Corrigendum: Magmatic Processes at La Soufrière de Guadeloupe: Insights From Crystal Studies and Diffusion Timescales for Eruption Onset

Abigail Metcalfe1*, Séverine Moune1,2,3, Jean-Christophe Komorowski1, Geoff Kilgour4, David E. Jessop1,2,3, Roberto Moretti1,2 and Yoann Legendre5

1Institut de Physique du Globe de Paris, CNRS, Université de Paris, Paris, France, 2Observatoire Volcanologique et Sismologique de Guadeloupe, Institut de Physique du Globe de Paris, Gourbeyre, France, 3CNRS, IRD, OPGC Laboratoire Magmas et Volcans, Université Clermont Auvergne, Clermont-Ferrand, France, 4Wairakei Research Centre, GNS Science, Taupō, New Zealand, 5Bureau de Recherches Géologiques et Minières, Guadeloupe, France

Keywords: diffusion timescales, orthopyroxene, magma “mush”, unrest, monitoring, eruption style, forecasting, La Soufrière de Guadeloupe

A Corrigendum on Magmatic Processes at La Soufrière de Guadeloupe: Insights From Crystal Studies and Diffusion Timescales for Eruption Onset by Metcalfe, A., Moune, S., Komorowski, J.-C., Kilgour, G., Jessop, D. E., Moretti, R., and Legendre, Y. (2021). Front. Earth Sci. 9:617294. doi:10.3389/feart.2021.617294

In the original article, there was a mistake in Table 2 and in Figures 5, 9 and 10 as published. An error occurred in our calculations of the D_0 value, which was then propagated into the numerical routines used to perform our calculations. Calculations with the corrected D_0 value imply that the timescales of magmatic processes preceding eruptions of La Soufrière de Guadeloupe, shown in Table 2, and discussed in our original manuscript, are lower than previously estimated by a factor of ~ 2. The corrected Table 2 and Figures 5 and 9 appear below. The corrected Figure 10 also appears below, and the trend of the figure is not altered.

Further errors were made in Figures 11, 12 and 13. The timescales are now corrected in the captions of the figures. The correct timescale values, now presented below, range from 18.8 to 361.0 days confirming that magmatic processes prior to eruption occur on short timescales at La Soufrière de Guadeloupe. Updated and corrected versions of our python scripts are available on GitHub: https://github.com/djessop/mineral_diffusion_timescales. The corrected figures appear below.

A correction has also been made to Section Results, Sub-section Timescale Modelling Results, Paragraphs 1–4:

“Diffusion timescales across the core-rim boundaries for the eruptions studied give a timescale range from < 1 to $3,052$ days (Table 2). Our method has investigated how the timescale populations are distributed, highlighting clear differences between eruptions, including variations in the maximum values, range of values and expected timescales.”
The 5680 Cal. BCE Plinian eruption records short timescales with a range from <1 to 169 days and the expected (mean) timescale calculated as 22.8 ± 0.43 days (Figure 9). The ∼341 Cal. CE Strombolian eruption records a large range of timescales from <1 to 3,052 days. The modelled data yield an expected timescale value of 59.4 ± 0.40 days. This expected value is not comparable to any other eruption studied, though the range of values is comparable.

The 1010 Cal. CE Plinian eruption records the longest timescales from <1 to 2,462 days. These data have an expected timescale value of 361.0 ± 0.40 days, considerably higher than calculated for any other eruption (Figure 9). This eruption is considerably different to the 5680 Cal. BCE Plinian eruption, despite the expectation that these eruptions are comparable. This is a direct consequence of the characteristic crystal populations in the 1010 Cal. CE eruption which shows a large proportion of

Eruption Year	Vent	Sample GPS position	Eruption style	Expected timescale (days)	Median timescale (days)	Min. timescale (days)	Max. timescale (days)	Timescale std. error (days)	Crystals analysed	Temp °C (±30°C)	Av. Bulk SiO₂ (wt %)	VEI
1657 BCE	Soufrière	641,466	1,773,774	Fallout Unit	18.8	12.00	0.1	84.3	0.37	84.3	58.1	2-3
1530 CE	Soufrière	643,318	1,774,407	Fallout Unit	20.5	—	10	90	—	900	57.5	2
1010 CE	Soufrière	638,228	1,769,738	Plinian	361.0	192.2	0.4	2,462.3	0.40	344	59.7	4
341 CE	Echelle	683,019	178,011	Strombolian	59.4	30.9	0.4	3,051.7	0.40	33	51.2	2
5680 BCE	Soufrière	637,417	1,770,276	Fallout Unit	22.8	11.2	0.9	167.9	0.43	31	1,010	4

The crystal number refers to the number of crystals diffusion timescales were calculated on [*Mean timescale not expected timescale, calculated from available data Bourgeoisat (2018); Boudon et al. (2008); Pichavant et al. (2018)*].
FIGURE 9 | Distribution of timescales for the 1657 Cal. CE, 1010 Cal. CE, ∼341 Cal CE and 5680 Cal. BCE eruptions. Blue bars indicate the empirical cumulative density frequencies (CDF), red curves indicate the theoretical distributions fitted to these and the green curves represent the theoretical probability density frequencies. On each plot we indicate the mean and median timescales predicted by the theoretical distributions and the p-values (goodness-of-fit) between model and data.

FIGURE 10 | Expected timescale variation diagrams for (A) Repose Time, (B) Volcanic Explosive Index (VEI). Repose time for the 5680 Cal. BCE eruption is based a collapse event at 7160 Cal. BCE, the closest datable event. *1530 Cal. CE eruption data from Boudon et al. (2008); Bourgeoisat (2018); Pichavant et al. (2018).
Type-2 crystals with diffuse zoning, not present in the 5680 Cal. BCE eruption (Figure 8).

The 1657 Cal. CE Vulcanian eruption records the shortest range of timescales from 1 to 84 days. The expected timescale was calculated as 18.8 ± 0.37 days, the shortest expected timescale value calculated for the eruptions studied (Figure 9). This expected value is comparable to the 5680 Cal. BCE expected value of 22.8 days, with most crystals for both these eruptions recording timescales in the range of 3 weeks.

A correction has been made to Section Discussion, Subsection How Do We Interpret the Diffusion Timescales, Paragraph 4:

“These processes are reflected in the gamma distribution, which describes all events that share the same properties (i.e., are generated by the same process) and models them as random processes. In this case, the gamma distribution is derived from the individual likelihood of all intrusion events across the eruption’s crystal populations. The timescale distribution reflects an intrusion producing a mixing bowl where the crystals come into contact with the intrusion at different times, with the expected timescale being the typical value of the distribution. The expected timescale/typical distribution value shows the average time it took a crystal for a specific eruption to come into contact with the intrusion. Therefore, the gamma distribution allows the probability of a crystal experiencing an event at a given time to be estimated. In the case of La Soufrière de Guadeloupe, crystals have a smaller probability of recording a short delay time/longer timescale (on the order of a year; e.g., 1010 Cal. CE), and a larger probability of recording a longer delay time/shorter timescale (on the order of days; e.g., 1657 Cal. CE). This could relate to several parameters including: the intrusions interaction with the system, the composition of the system (including volatile content) and system geometry (crystals recording a longer delay time/shorter diffusion timescale farthest from the intrusion are more likely to be erupted than those closer to the system base which interact with the intrusion first).”

A correction has been made to Section Discussion, Subsection Which Mush System Processes are the Timescales Related To?, Paragraph 5:

“The ~341 Cal. CE and 1010 Cal. BCE eruptions have similar maximum diffusion timescales but different expected timescales (Table 2). This indicates while intrusions may begin at similar times prior to an eruption, the diffusion timescale distribution and resulting expected timescales, suggest the intrusions interact differently with the system. A transition in conduit location to Echelle or the eruption of a monogenetic cone may result in different expected timescales of magmatic processes preceding...
eruptions. In a shallow storage region, crystals interact with melt shortly before eruption and could explain the crystals recording short timescales observed, particularly in Echelle and in other monogenetic systems (Ruprecht et al., 2007; Johnson et al., 2008; Denis et al., 2013; Brenna et al., 2018; Figure 11A,C).

A correction has been made to Section Discussion, Subsection How Do the La Soufrière de Guadeloupe Timescales Fit Into a Global Context, Paragraph 3:

“Some systems show magmatic processes occurring on timescales comparable to La Soufrière de Guadeloupe, such as the 1912 eruption of Novarupta (Alaska), which shows similarly short diffusion timescales. A smaller range of timescales are calculated for this eruption, but the average value, 45 days, is comparable to the expected values calculated for the 1657 Cal. CE, ~341 Cal. CE and 5680 Cal. BCE eruptions (Singer et al., 2016). Despite the similarities in the timescales, the Novarupta system is much larger and is more evolved than La Soufrière de Guadeloupe, limiting the comparability.”

A correction has been made to Section Discussion, Subsection Can We Link Timescales to Unrest at La Soufrière de Guadeloupe?, Paragraph 4:

“In the second scenario, long timescales on the order of a year (i.e., 1010 Cal. CE) suggest similar long unrest periods prior to the eruption could be observed. This unrest, recorded over months or years, may show a gradual increase in seismic activity and thermal anomalies, along with geochemical markers of the rising magma batch, peaking in a shallow degassing signature following its emplacement and the thermal (and chemical) exchange with the residing body. Behaviour corresponding to this scenario was observed prior to the May 2008 Bezymianny eruption, characterised by a decrease of CO₂/H₂O, S/HCl, CO₂/S and CO₂/HCl ratios (Lopez et al., 2013; Davydova et al., 2018).”

Finally, a correction has been made to Section Conclusions:

“By investigating a range of eruption styles, we provide an in-depth analysis of the diffusion timescales of magmatic processes occurring at La Soufrière de Guadeloupe and provide new insights in the processes occurring in the mush system. The method constitutes a significant advance for the calculation of orthopyroxene diffusion timescales, eradicating biases induced by fitting the profiles by eye, and optimising data quality by using well-tested and robust numerical schemes and “goodness-of-fit” analyses. The six different crystal population distributions, found
across the four various types of eruptions of La Soufrière de Guadeloupe, indicate different eruptions are fed by different mush system lenses, which have distinct histories. We found distinct timescales for similar eruption styles, suggesting the diffusion timescales do not allow us to discriminate between eruptive styles. In detail, we determined expected values of 22.8 ± 0.43 days for the 5680 Cal. BCE Plinian eruption, 59.4 ± 0.40 days for the ∼341 Cal. CE Strombolian eruption, 361.0 ± 0.40 days for the 1010 Cal. CE Plinian eruption and 18.8 ± 0.37 days for the 1657 Cal. CE Vulcanian eruption. The 5680 Cal. BCE and 1657 Cal. CE eruption short timescales correlate to short repose suggesting a magma intrusion hotter than the existing mush moved rapidly through the mush system due to the presence of a magma system with a high proportion of melt. The 1010 Cal. CE eruption long-expected timescale and large range of timescales indicates the system remobilised comparatively slowly with new magma interacting with the system slowly. The majority of timescales calculated in this study are short when compared to global data sets calculated for similar systems. This implies basaltic-andesitic to andesitic volcanoes can rapidly produce large-scale eruptions. Paramount for hazard assessment and crisis response, the lack of a correlation between eruption explosive intensity (VEI) and timescales that also applies to short timescales, indicates that a future eruption of La Soufrière de Guadeloupe could broadly span a range from low to high explosivity. These results underscore the necessity to further: improve the reliability of detecting and interpreting multiparameter monitoring

FIGURE 13 | Global database of diffusion timescales (adapted from Costa et al., 2020), for relatively evolved composition eruptions. The majority of studies are done on pyroxene with two examples of olivine studies. This shows the wide range of timescales that can be calculated through diffusion methods, from hours to centuries. Systems incomparable to La Soufrière are marked with an asterisk (*), these systems generally record the longest timescales and are more typically observed in evolved caldera forming systems. The 1530 C.E., 1657 Cal. CE and 5680 Cal. BCE (whole rock estimated) eruptions record some of the shortest timescales for systems in a similar compositional range, with timescales most similar to Bezymianny and Novarupta, Alaska, which show similarly short timescales. (Davydova et al., 2018; Boudon et al., 2008; Pichavant et al., 2018; Singer et al., 2016; Ruth et al., 2018; Costa et al., 2013; Weber et al., 2019; Chamberlain et al., 2014; Costa and Chakraborty, 2004; Fabbro et al., 2013; Barker et al., 2016; Raherty et al., 2014; Kilgour et al., 2014; Gamble et al., 1999; Saunders et al., 2014; Fabbro et al., 2013; Bourgeoisat, 2018; Solari et al., 2020; Sundermeyer et al., 2020).
data as eruption precursors, expand eruption forecast modelling, develop probabilistic expert judgement for crisis response, as well as enhance risk reduction and societal resilience.”

REFERENCES

Barker, S. J., Wilson, C. J. N., Morgan, D. J., and Rowland, J. V. (2016). Rapid priming, accumulation, and recharge of magma driving recent eruptions at a hyperactive caldera volcano. *Geology* 44 (4), 323–326. doi:10.1130/g37382.1

Boudon, G., Komorowski, J.-C., Vilmant, B., and Semet, M. P. (2008). A new scenario for the last magmatic eruption of La Soufrière of Guadeloupe (Lesser Antilles) in 1530 A.D. Evidence from stratigraphy radiocarbon dating and magmatic evolution of erupted products. *J. Volcanol. Geotherm. Res.* 178 (3), 474–490. doi:10.1016/j.jvolgeores.2008.03.006

Bourgeoisat, C. (2018). Spatio-temporal dynamics of the magmatic reservoir at the origin of the 1530 AD eruption of La Soufrière of Guadeloupe. Paris: Master’s thesis

Breau, M., Cronin, S. J., Smith, I. E. M., Tolland, P. M. E., Scott, J. M., Prior, D. J., et al. (2018). Olivine xenocryst diffusion reveals rapid monogenetic basaltic magma ascent following complex storage at Pupuke Maar, Auckland Volcanic Field, New Zealand. *Earth Planet. Sci. Lett.* 499, 13–22. doi:10.1016/j.epsl.2018.07.015

Chamberlain, K., Morgan, D., and Wilson, C. (2014). Timescales of mixing and mobilisation in the Bishop Tuff magma body: perspectives from diffusion chronometry. *Contrib. Mineralogy Petrolic.* 168 (1). doi:10.1007/s00410-014-1034-2

Costa, F., Andreastuti, S., Bouvet de Maisonneuve, C., and Pallister, J. S. (2013). Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. *J. Volcanol. Geotherm. Res.* 261, 209–235. doi:10.1016/j.jvolgeores.2012.12.025

Costa, F., and Chakraborty, S. (2004). Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. *Earth Planet. Sci. Lett.* 227 (3–4), 517–530. doi:10.1016/j.epsl.2004.08.011

Costa, F., Shea, T., and Ubide, T. (2020). Diffusion chronometry and the timescales of magmatic processes. *Nat. Rev. Earth Environ.* 1 (4), 201–214. doi:10.1038/s43017-020-0038-x

Davydova, V. O., Scherbakov, V. D., and Pchlov, P. Y. (2018). The timescales of magma mixing in the plumbing system of Bezmyanny volcano (Kamchatka): insights from diffusion chronometry. *Mosc. Univ. Geol. Bull.* 73, 444–450. doi:10.3103/s0145875218050058

Denis, C. M. M., Demouchy, S., and Shaw, C. S. J. (2013). Evidence of dehydration in peridotites from Eifel Volcanic Field and estimates of the rate of magma ascent. *J. Volcanol. Geotherm. Res.* 258, 85–99. doi:10.1016/j.jvolgeores.2013.04.010

Fabbro, G., Druitt, T., and Scaillet, S. (2013). Evolution of the crustal magma plumbing system during the build-up to the 22-ka caldera-forming eruption of Santorini (Greece). *Bull. Volcanol.* 75 (12). doi:10.1007/s00445-013-0767-5

Flaherty, T., Druitt, T., Tuffen, H., Higgins, M., Costa, F., and Cadoux, A. (2018). Multiple timescale constraints for high-flux magma chamber assembly prior to the Late Bronze Age eruption of Santorini (Greece). *Contrib. Mineralogy Petrolic.* 173 (9). doi:10.1016/j.compet.2018.01.010

Johnson, E. R., Wallace, P. J., Cashman, K. V., Granados, H. D., and Kent, A. J. (2008). Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico: implications for melt evolution and the plumbing systems of monogenetic volcanoes. *Earth Planet. Sci. Lett.* 269 (3–4), 478–487. doi:10.1016/j.epsl.2008.03.004

The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Kilgour, G. N., Saunders, K. E., Blundy, J. D., Cashman, K. V., Scott, B. J., and Miller, C. A. (2014). Timescales of magmatic processes at Ruapehu volcano from diffusion chronometry and their comparison to monitoring data. *J. Volcanol. Geotherm. Res.* 288, 62–75. doi:10.1016/j.jvolgeores.2014.09.010

López, T., Ushakov, S., Izbekov, P., Tassi, F., Cahill, C., Neill, O., et al. (2013). Constraints on magma processes, subsurface conditions, and total volatile flux at Bezmyanny Volcano in 2007–2010 from direct and remote volcanic gas measurements. *J. Volcanol. Geotherm. Res.* 263, 92–107.

Gamble, J. A., Wood, C. P., Price, R. C., Smith, I. E. M., Stewart, R. B., and Waight, T. (1999). A fifty year perspective of magmatic evolution on Ruapehu Volcano, New Zealand: verification of open system behaviour in an arc volcano. *Earth Planet. Sci. Lett.* 170 (3), 301–314. doi:10.1016/s0012-821x(99)00106-5

Pichavant, M., Poussineau, S., Lesne, P., Solaro, C., and Bourdier, J.-L. (2018). Experimental parametrization of magma mixing: application to the ad 1530 eruption of La Soufrière of Guadeloupe (Lesser Antilles). *J. Petrol.* 59 (2), 257–282. doi:10.1039/c7pet02075b

Ruth, D., Costa, F., Bouvet de Maisonneuve, C., Franco, L., Cortés, J., and Calder, E. (2018). Crystal and melt inclusion timescale reveal the evolution of magma migration before eruption. *Nat. Commun.* 9 (1). doi:10.1038/s41467-018-05086-8

Saunders, K., Buse, B., Kilburn, M. R., Kearns, S., and Blundy, J. (2014). Nanoscale characterisation of crystal zoning. *Chem. Geol.* 364, 20–32. doi:10.1016/j.chemgeo.2013.11.019

Singer, B. S., Costa, F., Herrin, J. S., Hildreth, W., and Fierstein, J. (2016). The timing of compositionally-zoned magma reservoirs and mafic ‘priming’ weeks before the 1912 Novarupta-Katmai rhyolite eruption. *Earth Planet. Sci. Lett.* 451, 125–137. doi:10.1016/j.epsl.2016.07.015

Solaro, C., Balcone-Boissard, H., Morgan, D. J., Boudon, G., Martel, C., and Osteroler, L. (2020). A system dynamics approach to understanding the deep magma plumbing system beneath Dominica (Lesser Antilles). *Front. Earth Sci.* 8. doi:10.3389/feart.2020.574032

Sundermeyer, C., Gätjen, J., Weimann, L., and Wörner, G. (2020). Timescales from magma mixing to eruption in alkaline volcanism in the Eifel volcanic fields, western Germany. *Contrib. Mineralogy Petrolic.* 175 (8), 1–23. doi:10.1007/s00445-020-11715-y

Weber, G., Arce, J. L., Uliano, A., and Caricchi, L. (2019). A recurrent magmatic pattern on observable timescales prior to plinian eruptions from Nevado de Toluca (Mexico). *J. Geophys. Res. Solid Earth* 124, 10999–11021. doi:10.1029/2019jb017640

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Metcalfe, Monne, Komorowski, Kilgour, Jessop, Moretti and Legendre. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.