DEFORMATIONS OF CALABI–YAU THREEFOLDS AND THEIR MODULI OF VECTOR BUNDLES

E. GASPARIM, T. KÖPPE, F. RUBILAR, AND B. SUZUKI

ABSTRACT. We describe deformations of the noncompact Calabi–Yau threefolds $W_k = \text{Tot}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1}(k-2))$ for $k = 1, 2, 3$, as well as their moduli of holomorphic vector bundles of rank 2. Deformations are computed concretely by calculations of $H^1(W_k, TW_k)$. Information about the moduli of vector bundles is obtained by analysing bundles that are extensions of line bundles. We show that for each $k = 1, 2, 3$ the associated structures are qualitatively different, and we also comment on their difference from the analogous structures for the simpler noncompact twofolds $\text{Tot}(\mathcal{O}_{\mathbb{P}^1}(-k))$ which had been studied previously by the authors.

CONTENTS

1. Motivation 1
2. Statements of results 2
3. Comparison with the deformation theory of surfaces 3
4. Some results about surfaces 4
4.1. A holomorphic bundle on $Z_{(-1)}$ that is not algebraic 4
4.2. Deformations of Z_k 6
5. The threefolds W_k and their moduli of vector bundles 7
6. Rigidity of W_1 8
7. Deformations of W_2 8
7.1. A non-affine deformation 10
8. Deformations of W_3 11
Acknowledgements 13
References 13

1. Motivation

Our motivation to study deformations of Calabi–Yau threefolds comes from mathematical physics. In fact, deformations of complex structures of Calabi–Yau threefolds enter as terms of the integrals defining the action of the theories of Kodaira–Spencer gravity [B]. As we shall see, in general our threefolds will have infinite-dimensional deformation spaces, thus allowing for rich applications. Here we describe their deformation theory and features of their moduli spaces of holomorphic vector bundles.
We consider smooth Calabi–Yau threefolds W_k containing a line $\ell \cong \mathbb{P}^1$. For the applications we have in mind for future work it will be useful to observe the effect of contracting the line to a singularity. The existence of a contraction of ℓ imposes heavy restrictions on the normal bundle [Jim], namely $N_{\ell/W}$ must be isomorphic to one of

(a) $\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(0)$, (b) $\mathcal{O}_{\mathbb{P}^1}(-2) \oplus \mathcal{O}_{\mathbb{P}^1}(0)$, or (c) $\mathcal{O}_{\mathbb{P}^1}(-3) \oplus \mathcal{O}_{\mathbb{P}^1}(1)$.

Conversely, Jiménez states that if $\mathbb{P}^1 \cong \ell \subset W$ is any subspace of a smooth threefold W such that $N_{\ell/W}$ is isomorphic to one of the above, then:

- in (a) ℓ always contracts,
- in (b) either ℓ contracts or it moves, and
- in case (c) there exists an example in which ℓ does not contract nor does any multiple of ℓ (i.e. any scheme supported on ℓ) move.

W_1 is the space appearing in the basic flop. Let X be the cone over the ordinary double point defined by the equation $xy - zw = 0$ on \mathbb{C}^4. The basic flop is described by the diagram:

\begin{align*}
\begin{array}{c}
\begin{tikzpicture}
 \node (W) at (0,0) {W};
 \node (Wm) at (-2,-2) {W^-_1};
 \node (Wp) at (2,-2) {W^+_1};
 \node (X) at (0,-4) {X};
 \draw[->] (W) -- (Wm) node [midway, left] {p_1};
 \draw[->] (W) -- (Wp) node [midway, right] {p_2};
 \draw[->] (Wm) -- (X) node [midway, below] {π_1};
 \draw[->] (Wp) -- (X) node [midway, below] {π_2};
\end{tikzpicture}
\end{array}
\end{align*}

Here $W := W_{x,y,z,w}$ is the blow-up of X at the vertex $x = y = z = w = 0$, $W^-_1 := Z_{x,z}$ is the small blow-up of X along $x = z = 0$ and $W^+_1 := Z_{y,w}$ is the small blow-up of X along $y = w = 0$. The basic flop is the rational map from W^- to W^+. It is famous in algebraic geometry for being the first case of a rational map that is not a blow-up.

Thus, we will focus on the Calabi–Yau cases

$$W_k := \text{Tot}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1}(k-2))$$

for $k = 1, 2, 3$.

We observe that from the point of view of moduli of vector bundles the cases $k \geq 4$ behave quite similarly to the case $k = 3$. We will also consider surfaces of the form

$$Z_k := \text{Tot}(\mathcal{O}_{\mathbb{P}^1}(-k))$$

for comparison in Sections 3 and 4.

2. Statements of results

We describe deformations and moduli of vector bundles for complex surfaces and threefolds which are the total spaces of (sums of) line bundles on the complex projective line \mathbb{P}^1.

Regarding surfaces, in contrast to what happens in the case of Z_k with $k > 0$, where all holomorphic vector bundles are algebraic [G1, Lem. 3.1, Thm. 3.2], we present in Prop. 4.2 a holomorphic vector bundle on $Z_{(-1)}$ that is not algebraic. Moreover, we prove that the deformations of the
surfaces Z_k, described in [BG], can be obtained from the deformations of the Hirzebruch surfaces F_k, Lem. 4.4.

For the case of the Calabi–Yau threefolds W_k, Thm. 5.3 shows that the generic part of the moduli of algebraic bundles of splitting type $(j, -j)$ (see Def. 5.2) on W_k is smooth and of dimension $4j - 5$. Thm. 5.4 shows that all holomorphic bundles on W_1 are algebraic; a detailed treatment appears in [K]. In contrast, we present a holomorphic bundle on W_3 that is not algebraic, Cor. 4.3. For W_1 the moduli of holomorphic bundles is finite-dimensional, Cor. 5.5. For W_2, however, the moduli spaces are infinite-dimensional, Thm. 5.6, with greater detail appearing in [R].

Our results on deformations of the threefolds W_k are as follows. We show that W_1 has no deformations, Thm. 6.1, whereas W_2 has an infinite-dimensional deformation space, Thm. 7.1. Furthermore, we exhibit a deformation W_2 of W_2 which turns out to be a non-affine manifold, a very different case from that of surfaces Z_k, $k > 0$, where all the deformations are affine varieties. Finally, we give an infinite-dimensional family of deformations of W_3 which is not universal, but is semiuniversal, Cor. 8.4. The case W_2 is quite different from W_1, W_2, or the surfaces. The tools used so far to describe deformation spaces and moduli have not been sufficient for W_3, therefore must we look for more effective techniques. We know from Cor. 4.3 that W_3 contains properly holomorphic bundles, and that we will have infinite-dimensional moduli spaces. The cases $k \geq 3$ present similar features; we will continue their study in future work.

3. Comparison with the deformation theory of surfaces

Several results are known for the case of deformations of the surfaces Z_k. It turned out rather interestingly that the results we obtained for threefolds are not at all analogous to the ones for surfaces.

[BGK2, Thm. 4.11] showed that the holomorphic vector bundles on Z_k with splitting type $(-j, j)$ (see Def. 5.2) are quasiprojective varieties of dimension $2j - k - 2$. In contrast, we will see that moduli spaces of holomorphic bundles on the threefolds W_2 and W_3 are infinite-dimensional.

[BG, Thm. 6.11] showed that the moduli spaces of vector bundles on a nontrivial deformation of Z_k are zero-dimensional. Thus classical deformations of Z_k do not give rise to deformations of their moduli of vector bundles. This will not be the case for W_k.

Regarding applications to mathematical physics, the deformations of surfaces turned out rather disappointing, because instantons on Z_k disappear under a small deformation of the base [BG, Thm. 7.3]. This resulted from the fact that deformations of Z_k are affine varieties. The case of threefolds is a lot more promising, since for $k > 1$, W_k has deformations which are not affine.
Nevertheless, deformations of the surfaces Z_k turned out to have an interesting application to a question motivated by the Homological Mirror Symmetry conjecture. [BBGGS, Sec. 2] showed that the adjoint orbit of $s_l(2, \mathbb{C})$ has the complex structure of the nontrivial deformation of Z_2, and it used this structure to construct a Landau–Ginzburg model that does not have projective mirrors. Further applications to mirror symmetry give us another motivation to study deformation theory for Calabi–Yau threefolds.

4. SOME RESULTS ABOUT SURFACES

In this section we prove some results about the surfaces Z_k that will be used in the development of the theory for threefolds.

4.1. A holomorphic bundle on $Z_{(-1)}$ that is not algebraic. By definition $Z_{(-1)} = \text{Tot}(\mathcal{O}_P^1(+1))$, and in canonical coordinates $Z_{(-1)} = U \cup V$, where $U = \{(z, u)\}$ and $V = \{ (\xi, v) \}$, $U \cap V \cong \mathbb{C}^* \times \mathbb{C}$, with change of coordinates given by:

$$(\xi, v) \mapsto (z^{-1}, z^{-1} u).$$

Lemma 4.1. $H^1(Z_{(-1)}, \mathcal{O}(-2))$ is infinite-dimensional, generated as a vector space over \mathbb{C} by the monomials $z^l u^i$ with $l = -2, -1$ and $i = 1, 2, \ldots$.

Proof. A 1-cocycle σ can be written in the form

$$\sigma = \sum_{i=0}^{+\infty} \sum_{l=-\infty}^{+\infty} \sigma_{i,l} z^l u^i.$$

Since monomials containing nonnegative powers of z are holomorphic in U, these are coboundaries, thus

$$\sigma \sim \sum_{i=0}^{+\infty} \sum_{l=-\infty}^{-1} \sigma_{i,l} z^l u^i,$$

where \sim denotes cohomological equivalence. Changing coordinates, we obtain

$$T \sigma = z^2 \sum_{i=0}^{+\infty} \sum_{l=-\infty}^{-1} \sigma_{i,l} z^{l+2} u^i = \sum_{i=0}^{+\infty} \sum_{l=-\infty}^{-1} \sigma_{i,l} z^{l+2} u^i,$$

where terms satisfying $l + 2 \leq -1$ are holomorphic on V. Thus, the non-trivial terms on $H^1(Z_{(-1)}, \mathcal{O}(-2))$ are all those that have either $l = -2$ or $l = -1$. Hence

$$H^1(Z_{(-1)}, \mathcal{O}(-2)) = \langle z^l u^i : l = -2, -1, \ i \geq 1 \rangle.$$

□

Proposition 4.2. The bundle E over $Z_{(-1)}$ defined in canonical coordinates by the matrix

$$(4.1) \quad \begin{bmatrix} z^1 & z^{-1} e^u \\ 0 & z^{-1} \end{bmatrix}$$

is holomorphic but not algebraic.
Proof. This bundle E can be represented by the element
\[z^{-1} e^u \in \text{Ext}^1(\mathcal{O}(1), \mathcal{O}(-1)) \cong H^1(Z_{(-1)}, \mathcal{O}(-2)). \]
We have
\begin{equation}
(4.2) \quad \begin{bmatrix} z^1 & z^{-1} e^u \\ 0 & z^{-1} \end{bmatrix} = \begin{bmatrix} z^1 \sigma \\ 0 \ z^{-1} \end{bmatrix}
\end{equation}
with $z^{-2} e^u = \sigma \in H^1(Z_{(-1)}, \mathcal{O}(-2))$, see [Har, p. 234]. Observe that
\[z^{-2} e^u = z^{-2} \left(1 + u + \frac{u^2}{2} + \cdots + \frac{u^n}{n!} + \cdots \right) = z^{-2} + z^{-2} \left(\underbrace{u + \frac{u^2}{2} + \frac{u^3}{6} + \cdots + \frac{u^n}{n!} + \cdots}_{\gamma} \right), \]
where the monomials in $\gamma \in \langle z^l u^i : l = -2, -1, i \geq 1 \rangle$ represent pairwise distinct nontrivial classes in $H^1(Z_{(-1)}, \mathcal{O}(-2))$ as shown in Lemma 4.1. Consequently, the class $z \sigma \in \text{Ext}^1(\mathcal{O}(1), \mathcal{O}(-1))$ corresponding to the bundle E cannot be represented by a polynomial, hence E is holomorphic but not algebraic. \hfill \square

Corollary 4.3. The threefold W_3 has holomorphic bundles that are not algebraic.

Proof. Consider the map $p: W_3 \to Z_{(-1)}$ given by projection on the first and third coordinates, that is, in canonical coordinates as in (8.1) we see $Z_{(-1)}$ as cut out inside W_3 by the equation $u_1 = 0$. Then the pullback bundle $p^* E$ is holomorphic but not algebraic on W_3. \hfill \square

4.1.1. A similar bundle on Z_1. It is instructive to verify the result of defining a bundle by the same matrix, but over the surface Z_1 instead. Recall that $Z_1 = U \cup V$, with change of coordinates given by:

\[(\xi, v) \mapsto (z^{-1}, z u) \]

Consider the bundle E on Z_1, given by transition matrix
\begin{equation}
(4.3) \quad \begin{bmatrix} z^1 & z^{-1} e^u \\ 0 & z^{-1} \end{bmatrix}.
\end{equation}

Note that this is the same matrix used in (4.1). Thus E corresponds to the element $z^{-1} e^u \in \text{Ext}^1(\mathcal{O}(1), \mathcal{O}(-1)) = H^1(Z_1, \mathcal{O}(-2))$. Consequently, we may rewrite the transition function
\begin{equation}
(4.4) \quad \begin{bmatrix} z^1 & z^{-1} e^u \\ 0 & z^{-1} \end{bmatrix} = \begin{bmatrix} z^1 \sigma \\ 0 \ z^{-1} \end{bmatrix}
\end{equation}
where $z^{-2} u = \sigma \in H^1(Z_1, \mathcal{O}(-2))$. But $\sigma = \xi^3 \nu$ is holomorphic on the V chart, and hence a coboundary. Thus $\sigma = 0 \in H^1(Z_1, \mathcal{O}(-2))$, and accordingly $z^{-1} e^u = 0 \in \text{Ext}^1(\mathcal{O}(1), \mathcal{O}(-1))$. Therefore the extension splits and
\[E = \mathcal{O}(-1) \oplus \mathcal{O}(1). \]
4.2. **Deformations of** Z_k. [BG, Thm. 5.3] construct a $(k - 1)$-dimensional semiuniversal deformation space \mathcal{Z} for Z_k given by

\begin{equation}
(\xi, v, t_1, \ldots, t_{k-1}) = (z^{-1}, z^k u + t_{k-1} z^{k-1} + \cdots + t_1 z, t_1, \ldots, t_k).
\end{equation}

Lemma 4.4. Deformations of Z_k can be obtained from deformations of \mathbb{F}_k. Thus, the family \mathcal{Z} is not universal.

Proof. We compare deformations of the surfaces Z_k with those of the Hirzebruch surfaces. Let us first rewrite them as homogeneous manifolds. The surface $Z_k = \text{Tot}(\mathcal{O}(-k))$ can also be written as the quotient

$$Z_k = \frac{(\mathbb{C}^2 - \{0\}) \times \mathbb{C}}{\mathbb{C} - \{0\}}.$$

where the action is given by

$$(l_0, l_1, t) \sim (\lambda l_0, \lambda l_1, \lambda^{-k} t),$$

with $\lambda \in \mathbb{C} - \{0\}$. For $k \in \mathbb{Z}_+$, the Hirzebruch surface \mathbb{F}_k can also be written as the quotient

$$\mathbb{F}_k = \frac{(\mathbb{C}^2 - \{0\}) \times (\mathbb{C}^2 - \{0\})}{(\mathbb{C} - \{0\}) \times (\mathbb{C} - \{0\})}.$$

where the action is given by

$$(l_0, l_1, t_0, t_1) \sim (\lambda l_0, \lambda l_1, \lambda^k \mu t_0, \mu t_1),$$

with $\lambda, \mu \in \mathbb{C} - \{0\}$. Choose coordinates $(t_1, \ldots, t_{k-1}, [l_0, l_1], [x_0, \ldots, x_{k+1}])$ for the product $\mathbb{C}_t^{k-1} \times \mathbb{P}_1 \times \mathbb{P}_x^{k+1}$. [M, Chap. II] shows that the Hirzebruch surface \mathbb{F}_k has a $(k - 1)$-dimensional semiuniversal deformation space given by the smooth subvariety $M \subset \mathbb{C}_t^{k-1} \times \mathbb{P}_1 \times \mathbb{P}_x^{k+1}$ cut out by the equations

\begin{equation}
l_0(x_1, x_2, \ldots, x_k) = l_1(x_2 - t_1 x_0, \ldots, x_k - t_{k-1} x_0, x_{k+1}).
\end{equation}

Let \mathcal{Z} and M denote the deformations given by 4.5 and 4.6, respectively. Now consider the following map:

$$f : \mathcal{Z} \rightarrow M$$

$$(z, u, t_1, \ldots, t_{k-1}) \mapsto (t_1, \ldots, t_{k-1}, [1, z], [-1, z_1, \ldots, z_k, u])$$

$$(\xi, v, t_1, \ldots, t_{k-1}) \mapsto (t_1, \ldots, t_{k-1}, [\xi, 1], [-1, v_1, v_2, \ldots, v_{k+1}]).$$

where we used the following notation:

\begin{align*}
z_1 &= z^k u + t_{k-1} z^{k-1} + \cdots + t_1 z & \xi_2 &= \xi v - t_1 \\
z_2 &= z^{k-1} u + t_{k-1} z^{k-2} + \cdots + t_2 z & \xi_3 &= \xi^2 v - t_1 \xi - t_2 \\
&\vdots & \vdots \\
z_{k-1} &= z^2 u + t_{k-1} z & \xi_k &= \xi^{k-1} v - t_1 \xi^{k-2} - \cdots - t_{k-1} \\
z_k &= z u & \xi_{k+1} &= \xi^k v - t_1 \xi^{k-1} - \cdots - t_{k-1} \xi
It turns out that this map is injective and satisfies $f(Z_t) \subset M_t$ for all $t \in \mathbb{C}^{k-1}$. Notice that, for each $t \in \mathbb{C}^{k-1}$, we can decompose M_t as

$$M_t = A_t \cup B_t,$$

where $A_t = \{ p \in M_t, x_0 = 0 \}$ and $B_t = \{ p \in M_t, x_0 \neq 0 \}$. It then follows that

- $B_t = f(Z_t)$, and
- A_t is the boundary of B_t,

implying as a corollary that: $M_t = M_{t'}$ if and only if $Z_t = Z_{t'}$.

So we conclude that each Z_k has as many deformations as F_k, specifically, $\lfloor k/2 \rfloor$. In particular, the deformation family of Z_k is not universal.

\[\square\]

5. \textbf{THE THREEFOLDS W_k AND THEIR MODULI OF VECTOR BUNDLES}

The threefolds $W_k = \text{Tot}(\mathcal{O}_{\mathbb{P}^1}(-k)) \oplus \mathcal{O}_{\mathbb{P}^1}(k-2)$ can be given canonical coordinate charts as follows.

\textbf{Notation 5.1.} We fix once and for all coordinate charts on W_k, to which we will refer as \textit{canonical coordinates},

\begin{equation}
U = \mathbb{C}^3 = \{(z, u_1, u_2)\} \quad \text{and} \quad V = \mathbb{C}^3 = \{ (\xi, v_1, v_2) \},
\end{equation}

such that on the intersection $U \cap V = \mathbb{C} - \{0\} \times \mathbb{C} \times \mathbb{C}$ they satisfy

\begin{equation}
(\xi, v_1, v_2) = (z^{-1}, z^k u_1, z^{2-k} u_2).
\end{equation}

\textbf{Definition 5.2.} Let E be a holomorphic rank-r vector bundle on W_k (or Z_k), and consider the restriction of E to the distinguished line $\mathbb{P}^1 \subset W_k$ (or $\mathbb{P}^1 \subset Z_k$). By Grothendieck’s splitting principle there are integers a_i such that $E|_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1}(a_r)$. We call (a_1, \cdots, a_r) the \textit{splitting type} of E.

Köppe studied moduli of \textit{algebraic} rank-2 vector bundles on W_k for $k = 1, 2, 3$. The variety formed by vector bundles whose extension class is nontrivial on the first infinitesimal neighbourhood of the \mathbb{P}^1 forms what can be regarded as the generic part of the moduli space $\mathcal{M}_j(W_k)$ of bundles on W_k with splitting type $(-j, j)$.

\textbf{Theorem 5.3.} [K, Prop. 3.20] For $k = 1, 2, 3$, the generic part of the moduli of algebraic bundles $\mathcal{M}_j(W_k)$ is smooth of dimension $4j - 5$.

We observe that the cases of moduli of algebraic bundles on W_k for $k > 3$ have not been described in the literature, but it seems most likely that they present a similar behaviour as the case $k = 3$ with the same dimension for the generic part of the moduli of rank-2 algebraic bundles. Thus, the generic part of these moduli of vector bundles does not provide any tool for distinguishing these threefolds from one another. We will see that the situation is quite the opposite with respect to their deformation theory. The situation changes a bit when we consider holomorphic bundles. We have:
Theorem 5.4. [K, Thm. 3.10] Holomorphic bundles on W_1 are filtrable and algebraic.

Corollary 5.5. Moduli spaces of holomorphic bundles on W_1 are finite-dimensional.

Theorem 5.6. W_2 has infinite-dimensional moduli of holomorphic bundles.

Proof. For brevity we give just an example. Consider the moduli space that contains the tangent bundle of W_2. The Zariski tangent space of this moduli space at TW_2 is given by the cohomology $H^1(W_2, \text{End}(TW_2))$, which is infinite-dimensional. Indeed, Čech cohomology calculations show that $H^1(W_2, \text{End}(TW_2))$ is generated as a \mathbb{C}-vector space by the following cocycles:

$$(0, \ldots, 0, z^{-1}u_1 u_2^k, 0, \ldots, 0), (0, \ldots, 0, z^{-i}u_2^k, 0, \ldots, 0) \text{ for } i = 1, 2, 3,$$

$$(0, \ldots, 0, z^{-1}u_2^k, 0, \ldots, 0), (0, \ldots, 0, z^{-1}u_2^k, 0, \ldots, 0) \text{ for } k \geq 0.$$

□

6. RIGIDITY OF W_1

Theorem 6.1. [R] W_1 is rigid, that is, its complex structure has no deformations.

Proof. Deformations of complex structures are parametrised by first cohomology with coefficients in the tangent bundle. Direct calculation of Čech cohomology shows that $H^1(W_1, TW_1) = 0$. □

7. DEFORMATIONS OF W_2

Theorem 7.1. [R] W_2 has an infinite-dimensional family of deformations.

Proof. The proof will follow from Lemmas 7.2 and 7.3 below. First we show that the first cohomology with tangent coefficients is infinite-dimensional. Then we show that its cocycles are integrable, and thus they parametise deformations of W_2. □

Lemma 7.2. $H^1(W_2, TW_2)$ is generated as a vector space over \mathbb{C} by cocycles of the form $(0, z^{-1}u_2^j, 0), j \geq 0$ (written in canonical coordinates).

Proof. Recall that W_2 can be covered by

$$U = \{(z, u_1, u_2)\} \quad \text{and} \quad V = \{ (\xi, v_1, v_2) \},$$

with $U \cap V = \mathbb{C} - \{0\} \times \mathbb{C} \times \mathbb{C}$ and transition function given by:

$$((\xi, v_1, v_2)) = (z^{-1}, z^2u_1, u_2).$$
We have then that the transition function for TW_2 is

$$A = \begin{bmatrix} -z^{-2} & 0 & 0 \\ 2zu_1 & z^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Let σ be a 1-cocycle, i.e. a holomorphic function on $U \cap V$:

$$\sigma = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=-\infty}^{\infty} \begin{bmatrix} a_{ij} \\ b_{ij} \\ c_{ij} \end{bmatrix} z^l u_i u_j.$$

But

$$\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} \begin{bmatrix} a_{ij} \\ b_{ij} \\ c_{ij} \end{bmatrix} z^l u_i u_j$$

is a coboundary, so

$$\sigma \sim \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=-\infty}^{\infty} \begin{bmatrix} a_{ij} \\ b_{ij} \\ c_{ij} \end{bmatrix} z^l u_i u_j = \sigma',$$

where \sim denotes cohomological equivalence. So

$$A\sigma' = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=-\infty}^{\infty} \begin{bmatrix} -a_{ij}z^{-2} \\ 2a_{ij}z u_1 + b_{ij}z^2 \\ c_{ij} \end{bmatrix} z^l u_i u_j$$

$$= \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=-\infty}^{\infty} \begin{bmatrix} -a_{ij}z^{-4} \\ 2a_{ij}z^3(u_1^2 + b_{ij}z^2) \\ c_{ij}z^{-2} \end{bmatrix} z^{2i-l-2} u_1^i u_2^j$$

$$= \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=-\infty}^{\infty} \begin{bmatrix} -a_{ij}\xi^4 \\ 2a_{ij}\xi^3 v_1 + b_{ij} \xi^2 \\ c_{ij}\xi^2 \end{bmatrix} \xi^{2i-l-2} v_1^i v_2^j.$$

Except for the case where $l = -1$ and $i = 0$, we have that $2i - l - 2 \geq 0$, thus the corresponding monomials are holomorphic in V and hence coboundaries. It follows that

$$A\sigma' \sim \sum_{j=0}^{\infty} \begin{bmatrix} -a_j\xi^4 \\ 2a_j\xi^3 v_1 + b_j \\ c_j\xi^2 \end{bmatrix} \xi^{-1} v_2^j$$

$$\sim \sum_{j=0}^{\infty} \begin{bmatrix} 0 \\ b_j \\ 0 \end{bmatrix} \xi^{-1} v_2^j,$$
where we omit the indices \(-1\) for \(l\) and \(0\) for \(i\) for simplicity. We conclude then that \(H^1(W_2, TW_2)\) is infinite-dimensional, generated by the sections

\[
\sigma_j = \begin{bmatrix}
0 \\
z^{-1}u^j \\
0
\end{bmatrix}
\]

for \(j \geq 0\).

\[\square\]

Lemma 7.3. All cocycles in \(H^1(W_2, TW_2)\) are integrable.

Proof. We can write the transition of \(W_2\) as:

\[
\begin{bmatrix}
\xi \\
v_1 \\
v_2
\end{bmatrix} = \begin{bmatrix}
z^{-1} \\
z^2u_1 \\
0
\end{bmatrix} = \begin{bmatrix}
z^{-2} & 0 & 0 \\
0 & z^2 & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
z \\
u_1 \\
u_2
\end{bmatrix}.
\]

As we computed in Lemma 7.2, \(H^1(W_2, TW_2)\) is generated by the sections

\[
\begin{bmatrix}
0 \\
z^{-1}u^j \\
0
\end{bmatrix}
\]

for \(j \geq 0\). Then we can express the deformation family for \(W_2\) as

\[
\begin{bmatrix}
\xi \\
v_1 \\
v_2
\end{bmatrix} = \begin{bmatrix}
z^{-2} & 0 & 0 \\
0 & z^2 & 0 \\
0 & 0 & 1
\end{bmatrix} \left(\begin{bmatrix}
z \\
u_1 \\
u_2
\end{bmatrix} + \sum_{j \geq 0} t_j \begin{bmatrix}
z^{-1}u^j \\
0
\end{bmatrix} \right)
\]

i.e. we have an infinite-dimensional deformation family given by

\[
U = \mathbb{C}^3_{z, u_1, u_2} \times \mathbb{C}[t_j] \quad \text{and} \quad V = \mathbb{C}^3_{\xi, v_1, v_2} \times \mathbb{C}[t_j]
\]

with

\[
(\xi, v_1, v_2, t_0, t_1, \ldots) = (z^{-1}, z^2u_1 + \sum_{j \geq 0} t_jzu^j_2, u_2, t_0, t_1, \ldots)
\]

on the intersection \(U \cap V = (\mathbb{C} - \{0\}) \times \mathbb{C} \times \mathbb{C}[t_j].\)

\[\square\]

7.1. A non-affine deformation. The proof of 7.3 gives us that deformations of \(W_2\) are threefolds given by change of coordinates of the form

\[
(\xi, v_1, v_2) = (z^{-1}, z^2u_1 + \sum_{j \geq 0} t_jzu^j_2, u_2).
\]

We consider now the example \(W_2\) that occurs when \(t_1 = 1\) and all \(t_j\) vanish for \(j \neq 1\), that is, the one with change of coordinates

\[
(\xi, v_1, v_2) = (z^{-1}, z^2u_1 + zu_2, u_2).
\]

Lemma 7.4. \(H^1(W_2, O(-4)) \neq 0\).
Proof. Consider the 1-cocycle σ written in the U coordinate chart as $\sigma = z^{-1}$. Suppose σ is a coboundary, then we must have

$$\sigma = \alpha + T^{-1}\beta$$

where $\alpha \in \Gamma(U)$ and $\beta = \Gamma(V)$. Consequently

$$z^{-1} = \alpha(z, u_1, u_2) + z^{-4}\beta(z^{-1}, z^2u_1 + zu_2, u_2).$$

But α has only positive powers of z, and the highest power of z appearing on $z^{-4}\beta$ is -4, hence the right-hand side has no terms in z^{-1} and the equation is impossible, a contradiction. \qed

Corollary 7.5. W_2 is not affine.

Remark 7.6. Note that this result contrasts with the situation for surfaces, since [BG, Thm. 6.15] prove that all nontrivial deformations of Z_k are affine.

8. Deformations of W_3

We start by computing the group $H^1(W_3, TW_3)$ which parametrises deformations of W_3. Recall that W_3 can be covered by $U = \{(z, u_1, u_2)\}$ and $V = \{(\xi, v_1, v_2)\}$, with $U \cap V = C - \{0\} \times C^2$ and transition function given by:

$$\begin{aligned}
(\xi, v_1, v_2) = (z^{-1}, z^3u_1, z^{-1}u_2)
\end{aligned}$$

Theorem 8.1. There is a versal deformation space \mathcal{W} for W_3 parametrised by cocycles of the form

$$\begin{bmatrix}
a_{ij} \\
b_{ij} \\
c_{ij}
\end{bmatrix} z^l u_1^i u_2^j \quad 3i - 3 - l - j < 0.$$

Proof. In canonical coordinates, the transition matrix for the tangent bundle TW_3 is given by

$$T = \begin{bmatrix}
-z^{-2} & 0 & 0 \\
3z^2u_1 & z^3 & 0 \\
-z^{-2}u_2 & 0 & z^{-1}
\end{bmatrix} \cong \begin{bmatrix}
z^{-1} & 0 & -z^{-2}u_2 \\
0 & z^3 & 3z^2u_1 \\
0 & 0 & -z^{-2}
\end{bmatrix},$$

where \cong denotes isomorphism, and the latter expression is handier for calculations. A 1-cocycle can be expressed in U coordinates in the form

$$\begin{aligned}
\sigma &= \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=-\infty}^{\infty} \begin{bmatrix}
a_{ij} \\
b_{ij} \\
c_{ij}
\end{bmatrix} z^l u_1^i u_2^j \\
&\sim \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=-\infty}^{\infty} \begin{bmatrix}
a_{ij} \\
b_{ij} \\
c_{ij}
\end{bmatrix} z^l u_1^i u_2^j,
\end{aligned}$$
where \(\sim \) denotes cohomological equivalence. Changing coordinates we obtain
\[
T\sigma = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=-\infty}^{-1} \left[a_{ij}z^{-1} - c_{lij}z^{-2}u_2 \right] \begin{bmatrix}
3a_{ij}z^2u_1 + b_{lij}z^3 \\
-c_{lij}z^{-2}
\end{bmatrix} z^lu_1^i u_2^j
\]
where all terms inside the matrix are holomorphic on \(V \) except for
\[
\begin{bmatrix}
ob_{lij}z^3 \\
0
\end{bmatrix}.
\]
These impose the condition for a cocycle to be nontrivial. Since we have
\[
z^3z^l u_1^i u_2^j = z^{l+3-3i+j}(z^3u_1)^i (z^{-1}u_2)^j = \xi^{3i-3-l-j} u_1^i u_2^j,
\]
a nontrivial cocycle satisfies \(3i - 3 - l - j < 0 \).

We now give a partial description of deformations of \(W_3 \).

Lemma 8.2. The sections
\[
\sigma_1 = \begin{bmatrix}
0 \\
z^{-1} \\
0
\end{bmatrix} \quad \text{and} \quad \sigma_2 = \begin{bmatrix}
0 \\
z^{-2} \\
0
\end{bmatrix}
\]
are nonzero cocycles on \(H^1(W_3, TW_3) \).

Proof. Let
\[
\sigma_l = \begin{bmatrix}
o \\
z^{-l} \\
0
\end{bmatrix},
\]
for \(l = 1, 2 \). Then \(\sigma_l \) is not a coboundary on the chart \(U \). We change coordinates by multiplying by the transition \(T \) given in 8.2,
\[
T\sigma_l = \begin{bmatrix}
0 \\
z^{l+3} \\
0
\end{bmatrix} = \begin{bmatrix}
o \\
\xi^{-l-3} \\
0
\end{bmatrix},
\]
which is not holomorphic on the chart \(V \) and therefore not a coboundary.

Lemma 8.3. The following 2-parameter family of deformations of \(W_3 \) is contained in \(\mathcal{W} \):
\[
(\xi, v_1, v_2) = (z^{-1}, z^3 u_1 + t_2 z^2 + t_1 z, z^{-1} u_2)
\]

Proof. The transition for \(W_3 \) is given by,
\[
(\xi, v_1, v_2) = (z^{-1}, z^3 u_1, z^{-1} u_2).
\]
In matrix form:

$$
\begin{bmatrix}
\xi \\
v_1 \\
v_2
\end{bmatrix} =
\begin{bmatrix}
z^{-2} & 0 & 0 \\
0 & z^3 & 0 \\
0 & 0 & z^{-1}
\end{bmatrix}
\begin{bmatrix}
z \\
u_1 \\
u_2
\end{bmatrix}
$$

So we can construct a deformation family for \(W_3 \) using the cocycles from Lemma 8.2:

$$
\begin{bmatrix}
\xi \\
v_1 \\
v_2
\end{bmatrix} =
\begin{bmatrix}
z^{-2} & 0 & 0 \\
0 & z^3 & 0 \\
0 & 0 & z^{-1}
\end{bmatrix}
\begin{bmatrix}
z \\
u_1 \\
u_2
\end{bmatrix}
+ t_2
\begin{bmatrix}
0 \\
z^{-1} \\
0
\end{bmatrix}
+ t_1
\begin{bmatrix}
0 \\
z^{-2} \\
0
\end{bmatrix}
$$

Now it suffices to observe that, by Lemma 8.2, \(\sigma_1 \) and \(\sigma_2 \) are nontrivial directions in \(\mathcal{W} \).

\[\square \]

Corollary 8.4. *The family presented in Theorem 8.3 is semiuniversal but not universal.*

Proof. As a consequence of Lemma 8.3 and Corollary 4.4, we have that the deformations in the directions of the cocycles of Lemma 8.2 are isomorphic. Indeed, these deformations are induced by \(Z_3 \) which, as \(\mathbb{F}_3 \), only has one nontrivial direction of deformation.

\[\square \]

Acknowledgements

Results of this paper were presented by Gasparim and Suzuki in their talks at the Geometry and Physics session of the *V Congreso Latinoamericano de Matemáticas*. These authors thank UMALCA, Universidad del Norte and the Colombian Mathematical Society for the financial support and hospitality. Gasparim thanks also the Vice Rectoría de Investigación y Desarrollo tecnológico at Universidad Católica del Norte (Chile). Suzuki acknowledges support from the Beca Doctorado Nacional – Folio 21160257.

The authors thank Bernardo Uribe for the invitation to organise a session at the congress as well as for giving us the opportunity to submit our contribution to these proceedings.

References

[ABCG] Amilburu, C.C., Barmeier, S., Callander, B., Gasparim, E., *Isomorphisms of moduli spaces*, Matemática Contemporânea, 41: 1–16, 2012.

[BV] Balaji, V., Vishwanath, P.A., *On the deformations of certain moduli spaces of vector bundles*, American Journal of Mathematics, 115 (2): 279–303, 1993.

[B] Bershadsky, M. *Kodaira–Spencer theory of gravity*, Quantum Field Theory and String Theory, NATO ASI Series 328: pp 23–38, 1995.

[BBGGS] Ballico, E., Barmeier, S., Gasparim, E., Grama, L., San Martin, L.A.B., *A Lie theoretical construction of a Landau–Ginzburg model without projective mirrors*, arXiv:1610.06965.
Ben-Bassat, O., Gasparim, E., Moduli stacks of bundles on local surfaces, in R. Castano-Bernard, F. Catanese, M. Kontsevich, T. Panet, Y. Soibelman & I. Zharkov (eds.) Homological Mirror Symmetry and Tropical Geometry, Lecture Notes of the Unione Matematica Italiana 15, 1–32, 2014.

Barmeier, S., Gasparim, E. Classical deformations of local surfaces and their moduli spaces of instantons, arXiv:1604.01133.

Ballico, E., Gasparim, E., Numerical invariants for bundles on blow-ups, Proc. Amer. Math. Soc. 130 no. 1, 23–32, 2002.

Ballico, E., Gasparim, E., Köppe, T., Local moduli of holomorphic bundles, Journal of Pure and Applied Algebra, 213 (4): 397–408, 2009.

Ballico, E., Gasparim, E., Köppe, T., Vector bundles near negative curves: moduli and local Euler characteristic, Communications in Algebra, 37 (8): 2688–2713, 2009.

Gasparim, E., Holomorphic bundles on $\mathcal{O}(-k)$ are algebraic, Communications in Algebra, 25 (9): 3001–3009, 1997.

Gasparim, E., Rank two bundles on the blow-up of \mathbb{C}^2, Journal of Algebra, 199: 581–590, 1998.

Gasparim, E., Grama, L., San Martin, L. A. B., Symplectic Lefschetz fibrations on adjoint orbits, Forum Math. 28 n. 5, 967–980 (2016).

Gasparim, E., Köppe, T., Majumdar, P., Local holomorphic Euler characteristic and instanton decay, Pure Appl. Math. Q. 4, no. 2, Special Issue: In honor of Fedya Bogomolov, Part 1, 161–179, 2008.

Har R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No.52.

J. Jiménez, Contraction of nonsingular curves, Duke Math. J. 65 (1992), no. 2, 313–332.

Köppe, T. Moduli of bundles on local surfaces and threefolds, Ph. D. Thesis, The University of Edinburgh, 2010.

Manetti, M., Lectures on deformations of complex manifolds, Rendiconti di Matematica, 24 (1): 1–183, 2004.

Narasimhan, M.S., Ramanan, S., Deformations of the moduli space of vector bundles over an algebraic curve, Annals of Mathematics, 101 (3): 391–417, 1975.

Okonek, C., Schneider, M., Spindler, H., Vector bundles on complex projective spaces, Progress in Mathematics 3, Boston: Birkhäuser, 1980.

Rubilar, F. Deformaciones de estructuras complejas de 3-variedades Calabi–Yau, tesis de magister, Universidad Católica del Norte, Chile (2017).

Seshadri, C. S., Theory of Moduli, Proceedings of Symposia in Pure Mathematics, Vol. XXIX (Algebraic Geometry - Arcata 1974), pp. 263–304.

E. Gasparim¹, T. Köppe², F. Rubilar³, B. Suzuki⁴
Departamento de Matemáticas
Universidad Católica del Norte
Av. Angamos 0600
Antofagasta
Chile

¹etgasparim@gmail.com ²tkoeppe@gmail.com ³rubilar_n17@hotmail.com ⁴obrunosuzuki@gmail.com