Characterizations of Weighted BMO Space and Its Application

Ding Huai WANG

School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, P. R. China
E-mail: Wangdh1990@126.com

Jiang ZHOU Zhi Dong TENG

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China
E-mail: zhoujiang@xju.edu.cn zhidong1960@163.com

Abstract In this paper, we prove that the weighted BMO space

$$\text{BMO}^p(\omega) = \left\{ f \in L^1_{\text{loc}} : \sup_Q |\chi_Q|^{-1} L^p(\omega)(f - f_Q)\omega^{-1} \chi_Q L^p(\omega) < \infty \right\}$$

is independent of the scale \(p \in (0, \infty) \) in sense of norm when \(\omega \in A_1 \). Moreover, we can replace \(L^p(\omega) \) by \(L^{p, \infty}(\omega) \). As an application, we characterize this space by the boundedness of the bilinear commutators \([b, T]_j \) \((j = 1, 2)\), generated by the bilinear convolution type Calderón–Zygmund operators and the symbol \(b \), from \(L^{p_1}(\omega) \times L^{p_2}(\omega) \) to \(L^p(\omega^{1-p}) \) with \(1 < p_1, p_2 < \infty \) and \(1/p = 1/p_1 + 1/p_2 \). Thus we answer the open problem proposed by Chaffee affirmatively.

Keywords Boundedness, Calderón–Zygmund operators, characterization, commutators, weighted BMO space

MR(2010) Subject Classification 42B20, 47B07, 42B25, 47G99

1 Introduction

A locally integrable function \(f \) is said to belong to BMO space if there exists a constant \(C > 0 \) such that for any cube \(Q \subset \mathbb{R}^n \),

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| dx \leq C,$$

where \(f_Q = \frac{1}{|Q|} \int_Q f(x) dx \) and the minimal constant \(C \) is defined by \(\|f\|_* \).

There are a number of classical results that demonstrate BMO functions are the right collections to do harmonic analysis on the boundedness of commutators. A well-known result of Coifman, Rochberg and Weiss [4] states that the commutator

\([b, T](f) = bT(f) - T(bf)\)

Received December 27, 2019, revised September 11, 2020, accepted December 22, 2020
Supported by National Natural Science Foundation of China (Nos. 11971237, 12071223), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 19KJA320001) and Doctoral Scientific Research Foundation (Grant No. 903/752041)
1) Corresponding author
is bounded on some L^p, $1 < p < \infty$, if and only if $b \in \text{BMO}$, where T is the Hilbert transform. Janson extended the result in [7] via the commutators of Calderón–Zygmund operators with smooth homogeneous kernels; Chanillo in [3] did the same for commutators of the fractional integral operator with the restriction that $n - \alpha$ be an even integer. The theory was then extended and generalized to several directions. For instance, Bloom [1] investigated the same result in the weighted setting; Uchiyama [16] extended the boundedness results on the commutator to compactness; Krantz and Li in [10] and [11] have applied commutator theory to give a compactness characterization of Hankel operators on holomorphic Hardy spaces $H^2(D)$, where D is a bounded, strictly pseudoconvex domain in \mathbb{C}^n. It is perhaps for this important reason that the boundedness of $[b, T]$ attracted one’s attention among researchers in PDEs.

Recently, Chaffee [2] considered the multilinear setting and proved that for $0 \leq \alpha < 2n$, $1 < p_1, p_2 < \infty$, and $1/p_1 + 1/p_2 - \alpha/n = 1/q$, if $q > 1$, then

$$[b, T]_j : L^{p_1} \times L^{p_2} \to L^q \iff b \in \text{BMO} \quad (1.1)$$

for $j = 1, 2$, where T is a bilinear operator of convolution type with a homogeneous kernel of degree $-2n + \alpha$. His proof required the use of Hölder inequality with q and q', and the exponent q must be larger than 1. Thus, he asked

Problem 1 If $1/2 < q < 1$ and $[b, T]_j$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to L^q, is b in BMO space?

At the same time, Wang, Jiang and Pan [18] obtained the similar result as (1.1) for bilinear fractional integral operator. They also asked

Problem 2 If $\vec{b} = (b_1, b_2)$ and $[\Pi \vec{b}, I_\alpha]$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to L^q, is $\vec{b} \in \text{BMO} \times \text{BMO}$?

In this paper, we will give an answer of Problem 1 and show that the answer of Problem 2 is affirmative for the case $\vec{b} = (b, b)$ and bilinear Calderón–Zygmund operator. Moreover, we extend the results to weighted case. To state our result, we first give the following denotations.

We recall the definition of A_p weight introduced by Muckenhoupt [13]. For $1 < p < \infty$ and a nonnegative locally integrable function ω on \mathbb{R}^n, ω is in the Muckenhoupt A_p class if it satisfies the condition

$$[\omega]_{A_p} := \sup_Q \left(\left(\frac{1}{|Q|} \int_Q \omega(x) \, dx \right)^{1/p} \left(\frac{1}{|Q|} \int_Q \omega(x)^{-\frac{1}{p-1}} \, dx \right)^{p-1} \right) < \infty.$$

And a weight function ω belongs to the class A_1 if

$$[\omega]_{A_1} := \frac{1}{|Q|} \int_Q \omega(x) \, dx \left(\text{ess sup}_{x \in Q} \omega(x)^{-1} \right) < \infty.$$

We write $A_\infty = \bigcup_{1 \leq p < \infty} A_p$.

Let $\omega \in A_\infty$ and $p \in (0, \infty)$. We let $L^p(\omega)$ be the space of all measurable functions f such that

$$\|f\|_{L^p(\omega)} := \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(x) \, dx \right)^{1/p} < \infty.$$
Let $0 < p < \infty$. Given a nonnegative locally integrable function ω, the weighted BMO space $\text{BMO}^p(\omega)$ is defined by the set of all functions $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ such that

$$
\|f\|_{\text{BMO}^p(\omega)} = \sup_{Q} \left(\frac{1}{\omega(Q)} \int_Q |f(y) - f_Q|^p \omega(y)^{1-p} \, dy \right)^{1/p} = \sup_{Q} \frac{1}{\|\chi_Q\|_{L^p(\omega)}} \left\| \frac{(f - f_Q)\chi_Q}{\omega} \right\|_{L^p(\omega)} < \infty,
$$

where $\omega(Q) = \int_Q \omega(x) \, dx$. We write $\text{BMO}^1(\omega) = \text{BMO}(\omega)$ simple. In [6], García-Cuerva proved that if $\omega \in A_1$, $\text{BMO}(\omega) = \text{BMO}^p(\omega)$ for $1 < p < \infty$ with equivalence of the corresponding norms.

Theorem 1.1 Let $\omega \in A_1$ and $X = L^{p,\infty}(\omega)$ with $1 < p < \infty$. Then

$$
\text{BMO}(\omega) = \text{BMO}_X(\omega)
$$

with equivalence of the corresponding norms.

Theorem 1.2 Let $\omega \in A_1$ and $0 < r < 1$. Then

$$
\text{BMO}(\omega) = \text{BMO}^r(\omega)
$$

with equivalence of the corresponding norms.

Remark 1.3 In the unweighted setting, Strömberg in [15] showed that for $0 < s \leq \frac{1}{2}$, $p > 0$, there exists a constant C such that

$$
\gamma^{1/p} \|f\|_{\text{BMO}^s} \leq \|f\|_{\text{BMO}^p} \leq C \|f\|_{\text{BMO}^s},
$$

where

$$
\|f\|_{\text{BMO}^s} = \sup_{Q} \inf_{c} \inf_{t \geq 0} \{ t \geq 0 : \|f(x) - c\| > t \} < s|Q|.
$$

Recall that bilinear singular integral operator T is a bounded operator which satisfies

$$
\|T(f_1, f_2)\|_{L^p} \leq C\|f_1\|_{L^{p_1}}\|f_2\|_{L^{p_2}},
$$

for some $1 < p_1, p_2 < \infty$ with $1/p = 1/p_1 + 1/p_2$ and the function K, defined off the diagonal $y_0 = y_1 = y_2$ in $(\mathbb{R}^n)^{2+1}$, satisfies the conditions as follow:

1. The function K satisfies the size condition.

$$
|K(x, y_1, y_2)| \leq \frac{C}{(|x - y_1| + |x - y_2|)^{2n}};
$$

2. The function K satisfies the regularity condition. For some $\gamma > 0$, if $|y_1 - y'_1| \leq \frac{1}{2} \max \{|x - y_1|, |x - y_2|\},$

$$
|K(x, y_1, y_2) - K(x', y_1, y_2)| \leq \frac{C|y_1 - y'_1|^{\gamma}}{(|x - y_1| + |x - y_2|)^{2n+\gamma}};
$$
if \(|y_2 - y'_2| \leq \frac{1}{\gamma} \max\{|x - y_1|, |x - y_2|\},
\]

\[|K(x, y_1, y_2) - K(x', y_1, y_2)| \leq \frac{C|y_2 - y'_2|}{(|x - y_1| + |x - y_2|)^{2n+\gamma}}.
\]

Then we say \(K\) is a bilinear Calderón–Zygmund kernel. If \(x \notin \text{supp}f_1 \cap \text{supp}f_2\), then \(T(f_1, f_2)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x, y_1, y_2)f_1(y_1)f_2(y_2)dy_1dy_2\).

The linear commutators are defined by

\[[b, T]_1(f_1, f_2)(x) := b(x)T(f_1, f_2)(x) - T(bf_1, f_2)(x), \]

and

\[[b, T]_2(f_1, f_2)(x) := b(x)T(f_1, f_2)(x) - T(f_1, bf_2)(x). \]

The iterated commutator is defined by

\[[[\Pi b, T]](f_1, f_2)(x) := [b_2, [b_1, T]](f_1, f_2)(x). \]

In this paper, we say that an operator is of “convolution type” if the kernel \(K(x, y_1, y_2)\) is actually of the form \(K(x - y_1, x - y_2)\). The applications of Theorems 1.1 and 1.2 as follows.

Theorem 1.4 Let \(\omega \in A_1\), \(\vec{b} = (b, b)\) and \(T\) be a bilinear convolution type operator defined by

\[T(f_1, f_2)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x - y_1, x - y_2)f_1(y_1)f_2(y_2)dy_1dy_2\]

for all \(x \notin \text{supp}f_1 \cap \text{supp}f_2\), where \(K\) is a bilinear Calderón–Zygmund kernel and such that for any cube \(Q \subset \mathbb{R}^{2n}\) with \(0 \notin Q\), the Fourier series of \(\frac{1}{K}\) is absolutely convergent. For \(1 < p_1, p_2 < \infty\) with \(1/p = 1/p_1 + 1/p_2\), the following statements are equivalent:

(a1) \(b \in \text{BMO}(\omega)\);

(a2) There exists a positive constant \(C\) such that for \(j = 1, 2,\)

\[\| [b, T]_j(f_1, f_2) \cdot \omega^{-1} \|_{L^p(\omega)} \leq C \| f_1 \|_{L^{p_1}(\omega)} \| f_2 \|_{L^{p_2}(\omega)} .\]

(a3) There exists a positive constant \(C\) such that for \(j = 1, 2,\)

\[\| [b, T]_j(f_1, f_2) \cdot \omega^{-1} \|_{L^{p, \infty}(\omega)} \leq C \| f_1 \|_{L^{p_1}(\omega)} \| f_2 \|_{L^{p_2}(\omega)} .\]

(a4) There exists a positive constant \(C\) such that

\[\| [[\Pi b, T]](f_1, f_2) \cdot \omega^{-2} \|_{L^p(\omega)} \leq C \| f_1 \|_{L^{p_1}(\omega)} \| f_2 \|_{L^{p_2}(\omega)} .\]

(a5) There exists a positive constant \(C\) such that

\[\| [[\Pi b, T]](f_1, f_2) \cdot \omega^{-2} \|_{L^{p, \infty}(\omega)} \leq C \| f_1 \|_{L^{p_1}(\omega)} \| f_2 \|_{L^{p_2}(\omega)} .\]

Specially, if \(\omega(x) \equiv 1\), we have

Corollary 1.5 Let \(\vec{b} = (b, b)\) and \(T\) be a bilinear convolution type operator defined by

\[T(f_1, f_2)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x - y_1, x - y_2)f_1(y_1)f_2(y_2)dy_1dy_2\]

for all \(x \notin \text{supp}f_1 \cap \text{supp}f_2\), where \(K\) is a bilinear Calderón–Zygmund kernel and such that for any cube \(Q \subset \mathbb{R}^{2n}\) with \(0 \notin Q\), the Fourier series of \(\frac{1}{K}\) is absolutely convergent. For \(1 < p_1, p_2 < \infty\) with \(1/p = 1/p_1 + 1/p_2\), the following statements are equivalent:
Throughout this paper, the letter L may change from one occurrence to another.

Problem A Let $\vec{b} = (b_1, b_2)$ with $b_1 \neq b_2$ and $[\Sigma \vec{b}, T] := [b_1, T]_1 + [b_2, T]_2$. If $[\Sigma \vec{b}, T]$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to L^q for $j = 1, 2$; $[\Pi \vec{b}, T]$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to L^p; $[\Pi \vec{b}, T]$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to $L^{p,\infty}$.

By a same argument we also have the following result.

Corollary 1.6 Let $\vec{b} = (b, b)$ and I_α be a bilinear fractional integral operator defined by

$$I_\alpha(f_1, f_2)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{f_1(y_1)f_2(y_2)}{|x-y_1| + |x-y_2|^{2n-\alpha}} dy_1 dy_2.$$

For $0 < \alpha < 2n$, $1 < p_1, p_2 < \infty$ with $1/q = 1/p_1 + 1/p_2 - \alpha/n$, the following statements are equivalent:

(c1) $b \in \text{BMO}$;
(c2) $[b, I_\alpha]_j$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to L^q for $j = 1, 2$;
(c3) $[b, I_\alpha]_j$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to $L^{q,\infty}$ for $j = 1, 2$;
(c4) $[\Pi \vec{b}, I_\alpha]$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to L^q;
(c5) $[\Pi \vec{b}, I_\alpha]$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to $L^{q,\infty}$.

Finally, two open problems will be given.

Problem B Let $\vec{b} = (b_1, b_2)$ with $b_1 \neq b_2$. If $[\Pi \vec{b}, T]$ is a bounded operator from $L^{p_1} \times L^{p_2}$ to L^q, is \vec{b} in $\text{BMO} \times \text{BMO}$?

2 Main Lemmas

Throughout this paper, the letter C denotes constants which are independent of main variables and may change from one occurrence to another. $Q(x, r)$ denotes a cube centered at x, with side length r, sides parallel to the axes.

For $X = L^{q_2,\infty}(\omega)$, it is clear that $\text{BMO}^{q_2}(\omega)$ is contained in $\text{BMO}_X(\omega)$ and $\| \cdot \|_{\text{BMO}_X(\omega)} \leq \| \cdot \|_{\text{BMO}^{q_2}(\omega)} \leq \| \cdot \|_{\text{BMO}^{q_1}(\omega)}$ if $1 < q_2 \leq q_1 < \infty$. However, for $1 < q_1 < q_2 < \infty$, one has the reverse inequality as follows.

Lemma 2.1 Let $1 < q_1 < q_2 < \infty$, $\omega \in A_\infty$ and $X = L^{q_2,\infty}(\omega)$. Then $\text{BMO}_X(\omega)$ is contained in $\text{BMO}^{q_2}(\omega)$ and $\| \cdot \|_{\text{BMO}^{q_2}(\omega)} \leq C \| \cdot \|_{\text{BMO}_X(\omega)}$.

Proof Let $f \in \text{BMO}_X(\omega)$. Given a fixed cube $Q \subset \mathbb{R}^n$, it is easy to see that $\| \chi_Q \|_{L^{q_1,\infty}(\omega)} = \omega(Q)^{1/q}$, then for any $\lambda > 0$,

$$\frac{1}{\omega(Q)^{1/q_2}}(\lambda^{q_2} \omega \{ x \in Q : |f(x) - f_Q| > \lambda \omega(x) \})^{1/q_2} \leq \| f \|_{\text{BMO}_X(\omega)};$$

that is,

$$\omega \{ x \in Q : |f(x) - f_Q| > \lambda \omega(x) \} \leq \| f \|_{\text{BMO}_X(\omega)}^{q_2} \omega(Q) \lambda^{-q_2}.$$

Choose

$$N = \| f \|_{\text{BMO}_X(\omega)} \left(\frac{q_1}{q_2 - q_1} \right)^{1/q_2}.$$
Thus,
\[
\int_Q |f(x) - f_Q|^{q_1} \omega(x)^{1-q_1} \, dx = \int_Q \left(\frac{|f(x) - f_Q|}{\omega(x)} \right)^{q_1} \omega(x) \, dx \\
= q_1 \int_0^\infty \lambda^{q_1-1} \omega \{ x \in Q : |f(x) - f_Q| > \lambda \omega(x) \} \, d\lambda \\
\leq q_1 \int_0^N \lambda^{q_1-1} \omega(x) \, d\lambda + q_1 \int_N^\infty \lambda^{q_1-1} \||f||_{BMO}^{q_2} \omega(x) |Q| \lambda^{-q_2} \, d\lambda \\
= \omega(Q) N^{q_1} + \frac{q_1}{q_2 - q_1} ||f||_{BMO}^{q_2} \omega(Q) N^{q_1 - q_2},
\]
which gives
\[
\left(\frac{1}{\omega(Q)} \int_Q |f(y) - f_Q|^{q_1} \omega(x)^{1-q_1} \, dy \right)^{1/q_1} \leq 2 \left(\frac{q_1}{q_2 - q_1} \right)^{1/q_2} ||f||_{BMO}^{q_2} \omega(Q).
\]
Then
\[
||f||_{BMO}^{q_1} \omega \leq 2 \left(\frac{q_1}{q_2 - q_1} \right)^{1/q_2} ||f||_{BMO}^{q_2} \omega
\]
and the lemma follows.

Let $\omega \in A_1$ and $d\mu(x) = \omega(x) \, dx$. For $0 < r < \infty$, we set
\[
||f||_{BMO_r(\omega)} = \sup_{Q \subset \mathbb{R}^n} \inf_{c \in \mathbb{R}} \left\{ \frac{1}{\mu(Q)} \int_Q \left(\frac{|f(x) - c|}{\omega(x)} \right)^r \, d\mu(x) \right\}^{1/r},
\]
and $BMO_r(\omega) = \{ f \in L_{loc} : ||f||_{BMO_r(\omega)} < \infty \}$.

Lemma 2.2 Let $0 < r < 1$, $\omega \in A_1$ and $d\mu(x) = \omega(x) \, dx$. Suppose $||f||_{BMO_r(\omega)} = 1$ and for each cube Q let c_Q be the value which minimizes $\int_Q (|f(x) - c|/\omega(x))^r \, d\mu(x)$. Then
\[
\mu \left(\left\{ x \in Q : \frac{|f(x) - c_Q|}{\omega(x)} > t \right\} \right) \leq c_1 e^{-c_2 t} \mu(Q),
\]
where c_1 and c_2 are positive constants.

Proof Take any cube Q, and write $E_Q = \{ x \in Q : |f(x) - c_Q|/\omega(x) > t \}$. Then
\[
\mu(E_Q) \leq \int_{E_Q} \frac{|f(x) - c_Q|^r}{t^r \omega(x)^r} \, d\mu(x) \\
\leq \frac{1}{t^r} \frac{\mu(Q)}{\mu(Q)} \int_Q \frac{|f(x) - c_Q|^r}{\omega(x)^r} \, d\mu(x) \\
\leq \frac{1}{t^r} \mu(Q).
\]
Write $F_1(t) = 1/t^r$, then
\[
\mu(E_Q) \leq F_1(t) \mu(Q).
\]

Let $s > 1$ and $t \in (0, \infty)$ such that $2^{q_1 + 1} s^{1/r} \mu(\omega)_{A_1} \leq t$. Fixing a cube Q_0, there is a Calderon–Zygmund decomposition of disjoint cubes $\{Q_j\}$ such that $Q_j \subset Q_0$ and
\[
(i) \quad s^r \leq \frac{1}{\mu(Q_j)} \int_{Q_j} \left(\frac{|f(x) - c_{Q_0}|}{\omega(x)} \right)^r \, d\mu(x) \leq 2^n s^r,
(ii) \quad \frac{|f(x) - c_{Q_0}|}{\omega(x)} \leq s \text{ for } x \in (\bigcup_j Q_j)^c.
\]
Since \(\omega \in A_1 \) and \(x \in Q \), then \(\frac{1}{\omega(x)} \leq \frac{[\omega]_{A_1}}{\mu(Q_j)}. \) By (i) and \(0 < r < 1, \)
\[
\int_{Q_j} \left(\frac{|f(y) - c_{Q_0}|}{\omega(y)} \right)^r \omega(y)^r dy = \int_{Q_j} \left(\frac{|f(y) - c_{Q_0}|}{\omega(y)} \right)^r \omega(y)^r d\mu(y) \\
\leq \left(\frac{[\omega]_{A_1}}{\mu(Q_j)} \right)^{1-r} \int_{Q_j} \left(\frac{|f(y) - c_{Q_0}|}{\omega(y)} \right)^r d\mu(y) \\
\leq 2^n s^r [\omega]_{A_1}^{1-r} |Q_j|^{1-r} \mu(Q_j)^r.
\]

Notice that
\[
\int_{Q_j} \left(\frac{|f(x) - c_{Q_0}|}{\omega(x)} \right)^r d\mu(x) \leq \int_{Q_j} \left(\frac{|f(x) - c_{Q_0}|}{\omega(x)} \right)^r d\mu(x),
\]
which implies that
\[
\int_{Q_j} \left(\frac{|f(y) - c_{Q_0}|}{\omega(y)} \right)^r \omega(y)^r dy \leq 2^n s^r [\omega]_{A_1}^{1-r} |Q_j|^{1-r} \mu(Q_j)^r.
\]

Therefore,
\[
\left(\frac{|c_{Q_j} - c_{Q_0}|}{\omega(x)} \right)^r = \frac{\omega(x)^{-r}}{|Q_j|} \int_{Q_j} |c_{Q_j} - c_{Q_0}|^r dy \\
\leq \frac{1}{|Q_j| \omega(x)^r} \int_{Q_j} \left(\frac{|f(y) - c_{Q_0}|}{\omega(y)} \right)^r \omega(y)^r dy \\
+ \frac{1}{|Q_j| \omega(x)^r} \int_{Q_j} \left(\frac{|f(y) - c_{Q_0}|}{\omega(y)} \right)^r \omega(y)^r dy \\
\leq 2^{n+1} s^r [\omega]_{A_1}^{1-r} \left(\frac{\mu(Q_j)}{|Q_j| \omega(x)} \right)^r \\
\leq 2^{n+1} s^r [\omega]_{A_1}.
\]

From the fact that \([\omega]_{A_1} \geq 1 \), we have \(t > s \). By (i) and (ii), we have
\[
\mu(E_{Q_0}) = \sum_j \mu\left(\left\{ x \in Q_j : \frac{|f(x) - c_{Q_0}|}{\omega(x)} > t \right\} \right) \\
\leq \sum_j \mu\left(\left\{ x \in Q_j : \frac{|f(x) - c_{Q_0}|}{\omega(x)} + \frac{|c_{Q_j} - c_{Q_0}|}{\omega(x)} > t \right\} \right) \\
\leq \sum_j \mu\left(\left\{ x \in Q_j : \frac{|f(x) - c_{Q_0}|}{\omega(x)} > t - \frac{2^{n+1}}{s^r} [\omega]_{A_1}^{1/r} \right\} \right) \\
\leq \sum_j F_1(t - 2^{n+1} s^r [\omega]_{A_1}^{1/r}) \cdot \mu(Q_j) \\
\leq F_1(t - 2^{n+1} s^r [\omega]_{A_1}^{1/r}) \sum_j \frac{1}{s^r} \int_{Q_j} \left(\frac{|f(x) - c_{Q_0}|}{\omega(x)} \right)^r d\mu(x) \\
\leq \frac{F_1(t - 2^{n+1} s^r [\omega]_{A_1}^{1/r})}{s^r} \int_{Q_0} \left(\frac{|f(x) - c_{Q_0}|}{\omega(x)} \right)^r d\mu(x) \\
\leq \frac{F_1(t - 2^{n+1} s^r [\omega]_{A_1}^{1/r})}{s^r} \mu(Q_0).
\]
Let
\[F_2(t) = \frac{F_1(t - \frac{n+1}{r}s[\omega]^{1/r}_{A_1})}{s^r}. \]
Continuing this process indefinitely, we obtain for any \(k \geq 2 \),
\[F_k(t) = \frac{F_{k-1}(t - \frac{n+1}{r}s[\omega]^{1/r}_{A_1})}{s^r}, \]
and
\[\mu(E_{Q_0}) \leq F_k(t)\mu(Q_0). \]

We fix a constant \(t > 0 \). If
\[k \cdot 2^{\frac{n+1}{r}}[\omega]^{1/r}_{A_1} s < t \leq (k + 1) \cdot 2^{\frac{n+1}{r}}[\omega]^{1/r}_{A_1} s \]
for some \(k \geq 1 \), thus
\[
\mu(E_{Q_0}) \leq \mu\left(\left\{ x \in Q_0 : \frac{|f(x) - c_{Q_0}|}{\omega(x)} > t \right\} \right)
\leq \mu\left(\left\{ x \in Q_0 : \frac{|f(x) - c_{Q_0}|}{\omega(x)} > k \cdot 2^{\frac{n+1}{r}}[\omega]^{1/r}_{A_1} s \right\} \right)
\leq F_k(k \cdot 2^{\frac{n+1}{r}}[\omega]^{1/r}_{A_1} s)\mu(Q_0)
= F_1(2^{\frac{n+1}{r}}[\omega]^{1/r}_{A_1} s)\mu(Q_0)
= \frac{1}{2^{n+1}[\omega]^{1/r}_{A_1}} s^{k-1} k^r \mu(Q_0)
\leq \frac{e^{-kr \log s}}{2^{n+1}[\omega]^{1/r}_{A_1}} \exp \left(-\frac{tr \log s}{2^{\frac{n+1}{r}}[\omega]^{1/r}_{A_1}} \right) \mu(Q_0)
\]
Since \(-k \leq 1 - \frac{t}{2^{\frac{n+1}{r}}[\omega]^{1/r}_{A_1} s}\). If \(t \leq 2^{\frac{n+1}{r}}[\omega]^{1/r}_{A_1} s \), then use the trivial estimate
\[\mu(E_{Q_0}) \leq \mu(Q_0) \leq e^{-e} 2^{\frac{n+1}{r}}[\omega]^{1/r}_{A_1} s \mu(Q_0). \]
Recall that \(s \) is any real number larger than 1. Choosing \(s = e \), this yields
\[\mu\left(\left\{ x \in Q : \frac{|f(x) - c_Q|}{\omega(x)} > t \right\} \right) \leq c_1 e^{-ct} \mu(Q), \]
for some positive constants \(c_1 \) and \(c_2 \), which proves the inequality of Lemma 2.2. \(\Box \)

Lemma 2.3 Let \(\omega \in A_1 \) and \(0 < r < 1 \). Then
\[\text{BMO}^r(\omega) = \text{BMO}_r(\omega). \]

The norms are mutually equivalent.

Proof By Lemma 2.2 and the homogeneity of \(|| \cdot ||_{\text{BMO}_r(\omega)} \), we obtain that for any \(f \in \text{BMO}_r(\omega) \),
\[\omega\left(\left\{ x \in Q : \frac{|f(x) - c_Q|}{\omega(x)} > t \right\} \right) \leq c_1 \exp \left(-\frac{c_2 t}{||f||_{\text{BMO}_r(\omega)}} \right) \omega(Q). \]
This gives us
\[
\frac{1}{\omega(Q)} \int_Q |f(x) - c_Q| \omega(x) dx = \frac{1}{\omega(Q)} \int_0^\infty \omega\left(\left\{ x \in Q : \frac{|f(x) - c_Q|}{\omega(x)} > t \right\} \right) dt \\
\leq \frac{1}{\omega(Q)} \int_0^\infty c_1 \exp\left(-\frac{c_2 t}{\|f\|_{\text{BMO},(\omega)}} \right) \omega(Q) dt \\
\leq C \|f\|_{\text{BMO},(\omega)}.
\]

Therefore,
\[
\frac{1}{\omega(Q)} \int_Q \left(\frac{|f(x) - f_Q|}{\omega(x)} \right)^r \omega(x) dx \leq \frac{1}{\omega(Q)} \int_Q \left(\frac{|f(x) - c_Q|}{\omega(x)} \right)^r \omega(x) dx \\
+ \frac{1}{\omega(Q)} \int_Q \left(\frac{|c_Q - f_Q|}{\omega(x)} \right)^r \omega(x) dx \\
\leq \|f\|_{\text{BMO},(\omega)}^r + \left(\frac{1}{\omega(Q)} \int_Q |f(x) - c_Q| dx \right)^r \\
\leq C \|f\|_{\text{BMO},(\omega)}^r.
\]

Conversely, \(\| \cdot \|_{\text{BMO},(\omega)} \leq \| \cdot \|_{\text{BMO}^r(\omega)} \) is obvious. Thus, the equivalence of \(\| \cdot \|_{\text{BMO},(\omega)} \) and \(\| \cdot \|_{\text{BMO}^r(\omega)} \) is shown. \(\square \)

Standard real analysis tools as the maximal function \(M(f) \), the weighted maximal function \(M_\omega(f) \) and the sharp maximal function \(M^s(f) \) carry over to this context, namely,
\[
M(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| dy; \\
M_\omega(f)(x) = \sup_{Q \ni x} \frac{1}{\omega(Q)} \int_Q |f(y)| \omega(y) dy; \\
M^s(f)(x) = \sup \inf_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y) - c| dy \approx \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y) - f_Q| dy.
\]

A variant of weighted maximal function and sharp maximal operator \(M_{\omega,s}(f)(x) = (M_\omega(f^s))^{1/s} \) and \(M_{\delta}^s(f)(x) = (M^s(f)(x))^{1/\delta} \), which will become the main tool in our scheme.

The following relationships between \(M_\delta \) and \(M_{\delta}^s \) to be used is a version of the classical ones due to Fefferman and Stein [5].

Lemma 2.4 Let \(0 < p, \delta < \infty \) and \(\omega \in A_\infty \). There exists a positive \(C \) such that
\[
\int_{\mathbb{R}^n} (M_\omega f(x))^p \omega(x) dx \leq C \int_{\mathbb{R}^n} (M_{\omega,s}^p f(x))^p \omega(x) dx,
\]
for any smooth function \(f \) for which the left-hand side is finite.

Lemma 2.5 Let \(\omega \in A_1 \) and \(b \in \text{BMO}(\omega) \). Then, there exists a constant \(C \) such that
\[
M_{\frac{1}{2}}^s([b, T]_1(f_1, f_2))(x) \leq C\|b\|_{\text{BMO}(\omega)} \omega(x) M(T(f_1, f_2)(x)) \\
+ C\|b\|_{\text{BMO}(\omega)} \omega(x) M_{\omega,s}(f_1)(x) M(f_2)(x), \tag{2.1}
\]
\[
M_{\frac{1}{2}}^s([b, T]_2(f_1, f_2))(x) \leq C\|b\|_{\text{BMO}(\omega)} \omega(x) M(T(f_1, f_2)(x)) \\
+ C\|b\|_{\text{BMO}(\omega)} \omega(x) M(f_1)(x) M_{\omega,s}(f_2)(x), \tag{2.2}
\]
Characterizations of Weighted BMO Space and Its Application

and

\[M^2_{1/3}(\|M_1^b, T\|_2(f_1, f_2))(x) \leq C \omega(x)^2 \|b\|^2_{BMO(\omega)} M(T(f_1, f_2))(x) \]

\[+ C \omega(x) \|b\|_{BMO(\omega)} M_{1/2}(\|b, T\|_1(f_1, f_2))(x) \]

\[+ C \omega(x) \|b\|_{BMO(\omega)} M_{1/2}(\|b, T\|_2(f_1, f_2))(x) \]

\[+ C \omega(x)^2 \|b\|^2_{BMO(\omega)} M_{\infty,s}(f_1)(x) M_{\infty,s}(f_2)(x), \tag{2.3} \]

for any \(1 < s < \infty\) and bounded compact supported functions \(f_1, f_2\).

Proof We only prove (2.1) and the proof of (2.2) and (2.3) are very similar to that of (2.1). Let \(Q := Q(x, r)\) be a cube and \(x \in Q\). Then,

\[
\left(\frac{1}{|Q|} \int_Q \|b, T\|_1(f_1, f_2)(y)\|1/2 - |c|^{1/2}|dz \right)^2
\leq C \left(\frac{1}{|Q|} \int_Q \|b, T\|_1(f_1, f_2)(y) - c\|^{1/2}|dz \right)^2
\leq C \left(\frac{1}{|Q|} \int_Q \|b, T\|_1(f_1, f_2)(y) - c\|^{1/2}|dz \right)^2
\]

\[+ \left(\frac{1}{|Q|} \int_Q \|b, T\|_1(f_1, f_2)(y) - c\|^{1/2}|dz \right)^2 =: A_1 + A_2,\]

where \(\lambda = b_Q\).

We first consider the term \(A_1\). By Hölder inequality, we obtain that

\[A_1 = \left(\frac{1}{|Q|} \int_Q \|b, T\|_1(f_1, f_2)(y) - c\|^{1/2}|dz \right)^2 \leq C \|b\|_{BMO(\omega)} \frac{\omega(|Q|)}{|Q|} \left(\frac{1}{|Q|} \int_Q \|b, T\|_1(f_1, f_2)(y) - c\|^{1/2}|dz \right)^2 \leq C \omega(x) \|b\|_{BMO(\omega)} M(T(f_1, f_2))(x). \]

Let us consider next the term \(A_2\). Let

\[\Omega_0 = \{ (y_1, y_2) \in \mathbb{R}^n \times \mathbb{R}^n : |x_0 - y_1| + |x_0 - y_2| \leq 2\sqrt{nr} \} \]

and for \(k \geq 1\),

\[\Omega_k = \{ (y_1, y_2) \in \mathbb{R}^n \times \mathbb{R}^n : 2^{k+1}\sqrt{nr} \geq |x_0 - y_1| + |x_0 - y_2| > 2^k\sqrt{nr} \}. \]

We write

\[A_2 \leq \left(\frac{1}{|Q|} \int_Q \int_{\Omega_0} (b(y_1) - \lambda)K(z - y_1, z - y_2)f_1(y_1)f_2(y_2)dy_1dy_2 \right)^{1/2}|dz \right)^2 \]

\[+ \left(\frac{1}{|Q|} \int_Q \int_{\mathbb{R}^n \times \mathbb{R}^n \setminus \Omega_0} (b(y_1) - \lambda)K(z - y_1, z - y_2)f_1(y_1)f_2(y_2)dy_1dy_2 - c \right)^{1/2}|dz \right)^2 \]

\[= : A_{21} + A_{22}. \]

It is obvious that \(\Omega_0 \subset 4\sqrt{nr}Q \times 4\sqrt{nr}Q\). We write \(f^0 = f_1 \chi_{4\sqrt{nr}Q}\). By Kolmogorov inequality and the fact that \(T\) is bounded from \(L^1 \times L^1\) to \(L^{1/2, \infty}\), we get

\[A_{21} \leq \frac{1}{|Q|^2} \|T((b - b_Q)f^0, f^0)\|_{L^{1/2, \infty}}. \]
for any 1 < s < ∞ and bounded compact supported functions f_1, f_2.

Therefore,
\[
A_{22} \leq C \sum_{k=1}^{\infty} \frac{r^\gamma}{Q} \int_Q \int_{\Omega_k} \frac{|b(y_1) - \lambda||f_1(y_1)||f_2(y_2)|}{|z - y_1| + |z - y_2|^{2n+\gamma}} dy_1 dy_2 dz
\leq C \sum_{k=1}^{\infty} \left(\frac{1}{2k} \right)^\gamma \frac{1}{2kQ^2} \int_{2k+1}^{\infty} \int_{2k+1}^{\infty} \frac{|b(y_1) - \lambda||f_1(y_1)||f_2(y_2)|}{|z - y_1| + |z - y_2|^{2n+\gamma}} dy_1 dy_2 dz
\leq C \omega(x) \omega(x) M_{\omega, s}(x) M_{\omega, s}(x) M_{\omega, s}(x) M_{\omega, s}(x).
\]

Collecting our estimates, we have shown that
\[
M_{\frac{3}{2}}^s([b, T]_{1}(f_1, f_2))(x) \leq C \|b\|_{\text{BMO}^s(\omega)} \omega(x) M(T(f_1, f_2))(x)
+ C \|b\|_{\text{BMO}^s(\omega)} \omega(x) M_{\omega, s}(f_1)(x) M_{\omega, s}(f_2)(x)
\]
for any 1 < s < ∞ and bounded compact supported functions f_1, f_2.

\[
\square
\]

3 Proof of Theorem 1.1–Theorem 1.4

Proof of Theorem 1.1 Let 1 < p < ∞, ω ∈ A_1 and X = L^{p, \infty}(ω). By Lemma 2.1, we have
\[
\|\cdot\|_{\text{BMO}(\omega)} \leq C \|\cdot\|_{\text{BMO}_X(\omega)}.
\]

From the fact that BMO(ω) = BMO^p(ω) and \|\cdot\|_{\text{BMO}^p(\omega)} \leq \|\cdot\|_{\text{BMO}(\omega)}, it follows that
\[
\|\cdot\|_{\text{BMO}_X(\omega)} \leq C \|\cdot\|_{\text{BMO}(\omega)}.
\]

Thus we complete the proof of Theorem 1.1.

Proof of Theorem 1.2 Let f ∈ BMO^p(ω). In the proof of Lemma 2.3, we have shown that
\[
\frac{1}{\omega(Q)} \int_Q \|f(x) - c_Q\| dx \leq C \|f\|_{\text{BMO}^p(\omega)}.
\]

Therefore,
\[
\frac{1}{\omega(Q)} \int_Q \|f(x) - f_Q\| dx \leq \frac{2}{\omega(Q)} \int_Q \|f(x) - c_Q\| dx
\leq C \|f\|_{\text{BMO}^p(\omega)} \leq C \|f\|_{\text{BMO}^p(\omega)}.
\]
As a result, \(\|f\|_{\text{BMO}} \leq C\|f\|_{\text{BMO}^r} \). The opposite inequality is a consequence of Hölder inequality, then the equivalence of \(\|f\|_{\text{BMO}} \) and \(\|f\|_{\text{BMO}^r} \) is shown.

Proof of Theorem 1.4 (a1) ⇒ (a2): Since \(\omega \in A_1 \), then \(\omega^{1-p} \in A_\infty \). By Lemma 2.4 and Lemma 2.5 with \(1 < s < \min\{p_1, p_2\} \), from a standard argument that we can obtain

\[
\|\sum_b, T\|(f_1, f_2)\omega^{-1}\|_{L^p(\omega)} = \|\sum_b, T\|(f_1, f_2)\|_{L^p(\omega^{1-p})} \\
\leq M_1\|\sum_b, T\|(f_1, f_2)\|_{L^p(\omega^{1-p})} \\
\leq C\|\sum_b, T\|(f_1, f_2)\|_{L^p(\omega^{1-p})} \\
\leq C\|b\|_{\text{BMO}(\omega)}\|M(T(f_1, f_2))\|_{L^p(\omega)} \\
+ C\|b\|_{\text{BMO}(\omega)}\|M(f_1(x)M_{\omega,s}(f_2))\|_{L^p(\omega)} \\
\leq C\|b\|_{\text{BMO}(\omega)}\prod_{i=1}^2\|f_i\|_{L^{p_i}(\omega)}.
\]

We observe that to use the Fefferman–Stein inequality, one needs to verify that certain terms in the left-hand side of the inequalities are finite. We can assume that \(f_1, f_2 \) are bounded functions with compact support, applying a similar argument as in [12, pp. 32–33] and Fatou’s lemma, one gets the desired result.

(a2) ⇒ (a3) is obvious.

(a3) ⇒ (a1): Let \(z_0 \in \mathbb{R}^n \) such that \(|(z_0, z_0)| > 2\sqrt{n} \) and let \(\delta \in (0, 1) \) small enough. Take \(B = B((z_0, z_0), \delta \sqrt{2n}) \subset \mathbb{R}^{2n} \) be the ball for which we can express \(\frac{1}{K} \) as an absolutely convergent Fourier series of the form

\[
\frac{1}{K(y_1, y_2)} = \sum_j a_j e^{iv_j \cdot (y_1, y_2)}, \quad (y_1, y_2) \in B,
\]

with \(\sum_j |a_j| < \infty \) and we do not care about the vectors \(v_j \in \mathbb{R}^{2n} \), but we will at times express them as \(v_j = (v_j^1, v_j^2) \in \mathbb{R}^n \times \mathbb{R}^n \).

Set \(z_1 = \delta^{-1}z_0 \) and note that

\[
(|y_1 - z_1|^2 + |y_2 - z_1|^2)^{1/2} < \sqrt{2n} \Rightarrow (|\delta y_1 - z_0|^2 + |\delta y_2 - z_0|^2)^{1/2} < \delta \sqrt{2n}.
\]

Then for any \((y_1, y_2) \) satisfying the inequality on the left, we have

\[
\frac{1}{K(y_1, y_2)} = \frac{\delta^{-2n}}{K(\delta y_1, \delta y_2)} = \delta^{-2n} \sum_j a_j e^{i\delta v_j \cdot (y_1, y_2)}.
\]

Let \(Q = Q(x_0, r) \) be any arbitrary cube in \(\mathbb{R}^n \). Set \(\tilde{z} = x_0 + rz_1 \) and take \(Q' = Q(\tilde{z}, r) \subset \mathbb{R}^n \).

So for any \(x \in Q \) and \(y_1, y_2 \in Q' \), we have

\[
\left| \frac{x - y_1}{r} - z_1 \right| \leq \left| \frac{x - x_0}{r} \right| + \left| \frac{y_1 - \tilde{z}}{r} \right| \leq \sqrt{n}, \quad \left| \frac{x - y_2}{r} - z_1 \right| \leq \left| \frac{x - x_0}{r} \right| + \left| \frac{y_2 - \tilde{z}}{r} \right| \leq \sqrt{n},
\]

which implies that

\[
\left(\left| \frac{x - y_1}{r} - z_1 \right|^2 + \left| \frac{x - y_2}{r} - z_1 \right|^2 \right)^{1/2} \leq \sqrt{2n}.
\]

Let \(s(x) = \text{sgn}(\int_{Q'} (b(x) - b(y))dy) \). Then

\[
|b(x) - b_{Q'}| = s(x)(b(x) - b_{Q'})
\]
\[
= \frac{s(x)}{|Q|^2} \int_{Q'} \int_{Q'} (b(x) - b(y_1)) dy_1 dy_2.
\]

Setting
\[
g_j(y_1) = e^{-i \frac{x}{2} \cdot y_1} \chi_{Q'}(y_1),
\]
\[
h_j(y_2) = e^{-i \frac{x}{2} \cdot y_2} \chi_{Q'}(y_2),
\]
\[
m_j(x) = e^{i \frac{x}{2} \cdot (x, x)} \chi_{Q}(x) s(x),
\]

which shows that
\[
|b(x) - b_{Q'}| = s(x) \frac{2n \delta - 2n}{|Q|^2} \int_{Q'} \int_{Q'} \frac{b(x) - b(y_1)}{|x - y_1|^2 + |x - y_2|^2} dy_1 dy_2.
\]

If \(p > 1 \), we have the following estimate
\[
\frac{\lambda}{\omega(Q)^{1/p}} \omega \left(x \in Q : \frac{|b(x) - b_{Q'}|}{\omega(x)} > \lambda \right)^{1/p}
\]
\[
= \frac{\lambda}{\omega(Q)^{1/p}} \omega \left(x \in Q : \frac{|b(x) - b_{Q'}|}{\omega(x)} > \lambda \right)^{1/p}
\]
\[
\leq \frac{\lambda}{\omega(Q)^{1/p}} \omega \left(x \in Q : \sum_j |a_j|||\Pi^1 T|(g_j, h_j)(x)|_{L^p, \infty(\omega)} > \lambda \right)^{1/p}
\]
\[
\leq \frac{C}{\omega(Q)^{1/p}} \sum_j |a_j|||\Pi^1 T|(g_j, h_j)||_{L^p, \infty(\omega)}
\]
\[
\leq C \sum_j |a_j|.
\]

We write
\[
\|b\|_{\text{BMO}_*(\omega)} := \sup_Q \sup_{\lambda > 0} \frac{\lambda}{\omega(Q)^{1/p}} \omega \left(x \in Q : \frac{|b(x) - b_{Q'}|}{\omega(x)} > \lambda \right)^{1/p},
\]
then \(\|b\|_{\text{BMO}_*(\omega)} \leq C \sum_j |a_j| \). The same estimate as lemma 2.1, we conclude that
\[
|b_Q - b_{Q'}| \leq \frac{1}{|Q|} \int_Q |b(x) - b_{Q'}| dx
\]
\[
\leq \frac{\omega(Q)}{|Q|} \|b\|_{\text{BMO}_*(\omega)}
\]
\[
\leq C \frac{\omega(Q)}{|Q|} \sum_j |a_j|.
\]

By the definition of \(A_1 \) weights, we concluded that \(\omega(Q) \leq |Q| \omega(x) \), which implies that for any cube \(Q \) and \(\lambda > 0 \),
\[
\frac{\lambda}{\omega(Q)^{1/p}} \omega \left(x \in Q : \frac{|b(x) - b_Q|}{\omega(x)} > \lambda \right)^{1/p}
\]
\[
\leq \frac{\lambda}{\omega(Q)^{1/p}} \omega \left(x \in Q : \frac{|b(x) - b_{Q'}|}{\omega(x)} > \lambda \right)^{1/p}
\]
This shows that $b \in \text{BMO}_X(\omega)$ with $X = L^{p,\infty}$; that is, the symbol b belongs to $\text{BMO}(\omega)$.

If $p \leq 1$, choose $q \in (0, p)$. By the fact that $L^{p,\infty}(\omega) \subseteq M^p_q(\omega)$ in [17, Corollary 2.3] (see also [9, Lemma 1.7] for the unweighted case), $M^p_q(\omega)$ stands for the weighted Morrey spaces; that is, for $0 < q < p < \infty$,

$$M^p_q(\omega) = \left\{ f \in L^q_{\text{loc}} : \|f\|_{M^p_q} = \sup_Q \frac{1}{\omega(Q)^{1/q-1/p}} \left(\int_Q |f(y)|^q \omega(y) dy \right)^{1/q} < \infty \right\}.$$

Therefore,

$$\inf_c \frac{1}{\omega(Q)} \int_Q \left(\frac{|b(x) - c|}{\omega(x)} \right)^q \omega(x) dx \right)^{1/q} \leq \left(\frac{1}{\omega(Q)} \int_Q \left(\frac{|b(x) - b_Q|}{\omega(x)} \right)^q \omega(x) dx \right)^{1/q} \leq \left(\frac{C}{\omega(Q)} \int_Q \sum_j |a_j|[b, T_1(g_j, h_j)](x) \omega(x)^{-1} \right)^{1/q} \leq C\omega(Q)^{-1/p} \sum_j |a_j||[b, T_1(g_j, h_j)\omega^{-1}]\|_{M^p_q(\omega)} \leq C\omega(Q)^{-1/p} \sum_j |a_j||[b, T_1(g_j, h_j)\omega^{-1}]\|_{L^{p,\infty}(\omega)} \leq C \sum_j |a_j|.$$

Thus showing that $b \in \text{BMO}_q(\omega)$. The desired result follows from here.

By the inequality (2.3) in Lemma 2.4 and the same argument as (a1) \Rightarrow (a2), we can obtain that (a1) \Rightarrow (a4). It is easy to see that (a4) \Rightarrow (a5). The proof of (a5) \Rightarrow (a1) follows the method that of (a3) \Rightarrow (a1) except replacing (3.1) by

$$|b(x) - b_{Q'}|^2 = s(x)^2(b(x) - b_{Q'})^2$$

$$= \frac{s(x)^2}{|Q'|^2} \int_{Q'} \int_{Q'} (b(x) - b(y_1)) (b(x) - b(y_2)) dy_1 dy_2.$$

Therefore, we complete the proof of Theorem 1.4. \hfill \Box

Acknowledgements We thank the referees for their time and comments.

References

[1] Bloom, S.: A commutator theorem and weighted BMO. *Trans. Amer. Math. Soc.*, 292, 103--122 (1985)

[2] Chaffeee, L.: Characterizations of BMO through commutators of bilinear singular integral operators. *Proc. Royal Soc. Edinburgh A.*, 146, 1159--1166 (2016)
[3] Chanillo, S.: A note on commutators. *Indiana Univ. Math. J.*, **31**, 7–16 (1982)

[4] Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. *Ann. of Math.*, **103**, 611–635 (1976)

[5] Fefferman, C., Stein, E. M.: H^p spaces of several variables. *Acta Math.*, **129**, 137–193 (1972)

[6] García-Cuerva, J.: Hardy spaces and Beurling algebras. *J. Lond. Math. Soc.*, **39**, 499–513 (1989)

[7] Janson, S.: Mean oscillation and commutators of singular integral operators. *Ark. Math.*, **16**, 263–270 (1978)

[8] John, F., Nirenberg, L.: On functions of bounded mean oscillation. *Comm Pure Appl. Math.*, **2**, 415–426 (1961)

[9] Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. *Comm. Partial Differential Equations*, **19**, 959–1014 (1994)

[10] Krantz, S., Li, S. Y.: Boundedness and compactness of integral operators on spaces of homogeneous type and applications, I. *J. Math. Anal. Appl.*, **258**, 629–641 (2001)

[11] Krantz, S., Li, S. Y.: Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II. *J. Math. Anal. Appl.*, **258**, 642–657 (2001)

[12] Lerner, A. K., Ombrosi, S., Pérez, C., et al.: New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory. *Adv. Math.*, **220**, 1222–1264 (2009)

[13] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. *Trans. Amer. Math. Soc.*, **165**, 207–226 (1972)

[14] Stein, E. M.: Singular integral and differentiability properties of functions. Princeton University Press, Princeton, 1971

[15] Strömberg, J. O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. *Indiana U. Math. J.*, **23**, 511–544 (1979)

[16] Uchiyama, A.: On the compactness of operators of Hankel type. *Tôhoku Math. J.*, **30**, 163–171 (1978)

[17] Wang, D. H., Zhou, J., Chen, W. Y.: Another characterizations of Muckenhoupt A_p class. *Acta Math. Sci. Ser. B*, **37**, 1761–1774 (2017)

[18] Wang, S. B, Jiang, Y. S., Pan, J. B.: Necessary and sufficient conditions for boundedness of commutators of multilinear fractional integral operators. *Acta Math. Sci. Ser. A*, **35**, 1106–1114 (2015)