Fault-Tolerant Approximate BFS Structures

MERAV PARTER and DAVID PELEG, The Weizmann Institute of Science, Rehovot, Israel

A fault-tolerant structure for a network is required to continue functioning following the failure of some of the network’s edges or vertices. This article addresses the problem of designing a fault-tolerant (α, β) approximate BFS structure (or FT-ABFS structure for short), namely, a subgraph H of the network G such that subsequent to the failure of some subset F of edges or vertices, the surviving part of H (namely, $H \setminus F$) still contains an approximate BFS spanning tree for (the surviving part of) G, satisfying $\text{dist}(s, v, H \setminus F) \leq \alpha \cdot \text{dist}(s, v, G \setminus F) + \beta$ for every $v \in V$.

Our first result is an algorithm that given an n-vertex unweighted undirected graph G and a source s constructs a multiplicative $(3, 0)$ FT-ABFS structure rooted at s resilient to a failure of a single edge with at most $4n$ edges (improving by an $O(\log n)$ factor on the near-tight result of Baswana and Khanna (2010) for the special case of edge failures). This was recently improved to $2n$ edges by Bilò et al. (2014). Next, we consider the multiple edge faults case, for a constant integer $f > 1$, we prove that there exists a (polynomial-time constructible) $(3f, f \log n)$ FT-ABFS structure with $O(fn)$ edges that is resilient against f faults. We also show the existence of a $(3f + 1, 0)$ FT-ABFS structure with $O(f \log f n \cdot n)$ edges.

We then consider additive $(1, \beta)$ FT-ABFS structures and demonstrate an interesting dichotomy between multiplicative and additive spanners. In contrast to the linear size of $(\alpha, 0)$ FT-ABFS structures, we show that for every n, there exist $\delta, \epsilon > 0$, and n-vertex graphs G with a source s for which any $(1, n^\delta)$ FT-ABFS structure rooted at s has $\Omega(n^{5/6-\epsilon})$ edges. For the case of additive stretch 3, we show that $(1, 3)$ FT-ABFS structures admit a lower bound of $\Omega(n^{5/4})$ edges.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture and Design

General Terms: Design, Algorithms, Reliability

Additional Key Words and Phrases: Replacement paths, fault tolerance, additive spanners

ACM Reference format:
Merav Parter and David Peleg. 2018. Fault-Tolerant Approximate BFS Structures. ACM Trans. Algorithms 14, 1, Article 10 (January 2018), 15 pages.
https://doi.org/10.1145/3022730

This work is supported in part by the Israel Science Foundation (grant 894/09), the United States-Israel Binational Science Foundation (grant 2008348), the I-CORE program of the Israel PBC and ISF (grant 4/11), the Israel Ministry of Science and Technology (infrastructure grant), and the Citi Foundation. M. Parter is recipient of the Google European Fellowship in distributed computing; research is supported in part by this Fellowship. An extended abstract of this article has appeared in the proceedings of the 2014 ACM-SIAM Symposium on Discrete Algorithms.

Authors’ addresses: M. Parter and D. Peleg, Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel; email: {merav.parter,david.peleg}@weizmann.ac.il.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 1549-6325/2018/01-ART10 $15.00
https://doi.org/10.1145/3022730

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 10. Publication date: January 2018.
1 INTRODUCTION

Background and Motivation. Fault-tolerant subgraphs are subgraphs designed to maintain a certain desirable property in the presence of edge or vertex failures. This article focuses on the property of containing a BFS tree with respect to some source s. A fault-tolerant BFS structure (or FT-BFS structure) resistant to a single edge failure is a subgraph $H \subseteq G$ satisfying that $\text{dist}(s, v, H \setminus \{e\}) = \text{dist}(s, v, G \setminus \{e\})$ for every vertex $v \in V$ and edge $e \in E$.

To motivate our interest in such structures, consider a situation where it is required to lease a subnetwork of a given network, which will provide short routes from a source s to all other vertices. In a failure-free environment one can simply lease a BFS tree rooted at s. However, if links might disconnect, then one must prepare by leasing a larger set of links, and specifically an FT-BFS structure. Moreover, taking costs into account, this example also motivates our interest in constructing sparse FT-BFS structure.

This question has recently been studied by us in Parter and Peleg (2013). Formally, a spanning graph $H \subseteq G$ is an f-edge (respectively, vertex) fault-tolerant BFS (FT-BFS) structure for G with respect to the source $s \in V$ iff for every $v \in V$ and every set $F \subseteq E(G)$ (respectively, $F \subseteq V$), $|F| \leq f$, it holds that $\text{dist}(s, v, H \setminus F) = \text{dist}(s, v, G \setminus F)$. It is shown in Parter and Peleg (2013) that for every graph G and source s there exists a (polynomial-time constructible) 1-edge FT-BFS structure H with $O(n^{3/2})$ edges. This result is complemented by a matching lower bound showing that for every sufficiently large integer n, there exist an n-vertex graph G and a source $s \in V$, for which every 1-edge FT-BFS structure is of size $\Omega(n^{3/2})$. Hence, exact FT-BFS structures may be rather expensive.

This last observation motivates the approach of resorting to approximate distances, to allow the design of a sparse subgraph with properties resembling those of an FT-BFS structure. The current article aims at exploring this approach, focusing mainly on subgraphs that contain approximate BFS structures and are resistant to a single edge failure. Formally, given an unweighted undirected n-vertex graph $G = (V, E)$ and a source $s \in V$, the subgraph $H \subseteq G$ is an f-edge (respectively, vertex) (α, β) FT-ABFS structure with respect to s if for every vertex $v \in V$ and every set $F \subseteq E(G)$ (respectively, $F \subseteq V$), $|F| \leq f$,

\[
\text{dist}(s, v, H \setminus F) \leq \alpha \cdot \text{dist}(s, v, G \setminus F) + \beta.
\]

(An (α, β) FT-ABFS structure is a fault-tolerant BFS (FT-BFS) structure if $\alpha = 1$ and $\beta = 0$.) We show that this relaxed requirement allows structures that are sparser than their exact counterparts.

Approximate BFS tree structures can also be compared against a different type of structure, namely, fault-tolerant spanners. Given an n-vertex graph $G = (V, E)$, the subgraph $H \subseteq G$ is an f-edge fault-tolerant (α, β)-spanner of G if for every two vertices $v, w \in V$ and every set $F \subseteq E(G)$, $|F| \leq f$, we have $\text{dist}(v, w, H \setminus F) \leq \alpha \cdot \text{dist}(v, w, G \setminus F) + \beta$. Observe that the union of (α, β) FT-ABFS structures with respect to every source $s \in V$ forms an (all-pairs) fault-tolerant (α, β)-spanner for G. In fact, FT-ABFS structures can be viewed as single-source spanners. Algorithms for constructing an f-vertex fault-tolerant $(2k - 1)$-spanner of size $O(f^2k^{f+1} \cdot n^{1+k} \log^{1-1/k} n)$ and an f-edge fault-tolerant $(2k - 1)$-spanner of size $O(f \cdot n^{1+k})$ for a given n-vertex graph G were presented in Chechik et al. (2010). A randomized construction attaining an improved tradeoff for vertex fault-tolerant spanners was then presented in Dinitz and Krauthgamer (2011), yielding (with high probability) for every graph $G = (V, E)$ and integers k, f, an f-vertex fault-tolerant $(2k - 1)$-spanner with $O(f^{2-k}k^{1+k} \log^{1+k} n)$ edges.

For the case of f edge failures for a constant $f \geq 1$, we show (in Section 2) that there exists a polynomial-time algorithm that for every n-vertex graph constructs a $(3f \cdot f \log n)$ FT-ABFS structure H with $O(fn)$ edges overcoming up to f edge faults. We also considered the special case of
a single edge failure \(f = 1 \), and have shown a somewhat stronger result, namely, that for every \(n \)-vertex graph \(G \) and source \(s \), there is a (polynomial-time constructible) \((3, 0)\) \(\text{FT-ABFS} \) structure with at most \(4n \) edges, thus improving on the near-tight construction of Baswana and Khanna (2010) by an \(O(\log n) \) factor for the special case of \(\alpha = 3 \) and edge failures. This result was recently improved by Bilò et al. (2014), obtaining a 3 approximation with at most \(2n \) edges. Note that the algorithm of Bilò et al. (2014) is limited to a single edge failure and cannot be used to overcome multiple edge faults. Toward the end of Section 2, we show the construction of a \((3f + 1, 0)\) \(\text{FT-ABFS} \) structure with \(O(f(\log n)^f \cdot n) \) edges.

Our algorithm for approximately handling \(f \) edge failures is to be contrasted with two different structures: the (single-source) fault-tolerant exact \(\text{FT-BFS} \) structure of Parter and Peleg (2013), and the (all-pairs) fault-tolerant \((3, 0)\)spanner of Chechik et al. (2010), which both contain \(\Theta(n^{3/2}) \) edges. This implies that using \(\text{FT-ABFS} \) structures is more efficient than using fault-tolerant spanners even if it is necessary to handle not a single-source \(s \) but a set \(S \subseteq V \) of sources where \(|S| = \Omega(n^\epsilon) \) for \(\epsilon < 1/2 \); a collection of approximate \((\alpha, \beta)\) \(\text{FT-ABFS} \) structures rooted at each of the sources \(s \in S \) will still be cheaper than a fault-tolerant spanner.

Additive fault-tolerant \((1, \beta)\) spanners were recently defined and studied by Braunischvig et al. (2015), establishing the following general result. For a given \(n \)-vertex graph \(G \), let \(H_1 \) be an ordinary additive \((1, \beta)\) spanner for \(G \) and \(H_2 \) be a fault-tolerant \((\alpha, 0)\) spanner for \(G \) resilient against up to \(f \) edge faults. Then, \(H = H_1 \cup H_2 \) is a \((1, \beta(f))\) additive fault-tolerant spanner for \(G \) (for up to \(f \) edge faults) for \(\beta(f) = O(f(\alpha + \beta)) \). In particular, fixing the number of \(H \) edges to be \(O(n^{1/3}) \) and the number of faults to \(f = 1 \) yields an additive stretch of 38 (See Braunischvig et al. (2015); Cor. 1).

When considering \(\text{FT-BFS} \) structures with an additive stretch, namely, \((1, \beta)\) \(\text{FT-ABFS} \) structures, the improvement is less dramatic compared to the size of the single-source exact or the all-pairs approximate variants. In Section 3, we use the recent lower bound construction of Abboud and Bodwin (2016) to show that there exists a superlinear lower bound on the size of the \(\text{FT-ABFS} \) structure with additive stretch \(n^\delta \) and \(\Omega(n^{7/6-\epsilon}) \) edges. For additive stretch \(3 \), we show a different construction with \(\Omega(n^{5/3}) \) edges. These new lower bound constructions are independent of the correctness of Erdős conjecture. Importantly, our results reveal an interesting dichotomy between multiplicative \((\alpha, 0)\) \(\text{FT-ABFS} \) and additive \((1, \beta)\) \(\text{FT-ABFS} \) structures: whereas every graph \(G \) contains a (polynomial-time constructible) \((3, 0)\) \(\text{FT-ABFS} \) structure rooted at \(s \in V \) of size \(\Theta(n) \), there exist an \(n \)-vertex graph \(G \) and a source \(s \in V \) for which every \((1, \beta)\) \(\text{FT-ABFS} \) structure contains a super-linear number of edges.

Related Work. \(\text{FT-BFS} \) structures are closely related to the notion of replacement paths. For a source \(s \), a target vertex \(v \), and an edge \(e \in G \), a replacement path is the shortest \(s \to v \) path that does not go through \(e \). (Intuitively, we think of this replacement path as “protecting” the structure from the failure of the edge \(e \), as it provides an alternative route from \(s \) to \(v \) that does not use \(e \), and hence will continue to function even if \(e \) fails.) An \(\text{FT-BFS} \) structure is composed of a collection consisting of a replacement path for every target \(v \in V \) and edge \(e \in E \). Analogously, the notion of \(\text{FT-ABFS} \) structures is closely related to the problem of constructing approximate replacement paths (Baswana and Kavitha 2006; Chechik et al. 2012; Bernstein 2010), and in particular to its single-source variant studied in Baswana and Khanna (2010). That problem requires to compute a collection \(P_s \) consisting of an approximate \(s \to v \) replacement path \(rp(s,v,G \setminus \{e\}) \) for every \(v \in V \) and every failed edge \(e \) that appears on the \(s \to v \) shortest-path in \(G \), such that \(|rp(s,v,G \setminus \{e\})| \leq \alpha \cdot \text{dist}(s,v,G \setminus \{e\}) \). In the resulting fault-tolerant distance oracle, in response to a query \((s,v,F)\) consisting of an \(s \to v \) pair and a set \(F \) of failed edges or vertices (or both), the oracle \(S \) must return the distance between \(s \) and \(v \) in \(G' = G \setminus F \). Such a structure is sometimes
called an \textit{F-sensitivity distance oracle}. The focus is on both fast preprocessing time, fast query time and low space. An approximate \textit{single-source fault-tolerant distance oracle} has been first studied at Baswana and Khanna (2010), which proposed an $O(n \log n/\beta^2)$ space data structure that can report a $(1 + \epsilon)$ approximate shortest path for any $\epsilon > 0$ for the case of unweighted graphs. An additional by-product of the data structure of Baswana and Khanna (2010) is the construction of an $(1 + \epsilon, 0)$ FT-\textsc{ABFS} structure with $O(n/\epsilon^2 + n \log n)$ edges. Recently, this was extended for the case of weighted graphs (Bilò et al. 2014). Setting $\epsilon = 2$, this yields a $(3, 0)$ FT-\textsc{ABFS} structure with $O(n \log n)$ edges. Hence, our $(3, 0)$ FT-\textsc{ABFS} structure construction with at most $4n$ edges and the recent improvement of Bilò et al. (2014) improves the construction of Baswana and Khanna (2010) by a factor of $O(\log n)$ for the case of single edge failure (the construction of Baswana and Khanna (2010) supports the case of vertex failures as well). For a summary table of the bounds, see Table 1.

It is important to note that the literature on approximate replacement paths (cf. Baswana and Kavitha (2006) and Bernstein (2010)) mainly focuses on \textit{time-efficient} computation of the these paths, as well as their efficient maintenance within distance oracles. In contrast, the main concern in the current article is with optimizing the size of the resulting fault-tolerant structure that contains the collection of approximate replacement paths.

Moreover, this article considers both multiplicative and additive stretch, whereas the long line of existing approximate distance oracles concerned mostly multiplicative (and not additive) stretch, with the exception of Pătraşcu and Roditty (2010) and Abraham and Gavoille (2011). To illustrate the dichotomy between the additive and multiplicative setting, consider the issue of lower bounds for additive FT-\textsc{ABFS} structures. In the all-pairs fault-free setting, the best-known lower bound for multiplicative spanners is based on the \textit{girth conjecture} of Erdős (1964), stating that there exist n-vertex graphs with $\Omega(n^{1+1/k})$ edges and girth (minimum cycle length) $2k + 2$ for any integer k. Removing any edge in such a graph increases the distance between its endpoints from 1 to $2k + 1$, hence any $(1, \beta)$ spanner with $\beta \leq 2k - 1$ must have $\Omega(n^{1+1/k})$ edges. This conjecture is settled only for $k = 1, 2, 3, 5$ (see Wenger (1991)). Turning to additive spanners, in Woodruff (2006), Woodruff presented a lower bound for additive spanners matching the girth conjecture bounds but independent of the correctness of the conjecture. More precisely, he showed the existence of graphs for which any spanner of size $O(k^{-1}n^{1+1/k})$ has an additive stretch of at least $2k - 1$, hence establishing a lower bound of $\Omega(k^{-1}n^{1+1/k})$ on the size of additive spanners. Recently, Abboud and Bodwin (2016) presented a surprising lower bound of $\Omega(n^{4/3-\epsilon})$ for any additive stretch at most $n^{O(1)}$.

\begin{table}[h]
\centering
\caption{Fault-Tolerant Distance Preservers}
\begin{tabular}{|c|c|c|}
\hline
Approximation & Single Source & All Pairs \\
\hline
Exact, $f = 1$ & $O(n^{3/2})$ (Parter and Peleg 2013) & $O(n^2)$ \\
\hline
$(1 + \epsilon, \beta), f = 1$ & $\beta = 0, O(n/\beta^4 + n \log n)$ (Baswana and Khanna 2010) & $O(f^\beta(\beta^{-1})^{3f} \cdot n^{1+1/k})$ (Braunschvig et al. 2015) \\
\hline
$(3, 0), f = 1, \beta = 4, f = 1, O(n^{4/3})$ (Parter and Peleg 2014a) & $2n$ (Bilò et al. 2014) & $O(n^{3/2})$ (Chechik et al. 2010) \\
\hline
$(3f, f \log n), f \geq 1, \beta = 6, f = 1, O(n^{3/2})$ (Parter 2014) & $O(f \cdot n)$ & $O(f \cdot n^{1+2/3f} + n^{1+1/k})$ (Chechik et al. 2010) \\
\hline
$(1, \beta)$ & $\beta = 6, f = 1, O(n^{3/2})$ (Parter 2014) & $\beta = 18f + 6, O(f n^{4/3})$ (Braunschvig et al. 2015; Bilò et al. 2015) \\
\hline
\end{tabular}
\end{table}
Upper bounds for constant stretch (non-fault-tolerant) additive spanners are currently known for but a few stretch values. A \((1, 2)\) spanner with \(O(n^{3/2})\) edges is presented in Aingworth et al. (1999), an improved construction with \(O(n^{3/2})\) edges was first provided by Elkin and Peleg (2004), a \((1, 6)\) spanner with \(O(n^{4/3})\) edges is presented in Baswana et al. (2005), and a \((1, 4)\) spanner with \(O(n^{7/5})\) edges is presented in Chechik (2013). Constructions of fault-tolerant additive spanners resilient to edge failures are presented in Braunschvig et al. (2015). Recently, Parter (2014) considers the single vertex failure case, providing construction of FT spanners with additive stretch 2 and 6, this was later improved by Bilò et al. (2015). Currently, no lower bounds are known for this setting.

Preliminaries. Throughout, we fix an unweighted graph \(G = (V, E)\) and a source vertex \(s\) in it. For a subgraph \(G' = (V', E') \subseteq G\) (where \(V' \subseteq V\) and \(E' \subseteq E\)) and a pair of vertices \(u, v \in V\), let \(\text{dist}(u, v, G')\) denote the distance in edges (a.k.a. hop-distance) between \(u\) and \(v\) in \(G'\). Let \(T_0 \subseteq G\) be a shortest paths (or BFS) tree rooted at \(s\). Let \(E(v, G) = \{(u, v) \in E(G)\}\) be the set of edges incident to \(v\) in the graph \(G\) and let \(\text{deg}(v, G) = |E(v, G)|\) denote the degree of vertex \(v\) in \(G\). When the graph \(G\) is clear from the context, we may omit it and simply write \(\text{deg}(v)\). Let \(\text{depth}(s, v) = \text{dist}(s, v, G)\) denote the depth of \(v\) in the BFS tree \(T_0\). When the source \(s\) is clear from the context, we may omit it and simply write \(\text{depth}(v)\). Let \(\text{Depth}(s) = \max_{u \in V}\{\text{depth}(s, u)\}\) be the depth of \(T_0\). For a path \(P = [u_1, \ldots, u_k]\), let \(\text{Last}(P)\) denote the last edge of \(P\), let \(|P|\) denote the length of \(P\) and let \(P[u_i, u_j]\) be the subpath of \(P\) from \(u_i\) to \(u_j\). For paths \(P_1\) and \(P_2\) where the last vertex of \(P_1\) equals the first vertex of \(P_2\), let \(P_1 \circ P_2\) denote the path obtained by concatenating \(P_2\) to \(P_1\).

Following other articles in this field (Hershberger and Suri 2001; Bernstein and Karger 2009), to avoid complications due to shortest-paths of the same length, we assume all path lengths are computed using some standard weight assignment \(\omega : E(G) \rightarrow \mathbb{R}^+\) that guarantees the uniqueness of the shortest-paths. This weight assignment can be constructed either randomly by adding random perturbation to the edge weight or deterministically using the method of lexicographic perturbations; see Section 7 of Borodin et al. (2015). Hereafter, for any subgraph \(G'\) and vertices \(x, y\), let \(sp(x, y, G')\) denote the unique \(x - y\) shortest-path in \(G'\).

Throughout, the edges of these paths are considered to be directed away from the source \(s\). Given an \(s - t\) path \(P\) and an edge \(e = (u, v) \in P\), let \(\text{dist}(s, e, P)\) be the distance between \(s\) and \(e\)’s far endpoint \(v\) on \(P\). In addition, for an edge \(e = (u, v) \in T_0\), define \(\text{dist}(s, e) = 1\) if \(|\text{depth}(u) - \text{depth}(v)| = 1\) and \(\text{depth}(v) = 1\). For a subset \(V' \subseteq V\), let \(G(V')\) be the induced subgraph on \(V'\). Let \(\text{LCA}(V')\) be the least common ancestor of all the vertices in \(V'\) with respect to the BFS tree \(T_0\).

For a vertex \(u\) and an edge set \(F \subseteq E\), define the replacement path of \(u\) upon the failure of \(F\) in \(G\) as \(sp(s, u, G \setminus F)\), the shortest \(s - u\) path in the surviving graph \(G \setminus F\). Note that if \(F \cap sp(s, u, T_0) = \emptyset\), then the replacement path \(sp(s, u, G \setminus F)\) is simply the shortest-path \(sp(s, u, T_0)\). (We sometimes simplify notation by omitting some of the indices when clear by context.)

For an edge \(e = (u, v) \in T_0\), denote the set of vertices in \(T_0(v)\), the subtree of \(T_0\) rooted at \(v\), by \(S(e) = V(T_0(v))\). Note that the vertices of \(S(e)\) are precisely those sensitive to the failure of the edge \(e\), i.e., the vertices \(w\) having \(e\) on \(sp(s, w, T_0)\), their \(s - w\) path in \(T_0\), hence also \(S(e) = \{w \mid e \in sp(s, w, T_0)\}\).

2 Multiplicative FT-ABFS Structures

In this section, we consider the case of \(f\) edge failures for a constant integer \(f \geq 1\). Let us first state our result for \(f = 1\).

Theorem 2.1. There exists a poly-time algorithm that for every \(n\)-vertex graph \(G\) and source \(s\) constructs a \((3, 0)\) FT-ABFS structure with at most \(4n\) edges overcoming a single edge fault.
This result was recently improved by Bilo et al. (2014), obtaining a 3 approximation with at most $2n$ edges. We therefore omit the details of our algorithm and analysis. Readers interested in those details are referred to Parter and Peleg (2014a, 2014b).

The main result of this section is the following theorem for unweighted undirected graphs.

Theorem 2.2. There exists an algorithm $\text{Cons-FT-Add-Span}(s, G, f)$ that for every n-vertex graph G, source s and integer $f \geq 1$ constructs, in time $O(n^2f)$, a $(3f, f \log n)$ FT-ABFS structure with $O(n)$ edges, overcoming up to f edge faults.

Proof. We present an algorithm, $\text{Cons-FT-Add-Span}(s, G, f)$, for constructing the sought structure. Let us start with an overview of the algorithm, which consists of three phases. Phase (1) constructs a (possibly dense) f-edge FT-BFS structure H_1 with respect to s by using Alg. $\text{Cons-FT-BFS}(s, G, f)$ to be defined later. Phase (2) constructs an f-edge $(3f, 0)$ FT-ABFS structure $H_2 \subseteq H_1$ by carefully sparsifying the edges of H_1. However, H_2 might still be dense. Finally, phase (3) invokes Algorithm $\text{Cons-Span}(H_2 \setminus T_0, \log n, f)$ of Chechik et al. (2010) and obtains a sparse multiplicative $O(\log n)$ spanner \hat{H} of H_2 such that $H = T_0 \cup \hat{H}$ is a sparse $(3f, f \cdot \log n)$ FT-ABFS structure $H \subseteq H_2$, where $|H| = O(n)$. For this phase, we rely on the following fact.

Lemma 2.3 (Chechik et al. 2010). There exists an algorithm $\text{Cons-Span}(G, \alpha, f)$ that given an n-vertex graph G constructs an f edge fault-tolerant $(2\alpha - 1, 0)$ spanner $G' \subseteq G$ such that $|G'| \leq O(f \cdot n^{1+1/\alpha})$.

We proceed with a more detailed description of the algorithm. Algorithm $\text{Cons-FT-BFS}(s, G, f)$ of phase (1) operates in a "brute-force" manner. For every $u \in V$, and every subset $F \subseteq E, |F| \leq f$, it constructs an $s - u$ replacement path $sp(s, u, G \setminus F)$ of minimal length. The f-edge FT-BFS structure H_1 is then simply the union of all these replacement paths, $H_1 = \bigcup \{sp(s, u, G \setminus F) \mid F \subseteq E, |F| \leq f, u \in V\}$. For a replacement path $P = sp(s, u, G \setminus F)$, let New($P$) = $E(P) \setminus E(T_0)$ be the set of P’s edges that are new, namely, not in the BFS tree T_0.

In phase (2), each of these replacement paths $P = sp(s, u, G \setminus F)$ is transformed into another path P' in which the number of new edges is bounded by f. This has the penalty of introducing a stretch, that is, P' is an $s - u$ path in $G \setminus F$ but is not the shortest such path. To compute the path P' from P, the algorithm first labels the vertices according to the connected component they belong to in the forest $T_0 \setminus F$. Two vertices are given the same label iff they appear in the same connected subtree in the forest $T_0 \setminus F$. Note that since two vertices $u', u'' \in P$ of the same label are connected in $T_0 \setminus F$, the subpath $P[u', u'']$ (that potentially has many new edges) can be replaced by a T_0 path $sp(u', u'', T_0)$ that survived the failing of F. This allows us to save the new edges that occur on $P[u', u'']$. The potential drawback is that these bypasses might be longer than their counterparts in P. In the analysis, we argue that the incurred multiplicative stretch is bounded by $3f$. Hence, phase (2) turns the exact FT-BFS structure H_1 to an approximate $(3f, 0)$ FT-BFS structure H_2.

We now describe formally the construction of H_2. We start with partitioning the graph vertices as follows. Let $C = \{T_0^1, \ldots, T_k^f\}$ be the set of connected components (subtrees) of the forest $T_0 \setminus F$. Then, each vertex $u \in T_k^f$ is assigned the label $cc_F(u) = y$. For pictorial illustration, see Figure 2.

The procedure for selecting at most f new edges of $P = [u_1, \ldots, u_k]$ for P' is as follows. For every $1 \leq i \leq k - 1$, let $\varphi(i) \in \{i, \ldots, k\}$ be the index of the farthest node on P with the same label as i, namely, $\varphi(i) = \max \{j \mid cc_F(v_j) = cc_F(v_i)\}$. Set $j \leftarrow 1$ and $i_1 \leftarrow 1$. Repeat the following operations until $\varphi(i_k) = k$: Set $i_{j+1} = \varphi(i_j) + 1$. Set the new edge $e^\text{new}_j = (v_{\varphi(i_j)}, v_{\varphi(i_j)+1})$ (note that e^new_j connects two vertices that are not connected in $T_0 \setminus F$, hence it is new), and add it to H_2. Finally, set $j \leftarrow j + 1$. Note that this procedure shortcuts the path P so that in the resulting path P', hereafter denoted $rp(u)$, each component is entered at most once and the new edges that are added to H_2 are those connecting vertices in different components of $T_0 \setminus F$. Overall, the new edges of
Fault-Tolerant Approximate BFS Structures

Fig. 1. Illustration of the approximate replacement path. Dashed lines correspond to BFS edges. The exact replacement path $sp(s, u, G \setminus F)$ is shown in blue. The green BFS paths between v_{i_1} and $v_{\varphi(i_1)}$ and between v_{i_2} and $v_{\varphi(i_2)}$ are used in $rp(u)$ to bypass segments in $sp(s, u, G \setminus F)$. As a result, the approximated replacement path $rp(u)$ contains $f = 2$ new edges, the edge (p, v_{i_1}), and the edge $(v_{\varphi(i_1)}, v_{i_2})$.

Fig. 2. Upon the failure of the BFS edges F (dotted lines), the BFS tree T_0 is decomposed into $\ell = |F| + 1 \leq f + 1$ components, denoted T_0^1, \ldots, T_0^ℓ.

P that are added to H_2 are $New(rp(u)) = \{e_y^{new} \mid y \in \{1, \ldots, \ell - 1\}\}$, and the resulting approximate path is

$$rp(u) = sp(v_{i_1}, v_{\varphi(i_1)}, T_0) \circ e_1^{new} \circ \ldots \circ sp(v_{i_y}, v_{\varphi(i_y)}, T_0) \circ e_y^{new} \circ \ldots \circ sp(v_{i'_{\ell'}}, v_{\varphi(i'_{\ell'})}, T_0)$$

for some $\ell' \leq \ell$. The path $rp(u)$ replaces the $P[v_{i_y}, v_{\varphi(i_y)}]$ subpath with the T_0 subpath $sp(v_{i_y}, v_{\varphi(i_y)}, T_0)$. For a pictorial illustration, see Figure 1.

Finally, we describe phase (3) of the algorithm. Given the $(3f, 0)$FT-ABFS structure H_2, a subgraph $(3f, f \log n)$ FT-ABFS structure T_3 of $O(n)$ edges is constructed as follows. Let $G' = H_2 \setminus T_0$ be the subgraph obtained by removing all original BFS edges of T_0 from H_2. Let $\hat{H} \leftarrow \text{Cons-Span}(G', \log n, f)$ be an f-edge fault-tolerant ($\log n, 0$) spanner for G', constructed using Algorithm Cons-Span($H_2 \setminus T_0, \log n, f$) of Chechik et al. (2010). The resulting structure is $H = T_0 \cup \hat{H}$.

We now analyze the properties of the construction. We first provide a straightforward auxiliary claim regarding the labels $cc_F(u_i)$, for $F \subseteq E$. Recall that $sp(u, v, T_0)$ is not necessarily the shortest $u - v$ path in G.

Observation 2.4. (1) $sp(u_i, u_i', T_0) \subseteq T_0 \setminus F$ for every u_i, u_i' such that $cc_F(u_i) = cc_F(u_i')$.
(2) $|\{cc_F(u') \mid u' \in V\}| = |C| \leq |F| + 1$.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 10. Publication date: January 2018.
Fig. 3. Illustration of the approximate replacement paths. The dashed lines represent the optimal replacement path \(P = sp(s, u, G \setminus F) \). The bold edges are the BFS edges. The approximate replacement path \(rp(u) \) replaces the subpath \(P[v_{i_y}, v_{\varphi(i_y)}] \) with the tree path \(C_y \circ D_y = sp(v_{i_y}, \chi_x, T_0) \circ sp(\chi_y, v_{\varphi(i_y)}, T_0) \).

Fix a vertex \(u \in V \), edge faults \(F \subseteq E \), \(|F| \leq f \), and a replacement path \(P = sp(s, u, G \setminus F) \). For \(y \in \{1, \ldots, \ell\} \), let \((v_{i_y}, v_{\varphi(i_y)})\) be the pairs of vertices (connected in \(T^u \)) according to their appearance on \(P \) when traversed by the procedure above when constructing \(H_2 \), hence \(s = v_{i_1} \). The following observation is immediate by the structure of the algorithm.

Observation 2.5. (1) \(rp(u) \subseteq H_2 \setminus F \). (2) \(sp(s, u, G \setminus F)[s, v_{\varphi(i_y)}] = sp(s, v_{\varphi(i_y)}, T_0) \).

We proceed by bounding the length of \(rp(u) \). Recall that by Observation 2.5(2), \(P[y, v_{\varphi(i_y)}] = rp(u)[s, v_{\varphi(i_y)}] = sp(s, v_{\varphi(i_y)}, T_0) \), hence the distance increase when replacing the subpath \(P[v_{i_y}, v_{\varphi(i_y)}] \) with \(sp(v_{i_y}, v_{\varphi(i_y)}, T_0) \) occurs only for \(y \geq 2 \). For every \(y \in \{2, \ldots, \ell\} \), define \(\chi_y = LCA(v_{i_y}, v_{\varphi(i_y)}) \), \(A_y = P[s, v_{i_y}] \), \(B_y = sp(s, \chi_y, T_0) \), \(C_y = sp(\chi_y, v_{i_y}, T_0) \), \(D_y = sp(\chi_y, v_{\varphi(i_y)}, T_0) \) and \(R_y = P[v_{i_y}, v_{\varphi(i_y)}] \). Let \(\tilde{P}_y = A_y \circ C_y \circ D_y \) and \(P_y = P[s, v_{\varphi(i_y)}] \). See Figure 3.

Claim 2.6. \(|\tilde{P}_y| \leq 3 \cdot |P_y| \) for every \(y \in \{2, \ldots, \ell\} \).

Proof. Note that since \(B_y \circ C_y = sp(s, v_{i_y}, T_0) \), the alternative \(s - v_{i_y} \) path \(A_y \) satisfies \(|A_y| \geq |B_y| + |C_y| \). In addition, since \(C_y \circ R_y \) is an alternative \(\chi_y - v_{\varphi(i_y)} \) path and \(D_y = sp(\chi_y, v_{\varphi(i_y)}, T_0) \) is the \(\chi_y \circ v_{\varphi(i_y)} \) shortest-path, it holds that \(|D_y| \leq |C_y| + |R_y| \). Hence, \(|\tilde{P}_y| \leq |A_y| + 2|C_y| + |R_y| \leq 3|A_y| + |R_y| \leq 3|P_y| \).

Claim 2.7. \(|rp(u)[s, v_{i_y}]| \leq 3(y - 1)|sp(s, u, G \setminus F)[s, v_{i_y}]| \) for every \(y \in \{2, \ldots, \ell\} \).

Proof. By induction on \(y \). Let \(P_y = sp(s, u, G \setminus F)[s, v_{\varphi(i_y)}] \) and \(Q_y = rp(u)[s, v_{\varphi(i_y)}] \). Note that \(Q_{y+1} = Q_y \circ e^y \).

For the induction base, \(y = 2 \), as \(B_2 \circ C_2 = sp(v_{i_2}, v_{\varphi(i_2)}, T_0) \), and since \(P_1 = Q_1 \) by Observation 2.5(2), we get that \(Q_2 = sp(s, u, G \setminus F)[s, v_{i_2}] \circ sp(v_{i_2}, v_{\varphi(i_2)}, T_0) \). Hence, the claim follows by Cl. 2.6 and \(|Q_2| \leq 3 \cdot |P_2| \). Now assume the claim holds up to \(y - 1 \) and consider \(y \).

\[
|Q_y| = |Q_{y-1}| + 1 + |sp(v_{i_y}, v_{\varphi(i_y)}, T_0)| \leq 3(y - 2)(|P_{y-1}| + 1) + |C_y \circ D_y| \\
\leq 3(y - 2)|P[s, v_{i_y}]| + |C_y \circ D_y| = 3(y - 2)|A_y| + |C_y \circ D_y| \leq 3(y - 2)|A_y| + 3|A_y \circ R_y| \\
\leq 3(y - 1) \cdot |P_y|,
\]

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 10. Publication date: January 2018.
where the first inequality follows by the induction assumption, as $|Q_{y-1}| \leq 3(y-2)|P_{y-1}|$, and the third inequality follows by Cl. 2.6. Since by Observation 2.4(2), $\ell \leq f + 1$, we get that $|Q_\ell| \leq 3f|P_\ell|$ and $|rp(u)| \leq 3f|sp(s, u, G \setminus F)|$. The lemma follows.

We therefore have the following.

Corollary 2.8. For every $u \in V$ and $F \subseteq E$, there exists a replacement path $rp(u) \in H_2 \setminus F$ such that (1) $|\text{New}(rp(u))| \leq f$, and (2) $|rp(u)| \leq 3f \cdot |sp(s, u, G \setminus F)|$. Hence, H_2 is an f-edge $(3f, 0)$ FT-ABFS structure.

Finally, we prove the correctness of the last phase and show the following.

Claim 2.9. (1) H is an f-edge $(3f, f \log n)$ FT-ABFS structure for s. (2) $|E(H)| = O(fn)$.

Proof. Let $P = sp(s, u, G \setminus F)$ be the optimal replacement path and let $Q = rp(u)$ be the corresponding replacement path in H_2 obtained by using at most f bypasses between vertices of the same label on P. Then, by Corollary 2.8, $|\text{New}(Q)| \leq f$ and $|Q| \leq 3f \cdot |P|$. Let $G' = H_2 \setminus T_0$ and $G'' = \text{Cons-Span}(G', \log n, f)$ be the f-edge FT $(\log n, 0)$ spanner for G' (see Fact 2.3). Let $E' = \text{New}(Q) \setminus H$ be the set of new edges in Q that are missing in the final H. Hence, $E' \subseteq G' \setminus G''$. Since $E' \subseteq \text{New}(Q)$, it holds that $|E'| \leq |\text{New}(Q)| \leq f$. We now claim that for every missing edge $e = (x, y) \in E'$ there exists an $x - y$ path in the structure $G'' \setminus F$ of length at most $\log n$. By the fact that G'' is an f-edge $(\log n, 0)$ spanner for G', it holds that $\text{dist}(x, y, G'' \setminus F) \leq \log n \cdot \text{dist}(x, y, G' \setminus F) = \log n$, where the last equality follows by the fact that $e = (x, y)$ appears on the replacement path Q, hence $e \notin F$, so $\text{dist}(x, y, G' \setminus F) = 1$. We therefore have that Q contains at most f missing edges, and for each there exists a path in G'' of length at most $\log n$. Overall, $\text{dist}(s, u, G \setminus F) \leq |E(Q) \setminus E'| + (\log n) \cdot |E'| \leq 3f|P| + f \log n$. Part (1) is established. As for part (2), by Fact 2.3, $|G''| = O(n)$, hence $H = T_0 \cup G''$ has $O(fn)$ edges as well.

This completes the proof of Theorem 2.2.

Note that one could use any $(2k - 1)$-spanner instead of using $k = O(\log n)$, but that would result in a denser subgraph. Figure 4 illustrates the near-tightness of the analysis by showing a
graph example in which the constructed replacement path is longer by a factor of $2f$ than the optimal path. Thus, the dependency of the stretch on f is unavoidable in our algorithm.

We next assert that it is possible to get rid of the $f \log n$ additive factor in Theorem 2.2, albeit at the expense of increasing the size of the structure by polylog factor. Let $\ell \geq 1$ be a given threshold on the length of paths. In what follows, we refer to a replacement path as short iff its length is at most ℓ. We first prove the following lemma, establishing the existence of a sparse structure (whose size depends on ℓ) that contains all short replacement paths.

Lemma 2.10. There exists an algorithm that constructs a subgraph $H(\ell)$ containing all f-failures short replacement paths from s with $O(n \cdot \ell^{\ell+1})$ edges.

Proof. We construct the collection of all replacement paths $P^*_s(u_i) = sp(s, u_i, G \setminus F)$ for every $F \subseteq E$, $|F| \leq f$ and every $u_i \in V$. The subgraph $H(\ell)$ contains the last edges of all short replacement paths, i.e., $H(\ell) = \{\text{last}(P^*_s(u_i)) \mid |P^*_s(u_i)| \leq \ell\}$. We first show that $H(\ell)$ preserve all the shortest replacement paths distances.

Claim 2.11. For every u and $F \subseteq E$, $|F| \leq f$ such that $|P^*_s(u)| \leq \ell$, it holds that $\text{dist}(s, u, G \setminus F) = \text{dist}(s, u, H(\ell) \setminus F)$.

Proof. Toward contradiction, assume otherwise, and let $BP = \{(i, F) \mid |sp(u_i, G \setminus F)| \leq \ell$ and $\text{dist}(u_i, H(\ell) \setminus F) > |sp(u_i, G \setminus F)|\}$ be the set of “bad pairs,” namely, pairs (i, F) for which the length of the replacement $s - u_i$ path in $H(\ell) \setminus F$ is greater than $|sp(u_i, G \setminus F)| = \text{dist}(u_i, G \setminus F)$. (By the contradictory assumption, $BP \neq \emptyset$.) For each bad pair $(i, F) \in BP$, define $BE(i, F) = sp(u_i, G \setminus F) \cap E(H(\ell))$ to be the set of “bad edges,” namely, the set of $sp(u_i, G \setminus F)$ edges that are missing in $H(\ell)$. By definition, $BE(i, F) \neq \emptyset$ for every bad pair $(i, F) \in BP$. Let $d(i, F) = \max_{e \in BE(i, F)} \{|\text{dist}(s, e, sp(u_i, G \setminus F))| \}$ be the maximal depth of a missing edge in $BE(i, F)$, and let $DM(i, F)$ denote that “deepest missing edge”, i.e., the edge e on $P^*_s(u_i)$ satisfying $d(i, F) = \text{dist}(s, e, sp(u_i, G \setminus F))$. Finally, let $(i', F') \in BP$ be the pair that minimizes $d(i, F)$, and let $e_1 = (u_{i_1}, u_{i_1}) \in BE(i', F')$ be the deepest missing edge on $sp(u_{i_1}, G \setminus F')$, namely, $e_1 = DM(i', F')$. Note that e_1 is the shallowest “deepest missing edge” over all bad pairs $(i, F) \in BP$.

We now claim that (i_1, F') is also a bad-pair. Toward contradiction, assume otherwise, and let $P' \in sp(u_{i_1}, H(\ell) \setminus F')$. Consider the $s - u_{i_1}$ path $P = P' \circ sp(u_{i_1}, G \setminus F')[u_{i_1}, u_{i_1}]$. By definition, $P \subseteq H(\ell) \setminus F'$. We have that

$$\text{dist}(s, u_{i_1}, H(\ell) \setminus F') \leq |P| = |P'| + |sp(s, u_{i_1}, G \setminus F')[u_{i_1}, u_{i_1}]| = \text{dist}(s, u_{i_1}, G \setminus F') + |sp(s, u_{i_1}, G \setminus F')[u_{i_1}, u_{i_1}]| = |sp(s, u_{i_1}, G \setminus F')| = \text{dist}(s, u_{i_1}, G \setminus F'),$$

in contradiction to the fact that $(i', F') \in BP$.

In addition, note that $|sp(s, u_{i_1}, G \setminus F')| \leq |sp(s, u_{i_1}, G \setminus F')| \leq \ell$, hence the last edge of $sp(s, u_{i_1}, G \setminus F')$ was added to $H(\ell)$. Since $(i_1, F') \in BP$, and its last missing edge in $H(\ell)$ is not its last edge, we get that $d(i_1, F') < d(i', F')$, contradicting the definition of (i', F'). The claim follows.

We next bound the size of the subgraph $H(\ell)$.

Claim 2.12. $|E(H(\ell))| = O(n \cdot \ell^{\ell+1})$.

Proof. Let $P^s(u) = \{sp(s, u, G \setminus F) \mid F \subseteq E, |F| \leq f\}$ be the collection of $s - u$ replacement paths. Define $P^s_0(u) = \{sp(s, u, T_0)\}$ and $P^s_F(u) = \{sp(s, u, G \setminus F) \mid |F| = f'\}$ for $f' \geq 1$ as the collection of $s - u_i$ replacement paths supporting a sequence of f' edge faults. Hence, $P^s_i = \bigcup_{f'=1}^{f'} P^s_F(u)$.
We prove that for every $f' \in \{1, \ldots, f\}$ it holds that $|P_{f'}(u)| \leq \ell \cdot |P_{f'-1}(u)|$. To see this, observe that every replacement path $sp(s, u, G \setminus F) \in P_{f'}(u) \setminus P_{f'-1}(u)$ was included to protect against the failure of some edge e in some $sp(s, u, G \setminus F') \in P_{f'-1}(u)$. Hence, $F = F' \cup \{e\}$. Since $P_{f'-1}(u)$ contains only short replacement paths, it holds that each short $s - u$ replacement path $sp(s, u, G \setminus F') \in P_{f'-1}(u)$ has at most ℓ replacement paths of the form $sp(s, u, G \setminus (F \cup \{e\}))$ in $P_{f'}(u)$ that were included to protect against the failure of some edge $e \in sp(s, u, G \setminus F')$. This implies that $|P_{f'}(u)| \leq \ell \cdot |P_{f'-1}(u)|$. Overall, $|\bigcup_{f'=1}^f P_{f'}(u)| \leq \ell^{f+1}$ and $|H(\ell)| \leq n \cdot \ell^{f+1}$. □

Lemma 2.10 follows by Claims 2.11 and 2.12. □

Letting $\ell = f \cdot (2 \log n - 1)$, we now show the following.

Theorem 2.13. There exists an algorithm Cons-FT-Add-$Span^+(s, G, f)$ that for every n-vertex graph G, source s and integer $f \geq 1$ constructs, in time $O(n^{2f})$, a $(3f + 1, 0)$ FT-αBFS structure with $O((f \cdot (2 \log n - 1))^f \cdot n)$ edges, overcoming up to f edge faults.

Proof. We first construct the collection of all replacement paths $P^*_F(u_i) = sp(s, u_i, G \setminus F)$ for every $F \subseteq E$, $|F| \leq f$ and every $u_i \in V$. The $(3f, 0)$ FT-αBFS structure H is constructed in two steps. In the first step, a subgraph $H_3 \subseteq G$ is constructed containing the set of last edges of all short replacement paths, i.e., $H_3 = \{LastE(P^*_F(u_i)) \mid |P^*_F(u_i)| \leq \ell\}$. In the second step, a $(3f, \ell)$ FT-αBFS structure H_4 is constructed by employing the algorithm of Theorem 2.2, where in step (3) of the algorithm we construct a $(\log n, 0)$ spanner.

We first prove the correctness of the final structure $H = H_3 \cup H_4$. Consider a pair (i, F) corresponding to a vertex $u_i \in V$ and edge set $F \subseteq E$. There are two cases to examine. Case (a) is where the replacement path is long, i.e., $|sp(s, u, G \setminus F)| > \ell$. By Theorem 2.2,

$$\text{dist}(s, u, H_4 \setminus F) \leq 3f \cdot \text{dist}(s, u, G \setminus F) + \ell \leq (3f + 1) \cdot \text{dist}(s, u, G \setminus F).$$

The complementary case (b) where the replacement path is short, i.e., $|sp(s, u, G \setminus F)| \leq \ell$ follows by Cl. 2.11.

It remains to bound the size of H. By Lemma 2.10, $|E(H_3)| = O(n \cdot (f \cdot (2 \log n - 1)^{f+1})$. By Fact 2.3 and the proof of Cl. 2.9, it holds that $|E(H_4)| = O(f \cdot n)$. The theorem follows. □

3 LOWER BOUNDS FOR ADDITIVE FT-ABFS STRUCTURES

In this section, we provide lower bound constructions for $(1, \beta)$FT-αBFS structures for various values of the additive stretch β. The starting point for these constructions is the lower bound construction for the exact FT-BFS structures in Parter and Peleg (2013). In the latter construction, the bulk of the edges was due to a complete bipartite graph $B = (L, R)$ where $|L| = \Theta(n)$ and $|R| = \Theta(\sqrt{n})$. When relaxing the quality requirement to additive stretch 2, it is no longer necessary to include B entirely in the spanner; in fact, one can show that it suffices to include in the $(1, 2)$ FT-αBFS structure only a subgraph $B' \subseteq B$ of $O(n)$ edges. This subgraph B' is obtained by connecting an arbitrary vertex $p^* \in L$ to every vertex $r \in R$ and connecting an arbitrary vertex $r^* \in R$ to every vertex $p \in L$. Our lower bound strategy is based on carefully replacing B with different graphs (e.g., of large girth).

The structure of the section is as follows. We first observe that the exact lower bound of Parter and Peleg (2013) extends for additive stretch 1. We then sketch a construction for additive stretch 3 and $\Omega(n^{5/4})$ edges. This is done by carefully plugging multiple copies of dense graphs with girth at least 6. Finally, we describe in more detail the general case of stretch $\beta \leq n^\delta$ for small constant $\delta > 0$ and $\Omega(n^{7/6-\epsilon})$ edges. Here, we replace the complete bipartite graph B with a copy of Abboud and Bodwin’s lower bound graph.
Additive Stretch $\beta = 1$. By a proof very similar to that of the exact case (see Parter and Peleg (2013)) one can show the following (details are omitted).

Theorem 3.1. There exists an n-vertex graph $G(V,E)$ and a source $s \in V$ such that any $(1,1)$ FT-ABFS structure rooted at s has at least $\Omega(n^{3/2})$ edges.

Additive Stretch $\beta = 3$. For additive stretch 3, we replace the complete bipartite graph B by using $\Theta(\sqrt{n})$ copies of graphs $G_6(n')$ for $n' = \sqrt{n}$ where $G_6(x)$ is an x-vertex graph with girth 6. Lemma 5.1.1 of Godsil and Royle (2013), there are x-vertex graph $G_6(x)$ with girth at least 6 and $\Omega(x^{3/2})$ edges. Hence, overall the lower bound graph contains $\Theta(\sqrt{n} \times n^{3/4}) = \Theta(n^{5/4})$ edges. For pictorial illustration of the construction see Figure 5. The analysis is very similar to that of Parter and Peleg (2013) and its details can be found in Parter and Peleg (2014a).

Additive Stretch $\beta = n^{o(1)}$. Here, we replace the complete bipartite graph B with a copy of the lower bound graph construction by Abboud and Bodwin (2016). The copy replaces the complete $n \times \sqrt{n}$ bipartite graph in the exact FT-BFS lower bound of Parter and Peleg (2013). We use the version of Lemma B.8 from Bodwin et al. (2017).

Lemma 3.2 (Abboud and Bodwin (2016) and Bodwin et al. (2017)). There are absolute constants $\delta, \epsilon > 0$, a family of n-node graphs $G^*(n) = (V,E)$, node subsets $X,Z \subseteq V$ of size $|X| = \Theta(n^{2/3-\delta}), |Z| = \Theta(n^{1/2-\delta})$, and a set $W \subseteq X \times Z$ of size $|W| = |X||Z|n^{-\epsilon}$ with the following property: for each pair $(x_i,z_j) \in W$, we may assign a set of edges in G such that (1) no edge is assigned to two or more pairs, and (2) if all edges assigned to a pair (x_i,z_j) are removed from G, resulting in G', then $\text{dist}(x_i,z_j,G')$ increases by n^δ. Moreover, $\text{dist}(x_i,z_j) = L$ for all $(x_i,z_j) \in W$, and $\text{dist}(x_i,z_j) \geq L$ for all $(x_i,z_j) \in X \times Z$.

We show the following.

1 for some absolute constant ϵ, which can be made arbitrarily small by choosing a sufficiently small δ.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 10. Publication date: January 2018.
For every integer n, there exist $\delta, \epsilon > 0$, n-vertex graph $G(n) = (V, E)$, and a source $s \in V$ such that any $(1, n^\delta)$ FT-ABFS structure with respect to s has $\Omega(n^{7/6-\epsilon})$ edges.

Proof. The construction is based on plugging the graph G^* in the exact lower bound construction of Parter and Peleg (2013). Set $\beta = n^\delta$. The resulting graph consists of the following components.

1. A path $P_0 = [s = v_1, \ldots, v_{d+1} = v^*]$ of length $d = \Theta(n^{1/2-\delta})$. Our focus in the analysis is on what happens when some edge on this path fails.
2. A copy of the graph $G^*(c \cdot n)$ for some constant $c < 1$ such that $|Z| = d$ and $|X| = \Theta(n^{2/3-\delta})$. We think of the bottom layer as consisting of the vertices Z in the graph, and the top layer as consisting of the vertices X. This graph contributes most of the edges in G (with all the other components containing only $O(n)$ edges). See Figure 6.
3. A set of $|X| = \Theta(n^{2/3-\delta})$ vertex disjoint paths of length β each, $U_i = [v^* = u^i_1, \ldots, u^i_\beta = x_i]$, for every $i \in \{1, \ldots, |X|\}$ connecting the vertex $v^* \in P_0$ to the vertices of $x_i \in X$.
4. A collection of $d = |Z|$ vertex disjoint paths of decreasing length, P_1, \ldots, P_d, where for $j \in \{1, \ldots, d\}$, $P_j = [v_j = p^j_1, \ldots, p^j_{\ell_j} = z_j]$ connects v_j with $z_j \in Z$ and its length is $\ell_j = |P_j| = d + 4 + \beta \cdot (d - j + 1)$.

The main bulk of vertices is in the paths P_1, \ldots, P_d, which contain $\Theta(n^\delta \cdot d^2) = \Theta(n^\delta \cdot n^{1-2\delta})$ vertices, hence G contains $\Theta(n)$ vertices. We now turn to prove the correctness of the construction.

Claim 3.4. For every $n = o(1)$, there exist $\delta, \epsilon > 0$ and an n-vertex graph G, such that every $(1, n^\delta)$ FT-ABFS structure H for G with respect to s must contain $O(n^{7/6-2\delta-\epsilon})$ edges.

Proof. Assume, toward contradiction, that there exists a $(1, \beta)$ FT-ABFS structure H for G with $o(n^{7/6-2\delta-\epsilon})$ edges. Let H' be the subgraph H restricted to the edges of $G^*(c \cdot n)$ (i.e., $H' \subseteq H \cap G^*(c \cdot n)$). Let $W \subseteq X \times Z$ be the subset of $|X| \cdot |Y| \cdot n^{-\epsilon}$ pairs asserted in Lemma 3.2. By Lemma 3.2, if every pair in W has at least one of its essential edges in H', then
\(|E(H')| \geq |W| = n^{7/6-2\delta-\epsilon}\). Therefore, there must be a pair \((z_i, x_j) \in W\) for which dist\((z_i, x_j, H')\) \(\geq\) dist\((z_i, x_j, G^\prime(c \cdot n)) + \Omega(\beta)\). Consider the distance from s to \(x_j\) when the edge \(e_i = (v_j, v_{i+1})\) on the main path \(P_i\) fails. Since the \(X\) vertices are connected to \(v^*\) via paths of length \(\beta\), the only remaining option is to use the \(z_\ell\) vertices for \(\ell \leq i\). This is because the bypasses below the failing point \(e_i\) are no longer accessible from \(s\). Finally, since the length difference between \(P_i\) and \(P_\ell\) is at least \(\beta + 1\) and by Lemma 3.2, dist\((z_\ell, x_j, G^\prime(c \cdot n)) \geq L\), using any other \(z_\ell\) incurs an additive stretch that is larger by \(\beta\).

We conclude that the graph \(G(V, E)\) must contain \(\Omega(n^{7/6-\epsilon})\) edges.

\section*{Acknowledgments}

We are grateful to the anonymous referees for their useful comments and suggestions, and in particular for the suggestion to improve the lower bound of Section 3 by employing the construction of Bodwin et al. (2017).

\section*{References}

Amir Abboud and Greg Bodwin. 2016. The 4/3 additive spanner exponent is tight. In Proceedings of the ACM Symposium on Theory of Computing (STOC’16). 351–361.

Ittai Abraham and Cyril Gavoille. 2011. On approximate distance labels and routing schemes with affine stretch. In Distributed Computing, SV, 404–415.

Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. 1999. Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28, 4 (1999), 1167–1181.

Surender Baswana and Telikepalli Kavitha. 2005. New constructions of \((\alpha, \beta)\)-spanners and purely additive spanners. In Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms. 672–681.

Surender Baswana and Neelesh Khanna. 2010. Approximate shortest paths avoiding a failed vertex: Optimal size data structures for unweighted graph. In Proceedings of the 27th Symposium on Theoretical Aspects of Computer Science (STACS’10). 513–524.

Aaron Bernstein. 2010. A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in general graphs. In Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA’10). 742–755.

Aaron Bernstein and David Karger. 2009. A nearly optimal oracle for avoiding failed vertices and edges. In Proceedings of the 41st ACM Symposium on Theory of Computing (STOC’09). 101–110.

Davide Bilò, Fabrizio Grandoni, Luciano Gualà, Stefano Leucci, and Guido Proietti. 2015. Improved purely additive fault-tolerant spanners. In Proceedings of the European Symposium on Algorithms (ESA’15). SV, 167–178.

Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. 2014. Fault-tolerant approximate shortest-path trees. In Proceedings of the European Symposium on Algorithms (ESA’14). SV, 137–148.

Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. 2017. Preserving distances in very faulty graphs. \textit{arXiv}:1703.10293 (2017).

Glencora Borradaile, Piotr Sankowski, and Christian Wulff-Nilsen. 2015. Min st-cut oracle for planar graphs with near-linear preprocessing time. ACM Trans. Algorithms 11, 3 (2015), 16.

Gilad Braunischvig, Shiri Chechik, David Peleg, and Adam Sealfon. 2015. Fault-tolerant additive and \((\mu, \alpha)\)-spanners. Theoret. Comput. Sci. 580 (2015), 94–100.

Shiri Chechik. 2013. New additive spanners. In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA’13). 498–512.

Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. 2010. Fault-tolerant spanners for general graphs. SIAM J. Comput. 39, 7 (2010), 3403–3423.

Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. 2012. f-sensitivity distance Oracles and routing schemes. Algorithmica 63, 4 (2012), 861–882.

Michael Dinitz and Robert Krauthgamer. 2011. Fault-tolerant spanners: Better and simpler. In Proceedings of the 30th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC’11). 169–178.

Michael Elkin and David Peleg. 2004. \((1 + \epsilon, \beta)\)-spanner constructions for general graphs. SIAM J. Comput. 33, 3 (2004), 608–631.

Paul Erdős. 1964. Extremal problems in graph theory. In Proceedings of the Symposium on Theory of Graphs and Its Applications.
Chris Godsil and Gordon F. Royle. 2013. *Algebraic Graph Theory*. Vol. 207. Springer Science & Business Media.

John Hershberger and Subhash Suri. 2001. Vickrey prices and shortest paths: What is an edge worth? In *Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)*. 252–259.

Merav Parter. 2014. Vertex fault-tolerant additive spanners. In *Distrib. Comput.*. SV, 167–181.

Merav Parter and David Peleg. 2013. Sparse fault-tolerant BFS trees. In *Proceedings of the European Symposium on Algorithms (ESA’13)*. SV, 779–790.

Merav Parter and David Peleg. 2014a. Fault-tolerant approximate BFS structures. *arXiv:1406.6169* (2014).

Merav Parter and David Peleg. 2014b. Fault-tolerant approximate BFS structures. In *Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA’14)*. 1073–1092.

Mihai Pătraşcu and Liam Roditty. 2010. Distance oracles beyond the Thorup-Zwick bound. In *Proceedings of the 51st IEEE Symposium on Foundations of Computer Science (FOCS’10)*. 815–823.

Rephael Wenger. 1991. Extremal graphs with no C 4’s, C 6’s, or C 10’s. *J. Combinator. Theory Ser. B* 52, 1 (1991), 113–116.

David P. Woodruff. 2006. Lower bounds for additive spanners, emulators, and more. In *Proceedings of the 47th IEEE Symposium on Foundations of Computer Science (FOCS’06)*. 389–398.

Received August 2014; revised June 2017; accepted November 2017