Impact of surface disinfection and sterile draping of furniture on room air quality in a cardiac procedure room with a ventilation and air-conditioning system (extrusion airflow, cleanroom class 1b (DIN 1946-4))

Abstract
In a cardiac procedure room, ventilated by a ventilation and air-conditioning system with turbulent mixed airflow, a protection zone in the operating area could be defined through visualization of airflows. Within this protection zone, no turbulence was detectable in the room air.
Under the given conditions, disinfection of all surfaces including all furniture and equipment after the last operation and subsequent draping of furniture and all equipment that could not be removed from the room with sterile surgical drapes improved the indoor room air quality from cleanroom class C to cleanroom class B. This also allows procedures with elevated requirements to be performed in room class 1b.

Keywords: ventilation and air-conditioning system, cleanroom class 1b, mixed airflow, particle content, pathogen count, impact surface disinfection, impact sterile draping

Introduction
In the context of a clinical trial, bone marrow extractions via iliac crest puncture were to be performed in a cardiac procedure room. In this room, pacemaker and defibrillator implantations are performed in addition to coronary angiographies and, if necessary, surgical interventions (e.g. stent implantation). The respective procedure room is equipped with a ventilation and air conditioning (VAC) system. This system was retrofitted; therefore, inlets and outlets were installed on the walls for constructional reasons. Only one outlet is located at the ceiling. When the cardiac catheter laboratory was retrofitted with the VAC system, a version of DIN 1946-4 [1], in effect until 2008, applied; room class 1 was not further subdivided in this version. Only in the 2008 edition of DIN 1946-4 [2] are rooms in which minor procedures (insertion of small implants, invasive angiographies, cardiac catheterizations and endoscopic examination of sterile body cavities) are performed explicitly defined as cleanroom class 1b. Accordingly, the following requirements had to be met: mixed airflow, positive air balance (positive pressure in the procedure room), no defined protection zone and outdoor air rate of 1200 m3/h.
After inquiry at the “Arzneimittelüberwachungs- und -prüfstelle des Landesamts für Gesundheit und Soziales Mecklenburg-Vorpommern” (State Office of Drug Surveillance and Testing, State Office of Health and Social Welfare, Mecklenburg-Vorpommern) and a subsequent site inspection, concerns were raised regarding hygienic safety during the harvesting of bone marrow. It was said that the equipment, monitors and furniture of the said cardiac procedure room would hamper cleaning and disinfections measures, would probably impair functional capability of the ventilation and air conditioning system and could, in summation, result in an increased risk of contamination during the aseptic extraction of bone marrow via iliac crest puncture. To dispel the concerns of the supervisory
body, the quality of ventilation with verification of the protection zone and measurement of the microbial and particulate pollution of indoor room air at rest and during a simulated bone marrow extraction (in operation), as well as the impact of surface disinfection and sterile draping of the furniture on indoor air quality were to be investigated.

In principle, it can be assumed that there is no risk of contamination by room air during the harvesting of bone marrow cells via iliac crest puncture. On the contrary, maintenance of aseptic conditions is determined by the level of patient skin antisepsis, draping of the puncture area, preoperative surgical hand disinfection, sterile clothing of the surgical team and the use of surgical masks.

Methods

Verification of the protection zone

The room (Figure 1) is ventilated by two large, plate-shaped intake filters (Z1 and Z2, each approx. 2 m high and 1.5 m wide) with terminal H13 filters. The exhaust air is discharged through the exhaust outlet A1 on the ceiling of the room, and through exhaust outlet A2 over the entire vertical extent of the wall. This results in mixed airflow in the room.

To determine whether the VAC system results in a displacement of indoor room air, airflow in the room were visualized using a fog generator, and the flow pattern was documented by video recordings.

To test the performance of the VAC system, the number of particles and colony forming units (CFU) in the room air before and after disinfection were determined at rest and in operation. For in-operation measurements, a surgical procedure was simulated. The team consisted of the operating physician, an assisting nurse and a patient. Two additional persons were present in the operating room as measurement personnel.

Particle counting (size classes 0.5 µm and 5.0 µm) was carried out using an ABAKUS® Air airborne particle counter (LMT Leschke Messtechnik Frankfurt/Oder). Prior to measurement recordings, zero adjustment was performed with a particle-impermeable cleaning filter. Measurements were conducted in triplicate, and the analysis was based on mean values. To determine the number of CFUs in the room air, the airborne bacteria sampler MAS 100 (Zinsser Analytik Frankfurt/Main) was used. Cultivation was carried out on Columbia Blood Agar (heipha Dr. Müller GmbH, Eppelheim). For contact sampling of surfaces, RODAC plates with blood agar and Tween/lecithin/histidine disinhibitor (heipha Dr. Müller GmbH, Eppelheim) were used. After sampling, the plates were incubated for 48 h at 36 °C as described [3] and subsequently incubated for 7 d at 22 °C for the detection of fungi.

Besides the operating table, the cardic catheter laboratory is equipped with an X-ray unit, an emergency trolley with defibrillator, an anesthesia unit, a desk, a medicine trolley and monitors that are permanently installed on the ceiling. To reduce the impact of furniture and equipment on room air contamination, all furniture and equipment were covered with sterile surgical drapes (Figure 2, Figure 3).

Results

Pressure conditions and localization of protection zone

The air pressure in the procedure room was positive with respect to the anteroom.

Due to the positioning of the intake and exhaust filters (Figure 1), there was a risk of short-circuit airflow. The existence of short-circuit airflow was ruled out by visualization of airflow conditions. Furthermore, it could be ascertained that there was no functional impairment of the VAC system due to monitors or other equipment being located in the room. In addition, a zone in which no turbulence was observed and in which room air was conducted uniformly to both sides and downwards was identified within the operating area. The position of this optimal zone without turbulence and with conduction of descending air was marked on the ceiling to ensure that the operating physician can stay within the protection zone during performance of an iliac crest puncture.

Microbial and particle contamination of room air

Since no limit values exist for the evaluation of air quality in rooms used for medical purposes, the evaluation was conducted according to guideline values for cleanroom classes according to the EU Guideline to Good Manufacturing Practice for Medicinal Products (EG-Leitfaden der Guten Herstellungspraxis für Arzneimittel) [4], and the action and limit values derived from it (Table 1).

Particle counts at rest measured in the cardiac catheter laboratory were in clean room class D range (Table 2), except for measuring point A1. Particle counts in the anteroom with values approx. 2 to 3.5 times higher than above the operating table indicated a functional mixed airflow (Table 2).

No CFUs were detectable in the supply air, which verified the integrity of the VAC system. CFU counts in the room air the of the operating field area were in clean room class C range, which is acceptable in mixed airflow conditions (Table 2). For evaluation of CFUs, the EU guideline does not distinguish between measurements “at rest” and “in operation”. However, with 5 people present in the room, no or only a minor increase in CFUs in the room air was observed. The detected bacterial species were without exception non-pathogenic bacteria/commensals of the body surface. No pathogenic bacteria could be isolated.
Figure 1: Localization of intake (H13 filters) and exhaust outlets in the cardiac procedure room (illustration not to scale)

Figure 2: Covering of the monitors

Figure 3: Covering of the equipment
Table 1: Limit, action and warning values for particle counts and CFU in room air [6] derived from the EU Guideline to Good Manufacturing Practice for Medicinal Products (EG-Leitfaden der Guten Herstellungspraxis für Arzneimittel) [4]

Cleanroom class	Warning value	Action value	Limit value
	Particle/m³		
In operation A	0.5 µm 1,760	0.5 µm 2,640	0.5 µm 3,520
	5 µm 10	5 µm 15	5 µm 20
In operation B	176,000 1,450	264,000 2,175	352,000 2,900
In operation C	1,760,000 14,500	2,640,000 21,750	3,520,000 29,000
In operation D	- -	- -	Not specified
At rest A	1,760 10	2,640 15	3,520 20
At rest B	1,760 15	2,640 22	3,520 29
At rest C	176,000 150	264,000 220	352,000 2,900
At rest D	1,760,000 1,500	2,640,000 2,200	3,520,000 29,000

Table 2: Contamination of room air at rest without sterile draping of furniture/equipment and without additional surface disinfection prior to measurement

Sampling site*	Particle count	CFU/m³	Differentiation	
	0.5 µm	5 µm		
Z 1: left in front of supply air intake	240,424	165	0	
A 1: left in front of exhaust air outlet	462,179	224	0	
Z 2: right in front of supply air intake	519,882	224	0	
A 2: right in front of exhaust air outlet	624,865	636	24	16 CNS**
OP 1: Operating table below ceiling mark	423,640	247	8	CNS
V 1: Anteroom	859,517	859,517	12	CNS

* Compare Fig. 1 ** Coagulase-negative staphylococci

The particle count in the cardiac procedure room could be significantly decreased by disinfecting surfaces and equipment as well as covering equipment with sterile drapes prior to the scheduled iliac crest puncture. This is illustrated by the reduced particle counts for measurements at rest (Table 2, Table 3). Moreover, particle counts measured in operation were all in cleanroom class B range according to the EU guideline and significantly below particle counts in the control room, which is also ventilated, and in the unventilated anteroom. In some cases, the particle count of the in-operation measurement showed a 10-fold reduction (Table 3) compared to the preceding measurement at rest (Table 2). Another notable finding was that in operation, particle counts for the 0.5 µm size class in the operating field did not increase (but even decreased), only in the 5 µm size class, an approximately 2-fold increase was observed.

In the operating area, particle counts are low compared to other measurement points; this confirms the efficient routing of airflow in this area.

According to the EU guideline for Good Manufacturing Practice, CFU counts in the area of the operating field at rest were in cleanroom class B range (limit 10 CFU/m³) and in operation in the lower cleanroom class C range (limit 100 CFU/m³, Table 4). The EU guideline does not distinguish between measurements “at rest” and “in operation” for evaluation of CFUs. However, with 5 people present in the room, again no or only a minor increase in CFUs in the room air was observed. Thus, only minor microbial contamination of room air, which can be reliably controlled by the VAC system, was observed under in operation conditions.

The detected bacterial species were without exception body surface commensals. No pathogens were isolated in any measurement.

The testing of effectiveness of surface disinfection by contact plate culture in the cardiac procedure room in a spot check indicated that the procedure had been carried out properly (Table 5).

To test the quality of surface disinfection, a hygienic examination of surrounding areas via contact plate cul-
Table 3: Particle counts at rest and in operation after implementation of additional protective measures

Sampling site	At rest 0.5 μm	At rest 5 μm	In operation 0.5 μm	In operation 5 μm
Operating area (Puncture area)	93,486	565	66,514	942
Position of operating physician	95,642	636	63,899	1,378
Operating table (center)	89,270	565	-	-
Operating room, left area between supply air intake and exhaust air outlet	53,168	589	71,213	518
Operating room, right area between supply air intake and exhaust air outlet	123,899	718	136,926	742

Table 4: Colony-forming units in the room air of the cardiac procedure room at rest and in operation

Sampling site	At rest CFU/m³	At rest Differentiation	In operation CFU/m³	In operation Differentiation
Operating area (Puncture area)	4	CNS*	20	CNS
Operating room (OP), left area between supply air intake and exhaust air outlet	8	8 aerSB**	4	CNS
OP sterile supply trolley	0	-	12	8 CNS** 4 MI***
OP right area between supply air intake and exhaust air outlet	8	4 CNS** 4 MI	12	8 CNS** 4 MI***
OP in front of entrance	8	4 CNS 4 MI	4	aerSB

*Coagulase-negative staphylococci ** aerobic spore-forming bacteria *** M. luteus

Table 5: CFU counts on contact plates (RODAC plates) after implementation of the revised disinfection regime

Sampling site	Previous disinfection regime	New disinfection regime		
	CFU	Differentiation	CFU	Differentiation
Instrument trolley	0	No pathogens	0	No pathogens
Work surface, left rear area	20	17 MSSA	1	No pathogens
Examination table				
Head	3	No pathogens	0	No pathogens
Center	8	1 MSSA	2	
Foot	2		0	
Materials shelf	23	1 mold fungus	2	No pathogens

tures was performed in the cardiac procedure room 4 weeks after implementation of the additional protective measures immediately prior to a scheduled procedure. The result did not indicate any microbial hazard (Table 6).
Table 6: Microbial contamination of surfaces as detected via contact culture (RODAC plates)

Localization	Total CFU	Thereof aerSB*	Thereof skin- and mucosa commensals	Potential pathogens
Floor, entrance area	6	6	0	0
Floor, position of operating physician	7	5	2 CNS**	0
Operating table below ceiling mark	0			
Operating table, center	0			
Operating table, foot	0			
Sterile supply trolley, center	0			
Window sill, center	0			
X-ray unit, surface, right	0			
Anesthesia tower	0			
Cabinet top, center of shelf units	0			

*aerSB = aerobic spore-forming bacteria **CNS = Coagulase-negative staphylococci

Discussion

The test results document the functional safety of the VAC system with regard to both particle counts and number of CFUs. This could be confirmed by a separate measurement comparing at rest and in operation conditions during cardiac catheterization. Due to the positioning of the patient and the activity of the team alone, particle counts increased 2 to 4 fold (Table 7). Even more clearly noticeable than in the particle counts is the functional efficiency of the VAC system in the developments of CFU counts in the room air (Table 7). During positioning of the patient, the number of CFUs is increased 4 to 9-fold. During the intervention, the microbial contamination of the room air decreases significantly due to the performance of the VAC system. With one exception, no pathogens were detectable.

Due to the implementation of additional protective measures for improvement of asepsis, particle counts in the procedure room could be reduced by up to 10 fold. With regard to particle counts and CFU at rest, requirements for cleanroom class B according to the EU guideline were met. Since the EU guideline does not specify any guiding value for “in operation” conditions – which is explained by the fact that it characterizes the conditions for the manufacturing of sterile products, i.e. 5 persons moving through the room without special cleanroom clothing are more than a worst case scenario – it cannot be taken as a basis for “in operation” situations. Moreover, it has to be considered that the EU guideline emphasizes the fact that guidelines should be subject to hygienic interpretation.

From this perspective, the following conclusion can be drawn: from a hygienic point of view, bone marrow aspirations may be performed under the present hygienic air conditions in the cardiac procedure room. This is emphasized by the results of sedimentation plate tests in the operating area (Table 5). Floor disinfection had no impact on particle and germ counts in the operating field when laminar air flow was employed [5], whereas surface disinfection under mixed airflow conditions in combination with aseptic covering of furniture and equipment resulted in an approx. 10 fold reduction of particle and microbial contamination in the operating area.

To permanently guarantee the high hygienic standard for the harvesting of bone marrow in the cardiac procedure room, standard operating procedures (SOP) have been created based on the above findings. Therein, hygienic safety requirements during preparation, execution and aftercare of iliac crest punctures are specified. Moreover, measures for the disinfection of equipment and surfaces as well as the draping of equipment and monitors by the department personnel and the cleaning service are described.

The main provisions are cited in extracts below:

- The harvesting of bone marrow is performed under aseptic conditions comparable to those during a surgical procedure.
- Skin damage, skin disease or infection at or in close vicinity of the puncture site are a contraindication for a bone marrow aspiration.
- If necessary, the puncture site and its surroundings have to be cleaned and should subsequently be amply wetted with an alcohol-based skin antiseptic for 1 min using a sterile swab. Afterwards the skin in the puncture area is sealed using Integuseal, followed by sterile covering of the puncture area and a stab incision prior to insertion of the puncture needle.
- No perioperative antibiotic prophylaxis is performed.
- Entry through the air lock, surgical hand disinfection and donning of sterile protective clothing (low performance) are carried out analogously to surgical procedures. During execution of the puncture, the number of persons present in the procedure room should be kept...
Table 7: Impact of patient positioning and activity of the operating team in the procedure room on particle counts and CFUs in the room air

Sampling site	Particle/m³	CFU/m³	Differentiation
	0.5 µm	5 µm	
Site facing physician, at rest	49,800	2,300	4
Site facing monitor, at rest	51,700	2,800	10
In front of AC system, at rest	54,100	3,200	31
Patient 1, after positioning	106,000	9,224	259
Patient 1, in operation	119,000	8,100	68
Patient 1, end of procedure	172,000	13,400	501
Patient 2, in operation	205,000	13,200	77
Patient 3, after positioning	206,000	14,400	126
Patient 3, in operation	176,000	10,300	53
Patient 3, end of procedure	166,000	9,200	4

* Methicillin-sensitive Staphylococcus aureus

to a minimum. This is underlined by the results listed in Table 7.

• Harvesting of bone marrow and blood is carried out according to separate SOPs. For bone marrow aspiration, only single-use puncture needles are used.

• When a bone marrow extraction is scheduled, the procedure room will be subjected to disinfection cleaning on the previous evening after the last cardiac procedure has been completed. The disinfection cleaning is regulated in a separate SOP for the cleaning firm. During the required measurements in the procedure room, surgical masks have to be worn at all times. The mask should only be changed if breathing is impaired due to dampening of the mask.

• On the previous evening, after the disinfection, all equipment and furniture that cannot be removed from the room (including ceiling-suspended and free-standing monitors, C-arm, control cabinet) are also wipe disinfected and covered with sterile draping. Shelves are covered with sterile draping. On the next morning, the bone marrow extraction should be performed first, prior to cardiac procedures. Immediately prior to the puncture, the patient contact area is covered with a sterile sheet. After the bone marrow aspiration, a disinfection of the near-patient working area is carried out before the next procedure.

The performance of microbiological monitoring is also laid down in a separate SOP.

The respective department personnel receive instruction on hygienic conduct once a year. At the same time, this instruction is used to check the SOP for necessary amendments.

The cardiology department personnel are highly motivated to implement the content of the SOP. Hygienic investigations and the developing of the SOP were carried out in tight cooperation. Many tasks in the context of the inspection as well as the analysis of the investigation results were carried out in cooperation with the department. This has resulted in a high degree of understanding and individual responsibility. This has created framework conditions that, in combination with the motivation of the personnel, will accommodate the goal of guaranteeing maximum safety for the patient and ensuring the sterility of the bone marrow extract.

References

1. DIN 1946-4. Raumlufttechnik – Teil 4: Raumlufttechnische Anlagen in Krankenhäusern (VDI-Lüftungsregeln). 4. Aufl. Köln: Beuth; 1999.

2. DIN 1946-4. Raumlufttechnik – Teil 4: Raumlufttechnische Anlagen in Krankenhäusern (VDI-Lüftungsregeln). Köln: Beuth Verlag; 2008.

3. Daeschlein G, Kramer A, Assadian O. Hygienisch-mikrobiologische Überwachung zur Qualitätssicherung der Krankenhaus- und Praxishygiene. In: Kramer A, Assadian O, eds. Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung. Stuttgart: Thieme; 2008. pp. 531-42.

4. Auterhoff G, ed. EG-Leitfaden der Guten Herstellungspraxis für Arzneimittel und Wirkstoffe. Aulendorf: Cantor; 2003.

5. Knochen H, Hübner NO, Below H, Assadian O, Külpman R, Kohimann T, Hildebrand K, Clemens S, Bartels C, Kramer A. Einfluss der Fußbodendesinfektion auf die mikrobielle und partielle Belastung der Raumluft in Augen-OP-Räumen mit Verdrängungslüftungsbereichen. Klin Monatsbl Augenheilk. 2010; 227. Forthcoming.

6. Krämer I, Kramer A, Below H, Wander K. Aseptische Herstellung applikationsfertiger Parenteralia in der Apotheke. In: Kramer A, Assadian O, eds. Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung, Stuttgart: Thieme; 2008. pp. 469-80.
Corresponding author:
Prof. Dr. med. Axel Kramer
Institute for Hygiene and Environmental Medicine, Ernst Moritz Arndt University, Walther-Rathenau-Straße 49a, 17489 Greifswald, Germany
kramer@uni-greifswald.de

Please cite as
Below H, Ryll S, Empen K, Dornquast T, Felix S, Rosenau H, Kramer S, Kramer A. Impact of surface disinfection and sterile draping of furniture on room air quality in a cardiac procedure room with a ventilation and air-conditioning system (extrusion airflow, cleanroom class 1b (DIN 1946-4)). GMS Krankenhaushyg Interdisziplinär. 2010;5(2):Doc10.
DOI: 10.3205/dgkh000153, URN: urn:nbn:de:0183-dgkh0001536

This article is freely available from
http://www.egms.de/en/journals/dgkh/2010-5/dgkh000153.shtml

Published: 2010-09-21

Copyright
©2010 Below et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.
Einfluss von Flächendesinfektion und steriler Abdeckung von Mobiliar auf die Raumluftqualität in einem kardiologischen Eingriffsraum mit raumlufttechnischer Anlage (Mischströmung, Raumklasse 1b (DIN 1946-4))

Zusammenfassung
In einem kardiologischen Eingriffsraum, der über eine raumlufttechnische Anlage mit turbulenter Mischströmung belüftet wird, konnte mittels Visualisierung der Luftströme eine Schutzzone im Eingriffsbereich abgegrenzt werden. Innerhalb dieser Schutzzone war keine Verwirbelung der Raumluft nachweisbar. Durch Desinfektion aller Flächen einschließlich des gesamten Inventars nach dem letzten Eingriff und anschließende Abhängung nicht aus dem Raum herausnehmbarer Geräte und des Inventars mit sterilen Op-Tüchern konnte die Raumluftqualität unter den gegebenen Bedingungen von Reinraumklasse C zu Reinraumklasse B verbessert werden. Dadurch ist es möglich, Eingriffe mit erhöhten Anforderungen auch in der Raumklasse 1b durchzuführen.

Schlüsselwörter: Raumlufttechnische Anlage, Raumklasse 1b, Mischströmung, Partikelgehalt, Erregerzahl, Einfluss Flächendesinfektion, Einfluss steriler Abhängung

Einleitung
Im Rahmen einer klinischen Prüfung sollte in einem kardiologischen Eingriffsraum die Entnahme von Knochenmark durch Beckenkammpunktion vorgenommen werden. In diesem Raum werden neben Koronarangiographien ggf. mit Intervention (z.B. Stentimplantation) auch Herzschatmmacher und Defibrillatoren implantiert. Der betreffende Eingriffsraum ist mit einer raumlufttechnischen Anlage (RLTA) ausgestattet. Da die Anlage nachgerüstet wurde, sind die Ein- und Auslässe aus bautechnischen Gründen wandständig installiert. Nur ein Auslass befindet sich in der Decke. Bei der Nachrüstung des Herzkatheterlabors mit der RLTA galt noch die bis 2008 gültige Fassung der DIN 1946-4 [1], in der keine Untergliederung der Raumklasse 1 erfolgte. Erst in der Ausgabe der DIN 1946-4 von 2008 [2] wurden Räume, in denen kleine Implantate gesetzt werden sowie invasive Angiographie, Herzkatheterisierung und die endoskopische Untersuchung steriler Körperhöhlen vorgenommen werden, explizit der Raumklasse 1b zugeordnet. Demzufolge waren folgende Anforderungen zu erfüllen: Mischströmung, positive Luftbilanz (Überdruck im Eingriffsraum), kein definerter Schutzbereich und Außenluftanteil 1200 m³/h. Bei der Anfrage an die Arzneimittelüberwachungs- und -prüfstelle des Landesamts für Gesundheit und Soziales Mecklenburg-Vorpommern mit nachfolgender Begehung wurden Bedenken hinsichtlich der hygienischen Sicherheit bei der Gewinnung des Knochenmarks geäußert. Die Geräte, Monitore und das Mobiliar im kardiologischen Eingriffsraum würden die Reinigungs- und Desinfektionsmaßnahmen erschweren, dürften die Funktionsfähigkeit der raumlufttechnischen Anlage beeinträchtigen und könnten in der Summation zu einer erhöhten Kontaminationsgefährdung bei der aseptischen Entnahme des Knochenmarks mittels Punktion führen. Um die Bedenken der Überwachungsbehörde auszuräumen, sollten die Qualität der Belüftung mit Nachweis der Schutzzone und...
Messung der mikrobiellen und partikulären Belastung der Raumluft ohne Tätigkeit im Raum (at rest) und während simulierter Knochenmarkentnahme (in operation) überprüft und der Einfluss von Flächendesinfektion und steriler Abdeckung des Raummobiliars auf die Raumluftqualität untersucht werden. Prinzipiell ist bei der Gewinnung von Knochenmarkzellen durch Punktion des Beckenkamms nicht von einer Kontaminationsgefährdung durch die Raumluft auszugehen. Vielmehr bestimmen die Intensität der Hautantiseptik und Art der Abdeckung des Punktionsgebiets, die vorausgehende chirurgische Händedesinfektion, die sterile Einkleidung des Teams und die Benutzung des Mund-Nasen-Schutzes die Gewährleistung der Aseptik.

Methoden

Nachweis der Schutzzone

Der Raum (Abbildung 1) wird über zwei große, plattenförmige Zuluftfilter (Z1 und Z2, je ca. 2 m hoch und 1,5 m breit) mit endständigen H13 Filtern belüftet. Die Abluft wird beim Abluftaustausch A1 an der Decke des Raums, bei Abluftaustausch A2 über die gesamte Höhe der Wand abgeführt. Im Raum liegt damit eine Mischströmung vor. Um abzuklären ob die RLTA zu einer Verdrängung der Innenraumluft führt, wurden die Luftströme im Raum mit einem Nebelgenerator visualisiert und das Strömungsbild durch Videoaufnahmen dokumentiert.

Um die Leistung der RLTA zu überprüfen, wurde die Anzahl der Partikel und der Koloniebildenden Einheiten (KbE) in der Raumluft vor und nach erfolgter Desinfektion in at rest und in operation durchgeführt. Für die in operation Messungen wurde ein Eingriff simuliert. Das Team bestand aus dem operierenden Arzt, einer assistierenden Schwester und einem Patienten. Außerdem befanden sich zwei Personen als Messpersonal im OP.

Die Partikelmessung (Größenklassen 0,5 µm und 5,0 µm) erfolgte mit dem Luftpartikelzähler ABAKUS® Air (LMT Leschke Messtechnik Frankfurt/Oder). Vor Aufnahme der Messungen wurde ein Nullabgleich mit partikeldichten ReinigungsfILTER durchgeführt. Jede Messung wurde dreifach durchgeführt und der Mittelwert für die Auswertung zugrunde gelegt. Zur Erfassung der KbE in der Raumluft wurde der Luftkreislaufsammel M5 100 (Zinsser Analytik Frankfurt/Main) verwendet. Die Kultivierung erfolgte auf Columbia-Blutagar (heipha Dr. Müller GmbH, Eppelheim). Für Kontakttproben von Flächen wurden RODAC-Platten mit Blutagar und Enthemer Tween/Lecithin/Histidin (heipha Dr. Müller GmbH, Eppelheim) eingesetzt und nach der Probenahme gemäß [3] 48 h bei 36°C und anschließend zum Nachweis von Pilzen 7 d bei 22°C bebrütet.

Im Herzkatheterlabor befinden sich neben dem OP-Tisch ein Röntgengerät, Notfallwagen mit Defibrillator, Narkosegerät, Schreibtisch, Medikamentenwagen und fest an der Decke installierte Monitore. Um den Einfluss des Mobiliars auf die Kontamination der Raumluft zu reduzieren, wurde das Mobiliar mit sterilen OP-Tüchern abgedeckt (Abbildung 2, Abbildung 3).

Ergebnisse

Druckverhältnisse und Lokalisation der Schutzzone

Im kardiologischen Eingriffsräum herrschte ein Überdruck in Richtung Vorraum. Aufgrund der Anordnung der Zu- und Abluftfilter (Abbildung 1) bestand die Gefahr, dass es zu einer Kurzschlusströmung kommt. Das konnte durch die Visualisierung der Strömungsverhältnisse ausgeschlossen werden. Weiterhin konnte gesichert werden, dass eine Beeinträchtigung der Funktionszone der RLTA durch die im Raum befindlichen installierten Monitore und Geräte ebenfalls nicht stattfindet. Zusätzlich ließ sich im Bereich der Op-Fläche ein Bereich identifizieren, in dem die Raumluft nicht verwirbelt, sondern nach beiden Seiten und nach unten gleichmäßig abgeführt wurde. Dieser optimale Standort ohne Verwirbelung und mit Abführung herabfallender Luft wurde farbig an der Decke markiert, um zu gewährleisten dass der die Punction Ausübende die Schutzzone für die Beckenkammpunktion einhalten kann.

Mikrobielle und Partikelbelastung der Raumluft

Da es keine Grenzwerte für die Bewertung der Luftqualität in medizinisch genutzten Räumen gibt, erfolgte die Auswertung nach den Richtwertvorgaben für Reinraumklassen gemäß EG-Leitfaden der Guten Herstellungspraxis für Arzneimittel [4] und daraus abgeleiteter Aktions- und Grenzwerte (Tabelle 1).

Die im Herzkatheterlabor gemessenen Partikelzahlen lagen am rest mit Ausnahme des Messpunkts A 1 im Bereich der Reinraumklasse D (Tabelle 2). Die Partikelzahl im Vorraum wies auf die funktionierende Mischströmung hin, weil hier die Werte etwa 2 bis 3,5-fach höher als oberhalb des OP-Tisches waren (Tabelle 2).

In der Zuluft waren keine KbE nachweisbar, was die Funktionsfähigkeit der RLTA belegt. Die KbE in der Raumluft im OP-Feld-Bereich lagen im Bereich der Reinraumklasse C, was für Mischströmung akzeptabel ist (Tabelle 2). Obwohl der EG-Leitfaden bei der Bewertung der KbE nicht zwischen Messungen „at rest“ oder „in operation“ unterscheidet, ist beim Aufenthalt von immerhin 5 Personen im Raum kein oder nur ein verhaltener Anstieg der KbE in der Raumluft zu verzeichnen. Bei den nachgewiesenen Bakterienspecies handelte es sich ausnahmslos um apathogene Erreger/Kommensalen der Körperoberfläche. Pathogene Erreger konnten in keinem Fall isoliert werden.

Durch die Flächen- und Gerätesdesinfektion sowie das Abdecken der Geräte mit sterilen Tüchern vor der geplanten Beckenkammpunktion konnte die Partikelanzahl im
Abbildung 1: Lokalisation der Zuluft-(H13-Filter) und Abluftauslässe im kardiologischen Eingriffsraum (Darstellung ist nicht maßstabsgerecht)

Abbildung 2: Abdeckung der Monitore

Abbildung 3: Abdeckung der Geräte
Tabelle 1: Aus dem EG-Leitfaden der Guten Herstellungspraxis für Arzneimittel [4] abgeleitete Grenz-, Aktions- und Warnwerte für Partikel und Koloniebildende Einheiten in der Raumluft [6]

Reinraumklasse	Warnwert	Partikel/m³	Aktionswert	Grenzwert		
	0,5 µm	5 µm	0,5 µm	5 µm	0,5 µm	5 µm
In operation A	1.760	10	2.640	15	3.520	20
In operation B	176.000	1.450	264.000	21.750	3.520.000	29.000
In operation C	1.760.000	14.500	2.640.000	21.750	3.520.000	29.000
In operation D	-	-	-	-	nicht festgelegt	
At rest A	1.760	10	2.640	15	3.520	20
At rest B	1.760	15	2.640	22	3.520	29
At rest C	176.000	150	264.000	220	352.000	2.900
At rest D	1.760.000	1.500	2.640.000	2.200	3.520.000	29.000

KbE/m³

Ort der Probennahme	Partikelzahl	KBE/m³	Differenzierung	
	0,5 µm	5 µm		
Z 1: links vor Zulufrageinlass	240.424	165	0	
A 1: Links vor Abluflauslass	462.179	224	0	
Z 2: Rechts vor Zulufrageinlass	519.882	224	0	
A 2: Rechts vor Abluflauslass	624.865	636	24	16 KNS** 8 M. luteus
OP 1: OP-Tisch unterhalb Deckenmarkierung	423.640	247	8	KNS
V 1: Vorraum zum Eingriffsbereich	859.517	859.517	12	KNS

* vgl. Abb. 1 **Koagulase-negative Staphylokoken

kardiologischen Eingriffsbereich eindrucksvoll gesenkt werden. Das wird deutlich an den verminderten Partikelzahlen bei Ruhemessungen (Tabelle 2, Tabelle 3), aber auch in operation gemessenen Partikelzahlen lagen alle im Bereich der Reinraumklasse B nach EU-Richtlinie und deutlich unter den im ebenfalls belüfteten Bedienungs- und im unbelüfteten Vorraum gemessenen Partikelzahlen. Zum Teil erreichte die Partikelereduktion der in operation Messung gegenüber der Ruhemessung zuvor (Tabelle 2) den Faktor 10 (Tabelle 3). Bemerkenswert war weiterhin der Befund, dass in operation die Partikelzahlen der Größenklasse 0,5 µm im OP-Gebiet nicht anstiegen (sondern sogar abfielen) und nur in der Größenklasse 5 µm auf etwa das Doppelte anstiegen. Im OP-Bereich ist die gemessene Partikelnahzahl im Vergleich zu anderen Messpunkten niedrig, was die funktionierende Luftführung in diesem Gebiet bestätigt. Gemäß EG-Leitfaden der Guten Herstellungspraxis lagen die in der Raumluft gemessenen KbE-Zahlen im OP-Feld-Bereich bei rest im Bereich der Reinraumklasse B (Grenzwert 10 KbE/m³) und in operation im unteren Bereich der Reinraumklasse C (Grenzwert 100 KbE/m³) (Tabelle 4). Obwohl der EG-Leitfaden bei der Bewertung der KbE nicht zwischen Messungen at rest oder in operation unterscheidet, war beim Aufenthalt von immerhin 5 Personen im Raum wiederum kein oder nur ein verhaltener Anstieg der KbE-Zahlen in der Raumluft zu verzeichnen. Damit wurden nur geringe mikrobiologische Belastungen der Raumluft festgestellt, die auch unter in operation Bedingungen von der RLTA sicher beherrschbar sind. Bei den nachgewiesenen Bakterienspecies handelt es sich ausnahmslos um Kommensalen von der Körperoberfläche. Pathogene wurden in keinem Fall isoliert. Die Überprüfung der Wirksamkeit der Flächendesinfektion durch Kontaktkultur im kardiologischen Eingriffsbereich ergab bei einer Stichprobe deren korrekte Durchführung (Tabelle 5).

Zur Überprüfung der Qualität der Flächendesinfektion wurde 4 Wochen nach Einführung der zusätzlichen Schutzmaßnahmen eine hygienische Umgebungsuntersuchung mittels Kontaktkultur im kardiologischen Ein-
Tabelle 3: Partikelzahl at rest und in operation nach Einführung der zusätzlichen Schutzmaßnahmen

Bezeichnung	at rest		in operation	
	0,5 μm	5 μm	0,5 μm	5 μm
OP-Gebiet (Bereich der Punktion)	93.486	565	66.514	942
Standort Operateur	95.642	636	63.899	1.378
OP-Tisch (Mitte)	89.270	565	-	-
OP zwischen Zu- und Abluft links	53.168	589	71.213	518
OP zwischen Zu- und Abluft rechts	123.899	718	136.926	742

Tabelle 4: Koloniebildenden Einheiten in der Raumluft des kardiologischen Eingriffsraums at rest und in operation

Bezeichnung	at rest		in operation	
	KbE/m³	Differenzierung	KbE/m³	Differenzierung
OP-Gebiet (Bereich der Punktion)	4	KNS*	20	KNS
OP zwischen Zu- und Abluft links	8	8 aerSB**	4	KNS
OP-Sterilgutwagen	0	-	12	8 KNS 4 Mi***
OP zwischen Zu- und Abluft rechts	8	4 KNS** 4 Mi	12	8 KNS 4 Mi
OP vor dem Eingang	8	4 KNS 4 Mi	4	aerSB

* Koagulase-negative Staphylokokken ** aerobe Sporenbildner *** M. luteus

Tabelle 5: Anzahl Koloniebildender Einheiten auf Kontaktplatten (RODAC-Platte) nach Einführung des überarbeiteten Desinfektionsregimes

Probenahme	altes Desinfektionsregime	neues Desinfektionsregime		
	KbE	Differenzierung	KbE	Differenzierung
Instrumentiertisch	0	keine Pathogene	0	keine Pathogene
Arbeitsfläche links hinten	20	17 MSSA	1	keine Pathogene
Untersuchungstisch				
Kopfende	3	keine Pathogene	0	keine Pathogene
Mitte	8	1 MSSA	2	
Fußende	2		0	
Materialregal	23	1 Schimmelpilz	2	keine Pathogene

grißraum unmittelbar vor dem geplanten Eingriff durchgeführt. Im Ergebnis ergab sich keine mikrobielle Gefährdung (Tabelle 6).
Tabelle 6: Mikrobielle Belastung von Oberflächen nachgewiesen durch Kontaktkultur (RODAC-Platte)

Lokalisation	KbE gesamt	davon aerSB*	davon Haut- und Schleimhautkommensalen	Potentiell Pathogene
Fußboden Eingangsbereich	6	6	0	0
Fußboden Standort operierender Arzt	7	5	2 KNS**	0
OP-Tisch unter Deckenmarkierung	0	0	0	0
OP-Tisch Mitte	0	0	0	0
OP-Tisch Fußende	0	0	0	0
Sterilgutwagen Mitte	0	0	0	0
Fensterbank Mitte	0	0	0	0
Röntgengerät Oberfläche rechts	0	0	0	0
Anästhetieturm	0	0	0	0
Schrankobersseite Mitte der Regalwand	0	0	0	0

*aerSB = aerobe Sporenbildner **KNS = Koagulase-negative Staphylokokken

Diskussion

Die Messergebnisse belegen sowohl bezüglich der Partikelzahl als auch bezüglich der Anzahl KbE die Funktions sicherheit der RLTA. Das konnte auch in einer separaten Messung im Vergleich at rest und in operation bei Herzkatheterisierung bestätigt werden. Schon durch die Aufbettung des Patienten und durch die Tätigkeit des Teams stieg die Partikelanzahl um den Faktor 2 – 4 an (Tabelle 7). Noch deutlicher als an den Partikelzahlen ist die Funktionstüchtigkeit der RLTA am Verlauf der KbE-Anzahl in der Raumluft erkennbar (Tabelle 7). Infolge der Aufbettung des Patienten steigt die Anzahl der KbE um das 4 – 9-Fache. Während des Eingriffs sinkt die mikrobielle Raumluftbelastung auf Grund der RLTA-Leistung deutlich. Mit einer Ausnahme waren keine Pathogene nachweisbar. Durch die zusätzlich eingeführten Schutzmaßnahmen zur Verbesserung der Aseptik konnte die Partikelanzahl im Eingriffsraum zum Teil bis um den Faktor 10 gesenkt werden.

Es wurde bzgl. Partikelzahl und KbE at rest die Reinraumklasse B nach EU-Richtlinie erreicht. Da die EU-Richtlinie keine Richtwerte für in operation angibt – was sich dadurch erklärt, dass sie die Situation der Herstellung steriler Produkte charakterisiert, d.h. fünf sich im Raum bewegende Personen ohne spezielle Raumaulkleidung sind mehr als ein worst case – kann sie nicht für die Situation in operation zugrunde gelegt werden. Zusätzlich ist zu berücksichtigen, dass die EU-Richtlinie betont, dass es sich um Richtwerte handelt, die der hygienischen Interpretation bedürfen.

Unter diesem Gesichtspunkt lässt sich das Fazit ableiten, dass unter den raumlufthygienischen Bedingungen im kardiologischen Eingriffsräume die Knochenmarkaspiration aus hygienischer Sicht durchgeführt werden kann. Das wird durch die Ergebnisse der Sedimentationsplatten im OP-Bereich (Tabelle 5) unterstrichen. Während bei Einsatz von Laminar Air Flow die Fußbodendesinfektion keinen Einfluss auf Partikel und Erregerzahl im Op-Feld hatte [5], verringerte die Flächendesinfektion bei Mischströmung zusammen mit der aseptischen Abdeckung von Mobiliar und Geräten die Belastung durch Partikel und Mikroorganismen im OP-Bereich etwa 10-fach. Um den hohen hygienischen Standard für die Gewinnung von Knochenmark im kardiologischen Eingriffsräum dauerhaft zu garantieren, ist resultierend aus den Erkenntnissen eine Standardarbeitsanweisungen (SAA) erstellt worden. Darin sind die Anforderungen an die Hygeneseicherheit bei der Vorbereitung, Durchführung und Nachbe reitung von Knochenmarkpunktionen festgelegt worden. Des Weiteren wurden die Maßnahmen der Geräte- und Flächendesinfektion und das Abdecken der Geräte und Monitore durch das Abteilungspersonal und den Reinigungsdienst beschrieben.

Die wichtigsten Festlegungen sollen an dieser Stelle auszugsweise wiedergegeben werden:

- Die Entnahme von Knochenmark erfolgt unter aseptischen Bedingungen vergleichbar einem operativen Eingriff.
- Für die Knochenmarkaspiration stellen Hautschäden, Hauterkrankungen und Infektionen an oder in unmittelbarer Umgebung der Punktionsstelle eine Kontraindikation dar.
- Die Punktionsstelle und ihre Umgebung sind bei Verunreinigung vorher zu reinigen und danach mit einem alkoholischen Hautantiseptikum mittels sterilem Tupfer für 1 min satt zu benetzen. Danach erfolgen die Hautversiegelung im Punktionsbereich mit Integualse, sterile Abdeckung und eine Stichinzision vor Einführung der Punktionsnadel.
- Es wird keine perioperative Antibiotikaprophylaxe durchgeführt.
- Die Einschleusung, chirurgische Händedesinfektion und Anlegen steriler Schutzkleidung (low performance) erfolgen analog wie bei chirurgischen Eingriffen. Während der Punktion sollen sich nicht mehr Personen
Tabelle 7: Einfluss der Patientenaufbettung und der Tätigkeit des Teams im Eingriffsraum auf die Anzahl der Partikel und Koloniebildenden Einheiten in der Raumluft

Probenentnahmestelle	Partikel	KbE/m³	Differenzierung
	0,5 µm	5 µm	
Arztseite, in Ruhe	49.800	2.300	4
Monitorseite, in Ruhe	51.700	2.800	10
Vor Klimaanlage, in Ruhe	54.100	3.200	31
Patient 1, nach Aufbettung	106.000	9.224	259
Patient 1, während Operation	119.000	8.100	68
Patient 1, nach Operation	172.000	13.400	501
Patient 2, während Operation	205.000	13.200	77
Patient 3, nach Aufbettung	206.000	14.400	126
Patient 3, während Operation	176.000	10.300	53
Patient 3, nach Operation	166.000	9.200	4

* Methicillin sensibler Staphylococcus aureus

als notwendig im Eingriffsraum aufhalten. Das wird durch die Ergebnisse in Tabelle 7 unterstrichen.
• Die Knochenmark- und Blutentnahme wird gemäß separater SAA durchgeführt. Für die Knochenmarkaspiration werden ausschließlich Punktionsnadeln zum Einmalgebrauch eingesetzt.
• Im Fall der geplante Entnahme von Knochenmark wird der Eingriffsraum nach dem letzten kardiologischen Eingriff am Vorabend einer desinfizierenden Reinigung unterzogen. Diese ist für das Reinigungswesen in einer separaten SAA geregelt. Während der durchzuführenden Maßnahmen ist im Eingriffsraum ständig ein Mund-Nasen-Schutz zu tragen. Er muss nur gewechselt werden, wenn auf Grund der Durchfeuchung die Atmung erschwert wird.
• Nach der Desinfektion werden ebenfalls am Vorabend alle nicht aus dem Raum herausnehmbaren Geräte und Inventar (hängende und stehende Monitore, C-Bogen, Schaltschrank) nach Wischdesinfektion steril abgedeckt und die Regale steril zugehängt. Am nächsten Morgen wird als erstes die Entnahme von Knochenmark durchgeführt, bevor kardiologische Eingriffe durchgeführt werden. Unmittelbar vor der Punktion wird die Patientenauflagefläche mit einer sterilen Unterlage abgedeckt. Nach der Knochenmarkaspiration wird eine Zwischendesinfektion des patientennahen Arbeitsbereichs durchgeführt.

Die Durchführung des mikrobiologischen Monitorings ist ebenfalls in einer separaten SAA festgelegt worden. Die betreuenden Mitarbeiter der Abteilung werden jährlich in das Hygieneverhalten unterwiesen. Diese Unterweisung wird zugleich dazu genutzt, die SAA auf ggf. erforderliche Veränderungen zu überprüfen.

Die Mitarbeiter der kardiologischen Abteilung sind hoch motiviert, die Inhalte der SAA umzusetzen. Während der hygienischen Untersuchungen und der Erarbeitung der Standardarbeitsanweisungen hat eine enge Zusammenarbeit stattgefunden. Viele Tätigkeiten im Rahmen der Überprüfung und die Auswertung der Untersuchungsergebnisse sind mit der Abteilung gemeinsam durchgeführt worden. Das hat zu einem hohen Maß an Verständnis und Eigenverantwortung geführt.

Durch die geschaffenen Rahmenbedingungen und die Motivation der Mitarbeiter wird dem Ziel, dem Patienten höchstmögliche Sicherheit zu garantieren und die Sterilität des entnommenen Knochenmarks zu gewährleisten, Rechnung getragen.

Literatur

1. DIN 1946-4. Raumlufttechnik – Teil 4: Raumlufttechnische Anlagen in Krankenhäusern (VDI-Lüftungsregeln). 4. Aufl. Köln: Beuth; 1999.
2. DIN 1946-4. Raumlufttechnik – Teil 4: Raumlufttechnische Anlagen in Krankenhäusern (VDI-Lüftungsregeln). Köln: Beuth Verlag; 2008.
3. Daeschlein G, Kramer A, Assadian O. Hygienisch-mikrobiologische Überwachung zur Qualitätssicherung der Krankenhaus- und Praxishygiene. In: Kramer A, Assadian O, eds. Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung, Stuttgart: Thieme; 2008. pp. 531-42.
4. Auterhoff G, ed. EG-Leitfaden der Guten Herstellungspraxis für Arzneimittel und Wirkstoffe. Aulendorf: Cantor; 2003.
5. Knochen H, Hübner NO, Below H, Assadian O, Külpmann R, Kohlmann T, Hildebrand K, Clemens S, Bartels C, Kramer A. Einfluss der Fußbodendesinfektion auf die mikrobielle und partikuläre Belastung der Raumluft in Augen-OP-Räumen mit Verdrängungslüftungsbereichen. Klin Monatsbl Augenheilk. 2010; 227. Forthcoming.
6. Krämer I, Kramer A, Below H, Wunder K. Aseptische Herstellung applikationsfertiger Parenteralia in der Apotheke. In: Kramer A, Assadian O, eds. Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung, Stuttgart: Thieme; 2008. pp. 469-80.
Korrespondenzadresse:
Prof. Dr. med. Axel Kramer
Institut für Hygiene und Umweltmedizin,
Ernst-Moritz-Arndt-Universität, Walther-Rathenau-Straße
49a, 17489 Greifswald, Deutschland
kramer@uni-greifswald.de

Bitte zitieren als
Below H, Ryll S, Empen K, Dornquast T, Felix S, Rosenau H, Kramer S,
Kramer A. Impact of surface disinfection and sterile draping of furniture
on room air quality in a cardiac procedure room with a ventilation and
air-conditioning system (extrusion airflow, cleanroom class 1b (DIN
1946-4)). GMS Krankenhaushyg Interdisziplinär. 2010;5(2):Doc10.
DOI: 10.3205/dgkh000153, URN: urn:nbn:de:0183-dgkh0001536

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/dgkh/2010-5/dgkh000153.shtml

Veröffentlicht: 21.09.2010

Copyright
©2010 Below et al. Dieser Artikel ist ein Open Access-Artikel und steht
unter den Creative Commons Lizenzbedingungen
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf
vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden,
vorausgesetzt dass Autor und Quelle genannt werden.