mechanism.
AHK1 and 4/CRE1 can function as osmosensors in yeast and have a weakened cell wall could result in signal generation via turgor induced CWD phenotypes can be suppressed by provision of sis.

been implicated in abiotic stress responses, no clear evidence exists affect mechano-perception in protoplasts derived from Arabidopsis root cells (Haswell et al., 2008). Another candidate of interest is the putative stretch-activated calcium channel MCA1 is required for CWD-induced lignin deposition. Interestingly, all ionchannel-induced CWD phenotypes can be suppressed by provision of osmotic support suggesting that changes in turgor pressure due to a weakened cell wall could result in signal generation via turgor pressure sensors (Hasmann et al., 2009; Dennis et al., 2011). While AHK1 and 4/CRE1 can function as osmosensors in yeast and have been implicated in abiotic stress responses, no clear evidence exists implicating them in CWD perception in plants (Usao et al., 1999; Inoue et al., 2001; Tran et al., 2007). In addition, AHK4/CRE1 has been shown to function as a cytokinin receptor (Inoue et al., 2001). Therefore, the question that needs to be resolved at this point is if turgor pressure is a passive element in the process (generating cell wall fragments due to a weakened cell wall) or an active component that is being monitored and provides input into the process.

The plant cell wall contains a large number of components that could generate chemical signals (ligands) indicative of CWD or general danger signals. The term damage-associated molecular patterns (DAMPs) has been coined to describe such ligands and the number of possible DAMPs originating in plant cell walls is rather large (Zippel, 2009). Here we will focus on the best-characterized group of signals, which are probably OGAs. They can be generated through degradation of HG by pathogen-derived enzymes (Kars et al., 2005; Ferrari et al., 2008). OGAs have been shown to induce gene expression changes, stomatal closure, production of ET, and ROS as well as cell wall reinforcement (Denoux et al., 2008; Ferrari et al., 2008). A hybrid kinase consisting of the extra cellular domain of WALL-ASSOCIATED KINASES (WAKs) and the intra-cellular domain of elongation factor Tu receptor (EFR) kinase can bind OGAs and activate defense responses (Brutus et al., 2010). WAK1 belongs to a family of five WAK genes encoding plasma membrane-localized Ser/Thr kinases that have been implicated in response to pathogen infection and regulation of cell elongation (Kohorn et al., 2011). The effects of the chimeric WAK1 kinase on pathogen resistance suggest that OGAs and WAKs represent an in vivo ligand-receptor pair. Results from the analysis of a dominant active WAK2 allele suggest the CWD signals perceived by WAKs could be related to downstream response genes through MAPK1-NAS6-MPK6 (Kohorn et al., 2009, 2011). Interestingly, WAK2 has also been implicated in regulation of inverse activity and turgor pressure during cell elongation (Kohorn et al., 2006). However, there is currently more than 400 RLKs have been identified and a large number of them have been implicated in developmental and stress response processes (Shiu and Bleecker, 2001). I will focus here on several kinases that have been implicated in CWD perception and/or pathogen response. Most of the RLKs implicated in CWD maintenance [THE1, HERCULES1 (HERK1), FERONIA (FER)] belong to the Catharanthus roseus RLK1 (CrRLK1)-like protein family, which has 17 members in Arabidopsis. THE1 was isolated as a suppressor of the cellulose-deficient castor prone (p) mutant, which exhibits a hypocotyl elongation defect (Hematy et al., 2007); even though the suppresses the elongation defect, the cellulose deficiency is not reduced. Subsequently it has been shown that THE1 is required for cellulose biosynthesis inhibition-induced ROS production and lignification in the root elongation zone (Dennnes et al., 2011). THE1, HERK1, and FER have been implicated in brassinosteroid-induced cell elongation (Gao et al., 2009; Deslauriers and Larson, 2010). Both FER and NORTIA/MILDW RESISTANCE LOCUS O 7 (MLO7; a seven-transmembrane domain protein involved in powdery mildew resistance) are required for successful fertilization and resistance to infection by Golovinomyces (syn. Erysiphe) avenae (Kessler et al., 2010). Interestingly, ROPGEF (guanine-exchange factors) proteins have been identified as targets of FER activity (Duax et al., 2010). ROPGEFs are required for the activation of Rho GTases, which in turn activate NADPH oxidases like RBOHD/E. These results suggest the same molecular components could mediate cell-cell interaction during development and plant-pathogen interaction. Heterotrimeric G-proteins (Gα, Gβ, Gγ) form a highly conserved signaling complex that has been implicated in signal transduction during development and stress responses in mammals, yeast, and plants (Duby et al., 2006; Temple and Jones, 2007). In Arabidopsis, five genes GPA1 (Ga), AGI (Gb), AGGI, 2, 3 (Gγ1, 2, 3) encode the subunits of the complex (Thung et al., 2011). Recently, it has been reported that mutations in AGGI, 2, and AGB1 apparently cause enhanced susceptibility to infection with P. cucumerina (Delgado-Cerezo et al., 2011). A combination of metabolomic and microarray-based expression profiling studies of the mutants established that the pathogen phenotype is independent of SA, JA, ABA, and ET signaling cascades. Interestingly, a large number of cell wall biosynthetic/modifying genes are mis-regulated in agb1 and aggi2 plants. Analysis of cell wall composition/structure in these plants found reduced xylose contents in the mutants compared to wildtype.
To summarize, the available evidence supports the notion that the plant cell wall is an integral component contributing to pathogen response mechanisms and illustrates the influence of cell wall defects on infection. Specific signaling cascades seem to mediate the response to particular cell wall defects, which in turn affect the response to necrotrophic or biotrophic pathogens. More importantly, the data presented above allow correlation between certain types of cell wall defects, and not only signaling cascades but also resistance phenotypes. Mutations in CESAs, AGG1, and AGI3 affect resistance to necrotrophs and are independent of phytohormone-based signaling cascades. pmr5, 6 plants exhibit resistance to biotrophs and also do not rely on phytohormone-based signaling cascades. pmr3 affects resistance to biotrophs and resistance depends on the integrity of the SA signaling cascade. cvt13 plants show enhanced JA, ET biosynthesis, and resistance to biotrophs. The available data allow different explanations for the specific effects on pathogen resistance observed. The cell wall composition/structure changes could prevent pathogen colonisation simply because the infection machinery of the pathogen is too specialised to breach the chemically modified cell wall. However, no functional pathogen response mechanisms should be required for this possibility. Another option is that the cell wall mutants cause defects similar to those occurring during infection by particular pathogens, i.e., simulate infection by necrotrophs or biotrophs. This would cause early/constant activation of the CWI maintenance/defense mechanism, which "primes" plant immunity thus making successful infection more difficult. The latter would explain both the specificity of the responses observed and dependence on particular signaling mechanisms. Therefore, studies focusing on the effects of particular cell wall defects on pathogen resistance and the mode of action of the CWI maintenance mechanism could facilitate research into biotic stress response. The reason being, that by removing the potentially multiple effects of the pathogen during infection, they reduce the complexity of the interaction and should therefore allow novel insights into the mechanisms responsible for detection of infection and/or physical damage.

ACKNOWLEDGMENTS

The author would like to thank John Mansfield and Issariya Chairam for critical reading of the manuscript and helpful comments. Research in the Hamann lab is supported by the Gatsby Foundation, BBRC, and the FFP7 framework program.

REFERENCES

Belluscio, D., Cardellini, M., Zapi, D., Soriano, G., Gatt, C., Corvina, E., Alamaro, M. M., Costantino, P., and Lemoine, G. D. (1998). Oligogalacturonides prevent rhizogenesis in rol transformed tobacco explants by inhibiting auxin-induced expression of the rol gene. Plant Cell 10, 477–487.

Dennoo, C., Schla, E., Massou, A., Corvina, E., and De Lorenzo, G. (2010). A domain-nose approach reveals a role of the plant wall associated kinase 1 (VOL6) as a receptor of oligogalac- tonglucones. Proc. Natl. Acad. Sci. U.S.A. 107, 9452–9457.

Cano-Delgado, A. I., Metzlaff, K., and Hamann, T. (2011). Cell wall damage induced lignin biosyn- thesis is regulated by a RBO5 and jasmonic acid dependent process in Arabidopsis thaliana. Plant Physiol. 159, 1364–1374.

Desnoo, C., Galletti, R., Mannmari, N., Gopean, S., Wnek, D., De Lorenzo, G., Ferrari, S., Asabed, E. M., and Desnouy, J. (2009). Activ- ation of defense response pathways by O-gal and H2O2 dictons in Arabidopsis seedlings. Plant Physiol. 150, 427–435.

Desnoi, D. S., and Lamer, P. B. (2010). FERONIA is a key mod-ulator of brassinosteroid and ethylene responsiveness in Arabidopsis thaliana. Plant J. 34, 353–362.

Cano-Delgado, A. I., Metfaff, K., and Ben, M. W. (2000). The elf mutation reveals a link between cell expansion and secondary wall formation in Arabidopsis thaliana. Development 127, 3389–3403.

Dolgedo-Carou, M., Sanchez-Rodri- guez, C., Escudero, V., Misko, E., Fernandez, P. V. Jord, J., Hernandez-Blanco, G., Sanchez-Vellet, A., Beinhardt, P., Schubs- Lehoti, P., Somerville, S., Esterre, J. M., Persson, S., and Molina, A. (2011). Arabidopsis thaliana G protein hetero- trimers mediate the response of plant cell wall polysaccharides to two- and three- dimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 989–1008. doi: 10.1021/bi101795q.

Ditch-Peets, M., Zhang, K., Hayes, J., Sakar, A., Zuberma, O. S., and Hong, M. (2011). Structure and interactions of plant cell-wall polysaccharides by two- and three- dimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 989–1008. doi: 10.1021/bi101795q.

Dwyer, G. J., Leber, R. M., Shek, P. R., and Lambert, N. A. (2006). Some G protein heterotrimers physically dis- sociate in living cells. Proc. Natl. Acad. Sci. U.S.A. 103, 17789–17794.

Dong, X., Hong, Z., Chatterjee, J., Kim, J., Desori, D., and Turk, R. M. (2008). Expression of the cellulose synthase genes and its connection with NPR1 signaling pathway during pathogen infection. Planta 229, 87–98.

Duan, Q., Qin, D., Li, C., Chong, A. Y., and Wu, H. M. (2010). FER- ONIA receptor-like kinase regulates RBO5 GFP:GUS signaling of root hair development. Proc. Natl. Acad. Sci. U.S.A. 107, 17921–17926.

Ellis, C., Karafinski, F., Wanut- low, C., and Turner, J. G. (2002). The Arabidopsis mutant cvt1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14, 1557–1568.

Ellis, C., Turner, J. G. (2001). The Arabidopsis mutant cvt1 has constitu- tively active jasmonate and ethyl- ene signal pathways and enhanced resistance to pathogens. Plant Cell 13, 1025–1033.

Ferrari, S., Galletti, R., Porrina, D., Mannfeldt, J., Li, S., Balluscio, D., Corvina, E., and De Lorenzo, G. (2008). Trans- gene expression of a fungal endo- polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol. 146, 669–683.

Gao, H., Lu, Y., Li, Y., Xu, X., Zignon, A., and Yin, Y. (2009). Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 106, 7666–7671.

Hahn, M. G., Darvill, A. G., and Alber- shen, P. (1991). Host-pathogen interactions: XIX. The endosperm elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol. 98, 1161–1169.

Hamann, T., Bennett, M., Mansfield, J., and Somerville, C. (2009). Identifi- cation of cell-wall stress as a hormone- dependent and osmosensitive regu- lator of plant responses. Plant J. 57, 1015–1026.

Hamann, T., and Dennis, L. (2011). Cell wall integrity maintenance in plants: Lessons to be learned from yeast? Plant Signal Behav. 6, 1–5.

Havewell, E. S., Pyyromont, R., Barbas- Borges, H., Meyerszona, E. M., and Frasca, N. J. (2008). Two Muc5 homologs provide mechanosensi- tive channel activities in the An- rabidopsis root. Curr. Biol. 18, 770–774.

Henry, K., Cherk, C., and Somerville, S. (2000). Host-pathogen warfare at the plant cell wall. Curr. Opin. Plant Biol. 12, 496–501.

Henry, K., Salo, P. E., Van Tuinen, A., Boch, S., Donnum, T., Bal- ergue, S., Pelletier, S., Rouns, J. P., and Helle, H. (2007). A receptor- like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthase. Curr. Biol. 17, 922–931.

Hernandez-Blanco, C., Feng, Y. X., He, J., Sanchez-Vellet, A., Dus- landes, L., Elortegi, E., Bercnal- Lobbo, M., Koller, H., Barlet, S., Sanchez-Rodriguez, C., Anderson, L. K., Somerville, S., Marcos, Y., and Molina, A. (2007). Impairment of cellulose synthases required for Arabidopsis secondary cell wall for- mation enhances disease resistance. Plant Cell 19, 890–903.
Kohorn, B. D., Johansen, S., Levin, D. E. (2005). Cell wall integrity during biotic stress. Microbiol. Mol. Biol. Rev.

Humphrey, T. V., Benetka, D. T., and Gorin, D. R. (2007). Sensitivity at the wall: cell wall receptors and sensors. New Physiol. 157, 7–21.

Issov, T., Higuchi, M., Hashimoto, Y., Saki, M., Kobayashi, M., Kato, T., Tabata, S., Shimozuru, K., and Kihara, T. (2010). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 469, 1009–1013.

Kari, I., Koshod, G. H., Wagemakers, L., Josten, R., Beten, J. A., and van Kan, J. A. (2005). Nonsapicative activity of five Breviortia citrus endopolygalacturonases produced in Pulci pumari. Plant J. 41, 213–225.

Kobayashi, M., Shishido, M., Kihara, T., Isovu, T., Tanaka, H., Mina, K., Terasaka, A., Takemura, T., and Tada, H. (2007). Arabidopsis plasma membrane protein transmembrane Ca2+ influx and touch sensing in roots. Proc. Natl. Acad. Sci. U.S.A. 104, 3059–3064.

Koizumi, M. T., Stein, M., Hsu, B. H., Vogel, J. P., Edwards, H., and Somerville, S. C. (2003). Loss of a cellulose synthase results in salicylic acid-dependent disease resistance. Science 301, 969–972.

Kopec, Z. A., Michel, G., Hirt, C., Dormouch, D. S., Wilkins, W. G., Tashiro, M. G., Klings, B., and Stjepel-D. B. (2011). Evaluation and diversity of plant cell walls from algae to flowering plants. Ann. Rev. Plant Biol. 62, 579–597.

Krążli, C. (2010). Monitoring the outside: cell wall-sensing mechanisms. Plant Physiol. 155, 407–478.

Kruglak, G. J., and Black, J. B. (2003). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. U.S.A. 98, 13854–13859.

Lignin biosynthesis and structure. Plant Physiol. 153, 596–604.

Liu, D., Liu, X., Liu, C., and Roby, D. (2010). Cinnamyl alcohol dehydrogenase-3 and 4, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol. Plant 11, 83–92.

Luo, E.-J., Grönwall, M., Harrington, J. L., and Nakas, T. S. (2011). Cell wall integrity controls root elongation via a general 1-aminoacyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol. 156, 596–604.

Luz, V., Tabak, B., Satoh, T., Yamaguchi-Shinozaki, K., Sugiura, M., Kiyokawa, T., and Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in dodderous plants as an osmosensor. Plant Physiol. 111, 1743–1754.

Makalowska, J., Demura, R., Metod, R., Ralph, J., and Botella, J. R. (2011). A pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 23, 20623–20628.

Makalowska, J., Somerville, S., and Woloshuk, R. (2011). Cell wall defense receptors and sensors in animals. In Front. Plant Sci. doi: 10.3389/fpls.2012.00077

Marchant, S. D., Urao, T., Qin, F., Maruyama, K., Kihara, T., Shimozuru, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/DHR1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 20825–20830.

Matsumoto, M., Hori, T., Inoue, T., Kakuta, M., and Shinozaki, K. (2005). A novel plant homeodomain protein weakened the cell wall defects of hypomorphic MCA1+/- mutants. Proc. Natl. Acad. Sci. U.S.A. 102, 18077–18082.

Mamun, M. T., Stein, M., Hsu, B. H., Vogel, J. P., Edwards, H., and Somerville, S. C. (2002). A pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14, 2095–2106.

Makalowska, J., Botella, J. R., and Somerville, S. C. (2004). Mutations in PME1 result in powdery mildew resistance and altered cell wall composition. Plant Physiol. 136, 942–945.

Martin, L. S., Urao, T., Qin, F., Maruyama, K., Kihara, T., Shimozuru, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/DHR1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 20825–20830.

Miyamoto, T., Kato, T., and Shimizuru, M. (2006). Methionine-dependent disease resistance in Arabidopsis. Mol. Plant 97, 1897–1902.

Miyamoto, T., Kato, T., and Shimizuru, M. (2006). Methionine-dependent disease resistance in Arabidopsis. Mol. Plant 97, 1897–1902.

Mohamed, M., Wang, J., Le, X., and Byers, N. (2006). A dominant negative cytokinin receptor from Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 103, 20940–20945.

Mio, T., Yoneda, Y., Imagawa, Y., and Ito, T. (2004). The plant heterotrimeric G-protein α subunit is required for heterotrimeric G-protein γ subunits in dodderous isoxaben mutant. J. Plant Physiol. 161, 142–145.

Mokhtar, M. A., Todorova, T., Martinez, R., Defeo, E., and Obregon, P. (2009). Pectin metabolism: a central component for plant cell growth. Plant J. 62, 567–590.

Morita, T., Todorova, T., Baptiste, G., Stansky, K., and Todorova, T. (2011). A dominant negative cytokinin receptor from Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 103, 20940–20945.