Cardiorespiratory Fitness in Breast Cancer Patients: A Call for Normative Values
Amanda B. Peel, BA; Samantha M. Thomas, MB; Kim Dittus, MD, PhD; Lee W. Jones, PhD; Susan G. Lakoski, MD, MS

Background—There is emerging evidence that adjuvant treatments for breast cancer negatively impact cardiorespiratory fitness (CRF) or VO2max, a key predictor of cardiovascular risk. Although a number of studies have measured CRF in breast cancer patients, there is currently limited data regarding expected CRF values in this patient population. Given that CRF is a poor prognostic sign and recently highlighted as a key measure to standardize by the American Heart Association, we sought to review the available literature on CRF among breast cancer patients.

Methods and Results—We identified 27 clinical trials and observational studies measuring VO2max in the pre– and post–adjuvant treatment setting for breast cancer. We compared VO2max before to VO2max after adjuvant therapy and compared VO2max in female breast cancer patients with VO2max in healthy controls.

Conclusions—We found that CRF was substantially lower in women with a history of breast cancer compared with healthy women and this was most pronounced among breast cancer patients in the post-adjuvant setting. We conclude that knowledge of normative CRF values is critical to tailor appropriately timed exercise interventions in breast cancer patients susceptible to low CRF and subsequent cardiovascular risk. (J Am Heart Assoc. 2014;3:e000432 doi: 10.1161/JAHA.113.000432)

Key Words: breast cancer • cardiorespiratory fitness • women

Breast cancer is the most commonly diagnosed malignancy of women in the United States, with 207,090 new cases in 2010, accounting for 28% of all cancer diagnoses. Due to significant improvements in screening protocols, diagnosis, and treatment over the past few decades, breast cancer mortality continues to decrease. As a result, more than 2.9 million American women are living with a prior history of breast cancer. Importantly, women diagnosed with early-stage breast cancer are susceptible to the late occurring toxic effects of conventional treatment regimens, and are at greater risk for death from cardiovascular disease than from breast cancer after 65 years of age.

Cardiac-related effects of adjuvant therapy—namely, cardiomyocyte injury and decreases in left ventricular ejection fraction (LVEF)—are well documented. Both left-sided radiotherapy and chemotherapy are associated with short- and long-term cardiotoxicity. Anthracycline-containing regimens are known to cause dose-dependent, cumulative, progressive cardiac dysfunction manifested as decreased LVEF and congestive heart failure. The addition of adjuvant trastuzumab to the management of human epidermal growth factor receptor (HER)-2–positive early breast cancer has further increased clinical and subclinical cardiotoxicity rates.

There is emerging evidence that adjuvant therapy for breast cancer can also significantly affect cardiorespiratory fitness (CRF). CRF as measured by VO2max assesses global cardiovascular function, cardiopulmonary reserve, and efficiency of oxygen transport and utilization and can unmask compensatory mechanisms of abnormal cardiac function as well as defects in other vital organs. A number of studies have shown that VO2max is impaired in breast cancer patients compared with healthy controls. This finding is of major concern given that low VO2max is associated with higher mortality among more–advanced stage breast cancer patients.

Despite evidence that low VO2max is a poor prognostic sign, there is currently little known regarding VO2max levels among
breast cancer patients. Knowledge of \textit{V}O_{2\text{max}} values in breast cancer is of timely importance as the American Heart Association is calling for the development of a national adult database of CRF, given the critical impact of CRF on cardiovascular morbidity, all-cause mortality, and cancer survival.17,19 Moreover, \textit{V}O_{2\text{max}} values would enable health-care providers to define levels of CRF associated with poor health outcomes in the breast cancer population, elucidate therapy-related decrements in CRF, and help target appropriately timed interventions.

To address this gap in the literature, we identified 27 clinical trials and observational studies measuring \textit{V}O_{2\text{max}} in the pre–or post–adjuvant treatment setting for breast cancer. We compared mean \textit{V}O_{2\text{max}} values of female breast cancer patients in 6 studies that measured \textit{V}O_{2\text{max}} before adjuvant therapy and 21 studies that measured \textit{V}O_{2\text{max}} after adjuvant therapy was completed. We then compared mean \textit{V}O_{2\text{max}} values in female breast cancer patients with the \textit{V}O_{2\text{max}} values of healthy, sedentary, and active, endurance-trained controls. Secondary variables of interest included patients’ age, body mass index (BMI), and study type and period.

Methods

We performed a MEDLINE search for citations of peer reviewed clinical studies measuring CRF in breast cancer patients. We used the following search terms: cardiorespiratory fitness or fitness or exercise capacity and breast cancer. We excluded studies not printed in the English language. We included observational studies and clinical trials involving exercise interventions in which CRF was measured in female breast cancer patients. Clinical trials consisted of both randomized controlled trials (RCTs) and exercise intervention studies, each of which examined the effects of exercise interventions on CRF as well as other variables in breast cancer patients. RCTs also measured outcomes in control groups consisting of women without a history of breast cancer, whereas exercise intervention studies did not contain control groups. Studies were only included if CRF was measured using \textit{V}O_{2\text{max}} [mL/(kg min)] or L/min and if CRF was measured within 5 years of completion of adjuvant therapy. For RCTs and exercise intervention studies, we reported mean baseline \textit{V}O_{2\text{max}} values and associated SDs before the initiation of exercise training.

Twenty-six clinical trials and observational studies that measured \textit{V}O_{2\text{max}} in female breast cancer patients pre– or post–adjuvant therapy were identified. Because Schneider et al20 measured \textit{V}O_{2\text{max}} in pre– and post–adjuvant therapy settings, the 2 subsets were treated as independent populations, making the effective sample size 27 studies. A control population of healthy women was identified from a previously performed meta-analysis by Fitzgerald et al21 which accounted for physical activity level and age-related decline in \textit{V}O_{2\text{max}}. The equations to calculate \textit{V}O_{2\text{max}} were as follows: sedentary [43.82–0.35 (age)], active [54.02–0.44 (age)], and endurance-trained [72.41–0.62 (age)].21 Estimated rates of decline for sedentary, active, and endurance-trained women were −3.5 mL/(kg min), −4.4 mL/(kg min), and −6.2 mL/ (kg min) per decade, respectively.21 The algorithms in the Fitzgerald report have been previously used and compared in other breast cancer populations.17

The majority of studies (16 of 27) measured CRF using a treadmill walking test and either a Bruce, Balke, or Naughton protocol. Of the remaining studies, 8 measured CRF with an electronic cycle ergometer, 1 measured CRF with a stepping ergometer, and 2 did not report the exercise equipment used to measure CRF. \textit{V}O_{2\text{max}} was measured directly from expired gas analysis during maximal effort in 14 studies and estimated using previously derived equations in 13 studies. A majority of studies reported mean \textit{V}O_{2\text{max}} in mL/(kg min), but for studies that reported mean \textit{V}O_{2\text{max}} in L/min and also reported mean weight in kg, a conversion was done using the standard method of division of random variables for both the mean and SD.22 Of the 1856 patients studied in this review, 709 participated in studies in the United States and 1147 participated in studies performed outside the United States. The studies performed outside the United States and Canada included Brdareski et al23 (Serbia), Daley et al24 (United Kingdom), Herrero et al25,26 (Spain), Rahnama et al27 (Iran), Scott et al28 (United Kingdom), Turner et al29 (Australia), and Vincent et al30 (France).

To accurately compare \textit{V}O_{2\text{max}} pre– and post–adjuvant therapy with that of controls, the inverse-variance method of weighting assuming a random-effects model was used.31 Fitzgerald et al21 reported that the weighted and unweighted means for the control group were not different; thus, the mean \textit{V}O_{2\text{max}} used for the control group was un-weighted. The standard error and 95% confidence interval were also calculated according to the guidelines of Borenstein and Higgins.31

Raw mean and SD values for \textit{V}O_{2\text{max}} (mL/[kg min]), age, and BMI were summarized for each study. Fisher’s exact tests were used to compare the distribution of study type and therapy class, and Student t tests were used to compare the mean age and BMI between pre– and post–adjuvant therapy breast cancer studies. Meta-regression was used to explore the linear relationship between the weighted mean \textit{V}O_{2\text{max}} of each study, age, BMI, study type, and subgroup (pre– or post–adjuvant therapy). BMI was not reported for 5 studies. A sensitivity analysis was done to determine if imputation with the mean BMI would change the results of the linear regression. Imputation did not change the results, and as
such, missing BMI values were replaced with the mean BMI for all other studies so that all 27 studies could be included in the meta-regression.

Tests for heterogeneity were conducted to verify the appropriateness of meta-analysis for mean values of \(\text{VO}_{2\text{max}} \) for all breast cancer studies and for pre–adjuvant therapy studies and post–adjuvant therapy studies separately. Methods described in Higgins and Thompson\(^3\) were used to carry out this analysis. The H statistic, a modified Cochran’s \(\chi^2 \) test (Q test) statistic that does not intrinsically depend on the number of studies, was calculated, with \(H=1 \) indicating homogeneity.\(^3\)

Results

Fitness in the Preadjuvant and Postadjuvant Setting

Twenty-seven studies measuring \(\text{VO}_{2\text{max}} \) in breast cancer patients were identified between 2001 and 2013, involving a total of 1856 female participants with mean ages ranging from 47 to 59 years. The 6 studies that reported \(\text{VO}_{2\text{max}} \) prior to adjuvant therapy as well as the 21 studies that reported \(\text{VO}_{2\text{max}} \) after completion of adjuvant therapy are summarized in Table 1. Weight percent by subgroup (pretherapy and posttherapy) is shown in Figures 1 and 2.

Table 1. Clinical Studies of Cardiorespiratory Fitness in Breast Cancer Patients

Time Period	Study	Sample Size	\(\text{VO}_{2\text{max}} \)	Age	BMI	Study Type	Weight % by Subgroup*	Weight % Overall†
Pretherapy	Courneya et al\(^{23}\)	242	25.17±6.49	49.2±—	26.6±5.5	RCT	8.73	1.59
	Kolden et al\(^{34}\)	40	30.60±4.30	55.0±8.4	—±—	Exercise intervention	19.88	3.61
	Ligibel et al\(^{35}\)	41	22.30±3.40	47.0±7.3	27.0±—	Exercise intervention	31.80	5.77
	Schneider et al\(^{20}\)	13	22.50±6.20	54.9±10.6	25.6±—	Exercise intervention	9.56	1.74
	Segal et al\(^{36}\)	123	25.50±5.57	50.9±8.7	—±—	RCT	11.86	2.15
	Vincent et al\(^{30}\)	34	22.10±4.50	49.0±8.4	24.0±7.4	Exercise intervention	18.16	3.30
Posttherapy	Brdareski et al\(^{23}\)	18	21.00±3.22	52.1±7.5	26.5±3.4	Exercise intervention	7.88	6.45
	Burnett et al\(^{37}\)	30	25.40±5.30	50.5±5.6	29.2±5.3	Observational	2.90	2.38
	Campbell et al\(^{38}\)	14	24.11±5.02	54.6±8.3	30.1±3.6	Exercise intervention	3.23	2.65
	Courneya et al\(^{39}\)	50	18.70±3.85	59.0±6.0	29.2±6.6	RCT	5.51	4.51
	Daley et al\(^{34}\)	108	29.82±5.08	51.0±8.5	28.6±5.0	RCT	3.16	2.59
	Dolan et al\(^{16}\)	242	24.50±6.40	49.2±—	26.6±5.5	RCT	1.99	1.63
	Fillion et al\(^{40}\)	87	25.55±5.36	52.4±10.0	—±—	RCT	2.84	2.32
	Herrero et al\(^{25}\)	16	24.60±5.80	50.0±9.0	26.2±4.5	Observational	2.42	1.98
	Herrero et al\(^{26}\)	11	26.70±5.60	47.0±7.0	25.2±3.2	Exercise intervention	2.60	2.13
	Hsieh et al\(^{47}\)	96	20.60±6.23	57.9±10.5	28.6±—	Exercise intervention	2.10	1.72
	Hutnick et al\(^{42}\)	47	19.49±5.21	50.1±10.0	26.7±4.8	Exercise intervention	3.01	2.46
	Jones et al\(^{3}\)	47	17.90±4.30	59.0±7.0	28.0±5.0	Observational	4.41	3.61
	Jones et al\(^{4}\)	26	19.20±4.60	48.0±8.5	29.0±6.0	Observational	3.85	3.15
	Musanti et al\(^{43}\)	55	23.19±4.96	50.5±7.5	—±—	Exercise intervention	3.31	2.71
	Rahnama et al\(^{47}\)	29	15.75±5.52	57.5±—	27.7±4.0	Exercise intervention	2.68	2.19
	Rogers et al\(^{44}\)	41	25.04±6.10	53.0±9.0	30.9±8.6	RCT	2.19	1.80
	Schneider et al\(^{20}\)	82	20.80±6.10	56.9±9.4	28.3±—	Exercise intervention	2.19	1.79
	Scott et al\(^{36}\)	90	23.70±4.53	55.7±9.6	30.3±4.5	RCT	3.98	3.26
	Taylor et al\(^{5}\)	257	25.50±6.50	55.0±9.4	31.3±4.9	Observational	1.93	1.58
	Tosti et al\(^{46}\)	7	22.00±1.50	50.6±3.3	29.4±1.1	Observational	36.24	29.66
	Turner et al\(^{29}\)	10	23.00±7.20	47.0±8.0	—±—	Exercise intervention	1.57	1.29

Data presented as mean±SD. ——, Missing or unreported data. Each study was weighted based on the inverse of the variance of that study’s mean \(\text{VO}_{2\text{max}} \) so that studies with smaller variances had a greater influence on the mean across studies. BMI indicates body mass index; RCT, randomized controlled trial.

*Weight percent by subgroup indicates the influence of the study on the mean across pretherapy or posttherapy studies.

†Weight percent overall indicates the influence of that study on the mean across all pretherapy and posttherapy studies.
Cardiorespiratory Fitness in Breast Cancer
Peel et al

DOI: 10.1161/JAHA.113.000432
Journal of the American Heart Association

Table 2. Comparison of Descriptive Variables for Pre- and Post-Adjuvant Therapy Groups

Variable	All Breast Cancer Studies (N=27)	Pre-Adjuvant Therapy (N=6)	Post-Adjuvant Therapy (N=21)	P Value*
Age, y	52.3±3.7	51.0±3.3	52.7±3.8	0.332
BMI, kg/m²	28.0±1.9	25.8±1.3	28.4±1.7	0.009
Study type				0.407
RCT	8 (30%)	2 (33%)	6 (29%)	
Observational	6 (22%)	0 (0%)	6 (29%)	
Exercise intervention	13 (48%)	4 (67%)	9 (43%)	
Therapy class				
Surgery+adjuvant therapy	27 (100%)	6 (100%)	21 (100%)	

BMI indicates body mass index; RCT, randomized controlled trial.
*Fisher’s exact P-value for categorical variables; t-test P-value for continuous P-values.

posttherapy) and weight percent overall of each of the 27 studies are also shown in Table 1.

Table 2 shows descriptive variables from all 27 studies as well as a comparison among the overall and pre- and post-adjuvant therapy breast cancer groups. Overall, 20% were RCTs, 22% were observational studies, and 48% were exercise intervention studies. In the preadjuvant setting, 33% were RCTs, and 67% were exercise interventions. Of the studies performed in the postadjuvant setting, 29% were RCTs, 29% were observational studies, and 43% were exercise interventions. Adjuvant therapy included chemotherapy in 78% (predominantly anthracycline-based), radiotherapy in 56%, and hormonal therapy in 33% of patients.

The mean age and BMI for all breast cancer studies were 52±4 years and 28±2 kg/m³. The mean age was similar in the pre- and post-adjuvant therapy settings (P=0.33, Table 2). The weighted mean VO₂max before adjuvant therapy was 24.6 mL/(kg min). For the 21 studies reporting VO₂max after adjuvant therapy, the weighted mean VO₂max was 22.2 mL/(kg min). The VO₂max in the postadjuvant setting was 10% lower (−2.4 mL/(kg min)] than the mean VO₂max value assessed at the beginning of adjuvant therapy. The mean BMI measured after adjuvant therapy was 2.6 kg/m² higher than the BMI prior to adjuvant therapy (28.4±2 kg/m² versus 25.8±1 kg/m², P=0.009).

Table 3 contains the results of the linear meta-regression examining the relationship between age, BMI, study type and period, and weighted mean VO₂max levels. There was no evidence for an association between weighted mean VO₂max and the study variables of interest such as age and BMI (P>0.05 for all). We also performed a test for heterogeneity

for both preadjuvant and postadjuvant studies. The H value was 1 (95% CI 1 to 1.99, P=0.72) for the preadjuvant breast cancer studies and 1 (95% CI 1 to 1.37, P=0.98) for the postadjuvant breast cancer studies, respectively.

Fitness Compared With Healthy, Sedentary, and Endurance Trained Women

The weighted mean VO₂max measured in breast cancer patients prior to adjuvant therapy [24.6 mL/(kg min)] was 17% lower than the VO₂max of healthy, sedentary women [29.7 mL/(kg min)], or 83% of predicted (P=0.007) (Figure 1). After completion of adjuvant therapy, weighted mean VO₂max in breast cancer patients [22.2 mL/(kg min)] was 25% lower than the VO₂max of healthy, sedentary women (75% of predicted, P<0.001). Figure 2 illustrates VO₂max by age and physical activity level for healthy women based on Fitzgerald et al.²¹ and weighted VO₂max among breast cancer patients in the current study. VO₂max varied with age and physical activity level. The weighted mean VO₂max of a 50-year-old breast cancer patient [22.6 mL/(kg min)] was most similar to that of sedentary, 60-year-old women [=22.7 mL/(kg min)].

Discussion

The current review demonstrates impairment in VO₂max among female breast cancer patients compared with healthy controls, as well as lower VO₂max depending on the timing of measurement in relation to breast cancer treatment status. These data suggest existing normative CRF values in healthy women may not be representative of breast cancer populations. Based on our previous work, the decline in CRF appears sustained in breast cancer patients even 7 years after treatment compared with age-matched controls.⁴⁶ These findings are of key importance given even small differences in CRF [eg, 1 MET or 3.5 mL/(kg min)] are associated with a significantly higher risk for cardiovascular mortality (≈18%).⁴⁷,⁴⁸

The reason for impairment in CRF is likely multifactorial, involving multiple organ components of oxygen transport. Of the major components of oxygen transport—namely, pulmonary, cardiac, vascular, and skeletal muscle function, a limitation in cardiac function is the most well studied in breast cancer patients. Chemotherapeutic agents used in breast cancer management are associated with both short- and long-term cardiac complications, which can ultimately lead to congestive heart failure.⁴⁹ Anthracycline-based adjuvant chemotherapy in particular carries a substantial long-term risk of heart failure. The mechanism of action of anthracyclines involves intercalation between DNA base pairs, inhibition of DNA topoisomerase II with subsequent blocking of replication and transcription, and the generation of iron-
Table 3. Association Between Weighted Mean $V_{O2\text{max}}$ and Clinical Study Variables

Model #	Dependent Variable	Parameter Estimate (SE)	P Value	Model P-Value	R-Squared
1	Weighted mean $V_{O2\text{max}}$ Intercept	1.031 (7.289)	0.889	0.641	0.140
	Age	-0.073 (0.106)	0.497		
	BMI*	0.191 (0.275)	0.495		
	Study type (RCT)	-1.424 (1.004)	0.171		
	Study type (exercise)	-1.125 (0.998)	0.272		
	Period (posttherapy)	-0.380 (0.959)	0.696		
2	Weighted mean $V_{O2\text{max}}$ Intercept	-0.460 (6.811)	0.947	0.732	0.053
	Age	-0.093 (0.104)	0.382		
	BMI*	0.238 (0.249)	0.349		
	Period (posttherapy)	-0.099 (0.941)	0.917		
3	Weighted mean $V_{O2\text{max}}$ Intercept	4.709 (4.944)	0.351	0.567	0.120
	Age	-0.043 (0.096)	0.656		
	Study type (RCT)	-1.440 (0.992)	0.161		
	Study type (exercise)	-1.370 (0.923)	0.152		
	Period (posttherapy)	-0.140 (0.883)	0.876		
4	Weighted mean $V_{O2\text{max}}$ Intercept	-0.534 (6.846)	0.939	0.567	0.120
	BMI*	0.113 (0.247)	0.654		
	Study type (RCT)	-1.482 (0.988)	0.148		
	Study type (exercise)	-1.266 (0.965)	0.203		
	Period (posttherapy)	-0.399 (0.947)	0.678		
5	Weighted mean $V_{O2\text{max}}$ Intercept	3.973 (4.982)	0.433	0.827	0.016
	Age	-0.056 (0.097)	0.567		
	Period (posttherapy)	0.277 (0.853)	0.749		
6	Weighted mean $V_{O2\text{max}}$ Intercept	-3.026 (6.146)	0.627	0.778	0.021
	BMI*	0.156 (0.230)	0.504		
	Period (posttherapy)	-0.107 (0.937)	0.910		
7	Weighted mean $V_{O2\text{max}}$ Intercept	2.538 (1.111)	0.032	0.425	0.112
	Study type (RCT)	-1.476 (0.971)	0.142		
	Study type (exercise)	-1.399 (0.904)	0.136		
	Period (posttherapy)	-0.223 (0.849)	0.795		
8	Weighted mean $V_{O2\text{max}}$ Intercept	3.870 (4.882)	0.436	0.596	0.011
	Age	-0.050 (0.093)	0.596		
9	Weighted mean $V_{O2\text{max}}$ Intercept	-2.776 (5.630)	0.626	0.480	0.020
	BMI*	0.144 (0.201)	0.480		
10	Weighted mean $V_{O2\text{max}}$ Intercept	2.315 (0.702)	0.003	0.249	0.110
	Study type (RCT)	-1.421 (0.929)	0.139		
	Study type (exercise)	-1.330 (0.849)	0.130		
11	Weighted mean $V_{O2\text{max}}$ Intercept	1.113 (0.728)	0.139	0.829	0.002
	Period (posttherapy)	0.181 (0.826)	0.829		

BMI indicates body mass index; RCT, randomized controlled trial.

*Missing BMI values were imputed with the mean BMI.
mediated oxygen free radicals that damage DNA as well as proteins and cell membranes. These oxygen free radicals are thought to play a central role in the evolution of the cardiotoxic effects of anthracyclines. Moreover, several lines of evidence suggest that cytotoxic damage caused by anthracyclines leads to compensatory alterations in autonomic tone, which may have important implications for heart rate reserve and CRF. Radiotherapy used to treat breast cancer can cause cardiac perfusion defects that are associated with abnormalities in regional wall motion. Furthermore, radiotherapy-induced cardiotoxicity is amplified by the use of adjuvant systemic chemotherapy—particularly anthracycline-based regimens and newer agents such as trastuzumab.

Jones et al has previously shown that mean VO2max is markedly impaired in a population of breast cancer patients despite normal cardiac function (as indicated by LVEF ≥50%). This important finding suggests that injury to other components of oxygen transport (ie, pulmonary, hematologic, vascular, and skeletal muscle function) must contribute to CRF decline. In particular, incidental radiation to the lungs during radiotherapy for breast cancer causes fibrosis and a subsequent impairment in pulmonary gas exchange. Anemia, a frequent complication of treatment while undergoing therapy, reduces oxygen delivery to muscle cells. Dolan et al found a significant correlation between hemoglobin levels and percent change in VO2max in women receiving adjuvant therapy for breast cancer. Both radiotherapy and chemotherapy for breast cancer, especially anthracyline-containing chemotherapy, cause increases in reactive oxygen species generation, which can lead to endothelial injury, endothelial dysfunction, vascular remodeling, and increased arterial stiffness further affecting oxygen delivery. Finally, preclinical studies have shown that anthracyclines impair both maximal twitch force and muscle relaxation. Such impairments in skeletal muscle function decrease oxygen utilization and thereby contribute to reduced CRF. To compound the effects of chemotherapy, numerous studies have also shown that chemotherapy negatively affects skeletal muscle mass in cancer patients. Although chemotherapy is associated with weight gain among breast cancer patients, chemotherapy-induced weight gain tends to occur in the absence of gains in muscle mass or in the presence of muscle loss and can lead to the development of sarcopenic obesity.

Importantly, the summation of these insults decreases cardiopulmonary reserve and increases the susceptibility of female breast cancer patients to late-occurring adverse cardiovascular effects and premature mortality. This phenomenon has been labeled the "multiple hit hypothesis" by Jones et al. In keeping with this hypothesis, women with breast cancer in the current review at 50 years of age had a similar CRF to sedentary, 60-year-old women without a history of breast cancer (Figure 2). This finding points to an accelerated aging process among female breast cancer patients that can negatively affect CRF and potentially prognosis.

Recent evidence suggests that exercise training is an effective intervention to improve CRF as well as quality of life,
Cardiorespiratory Fitness in Breast Cancer Peel et al

DOI: 10.1161/JAHA.113.000432

Acknowledgments
Dr Lakoski is supported in part by the National Institute of General Medical Sciences/National Institutes of Health (P20GM103644-01A1).

Disclosure
None.

References
1. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19:1893–1907.
2. McNeely ML, Campbell KL, Rowe BH, Klassen TP, Mackey JR, Courneya KS. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. Can Med Assoc J. 2006;175:34–41.
3. Taylor DL, Nichols JF, Pakiz B, Bardwell WA, Flatt SW, Rock CL. Relationships between cardiorespiratory fitness, physical activity, and psychosocial variables in overweight and obese breast cancer survivors. Int J Behav Med. 2010;17:264–270.
4. Siegel R, Desantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Leach L, Leith C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62:220–241.
5. Jones LW, Haykowsky M, Pitskus EN, Jendzjowski NG, Tomczak CR, Haennel RG, Mackey JR. Cardiovascular reserve and risk profile of postmenopausal women after chemoendocrine therapy for hormone receptor-positive operable breast cancer. Oncologist. 2007;12:1166–1164.
6. Jones LW, Haykowsky M, Peddle CJ, Joy AA, Pitskus EN, Thachuck LM, Courneya KS, Slamon DJ, Mackey JR. Cardiovascular risk profile of patients with HER2/neu-positive breast cancer treated with anthracycline-taxane-containing adjuvant chemotherapy and/or trastuzumab. Cancer Epidemiol Biomarkers Prev. 2007;16:1026–1031.
7. Patnaik JL, Byers T, DiGuiseppe G, Dabelea D, Denberg TD. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study. Breast Cancer Res. 2011;13:1–9.
8. Shan K, Lincoff AM, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med. 1996;125:47–58.
9. Van Hoff DD, Rozenwieg M, Layard M. Daunomycin-induced cardiotoxicity in children and adults: report of 110 cases. Ann Med. 1977;69:239–238.
10. Cuzick J, Stewart H, Ruxitqvist L, Hughton J, Edwards R, Redmond C, Peto R, Baum M, Fisher B, Host H. Cause specific mortality in long term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 1994;12:447–453.
11. Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC. Cardiotoxicity of cancer therapy. J Clin Oncol. 2005;23:7685–7696.
12. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inman B, Madrenes M, Wang L, Nitz U, Uwate H, Thomsen C, Lohrsh C, Suter TM, Ruschhoff J, Suto T, Greaves V, Ward C, Straehle C, McFadden E, Dolci MS, Gelber RD. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–1672.
13. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martin BU, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fisher B, Host H, Tek evaluators. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2012.
14. Wasserman K, Hansen JE, Sue D, Stringer WW, Sietsma KE, Sun XG, Whipp B. Chapter 5: Principles of Exercise Testing and Interpretation. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2012.
15. Weismann IM, Zeballo RJ. An integrated approach to the interpretation of cardiopulmonary exercise testing. Clin Chest Med. 1994;15:412–445.
16. Dolan LB, Kelman K, Courneya KS, Mackey JR, Segal RJ, Lane K, Reid RD, McKenzie DC. Hemoglobin and aerobic fitness changes with supervised exercise training in breast cancer patients receiving chemotherapy. Cancer Epidemiol Biomarkers Prev. 2010;19:2826–2832.

physical functioning/strength, and symptoms of fatigue in breast cancer patients.2 These findings are supported in several of the studies presented in this review. For example, Courneya et al39 reported a 14.5% increase in VO2max after 15 weeks of aerobic exercise training at an intensity of 70% to 75% of maximal oxygen consumption. Daley et al24 also demonstrated significant increases in VO2max with both light (<40% of maximum heart rate) and moderate (65% to 85% of maximum heart rate) intensity exercise training for 8 weeks. Scott et al28 showed a 32% increase in VO2max after a 24-week lifestyle intervention combining exercise and a hypocaloric healthy eating program. Exercise interventions that resulted in significant improvements in VO2max varied widely, ranging from home-based10 and telephone-based13 interventions to individual20,41 and group23,24,26–28,34,38,39 sessions with certified trainers. Interventions also varied with respect to type of exercise, intensity of exercise, and study length. Further study is needed to understand the propensity of newer exercise strategies as well as combinations of treatments (ie, statins, angiotensin-converting enzyme inhibitors, β-blockers) to protect against cardiotoxicity leading to lower CRF.

We analyzed data presented in 27 selected clinical studies with patient populations ranging from 7 to 257 women. Although we were able to draw several conclusions about CRF in breast cancer patients based on these studies, further work is required to assess CRF in ethnically diverse populations at multiple different time points in breast cancer treatment. Importantly, the timing of these decrements and potential recovery can be determined with prospective studies evaluating sequential changes in CRF across patient populations receiving adjuvant therapy regimens.46 For exercise training interventions to maximally decrease cardiovascular risk in the breast cancer population, interventions should be used before, during, and after treatment, as well as specifically at the time of greatest CRF decline. Other therapeutic modalities, such as statin therapy, angiotensin-converting enzyme inhibitors, and β-blockers, should also be considered in the setting of cardiac dysfunction.

In summary, breast cancer patients are subjected to sequential cardiovascular insults throughout their treatment regimens that decrease their CRF and increase their susceptibility to premature cardiovascular mortality compared with the general population.17,49 CRF has been shown to be a strong predictor of the adverse health outcomes that can result from breast cancer treatment regimens. Normative VO2max data for this patient population will allow healthcare providers to predict which patients are at particular risk for late-occurring cardiotoxicity that may be amenable to exercise interventions. This is of key importance given that exercise training can ameliorate impairments in VO2max and may thereby have the potential to enhance prognosis in breast cancer patients and in other cancer patients as well.2,68
Cardiorespiratory Fitness in Breast Cancer

M. J. Collins, J. A. Simon, C. A. Brown, M. E. H. Hambly, J. E. II, D. Douglas PS, Haykowsky M.

Cardiorespiratory function and age-related decline across the breast cancer survivorship continuum. J Clin Oncol. 2013;30:2530–2537.

Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, Franklin BA, Guralt M, Lavie CJ, Myers J, Patel MJ, Piha IL, Weintraub WS, Williams MA. The importance of cardiorespiratory fitness in the United States: the need for a national registry. A policy statement from the American Heart Association. Circulation. 2013;127:652–662.

Jones LW, Hornsby WE, Goetzingar A, Forbes LM, Sherrard EL, Quist M, Lane AT, West M, Eves ND, Gradison M, Acoan, Hammad JE, Abetennet AP. Prognostic significance of functional capacity and exercise behavior in patients with metastatic non-small cell lung cancer. Lung Cancer. 2012;76:248–252.

Schneider CM, Hsieh CC, Sprod LK, Carter SD, Hayward R. Effects of supervised exercise training on cardiopulmonary function and fatigue in breast cancer survivors during and after treatment. Cancer. 2007;110:98–125.

Fitzgerald MD, Tanaka H, Tran ZV, Seals DR. Age-related declines in maximal aerobic capacity in regularly exercising vs sedentary women: a meta-analysis. J Appl Physiol. 1997;83:160–165.

Holmes DA, Buhr KA. Error propagation in calculated ratios. Math. 2007;40:1721.

Scott E, Daley AJ, Doll H, Woodroffe N, Coleman RE, Mutrie N, Cranck H, Powers HJ, Saxon JM. Effects of an exercise and hypocarolic healthy eating program on biomarkers associated with long-term prognosis after early-stage breast cancer: a randomized controlled trial. Cancer Causes Control. 2013;24:181–191.

Turner J, Hayes S, Reul-Hirche H. Improving the physical status and quality of life of women treated for breast cancer: a pilot study of a structured exercise intervention. J Surg Oncol. 2004;84:141–146.

Vincent F, Labourey JL, Leobon S, Antonini MT, Lavau-Denes S, Tubiana-Mauri C. Effects of a short-term differently dosed aerobic exercise on maximum aerobic capacity in breast cancer survivors: a pilot study. Vojnosan. Pregl. 2012;69:237–242.

Harrero F, San Juan AF, Fleck SJ, Baumer J, Perez M, Carhete S, Ernst CP, Foster C, Lucia C. Combined aerobic and resistance training in breast cancer survivors: a randomized, controlled pilot trial. Int J Sports Med. 2006;27:573–580.

Harrero F, San Juan AF, Fleck SJ, Foster C, Lucia A. Effects of detraining on the functional capacity of previously trained breast cancer survivors. Int J Sports Med. 2007;28:257–264.

Rahnama N, Nouri R, Rahminnainha F, Damirchi A, Emami H. The effects of exercise training on maximum aerobic capacity, resting heart rate, blood pressure, and anthropometric variables of postmenopausal women with breast cancer. J Res Med Sci. 2010;15:78–83.

Scott E, Daley AJ, Doll H, Woodroffe N, Coleman RE, Mutrie N, Cranck H, Powers HJ, Saxon JM. Effects of an exercise and hypocarolic healthy eating program on biomarkers associated with long-term prognosis after early-stage breast cancer: a randomized controlled trial. Cancer Causes Control. 2013;24:181–191.

Borenstein M, Higgins JPT. Meta-analysis and subgroups. Int J Sports Med. 2007;28:257–264.

Lakoski SG, Barlow CE, Koelwyn GJ, Hornsby WE, Hernandez J, Defina LF, Radford NB, Thomas SM, Hammad JE, II, Pepper CP, Jones LW. The influence of adjuvant therapy on cardiorespiratory fitness in early-stage breast cancer seven years after diagnosis: the Cooper Center Longitudinal Study. Breast Cancer Res Treat. 2013;183:909–916.

Franklin BA, Gulati M, Lavie CJ, Myers J, Patel MJ, Picciano ME. Physical activity and clinical outcomes among breast cancer survivors: results of a randomized controlled trial. J Am Heart Assoc. 2012;1:6–15.

Jones LW, Haykowsky MJ, Swartz JJ, Douglas PS, Mackey Jr, Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol. 2007;50:1435–1441.

Carvalho FS, Beurigo A, Garcia R, Moreno A, Carvalho RA, Oliveira PJ, Doxorubicin-induced cardiotoxicity: from bioenergetic failure to cell death and cardiomyopathy. Med Res Rev. 2014;134:106–135.

Kemk M, Thackeray JT, Thorn SL, Dhami K, Chow BJ, Ascah KJ, DaSilva J, Beanland RS. Alterations of pre- and postsynaptic noradrenergic signaling in a rat model of adriamycin-induced cardiotoxicity. J Nucl Cardiol. 2010;17:254–263.

Nouinai T, Vanninen E, Juntunen E, Remes J, Ritanens E, Kukkaenehao O, Hartikainen J. Neuroendocrine changes during the evolution of doxorubicin-induced left ventricular dysfunction in adult lymphoma patients. Clin Sci. 2001;100:61–67.

Marks LB, Yu X, Prosnitz RG, Zhou S, Hardenbergh PH, Blazing M, Hollis D, Lind P, Tisch A, Wong TZ, Borges-Neto S. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005;63:214–223.

Billingham ME, Briston MR, Glatstein E, Mason JW, Masek MA, Daniels JR. Adriamycin cardiotoxicity: endomyocardial biopsy evidence of enhancement by irradiation. Am J Surg Pathol. 1977;1:17–23.

Farolfi A, Melegari E, Aquilina M, Scarpi E, Ibrahim T, Maltoni R, Sarti S, Cicconeottis P, Pietri E, Ferrario C, Fedeli A, Faedi M, Nappi O, Frassineti GL, Amadori D, Rocco A. Trastuzumab-induced cardiotoxicity in early breast cancer patients: a retrospective study of possible risk and protective factors. Int J Breast Cancer. 2013;9:634–639.

Marks LB, Munley MT, Bentel GC, Zhou S, Hardenbergh PH, Blazing M, Hollis D, Lin P, Tisch A, Wong TZ, Borges-Neto S. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 1997;39:563–570.

Grotto HZ. Anemia of cancer: an overview of mechanisms involved in its pathogenesis. Med Oncol. 2008;25:12–21.

Lakoski SG, Eves ND, Douglas PS, Jones LW. Exercise rehabilitation in patients with cancer. Nat Rev Clin Oncol. 2012;9:288–296.

Beckman JA, Thakore A, Kalinowski BH, Harris JR, Creager MA. Radiation therapy impairs endothelium-dependent vasodilation in humans. J Am Coll Cardiol. 2001;37:761–765.
60. Hydock DS, Lien CY, Schneider CM, Hayward R. Effects of voluntary wheel running on cardiac function and myosin heavy chain in chemically gonadectomized rats. *Am J Physiol Heart Circ Physiol*. 2007;293:254–264.

61. van Norren K, van Helvoort A, Arglès JM, van Tuijl S, Arts K, Gorselink M, Laviano A, Kegler D, Haagsman HP, van der Beek EM. Direct effects of doxorubicin on skeletal muscle function contribute to fatigue. *Br Cancer J*. 2009;100:311–314.

62. Aslani A, Smith RC, Allen BJ, Levi JA. Changes in body composition during adjuvant therapy for breast cancer. *Appl Radiat Isot*. 1998;49:637–638.

63. Aslani A, Smith RC, Allen BJ, Pavlakis N, Levi JA. Changes in body composition during breast cancer chemotherapy with the CMF regimen. *Breast Cancer Res Treat*. 1999;57:285–290.

64. Cheney CL, Mahloch J, Freeny P. Computerized tomography assessment of women with weight changes associated with adjuvant treatment for breast cancer. *Am J Clin Nutr*. 1997;66:141–146.

65. Demark-Wahnefried W, Hars V, Conaway MR, Havlin K, Rimer BK, McElveen G, Winer EP. Reduced rates of metabolism and decreased physical activity in breast cancer patients receiving adjuvant therapy. *Am J Clin Nutr*. 1997;65:1495–1501.

66. Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK, Blackwell K, Rimer BK. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. *J Clin Oncol*. 2001;19:2381–2389.

67. Kutynek CL, McCargar L, Barr SI, Hislop TG. Energy balance in women with breast cancer during adjuvant chemotherapy. *J Am Diet Assoc*. 1999;99:1222–1227.

68. Fairey AS, Courneya KS, Field CJ, Bell BJ, Jones LW, Martin BS, Mackey JR. Effect of exercise training on C-reactive protein in postmenopausal breast cancer survivors: a randomized controlled trial. *Brain Behav Immun*. 2005;19:381–388.