Emerging roles of extracellular vesicle-associated non-coding RNAs in hypoxia: Insights from cancer, myocardial infarction and ischemic stroke

Dirk M. Hermann1*, Wenqiang Xin2*, Mathias Bähr2, Bernd Giebel3, Thorsten R. Doeppner2,4,5,6

1. Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
2. Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
3. Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
4. Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, Turkey
5. Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria
6. Department of Neurology, University of Giessen Medical School, Giessen, Germany

*Equal contribution.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).

Received: 2022.04.12; Accepted: 2022.06.14; Published: 2022.07.18

Abstract

Hypoxia is a central pathophysiological component in cancer, myocardial infarction and ischemic stroke, which represent the most common medical conditions resulting in long-term disability and death. Recent evidence suggests common signaling pathways in these diverse settings mediated by non-coding RNAs (ncRNAs), which are packaged in extracellular vesicles (EVs) protecting ncRNAs from degradation. EVs are a heterogeneous group of lipid bilayer-covered vesicles released from virtually all cells, which have important roles in intercellular communication. Recent studies pointed out that ncRNAs including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are selectively sorted into EVs, modulating specific aspects of cancer development, namely cell proliferation, migration, invasion, angiogenesis, immune tolerance or drug resistance, under conditions of hypoxia in recipient cells. In myocardial infarction and stroke, ncRNAs shuttled via EVs have been shown to control tissue survival and remodeling post-hypoxia by regulating cell injury, inflammatory responses, angiogenesis, neurogenesis or neuronal plasticity. This review discusses recent evidence on EV-associated ncRNAs in hypoxic cancer, myocardial infarction and stroke, discussing their cellular origin, biological function and disease significance. The emerging concept of lncRNA-circular RNA/miRNA/mRNA networks is outlined, upon which ncRNAs synergistically respond to hypoxia in order to modify disease responses. Particular notion is given to ncRNAs participating in at least two of the three conditions, which revealed a large degree of overlaps across pathophysiological conditions. Possible roles of EV-ncRNAs as therapeutic products or theranostic markers are defined.

Introduction

Hypoxia, a pathophysiological condition characterized by reduced tissue oxygen content, is a hallmark of a variety of pathophysiological conditions [1, 2]. Among these conditions, cancer, myocardial infarction and ischemic stroke play an eminent role, since they represent the most prevalent causes of long-term disability and death in medicine [3]. Hypoxia profoundly influences transcriptional responses in the affected cells, e.g., by the transcription factor hypoxia-inducible factor-1α...
(HIF1α), which is degraded under normoxic conditions by the von Hippel Lindau protein-mediated ubiquitin protease pathway but which is stabilized upon hypoxia [4], regulating a large variety of genes controlling cell proliferation, metabolism, survival and differentiation [5, 6]. In cancer, HIF1α-dependent gene expression promotes the development of aggressive tumor phenotypes [1, 7, 8]. In myocardial infarction and stroke, persistent hypoxia and ischemia compromise tissue remodeling and recovery [2, 9]. The pathophysiological mechanisms underlying hypoxia in cancer, myocardial infarction and stroke are very different. The main cause of hypoxia in cancer tissue are proliferating tumor cells growing out from blood vessels, which often have irregular network characteristics with compromised blood supply [1, 8]. On the contrary, the primary cause of hypoxia in myocardial infarction and stroke is reduced blood flow associated with vascular occlusions and atherosclerosis [2, 10]. Despite obvious pathophysiological differences, the gene responses to hypoxia in these three pathologies exhibit a high degree of similarities. Similarities relate to protein-encoding RNAs and non-encoding RNAs (ncRNAs).

Resulting from gene expression changes, cellular biology and communication are fundamentally altered under conditions of hypoxia. To coordinate tissue responses, extracellular vesicles (EVs) are released from hypoxic cells [11, 12]. Based on their size and cellular origin, EVs are regularly classified as exosomes (60 to 150 nm), microvesicles (100 to 1000 nm) and apoptotic bodies (typically larger than 500 nm) [11, 13]. Exosomes originate from the late endosomal compartment, whereas microvesicles and apoptotic bodies are derived from plasma membrane. EV secretion is considered as an evolutionarily conserved process, which plays important roles in intercellular communication [13]. For this purpose, EVs transfer a large variety of cargos, including proteins, RNA, DNA, bioactive metabolites and lipids. It is broadly assumed that all these molecule species can be delivered to recipient cells. The heterogenous group of ncRNAs, which are widely found in EV preparations, has received great interest in EV-mediated cell signaling, since ncRNAs profoundly regulate gene responses at the transcriptional, post-transcriptional or epigenetic levels by interacting with DNAs, RNAs or proteins [14, 15]. ncRNAs are categorized by the number of nucleotides constituting RNAs. ncRNAs with less than 200 nucleotides are defined as small ncRNAs, which include microRNAs (miRNAs), small interfering RNAs and piwi-interacting RNAs, whereas long ncRNAs (lncRNAs), which also comprise circular RNAs (circRNAs), are composed of more than 200 nucleotides [14, 16]. Although the precise subcellular source of these EVs is still a matter of discussion – some EV-ncRNAs arise from nucleus – [17], shuttled ncRNA transport via EVs has been proposed to regulate tissue responses to hypoxia [18]. In light of their roles in disease processes, EV-derived ncRNAs might be promising disease biomarkers and even be considered as therapeutic tools [19-21].

The present review summarizes the latest literature regarding the role of EV-ncRNA contents in the progression of hypoxic tumors, myocardial infarction and stroke. Aspects regarding the cellular and subcellular source of EV-associated ncRNAs, their cellular targets and biological functions are evaluated. The possible utility of EV-associated ncRNAs as therapeutic products and theranostic biomarkers is discussed.

1. EVs and ncRNAs

1.1 The characteristics and cellular origins of EVs

EVs are constantly released from eukaryotic cells, archaea and bacteria. They consist of a phospholipid bilayer and are abundantly present in various body fluids including blood, cerebrospinal fluid, urine, breast milk, and lacrima [22, 23]. EVs can be classified into subcategories based on their biogenesis, size and physicochemical properties. Exosomes with a size of 60-150 nm and a density of about 1.10-1.21 g/ml [24, 25] are formed as intraluminal vesicles (ILVs) by membrane budding of late endosomes, which are released into the extracellular space as multivesicular bodies (MVBs) by MVB fusion with the plasma membrane [26, 27]. Microvesicles, which are 100-1000 nm in diameter with a density of about 1.04-1.07 g/ml [25], are released from the plasma membrane by plasma membrane budding [26, 28]. Apoptotic bodies, which are typically larger than 500 nm in diameter, are formed during programmed cell death by plasma membrane budding. In cancer, extremely large vesicles called oncosomes are produced, which are considered to transfer oncogenic messages. Under pathophysiological conditions, apoptotic bodies or oncosomes may be more abundant in certain fluids than exosomes or microvesicles and thus confound EV analyses [29, 30]. Whereas exosomes and microvesicles are suggested as ‘safe containers’ for cargos mediating cell-to-cell communication, apoptotic bodies are released for degradation during the disassembly of dying cells.

Importantly, not all EVs released from live cells are involved in cell communication. Live cells may
also release vesicles through a cellular excretion machinery that do not aim at transmitting biological signals but are meant for remote degradation especially in the liver [15, 17]. Apparently, such garbage vesicles may contain ncRNA cargos that lack cell signaling roles. Besides, apoptotic cells not only fragment into the larger apoptotic bodies, but also generate many EVs in the size of exosomes. When preparing EVs in the size range of exosomes, combinations of exosomes, small microvesicles, small apoptotic vesicles and other small EVs, including nuclear EVs, are enriched [31]. To harmonize the nomenclature, the International Society of Extracellular Vesicles recommended to define all prepared vesicles independent of their origin as EVs; if they are all in the size of exosomes, the EVs might be termed more specifically as small EVs [32]. Unfortunately, not all scientists and especially researchers from the industry adopted the nomenclature and use the term exosomes as a synonym for small EVs. The issue is further complicated by the fact that hardly any method allows isolation of EVs; regularly concentrated EVs contain a number of non-EV associated byproducts, e.g. blood-derived EV samples typically contain a high load of lipoproteins and urine samples frequently aggregates of Tamm-Horsfall protein also named uromodulin [33, 34]. Furthermore, in addition to potentially contributing to functional impacts, byproducts in EV preparations may significantly influence EV quantification [35, 36]. The reader should be aware that at least in most of the studies EVs were not isolated but rather enriched likely to contain a panel of different non-EV-associated byproducts.

1.2 The characteristics and associated functions of ncRNAs

Among the different EV cargos, ncRNAs are most systematically studied [37, 38]. Despite their heterogeneity of origin and diversity of biological function, there is meanwhile broad evidence supporting a role of ncRNAs in coordinating tissue responses to injuries. Although more than 20,000 proteins are encoded by the human genome, they only account for approximately 20% of the whole genome [39]. Emerging evidence demonstrates that both short ncRNAs and IncRNAs play a crucial role in the regulation of gene expression in numerous pathophysiological states [40].

miRNAs are single-strand RNAs, which typically are 21-23 nucleotides in size and belong to the family of short ncRNAs. Released from the nucleus as single-strand pre-miRNA hairpins, pre-miRNAs are processed to mature miRNAs in the cytosol via cleavage by the endonuclease Dicer [41]. Together with Dicer and associated proteins, miRNAs form the RNA-induced silencing complex (RISC) [42]. As part of the RISC, miRNAs interact with complementary gene sequences in the 3’ untranslated region of target mRNA sequences, repressing gene expression by argonaute (AGO)-mediated mRNA cleavage, by mRNA poly(A) tail shortening that destabilizes the mRNA, or by interference with mRNA-ribosome interactions [43-45]. The human genome contains >600 genes with robust evidence of miRNA functions [46]. These miRNAs target >60% of all human genes [47]. Thus, single miRNAs can have hundreds, sometimes >1000 mRNA targets [47]. In many cases, these miRNAs moderately influence mRNA expression levels. Due to their multiple mRNA targets, the biological consequences of this action are profound.

In contrast to miRNAs, siRNAs are formed as double-strand RNAs in the nucleus which are typically longer than pre-miRNAs [48, 49]. Following cleavage by Dicer, 21-24 nucleotide siRNAs result, which dissociate to single-strand siRNAs upon interaction with the RISC. As part of the RISC, these siRNAs scan complementary mRNA sequences [50]. Unlike miRNAs, siRNAs have tight target specificity [48, 50]. siRNA binding induces cleavage of these target mRNAs.

Among small ncRNAs, piwi-interacting RNAs (piRNAs) are the largest in size. Their length varies between animal species, it typically ranges from 26 to 31 nucleotides [51]. piRNAs form complexes with piwi-AGO proteins capable of binding mRNAs and cleaving them [51].

IncRNAs are transcripts with more than 200 nucleotides that are not translated into protein [39]. IncRNAs include intergenic and intronic ncRNAs, and may involve sense and antisense RNA sequences. Although the biological role has so far been shown only for a small IncRNA proportion, they control transcription and translation in multiple ways, namely as transcription coregulators, ligands to nuclear transcription repressors, activators of transcription factors, regulators of epigenetic modifications, assistants in DNA double-strand break repair, as well as mRNA processing, splicing, transport, translation, and degradation [52, 53]. The recently described circRNAs display a circular covalently bonded structure associated with a higher tolerance to exonucleases [54]. They serve as scaffolds for chromatin-modifying complexes, regulate gene transcription and mRNA splicing, and act as miRNA sponges [55, 56].

1.3 ncRNA loading into EVs

Although ncRNAs inside EVs originate from the
transcriptome of their source cells, the composition of these ncRNAs differs from their source cell ncRNAs [57]. Among ncRNAs enriched in EVs, miRNAs are most abundant [58, 59]. Several studies analyzed the loading and sorting processes of ncRNAs into EVs, for which numerous signaling pathways have been shown to be involved [60-62]. Recent work demonstrated that miRNA sorting into EVs is not a random but a highly regulated process [63, 64]. miRNAs are characterized by a uridine or adenine residue at their 3'-end, which is important for their recognition by AGO2. miRNAs with an adenylated 3'-end are predominantly found in cells, whereas miRNAs with a uridylated 3'-end are sorted in EVs, as shown in RNA sequencing studies on human B cells and their EVs [63]. These results suggest that posttranscriptional miRNA modifications, notably, 3'-end adenylation and uridylation, might play a pivotal role in EV packaging.

There is increasing evidence that ncRNA sorting into EVs critically depends on membrane lipid and, more specifically, sphingolipid metabolism. The lipid composition of the EV membrane resembles that of membrane microdomains, which are characterized by a high content of cholesterol, phosphatidyl choline, sphingomyelin and ceramide [65]. Ceramide formation is controlled by neutral sphingomyelinase-2 and acid sphingomyelinase, which are localized in the cytosolic and luminal membrane leaflets, respectively, and hydrolytically cleave sphingomyelin to ceramide [66-68]. Ceramide has unique biophysical properties, as it can self-associate through hydrogen bonding, providing the driving force that results in the coalescence of microscopic microdomains to a large-scale macrodomains [67] and the budding of ILVs from MVBS [65]. It has been proposed that membrane microdomains act as platforms for MVB sorting and that ncRNAs integrating into these platforms exhibit specific nucleotide motifs differentially predisposing these ncRNAs for microdomain membrane interaction [62]. Indeed, RNAs binding to microdomains possess a specific secondary structure that differs from other RNAs [69]. Randomly structured RNA sequences revealed 20-fold lower affinity to the microdomain domains. In addition, specific nucleotide sequences appear to be required for enhanced affinity to phospholipid bilayers, and domains with membrane affinity have not been observed in random RNA sequences [61, 70]. Specific exosome-sorting RNA motifs have been shown for both miRNAs (called EXOnotifs) and mRNAs [62].

Intracellular transfer of ncRNAs from the nucleus to other subcellular compartments involves RNA-binding proteins, from which larger ribonucleoprotein particles are formed ensuring traveling along the cytoskeleton [71]. To date, more than 500 RNA-binding proteins have been reported, which consist of approximately 25% of the protein content of EVs [57, 72]. Emerging evidence demonstrates that ncRNAs can be transmitted into MVBS for exosome packaging or to the plasma membrane for extracellular secretion. This transmission takes place in association with RNA binding proteins like heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNPA2B1), YBX1, SYNCRIP, AGO2 and others [57]. Villarroya et al. revealed that in T cells, hnRNPA2B1 can target a specific motif of numerous miRNAs and transmit them into the ILVs [73]. SYNCRIP selectively loads hepatocyte miRNAs with a 4-nucleotide motif near the 3'-end [74], whereas YBX1 selectively carries miR-223 into HEK-293T cell EVs [75]. Deletion of AGO2 in HEK293T cells significantly decreased miR-142-3p and miR-451 miRNAs in EVs [76, 77]. Although a first picture of the mechanisms underlying ncRNA sorting is currently evolving, the extent to which these pathways are specific to certain ncRNA species in defined EV subsets is elusive. Future studies will have to evaluate how hypoxia regulates these packaging mechanisms.

1.4 Uptake of ncRNA-loaded EVs by recipient cells

To transmit ncRNAs into recipient cells, EVs may merge directly with the recipient cell by direct membrane fusion or be internalized through clathrin-mediated or caveolin-mediated endocytosis, phagocytosis or macropinocytosis [78]. EV docking can be assimilated by recipient cells through directly targeting corresponding receptors on the plasma membrane, which in turn activates or inhibits associated signaling pathways [79]. The receptors can be manipulated on the cell surface to increase EV uptake. For instance, enzymatic depletion or pharmacological inhibition of the extracellular matrix heparan sulfate proteoglycans on the plasma membrane has been found to promote the uptake of tumor-derived EVs by endocytosis [80]. In the latter study, EV uptake was specifically inhibited by free heparan sulfate chains, whereas closely related chondroitin sulfate had no effect [80]. Several integrin receptors have been shown to modulate EV uptake in a variety of cancers [57]. As such, integrin receptors were shown to be enriched in cancer EVs compared to EVs obtained from benign epithelial cells [81]. The total EV integrin levels, including the quantity of integrins α6, αv, and β1, correlated with tumor stage across a variety of epithelial cancers, while integrin α6 was prominently expressed on breast and ovarian
progenitor cells [81], suggesting a role of these integrins in cellular EV uptake and the utility of EV integrins as potential theranostic markers. A crucial role in EV uptake might be related to phosphatidyserine, which is highly abundant on the surface of apoptotic cells but also present on a subpopulation of EVs [82], where phosphatidyserine considerably acts as 'eat me' signal by phagocytes [83]. In mouse macrophages, the EV uptake is mediated via interaction of phosphatidyserine with T cell immunoglobulin and the mucin domain-containing protein 4 (Tim4) [83]. Indeed, the delivery of anti-Tim4 antibody prevented EV uptake by thymic macrophages [83]. Despite these emerging data, our current understanding of EV uptake mechanisms is still preliminary. Open questions remain about the endosomal escape of internalized EVs, which is required to deliver luminal EV cargo including ncRNAs into the cytosol of the EV recipient cells. In this context, it is interesting to note that even after successful EV uptake the generation of functional proteins from EV-derived mRNAs was negligible in recipient prostate cancer cells [57, 84]. Presumably, these mRNAs could not be released from the endosomal system and thus were unable to reach the ribosomes. Hence, dissection of potential endosomal escape mechanisms is vital for understanding whether ncRNA mediate biological functions after EV uptake. It needs to be considered that EVs containing ncRNAs are taken up as cell nutrition. After EV internalization residual parts are degraded in the lysosome or excreted for digestion in remote cells or tissues, including the liver. Indeed, EV biodistribution studies detect the liver as very prominently labeled organ [85]. A brief overview of mechanisms of communication between cells by EVs is shown in Figure 1.

1.5 Possible ncRNA artifacts associated with EV isolation and purification

In a variety of well-defined settings, authors could not confirm that ncRNAs and more specifically miRNAs are sorted into EVs [57]. Certainly, results strongly depend on the EV preparation method. Originally and still often today, EVs are isolated by differential ultracentrifugation [86], which as stated before, also results in the preparation of many lipoprotein particles [87]. Indeed, lipoproteins
frequently contain miRNA-binding AGO proteins and thus can protect extracellular miRNAs [88]. Bead capturing experiments using EVs obtained from mesenchymal stromal cells (MSCs) revealed that EVs recovered by cholera toxin b, a GM1 ganglioside ligand and membrane microdomain marker, contained many exosome markers but hardly any RNAs [17]. In contrast, EVs captured by the globotriaosylceramide ligand shiga toxin b were abundant in nuclear markers and contained large amounts of RNAs [17]. Interestingly, among the many studies using proteomic methods to analyse the composition of EVs, only one has reported the presence of AGO2 and none has detected Dicer [57]. Apparently, the cellular source of EVs and physiological condition in which cells are raised decisively influence EV-ncRNA cargos. In the interpretation of ncRNA findings, possible artifacts related to EV isolation and purification carefully need to be considered.

2. Roles of EV-ncRNAs in the hypoxic tumor microenvironment

Hypoxia is a key feature of solid tumors [89]. Highly proliferating tumor cells outgrow the existing local blood supply, forming irregular vessel networks that cannot compensate for tissue oxygen needs [90, 91]. Hence, tissue oxygen levels can drop below 2% in tumor masses, which has profound effects on the release and ncRNA contents of EVs [92]. ncRNAs released from hypoxic tumor cells via EVs play an important role in creating a microenvironment that supports tumor growth [93-101]. Notably, a large number of ncRNAs are increased in EV preparations obtained from hypoxic tumors. Several of these ncRNAs have been attributed to signal pathways associated with cell survival and proliferation, such as the FoxO pathway, the proteoglycans in cancer pathway, the HIF-1 signaling pathway or the mitogen-activated protein kinase (MAPK) pathway [11]. The involvement of EV-derived ncRNAs in regulating tumor cell proliferation, angiogenesis, immunosuppression, drug resistance has been studied extensively in specific cancers under conditions of hypoxia [93-136], as outlined in Table 1 and Figure 2. The main findings are summarized in the following.

![Figure 2. The involvement of EV-ncRNAs derived from the hypoxic tumor in the regulation of the tumor microenvironment.](https://www.thno.org)
Table 1. Preclinical studies assessing the effect of ncRNAs transferred via EVs in the hypoxic tumor microenvironment.

Authors [reference]	Cancer type	ncRNAs	EV provenance	Recipient cell	Primary action	Mechanism of action
Xue et al. [102]	Bladder carcinoma	IncR UCA1	5637 cancer cells	UMUC2 cancer cells	Tumor cell proliferation	Promotion of epithelial-mesenchymal transition
Zhang et al. [123]	Lung carcinoma	IncR MALAT1	Patient serum	A549 and H1299 cancer cells	Tumor cell proliferation, migration and survival	Not determined
Rong et al. [154]	Lung carcinoma	IncR MALAT1	Patient serum, A549 and H1299 cancer cells	A549 and H1299 cancer cells	Tumor cell proliferation, invasion and survival	miR-515 sponging, EEF2 upregulation,
Wang et al. [125]	Lung carcinoma	IncR MALAT1	A549 and H1299 cancer cells	A549 and H1299 cancer cells	Tumor cell proliferation, colony formation and glycolysis	miR-613 sponging, COMMD8 upregulation
Zhou et al. [112]	Breast carcinoma	IncR NEAT1	Patient serum	MCF-7 and MDA-MB-231 cancer cells	Tumor cell proliferation, migration and invasion and metastasis	miR-141-3p sponging, KLF12 upregulation
Takahashi et al. [130]	Hepatocellular carcinoma	IncR ROR	HepG2 cancer cells	HepG2 cancer cells	Tumor cell proliferation	miR-145 downregulation, HIF1a stabilization
Chen et al. [95]	Ovarian carcinoma	miR-21-3p/ miR-125b-5p/ miR-181d-5p	SKOV3 cancer cells	SKOV3 cancer cells	Tumor cell proliferation/miR/miR/miR	miR-10a/miR-210-3p/miR-328
Hu et al. [129]	Hepatoblastoma	miR-126	huh6 and HepG2 cancer cells	huh6 and HepG2 cancer cells	Tumor cell proliferation, tumor growth	MSc differentiation into cancer cells
Kawakatsu et al. [128]	Glioma	miR-146b	MScs	MScs	Tumor cell proliferation/miR/miR	Not determined
Meng et al. [104]	Renal carcinoma	miR-155	786-O and Caki-1 cancer cells	786-O and Caki-1 cancer cells	Tumor cell proliferation, invasion	FOXO3 downregulation
Liu et al. [105]	Lung carcinoma	miR-328-3p	A549 and H125 cancer cells	A549 and H125 cancer cells	Tumor cell proliferation, invasion and tumor growth	Promotion of epithelial-mesenchymal transition, NF2 downregulation, inhibition of Hippo pathway activation
Li et al. [103]	Colorectal carcinoma	miR-361-3p	CRC cancer cells	HCT116 and HT29 cancer cells	Tumor cell proliferation, survival, tumor growth	TRA3 downregulation, NF-kB activation
Yu et al. [98]	Hepatocellular carcinoma	miR-127f	Huh7 and 97H cancer cells	Huh7 and 97H cancer cells	Tumor cell proliferation	LH36 downregulation
Yang et al. [136]	Colorectal carcinoma	circ-133	Patient serum, SW 480 and HCT 116 cancer cells	SW 480 and HCT 116 cancer cells	Tumor cell migration/metastasis	miR-133a sponging, GEF-H1 and RhoA elevation
Li et al. [114]	Oral squamous cell carcinoma	miR-21	Patient serum	SCC-9 and CAL-27 cancer cells	Tumor cell migration/invasion	HIF1α/HIF2α stabilization
Liu et al. [113]	Hepatocellular carcinoma	miR-25-5p	Huh-7 and HCCLM3 cancer cells	Huh-7 and HCCLM3 cancer cells	Tumor cell migration/invasion	Not determined
Yu et al. [121]	Lung carcinoma	miR-31-5p	A549 and H1299 cancer cells	A549 and H1299 cancer cells	Tumor cell migration/invasion	SATB2-reverted epithelial-mesenchymal transition, ERK1/2 activation
Zhang et al. [97]	Lung carcinoma	miR-193a-3p/ miR-210-3p/ miR-300	A549, H358, H460 and LLC cancer cells	A549, H358, H460 and LLC cancer cells	Tumor cell migration/invasion	STAT3 activation, epithelial-mesenchymal transition
Li et al. [130]	Lung carcinoma	miR-126	Patient serum	A549 and H460 cancer cells	Inhibition of tumor cell proliferation, colony formation, migration, invasion and survival	ITGA6 downregulation
Guo et al. [106]	Pancreatic carcinoma	IncR UCA1	MIA PaCa-2 cancer cells	Endothelial cells	Angiogenesis	miR-96-5p sponging, AMOTL2 repression reversal
Hsu et al. [108]	Lung carcinoma	miR-2a	CL1-5 cancer cells	Endothelial cells	Angiogenesis	PHD1/PHD2 downregulation, HIF1α stabilization
Zeng et al. [114]	Colorectal carcinoma	miR-25-3p	Patient serum and CRC cancer cells	Endothelial cells	Angiogenesis, vascular permeability, metastasis	KL2F and KLF4 downregulation
Taverna et al. [131]	Chronic myeloid leukemia	miR-126	LAPA84 cancer cells	Endothelial cells	Angiogenesis	CXCL12 and VCAM1 downregulation
Umezui et al. [101]	Multiple myeloma	miR-135b	RPMI8226 cancer cells	Endothelial cells	Angiogenesis	FHL downregulation, HIF1α stabilization
Tadokoro et al. [107]	Leukemia	miR-210	K562 cancer cells	Endothelial cells	Angiogenesis	EFNA3 downregulation
Mao et al. [109]	Lung carcinoma	miR-494	A549 cancer cells	Endothelial cells	Angiogenesis, tumor growth	PTEN downregulation, Akt1/ eNOS activation
Li et al. [119]	Oral squamous cell carcinoma	miR-21	Cal-27 and SCC9 cancer cells	γδ T cells	Immune tolerance	γδ T cell deactivation through PTEN/PD-L1 axis regulation
Berchem et al. [111]	Different cancers, including lung carcinoma	miR-23a	IGR-Heu and K562 cancer cells	NK cells	Immune tolerance	NK cell deactivation through CD107a downregulation
Ye et al. [110]	Nasopharyngeal carcinoma	miR-24-3p	TW03, C666 and CNE2 cancer cells	T cells	Immune tolerance	T cell deactivation through FGFR11 downregulation, ERK1/2 downregulation, STAT3 activation and STAT5 activation
Guo et al. [93]	Glioma	miR-10a/ miR-21	P3 and GL261 cancer cells	MDSCs	Immune tolerance	MDSC expansion, RORA and PTEN downregulation
Yang et al. [116]	Melanoma	IncR NEAT1	MScs	Macrophages	Immune tolerance	M2 macrophage polarization through miR-374 sponging, LGPR4-dependent IQGAP1 upregulation
2.1 Tumor cell proliferation, migration and invasion

Excessive cellular proliferation is a fundamental characteristic of cancer, which results from the activation of oncogenic signals that overrule the physiological inhibition of cell growth [137]. EV-derived ncRNAs contribute to tumor cell proliferation, as has been brought into the spotlight recently. In EVs obtained from bladder carcinoma cells raised under hypoxic conditions, the content of urothelial carcinoma associated-1 (UCA1), a hypoxia-responsive IncRNA, was found to be enriched compared with EVs obtained from normoxic bladder carcinoma cells [102]. UCA1 transfer via EVs obtained from hypoxic bladder carcinoma cells promoted tumor cell proliferation, migration, and invasion in recipient cells via mechanisms that involved epithelial-mesenchymal transition, a process relevant for cancer progression [102]. The level of IncR-UCA1 in human serum-derived EVs of bladder carcinoma patients was higher than that in healthy control patients [102]. Similarly, in hepatocellular carcinoma, IncRNA ROR accumulated in hypoxic tumor cell EVs was found to promote cancer growth by miR-145 downregulation and HIF1α stabilization [120]. In non-small cell lung adenocarcinoma, IncRNA metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) significantly increased tumor cell proliferation, migration, invasion, colony formation and glycolysis via mechanisms involving miR-515 and miR-613 splicing, followed by EEF2 and COMMD8 upregulation [123-125]. In breast carcinoma, IncRNA nuclear enriched abundant transcript-1 (NEAT1) promoted tumor cell proliferation, migration, invasion and metastasis via miR-141-3p splicing and KLF12 upregulation [122]. In colorectal carcinoma, hypoxic EV-associated circ-133 promoted tumor cell migration and metastasis via miR-133 splicing, GEF-H1 and RhoA elevation [136].

Besides IncRNAs, EV miRNAs have been involved in the regulation of tumor cell proliferation in hypoxia. In EVs derived from colorectal carcinoma cells, miR-361-3p was described to be enriched, when compared with normoxic conditions [103]. EV-mediated miR-361-3p delivery from hypoxic cells promoted tumor growth and suppressed tumor cell apoptosis in recipient cells by interaction with TRAF3 resulting in the activation of the NFκB pathway [103]. Likewise, in EVs from hepatocellular carcinoma cells, miR-1273f was enriched when cells were raised under hypoxic compared with normoxic conditions [98]. miR-1273f delivery via EVs obtained from hypoxic hepatocellular carcinoma cells was reported to increase miR-1273f levels in normoxic target cells, enhancing their proliferation by downregulating LHX6 expression [98]. Studies in renal cell carcinoma and lung carcinoma noted roles of miR-155 and miR328-3p in hypoxic cancer proliferation via mechanisms involving inhibition of FOXO3 expression and activation [104] or inhibition of tumor suppressor NF2 targeted Hippo pathway activation [105].
respectively. In oral squamous cell carcinoma and ovarian carcinoma, a role of EV miR-21 has been shown in hypoxic cancer cell proliferation, migration and invasion via HIF1α and HIF2α stabilization [95, 114], and in lung carcinoma, roles of miR-31-5p, miR-193-3p, miR-201-3p and miR-5100 were found via SATB2-revered epithelial-mesenchymal transition, MAPK/ERK1/2 activation and STAT3 activation [97, 121]. In the latter studies, roles in the regulation of tumor cell proliferation, migration and invasion were shown for miRNAs associated with cancer cell EVs and MSC EVs.

2.2 Tumor-associated angiogenesis

Tumor growth vitally depends on tumor-associated angiogenesis, which involves a plethora of events such as the basal membrane degradation, endothelial proliferation, migration, tube formation and branching [138]. EV-derived ncRNAs are claimed to facilitate tumor-associated angiogenesis under conditions of hypoxia. In this process, the IncRNA UCA1 again seems to play a prominent role. UCA1 was elevated in EVs obtained from hypoxic compared with normoxic pancreatic carcinoma cells and in serum-derived EVs from pancreatic carcinoma patients [106]. In serum EVs of pancreatic carcinoma patients, UCA1 levels were associated with poor patient survival [106]. Exposure of HUVECs to UCA1 enriched EVs promoted angiogenesis in vitro and in vivo by acting as a sponge for miR-96-5p that relieved the repressive effects of miR-96-5p on its target gene AMOTL2 [106]. In leukemia, miR-210 was upregulated in hypoxic compared with normoxic tumor cells and their EVs, inducing angiogenesis by downregulating FN3 expression [107]. Angiogenesis was also facilitated by miR-23a-enriched EVs from hypoxic lung carcinoma cells, which induced tight junction breakdown, vascular permeability, transendothelial tumor cell migration and tumor growth [108]. As underlying mechanism, the suppression of the miR-23a targets prolyl hydroxylase 1 and 2 (PHD1 and 2) that promoted HIF1α accumulation was identified [108]. In lung carcinoma, the delivery of miR-494 enriched EVs derived from hypoxic tumor cells enhanced angiogenesis via PTEN, Akt and eNOS signaling [109]. Studies in hypoxia-resistant multiple myeloma revealed that miR-135b enrichment in EVs enhanced angiogenesis under conditions of hypoxia via suppression of its target factor inhibiting HIF1 (FIH) [101]. In colorectal carcinoma, tumor EV miR-25-3p promoted angiogenesis, vascular permeability and metastasis by downregulating KLF2 and KLF4 [134].

2.3 Immune tolerance

Immune surveillance plays a central role in controlling tumor growth. To support its own growth, tumors can induce immune tolerance. In this process, ncRNAs transmitted via EVs are thought to be involved [18, 139]. In nasopharyngeal carcinoma, tumor cells found to be enriched in miR-24-3p were shown to inhibit T cell proliferation and Th1 and Th17 differentiation by downregulating its target FGF11, thus increasing MAPK extracellular kinase (ERK)-1/2 activity, increasing signal transducer and activator of transcription (STAT)-1 and STAT3 activity and reducing STAT5 activity [110]. In a study comparing a variety of tumor cells models including lung carcinoma cells, EVs from hypoxic tumor cells displayed elevated miR-210 and miR-23a abundance [111]. The authors showed that miR-23a in hypoxic EVs downregulated CD107a expression in NK cells and thus lowered their antitumor response [111]. In oral squamous cell carcinoma, elevated miR-21 in EVs of hypoxic tumor cells inhibited γδ T cell activation by regulating PTEN and PD-L1 [119]. Myeloid-derived suppressor cells (MDSCs) modulate the immunosuppressive tumor microenvironment by inhibiting T cell activation. A sequencing analysis of miRNAs from both hypoxic and normoxic glioma-derived EVs found that miR-10a and miR-21 induced upon hypoxia promoted MDSC expansion and activation by targeting RAR-related orphan receptor alpha (RORA) and phosphatase and tensin homolog (PTEN) [93]. In lung carcinoma, melanoma, pancreatic carcinoma and ovarian carcinoma, NEAT1, miR-103a, miR-301a, miR-940 and let-7a were shown to regulate macrophage polarization towards an immunotolerant M2 phenotype via mechanisms involving the PTEN, PI3K/ Akt, STAT3 or IQGAP1 pathways, besides others [100, 116-118, 126]. The induction of immune tolerance facilitates tumor growth.

2.4 Chemotherapy resistance

Acquired chemotherapy resistance in response to repeated drug exposure is an essential factor that contributes to poor prognosis in cancer. Unraveling the underlying mechanisms is a prerequisite for developing novel cancer treatments. ncRNAs shuttled via EVs have recently been shown to contribute to chemotherapy resistance development. Microarray analysis of EV-derived circRNAs from hypoxic and normoxic pancreatic carcinoma cells displayed that circZNF91 was increased in EVs obtained from hypoxic pancreatic carcinoma cells [112]. Overexpression of circZNF91 induced chemotherapy resistance in normoxic PC cells, while circZNF91 knockdown attenuated chemotherapy resistance by competitively targeting miR-23b-3p [112].

https://www.thno.org
colorectal carcinoma, EV-associated circRNA ciRS-122 promoted glycolysis and induced oxaliplatin chemotherapy resistance through miR-122 sponging and PKM2 upregulation [135]. In hepatocellular carcinoma, the hypoxia-responsive IncRNA ROR was highly abundant in tumor cells and their EVs [99]. Incubation of tumor cells with IncRNA ROR-rich EVs induced chemotherapy-resistance to sorafenib [99]. Interestingly, sorafenib similarly increased IncRNA ROR levels in tumor cells and their EVs, whereas siRNA-mediated IncRNA ROR knockdown restored chemotherapy responsiveness via mechanisms involving diminished CD133+ cells in response to chemotherapy responsiveness [99]. In non-small cell lung carcinoma cells, hypoxia increased miR-21 levels in tumor cells and their EVs, promoting cisplatin chemotherapy resistance of recipient cells by downregulating PTEN [94]. Notably, high miR-21 levels in non-small cell lung carcinoma samples was associated with short survival in patients receiving chemotherapy, but not in patients not receiving chemotherapy [94]. In hypoxic macrophages, elevated miR-21 levels were noted in EVs conferring chemoresistance in ovarian carcinoma cells; and miR-223 was shown to mediate this action via mechanisms involving PTEN downregulation and β (TGFβ), a known stimulant inducing chemotherapy resistance [99]. In non-small cell lung carcinoma cells, hypoxia increased miR-21 levels in tumor cells and their EVs, promoting cisplatin chemotherapy resistance of recipient cells by downregulating PTEN [94]. Notably, high miR-21 levels in non-small cell lung carcinoma samples was associated with short survival in patients receiving chemotherapy, but not in patients not receiving chemotherapy [94]. In hypoxic macrophages, elevated miR-223 levels were noted in EVs conferring chemoresistance in ovarian carcinoma cells; and miR-223 was shown to mediate this action via mechanisms involving PTEN downregulation and phosphatidylinositol-3 kinase (PI3K)/Akt overactivation [113]. The role of EV-shuttled ncRNAs supports a role as markers in diagnostics or theranostics in cancer.

3. Roles of EV-ncRNAs in myocardial infarction

The occlusion of a coronary artery in myocardial infarction results in a series of pathological events, among which necrosis, apoptosis, autophagy and inflammatory damage may ultimately lead to heart failure and death [2]. Unlike in cancer, in which tumor development occurs progressively, myocardial infarction is an acute disorder characterized by an abrupt interruption of blood flow. Owing perhaps to the acute nature and severity of injury associated with myocardial infarction, several ncRNAs are downregulated in hypoxic-ischemic heart tissue in response to myocardial infarction, as previously shown for IncRNA HCP5, miR-21, miR-24, miR-30e, miR-98-5p, miR-185 and miR-212-5p [140-147], whereas other ncRNAs, such as IncRNA NEAT1 and miR-328-3p, are increased [148, 149]. Delivery of EVs derived from bone marrow-derived mesenchymal stromal cells (MSCs) or patient blood seem to restore reduced ncRNA levels in ischemic heart tissue [140, 141, 143, 144, 147, 150]. Suggestively, EV-ncRNAs play important roles in coordinating responses to myocardial injury, i.e., by modulating cardiomyocyte survival, inflammatory responses, angiogenesis and cardiac functional recovery [59, 151, 152]. While EV-ncRNAs in hypoxic tumors have been widely studied in patient-derived cancer tissue, similar information from tissue obtained from patients with myocardial infarction is scarce due to the lack of access to histological tissue samples. Unlike in cancer, previous studies on myocardial infarction have mainly been conducted using tissues or cells without preexisting injury, which were experimentally exposed to hypoxia or ischemia [140-150, 153-180], as summarized in Table 2 and Figure 3 and further specified in the following.

Table 2. Preclinical studies assessing the effects of ncRNAs transferred via EVs in models of myocardial infarction.

Authors [reference]	ncRNAs	EV provenance	Recipient cell	Ischemia model	Primary action	Mechanism of action
Dao et al. [153]	lncR UCA1	MSCs	Cardiomyocytes	H/R, LAD ligation	Cell survival, autophagy inhibition	miR-143 sponging/ Bcl2 elevation
Shyu et al. [154]	lncR MALAT1	Cardiomyocytes, endothelial cells	LAD ligation	Cell survival	miR-92a sponging, KLF2 and CD31 elevation	
Kenneweg et al. [149]	lncR NEAT1	Cardiomyocytes, fibroblasts	LAD ligation	Cell survival, cardiac function recovery, angiogenesis	NEAT1 transcriptionally upregulated in large EVs by hypoxia through HIF1α	
Chen et al. [155]	lncR KLF3-AS1	Cardiomyocytes, BMSCs	LAD ligation	Cell survival	miR-23c sponging, STAT5B upregulation	
Mao et al. [156]	lncR KLF3-AS1	MSCs	Cardiomyocytes	H/R, LAD ligation	Cell survival, Pyroptosis inhibition	miR-138-5p sponging, SIRT1 upregulation
Li et al. [140]	lncR HEPCP5	MSCs	Cardiomyocytes	H/R, LAD ligation	Cell survival	miR-497 sponging, IGF1 upregulation, PI3K/Akt activation
Gu et al. [141]	miR-21	Patient serum	Cardiomyocytes	OGD/R, LAD ligation	Cell survival	PDCD4 downregulation
Song et al. [157]	miR-21	HEK293T	Cardiomyocytes, endothelial cells	H2O2, LAD ligation	Cell survival	PDCD4 downregulation
Zhang et al. [147]	miR-24	MSCs	Cardiomyocytes	LAD ligation	Cell survival, cardiac function recovery	Bax, caspase-3 and activated caspase-3 reduction
Peng et al. [181]	miR-25	MSCs	Cardiomyocytes	OGD/R, LAD ligation	Cell survival	FASL and PTEN downregulation, EZH2 and H3K27me3 reduction elevating eNOS and SOCS3
Pu et al. [142]	miR-30e	MSCs	Cardiomyocytes	H/R, LAD ligation	Cell survival, cardiac function recovery	LOX1 downregulation, NF-κB p65 and caspase-9 deactivation
3.1 Cell survival and injury

Studies in experimental models mimicking myocardial infarction imply that EV-associated lncRNAs and miRNAs can promote ischemic cardiomyocyte survival and cardiac function recovery. As such, UCA1, MALAT1, NEAT1, KLF2-AS1 and HCP5 lncRNAs shuttled via EVs from cardiomyocytes or MSCs were found to promote cardiomyocyte survival, inhibit cardiomyocyte autophagy and promote cardiac function recovery by mechanisms including miR-143, miR-92a, miR-23c, miR138-5p and miR-497 sponging [140, 149, 153-156]. miRNA sponging potently increased the miRNA targets KLF2, STAT5B, SIRT1 and IGF1. Cardioprotective effects were demonstrated for several EV-miRNAs, namely miR-21, miR-25, miR-30e, miR-125b, miR-126, miR-146a, miR-185, miR-210, miR-212-5p, miR-338 and miR-671, which, collected from MSCs, cardiac progenitor cells, endothelial cells, endothelial...
progenitor cells or patient serum, promoted cardiomyocyte survival by downregulating miRNA targets including PDCD4, FASL, PTEN, LOX1, p53, BAK or SOCS2 [141, 145-147, 150, 159, 162, 164, 165, 176-178, 181]. As a consequence of EV administration, intrinsic and extrinsic cell death pathways were inhibited. Importantly, not all ncRNAs contained in EV samples protect against ischemic damage. Hence, EV-associated HCG15 lncRNA, miR-153-3p and miR-328-3p were found to exacerbate ischemic injury in myocardial infarction models via mechanisms involving NFκB/ p65 and p38 activation, PI3K/ Akt deactivation and caspase-3 activation, when obtained from ischemic cardiomyocytes, patient serum or MSCs [148, 167, 168].

Figure 3. The involvement of ncRNAs shuttled via EVs in myocardial infarction.

Different donor cells can impact recipient cells by transmitting ncRNAs via EVs, which can be taken up by recipient cells and alter various biological responses including cell survival, autophagy, inflammation and angiogenesis, thus regulating myocardial infarction progression and recovery. ADSC, adipose tissue-derived mesenchymal stromal cell; CMC, cardiomyocyte; CPC, cardiomyocyte precursor cell; DC, dendritic cell; EC, endothelial cell; SMC, smooth muscle cell.
3.2 Inflammation

The activation of pattern recognition receptors (PRRs) via damage-associated molecular patterns (DAMPs) may exacerbate ischemic cardiomyocyte injury via activation of the inflammasome, a multiprotein complex capable of cleaving and releasing proinflammatory IL1β levels, resulting in the activation of a proinflammatory type of programmed cell death called pyroptosis. EV-ncRNAs modulate inflammatory responses via a variety of miRNA targets. Hence, miR-98-5p and miR-129 transferred via endothelial cell EVs or MSC EVs reduced inflammasome activation in the ischemic myocardium by downregulating their miRNA target, the PRR TLR4, which in turn inhibited NFκB and the inflammasome component NLRP3 [143, 158]. Likewise, miR-146a and miR-671 shuttled via MSC EVs reduced TLR4, NFκB and SMAD2 signaling responses by downregulating their targets EGR1 and TGFBR2 [150, 163]. Patient serum-derived EV lncRNA HCG15, conversely, promoted IL1, IL6 and TNFα formation in ischemic myocardium via NFκB activation [167].

3.3 Angiogenesis

Vascular protective and angiogenic effects were shown for a variety of EV associated ncRNAs derived from cardiomyocytes, MSCs, cardiac progenitor cells, dendritic cells or patient serum, namely MALAT1 lncRNA, miR-21, miR-31, miR-126, miR-210, miR-223, miR-322, miR486-5p, miR-494-3p and miR-4732-3p in models of myocardial infarction [154, 157, 166, 168, 169, 171-173, 179, 180, 182]. These ncRNAs were found to promote endothelial survival, proliferation, migration and tube formation by downregulating the miRNA targets including Krev interaction trapped protein-1 (KRT1), matrix metalloproteinase-19 (MMP19), and FIH, thus inducing β-catenin activation, VEGF, CCND1, NOX2 or HIF1α elevation, respectively [154, 157, 166, 168, 169, 171-173, 179, 180, 182]. As a consequence of the enhanced tissue vascularization, fibrotic scar formation was reduced and cardiac function was enhanced [166, 170, 172, 180]. In contrast, miR-153-3p delivered by MSC EVs compromised endothelial survival by downregulating its target angiopoietin-1 (ANGPT1) resulting in β-catenin activation, VEGFR2, PI3K/ Akt and eNOS deactivation [168], whereas miR-143 and miR-145 delivered by smooth muscle cell EVs reduced angiogenesis by downregulating their targets hexokinase-II (HKII) and integrin-β8 [174]. The cardioprotective, anti-inflammatory and angiogenic roles of EV-ncRNAs support a possible role of ncRNAs as diagnostic/theranostic markers and therapeutic targets in myocardial infarction.

4. Roles of EV-ncRNAs in ischemic stroke

The occlusion of a cerebral artery affects the survival of brain neurons, glial cells and vascular cells. Among these different cells, the vulnerability of brain neurons is highest. Neuronal viability, structural connectivity and functional responses are vital for the recovery of lost neurological functions [183, 184]. Yet, neurological recovery post-stroke critically depends on the successful restitution of vascular and glial functions. In the process of brain tissue remodeling, neurons, glial cells and vascular cells tightly interact with each other, preparing the stage so that successful functional recovery can occur [183]. Similar to myocardial infarction, a variety of ncRNAs, namely circSCMH1, miR-124-3p, miR-126, miR-132, miR-221-3p and miR542-3p, are reduced in the ischemic brain and blood [185-191], whereas others, namely miR-98 and miR-494, are increased at defined time-points [192-194]. Delivery of MSC-derived EVs can boost ncRNA levels in ischemic brain tissue [195-198]. Although ischemic stroke and myocardial infarction have distinct pathophysiological features, they thus share common signaling pathways. Hence, EV-ncRNAs have vital roles in coordinating tissue responses to ischemic stroke in the acute and post-acute stroke setting, in which ncRNAs modulate neuronal survival, inflammatory responses, angiogenesis, neurogenesis and neuronal plasticity [151, 199]. Similar to myocardial infarction, most studies on ischemic stroke have previously been performed using tissues or cells, which were experimentally exposed to hypoxia or ischemia [185-192, 195-198, 200-224], as summarized in Table 3 and Figure 4 and outlined in the following.

4.1 Cell survival and injury

Experimental stroke studies revealed that EV-ncRNAs can promote ischemic brain tissue survival in the acute stroke phase, reduce the development of brain atrophy in the chronic phase and enhance neurological recovery. Thus, EV samples obtained from hypoxic astrocytes that contained circSHOC2 lncRNA promoted neuronal survival via mechanisms involving miR-7670-3p sponging, resulting in SIRT1 overexpression [200]. In HT22 neuronal cells, lncRNA MALAT1 shuttled via MSC EVs promoted neuronal survival via mechanisms including the recruitment of the serine-arginine-rich splice factor-2 (SRSF2), resulting in alternative splicing of protein kinase CδII (PKCδII) and Bcl2 elevation [225].
Table 3. Preclinical studies assessing the effects of ncRNAs transferred via EVs in ischemic stroke models.

Authors	ncRNAs [reference]	EV provenance	Recipient cell	Ischemia model	Primary action	Mechanism of action
Chen et al. [200]	circSHOC2	Primary astrocytes	Primary neurons	OGD, MCAO	Cell survival, autophagy inhibition	miR-7670-3p sponging/ SIRT1 elevation
El Bassit et al. [225]	IncR MALAT1	MSCs	HT22 neuronal cells	Oxidative stress	Cell survival and proliferation	SRSF2 recruitment, alternative PKCβIII splicing, Bcl2 elevation
Zhang et al. [201]	miR-22-3p	MSCs	Primary neurons	OGD, MCAO	Cell survival	KDM6B downregulation, BMP2/ BMP deactivation
Guang et al. [202]	miR-25	MSCs	Primary neurons	OGD, MCAO	Cell survival, autophagy inhibition	p53 downregulation, BNP3 deactivation, reduced LC3-II abundance
Hou et al. [203]	miR-26a	MSCs	Primary neurons	OGD, MCAO	Cell survival	KL99 downregulation, TRAF2 and KL2 elevation
Li et al. [197]	miR-26b-5p	MSCs	SH-SYSY, PC12, primary microglia	OGD, MCAO	Cell survival, antiinflammation	CH521 downregulation, TLR4 deactivation, inhibition of M1 microglia polarization
Lv et al. [204]	miR-31	MSCs	Primary neurons	OGD, MCAO	Cell survival, functional neurological recovery	TRAF6 downregulation, TLR5 elevation, Bax/activated caspase-3 reduction
Wu et al. [205]	miR-34c	Astrocytes	N2a neuronal cells	OGD, MCAO	Cell survival	TLR7 downregulation, NFκB/ MAPK deactivation
Xu et al. [206]	miR-92b-3p	Primary astrocytes	Primary neurons	OGD	Cell survival	Not determined
Yang et al. [192]	miR-98	Primary microglia	OGD, MCAO	Cell survival, antiinflammation	PAIR downregulation, inhibition of microglia phagocytosis	
Li et al. [207]	miR-124	M2 BV2 microglia	Primary astrocytes	OGD, MCAO	Cell survival, inhibition astrocyte activation, proliferation and scar formation, functional neurological recovery, antiinflammation	STAT3 downregulation, GFAβ reduction, nestin elevation
Qi et al. [189]	miR-124-3p	Patient serum	BV2 microglia	A57 patients	Cell survival, antiinflammation	ERK1/2, PI3K / Akt and p38 MAPK deactivation
Cui et al. [208]	miR-126	Patient serum	SH-SYSY neuronal cells	RIPC	Cell survival	DNMT3B downregulation
Geng et al. [190]	miR-126	MSCs	Neurons, endothelial cells, BV2 microglia	OGD, MCAO	Cell survival, functional neurological recovery, anti-inflammation, neurogenesis, angiogenesis	Reduced microglial activation
Feng et al. [185]	miR-132	MSCs	Primary neurons	OGD, MCAO	Cell survival	ACVR2B downregulation, SMAD2/ c-Jun inhibition
Xiao et al. [209]	miR-134	MSCs	Primary oligodendrocytes	OGD	Cell survival	Caspase-8 deactivation
Liu et al. [210]	miR-135a-5p	M2 microglia	HT-22 neuronal cells	OGD, MCAO	Cell survival, antiinflammation, autophagy inhibition	TXNIP downregulation, NLRP3 deactivation, reduced IL1β and IL18 formation
Zhang et al. [211]	miR-137	M2 microglia	Primary neurons	OGD, MCAO	Cell survival, functional neurological recovery	NOTCH1 downregulation
Deng et al. [212]	miR-138-5p	Primary astrocytes	OGD, MCAO	Cell survival, antiinflammation	LCN2 downregulation, IL1β, IL6 and TNFα reduction, Bcl2 elevation, Bax reduction	
Zhang et al. [213]	miR-146a-5p	MSCs	BV2 microglia	OGD, MCAO	Cell survival, antiinflammation, functional neurological recovery	IRAK1 / TRAF6 deactivation, reduced microglial activation
Song et al. [214]	miR-181c-3p	Primary astrocytes	Primary astrocytes	OGD, MCAO	Cell survival, antiinflammation	CXCR1 downregulation, reduced astrocyte activation
Zhong et al. [215]	miR-206/ miR-1-3p	MSCs	Primary neurons	OGD	Cell survival	RMRP downregulation, PI3K / Akt / mTOR deactivation, eNOS elevation
Ai et al. [196]	miR-221-3p	MSCs	Primary neurons	OGD, MCAO	Cell survival, antiinflammation	ATR3 downregulation
Zhao et al. [216]	miR-233-3p	MSCs	BV2 microglia	OGD, MCAO	Cell survival, antiinflammation, functional neurological recovery	CysL2R downregulation, M2 microglia polarization
Bu et al. [217]	miR-361	Primary astrocytes	PC12 neuronal cells	OGD, MCAO	Cell survival	CTSB downregulation, AMPK / mTOR deactivation
Cai et al. [188]	miR-542-3p	MSCs	HA1800 astrocytes	OGD, MCAO	Cell survival, antiinflammation	TLR4 downregulation, ROC6, IL6, TNFα and MCP1 reduction
Yue et al. [218]	miR-1290	Endothelial cells	Primary neurons	OGD, MCAO	Cell survival	Neuronal EV uptake caveolin-1 dependent, increased by hypoxia-ischemia
Ye et al. [219]	miR-27-3p	Patient serum	BV2 microglia	MCAO	Cell death, inflammation, compromised neurological recovery	PARP-1 downregulation, microglial overactivation, proinflammatory cytokine formation
Yang et al. [220]	miR-181b	MSCs	Brain microvascular endothelial cells	OGD, MCAO	Angiogenesis	TRPM7 downregulation, HIP1α and VEGF elevation, TIMP3 reduction
Zhang et al. [221]	miR-210	MSCs	Brain microvascular endothelial cells	OGD, MCAO	Angiogenesis	Integrin-β3, VEGF and CD34 elevation
Gregorius et al. [198]	-	MSCs	Brain microvascular endothelial cells	OGD, MCAO	Angiogenesis	Hypoxic MSC preconditioning induces angiogenic activity. miR-126-3p, miR-140-5p, let-7c-5p upregulated, miR-186-5p, miR-370-3p, miR-409-3p downregulated in endothelial cells in response to hypoxia but not normoxic MSC EVs
Ling et al. [223]	miR-26a	Urine-derived stem cells	Neural stem cells	OGD, MCAO	Neurogenesis	HDAC6 inhibition
Yang et al. [224]	miR-124	MSCs	Neural progenitor cells	OGD, MCAO	Neurogenesis	Not determined
A large set of MSC EV-associated miRNAs, including miR-22-3p, miR-25, miR-26, miR-31, miR-126, miR-138-5p, miR-146a-5p and miR-223-3p, were found to promote neuronal, astrocytic, oligodendrocytic and microglial survival by downregulating target genes including KDM6B, p53, KLF9, CH25H, TRAF6, ACVR2B, LCN2 or CysLT2R [185, 186, 188, 190, 197, 201-204, 209, 212, 213, 215, 216]. Besides, miR-34c, miR-92b-3p and miR-361 transferred with EVs from normoxic or ischemic astrocytes increased neuronal survival by downregulating the targets TLR7 and cathepsin-B (CTSB) [205, 206, 217]. Likewise, M2 microglial EV miR-124, miR-135a-5p and miR-137 increased neuronal survival and reduced astrocytic activation, proliferation and scar formation via mechanisms involving STAT3, thioredoxin interacting protein (TXNIP) and NOTCH1 downregulation [207, 210, 211]. Neuroprotective effects were furthermore reported for miR-1290 derived from endothelial EVs [218]. In the latter study, EV uptake by neurons occurred calveolin-1 dependently, and this uptake was increased by hypoxia-ischemia [218]. Survival-promoting effects of patient serum-derived EV
miR-124-3p and miR-126 via mechanisms involving DNA methylase-3b (DNMT3B) were noted in neurons and microglial cells [189, 208], whereas patient serum-derived miR-27-3p increased neuronal death via mechanisms involving PPARγ downregulation and microglial overactivation [219]. The combined evidence of these studies demonstrates that various types of brain cells mutually influence responses to stroke via EV-associated ncRNAs.

A peculiar mechanism associated with ncRNA-induced neuroprotection appears to be the inhibition of autophagy in recipient cells. Autophagy is an evolutionarily conserved mechanism, which maintains cellular homeostasis by degrading misfolded or nonfunctional proteins or damaged organelles [226, 227]. Upon severe cellular stress, excessive autophagy may result in cellular accumulation of toxic metabolites or cellular self-degradation, ultimately resulting in cell death [228-230]. Recent studies evaluating effects of MSC EVs showed that EV miR-25-3p protected primary neurons exposed to oxygen-glucose deprivation against injury via autophagy inhibition [202]. On the molecular level, p53 expression was downregulated by miR-25-3p, resulting in the inhibition of BNIP3 activity and reduced autophagic flux examined by LC3-II levels. Application of a miR-25-3p oligonucleotide mimic reduced autophagic flux and increased neuronal survival [202]. Whereas an miR-25-3p promoted neuronal survival, whereas patient serum-derived EV miR-27-3p promoted M1-like microglial activation via mechanisms involving PPARγ downregulation, resulting in increased cytokine formation and cell death [219].

4.3 Angiogenesis and neurogenesis

In models of cerebral ischemia, angiogenic effects have been shown for miR-181b and miR210 transferred via MSC EVs and for miR-126 transferred via endothelial EVs via mechanisms involving TRPM7 downregulation, HIF1a and VEGF elevation and TIMP3 reduction [187, 220, 221]. When cultured under conditions of hypoxia, MSC EVs that were otherwise non-angiogenic adopted a recovery-promoting phenotype that reproducibly induced cerebral microvascular endothelial proliferation, migration and tube formation across a wide range of MSC sources [198]. Compared with EVs from normoxic MSCs, hypoxic MSC EVs significantly increased miR-126-3p, miR-140-5p and let-7c-5p and reduced miR-186-5p, miR-370-3p and miR-409-3p in recipient endothelial cells [198]. The delivery of these hypoxic MSC EVs in vivo to ischemic mice exposed to middle cerebral artery occlusion enhanced microvascular remodeling, increased microvascular densities, increased microvascular length and increased branching point densities, as revealed by 3D lightsheet fluorescence microscopy in the perinfarct rim [198]. Newly formed microvessels act as guidance sheaths for neural progenitor cells migrating from progenitor cell niches to the stroke lesion. Delivery of miR-17-92, miR-26a and miR-124 shuttled via EVs from MSCs or urine-derived stem cells promoted post-ischemic neurogenesis via mechanisms involving histone deacetylase-6 (HDAC6) inhibition [222-224].

4.4 Neuronal plasticity

In response to stroke, axons and dendrites in the...
vicinity and at distance to the evolving brain infarct sprout, forming new synaptic connections [183]. Cell-based therapeutics, including exogenously administered neural progenitor cells or MSCs, promote neuronal plasticity [231, 232]. Within this process, EVs and their ncRNAs may play significant roles. Thus, the EV-derived IncRNA circSCMH1 was shown to increase dendritic length, dendritic branches and synaptic spines of ischemic cultured neurons in vitro and of perinfarct cortical neurons of rats exposed to photothrombotic stroke in vivo, as revealed by morphological Golgi-Cox staining analysis [191]. EV circSCMH1 improved functional neurorecovery of ischemic rats, reduced microglial activation and reduced the formation of the proinflammatory cytokines IL1β, TNFα and IL6 [191]. The effect of circSCMH1 was mediated by binding methyl-CpG binding protein-2 (MeCP2), a nuclear transcription factor directly binding methylated DNA, as revealed by proteomic assays, RNA sequencing and transcriptional profiling studies [191]. By MeCP2 binding, MeCP2 target gene transcription repression was released. In rat and mouse models of middle cerebral artery occlusion, neuronal plasticity and neurological recovery promoting effects were reported for MSC EV miR-17-92 and miR-133b and for endothelial cell EV miR-126 [187, 195, 196, 222]. Via mechanisms involving downregulation of PTEN, connective tissue growth factor (CTGF) or RhoA, the three miRNAs were found to increase axonal, dendritic and synaptic sprouting in the perinfarct tissue, as revealed by anterograde tract tracing analysis using biotinylated dextran amine combined with immunohistochemical stainings. In case of miR-17-92, the plasticity-promoting effects were associated with PI3K/ Akt/ mTOR activation and GSK3β deactivation [222]. In case of miR-126, which was evaluated in a type-II diabetes stroke model, the neurorestorative effects were linked to a shift of macrophage polarization towards the M2 phenotype [187].

5. Overarching roles of EV-ncRNAs across pathophysiological conditions

IncRNAs, circRNAs, miRNAs and mRNAs form complex RNA networks that synergistically respond to stressors [233]. As outlined in sections 2-4, several of these networks are highly active or inactive under conditions of hypoxia and ischemia, representing master regulators of gene expression. We are just starting to understand the complex biology behind these ncRNA networks. miRNAs recognize response elements on RNAs that mediate their interaction and binding. IncRNAs and circRNAs serve as competing endogenous RNAs to miRNAs, and thus act as miRNA sponges. mRNA binding of miRNA induces translational repression or instability, thus regulating protein translation [233]. Importantly, IncRNAs do not only interact with miRNAs but can also target DNA transcription and mRNAs directly [234]. Thus, EV-circSCMH1, which is decreased in plasma of stroke patients and perinfarct cortex of stroke mice, was found to induce post-ischemic dendritic and synaptic plasticity, antiinflammation and neurological recovery by binding the nuclear transcription factor MeCP2, resulting in release of MeCP2 mediated transcription repression [191] (see also section 4 and Table 3). Using antisense oligonucleotide studies and RNA immunoprecipitation assays on HT22 neuronal cells, IncRNA MALAT1, which is highly abundant in MSC EVs, was shown to promote neuronal survival and proliferation by mechanisms involving SRSF2 recruitment, alternative PKCδII splicing and Bcl2 elevation [225] (Table 3). For further insights into IncRNA-circRNA/ miRNA/ mRNA networks, the reader is referred to references [235-237]. In view of their highly integrated mode of action, ncRNAs profoundly modify disease responses.

5.1 ncRNAs involved in more than one of three hypoxic conditions exhibit a large degree of overlaps regarding modes of action

From the above EV-ncRNA intervention studies, a total of 19 ncRNAs, including 3 IncRNAs and 16 miRNAs, have meanwhile been identified for which robust evidence suggests their involvement in more than one of the three hypoxic pathophysiological conditions. The modes of action of these ncRNAs have been summarized in Table 4. Notably, 8 of these 19 EV-ncRNAs have been shown to be involved in all three pathophysiological conditions. Including studies evaluating effects of ncRNAs irrelevant whether ncRNAs were associated with EVs, joint evidence in all three pathophysiological conditions exists for 16 of the 19 ncRNAs. Strikingly, the modes of action reveal a high degree of overlaps between the three pathophysiological states. Hence, studies describing promotion of cell survival, proliferation, migration or angiogenesis in one pathophysiological condition usually had corresponding actions in the two other conditions, as shown for IncRNA MALAT1, miR-21, miR-25, miR-31, miR-135, miR-146 and miR-210. Similarly, ncRNAs with roles in immune tolerance, antiinflammation or chemotherapy resistance in one condition also revealed related actions in the two other conditions, as shown for miR-98 and miR-223. Hence, corresponding actions in all three conditions have been reported for 9 of the 16 ncRNAs. Importantly, diverging actions have been reported for 3 ncRNAs. Perhaps due to the different
nature of hypoxia, opposing actions were described for cancer compared to myocardial infarction and stroke in case of two ncRNAs. Hence, miR-133a, which was found to be abundant in cancer EVs at low concentration, reduced tumor cell proliferation, survival, migration and metastasis in gastric carcinoma and colorectal carcinoma [136, 238], whereas miR-133a-3p and miR-133b promoted cardiomyocyte survival and neuronal plasticity in myocardial infarction and stroke, respectively, and enhanced functional tissue recovery [162, 195, 196]. Likewise, miR-328b-3p promoted tumor cell proliferation, migration, invasion and tumor growth in lung carcinoma [105], whereas miR-328b-3p augmented cardiomyocyte death and apoptosis in myocardial infarction [148] and augmented neuronal death and neuroinflammation in ischemic stroke [239]. Besides, EV-associated miR-361 promoted tumor cell proliferation and survival in colorectal carcinoma [103] and neuronal survival in ischemic stroke [217], whereas cardiac-specific miR-361 overexpression reduced cardiomyocyte survival by increasing mitochondrial fission in myocardial infarction [240]. Differences in the actions of EV-associated miR-361 and genetically overexpressed miR-361 may explain diverging findings in the two ischemia studies. Important for potential clinical translation, therapeutic miRNA modification may have opposite roles within the same disease category via distinct modes of actions. Hence, EV-associated miR-126 promoted tumor cell proliferation, angiogenesis and growth in hepatoblastoma and chronic myeloid leukemia via mechanisms involving CXCL12 and VCAM1 downregulation [129, 131], but inhibited tumor cell proliferation, colony formation, migration, invasion and survival in lung carcinoma via mechanisms including ITGA6 downregulation [130]. NEAT1 overexpression promoted neuronal survival in ischemic stroke by regulating the MFN2/SIRT3 pathway [241], whereas NEAT1 knockdown increased neuronal survival by inhibiting M1 microglia polarization via the Akt/STAT3 pathway [242]. Again in ischemic stroke, miR-494 agomir (that is, mimic) promoted neuronal survival, axonal plasticity and neurological recovery via HDAC3 downregulation [193], similar as miR-494 antagonist (that is, inhibitor), which increased neuronal survival and neurological recovery by reducing the Th1 helper cell shift and decreasing post-ischemic brain neutrophil infiltrates via HDAC2 upregulation [194, 243]. In view of the multifaceted roles of ncRNAs, their therapeutic modulation is particularly prone to ambiguous actions in different types of cells. In case of therapeutic interventions, careful actions are needed in order to avoid contrary results of therapeutic interventions, i.e., therapeutic benefits in one cell type (e.g., in neuron) or via one pathway (e.g., MFN2/SIRT3) vs. harmful actions in another cell type (e.g., brain invading T cells) or pathway (e.g., Akt/STAT3). The genetic overexpression or knockdown and the delivery of miRNA agonirs or antagonirs are gross interventions that affect miRNA levels in a non-targeted way. In comparison, the delivery of miRNA-loaded EVs is more fine-tuned and allows targeting distinct types of cells.

6. EV-associated ncRNAs as therapeutic products or theranostic biomarkers

From studies in cancer, myocardial infarction and ischemic stroke, there is meanwhile solid evidence that EV-associated ncRNAs regulate gene responses in target tissues under conditions associated with hypoxia, modifying cell survival, proliferation, migration and differentiation and influencing disease outcomes in clinically relevant ways. In most pathophysiological conditions, we still lack of detailed information about the precise subcellular origin of therapeutically active EVs. Of note, the association of ncRNAs with EVs does not imply that ncRNAs are exosome constituents [15], and concerns have been raised whether ncRNAs are released from cells as part of the EVs [17]. EVs are widely isolated by differential ultracentrifugation [86], which enriches non-EV constituents including lipoproteins [87] that contain large amounts of ncRNAs [88]. Bead-capturing experiments revealed that EVs captured by GM1 binding cholera toxin b were largely devoid of RNAs (see also section 1.5). EV contents may differ depending on pathophysiological conditions. Besides exosomes, microvesicles might contain ncRNAs. Irrespective of the precise ncRNA and EV origin and overriding open methodological questions, intervention studies in models of cancer, myocardial infarction and stroke consistently revealed therapeutic actions of EV preparations that were associated with ncRNAs. The observation raises the question about the utility of EV-associated ncRNAs as therapeutics or theranostics in human patients.

6.1 ncRNA-loaded EVs as therapeutic products

Representing instable single-strand RNA molecules, miRNAs are rapidly degraded in the blood by RNAses, unless specifically protected. EVs are abundant in virtually all body fluids, protecting ncRNAs from degradation. Representing nanoparticles covered by lipid bilayer membrane, EVs are capable of transmitting complex biological information to defined target cells. The presence of multiple signals in a single EV allows inducing
synergistic cellular responses. When evaluating EV actions, we must consider that not all EVs transmit biological information and that some EVs eliminate waste products, including RNAs, from hypoxic cells (see section 1.1). The proper definition of cells or tissues of origin is decisive in the development of EV products [244]. In the development of EV-based therapeutics, we have to be aware that EV contents, including ncRNAs, may greatly differ between EV preparations, even when these preparations are performed from the same source cells [198, 245]. This raises the need of potency assays evaluating the efficacy of each EV preparation before this individual preparation is administered to human patients [246]. When considering ncRNAs as therapeutic EV contents, it must be taken into account that the biological effect of a given ncRNA may differ between pathophysiological settings and disease-relevant target cell types. As example, miR-494 was shown to promote post-ischemic neuronal survival, axonal plasticity and neurological recovery via its target HDAC3 in one setting [193], while it had opposite effects by modulating Th1 helper cell shifts and brain neutrophil infiltrates via HDAC2 in two other studies [194, 243] (see also Table 4). Thorough studies in animal models would be required elucidating various modes of action before clinical proof-of-concept studies are performed. Considering their biological properties that resemble cellular therapeutics, but are more easy to handle and lack intrinsic risks of cellular therapeutics (such as malignant transformation) [244], the administration of EVs is an elegant strategy to boost hypoxic tissues. EVs might potentially be loaded with ncRNAs that prevent disease progression or improve disease outcome, or be loaded with inhibitors or siRNAs for ncRNAs that promote disease progression or deteriorate disease outcome. EV ncRNA contents might possibly be modified by transgenic techniques. Following transfection of cancer cells with plasmid DNA encoding for wild-type p53 and miR-125b, Trivedi et al. observed that the ncRNA profile of EVs was altered, shifting the polarization of recipient macrophages towards the M1 phenotype [247].

6.2 EV-ncRNAs as theranostic biomarkers

EVs carry surface markers specifying their cellular origin and their source cell’s activation state. Cell type by cell type, tissue responses can be tracked in remote body fluids. In multiple dimensions, detailed information can be obtained about hypoxic or ischemic tissue states. For this type of biomarker analysis, the term liquid biopsy has been coined. Deregulated EV-ncRNA levels may be used as diagnostic or prognostic markers. As such, Que et al. reported that EV miR-17-5p and miR-21 were elevated 3.2-fold and 5.9-fold, respectively, in the serum of patients with pancreatic adenocarcinoma, and serum miR-21 furthermore differentiated pancreatic adenocarcinoma from chronic pancreatitis [248]. In myocardial infarction, serum EV-derived miR-1915-3p, miR-457, and miR-3656 were significantly less abundant compared with patients with stable coronary artery disease, and the miR-3656 level was positively correlated with left ventricular ejection fraction [249]. Indeed, by comparing EV-ncRNAs abundancies at baseline, before and after treatment with subsequent correlation with clinical variables, such biomarkers offer an elegant possibility to predict disease outcomes and therapy responses. For instance, in pancreatic adenocarcinoma, the level of serum EV circPDE8A was positively correlated with lymphatic invasion, TNM stage and poor survival rate [250]. On the contrary, miR-134 – known as a brain-specific miRNA – has been associated with neuronal injury under conditions of ischemic stroke [251]. Abundances of EV-derived miR-134 were significantly increased in stroke patients, where they were positively correlated with neurological deficits, stroke volume and functional outcome [252]. A detailed and comprehensive analysis of the utility of miRNAs as diagnostic markers is beyond the scope of this review. For more details, the reader is referred to Table 5 [102, 108, 110, 113, 114, 248-250, 252-266]. Specifically, the here-presented data on the role of EV-ncRNAs in the development of chemotherapy resistance (summarized in section 2.4) supports their role in treatment monitoring. In a variety of cancers, including pancreatic carcinoma, colorectal carcinoma, ovarian carcinoma, hepatocellular carcinoma and lung carcinoma, pathophysiologically grounded evidence was collected supporting a role of defined ncRNAs in chemotherapy resistance development (summarized in section 2.4 and Figure 2). With the identification of concentration cutoffs, these EV-ncRNAs could now be used for chemotherapy monitoring. As theranostics, ncRNA-EVs should provide clinically significant information, whether a given drug is still likely to have preserved its actions or whether it should be exchanged due to drug resistance development. For example, hypoxia-associated miR-21 abundance has revealed its utility as theranostic marker in non-small cell lung carcinoma, where high miR-21 abundance was associated with short survival in patients receiving chemotherapy with cisplatin, but not in patients not receiving chemotherapy [94]. The predictive value of EV-ncRNAs may further be enhanced by evaluating EV-ncRNA combinations or EV-ncRNA combinations with classical biomarkers. For instance, serum α-fetoprotein was found to have
Combining α-associated ncRNAs, data from ncRNA agomir, antagomir, overexpression or knockdown studies are shown in Table 4. ncRNAs transferred via EVs that have been reported to participate in more than one of the three hypoxic conditions.

ncRNAs	Modes of action in cancer	Modes of action in myocardial infarction	Modes of action in ischemic stroke
lncR UCA1	Promotes tumor cell proliferation and antiangiogenesis	Promotes cardiomyocyte survival and inhibits apoptosis	Promotes neuronal survival [225]
lncR MALAT1	Promotes tumor cell proliferation, migration, invasion, colony formation and glycolysis; promotes inflammation [123-125, 127]	Promotes cardiomyocyte and endothelial cell survival [154]	[NEAT1 overexpression promotes neuronal survival via MFN2/ SIRT3 pathway [241]; NEAT1 knockdown promotes neuronal survival by inhibiting M1 microglia polarization via Akt/STAT3 pathway [242]]
lncR NEAT1	Promotes tumor cell proliferation, migration, invasion, metastasis, immune tolerance and chemoresistance [122, 126, 269]	Promotes cardiomyocyte and fibroblast survival; inhibits fibrosis [149]	[miR-21 agomir promotes neuronal survival [270]]
miR-21	Promotes tumor cell proliferation, migration and invasion; induces immune tolerance via M2 macrophage polarization, inhibits T cell deactivation and myeloid-derived suppressor cell expansion; induces chemoresistance [93-95, 114, 119]	Promotes cardiomyocyte and endothelial cell survival; promotes perifrin angio genesis and vascular permeability [141, 157, 169]	Not assessed
miR-24	Induces immune tolerance by T cell deactivation [110]	Promotes cardiomyocyte survival and cardiac function recovery [147]	[miR-24 agomir promotes neuronal survival [271]]
miR-25	Promotes tumor cell migration, invasion, angiogenesis and metastasis [133, 134]	Promotes cardiomyocyte survival [181]	Promotes neuronal survival and inhibits autophagy [202]
miR-31	Promotes tumor cell migration and invasion [121]	Promotes perifrin angio genesis and cardiac function recovery [170]	Promotes neuronal survival and functional neurological recovery [204]
miR-98	Promotes chemotherapy resistance [132]	Promotes cardiomyocyte survival; induces cardiac function recovery; inhibits antiinflammation (reduced macrophage infiltration) [145]	Promotes neuronal survival and antiinflammation (reduced microglial phagocytosis) [192]
miR-125	Promotes tumor cell proliferation; induces immune tolerance via M2 macrophage polarization [95]	Promotes cardiomyocyte survival and cardiac function recovery [159]	Not assessed
miR-126	Promotes tumor cell proliferation, angiogenesis and growth in some tumors [129, 131]; opposite effects in other tumors [130]	Promotes cardiomyocyte survival and cardiac function recovery; inhibits antiinflammation (proinflammatory cytokines reduced) and antiinhibition; promotes perifrin angio genesis [160, 176]	Promotes neuronal survival and functional neurological recovery [195, 196]
miR-133	[miR-133a agomir reduces tumor cell proliferation, survival, migration and epithelial-mesenchymal transition; miR-133a antagonon promotes tumor cell survival and migration [238]; EV-associated circ-133, a miR-133a sponge, promotes tumor cell migration and metastasis [136]	Promotes cardiomyocyte survival and cardiac function recovery [162]	Promotes neuronal (*axonal) plasticity and functional neurological recovery [195, 196]
miR-135	[miR-135a overexpression promotes cardiomyocyte survival and cardiac function recovery and induces antiinflammation via TR4 downregulation [272]	Promotes neuronal survival; induces antiinflammation (reduced proinflammatory cytokines); promotes perifrin angiogenesis and perifrin angiogenesis in [214, 220]; induces astrocytic inflammatory response; promotes perifrin angiogenesis [214, 220]	
miR-146	Promotes tumor cell proliferation and tumor growth [128]	Promotes cardiomyocyte survival; induces antiinflammation (reduced leukocyte infiltration) and antiinhibition [163]	Not assessed
miR-181	Promotes tumor cell proliferation; induces immune tolerance via M2 macrophage polarization [95]	Not assessed	Promotes neuronal survival and functional neurological recovery [213]
miR-210	Promotes tumor cell migration and invasion; increases tumor-associated angiogenesis [97, 107]	Promotes cardiomyocyte survival, cardiac function recovery and angiogenesis [177-179]	Promotes antiangiogenesis and animal survival [221]
miR-223	Induces chemotherapy resistance [113]	Promotes angiogenesis; induces antiinflammation and antiinhibition [180]	Promotes neuronal survival; induces antiinflammation (M2 microglia polarization); promotes functional neurological recovery [216]
miR-328	Promotes tumor cell proliferation, migration, invasion and epithelial - mesenchymal transition; promotes tumor growth [105]	Augments cardiomyocyte death and apoptosis [148]	[miR-328-3p agomir augments neuronal death, neurological deficits, brain neutrophil invasion and proinflammatory cytokine levels [239]]
miR-361	Promotes tumor cell proliferation and survival; promotes tumor growth [103]	Cardiac-specific miR-361 overexpression reduces cardiomyocyte survival and increases mitochondrial fission; miR-361 has knockdown with opposite effects [240]	Promotes neuronal survival [217]
miR-494	Promotes tumor-associated angiogenesis and tumor growth [109]	Promotes perifrin angiogenesis [173]	[miR-494 agomir promotes neuronal survival, axonal plasticity and neurological recovery via HDAC3 downregulation [193]; miR-494 antagonon promotes neuronal survival and neurological recovery by reducing Th1 helper cell shift and decreasing brain neutrophil infiltrates via HDAC2 upregulation [194, 243]]

For ncRNAs without studies examining the role of EV-associated ncRNAs, data from ncRNA agomir, antagonon, overexpression or knockdown studies are shown in

https://www.thno.org
7. Conclusion and perspectives

We herein showed that cancer, myocardial infarction and ischemic stroke, which represent the most prevalent medical conditions resulting in disability and death [3], profoundly regulate EV-associated ncRNAs, controlling physiological responses including cell survival and proliferation, migration, drug resistance, angiogenesis and neuronal plasticity. As underlying mechanism, hypoxia, which decisively influences tissue fate in all three conditions [1, 2], was found to control endogenous ncRNA responses, some ncRNAs being upregulated and others downregulated upon hypoxia. In several studies, the delivery of brackets in the table.

Abbreviations: EVs, extracellular vesicles; lncR, long non-coding RNA; miR, microRNA.

Table 5. EV-associated non-coding RNAs as biomarkers in the three hypoxic conditions.

Author, year, reference	Disease	EV provenance	Non-coding RNA	Abundance	Clinical significance
Bjornetro et al., 2019 [253]	Locally advanced rectal carcinoma	Plasma	miR-486-5p	Downregulated	Associated with tumor invasion and lymph node metastasis
Bjornetro et al., 2019 [253]	Locally advanced rectal carcinoma	Plasma	miR-181a-5p	Downregulated	Associated with tumor invasion and lymph node metastasis
Bjornetro et al., 2019 [253]	Locally advanced rectal carcinoma	Plasma	miR-30d-5p	Upregulated	Associated with tumor metastasis
Zhang et al., 2019 [254]	Non-small cell lung carcinoma	Serum	lncR MALAT-1	Upregulated	Associated with cell proliferation and migration
Rong et al., 2020 [255]	Non-small cell lung carcinoma	Serum	lncR MALAT-1	Upregulated	Associated with cell proliferation and migration
Wang et al., 2018 [256]	Pancreatic carcinoma	Serum	miR-301a	Upregulated	Associated with cancer metastasis
Xue et al., 2017 [248]	Pancreatic carcinoma	Serum	miR-17-5p	Upregulated	Associated with cancer pathology
Zhong et al., 2018 [250]	Pancreatic ductal adenocarcinoma	Plasma	circPDE8A	Upregulated	Associated with lymphatic invasion, TNM stage and poor survival rate
Zhu et al., 2019 [113]	Ovarian carcinoma	Serum	miR-223	Upregulated	Associated with cancer recurrence and survival
Li et al., 2016 [110]	Ovarian carcinoma	Plasma	miR-24-3p	Upregulated	Associated with disease-free survival
Hsu et al., 2017 [108]	Lung carcinoma	Serum	miR-23a	Upregulated	Associated with cancer pathology
Li et al., 2016 [114]	Oral squamous cell carcinoma	Serum	miR-21	Upregulated	Associated with T stage and N stage
Xue et al., 2017 [102]	Bladder carcinoma	Serum	lncR UCA1	Upregulated	Associated with cancer pathology
Zhou et al., 2021 [257]	Breast carcinoma	Serum	lncR NEAT1	Upregulated	Associated with cancer pathology
Zhong et al., 2020 [258]	Myocardial infarction	Plasma	lncR ENST00000556899.1	Upregulated	Associated with myocardial infarction pathology
Zheng et al., 2020 [258]	Myocardial infarction	Plasma	lncR ENST00000579851	Upregulated	Associated with myocardial infarction pathology, inflammatory markers, disease severity and prognosis
Sun et al., 2020 [259]	Myocardial infarction	Plasma	lncR UCA1	Upregulated	Associated with myocardial infarction pathology
Chen et al., 2020 [260]	Myocardial infarction	Serum	lncR NEAT1	Upregulated	Associated with myocardial infarction pathology
Chen et al., 2020 [260]	Myocardial infarction	Serum	miR-204	Downregulated	Associated with myocardial infarction pathology
Ling et al., 2020 [261]	Myocardial infarction	Serum	miR-122-5p	Upregulated	Associated with myocardial infarction pathology
Ling et al., 2020 [262]	Myocardial infarction	Serum	miR-126	Upregulated	Associated with myocardial infarction pathology and disease severity
Ling et al., 2020 [262]	Myocardial infarction	Serum	miR-21	Upregulated	Associated with myocardial infarction pathology
Su et al., 2019 [249]	Myocardial infarction	Serum	miR-1915-3p, miR-4507 and miR-3656	Downregulated	Associated with myocardial infarction pathology
Zhou et al., 2018 [252]	Ischemic stroke	Serum	miR-134	Upregulated	Associated with ischemic stroke pathology, severity and prognosis
Wang et al., 2018 [263]	Ischemic stroke	Plasma	miR-21-5p	Upregulated	Associated with ischemic stroke pathology
Wang et al., 2018 [263]	Ischemic stroke	Plasma	miR-30a-5p	Upregulated	Associated with ischemic stroke pathology
Chen et al., 2017 [264]	Ischemic stroke	Serum	miR-223	Upregulated	Associated with ischemic stroke pathology, severity, and short-term outcome
Li et al., 2017 [265]	Ischemic stroke	Plasma	miR-422a	Downregulated	Associated with ischemic stroke pathology
Li et al., 2017 [265]	Ischemic stroke	Plasma	miR-125b-2-3p	Downregulated	Associated with ischemic stroke pathology
Ji et al., 2016 [266]	Ischemic stroke	Serum	miR-9	Upregulated	Associated with ischemic stroke pathology and severity
Ji et al., 2016 [266]	Ischemic stroke	Serum	miR-124	Upregulated	Associated with ischemic stroke pathology and severity
ncRNA-loaded EVs harvested from healthy human blood, perilesional tissue, progenitor cells (including MSCs) or antiinflammatory immune cell subsets (such as M2 microglia) allowed attenuating disease progression and restoring functional tissue recovery. Remarkably, EV-ncRNAs exhibited a large degree of overlaps regarding their modes of action across pathophysiological states. Thus, EV-ncRNAs open fascinating perspectives as theranostic biomarkers and besides this, but more challenging, perhaps also as therapeutic products. With respect to clinical translation, major challenges remain with respect to the large-scale isolation and preparation of EVs, the reproducibility of EV preparations under defined culturing conditions as well as the development of potency assays, which ensure that EV activity characteristics are maintained in a given EV preparation before this individual preparation is administered to human patients [245, 246, 268]. Only with such success can we ensure the success of clinical proof-of-concept trials. Currently, there are 23 clinical trials on EV-enveloped ncRNAs registered at https://clinicaltrials.gov/ in diverse medical conditions. Among these studies, currently eight trials are active and recruiting, four are active but not recruiting, four are not recruiting and seven are active and recruiting, four are active but not recruiting, four are not recruiting and seven are completed. The results of these ongoing studies are envisaged with great interest. Meanwhile, ongoing preclinical efforts will sharpen our understanding of the clinical potential of EV-ncRNA technologies.

Competing Interests

D.M.H., B.G. and T.R.D. hold a patent on extracellular vesicles for the treatment of inflammatory conditions (US9877998B2).

References

1. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011; 364: 656-65.
2. Eltzschig HK, Eckle T. Ischaemia and reperfusion–from mechanism to translation. Nat Med. 2011; 17: 1391-401.
3. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics–2019 Update: A Report From The American Heart Association. Circulation. 2019; 139: e56-e528.
4. Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol. 2003; 206: 1253-63.
5. Fandrey J, Gassmann M. Oxygen sensing and the activation of the hypoxia inducible factor 1 (HIF-1)–invited article. Adv Exp Med Biol. 2009; 648: 197-206.
6. Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. Fasebj. 2002; 16: 1151-62.
7. de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest. 2020; 130: 5074-87.
8. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumor metastasis. Nat Rev Cancer. 2014; 14: 430-9.
9. Li S, Hafeez A, Noorullah F, Geng X, Shao G, Ren C, et al. Preconditioning in inflammatory conditions (US9877998B2).
10. Knutson AK, Williams AL, Boisvert WA, Shohet RV. HIF in the heart: drivers of tissue repair. Circulation. 2018; 137: 79-91.
11. Knutson AK, Williams AL, Boisvert WA, Shohet RV. HIF in the heart: drivers of tissue repair. Circulation. 2018; 137: 79-91.
12. Choudhry H, Harris AL. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018; 27: 281-98.
13. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018; 19: 213-28.
14. Anastasiadou E, Jacob L, Slack F. Non-coding RNA networks in cancer. Nature reviews Cancer. 2018; 18: 5-18.
15. Hermann DM, Doepner TR, Giebel B. Circulating MicroRNAs: Posttranscriptional Regulators and Disease Markers Holding Promise in Stroke Prediction. Stroke. 2021; 52: 954-6.
16. Wei J, Huang K, Yang C, Kang C. Non-coding RNAs as regulators in epigenetics (Review). Oncology reports. 2017; 37: 3-9.
17. Liu R, Tan SS, Yeo RW, Cheng S, Lin AF, Su Y, et al. MSC secretions at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles. 2016; 5: 2928.
18. Li C, Xu X. Biological functions and clinical applications of exosomal non-coding RNAs in hepatocellular carcinoma. Cellular and molecular life sciences - CMLS. 2019; 76: 4205-19.
19. Zhang C, Yang X, Qi Q, Gao Y, Wei Q, Han S. IncRNA-HEIH in serum and exosomes as a potential biomarker in the HCV-related hepatocellular carcinoma. Cancer biomarkers : section A of Disease markers. 2018; 21: 651-9.
20. Kalani M, Aloe P, Meechoovet B, Beerctof T, Agrawl K, Whitsett T, et al. Extracellular microRNAs in blood differentiate between ischaemic and haemorrhagic stroke subtypes. Journal of extracellular vesicles. 2020; 9: 5590.
21. Ghoresi H, Khorasavi A, Ghaemmaghami A. Exosomal microRNA and stroke: A review. Journal of cellular biochemistry. 2019; 120: 16352-61.
22. Sookmadji C, Li B, Huang Y, Wang H, An T, Liu C, et al. The future of Extracellular Vesicles as Theranostics - an FESV meeting report. Journal of extracellular vesicles. 2020; 9: 189956.
23. Urate E, Patil K, Ramm G, Ochiya T, Sookmadji C. Extracellular vesicles in the development of organ-specific metastasis. Journal of extracellular vesicles. 2021; 10: e12125.
24. Simpson RJ, Kula H, Mathivanan S. ExoCarta as a resource for exosomal research. Journal of extracellular vesicles. 2012; 1.
25. Thery C, Ostorowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nature reviews Immunology. 2009; 9: 381-93.
26. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature reviews Molecular cell biology. 2018; 19: 213-28.
27. Crescilletti R, Lasser C, Szabo T, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. Journal of extracellular vesicles. 2013; 2.
28. Le Saux S, Aubert-Pouëssel A, Mohammed K, Martineau P, Guglielmi L, Devoiselle J, et al. Interest of extracellular vesicles in regards to lipid nanoparticle based systems for intracellular protein delivery. Advanced drug delivery reviews. 2021; 113857.
29. Battistelli M, Falcieri E. Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology. 2020; 9.
30. Doyle L, Wang M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019; 8.
31. Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013; 2.
32. Thery C, Witwer KW, Aikawa E, Alcara MJ, Andersen JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7: 135375.
33. Karimi N, Cvjetkovic A, Jang SC, Crescilletti R, Hosseinpour Feizi MA, Nieuwland R, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018; 75: 1927-38.
34. Droste M, Tertel T, Jeruschke S, Dittrich R, Kontopoulou E, Walkenfort B, et al. Single Extracellular Vesicle Analysis Performed by Imaging Flow Cytometry and Nanoparticle Tracking Analysis Evaluate the Accuracy of Urinary Extracellular Vesicle Preparation Techniques Differently. Int J Mol Sci. 2021; 22: 12436.
35. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Eppe M, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Interfaces. 2011; 87: 146-50.
36. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine. 2011; 7: 2806-9.
37. Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D'Agostino VG. RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles. 2020; 10: e12043.
38. Mori MA, Ludwig RG, Garcia-Martín R, Brandao BB, Kahn CR. Extracellular microRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab. 2019; 30: 656-73.
39. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007; 318: 1848-8.
40. Mohapatra S, Flippini C, Ozpolat B, Calin G. Non-coding RNAs regulation of macrophage polarization in cancer. Molecular cancer. 2021; 20: 24.
41. Lund E, Dahlberg JE. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol. 2006; 71: 59-66.

42. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Rev Mol Biol. 2013; 3: 23-36.

43. Guo H, Ingolia N, Weissman J, Bartel D. MicroRNA and the Evolution of the human miRNA Aome. Ann Rev Genet. 2015; 49: 213-42.

44. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19: 92-105.

45. de Ruijter RC, Farh KK, Burge CB, Bartel DP. DPT: Mammalian microRNAs get down to business. Nat Biotechnol. 2007; 25: 631-8.

46. Eirich EM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tusche T. Duplexes of microRNA-mediated RNA interference in cultured mammalian cells. Nature; 2001; 411: 494-8.

47. Ambati R, Reinhart BJ, Hannon GJ. Origins and Mechanisms of miRNAs and sRNAs. Cell. 2009; 136: 642-55.

48. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2018; 19: 143-57.

49. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. The Acid Phosphate Receptor Tim4 as a Phosphatidylserine Receptor. Sci. 2007; 319: 1244-7.

50. Lee Y, Pressman S, Andress A, Kim K, White J, Cassidy J, et al. Silencing by RNA interference: the endogenous miRNA machineries. Nat Rev Mol Cell Biol. 2008; 9: 1-12.

51. Lund E, Dahlberg JE. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol. 2006; 71: 59-66.

52. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2018; 19: 143-57.

53. Fernandes JCR, Acuña SM, Aoki JJ, Floeter-Winter LM, Muxel SM. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Pathology. Noncoding RNA. 2019; 5.

54. Wey DM, Yo M, Pan M, Tang T, Zhong Y, Deng X, et al. Emerging role of tumor-related functional peptides encoded by IncRNA and circRNA. Molecular Biology. 2020; 19: 22.

55. Ashval-Fluss R, Meyer M, Pamudurti N, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell. 2014; 56: 56-66.

56. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. circRNA: functions and properties of a novel potential biomarker for cancer. Molecular cancer; 2017; 16: 90.

57. O’Riordan K, Breene K, Ughetto S, Laurent L, Breakferd K. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nature Reviews Molecular Cell Biology. 2020; 21: 585-80.

58. Koppure A, Kosaraju N, Ohnya T. Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging player in cancer metastasis. Journal of biomedical science. 2019; 26: 7.

59. Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, et al. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Frontiers in cell and developmental biology. 2020; 8: 616161.

60. Matescu B, Kowal E, van Balkom B, Bartel S, Bhattacharyya S, Buzas E, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an EVB review paper. Journal of extracellular vesicles. 2017; 6: 128609.

61. Khvorova A, Kwak Y, Tamkun M, Majerfeld I, Yarus M. RNAs that bind and change the permeability of phospholipid membranes. Proceedings of the National Academy of Sciences of the United States of America. 1999; 96: 10649-54.

62. Janas T, Janas T, Sapon K, Janas T. Mechanisms of RNA loading into exosomes. FEBS letters. 2015; 589: 1391-8.

63. Koppure-Lallemend K, Bijnens J, van Eijldehoven M, Sadek S, Pie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell reports. 2014; 8: 1649-58.

64. Lee Y, Pressman S, Andress A, Kim K, White J, Cassidy J, et al. Silencing by small RNAs is linked to endosomal trafficking. Nature cell biology. 2009; 11: 1150-6.

65. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. EMBO reports. 2008; 9: 1244-7.

66. Hagemann N, Mohamud Yusuf A, Martiny C, Zhang X, Kleinschmidt C, Gunzer M, et al. Homologous Smad1 deficiency aggravates brain ischemia/reperfusion injury by mechanisms involving polymorphonuclear neutrophils, whereas heterozygous Smad1 deficiency protects against mild focal cortical ischemia. Basic Res Cardiol. 2020; 115: 64.

67. Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene. 2003; 22: 7070-7.

68. Mohamud Yusuf A, Hagemann N, Hermann DM. The Acid Sphingomyelase/ Ceramide System as Target for Ischemic Stroke Therapies. Neurosignals. 2019; 27: 32-43.

69. Janas T, Janas T, Yarus M. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res. 2006; 34: 2128-36.

70. Janas T, Janas T. The selection of aptamers specific for membrane molecular targets. Cell Mol Biol Lett. 2011; 16: 25-39.

71. Di Liegro C, Schiera G, Di Liegro I. Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review). International journal of molecular medicine. 2014; 33: 747-62.

72. Gerstberger S, Hafner M, Ascano M, Tuschi T. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Advances in experimental medicine and biology. 2014; 825: 1-33.
100. Park J, Dutta B, Tse S, Gupta N, Tan C, Lowe J, et al. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene. 2019; 38: 5188-73.

101. Li M, Wang Q, Zhang X, Yan N, Li X. Exosomal miR-126 blocks the proliferation of non-small cell lung cancer. Cancer Lett. 2013; 335: 35-41.

102. Taverna S, Amodeo V, Saieva L, Russo A, Giambalvo M, De Leo G, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myogenic leukemia cells. Mol Cancer. 2014; 13: 169.

103. Wang X, Zhang H, Yang Y, Wang X, Deng T, Liu R, et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting FN1 and HOXA3. Oncotarget. 2018; 9: 4946-78.

104. Guo Z, Xiang W, Yang Y, Chen W, Zhang K, Teng B, et al. Hypoxic Tumor-Derived Exosomal Long Non-Coding RNA UCA1 Protects Angiogenesis via miR-96-5p/AMOTL2 in Pancreatic Cancer. Molecular therapy. 2020; 28: 179-95.

105. Liu X, Jiang F, Wang Z, Tang L, Zou B, Xu P, et al. Hypoxic bone marrow mesenchymal cell-extracellular vesicles containing miR-328-3p promote lung cancer progression via the NF-κB-mediated Hippo axis. J Cell Mol Med. 2021; 25: 487-95.

106. Takeda R, Umezato T, Ohyashiki K, Hiranaka T, Ohyashiki J. Exosomes derived from hypoxic leukemia cells enhance tub formation in endothelial cells. The Journal of biological chemistry. 2013; 288: 34435-41.

107. Huang J, Wang F, Sun X, Chu X, Jiang R, Wang Y, et al. Myocardial infarction induced microRNA-98-5p promotes myocardial ischemia-reperfusion injury by targeting PTEN. Mol Ther. 2020; 28: 5796-807.

108. Hsu Y, Hung J, Chang W, Lin Y, Pan Y, Tsai P, et al. Hypoxic lung cancer-secreted extracellular miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017; 36: 4929-42.

109. Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, et al. Tumor-derived miR-193a-3p regulates angiogenesis in non-small cell lung cancer. Angiogenesis. 2015; 18: 373-83.

110. Ye S, Zhang H, Cai T, Liu Y, Ni J, He J, et al. Exosomal miR-24-3p impedes T-cell function by targeting TGFβ1 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. The Journal of pathology. 2016; 164: 320-9.

111. Berchem G, Noman M, Bosseler M, Paggetti J, Baconnais S, Le Cam E, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR22. Oncoimmunology. 2016; 5: e102968.

112. Zeng Z, Zhao Y, Chen Q, Zhu S, Niu Y, Ye Z, et al. Hypoxic exosomal HI1a-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 2021; 20: 5011-17.

113. Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, et al. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. Journal of experimental & clinical cancer research: RE. 2019; 38: 166.

114. Li L, Li C, Wang S, Wang W, Zhang J, Jiang W, et al. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer research. 2016; 76: 1770-80.

115. Guo H, Xu L, Tang Y, Yang X, Gu J, Yao Y, et al. Hypoxic tumour cell-derived miR-304-5p promotes radiosensitivity of oesophageal squamous cell carcinoma via KLF10. J Exp Clin Cancer Res. 2021; 40: 38.

116. Hsu YL, Hung JY, Chang WA, Jian SF, Lin YS, Pan YC, et al. Hypoxic Lung-Cancer-Derived Extracellular Vesicles Inhibit the Oncogenic Effects of Macrophages by Targeting PTEN. Mol Ther. 2018; 26: 568-81.

117. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PDK1 to Promote Pancreatic Cancer Metastasis. Cancer Res. 2018; 78: 4586-98.

118. Chen X, Ying X, Wang X, Wu X, Zhu Q, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep. 2017; 38: 522-8.

119. Li J, Yang P, Chen F, Tan Y, Huang C, Shen H, et al. Hypoxic colorectal cancer-derived extracellular vesicles deliver microRNA-361-3p to facilitate cell proliferation by targeting TRAF3 via the noncanonical NF-κB pathways. Clinical and translational medicine. 2021; 11: e349.

120. Li Q, Li X, Wang W, Wang H, Zhang X, Ohyashiki K, Ohyashiki J. Exosomal miR-135B sheds from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014; 124: 3748-57.

121. Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, et al. Emerging role of exosomes-derived long non-coding RNAs in tumor microenvironment. Molecular cancer. 2018; 17: 85.

122. Whiteside T. Exosomes and tumor-mediated immune suppression. The Journal of clinical investigation. 2016; 126: 1216-23.

123. Li Y, Liu Y, Li J, Li S, Pan J, Li W, et al. Bone marrow mesenchymal stem cell-derived exosomes protect against acute myocardial infarction by regulating miR-21/PDCD4 Signaling pathway. Frontiers in physiology. 2018; 9: 348.

124. Pu L, Kong X, Li H, He E, Xie X. Exosomes released from mesenchymal stem cells overexpressing miRNA-185-5p attenuate heart failure in rats with myocardial infarction. American journal of translational research. 2021; 13: 4007-25.

125. Zhang L, Wei Q, Liu X, Zhang T, Wang S, Zhou L, et al. Exosomal microRNA-96-5p from hypoxic bone marrow mesenchymal stem cells inhibits myocardial ischemia-reperfusion injury by reducing TLR4 and activating the PI3K/AKT signaling pathway. Int Immunopharmacol. 2021; 110: 107992.

126. Wu Z, Zheng S, Wang S, Li W, Liu J. BMSCs-derived exosomal miR-150-5p attenuates myocardial infarction in mice. Int Immunopharmacol. 2021; 93: 107389.

127. Li Y, Zhou J, Zhang O, Wu X, Guan X, Xue Y, et al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remodeling of mice with myocardial infarction by inhibiting SOCS2. Int Immunopharmacol. 2020; 80: 106156.

128. Wu Y, Peng W, Fang M, Wu M, Wu M. Mesenchymal Stem Cells-Derived Extracellular Vesicles Carrying miR-212-5p Alleviate Myocardial Infarction-Induced Cardiac Fibrosis via NR3C3/VEGF/TGF-β/SMAD Axis. J Cardiovasc Transl Res. 2021; 14: 106-17.

129. Zhang C, Shao K, Liu C, Li C, Yu B. Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating miRNA-24. European review for medical and pharmacological sciences. 2014; 18: 1699-1704.

130. Huang W, Wang F, Sun X, Chu X, Jiang R, Wang Y, et al. Myocardial infarction cardiomyocytes-derived exosomal miR-528-3p promote apoptosis via Caspase signaling. American Journal of translational research. 2021; 13: 2365-78.
Li, Q., Xu, Y., Lv, K., Wang, Y., Zhong, Z., Xiao, C., et al. Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates. *Science translational medicine*. 2021; 13.

Liu, H., Zhang, Y., Yuan, J., Gao, W., Zhong, X., Yao, K., et al. Dendritic cell-derived exosomal miR-493-3p regulates the TLR4/NF-kB signaling pathway to promote cardiac regeneration. *International journal of molecular medicine*. 2021; 47: 315-25.

Climent, M., Quintavalle, M., Miragoli, M., Chen, J., Condorelli, G., Elia, L. TGFβ1 Triggers miR-143/145 Transfer From Smooth Muscle Cells to Endothelial Cells, Thereby Modulating Vessel Stabilization. *Circ Res*. 2015; 116: 1753-64.

Jiang, W., Song, Q., Lu, Z., Wang, S., Liu, T., Wang, X., et al. Myocardial Infarction-Associated Extracellular Vesicle-Derived miR-208b Affects the Growth of Human Umbilical Vein Endothelial Cells via Regulating CDKN1A. *BioMed research international*. 2021; 2021: 9665309.

Chen, J., Cui, C., Yang, X., Xu, J., Venkat, P., Zacharka, A., et al. MiR-126 Affects Brain-Heart Interaction after Cerebral Ischemic Stroke. *Transl Stroke Res*. 2017; 8: 274-85.

Bartle, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, LM, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. *Circulation Research*. 2014; 103: 330-41.

Cheng, H., Chang, S., Xu, R., Chen, L., Song, X., Wu, J., et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. *Stem Cell Res Ther*. 2020; 11: 224.

Wang, N., Chen, C., Yang, D., Liao, Q., Luo, H., Wang, X., et al. Mesenchymal stem cells-derived extracellular vesicles via miR-200c-3p up-regulates miR-1221 to inhibit cardiac function by promoting angiogenesis. *Biochim Biophys Acta Mol Basis Dis*. 2017; 1863: 2085-92.

Wang, Y., Liu, M., Li, R., Zhang, Q., Zhang, S., He, Y., et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-200b alleviates myocardial infarction via miR-200b-3p. *Cell Death Dis*. 2021; 12: 1007.

Yon, S., Li, Y., Kim, Y., Sudhahar, V., Abdelsaid, K., Kim, H., et al. Modification of miR-200c in exosomes from human cardiac progenitor cells inhibits cardiomyocyte apoptosis and improves cardiac function after myocardial infarction. *Circulation Research*. 2014; 103: 330-41.

Cheng, H., Chang, S., Xu, R., Chen, L., Song, X., Wu, J., et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. *Stem Cell Res Ther*. 2020; 11: 224.

Wang, N., Chen, C., Yang, D., Liao, Q., Luo, H., Wang, X., et al. Mesenchymal stem cells-derived extracellular vesicles via miR-200c-3p up-regulates miR-1221 to inhibit cardiac function by promoting angiogenesis. *Biochim Biophys Acta Mol Basis Dis*. 2017; 1863: 2085-92.

Wang, Y., Liu, M., Li, R., Zhang, Q., Zhang, S., He, Y., et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-200b alleviates myocardial infarction via miR-200b-3p. *Cell Death Dis*. 2021; 12: 1007.
196. Xu H, Li Y, Liu Z, Wang X, Xiang C, Cui Y, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched vesicles. Cells Stem Cells. 2023; 11:5801.

197. Li G, Xiao L, Qin H, Zhuan Q, Wang L, Liu L, et al. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion. Cell Cycle. 2020; 19: 1022-35.

198. Gu Z, Z G, C, Stambuli O, Huang T, Q, Tertel T, et al. Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Res Cardiol. 2021; 116: 10529-36.

199. Fan B, Chopp M, Zang ZG, Liu XS. Emerging Roles of microRNAs as Biomarkers and Therapeutic Targets for Diabetic Neuropathy. Front Neurool. 2020; 11: 598738.

200. Chen W, Wang H, Zhu Z, Feng J, Chen L. Exosome-Shuttled circ/HGO2 from IRAF6 regulates Neuronal Autophagy and Ameliorates Ischemic Brain Injury via the miR-7670-3p/SIRT1 Cytoskeleton. Molecular therapy Nucleic Acids. 2020; 22: 649-57.

201. Zhang Y, Liu J, Su M, Wang X, Xie C. Exosomal miRNA-22-3p alleviates cerebral ischemic injury by modulating KDM6B/BMP2/BMP4 axis. Stem Cell Res Ther. 2021; 12: 111.

202. Kuang Y, Zheng X, Ai X, Venkataramani V, Kilic E, et al. Adipose-derived mesenchymal stem cells reduce autopsy in stroke mice by extracellular vesicle transfer of miR-25. Journal of extracellular vesicles. 2020; 10: e10204.

203. Hou Z, Chen J, Yang H, Hu Y, Yang F. microRNA-26a shuttled by extracellular vesicles secreted from adipose-derived mesenchymal stem cells reduces neuronal damage in vitro and in vivo. Exp Neurol. 2021; 376-9: 295-309.

204. Lv H, Li J, Che Y, miR-31 from adipose stem cell-derived extracellular vesicles promotes recovery of neurological function after ischemic stroke by inhibiting TLR4. Brain Res. 2019; 1717: 66-73.

205. Wu W, Liu J, Yang C, Xu Z, Huang J, Jin J. Astrocyte-derived exosome-transported microRNA-34c is neuroprotective against cerebral ischemia/reperfusion injury via TRAF7 and the NF-kappaB/MAPK pathways. Brain Res Bull. 2020; 163: 84-94.

206. Xu L, Cao H, Xie Y, Zhang Y, Du M, Xu X, et al. Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res. 2019; 1717: 66-73.

207. Li Z, Song Y, He T, Wen R, Li Y, Chen T, et al. M2 microglial small inhibiting of LCN2. J Biol Eng. 2019; 13: 71.

208. Ajoolabady A, Wang S, Kroemer G, Penninger J, Uversky V, Pratico D, et al. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacology & therapeutics. 2021; 225: 107848.

209. Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, et al. Novel insight into circular RNA HECT1 in astrocyte activation via proliferation of miR142-TIPAR: implications for cerebral ischemic stroke. Autophagy. 2018; 14: 1168-44.

210. Bacigaluppi M, Russo GL, Perazzotti-Jametti L, Rossi S, Sandrone S, Butti E, et al. Neural Stem Cell Transplantation Induces Stroke Recovery by Upregulating Glutamate Transporter GLT-1 in Astrocytes. J Neurol. 2016; 36: 10529-44.

211. Liu L, Yi W, Zhang ZG, Cui X, Cui Y, Lu M, et al. Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab. 2010; 30: 1288-95.

212. Bassett A, Azzam G, Wheeless L, Tibbit C, Rajakumar T, McGowan S, et al. Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nature communications. 2014; 5: 4640.

213. Xiong W, Qu Y, Chen H, Qian J. Insight into long noncoding RNA-miRNA-mRNA axes in myocardial ischemia-reperfusion injury: the implications for mechanism and therapy. Epigenomics. 2019; 11: 1733-48.

214. Gu X, Li M, Yin L, Liu D, Wei F. Identification and integrated analysis of differentially expressed IncRNAs and circRNAs reveal the potential cell RNA networks during PD154 osteogenic differentiation. BMC genetics. 2017; 18: 1035-48.

215. Mohanpriya R, Akshaya R, Selvamurugan N. A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie. 2021; 184: 103558.

216. Arora K, Broskova Z, Bayoumi A, Teoh J, Davila A, Tang Y, et al. Long Non-Coding RNAs as Master Regulators in Cardiovascular Diseases. International journal of molecular sciences. 2015; 16: 23651-67.

217. Chen XB, Li W, Chu AX. MicroRNA-133a inhibits gastric cancer cells growth, migration, and epithelial-mesenchymal transition process by targeting presenilin 1. J Cell Biochem. 2019; 120: 470-80.

218. Wang S, Jun G, Cong L, Du L, Wang C. miR-328-3p, a Predictor of Stroke, Aggravates the Cerebral Ischemia-Reperfusion Injury. Int J Gen Med. 2021; 14: 2867-79.

219. Wang K, Liu CY, Zhang XJ, Feng C, Zhou LY, Zhao Y, et al. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ. 2015; 22: 1058-68.

220. Zhou ZW, Ren X, Zhang LJ, Li AP, Zhou WS. lncRNA NEAT1 ameliorates ischemic stroke via promoting Mfn2 expression through binding to Nova and activates Sirt3. Metab Brain Dis. 2022; 37: 653-64.

221. Ni X, Su SQ, Xia W, Zhang Y, Jia KS, Su Z, et al. Knockdown lncRNA NEAT1 regulates the activation of microRNA and reduces AKT signaling and neuronal apoptosis cerebral ischemic reperfusion. Sci Rep. 2020; 10: 109658.

222. Li F, Zhao H, Li G, Zhang S, Wang R, Tao Z, et al. Intravenous antigrain-miR-494 lessens brain-infiltrating neutrophils by increasing HADCA2-mediated repression of multiple MIPIs in experimental stroke. Faseb j. 2020; 34: 6934-49.

223. Garg N, Herrmann DM. Targeting the right cell sources for the production of therapeutically active extracellular vesicles in ischemic stroke. Ann Transl Med. 2019; 7: 188.

224. Wang C, Borger V, Sardiari M, Murer F, Skujec J, Pul R, et al. Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Induce Ischemic Neuroprotection by Modulating Leukocytes and Specifically Neutrophils. Stroke. 2020; 51: 1825-34.
