Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection

Ana Copaescu, MD, FRCPC,a Olivia Smibert, MBBS, FRACP,b Andrew Gibson, PhD,b Elizabeth J. Phillips, MD, FRCPC, FRACP,b,c and Jason A. Trubiano, MBBS, BBiomedSci, PhD, FRACP,a,d,e,f

Heidelberg, Parkville, and Murdoch, Australia; and Nashville, Tenn

The coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome coronavirus 2 presents with a spectrum of clinical manifestations from asymptomatic or mild, self-limited constitutional symptoms to a hyperinflammatory state (“cytokine storm”) followed by acute respiratory distress syndrome and death. The objective of this study was to provide evidence-based reviews of the associated pathways and potential treatment of the hyperinflammatory state associated with severe acute respiratory syndrome coronavirus 2 infection. Dysregulated immune responses have been reported to occur in a smaller subset of those infected with severe acute respiratory syndrome coronavirus 2, leading to clinical deterioration 7 to 10 days after initial presentation. A hyperinflammatory state referred to as cytokine storm in its severest form has been marked by elevation of IL-6, IL-10, TNF-α, and other cytokines and severe CD4+ and CD8+ T-cell lymphopenia and coagulopathy. Recognition of at-risk patients could permit early institution of aggressive intensive care and antiviral and immune treatment to reduce the complications related to this proinflammatory state. Several reports and ongoing clinical trials provide hope that available immunomodulatory therapies could have therapeutic potential in these severe cases. This review highlights our current state of knowledge of immune mechanisms.

From "the Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg; "the Department of Immunology and Infectious Diseases, Murdoch University, Murdoch; "the Department of Infectious Diseases, Vanderbilt University Medical Centre, Nashville, Tenn; "the Department of Oncology, Sir Peter MacCallum Cancer Centre, The University of Melbourne, Parkville; "the Department of Medicine (Austin Health), The University of Melbourne, Heidelberg; and "the National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Parkville.

E.I.P. receives support from National Institutes of Health grants 1P50GM115305, R21AI139021, 1 R01 HG010863, and 1R01AI152183.
and targeted immunomodulatory treatment options for the current coronavirus disease 2019 pandemic. (J Allergy Clin Immunol 2020;146:518-34.)

Key words: IL-6, sepsis, cytokine storm, cytokines, COVID-19, SARS-CoV-2, TNF-α, JAK, STING, proinflammatory, hyperinflammatory, hemophagocytic lymphohistiocytosis

The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an enormous challenge for public health and clinicians globally. Increased understanding of the immunopathogenesis of SARS-CoV-2 infection as well as ongoing clinical trials of host target drugs such as hydroxychloroquine, direct antivirals, convalescent plasma (CP), and other immunomodulatory agents hold promise for future evidence-based and targeted therapies to reduce the morbidity and mortality of the most vulnerable populations.

Although infection is often asymptomatic or associated with mild to moderate self-limiting symptoms such as fever, dry cough, myalgia, and fatigue,1-6 a subset of patients with severe SARS-CoV-2 infection develop a clinically severe hyperinflammatory state or cytokine storm (CS) for which pulmonary involvement such as acute respiratory distress syndrome (ARDS) is a cardinal feature.1,7 Furthermore, a subgroup of previously healthy children has been diagnosed with a multisystem inflammatory syndrome associated with acute SARS-CoV-2 infection that appears distinct from the adult CS.8

Although the individual components of CS are varied, IL-6 has emerged of particular interest in the context of SARS-CoV-2 infection after being identified as the most significant predictor of mortality in recent retrospective studies of patient survival in COVID-19.1 Herein, we review the current understanding of the origin and mechanisms of CS associated with SARS-CoV-2 infection, with focus on the identification and implication of IL-6 and other proinflammatory cytokines and pathways in CS-driven ARDS, and discuss the potential utility of anti–IL-6 and other cytokine-targeting immunomodulatory biologics for the treatment of this critically ill population.

SEARCH STRATEGY AND SELECTION CRITERIA

We searched PubMed for peer-reviewed articles published between January 1, 2000, and April 18, 2020 (date of last search), with the terms (“IL-6” OR “interleukin-6” OR “cytokine”) AND (“sepsis” OR “SIRS” OR “systemic inflammatory response syndrome” OR “non-infectious systemic inflammatory response syndrome” OR “ARDS” OR “acute respiratory distress syndrome” OR “cytokine storm” OR “inflammatory response” OR “septic shock” OR “critically ill” OR “organ dysfunction” OR “infection”) AND (“ICU” OR “intensive care unit” OR “ED” OR “emergency department”). A second search was oriented on treatment, with the terms (“IL-6” OR “interleukin-6” OR “IL-1” OR “interleukin-1” OR “TNF” OR “tumor necrosis factor” OR “interferon gamma” OR “STING” OR “interferon pathway”) AND (“sepsis” OR “SIRS” OR “systemic inflammatory response syndrome” OR “ARDS” OR “acute respiratory distress syndrome” OR “cytokine storm” OR “inflammatory response” OR “septic shock” OR “critically ill” OR “organ dysfunction” OR “infection”) AND (“IL-6 inhibitor” OR “interleukin-6 inhibitor” OR “JAK-STAT” OR “tocilizumab” OR “humanized IL-6R antibody” OR “anakinra” OR “IL-1 inhibitor”). Please refer to Fig E1 in this article’s Online Repository at www.jacionline.org for details concerning the number of articles entered in PubMed with the “cytokine storm” keywords.

All recent articles on COVID-19/SARS-CoV-2 were reviewed including preprints from bioRxiv and medRxiv as a more real-time resource, but realizing the lack of peer review limitation. To carefully include the proposed trials for COVID-19, we researched the ClinicalTrials.gov/trials website.

Articles published in English were selected and reviewed. There was a focus on clinical trials, meta-analysis, randomized controlled trials, and systematic reviews as well as novel and significant studies. Finally, we also identified several new references from those listed in the reviewed articles. Please note that although there is increasing information about SARS-CoV-2 and its immune consequences, most of the literature available on COVID-19 and SARS-CoV-2 infection originates from the onset of the pandemic, in China, with various publications from disease phenotype to immunopathogenesis and follow-up.

OVERVIEW OF SEPSIS AND IMMUNE DYSREGULATION

The release of large quantities of proinflammatory cytokines is termed CS and is associated with various infective precipitants and other hyperinflammatory states.2,9 Virally associated causes of particular relevance are the 2003 SARS coronavirus (SARS-CoV) infection that infected more than 8000 globally, primarily in Asia and Canada (Toronto) with an 11% mortality rate,11-14 and the 2012 Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) with a reported case-fatality rate of 35%.15-17 Although SARS-CoV-2 belongs to the same Betacoronavirus genus as SARS-CoV and MERS-CoV, the case fatality associated with both SARS-CoV and MERS-CoV significantly exceeds that of SARS-CoV-2 but the number of cases worldwide associated with SARS-CoV and MERS-CoV is much lower.18 Genomic evidence suggests that SARS-CoV and SARS-CoV-2 share the same human cell receptor for host entry, the angiotensin-converting enzyme 2 (ACE2).19 SARS-CoV-2 binds with increased affinity to the ACE2 receptor compared with SARS-CoV, a possible

Abbreviations used

ACE2: Angiotensin-converting enzyme 2
ARDS: Acute respiratory distress syndrome
BTK: Bruton’s tyrosine kinase
CAR: Chimeric antigen receptor
CP: Convalescent plasma
COVID-19: Coronavirus disease 2019
CRP: C-reactive protein
CRS: Cytokine release syndrome
CS: Cytokine storm
FDA: Food and Drug Administration
HLH: Hemophagocytic lymphohistiocytosis
JAK: Janus-associated kinase
MAS: Macrophage activation syndrome
MERS: Middle East respiratory syndrome
MERS-CoV: MERS coronavirus
SARS-CoV: SARS coronavirus
SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
STING: Stimulator of IFN genes
The immunopathogenesis of CS in the setting of a viral respiratory tract infection

The airway epithelium is part of the first line of defense in the presence of an airborne viral pathogen recognized as a pathogen-associated molecular pattern and/or damage-associated molecular pattern that bind to pattern recognition receptors such as Toll-like receptors on the surface of macrophages. The resident-activated alveolar macrophages, after several intracellular signaling cascades, generate TNF, IL-1β, and IL-6 and trigger a systemic inflammatory response (Fig 1). This simultaneously prompts a well-coordinated local innate response composed of specific enzymes (defensins, mucins, lysozymes), nitric oxide, reactive oxygen species, platelet-activating factor, and other cytokines. Other key components of the innate immunity against viral infection are the type I IFNs. In contrast with findings on the influenza virus, patients with severe COVID-19 patients have minimal peripheral quantities of type I IFNs but increased IFNs and IFN genes in the bronchoalveolar environment, a discovery associated with CS development in a mouse model of SARS-CoV infection. Furthermore, in vitro, SARS-CoV-2 failed to produce IFN expression in infected cells, indicating a dampened early innate immune response.

Monocytes and macrophages play a central role in a disruption in the mononuclear phagocyte compartment is considered to increase the COVID-19–related hyperinflammation. Also, an increase in the CD14CD16 monocytes producing IL-6 has been noted in the peripheral blood of critically ill patients with COVID-19. Bruton’s tyrosine kinase (BTK), an intracellular kinase, also appears to have a role in monocytes and macrophage activation and specifically in infection clearance by macrophages.

IL-1β is produced after the inflammasonic (especially nucleotide-binding and oligomerization domain–, leucine-rich repeats–, and pyrin domain–containing protein 3), activated by
absent in melanoma 2–sensing foreign DNA, induces the formation of caspase-1, which cleaves pro–IL-1β into IL-1β (Fig 2). In a study using single-cell RNA sequencing in the PBMCs of 10 patients with COVID-19 compared with 5 healthy controls, the authors reported an increased quantity of CD14+ monocytes with inflammatory gene expression and CD14+ IL-1β+ monocytes in the early recovery stages of SARS-CoV-2. IL-1β is also implicated in the activity of nuclear factor kappa-light-chain-enhancer of activated B cells, inducing the synthesis of various inflammatory genes of mediators such as IL-6. Thus, a reduction in IL-1β activity would reduce IL-6 production.

Following initial escape of the innate response, recognition of virus promotes the migration of pulmonary dendritic cells to the lymph nodes for presentation of antigen to passing T cells for the development of more robust antigen-specific T- and B-cell adaptive response. During this response, soluble mediators play a role in cellular function and signal transduction by binding to specific receptors on the surface of target cells. For example,
CD8\(^+\) T cells produce excessive amounts of TNF-\(\alpha\) and IFN-\(\gamma\), causing direct tissue damage, whereas activated CD4\(^+\) T cells, in the presence of transforming growth factor \(\beta\) and IL-6, will differentiate into T\(\text{H}17\)-cell subset, important for extracellular pathogen elimination and autoimmunity (Fig 1). The defining cytokines secreted by TH17 cells are IL-17A and IL-17F, which primarily target macrophages, dendritic cells, endothelial cells, and fibroblasts to increase the production of IL-1, IL-6, and TNF-\(\alpha\). In this particular setting, IL-6 will also inhibit the transforming growth factor \(\beta\)-dependent development of CD4\(^+\) regulatory T cells, a critical mediator of immune tolerance with a major role in regulating the effector T-cell response.

In the setting of CS syndromes, overactivation of effector CD4\(^+\) and CD8\(^+\) T cells and production of cytokines and chemokines generate an uncontrolled hyperinflammatory injury at the tissue level, resulting in local and distant injury. Increased inflammation is associated with peripheral blood lymphopenia, a significant drop in the lymphocyte to neutrophil ratio, and CD4\(^+\) T-cell dysfunction in observational studies but the mechanisms for these changes are unclear. In one of the first studies describing the postmortem pathological findings in 1 patient with COVID-19, peripheral flow cytometry indicated a reduced CD4\(^+\) and CD8\(^+\) cell count but an increased proportion of activation markers such as HLA-DR and CD38 as well as an increased concentration of T\(\text{H}17\) cells.

Summary statement

Inflammatory cytokines and chemokines, including IL-6, IL-1\(\beta\), and TNF-\(\alpha\), are significantly elevated in patients with severe SARS-CoV-2 infection, suggesting that CS may play a role in the SARS-CoV-2 severity, morbidity, and mortality.

THE PLEIOTROPIC ROLE OF IL-6 IN INFLAMMATORY AND VIRAL RESPONSES

IL-6 is secreted by a plethora of immune and stromal cells including monocytes, macrophages, endothelial cells, B and T cells, hepatocytes, keratinocytes, adipocytes, dendritic cells, and fibroblasts. IL-6 exerts effects on a similarly broad array of cellular targets expressing the functional IL-6 receptor (IL-6R) such as T cells, B cells, vascular endothelial cells, monocytes, and hepatocytes. As may be expected, such diversity of targets translates into functional pleiotropy including the synthesis of acute-phase proteins in the liver, such as C-reactive protein.
FIG 3. Classic and trans-signaling IL-6R. A and B, Different signaling pathways stimulated by IL-6. Binding of IL-6 to the membrane-bound or soluble IL-6 receptor (IL-6R) leads to gp130 dimerization and JAK 1–STAT 3 signaling and activation, leading to gene expression of inflammatory cytokines. This pathway is represented only in Fig 3, A, and replaced by the word “SIGNAL” in Fig 3, B. A, Classic signaling, which is restricted to several cell types, is initiated through binding of IL-6 to the membrane IL-6R and forms a complex with gp130. B, Trans-signaling is driven by IL-6 in all gp130-expressing cells. Proinflammatory functions have been found to be mediated through binding of soluble IL-6R shredded from cells undergoing ADAM17-mediated apoptosis. C and D, IL-6 blockade therapy using a humanized anti–IL-6R mAb. A humanized anti–IL-6R antibody blocks IL-6–mediated signaling pathway by inhibiting IL-6 binding to the membrane (Fig 3, C) and soluble (Fig 3, D) receptors. ADAM17, A disintegrin and metalloprotease family protein; gp130, glycoprotein 130; IL-6R, IL-6 receptor; sIL-6R, soluble IL-6R; STAT, signal transducer and activator of transcription.
TABLE I. Clinical and immunologic parameters associated with in-hospital mortality in COVID-19

Parameter	Zhou et al, 2020	Ruan et al, 2020	Wu et al, 2020	Wang et al, 2020	Li et al, 2020
Country	China	China	China	China	China
Type of study Patients	Retrospective cohort				
Comorbidities*	Age > 69 y HTN CAD Diabetes	Age > 68 y HTN CAD	Age > 65 y HTN	NA	Age > 65 y HTN Male
Clinical†	† SOFA score † > 4.5 Dyspnea Respiratory failure ARDS AKI Other infection		Dyspnea	NA	NA
Laboratory*	Lymphopenia < 0.6 × 10^9/L Leucopenia < 4 × 10^9/L † Procalcitonin < 0.1 ng/mL † Creatinine > 133 μmol/L † D-dimer > 1 μg/mL † ALT > 40 U/L † LDH > 245 U/L † Troponin I > 28 pg/mL † CK > 185 U/L † Ferritin > 300 μg/L	Lymphopenia < 0.6 × 10^9/L Leucocytosis > 10.6 × 10^9/L † CRP > 126.6 mg/L † Creatinine > 91.2 μmol/L † Urea > 8.6 μmol/L † Troponin I > 30 pg/mL † Myoglobin > 258.9 ng/mL	Lymphopenia < 0.6 × 10^9/L Leucocytosis > 10.6 × 10^9/L † CRP > 126.6 mg/L † Creatinine > 91.2 μmol/L † Urea > 8.6 μmol/L † Troponin I > 30 pg/mL † Myoglobin > 258.9 ng/mL	Lymphopenia < 0.6 × 10^9/L Leucocytosis > 10.6 × 10^9/L † CRP > 126.6 mg/L † Creatinine > 91.2 μmol/L † Urea > 8.6 μmol/L † Troponin I > 30 pg/mL † Myoglobin > 258.9 ng/mL	Leucocytosis > 5 × 10^9/L Lymphopenia < 0.6 × 10^9/L Leucocytosis > 10.6 × 10^9/L † CRP > 126.6 mg/L † Creatinine > 91.2 μmol/L † Urea > 8.6 μmol/L † Troponin I > 30 pg/mL † Myoglobin > 258.9 ng/mL
IL-6	Non survivors (N = 54) 11 (7.5-14.4) pg/mL Survivors (N = 137) 6.3 (5.0-7.9) pg/mL	Non survivors† (N = 68) 11.4 ± 8.5 ng/mL Survivors† (N = 82) 6.8 ± 3.6 ng/mL (N = 82)	Non survivors† (N = 44) 10.1 (7.4-14.8) pg/mL Survivors† (N = 117) 6.3 (5.4-7.8) pg/mL	NA	NA

AKI, Acute kidney injury; ALT, alanine transaminase; CAD, coronary artery disease; CK, creatine kinase; HTN, hypertension; LDH, lactate dehydrogenase; NA, not available; SOFA, Sequential Organ Failure Assessment.

Values are expressed as mean ± SD or mean (interquartile range).

*Only statistically significant variables are presented (P < .05).

†SOFA score: This score includes multiple parameters such as assessment of respiratory status (partial pressure of oxygen, fraction of inspired oxygen and oxygen saturation), coagulation parameters (platelets), liver function (bilirubin), hypotension, central nervous assessment with Glasgow coma score, and renal function (creatinine).

‡The IL-6 units reported in these studies do not compare with the units generally presented. Unfortunately, the method used for measuring IL-6 was not provided.

(CRP), which is a surrogate for IL-6; the decreased production of proteins such as albumin; the differentiation of B cells into plasma cells; and hematopoiesis and other metabolic and neurologic processes.34-36 CRP is an acute-phase reactant that binds the phospholipid component of microorganisms and damaged cells that is frequently used as a screening marker of infection and/or inflammation.33

IL-6 affects cellular immunity with both proinflammatory and anti-inflammatory functions. IL-6 genetic knockout mice present with varied impairments of inflammatory response including a well-documented increased susceptibility to microbial infection, whereas humans expressing defective IL-6 receptors experience a hyper-IgE syndrome—like disorder that clinically manifests as dermatitis and recurrent (staphylococcal and mycotic) infections, highlighting the important role that IL-6 likely plays in the diverse pathways of IgE-mediated allergy and microbial defense.35

Contrasting inflammatory functions of IL-6 are mediated through its modality of receptor binding. Classical binding of IL-6 to the membrane-bound IL-6 receptor (IL-6R) leads to glycoprotein 130 dimerization, Janus-associated kinase (JAK) 1 signaling, and activation, among others, of the classical RAS/RAF/mitogen-activated protein kinase pathways, leading to anti-inflammatory responses (Fig 3).36 Although all human cells display preformed, inactive glycoprotein 130 receptors on their cell surface, this receptor remains inactive without the presence of IL-6R, which is expressed only on certain cell types.31 However, proinflammatory functions have been found to be mediated through binding of soluble IL-6R, termed trans-signaling, with important ramifications for potential therapeutic targeting.31 It has been shown that an important source of soluble IL-6R is shedded from cells undergoing ADAM17-mediated apoptosis, which controls mononuclear phagocyte recruitment, leading to amplified inflammatory response.31 The proinflammatory responses of IL-6 are mediated by trans-signaling, whereas the anti-inflammatory functions are probably realized by classic signaling (Fig 3).36 Selective blockage of this trans-signaling pathway is likely to have the beneficial effect of blocking inflammation without the undesirable off-target effects of broad immune suppression.

Summary statement

IL-6 has major effects on cellular immunity with both proinflammatory and anti-inflammatory functions.

The role of IL-6 and other mediators in the response to SARS-CoV-2 infection

A multitude of markers for COVID-19 severity have been proposed such as CD4+ and CD8+ T-cell lymphopenia3,5,54 as
well as global lymphopenia. Homing of lymphocytes to the lungs is significantly increased in nonsurvivors compared with survivors. A number of publications now highlight that an increase in IL-6 correlates with disease severity, including sepsis, ARDS, or mechanical ventilation, and mortality. These initial results indicate that IL-6 is associated with sepsis, organ failure, and death. The structural N protein of coronaviruses performs an essential role during host cell entry as well as viral particle assembly and release. The N protein from SARS-CoV-2, defined as the development of sepsis, ARDS, requires an increase in IL-6 correlates with severe response to SARS-CoV-19 included in the studies (no healthy controls included). This value was recorded upon hospital admission and predicted either sepsis or mortality. The IL-6 units reported in these studies do not match the units generally presented. Unfortunately, the method used for measuring IL-6 was not provided.

Summary statement

Several recent publications have shown that an increase in the proinflammatory cytokine IL-6 correlates with disease severity, defined as sepsis, ARDS, or mechanical ventilation, and mortality in SARS-CoV-2.

Lessons from IL-6 and other proinflammatory states including sepsis

IL-6 levels are considered to be undetectable, or below 10 pg/mL, with some intertest variability, in healthy controls. Conversely, mean IL-6 levels at presentation appear highest in severe sepsis (51.4 pg/mL) compared with patients who do not develop severe sepsis (36.5 pg/mL; P < .03) in a study of community-acquired pneumonia. This response is highly specific for severe disease, and some studies indicate a role in disease progression, demonstrating up to a 4-fold decrease in IL-6 3 days after initial diagnosis. Moreover, IL-6 levels appear to drop abruptly in survivors while remaining higher in nonsurvivor groups. Nonetheless, IL-6 currently represents one of the best characterized markers of disease severity and an early rise in IL-6 is associated with sepsis, organ failure, and death.

TABLE II. Review of hospital admission IL-6 values in patients with COVID-19

Reference	Setting Country	N	Control* (pg/mL)	Cutoff (pg/mL)	Critical ill patients (pg/mL)	Predictor of complications (pg/mL)	Predictor of mortality (pg/mL)	Method for IL-6 monitoring
4	Hospital Germany	40	19.6 (0-76.5), N = 27	80	NA	121.0 (19.2-430.0), N = 13	NA	NA
5§	Hospital China	201	6.3 (5.4-7.8) pg/L, N = 117	NA	6.1 (5.1-6.7) pg/L, N = 40	7.4 (5.6-10.9) pg/L, N = 84	10.1 (7.4-14.8) pg/L, N = 44	NA
6§	Hospital China	150	6.8 ± 3.6 ng/mL, N = 82	NA	NA	NA	11.4 ± 8.5 ng/mL, N = 68	NA
1	Hospital China	191	6.3 (5.0-7.9), N = 137	NA	NA	NA	11.0 (7.5-14.4), N = 54	NA
55	Hospital China	48	10.4 (3.8-31.0), N = 21	100	64 (25.6-111.9), N = 17	NA	NA	ECLIA (Roche Ltd)
56	Hospital China	43	10.6 (5.1-24.2), N = 28	24.3	NA	36.1 (23.0-59.2), N = 17	NA	ECLIA (Rochecobase601)
60	Hospital China	43	6.7 (4.4-12.4), N = 36	NA	NA	51.7 (34.3-161.7), N = 7	NA	NA
54	Hospital China	53	13.4 ± 1.8, N = 45	NA	37.8 ± 7.8, N = 18	NA	NA	FMBA (Qingdao Raisecare Biotechnology Co)

ECLIA, Electrochemiluminescence method; FMBA, flow cytometer microsphere-based assay; NA, not available. Values are expressed as mean ± SD or mean (interquartile range). N is the number of patients included in each study.

*The “control” IL-6 value represents the patients diagnosed with mild symptoms of COVID-19 included in the studies (no healthy controls included).

†Some studies included IL-6 levels after hospital admission and during disease progression.

§This value was recorded upon hospital admission and predicted either sepsis or mortality.
Reference	Population/IL-6 dosage technique	Setting Country	Study design	N	Control* (pg/mL)	Cutoff	Sepsis† (pg/mL)	Predictor of sepsis‡ (pg/mL)	Predictor of mortality (pg/mL)	
12	Patients with SARS-CoV Detection level NA (CBA)	Hospital Taiwan	MCRC	88	7.5 ± 30.4	NA	245.7 ± 770.2	NA	387.2 ± 911.82	
59	Patients with SARS-CoV Detection >10 pg/mL (ELISA)	Hospital China	SCPC	228	61.0 ± 10.1	NA	NA	163 ± 513	517 ± 796 (severe)	NA
68	Patients with SIRS, sepsis (S), and septic shock (C) Detection level NA (ELISA)	ED Korea	SCPC	142	23.6 (11.2-43.5)	52.60 (S)	348.9 (C)	NA	89.9 (45.2-272.6) (S) 1,378.6 (256.4-11,062.1) (C) ≥348.9	7,609.5 (4,526.0-12,208.4) (28 d)
70	Critically ill patients with organ dysfunction Detection level NA (RT)	ICU Japan	SCPC	100	104 (46-152)	152	NA	720 (183-7,656)	NA	
62	Patients with severe sepsis Detection level NA (ELISA)	ED Taiwan	SCPC	76	32.9 (0-663.5)	NA	NA	223.4 (3.1-979.1) septic shock	196.3 (0.5-979.1)	
73	Patients with sepsis Detection level NA (ELISA)	ICU Finland	MCPC	61	426 (234-1,000)	NA	NA	NA	1,000 (269-2,000)	
74	Patients with SIRS Detection level > 9.7 pg/mL (ELISA)	ICU Malaysia	SCPC	239	183 (61-358)	238 (86-3,159)	1,127 (218-8,643) (30 d)			
64	Patients with SIRS Detection level NA (ECLIA)	ED Korea	SCPC	177	55.3 ± 100.9	75 (sepsis) 145 (shock)	NA	900.1 ± 1,643.4	1,018.8	
69	Patients with infection suspicion Detection level NA (ECLIA)	ED Finland	SCPC	539	15.3 (1.5-653)	NA	NA	93.5 (1.5-43 790)	NA	
71	Patients with infection and SIRS Detection level NA (ECLIA)	ICU Switzerland	SCPC	78	44.2	200	NA	NA	1,000	
75	Patients with major trauma (female vs male) Detection level NA (ELISA)	ED Germany	SCPC	343	163.7 ± 25.98	NA	NA	363.9 ± 72.58	NA	
61	Patients with major trauma Detection level > 7.8 pg/mL (ELISA)	ICU France	SCPC	100	55.7 (45.9-83.8)	NA	NA	95.1 (71.3-210.3)	NA	
65	Patients with major trauma Detection level > 7.8 pg/mL (ELISA)	Trauma unit Switzerland	SCRC	1,032	282.1 ± 39.8	NA	NA	551.6 ± 124.1	NA	
63	Patients with CAP Detection level > 5.9 pg/mL (ECLIA)	ED The United States	MCPC	1,426	38.7	NA	98.7	51.4	109.4 (90 d)	

CBA, Human Tα1/Tβ2 cytokine or chemokine bead array kit; CAP, community-acquired pneumonia; ED, emergency department; ECLIA, electrochemiluminescence method; ICU, intensive care unit; NA, not available; RT, routine testing; SIRS, systemic inflammatory response syndrome.

Types of study design: SCRC, single-center retrospective cohort; SCPC, single-center prospective cohort; MCRC, multicenter retrospective cohort; MCPC, multicenter prospective cohort.

Values are expressed as mean ± SD or mean (interquartile range). N is the number of patients included in each study.

*The control group does not include any healthy controls.

†The authors calculated a cutoff value that could predict sepsis.

‡Some studies included IL-6 levels dosed after sepsis diagnostic.

§This initial value was recorded on admission to the hospital (ED) or ICU depending on the study and predicted either sepsis or mortality.
TABLE IV. Cytokine release storm—Grades and treatment76

Grade	Clinical manifestations	Recommended treatment
1: Mild	Patients require symptomatic treatment only	Supportive care (fluids, antipyretics, analgesics as needed)
	Fever \(\pm \) other constitutional symptoms (no organ dysfunction)	
2: Moderate	Symptoms respond to moderate intervention	Supportive care
	Hypoxia (oxygen requirement < 40\% \(\text{FiO}_2\)) or hypotension (responsive to IV fluids or low-dose vasopressors)	Cardiac and other organ function monitoring
	Grade 2 organ toxicitya	If comorbidities or older age, consider treatment as per grade 3
3: Severe	Symptoms respond to aggressive intervention	Tocilizumab§
	Hypoxia (oxygen requirement \(\geq 40\% \text{FiO}_2\)) or hypotension requiring high-dose or multiple vasopressors	Adults: 4 mg/kg
	Grade 3 organ toxicity† or grade 4 transaminitis‡	Children: 8 mg/kg
		Repeat the dose if clinical improvement does not occur within 24-48 h
		± low-dose corticosteroids∥
4: Life-threatening	Requirement for mechanical ventilation or grade 4 organ toxicity† (excluding transaminitis)	Tocilizumab
		± low-dose corticosteroids∥

aCTCAE grade 2: Moderate; minimal, local, or noninvasive intervention indicated; limiting age-appropriate instrumental activities of daily living.

bCTCAE grade 3: Severe or medically significant but not immediately life-threatening; hospitalization or prolongation of hospitalization indicated; disabling; limiting self-care.

cCTCAE grade 4: Life-threatening consequences; urgent intervention indicated.

§Dose of tocilizumab approved for adults and children with rheumatoid arthritis.

∥Data concerning the use of steroids in COVID-19 are limited. Please refer to the National Institutes of Health treatment guidelines.77

Assigning discrete cutoff values for IL-6 to enable its use as a clinical diagnostic tool has remained ill-defined because of variations in the literature. Song et al68 demonstrated in 142 patients that an IL-6 cutoff value of 52.60 pg/mL and 348.9 pg/mL was associated with a diagnostic and prognostic value, respectively, in patients with systemic inflammatory response syndrome.68 In contrast, in another systemic inflammatory response syndrome cohort (N = 177), a cutoff of 75 pg/mL for sepsis and 145 pg/mL for septic shock was defined.55 Thus, even if further clarification is required, the literature demonstrates that elevated IL-6 values are associated with sepsis or septic shock development.82,69-71 This is also supported by a 2016 meta-analysis of 2680 critically ill patients from 22 studies—the use of IL-6 was of moderate diagnostic capacity and relatively high specificity in defining sepsis from other systemic inflammatory response syndrome,72 and, thus, IL-6 may be of utility to confirm infectious causation in patients with complex presentation while considering the limitation in terms of availability of IL-6 levels. The specific IL-6 values from critically ill patients are represented in Table III.12,59,61-65,68-71,73-75

Summary statement
As with the development of any novel diagnosis and because increased levels of IL-6 are associated with sepsis and septic shock, clinical cutoffs must be defined.

Lessons from IL-6 response in chimeric antigen receptor T-cell–associated cytokine release syndrome
There are similarities between the immunopathology of sepsis-associated CS and the cytokine release syndrome (CRS), a well-described complication of chimeric antigen receptor T-cell (CAR T-cell) therapy or hematopoietic cell transplantation. Although these terms should not be interchangeably, CRS was described as part of the CS syndromes.14 The CRS is a cytokine-mediated systemic inflammatory disease that groups signs and symptoms of multiple organ damage ranging from mild constitutional symptoms (grade 1) to end-organ damage (grade 4).23,24 Multiple grading systems for CRS have been provided in the literature, and a commonly used one is presented in Table IV. In the case of CRS, the cytokines are released directly by the infused CAR T cells or by other immune cells such as macrophages in response to the cytokines produced by the CAR T cells.73 In some series of CRS, serum IL-6 levels correlated with the activation of potent T lymphocytes and CAR T-cell expansion, predicting subsequent therapeutic response and tumor control.22,74 Humanized IL-6R inhibitors such as tocilizumab have been integrated into CAR T-cell treatment protocols to preemptively manage CRS.

ROLE OF BIOLOGICAL IMMUNOTHERAPIES IN SARS-CoV-2
Targeting IL-6
The use of biomarkers such as IL-6 and downstream CRP to recognize early the hyperinflammatory state of SARS-CoV-2 infection has been proposed as a trigger point for using immunologic therapies. Importantly, many such immunotherapies are already available for different treatment indications including those that target the IL-6 and IL-6R. Tocilizumab is a humanized anti–IL-6R antibody engineered by grafting the complementarily determining regions of a mouse antihuman IL-6R antibody into a human IgG1κ to create a human antibody with a human IL-6R binding site. Critically for the opposing proinflammatory and anti-inflammatory functions previously discussed, tocilizumab binds to both membrane-bound and soluble IL-6R for total inhibition of IL-6 signal transduction (Fig 3). The main side effects of completely blocking IL-6 signaling are neutropenia, thrombocytopenia,
Name	Commercial name	Target	Role	FDA indications	Trials Country	Planned clinical trials
Tocilizumab	Actemra RoActemra	Membrane or soluble IL-6R	Inhibits IL-6 signal transduction	CRS, Rheumatoid arthritis, Giant cell arteritis, Juvenile idiopathic arthritis	COVACTA-the United States	NCT04320615
						NCT04356937
						NCT04331795
						NCT04346355
						NCT04332913
						NCT04317092
						NCT04315480
						Spain
						NCT04335305
						NCT04332094
						NCT04331808
						NCT04330638
						Greece
						NCT04339712
						Switzerland
						NCT04335071
						Denmark
						NCT04322773
						Malaysia
						NCT04345445
						China
						NCT04310028
						NCT04306705
Sarilumab	Kevzara	Membrane or soluble IL-6R	Inhibits IL-6 signal transduction	Rheumatoid arthritis	International	NCT04327388
						The United States
						Canada
						France
						Spain
						Belgium
Siltuximab	Sylvant	IL-6	Inhibits IL-6 signal transduction	Multicentric Castleman disease	Italy	NCT04322188
						Spain
						Belgium
						NCT0430638
Anakinra	Kineret	Type 1 IL-1 receptor	Inhibits IL-1α and IL-1β signal transduction	Rheumatoid arthritis	The United States	NCT04362111
						Italy
						Greece
						France
						NCT04357366
						NCT043411584
Canakinumab	Ilaris	IL-1β	Blocking IL-1β interaction with IL-1 receptors	Periodic fever syndromes	Italy	NCT04348448
Ruxolitinib	Jakafi Jakavi	JAK1, JAK2 inhibitor	Inhibits cytokine-induced STAT phosphorylation	Myelofibrosis, Polycythemia Vera, Acute graft-versus-host disease	The United States	NCT04354714
						Canada
						Mexico
						Germany
						Spain
						NCT04348071
						NCT04331665
						NCT04334044
						NCT04359290
						NCT04348695
Tofacitinib	Xeljanz	JAK1, JAK2, JAK3, TYK2 inhibitor	Inhibits cytokine-induced STAT phosphorylation	Rheumatoid arthritis, Psoriatic arthritis, Ulcerative colitis	Italy	NCT04332042
Baricitinib	Olumiant	JAK2 (JAK 1/3, TYK2), AAK1 inhibitor	Inhibits cytokine-induced STAT phosphorylation	Rheumatoid arthritis	The United States	NCT04340232
						Canada
						Italy
						NCT04321993
						NCT04332073
Fedratinib	Inrebec	JAK2, FLT3, and BRD4 inhibitor	Inhibits cytokine-induced STAT phosphorylation	Myelofibrosis	None	None
Acalabrutinib	Calquence	BTK	Inhibits BTK signaling/B-cell activation	Mantle cell lymphoma, Chronic lymphocytic leukemia, Small lymphocytic lymphoma	The United States	NCT04380688
						Europe
						NCT04346199
Eculizumab	Soliris	Complement protein C5	Inhibits C5 cleavage to C5a and C5b (prevents formation of C5b-9)	Paroxysmal nocturnal hemoglobinuria (PNH)	The United States	NCT04288713
Ravulizumab	Ultomiris	Complement protein C5	Inhibits C5 cleavage to C5a and C5b (prevents formation of C5b-9)	Paroxysmal nocturnal hemoglobinuria (PNH)	The United States	NCT04369469
						NCT04390464
Emapalumab	Gamifant	IFN-γ	Binds to and neutralizes IFN-γ	Primary HLH	Italy	NCT04324021
and liver enzyme abnormalities. Serious infections have been reported in patients treated long-term with tocilizumab so caution should be used. Nonetheless, tocilizumab is Food and Drug Administration (FDA) approved for not only rheumatoid arthritis for which it was originally developed and provides beneficial relief from this largely T17-driven disease, but, more recently, for severe or life-threatening (grade 3 or 4) CRS associated with CAR T-cell therapy (Table IV) with a dramatic reversal of the clinical manifestations. For CRS, initial studies dosed patients at 8 mg/kg and 12 mg/kg infused intravenously over 60 minutes, with up to 3 additional doses if needed (minimum 8 hours between consecutive doses). Responders were defined as patients with symptom resolution within 14 days.

Because of the proposed benefits of using tocilizumab in patients with CAR T-cell–induced CRS and the described similarities between CRS and CS following infection, randomized trials are recruiting in COVID-19. In certain centers, tocilizumab has been used in a compassionate access fashion in critically severe patients with COVID-19. A retrospective study from China (N = 21) that used tocilizumab 400 mg intravenous drip (single dose) with or without lopinavir/ritonavir and methylprednisolone demonstrated improvement in fever, hypoxemia, CRP levels, and pulmonary computed tomography imaging, without adverse events. The mean CRP levels before the drug were 75.06 ± 66.80 mg/L and decreased to 38.13 ± 54.21 mg/L at day 1, 10.61 ± 13.79 mg/L at day 3, and 2.72 ± 3.60 mg/L at day 5. The mean IL-6 level before the first dose of tocilizumab was 132.38 ± 278.54 pg/mL. Although follow-up IL-6 levels were not subsequently ascertained in this study, the pretreatment IL-6 concentration aligns with severe disease cutoffs in those studies mentioned earlier. Of immense importance for monitoring, increased serum IL-6 may be expected after initial treatment with tocilizumab. Indeed, it is considered that the usual IL-6R–mediated consumption of IL-6 is altered by the bound between tocilizumab and IL-6R and that the IL-6 level during tocilizumab treatment probably reflects disease activity. Furthermore, in this study, IL-6 was also significantly increased in 20 healthy volunteers 7 days after a single dose of tocilizumab (3.0 ± 0.6 pg/mL at baseline and 9.3 ± 1.0 pg/mL at day 7). Therefore, it is proposed that posttocilizumab use, monitoring of CRP may be a more appropriate assay for monitoring inflammation. A French center has also shared its experience with tocilizumab 8 mg/kg (up to 2 doses) in 30 severe patients with SARS-CoV-2, defined as requiring more than 6 L/min oxygen therapy with rapid changes in oxygen needs (increase of more than 3 L/min in 12 hours) and having a more than 5-day disease diagnosis. The authors found that, when compared with a matched control group, the drug decreased the need for mechanical ventilation and intensive care unit admission (23 of 30). Finally, in an observational study from the United States, 153 patients with severe COVID-19 (defined as patients requiring supplemental oxygen and critical disease) were treated with an 8 mg/kg intravenous tocilizumab dose (maximum 800 mg). When compared with the nonsevere group, survival rates were similar (P = .11). In light of these promising results, the FDA has approved a randomized, double-blind, placebo-controlled phase III clinical trial A Study to Evaluate the Safety and Efficacy of Tocilizumab in Patients With Severe COVID-19 Pneumonia (COVACTA) with 55 locations in North America and Europe. This trial aims to assess the efficacy and safety of intravenous tocilizumab in patients with severe SARS-CoV-2 infection (NCT04320615). Similarly, a multicenter, randomized controlled trial was started in China to test the efficacy and safety of tocilizumab in the treatment of patients with COVID-19 pneumonia and elevated IL-6 levels (ChiCTR2000029765). The Italian Regulatory Drug Agency (Agenzia italiana del farmaco; AIFA) has approved a multicenter, single-arm, open-label, phase 2 study (TOCIVID-19) where all the patients will be treated with tocilizumab 8 mg/kg intravenously (up to a maximum of 800 mg per dose), the primary goal being to assess the mortality rate after the first month (EudraCT: 2020-001110-38). There are currently more than 20 registered COVID-19–associated tocilizumab trials (Table V). A study registered in Greece proposes to individualize immunomodulatory treatment including tocilizumab or anakinra in COVID-19 depending on their cytokine profile (NCT04339712).

Sarilumab, an mAb to IL-6 receptor, is also being investigated in COVID-19 trials. A French multicenter randomized controlled trial (Cohort Multiple Randomized Controlled Trials Open-label of Immune Modulatory Drugs and Other Treatments in COVID-19 Patients - Sarilumab Trial; CORIMUNO-SARI) aiming to assess the efficacy and safety of sarilumab versus standard of care is ongoing (NCT04324073). Two additional industry-driven clinical trials (NCT04315298 and NCT04327388) aiming to assess the efficacy and safety of sarilumab in patients hospitalized with COVID-19 are recruiting. Although the clinical outcome data for sarilumab are lacking, the comparative response with tocilizumab will be of interest given the longer half-life of sarilumab and greater affinity for the IL-6R.
Siltuximab, a chimeric mAb targeting IL-6 directly and preventing binding to both soluble and membrane-bound IL-6 receptors, is FDA approved for the multicentric Castleman disease. Anakinra is a nonglycosylated human decoy IL-1 receptor antagonist (IL-1Ra) that binds to the type 1 IL-1 receptor and inhibits IL-1α and IL-1β signal transduction. This drug is FDA approved for rheumatoid arthritis and neonatal-onset multisystem inflammatory disease and suggested in the treatment algorithm for secondary HLH/MAS.

A recent study found that the serum IL-1β levels were undetectable in 100% (N = 17) of the patients with severe or moderate SARS-CoV-2 infection, an expected result considering the mechanism of action of this exocrine cytokine. Anakinra was used in a cohort from Italy to treat 29 adult patients diagnosed with COVID-19-related moderate to severe ARDS and hyperinflammation (defined as serum CRP ≥100 mg/L, ferritin ≥900 ng/mL, or both). Survival was 90% compared with 56% in a standard treatment group (N = 16) (P = .009). Other improvements included a reduction in CRP and a decrease in mechanical ventilation use. Posttreatment inflammatory relapse was not reported and the treatment was well tolerated.

Furthermore, the post hoc analysis of a phase III randomized controlled trial studying the use of anakinra in severe sepsis indicated a significant improvement in survival of patients with sepsis with features of MAS in the absence of any severe adverse reactions. CORIMUNO-ANA is a trial that aims to determine the efficacy of anakinra in SARS-CoV-2-infected patients (NCT04341584). Anakinra will be administered twice daily as decreasing doses of intravenous infusions (400 mg on day 1, 2, and 3; 200 mg on day 4; and 100 mg on day 5). Canakinumab is a human anti–IL-1β mAb that blocks IL-1β interaction with the IL-1 receptor for which there is currently 1 registered observational study (NCT04348448).

Targeting IL-1β

IL-1β leads to an increase in body temperature, lung inflammation, and fibrosis. Increased levels of IL-1β were noted in patients diagnosed with SARS-CoV-2 and similar to IL-6, were associated with increased mortality in sepsis. Anakinra is a nonglycosylated human decoy IL-1 receptor antagonist (IL-1Ra) that binds to the type 1 IL-1 receptor and inhibits IL-1α and IL-1β signal transduction. This drug is FDA approved for rheumatoid arthritis and neonatal-onset multisystem inflammatory disease and suggested in the treatment algorithm for secondary HLH/MAS.

Targeting TNF-α and IFN-γ

Similar to IL-1β, TNF-α has a direct role in acute systemic inflammation and is increased in patients with severe SARS-CoV-2 infection. However, this finding is not consistent among the different studies. Besides the observational reports that indicate an increase in the levels of this cytokine, a direct pathogenic mechanism of cellular viral entry involving the shedding of the coronavirus’ functional receptor, the ACE2, was studied. This process of binding and shedding of the ACE2 is coupled with production and the production of a TNF-α–converting enzyme. Thus, it has been suggested that an anti-TNF drug could not only inhibit TNF-α directly but also downregulate the expression and shedding of ACE2. Also, some studies showed a decrease in sepsis-related mortality with anti-TNF treatment.

There are multiple commercialized anti-TNF biologics. Adalimumab is a recombinant human IgG1 mAb that specifically binds to human TNF-α and blocks its interaction with the p55 and p75 cell-surface TNF receptors. This drug could be potentially useful in managing severe COVID-19 manifestations. To analyze the benefits of an anti–TNF-α treatment in COVID-19, a randomized controlled trial of adalimumab injection in severe patients with COVID-19 has been registered (ChiCTR2000030089).

Similar to TNF, the major proinflammatory cytokine IFN-γ is also increased in the CS associated with COVID-19. IFN-γ was particularly well described in patients with SARS-CoV-2 and may be targeted by emapalumab for which a comparative multicenter randomized clinical trial is also underway in combination with anakinra (NCT04324021).

Targeting IL-17

Another cytokine that could have a role in the CS caused by COVID-19 is IL-17. This was not a cytokine of interest in the recent SARS-CoV-2 studies, and the only study that characterized IL-17 in COVID-19 found normal levels using a flow cytometry method.

As described in this review, IL-17 stimulates the production of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α. Secukinumab is a human IgG1κ mAb that binds to IL-17A (inhibits the interaction with the IL-17 receptor) and is currently used for plaque psoriasis and several rheumatological conditions. The further rational for inhibiting IL-17 is that it is a proximal target to IL-1 and IL-6 and, hence, could reduce neutrophil recruitment to the lungs and prevent organ dysfunction in ARDS. To our knowledge, there are no ongoing trials involving this drug.

Targeting JAK

Targeting the T₃₄₇ pathway, research on murine models showed promising results with the use of fedratinib, a JAK2 inhibitor. In this study, the drug decreased the expression of IL-17. Because IL-6 and IL-23 are signals for T₃₄₇ cell initial differentiation and effector function through the JAK2-signal transducer and activator of transcription 3 pathway, the use of this inhibitor could decrease the proinflammatory function of T₃₄₇. This drug is currently FDA approved for myelofibrosis. To our knowledge, there are no current registered trials involving this drug.

As mentioned, the cell-surface ACE2 receptor is needed for coronavirus endocytosis, and one of the regulators of this process is the AP2-associated protein kinase 1, part of the numb-associated kinase family. AP2-associated protein kinase 1 inhibitors have been shown to prevent virus infections by disrupting viral cell invasion. Baricitinib is an oral JAK inhibitor (JAK1/ JAK2, JAK1/JAK3, JAK1/tyrosine kinase 2, and JAK2/tyrosine kinase 2) but also an AP2-associated protein kinase 1 inhibitor, having direct antiviral activity, that is currently FDA approved for rheumatoid arthritis resistant to anti-TNF drugs. Several trials are ongoing to confirm its safety and efficacy, and it is also being investigated in combination therapy with remdesivir (NCT04340232, NCT04321993, and NCT04320277). Remdesivir, an adenosine analogue with demonstrated antiviral activity against a broad range of RNA virus families, has been used in a randomized placebo-controlled trial showing a decrease in time to recovery (15 vs 11 days) and a trend toward decrease in
mortality.99 This drug gained an FDA approval for use in children and adults with severe COVID-19.

Ruxolitinib is a JAK1 and JAK2 inhibitor that mediates the signaling of numerous cytokines such as IL-6, IFN-γ, and growth factors with essential roles in immune function and hematopoiesis. This drug is FDA approved for myelofibrosis, hydroxyurea-resistant polycythemia vera, and steroid-refractory acute graft-versus-host disease.100 A multicenter, single-blinded, randomized trial (1:1) of 44 patients with COVID-19 showed a tendency (not statistically significant) toward improvement in clinical outcomes in the ruxolitinib group.101 Several larger clinical trials from North American and Europe are ongoing (Table V).

Another attractive drug is tofacitinib, which has been shown to inhibit the in vitro activity of JAK1/JAK2, JAK1/JAK3, and JAK2/JAK2 and thus decrease the related cytokines. According to the FDA, it can be used for rheumatoid arthritis, psoriatic arthritis, and ulcerative colitis.31 There is a planned Italian trial that aims to assess the advantage of early administration of tofacitinib in SARS-CoV-2–related interstitial pneumonia (NCT04332042).

Serious bacterial, mycobacterial, fungal, and viral infections have been reported with the use of JAK inhibitors. This potential off-target effect of these drugs combined with the decreased IFN innate response can lead to severe complications, and caution should be used in the SARS-CoV-2 context with theoretical benefit for the anti-JAK molecules that have more specific targets.

Other targeted immunomodulatory therapies and combination therapies

As described, the production of cytokines and chemokines by macrophages is regulated by the BTK. Thus, inhibition of this protein could be a promising strategy for reducing COVID-19–related complications, with therapeutic inhibition of BTK in patients with lymphoid malignancies resulting in decreased proinflammatory cytokines.

Company-sponsored trials with acalabrutinib, a small-molecule inhibitor of BTK enzymatic activity, that aim to study its efficacy and safety compared with best supportive care in hospitalized patients with COVID-19 are currently listed and will begin recruitment shortly in the United States and Europe (Table V).

By sensing self or pathogenic cytosolic double-stranded DNA, the cyclic guanosine monophosphate-adenosine monophosphate synthetase stimulator of IFN genes (STING) plays an important role in innate immunity and tumor development.102 STING is expressed in T cells, monocytes, natural killer cells, and dermal fibroblasts, and cyclic guanosine monophosphate-adenosine monophosphate synthetase-STING signaling promotes the production of IL-6 and the downstream activation of signal transducer and activator of transcription 3.102 The STING–IFN-β pathway is triggered by the binding of cyclic guanosine monophosphate-adenosine monophosphate synthetase to STING, which leads to IFN regulatory factor 3 phosphorylation and subsequent transcription of the gene encoding IFN-β.103 The JAK receptors and their specific pathways are activated by the IFN-β binding to its receptor. The regulation of STING and other proinflammatory cytokine genes is also achieved with the synthesis and release of IFNs. Thus, this proinflammatory loop can be obstructed by JAK inhibition.103

Combination therapy with lopinavir-ritonavir, ribavirin, and IFN-β-1b compared with lopinavir-ritonavir monotherapy was evaluated in an intention-to-treat multicenter, randomized phase 2 clinical trial from China. The primary end point was the time before a negative nasopharyngeal swab (RT-PCR) in patients with SARS-CoV-2, with the median time reported for the combination group (N = 86) being 7 days and the time in the control group (N = 41) being 12 days (P = .0010).104 Anti Coronavirus Therapies COVID-19 is a clinical trial that aims to evaluate the combination of chloroquine and azithromycin with subcutaneous injection of IFN-β1b for SARS-CoV-2 prevention by assessing admission to intensive care, mechanical ventilation, and/or death (NCT04324463).

The complement system is also a potential therapeutic target in SARS-CoV-2 infection. Complement is key to the innate immune response to all viruses, and complement inhibition is a potential treatment for severe SARS-CoV-2 infection by reducing the severity and end-organ consequences of the innate immune response.105,106 A recent mouse model suggested that complement activation through C3 exacerbates SARS-CoV–associated ARDS and that C3-deficient mice infected with SARS-CoV showed less respiratory decline.107 Lung biopsy samples from patients with SARS-CoV-2–associated ARDS showed evidence of complement activation with C3 fragment deposition and associated increased serum 5a levels.108 However, there is little clinical data on the potential role of complement activation and its role in ARDS associated with SARS-CoV-2. There are now several proposed and ongoing studies examining the role of C5 inhibitors such as eculizumab and ravulizumab (Table V).

Convalescent plasma

Given the lack of evidence-based treatment and the novelty of this disease, CP has re-emerged as an emergency intervention passive immunization strategy aiming to decrease morbidity and mortality in critically ill patients with COVID-19.108,109 This treatment has been shown to be favorable during the SARS-CoV infection with a decrease in hospital stays and mortality compared with controls.110,111 Also, a recent systematic review, while acknowledging the limited data, indicated that CP is safe and clinically effective and can play a role in reducing mortality.112 The described mechanisms of action are direct neutralization of the virus aimed at the spike viral protein113,114 as well as other immunomodulatory and anti-inflammatory functions such as neutralization of cytokines, complement, and autoantibodies.108 A clinical report on the use of CP in critically ill patients with SARS-CoV-2 showed a hypothetical benefit with decrease in body temperature, increase in respiratory function, and ARDS resolution in 4 of the 5 patients included.112 In an open-label, multicenter, randomized clinical trial from China, adding convalescent plasma to the treatment plan did not result in increased clinical recovery.115 Several questions remain unanswered regarding CP, and there is a need for larger randomized controlled trials to answer these questions, but emerging successful reports related with its use in severe COVID-19 highlight the intense inflammatory response that accompanies this infection.

Summary statement

Clinical trials are urgently warranted to evaluate a therapeutic strategy targeting upstream and downstream pathways in SARS-CoV-2. The effective dose and the ideal administration
timing of the immunomodulatory drugs remain under investigation.

CONCLUSIONS

Severe SARS-CoV-2 infection is associated with CS producing a hyperinflammatory state and a clinical and laboratory picture similar to hemophagocytic lymphohistiocytosis that typically occurs 7 to 10 days after the onset of acute illness. In this setting, IL-6 levels correlate with respiratory failure, poor outcomes, and mortality. Blocking this and other appealing cytokines and signaling pathways at an early stage shows promise to target specific and undesirable immune responses in the setting of acute SARS-CoV-2 infection. Currently, studies examining the combination of direct antiviral agents with immunomodulatory therapy are ongoing and will be important in the quest to prevent acute respiratory deterioration, ventilation use, morbidity, and mortality from SARS-CoV-2 infection.

We thank Al Chorfi for graphic design work and Austin Health Sciences Library for access to the medical literature.

REFERENCES

1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62.
2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
3. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180:1-11.
4. Herold T, Janusovici V, Arreich C, Hellmuth J, von Bergwelt-Baildon M, Klein M, et al. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients [published online ahead of print April 10, 2020]. medRxiv. https://doi.org/10.1101/2020.04.01.20047581.
5. Chen G, Wu D, Guo WZ, Cao Y, Huang D, Wang H, et al. Clinical and immunologic features in severe and moderate coronavirus disease 2019. J Clin Invest 2020;130:2620-9.
6. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.
7. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846-8.
8. Ripphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theoharides T. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020;395:1607-8.
9. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 2017;39:517-28.
10. Tsiscick JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012;76:16-32.
11. Zhang X, Wu K, Wang D, Yue X, Song D, Zhu Y, et al. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. Virology 2007;365:324-35.
12. Huang JK, Su JJ, Theron M, Wu YC, Lai SK, Liu CC, et al. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 2005;75:185-94.
13. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39:529-39.
14. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 2006;12:1203-7.
15. Choi WS, Kang CI, Kim Y, Choi JP, Jho JS, Shin HS, et al. Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea. Infect Chemother 2016;48:118-26.
16. Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 2014;20:301-6.
17. Azhar EI, Hui DSC, Memish ZA, Drosten C, Zumla A. The Middle East respiratory syndrome (MERS). Infect Dis Clin North Am 2019;33:891-905.
18. Petrozzino N, Viccione G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 2020;26:729-34.
19. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020;94:e01227-20.
20. Behrens EM, Koretzky GA. Review: cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheumatol 2017;69:1135-43.
21. Filpovich A, McClain K, Grom A. Histiocytic disorders: recent insights into pathophysiology and clinical guidelines. Biol Blood Marrow Transplant 2010;16:582-9.
22. Schuett GS, Grom AA. Macrophage activation syndrome and cytokine-directed therapies. Best Pract Res Clin Rheumatol 2014;28:277-92.
23. Beutel G, Wiessner O, Eder M, Hafer C, Schneider AS, Kielenstein JT, et al. Virus-associated hemophagocytic syndrome as a major contributor to death in patients with 2009 influenza A (H1N1) infection. Crit Care 2011;15:R80.
24. Schuett GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Annu Rev Med 2015;66:145-59.
25. Miettumata PM, Narendran A, Jayanthan A, Behrens EM, Cron RJ. Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin-1 inhibition following conventional immunosuppressive therapy: case series with 12 patients. Rheumatology (Oxford) 2011;50:417-9.
26. Shakoory B, Caccillo JA, Chatham WW, Anidru RL, Zhao H, Dinarello CA, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med 2016;44:275-81.
27. Schuett GS, Zhang M, Fall N, Husami A, Kelliss D, Hansoh A, et al. Whole-exome sequencing reveals mutations in genes linked to hemophagocytic lymphohistiocytosis and macrophage activation syndrome in fatal cases of H1N1 influenza. J Infect Dis 2016;213:1180-8.
28. Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, et al. Spread of SARS-CoV-2 in the Icelandic population. N Engl J Med 2020;392:3702-15.
29. Deza Leon MP, Redzepi A, McGrath E, Abdel-Haq N, Shawaqfeh A, Sethuraman U, et al. COVID-19 associated pediatric multi-system inflammatory syndrome. J Pediatric Infect Dis Soc 2020;9:407-8.
30. Jones VG, Mills M, Suarez D, Hogan CA, Yeh D, Segal JB, et al. COVID-19 and Kawasaki disease: novel virus and novel case. Hosp Pediatr 2020;10:537-40.
31. Faix JD. Biomarkers of sepsis. Crit Rev Clin Lab Sci 2013;50:23-36.
32. Chalmers S, Khawaja A, Wieruszewski PM, Gajic O, Odeym Y. Diagnosis and treatment of acute pulmonary inflammation in critically ill patients: the role of inflammatory biomarkers. World J Crit Care Med 2019;8:59-71.
33. Acharya D, Liu G, Mack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol 2020;20:397-9.
34. Chu H, Chan FY, Wang Y, Yuen TT, Chai Y, Hou Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19 [published online ahead of print April 9, 2020]. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa410.
35. O’Brien TR, Thomas DL, Jackson SS, Prokunina-Oldsson L, Donnelly RP, Hartmann R. Weak Induction of interferon expression by SARS-CoV-2 supports clinical trials of interferon lambda to treat early COVID-19 [published online ahead of print April 17, 2020]. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa453.
36. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndrome and immunosuppression. Lancet 2020;395:1033-4.
37. Merald M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages [published online ahead of print May 6, 2020]. Nat Rev Immunol. https://doi.org/10.1038/s41577-020-0331-4.
38. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID 19 patients [published online ahead of print March 13, 2020]. Natl Sci Rev. https://doi.org/10.1093/nsr/nwaa041.
39. Zhang D, Guo R, Li L, Liu H, Wang Y, Wang Y, et al. COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome [published online ahead of print March 26, 2020]. medRxiv. https://doi.org/10.1101/2020.03.24.20042555.
COPAESCU ET AL

101. Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, et al. Ruxolitinib in treatment of severe rheumatoid arthritis. Rheum Dis Clin North Am 2004;30:365-80, vii.

102. Pei J, Zhang Y, Luo Q, Zheng W, Li W, Zeng X, et al. STAT3 inhibition enhances CDN-induced STING signaling and antitumor immunity. Cancer Lett 2019;450:110-22.

103. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med 2014;371:507-18.

104. Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple combination of interferon-beta-1b, lipopolysaccharide, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 2020;395:1695-704.

105. Risitano AM, Mastellos DC, Huber-Lang M, Yancopoulou D, Garlanda C, Ciceri F, et al. Complement as a target in COVID-19? Nat Rev Immunol 2020;20:343-4.

106. Campbell CM, Kahlwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation 2020;141:1739-41.

107. Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio 2018;9:e01753-18.

108. Rojas M, Rodriguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, Gallo JE, et al. Convalescent plasma in COVID-19: possible mechanisms of action. Autoimmun Rev 2020;19:102554.

109. Bloch EM, Shoahm S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020;130:2757-65.

110. Soo YO, Cheng Y, Wong WS, Lee CK, Ng MI, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005;24:44-6.

111. Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MI, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect 2004;10:676-8.

112. Rajendran K, Krishnasamy N, Rangarajan J, Rathinam J, Natarajan M, Ramachandran A. Convalescent plasma transfusion for the treatment of COVID-19: systematic review [published online ahead of print May 1, 2020]. J Med Virol. https://doi.org/10.1002/jmv.25961.

113. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20:398-400.

114. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020;323:1582-9.

115. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial [published online ahead of print June 3, 2020]. JAMA. https://doi.org/10.1001/jama.2020.10044.
FIG E1. “Cytokine Storm” in PubMed Search (1985-May 2020). The figure represents the number of articles entered in PubMed from 1985 to May 2020. This marks several events that have led to CS including the 1985 original description in graft-versus-host disease, a small increase during the 2003-2005 SARS-CoV, a more significant number for the 2009-2010 H1N109, and the ongoing rise in publications associated with SARS-CoV-2.