Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2

Dagmar Knoflach1, Vasily Kerov2,3, Simone B Sartori4, Gerald J Obermair5, Claudia Schmuckermair3, Xiaoni Liu2, Vithiyanjali Sothilingam5, Marina Garcia Garrido4, Sheila A Baker5, Martin Glösmann4, Klaus Schicker5, Mathias Seeliger4, Amy Lee5, and Alexandra Koschak1,*

1Medical University Vienna; Centre for Physiology and Pharmacology; Department of Neurophysiology and Pharmacology; Vienna, Austria; 2University of Iowa; Department of Molecular Physiology & Biophysics; Iowa City, IA USA; 3University of Innsbruck; Institute of Pharmacy, Pharmacology and Toxicology; Center for Chemistry and Biomedicine; Innsbruck, Austria; 4University of Tübingen, Institute for Ophthalmic Research; Centre for Ophthalmology; Division of Ocular Neurodegeneration; Tübingen, Germany; 5Medical University Innsbruck; Division of Physiology; Innsbruck, Austria; 6Department of Histology and Institute of Bioengineering; Universidad Miguel Hernández; Alicante, Spain; 7University of Veterinary Medicine; Vetcore; Vienna, Austria; 8University of Iowa; Department of Biochemistry; Iowa City, IA USA

Keywords: CSNB2, L-type calcium channel, channelopathies, gain-of-function, retinal

Mutations in the CACNA1F gene encoding the Cav1.4 Ca2+ channel are associated with X-linked congenital stationary night blindness type 2 (CSNB2). Despite the increasing knowledge about the functional behavior of mutated channels in heterologous systems, the pathophysiological mechanisms that result in vision impairment remain to be elucidated. This work provides a thorough functional characterization of the novel IT mouse line that harbors the gain-of-function mutation I745T reported in a New Zealand CSNB2 family.2 Electrotetroretinographic recordings in IT mice permitted a direct comparison with human data. Our data supported the hypothesis that a hyperpolarizing shift in the voltage-dependence of channel activation—as seen in the IT gain-of-function mutant2—may reduce the dynamic range of photoreceptor activity. Morphologically, the retinal outer nuclear layer in adult IT mutants was reduced in size and cone outer segments appeared shorter. The organization of the outer plexiform layer was disrupted, and synaptic structures of photoreceptors had a variable, partly immature, appearance. The associated visual deficiency was substantiated in behavioral paradigms. The IT mouse line serves as a specific model for the functional phenotype of human CSNB2 patients with gain-of-function mutations and may help to further understand the dysfunction in CSNB.

Introduction

Cav1.4 L-type Ca2+ channels (LTCCs) are the most abundant in the retina and localized at the specialized ribbon synapses formed between photoreceptors and second-order neurons.3,4,5,6 Their low voltage activation range and slow inactivation properties due to the lack of calcium-dependent inactivation render Cav1.4 channels perfectly suited to ensure sustained neurotransmitter release which is modulated by light stimuli.

Human genetic analyses indicate an essential role for Cav1.4 in vision. So far, more than 50 different mutations in CACNA1F, the gene coding for the Cav1.4 channel, have been found to cause congenital stationary night blindness type 2 (CSNB2) in human patients (for review see ref. 8). The majority of mutations are predicted to form non-functional channels, often because of structural changes like premature truncations that are incompatible with channel function. However, also gain-of-function mutations have been reported and characterized biophysically in transfected mammalian cells or Xenopus oocytes.2,9,10,11 Data on functional implications in their native retinal environment remain still scarce. Cav1.4 gain-of-function mutations promote enhanced Ca2+ entry through the channel due to a strong hyperpolarizing shift in the voltage-dependence of activation which as well as slowed voltage-dependent inactivation. The so far most pronounced hyperpolarizing shift in Cav1.4 channel activation (around 30 mV) was found in mutation I745T (IT), which was identified in a New Zealand family. The affected family members were described to show an unusually severe CSNB2 phenotype—usually comprising low visual acuity, myopia, nystagmus, and variable levels of night blindness (clinically diagnosed by a reduction in the ERG b-wave)—which was associated with intellectual disability in males. In heterozygote females, clinical and functional abnormalities were also present.2 ‘Enhanced activity’, as observed in gain-of-function mutations, implies an unwarranted positive connotation because it does not necessarily result in improved signaling but in a loss-of-control of existing signaling pathways important e.g., in developmental processes. Herein, we present the functional dysregulation and morphological consequences observed in retinas from IT mice. These findings correlate with impaired visual function in behavioral paradigms seen in these mice. Our data show that the IT mouse line, in contrast to
other mouse models characterized so far, very well reflects the functional phenotype described in a family with the Cav1.4 I745T point mutation.

Results

Rod and cone photoreceptor activity in wt and IT mice

Ganzfeld ERG recordings allow both dark adapted (scotopic) measurements to study rod-driven activity and light adapted (photopic) recordings to obtain information about the contribution of the cone system. We found that adult IT animals very well matched their human CSNB2 counterparts in terms of the functional pattern resembling incomplete CSNB. Both rod and cone single flash responses (Fig. 1A and B) as well as the flicker ERG amplitude (not shown) were reduced. In contrast, the negative components of the scotopic standard flash response were smaller than those found in other CSNB models, and a minute but distinct positive peak indicated a remaining b-wave component. However, identical differences were found in patients carrying the exact same mutation. The IT mouse line is therefore a representative model for human CSNB2 caused by the I745T mutation.

Morphological characteristics in Cav1.4 wild type (wt) and IT mouse retinas

Optical coherence tomography (OCT) of retinal substructures/layers in vivo indicated a distinct reduction in the outer plexiform layer (OPL) thickness in the mutant mice (Fig. 2A). This finding is in line with our histomorphological analysis (Fig. 2B). Specifically, a DAPI staining was performed on retinal sections of adult (2 mo-old) mice to compare the thickness of the retina as well as that of the major retinal layers at three different eccentricities in wt and IT. At comparable eccentricities, the rows of nuclei in the outer nuclear layer (ONL) were counted. Gross retinal structure and layering were normal in IT mice. All retinal layers were present. However, the number of rows of nuclei in the ONL was lower in IT than in wt mice resulting in a reduction in the thickness of the ONL and the total retinal thickness (Fig. 2B). OCT further revealed a less expressed patterning of the inner/outer segment (IS/OS) border that is indicative of irregular outer retinal layering (Fig. 2A).

We assessed potential aberrations in cone morphology by labeling with peanut agglutinin (PNA), a lectin preferentially binding cone-photoreceptor associated domains of the interphotoreceptor matrix and glycogen phosphorylase (glypho), which stains cones from their outer segments to their pedicles. PNA labeling demonstrated that outer segments were present and of normal appearance (Fig. 3A). However, and in accordance with the decreased thickness of the ONL, the overall length of cones was shorter in IT mice. PNA-positive pedicles were also observed in the IT retina (Fig. 3A, arrowheads), with no obvious dissimilarity to the wt retina. No decrease in the number of cones was evident (as also indicated in Fig. 4C). In the wt retina anti-glypho stained the inner segments of cone photoreceptors, known sites of high energy consumption, as well as cone pedicles (Fig. 3B, left). Cone photoreceptors in IT mice were shorter with shorter outer and inner segments and pedicles that appeared larger than in wt retina.
(Fig. 3B, right, arrowheads). Notably, glypho signal was consistently higher in the IT mutant, both in the inner and outer retina. Using the S-opsin marker sc14363 we found S-opsin expression clearly visible in the cone outer segments in the ventral wt retina as well as their pedicles (Fig. 3C, left). Consistent with our glypho staining cones were shorter in IT mice (Fig. 3C, right, arrowheads). As seen in the inset of Figure 3C, indeed we found a few cones that appeared to sprout, a phenomenon seen also in KO mice at different ages.33

We further examined the photoreceptor synaptic phenotype and investigated Cav1.4 expression in co-localization experiments with the synaptic ribbon protein CtBP2/Ribeye in wt and IT mice (Fig. 4). In adult wt retina, Cav1.4 co-localized in the characteristically horseshoe-shaped synapses in the OPL, whereas in IT retinas staining was disperse extending also into the ONL. The synaptic morphology resembled immature synapses with shorter but rather linear shape; in some ribbons elongated or regular horseshoe appearance was preserved (Fig. 4A). Immunofluorescence with the bipolar cell marker PKC-α also demonstrated the presence of ectopic synapses that were protruding into the ONL of IT retinas whereas in wt mice no sprouting of rod bipolar dendrites was observed (Fig. 4B). Ribeye/PNA co-staining was comparable in wt and IT retinas (Fig. 4C).

Expression profile of calcium channels in wt and IT mouse retinas
To test whether the insertion of a mutation in the CACNA1F gene induced changes in the expression of other Cav channel subunits we performed qRT-PCR experiments from adult wt and IT mice. All Cav α1 subunits except Cav1.1 were reliably expressed in IT mouse retinas, although at different expression levels (Fig. 5). Cav1.4, β2, and αδ-4 were by far the most abundantly expressed isoforms in IT mice. Even though suggested from previous independent publications34,35 this finding has not been shown before in direct comparison using the same tissue samples. The total amount of calcium channel transcripts in IT mice was not significantly different from wt but an approximately 25% reduction in the expression of Cav1.4

Table 2. Behavioral measures assessed in diverse tests of anxiety in wt and IT mice. Data are presented as means ± SEM

	wt, n = 13	IT, n = 11	Student t test	
Open field test				
center entries (n)	34 ± 2	41 ± 4	1.230	0.232
center time (s)	143 ± 15	132 ± 15	0.499	0.623
distance traveled (cm)	2634 ± 105	2873 ± 160	1.284	0.213
Elevated plus maze				
latency to first open arm entry (s)	23 ± 4	18 ± 3	0.106	0.917
open arm entries (n)	9 ± 1	8 ± 1	0.234	0.818
open arm time (%)	43 ± 8	35 ± 9	0.617	0.544
total arm entries (n)	23 ± 2	22 ± 3	0.106	0.917
Light/dark test				
latency to first entry into the light area (s)	53 ± 13	71 ± 34	1.174	0.253
entries into the light area (n)	16 ± 2	13 ± 2	0.568	0.576
time spent in the light area (s)	167 ± 17	185 ± 29	0.568	0.576
distance traveled (cm)	2811 ± 200	2781 ± 273	0.568	0.576

Figure 3. Effect of the IT mutation on adult mouse cones. Immunohistochemical analyses were performed on P74–81 (11-week old mice) mice using cone-specific markers and vertical sections were analyzed by wide-field fluorescence light microscopy. (A) PNA staining shows cones with normal appearance but shorter outer segments. Arrowheads indicate comparable staining of cone pedicle invaginations in wt (C57BL/6N) and IT mice. Scale bar 50 µm (B) Glypho also strongly labels the cone terminals. In IT mice immunostaining was pronounced throughout the cytoplasm from the outer segment to the synaptic pedicle. Arrowheads indicate enlargement of pedicles. Scale bar 20 µm. (C) S-opsin staining experiments for wt and IT retinas. The inset shows a sprouted cone (left), a mislocalized cone cell body (middle) and an enlarged cone pedicle (right). Scale bar 50 µm.
(p = 0.05), β₃, and α₂δ-4 was evident in IT mice (Fig. 5). This finding may reflect a loss of photoreceptors, which was consistent also with our staining experiments (Fig. 2). In 2 out of 4 IT mice analyzed expression levels of the auxiliary β₃ subunit were 5-fold and 20-fold higher when compared with the other wt and IT mice, respectively (data not shown). This result is a plausible explanation for the highly significant increase of β₃ expression in IT mice (p < 0.001). Intriguingly, although transcripts for Cav1.3 account for only 2% of total α₁ subunits in wt they were significantly higher expressed in IT (p = 0.03). The isoforms Cav2.1, β₃, and α₂δ-2, which have previously been shown to be co-expressed in the cerebellum also show comparable expression levels in the retina as implicated previously.

Behavioral phenotype of IT mice

Finally, we investigated the role of Cav1.4 in visual function subjecting mice to established behavioral paradigms. Since these tests were all locomotion-based, we first screened for possible alterations in motor function. Wt and IT mice did not differ in novelty-induced locomotor activity (i.e., the distance traveled in the open field test and light/dark test or the total arm entries in the elevated plus maze test) as compared with wt (Table 2). Next, we assessed the visual performance of wt and IT mice subjecting them to the visual platform test of the Morris water maze (Fig. 6). The escape latency (latency to reach and climb the platform) gradually decreased with the increasing number of trials performed (repeated measures ANOVA: F(trial)₁⁷,₁₅₄ = 10.689, p < 0.001) in both genotypes (F(trial × genotype)₁⁷,₁₅₄ = 0.445, p = 0.872). However, in IT mice the latency was greatly
increased as compared with wt \(F(\text{genotype})_{1,22} = 60.149, p < 0.001 \), pointing towards poor visual function of IT mice. In order to exclude a specific deficit in learning or memory-related processes as a cause for the impaired performance in the visible platform task of the Morris water maze, we tested the animals in an auditory cued fear-conditioning paradigm. Conditional responses, as indicated by freezing behavior, increased to the same extent in wt and IT mice upon 3 CS-footshock pairings (repeated measures ANOVA: \(F(\text{pairing})_{4,68} = 62.502, p < 0.001; F(\text{genotype})_{1,22} = 0.430, p = 0.519; F(\text{pairing} \times \text{genotype})_{4,68} = 0.6189, p = 0.650 \). On the next day in a novel context presentation of the CS alone did not elicit different freezing levels between the 2 genotypes suggesting normal learning capabilities of IT mice (percent freezing: wt 46.9 ± 5.5, IT 40.8 ± 5.2, \(t = 0.807, p = 0.428 \)). Stimulated by human studies showing that the loss of vision has an impact on emotionality, \(^{38,39,40} \) we also investigated the anxiety-related behavior of IT mice. No differences in any anxiety-related parameter including the entries into or time spent in the center of the open field, the latency, entries and time in the open arms of the elevated plus maze or the latency, entries into and time spent in the light compartment of the light/dark test were observed as compared with wt (Table 2).

Discussion

Gain-of-function mutation I745T results in a loss of visual function

ERGs from Cav1.4 KO mice under scotopic and photopic conditions predicted a virtual lack of retinal transmission of electrical signals at the first synapse, affecting both rod and cone photoreceptors. \(^{12} \) Recent data \(^{33} \) also provided evidence that rod photoreceptor synapses in these mice remain immature which could inhibit photoreceptor synaptic transmission. Our data show that the level of synaptic maturation in adult IT mice, in contrast, was variable. Most synapses were abnormal, round, or elongated. However, some showed the horseshoe-like shape typical for mature wt synapses. In these cells specifically, a gain-of-function may limit the dynamic range of photoreceptor responses to an extent that would reduce but not completely suppress retinal signaling as seen in our ERG recordings. The marked leftward shift in the activation curve found in heterologously expressed IT channels \(^{5} \) might increase the basal calcium levels in photoreceptors, due to higher activity at depolarized membrane potentials in the absence of light. Such high Ca\(^{2+} \) levels near the release sites could also lead to an increase in the time needed to shut-off glutamate release upon light exposure resulting in increased response latencies.

Our immunohistochemical data show cone anomalies similar to KO mice previously described. \(^{33,41} \) Glypho, an enzyme that catalyzes the rate-limiting step in glycolysis (in brain but also retinal Müller glial cells and cones \(^{42,43,44} \)) represents a main limited energy reserve. \(^{45} \) The apparent stronger immunofluorescence signal in the cones and likely in surrounding cells in the IPL suggests that these cell types sense metabolic stress and show a higher need for glycogen breakdown. Although seen to a much lesser extent, the presence of potential degenerative signs is in line with a recent report on KO mice. \(^{53} \)

The visually guided behavior tests supported our functional and structural findings. IT mice displayed increased escape latencies in the cued version of the Morris Water maze confirming poor visual ability. The performance of IT mice was comparable to that of animals with naturally occurring retinal degeneration including rd12 mice \(^{37} \) and mice of the FVB/NJ, DBA/2, C3H, NIH Swiss and Black Swiss mice strains Owen. \(^{46,47} \) The Morris Water maze paradigm was used for assessing visual function. \(^{48,49,50} \) Due to its primary field of application which is testing for spatial learning deficits in rodents \(^{51} \) we wished to exclude the possibility that a cognitive deficit may underlie their bad performance. We therefore subjected wt and IT mice to an auditory cued fear-conditioning paradigm where vision is not essential. Indeed, both genotypes did not differ in fear learning or memory which is in line with other models of impaired vision Owen. \(^{46,52,53} \)

Additional information on retinal calcium channels obtained from the IT model

The expression profiling supported findings that Cav1.4 but also Cav1.3 \(^{35,54,60} \) and Cav1.2 \(^{4,5} \) LTCCs are expressed in the retina. Interestingly, Cav1.3 channels were upregulated in IT. The retinal Cav1.3 distribution pattern is, however, controversial. Some studies showed accumulation in the inner segments of photoreceptors, OPL, INL, or GCL, whereas another reported Cav1.3...
expression across retinal cell layers. Therefore, the role of Cav1.3 remains ambiguous. A contribution of Cav1.3 to ERG light peak regulation in the pigment retinal epithelium (RPE) is reported.64 Though in our preparation the RPE was never included. Cav1.3 channels are also subject to rapid glutamate-induced internalization, likely to serve as a protective negative feedback mechanism65 implying a role in other processes than synaptic transmission. Uregulation of Cav1.3 channels may be part of a potential compensatory mechanism in IT. The high level of expression of Cav2.1, β4, and α6-2 in IT retinas is intriguing. Although retinal pathway involvement in the adaptation mechanism to circadian phase-shift has been excluded previously in Cav2.1-mutated migraine mice, this hypothesis was never directly tested. The mammalian retina contains a clock that generates molecular circadian rhythms independent of the suprachiasmatic nucleus; mammalian retina contains a clock that generates molecular circadian rhythms independent of the suprachiasmatic nucleus.66 The high level of expression of Cav1.3 in IT mice is reported with following specific primers fwd-CACTCCAGACATCCTGCTGA and rev-GTCACCCTGTGCTTCCT. The PCR product for the wt allele is a length of 288-bp and the one for the IT allele 449-bp. PCR reaction was performed in a total volume of 20 µl, containing 2 µl DNA eluate, 0.2 µM fwd and rev primer, 0.025 U GoTaq DNA Polymerase (Promega), 1.5 mM MgCl2, and 200 µM dNTPs. The following reaction cycle was used: 95 °C 4 min, 40 cycles of 9 s for 30 s, 63 °C for 30 s and 72 °C for 45 s, with a final extension at 72 °C for 10 min. Because the background of both IT and wt littermates as non-littermate wt controls was C57BL/6N we controlled for the IT allele and the corresponding wt alleles, as well as the rd8 mutant allele. IT mice were checked with following specific primers fwd-GCTGCACCATGCTGCTGA and rev-GCCCTATTTCGACTGATGC. The following PCR program was used for this assay: 94°C for 5 min, followed by 35 cycles at 94 °C for 30 s, 55 °C for 30 s and 72 °C for 45 s, with a final extension of 72 °C for 7 min. The wt allele was amplified with identical paradigms.

Figure 7. Functional comparison of human and murine subjects affected by the I745T mutation. Ganzfeld ERG recordings from a normal subject (left) and a patient with incomplete CSNB carrying the CACNA1F mutation (center left) were redrawn from the original records (ref. 3). They correlate rather well with the murine data of wt (C57BL/6N; center right) and IT mice (right). The set of records follows the human ERG diagnostic standard as issued by the International Society for Clinical Electrophysiology of Vision (ISCEV; www.iscev.org/standards). From top to bottom, traces in each column represent the scotopic single flash response, the scotopic mixed response, the photopic single flash response, and the photopic 30 Hz flicker ERG. The murine records were obtained with identical paradigms.

Materials and Methods

Animals

Animals were group-housed under standard laboratory conditions (12:12 light/dark cycle with lights on at 07:00 h, 22 ± 2 °C, 50–60% humidity) with pelleted food and water available ad libitum. All experiments were designed to minimize animal suffering as well as the number of animals used and were approved by the national ethical committee on animal care and use (Austrian Federal Ministry for Science and Research; BMWF-66.008/0016-II/3b/2012) and the Institutional Animal Care and Use Committee at the University of Iowa. Animals were killed by cervical dislocation in compliance with international laws and policies or by carbon dioxide exposure followed by cervical dislocation as approved by the Institutional Animal Care and Use Committee at the University of Iowa. All ERG and OCT procedures in animals were performed in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research with permission of local authorities (Regierungspräsidium Tübingen).

Cav1.4 mouse lines

We used a mouse model made by Dr Marion Maw (University of Otago) which carries the mutation I745T in the CACNA1F gene identified in a New Zealand CSNB2 family (IT). Mouse tail biopsies were collected from all mice before and after the experiment for genotyping. Only male mice were investigated. Genomic DNA was isolated using buffer containing 10 mM Tris (pH 8.8), 50 mM KCl and 0.1% Triton X-100. We controlled for the IT allele and the corresponding wt alleles, as well as the rd8 mutant allele. IT mice were checked with following specific primers fwd-CACTCCAGACATCCTGCTGA and rev-GTCACCCTGTGCTTCCT. The PCR product for the wt allele is a length of 288-bp and the one for the IT allele 449-bp. PCR reaction was performed in a total volume of 20 µl, containing 2 µl DNA eluate, 0.2 µM fwd and rev primer, 0.025 U GoTaq DNA Polymerase (Promega), 1.5 mM MgCl2, and 200 µM dNTPs. The following reaction cycle was used: 95 °C 4 min, 40 cycles of 9 s for 30 s, 63 °C for 30 s and 72 °C for 45 s, with a final extension at 72 °C for 10 min. Because the background of both IT and wt littermates as non-littermate wt controls was C57BL/6N we also genotyped for the rd8 mutation allele63 which was amplified with fwd – CCCCCATTTGAGAGAGAACCTTTGGAAG and rev-GCCCTATTTCGACTGATGC (224-bp product). The following PCR program was used for this assay: 94°C for 5 min, followed by 35 cycles at 94 °C for 30 s, 55 °C for 30 s and 72 °C for 45 s, with a final elongation step of 72 °C for 7 min. The wt allele was amplified with fwd-GTGAAGACACGTACAGTTCTGATGCA and rev-GGCCCATTTTGACACTGATGC (220 bp product size). For the mutant allele nature of the disorder, is that the negative components of the scotopic standard flash response are smaller than those found in other CSNB types, but on the other hand a distinct remaining b-wave component is present. The comparison with the human data clearly underlines that the IT mouse line is a specific model for the functional phenotype seen in respective patients.
a PCR reaction of 25 µl was applied; containing 2 µl DNA, 1.6 µM forward and reverse primer, 0.02 U GoTaq DNA Polymerase (Promega), 1.2 mM MgCl₂ and 100 µM dNTPs. The following PCR program was used: 94°C for 5 min, followed by 35 cycles at 94°C for 30 s, 65°C for 30 s, 72°C for 30 s, and a final elongation step of 72°C for 7 min. The wt allele was amplified as follows: 25 µM reaction volume containing 2 µl DNA, 0.8 µM fwd primer and 1.6 µM rev primer, 0.02 U GoTaq DNA Polymerase (Promega), 1.2 mM MgCl₂, and 100 µM dNTPs. For the wt allele, DNA was denatured at 94°C for 5 min, followed by 35 cycles of 94 °C for 30 s, 58 °C for 30 s, 72 °C for 30 s followed by extension at 72 °C for 7 min. Mice used in the study were either heterozygous or homozygous for the mutated allele; the wt retinal phenotype was without pathological findings.

Immunocytochemistry

Fixation and embedding

Eleven week old mice were sacrificed in the morning by cervical dislocation and decapitation. Eyes were removed, opened at the sclero-corneal rim and fixed for 15 min in 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS, 1 x, pH 7.4). After removal of cornea and lens, the eyecups were fixed for 2 h in 4% PFA/1 x PBS at room temperature (RT), rinsed in 1 x PBS (4 changes), and cryoprotected in increasing concentrations of sucrose (10% and 20% in 1 x PBS). Eyecups were embedded in a 1:1 mixture of 20% sucrose in 1x PBS and OCT medium (Tissue-Tek, Sakura) for 2 d at RT. Sections of 16 µm thickness were collected on to Superfrost Plus slides, air-dried for 24 h and stored at –20°C until further use.

Immunofluorescence

Sections were washed 3 times with washing buffer (1 x PBS, 0.1% Triton X-100, and 0.05% NaN₃). For primary antibody labeling or PNA, the tissue was blocked with 1% bovine serum albumin (BSA, Sigma) in 1 x PBS, 0.1% Triton X-100 and 0.05% NaN₃, for 30 min at RT. Primary antibody incubation and PNA staining was performed overnight at 4°C. Sections were washed 3 times in washing buffer, incubated with the secondary antibody for 1 h at RT, washed 3 times and counterstained with DAPI before mounting in Aqua-Poly/Mount (Polysciences). Primary and secondary antibodies and PNA were used in dilutions listed in Table 1. Micrographs or series of micrographs were taken with a Zeiss Axiovert 200M (Carl Zeiss). Images were adjusted for brightness and contrast and assembled using Photoshop CS5 (Adobe). Z-stacks were taken in 0.1 µm intervals and deconvolved with Huygens Essential (Scientific Volume Imaging B.V.) software. Processing of synaptic connections was done essentially as described previously. In some experiments Hoechst stain (1:1000) was applied along with secondary antibodies. Confocal microscopy was performed using a Fluoview 1000 confocal microscope (Olympus) with 60X or 100X oil-immersion objectives or a Zeiss LSM710 confocal microscope with a Plan-Neofluar 63x/1.4 oil-immersion objective (Carl Zeiss). For consistency among figures, the red and green colors were switched using Adobe Photoshop.

Electroretinography

The functional implications of the I745T mutation was assessed in the IT mouse line in vivo with electroretinography (ERG). ERGs were recorded binocularly from animals at the age of 6 weeks postnatally as described previously. Mice were anaesthetized using Ketamine (66.7 mg/kg body weight) and Xylazine (11.7 mg/kg body weight). Their pupils were dilated and single flash ERG responses were obtained under scotopic (dark-adapted overnight) and photopic (light-adapted with a background illumination of 30 cd·ms⁻²) conditions. Single white-flash stimuli ranged from –2 to 1.5 log cd·ms⁻² under dark-adapted and from –2 to 1.5 log cd·ms⁻² under light-adapted conditions. Ten responses were averaged with inter-stimulus intervals of 5 s (for –4 to –0.5 log cd·ms⁻²) or 17 s (for 0 to 1.5 log cd·ms⁻²). Responses to trains of flashes (flicker) were obtained under dark – adapted conditions using a fixed intensity (0.5 log cd·ms⁻², resembling the International Society for Clinical Electrophysiology of Vision standard flash (ISCEV SF) intensity. Flicker responses were averaged 30 times, and band-pass filter cut-off frequencies were 0.3 and 300 Hz for all ERG recordings. ERGs were obtained in n = 4 IT and n = 2 wt control animals.

Spectral Domain Optical Coherence Tomography

Spectral Domain Optical Coherence Tomography (SD-OCT) imaging was done with a commercially available SpectralisTM HRA+OCT device (Heidelberg Engineering) featuring a broadband superluminescent diode at 870 nm as low coherent light source. Each 2-dimensional B-scan recorded at 30º field of view consists of 1536 A-scans, which are acquired at a speed of 40000

Table 1. Markers investigated in immunofluorescence studies

Primary antibodies / markers	Dilution	Company
glycogen phosphorylase (glypho)	1:2000	Gift from Dr Hamprecht (Pfeiffer-Guglielmi et al., 2003)
sc-14363/blue sensitive cone opsin	1:200	Santa Cruz Biotechnology Inc. Heidelberg, Germany
biotinylated peanut agglutinin (PNA)	1:25	Vector Laboratories, California, USA
DAPI	1:10000	Sigma, St. Louis, MO
rabbit/mouse PKC-α	1:500	Santa Cruz, Dallas, Texas and Sigma, St. Louis, MO
rabbit/mouse RIBEYE	1:500	Covance, Princeton, NJ and BD bioscience, San Jose, CA
rabbit Cav1.4	1:1000	Custom-made (Dr Amy Lee)

Secondary antibodies

- **Alexa Fluor® 488 Donkey Anti-Goat IgG**: 1:300 or 1:1000 (Life Technologies, Grand Island, NY)
- **Alexa Fluor® 594 Donkey Anti Guinea Pig IgH**: 1:300 (Life Technologies, Grand Island, NY)
- **Alexa Fluor® 568-Goat Anti-mouse IgG**: 1:1000 (Life Technologies, Grand Island, NY)
- **Streptavidin, Alexa Fluor® 546 conjugate**: 1:300 (Life Technologies, Grand Island, NY)
scans per second. Optical depth resolution is approximately 7 μm with digital resolution reaching 3.5 μm. Imaging was performed using the proprietary software package Eye Explorer (version 3.2.1.0, Heidelberg Engineering). OCTs were recorded binocularly from animals at the age of 6 weeks postnatally as described previously.18,19

Quantitative RT-PCR
Whole retinas, brain and muscle from 8 week old wt and mutant mice were dissected. Tissue was collected and flash frozen in liquid nitrogen. For control PCRs, tsA-201 cells were transfected with cDNA encoding Cav1.4 (Accession number JF701915). Total RNA of either mouse retinas or transfected tsA-201 was isolated with RNase-Free DNase Set (Qiagen). For total RNA isolation of brain and muscle RNase Fast Fibrous Tissue Midi Kit or respectively muscle RNase Fibrous Tissue Midi Kit were used. cDNA synthesis was performed with RT-PCR first strand synthesis (Fermentas, ThermoScientific). For cDNA synthesis of retina, total RNA eluate, for muscle and brain 35 ng/μl of RNA eluate was used. Qualitative PCRs were conducted using cDNA in the following range: retina 25 – 116 ng/μl, brain and muscle: 35 ng/μl and transfected cells 1.5 – 1.9 μg/μl. Specific primer for Cav1.1, 1.2, 1.4 as well as various splice forms of Cav1.3 were tested.20,21,22,23,24 Taqman RT-PCR on cDNA obtained from retinas (see above) was performed according to a previously developed protocol.25 The relative abundance of different Cav subunit transcripts was assessed by TaqMan quantitative PCR (qRT-PCR) using a standard curve method based on PCR products of known concentration in combination with normalization using the most stable control genes as previously described.25 Taqman gene expression assays specific for all high-voltage activated Ca2+ channel subunits (α, β, and δ) were designed to span exon–exon boundaries, and were purchased from Applied Biosystems. The following assays were used [name (gene symbol), assay ID (Applied Biosystems)]: Cav1.1 (Cacna1a), Mm00490925_m1; Cav1.2 (Cacna1c), Mm00437753_m1; Cav1.3 (Cacna1d), Mm01209919_m1; Cav1.4 (Cacna1f), Mm00490443_m1; Cav2.1 (Cacna1a), Mm00432190_m1; Cav2.2 (Cacna1b), Mm00432226_m1; Cav2.3 (Cacna1e), Mm00494444_m1; β1 (Cacnb1), Mm00518940_m1; β2 (Cacnb2), Mm00659092_m1; δ1 (Cacnb3), Mm00432233_m1; δ2 (Cacnb4), Mm00521623_m1; δ3 (Cacnb2d), Mm00486607_m1; δ4 (Cacnb2d), Mm00457825_m1; δ-1 (Cacna2d); Mm01910015_m1. The endogenous control genes included were [name (gene symbol), assay ID (Applied Biosystems)]: γ-cytoplasmic actin (ACTB), Mm00607939_s1; β-2-microglobulin (B2M), Mm00437762_m1; glyceraldehyde-3-phosphate dehydrogenase (GAPD), Mm99999915_g1; hypoxanthine phosphoribosyl-transferase 1 (HPRT1), Mm00469698_m1; succinate dehydrogenase complex, subunit A (SDHA), Mm01352363_m1; tata box binding protein (TBP), Mm00446973_m1; transferrin receptor (TFRC), Mm00441941_m1. The qRT-PCR (50 cycles) was performed in duplicates using 10–20 ng total RNA equivalents of cDNA and the specific TaqMan gene expression assay for each 20 µl reaction in TaqMan Universal PCR Master Mix (Applied Biosystems). Measurements were performed on four independent RNA preparations from each genotype. Analyses were performed using the 7500 Fast System (Applied Biosystems). The cycle threshold (Ct) values for each Cav gene expression assay were recorded for each individual preparation. To allow a direct comparison between the expression levels in different tissues, we normalized all experiments to Gapdh and Sdha, which were determined to be most stable expressed reference genes across all preparations and time points.26 Subsequently normalized molecule numbers were calculated for each Cav subunit from their respective standard curve.25

Behavioral experiments
All behavioral experiments were performed between 09:00 and 14:00 h after the animals had been habituated to the testing room for at least 24 h. In order to decrease the number of animals used, the behavioral experiments, with at least 2 d of rest between each, were performed in the same animals in the following order: (1) animals were tested in the open field test,27,28 light/dark test28 and the elevated plus maze test,2 (2) their visual function was assessed in a modified Morris water maze test involving a visible escape platform1 and (3) auditory fear conditioning was used to assess (vision-independent) learning capabilities.29

Open field
Mice were individually placed into the periphery of an open field (41 × 41 × 41 cm, floor illumination 150 lx) whose area was divided into a 28 × 28 cm central zone. The entries into the central zone, the time spent in the central zone and the overall distance traveled by the mice were measured during the 10 min exploration time by using an automated activity monitoring system (TruScan, Coulbourn Instruments).

Light/dark test
The white, aversive compartment (41 × 20.5 × 41 cm, floor illumination 400 lx) and the dark, safe compartment (41 × 20.5 × 41 cm covered by a black top, floor illumination 10 lx) of the testing arena were connected by a small opening (7 × 7 cm) located in the center of the partition at floor level. Animals were individually placed into the dark compartment facing away from the opening and allowed to freely explore the apparatus for 10 min. The latency to the first entry into the lit compartment, the number of entries and time spent in the lit compartment and the overall distance traveled by each mouse was automatically registered (TruScan, Coulbourn Instruments).

Elevated plus maze test
The 5 min test was performed on a plus-shaped maze which was elevated (73 cm) from the floor and consisted of 2 open arms (à 30 × 6 cm; 100 lx), two closed arms (à 30 × 6 × 17 cm; illuminated with red light), and a central neutral zone (6 × 6 cm). Animals were placed onto the neutral zone of the maze facing a closed arm and their locomotor behavior was continuously recorded by a tracking system (TSE Technical and Scientific Equipment GmbH) connected to a camera positioned above the maze. The latency to the first open arm entry, the number of open arm entries, the percentage of time spent on the open arms and the distance traveled were analyzed.
Visible platform test of the Morris water maze

Mice were placed into a circular pool (1.2 m in diameter) filled with water (23 °C) and illuminated at 40 lx. Starting from a fixed position they were allowed to escape by climbing onto a platform (10 cm diameter) placed just above the water and marked with a flag for facilitating visualization. The animals were allowed to stay on the platform for additional 10 s. In case the animal was not able to locate the platform, it was gently guided to it by the experimenter. On each of 2 consecutive days animals performed four 60 s trials separated by 60 min. The location of the platform was changed after each trial. The latency to reach the platform was recorded.

Auditory fear conditioning

In the conditioning context (25 × 25 × 30 cm chamber with transparent walls and a metal rod floor cleaned with water, floor illumination 300 lx; TSE) mice received three pairings (2 min inter-pairing interval) of an auditory 30 s white noise conditioned stimulus (CS; 10 kHz, 80 dB) and a co-terminating 2 s mild foot shock (0.6 mA). Twenty-four hours after the auditory fear conditioning 3 CSs separated by 5 s were presented to mice for a fear expression test in a novel context (25 × 25 × 30 cm chamber with transparent walls and a metal rod floor cleaned with water, floor illumination 10 lx; TSE). The time remaining in freezing behavior during the CS presentations was manually determined by an observer blind to the genotype.

Statistics

All values are presented as mean ± SEM for the indicated number of experiments (n). For multiple comparisons of in vitro data statistical significance was determined by a 1-way analysis of variance (ANOVA) followed by Bonferroni multiple-comparison or the Dunnett post-hoc test. For comparisons of 2 groups, data were analyzed by the Student t test as indicated for individual experiments. Behavioral data were statistically analyzed using repeated-measures ANOVA followed by post Fisher’s LSD test or the unpaired Student t test. In qRT-PCR experiments the data were organized and analyzed using MS Excel and SigmaStat (Systat Software, Inc.) statistical software. Statistical significance was determined on log10 transformed expression levels using 2-way-ANOVA followed by Holm-Sidak posthoc comparison. Statistical significance was set at p < 0.05.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Stefanie Geisler and Stefan Kummer for excellent technical assistance and Peter Ahnelt for helpful discussions. This work was supported by the Austrian Science Fund (FWF P-22528 to Koschak A), SFB F44 (F4402 to Koschak A, F4406 to Obermair GJ), P24079-B21 (to Obermair GJ) the German Research Council DFG (Se837/6–2), the National Institutes of Health (DC009433 and HL87120 to Lee A, DC010362 [Iowa Center for Molecular Auditory Neuroscience], EY020542 to Baker SA) and the Medical University Vienna.

References

1. Hope CJ, Sharp DM, Hemara-Wahanui A, Sissing JI, Lundon P, Mitchell EA, Maw MA, Clover GM. Clinical manifestations of a unique X-linked retinal disorder in a large New Zealand family with a novel mutation in CACNA1F, the gene responsible for CSNB2. Clin Experiment Ophthalmol 2005; 33:129-36; PMID:15807819; http://dx.doi.org/10.1111/j.1442-9071.2005.00987.x
2. Hemara-Wahanui A, Berjukow S, Hope CJ, Dearden PK, Wu SB, Wilson-Wheeler J, Sharp DM, Lundon-Trewick P, Clover GM, Hoda JC, et al. A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc Nat Acad Sci U S A 2005; 102:7553-8; PMID:15887946; http://dx.doi.org/10.1073/pnas.050907102
3. Morgans CW. Localization of the alpha(1F) calcium channel subunit in the rat retina. Invest Ophthalmol Vis Sci 2001; 42:2414-8; PMID:11527958
4. Specht D, Wu SB, Turner P, Dearden P, Koentgen F, Wolfram U, Maw M, Brandshtatter JR, tom Dieck S. Effects of presynaptic mutations on a postsynaptic Cnn1 calcium channel co-localized with mGluR6 at mouse photoreceptor ribbon synapses. Invest Ophthalmol Vis Sci 2009; 50:505-15; PMID:18952919; http://dx.doi.org/10.1093/iovs/iov08.078
5. Busquet P, Nguyen NK, Schmid E, Tamino N, Seeliger MW, Ben-Yosef T, Mizuno F, Akopian A, Striessnig J, Singewald N. Cav1.3 L-type Ca2+ channels mediate depression-like behaviour in mice independent of deaf phenotypes. Nat Neurosci 2010; 13:499-513; PMID:19664321; http://dx.doi.org/10.1017/ S1461145709990568
6. Mercer AJ, Chen M, Thoresen WB. Lateral mobility of presynaptic L-type calcium channels at photoreceptor ribbon synapses. J Neurosci 2011; 31:4397-406; PMID:21430141; http://dx.doi.org/10.1523/JNEUROSCI.5921-10.2011
7. Koschak A, Reimer D, Wang W, Tong W, Hoda JC, Heinzel T, Grabner M, Striessnig J. Cav1.4 alpha1subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. J Neurosci 2003; 23:6041-9; PMID:12853422
8. Stockner T, Koschak A. What can naturally occurring mutations tell us about Ca(v)1.x channel function? Biochim Biophys Acta 2013; 1828:1598-607; PMID:23219801; http://dx.doi.org/10.1016/j.bbamem.2012.11.026
9. McRory JE, Hamid J, Doering CJ, Garcia E, Parker RF, Hocking K, Chen L, Hildebrand M, Beedle AM, Feldcamp L, et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J Neurosci 2004; 24:1707-18; PMID:14973233; http://dx.doi.org/10.1523/JNEUROSCI.4846-03.2004
10. Huda JC, Zaghetto F, Koschak A, Striessnig J. Congenital stationary night blindness type 2 mutations S229P, G369D, L1668P, and W1440X alter channel gating or functional expression of Ca(v)1.4 L-type Ca2+ channels. J Neurosci 2005; 25:252-9; PMID:15634789; http://dx.doi.org/10.1523/JNEUROSCI.0654-04.2005
11. Pelouquin JB, Rehak R, Doering CJ, McRory JE. Functional analysis of congenital stationary night blindness type-2 CACNA1F mutations F742C, G1100R, and R1049W. Neuroscience 2007; 150:335-45; PMID:17994918; http://dx.doi.org/10.1016/j. neuroscience.2007.09.021
12. Mansseng F, Orono NC, Vessey JP, Lalonde MR, Stell WK, Tremblay F, Barnes S, Rancourt DE, Bech-Hansen NT. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum Mol Genet 2005; 14:3035-46; PMID:16155113; http://dx.doi.org/10.1093/hmg/ddi386
13. Mattapallil MJ, Wawruck EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, Caspi RR. The R8R mutation of the Cnrl gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 2012; 53:2921-7; PMID:22447858; http://dx.doi.org/10.1177/ 1079675612462903
14. Haeseleer F, Imanishi Y, Maeda T, Possin DE, Maeda A, Lee A, Rieke F, Palczewski K. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 2004; 7:1079-87; PMID:15452577; http://dx.doi.org/10.1038/nn1320
15. Seelig MW, Zrenner E, Apfelstedt-Sylla E, Jaissle GB. Identification of Usher syndrome subtypes by ERG implicit time. Invest Ophthalmol Vis Sci 2001; 42:5066-71; PMID:11687556
16. Tanimoto N, Mutschliefred RL, Fischer MD, Fahl E, Humphries P, Biel M, Seelig MW. [Landmark Ed]. Front Biosci 2009; 14:2730-7; http://dx.doi.org/10.2741/s3409
17. Marmor MF, Holder GE, Duk dev, Yamamoto S; Marmor MF, Holder GE, Seeliger M, Yamamoto S, Zrenner E, Apfelstedt-Sylla E, Jaissle GB. Functional analysis of congenital stationary night blindness type 2 CACNA1F mutations F742C, G1100R, and R1049W. Neuroscience 2007; 150:335-45; PMID:17994918; http://dx.doi.org/10.1016/j. neuroscience.2007.09.021
1. Singh A, Gebhart M, Fritsch R, Sinneger-Brauns MJ, Poggiani C, Hoda JC, Engel J, Romanin C, Strentiss J, Koschak A, Joch Biem Ch 2008
2. Sinneger-Brauns MJ, Huber IG, Koschak A, Wild C, Obermair GJ, Eidinger U, Hoda JC, Sartori SB, Strentiss J. Expression and 4,1-diacyhydropyridine- induced voltage-dependent calcium channel function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 2011; 14:77-84; PMID:21139593
3. Schillcl B, Bucher BE, Obermair GJ, Voltage-activated calcium channel expression profiles in mouse brain and cultured hippocampal neurons. Neuroscience 2012; 203:67-77; PMID:22088150
4. Willems E, Leyn S, Vanslepel J, Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 2008; 379:127-9; PMID:18485881; http://dx.doi.org/10.1016/j.ab.2008.04.036
5. Singewald N, Sinner C, Herzenauer A, Sartori SB, Mureck H. Magnesium-deficient diet alters expression – and anxiety-related behavior in mice—influence of desipramine and Hypericum perforatum extract. Neuropharmacology 2004; 47:1189-97; PMID:15564728
6. Sartori SB, Whittle N, Herzenauer A, Singewald N, Magnesium deficiency induces anxiety and HPA axis dysregulation: modulation by therapeutic drug treatment. Neuropharmacology 2012; 62:304-12; PMID:21835188; http://dx.doi.org/10.1016/j.neuropharm.2011.07.027
7. Sartori SB, Hauschild M, Bunck M, Gaburro S, Lüthi M, Poggiiani N, Enhanced fear expression in a psychophysical mouse model of trait anxiety: pharmacological interventions. PLoS One 2011; 6:e16084; PMID:21836891; http://dx.doi.org/10.1371/journal.pone.0016849
8. Blanco C, Ogunn LV, Specific binding of peanut lectin to a class of retinal photoreceptor cells. A species comparison. Invest Ophthalmol Vis Sci 1984; 25:546-57; PMID:6751282
9. Johnson LV, Hageman GS. Enzymatic characterization of peanut agglutinin-binding components in the retinal interphotoreceptor matrix. Exp Eye Res 1987; 44:533-65; PMID:3109930; http://dx.doi.org/10.1016/0361-1420(87)90163-X
10. Haverkamp S, Haverkamp S, Dierick J, Kuner T, Augustine JG, Feng G, Euler T. The prionoidal, blue-colored cone system of the mouse retina. J Neurosci 2005; 25:5348-45; PMID:15930394; http://dx.doi.org/10.1523/JNEUROSCI.1117-05.2005
11. Zebrows N, Haverkamp S, Calcium channel-dependent molecular maturation of photoreceptor synapses. PLoS One 2013; 8:e63853; PMID:23675510; http://dx.doi.org/10.1371/journal.pone.0063853
12. Ball SL, McConnell M, Nolten AR, Shih HS, Gregg RG. Distribution of voltage gated calcium channel β subunits in the mouse retina. Brain Res 2011; 1412:1-8; PMID:21831364
13. Kamphuis W, Hendriksen H. Expression patterns of voltage-dependent calcium channel alpha 1 subunits, alpha 1A-alpha 1D alpha 1A-alpha 1D subunits in the retina. Brain Res Mol Brain Res 1998; 55:209-20; PMID:9582423; http://dx.doi.org/10.1016/S0169-328X(97)00363-X
14. Pang JJ, Chang B, Kang A, Nusinowitz S, Nowroz SM, Li J, Rani A, Foster TC, Chiodo VA, Doyle T, et al. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol Ther 2006; 14:375-7; PMID:16677424; http://dx.doi.org/10.1016/j.anb.2006.07.023
15. Fenwick E, Ramey G, Pastorekovsky M, Dinari M, Kawasaki R, Wong YM, Lamoureux E, Social and emotional impact of diabetic retinopathy: a review. Clin Exp Ophthalmol 2012; 40:27-38; PMID:21751252; http://dx.doi.org/10.1111/j.1442-9071.2011.02599.x
16. Kempen GI, Jilstra GA. Clinically Relevant Symptoms of Anxiety and Depression in Low-Vision Community-Living Older Adults. Am J Geriatr Psychiatry 2013; PMID:23567455; http://dx.doi.org/10.1097/JGP.0b013e3182859e9d
17. Renieri G, Pitz S, Pfeifer N, Beutel M, Zweren R. Changes in quality of life in visually impaired patients after low-vision rehabilitation. Int J Rehabil Res 2013; 36:48-55; PMID:22890293; http://dx.doi.org/10.1097/MRR.0b013e3283578b5d
18. Raven MA, Oron NC, Nassar H, Williams GA, Stell WK, Jacobs GH, Bech-Hansen NT, Reese August GJ, Sanchez-Chavez G, Salceda R. Control of glycogen content in retina: allostERIC regulation of glycogen synthase. PLoS One 2012; 7:e30822; PMID:22363495; http://dx.doi.org/10.1371/journal.pone.0030822
20. O’Sheen WH, Logue SF, Rasmussen DL, Wehner JM. Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neurosci Res 1997; 20:1087-99; PMID:9284462; http://dx.doi.org/10.1006/nir.2001.0016-5
21. Clapote SJ, Lazar NL, Bechard AR, Roder JC. Effects of the rd1 mutation and host strain on hippocampal learning in mice. Behav Genet 2005; 35:591-601; PMID:16184487; http://dx.doi.org/10.1007/s10510-005-5635-4
22. O’Sullivan BH, Logue SF, Rasmussen DL, Wehner JM. Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neurosci Res 1997; 20:1087-99; PMID:9284462; http://dx.doi.org/10.1006/nir.2001.0016-5
23. Clapote SJ, Lazar NL, Bechard AR, Roder JC. Effects of the rd1 mutation and host strain on hippocampal learning in mice. Behav Genet 2005; 35:591-601; PMID:16184487; http://dx.doi.org/10.1007/s10510-005-5635-4
60. Henderson D, Doerr TA, Gottesman J, Miller RF. Calcium channel immunoreactivity in the salamander retina. Neuroreport 2001; 12:1493-9; PMID:11388436; http://dx.doi.org/10.1097/00001756-200105250-00039

61. Xiao H, Chen X, Steele EC Jr. Abundant L-type calcium channel Ca(v)1.3 (alpha1D) subunit mRNA is detected in rod photoreceptors of the mouse retina via in situ hybridization. Mol Vis 2007; 13:764-71; PMID:17565731

62. Minano F, Barabas P, Krizaj D, Akopian A. Glutamate-induced internalization of Ca(v)1.3 L-type Ca(2+) channels protects retinal neurons against excitotoxicity. J Physiol 2010; 588:953-66; PMID:20123787; http://dx.doi.org/10.1113/jphysiol.2009.181305

63. Kersten F, van Wijk E, van Reeuwijk J, van der Zwaag B, Maerker T, Peters T, Karalis N, Wolfrum U, Keunen J, Roepman R, et al. Invest Ophthalmol Vis Sci 2009; PMID:19959638

64. Wu J, Marmorstein AD, Striessnig J, Peachey NS. Voltage-dependent calcium channel CaV1.3 subunits regulate the light peak of the electroretinogram. J Neurophysiol 2007; 97:3731-5; PMID:17376851; http://dx.doi.org/10.1152/jn.00146.2007

65. van Oosterhout F, Michel S, Deboer T, Houben T, van de Ven RC, Albus H, Westerhout J, Vanstreels MJ, Ferrari MD, van den Maagdenberg AM, et al. Enhanced circadian phase resetting in R192Q Cav2.1 calcium channel migraine mice. Ann Neurol 2008; 64:315-24; PMID:18825664; http://dx.doi.org/10.1002/ana.21418

66. Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 2007; 130:730-41; PMID:17719549; http://dx.doi.org/10.1016/j.cell.2007.06.045

67. Ko ML, Liu Y, Shi L, Trump D, Ko GY. Circadian regulation of retinoschisin in the chick retina. Invest Ophthalmol Vis Sci 2008; 49:1615-21; PMID:18385082; http://dx.doi.org/10.1167/iovs.07-1189

68. Shi L, Ko ML, Ko GY. Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alpha1C subunit in chicken cone photoreceptors. J Biol Chem 2009; 284:25791-803; PMID:19608742; http://dx.doi.org/10.1074/jbc.M109.03993