The Ihara-Selberg zeta function for PGL3 and hecke operators

Anton Deitmar
Universität Tübingen

J. William Hoffman
Louisiana State University

Follow this and additional works at: https://repository.lsu.edu/mathematics_pubs

Recommended Citation
Deitmar, A., & Hoffman, J. (2006). The Ihara-Selberg zeta function for PGL3 and hecke operators. International Journal of Mathematics, 17 (2), 143-155. https://doi.org/10.1142/S0129167X06003412
The Ihara-Selberg zeta function for PGL_3 and Hecke operators

Anton Deitmar & J. William Hoffman

Abstract. A weak version of the Ihara formula is proved for zeta functions attached to quotients of the Bruhat-Tits building of PGL_3. This formula expresses the zeta function in terms of Hecke-Operators. It is the first step towards an arithmetical interpretation of the combinatorially defined zeta function.

Contents

1 The building 3

2 The zeta function 4
 2.1 Definition .. 4
 2.2 A comparison .. 5
 2.3 A factorization ... 6

3 The zeta function for the 1-skeleton 8
 3.1 A combinatorial computation 11
 3.2 The unramified Hecke algebra 12

4 The zeta function on galleries 14
Introduction

Y. Ihara [9] extended the theory of Selberg type zeta functions to p-adic settings. His work was later generalized by K. Hashimoto [6, 7, 8], H. Bass [1], H. Stark and A. Terras [10], and others. Ihara defined the zeta function in group theoretical terms first, but it can be described geometrically as follows. Let $\Gamma \backslash X$ be a finite quotient of the Bruhat-Tits tree of a rank one p-adic group modulo an arithmetic group Γ. Then define the zeta function by

$$Z(u) = \prod_c (1 - u^{l(c)}),$$

where the product runs over all primitive closed loops in $\Gamma \backslash X$. Ihara proved the remarkable formula

$$Z(u) = \chi \det(1 - Au + qu^2),$$

where A is the adjacency operator on $\Gamma \backslash X$ which can be interpreted as the canonical generator of the unramified Hecke-algebra. Further, $\chi < 0$ is the Euler-characteristic of $\Gamma \backslash X$, and q is the order of the residue class field.

For Γ being the unit group of the maximal order in a quaternion algebra, this formula allowed Ihara to relate $Z(u)$ to the Hasse-Weil zeta function of the Shimura curve attached to Γ. This is the only proven link between Selberg-type zeta functions and arithmetical zeta functions.

In [5] the author gave a definition of an Ihara-type zeta function $Z(u)$ for a higher rank group. There is no Ihara-formula for higher rank up to date. In this paper we give an approximation to an Ihara formula in the case of the group PGL_3. For this group the unramified Hecke-algebra has two generators π_1, π_2. The canonical replacement of the determinant factor in Ihara’s formula is

$$\det(1 - u\pi_1 + u^2q\pi_2 - u^3q^3).$$

The main result of the present paper is

Theorem 0.1 There are a natural number n and a polynomial $P(u)$ such that

$$Z(u) = \frac{\det(1 - u\pi_1 + u^2q\pi_2 - u^3q^3)^n}{P(u)}.$$

I thank A. Setyadi for pointing out an error in an earlier version.
1 The building

Let F be a non-archimedean local field. Let \mathcal{O} be its valuation ring with maximal ideal $m \subset \mathcal{O}$. Fix a generator ϖ of m and let q be the cardinality of the residue class field $k = \mathcal{O}/m$.

Consider the locally compact group $G = \text{PGL}_3(F) = \text{GL}_3(F)/F^\times$. It is totally disconnected and every maximal compact subgroup is conjugate to $K = \text{PGL}_3(\mathcal{O}) = \text{GL}_3(\mathcal{O})/\mathcal{O}^\times$. Let X be the Bruhat-Tits building of G. In this particular case the Bruhat-Tits building can be described nicely. The vertex set X_0 of X is the set of homothety classes of \mathcal{O}-lattices in F^3. Recall that an \mathcal{O}-lattice in F^3 is a finitely generated \mathcal{O}-submodule Λ of F^3 such that $F\Lambda = F^3$. Two lattices Λ, Λ' are homothetic, if there exists $\alpha \in F^\times$ such that $\Lambda' = \alpha \Lambda$. Every lattice Λ is the image under some $g \in \text{GL}_3(F)$ of the standard lattice $L_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2 \oplus \mathcal{O}e_3$, where e_1, e_2, e_3 is the standard basis of F^3. The set of all lattices thus can be identified with $\text{GL}_3(F)/\text{GL}_3(\mathcal{O})$ and the set X_0 of homothety classes of lattices with G/K. Let G' denote the image of $\text{SL}_3(F)$ in G. The set X_0 splits into three orbits under the action of G'. These orbits are given by L_0 as above, $L_1 = \mathcal{O}e_1 \oplus \mathcal{O}e_2 \oplus \varpi \mathcal{O}e_3$, and $L_2 = \mathcal{O}e_1 \oplus \varpi \mathcal{O}e_2 \oplus \varpi \mathcal{O}e_3$. For a given vertex $x \in X_0$ we say x is of type j if $G'x \subseteq G'L_j$ for $j = 0, 1, 2$. Two vertices $x \neq y$ are joined by an edge if and only if there are representatives Λ_1 and Λ_2 for x and y such that $\varpi \Lambda_1 \subset \Lambda_2 \subset \Lambda_1$. It follows that x and y must be of different type. This describes the 1-skeleton X_1 of X. The following Lemma gives further properties of the graph X_1.

Lemma 1.1 (a) Every vertex in X has $2(q^2 + q + 1)$ neighbours.

(b) Two neighboured vertices have $q + 1$ common neighbours.

(c) Any three distinct vertices have at most one common neighbour.

Proof: For (a) it suffices to consider the vertex given by L_0. Every neighbour has a representative lattice L with

$$\varpi L_0 \subset L \subset L_0.$$

Now $L_0/\varpi L_0 \cong \mathbb{F}_q^3$ as a vector space over \mathbb{F}_q, and L defines a sub vector space. Thus the set of all neighbours of $[L_0]$ is in bijection with the set of all non-trivial sub vector spaces of \mathbb{F}_q^3 which are $2(1 + q + q^2)$ in number. Part (b) and (c) are similar. \square
Whenever three vertices x, y, z are mutually connected by edges, then this triangle forms the boundary of a 2-cell of X, called a chamber. This describes X as a CW-complex. There is, however, more structure through the geometry of the apartments. For instance, whenever two edges meet in a vertex, there is an angle between them which can be $\pi/3, 2\pi/3$, or π. A geodesic c in X is a straight oriented line in one apartment. If c happens to lie inside X_1, then it gives rise to a sequence of edges $(\ldots, e_{-1}, e_0, e_1, \ldots)$ such that e_k and e_{k+1} have angle π for every $k \in \mathbb{Z}$. In this case we say that c is a rank-one geodesic.

For each edge e with vertices $\{x, y\}$ we fix an orientation, i.e., an ordering of the vertices (x, y) such that if x is of type j, then y is of type $j + 1 \text{ mod}(3)$. An edge equipped with this orientation will be called positively oriented. Likewise, for the chambers we fix a positive orientation by ordering the vertices by type.

Lemma 1.2 The action of G on the edges and the chambers preserves the positive orientation.

Proof: Let $g \in G$. It suffices to show that if gL_0 is of type j, then gL_1 is of type $j + 1 \text{ mod}(3)$. First note that the double quotient $G'\backslash G/K$ has three elements given by the class of 1, diag$(1, 1, \varpi)$ and diag$(1, \varpi, \varpi)$. Next note that the action of K preserves the positive orientation on edges that contain the base point L_0. Thus it suffices to prove the claim for the three given elements which is easily done. \qed

2 The zeta function

Let $\Gamma \subset G$ be a discrete cocompact and torsion-free subgroup. Then Γ acts without fixed points on X and thus Γ is the fundamental group of the quotient $\Gamma \backslash X$.

2.1 Definition

A geodesic c in the quotient $\Gamma \backslash X$ is the image of a geodesic \tilde{c} in X under the projection map $X \rightarrow \Gamma \backslash X$. The geodesic c is called rank-one if \tilde{c} is. For a geodesic c we denote by c^{-1} the geodesic with the reversed orientation. When speaking about closed geodesics in $\Gamma \backslash X$ we adopt the convention that a closed geodesic comes with a multiplicity (going round more then once).
A closed geodesic with multiplicity one is called a *primitive* closed geodesic. To a given closed geodesic c there is a unique primitive one c_0 such that c is a power of c_0. For a closed geodesic c in $\Gamma \backslash X$ let $l(c)$ denote its length. Here the length is normalized such that any edge gets the length 1. We define the zeta function

$$Z(u) = \prod_c \left(1 - u^{l(c)}\right)$$

as a formal power series at first, where c ranges over the set of all primitive rank-one closed geodesics in $\Gamma \backslash X$ modulo homotopy and modulo change of orientation. It is easy to show that the Euler product defining $Z(u)$ actually converges for $u \in \mathbb{C}$ with $|u|$ small enough.

2.2 A comparison

An element g of G is called *neat* if for every rational representation $\rho: G \to \text{GL}_n(F)$ over F the matrix $\rho(g)$ has the following property: the subgroup of F^\times generated by all eigenvalues of $\rho(g)$ is torsion-free. Here F is an algebraic closure of F. The element g is called *weakly neat* if the adjoint $\text{Ad}(g) \in \text{GL}(\text{Lie}(G))$ has no non-trivial root of unity as eigenvalue. Obviously neat implies weakly neat. A subgroup $\Gamma \subset G$ is called neat/weakly neat if every $\gamma \in \Gamma$ is neat/weakly neat in G. Every arithmetic group Γ has a subgroup of finite index which is neat [2].

An element g of G is called *regular* if its centralizer is a torus. A subgroup Γ of G is called regular if every $\gamma \in \Gamma$, $\gamma \neq 1$ is regular in G. A regular group is weakly neat.

In [5], the author defined for Γ being discrete, cocompact, and weakly neat a zeta function $Z_P(u)$ attached to a parabolic subgroup $P \subset G$ of split rank one. It is shown that $Z_P(u)$ is a rational function and that its poles and zeros can be described in terms of certain cohomology groups.

Proposition 2.1 Suppose the group Γ is discrete, cocompact and regular. Then $Z_P(u) = Z(u)$ for every parabolic P of split rank one.

Proof: We will recall the definition of $Z_P(u)$. Let $P = LN$ be a Levi decomposition of P and $A \subset L$ be a maximal split torus. The dimension of A is one. Let A^+ be the set of all $a \in A$ that act on the Lie algebra of N by eigenvalues μ with $|\mu| > 1$. Fix an isomorphism $\varphi: A \cong F^\times$ that maps A^+ to the set of $x \in F^\times$ with $v(x) > 0$, where v is the valuation of F. For $a \in A^+$
let $l(a) = v(\varphi(a))$. Let M be the derived group of M and let M_{ell} be the set of all elliptic elements of M. Let $\mathcal{E}_P(\Gamma)$ denote the set of all conjugacy classes $[\gamma]$ in Γ such that γ is in G conjugate to an element $a_\gamma m_\gamma \in A^+ M_{\text{ell}}$. An element $\gamma \in \Gamma$ is called primitive if $\gamma = \sigma^n m n \in \mathbb{N}$, $\sigma \in \Gamma$ implies $n = 1$. Let $\mathcal{E}_P^\Gamma(\Gamma)$ denote the set of primitive elements in $\mathcal{E}_P(\Gamma)$. The zeta function Z_P is defined as

$$Z_P(u) = \prod_{[\gamma] \in \mathcal{E}_P^\Gamma(\Gamma)} (1 - u^{l(a_\gamma)}) \chi_1(\Gamma_\gamma),$$

where Γ_γ is the centralizer of γ in Γ and

$$\chi_1(\Gamma_\gamma) = \sum_{p=0}^{\dim X} p(-1)^{p+1} \dim H^p(\Gamma_\gamma, \mathbb{Q}).$$

First we remark that since Γ is regular, we have that $\Gamma_\gamma \cong \mathbb{Z}$ for every $\gamma \in \mathcal{E}_P(\Gamma)$ and thus the Euler numbers $\chi_1(\Gamma_\gamma)$ are all equal to 1. Next let $[\gamma] \in \mathcal{E}_P^\Gamma(\Gamma)$. The function $d_\gamma(x) = \text{dist}(\gamma x, x)$ on X attains its minimum on a unique apartment of X. On this apartment, γ acts by a translation along a rank-one geodesic \tilde{c} by the amount $l(a_\gamma)$. So γ closes this geodesic and its image c in $\Gamma \backslash X$ has length $l(c) = l(a_\gamma)$. The other way round, every rank-one closed geodesic c must be closed by one primitive element γ of Γ. Then γ either lies in $\mathcal{E}_P(\Gamma)$ or has splitrank two in which case the geodesic it closes cannot be rank-one. This shows that the Euler products defining $Z(u)$ and $Z_P(u)$ coincide. □

2.3 A factorization

Two rank-one geodesics in X are called adjacent if they lie in the same apartment, they are parallel, and there is only one row of chambers between them. Recall a gallery \cite{3} in X is a sequence $g = (C_0, \ldots, C_n)$ of chambers such that C_j and C_{j+1} are adjacent for every j. We say that a gallery g is rank-one if $C_{j-1} \neq C_{j+1}$ for every j and the gallery is located between two rank-one geodesics. The next picture shows an example of a rank-one gallery.
A rank-one gallery in $\Gamma \backslash X$ is the image of a rank-one gallery in X under the projection map. In $\Gamma \backslash X$ it may happen for a rank-one gallery $g = (C_0, \ldots, C_n)$ that $C_0 = C_n$ in which case we say that g is closed. In this case the number n is even and we define the length of g to be $l(g) = n/2$. We say that g is primitive if furthermore $C_0 \neq C_j$ for $0 < j < n$. Two closed galleries (C_0, \ldots, C_n) and (E_0, \ldots, E_n) are equivalent if there is $k \in \mathbb{Z}$ with $C_j = E_{j+k}$, where the indices run modulo n. An equivalence class of closed rank-one galleries is called a loop of galleries.

Let C_1 denote the set of all primitive closed rank-one geodesics in $\Gamma \backslash X$ modulo reversal of orientation. Let C_2 denote the set of all primitive loops of galleries in $\Gamma \backslash X$ modulo reversal of orientation. Let

$$Z_j(u) \overset{\text{def}}{=} \prod_{c \in C_j} (1 - u^{l(c)})$$

for $j = 1, 2$.

Proposition 2.2 For the zeta function Z we have $Z(u) = Z_1(u) Z_2(u)$. Moreover, if Γ is regular, then $Z_2(u) = 1$.

Proof: For any two topological spaces X, Y let $[X, Y]$ be the set of homotopy classes of continuous maps from X to Y. Let S^1 be the 1-sphere and consider the natural bijection

$$\Gamma/\text{conjugation} \rightarrow [S^1, \Gamma \backslash X]$$

given by the identification $\Gamma \cong \pi_1(\Gamma \backslash X)$. If two closed geodesics c_1, c_2 are homotopic, then they are closed by conjugate elements of Γ. So they have
preimages \tilde{c}_1, \tilde{c}_2 in X which are closed by the same element γ. Hence \tilde{c}_1 and \tilde{c}_2 lie both in the apartment \mathfrak{a} where $d_\gamma(x)$ is minimized. Since $\langle \gamma \rangle \backslash \mathfrak{a}$ is a cylinder, c_1 and c_2 are homotopic through closed geodesics of the same length passing through loops of galleries or intermediate rank-one geodesics.

On the other hand, each closed loop of galleries in $\Gamma \backslash X$ induces a homotopy between two closed geodesics of the same length: the two boundary components of the gallery. Thus we see that the overcounting in $Z_1(u)$ is remedied by dividing by $Z_2(u)$ to result in $Z(u)$.

For the second part assume there is a closed loop l. Let (C_0, \ldots, C_n) be a gallery in X being mapped to l. Then there is $\gamma \in \Gamma$ with $\gamma C_0 = C_n$ and $C_0 \subset M_\gamma$, where

$$M_\gamma = \{ x \in X : d_\gamma(x) = \min \}.$$

For any γ the set M_γ is either a geodesic line or an apartment. Since $C_0 \subset M_\gamma$ is our given case, it follows that M_γ is an apartment attached to a maximal split torus A which contains γ. But since γ translates along a rank-one geodesic it must lie in a one-dimensional standard subtorus of A, which means it is not regular. A contradiction. The claim follows. □

3 The zeta function for the 1-skeleton

Let $E(X)$, resp. $E(\Gamma \backslash X)$ denote the set of positively oriented edges in X, resp. $\Gamma \backslash X$.

Consider the vector spaces

$$C_1(X) = \prod_{e \in E(X)} \mathbb{C}e, \quad C_1(\Gamma \backslash X) = \prod_{e \in E(\Gamma \backslash X)} \mathbb{C}e.$$

The second space is finite dimensional. This notion actually makes sense due to Lemma 1.2. Define a linear operator T on $C_1(\Gamma \backslash X)$ by $Te = \sum_{e' : e \rightarrow e'} e'$, where the sum runs over all positively oriented edges e' such that the endpoint of e is the starting point of e' and e, e' lie on a rank-one geodesic, i.e., have angle π. By the same formula, we define an operator \tilde{T} on $C_1(X)$. Note that Γ acts on $C_1(X)$ and that \tilde{T} is Γ-equivariant. One has a natural identification $C_1(\Gamma \backslash X) \cong C_1(X)^\Gamma$, and $T \cong \tilde{T}|_{C_1(X)^\Gamma}$.

Theorem 3.1 We have $Z_1(u) = \det(1 - uT)$. In particular, $Z_1(u)$ is a polynomial of degree equal to the number of edges of $\Gamma \backslash X$, or, equivalently,

$$\deg Z_1(u) = \frac{(q + 1)N}{2}.$$
where \(N \) is the number of vertices in \(\Gamma \setminus X \).

Proof: One computes

\[
\text{tr} \, T^n = \sum_e \langle Te, e \rangle = \sum_{c: l(c) = n} l(c_0),
\]

where the second sum runs over all closed geodesics of length \(n \) and \(c_0 \) is the underlying primitive of \(c \). In the next computation, we will use the letter \(c \) for an arbitrary closed geodesic, \(c_0 \) for a primitive one, and if both occur, it will be understood that \(c_0 \) is the primitive underlying \(c \). We compute

\[
Z_1(u) = \exp \left(- \sum_{c_0} \sum_{m=1}^{\infty} \frac{u^{l(c_0)m}}{m} \right)
\]

\[
= \exp \left(- \sum_c \frac{u^{l(c)}}{l(c)} l(c_0) \right)
\]

\[
= \exp \left(- \sum_{n=1}^{\infty} \frac{u^n}{n} \sum_{c: l(c) = n} l(c_0) \right)
\]

\[
= \exp \left(- \sum_{n=1}^{\infty} \frac{u^n}{n} \text{tr} \, T^n \right)
\]

\[
= \det(1 - uT).
\]

For the last line we used the fact that for a matrix \(A \) we have \(\exp(\text{tr} \, (A)) = \det(\exp(A)) \). To prove the final assertion of the Theorem it suffices to show that \(T \) is invertible on \(C_1(\Gamma \setminus X) \). For this in turn it suffices to show that \(\tilde{T} \) has a right-inverse on \(C_1(X) \). So let \(e \) be a positively oriented edge with endpoint \([L_0]\), and let \(e' \) be a positively oriented edge with start point \([L_0]\) such that \(e, e' \) lie on a geodesic. Let \([A_2]\) be the start point of \(e \) and \([A_1]\) the end point of \(e' \). The situation is this:

\[
[A_2] \xrightarrow{e} [L_0] \xrightarrow{e'} [A_1],
\]

where \([A_j]\) is of type \(j \) for \(j = 1, 2 \). We can choose representatives satisfying

\[
\varpi L_0 \subset A_1, A_2 \subset L_0.
\]
The condition on the types translates to the \mathbb{F}_q-vector space $\Lambda_j/\varpi L_0$ being of dimension j. The condition that e, e' lie on a geodesic is equivalent to $\Lambda_1 \nsubseteq \Lambda_2$.

For $j = 1, 2$ let W_j be the complex vector space formally spanned by the set of all j-dimensional sub vector spaces of \mathbb{F}_q^3. Let

$$T: W_2 \to W_1$$

be given by

$$T(\Lambda_2) = \sum_{\Lambda_1 \nsubseteq \Lambda_2} \Lambda_1.$$

Define $T': W_1 \to W_2$ by

$$T'(\Lambda_1) = \frac{-1}{q + 1} \sum_{\Lambda_2 \supset \Lambda_1} \Lambda_2 + \frac{1}{q^2 - q - 1} \sum_{\Lambda_2 \not\supset \Lambda_1} \Lambda_2.$$

Then

$$\tilde{T}T'(\Lambda_1) = \frac{-1}{q + 1} \sum_{\Lambda_2 \supset \Lambda_1} \sum_{\Lambda'_1 \nsubseteq \Lambda_2} \Lambda'_1 + \frac{1}{q^2 - q - 1} \sum_{\Lambda_2 \not\supset \Lambda_1} \sum_{\Lambda'_1 \nsubseteq \Lambda_2} \Lambda'_1$$

$$= \sum_{\Lambda'_1} c(\Lambda'_1) \Lambda'_1,$$

where

$$c(\Lambda'_1) = \frac{-\#\{\Lambda_2 \supset \Lambda_1, \Lambda_2 \not\supset \Lambda'_1\}}{q + 1} + \frac{\#\{\Lambda_2 \not\supset \Lambda_1, \Lambda_2 \not\supset \Lambda'_1\}}{q^2 - q - 1}$$

$$= \begin{cases} 1 & \text{if } \Lambda'_1 = \Lambda_1 \\ 0 & \text{if } \Lambda'_1 \neq \Lambda_1. \end{cases}$$

This calculation shows that the operator T' on $C_1(X)$ given by

$$T'(e) = \frac{-1}{q + 1} \sum_{e' \rightarrow e \text{ non geodesic}} e' + \frac{1}{q^2 - q - 1} \sum_{e' \rightarrow e \text{ geodesic}} e'$$

is a right-inverse to \tilde{T}. The claim follows. \qed
3.1 A combinatorial computation

In the following, we will write c for an arbitrary closed rank-one geodesic in $\Gamma \backslash X$ and c_0 for a primitive one. If c and c_0 both occur, it will be understood that c_0 is the underlying primitive of c. We compute

\[
\frac{Z_1'(u)}{Z_1(u)} = (\log Z_1(u))' = - \sum_{c_0} \sum_{n=1}^{\infty} l(c_0) u^{l(c_0)n-1} = - \sum_{n=1}^{\infty} u^{n-1} \sum_{c:l(c)=n} l(c_0).
\]

Note that the sums run modulo reversal of orientation.

There is a natural orientation on each rank-one geodesic in X given as follows. We say that a rank-one geodesic C in X is positively oriented if it runs through the vertices in the order of types: 0, 1, 2, 0, 1, 2, ... The image c_Γ of c in $\Gamma \backslash X$ is isomorphic to the image in $\langle \gamma \rangle \backslash X$, where $\gamma \in \Gamma$ is the element in Γ that closes c. Since $\gamma c = c$ and γ acts on c by a translation it preserves the orientation of c and so it does make sense to speak of positive or negative orientation for c_Γ.

A line segment in X is a sequence of vertices $s = (x_0, \ldots, x_k)$ such that they are consecutive vertices on a rank-one geodesic. A line segment in $\Gamma \backslash X$ is the image of one in X. The length of a line segment $s = (x_0, \ldots, x_n)$ is $l(s) = n$. On the vector spaces

\[
C_0(X) \overset{\text{def}}{=} \bigoplus_{x \text{ vertex in } X} \mathbb{C} x, \quad C_0(\Gamma \backslash X) \overset{\text{def}}{=} \bigoplus_{x \text{ vertex in } \Gamma \backslash X} \mathbb{C} x,
\]

we define an operator A_n for each $n \in \mathbb{N}$ by

\[
A_n x = \sum_{s:l(s)=n, o(s)=x} e(s),
\]

where the sum runs over all positively oriented line segments s in $\Gamma \backslash X$ with starting point x and length n, and $e(s)$ denote the endpoint of s.

Lemma 3.2 The operator A_n has the trace

\[
\text{tr } A_n = \sum_{c:l(c)=n} l(c_0),
\]
where the sum runs over all closed rank-one geodesics in \(\Gamma \setminus X \) modulo reversal of orientation.

Proof: Instead of summing modulo reversal of orientation one can as well sum over all positively oriented geodesics. Recall \(\text{tr} A_n = \sum_x \langle A_n x, x \rangle \), where the sum runs over all vertices of \(\Gamma \setminus X \) and the pairing \(\langle , \rangle \) is the one given by \(\langle x, y \rangle = \delta_{x,y} \) for vertices \(x, y \). A vertex \(x \) can only have a non-zero contribution \(\langle A_n x, x \rangle \) if it lies on a close geodesic of length \(n \). The contribution of each given geodesic \(c \) equals \(l(c_0) \).

\[\square \]

3.2 The unramified Hecke algebra

Recall that \(G \) is a unimodular group, so any Haar-measure will be left- and right-invariant. We normalize the Haar measure so that the compact open subgroup \(K \) gets volume 1. For a subset \(A \) of \(G \) we write \(1_A \) for its indicator function. Let \(\mathcal{H}_K \) denote the space of compactly supported functions \(f: G \to \mathbb{C} \) with \(f(k_1 x k_2) = f(x) \) for all \(k_1, k_2 \in K, x \in G \). This is an algebra under convolution,

\[f * g(x) = \int_G f(y) g(y^{-1}x) \, dx. \]

It is known \[4\], that \(\mathcal{H}_K \) is a commutative algebra. It has a unit element given by \(1_K \).

We will also write \(KgK \) for the function \(1_{KgK} \in \mathcal{H}_K \). So a typical element of \(\mathcal{H}_K \) is written as

\[f = \sum_j c_j Kg_j K, \quad \text{finite sum}, \]

and

\[I(f) = \sum_j c_j \text{vol}(Kg_j K). \]

The space \(C_c(G/K) \) can be identified with \(C_0(X) \) since \(G/K \) can be identified with the set of vertices via \(gK \mapsto gL_0 \). Likewise, \(C_c(\Gamma \setminus G/K) \) identifies with \(C_0(\Gamma \setminus X) \). The Hecke algebra \(\mathcal{H}_K \) acts on \(C_c(G/K) \) and \(C_c(\Gamma \setminus G/K) \) via \(g \mapsto g * f, g \in C_c(G/K), f \in \mathcal{H}_K \). This will be considered as a left action as is possible since \(\mathcal{H}_K \) is commutative. In \(\mathcal{H}_K \) we consider the elements

\[\pi_1 = K \text{diag}(1, 1, \varpi) K, \quad \pi_2 = K \text{diag}(1, \varpi, \varpi) K. \]
Lemma 3.3 For $j = 1, 2$,
\[\pi_j L_0 = \sum_{x \text{ adjacent to } L_0} x. \]

Proof: Clear. \qed

Proposition 3.4 As operators on $C_0(X)$ or $C_0(\Gamma \setminus X)$ respectively,

(a) $A_1 = \pi_1$,
(b) $A_2 = \pi_1^2 - (q + 1)\pi_2$,
(c) $A_3 = \pi_1^3 - (2q + 1)\pi_1\pi_2 + (1 + q + q^2)q$,
(d) For $n \geq 3$,
\[A_{n+1} = A_n\pi_1 - qA_{n-1}\pi_2 + q^3A_{n-2}. \]

Proof: Part (a) follows from Lemma 3.3. It is clear that $\pi_1^2 = A_2 + c\pi_2$ for some number c. From (b) in Lemma 3.1 it follows that $c = q + 1$ which implies part (b). The rest follows similarly. \qed

Let $F(u)$ be the following formal powers series with values in the space $\text{End}(C_0(\Gamma \setminus X))$,
\[F(u) = \sum_{n=1}^{\infty} u^{n-1}A_n. \]

Then $\text{tr} F(u) = \frac{Z_1'}{Z_1}(u)$. The relations in Proposition 3.4 imply the following Lemma.

Lemma 3.5 We have
\[F(u) = H(u) \left(1 - u\pi_1 + u^2q\pi_2 - u^3q^3 \right)^{-1}, \]
where $H(u)$ is the polynomial
\[H(u) = (\pi_2 - \pi_1^2) + u(\pi_1^3 - \pi_1\pi_2 + \pi_2^3 - (q + 1)\pi_2) + u^2(\pi_1^3 - (2q + 1)\pi_1\pi_2 + (1 + q + q^2)q). \]

Proof: This follows from Proposition 3.4 by a straightforward computation. \qed
Theorem 3.6 There is \(m \in \mathbb{N} \) and a polynomial \(Q(u) \) such that
\[
Z_1(u) = \frac{\det(1 - u\pi_1 + u^2 q\pi_2 - u^3 q^3)^m}{Q(u)}.
\]

Proof: We have \(\frac{Z_1'}{Z_1}(u) = \text{tr} F(u) \), so the poles of \(\frac{Z_1'}{Z_1}(u) \) must be singularities of \(F(u) \), which form a subset of the set of zeros of the polynomial \(\det(1 - u\pi_1 + u^2 q\pi_2 - u^3 q^3) \). This implies the claim. \(\square \)

4 The zeta function on galleries

We now will show that the zeta function on galleries, \(Z_2(u) \), also is a polynomial. Recall that every chamber \(C \) of \(X \) or \(\Gamma \setminus X \) has three vertices, one of each type 0,1,2. Accordingly, it has three edges of types (0,1), (1,2), and (2,0) respectively. So let
\[
C_2(X) = \prod_C \mathbb{C}C, \quad C_2(\Gamma \setminus X) = \prod_{C \mod \Gamma} \mathbb{C}C,
\]
where the product runs over all chambers of the buildings \(X \) and \(\Gamma \setminus X \).

On \(C_1(\Gamma \setminus X) \) we define a linear operator \(L_1 \) mapping a chamber \(C \) to the sum of all chambers \(C' \) such that the (1,2)-edge of \(C' \) is the direct geodesic prolongation of the (0,1)-edge of \(C \) as in the following picture.

Similarly, define \(L_2 \) and \(L_3 \) by replacing \((0,1,2) \) by \((1,2,0) \) and \((2,0,1) \) respectively. Then let \(L \stackrel{\text{def}}{=} L_3L_2L_1 \).
Proposition 4.1 We have

\[Z_2(u) = \det(1 - u^3L). \]

In particular, \(Z_2(u) \) is a polynomial of degree at most 3 times the number of chambers of \(\Gamma\backslash X \).

Proof: It is easy to see that

\[\text{tr } L^n = \sum_{c: l(c)=3n} \frac{l(c_0)}{3}, \]

where the sum runs over all loops of galleries in \(\Gamma\backslash X \). From this, the proposition follows by the same computation as before. \(\square \)

Finally, Theorem 0.1 follows from Proposition 2.2, Theorem 3.6 and Proposition 4.1.

References

[1] Bass, H.: *The Ihara-Selberg zeta function of a tree lattice.* Int. J. Math. 3, No.6, 717-797 (1992).

[2] Borel, A.: *Introduction aux groupes arithmétiques.* Hermann, Paris 1969.

[3] Brown, K.: *Buildings.* Springer-Verlag, New York, 1989.

[4] Cartier, P.: *Representations of \(p \)-adic groups: A survey.* Automorphic forms, representations and L-functions, Proc. Symp. Pure Math. Am. Math. Soc., Corvallis/Oregon 1977, Proc. Symp. Pure Math. 33, 1, 111-155 (1979).

[5] Deitmar, A.: *Geometric zeta-functions on \(p \)-adic groups.* Math. Japon. 47, No. 1, 1-17 (1998).

[6] Hashimoto, K.: *Zeta functions of finite graphs and representations of \(p \)-adic groups.* Automorphic forms and geometry of arithmetic varieties. Adv. Stud. Pure Math. 15, 211-280 (1989).
[7] Hashimoto, K.: *On zeta and L-functions on finite graphs.* Int. J. Math. 1. no 4, 381-396 (1990)

[8] Hashimoto, K.: *Artin type L-functions and the density theorem for prime cycles on finite graphs.* Int. J. Math. 3, no 6, 809-826 (1992).

[9] Ihara, Y.: *Discrete subgroups of PL(2, k_v).* Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) pp. 272–278 Amer. Math. Soc., Providence, R.I. (1966).

[10] Stark, H. M.; Terras, A. A.: *Zeta functions of finite graphs and coverings.* Adv. Math. 121 (1996), no. 1, 124–165.

Mathematisches Institut
Auf der Morgenstelle 10
72076 Tübingen
Germany
deitmar@uni-tuebingen.de

Department of Mathematics
Louisiana State University
Baton Rouge, LA 70803-4918
USA
hoffman@math.lsu.edu