THE LAX INTEGRABLE DIFFERENTIAL-DIFFERENCE DYNAMICAL SYSTEMS ON EXTENDED PHASE SPACES

The Lax type flows in the forms [1, 2]

\[L_{tp} = [(L^p)_+, L], \quad p \in \mathbb{N}, \]

on the dual space \(G^* \) to the Lie algebra of linear operators

\[L := \sum_{j<\infty} u_j(n)T^j, \]

where \(u_j \in C^\infty(\mathbb{Z}/q\mathbb{Z}; \mathbb{R}), \quad j \in \mathbb{Z}, \quad q \in \mathbb{N}, \) and \(T \) is the shift operator, satisfying the following rule

\[T^j u = (T^j u)^T \]

and the lower index \(+ \) signs a projection of the corresponding operator on the Lie subalgebra \(G_+ \subset G \), which consists of the elements \(\sum_{0 \leq j<\infty} u_j(n)T^j \), with respect to the scalar product

\[(A, B) := \sum_{n \in \mathbb{Z}/q\mathbb{Z}} \sum_{j \in \mathbb{Z}} a_j(n)b_j(n), \quad A, B \in G, \]

\[A := \sum_{j<\infty} a_j(n)T^j, \quad B := \sum_{i<\infty} T^{-i}b_i(n), \]

are considered. The corresponding evolutions for eigenfunctions \(f_k \in W := L_\infty(\mathbb{Z}/q\mathbb{Z}; \mathbb{R}) \) and adjoint eigenfunctions \(f^*_k \in W \), \(k = 1, N \), of the associated with (1) isospectral problem take the forms

\[f_{k, tp} = ((L^p)_+ f_k), \quad f^*_{k, tp} = -((L^p)^*_+ f^*_k), \]

where functions \(f_k, f^*_k \in W \) are related to \(N \in \mathbb{N} \) different eigenvalues.

The existence of Hamiltonian representation for the hierarchy of dynamical systems (1)-(2) on an extended phase space \(G^* \times W^{2N} \) is investigated by use of the invariant Casimir functionals’ property under the Lie-Backlund transformation on the space \(G^* \)

\[L_{>0} \mapsto L = L_{>0} + \sum_{k=1}^{N} f_k T(T - 1)^{-1} f^*_k, \]

where \(L_{>0} := \sum_{0<j<\infty} u_j(n)T^j \). The corresponding hierarchies of Lax type additional symmetries [3] are stated to be Hamiltonian too. It is established that the additional
symmetry is generated by the Poisson structure, being equal to the tensor product of the
R-deformed canonical Lie-Poisson bracket [1] on G^* and the standard Poisson bracket
on the space W^{2N}, and some power of a suitable spectral eigenvalue is its Hamiltonian function.

The similar problems for the central extension [3, 4] of the Lie algebra G are studied also.

References

[1] Blaszak M. and Marciniak K. R-matrix approach to lattice integrable systems. J. Math.
Phys., 1994. – 35, No. 9. – P. 4661-4682.

[2] Hentosh O., Prytula M., Prykarpatsky A. Differential- Geometric and Lie-Algebraic Foundations of Studying Integrable Nonlinear Dynamical Systems on Functional Manifolds, Lviv National University Publishing, Lviv, 2006, 406 pp. (in Ukrainian)

[3] Hentosh O.Ye. and Prykarpatsky A.K. Integrable three-dimensional coupled nonlinear dynamical systems related with centrally extended operator Lie algebras. Opuscula Mathematica, 2007. – 27, No. 2. – P. 231-244.

[4] Blaszak M. and Szum A. Lie algebraic approach to the construction of (2 + 1)-dimensional lattice-field and field integrable Hamiltonian equations. J. Math. Phys., 2001. – 42, No. 1. – P. 225-259.