A NOTE ON COVERINGS OF VIRTUAL KNOTS

TAKUJI NAKAMURA, YASUTAKA NAKANISHI, AND SHIN SATOH

Abstract. For a virtual knot K and an integer $r \geq 0$, the r-covering $K^{(r)}$ is defined by using the indices of chords on a Gauss diagram of K. In this paper, we prove that for any finite set of virtual knots $J_0, J_2, J_3, \ldots, J_m$, there is a virtual knot K such that $K^{(r)} = J_r$ ($r = 0$ and $2 \leq r \leq m$), $K^{(1)} = K$, and otherwise $K^{(r)} = J_0$.

1. Introduction

Odd crossings are first introduced for constructing a simple invariant called the odd writhe of a virtual knot by Kauffman [8]. By using odd crossings, Manturov defines a map from the set of virtual knots to itself by replacing the odd crossings with virtual crossings [10].

Later the notion of index is introduced in [2, 4, 6, 11] which assigns an integer to each real crossing such that the parity of the index coincides with the original parity. The n-writhe is defined as a refinement of the odd writhe. Jeong defines an invariant called the zero polynomial of a virtual knot by using real crossings of index 0 [7]. In fact, Im and Kim prove that the zero polynomial is coincident with the writhe polynomial of the virtual knot obtained by replacing the real crossings whose indices are non-zero with virtual crossings [5]. They also study the operation replacing the real crossings whose indices are not divisible by r for a positive integer r. This operation is originally considered for flat virtual knots by Turaev [12] where he calls the obtained knot the r-covering.

The writhe polynomial $W_K(t)$ of a virtual knot K is the polynomial such that the coefficient of t^n is equal to the n-writhe of K. A characterization of $W_K(t)$ is given as follows.

Theorem 1.1 ([11]). For a Laurent polynomial $f(t) \in \mathbb{Z}[t, t^{-1}]$, the following are equivalent.

(i) There is a virtual knot K with $W_K(t) = f(t)$.

(ii) $f(1) = f'(1) = 0$.

For an integer $r \geq 0$, we denote by $K^{(r)}$ the r-covering of a virtual knot K. By definition, we have $K^{(1)} = K$ and $K^{(r)} = K^{(0)}$ for a sufficiently large r. The aim of this note is to prove the following.

The first author is partially supported by JSPS Grants-in-Aid for Scientific Research (C), 17K05265. The third author is partially supported by JSPS Grants-in-Aid for Scientific Research (C), 16K05147.

2010 Mathematics Subject Classification. Primary 57M25; Secondary 57M27.

Key words and phrases. virtual knot, covering, Gauss diagram, index, Möbius function.
Theorem 1.2. Let $m \geq 1$ be an integer, J_n $(0 \leq n \leq m, n \neq 1)$ m virtual knots, and $f(t)$ a Laurent polynomial with $f(1) = f'(1) = 0$. Then there is a virtual knot K such that

$$K^{(r)} = \begin{cases} J_0 & \text{for } r = 0 \text{ and } r \geq m + 1, \\ K & \text{for } r = 1, \\ J_r & \text{otherwise,} \end{cases}$$

and $W_K(t) = f(t)$.

This paper is organized as follows. In Section 2 we define the r-covering $K^{(r)}$ of a (long) virtual knot K. We also introduce an anklet of a chord in a Gauss diagram which will be used in the consecutive sections. In Sections 3 and 4 we study the 0-covering $K^{(0)}$ and r-covering $K^{(r)}$ for $r \geq 2$ of a long virtual knot, respectively. In Section 5 we review the writhe polynomial of a virtual knot, and prove Theorem 1.1.

2. Gauss diagrams

A circular or linear Gauss diagram is an oriented circle or line equipped with a finite number of oriented and signed chords spanning the circle or line, respectively. The closure of a linear Gauss diagram is the circular Gauss diagram obtained by taking the one-point compactification of the line.

Let c be a chord of a Gauss diagram G with sign $\varepsilon = \varepsilon(c)$. We give signs $-\varepsilon$ and ε to the initial and terminal endpoints of c, respectively. We consider the case that G is circular. The endpoints of c divide the circle into two arcs. Let α be the arc oriented from the initial endpoint of c to the terminal. See Figure 1. The index of c is the sum of signs of endpoints of chords on α, and denoted by $\text{Ind}_G(c)$ (cf. [1, 9, 11]). In the case that G is linear, the index of c is defined as that of c in the closure of G.

Figure 1. The orientation and signs of a chord and its endpoints.

Let G be a circular or linear Gauss diagram. For a positive integer r, we denote by $G^{(r)}$ the Gauss diagram obtained from G by removing all the chords c with $\text{Ind}_G(c) \not\equiv 0 \pmod{r}$ (cf. [12]). In particular, we have $G^{(1)} = G$. For $r = 0$, we denote by $G^{(0)}$ the Gauss diagram obtained from G by removing all the chords c with $\text{Ind}_G(c) \neq 0$. Since the number of chords of G is finite, we have $G^{(r)} = G^{(0)}$ for sufficiently large r.

Two circular Gauss diagrams G and H are equivalent, denoted by $G \sim H$, if G is related to H by a finite sequence of Reidemeister moves I–III as shown in Figure 2. A virtual knot is an equivalence class of circular Gauss diagrams up to this equivalence relation (cf. [3,8]). Similarly, the equivalence relation among linear Gauss diagrams are defined, and an equivalence class is called a long virtual knot. The trivial (long) virtual knot is presented by a Gauss diagram with no chord.
Lemma 2.1 (cf. [5,12]). Let G and H be circular or linear Gauss diagrams such that $G \sim H$. Then it holds that $G^{(r)} \sim H^{(r)}$ for any integer $r \geq 0$. \hfill \Box

Although only the case of a circular Gauss diagram is studied in [5,12], Lemma 2.1 for a linear Gauss diagram can be proved similarly.

Definition 2.2. Let K be a (long) virtual knot, and $r \geq 0$ an integer. The r-covering of K is the (long) virtual knot presented by $G^{(r)}$ for some Gauss diagram G of K. We denote it by $K^{(r)}$.

The well-definedness of $K^{(r)}$ follows from Lemma 2.1. We have $K^{(1)} = K$ and $K^{(r)} = K^{(0)}$ for sufficiently large r.

Let $c(G)$ denote the number of chords of a Gauss diagram G. The real crossing number of a (long) virtual knot K is the minimal number of $c(G)$ for all Gauss diagrams G of K, and denoted by $c(K)$.

Lemma 2.3. Let K be a (long) virtual knot, and $r \geq 0$ an integer. Then it holds that $c(K^{(r)}) \leq c(K)$. In particular, $c(K^{(r)}) = c(K)$ holds if and only if $K^{(r)} = K$.

Proof. Let G be a Gauss diagram of K with $c(G) = c(K)$. Since $G^{(r)}$ is obtained from G by removing some chords, we have

$$c(K^{(r)}) \leq c(G^{(r)}) \leq c(G) = c(K).$$

In particular, if the equality holds, then $G^{(r)} = G$ and $K^{(r)} = K$. \hfill \Box
Let c_1, \ldots, c_n be chords of a Gauss diagram G. We add several parallel chords near an endpoint of c_i ($i = 1, \ldots, n$) to obtain a Gauss diagram G'. Here, the orientations and signs of the added chords are chosen arbitrarily. See Figure 3(i). The parallel chords added to c_i are called anklets of c_i. We remark that the index of an anklet is equal to ± 1.

![Figure 3. Anklets.](image)

Lemma 2.4. Let c_1, \ldots, c_n be chords of a Gauss diagram G. For any integers a_1, \ldots, a_n, by adding several anklets to each c_i near its initial endpoint suitably, we obtain a Gauss diagram G' such that $\text{Ind}_{G'}(c_i) = a_i$ for any $i = 1, \ldots, n$, and $\text{Ind}_{G'}(c) = \text{Ind}_G(c)$ for any $c \neq c_1, \ldots, c_n$.

Proof. Put $d_i = a_i - \text{Ind}_G(c_i)$ for $i = 1, \ldots, n$. We add $|d_i|$ anklets to c_i near its initial endpoint such that the signs of right endpoints of the anklets are equal to ε_i, where ε_i is the sign of d_i. See Figure 3(ii).

Let G' be the obtained Gauss diagram. Then we have

$$\text{Ind}_{G'}(c_i) = \text{Ind}_G(c_i) + \varepsilon_i|d_i| = \text{Ind}_G(c_i) + d_i = a_i.$$

Furthermore the index of a chord other than c_1, \ldots, c_n does not change. \hfill \square

3. The 0-covering $K^{(0)}$

For an integer $n \geq 2$, we define a map $f_n : \{2, 3, \ldots, n\} \to \mathbb{Z}$ which satisfies

$$\sum_{c = 0 \mod r, \ c \leq n} f_n(i) = -1$$

for any integer r with $2 \leq r \leq n$. The map f_n exists uniquely. Put

$$P_n = \{i \mid 2 \leq i \leq n, f_n(i) \neq 0\}.$$

Example 3.1. For $n = 10$, we have

$$\begin{align*}
f_{10}(2) + f_{10}(4) + f_{10}(6) + f_{10}(8) + f_{10}(10) &= -1 \quad \text{for } r = 2, \\
f_{10}(3) + f_{10}(6) + f_{10}(9) &= -1 \quad \text{for } r = 3, \\
f_{10}(4) + f_{10}(8) &= -1 \quad \text{for } r = 4, \\
f_{10}(5) + f_{10}(10) &= -1 \quad \text{for } r = 5, \\
f_{10}(6) &= -1 \quad \text{for } r = 6, \\
f_{10}(7) &= -1 \quad \text{for } r = 7, \\
f_{10}(8) &= -1 \quad \text{for } r = 8, \\
f_{10}(9) &= -1 \quad \text{for } r = 9, \\
f_{10}(10) &= -1 \quad \text{for } r = 10.
\end{align*}$$
Therefore we have
\[
f_{10}(i) = \begin{cases}
2 & (i = 2), \\
1 & (i = 3), \\
0 & (i = 4, 5), \\
-1 & (6 \leq i \leq 10)
\end{cases}
\]
and \(P_{10} = \{2, 3, 6, 7, 8, 9, 10\}\).

Theorem 3.2. For any integer \(n \geq 1\) and long virtual knot \(J\), there is a long virtual knot \(K\) such that
\[
K^{(r)} = \begin{cases}
J & \text{for } r = 0 \text{ and } r \geq n + 1, \\
K & \text{for } r = 1, \text{ and} \\
O & \text{otherwise}.
\end{cases}
\]
Here, \(O\) denotes the trivial long virtual knot.

Proof. Let \(H\) be a linear Gauss diagram of \(J\). We construct a linear Gauss diagram \(G\) as follows: First, we replace each chord \(c\) of \(H\) by \(1 + \sum_{i \in P_n} |f_n(i)|\) parallel chords labeled \(c_0\) and \(c_{ij}\) for \(i \in P_n\) and \(1 \leq j \leq |f_n(i)|\). The orientations of \(c_0\) and \(c_{ij}\)'s are the same as that of \(c\). The signs of them are given such that
\[
\begin{align*}
(i) & \quad \varepsilon(c_0) = \varepsilon(c), \\
(ii) & \quad \varepsilon(c_{ij}) = \varepsilon(c) \delta_i \text{ for } i \in P_n, \text{ where } \delta_i \text{ is the sign of } f_n(i) \neq 0.
\end{align*}
\]
Next, we add several anklets to each of \(c_0\) and \(c_{ij}\)'s such that
\[
\begin{align*}
(iii) & \quad \text{Ind}_{G}(c_0) = 0, \text{ and} \\
(iv) & \quad \text{Ind}_{G}(c_{ij}) = i \text{ for } i \in P_n.
\end{align*}
\]
The obtained Gauss diagram is denoted by \(G\).

Figure 4 shows the case \(n = 10\) replacing each chord \(c\) of \(H\) with nine chords \(c_0, c_{21}, c_{22}, c_{31}, \ldots, c_{10, 1}\) and several anklets. The boxed numbers of the chords indicate their indices.

![Figure 4. The case \(n = 10\).](image_url)

By the conditions (i)–(iv), we have \(G^{(0)} = H\); in fact, we remove the chords whose indices are non-zero from \(G\) to obtain \(G^{(0)}\). Similarly, we have \(G^{(r)} = H\) for any \(r \geq n + 1\). Therefore it holds that \(K^{(0)} = K^{(r)} = J\) for \(r \geq n + 1\).

For \(2 \leq r \leq n\), \(G^{(r)}\) is obtained from \(G\) by removing the chords whose indices are not divisible by \(r\). In particular, all the anklets are removed. Among the chords \(c_0\) and \(c_{ij}\)'s, the sum of signs of chords whose indices are divisible by \(r\) is equal to
\[
\varepsilon(c) + \varepsilon(c) \sum_{\substack{r \leq i \leq n \\ i \equiv 0 \pmod{r}}} \delta_i |f_n(i)| = \varepsilon(c) + \varepsilon(c) \sum_{\substack{r \leq i \leq n \\ i \equiv 0 \pmod{r}}} f_n(i) = 0.
\]
Therefore all the chords of \(G^{(r)}\) can be canceled by Reidemeister moves II so that \(K^{(r)}\) is the trivial long virtual knot. \(\square\)
4. The r-covering $K^{(r)}$ for $r \geq 2$

For an integer $n \geq 2$, we define a map $g_n : \{2, 3, \ldots, n\} \rightarrow \mathbb{Z}$ which satisfies

$$g_n(n) = 1 \quad \text{and} \quad \sum_{i \equiv 0 \pmod{r}} g_n(i) = 0$$

for any integer r with $2 \leq r < n$. The map g_n exists uniquely. Put

$$Q_n = \{ i \mid 2 \leq i \leq n, g_n(i) \neq 0 \}.$$

Example 4.1. (i) For $n = 10$, it holds that

$$\begin{align*}
g_{10}(2) + g_{10}(4) + g_{10}(6) + g_{10}(8) + g_{10}(10) &= 0 \quad \text{for } r = 2, \\
g_{10}(3) + g_{10}(6) + g_{10}(9) &= 0 \quad \text{for } r = 3, \\
g_{10}(4) + g_{10}(8) &= 0 \quad \text{for } r = 4, \\
g_{10}(5) + g_{10}(10) &= 0 \quad \text{for } r = 5, \\
g_{10}(6) &= 0 \quad \text{for } r = 6, \\
g_{10}(7) &= 0 \quad \text{for } r = 7, \\
g_{10}(8) &= 0 \quad \text{for } r = 8, \\
g_{10}(9) &= 0 \quad \text{for } r = 9, \\
g_{10}(10) &= 1 \quad \text{for } r = 10.
\end{align*}$$

Therefore we have

$$g_{10}(i) = \begin{cases}
1 & (i = 10), \\
-1 & (i = 2, 5), \\
0 & \text{(otherwise),}
\end{cases} \quad \text{and } Q_{10} = \{2, 5, 10\}.$$

(ii) For $n = 12$, we have

$$g_{12}(i) = \begin{cases}
1 & (i = 2, 12), \\
-1 & (i = 4, 6), \\
0 & \text{(otherwise),}
\end{cases} \quad \text{and } Q_{12} = \{2, 4, 6, 12\}.$$

Theorem 4.2. For any integer $n \geq 2$ and long virtual knot J, there is a long virtual knot K such that

$$K^{(r)} = \begin{cases}
J & \text{for } r = n, \\
K & \text{for } r = 1, \text{ and} \\
O & \text{otherwise.}
\end{cases}$$

Proof. The proof is similar to that of Theorem 3.2 by using g_n instead of f_n. Let H be a linear Gauss diagram of J. We construct a linear Gauss diagram G of K as follows: First, we replace each chord c of H by $\sum_{i \in Q_n} |g_n(i)|$ parallel chords labeled c_i for $i \in Q_n$. The orientations of c_i’s are the same as that of c. The signs of them are given such that $\varepsilon(c_i) = \varepsilon(c)\delta_i$, where δ_i is the sign of $g_n(i) \neq 0$. Next, we add several anklets to each of c_i’s such that $\text{Ind}_G(c_i) = i$ for $i \in Q_n$. The obtained Gauss diagram is denoted by G.

In the left of Figure 5, we shows the case $n = 10$ replacing each chord c of H with three chords c_2, c_5, c_{10} and several anklets. In the right figure, the case of $n = 12$ is given.

Since any chord c of G satisfies $1 \leq |\text{Ind}_G(c)| \leq n$, we obtain $G^{(0)}$ and $G^{(r)}$ for $r \geq n + 1$ by removing all the chords from G.
For $2 \leq r < n$, $G^{(r)}$ is obtained from G by removing the chords whose indices are not divisible by r. Among the chords c_i’s, the sum of signs of chords whose indices are divisible by r is equal to

$$\varepsilon(c) \sum_{r \leq i \leq n \atop i \equiv 0 \mod r} \delta_i |g_n(i)| = \varepsilon(c) \sum_{r \leq i \leq n \atop i \equiv 0 \mod r} g_n(i) = 0.$$

Therefore all the chords of $G^{(r)}$ can be canceled by Reidemeister moves II so that $K^{(r)}$ is the trivial long virtual knot.

Finally, for $r = n$, we have $G^{(n)} = H$ by definition immediately. □

We see that g_n is coincident with a famous function as follows.

Proposition 4.3. Let μ be the Möbius function. Then we have

$$g_n(i) = \begin{cases} \mu\left(\frac{n}{i}\right) & \text{if } n \text{ is divisible by } i, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Let $h_n(i)$ be the right hand side of the equation in the proposition. Since $h_n(n) = \mu(1) = 1 = g_n(n)$, it is sufficient to prove that

$$\sum_{r \leq i \leq n \atop i \equiv 0 \mod r} h_n(i) = 0$$

for any integer r with $2 \leq r < n$.

Assume that n is not divisible by r. Then n is not divisible by any i such that $r \leq i \leq n$ and $i \equiv 0 \mod r$. Therefore we have

$$\sum_{r \leq i \leq n \atop i \equiv 0 \mod r} h_n(i) = 0.$$

Assume that n is divisible by r. By the property of the Möbius function, it holds that

$$\sum_{r \leq i \leq n \atop i \equiv 0 \mod r} h_n(i) = \sum_{r \leq d \leq n \atop d \equiv 0 \mod r} \mu\left(\frac{n}{i}\right) = \sum_{d \equiv 0 \mod r} \mu(d) = 0.$$

Therefore we have $g_n = h_n$. □

5. The writhe polynomial

For an integer $n \neq 0$ and a sign $\varepsilon = \pm 1$, the (n, ε)-snail is a linear Gauss diagram consisting of a chord c with $\varepsilon(c) = \varepsilon$ and $|n|$ anklets such that the indices of c and each anklet are equal to n and 1, respectively. See Figure [6].

Let G be a Gauss diagram of a (long) virtual knot K. For an integer $n \neq 0$, we denote by $w_n(G)$ the sum of signs of all chords c of G with $\text{Ind}_G(c) = n$. Then
$w_n(G)$ does not depend on a particular choice of G of K; that is, $w_n(G)$ is an invariant of K. In [11], the proof is given for a virtual knot, and the case of a long virtual knot is similarly proved. It is called the n-writhe of K and denoted by $w_n(K)$. The writhe polynomial of K is defined by

$$W_K(t) = \sum_{n \neq 0} w_n(K)t^n - \sum_{n \neq 0} w_n(K) \in \mathbb{Z}[t,t^{-1}].$$

This invariant was introduced in several papers [2, 9, 11] independently.

Theorem 5.1. Let J be a long virtual knot, and $f(t) \in \mathbb{Z}[t,t^{-1}]$ a Laurent polynomial with $f(1) = f'(1) = 0$. Then there is a long virtual knot K such that

(i) $K^{(r)} = J^{(r)}$ for any integer $r = 0$ and $r \geq 2$, and

(ii) $W_K(t) = f(t)$.

Proof. Put $g(t) = f(t) - W_J(t) = \sum_{n \in \mathbb{Z}} a_n t^n$. By Theorem 1.1, we have $g(1) = g'(1) = 0$. Therefore it holds that $a_0 = \sum_{n \neq 0,1} (n-1)a_n$ and $a_1 = -\sum_{n \neq 0,1} na_n$.

Let H be a linear Gauss diagram of J. We construct a linear Gauss diagram G by juxtaposing H and $|a_n|$ copies of $S(n,\varepsilon_n)$ for every integer n with $n \neq 0,1$ and $a_n \neq 0$. Here, ε_n is the sign of a_n.

Let K be the long virtual knot presented by G. The contribution of each snail $S(n,\varepsilon_n)$ to the writhe polynomial $W_K(t)$ is equal to $\varepsilon_n t^n - \varepsilon_n nt + \varepsilon_n(n-1)$. Therefore it holds that

$$W_K(t) = W_J(t) + \sum_{n \neq 0,1} |a_n|(\varepsilon_n t^n - \varepsilon_n nt + \varepsilon_n(n-1))$$

$$= W_J(t) + \sum_{n \neq 0,1} a_n (t^n - nt + (n-1))$$

$$= W_J(t) + g(t) = f(t).$$

By definition, $S(n,\varepsilon_n)^{(r)}$ has the only chord c if n is divisible by r. Otherwise it has no chord. Therefore $G^{(r)}$ is equivalent to $H^{(r)}$, and hence $K^{(r)} = J^{(r)}$ for any integer $r = 0$ and $r \geq 2$.

Figure 6. The snail $S(n,\varepsilon)$.

\[
\begin{align*}
\text{Figure 6.} \quad & \begin{array}{c}
\text{The snail } S(n,\varepsilon).
\end{array}
\end{align*}
\]
Theorem 5.2. Let \(m \geq 1 \) be an integer, \(J_n \) \((0 \leq n \leq m, n \neq 1)\) \(m \) long virtual knots, and \(f(t) \) a Laurent polynomial with \(f(1) = f'(1) = 0 \). Then there is a long virtual knot \(K \) such that

\[
K^{(r)} = \begin{cases}
J_0 & \text{for } r = 0 \text{ and } r \geq m + 1, \\
K & \text{for } r = 1, \\
J_r & \text{otherwise,}
\end{cases}
\]

and \(W_K(t) = f(t) \).

Proof. Let \(K_0 \) be a long virtual knot obtained by applying Theorem 5.2 to the pair of \(m \) and \(J_0 \). Let \(K_n \) be a long virtual knot obtained by applying Theorem 4.2 to each pair of \(n \) and \(J_n \) \((2 \leq n \leq m)\). We juxtapose \(K_0, K_2, \ldots, K_m \) to have a long virtual knot \(K' \). Let \(K \) be a long virtual knot obtained by applying Theorem 5.1 to the pair of \(K' \) and \(f(t) \). Then we see that \(K \) is a desired long virtual knot. \(\square \)

Proof of Theorem 1.2. Let \(J^\circ_n \) be a long virtual knot whose closure is \(J_n \) \((0 \leq n \leq m, n \neq 1)\). Let \(K^\circ \) be a long virtual knot obtained by applying Theorem 5.2. Then we see that the closure of \(K^\circ \) is a desired virtual knot. \(\square \)

References

[1] Z. Chen, A polynomial invariant of virtual knots, Proc. Amer. Math. Soc. 142 (2014), no. 2, 713–725.
[2] Z. Cheng and H. Gao, A polynomial invariant of virtual links, J. Knot Theory Ramifications 22 (2013), no. 12, 1341002, 33 pp.
[3] M. Goussarov, M. Polyak, and O. Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000), no. 5, 1045–1068.
[4] A. Henrich, A sequence of degree one Vassiliev invariants for virtual knots, J. Knot Theory Ramifications 19 (2010), no. 4, 461–487.
[5] Y. H. Im and S. Kim, A sequence of polynomial invariants for Gauss diagrams, J. Knot Theory Ramifications 26 (2017), no. 7, 1750039, 9 pp.
[6] Y. H. Im, K. Lee, and Y. Lee, Index polynomial invariant of virtual links, J. Knot Theory Ramifications 19 (2010), no. 5, 709–725.
[7] M.-J. Jeong, A zero polynomial of virtual knots, J. Knot Theory Ramifications 25 (2016), no. 1, 1550078, 19 pp.
[8] L. H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663–690.
[9] L. H. Kauffman, An affine index polynomial invariant of virtual knots, J. Knot Theory Ramifications 22 (2013), no. 4, 1340007, 30 pp.
[10] V. O. Manturov, Purity and projection from virtual knots to classical knots, J. Knot Theory Ramifications 22 (2013), no. 9, 1350044, 20 pp.
[11] S. Satoh and K. Taniguchi, The writhes of a virtual knot, Fund. Math. 225 (2014), no. 1, 327–342.
[12] V. Turaev, Virtual strings, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 7, 2455–2525 (2005).

Department of Engineering Science, Osaka Electro-Communication University, Hatsucho 18-8, Neyagawa, Osaka 572-8530, Japan
E-mail address: n-takuji@osakac.ac.jp

Department of Mathematics, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
E-mail address: nakanisi@math.kobe-u.ac.jp

Department of Mathematics, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
E-mail address: shin@math.kobe-u.ac.jp