Retrospective Analysis of Inflammatory Markers and Patient Characteristics in Hospitalized Covid-19 Patients: An Early Experience in Louisiana

Jennifer L. Miatech 1, Christopher P. Yaslik 1, Hailey E. Tarleton 1, Dylan West 1, William Kellum 1, Melanie McKnight 1, M. Patrick Stagg 1

1. Internal Medicine Residency Program, Baton Rouge General Medical Center, Baton Rouge, USA

Abstract

Background

The community transmission of coronavirus disease 2019 (Covid-19) was detected in Baton Rouge, Louisiana, in March 2020. Several previous studies have reported elevations of inflammatory markers in Covid-19 positive patients and suggested a possible correlation to disease severity.

Methods

We identified 69 patients from Baton Rouge General (BRG) Hospital who were admitted with acute hypoxic respiratory failure and laboratory confirmed positive severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) between March 13 and April 5, 2020. Demographic and laboratory data were obtained through a review of medical records. Statistical analysis was performed on several inflammatory markers in association with clinical disease severity.

Results

We identified 69 patients with confirmed Covid-19 infection. The mean (±SD) age of the patients was 65±14 years, 68% were male and 32% were female. A total of 13 patients (19%) were considered to have mild disease, 25 (36%) had moderate disease, and 31 (45%) were considered to have severe disease. A total of nine patients died (13%), 25 (36%) have been discharged from the hospital, 20 (29%) remain in the ICU, and 15 (22%) remain admitted to the hospital at the time of writing. Lymphopenia was common among hospitalized patients (59%) and was found to be statistically more pronounced in patients with severe disease (p<0.05). Inflammatory marker elevations were also seen in several patients, with statistically significant elevations in C-reactive protein (CRP) and lactate dehydrogenase (LDH) (p <0.05). We found no statistically significant associations between ferritin, D-dimer, troponin I, body mass index (BMI), or creatine kinase (CK) with disease severity.

Conclusions

During the first three weeks of the Covid-19 outbreak in Baton Rouge, Louisiana, the most common reason for admission amongst Covid-19 positive patients was acute hypoxic respiratory failure. Previously, several studies have suggested a correlation between elevated inflammatory markers and disease severity. The presence of lymphopenia and elevations of CRP and LDH may be helpful in the risk stratification of these patients. In an effort to guide clinical decision making and provide insight into disease severity, further characterization of Covid-19 infection in hospitalized patients is urgently needed.

Materials And Methods

Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the novel coronavirus first detected in Wuhan, China, that causes coronavirus disease 2019 (Covid-19). Since the initial detection of the virus, more than 1,133,758 cases have been confirmed worldwide with 13,010 cases confirmed in Louisiana as of April 5, 2020 [1]. The number of cases in Louisiana continues to rise at a dramatic rate. There have currently been 477 reported deaths and 1,803 hospitalizations, with 561 patients requiring mechanical ventilatory support [2]. Recent calculations of data obtained by John Hopkins University suggests that Louisiana ranks amongst the top in the country for deaths per capita [3]. Louisiana is currently considered one of the hotspots of infection in the United States.

In an effort to guide clinical decision making and the appropriate allocation of resources, further characterization of Covid-19 infection in hospitalized patients is urgently needed. A total of 69 patients were retrospectively reviewed with analysis of patient characteristics and laboratory findings including troponin I, absolute lymphocyte count, and several inflammatory markers including lactate dehydrogenase (LDH), creatine kinase (CK), C-reactive protein (CRP), ferritin, and D-dimer. Elevations of several inflammatory markers have been suggested to correlate with disease severity; although, the prognostic value of these tests have yet to be defined. Our study found statistically significant elevations in the inflammatory markers CRP and LDH in patients with severe disease (p <0.05). Lymphopenia was also found to be statistically more pronounced in patients with severe disease (p<0.05).

The aim of this interim report is to describe the demographic characteristics and the analysis of laboratory findings among hospitalized patients with Covid-19 infection in Baton Rouge, Louisiana, in an attempt to provide clinical information and help further characterize disease severity.
Study population, setting, and data collection

We included patients with laboratory-confirmed Covid-19 infection who were admitted to Baton Rouge General (BRG) Hospital in Baton Rouge, Louisiana, between March 13 and April 5, 2020. A confirmed case of Covid-19 was defined by positive result on reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of a specimen collected on a nasopharyngeal swab. Only laboratory confirmed cases were included, with inconclusive results excluded.

A total of 70 adults (18 years of age or older) were identified from BRG Hospital. Pregnant women, prisoners, and those younger than 18 years of age were excluded from the study, only one pregnant patient was excluded from this study. The BRG institutional review board approved the study with the reliance agreement (also known as an authorization agreement). Informed consent was waived, and researchers analyzed only the identified (anonymized) data without patient identifiers released.

Data was obtained from the search of BRGs electronic medical record for Covid-19 positive patients. We obtained demographic and laboratory data on all hospitalized Covid-19 confirmed patients. Admission data was included for the patient’s body mass index (BMI), LDH, CK, CRP, ferritin, D-dimer, troponin I, and absolute lymphocyte counts. All laboratory tests were performed at the discretion of the treating physician.

Study definitions

Coexisting conditions were ascertained from physician documentation. Patient data were censored at the time of data cut off, which occurred on April 5, 2020. For the purpose of this study, disease severity was defined as mild, moderate, and severe disease. Mild disease was defined as patients maintaining oxygen saturation (SpO2) >90% on room air throughout hospitalization. Moderate disease was defined as patients who required supplemental oxygenation via nasal cannula up to 6 L in order to maintain SpO2 >90%. Severe disease was defined as patients who required greater than 6 L of supplemental oxygen to maintain SpO2 >90%. The severe group included patients requiring non-rebreather, high-flow nasal cannula (HFNC), non-invasive positive pressure ventilation (NIPPV), and intubation with mechanical ventilation. Patients who have remained hospitalized at the time of data censoring demonstrated no increases in oxygen requirements for at least three hospital days.

Specimen collection and testing

Clinical specimens for Covid-19 diagnostic testing were obtained in accordance with Centers for Disease Control and Prevention (CDC) guidelines. Laboratory confirmation of SARS-COV-2 was performed at Louisiana State University (LSU) River Road Testing Laboratory in Baton Rouge, Louisiana. RT-PCR assays were performed in accordance with the protocol established by the CDC. Details regarding laboratory confirmation processes are provided in the Supplementary Appendix.

Statistical analysis

Mean (standard deviation (SD)) and ranges were reported for normally distributed, continuous variables. Frequencies and percentages were reported for categorical variables. Statistical analysis was performed using single-variable analysis of variance (ANOVA) to determine statistical significance. Post-hoc analysis was performed using the Bonferroni method. Tests of homogeneity of variances were performed using Levene’s test. Absolute lymphocyte count violated the test of homogeneity prompting further analysis using Welch’s test. All statistical tests were two-tailed, and a p value less than 0.05 was considered statistically significant. No imputation was made for missing data. Analysis was performed with IBM Statistical Package for the Social Sciences (SPSS) software, v26 (SPSS Inc., Chicago, IL).

Results

Demographic characteristics of the patients

During the period from March 13 through April 5, 2020, we identified 69 patients admitted to the hospital or ICU with confirmed Covid-19 infection at BRG. The demographic characteristics of the patients are shown in Table 1. The mean (±SD) age of the patients was 65±14 years (range 30 to 94); 68% were male and 32% were female; 61% were African-American and 36% were Caucasian. The average BMI was 33.1±8.7. A total of 38% of our patients were considered to be obese with a BMI of >30.0. Chronic medical conditions were common in all hospitalized patients, including diabetes mellitus (39%), chronic kidney disease or end-stage renal disease (14%), asthma or chronic obstructive pulmonary disease (10%), hypertension (83%), coronary artery disease (12%), and current or former smoking history (26%). A total of 45 patients (65%) had more than one coexisting condition. Individual participant data is provided in the Supplementary Appendix.
TABLE 1: Clinical Baseline Patient Characteristics

Characteristic	Patients (N=69)
Mean age (range) — yr	65±14 (30 to 94)
Sex — no. (%)	
Male	47 (68%)
Female	22 (32%)
Race — no. (%)	
African-American	42 (61%)
Asian	1 (1%)
Caucasian	25 (36%)
Hispanic	1 (1%)
BMI †	33.1±8.7
Coexisting condition — no. (%)	
Asthma / Chronic obstructive pulmonary disease	7 (10%)
Cancer §	9 (13%)
Chronic kidney disease / End-stage renal disease	10 (14%)
Coronary artery disease	8 (12%)
Current or former smoking history	18 (26%)
Diabetes mellitus	27 (39%)
Hypertension	57 (83%)
Immunosuppression / Transplant / Biologics	3 (4%)
Obstructive sleep apnea	4 (6%)
Admission status — no. (%)	
Admitted	15 (22%)
Admitted ICU	20 (29%)
Discharged	25 (36%)
Deceased	9 (13%)
Patient disease severity — no. (%)	
Mild disease	13 (19%)
Moderate disease	25 (36%)
Severe disease	31 (45%)

◊ The plus-minus values are means ± SD. Percentages may not total 100 because of rounding. ICU denotes intensive care unit. † The body mass index (BMI) is the weight in kilograms divided by the square of the height in meters. Data on BMI were missing for four patients. § Cancer included patients with active cancer.

Laboratory findings

For the purposes of this study, patients were grouped according to their disease severity based upon oxygen requirements to maintain SpO2 above 90%. A total of 13 patients (19%) were considered to have mild disease, 25 (36%) moderate disease, and 31 (45%) severe disease. Figures 1-3 shows the laboratory findings in patients on admission. Lymphopenia (reference range, 1180-3740 cells/μL) was seen in 51 patients (74%), with a median absolute lymphocyte count of 960. Inflammatory markers were found to be elevated in several patients. CRP was elevated (reference range, 0.001-1.00 mg/dL) in 57 patients (98%); LDH elevated (reference range, 84-246 U/L) in 45 patients (83%); ferritin elevated (reference range, 0.00-0.39 μg/mL) in 51 patients (91%); troponin I elevated (reference range, 0.000-0.045 ng/mL) in 16 patients (27%); CK elevated (reference rage, 59-308 U/L) in 20 patients (41%).
FIGURE 1: Absolute Lymphocyte Count
Association between absolute lymphocyte count and disease severity; interquartile range (IQR) [Q1 - Q3] for mild [1000 – 1840 cells/μL], moderate [760 – 1190 cells/μL], and severe [520 – 1025 cells/μL].

FIGURE 2: C-Reactive Protein (CRP)
Association between C-reactive protein and severity; interquartile range (IQR) [Q1 - Q3] for mild [3.7 – 9.1 mg/dL], moderate [6.2 – 16.7 mg/dL], severe [9.5 – 20.6 mg/dL].

FIGURE 3: Lactate Dehydrogenase (LDH)
Association between LDH and disease severity; interquartile range (IQR) [Q1 - Q3] for mild [202 – 354 U/L], moderate [284 – 478 U/L], and severe [380 – 594 U/L].

The numbers 1, 18, 37 correlate to outliers in the individual participant data table which can be referenced in the Supplementary Appendix.
Association between absolute lymphocyte count, CRP, LDH, and Covid-19 disease severity

Absolute lymphocyte count was reported for all 69 patients (100%) included in this study. Of these, 13 (19%) had mild disease, 25 (36%) had moderate disease, and 31 (45%) had severe disease (Figure 1). A statistically significant association between decreased absolute lymphocyte counts and disease severity was seen between the mild and severe (p = 0.000) groups, as well as the mild and moderate (p = 0.007) groups. Interpretation of homogeneity of variance using Levene’s test showed significant heterogeneity between groups (p = 0.025). Due to this, further investigation using Welch’s test showed statistical significance with a corrected p-value of 0.006.

CRP levels were measured in 58 patients (84%). Of these, 11 (19%) had mild disease, 23 (40%) had moderate disease, and 24 (41%) had severe disease (Figure 2). A statistically significant association between increased CRP levels was seen with disease severity between the mild and severe (p = 0.004) groups. No heterogeneity was observed when Levene’s test was performed (p = 0.206).

LDH levels were measured in 55 patients (77%). Of these, 11 (21%) had mild disease, 23 (43%) had moderate disease, and 19 (36%) had severe disease (Figure 3). A statistically significant association between higher LDH levels was seen with disease severity between the mild and severe (p = 0.040) and the moderate and severe (p = 0.007) groups. Levene’s test was performed and no heterogeneity was observed (p = 0.794).

Association between ferritin, D-dimer, troponin I, BMI, CK, and Covid-19 disease severity

Ferritin levels were measured in 57 patients (83%). Of these, 11 (19%) had mild disease, 23 (40%) had moderate disease and 23 (40%) had severe disease. We found no association between ferritin and disease severity (p = 0.05). A loose association was observed, and additional studies are needed to investigate this further.

D-dimer levels were measured in 56 patients (81%). Of these, 11 (20%) had mild disease, 23 (40%) had moderate disease, and 22 (39%) had severe disease. We found no association between D-dimer and disease severity (p = 0.05). Similar to ferritin, a loose association was observed between D-dimer and disease severity.

Analysis of troponin I, BMI, and CK levels revealed no statistically significant association to disease severity (p = 0.05). Complete statistical analysis is provided in the Supplementary Appendix.

Outcomes

As of April 5, 2020, of the 69 patients admitted to BRG, nine (13%) died, 25 (36%) have been discharged from the hospital, 20 (29%) remain in the ICU, and 15 (22%) remain admitted to the hospital. A total of 20 patients have required mechanical ventilation. Of these patients, five died, three were extubated, and 12 patients remain on mechanical ventilation. A total of two patients remain on HFNC, two patients on non-rebreather, and two patients on NIPPV. The nine deaths included four patients who had do-not-resuscitate orders in place at the time of hospital admission. African Americans made up a large portion of severe cases, 25 patients (74%), and the majority of deaths, eight patients (89%).

Discussion

This single-centered, retrospective, observational analysis describes 69 hospitalized patients who were admitted for acute hypoxic respiratory failure and laboratory-confirmed Covid-19 infection. We included patients with Covid-19 who were admitted at BRG between March 13 and April 5, 2020. Overall, approximately half of the patients admitted at the time of data censoring, with 29% of patients continuing to require ICU level of care. A total of 25 patients (56%) have been discharged at the time of reporting, a majority of these patients were considered to have mild to moderate disease during hospitalization, with two patients classified as having severe disease, and one requiring mechanical ventilation during admission. The timing of censorship was early on during the pandemic, and therefore, the only treatment practice at the time was supportive care.

The majority of our patients included in this study were male, with only 32% female. A large proportion of our patients were African American (61%) and Caucasian (36%). African Americans tended to have more severe disease and made up a larger portion of deceased patients. Our admitted patient population with confirmed Covid-19 were older, 65+14 years of age. Among our patient population, obesity was found to be very common within all three disease severity groups. Peng et al. reported that higher BMIs were more often seen in critical patients and non-survivors [4]. Despite this report, no statistically significant differences were found between disease severity and BMI. This finding may be attributed to the prevalence of obesity in our study population, which is estimated to be approximately 33% in Baton Rouge, Louisiana [5]. The majority of patients had coexisting conditions prior to their admission to the hospital, the most common being hypertension and diabetes mellitus. The increased prevalence of multiple comorbidities in our population differs from most studies reported from China; although, the presence of such comorbidities was found to be more common amongst patients with severe disease [6,7].

Lymphopenia has been reported to be a common finding in patients with Covid-19 infection. This finding has been confirmed by several studies and one meta-analysis of patients with confirmed Covid-19 infection [7-11]. In a study of 99 patients, Zhang et al. suggested an association between reduced absolute lymphocyte count and disease severity [12]. Our findings are similar to previous reports of lymphopenia which was present in 74% of our patient population with a statistically significant correlation to severe disease.
Currently, elevation of several inflammatory markers has been suggested to correlate to disease severity; however, the prognostic value of these markers has yet to be established. Massachusetts General Hospital includes several of these markers in their hospital Covid-19 protocol to aid in assessing disease severity [13]. Zhang et al. reported a strong correlation with elevated CRP, CK, LDH, and D-dimer levels in 95 patients who were considered to have severe disease [12]. A study of 115 deceased patients with Covid found that concentrations of CK, LDH, troponin I, and D-dimer were markedly higher in deceased patients than in recovered patients [10]. Benefits may be seen when following these inflammatory markers over time. Yuan et al. demonstrated that the COVID-19 messenger ribonucleic acid (mRNA) clearance ratio significantly correlated with the decline of serum CK and LDH levels [14].

In our study, we found statistically significant elevations of only CRP and LDH associated with disease severity but failed to show similar associations with CK or D-dimer. A recent publication in the New England Journal of Medicine by Guan et al. demonstrated trends of lymphopenia and elevations of CRP in 1099 Covid-19 positive patients, but reported less commonly elevated CK and D-dimer levels [7]. In contrast, Zhou et al. found that D-dimer levels greater than 1 μg/mL were associated with increased mortality [11]. Another smaller study also suggested the potential benefit of using inflammatory markers to help with risk stratification. In their study, they found that D-Dimer was closely related to the occurrence of severe Covid-19 in the adult patients, and its combined detection with interleukin-6 (IL-6) had the highest specificity and sensitivity for early prediction of the severity of Covid-19 patients [15]. The differing results may be related to the relatively small sample sizes of some of the studies. Our study failed to demonstrate a correlation with disease severity, particularly with D-dimer and CK levels, which may be attributed to the small sample size. We will continue to check levels of these inflammatory markers for future reporting.

We also investigated the utility of ferritin in the prediction of disease severity. In our study, we did not find a significant association within our patient population. There are only a few reports in the literature of ferritin measurements in patients with Covid-19 infection. These few studies have found increased levels of ferritin in these patients, but no correlation has been made with disease severity [6,17]. One study suggested that the presence of elevated ferritin was more prevalent in severe disease; although, they also reported high values in non-severe patients [11]. We report a similar finding, with 82% of our patients demonstrating elevated ferritin levels.

Troponin I concentrations were elevated in 23% of our patients, with one presenting with ST-elevation myocardial infarction (MI). This patient presented with ST elevations on his electrocardiogram and an elevated troponin I of 5.85 on admission. A case series from China found elevated troponin levels in 28% of their study sample of 187 patients [18]. Lipit et al. reported alternative findings of only marginally increased troponin I levels in only 8-12% of positive cases; although, a more recent meta-analysis of Covid-19 patients performed by the same author suggests that elevations may be seen in more severe cases of disease [19]. This more recent finding was also exemplified in a study of deceased Covid-19 infected patients, which reported higher concentrations of several inflammatory markers, cardiac troponin I, and N-terminal pro-brain natriuretic peptide in these patients [10]. Ruan et al. suggested increased cardiac troponin I in patients with elevated myoglobin and troponin I [20]. Although our study found no significant difference in troponin elevations with disease severity, elevations were seen in 27% of our patients. The cardiac involvement associated with Covid-19 is currently under investigation.

Our study has several limitations. Notably, several patients had missing laboratory values, and the reports of patient comorbidities relied on electronic medical record documentation. The lack of laboratory data is in part a result of the novelty of this disease entity. Comprehensive testing improved with better clinician understanding and coordination. Another limitation of this study is that 35 patients (51%) have remained hospitalized at the time of data censoring on April 5, 2020. This contributes to the lack of final patient outcomes. Finally, our study has a relatively small sample size compared to larger studies from China due to the fact that Covid-19 was first reported in the United States on January 20, 2020 and the first documented case of Covid-19 at BREC was on March 8, 2020.

Here we report the early experience of Covid-19 at our institution, we expect cases to increase over the coming weeks to months. Currently, few treatment options are available and their potential benefits are still being investigated. These inflammatory markers may aid clinicians in risk stratification to guide clinical decision making. In an effort to guide clinical decision making and provide insight into disease severity, further characterization of the novel Covid-19 disease in hospitalized patients is urgently needed.

Conclusions
This early experience of Covid-19 in Baton Rouge, Louisiana, reports interim data prior to the arrival of the expected Covid-19 infection peak in one-two weeks. This single-centered, retrospective, observational analysis describes the patient characteristics and laboratory findings of 69 hospitalized patients who were admitted for acute hypoxic respiratory failure and laboratory-confirmed Covid-19 infection. In our study population, African Americans tended to have more severe disease and made up a larger portion of deceased patients. The presence of medical comorbidities were also found to be more common amongst patients with severe disease. Evaluation of inflammatory markers revealed a statistically significant association between lymphopenia, elevated LDH, and CRP with severe disease. This association was not seen with ferritin, D-dimer, troponin I, or CK levels. These associations need to be investigated further; additional data will be provided in the future following resolution of the pandemic. The utilization of inflammatory markers may have prognostic value to guide risk stratification for potential therapeutic agents. The aim of this preliminary report is to provide further data and understanding of this novel disease.

Appendices
Supplementary appendix
This appendix has been provided by the authors to give readers additional information about their work.
Supplement to: Miatech JL, Yaslik CP, Tarleton HE, et al Retrospective Analysis of Inflammatory Markers and Patient Characteristics in Hospitalized Covid-19 Patients - An Early Experience in Louisiana
Table of contents

Methods: Covid-19 Centers for Disease Control Laboratory Testing Protocol: https://www.fda.gov/media/134922/download

Individual research subject data of demographics, comorbidities, laboratory findings, severity, and admission status (Table 2).

Patient	Age	Sex	Race	Comorbidities [SA]	Laboratory [SA]	DIAGNOSIS [SA]	Admission status (Table 2)						
1	63	Male	African-American	400	400	10.2	67.1	5.64	5.07	510	Mild	Discharged	32.2
2	68	Male	African-American	226	326	15.4	163.5	1.20	238	690	Mild	Discharged	62.6
3	61	Male	Caucasian	800	207	3.1	170.9	9.99	5.07	1170	Mild	Discharged	29.0
4	61	Female	Caucasian	222	163	2.14	69	8.27	6.07	1100	Mild	Discharged	37.3
5	54	Female	Caucasian	36	294	7.02	822.2	6.81	5.07	2260	Mild	Discharged	28.0
6	56	Male	African-American	600	507	8.79	880.1	9.82	5.07	660	Mild	Discharged	45.7
7	58	Male	Caucasian	79	631	7.08	670.7	1.19	5.07	570	Mild	Discharged	37.1
8	67	Female	Caucasian	55	397	5.64	14.6	6.79	5.07	1940	Mild	Discharged	24.6
9	53	Female	African-American	126	273	5.12	504.5	1.3	5.07	1280	Mild	Discharged	28.3
10	38	Male	Caucasian	53	105	6.43	333.8	0.36	5.07	1860	Mild	Discharged	18.6
11	68	Female	African-American	–	–	–	–	–	–	–	Mild	Discharged	36.0
12	39	Male	African-American	–	–	–	–	–	–	–	Mild	Discharged	31.4
13	61	Female	African-American	73	401	11	780.1	9.79	5.07	1500	Mild	Discharged	–
14	61	Female	African-American	165	559	26.1	578.8	9.55	5.07	687	Mild	Discharged	26.7
15	58	Male	Caucasian	687	347	7.7	327.3	0.5	5.07	1460	Mild	Admitted	41.0
16	63	Male	Caucasian	–	207	6.08	659.4	5.99	5.07	1840	Mild	Admitted	29.6
17	58	Male	Caucasian	603	590	10.8	943.8	1.06	5.07	1230	Mild	Discharged	29.3
18	68	Male	Caucasian	110	710	8.43	920.1	7.49	5.07	955	Mild	Admitted	39.0
19	73	Male	Caucasian	–	–	–	–	–	–	–	Mild	Discharged	30.7
20	71	Male	African-American	410	201	17.4	1238.7	1.03	5.142	690	Mild	Admitted	25.6
21	73	Female	Caucasian	–	–	–	–	–	–	–	Mild	Admitted	21
22	62	Male	African-American	–	208	5.08	1571.0	9.33	–	610	Mild	Discharged	28.6
23	68	Male	Caucasian	70	323	5.08	1918.9	1.22	5.078	1290	Mild	Admitted	43.5
24	68	Male	African-American	–	423	14	720.9	1.6	5.07	1540	Mild	Discharged	43.9
25	71	Female	African-American	44	308	8.4	135	5.07	1190	Mild	Admitted	36.2	
26	61	Female	Hispanic	650	506	10.6	815.8	2.7	5.326	1200	Mild	Admitted	31.9
27	64	Male	African-American	340	417	11	670.9	8.88	5.07	1510	Mild	Admitted	–
28	68	Male	Caucasian	186	836	16	1315.9	1.1	5.07	620	Mild	Discharged	28.7
29	68	Male	African-American	130	239	20.7	385.3	3.98	5.07	670	Mild	Admitted	34.2

Note: Table 2 includes individual research subject data of demographics, comorbidities, laboratory findings, severity, and admission status.
		Ethnicity	Sex	Age (yrs)	Race	BMI	Chronic Illness	Mortality	Discharged	Description		
30	48	Male	African-American	57	86.6	240	6.9	Severe	Moderate	ICU	Admitted-ICU	
31	70	Female	Caucasian	81	80.6	6.3	6.9	Admitted	Moderate	ICU	Discharged	
32	68	Male	African-American	68	86.3	6.5	6.9	Admitted	Moderate	ICU	Discharged	
33	64	Male	Caucasian	58	14.3	6.6	6.5	Severe	Admitted-ICU	ICU	Admitted-ICU	
34	73	Female	Caucasian	47	6.7	8.7	6.9	Severe	Admitted-ICU	ICU	31.1	
35	71	Female	African-American	50	6.1	230.4	1.1	8.7	Severe	Admitted-ICU	ICU	32.0
36	38	Male	African-American	35	6.6	353.4	3.2	7.0	Severe	Moderate	ICU	29.0
37	62	Male	Caucasian	75	6.0	231.2	3.2	7.0	Admitted	Moderate	ICU	ICU
38	62	Female	African-American	24	6.7	197.6	1.1	6.7	Severe	Admitted	ICU	ICU
39	75	Male	Caucasian	73	6.2	417.6	1.1	6.7	Severe	Admitted	ICU	31.1
40	68	Male	African-American	75	12.3	811.4	2.6	6.7	Severe	Admitted-ICU	ICU	36.6
41	68	Female	Caucasian	65	6.9	1833.5	3.3	6.7	Severe	Admitted	ICU	ICU
42	68	Male	African-American	13.4	884.3	3.3	6.7	Severe	Discharged	ICU	ICU	
43	68	Female	Caucasian	37	7	1370	2.6	6.7	Severe	Discharged	ICU	ICU
44	57	Male	African-American	136	6.1	420.8	2.6	6.7	Severe	Admitted-ICU	ICU	27.2
45	68	Male	African-American	21.1	170	Severe	Admitted-ICU					
46	64	Male	African-American	21.1	940	Severe	Admitted-ICU					
47	79	Male	African-American	21.1	300	Severe	Discharged					
48	79	Male	African-American	21.1	170	Severe	Admitted-ICU					
49	68	Male	Caucasian	75	6.1	2471.1	3.3	6.7	Severe	Admitted-ICU	ICU	27.1
50	73	Female	Caucasian	73	8.2	1889.2	5.1	6.7	Severe	ICU	ICU	ICU
51	93	Female	Caucasian	147	20	1323.5	2.6	6.7	Severe	Discharged	ICU	ICU
52	94	Male	African-American	16.7	270.7	2.6	6.7	Severe	Discharged	ICU	ICU	
53	98	Male	African-American	16.7	420	Severe	Discharged					
54	88	Female	Caucasian	477	25.3	699	3.7	6.7	Severe	Discharged	ICU	ICU
55	88	Male	Caucasian	687	25.3	1740	3.7	6.7	Severe	Discharged	ICU	ICU
56	71	Male	African-American	170	20	1730	2.6	6.7	Severe	Admitted-ICU	ICU	38.0
57	77	Male	African-American	170	17.4	1759.6	1.3	6.7	Severe	Admitted-ICU	ICU	41.3
58	63	Female	Caucasian	250	17.0	630	3.7	6.7	Severe	Admitted-ICU	ICU	37.1
59	86	Male	African-American	75	7.5	186.2	3.6	6.7	Severe	Admitted-ICU	ICU	18.4
60	88	Male	African-American	14	1730	2.6	6.7	Severe	Discharged	ICU	38.3	
61	88	Male	Caucasian	697	17.4	420.3	3.7	6.7	Severe	Admitted-ICU	ICU	47.4
Additional Information

Disclosures

Human subjects: Consent was obtained by all participants in this study. Institutional Review Board (IRB) issued approval 2020-003. The study meets the following requirements for expedited review. (1) The study involves no more than minimal risk and (2) the only involvement of human subjects involves: Expedited 5- Research involving materials (data, documents, records, or specimens) that have been collected, or will be collected solely for non-research purposes (such as medical treatment or diagnosis). 1. The IRB complies with the requirements found in Part 56 of the Code of Federal Regulations and Part 46 of Federal Regulations. 2. Re-review of this proposal is necessary if: --Any significant alterations or additions are made to the protocol/proposal. Please note that some changes may be approved by expedited review; others require full board review. -You wish to continue beyond the continuing review date assigned to the study. 3. Use the most current consent form bearing the IRB ‘APPROVED’ STAMP. It is required that all IRB approved consent forms be retained in your files. 4. In addition to the study consent form, the Baton Rouge General may require execution of standard hospital and/or surgical consent forms for any invasive procedure. Please contact the HRPP Office at 225-387-7112 or irb@brgeneral.org, if you have any Questions or Concerns. .

Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue.

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

The authors thank Matthew D. Marrero, PhD for assistance with statistical analysis.

References

1. World Health Organization: coronavirus updates. (2020). Accessed: May 4, 2020: https://covid19.who.int.
2. Louisiana Department of Health: coronavirus (COVID-19). (2020). Accessed: May 4, 2020: https://ldh.la.gov.
3. Washington Post: U.S. coronavirus cases: tracking deaths. (2020). Accessed: August 28, 2020: https://www.washingtonpost.com/graphics/2020/national/coronavirus-us-cases-deaths/.
4. Peng YD, Meng R, Guan HQ, et al.: Clinical characteristics and outcomes of 112 cardiovascular disease patients infected with 2019-nCoV [Article in Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020, 48:450-455. 10.3760/cma.j.cn112148-20200220-00105
5. Louisiana Department of Health: adult obesity. (2017). Accessed: August 28, 2020: https://healthdata.dhhs.la.gov.
6. Huang C, Wang Y, Liu X, et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, 395:497-506. 10.1016/S0140-6736(20)30183-5
7. Guan WJ, Ni ZY, Hu Y, et al.: Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020, 382:1708-1720. 10.1056/NEJMoa2002052
8. Bhatnagar PK, Ghannamih BI, Nichols M, et al.: Covid-19 in critically ill patients in the Seattle region - case series. N Engl J Med. 2020, 382:2102-2022. 10.1056/NEJMsa2004500
9. Borges do Nascimento II, Cacich N, Abdalazeeem BM, et al.: Novel coronavirus infection (COVID-19) in humans: a scoping review and meta-analysis. J Clin Med. 2020, 9:941. 10.3390/jcm9040941
10. Chen T, Wu D, Chen H, et al.: Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020, 368:m1091. 10.1136/bmj.m1091
11. Zhou F, Yu T, Du R, et al.: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020, 395:1054-1062. 10.1016/S0140-6736(20)30566-3
12. Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S.: Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respi Rei. 2020, 21:74. 10.1186/s12931-020-01338-8
13. Massachusetts General Hospital: COVID-19 treatment guidance. (2020). Accessed: May 4, 2020: https://www.massgeneral.org/news/coronavirus/treatment-guidance.
14. Yuan J, Zou R, Zeng L, et al.: The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients. Inflamm Res. 2020, 69:599-606. 10.1007/s00011-020-01542-0

15. Guo Y, Li Y, Han M, et al.: Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020, 92:791-796. 10.1002/jmv.25770

16. Chen N, Zhou M, Dong X, et al.: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020, 395:507-513. 10.1016/S0140-6736(20)30211-7

17. Chen G, Wu D, Guo W, et al.: Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020, 130:2620-2629. 10.1172/JCI137244

18. Guo T, Fan Y, Chen M, et al.: Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5:811-818. 10.1001/jamacardio.2020.1017

19. Lippi G, Lavie CJ, Sanchis-Gomar F: Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020, 63:590-591. 10.1016/j.pcad.2020.03.001

20. Ruan Q, Yang K, Wang W, Jiang L, Song F: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 130 patients from Wuhan, China. Intensive Care Med. 2020, 46:846-848. 10.1007/s00134-020-05991-x