Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair

Henri J. van de Vrugt1,2*, Tim Harmsen1, Joey Riepaame1,4, Georgina Alexantya1, Saskia E. van Mil2, Yne de Vries2, Rahman Bin Ali3, Ivo J. Huijbers3, Josephine C. Dorsman2, Rob M.F. Wolthuis2, Hein te Riele1,2*.

1. Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

2. Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.

3. Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

4. Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford South Parks Road, OX1 3RE, Oxford, UK.

* corresponding authors
Supplemental Material

Supplemental text

Additional gene information of predicted off target sites sgRNA+1

Apoptosis-associated tyrosine kinase (*Aatk*)
SgRNA+1 targets *Aatk* on mouse chromosome 11 at position 120,008,916 in intron 13. *Aatk* encodes a tyrosine kinase that is expressed during apoptosis. *Aatk* expression was detected in several tissues and is observed in a subset of hematopoietic (progenitor) cells, although a gene function has been proposed in neuronal differentiation. Expression was also detected in mouse embryonic fibroblasts, but has not been reported in mouse embryonic stem cells.

Podocalyxin-like 2 (*Podxl2*)
SgRNA+1 targets *Podxl2* on mouse chromosome 6 at position 88,845,039, just 19 nucleotides downstream of the splice donor of intron 6. *Podxl2* encodes a surface transmembrane protein and is a member of the CD34 family. *Podxl2* expression is observed in several tissues and cell types, including mouse embryonic stem cells and fibroblasts, but has not been reported in hematopoietic progenitors. The Podxl2 protein is functionally involved in the interaction between vascular surfaces and leukocytes.

Amyloid-beta A4 precursor protein-binding family A member 1 (*Apba1*)
SgRNA+1 targets *Apba1* on mouse chromosome 19 at position 23,948,003 in exon 13. *Apba1* encodes a protein that is a member of the X11 family of adapter proteins implicated in the formation of multiprotein complexes and is potentially important for adhesion and vesicle exocytosis of neuronal cells. Expression of *Apba1* appears predominantly in neuro-endocrine tissues. However, other studies have reported *Abpa1* expression in mouse embryonic stem cells, embryonic fibroblasts, and hematopoietic cells.

* The presented information was obtained from www.ensembl.org using version GRCm38.p6 of the mouse reference genome. Data on gene function and expression data were obtained from www.uniprot.org and the gene expression atlas at www.ebi.ac.uk/gxa/home.

Supplemental Table 1. Birth frequencies of *Fancf* c.828InTAAA mice from heterozygous breeding pairs

Genotype	%
WT	34
HET	41
MUT	25

Frequencies are based on 5 litters with a total of 44 pups
Supplemental Table 2A. Distinct *Fancf* alleles identified in mouse fibroblasts transfected with px330Puro sgRNA-14

#1: number of clones that contained indicated allelic variant of *Fancf*. #2: In total 34 *Fancf* alleles were identified in 12 fibroblast clones. #3: insertion identified as nucleotides 520-589 of the *Beta-lactamase* coding sequence in the pX330Puro plasmid. Restored ORFs are indicated by grey background.
Supplemental Table 2B. Distinct Fancf alleles identified in mouse fibroblasts transfected with px330Puro sgRNA+1

Allele	DNA Sequence	Protein Sequence	Clones	Allelic Frequencies
1	828 InsTAA (parental)	278 stop	3	4.2%
2	830 Ins 133nt 5'	278+17 stop	1	1.4%
3	830 Ins 247nt 5'	278 Ins NWELTAPPNK	1	1.4%
4	830 Ins A	278 stop	1	1.4%
5	830 Ins AA	278 stop	1	1.4%
6	830 Ins C	278+16 stop	1	1.4%
7	830 Ins CA	278 Ins SK	2	2.8%
8	830 Ins T	278+10 stop	1	1.4%
9	830 Ins TA	279 Ins TK	1	1.4%
10	832 Ins 37nt 5'	278 stop	1	1.4%
11	Del 814-828 CAAAGGGGTGCTGAT 830 Ins TA	271 stop	1	1.4%
12	Del 815-832 GGTGGTCGTGTAATAA	275+14 stop	1	1.4%
13	Del 826-830 TGTTA	277+15 stop	2	2.8%
14	Del 826-834 TGTTAAGT	277+59 stop	1	1.4%
15	Del 826-836 TGTTAAGTGGC	277+13 stop	1	1.4%
16	Del 826-829 GT 830 Ins A	277 stop	2	2.8%
17	Del 829 T	279 Ins K	9	12.5%
18	Del 829-830 TA	279+15 stop	1	1.4%
19	Del 829-832 TAAA	WT Fancf	2	2.8%
20	Del 829-833 TAAA	278+18 stop	1	1.4%
21	Del 829-845 TAAAGGTAGTAGTAGA	278+10 stop	1	1.4%
22	Del 830 A	278 stop	18	25.6%
23	Del 830-831 AA	278 stop	3	4.2%
24	Del 830-831 AA Ins830 T	279 Ins L	3	4.2%
25	Del 830-832 AAA	278+60 stop	1	1.4%
26	Del 830-833 AAAAG	278 YFY	1	1.4%
27	Del 830-834 AAAAG	278+14 stop	2	2.8%
28	Del 830-836 AAAAGTGGC	279 YFY del1280 P	1	1.4%
29	Del 831-834 AAAAGT	279 YFY	4	5.6%
30	Del 831-835 AAAGT	278+14 stop	1	1.4%
31	Del 834-837 TGGC	278 stop	1	1.4%

#1: number of clones that contained indicated allelic variant of Fancf, #2: In total 72 Fancf alleles were identified in 27 fibroblast clones. #3: insertion identified as nucleotides 36-148 of the Beta-lactamase coding sequence in the px330Puro plasmid. #4: insertion identified as nucleotides 1254-1282 of the Cas9 coding sequence in the px330Puro plasmid. #5: Nucleotides 1-34 of the insertion are identical to mouse chromosome 7: nucleotides 27,623,159-27,623,195 encoding for Akt2.

Restored ORFs are indicated by grey background.
Supplemental Table 3. Identified *Fancf* alleles in template gene edited mouse ES clones applying sgRNA+1

A total of 9 clones edited with wildtype Cas9 were analyzed by sequencing to confirm the presence of the *KpnI* site. A total of 44 clones exposed to Cas9D10A were analyzed to document allelic frequencies. Note that clones selected in the presence of MMC always carried at least one functionally corrected *Fancf* allele. Gene editing with either wildtype Cas9 or Cas9D10A differentially affects the second *Fancf* allele, with 100% of the wtCas9 treated clones showing InDels, while among 21 templated repaired Cas9D10A treated clones only 1 clone presented evidence that the second allele was affected, while all other clones (95%) maintained an unaffected parental allele (p=0.001 Fisher exact test). HDR: homology-directed repair using the ssODN as template, resulting into elimination of the c.828InsTAAA mutation (del 829-832) and introduction of the *KpnI* recognition site 835C>A. A.S.: anti-sense. *KpnI* *: RFLP detected only one allele, in which the *KpnI* site was present. +/-: represents data from clones that were either selected by MMC, or were taken from non-MMC treated control wells. Parental: refers to the original *Fancf* c.828InsTAAA allele present in the cells before gene editing. W.T. = wildtype *Fancf* sequence. n.d. = not detected, implying homozygous HDR or second allele carries a big deletion. * One discrepancy between RFLP analysis and sequence analysis was observed among 53 samples: *KpnI* was not detected by RFLP but was present during sequence analysis. Aberrant protein sequences indicated in red.
Supplemental Table 4. Summary of gene editing, RFLP, and clonal survival frequencies*

Strategy	Fibroblast pool	mESC pool	mESC clones						
	TIDER	KpnI	MMC	TIDER	KpnI	MMC	KpnI	KpnI	Sequencing
Wt Cas9 sense	76.1	2.9	30	44.1	3.1	27.8	10.6	12.8	HDR + indels other allele
Wt Cas9 AS	67.7	2.9	30	47.8	6.1	35.6	20.0	53.2	HDR + non-modified allele
Cas9 D10A sense	5.0	0.9	12	0.7	0	0.9	10.4	80.0	HDR + indels other allele
Cas9 D10A AS	15.0	0.7	0	3.5	0.9	2.0	31.2	81.8	HDR + non-modified allele

*Numbers indicate percentages
Supplemental Table 5. Applied oligonucleotides

Experiment	Orientation and purpose	Oligonucleotide sequence 5’ - 3’
Genotyping	Wildtype Fancf forward	CTGCAAAAGGGTGCCCTGGGT
	Mutant Fancf forward	GCAAAAGGGTGCCCTGGTAAA
	Reverse primer	GAACCTCGAAATCTCCATCAAGGCTTTGC
Puromycin cassette	Forward	GGTCGCCCGACGCCCCTTTAGTCCAGCCAAGCCTTAG
	Reverse	TCACTGAGGGCCTCCCCTACTATGGTTGCTTTGAC
gRNA oligo’s	sgRNA-14 sense	AAAGGACGAAAAACCCGCTGCACATATGCTACAGGCC
	sgRNA-14 antisense	TCTCTAGGGTTTCAACTTGCCAGATCATAGTGGCC
	sgRNA+1 sense	AAAGGACGAAAACCCGCTCCATGCTGTTGAGGACTTTACC
	sgRNA+1 antisense	TCTCTAGGGTTTCAACTTGCCAGATCATAGTGGCC
Mock target sequence		GGTCCTTCCAGGAGACCT
Template ssODNs	Sense	CCGTGACTTGCTCAAACGCTGGGACGCGTGACCAGTTGCA
	Antisense	AAGCTCTGAGGCGACCTTACAGGCAAGCTTTCACCGAGCTTTAGCC
RFLP and clone sequencing	Fancf forward and sequence primer	GTGCGGATGAGACACAGAAAACCTACTAGC
	Fancf reverse	AGCCCTGGGAAACTGAGAATCTACTCTAGAC
	PJet forward	CGACTCATATAGGGAGAGGCC
	PJet reverse	AAGAACATCGATTTTCCATGGC
TIDE / TIDER	Fancf forward	CTGCTACGGCAGGAGAAC
	Fancf reverse	TCAAGGGGGCAATTTAATGGT
	Fancf sequence primer	TGAGACACAGAAAACCTACTGC
	Aatk forward	CCAGTCCGCTGAGATGAC
	Aatk reverse	GCTTTTGAGCACTTGAGG
	Aatk sequence primer	GGAGGAGAACAGCAAGATG
	Podxl2 forward	GGAGACGCAAACAGGCTCT
	Podxl2 reverse	TTGTGTCCCATAGGCGA
	Podxl2 sequence primer	GGAGTGGGAGACAGGTTAG
	Apba1 forward	CGTAGCCCTCGGTGAC
	Apba1 reverse	GTCGGGCAATTTAGGAG
	Apba1 sequence primer	ATAGCTGCTGAGAGA

Oligonucleotides were obtained from Sigma-Aldrich.
Supplemental Figure 1. Representative sequence chromatograms for TIDE on and off-target analysis

On-Target: Fancf

Control	Cas9WT	Indel	R²
		37.4%	0.94

Off-Target 01: Aatk (1 mismatch sgRNA+1, position: 5)

Control	Cas9WT	Indel	R²
		9.3%	0.99

Off-Target 03: Podxl2 (3 mismatches sgRNA+1, positions: 2, 3, 17)

Control	Cas9WT	Indel	R²
		0.5%	0.98

Off-Target 04: Apba1 (3 mismatches sgRNA+1, positions: 2, 7, 8)

Control	Cas9WT	Indel	R²
		6.1%	0.96

TIDE scores are presented on the right side of the figure. SgRNA recognition sequences and PAM motifs are shown. Blue arrows indicate predicted Cas9 DSB sites.
Supplemental Figure 2. FANCD2 western blot

Full image of the cropped FANCD2 western blot image in manuscript figure 5. CRISPR/Cas9 gene editing of mutant *Fancf* restores FA pathway activity as observed by the activation of FANCD2 in the presence of hydroxy urea (HU). Lanes 1, 2: wildtype (WT) mouse embryonic stem cells (mESCs). Lanes 3, 4: parental mESCs mutant for *Fancf*. Lanes 5, 6: template edited mESC clone after exposure to Cas9 nickase (D10A). Lanes 7, 8: template edited mESC clone after exposure to wildtype Cas9. Lane 9: protein size marker. Lane 10: independent template edited mESC clone after exposure to wildtype Cas9. mD2-S: FANCD2-Short represents the non-ubiquitinated protein. mD2-L: FANCD2-Long represents the ubiquitinated protein.