Supplementary Materials

Transition state theory-inspired neural network for estimating the viscosity of deep eutectic solvents

Liu-Ying Yu†1,2, Gao-Peng Ren†1, Xiao-Jing Hou1,2, Ke-Jun Wu*1,2,3 and Yu-Chen He*4

1Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2Institute of Zhejiang University-Quzhou, Quzhou 324000, China
3School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K.
4State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, China
†: These authors contributed equally to this work
*Corresponding author: Ke-Jun Wu, K.Wu@zju.edu.cn

This PDF file includes:
Page S1 to S66
Supporting Figures S1 to S12
Supporting Tables S1 to S7
Table of contents

1 Comparison with traditional machine learning methods ...S3
 1.1 NN ..S3
 1.2 Random forest ..S3
 1.3 Gradient boosting ...S7
 1.4 LightGBM ...S9
 1.5 Summary ..S12

2 Further validation of the TSTiNet model ..S14
 2.1 Relationship between viscosity and temperature ...S14
 2.2 Relationship between viscosity and molar fraction ..S16
 2.3 Relationship between viscosity and types of HBA and HBDS17

3 Comparison with models reported by different research groupsS20

4 Chemical structure dataset for DESs ..S24

5 Measurement methods dataset for DESs ...S46
1 Comparison with traditional machine learning methods

In addition to the NN model in the main text, many other machine learning models can be used for quantitative structure-property relationship (QSPR), such as random forest, gradient boosting, and support vector machine. In this note, three tree models (random forest, gradient boosting, and LightGBM) have been applied to our dataset. We will discuss the hyperparameters settings and performance of these models, then compare these models with the TSTiNet model and the NN model.

1.1 NN

Benefit from the good designability, the NN model is the most extensively studied model currently in machine learning. The overall architecture of NN is as same as the MLP in the TSTiNet as the main text shows. We tune the hyperparameters of these MLPs manually, and the search space of the hyperparameters are shown in Table S1.

Table S1. The search space and results of parameters in the NN model.

Hyperparameters	Search space	Result
activation function	ReLU, Tanh, GELU	GELU
number of hidden layers	1, 2, 3	2
number of hidden neurons	32, 48, 64, 128	32
loss function	MSE loss, MAE loss, Huber loss	Huber loss

1.2 Random forest

Random forest has been widely used in classification and regression tasks related to molecular as a QSPR model. It is based on the decision tree model and bagging algorithm,
and its core idea is selecting features randomly to grow each tree (74). The randomness reduces the risk of overfitting, which is the key benefit of the random forest model. To prove the superiority of our proposed TSTiNet model, a random forest model is applied to our dataset as a comparison.

The random forest model is performed in Python 3 with the scikit-learn package (75). The RandomizedSearchCV in the package is used to optimize the hyperparameters in the random forest with default settings, except for the number of parameter settings that are sampled is set to 50. The training set and validation set are concatenated as new training set for cross-validation (cv), and the cv score is a negative mean square error. The hyperparameters selected for optimization are the number of trees in the forest (n_estimators), the maximum depth of the tree (max_depth), the minimum number of samples required to split an internal node (min_samples_split), the minimum number of samples required to be at a leaf node (min_samples_leaf), and the number of features to consider when looking for the best split (max_features). Since the increase of n_estimators will lead to expensive computation, the n_estimators is initially set to 100. The search space and results of the parameters in the random forest model are shown in Table S2.

Hyperparameters	Search space	Result
max_features	20, 30, 40, 50, 60	40
max_depth	50, 75, 100, 125, 150	100
min_samples_split	2, 5, 10, 15, 20	2
min_samples_leaf	1, 2, 5, 10, 15	1
n_estimators	100	100

As Table S2 shows, the best values of min_samples_split and min_samples_leaf are 2 and 1, respectively, which are the default values of the model. The values of max_depth and max_features are 100 and 40, respectively. After these parameters are determined, we try the difference values of the n_estimators and find a minimum value that makes the
model have acceptable results. As shown in Fig. S1, when the n_estimators is less than 130, the mean cv score gets higher as the n_estimators increases; when the n_estimators is more than 130, the mean cv score fluctuates up and down without a significant improvement. Therefore, the value of n_estimators is finally set to 130.

Fig. S1. Dependence of mean cv score on the n_estimators in the random forest model.

Under the above model settings, the performance of the model is evaluated on the test set and the new training set (see Fig. S2 and Fig. S3).
As shown in Fig. S2, the calculated viscosities of DESs using the random forest model display a bad agreement with the corresponding experimental viscosity data. Even in the
training set, the model performs very poorly, especially in the region of large viscosity (as already suggested by Fig. S3). Besides, there are also many points with huge RD, as seen in Fig. S3. Therefore, from the performance of the random forest model, the model is not suitable for the prediction of the viscosity of DESs.

1.3 Gradient boosting

Gradient boosting is a popular machine learning algorithm that has been proved successful across many domains. Unlike random forest that implements ensemble through deep independent trees, gradient boosting builds many weak estimators to fit the negative gradient of the loss function (76). Xu et al. (38) have applied the gradient boosting method to predict the thermophysical properties of DESs. And they get $R^2=0.9773$ on logarithm viscosity prediction, proving that the gradient boosting method may be a suitable method for viscosity prediction. Therefore, we implement a gradient boosting regressor to predict the viscosity of DESs as a comparison.

The gradient boosting model is performed in Python 3 with the scikit-learn package. The RandomizedSearchCV in the package is used to optimize the hyperparameters in the gradient boosting with default settings, except for the number of parameter settings that are sampled is set to 50. The training set and validation set are concatenated as new training set for cross-validation, and the cv score is a negative mean square error. The hyperparameters selected for optimization are the number of boosting stages to perform (n_estimators), the fraction of samples to be used for fitting the individual base learners (subsample), maximum depth of the individual regression estimators (max_depth), and learning rate. The search space and results of the parameters in the gradient boosting model are shown in Table S3.

Table S3. The search space and results of parameters in the gradient boosting model.

Hyperparameters	Search space	Result

S7
Parameter	Settings	Value
subsample	0.25, 0.5, 0.75, 1	0.25
max_depth	4, 8, 10, 12, 14, 16	8
learning_rate	0.01, 0.03, 0.05, 0.07, 0.1	0.07
n_estimators	400, 800, 1200, 1600, 2000	1600

Under the above model settings, the performance of the model is evaluated on the test set and the new training set (see Fig. S4 and Fig. S5).

![Fig. S4. Correlation between the predicted and reported viscosity values of datasets in the gradient boosting model.](image)

Fig. S4. Correlation between the predicted and reported viscosity values of datasets in the gradient boosting model.
Fig. S5. Relative deviations between the literature and the predicted viscosities in both datasets in the gradient boosting model.

As shown in Fig. S4, the calculated viscosities of DESs using the gradient boosting model display a better agreement with the corresponding experimental viscosity data than the random forest model. Whereas the model gives excellent performance on the training set, some massive deviation points appear in the test set (as Fig. S5 shows). This result indicates that the model probably has an overfitting problem. Similar to the NN model, the gradient boosting model is not constrained by the equation, making it easily overfitting on the training set. Furthermore, the uneven distribution of the datasets makes it has some considerable deviation points in the region of high viscosity. Therefore, given the extensive viscosity range of DESs and the uneven distribution of viscosity data points, the gradient boosting model cannot provide a good solution.

1.4 LightGBM

With the popularity of the gradient boosting method, some new gradient boosting implementation models have been proposed (such as XGBoost, LightGBM (77)). These models improve the implementation algorithm of gradient boosting, which dramatically
improves its accuracy and training speed. Among these models, whereas XGBoost has good performance on different tasks, it requires large memory and long calculation time. To address these drawbacks, LightGBM has been proposed. It has comparable performance, faster calculation, and minor memory usage than XGBoost. Furthermore, LightGBM has been widely used in many winning solutions of machine learning competitions. To explore the performance of the most advanced model on our dataset, we implement a LightGBM model to predict the viscosity of DESs as a comparison.

The LightGBM model is performed in Python 3 with the LightGBM package (https://github.com/microsoft/LightGBM). The package provides the interface in scikit-learn package, and we use this interface to implement the LightGBM model. The RandomizedSearchCV in the scikit-learn package is used to optimize the hyperparameters in the LightGBM model with default settings, except for the number of parameter settings that are sampled is set to 50. The training set and validation set are concatenated as new training set for cross-validation, and the cv score is a negative mean square error. The hyperparameters selected for optimization are subsample, max_depth, learning_rate, n_estimators, maximum tree leaves for base learners (num_leaves), frequency of subsample (subsample frequency), subsample ratio of columns when constructing each tree (colsample_bytree). The search space and results of the parameters in the LightGBM model are shown in Table S4.

Table S4. The search space and results of parameters in the LightGBM model.

Hyperparameters	Search space	Result
subsample	0.75, 0.78, 0.8, 0.82, 0.85	0.82
subsample_freq	2, 4, 6	6
colsample_bytree	0.25, 0.30, 0.35, 0.40, 0.45	0.35
max_depth	8, 10, 12, 14	10
learning_rate	0.1, 0.05, 0.01	0.1
n_estimators	1000, 2000, 3000, 4000	4000
num_leaves	5, 10, 15, 20, 25	10
There is a trade-off between learning_rate and n_estimators. To get better performance, different setups of the values of these two parameters are examined. And we find that when n_estimators = 40000 and learning_rate = 0.01, the model gets the best performance. Under the above model settings, the performance of the model is evaluated on the test set and the new training set (see Fig. S6 and Fig. S7).

Fig. S6. Correlation between the predicted and reported viscosity values of datasets in the LightGBM model.
As shown in Fig. S6, the calculated viscosities of DESs using the LightGBM model display a good agreement with the corresponding experimental viscosity data overall. However, as shown in the partial enlargement, the performance of LightGBM is highly variable and there are some big deviation points in the datasets. Fig. S7 also supports this result, and there are even some data points with the absolute value of RD greater than 100%. Although the number of big deviation points of the LightGBM model are significantly less than the gradient boosting model, the MRD of the LightGBM model is enormous (more than 200%). Therefore, the reliability of the LightGBM model is greatly reduced. And it cannot provide better performance than the TSTiNet model.

1.5 Summary

In addition to the NN model, we implement three decision tree models as comparisons with the TSTiNet model. These three decision tree models (random forest, gradient boosting and LightGBM) are very popular as machine learning methods. The performances of these...
three models are shown in Table S5. And the metrics we selected are AARD, MRD and R^2.

Table S5. The performance of different machine learning methods.

Model	AARD (%)	MRD (%)	R^2
Random forest	16.02	117.69	0.6308
Gradient boosting	8.30	84.66	0.7161
LightGBM	7.29	208.85	0.8353
Plain NN	5.23	82.15	0.7464
TSTiNet	6.85	49.28	0.9805

Table S5 shows that the LightGBM model has the best predictive effect among the decision tree models. Whereas the LightGBM model has a comparable AARD with the TSTiNet model, its MRD and R^2 are unacceptable. All these three models have larger AARD and MRD and lower R^2 than the TSTiNet model. And on the whole, the performances of the decision tree models are not as good as the NN model. Meanwhile, due to the poor designability of the decision tree model, it is difficult for them to combine with the equation. Therefore, the decision tree models are not as good and flexible as the neural network in predicting complex thermophysical properties.
2 Further validation of the TSTiNet model

From an industrial and application standpoint, the solvents’ viscosity is one of the most critical parameters for solvent selection. The viscosity of mixtures is usually governed by the strength of intermolecular interactions between the constituents. Generally, polar solvents tend to be more viscous than similar non-polar solvents (78) (e.g., nonanoic acid>nonane). Since DESs are formed based on hydrogen bond molecular interactions, it is expected that high viscosities of these solvents would be observed as the hydrogen bonds formed between the molecules, which limit their mobility within the mixture. For instance, glycerol-based DESs such as potassium carbonate: glycerol are reported to have high viscosities in the range of 5500-28104 mPa·s at 298.15 K (79). The viscosities of DESs are relatively high compared to those of common organic solvents. Organic solvents typically have room temperature viscosities ranging from 0.2 to 10 mPa·s (80), whereas DESs display a broad range of room temperature viscosities, from 1.3 to greater than 85000 mPa·s (Supplementary data). This is of great significance as it enables an objective-oriented solvent design process.

2.1 Relationship between viscosity and temperature

The viscosity of the DESs is reported to be very sensitive to temperature (81, 82). A significant decrease in the viscosity of the DESs is observed when increasing the temperature. For the sake of a better overview, the temperature trends of the TSTiNet model to estimate the viscosities of some typical DESs are shown in Fig. S8 and Fig. S9. Because of the wide viscosity range of the investigated DESs, two figures were separately for the high and low viscosity ranges. Fig. S8 shows the viscosity-temperature behaviors of the TSTiNet model for five highly viscous DESs, while Fig. S9 focuses on four low viscosity DESs. The logarithmic decreasing trend of viscosity concerning the increasing temperature is successfully followed by the proposed model at both low and high viscosities of DESs.
Fig. S8. Comparison between the trends of the experimental data and the proposed TSTiNet model for five randomly selected DESs in the high viscosity range. ■, Acetylcholine chloride: D-xylose (1:1); ●, Potassium carbonate: Glycerol (1:7); ▲, Choline chloride: Malonic acid (1:1); ▼, Acetylcholine chloride: D-xylose (1:1) and ◇, Methyltrioctylammonium bromide: Decanoic acid (1:2).

Fig. S9. Comparison between the trends of experimental data and the proposed TSTiNet model for five randomly selected DESs in the high viscosity range. ■, Acetylcholine chloride: D-xylose (1:1); ●, Potassium carbonate: Glycerol (1:7); ▲, Choline chloride: Malonic acid (1:1); ▼, Acetylcholine chloride: D-xylose (1:1) and ◇, Methyltrioctylammonium bromide: Decanoic acid (1:2).
model for five randomly chosen DESs in the low viscosity range. ■, Allyltriphenylphosphonium bromide: Diethylene glycol (1:4); ▲, Tetrabutylammonium bromide: Tetraethylene glycol (1:4); ▼, Tetrabutylammonium bromide: Ethanolamine (1:6) and ◆, Trioctylphosphine oxide: Phenol (1:2)

2.2 Relationship between viscosity and molar fraction

The effect of the molar fraction on viscosity is highly dependent on the intermolecular interactions among DES components. Fig. S10 shows the impact of changing the molar ratio of DES components on its viscosity. Five different molar ratios (1: 2, 1: 3, 1: 4, 1: 5, 1: 6) of DES composed of choline chloride and ethylene glycol are discussed. As shown in Fig. S10, the viscosity decreases along with increasing the ethylene glycol molar fraction. Increasing the number and strength of hydrogen bonds in the associative mixture will increase viscosity. Therefore, stronger bonds in the mixture lead to the more significant bonded molecules’ resistance to moving next to each other. Fig. S10 demonstrates that in the studied DES, choline chloride: ethylene glycol with a ratio of 1:2 may have the most considerable hydrogen bond association strength. As the proportion of ethylene glycol increases, the change in viscosity behavior to temperature tends to be flat. Still, it can be seen that the proposed TSTiNet model can reasonably estimate all the discussed trends and changes in viscosity behavior.
2.3 Relationship between viscosity and types of HBA and HBD

It is known that the viscosity of DESs varies widely depending on the type of HBA and HBD. To study the proposed model’s predictive ability more comprehensively, the influence of the component types of DESs on the viscosity is studied in Fig. S11 and Fig. S12. It can be seen that the model gives a reliable consistency between the experimental value and the estimated viscosity of DESs. Fig. S11 shows the effect of changing the HBD molecular type of a fixed HBA on the viscosity of DESs. In this figure, the choline chloride’s viscosity-temperature behavior as HBA is compared, and four different HBDs, i.e., ethylene glycol, phenol, levulinic acid and urea, are compared. The molar ratio of HBA and HBD is 1: 2. As we know, the intermolecular interaction is the dominant force in the viscosity of a mixture. Therefore, the size of HBD, the number of hydrogen bonds between HBD and HBA, and
the strength of hydrogen bonds are significant factors that should be considered when studying the viscosity behavior. It can be seen that the changing trend of viscosity is urea > levulinic acid > phenol > ethylene glycol. Fig. S12 shows the effect of changing the HBA molecule type of the fixed HBD on the viscosity of DESs. In this figure, the viscosity-temperature behavior of decanoic acid as HBD is compared, and three different HBAs, i.e., lidocaine, tetraoctylammonium chloride, and tetraoctylammonium bromide, are compared. The molar ratio of HBA to HBD is 1:2. It can be seen that the changing trend of viscosity is tetraoctylammonium bromide > tetraoctylammonium chloride > lidocaine. For the same cation and HBD, it is observed that the viscosity of bromide anion is higher than that of chloride anion (e.g., tetraoctylammonium bromide > tetraoctylammonium chloride). These trends are also consistent with the trends observed in the viscosity of ILs (82).

Fig. S11. Comparison of the viscosity behavior of choline chloride (HBA) with the different HBDs. ■, Choline chloride: Ethylene glycol (1:2); ●, Choline chloride: Phenol (1:2); ▲, Choline chloride: Levulinic acid (1:2) and ◾, Choline chloride: Urea (1:2).
Fig. S12. Comparison of the viscosity behavior of decanoic acid (HBD) with the different HBAs. ■, Lidocaine: Decanoic acid(1:2); ●, Tetraoctylammonium chloride: Decanoic acid (1:2) and ▲, Tetraoctylammonium bromide: Decanoic acid (1:2).
3 Comparison with models reported by different research groups

Since the model proposed by Bakhtyari et al. is a global viscosity model covering extensive database, a detailed deviation comparison has been conducted.

Table S6. Comparison of the individual RD% values for DES by the TSTiNet model and the Bakhtyari et al. model.

HBA	HBD	HBA:HBD mole ratio	T	η_t^{ref}	ARD%a	RD%b
Acetylcholine chloride	1,2,4-triazole	1:1	303.15	304.69	6.83	η_{ref}
			313.15	153.71	5.05	4.55
			323.15	83.06	9.56	11.54
			333.15	46.48	7.66	23.26
			343.15	27.73	4.10	35.19
			363.15	14.51	15.77	26.21
			373.15	8.37	5.99	61.10
Acetylcholine chloride/1,2,4-triazole		AARD%	7.85	26.98		
Acetylcholine chloride	Imidazole	1:1.5	303.15	233.69	0.41	η_{ref}
			313.15	120.91	8.16	7.09
			323.15	59.05	1.22	31.42
			333.15	35.29	0.51	40.32
			343.15	18.67	21.60	78.11
			353.15	16.53	6.66	40.93
			363.15	11.69	5.88	44.64
Acetylcholine chloride	Imidazole	1:2	303.15	103.33	4.30	η_{ref}
			313.15	52.18	1.52	16.52
			323.15	31.63	11.98	20.89
			333.15	21.49	22.69	18.12
			343.15	11.37	6.02	54.94
			353.15	6.84	6.62	85.53
			363.15	4.17	25.21	126.23
Acetylcholine chloride	Imidazole	1:3	303.15	335.98	16.36	η_{ref}
			313.15	189.19	2.77	5.01
			323.15	98.80	0.26	5.91
			333.15	57.92	0.54	12.50
			343.15	35.77	3.82	19.82
Temperature	Acetylcholine chloride/Imidazole	Betaine/DL-Lactic acid	Choline chloride 1,2-Butanediol	Choline chloride 1,2-Butanediol		
--------------	---------------------------------	------------------------	-------------------------------	-------------------------------		
353.15	25.74	2.27	14.57	14.57		
363.15	17.68	1.18	19.18	19.18		
	Acetylcholine chloride/Imidazole					
	AARD%	7.14				
	AARD%	35.65				
Betaine						
DL-Lactic acid 1:2						
298.15	1266.00	3.75	η_{ref}			
303.15	818.60	5.04	1.79			
308.15	544.60	4.77	4.38			
313.15	374.60	4.03	6.78			
318.15	260.50	1.13	10.99			
323.15	190.20	0.17	12.52			
328.15	141.60	1.34	14.23			
333.15	107.50	3.13	15.86			
338.15	83.70	4.33	16.50			
343.15	65.90	6.18	17.60			
Betaine						
DL-Lactic acid 1:5						
293.15	386.60	3.44	7.73			
298.15	245.30	1.12	η_{ref}			
303.15	167.70	1.64	3.67			
308.15	120.40	3.17	5.07			
313.15	86.10	1.10	9.40			
318.15	65.50	2.30	9.30			
323.15	50.60	2.60	9.50			
328.15	39.60	2.07	10.07			
333.15	31.10	0.01	11.89			
338.15	25.10	1.01	12.15			
343.15	20.60	1.85	11.89			
Betaine						
DL-Lactic acid 1:19						
295.15	55.00	2.59	16.66			
297.15	48.00	1.59	13.75			
299.15	41.00	8.71	8.55			
301.15	34.00	10.33	0.14			
303.15	31.00	9.25	η_{ref}			
305.15	26.00	0.18	8.82			
307.15	22.00	9.96	17.66			
309.15	19.00	18.59	24.93			
311.15	17.00	23.80	28.31			
Betaine						
DL-Lactic acid 1:4						
295.15	70.00	9.43	12.63			
297.15	62.00	8.01	11.12			
299.15	55.00	6.27	9.46			
301.15	48.00	2.51	5.99			
Choline chloride/1,2-Butanediol	AARD%	7.98	13.31			

Table S7. Comparison of the individual AARD% values for DES by the TSTiNet model, the Bakhtyari et al. model, the Lewis and Squires model, the Haghbakhsh and Raeissi model, and the Dutt et al. model.
	7.14	35.65	235.73	12.40	40.77
Acetylcholine chloride/Imidazole					
Betaine/DL-Lactic acid	2.58	10.07	298.95	23.95	75.60
Choline chloride/1,2-	7.98	13.31	32.05	11.68	12.40
Butanediol					
4 Chemical structure dataset for DESs

NO.	HBA	CAS register number	Molecular formula	Molecular Structure	Molecular Weight	HBD	CAS register number	Molecular formula	Molecular Structure	Molecular Weight				
1	Zinc chloride	7646-85-7	ZnCl₂	Cl⁻ Cl²⁺ Cl⁻	136.3	Choline chloride	67-48-1	C₅H₁₅ClNO	HO⁻ N⁺ Cl⁻	139.62				
2	Chom chloride hexahydrate	10060-12-5	Cl₃CrH₂O₆	266.45	Choline chloride	67-48-1	C₅H₁₅ClNO	Ho⁻ N⁺ Cl⁻	139.62					
3	Acetylcholine chloride	60-31-1	C₇H₁₄ClNO₂	181.66	1,2,4-Triazole	288-88-0	C₃H₇N₃	181.66	69.07					
4	Acetylcholine chloride	60-31-1	C₇H₁₄ClNO₂	181.66	D-fructose	57-48-7	C₆H₁₂O₃	181.66	180.16					
5	Acetylcholine chloride	60-31-1	C₇H₁₄ClNO₂	181.66	D-glucose	50-99-7	C₆H₁₂O₃	181.66	180.16					
6	Acetylcholine chloride	60-31-1	C₇H₁₄ClNO₂	181.66	D-mannose	3458-28-4	C₆H₁₂O₃	181.66	180.16					
7	Acetylcholine chloride	60-31-1	C₇H₁₄ClNO₂	181.66	D-ribose	50-69-1	C₆H₁₄O₃	181.66	150.13 (569)					
	Compound	CAS	Molecular Formula	Molecular Weight	1st Name	CAS	Molecular Formula	Molecular Weight						
---	--	-------	-------------------	------------------	--------------	-----------	-------------------	------------------						
8	Acetylcholine chloride	60-31-1	C₇H₁₆ClNO₂	181.66	D-xylose	31178-70-8	C₅H₁₀O	150.13						
9	Acetylcholine chloride	60-31-1	C₇H₁₆ClNO₂	181.66	Imidazole	288-32-4	C₃H₄N₂	68.08						
10	Acetylcholine chloride	60-31-1	C₇H₁₆ClNO₂	181.66	Levulinic acid	123-76-2	C₅H₈O₃	116.11						
11	Allytriphenylphosphonium bromide	1560-54-9	C₂₃H₂₂BrP	383.26	Diethylene glycol	111-46-6	C₄H₁₀O₃	106.12						
12	Allytriphenylphosphonium bromide	1560-54-9	C₂₃H₂₂BrP	383.26	Triethylene glycol	112-27-6	C₆H₁₄O₄	150.17						
13	Ammonium thiocyanate	1762-95-4	NH₄SCN	76.12	Acetamide	60-35-5	C₂H₄NO	59.07						
14	Ammonium thiocyanate	1762-95-4	NH₄SCN	76.12	Caprolactam	105-60-2	C₆H₁₁NO	113.16						
15	Benzylidimethyl(2-hydroxyethyl) ammonium chloride	7221-40-1	C₁₁H₁₂ClNO	215.72	Levulinic acid	123-76-2	C₅H₈O₃	116.11						
	Chemical Name	CAS Number	Chemical Structure	Molecular formula	Molecular Weight	Additional Information								
---	--	------------	--------------------	-------------------	------------------	------------------------								
16	Benzyldimethyl(2-hydroxyethyl) ammonium chloride	7221-40-1	![Structure1](image)	C₁₁H₁₈ClNO	215.72	D-fructose 57-48-7								
17	Benzyldimethyl(2-hydroxyethyl) ammonium chloride	7221-40-1	![Structure2](image)	C₁₁H₁₈ClNO	215.72	D-glucose 50-99-7								
18	Benzyldimethyl(2-hydroxyethyl) ammonium chloride	7221-40-1	![Structure3](image)	C₁₁H₁₈ClNO	215.72	D-mannose 3458-28-4								
19	Benzyldimethyl(2-hydroxyethyl) ammonium chloride	7221-40-1	![Structure4](image)	C₁₁H₁₈ClNO	215.72	D-ribose 50-69-1								
20	Benzyldimethyl(2-hydroxyethyl) ammonium chloride	7221-40-1	![Structure5](image)	C₁₁H₁₈ClNO	215.72	D-xylose 31178-70-8								
21	Benzytrimethylammonium chloride	56-37-1	![Structure6](image)	C₁₃H₂₂CIN	227.77	Acetic acid 64-19-7								
22	Benzytrimethylnitromethane amylmonium chloride	56-93-9	![Structure7](image)	C₁₀H₁₆CIN	185.69	Acetic acid 64-19-7								
	Name	CAS	Molecular Formula	Molecular Weight	Reactant	CAS	Molecular Formula							
---	--	--------	-------------------	------------------	-------------------	--------	---------------------							
23	Benzyltrimethylammonium chloride	56-93-9	C_{10}H_{16}ClN	185.69	Glycerol	56-81-5	C_{3}H_{8}O_{3}	92.09						
24	Benzyltrimethylammonium chloride	56-93-9	C_{10}H_{16}ClN	185.69	Levulinic acid	123-76-2	C_{3}H_{6}O_{2}	116.11						
25	Benzyltriphenylphosphonium chloride	1100-88-5	C_{25}H_{22}ClP	388.87	Ethylene glycol	107-21-1	C_{2}H_{6}O_{2}	62.07						
26	Benzyltriphenylphosphonium chloride	1100-88-5	C_{25}H_{22}ClP	388.87	Glycerol	56-81-5	C_{3}H_{8}O_{3}	92.09						
27	Benzyltripropylammonium chloride	5197-87-5	C_{16}H_{28}ClN	269.85	DL-Lactic acid	598-82-3	C_{3}H_{6}O_{3}	90.08						
28	Benzyltripropylammonium chloride	5197-87-5	C_{16}H_{28}ClN	269.85	Ethylene glycol	107-21-1	C_{2}H_{6}O_{2}	62.07						
29	Benzyltripropylammonium chloride	5197-87-5	C_{16}H_{28}ClN	269.85	Glycerol	56-81-5	C_{3}H_{8}O_{3}	92.09						
No.	Compound	CAS Registry Number	Molecular Formula	Molecular Weight	Chemical Name	CAS Registry Number	Molecular Structure							
-----	--------------------------------	---------------------	-------------------	------------------	---------------	---------------------	---------------------							
30	Benzyltripropylammonium chloride	5197-87-5	C_{18}H_{28}ClN	269.85	Phenol	108-95-2	![Molecular Structure](image1.png)							
31	Betaine	107-43-7	C_{6}H_{11}NO_{2}	117.15	DL-lactic acid	598-82-3	![Molecular Structure](image2.png)							
32	Betaine	107-43-7	C_{6}H_{11}NO_{2}	117.15	Levulinic acid	123-76-2	![Molecular Structure](image3.png)							
33	Choline chloride	67-48-1	C_{5}H_{11}ClN	139.62	1,2-Butanediol	584-03-2	![Molecular Structure](image4.png)							
34	Choline chloride	67-48-1	C_{5}H_{11}ClN	139.62	1,2-Propanediol	57-55-6	![Molecular Structure](image5.png)							
35	Choline chloride	67-48-1	C_{5}H_{11}ClN	139.62	1,3-Propanediol	504-63-2	![Molecular Structure](image6.png)							
36	Choline chloride	67-48-1	C_{5}H_{11}ClN	139.62	1,4-Propanediol	110-63-4	![Molecular Structure](image7.png)							
37	Choline chloride	67-48-1	C_{5}H_{11}ClN	139.62	2,2,2-Trifluoroacetamide	354-38-1	![Molecular Structure](image8.png)							
38	Choline chloride	67-48-1	C_{5}H_{11}ClN	139.62	2,3-Propanediol	513-85-9	![Molecular Structure](image9.png)							
No.	Compound	CAS Number	Molecular Formula	MW	Chemical Formula	Molecular Weight								
-----	------------------	------------	-------------------	-----	------------------	------------------								
39	Choline chloride	67-48-1	C₅H₁₄ClNO	139.62	Acetic acid (CH₃COOH)	60.05								
40	Choline chloride	67-48-1	C₅H₁₄ClNO	139.62	D-fructose (C₆H₁₂O₅)	180.16								
41	Choline chloride	67-48-1	C₅H₁₄ClNO	139.62	D-glucose (C₆H₁₂O₅)	180.16								
42	Choline chloride	67-48-1	C₅H₁₄ClNO	139.62	DL-lactic acid (C₃H₆O₃)	90.08								
43	Choline chloride	67-48-1	C₅H₁₄ClNO	139.62	DL-Xylitol (C₅H₁₀O₅)	152.15								
44	Choline chloride	67-48-1	C₅H₁₄ClNO	139.62	D-mannose (C₆H₁₂O₅)	180.16								
45	Choline chloride	67-48-1	C₅H₁₄ClNO	139.62	D-ribose (C₆H₁₀O₅)	150.13								
46	Choline chloride	67-48-1	C₅H₁₄ClNO	139.62	D-xylose (C₅H₁₀O₅)	150.13								
47	Choline chloride	67-48-1	C₅H₁₄ClNO	139.62	Ethanolamine (C₂H₇NO)	61.08								
---	---	---	---	---	---	---	---	---						
48	Choline chloride	. 67-48-1	C₅H₁₄ClNO	Cl⁻	139.62	Ethylene glycol	107-21-1	C₂H₅O₂	HO—OH	62.07				
49	Choline chloride	. 67-48-1	C₅H₁₄ClNO	Cl⁻	139.62	Glutaric acid	110-94-1	C₃H₆O₄	O—O—O—OH	132.11				
50	Choline chloride	. 67-48-1	C₅H₁₄ClNO	Cl⁻	139.62	Glycerol	56-81-5	C₃H₈O₃	HO—OH—OH	92.09				
51	Choline chloride	. 67-48-1	C₅H₁₄ClNO	Cl⁻	139.62	Glycolic acid	79-14-1	C₂H₄O₃	O—O—OH	76.05				
52	Choline chloride	. 67-48-1	C₅H₁₄ClNO	Cl⁻	139.62	Hexafluoroisopropyl alcohol	92-66-1	C₃H₆F₆O	O—F—F—F—F—F	168.04				
53	Choline chloride	. 67-48-1	C₅H₁₄ClNO	Cl⁻	139.62	Levulinic acid	123-76-2	C₅H₈O₃	HO—O—CO—CO—OH	116.11				
54	Choline chloride	. 67-48-1	C₅H₁₄ClNO	Cl⁻	139.62	Malonic acid	141-82-2	C₃H₄O₄	O—O—CO—OH	104.06				
55	Choline chloride	. 67-48-1	C₅H₁₄ClNO	Cl⁻	139.62	P-chlorophenol	106-48-9	C₆H₅ClO	O—Cl—C₆H₄—OH	128.56				
56	Choline chloride	. 67-48-1	C₅H₁₄ClNO	Cl⁻	139.62	P-cresol	106-44-5	C₆H₅O	O—OH	108.14				
	Name	CAS Number	Molecular Formula	Molecular Weight	Function	CAS Number	Formula	Molecular Weight						
---	---	------------	---------------------	------------------	---	------------	---------------	------------------						
57	Choline chloride	.67-48-1	C₅H₁₄ClNO	139.62	Phenol	108-95-2	C₅H₈O	94.11						
58	Choline chloride	.67-48-1	C₅H₁₄ClNO	139.62	Triethylene glycol	112-27-6	C₆H₁₂O₄	150.17						
59	Choline chloride	.67-48-1	C₅H₁₄ClNO	139.62	Urea	57-13-6	CH₅N₂O	60.06						
60	Decyltrimethylammonium bromide	2082-84-0	C₁₃H₂₆BrN	280.29	Hexafluoroisopropyl alcohol	920-66-1	C₂₀H₂₆F₆	268.04						
61	Dodecyltrimethylammonium bromide	1119-94-4	C₁₅H₃₀BrN	308.34	Hexafluoroisopropyl glyceride	920-66-1	C₂₀H₂₆F₆	268.04						
62	L-carnitine	541-15-1	C₇H₁₅NO₃	161.20	Hexafluoroisopropyl glyceride	920-66-1	C₂₀H₂₆F₆	268.04						
63	Methyltrioctylammonium bromide	35675-80-0	C₂₅H₅₄BrN	448.61	Decanoic acid	334-48-5	C₁₈H₃₂O₂	172.26						
64	Methyltrioctylammonium chloride	5137-55-3	C₂₅H₅₄ClN	404.16	Ethylparaben	120-47-8	C₁₀H₁₂O₃	166.17						
65	Methyltrioctylammonium chloride	5137-55-3	C₂₅H₅₄ClN	404.16	Oleic acid	112-80-1	C₁₈H₃₂O₂	282.46						
	Name	CAS Number	Molecular Formula	Molecular Weight	Basic Solution	Molar Mass	Density	Boiling Point	Formula					
---	---	------------	-------------------	------------------	---------------	------------	--------	---------------	---------	---				
66	Methyltriphenylphosphonium bromide	1779-49-3	C19H18BrP	357.22	1,2-Propanediol	57-55-6			C2H5O2	76.09				
67	Methyltriphenylphosphonium bromide	1779-49-3	C19H18BrP	357.22	2,2,2-Trifluoroacetamide	354-38-1			C2H2F3N	113.04				
68	Methyltriphenylphosphonium bromide	1779-49-3	C19H18BrP	357.22	Acetic acid	64-19-7			CH3COOH	60.05				
69	Methyltriphenylphosphonium bromide	1779-49-3	C19H18BrP	357.22	Ethylene glycol	107-21-1			C2H4O2	62.07				
70	Methyltriphenylphosphonium bromide	1779-49-3	C19H18BrP	357.22	Glycerol	56-81-5			C3H8O3	92.09				
71	Methyltriphenylphosphonium bromide	1779-49-3	C19H18BrP	357.22	Levulinic acid	123-76-2			C4H6O3	116.11				
ID	Name	CAS Number	Molecular Formula	Molecular Weight	Purity	CAS Number	Formula	Purity	CAS Number	Formula				
----	--	------------	-------------------	------------------	--------	------------	-----------	--------	------------	-----------				
72	N,N-diethylethanolammonium chloride	13989-32-7	C₆H₁₆ClNO	153.65	Ethylene glycol	107-21-1	C₆H₂O₂	153.65	Ethylene glycol	62.07				
73	N,N-diethylethanolammonium chloride	13989-32-7	C₆H₁₆ClNO	153.65	Glycerol	56-81-5	C₆H₂O₂	153.65	Glycerol	92.09				
74	Tetrabutylammonium bromide	1643-19-2	C₁₆H₃₆BrN	322.37	1,2-Propanediol	57-55-6	C₆H₂O₂	322.37	1,2-Propanediol	76.09				
75	Tetrabutylammonium bromide	1643-19-2	C₁₆H₃₆BrN	322.37	Acetic acid	64-19-7	CH₃COOH	322.37	Acetic acid	60.05				
76	Tetrabutylammonium bromide	1643-19-2	C₁₆H₃₆BrN	322.37	Ethanolamine	141-43-5	C₇H₁₄NO	322.37	Ethanolamine	61.08				
77	Tetrabutylammonium bromide	1643-19-2	C₁₆H₃₆BrN	322.37	Ethylene glycol	107-21-1	C₆H₂O₂	322.37	Ethylene glycol	62.07				
78	Tetrabutylammonium bromide	1643-19-2	C₁₆H₃₆BrN	322.37	Levulinic acid	123-76-2	C₇H₁₄O₂	322.37	Levulinic acid	116.11				
79	Tetrabutylammonium bromide	1643-19-2	C₁₆H₃₆BrN	322.37	Polyethylene glycol	25322-68-3	C₉H₁₄O₂₃	322.37	Polyethylene glycol	697.61				
80	Tetrabutylammonium bromide	1643-19-2	C₁₆H₃₆BrN	322.37	Tetraethylene glycol	112-60-7	C₈H₁₈O₃	322.37	Tetraethylene glycol	194.23				
	Compound	CAS Number	Formula	Molecular Weight	Molecular Structure	81	82	83	84	85	86	87	88	89
---	---------------------------------	------------	-----------	------------------	---------------------	---------	---------	---------	---------	---------	---------	---------	---------	---------
81	Tetrabutylammonium bromide	1643-19-2	C_{16}H_{36}BrN	322.37	Tetrazole			288-94-8	CH_{3}N_{4}	N	N	N	N	70.05
82	Tetrabutylammonium bromide	1643-19-2	C_{16}H_{36}BrN	322.37	Triethylene glycol				C_{6}H_{12}O_{4}	O	O	O	O	150.17
83	Tetrabutylammonium chloride	1112-67-0	C_{16}H_{36}ClN	277.92	Decanoic acid				C_{10}H_{20}O_{2}	O	O	HO	HO	172.26
84	Tetrabutylammonium chloride	1112-67-0	C_{16}H_{36}ClN	277.92	Ethylene glycol				C_{2}H_{6}O_{2}	HO	HO	HO	HO	62.07
85	Tetrabutylammonium chloride	1112-67-0	C_{16}H_{36}ClN	277.92	Glycerol				C_{3}H_{8}O_{3}	HO	OH	HO	HO	92.09
86	Tetrabutylammonium chloride	1112-67-0	C_{16}H_{36}ClN	277.92	L-arginine				C_{6}H_{14}N_{4}O_{2}	N	NH	NH	NH	174.20
87	Tetrabutylammonium chloride	1112-67-0	C_{16}H_{36}ClN	277.92	L-aspartic acid				C_{4}H_{7}NO_{4}	O	O	HO	O	133.10
88	Tetrabutylammonium chloride	1112-67-0	C_{16}H_{36}ClN	277.92	Levulinic acid				C_{5}H_{8}O_{3}	HO	O	HO	O	116.11
89	Tetrabutylammonium chloride	1112-67-0	C_{16}H_{36}ClN	277.92	L-glutamic acid				C_{5}H_{9}NO_{4}	O	O	O	O	147.13
	Name	CAS Number	Structure	Molecular Weight	Formula	Function	CAS Number	Molecular Weight						
---	-------------------------------	------------	----------------	------------------	--------	-------------------	------------	------------------						
90	Tetrabutylammonium chloride	1112-67-0	N⁺Cl⁻	277.92	C₁₆H₃₆ClN	Phenylacetic acid	103-82-2	C₉H₁₀O₂	136.15					
91	Tetrabutylammonium chloride	1112-67-0	N⁺Cl⁻	277.92	C₁₆H₃₆ClN	Propionic acid	79-09-4	C₅H₁₀O₂	74.08					
92	Tetrabutylammonium chloride	1112-67-0	N⁺Cl⁻	277.92	C₁₆H₃₆ClN	Triethylene glycol	112-27-6	C₆H₁₂O₄	150.17					
93	Tetrabutylphosphonium bromide	3115-68-2	P⁺Br⁻	339.33	C₁₆H₃₆BrP	Levulinic acid	123-76-2	C₅H₈O₃	116.11					
94	Tetradecyltrimethylammonium bromide	1119-97-7	C₁₇H₃₈BrN⁺	336.39	C₁₇H₃₈BrN⁺	Hexafluoroisopropanol	920-66-1	C₃H₂F₆O	168.04					
95	Tetrathyldiammonium bromide	71-91-0	N⁺Br⁻	210.16	C₈H₁₆BrN⁺	Ethylene glycol	107-21-1	C₂H₄O₂	62.07					
96	Tetrathyldiammonium bromide	71-91-0	N⁺Br⁻	210.16	C₈H₁₆BrN⁺	Levulinic acid	123-76-2	C₇H₁₄O₃	116.11					
97	Tetrathyldiammonium bromide	71-91-0	N⁺Br⁻	210.16	C₈H₁₆BrN⁺	Triethylene glycol	112-27-6	C₆H₁₂O₄	150.17					
98	Tetrathyldiammonium chloride	56-34-8	N⁺Cl⁻	165.7	C₈H₁₆ClN	Acetic acid	64-19-7	CH₃COOH	60.05					
99	Tetrathyldiammonium chloride	56-34-8	N⁺Cl⁻	165.7	C₈H₁₆ClN	Glycolic acid	79-14-1	C₂H₂O₂	76.05					
No.	Compound Description	CAS Number	Molecular Formula	Molecular Weight	Companion Description	CAS Number	Molecular Formula	Molecular Weight						
-----	--	------------	---------------------	------------------	-----------------------------------	------------	---------------------	------------------						
100	Tetraethylammonium chloride	56-34-8	C₈H₂₀ClN	165.7	Levulinic acid	123-76-2	C₅H₈O₃	116.11						
101	Tetraethylammonium chloride	56-34-8	C₈H₂₀ClN	165.7	Octanoic acid	124-07-2	C₈H₁₆O₂	144.21						
102	Tetraethylammonium p-toluenesulfonate	733-44-8	C₁₅H₂₇NO₃S	322.37	1,2-Propanediol	57-55-6	C₂H₆O₂	76.09						
103	Tetraethylammonium p-toluenesulfonate	733-44-8	C₁₅H₂₇NO₃S	322.37	Ethylene glycol	107-21-1	C₂H₆O₂	62.07						
104	Tetraethylammonium p-toluenesulfonate	733-44-8	C₁₅H₂₇NO₃S	322.37	Polyethylene glycol	25322-68-3	C_{2n}H_{4n+2}O_{n+1}	697.61						
105	Tetraethylammonium p-toluenesulfonate	733-44-8	C₁₅H₂₇NO₃S	322.37	Tetraethylene glycol	112-60-7	C₁₀H₁₆O₃	194.23						
106	Tetraheptylammonium chloride	10247-90-2	C₂₈H₆₀ClN	446.24	Decanoic acid	334-48-5	C₁₀H₂₀	172.26						
107	Tetraheptylammonium chloride	10247-90-2	C₂₈H₆₀ClN	446.24	Ibuprofen	15687-27-1	C₁₃H₁₈O₂	206.28						
108	Tetraheptylammonium chloride	10247-90-2	C₂₈H₆₀ClN	446.24	Oleic acid	112-80-1	C₁₈H₃₄O₂	282.46						
	Compound	CAS Registry Number	Molecular Formula	MW (g/mol)	Co-solvent	Chemical Formula	Boiling Point (°C)	Density (g/cm³)						
---	---------------------------------	---------------------	-------------------	------------	---------------------	------------------	-------------------	------------------						
109	Tetrahexylammonium bromide	4328-13-6	C_{24}H_{52}BrN	434.58	Ethylene glycol	C_{2}H_{6}O_{2}	107-21-1	62.07						
110	Tetrahexylammonium bromide	4328-13-6	C_{24}H_{52}BrN	434.58	Glycerol	C_{3}H_{8}O_{3}	56-81-5	92.09						
111	Tetramethylammonium chloride	75-57-0	C_{6}H_{12}NCl	109.60	Glycerol	C_{3}H_{8}O_{3}	56-81-5	92.09						
112	Tetraoctylammonium bromide	14866-33-2	C_{32}H_{68}BrN	546.79	Decanoic acid	C_{10}H_{20}O_{2}	334-48-5	172.26						
113	Tetraoctylammonium chloride	3125-07-3	C_{32}H_{68}ClN	502.34	Decanoic acid	C_{10}H_{20}O_{2}	334-48-5	172.26						
114	Tetrapropylammonium bromide	1941-30-6	C_{12}H_{28}N.Br	266.26	Ethylene glycol	C_{2}H_{6}O_{2}	107-21-1	62.07						
115	Tetrapropylammonium bromide	1941-30-6	C_{12}H_{28}N.Br	266.26	Glycerol	C_{3}H_{8}O_{3}	56-81-5	92.09						
116	Tetrapropylammonium bromide	1941-30-6	C_{12}H_{28}N.Br	266.26	Levulinic acid	C_{5}H_{8}O_{3}	123-76-2	116.11						
117	Tetrapropylammonium bromide	1941-30-6	C_{12}H_{28}N.Br	266.26	Triethylene glycol	C_{6}H_{12}O_{4}	112-27-6	150.17						
No.	Name	CAS No.	Molecular Formula	Molecular Weight	Formula	Melting Point	Solvent	Density						
-----	-----------------------	---------	-------------------	------------------	--------	--------------	---------	---------						
118	Tetrapropylammonium chloride	5810-42-4	C_{12}H_{25}ClN	221.81	CH₃COOH	64-19-7	60.05							
119	Tetrapropylammonium chloride	5810-42-4	C_{12}H_{25}ClN	221.81	C₂H₅NO	141-43-5	61.08							
120	Tetrapropylammonium chloride	5810-42-4	C_{12}H_{25}ClN	221.81	Leuvinic acid	123-76-2	116.11							
121	Triethylmethylammonium chloride	10052-47-8	C₇H₁₈ClN	151.68	Acetic acid	64-19-7	60.05							
122	Triethylmethylammonium chloride	10052-47-8	C₇H₁₈ClN	151.68	Ethylene glycol	107-21-1	62.07							
123	Triethylmethylammonium chloride	10052-47-8	C₇H₁₈ClN	151.68	Glycerol	56-81-5	92.09							
124	Triethylmethylammonium chloride	10052-47-8	C₇H₁₈ClN	151.68	DL-lactic acid	598-82-3	90.08							
125	Triethylmethylammonium chloride	10052-47-8	C₇H₁₈ClN	151.68	Leuvinic acid	123-76-2	116.11							
No.	Compound	CAS No.	Molecular Structure	Molecular Formula	Molecular Weight									
-----	------------------------------------	----------	---------------------	-------------------	------------------									
126	Potassium carbonate	584-08-7	![Structure](image)	K₂CO₃	138.21									
127	Potassium carbonate	584-08-7	![Structure](image)	K₂CO₃	138.21									
128	Sodium dodecanoate	629-25-4	![Structure](image)	C₁₂H₂₃O₂Na	222.30									
129	Zinc chloride	7646-85-7	![Structure](image)	ZnCl₂	136.3									
130	Zinc chloride	7646-85-7	![Structure](image)	ZnCl₂	136.3									
131	Acetamide	60-35-5	![Structure](image)	C₂H₅NO	59.07									
132	Atropine	51-55-8	![Structure](image)	C₁₇H₂₃NO₃	289.37									
133	Atropine	51-55-8	![Structure](image)	C₁₇H₂₃NO₃	289.37									
134	Decanoic acid	334-48-5	![Structure](image)	C₁₀H₂₀O₂	172.26									
135	DL-menthol	89-78-1	![Structure](image)	C₁₀H₁₆O	156.27									
136	DL-menthol	89-78-1	C_{10}H_{20}O	156.27	1-Tetradecanol	112-72-1	C_{14}H_{30}O	214.39						
-----	------------	---------	---------------	--------	----------------	---------	---------------	--------						
137	DL-menthol	89-78-1	C_{10}H_{20}O	156.27	Acetic acid	64-19-7	CH_3COOH	60.05						
138	DL-menthol	89-78-1	C_{10}H_{20}O	156.27	Benzoic acid	65-85-0	C_{7}H_{6}O_2	122.2						
139	DL-menthol	89-78-1	C_{10}H_{20}O	156.27	Decanoic acid	334-48-5	C_{10}H_{20}O_2	172.2						
140	DL-menthol	89-78-1	C_{10}H_{20}O	156.27	Dodecanoic acid	143-07-7	C_{12}H_{20}O_2	200.3						
141	DL-menthol	89-78-1	C_{10}H_{20}O	156.27	Ibuprofen	15687-27-1	C_{13}H_{18}O_2	206.2						
142	DL-menthol	89-78-1	C_{10}H_{20}O	156.27	L-lactic acid	79-33-4	C_{3}H_{6}O_3	90.08						
----	-----	----------	-----	--------	------	-------	----------	-----	----------	------				
143	DL-menthol	89-78-1	C\textsubscript{10}H\textsubscript{20}O	156.27	Octanoic acid	124-07-2	C\textsubscript{6}H\textsubscript{12}O\textsubscript{2}	144.21						
144	DL-menthol	89-78-1	C\textsubscript{10}H\textsubscript{20}O	156.27	Phenylacetic acid	103-82-2	C\textsubscript{6}H\textsubscript{6}O\textsubscript{2}	136.15						
145	DL-menthol	89-78-1	C\textsubscript{10}H\textsubscript{20}O	156.27	Pyruvic acid	127-17-3	C\textsubscript{4}H\textsubscript{4}O\textsubscript{3}	88.06						
146	DL-menthol	89-78-1	C\textsubscript{10}H\textsubscript{20}O	156.27	Thymol	89-83-8	C\textsubscript{10}H\textsubscript{14}O	150.22						
147	Imidazole	288-32-4	C\textsubscript{3}H\textsubscript{4}N\textsubscript{2}	68.08	Acetic acid	64-19-7	CH\textsubscript{3}COOH	60.05						
148	Lidocaine	137-58-6	C\textsubscript{14}H\textsubscript{22}N\textsubscript{2}O	234.34	Decanoic acid	334-48-5	C\textsubscript{10}H\textsubscript{20}O\textsubscript{2}	172.26						
149	Lidocaine	137-58-6	C\textsubscript{14}H\textsubscript{22}N\textsubscript{2}O	234.34	DL-menthol	89-78-1	C\textsubscript{10}H\textsubscript{20}O	156.27						
150	Lidocaine	137-58-6	C\textsubscript{14}H\textsubscript{22}N\textsubscript{2}O	234.34	Thymol	89-83-8	C\textsubscript{10}H\textsubscript{20}O	150.22						
No.	Compound	CAS Number	Molecular Formula	Molecular Weight	Other Compound	CAS Number	Molecular Formula	Molecular Weight						
-----	------------	------------	-------------------	------------------	---------------	------------	-------------------	------------------						
151	L-menthol	2216-51-5	C_{10}H_{20}O	156.27	D-camphor	464-49-3	C_{10}H_{16}O	152.23						
152	L-menthol	2216-51-5	C_{10}H_{20}O	156.27	Decanoic acid	334-48-5	C_{10}H_{18}O_{2}	172.26						
153	L-menthol	2216-51-5	C_{10}H_{20}O	156.27	Dodecanoic acid	143-07-7	C_{12}H_{22}O_{2}	200.32						
154	L-menthol	2216-51-5	C_{10}H_{20}O	156.27	Hexadecanoic acid	57-10-3	C_{16}H_{32}O_{2}	256.43						
155	L-menthol	2216-51-5	C_{10}H_{20}O	156.27	L-borneol	464-45-9	C_{10}H_{18}O	154.25						
156	L-menthol	2216-51-5	C_{10}H_{20}O	156.27	Octadecanoic acid	57-11-4	C_{18}H_{36}O_{2}	284.48						
157	L-menthol	2216-51-5	C_{10}H_{20}O	156.27	Octanoic acid	124-07-2	C_{8}H_{16}O_{2}	144.21						
No.	Name	CAS No.	molecular formula	molecular weight	common name	CAS No.	molecular formula	molecular weight						
-----	-----------------------	----------	-------------------	------------------	-----------------------------	---------	-------------------	------------------						
158	L-menthol	2216-51-5	C₁₀H₂₀O	156.27	Tetradecanoic acid	544-63-8	C₁₄H₂₉O₂	228.37						
159	L-menthol	2216-51-5	C₁₀H₂₀O	156.27	Thymol	89-83-8	C₁₀H₁₄O	150.22						
160	L-menthol	2216-51-5	C₁₀H₂₀O	156.27	Trans-sobrerol	42370-41-2	C₁₀H₂₀O	170.25						
161	L-proline	147-85-3	C₅H₉NO₂	115.13	DL-lactic acid	598-82-3	C₅H₉O₂	90.08						
162	L-proline	147-85-3	C₅H₉NO₂	115.13	Levulinic acid	123-76-2	C₅H₉O₂	116.11						
163	Hexanoic acid	112-05-0	C₆H₁₄O₂	158.24	Dodecanoic acid	143-07-7	C₁₀H₂₀O₂	200.32						
164	Octanoic acid	124-07-2	C₈H₁₆O₂	144.21	Dodecanoic acid	143-07-7	C₁₀H₂₀O₂	200.32						
165	Thymol	89-83-8	C₁₀H₁₄O	150.22	1,2-Decanediol	1119-86-4	C₁₀H₂₀O₂	174.28						
166	Thymol	89-83-8	C₁₀H₁₄O	150.22	10-Undecylenic acid	112-38-9	C₁₁H₂₂O₂	184.28						
No.	Compound	CAS	Molecular Formula	Molecular Weight	CAS	Molecular Formula	Molecular Weight							
-----	------------	---------	-------------------	------------------	---------	-------------------	------------------							
167	Thymol	89-83-8	C₆H₁₂O	150.22	Coumarin	91-64-5	C₈H₈O₂	146.14						
168	Thymol	89-83-8	C₆H₁₂O	150.22	D-camphor	464-49-3	C₁₀H₁₆O	152.23						
169	Thymol	89-83-8	C₆H₁₂O	150.22	Decanoic acid	334-48-5	C₁₀H₂₀O₂	172.26						
170	Thymol	89-83-8	C₆H₁₂O	150.22	DL-camphor	21368-68-3	C₁₀H₁₆O	152.23						
171	Thymol	89-83-8	C₆H₁₂O	150.22	Dodecanoic acid	143-07-7	C₁₂H₂₆O₂	200.32						
172	Thymol	89-83-8	C₆H₁₂O	150.22	Hexadecanoic acid	57-10-3	C₁₆H₃₂O₂	256.43						
173	Thymol	89-83-8	C₆H₁₂O	150.22	L-borneol	464-45-9	C₁₀H₁₆O	154.25						
174	Thymol	89-83-8	C₆H₁₂O	150.22	Octadecanoic acid	57-11-4	C₁₈H₃₆O₂	284.48						
---	----	----	----	----	----	----	----	----	----	----	----	----		
175	Thymol	89-83-8	C₁₀H₁₄O	150.22	Octanoic acid	124-07-2	C₇H₁₄O₂	144.21						
176	Thymol	89-83-8	C₁₀H₁₄O	150.22	Tetradecanoic acid	544-63-8	C₁₄H₂₀O₂	228.37						
177	Thymol	89-83-8	C₁₀H₁₄O	150.22	Triocetylphosphine oxide	78-50-2	C₂₄H₅₁O₅P	386.63						
178	Triethanolamine	102-71-6	C₆H₁₅NO₃	149.19	2-Methoxyphenol	90-05-1	C₇H₈O₂	124.14						
179	Triethanolamine	102-71-6	C₆H₁₅NO₃	149.19	3-Methoxyphenol	150-19-6	C₇H₈O₂	124.14						
180	Triethanolamine	102-71-6	C₆H₁₅NO₃	149.19	4-Methoxyphenol	150-76-5	C₇H₈O₂	124.14						
181	Triocetylphosphine oxide	78-50-2	C₃₀H₅₁O₅P	386.63	Decanoic acid	334-48-5	C₁₀H₁₈O₂	172.26						
182	Triocetylphosphine oxide	78-50-2	C₃₀H₅₁O₅P	386.63	Dodecanoic acid	143-07-7	C₁₂H₂₄O₂	200.32						
183	Triocetylphosphine oxide	78-50-2	C₃₀H₅₁O₅P	386.63	Phenol	108-95-2	C₆H₅O	94.11						
5 Measurement methods dataset for DESs

Ref.	DES preparation method	Measurement apparatus	Uncertainty	Source	Purity	Purification method
1	Heating method	Brookfield DV-E viscometer	N/A	Sigma-Aldrich	N/A	N/A
2	Heating method	Brookfield R/S Plus Rheometer	The uncertainty in the viscosity and the temperature measurements are 3-5% of the measured value and ±0.01 K, respectively.	Merck Chemicals	Choline chloride, ethylene glycol, triethylene glycol, urea and malonic acid, >98 wt%.	The studied DES components were dried in a vacuum oven overnight.
3	Heating method	Pinkevitch method	Uncertainty of viscosity is ±0.2%.	Shanghai Aladdin Chemical Company	Acetylcholine chloride, 99.0 wt%; Imidazole, 99.0 wt%; 1,2,4-Triazole, 99.5 wt%.	The obtained DESs were further dried under vacuum at 353 K for 48 h before use.
4	Heating method	SVM 3000 Anton Paar rotational Stabinger viscometer-densimeter	The repeatability of the dynamic viscosity	Sigma Aldrich	Cholinium chloride, acetylocholinium chloride and benzylidimethyl(2-	
						Cholinium chloride, acetylocholinium chloride and
No.	Heating method	Method	Measurements in this equipment is ±0.35%	Hydroxyethyl ammonium chloride, >98wt%; D-(+)-Xylose, D-(+)-Mannose, D-(−)-Fructose, D-(+)-Glucose and D-(−)-Ribose, ≥99.0 wt%	Benzyldimethyl(2-hydroxyethyl) ammonium chloride were dried under vacuum prior to use.	
-----	----------------	--------	--	--	--	
5	Heating method	Pinkevitch method	The relative standard uncertainty of viscosity was 0.2%	Aladdin Chemical Company	Choline chloride, >98.5 wt%; Levulinic acid, acetylcholine chloride, tetraethylammonium bromide, Tetrabutylammonium bromide, >99 wt%; Tetrabutylammonium chloride, >97 wt%; Tetraethylammonium chloride, trimethyl hydrochloride, >98 wt%.	Without further purification
6	Heating method	digital rolling ball microviscometer(Anton Par, model Lovis-2000M/ME)	The viscosity meter has a measuring uncertainty of ±5×10⁻³ mPa.s and	R&M Chemicals	Allyltriphenyl phosphonium bromide, diethylene glycol and triethylene glycol, >99	Without further purification
Location	Heating method	Method	Uncertainty of viscosity	N/A	Chemicals	
----------	----------------	--------	--------------------------	-----	-----------	
7	Heating method	Pinkevitch method	Uncertainty of viscosity is ±0.2%.	N/A	KSCN, >99wt%; NH4SCN, >98.5wt%; Acetamide, >98.5wt%; Caprolactam, >99wt%; Urea, >99wt%.	
8	Grinding method	SM 3000 Anton Paar rotational Stabinger viscometer-densimeter	The highest relative standard uncertainty registered for the dynamic viscosity measurements was 2×10⁻⁵ Pa·s, respectively.	Sigma-Aldrich	Choline chloride, ≥98 wt%; Benzylcholine chloride, ≥97 wt%; Tetrabutylammonium chloride, ≥97 wt%; Levulinic acid, 98 wt%. The DES were dried under vacuum (1 Pa) at room temperature for at least 3 days.	
9	Heating method	Bohlin CVO 100 rheometer	N/A	Sigma-Aldrich, Shanghai Shenbo Chemical Company, VWR, Merck, Shanghai Lingfeng chemical reagent	N/A	All chemicals were analytical grade reagents and were used as received.
10	Heating method	Anton Paar Automated micro viscometer	The uncertainty in viscosity measurements was estimated to be less than ±1%.	Aladdin Chemicals Co., Ltd, Shanghai, China	Choline chloride, >98 wt%; Choline bromide, >98 wt%; Tetramethylammonium chloride, >98 wt%; Tetraethylammonium chloride, >98 wt%; Tetraethylammonium bromide, >98 wt%; Tetrapropylammonium chloride, >97 wt%; Tetrapropyl-ammonium bromide, >98 wt%; Tetrabutylammonium chloride, >97 wt%; Tetrabutylammonium bromide, >98 wt%; Benzyltrimethyl- without further purification	
	Heating method	Instrument	Heating method details	Chemicals Used	Purity Remarks	
----	----------------	------------	------------------------	----------------	---------------	
11	Heating method	Brookfield R/S plus Rheometer	(3-5)% of measured value	ammonium chloride, >98 wt%; Trioctylmethylammonium chloride, >97 wt%; Triethylene glycol, >98 wt%; Tetraethylene glycol, >98 wt%; Phenylpropionic acid, >99 wt%; Malonic acid, >98 wt%; Glutaric acid, >98 wt%; Lactic acid, 98 wt%; sorbitol, >98 wt%; xylitol, >99 wt%.	All the chemicals used were of high purity(>99wt%).	
12	Heating method	Anton Paar Lovis 2000 ME	Temperature is kept constant through a built-in Peltier device with an accuracy of 0.02 K.	Benzyltripropylammonium Chloride, ≥97.0 wt%; Ethylene Glycol, ≥99.0 wt%; Lactic Acid, ≥90.0 wt%; Glycerol Anhydrous, ≥99.5 wt%; Phenol, ≥99.0 wt%.	All initial components except lactic acid were kept in vacuum and dried for 48 h prior to synthesis.	
	Heating method	Equipment	Supplier	Chemicals	Remarks	
---	----------------	-----------	----------	-----------	---------	
13	Heating method	A microviscosimeter Lovis 2000/ME connected to the Anton Paar DSA-5000M densimeter	N/A	Sigma-Aldrich, Labkem, Acros and Panreac	Levulinic acid, 99 wt%; DL-lactic acid, 90 wt%; Citric acid, 99 wt%; Betaine, 98 wt%; L-proline, 98 wt%.	
					without further purification	
14	Heating method	Anton Paar Physica MCR 301 rheometer	N/A	Sigma-Aldrich	Imidazole, >99 wt%; Choline chloride, >99 wt%; Betaine, >99 wt%; Tetraethylammonium chloride, >96 wt%; Acetic acid, 99.7 wt%; Urea, >98 wt%; Levulinic acid, >97 wt%; Glycerol, 99 wt%; Ethylene glycol, >99 wt%; Decanoic acid, >98 wt%.	
					without further purification	
15	Heating method	Anton Paar Lovis 2000ME microviscometer(Graz, Austria)	The uncertainty is nearer to 2%.	Acros Organics	Choline chloride, >99 wt%; Ethylene glycol, >99.8 wt%; 1,2-Propanediol, >99 wt%; 1,3-Propanediol, >98 wt%;	
					Choline chloride, which is a very hygroscopic compound, was dried in a Schlenk line under a high	
No.	Heating Method	Instrument/Company	Accuracy	Chemicals	Notes	
-----	---------------	--------------------	----------	-----------	-------	
16	Heating method	Anton Paar Lovis 2000ME	The accuracy of viscosity measurement was better than ±0.02 mPa s.	Shanghai Aladdin Industrial Co, Ltd.	1,4-Butanediol, >99 wt%. vacuum(10⁻⁴ mbar) for three days, while ethylene glycol, 1,2-propanediol, 1,3-propanediol, and 1,4-butanediol were placed in molecular sieves for at least one day.	
17	Heating method	Brookfield instrument	N/A	Merck(Germany)	All chemicals are high purity, ≥98 wt%.	
18	Heating method	NDJ-8S rotational viscometer	N/A	Sinopharm Chemical Reagent Co, Ltd.	Choline chloride, 98.0-101.0 wt%; urea, ≥99.0 Choline chloride was chosen as	
19	Heating method	a rotational viscometer (Anton Paar Rheolab QC)	(3-5)% of measured value	Merck Chemicals (Darmstadt, Germany)	Choline chloride (D-fructose anhydrous), 98 wt%.	HBA and dried under vacuum at 80 °C for 48 h before use.
20	Heating method	Anton Paar Rheolab QC	(3-5)% of measured value	Merck Chemicals (Darmstadt, Germany)	Choline chloride (2-hydroxyethyl-trimethylammonium) and D-glucose anhydrous, >98 wt%.	Chemicals were dried in a vacuum oven prior to use to eliminate moisture contamination.
21	Heating method	MCR 301 rheometer from Anton Paar with a thermostated jacket	N/A	N/A	N/A	N/A
22	Heating method	automated rolling-ball viscometer (Anton Paar AMVn)	The expanded (k = 2) relative uncertainty of	Sigma-Aldrich	Choline chloride, ≥98 wt%; Ethylene glycol, ≥99.8 wt%.	Choline chloride was dried for 4 days at 313 K with a
Viscosity is 1.5% solution in high-vacuum line (pressure \(p < 10^{-9} \) bar). Ethylene glycol (EG) was dried by 3A molecular sieve.

	Heating method	Heating method	Grinding method	Scionix Ltd	N/A
23	N/A	Automated SM 3000 Anton Paar rotational Stabinger viscometer densimeter	Sigma-Aldrich	N/A	Choline chloride, \(\geq 98 \) wt%; Oxalic, malonic, adipic, levulinic, glutaric, glycolic, succinic, malic, tartaric, fumaric, azelaic, and citric acids, all \(\geq 99 \) wt%.

Cholinium chloride was first dried in a high vacuum pump at 40 °C for at least 2 days, while the hydrogen bond donors were used without any further purification.

	N/A	Nonequilibrium periodic perturbation method	N/A	N/A
24	Heating method	Automated SM 3000 Anton Paar rotational Stabinger viscometer densimeter	Sigma-Aldrich	N/A

Choline chloride was recrystallized from absolute
Method	Instrument	Uncertainty of Temperature	Supplier 1	Supplier 2	Notes	
27	Heating method	Anton Paar SVM 3000/G2 Stabinger viscometer	The temperature uncertainty is 0.02 K and the relative uncertainty of the dynamic viscosity is 0.35%.	Sigma-Aldrich and Merck	Choline chloride, ≥98.0 wt%; Tetramethylammonium chloride, ≥98.0 wt%; Glycerol, ≥99.0 wt%. The choline chloride was kept in a vacuum desiccator before it was used. All the chemicals were used without further purification.	
28	Heating method	automated Anton Paar microviscometer (model AMVn)	The uncertainties associated with the viscosity measurements are ≤0.5%.	Sigma-Aldrich	Choline chloride, ≥98 wt%; Glycerol, ≥99.5 wt%. N/A	
29	Heating method	Brookfield DV-E viscometer	N/A	Sigma-Aldrich	N/A Choline chloride(ChCl) was recrystallized from absolute ethanol,	
30	Heating method	Rheometer (DISCOVERY HR-2, USA)	N/A	Aladdin Chemistry Co. and Sinopharm Chemical Reagent Co.	N/A	N/A
31	Heating method	viscometer (Model DV2T, Brookfield)	The relative uncertainty is within 1.0%.	Aladdin Reagent Co. Ltd., Shanghai, China	Choline chloride, 98.0 wt%; Phenol, 99.0 wt%; P-cresol, 99.0 wt%; P-chlorophenol, 99.0 wt%.	Choline chloride was dried for 48 h at 313.2 K under vacuum condition before use. Other reagents were used for the synthesis of DESs without additional purification.
32	Heating method	Ubbelohde viscometer	The uncertainty of the viscosity was less than ±3%.	Aladdin Chemical Co., Ltd. And Beijing Chemical Plant	Choline chloride, o-cresol, and 2,3-xylenol, >99 wt%; Phenol, 98 wt%.	Without further purification
33	Heating method	automated Anton Paar microviscometer (model AMVn)	The deviation in viscosity was ≤0.5%.	Sigma-Aldrich	Choline chloride, ≥99 wt%; Urea, ≥99 wt%.	N/A
	Heating method	Instrument	Supplier	Comments		
---	----------------	------------	----------	----------		
34	Heating method	Rheometer(DISCOVER Y HR-2, USA)	N/A	Aladdin Chemistry Co., Sinopharm Chemical Reagent Co., Ltd.	All reagents used are of analytical grade.	
35	Heating method	Anton Paar SVM 3000 Stabinger Viscometer	N/A	Tetrabutylammonium chloride, ≥95 wt%; Tetraheptylammonium chloride, 95 wt%; Methyltrioctylammonium chloride, 97 wt%; Tetraoctylammonium chloride, 97 wt%; Methyltrioctylammonium bromide, 97 wt%; Tetraoctylammonium bromide, 98 wt%; Decanoic acid, >98 wt%.		
36	Heating method	viscometer(DMA 5000M, Anton Paar GmbH)	N/A	N/A	without further purification	
37	Heating method	automated falling ball microviscometer(Anton Paar GmbH, model)	N/A	Merck	N,N-diethylethanalammonium chloride, >98 wt%; The DES was vacuum dried at 343 K, and kept in a	
Page	Heating method	Antisolvent	Rotor	VG	Reagents	
------	----------------	-------------	-------	----	----------	
38	Heating method	Anton Paar Lovis 2000 ME micro viscometer	±1%	accuracy up to 0.5%	Glycerol, >99.5wt%; Ethylene glycol, >99.9wt%.	
					dry box prior to use.	
39	Heating	Brookfield DV-II+ Pro	N/A	J&K Chemical, Ltd.	All reagents were without further purification.	The prepared DESs.
	Heating method	Viscometer	Uncertainties	Chemicals	Prior treatment	
---	---	---	---	---	---	---
40	Heating method	Anton Paar Rheolab Qc.	5% of measured value	Merck Chemicals (Darmstadt, Germany)	Tetrabutylammonium chloride, glycerol, ethylene glycol, and triethylene glycol, >98 wt%. Prior to being used, these chemicals were treated by drying in a vacuum oven to ensure a low moisture content of less than 200 ppm.	
41	Heating method	Ostwald viscometer (Dalian Instruments an Meters Co., P.R.China)	The uncertainties were estimated to be 1%.	Tianjin Kermel, Aladdin, Tianjin Kermel, and Tianjin Kcrmel	Tetrabutylammonium chloride, ≥98 wt%; Propionic acid, ≥99 wt %; Ethylene glycol, ≥98 wt %; Polyethylene glycol, ≥98 wt %; Phenylacetic acid, ≥99 wt %. All the materials were purified before use according to crystallization, distillation, and vacuum drying.	
42	Heating method	Anton Paar Rheolab Qc	5% of measured value	Sisco Research Lab(Mumbai, India)	Tetraethylammonium chloride, N/A; Glutamic acid, aspartic acid, arginine, >99.0 wt%.	All chemicals were pretreated by drying for a minimum of 3 h in a vacuum oven.
43	Heating method	Cannon-Ubbelohde Size 400 viscometer	N/A	VWR	Tetraheptylammonium chloride, 95 wt%; DL-menthol; Decanoic, dodecanoic, and oleic acids, >98 wt%; Ibuprofen, 98 wt%.	without further purification
44	Heating method	Anton Paar SVM 3000/G2 Stabinger densimeter- viscosimeter	reproducibility: temperature 0.03K; viscosity 0.35%	Sigma-Aldrich, VWR, Acros Organics, Merck and Reidel-de Haen	Tetrahexylammonium bromide, ≥99.0 wt%; Ethylene glycol, ≥99.0 wt%; Glycerol, ≥99.0 wt%;	without further purification
45	Heating method	Anton Paar Rheolab Qc	(3-5)% of measured value	Merck Chemicals(Darmstadt, Germany)	Tetrapropylammonium bromide, ethylene glycol, triethylene glycol and glycerol, >98 wt%.	N/A
46	Heating method	Anton Paar Rheolab Qc	(3-5)% of measured value	Merck Chemicals(Darmstadt, Germany)	Potassium carbonate, ethylene glycol and glycerol, >98 wt%.	Prior to use, these chemicals were treated by drying in
#	Heating method	Heating method	Sigma-Aldrich	Sigma-Aldrich	N/A	
----	----------------	----------------	---------------	---------------	-----	
47	Anton Paar (model SVM 3000) automated rotational Stabinger viscometer-densimeter	Dodecanoate sodium salt, 99-100 wt%; Decanoic acid, >98 wt%	a vacuum oven to assure a low moisture content of below 200 ppm.	without further purification		
48	Anton Paar AMVn falling ball automated microviscometer	Guanidine isothiocyanate (GI) and acetamide (AT) were AR grade with the mass purity higher than 0.99. The DES was dried under vacuum at 353 K for 24 h prior to utilization, with the water content less than 2.0·10⁻³ (mass fraction) in all cases.	Shanghai Aladdin Chemical Company	without further purification		
49	Anton Paar Lovis 2000 ME rolling ball	1-Tetradecanol, ≥97.0 wt%; Thymol, ≥99.0 wt%	Sigma-Aldrich	N/A		
50	Heating method	Anton Paar (model SVM 3000) automated rotational Stabinger viscometer-densimeter	Decanoic acid, ≥98.0 wt%; 1-Napthol, ≥99.0 wt%; Dodecanoic acid, ≥99.0 wt%; Menthol, ≥99.0 wt%; Coumarin, ≥99.0 wt%; 1,2-Decanediol, ≥98.0 wt%; Lidocaine, N/A; Atropine, ≥99.0 wt%.			
51	Heating method	Anton Paar Lovis 2000 ME rolling ball viscometer	Sigma-Aldrich	Octanoic acid, ≥98 wt%; Decanoic acid, ≥98 wt%; Nonanoic acid, ≥98 wt%; Dodecanoic acid, ≥98 wt%;		
52	Heating method	Anton Paar (model SVM 3000) automated rotational Stabinger viscometer-densimeter	Sigma-Aldrich and Fluka	1-Tetradecanol, ≥97 wt%; DL-menthol, ≥99 wt%;		

Sigma-Aldrich and Fluka

50 Heating method
Anton Paar (model SVM 3000) automated rotational Stabinger viscometer-densimeter
The temperature uncertainty is ±0.01 °C. The relative uncertainty of the dynamic viscosity is ±0.25%.
Sigma-Aldrich
Octanoic acid, ≥98 wt%;
Decanoic acid, ≥98 wt%;
Nonanoic acid, ≥98 wt%;
Dodecanoic acid, ≥98 wt%;

without further purification

Sigma-Aldrich
1-Tetradecanol, ≥97 wt%;
DL-menthol, ≥99 wt%.
N/A

52 Heating method
Anton Paar (model SVM 3000) automated rotational Stabinger viscometer-densimeter
The temperature uncertainty is ±0.02 K. The relative uncertainty of the Sigma-Aldrich and Fluka
DL-Menthol, ≥95 wt%;
Pyruvic acid, >98 wt%;
Acetic acid, ≥99.7 wt%;
Dodecanoic acid, >98

For the preparation of the dried samples, the DL-menthol-based
Heating method	Instrument	Dynamic viscosity/Composition	Uncertainty/Additional Information		
53	Kinexus Prot Rheometer (Kinexus Prot, MAL1097376, Malvern)	dynamic viscosity is ±0.35%.	wt%; Caffeine, 99 wt%; Vanillic acid, ≥97 wt%; Tetracycline, >98 wt%; tryptophan, ≥98 wt%; L-Lactic acid solution (81 wt% in water).	Eutectic mixtures were maintained for at least 4 days in a Schlenk under high vacuum (ca. 10⁻¹ Pa) at room temperature.	
54	Anton Paar SVM 3000/G2 type Stabinger instrument	Uncertainty of ±0.005 mPa s for the viscosity.	Sigma Aldrich Tetraoctylammonium bromide, >96 wt%; Menthol, ≥99 wt%; Lidocaine, ≥99 wt%; Thymol, ≥99 wt%; Decanoic acid, >98 wt%.	N/A	
55	Anton Paar Physica MCR 301 rheometer	Temperature accuracy is ±0.03 K, and the torque uncertainty is max 0.5%.	Sigma-Aldrich and TCI Chemicals Lidocaine, >99 wt%; Decanoic acid, >98 wt%; Thymol, >99 wt%; Menthol, >99 wt%;	Without further purification	
Page	Heating method	Equipment	Relative uncertainty	Supplier	Compounds
------	----------------	-----------	----------------------	----------	-----------
56	Automated	Anton Paar SVM 3000 Stabinger viscosimeter-densimeter	Dynamic viscosity ±0.35%	Sigma-Aldrich	Sigma-Aldrich DL-Menthol, ≥95 wt%; Octanoic acid, ≥99 wt%.
	method				All of the mixtures and pure compounds were carefully dried under vacuum at room temperature for a minimum of 2 h in order to remove traces of water and other volatile compounds.
57	Heating	Anton Paar Physica MCR 301 rheometer	N/A	Sigma-Aldrich	Sigma-Aldrich Lidocaine, >99 wt%; Decanoic acid, >98 wt%.
method					N/A
58	Heating	SVM 3001 Anton Paar viscometer	Reproducibility: temperature 0.03K; viscosity 0.35%	N/A	L-menthol, ≥99.5 wt%; Thymol, >99 wt%; (+)-Camphor, 98 wt%; (-)-Borneol, ≥99 wt%; Trans-sobrerol, 99 wt%.
method					without further purification
59	Heating	Automated SVM 3000 Anton Paar rotational Stabinger viscometer-densimeter	Temperature uncertainty: ±0.02 K; dynamic viscosity relative	Acros, Sigma, Aldrich and Merck	L-Menthol, 99.7 wt%; Thymol, ≥99.5 wt%; Octanoic acid, ≥99 wt%; Decanoic acid, 99-100
method					without further purification
Table 2	Heating method	Measurement method	Reproducibility	Supplier	N/A	N/A	Notes
60	Heating method	a commercial rolling ball viscometer (Lovis 2000 M/ME, Anton Paar, Germany)	N/A	Sigma-Aldrich	N/A	N/A	without further purification
61	Heating method	BROOKFIELD LVDV-II+ viscometer (Labo-Plus, Poland)	N/A	Sigma-Aldrich and Merck.	Thymol, ≥99 wt%; ±Camphor, >95 wt%; Decanoic acid, >98 wt%; 10-Undecylenic acid, >97 wt%	N/A	
62	Heating method	SVM 3001 Anton Paar viscometer	reproducibility: temperature 0.03K; viscosity 0.35%	Merck and Acros Organic	Thymol, >99 wt%; Trioclylphosphine oxide, 99 wt%; Decanoic acid, 99 wt%; Hydrocinnamic acid, 99 wt%	N/A	
63	Heating method	Brookfield DVII+Pro rotary viscometer	with a precision of ±0.1 mPa.s.	Aladdin Chem. Co and Alfa Aesar	Monoethanolamine, 99 wt%; Diethanolamine, 99 wt%; Triethanolamine, 99 wt%	The as-prepared DESs were then dried under vacuum	
Method	Equipment	Uncertainty	Contact	Notes			
-----------------	--	----------------------	------------------	--			
Heating method	microviscosimeter Lovis 2000/ME connected to the Anton Paar DSA-5000M densimeter	±0.03 mPa-s.	Scharlau, Sigma-Aldrich, Sigma and Acros Organics	Adipic acid, 99.5 wt%; Succinic acid, 99 wt%; Levulinic acid, 99 wt%; Decanoic acid, ≥98 wt%; Dodecanoic acid, 99 wt%; Trioctylphosphine oxide, 99 wt%; without further purification			
Evaporating method	Bohlin Gemini cone and plate rheometer	N/A	Acros Organics	Trioctylphosphine oxide, >97 wt%; Phenol, 99.5 wt%. Materials were stored under an inert atmosphere until used.			
Heating method	interfacial rheometer(model: Physica MCR301, Anton-Paar Make)	±3.3%	Merck	DL-Menthol, ≥95 wt%; Dodecanoic acid, ≥99 wt%; Ethanol, ≥99.9 wt%; 1-Propanol, ≥99 wt%; 1-Butanol, ≥99 wt%. a vacuum at T=60 C for at least 48 h was applied to the DES samples			

*: The references in this table is corresponding to the Sheet2 in Supplementary Data.