Abstract. Fonseca-Cortés, A. & J. A. Peña-Torres. 2021. First record of the family Mazaceae (Lamiales) in Colombia and the clarification of the synonyms of Mazus pumilus. *Darwiniana*, nueva serie 9(1): 245-253.

Mazaceae, a family native to Asia and Oceania, is reported for the first time for the Colombian flora, with *Mazus pumilus* (Burm.f.) Steenis. This species is easily recognized by its herbaceous habit, leaves rosetulate, elliptic to obovate cauline leaves, terminal, racemose inflorescences, bilabiate flowers with one 2-lobed upper lip and one 3-lobed lower lip, and fruit completely enclosed in the calyx. To date, this species has been recorded in three departments of Colombia, growing between the pavement. Additionally, we clarify the synonyms of this taxon.

Keywords. Flora of Bogotá; exotic flora; Mazus; urban flora.

INTRODUCTION

Mazaceae is a small family native to Asia and Oceania, with ca. 34 species (Deng et al., 2019). It was proposed within the Lamiales (Reveal, 2011) and was separated from Phrymaceae based on several molecular phylogenetic studies (Albach et al., 2005; Xia et al., 2009; Schäferhoff et al., 2010). Mazaceae include four genera, *Mazus* Loureiro, *Lancea* Hook.f. & Thomson, *Dodartia* L. and the recently described *Puchiumazus* Bo Li, D.G. Zhang & C.L. Xiang (Xiang et al., 2021). *Mazus*, with ca. 30 species, is the richest genus of the family (Deng et al., 2019). It is distributed in eastern and southeastern Asia, Australia, and New Zealand (Barker, 1991; Hong et al., 1998). China is considered the center of diversification of the genus (Yang, 1979; Hsieh, 2000), with ca. 26 species and three varieties currently recognized (Hong et al., 1998; Deng et al., 2016). This genus is characterized by its herbaceous habit, flowers with zygomorphic corollas, with one 2-lobed upper lip and one 3-lobed lower lip, and fruit usually completely enclosed in the calyx when mature (Xiang et al., 2021).
Materials and Methods

We made free tours in Bogotá D.C., between January and February of 2021 and collected the individuals in reproductive stage. The herbarium vouchers were deposited in UDBC (herbarium acronyms follow Thiers, 2021). To determine the generic identity of the species, we consulted the pertinent literature on the taxonomy of the Lamiales (Cao Shu, 1998; Deng et al., 2019; Kew, 2021b) and the species of this order reported for Colombia (Bernal et al., 2016). For the circumscription of Mazus, we followed Xiang et al. (2021).
For the elaboration of the description, we measured the organs with a digital caliper with an accuracy of 0.01 mm. For the review of the synonyms of *M. pumilus* we consulted in Biodiversity Heritage Library, Schoolar Google, Web of Science and Scielo, the publications who included taxonomical treatments or mentioned names related with *Mazus pumilus*, then we analyzed the protologues of these names, available at Biodiversity Heritage Library (www.biodiversitylibrary.org), and saw the types in JSTORPLANTS (https://plants.jstor.org/). For the names that did not mention the type, we searched in which herbaria the authors deposited their types (Stafleu & Cowan, 1979) and asking to the curators to search exsiccatas with collected by names author or with a label of the name. Finally, for the elaboration of the map, we use the records from our free tours and those of iNaturalist (Naturalista, 2021).

RESULTS AND DISCUSSION

Mazus pumilus (Burm.f.) Steenis, Nova Guinea 9 (1): 31. 1958. Basionym: *Lobelia pumila* Burm. f., Fl. Indica 187, pl. 60, f. 3. 1789. TYPE: Burman, Fl. Indica 187 1c. pl. 60 f.3 (Lectotype designated by Cramer, 1981). Figs. 1, 2.

Mazus rugosus Lour., Fl. Cochinch. 385. 1790. TYPE: China, Cochinchina, *J. Loureiro s.n.* (holotype: BM-000997856!).

Trevirania gratiolae Roth, in Weber, Beitr. II. 123. 1810. TYPE: without data (holotype: M-0188280!).

Mazus laevifolius Blume, Bijd. Fl. Ned. Ind. 14: 753. 1826. TYPE: Indonesia, Java, Buitenzorg, w.d., w.c. (holotype: L-0003532!).

![Mazus pumilus](http://www.ojs.darwin.edu.ar/index.php/darwiniana/article/view/949/1224)
Mazus bicolor (Willd.) Benth., Numer. List. 3913. 1831. Basionym: Hornemannia bicolor Willd., Enum. Pl. [Willdenow] 2: 653 1809. TYPE: without data (holotype: B -W-11582 -01 0!).

Mazus vandellioides Hance, Ann. Bot. Syst. 3(2): 193. 1852. TYPE: China, Hong Kong, w.d. Hance s.n. (holotype: FI-063202).

Lobelia esquirolii H. Lév., Fl. Kouy-Tcheou: 58. 1914. TYPE: China, Kouy-Tcheou, mont du College, IV-1910, J. Esquirol 2062 (holotype: E-00284110!).

Mazus goodenifolius (Hornem.) Pennell, J. Arnold Arbor. 24: 245. 1943. Basionym: Gratiola goodenifolia Hornem., Enum. Pl. Hort. Hafn.19. 1807. TYPE: without data (holotype: C-10019014!).

Prostrate herbs, with one long tap root or with numerous roots, and one to many shoots. Leaves 0.4-2.4 × 0.4-0.8 cm, basal leaves usually rosulate, cauline leaves alternate; glabrous or with a few trichomes on the margin at the base, elliptic to obovate, base decurrent in the petiole, apex rounded, margin entire, crenulated or with a few teeth, pinnately nerved with 2-4 pairs of secondary veins. Inflorescence 2.5-6.0 cm long; peduncles of 0.5-0.7 cm long, terminal, racemose, glabrous or puberulous. Flowers 0.5-0.8 × 0.4-0.6 cm, bilabiate, calyx 0.4-0.5 × 0.2-0.3 cm, tube 0.1-0.2 cm long, glabrous or puberulent, green, with five lanceolate sepals, 0.2-0.3 × 0.1-0.2 cm, base of the sepals with a red gland; corolla gamopetalous, lilac outside, pale lavender inside with yellow macules, upper petals fused into an emarginate lip, lower petals fused into a trilobate lip, terminal lobe 0.1-0.2 × 0.1-0.2 cm, lateral lobes 0.3-0.4 × 0.2-0.3 cm, hairy, with two longitudinal ridges; stamens four, didynamous, filaments 0.2-0.3 cm long, anthers medifixed ca. 0.1 cm long; ovary superior, glabrous, bilocular; style 0.4-0.5 cm long; stigma flabelliform. Fruit a loculicidal capsule with numerous seeds.

Distribution. Mazus pumilus is native of Eastern Asia and Oceania (Cao Shu, 1998), and it has spread in many countries of America and Europe (Kew, 2021a). In Colombia (Fig. 3), this species has been collected in Bogotá D.C., and has been recorded in Medellín, Antioquia and in Granada municipality, Meta (Naturalista, 2021), growing between the pavement.
Etymology. *Mazus* from the Greek, “μαστός”, breast, alluding to the two ridges on the lower lip of corolla and *pumilus* from the Latin “pūmilus” that means dwarf, alluding to the small size of this species.

Uses. Pharmacological studies show that *M. pumilus* is a promising species for medicinal use and treatment, Priya & Rao (2016) report anticancer and antioxidant activity of various leaf extracts of *M. pumilus*. This taxon also possesses antibacterial and antifungal properties (Safdar et al., 2017). Ishtiaq et al. (2019) demonstrated the anti-nociceptive, anti-inflammatory and hepatoprotective effects of the methanol extract of *M. pumilus*. Additionally, this species has wide medicinal uses in the local and popular tradition.

Examined material

COLOMBIA. Cundinamarca. Bogotá D.C., Engativá, Unicentro de Occidente, 4°43’22.1”N 74°06’ 5.3” W, 2600 m, 27-I-2021, A. Fonseca-Cortés 1338 (UDBC); Bogotá D.C., Engativá, Ciudadela Colsubsidio, 4°43’14.4” N 74°06’57.0” W, 2600 m, 24-II-2021, A. Fonseca-Cortés & J. Peña-Torres 1450 (UDBC); Barrios Unidos, Museo de Los Niños, 4°39’42.38” N 74°05’18.65” W, 2600 m, 24-II-2021, A. Fonseca-Cortés & J. Peña-Torres 1451 (UDBC); Bogotá D.C., Barrios Unidos, Parque del Salitre, 4°39’58.93” N 74°05’19.35” W, 2600 m, 24-II-2021, A. Fonseca-Cortés & J. Peña-Torres 1452 (UDBC).

COMMENTS

Burman (1768) in his description of *Lobelia pumila* just cites an illustration (Tab 60 f.3) present in the same publication, and he does not mention any exsiccat. Steenis (1958) mentions that the type of *Lobelia pumila* is at G. There are two exsiccat at G of the collection of Burman, G-00096392 and G-00096393, the former has a label of “TYPE” and the latter of “TYPE DUPLICATE”. However, there is no clarity if that labels were put by Steenis or not. Cramer (1981) states the illustration mentioned by Burman (1768) as the type. Therefore, Stennis (1958) did not lectotypify *L. pumila* (article 7.11, Turland et al., 2018), but Cramer (1981) did (article 9.12, Turland et al., 2018).

After the search in the herbaria, we found all the types of the synonyms listed in the introduction except for *Titmannia obovata*, for which we cannot contact the curator of the herbarium in which it is probably deposited (LE) (Stafleu & Cowan, 1979).
The analysis of the types and of the protologues allow us to confirm that the names cited in the different treatments listed in the introduction, with the exception of Columnnea tomentosa, Stemodia tomentosa, Lindernia japonica, Mazus bodinieri and Tittmannia obovata, are synonyms of *M. pumilus*. The holotype of *M. laevifolius* is at L (L-0003532); the holotype of *M. rugosus* is at BM (BM-000997856); the holotype *M. vandellioides* is at FI (FI-063202); the holotype of *Hornemannia bicolor* is at B (B-W-11582-010), the holotype of *Lobelia esquirolii* is at E (E-00284110), the holotype of Trevirania gratiolae is at M (M-0188280!), and the holotype of *Gratiola goodenifolia* is at C (C-10019014).

There are two collections at UPS collected by Thunberg and determined as *L. japonica* by him; UPS-14334 (which has written Lindernia japonica α) and corresponds to *M. miquelii* Makino, and UPS-14335 (which has written Lindernia japonica β) and corresponds to *M. pumilus*. Of the treatments of Mazus, only Ohwi (1965) treats the problem and mention *L. japonica* pro parte for *M. miquelii* and *L. japonica* pro parte for *M. pumilus*. However, none has purposely or not tried to lectotypified this name. The original description of *L. japonica* does not cite the α or β, but mentions “ramis… erectiusculis… pollicariibus usque spithamaeis” (Thunberg, 1784); which means, branches… erect... of one to seven inches, this length is only present in *M. miquelii*.

In this sense, here we propose UPS-14334 as the lectotype for *L. japonica*, due to their description fits better with *M. miquelii*.

When Bunge (1831) described *Tittmannia obovata*, mentioned “subsesilibus, glandulosus-pubescentibus”, *M. pumilus* does not present glandular indumentum (Pringle, 2018). Additionally, we can’t analyze the type of this name. Therefore, we could not verify this name as a synonym of *M. pumilus*.

Walpers (1844) mentions “V. (TITTMANNIA BnGe) OBOVATA Walp. Mss.”. Maximowicz (1875), Cao Shu (1998), IPNI (2021) and Tropicos (2021) cite this name as *Vandellia obovata* Walp. However, Walpers (1844) did a combination for the name *Tittmannia obovata* Bunge. For this reason, this name should be written as *Vandellia obovata* (Bunge) Walp., and not as *Vandellia obovata* Walp., following the article 41.1 (Turland, et al., 2021).

Although Hornemann (1807) wrote *Gratiola goodenifolia* and Blume (1826) wrote *Mazus laevifolia*, these names should be written as *Gratiola goodenifolia* and *Mazus laevifolius* following the article 60.10 and 23.5 respectively (Turnland et al., 2018).

Although Cheng-Yih (1984) listed to *M. bodinieri* Bonati pro parte as a synonym of *M. pumilus*, the analysis of the syntypes listed by Bonati (1908) and disponible at JSTORPLANTS (*P. bodinieri*, 1593, is not present in this plataform neither in the virtual collections of P), shows that...
this name is actually a synonym of *M. spicatus*, as reported by Cao Shu (1998). As no author has designated a lectotype for *M. bodinieri*, here we propose to *H. Wilson 931* (E-00284117), following the article 9.12 (Turland et al., 2018).

The holotype of *C. tomentosa* (LINN-HS1102-6) presents bigger plants, wider leaves and serrate margins, characters not seen in *M. pumilus*, for this reason we do not include it in the synonymy.

Mazus pumilus could be confused with *Cymbalaria muralis* G. Gaertn., B. Mey. & Schreb (Plantaginaceae) (Fig. 4b), and the genus *Nuttallanthus* D.A. Sutton (Plantaginaceae) (Fig. 4c), but it is clearly distinguished from these by the characters listed in the Table 1.

In Bogotá there are many plant nurseries, which usually import species from other countries. These plants come with soil, which usually carries seeds of other foreign species (Cárdenas et al., 2017). Due to the lack of control, many exotic species have gotten in Colombia (Cárdenas et al., 2017). In this way, *M. pumilus* probably arrived with imported species, and then become established in the urban zones, as reported in Costa Rica (Nishida et al., 2009; Morales, 2020) and the United States (Pringle, 2018).

Mazus pumilus has been reported as an annual species (Barker, 1991; Shahid et al., 2013; Pringle, 2018). However, we saw great patches covered by this species. Although its inflorescence is terminal, this species can produce many lateral shoots (Fig. 1c) and two or more inflorescences (Fig. 2a), which fits with the concept of perennial species (Albani & Coupland, 2010). In this sense, *M. pumilus* can be an annual or perennial species, and the expression of one of these habits is probably related with the environmental conditions, as reported in *Mimulus guttatus* DC. (Phrymaceae) (Baker & Diggle, 2011).

ACKNOWLEDGMENTS

We are really thankful to Gustavo Romero (AMES) for the indispensable literature about *Mazus*, to Tom May, Nicholas Turland, David Hawksworth and Diego Giraldo-Cañas, for his help with some nomenclatural clarifications, to the curators of B, BM, C, FI, G, L, M, S, P, and UPS for his help in the search of the types and the scanning of it, and to the anonymous reviewers for their valuable comments, which notably improved the final manuscript.

BIBLIOGRAPHY

Albach, D. C.; H. M. Meudt & B. Oxelman. 2005. Piecing together the “new” Plantaginaceae. *American Journal of Botany* 92: 297-315. DOI: https://doi.org/10.3732/ajb.92.2.297

Aitón, W. 1812. Hortus Kewensis or, A catalogue of the plants cultivated in the Royal Botanic Garden at Kew, vol IV. London: Longman, Hurst, Rees, Orme and Brown, Paternoster row. DOI: https://doi.org/10.5962/bhl.title.4504

Albani, M. C & G. Coupland. 2010. Comparative analysis of flowering in annual and perennial plants, in: Timmermans M.C.P. (ed.). *Plant development*, pp. 323-48. *Current Topics in Developmental Biology* 91. Amsterdam: Elsevier. DOI: https://doi.org/10.1016/S0070-2153(10)91011-9

Baker, R. L. & P. K. Diggle. 2011. Node-specific branching and heterochronic changes underlie population-level differences in *Mimulus guttatus* (Phrymaceae) shoot architecture. *American Journal of Botany* 98(12): 1924-1934. DOI: https://doi.org/10.3732/ajb.1100098

Barker, W. R. 1991. A taxonomic revision of *Mazus* Lour. (Scrophulariaceae) in Australasia. *Papers and Proceedings of the Royal Society of Tasmania* 124 (2) 85-94. DOI: https://doi.org/10.26749/rstpp.124.2.85

Table 1. Differences between *Mazus pumilus* and morphological similar species.

Characters	*Mazus pumilus*	*Cymbalaria muralis*	*Nuttallanthus* sp.
Habit	Rosulate	Reptant	Erect
Leave form	Elliptic to obovate	Palmate	Linear-oblong
Margin type	Irregularly sinuate	Entire	Entire
Inflorescence type	Terminal raceme	Axillar and solitary	Terminal raceme
Spur	Absent	Present	Present
Bernal, R.; S. R. Gradstein & M. Celis (eds.). 2016 (continuously updated). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Published on the internet: http://catalogoplantasdecolombia.unal.edu.co/es/ [April 2021].

Blackwell Forbes F. & W. Botting Hemsley. 1889. An Enumeration of all the Plants known from China Proper, Formosa, Hainan, Corea, the Luchu Archipelago, and the Island of Hongkong, together with their Distribution and Synonymy. Linnean society of London 23: 183. DOI: https://doi.org/10.1111/j.1095-8339.1889.tb00105.x

Bonati, G. 1908. Contribution a l´etude du genre Mazus Lour. Bulletin de l´Herbier Boissier 8: 525-540.

Blume, C. L.1826. Bijdragen tot de Flora van Nederlandsch Indie. Batavia:Ter Lands Drukkerij. DOI: https://doi.org/10.5962/bhl.title.395

Bunge, A. A. 1831. Enumeratio Plantarum, quas in China Boreali Colletit. Saint Petersburg: Mémoires présentés à l´Académie Impériale des Sciences de St.-Pétersbourg par divers savants et lus dans ses Assemblées DOI: https://doi.org/10.5962/bhl.title.41483

Cárdenas, D; M. P. Baptiste, & N. Castaño. 2017. Plantas exóticas con alto potencial invasor en Colombia. Bogotá: Instituto de Investigaciones Alexander von Humboldt.

Cao Shu, T. Q. 1998. Mazus. In Shen Ke, X. Scrophulariaceae. Flora of China 14:1-212.

Cramer, L. H. 1981. Scrophulariaceae. In Dassanayake, M.D. and F.R. Fosberg (eds.). Revised handbook to the flora of Ceylon. Amerind Publishing Co. 3: 386-449.

Cheng-Yih, W. 1984. Index florae Yunnanensis, Tomo II, Yunnan: The people´s publishing house. DOI: https://doi.org/10.5962/bhl.title.139752

Deng, T.; X. S. Zhang, C. Kim, J. W. Zhang, D. G. Zhang & S. Volis. 2016. Mazus sunhangii (Mazaceae), a new species discovered in Central China appears to be highly endangered. PLOS ONE 11(10): e0163581. DOI: https://doi.org/10.1371/journal.pone.0163581

Deng, T.; N. Lin, X. Huang, H. Wang, C. Kim, D. Zhang & H. Sun. 2019. Phylogenetics of Mazaceae (Lamiales), with special reference to intrageneric relationships within Mazus. Taxon 68(5): 1037-1047. DOI: https://doi.org/10.1002/tax.12150

Fu-Wu, X.; Q. Xin-Sheng & Y. Yue-Hong. 2006. Flora of Macau volume 2. Guangzhou: South China Botanical Garden, Chinese Academy of Sciences.

Hayata B. 1908. Flora montana Formosae. The journal of the College of Science, Imperial University of Tokyo, Japan 25(19): 173. DOI: https://doi.org/10.5962/bhl.title.10880

Hong, D. Y.; H. B. Yang, C. L. Jin & N. H. Holmgren. 1998. Scrophulariaceae. In Wu, Z.Y. & P.H.Raven. (eds.). Flora of China, vol. 18. Beijing: Science Press.

Hornemann, J. L. 1807. Enumeratio Plantarum Horti Botanici Hafniensis. Copenhagen: J.F. Schultzii.

Hsieh, T. H. 2000. Revision of Mazus Lour. (Scrophulariaceae) in Taiwan. Taiwania 45 (2): 131-146. DOI: https://doi.org/10.6165/taii.2000.45(2).131

IPNI. 2021 (continuously updated). Vandellia obovata Walp. Published on the internet: https://www.ipni.org/n/810622-1 [Jun, 2021].

Ishitaq, S.; A. Ilyas, N. Irshad, U. Niaz, U. Hanif, M. S. Khan Afridi, S. Shaheen & S. H. Kamran. 2019. Evaluation of anti-nociceptive, anti-inflammatory and hepatoprotective effects of methanol extract of Mazus pumilus (Burm. f.) Steenis (Mazaceae) herb. Tropical Journal of Pharmaceutical Research 18(4): 799-807. DOI: http://dx.doi.org/10.4314/tjpr.v18i4.17

Kew. 2021a. Mazus pumilus (Burm.f.) Steenis - Distribution. Plants of the world. Published on the internet: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:805568-1 [April 2021].

Kew. 2021b. Neotropical Flowering Plants - Neotropikey. Published on the internet: http://www.kew.org/science/tropamerica/neotropikey/families/index.htm [April 2021].

Makino, T. 1901. Observations of the flora of Japan. Botanical Magazine 15(1): 77. DOI: https://doi.org/10.5962/bhl.title.12017

Matsumura, J. 1912. Index plantarum Japonicarum, sive, Enumeratio plantarum omnium ex insulis Kurile, Yezo, Nippon, Sikoku, Kissiu, Liukiu, et Formosa hucusque cognitarum systematice et alphabetice disposita adjectis synonymis selectis, nominibus Japonicis, locis natalibus vol II.Tokio: Maruzen. DOI: https://doi.org/10.5962/bhl.title.11999

Maximowicz, C. J. 1875. Diagnoses des nouvelles plantes du Japon et de la Mandjouire - XIX décade. Bulletin de L’Académie Impériale des Sciences de St-Pétersbourg 20: 430-472.

Mishra, A. K.; M. P. Sharma & H. Singh. 2015. Plant species of Delhi flora: a medicinal review. Indian Journal of Plant Sciences 4(4): 73-111.

Mooney H. A. & R. J. Hobbs 2000. Introduction. In Mooney H.A. & R.J. Hobbs (eds.), Invasive species in a changing world, pp. 13. Washington D.C.: Island Press.

Morales, C. O. 2020. Origen, historia natural y usos de las plantas introducidas en Costa Rica. UNED Research Journal 12(2): e3098-e3098. DOI: https://doi.org/10.22458/urnj.v12i2.3098

Moreira, A. D. R & C. P. Bove. 2006. Plantas aquáticas do Horto Botânico do Museo do Rio deJaneiro. Archivos do Museo Nacional, Rio de Janeiro 66 (3-4): 459-477.
Naturalista. 2021. *Mazus pumilus* - Observations for Colombia. Published on the internet: https://colombia.naturalista.org/observations?place_id=7196&subview=table&taxon_id=126376 [May 2021].

Nishida, K.; I. Nakamura & C. O. Morales. 2009. Plants and butterflies of a small urban preserve in the Central Valley of Costa Rica. *Revista de Biología Tropical* 57: 31-67. DOI: https://doi.org/10.15517/RBT.V57I10.21274

Obhi, J. 1965. Flora of Japan: in English: combined, much revised and extended translation. Washington D.C.: Smithsonian Institution.

Pringle, J. S. 2018. The identification, nomenclature, and naturalized distribution of *Mazus miquelii* (Mazaceae) in North America. *Castanea* 83(2): 216-223. DOI: https://doi.org/10.2179/17-154

Priya, P. V. & A. S. Rao. 2016. Evaluation of anticancer activity of *Mazus pumilus* leaf extracts on selected human cancerous cell lines. *International Journal of Pharmaceutical Sciences Review and Research* 37: 185-189.

Reveal, J. L. 2011. Summary of recent systems of angiosperm classification. *Kew Bulletin* 66: 5-48. DOI: https://doi.org/10.1007/s12225-011-9259-y

Sañdar, N.; N. Yaqueen, Z. Kazmi & A. Yasmin. 2017. Antibacterial activity of three widespread weeds *Mazus japonicus*, *Fumaria indica* and *Vicia faba* from Pakistan. *Journal of Herbs, Spices & Medicinal Plants* 5: 1-12. DOI: https://doi.org/10.1080/10496475.2017.1322165

Shahid, S.; T. Riaz, M. A. Abbasi, F. Khalid & M. N. Asghar. 2013. In vitro assessment of protection from oxidative stress by various fractions of *Mazus pumilus*. *Journal-Chemical Society of Pakistan* 35(3): 593-598.

Sharma, J.; S. Gairola, R. D. Gaur, R. M. Painuli & T. O. Siddiqi. 2013. Ethnomedicinal plants used for treating epilepsy by indigenous communities of sub-Himalayan region of Uttarakhand, India. *Journal of Ethnopharmacology* 150(1): 353-370. DOI: https://doi.org/10.1016/j.jep.2013.08.052

Schäferhoff, B.; A. Fleischmann, E. Fischer, D. C. Albach, T. Borsch & G. Heubl. 2010. Towards resolving Lamiaceae relationships: Insights from rapidly evolving chloroplast sequences. *BMC Evolutionary Biology* 10: 352. DOI: https://doi.org/10.1186/1471-2148-10-352

Smith, A. C. 1991. *Flora Viticis nova, a new Flora of Fiji, spermatotefes only, vol 5.* Honolulu: SB Printers Inc. DOI: https://doi.org/10.5962/bhl.title.44033

Stafleu, F. A. & R. S. Cowan. 1979. Taxonomic literature. A selective guide to botanical publications, collections with dates, commentaries and types. Volume I: H-Le. Utrecht: Bohn, Scheltema & Holkema. DOI: https://doi.org/10.5962/bhl.title.48631

Steenis, C. G. G. J. 1958. Miscellaneous notes on New Guinea plants *V. Nova Guinea* 2: 9-31.

Sweet, R. 1825. The British flower garden: containing coloured figures & descriptions of the most ornamental & curious Hardy herbaceous plants. London: W. Simpkin and R. Marshall. DOI: https://doi.org/10.5962/bhl.title.129229

Sweet, R. 1826. Catalogue of plants cultivated in the gardens of Great Britain - Part II. Tilling Printer. London. DOI: https://doi.org/10.5962/bhl.title.105339

Thiers, B. 2021 [continuously updated]. *Index Herbariorum: A global directory of public herbaria and associated staff*. New York Botanical Garden’s Virtual Herbarium. http://sycamore.nybg.org/science/ih

Thunberg, C. P. 1784. *Flora Iaponica Sistens Insularum Republicae Popularis Sinicae* (Vol. 67). Beijing: Science Press.

Walpers, G. G. 1844. Repertorium Botanices Systematicae. Leizpig: Sumtibus Friederci Hofmeister. DOI: https://doi.org/10.1186/1471-2148-10-352

Westbrooks. 1997. Introduced species: a significant component of human-caused global change. *New Zealand Journal of Ecology* 21:1-16.

Wardhana, R. 2008. Direct uses of medicinal plants and their identification. New Delhi: Sarup & Sons. New Delhi, India. 223 pp.

Vitousek, P. M.; C. M. D’ Antonio, L. L. Loope, M. Rejmanek & R. Westbrooks. 1997. Introduced species: a significant component of human-caused global change. *New Zealand Journal of Ecology* 21:1-16.

Walpers, G. G. 1844. Repertorium Botanices Systematicae. Leizpig: Sumtibus Friederci Hofmeister. DOI: https://doi.org/10.5962/bhl.title.7553

Xia, Z.; Y. Z. Wang & J.F. Smith. 2009. Familial placement and relations of *Rehmannia* and *Trianeophora* (Scrophulariaceae s.l.) inferred from five gene regions. *American Journal of Botany* 96: 519-530. DOI: https://doi.org/10.3732/ajb.0800195

Xiang, C. L.; H.L. Pan, D. Z. Min, D. G. Zhang, F. Zhao, B. Liu, & B. Li. 2021. Rediscovery of *Mazus lanceifolius* reveals a new genus and a new species in Mazaceae. *PhytoKeys* 171: 1-24. DOI: https://doi.org/10.3897/phytokeys.171.61926

Yang, H. P. 1979. *Mazus*. In P.C. Tsoong & H.P. Yang (eds.), *Flora Reipublicae Popularis Sinicae* (Vol. 67), pp. 172-196. Beijing: Science Press.