The Saudi Journal of Gastroenterology (ISSN-1319-3767) is published every three months by the Saudi Gastroenterology Association (SGA). The journal publishes peer-reviewed articles covering all the aspects of digestive diseases, including the prevention, diagnosis and management and related genetics, pathophysiology, and epidemiology as relevant to gastrointestinal and hepatobiliary disorders.

The journal provides immediate free access to its scientific contents and does not charge the authors fee for submission, processing or publication of the manuscripts. Manuscripts could be submitted online from www.journalonweb.com/sjg.

The issues are published in the first week of January, April, July and October.

All the rights are reserved. Apart from any fair dealing for the purposes of research or private study, or criticism or review, no part of the publication can be reproduced, stored, or transmitted, in any form or by any means, without the prior permission of the Editor, Saudi Journal of Gastroenterology.

Saudi Journal of Gastroenterology and/or its publisher cannot be held responsible for errors or for any consequences arising from the use of the information contained in this journal.

The appearance of advertising or product information in the various sections in the journal does not constitute an endorsement or approval by the journal and/or its publisher of the quality or value of the said product or of claims made for it by its manufacturer.

The journal is published on acid free paper

Subscription rates:
For non-members of SGA, the annual subscription rate is SR 100/- for subscribers within Saudi Arabia and SR 200/-for subscribers’ abroad.

Editorial Office:
Endoscopy Unit,
King Khalid University Hospital,
P.O. Box 2925, Riyadh 11461, Saudi Arabia
Tel: +966-1-4671215
Fax +966-1-4671217

Published by
Medknow Publications,
A-109, Kanara Business Centre, Off Link Road,
Ghatkopar (E), Mumbai - 400075, India.
Tel: 91-22-6649 1818 / 1816,
Fax: 91 22 66491817
Website: www.medknow.com

Websites:
www.saudijgastro.com
www.journalonweb.com/sjg
CONTENTS

Review Articles
Sphincter of Oddi and its Dysfunction
Prasad Seetharam, Gabriel Rodrigues

Original Articles
Serum Retinol Binding Protein as an Indicator of Vitamin A Status in Cirrhotic Patients with Night Blindness
Khalid Mahmood, Akhtar H. Samo, Krishan L. Jairamani, Gohar Ali, Abu Talib, Waqar Qazmi

Benefit of Preoperative Flexible Endoscopy for Patients Undergoing Weight-Reduction Surgery in Saudi Arabia
Ahmad M. Al Akwaa, Ahmad Alsalman

Characteristics of Treatment Naïve Chronic Hepatitis B in Bangladesh: Younger Populations are More Affected; HBeAg-negatives are More Advanced
Shahinul Alam, Nooruddin Ahmad, Golam Mustafa, Khorsheed Alam, Mobin Khan

Ranson’s Criteria for Acute Pancreatitis in High Altitude: Do they Need to be Modified?
Saeed A. Abu-Eshy, Mostafa A. Abolfotouh, Eldawi Nawar, Abdul-Rahman H Abu Sabib

Quality of Life and Patient Satisfaction 3 Months and 3 Years After Laparoscopic Nissen’s Fundoplication
Emad Hamdy, Ahmed Abd El-Raouf, Mohamed El-Hemaly, Tarek Salah, Ehab El-Hanafy, Mohamed Mostafa, Nabil Gad El Hak

Case Reports
Pancreatic Pseudocyst Presenting as Dysphagia: A Case Report
Charles Panackel, Arun T. Korah, Devadas Krishnadas, Kattoor R. Vinayakumar

Laparoscopic Cholecystectomy in Situs Inversus Totalis
Jamal Hamdi, Omar Abu Hamdan

Handlebar Hernia: A Rare Type of Abdominal Wall Hernia
Khairi A. F. Hassan, Mohamed A. Elsharawy, Khaled Moghazy, Abdulaziz Al Qurain

Intestinal Obstruction Due to an Anomalous Congenital Band
Cyrochristos Dimitrios, Alexiou A. George, Ziogas Dimosthenis, Xiropotamos Nikolaos

Letter to Editor
Villous Adenoma of the Appendix with Dysplasia
Pragati Karmarkar, Archana Joshi, Anne Wilkinson, Sadhana Mahore, Kalpana Bothale

New Horizon
Sorafenib in the Treatment of Advanced Hepatocellular Carcinoma
Ali Ben Mousa
In Focus

Spontaneous Bacterial Empyema in Liver Cirrhosis: An Underdiagnosed Pleural Complication
Naglaa A. H. Allam

Quiz

Unusual Cause of Abdominal Pain
S. Khanna, D. Chaudhary

Instructions to Authors
Ranson’s Criteria for Acute Pancreatitis in High Altitude: Do they Need to be Modified?
Saeed A Abu-Eshy, Mostafa A. Abolfotouh*, Eldawi Nawar**, Abdul-Rahman H Abu Sabib**

ABSTRACT

Background/Aim: To examine the validity of Ranson’s criteria in the prediction of the severity of acute pancreatitis (as judged by the occurrence of complications) in a high-altitude area of Saudi Arabia with a predominant biliary pancreatitis. Materials and Methods: All consecutive cases of acute pancreatitis (AP) admitted to a tertiary care hospital over a two-and-half-year period were included in this prospective study. Ranson’s criteria (RC) were used to determine the severity of the attack of AP, which was then correlated with the occurrence of complications. The validity of Ranson’s score and that of each of its individual components was estimated. Using receiver operating characteristic (ROC) curve, new optimum values for these components were calculated and a new modified score was constructed. Results: Seventy-three attacks of AP in 69 patients formed the material of this study. Ranson’s prediction criteria classified 43.8% of the attacks as “severe”, but only 22% of those attacks were associated with complications. Calcium level (<8 mg/dl) was the only criterion that was significantly associated with complications (Kappa = 0.32, P = 0.02). Using ROC curve to determine the optimum cut-off levels for prediction identified only four criteria, which were significantly associated with complications as compared with the original Ranson’s cut-off levels. Those were: a serum glucose value of ≥160 mg/dl (P < 0.05), blood urea nitrogen rise of ≥35 mg/dl (P < 0.02) and an arterial Po2 value of ≤55 mm Hg (P < 0.01), in addition to calcium value of <8 mg/dl (P = 0.02) as originally set by Ranson. A new scoring system, ranging from 0 to 4, based on these cut-off levels, together with a calcium level of <8 mg/dl, could correctly classify the severity of AP. A total score of two or more points predicted a severe attack with a sensitivity of 88%, a specificity of 82% and a Kappa coefficient of 0.47 (P < 0.001). Conclusion: This study showed that Ranson’s criteria may need to be modified in high altitude with a predominant biliary pancreatitis in order to accurately predict the severity of AP.

Key Words: Acute, high altitude, pancreatitis, Ranson’s criteria, Saudi Arabia, severity prediction

Received 09.06.2007, Accepted 13.08.2007
The Saudi Journal of Gastroenterology 2008 14(1): 20-3
Abdominal Ultrasound (US) and/or computed tomography (CT) scanning to detect pancreatic collections, necrosis and cysts were done as necessary. Complications, whether local, such as pancreatic necrosis, abscess or pseudocyst or systemic such as organ(s) failure were detected and evaluated as agreed at Atlanta.[9,10] Severity of AP was categorized based on the clinical and laboratory data using RC [Table 1]. Cases with less than three positive criteria were classified as “mild” and those with three or more positive criteria were classified as “severe”.

Table 1: Ranson’s criteria: The 11 early objective signs used to classify the severity of acute pancreatitis

Ranson’s criteria	Sensitivity	Specificity	PPV	NPV	Kappa	Significance
Age over 55 years	0.50	0.65	0.15	0.91	0.07	0.42
WBC over 16,000/cu mm	0.38	0.88	0.27	0.92	0.22	0.06
Blood glucose over 200 mg/dl	0.13	0.95	0.25	0.90	0.10	0.36
Serum Lactic dehydrogenase (LDH) over 350 U/l	1.00	0.15	0.17	1.0	0.05	0.24
Serum glutamic oxaloacetic transaminase (AST) over 250 U/l	0.25	0.69	0.10	0.88	0.036	0.722
Hematocrit fall greater than 10% points	0.25	0.68	0.10	0.86	0.043	0.683
Blood Urea nitrogen rise more than 5 mg/dl	0.25	0.68	0.10	0.86	0.043	0.683
Arterial Po2 below 60 mm Hg	0.25	0.68	0.10	0.86	0.043	0.683
Serum calcium below 8 mg/dl	0.57	0.83	0.36	0.92	0.32	0.02*
Base deficit >4 meq/l	0.63	0.72	0.33	0.90	0.259	0.061

Table 2 shows the validity of each of RC in predicting the complications of acute pancreatitis in our patients. Only serum calcium level was significantly associated with complications as estimated by kappa coefficient ($\kappa = 0.32, P = 0.02$), with a high specificity of 83% and a modest sensitivity of 57%. All other criteria failed to attain a significant association. The ROC curve could identify four criteria that were significantly associated with complications. Table 3 shows the threshold values for these four criteria and compares their validity with the original Ranson’s cut-off levels. Those were: glucose value of ≥160 mg/dl ($P < 0.05$), BUN rise of ≥35 mg/dl ($P < 0.02$) and arterial Po2 value of ≤55 mm Hg ($P = 0.007$), in addition to calcium value of ≤8 mg/dl ($P = 0.02$) as originally set by Ranson. A scoring system based on these four significant cut-off levels could allocate patients into the range of 0-4 points. A total score of two or more was associated with complications with sensitivity of 88% and a specificity of 82% and a highly significant association of 47% (kappa was determined by the calculation of kappa coefficient.

RESULTS

During the study period, 73 attacks of AP in 69 patients (four had repeated admissions) fulfilled the diagnostic criteria for entry in this prospective study. In 50 (68.5%) of the attacks, the underlying cause was biliary disease. Alcohol abuse was present in only one patient (1.4%), while 18 (24.7%) patients had unknown underlying cause (idiopathic).

According to RC, 32 (43.8%) of the 73 attacks of AP were classified as severe, although only seven (21.9%) developed complications. Those were pancreatic pseudocyst in two patients (of which one became infected), pancreatic abscess in one patient, chest complications (bronchopneumonia) in two patients and wound infection in two patients.

Table 2: Validity of some of Ranson’s criteria for prediction of the outcome in acute pancreatitis

Criteria	Sensitivity	Specificity	PPV	NPV	Kappa	Significance
Age	0.50	0.65	0.15	0.91	0.07	0.42
WBC	0.38	0.88	0.27	0.92	0.22	0.06
Glucose	0.13	0.95	0.25	0.90	0.10	0.36
LDH	1.00	0.15	0.17	1.0	0.05	0.24
AST	0.25	0.69	0.10	0.88	0.036	0.722
HCT%	0.25	0.68	0.10	0.86	0.043	0.683
BUN	0.29	0.92	0.33	0.91	0.223	0.086
Calcium	0.57	0.83	0.36	0.92	0.32	0.02*
PO2	0.63	0.72	0.33	0.90	0.259	0.061

PPV - Positive prediction value, NPV - Negative predictive value. *Statistically significant at 0.05 level.
coefficient, $P < 0.001$).

Table 4 compares the original Ranson’s score with the modified new score (based on the new four criteria) in terms of validity and the association with complications. The original score had a sensitivity of 88%, a specificity of 62% and a positive predictive value of 22% ($\kappa = 0.21$, $P = 0.008$), whereas the new modified score had a similar sensitivity of 88%, but was associated with a higher specificity of 82% and almost doubling of the PPV to 41% and the strength of association with complication was higher ($\kappa = 0.47$, $P < 0.001$).

DISCUSSION

The ideal predictor of the severity of AP is described as being simple, highly sensitive, highly specific, safe, reproducible, cheap and can be rapidly performed, but unfortunately this ideal predictor does not exist.\cite{7} The multifactorial scoring systems of Ranson and Imrie et al., are accurate in classifying AP in alcoholics rather than gallstone-related pancreatitis.\cite{2,11,12} However, these systems require modification to suit gallstone pancreatitis which is the predominant type in Saudi Arabia.\cite{2,4,8} Imrie et al.\cite{13} discarded three of the 11 criteria of Ranson (fluid sequestration >6 l, base deficit >4 mmol/l and haematocrit decrease of >10% within 48 h of admission) and introduced serum albumin <32 g/l to provide a new system based on nine criteria. In their reports, all patients who died were correctly classified as severe by the new scoring system. Balme et al.\cite{11} confirmed the predictive value of only eight of the nine original factors adopted by Imrie et al. and showed that the overall predictive value improved from 72% to 79%. However, Osborne et al.\cite{2} found that in the subgroup of patients with gallstone-associated pancreatitis, the age factor (>55 years) was not of individual prognostic significance. Also, Leese and Shaw\cite{14} confirmed an improved prognostic performance for modifications of the original Glasgow system. In the present study, RC classified 43.8% of the attacks as severe, but only 22% of these attacks were associated with complications. Al-Qasabi et al.\cite{15} from Riyadh, Saudi Arabia, found that despite 66% of cases being classified as severe according to RC, only 36% of this group of patients developed complications. Brisinda et al.\cite{5} from Italy found that fever at admission, plasma glucose, blood urea nitrogen, serum creatinine, serum calcium, LDH, serum albumin, red cell count, WBC, haematocrit and lymphocyte count were statistically significant predictors. In view of all these differences, the predictive value of each individual factor must be verified and tested in each clinical and regional setting.

This study revealed that Ranson’s score was significantly associated with complications as evidenced by a significant Kappa coefficient. Also, it showed a high sensitivity of 88%, a modest specificity of 62% and a low positive predictive value.

Criteria	Cut-off points	Sensitivity	Specificity	PPV	NPV	Kappa	Significance
Glucose (mg/dl)							
Ranson	>200	0.13	0.95	0.25	0.90	0.10	0.36
Modified	≥160	0.63	0.72	0.22	0.94	0.19	<0.05*
Urea (mg/dl)							
Ranson	>5	0.29	0.92	0.33	0.91	0.223	0.086
Modified	≥35	0.57	0.83	0.31	0.94	0.29	0.015*
Calcium (mg/dl)							
Ranson	<8	0.57	0.83	0.36	0.92	0.32	0.02*
Modified	<8	0.57	0.83	0.36	0.92	0.32	0.02*
PO2 (mm Hg)							
Ranson	<60	0.63	0.72	0.33	0.90	0.259	0.061
Modified	≤55	0.63	0.83	0.45	0.91	0.40	0.007*

PPV - Positive predictive value, **NPV** - Negative predictive value. *Statistically significant at 0.05 level.

Table 4: Sensitivity, specificity, PPV and NPV of both Ranson’s score and the new modified score in predicting the outcome of acute pancreatitis

Ranson								
Complicated	Non-complicated	Sensitivity	Specificity	PPV	NPV	Kappa	P-value	
>3	7	25	0.88	0.62	0.22	0.98	0.21	0.008
<3	1	40						
Modified score								
>2	7	10	0.88	0.82	0.41	0.98	0.47	<0.001
<2	1	45						

PPV - Positive predictive value, **NPV** - Negative predictive value.
of 22%. However, when testing each individual component of Ranson’s criteria for validity and association with complications, it was surprising to find that only one of these criteria was a significant predictor of complications, whereas all other criteria were not valid for predicting complications. This sub-optimal accuracy could result in misclassification of subjects. Such misclassification may result in either false reassurance or false warning. However, misclassification in the case of Ranson’s score was in favour of false warning rather than reassurance, with 25/73 (34.2%) of individuals being misclassified as severe.

To overcome this false warning, the ROC curve was used to obtain the optimum threshold for each criterion. Four significant levels of only four criteria were identified. Those were: blood glucose of ≥160 mg/dl (instead of >200 mg/dl by Ranson), blood urea nitrogen (BUN) rise of ≥35 mg/dl (instead of >5 mg/dl by Ranson), Po2 value within 48 h of admission of ≤55 mm Hg (instead of <60 mm Hg by Ranson) and calcium of <8 mg/dl as determined by Ranson. These findings could be justified by the possible change of some biochemical parameters as a result of the high altitude with its associated hypoxia.[16,17] For example, the increase in haemoglobin concentration at high altitude is one of the best known adaptations to altitude hypoxia. Other reported changes are: changes in body fluid compartments, with inappropriate low secretion of anti-diuretic hormone (ADH), reduced plasma volume, elevated basal metabolic rate by about 2%, weight loss and negative energy balance and lowered fasting blood glucose level (possibly due to its lower absorption) than at sea level.[16] All these possible changes might justify the inappropriateness of Ranson’s criteria in the prediction of severity of AP in our situation.

Thus, when a scoring system was applied utilizing those four criteria (with one point assigned for each criterion), a highly significant association with complications was detected at a total score of two or more. At this threshold, specificity improved from 62 to 82%. Thus, the problem of false warning by Ranson score could be reduced from 38% to only 15.9% (10/63). Meanwhile, the relatively low positive predictive value clearly indicates that there is room for improvement in the accurate prediction of severity for pancreatitis in individual patients.

In conclusion, the use of the current Ranson’s criteria for the prediction of the outcome of AP may not be valid in our setting of high altitude. A suggested modified criteria and score based on the new cut-off levels for only four criteria would be more reliable and simple, with high validity and accuracy. However, in order to have any confidence in this proposed scoring system, it should be tested on a fresh group of patients at sea level, so that its predictive value can be evaluated, i.e. there is a need to test whether these criteria stand up to scrutiny in any area of Saudi Arabia.

REFERENCES

1. Millat B, Fingerhut A, Gayral F, Zazzo JF, Brivet F. Predictability of clinicobioclimatological scoring systems for early identification of severe gallstone-associated pancreatitis. Am J Surg 1992;164:32-8.
2. Osborne DH, Imrie CW, Carter DC. Biliary surgery in the same admission for gallstone-associated acute pancreatitis. Br J Surg 1981;68:758-61.
3. Blamey SL, Imrie CW, O’Neill J, Gilmour WH, Carter DC. Prognostic factors in acute pancreatitis. Gut 1984;25:1340-6.
4. Ranson JH. The timing of biliary surgery in acute pancreatitis. Ann Surg 1979;189:654-63.
5. Brisinda G, Maria G, Ferrante A, Civello LM. Evaluation of prognostic factors in patients with acute pancreatitis. Hepatogastroenterology 1999;46:1990-7.
6. Ranson JH, Rilfikum KD, Roses DF, Fink SD, Eng K, Spencer FC. Prognostic signs and the role of operative management in acute pancreatitis. Surg Gynecol Obstet 1974;139:69-81.
7. Toh SK, Johnson CD. Severity prediction in acute pancreatitis. In: Johnson CD, Taylor I, editors. Recent advances in surgery 21 ed. Churchill Livingstone: Edinburgh; 1998. pp. 125-36.
8. Abu-Eshy SA. Pattern of acute pancreatitis. Saudi Med J 2001;22:2215-8.
9. Bradley E 3rd. A clinically based classification system for acute pancreatitis: Summary of the Atlanta International Symposium. Arch Surg 1993;128:586-90.
10. Lumsden A, Bradley EL 3rd. Secondary pancreatic infections. Surg Gynecol Obstet 1990;170:459-67.
11. McMahon MJ, Playforth MJ, Pickford IR. A comparative study of methods for the prediction of severity of attacks of acute pancreatitis. Br J Surg 1980;67:22-5.
12. Corfield AP, Cooper MJ, Williamson RC, Mayer AD, McMahon MJ, Dickson AP, et al. Prediction of severity in acute pancreatitis: Prospective comparison of three prognostic indices. Lancet 1985;2:403-7.
13. Imrie CW, Benjamin IS, Ferguson JC, McKay AJ, Mackenzie I, O’Neill J, et al. A single-centre double-blind trial of Trasylol therapy in primary acute pancreatitis. Br J Surg 1978;65:337-41.
14. Leese T, Shaw D. Comparison of three Glasgow multifactor prognostic scoring systems in acute pancreatitis. Br J Surg 1988;75:460-2.
15. Al-Qasabi QO, Alam MK, Haque MM, Sebayel MI, Al-Fagih S, Al-Kraida A. Assessment of severity in acute pancreatitis: Use of prognostic factors. Ann Saudi Med 1991;11:551-5.
16. Qeel O, Howald H, di Prampero PE, Hoppeler H, Claesen H, Jenni R, et al. Physiological profile of world-class high-altitude climbers. J Appl Physiol 1986;60:1734-42.
17. Ward MP, Milledge JS, West JB. Human and medical geography of mountain regions. Int Ward, Milledge and West, editors. High altitude medicine and physiology. Chapman and Hall Medical: London; 1989. p. 45-62.