Paper Accepted*

Original Article / Оригинални рад

Jelena Nešković¹,⇑, Neda Ninković¹, Vanja Opačić-Galić¹, Milica Jovanović-Medojević¹, Marijana Popović-Bajić¹, Miloš Maksimović², Slavoljub Živković¹

The influence of the final irrigation protocol on the efficiency of root canal cleaning

Утицај протокола финалне иригације на ефикасност чишћења канала корена

¹University of Belgrade, School of Dental Medicine, Department of Restorative Dentistry and Endodontics, Belgrade, Serbia;
²University of Belgrade, School of Dental Medicine, Department of Prosthodontics, Belgrade, Serbia

Received: May 13, 2019
Revised: December 2, 2019
Accepted: December 12, 2019
Online First: December 23, 2019
DOI: https://doi.org/10.2298/SARH190513132N

*Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the Serbian Archives of Medicine. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication. Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017. When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

†Correspondence to:
Jelena NEŠKOVIĆ
School of Dental Medicine, University of Belgrade, 4 Rankeova St., Belgrade 11000, Serbia
E-mail: jelenaneskovic74@gmail.com
The influence of the final irrigation protocol on the efficiency of root canal cleaning

Утицај протокола финалне иригације на ефикасност чишћења канала корена

SUMMARY

Introduction/Objective Irrigation has an important role in root canal cleaning and its efficiency depends on the type of irrigants, amount, technique and irrigation protocol. The aim of this work was to estimate the efficiency of cleaning of the canal walls doing the SEM analysis after the instrumentation by rotary NiTi instruments with the use of three different irrigation solutions and two final irrigation protocols.

Methods Sixty extracted human incisors were divided into two groups after the rotary instrumentation with the iRaCe instruments. In both groups the same amount (1,5ml) of three solutions (2% sodium hypochlorite solution, 2% chlorhexidine solution and 10% citric acid solution) and total final irrigation time (90sec) was the same. The final irrigation in the first group was accomplished using the technique of continuous irrigation and in the second group it was done using the intermittent protocol. The roots were cut longitudinally and analyzed by thirds (coronal, middle and apical) on the Scanning Electron Microscope (JOEL, JSM 6460LV, Japan) with ×1,000 zoom.

Results The most efficient cleaning of the root canal walls in both groups was seen after the use of citric acid with the intermittent protocol of the final irrigation (90.7% clean walls), while the least efficient was the final irrigation by chlorhexidine with the continuous irrigation (80.3%). The most efficient cleaning of the canal walls in both groups was observed in coronal third and the largest amount of smear layer in the apical third.

Conclusion The most efficient cleaning of the canal was achieved by the use of citric acid and the intermittent protocol of the final irrigation. In all tested solutions, the intermittent protocol of irrigation was more efficient than continuous irrigation.

Keywords: final irrigation protocol; irrigants; smear layer removal

INTRODUCTION

The success of endodontic treatment significantly depends on the possibility of complete elimination of microorganisms from the root canal, and prevention of reinfection of periapical tissue. Microcomputer tomographic studies have shown that a large part of the surface of the main canal remains untouched by instruments, and in the case of the presence of isthmuses, ramifications and lateral canals, this percentage goes from 30-50% indicating
the extreme importance of irrigation in the cleaning and disinfection of the root canal system [1, 2].

Preparation of the root canal manually and particularly by rotating Ni-Ti instruments, leads to the formation of dentine debris and smear layer which are most often accumulated in the uninstrumented parts of root canal system [3]. The smear layer prevents the adequate adherence of sealer to the walls of the root canal and can be a potential area for the growth of numerous bacteria [4], but also prevent antibacterial agents from reaching the residual bacteria in the dentinal tubules [5]. Mechanical instrumentation eliminates the largest number of bacteria, but maximum reduction of the number of microorganisms organized into biofilms, demands irrigant with good antibacterial effect and adequate irrigation techniques [6, 7, 8].

Irrigation of the canal whose efficiency depends on the type of irrigant, quantity, technique and the protocol of irrigation, is of crucial importance for the efficient cleaning of the complex root canal system [9, 10, 11]. Optimal irrigation today involves the use of two or more solutions and the application of appropriate protocols in order to increase its efficiency [6].

The most commonly used solution for irrigation in endodontics is NaOCl due to its strong antibacterial and exceptional soluble effect, despite the toxicity for periapical tissues [11, 12]. Chlorhexidine is also used because of the extraordinary and prolonged antibacterial effect and the absence of cytotoxicity [12, 13]. Chelating agents, EDTA (tetrasodium ethylenediaminetetraacetic acid) and citric acid, effectively dissolve inorganic substances and thus significantly contribute to the removal of the smear layer [14, 15]. The precondition for the success of the endodontic treatment is clean dentinal walls of the root canal without the presence of a smear layer and debris to allow best sealing and adhesion of sealer [16, 17].

Contemporary irrigation also involves different activation protocols in order to improve efficiency of the irrigant. Studies have confirmed that passive ultrasonic irrigation (PUI) is more effective than conventional [15, 18, 19, 20] and De Mor et al. [18] have found that PUI in 3 cycles is equally effective in debris removal as well as laser-activated NaOCl solution. Leoni et al. [20] found that the XP Endo Finisher is as effective as the PUI, and they also showed that activated irrigation is significantly more efficient in cleaning the root canal from conventional irrigation.
The aim of this study was to evaluate the efficiency of cleaning the root canal walls after instrumentation by rotary Ni-Ti instruments and application of three different irrigation solutions and two final irrigation protocols using SEM analysis.

The hypothesis of this study was that the final three-step irrigation (intermittent protocol) provides more efficient cleaning of the root canal system than the conventional irrigation protocol.

METHODS

The study was conducted on 60 extracted human incisors, which were stored up to experiments in a 0.01% solution of NaOCl at a temperature of 4°C. The crowns of the teeth were cut off so that each root sample was 15 mm long.

After the formation of the access cavity, the initial penetration of the root canal was established by K-file # 10. The working length was determined to be 1 mm shorter than the apical foramen, respectively 14 mm. At the top of each root, a pink wax ball was placed in order to prevent the irrigation solution leaking during the instrumentation. The instrumentation of all canals was carried out by one researcher. After adjusting the working length by a hand instrument and before starting the instrumentation, the canal was irrigated with 2 ml of 1% solution NaOCl.

Mechanical preparation of all canals was performed by NiTi rotating instruments iRaCe (FKG, Dentaire, Swiss) using 3 instruments: R1 # 15/06, R2 # 25/04 and R3 # 30/04. After each instrument, the canals were irrigated with 2 ml of a 1% NaOCl solution with 2 ml plastic syringes and corresponding needles of size 27. After each use of an instrument, irrigation was carried out in the manner described so that the total amount of irrigation was used during preparation for each the sample was 8 ml 1% of the NaOCl solution.

After the instrumentation of the canals, samples were randomly selected in 2 groups of 30 teeth, where the final irrigation was carried out in the first group by a continuous protocol, while in group 2 an intermittent final irrigation protocol was used. In both groups, three solutions were used in the same amount (1.5 ml each) and total final irrigation time (90 sec): 2% solution of sodium hypochlorite (Chloraxid 2%, Cerkamed, Poland); 2% solution of
chlorhexidine (Glucohex 2%, Cerkamed, Poland) and 10% citric acid solution was obtained by diluting 40% citric acid solution (Citric Acid, 40%, Cerkamed, Poland).

Group 1 - In the first group, the final irrigation was realized by the continuous flushing protocol in the amount of 1.5 ml of irrigant for the duration of 90 sec. Ten teeth were irrigated with 1.5 ml of 2% solution of sodium hypochlorite. The amount of 1.5 ml of 2% chlorhexidine solution was used for each of the following 10 teeth, and the last 10 teeth from this group were irrigated with 1.5 ml of 10% citric acid solution.

Group 2 - in the second group the final irrigation was carried out according to an intermittent flushing protocol of 3 × 0.5 ml irrigant for a period of 3 × 30 sec. Each subgroup of 10 teeth was irrigated with following solutions: 3 × 0.5 ml 2% solution of sodium hypochlorite for 3 × 30 sec, 3 × 0.5 ml 2% chlorhexidine solution for 3 × 30 sec, and 3 × 0.5 ml of 10% citric acid solution for 3 × 30 sec.

The roots were longitudinally cut with a diamond disc (so that the root canal remains intact) separated with sharp spatula into two halves. The halves obtained in this way were prepared for SEM analysis (JOEL, JSM 6460LV, Japan). A total of 120 samples were dried and filled with gold and scanned by an electron microscope. For each sample, 5 standardized microphotographs were made for coronal, middle and apical thirds at magnification of 1000x. SEM microphotographs were independently analyzed and appraised by two researchers. In the event of disagreement, the ratings are reconsidered until a consensus was reached.

The criteria set by Hulsmann et al. [21] were used to qualitatively estimate the residual smear layer, according to the cleaning efficiency:

Score 1 – root canal wall without smear layer, all dentinal tubules open;
Score 2 – small quantity of residual smear layer and most of dentinal tubules open;
Score 3 – homogeneous smear layer covers the walls, a few dentinal tubules open;
Score 4 – entire wall of the root canal covered with a smear layer, no open tubules
Score 5 – non-homogeneous smear layer covers the entire surface of the root canal.

Scoring implied that grades 1 and 2 represented a clear root canal wall, and the wall with the present smear layer included grades 3, 4, and 5.
The obtained result was statistically processed in the SPSS 20 program (IBM, Chicago) using the descriptive statistics method and the Hi square test.

The study was approved by the Ethics Commission of the School of Dental Medicine, University of Belgrade (36/6).

RESULTS

The results of the SEM analysis are shown in Table 1-2 and Figure 1-4.

In the group with a continuous final irrigation protocol when NaOCl was used as the irrigant, the lowest average value of the assessment of the smear layer presence was observed in the coronal third (1.6), then in the middle (1.7), while the weakest cleaning was recorded in the apical third (2.14) (Tab 1). Slightly higher mean values of the evaluation of the smear layer was observed after the application of chlorhexidine, mostly in the apical (2.26), then in the middle (1.76) and the coronal third (1.62). The most effective cleansing was observed in the group with citric acid (in the coronal (1.5), in the middle (1.64) and the least effective cleaning in the apical third (2.04)) (Tab 1).

In the group with an intermittent protocol of final irrigation, the mean values of the presence of the residual smear layer were slightly lower in regard to the first group. After using NaOCl, the lowest mean was in the coronal (1.54) then in the middle (1.66) and the highest in the apical third (2.06). When chlorhexidine was used as a final irrigant, the highest mean value is observed in the apical (2.11), slightly lower in the middle (1.66), and the lowest mean value was on the walls of the coronal third (1.62). The smallest amount of residual smear layer was observed in the group with citric acid, the same average value in the coronal and middle third (1.52), and the weakest cleaning in the apical third (1.64) (Table 1).

The analysis of cleaning efficiency of the root canal walls showed that each of the irrigant was more efficient with the protocol of intermittent final irrigation, with no statistically significant difference. After using NaOCl, 83% of clean walls in Group 1 were detected, while 86% of clean walls were recorded in the second group. Worse cleaning was observed after the application of chlorhexidine, 80.3% of clean walls with continuous protocol, 83% of clean walls in the intermittent protocol. The most effective cleaning was
observed after the final irrigation with citric acid using the intermittent irrigation protocol (90.7%), and slightly weaker in the group with continuous irrigation (85.3%) (Table 2).

The most effective cleaning of the root canal walls in both groups was observed after the application of citric acid with the intermittent final irrigation protocol (90.7% clean walls), while the final irrigation with chlorhexidine with continuous irrigation (80.3%) was the least effective.

The most efficient cleaning of the root canal walls in the first group was observed in the coronal third (92%), then in the middle (87.3%), while on the walls of the apical third there was the largest amount of residual smear layer (69.3%) (Table 2).

By analyzing the effectiveness of wall cleaning in the second group, the largest amount of smear layer was observed on the walls of the apical third of the root (75% of the pure walls) (Figure 3, 4) then in the middle third (92%), while the most dentinal tubules were open in the coronal thirds (92.7%) (Table 2).

DISCUSSION

Root canal instrumentation produces a smear layer on all instrumented surfaces of the root canal walls, while the uninstrumented areas of the canal system (isthmuses, lateral canals, anastomoses between the canals...) are usually occluded by debris. Although there are studies showing that the presence of the smear layer does not affect the outcome of endodontic treatment [16], most studies confirm that its presence prevents penetration of intracanal medications into the dentinal tubules and reduces the adhesion, so it is necessary to remove it before definitive obturation [1, 4, 17].

Earlier investigations used light microscopy to identify the smear layer on the canal walls, but today SEM analysis is a standard in the field of quantitative and qualitative estimation of the presence of the smear layer due to high resolution and high magnification [22, 23, 24, 25].

One of the tasks of irrigation is to clean dentinal walls by removing the smear layer and debris and to reduce the number of microorganisms, that is, to improve the adhesion of sealer and thus minimize microleakage [6, 17]. The efficiency of irrigation depends on a number of
factors, and above all on the type, quantity, concentration, time of exposure of the walls to the effect of irrigant and irrigation techniques [3, 7, 11, 12, 20, 22].

The complete instrumentation of the canal in this study was performed by one operator, on simple single root teeth, and all canals were instrumented in the same way with the same quantity of irrigant and the same total duration of irrigation, but with two different final irrigation protocols (continuous and intermittent irrigation) with three different irrigants.

The results of this study show that the mechanical instrumentation with rotating Ni-Ti files followed by extensive irrigation ensures efficient cleaning of the canal walls with a small amount of smear layer present on the walls.

Since no statistical significance was found, the hypothesis of this study is rejected, yet slightly better cleaning of the canal walls in all three thirds, was observed after the intermittent final irrigation protocol in three steps in comparison with the convectional continuous irrigation. This is in accordance with the findings of other authors who have showed that increasing the number of irrigation cycles, the cleaning capacity increases as well as the amount of fresh solution is restored, while in the case of continuous irrigation, the saturation of the solution is faster [7, 11, 25, 26]. Živković et al. [25], have determined that the protocol of the final irrigation in three cycles improves the efficacy of removing the smear layer in the apex segment of the root canal, and Macedo et al. [26] showed that the irrigation protocol in 3 cycles of fresh NaOCl solution increases its cumulative effect and thus the efficacy of cleaning root canal walls.

Such good results can be explained by the fact that instrumented canals were straight and simple, and adequate diameters of apical preparation (30/04) ensures that the tip of the irrigation needle will reach almost to working length of the instrumentation and in this way effectively clean the walls of the root canal. It also explains very good results for chlorhexidine, which, unlike NaOCl and citric acid, does not have the ability to dissolve tissues, but it is used because of a wide antibacterial spectrum (including Enterococcus faecalis) and prolonged antimicrobial effect [8, 12, 13, 23].

Citric acid showed the best cleaning effects (in both groups). This chelating agent is equally effective in removing the smear layer as well as the EDTA according to the findings of Lenard et al. [14]. This mineralolithic perfectly dissolves inorganic material and
significantly affects the removal of the smear layer from root canal, although it does not have antibacterial properties [9, 15].

The worst cleaning of dentinal walls in both groups is observed in the apical third of the root canal, then in the middle, while the smallest amount of the smear layer is noticed in the coronal third of both groups, which is in compliance with the results of other studies confirming that the smear layer from the canal walls is more easily removed from the coronal and middle third [9, 10, 21, 26]. The cleansing problem is particularly emphasized in the region of the apical third [5, 7, 25] due to anatomical specificity (isthmuses, ramification, additional canals), and due to the small diameter of the apical preparation, which makes the debridement of the canal more difficult [3].

So far, research has shown that none of irrigation protocols or tested solutions are able to completely clean root canal walls by removing the smear layer, and nowadays some kind of activation of the irrigation solution during the irrigation process is recommended [6].

Currently, passive ultrasonic irrigation (PUI) has an important role in the activation of irrigants, and its activity is based on cavitation and acoustic streaming of solutions during irrigation. Numerous studies have shown that PUI increases the effect of irrigation by removing more organic tissue, planktonic forms of bacteria and debris from the canal walls. [15, 18, 19, 20, 26].

Laser-activated irrigation is also very effective, but De Mor et al. [18] have found that passive ultrasound activation (PUI) in 3 cycles is equally effective in the removal of debris as well as the laser-activated NaOCl solution.

Research has shown that XP-endo Finisher, which is used for the final debridement of the root canal, due to its specific design and extreme flexibility (it changes shape during instrumentation), can reach the inaccessible parts of the canal system. [7,20,24].

Kato et al. [27] examined Easy Clean (Easy Dental Equipment, Belo Horizonte, MG, Brazil), new mechanical irrigant agitating device, powered by the reciprocating or continuous rotation, and indicated that Easy Clean in reciprocating motion is more efficient in cleaning the apical third of the curved canals compared to the PUI. Duque et al. [28] compared the effectiveness of Easy Clean in continuous and reciprocating motion, PUI, Endoactivator systems (Dentsply Maillefer, Ballaigues, Switzerland) and convectional irrigation for debris
removal from root canal and isthmus, and found that Easy Clean used in continuous rotation provides better cleaning of the canal and isthmus. They also concluded that protocol of 3 irrigating solution activations for 20 seconds ensures better cleaning.

CONCLUSION

The most efficient solution for final irrigation after root canal preparation with rotary iRaCe instruments, in this study was 10% citric acid, while the least effective was chlorhexidine.

Under the conditions and limitations of this research, it can be concluded that root canal instrumentation by rotary instruments followed by the final irrigation was efficient in smear layer removal from the root canal walls. An intermittent irrigation protocol in 3 steps showed slightly more efficient cleaning of the root canal walls compared to continuous irrigation.

Conflict of interest: None declared
REFERENCES

1. Endal U, Shen Y, Knut A, Gao Y, Haapasalo M. A high-resolution computed tomographic study of changes in root canal isthmus area by instrumentation and root filling. J Endod 2011; 37:223-7. doi: 10.1016/j.joen.2010.10.012. PMID:21238806

2. Markvart M, Darvann TA, Larsen P, Dalstra M, Kreiborg S, Bjørndal L. Micro-CT analyses of apical enlargement and molar root canal complexity. Int Endod J 2012; 45:273-81. doi: 10.1111/j.1365-2951.2011.01972.x. PMID: 22044111

3. Gulabivala K, Patel B, Evans G, Ng Y-L. Effects of mechanical and chemical procedures on root canal surfaces. Endod Topics 2005; 10: 103-122. doi: 10.1111/j.1601-1546.2005.00133.x

4. Kokkas AB, Boutsioukis Ach, Vassiliadis LP, Stavrianos CK. The influence of the smear layer on dentinal tubule penetration depth by three different root canal sealers: an in vitro study. J Endod 2004; 30: 100-2. PMID: 14977306.

5. Siqueira JF Jr, Rocas IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod 2008; 1291-1301. doi: 10.1016/j.joen.2008.07.028.

6. Plotino G, Cortese T, Grande NM, Leonardi DP, Giorgio GD, Testarelli L et al. New Technologies to Improve Root Canal Disinfection Braz Dent J 2016;27:3-8 doi: 10.1590/0103-6440201600726

7. Bao P, Shen Y, Lin J, Haapasalo M. In Vitro Efficacy of XP-endo Finisher with 2 Different Protocols on Biofilm Removal from Apical Root Canals. J Endod 2017; 43: 321-5. doi: 10.1016/j.joen.2016.09.021.

8. Neelakantan P, Romero M, Vera J, Daood U, Khan AU, Yan A. et al. Biofilms in Endodontics—Current Status and Future Directions Int J Mol Sci 2017;18:1748 doi:10.3390/ijms18081748

9. Herrera DR, Santos ZT, Tay LY, Silva Ej, Loguercio AD, Gomes BPFA. Efficacy of different final irrigation activation protocols on smear layer removal by EDTA and citric acid. Micr. Res Tech 2013; 76: 364-9. PMID: 15273636.

10. Mittal A, Daadu S, Yendrembam B, Abraham A,Singh NS, Garg P.Comparison of new irrigating solutions on smear layer removal and calcium ions chelation from the root canal: An in vitro study Endod 2018; 30:55-61 doi: 10.4103/endod.endo_71_17

11. Haapasalo M, Wang Z, Shen Y, Curtis A, Patel P, Khakpour M. Tissue dissolution by a novel multisonicultracleaning system and sodium hypochlorite. J Endod 2014; 40: 1178-81. DOI: 10.1016/j.joen.2013.12.029.

12. Rocas IN, Provenzano JC, Neves MA, Siqueira JF Jr. Disinfecting Effects of rotary instrumentation with either 2.5% sodium hypochlorite or 2% chlorhexidine as the main irrigant: a randomized clinical study. J Endod 2016; 42: 943-7. doi: 10.1016/j.joen.2016.03.019.

13. Gonçalves LS, Rodrigues RC, Andrade Junior CV, Soares RG, Vettore MV. The Effect of Sodium Hypochlorite and Chlorhexidine as Irrigant Solutions for Root Canal Disinfection: A Systematic Review of Clinical Trials. J Endod. 2016;42:527-32. doi: 10.1016/j.joen.2015.12.021

14. Jamleh A, Suda H, Adorno CG Irrigation effectiveness of continuous ultrasonic irrigation system: An ex vivo study. Dent Mater J. 2018;37:1-5. doi: 10.4012/dmj.2016.411

15. Martins Justo A, Abreu da Rosa R, Santini MF, Cardoso Ferreira MB, Pereira JR, Hungaro Duarte MA, et al. Effectiveness of final irrigant protocols for debris removal from simulated canal irregularities. J Endod 2014; 40: 2009-14. doi:10.1016/j.joen.2014.08.006.

16. Paeh P, Bhondwe S, Mahajan V, Dhoot R, Muthiyan S. Sequence of Irrigation in Endodontics IOSR J Dent Med Sci 2019; 18:41-43. DOI: 10.9790/0853-1806074143

17. Al Shehadat S. Smear layer in endodontics: role and management. J Clin Dentistry Oral Health 2017; 1 (1): 1-2.

18. De Moor RJG, Meire M, Goharkhay K, Moritz A, Vanobbergen J. Efficacy of Ultrasonic versus Laser-activated Irrigation to Remove Artificially Placed Dentin Debris Plugs. J Endod 2010; 36: 1580-3. doi:10.1016/j.joen.2010.06.007
19. Cesario F, Hungaro Duerte MA, Duque JA, Alcalde MP, de Andrade FB, Reis So MV, et al. Comparisons by microcomputed tomography of the efficiency of different irrigation techniques for removing dentinal debris from artificial grooves. J Conserv Dent. 2018; 21: 383-387. doi: 10.4103/JCD.JCD_286_16

20. Leoni GB, Versiani MA, Silva-Sousa YT, Bruniera JF, Pécora JD, Sousa-Neto MD Ex vivo evaluation of four final irrigation protocols on the removal of hard-tissue debris from the mesial root canal system of mandibular first molars. Int Endod J 2017; 50: 398-406. doi: 10.1111/iej.12630. PMID:26992452

21. Hulsman M, Rummelin C, Schafer R. Root canal cleanliness after preparation with different endodontic handpieces and hand instruments: a comparative SEM investigation. J Endod 1997; 23: 301-6. PMID: 9545932

22. Charlie KM, Kuttappa MA, George L, Manoj KV, Joseph B, John NK. A Scanning Electron Microscope Evaluation of Smear Layer Removal and Antimicrobial Action of Mixture of Tetracycline, Acid and Detergent, Sodium Hypochlorite, Ethylenediaminetetraacetic Acid, and Chlorhexidine Gluconate: An In vitro Study. J Int Soc Prev Community Dent. 2018;8:62-69. doi: 10.4103/jispcd.JISPCD_379_17

23. Poletto D, Poletto AC, Cavalaro A, Machado R, Cosme-Silva L, Garbelini CCD et al. Smear layer removal by different chemical solutions used with or without ultrasonic activation after post preparation. Restor Dent Endod. 2017; 42: 324–331. doi: 10.5395/rde.2017.42.4.324

24. Živković S, Nešković J, Jovanović-Medojević M, Popović-Bajić M, Živković-Sandić M. XP-Endo Finisher: a new solution for smear layer removal. Serb Dent J 2015; 62: 122-9. doi: 10.1515/sdj-2015-0013.

25. Živković S, Nešković J, Jovanović-Medojević M, Popović-Bajić M, Živković-Sandić M. The efficacy of XPendo Shaper (XPS) in the cleaning the apical third of the root canal. Serb Dent J 2017; 64: 171-5. DOI: 10.1515/sdj-2017-0016

26. Macedo RG, Verhaagen B, Wesselink PR, Versluis M, van der Sluis LW. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation. Int Endod J 2014; 47: 147-54. doi: 10.1111/iej.12125.

27. Kato AS, Cunha RS, da Silveira Bueno CE, Pelegrine RA, Fontana CE, de Martin AS. Investigation of the Efficacy of Passive Ultrasonic Irrigation Versus Irrigation with Reciprocating Activation: An Environmental Scanning Electron Microscopic Study. J Endod 2016; 42: 659-63. doi: 10.1016/j.joen.2016.01.016.

28. Duque JA, Duarte MAH, Canali CF, Zancan RF, Vivan RR, Bernardes RA, et al. Comparative Effectiveness of New Mechanical Irrigant Agitating Devices for Debris Removal from the Canal and Isthmus of Mesial Roots of Mandibular Molars. J Endod 2017; 43: 326-331 DOI: https://doi.org/10.1016/j.joen.2016.10.009
Table 1. Mean value of the assessment of residual smear layer on the root canal walls by the thirds

Solution for irrigation	Third of root canal	Smear layer rating	n	x	SD	Med	Min	Max
NaOCl	coronal	100	1.60	0.67	1.5	1.0	3.0	
	middle	100	1.70	0.73	2.0	1.0	4.0	
	apical	100	2.14	1.16	2.0	1.0	5.0	
Chlorhexidine	coronal	100	1.62	0.66	2.0	1.0	3.0	
	middle	100	1.76	0.79	2.0	1.0	4.0	
	apical	100	2.26	1.21	2.0	1.0	5.0	
Citric acid	coronal	100	1.50	0.58	1.0	1.0	3.0	
	middle	100	1.64	0.69	2.0	1.0	3.0	
	apical	100	2.04	1.08	2.0	1.0	5.0	

n – number of teeth; x – mean value; SD – standard deviation
Table 2. Assessment of cleaning efficiency of root canal walls regarding the final irrigation solution and applied irrigation protocol

Final irrigation protocol	Continuous irrigation	Intermittent irrigation				
	Clean walls Score 1, 2	Smear layer present Score 3, 4, and 5	Clean walls Score 1, 2	Smear layer present Score 3, 4, and 5		
Assessment of the presence of a smear layer						
NaOCl SEM analysis	Coronal third	n	90	10	94	6
	%	90	10	94	6	
	Middle third	n	88	12	92	8
	%	88	12	92	8	
	Apical third	n	71	29	72	28
	%	71	29	72	28	
	n	249	51	258	42	
	%	83%	17%	86%	14%	
Chlorhexidine SEM analysis	Coronal third	n	90	10	90	10
	%	90	10	90	10	
	Middle third	n	86	14	90	10
	%	86	14	90	10	
	Apical third	n	65	35	69	31
	%	65	35	69	31	
	n	241	59	249	51	
	%	80.3%	19.7%	83%	17%	
Citric acid SEM analysis	Coronal third	n	96	4	94	6
	%	96	4	94	6	
	Middle third	n	88	12	94	6
	%	88	12	94	6	
	Apical third	n	72	28	84	16
	%	72	28	84	16	
	n	256	44	272	28	
	%	85.3%	14.7%	90.7%	9.3%	
Figure 1. Representative microphotography of the coronal third (citric acid, intermittent protocol) (score 1) – SEM ×1,000
Figure 2. Representative microphotography of the middle third (NaOCl, intermittent protocol) (score 2) – SEM ×1,000
Figure 3. Representative microphotography of the apical third (citric acid, intermittent protocol) (score 2) – SEM ×1,000
Figure 4. Representative microphotography of the apical third (chlorhexidine, intermittent protocol) (score 3) – SEM ×1,000