Title
High p(T) correlated tests of lepton universality in lepton(s) plus jet(s) processes; An EFT analysis

Permalink
https://escholarship.org/uc/item/0xd1g851

Authors
Afik, Yoav
Bar-Shalom, Shaouly
Cohen, Jonathan
et al.

Publication Date
2020-12-10

DOI
10.1016/j.physletb.2020.135908

Peer reviewed
High p_T correlated tests of lepton universality in lepton(s) + jet(s) processes; an EFT analysis

Yoav Afik,1 Shaouly Bar-Shalom,1 Jonathan Cohen,1 Amarjit Soni,2,† and Jose Wudka3,§

1Physics Department, Technion–Institute of Technology, Haifa 3200003, Israel
2Physics Department, Brookhaven National Laboratory, Upton, NY 11973, US
3Physics Department, University of California, Riverside, CA 92521, USA

(Dated: May 14, 2020)

We suggest a new class of tests for searching for lepton flavor non-universality (LFNU) using ratio observables and based on correlations among the underlying LFNU new physics (NP) effects in several (seemingly independent) di-lepton and single lepton + jet(s) processes. This is demonstrated by studying the effects generated by LFNU 4-Fermi interactions involving 3rd generation quarks. We find that the sensitivity to the scale (Λ) of the LFNU 4-Fermi operators significantly improves when the correlations among the various di-lepton + jets and single-lepton + jets processes are used, reaching $\Lambda \sim O(10)$ TeV at the HL-LHC.

Intriguing hints of lepton-flavor non-universality (LFNU) and therefore of new physics (NP) have appeared in recent years in neutral and charged semileptonic B-decays [1,21] (for a recent review see [22]): the $R_{K^{(*)}}$ and $R_{D^{(*)}}$ anomalies which occur in $b \to s\ell^+\ell^-$ and $b \to c\ell^+\nu_\ell$ transitions, respectively.

In this work, we consider testing for LFNU in lepton(s) + jets production at the LHC, by exploiting correlations amongst several LFNU observables. Specifically, we show that an enhanced sensitivity to the scale of the NP can be obtained by combining multiple LFNU tests, based on ratio observables. We demonstrate this for two specific new physics (NP) scenarios, using the so-called SM Effective Field Theory (SMEFT) framework [23–26], although this approach can be extended to establish a more systematic mapping between the underlying NP dynamics and experimentally realistic observables. The importance of using correlations in the search for NP has recently gained some attention, e.g., in leptoquark searches by combining di-lepton and single lepton production channels [27] and in top-quark systems by using measurements from different top production and decay processes to probe the NP effects [28–31].

Any evidence of possible LFNU phenomena contradicts the key Standard Model (SM) prediction that the differences in the rates of processes differing only in the flavor of the leptons involved are suppressed by small differences in the Yukawa couplings. In this sense lepton flavor is an accidental (approximate) symmetry of the SM, which may be strongly violated in a variety of well-motivated NP scenarios. Hence, even if the current experimental indications of LFNU have not yet met discovery criteria, providing an accurate probe of these processes, whether confirming such indications or not, will provide a better understanding of the flavor structure of the physics beyond the SM.

Let us denote generic lepton(s) + jets processes as follows:

$$(mnp)_\ell : pp \to \ell_i^+\ell_i^- + m \cdot j + n \cdot j_b + p \cdot t$$

and

$$(mnp)_\ell : pp \to \ell_i^+ + m \cdot j + n \cdot j_b + p \cdot t + E_T$$, (1)

where m is the number of light jets (j), n is the number of b-jets (j_b) and p is the number of top or anti-top quarks in the final state of the leading-order (LO) hard process; E_T denotes missing transverse energy, associated with final state neutrinos. We then define two classes of generic LFU tests at the LHC, involving ratios of the charged di-lepton and single-lepton production channels in [1], normalized to the corresponding electron-production channels:

$$T_{\ell\ell}^{mnp} = \frac{\sigma_{\ell\ell}^{mnp}}{\sigma_{ee}^{mnp}}$$,

$$T_{\ell}^{mnp} = \sigma_{\ell}^{mnp}$$,

(2)

where $\sigma_{\ell\ell}^{mnp}$ and σ_{e}^{mnp} are the total cross-sections of the processes $(mnp)_{\ell\ell}$ and $(mnp)_{e}$ in [1], respectively. Lepton flavor violation effects of the type $pp \to \ell_i\ell_j + \cdots$ ($i \neq j$) will not be considered here. For LFNU processes with only neutrinos in the final state, ratios such as [2] are not useful, since the neutrino flavor cannot be detected. In this case a different strategy is needed, which we briefly discuss below. Note that ratio observables such as in [3] provide more reliable probes of NP, since they potentially minimize the effects of theoretical uncertainties involved in the calculation of the corresponding cross-sections.

In the SM (or within NP scenarios which conserve lepton flavor universality) we have $T_{\ell\ell}^{mnp} \approx T_{\ell}^{mnp} \approx 1$, since, as noted above, deviations from unity can only be generated through the non-universal Higgs-lepton Yukawa couplings and through lepton mass dependent polynomials and logarithms from higher order corrections. The former is proportional to the lepton masses and is therefore negligible, while the latter are much smaller than the expected experimental accuracy – as is the case, in particular, for high p_T events which is of our interest in
this work. We will include non-universal reconstruction efficiencies for the different leptonic final states in the overall uncertainty of the measurement of T_{ll}^{mn} defined in (2).

As mentioned earlier, we describe the underlying NP responsible for $T_{ll}^{mn} \neq 1$ and $T_{e}^{mn} \neq 1$, using the SMEFT framework, defined by adding to the SM Lagrangian an infinite series of higher-dimensional, gauge-invariant operators, $O^{(n)}$. These operators are constructed using the SM fields and their coefficients are suppressed by inverse powers of the NP scale M [23,29]:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{n=5}^{\infty} \frac{1}{M^{n-4}} \sum_{i} f_{i} O_{i}^{(n)},$$

(3)

where n is the mass dimension of $O^{(n)}$ and we assume decoupling and weakly-coupled heavy NP, so that n equals the canonical dimension. The dominating NP effects are then expected to be generated by contributing operators with the lowest dimension (smallest n) that can be generated at tree-level in the underlying theory. The (Wilson) coefficients f_{i} depend on the details of the underlying heavy theory and, therefore, parameterize all possible weakly-interacting and decoupling types of heavy physics.

In what follows we will consider the leading dimension six operators ($n = 6$) and drop the index n [1] We also define the “effective scale” $\Lambda = M/\sqrt{|f|}$ whence

$$f/M^2 = \eta_f/\Lambda^2,$$

(4)

where $\eta_f = \pm 1$ denotes the sign of f. Thus, for example, $\Lambda = M$ for “natural” NP with $|f| = 1$, which we will assume throughout the rest of this work, unless stated otherwise.

In Appendix A we list all the dimension six operators that can potentially violate LFU and that are, therefore, relevant for this study. Here, we will demonstrate our strategy for the two specific SU(2) triplet and singlet 4-Fermi operators (prst are flavor indices):

$$O_{lq}^{(3)}(prst) = (\bar{q}_{i} \gamma_{\mu} \tau^{I} l_{r}) (\bar{q}_{i} \gamma_{\mu} \tau^{I} q_{l}),$$

(5)

$$O_{q\ell}^{(3)}(prst) = (\bar{e}_{q} \gamma_{\mu} e_{r}) (\bar{q}_{i} \gamma_{\mu} q_{l}),$$

(6)

focusing on the case where the heavy underlying NP has a LFNU coupling to 3rd generation quarks and 2nd generation leptons, i.e., on $O_{lq}^{(3)}(2233)$ and $O_{q\ell}(2233)$; it should be understood, though, that similar effects can be generated in the electron and τ-lepton channels, though, the phenomenology and detection strategies of final states involving the τ-leptons are fundamentally different from those involving the electrons and muons.

We will not consider operators that have a flavor changing quark current involving the 3rd generation quarks, e.g., $O_{lq}^{(3)}(2233)$ and $O_{q\ell}^{(3)}(3332)$, which can generate the $b \rightarrow s \mu^{+} \mu^{-}$ and $b \rightarrow c \tau^{-} \bar{\nu}_{\tau}$ transitions and may, therefore, contribute to $R_{K^{\ast}}$ and $R_{D^{\ast}}$, respectively. These operators can generate LFNU collider signals similar to those studied here, see e.g., [33,35]. For example, $O_{lq}^{(3)}(2233)$ generates the $\mu^{+} \mu^{-} \rightarrow s \bar{b}$ and $\mu^{+} \mu^{-} \rightarrow c \bar{t}$ contact terms with the same effective scale, which can contribute to the ratio observables $T_{\mu \mu}^{010}$ and $T_{\mu \mu}^{001}$, via $s g \rightarrow b \mu^{+} \mu^{-}$ and $c g \rightarrow t \mu^{+} \mu^{-}$, respectively. Furthermore, the operator $O_{lq}^{(3)}(3332)$ generates the contact interactions $\tau^{+} \tau^{-} \rightarrow s \bar{b}$ and $\tau^{+} \nu_{\tau} \bar{s}$ and $\tau^{+} \nu_{\tau} \bar{c}$, which can contribute to the T-tests $T_{\tau \tau}^{010}$, $T_{\tau \tau}^{210}$ as well as $T_{\tau \tau}^{010}$, $T_{\tau \tau}^{210}$ via the hard processes $s g \rightarrow b \tau^{+} \tau^{-}$, $gg \rightarrow s \bar{b} \tau^{+} \tau^{-}$ and $c g \rightarrow b \tau^{+} \nu_{\tau}$, $gg \rightarrow c b \tau^{+} \nu_{\tau}$, respectively.

To study the sensitivity to the flavor non-universal NP we define the following χ^2-test:

$$\chi^2 = \sum_{X,Y} \left[\frac{T_{\ell \ell}^{X} (\Lambda) - T_{\ell \ell}^{X, \exp}}{(\delta T^{X})^2} \right] + \sum_{Y} \left[\frac{T_{\ell}^{Y} (\Lambda) - T_{\ell}^{Y, \exp}}{(\delta T^{Y})^2} \right],$$

(7)

where $X, Y \in (m, n, n)$ denote the $\ell \ell$ and single ℓ channels, respectively, and $\delta T^{X}, \delta T^{Y}$ denote the corresponding total experimental plus theoretical 1σ uncertainties, which are assumed to be statistically independent. The experimental uncertainties are assumed to be the dominant ones (see also discussion above).

For the purpose of exacting a bound on Λ we assume that, on average, no NP is observed. We thus generate $O(10000)$ random realizations of the sets of “measured” T-tests, $T_{\ell \ell}^{X, \exp}$ and $T_{\ell}^{Y, \exp}$ [to be used for the χ^2-test in (7)], normally distributed with average 1 (i.e., the SM prediction) and standard deviation δT^{X} [4]

$$T_{\ell \ell}^{X, \exp} = N \left(1, (\delta T^{X})^2 \right),$$

(8)

$$T_{\ell}^{Y, \exp} = N \left(1, (\delta T^{Y})^2 \right),$$

where $N(a, s^2)$ denotes the normal distribution for average a and standard deviation s.

The overall uncertainties δT^{X} and δT^{Y} of the data samples are taken as:

$$\delta T^{X, Y} = \left(\delta T^{X, Y}_{\text{stat}} + \delta T^{X, Y}_{\text{sys}} \right)^{1/2},$$

(9)

where $\delta T^{X, Y}_{\text{stat}}$ and $\delta T^{X, Y}_{\text{sys}}$ stand for the statistical and systematic uncertainties expected in the data samples, respectively. The statistical uncertainties are estimated from the expected number of events based on the SM.

1 There is a single lepton number violating dimension five operator in the SMEFT framework, the so called Weinberg operator $\phi^{\dagger} \bar{H}^{c} H \ell$ [32], for which the scale Λ is very large and is therefore not relevant for this study.

2 Due to the different detection efficiencies of electrons and muons, we expect the ratios $T_{\ell \ell}^{X, \exp}$ to deviate from unity even in the absence of NP. This, however, has no effect on our χ^2-test analysis and will not change our main results.
cross-sections: $\delta T_{\text{stat}}^X = \sqrt{2/N^X_\ell(SM)}$ and $\delta T_{\text{stat}}^Y = \sqrt{2/N^Y_\ell(SM)}$; for the systematic uncertainties we analyse below 3 different cases: $\delta T_{\text{sys}}^{X,Y} = 5\%, 10\%, 15\%$ for channels involving only light-jets and/or b-jets in the final state and $\delta T_{\text{sys}}^{X,Y} = 10\%, 20\%, 30\%$ for channels with a top-quark in the final state. Without knowing the actual uncertainties of the experiment, the uncertainty scenarios outlined above serve as realistic benchmarks for conveying the main message of this work.

The expected bounds on Λ are then extracted from the randomly distributed range of best fitted values of Λ that minimize the χ^2-test of Eq. (7) (an example is shown in Appendix B). We use three LHC integrated luminosity scenarios: $\mathcal{L} = 140, 300, 3000$ [fb]$^{-1}$, corresponding to the currently accumulated LHC plan, the RUN3 projections and the planned HL-LHC luminosity, respectively. Then, based on the SM cross-sections, we demand at least 100 events for any of the channels $X, Y \in (m, u, p)$, i.e., $\sigma_{\text{SM}}^X > 100$, or else this channel is not included in the χ^2-test of Eq. (7). This 100 event criterion is set to ensure that the potential reducible backgrounds (see discussion below) will be sub-leading and, therefore, have a small impact on the overall uncertainty in these measurements.

We demonstrate below our formalism for detecting LFNU based on the ratio observables of [2], using the QCD generated (and therefore dominant) exclusive di-muon + multi-jet and/or top-quarks channels:\footnote{We do not consider here Drell-Yan di-lepton production $pp \rightarrow \ell^+\ell^-$, i.e., with no jet activity, which correspond to the LFNU signal test $T_{300}^{\ell\ell}$ and which, in our case, are generated by b-quark fusion and are, therefore, sub-leading. Such Drell-Yan processes were studied within the SMEFT framework and in connection to LFNU physics and the B-anomalies in \cite{32, 33}, where bounds on the corresponding 4-Fermi operators were derived (see also discussion below).}

\begin{align}
\sigma^{\text{INT},mnp}_{\ell\ell}(m_{\ell\ell}^{\text{min}}) = \sigma_{\ell\ell,mnp}^{\text{SM}}(m_{\ell\ell}^{\text{min}}) + \frac{\sigma^{\text{INT},mnp}_{\ell\ell}(m_{\ell\ell}^{\text{min}})}{\Lambda^2} + \frac{\sigma^{\text{NP},mnp}_{\ell\ell}(m_{\ell\ell}^{\text{min}})}{\Lambda^4},
\end{align}

where σ_{INT} and σ_{NP} are the SM×NP interference and NP2 terms, respectively. The dominant NP contribution then depends on the di-lepton invariant mass cut and the di-lepton channel involved. In particular, the $\mathcal{O}(\Lambda^{-2})$ correction, σ_{INT} dominates for moderate di-lepton invariant mass cut, for which the SM term is appreciable, whereas the $\mathcal{O}(\Lambda^{-4})$ NP2 correction, σ_{NP}, is dominant in the high $m_{\ell\ell}^{\text{min}}$-cut regime, where the SM contribution is suppressed.\footnote{For this same reason it is consistent to retain these $\mathcal{O}(\Lambda^{-4})$ contributions in σ while ignoring those from higher-dimensional operators in the SMEFT Lagrangian.}

All cross-sections contributing to the LFU T-tests in [2] were calculated exclusively (i.e., separately for each channel without matching) using MADGRAPH$_5$ A MC@NLO \cite{32} at LO parton-level, and a dedicated universal FeynRules output (UFO) model for the EFT framework obtained using FEYNRULES \cite{10}. In addition, the LO MSTW 2008 parton distribution functions (PDF) set (MSTW2008lo68cl \cite{11}) in the 5 flavor scheme was used with a dynamical scale choice for the central value of the factorization (μ_F) and renormalization (μ_R) scales, corresponding to the sum of the transverse mass in the hard-process. Finally, kinematic cuts (e.g., on the di-lepton invariant mass) were imposed using MADANALYSIS5 \cite{22}.

Using the four di-lepton + jets channels in [10], we show in Fig. 1 and Table 1 a sample of the resulting 95% confidence level (CL) bounds on scales of the operators $\mathcal{O}_{i_q}(2233)$ and $\mathcal{O}_{q_e}(2233)$ (i.e., the cross-sections involving electrons in the denominator of $T_{mnp}^{\ell\ell}$ in [2] are assumed to be SM-like). We can then define a generic form for the cross-section in [10] with a cut $m_{\ell\ell} > m_{\ell\ell}^{\text{min}}$ on the di-muon invariant mass:

$$ (010)_{\mu\mu} : pp \rightarrow \mu^+\mu^- + j_b, $$(110)$_{\mu\mu} : pp \rightarrow \mu^+\mu^- + j + j_b, $$ (020)$_{\mu\mu} : pp \rightarrow \mu^+\mu^- + 2\cdot j_b, $$ (002)$_{\mu\mu} : pp \rightarrow \mu^+\mu^- + t\bar{t}, $$
TABLE I: The expected 95% CL bound on the scale (in TeV) of the operators $O^{(3)}_{lq}(2233)$ and $O_{qe}(2233)$ (in parenthesis), for di-muon invariant mass cuts $m_{\mu\mu} > 300$, 400 and 700 GeV which are applied for an integrated luminosity of $\mathcal{L} = 140, 300$ and 3000 [fb]$^{-1}$, respectively. Results are shown for $\eta_f = \pm 1$ and three values of the overall uncertainty of $\delta T \sim 10\%, 15\%$ and 20%, corresponding to the three systematic uncertainty cases 1, 2, and 3. For all cases considered in the table only the channels (010)$_{\mu\mu}$, (110)$_{\mu\mu}$ and (020)$_{\mu\mu}$ pass the 100 criteria. See also text.

\mathcal{L} = 140 [fb]$^{-1}$	\mathcal{L} = 300 [fb]$^{-1}$	\mathcal{L} = 3000 [fb]$^{-1}$				
$m_{\mu\mu}^{\text{min}}$ = 300 GeV	$m_{\mu\mu}^{\text{min}}$ = 400 GeV	$m_{\mu\mu}^{\text{min}}$ = 700 GeV				
$\eta_f = +1$	$\eta_f = -1$	$\eta_f = +1$	$\eta_f = -1$			
$\delta T \sim 10\%$ (case 1)	3.4(2.6)	3.2(4.2)	4.1(3.1)	3.9(4.9)	6.3(4.4)	6.0(6.4)
$\delta T \sim 15\%$ (case 2)	3.0(2.5)	2.7(3.8)	3.7(3.0)	3.3(4.5)	5.8(4.2)	5.5(5.9)
$\delta T \sim 20\%$ (case 3)	2.6(2.4)	2.3(3.4)	3.3(2.9)	2.9(4.2)	5.1(4.1)	4.7(5.5)

FIG. 1: Expected 95% CL bounds on the scale of the SU(2)-triplet operator $O^{(3)}_{lq}(2233)$ with $\eta_f = +1$, as a function of the di-lepton invariant mass cut $m_{\ell\ell}^{\text{min}}$, for the HL-LHC with an integrated luminosity of 3000 [fb]$^{-1}$. Results are shown for three overall uncertainty scenarios: δT cases 1-3. See also text.

with the di-muon invariant mass cut. We find, for example, that with the current LHC accumulated luminosity of $\mathcal{L} = 140$ [fb]$^{-1}$, the best 95% CL bounds are obtained with the cut $m_{\mu\mu}^{\text{min}} = 300$ GeV: $\Lambda \gtrsim 2.3 - 3.4$ TeV for $O^{(3)}_{lq}(2233)$ and $\Lambda \gtrsim 2.4 - 4.2$ TeV for $O_{qe}(2233)$, depending on the overall systematic uncertainty and on the sign of η_f. Also, a much higher sensitivity is expected at the HL-LHC with a tighter cut of $m_{\ell\ell}^{\text{min}} = 700$ GeV, reaching up to $\Lambda \gtrsim 6.5$ TeV for $O^{(3)}_{lq}(2233)$ with $\eta_f = +1$ and $O_{qe}(2233)$ with $\eta_f = -1$.

We now consider a complementary analysis where, instead of examining the bounds under the assumption of no NP in the data, we ask what is the discovery potential of a given NP scenario if the NP is assumed to be present in the data. We thus assume that the experimentally measured ratios $T_{\ell\ell,\text{exp}}^{X}$ are controlled by the NP, so that, in this case, they are normally distributed with a mean value corresponding to the NP expectations $T(\Lambda)$:

$$T_{\ell\ell,\text{exp}}^{X} = N \left(T_{\ell\ell}^{\bar{\Lambda}} (\Lambda), (\delta T^{X})^{2} \right),$$

where here $\bar{\Lambda}$ is the value of the NP scale injected into the data and tested against the SM prediction. As for the overall uncertainties, δT^{X}, we follow the prescription of [9], where this time the statistical uncertainties are assumed to reflect the NP data, i.e., $\delta T_{\text{stat}}^{X} = \sqrt{2/N^{X}(\Lambda)}$, where $N^{X}(\Lambda)$ are the number of events expected for a NP scale Λ in each of the di-lepton channels $X \in (\mu\mu)$. The systematic uncertainties, $\delta T_{\text{sys}}^{X}$, are kept unchanged, i.e., using the three cases $\delta T_{\text{sys}}^{X} = 5\%, 10\%, 15\%$ for channels involving only light-jets and/or b-jets in the final state. We thus vary Λ in the χ^{2}-test of [7] [i.e., with $T_{\ell\ell}$ normally distributed around $T(\bar{\Lambda})$ following (12)], from which we generate the distribution of the best-fitted NP scale, $\hat{\Lambda}$, for each value of $\bar{\Lambda}$. This is repeated for different values of $\bar{\Lambda}$ until we find the value that yields a distribution which deviates from the SM prediction at a given CL; we denote this value by $\Lambda(\text{CL}).$ In Table II we list a sample of our results for the discovery potential of the operators $O^{(3)}_{lq}(2233)$ and $O_{qe}(2233)$ at the LHC. In particular, we find that a 5σ discovery of the heavy underlying NP that generates these operators can be obtained at the LHC with $\mathcal{L} = 300$ fb$^{-1}$, if its scale is in the range $\bar{\Lambda}(5\sigma) \sim 2.3 - 2.9$ TeV for $O^{(3)}_{lq}(2233)$ and $\hat{\Lambda}(5\sigma) \sim 3.8 - 3.4$ TeV for $O_{qe}(2233)$, depending on the uncertainty in the measurement of the ratios $T_{\ell\ell,\text{exp}}^{X}$.

Let us briefly address the potential background for the multi-jets $\ell^{+}\ell^{-}$ production channels (010)$_{\mu\mu}$, (110)$_{\mu\mu}$

5 In an ideal measurement with $\delta T \to 0$ we will clearly have $\hat{\Lambda} = \bar{\Lambda}$, so that the NP signal corresponding to any Λ will be well separated from the SM prediction.
Table II: The values of the NP scale Λ_{CL} (in TeV) that will yield a 5σ discovery of the the operators $O_{\ell q}^{(3)}$ with $\eta_f = +1$ and $O_{\ell q}^{(3)}$ with $\eta_f = -1$, at the LHC with $L = 300$ fb$^{-1}$ and $m_{\mu\mu}^{\text{min}} = 400$ GeV and at the HL-LHC with 3000 fb$^{-1}$ and $m_{\mu\mu}^{\text{min}} = 700$ GeV. Numbers are given for the three different overall uncertainties corresponding to cases 1, 2, 3 of the systematic uncertainties and the channels that pass the 100 criteria for all cases are $(010)_{\mu\mu}$, $(110)_{\mu\mu}$ and $(020)_{\mu\mu}$. See also text.

δT case	$O_{\ell q}^{(3)}(\eta_f = +1)$	$O_{\ell q}^{(3)}(\eta_f = -1)$
1	2.9	3.4
2	2.4	3.1
3	2.3	2.8

and $(020)_{\mu\mu}$ used in our χ^2-tests. We note that the reducible background to these processes such as $Z + \text{jets}$ and $W + \text{jets}$ production, are included in our calculation since they interfere with our signals. The dominant reducible background for the $(010)_{\mu\mu}$ and $(110)_{\mu\mu}$ channels, $pp \to \mu^+\mu^- + j$ and $pp \to \mu^+\mu^- + j + j_b$, is single top + W-boson (tW: $pp \to tW$) and vector-boson pair production (VV: $pp \to VV$). On the other hand, for the $(020)_{\mu\mu}$ channel $pp \to \mu^+\mu^- + 2j_b$, the tW and VV background are sub-leading, and the dominant SM reducible background is from top-quark pair production (tt: $pp \to tt$), which is more challenging. However, as opposed to our leading di-lepton signals $(010)_{\mu\mu}$, $(110)_{\mu\mu}$ and $(020)_{\mu\mu}$, the reducible background processes, tW, tV and tt, involve large missing energy, which is carried by the neutrinos in the final state. Thus, they can be significantly suppressed with a proper selection cut on the missing transverse energy E_T and other acceptance criteria such as lepton isolation criteria and properties of the transverse momenta of the final state particles which can be used, e.g., for a better separation of the tt background from the di-lepton + jets NP signal, see e.g., [55]; see also [10], where the effects of the $t\bar{t}$ + $b\bar{b}$ contact terms on the $(020)_{\mu\mu}$ channel are considered and a detailed signal to background optimization is performed, which included the tt background.

Finally, we note that an important difference between the two operators $O_{\ell q}^{(3)}$ and $O_{\ell q}$ with respect to our χ^2-test, is that the former also gives rise to the single-muon + jets and top-quarks production channels $(mnp)_\mu + [c.f. 1]$ and to neutrino pair-production (with E_T signature) in association with jets and top-quarks: $(mnp)_{E_T} \rightarrow pp \rightarrow m \cdot j + n \cdot j_b + p \cdot t + E_T$. In particular, these $(mnp)_{\mu}$ and $(mnp)_{E_T}$ processes are correlated with the di-lepton + jets production channels $(mnp)_{\mu\mu}$ discussed above. For this case also the best sensitivity to $O_{\ell q}^{(3)}$ is expected from the processes generated by QCD interactions, which are depicted in Fig. 2. In particular, note that the QCD-generated single-muon production channels involve a single top-quark in the final state: $(001)_{\mu\mu}$, $(101)_{\mu\mu}$ and $(011)_{\mu\mu}$, which affect the ratios $T_{\mu 001}$, T_{101}^{101} and T_{223}^{111} in [4]. Indeed, we find that including these single-muon + top-quark channels in the χ^2-test of [7] yields a better sensitivity to the scale of this operator, e.g., for the HL-LHC case, yielding bounds which are ~ 1 TeV stronger than the ones given in Table I. A detailed analysis which includes the single-lepton channels will be presented in [47].

![Diagram](image)

Fig. 2: Correlations among various di-lepton + jets/tops, single-lepton + jets/tops + E_T and jets/tops + E_T (with no charged lepton) processes, which are generated by the SU(2)-triplet-exchange operator $O_{\ell q}^{(3)} = (\tilde{\mu} \gamma_\mu \tau^I \mu)(\tilde{q}_3 \gamma_\mu \tau^I q_3)$ via QCD interactions. See also text.

Furthermore, the dominant (QCD generated) neutrino channels are the processes $(010)_{\ell q}$, $(110)_{\ell q}$, $(020)_{\ell q}$ and $(002)_{\ell q}$ (see Fig. 2), which can be used as well to obtain a better sensitivity to this operator. This requires, however, a different approach (rather than our χ^2-tests based on ratio observables) for disentangling the NP effects and will, therefore, not be further investigated here. Note, though, that some of these E_T + jets and/or top-quarks signals are important signals of other well motivated NP scenarios. For example, the processes $(020)_{\ell q}$ and $(002)_{\ell q}$, i.e., pair production of top-quarks and/or b-jets in association with large E_T, are also signatures of leptoquark pair-production (see e.g., [44] [45]), of pair-production of the scalar partners of the top or bottom quarks in supersymmetric theories (see e.g., [49]) and may also be useful for dark matter searches (see e.g., [50] [51]).

The approach described above improves on the results obtained in previous interesting studies which are based on the analysis of a single process. For example [46] obtains limits of $\Lambda > 1.5 - 1.8$ TeV ($\Lambda > 2.5 - 3$ TeV) at the current LHC (HL-LHC) for the scale of the operators $O_{\ell q}^{(3)}$ and $O_{\ell q}$ in [5] and [6], us-
ing Drell-Yan di-lepton production $q\bar{q} \to \ell^+\ell^-$; they find a slight improvement for 4-Fermi operators of type $O(1133)$. Note that the current best bound for this last type of operators, i.e., $O(1133)$, was obtained at LEP \cite{52–55}. $\Lambda > 0.7 - 2.7$ TeV. We also note that bounds on $O_{\ell q}^{(3)}$ derived from the top-quark decays are significantly weaker \cite{56,57} than ours.

To summarize, we have shown that the lepton flavor non-universal ratio observables $T_{l\ell}^{\text{mnp}}$ and T_{l}^{mnp} of \cite{2} can be used to search for new physics using a χ^2 test that is sensitive to the correlations among several lepton + jets and top-quark production channels. We found, for example, that with a realistic assessment of the expected uncertainties involved, a 95\%CL bound of $\Lambda \gtrsim 3 - 4$ TeV can be obtained with the current LHC luminosity, while $\Lambda \gtrsim 6 - 7$ TeV is expected at the HL-LHC, for the 4-Fermi operators $O_{\ell q}^{(3)} (2233)$ and $O_{qe} (2233)$ in \cite{5} and \cite{6}, which involve 2nd generation leptons and 3rd generation quarks. These bounds are obtained with a generic di-lepton invariant mass cut for all channels, i.e., without any channel-dependent (specific) optimizations that, we believe, can be further used to better isolate the NP effects and, therefore, to obtain an enhanced sensitivity to its scale. Though the above discussion involves only 3rd generation quarks, our multi-channel correlation LFU tests are expected to yield an improved sensitivity also for lepton flavor non-universality new physics which involves the 1st and 2nd quark generations.

\textbf{ACKNOWLEDGMENTS}

We thank Yoram Rozen for useful discussions. The work of AS was supported in part by the U.S. DOE contract #DE-sc0012704.

\begin{thebibliography}{99}
 \bibitem{1} R. Aaij et al. Differential branching fractions and isospin asymmetries of $B \to K^{*(\pm)} \mu^+\mu^-$ decays. JHEP, 06:133, 2014, 1403.8044.
 \bibitem{2} R. Aaij et al. Test of lepton universality using $B^+ \to K^+\ell^+\ell^-$ decays. Phys. Rev. Lett., 113:151601, 2014, 1406.6482.
 \bibitem{3} R. Aaij et al. Test of lepton universality with $B^0 \to K^{*0}\ell^+\ell^-$ decays. JHEP, 08:055, 2017, 1705.05802.
 \bibitem{4} R. Aaij et al. Angular analysis and differential branching fraction of the decay $B_{d}^{0} \to \phi\mu^{+}\mu^{-}$. JHEP, 09:179, 2015, 1506.08777.
 \bibitem{5} R. Aaij et al. Angular analysis of the $B^{0} \to K^{*0}\mu^{+}\mu^{-}$ decay using 3 fb$^{-1}$ of integrated luminosity. JHEP, 02:104, 2016, 1512.04442.
 \bibitem{6} S. Wehle et al. Lepton-Flavor-Dependent Angular Analysis of $B \to K^{*}\ell^{+}\ell^{-}$. Phys. Rev. Lett., 118(11):111801, 2017, 1612.00529.
 \bibitem{7} A. Abdesselam et al. Angular analysis of $B^{0} \to K^{*}(892)^{0}\ell^{+}\ell^{-}$. In Proceedings, LHCSki 2016 - A First Discussion of 13 TeV Results: Obergurgl, Austria, April 10-15, 2016, 2016.04042.
 \bibitem{8} The ATLAS collaboration. Angular analysis of $B_{d}^{0} \to K^{\pm}\mu^{+}\mu^{-}$ decays in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector. 2017.
 \bibitem{9} CMS Collaboration. Measurement of the P_{ℓ} and $P_{5\ell}$ angular parameters of the decay $B^0 \to K^{*0}\mu^{+}\mu^{-}$ in proton-proton collisions at $\sqrt{s} = 8$ TeV. 2017.
 \bibitem{10} Simone Bifani. Status of New Physics searches with $b \to s\ell^{+}\ell^{-}$ transitions @ LHCb. In Proceedings, 52nd Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 18-25, 2017, pages 197–202, 2017, 1705.02693.
 \bibitem{11} R. Aaij et al. Search for lepton-universality violation in $B^{+} \to K^{+}\ell^{+}\ell^{-}$ decays. Phys. Rev. Lett., 122(19):191801, 2019, 1903.09252.
 \bibitem{12} A. Abdesselam et al. Test of lepton flavor universality in $B \to K^{\pm}\ell^{\pm}\ell^{\pm}$ decays at Belle. 2019, 1904.02440.
 \bibitem{13} J. P. Lees et al. Evidence for an excess of $B \to D^{(*)}\tau^{-}\bar{\nu}_{\tau}$ decays. Phys. Rev. Lett., 109:101802, 2012, 1205.5442.
 \bibitem{14} J. P. Lees et al. Measurement of an Excess of $B \to D^{(*)}\tau^{-}\bar{\nu}_{\tau}$ decays and Implications for Charged Higgs Bosons. Phys. Rev., D88(7):072012, 2013, 1303.0571.
 \bibitem{15} M. Huscule et al. Measurement of the branching ratio of $B \to D^{(*)}\tau^{-}\bar{\nu}_{\tau}$ relative to $B \to D^{(*)}\ell^{-}\bar{\nu}_{\ell}$ decays with hadronic tagging at Belle. Phys. Rev., D92(7):072014, 2015, 1507.03233.
 \bibitem{16} S. Hirose et al. Measurement of the τ lepton polarization and $R(D^{\ast})$ in the decay $B \to D^{\ast}\tau^{-}\bar{\nu}_{\tau}$. Phys. Rev. Lett., 118(21):211801, 2017, 1612.00529.
 \bibitem{17} Roel Aaij et al. Measurement of the ratio of branching fractions $B(B^{0} \to D^{(*)}\tau^{-}\bar{\nu}_{\tau})/B(B^{0} \to D^{(*)}\mu^{-}\bar{\nu}_{\mu})$. Phys. Rev. Lett., 115(11):111803, 2015, 1506.08614. [Erratum: Phys. Rev. Lett.115,no.15,159901(2015)].
 \bibitem{18} R. Aaij et al. Measurement of the ratio of the $B^{0} \to D^{(*)}\tau^{-}\nu_{\tau}$ and $B^{0} \to D^{(*)}\mu^{-}\nu_{\mu}$ branching fractions using three-prong τ-lepton decays. Phys. Rev. Lett., 120(17):171802, 2018, 1711.02505.
 \bibitem{19} Karol Adamczyk. Semitauonic B decays at Belle/Belle II. In 10th International Workshop on the CKM Unitarity Triangle (CKM 2018) Heidelberg, Germany, September 17-21, 2018, 2019, 1901.6380.
 \bibitem{20} A. Abdesselam et al. Measurement of $R(D)$ and $R(D^{\ast})$ with a semileptonic tagging method. 2019, 1904.08794.
 \bibitem{21} Simone Bifani, Sav ashes Descotes-Genon, Antonio Romero Vidal, and Marie-Hélène Schune. Review of Lepton Universality tests in B decays. J. Phys. G, 46(2):023001, 2019, 1809.06229.
 \bibitem{22} W. Buchmuller and D. Wyler. Effective Lagrangian Analysis of New Interactions and Flavor Conservation. Nucl. Phys., B268:621–653, 1986.
 \bibitem{23} C. Arzt, M. B. Einhorn, and J. Wudka. Patterns of deviation from the standard model. Nucl. Phys., B433:41–66, 1995, hep-ph/9405214.
\end{thebibliography}
Appendix A: Potential LFNU dimension six operators in the SMEFT

In Table III we list all the dimension six operators in the SMEFT framework that can potentially violate LFU and that are, therefore, relevant to our study; operators with four leptons are excluded. We also assume that baryon number is conserved in the underlying heavy theory.

Appendix B: Distributions: bounds and discovery

In Fig. 3 we plot the distributions of the best fitted values of $1/\Lambda$ for the operator $O^{(3)}_{\mu q}(2233)$, that minimize the χ^2-test with $O(10000)$ random realizations of the experimental values for the LFNU ratios $T_{ll}^{mn p} = 1$, i.e., corresponding to the SM value, and normally distributed with the three uncertainty scenarios: $\delta T = 10\%$, 15%, 20% which correspond to the three systematic uncertainty choices outlined in the paper. The distributions are shown for $L = 140$ fb$^{-1}$ and the selection $m_{\ell \ell}^{min} = 300$ GeV, $L = 300$ fb$^{-1}$ and the selection $m_{\ell \ell}^{min} = 400$ GeV and $L = 3000$ fb$^{-1}$ with the selection $m_{\ell \ell}^{min} = 700$ GeV. The 95%CL bounds on Λ are then extracted from these distributions.

In Figs. 4 we plot the distributions of the best fitted values of Λ for both the operators $O^{(3)}_{\ell q}(2233)$ and $O_{qe}(2233)$, that minimize the χ^2-test with $O(10000)$ random realizations of the experimental measured ratios T_{ll}^{exp}, corresponding to the case where the NP is assumed in the data with specific values of $\bar{\Lambda}$, i.e., $T_{ll}^{exp} = T_{ll}(\bar{\Lambda})$, and normally distributed with two uncertainty scenarios: $\delta T = 10\%$ (case 1) and $\delta T = 20\%$ (case 3). That is, the experimental values T_{ll}^{exp} are simulated $O(10000)$ times from the normal distribution:

$$T_{ll}^{X,exp} = \mathcal{N}(T_{ll}^{X}(\bar{\Lambda}), (\delta T^{X})^2) \quad (B1)$$

where $X \in (mnp)$ denotes the dilepton + jets production channels, and for each realization we find the best fitted value of Λ.

The distributions are shown In Figs. 4 for values of Λ that can be discovered at 5σ at the HL-LHC with $L = 3000$ fb$^{-1}$ and with the selection of $m_{\ell \ell}^{min} = 700$ GeV.
TABLE III: The potentially lepton non-universal dimension six operators in the SMEFT (see also text). The subscripts \(p, r, s, t \) are flavor indices.

Higgs-Lepton scalar	Higgs-Lepton vector	Lepton MDM
\(O_{cH} (pr) \) \((H^2 H) (\bar{l}_p e_r H)\)	\(O_{H_1}^{(1)} (pr) \) \((H^2 \bar{\mu} H) (\bar{l}_p \gamma^\mu t_r)\)	\(O_{\alpha W} (pr) \) \((\bar{l}_p \sigma^{\mu\nu} e_r) \gamma^I \bar{H} W^I_{\mu\nu}\)
\(O_{H_1}^{(3)} (pr) \) \((H^2 \bar{\mu} H) (\bar{l}_p \tau^I \gamma^\mu t_r)\)	\(O_{\alpha B} (pr) \) \((\bar{l}_p \sigma^{\mu\nu} e_r) \bar{H} B_{\mu\nu}\)	
\(\delta T = 10\% \) (case 1)	\(\delta T = 15\% \) (middle)	\(\delta T = 20\% \) (case 3)

FIG. 3: The normalized distribution of the inverse value of the best fitted \(\Lambda \) of the operator \(O_{\mu q}^{(3)} = (\bar{l}_p \gamma^\mu \tau^I t_r) (\bar{q}_s \gamma^\mu \tau^I q_s) \), that minimize the \(\chi^2 \)-test with \(T^\text{exp}_{\ell\ell} = 1 \), i.e., corresponding to the SM value, and normally distributed with the three uncertainty scenarios: \(\delta T = 10\% \) (left), \(\delta T = 15\% \) (middle) and \(\delta T = 20\% \) (right). See also text.

FIG. 4: The normalized distribution of the best fitted \(\Lambda \) of the operators \(O_{\mu q}^{(3)} (2233) \) (left) and \(O_{qe} (2233) \) (right), that minimize the \(\chi^2 \)-test with \(T^\text{exp}_{\ell\ell} = T_i (\Lambda) \), i.e., corresponding to the case where the NP is assumed in the data with specific values of \(\Lambda \) (as indicated) and normally distributed with two uncertainty scenarios: \(\delta T = 10\% \) (case 1) and \(\delta T = 20\% \) (case 3). See also text.