Fluctuations of the Initial Conditions and the Continuous Emission in Hydrodynamic Description of Two-Pion Interferometry

O. Socolowski Jr. 1, F. Grassi 1, Y. Hama 1 and T. Kodama 2

1 Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo-SP, Brazil
2 Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro-RJ, Brazil

Within hydrodynamic approach, we study the Bose-Einstein correlation of identical pions by taking into account both event-by-event fluctuating initial conditions and continuous pion emission during the whole development of the hot and dense matter formed in high-energy collisions. Important deviations occur, compared to the usual hydro calculations with smooth initial conditions and a sudden freeze-out on a well defined hypersurface. Comparison with data at RHIC shows that, despite rather rough approximation we used here, this description can give account of the \(m_T \) dependence of \(R_L \) and \(R_s \), and produces a significant improvement for \(R_o \) with respect to the usual version.

PACS numbers: 25.75.-q, 24.10.Nz, 24.60.-k

Introduction – When describing ultra-relativistic heavy-ion collisions in hydrodynamic approach 1, a simple picture has been extensively adopted. It is usually considered that, after the initial very complicated interaction between two incident nuclei, at some early instant of time a local thermal equilibrium is attained. Such a state is usually described in terms of a set of highly symmetric and smooth distributions of velocity and thermodynamical quantities. These are the initial conditions (IC) for the hydrodynamic equations, which must be complemented with reasonable equations of state (EoS).

Then, as the thermalized matter expands, the system gradually cools down and, when the temperature reaches a certain freeze-out value \(T_{fo} \), it suddenly decouples. Every observed quantity is then computed on the hypersurface \(T = T_{fo} \). For instance, the momentum distribution of the produced hadrons are obtained by using the Cooper-Frye integral 2 extended over this hypersurface.

Though operationally simple, and actually useful for obtaining a nice comprehension of several aspects of the phenomena, such a scenery is clearly highly idealized when applied to finite-volume and finite-lifetime systems as those formed in high-energy heavy-ion collisions. In this letter, we examine modification of two ingredients of such a description, namely, i) effects of fluctuations in the IC; and ii) consequences of continuous emission (CE) of particles, regarding two-pion correlation.

The identical-particle correlation, also known as HBT effect, is a powerful tool for probing geometrical sizes of the space-time region from which they were emitted. If the source is static like a star, it is directly related to the spatial dimensions of the particle emission source. When applied to a dynamical source, however, several non-trivial effects appear, reflecting its time evolution as happens in high-energy heavy-ion collisions. Being so, the inclusion of IC fluctuations and of the continuous emission may affect considerably the so-called HBT radii, because both of them modify in an essential way the particle emission zone in the space-time.

The usual symmetric, smooth IC may be understood as corresponding to the mean distributions of hydrodynamic variables averaged over several events. However, since our systems are not large enough, large fluctuations varying from event to event are expected. In previous publications, we showed that indeed the effects of these fluctuations on the observed quantities are sizeable and moreover in, we compared the rapidity distributions of pions and \(p - \bar{p} \) and showed that the average multiplicity of pions decreases if we consider the event-by-event fluctuations, in comparison with the one given by the averaged IC. Concerning two-pion correlation, as the IC in the event-by-event base often show small high-density spots in the energy distribution, our expectation is that these spots manifest themselves at the end when particles are emitted, giving smaller HBT radii.

As for the decoupling process, it has been proposed 10 an alternative picture where the emission occurs not only from the sharply defined freeze-out hypersurface, but continuously from the whole expanding volume of the system at different temperatures and different times. According to this picture, the large-transverse-momentum \((k_T) \) particles are mainly emitted at early times when the fluid is hot and mostly from its surface, whereas the small-\(k_T \) components are emitted later when the fluid is cooler and from larger spatial domain. Mostly by using a simple scaling solution, we showed in the previous papers that this picture gives several nice results, namely, i) CE enhances the large-\(m_T \) component of the heavy-particle \((p, \Lambda, \Xi, \Omega, ...) \) spectra, ii) it gives a concave shape for the pion \(m_T \) spectrum even without transverse expansion of the fluid, iii) it can lead to the correct hyperon production ratios and spectrum shapes with conceptually reasonable choice of parameters, and iv) it reproduces the observed mass dependence of the slope parameter \(T \). Concerning HBT correlation, we showed, within the same approximation, that whereas the so-called side radius is independent of the average \(k_T \), the out radius decreases with \(< k_T > \), because of the reason mentioned above. This behavior is expected to essentially remain in the general case we are going to

\[
T = T_{fo}
\]

\[
R_L, R_s, R_o
\]
discuss below and shown by data\cite{14}.

Initial Conditions – In order to produce event-by-event fluctuating IC, we use the NeXus event generator\cite{18}, based on Gribov-Regge model. Given the incident nuclei and the incident energy, it produces the energy-momentum tensor distribution at the time $\sqrt{s^2 - z^2} = 1$ fm, in event-by-event basis. This, together with the baryon-number density distributions, constitute our fluctuating IC. The strangeness has not been introduced in the present calculations. As mentioned in the Introduction, we understand that the usual symmetric, smooth IC may be obtained from these by averaging over many events. In Fig. 1, we show an example of such an event for central Au+Au collision at 130 A GeV, compared with an average over 30 events. As can be seen, the energy-density distribution for a single event (left), at the mid-rapidity plane, presents several blobs of high-density matter, whereas in the averaged IC (right) the distribution is smoothed out, even though the number of events is only 30. In the results below, we show that the fingerprints of such high-density spots remain until the freezeout stage of the fluid, giving smaller HBT radii.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Examples of initial conditions for central Au+Au collisions given by NeXus at mid-rapidity plane. Energy density is plotted in units of GeV/fm3. Left: one random event. Right: average over 30 random events (corresponding to the smooth initial conditions in the usual hydro approach).}
\end{figure}

Hydrodynamic Equations – The resolution of the hydrodynamic equations deserves a special care, since our initial conditions do not have, in general, any symmetry nor they are smooth. We adopt the recently developed SPHeRIO code\cite{24}, based on the so-called smoothed-particle hydrodynamics (SPH), first used in astrophysics and which we have adapted for nuclear collisions\cite{19}, a method flexible enough, giving a desired precision. The peculiarity of SPH is the use of discrete Lagrangian coordinates attached to small volumes (“particles”) with some conserved quantities. Here, we take the entropy and the baryon number as such quantities. Then, the entropy density, for example, is parametrized as

$$S = \int d^3x \gamma s(x, t) = \sum_i \nu_i .$$

(2)

Observe that, since an entropy ν_i is attached to the i-th SPH particle, and so is a baryon number, the total entropy S and the baryon number N are automatically conserved. By rewriting the usual energy-momentum conservation equation $\partial_\tau T^{\mu\nu} = 0$, we get a set of coupled ordinary equations\cite{19}

$$\frac{d}{dt} \left(\frac{P_i \pm \varepsilon_i}{s_i} \gamma_i \nu_i \right) = - \sum_j \nu_i \nu_j \left[\frac{P_i}{\gamma_i s_i^2} + \frac{P_j}{\gamma_j s_j^2} \right] \nabla_j W(x_i - x_j; h) .$$

(3)

Equations of State – For equations of state, we consider ones with a first-order phase transition between QGP and a hadronic resonance gas, with baryon number conservation taken into account. In the QGP, we consider an ideal gas of massless quarks (u, d, s) and gluons, with the bag pressure B taken to give the critical temperature $T_c = 160$ MeV at zero chemical potential. In the resonance gas phase, we include all the resonances below 2.5 GeV, with the excluded volume effect taken into account.

Two-Pion Correlation – We assume that all pions are emitted from a chaotic source and neglect the resonance decays. It is argued\cite{20} that, since resonance decays contribute to the correlations with very small q values ($q < q_{min}$, where q_{min} is the minimum measurable q), the experimentally determined HBT radii are essentially due to the direct pions. Then the correlation function is expressed in terms of the distribution function $f(x, k)$ as

$$C_2(q, K) = 1 + \frac{|I(q, K)|^2}{I(0, k_i)I(0, k_j)}$$

(4)

where $K = (k_1 + k_2)/2$ and $q = (k_1 - k_2)$ and k_i is the momentum of the ith pion. Usually

$$I(q, K) \equiv \langle a_k^+ a_{k+q} \rangle = \int_{T_f} d\sigma_{\mu} K^\mu f(x, K) e^{iqx} .$$

(5)

In SPH representation, we write $I(q, K)$ as

$$I(q, K) = \sum_j \frac{\nu_j n_{jm} K^\mu}{n_{jm} u_j^\mu} e^{iqx_j^\mu} f(u_{jm} K^\mu) ,$$

(6)

where the summation is over all the SPH particles. In the Cooper-Frye freezeout, these particles should be taken where they cross the hyper-surface $T = T_f$ and n_{jm} is the normal to this hyper-surface.

Continuous Emission Model – In CEM\cite{14}, it is assumed that, at each space-time point x^μ, each particle has a certain escaping probability

$$P(x, k) = \exp \left[- \int_0^t \rho \sigma v d\tau' \right] ,$$

(7)
due to the finite dimensions and lifetime of the thermalized matter. The integral above is evaluated in the proper frame of the particle. Then, the distribution function $f(x, k)$ of the expanding system has two components, one representing the portion of the fluid already free and another corresponding to the part still interacting, i.e.,

$$f(x, k) = f_{\text{free}}(x, k) + f_{\text{int}}(x, k).$$

We may write the free portion as

$$f_{\text{free}}(x, k) = \mathcal{P} f(x, k).$$

The integral 6 is then rewritten in CEM as

$$I(q, K) = \int d\sigma_{0} K^\mu f_{\text{free}}(x_{0}, K)e^{iqx}$$

$$+ \int d^{4}x \partial_{\mu}[K^\mu f_{\text{free}}(x, K)]e^{iqx},$$

(10)

where the surface term corresponds to particles already free at the initial time.

The problem of this description is its complexity in handling because, \mathcal{P} depends on the momentum of the escaping particle and, moreover, on the future of the fluid as seen in eq. 11. In order to make the computation practicable, here we first take \mathcal{P} on the average, i.e., $\mathcal{P}(x, k) \Rightarrow < \mathcal{P}(x, k) > = \mathcal{P}(x)$. Then, approximate linearly the density $\rho(x') = \alpha s(x')$ in eq. (7).

Thus,

$$\mathcal{P}(x, k) \Rightarrow \mathcal{P}(x) = \exp \left(-\kappa \frac{s^{2}}{|ds/d\tau|} \right),$$

(11)

where $\kappa = 0.5 \alpha < \sigma v >$.

Now, eq. (10) is translated into SPH language, by computing the sum 6 not over $T = T_{fo}$ but picking out SPH particles according to this probability, with n_{jm} pointing to the 4-gradient of \mathcal{P}. Thus, our approximation includes also emission of particles of any momentum, once a SPH particle has been chosen. However, since our procedure favors emission from fast outgoing SPH particles, because ρ decreases faster and so does s in this case making \mathcal{P} larger, we believe the main feature of CEM is preserved.

Results – We first assume sudden freeze-out (FO) at $T_{fo} = 128$ MeV. This temperature was previously found by studying the energy dependence of kaon slope parameter $T^{*}[21]$. It has been also shown 8 that T^{*} is not sensitive to IC fluctuations.

In Fig. 2 we compare C_{2} averaged over 15 fluctuating events with those computed from the averaged IC (so, without fluctuations). One can see that the IC fluctuations are reflected in large fluctuations also in the HBT correlations. When averaged, the resulting C_{2} are broader than those computed with averaged IC, so giving smaller radii as expected. Also the shape of C_{2} changes.

We plot the m_{T} dependence of HBT radii, with Gaussian fit of C_{2}, in Fig. 3 together with RHIC data 16 17 and

![FIG. 2: Correlation functions from fluctuating IC and averaged IC. Sudden freeze-out is used here. The rapidity range is $-0.5 \leq Y \leq 0.5$ and $q_{o,s,l}$ which do not appear in the horizontal axis are integrated over $0 \leq q_{o,s,l} \leq 35$ MeV.](image)

results with CEM. It is seen that the smooth IC with sudden FO makes the m_{T} dependence of R_{o} flat or even increasing, in agreement with other hydro calculations 22 but in conflict with the data. The fluctuating IC make the radii smaller, especially R_{o}, without changing the m_{T}-dependence.

Let us now consider CEM. In this paper, we estimated κ as being 0.3, corresponding to $< \sigma v > = 2$ fm 2. In Fig 4 we show the charged m_{T} distribution to ensure

![FIG. 3: HBT radii and the ratio R_{o}/R_{s} for sudden freeze-out (FO) and CE. 1 stands for averaged IC and 2 fluctuating IC. Data are from 16, 17: $(\pi^{+} + \pi^{-})/2$.](image)
that the estimate above does reproduce correctly these data. Now, look at the m_T dependence of the HBT radii, shown in Fig. Comparing the averaged IC case, with CEM (CE1), with the corresponding freezeout (FO1), one sees that, while R_L remains essentially the same, R_s decreases faster and as for R_o, it decreases now inverting its m_T behavior. The account of the fluctuating IC in addition (CE2) makes all the radii smaller as in FO case, obtaining a nice agreement with data for R_L and R_s, and improving considerably the results for R_o with respect to the usual hydro description.

Conclusions and Outlooks – In this paper, we showed that both the event-by-event fluctuations of the IC and the continuous particle emission instead of sudden freezeout largely modify the HBT correlation of produced pions, so they should be included in more precise analyses of data. The IC fluctuations give smaller radii, without changing the m_T dependence, which is a natural consequence of the presence of high-density spots at the early times. Continuous particle emission, on the other hand, does not change R_L but enhances the m_T dependence of R_s and inverts the m_T behavior of R_o, which now decreases with m_T in accord with data. This is because, in this description, large-k_T particles appear mostly at the early stage of the expansion from a thin hot shell of the matter, whereas small-k_T particles appear all over the expansion, and from larger portion of the fluid. The combination of these two effects can give account of the m_T dependence of R_L and R_s and improves considerably the one for R_o with respect to the usual version.

We shall emphasize that these conclusions could only be reached because we have explicitly solved 3+1 dimensional hydrodynamic equations and not simply parametrized the final flow as often done. The results are preliminary. In applying the CEM we had to make a drastic approximation, expressed by eq. , in order to make it feasible. It is likely that this is the reason why the discrepancy in R_o still persists. In addition, there exist certainly dissipation effects. Since SPH is an effective description in terms of parameters ν_i appearing in eq. , some smoothing of short-wave-length Fourier components is taken into account through the kernel $W(\mathbf{x} - \mathbf{x}_i(t); \mathbf{h})$. We preferred not to explicitly include the viscosity at this stage, as it is still an open problem of hydrodynamics (see more details in Ref. [26]).

Acknowledgments – This work was partially supported by FAPESP (2000/04422-7 and 2001/09861-1), CAPES/PROBRAL, CNPq, FAPERJ and PRONEX.

\[1\] L.D. Landau, Izv. Akad. Nauk SSSR 17, 51 (1953).
\[2\] F. Cooper and G. Frye, Phys. Rev. D10, 186 (1974).
\[3\] R. Hanbury-Brown and R.Q. Twiss, Phil. Mag. Ser. 7, Vol. 45, 663 (1954).
\[4\] C-Y. Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific (1994); R.M. Weiner, Bose-Einstein Correlations in Particle and Nuclear Physics, J. Wiley & Sons (1997); U. Heinz and B. V. Jacak, Annu. Rev. Nucl. Part. Sci. 49, 529 (1999); T. Csörgő, Heavy Ion Phys. 15, 1 (2002).
\[5\] Y. Hama and S. Padula, Phys. Rev. D37, 3237 (1988).
\[6\] S. Pratt, Phys. Rev. D33, 1314 (1986); K.Kolehmainen and M. Gyulassy, Phys. Lett. B180, 203 (1986); A.N. Makhlin and Yu.M. Sinyukov, Z. Phys. C39, 69 (1988).
\[7\] T. Osada, C.E. Aguiar, Y. Hama and T. Kodama, nucl-th/0102011; C.E. Aguiar, Y. Hama, T. Kodama and T. Osada, Nucl. Phys. A698, 639c (2002).
\[8\] Y. Hama, F. Grassi, O. Socolowski Jr., C.E. Aguiar, T. Kodama, L.L.S. Portugal, B.M. Tavares and T. Osada, Proc. of 32 ISMD Symposium, eds. A. Sissakian et al., World Scientific (Singapore, 2003), 65.
\[9\] See also T. Hirano, nucl-th/0403042.
\[10\] F. Grassi, Y. Hama and T. Kodama, Phys. Lett. B355, 9 (1995); F. Grassi, Y. Hama and T. Kodama, Z. Phys. C73, 153 (1996).
\[11\] V. K. Magas et al., Heavy Ion Phys. 9, 193 (1999); Phys. Lett. B459, 33 (1999); Nucl. Phys. A661, 596c (1999); Yu.M. Sinyukov, S.V. Akkelin and Y. Hama, Phys. Rev. Lett. 89, 052301 (2002).
\[12\] F. Grassi, Y. Hama, T. Kodama and O. Socolowski Jr., Heavy Ion Phys. 5, 417 (1997).
\[13\] F. Grassi and O. Socolowski Jr., Phys. Rev. Lett. 80, 1170 (1998); F. Grassi and O. Socolowski Jr., J. Phys. G25, 331 (1999).
\[14\] F. Grassi and O. Socolowski Jr., J. Phys. G25, 339 (1999).
\[15\] F. Grassi, Y. Hama, S.S. Padula and O. Socolowski Jr., Phys. Rev. C62, 044904 (2000).
\[16\] C. Adler et al., Phys. Rev. Lett. 87, 082301 (2001).
\[17\] K. Adcox et al., Phys. Rev. Lett. 88, 192302 (2002).
\[18\] H.J. Drescher, M. Hladik, S. Ostrachpenko, T. Pierog and K. Werner, J. Phys. G25, L91 (1999); Nucl. Phys. A661, 604 (1999).
\[19\] C.E. Aguiar, T. Kodama, T. Osada and Y. Hama, J. Phys. G27, 75 (2001).
\[20\] S. Nickerson, T. Csörgő and D. Kiang, Phys. Rev. C57, 3251 (1998).
\[21\] Y. Hama, F. Grassi, O. Socolowski Jr., T. Kodama, M. Gazdzicki and M.I. Gorenstein, Acta Phys. Polon. 35,
[22] C. Adler et al., Phys. Rev. Lett. 87, 112303 (2001).
[23] K. Morita, S. Muroya, C. Nonaka and T. Hirano, Phys. Rev. C66, 054904 (2002).
[24] Smoothed Particle hydrodynamical evolution of Relativistic heavy Ion collisions

[25] B. Tomášik, U.A. Wiedemann and U. Heinz, Heavy Ion Phys. 17, 105 (2003); F. Retière and A. Lisa, nucl-th/0312024 T. Renk, hep-ph/0404140
[26] Y. Hama, T. Kodama and O. Socolowski Jr., hep-ph/0407264