RESEARCH ARTICLE

Lipopolysaccharide-Induced CXCL10 mRNA Level and Six Stimulant-mRNA Combinations in Whole Blood: Novel Biomarkers for Bortezomib Responses Obtained from a Prospective Multicenter Trial for Patients with Multiple Myeloma

Takashi Watanabe1*, Masato Mitsuhashi2, Morihiko Sagawa3, Masaki Ri4, Kenshi Suzuki5, Masahiro Abe6, Ken Ohmachi7, Yasunori Nakagawa5, Shingen Nakamura6, Mizuki Chosa1, Shinsuke Iida4, Masahiro Kizaki3

1 Hematology Division, National Cancer Center Hospital, Tokyo, Japan, 2 Hitachi Chemical Research Center, Inc., Irvine, California, United States of America, 3 Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan, 4 Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan, 5 Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan, 6 Department of Hematology, Endocrinology and Metabolism Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan, 7 Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan

¤ Current address: Department of Hematology, Komaki City Hospital, Komaki, Japan
* takawata@komakihp.gr.jp

Abstract

To identify predictive biomarkers for clinical responses to bortezomib treatment, 0.06 mL of each whole blood without any cell separation procedures was stimulated ex vivo using five agents, and eight mRNAs were quantified. In six centers, heparinized peripheral blood was prospectively obtained from 80 previously treated or untreated, symptomatic multiple myeloma (MM) patients with measurable levels of M-proteins. The blood sample was procured prior to treatment as well as 2-3 days and 1-3 weeks after the first dose of bortezomib, which was intravenously administered biweekly or weekly, during the first cycle. Six stimulant-mRNA combinations; that is, lipopolysaccharide (LPS)-granulocyte-macrophage colony-stimulating factor (GM-CSF), LPS-CXCL chemokine 10 (CXCL10), LPS-CCL chemokine 4 (CCL4), phytohemagglutinin-CCL4, zymosan A (ZA)-GMCSF and ZA-CCL4 showed significantly higher induction in the complete and very good partial response group than in the stable and progressive disease group, as determined by both parametric (t-test) and non-parametric (unpaired Mann-Whitney test) tests. Moreover, LPS-induced CXCL10 mRNA expression was significantly suppressed 2-3 days after the first dose of bortezomib in all patients, as determined by both parametric (t-test) and non-parametric (paired Wilcoxon test) tests, whereas the complete and very good partial response group showed sustained suppression 1-3 weeks after the first dose. Thus, pretreatment LPS-CXCL10 mRNA
Introduction

The proteasome inhibitor bortezomib (VELCADE; Millennium Pharmaceuticals and Johnson & Johnson Pharmaceutical Research & Development) has revolutionized the treatment of multiple myeloma (MM) patients and has become a mainstay in the standard of care for both previously untreated [1] and relapsed [2, 3] patients with MM. A number of clinical and laboratory features provide prognostic information for patients with MM, such as hypodipoidy [4] and chromosomal translocations and deletions [5–7].

The gene expression profiles of plasma cells isolated from the bone marrow of MM patients can predict the response to treatment with bortezomib [8, 9]. However, peripheral blood (PB) biomarkers able to predict the response to bortezomib have not yet been identified, although some factors are known to correlate with such responses, including hepatocyte growth factor [10], thrombospondin [10], XBP-1 [11] and absolute lymphocyte counts [12].

In our previous study [13], we reported that phytohemagglutinin (PHA)-induced interleukin-2 (IL2) mRNA levels in ex vivo whole blood obtained prior to bortezomib treatment could predict the incidence of bortezomib-induced peripheral neuropathy. In this study, we used the same assay to predict the efficacy of bortezomib treatment in an expanded patient population.

Subjects and Methods

Patients

Eligible patients in this multicenter prospective study consisted of previously treated MM patients or untreated patients with symptomatic MM, as described in our previous study [13]. All patients had to have measurable levels of M-proteins. The study was approved by the institutional review board or independent ethics committee at all participating institutions and was conducted according to the principles of the Declaration of Helsinki and the International Conference on Harmonization Guidelines of Good Clinical Practice. All patients provided written informed consent for sample procurement. The following institutions participated in this study: National Cancer Center Hospital; Saitama Medical Center, Saitama Medical University; Nagoya City University, Graduate School of Medical Sciences; Japanese Red Cross Medical Center; University of Tokushima, Graduate School of Medical Sciences and Tokai University School of Medicine (Acknowledgement section of the ms.). Clinical responses were assessed according to the International Uniform Response Criteria [14].

Measurements

Eight-well strips containing 1.2 μL each of PHA (2 mg/mL), heat-aggregated immunoglobulin G (HAG) (10 mg/mL), lipopolysaccharide (LPS) (0.5 mg/mL), zymosan A (ZA) (75 mg/mL) or solvent phosphate-buffered saline (PBS) were delivered to each institution on dry ice. These strips were kept frozen at -80°C. A 2 mL sample of heparinized PB was obtained from each patient prior to treatment as well as 2–3 days (D2-3) and 1–3 weeks (W1-3) after intravenous administration of the first dose of bortezomib during the first cycle. The blood was immediately delivered to the designated laboratory, 0.06 mL of PB was added to each well containing 3 strips (that is, in triplicate), and the strips were incubated for 4 hours at 37°C. The total blood
volume required was 0.9 mL (0.06 mL/well x 5 wells/strip x 3 strips). After incubation, the samples were stored at -80°C.

mRNA analysis

Purification of mRNA and cDNA synthesis were performed as described previously using leukocyte capture filter plates and oligo(dT)-immobilized microplates [15,16] The cDNA was used for real-time PCR [15,16]. Melting curves were analyzed to confirm that the PCR signals were derived from a single PCR product, and the cycle threshold (Ct) value was determined using analytical software (SDS, Thermo Fisher Scientific, Carlsbad, CA). The Ct values of the treated samples were subtracted individually from the mean Ct values of the control samples to calculate the ΔCt, and the fold increase was calculated as 2^(-ΔCt), as described previously [15,16]. The mRNAs analyzed included β-actin (ACTB), IL2 and interleukin-6 (IL6), granulocyte-macrophage colony-stimulating factor (GMCSF), interferon-γ (IFNG), tumour necrosis factor-α (TNFSF2), CCL chemokine 4 (CCL4) and CXCL chemokine 10 (CXCL10) [16]. mRNA analysis and clinical data collection were performed separately at the different centers.

Statistical analyses

Parametric (t-test) and non-parametric (unpaired Mann-Whitney and paired Wilcoxon tests) tests were used to compare mRNA levels between the two groups. p < 0.05 were considered significant. The statistical analyses were performed using Excel (Microsoft, Redmond, WA) and Prism 6 (GraphPad Software, La Jolla, CA).

Results

Patients’ characteristics

Between March 2010 and March 2012, a total of 83 patients (44 male and 39 female) were enrolled from six centers. The median age of all patients was 63 years (Table 1). Fifty patients were previously treated, and 33 patients were untreated. After excluding one patient who died early from progressive disease, another who received additional treatment and another who committed suicide, 80 patients were eligible for response analysis. The numbers of patients who demonstrated complete response (CR), very good partial response (VGPR), partial response (PR), stable disease (SD) and progressive disease (PD) were 5, 7, 33, 33 and 2, respectively.

mRNA analysis

Overall, 3,600 mRNA preparations and cDNA synthesis reactions were carried out (80 patients x 5 stimulants x 3 time points x 3 [triplicate]). A total of 28,800 PCR reactions were performed (3,600 cDNA samples x 8 genes).

Pretreatment higher induction of LPS/ZA-induced GMCSF, LPS-induced CXCL10, and LPS/PHA/ZA-induced CCL4 mRNA in CR/VGPR responders to bortezomib

The fold increase in LPS-induced GMCSF, CXCL10 and CCL4, PHA-induced CCL4 and ZA-induced GMCSF and CCL4 were significantly higher in the CR and VGPR groups than in the SD and PD groups, as determined by both parametric t-tests and non-parametric Mann-Whitney tests, whereas the PR group exhibited an intermediate value (Fig 1). Moreover, 100, 67, 56,
42 and 0% of patients showed more than 3-fold increases in LPS-induced CXCL10 (dotted line in Fig 1).

Sustained suppression of LPS-induced CCCL10 mRNA in CR/VGPR responders to bortezomib

As shown in Fig 2, LPS-induced CXCL10 mRNA expression was significantly suppressed 2–3 days after the first dose of bortezomib in all groups, as determined by both parametric (t-test)

Table 1. Patients Demographic and Baseline Characteristics.

Characteristics	Number of patients(%)
Age, years	
Median	63
Range	37–79
Male sex	44(53)
Prior therapy	
Yes	50(60)
No	33(40)
M component	
IgG	48(58)
IgA	9(11)
IgD	3(4)
Light chain only	23(28)
ISS stage	
I	25(30)
II	29(35)
III	29(35)
Follow-up, days	
Median	151
Range	26–666
Bortezomib administration	
Twice-weekly	63(76)
Weekly	20(24)
Concurrent dexamethasone	
Yes	74(89)
No	9(11)
Best response to treatment†	
CR	5(6)
VGPR	7(8)
PR	33(40)
SD	33(40)
PD	2(2)
NE	3(4)‡

CR, complete response; ISS, International Staging System; NE, not evaluable; PD, progressive disease; SD, stable disease; VGPR, very good partial response.

*Excluded were three patients not evaluable for response.
†According to the International Uniform Response Criteria (Durie et al, 2006).
‡One patient died of progressive disease early, another received additional chemotherapy, and the third committed suicide.

doi:10.1371/journal.pone.0128662.t001
and non-parametric (paired Wilcoxon test) tests, while the CR+VGPR group showed sustained suppression even 1–3 weeks after treatment. This significant level of inhibition was only observed for LPS-induced CXCL10.

Discussion

Currently, triple drug combinations are believed to be very effective for MM treatment based on the results of several randomised clinical trials [1,17–23] and phase I/II studies [24, 25]. However, in some studies, the daily dose of bortezomib [1, 26–28] and the bortezomib administration schedule (namely, the dose density) [29–31] are reduced to avoid toxicity, despite the fact that bortezomib accumulation is important for achieving improved survival [32]. Although MM patients still experience relapse or progression even after triple drug combination therapy, it is clear that better responses to initial therapy result in longer survival [33–36]. If we could predict which patients will respond to bortezomib, we would be able to give priority to bortezomib dose, rather than the other drugs, in combination regimens. Thus, it is important to predict whether patients will respond to bortezomib before initiation and whether bortezomib can be used in consolidation [1, 37] or maintenance [29, 30, 38, 39] therapy.

This is the first report demonstrating the use of LPS-induced CXCL10 mRNA levels as a biomarker for assessing the clinical response to bortezomib treatment in PB. We showed that higher induction of CXCL10 mRNA corresponded to very good responses (CR+VGPR), whereas lower induction corresponded to poor responses (SD+PD); the values in the PR group

![Fig 1. Ex vivo mRNA induction in blood obtained prior to bortezomib treatment.](http://example.com/fig1.png)
were variable. Moreover, LPS-induced CXCL10 mRNA was significantly and continuously suppressed in the good response group even 1–3 weeks after treatment, whereas in the other groups, the suppressive activity was transient and CXCL10 mRNA levels returned to the original values. It could be argued that the best biomarker may be ZA-induced GMCSF because the mean mRNA levels appeared to be higher in both the CR and VGPR groups than those in other response groups. The range of LPS-induced CXCL10 expression in the CR group was within the ranges of LPS-induced CXCL10 expression in both PR and SD groups, and lack of overlap was seen in only the patients with CR versus the two patients with PD, although the latter was a small number. Similarly, LPS-induced CXCL10 expression in the VGPR group generally fell within the ranges seen in the patients with PR and those with SD. However, the majority of MM patients will respond to bortezomib especially in case used as the first-line treatment. Therefore, it is more important to distinguish the patients with PD after treatment with bortezomib, which may have the mutations as to the proteasome pathway [40], from responders to bortezomib rather than finding the difference in the response.

CXCL10, which was previously referred to as interferon γ-inducible 10 kDa protein (IP-10), belongs to the C-X-C family of chemokines that cluster on human chromosome 4 (q12-21). CXCL10 acts as a chemoattractant for human monocytes, activates T cells through binding to the CXCR3 receptor and promotes T cell adhesion to endothelial cells [41]. CXCL10 also elicits a Th1 cell-dominated anti-tumour inflammatory response that can inhibit plasmacytoma growth [42]. Moreover, activated tumour-specific T cells that express CXCR3 were shown to infiltrate CXCL10-expressing myeloma cells more efficiently than non-CXCL10-expressing cells.

Fig 2. LPS-induced CXCL10 expression before and after bortezomib treatment. Each point/line represents the fold increase in LPS-induced CXCL10 expression in each patient in the (A) CR+VGPR, (B) PR and (C) SD+PD groups. The statistically significant difference between the pretreatment (D0) and 2–3 days (D2-3) or 1–3 weeks (W1-3) after intravenous administration of the first dose of bortezomib during the first cycle groups is shown. t: Student’s t-test, W: Wilcoxon test.

doi:10.1371/journal.pone.0128662.g002
myeloma cells [43]. CCL4 is another chemotactic factor, and GMCSF is a growth factor for antigen-presenting cells. Thus, the higher induction of CXCL10, CCL4 and GMCSF mRNA exhibited by the good responder group (Fig 1) was not unexpected and suggests that these patients may have greater anti-tumour immunity.

However, after bortezomib was administered to MM patients, CXCL10 mRNA induction was significantly suppressed, and sustained suppression correlated with good responses to treatment (Fig 2). Usually bortezomib may be administered to MM patients in combination with dexamethasone (the same day as that of bortezomib administration and the subsequent day) as used in the SUMMIT trial [44]. Actually the majority of the patients enrolled in this study received dexamethasone (Table 1) in the above-mentioned way, although detailed data were collected but not shown. In case of dexamethasone-naive patients with MM, they can still respond to dexamethasone. Consequently, we may not be able to distinguish the responders to bortezomib from the responders to dexamethasone in 2–3 days after the first dose of bortezomib. Therefore, the induced mRNA that caused demonstrable sustained suppression may indicate more meaningful predictor of bortezomib responders. In addition, as mentioned above, such triple combination as bortezomib, melphalan, and prednisone is believed to be best among double to quadruple combinations and therefore used commonly, and melphalan and prednisone will be given days 1–4 of each cycle [1, 17]. In those cases, afore-mentioned, sustained suppression might become powerful tool of prediction although further studies in this approach in combination trials is essential as a validation exercise for theses assays to go forward.

This observation was likely not explained by the immunological activity of CXCL10, as CXCL10 is also expressed in human myeloma cell lines [45] and is known to stimulate myeloma cell migration [46] and adhesion to bone marrow stromal cells [47]. Thus, MM cells may be more susceptible to the bortezomib-induced inhibition of CXCL10 mRNA expression than immune cells. Moreover, when bortezomib was added to whole blood prior to LPS stimulation

![Fig 3. Bortezomib-induced inhibition of LPS-induced CXCL10 mRNA ex vivo.](doi:10.1371/journal.pone.0128662.g003)
ex vivo, CXCL10 mRNA induction was inhibited in a dose-dependent manner (Fig 3). Thus, LPS-induced CXCL10 expression in ex vivo blood samples could serve as a surrogate marker for the effect of bortezomib in vivo.

Acknowledgments

The authors would like to thank the patients, physicians, nurses and staff members who participated in the study for their excellent cooperation. The following institutions participated in this study: National Cancer Center Hospital; Saitama Medical Center, Saitama Medical University; Nagoya City University, Graduate School of Medical Sciences; Japanese Red Cross Medical Center; University of Tokushima, Graduate School of Medical Sciences and Tokai University School of Medicine. We would like to thank Ms. Mieko Ogura (Hitachi Chemical Research Center, Inc.), Ms. Chiori Fukuyama (Nagoya City University Graduate School of Medical Sciences), Ms. Chika Nakabayashi (Saitama Medical Center, Saitama Medical University) and the Department of Transfusion, Japanese Red Cross Medical Center for sample handling and shipment.

Author Contributions

Conceived and designed the experiments: TW MM. Performed the experiments: MM. Analyzed the data: MM. Contributed reagents/materials/analysis tools: TW MS KS MA KO YN SN SI MK. Wrote the paper: TW MM. Provided administrative support: MK. Collected clinical data: TW MC. Handled and shipped samples: SN MC.

References

1. San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, et al. (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359: 906–917. doi:10.1056/NEJMoa0801479 PMID: 18753647
2. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352: 2487–2498. PMID: 15958804
3. Richardson PG, Sonneveld P, Schuster M, Irwin D, Stadtmauer E, Facon T, et al. (2007) Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 110: 3557–3560. PMID: 17690257
4. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Groupe Français de Cytogénétique Hématologique. (2001) Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 98: 2229–2238. PMID: 11568011
5. Facon T, Avet-Loiseau H, Guillemin G, Moreau P, Geneviève F, Zandecki M, et al. (2001) Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood 97: 1566–1571. PMID: 11238092
6. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA, et al. (2003) Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101: 4569–4575. PMID: 12576322
7. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, et al. (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64: 1546–1558. PMID: 14989251
8. Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S, et al. (2007) Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 109: 3177–3188. PMID: 17185464
9. Richardson PG, Xie W, Mitsiades C, Chanan-Khan AA, Lonial S, Hassoun H, et al. (2009) Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol 27: 3518–3525. doi: 10.1200/JCO.2008.18.3087 PMID: 19528374
10. Ludek P, Hana S, Zdenek A, Martina A, Dana K, Tomas B, et al. (2010) Treatment response to bortezomib in multiple myeloma correlates with plasma hepatocyte growth factor concentration and bone marrow thrombospondin concentration. Eur J Haematol 84: 332–336. doi: 10.1111/j.1600-0609.2009.01996.x PMID: 20015241
11. Ling SC, Lau EK, Al-Shabeeb A, Nikolic A, Catalano A, Ilanid H, et al. (2012) Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica 97: 64–72. doi: 10.3324/haematol.2011.043331 PMID: 21993678

12. Song MK, Chung JS, Joo YD, Lee SM, Lee GW, Lee HS, et al. (2010) Clinical value of absolute lymphocyte counts before bortezomib-dexamethasone therapy in relapsed multiple myeloma patients. Acta Haematol 124: 34–39. doi: 10.1159/000313654 PMID: 20606414

13. Watanabe T, Mitsuhashi M, Sagawa M, Ri M, Suzuki K, Abe M, et al. (2013) Phytohemagglutinin-induced IL2 mRNA in whole blood can predict bortezomib-induced peripheral neuropathy for multiple myeloma patients. Blood Cancer J, Oct 4; 3:e150. doi: 10.1038/ijc.2013.47 PMID: 24096714

14. Durie BG, Harousseau JL, Miguel JS, Bladé J, Barlogie B, Anderson K, et al. International Myeloma Working Group. (2006) International uniform response criteria for multiple myeloma. Leukemia 20: 1467–1473. PMID: 16855634

15. Mitsuhashi M, Tomozawa S, Endo K, Shinagawa A. (2006) Quantification of mRNA in whole blood by Ex vivo simulation of leukocyte function: stimulation of specific subset of leukocytes in whole blood followed by the measurement of function-associated mRNAs. J Immunol Methods 363: 95–100. doi: 10.1016/j.jim.2010.10.002 PMID: 20951704

16. Mateos MV, Richardson PG, Schlag R, Khueva NK, Dimopoulos MA, Shpilberg O, et al. (2010) Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J Clin Oncol 28: 2259–2266. doi: 10.1200/JCO.2009.26.0638 PMID: 20368561

17. Moreau P, Avez-Moiseau H, Facon T, Attal M, Tiab M, Hulin C, et al. (2011) Bortezomib plus dexamethasone versus reduced-dose bortezomib, thalidomide plus dexamethasone as induction treatment prior to autologous stem cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 376: 2075–2085. doi: 10.1016/S0140-6736(10)61424-9 PMID: 21146205

18. Palumbo A, Bringen S, Caravita T, Merla E, Capparella V, Callea V, et al. (2006) Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet 367: 825–831. PMID: 16530576

19. Hulin C, Facon T, Rodon P, Pegourie B, Benboubker L, Doyen C, et al. (2009) Efficacy of melphalan and prednisone plus thalidomide compared with melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma. J Clin Oncol 27: 1209–1218. PMID: 19720916

20. Mitsuhashi M, Tomozawa S, Endo K, Shinagawa A. (2006) Quantification of mRNA in whole blood by Ex vivo simulation of leukocyte function: stimulation of specific subset of leukocytes in whole blood followed by the measurement of function-associated mRNAs. J Immunol Methods 363: 95–100. doi: 10.1016/j.jim.2010.10.002 PMID: 20951704

21. Mateos MV, Hernández JM, Hernández MT, Gutiérrez NC, Palomera L, Fuertes M, et al. (2008) Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: updated...
28. Richardson PG, Weller E, Jagannath S, Avigan DE, Alsina M, Schlossman, et al. (2009) Multicenter, van Rhee F, Szymonifka J, Anaissie E, Nair B, Waheed S, Alsayed Y, et al. (2010) Total Therapy 3 for
32. Bringhen S, Larocca A, Rossi D, Cavalli M, Larocca M, Ria R, et al. (2010) Efficacy and safety of once
30. Mateos MV, Oriol A, Martínez-López J, Gutiérrez N, Teruel AI, de Paz R, et al. (2010) Bortezomib, mel-
34. Taub DD, Lloyd AR, Conlon K, Wang JM, Ortaldo JR, Harada A, et al. (1993) Recombinant human
37. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
35. Martinez-Lopez J, Blade J, Mateos MV, Grande C, Alegre A, Garcia-Larana J, et al. (2011) Long-term
39. Mateos MV, Oriol A, Martínez-López J, Gutiérrez N, Teruel AI, López de la Guía A, et al. (2012) Mainte-
33. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
36. Gay F, Larocca A, Wijermans P, Cavallo F, Rossi D, Schaafsma R, et al. (2011) Complete response
38. Sonneveld P, Schmidt-Wolf IG, van der Holt B, El Jarari L, Bertsch U, Salwender H, et al. (2012) Borte-
31. Chanan-Khan AA, Giralt S (2010) Importance of achieving a complete response in multiple myeloma,
43. Huang H, Liu Y, Xiang J (2002) Synergistic effect of adoptive T-cell therapy and intratumoral interferon
42. Ri M, Iida S, Nakashima T, Miyazaki H, Mori F, Ito A, et al. (2010) Bortezomib-resistant myeloma cell
44. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. (2003) A phase 2 study of
40. Ri M, Iida S, Nakashima T, Miyazaki H, Mori F, Ito A, et al. (2010) Bortezomib-resistant myeloma cell
41. Issekutz TB, Stoltz JM, vd Meide P (1988) Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-gamma. J Immunol 140: 2989–2993. PMID: 3129506
45. Huang H, Liu Y, Xiang J (2002) Synergistic effect of adoptive T-cell therapy and intratumoral interferon
gamma-inducible protein-10 transgene expression in treatment of established tumors. Cell Immunol 217: 12–22. PMID: 12425997
46. Taub DD, Lloyd AR, Conlon K, Wang JM, Ortaldo JR, Harada A, et al. (1993) Recombinant human
interferon-inducible protein 10 transgene expression in treatment of established tumors. Cell Immunol 217: 12–22. PMID: 12425997
47. Issekutz TB, Stoltz JM, vd Meide P (1988) Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-gamma. J Immunol 140: 2989–2993. PMID: 3129506
48. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
49. Ri M, Iida S, Nakashima T, Miyazaki H, Mori F, Ito A, et al. (2010) Bortezomib-resistant myeloma cell
50. Issekutz TB, Stoltz JM, vd Meide P (1988) Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-gamma. J Immunol 140: 2989–2993. PMID: 3129506
51. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
52. Ri M, Iida S, Nakashima T, Miyazaki H, Mori F, Ito A, et al. (2010) Bortezomib-resistant myeloma cell
53. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
54. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
55. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
56. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
57. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
58. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
59. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
60. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
61. Moreau P, Attal M, Pégourié B, Planche L, Hulin C, Facon T, et al. (2011) Achievement of VGPR to
45. Giuliani N, Bonomini S, Romagnani P, Lazzaretti M, Morandi F, Colla S, et al. (2006) CXCR3 and its binding chemokines in myeloma cells: expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica, 91, 1489–1497. PMID: 17082008

46. Pellegrino A, Antonaci F, Russo F, Merchionne F, Ribatti D, Vacca A, et al. (2004) CXCR3-binding chemokines in multiple myeloma. Cancer Lett 207: 221–227. PMID: 15072832

47. Nguyen AN, Stebbins EG, Henson M, O’Young G, Choi SJ, Quon D, et al. (2006) Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation. Exp Cell Res 312: 1909–1923. PMID: 16600214