The NE-SW Trending Fotouni and Fangam Basalt Cones: Evidence of Tectonic Control on Their Emplacement

Nathalie Love Ngongang Tchikankou, Jules Tcheumenak Kouémo, Nicaise Blaise Tchuimegnie Ngongang, Julie Agathe Noudiédié Kamgang, Maurice Kwekam, Pierre Kamgang

ABSTRACT

The Fotouni volcanic rocks outcrop within mylonitic corridor, in the southern domain of the continental part of Cameroon Line (CL). The NE-SW shape display by these volcanic rocks within the mylonitic corridor is an uncommon case along the CL. Field and petrographic data and spaces image analysis were performed in order to understand the NE-SW shape display by these rocks. Geochemical data display two distinct volcanic compositional groups: alkaline lavas and transitional lavas. Alkaline series ranges in composition from basanite, basalt to hawaiite and transitional series range from basalt, trachybasalt to trachy-andesite. Field investigations show that the Fotouni, Fangam, Song and Mbeng basalts outcrops as NE-SW trending prismatic dykes which displaying well differentiated vertical tetragonal, pentagonal and hexagonal prisms within the Fotouni-Kkem shear zone (FFSZ). The overall NE-SW orientation of hills, where these prisms outcrop suggests the tectonic control on the emplacement of these rocks. Indeed, the activation of the FFSZ developed various fracture networks that facilitate magma uplift and the emplacement of the Fomopéa and Bandja plutons during the Pan-African orogeny. These Pan-African activations of the Fotouni fault weaken the crust during the Paleozoic. These weaken zones constitute path way for emplacement of volcanic dykes during the Tertiary within the NE-SW faults, probably facilitated by the general extension at the end of Cretaceous.

Keywords: Fotouni, Cartography, Petrography, Tectonic and magmatism, West Cameroon Highland, Cameroon Line.

I. INTRODUCTION

The CVL is an N20E-N30E oceano-continental mega structures consists of plutonic complexes and volcanic cones and extends from the island of Annobon in the Gulf of Guinea to Lake Chad (Fig. 1). The CL magmatic activity covers a large period of time ranging from 70 Ma until the present [1]-[4]. Relationship between tectonic and magmatism in Cameroon is mostly focused on plutonic intrusion [5]-[9] even though the tectonic – magmatism relationship do not concerns only plutonic rocks. Indeed, some authors such as [10], used petrographic and anisotropy of magnetic susceptibility to demonstrate the emplacement of the Foréké-Dschang trachytic dome controlled by a NE-SW Fault, thus showing that, faults also control the emplacement of volcanic rocks. This paper presents a case in which space images, petrographic and field data were used to demonstrate the influence of fracture on the emplacement of the Fotouni basalts.
the Biu Plateau appears to be controlled by N-S alignment of Tertiary faults. Based on the fact that Paleocene and Eocene alkali granitein Cameroon (Fig. 1; [13]-[14]) mostly crop out on the CCSZ pre-existing fracture zone, they are considered to be are also faults controlled, according to [15]. Furthermore, part of the CL volcanoes and ring complexes outcrop where the CL crosses fracture zones [13], [16]-[18].

III. METHODS

Fresh samples were collected from each rock type during field investigations and used for thin sections processing. During this field works, the geometry and the overall orientation of hills where measure. Theses thin sections were studied under the polarized microscope. Lineament extraction and morphological analysis were performed using Radar satellite data, especially the Shuttle Radar Topography Mission (SRTM) obtained from http://srtm.cgiar.org/SELECTION/input-Coord.asp, in TIFF format, GSC_WGS_1984 projection was used. SRTM image is an altimetry vector and matrix data available at a resolution of 30 meters. The SRTM image of the study area was used for morphostructural map where lineaments and structures were described, and verifications were done during field investigations.

IV. RESULTS

A. Geomorphology and rocks distribution

The space image of the Fig. 2 shows that Fotouni area has the irregular relief dominated by the hills which are separated by V-shape valleys. Three prominent features dominate the landscape: summits, slopes and valleys. The highest point culminates at 1900 m and the lowest points in valleys are at 1200 m of altitude. Lithological units observed in the study area are predominantly transitional lavas consist by basalt, trachybasalt and basaltic trachyandesite and alkaline lavas consist by basanite, alkali basalt and hawaiite. All these volcanics are placed within a Pan-African mylonitic basement rock [8]. To the south of Fotouni and Fangam, NE-SW elongated hills are consisted of mylonite (Fig. 2).

Fig. 2. SRTM image of the study area showing the NE-SW elongated shape of the Fotouni volcanic rocks in the FFSZ.

SRTM image of Fig. 2 indicates that, as the Fondjomekwet-Fotouni mylonitic corridor, volcanic rocks
display a NE-SW trend. These rocks are located at the topmost part of the Fotouni highlands and these highlands display steep slopes (plateau-like), suggesting a viscous material emplaced within large fractures with very limited flow dynamism.

Data from field studies show that the Fangam, Song and Mbeng basalts outcrop as prismatic dyke trending NE-SW and displaying well differentiated vertical tetragonal, pentagonal and hexagonal prisms (Fig. 3a). In Fotouni, basalts outcrop as undifferentiated dyke (Fig. 3b).

B. Petrography

B.1. Alkaline rocks

In the field, alkaline rocks occur to the south of Fotouni and in Fangam as volcanic prism on hills and are melanocratic. They mainly consist of plagioclase, olivine, Fe-Ti oxide and clinopyroxene. Some samples contain dark shiny xenocryst and/or vesicles always coated by such dark secondary infillings. Their textures are variable, depending on the petrographic rock type. Alkaline rocks consist of Basanite, Basalt and Hawaite.

Basanite thin sections display aphritic texture with some rare plagioclase, olivine and clinopyroxene phenocrysts. In basanite, phenocrysts of olivine (0.2-0.5 mm) are more or less disseminated between clinopyroxene, Ti-Fe oxide and plagioclase microlites, which are the main component of the groundmass. Mineral proportions in basanites are: 40 % plagioclase feldspar, 25 % oxide, 18 % olivine and 12 % clinopyroxene. They also show fluidal texture characterized by alignment of minerals in the lava flow direction (Fig. 4a).

Basalt are porphyritic with olivine and clinopyroxene (24 and 15%) as main phenocrysts (0.5-1.8 mm). Microlites of plagioclase are the more representative of groundmass components. In terms of mass percentage; basalts consist of 30 % of plagioclase feldspar (phenocrysts and microlites), 26 % of oxide, 24 % olivine and 15% clinopyroxene. The groundmass exhibits a hyalocrystalline texture with olivine, plagioclase, clinopyroxene, oxide and glass sometimes. Olivine phenocrysts are strongly altered to red-brown iddingsite (Fig. 4b). Clinopyroxene phenocrysts exhibit sieve textures or corroded cores, and cleavage. This mineral occurs as subrounded or hexagonal grains in the groundmass.

Hawaiites have typically microlitic porphyritic texture with plagioclase, olivine, clinopyroxene and oxide making up the groundmass (Fig. 4c). However, some hawaiites are highly porphyritic and display olivine megacrysts with size greater than 3 mm (F21). Porphyritic hawaiites can further be divided into: (1) olivine + clinopyroxene phenocryst hawaiites which display olivine as abundant phenocryst and some rare clinopyroxene phenocrysts but may have groundmass of olivine and clinopyroxene and (2) clinopyroxene phenocrysts hawaiites do not contain plagioclase feldspar phenocrysts in the groundmass. Some of these lavas contain olivine and oxide xenocrysts.
Hawaiites possess 45% of plagioclase feldspars (phenocrysts and microlites), (2 to 23%) olivine respectively for those which are rich in clinopyroxene and poor in olivine (clinopyroxène 20 to 5% for F14 and F21) and 10% oxide. The intergranular groundmass is dominated by plagioclase microlites.

B.2. Transitionnal rocks

In the field, transitional rocks occur to the north of Fotouni and in Bangam, as not differentiated prisms or large blocks on slopes. They are mesocratic to melanocratic, consist of plagioclase, clinopyroxene, Fe-Ti oxide and calcite. Olivine is rare or absent some samples. Some samples contain xenocryst and/or vesicles always coated by such dark secondary infillings. Their textures are variable, depending on the petrographic type.

Basalt is the dominant rock type of the transitional serie. They display porphyritic to aphyritic texture with crystals making up 90% of the rocks and 10% of the matrix. Porphyritic basalt consists of clinopyroxene (15 to 20%), plagioclase (60 to 55%) which display very complex zoning with three subdivisions core, intermediate zone and rim, Fe-Ti oxide (20 to 15%), 1 – 3% of calcite 2 – 3% of olivine (Fig. 4g and Fig. 4h). Some phenocrysts of plagioclase display triple point junction (Fig. 4h). Clinopyroxene and plagioclase phenocrysts sometimes display reaction rims and are thus interpreted as xenocryst (Fig. 4e and Fig. 4h). Clinopyroxene xenocrysts are slightly altered (F22).

Aphyritic basalts display mineral composition similar to porphyritic basalt with some rare clinopyroxene phenocrysts (15 to 20%) and plagioclase (60 to 55%). The rare plagioclase phenocrysts observed are zoned and display corrosion structure. Clinopyroxene presents poecilitic tendency.

Trachybasalt show fluidal aphyritic texture with rare phenocrysts of plagioclase. Clinopyroxene is ubiquitous, occurring either as a matrix component or as phenocrysts. It can present poecilitic tendency and some crystals are partially replaced by calcite (Fig. 4f). Trachybasalt is composed of 55% of plagioclase feldspars, 23% of clinopyroxène, 18% of oxide, and 2% of olivine. They also show fluidal texture.

Basaltic trachyandesite displays microlitic aphyritic texture with some rare oxide and clinopyroxene phenocrysts of disseminated in groundmass dominated by plagioclase microlites. This rock consists of plagioclase microlites (60%), 25% oxides and 10% clinopyroxene.

Field, petrographic and geochronological data from [11] enable to draw the geological map (Fig. 5). Cross-section from this map shows that, transitional lavas are older than alkaline ones (Fig. 6).

V. DISCUSSION

A. Pétrography and crystallization evolution

Basaltic lavas (alkali and transitional) from Fotouni display olivines and clinopyroxenes, phenocryst and microcrist, plagioclases and opaque mineral. However, the nature and the proportions are different depending on the type of lava.

Plagioclase crystals maintain almost the entire magmatic history of crystallization. This can result from the complex chemical zonation process in addition to the growing often marked by the presence of twins. Indeed, the chemical zonation, the vitreous inclusions in the crystalline structure and the dendritic texture (Fig. 3e and Fig. 3g) display thin sections of rocks indicate a variation in crystal environment during its growth. This variation can be chemical and/or can be pressure-temperature crystallization conditions dependent. The crystallization of a plagioclase in a cooling magma to constant pressure entails a normal zonation of crystal, with an anorthitic heart and albitic borders [19]. A crystal that is in presence of magma enriched in anorthite or hotter will undergo a resorption in its sides and an inverse zonation [20].
Olivine is abundant and euhedral in alkali lavas and rare
in the transitional lavas. Clinopyroxene are xenomorph and
abundant in transitional lavas contrary to the alkali lavas in
which they are less abundant. Their presence as euhedral
phenocrysts suggest that alkali lavas stayed in a deep
maggmatic chamber.

Opaque mineral inclusions in the clinopyroxene and the
inclusions of olivines in the Clinopyroxene within alkali
lavas (Fig. 3d), as well as the inclusions of the opaque
minerals in the olivines and the clinopyroxenes within
transitional lavas (Fig. 3f) suggest the fractional
crystallization phenomenon. The occurrence of olivine and
clinopyroxene xenocrysts (Fig. 3b and Fig. 3e) suggests that
alkaline and transitional lavas underwent a possible crustal
contamination.

B. Tectonic control on the prismatic basalt dyke
emplacement
Basalts from Fotouni display vertical prisms thus,
corresponding to plateau basalt. Plateau basalts are known to
result from the emplacement of large volume of magma
within fractures. Indeed, the FFSZ is a faulted corridor
which is evidenced in the field by the occurrence of
mylonites[7], [8], [12], [20]. According to [8], the activation
of the FFSZ developed various fracture networks which
facilitate the uplift a mantle-derived magma and the
emplacement of the Fonopéa and Bandja plutons to the
north and the south of the mylonitic corridor in the one
hand, and the emplacement of charnokitic intrusive bodies at
Fondanti, within this corridor during the Pan-African orogeny
in the other hand. The displacement magmatic body
under tectonic control during the activation of the FFSZ is
evidence by the NE-SW trend display by these Pan-African
plutons, parallel this NE-SW mylonitic corridor. The
emplacement of Fotouni Tertiary volcanic bodies seems to
have exploited fractures within the Fondjomekwet-Fotouni
mylonitic corridor. Indeed, volcanic bodies in Fotouni and
Fangam displays NE-SW trend, parallel to the trending
direction of the FFSZ as shown by the SRTM and The
occurrence of these rock mostly as vertical prisms in a NE-
SW direction in Fangam and Fotouni (Fig. 2) evidences its
emplacement under tectonic control. This emplacement was
probably facilitated by extensional phase consecutive to
stress release during the late Cretaceous rifting. Indeed,
according to [17], [18] the late Cretaceous general stress
release lead to a general extension which probably facilitates
the uplift of mantle-derived magma and the emplacement of
Tertiary anorogenic complexes and volcanic rocks along the
Cameroon Line, with no space-time migration display (Fig.
1). This tectonic control on magmatism is witnessed by the
alignment of volcanic cones and ring complexes along the
Cameroon Line. According to Landsat image (Fig. 8) the Fotouni basalts are located at the top of the Fotouni
plateau and display steep slopes, suggesting the crystallization of these rocks from a very large volume of
viscous moderately dynamic magma.

VI. CONCLUSION
Fotouni basalts crop out in the Western Highland of
Cameroon precisely in continental part of Cameroon
Volcanic Line (LVC). Alkaline (basanite, basalt to hawaiite)
and transitional (basalt, trachy-basalt to basaltic trachy-
andesite) lavas are the two volcanic groups of these volcanic
rocks. Data from field works show that the Fangam, Song
and Mbeng basalts are prismatic plateau basalt outcropping
as NE-SW trending hills and display well differentiated
vertical tetragonal, pentagonal and hexagonal prisms within
the Fondjomekwet-Fotounisheen area. The NE-SW
orientation and the prismatic shape display by basalts
indicate the tectonic control on the emplacement of these
rocks due to the late Cretaceous general extension that gave
and facilitate the uplift of basaltic magma during the
Tertiary.

ACKNOWLEDGEMENT
This paper is part of the first author Ph.D thesis’ data. The
authors address their warmest thank to Dr FOZING Eric
Martial for his contribution during field works and for his
constructive comments which highly improve the quality of
the first version of present manuscript. KENFACK Roslin
Brice is strongly acknowledged for providing and
processing space images.

VII. REFERENCES
[1] Fitton, J.G., Dunlop, H.M., 1985. The Cameroon Line, West Africa
and its bearing on the origin of oceanic and continental alkali basals.
Earth and Planetary Science Letters72, 23-38.
[2] Fitton, J.G., 1987. The Cameroon Line: West Africa: a comparison
between oceanic and continental alkaline volcanism, in Fitton, J.G.,
and Upton, B.G.J., eds., “Alkaline Igneous Rocks”. Geological
Society of London Special Publication 30, 273-281.
[3] Déruelle, B., Ngonounou, I., Demaiffe, D. (2007). The Cameroon hot
line (CHL): A unique example of alkaline intraplate structure in both
oceanic and continental. ComptesRendus Geoscience339, 589-600.
[4] Njome, S. M., De Wit J. M. The Cameroon Line: Analysis of an
intraplate magmatic province transecting both oceanic and continental
lithospheres: Constraints, controversies and models. EarthScience
Reviews, vol. 139: 168-194, 2014.
[5] G, Tagné-Kamga, E, Mercier, M, Rossy, N.E., Nsifa. Synkinematic
emplacement of the Pan-African Ngondo igneous complex (West
Cameroon, Central Africa). Journal of African Earth Science vol. 28,
pp. 675-691, 1999.
[6] E., Njonfang, V., Ngako, C., Moreau, P., Affaton, H., Diot.
Restraining bends in high temperature shear zones: the “Central

DOI: http://dx.doi.org/10.24018/efgeo.2020.1.5.70

Vol 1 | Issue 5 | October 2020

5
Cameroon shear zone'', Central Africa. Journal of African Earth Sciences, vol. 52, pp. 9-20, 2008.

[7] M., Kwékam, J.P., Liégeois, E., Njonfang, P., Affaton, G., Hartmann, F., Tchouna. Nature, origin and significance of the Fomopéa Pan-African high-K calc-alkaline plutonic complex in the Central African fold belt (Cameroon). Journal of African Earth Sciences, vol. 57, pp. 79-95, 2010.

[8] J., Tcheumenak Kouémo, T., Njanko, M., Kwékam, S., Naba, B.E., Bella Nke, A.F., Yakeu Sandjo, E.M., Fozing, E., Njonfang. Kinematic evolution of the Fondjomek-wet-Fotouni shear zone: Implication for emplacement of the Fomopéa and Bandja plutons. Journal of African Earth Sciences, vol. 99, pp. 261-275, 2014.

[9] J., Efion Awoum, E.M., Fozing, M., Kwékam, J., Tcheumenak Kouémo, S.C., Choumele Kana, L. Achu Megnemo. Structural characterization of the Pan-African Ndieki area in the Fomban-Bankim Shear Zone (West Cameroon): constraints from field observations and microstructures. Arabian Journal of Geoscience vol. 13, pp. 831, 2020.

[10] B.E., Bella Nké T., Njanko, M., Kwékam, E., Njonfang, S., Naba, J., Tcheumenak Kouémo, M., Goutié Dedzo, P., Rochette, A., Nédélec. Structural study of the Forêké-Dschang trachytic dome (Mount Bamboyto, West Cameroon): an anisotropy of magnetic susceptibility (AMS) approach. Journal of African Earth Sciences, 95, 63-76, 2014.

[11] N.L., Ngongang Tchikankou, M., Kwékam, P., Kamgang, G., Chazot, N.B., Tchaimegnie Ngongang, P., Essomba. Caractéristiques des laves basaltiques de Fotouni et ses environs. 2ème Colloque de la société de Géosciences du Cameroun. Géosciences: Levier du Développement Durable. Yaoundé, pp 234, 04-07 Mars 2019.

[12] C., Nguesni Tchankam, J.P., Nzenti, Nkonguin, E., Nsfa.P., Tempier, F.M., Tchouna. Les granitoïdes calco-alkalins syn-cisaillage de Bandja dans la chaîne panafricaine nord-quotariale au Cameroun. Comptes Rendus de l’Académie des Sciences Paris, vol. 325, pp. 95-101, 1997.

[13] Dérueille, B., Moreau, C., Nkouboum, C., Kabmou, R., Lissom, J., Njonfang, E., Ghogomu, T.R., Nono, A., 1991. The Cameroon Line: a review. In: Kampunzu, A.B., Lubala, R.T. (Eds.), Magmatism in African History of Western Cameroon. Lavis Bassa, pp. 234, 1998.

[14] Cornachia, M., Dars, R. Un trait structural majeur du continent africain: les linéaments centrafricains du Cameroun au golfe d’Aden. Bulletin de la Société Géologique de France 25, 101–109, 1983.

[15] Moreau, C., Regnault, J.M., De ’rule, B., Robineau, B. A new tectonic model for the Cameroon Line, Central Africa. Tectonophysics 139, 317-334, 1987.

[16] Meyers, J.B., Rosendahl, B.R., Harrison, C.G.A., Ding, Z.-D. Deep-imaging seismic and gravity results from offshore Cameroon Volcanic Line and speculation of African hot-lines. Comptes Rendus de l’Académie des Sciences, France 328, 31-63, 1998.

[17] V., Ngako, E., Njonfang, F., Aka Tongwa, P., Affaton, J., Nnange Metuk. The north–south Paleozoic to Quaternary trend of alkaline magmatism from Niger–Nigeria to Cameroon: complex interaction between hotspots and Precambrian faults. Journal of African Earth Sciences vol. 45, pp 241-256, 2006.

[18] Lindsey D.H. Melting relations of plagioclase at high pressures. Carnegie Institute Washington Year 65, 204, 1966.

[19] J.A., Noudiedie Kamgang, J., Tcheumenak Kouémo, A., Kagou Dongmo, E.M. Fozing, S.C. Chouméle Kana, J., EfionAwoum, G.R., KenfackNgouemo. Emplacement and evolution of the Nlonako ring complex in the southern domain of the Cameroon Line. European Journal of Environment and Earth Sciences vol. 1 (4), pp. 1-10, 2020.

[20] L.-C., Kuo, R.J., Kirkpatrick. Pre-eruption history of phryic basalts from DSDP Legs 45 end 46: evidence from morphology and zoning patterns in plagioclase. Contributions to Mineralogy and Petrology, 1982.

[21] Njanko, T., Nédélec, A., Kwékam, M., Siqueira, R., Esteban, L. Emplacement and deformation of the Fomopéa pluton: implication for the Pan-African history of Western Cameroon. Journal of Structural Geology vol. 32, pp. 306-320, 2010.

DOI: http://dx.doi.org/10.24018/ejgeo.2020.1.5.70

Vol 1 | Issue 5 | October 2020

N. L. Ngongang Tchikankou is a Master degrees holder in petrology of volcanic rock at the University of Yaoundé, Cameroon since 2012. She is a secondary school’s teacher and also a Ph.D candidate at the University of Dschang.

J. Tcheumenak Kouémo is a Ph.D holder in Structural Geology and metamorphic petrology at the University of Dschang, Cameroon since 2018. Dr Tcheumenak Kouémo is Lecturer at the University of Douala, Cameroon.