Decapod Crustacea of the continental margin of southwestern and central Western Australia: preliminary identifications of 524 species from FRV Southern Surveyor voyage SS10-2005

Gary C. B. Poore, Anna W. McCallum and Joanne Taylor
Decapod Crustacea of the continental margin of southwestern and central Western Australia: preliminary identifications of 524 species from FRV Southern Surveyor voyage SS10-2005

GARY C. B. POORE, ANNA W. MCCALLUM AND JOANNE TAYLOR

Museum Victoria, GPO Box 666E, Melbourne, Victoria 3001, Australia (gpoore@museum.vic.gov.au)

Abstract

Poore, G.C.B., McCallum, A.S., and Taylor, J. 2008. Decapod Crustacea of the continental margin of southwestern and central Western Australia: preliminary identifications of 524 species from FRV Southern Surveyor voyage SS10-2005. Museum Victoria Science Reports 11: 1–106.

A collection of Dendrobranchiata (44 species), Achelata (4 species), Anomura (127 species), Astacidea (4 species), Brachyura (227 species), Caridea (88 species), Polychelida (5 species), Stenopodidea (2 species) and Thalassinidea (23 species) from shelf edge and slope depths of south-western Australia is reported. Seventy-seven families are represented. Thirty-three per cent (175) of all species are suspected to be new species, eight per cent are new records for Australia, and a further 25% newly recorded for southern Western Australia.

Introduction

The offshore fauna of southwestern Australia is poorly known relative to that of some other regions of Australia. Population centres in southeastern Australia and offshore oil and gas resources in the northwest have in different ways provided foci for exploration and some biological characterisation along the continental margins. Marine exploration in the southwest on the other hand has been confined to coastal and shallow-water environments, particularly in a series of taxonomic workshops in Albany, Rottnest Island and Esperance. Decapod crustaceans from these regions were reviewed by Morgan and Jones (1991) and Jones and Morgan (1993). Crustacean collections made offshore and now residing in the Western Australian Museum are not extensive, those from the cruises of the FV Davena (1960) and HMAS Diamantina (1960s) being the most significant.

All of this is ironic because the first ever illustrations by Europeans of Australian marine animals were published in 1703 by the privateer William Dampier (1651–1715) (Dampier, 1703). Many of the shore collections made by François Peron and colleagues during the 1802 visit of the Naturaliste and Geographe to Australia were made in southwestern Australia (Milne Edwards, 1837). Later foreign expeditions also targeted the southwest (Balss, 1935).

During compilation of records for a guide to identification of southern Australian decapod Crustacea (Poore, 2004) it emerged that the southwest was less well known than the southeast of Australia. This impression is borne out by an analysis of the distribution of species along the southern Australian coast (O’Hara and Poore, 2000). These authors discovered that species composition varied with both latitude and longitude. Species richness was relatively constant from east to west but graded with latitude from high in the warm temperate regions around Perth and Sydney to low in cool-temperate southern Tasmania. They concluded that history as well as ecological hypotheses explain the latitudinal gradient of marine species richness in southern Australia, not the least being the invasion of the southwestern margin by animals of Indo-West Pacific origin.

Bioregionalisation of southwestern Australia depends now on geophysical surrogates and patterns in the distribution of fishes of the shelf and continental slope (Last et al., 2005). Three bioregions have been recognised along the WA coast with two intermediate regions in between: the Northwest Province, Central Western Transition Zone, Central Western Province, Southwestern Transition Zone and Southern Province.

The results presented here are part of a project mounted largely by CSIRO Marine and Atmospheric Research (CMAR) and Museum Victoria entitled “Mapping benthic ecosystems on the deep continental shelf and slope in Australia’s South West Region” to understand evolution and biogeography and support implementation of the SW Regional Marine Plan and
Commonwealth Marine Protected Areas”. The field work addresses four primary objectives:

1) test hypotheses on the evolution and biogeography of Australia’s biodiversity, in particular relating to species composition, distribution patterns and taxonomic surrogacy

2) validate and refine CSIRO’s optimised methodology for mapping deep water benthic ecosystems on the western continental margin and in sub-tropical locations to enhance its application to natural resource management at a national scale

3) document the benthic biodiversity and identify areas of high conservation values in the context of Commonwealth MPA declaration

4) validate, and permit refinement of, a marine bioregionalisation during the development of the SW Regional Marine Plan by the National Oceans Office.”

This report deals only with the crustacean Order Decapoda, one of the taxa chosen to test this hypothesis. It first outlines briefly where and how the new material was collected. Next, data on taxonomy and distribution associated with each taxon identified are presented with brief comments. The purpose of publishing summarised information is to alert taxonomists to this essentially new and previously undescribed fauna and to provide access to data for a distributional analysis of the region.

Methods

Sampling program. The data for this project were collected during two surveys undertaken from FRV Southern Surveyor, a 67 m converted stern-trawler. The first was completed in July–August 2005 when all the survey sites were mapped using multibeam acoustics, surveyed with a towed, high-resolution video system and sampled with sediment grabs. The second survey ran a reciprocal course and collected complementary benthic invertebrate epifauna and infauna using a benthic sled and beam trawl. The second survey provided the collections treated here. Follow-up cruises during 2007 with the same overall objectives continued the same sampling strategy along the Western Australian margin as far north as possible. Samples taken in 2007 are being identified in 2008 and will naturally add to the distributional records presented here.

Stations. Sampling was targeted at nested spatial scales of habitat – terrains of sediment and rocky substrata comprising features (mostly canyons and sediments terraces of the continental slope), within depth zones, across latitudes – to determine how biodiversity is distributed at particular scales. At the highest level, samples were allocated to enable comparison of the benthic bioregions already in use off the west and southwest coasts of Western Australia. Our collections came from 11 sites between Albany and Ningaloo (south of Exmouth) at notional depths of 100 and 400 m, and seven cross-depth transects (at intended depths of 100, 200, 400, 700 and 1000 m) made on special features of interest off Albany, Perth Canyon, Abrolhos and Ningaloo (Fig. 1). Separate targeting of hard and soft seabed terrain types was undertaken successfully in most areas.

Sampling gear. Samples were obtained using two gears, the “Sherman sled” and a beam trawl. The Sherman sled is a CMAR-designed robust sled with 1.2-metre-wide opening (0.6 m high) and is fitted with a 25 mm stretched-mesh net (Lewis, 1999). On some occasions a secondary 1 mm-mesh net was fitted inside. The beam trawl was CMAR-modified version of the French IRD design, 4 metres wide and fitted with a 25 mm stretched-mesh net.

Shipboard sorting. Samples from the sled or beam trawl were placed into one or more plastic fish boxes on deck and transferred to the wet sorting tray below deck. The material was spread out, turned and broken up and individual decapods captured and placed in 150 x 80 mm plastic dishes in seawater in rough taxonomic groups. Individuals in these dishes were further separated into operational taxonomic units (OTUs that represented our initial separation of taxa) before being labelled with provisional names and station and acquisition numbers.

Fixation and preservation. Most crustaceans were fixed in formalin but some specimens of abundant species or limbs of others were placed directly into 95% ethanol. At Museum Victoria formalin-fixed material was transferred to fresh water to soak overnight and then to 70% ethanol.

Identification. Several helpers (acknowledged below) separated the collection into more refined OTUs under the guidance of the second author who made many initial identifications. The ultimate identification of species was made by the first author with reference to general texts, in particular Poore (2004) and Sakai (1976) and the considerable primary literature cited where relevant below. Although every attempt was made to be confident of identifications no specimens were compared with types. For this reason and because so many of the determinations were of species hitherto unrecorded from Australia, the identifications must be treated as provisional.

Besides zoological names at the lowest level possible, each species was assigned a unique “MoV” number, continuing a

Figure 1. The survey area showing positions of sampling sites. At 11 sites between Albany and Exmouth samples were taken at depths of 100 and 400 m (black stars), and at 7 transects on special features at intended depths of 100, 200, 400, 700 and 1000 m (red rectangles).
museum collections. The map of the apparent distribution of the just those from this survey. The maps reveal the bias inherent in resulting map is derived from all Museum Victoria records, not Australian coast but no collecting by Museum Victoria has been

Museums) query of Australia's fauna:

It is also possible to map the same species through an

Selected Specimens and Species with Google Maps”.

Here, it is possible to search on named species and “Map Selected Specimens and Species with Google Maps”. The resulting map is derived from all Museum Victoria records, not just those from this survey. The maps reveal the bias inherent in museum collections. The map of the apparent distribution of the common slipper lobster *Ibacus alticrenatus* includes 36 records from southeastern and western Australia but none apparently from the Great Australian Bight (Fig. 2). The species certainly occurs there, as it does along a substantial part of the eastern Australian coast but no collecting by Museum Victoria has been done in these regions.

It is also possible to map the same species through an OZCAM (Online Zoological Collections of Australian Museums) query of Australia’s fauna: http://www.ozcam.gov.au/cgi-bin/emu-dataportal.cgi.

A search on OZCAM returns a map using collection data from all relevant Australia museums.

It is not possible to search for undescribed species. A search on a genus is likely to return results for more than one species.

Presentation of taxonomic results

The results are presented as species within genera within families within infraorders (Dendrobranchiata first, Pleocyemata infraorders next in alphabetical order). The order of families is alphabetical except for Brachyura where Ng et al.’s (2008) hierarchy is followed. For each family, the species found are summarised and the literature resources used cited.

Each species is listed by name with its authority when appropriate. Uncertain identifications are prefixed “cf.” and new species close to another known species are prefixed “aff.” “MoV” numbers are given for all taxa and used as specific names for uncertain or new species.

Specimen records for each species are summarised as follows: *Records*: the total number of specimens, with latitudinal range (to nearest minute) and depth range (in metres). The latitudinal range of all samples is from 20°59’S to 35°1’S. (The longitudinal range is 112°14’E to 118°43’E.) The shallowest actual sample depth was at 50 m and the deepest at 1260 m; most measured depths are near the intended depths of 100, 400, 700 and 1000 m. A tick ✔ at the end of this line indicates that a specimen or fraction of specimen was fixed directly in alcohol (most material was fixed in formalin).

Distribution: a general comment on published distribution plus a comment on whether the species is a new species, new for southwestern Australia, new for WA or all of Australia.

Reference: bibliographic citation used for identification.

Following the text for many species are coloured photographs. Those taken on board ship are by Karen Gowlett-Holmes. Photos of specimens taken at Museum Victoria after preservation and colour loss are by Anna McCallum or David Staples.

The entry under *Records* summarises the detailed collection data stored in the Museum Victoria KEmu® database. Sections of these data are publicly available at the Museum Victoria, Collections and Research website, “Search Natural Sciences collections”:

http://collections.museumvictoria.com.au/browser.php?type=Zoology&phylum=Arthropoda

Here, it is possible to search on named species and “Map Selected Specimens and Species with Google Maps”. The

Taxonomic results and commentary

The collection of ~6083 specimens representing 524 provisional species is the first comprehensive characterisation of the fauna of the continental margin of southwestern Australia. For comparison, Poore’s (2004) identification guide to southern Australian marine decapods includes 800 species and the Zoological Catalogue of Australia enumeration of all named Australian marine Decapoda (Davie, 2002a, b) listed 2077 marine species. Poore’s (2004) guide covered southern Australia extending on the west coast as far north as Perth (31°S). Our estimate is that 76 species previously unrecorded south of Perth were found in this survey, i.e., a 9.4% increase over Poore’s enumeration from museum collections and literature.

The survey illustrates how little is known about the fauna of the continental margin of most of Australia. The eastern slope of NSW and Tasmania is best known. These collections are the first systematic samples from southern WA.

Overall, 175 species (33%) were new to science (Table 1). This figure is based on what we feel is a thorough review of the literature covering the fauna of Australia and the Indo-West Pacific. The number is probably an underestimate and is subject to further examination by taxonomic experts. Many of the so-called “new records” (88 species for Australia as a whole, 62 for WA and 69 for southern WA) may well prove to be new species, different from the similar species with which they have been identified. The highest percentage of new species was in Thalassinidea (83% of 23 species), much higher than the next most novel infraorders (50% of 127 species of Anomura and 31% of 227 species of Brachyura).

Many species were rare. Forty-two per cent (222 species) were found in just one of 127 samples and a further 17% (89 species) in only two samples. This is a common feature of exploration of this type and hints that the number of species yet to be discovered is much larger than anticipated.
New Australian records (88 species or 6%) were characterised as such because they did not appear in Davie’s catalogues. Most were species already described from the Indo-West Pacific region (tropical and subtropical regions from Japan through to east Africa). In all cases, lack of time or few specimens prevented a thorough comparison between the WA material and original descriptions. Identifications in this category should be treated as probable at best – several may well be additional new species.

It is notable that several deep water species recently reported from Tasmanian seamounts have (with few exceptions) not been rediscovered in southern WA (Ahyong and Poore, 2004a, b).

Invitation

The process of identification of Decapoda necessitates familiarity with diverse morphologies, and access to many keys and descriptions. Most decapod taxonomists specialise in one or few families (either hermit crabs, or some crabs or prawns).

No-one is a specialist in all 77 families recognised here. These results have depended on consulting the 188 original research papers and books cited below. Poore’s guidebook to southern (south of 31°S on the west coast) Australian decapods included only 24% of the species discovered in the southwest at these latitudes and a much smaller percentage of the total fauna. The collection offers considerable scope for taxonomic, evolutionary and biogeographic study. The material is available for study at Museum Victoria or on loan to crustacean taxonomists worldwide.
Table 1. Summary of numbers of species in genera, families and infraorders, including numbers of new Australian records, new records for Western Australia, and new records for southwestern Australia. Dendrobranchiata are listed first and infraorders of Pleocyemata next in alphabetical order.

Infraorder	Family	Genus	Total species	New Australian species	New WA species	New record for S WA	New species	% new spp
Dendrobranchiata	Aristeidae	Aristeus	4	1	1	1	0	0%
Aristeidae	Pseudaristeus	1						
Aristeidae	5	1	1	1	0	0%		
Benthesicymidae	Benthesicymus	1						
Benthesicymidae	1	0	0	0	0	0%		
Penaeidae	Metapenaeopsis	7	2	1	1	0%		
Penaeidae	Parapenaeus	5	4	1				
Penaeidae	Penaeopsis	2						
Penaeidae	Penaeus	1						
Penaeidae	Trachypenaeus	1						
Penaeidae	Sergestes	2						
Sergestidae	Sergia	2						
Sergestidae	4	1	0	0	0	0%		
Sicyoniidae	Sicyonia	4	2	1	1	25%		
Sicyoniidae	4	2	0	0	1	25%		
Solenoceridae	Hadropenaeus	1			1	0%		
Solenoceridae	Haliporoides	1						
Solenoceridae	Haliporus	1						
Solenoceridae	Hymenopenaeus	2	1					
Solenoceridae	Solenocera	9	1	5	0	0%		
Solenoceridae	14	0	2	7	0	0%		

Dendrobranchiata all taxa | 44 | 10 | 5 | 9 | 3 | 7% |

Achelata | 4 | 0 | 0 | 2 | 0 | 0% |

Anomura | 5 | 0 | 0 | 0 | 1 | 20% |

Infraorder	Family	Genus	Total species	New Australian species	New WA species	New record for S WA	New species	% new spp
Chirostylidae	Urotychus	5						
Chirostylidae	5	0	0	0	1	20%		
Galatheidae	Agononida	6	1	2	1	2	33%	
Galatheidae	Allogalathea	1						
Galatheidae	Enriquea	1						
Galatheidae	Galathea	7	1	2	4	57%		
Galatheidae	Lauriea	1						
Galatheidae	Munida	19	2	5	11	58%		
Galatheidae	Municopsis	7	4	1				
Galatheidae	Paramunida	1						
Galatheidae	Phylladiorhynchus	1						
Galatheidae	Raymunida	1						
Galatheidae	45	9	10	2	18	40%		
Porcellanidae	Lissoporcellana	1						
Porcellanidae	Pachycheles	1			1	100%		
Porcellanidae	Petrolisthes	2						
Infraorder	Family	Genus	Total species	New Australian species	New WA species	New record for S WA	New species	% new spp
--------------	----------------	------------	---------------	------------------------	----------------	---------------------	-------------	----------
Anomura (cont.)	Porcellanidae	Polyonyx	1					
Porcellanidae	Porcellanella		1					
Porcellanidae			6	0	0	1	1	17%
Albuneidae		Albanea	1					
Albuneidae		Stemonopa	1					
Albuneidae			2	0	0	0	0	
Diogenidae		Calcinus	4					
Diogenidae		Ciliopagurus	1	1				
Diogenidae		Dardanus	5					
Diogenidae		Diogenes	1					
Diogenidae		Paguristes	7	1				
Diogenidae		Strigopagurus	1					
Diogenidae			19	1	1	0	14	74%
Lithodidae		Lithodes	1					
Lithodidae		Paralomis	1					
Lithodidae			2	0	0	0	2	100%
Paguridae	Anapagrides		1					
Paguridae	Bathypaguropsis		1	1				
Paguridae	Cestopagurus		1					
Paguridae	Hemipagurus		1					
Paguridae	Lophopagurus		2	2				
Paguridae	Michelopagurus		1					
Paguridae	Nematopagurus		3					
Paguridae	Porcellanopagurus		1	1				
Paguridae	Propagurus		1					
Paguridae	Pylopaguropsis		2					
Paguridae	Spiropagurus		1					
Paguridae	Turleana		2	2				
Paguridae	Pagurid		16					
Paguridae			33	4	4	0	24	73%
Parapaguridae	Oncopagurus		3	1	2			
Parapaguridae	Paragiopagurus		4	1				
Parapaguridae	Parapagurus		1	1				
Parapaguridae	Strobopagurus		1					
Parapaguridae	Sympagurus		4	2	1			
Parapaguridae			13	1	4	3	3	23%
Pylochelidae	Pylocheles		1					
Pylochelidae	Pylochelida		1					
Pylochelidae			2	0	1	0	0	
Anomura	all taxa		127	15	20	6	63	50%
Astacidea	Nephropidae	Metanephrops	2					
Nephropidae	Nephrops		2					
Nephropidae			4	0	0	1	0	0%
Astacidea	all taxa		4	0	0	1	0	0%
Brachyura	Cycloporipidae	Krangalangia	1					
Cycloporipidae	Tymolus		2					
Cycloporipidae			3	0	0	3	0	0%
Cymonomidae	Cymonomus		2	1				
Cymonomidae			2	1	0	0	1	50%
Dromiidae	Austrodromidia		1					
Infraorder	Family	Genus	Total species	New Australian species	New WA species	New record for S WA	New species % new spp	
------------	--------------	-------------	---------------	------------------------	----------------	---------------------	------------------------	
Brachyura (cont.)	Dromiidae	Dromia	6	0	0	0	0%	
	Dromiidae	Epigodromia	1	1	100%			
	Dromiidae	Fullodromia	2	1	50%			
	Dromiidae	Takedromia	1	1	100%			
	Dromiidae	Hirsutodynomene	1	1	0%			
	Dynomenidae		1	0	1	0	0%	
	Dynomenidae		1	0	1	0	0%	
	Homolidae	Dagnaudus	1	1	100%			
	Homolidae	Homola	1	1	100%			
	Homolidae	Homologenus	2	1	0%			
	Homolidae	Latreilopsis	1	0	0%			
	Homolidae	Paramoloposis	1	0	0%			
	Homolidae	Yaldwynopsis	1	1	100%			
	Homolidae		7	1	0	0	14%	
	Latrelliidae	Eplumula	1	1	100%			
	Latrelliidae	Latrellia	1	1	100%			
	Latrelliidae		2	1	0	0	0%	
	Raninidae	Cosmonotus	1	1	100%			
	Raninidae	Lyreidus	2	1	0%			
	Raninidae	Natosceles	1	0	0%			
	Raninidae	Umalia	1	1	0%			
	Raninidae		5	1	0	2	0%	
	Aethridae	Actaeomorpha	1	1	100%			
	Aethridae	Drachiella	1	1	100%			
	Aethridae		2	0	0	2	0%	
	Calappidae	Calappa	3	1	1	0	0%	
	Calappidae	Mursia	3	2	1	33%		
	Calappidae		6	1	3	0	17%	
	Atelecyclida	Trichopetalion	2	1	0	2	100%	
	Atelecyclida		2	0	0	0	2 100%	
	Carpiliidae	Carpilius	1	1	0	0	0%	
	Carpiliidae		1	0	0	1	0%	
	Corystidae	Gomeza	1	0	0	1	100%	
	Corystidae	Jonas	1	1	0	1	100%	
	Corystidae		2	0	0	1	50%	
	Dorippidae	Dorippe	1	1	100%			
	Dorippidae	Neodorippe	1	1	0%			
	Dorippidae	Paradorippe	1	1	0%			
	Dorippidae		3	1	0	1	0%	
	Ethusidae	Ethusa	3	1	0	3	100%	
	Ethusididae	Ethusina	1	1	100%			
	Ethusididae		4	0	0	4	100%	
	Hypothalassidae	Hypothalassia	1	0	0	0	0%	
	Hypothalassidae		1	0	0	0	0%	
	Chasmocarcinidae	Camatopsis	2	1	0%			
	Chasmocarcinidae	Megaesthesius	1	1	100%			
	Chasmocarcinidae		3	1	0	0	0%	
	Euryplacidae	Heteroplax	2	1	2	100%		
	Euryplacidae	Carcinoplax	2	1	2	100%		
	Goneplacidae	Notonyx	1	1	0%			
	Goneplacidae	Psopheticus	1	1	0%			
	Goneplacidae	Pycnoplox	5	1	3	60%		
	Goneplacidae		9	2	0	1	5	56%
Infraorder	Family	Genus	Total Australian species	New WA species	New record for S WA	New species	% new spp	
---	---	---	---	---	---	---	---	---
Brachyura	Mathildellidae	Mathildella	1	1			0%	
	Mathildellidae	Platypillumus	1	1			0%	
	Mathildellidae	Mathildellid	1	1		1	100%	
Mathildellidae	3	1	0	1	1	33%		
Hexapodidae	Hapalplax	1	1	1			0%	
Hexapodidae	Iphiculus	1	1	1			0%	
Iphiculidae	Arcania	8	2	2	1	2	25%	
Leucosiidae	Ebalia	4	1	3			75%	
Leucosiidae	Leucosia	4	1	1			25%	
Leucosiidae	Merocrpytus	1	1	0			0%	
Leucosiidae	Myra	3	2	2			67%	
Leucosiidae	Myrine	1	1	1			0%	
Leucosiidae	Oreeophorus	1	1	0			0%	
Leucosiidae	Parilia	1	1	0			0%	
Leucosiidae	Phtyla	1	1	1			100%	
Leucosiidae	Randallia	6	1	4			67%	
Leucosiidae	30	5	2	3	13	13%	43%	
Epialtidae	Austrolibinia	1	1	0			0%	
Epialtidae	Griffinia	1	1	0			0%	
Epialtidae	Hyastenus	1	1	0			0%	
Epialtidae	Lahania	1	1	0			0%	
Epialtidae	Naxioides	3	3	0			0%	
Epialtidae	Phalangipus	2	1	0			0%	
Epialtidae	Rochina	5	1	1			0%	
Epialtidae	14	1	4	3	3	3	21%	
Hymenosomatidae	Halicarcinus	1	1	0			100%	
Hymenosomatidae	Trigonoplax	1	1	0			0%	
Hymenosomatidae	2	0	0	0	1	0	50%	
Inachidae	Achaeus	5	1	1			20%	
Inachidae	Camposcia	1	1	0			0%	
Inachidae	Cyrtomaia	2	1	0			0%	
Inachidae	Dorhynchus	1	1	0			0%	
Inachidae	Dumea	1	1	0			0%	
Inachidae	Ephippias	1	1	0			0%	
Inachidae	Gryptachaeus	1	1	0			0%	
Inachidae	Oncinopus	3	1	1			33%	
Inachidae	Physachaeus	1	1	0			0%	
Inachidae	Platymaia	2	1	0			0%	
Inachidae	Pleistacanthia	1	1	0			0%	
Inachidae	Sunipea	1	1	0			0%	
Inachidae	20	3	2	4	2	2	10%	
Majidae	Entomonyx	2	1	1			0%	
Majidae	Leptomithrax	4	1	2			50%	
Majidae	Maja	3	3	0			0%	
Majidae	Planotergum	1	1	0			0%	
Majidae	Prisamotopus	3	1	1			33%	
Majidae	Majid	1	1	0			0%	
Majidae	13	5	0	2	3	3	23%	
Palicidae	Micropalicus	1	1	0			0%	
Palicidae	Neopalicus	1	1	0			0%	
Palicidae	Palicus	1	1	0			0%	
Palicidae	Parapalicus	1	1	0			0%	
Infraorder	Family	Genus	Total species	New Australian species	New WA species	New record for S WA	New species	% new spp
---------------	------------	-------------	---------------	------------------------	----------------	---------------------	-------------	----------
Brachyura (cont.)	Palicidae	*Pseudopalicus*	1					0%
Palicidae			5		0	1	2	1
	Parthenopidae	*Aulacolambrus*	1					100%
	Parthenopidae	*Garthambrus*	2					100%
	Parthenopidae	*Parthenope*	1					0%
	Parthenopidae	*Platyambrus*	1					0%
	Parthenopidae	*Pseudolambrus*	1					100%
	Parthenopidae	*Rhinolambrus*	1					100%
	Parthenopidae	*Thyroambrus*	1					0%
	Parthenopidae	*Parthenopid*	1					100%
Parthenopidae			9	1	1		6	67%
Pilumnidae		*Bathypilumno*	1		1			0%
Pilumnidae		*Caecopilumno*	1		1			0%
Pilumnidae		*Cryptolutea*	1		1			0%
Pilumnidae		*Eumedonus*	1					0%
Pilumnidae		*Heteropilumno*	1					100%
Pilumnidae		*Lophoplax*	1					100%
Pilumnidae		*Mertonia*	1		1			0%
Pilumnidae		*Paraselvynia*	1					100%
Pilumnidae		*Pilunnopagus*	1					100%
Pilumnidae		*Pilunus*	1	1	4	1	1	6
Pilumnidae		*Pilumnid*	1					0%
Pilumnidae		*Pilumnus*	21	6	2	2	10	48%
Portunidae		*Charybdis*	2	1	1			0%
Portunidae		*Echinolatus*	1		1			0%
Portunidae		*Libytes*	1	1				0%
Portunidae		*Liocarcinus*	1					0%
Portunidae		*Lissocarcinus*	1					0%
Portunidae		*Lupocyclus*	3	1	1			33%
Portunidae		*Nectocarcinus*	1					0%
Portunidae		*Ovalipes*	2	2				0%
Portunidae		*Parathanrites*	2	1				50%
Portunidae		*Portunus*	7	4				14%
Portunidae		*Thalamia*	3	1	1			0%
Portunidae		*Portunid*	1					100%
Portunidae		*Portunida*	25	7	6	2	4	16%
Retroplumidae		*Retropluma*	1		1			0%
Retroplumidae			1	1	0	0	0	0%
Trapezidae		*Quadrella*	1		1			0%
Trapezidae			1	1	0	0	0	0%
Panopeidae		*Homoioplax*	1					0%
Panopeidae			1	0	0	1	0	0%
Xanthidae		*Actaea*	2					0%
Xanthidae		*Atergatopsis*	1	1				0%
Xanthidae		*Calvactae*	1					0%
Xanthidae		*Chlorodiella*	1					0%
Xanthidae		*Demania*	1	1				0%
Xanthidae		*Medaeus*	1					100%
Xanthidae		*Monodaeus*	1	1				0%
Xanthidae		*Nanocassiope*	2					200%
Xanthidae		*Novactae*	1					0%
Xanthidae		*Paralapedia*	2	1				0%
Xanthidae		*Paractae*	2					50%
Xanthidae		*Paraxanthias*	1					100%
Infraorder	Family	Genus	Total species	New Australian species	New WA species	New record for S WA	New species	% new spp
------------	-------------	----------------	---------------	------------------------	----------------	---------------------	-------------	----------
Xanthidae	Paraxanthodes	1	1	0%				
Xanthidae	Platypodia	1	1	0%				
Xanthidae		18	5	1	0	5	28%	
Brachyura		227	47	22	33	70	31%	
Caridea	Alpheidae	Alpheopsis	3	3	100%			
Caridea	Alpheidae	Alpheus	8	4	50%			
Caridea	Alpheidae	Synalpheus	7	0%				
Caridea	Alpheidae	18	0	0	0	7	39%	
Caridea	Anchistioidae	Anchistioides	1	1	0%			
Caridea	Anchistioidae	1	0	0	1	0%		
Caridea	Bathypalaemonellidae	Bathypalaemonella	1	1	0%			
Caridea	Bathypalaemonellidae	1	0	0	1	0%		
Caridea	Bresiliidae	Discias	1	1	0%			
Caridea	Bresiliidae	1	0	1	0	0%		
Caridea	Campylonotidae	Campylonotus	1	0%				
Caridea	Campylonotidae	1	0	0	0	0%		
Caridea	Crangonidae	Aegaeon	1	1	0%			
Caridea	Crangonidae	Metacrangon	1	1	100%			
Caridea	Crangonidae	Parapontocaris	2	2	0%			
Caridea	Crangonidae	Parapontophilus	1	1	0%			
Caridea	Crangonidae	Philocheras	2	1	0%			
Caridea	Crangonidae	Pontocraris	2	1	0%			
Caridea	Crangonidae	Sabinea	1	1	100%			
Caridea	Crangonidae	10	4	2	0	4	40%	
Caridea	Eugonatonotidae	1	1	0%				
Caridea	Eugonatonotidae	1	0	0	1	0%		
Caridea	Glyphocraongiidae	Glyphocraongiida	4	1	1	25%		
Caridea	Glyphocraongiidae	4	1	0	1	25%		
Caridea	Hippolytidae	Eualus	1	1	0%			
Caridea	Hippolytidae	Lebbeus	1	1	100%			
Caridea	Hippolytidae	Lysmata	1	1	0%			
Caridea	Hippolytidae	Merhiphylyte	1	1	0%			
Caridea	Hippolytidae	Tozeuma	1	1	0%			
Caridea	Hippolytidae	5	0	3	1	1	20%	
Caridea	Nematocarcinidae	Nematocarcinidae	4	1	1	25%		
Caridea	Nematocarcinidae	4	0	0	1	1	25%	
Caridea	Ophthalmoridae	Acanthephyra	3	1	0%			
Caridea	Ophthalmoridae	Janicella	1	1	0%			
Caridea	Ophthalmoridae	Ophthalmorhast	2	0	0%			
Caridea	Ophthalmoridae	Systellaspias	1	0	0%			
Caridea	Ophthalmoridae	7	1	0	2	0	0%	
Caridea	Palaemonidae	Periclimenes	1	1	0%			
Caridea	Palaemonidae	Palaemonid	1	1	100%			
Caridea	Palaemonidae	2	1	0	0	1	50%	
Caridea	Pandalidae	Chlorotocella	1	0	0%			
Caridea	Pandalidae	Chlorotocus	1	1	100%			
Caridea	Pandalidae	Heterocarpoides	1	1	0%			
Caridea	Pandalidae	Heterocarpus	5	1	2	1	20%	
Caridea	Pandalidae	Plesionikia	12	2	6	2	17%	
Caridea	Pandalidae	Procletes	1	1	0%			
Caridea	Pandalidae	21	3	3	9	4	19%	
Caridea	Pasiphaeidae	Alainopasiphaea	1	0	0%			
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Infraorder	Family	Genus	Total species	New Australian species	New WA species	New record for S WA	New species	% new spp
Caridea (cont.)	Pasiphaeidae	Eupasiphae	1	1	0	1	100%	
Caridea (cont.)	Pasiphaeidae	Leptochelea	1	1	0	0	0%	
Caridea (cont.)	Pasiphaeidae	Pasiphae	3	1	0	0	0%	
Pasiphaeidae			6	0	2	0	1 17%	
Processidae		Hayashidonus	1	1	0	0	0%	
Processidae		Processa	2	1	1	0	0%	
Processidae			3	2	1	0	0%	
Rhyynchocinetidae		Rhynchocinetes	2	2	0	0	0%	
Rhyynchocinetidae			2	0	2	0	0%	
Thallassocarididae		Thallassocaris	1	1	0	0	0%	
Thallassocarididae			1	1	0	0	0%	
Caridea	all taxa		88	13	14	17	20 23%	
Polychelata	Polycheleidae	Pentacheles	1	0	0	0	0%	
Polychelata	Polycheleidae	Polycheles	4	1	1	0	0%	
Polychelata	Polycheleidae	Polycheles	5	1	1	0	0%	
Polychelata	all taxa		5	1	1	0	0%	
Stenopodidea	Stenopodidae	Engystenopus	1	1	0	0	0%	
Stenopodidea	Stenopodidae	Odontozona	1	1	0	0	0%	
Stenopodidea	Stenopodidae		2	1	0	1	0%	
Stenopodidea	all taxa		2	1	0	1	0%	
Thalassinidea	Axiidae	Acanthaxius	1	1	0	0	9 90%	
Thalassinidea	Axiidae	Axiopsis	2	1	0	0	1 50%	
Thalassinidea	Axiidae	Bouvieraxius	1	1	0	0	1 100%	
Thalassinidea	Axiidae	Calocarides	2	1	0	0	1 100%	
Thalassinidea	Axiidae	Dorphinaxius	1	1	0	0	1 100%	
Thalassinidea	Axiidae	Marianaxius	1	1	0	0	1 100%	
Thalassinidea	Axiidae	Axiid	2	1	0	0	2 100%	
Axiidae			10	1	0	0	9 90%	
Callianassidae	Callianassa		5	5	0	0	1 100%	
Callianassidae	Corallianassa		1	1	0	0	1 100%	
Callianassidae			6	0	0	0	6 100%	
Calocarididae		Ambiarius	1	1	0	0	1 100%	
Calocarididae			1	0	0	0	1 100%	
Gourreitidae		Liphecallianassa	1	1	0	0	1 100%	
Gourreitidae			1	0	0	0	1 100%	
Micheleidae		Michelea	1	1	0	0	1 100%	
Micheleidae		Tethisea	1	1	0	0	1 100%	
Micheleidae			2	0	0	0	2 100%	
Upogebiidae		Upogebia	3	3	0	0	0%	
Upogebiidae			3	0	0	0	0%	
Thalassinidea	all taxa		23	1	0	0	19 83%	
ALL	DECAPODA		524	88	62	69	175 33%	
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Dendrobranchiata – prawns

The Australian fauna is diverse and well studied. Many records are of benthopelagic species. Pérez Farfante & Kensley (1997) provided keys to families and genera but this work is supplemented by family and genus treatments. Forty-four species were recorded. Ten were new records for Australia, 11 range extensions along the WA coast to known Australian species and three probable new species.

Aristeidae

Of five species one is new to Australia and one to WA (Dall, 2001).

Aristeus cf. mabahissae Ramadan, 1938
MoV sp. 5301
Records: 4 specimens, 29°03´S–35°31´S, 1000–1076 m
Distribution: Indo-West Pacific
Reference: figure of *A. mabahissae* from Dall (2001)

Aristeus cf. pallicauda Komai, 1993
MoV sp. 5320
Records: 5 specimens, 21°58´S–22°04´S, 170–387 m
Distribution: Japan; first record for Australia if this species
Reference: figure of *A. pallicauda* from Dall (2001)

Aristeus semidentatus Bate, 1881
MoV sp. 5467
Records: 2 specimens, 31°57´S, 928–1170 m
Distribution: Indo-West Pacific; first record for WA
Reference: Dall (2001) [photo below]

Aristeus virilis (Bate, 1881)
MoV sp. 5465
Records: 8 specimens, 33°02´S–35°16´S, 978–1021 m
Distribution: Indo-West Pacific; first record for S WA
Reference: Dall (2001)

Pseudaristeus sibogae (De Man, 1911)
MoV sp. 5468
Records: 3 specimens, 21°58´S–22°00´S, 726–1010 m
Distribution: Indian Ocean, S Australia
Reference: Dall (2001)

Benthesicymidae

A single well-known species was recorded (Dall, 2001).

Benthesicymus investigatoris Alcock & Anderson, 1899
MoV sp. 5469
Records: 3 specimens, 21°56´S–29°03´S, 1000–1056 m
Distribution: Indo-West Pacific
Reference: Dall (2001)
Penaeidae

Of 16 species identified, only five could be confidently assigned to known Australia species. Six were new records for Australia (if not new species) and two probable new species. Crosnier (1985; 1991) provided key references for the most diverse genera and Grey et al. (1983) to the larger prawns.

Metapenaeopsis crassimana Racek & Dall, , 1965
MoV sp. 5479
Records: 40 specimens, 24°37´S, 100 m
Distribution: N, W and S Australia
Reference: Grey et al. (1983)

Metapenaeopsis aff. difficilis Crosnier, 1991
MoV sp. 5460
Records: 17 specimens, 21°58´S, 107 m
Distribution: Philippines, New Caledonia; new Australian record if correctly identified
Reference: figure of *M. difficilis* from Crosnier (1991)

Metapenaeopsis aff. vaillanti (Nobili, 1904)
MoV sp. 5462
Records: 1 specimen, 24°37´S, 100 m
Distribution: Red Sea; new Australian record if correctly identified
Reference: figure of *M. vaillanti* from Crosnier (1991)

Metapenaeopsis rosea Racek & Dall, 1965
MoV sp. 5480
Records: 28 specimens, 20°59´S–24°37´S, 100–170 m
Distribution: N and E Australia; new record for WA
Reference: Grey et al. (1983)

Metapenaeopsis velutina (Dana, 1852)
MoV sp. 5476
Records: numerous specimens, 22°50´S–27°03´S, 100 m
Distribution: Indo-West Pacific including Australia
Reference: Crosnier (1991) [photo below]

Metapenaeopsis sp. MoV 5458
MoV sp. 5458
Records: 9 specimens, 22°50´S–35°11´S, 100–402 m
Distribution: possible new species close to *M. commensalis*
Reference: Crosnier (1991)

Trachypenaeus (Trachysalambria) curvostris (Stimpson, 1860)
MoV sp. 5309
Records: 3 specimens, 22°04´S–27°48´S, 101–123 m
Distribution: Indo-West Pacific including Australia
Reference: Grey et al. (1983)

Penaeopsis sp. MoV 5466
MoV sp. 5466
Records: 2 specimens, 21°58´S, 356–324 m
Distribution: new species
Reference: Pérez Farfante (1980)

Penaeopsis sp. MoV 5471
MoV sp. 5471
Records: 15 specimens, 21°00´S–21°58´S, 373–408 m
Distribution: new species
Reference: Pérez Farfante (1980)

Penaeus (Melicertus) marginatus Randall, 1840
MoV sp. 4883
Records: 1 specimen, 21°59´S, 166 m
Distribution: Indo-West Pacific; including N Australia
Reference: Grey et al. (1983)
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Sergestidae

Two of the four species could not be identified because the specimens were incomplete. The third is a known Australian species and the fourth a new Australian record. Vereshchaka (2000) was consulted for Sergia.

Sergestes sp. MoV 5453

Records: 1 specimen, 28°57’S, 678–686 m
Distribution: incomplete specimen
Reference: Pérez Farfante and Kensley (1997)

Sergestes sp. MoV 5454

Records: 2 specimens, 28°57’S–35°31’S, 678–1110 m
Distribution: incomplete specimen
Reference: Pérez Farfante and Kensley (1997)

Sergia fulgens (Hansen, 1919)

MoV sp. 5470

Records: 7 specimens, 21°58’S, 373–732 m
Distribution: Indonesia; new Australian record
Reference: Vereshchaka (2000)

Sergia prehensilis (Bate, 1881)

MoV sp. 5311

Records: 1 specimen, 35°04’S, 379 m
Distribution: cosmopolitan
Reference: Vereshchaka (2000)

Sicyonidae

Of four species, two are new Australian records and another a probable new species (Crosnier, 2003).

Sicyonia inflexa (Kubo, 1949)

MoV sp. 5312

Records: 2 specimens, 27°55’S–28°57’S, 252–686 m
Distribution: Indo-West Pacific including N WA
Reference: one of several figures in Crosnier (2003)

Sicyonia japonica Balss, 1914

MoV sp. 5313

Records: 5 specimens, 21°58’S, 107 m
Distribution: Indo-West Pacific; new Australian record
Reference: Crosnier (2003)

Sicyonia vitulans (Kubo, 1949)

MoV sp. 5314

Records: 2 specimens, 24°37’S, 100 m
Distribution: Indo-West Pacific; new Australian record
Reference: Crosnier (2003)

Sicyonia sp. MoV 5455

MoV sp. 5455

Records: 1 specimen, 35°20’S, 213 m
Distribution: new species
Reference: Crosnier (2003)
Solenoceridae

All 14 species were identified using Dall (1999). All had been previously recorded from northern Australia but the southern or western ranges of nine were extended.

Hadropenaeus lucasii (Bate, 1881)
MoV sp. 5315
Records: numerous specimens, 21°00′S–35°10′S, 95–528 m
Distribution: Indo-West Pacific including Australia; first record for S WA
Reference: Dall (1999)

Haliporoides sibogae (De Man, 1907)
MoV sp. 5316
Records: numerous specimens, 21°58′S–27°08′S, 356–408 m
Distribution: Indo-West Pacific including Australia
Reference: Dall (1999) [photo below]

Haliporus taprobanensis Alcock & Anderson, 1899
MoV sp. 5317
Records: 2 specimens, 21°58′S, 690–732 m
Distribution: Indo-West Pacific; first record for S WA
Reference: Dall (1999)

Hymenopenaeus halli Bruce, 1966
MoV sp. 5461
Records: 2 specimens, 21°58′S–22°00′S, 373–1085 m
Distribution: Indo-West Pacific including E Australia; first record for WA
Reference: Dall (1999)

Hymenopenaeus propinquus (De Man, 1907)
MoV sp. 5319
Records: 3 specimens, 21°58′S–22°00′S, 658–754 m
Distribution: Indo-West Pacific including Australia
Reference: Dall (1999)

Solenocera annectens (Wood-Mason, 1891)
MoV sp. 5320
Records: 1 specimen, 21°57S, 690–702 m
Distribution: Philippines, Indonesia, WA; first record for S WA
Reference: Dall (1999)

Solenocera barunajaya Crosnier, 1994
MoV sp. 5463
Records: 14 specimens, 21°58′S–29°52′S, 373–414 m
Distribution: N WA and Arafura Sea; first record for S WA
Reference: Dall (1999) [photo below]
Achelata – lobsters and bugs
These two families have been previously included in the Infraorder Palinura. We use the classification proposed by Ahyong and O’Meally (2004) and followed by Poore (2004).

Palinuridae
The sampling was not designed to catch lobsters but one species was taken. Its identification was confirmed with reference to Holthuis (1991).

Puerulus angulatus (Bate, 1888)
MoV sp. 4972
Records: 6 specimens, 21°58´S–22°50´S, 324–430 m
Distribution: Indo-West Pacific including N Australia; new record for S WA
References: Holthuis (1991); Griffin & Stoddart (1995) [photo below]

Scyllaridae
Two species of commercially-important bugs (*Ibacus* spp.) and two of smaller scyllarids were recorded, all identifiable from Holthuis (1985; 2002) and Poore (2004).

Crenarctus crenatus (Whitelegge, 1900)
MoV sp. 4974
Records: 1 specimen, 35°10´S, 99 m
Distribution: S Australia
Reference: Holthuis (2002) [photo below]

Ibacus alticrenatus Bate, 1888
MoV sp. 3873
Records: many specimens, 21°58´S–35°04´S, 324–490 m
Distribution: S Australia, common
References: Holthuis (1985; 2002) [photos below]

Ibacus peronii Leach, 1815
MoV sp. 1771
Records: 1 specimen, 24°01.43´S, 100 m
Distribution: S Australia
Reference: Poore (2004)

Remiarctus bertholdii (Paulson, 1875)
MoV sp. 4976
Records: 16 specimens, 20°59´S–22°04´S, 100–166 m
Distribution: Indo-West Pacific including N Australia; new record for S WA
Reference: Holthuis (2002) [photo below]
Anomura – Hermit crabs, stone crabs, frog crabs and squat lobsters

Families of this diverse group are listed in three superfamilies, Galatheoidea, Hippoidea and Paguroidea. Species number 127.

Superfamily Galatheoidea

Three families were represented by 56 species. Twenty (36%) are certain or probably new species. Nine are new records for Australia of species previous reported for the Indo-West Pacific and 13 new for WA or more southern records of WA species.

Chirostylidae

Five species were separated using Ahyong and Poore (2004a) and Baba (2005). One is a probable new species.

Uroptychus australis (Henderson, 1885)
MoV sp. 5249
Records: 4 specimens, 22°00´S–35°26´S, 658–988 m
Distribution: New Zealand, Indonesia, E Australia; first record for WA
Reference: Ahyong and Poore (2004a) [photo below]

Uroptychus flindersi Ahyong & Poore, 2004
MoV sp. 5447
Records: 2 specimens, 35°12´S, 431–408 m
Distribution: S Australia
Reference: Ahyong and Poore (2004a) [photo below]

Uroptychus gracilimanus (Henderson, 1885)
MoV sp. 5248
Records: 10 specimens, 33°00´S, 397–421 m
Distribution: Indo-West Pacific including E Australia; first record for WA
Reference: Ahyong and Poore (2004a) [photo below]

Uroptychus hesperius Ahyong & Poore, 2004
MoV sp. 5206
Records: 1 specimen, 35°26´S, 915 m
Distribution: S WA
Reference: Ahyong and Poore (2004a)

Uroptychus sp. MoV 5181
Records: 5 specimens, 27°48´S–29°52´S, 401–431 m
Distribution: new species
Reference: Ahyong and Poore (2004a) [photo below]
Galatheidae

Forty-five species were represented, of which nine are new records for Australia, ten new for Western Australia and two reported more further south than previously known. Eighteen (40%) are probable new species. Baba (1988; 2005) and Ahyong and Poore (2004b) were the most relevant sources. The number of new species could well be higher if the new range extensions of Indo-West Pacific species are discovered to be new species. The genus *Munida* was richest in species (19 species) *Galathea* and *Munidopsis* with seven species each and *Agononida* with six species.

Agononida eminens (Baba, 1988)

MoV sp. 5201
Records: 8 specimens, 21°58´S–22°00´S, 658–754 m ✓
Distribution: West Pacific including E Australia; first record for WA
Reference: Baba (2005) [photo below]

Agononida incerta (Henderson, 1888)

MoV sp. 5260
Records: many specimens, 21°58´S–31°55´S, 324–754 m ✓
Distribution: Indo-West Pacific including N Australia; first record for S WA
Reference: Ahyong and Poore (2004b) [photo below]

Agononida pilosimanus (Baba, 1969)

MoV sp. 5208
Records: 9 specimens, 27°08´S–31°59´S, 414–508 m
Distribution: West Pacific including Qld; first record for WA
Reference: Baba (2005)

Agononida similis (Baba, 1988)

MoV sp. 5205
Records: 2 specimens, 21°58´S, 382 m

Agononida sp. aff. incerta (Henderson, 1888)

MoV sp. 5207
Records: 5 specimens, 21°00´S–22°50.48´S, 399–430 m ✓
Distribution: new species
Reference: Ahyong and Poore (2004b)

Agononida sp. aff. sabatesae (Macpherson, 1994)

MoV sp. 5218
Records: 8 specimens, 31°37´S–31°59´S, 364–508 m
Distribution: new species close to New Caledonian species
Reference: Macpherson (1994)

Allogalathea elegans (Adams & White, 1848)

MoV sp. 5350
Records: 2 specimens, 22°04´S–24°37´S, 100–102 m
Distribution: Indo-West Pacific including Australia
Reference: Poore (2004: 231) [photo below]

Enriquea leviannatana (Baba, 1988)

MoV sp. 5202
Records: 3 specimens, 21°58´S–22°04´S, 373–391 m
Distribution: Indonesia, N and NE Australia; first record for WA
Reference: Baba (1988; 2005) [photo below]

Galathea aff. orientalis Stimpson, 1858

MoV sp. 5182
Records: 10 specimens, 22°50´S–27°03´S, 100–106 m
Distribution: new species; keys to *G. orientalis* but record for WA doubted by Baba
Reference: Haig (1974); Baba (2005)
Galathea amboinensis De Man, 1888
MoV sp. 5258
Records: 4 specimens, 24°01’S–27°48’S, 96–101 m
Distribution: Indonesia, N Qld; first record for WA
Reference: Baba (1988) [photo below]

Galathea balssi Miyake & Baba, 1964
MoV sp. 5273
Records: 3 specimens, 20°59’S–22°37’S, 100–382 m
Distribution: West Pacific including Qld; first record for WA
Reference: Baba (2005)

Galathea consobrina De Man, 1902
MoV sp. 5257
Records: 1 specimen, 34°53’S, 100–95 m
Distribution: Philippines; first record for Australia
Reference: Baba (1988)

Galathea sp. MoV 5179
Records: 19 specimens, 20°59’S, 100 m
Distribution: similar to *G. multilineata* from Japan–Philippines
Reference: Baba (2005)

Galathea sp. MoV 5209
Records: 2 specimens, 24°01’S, 100 m
Distribution: new species
Reference: Baba (2005)

Galathea sp. MoV 5244
Records: 1 specimen, 22°50’S, 100 m
Distribution: new species
Reference: Baba (2005)

Lauriea gardineri (Laurie, 1926)
MoV sp. 5259
Records: 2 specimens, 22°50’S–27°03’S, 100–382 m
Distribution: Indo-West Pacific including WA
Reference: Baba (2005), Osawa and Okuno (2004)

Munida andamanica Alcock, 1894
MoV sp. 5212
Records: 1 specimen, 21°00’S, 399–408 m
Distribution: similar to *G. multilineata* from Japan–Philippines
Reference: Baba (2005)

Munida aprosoma Ahyong & Poore, 2004
MoV sp. 5197
Records: 8 specimens, 29°00’S–31°57’S, 700–1170 m
Distribution: NE Australia; first record for WA
Reference: Ahyong and Poore (2004b) [photo below]

Munida babai Tirmizi & Javed, 1976
MoV sp. 5178
Records: 12 specimens, 20°59’S–21°59’S, 100–177 m
Distribution: South Africa–Malaysia; first record for Australia
Reference: Baba (1988), Tirmizi and Javed (1976)

Munida disgrega Baba, 2005
MoV sp. 5210
Records: 37 specimens, 35°22’S–35°22’S, 408–680 m
Distribution: SE Australia; first record for WA
Reference: Baba (2005)

Munida haswelli Henderson, 1885
MoV sp. 3859
Records: many specimens, 21°59’S–35°11’S, 130–728 m
Distribution: S Australia
Reference: Poore (2004) [photo below]

Munida heteracantha Ortmann, 1892
MoV sp. 5196
Records: 3 specimens, 21°58’S, 177–170 m
Distribution: Indo-West Pacific including Qld; first record for WA
Reference: Baba (1988) as *M. exigua*
Munida roshanei Tirmizi, 1966
MoV sp. 5180
Records: 31 specimens, 20°59’S–27°48’S, 93–123 m
Distribution: Aden–Andaman Sea; first record for Australia
Reference: Baba (1988)

Munida rubridigitalis Baba, 1994
MoV sp. 5211
Records: 9 specimens, 21°00’S–24°33’S, 396–411 m
Distribution: N Qld; first record for WA
Reference: Baba (1994) [photo below]

Munida aff. amathea Macpherson, 1995
MoV sp. 5203
Records: 1 specimen, 27°48’S, 431–416 m
Distribution: probably new species like *M. amathea* from Tuamotu
Reference: Baba (2005)

Munida aff. rubiesi Macpherson, 1991
MoV sp. 5183
Records: 23 specimens, 27°56’S–31°36’S, 329–704 m
Distribution: probably new species like *M. rubiesi* from Gulf of Aden
Reference: Baba (2005) [photo below]

Munida aff. volantis Macpherson, 2004
MoV sp. 5204
Records: 12 specimens, 27°55’S–31°55’S, 180–232 m
Distribution: probably new species like *M. volantis* from Fiji
Reference: Baba (2005) [photo below]

Munida sp. MoV 5176
Records: 3 specimens, 20°59’S, 101–100 m
Distribution: probably new species like *M. janetae* from E Indian Ocean
Reference: Baba (2005)

Munida sp. MoV 5199
Records: 1 specimen, 35°26’S, 912–922 m
Distribution: probably new species like *M. nesiotes* from Seychelles
Reference: Baba (2005) [photo below]

Munida sp. MoV 5200
Records: 1 specimen, 33°00’S, 421–414 m
Distribution: probably new species like *M. semoni* from West Pacific
Reference: Baba (2005) [photo next page]
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Munida sp. MoV 5214
Records: 20 specimens, 22°04´S, 206–201 m
Distribution: new species like *M. babai* from South Africa–Malaysia
Reference: Baba (2005)

Munida sp. MoV 5215
Records: 2 specimens, 21°58´S, 356–324 m
Distribution: new species like *M. shaula* from W Indian Ocean
Reference: Baba (2005)

Munida sp. MoV 5217
Records: 1 specimen, 22°04´S, 399–387 m
Distribution: new species
Reference: Baba (2005)

Munida sp. MoV 5245
MoV sp. 5245
Records: 1 specimen, 27°03´S, 106–106 m
Distribution: new species, incomplete specimen
Reference: Baba (2005)

Munida sp. MoV 5526
Records: 1 specimen, 22°004´S, 658–754 m
Distribution: new species near *M. andamanica*
Reference: Baba (2005)

Munidopsis andamanica MacGilchrist, 1905
MoV sp. 5253
Records: 8 specimens, 21°58´S, 726–732 m
Distribution: West Pacific, Indonesia; first record for Australia
Reference: Baba (2005: 284) [photo below]

Munidopsis crenatirostris Baba, 1988
MoV sp. 5251
Records: 17 specimens, 21°00´S–35°12´S, 396–754 m
Distribution: Philippines; first record for Australia
Reference: Baba (2005) [photo below]

Munidopsis cylindrophthalma (Alcock, 1894)
MoV sp. 5255
Records: 1 specimen, 21°58´S, 726–732 m
Distribution: Indo-West Pacific; first record for Australia
Reference: Baba (2005), Macpherson (2007) for colour photo

Munidopsis dasypus Alcock, 1894
MoV sp. 5252
Records: 4 specimens, 29°03´S, 1000–1037 m
Distribution: Indo-West Pacific including N WA; first record for S WA
Reference: Baba and Poore (2002: 50, WA record) [photo below]

Munidopsis kensleyi Ahyong & Poore, 2004
MoV sp. 5254
Records: 1 specimen, 21°55´S, 1260–1295 m
Distribution: S Australia
Reference: Baba and Poore (2002: as *M. dasypus*), Ahyong & Baba (Ahyong and Poore, 2004c)

Munidopsis levis (Alcock & Anderson, 1894)
MoV sp. 5256
Records: 1 specimen, 21°58´S, 726–732 m
Distribution: Andaman Sea, Philippines; first record for Australia
Reference: Baba (2005)
Munidopsis serricornis (Lovén, 1852)
MoV sp. 2677
Records: 1 specimen, 35°26′S, 900–915 m
Distribution: Indo-West Pacific including S Australia
Reference: Baba (2005), Baba and Poore (2002)

Paramunida stichas Macpherson, 1993
MoV sp. 5213
Records: 11 specimens, 23°59′S–24°33′S, 388–404 m
Distribution: Indonesia, New Caledonia; first record for Australia
Reference: Macpherson (1993)

Phylladiorhynchus pusillus (Henderson, 1885)
MoV sp. 0091
Records: 31 specimens, 23°59′S–35°10′S, 95–439 m
Distribution: Indo-West Pacific including S Australia
Reference: Poore (2004) [photo below]

Porcellanidae
Five species were identified using Haig (1965) and an update (Haig, 1981). Only one was problematic, a species previously recorded from WA but possibly misidentified. Another was reported further south than previously known.

Lissoporcellana aff. quadrilobata (Miers, 1884)
MoV sp. 5226
Records: 12 specimens, 20°59′S, 101–100 m ✔
Distribution: probable new species like *L. quadrilobata*
Reference: Haig (1981)

Pachycheles sculptus (Milne Edwards, 1837)
MoV sp. 5221
Records: 3 specimens, 24°01′S–24°37′S, 101–100 m
Distribution: N WA; first record for S WA
Reference: Haig (1965) [photo below]

Petrolisthes militaris (Heller, 1862)
MoV sp. 5224
Records: 53 specimens, 21°59′S–28°59′S, 100–183 m ✔
Distribution: Indo-West Pacific including SW Australia
Reference: Haig (1965) [photo below]

Petrolisthes scabriculus (Dana, 1852)
MoV sp. 5220
Records: 2 specimens, 27°48.48′S, 96–98 m
Distribution: Indo-West Pacific including SW Australia
Reference: Haig (1965)
Polyonyx biunguiculatus (Dana, 1852)
MoV sp. 5225
Records: 26 specimens, 21°59´S–33°2´S, 95–166 m
Distribution: Indo-West Pacific including WA
Reference: Haig (1965) [photo below]

Porcellanella triloba White, 1851
MoV sp. 5246
Records: 1 specimen, 22°02´S, 106 m
Distribution: WA
Reference: Haig (1974)

Superfamily Hippoidea
A single family can be reported, with two species.

Albuneidae
Two species previously reported from WA were collected and identified using Boyko (2002).

Albunea occulatus Boyko, 2002
MoV sp. 5223
Records: 1 specimen, 25°54´S, 100 m
Distribution: WA
Reference: Boyko (2002: 315) [photo below]

Stemonopa insignis Efford & Haig, 1968
MoV sp. 5222
Records: 4 specimens, 24°01´S–25°54´S, 100 m
Distribution: WA
Reference: Boyko (2002: 224) [photo below]
Superfamily Paguroidea

Hermit crabs are notoriously difficult to identify. Although many species have been described the literature is extremely scattered. McLaughlin (2003) has provided keys to families and genera that enabled access to the recent literature. Five families were represented among the 70 species recognised. It is highly probable that a more experienced taxonomist could identify some of the species to a lower level but the absence of both sexes proved an impediment in the many cases of rare taxa.

Diogenidae

Of 19 species, five were identifiable to species and the rest to genus level. One was a new record for Australia and another for WA. None of the recent literature reviewed by Davie (2002) or Poore (2004) proved useful. If this taxonomy is fair, three-quarters of the species discovered are new species.

Calcinus sp. MoV 5268
Records: 1 specimen, 24°37´S, 100 m
Distribution: probable new species
Reference: Morgan (1991: key) [photos below]

Calcinus sp. MoV 5389
Records: 8 specimens, 24°37´S–34°53´S, 95–100 m
Distribution: keys to C. tropidomanus Lewinsohn, 1981; new species or new Australian record
Reference: Poupin and McLaughlin (1998) [photo below]

Calcinus sp. MoV 5393
Records: 1 specimen, 27°48´S, 98 m
Distribution: probable new species
Reference: Poupin and McLaughlin (1998)

Calcinus sp. MoV 5396
Records: 1 specimen, 22°04´S, 102 m
Distribution: new species
Reference: Poupin and McLaughlin (1998)

Ciliopagurus cf. krempfi (Forest, 1952)
MoV sp. 5275
Records: 2 specimens, 22°50´S–29°48´S, 85–100 m
Distribution: new species or new Australian record; difficult to identify from key
Reference: Forest (1995: key) [photo below]

Dardanus sp. MoV 5262
Records: 2 specimens, 22°37´S–35°21´S, 92–382 m
Distribution: probable new species [photo below]

Dardanus sp. MoV 5264
Records: 1 specimen, 22°04´S, 106–101 m
Distribution: probable new species
Dardanus sp. MoV 5265
Records: 2 specimens, 21°59´S, 166 m
Distribution: probable new species [photos below]

Dardanus sp. MoV 5266
Records: 6 specimens, 25°55´S–33°58´S, 96–123 m
Distribution: probable new species [photo below]

Dardanus sp. MoV 5267
Records: 7 specimens, 21°59´S–24°37´S, 100–166 m
Distribution: probable new species [photos below]

Diogenes sp. MoV 5401
Records: 1 specimen, 24°37´S, 100 m
Distribution: probable new species
Reference: Morgan and Forest (1991)

Paguristes aciculus Grant, 1905
MoV sp. 5279

Paguristes longisetosus Morgan, 1987
MoV sp. 5382
Records: 1 specimen, 22°37.04´S, 355–382 m
Distribution: S WA
Reference: Poore (2004: key) [photos below]

Paguristes purpureantennatus Morgan, 1987
MoV sp. 5331
Records: 2 specimens, 31°37´S–35°10´S, 97–210 m
Distribution: S WA
Reference: Poore (2004: key) [photo below]

Paguristes aciculus Grant, 1905
MoV sp. 5279

Paguristes longisetosus Morgan, 1987
MoV sp. 5382
Records: numerous specimens, 21°58´S–35°22´S, 100–508 m
Distribution: E Australia; new record for WA
Reference: Poore (2004: key) [photo below]
Paguristes sp. MoV 5263
Records: 8 specimens, 21°58´S–22°02´S, 104–144 m
Distribution: new species
References: Poore (2004: key), Rahayu (2006) [photos below]

Paguristes sp. MoV 5277
Records: 30 specimens, 21°00´S–22°04´S, 165–411 m
Distribution: new species
References: Poore (2004: key), Rahayu (2006) [photos below]

Paguristes sp. MoV 5278
Records: 1 specimen, 21°59´S, 166 m
Distribution: new species
References: Poore (2004: key), Rahayu (2006) [photos below]

Strigopagurus elongatus Forest, 1995
MoV sp. 1707
Records: 24 specimens, 31°37´S–35°21´S, 95–210 m
Distribution: S WA
References: Poore (2004: key) [photo below]

Paguristes sp. MoV 5394
Records: 5 specimens, 24°33´S–27°48´S, 112–388 m
Distribution: new species
References: Poore (2004: key), Rahayu (2006) [photo below]
Lithodidae
One individual each of two species previously recorded from Tasmanian seamounts were found (Poore, 2004). Both are new species similar to named species from Japan and Peru (S. Ahyong, pers. comm.).

Lithodes aff. *longispina* Sakai, 1971
MoV sp. 2718
Records: 2 specimens, 31°58´S–35°26´S, 848–1050 m
Distribution: SE Australia; new record for WA (not *L. longispina* from Japan)
Reference: Poore (2004: 268) [photo below]

Paralomis* cf. phrixa* Macpherson, 1992
MoV sp. 2717
Records: 1 specimen, 35°26´S, 900–915 m
Distribution: Tas. Seamounts; new record for genus in Australia
Reference: Poore (2004: 269) [photo below]

Paguridae
Half of all hermit crabs belong in this family. Half of the 33 species taken could not be identified beyond family level because each was represented by few specimens of only one sex. McLaughlin’s (1997) work on Indonesian species includes some of those identified to species level, including a new record for Australia and another for WA. At least three-quarters (24 species) are probable new species. No one genus was especially diverse.

Anapagrides sp. *MoV* 5399
Records: 2 specimens, 22°04´S–31°43´S, 102 m
Distribution: females only; new record for genus in Australia
Reference: McLaughlin (2003: key to genera)

Bathypaguropsis yaldwyni McLaughlin, 1994
MoV sp. 2686
Records: 1 specimen, 31°55´S, 479–484 m
Distribution: New Zealand, Vic., Tas. Seamounts; new record for WA
Reference: McLaughlin (1994) [photo below]

Cestopagurus sp. *MoV* 5269
Records: 1 specimen, 31°55´S, 479–484 m
Distribution: female only; new record for genus in Australia
Reference: McLaughlin (2003: key to genera) [photo below]

Hemipagurus sp. *MoV* 5281
Records: 1 specimen, 22°50´S, 100 m
Distribution: probable new species; new record for genus in Australia
Reference: Asakura (2001) [photos below]

Lophopagurus (Lophopagurus) nanus (Henderson, 1888)

MoV sp. 1591
Records: 4 specimens, 31°43´S–35°20´S, 97–213 m
Distribution: S Australia; first record for WA
Reference: Poore (2004: 274) [photo below]

Nematopagurus sp. MoV 5380
Records: 2 specimens, 22°50’S, 100 m
Distribution: male only; probable new species
Reference: McLaughlin (2004) [photo below]

Lophopagurus (Australeremus) triserratus (Ortmann, 1892)

MoV sp. 5332
Records: 14 specimens, 27°03´S–35°20´S, 97–213 m
Distribution: S Australia; first record for WA
Reference: Poore (2004: 274) [photo below]

Nematopagurus sp. MoV 5383
Records: 2 specimens, 31°55’S–35°22´S, 194–232 m
Distribution: females only; probable new species
Reference: McLaughlin (2004) [photo below]

Michelopagurus sp. *MoV* 5280
Records: 1 specimen, 31°57´S, 928–1170 m
Distribution: first record of genus from Australia
Reference: McLaughlin (1997: 481) [photo upper right]

Nematopagurus sp. MoV 5384
Records: 15 specimens, 21°59´S, 166 m
Distribution: males and females; probable new species
Reference: McLaughlin (2004)
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Porcellanopagurus filholi de Saint Laurent & McLaughlin, 2000
MoV sp. 5398
Records: 1 specimen, 29°52´S, 414–401 m
Distribution: South Africa, New Zealand; first record for Australia
Reference: McLaughlin (2000) [photo below]

Propagurus haigae (McLaughlin, 1997)
MoV sp. 5333
Records: 9 specimens, 27°48´S–35°22´S, 394–428 m
Distribution: E Australia, Indonesia; first record for WA
Reference: McLaughlin and de Saint Laurent (1998) [photo below]

Pylopaguropsis zebra (Henderson, 1893)
MoV sp. 5334
Records: 9 specimens, 21°59´S–24°37´S, 100–166 m
Distribution: Indo-West Pacific including N WA
Reference: McLaughlin and Haig (1989) [photo upper right]

Pylopaguropsis sp. MoV 5276
Records: 1 specimen, 25°54´S, 100–95 m
Distribution: male; new species
Reference: McLaughlin and Haig (1989)

Spiropagurus fimbriatus Lewinsohn, 1982
MoV sp. 5335
Records: 5 specimens, 21°58´S–22°04´S, 101–166 m
Distribution: Red Sea, N Qld; first record for WA
Reference: Lewinsohn (1982) [photo below]

Turleana albatrossae (McLaughlin & Haig, 1996)
MoV sp. 5284
Records: 8 specimens, 20°59´S–27°48´S, 96–106 m
Distribution: new record for Australia
Reference: McLaughlin and Haig (1996) [photo next page]
Turlicana multispina McLaughlin, 1997
MoV sp. 5400
Records: 2 specimens, 23°59´S, 411 m
Distribution: Indonesia; new record for Australia
Reference: McLaughlin (1997)

Pagurid sp. MoV 5261
Records: 6 specimens, 22°51´S–22°50´S, 100–106 m
Distribution: can not be keyed to genus
Reference: McLaughlin (2003) [photo below]

Pagurid sp. MoV 5270
Records: 1 specimen, 29°03´S, 1000–1037 m
Distribution: male, similar to Tomopaguropsis
Reference: McLaughlin (2003) [photo upper right]

Pagurid sp. MoV 5271
Records: 3 specimens, 29°03´S, 1000–1037 m
Distribution: females only; can not be keyed to genus
Reference: McLaughlin (2003) [photo below]

Pagurid sp. MoV 5274
Records: 2 specimens, 35°25´S, 925–913 m
Distribution: females only; like Lophopagurus
Reference: McLaughlin (2003) [photo below]
Pagurid sp. MoV 5283
Records: 2 specimens, 21°56′S–29°03′S, 1000–1037 m
Distribution: males only; can not be keyed to genus
Reference: McLaughlin (2003)

Pagurid sp. MoV 5285
Records: 1 specimen, 35°26′S, 900–915 m
Distribution: males only; can not be keyed to genus
Reference: McLaughlin (2003)

Pagurid sp. MoV 5286
Records: 2 specimens, 21°56′S–29°03′S, 1000–1037 m
Distribution: males only; can not be keyed to genus
Reference: McLaughlin (2003)

Pagurid sp. MoV 5385
Records: 2 specimens, 20°59′S, 100 m
Distribution: males only; can not be keyed to genus
Reference: McLaughlin (2003)

Pagurid sp. MoV 5386
Records: 3 specimens, 21°58′S–28°59′S, 170–183 m
Distribution: males only; can not be keyed to genus
Reference: McLaughlin (2003)

Pagurid sp. MoV 5387
Records: 3 specimens, 31°58′S–31°57′S, 848–1170 m
Distribution: keys to Parapagurodes
Reference: McLaughlin (2003)

Pagurid sp. MoV 5388
Records: 3 specimens, 31°58′S, 848–1050 m
Distribution: females only; can not be keyed to genus
Reference: McLaughlin (2003)

Pagurid sp. MoV 5390
Records: 1 specimen, 22°00′S, 1085–1077 m
Distribution: male only; cannot be keyed to genus
Reference: McLaughlin (2003)

Pagurid sp. MoV 5391
Records: 4 specimens, 21°58′S, 107 m
Distribution: males and females; can not be keyed to genus
Reference: McLaughlin (2003)

Pagurid sp. MoV 5392
Records: 2 specimens, 21°58′S–24°01′S, 100–107 m
Distribution: male and female; can not be keyed to genus
Reference: McLaughlin (2003)

Pagurid sp. MoV 5402
Records: 3 specimens, 21°58′S, 732 m
Distribution: females only; can not be keyed to genus
Reference: McLaughlin (2003)

Parapaguridae
Ten of the 13 species taken were identifiable using the works of Lemaitre (1996; 2004a; 2004b). Four were new records for WA.

Oncopagurus indicus (Alcock, 1905)
MoV sp. 5336
Records: 33 specimens, 21°58′S–35°25′S, 373–1037 m
Distribution: Indo-West Pacific including N Australia; new record for S WA
Reference: Lemaitre (1996) [photo below]

Oncopagurus minutus (Henderson, 1896)
MoV sp. 5337
Records: 6 specimens, 21°58′S–31°58′S, 732–1050 m
Distribution: Indo-West Pacific including E Australia; new record for WA
Reference: Lemaitre (1996)

Oncopagurus monstrosus (Alcock, 1894)
MoV sp. 5338
Records: many specimens, 22°50′S–35°26′S, 329–1050 m
Distribution: Indo-West Pacific including N WA; new record for S WA
Reference: Lemaitre (1996) [photo below]
Paragiopagurus boletifer (de Saint Laurent, 1972)
MoV sp. 5339
Records: 1 specimen, 22°37´S, 355–382 m
Distribution: Indo-West Pacific; new record for Australia
Reference: Lemaitre (1996) [photo below]

Paragiopagurus diogenes (Whitelegge, 1900)
MoV sp. 5340
Records: 36 specimens, 24°01´S–33°58´S, 96–407 m
Distribution: Indo-West Pacific including Australia
Reference: Lemaitre (1996) [photo below]

Paragiopagurus sp. MoV 5272
Records: 25 specimens, 21°00´S–33°00´S, 355–1010 m
Distribution: new species
Reference: Lemaitre (1996) [photo below]

Strobopagurus sp. MoV 5282
Records: 11 specimens, 21°58´S–31°37´S, 364–1037 m
Distribution: new species
Reference: Lemaitre (2004b) [photo next page]
Sympagurus brevipes (de Saint Laurent, 1972)
MoV sp. 5342
Records: 1 specimen, 21°58′S, 726–732 m
Distribution: Indo-West Pacific including N Australia; new record for S WA
Reference: Lemaitre (1996) [photos below]

Sympagurus dimorphus (Studer, 1883)
MoV sp. 5343
Records: 29 specimens, 31°55′S–35°22′S, 423–680 m
Distribution: Southern Ocean including Australia; first record for WA
Reference: Lemaitre (1996) [photo below]

Sympagurus planimanus (de Saint Laurent, 1972)
MoV sp. 5344
Records: 71 specimens, 21°58′S, 726–732 m
Distribution: West Pacific including N WA
Reference: Lemaitre (1996)

Sympagurus villosus Lemaitre, 1996
MoV sp. 5345
Records: 2 specimens, 21°58′S–22°00′S, 324–1010 m
Distribution: eastern Australia; first record for WA
References: Lemaitre (1996), Poore (2004)

Pylochelidae

No pylochelids have been recorded for WA but the only identified species ranges across the Indian and SW Pacific. The second was represented by juveniles. The systematics of the family was reviewed by Forest (1987).

Pylocheles mortensenii Boas, 1926
MoV sp. 5346
Records: 1 specimen, 31°37′S, 364–404 m
Distribution: Indo-West Pacific including Qld, New Zealand; first record for WA
Reference: Forest (1987) [photos below]
Astacidea – scampi

Astacidea are represented in these collections by one family that includes some species of commercial interest.

Nephropidae

Four well-known species in two genera were recorded, all identifiable from Poore (2004) or Macpherson (1990; 1993). One is a new record for southern WA. The papers cited have figures.

Metanephrops boschmai (Holthuis, 1964)
MoV sp. 5067
Records: 17 specimens, 21°58´S–35°13´S, 324–554 m
Distribution: S and W Australia
Reference: Poore (2004: 165) [photos below]

Metanephrops velutinus Chan & Y3u, 1991
MoV sp. 5077
Records: 13 specimens, 22°04´S–35°12´S, 387–508 m
Distribution: West Pacific including Australia
Reference: Poore (2004: 165) [photo below]

Nephrops acanthura Macpherson, 1990
MoV sp. 4968
Records: 2 specimens, 21°55´S, 1260–1295 m
Distribution: Indo-West Pacific including S Australia
Reference: Poore (2004: 166)

Nephrops stewarti Wood-3Mason, 1872
MoV sp. 5068
Records: 1 specimen, 31°58´S, 848–1050 m
Distribution: Indo-West Pacific including N Australia; new record for S WA
Reference: Macpherson (1993) [photos below]
Brachyura – crabs

Thirty-two families were represented by 227 nominal species. The single reference to brachyuran crabs from a broad geographic region of Australia (Poore, 2004) was found to deal with only a small fraction of the species found. Numerous papers, especially recent works describing species from the Western Pacific and Indonesia, were consulted to make species determinations.

One quarter of all species (47 species) were first records for Australia, a further 22 species first records for WA and 31 first records for southern WA. Seventy-one species (31%) are new species. Some of the species noted as new to Australia or to WA should be considered tentative identifications until specimens are compared with types or representatives from type localities.

The family arrangement and sequence is that of Ng et al. (2008). Their list of all known species updates the classification used by Poore (2004). Families are listed in this sequence, genera and species alphabetically within families. The eubrachyuran subsection Thoracotremata was not represented.

Section Podotremata
- Superfamily Cyclodorippoidea
 - Cyclodorippidae
- Superfamily Dromoidea
 - Dromiidae
 - Dynomenidae
- Superfamily Homoloidea
 - Homolidae
 - Latreilliidae
- Superfamily Raninoidea
 - Raninidae

Section Eubrachyura
Subsection Heterotremata
- Superfamily Aethroidea
 - Aethridae
- Superfamily Calappoidea
 - Calappidae

Superfamily Cancroidea
- Atelecyclidae
- Superfamily Carpiloidea
 - Carpillidae
- Superfamily Corystoidea
 - Corystidae
- Superfamily Dorippoidea
 - Dorippidae
 - Ethusidae
- Superfamily Erphioidea
 - Hypothalassidae
- Superfamily Goneplacoidea
 - Chasmacardinidae
 - Euryplacidae
 - Goneplacidae
 - Mathildellidae
- Superfamily Hexapodoidea
 - Hexapodidae
- Superfamily Leucosioida
 - Iphiculidae
 - Leucosiidae
- Superfamily Majoidea
 - Epiuillidae
 - Hymenosomatidae
 - Inachidae
 - Majidae
- Superfamily Palicoidea
 - Palicidae
- Superfamily Parthenopoidea
 - Parthenopidae
- Superfamily Pilumnoidea
 - Pilumnidae
- Superfamily Portunoidea
 - Portunidae
- Superfamily Retroplumoidea
 - Retroplumiidae
- Superfamily Trapezioidea
 - Trapeziidae
- Superfamily Xanthoidea
 - Panopeidae
 - Xanthidae
Section Podotremata

Superfamily Cyclodorippoidea

Cyclodorippidae

Three species were identified using Tavares (1993). All are new for WA.

Krangalangia spinosa (Zarenkov, 1970)
MoV sp. 5024
Records: 5 specimens, 31°58´S, 848–1050 m
Distribution: N Australia; first record for S WA
Reference: Tavares (1993) [photo below]

Tymolus brucei Tavares, 1991
MoV sp. 5484
Records: 13 specimens, 21°00´S–35°04´S, 378–508 m
Distribution: N WA; first record for S WA
Reference: Tavares (1993)

Tymolus similis (Grant, 1905)
MoV sp. 5023
Records: many specimens, 22°04´S–35°22´S, 364–1050 m
Distribution: SE Australia; first record for S WA
Reference: Tavares (1993) [photo below]

Cymonomidae

Of two species, one is a new record for Australia and the other a probable new species. Ahyong and Brown (2003) provided a key to Indo-West Pacific species.

Cymonomus andamanicus Alcock, 1905
MoV sp. 5025
Records: 1 specimen, 29°50´S, 408–427 m
Distribution: Indo-West Pacific; first record for Australia
Reference: Ahyong and Brown (2003)

Cymonomus sp. MoV 5001
Records: 12 specimens, 29°52´S–35°22´S, 401–1050 m
Distribution: new species
Reference: Ahyong and Brown (2003) [photo below]
Superfamily Dromioidea

Dromiidae

Three of the six species could be identified with the aid of McLay (1993). The others were placed in genera (one not previously recorded from Australia) using the same source but are not known species.

Austrodromidia insignis (Rathbun, 1923)

MoV sp. 3856
Records: 3 specimens, 27°48’S–35°16’S, 96–179 m
Distribution: S Australia
Reference: McLay (1993) [photo below]

Dromia wilsoni (Fulton & Grant, 1902)

MoV sp. 3854
Records: 16 specimens, 27°55’S–35°37’S, 95–253 m
Distribution: Indo-West Pacific and S Atlantic including Australia
Reference: McLay (1993) [photos below]

Epigodromia sp. MoV 5473

MoV sp. 5473
Records: 4 specimens, 35°20 ´S, 212–213 m
Distribution: new species
Reference: McLay (1993) [photo upper right]

Fultodromia nodipes (Guérin-Méneville, 1832)

MoV sp. 5029
Records: 3 specimens, 24°37’S–35°10’S, 97–100 m
Distribution: S Australia
Reference: McLay (1993) [photo below]

Fultodromia sp. MoV 5137

Records: 1 specimen, 27°48 ´S, 123–112 m
Distribution: new species
Reference: McLay (1993)

Takedromia sp. MoV 5003

Records: 5 specimens, 22°51´S–24°37’S, 100 m,
Distribution: new species, new record for genus in Australia
Reference: McLay (1993) [photo below]
Dynomenidae
One species was found (McLay, 1999), the first for southern WA.

Hirsutodynomene spinosa (Rathbun, 1911)
MoV sp. 5030
Records: 1 specimen, 27°03′S, 106 m
Distribution: Indo-West Pacific including N Australia; first record for S WA
Reference: McLay (1999) [photo below]

Superfamily Homoloidea

Homolidae
Among the seven species is a new Australian record and a possible new species (Guinot and Richer de Forges, 1995; Tan et al., 2000).

Dagnaudus petterdi (Grant, 1905)
MoV sp. 5038
Records: 9 specimens, 24°33′S–35°21′S, 364–490 m
Distribution: E and S Australia, New Zealand, New Caledonia; new record for WA
Reference: Poore (2004) [photo below]

Homola orientalis Henderson, 1888
MoV sp. 5036
Records: 24 specimens, 21°59′S–31°37′S, 165–404 m
Distribution: Indo-West Pacific including Australia
Reference: Poore (2004) [photo below]

Homologenus braueri Doflein, 1904
MoV sp. 5139
Records: 7 specimens, 21°55′S–31°43′S, 986–1295 m
Distribution: Indo-West Pacific including WA
Reference: Guinot and Richer de Forges (1995) [photo next page]
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Homologenus malayensis Ihle, 1912
MoV sp. 5039
Records: 24 specimens, 29°03´S–31°58´S, 848–1050 m
Distribution: West Pacific; first record for Australia
Reference: Guinot and Richer de Forges (1995) [photo below]

Latreillopsis tetraspina Dai & Chen, 1980
MoV sp. 5035
Records: 1 specimen, 27°48´S, 123–112 m
Distribution: WA
Reference: Guinot and Richer de Forges (1995)

Paramolopsis boasi Wood-Mason, 1891
MoV sp. 5037
Records: 3 specimens, 21°00´S–22°04´S, 399–408 m
Distribution: Indo-West Pacific including Australia
Reference: Guinot and Richer de Forges (1995)

Yaldwynopsis sp. MoV 5004
MoV sp. 5004
Records: 1 specimens, 31°37.27´S, 205–210 m
Distribution: probable new species
Reference: Guinot and Richer de Forges (1995) [photo below]

Latreilliidae
Two species were identified confidently using Castro et al. (2003). One was recorded from Australia for the first time.

Eplumula australiensis (Henderson, 1888)
MoV sp. 5040
Records: 11 specimens, 25°54´S–31°43´S, 100–253 m
Distribution: Australia, New Zealand, New Caledonia
Reference: Williams (1982), Poore (2004) [photo below]

Latreillia pennifera Alcock, 1900
MoV sp. 5041
Records: 25 specimens, 20°59´S–22°04´S, 100–408 m
Distribution: Indo-West Pacific; first record for Australia
Reference: Castro et al. (2003) [photo below]
Superfamily Raninoidea

Raninidae

Of five species, four were well-known Australia species (Goeke, 1985; Dawson and Yaldwyn, 2000). The fifth was a species known previously from Japan-Philippines and now recorded from WA.

Cosmonotus grayi Adams & White, 1848
MoV sp. 5293
Records: 2 specimens, 20°59´S–27°48´S, 100–123 m
Distribution: Indo-West Pacific including NW Australia; first record for S WA
Reference: Sakai (1976: pl. 20, fig. 3) [photo below]

Lyreidus stenops Wood Mason, 1887
MoV sp. 5140
Records: 4 specimens, 21°58.41´S–22°4.28´S, 101–177 m
Distribution: West Pacific; new record for Australia
Reference: Goeke (1985) [photo right]

Lyreidus tridentatus De Haan, 1841
MoV sp. 5295
Records: 17 specimens, 21°00´S–31°55´S, 201–414 m
Distribution: Indo-West Pacific including Australia
Reference: Poore (2004) [photo below]

Notosceles serratifrons (Henderson, 1893)
MoV sp. 5294
Records: 21 specimens, 21°58´S–27°48´S, 106–166 m
Distribution: Indian Ocean including WA
Reference: Poore (2004) [photo next page]
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Umalia trirufomaculata (Davie & Short, 1989)
MoV sp. 5296
Records: 12 specimens, 24°01´S–31°43´S, 100–123 m
Distribution: N Australia; new record for S WA
Reference: Poore (2004) [photo below]

Drachiella sculpta (Haswell, 1879)
MoV sp. 5060
Records: 4 specimens, 20°59´S–21°59´S, 100–166 m
Distribution: N Australia; new record for S WA, here to greater depths than previously
Reference: Griffin (1972) [photo below]

Section Eubrachyura

Subsection Heterotremata

Superfamily Aethroidea

Aethridae

Two species previously treated as members of Leucosiidae (Davie, 2002) were identified with reference to Alcock (1895), Miers (1876) and Griffin (1972). Both were found further south than hitherto known.

Actaeomorpha erosa Miers, 1877
MoV sp. 5061
Records: 1 specimen, 27°48´S, 98 m
Distribution: Indo-West Pacific including Qld and N WA; new record for S WA
Reference: Miers (1876), Alcock (1895) [photo below]
Superfamily Calappoidea

Calappidae

Six species in two genera were found and identified using two papers by Galil (1993; 1997). One species could not be identified and another appeared a new Australian record. Three species are new for WA.

Calappa depressa Miers, 1886

MoV sp. 5016

Records: 7 specimens, 22°50´S–29°48´S, 95–114 m

Distribution: Indo-West Pacific including Australia

Reference: Galil (1997) [photos below]

Calappa lophos (Herbst, 1785)

MoV sp. 5017

Records: 3 specimens, 20°59´S–22°04´S, 100–107 m

Distribution: Indo-West Pacific including Australia

Reference: Galil (1997) [photos below]

Calappa pustulosa Alcock, 1896

MoV sp. 5018

Records: 7 specimens, 20°59´S–22°04´S, 100–177 m

Distribution: West Pacific; new record for Australia

Reference: Galil (1997) [photos below]

Mursia microspina Davie & Short, 1989

MoV sp. 5019

Records: 3 specimens, 24°37´S–25°55´S, 100–120 m

Distribution: West Pacific including NE Australia; new record for WA

Reference: Galil (1993) [photos below]

Mursia sp. MoV 4988

Records: 6 specimens, 21°00´S–33°00´S, 387–428 m

Distribution: new species similar to *M. musorstomi* Galil, 1993

Reference: Galil (1993) [photos below]

Mursia australiensis Campbell, 1971

MoV sp. 5020

Records: 1 specimens, 31°36´S, 329–370 m

Distribution: E Australia; new record for WA

Reference: Galil (1993) [photos upper right]
Superfamily Cancroidea

Atelecyclidae
Two species, both apparently undescribed were recorded. They could not be identified using Salva and Feldmann (2001).

Trichopeltarion sp. MoV 5135
Records: 40 specimens, 27°48´S–35°13´S, 364–494 m
Distribution: new species different from those recorded from Tas. Seamounts
Reference: Poore et al. (1998) [photo below]

Trichopeltarion sp. MoV 5138
Mov sp. 5138
Records: 3 specimens, 28°59´S–35°04´S, 378–407 m
Distribution: new species similar to *T. wardi* Dell, 1968
Reference: Dell (1968) [photo below]
Superfamily Corystoidea

Corystidae

One of the two species (if correctly identified) is a new Australian record for a species previously described from Taiwan (Ng et al., 2000).

Gomeza bicornis Gray, 1831
MoV sp. 5022
Records: 1 specimen, 25°54′S, 100 m
Distribution: Indo-West Pacific including S Australia
Reference: Hale (Hale, 1927)

Jonas cf. choprai Serène, 1971
MoV sp. 5021
Records: 3 specimens, 25°55′S–27°48′S, 123–112 m
Distribution: possible new species similar to *J. choprai* from Taiwan
Reference: Ng et al. (2000) [photo below]

Superfamily Dorippoidea

Dorippidae

All three species were identified to genus using Manning and Holthuis (1981).

Dorippe quadridens (Fabricius, 1793)
MoV sp. 5026
Records: 1 specimen, 22°04′S, 102 m
Distribution: Indo-West Pacific including Australia
Reference: Holthuis and Manning (1990)

Neodorippe callida Fabricius, 1798
MoV sp. 5027
Records: 1 specimen, 25°54′S, 100 m
Distribution: Indo-West Pacific; new record for Australia (also known from Qld)
Reference: Holthuis and Manning (1990)

Paradorippe australiensis (Miers, 1884)
MoV sp. 5028
Records: 3 specimens, 24°37′S–25°54′S, 100–120 m
Distribution: N Australia and W Papua; first record for S WA
Reference: Holthuis and Manning (1990),
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Ethusidae

Four species were found but only one was tentatively identified using the keys and illustrations of Chen (1993). All are probable new species. The species of the family were previous treated as members of Dorippidae.

Ethusa cf. *granulosa* Ihle, 1916
MoV sp. 5006
Records: 2 specimens, 27°48’S–27°48’S, 112–436 m
Distribution: new species
Reference: Chen (1993: key)

Ethusa sp. MoV 5007
Records: 7 specimens, 21°56’S–31°43’S, (102) 848–1050 m
Distribution: new species
Reference: Chen (1993: key)

Ethusa sp. MoV 5008
Records: 1 specimen, 21°58’S, 726–732 m
Distribution: new species
Reference: Chen (1993: key)

Ethusina sp. MoV 5005
Records: 1 specimen, 31°58’S, 848–1050 m
Distribution: new species
Reference: Chen (1993: key) [photo below]

Superfamily Eriphioidea

Hypothalassiidae

The only records are probable juveniles of a large commercially exploited species (Koh and Ng, 2000). The genus was placed in Eriphiidae by Poore (2004) and other authors.

Hypothalassia acerba Koh & Ng, 2000
MoV sp. 5114
Records: 2 specimens, 31°37’S–35°22’S, 195–210 m
Distribution: S Australia
Reference: Koh and Ng (2000) [photo below]
Superfamily Goneplacoidea

Chasmocarcinidae
Two species of Camatopsis and one of Megaesthius were identified using Tesch (1918) and included in this family (rather than Goneplacidae) on the basis of arguments in Ng (1987).

Camatopsis rubida Alcock & Anderson, 1899
MoV sp. 5084
Records: 8 specimens, 21°58´S–22°04´S, 101–399 m
Distribution: Indo-West Pacific; new record for Australia
Reference: Sakai (1976)

Camatopsis sp. MoV 5086
Records: 1 specimen, 21°58´S, 373–382 m
Distribution: new species
References: Sakai (1976), Tesch (1918)

Megaesthesius sagaedae Rathbun, 1909
MoV sp. 5092
Records: 1 specimen, 22°04´S, 106–101 m
Distribution: Singapore; first record for Australia
Reference: Tesch (1918)

Euryplacidae
Both species are probable new species of Heteroplax. The genus has previously been included in Goneplacidae but we follow Ng et al. (2008) in placing them in Euryplacidae.

Heteroplax sp. MoV 4993
Records: 12 specimens, 22°04´S–27°55´S, 206–253 m
Distribution: new species
References: Sakai (1976), Tesch (1918)

Heteroplax sp. MoV 4994
Records: many specimens, 21°59´S–22°02´S, 105–206 m
Distribution: new species
References: Sakai (1976), Tesch (1918) [photo below]
Goneplacidae

The systematics of Goneplacidae and related families are difficult. Some species initially placed in this family were reassigned to other families (Chasmocarcinidae, Euryplacidae and Mathildellidae) on the basis of the arguments in Ng and Manuel-Santos (2007) and Ng (1987). Castro (2007) provided a key to genera of Goneplacinae, a subfamily used as a family here, but not all species could be identified confidently to genus or species.

Carcinoplax sp. MoV 4996
Records: 1 specimen, 21°59′S, 166 m
Distribution: new species
Reference: Guinot (1989)

Carcinoplax sp. MoV 4998
Records: 6 specimens, 27°48′–35°22′S, 416–695 m
Distribution: new species
Reference: Guinot (1989)

Notonyx nitidus Milne Edwards, 1873
MoV sp. 5088
Records: 2 specimens, 22°51′–22°02′S, 100–105 m
Distribution: West Pacific; first record for Australia
Reference: Clark and Ng (2006) [photo below]

Psopheticus stridulans Wood-Mason, 1892
MoV sp. 5032
Records: 23 specimens, 21°58′S–33°00′S, 373–423 m, ✓
Distribution: Indo-West Pacific; first record for Australia
Reference: Sakai (1976) [photo below]

Pycnoplax hispinosa (Rathbun, 1914)
MoV sp. 4991
Records: 18 specimens, 21°58′–22°04′S, 170–206 m ✓
Distribution: first record for Australia
References: Guinot (1989), Castro (2007)

Pycnoplax meridionalis (Rathbun, 1923)
MoV sp. 3862
Records: 7 specimens, 31°37′S–35°23′S, 147–776 m
Distribution: S Australia
References: Poore (2004) as *Carcinoplax meridionalis*, Castro (2007) [photo below]

Pycnoplax victoriensis (Rathbun, 1923)
MoV sp. 5031
Records: 3 specimens, 28°59′–35°21′S, 389–704 m
Distribution: SE Australia; first record for S WA
Reference: Poore (2004) as *Carcinoplax victoriensis*, Castro (2007)

Pycnoplax cf. surugensis (Rathbun, 1932)
MoV sp. 4992
Records: 14 specimens, 21°55′S–31°57′S, 848–1295 m
Distribution: probable new species close to Japanese species
Reference: Guinot (1989), Castro (2007) [photo below]

Pycnoplax sp. MoV 5124
Records: 1 specimen, 21°59′S, 166 m
Distribution: new species
Reference: Guinot (1989)
Mathildellidae

Two species previously considered members of Goneplacidae were found. Family placement follows Ng et al. (2008).

[Mathildella serrata (Sakai, 1974)]
MoV sp. 5112
Records: 13 specimens, 27°55´S–35°22´S, 205–915 m
Distribution: West Pacific; new record for Australia, also known from SE Australia
Reference: Ng and Chan (2000) [photo below]

[Platypilumnus soelae Garth, 1987]
MoV sp. 5033
Records: 2 specimens, 21°58´S, 356–324 m
Distribution: N WA; first record for S WA
Reference: drawing from Garth (1987)

[Mathildellid sp. MoV 4997]
Records: 1 specimen, 31°58´S, 848–1050 m
Distribution: juvenile of new species difficult to place in genus; may belong in Goneplacidae
Reference: Tesch (1918) [photo below]

Superfamily Hexapodidae

Hexapodidae

The only species has been recorded before only from Japan to Indonesia (Manning and Holthuis, 1981).

[Hexaplax megalops Dolfin, 1904]
MoV sp. 5034
Records: 11 specimens, 21°00´S–22°04´S, 387–408 m
Distribution: West Pacific; new record for Australia
References: Manning and Holthuis (1981: key), Sakai (1976) [photo below]
Superfamily Leucosioidea

Iphiculidae
The single species was previously treated as a member of Leucosiidae. It is a new record for Australia.

Iphiculus spongiosus Adams & White, 1848
MoV sp. 5113
Records: 10 specimens, 20°59′S–22°04′S, 100–107 m
Distribution: Indo-West Pacific; new record for Australia
Reference: Chen (1989)

Leucosiidae

Numerous species are known from Australia but not all in these samples could be identified to species. The Western Australian fauna was reviewed by Tyndale-Biscoe and George (1962). Tentative identifications were made using names of species described from more northern parts of the West Pacific.

The family was represented by 30 species (many in just one sample) in ten genera. For some genera the literature is scattered but Alcock (1895) and Sakai (1976) are useful to identify genera. Chen (1989), Tan and Ng (1996) and Tan (1996) included similar or the same species. Thirteen species are new (42%) and four are new records for Australia.

Arcania cornuta (MacGilchrist, 1905)
MoV sp. 5045
Records: 4 specimens, 21°58′S–25°55′S, 120–177 m
Distribution: Indo-West Pacific including Qld; new record for WA
References: Chen (1989), Galil (2001a) [photo below]

Arcania elongata Yokoya, 1933
MoV sp. 5042
Records: 3 specimens, 21°59′S–30°59′S, 100–166 m
Distribution: Japan, Qld. NSW; first record for WA
Reference: Galil (2001a) [photo below]

Arcania gracilis (Henderson, 1893)
MoV sp. 5047
Records: 4 specimens, 20°59′S–21°59′S, 100–166 m
Distribution: Indo-West Pacific including WA; first record for S WA
Reference: Galil (2001a)
Arcania muricata Galil, 2001
MoV sp. 5046

Records: 4 specimens, 20°59'S–21°08'S, 100–177 m
Distribution: Indo-West Pacific including NT; first record for S WA
Reference: Galil (2001a) [photo below]

Arcania novemspinosa (Adams & White, 1849)
MoV sp. 5043

Records: 1 specimen, 25°55'S, 120 m
Distribution: Indo-West Pacific including WA
Reference: Galil (2001a) [photo below]

Arcania septemspinosa (Fabricius, 1787)
MoV sp. 5044

Records: 7 specimens, 20°59'S–22°04'S, 100–177 m ✓
Distribution: Indo-West Pacific including NT, Qld; new record for WA
Reference: Galil (2001a) [photo below]

Arcania sp. MoV 4980

Records: 3 specimens, 27°48'S–29°48'S, 96–114 m
Distribution: new species like A. sagmiiensis from Japan
Reference: Galil (2001a) [photo below]

Arcania sp. MoV 4987

Records: 2 specimens, 22°50'S–24°37'S, 100 m
Distribution: new species like A. septemspinosa
Reference: Galil (2001a) [photo below]

Ebalia tuberculosa (Milne Edwards, 1873)
MoV sp. 0710

Records: many specimens, 21°59'S–35°22'S, 212–539 m ✓
Distribution: Indo-West Pacific including Australia
Reference: Poore (2004) [photo next page]
Ebalia sp. MoV 4981
Records: 6 specimens, 22°50´S–24°01 ´S, 100 m
Distribution: new species like *E. dimorphoides*
Reference: Chen (1989) [photo below]

Ebalia sp. MoV 4989
Records: 3 specimens, 20°59´S–21°58´S, 100–107 m
Distribution: new species
Reference: Chen (1989) [photo below]

Leucosia haematosticta Adams & White, 1849
MoV sp. 5053
Records: 1 specimen, 25°54´S, 100 m
Distribution: Indo-West Pacific including Australia; new record for S WA
Reference: Poore (2004) [photo below]

Leucosia ocellata Bell, 1855
MoV sp. 5064
Records: 1 specimen, 21°58´S, 177–170 m
Distribution: N Australia; new record for S WA
Reference: Campbell and Stephenson (1970) [photo below]

Ebalia sp. MoV 4990
Records: 1 specimen, 28°59´S, 180–183 m
Distribution: new species
Leucosia whitei Bell, 1855
MoV sp. 5052
Records: 1 specimen, 20°59’S, 100 m
Distribution: Indo-West Pacific including Australia
Reference: Arnold and George (1987) [photo below]

Leucosia sp. MoV 4985
Records: 1 specimen, 22°04’S, 102 m
Distribution: new species like *L. foresti*
Reference: Chen (1989) [photo below]

Merocryptus lambriformis Milne Edwards, 1873
MoV sp. 3864
Records: 6 specimens, 35°20’S–35°22’S, 161–213 m
Distribution: West Pacific including Australia
Reference: Poore (2004) [photo below]

Myra curtimana Galil, 2001
MoV sp. 5050
Records: 15 specimens, 21°57’S–35°25’S, 100–1031 m
Distribution: West Pacific including WA
Reference: Galil (2001b) [photo below]

Myra sp. MoV 4982
Records: 1 specimen, 27°48’S, 123–112 m
Distribution: new species
Reference: Galil (2001b) [photo below]

Myra sp. MoV 4983
Records: 3 specimens, 20°59’S, 100 m
Distribution: new species
Reference: Galil (2001b) [photo below]
M. kessleri (Paulson, 1875)
MoV sp. 5051
Records: 2 specimens, 20°59’S–21°57’S, 100–114 m
Distribution: Indo-West Pacific including N Australia; first record for S WA
Reference: Galil (2001b) [photo below]

Oreophorus reticulatus Adams & White, 1849
MoV sp. 5062
Records: 2 specimens, 20°59’S–27°48’S, 100–123 m
Distribution: Indo-West Pacific; new record for Australia
Reference: Tan and Ng (1996) [photo below]

Parilia major Sakai, 1961
MoV sp. 5055
Records: 1 specimen, 22°04’S, 396–391 m
Distribution: Japan; new record for Australia (doubtful identification)
Reference: Sakai (1976) [photo below]

Philyra sp. MoV 4984
Records: 1 specimen, 24°01’S, 100 m
Distribution: new species
Reference: Poore (2004) [photo below]

Randallia eburnea Alcock, 1896
MoV sp. 5048
Records: 16 specimens, 21°59’S–35°21’S, 100–404 m
Distribution: Indo-West Pacific including Australia
Reference: Chen (1989) [photo below]

Randallia pustuloides Sakai, 1961
MoV sp. 5049
Records: 2 specimens, 21°58’S, 373–382 m
Distribution: Japan, Philippines; new record for Australia
Reference: Chen (1989) [photo below]

Randallia sp. MoV 4977
Records: 1 specimen, 22°37’S, 355–382 m
Distribution: new species
Reference: Chen (1989) [photo next page]
Superfamily Majoidea

Epialtidae

The family name Epialtidae is used to include what were previously treated as subfamilies Epialtinae and Pisinae of Majidae. We follow the arrangement of Ng et al. (2008). Taxonomy follows Griffin and Tranter (1986) who reviewed the fauna and provided keys to Majidae in the broadest sense. Reference to older and more recent papers was required for some genera (Griffin, 1970, 1973; Guinot and Richer de Forges, 1982, 1985). The 14 species include several new records, one from Australia, and three new species under study by B. Richer de Forges.

Austrolibinia gracilipes (Miers, 1879)

MoV sp. 5162

Records: 4 specimens, 20°59’S, 100 m

Distribution: Indonesia, PNG, N Australia; first record for S WA

Reference: Miers (1879: pl. 4, fig. 4) [photo below]

Randallia sp. MoV 4978

Records: 40 specimens, 20°59’S–27°48’S, 100–166 m

Distribution: new species

Reference: Chen (1989) [photo below]

Randallia sp. MoV 4979

Records: 1 specimen, 21°58’S, 107 m

Distribution: new species

Reference: Chen (1989)

Randallia sp. MoV 4986

Records: 1 specimen, 21°59’S, 166 m

Distribution: new species similar to *R. speciosa*

Reference: Chen (1989)

Griffinia lappacea (Rathbun, 1918)

MoV sp. 5173

Records: 1 specimen, 34°00’S, 467–490 m

Distribution: Australia

Reference: Griffin and Tranter (1986) [photo below]
Decapod Crustacea of the continental margin of southwestern and central Australia

Hyastenus convexus Miers, 1884
MoV sp. 5169
Records: 24 specimens, 20°59′S–28°58′S, 95–120 m
Distribution: Indo-West Pacific, N Australia; first record for S WA
Reference: Griffin and Tranter (1986) [photo below]

Lahaina agassizii (Rathbun, 1902)
MoV sp. 5172
Records: 18 specimens, 22°50′S–33°58′S, 96–100 m
Distribution: Indo-West Pacific including Australia
Reference: Griffin and Tranter (1986) [photo below]

Naxioides robillardi (Miers, 1882)
MoV sp. 5174
Records: 1 specimen, 21°58′S, 177–170 m
Distribution: Indo-West Pacific including E Australia; first record for WA
Reference: Poore (2004) [photo below]

Naxioides taurus (Pocock, 1890)
MoV sp. 5165
Records: 1 specimen, 21°01′S, 93 m
Distribution: Indo-West Pacific including N Australia; first record for S WA
Reference: Griffin and Tranter (1986) [photo upper right]

Naxioides tenuirostris (Haswell, 1880)
MoV sp. 5164
Records: 1 specimen, 27°55′S, 253 m
Distribution: Indo-West Pacific including N Australia; first record for WA
Reference: Griffin and Tranter (1986) [photo below]

Phalangipus filiformis Rathbun, 1916
MoV sp. 5160
Records: 2 specimens, 20°59′S–22°4′S, 100 m
Distribution: Indo-West Pacific including N Australia; first record for S WA
Reference: Griffin (1973) [photo below]
Phalangipus hystrix (Miers, 1884)
MoV sp. 5161
Records: 27 specimens, 21°58′S–27°48′S, 100–166 m
Distribution: Indo-West Pacific including WA
Reference: Griffin (1973) [photos below]

Rochinia fultoni (Grant, 1905)
MoV sp. 3895
Records: 1 specimen, 27°55′S, 253 m
Distribution: SE Australia; first record for WA
Reference: Poore (2004) [photo below]

Rochinia aff. luzonica (Rathbun, 1916)
MoV sp. 5168
Records: 5 specimens, 29°00′S–31°37′S, 329–439 m
Distribution: new species
Reference: Griffin (1976) [photo below]

Rochinia strangeri Serène & Lohavanijaya, 1973
MoV sp. 5538
Records: 1 specimen, 29°3.39′S, 1000–1037 m
Distribution: S China Sea; first record for Australia
Reference: Serène and Lohavanijaya (1973) (det. B. Richer de Forges)

Rochinia sp. MoV 5119
Records: numerous specimens, 29°52′S–35°04′S, 329–414 m
Distribution: new species
Reference: Griffin and Tranter (1986)

Rochinia sp. MoV 5136
Records: 3 specimens, 21°58′S–23°59′S, 324–411 m
Distribution: new species close to “*Sphenocarcinus carbunculus*” Rathbun, 1906” from Hawaii
Reference: Rathbun (1906)

Epialtid sp. MoV 5134
Records: 1 specimen, 33°58′S, 96 m
Distribution: new species, genus uncertain, possibly *Thycanophrys*
Reference: Griffin and Tranter (1986) [photo below]
Decapod Crustacea of the continental margin of southwestern and central Australia

Hymenosomatidae

One of the two species could not be identified beyond genus from Lucas (1980) or Ng and Chuang (1996).

Halicarcinus sp. MoV 5002
Records: 3 specimens, 28°58’ S–35°10’ S, 86–107 m
Distribution: new species
References: Lucas (1980), Ng and Chuang (1996) [photo below]

Trigonoplax longirostris McCulloch, 1908
MoV sp. 1678
Records: 1 specimen, 31°43’ S, 102 m
Distribution: Australia; recorded at depth
Reference: Lucas (1980) [photo below]

Inachidae

The Inachidae were treated as a subfamily of Majidae in earlier literature but are elevated to family rank in this report as advocated by Ng et al. (2008). Taxonomy follows Griffin and Tranter (1986) who reviewed the fauna and provided keys to Majidae in the broadest sense. Inachidae include 20 species of which two are new and three are new Australian records. Reference to older and more recent papers was required for some genera (Griffin, 1970, 1973).

Achaeus brevirostris (Haswell, 1879)
MoV sp. 5347
Records: 3 specimens, 21°58’ S–27°48’ S, 100–123 m
Distribution: Indo-West Pacific including Australia
Reference: Griffin and Tranter (1986) [photo below]

Achaeus curvirostris (Milne Edwards, 1873)
MoV sp. 3851
Records: 4 specimens, 27°48’ S–33°02’ S, 95–123 m
Distribution: Indo-West Pacific including Australia
Reference: Griffin and Tranter (1986) [photo below]

Achaeus lacertosus Stimpson, 1857
MoV sp. 5150
Records: 4 specimens, 21°58’ S–27°48’ S, 100–123 m
Distribution: Indo-West Pacific including Australia; new record for S WA
Reference: Griffin and Tranter (1986)

Achaeus sp. MoV 5122
Records: 2 specimens, 22°50’ S–27°48’ S, 123–100 m
Distribution: new species
Reference: Griffin and Tranter (1986)
Achaeus sp. MoV 5123
Records: 3 specimens, 27°48.29´S, 123–112 m
Distribution: recorded as undescribed species by Griffin
Reference: Griffin (1970)

Camposcia retusa Latreille, 1829
MoV sp. 5151
Records: 1 specimen, 31°43.28´S, 102 m
Distribution: Indo-West Pacific including Australia; new record for S WA
Reference: Griffin and Tranter (1986) [photo below]

Cyrtomaia maccullochi Rathbun, 1918
MoV sp. 5146
Records: 34 specimens, 27°08´S–35°12´S, 378–728 m
Distribution: Indo-West Pacific including Australia
Reference: Griffin and Tranter (1986) [photo below]

Cyrtomaia murrayi Miers, 1886
MoV sp. 5147
Records: 3 specimens, 27°55´S–31°37´S, 252–404 m
Distribution: Indo-West Pacific including Australia
Reference: Griffin and Tranter (1986) [photo upper right]

Dorhynchus ramusculus (Baker, 1906)
MoV sp. 5159
Records: 10 specimens, 29°52.04´S–35°21.53´S, 212–490 m
Distribution: New Zealand, S Australia
References: Poore (2004) [photo below]

Dumea latipes (Haswell, 1880)
MoV sp. 1338
Records: 3 specimens, 31°43´S, 102 m
Distribution: S Australia
References: Poore (2004)

Ephippias endeavouri Rathbun, 1918
MoV sp. 5158
Records: 4 specimens, 31°43´S–35°22´S, 102–196 m
Distribution: SE and SW Australia
References: Poore (2004) [photo below]
Decapod Crustacea of the continental margin of southwestern and central Australia

Grypachaeus hyalinus Alcock & Anderson, 1894
MoV sp. 5148
Records: 2 specimens, 20°59.05´S–24°01´S, 100 m
Distribution: Indian Ocean, new Australian record
References: Griffin and Tranter (1986) [photo below]

Oncinopus aranea De Haan, 1839
MoV sp. 5154
Records: 1 specimen, 27°08´S, 414–405 m
Distribution: W Pacific, including Australia
References: Poore (2004) [photo below]

Oncinopus cf. angustifrons Takeda & Miyake, 1969
MoV sp. 5120
Records: 3 specimens, 24°01´S–31°43´S, 100–183 m
Distribution: Japan, Phillipines, new Australian record if correctly identified
References: Griffin and Tranter (1986) [photo below]

Physacaeus ctenurus Alcock, 1895
MoV sp. 5149
Records: 56 specimens, 29°52´S–35°21´S, 364–528 m
Distribution: Andaman Sea, new Australian record
References: Griffin and Tranter (1986) [photos below]

Platymaia wyvillethomsoni Miers, 1886
MoV sp. 5157
Records: 24 specimens, 23°59´S–35°12´S, 364–431m
Distribution: West Pacific, Australia
References: Guinot and Richer de Forges (1985) [photo below]
Platymaia fimbriata Rathbun, 1916
MoV sp. 5156
Records: 1 specimen, 21°58´S, 726–732 m
Distribution: West Pacific, Australia
References: Guinot and Richer de Forges (1985)

Sunipea indicus (Alcock, 1895)
MoV sp. 5171
Records: 14 specimens, 22°51´S–29°48´S, 85–123 m
Distribution: Andaman Sea, new Australian record
References: Griffin and Tranter (1986)

Entomonyx depressus Sakai, 1974
MoV sp. 5167
Records: 5 specimens, 22°50´S, 100 m
Distribution: Japan; new record for Australia
Reference: Griffin and Tranter (1986)

Entomonyx spinosus Miers, 1884
MoV sp. 5166
Records: 13 specimens, 22°50´S–35°21´S, 100–179 m
Distribution: Indo-West Pacific including N WA; first record for S WA
Reference: Griffin and Tranter (1986)

Majidae

The family name Majidae is used in this report in the narrow sense advocated by Ng et al. (2008). The subfamilies used by, for example Davie (2002), are treated as families: Epialtinae and Pisininae together as Epialtidae; Planoterginae and Majinae as Majidae; and Inachinae as Inachidae. Taxonomy follows Griffin and Tranter (1986) who reviewed the fauna and provided keys to Majidae in the broadest sense. Forty-eight species of majids in the broadest sense were recognised of which 14 belong to Majidae s. s. Five species are new records of Indo-West Pacific species in Australia and four are new species.
Leptomithrax globifer Rathbun, 1918
MoV sp. 5144
Records: 17 specimens, 35°37’S–35°22’S, 99–196 m
Distribution: S Australia; first positive record for S WA
Reference: Poore (2004) [photo below]

Leptomithrax sternocostulatus (Milne Edwards, 1851)
MoV sp. 0703
Records: 5 specimens, 28°58’S–35°37’S, 86–106 m
Distribution: S Australia
Reference: Poore (2004) [photo below]

Leptomithrax sp. MoV 5133
Records: 1 specimen, 27°48’S, 123–112 m
Distribution: new species
Reference: Griffin and Tranter (1986) [photo upper right]

Maja confragosa Griffin & Tranter, 1986
MoV sp. 5152
Records: 1 specimen, 22°37’S, 355–382 m
Distribution: Indonesia; new record for Australia
Reference: Griffin and Tranter (1986) [photo below]
Maja gibba Alcock, 1895
MoV sp. 5145
Records: 1 specimen, 22°37´S, 355–382 m
Distribution: West Pacific; first record for Australia
Reference: Griffin and Tranter (1986) [photo below]

Maja suluensis Rathbun, 1916
MoV sp. 5143
Records: 1 specimen, 24°02´S, 100 m
Distribution: Indonesia; first record for Australia
Reference: Griffin and Tranter (1986) [photo below]

Planotergum mirabile Balss, 1935
MoV sp. 5153
Records: 1 specimen, 28°58´S, 85 m
Distribution: Indo-West Pacific including Australia
Reference: Davie (2002) [photo upper right]

Prismatopus brevispinosus Yokoya, 1933
MoV sp. 5298
Records: 5 specimens, 31°36´S, 329–370 m
Distribution: Japan; first record for Australia
Reference: Sakai (1976: 251) [photo below]

Prismatopus occidentalis Griffin, 1970
MoV sp. 5163
Records: 12 specimens, 27°55´S–35°20´S, 179–253 m
Distribution: WA endemic
Reference: Poore (2004) [photo below]
Prismatopus sp. MoV 5125

Records: 1 specimen, 24°37’S, 100 m

Distribution: new species

Reference: Griffin and Tranter (1986) [photo below]

Superfamily Palicoidea

Palicidae

In spite of the recent thorough study by Castro (2000), two of the five species could not be confidently identified beyond genus.

Micropalicus vietnamensis (Zarenkov, 1968)

MoV sp. 5058

Records: 5 specimens, 21°58’S–22°00’S, 170–754 m

Distribution: West Pacific, NW Australia

References: Castro and Davie (2003) [photo below]

Neopalicus jukesii (White, 1847)

MoV sp. 5000

Records: 1 specimen, 27°48’S, 123–112 m

Distribution: West Pacific, NW Australia

References: Castro and Davie (2003)

Paliculus kyusyuensis (Yokoya, 1933)

MoV sp. 5057

Records: 5 specimens, 23°59’S–24°33’S, 388–412 m

Distribution: Indo-West Pacific, Qld, Australia

References: Castro and Davie (2003)

Parapalicus sp. MoV 4999

Records: 25 specimens, 20°59’S–22°04’S, 100–177 m

Distribution: new species

References: Castro (2000) [photo below]
Pseudopalicus macromeles Castro, 2000
MoV sp. 5056
Records: 10 specimens, 27°55´S–35°20´S, 194–252 m
Distribution: Australia
References: Castro (2000) [photo below]

Superfamily Parthenopoidea

Parthenopidae

Nine species were collected, of which only three could be confidently identified. Generic placement was made with reference to Sakai (1976) whose keys reflect those in Flipse (1930). Species identifications referred to Ng (1996), Garth and Davie (1995), Davie and Turner (1994) and Ahyong (2008).

Aulacolambrus sp. MoV 5014
Records: 2 specimens, 20°59´S, 100 m
Distribution: new species like A. sibogae
Reference: Flipse (1930)

Garthambrus cf. lacunosa (Rathbun, 1906)
MoV sp. 5011
Records: 1 specimen, 31°36´S, 329–370 m
Distribution: new species close to Hawaiian G. lacunosa and G. tani Ahyong, 2008
References: Ng (1996), Ahyong (2008)

Garthambrus cf. stellatus (Rathbun, 1906)
MoV sp. 5063
Records: 1 specimen, 22°37´S, 355–382 m
Distribution: identification of Hawaiian species uncertain
Reference: Ng (1996) [photo below]

Parthenope chondrodes Davie & Turner, 1994
MoV sp. 5010
Records: 7 specimens, 20°59´S–25°55´S, 100–120 m
Distribution: WA; new record for S WA
Reference: Davie and Turner (1994) [photo below]
Platylambrus validus De Haan, 1837
MoV sp. 5065
Records: 2 specimens, 21°59’S–31°55’S, 165–232 m
Distribution: West Pacific including NE Australia; first record for WA
Reference: Campbell and Stephenson (1970)

Pseudolambrus sp. MoV 5009
Records: 18 specimens, 22°50’S–27°48’S, 123–100 m ✓
Distribution: new species like *P. beaumonti*
Reference: Sakai (1976: 276, key)

Rhinolambrus sp. MoV 5012
Records: 1 specimen, 27°48’S, 123–112 m ✓
Distribution: new species like *R. spinifer*
Reference: Flipse (1930)

Thyrolambrus excavatus Baker, 1905
MoV sp. 5064
Records: 8 specimens, 27°48’S–35°10’S, 85–169 m
Distribution: S Australia; new record for WA
Reference: Baker (1905) [photo below]

Parthenopid sp. MoV 5015
Records: 2 specimens, 35°11’S, 157–147 m
Distribution: new species not readily assigned to genus
Reference: Flipse (1930)

Superfamily Pilumnoidea

Pilumnidae
Three subfamilies were represented by 21 species. Half (ten species) are probably new species. Genera are listed alphabetically and subfamily names appear after species names.

Subfamily Eumedoninae was represented by one well-known species.

Subfamily Pilumninae included 15 species of which seven could be provisionally identified by P. Davie. Five are new records for WA. Where no reference is given, identification relies on P. Davie’s unpublished notes.

Subfamily Rhizopinae was represented by five species, two identifiable to species but neither previously recorded from Australia (Tesch, 1918; Ng, 1987).

Bathypilumnus pugilator (Milne Edwards, 1873) (Pilumninae)
MoV sp. 5095
Records: 2 specimens, 24°01’S, 100 m
Distribution: New Caledonia, Qld; first record for WA
Reference: Davie (1989)

Caecopilumnus piroculatus (Rathbun, 1911) (Rhizopinae)
MoV sp. 5090
Records: 1 specimen, 27°48’S, 98 m
Distribution: Indonesia; first record for Australia

Cryptolutea arafurensis Davie & Humpherys, 1997 (Rhizopinae)
MoV sp. 5085
Records: 1 specimen, 22°04’S, 106–101 m
Distribution: N Australia; first record for S WA
Reference: Davie and Humpherys (1997)

Eumedon niger Milne Edwards, 1834 (Eumedoninae)
MoV sp. 5111
Records: 2 specimens, 27°03’S–27°48’S, 106–123 m
Distribution: West Pacific including Australia
Reference: Chia and Ng (2000) [photo below]
Heteropilumnus sp. MoV 5101 (Rhizopinae)
Records: 3 specimens, 25°54′S–35°22′S, 100–196 m
Distribution: new species
Reference: Ng (1987)

Lophoplax sp. MoV 5105 (Pilumninae)
Records: 1 specimen, 21°01′S, 93 m
Distribution: synonymous with a new genus and species from N Australia (P. Davie, pers. comm.)
Reference: Tesch (1918)

Mertonia lanka Laurie, 1906 (Rhizopinae)
MoV sp. 5091
Records: 1 specimen, 24°01′S, 100 m
Distribution: Indian Ocean; first record for Australia

Paraseelwynia sp. MoV 5089 (Rhizopinae)
Records: 1 specimen, 33°58′S, 96 m
Distribution: new species, generic assignment problematic
Reference: Tesch (1918)

Pilumnopeus sp. MoV 5106 (Pilumninae)
Records: 1 specimen, 22°02′S, 106 m
Distribution: new species

Pilumnus cf. *haswelli* De Man, 1888 (Pilumninae)
MoV sp. 5104
Records: 1 specimen, 21°01′S, 93 m
Distribution: first record for Australia if correctly identified

Pilumnus cf. *hirsutus* Stimpson, 1858 (Pilumninae)
MoV sp. 5098
Records: 4 specimens, 20°59′S–27°03′S, 100–414 m
Distribution: new record for Australia

Pilumnus kingstoni (Rathbun, 1923) (Pilumninae)
MoV sp. 5097
Records: 8 specimens, 27°55′S–35°22′S, 105–253 m
Distribution: S Australia; first record for WA
Reference: Poore (2004) [photo below]

Pilumnus cf. *propinquus* Nobili, 1905 (Pilumninae)
MoV sp. 5297
Records: 2 specimens, 25°54′S, 100 m
Distribution: new record for Australia

Pilumnus cf. *schellenbergi* Balss, 1933 (Pilumninae)
MoV sp. 5100
Records: 2 specimens, 21°59′S, 166 m
Distribution: new record for Australia [photo below]

Pilumnus cf. *spinicarpus* Grant & McCulloch, 1906 (Pilumninae)
Records: 24 specimens, 21°57′S–29°48′S, 100–183 m
Distribution: N Australia; new record for S WA if correctly identified [photo below]

Pilumnus sp. MoV 5094 (Pilumninae)
Records: 1 specimen, 21°59′S, 166 m
Distribution: new species

Pilumnus sp. MoV 5099 (Pilumninae)
Records: 4 specimens, 20°59′S–28°59′S, 100–183 m
Distribution: new species [photo below]

Pilumnus sp. MoV 5103 (Pilumninae)
Records: 1 specimen, 21°59′S, 166 m
Distribution: new species

Pilumnus sp. MoV 5474 (Pilumninae)
Records: 1 specimen, 24°37′S, 100 m
Distribution: new species
Pilumnus sp. MoV 5475 (Pilumninae)
Records: 1 specimen, 27°48’S, 123–112 m
Distribution: new species

Pilumnid sp. MoV 4995 (Pilumninae)
Records: 1 specimen, 31°58’S, 848–1050 m
Distribution: new species [photo below]

Superfamily Portunoidea

Portunidae
Twenty-five species of swimming crabs were found, four not identifiable to species and one probably belonging to a new genus according to V. Spiridonov who examined some specimens. Half of the species are widespread in the Indo-West Pacific but only a few are newly recorded from Australia or WA. Identification was largely possible with reference to Stephenson (1972) and the earlier papers by this author but Wee and Ng (1995) was useful for Charybdis in particular and Davie and Crosnier (2006) for a recently described species.

Charybdis (Charybdis) miles (De Haan, 1835)
MoV sp. 5127
Records: 4 specimens, 21°58´S–21°59´S, 165–177 m
Distribution: Indo-West Pacific including N and E Australia; first record for WA
Reference: Poore (2004) [photo below]

Charybdis (Goniohellenus) hongkongensis Shen, 1934
MoV sp. 5190
Records: 1 specimen, 24°37´S, 100 m
Distribution: West Pacific; first record for Australia
Reference: Wee and Ng (1995) [photo below]

Echinolatus poorei Davie & Crosnier, 2006
MoV sp. 5141
Records: 22 specimens, 34°53´S–35°22´S, 95–484 m
Distribution: S Australia; first record for WA
Libystes paucidentatus Stephenson & Campbell, 1960
MoV sp. 5188
Records: 1 specimen, 21°58´S, 177–170 m
Distribution: New Guinea, Qld; first record for WA
Reference: Stephenson (1972) [photo below]

Lupocyclus philippinensis Semper, 1880
MoV sp. 5130
Records: 14 specimens, 20°59´S–24°37´S, 100–107 m ♦
Distribution: Indo-West Pacific including NE Australia; first record for WA
Reference: Leene (1940) [photo below]

Liocarcinus corrugatus (Pennant, 1777)
MoV sp. 5128
Records: 10 specimens, 24°37´S–27°48´S, 96–123 m
Distribution: Indo-West Pacific including Australia
Reference: Poore (2004)

Lupocyclus quinquedentatus Rathbun, 1906
MoV sp. 5142
Records: 1 specimen, 25°54´S, 100 m
Distribution: West Pacific; first record for Australia
Reference: Leene (1940) [photo below]

Lissocarcinus orbicularis Dana, 1852
MoV sp. 5441
Records: 1 specimen, 22°50´S, 100 m
Distribution: Indo-West Pacific including Australia (from gut of holothurian)
Reference: Sakai (1976) [photo upper right]
Lupocyclus sp. aff. *tugelae* Barnard, 1950
MoV sp. 5185
Records: 6 specimens, 21°59´S–27°48´S, 100–166 m
Distribution: new species close to *L. tugelae* (Indo-West Pacific including N WA)
Reference: Barnard (1950) [photo below]

Nectocarcinus spinifrons Stephenson, 1961
MoV sp. 5129
Records: 12 specimens, 24°37´S–33°02´S, 95–102 m
Distribution: SW Australia
Reference: Poore (2004) [photo below]

Ovalipes elongatus Stephenson & Rees, 1968
MoV sp. 5192
Records: 1 specimen, 35°21´S, 91 m
Distribution: New Zealand, Lord Howe; first record for WA
Reference: Stephenson (1972) [photo upper right]

Ovalipes iridescens (Miers, 1886)
MoV sp. 5132
Records: 79 specimens, 22°37´S–27°48´S, 355–1010 m
Distribution: Indo-West Pacific including Vic.; first record for WA
Reference: Stephenson (1972) [photo below]

Parathranites orientalis (Miers, 1886)
MoV sp. 5031
Records: many specimens, 21°59´S–30°59´S, 100–183 m
Distribution: Indo-West Pacific including E Australia; first record for WA
Reference: Stephenson (1972) [photo next page]
Parathranites sp. MoV 5290
Records: 7 specimens, 22°50´S, 100 m
Distribution: new species? (det. V. Spiridonov) [photo below]

Portunus (Xiphonectes) hastatoides Fabricius, 1798
MoV sp. 5189
Records: 1 specimen, 21°59´S, 166 m
Distribution: Indo-West Pacific including Australia
Reference: Stephenson (1972) [photo below]

Portunus aff. argentatus (Milne Edwards, 1861)
MoV sp. 5287
Records: 45 specimens, 21°57´S–22°04´S, 101–107 m
Distribution: new species? (det. V. Spiridonov) [photo below]

Portunus (Xiphonectes) longispinosus (Dana, 1852)
MoV sp. 5191
Records: 36 specimens, 22°50´S–24°01´S, 100 m
Distribution: Indo-West Pacific including N Australia; first record for WA – a species complex according to Davie
Reference: Davie (2002) [photo below]

Portunus aff. orbitosinus Rathbun, 1911
MoV sp. 5288
Records: 1 specimen, 21°58´S, 107 m
Distribution: new species? (det. V. Spiridonov) [photo next page]

Portunus (Monomia) haanii (Stimpson, 1858)
MoV sp. 5125
Records: 18 specimens, 22°04´S–33°58´S, 96–102 (1085) m
Distribution: Indo-West Pacific including Australia
Reference: Poore (2004) [photo below]
Portunus nipponensis (Sakai, 1938)
MoV sp. 5126
Records: 1 specimen, 22°50′S, 100 m ✓
Distribution: Japan; first record for WA
Reference: Stephenson (1972) [photo below]

Portunus (Xiphonectes) pulchicristatus (Gordon, 1931)
MoV sp. 5184
Records: many specimens, 20°59′S–21°59′S, 100–166 m ✓
Distribution: Indo-West Pacific including NW Australia; first record for WA
Reference: Davie (2002) [photo upper right]

Thalamita macropus Montgomery, 1931
MoV sp. 5187
Records: 20 specimens, 21°59′S–33°58′S, 85–210 m ✓
Distribution: N Australia
Reference: Poore (2004) [photo below]

Thalamita sexlobata Miers, 1886
MoV sp. 5186
Records: 1 specimen, 27°48′S, 123–112 m
Distribution: Indo-West Pacific including Qld; first record for WA
Reference: Stephenson (1972) [photo below]
Thalamita spinifera Borradaile, 1902
MoV sp. 5291
Records: 3 specimens, 20°59'S–27°48'S, 100–123 m
Distribution: Indo-West Pacific including Cartier Reef; first record for S WA (det. V. Spiridonov)
Reference: Short and Davie (1993) [photo below]

Portunid sp. MoV 5289
Records: 5 specimens, 35°21'S, 91 m
Distribution: probable new genus and new species (det. V. Spiridonov) [photo below]

Superfamily Retroplumidae

Retroplumidae

A single species, doubtfully identified using de Saint Laurent (1989) is the first record of the family from Australia.

Retropluma cf. quadrata de Saint Laurent, 1989
MoV sp. 5093
Records: 1 specimen, 21°58'S, 373–382 m
Distribution: if correctly identified, first Australian record for W Pacific species
Reference: de Saint Laurent (1989)
Superfamily Trapezioidea

Trapeziidae

The only species is recorded for the first time from Australia (Castro et al., 2004).

Quadrella reticulata Alcock, 1898
MoV sp. 5059
Records: 6 specimens, 21°57´S–27°48´S, 96–104 m
Distribution: Indo-West Pacific; first record for Australia
Reference: Castro et al. (2004) [photo below]

Superfamily Xanthoidea

Panopeidae

A single species was identified using Ng’s (1998) key to families and Davie (2002).

Homoiooplax haswelli (Miers, 1884)
MoV sp. 5485
Records: 1 specimen, 21°58´S, 177–170 m
Distribution: Indo-West Pacific including N Australia; first record for S WA
Reference: Davie (2002)
Xanthidae

Eighteen species were found but proved difficult to identify using the standard text (Serène, 1984). With the help of Peter Davie, Queensland Museum, 13 taxa were identified to species or probable species using his unpublished notes. Of those that were identified to species, five are new Australian records.

Actaea calculosa (Milne Edwards, 1834)
MoV sp. 5116
Records: 1 specimen, 33°58’S, 96 m
Distribution: Australia
Reference: Poore (2004) [photo below]

Actaea peronii Milne Edwards, 1834
MoV sp. 1656
Records: 6 specimens, 33°02’S–35°20’S, 95–100 m
Distribution: Australia
Reference: Poore (2004) [photo below]

Atergatopsis cf. alcocki (Laurie, 1906)
MoV sp. 5117
Records: 2 specimens, 21°59’S, 166 m
Distribution: Indo-West Pacific including Qld; first record for Australia (det. P. Davie)
Reference: Sakai (1976) [photo below]

Calvactaea tumida Ward, 1933
MoV sp. 5083
Records: 1 specimen, 22°04’S, 106–101 m
Distribution: Indo-West Pacific including Australia
Reference: Poore (2004) [photo below]
Decapod Crustacea of the continental margin of southwestern and central Australia

Chlorodiella laevissima (Dana, 1852)
MoV sp. 5110
Records: 2 specimens, 27°03’S, 97 m
Distribution: Indo-West Pacific including Australia
Reference: Serène (1984: pl. 36D) [photo below]

Demania wardi Garth & Ng, 1985
MoV sp. 5071
Records: 1 specimen, 21°59’S, 166 m
Distribution: West Pacific including Qld; first record for WA (det. P. Davie)
Reference: Davie (1989) [photo below]

Monodaeus tuberculidens (Rathbun, 1911)
MoV sp. 5075
Records: 3 specimens, 21°59’S–21°56’S, 132–166 m
Distribution: E Indian Ocean; first record for Australia (det. P. Davie) [photo below]

Medaeus sp. MoV 5081
Records: 1 specimen, 21°59’S, 166 m
Distribution: new species (det. P. Davie) [photo upper right]

Nanocassiope sp. MoV 5087
Records: 1 specimen, 31°43’S, 102 m
Distribution: new species (det. P. Davie) [photo below]

Nanocassiope sp. MoV 5299
Records: many specimens, 20°59’S–31°43’S, 85–120 m
Distribution: new species close to *N. alcocki* (Rathbun, 1902). Several colour morphs were separated in some stations but colour and morphology of the anterolateral carapace could not be correlated by Poore.
Novactaea cf. michaelseni (Odhner, 1925)
MoV sp. 5074
Records: 9 specimens, 24°37’S–35°11’S, 97–1157 m
Distribution: WA (det. P. Davie) [photo below]

Palapedia pelsartensis (Serène, 1972)
MoV sp. 5219
Records: 1 specimen, 24°01’S, 100 m
Distribution: WA
Reference: Ng (1993) [photo upper right]

Palapedia valentini Ng, 1993
MoV sp. 5118
Records: 1 specimen, 27°48’S, 123–112 m
Distribution: Singapore; new record for Australia
Reference: Ng (1993) [photo below]

Paractaea rufopunctata (Milne Edwards, 1834)
MoV sp. 5073
Records: 1 specimen, 21°59’S, 166 m
Distribution: Indo-West Pacific, Atlantic including Australia
(det. P. Davie) [photo next page]
Decapod Crustacea of the continental margin of southwestern and central Australia

Paractaea sp. MoV 5109
Records: 3 specimens, 29°48´S, 114 m
Distribution: new species (det. P. Davie) [photo below]

Paraxanthias aff. *pachydactylus* (Milne Edwards, 1867)
MoV sp. 5076
Records: 4 specimen, 27°55´S, 253 m
Distribution: possible new species close to Indo-West Pacific-Australian species (det. P. Davie) [photo below]

Paraxanthodes cf. *cumatodes* (McGilchrist, 1905)
MoV sp. 5072
Records: 1 specimen, 28°59´S, 180–183 m
Distribution: new record for Australia if correctly identified (det. P. Davie) [photo below]

Platypodia cf. *semigranosa* (Heller, 1861)
MoV sp. 5082
Records: 1 specimen, 27°48´S, 98 m
Distribution: Indo-West Pacific including Qld; first record for WA (det. P. Davie)
Caridea – shrimps

Seventeen families were represented by 88 nominal species. Twenty (23%) are new species, 13 new records for Australia, 14 new records for WA and 17 new records for S WA. Caridean shrimps can be identified to family and genus using the keys of Holthuis (1993). More recent works apply for some families. Families are arranged alphabetically.

Alpheidae

Eighteen species were separated using the three papers on the Australian fauna by Banner and Banner (1973; 1975; 1982). *Alpheus* and *Synalpheus* are the dominant genera. Eleven species were identified to known species, all widely distributed in the Indo-West Pacific region and already known from WA. Seven species could not be identified because of insufficient material (listed here as new). The family is renowned for cryptic species and a difficult taxonomy.

Alpheopsis aff. trispinosa (Stimpson, 1861)

MoV sp. 5410

Records: 1 specimen, 33°58´S, 96 m

Distribution: new species slightly different from Indo-West Pacific-Australian species

Reference: Banner and Banner (1982) [photo below]

Alpheopsis sp. MoV 5407

Records: 1 specimen, 21°59´S, 166 m

Distribution: new species

Reference: Banner and Banner (1973)

Alpheopsis sp. MoV 5408

Records: 2 specimens, 22°50.55´S–31°37´S, 100–210 m

Distribution: new species

Reference: Banner and Banner (1973)

Alpheus alcymone De Man, 1902

MoV sp. 5419

Records: 1 specimen, 22°51´S, 100 m

Distribution: Indo-West Pacific including WA

Reference: Banner and Banner (1982: 110)

Alpheus hailstonei Coutière, 1905

MoV sp. 5420

Records: 34 specimens, 27°48´S–35°11´S, 95–210 m

Distribution: Indo-West Pacific, including WA

Reference: Banner and Banner (1982: 38) [photos upper right]

Alpheus paracyone Coutière, 1905

MoV sp. 5418

Records: 2 specimens, 20°59´S–25°54´S, 100 m

Distribution: Indo-West Pacific including WA

Reference: Banner and Banner (1982: 113)

Alpheus parasocialis Banner & Banner, 1982

MoV sp. 0722

Records: 2 specimens, 35°14´S, 728–710 m

Distribution: Indo-West Pacific including WA

Reference: Banner and Banner (1982: 72)

Alpheus sp. MoV 5403

Records: 8 specimens, 22°50´S–25°54´S, 100 m

Distribution: new species close to Australian *A. heronicus*

Reference: Banner and Banner (1982)

Alpheus sp. MoV 5405

Records: 2 specimens, 35°10´S, 97 m

Distribution: new species close to Australian *A. rapacida*

Reference: Banner and Banner (1982)

Alpheus sp. MoV 5406

Records: 13 specimens, 21°58´S–27°08´S, 373–414 m

Distribution: new species

Reference: Banner and Banner (1982)
Synalpheus comatularum (Haswell, 1882)

MoV sp. 5413

Records: 5 specimens, 22°50´S–27°48´S, 96–100 m

Distribution: Indo-West Pacific including WA

Reference: Banner and Banner (1975) [photo below]

Synalpheus lophodactylus Coutière, 1908

MoV sp. 5417

Records: 5 specimens, 28°58´S, 85 m

Distribution: Indo-West Pacific including WA

Reference: Banner and Banner (1975: 350)

Synalpheus neomeris (De Man, 1897)

MoV sp. 5412

Records: 1 specimen, 27°48´S, 123–112 m

Distribution: Indo-West Pacific including WA

Reference: Banner and Banner (1975: 357)

Synalpheus neptunus (Dana, 1852)

MoV sp. 5416

Records: 21 specimens, 21°59´S–33°58´S, 96–166 m

Distribution: Indo-West Pacific including WA

Reference: Banner and Banner (1975: 317) [photo below]
The family was treated by Chace (1993). Our specimen was identified by A.J. Bruce.

Anchistioides willeyi (Borradaile, 1899)

MoV sp. 5424

Records: 1 specimen, 20°59´S, 100 m

Distribution: Indo-West Pacific including GBR, first record for WA

Reference: Chace (1993); det. A.J. Bruce

Bathypalaemonellidae

A single known species was recorded (Chace, 1997).

Bathypalaemonella pilosipes Bruce, 1986

MoV sp. 5449

Records: 5 specimens, 29°03´S, 1000–1037 m

Distribution: northern WA and Philippines, previously recorded to 400 m depth; new record for S WA

Reference: Chace (1997)

Bresiliidae

One species previously recorded from NSW was identified using Kensley (1983).

Discias brownae Kensley, 1983

MoV sp. 5428

Records: 1 specimen, 35°11´S, 157–147 m

Distribution: NSW; new record for WA

Reference: Kensley (1983)

Campylonotidae

A single well known southern species was recorded and identified from Poore (2004).

Campylonotus rathbunae Schmitt, 1926

MoV sp. 1806

Records: 5 specimens, 35°22´S–35°22´S, 676–728 m

Distribution: southern Australian, New Zealand

Reference: Poore (2004) [photo below]
Crangonidae

The collection contains ten species of which six belong to known cosmopolitan or Indo-West Pacific species. None of the six are previously recorded from WA and only two from eastern Australia (Poore, 2004). The principal recent reference is by Chace (1984) and good illustrations appeared in De Man (1920). Uncertainty surrounds the specific and generic identification of some taxa.

Aegaeon lacazei (Gourret, 1887)
MoV sp. 1873
Records: 18 specimens, 24°33´S–31°00´S, 100–414 m
Distribution: cosmopolitan; new record for WA
Reference: Chan (1996) [photo below]

Metacrangon sp. MoV 5423
Records: 16 specimens, 31°59´S–35°22´S, 408–728 m
Distribution: new species
Reference: Holthuis (1993) [photo below]

Parapontocaris aspera Chace, 1984
MoV sp. 5349
Records: 9 specimens, 21°58´S–22°04´S, 373–399 m
Distribution: Philippines; new Australian record
Reference: Chace (1984: 31)

Parapontocaris levigata Chace, 1984
MoV sp. 5350
Records: 22 specimens, 21°58´S–22°04´S, 324–399 m
Distribution: Philippines; new Australian record
Reference: Chace (1984: 34) [photo upper right]

Parapontophilus junceus (Bate, 1888)
MoV sp. 5551
Records: 28 specimens, 22°00´S–35°22´S, 539–1077 m
Distribution: Indonesia-Philippines; new Australian record
Reference: Chace (1984: 53) [photo below]

Philocheras sp. MoV 5422
Records: 4 specimens, 21°58´S–25°55´S, 101–120 m
Distribution: new species close to *P. magnicolus*
Reference: Chace (1984); Komai and Chan (2007) [photo below]

Philocheras sp. MoV 5439
Records: 1 specimen, 23°59´S, 411 m
Distribution: new species
Reference: Chace (1984)

Pontocaris pennata Bate, 1888
MoV sp. 5353
Records: 5 specimens, 20°59´S–22°04´S, 102 m
Distribution: Indo-West Pacific, Indonesia; new Australian record
Reference: Chace (1984: 42); De Man (1920: pl. 24, fig. 70) [photo below]
Pontocaris propensalata Bate, 1888
MoV sp. 5354

Records: 2 specimens, 21°59’S, 166 m
Distribution: Philippines, Indonesia, NSW; new record for WA
Reference: Chace (1984: 43); De Man (1920: pl. 24, fig. 71)

Sabinea sp. MoV 5421

Records: 1 specimen, 33°00’S, 421–414 m
Distribution: like *S. indica* but carapace strongly depressed posterior to middorsal crest
Reference: De Man (1920: pl. 25, fig. 75) [photo below]

Eugatonatonotidae

The only species is previously recorded from NW Australia (Chace, 1997).

Eugonatonotus chacei Chan & Yu, 1991
MoV sp. 5429

Records: 1 specimen, 22°04’S, 399–387 m
Distribution: Eastern Pacific, NW Australia; new record for S WA
Reference: Chace (1997: 23) [photo below]
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Gyphocrangonidae

Two described species known from Australia, one new Australian record, one newly recorded for S WA, and a fourth identified with some uncertainty to a Japanese species comprise the collection. Komai’s recent paper (2004) is comprehensive.

Glyphocrangon lineata Komai, 2004
MoV sp. 5356
Records: 2 specimens, 21°58´S–22°00´S, 658–754 m ✓
Distribution: Indonesia, NW Australia; new record for S WA
Reference: Komai (2004) [photos below]

Glyphocrangon cf. perplexa Komai, 2004
MoV sp. 5357
Records: 4 specimens, 21°58´S, 726–732 m, stn 159(4)
Distribution: probable new species similar to this Japanese species
Reference: Komai (2004)

Glyphocrangon confusa Komai, 2004
MoV sp. 5355
Records: 1 specimen, 29°00´S, 704–700 m
Distribution: Indonesia, NW Australia; new record for S WA
Reference: Komai (2004: 597) [photo below]

Glyphocrangon sibogae De Man, 1918
MoV sp. 5358
Records: 1 specimen, 21°55´S, 1260–1295 m ✓
Distribution: Indonesia, new Australian record
Reference: Komai (2004) [photos below]
Hippolytidae

Five species were identified with reference to Poore (2004) and Chace (1997). Two were recorded for the first time from WA. Two are new species, one previously recorded from the Tasmanian seamounts.

Eualus sp. MoV 2681

Records: 5 specimens, 35°25´S–35°26´S, 900–980 m
Distribution: Tas. Seamounts; new species
Reference: Poore et al. (1998) [photo below]

Lysmata amboinensis (De Man, 1888)

MoV sp. 5359
Records: 1 specimen, 22°50´S, 100 m
Distribution: Indo-West Pacific species; new record for S WA
Reference: Chace (1997) [photos below]

Lebbeus sp. MoV 5425

Records: 1 specimen, 35°12´S, 431–408 m
Distribution: new species
Reference: Chace (1997) [photos below]

Merhippolyte chacei Kensley, Tranter & Griffin, 1987

MoV sp. 2615
Records: 5 specimens, 35°14´S–35°22´S, 676–728 m
Distribution: NSW, Tas., new WA record
Reference: Kensley et al. (1987) [photo below]

Tozeuma tomentosum (Baker, 1904)

MoV sp. 5361
Records: 16 specimens, 20°59´S–27°03´S, 100 m
Distribution: SA (doubtful record from Japan); new WA record
Reference: Chace (1997: 95) [photo below]
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Nematocarcinidae

Three of four species of *Nematocarcinus*, previously recorded from WA, could be identified (Hanamura and Evans, 1996; Burukovskii, 2000). The fourth is an undescribed species recorded by Poore (2004).

Nematocarcinus hanamuri Burukovskii, 2000
MoV sp. 5452
Records: 3 specimens, 21°55′S, 1260–1295 m
Distribution: SW Australia
Reference: Burukovskii (2000)

Nematocarcinus productus Bate, 1888
MoV sp. 5450
Records: 2 specimens, 35°31′S–35°31′S, 1073–1110 m
Distribution: Indo-West Pacific, WA; new record for S WA
Reference: Hanamura and Evans (1996)

Nematocarcinus tenuirostris Bate, 1888
MoV sp. 5451
Records: 1 specimen, 21°55′S, 1260–1295 m
Distribution: Indo-West Pacific, WA
Reference: Hanamura and Evans (1996)

Nematocarcinus sp. MoV 5456
MoV sp. 5456
Records: 2 specimens, 35°16′S–35°31′S, 978–1110 m
Distribution: NSW, Tas.; new species that keys to *N. altus*
Reference: Poore (2004: fig. 17d) [photo below]

Oplophoridae

The seven species include one new record for Australia (Chace, 1986).

Acanthephyra armata Milne Edwards, 1881
MoV sp. 5362
Records: 9 specimens, 21°58′S–22°00′S, 658–1010 m
Distribution: cosmopolitan, WA; new record for S WA
Reference: Wadley and Evans (1992: 13) [photo below]

Acanthephyra faxoni Calman, 1939
MoV sp. 5430
Records: 3 specimens, 21°56′S–22°00′S, 1051–1077 m
Distribution: Indo-West Pacific; new Australian record
Reference: Chace (1986: key)

Acanthephyra quadrispinosa Kemp, 1939
MoV sp. 1840
Records: 7 specimens, 21°55′S–35°04′S, 378–1295 m
Distribution: cosmopolitan, including WA
Reference: Wadley and Evans (1992) [photo below]

Janicella spinicauda (Milne Edwards, 1883)
MoV sp. 5431
Records: 2 specimens, 22°00′S, 983–1010 m
Distribution: cosmopolitan, including WA; new record for S WA
Reference: Hanamura (1987)

Oplophorus gracilirostris Milne Edwards, 1881
MoV sp. 5363
Records: 3 specimens, 21°58′S–22°50′S, 356–430 m
Distribution: cosmopolitan, including WA
Reference: Hanamura (1987) [photo next page]
Oplophorus novaezeelandiae (De Man, 1931)
MoV sp. 1845
Records: 1 specimen, 35°16´S, 978–980 m
Distribution: cosmopolitan, including WA
Reference: Kensley et al. (1987) [photo below]

Systellaspis debilis (Milne Edwards, 1881)
MoV sp. 1841
Records: 3 specimens, 22°00´S–22°00S, 983–1085 m
Distribution: cosmopolitan, including WA
Reference: Kensley et al. (1987), Poore (2004)

Palaemonidae

Although common in shallow waters this family was represented by only three specimens. The identifications below are by A.J. Bruce.

Periclimenes aleator Bruce, 1991
MoV sp. 5448
Records: 1 specimen, 21°00´S, 399–408 m
Distribution: Loyalty Is., new record for Australia
Reference: Bruce (1991); det. A.J. Bruce

Palaemonid sp. MoV 5437
Records: 2 specimens, 29°48´S, 114 m
Distribution: new genus and species
Reference: det. A.J. Bruce
Pandalidae

Of 21 species of mostly benthopelagic shrimps, 15 are are recorded outside their known range. Three are new Australian records of Indo-West Pacific species and four probable new species. Four studies have covered the family in this region (Chace, 1985; Hanamura and Takeda, 1987; Crosnier, 1988; Hanamura and Evans, 1996).

Chlorotocella spinicaudus (Milne Edwards, 1837)

MoV sp. 0995

Records: 1 specimen, 23°59′S, 411 m
Distribution: common southern Australian species
Reference: Poore (2004: 131)

Chlorotocus sp. MoV 5443

Records: 1 specimen, 21°58′S, 356–324 m
Distribution: new species
References: Hanamura and Takeda (1987); Hanamura and Evans (1996)

Heterocarpoides levicarina Bate, 1888

MoV sp. 5364

Records: 14 specimens, 21°58′S–22°04′S, 101–206 m
Distribution: Indo-West Pacific, including Indonesia; new Australian record
Reference: Chace (1985: 17)

Heterocarpus dorsalis Bate, 1888

MoV sp. 5365

Records: 25 specimens, 21°55′S–31°57′S, 726–1260 m
Distribution: cosmopolitan, including Australia
Reference: Wadley and Evans (1992) [photos below]

Heterocarpus hayashii Crosnier, 1988

MoV sp. 5541

Records: 16 specimens, 21°58′S–27°08′S, 373–431 m
Distribution: West Pacific, including GBR, Australia; new record for WA
Reference: Crosnier (1988) [photo upper right]

Heterocarpus tricarinatus Alcock & Anderson, 1894

MoV sp. 5366

Records: 5 specimens, 21°55′S, 1260–1295 m
Distribution: Indo-West Pacific, including N WA; new record for S WA
Reference: Hanamura and Evans (1996: 9) [photo below]

Heterocarpus woodmasoni Alcock, 1901

MoV sp. 5367

Records: 18 specimens, 21°58′S–22°50′S, 373–430 m
Distribution: Indo-West Pacific, including N Australia; new record for S WA
Reference: Hanamura and Evans (1996: 10) [photo below]

Heterocarpus MoV sp. 5540

Records: 25 specimens, 21°00′S–22°04′S, 399–411 m
Distribution: new species
Reference: Crosnier (1988) [photo below]

Plesionika bifurca Alcock & Anderson, 1894

MoV sp. 5444

Records: 2 specimens, 22°00′S, 983–1010 m
Distribution: Indo-West Pacific, including N Australia; first record for S WA
Reference: Hanamura and Takeda (1987); Chace (1985)
Plesionika binocularis (Bate, 1888)
MoV sp. 5447
Records: 6 specimens, 21°59’S, 166 m
Distribution: Arafura Sea; first record for S WA
Reference: Chace (1985: key)

Plesionika cf. kensleyi Chace, 1985
MoV sp. 5369
Records: 33 specimens, 22°04’S–35°14’S, 212–1050 m
Distribution: rostrum more compact than *P. kensleyi*; new Australian record or new species
Reference: Chace (1985: 77) [photo below]

Plesionika cf. philippinensis Chace, 1985
MoV sp. 5370
Records: 1 specimen, 21°57’S, 104–114 m
Distribution: new Australian record or new species
Reference: Chace (1985: 113)

Plesionika edwardsii (Brandt, 1851)
MoV sp. 5368
Records: 6 specimens, 24°33’S–31°55’S, 364–484 m
Distribution: cosmopolitan; new record for WA
Reference: Chace (1985: 62)

Plesionika orientalis Chace, 1985
MoV sp. 5372
Records: 12 specimens, 22°04’S–35°22’S, 387–680 m
Distribution: Indo-West Pacific, including N Australia; first record for S WA
Reference: Chace (1985: 113)

Plesionika reflexa Chace, 1985
MoV sp. 5371
Records: 40 specimens, 21°00’S, 399–408 m
Distribution: Indo-West Pacific, including N Australia; first record for S WA
Reference: Hanamura and Takeda (1987)

Procletes levicarina (Bate, 1888)
MoV sp. 5483
Records: 2 specimens, 21°59’S, 166 m
Distribution: Indo-West Pacific, including N Australia; new record for S WA
Reference: Holthuis (1993)
Pasiphaeidae

The six species included three already known from WA, two new WA records and a probable new species. Hanamura & Evans (1994) is a key reference.

Alainopasiphaea australis (Hanamura, 1989)
- MoV sp. 1895
- **Records**: 2 specimens, 35°22´S, 676–680 m
- **Distribution**: southern Australia
- **References**: Hayashi (2004), Poore (2004); Hanamura (1989)

Eupasiphae sp. MoV 5427
- **Records**: 2 specimens, 21°56´S–21°58´S, 726–1050 m
- **Distribution**: new species
- **Reference**: Hanamura and Evans (1994)

Leptochela sydniensis Dukin & Colefax, 1940
- MoV sp. 0723
- **Records**: 5 specimens, 22°04´S–35°18´S, 95–210 m
- **Distribution**: Indo-West Pacific, including N, E and S Australian coasts; first record for WA
- **Reference**: Hanamura and Evans (1994) [photo below]

Pasiphaea kapala Kensley, Tranter & Griffin, 1987
- MoV sp. 5432
- **Records**: 2 specimens, 35°22´S, 685–695 m
- **Distribution**: southern Australia
- **Reference**: Poore (2004)

Pasiphaea longitaenia Kensley, Tranter & Griffin, 1987
- MoV sp. 5377
- **Records**: 1 specimen, 22°00´S, 983–1010 m
- **Distribution**: NSW; new record for WA
- **Reference**: Kensley et al. (1987)

Pasiphaea tarda Krøyer, 1845
- MoV sp. 5433
- **Records**: 1 specimen, 35°31´S, 1074–1080 m
- **Distribution**: cosmopolitan, including S WA
- **Reference**: Hanamura and Evans (1994)

Processidae

Chace (1997) is the key reference. The three species included one known previously from WA, and two newly recorded for Australia. None has been adequately figured recently.

Hayashidonus japonicus (De Haan, 1844)
- MoV sp. 5434
- **Records**: 2 specimens, 21°59´S–22°04´S, 101–166 m
- **Distribution**: Indo-West Pacific including Indonesia; new record for Australia
- **Reference**: Chace (1997: 33)

Processa gracilis Baker, 1907
- MoV sp. 5376
- **Records**: 1 specimen, 33°58´S, 96 m
- **Distribution**: SA; first record for WA
- **Reference**: Poore (2004: 128)

Processa longirostris Hayashi, 1975
- MoV sp. 5426
- **Records**: 8 specimens, 21°58´S–24°01´S, 100–107 m
- **Distribution**: S Vietnam; new Australian record
- **References**: Hayashi (1975: key); Noël (1986: key)
Rhynchocinetidae

Two described species, one known from southern Australia and the other from northern Australia, were found and identified using Okuno (1994) and Chace (1997).

Rhynchocinetes brucei Okuno, 1994
MoV sp. 5378
Records: 17 specimens, 21°59´S–35°13´S, 100–494 m
Distribution: West Pacific, NE Australia; new record for WA
Reference: Okuno (1994) [photo below]

Rhynchocinetes enigma Okuno, 1997
MoV sp. 3978
Records: 19 specimens, 31°37´S–35°21´S, 97–210 m
Distribution: S Australia; new record for WA
Reference: Poore (2004: 76) [photo below]

Thalassocarididae

One Indo-West Pacific species was recorded for the first time from Australia (Chace, 1985).

Thalassocaris crinita (Dana, 1852)
MoV sp. 5379
Records: 6 specimens, 22°50´S–27°03´S, 97–100 m
Distribution: Indo-West Pacific; first record for Australia
Reference: Chace (1985: 7)
Polychelida – deep sea lobsters

The Australian fauna is well studied and two papers enabled the collections (59 individuals) to be identified (Galil, 2000; Ahyong and Brown, 2002).

Polychelidae

All five species in two genera are already described. Polychela coccifer Galil, 2000 was previously recorded from Indonesia so this record from northerly stations is not unexpected.

Pentacheles laevis Bate, 1878
MoV sp. 3980
Records: 5 specimens, 31°57’S–35°31’S, 928–1170 m
Distribution: cosmopolitan species, including S Australia
References: Ahyong and Brown (2002) [photo below]

Polychela auriculatus (Bate, 1878)
MoV sp. 4975
Records: 36 specimens, 21°56’S–35°14’S, 658–1037 m ✓
Distribution: Indo-West Pacific species, including WA
References: Ahyong and Brown (2002) [photo below]

Polycheles coccifer Galil, 2000
MoV sp. 4973
Records: 3 specimens, 21°58’S–21°58’S, 324–382 m ✓
Distribution: Indo-West Pacific; first record for Australia
References: Galil (2000) [photos below]

Polycheles suhmi (Bate, 1878)
MoV sp. 3979
Records: 2 specimens, 35°14’S–35°22’S, 676–728 m
Distribution: Southern Ocean, including NSW–Tas.; first record for WA
References: Galil (2000) [photo below]

Polycheles typhlops Heller, 1862
MoV sp. 5069
Records: 3 specimens, 21°58’S–22°04’S, 373–399 m
Distribution: cosmopolitan species
References: figures from Galil (2000)
Stenopodidea – coral shrimps

Stenopodidean shrimps can be identified to family and genus using the keys of Holthuis (1993). One species was represented by one individual of a species previously recorded from the region but not so far south. The other was just a cheliped but could be identified as probably a species not recorded from Australia.

Stenopodidae

Two species were found, one known from coral in Indonesia and northern WA and the other, represented in this collection by a single cheliped, from throughout the Indo-West Pacific.

Engystenopus cf. palmipes Alcock & Anderson, 1894
MoV sp. 5545
Records: 1 detached cheliped (pereopod 3), 22°04´S, 400 m
Distribution: Bay of Bengal, Philippines; new record for Australia (det. J. Goy from photo of cheliped)
References: De Saint Laurent and Cleva (1981) [photo below]

Odontozona sculpticaudata Holthuis, 1946
MoV sp. 5442
Records: 1 specimen, 22°50´S, 100 m
Distribution: Indo-West Pacific species, including N Australia; new record for S WA
References: Holthuis (1946)

Thalassinidea – ghost and sponge shrimps

Six families (of 11 known) are represented by 23 species. The collection is not large, 51 individuals of which 13 belonged in one species. Surprisingly, only four species could be identified, one of these with a Korean species newly recorded from Australia. The fraction of new species is 82%. Several seemed not to fit well with presently diagnosed genera. Published keys to families and genera (Poore, 1994) are now superceded by an interactive DELTA-based key in preparation by Poore. Poore and Griffin (1979) covered all the Australian species then known but as citations below indicate, the number has grown since.

Axiidae

Of the eight species, at least one is most probably a new genus. None belong in the taxa described by Sakai (1986; 1994) or Kensley (1989). One is tentatively identified as a species described from Korea.

Acanthaxius sp. MoV 4956
Records: 1 specimen, 21°59´S, 166 m
Distribution: new species
Reference: Ngoc-Ho (2006) [photo below]

Axiopsis tsushimaensis Sakai, 1992
MoV sp. 5440
Records: 2 specimens, 29°48´S–35°11´S, 113–157 m
Distribution: Korea, Japan; new record for Australia
Reference: Sakai (1992)

Axiopsis sp. MoV 5435
Records: 2 specimens, 27°48´S, 96–98 m
Distribution: new species
Reference: Poore (1994)
Bouvieraxius sp. MoV 4959
Records: 1 specimen, 27°08´S, 414–405 m
Distribution: new species
Reference: Poore (1994) [photo below]

Calocarides sp. MoV 4955
Records: 3 specimens, 25°54´S–27°03´S, 97–100 m
Distribution: new species
Reference: Poore (1994) [photos below]

Calocarides sp. MoV 4957
Records: 1 specimen, 25°55´S, 404–407 m
Distribution: new species
Reference: Poore (1994) [photo upper right]

Dorphinaxius sp. MoV 4958
Records: 1 specimen, 20°59´S, 100 m ✓
Distribution: new species
Reference: Poore (1994)

Marianaxius sp. MoV 5436
Records: 1 specimens, 29°48´S, 114 m
Distribution: new species
Reference: Kensley (2003)

Axiid sp. MoV 5527
Records: 1 specimens, Station not recorded
Distribution: new species, genus indetermined

Axiid sp. MoV 4954
Records: 1 specimen, 33°00´S, 423–397 m
Distribution: new species, possibly new genus
Reference: Poore (1994) [photo below]
Callianassidae

There are only one or two individuals of each of the six species, sometimes incomplete as is typical of members of this family. One species has already been described in a manuscript in press (Poore, in press) but the others are not in papers dealing with the fauna of this region (Sakai, 1988; Ngoc-Ho, 1994; Poore, in press). Generic concepts in Callianassidae are unclear — most could not be placed in one of the 20 genera diagnosed in a DELTA key currently under construction. The most recent reviews of the family (Sakai, 1999, 2005) proposed an idiosyncratic taxonomy that does not recognise many traditionally recognised genera. For the time being, most species in this collection are tentatively placed in the catch-all ‘Callianassa’.

Callianassa sp. MoV 4964
Records: 1 specimen, 22°50´S, 100 m
Distribution: WA
Reference: Poore (in press)

Callianassa sp. MoV 4961
Records: 2 specimens, 22°04S, 206–201 m
Distribution: new species

Callianassa sp. MoV 4962
Records: 1 specimen, 22°04´S, 206–201 m
Distribution: new species

Callianassa sp. MoV 4963
Records: 1 specimen, 29°48´S, 114 m
Distribution: new species

Callianassa sp. MoV 4966
Records: 1 specimen, 21°58´S, 107 m
Distribution: new species

Corallianassa sp. MoV 4965
Records: 2 specimens, 31°43´S–35°11´S, 102–169 m
Distribution: new species [photos below]

Calocarididae

The single species belongs to a genus not previously recorded from Australia.

Ambiaxius sp. MoV 4967
Records: 2 specimens, 33°00´S, 423–397 m
Distribution: new species
Reference: Sakai and Ohta (2005)
Gourretiidae

One new species was found whose generic identification is problematic. The nomenclature, composition and definition of this family is subject to considerable debate. The views of Sakai (2005) who provided the most recent revision are not necessarily followed here (see too Callianassidae).

Lipkecallianassa sp. MoV 4960

Records: 8 specimens, 21°59´S–22°04´S, 100–206 m
Distribution: generic placement of the species is problematic
Reference: Sakai (2002)

Micheleidae

The single specimen in each of two genera does not belong to any of the Western Australian (or other) species described by Poore (1997; in press).

Michelea sp. MoV 4969

Records: 1 specimen, 27°48´S, 123–112 m
Distribution: new species
Reference: Poore (1997)

Tethisea sp. MoV 5472

Records: 1 specimen, 35°22´S, 419–460 m
Distribution: new species, possibly new genus
Reference: Poore (1997)
Upogebiidae

All three species were identified by N. Ngoc-Ho and have been previously recorded from Australia.

Upogebia ancylostyla De Man, 1905
MoV sp. 5078
Records: 2 specimens, 31°43´S, 102 m
Distribution: Indonesia–Philippines, N Australia; new record for S WA
Reference: Sakai (1993) [photo below]

Upogebia holthuisi Sakai, 1982
MoV sp. 4970
Records: 2 specimens, 25°54´S, 100 m
Distribution: New Caledonia, Pacific, first record for Australia
Reference: Sakai (1982)

Upogebia bowerbanki (Miers, 1884)
MoV sp. 4971
Records: 13 specimens, 21°57´S, 104–114 m
Distribution: S Australia
Reference: Poore (2004) [photos below]
Acknowledgements

We acknowledge the considerable investment and enthusiasm of our colleagues at CSIRO Marine and Atmospheric Research (CMAR). Alan Williams and Rudy Kloker, co-principal investigators of the “Voyages of Discovery” research program were largely responsible for the sampling design and for securing the funding that made it happen. We thank these two and their CMAR colleagues Mark Lewis (Gear Officer) and Karen Gowlett-Holmes (Curator, Marine Invertebrates) for help with gear and dealing with samples while on board FRV Southern Surveyor. Special thanks to Karen Gowlett-Holmes for the many photographs of live animals taken on board and published here.

We appreciate the assistance of the shipboard invertebrate zoology crew – Tim O’Hara, David Staples, Anna Syme, Robin Wilson (Museum Victoria), Jane Fromont, Mark Salotti, Corey Whisson, Shirley Slack-Smith (Western Australian Museum), Penny Berents and Steve Keable (Australian Museum) – for their tireless dedication to sorting the catches. We thank the master and crew of FRV Southern Surveyor for their cooperation.

In the lab in Melbourne we must thank the student volunteers who assisted with the unpacking, preliminary sorting and labelling – Amanda Schausschmidt, Sarah Thompson and Kirsteen Roberts. We thank too Kate Naughton whose first sort of hermit crabs and shrimps made our job easier.

Most identifications were done at Museum Victoria but we sought the help of Peter Davie, Queensland Museum, for the enigmatic pilumnid and xanthoid crabs, Nguyen Ngoc-Ho, Muséum national d’Histoire naturelle, Paris, for upogebiid shrimps, and Joseph Goy, Harding University, Arkansas, for anchistioid shrimps. We thank also Karen Naughton whose first sort of hermit crabs and shrimps made our job easier.

For financial support we acknowledge the Commonwealth Department of the Environment and the CSIRO Wealth from Oceans Flagship that provided funds for the field and laboratory components of the “Voyages of Discovery” program. Thanks too to OBIS Australia (Oceanographic Biological Information System) for support to enable the data to made publicly available on the OBIS website.

References

Ahayong, S.T., and Poore, G.C.B. 2004b. Deep-water Galatheidae (Crustacea: Decapoda: Anomura) from southern and eastern Australia. Zootaxa 472: 1-76.

Ahayong, S.T., and Poore, G.C.B. 2004c. Deep-water Galatheidae (Crustacea : Decapoda : Anomura) from southern and eastern Australia. Zootaxa 472: 3-76.

Alcock, A. 1895. Materials for a carcinological fauna of India. No. 1. The Brachyura Oxyrynchina. Journal of the Asiatic Society of Bengal 64: 157-291, pls 153-155.

Ahayong, S.T., and Poore, G.C.B. 2002. Deep-water Galatheidae (Crustacea: Decapoda: Anomura) from southeastern Australia. Memoirs of the Queensland Museum 50: 53-79.

Baba, K. 1988. Chirostylid and galatheid crustaceans (Anomura: Galatheidae) collected by the “Cidaris I” Expedition off central Queensland, Australia. Memoirs of the Queensland Museum 35: 1-21.

Banner, D.M., and Banner, A.H. 1982. The alpheid shrimp of the Galatheid family Ogyrididae. Galathaea Reports 15: 823 - 891.

Baba, K. 1994. Deep-sea galatheid crustaceans (Anomura: Galatheidae) collected by the “Cidaris I” Expedition off central Queensland, Australia. Memoirs of the Queensland Museum 35: 1-21.

Banner, D.M., and Banner, A.H. 1991. Shallow-water palaemonoid shrimps from New Caledonia (Crustacea: Decapoda). Memoirs of the Queensland Museum 472: 1-76.

Banner, D.M., and Banner, A.H. 1992. Shallow-water palaemonoid shrimps from New Caledonia (Crustacea: Decapoda). Memoirs of the Queensland Museum 472: 1-76.

Boyko, C.B. 2002. A worldwide revision of the Recent and fossil sand crabs of the Albuneidae Stimpson and Blepharipodidae, new family (Crustacea: Decapoda: Anomura: Hippoidea). Bulletin of the American Museum of Natural History 272: 1-396.

Bruce, A.J. 1991. Shallow-water palaemonoid shrimps from New Caledonia (Crustacea: Decapoda). Pp. 221-279 in: Richer de Forges, B. (ed.) Le benthos des fonds meubles
des lags de Nouvelle-Calédonie. Vol. 1. ORSTOM Editions: Paris.
Burukovski, R.N. 2000. Taxonomy of shrimps of the genus Nematocarcinus (Crustacea, Decapod, Nematocarcinidae).
7. Description of new species, N. hanamuri and N. evansi, from southwestern Australian waters. Zoologicheskii Zhurnal 79: 1290-1293.
Campbell, B.M., and Stephenson, W. 1970. The sublittoral Brachyura (Crustacea: Decapoda) of Moreton Bay. Memoirs of the Queensland Museum 15: 235-301, pl. 222.
Castro, P. 2000. Crustacea Decapoda: a revision of the Indo-West Pacific species of palidic crabs (Brachyura Palicidae).
In: Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM, vol. 21. Mémoires du Muséum National d'Histoire Naturelle, Paris 184: 437-610.
Castro, P. 2007. A reappraisal of the family Goneplacidae MacLeay, 1838 (Crustacea, Decapoda, Brachyura) and revision of the subfamily Goneplacinae, with the description of 10 new genera and 18 new species. Zootaxa 29: 669-774.
Castro, P., and Davie, P.J.F. 2003. New records of palidic crabs (Crustacea: Brachyura: Palicidae) from Australia. Memoirs of the Queensland Museum 49: 153-157.
Castro, P., Williams, A.B., and Cooper, L.L. 2003. Revision of the family Latreilliidae Stimpson, 1858 (Crustacea, Decapoda, Brachyura). Zoosystema 25: 601-634.
Castro, P., Ng, P.K.L., and Ahyon, S. 2004. Phylogeny and systematics of the Trapeziidae Miers, 1886 (Crustacea: Brachyura), with the description of a new family. Zootaxa 643: 1-70.
Chace, F.A. 1984. The caridean shrimps (Crustacea; Decapoda) of the Albatross Philippine Expedition, 1907-1910, part 2: families Glyphocrangonidae and Crangonidae. Smithsonian Contributions to Zoology 397: 1-63.
Chace, F.A. 1985. The caridean shrimps (Crustacea; Decapoda) of the Albatross Philippine Expedition, 1907-1910, part 3: families Thalassocaridae and Pandaliidae. Smithsonian Contributions to Zoology 411: 1-143.
Chace, F.A. 1986. The caridean shrimps (Crustacea; Decapoda) of the Albatross Philippine Expedition, 1907-1910, part 4: families Oplophoridae and Nematocarcinidae. Smithsonian Contributions to Zoology 432: 1-82.
Chace, F.A. 1997. The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine Expedition, 1907-1910, part 7: Families Atyidae, Eugonatonotidae, Rhynchocinetidae, Bathypalaemonellidae, Processidae, and Hippolytidae. Smithsonian Contributions to Zoology 587: 1-v, 1-106.
Chace, F.A., and Bruce, A.J. 1993. The caridean shrimps (Crustacea; Decapoda) of the Albatross Philippine Expedition, 1907-1910, part 6: superfAMILY Paalamaonoidae. Smithsonian Contributions to Zoology 543: 1-152.
Chan, T-Y. 1996. Crustacea Decapoda Crangonidae: revision of the three closely related genera Jegaean Agassiz, 1846, Pontocaris Bate, 1888 and Parapontocaris Alcock, 1901. In: Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM, vol. 15. Mémoires du Muséum National d'Histoire Naturelle, Paris 168: 269-336.
Chen, H. 1989. Leucosiidae (Crustacea, Brachyura). In: Forest, J. (ed.), Résultats des Campagnes MUSORSTOM, vol. 5. Mémoires du Muséum National d'Histoire Naturelle, Paris 144: 181-264.
Chen, H.L. 1993. Crustacea Decapoda: Dorippidae of New Caledonia, Indonesia and the Philippines. In: Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM, vol. 10. Mémoires du Muséum National d'Histoire Naturelle, Paris 156: 315-345.
Chia, D.G.B., and Ng, P.K.L. 2000. A revision of Eumedonous H. Milne Edwards, 1834 and Gonatontotus White, 1847 (Crustacea: Decapoda: Brachyura: Eumediidae), two genera of crabs symbiotic with sea urchins. Journal of Natural History 34: 15-56.
Clark, P.F., and Ng, P.K.L. 2006. A new species of Notonyx A. Milne-Edwards, 1873 (Crustacea, Brachyura, Goneplacidae) from the intertidal zone of Phuket, Thailand. Zoosystema 28: 539-551.
Crosnier, A. 1985. Crustacés Décapodes: Penaeidea. Les espèces indo-ouest-pacifique du genre Parapeneaeus. In: Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM I et II - Philippines (1976, 1980). Tome 2. Mémoires du Muséum National d'Histoire Naturelle, Paris, ser. A (Zoologie) 133: 303-355.
Crosnier, A. 1988. Sur les heterocarpus (Crustacea, Decapoda, Pandalidae) du sud-ouest de l'océan Indien. Remarques sur d'autres espèces ouest-pacifiques du genre et description de quatre taxa nouveaux. Bulletin du Muséum National d'Histoire Naturelle, Paris 10: 57-103.
Crosnier, A. 1991. Crustacea Decapoda: Les Metapenaeopsis indo-ouest-pacifices sans appareil stridulent (Penaeidae). Deuxième partie. In: Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM. Vol. 9. Mémoires du Muséum National d'Histoire Naturelle, Paris, ser. A (Zoologie) 152: 155-297.
Crosnier, A. 2003. Sicyonia (Crustacea, Decapoda, Penaeidea, Sicyoniidae) de l'indo-ouest Pacifique. Zoosystema 25: 197-250.
Dall, W. 1999. Australian species of Solenoceridae (Penaeidea: Decapoda). Memoirs of the Queensland Museum 43: 553-587.
Dall, W. 2001. Australian species of Aristeidae and Benthesicymidae (Penaeoidea: Decapoda). Memoirs of the Queensland Museum 46: 409-441.
Dampier, W. 1703. A voyage to New Holland, &c. in the year, 1699. Wherein are described, The Canary Islands, the Isles of Mayo and St. Jago. The Bay of All-Saints, with the forts and town of Bahia in Brazil. Cape Salvador. The winds on the Brazilian coast. Abrolho Shallows. A table of all the variations observed in this voyage. Occurrences near the Cape of Good Hope. The course to New Holland. Shark's Bay. The isles and coast, &c. of New Holland. Their inhabitants, manners, customs, trade, etc. Their harbours, soil, beasts, birds, fish, etc. Trees, plants, fruits, &c. Illustrated with several maps and draughts: also divers birds, fishes and plants not found in this part of the world, curiously engraved on copper plates. James and John Knapton London.
http://www.canadiana.org/ECO/ItemRecord?id=e6263e2f9274a786
Davie, P.J.F. 1989a. New records of Demania (Crustacea: Decapoda: Xanthidae) from Australia. Memoirs of the Queensland Museum 27: 123-128.
Davie, P.J.F. 1989b. Two new genera of the family Ptilumnidae (Crustacea: Decapoda: Brachyura) from Queensland, Australia. Journal of Natural History 23: 1353-1365.
Kensley, B. 1989. New genera in the thalassinidean families (Crustacea: Decapoda, Caridea) collected by the RV "Soela" from the northwest Australian shelf. Bulletin of the National Science Museum, Tokyo, Ser. A (Zoology) 13: 103-121.

Hanamura, Y., and Takeda, Y. 1987. Family Pandalidae (Crustacea, Decapoda, Caridea) from eastern Australia with an appendix on a lophogastrian mysid (Mysidae). Crustacean Research 23: 46-60.

Hanamura, Y., and Evans, D.R. 1994. Deepwater caridean shrimps of the families Ophiopiloidae and Pasiphaeidae (Crustacea: Decapoda) from Western Australia, with an appendix on a lophogastrian mysid (Mysidae). Crustacean Research 23: 46-60.

Hayashi, K.-I. 1975. The Indo-West Pacific Processidae (Crustacea, Decapoda, Caridea). Journal of the Shimonoseki University of Fisheries 24: 47-145.

Hayashi, K.-I. 2004. Revision of the Pandalinae (Crustacea: Decapoda: Caridea) from the Philippines. Proceedings of the Biological Society of Washington 120: 159-166.

Hayashi, K.-I. 1999 (Crustacea: Decapoda: Pandalidae). In: Marshall, B.A., and Richer de Forges, B. (eds), Tropical Deep-Sea Benthos, Vol. 23. Mémoires du Muséum National d'Histoire Naturelle, Paris 191: 319-373.

Holthuis, L.B. 1946. Biological results of the Snellius Expedition XIV. The Decapoda Macrura of the Snellius Expedition I. The Stenopodidae, Nephropoidae, Scyllaridae and Palimuridae. Temminckia 7: 1-178,11 pls.

Holthuis, L.B. 1985. A revision of the family Scyllaridae (Crustacea: Decapoda: Macrura). I. Subfamily Ibacinae. Zoologische Verhandelingen, Leiden 218: 1-130.

Holthuis, L.B. 1991. FAO species catalogue. Vol. 13. Marine lobsters of the world. An annotated and illustrated catalogue of species of interest to fisheries known to date. FAO Fisheries Synopsis 125: 1-292.

Holthuis, L.B. 1993. The recent genera of the caridean and stenopodidean shrimps (Crustacea, Decapoda) with an appendix on the Order Amphionidae. National Natuurhistorisch Museum: Leiden. 328 pp.

Holthuis, L.B. 2002. The Indo-Pacific scyllarine lobsters (Crustacea, Decapoda, Scyllaridae). Zoosystema 24: 499-683.

Holthuis, L.B., and Manning, R.B. 1990. Crabs of the subfamily Dorippinae MacLeay, 1838, from the Indo-West Pacific region (Crustacea: Decapoda: Dorippidae). Researches on Crustacea, Carcinological Society of Japan Special Number 3: 1-151.

Jones, D.S., and Morgan, G.J. 1993. An annotated checklist of the Crustacea of Rottnest Island, Western Australia. Pp. 135-162 in: Wells, F.E., Walker, D.I., Kirkman, H., and Lethbridge, R. (eds), Proceedings of the Fifth International Marine Biological Workshop: The Marine Flora and Fauna of Rottnest Island, Western Australia. Vol. 1. Western Australian Museum: Perth.

Kensley, B. 1983. New records of bresiliid shrimp from the Philippines. Microcnemis 35-36: 359-384.

Kensley, B., Tranter, H.A., and Griffin, D.J.G. 1987. Deepwater decapod Crustacea from eastern Australia (Peneidea and Caridea). Records of the Australian Museum 39: 263-331.

Koh, S.K., and Ng, P.K.L. 2000. A review of the spiny crabs of the genus Alopocarcinus Gistel, 1848 (Crustacea: Decapoda: Brachyura: Erithiidae). Raffles Bulletin Of Zoology 48: 123-141.

Komai, T. 2004. A review of the Indo-West Pacific species of the genus Hypothalassia Gistel, 1848 (excluding the G. caeca species group) (Crustacea: Decapoda: Caridea: Hypothalassinidae). In: Marshall, B.A., and Richer de Forges, B. (eds), Tropical Deep-Sea Benthos, Vol. 23. Mémoires du Muséum National d'Histoire Naturelle, Paris 191: 375-610.

Komai, T., and Chan, T.-Y. 2007. A new species of the crangonid shrimp genus Philocerus (Crustacea: Decapoda: Caridea) from the Philippines. Proceedings of the Biological Society of Washington 120: 159-166.

Last, P.R., Lyne, V.D., Yeeles, G.K., Gledhill, D.C., Gomon, M.F., and Rees, A.J.J. 2005. Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf (>40 m depth). The National Oceans Office and CSIRO Marine Research, Australia: Hobart. 98 pp.

Leece, J.E. 1940. Biological results of the Snellius Expedition. VI. The Portunidae of the Snellius Expedition (Part 1). Temminckia 5: 163-188.

Lemaître, R. 1996. Hermit crabs of the family Parapaguridae (Crustacea: Decapoda: Anomura) from Australia: species of Strobopagurus Lemaître, 1889, Sympagurus Smith, 1883 and two new genera. Records of the Australian Museum 48: 163-221.

Lemaître, R. 1999. Crustacea Decapoda: a review of the species of the genus Parapagurus Smith, 1879 (Parapaguridae) from the Pacific and Indian Oceans. In: Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM, vol. 20. Mémoires du Muséum National d'Histoire Naturelle, Paris 180: 303-378.

Lemaître, R. 2004a. A review of Strobopagurus Lemaître, 1889 (Crustacea: Decapoda: Paguroidae: Parapaguridae), with description of a new species. Scientia Marina 68: 355-372.

Lemaître, R. 2004b. A worldwide review of hermit crab species of the genus Sympagurus Smith, 1883 (Crustacea: Decapoda: Parapaguridae). In: Marshall, B.A., and Richer de Forges, B. (eds), Tropical Deep-Sea Benthos, Vol. 23. Mémoires du Muséum National d'Histoire Naturelle, Paris 191: 85-149.

Lewinsohn, C. 1982. Eine neue Art der Gattung Spiropagurus Stimpson (Decapoda) aus dem Roten Meer. Crustacea 42: 212-218.

Lewis, M. 1999. CSIRO-SEBS (Seamount, Epibenthic Sampler), a new epibenthic sled for sampling seamounts and other rough terrain. Deep Sea Research I. Oceanographic Research Papers 46: 1101-1107.

Lucas, J.S. 1980. Spider crabs of the family Hymenosomatidae (Crustacea: Decapoda: Brachyura) with particular reference to the region (Crustacea: Decapoda: Brachyura: Eriphiidae). In: Marshall, B.A., and Richer de Forges, B. (eds), Tropical Deep-Sea Benthos, Vol. 23. Mémoires du Muséum National d'Histoire Naturelle, Paris 191: 85-149.

Macpherson, E. 1990. Crustacea Decapoda: on a collection of Nephropidae from the Indian Ocean and Western Pacific. In: Crosnier, A. (ed.), Résultats des Campagnes
Macpherson, E. 1994. Crustacea Decapoda: Studies on the genus Munida Leach, 1820 (Galachaidae) in New Caledonian and adjacent waters with descriptions of 56 new species. Mémoires du Muséum National d'Histoire Naturelle, Paris 161: 421-569.

Macpherson, E. 2007. Species of the genus Munidopsis Whiteaves, 1784 from the Indian and Pacific Oceans and reestablishment of the genus Galacantha A. Milne-Edwards, 1880 (Crustacea, Decapoda, Galatheidae). Zootaxa 1417: 1-135.

Macpherson, E., and Machordom, A. 2001. Phylogenetic relationships of species of Raymunda (Decapoda: Galatheidae) based on morphology and mitochondrial cytochrome oxidase sequences, with the recognition of four new species. Journal of Crustacean Biology 21: 696-714.

Man, J.G. de 1920. Pasiphaeidae, Stylodactylidae, Hoplophoridae, Nematocarcinidae, Thalassocaridae, Pandalidae, Psalidopodidae, Gnathophyllidae, Processidae, Glyphocrancomidae and Crangonidae. Siboga Expédition 39: 1-318, pls 311-325.

Manning, R.B., and Holthus, L.B. 1981. West African brachyuran crabs. Smithsonian Contributions to Zoology 306: 1-379.

McLaughlin, P.A. 1991. A new genus and two new species of deep-water hermit crabs (Decapoda: Anomura: Paguridae) from the Southern Ocean. Proceedings of the Biological Society of Washington 107: 469-481.

McLaughlin, P.A. 1997. Crustacea Decapoda: hermit crabs of the family Paguridae from the KARUBAR cruise in Indonesia. In: Crosnier, A. and Bouchet, P. (eds), Résultats des Campagnes MUSORSTOM, vol. 16. Mémoires du Muséum National d'Histoire Naturelle, Paris 172: 433-572.

McLaughlin, P.A. 2000. Crustacea Decapoda: Porcellanopagurus Filhol and Solitariopagurus Türkay (Paguridae), from New Caledonian area, Vanuatu and the Marquesas: new records, new species. In: Crosnier, A. (ed), Résultats des Campagnes MUSORSTOM, vol. 21. Mémoires du Muséum National d'Histoire Naturelle, Paris 184: 389-414.

McLaughlin, P.A. 2003. Illustrated keys to families and genera of the superfAMILY Paguroidea (Crustacea: Decapoda: Anomura), with diagnoses of genera of Paguridae. Memoirs of the Museum Victoria 60: 111-144.

McLaughlin, P.A. 2004. A review of the hermit crab genus Nematopagurus A. Milne-Edwards and Bouvier, 1892 (Crustacea: Decapoda: Paguridae). In: Marshall, B.A., and Richer de Forges, B. (eds), Tropical Deep-Sea Benthos, Vol. 23. Mémoires du Muséum National d'Histoire Naturelle, Paris 191: 151-229.

McLaughlin, P.A., and Haig, J. 1989. On the status of Pylonagopus zebra (Henderson), P. magnimanus (Henderson), and Galapagopus teevanus Boone, with descriptions of seven new species of Pylonagopus (Crustacea: Anomura: Paguridae). Micronesia 22: 123-171.

McLaughlin, P.A., and Haig, J. 1996. A new genus for Anapagridae sensu de Saint Laurent-Dechancé, 1966 (Decapoda: Anomura: Paguridae) and descriptions of four new species. Proceedings of the Biological Society of Washington 109: 75-90.

McLaughlin, P.A., and de Saint Laurent, M. 1998. A new genus for four species of hermit crabs formerly assigned to the genus Pagurus Fabricius (Decapoda: Anomura: Paguridae). Proceedings of the Biological Society of Washington 111: 158-187.

McLay, C.L. 1993. Crustacea Decapoda: the sponge crabs (Dromiidae) of New Caledonia and the Philippines with a review of the genera. In: Crosnier, A. (ed.), Resultats des Campagnes MUSORSTOM, vol. 10. Mémoires du Muséum National d'Histoire Naturelle, Paris 156: 111-251.

McLay, C.L. 1999. Crustacea: Decapoda: Revision of the family Dynomenidae. In: Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM. Vol. 20. Mémoires du Muséum National d'Histoire Naturelle, Paris 180: 427-569.

Miers, E.J. 1876. On Actaeomorpha erosa, a new genus and species of Crustacea. Journal of the Linnean Society of London (Zoology) 13: 183-185, pl. 114.

Miers, E.J. 1879. Crustacea. In: An account of the petrological, botanical, and zoological collections made in Kerguelen's Land and Rodriguez during the Transit of Venus Expeditions ... in the years 1874-75. Philosophical Transactions of the Royal Society of London 168: 200-214, pl. 211.

Milne Edwards, H. 1837. Histoire naturelle des crustacés, comprenant l'anatomie, la physiologie et la classification ces animaux. Vol. 2. Librairie Encyclopédique de Roret: Paris. 531 pp.

Morgan, G.J. 1991. A review of the hermit crab genus Calcinus Dana (Crustacea: Decapoda: Diogenidae) from Australia, with descriptions of two new species. Invertebrate Taxonomy 5: 869-913.

Morgan, G.J., and Jones, D.S. 1991. Checklist of marine decapod Crustacea of southern Western Australia. Pp. 483-497 in: Wells, F.E., Walker, D.I., Kirkman, H., and Lethbridge, R. (eds), Proceedings of the Third International Marine Biological Workshop: The Marine Flora and Fauna of Albany, Western Australia. Vol. 2. Western Australian Museum: Perth.

Ng, P.K.L. 1987. The Indo-Pacific Plummeridae II. A revision of the genus Rhizopa Stimpson, 1858, and the status of the Rhizopinae Stimpson, 1858 (Crustacea, Decapoda, Brachyura). Indo-Malayan Zoology 4: 69-111.

Ng, P.K.L. 1993. Krausiinae, a new subfamily for the genera Kraussia Dana, 1852, Palpedia, new genus, and Garthasia new genus (Crustacea: Decapoda: Brachyura: Xanthidae), with descriptions of two new species from Singapore and the Philippines. Raffles Bulletin Of Zoology 41: 133-157.

Ng, P.K.L. 1996. Garthambrus, a new genus of deep water parthenopid crabs (Crustacea: Decapoda: Brachyura) from the Indo-Pacific, with description of a new species from the Seychelles. Zoologische Mededelingen, Leiden 70: 155-168.
Ng, P.K.L. 1998. Crabs. Pp. 1045-1155 in: Carpenter, K.E., and Niem, V.H. (eds), The living resources of the western central Pacific. Vol. 2. Cephalopods, crustaceans, holothurians and sharks. FAO: Rome.

Ng, P.K.L., and Chuang, C.T.N. 1996. The Hymenosomatidae (Crustacea: Decapoda: Brachyura) of southeast Asia, with notes on other species. Raffles Bulletin of Zoology, Supplement 3: 1-82.

Ng, P.K.L., and Chan, T.-Y. 2000. Note on Mathildella serrata (Sakai, 1974) (Crustacea: Decapoda: Brachyura: Goneplacidae) from deep water in Taiwan. Pp. 149-153 in: Hwang, J.-S., Wang, C.-H., and Chan, T.-Y. (eds), Proceedings of the International Symposium on Marine Biology in Taiwan -Crustacea and zooplankton taxonomy, ecology and living resources, 27-27 May, 1998. Taiwan. National Taiwan Museum: Taipei.

Ng, P.K.L., and Manuel-Santos, M.R. 2007. Establishment of the Vulturinidae, a new family for an unusual new genus and new species of Indo-West Pacific crab (Crustacea: Decapoda: Brachyura: Goneplacidae), with comments on the taxonomy of the Goneplacidae. Zootaxa 1558: 39-68.

Ng, P.K.L., Chan, T.-Y., and Wang, C.-H. 2000. The crabs of the families Dromiidae, Raninidae, Corystidae and Paliacidae (Crustacea: Decapoda: Brachyura) of Taiwan. Pp. 155-180 in: Hwang, J.-S., Wang, C.-H., and Chan, T.-Y. (eds), Proceedings of the International Symposium on Marine Biology in Taiwan -Crustacea and zooplankton taxonomy, ecology and living resources, 27-27 May, 1998. Taiwan. National Taiwan Museum: Taipei.

Ng, P.K.L., Guinot, D., and Davie, P.J.F. 2008. Systema Brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. Raffles Bulletin Of Zoology 17: 1-286.

Ngoc-Ho, N. 1994. Some Callianassidae and Upogebiidae from Australia with description of four new species (Crustacea: Decapoda: Thalassinidea). Memoirs of the Museum of Victoria 54: 51-78.

Ngoc-Ho, N. 2006. Three species of Acanthaxis Sakai & de Saint Laurent, 1989, including two new to science, from the Solomon Islands and New Caledonia (Crustacea, Thalassinidea, Axiidae). Zoootaxa 1240: 57–68.

Noël, P. 1986. Crustacés Décapodes: Processidés de l’Indo-ouest-Pacifique. In: Forest, J. (ed.), Résultats des Campagnes MUSORSTOM I & II, Philippines, vol. 2. Mémoires du Muséum National d’Histoire Naturelle, Paris 133: 261-301.

O’Hara, T.D., and Poore, G.C.B. 2000. Patterns of distribution and new species of Indo-West Pacific crab (Crustacea: Decapoda) of southeast Asia, with notes on other species. Zoosystema 19: 345-420.

Poore, G.C.B. 2004. Marine decapod Crustacea of southern Australia. A guide to identification (with chapter on Stomatopoda by Shane Ahyong). CSIRO Publishing: Melbourne. 574 pp.

Poore, G.C.B. in press. Thalassinidean shrimps (Crustacea: Decapoda) from north-western Australia, including five new species. Records of the Western Australian Museum.

Poore, G.C.B., and Griffin, D.J.G. 1979. The Thalassinidea (Crustacea: Decapoda) of Australia. Records of the Australian Museum 32: 217-321.

Poore, G.C.B., Hart, S., Taylor, J., and Tudge, C. 1998. Decapod crustaceans from Tasmanian seamounts. Pp. 65-78 in: Koslow, J.A., and Gowlett-Holmes, K. (eds), The seamount fauna of southern Tasmania: benthic communities, their conservation and impacts of traveling. Final report to Environment Australia and The Fisheries Research Development Corporation. CSIRO Marine Research: Hobart.

Poupin, J., and McLaughlin, P.A. 1998. Additional records of Calanus species (Decapoda: Anomura: Diogenididae) from French Polynesia with description of three new species and a key to Indo-West Pacific species of the genus. Crustacean Research 27: 9-27.

Rahayu, D.L. 2006. The genus Paguristes (Crustacea, Decapoda, Diogenididae) from Indonesia. In: Richer de Forges, B., and Justine, J.-L. (eds), Tropical Deep-Sea Benthos, Vol. 24. Mémoires du Muséum National d’Histoire Naturelle, Paris 193: 349-374.

Rathbun, M.J. 1906. The Brachyura and Macrura of the Hawaiian Islands. Bulletin of the United States Fisheries Commission 23: 827-930. pls 821-824.

Sakai, K. 1986. Axiid collections of the Zoological Museum, Copenhagen, with the description of one new genus and six.
new species (Axiidae, Thallassinidea, Crustacea). Zoologica Scripta 21: 157-180.

Sakai, K. 1993. On a collection of Upogebiidae (Crustacea, Thalassinidea) from the Northern Territory Museum, Australia, with the description of two new species. The Beagle, Occasional Papers of the Northern Territory Museum of Arts and Sciences 10: 87-114.

Sakai, K. 1994. Eleven species of Australian Axiidae (Crustacea: Decapoda: Thalassinidea) with descriptions of one new genus and five new species. The Beagle, Occasional Papers of the Northern Territory Museum of Arts and Sciences 11: 175-202.

Sakai, K. 1999. Synopsis of the family Callianassidae, with keys to subfamilies, genera and species, and the description of new taxa (Crustacea: Decapoda: Thalassinidea). Zoologische Verhandelingen, Leiden 326: 1-152.

Sakai, K. 2002. Callianassidae (Decapoda, Thalassinidea) in the Andaman Sea, Thailand. Phuket Marine Biological Center Special Publication 23: 461-532.

Sakai, K. 2005. Callianassoidae of the world (Decapoda: Thalassinidea). Crustacea Monographs 4: 1-285.

Sakai, K., and Ohta, S. 2005. Some thalassinid collections by R/V "Hakuhou-Maru" and R/V "Tansei-Maru", University of Tokyo, in the Sulu Sea, Philippines, and in Sagami Bay and Suruga Bay, Japan, including two new species, one new genus, and one new family (Decapoda, Thalassinidea). Crustacea 78: 67-93.

Salva, E.W., and Feldmann, R.M. 2001. Reevaluation of the family Atelecyclidae (Decapoda: Brachyura). Kirtlandia 52: 9-62.

Serène, R. 1984. Crustacés Décapodes Brachyphores de l'Océan Indien Occidental et de la Mer Rouge, Xanthoidae: Xanthidae et Trapezidiidae. Avec un addendum par Crosnier, A.: Carpiliidae et Menippidae. Faune Tropicale 24: 1-400.

Serène, R., and Lohavanijaya, P. 1973. The Brachyura (Crustacea: Decapoda) collected by the Naga Expedition, including a review of the Homolidae. Naga Report. Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 4: 1-186, 186 figs, 121 pls.

Short, J.W., and Davie, P.J.F. 1993. Decapoda Crustacea - non-Caridea. Pp. 67-69; Appendix 67 on p. 123 in: Russell, B.C., and Hanley, J.R. (eds). The marine biological resources and heritage values of Cartier and Hibernia Reefs, Timor Sea. Northern Territory Museum of Arts and Sciences: Darwin.

Stephenson, W. 1972. An annotated check list and key to the Indo-West-Pacific swimming crabs (Crustacea: Decapoda: Portunidae). Bulletin of the Royal Society of New Zealand 10: 1-64.

Tan, C.G.S. 1996. Leucosiidae of the Albatross expedition to the Philippines, 1907-1910 (Crustacea: Brachyura: Decapoda). Journal of Natural History 30: 1021-1058.

Tan, C.G.S., and Ng, P.K.L. 1996. A revision of the Indo-Pacific genus Oreophorus Rüppell, 1830 (Crustacea: Decapoda: Brachyura: Leucosiidae). Pp. 101-189 in: Richer de Forges, B. (ed.) Les fonds meubles des lagons de Nouvelle-Calédonie (sédimentologie, benthos). Vol. 2. ORSTOM Editions: Paris.

Tan, S.H., Huang, J.F., and Ng, P.K.L. 2000. The deep-water crabs of the families Homolidae and Latreilliidae (Crustacea: Decapoda: Brachyura) from Taiwan. Pp. 181-189 in: Hwang, J.-S., Wang, C.-H., and Chan, T.-Y. (eds), Proceedings of the International Symposium on Marine Biology in Taiwan - Crustacea and zooplankton taxonomy, ecology and living resources, 27-27 May, 1998, Taiwan. National Taiwan Museum: Taipei.

Tavares, M. 1993. Crustacea Decapoda: Les Cyclopidriidae et Cymonomidae de l'Indo-Ouest Pacifique à l'exclusion du genre Cymonomus. In: Crosnier, A. (ed.), Résultats des campagnes MUSORSTOM Vol. 10. Mémoires du Muséum National d'Histoire Naturelle, Paris 156: 253-313.

Tesch, J.J. 1918. Decapoda F. (Decapoda Brachyura continued) of Western Australia and one from India. Crustacea 31: 81-89.

Tyndale-Biscoe, M., and George, R.W. 1962. The Oxystomata and Gymnopleura (Crustacea, Brachyura) of Western Australia with descriptions of two new species from Western Australia and one from India. Journal of the Royal Society of Western Australia 45: 65-96.

Vereshchaka, A.L. 2000. Revision of the genus Sergia (Decapoda: Dendrobranchiata: Sergestidae): taxonomy and distribution. Galathea Reports 18: 69-207, pls 202-205.

Wadley, V., and Evans, D. 1992. Crustaceans from the Deepwater Trawl Fisheries of Western Australia. Western Australian Museum: 1-44.

Wec, D.P.C., and Ng, P.K.L. 1995. Swimming crabs of the genera Charybdis De Haan, 1833, and Thalamita Latreille, 1829 (Crustacea: Decapoda: Brachyura: Portunidae) from Peninsular Malaysia and Singapore. Raffles Bulletin of Zoology, Supplement 1: 1-128.

Williams, A.B. 1982. Revision of the genus Latrellia Roux (Brachyura: Homoloidea). Quaderni del Laboratorio di Tecnologia della Pesca 3: 227-255.
Index to families and genera

Family	Page
Acanthaxius	92
Acanthephyra	85
Achaenus	57
Actae	
Actaeomorpha	41
Aegaon	81
Aethridae	41
Agononida	18
Alainopasiphaea	89
Albunea	23
Albuneida	23
Allogalathea	18
Alpheida	78
Alpheopis	78
Alpheus	78
Ambiaxius	94
Anapagrides	27
Anchiostioides	80
Archistoididae	80
Arcania	49
Aristeida	12
Aristaeus	12
Atelecyldiae	43
Atergatopsis	74
Aulacolombrus	64
Austrodromidia	37
Austrobulinia	54
Axiiida	92
Axiopis	92
Bathypaguropsis	27
Bathypalaemonella	80
Bathysalmonellidae	80
Bathypilumnes	65
Benthesicymidae	12
Benthesicymus	12
Bouvieraxius	92
Bresiliida	80
Caecopilumnes	65
Calappa	42
Calappidae	42
Calcinus	24
Callianassa	94
Callianassidae	94
Calocaridae	93
Calocarididae	94
Calvactaea	74
Camatopis	46
Camposcia	58
Campylonestidae	80
Campylonotus	80
Carcinoplax	47
Carpiidae	43
Carpius	43
Cestopagurus	27
Charybdis	67
Chasmocarididae	46
Chirostylidae	17
Chlorodiella	74
Chlorotocella	87
Chlorotocus	87
Ciliopagurus	24
Corallianassa	94
Corystidae	44
Cosmonotus	
Crangonoidae	81
Crenarchus	16
Cryptoluta	65
Cyclodorippidae	36
Cynomonida	36
Cynomonus	36
Cyrtomaia	58
DagnAudus	38
Dardanus	24
Demania	75
Diogenes	25
Diogenidae	24
Discus	80
Dorchynochus	58
Dorippe	44
Dorippidae	44
Dorphinauxis	93
Drachiella	41
Drionia	37
Dromiidae	37
Dumea	58
Dynomenidae	38
Ethia	50
Echinotholus	67
Engystenopus	92
Enriquela	18
Entomonyx	60
Epphiplias	58
Epialtidae	54
Epigomorchestra	37
Epilithia	39
Ethusa	45
Ethusina	45
Eusalus	84
Eugonatonotidae	82
Eugonanotus	82
Eumeredon	65
Euaspisphaeus	89
Eurypliciidae	46
Fullodromia	37
Galathes	18
Galathaeida	18
Garthabrunnus	64
Glyphocraginonida	83
Glyphocraginonida	83
Gomezia	44
Goneplacidae	47
Gourretidae	95
Griffithinia	54
Grypachaenae	59
Hadropneaeus	15
Halicarcinus	57
Haliporoides	15
Haliporus	15
Hayashidonus	89
Hemipagurus	27
Heterocarpoides	87
Heterocarpus	87
Heteropilumnes	66
Heteroplax	46
Hexaplex	47
Decapod Crustacea of the continental margin of southwestern and central Western Australia

Family	Species
Hexapodidae	Myrane
Hippolytidae	Nanocassiope
Hirsutodynomene	Naxioides
Homoioplaenae	Nectocarcinus
Homala	Nematocarcinidae
Homolidae	Nematocarcinidae
Homologenidae	Nematocarcinidae
Hystenidae	Neodorippe
Hymenopseudae	Neopalicus
Hymenosomatidae	Nephropidae
Hypothalassidae	Nephropidae
Hypothalassisidae	Notonyx
Ibacus	Notoceans
Inachidae	Novactaea
Iphiculidae	Odontozona
Iphicus	Oncinopus
Jancella	Oncopagurus
Jonas	Oplophoridae
Krangalangia	Oplophorus
Lahaina	Oropheus
Laretia	Ovalipes
Latreillidae	Pachycheles
Latreillopss	Paguridae
Lauriea	Paguristes
Lebbeus	Palaeomonidae
Leptochela	Palapeda
Leptomithrax	Palicidae
Leucosia	Paliculus
Leucosidae	Palinuridae
Libystes	Pandalidae
Lioecarcinus	Panopeidae
Lipkecallianassa	Paracaridae
Lissocarcinus	Paradorippe
Lissopocellana	Paragopagurus
Lithodes	Paralomis
Lithodidae	Paramelopsis
Lophopagurus	Paramunida
Lophoplatix	Paragopagurida
Lupocyclus	Parapagurus
Lyreidus	Parapalicus
Lysmata	Parapeneaenae
Maja	Parapontocaris
Majidae	Parapontophilus
Marianaxius	Paraselvynia
Mathildellidae	Parathranites
Medaeus	Paraxanthias
Megaeathyesius	Paraxanthoids
Merhippolyte	Parilia
Merocyptus	Parthenope
Mertonia	Parthenopidae
Metacranugon	Pasiphaea
Metaneprops	Pasiphaeidae
Metapenaeopus	Penaeae
Micheala	Penaeae
Micheleidae	Pentacelaes
Michelopagurus	Periclimenes
Micropalicus	Petrolithes
Monodaeus	Phalangimpus
Munidida	Philocheras
Mundiopsis	Philysa
Murista	Phyliadiorrhynchus
Myra	Physaehaus
Pilumnidae	Pilumnopeus

105
Pilumnus ... 66
Planoderogmus .. 62
Platylambrus .. 65
Platymaia ... 60
Platypilumnus .. 47
Platypodia ... 77
Pleistacantha .. 60
Plesionika .. 87
Polecheles .. 91
Polychelidae .. 91
Polyonyx ... 23
Pontocaris ... 82
Porcellanella .. 23
Porcellanidae ... 22
Porcellanopagurus .. 29
Portunidae .. 67
Portunus ... 70
Prismatopus .. 62
Processa ... 89
Processidae .. 89
Procletes .. 88
Propagurus ... 29
Pseudaristeus ... 12
Pseudolaebrus .. 65
Pseudopalicus .. 64
Psopheticus ... 47
Puerculus .. 16
Pycnochaela .. 47
Pylocheles .. 33
Pylochelidae .. 33
Pylopagopus .. 29
Quadrella ... 73
Randonia .. 53
Raninidae ... 40
Raymunida ... 21
Remiarctus ... 16
Retrolampa ... 72
Retropolmaidae .. 72
Rhinolambrus .. 65
Rhynochocinetes ... 90
Rhynochocinetidae .. 90
Rochinia .. 56
Sabinea ... 82
Scyllaridae .. 16
Sergestes .. 14
Sergestidae ... 14
Sergia ... 14
Sicyonia .. 14
Sicyoniidae .. 14
Solenocera ... 15
Solenoceridae .. 15
Spiropagurus ... 29
Stenonopa ... 23
Stenopodidae ... 92
Strigopagurus .. 26
Strobopagurus ... 32
Sunipea ... 60
Symagurus ... 33
Synalpheus .. 79
Systellaspis .. 86
Takedromia .. 37
Tethisea .. 95
Thalamita .. 71
Thallassocarididae ... 90
Thalassocaris .. 90
Thyrolambrus ... 65
Tozeuma ... 84
Trachypenaeus .. 13
Trapzidae .. 73
Trichopagurion ... 43
Trigonoplax .. 57
Tymolus .. 36
Umalia ... 41
Upogebia ... 96
Upogebiidae ... 96
Uropagurus .. 17
Xanthidae .. 74
Yaldwynopsis ... 39
