Targeted metagenomics reveals extensive diversity of the denitrifying community in partial nitritation anammox and activated sludge systems

Laura Orschler | Shelesh Agrawal | Susanne Lackner

Abstract
The substantial presence of denitrifiers has already been reported in partial nitritation anammox (PNA) systems using the 16S ribosomal RNA (rRNA) gene, but little is known about the phylogenetic diversity based on denitrification pathway functional genes. Therefore, we performed a metagenomic analysis to determine the distribution of denitrification genes and the associated phylogeny in PNA systems and whether a niche separation between PNA and conventional activated sludge (AS) systems exists. The results revealed a distinct abundance pattern of denitrification pathway genes and their association to the microbial species between PNA and AS systems. In contrast, the taxonomic analysis, based on the 16S rRNA gene, did not detect notable variability in denitrifying community composition across samples. In general, narG and nosZa2 genes were dominant in all samples. While the potential for different stages of denitrification was redundant, variation in species composition and lack of the complete denitrification gene pool in each species appears to confer niche separation between PNA and AS systems. This study suggests that targeted metagenomics can help to determine the denitrifying microbial composition at a fine-scale resolution while overcoming current biases in quantitative polymerase chain reaction approaches due to a lack of appropriate primers.

KEYWORDS
activated sludge, functional diversity, metagenomics/community genomics, microbial communities, partial nitritation anammox

INTRODUCTION

The tremendous anthropogenic influence of increasing nitrogen loads to feed the world's population has a significant effect on the global nitrogen cycle (Gruber & Galloway, 2008). As only a small proportion of the nitrogen is captured in our bodies, the main fraction is excreted with urine. If not treated properly, these nitrogen compounds are discharged into open water bodies, resulting in eutrophication. The removal of nitrogen from wastewater is, therefore, of extreme environmental importance especially in densely populated areas (Kowalchuk & Stephen, 2001). Typical biological treatment technologies like the conventional activated sludge (AS) process are based on two-step nitrification/denitrification. Since the discovery of autotrophic anaerobic ammonium oxidizing bacteria (AnAOB; Strous et al., 1999), there has been a shift from conventional nitrification/denitrification to anaerobic ammonium oxidation combined with
partial nitratation, anammox (PNA) for certain applications over the last two decades. PNA is the completely autotrophic oxidation of ammonium with nitrite as an electron acceptor, converting nitrite and the remaining ammonium from aerobic AOB to nitrogen gas. Driven by the much higher energy-efficiency due to less aeration demands, today, more than 150 PNA installations are already successfully operated worldwide (Lackner et al., 2014).

Initially, only a very limited number of microorganisms, that is, AOB, AnAOB, and nitrite-oxidizing bacteria (NOB) were considered as key players in PNA systems. However, with time many studies reported that denitrifiers are common and usually dominant in PNA systems. Thus, these bacteria may contribute to the overall nitrogen removal potential of the PNA microbiome (Agrawal et al., 2017; Chen et al., 2019; Chu et al., 2015; Pereira et al., 2017; Persson et al., 2017; Y. Wang et al., 2019). Denitrification is a facultative respiratory pathway reducing nitrate (NO$_3^-$), nitrite (NO$_2^-$), nitric oxide (NO), and nitrous oxide (N$_2$O) to nitrogen gas (N$_2$) catalyzed by four types of nitrogen reductases in sequence: nitrate reductase (Nar), nitrite reductase (Nir), nitric oxide reductase (Nor), and nitrous oxide reductase (Nos; Zumft, 1997). Denitrification is not typically linked to phylogeny because denitrifiers are taxonomically diverse, therefore most studies about denitrification focused on functional genes rather than the 16S ribosomal RNA (rRNA) gene (Philippot, 2006). But, in case of PNA systems, most of the previous studies reported the occurrence of denitrifiers in PNA systems based on 16S rRNA gene amplicon sequencing (Agrawal et al., 2018; Cao et al., 2017; Pereira et al., 2017).

There are few studies (Pellicer-Nàcher et al., 2014; Shu et al., 2018; D. Wang et al., 2019), which used quantitative polymerase chain reaction (qPCR) for quantitative analysis of denitrifying functional genes in PNA systems. However, for all denitrifying genes, several primer pairs have been published and continuously reassessed, especially for nitrite reductase (nirK and nirS; Braker & Tiedje, 2003; Casciotti & Ward, 2001; Throback et al., 2004). Ma et al. (2019) evaluated the coverage of existing primer pairs in silico based on a metagenomic study. The results pointed out that the existing nirK, nirS, and norB primers have low coverage over the entire gene pool, and in consequences are hardly suitable for molecular methods to investigate denitrifiers. Also for narG and nosZ primers, there are serious issues for both, coverage and specificity (Ma et al., 2019). This implies that the use of currently available primers for assessing denitrifiers can introduce bias in the results. A similar situation appears with primer pairs for the 16S rRNA gene and other functional genes (Orschler et al., 2019).

The use of metagenomics can circumvent the problems associated with PCR-based approaches in understanding the role of denitrifiers, which carry one or more denitrifying genes (Agrawal et al., 2018). To the best of our knowledge, very few metagenomic studies are available on PNA systems, and that limits the focus primarily to AnAOB and few selected denitrifiers (Bhattacharjee et al., 2017; Guo et al., 2016; Lawson et al., 2017; Speth et al., 2016). Nevertheless, these studies are only based on the analysis of a single sample with no observation of the diversity of denitrifying community between different PNA and AS systems. Moreover, these studies were based on the lab-scale PNA system (Bhattacharjee et al., 2017; Guo et al., 2016; Lawson et al., 2017), or a full-scale PNA reactor at the end of the mainline of a wastewater treatment plant treating potato-processing wastewater at 35°C (Speth et al., 2016). Thus, there is still a lack of knowledge about the extent of diversity of denitrifying community based on profiling of functional genes among full-scale PNA systems, as well as to what extent the denitrifying community of full-scale PNA differs from AS systems.

In this study, we investigated differences and similarities of the denitrification genes and microorganisms associated with them, between two sidestream PNA systems and also compared with the conventional AS processes of the respective wastewater treatment plants (WWTPs). The de novo metagenomic assembly tends to assemble dominant microorganisms (Namiki et al., 2012; Q. Wang et al., 2015), because it is reliant on reference sequence databases containing an unknown amount of extant microbial diversity. Thus, it could result in the limited recovery of denitrification genes. Therefore, we analyzed samples from two different WWTP employing a targeted metagenomic assembly approach. We also show in this study, the impact of determining the composition of denitrifying members based on 16S amplicon sequencing in comparison to the targeted metagenomic assembly approach for genes associated with the denitrification pathway.

2 MATERIALS AND METHODS

2.1 Sample collection

Biomass samples were collected from two different wastewater treatment plants in Germany: two samples from conventional AS nitrification–denitrification processes (AS1 and AS2) and two samples from sidestream single-stage sludge-based PNA processes (PNA1 and PNA2; Table S1). Total genomic DNA was extracted from triplicates using the Fast DNA Spin Kit for soil (MP Biomedicals) according to a modified manufacturer’s protocol (Orschler et al., 2019) and pooled afterward. The quality of the DNA was checked using gel electrophoresis, and the concentration was measured using a Qubit 3.0 Fluorometer (Thermo Fisher Scientific).

2.2 Library preparation and sequencing

Sample preparation and library construction were performed with the Ion Xpress™ Plus Fragment Library Kit (Thermo Fisher Scientific). Enzymatic shearing was used to prepare fragment libraries from genomic DNA for downstream template preparation and was handled according to the manufacturer’s protocol. Purified DNA was tagged using the Ion Xpress Barcodes Adapters™ (Thermo Fisher Scientific) and the size selection of the library for 600 base-pair (bp) reads was performed with E-Gel™ Size Select™ II Agarose Gel. Each sample was adjusted to a 60-pM concentration. Template
preparation was performed on the ION chef system with Ion 520™ & Ion 530™ ExT Kit. Sequencing was performed on the Ion Torrent (ION Torrent Ion S5) using the 530 chip. Base-calling, demultiplexing, and initial quality control were conducted by Torrent Suite version 4.4.2 (Thermo Fisher Scientific) with default parameters. Trimmed and quality-filtered reads were used for downstream analyses.

2.3 Targeted metagenomics for functional analysis

To evaluate the abundance and phylogenetic affiliation of genes associated with nitrogen metabolism, specific genes were assembled using the Xander assembler (Q. Wang et al., 2015). To assemble the sequences, Xander requires the protein profile Hidden Markov Model (HMM) built from a reference set of target genes. For narG, napA, nirK, nirS, norB, nosZ, nosZa1, and nosZa2 genes, nucleotide, and amino acid sequences were downloaded from the Functional Gene Repository (http://fungene.cme.msu.edu). The minimal cutoff was set to 100 amino acids. For each gene, a table of the operational taxonomic unit (OTU) counts was made based on k-mer (set value 45) coverage of the representative sequences. The OTU tables were further analyzed in R.

2.4 Taxonomic affiliation based on the 16S rRNA gene

From the whole metagenome dataset, 16S rRNA gene sequences were extracted with Metaxa2 (version 2.0) using default settings (Bengtsson-Palme et al., 2015). Genus assignment was performed at more than 95% identity with the reference 16S rRNA gene sequence and reported as relative abundance.

2.5 Statistical analysis

All statistical tests were performed in R. Nonmetric multidimensional scaling (NMDS) analysis was performed using the metaMDS function of the “vegan” package to create an ordination based on the sample dissimilarity. Heatmaps and bar plots diagrams were all generated in R (http://www.R-project.org/). Venn diagrams were created using the “VennDiagram” package in R. Proportionality correlation was performed using the “propr” package in R and p-values for the correlation analysis were also calculated.

3 RESULTS

The four samples (two samples from each WWTP: sidestream PNA and AS samples; for more information see Table S1) produced an average of 12 million quality filtered, merged reads, at an average length of 460 bp. The four samples were grouped into two categories by process design for analysis and discussion. The first category summaries the AS processes (referred to as AS1 and AS2), whereas the second group includes the sidestream PNA systems (PNA1 and PNA2) with no external inoculum for process start-up. To focus on the denitrification pathway, reads were extracted from the full metagenome dataset and analyzed. From here on, the read abundance is presented as mean read per million (rpm) reads.

The results revealed that the aggregate abundance of genes associated with nitrate (napA and napA) and nitrous oxide reduction (nosZ, nosZa1, and nosZa2) were higher than the genes associated with the nitrite and nitric oxide reduction (Figures 1 and S1). The total abundance of the nitrate reductase encoding genes in PNA2 (217 rpm) was highest, followed by PNA1 (164 rpm) > AS2 (87 rpm) > AS1 (73 rpm). However, looking at individual genes (i.e., napA and narG), the respiratory nitrate reductase gene (narG) was higher in abundance than the periplasmic nitrate reductase gene (napA), especially in PNA systems. The narG:napA ratio ranged from 12.0 for PNA1; 8.0 for PNA2; 2.0 for AS2 to 1.0 for AS1. In the AS samples, the napA gene was more abundant than in the PNA samples. In AS1, AS2, and PNA1 the cytochrome cd containing nitrite reductase gene (nirS), as well as the copper-containing nitrite reductase gene (nirK) were found. However, the nirS gene was dominant in all the samples. In PNA2 only nirS was found. The aggregate abundance of the nitrite reductase genes (i.e., nirS and nirK) was very similar for AS1 (77 rpm) and PNA2 (71 rpm), followed by PNA1 (61 rpm) and AS2 (32 rpm). The abundance of nitric oxide gene (norB) was higher in the AS than in the PNA samples (Figure S1). The aggregate read the abundance of the N2O reductase genes (i.e., nosZ, nosZa1, and nosZa2), exhibited a similar trend to the nirS, because nosZ gene abundances were higher in the AS and lower in the sidestream PNA in WWTP1 and vice versa in WWTP2. Of the total reads in all samples assigned to nosZ, the majority of the reads assigned to the atypical clade II nosZ gene, that is, between 62% and 80% of the total reads.

3.1 Correlation analysis of denitrification genes

To investigate the association between the target genes, we assessed the proportionality between the read abundance of the genes across samples. Results are presented in a heatmap of the proportionality metric, ρ, between read counts from each gene in more detail (Figure 2). NarG and napA read counts were inversely proportional (ρ = −1), while the abundance of the narG was strongly proportional with nirK (ρ = 0.99) and nosZ (ρ = 0.96). NapA and norB abundances were also strongly proportional (ρ = 0.95). Proportionality clustering revealed that the abundances of the nirS and nirK had no significant association. However, nirS, nosZa1, and nosZa2 have a significant association, while nirK and nosZ abundances are significantly associated.

3.2 Taxonomic composition

Additionally, we performed taxonomic annotations of the denitrification target genes to determine the pattern in the abundance of
the microorganisms associated with denitrification pathway genes. Also, to determine whether the microorganisms associated with denitrification genes are ubiquitous across the samples, especially between sidestream PNA and AS samples. We used Xander software that uses a novel data structure combining de Bruijn graphs and HMM to target assembly of specific protein-coding genes from metagenomic data (Q. Wang et al., 2015). We used this data structure to apply powerful graph search techniques to assemble individual genes. Xander analysis disclosed all MatchNames related to the analyzed gene set.

Among the annotated reads for all denitrification genes, Proteobacteria was the most abundant phylum, while the abundance varied between samples (Figure S2). The most abundant phyla in the sidestream PNA samples were Proteobacteria (32% in PNA1 and 38% in PNA2), Chloroflexi (18% in PNA1 and 4% in PNA2), Chlorobi (10% in PNA1 and 13% in PNA2), Bacteroidetes (8% in PNA1 and 12% in PNA2), and Ignavibacteria (7% in PNA1 and 5% in PNA2). In comparison, in conventional AS samples, Proteobacteria (50% in AS1 and AS2) and Bacteroidetes (33% in AS1 and 27% in AS2) were the dominant phyla. Besides, in AS2, Actinobacteria (10%) was also dominant (Figure S2).

At the class level, Betaproteobacteria, associated with at least one gene for each intermediate denitrification pathway, were dominant and ubiquitous across the samples (Figure 3). For other dominant classes, we observed differences between the PNA and AS samples (Figure 3). For example, in PNA samples, Gammaproteobacteria associated with narG, napA, and nirS (6% in PNA1 and PNA2); unclassified Chlorobi associated with narG and nosZa2 (10% in PNA1 and 15% in PNA2) and Ignavibacteria associated with nosZa2 (7% in PNA1 and 5% in PNA2) were dominant. Whereas, Alphaproteobacteria associated with narG, napA, and norB (6% in AS1 and 7% in AS2):
Flavobacteriia associated with norB and nosZa2 (16% in AS1 and 8% in AS2) were dominant in AS samples.

In total, 192 species were detected, associated with the denitrification genes. Amongst the 50 most abundant species across the samples for each respective gene, none had the potential for complete denitrification, and the majority were not common among the samples (Figure 4). For nitrate reduction, narG carrying Chloroflexi bacterium OLB14 in PNA1 (28%) and Chlorobi bacterium OLB6 were most abundant in PNA2 (36%), whereas, Dechloromonas denitrificans carrying the napA gene was most abundant in AS1 (75%) and AS2 (65%). NirK reads associated mainly with Nitrosomonas sp. AL212 in AS2 and PNA1; and Nitrosomonas sp. Is79A3 in PNA1, which constitute 100% of the relative abundance. Apart from Nitrosomonas europaea ATC 19718 carrying the norB gene, no other dominant common species were present in the two PNA systems. In the AS2 sample we found higher relative abundance (>80%) of Simplicispira suum associated with the nosZ gene. The nosZa1 was carried by Sulfuritalea hydrogenivorans sk43H (35% relative abundance) in PNA1 and in both PNA samples by Ca. Accumulibacter sp. SK-11 (15-20%). It was also carried by Ca. Accumulibacter phosphatis clade II A str. UW-1 (AS1, 25% relative abundance and 16% in PNA1) and Dechloromonas aromatica RBC in AS2 (45% relative abundance).

3.3 | Comparison of sidestream PNA versus AS microbial composition: Denitrifying members versus whole community

We determined the extent of compositional (dis)similarities between the PNA and AS samples, based on the denitrifying community. Additionally, we compared whether compositional (dis)similarities observed for the denitrifying members extend to the whole microbial community. Therefore, we performed an NMDS to ascertain differences in the microbial community across the samples (Figure 5).

For the denitrifying community, the analysis disclosed no specific clustering among all four samples (Figure 5a). The data points are widely distributed for every sample in one specific corner of the plot. No common species were found in the samples (Figure S3). Interestingly, the most abundant species across the samples had the potential for nitrate reduction (Figure 5a). However, in Figure 5b which is based on the 16S rRNA gene for whole community composition, samples from the PNA system clustered together, whereas the samples from the AS showed differences in community composition along with the primary (horizontal) axis (Figure 5b). Nevertheless, we found 43 common species across the samples (Figure S4).

4 | DISCUSSION

The objective of this study was to compare the structure of the denitrifiers community, associated with the denitrification genes (i.e., narG, napA, nirS, nirK, nosZ, nosZa1, and nosZa2), to infer compositional patterns that may differ between the denitrifiers that carry one or multiple denitrification genes in sidestream PNA processes of two wastewater treatment plants, as well as, to compare a compositional pattern in AS processes of the respective WWTPs.

Metagenomic analysis based on Xander assembly revealed that the most abundant denitrifiers found in each sample were Chloroflexi bacterium OLB14 (PNA1), Chlorobi bacterium OLB6 (PNA2), and D. denitrificans (AS1 and AS2), respectively. D. denitrificans is found in several WWTPs worldwide (Albertsen et al., 2012; Gonzalez-Martinez et al., 2016). We found that Chlorobi and Chloroflexi species associated with denitrifying genes were more abundant in PNA.
systems compared to AS systems (Figure S2), though both of them have been reported as common members in the AS microbiome based on 16S rRNA gene analysis (Kragelund et al., 2007; Nielsen et al., 2009). The reason could be a lack of denitrifying genes in Chloroflexi and Chlorobi present in the AS samples. Kragelund et al. (2007) reported a lack of denitrifying capability of some Chloroflexi isolates from AS samples (napA/narG, nirK/nirS, norB, and nosZ). In recent years, several studies focused on the heterotrophic activity in anammox systems and the continuous presence of Chlorobi and Chloroflexi gained in interest (Agrawal et al., 2017; Bhattacharjee et al., 2017; Pereira et al., 2017; Speth et al., 2016). They possess narG und nosZ and presumably encode a nitrite loop with anammox and NOB, and therefore support anammox growth, as previously reported (Lawson et al., 2017).

The napA gene has a higher affinity for nitrate and is usually associated with nitrate-limited environments (Papasyrou et al., 2014; Potter et al., 1999). However, PNA and AS systems have typically sufficient nitrate, which could explain the dominance of narG in all the samples (Figure 1). Additionally, we observed a clear separation of dominant narG and napA communities between PNA and AS samples (Figure 4), except D. denitrificans, as it was detected in all four samples. A significant abundance of narG in PNA samples supports that partial denitrifiers could support the removal of nitrate through the nitrate–nitrite loop (Agrawal et al., 2017; Bhattacharjee et al., 2017; Speth et al., 2016).

The nirS gene was found dominant in all our samples (Figure 1), which is in line with prior studies reporting nirS being dominant in PNA and AS systems. Although nirS and nirK are functionally and physiologically equivalent, it has been reported that the dominance of nirS over nirK in environments with sufficient nitrite might be due to its higher efficiency for nitrite respiration (Graf et al., 2014; Nadeau et al., 2019). The nirK gene found in the samples associated with Nitrosomonas species (N. europaea ATCC 19718 (PNA1/PNA2), Nitrosomonas sp. Is79A3 (PNA1), and Nitrosomonas sp. AL212 (AS1/AS2/PNA1)) underlines as previously reported that Nitrosomonas uses the nitrite pathway only against nitrite toxicity and not for the respiration. There is presumably a key role for nirK and norB genes in nitrifier denitrification (Schmidt et al., 2004).

Figure 4 Relative abundance of top 50 abundant species found across the samples for each gene, respectively. Functional gene analysis was performed with Xander and adjustment of MatchNames with NCBI database [Color figure can be viewed at wileyonlinelibrary.com]
The presence of \textit{norB} across all the samples with similar relative abundance might suggest its redundant nature, as nitric oxide reductase encoded by \textit{norB} can reduce both nitric oxide and oxygen (Chen & Strous, 2013). Moreover, many denitrifiers and non-denitrifiers contain \textit{norB}, which is advantageous against nitrosative stress and microaerobic conditions (Heylen et al., 2007). Nitric oxide reductase showed a clear separation between PNA and AS systems, presumably due to differences in the environmental conditions (Table S1), as \textit{norB} was associated with \textit{Nitrosomonas}, \textit{Fuerstia}, \textit{Gramella}, \textit{Bacteriodetes}, and \textit{Planctomycetes} in the PNA system, and associated with \textit{Dechloromonas}, \textit{Nitrosomonas}, \textit{Zhoueia}, \textit{Rubrivivax}, and \textit{Acidovorax} in the AS system. For the \textit{norB} gene, nitric oxide reducers, we also found a clear separation between PNA and AS systems.

We found that in all our samples, a significant fraction of \textit{nosZa2} reads could be assigned to members of \textit{Bacteroidetes} and \textit{Ignavibacteria} (Figures 1 and 4), similar to a previous study (Juhanson et al., 2017). Nevertheless, \textit{Ignavibacteria} was only predominant in PNA systems and exclusively assigned to the \textit{nosZa2} gene, which agrees with previous studies, often reporting members of \textit{Ignavibacteria} in PNA systems (Juhanson et al., 2017; Pereira et al., 2017).

The presence and composition of denitrifiers in the PNA systems based on 16S rRNA gene amplicon sequencing has been extensively reported (Agrawal et al., 2017; Du et al., 2019; Laureni et al., 2015; Persson et al., 2017; D. Wang et al., 2019). Based on the 16S rRNA gene taxonomic composition, it is difficult to accurately determine the denitrifying potential, because it may not denote whether all functional genes are involved in the denitrification process. For example, metagenomic studies on PNA systems revealed that none of the heterotrophic members carried all the genes of the denitrification pathway (Bhattacharjee et al., 2017; Guo et al., 2016; Speth et al., 2016). Moreover, it is known that taxonomic diversity based on denitrifying genes is not congruent with 16S rRNA gene phylogeny (Heylen et al., 2006; Kragelund et al., 2007). Similarly, our results demonstrate the compositional diversity of denitrifiers between samples, which is not visible based on the 16S rRNA gene phylogeny (Figure 5b).

The results from this study show that denitrification pathway genes do show a distinct pattern of abundance and association to the microbial species between sidestream PNA and AS systems. To understand the complex trophic network and relationships between different heterotrophs carrying a particular set of denitrification genes (also counterpart gene for the same function) is not possible from this study alone. Thus, we suggest that more studies (using targeted metagenomic for better resolution or whole genomics) should focus on denitrifying microbial communities and the

\textbf{FIGURE 5} Nonmetric multidimensional scaling (NMDS) ordination plots comparing the activated sludge (AS) and sidestream partial nitritation anammox (PNA) samples. NMDS plots were derived from Bray Curtis distance based on: (a) abundance of denitrifiers, which associate with different denitrifying genes, found in the samples, also showing the top 13 abundant species across the samples. (b) The abundance of all microbial members detected in the samples based on the 16S ribosomal RNA gene sequence analysis performed using Metaxa, also showing the top 10 abundant genus across the samples [Color figure can be viewed at wileyonlinelibrary.com]
functional genes plus more, mainstream as well as sidestream PNA systems need to be examined to decipher the role of denitrifiers in the PNA systems.

ACKNOWLEDGMENT
Open access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS
All authors designed the study. Laura Orschler and Shelsh Agrawal performed the experiments and wrote the manuscript. Susanne Lackner supervised the project. All authors contributed comments on the manuscript.

ORCID
Laura Orschler http://orcid.org/0000-0001-7867-4353

REFERENCES
Agrawal, S., Karst, S. M., Gilbert, E. M., Horn, H., Nielsen, P. H., & Lackner, S. (2017). The role of inoculum and reactor configuration for microbial community composition and dynamics in mainstream partial nitritation anammox reactors. MicrobiologyOpen, 6(4), e00456. https://doi.org/10.1002/mbo3.456
Agrawal, S., Seuntjens, D., De Cocker, P., Lackner, S., & Vlaeminck, S. E. (2018). Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights. Current Opinion in Biotechnology, 50, 214–221.
Albertsen, M., Hansen, L. B. S., Saunders, A. M., Nielsen, P. H., & Nielsen, K. L. (2012). A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. The ISME Journal, 6(6), 1094–1106.
Bengtsson-Palme, J., Hartmann, M., Eriksson, K. M., Pal, C., Thorell, K., Larsson, D. G. J., & Nilsson, R. H. (2015). METAXA2: Improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Molecular Ecology Resources, 15(6), 1403–1414.
Bhattacharjee, A. S., Wu, S., Lawson, C. E., Jetten, M. S., Kapoor, V., Domingo, J. W. S., & Goel, R. (2017). Whole-community metagenomics in two different anammox configurations: Process performance and community structure. Environmental Science & Technology, 51(8), 4317–4327.
Braker, G., & Tiedje, J. M. (2003). Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Applied and Environmental Microbiology, 69(6), 3476–3483.
Cao, Y., van Loosdrecht, M. C., & Daiger, G. T. (2017). Mainstream partial nitritation-anammox in municipal wastewater treatment: Status, bottlenecks, and further studies. Applied Microbiology and Biotechnology, 101(4), 1365–1383.
Casciotti, K. L., & Ward, B. B. (2001). Dissimilatory nitrate reductase genes from autotrophic ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 67(5), 2213–2221. https://doi.org/10.1128/AEM.67.5.2213-2221.2001
Chen, D., Gu, X., Zhu, W., He, S., Wu, F., Huang, J., & Zhou, W. (2019). Denitrification-and anammox-dominant simultaneous nitrification, anammox and denitrification (SNAD) process in subsurface flow constructed wetlands. Bioresource Technology, 271, 298–305.
Chen, J., & Strous, M. (2013). Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1827(2), 136–144.
Chu, Z.-r., Wang, K., Li, X.-k., Zhu, M.-t., Yang, L., & Zhang, J. (2015). Microbial characterization of aggregates within a one-stage nitritation–anammox system using high-throughput amplicon sequencing. Chemical Engineering Journal, 262, 41–48.
Du, R., Cao, S., Peng, Y., Zhang, H., & Wang, S. (2019). Combined partial denitrification (PD)-anammox: A method for high nitrate wastewater treatment. Environment International, 126, 707–716.
Gonzalez-Martinez, A., Rodriguez-Sanchez, A., Lotti, T., Garcia-Ruiz, M.-J., Osorio, F., Gonzalez-Lopez, J., & van Loosdrecht, M. C. (2016). Comparison of bacterial communities of conventional and A-stage activated sludge systems. Scientific Reports, 6, 18786.
Graf, D. R., Jones, C. M., & Hallin, S. (2014). Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One, 9(12), e114118.
Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), 293–296. https://doi.org/10.1038/nature06592
Guo, J., Peng, Y., Fan, L., Zhang, L., Ni, B. J., Kartal, B., & Yuan, Z. (2016). Metagenomic analysis of anammox communities in three different microbial aggregates. Environmental Microbiology, 18(9), 2979–2993. https://doi.org/10.1111/1462-2920.13132
Heylen, K., Gevers, D., Vanparys, B., Wittebolle, L., Geets, J., Boon, N., & De Vos, P. (2006). The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environmental Microbiology, 8(11), 2012–2021.
Heylen, K., Vanparys, B., Gevers, D., Wittebolle, L., Boon, N., & De Vos, P. (2007). Nitric oxide reductase (norB) gene sequence analysis reveals discrepancies with nitrite reductase (nir) gene phylogeny in cultivated denitrifiers. Environmental Microbiology, 9(4), 1072–1077.
Juhanson, J., Hallin, S., Söderström, M., Stenberg, M., & Jones, C. M. (2017). Spatial and phyloecological analyses of nosZ genes underscore niche differentiation amongst terrestrial N2O reducing communities. Soil Biology and Biochemistry, 115, 82–91.
Kowalchuk, G. A., & Stephen, J. R. (2001). Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annual Reviews in Microbiology, 55(1), 485–529.
Kragelund, C., Caterina, L., Borger, A., Thelen, K., Eikelboom, D., Tandoi, V., & Rossetti, S. (2007). Identity, abundance and ecophysiology of filamentous Chlororflexi species present in activated sludge treatment plants. FEMS Microbiology Ecology, 59(3), 671–682.
Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., & van Loosdrecht, M. C. (2014). Full-scale partial nitritation/anammox experiences—an application survey. Water Research, 55, 292–303.
Laureni, M., Weissbrodt, D. G., Szivák, I., Robin, O., Nielsen, J. L., Morgenroth, E., & Joss, A. (2015). Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater. Water Research, 80, 325–336.
Lawrence, R. S., Goel, R., & Noguera, D. R. (2017). Metabolic network analysis reveals microbial community interactions in anammox granules. Nature Communications, 8, 15416. https://doi.org/10.1038/ncomms15416
Ma, Y., Zilles, J. L., & Kent, A. D. (2019). An evaluation of primers for detecting denitrifiers via their functional genes. Environmental Microbiology, 21(4), 1196–1210.
Nadeau, S. A., Roco, C. A., Debenport, S. J., Anderson, T. R., Hofmeister, K. L., Walter, M. T., & Shelpleigh, J. P. (2019). Metagenomic analysis reveals distinct patterns of denitrification gene abundance across soil moisture, nitrate gradients. Environmental Microbiology, 21(4), 1255–1266.
Namiki, T., Hachiya, T., Tanaka, H., & Sakakibara, Y. (2016). MetaVelvet: An extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Research, 40(20), e155.
Nielsen, P. H., Kragelund, C., Seviour, R. J., & Nielsen, J. L. (2009). Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiology Reviews, 33(6), 969–998.
Orschler, L., Agrawal, S., & Lackner, S. (2019). On resolving ambiguities in microbial community analysis of partial nitritation anammox reactors. *Scientific Reports, 9*(1), 6954.

Papaspyrou, S., Smith, C. J., Dong, L. F., Whitby, C., Dumbrell, A. J., & Nedwell, D. B. (2014). Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments. Why? *PLoS One, 9*(4), e94111.

Pellicer-Nácher, C., Franck, S., Gülay, A., Ruscalleda, M., Terada, A., Al-Soud, W. A., Hansen, M. A., Sørensen, S. J., & Smets, B. F. (2014). Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: Microbial community composition and dynamics. *Microbial Biotechnology, 7*(1), 32–43.

Pereira, A. D., Cabezas, A., Etchebehere, C., de Lemos Chernicharo, C. A., & de Araújo, J. C. (2017). Microbial communities in anammox reactors: A review. *Environmental Technology Reviews, 6*(1), 74–93.

Persson, F., Suarez, C., Hermansson, M., Plaza, E., Sultana, R., & Wilén, B. M. (2017). Community structure of partial nitritation-anammox biofilms at decreasing substrate concentrations and low temperature. *Microbial Biotechnology, 10*(4), 761–772.

Philippot, L. (2006). Use of functional genes to quantify denitrifiers in the environment. *Biochemical Society Transactions, 34*(Pt1), 101–103.

Potter, L. C., Millington, P., Griffiths, L., Thomas, G. H., & Cole, J. A. (1999). Competition between *Escherichia coli* strains expressing either a periplasmic or a membrane-bound nitrate reductase: Does Nap confer a selective advantage during nitrate-limited growth? *Biochemical Journal, 344*(1), 77–84.

Schmidt, I., van Spanning, R. J., & Jetten, M. S. (2004). Denitrification and ammonia oxidation by *Nitrosomonas europaea* wild-type, and NirK-and NorB-deficient mutants. *Microbiology, 150*(12), 4107–4114.

Shu, D., Zhang, B., He, Y., & Wei, G. (2018). Abundant and rare microbial sub-communities in anammox granules present contrasting assemblage patterns and metabolic functions in response to inorganic carbon stresses. *Bioresource Technology, 265*, 299–309.

Speth, D. R., In’t Zandt, M. H., Guerrero-Cruz, S., Dutilh, B. E., & Jetten, M. S. (2016). Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. *Nature Communications, 7*, 11172. https://doi.org/10.1038/ncomms11172

Strous, M., Kuenen, J. G., & Jetten, M. S. (1999). Key physiology of anaerobic ammonium oxidation. *Applied and Environmental Microbiology, 65*(7), 3248–3250.

Throback, I. N., Enwall, K., Jarvis, A., & Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. *FEMS Microbiology Ecology, 49*(3), 401–417. https://doi.org/10.1016/j.femsec.2004.04.011

Wang, D., He, Y., & Zhang, X.-X. (2019). A comprehensive insight into the functional bacteria and genes and their roles in simultaneous denitrification and anammox system at varying substrate loadings. *Applied Microbiology and Biotechnology, 103*(3), 1523–1533.

Wang, Q., Fish, J. A., Gilman, M., Sun, Y., Brown, C. T., Tiedje, J. M., & Cole, J. R. (2015). Xander: Employing a novel method for efficient gene-targeted metagenomic assembly. *Microbiome, 3*(1), 32.

Wang, Y., Niu, Q., Zhang, X., Liu, L., Wang, Y., Chen, Y., & Zhang, T. (2019). Exploring the effects of operational mode and microbial interactions on bacterial community assembly in a one-stage partial-nitritation anammox reactor using integrated multi-omics. *Microbiome, 7*(1), 122. https://doi.org/10.1186/s40168-019-0730-6

Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. *Microbiology and Molecular Biology Reviews, 61*(4), 533–616.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Orschler L, Agrawal S, Lackner S. Targeted metagenomics reveals extensive diversity of the denitrifying community in partial nitritation anammox and activated sludge systems. *Biotechnology and Bioengineering, 2021;118:433–441*. https://doi.org/10.1002/bit.27581