Triggering of tearing instability by impurity radiation through resistive interchange reversal in a tokamak

Shiyong Zeng¹, Ping Zhu²,³,⁎, Ruijie Zhou⁴ and Dominique Frank Escande⁵

¹ Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
² International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
³ Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706, United States of America
⁴ Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
⁵ Aix-Marseille University, CNRS, PIIM, UMR 7345 Marseille, France

E-mail: zhup@hust.edu.cn

Received 17 August 2022, revised 22 November 2022
Accepted for publication 28 November 2022
Published 14 December 2022

Abstract

Recent MHD simulations find that the reversal of the local resistive interchange parameter D_R from negative to positive due to impurity radiation cooling is able to linearly destabilize the resistive tearing mode (TM) growth in a tokamak above a threshold in impurity level. A layer of perturbed Pfirsch–Schlüter current density and resistivity are also induced by the impurity radiation, which further govern the TM growth and saturation in the nonlinear stage. The impurity threshold and the TM growth strongly depend on the parallel thermal conductivity, and such a dependence derives from the impact on D_R of the fast parallel thermal equilibration along the helical magnetic field lines.

Keywords: tearing mode, impurity radiation, resistive interchange, thermal instability, Pfirsch–Schlüter current, magnetic island growth

(Some figures may appear in colour only in the online journal)

1. Introduction

Disruption is a sudden collapse of tokamak plasmas. The avoidance, prediction, and mitigation of disruptions are believed to be crucial to the safe steady state operation of tokamak devices and future fusion reactors. Over the past two decades, the injection of impurity gas or pellets has been proven highly effective and robust in the disruption mitigation by the radiative dissipation of plasma thermal energy to avert large thermal loads on plasma facing components in the event of an unavoidable disruption, whereas the impurity injection itself can trigger or accelerate the onset of disruption, thus has been widely adopted as a disruption mitigation scheme [1, 2]. Whereas many attribute the early initiation of the density limit disruption in part to the impurity radiation driven tearing mode (TM) growth, others report that in general all 2/1 TM observed in pulses with a strong edge cooling, including those developed before the density limit, are linearly destabilized as a consequence of Δ' parameter increase following...
the contraction of the electron temperature profile and the shrinking of the current density profile. Nonetheless, not all the disruption are due to 2/1 TM developing as a consequence of edge cooling. Another class of disruptions is related to the problem of core impurity accumulation (e.g. at low densities), leading to a broadening/hollowing of the current density profile, with higher gradients near the 2/1 resonant surface [3]. In those pulses a sequence of TM with increasing safety factor \(5/4 \rightarrow 4/3 \rightarrow 3/2 \rightarrow 2/1\) clearly show the consequence of an evolving q-profile [4, 5]. Whereas the impurity radiation and the induced TM are widely believed to play key roles in the disruption process, the exact mechanism underlying the impurity radiation and TM interaction, as well as its universal nature in connection to the disruption, remains a subject of fundamental interests and continued research [6–18].

The primary mechanism proposed for the radiation-driven TM growth is the thermal instability of magnetic island due to the temperature dependent resistivity change originally developed in theories for the nonlinear TM [6, 7]. Later, several experimental observations of TM growth and impurity radiation in Ohmic heating tokamaks may have been able to fit well to the scenario of the thermal instability, the direct and unambiguous validation of the mechanism is still missing [8–10]. The thermo-resistive TM theory was further formally refined and extended to construct a model for the Greenwald density limit [11–16]. Recent MHD simulations have demonstrated the impurity radiation effects on the magnetic island that are consistent with the thermal-resistive TM theory [17, 18]. However, those simulation findings rely on the pre-existing small islands that initially grow from the linear tearing unstable equilibrium profile where the TM asymptotic matching parameter \(\Delta' > 0\). The satisfaction of the onset criterion alone, i.e. the radiation power loss exceeds the Ohmic heating power may not be sufficient for the TM growth in absence of a pre-existing island when the equilibrium is initially stable to linear tearing with \(\Delta' < 0\). The radiation-drive mechanism can only be understood in the context of the non-linear island evolution: the interior region of an island traps impurities, the impurities radiate, cooling the island interior, thereby increasing the local resistivity, thus the helical current perturbation is reversed, causing the island to grow. It is clear that this effect requires the pre-existence of a finite size magnetic island, so a linear destabilization \(\Delta' > 0\) or a seed island due to external triggers.

In tokamaks, a finite plasma \(\beta\) is known to introduce into \(\Delta'\) a resistive interchange correction involving the \(D_R\) parameter, which is in general negative and stabilizing to the linear TM from the flux surface averaged pressure-curvature effect [19–21]. Nonlinearly, the resistive interchange effects can give rise to a perturbed Pfirsch–Schluter (PS) current that contributes to the development and saturation of the TM island [22–24]. These resistive interchange effects, however, may bring in a different mechanism for the radiation-driven TM growth in presence of a localized impurity deposition or concentration. In particular, as found in our recent simulations, the impurity distribution around a rational surface as a result of either injection or accumulation can lead to a localized radiative cooling and the reversal of \(D_R\) from negative to positive. The effect of \(D_R\) reversal leads to the initial linear destabilization to trigger the mode onset in the linear regime, which decreases rapidly and vanishes eventually in the nonlinear stage. And the nonlinear island growth afterwards is similar to the radiative-TM mechanism [9], which is instead a mechanism that requires impurities trapped in an island. The continued radiation cooling in the resistive layer results in the variation of the plasma resistivity, which mainly drives the nonlinear island growth till saturation against the stabilizing effect from the nonlinear perturbed PS current. It is worth mentioning that the \(D_R\) reversal and the destabilizing effects of resistive interchange has been known to take place in the negative central shear configuration and lead to bursting MHD activity in a different context and scenario [25]. The TM triggering through \(D_R\) reversal in a tokamak may also provide a new avenue to the long-standing problem of seed mechanism for the neoclassical TM in high-\(\beta\) tokamak plasma regime (e.g. [26]).

In this paper, we report our initial findings that demonstrate the TM growth triggered by the \(D_R\) reversal due to a localized impurity radiation cooling around the rational surface in a tokamak. The reversal of \(D_R\) leads to a positive \(\Delta'\) for the linear tearing instability, and a nonlinear perturbed PS current for the finite width island growth. In addition, thermal conductivity \(\kappa_{||}\) affects the mode growth through \(D_R\) by fast parallel thermal equilibration. These findings may suggest an additional and novel mechanism for the impurity radiation driven growth of TM and magnetic island.

2. Simulation model and setup

Our simulations are based on the 3D resistive-MHD model implemented in the NIMROD code [27] with an impurity radiation module KPRAD [28], and the combined system of equations are as follows

\[
\rho \frac{d \vec{V}}{dt} = -\nabla p + \vec{J} \times \vec{B} + \nabla \cdot \left(\rho \nu \nabla \vec{V} \right) \tag{1}
\]

\[
\frac{dn_i}{dt} + n_i \nabla \cdot \vec{V} = \nabla \cdot (D \nabla n_i) + S_{\text{ion/3-body}} \tag{2}
\]

\[
\frac{dn_Z Z=0-10}{dt} + n_Z \nabla \cdot \vec{V} = \nabla \cdot (D \nabla n_Z) + S_{\text{ion/rec}} \tag{3}
\]

\[
n_e \frac{dT_e}{dt} = (\gamma - 1) \left[n_e T_e \nabla \cdot \vec{V} + \nabla \cdot \vec{q}_e - Q_{\text{loss}} \right] \tag{4}
\]

\[
\vec{q}_e = -n_e \left[\kappa_{||} \vec{b} b + \kappa_{\perp} (\vec{I} - \vec{b} \vec{b}) \right] \cdot \nabla T_e \tag{5}
\]

\[
\frac{\partial \vec{B}}{\partial t} = \nabla \times \left(\vec{V} \times \vec{B} \right) - \nabla \times \left(\eta \vec{J} \right) \tag{6}
\]

Here, \(n_i\), \(n_e\), and \(n_Z\) are the main ion, electron, and impurity ion number density respectively, \(\rho\), \(\vec{V}\), \(\vec{J}\), and \(p\) the plasma mass density, velocity, current density, and pressure respectively, \(T_e\) and \(\vec{q}_e\) the electron temperature and heat flux respectively,
In the simulation that can be afforded by the available computational resource. Initially the impurity is set slightly higher than the typical disruption mitigation threshold in the impurity level for triggering the TM growth is observed in the SPI simulations [29] and experiments. In particular, for examples, the hollow pressure profile has been found, i.e.

\[
V_0 = 0 \text{ m s}^{-1}, \text{ and its subsequent diffusion and convection is governed by equation (3). All other key parameters set up for the simulation are mainly based on the EAST like L-mode equilibrium (table 1).

We use 70 × 64 finite elements with the third order Lagrange polynomial basis functions in the poloidal plane, and two Fourier modes with toroidal numbers \(n = 0 - 1 \) are considered in the toroidal direction. Simulations with toroidal modes \(n = 0 - 6 \) indicate that the effects from higher \(n \) modes are negligible on the main conclusion, confirming the numerical convergence of the simulation results from \(n = 0 - 1 \) toroidal modes only. The tokamak plasma region in simulation is surrounded by a perfectly conducting wall without a vacuum region. A single temperature \(T_e \) is shared among different species based on the assumption of instantaneous thermal equilibrium. Constant thermal conductivity is adopted in all simulations for simplicity, which agree with the more sophisticated thermal model \(\kappa_{\perp} \propto T_e^{-1/2} B^{-2} \) and \(\kappa_{\parallel} \propto T_e^{3/2} \) in terms of the main conclusion. In addition, the Spitzer resistivity \(\eta \propto T_e^{-3/2} \) is applied to the simulations.

3. Threshold in impurity level for TM growth

In the first set of simulations, the initial level of impurity deposition is varied, and all other parameters are fixed. A threshold in the impurity level for triggering the TM growth is found, i.e. \(n_{imp}^{crit} = 2 \times 10^{19} \text{ m}^{-3} \). Below this level, the magnetic perturbation initially induced by the impurity decays away gradually and no magnetic island forms. Above this level, the island width increases till to saturation (figure 1(a)). However, for any initial impurity level below or above \(n_{imp}^{crit} \), we found that the local radiation power largely exceeds the Ohmic heating on the \(q = 2 \) rational surface throughout the simulation (figure 1(b)). The local radiation and Ohmic heating powers are evaluated from their corresponding averages on the initial equilibrium \(q = 2 \) rational surface, where the effect of

Parameter	Symbol	Value	Unit
Minor radius	\(a \)	0.45	m
Major radius	\(R_0 \)	1.85	m
Plasma current	\(I_p \)	0.38	MA
Toroidal magnetic field	\(B_{\phi} \)	2.267	T
Core value of safety factor	\(q_0 \)	1.484	dimensionless
Edge value of safety factor	\(q_{95} \)	9.768	dimensionless
Core electron number density	\(n_{e,core} \)	2.3 × 10^{19}	m^{-3}
Core electron temperature	\(T_{e,core} \)	2.959	keV
Edge electron temperature	\(T_{e,edge} \)	3.875	eV
Equilibrium velocity	\(V_0 \)	0	m s^{-1}
The core Lundquist number	\(S_0 \)	6.413 × 10^{9}	dimensionless
The core resistivity	\(\eta_0 \)	6.334 × 10^{-11}	\Omega \cdot m
Perpendicular thermal conductivity	\(\kappa_{\perp} \)	1	m^{2} \text{s}^{-1}
Parallel thermal conductivity	\(\kappa_{\parallel} \)	10^{10}	m^{2} \text{s}^{-1}
Diffusivity	\(D \)	0.1	m^{2} \text{s}^{-1}

\(D, \nu, \eta, \) and \(\kappa_{\parallel}(\kappa_{\perp}) \) the plasma diffusivity, kinematic viscosity, resistivity, and parallel (perpendicular) thermal conductivity respectively, \(\gamma \) the adiabatic index, \(S_{\text{ion/rec}} \) the density source from ionization and recombination, \(S_{\text{ion/3-body}} \) also includes contribution from 3-body recombination, \(Q_{\text{loss}} \) the energy loss, \(E(b) \) the electric (magnetic) field, \(b = B/R, \) and \(I \) the unit dyadic tensor. The impurity radiation includes bremsstrahlung, ionization, recombination, and line radiation, which all contribute to the radiation power loss \(Q_{\text{loss}} \), and the line radiation \((\propto L_{2(I)}n_{e}n_{Z}) \), where \(L_{2(I)} \) is the line radiation coefficient predominates in our simulations. More details can be found in appendix.

A stable EAST L-mode like equilibrium with an initial Neon impurity deposition is adopted in the simulation. The initial Neon density distribution is localized on the \(q = 2 \) rational surface, i.e. \(n_{\text{imp}} = n_{\text{imp}} \exp(-((r-r_s)/L_1)^2) \exp(-\phi^2)(1 + \cos \theta), \) where \(n_{\text{imp}} \) is the peak impurity number density, \(r_s, \theta, \phi \) the \(q = 2 \) radial location, the poloidal and toroidal angles, respectively, and \(L_1 = 1 \) cm is the radial distribution width, which is used as a simple model for pellet injection deposition. The local concentration of impurities in the absence of an island can take place in the pellet injection process, such as the shattered or shell pellet injection (SPI or ShPI) experiments. In particular, for examples, the high pressure profile has been observed in the SPI simulations [29] and experiments [30]. Thus the simulation study in this work is mainly motivated by the on-going research on the most effective disruption mitigation schemes. Although the peak level of local impurity deposition around the \(q = 2 \) surface in simulation is close to the local density of main ion species, the overall line-averaged impurity level is about \(1\% \sim 10\% \) of the background plasma density. Such an impurity level in line-average is set slightly higher than the typical disruption mitigation experimental value merely for the purpose of accelerating the dynamic process in the simulation that can be afforded by the available computational resource. Initially the impurity is stationary on the rational surface in absence of equilibrium flow,
finite island width is not considered. Thus, the criterion for the onset of the thermo-resistive instability, that the local radiation power loss exceeds the Ohmic heating power within the island [11, 16], may not be able to explain the existence of the critical impurity level \(n_{\text{imp}} \) for the onset of the TM observed in these simulations.

One of the most immediate consequences of the local radiation cooling from the impurity deposition on the \(q = 2 \) surface is the formation of a narrow layer with hollow pressure profile around the same rational surface (figure 2(a)). The parallel component of plasma current density varies rapidly across the layer, with a sharp dip inside and two spikes near both boundaries of the layer. To understand the nature of the parallel current profile transition around the \(q = 2 \) surface, we note that although the initial equilibrium profiles dynamically evolve due to the influence from impurity source, the static force balance \(\nabla p = J \times B \) remains well satisfied along the radial direction (figure 2(b)), mainly because of the weak perturbed velocity i.e. \(\tilde{V} \sim 10^{-2} \) m s\(^{-1}\). Based on this quasi-static condition, the perturbed PS current may be evaluated from the model \(\delta J_{p1} \), and the perturbed PS current model \(J_{p1} \). The initial equilibrium \(q = 2, 3, 4 \) surfaces are denoted as black dashed lines.
The hollow pressure profile around the $q=2$ surface leads to the reversal of the resistive interchange parameter $D_R \approx \frac{2J_{rd1}}{r_d} \left(1 - \frac{1}{r_d} \right)$, where $J_p = p / p', L_q = q / q', s = r q' / q, \epsilon_s = r_s / R_s$, to become positive from the conventional monotonically decreasing pressure profile for which the D_R is negative (figure 3(a)). Previous theory by Lütjens et al [24] includes the D_R effect on the resistive TM growth in the modified Rutherford equation (MRE)

$$\frac{dw}{dt} = \frac{1.22}{\tau_R} \left(\Delta' \left(1 - \frac{w}{w_d} \right) + \frac{6.35D_R}{\sqrt{w^2 + 0.65w_d^2}} \right)$$

(7)

where Δ' is the jump in logarithmic derivative across the surface $q=2$ determined from the initial equilibrium, the resistive time $\tau_R = \mu_0 d^2 / \eta_t$, and the diffusion length

scale $w_d = 2\sqrt{2 \left(\kappa_{\perp} / \kappa_{\parallel} \right)^{1/4} (r_s R_{ns})^{1/2}}$ [31]. In fact, Lütjens’ equation (3) [24] predicts the possibility of linear destabilization due to $D_R > 0$ in the case $\Delta' < 0$. Such a destabilization role of D_R reversal continues in the early nonlinear island evolution, as predicted in Lütjens’ equation (2) [24]. This gives the right trend of the island growth rate in simulation here, as the comparison between the above equation (7), which is taken from the [24], and the simulation results shows in figure 3(b) for the initial time period $t < 0.5$ ms. However, the absolute value of D_R decreases quickly to zero and remains almost zero after $t = 0.5$ ms when the island starts to grow again. This indicates that the D_R reversal effect from the curvature and pressure gradient is the dominant driver in the small island region, but fails to continue supporting the island growth in the second phase after the D_R effect vanishes.

We introduce an alternative MRE

$$\frac{dw}{dt} = \lambda \left(\Delta'_0 + \alpha_2 D_R - \alpha_1 J_{ps}^{2/1} / J_{ps0} \right)$$

(8)

may be used to better fit the simulated island growth (figure 4(a)), the first term on the right hand side is the classical tearing instability index, and the second and third terms separate the pressure-curvature effects into the linear effects of the resistive interchange, and the nonlinear effects associated with the perturbed PS current, respectively. All terms are calculated from the time dependent simulation results except for the constant fitting parameters α_1, α_2 and the λ, which may account for additional quantitative geometry and plasma effects. $\Delta'_0 = (\frac{d B'_\parallel}{dr} - \frac{d B'_\perp}{dr}) / B_0$ is the jump in logarithmic derivative across the equilibrium $q = 2$ surface, where B_0 is the $m = 2, n = 1$ radial component of perturbed magnetic field. Instead of calculating the jump of the logarithmic derivative of B_0 at the edges of the island, the Δ'_0 adopted here could lead to an overestimation of the contribution linked to the current gradient. Such a finite island width effect could be taken into account in a more refined model MRE and analysis. In our simulation, the $q = 2$ location barely changes throughout the time, and the flux distortion due to magnetic island formation is negligible. The Δ' term in equation (7) is the analytical form of classical tearing instability index determined from the initial equilibrium and corrected by the evolving island width in the term $\Delta' \left(1 - w / w_d \right)$, whereas the Δ'_0 in equation (8) is the jump in logarithmic derivative of the perturbed magnetic in normal part and evolves with time based on this quasi-equilibrium system ($\nabla p \approx J \times B$) outside the resistive layer. They should be both able to represent the island saturation process in absence of the D_R curvature effects. The resistive interchange parameter D_R includes the effect of the flux surface averaged magnetic curvature in the toroidal system, and introduces an initial linear instability to the mode due to a reversal of the D_R from negative to positive, similar to the Lütjens theory in equation (7). The $m = 2$ Fourier component of PS current perturbation $J_{ps}^{2/1}$, which is normalized by the initial equilibrium PS current J_{ps0}, denotes the nonlinear effect of the PS current perturbation inside the resistive layer. After

![Figure 3](image-url)
Figure 4. (a) The island growth rate γ_R term, the resistive interchange parameter D_R, the tearing stability parameter Δ'_0, the $m = 2/n = 1$ component of PS current $J_{2/1}^{PS}$ inside the resistive layer which is normalized to the initial equilibrium PS current J_{ps0}, and the sum of Δ'_0, D_R and $J_{2/1}^{PS}/J_{ps0}$ terms, where the fitting parameters $\lambda = 35$, $\alpha_1 = 0.5$, $\alpha_2 = 10$; (b) The tearing instability parameter Δ'_0, the local radiation power P_{rad}, the $m = 2/n = 1$ Fourier components of the perturbed current $J_{2/1}$, the plasma resistivity $\eta_{2/1}$, and the pressure gradient $p'_{2/1}$, respectively; (c) The plasma resistivity $\eta_{2/1}$, the time derivative of perturbed magnetic field $dR_{2/1}/dt$, and the perturbed current $J_{2/1}$; (d) The perturbed pressure gradient $p'_{2/1}$ and the perturbed current $J_{2/1}$ on the $q = 2$ rational surface as functions of time.

The D_R reversal phase ($t > 0.5$ ms), the island growth is primarily driven by the Δ'_0 term against the stabilizing effect from the nonlinear PS current $J_{2/1}^{PS}$. The D_R term in equation (8) is meant to capture and consolidate both linear and nonlinear effects associated with the perturbed PS current, whereas the Δ'_0 in the first term and the δJ_{ps} in the last term on the RHS of equation (8) can still keep other effects not related to D_R. The risk of double- or triple-counting of the curvature effects in equation (8) is expected to be mitigated or minimized through the fitting coefficients α_1 and α_2 from the apparently better matching with the simulation results in comparison to equation (7) (figures 3(b) and 4(a)).

The Δ'_0 term is consistent with the helical current perturbation $J_{2/1}$ measured from the simulation results (figure 4(b)).
which may be schematically represented by the following perturbative form of equation (4.4.9) from [32]

\[
J_{2/1} = -\mu_0 f p_{2/1}^2 \left(\frac{1}{B} \right) \langle \frac{1}{B^2} \rangle \frac{\eta_{2/1} \langle E_d B_0 / B_p \rangle}{\eta_0 \langle B^2 / B_p \rangle} B \\
+ C \left(\frac{\delta \mu}{\delta T} \right) \frac{\delta_b B}{\eta_0 \langle B^2 / B_p \rangle} B.
\]

(9)

The first term on the right hand side refers to the PS current perturbation \(J_{PS}^{2/1}\), which results from the persistent radiation cooling around the rational surface that impedes the pressure profile flattening and enhances the local pressure gradient \(p_{2/1}\). The second and third terms account for the induced currents resulting from the variation of plasma resistivity \(\eta_{2/1}\) and magnetic field perturbation \(dB_{r,2/1}/dt\), respectively (figure 4(c)). The correlation between the local radiation power and the \(\Delta_t\) suggests that the current perturbation \(J_{2/1}\) has major contributions from the pressure gradient perturbation \(p_{2/1}\) and the plasma resistivity perturbation \(\eta_{2/1}\) due to temperature perturbation. Note that there are two peaks during the evolution of the helical current perturbation \(J_{2/1}\) (figure 4(c)), the first narrow one corresponds to the local positive pressure gradient perturbation \(p_{2/1}\) at the beginning \(t = 0–0.2\) ms (figure 4(d)), and the following dip and the second peak \((t > 0.2\) ms) are mainly caused by the variation of the plasma resistivity \(\eta_{2/1}\), which leads to the nonlinear growth of the magnetic island.

4. The effect of thermal conductivity on TM growth

We perform another series of simulations for a range of parallel thermal conductivity \(\kappa_\parallel = 10^8 - 10^{10} m^2 s^{-1}\) with all other parameters fixed. The impurity level is set to be the threshold found in previous section \(n_{imp} = 2 \times 10^{19} m^{-3}\). When \(\kappa_\parallel\) is below \(10^8 m^2 s^{-1}\), the magnetic island grows up after \(t = 0.2\) ms, whereas on the contrary, when \(\kappa_\parallel\) is above this value, the island width decreases to a much smaller size (figure 5(a)), which agrees with previous findings [33]. In addition, simulations based on the temperature-dependent thermal conductivity model, i.e. \(\kappa_\perp \sim T_e^{-1/2} B^{-2}, \kappa_\parallel \sim T_e^{3/2}\) show similar effects from the reduced \(\kappa_\parallel\) due to radiation cooling as well.

More importantly, comparing the \(\kappa_\parallel = 10^{10} m^2 s^{-1}\) case of island suppression with the \(\kappa_\parallel = 10^8 m^2 s^{-1}\) case of island growth in figure 5(b), the resistive interchange parameter \(D_R\) in \(\kappa_\parallel = 10^8 m^2 s^{-1}\) case is larger and stays positive longer than the \(\kappa_\parallel = 10^{10} m^2 s^{-1}\) case. Finite parallel thermal conductivity limits the perturbed perpendicular thermal conductivity gradient that can develop in the vicinity of the island [34], and larger parallel thermal conductivity \(\kappa_\parallel\) contributes to faster thermal equilibration along the field lines, thus weakens the radial gradient of temperature \(T_e\) perturbation and allows the pressure profile to recover its initial negative gradient more quickly. Consequently the \(D_R\) value switches back to negative and stabilizes the mode. These results agree with previous findings that smaller \(\kappa_\parallel / \kappa_\perp\) ratio leads to more unstable TM [35].

Figure 5. (a) Island width as a function of time for different parallel thermal conductivity \(\kappa_\parallel\) cases, a more sophisticated thermal model is included as well, which \(\kappa_\parallel = (3000/T_e)^{1/2} B^{-2}, \kappa_\parallel = 10^{10} (T_e/3000)^{3/2}\). (b) Resistive interchange parameter \(D_R\) as a function of time for different \(\kappa_\parallel\) cases.

5. Summary

A resistive interchange reversal mechanism has been identified for the impurity radiation driven tearing growth in a tokamak from NIMROD/KPRAD simulations. A localized hollow structure in the pressure profile due to impurity radiative cooling gives rise to the reversal of the resistive interchange parameter \(D_R\) from negative to positive around the rational surface, which determines the trigger condition of the linear TM growth and is dominant until the end of the initial small island stage. Such a \(D_R\) reversal mechanism also manifests itself through the effects of the parallel thermal conductivity.
on the linear TM growth. During the nonlinear stage, the island growth is mainly driven by the enhanced resistivity due to impurity radiation cooling.

The thermal-resistive TM model [11, 16, 18] does not require a local concentration of impurity for the nonlinear island growth itself. However, their model mechanism is purely nonlinear, which relies on the pre-existence of a small albeit finite sized island, but does not explain or specify where such a pre-existing island comes from the first place. By contrast, the simulation results presented in this paper are based on a linear tearing stable equilibrium and the initial linear instability is excited by the reversal of the resistive interchange effect D_R due to the local impurity radiation, which is the main idea of this paper. Nonetheless, the local impurity radiation is only a driving mechanism for the specific scenarios studied in this work, but not necessarily the driving mechanism for all the experiments.

Although the crude MRE we use to fit the simulation data is able to capture the main features of the impurity radiation driven TM growth, it would be more helpful to have a more complete and exact form of the MRE in order to account for not only the main mechanisms revealed in this work quantitatively, but also other secondary features neglected here, such as the vortex dynamics and the asymmetry in island structure, for examples. Such a development would require substantially more involved efforts beyond the scope of this paper, and it is planned for future work. Our simulation results in this paper are based on the resistive MHD model in equations (1)–(6) that have not included the necessary physics components responsible for modeling the bootstrap current and the neoclassical tearing mode (NTM). Although the main focus of this paper on the D_R reversal mechanism does not directly rely on the NTM physics, it does provide a seeding mechanism as a prerequisite to the NTM growth. We plan on incorporating the NTM physics to our study with the newly developed bootstrap current model in NIMROD code next [36].

Acknowledgments

We thank Prof. Minghai Liu and Prof. Yonghua Ding for their helpful discussions and suggestions. We also acknowledge the constructive suggestions from the referee on the revision of this paper. We are grateful for the supports from the NIMROD team. This work was supported by the National Magnetic Confinement Fusion Program of China (Grant No. 2019YFE03050004), the National Natural Science Foundation of China (Grant Nos. 11775221 and 51821005), the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (Grant No. 2019kyfXJS193), and U.S. Department of Energy (Grant Nos. DE-FG02-86ER53218 and DE-SC0018001). This research used the computing resources from the Supercomputing Center of University of Science and Technology of China.

Appendix

The KPRAD module adopted in the NIMROD code is used to update the impurity charge state populations and calculate the power of impurity radiations [28], which include the background impurity radiation P_{bg}, the line radiation P_{line}, the bremsstrahlung P_{breem}, the 3-body recombination P_{3-body}, the ionization P_{ion} and recombination P_{rec}, and the atomic physics data originates from ADAS database (URL www.adas.ac.uk/) [37].

The background impurity radiation power results from the material sputtering from the divertor or the first wall, which can be set to be beryllium (Be), boron (B), or carbon (C)

\[
P_{bg} = f_{Z, bg} \times 10^{-13} \times n_e [\text{cm}^{-3}] \times 10^{97T_e} \tag{10}
\]

\[
P_{bg} = \sum_i f_{bg(i)} \times (\log_{10} T_e [\text{keV}])^{-1} \tag{11}
\]

where $f_{Z, bg} = n_{Z, bg} / n_i$ is the fraction of background impurity density, n_i the plasma ion density, n_e the electron density, $n_{Z, bg}$ the background impurity density, P_{bg} is the polynomial as a function of the electron temperature T_e, based on the coronal equilibrium and $f_{bg(i)}$ are the fitted coefficients of the radiation curve, in particular, the range of temperature T_e only includes $2 \sim 20 \text{ keV}$ in the background impurity radiation [28, 37].

The impurity line radiation power can be set to be helium (He), beryllium (Be), carbon (C), neon (Ne), or argon (Ar)

\[
P_{line, Z(c)} = 10^{9739} \times 10^{-13} \times n_e [\text{cm}^{-3}] \times n_{Z,(c-1)} [\text{cm}^{-3}] \tag{12}
\]

\[
P_{line} = \sum_i f_{line(i)} \times (\log_{10} T_e [\text{keV}])^{-1} \tag{13}
\]

where Z is the atomic number and $c = 0 - Z$ is the impurity charge state, the line radiation of impurity charge state c correlates to the density of its former charge state $n_{Z,(c-1)}$, P_{line} is the polynomial as a function of T_e and $f_{line(i)}$ are the fitted coefficients of the line radiation curve [28, 37].

The bremsstrahlung radiation power

\[
P_{breem} = 1.69 \times 16^{-32} \times n_e^3 [\text{cm}^{-3}] \times \sqrt{T_e [\text{eV}]} \times Z_{eff} \tag{14}
\]

\[
Z_{eff} = 1 + \sum_c \frac{Z \times (c^2 - c) \times n_e [\text{cm}^{-3}]}{n_e [\text{cm}^{-3}]} \tag{15}
\]

where Z_{eff} is the effective charge state number and n_e is the impurity density of different charge state.

The 3-body recombination radiation power

\[
P_{3-body, Z(c)} = 8.75 \times 10^{-39} \times n_e^2 [\text{cm}^{-3}] \times c^3 \times T_e^{-4.5} [\text{eV}] \tag{16}
\]

which is proportional to $T_e^{-4.5}$ and becomes important only at $T_e \simeq 1 \text{ eV}$.

The ionization radiation power

\[
P_{\text{ion},Z(c)} = 1.6 \times 10^{-19} \times R_{\text{ion},Z(c)} \times n_{Z,(c-1)} \text{[cm}^{-3}\text{]} \nonumber \times E_{\text{ion},Z(c)} \text{[eV]} \times \left(\frac{E_{\text{ion},Z(c)} \text{[eV]}}{T_e \text{[eV]}} \right)^{1/3} \nonumber \]

(17)

\[
R_{\text{ion},Z(c)} = n_e \text{[cm}^{-3}\text{]} \times 10^{-14} \sum_{i} f_{\text{ion}}(i) \times \left(\frac{\log_{10} T_e \text{[eV]}}{10} \right)^{-1} \nonumber \]

(18)

and the recombination radiation power

\[
P_{\text{rec},Z(c)} = 1.6 \times 10^{-19} \times R_{\text{rec},Z(c)} \times n_{Z,(c)} \text{[cm}^{-3}\text{]} \nonumber \times \left(E_{\text{ion},Z(c)} \text{[eV]} + T_e \right) \nonumber \]

(19)

\[
R_{\text{rec},Z(c)} = 5.2 \times 10^{-14} \times n_e \text{[cm}^{-3}\text{]} \times (c+1) \nonumber \times \sqrt{\frac{E_{\text{ion},Z(c)} \text{[eV]}}{T_e \text{[eV]}}} \times f_{\text{rec}} \nonumber \]

(20)

\[
f_{\text{rec}} = 0.43 + 0.5 \times \log_{10} \frac{E_{\text{ion},Z(c)} \text{[eV]}}{T_e \text{[eV]}} + 0.469 \nonumber \times \left(\frac{E_{\text{ion},Z(c)} \text{[eV]}}{T_e \text{[eV]}} \right)^{-1/3} \nonumber \]

(21)

where \(E_{\text{ion},Z(c)}\) is the ionization energy of impurity charge state \(c\), \(R_{\text{ion},Z(c)}\) is the ionization rate and \(f_{\text{ion}}(i)\) are the fitted coefficients of the polynomial for the ionization radiation curve, \(R_{\text{rec},Z(c)}\) is the recombination rate as a function of electron density \(n_e\) and temperature \(T_e\). 28, 37. The ionization is closely associated with the recombination and note that the ionization radiation of impurity charge state \(c\) correlates to the density of its former charge state \(n_{Z,(c-1)}\). Besides, the ionization and the recombination rates \(R_{\text{ion},Z(c)}\) and \(R_{\text{rec},Z(c)}\) are used to update each impurity charge state density respectively in the source terms \(S_{\text{ion}}\) and \(S_{\text{rec}}\) of the continuity equation at every time step.

ORCID iDs

Shiyong Zeng 🐦 https://orcid.org/0000-0001-7098-818X
Ping Zhu 🐦 https://orcid.org/0000-0002-5773-8861
Dominique Frank Escande 🐦 https://orcid.org/0000-0002-0460-8385

References

[1] Gerasimov S. et al 2020 Nucl. Fusion 60 066028
[2] Hollmann E.M., Parks P.B., Shiraki D., Alexander N., Eidietis N.W., Lasner C.J. and Moyer R.A. 2019 Phys. Rev. Lett. 122 065001
[3] Pucella G. et al 2021 Nucl. Fusion 61 046020
[4] de Vries P.C. et al 2014 Phys. Plasmas 21 056101
[5] Hobirk J. et al (JET Contributors) 2018 Nucl. Fusion 58 076027
[6] Rebula P. and Hugon M. 1984 London (12-19 September) Plasma Physics and Controlled Nuclear Fusion Research 1984: Proc. 10th Int. Conf. London (IAEA, Vienna, 1985) vol 2 (available at: http://iaea.org/snls/collection/NCLCollectionStore_Public/16/055/16055667.pdf#page=215)
[7] Rutherford P.H. 1985 Plasma Physics Laboratory, Princeton University PPPL Report 2277 (available at: www.osti.gov/bridge/product.biblio.jsp?query_id=5086595&Rover=0&formatname=basicsearch.jsp)
[8] Suttrop W. et al 1997 Nucl. Fusion 37 119–25
[9] Salzedas F., Schüller F.C. and Oomens A.A. (The RTP Team) 2002 Phys. Rev. Lett. 88 750021–4
[10] Xu L. et al 2017 Nucl. Fusion 57 126002
[11] Gates D.A. and Delgado-Aparicio L. 2012 Phys. Rev. Lett. 108 1–4
[12] Gates D., Delgado-Aparicio L. and White R. 2013 Nucl. Fusion 53 063008
[13] Gates D.A., Brennan D.P., Delgado-Aparicio L. and White R.B. 2015 Phys. Plasmas 22 060701
[14] Gates D.A., Brennan D.P., Delgado-Aparicio L., Teng Q. and White R.B. 2016 Phys. Plasmas 23 056113
[15] White R.B., Monticello D.A., Rosenbluth M.N. and Waddell B.V. 1977 Phys. Fluids 20 800–5
[16] White R.B., Gates D.A. and Brennan D.P. 2015 Phys. Plasmas 22 022514
[17] Xu H.W., Zhang H., Song Y.H., Ma Z. and Wang Y.N. 2020 Plasma Phys. Control. Fusion 62 105009
[18] Teng Q., Ferraro N., Gates D. and White R. 2018 Nucl. Fusion 58 106024
[19] Glasser A.H., Greene J.M. and Johnson J.L. 1975 Phys. Fluids 18 875–88
[20] Glasser A.H., Greene J.M. and Johnson J.L. 1976 Phys. Fluids 19 567–74
[21] Nishimura Y., Callen J.D. and Hegna C.C. 1998 Phys. Plasmas 5 4292–9
[22] Kotschenreuther M., Hazeltine R.D. and Morrison P.J. 1985 Phys. Fluids 28 294–302
[23] Nishimura Y., Callen J.D. and Hegna C.C. 1998 Phys. Plasmas 5 4292–9
[24] Lütjens H., Luciani J.-F. and Garbet X. 2001 Phys. Plasmas 8 4267–70
[25] Chu M.S., Greene J.M., Lao L.L., Miller R.L., Bondeson A., Sauter O., Rice B.W., Strait E.J., Taylor T.S. and Turnbull A.D. 1996 Phys. Rev. Lett. 77 2710–13
[26] Sauter O. et al 1997 Phys. Plasmas 4 1654–64
[27] Sovinec C.R., Glasser A.H., Gianakon T.A., Barnes D.C., Nebel R.A., Kruger S.E., Schnack D.N., Plimpton S.J., Tartaglia A. and Chos M.S. 2004 J. Comput. Phys. 195 355–86
[28] Whyte D.G. et al 1997 Proc. 24th European Conf. on Controlled Fusion and Plasma Physics (Berchtesgaden, Germany, 9–14 June 1996) vol 21A (Geneva: European Physical Society) p 1137
[29] Kim C.C., Liu Y., Parks P.B., Lao L.L., Lehnhen M. and Loarte A. 2019 Phys. Plasmas 26 042510
[30] Raman R. et al 2020 Nucl. Fusion 60 036014
[31] Fitzpatrick R. 1995 Phys. Plasmas 2 825–38
[32] Wesson J. 2011 Tokamaks 4th edn (Oxford: Oxford University Press) ch 4.4, p 165
[33] Xu H.-W., Song Y.-H., Ma Z.-W., Zhang W. and Wang Y.-N. 2019 Plasma Phys. Control. Fusion 61 085010
[34] Fitzpatrick R. 1995 Phys. Plasmas 2 825–38
[35] Lütjens H., Luciani J.F. and Garbet X. 2001 Plasma Phys. Control. Fusion 43 A339–48
[36] Howell E.C., King J.R., Kruger S.E., Callen J.D., La Haye R.J. and Wilcox R.S. 2022 Phys. Plasmas 29 022507
[37] University of Strathclyde et al 1994 ADAS database (available at: www.adas.ac.uk/)