Validation of Zebrafish (Danio rerio) Reference Genes for Quantitative Real-time RT-PCR Normalization

Rongying TANG¹, Andrew DODD¹*, Daniel LAI¹, Warren C. MCNABB², and Donald R. LOVE¹*

¹School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
²Food and Health Group, AgResearch Grasslands, Private Bag 11008, Tennent Drive, Palmerston North, New Zealand

Abstract The normalization of quantitative real time RT-PCR (qRT-PCR) is important to obtain accurate gene expression data. The most common method for qRT-PCR normalization is to use reference, or housekeeping genes. However, there is emerging evidence that even reference genes can be regulated under different conditions. qRT-PCR has only recently been used in terms of zebrafish gene expression studies and there is no validated set of reference genes. This study characterizes the expression of nine possible reference genes during zebrafish embryonic development and in a zebrafish tissue panel. All nine reference genes exhibited variable expression. The β-actin, EF1α, and Rpl13α genes comprise a validated reference gene panel for zebrafish developmental time course studies, and the EF1α, Rpl13α, and 18S rRNA genes are more suitable as a reference gene panel for zebrafish tissue analysis. Importantly, the zebrafish GAPDH gene appears unsuitable as reference gene for both types of studies.

Key words zebrafish; quantitative real-time RT-PCR; housekeeping genes; GAPDH gene; GeNorm

Received: December 13, 2006 Accepted: March 5, 2007

The application of labeling fluorescence techniques and novel instrumentation has led to the development of quantitative real-time RT-PCR (qRT-PCR) methods that allow the real-time quantification of transcript levels [1]. Unlike traditional PCR, which detects amplification products at the end of the reaction, qRT-PCR allows amplification and detection to proceed simultaneously. It offers a rapid, automated method for the detection of multiple transcript levels with high sensitivity, reproducibility and a broad dynamic range.

A common method for the normalization of qRT-PCR data is the simultaneous amplification of an endogenous reference, or a housekeeping gene [1,2]. Ideally, this reference gene should be expressed at the same level in all samples, for example, samples from different tissues, during all developmental stages, and before and after experimental manipulation[1]. However, there is emerging evidence that common housekeeping genes can significantly vary in expression over different conditions. For example, the transcript level of β-actin appears to vary widely in response to experimental treatments, and GAPDH gene expression also varies during development [1,3]. As a consequence, it has been suggested that a set of reference genes should be used for normalization and the genes comprising the set should be validated for each type of experiment [1,2].

qRT-PCR has only recently been used for zebrafish gene expression studies. A PubMed search of “real time PCR” and “zebrafish” showed there are 64 papers published in the period from 2001 to 2006 on gene expression analysis in zebrafish using qRT-PCR. Of the reference genes described in these publications, the β-actin and GAPDH genes were the most common. However, previous studies have suggested that caution should be exercised when using these two reference genes without validation [1]. To date, there has been no validated set of reference genes for qRT-PCR described in the zebrafish.

The aim of the study presented here was to evaluate a

DOI: 10.1111/j.1745-7270.2007.00283.x
set of reference genes for the normalization of qRT-PCR data in zebrafish. Candidate reference genes were tested for their expression stability during embryonic development and in tissue samples from adult zebrafish.

Materials and Methods

Zebrafish

Wild type zebrafish (Danio rerio) were purchased from a commercial supplier (Hollywood Fish Farms, Auckland, New Zealand) and were maintained in a dedicated zebrafish facility. The zebrafish facility was maintained on light control of 14 h of light in a day at 26–27 °C. Adult zebrafish were kept in 2.75 L tanks on a water recirculation rack system with a male to female ratio of 1:2. Adult fish were fed a range of dry fish food and Artemia. Adult male and female fish were separated for one week prior to breeding. Embryos were harvested by breeding four males and three females.

RNA extraction

Ten developmental stages were selected for the zebrafish embryonic developmental time course study: sphere (4 hpf), germ ring (5.7 hpf), 75% epiboly (8 hpf), bud (10 hpf), 3-somite (11 hpf), 6-somite (12 hpf), 10-somite (14 hpf), 18-somite (18 hpf), prim-16 (31 hpf) and protruding mouth (72 hpf). Zebrafish embryos were derived from a single spawning and 20 zebrafish embryos were pooled for RNA extraction at each developmental timepoint. A zebrafish tissue panel was constructed from as many different biological pathways as possible. Muscle, skin and ovaries of adult zebrafish. The time course and tissue panel studies were carried out in duplicate. Zebrafish embryos or dissected zebrafish tissues were quickly frozen in liquid nitrogen, followed by thorough homogenization in 1 ml Trizol reagent (Invitrogen, Carlsbad, USA) using a homogenizer (Pro Scientific, Model PRO200 with 5 mm×75 mm flat bottom generator) at maximum speed. Chloroform (250 µl) was added to homogenized embryo/tissue followed by vortexing for 15 s and incubating at room temperature for 3 min. The samples were then centrifuged at 12,000 g for 5 min. The upper aqueous phase containing RNA was carefully transferred to a new tube without disturbing the interface. RNA was precipitated by the addition of an equal volume of 70% ethanol and loaded onto a spin column from an RNeasy mini kit (Qiagen, Valencia, USA) according to manufacturer’s instructions.

Analysis of RNA concentration and quality

RNA concentrations were determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington, USA); each RNA sample was assayed three times and an average value determined. The quality of RNA samples was determined using an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, USA) in accordance with the manufacturer’s instructions. The Bioanalyzer provides an RNA integrity number (RIN), with 0 corresponding to fully degraded RNA and 10 corresponding to intact RNA. For all qRT-PCRs, only RNA samples with RIN of at least 7.5 were used, with the vast majority of samples having a RIN of at least 8.0. These values satisfy one of the requirements of a satisfactory qRT-PCR experiment [4].

First strand cDNA synthesis

Total RNA (1 µg) was reverse transcribed to produce cDNA using Superscript III reverse transcriptase (Invitrogen) primed with random hexamers essentially as described previously [5]. In all cases, a reverse transcriptase negative control was used for testing genomic DNA contamination.

Primer design

Initially, thirteen candidate reference genes were selected from the literature for real time PCR [1–3,6–11]. To minimize the effects of gene co-regulation, the reference genes were selected from as many different biological pathways as possible (Table 1). For the 18S rRNA, a generic Taqman probe supplied by Applied Biosystems was used. For the remaining twelve reference genes, zebrafish orthologues of mammalian gene transcripts were retrieved from the NCBI (http://www.ncbi.nlm.nih.gov/Genbank) and Ensembl databases (http://www.ensembl.org/Danio_rerio). Exons for each zebrafish gene were identified by a BLAST search of the zebrafish genome DNA sequence database (http://www.ensembl.org/Danio_rerio) using the mammalian sequence data. Peptide alignments of human and zebrafish reference genes were performed to confirm the reading frame of each exon and splice sites were manually annotated. To optimize the design of primers across exon boundaries, primers were initially manually designed for each reference gene (Table 1), and these were subsequently analyzed using the primer analysis software NetPrimer (http://www.PremierBiosoft.com/). NetPrimer analyzes primer quality by scanning the primer sequence for the formation of secondary structures, and predicts annealing temperatures. Except for the β-actin
Gene name	Function	Accession No.	Abbreviation	Primer sequences (5'→3')
Beta actin	Cytoskeletal structural protein	ENSDART00000055194	β-actin	(F) CGAGCTGTCTCCCATCCA
				(R) TCACCAACGATGCTGTCTTCTCTTCTG
Beta 2 microglobulin	Beta chain of major histocompatibility complex I molecule	NM_131163	β2mic	(F) AGGATTGTCTGCTTTGCTCTCTCT
				(R) GGAGGATGGAGCTTCCTCCCTGATCC
Elongation factor 1 alpha	Factor for protein translation	ENSDART00000023156	EF1α	(F) CTCGAGGCGACGTCAAACT
				(R) ACAAGAAAGTATGACCTGACCTTAC
Glyceraldehyde-3-phosphate dehydrogenase	Catalytic enzyme in glycolytic pathway	AY818346	GAPDH	(F) CGCTGCGCATCCCTCA
				(R) TCAGCAACAGATGCTGTAG
Hypoxanthine guanine phosphoribosyl transferase 1	Enzyme in purine metabolic pathway	NM_212986	HPRT	(F) ATCAGCGAACAGGAAAGGAG
				(R) CTGCGGTGAGCTGCACTACT
RNA polymerase subunit D	Enzyme for transcription	AY648795	RNAP	(F) CCAGATTCAACCGCTTTCAAG
				(R) CAAACTGGGAAGGAGGCTT
Ribosomal protein L13a	60S ribosomal protein	NM_212784	Rpl13α	(F) TCTGAGGAGCTGTAAGGATGATGC
				(R) AGACGCAATCTTGAGAGCAD
Succinate dehydrogenase complex subunit A, flavoprotein	Enzyme in oxidative phosphorylation pathway	NM_200910	SDHA	(F) GAGTCTCAATCACTGATGCTAGA
18S rRNA	18S ribosomal RNA	Generic	18S rRNA	(R) CACTGCTGCGAGCTGTTG
Porphobilinogen deaminase	Enzyme in heme synthesis	AB188810	PBGD	(F) AAAGCGCTTAATAGCACCAGTTC
				(R) GTTCTCCCCAGCICATCTCTTCTC
TATA BOX binding protein	Transcription factor	NM_200096	TBP	(F) CTACCCACCCGAGTCTAGCAGCAG
				(R) CCTTGGACCTGCTGAGACTCCTTGG
Tubulin	Cytoskeletal structural protein	NM_194388	Tubulin	(F) TGGAGGACACTGTACCTGATG
				(R) CAGACGATGAGGGAGCTGACCTT
Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide	Component of the mitochondrial import stimulation factor	BC044412	YWHAZ	(F) TCTGCAATGATGTGTTGGAC
				(R) TCAATGCGCTTTCATTGCGT
Results

Expression of reference genes during zebrafish embryonic development

The raw expression levels for the nine reference genes that were assessed during zebrafish embryonic development showed that the genes fell into three categories based on transcript abundance: (1). High transcript abundance (average Ct value below 20): \(\beta\text{-actin}, EF1\alpha, Rpl13\alpha \) and 18S rRNA gene; (2). Median transcript abundance (average Ct value 20–25): HPRT, RNAP and SDHA; and (3). Low transcript abundance (average Ct value 25–30): \(\beta2\text{mic} \) and GAPDH (Table 2).

The relative expression levels of the nine reference genes for the developmental time course study were entered into GeNorm to calculate gene expression stability values, designated M (Fig. 1). The GeNorm package relies on the principle that the expression ratio of two ideal housekeeping genes should be identical in all samples, regardless of cell type or condition. As a consequence, any variation in the expression ratio of two housekeeping genes would suggest that one or both of the housekeeping genes is (are) not stably expressed; increasing variation correlates with decreasing expression stability. The value M represents an average pairwise variation of a test gene with all other tested genes and low M values correspond to stable gene expression.

Table 2

Reference gene	\(\beta\text{-actin} \)	\(\beta2\text{mic} \)	\(EF1\alpha \)	GAPDH	HPRT	RNAP	Rpl13\alpha	SDHA	18S rRNA
Average Ct value	17.41	26.34	16.19	27.79	22.44	24.97	19.35	23.49	17.47

http://www.abbs.info; www.blackwellpublishing.com/abbs
As shown in Fig. 1, the reference genes with the lowest M values, and thus highest expression stability, were the β-actin, Rpl13α and EF1α genes. A normalization factor (NF) was calculated as the geometric mean of the relative expression levels of these three genes. To test for consistency of the normalization factor, a comparison of relative expression levels of the RNAP and GAPDH genes was undertaken (Fig. 2).

The normalized expression data show that RNAP gene expression is high during early development and is at its highest at the sphere stage (4 hpf). This conclusion is consistent with developmental processes occurring at this stage. During zebrafish embryonic development, the mid-blastula transition (MBT) occurs at cell cycle 10 (about 2–3 hpf), which marks the initiation of transcription of zygotic genes. The work of Kane and Kimmel [14] reported a burst of RNA synthesis activity in zebrafish embryos at the MBT, which increases progressively for several cycles. This observation may account for the high level of RNAP gene expression at the early stages of zebrafish embryonic development.

The GeNorm package rated the GAPDH gene as the gene with the lowest expression stability, which is evident in unnormalized and normalized data (Fig. 2). Almost insignificant GAPDH gene expression occurs during the early zebrafish developmental stages including the blastula, gastrula and segmentation periods, but an increase in expression occurs during the pharyngula period, with a sharp increase in the hatching period. These data are consistent with the study of Rauch et al. [15], who performed whole mount in situ hybridization of early zebrafish embryos and showed no detectable GAPDH gene expression until the prim 5 stage, which occurs in the pharyngula period. A separate study also showed no detectable GAPDH gene expression at early stages of zebrafish embryonic development [16]. Taken together, there is strong evidence that the GAPDH gene is differentially regulated during zebrafish embryogenesis.
Expression of reference genes in zebrafish tissue panel

Raw expression levels for the nine reference genes across a panel of seven zebrafish tissues are shown in Table 3. The relative gene expression data were submitted to GeNorm and gene stability values were calculated for each reference gene (Fig. 3). GeNorm analysis identified Rpl13α, EF1α and 18S rRNA genes as the most stable reference genes across the tested tissues.

Previously, the 18S rRNA gene has been considered an ideal reference control for qRT-PCR analysis as the level of rRNA appears to vary considerably less than mRNA expression [1]. This conclusion is generally supported by this study, as the raw expression data of 18S rRNA during the developmental timecourse and tissue panel studies exhibited the least variation among the reference genes. However, when analyzed by GeNorm, the 18S rRNA gene ranks behind the EF1α and Rpl13α genes; a similar finding was reported in Atlantic salmon [9]. One of the major limitations of using the 18S rRNA gene as a reference control is that an imbalance of rRNA and mRNA fractions can occur between samples, which makes 18S rRNA less suitable as a normaliser in calculating relative mRNA levels [1–3]. Hence caution must be exercised when using 18S rRNA as a reference control. In preference, mRNA coding reference genes are generally used for data normalization. As an additional caveat, while the EF1α gene is a validated reference gene for zebrafish timecourse analysis, its use in studies that might invoke a stress response should be assessed in view of the up-regulation of this gene in stressed human cells [17].

Table 3 Average Ct values for nine reference genes in the zebrafish tissue panel

Reference gene	β-actin	β2mic	EF1α	GAPDH	HPRT	RNAP	Rpl13α	SDHA	18S rRNA
Average Ct value	16.10	18.58	16.91	22.45	22.61	25.39	19.41	22.29	17.70

Fig. 3 GeNorm output of zebrafish tissue panel study

M value (y-axis) is defined as a measure of gene expression stability, with an increasing M value correlating with less stability. The least stable genes are displayed on the left and the most stable genes are displayed on the right.

Discussion

The study described here shows that the β-actin, EF1α and Rpl13α genes provide a collection of validated reference genes for a developmental timecourse study of zebrafish, but that the EF1α, Rpl13α and 18S rRNA genes are more suitable for tissue analysis. Importantly, the GAPDH gene appears unsuitable as reference gene for both types of study in the zebrafish.

The EF1α and Rpl13α genes are common to both panels of validated genes. The expression products of these two genes are both involved in translation and hence it is not surprising that they are among the most stable reference genes. This finding is similar to the conclusions reported in three publications characterizing reference gene expression in salmon. The study by Jørgensen et al. [10] showed that accurate normalization of transcript data could be obtained by combining 18S rRNA, EF1α and the RPL1 genes for studying gene expression in Atlantic salmon. Olsvik et al. [9] validated the EF1AA and EF1AB genes as suitable reference genes for transcript studies of tissues in the same fish species, and Ingerslev et al. [11] confirmed the EF1α gene as a suitable reference gene among three that were evaluated.

To date, β-actin has been the most commonly used reference gene for normalizing qRT-PCR data in zebrafish. Time-course analysis has shown that the β-actin gene is one of the three most suitable reference genes, which is compatible with its fundamental role in cell motility, which occurs throughout embryogenesis. In contrast, expression of the gene is not stable in terms of a tissue panel analysis. Previous publications characterizing tissuespecific β-actin gene expression have shown that it is differentially expressed in post-mortem brain specimens.
and the evaluation of human heart tissue has provided evidence against the use of this gene as a reference gene [18,19]. The papers published on studies of Atlantic salmon also showed that β-actin gene expression varied greatly between tissue samples [9–11].

Finally, the GAPDH gene is the second most commonly used reference gene in zebrafish qRT-PCR analysis. However, in terms of both zebrafish development and tissue panel analysis, GAPDH gene expression was highly variable. Similar results were obtained from studies of Atlantic salmon, which showed that the GAPDH gene exhibits significant variation in expression levels among tissue samples [9,10]. Together, our data describe a validated set of reference genes for zebrafish qRT-PCR experiments under a limited but practical set of experimental conditions.

References

1 Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000, 25: 169–193
2 Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3: research0034.1–research0034.11
3 Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T et al. Housekeeping genes as internal standards: Use and limits. J Biotechnol 1999, 75: 291–295
4 Fleige S, Walf V, Huch S, Pogromt C, Schm J, Pfaffl MW. Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 2006, 28: 1601–1613
5 Dodd A, Chambers SP, Love DR. Short interfering RNA-mediated gene targeting in the zebrafish. FEBS Lett 2004, 561: 89–93
6 Frost P, Nilsen F. Validation of reference genes for transcription profiling in the salmon louse, Lepeophtheirus salmonis, by quantitative real-time PCR. Vet Parasitol 2003, 118: 169–174
7 Radonic A, Thulke S, Mackay JM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 2004, 313: 856–862
8 Radonic A, Thulke S, Bae HG, Muller MA, Siegert W, Nitsche A. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cyromegalovirus infections. Virol J 2003, 2: 7
9 Olsvik PA, Lia KK, Jordal AE, Nilsen TO, Hordvik I. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 2005, 6: 21
10 Jorgensen S, Kleveland E, Grinholc U, Gjøen T. Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Mar Biotechnol 2006, 8: 398–408
11 Ingerslev HC, Pettersen EF, Jakobsen RA, Petersen CB, Wergeland HI. Expression profiling and validation of reference gene candidates in immune relevant tissues and cells from Atlantic salmon (Salmo salar L.). Mol Immunol 2006, 43: 1194–1201
12 Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003, 339: 62–66
13 Skillman LC, Tovey AF, Williams AJ, Wright AD. Development and validation of a real-time PCR method to quantify rampan proteasa and examination of variability between entodinium populations in sheep offered a hay-based diet. Appl Environ Microbiol 2006, 72: 200–206
14 Kane DA, Kimmel CB. The zebrafish midblastula transition. Development 1993, 119: 447–456
15 Rauch PJ, Lyons DA, Middendorf I, Friedlander B, Arana N, Reyes T, Talbot WS. Submission and curation of gene expression data. ZFIN Direct Data Submission 2003
16 Thissie B, Pflumio S, Ffhaer M, Loppin B, Heyer V, Degrave A, Woehl R et al. Expression of the zebrafish genome during embryogenesis (NIH R01 RR15402). ZFIN Direct Data Submission 2001
17 Talapatra S, Wagner JD, Thompson CB. Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death Differ 2002, 9: 856–861
18 Gutala RV, Reddy PH. The use of real-time PCR analysis in a gene expression study of Alzheimer’s disease post-mortem brains. J Neurosci Methods 2004, 132: 101–107
19 Yperman J, De Visscher G, Holvoet P, Flameng W. Beta-actin can not be used as a control for gene expression in ovine interstitial cells derived from heart valves. J Heart Valve Dis 2004, 13: 848–853