Quality Identification of Chemical Grouting Improvement by Electrical Logging

Yasutoshi OHNO*, Atsushi YASHIMA**, Yoshinobu MURATA*** and Kenji SHIMOSAKA****

The confirmation of the volume of the improved body formed by chemical grouting method is usually performed using the uniaxial compressive strength. However, because the target strength of the improved body is not so high, it is difficult to evaluate the difference in strength before and after the improvement. Therefore, it is required to introduce another indicator representing the difference before and after the improvement more sensitively instead of uniaxial compressive strength. In this study, we focused on the change in resistivity before and after the improvement. In this paper, we report the results of small soil tank experiments and field demonstration experiments conducted in order to clarify the electrical resistivity characteristics of improved sand and the scope of application by the proposed method.

Key words: Chemical grouting method, Electrical logging, Electrical resistivity, Pore water salinity

1 論 文

薬液注入工法は、既存構造物下地盤、狭隘箇所の液状化対策として広く用いられている。同工法の改良効果確認は、一般的に一軸圧縮強さを用いて行われているが、改良強度は、$q_u=50〜100\text{kPa}$ 程度と、さほど高いものではないため、サンプリングによる乱れの影響等による測定結果のばらつきが大きく、改良前後の特性変化を定量的に把握することが難しい。そこで、強度に代わるより敏感な特性値の定量的把握が求められている。

本研究では、改良前後の電気比抵抗変化に着目した。電気比抵抗による薬液改良効果の評価手法については、小峯が比抵抗トモグラフィを利用した場合の適用範囲を示しており、薬液、間隙水の電気比抵抗および計測方法により適用限界が異なる。また、電気比抵抗の測定法については述べられていないが、間隙水が真水に近く電気比抵抗が大きい場合には、薬液注入後の薬液浸透の有無が判別できる可能性はあるものの、強度の定量的評価は難しく、沿岸地域の埋立地等においての電気比抵抗が小さい場合には薬液浸透の判別に適用できる可能性は低いとの指摘もある。

本稿では、著者らが提案する電気検層を用いた評価手法の適用範囲を明らかにするために実施した小型土槽実験結果および沿岸地帯埋立地における現地実証実験結果について報告する。なお、電気比抵抗測定は、点電極を用いた押込型マイクロ電気検層法を新たに開発した。

2 小型土槽実験

2.1 実験内容

本実験は、間隙水の塩分濃度（電気比抵抗）が電気比抵抗による薬液注入改良効果判定への影響を確認する目的で実施した。

実験は、Fig.1に示す小型円筒土槽を用い、塩分濃度の異なる間隙水にて作製した未改良地盤と同地盤に特殊シリカ液を注入して改良した改良地盤を作製し、各地盤の電気比抵抗を測定した。実験に使用した砂は、珪砂7号（瀬戸内）および速生珪砂である。土槽地盤の作製条件をTable 1に示し、使用砂の物理特性をTable 2に示す。また、

Fig.1 Small cylindrical soil tank.
電気比抵抗の測定は、Fig.2に示す電気検層プローブ（点電極、電極配置：4極、電極間隔：25mm）を用いた。測定は、Fig.3に示す平面位置にてプローブを砂層上端から圧入し、プローブ先端を深度1cm、1cm、16cmおよび17cmにて実施した。また、改良地盤については比抵抗測定後、内径75mm、高さ150mmのシンウォールライナーを設置して乱れの少ない試料を採取して、端面成形による一軸圧縮試験、シリカ含有量試験を実施した。

2-2 特殊シリカ液の電気比抵抗特性
実験に際し、特殊シリカ液の電気比抵抗特性を把握するため、薬液シリカ濃度毎の電気比抵抗を測定した。実験に使用した特殊シリカ液の電気比抵抗と薬液シリカ濃度の関係をFig.4に示す。同図の電気比抵抗は、シリカ濃度の増加とともに指数関数的に減少し、2.0wt%以上では0.4〜1.5Ω・mの範囲にある。

2-3 実験結果
2-3-1 測定手法の違いによる電気比抵抗の測定精度
Fig.5に示す改良地盤の電気比抵抗と未改良地盤の電気比抵抗の関係を示す。同図で、Rimp/Rpmの値が0.1より大きいと、電気比抵抗値のばらつきが大きく、良好な精度を有する評価が困難である。すなわち、特殊シリカ液の電気比抵抗は概ね1Ω・m以下であるため、間隙水の電気比抵抗が10Ω・m以下（間隙水の塩分濃度で600ppm程度以上）では、良好な精度が得られない。

Fig.6に示す改良体および未改良体の電気比抵抗の関係を示す。未改良体にて電気検層により測定した未改良土および改良土の電気比抵抗の変動係数は、Rimp/Rpmが0.0〜1.0の範囲、間隙水の塩分濃度が50〜30,000ppmの範囲において改良体の(瀬戸産)0.04程度および0.02程度、遠州珪砂：0.06程度および0.02程度とばらつきは少ない。
2-3-2 未改良・改良地盤の電気比抵抗特性
Fig.7に珪砂7号（瀬戸産）、遠州産の未改良、改良地盤の電気比抵抗と間隙水、薬液の電気比抵抗の関係を示す。未改良、改良地盤の電気比抵抗は、間隙水、薬液の電気比抵抗に支配され、未改良地盤、改良地盤の電気比抵抗と間隙水、薬液の電気比抵抗の関係は、極めて相関性が高く、縦軸をy、横軸をxとすると、y=10のx乗に近似される。

Fig.8に示す薬液の電気比抵抗～シリカ濃度の関係（測定値）とFig.7に示す近似式y=10のaxを用いてFig.4に示す薬液の電気比抵抗～シリカ濃度関係から計算した改良砂の電気比抵抗～シリカ濃度の関係の比較を示す。薬液シリカ濃度2wt%以上では、薬液の電気比抵抗が0.4～1.3Ω・mの範囲に対し、改良地盤の電気比抵抗では1.0～3.3Ω・mと範囲幅が大きくなる。

2-3-3 本手法の適用範囲
Fig.9およびFig.10に珪砂7号（瀬戸産）および遠州珪砂の未改良地盤、改良地盤の電気比抵抗と間隙水塩分濃度の関係を示す。未改良地盤では、間隙水の塩分濃度が高くなるにつれ抵抗が小さくなる。一方、改良地盤では、間隙水の塩分濃度に関わらずほぼ一定となり、未改良地盤と改良地盤の電気比抵抗は、間隙水の塩分濃度が10,000ppm程度で同程度となる。同濃度を超えると未改良地盤の電気比抵抗は改良地盤の電気比抵抗より小さくなる。以上より、未改良・改良の電気比抵抗の差異は、地盤種別によるが、珪砂7号（瀬戸産）および遠州珪砂では、間隙水の塩分濃度が5,000ppm程度までは、判別することが可能と考えられる。

2-3-4 電気比抵抗を用いた改良効果評価方法
本研究では、改良砂の一軸圧縮強さと薬液シリカ濃度関係と改良砂の電気比抵抗と薬液シリカ濃度関係を用いて改良効果の定量的評価を行った。具体的には、室内配合試験時に供試体の電気比抵抗を測定することで、Fig.11に示す一軸圧縮強さ、電気比抵抗と薬液シリカ濃度の関係が得られる。一軸圧縮強さ～薬液シリカ濃度の関係から設計基準強度Quaに相当する薬液シリカ濃度SiO2kを求め、電気比抵抗～薬液シリカ濃度の関係よりSiO2kに相当する電気比抵抗値Rimpを求める。Rimpは、設計基準強度Quaを満足する電気比抵抗値に相当することから、現地で測定した改良体の電気比抵抗RimpがRimp以下であることが設計基準強度Quaを満足すると評価する。次節の現地実証実験では、本評価方法を用いて改良効果の定量的評価を行う。

3 現地実証実験
3-1 実験概要
本実験は、愛知県西尾市一色漁港の埋立地にて実施した。実験は、岸壁から約25m背後位置に直径2.5mの薬液改良体を4体（改良土量：8m³×4体 = 32m³）造成し、
小型動的コーン貫入試験を実施後、同貫入孔を利用して押込型マイクロ電気検層により電気比抵抗を測定し、改良域の改良効果を評価した。Fig.12,13に改良体の平面・断面図および調査位置を示す。改良仕様は、特殊シリカ液濃度9wt%、注入率40.5%、設計基準強度$q_{uck}=100kPa$である。

実験は、未改良、薬液注入直後（材令90日）および注入後14日に小型動的コーン貫入試験と電気検層を実施した。また、試験終了後、改良体をGL-2.0mまで発掘し、出来形状を確認するとともに、ブロックサンプリングし、軸圧縮試験、破壊し3軸試験等を実施した。

3.2 押込型マイクロ電気検層
従来の電気検層を用いて地盤の電気比抵抗を測定する手法として、スウェーデン式サウンディングの測定孔を利用した手法と、静的コーン貫入試験のコーン上端ロッド部に電極を配置した手法があり、いずれも円筒状に配置した電極を用い、電極配置は4種、電極間隔は1種類としている。なお、孔の電極配置は4種、電極間隔は1種類であり、改良体に対する測定孔径の影響が極めて大きく、電極間距離は同程度の寸法にする必要があると指摘している。

新たに開発した押込型マイクロ電気検層法は、小型動的コーン貫入試験により形成された孔に電極プローブを押込む方法を採用しており、孔壁、孔底等による貫入抵抗を軽減するため、孔径より小さな径の電極プローブを押込む。このため、孔壁と電極との離れや電極間距離の影響が測定抵抗に影響することから、一定方向に線形に電極を孔壁に押付けることができる点電極を採用している。

また、本手法の電極プローブをFig.14に示す。同プローブは、小型動的コーン貫入試験（先端コーン外径5.5mm）の貫入孔を押し込むことを想定して直径32mm、電極（突出長1mm）の孔壁への密着を確保するため、電極の背面前に高さ3mmの穴を設けた。また、電極配置は2極（スクリュ式）、電極間隔は25mm、3極を用いて壁面からの貫入孔が異なる電気比抵抗を測定した。このため、地表部には遠電極2極の設置が必要となる。

3.3 実験サイトの概要
Fig.15にBor.事前-1～3の土質柱状図とN値を示す。地層は地表面から礫混り砂、砂質シルト、シルト質砂を主体とし、後述の3.4に示すように改良対象層の礫混じり砂層および、砂質シルト層を層状に含む。Fig.16に地下水の電気比抵抗および塩分濃度を示す。
電気供給を用いた薬液注入口法の改良効果確認

の深度分布を示す。地下水の塩分濃度は，実験ヤード近くで採出した海水の塩分濃度 24,500ppm に対して，700～7,400ppm の範囲にある。

3-4 実験結果

3-4-1 発掘による改良体出来形 Fig.17 に改良体の発掘写真を示し，Fig.18 にブロックサンプリング試料を示す。GL-2m 深度での改良体は箇所によって砂の粒径が異なり，改良体 No.1,3 は礫混り砂 (d50=0.62～0.82mm, φ=3.8～4.2%) を主体とした改良体，改良体 No.2,4 はシルト質砂 (d50=0.12mm, φ=38.4%) を主体とした改良体であった。また，ブロックサンプリング試料からわかるように改良体内に粘土質およびシルトを層状に含む。

3-4-2 一軸圧縮試験，線返し三軸試験結果 ブロックサンプリングにて採取した改良体の一軸圧縮強さは，礫混り砂を主体とした改良体 (No.1,3) にて，qs = 50～128kPa [平均値: qs=101kPa]，シルト質砂を主体とした改良体 (No.2,4) にて，qs = 82～85 [平均値: qs=83kPa] であった。改良体 No.3 の液状化強度比 Rl=imp) は，Rl(imp)=1.07 で，未改良砂（礫混り砂）の液状化強度比 Rl=imp)=0.17 の約 6 倍であった。

3-4-3 小型動的コーン貫入試験・電気検層結果 現地で測定した電気比抵抗に基づいて改良効果を定量的に評価するため，前述した「電気比抵抗を用いた改良効果評価方法」に基づいて設計基準強度を満足する改良体の電気比抵抗値を求めた。Fig.19 に室内配合試験より求めた改良体の一軸圧縮強さおよび薬液シリカ濃度の関係を示し，Fig.20 に同配合試験の改良供試体の電気比抵抗と薬液の電気比抵抗 R 的測定値から求めた近似式，Rimp)=10^3 R 用いて，Fig.4 に示す薬液の電気比抵抗とシリカ濃度間から算出した改良体の電気比抵抗とシリカ濃度の関係を示す。一軸圧縮強さと薬液シリカ濃度の関係示す。設計基準強度 qs=100kPa に相当する薬液シリカ濃度は，SiO2k=5wt%程度となり，Fig.20 より SiO2k =5wt%に相当する改良体の電気比抵抗値 R 約 5Ω・m である。したがって，現地で測定される改良体の電気比抵抗（平均値）が，5Ω・m 以下であれば，改良体の設計基準強度を満足しているものと判断する。

Fig.16 Resistivity and salinity in underground water.

Fig.17 Excavated panoramic view of the improved area.

Fig.18 Improved body block samples.

Fig.19 Unconfined compression strength - Silica concentration relationship.

Fig.20 Resistivity - Silica concentration relationship.

Fig.21 に No1 値の深度分布，Fig.22 に電気比抵抗 R の深度分布を示す。測定位置は，改良体中心（0.0 60cm）位置（改良体半径の 1/2），改良体の材令は，0 日と 14 日である。改良後の No1 値は，改良体 No.1, No.4 ともばらつきが大きく，材令 0.14 日において差異が見られない，50cm 毎の No1 値増分は，改良体 No.3 および No.4 にて概ね 1～12 および 1～15 の範囲にあるが，GL-3.25m 以深では 1～2 程度であった。これは，事前 Bor-3 等で確認された GL-3.25m 以深に分布する粘性土，シルト質砂の影響を考えられる。
電気比抵抗は、改良前後で大きな変化を示さず、改良体No.3と改良体No.4の電気比抵抗値は、改良前後で大きく低下している。また、両方法による差はほとんどない。改良体No.3は、改良体No.4の改良効果を示しており、電極の孔壁への圧着不良または測定孔壁周辺の乱れが考えられる。改良前後の電気比抵抗を比較すると、改良体No.3でも電気比抵抗が大きく低下している。また、材料が実験で用いた試料を基にした評価手法の適用範囲を明らかにする目的で小型土槽実験および沿岸部埋立地における現地実証実験を実施した。実験の結果、本手法により得られた改良地盤の電気比抵抗は、地下水の塩分濃度が700〜7,400ppmの範囲にある沿岸部埋立地にて、薬液注入前後の比抵抗変化が明らかに見られた。また、現地で測定された電気比抵抗値から、本評価手法に基づいて推定した改良体の電気比抵抗値は、改良体No.3より採取したブロックサンプリング試料の電気比抵抗値と比較して概ね妥当である。

4 結 言

本実験では、提案する電気検層を用いた評価手法の適用範囲を明らかにする目的で小型土槽実験および沿岸部埋立地における現地実証実験を実施した。実験の結果、本手法により得られた改良地盤の電気比抵抗は、地下水の塩分濃度が700〜7,400ppmの範囲にある沿岸部埋立地にて、薬液注入前後の比抵抗変化が明らかに見られた。また、現地で測定された電気比抵抗値から、本評価手法に基づいて推定した改良体の電気比抵抗値は、改良体No.3より採取したブロックサンプリング試料の電気比抵抗値と比較して概ね妥当である。さらに、電気検層にて異なる電極間隔の測定を実施することで、電気比抵抗の測定値の信頼性をチェックすることが可能であった。

以上より、小型動的コーン試験と押し型マイクロ検層を併用した本改良効果確認手法を用いた本改良効果確認手法は、薬液注入工法の改良効果確認に有効であることがわかった。また、地下水に塩分を含む選好地盤においても、塩分濃度が5,000〜10,000ppm程度以下であれば適用は可能であることが確認された。今後は、本確認手法を実工事へ適用し、改良強度確認におけるデータ蓄積を行いたいと考えている。

最後に、現地実証実験場所の利用に際し、ご協力いただいた愛知県西三河建設事務所西尾支所の皆様、小型土槽実験、現地実証実験にご協力いただいた元岐阜大学客員教授の冨樫敬三氏、元岐阜大学学生の花田有紀氏、雪吹和那氏、山本圭吾氏および太洋基礎工業（株）の伊藤孝芳氏に感謝します。

参考文献

1) H.Komine, “Quantitative evaluation of ground improvement by chemical grouting using Electrical Resistivity (Part III): Applicability of evaluation of improved region by resistivity tomography”, CRIEPI Research Report pp.42-43 (1996).
2) T.Sugano, K.Zen, N.Suemasa, Y.Kasuga, H.Yamazaki, K.Hayashi, S.Sawada, T.Endou, T.Kato, H.Nakagawa, K.Kiku, E.Yamaguchi, N.Fujii, K.Baba, T.Fujii and K.Takada, “Study on strength evaluation technique by using in-situ tests on chemical grouted ground as a countermeasure for liquefaction”, Technical Note of The Port and Airport Research Institute, No.1366, 6p (2020).
3) Y.Hanada, Y.Ohno, T.Ito, K.Shimosaka, M.Akatsuka, Y.Murata, K.Kariya, K.Yubuki and A.Yashima, “Quality identification of chemical grouting improvement by electrical logging”, 8th Japan-China Geotechnical Symposium, pp.376-381 (2020).
4) Y.Gao, M.Fujii, Y.Mochida, K.Takeuchi and Y.Adachi, “Evaluation method of the soil fine fraction content using electrical resistivity”, Japanese Geotechnical Journal, Vol.9, No.2, pp.229-308 (2014).
5) M.Fukue, N.Taya, M.Matsumoto and G.Sakai, “Development and application of cone for measuring the resistivity of soil”, Journal of JICE, III-43, No.596, pp.283-293 (1998).