Quasinormal Modes of MOdified Gravity (MOG) Black Holes

3rd Karl Schwarzschild Meeting
Gravity and the Gauge/Gravity Correspondence

Luciano Manfredi
Loyola Marymount University

Jonas Mureika
Loyola Marymount University

John Moffat
Perimeter Institute
U. of Waterloo

Coming to arXiv shortly!
Outline

• Introduction to Ringdown and Quasinormal Modes (QNMs)
• Asymptotic Iteration Method
• Scalar-Vector-Tensor MODified Gravity (MOG)
• MOG’s prediction for QNMs
• Comparison with General Relativity
Gravitational Waves from Compact Binaries

(LIGO)
Observation of Ringdown
Black Hole Ringdown

- After merger, the remnant black hole is strongly deformed.

- This can be viewed as a perturbation about the final state.

- This perturbation excites resonant modes of the black hole.

- These decay exponentially in a “ringdown”.

Lucho Manfredi – KSM 2017
Quasinormal modes: the math

- Scalar wave equation:
 \[\Box_g \psi = 0 \]

- Separation of variables:
 \[\psi_{\omega l} \sim \frac{1}{r} e^{-i\omega t} u_{\omega l}(r) Y_{lm}(\theta, \phi) \]

- Radial equation:
 \[\frac{d^2 u_{\omega l}}{dr_*^2} + \left(\omega^2 - V \right) u_{\omega l} = 0 \]

- Only certain frequencies work for purely outgoing boundary conditions:
 \[\omega_{lm} \]

- Same story for gravitational waves
 \[s\psi_{\omega l} \rightarrow h \]
Asymptotic Iteration Method

Consider a second order differential equation of the form

\[\chi'' = \lambda_0(x) \chi' + s_0(x) \chi \]

Differentiating the above equation \(n \) times yields

\[\chi^{(n+2)} = \lambda_n(x) \chi' + s_n(x) \chi \]

where the coefficients satisfy the relations

\[\lambda_n(x) = \lambda'_{n-1} + s_{n-1} + \lambda_0 \lambda_{n-1}, \quad s_n(x) = s'_{n-1} + s_0 \lambda_{n-1} \]

For sufficiently large values of \(n \), the asymptotic feature of the AIM is introduced requiring

\[\frac{s_n(x)}{\lambda_n(x)} = \frac{s_{n-1}(x)}{\lambda_{n-1}(x)} \equiv \beta(x) \]

where the QNMs are obtained from the “quantization condition”

\[\delta_n = s_n \lambda_{n-1} - s_{n-1} \lambda_n = 0 \]
Scalar-Tensor-Vector MOfified Gravity (MOG)

An exact generalized Schwarzschild-MOG solution of the STVG fields equations is obtained by requiring $G = G_N (1 + \alpha) \sim \text{constant}$ and $Q_g = \sqrt{\alpha G_N M} \sim \text{constant}$, and ignoring the small ϕ_μ vector field particle mass $m_\phi \sim 10^{-28}$ eV in the present universe.

The field equations are given by

\[R_{\mu \nu} = -8\pi G T^\phi_{\mu \nu}, \]
\[\frac{1}{\sqrt{-g}} \partial_\nu (\sqrt{-g} B^{\mu \nu}) = 0, \]
\[\partial_\sigma B_{\mu \nu} + \partial_\mu B_{\nu \sigma} + \partial_\nu B_{\sigma \mu} = 0. \]

The energy-momentum tensor is

\[T^\phi_{\mu \nu} = -\frac{1}{4\pi} (B_{\mu \alpha} B^{\nu \alpha} - \frac{1}{4} \delta^\nu_{\mu} B^{\alpha \beta} B_{\alpha \beta}) \]

The gravitational field metric is given by

\[ds^2 = \left(1 - \frac{2GM}{r} + \frac{GQ_g^2}{r^2}\right) dt^2 - \left(1 - \frac{2GM}{r} + \frac{GQ_g^2}{r^2}\right)^{-1} dr^2 - r^2 d\Omega^2. \]
Cosmological Observations

STVG/MOG has been applied successfully to a range of astronomical, astrophysical, and cosmological phenomena.

Solar system and star clusters containing few million solar masses
→ No deviation from Newton or Einstein

• Theory accounts for the rotation curves of spiral galaxies, correctly reproducing the Tully-Fisher law.

• STVG is in good agreement with the mass profiles of galaxy clusters.

• STVG can also account for key cosmological observations, including:
 • The acoustic peaks in the cosmic microwave background radiation;
 • The accelerating expansion of the universe
 • The matter power spectrum of the universe

J. W. Moffat et al.: MNRAS (2013) [1439-1451], [arXiv:1510.07037v2], [arXiv:1611.05382]
l	n	\(\alpha = 0 \)	\(\alpha = 1 \)	\(\alpha = 4 \)	\(\alpha = 9 \)
1	0	0.2483 - 0.09249i	0.1448 - 0.04805i	0.06343 - 0.01881i	0.03268 - 0.009084i
	1	0.2145 - 0.2937i	0.1308 - 0.1506i	0.05882 - 0.05828i	0.03038 - 0.02796i
	2	0.1748 - 0.5252i	0.1135 - 0.2654i	0.05258 - 0.1014i	0.02675 - 0.04833i
	3	0.1462 - 0.7719i	0.1090 - 0.3866i	0.05036 - 0.1494i	0.02434 - 0.07008i
2	0	0.4576 - 0.09500i	0.2651 - 0.04917i	0.1164 - 0.01930i	0.06000 - 0.009351i
	1	0.4365 - 0.2907i	0.2565 - 0.1498i	0.1136 - 0.05854i	0.05861 - 0.02830i
	2	0.4012 - 0.5016i	0.2420 - 0.2563i	0.1087 - 0.09948i	0.05607 - 0.04791i
	3	0.3626 - 0.7302i	0.2257 - 0.3699i	0.1028 - 0.1425i	0.05272 - 0.06840i
3	0	0.6569 - 0.09562i	0.3771 - 0.04933i	0.1648 - 0.01936i	0.08493 - 0.009395i
	1	0.6417 - 0.2897i	0.3709 - 0.1492i	0.1627 - 0.05842i	0.08391 - 0.02831i
	2	0.6138 - 0.4921i	0.3594 - 0.2522i	0.1589 - 0.09841i	0.08198 - 0.04760i
	3	0.5779 - 0.7063i	0.3446 - 0.3600i	0.1537 - 0.1398i	0.07927 - 0.06743i

Table 1: QNMs accurate to 4 decimal places for \(M = 1 \) scaled MOG electromagnetic perturbations \(V_{i=1}^{(-)} \) for \(l = 1 \), \(l = 2 \) and \(l = 3 \) modes.
	n	**\(\alpha = 0 \)**	**\(\alpha = 1 \)**	**\(\alpha = 4 \)**	**\(\alpha = 9 \)**
2	0	0.3737 - 0.0890i	0.2220 - 0.04650i	0.1021 - 0.01867i	0.05431 - 0.009171i
	1	0.3467 - 0.2739i	0.2115 - 0.1423i	0.09872 - 0.05678i	0.05270 - 0.02781i
	2	0.3011 - 0.4783i	0.1937 - 0.2457i	0.09283 - 0.09696i	0.04974 - 0.04725i
	3	0.2515 - 0.7051i	0.1742 - 0.3579i	0.08582 - 0.1397i	0.04584 - 0.06776i
3	0	0.5994 - 0.0927i	0.3353 - 0.04758i	0.1496 - 0.0189i	0.07875 - 0.009267i
	1	0.5826 - 0.2813i	0.3281 - 0.1441i	0.1472 - 0.0571i	0.07761 - 0.02795i
	2	0.5517 - 0.4791i	0.3149 - 0.2444i	0.1428 - 0.0964i	0.07543 - 0.04706i
	3	0.5120 - 0.6903i	0.2979 - 0.3503i	0.1368 - 0.1373i	0.07238 - 0.06680i
4	0	0.8092 - 0.0942i	0.4452 - 0.04804i	0.1965 - 0.01903i	0.1030 - 0.009311i
	1	0.7966 - 0.2843i	0.4398 - 0.1449i	0.1947 - 0.05731i	0.1021 - 0.02802i
	2	0.7727 - 0.4799i	0.4294 - 0.2441i	0.1912 - 0.09625i	0.1004 - 0.04699i
	3	0.7398 - 0.6839i	0.4151 - 0.3468i	0.1863 - 0.1362i	0.09796 - 0.06636i

Table 2: QNMs accurate to 4 decimal places for \(M = 1 \) scaled MOG gravitational perturbations \(V_{i=2}^{(-)} \) for \(l = 2, l = 3 \) and \(l = 4 \) modes.
	n	GR		MOG	
		α = 0	α = 1	α = 4	α = 9
1	0	0.2483 - 0.09249i	0.2896 - 0.09611i	0.3171 - 0.09403i	0.3268 - 0.09084i
	1	0.2145 - 0.2937i	0.2616 - 0.3012i	0.2941 - 0.2914i	0.3038 - 0.2796i
	2	0.1748 - 0.5252i	0.2271 - 0.5309i	0.2629 - 0.5072i	0.2675 - 0.4833i
	3	0.1462 - 0.7719i	0.2179 - 0.7733i	0.2518 - 0.7470i	0.2434 - 0.7008i
2	0	0.4576 - 0.09500i	0.5302 - 0.09833i	0.5821 - 0.09650i	0.6000 - 0.09351i
	1	0.4365 - 0.2907i	0.5131 - 0.2995i	0.5680 - 0.2927i	0.5861 - 0.2830i
	2	0.4012 - 0.5016i	0.4840 - 0.5126i	0.5435 - 0.4974i	0.5607 - 0.4791i
	3	0.3626 - 0.7302i	0.4514 - 0.7397i	0.5139 - 0.7125i	0.5272 - 0.6840i
3	0	0.6569 - 0.09562i	0.7542 - 0.09867i	0.8239 - 0.09681i	0.8493 - 0.09395i
	1	0.6417 - 0.2897i	0.7418 - 0.2983i	0.8136 - 0.2921i	0.8391 - 0.2831i
	2	0.6138 - 0.4921i	0.7189 - 0.5045i	0.7944 - 0.4921i	0.8198 - 0.4760i
	3	0.5779 - 0.7063i	0.6891 - 0.7200i	0.7687 - 0.6988i	0.7927 - 0.6743i

Table 3: QNMs accurate to 4 decimal places for $M = 1/(1 + \alpha)$ scaled MOG electromagnetic perturbations $V^{(-)}_{i=1}$ for $l = 1$, $l = 2$ and $l = 3$ modes.
l	n	GR	MOG		
		α = 0	**α = 1**	**α = 4**	**α = 9**
2	0	0.3737 - 0.0890i	0.4441 - 0.09300i	0.5105 - 0.09333i	0.5431 - 0.09171i
	1	0.3467 - 0.2739i	0.4229 - 0.2847i	0.4936 - 0.2839i	0.5270 - 0.2781i
	2	0.3011 - 0.4783i	0.3874 - 0.4914i	0.4642 - 0.4848i	0.4974 - 0.4725i
	3	0.2515 - 0.7051i	0.3484 - 0.7158i	0.4291 - 0.6985i	0.4584 - 0.6776i
3	0	0.5994 - 0.0927i	0.6706 - 0.09516i	0.7479 - 0.09456i	0.7875 - 0.09267i
	1	0.5826 - 0.2813i	0.6563 - 0.2882i	0.7360 - 0.2856i	0.7761 - 0.2795i
	2	0.5517 - 0.4791i	0.6298 - 0.4888i	0.7138 - 0.4821i	0.7543 - 0.4706i
	3	0.5120 - 0.6903i	0.5957 - 0.7006i	0.6842 - 0.6865i	0.7238 - 0.6680i
4	0	0.8092 - 0.0942i	0.8904 - 0.09608i	0.9826 - 0.09513i	1.030 - 0.09311i
	1	0.7966 - 0.2843i	0.8795 - 0.2898i	0.9735 - 0.2865i	1.021 - 0.2802i
	2	0.7727 - 0.4799i	0.8588 - 0.4881i	0.9560 - 0.4812i	1.004 - 0.4699i
	3	0.7398 - 0.6839i	0.8301 - 0.6936i	0.9315 - 0.6810i	0.9796 - 0.6636i

Table 4: QNMs accurate to 4 decimal places for $M = 1/(1 + \alpha)$ scaled MOG gravitational perturbations $V^{(-)}_{i=2}$ for $l = 2$, $l = 3$ and $l = 4$ modes.
Graph shows $n = 0, l = 2$ QNMs for gravitational perturbations for increasing α and $1/(1 + \alpha)$ scaled MOG black hole.
Acknowledgments

Dr. Jonas Mureika
Dr. John W. Moffat
Loyola Marymount University
FIAS
THANKS!

Email: lmanfred@lion.lmu.edu
Lucho Manfredi – KSM 2017