GROWTH AND COGROWTH OF NORMAL SUBGROUPS OF A FREE GROUP

JOHANNES JAERISCH AND KATSUHIKO MATSUZAKI

ABSTRACT. We give a sufficient condition for a sequence of normal subgroups of a free group to have the property that both, their growths tend to the upper bound and their cogrowths tend to the lower bound. The condition is represented by planarity of the quotient graphs of the tree.

1. INTRODUCTION AND STATEMENTS OF RESULT

We denote by F_n the free group of rank $n \geq 2$ with a free set of generators S. Let T_n denote the Cayley graph of F_n with respect to S. We equip T_n with the word metric d. Let $G < F_n$ be a subgroup of F_n. The Poincaré exponent $\delta(G)$ of G is given by

$$\delta(G) := \limsup_{R \to \infty} \frac{1}{R} \log N_G(R),$$

where $N_G(R) := \text{card} \{ g \in G | d(id, g) \leq R \}$.

It is well known that $\delta(G)$ is given by the exponent of convergence of the Poincaré series

$$\delta(G) = \inf \{ s > 0 | \sum_{g \in G} e^{-sd(id, g)} < \infty \}.$$

For a normal subgroup $\{1\} \neq N \triangleleft F_n$ the ratio

$$\eta(F_n/N) := \frac{\delta(N)}{\delta(F_n)} = \frac{\delta(N)}{\log(2n - 1)}$$

is known as the cogrowth of the group presentation F_n/N, which was introduced by Grigorchuk (Gri80). We have $\eta(F_n/N) \leq 1$ and by a well-known result of Grigorchuk (Gri80) we have that $\eta(F_n/N) = 1$ if and only if F_n/N is amenable. This criterion is deduced by combining Grigorchuk’s cogrowth formula (Gri80) and results of Kesten on random walks on countable groups (Kes59a, Kes59b, see also Cohen (Coh82)).

In this paper we focus on Grigorchuk’s lower bound of the cogrowth $\eta(F_n/N) > 1/2$ (Gri80). We have the following more general results due to Roblin (Rob05). We say that $G < F_n$ is of divergence type if $\sum_{g \in G} e^{-\delta(G)d(id, g)} = \infty$.

Proposition 1.1 (Rob05). Let $G < F_n$ and $\{1\} \neq N \triangleleft G$. Then we have the following:

1. $\delta(N) \geq \delta(G)/2$.
2. If G is of divergence type, then $\delta(N) > \delta(G)/2$.

Remark. For Kleinian groups the first assertion was proved by Falk and Stratmann in [FS04]. An alternative proof of (1) can be given by following the arguments in [Jae15].

Another important notion we consider is the growth of graphs. By a graph we mean an unoriented graph with countable vertex set, bounded vertex degree and loops as well
as multiple edges allowed. For a connected graph Γ with path metric d and for some/any $\gamma_0 \in \Gamma$, the growth is given by

$$\text{growth}(\Gamma) = \limsup_{n \to \infty} (\text{card}\{\gamma \in \Gamma \mid d(\gamma, \gamma_0) \leq n\})^{1/n}.$$

Let $H < F_n$ be a subgroup. We consider the action of H on T_n by left-multiplication. We denote by $\Gamma_H := T_n/H$ the quotient graph with vertex set

$$\mathcal{V}(\Gamma_H) := \{Hg \mid g \in F_n\},$$

where Hx and $Hy \in \mathcal{V}(\Gamma_H)$ are connected by an edge if and only if there exists $s \in S$ such that $Hxs = Hy$ or $Hys = Hx$.

The following result on growth tightness of F_n was proved in [GdlH97].

Proposition 1.2 ([GdlH97]). Let N be a normal subgroup of F_n with infinite index. Then

$$\text{growth}(\Gamma_N) < \text{growth}(T_n) = 2n - 1.$$

A generalization of the growth tightness to hyperbolic groups was obtained by Arzhantseva and Lyseknod in [AL02].

The main result of this paper is the following, which gives a sufficient condition on a sequence of normal subgroups of F_n under which both the growth and the cogrowth converge to their bounds simultaneously. Recall that a graph is called planar if there exists an embedding in the sphere. The condition for a finite graph to be planar is known as Wagner’s theorem ([Wag37]).

Theorem 1.3. Let $N_k \triangleleft F_n$, $k \in \mathbb{N}$, be a sequence of normal subgroups such that Γ_{N_k} is planar. Let $\ell_k := \min\{\ell \in \mathbb{N} \mid \exists h \in N_k, d(\text{id}, h) = \ell\}$. If $\ell_k \to \infty$, as $k \to \infty$, then we have

$$\lim_{k \to \infty} \delta(N_k) = \frac{1}{2} \delta(F_n) \quad \text{and} \quad \lim_{k \to \infty} \text{growth}(\Gamma_{N_k}) = \text{growth}(T_n).$$

We see that a particular sequence of normal subgroups satisfies the above condition. For cogrowth this was proved by Grigorchuk ([Gri80]), and for growth this follows from a result by Shukhov ([Shu99]). For $g_1, \ldots, g_s \in F_n$ we denote by $\langle\langle g_1, \ldots, g_s \rangle\rangle$ the normal closure of $\{g_1, \ldots, g_s\}$ in F_n.

Corollary 1.4. Let $F_n = \langle g_1, \ldots, g_n \rangle$ and let $N_k := \langle\langle g_{k_1}^{k_1}, g_{k_2}^{k_2}, \ldots, g_{k_s}^{k_s} \rangle\rangle \triangleleft F_n$, $s \in \mathbb{N}$, and put $k = \min\{k_i \mid 1 \leq i \leq s\}$. Then we have

$$\lim_{k \to \infty} \delta(N_k) = \frac{1}{2} \delta(F_n) \quad \text{and} \quad \lim_{k \to \infty} \text{growth}(\Gamma_{N_k}) = \text{growth}(T_n).$$

Proof. We have to verify that Γ_N is planar for $N = N_k$. Then the corollary follows from Theorem 1.3. To prove this consider the graph $\Gamma_{F_n} = T_n/F_n$, which consists of one vertex and n edges that are the loops based at the vertex. We embed this graph into $(n + 1)$-punctured sphere S so that each loop of Γ_{F_n} wraps around a different puncture and hence the inclusion map induces the isomorphism $\theta : \pi_1(\Gamma_{F_n}) = F_n \to \pi_1(S)$ between their fundamental groups. By [Mas88] Proposition X.A.3, if $w_{1}, \ldots, w_2 \in \pi_1(S)$ correspond to mutually disjoint non-trivial simple closed curves in S, then the normal closure $H = \langle\langle w_1^{k_1}, \ldots, w_n^{k_n} \rangle\rangle$ for any $k_1, \ldots, k_n \in \mathbb{N}$ defines the normal covering surface \tilde{S} that is planar, namely, all simple closed curves are dividing. Note that any planar surface can be embedded into the sphere. Set $N = \theta^{-1}(H) < F_n$. By the covering projection $p : \tilde{S} \to S$, we lift the embedded graph $\Gamma_{F_n} \subset S$ to \tilde{S}. Then the lifted graph is Γ_N. Since \tilde{S} is planar, we see that Γ_N is a planar graph. \(\square\)

For the more general case of $G < F_n$ we have the following immediate consequence of our results.

Corollary 1.5. Let $G = \langle g_i : i \in I \rangle$ be a subgroup of F_n such that $\delta(G) = \delta(F_n)$. Then there exists a sequence of normal subgroups $N_k \triangleleft G$, $k \in \mathbb{N}$, such that

$$\lim_{k \to \infty} \delta(N_k) = \frac{1}{2} \delta(G).$$

Proof. Put $\tilde{N}_k := \langle \langle g_i^k \rangle \rangle \triangleleft F_n$. It is easy to see that $\sup_k d(\text{id}, g_i^k) = \infty$. Hence, by passing to a subsequence, we may assume that $\ell_k \to \infty$, as $k \to \infty$. By Theorem 1.3, we have $\lim_{k \to \infty} \delta(N_k) = \delta(F_n)/2$. Put $N_k := \tilde{N}_k \cap G$. Since $N_k \triangleleft G$ we have $\delta(G)/2 \leq \delta(N_k) \leq \delta(N_k)$ by Proposition 1.1. The corollary follows because $\lim_{k \to \infty} \delta(N_k) = \delta(F_n)/2 = \delta(G)/2$.

To prove our main result, we make use of the concept of isoperimetric inequalities to estimate the bottom of the spectrum of the discrete Laplacian on graphs. This concept also allows us to give new proofs for known results on the growth and cogrowth of quotient groups of the tree. In Section 2 we introduce the necessary preliminaries on the discrete Laplacian and isoperimetric inequalities. The proof of Theorem 1.3 is given in Section 3. Finally, in Section 4 we derive a relation between the growth and the cogrowth in Proposition 4.1, which motivates the following conjecture.

Conjecture. For every non-trivial $N \triangleleft F_n$ we have

$$\delta(N) + \frac{1}{2} \log \left(\text{growth}(T_n/N) \right) \geq \delta(F_n).$$

If this conjecture is true, then $\lim_{k \to \infty} \delta(N_k) = \delta(F_n)/2$ implies $\lim_{k \to \infty} \text{growth}(T_n/N_k) = \text{growth}(T_n)$.

Acknowledgement. We would like to thank Wenyuan Yang for introducing the growth tightness of (relatively) hyperbolic groups to us.

2. PRELIMINARIES

2.1. Discrete Laplacian. Let $n \in \mathbb{N}$ and let Γ be a $(2n)$-regular graph with vertex set $\mathcal{V}(\Gamma)$. The transition operator of the simple random walk on Γ is for $f : \mathcal{V}(\Gamma) \to \mathbb{R}$ given by

$$Pf(x) := \frac{1}{2n} \sum_{y \sim x} f(y), \quad x \in \mathcal{V}(\Gamma),$$

where the sum is taken over all edges connecting x and y. The discrete Laplacian \triangle on Γ is given by $\triangle f := f - Pf$. Denote by $\lambda_0(\Gamma)$ the bottom of the spectrum of \triangle given by

$$\lambda_0(\Gamma) := \inf \{ \lambda \in \mathbb{R} \mid \exists f \in l^2(\mathcal{V}(\Gamma)) \text{ s.t. } \triangle f = \lambda f \}.$$

The following two facts are well known.

Fact 2.1. The bottom of the spectrum is given by

$$\lambda_0(\Gamma) = \inf_{f : \mathcal{V}(\Gamma) \to \mathbb{R}, \text{card(supp}(f)) < \infty} \frac{1}{2n} \sum_{x \sim y} |f(x) - f(y)|^2 / \sum_{x} |f(x)|^2.$$

Fact 2.2. Let $\lambda \in \mathbb{R}$. Then we have $\lambda \leq \lambda_0(\Gamma)$ if and only if there exists $f : \mathcal{V}(\Gamma) \to \mathbb{R}_{\geq 0}$ such that $\triangle f = \lambda f$.

In order to explain the relation between the bottom of the spectrum and the Poincaré exponent, we will first state Grigorchuk’s cogrowth formula. Denote by $\rho(F_n/N)$ the spectral radius of the transition operator $P : l^2(\mathcal{V}(\Gamma_N)) \to l^2(\mathcal{V}(\Gamma_N))$ of the simple random walk on the quotient graph $\Gamma_N := T_n/N$.

Theorem 2.3 (Grigorchuk’s cogrowth formula). For every $\{1\} \neq N \triangleleft F_n$ we have

$$\rho(F_n/N) = \frac{\sqrt{2n-1}}{2n} \left(\frac{\sqrt{2n-1}}{e^{\delta(N)}} + \frac{e^{\delta(N)}}{\sqrt{2n-1}} \right).$$
Remark. In [GalH97] the cogrowth formula is stated for arbitrary subgroups $H < F_n$. A proof of this formula can be given by using the Patterson-Sullivan theory.

The relation between the bottom of the spectrum of the Laplacian and the Poincaré exponent is stated in the following proposition. The analogue result for Kleinian groups is known as the Theorem of Elstrodt, Patterson and Sullivan ([Sul87]).

Proposition 2.4. For every $\{1\} \neq N < F_n$ we have

$$\lambda_0(\Gamma_N) = \frac{1}{2n} (2n - 1 - e^{2\delta(N)})(1 - e^{-2\delta(N)}).$$

Proof. First observe that $\lambda_0(\Gamma_N) = 1 - \rho(F_n/N)$, where we used the fact that $\rho(F_n/N)$ is contained in the spectrum of the transition operator of the simple random walk on F_n/N ([Moh88], see also [MW89, Theorem 4.4]). The proposition now follows from (2.1). More precisely, we have that

$$\lambda_0(\Gamma_N) = 1 - \frac{1}{2n} \left(\frac{\sqrt{2n-1} - e^{\delta(N)}}{\sqrt{2n-1}} + e^{-\delta(N)} \right) = 1 - \left(\frac{2n-1}{2n} e^{-\delta(N)} + \frac{1}{2n} e^{\delta(N)} \right)$$

$$= \frac{1}{2n} \left(2n - (2n - 1) e^{-\delta(N)} - e^{\delta(N)} \right) = \frac{1}{2n} \left(2n - 1 - e^{\delta(N)} \right) \left(1 - e^{-\delta(N)} \right).$$

\[\square \]

2.2. Isoperimetric constant

The isoperimetric constant of a $(2n)$-regular graph Γ is given by

$$i(\Gamma) := \inf_{A \subset \nu(\Gamma), \text{card}(A) < \infty} \frac{1}{2n} \text{card}(\partial A),$$

where ∂A denotes the set of edges e such that e connects x, y with $x \in A$ and $y \in \nu(\Gamma) \setminus A$.

It is well known that

$$i(T_n) = (n-1)/n \quad \text{and} \quad \lambda_0(T_n) = 1 - (\sqrt{2n-1})/n.$$

The following analogue of the well-known Cheeger inequality was proved by Mohar.

Proposition 2.5 ([Moh88], Theorem 2.1). We have

$$i(\Gamma) \leq \sqrt{1 - (1 - \lambda_0(\Gamma))^2}.$$

The following relation between λ_0 and the growth is due to Mohar ([Moh88]).

Lemma 2.6 ([Moh88], Theorem 4.1). We have

$$\text{growth}(\Gamma) \geq \frac{1 + i(\Gamma)}{1 - i(\Gamma)},$$

That is, we have

$$i(\Gamma) \leq \frac{\text{growth}(\Gamma) - 1}{\text{growth}(\Gamma) + 1}.$$

3. PROOF OF THE MAIN RESULT

In order to obtain estimates on the isoperimetric constant we show that, for a subgroup $H < F_n$, it suffices to consider all the finite core subgraphs of Γ_H in the definition of $i(\Gamma_H)$.

Definition 3.1. Let $\Gamma \subset \Gamma_H$ be a finite subgraph. The minimal subgraph $C \subset \Gamma$ such that the inclusion $i : C \to \Gamma$ is a homotopy equivalence is called the core of Γ.

Lemma 3.2. Suppose that $H \neq \{1\}$. Then we have

$$i(\Gamma_H) = \inf \frac{1}{2n} \text{card}(\partial C_T),$$

where the infimum is taken over all finite connected subgraphs $\Gamma \subset \Gamma_H$ and C_T denotes the core of Γ.

Proof. To prove that we can restrict to connected subgraphs, we use the fact that, if \((a/b) \leq (c/d)\) then \((a + c)/(b + d)\). To prove the reduction to finite core subgraphs, let \(\Gamma \subset \Gamma_H\) be a finite connected subgraph and consider the core of \(\Gamma\). Note that the core is obtained from \(\Gamma\) by successively removing vertices \(v \in \Gamma\) for which there exists only one \(v' \in \Gamma\) such that \(v \sim v'\). Hence, it suffices to show that

\[
\frac{1}{2n} \frac{\text{card}(\partial \Gamma) - 2(n - 1)}{\text{card}(\Gamma) - 1} \leq \frac{1}{2n} \frac{\text{card}(\partial \Gamma)}{\text{card}(\Gamma)}. \tag{3.1}
\]

We may assume that \(\text{card}(\Gamma) \geq 2\). If

\[
\frac{1}{2n} \frac{\text{card}(\partial \Gamma)}{\text{card}(\Gamma)} \leq \frac{n - 1}{n}, \tag{3.2}
\]

then \((3.1)\) follows from the fact that \((a - c)/(b - d) \leq a/b\), whenever \(a/b \leq c/d\) and \(b > d\).

If \(i(\Gamma_H) < (n - 1)/n\) then we may without loss of generality assume that \((3.2)\) holds. If \(i(\Gamma_H) = (n - 1)/n\) then the lemma holds, because the infimum is attained if we consider a single cycle, which defines a core subgraph.

We denote by \(\chi\) the Euler characteristic of a topological space.

Lemma 3.3. If \(C\) is a connected core subgraph, then

\[
\text{card}(\partial C) = (2n - 2)\text{card}(C) + 2\chi(C).
\]

Proof. First observe that the formula holds when \(C\) is a single loop, that is \(\chi(C) = 0\). The general case follows by induction on the Euler characteristic, because if we remove a cycle of edges or an edge path, 2 boundary elements appear and the Euler characteristic increases by 1.

Definition 3.4. The injectivity radius of a connected graph \(\Gamma\) is given by

\[
\ell(\Gamma) := \inf_{x \in \text{Fr}(\Gamma)} \{\ell_x(\Gamma)\},
\]

where we have set

\[
\ell_x(\Gamma) := \frac{1}{2} \min \{\text{length}(\gamma) \mid \gamma\text{ is non-backtracking edge path from } x \text{ to } x\}.
\]

Note that if \(\Gamma = F_n\) then \(\ell(\Gamma) = \infty\), and if a graph \(C\) consists of a single vertex and no edge then \(\ell(C) = \infty\). Moreover, if \(C\) is a subgraph of \(\Gamma\) then \(\ell(C) \geq \ell(\Gamma)\).

Proposition 3.5. Let \(C \subset \Gamma_H\) be a core subgraph. Suppose that \(\ell(C) < \infty\) and that \(C\) is planar. Then we have

\[
\text{card}(C) \geq (-\chi(C) + 2) \cdot \ell(C) - 1.
\]

Proof. Since \(C\) is planar, we can consider \(C\) as a subspace of the sphere \(S^2\). Hence,

\[
\chi(C) + \text{card} \{\text{faces of } C\} = \chi(S^2) = 2,
\]

giving that

\[
\text{card} \{\text{faces of } C\} = -\chi(C) + 2 \tag{3.3}
\]

Since every edge of \(C\) is between two faces and each face is bounded by at least \(2\ell(C)\) edges, we obtain

\[
2\text{card} \{\text{edges of } C\} \geq 2\ell(C)\text{card} \{\text{faces of } C\}.
\]

Combining with \((3.3)\) yields

\[
\text{card} \{\text{edges of } C\} \geq \ell(C)(-\chi(C) + 2).
\]

Finally, we deduce for the number of vertices that

\[
\text{card} \{\text{vertices of } C\} = \text{card} \{\text{edges of } C\} + \chi(C) \geq (\ell(C) - 1)(-\chi(C) + 2).
\]
Proposition 3.6. Let \((H_k)\) be a sequence of non-trivial subgroups of \(F_n\).

1. Suppose that \(\Gamma_{H_k}\) is planar for each \(k \in \mathbb{N}\). If \(i(\Gamma_{H_k}) \to \infty\), as \(k \to \infty\), then
 \[
 \lim_{k \to \infty} i(\Gamma_{H_k}) = i(T_n),
 \]
 \[
 \delta(4.1) \quad e
 \]
 \[
 \text{Proof.}
 \]

2. If \(\lim_{k \to \infty} i(\Gamma_{H_k}) = i(T_n)\) and \(H_k \triangleleft F_n\), then
 \[
 \lim_{k \to \infty} \delta(H_k) = \frac{1}{2} \log(2n - 1) = \delta(F_n)/2.
 \]

3. If \(\lim_{k \to \infty} i(\Gamma_{H_k}) = i(T_n)\), then \(\lim_{k \to \infty} \text{growth}(\Gamma_{H_k}) = 2n - 1 = \text{growth}(T_n)\).

Proof. We first prove (1). By Lemma 3.2, Lemma 3.3, and Proposition 3.5, we have

\[
\begin{align*}
 i(\Gamma_H) &= \inf \frac{1}{2n} \frac{\text{card}(\partial C_T)}{\text{card}(C_T)} = \inf \frac{1}{2n} \frac{(2n - 2) \text{card}(C_T) + 2\chi(C_T)}{\text{card}(C_T)} \\
 &= \frac{n-1}{n} + \inf \frac{1}{n} \frac{\chi(C_T)}{\text{card}(C_T)} \\
 &= \frac{n-1}{n} - \frac{1}{n} \frac{1}{\ell(\Gamma_H) - 1},
\end{align*}
\]

where the infimum is taken over all finite connected subgraphs \(\Gamma \subset \Gamma_H\) and \(C_T\) denotes the core of \(\Gamma\). Since \(i(\Gamma_H) \leq i(T_n) = (n-1)/n\), the assertion in (1) follows.

To prove (2) observe that by Proposition 2.5 we have \(\lambda_0(\Gamma_{H_k}) \geq 1 - \sqrt{1 - i(\Gamma_{H_k})^2}\). Consequently, if \(\lim_{k \to \infty} i(\Gamma_{H_k}) = i(T_n) = (n-1)/n\), then \(\liminf_{k \to \infty} \lambda_0(\Gamma_{H_k}) \geq 1 - \sqrt{2n-1}/n\). By Proposition 2.4 we conclude that \(\limsup_{k \to \infty} \delta(H_k) \leq \log \sqrt{2n-1}\). Since \(H_k \triangleleft F_n\) we have \(\delta(H_k) \geq \log \sqrt{2n-1}\) by Proposition 1.1, which finishes the proof of (2).

Finally we turn to the proof of (3). By Proposition 2.6 we have as \(k \to \infty\),

\[
\begin{align*}
 \text{growth}(\Gamma_{H_k}) &\geq \frac{1 + i(\Gamma_{H_k})}{1 - i(\Gamma_{H_k})} \to \frac{1 + (n-1)/n}{1 - (n-1)/n} = 2n - 1 = \text{growth}(T_n).
\end{align*}
\]

\(\square\)

Proof of Theorem 3.3. The first assertion follows from Proposition 3.6 (1) and (2). The second assertion follows from Proposition 3.6 (1) and (3). \(\square\)

4. A RELATION BETWEEN GROWTH AND COGROWTH

We prove a relation between growth and cogrowth for \(N \triangleleft F_n\).

Proposition 4.1. For every non-trivial \(N \triangleleft F_n\) we have

\[
\delta(N) + \frac{1}{2} \log(\text{growth}(T_n/N)) + \log(2) > \delta(F_n).
\]

Proof. For ease of notation we write \(\delta = \delta(N)\), \(\lambda_0 = \lambda_0(T_n/N)\), and \(\kappa = \log(\text{growth}(T_n/N))\). It follows from Proposition 2.4 that

\[
\begin{align*}
 e^\delta &= n(1 - \lambda_0) + \sqrt{n^2(1 - \lambda_0)^2 - (2n - 1)}.
\end{align*}
\]

By [MW89, Corollary 5.2] we have

\[
\begin{align*}
 e^\kappa &\geq \frac{1}{1 - \lambda_0}.
\end{align*}
\]

We obtain

\[
\begin{align*}
 e^\delta &\geq ne^{-\kappa/2} + \sqrt{n^2e^{-\kappa} - (2n - 1)}.
\end{align*}
\]

Multiplying by \(e^{\kappa/2}\) yields

\[
\begin{align*}
 e^{\delta + \kappa/2} &\geq n + \sqrt{n^2 - (2n - 1)}e^\kappa.
\end{align*}
\]
A short calculation shows that
\[
\sqrt{n^2 - (2n - 1)e^\kappa} = \sqrt{n^2 - (2n - 1) - (2n - 1)(e^\kappa - 1)} \\
\geq \sqrt{n^2 - (2n - 1) - \sqrt{(2n - 1)(e^\kappa - 1)}} \\
\geq n - 1 - \left(e^{\delta(F_n)} e^\kappa \right)^{1/2}.
\]
Combining with (4.1) we see that
\[
e^{\delta + \kappa/2} \geq 2n - 1 - e^{\delta(F_n)/2} e^{\kappa/2} = e^{\delta(F_n)} - e^{\delta(F_n)/2} e^{\kappa/2},
\]
which implies
\[
\left(e^{\delta + \delta(F_n)/2} \right) e^{\kappa/2} \geq e^{\delta(F_n)}.
\]
Finally, since \(\delta > \frac{1}{4}\delta(F_n) \) we deduce that
\[2e^{\delta} e^{\kappa/2} > e^{\delta(F_n)},\]
which finishes the proof. □

REFERENCES

[AL02] G. N. Arzhantseva and I. G. Lysenok, Growth tightness for word hyperbolic groups, Math. Z. 241 (2002), 597–611.

[Coh82] J. M. Cohen, Cogrowth and amenability of discrete groups, J. Funct. Anal. 48 (1982), no. 3, 301–309. MR MR678175 (85e:43004)

[FS04] K. Falk and B. O. Stratmann, Remarks on Hausdorff dimensions for transient limit sets of Kleinian groups, Tohoku Math. J. (2) 56 (2004), no. 4, 571–582. MR 2097162 (2005g:30053)

[GdlH97] R. Grigorchuk and P. de la Harpe, On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems 3 (1997), no. 1, 51–89. MR 1436550 (2005g:30053)

[Gri80] R. I. Grigorchuk, Symmetrical random walks on discrete groups, Multicomponent random systems, Adv. Probab. Related Topics, vol. 6, Dekker, New York, 1980, pp. 285–325. MR MR599539 (83k:60016)

[Jae14] J. Jaerisch, Recurrence and pressure for group extensions, Ergodic Theory and Dynamical Systems, http://dx.doi.org/10.1017/etds.2014.54 (2014).

[Jae15]________, A lower bound for the exponent of convergence of normal subgroups of Kleinian groups, J. Geom. Anal. 25 (2015), 289–305.

[Kes59a] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146–156. MR MR0112053 (22 #9211)

[Kes59b]________, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336–354. MR MR0109367 (22 #523)

[Mas88] B. Maskit, Kleinian groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135 (90a:30132)

[Moh88] B. Mohar, Isoperimetric inequalities, growth, and the spectrum of graphs, Linear Algebra Appl. 103 (1988), 119–131. MR 943998 (89k:05071)

[MW89] B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), no. 3, 209–234. MR 986363 (90d:05162)

[MV15] K. Matsuzaki, Y. Yabuki, and J. Jaerisch, Normalizer, divergence type and Patterson measure for discrete groups of the Gromov hyperbolic space, arXiv:1511.02664 (2015).

[Rob05] T. Roblin, Un théorème de Fatou pour les densités conformes avec applications aux révètements galoisiens en courbure négative, Israel J. Math. 147 (2005), 333–357. MR 2166367 (2006c:37065)

[Shu99] A. Shukhov, On the dependence of the growth exponent on the length of the defining relation, Mat. Zametki 65 (1999), 612–618.

[Sul87] D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), no. 3, 327–351. MR 882827 (88d:58132)

[Wag37] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937), 570–590.