Koshida, Shinji
Schramm-Loewner-evolution-type growth processes corresponding to Wess-Zumino-Witten theories. (English) [Zbl 1469.60258]
Lett. Math. Phys. 109, No. 6, 1397-1413 (2019).

Summary: A group theoretical formulation of Schramm-Loewner-evolution-type growth processes corresponding to Wess-Zumino-Witten theories is developed that makes it possible to construct stochastic differential equations associated with more general null vectors than the ones considered in the most fundamental example in [A. Alekseev et al., Lett. Math. Phys. 97, No. 3, 243–261 (2011; Zbl 1238.60088)]. Also given are examples of Schramm-Loewner-evolution-type growth processes associated with null vectors of conformal weight 4 in the basic representations of \hat{sl}_2 and \hat{sl}_3.

MSC:
60J67 Stochastic (Schramm-)Loewner evolution (SLE)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
17B68 Virasoro and related algebras

Keywords:
Schramm-Loewner evolution; Wess-Zumino-Witten theory; conformal field theory

Full Text: DOI arXiv

References:
[1] Alekseev, A.; Bytsko, A.; Izyurov, K., On SLE martingales in boundary WZW models, Lett. Math. Phys., 97, 243-261, (2011) · Zbl 1238.60088 · doi:10.1007/s11005-011-0500-2
[2] Applebaum, D.: Probability on Compact Lie Groups. Probability Theory and Stochastic Modeling, vol. 70. Springer, Berlin (2014) · Zbl 1302.60007
[3] Bauer, M.; Bernard, D., SLE$_{\kappa}$ growth processes and conformal field theories, Phys. Lett. B, 543, 135-138, (2002) · Zbl 0997.60119 · doi:10.1016/S0370-2693(02)02423-1
[4] Bauer, M.; Bernard, D., Conformal field theories of stochastic Loewner evolutions, Commun. Math. Phys., 239, 493-521, (2003) · Zbl 1046.81091 · doi:10.1007/s00220-003-0881-x
[5] Bauer, M.; Bernard, D., SLE martingales and the Virasoro algebra, Phys. Lett. B, 557, 309-316, (2003) · Zbl 1009.81022 · doi:10.1016/S0370-2693(03)00189-8
[6] Bauer, M.; Bernard, D., Conformal transformations and the SLE partition function martingale, Ann. Henri Poincaré, 5, 289-326, (2004) · Zbl 1088.81083 · doi:10.1007/s00023-004-0170-z
[7] Bauer, M.; Bernard, D.; Kytölä, K., Multiple Schramm-Loewner evolutions and statistical mechanics martingales, J. Stat. Phys., 120, 1125-1163, (2005) · Zbl 1095.82005 · doi:10.1007/s10955-005-7002-5
[8] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 333-380, (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[9] Bettelheim, E.; Gruzberg, IA; Ludwig, AW; Wiegmann, P., Stochastic Loewner evolution for conformal field theories with Lie group symmetries, Phys. Rev. Lett., 95, 251,601, (2005) · doi:10.1103/PhysRevLett.95.251601
[10] Cardy, JL, Effect of boundary conditions on the operator center of two-dimensional conformally invariant theories, Nucl. Phys. B, 275, 200-218, (1986) · doi:10.1016/0550-3213(86)90596-1
[11] Cardy, JL, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B, 324, 581-596, (1989) · doi:10.1016/0550-3213(89)90521-X
[12] Cardy, JL, Critical percolation in finite geometries, J. Phys. A Math. Gen., 25, 1201-1206, (1992) · Zbl 0965.82501 · doi:10.1088/0305-4470/25/4/009
[13] Chelkak, D.; Duminil-Copin, H.; Hongler, C.; Kemppainen, A.; Smirnov, S., Convergence of Ising interfaces to Schramm’s SLE curves, C. R. Math., 352, 157-161, (2014) · Zbl 1294.82007 · doi:10.1016/j.crma.2013.12.002
[14] Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer, New York (1997)
[15] Dubédat, J., SLE and Virasoro representations: fusion, Commun. Math. Phys., 336, 761-809, (2015) · Zbl 1319.81073 · doi:10.1007/s00220-014-2283-7
