Charm and bottom baryon masses in the $1/N_c$ expansion

E. Jenkins

aDepartment of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

The masses of heavy quark baryons are studied in an expansion in $1/N_c$, $SU(3)$ flavor symmetry breaking, and heavy-quark symmetry breaking. Very accurate model-independent mass relations are obtained for charm and bottom baryons.

1. INTRODUCTION

The $1/N_c$ expansion has proven useful for studying the spin-flavor properties of baryons containing light quarks. A spin-flavor symmetry for baryons is defined in large-N_c QCD. Away from the $N_c \rightarrow \infty$ limit, $1/N_c$ corrections which break large-N_c baryon spin-flavor symmetry can be classified in terms of the spin and flavor symmetries which remain for finite N_c. Since explicit $SU(3)$ flavor symmetry breaking $\epsilon \sim m_s/\Lambda_{QCD}$ is comparable to $1/N_c = 1/3$ for QCD baryons, a combined expansion in $1/N_c$ and ϵ is necessary to explain the symmetry-breaking pattern. The $1/N_c$ expansion has had considerable phenomenological success for qqq baryons; $1/N_c$ suppression factors clearly are present in experimental data.

For baryons containing a single heavy quark Q in HQET, there is spin-flavor symmetry in the large-N_c limit as well as in the heavy quark limit \vec{Q}. The spin-flavor symmetry of heavy quark baryons with one heavy quark flavor contains a $SU(6)_\ell$ symmetry of the light degrees of freedom in the $N_c \rightarrow \infty$ limit, and a $SU(2)_Q$ spin symmetry of the heavy quark in both the $m_Q \rightarrow \infty$ and $N_c \rightarrow \infty$ limits. The spin-flavor symmetry of the light degrees of freedom is broken by corrections suppressed by factors of $1/N_c$ and $SU(3)$ flavor symmetry breaking, whereas the heavy-quark spin symmetry is broken by terms suppressed by factors of $1/N_c$ and heavy quark symmetry breaking $\delta_Q \sim \Lambda_{QCD}/m_Q$. Note that $SU(3)$ flavor symmetry and heavy quark spin symmetry are better symmetries for baryons than for mesons because violation of spin-flavor symmetry is suppressed by additional factors of $1/N_c$ for baryons.

Heavy quark symmetry for two heavy quark flavors $Q = c$ and $Q = b$ in HQET generalizes to heavy-quark spin-flavor symmetry $SU(4)_Q$, which relates the heavy quark spin-flavor properties of charm and bottom hadrons. Again, heavy quark spin-flavor symmetry is a better symmetry for baryons than for mesons because heavy quark spin-flavor symmetry violation is accompanied by factors of $1/N_c$.

The lowest-lying spin-flavor representation for Qqq baryons consists of a completely symmetric spin-flavor representation of two light quarks combined with a single heavy quark with $J_Q = \frac{1}{2}$. Under light-quark spin and flavor, this representation decomposes into a $J_\ell = 0$ flavor $\overset{\rightarrow}{3}$, which consists of the isosinglet $\Lambda_Q(Qud)$ and the isodoublet $\Xi_Q(Qsq)$ with $J = J_\ell + J_Q = \frac{1}{2}$, and a $J_\ell = 1$ flavor $\overset{\rightarrow}{6}$, which consists of $\Sigma_Q, \Xi'_Q, \Omega_Q$ with $J = \frac{1}{2}$ and $\Sigma_Q^*, \Xi_Q^*, \Omega_Q^*$ with $J = \frac{3}{2}$.

The mass hierarchy of the lowest-lying charm and bottom baryon masses was predicted in a combined expansion in $1/N_c$, ϵ and δ_Q in Ref. \[1\]. Here, the theoretical hierarchy is compared with experiment for charm baryon masses, and the predicted pattern is seen. Bottom baryons are predicted to obey the same mass hierarchy with $1/m_c$ replaced by $1/m_b$.

*Supported in part by the Department of Energy under grant DOE-FG03-97ER40546.
2. $1/N_c$ Expansion

In the $1/m_Q$ expansion of HQET, the mass of a hadron containing a single heavy quark is given by

$$M(H_Q) = m_Q + \bar{\Lambda} - \frac{\lambda_1}{2m_Q} - d_H \frac{\lambda_2}{2m_Q} + \cdots,$$

(1)

where

$$\lambda_1 = \langle H_Q(v)\bar{Q}v(i\mathcal{D})^2 Qv|H_Q(v)\rangle,$$

(2)

denotes the matrix elements of the $1/m_Q$-suppressed operators in the heavy hadron, $d_H = -4(J_t \cdot J_Q)$, and corrections of order $1/m_Q^2$ have been neglected. Eq. (1) can be applied to mesons and baryons, but the values of $\bar{\Lambda}$, λ_1 and λ_2 will be different in the two cases.

The spin-$\frac{1}{2}$ Λ, and spin-$\frac{3}{2}$ and $\frac{5}{2}$ baryons have masses given by the $1/m_Q$ expansions

$$T_Q = m_Q + \bar{\Lambda}_T - \frac{\lambda_1 \ell}{2m_Q} + \cdots,$$

$$S_Q = m_Q + \bar{\Lambda}_S - \frac{\lambda_1 S}{2m_Q} - 2\frac{\lambda_2 S}{m_Q} + \cdots,$$

(3)

$$S_Q^* = m_Q + \bar{\Lambda}_S - \frac{\lambda_1 S}{2m_Q} + \frac{\lambda_2 S}{m_Q} + \cdots,$$

respectively. Large-N_c spin-flavor symmetry implies that the hadronic matrix elements of these baryons are equal in the $N_c \to \infty$ limit. For finite N_c, the matrix elements have expansions in terms of $1/N_c$ operators given by

$$\bar{\Lambda} = N_c \mathbf{1} + \frac{J_Q^2}{N_c},$$

$$\bar{\Lambda}_T = \left(\frac{1}{m_Q} + \frac{1}{N_c^2} \right) N_Q J_T^2,$$

(4)

$$\bar{\Lambda}_S = \left(\frac{1}{m_Q} - \frac{1}{N_c} \right) \frac{1}{m_Q} (J_t \cdot J_Q),$$

where N_Q is the heavy quark number operator which is equal to 1 for baryons containing a single heavy quark, $\mathbf{1}$ is the unit operator for baryons, and J_T^2 and J_Q^2 are the spins of the light degrees of freedom and the heavy quark, respectively. In Eq. (4), it is to be understood that each $1/N_c$ operator is accompanied by an unknown, dimensionful, $\mathcal{O}(1)$ coefficient, which has been suppressed for simplicity. Eq. (4) makes a number of interesting predictions. For instance, $\bar{\Lambda}_T$ and $\bar{\Lambda}_S$ are equal at leading order N_c in the $1/N_c$ expansion. However, at order $1/N_c$, the two matrix elements are not equal, but are split by a contribution which is order $1/N_c^2$ relative to the leading $\mathcal{O}(N_c)$ term. Similar remarks apply for the λ_1 matrix elements.

The generalization of Eq. (4) to include $SU(3)$ flavor symmetry and its breaking is provided in Ref. [1]. At the time of this work, the Ξ'_c mass had not been measured, and the $1/N_c$ analysis was used to successfully predict $\Xi'_c = 2580.8 \pm 2.1$ MeV [2], to be compared with the subsequent experimental value $\Xi'_c = 2576.5 \pm 2.3$ MeV. This theoretical prediction and its precision required the $1/N_c$ expansion.

Today the masses of all singly charmed baryons are measured except for the spin-$\frac{5}{2}$ Ω_c^*. The most suppressed mass combination

$$\frac{1}{4} \left[(\Sigma_c^* - \Sigma_c) - 2(\Xi_c' - \Xi_c') + (\Omega_c^* - \Omega_c) \right],$$

(5)

which is suppressed by $\delta \xi / N_c^3$ relative to the $\mathcal{O}(N_c)$ baryon mass, can be used to extract $\Omega_c^* = 2770.7 \pm 5.9$ MeV. Thus, it is possible to evaluate the charm baryon mass hierarchy and compare with theory. For bottom baryons, only the Λ_b^0 mass is measured. Using heavy quark spin-flavor symmetry, it is possible to predict all of the other bottom baryon masses in terms of the charm baryon masses [3].

Figure 1 plots seven of the eight independent mass combinations of the lowest-lying charm baryon spin-flavor multiplet. [The mass splitting Eq. (4) is not plotted since it was used to determine the Ω_c^* mass.] The first mass combination is the leading order $N_c \Lambda + m_Q$ baryon mass where $Q = c$. The remaining mass splittings are order N_c times $\frac{1}{N_c}$, $\frac{\epsilon}{N_c}$, $\frac{\epsilon^2}{N_c}$, $\frac{\delta}{N_c}$, and $\frac{\delta Q}{N_c^2}$, respectively. Fig. 1 shows that the $1/N_c$ splitting is comparable to the ϵ splitting, and that the $\delta Q/N_c$ splitting is a bit larger than the ϵ/N_c splitting for $Q = c$. The most suppressed splittings are consistent with the predicted $\frac{\epsilon^2}{N_c}$ and $\frac{\delta Q}{N_c^2}$ hierarchy as well.

It is possible to determine the $1/m_Q$-dependent contributions to the charm baryon mass splittings which do not violate heavy quark spin symme-
try by comparison with the analogous mass splittings for baryons containing no heavy quark. The $1/N_c$ expansions of qqq and Qqq baryon masses are given in the flavor symmetry limit by

$$M(qqq) = N_c 1 + \frac{1}{N_c} J^2,$$

$$M(Qqq) = N_c 1 + N_Q m_Q + \frac{1}{N_c} J^2 + \frac{1}{N_c^2} m_Q J^2,$$

which shows that the N_Q and the $N_Q J^2$ splittings can be extracted by making this comparison.

Figure 2 plots the $1/m_Q$-dependent portion of the first five mass splittings of Fig. 1 together with the two heavy quark spin-violating mass splittings (points 6 and 7) of Fig. 1. The first mass (point 1) yields m_Q or the charm quark mass at leading order in $1/m_Q$, whereas the six other mass splittings are order Λ times the the dimensionless suppression factors $\delta_Q N_c^2$, $\epsilon Q Q N_c$, $\epsilon Q N_c J^2$, $\epsilon Q Q J^2$, $\delta_Q N_c$, and $\delta Q N_c$, respectively. It is interesting to note, for example, that the two $\epsilon Q Q$ splittings (points 4 and 7) are in good agreement, showing that the same heavy quark symmetry-violating parameter δQ is governing heavy quark spin-conserving and spin-violating mass splittings.

3. CONCLUSIONS

The $1/N_c$ hierarchy of the $1/N_c$ expansion is evident in the masses of Qqq baryons as well as qqq baryons. The $1/N_c$ expansion, together with $SU(3)$ flavor violation and heavy-quark symmetry violation, gives a quantitative understanding of spin-flavor symmetry breaking for heavy quark baryons. An intricate pattern of spin-flavor symmetry breaking is predicted since $1/N_c$, ϵ, and δ_Q for $Q = c$ are comparable in magnitude. The same $1/N_c$ hierarchy is expected to appear for bottom baryon masses, and it is possible to predict the bottom baryon mass splittings in terms of charm baryon mass splittings. Heavy quark spin-flavor symmetry is a better symmetry for Qqq baryons than for heavy quark mesons because violation of the spin-flavor symmetry is suppressed by factors of $1/N_c$ as well as $1/m_Q$.

REFERENCES

1. E. Jenkins, Phys. Rev. D 54 (1996) 4515.
2. E. Jenkins, Phys. Rev. D 55 (1997) R10.