Background and Aim. Opioid and benzodiazepine family drugs are concurrently used in various patients. Considering the respiratory depressant effects of both classes, in this study, we investigated the effect of coadministration of morphine and several widely used benzodiazepines in the clinic on the rate of respiratory depression in rats.

Methods & Materials. Seventy adult male Wistar rats were randomly divided into 10 groups; morphine, midazolam, diazepam, lorazepam, alprazolam, morphine-midazolam, morphine-diazepam, morphine-lorazepam, and morphine-alprazolam. Respiration signal was recorded using whole-body plethysmography 15 minutes after the intraperitoneal injection of the drugs. The respiratory pattern was examined using several parameters; the mean value of inter-breath interval and the respiratory rate, as well as the coefficient of variation and sample entropy analysis of inter-breath interval.

Ethical Considerations. This study was approved by the Ethics Committee of Arak University of Medical Sciences (Code: IR.ARAKMU.REC.1397.327).

Results. Analyzing respiratory data revealed that injecting the anxiolytic dose of alprazolam, and the combination of morphine-alprazolam and morphine-midazolam, altered the respiratory pattern. Such changes were associated with a decrease in the number of breaths and an increase in the inter-breath interval in the explored test animals, compared with the controls. The obtained data also indicated that morphine-midazolam injection increased the variability of the breathing pattern; such an alternation was associated with increased irregularity and decreased coefficient of variation of the inter-breath interval.

Conclusion. The present research results suggested that the short-term injection of morphine-midazolam changes the respiratory pattern more severely than morphine combined with other benzodiazepines.

Key words: Morphine, Benzodiazepines, Breathing

Extended Abstract

1. Introduction

Opioid and benzodiazepine family drugs are simultaneously prescribed in numerous clinical conditions [1]. In some cases, their concomitant use leads to impaired respiratory function [2]. The administration of opioids and benzodiazepines can lead to respiratory impairment; however, the respiratory effects of opioids and benzodiazepines can vary. For example, opioids, like morphine, in large amounts, can lead to respiratory failure and may require artificial ventilation [3]. In contrast to benzodiazepines, i.e. widely used in the clinical setting, their respiratory effects are less pronounced [4].
settings [5, 6], dose-dependently impairs respiratory function [7]. However, in some clinical situations, there exists a need for the concomitant use of these drug families with few guidelines available for such practices. Therefore, this study aimed to compare the respiratory attenuation effect of the concomitant use of benzodiazepines plus morphine.

2. Materials and Methods

The animals used in this study were male Wistar rats in the weight range of 250-300 g. The study animals were maintained according to the ethical protocols of working with laboratory animals approved by the Arak University of Medical Sciences.

The examined animals were randomly divided into 10 experimental groups, as follows: 1- control, 2- morphine, 3- midazolam, 4- diazepam, 5- lorazepam, 6- alprazolam, 7- morphine-midazolam, 8- morphine-diazepam, 9-morphine-lorazepam, and 10-morphine-alprazolam. The anti-anxiety doses of midazolam (3 mg/kg) [5], diazepam (1 mg/kg), [8], lorazepam (0.5 mg/kg), [9], and alprazolam (2 mg/kg), [10], as well as an analgesic dose of morphine (10 mg/kg) [11] were injected intraperitoneally. Furthermore, normal saline was injected into the control animals.

Respiratory signals were recorded from conscious animals by animal-specific polytysmograph (BIODAC-R172, Trita Wavegram Co., Iran) [12]. On the day of registration, 15 minutes after injecting the drug into the research animals, a respiratory recording was performed. The recording time was 40 minutes per animal. In each explored animal, the mean intervals between respiration, the mean number of respirations, the coefficient of variation of intervals between respirations, and irregularities of intervals between respirations were evaluated.

3. Results

Examining respiration patterns among experimental groups signified that the mean number of respirations in alprazolam (P<0.01), midazolam-morphine (P<0.001), and alprazolam-morphine (P<0.001) groups was significantly lower than that in the control group. In the analysis of respiratory rate, no significant difference was observed between the groups receiving morphine adjunct to benzodiazepines (P>0.05) (Figure 1).

Examining the coefficient of variation of inter-respiratory intervals revealed that the coefficient of variation of intervals between respiration in the midazolam-morphine group presented a significant decrease, compared to the controls (P<0.01) (Figure 2).

Furthermore, the results of respiratory pattern irregularities indicated a significant difference between the control and midazolam-morphine groups (P<0.01). Additionally, the analysis of the results of respiratory pattern disorder provided a significant difference between the midazolam-
morphine and diazepam-morphine groups (P<0.05). The pattern of respiration in the midazolam-morphine group significantly increased, compared to the midazolam group (P<0.001) (Figure 3).

4. Discussion and Conclusion

The present research results indicated that the combination of morphine-midazolam presents a more severe effect on respiratory patterns than the combination of other benzodiazepines with morphine. We also observed that injecting morphine into the explored animals did not impair respiration. One of the main complications of opioids is impaired respiratory function; however, this attenuation depends on the dose and speed of administration and how opioids are administered [18, 19]. The low and adjusted levels of opioids in patients were not associated with any serious clinical respiratory complications [20, 21]. Previous studies reported that injecting benzodiazepines impairs respiration [24, 25]. However, other studies documented no significant correlation between the low-dose injection of benzodiazepines to patients and severe respiratory adverse effects or alternations in blood gas pressure [27, 28, 29]. The present study results revealed that alprazolam injection significantly reduced the number of breaths. The difference in the respiratory effects of benzodiazepines might be attributed to the dose, the time of study of the effect, and the duration of using these medicines. Our results also highlighted that the effect of the respiratory attenuation of morphine-midazolam combination is greater than that of morphine adjunct to other benzodiazepines. The combined use of midazolam-morphine leads to impaired respiratory function [32]. This respiratory attenuation effect of the midazolam-morphine combination could be due to the cumulative effects of consuming midazolam plus morphine [33]. Midazolam is a short-acting, lipophilic benzodiazepine; it absorbs quickly and easily crosses the blood-brain barrier, leading to a rapid onset of drug action [34]. Evidence suggests that benzodiazepines increase the debilitating effects of the morphine-induced nervous system [35]. However, in the present study, injecting morphine adjunct to all benzodiazepines provided no change in the respiratory pattern. However, the nature of the interaction between benzodiazepines and morphine depends on the route of administration, the dose of the drug injected, and the timing of respiratory parameters [2].

Ethical Considerations

Compliance with ethical guidelines

This research was approved by the Ethics Committee of Arak University of Medical Sciences (Code: IR.ARAKMU.REC.1397.327).

Funding

This research was supported by the Arak University of Medical Sciences.

Authors’ contributions

All authors met the standard writing criteria based on the recommendations of the International Committee of Medical Journal Publishers (ICMJP).

Conflicts of interest

The authors stated no conflicts of interest.
مقاله پژوهشی

بررسی اثر تضعیف تنفسی القا شده با ترکیب مرفین و بنزودیازپین ها به وسیله آنالیز الگوی تنفسی در موش صحرایی

عباس علیمرادانی، سعید پژوهان

1. گروه فیزیولوژی، دانشگاه علوم پزشکی اراک، اراک، ایران
2. گروه پزشکی، دانشگاه علوم پزشکی اراک، اراک، ایران
3. مرکز تحقیقات بیوتکنولوژی، دانشگاه علوم پزشکی اراک، اراک، ایران

۱۴. بهمن و اسفند ۱۳۹۹

چکیده

درمان‌های خانواده اپی‌ویاژی و بنزودیازپینی در موارد مختلف در بیماران به صورت هم‌زمان استفاده می‌شوند. با توجه به تأثیرات مختلف کاتالیستی، خاصیت‌های فیزیولوژیکی و فیزیکی این دو دسته دارویی، در این مطالعه میزان تضعیف تنفسی بالینی به دلیل ترکیب مرفین و پرمصرف‌ترین بنزودیازپین‌های بالینی، میدازولام، دیازپام، لورازپام و آلپرازولام تشخیص داده شد. شاخص‌های فیزیولوژیکی روند تنفسی شامل میانگین فواصل بین تنفس، تعداد تنفس‌ها، بی‌نظمی و ضریب تغییرات فواصل بین تنفس‌ها قابلیت پهنای بان و سطح خوابی مصرف داروها را توصیف می‌کنند. در این مطالعه، مصرف مرفین میدازولام با همراهی عوارض بدنی شدید و سقط‌تنفس، احتمالاً ناشی از ترکیب‌دهی مرفین با میدازولام، دیازپام، لورازپام و آلپرازولام با یکدیگر به‌طور همزمان برای کنترل پنجره تنفسی در بیماران مورد استفاده قرار گرفت.

یافته‌ها

آزمایشاتی که در این مطالعه انجام شدند نشان دادند که افزایش تعداد درگیری در گروه‌های ترکیب‌دهی مرفین و بنزودیازپین‌ها می‌تواند باعث تغییر الگوی تنفسی در موش‌های صحرایی در مقایسه با گروه کنترل باشد. در مورد ترکیب مرفین میدازولام، افزایش در سطح خوابی و بی‌نظمی فواصل بین تنفس‌ها مشاهده شد. همچنین ترکیب مرفین لورازپام در مقایسه با گروه‌های کنترل اثرات بی‌نظم و تغییرات سطح خوابی را بهبود می‌بخشد.

نتیجه‌گیری

نتیجه‌گیری مطالعه نشان داد که ترکیب مرفین میدازولام در ۱۵ دقیقه بعد از تزریق داخل صفاقی، الگوی تنفسی را بهبود می‌بخشد و سطح خوابی و تغییرات فواصل بین تنفس‌ها را بهبود می‌بخشد. ترکیب مرفین آلپرازولام با ترکیب مرفین میدازولام نیز اثرات مثبتی داشت. با این حال، ترکیب مرفین میدازولام با آلپرازولام و مرفین دیازپام به‌طور همزمان مصرف نشان می‌دهند. همچنین ترکیب مرفین دیازپام و مرفین لورازپام نیز اثرات منفی در سطح خوابی و الگوی تنفسی داشتند.

کلیدواژه‌ها:
مرفین، بنزودیازپین، الگوی تنفس

مقدمه

داروهای خانواده اپی‌ویاژی و بنزودیازپینی به صورت هم‌زمان در موارد مختلف در بیماران به صورت هم‌زمان استفاده می‌شوند. به عنوان مثال، ترکیب اپی‌ویاژی سایپا و ترکیب میدازولام و فنتانیل یا ترکیب میدازولام و آپورفین می‌تواند منجر به سوء استفاده از بنزودیازپین‌ها و اپی‌ویاژی‌ها در محیط‌های مختلف درمانی شود. همچنین، ترکیب‌دهی این دو دسته دارویی می‌تواند منجر به تغییرات در الگوی تنفسی و سطح خوابی در بیماران شود. در این مطالعه، تأثیرات ترکیب‌دهی مرفین با بنزودیازپین‌های پرمصرف بالینی بر الگوی تنفسی و سطح خوابی موش‌های صحرایی مورد بررسی قرار گرفت.

اطلاعات مقاله:
1399 مهر ۱۵: تاریخ دریافت
1399 آبان ۲۴: تاریخ پذیرش
1399 بهمن ۱۳: تاریخ انتشار

مراجع

1. گروه فیزیولوژی، دانشگاه علوم پزشکی اراک، اراک، ایران
2. گروه پزشکی، دانشگاه علوم پزشکی اراک، اراک، ایران
3. مرکز تحقیقات بیوتکنولوژی، دانشگاه علوم پزشکی اراک، اراک، ایران

پست الکترونیکی:
s.dpazhoohan@arakmu.ac.ir
در گروه کنترل قبل از ثبت تنفسی نرمال سالیحی در دقیقه قبل از ثبت تنفسی به صورت داخل صفاقی مورد آزمایش بنزودیازپین به تنهایی و یا به صورت ترکیب با استفاده شد که مقادیر ضریب تغییرات فواصل بین تنفس و بی‌نظمی فواصل بین تنفس استخراج شد. دقیقه از سیگنال تنفس جهت انجام آنالیز انتخاب می‌گردد. داده‌ها به صورت میانگین 30 دقیقه، روزانه به مدت 30 روز به مدت 30 روزی استخراج شدند و تا زمان ثبت در این مدت، میزان تنفس بایر هر حیوان 30 دقیقه زیر 2.3 می‌باشد.

اثرات الگوی تنفسی:

۱۰ دقیقه از سیگنال تنفس جهت انجام آنالیز انتخاب شد. زمان استخراج بعضی از مقادیر شده است. تغییرات ضریب فاصله فاصله بین تنفس و بی‌نظمی فواصل بین تنفس، تغییرات فاصله بین تنفس و هر یک از مقادیر ۱۵ دقیقه از زمان ثبت در این مدت، میزان تنفس بایر هر حیوان ۵ دقیقه زیر ۲.۳ می‌باشد.

آنتاروس اکسیژن تنفسی:

مورد آزمایش بنزودیازپین به تنهایی و یا به صورت ترکیب با داروها، در مقیاس بنزودیازپین‌ها در این مطالعه، درمان‌های برخی از اختلالات روان‌پزشکی درمان‌های جراحی و زنونیمداری و درمان‌های بی‌خوابی استخراج می‌شود. همچنین این داروها به دلیل ایجاد اثرات سریع‌مدت می‌توانند در بهبود سر مصرف قدرت در روش های بازی‌های تنفسی، اثر تجویز بنزودیازپین‌ها در انسان و حیوانات به تنهایی و یا به صورت ترکیب استخراج شده است.

نتایج درمانی تغییرات در قدرت تنفسی در مقابل بنزودیازپین‌ها در میان داروهای خواب‌آور و آرام‌بخش، به طور گسترده در درمان برخی از اختلالات روان‌پزشکی درمان‌های جراحی و زنونیمداری و درمان‌های بی‌خوابی استخراج می‌شود. همچنین این داروها به دلیل ایجاد اثرات سریع‌مدت می‌توانند در بهبود سر مصرف قدرت در روش‌ها در بازی‌های تنفسی، اثر تجویز بنزودیازپین‌ها در انسان و حیوانات به تنهایی و یا به صورت ترکیب استخراج شده است.

نتایج درمانی تغییرات در قدرت تنفسی در مقابل بنزودیازپین‌ها در میان داروهای خواب‌آور و آرام‌بخش، به طور گسترده در درمان برخی از اختلالات روان‌پزشکی درمان‌های جراحی و زنونیمداری و درمان‌های بی‌خوابی استخراج می‌شود. همچنین این داروها به دلیل ایجاد اثرات سریع‌مدت می‌توانند در بهبود سر مصرف قدرت در روش‌ها در بازی‌های تنفسی، اثر تجویز بنزودیازپین‌ها در انسان و حیوانات به تنهایی و یا به صورت ترکیب استخراج شده است.
عباس علیمرادیان و همکاران. بررسی اثر تضعیف تنفسی القا شده با ترکیب مرفین و بنزودیازپین‌ها به وسیله آنالیز الگوی تنفسی در موش صحرایی.

تصویر 1. مقایسه میانگین فواصل تنفس در گروه‌های آزمایشی

گروه	میانگین ± برشمدها	بروز و اسفند 1399	**
کنترل	100 ± 5	در مقایسه با کنترل	---
آلپرازولام مرفین	95 ± 4	در مقایسه با کنترل	P < 0.05
میدازولام مرفین	90 ± 3	در مقایسه با کنترل	P < 0.01

تصویر 2. مقایسه میانگین تعداد تنفس در گروه‌های آزمایشی

گروه	میانگین ± برشمدها	بروز و اسفند 1399	**
کنترل	100 ± 5	در مقایسه با کنترل	---
آلپرازولام مرفین	95 ± 4	در مقایسه با کنترل	P < 0.05
میدازولام مرفین	90 ± 3	در مقایسه با کنترل	P < 0.01

تصویر 3. مقایسه ضریب تغییرات فواصل تنفس در گروه‌های آزمایشی

گروه	میانگین ± برشمدها	بروز و اسفند 1399	**
کنترل	100 ± 5	در مقایسه با کنترل	---
آلپرازولام مرفین	95 ± 4	در مقایسه با کنترل	P < 0.05
میدازولام مرفین	90 ± 3	در مقایسه با کنترل	P < 0.01

تصویر 4. مقایسه ضریب تغییرات فواصل تنفس در گروه‌های آزمایشی

گروه	میانگین ± برشمدها	بروز و اسفند 1399	**
کنترل	100 ± 5	در مقایسه با کنترل	---
آلپرازولام مرفین	95 ± 4	در مقایسه با کنترل	P < 0.05
میدازولام مرفین	90 ± 3	در مقایسه با کنترل	P < 0.01

میانگین فواصل تنفس (SampEn) میدازولام مرفین به طور معناداری کمتر از گروه کنترل است. درحالی که آنالیز تعداد تنفس نشان داد که تفاوت معناداری بین گروه‌ها وجود ندارد. در نهایت، آنالیز اینکه تفاوت معناداری بین فواصل تنفس در گروه‌های آزمایشی وجود دارد.
 negro متن نظریه ما نشان داد که تزریق دوز مناسب بنزودیازپین ها باعث کاهش دوستهای شاخص و افزایش ضریب تغییرات فواصل بین تنفس و افزایش بی نظمی الگوی تنفس همراه بود.

همچنین تأثیر نخستین مطالعاتی که در این زمینه انجام شدند نشان داد که اپیوئید ها به وسیله رفتارهای خودکاری و یا افزایش فعالیت سیستم نوزه، تمرکز توجه مصرف کنندگان اپیوئید را تقویت می‌کنند. این تأثیر کلیه اپیوئید ها به ویژه اپیوپنیک‌ها و آپتیک‌ها، به گونه‌ای است که مصرف آنها باعث افزایش نشانه‌های ضریب تغییرات فواصل بین تنفس می‌گردد.

نتایج مطالعه پیشین نشان داد که تزریق بنزودیازپین‌ها باعث افزایش درصد اشباع اکسیژن در شب نمی‌گردد و کاهش خواب آلودگی در طول روز بیماران می‌شود. این اثر تأکید بر کاهش رشد آکسید، کاهش نشانه‌های ضریب تغییرات فواصل بین تنفس و افزایش فعالیت سیستم نوزه، تمرکز توجه مصرف کنندگان اپیوپنیک‌ها و آپتیک‌ها، به گونه‌ای است که مصرف آنها باعث افزایش نشانه‌های ضریب تغییرات فواصل بین تنفس می‌گردد.

نتایج بیشترین تجزیه و تحلیل تأثیرات اپیوپنیک‌ها و آپتیک‌ها در بیماران می‌شود. این اثر احتمالاً به دلیل افزایش نشانه‌های ضریب تغییرات فواصل بین تنفس و افزایش فعالیت سیستم نوزه، تمرکز توجه مصرف کنندگان اپیوپنیک‌ها و آپتیک‌ها، به گونه‌ای است که مصرف آنها باعث افزایش نشانه‌های ضریب تغییرات فواصل بین تنفس می‌گردد.

نتایج بیشترین تجزیه و تحلیل تأثیرات اپیوپنیک‌ها و آپتیک‌ها در بیماران می‌شود. این اثر احتمالاً به دلیل افزایش نشانه‌های ضریب تغییرات فواصل بین تنفس و افزایش فعالیت سیستم نوزه، تمرکز توجه مصرف کنندگان اپیوپنیک‌ها و آپتیک‌ها، به گونه‌ای است که مصرف آنها باعث افزایش نشانه‌های ضریب تغییرات فواصل بین تنفس می‌گردد.
تضعیف تنفسی قوی‌تری در مقایسه با ترکیب مرفین با سایر بنزودیازپین‌های معرفی‌شده می‌کند. به نظر می‌رسد این نتایج به طبیعی ویژگی مجزا بودن این بنزودیازپین‌ها را از سایر بنزودیازپین‌ها نشان می‌دهد. به طوری که در مقایسه با سایر بنزودیازپین‌ها، می‌توان گفت این نتایج به ویژگی بنزودیازپین‌ها باعث شده است.

به عقیده ملی، در انسان گزارش شده که بنزودیازپین‌ها اثرات تضعیف پدیده‌های بیماری مصرفی را افزایش می‌دهند. با این حال در مطالعه حاضر ترکیب مرفین با همه بنزودیازپین‌ها باعث تغییر الگوی تنفسی نشد، به‌هرحال در مطالعه حاضر تداخل میان بنزودیازپین‌ها و مرفین به‌سئیر تجویز نموده‌اند.

ملاحظات اخلاقی

دوره‌ای از اصول اخلاق پژوهش در کمیته اخلاق محققین علم پزشکی اراک تأیید و با شماره IR.ARAKMU.REC.1397.327 ثبت شده است.

جلیلی‌مالی

این پژوهش توسط مالیات حقوقی بهره‌برداری علم پزشکی اراک حمایت مالی شده است.

مهاجران‌نوبیستگان

تمامی نویسندگان بر اساس توصیه‌های کمیته بین‌المللی نشریات مجله پزشکی، معارضه‌ای استفاده‌شده توسط کردنده (ICMJE).

تباره مطالعه

بتای اظهار نوبیستگان این مقاله تعارض ملی‌الفرق ندارد.
[31] Gerak LR, Brandt MR, France CP. Studies on benzodiazepines and opioids administered alone and in combination in rhesus monkeys: Ventilation and drug discrimination. Psychopharmacology. 1998; 137(2):164-74. [DOI:10.1007/s002130050606] [PMID]

[32] Dworzak H, Fuss F, Büttner T. [Persisting respiratory depression following intrathecal administration of morphine and simultaneous sedation with midazolam (German)]. Anaesthesist. 1999; 48(9):639-41. [DOI:10.1007/s001010050764] [PMID]

[33] Tverskoy M, Fleishman G, Ezry J, Bradley EL Jr, Kissin I. Midazolam-morphine sedative interaction in patients. Anesth Analg. 1989; 68(3):282-5. [DOI:10.1213/00000539-198903000-00017] [PMID]

[34] Eyer CL. Goodman & Gilman’s: The pharmacological basis of therapeutics. New York: McGraw Hill; 2002. https://www.moscmn.org/pdf/Goodman_and_Gilmans.pdf

[35] Day C. Benzodiazepines in combination with opioid pain relievers or alcohol: Greater risk of more serious ED visit outcomes. The CBHSQ report. 2014. [PMID]