Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI

Morihisa Fujita, Reika Watanabe, Nina Jaensch, Maria Romanova-Michaelides, Tadashi Satoh, Masaki Kato, Howard Riezman, Yoshiki Yamaguchi, Yusuke Maeda, and Taroh Kinoshita

1Research Institute for Microbial Diseases and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
2Department of Biochemistry, University of Geneva, Sciences II, CH-1211 Geneva, Switzerland
3Structural Glycobiology Team, Institute of Physical and Chemical Research, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.

Introduction

Protein transport through the secretory pathway is mediated by membrane vesicles coated with cytoplasmic coat proteins. In the early secretory pathway, correctly folded proteins are transported from the ER into coat protein complex II (COPII)-coated vesicles. Most secretory and membrane proteins are actively sorted and packaged into COPII vesicles, whereas a bulk flow mechanism also exists (Barlowe, 2003). One of the COPII components, Sec24, directly associates with cargo proteins and packages them into the vesicles depending on the sorting signals (Miller et al., 2003). Structural studies on COPII have revealed that Sec24 isoforms have multiple cargo recognition sites that bind to sorting signals and select cargo proteins (Mancias and Goldberg, 2008). Many membrane proteins contain sorting signals that are directly recognized by the intracellular machinery. However, in some cases, adaptor proteins, the so-called cargo receptors, which act as bridge between the cargo and COPII components, are needed for efficient transport (Dancourt and Barlowe, 2010). Additionally, because soluble secretory proteins cannot bind to Sec24, transmembrane cargo receptors are critical for linking to cytoplasmic COPII components (Appenzeller et al., 1999; Belden and Barlowe, 2001).

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a highly conserved posttranslational modification that occurs in eukaryotes. To date, >150 proteins, including receptors, adhesion molecules, and enzymes, are known to be modified by GPI in mammalian cells. Biosynthesis of GPI and attachment to proteins is performed in the ER (Kinoshita et al., 2008). Once GPI-anchored proteins (GPI-APs) are formed, they are transported from the ER to the cell surface via the Golgi apparatus. For sorting GPI-APs that are localized in the lumen and cannot bind to COPII directly, cargo receptors are required for their efficient transport. The p24 family proteins are type-I membrane proteins that are recycled between the ER and the Golgi (Strating and Martens, 2009). These proteins form heterooligomeric complexes and bind to COPI and COPII. Members of the p24 family in yeast are involved in efficient packaging of PI-PLC, phosphatidylinositol-specific phospholipase C; VFG, VSVG glycosylphosphatidylinositol; GPI-AP, GPI-anchored protein; PE, phycoerythrin; ER–Golgi intermediate compartment; EtNP, ethanolamine phosphate; GPI, accelerating factor; Endo-H, endoglycosidase-H; ERES, ER exit sites; ERGIC, ER–Golgi intermediate compartment; EINP, eifinolamine phosphate; GPI, glycosylphosphatidylinositol; GPI-AP, GPI-anchored protein; PE, phycoerythrin; PIPLC, phosphatidylinositol-specific phospholipase C; VFG, VSVG-Flag-GFP.

© 2011 Fujita et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
GPI-APs into COPII vesicles (Schimmmöller et al., 1995; Belden and Barlowe, 1996; Muñiz et al., 2000; Castillon et al., 2009). Genetic analyses also suggest that genes involved in structural remodeling of GPI anchors act together with p24 proteins in yeast (Elrod-Erickson and Kaiser, 1996; Haass et al., 2007). In mammalian cells, knockdown of p24 genes resulted in delayed transport of GPI-APs from the ER to the Golgi (Tanaka et al., 2008; Bonnon et al., 2010). The p23 and p24 proteins were coprecipitated with GPI-APs. The Sec24C and -D isoforms facilitated export of the p23–p24 complex from the ER, with the same preference for GPI-APs (Bonnon et al., 2010). Evidence suggests that the p24 family of proteins act as cargo receptors for GPI-APs from the ER, but it remains unclear how the modified proteins are sorted and how p24 proteins recognize GPI-APs.

During GPI-AP transport, the lipid and glycan parts of GPI are remodeled (Fujita and Kinoshita, 2010). Before exiting the ER, two structural remodeling reactions occur in mammalian cells; an acyl chain linked to inositol and a side-chain ethanolamine phosphate (EtNP) attached to the second mannose of the GPI anchor are removed by PGAP1 and PGAP5, respectively (Tanaka et al., 2004; Fujita et al., 2009). Both reactions are required for the efficient transport of GPI-APs from the ER to the Golgi. However, it is still not clear why the structural remodeling of GPI anchors is critical for efficient transport. Here, we elucidated that the two structural remodeling reactions of GPI anchors were critical for transporting GPI-APs to the ER exit sites (ERES). We also found that remodeled GPI anchors are efficiently recognized by the p24 family proteins. The association of p24 proteins with GPI-APs occurs at a pH found within the ER, whereas dissociation occurs at a pH found in ER–Golgi intermediate compartments (ERGIC) or the cis-Golgi. These results indicate that the remodeled structure of GPI after attachment to proteins acts as a sorting signal for ER exit that is recognized by p24 proteins.

Results

Structural remodeling of GPI-APs is required for sorting to the ERES

Before exiting of GPI-APs from the ER, two remodeling reactions—inositol deacylation by PGAPI and removal of the second EtNP by PGAP5—occur in mammalian cells (Fig. 1). We previously established a method for screening mutant cells defective in transport of GPI-APs (Maeda et al., 2008). From the screening, we isolated C19 mutant cells defective in PGAP5 (Fujita et al., 2009). The remodeling of GPI glycan by PGAP5 is required for the efficient transport of GPI-APs from the ER. From the same screening, we obtained another mutant cell line, designated FPRC2, in which GPI-APs were resistant to phosphatidylinositol-specific phospholipase C (PI-PLC) because of a defect in PGAPI (Fig. S1). Consistent with our previous finding that transport of GPI-APs, decay-accelerating factor (DAF), and CD59 from the ER to the Golgi was delayed in PGAPI-deficient cells (Tanaka et al., 2004), FPRC2 mutant clones also exhibited delayed transport of a reporter GPI-AP, VSVG*.Flag-GFP (VFG-GPI (Fig. 2 A). When the responsible genes were transfected into C19 and FPRC2 cells, the delay in transport was rescued (Fig. 2, B and C). In the steady state, the ER form of DAF was accumulated in pgap1 and pgap5 mutant cells (Fig. 2 D), which suggests that delayed transport was caused by due to a slow exit from the ER. The amount of the accumulated ER form of DAF in the steady state remained small relative to the mature forms of DAF because the mature forms are stably maintained at the plasma membrane. The accumulation of the ER form of DAF disappeared when the responsible gene was reintroduced (Fig. 2 D). These results suggest that both remodeling reactions mediated by PGAP1 and PGAP5 are required for the efficient transport of GPI-AP from the ER.

We next investigated which step during transport from the ER to the Golgi was impaired in the mutant cells defective in GPI remodeling. To visualize the sorting of GPI-APs into the ERES, we used VFG-GPI, which could be monitored. For accumulation in the ER, VFG-GPI was expressed at 40°C. Sorting to the ERES was visualized by inhibiting budding using a temperature shift to 10°C (Kirk and Ward, 2007; Rivier et al., 2010). Immediately after the temperature shift, VFG-GPI could be observed throughout the ER, but did not merge with Sec13 in wild-type, pgap1, and pgap5 mutant cells (Fig. 3 A). After a 30-min incubation at 10°C, VFG-GPI was accumulated in dot-like structures that colocalized with Sec13 in wild-type cells (Fig. 3, B and C). In contrast, VFG-GPI exhibited reticular-like localization and did not colocalize with Sec13 in pgap1 and pgap5 mutant cells. The concentration of VFG-GPI at the ERES was significantly impaired in pgap1 and pgap5 cells (Fig. 3 D). These results indicate that structural remodeling of GPI anchors is critical for the sorting of GPI-APs to the ERES.

p23 and p24 associate with structurally remodeled GPI-APs

The impairment of GPI-AP sorting to the ERES seen in pgap1 and pgap5 mutant cells raised the question of why structural changes in GPI anchors are required for efficient sorting. We hypothesized that there are putative cargo receptor proteins that recognize the remodeled GPI anchors for packaging GPI-APs into vesicles. To verify this possibility, we determined proteins specifically associated with GPI-APs in the wild type, but not in pgap1 or pgap5 mutant cells. Cells with VFG-GPI accumulated in the ER were incubated at 32°C for 20 min to allow for transport, and then lysed in buffer containing 1% digitonin. VFG-GPI was collected with anti-Flag beads and proteins were analyzed by SDS-PAGE. Bands ~20 kD were specifically coprecipitated from wild-type cells (Fig. 4 A). We analyzed the bands by mass spectrometry and identified them as Tmed10 (p23) and Tmed2 (p24; Fig. 4 B). The association of p23 and p24 with VFG-GPI in wild-type cells was also confirmed by Western blotting, whereas in the pgap1 and pgap5 mutant cells, association of p23 and p24 with VFG-GPI was greatly decreased (Fig. 4 C).

We next analyzed whether the decreased association of p23 and p24 with VFG-GPI in pgap1 and pgap5 mutant cells was caused by defects in remodeling of GPI anchors.
p24 proteins are required for efficient transport of GPI-APs from the ER

The involvement of p23 and p24 with respect to transport of GPI-APs from the ER was analyzed. The mRNA level of p23 in stable knockdown cells was decreased to 15% of that in control cells (Fig. 5 A). A substantial decrease in p23 protein was observed in the knockdown cells (Fig. 5 B). It has been reported that p24 proteins form a complex and stabilize each other (Belden and Barlowe, 1996; Marzioch et al., 1999; Denzel et al., 2000); therefore, we examined the status of p24 in p23 knockdown cells. The level of p24 was also decreased, whereas mRNA levels were not affected as expected (Fig. 5 A). Transport of VFG-GPI was significantly delayed in p23 knockdown cells (Fig. 5 C), as described previously (Takida et al., 2008; Bonnon et al., 2010). Transport from the ER to the Golgi of another GPI-AP was also examined. The p23 protein was transiently silenced in CHO-K1 cells stably expressing V enus-tagged human CD59 (V enus-CD59). Pulse-chase analysis with endoglycosidase-H (Endo-H) sensitivity revealed that p23 knockdown resulted in delayed transport of V enus-CD59 from the ER to the Golgi (Fig. 5, D and E). These results support the idea that p24 proteins are involved in transport of GPI-APs from the ER.
steady state, Venus-CD59 on the cell surface of knockdown cells was the same as in control cells (Fig. S3 A). Venus-CD59 on the cell surface was removed by PI-PLC to observe intracellular localization. In the control cells, the majority of the intracellular Venus-CD59 was localized at the Golgi apparatus (Fig. 6 A and S3 B), Sorting of GPI-APs to COPII-coated vesicles was impaired in p23-knockdown cells
Because the transport of GPI-APs was delayed in p23 knockdown cells, we further analyzed cellular localization of GPI-APs. In the steady state, Venus-CD59 on the cell surface of knockdown cells was the same as in control cells (Fig. S3 A). Venus-CD59 on the cell surface was removed by PI-PLC to observe intracellular localization. In the control cells, the majority of the intracellular Venus-CD59 was localized at the Golgi apparatus (Fig. 6 A and S3 B),
whereas in the p23 knockdown cells, ER reticular-like localization of Venus-CD59 was observed, colocalizing with calreticulin as well as at the Golgi (Fig. 6 B and S3 B). The ER localization of Venus-CD59 was more clearly observed in cells with an absence of p23 proteins (Fig. 6 B, arrows), which suggests that GPI-AP transport from the ER was impaired in p23 knockdown cells.

We next investigated whether p24 proteins are required for sorting of GPI-APs to the ERES. After PI-PLC treatment and incubation at 10°C for 1 h, Venus-CD59 had accumulated as punctuate structures that were largely colocalized with Sec13 in control cells (Fig. 6 C). Under these conditions, p23 also accumulated in punctuate structures, which were partially colocalized with Venus-CD59 and Sec13 (Fig. S3 C). In contrast, signals from Venus-CD59 remained in a typical reticular ER pattern and were mostly separated from Sec13 in the p23 knockdown cells (Fig. 6 D). These results indicate that the p24 family of proteins act...
as cargo receptors for GPI-APs by concentrating GPI-APs in the ERES, and facilitate efficient packaging into COPII vesicles.

Association of p23 and p24 with GPI-APs is pH dependent

If the p24 proteins act as cargo receptors for GPI-APs, then mechanisms for their association with GPI-APs in the ER, and their dissociation in the ERGIC or cis-Golgi, are required. Calcium concentration is one of the factors for cargo binding and dissociation (Kawasaki et al., 2008; Dancourt and Barlowe, 2010). Leguminous (L)-type lectin-like cargo receptors such as ERGIC53 and VIP36 require calcium for their cargo binding. The binding of p23 and p24 with VFG-GPI, however, seemed to be metal independent because addition of EDTA in the lysis and washing buffers did not affect their association with GPI-APs.

Figure 4. Association of p23 and p24 with remodeled GPI-APs. (A) Detection of proteins specifically associated with VFG-GPI in FF8. VFG-GPI was expressed and accumulated in the ER in FF8, FPRC2, and C19 cells. The cells were then incubated at 32°C for 20 min to initiate transport of VFG-GPI. After cell lysis, VFG-GPI was precipitated with anti-Flag beads. Co-precipitated proteins were eluted using the Flag peptide and subjected to SDS-PAGE and silver staining. The boxed area at ~20 kD is enlarged to the right. (B) Sequences of hamster Tmed10 (p23) and Tmed2 (p24). Protein bands at 20 kD in A were digested in-gel with trypsin and analyzed by mass spectrometry. The fragments detected by MS/MS analysis are shown in red. (C) Precipitated proteins in A were analyzed by Western blotting using a rabbit anti-p23, anti-p24, or anti-ERGIC53 polyclonal antibody. VFG-GPI was detected with an anti-GFP antibody. (D and E) Immunoprecipitation of VFG-GPI with p23 and p24. FF8, FPRC2, and FPRC2 stably expressing PGAP1 (D) or FF8, C19, and C19 stably expressing HA-PGAP5 (E) were cultured with 1 µg/ml doxycycline at 40°C for 24 h to induce VFG-GPI expression and its accumulation in the ER. The cells were then incubated at 32°C for 20 min to initiate VFG-GPI transport. After cell lysis, VFG-GPI was precipitated with anti-Flag beads and co-precipitated proteins were detected by immunoblotting using an anti-p23, anti-p24, or anti-ERGIC53 antibody. VFG-GPI was detected with an anti-GFP antibody. Total lysate corresponding to 1% and immunoprecipitates were used for analysis.
lack of coprecipitation of p23 and p24 was not caused by loss of the binding ability of antibody beads. We further determined whether p23 and p24 that bound to VFG-GPI could be dissociated by lowering the pH. VFG-GPI was extracted and precipitated with anti-Flag beads in a pH 7.4 buffer. After washing the beads five times with pH 7.4 buffer, they were resuspended in buffers at various pH levels for 15 min at 4°C. Both p23 and p24 were released from the beads at a pH <6.5, but not at a pH >7.0 (Fig. 7 B). These results indicate that association and dissociation of p23 and p24 with GPI-APs was dependent on pH, and that p23 and p24 can be released from GPI-APs at a pH corresponding to the pH in the cellular organelle where dissociation is expected to occur.
VFG-GPI was dependent on the structure of the GPI anchor; therefore, we compared wild-type and \textit{pgap1} mutant cells. Cells were lysed in a pH 8.0 buffer, and VFG-GPI was purified with an anti-Flag column. After washing, proteins bound to the column.

Association of GPI-APs with p24 hetero-oligomers

We further asked if additional factors are involved in complexes of GPI-APs with p23 and p24. The binding of p23 and p24 with VFG-GPI was dependent on the structure of the GPI anchor; therefore, we compared wild-type and \textit{pgap1} mutant cells. Cells were lysed in a pH 8.0 buffer, and VFG-GPI was purified with an anti-Flag column. After washing, proteins bound to the column.

Figure 6. Sorting of GPI-APs to the ERES is dependent on p24 family. (A and B) CHO-K1 cells stably expressing Venus-CD59 were transfected with control siRNA (A) or siRNA against p23 (B). After 72 h, the cells were treated with PI-PLC, followed by fixation, permeabilization, and immunostaining with anti-p23. Arrows indicate efficiently silenced cells. (C and D) CHO-K1 cells stably expressing Venus-CD59 were transfected with control RNA (C) or siRNA against p23 (D). After 72 h, the cells were treated with PI-PLC, incubated at 10°C for 1 h, fixed with 4% paraformaldehyde, and stained with anti-Sec13 to observe the ERES. In the merged images, Sec13 and Venus-CD59 were shown in red and green, respectively. Enlarged views of the boxed regions are shown below. Bars, 10 μm.
Remodeling and sorting of GPI-anchored proteins

• Fujita et al.

endogenous p23 (Fig. S5, A–C). The myc-p23 was functional in stabilizing p24 and transporting GPI-APs (Fig. S5, C and D). Under these conditions, myc-tagged p23 was coimmunoprecipitated with p24, p25, and p28 (Fig. 8 D). Collectively, our results indicate that p23 forms a hetero-oligomeric complex with members of three other subfamilies.

Discussion

Most secretory proteins are sorted and enriched at the ERES for efficient transport from the ER. Cargo receptors play critical roles in linkage of their cargo to COPII components for enrichment in transport vesicles. In the case of GPI-APs, it has been postulated that the GPI anchor functions as an ER exit signal (Mayor and Riezman, 2004); however, molecular mechanisms for the sorting of GPI-APs into the ERES are not well understood. We previously determined that structural remodeling of the GPI anchor is required for the efficient transport of GPI-APs from the ER to the Golgi (Fujita et al., 2009). In this study, we elucidated the fact that GPI structural remodeling is critical for sorting GPI-APs to the ERES (Fig. 9). Remodeled GPI-APs are recognized by the p24 family of proteins that were required for efficient concentration of GPI-APs into COPII vesicles. These findings indicate that p24 proteins act as cargo receptors for correctly processed GPI-APs in the ER.

The association of p24 proteins with GPI-APs was dependent on environmental pH. Under neutral and mildly alkaline conditions, p24 proteins associated with GPI-APs in a pH-dependent manner. After cell lysis in lysis/IP buffer III of the indicated pH, VFG-GPI was precipitated with anti-Flag beads and washed five times in wash buffer III of the indicated pH, followed by immunoblotting using an anti-p23, anti-p24, or anti-ERGIC53 antibody. VFG-GPI was detected with an anti-GFP antibody. Total lysate corresponding to 1% and immunoprecipitates were used for analysis. Bands in 1% total fractions gradually increased with an increased pH partly because solubilization of proteins in 1% digitonin was slightly better at higher pH. (B) Release of p23 and p24 from VFG-GPI by lowering pH. FF8 cells prepared in a similar manner to A were lysed in lysis/IP buffer III, pH 7.4, and VFG-GPI was precipitated with anti-Flag beads. After washing five times with wash buffer III, pH 7.4, wash buffer III at the indicated pH was added and incubated at 4°C for 15 min. The supernatant (S) and bead pellets (P) were collected, followed by immunoblotting as in A.

![Figure 7](image-url)

Figure 7. p24 proteins associated with GPI-APs in a pH-dependent manner. (A) Immunoprecipitation of VFG-GPI with p23 and p24 at various pH levels. FF8 cells were cultured with doxycycline at 40°C for 24 h to induce VFG-GPI expression and its accumulation in the ER. The cells were then incubated at 32°C for 20 min to initiate VFG-GPI transport. After cell lysis in lysis/IP buffer III of the indicated pH, VFG-GPI was precipitated with anti-Flag beads and washed five times in wash buffer III of the indicated pH, followed by immunoblotting using an anti-p23, anti-p24, or anti-ERGIC53 antibody. VFG-GPI was detected with an anti-GFP antibody. Total lysate corresponding to 1% and immunoprecipitates were used for analysis. Bands in 1% total fractions gradually increased with an increased pH partly because solubilization of proteins in 1% digitonin was slightly better at higher pH. (B) Release of p23 and p24 from VFG-GPI by lowering pH. FF8 cells prepared in a similar manner to A were lysed in lysis/IP buffer III, pH 7.4, and VFG-GPI was precipitated with anti-Flag beads. After washing five times with wash buffer III, pH 7.4, wash buffer III at the indicated pH was added and incubated at 4°C for 15 min. The supernatant (S) and bead pellets (P) were collected, followed by immunoblotting as in A.
p24 proteins form heteromeric complexes with subfamily members. (A and B) Identification of proteins associated with VFG-GPI depending on pH. FF8 (WT) and FPRC2 (pgap1) cells were cultured with doxycycline at 40°C for 24 h. The cells were then incubated at 32°C for 20 min. After cell lysis using lysis-IP buffer II, pH 8.0, VFG-GPI was purified using an anti-Flag column. After thorough washing in wash buffer II, pH 8.0, the binding proteins were eluted with elution buffer II, pH 6.0. After elution with six bed volumes of buffer, proteins bound to the column were extracted with SDS sample buffer. Each fraction was subjected to SDS-PAGE, followed by immunoblotting using an anti-GFP or anti-p23 antibody (A). Proteins in eluted fraction 2 from FF8 (WT) and FPRC2 (pgap1) were detected by silver staining (B). Protein bands at 20 and 25 kD were identified by mass spectrometry as Tmed10 (p23), Tmed2 (p24), Tmed9 (p25), and Tmed5 (p28). Detected fragments are shown in Fig. S4. Protein bands indicated by an asterisk (*) were observed through all fractions (elutions 1–6) at similar levels and were not specific in WT cells. (C) Knockdown of p23 destabilized other p24 proteins. FF8 cells permanently transfected with an empty vector (Control) or p23 siRNA vector (p23KD) were lysed, and proteins were resolved by SDS-PAGE, followed by immunoblotting using rabbit anti-p23, anti-p24, anti-p25, anti-p28, and anti-ERGIC53 polyclonal antibodies. (D) Coimmunoprecipitation of myc-p23 with p24 proteins. FF8 cells were stably transfected with a retrovirus vector expressing RNAi-resistant myc-tagged p23 (myc-p23) and shRNA against endogenous p23, as described in Fig. S5. After cell lysis, myc-p23 was precipitated with anti-HA (control) or anti-myc antibodies or without antibody (No Ab), and coprecipitated proteins were detected by immunoblotting against anti-p23, anti-p24, anti-p25, anti-p28, and anti-ERGIC53 antibodies. Total lysate corresponding to 4% and immunoprecipitates were used for analysis. *, IgG heavy chains.
Remodeling and sorting of GPI-anchored proteins

Fujita et al.

It seems possible that GOLD domains of p24 proteins recognize GPI anchors, which contain both lipid and carbohydrate portions. Proteins in the p24 family form a functional heteromeric complex, whereas it is still debatable whether they can exist as monomers, heterodimers, or heterotetramers, depending on the cellular compartments (Marzioch et al., 1999; Jenne et al., 2002). The p24 family of proteins is divided into four subfamilies: α, β, γ, and δ. In mammalian cells, there are three members in p24α and five members of p24γ, whereas the p24β and p24δ subfamilies each have a single member. We identified that p25, p24, p28, and p23 associated with VFG-GPI depending on pH. All subfamilies are contained within the complex associated with GPI-APs, because p25, p24, p28, and p23 belong to p24α, p24β, p24γ, and p24δ, respectively. Our results suggest that they could form a hetero-oligomer for their association with GPI-AP, although the stoichiometry among them remains to be determined. Additionally, our results also explain cargo selectivity. Our mass spectrometric analysis detected only one of each subfamily member; therefore, it is possible that heteromeric complexes consisting of different combinations of subfamily members recognize different cargoes from GPI-APs. These possibilities need to be addressed in future studies.

Mechanisms of sorting GPI-APs to the ERES are conserved in yeast and mammalian cells. Deletion of BST1, a yeast PGAP1 homologue, resulted in decreased concentration of the GPI-AP, Cwp2p, at the ERES (Castillon et al., 2009). Emp24p and Erv25p are yeast p24β (p24) and p24δ (p23) members, which bind to varieties of GPI-APs and facilitate exit of GPI-APs from the ER (Castillon et al., 2011). However, there are differences in the functions of p24. In mammalian cells, p24 proteins act to concentrate GPI-APs at the conditions, binding of p24 proteins to GPI-APs was clearly observed. Dissociation was observed under mildly acidic conditions. Ranges of pH for association (7.0–8.0) and dissociation (6.0–6.5) coincided with the pH in the ER and the ERGIC/cis-Golgi, respectively (Paroutis et al., 2004). Our results are consistent with a shuttling model for p24 proteins that bind to GPI-APs in the ER, transport them to and release them in the ERGIC/cis-Golgi, and are then returned to the ER (Fig. 9). It is possible that remodeling of the fatty acid moiety of the GPI anchor in the Golgi also favors dissociation of p24 proteins. It has yet to be determined which part of the GPI anchor is recognized by p24 proteins. We plan to study the interaction between p24 proteins and GPI-APs through biochemical and biophysical analyses in the near future.

There is a possibility that the association of p23 and p24 with GPI-APs is indirect and requires an adaptor protein linking p24 proteins with GPI-APs; however, there is some evidence to support the concept of direct binding. Chemical cross-linking experiments in yeast showed that Emp24p or Erv25p was directly cross-linked to a GPI-AP (Muñiz et al., 2000). Only the p24 family proteins were specifically eluted from VFG-GPI at pH 6.0 (Fig. 8), which suggests that association of p24 proteins with GPI-APs is direct. Homology modeling of the luminal domains of p23 and p24, termed GOLD (Golgi dynamics) domains, showed that they assume a jelly-roll fold, an antiparallel β sandwich structure consisting of two antiparallel β sheets each with three- or four-strands (Fig. S5, E–H). The jelly-roll β sandwich domains are often observed in sugar- and lipid-binding/processing proteins, such as bacterial sialidase for cell surface–attached carbohydrates (Gaskell et al., 1995), and the C2 domain of coagulation factor Va, which binds to phospholipids on the outside of the cell membrane (Macedo-Ribeiro et al., 1999). It seems possible that GOLD domains of p24 proteins recognize GPI anchors, which contain both lipid and carbohydrate portions.

Proteins in the p24 family form a functional heteromeric complex, whereas it is still debatable whether they can exist as monomers, heterodimers, or heterotetramers, depending on the cellular compartments (Marzioch et al., 1999; Jenne et al., 2002). The p24 family of proteins is divided into four subfamilies: α, β, γ, and δ. In mammalian cells, there are three members in p24α and five members of p24γ, whereas the p24β and p24δ subfamilies each have a single member. We identified that p25, p24, p28, and p23 associated with VFG-GPI depending on pH. All subfamilies are contained within the complex associated with GPI-APs, because p25, p24, p28, and p23 belong to p24α, p24β, p24γ, and p24δ, respectively. Our results suggest that they could form a hetero-oligomer for their association with GPI-AP, although the stoichiometry among them remains to be determined. Additionally, our results also explain cargo selectivity. Our mass spectrometric analysis detected only one of each subfamily member; therefore, it is possible that heteromeric complexes consisting of different combinations of subfamily members recognize different cargoes from GPI-APs. These possibilities need to be addressed in future studies.

Mechanisms of sorting GPI-APs to the ERES are conserved in yeast and mammalian cells. Deletion of BST1, a yeast PGAP1 homologue, resulted in decreased concentration of the GPI-AP, Cwp2p, at the ERES (Castillon et al., 2009). Emp24p and Erv25p are yeast p24β (p24) and p24δ (p23) members, which bind to varieties of GPI-APs and facilitate exit of GPI-APs from the ER (Castillon et al., 2011). However, there are differences in the functions of p24. In mammalian cells, p24 proteins act to concentrate GPI-APs at the conditions, binding of p24 proteins to GPI-APs was clearly observed. Dissociation was observed under mildly acidic conditions. Ranges of pH for association (7.0–8.0) and dissociation (6.0–6.5) coincided with the pH in the ER and the ERGIC/cis-Golgi, respectively (Paroutis et al., 2004). Our results are consistent with a shuttling model for p24 proteins that bind to GPI-APs in the ER, transport them to and release them in the ERGIC/cis-Golgi, and are then returned to the ER (Fig. 9). It is possible that remodeling of the fatty acid moiety of the GPI anchor in the Golgi also favors dissociation of p24 proteins. It has yet to be determined which part of the GPI anchor is recognized by p24 proteins. We plan to study the interaction between p24 proteins and GPI-APs through biochemical and biophysical analyses in the near future.

There is a possibility that the association of p23 and p24 with GPI-APs is indirect and requires an adaptor protein linking p24 proteins with GPI-APs; however, there is some evidence to support the concept of direct binding. Chemical cross-linking experiments in yeast showed that Emp24p or Erv25p was directly cross-linked to a GPI-AP (Muñiz et al., 2000). Only the p24 family proteins were specifically eluted from VFG-GPI at pH 6.0 (Fig. 8), which suggests that association of p24 proteins with GPI-APs is direct. Homology modeling of the luminal domains of p23 and p24, termed GOLD (Golgi dynamics) domains, showed that they assume a jelly-roll fold, an antiparallel β sandwich structure consisting of two antiparallel β sheets each with three- or four-strands (Fig. S5, E–H). The jelly-roll β sandwich domains are often observed in sugar- and lipid-binding/processing proteins, such as bacterial sialidase for cell surface–attached carbohydrates (Gaskell et al., 1995), and the C2 domain of coagulation factor Va, which binds to phospholipids on the outside of the cell membrane (Macedo-Ribeiro et al., 1999). It seems possible that GOLD domains of p24 proteins recognize GPI anchors, which contain both lipid and carbohydrate portions.

Proteins in the p24 family form a functional heteromeric complex, whereas it is still debatable whether they can exist as monomers, heterodimers, or heterotetramers, depending on the cellular compartments (Marzioch et al., 1999; Jenne et al., 2002). The p24 family of proteins is divided into four subfamilies: α, β, γ, and δ. In mammalian cells, there are three members in p24α and five members of p24γ, whereas the p24β and p24δ subfamilies each have a single member. We identified that p25, p24, p28, and p23 associated with VFG-GPI depending on pH. All subfamilies are contained within the complex associated with GPI-APs, because p25, p24, p28, and p23 belong to p24α, p24β, p24γ, and p24δ, respectively. Our results suggest that they could form a hetero-oligomer for their association with GPI-AP, although the stoichiometry among them remains to be determined. Additionally, our results also explain cargo selectivity. Our mass spectrometric analysis detected only one of each subfamily member; therefore, it is possible that heteromeric complexes consisting of different combinations of subfamily members recognize different cargoes from GPI-APs. These possibilities need to be addressed in future studies.

Mechanisms of sorting GPI-APs to the ERES are conserved in yeast and mammalian cells. Deletion of BST1, a yeast PGAP1 homologue, resulted in decreased concentration of the GPI-AP, Cwp2p, at the ERES (Castillon et al., 2009). Emp24p and Erv25p are yeast p24β (p24) and p24δ (p23) members, which bind to varieties of GPI-APs and facilitate exit of GPI-APs from the ER (Castillon et al., 2011). However, there are differences in the functions of p24. In mammalian cells, p24 proteins act to concentrate GPI-APs at the

Figure 9. **A model of selective sorting and transport of GPI-APs from the ER.** After GPI transfer to proteins by the GPI transamidase, the acyl chain linked to inositol in the GPI anchor is eliminated by PGAP1 (1), and a side-chain EtNP on the second mannose of the GPI anchor is removed by PGAP5 (2). These two GPI remodeling reactions in the ER are critical for the sorting of GPI-APs to the ERES. The remodeled GPI-APs are efficiently recognized by the p24 protein family complex that concentrates GPI-APs into the COPII-derived vesicles (3). After transport to the ERGIC or the cis-Golgi, GPI-APs dissociate from the p24 protein family complex because of decreased luminal pH in these compartments (4). The p24 complexes are retrieved from the Golgi to the ER by the COPI vesicles (5).
that cargo receptors recognize sorting signals within the monitored by remodeling enzymes, with only the properly structures and their attachment to proteins are ensured and COPII vesicles. Our current results provide evidence that GPI as a cargo receptor in the ER and to package GPI-APs in at least one of the direct functions of these proteins is to act and Barlowe, 2010). It should be clarified in future studies of other secretory proteins, the unfolded protein response, and Martens, 2009). It has been reported that p24 proteins are unlikely to be the only functions of p24 complexes (Strating and Emp24p–Erv25p complexes then support packaging of GPI-APs in yeast, but not in mammalian cells (Watanabe et al., 2002; Rivier et al., 2010). In yeast, lipid-dependent concentration of ceramide is required for the efficient transport of GPI-APs (Brown and London, 1998; Bagnat et al., 2000). Additionally, ceramide is required for the efficient transport of GPI-APs in yeast, but not in mammalian cells (Watanabe et al., 2002; Rivier et al., 2010). In yeast, lipid-dependent concentration of GPI-APs seems more important for sorting to the ER and Emp24p–Env25p complexes then support packaging of GPI-APs into vesicles by bridging them with COPII components.

The p24 proteins play key roles in maintaining the fidelity of GPI-AP vesicular transport from the ER, but these are unlikely to be the only functions of p24 complexes (Strating and Martens, 2009). It has been reported that p24 proteins are involved in numerous cellular functions, including transport of other secretory proteins, the unfolded protein response, quality control, retrograde transport from the Golgi, and Golgi structure maintenance (Bremser et al., 1999; Aguileraromero et al., 2008; Strating and Martens, 2009; Dancourt and Barlowe, 2010). It should be clarified in future studies whether multiple phenotypes are caused by the direct or indirect function of p24 proteins. In this study, we elucidated that at least one of the direct functions of these proteins is to act as a cargo receptor in the ER and to package GPI-APs in COPII vesicles. Our current results provide evidence that GPI structures and their attachment to proteins are ensured and monitored by remodeling enzymes, with only the properly processed GPI-APs sorted and transported from the ER, and that cargo receptors recognize sorting signals within the modified GPI structure.

Materials and methods

Cells and culture

The 3B2A cells were established by stably transfecting CHO-K1 cells with pMEneo plasmid bearing DAF and CD59 under an SRa promoter, and selecting by cell-sorting a clone expressing DAF and CD59 at high levels (Nakamura et al., 1997). The FF8 cells are 3B2A cells stably transfected with pTR2-2puro-VSVG-F-F-mEGFP-GPI in conjunction with pPH162-1, an expression plasmid for reverse tetracycline-controlled transactivators (Maeda et al., 2008; Takida et al., 2008). C19 and FRPC2 mutant cells are derivatives of FF8 cells, which are defective in PGAP5 and PGAP1, respectively. C10 mutant cells derived from 3B2A cells are defective in GPI-AP1 (Tanaka et al., 2004). DM-C2 mutant CHO-K1 cells are defective in both PGAP3 and PGAP2 (Maeda et al., 2007). CHO-K1 cells expressing Venus-CD59 were obtained after limiting dilution of cells stably transfected with pME-puro-Venus-tagged FLAG-CD59. The cells were grown in Ham’s F12 medium supplemented with 10% [vol/vol] FCS, 600 µg/ml G418 and, if necessary, 6 µg/ml puromycin. Cells were maintained at 37°C/5% CO2 in a humidified atmosphere. FRPC2 + PGAP1 and C19 + HA-PGAP5 cells were selected with 800 µg/ml hygromycin after FRPC2 and C19 cells were transfected with pME-hyg-FLAG-PGAP1 and pME-hyg-HA-PGAP5, respectively. For use in a retrovirus system, FF8, FRPC2, and C19 cells stably expressing Sec13-myc were then established by infection with retroviruses produced in PAE packaging cells (a gift from T. Kitamura, University of Tokyo, Tokyo, Japan) transfected with pLUB2-BSD-Sec13-myc, followed by selection with 6 µg/ml blastidcin. FF8 cells stably expressing p23 siRNA or control siRNA were established by infection with a retrovirus produced in PAE cells transfected with pSiNs-hU6-BSD-242 or pSiNs-hU6-BSD, followed by selection with 6 µg/ml blastidcin.

Antibodies and materials

The antibodies used were mouse monoclonal antibodies against Flag (clone M2; Sigma-Aldrich), myc (clone 9E10), HA (HA-7; Sigma-Aldrich), GFP (Roche), and transferrin receptor (Invitrogen); and rabbit polyclonal antibodies against ERGIC53 (Sigma-Aldrich), calreticulin [Thermo Fisher Scientific], GPP130 (Covance), and Venus (Rivier et al., 2010). Mouse monoclonal antibodies against CD59 (SHB) and DAF (IA10) were described in a previous study (Maeda et al., 2007). Rabbit anti-p23, anti-p24, and anti-p25 antibodies were provided by H.-P. Hauri and H. Farhan (University of Basel, Basel, Switzerland). Rabbit anti-human Sec13 antibody was provided by R. Schekman and B. Lesch [University of California, Berkeley, Berkeley, CA]. The secondary antibodies used were rabbit–horseradish peroxidase linked anti–rabbit IgG (IgG), anti–rabbit IgG (GE Healthcare), anti–rabbit IgG-Fc specific [Jackson ImmunoResearch Laboratories, Inc.], anti–mouse IgG-Fc specific [Jackson ImmunoResearch Laboratories, Inc.], anti–mouse IgG Trueblot (eBioscience), phycocyanin (PE)-conjugated goat anti–mouse IgG (BD), Alexa Fluor 594–conjugated goat anti–mouse IgG (Invitrogen), cyanine 5 (Cy5)-conjugated anti–rabbit IgG [Jackson ImmunoResearch Laboratories], and Cy3-conjugated anti–mouse IgG [Jackson ImmunoResearch Laboratories].

Plasmids

Plasmid pME-VSVG-F-F-mEGFP-GPI (VF6-GPI) encoded a reporter protein consisting of the extracellular domain of VSVGts [temperature-sensitive VSVG, a vesicular stomatitis virus G protein], a furin cleavage site, a Flag tag, mEGFP (modified EGFp) and a GPI attachment signal (Maeda et al., 2008; Takida et al., 2008). Plasmid pME-VSVG-F-F-mEGFP-TM (VF6-TM) contained a sequence for a non-GPI reporter protein consisting of the extracellular domain of VSVGts, a furin cleavage site, a Flag tag, mEGFP, and a carboxyl terminal region of human CD3ε containing a transmembrane domain. The construction of pME-puro-Venus-Flag-CD59 [Venus-CD59] has been described previously (Rivier et al., 2010). To construct pSiNs-hU6-BSD, which was an expression plasmid for siRNA and could be selected with blastidcin, the neomycin resistance gene in pSiNs-hU6 (Tokara Bio Inc.) was replaced with the blastidcin resistance gene. Sequences of siRNA targeting p23 were selected using BLOCK-it RNAi Designer (Invitrogen) and cloned into pSiNs-hU6-BSD, generating pSiNs-hU6-BSD-242 that contained the p23 siRNA sequence of 5’-GCCAATTTCTGTATGCCAA-3’. This sequence was confirmed to interfere with p23 mRNA specifically as described previously (Takida et al., 2008). The DNA fragments bearing the hU6 promoter and the blastidcin resistance gene in pSiNs-hU6-BSD-242
were integrated into plB2, generating plB2-242BSD. To construct plB2-242BSD-myc-p23, plB2-242BSD was amplified by PCR from pCB6-myc-p23 (Emery et al., 2000), which was provided by J. Gruenberg, and integrated into plB2-242BSD. To construct plB2-242BSD-SEc13-myc, Sec13-myc was amplified by PCR with pCS2-SEc13-myc, which was provided by T. Lee (Carnegie Mellon University, Pittsburgh, PA), and integrated into plB2-242BSD.

Isolation of FPRC2 mutant cells defective in PGAP1

FF8 cells were treated with 1 µg/ml Nmethyl-N-nitro-N-nitrosoguanidine for 20 h and cultured for 1 wk. The cell sorting was performed based on a transport assay, as described in “Transport assay of reporter proteins by flow cytometry,” in the first and second rounds of cell sorting using a cell sorter (FACSAria; BD). The cells in which GPI-APs were resistant to treatment with PI-PLC were sorted in the third round. The population obtained by this sorting procedure was subjected to limiting dilution, and a clone in which GPI-APs, CD59, and DAF were resistant to PI-PLC was selected and designated the FPRC2 cell line. Transfection of PGAP1 fully restored PI-PLC resistance of GPI-APs in FPRC2 cells.

Transport assay of reporter proteins by flow cytometry

Cells derived from FF8 cells were cultured in complete medium containing 1 µg/ml doxycycline at 40°C for 24 h, harvested with trypsin/EDTA solution, and incubated in complete medium at 32°C. The cells were treated with anti-Flag antibody and PE-conjugated goat anti-mouse IgG, and analyzed using a FACSScanto (BD) or FACSAria. In some cases, cells were transiently transfected with expression plasmids for reporter proteins by electroporation. After 1.5 d, the temperature was increased to 40°C and the cells were cultured for a further 24 h, followed by incubation at 32°C for the required times. In addition to the first gating (forward scatter and side scatter), a second gating to select cells expressing the same amount of reporter protein (brightness of EGF in F11) was performed for analysis by FlowJo software (Tree Star).

Sorting of cargo proteins into the ERES

FF8, FPRC2, and C19 cells stably expressing Sec13-myc were cultured on gelatin-coated and acid-washed 12-mm-diameter glass coverslips at 37°C for 1 d, followed by incubation with 1 µg/ml doxycycline at 40°C for 24 h to induce VFG-GPI expression and accumulation in the ER. The media were then changed to pre-chilled Ham's F12 containing 10% FCS, 20 mM Heps, pH 7.4, and 100 µg/ml cycloheximide. After incubating at 10°C in a water bath for the required time, the cells were washed once with PBS, fixed with 4% paraformaldehyde in PBS for 30 min, then washed twice with PBS and incubated with 10 mM ammonium chloride in PBS. The cells were permeabilized and blocked with blocking buffer A (0.1% saponin, 1% BSA, and 0.1% sodium azide in PBS) for 1 h. The cells were then incubated with anti-myc antibody diluted 1:300 in blocking buffer B (0.1% saponin, 2.5% goat serum, and 0.05% sodium azide in PBS) for 1 h. After washing three times with blocking buffer A, the cells were incubated with Alexa Fluor 594-conjugated goat anti-mouse IgG (1:800) in blocking buffer A for 1 h. After washing three times with blocking buffer A, the coverslips were mounted in Prolong Gold antifade reagent (Invitrogen). Images of the stained cells were acquired by a Fluoview FV1000 confocal microscope (Olympus). VFG-GPI and Alexa Fluor 594 bound to ERES and time point.

Identification of proteins that associated with VFG-GPI

For the pH elution, FF8 and FPRC2 cells (8 x 10^6) were cultured in complete medium containing 1 µg/ml doxycycline at 40°C for 24 h, harvested with trypsin/EDTA solution, and incubated in complete medium at 32°C for 20 min. The cells were then centrifuged, washed once with PBS, and lysed in 600 µl of lysis-IP buffer I (1% digitonin, 20 mM MES/Heps, pH 7.4, 100 mM NaCl, and protease inhibitor mixture) for 1 h. Insoluble material was removed by centrifugation at 20,000 g for 15 min, and the VFG-GPI was precipitated from the supernatants with anti-Flag beads. The VFG-GPI and coprecipitated proteins were washed five times with wash buffer I (0.5% digitonin, 20 mM MES/Heps, pH 8.0, 100 mM NaCl), and eluted with wash buffer I containing 500 µg/ml Flag peptide for 2 h. Proteins were analyzed by silver staining or Western blotting. Protein samples were analyzed by silver staining or Western blotting. Proteins were identified by database searching using Mascot Daemon (Matrix Science).

Immunoprecipitation of VFG-GPI

Cells (10^6) were cultured in complete medium containing 1 µg/ml doxycycline at 40°C for 24 h, harvested with trypsin/EDTA solution, and incubated in complete medium at 32°C for 20 min. The cells were then centrifuged, washed once with PBS, and lysed in 600 µl of lysis-IP buffer II (1% digitonin, 20 mM MES/Heps, pH 8.0, 100 mM NaCl, and protease inhibitor mixture) for 1 h. Insoluble material was removed by centrifugation at 20,000 g for 15 min, and VFG-GPI was purified with an anti-Flag column, followed by washing with 50 column volumes of wash buffer II (0.5% digitonin, 20 mM MES/Heps, pH 8.0, and 100 mM NaCl), and eluted with elution buffer (0.5% digitonin, 20 mM MES/Mes, pH 6.0, and 100 mM NaCl). The eluted proteins were analyzed by silver staining and Western blotting. Proteins were determined by image analysis using ImageJ (as described earlier in this section).
Quantitative reverse-transcription PCR analysis

For RTPCR, total RNA was prepared using RNaseasy Mini kit (QIAGEN) and reverse transcribed using SuperScript VILO reverse transcription (Invitrogen). TaqMan probes-conjugated with FAM and primers were designed by Primer Express software (Applied Biosystems). For hamster β-actin (ACTB), the TaqMan probe sequence was 5'-CCCTCTCCTCCTGGTATG-3', and the primer sequences were 5'-TGGCTGAAGCTTCTCC-3' (forward) and 5'-TCACTGAGCCAGCAGAT-3' (reverse). For hamster p24, the TaqMan probe sequence was 5'-CTAATGATCCGAAGAGAAG-3', whereas the primer sequences were 5'-ACAGATTTGCGGCCATATA-3' (forward) and 5'-AGCAATAATCTCCCATTGTCACA-3' (reverse). For hamster p24, the TaqMan probe sequence was 5'-CACCCGCAAGAGATG-3', and the primer sequences were 5'-TGGCTGACCTTCTGACAF-3' (forward) and 5'-GCTGTACGCCAAGAAA-3' (reverse). The qPCR was performed and analyzed with the StepOne Real-Time PCR System (Applied Biosystems). RNA expression was normalized to the expression of ACTB and relative expression was calculated by the ∆∆CT method.

RNAi by oligonucleotides

Oligonucleotides for RNAi were purchased from QIAGEN (p24 siRNA sequence: 5'-CAGGCGCATTTCTGATGCA-3'). AllStars negative control siRNA (QIAGEN) was used as a nonsilencing negative control. Oligonucleotides were transfected using Lipofectamine 2000 according to the manufacturer's instructions.

Pulse-chase metabolic labeling

The CHO-K1 cells expressing Venus-CD59 transfected with siRNA or negative control siRNA (QIAGEN) was used as a nonsilencing negative control. Oligonucleotides for RNAi were purchased from QIAGEN (p23 siRNA sequence: 5'-CAGGCGCATTTCTGATGCA-3'). AllStars negative control siRNA (QIAGEN) was used as a nonsilencing negative control. Oligonucleotides were transfected using Lipofectamine 2000 according to the manufacturer's instructions.

Hamology modeling of GOLD domain

Structural models of GOLD domains of p24 and p24 were constructed using the homology modeling software application MODELLER version 9.8 (Sali and Blundell, 1993), which gave Ramachandran plots and the geometric parameters within the allowed conformational space. Figures of the structures were prepared using PyMOL (http://www.pymol.org/).

Online supplemental material

Fig. S1 shows isolation of PPRC2 cells defective in PAG1. Fig. S2 shows immunoprecipitation of VFG-GPI with p23 and p24. Fig. S3 shows colocalization of Venus-CD59 with p23. Fig. S4 shows identification of proteins associated with VFG-GPI in pH-dependent manner. Fig. S5 shows construction of myc-tagged p23 and modeling of p23 and p24. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.201012074/DC1.

We would like to thank Manuel Muñoz (University of Seville) and Guillaume A. Castillo (University of Geneva) for helpful discussions and sharing data; Yasu S. Morita (Osaka University), Yashiko Murakami (Osaka University), and Shinya Hanashima (RIKEN Advanced Study Institute) for helpful discussion; Tina Lee, Felix Wieland, Inge Reckmann, Jean Greubeng, Randy Schekman, Bob Lesch, Hans-Peter Houri, Hesse Farhan, and Toshihiko Kitamura for reagents; Masafumi Koyama (Olympus) for microscopic analysis; Kazunobu Saito (Osaka University) for mass spectrometry; and Kohjiro Nakamura and Yuko Kabumoto (Osaka University) for assistance in cell sorting.

This work was supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to T. Kinoshita and M. Fujita), the Naoto foundation (to M. Fujita), the Senti Life Science Foundation (to M. Fujita), a Swiss National Science Foundation professorship (to R. Watanabe), and support from the Swiss National Science Foundation (to H. Riezman). M. Fujita was supported by the Osaka University Global Center of Excellence Program.

Submitted: 13 December 2010
Accepted: 7 June 2011

References

Aguilera-Romero, A., J. Kaminska, A. Spang, H. Riezman, and M. Muñiz. 2008. The yeast p24 complex is required for the formation of COPII retrograde transport vesicles from the Golgi apparatus. J. Cell Biol. 180:713–720. doi:10.1083/jcb.200710025

Appenzeller, C., H. Andersson, F. Kappeler, and H.P. Hauri. 1999. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat. Cell Biol. 1:330–334. doi:10.1038/14020

Appenzeller-Herzog, C., and H.P. Hauri. 2006. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J. Cell Sci. 119:2173–2183. doi:10.1242/jcs.03019

Bagnat, M., S. Kerinnen, A. Shevchenko, A. Shevchenko, and K. Simons. 2006. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc. Natl. Acad. Sci. USA. 97:3294–3299. doi:10.1073/pnas.0606346

Barlowe, C. 2003. Signals for COPII-dependent export from the ER: what’s the ticked out? Trends Cell Biol. 13:295–300. doi:10.1016/S0962-8924(03)00082-5

Belden, W.J., and C. Barlowe. 1996. Env25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport. J. Biol. Chem. 271:26939–26946. doi:10.1074/jbc.271.43,26939

Belden, W.J., and C. Barlowe. 2001. Role of Env29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science. 294:1528–1531. doi:10.1126/science.1065224

Blum, R., and A. Lupfer. 2008. The luminal domain of p23 (Timp2) plays a critical role in p23 cell surface trafficking. Traffic. 9:1530–1550. doi:10.1111/j.1600-0854.2008.00784.x

Blum, R., F. Pfeiffer, P. Feick, W. Nastainczyk, B. Kohler, K.H. Schäfer, and I. Schulz. 1999. Intracellular transport localization and in vivo trafficking of p24A and p23. J. Cell Sci. 112:537–548.

Bonifacino, J.S., and B.S. Glick. 2004. The mechanisms of vesicle budding and fusion. Cell. 116:153–166. doi:10.1016/S0092-8674(03)01079-1

Bonnon, C., M.W. Wendeler, J.P. Paccard, and H.P. Hauri. 2010. Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J. Cell Sci. 123:1705–1715. doi:10.1242/jcs.02950

Bossor, R., M. Jaquenoud, and A. Conzelmann. 2006. GUP1 of Saccharomyces cerevisiae encodes an O-acetyltransferase involved in remodeling of the GPI anchor. Mol. Biol. Cell. 17:2636–2645. doi:10.1091/mbc.E06-02-0104

Bremser, M., W. Nickel, M. Schweikert, M. Ravazzola, M. Amherdt, C.A. Hughes, T.H. Sollner, E.J. Rothman, and P.T. Wieland. 1999. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell. 96:495–506. doi:10.1016/S0092-8674(00)80654-6

Brown, D.A., and E. London. 1998. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164:103–114. doi:10.1007/s002320050097

Castillon, G.A., R. Watanabe, M. Taylor, T.M. Schwabe, and H. Riezman. 2009. Concentration of GPI-anchored proteins upon ER exit in yeast. Traffic. 10:186–200. doi:10.1111/j.1600-0854.2008.00857.x

Castillon, G.A., A. Aguilera-Romero, J. Manzano, S. Epstein, K. Kajiwara, K. Funato, R. Watanabe, H. Riezman, and M. Muñiz. 2011. Mol. Biol. Cell. In press. doi:10.1091/mcb.E11-04-0294

Dancourt, J., and C. Barlowe. 2010. Protein sorting receptors in the early secretory pathway. Annu. Rev. Biochem. 79:777–802. doi:10.1146/annurev-biochem-061608-091319

Denzel, A., F. Otto, A. Giord, R. Peperkok, R. Watson, I. Rosewell, J.J. Bergeron, R.C. Solari, and M.J. Owen. 2000. The p24 family member p23 is required for early embryonic development. Curr. Biol. 10:55–58. doi:10.1016/S0960-9822(99)00266-3

Keiko Kinoshita and Noriyuki Karasawa (Osaka University) for technical help; Masafumi Koyama (Olympus) for microscopic analysis; Kazunobu Saito (Osaka University) for mass spectrometry; and Kohjiro Nakamura and Yuko Kabumoto (Osaka University) for assistance in cell sorting.
Elrod-Erickson, M.J., and C.A. Kaiser. 1996. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations. *Mol. Biol. Cell.* 7:1043–1058.

Emery, G., M. Rojo, and J. Gruenberg. 2000. Coupled transport of p24 family members. *J. Cell Sci.* 113:2507–2516.

Eswar, N., B. Webb, M.A. Marti-Renom, M.S. Madhusudhan, D. Eramian, M.Y. Shanmugam, U. Peper, and A. Sali. 2006. Comparative protein structure modeling using Modeller. *Curr. Protoc. Bioinformatics.* Chapter 5:Unit 5.6. doi:10.1002/0471250953.bi0506s15

Fujita, M., and Y. Jigami. 2008. Lipid remodeling of GPI-anchored proteins and its function. *Biochim. Biophys. Acta.* 1780:410–420.

Fujita, M., and T. Kinoshita. 2010. Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. *FEBS Lett.* 584:1670–1677. doi:10.1016/j.fsl.2009.10.079

Fujita, M., and M. Umemura. T. Yoko-o, and Y. Jigami. 2006. PER1 is required for GPI-anchored proteins from the ER to the Golgi. *Biochem. J.* 395:153–160. doi:10.1042/BJ20050721

Haass, A., M. Jonikas, P. Walter, J.S. Weissman, Y.N. Jan, L.Y. Jan, and M. Michaelides. 2002. Oligomeric state and directional protein transport between the ER and Golgi. *J. Mol. Biol.* 324:1043–1057.

Jenne, N., K. Frey, B. Brugger, and F.T. Wieland. 2002. Oligomeric state and bond lengths and bond angles in protein structures. *J. Mol. Biol.* 324:1043–1057.

Kawasaki, N., Y. Ichikawa, I. Matsuo, K. Totani, N. Matsumoto, Y. Ito, and K. Hanada. 2007. Expression cloning of PI(4,5)P2-specific PLCδ2 and PI(3,4,5)P3-specific PLCδ1 genes in human adipocytes. *FEBS Lett.* 581:2863–2867. doi:10.1016/j.febslet.2007.09.074

Mayor, S., and H. Riezman. 2004. Sorting GPI-anchored proteins. *Nat. Rev. Mol. Cell Biol.* 5:110–120. doi:10.1038/nrm1309

Miller, E.A., T.H. Beilharz, P.N. Malkus, M.C. Lee, S. Hamamoto, L. Orci, and R. Schekman. 2003. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. *Cell.* 114(479–500). doi:10.1016/S0092-8674(03)00669-3

Muñiz, M., C. Nuoffer, H.P. Hauri, and H. Riezman. 2000. The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. *J. Cell Biol.* 148:925–930. doi:10.1083/jcb.148.5.925

Nakamura, N., N. Inoue, R. Watanabe, M. Takahashi, J. Takeda, V.L. Stevens, and T. Kinoshita. 1997. Expression cloning of PI(4,5)P2-specific PLCδ2 and PI(3,4,5)P3-specific PLCδ1 genes in human adipocytes. *FEBS Lett.* 581:2863–2867. doi:10.1016/j.febslet.2007.09.074

Paroutis, P., N. Touret, and S. Grinstein. 2004. The pH of the secretory pathway: measurement, determinants, and regulation. *Physiology (Bethesda).* 19:207–215.

Rivier, A.S., G.A. Castillo, L. Michon, M. Fukasawa, M. Romanova-Michaelides, N. Jaensch, K. Hanada, and R. Watanabe. 2010. Exit of GPI-anchored proteins from the ER differs in yeast and mammalian cells. *Traffic.* 11:1017–1033. doi:10.1111/j.1600-0854.2010.01081.x

Rojo, M., G. Emery, V. Marjomaki, A.W. McDowall, R.G. Parton, and J. Gruenberg. 2000. The transmembrane protein p23 contributes to the organization of the Golgi apparatus. *J. Cell Sci.* 113:1043–1057.

Schimmoller, F., B. Singer-Krüger, S. Schröder, U. Krüger, C. Barlowe, and H. Riezman. 1995. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. *EMBO J.* 14:1329–1339.

Stocker, A., and U. Baumann. 2003. Supernatant protein factor in complex with RRR-alpha-tocopherylquinone: a link between oxidized Vitamin E and cholesterol biosynthesis. *J. Mol. Biol.* 329:759–765. doi:10.1016/S0022-2836(03)00924-0

Stocker, A., T. Tomizaki, C. Schulze-Briese, and U. Baumann. 2002. Crystal structure of the human supernatant protein factor. *Structure.* 10:1533–1540. doi:10.1016/S0969-2126(02)00854-5

Strating, R.J., and G.J. Martens. 2009. The p24 family and selective transport processes at the ER-Golgi interface. *Biochim. Biophys. Acta.* 1791:495–509. doi:10.1016/j.bjima.2008.10.004

Tanaka, S., Y. Maeda, and T. Kinoshita. 2008. Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. *Biochem. J.* 409:555–562. doi:10.1042/BJ20070234

Takahashi, S., Y. Maeda, Y. Tashima, and T. Kinoshita. 2004. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bgp1p. *J. Biol. Chem.* 279:14256–14263. doi:10.1074/jbc.M131755200

Tashima, Y., R. Taguchi, C. Murata, H. Ashida, T. Kinoshita, and Y. Maeda. 2006. PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. *Mol. Biol. Cell.* 17:1410–1420. doi:10.1091/mbc.E05-11-1005

Umemura, M., M. Fujita, T. Yoko-o, A. Fukamizu, and Y. Jigami. 2007. *Saccharomyces cerevisiae* CW4H3 is involved in the remodeling of the lipid moiety of GPI anchors to cereamides. *Mol. Biol. Cell.* 18:4304–4316. doi:10.1091/mbc.E07-05-0482

Watanabe, R., K. Funato, K. Venkataraman, A.H. Futterman, and H. Riezman. 2002. Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. *J. Biol. Chem.* 277:49538–49544. doi:10.1074/jbc.M206209200