A Bayesian method for the analysis of deterministic and stochastic time series

Coryn Bailer-Jones
Max Planck Institute for Astronomy, Heidelberg

DPG, Berlin, March 2015
Time series modelling

- heteroscedastic, asymmetric noise on time and signal
- non-uniform time sampling

Measured data $D_j = (s_j, y_j)$ and uncertainties $\sigma_j = (\sigma_{s_j}, \sigma_{y_j})$

Model M with parameters θ

Likelihood of single data point: integrate over unknown true time (t) and signal (z)

$$P(D_j|\sigma_j, \theta, M) = \int_{t_j, z_j} \left[P(D_j|t_j, z_j, \sigma_j) \right] \left[P(t_j, z_j|\theta, M) \right] dt_j dz_j$$

Measurement model Time series model

Coryn Bailer-Jones, MPI for Astronomy, Heidelberg
Model comparison

Likelihood of all data points is

\[P(D|\sigma, \theta, M) = \prod_j P(D_j|\sigma_j, \theta, M) \]

Evidence is the likelihood marginalized over the parameter prior

\[P(D|\sigma, M) = \int_\theta P(D|\sigma, \theta, M) P(\theta|M) \, d\theta \]

More robust alternative is the leave-one-out cross validation likelihood

\[P(D_j|D_{-j}, \sigma, M) = \int_\theta P(D_j|\sigma_j, \theta, M) P(\theta|D_{-j}, \sigma_{-j}, M) \, d\theta \]

\[L_{CV} = \prod_{j=1}^{J} P(D_j|D_{-j}, \sigma, M) \]

Calculate integrals by MCMC sampling of posterior

Coryn Bailer-Jones, MPI for Astronomy, Heidelberg
Time series model

Deterministic mean plus stochastic variation of constant variance

\[P(z_j|t_j, \theta, M) = \frac{1}{\sqrt{2\pi\omega}} e^{-\frac{(z_j - \eta(t_j))^2}{2\omega^2}} \quad \text{Gaussian} \]

\[\eta(t_j) = \frac{a}{2} \cos[2\pi(\nu t + \phi)] + b \quad \text{sinusoidal} \]

- red solid: deterministic component
- red dashed: standard deviation of stochastic component
- black: true data
Time series model

Ornstein-Uhlenbeck process

A Stationary, Markov, Gaussian process

\[dz(t) = -\frac{1}{\tau} z(t)dt + c^{1/2} \mathcal{N}(t; 0, dt) \]

\[P(z_j \mid t_j, \theta, M) = \frac{1}{\sqrt{2\pi V_z}} e^{-\left(z_j - \mu_z \right)^2 / 2V_z} \]

\[\mu_z = z_0 \nu \]

\[V_z = \frac{c\tau}{2} (1 - \nu^2) \]

where \[\nu = e^{-(t-t_0)/\tau} \] for \[t > t_0 \]
Examples of OU process realizations

relaxation time, τ

Different randomisations
Luminosity variations in ultra cool dwarf stars

Coryn Bailer-Jones, MPI for Astronomy, Heidelberg
Luminosity variations in ultra cool dwarf stars

Models compared:

- constant (variability just due to measurement noise)
- constant with Gaussian stochastic component
- sinusoid with Gaussian stochastic component
- OU process
Luminosity variations in ultra cool dwarf stars

OU process

Sinusoid (8.3h, 13.3h)

Sinusoid + stochastic
Periodicity in biodiversity over past 550 Myr?

Rohde & Muller 2005

periodic model with additional fitted Gaussian noise

black = data
red = model fit

stochastic process (OU process)

CV likelihood is much higher for this model

Coryn Bailer-Jones, MPI for Astronomy, Heidelberg
Summary

• a Bayesian method for modelling times series
 ‣ arbitrary time sampling and error models
 ‣ deterministic and stochastic times series
 ‣ use of cross-validation likelihood, a robust alternative to the evidence

• applications
 ‣ light curves of some very cool stars (and quasars) evolve stochastically
 ‣ no evidence for periodic variation of biodiversity over past 550 Myr

• more information and software: tinyurl.com/ctsmo
Ultra cool dwarf model comparison results

Table 4. Log (base 10) LOO-CV likelihood of each model relative to that for the no-model for each light curve (log $L_{\text{LOO-CV}} - \log L_{\text{NM}}$).

Light curve	OUprocess	Off+Stoch	Sin	Sin+Stoch	Off+Sin+Stoch	No-model	p-value
2m0345	3.26	2.07	0.15	2.06	2.66	-13.60	4e-4
2m0913	0.44	0.72	0.23	0.97	0.10	-53.39	7e-4
2m1145a	15.23	8.59	3.01	12.26	11.70	-63.83	<1e-9
2m1145b	-0.73	1.96	2.00	2.69	2.95	-39.71	1e-3
2m1146	0.67	0.56	-0.08	0.21	1.17	-26.83	3e-3
2m1334	14.95	12.82	4.06	16.86	16.12	-65.88	1e-9
sdss0539	5.50	1.99	4.93	4.48	4.67	-19.62	3e-5
calar3	3.60	1.43	5.65	5.11	4.28	-28.06	6e-4
sori31	2.04	2.12	1.02	2.59	1.90	-11.16	4e-5
sori33	1.49	0.66	2.14	1.85	2.12	-8.39	2e-3
sori45	6.70	4.32	5.08	6.23	6.32	-29.93	5e-9

Notes. The penultimate column gives the value of the log likelihood for the no-model, log L_{NM}. The last column is the p-value for the hypothesis test from BJM.
Parameter posterior PDFs:

- Frequency, ν / hr^{-1}
- Amplitude, a / mag
- Phase, ϕ

black = posterior
red = prior
Parameter posterior PDFs: 2m1145a

black = posterior
red = prior
Parameter posterior PDFs: 2m1334

- Offset, b / mag
- Frequency, ν / hr$^{-1}$
- Amplitude, a / mag
- Phase, ϕ
- Standard deviation, ω / mag

black = posterior
red = prior