Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy

Yu-Ri Lee1,20, Kamal Khan2,3,4,5,20, Kim Armfield-Uhas6,20, Sujata Srikanth7,20, Nicola A. Thompson9, Mercedes Pardo9, Lu Yu9, Joy W. Norris7, Yunhui Peng10, Karen W. Gripp11, Kirk A. Aleck12, Chumei Li13, Ed Spence14, Tae-Ik Choi1, Soo Jeong Kwon15, Hee-Moon Park15, Daseuli Yu16, Won Do Heo16, Marie R. Mooney2,3, Shahid M. Baig4, Ingrid M. Wentzensen17, Aida Telegra17, Kirsty McWalter17, Trevor Moreland7, Chelsea Roadhouse13, Keri Ramsey18, Michael J. Lyons7, Cindy Skinner7, Emil Alexov10, Nicholas Katsanis2,3,19, Roger E. Stevenson7, Jyoti S. Choudhary9, David J. Adams8, Cheol-Hee Kim1,21✉, Erica E. Davis2,3,19 ✉ & Charles E. Schwartz7,21✉

Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3′ alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development.

1Department of Biology, Chungnam National University, Daejeon, Korea. 2 Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA. 3 Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA. 4 Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan. 5 Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan. 6 Children’s Healthcare of Atlanta, Atlanta, GA, USA. 7 Greenwood Genetic Center, Greenwood, SC, USA. 8 Wellcome Sanger Institute, Hinxton, Cambridge, UK. 9 Chester Beatty Laboratories, Institute of Cancer Research, London, UK. 10 Department of Physics, Clemson University, Clemson, SC, USA. 11 Division of Medical Genetics, A. I. duPont Hospital for Children, Wilmington, DE, USA. 12 Genetics and Metabolism, Phoenix Children’s Medical Group, Phoenix, AZ, USA. 13 Clinical Genetics Program, McMaster University Medical Center, Hamilton, ON, Canada. 14 Division of Pediatric Genetics and Metabolism, University of North Carolina School of Medicine, Chapel Hill, NC, USA. 15 Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea. 16 Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea. 17 GeneDx Inc, Gaithersburg, MD, USA. 18 Center for Rare Childhood Disorders, TGen, Phoenix, AZ, USA. 19 Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. 20 These authors contributed equally: Yu-Ri Lee, Kamal Khan, Kim Armfield-Uhas, Sujata Srikanth. 21 These authors jointly supervised: Cheol-Hee Kim, Erica E. Davis, Charles E. Schwartz. ✉email: zebrakim@cnu.ac.kr; eridavis@luriechildrens.org; ceschwartz@ggc.org
Intellectual disability (ID) affects 1–3% of the general population. Males exceed females in the ID population by 20–30%, likely due to an enrichment of genes on the X-chromosome that are required for neurodevelopment. X-linked ID (XLID) disorders, resulting from hemizygous variants, contribute significantly to the male ID population. Efforts by research groups worldwide have identified 145 XLID genes contributing to 114 XLID syndromes and 63 non-syndromic XLID entities. Exome sequencing has accelerated mutational analysis of the coding regions of the X-chromosome and identified 28 of the 145 XLID genes in the past decade. Despite these accomplishments, more than 56 XLID syndromes and 33 non-syndromic XLID entities remain without a molecular diagnosis.

In 1999, we characterized Armfield XLID syndrome and localized the causal locus to an 8 Mb region on Xq28 using linkage analysis. Affected individuals display a distinctive phenotype involving multiple systems: postnatal growth retardation; variable head circumference with a prominent forehead and dysmorphic facial features; ocular abnormalities and seizures. Here, we report the causal variant that segregates with the Armfield syndrome phenotype. As part of a screen of XLID genes localized to Xq28, we identify an ultra-rare missense variant in FAM50A (family with sequence similarity 50 member A; known as XAP5 or HXC26) in affected males and unaffected carrier females. We use GeneMatcher, to identify four unrelated males who have undergone whole-exome sequencing (WES), and who each bear a rare missense variant in FAM50A. These males display phenotypes similar to Armfield XLID syndrome.

To investigate FAM50A function, establish relevance to the Armfield XLID clinical spectrum, and test variant pathogenicity, we utilize zebrafish (Danio rerio). A zebrafish fam50a knockout (KO) recapitulates the human phenotype with abnormal development of cephalic structures. In addition, we use in vivo complementation studies to show that the missense FAM50A changes identified confer a partial loss of function. Transcriptomic studies of fam50a KO zebrafish heads enable correlation with the human phenotype and validate previous reports suggesting FAM50A to be associated with the spliceosome complex. Transcriptomic data from lymphocyte cell lines (LCL) derived from affected males and FAM50A protein–protein interaction data further support the previous findings. We propose that aberrant spliceosome C-complex function is the molecular mechanism underpinning Armfield XLID, defining it as a spliceosomopathy.

Results

Clinical and genetic studies implicate FAM50A in XLID. We report updated clinical information for affected siblings in family K8100 (IV-1 and IV-2; Fig. 1a and Table 1; Supplementary Note 1). The causal locus was localized to Xq28, and within this chromosome band, a hitherto uncharacterized gene, FAM50A/XAP5, was reported in which the 5’ untranslated region contained a run of GGC repeats. Analysis of an affected male from K8100 along with males from other XLID families localized to Xq28 showed no expansions beyond the normal range. We performed bidirectional Sanger sequencing of the coding regions and exon–intron boundaries of five candidate genes located in Xq28 (GDI1, MECP2, LICAM, AFF2/FMR2, FAM50A/XAP5) in affected males. These analyses revealed a missense change, c.764A>G, p.Asp255Gly, in FAM50A (GenBank [https://www.ncbi.nlm.nih.gov/nuccore/NM_004699.4]), which segregated with disease in the family (Fig. 1a). To exclude the possibility of a causal variant elsewhere in Xq28, we included an affected male from K8100 in a larger sequencing project of 718 genes located on the X-chromosome. The same alteration in FAM50A was the only likely causal change identified. This same variant was again identified as the sole candidate in K8100 as part of an X-exome next-generation sequencing project conducted later.

The p.Asp255Gly change was not present in 400 X-chromosomes from ethnically matched controls from our in-house data set, and is absent from 182,557 alleles in gnomAD (accessed April 2019; https://gnomad.broadinstitute.org/). Prediction algorithms suggested that 255Gly was likely pathogenic (Supplementary Table 1). Asp255 is embedded within a highly conserved string of amino acids (KEDLI) present in vertebrates, D. melanogaster, C. elegans, and S. pombe (Supplementary Fig. 1a–c). Secondary structure prediction programs proposed that Asp255Gly is located in a beta-turn of a random coil domain (Supplementary Fig. 2a). In silico protein modeling indicated that p.Asp255Gly is located in a short loop in the low confidence structural region of the model (Supplementary Fig. 2). In the wild-type (WT) structure, a hydrogen (H)-bond is formed between the Asp255 side chain and Arg180, and the variant is expected to affect the H-bonding network and alter the net charge. However, binding free energy change predictions made by five servers are inconsistent, likely due to fidelity of the modeled structure (Supplementary Table 2). In sum, genetics data coupled to variant prediction and protein modeling suggested that p.Asp255Gly is deleterious. We then sought additional individuals through GeneMatcher, and identified four unrelated males with variants in FAM50A.

The family K9648 proband (II-3) was 10 years old at the last clinical examination and he displayed global developmental delay, prominent forehead, glaucoma, and small hands and feet (Fig. 1b and Table 1; Supplementary Note 1). We performed parent-proband trio WES. Subsequent to bioinformatic filtering for rare functional variants under autosomal recessive, dominant de novo or X-linked paradigms, we identified a maternally inherited FAM50A c.616T>G; p.Trp206Gly variant (Fig. 1b; Supplementary Fig. 1a–c). All prediction algorithms indicated that the p.Trp206Gly variant was likely pathogenic (Supplementary Table 1). In silico protein modeling analysis indicated that p.Trp206Gly is located in a short loop of the high-confidence structural region, partially buried and surrounded by hydrophobic residues (Supplementary Fig. 2a, b). However, protein folding free energy changes in the context of Trp206Gly are contradictory (Supplementary Table 2).

The family K9656 proband (II-1) presented with global delay, strabismus, short stature, and dysmorphic facial features (Fig. 1c and Table 1; Supplementary Note 1). WES of the proband and his healthy parents identified a hemizygous, de novo, variant in FAM50A (c.761A>G, p.Glu254Gly; Fig. 1c; Supplementary Fig. 1a–c). The variant was predicted to be deleterious (Supplementary Table 1), and occurs in a short loop of the low confidence structural region, partially buried and surrounded by hydrophobic residues (Supplementary Fig. 2a, b). Glu254 makes an H-bond with nearby residue Asn177 and the substitution with Gly will eliminate the H-bond. The variant is also predicted to destabilize the structure and to alter the net charge at position 254 (Supplementary Table 2).

The clinical presentation of the family K9667 affected male (II-2) consisted of global delay, exotropia, and myopia, although he did not have short stature (Fig. 1d; Table 1; Supplementary Note 1). WES of the proband and his unaffected parents identified a de novo FAM50A variant (c.817C>T, p.Arg273Trp; Fig. 1d; Supplementary Fig. 1a–c). All bioinformatic analyses indicated that the variant was likely pathogenic (Supplementary Table 1). Protein modeling suggests that p.Arg273Trp is located in a helix in the high-confidence structure (Supplementary Fig. 2a, b); the side chain of Arg273 is buried and forms H-bonds with Glu200 and the backbone of Ile199. This amino acid change potentially affects protein stability, and predictions from different
servers also indicate that the Arg273Trp variant might destabilize the protein (Supplementary Table 2).

The clinical features of the family K9677 male proband (II-1) overlapped with affected males in K8100 (Fig. 1e and Table 1; Supplementary Note 1); he exhibited global developmental delay, dysmorphic facial features and exotropia. Trio-based WES and bioinformatic filtering identified a rare de novo variant in FAM50A (c.763G>A, p.Asp255Asn; Fig. 1e; Supplementary Fig. 1a, b), that was predicted to be likely pathogenic (Supplementary Table 1). Protein modeling suggests that this change introduces a polar residue, Asn, and thus does not form an H-bond with residue Arg180 as does the WT amino acid (Supplementary Fig. 2). Protein stability predictions are inconsistent (Supplementary Table 2). However, the variant alters the charge at residue 255, potentially affecting FAM50A function.

Of the five families with FAM50A variants, the variants in K8100 and K9648 were inherited. All available females in K8100 were tested for X-inactivation (XI) at the AR locus11. We observed no correlation between the presence of the FAM50A alteration and the degree of skewed XI (Fig. 1a). Both a non-carrier female (III-3) and a carrier female (III-5) had significant skewing of XI. The three remaining informative females (carriers II-2, III-2; non-carrier IV-3) had random-to-moderate skewed XI.

Together, we identified a cohort of nine males from five unrelated families who carry rare FAM50A variants. Affected individuals share syndromic ID and comorbid phenotypes impacting growth, facial gestalt, and ocular development (Fig. 1 and Table 1). These nonsynonymous changes segregate with disease status in pedigrees, are absent from gnomAD, and reside within highly conserved regions of the XAP domain in the C-terminal portion of FAM50A (Fig. 1; Supplementary Fig. 1a, b and Supplementary Table 1).

FAM50A has ubiquitous expression and nuclear localization. The FAM50A cDNA was characterized through efforts to catalog the genes on Xq288,12. Monitoring of FAM50A in adult and fetal human tissue panels reported ubiquitous expression8,13. We

Fig. 1 Missense variants in FAM50A cause XLID in five unrelated families. a-e Pedigrees of the five families reported in this study are shown, with FAM50A genotype given for each available individual. Photographs of available affected males are provided for each pedigree. For family K8100, photographs are provided for the two affected males in generation IV at ages 8 and 4 years, when the family was originally published4; new photos from the last clinical assessment (December 2017) are shown (28 and 24 years). Ratios under females II-3, III-2, III-3, III-5, and IV-3 represent X-inactivation data. Females II-3 and II-7 were uninformative (ui) at the AR locus. Circles, females; squares, males; unshaded shapes, unaffected; black filled shapes, affected; unshaded circle with black dot, carrier female as determined by FAM50A analysis or by pedigree structure; diagonal line, deceased. Male K8100-III-6 had macrocephaly, seizure disorder, bilateral ventricular enlargement, and atrophy of the left hemisphere on a pneumoencephalogram; he was unavailable for FAM50A genotyping.
Individual	K8100 IV-1	K8100 IV-2	K9648 II-3	K9656 II-1	K9667 II-2	K9677 II-1
FAM50A variant	c.764A>G; p.Asp255Gly	c.764A>G; p.Asp255Gly	c.616T>G; p.Trp206Gly	c.761A>G; p.Glu254Gly (de novo)	c.817C>T; p.Arg273Trp (de novo)	c.763G>A; p.Asp255Asn (de novo)
Ethnicity	Caucasian	Caucasian	Mixed (African-American, Middle Eastern, Mixed European)	Caucasian	Caucasian	Caucasian
Growth						
Birth (gestational weeks)	40	40	34	35	38.5	ND
Length, cm (%)	45.7 (<3)	43.2 (15)	2.4 (60)	2.5 (40)	2.8 (20)	3.4 (20)
Weight, kg (%)	2.4 (60)	NA	9-7	120.5 (<3)	122 (9)	26.5
Height, cm (%)	106.2 (<3)	19.4 (<3)	38.4 (85)	38.4 (85)	279 (63)	160.5 (<3)
Postnatal (years-months)	28	24	7-10	9-7	8-3	26-10
Development						
Delay	Global, special education, ambulatory, speaks in short phrases	Global, special education, ambulatory (walked at 3 yrs) single words	Global, not ambulatory, no speech	Global, regular classes with support	Global, no speech, special education, ambulatory for short distances <50	Global
IQ	66	ND	ND	ND		
Development						
Somatic findings						
Craniofacial	Macrocephaly, epicanthal folds, depressed nasal bridge, downsloping palpebral fissures, cleft palate, bowl-shaped mouth microretrognathia	Broad forehead, epicanthal folds, depressed nasal bridge, downsloping palpebral fissures, low-set ears, microretrognathia	Prominent forehead, bitemporal narrowing, proptosis, hypotelorism, tubular nose, single median incisor, hypodontia, low-set ears, large left ear, prominent lips Axenfeld-Rieger with glaucoma, nystagmus Bilateral epicanthal folds, infraorbital creases, wide nasal root, short and lightly upturned nose with underdeveloped nares, slightly posteriorly rotated ears, faint hemangiomas between brows and at back of neck	Bulbous nose, excessively folded helices	Prominent tall forehead, overfolded helices, exotropia, keratoconus, nystagmus	
Cardiac	ASD, PDA	—	Tetralogy of Fallot, right ventricle dilation	ASD	—	
Skeletal	Small feet, pes cavus, hammer toes	Small feet, pes cavus, hammer toes	Small hands/feet, short limbs, crease across dorsum of feet, foot inversion/ inversion, cava valga, mild scoliosis	Joint hypermobility	Small hands/feet	Stiff joints, small hands and feet, club foot
	—	—	G-tube	Inguinal hernia	Hiatal hernia, dysphagia, constipation	Umbilical hernia, imperforate anus
	—	—	—	—	Cryptorchidism	
Ocular	Strabismus	—	Axenfeld-Rieger with glaucoma, nystagmus	Strabismus	Exotropia	Exotropia, keratoconus, nystagmus
	—	—	—	—	—	
Neurologic	Capillary hemangiomas of nasal bridge and eyelids Seizures	Facial capillary hemangiomas Seizures	Facial capillary hemangiomas Seizures	Hypotonia	Hypotonia/ hypertonia, jerky movements, tethered cord	Hypothyroidism, tremor, hypothyroidism, intropotonia
	—	—	—	—	—	
Skin	—	—	Horsehoe kidney, micropenis, undescended testis	Unilateral renal agenesis, micropenis, small scrotum	—	Hemangiomas
	—	—	Sural dimple, lipoma	—	—	
Neurologic						
	Capillary hemangiomas of nasal bridge and eyelids Seizures	Facial capillary hemangiomas Seizures	Facial capillary hemangiomas Seizures	Hypotonia	Hypotonia/ hypertonia, jerky movements, tethered cord	Sleep disturbance, incontinent
	—	—	—	—	—	
MRI						
Other	Obstructive sleep apnea	Aggressive, quick tempered	Sleep disturbance	Sleep disturbance, incontinent	—	—
	—	—	—	—	—	
	Enlarged 3rd ventricle, extra-axial fluid	Asymmetric ventricles	Decreased white matter, small corpus callosum, small brain stem	—	—	—

ASD, atrial septal defect; G-tube, gastrostomy tube; HC, head circumference; IQ, intelligence quotient; MRI, magnetic resonance imaging; ND, no data; PDA, patent ductus arteriosus; yrs, years; (<—) not present.
performed semi-quantitative RT–PCR using a multiple human fetal tissue cDNA panel (Clontech). FAM50A was expressed in all eight fetal tissues assessed, including brain (Supplementary Fig. 3a). Next, we evaluated FAM50A expression in fetal brain using a Rapid Scan Human Brain Panel (Origene). FAM50A was detectable in the fetal cerebellum and hypothalamus (Supplementary Fig. 3b). However, we observed low expression of FAM50A in the temporal lobe and were unable to detect expression in the hippocampus using this method.

Mazzarella and colleagues reported features suggestive of nuclear localization in the FAM50A amino acid sequence. cNLS mapper (http://nls-mapper.ib.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) indicated that FAM50A (GenBank ID: NP_004690.1) contained a nuclear localization signal (NLS), ITTKKRKLG (positions 149-157, score of 7.5), predicting partial localization to the nucleus. cNLSstradamus (http://www.moseslab.csb.utoronto.ca/cNLSstradamus), predicted a NLS domain within FAM50A amino acids 88–116 (LAKKEQSKEIQLMLCRIEKREKC-KEAKRK). To examine FAM50A cellular localization, we performed endogenous protein immunostaining of NIH/3T3 cells. We observed dispersed nuclear localization throughout the cell cycle (Supplementary Fig. 4a). After demonstrating that FAM50A protein levels are not significantly different in LCLs derived from affected males vs matched controls (Supplementary Fig. 5), we tested whether the XLID-associated variants affected FAM50A localization. We generated C-terminally tagged V5 plasmids containing the WT or mutant FAM50A open reading frame (ORF) and visualized FAM50A in transfected COS-7 cells (Supplementary Table 3). All mutant proteins tested (p. Trp206Gly, p.Glu254Gly, and p.Asp255Gly) localized to the nucleus and were indistinguishable from WT (Supplementary Fig. 4b), an unsurprising result since none of the variants impacted a predicted NLS. However, the nuclear staining in the NIH/3T3 cells appeared more diffuse than the transfectected COS-7 cells, possibly reflecting the different technologies and cell types utilized.

fam50a KO zebrafish display patient-relevant phenotypes. The zebrafish genome harbors a single reciprocal ortholog encoding a protein with the same length as the human protein (339 amino acids), which is highly conserved (86% identity; 93% similarity; Supplementary Fig. 1c). To characterize the spatiotemporal expression of *D. rerio* fam50a, we probed RNA in situ on whole-mount embryos at eight different stages. We noted ubiquitous expression prior to and throughout gastrulation, and in mid-somitom embryos. From 24 h post-fertilization (hpf) onward, and up to the latest time point assessed (72 hpf) fam50a mRNA regionalized to all visible anterior structures including the brain, eye and mandible (Supplementary Fig. 6a). These observations were consistent with publicly available zebrafish RNA-seq data (https://www.ebi.ac.uk/gxa/experiments/E-ERAD-475/Results).

To determine the consequences of FAM50A depletion, we performed genome editing and identified loss of function mutant alleles. We disrupted the highly conserved XAP domain by injecting Cas9 mRNA and guide RNA targeting either fam50a exon 6 or exon 7, screened for mosaic F0 founders, and isolated two mutant alleles in the F1 generation (compound 11 + 5 bp deletion [KO1] or 4 bp deletion [KO2]; Supplementary Fig. 6b–e). We used KO1 for all subsequent phenotyping (hereafter referred to as KO). Whole-mount in situ hybridization (WISH), immunofluorescent antibody staining, or immunoblotting of embryo-derived protein lysate could not detect fam50a mRNA or FAM50A protein as early as 24 hpf (Supplementary Fig. 6f, g, h). fam50a KO was present in the expected Mendelian ratios and displayed similar gross morphology to WT until ~3 days post-fertilization (dpf). However, at 5 dpf KO larvae were severely affected by abnormal anterior development impacting the brain, eyes and cartilage (Fig. 2a), resulting in lethality by ~6 dpf.

We evaluated cell-type specific and cellular response assays in *fam50a* KO and WT larvae (Supplementary Table 3). Using a transgenic reporter of pan-neuronal cells, tg(huc:egfp), we found a reduction of differentiated neurons in *fam50a* KO brain (Fig. 2b), consistent with *her4.1* WISH indicating diminished neurogenesis at 3 dpf (Fig. 2c; Supplementary Fig. 7). Both markers showed indistinguishable neuronal integrity at 2 dpf (Fig. 2b, c). We tested whether altered proliferation and cellular stress responses could account for the onset of neuronal phenotypes. We observed marked depletion of proliferation markers *pcna* and *cond1* at 3 dpf with concomitant augmentation of p53 pathway effectors *tp53*, *mdm2*, and *cdn1a* at an earlier stage, especially in the midbrain (2 dpf; Fig. 2d; Supplementary Fig. 8). Blood vessel development was normal up to 2.5 dpf in *tg(kdr:egfp)*/*fam50a* KO zebrafish (Supplementary Fig. 9a), and was confirmed by in situ analysis with endothelial molecular markers *etv2*, *cduk5*, and *cdcn5* (Supplementary Fig. 9b). These data recapitulate specific early neurogenesis defects that are present in Armfield XLID syndrome.

Affected males with mutations in FAM50A show dysmorphic facial features (Fig. 1 and Table 1). We stained zebrafish larvae with Alcian blue at different time points (2.5, 3, and 4.5 dpf) to study orthologous structures. At 2.5 dpf, we observed no major differences between KO and WT siblings; cartilage structures such as the ceratohyal, palatoquadrate, and ethmoid plate were present. However, by 3 dpf, we observed anterior-posterior shortening of the pharyngeal skeleton with delayed branchial arch patterning. This persisted up to 4.5 dpf (Fig. 2e). To quantify these defects, we generated −1.4coll1a1:egfp/*fam50a* larvae and performed live ventral imaging of fluorescent signal at 3 dpf and measured the ceratohyal angle as a proxy for mandibular development. We observed a significantly wider ceratohyal angle in *fam50a* KO compared to heterozygotes or WT (*p* < 5.3E–13; unpaired Student’s *t*-test, two-sided; repeated; Fig. 3a, b; Supplementary Fig. 10a and Supplementary Table 4).

Zebrafish studies show that FAM50A variants are hypomorphic. Cross-species in vivo complementation testing is a sensitive and specific method to establish missense variant pathogenicity. We targeted the splice donor site of *D. rerio* fam50a exon 4 with a morpholin (MO), and RT–PCR showed deletion of exons 3 and 4, and a subsequent frameshift and premature transcript termination (Supplementary Fig. 11a–c). We injected increasing doses of *fam50a* splice-blocking MO (3, 6, and 9 ng) into −1.4coll1a1:egfp embryos and assessed ventral cartilage at 3 dpf using the live automated imaging paradigm. We observed a dose dependent exacerbation of craniofacial features (*p* = 0.34, 1.5E–38, and 4.3E–31 for 3, 6, and 9 ng vs control, respectively; unpaired Student’s *t*-test, two-sided, repeated; Supplementary Fig. 11d and Supplementary Table 4), and cartilage-patterning defects matched the *fam50a* KO (Figs. 2e and 3a; Supplementary Fig. 10a). We rescued this phenotype by co-injecting either 150 pg of human FAM50A WT mRNA or mRNAs carrying common variants (gnomAD) as negative controls (p.Ala137Val and p.Glu143Lys; *p* = 2.4E-12, 9.9E–13, and 5.7E–11 for WT or variant rescue vs MO, respectively; unpaired Student’s *t*-test, two-sided, repeated; Figs. 3a, c; Supplementary Fig. 10b, Supplementary Tables 3 and 4).

Next, we tested the patient-specific allelic series (p.Trp206Gly, p.Glu254Gly, p.Asp255Gly, p.Asp255Asn, and p.Arg273Trp) using equivalent doses of MO and mRNA across experiments (Supplementary Tables 3 and 4). Co-injection of MO with all
RNA in situ Alcian blue staining (cartilage) apparent at 3 dpf. Meckel results: 2.5 dpf, cdkn1a proliferative zone in the midbrain region experiments using Fig. 12; Supplementary Table 4). We performed similar rescue swim bladder as a qualitative criterion for morphology18. KO did not result in significant effects; expression of mutant mRNA to rescue morphant phenotype was unlikely due to dominant toxic effects; expression of FAM50A mRNAs alone resulted in partial loss of FAM50A function in Armfield XLID syndrome.

Patient variants resulted in a mean ceratohyal angle significantly broader than FAM50A WT (p = 0.0025, 0.0003, 3.3E−13, 1.06E−09, and 0.0004, respectively, unpaired Student’s t-test, two-sided, repeated; Fig. 3c; Supplementary Fig. 10b–e). The failure of mutant mRNA to rescue morphant phenotype was unlikely due to dominant toxic effects; expression of FAM50A mRNAs alone did not result in significant effects (replicated; Supplementary Fig. 12; Supplementary Table 4). We performed similar rescue experiments using fam50a KO zebrafish and the formation of the swim bladder as a qualitative criterion for morphology18. KO phenotypes were rescued by WT FAM50A, but were only partially improved by a subset of three FAM50A patient variants (Supplementary Fig. 13). In vivo complementation data, generated in either transient or stable fam50a models, supported a partial loss of FAM50A function in Armfield XLID syndrome. fam50a KO zebrafish have altered expression profiles. We hypothesized that impaired FAM50A function might affect transcriptional regulation or mRNA processing. These predictions are supported by affinity-purified complexes that suggested FAM50A as a potential spliceosome protein17; and an in vitro study that classified FAM50A as a candidate mRNA binding protein8. We performed RNA-seq analyses on total RNA obtained from WT and fam50a KO larvae harvested at 2 dpf, prior to the onset of major morphological defects (Fig. 2; Supplementary Fig. 8). We obtained embryos from five pairs of fam50a+/− (heterozygous) adults; decapitated larvae for RNA extraction (heads) and genotyping (tails); and combined 20 genotype-matched heads per pool (n = 5 biological replicates of sibling-matched WT and KO; Fig. 4a). We generated ~37 million 50 bp single-read sequences per library and assessed global transcriptomic profiles in KO vs WT.
As expected, *fam50a* was the most significantly reduced coding mRNA between the two genotypic groups. Clustering analysis suggested a marked effect of genotype on global transcription (Supplementary Fig. 14). This observation was supported by gene-level expression analysis: ~12% of genes had significantly altered levels in *fam50a* KO compared to WT (n = 2804 genes, p < 0.05, Wald test, FDR-corrected using the Benjamini–Hochberg method), of which ~48% were downregulated (n = 1359 genes) and ~52% were upregulated (n = 1445 genes; Fig. 4b; Supplementary Fig. 15). To test whether dysregulated genes in *fam50a* KO have implicated in human pathologies overlapping Armfield XLID, we overlaid our RNA-seq data with Human Phenotype Ontology (HPO, https://hpo.jax.org/) and Online Mendelian Inheritance in Man (OMIM, https://omim.org/) annotations. Among genes with significantly altered gene expression in *fam50a* KO, some cause clinically similar genetic disorders. Examples include downregulated genes *gss* (logFC −1.4; p < 4E−26; Glutathione synthetase deficiency) and *aaas* (logFC −1.2; p < 1.8E−12; Achalasia-addisonianism-alacrimia syndrome) and upregulated genes *ggtb* (logFC 2.9; p < 3.7E−06; ID); and *efud2* (logFC 1.5; p < 1E−142; Mandibulofoacial dysostosis; Wald test, FDR-corrected using the Benjamini–Hochberg method; Table 2). Although a substantial fraction of the transcriptome is differentially expressed in the context of *FAM50A* loss, we could not identify a single altered gene driver of Armfield XLID syndrome.

Next, we performed gene set enrichment analysis (GSEA) on WT and *fam50a* KO RNA-seq data sets. The top ten pathways with significant downregulation (familywise-error rate [FWER] p < 0.03, Kolmogorov–Smirnov test) can be mapped to patient phenotypes, especially neurodevelopment, brain function, and cartilage patterning (Fig. 4c). However, for the top ten ranking gene sets with significant upregulation (FWER p < 0.008, Kolmogorov–Smirnov test), we observed that nine out of ten are involved in mRNA processing or splicing (Fig. 4c). These data suggest that *FAM50A* impairment leads to cellular compensation.
of mRNA processing effectors, arguing that neuronal and cartilage-related biological processes are particularly susceptible to FAM50A loss of function.

To validate a subset of RNA-seq results, we probed the transcript levels of 25 genes using WISH at 2 and 3 dpf (Fig. 5 and Table 2; Supplementary Fig. 16 and Supplementary Table 3). We prioritized the top eight significantly upregulated genes (snapc4, ice1, tp53, mdm2, mettl16, prpf3, prpf31, and eftud2), the majority of which comprise the splicing machinery. We validated additional mRNA splicing effectors (n = 7: prpf8, prpf4, prpf6, snrnp200, snrpe, sf3b4, and eif4a3) [19–25]. Many of these genes involved in spliceosomal function are related to human disorders,
Fig. 4 RNA-seq analysis revealed mRNA splicing defects in fam50a KO zebrafish. A Schematic describing the RNA-seq experiment from sample preparation to data analysis. Steps 1 and 2 describe sample collection and preparation, whereas step 3 indicates the RNA data analysis and interpretation. Each replicate pool (n = 5 per genotype) contained total RNA from 20 genotype-matched larval heads at 2 days post-fertilization (dpf). fam50a+/− (heterozygous mutant). B Pie charts representing differential expression analysis results for KO vs WT. Transcripts with FDR-corrected p < 0.05 were included (Wald test, FDR-corrected with the Benjamini–Hochberg method). C Gene set enrichment analysis was performed using normalized enrichment score for KO vs WT. The top ten significantly disrupted pathways (depleted or augmented) are plotted along the x axis. Downregulated gene sets, orange; upregulated gene sets, blue. p-values (FDR-corrected) are indicated in parentheses (Kolmogorov–Smirnov test). D Pie chart representing percentage of alternative splicing events (by category) that are enriched in fam50a KO. p < 0.05, likelihood-ratio test with FDR correction. E Pie chart representing the distribution of GO terms impacted by discrete alternative splicing events (by category) in fam50a KO. p < 0.05, Fisher’s exact test.

fam50a KO are enriched for mRNA mis-splicing events. To probe the involvement of Fam50a in mRNA splicing, we applied replicate multivariate analysis of transcript splicing (rMATS), a statistical method that can detect: alternative 5′ splice sites; alternative 3′ splice sites; retained introns; mutually exclusive exons; or skipped exons from multiple replicate samples. We queried splice sites and found representation of significantly augmented or depleted splicing events in each of the five categories. However, we noticed an uneven distribution of aberrant splicing events by splicing category that withstood an FDR-corrected p < 0.05 threshold (likelihood-ratio test; Fig. 4d). Aberrant 3′ splicing was predominantly affected (n = 235, 49%), followed by exon skipping (n = 145, 30%), retained intron (n = 50, 10%), mutually exclusive exons (n = 29, 6%), and alternative 5′ splicing (n = 18, 4%).

We applied the DAVID functional annotation clustering tool (https://david.ncifcrf.gov/) to the rMATS output to identify enrichment of transcript modules impacted significantly by aberrant splicing. The majority of significant gene category hits (uncorrected p < 0.05, Fisher’s exact test) also impacted alternative 3′ splice sites (n = 32, 70%; Fig. 4e; Supplementary Table 5). There were only six Bonferroni-corrected (p < 0.05, Fisher’s exact test) gene ontology (GO, http://geneontology.org/) terms cumulatively spanning all splicing categories. These GO groups were either impacted in both alternative 3′ splicing and exon skipping: RNA binding (GO:0003723); or were exclusive to alternative 3′ splicing events: nucleus (GO:0005634); DNA binding (GO:0003677); regulation of transcription, DNA-templated (GO:0006355); nucleic acid binding (GO:0003676); and transcription factor complex (GO:0005667). In sum, mRNA splicing analysis uncovered aberrant events biased toward 3′ alternative splicing or exon skipping. These alterations occur late in mRNA splicing, consistent with phenomena expected to be downstream of a C-complex impairment.

Transcriptomic profiling of a zebrafish eftud2 mutant model demonstrated global RNA splicing deficiency with concomitant p53-dependent apoptosis, concordant with our RNA ISH and RNA-seq data. tp53 was significantly upregulated in fam50a KO, similar to its downstream target mdm2, compared to WT (Table 2). To test whether p53 pathway activation is correlated with apoptosis, we examined fam50a morphants via TUNEL staining (Supplementary Table 4). TUNEL positive cells were significantly augmented in an anterior region of interest (ROI) (p = 4.8E−06, unpaired Student’s t-test, two-sided). This defect was rescued by co-injection of human WT FAM50A mRNA (p = 1.5E−06, unpaired Student’s t-test, two-sided; Supplementary Fig. 17a, b). Cell-cycle progression was also increased in fam50a morphants as determined by significantly increased phospho-histone H3 immunostaining, a marker of G2/M transition (p = 1.5E−07; unpaired Student’s t-test, two-sided; Supplementary Fig. 17c, d; Supplementary Table 4). To examine whether the p53 pathway is a cause or effect of the fam50a KO phenotype, we crossed fam50a+/− and tp53−/− (homozygous) mutant lines. fam50a KO and fam50a/tp53 double KO displayed similar phenotypes at 5 dpf (Supplementary Fig. 18). These data reinforce the involvement of p53 independent apoptosis in the fam50a KO phenotype that is likely correlated, directly or indirectly, with aberrant mRNA splicing.

Patient LCLs have mRNA expression and splicing defects. To test for transcriptional dysregulation and spliceosome disruption in LCLs derived from patients with Armfield XLID, we performed RNA-seq (K9648, p.Trp206Gly and K9656, p.Glu254Gly; Fig. 1b, c and Table 1). Differential expression analysis of triplicates was signified by apoposis, we examined fam50a morphants via TUNEL staining (Supplementary Table 4). TUNEL positive cells were significantly augmented in an anterior region of interest (ROI) (p = 4.8E−06, unpaired Student’s t-test, two-sided). This defect was rescued by co-injection of human WT FAM50A mRNA (p = 1.5E−06, unpaired Student’s t-test, two-sided; Supplementary Fig. 17a, b). Cell-cycle progression was also increased in fam50a morphants as determined by significantly increased phospho-histone H3 immunostaining, a marker of G2/M transition (p = 1.5E−07; unpaired Student’s t-test, two-sided; Supplementary Fig. 17c, d; Supplementary Table 4). To examine whether the p53 pathway is a cause or effect of the fam50a KO phenotype, we crossed fam50a+/− and tp53−/− (homozygous) mutant lines. fam50a KO and fam50a/tp53 double KO displayed similar phenotypes at 5 dpf (Supplementary Fig. 18). These data reinforce the involvement of p53 independent apoptosis in the fam50a KO phenotype that is likely correlated, directly or indirectly, with aberrant mRNA splicing.

FAM50A interacts with spliceosome U5 and C-complex proteins. To validate a potential affiliation for FAM50A in the...
Gene name	Description	Human phenotype	RNA-seq log2(FC)	RNA-seq p-value	In situ hybridization
fam50a	Family with sequence similarity 50, member A	ND	−3	3.47E-233	Downregulated
gss	Glutathione synthetase	Glutathione synthetase deficiency	−1.39	4.08E-26	Downregulated
aaas	Achalasia, adenocortical insufficiency, alacrimia	Achalasia-addisonianism-alacrimia syndrome	−1.21	1.83E-12	Downregulated
huwe1	HECT, UBA and WWE domain containing 1	Mental retardation, X-linked syndromic Turner type	−0.14	0.71	Downregulated
vwa7	von Willbrand factor A domain containing 7	ND	−0.99	1.07E-49	Downregulated
eda	Ectodysplasin A	Ectodermal dysplasia, X-linked recessive; tooth agenesis	−0.60	0.02	Downregulated
pcna	Proliferating cell nuclear antigen	Ataxia-telangiectasia-like disorder 2	−0.08	0.72	Downregulated
her4.1	Hairy-related 4, tandem duplicate 1	ND	−0.07	0.9	Downregulated
ccnd1	Cyclin D1	ND	−0.01	0.97	Downregulated
snacp4	Small nuclear RNA activating complex, polypeptide 4	ND	2.79	9.16E-281	Upregulated
cdkn1a	Cyclin-dependent kinase inhibitor 1A	ND	2.40	9.87E-103	Upregulated
ice1	KIAA0947-like (H. sapiens)	ND	2.29	9.81E-220	Upregulated
metll6	Methyltransferase-like 16	ND	2.23	4.93E-156	Upregulated
tp53	Tumor protein p53	ND	2.16	3.14E-217	Upregulated
mdr2	MDM2 oncogene, E3 ubiquitin protein ligase	ND	1.98	3.88E-163	Upregulated
prpf31	PRP31 pre-mRNA processing factor 31 homolog (yeast)	Retinitis pigmentosa	1.75	1.25E-147	Upregulated
prpf3	PRP3 pre-mRNA processing factor 3 homolog (yeast)	Retinitis pigmentosa	1.7	5.23E-149	Upregulated
eftud2	Elongation factor Tu GTP binding domain containing 2	Mandibulofacial dysostosis	1.45	1.01E-142	Upregulated
prpf4	PRP4 pre-mRNA processing factor 4 homolog (yeast)	Retinitis pigmentosa	1.38	3.95E-74	Upregulated
snpe	Small nuclear ribonucleoprotein polypeptide E	Hypotrichosis	1.30	116E-15	Upregulated
snmp200	Small nuclear ribonucleoprotein 200 (US)	NA	1.09	5.49E-63	Upregulated
prpf8	Pre-mRNA processing factor 8	Retinitis pigmentosa	0.87	2.46E-33	Upregulated
prpf6	PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae)	Retinitis pigmentosa	0.72	6.35E-49	Upregulated
eif4a3	Eukaryotic translation initiation factor 4A3	Robin sequence with cleft mandible and limb anomalies	0.55	9.95E-21	Upregulated

* p-values determined with a Wald test.
* FC, fold change; ND, none described.
spliceosome C-complex, we performed a FAM50A pulldown assay followed by mass spectrometry (nanoquadrupole liquid chromatography with tandem MS). We transfected HEK-293T cells with a C-terminally tagged dual streptavidin and flag epitopes on a FAM50A PiggyBac transposon system and expanded cells under puromycin selection. Streptavidin capture identified a combined repertoire of 99 FAM50A interactors with a SANT probability cutoff value >0.7 (Supplementary Data 1) compared to controls in two independent replicates. The top 20 functional groups involve RNA processing, with U5 snRNA binding (GO:0030623) ranked with the most significant fold-enrichment ($p = 1.3 \times 10^{-2}$; Kolmogorov–Smirnov test, Supplementary Table 7).

To show direct interaction of FAM50A with bona fide spliceosome effectors, we performed co-immunoprecipitation (co-IP) assays. We transiently transfected U-87 glioblastoma cells with V5-tagged EFTUD2 and DDX41 plasmids, which are part of the spliceosome U5 and C-complex, respectively (Fig. 6a, b). Immunoblotting using anti-V5 and anti-GAPDH antibodies detected the overexpressed tagged proteins in input lysates (Fig. 6c, d). Next, we immunoprecipitated proteins with anti-FAM50A antibody in transfected and negative control samples. Western blot against FAM50A in co-IP lysates discovered the pulled down FAM50A protein in all samples. Immunoblot with anti-V5 in IP lysates detected both Co-IP partners in their respective transfected samples but not in negative controls, indicating a specific physical interaction of FAM50A with spliceosome binding partners that are active during the two-step splicing reaction (Fig. 6c, d).

Discussion

We report partial loss-of-function missense variants in FAM50A as the genetic basis of Armfield XLID syndrome. Our work epitomizes the challenges of understanding rare disease pathogenesis. Using candidate gene sequencing, we identified the causal FAM50A variant in the original Armfield XLID syndrome family in 2001. Next-generation sequencing technology and data sharing platforms were required to identify four additional cases with FAM50A variants several years later. Even with bolstered support for genetic causality, this work required a vertebrate model to gain insight into variant pathogenicity and cellular mechanism. Our experience is not unique. Of the estimated 9000 Mendelian phenotypes that have been described, a substantial proportion of gene-phenotype pairs identified in the last 5 years required partnering of a rare human finding with a model organism or relevant in vitro functional assay.

XLID conditions range from isolated ID to multi-organ disorders. Males with FAM50A variants overlap phenotypically with other XLID syndromes presenting with seizures and dysmorphic facial features (Table 1). We noted variable head circumference with an inconsistent facial phenotype. However, Armfield XLID syndrome also includes postnatal growth retardation and ocular findings, which are less common among XLID syndromes. Affected males with FAM50A variants had normal intrauterine growth but statural growth slowed postnatally, eventually falling more than 2 SD below the mean for height. Small hands and feet are also signature features of this cohort. Ocular anomalies were pervasive with all patients having strabismus, keratoconus, and anterior chamber anomalies. In sum, this constellation of cognitive, craniofacial, growth, and ocular features define Armfield XLID syndrome as a distinct clinical entity.

To investigate FAM50A function, we generated zebrafish KO models, however, *fam50a* KO zebrafish larvae are not viable long term. Homozygous mutants for two independent loss-of-function alleles exhibited defects impacting neuronal proliferation and craniofacial patterning, which mirror the phenotypes in FAM50A mutation-bearing males (Figs. 1 and 2; Table 1). However, there is a key difference between the KO and Armfield XLID syndrome cases: strength of allele effect. Although we were limited to testing variant pathogenicity using either a quantitative comorbidity feature (craniofacial patterning) or a clearly defined qualitative morphological defect (swim bladder), data generated through in vivo complementation assays suggested that males with FAM50A variants overlap phenotypically with other XLID syndromes presenting with seizures and dysmorphic facial features (Table 1).
variants have some residual protein function (Fig. 3; Supplementary Fig. 13). Even without variant testing data from a direct neurodevelopmental phenotype, we would still expect humans with null FAM50A variants to be embryonic lethal, as supported by a low observed/expected (o/e) constraint metric in >125,000 exomes in gnomAD ($o/e = 0.06$).

mRNA splicing is a dynamic process that involves intron branching and exon ligation30 (Fig. 6a). Electrophoretic separation of the spliceosome initially identified complexes associated with each splicing step35,36. Proteomics and cryo-electron microscopy have refined further this process enabling the contents and relative ratios of spliceosome complexes to be

Fig. 6 FAM50A interacts with US and C-complex proteins.

a Schematic representation of the two-step splicing reaction (adapted from ref. 70). EFTUD2 (US); FAM50A and DDX41 (C-complex).

b Graphical representation of semi-native co-immunoprecipitation assay. Candidate interactors were overexpressed in U-87 cells, harvested in immunoprecipitation (IP) lysis buffer at 60 h post-transfection and immunoprecipitated with anti-FAM50A antibody. The interaction partners were detected in IP lysate using anti-V5 and anti-FAM50A antibodies, respectively.

c, d Western blot of proteins after co-immunoprecipitation. Top: total protein lysate input (50 μg/lane) was migrated on 4–15% polyacrylamide gels to detect EFTUD2 (c) or DDX41 (d) using anti-V5 mouse monoclonal antibody. GAPDH was used as loading control. Bottom: Anti-FAM50A antibody was used to immunoprecipitate native FAM50A protein in total input lysate of 2.3 mg/condition (c) or 3.5 mg/condition (d). The IP lysate was separated in two parts (20% and 80%) and migrated independently on 4–15% polyacrylamide gels. The proteins of interest with predicted band sizes are indicated with black arrows. Plus and minus signs indicate presence and absence of relevant plasmids, respectively. EFTUD2 and DDX41 were detected in independent experiments using protein lysates derived from replicate batches of U-87 cells.
tabulated. Mass spectrometry of purified active step 1 spliceosomes cataloged the B- and C-complex protein repertoires, and FAM50A was reported as a putative C-complex protein. In *fam50a* KO zebrafish, GSEA revealed upregulation of functional groups of genes involved in mRNA splicing. rMATs showed significantly altered splice junctions in KO transcriptomes, with an enrichment of events that occur at 3′ splice sites. Transcriptomic profiles obtained from patient-derived LCLs support these data. FAM50A pulldown coupled with mass spectrometry also indicated an enrichment of binding proteins involved in RNA processing and co-IP assays showed direct interaction of FAM50A with U5 and C-complex proteins. These observations are consistent with spliceosome C-complex impairment. However, the specific role of FAM50A and the process by which it is recruited to the spliceosome remains to be elucidated.

Approximately 150 proteins are present in affinity-purified spliceosome C-complex prep from human cells. Other ID syndromes are caused by variants in C-complex-affected proteins. *EFTPUD* (B- and C-complex) mutations cause Guian-Almeida-type mandibulofacial dysostosis, and animal models display mRNA splicing signatures reminiscent of *fam50a* KO zebrafish. Richieri-Costa–Pereira syndrome (RCPS), caused by variants in EIF4A3 (B- and C-complex), is a rare autosomal recessive ID syndrome. Further, variants in *THOC2* (B- and C-complex) result in an X-linked recessive condition in which affected males have ID, short stature, seizures, and abnormal gait. Further work will be required to understand whether variants in each C (and B) complex proteins produce similarly aberrant mRNA splicing. Still, the shared phenotypes resulting from complex C protein dysfunction highlight an emergent subclass of spliceosomopathies associated with neurodevelopment.

Methods

Human subjects and ethics approval. All participants in this study were assessed clinically by local physicians with medical genetics expertise. Targeted sequencing and whole-exome sequencing were approved by the Institutional Review Board at each participating center (Greenwood Genetic Center; A.I. duPont Hospital for Children; McMaster University Medical Center; Phoenix Children’s Medical Group; University of North Carolina School of Medicine). We obtained signed informed consent for study procedures, publication of genetic findings, and publication of identifiable information (facial photographs) from all participants or their legal representatives. The authors affirm that human research participants provided informed consent for publication of the images in Fig. 1.

Sequencing and analysis to identify FAM50A variants. For family K8100, the FAM50A variant was identified as part of three independent studies. (1) a screen of families linked to Xq28 using exon-specific primers and Sanger sequencing, performed; (2) a next-generation sequencing project of 718 genes located on the X-chromosome; and (3) X-exome next-generation sequencing. For families K9648, K9656, and K9677, trio-based exome sequencing (ES) was conducted by GeneDx. Using genomic DNA, the exonic regions and flanking splice junctions of the genome were captured using the Clinical Research Exome kit (Agilent Technologies, Santa Clara, CA) or the IDT Xgen Exome Research Panel v1.0. Massively parallel (NextGen) sequencing was done on an Illumina system with 100 bp or greater paired-end reads. Reads were aligned to human genome build GRCh37/UCSC hg19, and analyzed for sequence variants using a custom-developed analysis tool and standard protocols were followed for variant interpretation. The general assertion criteria for variant classification are publicly available on the GeneDx ClinVar submission page (http://www.ncbi.nlm.nih.gov/clinvar/submitters/26597/). For family K9667, WES was done in a research laboratory on the proband, mother and father. Exome capture and library preparation was performed using 2 μg of genomic DNA and the TruSeq DNA sample preparation kit v2 and the TruSeq Exome Enrichment kit v2 (Illumina, San Diego, CA) following manufacturer’s guidelines. Sequencing was performed on a HiSeq2000 using multiplexed paired-end sequencing chemistry for 101 bp read length (Illumina, San Diego, CA). Binary base calls in the form of .bcl files were generated by the Illumina HiSeq2000 RTA module during sequencing and were converted to compressed fastq files separated for each index using CASAVA 1.8.2 (Illumina, San Diego, CA). Quality filtered fastq files were aligned to NCBI reference GRCH37.62 with BWA 0.6.2-r126. Binary alignment files were converted and coordinate sorted into the standard BAM format using samtools 0.1.18. Aligned reads were realigned around short insertion and deletions and duplicate reads were filtered using Picard 1.7 (http://broadinstitute.github.io/picard/). This was followed by base quality recalibration with GATK 2.2. Variant calling was done by UnifiedGenotyper and a Scientifically quality controlled probe inhibitor cocktail (SMPC) following standard pipelines adopted from best practice methods of GATK 2.2.

In all genetic studies, candidate causal variants were considered if they: (1) altered coding sequence or splice junctions; (2) were absent from healthy control males; and (3) segregated with disease in pedigrees. FAM50A variants were confirmed using Sanger sequencing and the appropriate genomic DNA sample from the proband (Supplementary Table 3). Segregation analysis was conducted on DNA samples from all available family members.

Determination of X-inactivation. To determine the X-inactivation status in females in family K8100, we examined the methylation status of the AR locus. We digested ~50–150 ng DNA for 16 h with either *Hpa*I and *Rsa*I or *Rsa*I alone as a control (duplicate samples). Enzymes were then inactivated at 80 °C for 20 min, and the resulting digest was PCR amplified (using one-tenth of the digest as template). We separated amplification products on an ABI3100 and analyzed data with GeneScan software (Applied Biosystems). Raw peak height values obtained from digested samples were normalized for amplification efficiency with mean values from the two *Rsa*I-digested samples to obtain the X-inactivation pattern.

Structural modeling of the FAM50A protein. Due to lack of an experimentally-determined structure of FAM50A protein, we used in silico modeling. Homology modeling is not suitable for predicting FAM50A 3D protein structure, since no template can be found that covers the entire sequence of FAM50A. Thus, we used I-TASSER, which is an iterative threading method57. We uploaded the full sequence of FAM50A (NP_004690.1) and specified one template structure (PDB: 3AG7), which has 27% sequence identity and covers residues from 173 to 248. In addition, we predicted the secondary structure elements (SSEs) of FAM50A using YASPIN48.

FAM50A tissue expression analysis. The Human Fetal MTC panel (Clonetech) was utilized to analyze FAM50A expression in fetal tissues. The MTC cDNA preparations were used as template for RT–PCR as outlined by the manufacturer in a final reaction volume of 20 μl (see Supplementary Table 3 for primer sequences). PCR conditions for FAM50A were: initial denaturation 95°C for 5 min, followed by 30 cycles of: denaturation at 95 °C, 30 s; annealing at 57 °C, 30 s; and extension at 72 °C, 40 s. Final extension was at 72°C for 5 min. For β-actin, the PCR conditions were the same except the annealing was done at 55 °C; the extension was for 30 s and only 25 cycles were used. We migrated 20 μl of the PCR reaction on a 3% agarose gel in 1×TBE (see Source Data for uncropped images).

Localization of endogenous FAM50A protein in NIH/3T3 cells. NIH/3T3 cells (American Type Culture Collection, ATCC CRL-1681) were cultured under standard conditions in DMEM supplemented with 10% fetal bovine serum (FBS). Cells were fixed with 4% paraformaldehyde (PFA) at room temperature for 10 min. After washing in PBST (PBS with 0.1% Tween-20), cells were subjected to permeabilization with PBS containing 0.2% Triton X-100 for 10 min, followed by washing with 3% BSA in PBS for 40 min. Primary antibody, anti-human FAM50A antibody (1:200; Novus Biologicals, NBPI-89344), which has cross-reactivity to mouse FAM50a protein, was treated in PBS containing 0.1% Triton X-100 at 4°C overnight. Cells were then washed in PBST and incubated with Alexa Fluor 488-conjugated goat anti-rabbit secondary antibody (1:1000; Invitrogen, A-11008) and Hoechst 33342 (1:10,000; Invitrogen, H3570) at room temperature for 1 h. After washing with PBST, the cells were subjected to confocal imaging by using a Nikon A1R confocal microscope (Nikon Instruments) equipped with a Nikon CFI Plan Apochromat VO objective (60X/1.4 numerical aperture (NA); Nikon Instruments) and digital zooming of Nikon imaging software (NIS-element AR 64-bit version 3.2; Laboratory Imaging).

FAM50A immunoblotting in human LCLs and zebrafish. Lymphoblast cell lines were obtained by immortalization of lymphocytes from patient blood samples using Epstein-Barr virus. The lymphoblast cell lines were harvested in RPMI-1640 (cat# R8758, Sigma) with 75 μl fetal bovine serum (Atlanta Biological—Lawrenceville, GA, USA) and 5 μl Glutamine and 5 μl antibiotic/antimycotic (Sigma-Aldrich—St.Louis, MO) according to standard procedures (K9648, p. Trp206Gly; K9656, p. Gln254Gly and a healthy male control). For total protein extraction, we harvested cells in RIPA lysis buffer containing 50 mM HEPES (pH 7.6), 1% Triton X-100, 0.1% SDS, 50 mM NaCl, 0.5% sodium deoxycholate, 1 mM PMSE (Millipore Sigma), 1× Halt phosphatase inhibitor cocktail (Thermo Scientific), 1× complete protease inhibitor (Millipore Sigma). After protein quantification with BCA protein assay kit (Thermo Scientific), we loaded 23 μg heat denatured total protein lysate/lane supplemented with laemml sample
buffer and reducing agent (NuPAGE®), cat# NP0004; 1x) and migrated on 4–15% SDS-polyacrylamide gel. The protein bands were transferred to Polyvinylidene fluoride (PVDF) membrane and incubated for 90 min in blocking solution (3.5% milk) containing rabbit anti-FAM50A antibody (1:1900, Novus Biologicals; NBPI-89344) and mouse anti-GAPDH antibody (1:3000, Santa Cruz Biotechnolo-
gy, sc-47724). The membrane was then incubated in secondary antibody solution (5% milk in PBST) containing anti-rabbit IgG-HRP (1:4000, Santa Cruz Bio-
technology, sc-23257) and anti-mouse IgG-HRP (1:4000, Santa Cruz Biotechnol-
gy, sc-25102) to detect FAM50A and GADPH, respectively. We developed the immunoblots using SuperSignal West Pico Plus Chemiluminescent Substrate (ThermoScientific) per manufacturer’s protocol using a ChemiDoc XRS imaging system (Bio-Rad). See Source Data for uncropped images. Signal was quantified with Image Studio Lite, and statistical differences were calculated using a Student’s t-test.

To test the endogenous protein level in fam50a KO zebrafish, we crossed fam50a+/− mutants and harvested larvae heads at 2 dpf in complete lysis media. We used t-tails for genotyping, cross-matched with heads, and 20 heads were pooled per lane. 14 μg per lane was loaded on 4–15% SDS PAGE and stained with rabbit anti-FAM50A antibody (1:1900, Novus Biologicals; NBPI-89344).

Localization of tagged WT and mutant FAM50A in COS-7 cells. Total RNA was extracted from lymphoblast cell lines using GenElute Mammalian Total RNA Miniprep (Sigma cat# RTN-70). cDNA was prepared with Superscript First Strand Synthesis Kit for RT–PCR (Invitrogen cat# 11904-018) from 2 μg of RNA prepared from COS-7 cells. A PCR reaction with the oligos (Supplementary Table 3) and PFU Turbo (Stratagene cat# 602500) was employed to generate the fragment. The insert was run on a 1% TAE agarose gel and purified with a Gel Extraction Kit (Quagen cat# 287040). The purified product was cloned into pCDNA3.1þ/Neo vector using the Directional TOPO Expression Kit (Invitrogen cat# K4900-01). All plasmids generated had a V5 tag at the C terminus. Plasmids were sequenced to confirm the insert (Supplementary Table 3).

We used site-directed mutagenesis to introduce alterations (QuickChange II Site-Directed mutagenesis kit, Stratagene catalog number 200524). All constructs were sequence confirmed to verify the mutation and integrity of the ORF.

Total RNA was extracted from COS-7 cells obtained from American Type Culture Collection (ATCC CRL-1651), and cultured in DMEM (Sigma cat# D5796) supplemented with 10% FBS (Atlanta Biologicals cat# S12450H), 1x Penicillin/Streptomycin (Sigma catalog number G7513) in a 5% CO2 humidified incubator at 37 °C. COS-7 cells were cultured on poly-L-lysine coated 24-well tissue culture dishes in growth media 18 h before transfection. COS-7 cells were cultured on poly-L-lysine coated glass coverslips, huwe1, mettl16, ice1, prpf3, prpf4, snrnp200, prpf6, snapc4, prpf8, snrpe, prpf31, f3b34, eif2a3, tp53, popt, her4.1 (Supplementary Table 3). The amplified product was subjected to DpnI digestion to selectively digest the methylated WT template and mutant colonies were obtained by cloning. WT and mutant constructs were sequence confirmed with Sanger sequencing (Supplementary Table 3). We synthesized capped mRNA using linearized pCS2 vector as template with the mMessage mMachine SP6 transcription kit (ThermoFisher). For in vivo complementation assays, 150 pg of mRNAs was injected in the presence or absence of MO. For in vivo complementation using KO embryos, we used 300 pg FAM50A mRNA.

In situ hybridization on whole-mount zebrafish larvae. Whole-mount in situ hybridization (WISH) was performed using probes for cdk1a1, mdm2, aas5, eif2u2, ppp1r4a, kif22, prpf7, prpf4, prpf8, prpf15, prpf31, f3b34, eif2a3, tp53, popt, her4.1 (Supplementary Table 3). Staged embryos were fixed overnight in 4% PFA, and then dehydrated in a methanol gradient. Embryos were then rehydrated in phosphate-buffered saline containing 0.1% Tween-20 (PBST). Embryos were permeabilized by protease K digestion and then hybridized with digoxin-labeled probes overnight at 70 °C. The next day, embryos were washed in a preheated mixture of 50% saline sodium citrate containing 0.1% Tween-20 and 50% hybridization solution at 70 °C. Embryos were washed again at room temperature and incubated in staining solution in the dark until sufficient staining appeared. Embryos were mounted in glycerol and were visualized using a Nikon DSzc1 zoom microscope (Nikon, Tokyo, Japan). Images were acquired using a Nikon DIGITAL SIGHT DS-Fil digital camera (Nikon) and processed with NIS-Elements F 3.0 (Nikon).

Immunostaining on whole-mount zebrafish larvae. For whole-mount immu-
nofluorescence staining, zebrafish embryos at 24 h post-fertilization (hpf) were fixed overnight in 4% PFA and dehydrated with methanol. Embryos were perme-
abilized in 0.1% acetic acid in 70% ethanol for 2 min at −20 °C and washed in water, followed by 10 min in PBST. After blocking for 30 min in 2% horse serum, zebrafish embryos were incubated with FAM50A antibody (1:200; Novus Biologicals, NBPI-89344) at 4 °C overnight. On the next day embryos were incubated with Alexa Fluor 568-conjugated secondary antibodies (1:500; Life Technologies). For nuclear staining, immunostained zebrafish embryos were counter-stained with Hoechst 33342 at 1 μg/ml, and imaged using a Zeiss LSM700. For confocal imaging, embryos/larvae were mounted in 1.2% low-melting agarose on a glass slide.

Craniofacial phenotyping in zebrafish larvae. Cartilage was stained with Alcian Blue® (1%). Embryos (2.5, 3 and 4 dpf) were fixed in 4% phosphate-buffered formalin for 24 h, followed by in vivo whole-mount staining in PBS for 30 min. After blocking for 30 min in 2% horse serum, zebrafish embryos were incubated with FAM50A antibody (1:200; Novus Biologicals, NBPI-89344) at 4 °C overnight. On the next day embryos were incubated with Alexa Fluor 488-conjugated secondary antibodies (1:500; Life Technologies). For staining cartilage, immunostained zebrafish embryos were counter-stained with DAPI at 1 μg/ml, and imaged using a Zeiss LSM700. For confocal imaging, embryos/larvae were mounted in 1.2% low-melting agarose on a glass slide.
was stained for 3 h in 10 mM MgCl₂, 95% EtOH, and 0.04% Alcian blue (AS268, Sigma-Aldrich). After one wash in acidic ethanol (70% ethanol, 5% HCl) followed by an additional wash in fresh acidic ethanol, embryos were dehydrated in 85% and 100% ethanol for 15 min each and transferred to 80% glycerol for bright field imaging. To image craniofacial structures in ~1.4col1a1:egfp larvae, we performed live imaging of the fluorescent signal in mutant or morphant larvae at 3 dpf using the Zeiss AxioScope.A1 ×10 (NA 0.3) objective and Axioacam 503 monochromatic charge-coupled device (CCD) camera. Pro software (version 2.4.1.0; Zeiss) was used to analyze the fluorescent signal from the Zeiss AxioScope.A1 ×10 (NA 0.3) objective and Axioacam 503 monochromatic CCD camera. The larvae were subsequently fixed in 1% paraformaldehyde/PBS solution for 20 min at 4 °C.

RNA-seq data analysis. Data were processed using the TrimGalore! toolkit (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to generate paired-end reads and to exclude reads containing adapters from the FASTQ 3’ end of reads. Reads that were 20 nt or longer after trimming were kept for further analysis. Reads were mapped to the Zv10r87 version of the zebrafish genome and transcriptome69 or human genome build hg19 obtained from Ensembl (http://www.ensembl.org) using the STAR RNA-seq alignment tool70 and retained for subsequent analysis only when the sequence mapping had a minimum identity of 90%, a maximum segment length of 80% and a maximum mismatch of 4%.

The star expression values were estimated from the trimmed reads using the Cufflinks program71 with default parameters. A PiggyBac transposon system was used to overexpress C-terminal flag and streptavidin tagged forms of FAM50A protein in HEK-293T/17 cells (ATCC CRL-11268). This coding sequence was cloned into a PiggyBac dual promoter vector and Super PiggyBac transposase (System Bioscience, PB210PA-1) with Lipofectamine 2000 (Tabletab/PiggyBac-transfection-conditions). 72 h post-transfection, selection was carried out with 2 μg/ml puromycin for 1 week; cells were then expanded prior to proteomic submission.

For streptavidin based affinity purification, 10–20 × 10⁶ 293 T cells were lysed in low salt lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% Igepal-630, 1 mM EDTA, 1 mM DTT, Halt protease, and phosphatase inhibitors). Whole-cell extracts were incubated with 50 μl of Mag-Strep type 3 XT beads (IBA) for 30 min at 4 °C. Beads with bound proteins were washed 5 times with IPP150 buffer (10 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% Igepal-630) and then three times with 50 mM ammonium bicarbonate. Bound proteins were digested with 0.5 μg of trypsin [sequencing grade, Roche (5 μg/ml)] for 2 h at 37 °C. Peptide solution was collected, acetylated with formic acid to a final concentration of 0.5%, filtered through an HTS Microscreen filter plate (Millipore) to remove left-over beads and dried in a SpeedVac (Thermo). Peptides were reduced in 50 mM TCEP for 15 min at room temperature and acetylated to formic acid before mass spectrometry analysis.

Peptides were analyzed by online nanoLC-MS/MS on an Orbitrap Fusion Tribid mass spectrometer coupled with an Ultimate 3000 RSLCnano System. Samples were first loaded and desalted on a nanotrap (100 μm id × 2 cm) (PepMap C18, 5 μm) at 10 μl/ml with 0.1% formic acid for 10 min, and then separated on an analytical column (75 μm id × 50 cm) (PepMap C18, 2 μm) over a 120 min linear gradient of 5–40% B (8 = 80% CH₃CN/0.1% formic acid) at 300 nl/min, and the total cycle time was 150 min. The Orbitrap Fusion was operated in the Top Speed mode at 3 s per cycle. The survey scans (m/z 375–1500) were acquired in the Orbitrap at a resolution of 120,000 at m/z 200 (AGC 4 × 10⁵ and maximum injection time 50 ms). The multiply charged ions (2–7) with a minimal intensity of 1 × 10⁸ counts were subject to MS/MS in HCD with a collision energy at 30% and an isolation width of 1.6 Th, then detected in the linear ion trap (AGC 1 × 10⁴ and maximum injection time 35 ms). Dynamic exclusion width was set at ±10 ppm for 30 s.

Mass spectrometry data analysis. Raw files were processed with Proteome Discoverer v. 1.4 (Thermo). Database searches were performed with Mascot v. 2.2 (Matrix Science) against the human Uniprot database (v. January 2018) appended with the cRAP database (www.thegpm.org/crap/). The search parameters were trypsin digestion, two missed cleavages, 10 ppm mass tolerance for MS/MS, with variable modifications of N-acetylation (protein), oxidation(M), and pyro-glut (N-term Q). Peptide false discovery rates (FDR) were estimated by comparison between reverse sequences in a concatenated target-decoy database using Percolator and set at 0.01. Protein identification required at least one high-confidence peptide (FDR < 1%) with a minimum Mascot score of 20.
discriminate specific from non-specific interactions, protein lists from bait and control experiments were analyzed with SAINTexpress.

Co-immunoprecipitation (co-IP) using in vitro cell models. We obtained full-length wild-type open reading frame EFUD2 and DXDX41 (ThermoFisher; ID: IOH3606 and ID: IOH11189 respectively) in pENTR221 and cloned it into pcDNA3.1/V5-DEST Mammalian Expression Vector (ThermoFisher Scientific, cat# 12290010) using LRClonase-mediated recombination (ThermoFisher). All the vectors were sequence confirmed using bidirectional Sanger sequencing. We maintained U-87 glioblastoma cell lines in MEM Earle’s complete media following standard cell culture protocols and transfected cells at 50–70% confluency with 6 μg of plasmid and 12 μl of transfection reagent (X-tremGENE 9 DNA Transfection Reagent; Millipore Sigma; cat# EMD75787001).

We performed semi-native Co-IP assays using protein A/G PLUS-Agarose beads (Santa Cruz Biotechnology; cat# sc-2003) following manufacturer’s protocol with slight modifications. To extract total protein, we harvested the cells at 60 h post-transfection in IP lysis buffer (Tris 25 mM; NaCl, 150 mM, EDTA, 1 mM; 1% NP-40 [IGEPAL CA-650]; 5% Glycerol; Phenylmethylsulfonyl fluoride [PMSF; Millipore Sigma; cat# 1083709101P-IMSF-RQ], 1 mM; 1× complete Protease Inhibitor Cocktail [Millipore Sigma; cat# 0493016001]; 1× Halt™ Phosphatase Inhibitor Cocktail [ThermoScientific; cat# 78420]). After protein quantification with BCA protein assay (ThermoScientific; cat# 23225), we used 2.3 mg/ml EFUD2 and 3.5 mg/ml (DDX41) of total protein lysate and incubated it with anti-FAM50A antibody (1:111, Novus Biologicals; NBP1-89344) at 4 °C overnight. (EFTUD2) and 3.5 mg/ml (DDX41) of total protein lysate and incubated it with BCA protein assay (ThermoScientific; cat# 23225), we used 2.3 mg/ml EFUD2 and 3.5 mg/ml (DDX41) of total protein lysate and incubated it with anti-FAM50A antibody (1:111, Novus Biologicals; NBP1-89344) at 4 °C overnight. We added 8 μl of packed gel beads per sample and incubated for 3 h at 4 °C. The beads-antibody conjugate was then washed five times with wash buffer (Tris 50 mM NaCl 300 mM; and Triton X-100, 0.1%) and one time with PBS. The IP anti-FAM50A antibody (1:111, Novus Biologicals; NBP1-89344) at 4 °C overnight. (EFTUD2) and 3.5 mg/ml (DDX41) of total protein lysate and incubated it with anti-FAM50A antibody (1:111, Novus Biologicals; NBP1-89344) at 4 °C overnight. We added 8 μl of packed gel beads per sample and incubated for 3 h at 4 °C. The beads-antibody conjugate was then washed five times with wash buffer (Tris 50 mM NaCl 300 mM; and Triton X-100, 0.1%) and one time with PBS. The IP anti-FAM50A antibody (1:111, Novus Biologicals; NBP1-89344) at 4 °C overnight.

Received: 30 May 2019; Accepted: 17 June 2020; Published online: 23 July 2020

References
1. Maulik, P. K., Mascarenhas, M. N., Mathers, C. D., Dua, T. & Saxena, S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil. 32, 419–436 (2011).
2. Morton, N. E. et al. Colchester revisited: a genetic study of mental defect. Am. J. Hum. Genet. 14, 445–499 (1977).
3. Neri, G., Schwartz, C. E., Lubs, H. A. & Stevenson, R. E. X-linked intellectual disability update 2017. Am. J. Med. Genet. A 176, 1375–1388 (2018).
4. Armfield, K. et al. X-linked mental retardation syndrome with short stature, small hands and feet, seizures, cleft palate, and glaucoma is linked to Xq28, Am. J. Med. Genet. A 85, 236–242 (1999).
5. Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).
6. Balz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell. 46, 674–690 (2012).
7. Tassone, S., Amoroso, M., Will, C. L., Ursula, H. & Luhrmann, R. Isolation of an active step I spliceosome and composition of its RNP core. Nature 452, 846–850 (2008).
8. Mazzarella, R., Penge, G., Yoon, J., Jones, J. & Schlesinger, D. Differential expression of XAP5, a candidate disease gene. Genomics 45, 216–219 (1997).
9. Tarpey, P. S. et al. A systematic, large-scale resequencing screen of X chromosome coding exons in mental retardation. Nat. Genet. 41, 535–543 (2009).
10. Carroll, R. et al. Variant in the X-chromosome spliceosomal gene GPKOW causes male-lethal microcephaly with intrauterine growth restriction. Eur. J. Hum. Genet. 25, 1078–1082 (2017).
11. Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl Acad. Sci. USA 106, 10171–10176 (2009).
12. Niederriter, A. R. et al. In vivo modeling of the morbid human genome using Danio rerio. J. Vis. Exp. e50338 (2013).
13. McCune, A. R. & Carlson, R. L. Twenty ways to lose your bladder: common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes. Evol. Dev. 6, 246–259 (2004).
14. Ruiz, T. D. et al. ICE1 promotes the link between splicing and nonsense-mediated mRNA decay. Elife 7, e33178 (2018).
15. Golas, M. M., Sander, B., Will, C. L., Luhrmann, R. & Stark, H. Molecular architecture of the multiprotein splicing factor SEβ3. Science 300, 980–984 (2003).
16. Lines, M. A. et al. Haploinsufficiency of a spliceosomal GTPase encoded by EFUD2 causes mandibulofacial dysostosis with microphthalm. Am. J. Hum. Genet. 90, 369–377 (2012).
17. Pasternack, S. M. et al. Mutations in SNRPE, which encodes a core protein of the large spliceosome, cause autosomal-dominant hypotrichosis simplex. Am. J. Hum. Genet. 92, 81–87 (2013).
18. Valadkhan, S. & Jaladat, Y. The spliceosomal proteome: at the heart of the cellular RNA metabolism. Proteomics 10, 4128–4141 (2010).
19. Zhao, C. et al. Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Genet. Med. 8, 617–627 (2006).
20. Lehalle, D. et al. A review of craniofacial disorders caused by spliceosomal defects. Clin. Genet. 88, 405–415 (2015).
21. Liu, M. M. & Zack, D. J. Alternative splicing and retinal degeneration. Clin. Genet. 84, 142–149 (2017).
22. Fraize, M. J. et al. HUWE1 mutations in Joubert-Marsiidi and Brooks syndromes: the results of an X-chromosome exome sequencing study. BMJ Open 6, e009537 (2016).
23. Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl Acad. Sci. USA 111, E593–E601 (2014).
24. Shi, Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat. Rev. Mol. Cell Biol. 18, 655–660 (2017).
25. Lei, L. et al. Spliceosomal protein etf2d mutation leads to p53-dependent apoptosis in zebrasihh neural progenitors. Nucleic Acids Res. 45, 3422–3436 (2017).
26. Samuels, M. E. Saturation of the human phenome. Curr. Genomics 11, 650–658 (2010).
27. Posey, J. E. et al. Insights into genetics, human biology and disease gleaned from family based genominc studies. Genet. Med. 21, 798–812 (2019).
28. Conser, N. L., Masood, M. M., Aylsworth, A. S. & Stevenson, R. E. Ocular manifestations in the X-linked intellectual disability syndromes. Ophthal. Genet. 38, 401–412 (2017).
29. Konarska, M. M. & Sharp, P. A. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 46, 845–855 (1986).
30. Pielke, C. W., Rymond, B. C. & Rosbash, M. Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Nature 324, 341–345 (1986).
31. Agan, D. E. et al. A systematic quantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol. Cell Biol. 31, 2667–2682 (2011).
