Power law in random multiplicative processes with spatio-temporal correlated multipliers

SATORU MORITA

Department of Mathematical and Systems Engineering, Shizuoka University - Hamamatsu, 432-8561, Japan

Power-law distributions are ubiquitous not only in natural systems but also in social systems [1–3]. For instance, city sizes [4,5], firm sizes [6,7], stock returns [8,9], and personal incomes [10,11] follow the power-law relation

\[P(x) \propto x^{-\gamma}. \]

over large scales. This expression is widely known as Pareto’s law [12] or Zipf’s law [13], and it has been well investigated using various models. One well-known mechanism that generates power-law distribution is the random multiplicative process (RMP) [14–20].

For example, stock returns and personal incomes have correlation among persons through economic fluctuation. This paper aims to clarify the influence of the spatio-temporal correlation of the multipliers on the power-law exponent \(\gamma \). Although \(\gamma \) is known to decrease as the correlation time length increases for RMP with one variable [19], there is no general formulation of multivariable RMP with spatio-temporal correlation. Here, we consider two simple models, Model 1 and Model 2, in which the temporal correlation is led by the local environment and the global environment, respectively. We show analytically and numerically that the correlation time length influences the power-law exponent \(\gamma \) in Model 1, whereas it does not in Model 2.

This paper is organized as follows. First, we introduce a binomial multiplicative process, in which the random multipliers can have only two values, and revisit the case where the multipliers have no correlation. Here, we propose a graphical method to estimate the exponent \(\gamma \). Next, we separately analyze the cases of temporal and spatial correlation. We then analyze the effect of the spatio-temporal correlation in Models 1 and 2. The results of the numerical simulations are compared with theoretical predictions. The paper concludes with a summary.

Here, we consider a simple version of RMP,

\[x_i(t + 1) = m_i(t)x_i(t) + b, \]

where \(t \) denotes a discrete time step and \(i \) specifies the elements \(i = 1, 2, 3, \ldots, N \). The variable \(x_i(t) \) can represent any quantity such as population, firm size, or income, \(m_i(t) \) is a random multiplier, and \(b \) is an additive positive term. Although \(b \) may be a stochastic variable, we set \(b \) as a constant because it does not influence the following results. The initial condition is set to \(x_i(0) = 1 \) so that \(x_i(t) \) is always positive for all \(t \).

For simplicity, we assume that the stochastic multiplier \(m_i(t) \) is \(m_+ \) or \(m_- \), each with probability 0.5. First, we consider the case of no correlation between the multipliers \(m_i(t) \):

\[\langle (m_i(t) - \mu)(m_j(t') - \mu) \rangle = \sigma^2 \delta_{ij} \delta_{tt'}. \]

The stationary distribution has a power-law tail, where the exponent \(\gamma \) is a positive root of

\[\langle m^\gamma \rangle = \langle m_+^\gamma + m_-^\gamma \rangle / 2 = 1. \]
The power-law tail exists because $\ln x_i(t)$ undergoes a random walk with a drift toward smaller values and is repelled from $-\infty$ [15,16]. Consequently, $\ln x_i(t)$ follows an exponential distribution, implying a power-law distribution in $x_i(t)$. Condition (3) was proved by Kesten [21] using the renewal theory. Intuitively, eq. (3) can be derived as follows [19]. In the large-scale range ($x \gg b$), we raise both sides of eq. (2) to the power α and average them. Thus, we have

$$\langle x_i(t)\rangle^\alpha \simeq \langle m^\alpha \rangle^t.$$

If eq. (1) holds, $\langle x_i(t)\rangle^\alpha$ will converge when $\alpha < \gamma$. Consequently, the exponent γ is given by the boundary between growth and decay of $\langle x_i(t)\rangle^\alpha$, i.e., by eq. (3).

In many systems, γ is approximately one [1,2]. In our model, $\gamma = 1$ when $(m_+ + m_-)/2 = 1$. Thus, if the values of m_+ and m_- lie along the solid curve in fig. 1, then $\gamma = 1$. Note that the condition is a function of m_+^∞ and m_-^∞. Therefore, from the plot in fig. 1, we can graphically estimate the exponent γ for general values of m_+ and m_-. When the parameters m_+ and m_- are located beneath the solid curve, γ is larger than 1. In the parameter region between this curve and the diagonal dotted lines, $\gamma < 1$.

Second, we consider the case of temporally correlated $m_i(t)$:

$$\langle (m_i(t) - \mu)(m_j(t') - \mu) \rangle = \sigma^2 \delta_{ij} e^{-|t-t'|/\tau},$$

(4)

where τ is the correlation time length. To obtain a stochastic time series satisfying (4), we use a Markov chain with the transition probability matrix

$$A = \begin{pmatrix} 1 - u/2 & u/2 \\ u/2 & 1 - u/2 \end{pmatrix},$$

(5)

where $u = 1 - e^{-1/\tau}$. For example, the first-row, second-column element of the matrix A represents the probability that the multiplier changes from m_- to m_+. Let $x_+ (t; \alpha)$ and $x_- (t; \alpha)$ be defined as the total $x_i(t)\alpha$ in the good and bad local environments, respectively:

$$x_\pm (t; \alpha) = \sum_{i \in \{ m_i(t) = m_\pm \}} x_i^\alpha (t).$$

Neglecting the additive term b again, we obtain

$$\begin{pmatrix} x_+ (t+1; \alpha) \\ x_- (t+1; \alpha) \end{pmatrix} \simeq A \begin{pmatrix} m_+^\infty \\ 0 \end{pmatrix} \begin{pmatrix} x_+ (t; \alpha) \\ x_- (t; \alpha) \end{pmatrix}.$$

Since the exponent γ is the boundary between growth and decay of $\langle x_i(t)\rangle^\alpha$, it is determined by solving the following equation such that the dominant eigenvalue of

$$A \begin{pmatrix} m_+^\infty \\ 0 \end{pmatrix}$$

equals one. Using a simple calculation, we show that the exponent γ is given by a solution of

$$2 - m_+^\infty - m_-^\infty + e^{-1/\tau} (2m_+^\infty m_-^\infty - m_+^\infty - m_-^\infty) = 0.$$

(6)

Figure 2(a) plots the curves of (6) for $\gamma = 1$ for various values of τ. For general values of m_+ and m_-, the exponent γ can be estimated from these curves, as demonstrated in fig. 1. This result indicates that the exponent γ decreases as the correlation time length increases, which is consistent with the previous work by Sato et al. [19].

Third, we consider the case of spatially correlated $m_i(t)$:

$$\langle (m_i(t) - \mu)(m_j(t') - \mu) \rangle = \sigma^2 \delta_{ij} c e^{-|t-t'|/\tau},$$

(7)

where $i \neq j$ and c is the correlation coefficient. We now introduce the global environment, which can independently be good or bad with probability $1/2$ at each time. In a good global environment at time t, the multiplier $m_i(t)$ is m_+ with probability $p > 1/2$ or m_- with probability $q = 1 - p$. Conversely, in a bad global environment, $m_i(t)$ is m_- with probability p or m_+ with probability q. By simple algebra, we obtain

$$c = (1 - 2p)^2.$$

When $t \gg 1$, the mean of $x_i(t)\alpha$ is given by the geometrical mean of the average growth rates in both global environments:

$$\langle x_i(t)\rangle^\alpha \simeq (pm_+^\alpha + qm_-^\alpha)^{t/2}/(pm_+^\alpha + qm_-^\alpha)^{t/2}.$$
where \(u = 1 - e^{-1/\tau} \). In a bad global environment, the transition probability matrix is

\[
A_- = \begin{pmatrix} 1 - pu & qu \\ qu & 1 - qu \end{pmatrix}.
\]

The global environment is independently good or bad with probability 1/2; therefore, the transition probability matrix of the multiplier \(m_i(t) \) for each \(i \) should be the average of \(A_+ \) and \(A_- \) (\(A \)), which is given in eq. (5). Thus, the autocorrelation of \(m_i(t) \) is \(e^{-|t-t'|/\tau} \). Moreover, a simple calculation gives

\[
\langle (m_i(t) - \mu)(m_j(t') - \mu) \rangle = \begin{cases} \sigma^2 e^{-|t-t'|/\tau} & (i = j), \\ \sigma^2 c e^{-|t-t'|/\tau} & (i \neq j), \end{cases}
\]

where the correlation coefficient \(c \) is given by

\[
c = (1 - 2p)^2 \frac{u}{2 - u}.
\]

In this case, the dynamics of \(x_\pm(t; \alpha) \) are determined as

\[
\begin{pmatrix} x_+(t+1; \alpha) \\ x_-(t+1; \alpha) \end{pmatrix} = A_+ \begin{pmatrix} m_+^\alpha & 0 \\ 0 & m_-^\alpha \end{pmatrix} \begin{pmatrix} x_+(t; \alpha) \\ x_-(t; \alpha) \end{pmatrix}
\]

or

\[
\begin{pmatrix} x_+(t+1; \alpha) \\ x_-(t+1; \alpha) \end{pmatrix} = A_- \begin{pmatrix} m_+^\alpha & 0 \\ 0 & m_-^\alpha \end{pmatrix} \begin{pmatrix} x_+(t; \alpha) \\ x_-(t; \alpha) \end{pmatrix}
\]

with probability 1/2. If \(r_\alpha(t) \) is given as

\[
r_\alpha(t) = \frac{x_+(t; \alpha)}{x_- (t; \alpha)},
\]

then \(r_\alpha(t) \) follows a one-dimensional Markov chain:

\[
r_\alpha(t+1) = \frac{(1 - qu)m_+^\alpha r_\alpha(t) + pu m_-^\alpha}{qu m_+^\alpha r_\alpha(t) + (1 - pu)m_-^\alpha}
\]

or

\[
r_\alpha(t+1) = \frac{(1 - pu)m_+^\alpha r_\alpha(t) + qu m_-^\alpha}{pu m_+^\alpha r_\alpha(t) + (1 - qu)m_-^\alpha}
\]

with probability 1/2. Thus, the statistical state of \(r_\alpha(t) \) is characterized by its stationary density distribution \(\rho_\alpha(r) \), which can be numerically calculated [22–24]. In addition, when \(x_+(t; \alpha) = r x_-(t; \alpha) \), we have

\[
\langle x_1(t+1)^\alpha \rangle \simeq \frac{m_+^\alpha r + m_-^\alpha}{r + 1} \langle x_1(t)^\alpha \rangle.
\]

Consequently, as the exponent \(\gamma \) is the boundary between growth and decay of \(\langle x(t)^\alpha \rangle \), it is obtained by solving

\[
\int_0^\infty \ln \left(\frac{m_+^\alpha r + m_-^\alpha}{r + 1} \right) \rho_\alpha(r) dr = 0.
\]

Setting \(\alpha = 1 \) and using the graphical method, we can obtain \(\gamma \) for general values of \(m_+ \) and \(m_- \). Representative results are plotted in fig. 3. Clearly, \(\gamma \) increases as \(c \) increases or as \(\tau \) decreases.

Fig. 2: (Colour online) A set of \(m_+ \) and \(m_- \) for which \(\gamma = 1 \) for several cases. From these curves, we can estimate the exponent \(\gamma \) for general values of \(m_+ \) and \(m_- \), as in fig. 1. (a) The case in which \(m_i(t) \) has only temporal correlation (4). The correlation time length is set as \(\tau = 0, 1, 2, 4 \). The curves are given by \(2 - m_+ - m_- - e^{-1/\tau}(2m_+ m_- - m_+ - m_-) = 0 \). (b) The case in which \(m_i(t) \) has only spatial correlation (7). The correlation coefficient is set as \(c = (1 - 2p)^2 = 0, 0.3, 0.6, 0.9 \). The curves represent \((pm_+ + qm_-)(pm_- + qm_+) = 1\).

Thus, the exponent \(\gamma \) is obtained by solving

\[
(pm_+^\gamma + qm_-^\gamma)(pm_-^\gamma + qm_+^\gamma) = 1.
\]
Model 2 assumes that the global environment is auto-correlated as \(\exp(-t/\tau) \). To obtain such a time series, we again apply the Markov chain with (5). At the same time step, the correlation between the multiplier \(m_i(t) \) and the global environment is \(1 - 2p \). Thus, we obtain

\[
\langle (m_i(t) - \mu)(m_j(t') - \mu) \rangle = \sigma^2 c e^{-|t-t'|/\tau},
\]

where

\[
c = (1 - 2p)^2.
\]

In this model, eq. (10) also holds for \(i = j \). This condition marks an important difference between Models 1 and 2. Because we have

\[
\rho_i(r) = \frac{1}{2} [\delta(r - p/q) + \delta(r - q/p)],
\]

the exponent \(\gamma \) is again given by eq. (8). Thus, in Model 2, the exponent \(\gamma \) is independent of the correlation time \(\tau \).

To confirm the above predictions, numerical simulations are performed (see fig. 3). To numerically estimate \(\gamma \), we set \(N = 10^6 \), employ the method of [2], and average over 200 samples. Figure 3 shows that the theoretical predictions are highly consistent with the numerical simulation results.

In summary, we investigated how the spatio-temporal correlation of the multipliers influences the power-law exponent. On separately considering the temporal and spatial correlations, we found that \(\gamma \) increased when \(c \) increased or when \(\tau \) decreased. In socioeconomic dynamics, such trends imply that the gap between the rich and the poor widens as the temporal correlation becomes stronger or as the spatial correlation becomes weaker. However, in a simultaneous treatment of the spatio-temporal correlation, the temporal correlation did not necessarily reduce the exponent (in Model 2). This result suggests that the time correlation attributed to individuals raises the wealth gap, but the time correlation from the global economic fluctuations has no effect on the gap. At first sight, eqs. (9) and (10) are similar and there is barely any difference between the correlation structures of Models 1 and 2. However, this slight difference significantly affects the power-law exponent. In conclusion, we should pay close attention to the cause of the time correlation.

* * *

This work was supported by a Grant-in-Aid for Scientific Research (No. 26400388) and CREST, JST. Some of the numerical calculations were performed on machines at YITP of Kyoto University.

REFERENCES

[1] NEWMAN M. E. J., Contemp. Phys., 46 (2005) 323.
[2] CLAUSET A., SHALIZI C. R. and NEWMAN M. E. J., SIAM Rev., 51 (2009) 661.
[3] GABAIX X., Annu. Rev. Econ., 1 (2009) 255.
[4] GABAIX X., Q. J. Econ., 114 (1999) 739.
[5] IOANNIDES Y. M. and OVERMAN H. G., Reg. Sci. Urban Econ., 33 (2003) 127.
[6] RAMSDEN J. J. and KISS-HAYPÁLY., Physica A, 277 (2000) 220.
[7] AXTELL R. L., Science, 293 (2001) 18.
[8] MANDELBROТ Б., J. Bus., 36 (1963) 394.
[9] GABAIX X., GOPIKRISHNAN P., PLEROU V. and STANLEY H. E., Nature, 423 (2003) 267.
[10] CHAMPERNOWDE D. G., Econ. J., 63 (1953) 318.
[11] REED W. J., Physica A, 319 (2003) 469.
[12] PARETO V., Cours d’économie politique (F. Rouge, Lausanne) 1896.
[13] ZIPF G. K., Human Behavior and the Principle of Least Effort (Addison-Wesley) 1949.
[14] RENDER S., Am. J. Phys., 58 (1990) 267.
[15] SORNETTE D. and CONT R., J. Phys. I, 7 (1997) 431.
[16] BHIAM O., MALCAI O., LEVY M. and SOLOMON S., Phys. Rev. E, 58 (1998) 1352.
[17] SORNETTE D., Phys. Rev. E, 57 (1998) 4811.
[18] NAKAO H., Phys. Rev. E, 58 (1998) 1591.
[19] SATO A.-H., TAKAYASU H. and SAWADA Y., Phys. Rev. E, 61 (2000) 1081.
[20] MORITA S. and YOSHIMURA JIN, Phys. Rev. E, 88 (2013) 052809.
[21] KESTEN H., Acta Math., 131 (1973) 207.
[22] LASOTA A. and MACKAY M. C., Probabilistic Properties of Deterministic Systems (Cambridge University, New York) 1985.
[23] MORITA S. and CHAWANYA T., Phys. Rev. E, 65 (2002) 046201.
[24] MORITA S. and YOSHIMURA J., Phys. Rev. E, 86 (2012) 045102R.