Dynamical generation of mass in the noncommutative supersymmetric Schwinger model

A. C. Lehumi,∗ J. R. Nascimento,† and A. Yu. Petrov‡

1Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte
Caixa Postal 1524, 59072-970, Natal, RN, Brazil

2Departamento de Física, Universidade Federal da Paraíba
Caixa Postal 5008, 58051-970, João Pessoa, Paraíba, Brazil

Within the superfield formalism, we study the dynamical generation of mass to the gauge superfield in the noncommutative two-dimensional supersymmetric Schwinger model. We show that the radiatively generated mass does not depend on the noncommutative parameter \(\Theta \) up to one-loop order.

PACS numbers: 11.15.-q, 11.10.Nx, 11.30.Pb
I. INTRODUCTION

In the last years, field theory models constructed in lower dimensions of space-time have been intensively discussed, because, through AdS/CFT correspondence [1], they could be related to more elaborated theories in higher dimensions. The supersymmetric gauge theories in lower dimensions considered as candidates to describe M2-branes [2–4] attract main attention. Currently, a large number of papers is devoted to the study of several aspects of these theories, such as effective potential calculations [5–7], dualities [8–11] and generation of mass through the spontaneous symmetry breaking mechanism [12–16]. The Schwinger model, i.e. quantum electrodynamics in two dimensions of space-time, is of the special interest among the low-dimensional gauge theories since it possesses the interesting feature of dynamical generation of mass, and is known as an example of a confining model [17]. It is worth to mention that the two-dimensional noncommutative supersymmetric (SUSY) quantum electrodynamics is finite to all loop orders in perturbation theory [18], with the same conclusion is true for the three-dimensional commutative SUSY QED [19].

Throughout this paper, we are using the superfield formalism; it is the more convenient way to evaluate Feynman diagrams in SUSY models. It preserves a manifest supersymmetry in all stages of calculations, avoiding potential problems, such as, for example, the lacking of a supersymmetric renormalization presented in [20] is not a problem when supergraph techniques are used [21]. The present paper is organized as follows: in Sec. II we introduce the model and evaluate the quadratic part of the effective action for the gauge superfield, in order to observe the dynamical generation of mass to the noncommutative supersymmetric Schwinger model. We demonstrate that this effect is independent of the noncommutative parameter Θ, up to one-loop order, just as the non-supersymmetric version of present model [22]. In Sec. III we present our last comments and remarks.

II. NONCOMMUTATIVE SUSY SCHWINGER MODEL

A. Pure gauge theory

Our starting point is the classical action of the noncommutative SUSY Schwinger model (NSS),

\[
S = \int d^2x d^2\theta \left\{ \frac{1}{2} W^\alpha \ast W_\alpha - \frac{1}{4\xi} D^\alpha \Gamma_\alpha D^\beta \Gamma_\beta + \frac{1}{2} \bar{c} D^\alpha \left(D_\alpha c - ie [\Gamma_\alpha, c] \right) \right\},
\]

where \(W^\alpha = \frac{1}{2} D^\beta D^\alpha \Gamma_\beta - \frac{ie}{2} [\Gamma_\alpha, D_\beta \Gamma_\alpha]_s - \frac{e^2}{6} \{\Gamma_\beta, \{\Gamma_\alpha, \Gamma_\gamma\}_s\}_s \) is the noncommutative gauge super-
field strength which transforms covariantly, \(W_{\alpha} = e^{iK} * W_{\alpha} * e^{iK} \), with \(K(x, \theta) \) being a real scalar superfield. Essentially, as discussed in [13], there is no difference between conventions and notations for supersymmetric models defined in three and two dimensions of space-time. Therefore, we use the notations and conventions as adopted in [23]. The inclusion of a gauge fixing and the corresponding Faddeev-Popov ghosts terms is required to quantize this model.

For later purposes, let us write the quadratic part of the gauge superfield action, which is given by

\[
S_{\text{gauge}} = \int d^2xd\theta \left\{ -\frac{1}{8} \Gamma \gamma D^\alpha D^\gamma D_\alpha \Gamma_\beta + \text{gauge fixing} \right\}
\]

\[
= \int \frac{d^2p}{(2\pi)^2} d^2\theta \left\{ -\frac{1}{4} \Gamma(p, \theta) p^2 \left(C_{\beta\gamma} + \frac{p_{\beta\gamma} D^2}{p^2} \right) \Gamma(-p, \theta) + \text{gauge fixing} \right\}.
\]

The propagators obtained from (1), for the pure gauge sector, can be cast as

\[
\langle \Gamma^\alpha(-p, \theta_1) \Gamma^\beta(p, \theta_2) \rangle = \frac{i}{2} \frac{D^2}{(p^2)^2} (D_\beta D_\alpha - \xi D_\alpha D_\beta) \delta_{12}
\]

\[
= \frac{i}{2} \left(1 + \xi \right) C_{\beta\alpha} p^2 + \left(1 - \xi \right) p_{\beta\alpha} D^2 \delta_{12},
\]

\[
\langle c(p, \theta_1) c(-p, \theta_2) \rangle = \frac{D^2}{p^2} \delta_{12},
\]

where \(\delta_{12} = \delta^2(\theta_1 - \theta_2) \).

For simplicity, but without loss of generality, we will work in the Feynman gauge, i.e., we choose \(\xi = 1 \).

The effective action receives one-loop contributions from the diagrams drawn in Fig. 1. Performing the D-algebra manipulations with the help of the Mathematica\(^{\text{©}}\) packet SusyMath [24], we arrive at the following results. The supergraph 1(a) is vanishing, while the others contributions can be cast as

\[
S_{\text{loop}}(\text{gauge}) = \frac{e^2}{4} \int \frac{d^2p}{(2\pi)^2} d^2\theta \int \frac{d^2k}{(2\pi)^2} \Gamma^\alpha(p, \theta) \left(p_{\alpha\beta} D^2 + 2C_{\beta\alpha} k^2 \right) \sin^2 \left(k \wedge p \right) \frac{k^2(1-k^2)}{k^2(k+p)^2} \Gamma(-p, \theta);
\]

\[
S_{\text{loop}}(\text{gauge}) = -\frac{e^2}{4} \int \frac{d^2p}{(2\pi)^2} d^2\theta \int \frac{d^2k}{(2\pi)^2} \Gamma^\alpha(p, \theta) \left(p^2 - 2k^2 \right) C_{\beta\alpha} \sin^2 \left(k \wedge p \right) \Gamma(-p, \theta).
\]

Performing some algebraic manipulations and adding these two contributions, we have

\[
S_{\text{loop}}(\text{gauge}) = -\frac{e^2}{4} \int \frac{d^2p}{(2\pi)^2} d^2\theta \Gamma^\alpha(p, \theta) \left(p_{\alpha\beta} D^2 + C_{\beta\alpha} p^2 \right) \Gamma(-p, \theta) \int \frac{d^2k}{(2\pi)^2} \frac{\sin^2 \left(k \wedge p \right)}{k^2(k+p)^2}.
\]

Using Feynman representation and trivial transformations we can rewrite the integral over \(k \) as

\[
I = \frac{1}{2} \int \frac{d^2k}{(2\pi)^2} \int_0^1 dx \left[\frac{1}{k^2 + p^2 x (1-x)^2} - \frac{\cos(2k \wedge p)}{k^2 + p^2 x (1-x)^2} \right] \equiv \frac{1}{2} (I_1 - I_2),
\]
where \(I_1 \) and \(I_2 \) are planar and nonplanar contributions.

It is easy to see that
\[
I_1 = \frac{1}{4\pi} \int_0^1 dx \frac{1}{M^2(x)},
\]
where \(M^2(x) = -p^2x(1-x) \). We note, however, that this integral diverges both at higher and lower limits, so, we implement the cutoff regularizations on both limits which yields
\[
I_{1\text{reg}} = \frac{1}{4\pi} \int_{\epsilon_1}^{1-\epsilon_2} dx \frac{1}{M^2(x)},
\]
where, at the end of the calculations, one must put \(\epsilon_1, \epsilon_2 \to 0 \).

Applying the results from [25] and regularizing the integral in the similar way, we find
\[
I_{2\text{reg}} = \frac{1}{4\pi} \int_{\epsilon_1}^{1-\epsilon_2} dx \frac{1}{M^2(x)} \sqrt{4M^2(x)p \circ p K_{-1}(\sqrt{4M^2(x)}p \circ p)},
\]
where \(p \circ p = p_m \Theta^{mn} \Theta_{nl} p^l \), that in two dimensions of space-time can be written as \(\Theta^2 p^2 \), once we assume \(\Theta^{mn} = \Theta^{\epsilon mn} \). Thus, we arrive at the final expression for the integral
\[
I_{\text{reg}} = \frac{1}{8\pi} \int_{\epsilon_1}^{1-\epsilon_2} dx \frac{1}{M^2(x)} \left[1 - \sqrt{4M^2(x)\Theta^2 p^2} K_{-1}(\sqrt{4M^2(x)\Theta^2 p^2}) \right].
\]

Unfortunately, this integral cannot be more simplified since the modified Bessel function cannot be expressed in terms of the elementary functions. However, for our aims, that is, or studying the mass generation, it is sufficient to use its asymptotic behavior for small arguments: \(K_{\pm 1}(s) = \frac{1}{s} + cs + O(s^2) \), where \(c \) is a constant whose explicit value is not important. Therefore, in the limit of \(p^2 \Theta^2 \sim 0 \), we obtain that the integral \(I \) is of order of \(\Theta^2 p^2 \). Taking into account only two leading terms of the expansion of the modified Bessel function, we find that the terms singular in the limits \(\epsilon_1 \to 0 \) and \(\epsilon_2 \to 0 \) turn out to be completely cancelled, after which we can remove the regularization, and the integral over the Feynman parameter \(x \) is trivial. As a result, we find that the effective action is just given by
\[
S_{\text{eff}}(\text{gauge}) = -\frac{1}{4} \int \frac{d^2p}{(2\pi)^2} d^2\theta \Gamma^\alpha(p, \theta) p^2 \left(C_{\beta\alpha} + \frac{p_{\alpha\beta} D^2}{p^2} \right) [1 + ce^2 \Theta^2 p^2] \Gamma^\beta(-p, \theta).
\]
We conclude that no mass is dynamically generated due to self-interacting gauge sector.

B. Matter superfields in fundamental representation

The form of the matter couplings depends on assumed noncommutative representation for matter superfields. Let us first consider matter superfields in the fundamental left-representation. To the action [1] we add the following matter superfield action
\[
S = \int d^2 x d^2 \theta \left\{ - \bar{\Phi} D^2 \Phi - \frac{e^2}{2} \bar{\Phi} * \bar{\Phi} * \bar{\Phi} * \Phi + i \bar{\phi} \left[D^\alpha \Phi * \Gamma_\alpha * \Phi - \Phi * \Gamma_\alpha * D^\alpha \Phi \right] \right\},
\]
from which we obtain the matter superfield propagator given by

$$\langle \Phi(k, \theta_1) \bar{\Phi}(-k, \theta_2) \rangle = -i \frac{D^2}{k^2} \delta_{12}. \quad (14)$$

The contributions due to matter coupling, Figures 1 (d) and (e), in the fundamental representation, can be cast as

$$S_{\text{d+e}} = -\frac{e^2}{2} \int \frac{d^2p}{(2\pi)^2} d^2\theta \int \frac{d^2k}{(2\pi)^2} \Gamma^\alpha(p, \theta) \left\{ C_{\beta\alpha} \frac{k^2}{k^2} - \frac{C_{\beta\alpha}}{(k+p)^2} \right\} \Gamma^\beta(-p, \theta). \quad (15)$$

We can note that the logarithmic divergent terms cancel between each other, and the contribution to the quadratic part of effective action for the gauge superfield coming from matter sector is given by

$$S_{\text{d+e}} = -\frac{e^2}{8} \int \frac{d^2p}{(2\pi)^2} d^2\theta \left\{ \Gamma^\alpha(p, \theta) \frac{1}{k^2} \frac{1}{(k+p)^2} \right\} \Gamma^\beta(-p, \theta). \quad (16)$$

Summing up the classical and quantum parts of the effective action, we have

$$S_{\text{eff}} = -\frac{1}{4} \int \frac{d^2p}{(2\pi)^2} d^2\theta \left\{ \Gamma^\alpha(p, \theta) \frac{1}{k^2} \frac{1}{(k+p)^2} \right\} \Gamma^\beta(-p, \theta). \quad (17)$$

To study dynamical generation of mass it is enough to evaluate the effective action in the limit $p^2 \to 0$. Performing the integral $\int \frac{d^2k}{(2\pi)^2} \frac{1}{k^2(k+p)^2}$ with the help of an infrared regulator and taking $p^2 \to 0$, we obtain

$$S_{\text{eff}} = -\frac{1}{4} \int \frac{d^2p}{(2\pi)^2} d^2\theta \left\{ \Gamma^\alpha(p, \theta) \frac{1}{k^2} \frac{1}{(k+p)^2} \right\} \Gamma^\beta(-p, \theta) \quad (18)$$

where we find the presence of a massive pole for the perturbative full propagator arisen from the effective action (18), where $M_\gamma^2 = \frac{e^2}{3\sqrt{3}}$. One should notice that the dynamically generated mass is independent of noncommutative parameter Θ.

C. Matter superfields in adjoint representation

When matter superfields are assumed to be in the noncommutative adjoint representation, the matter superfield action turns out to be

$$S = \int d^2xd^2\theta \left\{ - \tilde{\Phi} D^2 \Phi + \frac{e^2}{2} [\tilde{\Phi}, \Gamma^\alpha]_A * [\Gamma_A, \Phi]_A - \frac{ie}{2} \left(D^\alpha \tilde{\Phi} * [\Gamma_A, \Phi]_A - [\tilde{\Phi}, \Gamma^\alpha]_A * D_A \Phi \right) \right\}. \quad (19)$$
The vertices of interaction written in terms of noncommutative Moyal phases are given by equations (A6) and (A7). This sector contributes to effective action with

$$S_{1}^{d+e} = -\frac{e^2}{2} \int \frac{d^2p}{(2\pi)^2}d^2\theta \Gamma^{\alpha}(p,\theta) \left(p_{\alpha\beta}D^2 + C_{\beta\alpha}p^2 \right) \Gamma^{\beta}(-p,\theta) \int \frac{d^2k}{(2\pi)^2} \frac{\sin^2(k \wedge p)}{k^2(k^2+p^2)}.$$ (20)

Adding (20) with the contribution that come from the gauge sector (6), the quantum correction to the quadratic part of the gauge superfield effective action is given by

$$S_{\text{1 loop}} = -\frac{3}{4} e^2 \int \frac{d^2p}{(2\pi)^2}d^2\theta \Gamma^{\alpha}(p,\theta)p^2 \left(C_{\beta\alpha} + \frac{p_{\beta\alpha}D^2}{p^2} \right) \int \frac{d^2k}{(2\pi)^2} \frac{\sin^2(2k \wedge p)}{(k^2+p^2)k^2} \Gamma^{\beta}(-p,\theta).$$ (21)

One-loop quantum effects (21) do not change the dynamics of the model when matter superfields are in the adjoint representation. Just as the pure gauge sector, cf. (12), the one-loop contribution is of the order $\Theta^2 p^2$ and no generation of mass is present in this version of the model up to this order.

III. FINAL REMARKS

In this paper we have computed the effective action of the noncommutative gauge superfield in interaction with matter scalar superfield, both in left and adjoint representations, in the noncommutative supersymmetric quantum electrodynamics in two-dimensional of space-time, i.e., the SUSY Schwinger model. We observe that the model, with the matter in noncommutative left representation, presents a dynamical generation of mass to the gauge superfield, that is an effect independent of the noncommutative parameter Θ, up to one-loop order. When the matter superfields are in the noncommutative adjoint representation, the model does not exhibit such effect. As recently suggested in [26], we expect that the dynamical generation of mass as well as a Θ dependence in such mass can occur when three-loop Feynman supergraphs are taken into account. Actually, this work is in progress. Also, we expect that this approach can be useful for study of the non-Abelian extension of the Schwinger model and for studies of the three-dimensional noncommutative SUSY QED. We are going to discuss these problems in forthcoming papers.

Acknowledgements. This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The work by A. C. Lehum and A. Yu. P. has been supported by the CNPq project No. 303392/2010-0 and 303461/2009-8, respectively.
Appendix A: Noncommutative vertices

The interaction vertices of noncommutative extensions of field theories are characterized by the presence of a noncommutative phase, that is, a function dependent on noncommutative parameter Θ. These noncommutative vertices, for the model under consideration, are presented in the subsections below.

1. Gauge superfield self-interactions and ghost couplings

The noncommutative vertices for the gauge superfield self-interaction and Fadeev-Popov ghost couplings are given by:

\[V_2(a) = \frac{e}{2} \sin (k_2 \wedge k_3) D^\gamma D^\alpha \Gamma_\gamma(k_1) \Gamma^\beta(k_2) D_\beta \Gamma_\alpha(k_3) ; \] (A1)

\[V_2(b) = \frac{e^2}{2} \sin (k_3 \wedge k_4) \sin [k_2 \wedge (k_3 + k_4)] \left\{ \Gamma^\gamma(k_1) D_\gamma \Gamma^\beta(k_2) \Gamma^\beta(k_3) D_\beta \Gamma_\alpha(k_4) + \frac{2}{3} D^\gamma D^\alpha \Gamma_\gamma(k_1) \Gamma^\beta(k_2) \Gamma_\beta(k_3) \Gamma_\alpha(k_4) \right\} ; \] (A2)

\[V_2(c) = e \sin (k_3 \wedge k_2) \bar{c}(k_1) D^\alpha \left[\Gamma_\alpha(k_2) c(k_3) \right] , \] (A3)

where $a \wedge b = a_\mu b_\nu \Theta^{\mu\nu}$.

2. Matter superfield couplings: fundamental representation

When matter superfield is in the fundamental left representation, the noncommutative vertices can be cast as

\[V_2(d) = \frac{ie}{2} \left[e^{ik_3 \wedge k_2} D^\alpha \bar{\Phi}(k_1) \Gamma_\alpha(k_2) \Phi(k_3) - e^{ik_2 \wedge k_3} \bar{\Phi}(k_1) \Gamma_\alpha(k_3) D^\alpha \Phi(k_2) \right] ; \] (A4)

\[V_2(e) = -\frac{e^2}{2} e^{-ik_2 \wedge (k_3 + k_4) + k_3 \wedge k_4} \Gamma^\alpha(k_1) \Gamma_\alpha(k_3) \bar{\Phi}(k_2) \Phi(k_4) . \] (A5)

3. Matter superfield couplings: adjoint representation

When matter superfield is in the adjoint representation, the noncommutative vertices look like

\[V_2(d) = \frac{e}{2} \sin (k_2 \wedge k_3) \Gamma^\alpha(k_2) D_\alpha \left[\bar{\Phi}(k_1) \Phi(k_3) \right] ; \] (A6)
$V_{\varphi e} = -2e^2 \sin [k_2 \wedge (k_3 + k_4)] \sin (k_3 \wedge k_4) \bar{\Phi}(k_1) \Gamma^\alpha(k_2) \Gamma_\alpha(k_3) \Phi(k_4) . \quad (A7)$

[1] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[2] J. Bagger and N. Lambert, Phys. Rev. D 75, 045020 (2007); Phys. Rev. D 77, 065008 (2008).
[3] A. Gustavsson, Nucl. Phys. B 811, 66 (2009).
[4] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, JHEP 0810, 091 (2008).
[5] D. Gaiotto and X. Yin, JHEP 0708, 056 (2007).
[6] M. Benna, I. Klebanov, T. Klose and M. Smedback, JHEP 0809, 072 (2008).
[7] I. L. Buchbinder, N. G. Pletnev and I. B. Samsonov, JHEP 1101, 121 (2011).
[8] A. Karlhede, U. Lindstrom, M. Rocek and P. van Nieuwenhuizen, Phys. Lett. B 186, 96 (1987).
[9] A. F. Ferrari, M. Gomes, J. R. S. Nascimento, A. Yu. Petrov and A. J. da Silva, Phys. Rev. D 73, 105010 (2006).
[10] M. Gomes, J. R. Nascimento, A. Yu. Petrov, A. J. da Silva and E. O. Silva, Phys. Lett. B 666, 91 (2008).
[11] A. F. Ferrari, M. Gomes, A. C. Lehum, J. R. Nascimento, A. Yu. Petrov and A. J. da Silva, Phys. Lett. B 678, 233 (2009).
[12] A. C. Lehum, A. F. Ferrari, M. Gomes and A. J. da Silva, Phys. Rev. D 76, 105021 (2007).
[13] A. F. Ferrari, E. A. Gallegos, M. Gomes, A. C. Lehum, J. R. Nascimento, A. Yu. Petrov and A. J. da Silva, Phys. Rev. D 82, 025002 (2010).
[14] A. C. Lehum, A. J. da Silva, Phys. Lett. B 693, 393-398 (2010).
[15] E. A. Gallegos, A. J. da Silva, arXiv: 1111.2886 [hep-th].
[16] A. C. Lehum, arXiv:1202.4965v1 [hep-th].
[17] E. Abdalla, M. C. B. Abdalla and K. D. Rothe, “Nonperturbative methods in two-dimensional quantum field theory,” Singapore, Singapore: World Scientific (1991) 728 p.
[18] M. Gomes, J. R. Nascimento, A. Yu. Petrov and A. J. da Silva, arXiv: 1112.2105 [hep-th].
[19] A. F. Ferrari, M. Gomes, A. C. Lehum, A. Y. Petrov and A. J. da Silva, Phys. Rev. D 77, 065005 (2008).
[20] T. Inami, Y. Saiito, M. Yamamoto, Prog. Theor. Phys. 103, 1283-1288 (2000).
[21] A. F. Ferrari, A. C. Lehum, A. J. da Silva and F. Teixeira, J. Phys. A 40, 7803 (2007).
[22] F. Ardalan, M. Ghasemkhani and N. Sadooghi, Eur. Phys. J. C 71, 1606 (2011).
[23] S. J. Gates, M. T. Grisaru, M. Rocek, W. Siegel. Superspace or One Thousand and One Lessons in Supersymmetry. Benjamin/Cummings, 1983, hep-th/0108200.
[24] A. F. Ferrari, Comput. Phys. Commun. 176, 334 (2007).
[25] L. Alvarez-Gaume, J. L. F. Barbon and R. Zwicky, JHEP 0105, 057 (2001).
[26] A. Armoni, Phys. Lett. B 704, 627 (2011).
Figure 1. Diagrams that contribute with quadratic part of gauge superfield effective action. In this figure, continuous lines represent matter superfields propagators, wavy lines gauge superfield propagators and dashed lines ghost superfield propagators.

Figure 2. Noncommutative vertices. In this figure, continuous lines represent external matter, wavy lines external gauge and dashed lines external ghost superfields.