Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The SARS-CoV-2 (COVID-19) pandemic in hospital: An insight into environmental surfaces contamination, disinfectants’ efficiency, and estimation of plastic waste production

Faezeh seifa, Zahra Noorimotlaghb,c,\ast, Seyed Abbas Mirzaeeb,c,*, Mojtaba Kalantara, Barat Baratia, Mahdi Emamian Farda, Nozar Kalantar Farda

a Department of Public Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
b Health & Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
c Department of Environmental Health Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran

\textbf{ARTICLE INFO}

Keywords:
SARS-CoV-2
COVID-19
VOC lineage B.1.1.7
Plastic residue
Environmental surface contamination

\textbf{ABSTRACT}

The current COVID-19 pandemic that is caused by SARS-CoV-2 has led all the people around the globe to implement preventive measures such as environmental cleaning using alcohol-based materials, and social distancing in order to prevent and minimize viral transmission via fomites. The role of environmental surface contamination in viral transmission in within hospital wards is still debatable, especially considering the spread of new variants of the virus in the world. The present comprehensive study aims to investigate environmental surface contamination in different wards of a hospital as well as the efficacy of two common disinfectants for virus inactivation, and tries to produce an estimate of plastic residue pollution as an environmental side effect of the pandemic. With regard to environmental surface contamination, 76 samples were taken from different wards of the hospital, from which 40 were positive. These samples were taken from contaminated environmental surfaces such as patient bed handles, the nursing station, toilet door handles, cell phones, patient toilet sinks, toilet bowls, and patient’s pillows, which are regularly-touched surfaces and can pose a high risk for transmission of the virus. The number of positive samples also reveals that SARS-CoV-2 can survive on inanimate surfaces after disinfection by ethanol 70 % and sodium hypochlorite (0.001 %). The results correspond to the time that the VOC 202012/01 (lineage B.1.1.7) had emerged in the hospital and this should be considered that this variant could possibly have different traits, characteristics, and level of persistence in the environment. The plastic waste as an environmental side effect of the pandemic was also investigated and it was confirmed that the amount of plastic residue for a single (RT) PCR confirmatory test for COVID-19 diagnosis is 821.778 g of plastic residue/test. As a result, it is recommended that for improving plastic waste management programs, considering challenges such as minimizing plastic waste pollution, optimization of gas control technologies in incinerators, process redesign, reduction of single-use plastics and PPE, etc. Is of utmost importance.

1. Introduction

On December 31, 2019, a novel human coronavirus (CoV) was detected in Wuhan city, Hubei province, China, which causes a respiratory disease that is called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) by the World Health Organization (WHO). Afterward, COVID-19 was identified in the East of Asia, the Middle East, Europe, North and South of America, Africa and Oceania, spreading in 218 different countries and territories around the world causing a pandemic situation. Although specific precautions quarantine regulations, and preventive measures are taken in different regions, SARS-CoV-2 pandemic is still a very prominent concern due to its rapid spread. According to WHO, until April 23, 2021, SARS-CoV-2 pandemic had led to 144, 358, 956 and 3,066,113 confirmed cases and deaths, respectively. Despite the fact that before the date mentioned above, a total of 899, 936, 102 vaccine doses had been administrated in different regions...
of the world (Kim et al., 2020; Noorimotlagh et al., 2020; Noorimotlagh et al., 2020; Orenes-Pinero et al., 2021), the disease still spreads in all regions and territories of the globe and several new variants of SARS-CoV-2 have been reported with different traits.

There are different mechanisms and routes of transmission for SARS-CoV-2 including the direct route (person-to-person transmission that occurs by having close and prolonged contact with a patient or an infected person) and the indirect routes including airborne transmission by airborne viral infectivity and transmission by contact with contaminated environmental surfaces (Harbizadeh et al., 2019; Coccia, 2020; Kim et al., 2020; Noorimotlagh et al., 2020; Dargahi et al., 2021; Maleki et al., 2021). Based on these routes, WHO and other official agencies suggest that people should use face masks, environmental surface disinfectants and alcohol-based hand gel, and do social distancing to prevent viral transmission (Noorimotlagh, Mirzaee et al. 2020, 2021; Maleki et al., 2021; Marzoli and Bortolami, 2021; Vosoughi et al., 2021).

Among the main routes of COVID-19 transmission, the role of environmental surface transmission is still controversial among scientists due to several factors such as long-term persistence of the virus on different environmental surfaces and its activity’s dependence on temperature and relative humidity, especially in indoor environments (Lee et al., 2020a,b; Noorimotlagh, Jaafarzadeh et al. 2020, 2021; Noorimotlagh et al., 2020; Marzoli and Bortolami, 2021; Moore et al., 2021; Nottmeyer and Sera, 2021). Therefore, detection of SARS-CoV-2 in the hospital environmental surfaces is of utmost importance.

During the few last months, new variants of SARS-CoV-2 have been reported in different regions of the world. One of these important variants is variant of concern (VOC) 202012/01 (lineage B.1.1.7) (designated a variant of concern (VOC-202012/01), also known as B.1.1.7). V1, variant of concern 20DEC-01, or commonly known as the UK variant, British variant, or Kent variant, which first emerged in Kent in South East England in September 2020 (Challen et al., 2021; Davies et al., 2021; Iacobucci, 2021; Mahase, 2021). Based on the early data, Iacobucci (2021) reported that the new UK variant may be linked to the increased death rate (Jacobucci, 2021). Davies et al. (2021) surveyed the transmissibility of SARS-CoV-2 lineage B.1.1.7 in England and reported that this new UK variant shows a similar increase in the rate of transmission (59–74 %) in Denmark, Switzerland, and the United States (Davies et al., 2021).

The current evidence of local officials shows that the new variants of SARS-CoV-2, i.e., variant of concern (VOC) 202012/01 (lineage B.1.1.7), are spread in the world, especially in different cities of Iran. Due to the fact that contaminated environmental surfaces can be indicated as high risk for viral transmission, thus, the role of environmental surface contamination in hospitals is still debatable. On the other hand, knowing the efficiency of the typical disinfectants for inactivating the virus, especially lineage B.1.1.7, is of immense importance. Regarding the spread of the virus, estimation of plastic residue in hospitals is very critical from the environment point of view. Therefore, to achieve these objectives, the present study was conducted to determine the presence of the virus on regularly-touched environmental surfaces, as well as the persistence of the virus to two common types of disinfectants, and finally, to estimate the plastic waste produced by the real-time PCR test and its operators in the hospital.

2. Materials and methods

2.1. Sampling site description and approval of ethics code statement

The present work was accepted by Shoushtar University of Medical Sciences (SUMS) to be performed under ethics code: IR. Shoushtar. REC.1399.049 according to the ethical principles and standards for medical research. Therefore, this study was performed in different wards of Khatam-ol- Anbia Hospital in Shoushtar city, Khuzestan province, located in the Southeast of Iran on April 23, 2021. The hospital was assigned for treatment of patients with confirmed COVID-19. Shoushtar city, with a population of 208,311, was then reported to have 8355 confirmed COVID-19 cases.

2.2. Description of sampling location

According to the objectives of the present study, in order to investigate the distribution of COVID-19 infection in the hospital, the spread of the disease was measured in both the wards with confirmed cases as well as the noninfectious wards. Environmental surface samples were obtained from different wards using pre-moistened sterile swabs to collect nasopharyngeal exudates. Smooth surfaces found in the nursing station as well as the floors, reception desk and patient equipment files, were swabbed using a square pattern (10×10 cm), in an area of 100 cm². All the samples were placed in 2 ml VTM and immediately transported to the laboratory where they were used for SARS-CoV-2 detection.

All the samples were collected in triplicate from identical surfaces. The qPCR procedures and analytical methods were carried out in the same way for the triple samples of each location. Positive or negative results are reported after PCR confirmation.

2.3. Viral genome extraction

Virus genome was purified by utilizing nucleic acid extraction by the Roje Technologies kit (Pishgam, Iran) and was preserved in a deep freezer (−70 °C).

2.4. Virus detection using RT-PCR analysis and quality controls

The real-time reverse transcriptase-polymerase chain reaction (RT-PCR) targeting of viral genomes was used to detect the presence of SARS-CoV-2 in the samples. According to the kit’s instructions (Pishztab Zaman, Iran), 5 μL extracted RNA were added to 15 μL of One-step qRT-PCR master mix supplemented with a mixture of primers and TaqMan probes directed against RdRp and N genes. Amplifications and subsequent analyses were carried out using Applied Biosystems Step One plus RT-PCR System. Thermal cycling conditions included reverse transcription at 50 °C for 20 min, an initial denaturation at 95 °C for 3 min, followed by 45 cycles at 94 °C for 10 s, and 55 °C for 40 s. Samples with cycle threshold (Ct) values < 40 cycles were considered positive. If the Ct values were between 40 and 45 cycles, PCR was repeated. The negative controls were run during each experiment to ensure that contamination is identified if it does occur, while a positive control was applied to each experiment as well to identify possible false negative samples. The current kit of covid qPCR has the Limit of Detection (LOD) of 200 copies/mL. Moreover, the IPI SARS-CoV2 UK Variant Screening kit was used in order to identify the new variant by multiple spike protein mutations (deletion 69–70, deletion 144).

In the present study, due to the shortage of the kit used for identifying the UK variant, only two samples were tested with the new variant’s kit and other tests were performed using the normal SARS-CoV-2 kit. It is worth noting that during the experiments, the variant of concern (VOC) 202012/01 (lineage B.1.1.7) emerged in the hospital and most of the confirmed patients were diagnosed positive for this VOC.

3. Results and discussion

3.1. Detection of SARS-CoV-2 on environmental surfaces

Even though the COVID-19 pandemic has been spreading throughout the world for more than a year, trends of prevalence and mortality of the disease are still high. The inanimate environmental surfaces, especially frequently-touched surfaces, are one of the most important factors for virus transmission. Therefore, environmental surface contamination in different wards of the hospitals should be monitored to achieve hygiene goals and disease control (Noorimotlagh et al., 2020; Moore et al., 2021;
Wan et al., 2021). In this regard, in order to investigate the contaminated frequently-touched environmental surfaces, a total of 76 samples of SARS-CoV-2 were collected from different wards of a hospital designated for COVID-19 patients, while local officials had declared that the new variant of concern (VOC) 202012/01 (lineage B.1.1.7) had spread throughout Iran, especially Shoushtar city. These samples were taken from different wards of the hospital, including the respiratory clinic, neurology, CT scan, kitchen, ICU & ICU2, surgery, emergency triage, laundry, and internal ward, as well as cell phones of the staff.

Specimens were collected from frequently-touched surfaces in these wards. Table 1 summarizes the details of sampling sites and detection of SARS-CoV-2 on frequently-touched environmental surfaces of different hospital wards. In addition, during the sampling period, temperature (°C) and relative humidity (RH %) were recorded in the intended wards of the hospital and they were between 24 and 32 °C and 44–48 %, respectively. Table 2 shows the environmental conditions of the frequently-touched environmental surfaces in different wards of the hospital.

There are various laboratory studies that have confirmed the possibility of existence of viable SARS-CoV-2 on frequently-touched environmental surfaces (from 3 h in aerosols to 8–72 h on dry surfaces, depending on surface material) (Aytoğan et al., 2020; Noorimotlagh et al., 2020; Ong et al., 2020; van Doremalen et al., 2020). In two systematic review studies, Noorimotlagh et al. (2021a,b) (Noorimotlagh et al., 2020) and Marzoli and Bortolami, 2021 (Marzoli and Bortolami, 2021) confirmed that depending on surface material and environmental characteristics, SARS-CoV-2 can survive up to 28 days on environmental surfaces at room temperature, which is longer than other coronaviruses (Noorimotlagh et al., 2020; Marzoli and Bortolami, 2021). It has been reported that compared to SARS-CoV-1 and MERS-CoV, the viability of SARS-CoV-2 is longer (Chan et al., 2011; Van Doremalen, Bushmaker et al., 2013).

In this work, detection of SARS-CoV-2 RNA was performed using 76 samples from environmental surfaces that were obtained from different hospital wards before disinfection and cleaning, from which 40 samples were positive (Table 1). Therefore, due to the high transmissibility of SARS-CoV-2, investigation of fomites and environmental surfaces to determine the fomite transmission risk of COVID-19 infection is of utmost importance. As indicated in Table 1, samples taken from contaminated environmental surfaces in different wards of the hospital such as patient bed handles, the nursing station, reception desk, door handles of doctor’s office, toilet door handles, cell phones, patient toilet sinks, toilet bowls, and patient pillows show that high-touch surfaces can be considered as sources with high risk of virus transmission. Therefore, to prevent and minimize the risk of infection transmission, the above-mentioned high-touch environmental surfaces (Table 1) should be disinfected several times daily. In addition, extra cleaning of the high-risk environmental surfaces in the hospital is recommended due to their important role and contribution in spreading the virus.

Table 3 presents a comparison of the reported results of various literature on environmental surfaces of hospitals regarding the presence of SARS-CoV-2. Bloise et al. (2020), examined a clinical microbiology laboratory for detection of SARS-CoV-2 on high-touch surfaces and concluded that the viral RNA of the virus was detected on the surfaces of commonly-used objects such as keyboards, telephone, and scanners; Therefore, they confirmed that these objects could play an important role as a source of infection for laboratory personnel (Bloise et al., 2020). In a similar study in the Republic of Korea, Lee et al. (2020a,b) indicated that among 80 samples taken from frequently-touched environmental surfaces, only the surface samples of two door handles were positive for SARS-CoV-2 RNA (Lee et al., 2020a,b). In another study, Ding et al. (2021) found that the most contaminated surfaces were the bathroom door handles, bathroom toilet seat covers, and door handles (Ding et al., 2021). Moore et al. (2020) found that samples taken from environmental surfaces such as cell phones, vital signs monitors, toilet door handles, bed rails, bed controls, and nurse call buttons were positive in

Table 1	Details of sampling sites and detection of SARS-CoV-2 on frequently-touched environmental surfaces of different hospital wards.				
No.	Sampling site	frequently-touched environmental surfaces	Ct- RdRp	Ct-N	resultsa
1	Respiratory Clinic	Nursing Station	34.2	38.02	positive
		Reception desk	30.1	34.2	positive
		Door handles of doctor’s office	37.1	39.4	positive
		Cell phone	33	34.5	positive
		Air conditioner	31.2	35.5	positive
		Clinic floor	32.9	33.6	positive
2	Neurology ward	Door handle of toilet	-	-	negative
		Nursing station	30	32	positive
		Equipment file of patient	30.6	32.5	positive
		Floor	33	34.9	positive
		Toilet sink of patient	35	32.6	positive
		Toilet fluid pedal of patient	-	-	negative
		Toilet bowl	-	-	negative
		Bed handle of patient	-	-	negative
		Socket and switch	31	34.6	positive
		Console above the patient’s head	30.2	34.8	positive
3	CT scan ward	Location of the head	38.6	34.1	positive
		Location of the body	36	39.08	positive
		Bed handle	-	-	negative
		Air fan	-	-	negative
		Bed handle	-	-	negative
		Patient chair	-	-	negative
		Food counter	-	-	negative
		Door handle	-	-	negative
		Kitchen entrance	-	-	negative
4	Hospital kitchen	Refrigerator wall surface	-	-	negative
		Refrigeration cooling system	-	-	negative
		Refrigeration handle	38	39	Positive
		Refrigerator handle	-	-	negative
		Scales	-	-	negative
		Air conditioner	31.2	35.5	positive
		Door handle	-	-	negative
		Chest leaders	-	-	negative
		Bed handle of patient	-	-	negative
		Door phone	-	-	negative
		Equipment file of patient	39	32.8	Positive
5	ICU1 ward	Door handle of archive	-	-	negative
		Refrigeration system	-	-	negative
		Refrigeration handle	-	-	negative
		Refrigerator handle	38	39	Positive
		Refrigerator wall surface	-	-	negative
		Air Fan	-	-	negative
		Bed handle	-	-	negative
		Door handle	-	-	negative
		Equipment file of patient	39	32.8	Positive
6	ICU2 ward	Nurse station	35	38	Positive
		Floor	28	30.9	Positive
		Laundry room	22	26	Positive
		Ventilation systems	-	-	negative
		The patient’s pillows	-	-	negative
		Door handle	38	39	Positive
		Entrance door handle	-	-	negative
		Patient bed handle	26	30	Positive
		Swatches and sockets inside the section	31	36.4	Positive
		Pre-insulated switches and sockets	-	-	negative
		Cell phone	-	-	negative
		Nursing station	-	-	negative
7	Surgery ward	-	-	negative	

(continued on next page)
terms of presence of the viral RNA (Moore et al., 2021). Jiang et al. (2020a,b) attempted to detect SARS-CoV-2 RNA on the high-touch environmental surfaces of asymptomatic patients in quarantine rooms and identified the presence of the viral RNA in 36% (eight samples) of the 22 environmental surfaces including pillows, covers, sheets, and duvet covers. Therefore, based on these results, they confirmed that effective cleaning and disinfection procedures are important to minimize the risk of contact transmission of COVID-19. This should be noted that some surface materials may better support the survival, persistence, and transmission of this virus (Jiang et al., 2020a,b). Findings of similar studies that are in agreement with the results of the present study, reveal that among the various contaminated environmental surfaces, hallway floors and door handles are the most infected surfaces regarding the presence of the viral RNA of the SARS-CoV-2 (Mouchtouri et al., 2020; Dargahi et al., 2021). Nevertheless, the role of environmental conditions such as temperature and RH is significant and should be considered.

3.2. Persistence of SARS-CoV-2 after using different disinfectants

In the present study, the efficiency of two disinfectants, namely alcohol-based hand rubs (ethanol 70%) and sodium hypochlorite (0.001%) were examined with regard to inactivation of SARS-CoV-2 on inanimate surfaces (such as the nursing station, reception desk, cell phones, door handles and the floors) of different wards of the hospital at both 5 and 15 min after disinfection. Table 4 summarizes the persistence of SARS-CoV-2 on different inanimate surfaces after using the

Table 1 (continued)

No.	Sampling site frequently-touched environmental surfaces	Ct- RdRp	Ct-N gene	results
	Bed handle of patient			
	Console above the patient’s head	–	–	negative
	air conditioner	–	–	negative
8	Patient bed	33.2	35	positive
	floor	30.8	32.8	positive
	Socket switch	38	32.1	positive
	Patient’s toilet fluid pedal	-	-	
9	Hospital laundry			
	Contaminated clothing table			
	internal surface	29.1	33	positive
	washing			
	Blankets after disinfection			
	staff’s Desk surface	–	–	negative
	door handle	–	–	negative
	wheelchair	–	–	negative
	Hall floor	28	35.1	positive
	socket and switches	–	–	negative
	Bed pillow	–	–	negative
	Surfaces inside the refrigerator	30.7	36	positive
10	Internal ward of the hospital			
	Cell phone of administrative staff	–	–	negative
	Cell phone of neurology personnel	–	–	negative
	Cell phone of neurology staff	–	–	negative
	Cell phone of surgery staff	–	–	negative
	Cell phone of internal ward staff	38.9	31	positive
	Cell phone of patients	–	–	negative
	Cell phone in COVID-19 ICU ward	18.9	32.1	positive
	Cell phone in emergency ward	34.1	38.9	positive

* Positive samples are highlighted with a bold font.

Table 2

Environmental conditions of frequently-touched environmental surfaces in different wards of the hospital.

No.	Sampling site frequently-touched environmental surfaces	Ventilation type	T (°C)	RH (%)
1	Respiratory Clinic	natural/mechanical	25	45
	Nursing Station	natural/mechanical	25	44
	Reception desk	natural/mechanical	25	44
	Handles in the doctor’s room	natural/mechanical	26	46
	Cell phone	natural/mechanical	25	44
	air conditioner	natural/mechanical	24	44
	Clinic floor	natural/mechanical	24	48
2	Neurology ward			
	Door handle of Toilet	natural/mechanical	25	48
	Nursing station	natural/mechanical	25	48
	Patient’s equipment file	natural/mechanical	24	48
	Floor	natural/mechanical	25	45
	Patient’s toilet sink	natural/mechanical	25	48
	Patient’s toilet fluid pedal	natural/mechanical	24	48
	Toilet bowl	natural/mechanical	25	47
	Patient’s bed handle	mechanical	25	47
	Socket and switch	natural/mechanical	25	47
	Console above the patient’s head	natural/mechanical	25	48
	Patient pillows	natural/mechanical	25	48
3	CT scan ward			
	Location of the head	natural/mechanical	25	45
	Location of the body	natural/mechanical	27	45
	The floor of the hall	natural/mechanical	27	45
	Door handle	natural/mechanical	27	46
	wheelchair	natural/mechanical	27	46
	Patient’s chair	natural/mechanical	27	47
4	Hospital kitchen			
	Food counter	natural/mechanical	25	46
	Kitchen entrance door handle	natural/mechanical	25	44
	Shelf surface and warehouse cartons	natural/mechanical	25	45
	Floor (the front door, next to the shoe rack)	natural/mechanical	25	45
	Archive door handle	natural/mechanical	27	44
	Scales	natural/mechanical	20	38
	Refrigerator entrance and exit door handles	natural/mechanical	20	48
	Refrigerator cooling system	natural/mechanical	20	48
	Refrigerator wall surface	natural/mechanical	20	47
	Air Fan	natural/mechanical	25	46
	Socket and switch	natural/mechanical	25	44
5	ICU ward			
	Nursing station		25	45

(continued on next page)
Table 2 (continued)

No.	Sampling site	frequently-touched environmental surfaces	ventilation type	T (°C)	RH (%)
6	ICU2 ward	Nursing station	natural/ mechanical	28	44
		Floor	natural/ mechanical	28	45
		Laundry room	natural/ mechanical	30	43
		Ventilation systems (4)	natural/ mechanical	27	45
		Patient pillows	natural/ mechanical	28	48
		Door phone	natural/ mechanical	25	47
		Patient bed handle	natural/ mechanical	26	45
		Switches and sockets inside the section	natural/ mechanical	25	44
		Pre-insolated switches and sockets	natural/ mechanical	28	44
		Cell phone	natural/ mechanical	25	44
7	Surgery ward	Nursing station	natural/ mechanical	30	48
		Patient bed handle	natural/ mechanical	25	48
		Console above the patient’s head	natural/ mechanical	25	48
		air conditioner	natural/ mechanical	23	45
8	Emergency triage	Patient bed	natural/ mechanical	28	44
		floor	natural/ mechanical	25	44
		Socket and switch	natural/ mechanical	28	46
		Patient’s toilet fluid pedal	natural/ mechanical	25	42
9	Hospital laundry	Contaminated clothing table	natural/ mechanical	24	43
		Internal surface washing	natural/ mechanical	30	48
		Blankets after disinfection	natural/ mechanical	32	45
		Staff’s desk surface	natural/ mechanical	28	47
10	Internal ward of the hospital	door handle	natural/ mechanical	27	43
		wheelchair	natural/ mechanical	24	44
		Floor of the hall socket and switches	natural/ mechanical	25	45
		Bed Pillow	natural/ mechanical	27	48
		Surfaces inside the refrigerator	natural/ mechanical	25	42

disinfectants.

As it can be seen in Table 4, SARS-CoV-2 could survive on inanimate surfaces including the nursing station, reception desk, cell phones, door handles, and floors for 5 min after using alcohol-based hand rubs (ethanol 70 %), while in the case of the reception desk, the presence of SARS-CoV-2 was positive after 15 min. With regard to sodium hypochlorite (0.001 %), SARS-CoV-2 could survive on inanimate surfaces including the nursing station, reception desk and the floors at both 5 and 15 min after disinfection, but not on cell phones and door handles. The materials of the inanimate surfaces including the nursing station, reception desk, cell phone, door handle and the floors were medium-density fiberboard (MDF), wood, plastic, stainless steel and ceramic, respectively.

The results demonstrated the capability of SARS-CoV-2 to persist on the tested inanimate surfaces against the two used disinfectants (Bloise et al., 2020; Noorimotlagh et al., 2020; Ong et al., 2020; Marzoli and Bortolami, 2021). On the other hand, it can be argued that the level of viral load of patients or infected people in the hospital was high and perhaps several times the amount of disinfectant should be used, especially on high-touch surfaces, to ensure that presence of SARS-CoV-2 on inanimate surfaces is negative. It can be hypothesized that SARS-CoV-2 can survive on different materials for different durations. As it can be inferred from the results of Table 4, that SARS-CoV-2 has more persistence on surfaces made from MDF, wood, and ceramic. In accordance with these results, Noorimotlagh et al. (2021) and Marzoli and Bortolami, 2021 have shown that the survival of SARS-CoV-2 depends on surface material and environmental conditions. (Noorimotlagh et al., 2020; Marzoli and Bortolami, 2021). Based on the obtained findings, it can be suggested that the interval between disinfection operations should be decreased and the disinfectants could be replaced with more efficient ones.

It should be noted that the previous studies are related to the typical SARS-CoV-2 (COVID-19). However, the results of this study correspond to the time that the variant of concern (VOC) 202012/01 (lineage B.1.1.7) had emerged in the hospital. Therefore, it can be concluded that this variant may have different traits, characteristics, and persistence compared with SARS-CoV-2. The results of this study can be used by other researchers to further investigate and determine the characteristics of this variant.

3.3. Estimation of plastic waste pollution during SARS-CoV-2 pandemic

Nowadays, plastic has an indispensable role in the daily life of human beings. Some studies have predicted that the current trend of production and use of plastics leads to a twofold increase in the amount of plastic debris including micro and nano-sized plastics, by 2030. Because of the increased production of plastic and related environmental challenges, one of the top priorities in the political agendas of Europe and the entire globe should be to reduce plastic leakage and pollution (Patrício Silva, Prata et al., 2020; Patrício Silva, Prata et al., 2021).

The SARS-CoV-2 pandemic has reemphasized the essential role of plastic in our lives, considering the excessive need and consumption of plastic materials including personal protective equipment (PPE) and other single-use medical equipment. Bearing this issue in mind, SARS-CoV-2 pandemic has severely disrupted all the policies concerning the increased level of plastic pollution in the world. Due to the excessive need and consumption of plastic materials during the COVID-19 pandemic, the amount of plastic waste production has been increased significantly and, in addition to the disease, it has intensified the potential negative effects of plastic debris in the aquatic and territorial environments, which impact the health of humans and wildlife (Patrício Silva, Prata et al., 2020; Saadat et al., 2020; Parashar and Hait, 2021; Patrício Silva, Prata et al., 2021). There are a few review studies regarding the increased plastic production and plastic waste management during the COVID-19 pandemic (Patrício Silva, Prata et al., 2020;
ever, they did not consider the PPE used by the operator of the RT-PCR machine, while in essence, that type of plastic residue must be included. Therefore, the total amount of disposable plastic generated by a single RT-PCR confirmatory test can be distinguished in three categories including sample collection, RNA extraction, and (RT) PCR amplification, while the PPE used by the personnel performing the (RT) PCR test should be included as well. According to the results of Table 5, the amounts of plastic waste in a single (RT) PCR confirmatory test in three stages of sample collection, RNA extraction, and (RT) PCR amplification are 31.893, 327.655, and 462.23 g, respectively. In total, it can be concluded that plastic waste for a single (RT) PCR confirmatory test for COVID-19 is 821.778 g of plastic residue/test. (Patrício Silva, Prata et al., 2020; Celis et al., 2021; Patrício Silva, Prata et al., 2021). To the best of the authors’ knowledge, this is the first experimental study that estimates the exact amount of plastic waste produced in a hospital during the confirmatory test (mainly RT-PCR) for COVID-19.

In this pandemic, the RT-PCR test is used as a diagnostic and a confirmatory test for the infected people. Table 5 summarizes a detailed classification of plastic waste in a single (RT) PCR test as a confirmatory test during the pandemic. As it can be seen in Table 5, the plastic waste in a single (RT) PCR confirmatory test can be distinguished in three categories including sample collection, RNA extraction, and (RT) PCR amplification, while the PPE used by the personnel performing the (RT) PCR test should be included as well. According to the results of Table 5, the amounts of plastic waste in a single (RT) PCR confirmatory test in three stages of sample collection, RNA extraction, and (RT) PCR amplification are 31.893, 327.655, and 462.23 g, respectively. In total, it can be concluded that plastic waste for a single (RT) PCR confirmatory test for COVID-19 is 821.778 g of plastic residue/test. It is worth noting that during the (RT) PCR confirmatory test, the operator is required to use PPE and, therefore, the plastic residues of the PPE should be included in the total amount of plastic residue. Recently, Celis et al. (2021) (Celis et al., 2021), investigated the plastic residues produced by the confirmatory tests for SARS-CoV-2 disease and reported that the amount of plastic residue per sample test by RT-PCR is 37.27 g. However, they did not consider the PPE used by the operator of the RT-PCR machine, while in essence, that type of plastic residue must be included.

Therefore, the total amount of disposable plastic generated by a single RT-PCR diagnostic test of SARS-CoV-2 and the PPE used by PCR operators is 821.778 g. Based on these calculations, a great attention should be paid to biomedical plastic waste management. It is reported that about 97 % of the biomedical plastic waste is incinerated, but due to their hazardous nature, toxic by-products such as dioxins and furans could be released into the environment. Therefore, in the plastic waste management programs, there are many challenges to overcome such as minimizing plastic waste, optimization of gas control technologies in incinerators, process redesign, reduction of single-use plastics and PPE, etc. (Patrício Silva, Prata et al., 2020; Celis et al., 2021; Patrício Silva, Prata et al., 2021).

4. Limitations

The present study suffers from several limitations. First, in this work, viral culture was not done to demonstrate viability. Second, not enough UK variant kits were available to perform all the diagnostic tests with them. Therefore, only two tests were conducted with the UK variant kit, and the other tests were performed by RT-PCR.

5. Conclusions

The present comprehensive study represents an important insight into the detection and persistence of the novel human SARS-CoV-2 (COVID-19) on high-touch environmental surfaces in a hospital. The results of this study are consistent with the findings of other researchers regarding the presence of SARS-CoV-2 on inanimate surfaces. They confirmed that samples taken from the frequently-touched environmental surfaces of different wards of the hospital such as the respiratory clinic, neurology, CT scan, kitchen, ICU1 & ICU2, surgery, emergency triage, laundry, and the internal ward, as well as the cell phones of the staff were positive for SARS-CoV-2. Therefore, understanding the possibility of infection transmission from inanimate surfaces in hospital wards is of utmost importance and it is necessary to determine the nature of the persistence of SARS-CoV-2. In the other section of this study, it was revealed that SARS-CoV-2 can survive on inanimate surfaces including the nursing station, reception desk, cell phones, door handles,

Table 3

Comparison of the reported results of various literature on environmental surfaces of hospitals regarding the presence of SARS-CoV-2.

Ref.	test origin	No of sample	T (°C)	RH (%)	No. of Positive (%)	Positive touched surfaces
Wan et al. (2021)	China	31 from single site	*	*	60 (72.7 % of all positive cases)	fingertip of electrocardiogram (ECG) monitoring
Chia et al. (2020)	China	245	*	*	125(56.7 %)	floor, bed rail, locker handle, and cardiac table
Ding et al. (2021)	China	107	*	*	4(4 %)	ward door handle, bathroom toilet seat cover, and bathroom door handle
Moore et al. (2021)	England	336	21-25	21-41	30(0 %)	Nurse call button, toilet door handle, bed rail, bed control, portable vital signs monitor, and cell phones
Jiang et al. (2020a,b)	China	130	*	*	1(0.77 %)	Nursing station (keyboard) of isolation ward
Lee et al. (2020a,b)	Republic of Korea	80	25	*	2(2.5 %)	door handle
Ong et al. (2020)	Singapore	28	*	*	17(61 %)	toilet bowl, sink, and door handle
Colaneri et al. (2020)	Italy	26	*	*	2(7.6 %)	plastic covering of the continuous positive airway pressure (CPAP) helmet
Dargahi et al. (2021)	Iran	50	19-25	33-36	9(18 %)	COVID-19 word floor/trolley table, toilet/bed pan, CT scan of the floor, patient bed/room floor, bathroom door handles

Table 4

Persistence of SARS-CoV-2 on different inanimate surfaces after using the disinfectants.

disinfectant type	inanimate surfaces							
	Nursing station	Reception desk	Cell phone	Door handle	Floor			
	5 min	15 min						
Alcohol-based hand rubs (ethanol 70 %)	positive	negative	positive	positive	positive	negative	negative	positive
Sodium hypochlorite, 0.001 %	positive	positive	positive	negative	negative	positive	negative	positive

Table 5

Virus type	No of Positive (%)	Positive touched surfaces
SARS-CoV-2	60 (72.7 % of all positive cases)	fingertip of electrocardiogram (ECG) monitoring
	125(56.7 %)	floor, bed rail, locker handle, and cardiac table
	4(4 %)	ward door handle, bathroom toilet seat cover, and bathroom door handle
	30(0 %)	Nurse call button, toilet door handle, bed rail, bed control, portable vital signs monitor, and cell phones
	1(0.77 %)	Nursing station (keyboard) of isolation ward
	2(2.5 %)	door handle
	17(61 %)	toilet bowl, sink, and door handle
	2(7.6 %)	plastic covering of the continuous positive airway pressure (CPAP) helmet
	9(18 %)	COVID-19 word floor/trolley table, toilet/bed pan, CT scan of the floor, patient bed/room floor, bathroom door handles

Not reported.
and the floors for 5 min after disinfection by alcohol-based hand rubs (ethanol 70%), and in the case of the reception desk, the presence of SARS-CoV-2 was positive after 15 min. After disinfection by sodium hypochlorite (0.001%), SARS-CoV-2 could survive on inanimate surfaces including the nursing station, reception desk, and floors at both 5- and 15 min after disinfection, but not on cell phones and door handles.

The results of this study correspond to the time that VOC lineage B.1.1.7 was concluded that plastic waste for a single RT-PCR diagnostic test for SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ 372, n579.

The present study was financially support by Shoushtar University of Medical Sciences (IR.SHOUSHTAR.REC.1399.049), which is greatly appreciated. We would also like to thank the healthcare personnel of the hospital complex at Shoushtar city, Khuzestan province, Iran.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The present study was financially support by Shoushtar University of Medical Sciences (IR.SHOUSHTAR.REC.1399.049), which is greatly appreciated. We would also like to thank the healthcare personnel of the hospital complex at Shoushtar city, Khuzestan province, Iran.

References

Aytoglan, H., Ayintap, E., et al., 2020. "Detection of coronavirus disease 2019 viral material on environmental surfaces of an ophthalmology examination room.". JAMA ophthalmology 138 (9), 990-993.

Bloise, I., Gómez-Arroyo, B., et al., 2020. "Detection of SARS-CoV-2 on high-touch surfaces in a clinical microbiology laboratory.". J. Hosp. Infect. 105 (4), 784–786.

Celis, J.E., Espejo, W., et al., 2021. Plastic residues produced with confirmatory testing for COVID-19: classification, quantification, fate, and impacts on human health. Sci. Total Environ. 760, 144167.

Challen, R., Brooks-Pollock, E., et al., 2021. "Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study.". BMJ 372, a579.

Table 5

Detailed classification of plastic waste in a single (RT) PCR test as a confirmatory test during COVID-19 pandemic.

NO.	Experimental step	Materials required	Application description	plastic (g/unit)	Quantity for a sample	Plastic (g/test) for a single test	Plastic type
1	sample gathering	10 cm plastic swab	sampling	1.04	1	1.04	Polyester
		5 ml falcon tube	sample transport	3.31	1	3.31	Polypropylene
		surgical masks	PPE	3.35	1 for 24 samples	0.14	Polypropylene
		N95 Masks	PPE	6.23	1 for 24 samples	0.26	Polypropylene
		15 ml falcon tube	Laboratory sample transfer	6.55	1	6.55	Polypropylene
		Face shield	PPE	22	1 for 48 samples	0.458	Polycarbonate
		Isolation gowns	PPE	450	1 for 48 samples	9.375	Polypropylene
		Disposable gloves	PPE	10.76	1	10.76	Polypropylene
2	RNA extraction	1000 µl plastic tip	Sample transfer into the falcon tube	0.9	6 for 1 sample	7.2	Polypropylene
		100 µl plastic tip	Reagent transfer	0.25	1	0.25	Polypropylene
		10 µl plastic tip	sample homogenization	0.17	1	0.17	Polypropylene
		safety box	Secured container	200	2	100	Polypropylene
		Plastic Eppendorf Tube 1.5 ml	Storing liquid samples	0.73	2 for 1 sample	1.46	Polypropylene
		Plastic Eppendorf Tube 2 ml	centrifuging liquid samples	0.82	5 for 1 sample	4.1	Polypropylene
		Face shield	PPE	100	1	100	Polycarbonate
		Isolation gowns	PPE	150	1 for 48 samples	3.125	Polypropylene
		disposable gloves	PPE	10.76	5 pairs for 1 sample	107.6	Polypropylene
		Buffers’ plastic bottle	buffer container	88.7	4 for 100 samples	3.55	Terephalato de polietileno
3	(RT) PCR amplification	1000 µl plastic tip	Sample transfer into the falcon tube	0.9	2 for 48 sample	0.0375	Polypropylene
		RT-qPCR Vials	Storing reagents of PCR	3.5	4 for 100 sample	0.04	Polypropylene
		100 µl plastic tip	reagent transfer	0.25	2 for 48 sample	0.01	Polypropylene
		10 µl plastic tip	sample homogenization	0.17	1	0.17	Polypropylene
		Plastic Eppendorf Tube 1.5 ml	storing liquid samples	0.73	2 for 48 sample	0.03	Polypropylene
		safety box	secured container	200	1 for 48 sample	4.16	Polypropylene
		0.2 ml PCR tube strips	PCR applications	6.7	1	6.7	Polypropylene
		Disposable gloves	PPE	10.76	2 for 48 sample	0.448	Polypropylene
		Isolation gowns	PPE	450	1 for 48 sample	450	Polypropylene
		Face shield	PPE	22	1 for 48 sample	0.458	Polycarbonate
		Face masks	PPE	9.58	1 for 48 sample	0.199	Polypropylene

Credit author statement

Faezeh seif: Methodology, Validation, Writing - review & editing. Mojtaba Kalantar and Nozar Kalantar Fard: Methodology, Validation, Writing - review & editing. Barat Barati and Mahdi Emamian Fard: Methodology, Writing - review & editing. Zahra Noorimotlagh: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Supervision. Seyyed Abbas Mirzaee: Conceptualization, Methodology, Validation, Resources, Writing - original draft, Writing - review & editing, Project administration.

Acknowledgments

The present study was financially support by Shoushtar University of Medical Sciences (IR.SHOUSHTAR.REC.1399.049), which is greatly appreciated. We would also like to thank the healthcare personnel of the hospital complex at Shoushtar city, Khuzestan province, Iran.

and the floors for 5 min after disinfection by alcohol-based hand rubs (ethanol 70%), and in the case of the reception desk, the presence of SARS-CoV-2 was positive after 15 min. After disinfection by sodium hypochlorite (0.001%), SARS-CoV-2 could survive on inanimate surfaces including the nursing station, reception desk, and floors at both 5 and 15 min after disinfection, but not on cell phones and door handles. The results of this study correspond to the time that VOC lineage B.1.1.7 had emerged in the hospital; therefore, it can be concluded that this variant may have different traits, characteristics and persistence in the environment. The results of this study can be used by other researchers to further investigate and determine the characteristics of this variant. During the COVID-19 pandemic, the RT-PCR test was identified and used as a diagnostic and a confirmatory test for the cases of infected people. However, an increased level in plastic waste was inevitable. It was concluded that plastic waste for a single RT-PCR diagnostic test for COVID-19 is 821.778 g of plastic residue/test. It is worth noting that during the (RT) PCR confirmatory test, the operator is required to use PPE, and therefore, the plastic residue of the PPE should be also included in the total amount of plastic residue. Finally, overcoming certain challenges such as minimizing plastic waste, optimization of gas control technologies in incinerators, process redesign, reduction of single-use plastics and PPE, etc. are of utmost importance for improving plastic waste management programs.

Credit author statement

Faezeh seif: Methodology, Validation, Writing - review & editing, Project administration. Mojtaba Kalantar and Nozar Kalantar Fard: Methodology, Validation, Writing - review & editing. Barat Barati and Mahdi Emamian Fard: Methodology, Writing - review & editing. Zahra Noorimotlagh: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Supervision. Seyyed Abbas Mirzaee: Conceptualization, Methodology, Validation, Resources, Writing - original draft, Writing - review & editing, Project administration.
Chan, K.-H., Peiris, J.M., et al., 2011. ‘‘The effects of temperature and relative humidity on
the viability of the SARS coronavirus. Advances in virology 2011.’’
Chia, P.Y., Coleman, K.K., et al., 2020. ‘‘Detection of air and surface contamination by
SARS-CoV-2 in hospital rooms of infected patients.’’. Nat. Commun. 11 (1), 2801.
Coccia, M., 2020. ‘‘Factors determining the diffusion of COVID-19 and suggested strategy
to prevent future accelerated viral infectivity similar to COVID-19.’’. Sci. Total
Environ. 729, 138474.
Colaneri, M., Seminari, E., et al., 2020. ‘‘Severe acute respiratory syndrome coronavirus 2
RNA contamination of inanimate surfaces and virus viability in a health care
emergency unit.’’. Clin. Microbiol. Infect. 26 (8), 1094 e1091-1094.e1095.
Dargahi, A., Jeddi, F., et al., 2021. ‘‘Investigation of SARS-CoV-2 virus in environmental
surface.’’. Environ. Res. 195, 110765.
Davies, N.G., Abbott, S., et al., 2021. ‘‘Estimated transmissibility and impact of SARS-
CoV-2 lineage B.1.1.7 in England.’’. Science 372 (6538) : eabg3055.
Ding, Z., Qian, H., et al., 2021. ‘‘Toilet dominate environmental detection of severe acute
respiratory syndrome coronavirus 2 in a hospital.’’. Sci. Total Environ. 753, 141710.
Harbizadeh, A., Mizraee, S.A., et al., 2019. Indoor and outdoor airborne bacterial air
quality in day-care centers (DCGs) in greater Ahvaz, Iran. Atmos. Environ. 216, 116927.
Iacobucci, G., 2021. ‘‘Covid-19: new UK variant may be linked to increased death rate,
eary data indicate.’’. BMJ 372, n230.
Jiang, F.-C., Jiang, X.-L., et al., 2020a. ‘‘Detection of severe acute respiratory syndrome
coronavirus 2 RNA on surfaces in quarantine rooms.’’. Emerg. Infect. Dis. 26 (9),
2162.
Jiang, Y., Wang, H., et al., 2020b. ‘‘Clinical data on hospital environmental hygiene
monitoring and medical staff protection during the coronavirus disease 2019
outbreak.’’. medRxiv. 2020.2002.2025.20028043.
Kim, U.J., Lee, S.Y., et al., 2020. ‘‘Air and environmental contamination caused by COVID-
19 patients: a multi-center study.’’. Journal of Korean Medical Science 35 (37).
Lee, S.E., Lee, D.Y., et al., 2020a. ‘‘Detection of novel coronavirus on the surface of
environmental materials contaminated by COVID-19 patients in the Republic of
Korea.’’. Osong public health and research perspectives 11 (3), 128.
Lee, S.H., Kim, Y., et al., 2020b. ‘‘Efficacy of sphenopalatine ganglion block in nasal
mucosal headache presenting as facial pain.’’. Cranio 38 (2), 128-130.
Mahase, E., 2021. ‘‘Covid-19: sore throat, fatigue, and myalgia are more common with
early data indicate.’’. BMJ 372, n230.
Maleki, M., Aanvari, E., et al., 2021. An updated systematic review on the association
between atmospheric particulate matter pollution and prevalence of SARS-CoV-2.
Environmental Research, 110898.
Marzoli, F., Bortolami, A., et al., 2021. A systematic review of human coronaviruses
survival on environmental surfaces. Sci. Total Environ. 778 https://doi.org/
10.1016/j.scitotenv.2021.146191, 146191.
Moore, G., Rickard, H., et al., 2021. ‘‘Detection of SARS-CoV-2 within the healthcare
environment: a multi-centre study conducted during the first wave of the COVID-19
outbreak in England.’’. J. Hosp. Infect. 108, 189–196.
Mouchtouri, V.A., Kouras, M., et al., 2020. ‘‘Environmental contamination of SARS-CoV-
2 on surfaces, air-conditioner and ventilation systems.’’. Int. J. Hyg Environ. Health
230, 112599.
Noorimotlagh, Z., Jaafarzadeh, N., et al., 2021a. A systematic review of possible airborne
transmission of the COVID-19 virus (SARS-CoV-2) in the indoor environment.’’. Environ.
Res. 193, 110612.
Noorimotlagh, Z., Karami, C., et al., 2020. ‘‘Immune and bioinformatics identification of T
cell and B cell epitopes in the protein structure of SARS-CoV-2: a systematic review.’’. Int. Immunopharm. 86, 106738.
Noorimotlagh, Z., Mirzaee, S.A., et al., 2021b. A systematic review of emerging human
Coronavirus (SARS-CoV-2) outbreak: focus on disinfection methods, environmental
survival, and control and prevention strategies.’’. Environ. Sci. Pollut. Control Ser. 28
(1), 1–15.
Nottmeyer, L.N., Sera, F., 2021. ‘‘Influence of temperature, and of relative and absolute
humidity on COVID-19 incidence in England - a multi-city time-series study.’’. Environ.
Res. 196, 110977.
Ong, S.W.X., Tan, Y.K., et al., 2020. ‘‘Air, surface environmental, and personal protective
equipment contamination by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) from a symptomatic patient.’’. J. Am. Med. Assoc. 323 (16), 1610–1612.
Orenes-Piñero, E., Baño, F., et al., 2021. ‘‘Evidences of SARS-CoV-2 virus air transmission
indoors using several untouched surfaces: a pilot study.’’. Sci. Total Environ. 751,
142317.
Parashar, N., Hatt, S., 2021. ‘‘Plastics in the time of COVID-19 pandemic: protector or
polluter?’’. Sci. Total Environ. 759, 144274.
Silva, Patricio, L. A., Prata, J.C., et al., 2020. ‘‘Rethinking and optimising plastic waste
management under COVID-19 pandemic: policy solutions based on redesign and
reduction of single-use plastics and personal protective equipment.’’. Sci. Total
Environment. 742, 140565.
Silva, Patricio, L. A., Prata, J.C., et al., 2021. ‘‘Increased plastic pollution due to COVID-19
pandemic: challenges and recommendations.’’. Chem. Eng. J. 405, 126683.
Saadat, S., Rawtani, D., et al., 2020. ‘‘Environmental perspective of COVID-19.’’. Sci. Total
Environment. 728, 138870.
van Doremalen, N., Bushmaker, T., et al., 2020. ‘‘Aerosol and surface stability of SARS-
CoV-2 as compared with SARS-CoV-1.’’. N. Engl. J. Med. 382 (16), 1564-1567.
Van Doremalen, N., Bushmaker, T., et al., 2013. ‘‘Stability of Middle East respiratory
syndrome coronavirus (MERS-CoV) under different environmental conditions.’’. Euro
Surveill. 18 (38), 205960.
Vosoughi, M., Karami, C., et al., 2021. ‘‘Investigation of SARS-CoV-2 in hospital indoor air
of COVID-19 patients’ ward with impinger method.’’. Environmental Science and
Pollution Research.
Wan, B., Zhang, X., et al., 2021. ‘‘On-site analysis of COVID-19 on the surfaces in wards.’’.
Emerg. Infect. Dis. 26 (8), 1094 e1091-1094.e1095.