Supplementary Material

Thio-glycomimetics with enhanced lipophilicity and their biological activity

Zbigniew J. Witczak,*a Anastasia Mauger,a Roman Bielski,a and Donald E. Mencerb

aDepartment of Pharmaceutical Sciences, bDepartment of Chemistry and Biochemistry, Wilkes University, 84W South Street, Wilkes-Barre, PA 18766, USA
Email: zbigniew.witczak@wilkes.edu

Table of Contents

General information ... S2
X-ray single crystal ORTEP diagram of 10 .. S9
1H and 13C NMR spectra .. S11
1. General information

All reagents and solvents were used as purchased without further purification. Unless otherwise stated, all reactions were carried out under inert atmosphere in oven-dried glassware with dried solvents. All solvents were dried and degassed by standard methods before use. Optical rotation was measured using a JASCO P-2000 Digital Polarimeter. 1H NMR and 13C NMR spectra were recorded on 400MHz Bruker Avance.2D experiments (COSY and HSQC) were performed to enhance assignments. Chemical shifts (δ-scale) are reported in ppm with TMS (0 ppm) as internal standard for 1H NMR and the residual solvent signals (CDCl3: 7.26, for H NMR and (CDCl3: 77.0 ppm) for 13C NMR. Thin layer chromatography was performed on silica gel coated TLC plates and visualized under UV light (at 254nm); detection was executed by exposing to iodine (I2) vapor. The melting points (mp) were obtained on an ElectroThermal FARGO MP- 2D capillary melting point apparatus and were uncorrected. Chemical names were generated by ChemDraw Professional V.15.1.0.144 software.

Crystal Structure Report for compound 10

(1R,2R,5S,6R)-8-(((3S,5S,7S)-adamantan-1-yl)thio)-3,11-dioxa-7,9-diazatricyclo[4.3.1.12,5]undec-8-en-1-ol

A specimen of C_{17}H_{24}N_{2}O_{3}S was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The total exposure time was 12.20 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a tetragonal unit cell yielded a total of 5025 reflections to a maximum θ angle of 26.00° (0.81 Å resolution), of which 2963 were independent (average redundancy 1.696, completeness = 94.0%, R_{int} = 2.16%, R_{sig} = 3.44%) and 2733 (92.24%) were greater than 2σ(F^2). The final cell constants of a = 11.730(7) Å, b = 11.730(7) Å, c = 24.056(15) Å, volume = 3310.(4) Å^3, are based upon the refinement of the XYZ-centroids of 9858 reflections above 20 σ(I) with 4.850° < 2θ < 64.14°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.945. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 41 21 2, with Z = 8 for the formula unit, C_{17}H_{24}N_{2}O_{3}S. The final anisotropic full-matrix least-squares refinement on F^2 with 304 variables converged at R1 = 3.03%, for the observed data and wR2 = 7.39% for all data. The goodness-of-fit was 1.060. The largest peak in the final difference electron density synthesis was 0.389 e^-/Å^3 and the largest hole was -0.167 e^-/Å^3 with an RMS deviation of 0.038 e^-/Å^3. On the basis of the final model, the calculated density was 1.350 g/cm^3 and F(000), 1440 e^-.
Table 2. Data collection and structure refinement for compound 10.

Property	Value
Formula weight	336.44 g/mol
Temperature	120(2) K
Wavelength	0.71073 Å
Crystal system	tetragonal
Space group	P41212
Unit cell dimensions	
a	11.730(7) Å
b	11.730(7) Å
c	24.056(15) Å
α	90°
β	90°
γ	90°
Volume	3310.4(4) Å³
Z	8
Density (calculated)	1.350 g/cm³
Absorption coefficient	0.212 mm⁻¹
F(000)	1440

Theta range for data collection
1.93 to 26.00°

Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Structure solution technique
Structure solution program
Refinement method
Refinement program
Function minimized
Data / restraints / parameters Goodness-of-fit on F^2
Final R indices

Weighting scheme
Absolute structure parameter
Largest diff. peak and hole
R.M.S. deviation from mean

-14<=h<=4, -9<=k<=12, -8<=l<=29 5025
2963 [R(int) = 0.0216]
94.0%

Multi-Scan
direct methods

XT, VERSION 2014/4 Full-matrix least-squares on F^2 SHELXL-2014/7 (Sheldrick, 2014)

2963 / 0 / 304
1.060
2733 data; I>2σ(I)

\[R1 = 0.0347, \text{ wR2} = 0.0739 \]

all data

\[w=1/[\sigma^2(F_o^2)+(0.0395P)^2+0.4573P] \text{ where } P=(F_o^2+2F_c^2)/3 \]
-0.1(0)
0.389 and -0.167 eÅ$^{-3}$
0.038 eÅ$^{-3}$
Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for compound 10.

\(U(\text{eq}) \) is defined as one third of the trace of the orthogonalized \(U_{ij} \) tensor.

	x/a	y/b	z/c	\(U(\text{eq}) \)
S1	0.60339(6)	0.13124(6)	0.47987(2)	0.01858(16)
O1	0.24982(16)	0.34650(16)	0.43494(7)	0.0198(4)
O2	0.53477(16)	0.46250(16)	0.41065(7)	0.0204(4)
O3	0.37126(17)	0.53325(16)	0.37394(7)	0.0244(4)
N1	0.5636(2)	0.2388(2)	0.38374(9)	0.0185(5)
N2	0.43146(18)	0.27116(18)	0.45642(8)	0.0150(5)
C1	0.5396(2)	0.2905(2)	0.46352(9)	0.0162(5)
C2	0.4123(2)	0.9864(2)	0.47898(11)	0.0218(6)
C3	0.3665(3)	0.8649(2)	0.46968(11)	0.0262(6)
C4	0.4332(3)	0.7812(3)	0.50683(11)	0.0285(7)
C5	0.5595(3)	0.7853(2)	0.49243(10)	0.0233(7)
C6	0.5775(3)	0.7517(3)	0.43119(10)	0.0224(6)
C7	0.5107(3)	0.8342(2)	0.39390(10)	0.0219(6)
C8	0.5560(2)	0.9564(2)	0.40222(9)	0.0177(6)
C9	0.3832(3)	0.8304(3)	0.40856(12)	0.0275(7)
C10	0.6051(3)	0.9068(2)	0.50105(10)	0.0214(6)
C11	0.5223(2)	0.2243(2)	0.43615(9)	0.0156(5)
C12	0.5012(2)	0.3111(2)	0.34460(10)	0.0204(6)
C13	0.3744(3)	0.2995(2)	0.35902(10)	0.0196(6)
C14	0.3650(2)	0.3448(2)	0.41847(9)	0.0160(5)
C15	0.4155(2)	0.4679(2)	0.41936(10)	0.0179(6)
C16	0.4533(3)	0.5221(3)	0.32924(11)	0.0296(7)
C17	0.5394(3)	0.4361(2)	0.35209(10)	0.0234(6)

Table 4. Bond lengths (Å) for compound 10.

S1-C11	1.789(3)	S1-C1	1.855(3)	
O1-C14	1.408(3)	O1-H1O	0.81(3)	
O2-C15	1.416(3)	O2-C17	1.443(3)	
O3-C15	1.432(3)	O3-C16	1.449(3)	
N1-C11	1.361(3)	N1-C12	1.463(3)	
N1-H1N	0.81(3)	N2-C11	1.294(3)	
N2-C14	1.480(3)	C1-C10	1.539(4)	
C1-C8	1.540(3)	C1-C2	1.541(4)	
C2-C3 1.539(4) C2-H2A 0.95(3)
C2-H2B 0.98(3) C3-C9 1.538(4)
C3-C4 1.541(4) C3-H3 1.00(3)
C4-C5 1.523(4) C4-H4A 0.97(3)
C4-H4B 1.02(3) C5-C10 1.536(4)
C5-C6 1.540(3) C5-H5 0.98(3)
C6-C7 1.535(4) C6-H6A 0.99(3)
C6-H6B 0.99(3) C7-C9 1.537(5)
C7-C8 1.542(4) C7-H7 1.00(2)
C8-H8A 1.04(3) C8-H8B 0.97(3)
C9-H9A 0.99(3) C9-H9B 0.95(3)
C10-H10A 0.96(3) C10-H10B 1.01(3)
C12-C13 1.534(4) C12-C17 1.544(4)
C12-H12 0.98(3) C13-C14 1.530(3)
C13-H13A 0.99(3) C13-H13B 1.02(3)
C14-C15 1.561(4) C15-H15 0.94(2)
C16-C17 1.529(4) C16-H16A 1.01(3)
C16-H16B 1.01(4) C17-H17 0.93(3)

Table 5. Bond angles (°) for compound 10.

Bond Angles	Value (°)
C11-S1-C1	101.78(12)
C15-O2-C17	101.0(2)
C11-N1-C12	119.4(2)
C12-N1-H1N	121.2(2)
C10-C1-C8	109.5(2)
C8-C1-C2	110.1(2)
C8-C1-S1	112.56(18)
C3-C2-C1	109.3(2)
C1-C2-H2A	107.6(18)
C1-C2-H2B	108.5(17)
C9-C3-C2	109.8(2)
C2-C3-C4	109.2(2)
C2-C3-H3	108.2(2)
C5-C4-C3	109.9(2)
C3-C4-H4A	110.3(17)
C3-C4-H4B	109.5(17)
C4-C5-C10	109.8(2)
C10-C5-C6 108.6(2) C4-C5-H5 109.0(18)
C10-C5-H5 109.6(18) C6-C5-H5 109.8(17)
C7-C6-C5 109.1(2) C7-C6-H6A 107.3(18)
C5-C6-H6A 112.0(17) C7-C6-H6B 109.1(17)
C5-C6-H6B 110.1(17) H6A-C6-H6B 109.3(3)
C6-C7-C9 110.1(2) C6-C7-C8 109.5(2)
C9-C7-C8 109.5(2) C6-C7-H7 110.2(17)
C9-C7-H7 109.3(17) C8-C7-H7 108.2(17)
C1-C8-C7 108.8(2) C1-C8-H8A 108.1(14)
C7-C8-H8A 110.4(16) C1-C8-H8B 108.6(16)
C7-C8-H8B 111.4(17) H8A-C8-H8B 109.2(2)
C7-C9-C3 109.6(2) C7-C9-H9A 108.9(17)
C3-C9-H9A 110.1(16) C7-C9-H9B 110.3(19)
C3-C9-H9B 108.6(16) H9A-C9-H9B 109.2(2)
C5-C10-C1 109.8(2) C5-C10-H10A 111.3(17)
C1-C10-H10A 108.1(16) C5-C10-H10B 109.6(17)
C1-C10-H10B 108.4(16) H10A-C10-H10B 110.2(2)
N2-C11-N1 126.1(2) N2-C11-S1 118.37(18)
N1-C11-S1 115.6(2) N1-C12-C13 106.7(2)
N1-C12-C17 109.3(2) C13-C12-C17 109.8(2)
N1-C12-H12 108.9(16) C13-C12-H12 109.7(16)
C17-C12-H12 112.2(16) C14-C13-C12 104.5(2)
C14-C13-H13A 110.6(17) C12-C13-H13A 111.8(17)
C14-C13-H13B 108.6(14) C12-C13-H13B 111.8(16)
H13A-C13-H13B 109.2(2) O1-C14-N2 109.89(19)
O1-C14-C13 109.7(2) N2-C14-C13 109.6(2)
O1-C14-C15 109.4(2) N2-C14-C15 109.4(2)
C13-C14-C15 105.6(2) O2-C15-O3 110.3(2)
O2-C15-C14 109.4(2) O3-C15-C14 110.1(15)
O2-C15-H15 109.0(16) O3-C15-H15 110.1(15)
C14-C15-H15 112.3(16) O3-C16-C17 103.4(2)
O3-C16-H16A 108.8(18) C17-C16-H16A 113.3(18)
O3-C16-H16B 107.3(18) C17-C16-H16B 113.5(19)
H16A-C16-H16B 110.2(2) O2-C17-C16 100.6(2)
O2-C17-C12 107.8(2) C16-C17-C12 113.1(3)
O2-C17-H17 108.9(18) C16-C17-H17 113.3(18)
C12-C17-H17 112.2(19)
Table 6. Anisotropic atomic displacement parameters (Å²) for compound 10.

The anisotropic atomic displacement factor exponent takes the form:

\[-2\pi^2 \left(a^2 U_{11} + \ldots + 2hk a^* b^* U_{12} \right) \]

	U₁₁	U₁₂	U₁₃	U₁₄	U₁₅	
S1	0.0188(4)	0.0169(4)	0.0201(3)	-0.0029(2)	-0.0033(2)	0.0030(3)
O1	0.0149(10)	0.0263(11)	0.0182(8)	-0.0076(8)	-0.0010(7)	0.0013(8)
O2	0.0206(10)	0.0185(10)	0.0222(8)	-0.0020(7)	0.0016(8)	-0.0028(9)
O3	0.0326(12)	0.0203(10)	0.0204(8)	0.0020(8)	-0.0003(8)	0.0074(9)
N1	0.0220(14)	0.0188(13)	0.0198(10)	-0.0012(9)	0.0049(9)	0.0070(11)
N2	0.0152(12)	0.0127(11)	0.0171(9)	-0.0030(8)	-0.0003(8)	0.0001(9)
C1	0.0180(14)	0.0147(14)	0.0159(10)	-0.0012(9)	-0.0004(10)	0.0023(11)
C2	0.0197(14)	0.0192(15)	0.0263(13)	0.0012(11)	0.0037(11)	0.0046(13)
C3	0.0212(16)	0.0184(15)	0.0391(15)	0.0027(11)	0.0053(12)	0.0019(14)
C4	0.044(2)	0.0187(16)	0.0251(13)	0.0029(11)	0.0101(12)	0.0031(14)
C5	0.0358(18)	0.0176(15)	0.0165(11)	0.0029(10)	-0.0001(11)	0.0086(13)
C6	0.0325(19)	0.0149(15)	0.0199(12)	-0.0019(10)	0.0019(11)	0.0061(13)
C7	0.0335(18)	0.0179(15)	0.0144(11)	-0.0013(10)	-0.0028(10)	0.0030(13)
C8	0.0235(16)	0.0147(14)	0.0148(10)	0.0008(10)	-0.0019(10)	0.0027(12)
C9	0.0332(19)	0.0176(16)	0.0316(14)	0.0011(11)	-0.0098(12)	-0.0027(14)
C10	0.0271(17)	0.0223(15)	0.0147(11)	-0.0008(10)	-0.0025(10)	0.0092(13)
C11	0.0174(14)	0.0110(13)	0.0183(11)	-0.0024(9)	-0.0001(9)	-0.0005(11)
C12	0.0271(16)	0.0197(14)	0.0145(11)	-0.0017(10)	0.0029(11)	0.0031(12)
C13	0.0239(16)	0.0178(14)	0.0171(11)	-0.0053(10)	-0.0028(11)	0.0014(13)
C14	0.0152(13)	0.0166(14)	0.0161(11)	-0.0025(9)	-0.0006(10)	-0.0001(11)
C15	0.0206(15)	0.0154(14)	0.0177(12)	-0.0020(10)	-0.0024(10)	0.0029(12)
C16	0.0416(19)	0.0234(17)	0.0238(13)	0.0049(12)	0.0057(13)	0.0025(15)
C17	0.0274(17)	0.0225(16)	0.0203(12)	0.0019(11)	0.0057(12)	-0.0006(13)

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for compound 10

	x/a	y/b	z/c	U(eq)
H1N	0.616(3)	0.200(3)	0.3732(12)	0.021(8)
H1O	0.244(3)	0.373(3)	0.4660(14)	0.036(9)
H3	0.283(3)	-0.135(3)	0.4774(13)	0.040(9)
H2A	0.374(3)	0.041(3)	0.4566(11)	0.021(7)
H2B	0.404(2)	0.007(2)	0.5182(11)	0.019(7)
H5	0.601(3)	-0.268(3)	0.5167(12)	0.030(8)
H4A	0.425(2)	-0.198(3)	0.5457(11)	0.021(7)
	x/a	y/b	z/c	U(eq)
---	-------	-------	-------	-------
H4B	0.401(3)	-0.299(3)	0.5019(11)	0.026(8)
H7	0.521(2)	-0.187(2)	0.3541(10)	0.020(7)
H6A	0.549(3)	-0.326(3)	0.4232(12)	0.032(9)
H6B	0.660(3)	-0.244(3)	0.4215(12)	0.027(8)
H8A	0.643(3)	-0.040(2)	0.3933(10)	0.020(7)
H8B	0.515(2)	0.011(3)	0.3790(12)	0.021(7)
H9A	0.341(3)	-0.116(3)	0.3838(11)	0.027(8)
H9B	0.354(3)	-0.244(3)	0.4036(11)	0.023(8)
H10A	0.685(3)	-0.088(2)	0.4918(10)	0.014(7)
H10B	0.593(2)	-0.070(2)	0.5411(11)	0.023(7)
H12	0.515(2)	0.283(2)	0.3068(11)	0.018(7)
H13A	0.326(3)	0.345(3)	0.3335(12)	0.027(8)
H13B	0.348(2)	0.216(3)	0.3586(10)	0.017(7)
H15	0.401(2)	0.506(2)	0.4533(10)	0.008(6)
H17	0.613(3)	0.448(3)	0.3393(11)	0.025(8)
H16A	0.412(3)	0.494(3)	0.2948(12)	0.028(8)
H16B	0.487(3)	0.600(3)	0.3224(12)	0.036(9)
