Radial TiO$_2$ Nanorod-Based Mesocrystals: Synthesis, Characterization, and Applications

Atsunobu Akita and Hiroaki Tada *

Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; 1943320202a@kindai.ac.jp

* Correspondence: h-tada@apch.kindai.ac.jp; Tel.: +81-6-6721-2332; Fax: +81-6-6727-2024

Abstract: Radial TiO$_2$ nanorod-based mesocrystals (TiO$_2$-NR MCs) or so-called “sea-urchin-like microspheres” possess not only attractive appearance but also excellent potential as photocatalyst and electrode materials. As a new type of TiO$_2$-NR MCs, we have recently developed a radial heteromesocrystal photocatalyst consisting of SnO$_2$(head) and rutile TiO$_2$ nanorods(tail) (TiO$_2$-NR//SnO$_2$ HEMCs, symbol “//” denotes heteroepitaxial junction) with the SnO$_2$ head oriented in the central direction in a series of the studies on the nanohybrid photocatalysts with atomically commensurate junctions. This review article reports the fundamentals of TiO$_2$-NR MCs and the applications to photocatalysts and electrodes. Firstly, the synthesis and characterization of TiO$_2$-NR//SnO$_2$ HEMCs is described. Secondly, the photocatalytic activity of recent TiO$_2$-NR MCs and the photocatalytic action mechanism are discussed. Thirdly, the applications of TiO$_2$-NR MCs and the analogs to the electrodes of solar cells and lithium-ion batteries are considered. Finally, we summarize the conclusions with the possible future subjects.

Keywords: TiO$_2$-based mesocrystals; homomesocrystals; heteromesocrystals; photocatalysts; oxygen reduction reaction; electrodes

1. Introduction

Among various photocatalyst materials, TiO$_2$ is the most promising one in terms of suitability and safety in environmental purification and anti-bacterial applications due to strong photoinduced oxidation ability, extreme stability, non-toxicity, and inexpensive-ness [1,2]. While the photocatalytic activity of TiO$_2$ particles is sensitive to the crystal phase, crystallinity, and dimension [3], the assembled structure of TiO$_2$ particles or the mesocrystal (MC) structure can have a great effect on the photocatalytic activity [4,5]. The geometries of the TiO$_2$-based MCs so far reported can be classified into two-dimensional (2D) and three-dimensional (3D) types (Scheme 1). Majima and co-workers prepared 2D-TiO$_2$ MCs consisting of TiO$_2$ plates with 3–5 µm size and 100–300 nm thickness linking through the edges (TiO$_2$-NPL MCs) using a simple impregnation method (2D-type in Scheme 1) [5]. Gold nanoparticle-loaded TiO$_2$ (Au/TiO$_2$) works as a visible-light responsive photocatalyst under excitation of the localized surface plasmon resonance [6]. The Au/TiO$_2$-NPL MC plasmonic photocatalyst was shown to exhibit significantly higher organic pollutant degradation activity than the usual Au/TiO$_2$ particles due to the effective charge separation via the anisotropic interparticle electron transfer. The development of 3D-TiO$_2$ MCs has been triggered by the study of dye-sensitized solar cells [7]. The cell performance was dramatically enhanced by using a TiO$_2$ nanocrystalline film electrode in which anatase TiO$_2$ nanoparticles (NPs) with 20–30 nm diameter are interconnected randomly to yield a mesoporous structure and a large surface area (3D-type I in Scheme 1). More recently, radial homomesocrystals consisting of rutile TiO$_2$ nanorods (TiO$_2$-NR HOMCs), so-called “sea-urchin-like microspheres” (3D-type II in Scheme 1), have attracted much interest due to features including a high light harvesting ability due to multiple light scattering between the reflective rutile TiO$_2$ NRs [8,9] and large surface area comparable with that of NPs.
These unique nano/micro-sized properties render the radial TiO$_2$-NR HOMCs fascinating as a photocatalyst material. Unexpectedly, the photocatalytic activity for aerobic oxidation of organics still remains low, probably because of the poor ability of rutile TiO$_2$ for oxygen reduction reaction (ORR) [10,11]. Thus, if the abilities of effective charge separation and electrocatalytic activity for ORR can be endowed with radial TiO$_2$-NR HOMCs, the photocatalytic activity would be enhanced, and their applications should be greatly extended. To achieve this, we have recently developed a radial heteromesocrystal photocatalyst consisting of SnO$_2$(head) and rutile TiO$_2$ nanorods (tail) (TiO$_2$-NR//SnO$_2$ HEMCs, “/” denotes heteroepitaxial junction) (3D-type III in Scheme 1) and studied the photocatalytic activity for aerobic oxidation of organics.

![Scheme 1. Representative geometries of the TiO$_2$-based MCs.](image)

This review article describes the synthesis, characterization, and the photocatalytic activity of TiO$_2$-NR//SnO$_2$ HEMCs and other recent TiO$_2$-NR HOMCs. The photocatalytic action mechanism of TiO$_2$-NR//SnO$_2$ HEMCs is also discussed by comparison with TiO$_2$-NR HOMCs. Further, the applications of TiO$_2$-NR HOMCs and the analogs to the electrodes for solar cells and lithium-ion batteries are considered. Finally, the conclusions are summarized with the possible future subjects.

2. Synthesis and Characterization

In 2006, Yang and Gao synthesized sea-urchin-like TiO$_2$ nanostructures (~1 µm) (3D-type II in Scheme 1) for the first time using a sol–solvothermal method from a water-benzene solution of TiCl$_4$ and Ti(OBu)$_4$ without using any template or surfactant [12]. Several review papers on the synthesis and characterization of TiO$_2$-NR HOMCs have already been reported [8,9,13]. Here, we explain the method for synthesizing TiO$_2$-NR//SnO$_2$ HEMCs (3D-type III in Scheme 1). TiO$_2$-NR//SnO$_2$ HEMCs were synthesized using a hydrothermal method in the presence of SnO$_2$ seeds with particle size of 22–43 nm [14]. HCl (6 M, 30 mL) and Ti(OBu)$_4$ (0.4 mL) were mixed in a reaction vessel made of Teflon (50 mL), and the solution was slowly stirred for 0.5 h at ambient temperature. SnO$_2$ nanocrystals (0.01 g) were dispersed into the mixed solution by ultrasonic irradiation and stirred for 24 h. The reaction vessel was sealed in a stainless-steel cylinder, and then it was placed in an oil bath, the temperature of which was maintained at 150 °C for various reaction times (t$_{HT}$). Solid products produced after the reaction were collected by centrifugation. The same synthetic procedures were conducted using HNO$_3$ and H$_2$SO$_4$ in the place of HCl.

The product morphology is strongly affected by the kinds of acids used in the hydrothermal reaction (Figure 1a–c). In the case of HCl, 3D-radial microspheres with a diameter of ~3 µm are produced at t$_{HT}$ = 8 h. The specific surface area of the particles was determined by the Brunauer–Emmett–Teller (BET) method to be 41.1 ± 0.2 m2 g$^{-1}$, which is 1.75 × 102 times larger than the value for the spherical particle with a diameter of 3 µm.
On the one hand, the use of HNO₃ or H₂SO₄ produces irregularly shaped aggregates. In the XRD pattern of the sample prepared with HCl, there are sharp peaks at 2θ = 27.38°, 36.04°, 41.18°, and 54.28° indexed as the diffraction from the (110), (101), (111), and (211) crystal planes of rutile TiO₂ (ICDD 00-021-1276), respectively, in addition to the peaks at 2θ = 26.5°, 33.78°, and 51.74° assignable to the diffraction from the (110), (101), and (211) planes of SnO₂, respectively (ICDD 01-075-2893) (Figure 1d).

Transmission electron microscopy (TEM) analyses of the particles generated at the early stage of reaction provide information about the crystal growth mechanism and the state of the junction between SnO₂ and TiO₂. The TEM image of a particle generated at tₜₜ = 1 h shows a single TiO₂ NR grown from a SnO₂ seed crystal with the mean lengths of short axis (~13 nm) and long axis (~90 nm) (Figure 2a). An atomically commensurate junction is also formed between the SnO₂ seed and TiO₂ NR, whose lattice spacings near the interface are close to the values of the (110) crystal planes. A plausible interface model is proposed based on the analysis of the high-resolution (HR)-TEM images (Figure 2b,c), where the TiO₂-NR and SnO₂ are connected with an orientation of (001)_{TiO₂} // (001)_{SnO₂}, and the TiO₂ NR grows toward the [001] direction. Consequently, anisotropic one-dimensional (1D) TiO₂-NR // SnO₂ particles are formed during the initial process of reaction. Density functional theory (DFT) simulations indicated that Cl- ions act as a habit modifier in this reaction, i.e., their preferential adsorption on the oxygen-defect sites on the rutile TiO₂(110) plane induces the anisotropic growth of TiO₂ in the [001] direction yielding the NR with the [110] side walls [15].

Figure 1. SEM images for the TiO₂-SnO₂ hybrids prepared by the hydrothermal method under acidic conditions using HCl (a), HNO₃ (b), and H₂SO₄ (c): hydrothermal reaction time (tₜₜ) = 8 h. (d) X-ray diffraction patterns of the samples before and after the hydrothermal method under acidic conditions using HCl. The figures are taken from Reference [15] (reproduced with permission from Akita, A.; Kobayashi, H.; Tada, H., Chem. Phys. Lett.; published by Elsevier, 2020).
Figure 2. (a) TEM image for a particle prepared by the hydrothermal reaction at $t_{HT} = 1 \text{ h}$, and the inset is the HR-TEM image for the interface of the same sample. Top view (b) and side view (c) for the interface model constructed from the HR-TEM image. The figure is taken from Reference [14] (reproduced with permission from Akita, A.; Tada, H., Langmuir; published by American Chemical Society, 2019).

To clarify the orientation of the 1D-TiO$_2$-NR//SnO$_2$ particles in the 3D-microsphere, scanning transmission electron microscopy (STEM)–energy dispersive spectroscopic (EDS, Figure 3a) elemental mapping was performed on a particle generated at $t_{HT} = 8 \text{ h}$. Many 1D-TiO$_2$-NR//SnO$_2$ particles are self-assembled to form a radial 3D-microsphere (Figure 3a). Ti and O are uniformly distributed over the microsphere (Figure 3b,c). On the contrary, Sn is unevenly present near the center (Figure 3d). Clearly, each 1D-TiO$_2$-NR/SnO$_2$ particle is oriented with the SnO$_2$ head in the central direction of the microsphere.

Figure 3. (a) STEM–EDS elemental mapping for a particle prepared by the hydrothermal reaction at $t_{HT} = 8 \text{ h}$ ((b), Ti; (c), O; (d), Sn). The figure is taken from Reference [14] (reproduced with permission from Akita, A.; Tada, H., Langmuir; published by American Chemical Society, 2019).

The formation mechanism of TiO$_2$-NR//SnO$_2$ HEMCs can be explained as follows (Scheme 2). Initially, Ti(OBu)$_4$ undergoes hydrolysis–polycondensation in HCl solution...
with SnO$_2$ seed nanocrystals, where HCl suppresses the hydrolysis–polycondensation to inhibit the homogeneous particle formation [16]. At $t_{HT} \leq 0.5$ h, the SnO$_2$ surface is covered by an amorphous TiO$_2$ layer (SnO$_2$@amorphous-TiO$_2$). At 0.5 h $< t_{HT} < 1$ h, rutile TiO$_2$ nuclei occur on the SnO$_2$ surface to grow in the [001] direction with the most stable [110] facets exposed at the side planes. In this process, the adsorption of Cl$^-$ ions on the TiO$_2$[110] planes restricts their growth to induce the anisotropic growth along the [001] direction yielding 1D-TiO$_2$-NR//SnO$_2$ particles [15]. The self-assembling to the radial 3D-microsphere can arise from the balance between the repulsion and attraction forces between the 1D-TiO$_2$-NR//SnO$_2$ particles. Since the points of zero charge of rutile TiO$_2$ and SnO$_2$ are ~ 5 and ~ 3.5, respectively [17], the SnO$_2$ head in the 1D-TiO$_2$-NR//SnO$_2$ particle has smaller positive surface charge than the TiO$_2$ tail under the strong acidic conditions. Additionally, the van der Waals attractive force for SnO$_2$ particles would be larger than that for rutile TiO$_2$ particles since the former has a Hamaker constant of 5.5×10^{-20} J, larger than the latter of 4×10^{-20} J [18]. Consequently, the smaller repulsive and larger attractive forces between the SnO$_2$ heads of 1D-TiO$_2$-NR//SnO$_2$ particles induce the formation of the radial 3D-microsphere with the heads oriented toward the central direction.

![Scheme 2. A schematic representation of the formation and self-assembling of TiO$_2$-NR//SnO$_2$. The figure is taken from Reference [14] (reproduced with permission from Akita, A.; Tada, H., Langmuir; published by American Chemical Society, 2019).](image)

3. Photocatalytic Applications

3.1. TiO$_2$-Nanorod Homomesocrystals

The most outstanding feature of the TiO$_2$-NR MCs is the high light harvesting ability due to the multiple light scattering between TiO$_2$ NRs, which should be more effective for rutile TiO$_2$ (refractive index, $n_{E//c} = 2.616$, $n_{E\perp c} = 2.903$) than anatase TiO$_2$ ($n_{E//c} = 2.554$, $n_{E\perp c} = 2.493$) [19]. The photocatalytic studies of radial rutile TiO$_2$-NR HOMCs (3D-type II in Scheme 1) and the analogs are less than expected from the excellent potential. In this section, some of the studies performed over the last decade are introduced.

Zhao and co-workers prepared rutile TiO$_2$-NR HOMCs (1–3 µm) with the specific surface area of ~ 40 m2 g$^{-1}$ using a solvothermal method [20]. P-25 (specific surface area = ~ 50 m2 g$^{-1}$, rutile/anatase = 30:70, Evonik) is known to exhibit a high level of photocatalytic activity for various reactions, being used as a benchmark photocatalyst. The photocatalytic activity of the TiO$_2$-NR HOMCs (1–3 µm) and P-25 for degradation of methylene blue (MB) was studied under UV–visible irradiation. The TiO$_2$-NR HOMCs (1–3 µm) show higher photocatalytic activity than P-25, which was ascribable to the efficient light absorption of the former. Further, the photocatalytic activity decreases with an increase in the diameter of the TiO$_2$-NR HOMCs from ~ 1 to ~ 3 µm, although the reason is unclear.
The same group prepared Au NP (2–10 nm) and Ag NP (~20 nm)-loaded rutile TiO$_2$-NR HOMCs (1–2 µm) with a specific surface area of ~40 m2 g$^{-1}$ using a chemical reduction method [20]. The photocatalytic activity for MB degradation was examined under UV–visible irradiation. Unmodified TiO$_2$-NR HOMCs show photocatalytic activity comparable with that of P-25. Further, loading Ag and Au NPs significantly increases the photocatalytic activity. This is probably because of the enhancement of charge separation due to the interfacial electron transfer from TiO$_2$ to the metal NPs. The authors proposed that visible-light irradiation induces the hot-electron transfer from the metal NPs to TiO$_2$ to yield one-electron ORR on rutile TiO$_2$ causing the MB degradation, although no evidence is provided.

Xu, Li, and co-workers prepared rutile TiO$_2$-NR HOMCs (2–3 µm) with a very large specific surface area of 224 m2 g$^{-1}$ using a solvothermal method [21]. The diameter and length of TiO$_2$ NRs are 5–8 nm and ~0.2 µm, respectively. Under sunlight irradiation of the sample, Cr$^{6+}$ ions are reduced to Cr$^{3+}$ ions with the yield of ~100% at the concentration below 53.7 ppm. The removal capacity under irradiation of sunlight for 3 h was reported to reach ~1 g g$^{-1}$. In this case, it is worth noting that the reduction with a very positive standard electrode potential (E^0(Cr$_2$O$_7^{2-}$/Cr$^{3+}$) = +1.36 V) is thermodynamically permitted [22].

Next, the studies of anatase TiO$_2$-NR HOMCs are described. Zhang and co-workers synthesized an anatase analog of 3D-rutile TiO$_2$-NR HOMCs for the first time [23]. It is known that anatase TiO$_2$ shows higher photocatalytic activity than rutile TiO$_2$ in most aerobic oxidation reactions [24]. Wang and co-workers reported the large-scale synthesis of urchin-like mesoporous TiO$_2$ hollow spheres (UMTHS) (~0.45 µm) surrounded by single-crystal anatase nanohorns with a diameter of 10–20 nm and a length of 40–60 nm [25]. The synthesized sample with a large specific surface area of 129 m2 g$^{-1}$ and excellent light harvesting efficiency exhibits photocatalytic activity for removal of gaseous nitric oxide (NO) superior to P-25.

Xu and co-workers prepared hierarchical golden wattle-like microspheres consisting of rutile TiO$_2$ NRs with a diameter of 40–60 nm and a length of 400–500 nm using a solvothermal method using a reaction solution of acetone (20 mL) containing titanium n-butoxide (4 mL) and HCl (x mL, 36–38 wt%) [26]. The HCl concentration in the reaction solution plays an important role in controlling the size and morphology of products. The photocatalytic activities of the samples and P-25 for the degradation of phenol were assessed under UV-light irradiation ($\lambda_{ex} = 365$ nm). The photocatalytic activity strongly depends on x, and the sample prepared at $x = 2$ mL exhibits photocatalytic activity comparable to that of P-25. The authors attributed the high photocatalytic activity of the sample to the suppression of the recombination by smooth electron transportation through the 1D-TiO$_2$ NRs with high crystallinity, efficient light harvesting ability, and large surface area or large number of adsorption sites for phenol.

Li, Liu, Wang, and co-workers synthesized ultrathin nanobelt-assembled urchin-like anatase TiO$_2$ nanostructures (~0.25 µm) with a large specific surface area of 171 m2 g$^{-1}$ using a one-step hydrothermal route [27]. The length of the nanobelts is several µm, and the width and thickness are in the ranges of 50 to 100 and 23 to 30 nm, respectively. The sample was shown to exhibit photocatalytic activities significantly higher than commercial anatase TiO$_2$ NPs and P-25 for the degradation of methyl orange and phenol under irradiation of UV-light ($\lambda_{ex} = 365$ nm).

Einaga and co-workers partially reduced sea-urchin-like TiO$_2$ microspheres (~0.25 µm) consisting of anatase TiO$_2$ NRs by heating at various temperatures (T_c) under vacuum [28]. The photocatalytic activity of the samples for benzene degradation depends on T_c with a maximum at $T_c = 250$ °C. The optimal sample shows significantly higher activity than P-25 for the decomposition of benzene to CO$_2$ with good stability.
3.2. TiO$_2$-Nanorod/SnO$_2$ Heteromesocrystals

Acetaldehyde is a useful intermediate for various chemical products, medicines, and pharmaceuticals [29]. Industrially, acetaldehyde is produced by the Wacker oxidation of ethylene with PdCl$_2$-CuCl$_2$ as the catalyst at high temperature and pressure [30]. From the perspective from the Sustainable Development Goals (SDGs), the solar-driven production of acetaldehyde from biomass-derived ethanol with high selectivity is highly desired [31]. Gas-phase photocatalytic oxidation of ethanol to acetaldehyde was studied under UV-light irradiation of TiO$_2$-NR//SnO$_2$ HEMCs (3D-type III in Scheme 1) and TiO$_2$-NR HOMCs (3D-type II in Scheme 1) ($\lambda > 300$ nm, $I = 2.0$ mW cm$^{-2}$) (Figure 4a) [32]. In each system, irradiation yields acetaldehyde, while no acetaldehyde is generated in the dark. The apparent first-order rate constants (k_{AA}) were 1.9 × 10$^{-2}$ h$^{-1}$ for TiO$_2$-NR HOMCs and 3.2 × 10$^{-2}$ h$^{-1}$ for TiO$_2$-NR//SnO$_2$ HEMCs. The external quantum yield (Φ_{ex}) or apparent quantum yield at $\lambda_{\text{ex}} = 365$ nm was also calculated to be 7.7% for TiO$_2$-NR HOMCs and 13.4% for TiO$_2$-NR//SnO$_2$ HEMCs, which is larger than the values reported for the TiO$_2$-photocatalyzed oxidation of ethanol to acetaldehyde (<10%) [33–35].

![Figure 4](image)

Figure 4. (a) Comparison of the photocatalytic activities of TiO$_2$-NR//SnO$_2$ HEMCs ($t_{\text{HT}} = 8$ h) and TiO$_2$-NR HOMCs ($t_{\text{HT}} = 8$ h) for gas-phase oxidation of ethanol under UV-light irradiation ($\lambda = 365$ nm, $I = 2.0$ mW cm$^{-2}$). (b) PL spectra were measured for TiO$_2$-NR//SnO$_2$ HEMCs, TiO$_2$-NR HOMCs, and TiO$_2$ NPs for comparison at 77 K with an excitation wavelength of 340 nm. The figure is taken from Reference [32] (reproduced with permission from Akita, A.; Sugita, S.; Naya, S.; Tada, H., Catal. Commun.; published by Elsevier, 2021).

Photoluminescence (PL) spectra of TiO$_2$-NR//SnO$_2$ HEMC, TiO$_2$-NR HOMC, and rutile TiO$_2$ NPs for comparison were measured (Figure 4b) to evaluate the relative charge separation efficiency in the photocatalytic process [36]. Rutile TiO$_2$ NPs have three signals around 410 (B$_1$), 520 (B$_2$), and 800 nm (B$_3$) assigned to the interband emission and the emissions by the recombination at shallow [37] and deep vacancy sites [38], respectively. In the spectra of TiO$_2$-NR//SnO$_2$ HEMCs and TiO$_2$-NR HOMCs, the B$_2$ band almost disappears. It is also worth noting that the emission intensity of TiO$_2$-NR//SnO$_2$ HEMCs is weaker than that of TiO$_2$-NR HOMCs. Thus, the charge separation is suggested to occur more effectively in the TiO$_2$-NR//SnO$_2$ HEMC system than the TiO$_2$ NP and TiO$_2$-NR HOMC systems through the interfacial electron transfer from TiO$_2$ to SnO$_2$ [39].

3.3. Photocatalytic Action Mechanism

The key to boosting the photocatalytic activity of the radial rutile TiO$_2$-NR MCs for aerobic oxidation of organics is imparting them to the electrocatalytic activity for multiple ORR in addition to the charge separation enhancement [10,11,40]. Photocatalytic two-electron ORR has received much attention as a “green” route for producing H$_2$O$_2$ [41], and so far, highly active electrocatalysts such as Au NPs [42–44] and Pd NPs [45] have been reported. The development of the electrocatalyst for four-electron ORR is a major
challenges in proton exchange membrane fuel cells, and Pt-based catalysts have mainly been studied [46]. Abe, Ohtani, and co-workers previously showed that loading of Pt NPs on WO$_3$ drastically increases the photocatalytic activity for aerobic oxidative decomposition of organics [47]. Recently, some metal oxides such as SnO$_2$ [48] and CoFe$_2$O$_4$ [49] have been shown to exhibit electrocatalytic activity for multiple-electron ORR, and consequently, the coupling with TiO$_2$ can increase the photocatalytic activity for aerobic oxidation of organics.

The striking photocatalytic activity of TiO$_2$-NR//SnO$_2$ HEMCs (3D-type III in Scheme 1) for the partial oxidation of ethanol can stem from the following features (Scheme 3). Firstly, the radial TiO$_2$-NRs of several microns in length enable efficient light absorption due to the multiple light scattering between the highly reflective rutile TiO$_2$ NRs exciting the electrons in the valence band (VB) to the conduction band (CB). Secondly, the CB-electrons in the TiO$_2$ NRs are transported in the [001] direction due to the highest conductivity direction [50] and effectively transferred to the CB of SnO$_2$ through the high-quality interface [39]. Thirdly, the heteroepitaxial junction-induced CB-band bending in SnO$_2$ enhances the charge separation [39]. The CB-edge potentials of rutile TiO$_2$ [51] and FTO (or SnO$_2$) [52] are located around +0.11 and +0.48 V (vs. SHE at pH 0), respectively. Fourthly, the electrons collected in SnO$_2$ can induce two-electron ORR (E^0(O$_2$/H$_2$O$_2$) = +0.695 V) due to the electrocatalytic activity [48], whereas one-electron ORR (E^0(O$_2$//O$_2^-$) = −0.33 V) [22] is thermodynamically difficult on TiO$_2$ NRs. Thus, TiO$_2$-NR//SnO$_2$ HEMCs exhibit much higher photocatalytic activity than TiO$_2$-NR HOMCs [32]. Fifthly, the reaction field of the oxidation by the VB holes in rutile TiO$_2$ is limited to the near-surface [53], and also, the adsorptivity of rutile TiO$_2$ for acetaldehyde is weak [54]. Consequently, the over-oxidation of acetaldehyde can be effectively inhibited.

![Scheme 3. Action mechanism of TiO$_2$-NR//SnO$_2$ HEMC photocatalyst. The figure is taken from Reference [32] (reproduced with permission from Akita, A.; Sugita, S.; Naya, S.; Tada, H., *Catal. Commun.*, published by Elsevier, 2021).](image)

4. Electrochemical Applications

Besides the photocatalysts, the radial TiO$_2$-NR HOMCs (3D-type II in Scheme 1) and the analogs can be suitably applied to the electrodes for the solar cells and lithium-ion batteries by taking the unique geometrical, optical, and electrochemical properties. In this section, some of the studies reported over the last decade are described.

4.1. Solar Cells

Jang and co-workers synthesized radial TiO$_2$ HOMCs with a size of 4–7 µm consisting of rutile TiO$_2$ NRs with a diameter of ~50 nm and length of few micrometers using a
A CdS/CdSe/ZnS quantum dot-sensitized solar cell was constructed using a base electrode including the rutile TiO$_2$ HOMCs and anatase TiO$_2$ NPs with a diameter of ~20 nm. The solar cell provided a conversion efficiency of 4.2% with a short-circuit photocurrent of 18.2 mA cm$^{-2}$ and an open-circuit voltage of 531 mV, while the conversion efficiency of the reference cell using the TiO$_2$ NP electrode without rutile TiO$_2$ HOMCs was 3.5%. The superior performance of the cell made of the hybrid photoanode of rutile TiO$_2$ NR HOMCs and anatase TiO$_2$ NPs was ascribable to the high light harvesting and charge collection properties of the rutile TiO$_2$ NR HOMCs.

Wang and co-workers fabricated a dye(Z907)-sensitized solar cell using UMTHS as an active layer of photoanode with Co(bpy)$_3^{3+}/^{2+}$ electrolyte [25]. The solar cell provided an impressive power conversion efficiency of 5.5% under one-sun irradiation (AM-1.5). The excellent cell performance was ascribable to the large surface area and high light-scattering property of UMTHS.

Zhou and co-workers synthesized flower-like and sea-urchin-like TiO$_2$ NR HOMCs using a solvothermal method [56]. The geometrical effect of the TiO$_2$ photoanode on the performance of a dye(N719)-sensitized solar cell was studied. The conversion efficiency increases in the order of sphere-like (0.82%) < flower-like (3.61%) < sea-urchin-like (8.04%). The authors suggested that the superior performance of the cell with the sea-urchin-like TiO$_2$ photoanode partly results from the 1D-channel of electron transport in the rutile TiO$_2$ NR enhancing the charge separation.

Peng and co-workers formed a film consisting of rutile TiO$_2$ NR HOMCs with a diameter of 5–6 µm on Ti foil (TiO$_2$ NR MC/Ti) using a hydrothermal method [57]. A quasi-solid-state dye(N719)-sensitized solar cell was fabricated, and a high conversion efficiency of 7.27% was achieved by using the film as an underlayer of a nanosized anatase TiO$_2$ film. A similar effect was obtained in a dye(N719)-sensitized solar cell using the TiO$_2$ NR MC/Ti covered with anatase nanotubes as a photoanode [58]. Interestingly, in these systems, the combination of 3D-type I and 3D-type II in Scheme 1 remarkably enhances the cell performance due to their large surface area and effective light scattering property.

4.2. Lithium-Ion Batteries

Archer, Lou, and co-workers synthesized TiO$_2$ nanosheet hierarchical spheres (TiO$_2$ NSHSs) with an average size of ~1 µm using a hydrothermal method [59]. TiO$_2$ NSHSs consisting of (001)-faceted anatase TiO$_2$ nanosheets with a thickness of ~3 nm and size of 100–300 nm has a mesoporous structure with a very large specific surface area of 170 m2 g$^{-1}$. Consequently, TiO$_2$ NSHSs manifest an unusual high Coulombic efficiency for lithium extraction, excellent capacity retention over 175 mA h g$^{-1}$ even at 100 charge–discharge cycles, and superior rate of insertion-release in batteries.

Han and co-workers prepared radial rutile TiO$_2$ HOMCs using a hydrothermal method, and the geometry was maintained after annealing at 300 ºC with a specific surface area of 115.3 m2 g$^{-1}$ and a pore size of 2.26 nm [60]. The electrochemical properties were examined in a 1M LiPF$_6$ electrolyte solution of ethylene carbonate and dimethylcarbonate (1:1 v/v) for the application to lithium-ion batteries. The radial rutile TiO$_2$ HOMC electrode shows outstanding energy storage behavior, with a high capacity of 457 mA h g$^{-1}$ at the first discharge cycle, a reversible and high rate charge–discharge capability, high rate performance, and good cycling stability.

5. Conclusions and Future Subjects

This review article highlights the synthesis, characterization, and photocatalytic activity of TiO$_2$-NR//SnO$_2$ HEMCs. TiO$_2$-NR//SnO$_2$ HEMCs surpass TiO$_2$-NR HOMCs in photocatalytic activity. The striking photocatalytic activity of TiO$_2$-NR//SnO$_2$ HEMCs can stem from the following features: (1) Incident light is efficiently absorbed by to the multiple light scattering between TiO$_2$ NRs, (2) smooth 1D-electron transport along the [001] direction due to the large electron mobility, (3) efficient interfacial electron transfer from TiO$_2$ to SnO$_2$ can occur through the high-quality interface, (4) effective charge separation can
be achieved by the heteroepitaxial junction-induced CB-potential gradient in SnO₂, and (5) the electrocatalytic activity of SnO₂ for multiple ORR can complete the catalytic cycle because the holes in the VB of TiO₂ have strong oxidizing ability. Consequently, the development from the HOMCs to HEMCs can extend the applications of the TiO₂ NR-based MC photocatalysts to various chemical transformations. In the meantime, TiO₂ NR-based MCs possess various features including large charge capacity, excellent electron-transport, electron-collecting properties, and robustness in addition to efficient light harvesting ability. As a result, TiO₂ NR-based MCs can also be a very promising electrode material for solar cells and lithium-ion batteries. Research to improve the cell performance by optimizing the geometry and physicochemical properties of TiO₂ NR-based MCs is ongoing.

There are two important subjects for the TiO₂ NR-based MCs. The first one relates to the sample production. In the hydrothermal synthesis of TiO₂-NR/SnO₂ HEMCs, the yield remains <50% even at $t_{HT} = 8$ h. The development of the technique enabling the synthesis of TiO₂-NR MCs in a shorter reaction time with a higher yield would accelerate research and raise feasibility. The second one is concerned with the application to photocatalysts. Since rutile TiO₂ NR-based MCs with an absorption edge of ~410 nm mainly absorb UV-light occupying only 3% of solar energy, endowing them with visible-light responsiveness and simultaneous enhancement of UV-light activity are crucial for applications to efficient solar-to-chemical transformations. So far, the study on the visible-light activation of the TiO₂-NR MCs is limited. Rodriguez and co-workers have recently reported the visible-light activation of TiO₂-NR MCs by Ru-doping for H₂ generation from methanol aqueous solution [61]. Finally, it has recently been revealed that heteroepitaxial junctions are impossible in the bulk system due to the significant lattice mismatch that can be formed in the nanohybrid systems [62]. We anticipate that the new approach of interface control at an atomic level can widely contribute to enhancement in the performance of nanohybrids as photocatalysts and other functional materials.

Author Contributions: H.T. chose the topic; H.T. and A.A. wrote the article. All authors have read and agreed to the published version of the manuscript.

Funding: The authors greatly acknowledge financial support from JST Adaptable and Seamless Technology Transfer Program through Target-driven R&D, JSPS KAKENHI Grant-in-Aid for Scientific Research (C) no. 20K05674, and Nippon Sheet Glass Foundation for Materials Science and Engineering.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All links are given to publications that are in the open press and are easily available.

Acknowledgments: The authors acknowledge H. Sugime and S. Naya for helpful discussion, and S. Sugita and R. Kojima for experimental support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hashimoto, K.; Irie, H.; Fujishima, A. TiO₂ photocatalysis: A historical overview and future prospects. *Jpn. J. Appl. Phys.* 2005, 44, 8269–8285. [CrossRef]
2. Park, H.; Park, Y.; Kim, W.; Choi, W. Surface modification of TiO₂ photocatalyst for environmental applications. *J. Photochem. Photobiol. C* 2013, 15, 1–20. [CrossRef]
3. Sang, L.; Zhao, Y.; Burda, C. TiO₂ nanoparticles as functional building blocks. *Chem. Rev.* 2014, 114, 9283–9318. [CrossRef]
4. Chen, X.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S.S. Nanomaterials for renewable energy production and storage. *Chem. Soc. Rev.* 2012, 41, 7909–7937. [CrossRef] [PubMed]
5. Bian, Z.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO₂ Superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. *J. Am. Chem. Soc.* 2014, 136, 458–465. [CrossRef]
6. Tada, H. Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts. *Nanoscale Adv.* 2019, 1, 4238–4245. [CrossRef]
7. O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 1991, 353, 737–740. [CrossRef]
8. Xiang, L.; Zhao, X. Wet-chemical preparation of TiO$_2$-based composites with different morphologies and photocatalytic properties. Nanomaterials 2017, 7, 310. [CrossRef] [PubMed]
9. Wu, W.-Q.; Xu, Y.-F.; Liao, J.-F.; Wang, L.; Kuang, D.-B. Branched titania nanostructures for efficient energy conversion and storage: A review on design strategies, structural merits and multifunctionalities. Nano Energy 2019, 62, 791–809. [CrossRef]
10. Ohno, T.; Sarukawa, K.; Matsumura, M. Photocatalytic activities of pure rutile particles isolated from TiO$_2$ powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 2001, 105, 2417. [CrossRef]
11. Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Synergism between rutile and anatase TiO$_2$ particles in photocatalytic oxidation of naphthalene. J. Phys. Chem. B 2001, 105, 2417. [CrossRef]
12. Yang, S.; Gao, L. Fabrication and shape-evolution of nanostructured TiO$_2$. Appl. Catal. A 2003, 244, 383. [CrossRef]
13. Ahn, H.; Lee, J.; Lee, A.; Kang, J.; Lee, J.; Jung, H.; Park, J.; Kim, J. Titanium dioxide nanorod arrays as self-supporting anode substrates for dye-sensitized solar cells. Adv. Funct. Mater. 2009, 19, 2983–2989. [CrossRef]
14. Fattakhova-Rohlfing, D.; Zaleska-Medynska, A.; Bein, T. Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 2014, 114, 9487–9558. [CrossRef] [PubMed]
15. Akita, A.; Tada, H. Synthesis of 1D-anisotropic particles consisting of TiO$_2$ nanorod and SnO$_2$ with heteroepitaxial junctions and the self-assembling to 3D-microspheres. Langmuir 2019, 35, 17096–17102. [CrossRef]
16. Liu, B.; Aydil, E.S. Growth of oriented single-crystalline rutile TiO$_2$ nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990. [CrossRef] [PubMed]
17. Kosmulski, M. pH-Dependent surface charging of nanocrystalline TiO$_2$ and points of zero charge. IV. Update and new approach. J. Colloid Interface Sci. 2009, 337, 439–446. [CrossRef]
18. Israellachivi, J.N. Intermolecular and Surface Forces; Academic Press: London, UK, 1985.
19. Nosaka, Y.; Nosaka, A. Nyumon Hikarisyokubai; Tokyo Tosho: Tokyo, Japan, 2004.
20. Xiang, L.; Zhao, X.; Shang, C.; Yin, J.; Au or Ag nanoparticle-decorated 3D urchin-like TiO$_2$ hollow spheres by targeted etching and their photoelectrochemical properties. Mater. Chem. Phys. 2006, 99, 1280–1283. [CrossRef] [PubMed]
21. Akita, A.; Tada, H. Action of chloride ions as a habit modifier in the hydrothermal crystal growth of rutile TiO$_2$. Denki Kagaku Binran 1983, 51, 1849–1858. [CrossRef]
22. Israelachivili, J.N. Intermolecular and Surface Forces; Academic Press: London, UK, 1985.
37. Shi, J.; Chen, J.; Feng, Z.; Chen, T.; Lian, Y.; Wang, X.; Li, C. Photoluminescence characteristics of TiO₂ and their relationship to the photoassisted reaction of water/methanol mixture. *J. Phys. Chem. C* 2007, 111, 693–699. [CrossRef]

38. Nakamura, R.; Ohashi, N.; Imanishi, A.; Osawa, T.; Matsumoto, Y.; Koinuma, H.; Nakato, Y. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO₂ (rutile) surfaces. *J. Phys. Chem. B* 2005, 109, 1648–1651. [CrossRef] [PubMed]

39. Awa, K.; Akashi, R.; Akita, A.; Naya, S.; Kobayashi, H.; Tada, H. Highly efficient and selective oxidation of ethanol to acetaldehyde by a hybrid photocatalyst consisting of SnO₂ nanorod and rutile TiO₂ with heteroepitaxial junction. *ChemPhysChem* 2019, 20, 2155–2161. [CrossRef]

40. Wang, C.; Zhang, X.; Liu, Y. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction. *Appl. Surf. Sci.* 2015, 358, 28–45. [CrossRef]

41. Hou, H.; Zeng, X.; Zhang, X. Production of hydrogen peroxide by photocatalytic processes. *Angew. Chem. Int. Ed.* 2020, 59, 17356–17376. [CrossRef] [PubMed]

42. Kawano, S.; Fujishima, M.; Tada, H. Size effect of zinc oxide-supported gold nanoparticles on the photocatalytic activity for two-electron oxygen reduction reaction. *Catal. Commun.* 2020, 144, 106076. [CrossRef]

43. Feng, L.; Li, B.; Xiao, Y.; Li, L.; Zhang, Y.; Zhao, Q.; Zuo, G.; Meng, X.; Roy, V.A.L. Au modified Bi₂O₃-TiO₂ hybrid for photocatalytic synthesis of hydrogen peroxide. *Catal. Commun.* 2021, 155, 106315. [CrossRef]

44. Xu, W.; Sheng, X.; Zhou, H.; Wang, D.; Ding, Z.; Feng, X. Enhanced plasmonic photocatalytic synthesis of hydrogen peroxide at an air-liquid-solid triphasic interface. *Chem. Eng. J.* 2021, 410, 128342. [CrossRef]

45. Adams, J.S.; Chembulkar, A.; Priyadarshini, P.; Ricciardulli, T.; Lu, Y.; Maliekkal, V.; Sampath, A.; Winikoff, S.; Karim, A.M.; Neurock, M.; et al. Solvent molecules from surface redox mediators in situ and cocatalyze O₂ reduction on Pd. *Science* 2021, 371, 626–632. [CrossRef]

46. Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C.-j. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, structure, mechanism and carbon support in PEM fuel cells. *J. Mater. Chem. A* 2017, 5, 1808–18025. [CrossRef]

47. Abe, R.; Takami, H.; Murakami, N.; Ohtani, B. Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. *J. Am. Chem. Soc.* 2008, 130, 7780–7781. [CrossRef] [PubMed]

48. Tada, H.; Naya, S. Atomic level interface control of SnO₂-TiO₂ nano hybrids for the photocatalytic activity enhancement. *Catalysts* 2021, 11, 205. [CrossRef]

49. Sun, Q.; Wu, S.; Li, K.; Han, B.; Chen, Y.; Pang, B.; Yu, L.; Dong, L. The favorable synergistic operation of photocatalysis and catalytic oxygen reduction reaction by a novel heterogeneous CoFe₂O₄-TiO₂ nanocomposite. *Appl. Surf. Sci.* 2020, 516, 146142. [CrossRef]

50. Byl, O.; Yates, J.T., Jr. Anisotropy in the electrical conductivity of rutile TiO₂ in the (110) plane. *J. Phys. Chem. B* 2006, 110, 22966–22967. [CrossRef]

51. Cooper, G.; Turner, J.A.; Nozik, A.J. Mott-Schottky plots and flatband potentials for single crystal rutile electrodes. *J. Electrochem. Soc.* 1982, 129, 1973–1977. [CrossRef]

52. Tada, H.; Hattori, A.; Tokihisa, Y.; Imai, K.; Tohge, N.; Ito, S. A patterned-TiO₂/SnO₂ bilayer type photocatalyst. *J. Phys. Chem. B* 2004, 108, 4585–4587. [CrossRef]

53. Kim, W.; Tachikawa, T.; Moon, G.-H.; Majima, T.; Choi, W. Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. *Angew. Chem. Int. Ed.* 2014, 53, 14036–14041. [CrossRef] [PubMed]

54. Nikawa, R.; Ohashi, N.; Imanishi, A.; Osawa, T.; Matsumoto, Y.; Koinuma, H.; Nakato, Y. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO₂ (rutile) surfaces. *J. Phys. Chem. B* 2005, 109, 1648–1651. [CrossRef] [PubMed]

55. Kong, E.-H.; Chang, Y.-J.; Park, Y.-C.; Yoon, Y.-H.; Park, H.-J.; Jang, H.M. Sea urchin TiO₂ nanocomposite. *Appl. Surf. Sci.* 2015, 326, 9–14. [CrossRef]

56. Kong, E.-H.; Chang, Y.-J.; Park, Y.-C.; Yoon, Y.-H.; Park, H.-J.; Jang, H.M. Sea urchin TiO₂ nanocomposite. *Appl. Surf. Sci.* 2015, 326, 9–14. [CrossRef]

57. Ri, J.H.; Wu, S.; Jin, J.; Peng, T. Growth of a sea urchin-like rutile TiO₂ hierarchical microsphere film on Ti foil for a quasi-solid-state dye-sensitized solar cell. *Nanoscale* 2017, 9, 18498–18506. [CrossRef] [PubMed]

58. Ri, J.H.; Wu, S.; Jin, J.; Peng, T.; Kim, B.; Sonu, K.S. Preparation of Ti foil-based film containing rutile sea urchin-like microspheres covered with anatase nanotubes self-organized layer and its application in dye-sensitized solar cells. *Electrochim. Acta* 2017, 247, 754–763. [CrossRef]

59. Chen, J.S.; Tan, Y.L.; Li, C.M.; Cheah, Y.L.; Luan, D.; Madhavsi, S.; Boey, F.Y.C.; Archer, L.A.; Lou, X.W. Constructing hierarchical spheres from large ultrathin anataseTiO₂ nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. *J. Am. Chem. Soc.* 2010, 132, 6124–6130. [CrossRef]
60. Ambade, R.B.; Koh, K.H.; Ambade, S.B.; Eom, W.; Noh, S.H.; Koo, C.M.; Kim, S.H.; Han, T.H. Kinetically controlled low-temperature solution-processed mesoporous rutile TiO$_2$ for high performance lithium-ion batteries. *J. Ind. Eng. Chem.* **2019**, *80*, 667–676. [CrossRef]

61. Nguyen-Phan, T.-D.; Luo, S.; Vovchok, D.; Llorca, J.; Sallis, S.; Kattel, S.; Xu, W.; Piper, L.F.J.; Polyansky, D.E.; Senanayake, S.D.; et al. Three-dimensional Ruthenium-Doped TiO$_2$ Sea Urchins for Enhanced Visible-Light-Responsive H$_2$ Production. *Phys. Chem. Chem. Phys.* **2016**, *18*, 15972–15979. [CrossRef]

62. Tada, H.; Naya, S.; Fujishima, M. Nanohybrid crystals with heteroepitaxial junctions for solar-to-chemical transformations. *J. Phys. Chem. C* **2020**, *124*, 25657–25666. [CrossRef]