A New Endemic Focus of Chagas Disease in the Northern Region of Veraguas Province, Western Half Panama, Central America

Azael Saldaña1,2, Vanessa Pineda1, Inri Martínez2, Giovanna Santamaria4, Ana Maria Santamaria1, Aracelis Miranda1, José E. Calzada1*

Introduction

Chagas disease is a vector borne zoonosis caused by the kinetoplastid protozoan Trypanosoma cruzi. With nearly eight million people currently infected in 15 countries, it has been considered one of the most important parasitic diseases of the Americas [1,2]. The systematic control of this parasitic infection has been coordinated in Latin America through a series of regional and multinational initiatives focused primarily on elimination of domestic triatomine vectors combined with health education and identification of transmission foci within a country [3,4]. The epidemiological characterization of endemic areas including seroprevalence studies, ecology/biology of triatomine vectors, and parasite genotyping is an important prerequisite to establish effective control programs. This type of surveillance is ongoing in almost all endemic regions, even in countries where Chagas disease control has been successful [5,6,7,8,9]. Presently, the epidemiology of T. cruzi is well-known in most countries in Central America [10]. However, data from Panama concerning the epidemiological scenery of Chagas disease has been restricted to studies performed in traditional endemic communities in the central area of the isthmus [11,12,13,14,15]. Although Panama is a relatively small country (around 75,517.0 square kilometers), there are remote rural areas with potential ecological and socioeconomic conditions adequate for Chagas disease transmission. Thus, concerning Chagas disease distribution and epidemiology, there are many regions in Panama that remain to be more carefully investigated. In this regard, little is known about the...
presence of triatomine vectors, trypanosome human infections and *T. cruzi* genetic characteristics found in the northern mountainous region of Veraguas Province in Western Panama.

During May-2005, some inhabitants from this rural area brought adults and nymphs of *Rhodnius pallescens* and *Triatoma dimidiatu*, important vectors of Chagas disease in Panama [13], to the regional health center in the Santa Fe District in Western Panama. This incident alarmed health authorities of the possible existence of human *T. cruzi* infection cases in this region of the country. A cross sectional study was therefore carried out with the aim of confirming the presence and identity of triatomine vectors in houses, palm trees (*Atelea butyracea*) and other possible habitats, and to assess seropositivity for *T. cruzi* infections in the human population of Santa Fe District. These results provide valuable baseline information regarding a novel endemic focus of Chagas disease in the northern region of Veraguas province, and emphasize how Chagas disease epidemiology can vary over a small geographic area.

Materials and Methods

Ethics Statement

The study was approved by the National Review Board: Comité Nacional de Bioética de la Investigacion, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (1424/CNBI/ICGES). All studied subjects provided written informed consent for all parts of the study.

Area

The study was carried out between May 2005 and July 2008. The area is located in the northern region of Veraguas Province, Santa Fe district, in the western half of the Isthmus of Panama (Fig. 1). The main environmental characteristics of the evaluated areas are: a mountainous topography comprising many rural communities laying at different altitudes (400 to 1000 meters above the sea level); a mean temperature of 21°C; average annual rainfall of about 3,500 mm, and a marked seasonality with a dry season from December to March and a rainy season the rest of the year. The total population is approximately 15,000 inhabitants. Most of the district’s economy depends on subsistence agriculture. The surveyed specific regions were selected based on previous reports of triatomines found within the houses by their inhabitants. The evaluated communities were: El Pantano (3°33’ 0N, 81°5’ 0W, 604 masl) with approximately 183 houses and 495 inhabitants; La Culaca (3°31’ 0N, 81°2’ 60W, 698 masl) with approximately 61 houses and 188 inhabitants; Sabaneta del El Macho (3°29’ 29N, 81°7’ 40W, 803 masl) with approximately 149 houses and 488 inhabitants and Gatu (3°31’ 60N, 80°55’ 60W, 781 masl) with approximately 51 houses and 195 inhabitants.

Triatomine Collection

Triatomine collection was conducted by community-based entomological surveillance, active searching of selected households by trained technical personnel, and dissection of peridomestic palms (*A. butyracea*).

Community-based entomological surveillance. An entomological search to collect triatomines was conducted with community participation. Briefly, plastic containers with perforated lids and filter paper in the form of an accordion surface, were distributed among trained local inhabitants for the collection of bugs inside of approximately 444 houses distributed in the four evaluated regions. The captured bugs were forwarded by the house owner to the Health Center of Santa Fe and then to the Gorgas Institute Laboratory in Panama City for taxonomic identification and further evaluations.

Active collection by entomology specialists. Additionally, 30 selected houses from Sabaneta de El Macho were searched for triatomines by active collection prior to and after a first round of household deltametrin application by specialists from the Ministry of Health, Department of Vector Control. These houses were selected according to the following criteria: 1) a frequent household presence of *T. dimidiatu* (based on resident reports), and 2) housing construction: walls made with a wooden framework packed with earth (“quincha”) and dirt floors.

Dissection of peridomestic palms. In Santa Fe District, as in others rural regions of the country, it is common practice to fell *A. butyracea* palm trees for construction of thatched roofs and for the production of a fermented beverage called “Palm Wine”. Triatomines were collected by direct search on crowns of these recently felled palms. All the investigated palms were located near houses (<100 mts). A total of 24 palms were evaluated, 15 palms from La Culaca, seven from El Pantano and two from Sabaneta de El Macho. The number, species, stages and morphological characteristics of collected triatomines were recorded.

Host Feeding Source and Trypanosome Infection Analysis

The bloodmeal type and the presence/species of trypanosomes in the gut contents of those adult insects that arrived alive to the laboratory were identified by a dot-blot and PCR analysis as described [12,14].

Trypanosoma Cruzi Genotyping

The *T. cruzi* genotype lineages circulating in a subset of adult collected bugs was assessed according to previous reports [16,17]. Briefly, DNA samples from fifty *T. cruzi* positive bugs (20 *R. pallescens* and 15 *T. dimidiatu* collected on palm trees from La Culaca and 15 *T. dimidiatu* found inside houses from Sabaneta de El Macho) were analyzed using a multiplex-PCR assay based on amplification of the mini-exon gene, generating DNA bands of 300 or 350 bp for *T. cruzi I* (*TCI*) and *T. cruzi II* (*TCII*), respectively. The PCR amplified products were separated by electrophoresis in 2% agarose gels and stained with ethidium bromide.

Blood Sampling

After obtaining written informed consent and with active participation of the Ministry of Health personnel, blood collection was performed on all persons older than two years old living in the four evaluated communities. Due to difficulties to transport/processing of blood samples in some of the evaluated communities (remote mountainous areas far from health centers) two standard procedures for blood collection were used: finger pricks blotted on filter paper using disposable lancets, or standard venipuncture.

Serologic Analysis

To collect antibodies from filter papers, a 5 mm diameter punch was obtained from every sample and incubated overnight at 4°C in 200 μl of phosphate-buffered saline (PBS) using 96 well polystyrene plates. The filter paper eluates or sera samples were tested for anti-*T. cruzi* antibodies following procedures of two commercial assays (ELISA Chagatest, Wiener Laboratory, Argentina and Chagas Stat-Pak, Chembio Diagnostic Systems, Medford, NY) and a western blot test described before [18]. Samples were considered positive when they showed reactivity in at least two of these tests.
Data Analysis

Field data were collected by our research group in collaboration with medical personnel from the Health Center of Santa Fe and the Hospital Dr. Luis Fabrega in the city of Santiago. Field and laboratory data were recorded in notebooks and tables designed for this purpose. Finally, tabulation, management and analysis of raw data were carried out using Microsoft Excel and Microsoft Access 2007 (Microsoft, Inc., United States).

Results

Triatomine Collection and Identification

Results of the entomological evaluation are depicted in Tables 1 and 2. Both R. pallescens and T. dimidiata were found in domestic habitats and in A. butyracea palm crowns. A total of 831 and 292 specimens of R. pallescens and T. dimidiata were collected, respectively. Other potential triatomine vectors, Panstrongylus rufotuberculatus (two specimens) and Panstrongylus geniculatus (one specimen), were rarely found inside houses. R. pallescens collected from this region presented an overall darker coloration and larger size (22–24 mm) compared with typical specimens collected in central Panama.

This triatomin species was more frequently found in La Culaca and El Pantano communities (Table 1). In these areas the dwelling construction types were variable: 18/61 in La Culaca and 38/183 in El Pantano were constructed entirely with natural available materials in the region, such as bamboo pipes and palm leaves, and have dirt floors. However, there were also houses with plastered brick walls, cement floor, zinc-covered roof, and an electric supply.

The presence of A. butyracea palms in the backyards of the evaluated houses was common in these communities. Of these palms, 15/15 in La Culaca and 7/8 in El Pantano were infested with triatomines, with approximately 35 triatomines/palm. Direct observations confirm the presence of opossums, rats, bats and others synanthropic mammals in the peridomestic areas of these near communities. Interestingly, R. pallescens was a common visitor of some households in the La Culaca community and nymphal stages were occasionally encountered inside two of four infested houses. Despite these findings, constant and sustainable domestic colonies were not demonstrated in these houses during the study.

A different eco-epidemiological situation was found for T. dimidiata. This triatomin was most common in Sabaneta de El Macho (Table 1). Of 149 homes evaluated, 20 (12.0%) were

Community	La Culaca	El Pantano	Sabaneta de EL Macho	Gatu
R. pallescens	689	15 (4/61)	674 (15/15)	99
T. dimidiata	100	1 (1/61)	99 (6/15)	30

TCT = Total collected triatomines.
DCT (Ih/Eh) = Domestic collected triatomines (Infested houses/Evaluated houses).
WCT (Ip/Ep) = Wild collected triatomines (Infested palms/Evaluated palms).

Table 1. Triatomine species captured in the houses/palm trees per communities in Santa Fe District.
collected inside houses and on palm trees were domestic specimens from Sabaneta de El Macho. DNA samples isolated from infected *T. dimidiata* collected inside houses and on palm trees were genotyped, all of them showed characteristic products (330 pb) of *T. cruzi* Lineage I using the mini-exon gene PCR analysis.

Serologic Analysis

The combined information obtained from these four communities in Santa Fe District revealed a general *T. cruzi* infection seroprevalence of 2.3% (24/1,056) (Table 3). The highest seroprevalences were found in Sabaneta de El Macho (1.9%, 8/418) and in El Pantano (3.6%, 12/328). Only two positive cases were detected respectively on people evaluated from La Culaca (1.6%, 2/122) and Gatu (1.1%, 2/180) areas. Some positive cases were found in triatomine infested houses, La Culaca (1), El Pantano (2) and Sabaneta de El Macho (5). Most positives cases were detected in patients older than 50 years (45.8%, 11/24); however four infected young persons were also diagnosed (16.7%, 4/24). The seropositive patients were referred to the Santa Fe Health Center and the Dr. Luis Fabrega Hospital (Santiago City) for further evaluation, and in the cases of asymptomatic patients below 19 years old, for specific treatment for *T. cruzi* infection, following national guidelines for Chagas disease control.

Discussion

This study describes a new endemic area of Chagas disease in Panama, located in the mountainous and rural area of Santa Fe district. Over a four year’s period, two partially different epidemiological scenarios were evidenced in this region. *R. pallescens* and *T. dimidiata*, the two most important Chagas disease vectors in Panama [15], were collected during the entomological surveillance performed in the evaluated areas. Although *R. pallescens* was the predominant species, especially in La Culaca and El Pantano communities, our results also evidenced the existence of a far less common epidemiological situation reported in Panama where domiciliated *T. dimidiata* was the main vector found in Sabaneta de El Macho. These results emphasize that heterogeneity in Chagas disease epidemiologic scenarios can occur across a relatively small geographic area.

The predominance of *R. pallescens* in some sub-regions as compared to others may be related to the abundance of *A. butyracea* palm trees. In this sense, *A. butyracea* palms are common on the landscape of La Culaca and El Pantano, but scarce on the communities of Sabaneta de El Macho and Gatu. In most Chagas endemic areas of Panama, these palms are frequently infested with triatomine bugs, especially *R. pallescens* [12,19]. The situation is similar in La Culaca and El Pantano communities, where more

Table 2. Triatomine feeding patterns and trypanosomes infection

Feeding Sources	*R. pallescens* (%)	*T. dimidiata* (%)
Opossum	88/161 (54.7)	3/138 (2.2)
Human	1/161 (0.6)	34/138 (24.6)
Bird	1/161 (0.6)	5/138 (3.6)
Dog	1/161 (0.6)	8/138 (5.8)
Mouse	5/161 (3.1)	3/138 (2.2)
Negative	65/161 (40.4)	53/138 (38.4)

1 Results for those adult bugs that arrived alive to the laboratory.

2 Bugs that did not contain enough ingested blood for host identification or the blood of other no tested animals was present.

3 Bugs collected on palm trees from La Culaca and El Pantano regions.

4 Bugs collected inside houses from Sabaneta de El Macho.

doi:10.1371/journal.pone.0034657.t002

It was found that 54.7% (88/161) of the examined *R. pallescens* had fed on common opossoms (*Didelphis marsupialis*). These triatomines were collected on palm trees from La Culaca and El Pantano regions. The finding of positive triatomines for others feeding sources was scarce (Table 2). A significant number of *T. dimidiata* adult specimens collected inside houses were from Sabaneta de El Macho were positive for human blood, 34/138 (24.6%). Blood of domestic animals (chicken, dog and mouse) was also identified in the gut contents of 16 *T. dimidiata* (11.6%) found in the human domicile of Sabaneta de El Macho (Table 2). Only 2.2% (3/138) of these bugs were positive for opossum blood. Many of the evaluated triatomines (65 *R. pallescens* and 53 *T. dimidiata*) did not contain enough ingested blood for host identification or perhaps the blood of other animals that were not detectable by the dot-blot analysis were present. These results are referred as negative (Table 2).

In *R. pallescens* evaluated adults, the infection index with *T. cruzi* was 17.7% (24/136), and with *T. rangeli* 12.5% (17/136) for singly infected bugs. Around 50.7% (69/136) of these triatomines presented mixed infections with both trypanosomes (Table 2). In 117 *T. dimidiata* domestic specimens from Sabaneta de El Macho village, the infection index with *T. cruzi* was 21.4% (Table 1). The infection index with *T. cruzi* in 24 evaluated *T. dimidiata* bugs collected on palm trees from El Pantano and La Culaca communities was 75% (18/24).
than 95% of the evaluated palms were infested with *R. pallescens*, around 767 specimens were collected from 22 dissected palms from these areas. As in other endemic regions [12,20], these sylvatic triatomines presented high indices of infection with *T. cruzi* and/or *T. rangeli*, and have opossums as the main feeding blood source (Table 2). The opossums are the principal reservoir of Chagas disease in Panama [11].

The serological evaluation of 450 inhabitants from El Pantano and La Culaca shows that *T. cruzi* human transmission is occurring in this rural region of Panama (Table 3). Most endemic areas for Chagas disease in Panama have human seroprevalence lower than 5.0% (13,14,20). A comparable situation was found in these communities where the combined seroprevalence was 3.1%, including four cases of persons less than nineteen years old living in houses infested with triatomines, suggesting an active transmission. As in many others Panamanian endemic areas where *R. pallescens* is the main vector of Chagas disease [12,13,14,20], the occurrence of *T. cruzi* and *T. rangeli* human infections in El Pantano and La Culaca counties is probably the result of flight dispersal of this triatomine from sylvatic zoonotic foci on near residential areas. Around 129 specimens of *T. dimidiata* were also frequently found on *A. butyracea* palm crowns from evaluated areas. Around 129 specimens of *T. dimidiata* were collected on these trees. This species is considered the second most important Chagas disease vector in Panama [15]. It has a broad distribution across the country, but generally at low density [15]. Sabaneta de El Macho is considered poorest area of the Santa Fe district, evidenced by the home construction: walls made with “quincha”, dirt floors, few windows and basic hygiene deficiencies. This environment has been described as ideal for the establishment of *T. dimidiata* colonies [22]. In fact, in 18% of the total evaluated houses (n = 144) houses in this region were colonized by *T. dimidiata*. Furthermore, *T. cruzi* infection index in these triatomines was 21.4% and 24.6% presented human blood in its intestine. The prevalence of antibodies against *T. cruzi* in this community was of 1.9% (8/418). Altogether, these findings clearly demonstrate that the inhabitants of this village live under a high risk for Chagas disease vectorial transmission. Thus, governmental implementation of a periodical surveillance and control programs is urgently needed in this area. These control strategies should integrate both the residual insecticide spraying and an improved management of domestic and peri-domestic environments as recently suggested [22,23]. Interestingly, no triatomine vectors were collected in the Gatu community. In this area the presence of *A. butyracea* palm was scarce and only two adult persons out of 188 evaluated presented antibodies against *T. cruzi*. Although these findings might suggest that Chagas disease is less common in Gatu area, additional studies are necessary to clarify the real status of this neglected parasitosis in this community.

The morphology of collected *T. dimidiata* specimens was apparently similar to those found in other Panamanian endemic regions [24]. In contrast, *R. pallescens* collected in Santa Fe district had an appreciable larger size and darker colour compared to specimens described from other Chagas disease endemic areas in Panama [24]. Other variations in colour patterns have been described for triatomines [25,26,27]. However, the epidemiological relevance of these observations needs additional investigations.

The molecular analysis of fifty *T. cruzi* isolates from infected *R. pallescens* and *T. dimidiata* collected both inside houses or on palm trees, revealed that the TCI is the predominant lineage. A similar situation have been described in two previous reports that analyzed *T. cruzi* strains isolated from chagasic patients and from *R. pallescens* collected in central Panama [17,28]. However, it must be kept in mind that molecular characterization of parasites isolated from autochthonous patients is necessary before confirming that TCI is the main lineage associated with the human *T. cruzi* infections found in this region.

Based on our seroprevalence results, with a low number of samples, it seems very likely that an important number of Chagas disease cases from the Santa Fe District go undetected and that the few seropositive cases detected during this study may underestimate the true prevalence. Recently, a fatal case of chronic Chagas disease was reported at the regional Hospital “Dr. Luis Fabrega” in Santiago City in May of 2010. The patient came from El Pantano community, one of our evaluated areas, and presented a heart failure compatible with chronic Chagas disease and a positive serology for *T. cruzi*. Local physicians and other health personnel must be alert and trained to recognize signs and symptoms of Chagas disease, especially on patients from Santa Fe district.

In conclusion, this report demonstrates that Chagas disease is endemic in communities from Santa Fe District, and should be considered as a neglected public health problem in this rural region of Panama. Additionally, there is small-scale heterogeneity in the ecoepidemiology of Chagas disease vectors in this region, and this needs to be taken into account when designing future remediation strategies.
surveillance and disease control programs for Chagas disease in Panama.

Acknowledgments

We acknowledge with appreciation the field and technical assistance of Roberto Rojas and Jose Montenegro. We thank Nicole Gottdenker for the critical review of the manuscript.

References

1. Tarleton RL, Reithinger R, Urbina JA, Kitzou U, Gurtler RE (2007) The challenges of Chagas Disease—grim outlook or glimmer of hope. PLoS Med 4: e352.
2. Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375: 1380–1402.
3. Dias JC, Silveira AC, Schofield CJ (2002) The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz 97: 603–612.
4. Moncayo A, Silveira AC (2009) Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Mem Inst Oswaldo Cruz 104 Suppl 1: 17–30.
5. Rojas ME, Varequez P, Villarreal MF, Velandia C, Vergara L, et al. (2008) An entomological and seroepidemiological study of Chagas’ disease in an area in central-western Venezuela infested with Triatoma maculata (Erichson 1848). Cad Saude Publica 24: 2323–2333.
6. Zeledón R, Martín F, Calvo N, Lage E, Valle S (2006) Distribution and ecological aspects of Rhodnius pallescens in Costa Rica and Nicaragua and their epidemiological implications. Mem Inst Oswaldo Cruz 101: 75–79.
7. Roellig DM, Brown EL, Barnabé C, Tibayrenc M, Steurer FJ, et al. (2008) Molecular typing of Trypanosoma cruzi isolates, United States. Emerg Infect Dis 14: 1123–1125.
8. Bacigalupo A, Torres-Pérez F, Segovia V, García A, Correa JP, et al. (2010) Sylvic foci of the Chagas disease vector Triatoma infestans in Chile: description of a new focus and challenges for control programs. Mem Inst Oswaldo Cruz 105: 633–643.
9. Moreno ML, Moretti E, Basso B, Céspedes MF, Catalá SS, et al. (2010) Seroprevalence of Trypanosoma cruzi infection and vector control activities in rural communities of the southern Gran Chaco (Argentina). Acta Trop 113: 257–262.
10. Ponce C (2007) Current situation of Chagas disease in Central America. Mem Inst Oswaldo Cruz. 102 Suppl 1: 41–44.
11. Sousa OE, Johnston CM (1973) Prevalence of Trypanosoma cruzi and Trypanosoma rangeli in triatomines (Hemiptera: Reduviidae) collected in the Republic of Panama. Am J Trop Med Hyg 22: 18–23.
12. Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B (1995) DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 83: 141–152.
13. Samudio F, Ortega-Barria E, Saldana A, Calzada J (2007) Predominance of Trypanosoma cruzi I among Panamanian sylvatic isolates. Acta Trop 101: 179–181.
14. Saldana A, Sousa OE, Orm A (1995) Immunoparasitological studies of Trypanosoma cruzi low virulence clones from Panama: humoral immune responses and antigenic cross-reactions with Trypanosoma rangeli in experimentally infected mice. Scand J Immunol 42: 644–650.
15. Whitlall JT, Chaniotis BN (1976) Palm trees and Chagas’ disease in Panama. Am J Trop Med Hyg 27: 873–881.
16. Calzada JE, Pineda V, Garisto JD, Samudio F, Santamaría AM, et al. (2010) Human trypanosomiasis in the eastern region of the Panama Province: new endemic area for Chagas disease. Am J Trop Med Hyg 82: 580–582.
17. Pipkin AC (1968) Domiciliary Reduviid bugs and the epidemiology of Chagas disease in Panama. Mem Inst Oswaldo Cruz 101: 455–458.
18. Zeledón R, Rojas JC (2006) Environmental management for the control of Triatoma dimidiata (Latreille, 1811), (Hemiptera: Reduviidae) in Costa Rica: a pilot project. Mem Inst Oswaldo Cruz 101: 379–386.
19. Zeledón R, Rojas JC, Urbina A, Cordero M, Gamboa SH (2008) Ecological control of Triatoma dimidiata (Latreille, 1811) five years after a Costa Rican pilot project. Mem Inst Oswaldo Cruz 103: 619–621.
20. Mendez E, Sousa OE (1979) Identificacion y distribucion de los triatominos de Panama (Hemiptera: Reduviidae: Triatominae) Rev Med Panama 4: 258–280.
21. Noireau F, Flores R, Gutierrez T, Dujardin JP (1997) Detection of sylvatic dark forms of Triatoma infestans in the Bolivian Chaco. Mem Inst Oswaldo Cruz 92: 583–584.
22. Gaunt M, Miles M (2000) The ectoparasites and evolution of triatomine bugs (Triatominae) and their associated trypanosomes. Mem Inst Oswaldo Cruz 95: 557–565.
23. Vasquez AM, Samudio FE, Saldana A, Paz HM, Calzada JE (2004) Eco-epidemiological aspects of Trypanosoma cruzi, Trypanosoma rangeli and their vector (Rhodnius pallescens) in Panama. Rev Inst Med Trop Sao Paulo 46: 217–222.
24. Calzada JE, Pineda V, Montalvo E, Alvarez D, Santamaria AM, et al. (2006) Human trypanosomiasis and the presence of intradomicile Rhodnius pallescens in the western border of the Panama Canal, Panama. Am J Trop Med Hys 74: 762–765.

Author Contributions

Conceived and designed the experiments: AS JEC VP. Performed the experiments: VP IM GS AM AMS. Analyzed the data: VP AS JEC. Contributed reagents/materials/analysis tools: AS JEC VP IM GS AM AMS. Wrote the paper: AS JEC.