Increased gene expression variability in *BRCA1*-associated and basal-like breast tumours

Wiggins, George A R¹, Black, Michael A², Dunbier, Anita², Morley-Bunker, Arthur E¹, kConFab Investigators³,⁴, Pearson, John F¹,⁵#, Walker, Logan C¹#*

¹Department of Pathology and Biomedical Science, University of Otago Christchurch, NZ.
²Department of Biochemistry, University of Otago Dunedin, NZ.
³Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
⁴Research Department, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
⁵Biostatistics and Computational Biology Unit, University of Otago Christchurch, NZ.
#Contributed equally
*Corresponding author: Logan C. Walker
Tel: +64 3 364 0544
Email: logan.walker@otago.ac.nz
Supplementary Table 1. RNAscope scoring criteria

Score	Criteria
0	No punctuated signal
0.5	0-30% of cells with 1-3 punctuate signals/cell
1	>30% of cells with 1-3 punctuate signals/cell
2	4-9 punctuate signals/cell with no clustering
3	10+ punctuate signals/cell with <10% of signals clustering
4	10+ punctuate signals/cell with >10% of signals clustering
Supplementary Table 2. Clinicopathological data for breast tumours used for RNAscope analysis

	TMA8	TMA9	TMA10	TMA11	TMA12	TMA16	TMA17
N	60	60	60	57	24	121	121
BRCA status							
BRCA1	60	-	60	-	24	4	3
BRCA2	-	60	-	57	-	3	4
ER status							
Positive	12	30	7	25	1	60	51
Negative	34	7	34	11	10	19	23
Unknown	14	23	19	21	13	42	47
PR Status							
Positive	11	25	8	23	2	56	43
Negative	34	23	30	10	4	18	20
Unknown	15	12	22	24	18	47	58
HER2							
Positive	4	5	3	4	1	7	13
Negative	19	12	14	3	1	14	20
Unknown	37	43	43	50	22	100	88
CK5							
Positive	31	8	27	5	13	10	8
Negative	25	48	26	41	9	94	88
Unknown	4	4	7	11	2	17	25
Supplementary Fig 1. Transcriptome-wide gene expression variability in breast tumours as measured by gene-specific CV and MAD. *BRCA1*-associated and basal-like breast tumours each show greater gene-specific CV and MAD values compared to BRCAx and non-basal tumour, respectively. A model of equity (red line) was compared to the linear model (blue dashed line) and polynomial regression (sky blue line).
Supplementary Fig 2. Transcriptome-wide gene expression variability in breast tumours as measured by gene-specific SD, CV and MAD. BRCA2-associated gene expression variability is inconsistent compared to BRCAx across the three microarray datasets. In contrast, global gene-specific means between tumour groups are comparable. A model of equity (red line) was compared to the linear model (blue dashed line) and polynomial regression (sky blue line).
Supplementary Fig 3. Correlation of EN1 copy number with EN1 gene expression (left) and EN1 variability (right). Variability is described as the absolute deviation from the median within each copy number status. The linear model (blue) describes the strength of correlation.