Mixing, Enhanced Helium and Blue Tails in Globular Clusters

V. Caloi

Istituto di Astrofisica Spaziale C.N.R., Via Fosso del Cavaliere, I-00133 Roma, Italy

Received; accepted

Abstract. We investigate the consequences of an increase in the envelope helium abundance of pre-helium flash red giants in globular clusters, an occurrence suggested by chemical peculiarities in many red giant atmospheres. Comparing predictions with the CM diagrams of a few crucial globular clusters, one finds no evidence for a substantial increase in the surface helium content of horizontal branch members of these clusters, at least for objects in the RR Lyrae region or close to it. The possibility that the most peculiar giants belong to the asymptotic giant branch is discussed. The consequences of a delay in the helium flash are briefly examined.

Key words: Stars: Horizontal Branch – Stars: AGB and post-AGB – Globular Clusters: general – Stars: Chemically peculiar

1. Introduction

The evolutionary phase so called of the "horizontal branch" (HB) for Population II stars is well known to depend strongly on the conditions inherited from the evolution along the giant branch (GB). Phenomena that do not alter the overall appearance of the GB on the CM diagram may influence substantially the morphology of the HB. Mass loss is probably the most important of these events, to which the possibility of noticeable changes in the chemical composition has recently been added.

In the following we shall consider some of the consequences that deviations from standard GB evolution may have on HB structures. In particular, we shall examine the effect of enhanced helium content in HB structures and of a delay of the helium flash at the GB tip. Both questions are relevant for the "second parameter" problem in globular clusters; the former has been investigated recently by many authors (see, e.g., the review by Kraft 1994).

2. HB models with enhanced helium in the envelope

The high precision of recent spectroscopic observations of globular cluster red giant stars allowed to confirm the existence of objects with peculiar chemical abundances - not expected from current evolutionary models - and to better define the percentages of peculiar atmospheres and the degree of the peculiarity for single objects (see the reviews by Smith 1987, Suntzeff 1993 and Kraft 1994). The phenomenon has been interpreted in terms of “deep” mixing, that is, of the mixing of envelope material well into the hydrogen burning shell, in regions where proton captures take place (Denisenkov & Denisenkova 1990, Langer & Hoffman 1995, Cavallo et al. 1996, Pilachowski et al. 1996, Shetrone 1996).

One of the consequences of this complex phenomenon should be the increase of the helium abundance in the envelope of a star that suffers episodes of deep mixing (Langer & Hoffman 1995). Such an increase seems assured when Al is produced at the expense of Mg, but Langer et al. (1997) argue that helium is enhanced also when O and Ne are substantially depleted.

Sweigart (1997) has examined the impact of helium mixing on the morphology of the HB. The process of helium enrichment in the envelope gives rise to an increase in the tip luminosity attained by the red giant star, and so to an increase in the mass lost during the giant branch ascent. Besides, an enhanced helium in the envelope means a bluer HB position at a given total mass (the helium core mass remains almost unchanged).

In Fig. 1 tracks with $Z = 0.001$ and three values of the amount of helium in the envelope ($Y = 0.245$, 0.285 and 0.345) are shown (code ATON2.0, see Ventura et al. 1998; transformations from the theoretical plane through Kurucz 1993). The tracks illustrate the main HB phase until central helium $Y_{c} = 0.1$. A single “breathing pulse” (i.e., Castellani et al. 1985) was sometimes encountered when $Y_{c} \sim 0.01$ (duration about 1 – 3 Myr). Since the phenomenon is generally considered spurious (Dorman & Rood 1993, Caloi & Mazzitelli 1993), they have been eliminated from the tracks shown in the figures.
The case $Y = 0.245$ is taken to correspond to the normal helium content, after the envelope increase due to the first dredge-up. In Figs. 2 and 3 the tracks are shown for some masses up to the asymptotic giant branch (AGB) for the cases $Y = 0.245$ and 0.345, respectively. The track of a giant of 0.9 M_\odot ($Z = 0.001$, $Y = 0.235$) is added for reference. The main evolutionary characteristics appear the following. The mass distribution along the ZAHB does not change substantially with an increase in Y of 0.04, while the blue loops become longer. The ZAHB luminosity increases of about 0.2 mag (as already noted by Sweigart 1997) and the asymptotic giant branch (AGB) reproduces, at higher luminosity for a given T_{eff}, the one with the lower Y (not shown).

The slower AGB phase begins with a clump due to the ignition of helium in a shell after the end of central burning. For $Y = 0.245$ the minimum mass to form the helium shell on the AGB is 0.57 M_\odot; larger masses form the clump more or less at the same position in the CM diagram ($M_v \sim -0.3 - -0.4$ mag), while lower masses form the helium shell at $B - V \leq 0$ mag and reach the AGB at a luminosity the higher, the lower the mass. Masses $< 0.52 M_\odot$ do not develop an AGB phase.

The shell formation phase lasts about $1.5 - 2.5 \times 10^6$ yr (the lower the mass, the shorter the phase) and another $8 - 9 \times 10^6$ yr are spent by the star along the AG branch until the first helium shell flash. The luminosity at which the first flash develops depends slightly on the star mass: it varies from $M_v \sim -2.2$ mag ($\log(L/L_\odot) \sim 3.05$) to -2.6 mag ($\log(L/L_\odot) \sim 3.3$), for an evolving mass of 0.52 and 0.70 M_\odot, respectively.

When compared with the case with $Y = 0.245$, horizontal branches with $Y = 0.345$ show noticeable differences. The luminosity level at the RR Lyrae gap turns out to be about 0.5 mag more luminous. The tracks of the larger masses show the well known long blue loops (Sweigart and Gross 1976). The tracks lying in the RR Lyrae domain when $Y = 0.245$ move to the blue of the variable gap when Y increases to 0.345 (see the model with $M = 0.64 M_\odot$).

As for the blue HB, here the effect of the helium content increase is more limited, given the lesser efficiency of the hydrogen shell. The higher molecular weight in the envelope produces higher effective temperatures for a given M_v due to the larger BCs: so we have that hot structures with larger Y turn out to be less luminous in the visual than their lower helium counterparts (Fig. 3).

The minimum mass for which the shell forms on the AGB is 0.60 M_\odot, at $M_v \simeq -0.6$ mag (for comparison, $M = 0.7 M_\odot$ forms the helium shell at $M_v \simeq -0.9$ mag). The 0.58 M_\odot model represents a limiting case and forms the helium shell, with some oscillations, at the base of the AGB. Stars with $M \leq 0.53 M_\odot$ do not reach the AGB.
Fig. 3. Evolution out of the HB and up to the AGB for models with envelope $Y = 0.345$; dotted lines indicate fast phases, for $M \geq 0.58 M_\odot$, dashed lines indicate the helium shell burning phase. The track of a 0.9 M_\odot red giant is shown as reference.

Fig. 4. Evolutionary tracks for HB models with envelope $Y = 0.445$; for $M = 0.62 M_\odot$ the track is extended to the AGB (dashed line: fast evolution). As reference, HB tracks for $Y = 0.245$ are shown (dotted line), together with a red giant track for $M = 0.9 M_\odot$ (solid line).

We consider an increase in Y of 0.2 only for structures on the blue side of the RR Lyrae gap (Fig. 4). The helium shell forms always at high temperatures and the AGB reduces to a short and luminous phase, well separated from the red giant branch. At the extreme blue edge, a mass of 0.51 M_\odot (envelope mass = 0.012 M_\odot) has a ZAHB magnitude $M_v = 4.32$, to be compared with a ZAHB magnitude $M_v = 4.40$ for 0.501 M_\odot with envelope $Y = 0.245$ (envelope mass = 0.003 M_\odot; see Fig. 7).

3. Comparison with HB populations
3.1. The case of M3 and M13

The clusters M3 and M13 offer an interesting possibility of testing the relevance of these departures from standard HB evolution. These clusters have quite different HB populations, notwithstanding the great similarity in the main physical and chemical parameters (see e.g., Catelan & de Freitas Pacheco 1995, Ferraro et al. 1997a). Apparently, they differ only in the ellipticity (M13 being more elliptical) and in the presence of more rapid rotators in M13 than in M3 (Peterson et al. 1995, Behr et al. 2000a). In brief, M3 has a HB well populated from the region redder than the RR Lyrae gap to the blue of the gap itself, while M13 is populated only on the blue side of the gap, with a substantial portion of HB members populating the B subdwarf region.

M3 and M13 appear to have the same heavy element content (e.g., Kraft et al. 1992, Carretta & Gratton 1997). Assuming such a content to be $Z = 0.001$ (Carretta & Gratton 1997), if also the helium content Y is the same in the two clusters, we can estimate that the bulk of HB objects in M3 has total mass between 0.68 and 0.62 M_\odot (see the CM diagrams by Buonanno et al. 1994, Ferraro et al. 1997a, b, and the models by Mazzitelli et al. 1995, Caloi et al. 1997, but any other model set would do). In the same conditions, for M13 we expect HB objects from 0.61 to 0.5 M_\odot (see the CM diagram by Paltrinieri et al. 1998; Fig. 5).

The origin of such a difference is uncertain. The age difference between the two clusters is generally estimated not larger than 1 Gyr, but values up to 3 Gyr cannot be excluded (VandenBerg et al. 1990, Catelan & de Freitas Pacheco 1995, Stetson et al. 1996, Ferraro et al. 1997a, Johnson & Bolte 1998; Lee et al. 1994) in fact argued that age is the most important second parameter among globular clusters.

On the other hand, the absence of RR Lyrae variables and the very low mass of the extreme HB members in M13 (about 0.5 M_\odot), suggested by their M_v larger than the turn-off magnitude, would require an age difference between M3 and M13 of various Gyr (see the discussion in...
Catelan & de Freitas Pachego 1995). Alternatively, mass loss along the giant branch would have to differ strongly in the two cases.

In Sweigart’s investigation on deep mixing (1997), to each value of helium enhancement correspond an increase in the GB tip luminosity and an increase in mass loss, while the size of the hydrogen exhausted core remains almost unchanged. It is possible therefore to associate to any position on the standard HB the shift that would result if a certain amount of deep mixing had taken place. Given two globular clusters where deep mixing has occurred at different degrees, it is so possible to predict - at least semi-quantitatively - the difference between the two HB distributions.

To this respect, the relative positions of the horizontal branches in the two clusters are crucial. The main evolutionary loci of the two clusters have been compared by various authors (i.e., Catelan & de Freitas Pachego 1995, Ferraro et al. 1997a, Johnson & Bolte 1998). In Fig. 6, we report the data from Johnson & Bolte (1998) paper, to show that the two CM diagrams $V, V-I$ can be safely superposed (keeping in mind the cautions exemplified in Fig. 7 of the quoted paper).

Similarly, Ferraro et al. (1997a) find that their Hubble Space Telescope CM diagrams $V, U-V$ for M3 and M13 overlap nicely, once the HB mean loci are aligned relying on the (small) region where the HB is well populated in both clusters. Only the reddest HB members in M13 appear more luminous than stars in M3 at the same colour, and are interpreted by Catelan and de Freitas Pachego (1995) and Ferraro et al. (1997a) as being more evolved than corresponding stars in M3.

Estimates of the luminosity level of turn-off and HB for M3 and M13 are given by Buonanno et al. (1994), Ferraro et al. (1997b), Paltrinieri et al. (1998). Also these data do not show any noticeable difference in the relative positions of the evolutionary loci in the two clusters.

Therefore, the difference (if any) in luminosity between the HBs in M3 and M13 can be safely assumed to be lower than 0.2 mag. This means that the helium enhancement for the coolest M13 HB members cannot exceed $\delta Y = 0.04$ (Sweigart 1997 and Section 2 of this paper). The extra mass loss in the GB phase due to this increase in Y in the red giant envelope is of about 0.012 M_\odot (from Fig. 3 in Sweigart 1997, assuming $\eta = 0.4$ and keeping in mind the value for the mixing parameter quoted by the author to give an increase in Y of 0.04). A star on the red side of the HB in M3 has a mass of about 0.68 M_\odot (for Z about 0.001, see Fig. 8) and, for the same metallicity, a star at $B-V = 0.1$ in M13 has a mass of about 0.61 - 0.62 with the same Y (0.245) or of about 0.64 - 0.65 for $Y = 0.285$. An extra mass loss of 0.012 M_\odot appears not sufficient to allow the disappearance of the RR Lyrae variables (see Fig. 9 and Fig. 10).

Higher helium mixing and larger mass losses may be present in very blue HB members ($B-V \leq -0.1$). In Fig. 11 the effect of an increase $\delta Y = 0.2$ in the envelope of
V. Caloi: Mixing and Blue Tails

Fig. 7. Evolutionary tracks for HB models with envelope $Y = 0.445$ (dotted line) and 0.245 (solid line); dashed lines indicate fast phases. With increasing mass the difference in luminosity and colour between models with the same mass increases substantially.

3.2. The case of M13 and NGC 7006

Kraft et al. (1998) apply the Sweigart (1997) models to estimate the required amount of helium enhancement in M13 with respect to NGC 7006, in order to achieve the observed differences in HB morphology. The required helium abundances are 0.35 and 0.245 for M13 and NGC 7006, respectively. Fig. 6 shows that such abundances require for ΔT_{ZAHB} in M13 a value 0.5 mag larger than in NGC 7006, if the two clusters have similar ages (similar turn-off levels). Instead, one finds 3.50 ± 0.10 mag for both M13 (see Fig. 6) and NGC 7006 (Buonanno et al. 1991). So it appears difficult to accommodate a difference in HB level of 0.5 mag, without considering an age difference of more than 5 Gyr in the sense of a younger M13 (since its turn-off would appear more luminous than in NGC 7006).

3.3. The metal poor clusters

This difficulty presents itself also in the case of M15, the metal poor globular cluster with many red giants interested by the signature of deep mixing (Cohen 1979, Sneden et al. 1991, Sneden et al. 1997). Sweigart (1997) observes that an increase in Y_{env} of 0.04 would give rise to a luminosity difference between the HBs in M3 and M15 which would explain the period-shift effect (Sandage 1982). The luminosity increase would be of about 0.2 mag.

The comparison with CM diagrams of other very metal poor clusters can give some clues as to the reality of such an increase in Y_{env}. Walker (1994) compared carefully the CM diagrams of M15 and of M68, showing that the two diagrams overlap nicely, and that, in particular, the difference in magnitude between HB and TO ΔT_{ZAHB} is the same in the two clusters (3.41 ± 0.05 mag). Similarly, Rey et al. (1998) found for ΔT_{HB} in M53 the value of 3.42 ± 0.05 mag. At the same time, the difference in age among the three clusters appears definitively smaller than 2 Gyr.

This indicates that the luminosity of M15 HB is the same as found in M68 and M53. Nothing is known as to peculiar or not peculiar abundances in M68 and M53 giants, but they have no blue tail in their HB distributions, and so no hint of extra mass loss on the giant branch or extra helium in their HB structures. Besides, Brocato et al. (1994) and Walker (1994) find that the pulsational properties of M68 RR Lyrae variables are analogous to those in M15, suggesting similar luminosities.

It seems therefore that the population on M15 HB in the region of the RR Lyrae stars resembles quite strictly the population in apparently normal clusters such as M68 and M53. The amount of extra helium δY allowed in M15 structures around the RR Lyrae gap is surely less than 0.04, which would imply a luminosity increase of 0.2 mag with respect to the HBs in M68 and M53. Stars with helium enhanced may be found in bluer positions than the gap surroundings.

extremely blue HB objects is shown. In order to reach an $M_v \approx 4.5$ mag (as in M13 and NGC 6752, where the HB reaches visual magnitudes higher than the turn-off), a total mass as low as 0.501 M_\odot is needed for $Y = 0.245$, while for $Y = 0.445$ a mass ≤ 0.51 M_\odot is required. So even for extensive mixing one finds that a substantial mass loss is necessary to attain the high magnitudes of extreme HB objects.

Such mass loss turns out larger than expected from the increase in the GB tip luminosity. From Fig. 3 in Sweigart’s paper, one gets an extra mass loss of $\sim 0.08 M_\odot$ when $\Delta X_{\text{mix}} = 0.20 (\delta Y \sim 0.2)$; so the minimum mass in M3 ($\sim 0.62 M_\odot$) would become 0.54 M_\odot, definitively larger than the required 0.51 M_\odot (see Fig. 7).

On the whole, an increase in Y_{env} is specially efficient in shifting the position on the HB for the mass range of the RR Lyrae variables and for slightly lower masses (see Fig. 8), but at the price of a noticeable increase in luminosity. Anyway, it is important to keep in mind that this discussion is based on the assumption that mass loss follows strictly Reimer’s formulation all along the giant branch. Should mass loss increase more rapidly with luminosity, the conclusions could be different.
Summing up, there are no indications of a substantial increase in the helium content in most of the HB stars in clusters whose giants show evidence of mixing of envelope material into helium rich regions, such as those where Na and Al enrichment take place.

4. Deep mixing: first or asymptotic giant branch?

The situation with the variety of relative abundances of CNO, Na, Mg, Al, etc. in globular clusters has reached a high degree of complexity (see e.g., the review by Kraft 1994). There is evidence for primordial fluctuations (e.g., CN versus CH anticorrelation in main sequence and subgiant stars in NGC 6752, 47 Tuc and M92; Suntzeff 1989, Bell et al. 1983, Briley et al. 1991, King et al. 1998) as well as for evolution induced changes in surface abundances of various atomic species (CNO, Na, Al, Mg and their isotopes: quoted paper by Kraft). A large dispersion in O abundances is even observed in a young cluster in the Small Magellanic Cloud, NGC 330 (Hill 1999).

We would like to consider only one aspect of this vast problem: the evolutionary status of the most affected objects in one of the best studied clusters, M13. The most luminous giants show strong O deficiency and Na overabundance. It is commonly assumed that these giants belong to the first giant branch, on their way to the helium flash.

We suggest on the contrary that a substantial fraction of the objects observed near the giant tip are asymptotic branch stars. This statement is mainly based on the fact that the majority of the luminous giants in M13 are variables of the semiregular (SR) type with period longer than 30 days, typical of the last phases of the AGB in intermediate and very metal poor globular clusters (e.g., Feast 1999). While Mira variables lie above the red giant tip as defined by the developing of the helium flash, and so we can be sure that they belong to the AGB phase, red SR variables are not always above the RG tip. Nevertheless, it seems likely that they are AGB stars, since: i) there is evidence that in the metal rich globular clusters they evolve into the Mira phase; ii) if we consider the SR variables for which periods can be obtained with some confidence, it appears that the light variations are due primarily to pulsation, as in the case of Miras (Feast 1999); iii) Whitelock (1986) has shown that in globular clusters the luminosities of the SRs increase with the period and that the sequence defined by these stars terminates at the position of the Miras in the cluster (see also Feast 1999).

In Table I by Pilachowski et al. (1996), seven out of the ten most luminous giants in M13 turn out to be variable or probably variable: L324 = V11 in Sawyer Hogg’s catalogue (SH 1973; light curve in Osborn and Fuenmayor 1977), L598 (=B140) probably variable according to Kadla et al. (1976), L194 (= Arp II-90) definitively variable according to Welty (1985), L973 (= Arp I-48) light curve in Osborn and Fuenmayor (1977), L835 = V15 in SH (light curve in Osborn and Fuenmayor), L954 (= Arp IV-25) definitively variable according to Welty (1985), L70 (= Arp II-67) probably variable according to Welty. L414 (= Arp III-56) has been suspected, but not confirmed, of being variable (Russev 1973, Osborn and Fuenmayor 1977).

Five out of the seven tip variables are super-oxygen poor ([O/Fe] < -0.4) and one is oxygen-poor ([O/Fe] = -0.26) according to Kraft et al. (1993, Table 6). From Table 1 in Pilachowski et al. (1996) it appears that the [Na/Fe] ratios near the red giant branch tip are exclusively high (with the exception of L598), while on the lower giant branch there is a wider range in Na abundances. We suggest therefore that, whatever the phenomenon involved, it is specially active during the final evolution along the asymptotic giant branch, and in particular in the evolution of stars with small envelopes (as supposedly are the ones found on the AGB of M13).

The variability of Miras has been associated with the helium shell flashes phase (Feast 1989). Since SR variables appear related to Miras, as mentioned before, also they are likely in the terminal stage of the AGB evolution. We computed a series of 8 flashes for a 0.65 M_\odot: each flash cycle lasted about 2 – 3 10^5 yr and during it the hydrogen exhausted core increased of about 0.009 M_\odot and the M_v at maximum of about 0.09 mag. These results have to be taken as indicative, given the well known extremely strong dependence of thermal pulse development on stellar structure details.

As mentioned before (Sec. 2), the flashes begin at increasing luminosity for increasing evolving mass (from log(L/L_\odot) = 3.05 – M_v ~ -2.2 to ~ 3.3 – M_v ~ -2.6 – for masses from 0.52 to 0.70 M_\odot). These luminosities are in any case very close to the the first GB tip: log(L/L_\odot) ~ 3.38 (M_v ~ -2.8) for $Z = 0.001$ (f.e., Salaris & Cassisi 1997). If the luminosity of the AGB termination is close, as generally accepted (Renzini 1977), to the one of the first GB, only a few flashes will take place, for a total duration of the order of 10^6 yr or less. For comparison, a first GB member moves from log(L/L_\odot) = 3.05 to the GB tip in about 3 10^6 yr, and from 3.3, in 6 10^5 yr.

So the expected evolutionary rates in luminosity along the two giant branches are similar close to the tip. Actually, since the evolution in luminosity in the AGB pulsing phase is roughly constant (see also Gingold 1974), it may become slower than along the first branch.

In a cluster like M13, whose HB is populated by stars with mass ≤ 0.62 M_\odot (see before), most stars will begin their pulsing phase at M_v ~ -2.2 – -2.4, with a hydrogen exhausted core of about 0.52 M_\odot. An HB mass of 0.58 M_\odot, increasing the core mass of 0.009 M_\odot per flash, will perform about 6 flashes in absence of mass loss, reaching the luminosity of the first GB tip (M_v ~ -2.8).

In a cluster like M3, where the most common HB mass is about 0.65 M_\odot (the mass in the RR Lyrae gap), the flash phase begins at M_v ~ -2.6, about 0.2 mag below the theoretical tip and about where we expect to observe the
most luminous cluster giants (Frogel 1983, Salaris & Cassisi 1997, 1998). Without mass loss, the star could perform about 14 pulses, with an increase in luminosity of about 1.3 mag, well above the first GB tip. This point has been discussed by Renzini (1977), who reached the conclusion that during the AGB the evolving mass loses at least 0.1 ms⊙. Just for the sake of the argument, we notice that the most luminous giant in M3 is a SR variable (V95 in SH = vZ318: V = 12.36 mag, (B – V) = 1.78 mag, period = 103 d, SH and Welty 1985); the second one in luminosity is again a variable (vZ1397 = SK26, V = 12.65, B – V = 1.56 mag, period (uncertain) = 60 d, Welty 1985). At about this magnitude, a few more giants are found, so that V95 results isolated 0.3 mag above the bulk of the GB members.

In Sec 3.1 we saw that M3 and M13 CM diagrams can be overlapped with a shift in V of about 0.6 mag, M3 being the farther away. The tip of M13 is at V ~ 12 mag (Pilachowski et al. 1996), so that we expect the tip of M3 at V = 12.6 mag, as actually observed, exception made for V95: this may be taken as a consequence of the larger – on the average – AGB masses in M3 with respect to M13 (in the limits of small number statistics!).

Some advantages can be found if the mixing takes place in AGB objects. At luminosities close to the first giant branch tip the core mass Mc would be ~ 0.5 Ms⊙, so that an evolving giant of about 0.65 Ms⊙ would have an envelope mass of about 0.15 Ms⊙, to be mixed with the products of (high temperature) hydrogen shell burning. In the case of an AGB object of the same mass, undergoing helium shell flashes, the envelope mass would be smaller, starting from about 0.13 Ms⊙ (in the hypothesis of no mass loss during AGB evolution before the flashes) and rapidly decreasing both for mass loss and for the increase of the hydrogen exhausted core. The abundance changes would be faster and would require the consumption of less hydrogen.

In a cluster like M13 the evolving AGB masses will be lower than 0.65 Ms⊙, so that the envelope masses to be mixed will be definitively smaller than in the first GB case, with an evident advantage for the reshuffling of nuclear species. Just as a curiosity: there are indications that some Type II Cepheids exhibit abundance peculiarities, among which possibly helium enhancement, as summarized by Gingold (1985) some years ago. It may be worth while to reconsider the objects in question with modern equipment.

For what concerns the nucleeosynthesis beyond the standard CNO cycle, the conditions in the hydrogen shell in AGB structures are not very different from the ones encountered in first GB stars. Peak temperatures are of about 55 – 58 10⁶ K before the first helium shell flash and slightly higher (58 - 60) 10⁶ K during the eighth flash (0.65 Ms⊙, see before). The peaks of CNO energy generation during the flash cycles last about 2 10⁶ yr, sufficient to obtain large sodium and aluminum enhancements in surface abundance (Langer & Hoffman 1995). A difficulty is given by the estimate by Langer et al. (1997) of a temperature of 70 10⁶ K necessary to explain surface abundances of Mg isotopes as observed by Shetrone (1995, 1996) in the most luminous M13 giants. As stressed by Langer et al. (1997), the estimate of 70 10⁶ K depends very strongly on these results, for which a confirmation would be welcome for safety. In any case, such a difficulty is present for both the RGB and the AGB hypotheses.

5. An old conjecture on the origin of extended blue tails

The evolution along the GB suffers a strong acceleration when approaching the helium flash phase. The rate of mass loss, estimated through Reimer’s formula, reaches values of about 5 10⁻⁸ Ms⊙yr⁻¹ (η ~ 0.4). In the last million year before the flash, models of 0.8 - 0.9 Ms⊙ (Z ≤ 0.001) have an increase in core mass of ~ 0.027 Ms⊙ and a decrease in total mass of 0.05 Ms⊙. This means that a variation of the timing of the helium flash of half a million year, that is, about 2% of the time to climb the giant branch from the RGB bump luminosity to the tip (30 – 40 Myr), is sufficient to move a structure from the red HB section to the RR Lyrae region (for Z ~ 0.001).

This is a well known fact, and has been exploited to invoke rotation as a possible “second parameter” in shaping HB morphology, since the increased pressure delays core heating (Mengel & Gross 1976, Renzini 1977).
The question of rotation and its relevance to HB morphology has been recently investigated (Peterson et al. 1995, Behr et al. 2000a,b). An overall correspondence is found between $v \sin i$ and position on the HB, in a sense perhaps contrary to what expected. So stellar rotation rate is clearly related to the position on the HB, but in a way not yet understood.

Independently from the causes, let us consider the consequences that a small delay in the helium flash timing can have on the HB morphology of a cluster like M3. As mentioned before, the maximum and minimum HB masses for the bulk of the HB population in this cluster can be assumed to be 0.68 and 0.62 M_\odot. The maximum mass, after an extra 0.5 10^6 yr spent near the GB tip, reduces to 0.655 M_\odot, while M_c increases to 0.5115 M_\odot; similarly, after 10^6 yr one has a stellar structure of total mass 0.63 M_\odot and $M_c = 0.525$.

In Fig. 8 the evolutionary tracks of these structures are shown, together with the track derived from 0.62 M_\odot after 10^6 yr of extra GB evolution ($M = 0.57 M_\odot$, $M_c = 0.525 M_\odot$), and the tracks (until $Y_c = 0.1$) of "standard" HB stars ($M_c = 0.498 M_\odot$). One finds that an extra GB evolution of 0.5 10^6 yr is sufficient to transform the HB of M3 into the one observed in M2 (Lee & Carney 1999a,b), and that an extra 10^6 yr transforms the HB morphology of M3 into the one of M13, exception made for the bluest members.

The extremely blue HB stars would require longer extra time, but never larger than 1.5 10^6 yr, since such an extra evolution leaves a structure with about 0.006 M_\odot in the envelope. In these conditions, the subsequent evolution is the one of a "hot flasher" or flasher along the white dwarf cooling sequence, as discovered by Castellani & Castellani (1993) and investigated also by D'Cruz et al. (1996). Such structures are found at the very blue end of foreseeable HB distributions (see the quoted papers).

6. Conclusions
The peculiar chemical abundances in many high luminosity red giants in globular clusters apparently require an increase in their envelope helium content. It was not possible to find a confirmation of such an increase from the position of the ensuing horizontal branches: the shift from the red to the blue of the RR Lyrae variables gap requires a substantial increase in luminosity, inconsistent with observations.

The possibility is examined that the most peculiar giants belong to the second, or asymptotic, giant branch, and precisely to the phase of the helium shell flashes. Some support for the hypothesis is found in M13, where the majority of the peculiar stars are variables of the long period, semiregular type.

An estimate is given of the consequences of a delay of the helium flash, on the basis of recent RG models: a difference in the flash timing between 0.5 and 1.5 10^6 yr can help to explain at least part of the shift from the M3 HB morphology to the one of M2, and the appearance of the extreme blue tails (M13, NGC 6752). The many features which accompany the appearance of gaps and blue tails in HBs remain in any case unexplained.

References
Behr B.B., Djorgovski S.G., Cohen J.G., et al., 2000a, ApJ 528, 849
Behr B.B., Cohen J.G., McCarthy J.K., 2000b, ApJ 531, L37
Bell R.A., Hesser J.E., Cannon R.D., 1983, ApJ 269, 580
Briley M.M., Hesser J.E., Bell R.A., 1991, ApJ 373, 482
Brocato E., Castellani V., Ripepi V., 1994, AJ 107, 622
Buonanno R., Fusi Pecci F., Cappellaro E., et al., 1991, AJ 102, 1005
Buonanno R., Corsi C.E., Buzzoni A., et al., 1994, A&A 290, 69
Caloi V., Mazzitelli I., 1993, A&A 271, 139
Caloi V., D'Antona F., Mazzitelli I., 1997, A&A 320, 823
Carretta E., Gratton R.G., 1997, A&AS 121, 95
Castellani V., Chieffi A., Pulone L., Tornambe' A., 1985, ApJ 296, 204
Castellani M., Castellani V., 1993, ApJ 407, 649
Catelan M, de Freitas Pacheco J.A., 1995, A&A 297, 345
Cavallo R.M., Sweigart A.V., Bell R.A., 1996, ApJ 464, L79
Cohen J.G., 1979, ApJ 231, 751
D'Cruz N.L., Dorman B., Rood R.T., O'Connell R.W., 1996, ApJ 466, 359
Denisenkov P.A., Denisenkova S.N., 1990, AZh Pisma 16, 642
Dorman B., Rood R.T., O'Connell R.W., 1996, ApJ 466, 359
D'Cruz N.L., Dorman B., Rood R.T., O'Connell R.W., 1996, ApJ 466, 359
Ferraro F.R., Paltrinieri B., Fusi Pecci F., et al., 1997, A&A 320, 823
Buonanno R., Fusi Pecci F., Cappellaro E., et al., 1997a, A&AS 121, 95
Buonanno R., Corsi C.E., Buzzoni A., et al., 1994, A&A 290, 69
Caloi V., Mazzitelli I., 1993, A&A 271, 139
Caloi V., D'Antona F., Mazzitelli I., 1997, A&A 320, 823
Carretta E., Gratton R.G., 1997, A&AS 121, 95
Castellani V., Chieffi A., Pulone L., Tornambe' A., 1985, ApJ 296, 204
Castellani M., Castellani V., 1993, ApJ 407, 649
Catelan M, de Freitas Pacheco J.A., 1995, A&A 297, 345
Cavallo R.M., Sweigart A.V., Bell R.A., 1996, ApJ 464, L79
Cohen J.G., 1979, ApJ 231, 751
D'Cruz N.L., Dorman B., Rood R.T., O'Connell R.W., 1996, ApJ 466, 359
Denisenkov P.A., Denisenkova S.N., 1990, AZh Pisma 16, 642
Dorman B., Rood R.T., 1993, ApJ 409, 387
Feast M.W., 1989, in: H.R. Johnson and B. Zuckerman (eds.) Evolution of Peculiar Red Giants, Cambridge Univ. Press, p. 35
Feast M.W., 1999, in: C. Martinez Roger, I. Perez Fournon (eds.) Global Clusters, Cambridge Univ. Press, p. 251
Ferraro F.R., Paltrinieri B., Fusi Pecci F. et al., 1997a, ApJ 484, L145
Ferraro F.R., Carretta E., Corsi C.E. et al., 1997b, A&A 320, 757
Frogel J.A., 1983, ApJ 272, 167
Gingold R.A., 1974, ApJ 193, 177
Gingold R.A., 1985, in: F. Caputo (ed.) Population II Variables, Mem.SAIt 56, 169
Hill V., 1999, A&A 345, 430
Johnson J.A., Bolte M., 1998, AJ 115, 693
Kadla Z.I., Antal M., Zdarsky F., Spasova N., 1976, SvA 20, 403
King J.R., Stephens A., Boesgaard A.M., Deliyannis C.P., 1998, AJ 115, 666
Kraft R.P., 1994, PASP 106, 553
Kraft R.P., Sneden C., Langer G.E., Prosser C.F., 1992, AJ 104, 645
Kraft R.P., Sneden C., Langer G.E., Shetrone M.D., 1993 AJ 106, 1490
Kraft R.P., Sneden C., Smith G. H., et al., 1998, AJ 115, 1500
Kurucz R., 1993, CD-ROM 13 and CD-ROM 18
Langer G.E., Hoffman R., 1995, PASP 107, 1177
Langer G.E., Hoffman R.D., Zaidinis C.S., 1997, PASP 109, 244
Lee J.-W., Carney B.W., 1999a, AJ 117, 2868
Lee J.-W., Carney B.W., 1999b, AJ 118, 1373
Lee Y.-W., Demarque P., Zinn R., 1994, ApJ 423, 248
Mazzitelli I., D’Antona F., Caloi V., 1995, A&A 302, 382
Mengel J.G., Gross P.G., 1976, Ap&SS 41, 407
Osborn W., Fuenmayor F., 1977, AJ 82, 395
Paltrinieri B., Ferraro F.R., Fusi Pecci F., Carretta E., 1998, MNRAS 293, 434
Peterson R.C., Rood R.T., Crocker D.A., 1995, ApJ 453, 214
Pilachowski C.A., Sneden C., Kraft R.P., Langer G.E., 1996, AJ 112, 545
Renzini A., 1977, in: Advanced Stages in Stellar Evolution, 7th Advanced Course, Saas-Fee, Geneva Obs., p. 149
Rey S.-C., Lee Y.-W, Byun Y.-I., Chun M.-S., 1998, AJ 116, 1775
Russev R.M., 1973, Perem. Zvezdi 19, 181
Salaris M., Cassisi S., 1997, MNRAS 289, 406
Salaris M., Cassisi S., 1998, MNRAS 298, 166
Sandage A., 1982, ApJ 252, 553
Sawyer Hogg H.B., 1973, Publ. David Dunlap Obs., 3, No. 6
Shetrone M.D., 1995, BAAS 27, 1432
Shetrone M.D., 1996, AJ 112, 2639
Smith G.H., 1987, PASP 99, 67
Sneden C., Kraft P.R., Prosser C.F., Langer G.E., 1991, AJ 102, 2001
Sneden C., Kraft P.R., Shetrone M.D. et al., 1997, AJ 114, 1964
Stetson P.B., VandenBerg D.A., Bolte M., 1996, PASP 108, 560
Suntzeff N., 1989, in: G. Cayrel de Strobel, M. Spite and T. Lloyd Evans (eds.) The Abundance Spread within Globular Clusters (Paris, Obs. de Paris), p. 71
Suntzeff N., 1993, in: Smith G.H., Brodie J.P. (eds.) The Globular Cluster-Galaxy Connection, PASP Conference Series No. 48, p. 167
Sweigart A.V., 1997, ApJ 474, L23
Sweigart A.V., Gross P.G., 1976, ApJS 32, 367
VandenBerg D.A., Bolte M., Stetson P.B., 1990, AJ 100, 445
Ventura P., Zeppieri A., Mazzitelli I., D’Antona F., 1998, A&A 334, 953
Walker A.R., 1994, AJ 108, 555
Welty D.E., 1985, AJ 90, 2555
Whitelock P.A., 1986, MNRAS 219, 525