EIGENVALUE PROBLEM MEETS SIERPINSKI TRIANGLE: COMPUTING THE SPECTRUM OF A NON–SELF–ADJOINT RANDOM OPERATOR

SIMON N. CHANDLER-WILDE, RATCHANIKORN CHONCHAIYA AND MARKO LINDNER

Abstract. The purpose of this paper is to prove that the spectrum of the non-self-adjoint one-particle Hamiltonian proposed by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433–6443) has interior points. We do this by first recalling that the spectrum of this random operator is the union of the set of ℓ^∞ eigenvalues of all infinite matrices with the same structure. We then construct an infinite matrix of this structure for which every point of the open unit disk is an ℓ^∞ eigenvalue, this following from the fact that the components of the eigenvector are polynomials in the spectral parameter whose non-zero coefficients are ± 1’s, forming the pattern of an infinite discrete Sierpinski triangle.

Mathematics subject classification (2010): Primary 47B80; Secondary 47A10, 47B36.
Keywords and phrases: random matrix, spectral theory, Jacobi matrix, disordered systems.

REFERENCES
[1] W. AMREIN, M. MANTOIU AND R. PURICE, Propagation properties for Schrödinger operators affiliated with certain C^*-algebras, Ann. H. Poincaré Int 3 (2002), 1215–1232.
[2] A. BÖTTCHER AND M. LINDNER, Pseudospectrum, Scholarpedia 3, 3 (2008), 2680. http://www.scholarpedia.org/article/Pseudospectrum
[3] A. BÖTTCHER AND B. SILBERMANN, Analysis of Toeplitz Operators, 1st ed., Akademie-Verlag 1989 and Springer 1990; 2nd ed., Springer 2006.
[4] R. CARMONA AND J. LACROIX, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990.
[5] S. N. CHANDLER-WILDE, R. CHONCHAIYA AND M. LINDNER, Upper Bounds on the Spectra and Pseudospectra of Jacobi and Related Operators, in preparation.
[6] S. N. CHANDLER-WILDE, R. CHONCHAIYA AND M. LINDNER, On the Spectra and Pseudospectra of a Class of non-self-adjoint Random Matrices and Operators, in preparation.
[7] S. N. CHANDLER-WILDE AND M. LINDNER, Sufficiency of Favard’s condition for a class of band-dominated operators on the axis, J. Funct. Anal. 254 (2008), 1146–1159.
[8] S. N. CHANDLER-WILDE AND M. LINDNER, Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices, Memoirs of the American Mathematical Society, Vol. 210, Nr. 989, 2011.
[9] G. M. CICUTA, M. CONTEDINI AND L. MOLINARI, Non-Hermitian tridiagonal random matrices and returns to the origin of a random walk, J. Stat. Phys. 98 (2000), 685–699.
[10] E. B. DAVIES, Spectral properties of non-self-adjoint matrices and operators, Proc. Royal Soc. A. 457 (2001), 191–206.
[11] E. B. DAVIES, Spectral theory of pseudo-ergodic operators, Commun. Math. Phys. 216 (2001), 687–704.
[12] E. B. DAVIES, Linear Operators and their Spectra, Cambridge University Press, 2007.
[13] D. DOTY, X. GU, J. H. LUTZ, E. MAYORDOMO AND P. MOSER, Zeta dimension, in Mathematical Foundations of Computer Science 2005. Springer, 2005, pp. 283–294.
[14] K. J. FALCONER, Fractal Geometry: Mathematical Foundations & Applications, John Wiley & Sons, 1990.
[15] J. Feinberg and A. Zee, Non-Hermitian Localization and De-Localization, Phys. Rev. E 59 (1999), 6433–6443.
[16] J. Feinberg and A. Zee, Spectral Curves of Non-Hermitian Hamiltonians, Nucl. Phys. B 552 (1999), 599–623.
[17] V. Georgescu and S. Golenia, Isometries, Fock spaces and spectral analysis of Schrödinger operators on trees, Journal of Functional Analysis 227 (2005), 389–429.
[18] V. Georgescu and A. Iftimovic, C*-Algebras of Energy Observables: I. General Theory and Bumps Algebras, Preprint 00-521 at http://www.ma.utexas.edu/mp_arc/, December 2000.
[19] V. Georgescu and A. Iftimovic, Crossed products of C*-algebras and spectral analysis of quantum Hamiltonians, Comm. Math. Phys. 228 (2002), 519–560.
[20] V. Georgescu and A. Iftimovic, Localization at infinity and essential spectrum of quantum Hamiltonians, Rev. Math. Phys. 18 (2006), 417–483.
[21] I. Goldsheid and B. Khoruzhenko, Eigenvalue curves of asymmetric tridiagonal random matrices, Electronic Journal of Probability 5 (2000), 1–28.
[22] D.E. Holz, H. Orland and A. Zee, On the remarkable spectrum of a non-Hermitian random matrix model, Journal of Physics A: Mathematical and General 36 (2003), 3385–3400.
[23] V. G. Kurbatov, Functional Differential Operators and Equations, Kluwer Academic Publishers, Dordrecht, Boston, London, 1999.
[24] J. I. Lathropa, J. H. Lutz, and S. M. Summers, Strict self-assembly of discrete Sierpinski triangles, Theor. Computer Sci. 410 (2009), 384–405.
[25] Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), 329–367.
[26] Y. Last and B. Simon, The essential spectrum of Schrödinger, Jacobi and CMV operators, J. Anal. Math. 98 (2006), 183–220.
[27] M. Lindner, Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method, Frontiers in Mathematics, Birkhäuser 2006.
[28] M. Lindner, Fredholmness and index of operators in the Wiener algebra are independent of the underlying space, Operators and Matrices 2 (2008), 297–306.
[29] M. Lindner, A note on the spectrum of bi-infinite bi-diagonal random matrices, Journal of Analysis and Applications 7 (2009), 269–278.
[30] M. Lindner, Fredholm Theory and Stable Approximation of Band Operators and Generalisations, Habilitation thesis, TU Chemnitz, 2009.
[31] M. Mantoiu, C*-algebras, dynamical systems at infinity and the essential spectrum of generalized Schrödinger operators, J. Reine Angew. Math. 550 (2002), 211–229.
[32] L. A. Pastur and A. L. Figotin, Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992.
[33] V. S. Rabinovich and S. Roch, The essential spectrum of Schrödinger operators on lattices, J. Phys. A: Math. Gen. 39 (2006), 8377–9394.
[34] V. S. Rabinovich, S. Roch and B. Silbermann, Fredholm Theory and Finite Section Method for Band-dominated operators, Integral Equations Operator Theory 30, 4 (1998), 452–495.
[35] V. S. Rabinovich, S. Roch and B. Silbermann, Limit Operators and Their Applications in Operator Theory, Birkhäuser, 2004.
[36] C. Remling, The absolutely continuous spectrum of Jacobi matrices, arXiv:0706.1101v1, June 2007.
[37] C. Remling, The Absolutely Continuous Spectrum of One-dimensional Schrödinger Operators, Math. Phys., Anal. and Geom. 10 (2007), 359–373.
[38] L. N. Trefethen and M. Embree, Spectra and pseudospectra: The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, NJ, 2005.