Do second-line oral antidiabetic drugs have different long-term effects on persons with young-onset type 2 diabetes? —A nationwide population base cohort study

Fu-Shun Yen
Dr.Yen's Clinic

James Cheng-Chung Wei
Institute of Medicine, Chung Shan Medical University

Jia-Sin Liu
Institute of Population Health Sciences, National Health Research Institutes

Chih-Cheng Hsu
Institute of Population Health Sciences, National Health Research Institutes

Chii-Min Hwu (✉ chhwu@vghtpe.gov.tw)
Taipei Veterans General Hospital https://orcid.org/0000-0002-8209-9627

Original investigation

Keywords: Young-onset diabetes, All-cause hospitalization, Non-infection hospitalization, All-cause mortality, Dipeptidyl peptidase-4 inhibitors

DOI: https://doi.org/10.21203/rs.3.rs-59642/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: People with young-onset diabetes (YOD) exhibit a higher risk of morbidity and mortality than those with late-onset diabetes. Few studies have explored the preferred management of diabetes in such patients; therefore, we compared the risks of hospitalization and mortality among people with YOD to whom second-line oral antidiabetic drugs (OADs) were administered.

Methods: We conducted a nationwide cohort study using the National Health Insurance Research Database (Taiwan). A total of 7257 people taking second-line OADs after initial metformin therapy were enrolled during 2009–2014. Using add-on sulfonylureas (SUs) as a reference, the multivariable Cox regression model was used to compare the risks of hospitalization and mortality among 5 categories of second-line OADs: alpha-glucosidase inhibitors, meglitinide, dipeptidyl peptidase-4 (DPP-4) inhibitors, SUs, and thiazolidinediones.

Results: The mean age of patients, duration of diabetes, and follow-up period were 31.6, 3.3, and 1.9 years, respectively. After baseline characteristics, comorbidities, duration of diabetes, and cardiovascular drug use were controlled, the adjusted hazard ratios and 95% confidence interval for all-cause, cardiovascular, and non-infection hospitalization and all-cause mortality for metformin plus DPP-4 inhibitors were 0.62 (0.52–0.73), 0.49 (0.29–0.85), 0.64 (0.54–0.76), and 0.50 (0.27–0.92), respectively, when compared with the data for metformin plus SUs.

Conclusions: We found that among people with YOD, taking add-on DPP-4 inhibitors was associated with lower risks of all-cause hospitalization and mortality than taking add-on SUs. DPP-4 inhibitors thus seem to be a suitable second-line OAD for such patients.

Trial registration: retrospectively registered

Background

Given widespread changes in dietary habits and lifestyle, type 2 diabetes mellitus (T2DM) is becoming increasingly prevalent among younger people in some countries [1]. In 2000, approximately 23 million young adults aged 20–39 years had T2DM worldwide (13% of 177 million individuals with T2DM), with the prevalence increasing to 63 million young adults in 2013 (16% of 382 million individuals with T2DM) [1]. This situation is particularly obvious among Asians [2]. T2DM in people aged <40 years is referred to as young-onset diabetes (YOD) [3]. In Asia, YOD is observed in approximately 20% of adults with T2DM [2]; in China specifically, YOD is seen in 4%–6% of individuals with T2DM [4]. The prevalence of YOD in Taiwan also exhibits an upward trend (approximately 12% in 2012) [5]. In Australia, in 2011, roughly 9% of newly diagnosed cases of T2DM were YOD [6]. Further, the prevalence of YOD in the United Kingdom increased from 5.9% in 1991 to 12.4% in 2010 [7].

Patients with YOD are destined to live with diabetes for a long time; moreover, most of them have other metabolic risk factors [2]. In the literature, using age-matched persons without diabetes as the
benchmark, adults with YOD have been found to have a significantly higher risk of premature death, macro- and microvascular complications, and hospitalization than those with late-onset T2DM [8–11]. Further, T2DM seems to rapidly progress in adults with YOD. Given that young adults tend to be the primary source of income within a family and actively contribute to the economic growth of a nation, optimal measures for those with YOD should be taken to enhance their health as well as quality of life.

Most randomized controlled trials recruited people aged >50 years [12]; because the number of participants under the age of 40 years is low, subgroup analyses involving those with YOD are challenging. Therefore, the current treatment strategies for YOD are extrapolated from the standard treatment guidelines for T2DM. Metformin is administered as the first-line drug, and second-line drugs are introduced when appropriate. Achieving the glycemic target in people with YOD is often difficult [13], and they also need to use insulin earlier than persons with more typical T2DM [8]. Treating people with YOD is difficult, and to date, few studies have evaluated the impact of different treatments in this population. Therefore, we conducted this retrospective cohort study to compare the risks of hospitalization and all-cause mortality among adults with YOD being treated with different second-line oral antidiabetic drugs (OADs).

Methods

Data source

The National Health Insurance (NHI) program was implemented in Taiwan in 1995, and in 2000, it involved >99% of the 23 million residents, >450 hospitals, and >10,000 clinics in Taiwan [14]. We used the full-population dataset from the NHI Research Database (NHIRD), which includes details pertaining to each insured’s residency/working location, gender, age, and the diagnoses and prescriptions they received in hospitals and clinics. The *International Classification of Diseases, Ninth Revision, Clinical Modifications (ICD-9-CM)* was used to code disease diagnoses. Death-related information of all residents is available in the National Death Registry, and the NHIRD was linked to this registry to verify information pertaining to mortality. To protect privacy, all information that could disclose the identity of residents was encrypted before release. This study was approved by the Institutional Review Board of the National Health Research Institutes (EC1060704-E); the requirement for informed consent was waived.

Study population and design

We used data from the NHIRD belonging to patients who were newly diagnosed with T2DM (*ICD-9-CM: 250.x*) in 2009–2014. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been marketed in Taiwan since 2009; therefore, our study began in 2009 and attempted to achieve a fair comparison of second-line OADs. Patients were included if they had a discharge diagnosis of T2DM with at least 2 outpatient or 1 inpatient claim within a year [15]. We further selected our study population using the following criteria: 1) an age at T2DM diagnosis of 20–39 years; 2) continuous use of metformin for >1 year without using other OADs and insulin; and 3) adding only 1 OAD for >90 days after metformin monotherapy. The 91st day after add-on of the second-line OAD was defined as the index date in this study.
Five categories of second-line OADs were taken by patients in this study: alpha-glucosidase inhibitors (AGIs), meglitinide, DPP-4 inhibitors, sulfonylureas (SUs), and thiazolidinediones (TZDs). Sodium glucose cotransporter-2 inhibitors were launched in Taiwan in 2018. Glucagon-like peptide-1 receptor agonists were marketed in Taiwan in 2011; they represented only 0.01% of all antidiabetic drug prescriptions in 2011 and 0.19% in 2014. Thus, we did not investigate these two drugs in this study. For comparing clinical outcomes, we used SUs—the most frequently used second-line OAD—as a reference. The follow-up was stopped if the second-line therapy was discontinued or switched or if add-on third-line OADs were identified. Moreover, we excluded patients with type 1 diabetes mellitus (ICD-9-CM: 250.1) with a catastrophic illness card. For those with gestational diabetes (ICD-9-CM: 648.0 and 648.8), their records for the current year were not be considered, but their data were recalculated 1 year later.

Characteristics and comorbidities

Comorbidities were calculated according to patients’ NHI records 1 year before the index date; comorbidities were defined as ≥2 outpatient diagnoses or at least 1 inpatient claim. We considered the following comorbidities in this study: hypertension (ICD-9-CM: 401–405 and A26), dyslipidemia (272 and 278), chronic kidney disease (403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 404.92, 404.93, V42.0, V45.1, V56.x, and 790), coronary artery disease (410–414), asthma (493, 786.07, and V17.5), and psychotic disorders (290–299). We also considered Charlson comorbidity index (CCI) [16] and Diabetes Complications Severity Index (DCSI) scores [17]. In addition, we observed the use of antihypertensive drugs, statins, and aspirin within 1 year before the index date.

Main outcomes

The primary outcome was all-cause hospitalization. We also assessed the risks of all-cause mortality, cardiovascular (CV) hospitalization, and non-infection hospitalization. The following CV diseases were investigated: cardiovascular diseases (ICD-9-CM: 398.91, 402.xx, 404.xx, 410.xx- 414.xx, 00.66, and 36.xx), heart failure (428.x), and ischemic stroke (433.x, 434.x, or 436.x). The incidence of outcomes was calculated in the follow-up period. The outcomes were identified as when they first occurred or at the end of the study. The date and cause of mortality were determined from the National Death Registry.

Statistical analysis

Baseline characteristics, premium levels, urbanization, comorbidities, CCI and DCSI scores, duration of diabetes, and medications were compared among patients receiving the 5 categories of second-line OADs. Baseline characteristics were compared using analysis of variance (ANOVA) or chi-square tests when conditions were appropriate. The stratified log-rank test and Kaplan–Meier analyses were used to compare the cumulative incidence of hospitalization and mortality. In the multivariable Cox regression model, hazard ratios (HRs) and 95% confidence intervals (CIs) were used to estimate treatment effects after adjusting for the aforementioned variables. We adopted the 2-sided trial, and \(P < 0.05 \) indicated statistical significance. SAS 9.4 (SAS Institute Inc., Cary, NC) and STATA 15.1 (STATA Corp, College Station, TX) were used for statistical analyses.
Results

From 2009 to 2014, we recruited 457, 283, 1241, 4975, and 301 people with YOD who were administered AGIs, meglitinide, DPP-4 inhibitors, SUs, and TZDs, respectively, as an add-on to metformin. As evident from Table 1, most of their baseline characteristics were different. The mean age of people in these 5 categories was 31.4, 31.8, 31.5, 31.7, and 31.5 years, respectively; the mean duration of T2DM was 3.2, 3.2, 3.4, 3.4, and 3.4 years, respectively; and the mean follow-up time was 1.9, 2.4, 1.2, 2.3, and 1.9 years, respectively.
Table 1 Basic characteristics of 20–39-year-old patients with type 2 diabetes taking add-on second-line oral antidiabetic drugs after metformin monotherapy

	Alpha glucosidase (AGIs)	Meglitinide	Dipeptidyl peptidase 4 (DPP4i)	Sulfonylurea (TZD)	Thiazolidinediones	\(P \) value
N	457	283	1,241	4,975	301	
Age group						
20-24	40 (8.8)	21 (7.4)	115 (9.3)	380 (7.6)	27 (9)	0.35
25-29	103 (22.5)	56 (19.8)	248 (20)	943 (19)	62 (20.6)	0.40
30-34	183 (40)	120 (42.4)	478 (38.5)	2,144 (43.1)	120 (39.9)	0.042
35-39	131 (28.7)	86 (30.4)	400 (32.2)	1,508 (30.3)	92 (30.6)	0.63
Mean(SD)	31.4 (4.3)	31.8 (4.2)	31.5 (4.5)	31.7 (4.2)	31.5 (4.4)	0.26
Gender						<0.001
Male	228 (49.9)	186 (65.7)	766 (61.7)	3,412 (68.6)	188 (62.5)	
Female	229 (50.1)	97 (34.3)	475 (38.3)	1,563 (31.4)	113 (37.5)	
Premium level						
(NTD)						
<22,000 or poor	193 (42.2)	110 (38.9)	486 (39.2)	2,167 (43.6)	122 (40.5)	0.042
22,000-44,999	220 (48.1)	145 (51.2)	612 (49.3)	2,362 (47.5)	143 (47.5)	0.62
\(\geq 45,000 \)	44 (9.6)	28 (9.9)	143 (11.5)	446 (9)	36 (12)	0.049
Urbanization						
Highly	111 (24.3)	81 (28.6)	291 (23.4)	1,267 (25.5)	97 (32.2)	0.19
Median	198 (43.3)	130 (45.9)	489 (39.4)	2,264 (45.5)	119 (39.5)	0.001
Township	44 (9.6)	24 (8.5)	118 (9.5)	512 (10.3)	32 (10.6)	0.79
Rural area	104 (22.8)	48 (17)	343 (27.6)	932 (18.7)	53 (17.6)	<0.001
Comorbidity						
Condition	Group 1	Group 2	Group 3	Group 4	Group 5	p-value
---------------	---------	---------	---------	---------	---------	---------
Hypertension	96 (21)	63 (22.3)	92 (7.4)	1,175 (23.6)	53 (17.6)	<0.001
Dyslipidemia	74 (16.2)	44 (15.5)	59 (4.8)	908 (18.3)	49 (16.3)	<0.001
CKD	20 (4.4)	15 (5.3)	8 (0.6)	249 (5)	13 (4.3)	<0.001
CAD	10 (2.2)	5 (1.8)	13 (1)	163 (3.3)	9 (3)	<0.001
Stroke	5 (1.1)	5 (1.8)	8 (0.6)	78 (1.6)	7 (2.3)	0.076
Asthma	30 (6.5)	14 (4.9)	52 (4.2)	170 (3.4)	10 (3.3)	0.010
Psychotic	18 (3.9)	9 (3.2)	19 (1.5)	201 (4)	7 (2.3)	<0.001

CCI scores

CCI scores	Group 1	Group 2	Group 3	Group 4	Group 5	p-value
<=1	336 (73.5)	203 (71.7)	1,146 (92.3)	3,585 (72.1)	231 (76.7)	<0.001
2	77 (16.8)	51 (18)	55 (4.4)	820 (16.5)	40 (13.3)	<0.001
3	17 (3.7)	13 (4.6)	24 (1.9)	257 (5.2)	16 (5.3)	<0.001
>=4	27 (5.9)	16 (5.7)	16 (1.3)	313 (6.3)	14 (4.7)	<0.001
Mean(SD)	1.9 (1.3)	1.7 (1.1)	1.7 (1.2)	1.8 (1.3)	1.7 (1.1)	<0.001

DCSI score

DCSI score	Group 1	Group 2	Group 3	Group 4	Group 5	p-value
0	392 (85.8)	230 (81.3)	1,193 (96.1)	4,170 (83.8)	256 (85)	<0.001
1	49 (10.7)	36 (12.7)	24 (1.9)	492 (9.9)	33 (11)	<0.001
>=2	16 (3.5)	17 (6)	24 (1.9)	313 (6.3)	12 (4)	<0.001
Mean(SD)	1.3 (0.5)	1.5 (0.8)	1.6 (0.7)	1.6 (0.9)	1.3 (0.6)	<0.001

Diabetic duration, years

Group	Group 1	Group 2	Group 3	Group 4	Group 5	p-value
ACEi /ARBS	119 (26)	57 (20.1)	432 (34.8)	1110 (22.3)	92 (30.6)	<0.001
Beta blocker	70 (15.3)	26 (9.2)	219 (17.6)	573 (11.5)	37 (12.3)	<0.001
CCB	93 (20.4)	43 (15.2)	291 (23.4)	840 (16.9)	57 (18.9)	<0.001
Diuretics	61 (13.3)	33 (11.7)	184 (14.8)	516 (10.4)	35 (11.6)	<0.001
Statin	111 (24.3)	52 (18.4)	429 (34.6)	1100 (22.1)	101 (33.6)	<0.001
Aspirin	33 (7.2)	10 (3.5)	96 (7.7)	315 (6.3)	20 (6.6)	<0.001
The incidence rates of all-cause hospitalization were 76.52, 100.15, 47.44, 92.86, and 75.54 per 1000 person-years, respectively, for add-on AGIs, meglitinide, DPP-4 inhibitors, SUs, and TZDs (Table 2). With add-on SUs used as a reference, the adjusted HR (95% CI) for all-cause hospitalization in the case of add-on DPP-4 inhibitors was 0.62 (0.52–0.73, \(P < 0.001 \)). Furthermore, the cumulative incidence of all-cause hospitalizations per Kaplan–Meier analyses indicated a significantly lower risk of hospitalization in people administered add-on DPP-4 inhibitors than in those administered add-on SUs (log-rank test, \(P < 0.001 \), Fig. 1). Similarly, with add-on SUs used as a reference, the adjusted HR of CV hospitalization showed statistically significant difference \(\text{aHR} 0.49 (0.29-0.85), \ P = 0.011 \), and the adjusted HR (95% CI) for non-infection hospitalization in the case of add-on DPP-4 inhibitors was 0.64 (0.54–0.76, \(P < 0.001 \), Table 2).
Table 2 Mortality and admission-related data of 20–39-year-old patients with type 2 diabetes taking add-on second-line oral antidiabetic drugs after metformin monotherapy

Event	Incidence	Crude model	Adjusted model			
		Hazard ratio (95% confidence interval)	Hazard ratio (95% confidence interval)	P value	P value	
		Crude model	Adjusted model			
All-cause mortality						
Alpha glucosidase inhibitors (AGIs)	7	8.02	0.57 (0.27-1.22)	0.16	0.62 (0.29-1.33)	0.22
Meglitinide	7	10.50	0.79 (0.37-1.68)	0.53	0.83 (0.39-1.78)	0.64
Dipeptidyl peptidase 4	11	7.70	0.46 (0.25-0.85)	0.014	0.50 (0.27-0.92)	0.026
Sulfonarylurea	154	13.48	1.0 (reference)	1.0 (reference)		
Thiazolidinediones	5	8.94	0.63 (0.26-1.54)	0.31	0.68 (0.28-1.66)	0.40
(TZD)						
All-cause hospitalization						
Alpha glucosidase inhibitors (AGIs)	121	76.52	0.84 (0.70-1.01)	0.65	0.90 (0.74-1.10)	0.30
Meglitinide	101	100.15	1.07 (0.87-1.31)	0.32	1.10 (0.88-1.38)	0.39
Dipeptidyl peptidase 4	158	47.44	0.57 (0.49-0.67)	<0.001	0.62 (0.52-0.73)	<0.001
Sulfonarylurea	1,640	92.86	1.0 (reference)	.	1.0 (reference)	
Thiazolidinediones	77	75.54	0.81 (0.65-1.02)	0.25	0.86 (0.67-1.11)	0.24
(TZD)						
Cardiovascular hospitalization						
Alpha glucosidase inhibitors (AGIs)	9	4.89	0.66 (0.33-1.28)	0.22	0.65 (0.33-1.28)	0.21
The event rates of all-cause mortality for add-on AGIs, meglitinide, DPP-4 inhibitors, SUs, and TZDs were 7, 7, 11, 154, and 5 cases, respectively (Table 2). With add-on SU used as a reference, the adjusted HR of all-cause mortality showed statistically significant difference [aHR 0.50 (0.27-0.92), \(P = 0.026 \), Table 2]. The cumulative incidence of survival in the aforementioned 5 categories has been depicted using the Kaplan–Meier method in Fig. 2: a significantly higher probability of survival was found in people administered add-on DPP-4 inhibitors than in those administered add-on SUs (log-rank test, \(P = 0.014 \)).

As per stratified analyses, among people administered add-on DPP-4 inhibitors, those who were aged 20–34 years; both men and women; whose duration of diabetes was < 3 or > 5 years; who did not have hypertension or dyslipidemia; whose CCI score was < 4 and DCSI score was < 2; and who did not use angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, \(\beta \)-blockers, calcium channel blockers, and diuretics had lower risks of all-cause hospitalization compared with those administered add-on SUs (Table 3).
Table 3 Subgroup analysis of all-cause hospitalization involving 20–39-year-old patients with type 2 diabetes taking add-on second-line oral antidiabetic drugs after metformin monotherapy

Subgroup	Event	Incidence rate (per 1000 person-years)	Crude model	Adjusted model^a			
			Hazard ratio (95% confidence interval) P value	Hazard ratio (95% confidence interval) P value			
Overall			0.96 (0.79-1.16) 0.65	0.96 (0.79-1.17) 0.70			
Alpha glucosidase inhibitors			0.96 (0.79-1.16) 0.65	0.96 (0.79-1.17) 0.70			
Meglitinide	82	78.90	1.12 (0.90-1.40) 0.31	1.10 (0.88-1.38) 0.41			
Dipeptidyl	156	46.43	0.62 (0.53-0.74) <0.001	0.73 (0.62-0.87) <0.001			
Dipeptidyl-4 inhibitors			0.001				
Sulfonylurea	1279	70.38	reference	reference			
Thiazolidinediones	64	61.06	0.86 (0.67-1.11) 0.24	0.89 (0.69-1.14) 0.36			
Age 20-29 years-old			0.91 (0.64-1.30) 0.62	0.93 (0.65-1.34) 0.71			
Alpha glucosidase inhibitors			0.91 (0.64-1.30) 0.62	0.93 (0.65-1.34) 0.71			
Meglitinide	28	102.15	1.41 (0.96-2.08) 0.08	1.45 (0.99-2.14) 0.0+			
Dipeptidyl	41	40.90	0.54 (0.39-0.74) <0.001	0.58 (0.42-0.81) 0.001			
Dipeptidyl-4 inhibitors			0.001				
Sulfonylurea	339	71.87	reference	reference			
Thiazolidinediones	16	54.86	0.75 (0.46-1.25) 0.27	0.76 (0.46-1.26) 0.28			
Age 30-34 years-old			0.90 (0.66-1.23) 0.52	0.92 (0.67-1.26) 0.59			
Alpha glucosidase inhibitors			0.90 (0.66-1.23) 0.52	0.92 (0.67-1.26) 0.59			
Meglitinide	35	82.01	1.12 (0.80-1.57) 0.52	1.14 (0.81-1.61) 0.45			
Dipeptidyl	67	51.72	0.66 (0.52-0.86) 0.002	0.78 (0.60-1.01) 0.06			
Drug Class	N	Risk Ratio	95% CI	p-value	RR 95% CI	95% CI	p-value
-------------------------	------	------------	--------	---------	----------------	--------	---------
Sulfonylurea	571	73.18			reference		
Thiazolidinediones	23	51.39	0.70 (0.46-1.06)	0.09	0.72 (0.48-1.10)	0.13	
Age 35-39 years-old							
Alpha glucosidase	33	71.92	1.09 (0.76-1.56)	0.64	1.01 (0.70-1.44)	0.98	
inhibitors							
Meglitinide	19	56.14	0.86 (0.54-1.37)	0.53	0.83 (0.52-1.32)	0.43	
Dipeptidyl	48	45.21	0.66 (0.49-0.90)	0.008	0.87 (0.64-1.19)	0.39	
peptidase-4 inhibitors							
Sulfonylurea	369	65.28			reference		
Thiazolidinediones	25	80.92	1.23 (0.82-1.85)	0.32	1.32 (0.87-1.98)	0.19	
Men							
Alpha glucosidase	46	57.66	0.85 (0.63-1.14)	0.28	0.86 (0.64-1.16)	0.33	
inhibitors							
Meglitinide	51	71.91	1.07 (0.81-1.43)	0.62	1.08 (0.81-1.43)	0.59	
Dipeptidyl	97	46.43	0.65 (0.52-0.80)	<	0.77 (0.62-0.95)	0.016	
peptidase-4 inhibitors							
Sulfonylurea	841	67.01			reference		
Thiazolidinediones	39	59.99	0.89 (0.64-1.22)	0.47	0.93 (0.68-1.29)	0.67	
Women							
Alpha glucosidase	64	77.65	0.99 (0.76-1.29)	0.96	1.04 (0.80-1.36)	0.77	
inhibitors							
Meglitinide	31	93.91	1.20 (0.84-1.73)	0.32	1.14 (0.79-1.64)	0.48	
Dipeptidyl	59	46.44	0.57 (0.44-0.75)	<	0.68 (0.51-0.89)	0.006	
peptidase-4 inhibitors							
Sulfonylurea	438	77.92			reference		
Thiazolidinediones	25	62.8	0.80 (0.54-1.20)	0.29	0.83 (0.55-1.25)	0.37	
Diabetes duration < 3 years							
	68	64.39	1.01 (0.78-1.28)	0.99	0.97 (0.75-1.25)	0.80	
Drug Class	Duration	Group 1	Group 2	Group 3	Group 4	Group 5	
-----------------------	-------------------	---------	---------	---------	---------	---------	
Alpha glucosidase							
Meglitinide	3-5 years	72.20	0.96	0.87	1.01	0.97	
Dipeptidyl peptidase-4 inhibitors	3-5 years	84.57	1.13	0.57	1.14	0.55	
Sulfonlurea	3-5 years	74.80	reference	reference			
Thiazolidinediones	3-5 years	58.32	0.77	0.35	0.78	0.37	
Alpha glucosidase	> 5 years	76.83	0.89	0.63	0.92	0.74	
Meglitinide	> 5 years	86.38	1.02	0.95	1.07	0.80	
Dipeptidyl peptidase-4 inhibitors	> 5 years	50.96	0.56	0.003	0.60	0.012	
Sulfonlurea	> 5 years	84.87	reference	reference			
Thiazolidinediones	> 5 years	41.55	0.49	0.044	0.51	0.06	
Alpha glucosidase	With hypertension	80.97	0.98	0.89	1.05	0.80	
Meglitinide	With hypertension						
Dipeptidyl peptidase-4 inhibitors	With hypertension						
Sulfonlurea	With hypertension						
Thiazolidinediones	With hypertension						
Drug Class	N	Mean (SD)	p-value	Reference Mean (SD)	Reference p-value		
-----------------------------	----	-----------	---------	---------------------	------------------		
Dipeptidyl peptidase-4 inhibitors							
Sulfonylurea	399	82.74	reference		reference		
Thiazolidinediones	20	94.88	1.15 (0.74-1.81)	0.53	1.24 (0.79-1.94)	0.35	
Without hypertension							
Alpha glucosidase	78	63.58	0.96 (0.76-1.21)	0.71	0.95 (0.75-1.20)	0.67	
Dipeptidyl peptidase-4 inhibitors							
Meglitinide	62	81.92	1.24 (0.96-1.61)	0.10	1.24 (0.96-1.60)	0.11	
Dipeptidyl	133	43.46	0.62 (0.52-0.75)	<	0.70 (0.58-0.85)	<	
With Dyslipidemia							
Alpha glucosidase	27	87.12	1.15 (0.77-1.70)	0.49	1.05 (0.71-1.57)	0.80	
Dipeptidyl peptidase-4 inhibitors							
Meglitinide	12	65.07	0.86 (0.48-1.54)	0.61	0.81 (0.45-1.45)	0.48	
Dipeptidyl	16	79.22	1.02 (0.62-1.69)	0.93	1.03 (0.62-1.71)	0.92	
Without Dyslipidemia							
Alpha glucosidase	83	63.26	0.91 (0.73-1.14)	0.41	0.92 (0.74-1.16)	0.48	
Dipeptidyl peptidase-4 inhibitors							
Meglitinide	70	81.88	1.19 (0.93-1.52)	0.16	1.17 (0.92-1.49)	0.20	
Dipeptidyl	140	44.34	0.61 (0.51-0.73)	<	0.71 (0.59-0.86)	<	
peptidase-4 inhibitors							
Sulfonylurea	991	68.95	reference		reference		
Thiazolidinediones	47	55.90	0.80 (0.60-1.08)	0.14	0.83 (0.62-1.11)	0.21	
CCI scores ≥ 4

Category	Count	CCI	Hazard Ratio (95% CI)	p-value	Hazard Ratio (95% CI)	p-value
Alpha glucosidase inhibitors	11	111.68	0.86 (0.46-1.58)	0.62	0.95 (0.50-1.79)	0.87
Meglitinide	10	211.12	1.47 (0.78-2.80)	0.24	1.51 (0.77-2.95)	0.23
Dipeptidyl	6	156.27	1.05 (0.47-2.39)	0.90	1.23 (0.54-2.81)	0.62
Sulfonylurea	144	132.65	reference	reference	reference	reference
Thiazolidinediones	8	183.20	1.32 (0.65-2.70)	0.44	1.59 (0.76-3.31)	0.22

CCI scores <4

Category	Count	CCI	Hazard Ratio (95% CI)	p-value	Hazard Ratio (95% CI)	p-value
Alpha glucosidase inhibitors	99	64.98	0.97 (0.79-1.19)	0.79	0.97 (0.79-1.19)	0.77
Meglitinide	72	72.58	1.09 (0.86-1.39)	0.46	1.08 (0.85-1.37)	0.55
Dipeptidyl	150	45.16	0.65 (0.55-0.77)	<	0.72 (0.61-0.86)	<
Sulfonylurea	1135	66.43	reference	reference	reference	reference
Thiazolidinediones	56	55.75	0.84 (0.64-1.09)	0.19	0.84 (0.64-1.09)	0.19

DCSI ≥ 2

Category	Count	CCI	Hazard Ratio (95% CI)	p-value	Hazard Ratio (95% CI)	p-value
Alpha glucosidase inhibitors	8	158.75	1.10 (0.54-2.25)	0.79	1.26 (0.60-2.61)	0.54
Meglitinide	8	123.62	0.89 (0.44-1.81)	0.75	0.86 (0.41-1.80)	0.70
Dipeptidyl	6	111.77	0.66 (0.29-1.51)	0.33	0.61 (0.26-1.40)	0.24
Sulfonylurea	148	141.05	reference	reference	reference	reference
Thiazolidinediones	6	159.03	1.19 (0.52-2.69)	0.68	1.33 (0.57-3.09)	0.50

DCSI < 2

Category	Count	CCI	Hazard Ratio (95% CI)	p-value	Hazard Ratio (95% CI)	p-value
Alpha glucosidase inhibitors	102	64.90	0.98 (0.80-1.20)	0.82	0.94 (0.77-1.16)	0.58
Meglitinide	74	75.93	1.15 (0.91-1.45)	0.25	1.14 (0.90-1.44)	0.28
Drug Class	Count	Mean (%)	CI (95%)	P-value	CI (95%)	
-------------------------	-------	----------	-------------	---------	----------	
Dipeptidyl peptidase-4 inhibitors	150	45.37	<0.65 (0.55-0.78)	<0.001	0.74 (0.62-0.88)	<0.001
Sulfonylurea	1131	66.05	reference	reference		
Thiazolidinediones	58	57.40	0.86 (0.66-1.12)	0.28	0.86 (0.66-1.12)	0.27

Used ACEi/ARB

Drug Class	Count	Mean (%)	CI (95%)	P-value	CI (95%)	
Alpha glucosidase inhibitors	26	60.26	0.86 (0.57-1.28)	0.46	0.85 (0.56-1.27)	0.43
Meglitinide	14	63.31	0.91 (0.53-1.56)	0.74	0.87 (0.51-1.50)	0.61
Dipeptidyl	56	48.83	0.68 (0.51-0.90)	0.008	0.78 (0.57-1.05)	0.10

peptidase-4 inhibitors

Drug Class	Count	Mean (%)	CI (95%)	P-value	CI (95%)	
Sulfonylurea	278	69.97	reference	reference		
Thiazolidinediones	17	57.90	0.82 (0.50-1.34)	0.43	0.89 (0.55-1.47)	0.66

Nonuse ACEi/ARB

Drug Class	Count	Mean (%)	CI (95%)	P-value	CI (95%)	
Alpha glucosidase inhibitors	84	70.55	0.99 (0.79-1.24)	0.93	0.99 (0.79-1.24)	0.94
Meglitinide	68	83.11	1.17 (0.92-1.50)	0.20	1.15 (0.90-1.48)	0.26
Dipeptidyl	100	45.19	0.60 (0.49-0.74)	<0.001	0.70 (0.57-0.87)	0.001

peptidase-4 inhibitors

Drug Class	Count	Mean (%)	CI (95%)	P-value	CI (95%)	
Sulfonylurea	1001	70.50	reference	reference		
Thiazolidinediones	47	62.28	0.88 (0.66-1.18)	0.40	0.88 (0.65-1.17)	0.37

Used β-blocker

Drug Class	Count	Mean (%)	CI (95%)	P-value	CI (95%)	
Alpha glucosidase inhibitors	22	92.86	1.19 (0.76-1.86)	0.44	1.28 (0.81-2.04)	0.29
Meglitinide	7	69.75	0.91 (0.43-1.95)	0.82	0.90 (0.41-1.95)	0.78
Dipeptidyl	34	63.08	0.77 (0.53-1.12)	0.17	0.99 (0.66-1.48)	0.95

peptidase 4 inhibitors

Drug Class	Count	Mean (%)	CI (95%)	P-value	CI (95%)	
Sulfonylurea	157	77.65	reference	reference		
Thiazolidinedones	9	84.07	1.06 (0.54-2.07)	0.87	1.22 (0.61-2.42)	0.57

Nonuse β-blocker
Drug Category	Use CCB	Nonuse CCB	Use Diuretic
Alpha glucosidase			
Meglitinide	75	84	11
Dipeptidyl	122	109	36
Dipeptidase-4 inhibitors			
Sulfonylurea	1122	228	1051
Thiazolidinediones	55	13	51
Nonuse CCB			
Alpha glucosidase	26	84	20
Meglitinide	12	70	11
Dipeptidyl	47	109	36
Dipeptidase-4 inhibitors			
Sulfonylurea	228	1051	
Thiazolidinediones	13	51	
Use Diuretic			
Alpha glucosidase	20	20	
Meglitinide	11	11	
Dipeptidyl	36	36	
peptidase-4 inhibitors

Sulfonylurea	163	91.50	reference	reference		
Thiazolidinediones	6	53.30	0.57 (0.25-1.29)	0.18	0.57 (0.25-1.31)	0.19

Nonuse Diuretic

Alpha glucosidase inhibitors	90	63.82	0.93 (0.75-1.15)	0.51	0.93 (0.75-1.15)	0.50

Meglitinide	71	76.50	1.12 (0.88-1.43)	0.34	1.11 (0.87-1.41)	0.39
Dipeptidyl	120	41.46	0.57 (0.48-0.69) <	0.68 (0.56-0.82)	<0.001	

CCI, Charlson comorbidity index; DCSI, Diabetes Complications Severity Index; ACEi, angiotensin-converting enzyme inhibitor; ARBs, angiotensin receptor blockers; CCB, calcium channel blocker

a Adjusted for all variables in Table 1

Discussion

In this nationwide cohort study, we compared hospitalization and mortality risks among people with YOD taking different second-line OADs. With add-on SUs as a reference, only people taking add-on DPP-4 inhibitors had significantly lower risks of all-cause hospitalizations and mortality. Further, subgroup analyses indicated that among people added on DPP-4 inhibitors, those who were younger, fewer comorbidities and complications seemed to have lower risks of all-cause hospitalization compared with those added on SUs.

Because metformin is safe, effective, and cheap, unless there are contraindications, it is used as the first-line drug for T2DM treatment in most countries [18]. However, if metformin fails or is insufficient in treating a patient, a second-line OAD is introduced to intensify glycemic management. If patients do not have underlying kidney or CV diseases, all second-line OADs seem to have a similar effect [19, 20]. The GRADE randomized control study investigated the long-term outcomes of glimepiride, sitagliptin, liraglutide, and basal insulin glargine; however, this study is ongoing and thus the results remain unknown [21]. Several studies have compared the clinical outcomes of different second-line OADs added to metformin [22–24]. Morgan et al reported that the combination of metformin plus pioglitazone was associated with a lower risk of combined end points (mortality, CV events, and cancer) compared with the combination of metformin plus SU [22]. Further, Chang et al revealed that glinide plus metformin and
AGIs plus metformin were associated with lower risks of acute myocardial infarction compared with SU plus metformin [23]. Hsu et al demonstrated that acarbose added to metformin was associated with lower risks of major atherosclerotic events compared with the addition of SU to metformin [24]. Few clinical studies have compared the clinical outcomes of different treatments for diabetes in patients with YOD. In the present study, we found that the combination of metformin and DPP-4 inhibitors was associated with a lower risk of all-cause mortality compared with the combination of metformin and SU. Additionally, we found that treatment with metformin plus DPP-4 inhibitors was associated with lower risks of all-cause, cardiovascular and non-infection hospitalization compared with metformin plus SU in multivariable analyses. Ke et al reported that YOD is associated with excess burden of hospitalization compared with late-onset diabetes [10]. Our results indicated that among the tested second-line OADs, DPP-4 inhibitors may be able to lower the risk of hospitalization in people with YOD.

In the subgroup analysis of hospitalization involving people with YOD taking add-on DPP-4 inhibitors, younger people, those with fewer comorbidities and diabetes complications, and those not using any antihypertensive drugs had a lower risk of all-cause hospitalization than those taking add-on SUs. Prevailing evidence suggests that adults with YOD show more rapid β-cell deterioration than those with late-onset T2DM [25]. By prolonging the half-life of glucagon-like peptide-1 and gastric inhibitory polypeptide, DPP-4 inhibitors promote glucose-dependent insulin secretion and are believed to have a β-cell preserving function [26, 27]. Therefore, the use of DPP-4 inhibitors may attenuate β-cell deterioration; by contrast, SUs tend to exhaust β-cell function [28]. This may be particularly important in people with YOD and a rapid decline of β-cell function [25]. Our subgroup analysis further suggested that add-on DPP-4 inhibitors in people with YOD may be as early with young and low complications as better. Moreover, DPP-4 inhibitors have been confirmed to improve glucose excursion, and the risk of hypoglycemia and adverse events is low, even in patients with renal dysfunction [26]. These data thus explain why patients with YOD taking metformin plus DPP-4 inhibitors had a lower risk of hospitalization in this study.

It is noteworthy that people with YOD must live with this condition for most part of their lives. Compared with late-onset diabetes, YOD seems to be associated with a relatively high lifelong risk of vascular complications, hospitalization, and premature mortality. However, only a few studies have explored the optimal management of YOD. Our results suggest that metformin plus DPP-4 inhibitors may reduce the risk of hospitalization compared with metformin plus SUs, which is the most frequently prescribed combination. Further, although the prevalence of YOD is increasing worldwide, the number of patients is still relatively small, and thus, it is difficult to recruit a large number of adults with YOD for randomized control studies. Our study design was thus suitable because we could enroll a sufficient number of people with YOD to compare the outcomes of various second-line OADs.

Our study had some limitations. First, the NHI dataset lacked information on physical activities of patients, alcohol drinking or smoking habits, body weight, blood pressure, renal function, and hemoglobin A1C, glucose, and lipid levels. This lack of data may thus influence the outcomes we assessed. We attempted to decrease the influence of confounders by adjusting for important variables, such as age, gender, premium levels, areas of residence, comorbidities, CCI and DCSI scores, duration of diabetes, and...
CV-related medications. Second, as patients stopped taking an OAD, switched to another OAD, or added a third-line medication, the follow-up was stopped; whereas, information pertaining to the adherence of dosage, timing, and frequency of second-line OADs could not be obtained from the administrative database. The preference of clinicians or patients to prescribe or receive, respectively, any second-line OADs (i.e., confounding by indication) could not be avoided in this study. Third, we believe that future prospective studies with longer follow-up periods of surveillance need to be conducted to elucidate CV and death risks in patients taking the tested second-line OADs. Finally, observational studies are always subject to some residual confounding; randomized control studies are thus warranted to validate our findings.

Conclusions

We herein demonstrated that taking metformin plus DPP-4 inhibitors is associated with lower risks of hospitalization and mortality compared with taking metformin plus SUs among people with YOD. YOD seems to be an aggressive phenotype of T2DM, with a relatively high risk of complications and treatment failure. Thus, our results should be useful for the management of persons with YOD.

Abbreviations

YOD, young-onset diabetes; OAD, oral antidiabetic drug; DPP-4, dipeptidyl peptidase-4; SU, sulfonylurea; T2DM, type 2 diabetes mellitus; TZD, thiazolidinedione; AGI, alpha-glucosidase inhibitor; CCI, Charlson comorbidity index; DCSI, Diabetes Complications Severity Index; CV, cardiovascular.

Declarations

We confirmed that all methods were performed in accordance to Declaration of Helsinki.

Ethics approval and consent to participate

To protect privacy, all information that could disclose the identity of residents was encrypted before release. This study was approved by the Institutional Review Board of the National Health Research Institutes (EC1060704-E).

Consent publication

The requirement for informed consent was waived.

Availability of data and materials

Data are available from the NHIRD, published by Taiwan's NHI Bureau. Requests for data can be sent as a formal proposal to the NHIRD (http://nhird.nhri.org.tw) or by email to nhird@nhri.org.tw.

Competing interest
There were no financial competing interests for this study.

Funding

This study was supported by Taipei Veterans General Hospital (V105C-204).

Authors’ contributions

FSY, CMH, and CCH conceptualized, designed, and coordinated the study. JSL, JCW, FSY, and CMH collected the data. JSL, CCH, and CMH analyzed and interpreted the data. JCW, CCH, CMH, JSL, and FSY discussed and interpreted the results. FSY, CCH, JCW, JSL, and CMH wrote and revised the manuscript. CCH and CMH are the guarantors of this work, had full access to all study data, and take responsibility for the integrity and accuracy of data analyses. All authors have approved the final content of this manuscript.

Acknowledgements

This study was based on data from the NHIRD provided by the NHI Administration and managed by the National Health Research Institutes, Taiwan. The interpretation of data and conclusion reported herein do not represent those of the NHI Administration or National Health Research Institutes. This manuscript was edited by Wallace Academic Editing.

ORCID

Chih-Cheng Hsu https://orcid.org/0000-0003-4563-4341

Chii-Min Hwu https://orcid.org/0000-0002-8209-9627

Author details

1 Dr. Yen’s Clinic, No. 15, Shanying Road, Gueishan District, Taoyuan 33354, Taiwan. 2 Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan. 3 Department of Medicine, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan. 4 Graduate Institute of Integrated Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan. 5 Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan. 6 Department of Health Services Administration, China Medical University, Hsueh-Shih Road, Taichung 40402, Taiwan. 7 Department of Family Medicine, Min-Sheng General Hospital, 168 ChingKuo Road, Taoyuan 33044, Taiwan. 8 Department of Medicine, National Yang-Ming University School of Medicine, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan. 9 Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road, Beitou District, Taipei 11217, Taiwan.
References

1. International Diabetes Federation (IDF). Diabetes Atlas, 9th edition 2019. https://www.diabetesatlas.org/en/sections/demographic-and-geographic-outline.html. Accessed 18 June 2020.

2. Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):69-80.

3. Yeung RO, Zhang Y, Luk A, Yang W, Sobrepina L, Yoon KH, et al. Metabolic profiles and treatment gaps in young-onset type 2 diabetes in Asia (the JADE programme): a cross-sectional study of a prospective cohort. Lancet Diabetes Endocrinol. 2014;2(12):935-43.

4. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and control of diabetes in Chinese adults. J Am Med Assoc. 2013;310(9):948-59.

5. Lee CW, Wu SH, Chiu WC, Tsai ST, Lan TY. The medications and health care utilization of patients newly diagnosed with type 2 diabetes mellitus: a nationwide population-based cohort study. J Formos Med Assoc. 2020:S0929-6646(20)30074-7.

6. Australian Institute of Health and Welfare. Type 2 diabetes in Australia's children and young people: a working paper. Canberra: Diabetes Series Australian Institute of Health and Welfare; 2014.

7. Holden SH, Barnett AH, Peters JR, Jenkins-Jones S, Poole CD, Morgan CL, et al. The incidence of type 2 diabetes in the United Kingdom from 1991 to 2010. Diabetes Obes Metab. 2013;15(9):844-52.

8. Hillier TA, Pedula KL. Complications in young adults with early-onset type 2 diabetes: losing the relative protection of youth. Diabetes Care. 2003;26(11):2999-3005.

9. Sattar N, Rawshani A, Franzén S, Rawshani A, Svensson AM, Rosengren A, et al. Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation. 2019;139(19):2228-37.

10. Ke C, Lau E, Shah BR, Stukel TA, Ma RC, So WY, et al. Excess burden of mental illness and hospitalization in young-onset type 2 diabetes: a population-based cohort study. Ann Intern Med. 2019;170(3):145-54.

11. Wong J, Molyneaux L, Constantino M, Twigg SM, Yue DK. Timing is everything: age of onset influences long-term retinopathy risk in type 2 diabetes, independent of traditional risk factors. Diabetes Care. 2008;31(10):1985-90.

12. Ke C, Shah BR, Luk AO, Di Ruggiero E, Chan JCN. Cardiovascular outcomes trials in type 2 diabetes: time to include young adults. Diabetes Obes Metab. 2020;22(1):3-5.

13. Gopalan A, Mishra P, Alexeiff SE, Blatchins MA, Kim E, Man A, et al. Initial glycemic control and care among younger adults diagnosed with type 2 diabetes. Diabetes Care. 2020;43(5):975-81.

14. Cheng TM. Taiwan's new national health insurance program: genesis and experience so far. Health Aff. 2003;22(3):61-76.

15. Lin CC, Lai MS, Syu CY, Chang SC, Tseng FY. Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. J Formos Med Assoc. 2005;104(3):157-63.
16. Meduru P, Helmer D, Rajan M, Tseng CL, Pogach L, Sambamoorthi U. Chronic illness with complexity: implications for performance measurement of optimal glycemic control. J Gen Intern Med. 2007;22(Suppl 3):408-18.

17. Young BA, Lin E, Von Korff M, Simon G, Ciechanowski P, Ludman EJ, et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am J Manag Care. 2008;14(1):15-23.

18. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S90-102.

19. Mearns ES, Sobieraj DM, White CM, Saulsberry WJ, Kohn CG, Doleh Y, et al. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: a network meta-analysis. PLoS One. 2015;10(4):e0125879.

20. Palmer SC, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA. 2016;316(3):313-24.

21. Nathan DM, Buse JB, Kahn SE, Krause-Steinrauf H, Larkin ME, Staten M, et al. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE). Diabetes Care. 2013;36(8):S90-102.

22. Morgan CL, Poole CD, Evans M, Barnett AH, Jenkins-Jones S, Currie CJ. What next after metformin? A retrospective evaluation of the outcome of second-line, glucose-lowering therapies in people with type 2 diabetes. J Clin Endocrinol Metab. 2012;97(12):4605-12.

23. Chang YC, Chuang LM, Lin JW, Chen ST, Lai MS, Chang CH. Cardiovascular risks associated with second-line oral antidiabetic agents added to metformin in patients with Type 2 diabetes: a nationwide cohort study. Diabet Med. 2015;32(11):1460-9.

24. Hsu PF, Sung SH, Cheng HM, Shin SJ, Lin KD, Chong K, et al. Cardiovascular benefits of acarbose vs sulfonylureas in patients with type 2 diabetes treated with metformin. J Clin Endocrinol Metab. 2018;103(10):3611-19.

25. Magliano DJ, Sacre JW, Harding JL, Gregg EW, Zimmet PZ, Shaw JE. Young-onset type 2 diabetes mellitus - implications for morbidity and mortality. Nat Rev Endocrinol. 2020;16(6):321-31.

26. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA. 2007;298(2):194-206.

27. Lyu X, Zhu X, Zhao B, Du L, Chen D, Wang C, et al. Effects of dipeptidyl peptidase-4 inhibitors on beta-cell function and insulin resistance in type 2 diabetes: meta-analysis of randomized controlled trials. Sci Rep. 2017;7:44865.

28. Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab. 2005;90(1):501-6.

Figures
Figure 1

Kaplan–Meier curves for hospitalization according to different second-line oral antidiabetic drugs
Figure 2

Kaplan–Meier survival curves according to different second-line oral antidiabetic drugs