Genetic associations with 25-hydroxyvitamin D deficiency in HIV-1-infected youth: fine-mapping for the GC/DBP gene that encodes the vitamin D-binding protein

Travis R. Porter1, Xuelin Li2, Charles B. Stephens3, Kathleen Mulligan4, Brandy Rutledge5, Patricia M. Flynn5, Jorge Lujan-Zilbermann1, Rohan Hazra5, Craig M. Wilson1, Peter L. Havens8,9, Jiaming Tang1,2* and for the Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) 063 study team

1 Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
2 Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
3 Western Human Nutrition Research Center, U.S. Department of Agriculture-Agricultural Research Service, Davis, CA, USA
4 Division of Endocrinology, University of California at San Francisco, San Francisco, CA, USA
5 Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
6 Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
7 Division of Pediatric Infectious Diseases, University of Southern California School of Medicine, Los Angeles, CA, USA
8 Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
9 Children’s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA

INTRODUCTION

The vitamin D pathway has a wide range of pathophysiological implications, with documented roles in bone metabolism, renal function, cardiovascular disease, and immune responses (Chocano-Bedoya and Ronnberg, 2009; Razzaque, 2009). In the U.S. general population, suboptimal serum 25-hydroxyvitamin D [25(OH)D] concentration (<20 ng/ml) is highly prevalent in youth living with human immunodeficiency virus type 1 (YIH). Based on evidence from multiple genome-wide association studies, we hypothesized that genetic factors associated with 25(OH)D deficiency should be readily detectable in YIH even when controlling for other known factors, including use of the antiretroviral drug efavirenz (EFV). Genotyping by bi-directional sequencing targeted 15 single nucleotide polymorphisms (SNPs) at the GC/DBP locus, with a focus on coding and regulatory variants, as well as those repeatedly reported in the literature. Three intronic SNPs (rs222016, rs222020, and rs222029) in a conserved haplotype block had unequivocal association signals (false discovery rate ≤ 0.006). In particular, the minor allele G for rs222020 was highly unfavorable among 192 YIH (99 African-Americans and 93 others), as gauged by relatively low likelihood for 25(OH)D sufficiency at enrolment (odds ratio = 0.31, \(p = 9.0 \times 10^{-14} \)). In a reduced multivariable model, race, season, latitude, body mass index, exposure to EFV, and rs222020-G were independent factors that collectively accounted for 38% of variance in the log10-transformed 25(OH)D concentration (\(p < 0.0001 \)). Interaction terms were evident for rs222020-G x season (\(p < 0.001 \)), latitude x season (especially fall and winter; \(p < 0.01 \)), and race x EFV use (\(p = 0.024 \)). Overall, variance in serum 25(OH)D is substantially attributable to multiple factors, but the exact contribution of genetic and non-genetic factors can be obscured by partial overlaps and frequent interactions.

Keywords: antiretroviral, genetics, HIV-1, race, youth, vitamin D

Suboptimal serum 25(OH)D is seen in 54% of youth living with human immunodeficiency virus type 1 (HIV) infection (YLH; Havens et al., 2012a,b). The problem with 25(OH)D insufficiency (<20 ng/ml) or deficiency (<12 ng/ml) can be exacerbated by long-term use of antiretroviral drugs, especially efavirenz (EFV) that is known to interfere with 25(OH)D metabolism (Childs et al., 2012; Panayiotopoulos et al., 2013). Longitudinal data from YIH with and without vitamin D supplementation can provide an important platform for dissecting multifactorial influences on the vitamin D pathway, including pre-vitamin D transport mediated by the vitamin D-binding protein (VDBP; Schlingmann et al., 2011).

“fgene-04-00234” — 2013/11/12 — 19:49 — page 1 — #1
The GC/DBP gene\(^1\) encoding VDRP is mapped to chromosome 4q12-q13, with hundreds of known single nucleotide polymorphisms (SNPs). When 25(OH)D concentration is analyzed as a trait for vitamin D status, both genome-wide association studies (Wang et al., 2010) and candidate gene approaches (Bu et al., 2010) have consistently pointed to the potential importance of GC SNP variants. In an attempt to confirm the GC genotypes associated with 25(OH)D deficiency, our work here provides further evidence to justify fine-mapping for the GC locus in YLH populations.

MATERIALS AND METHODS

STUDY POPULATION

YLH (18–25 years old) represented two self-identified racial groups (African-American (AAs) and others) participating in a randomized, double-blind, placebo-controlled, multicenter trial (NCT00490412) within the Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN; Havens et al., 2012a,b). The research protocols, including procedures for written informed consent, were approved by the Institutional Review Board (IRB) at 16 ATN clinics and 19 International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) sites in the United States and Puerto Rico. Ancillary studies summarized here were further approved by the IRB at University of Alabama at Birmingham (UAB).

INTERVENTION AND OUTCOME MEASURES

All participants were treated with ≥3 antiretrovirals (ARVs) for ≥90 days and with plasma HIV-1 RNA (viral load) <5,000 copies/mL within 60 days. After screening, subjects free of renal disease, pregnancy, and medicines that may affect bone mineral density, interfere with vitamin D absorption, or cause renal toxicity were enrolled into two relatively equal groups based on their ARV regimens (with or without tenofovir disoproxil fumarate, TDF). Within each group, eligible participants were randomized to receive vitamin D supplementation or placebo every 4 weeks for three doses. Serum 25(OH)D concentration was measured at baseline (week 0) and at study week 12 as the primary outcomes for analyses here.

CANDIDATE LOCI AND GENOTYPING

Earlier reports on phenotypes related to vitamin D (Bu et al., 2010; Wang et al., 2010; Levin et al., 2012), including bone mineral density and fracture (Cho et al., 2009; Richards et al., 2009; Rivaudeau et al., 2009), have revealed various loci with modest associations (as judged by effect sizes instead of \(p\) values). For this study, SNP selection focused on the most promising GC/DBP locus that encodes vitamin D-binding protein. SNPs reported repeatedly in the literature were considered first, followed by flanking SNPs (to facilitate analysis of linkage disequilibrium, LD) and SNPs found in coding and regulatory sequences. Using DNA extracted from Isolohlc buccal swabs (Cell Projects Ltd., Kent, UK), all SNP genotypes were resolved by bi-directional DNA sequencing using the gold-standard Sanger chemistry (Polymer
dna Technologies, Inc., Alameda, CA, USA). For SNPs with minor allele frequencies (MAF) exceeding 0.05, the pairwise LD patterns were tested using the HaploView program (Barrett et al., 2005).

STATISTICAL ANALYSES

The study population was first grouped by race (AAs vs. others) for comparison of baseline (week 0) characteristics, with Wilcoxon test, Student t-test, and Chi-squared test applied to appropriate measurements. Subsequent analyses focused on three specific aims: Aim 1 was to demonstrate that serum 25(OH)D concentration is a relatively stable phenotype in YLH. Measurements at baseline and at week 12 were compared in participants in the placebo group (who did not receive vitamin D supplementation), using Spearman method (rho) and Pearson’s correlation coefficient (\(r\); before and after \(\log_{10}\)-transformation) “normalization,” respectively. Aim 2 was to identify individual SNP genotypes associated with three clinically relevant 25(OH)D categories at baseline: <12 ng/ml (deficiency), ≥12–<20 ng/ml (insufficiency) and ≥20 ng/ml (sufficiency), using the ordinal logistic regression models adjusted for non-genetic factors (age, sex, and race). All relationships with statistical significance (\(p < 0.05\)) and low false discovery rate (FDR; \(q < 0.05\)) were included in multivariable models. Aim 3 was to quantify multifactorial influences on serum 25(OH)D, when \(\log_{10}\)-transformed serum 25(OH)D was analyzed as a continuous outcome in generalized linear models (GLMs). The summary statistics focused on relative effect sizes (regression beta and \(R^2\) values) attributable to genetic factors (SNP genotypes), demographic features (age, sex, and race), body mass index (BMI), environmental factors (season and latitude), and exposure to EFV. Similar approaches have been applied earlier to analyses of quantitative traits related to HIV infection (Yue et al., 2013). Whenever possible, secondary (exploratory) models were evaluated for AAs and other races separately.

RESULTS

CHARACTERISTICS OF STUDY POPULATION BY RACE

A total of 192 YLH subjects had sufficient data for analyses, with relative equal representation of AAs (\(n = 99\)) and others (\(n = 93\); Table 1). At baseline (week 0), these groups were similar (\(p > 0.20\)) in terms of age, female to male sex ratio (0.62 vs. 0.58), latitude of residency, enrollment seasons, randomization to vitamin D supplementation (49.5 vs. 52.3%), exposure to EFV (45.5 vs. 37.6%), and CD4\(^+\) T-cell (CD4) count (505 ± 149 vs. 550 ± 224 cells/μl of blood). In addition, similar proportions of AAs (13.9%) and others (17.5%) had severe immunodeficiency at baseline (CD4 count <350 cells/μl). On the other hand, AAs differed from others in serum 25(OH)D concentrations both at baseline (\(p < 0.0001\)) and at week 12 (\(p < 0.01\)).

STABILITY OF SERUM 25(OH)D CONCENTRATION OVER A 12-WEEK PERIOD

In a subset of subjects (46 AAs and 42 others) who were randomized to the placebo group, \(\log_{10}\)-transformed 25(OH)D concentrations were moderately stable between the two visits regardless of race (Figure 1), with Pearson \(r\) values ranging from 0.73 in AAs (\(p = 0.0001\)) to 0.77 in others (\(p < 0.0001\); \(p > 0.50\) between the two \(r\) values). Statistical adjustments for other factors...
Table 1 | Main characteristics of the study population, after stratification by race/ethnicity.

Characteristics	AAs (n = 99)	Others (n = 93)	P*
Enrollment season: n (%)			
Winter	23 (23.2)	18 (19.4)	
Spring	30 (30.3)	32 (34.4)	
Summer	24 (24.3)	23 (24.7)	
Fall	22 (22.2)	20 (21.5)	
Age (years): mean ± SD	20.8 ± 2.0	20.9 ± 2.0	
BMI (kg/m²): mean ± SD	26.3 ± 7.7	24.6 ± 5.5	0.058
Sex ratio (F/M)	0.62 (38/61)	0.58 (34/59)	
Latitude: n (%) ≤ 35°	30 (30.3)	41 (44.1)	
> 35° and ≤ 40°	26 (26.3)	38 (40.8)	
> 40°	43 (43.4)	38 (40.9)	
25(OH)D (ng/ml): median (IQR)	14.7 (10.0 – 21.0)	23.9 (17.4 – 29.9)	<0.0001f
log10 25(OH)D: mean ± SD	1.17 ± 0.23	1.37 ± 0.19	<0.0001
25(OH)D < 20 ng/ml: n (%)	71 (71.7)	32 (34.4)	<0.0001
Vitamin D supplementation (50,000 U/month)	49 (49.5)	49 (52.7)	
Exposure to EFV: n (%)	45 (45.5)	35 (37.6)	
CD4 count (cells/μl): mean ± SDb	505 ± 149	590 ± 224	
CD4 < 350 cells/μl: n (%)	7 (7.1)	10 (17.5)	
At week 12			
25(OH)D (ng/ml): median (IQR)	24.3 (15.2 – 30.7)	273 (22.2 – 36.3)	0.005f
log10 25(OH)D: mean ± SD	1.34 ± 0.26	1.46 ± 0.19	0.0006
25(OH)D < 20 ng/ml: n (%)	33 (35.9)	17 (18.7)	0.009
CD4 count (cells/μl): mean ± SDb	521 ± 161	617 ± 280	0.051
CD4 < 350 cells/μl: n (%)	5 (5.1)	6 (11.2)	
Stability of 25(OH)D: rho (p)	0.69 (-0.0001)	0.63 (-0.0001)	
Stability of log10 25(OH)D: rho (p)	0.73 (-0.0001)	0.77 (-0.0001)	

* AAs, African–Americans; BMI, body mass index; F, female; M, male; 25(OH)D, serum 25-hydroxyvitamin D concentration; IQR, interquartile range; SD, standard deviation of the mean; EFV, efavirenz; CD4 count, CD4+ T-cell count in peripheral blood.

b Partial data for 54 AAs and 57 others at week 0.

b Restricted to the subset of subjects (46 AAs and 42 others) randomized to the placebo group. Six subjects (four AAs and two others) are excluded because of missing data at week 12.

c All p values > 0.20 are omitted (–).

f By Wilcoxon test; all other comparisons are done with t-test and Chi-squared test.

slightly improved the r values. For example, when season was treated as a covariate, the adjusted r value became 0.74 in AAs (p < 0.0001) and 0.83 in others (p = 0.322 between the two adjusted r values). For 25(OH)D concentrations without log10-transformation, rank correlation between visits (Spearman rho values) ranged from 0.69 in AAs (p < 0.0001) to 0.65 in others (p = 0.0001; p > 0.50 between the two rho values).

SCREENING FOR INFORMATIVE GC SNPs

DNA sequencing based on 91 samples with most DNA (47 AAs and 44 others) identified 15 informative SNPs with MAF ≥ 0.05 in the overall study population (Table 2). All but one SNP (rs114282916) showed differential distribution between the two racial groups (AAs and others). Most SNPs had weak pairwise LD in both racial groups, but three intronic SNPs (rs222016, rs222020, and rs222029) were within a conserved haplotype block (Figure 2). Additional SNPs dismissed based on rarity of minor alleles (singleton to MAF < 0.05) included rs5916, rs377535, rs80324156, rs114737000, rs6843222, and 10 polymorphisms not captured in the dbSNP database (last accessed in April 2013).

In univariable models testing three clinically relevant 25(OH)D levels at baseline: <12 ng/ml (deficiency), ≥12 to <20 ng/ml
Porter et al. GC genotypes and vitamin D deficiency in youth

FIGURE 1 | Stability of serum 25-hydroxyvitamin D [25(OH)D] concentration (ng/ml) in 88 HIV-1-infected youth who did not receive randomized vitamin D supplementation over a 12-week period. Measurements at baseline (week 0) and at study week 12 are shown for 46 African–Americans (AAs) and 42 non-AA subjects (others). The predicted slope and its 95% confidence intervals in each subgroup are represented by solid and dotted lines, respectively. Six subjects (four AAs and two others) with missing data at week 12 are excluded.

UNIVARIABLE AND MULTIVARIABLE MODELS FOR TWO GC SNPs (rs222020 and rs7041) IN THE ENTIRE COHORT
Both rs7041-G and rs222020-G were associated with baseline serum 25(OH)D categories in univariable models (pOR = 2.32 and 0.31, p = 0.008 and 9.0 x 10^-4, respectively). After statistical adjustment for demographic features (sex, age, and race) and exposure to EFV, rs7041 allele G was no longer a predictor (adjusted pOR = 1.08 and p = 0.827), while rs222020 allele G remained predictive of serum 25(OH)D categories (pOR = 0.45 and p = 0.014). However, further adjustments for BMI and environmental factors (latitude and enrollment season) diminished the association of rs222020-G (adjusted p = 0.069; Table 4). The strong independent predictors included race (p < 0.0001), enrollment season (p < 0.0001), latitude of residence (p < 0.001), BMI (p = 0.002), and use of EFV (p = 0.006). Summer had the most dramatic impact on seasonal fluctuation in serum 25(OH)D (pOR = 8.23, p < 0.0001), while fall and spring were also quite favorable against winter (pOR = 4.90 and 3.55, respectively).

Table 2 | Minor allele frequency for 15 GC SNPs resolved by DNA sequencing.

SNP ID	Alleles	Location	Minor allele frequency		
			Overall	African–Americans	Others
rs4588B	C/A	Exon 11	0.177	0.112	0.247
rs7041B	T/G	Exon 11	0.310	0.143	0.489
rs112205706	G/A	Intron	0.053	0.098	0.011
rs222016	A/G	Intron	0.383	0.565	0.205
rs222020B	A/G	Intron	0.385	0.535	0.226
rs222020I	A/G	Intron	0.325	0.467	0.162
rs2298849	A/G	Intron	0.309	0.391	0.227
rs3733559	G/A	Promoter	0.184	0.255	0.102
rs35096193	G/T	Promoter	0.210	0.087	0.341
rs1565572	G/T	Promoter	0.479	0.282	0.670
rs114262916	C/T	Promoter	0.105	0.117	0.102
rs115617006	T/C	Promoter	0.051	0.107	0
rs7684343	A/T	Promoter	0.053	0.096	0.011
rs113387275	C/T	Promoter	0.163	0.213	0.102
rs80016752	C/T	Promoter	0.053	0.096	0.011

*Sorted by location on chromosome 4q (see Figure 2). Six more known SNPs (rs9016, rs3737553, rs6002341016, rs114737002, rs188432322, and rs712135589) are dismissed for rarity of their minor alleles.

*These SNPs are sequenced for the entire cohort, while others are dropped after the screening phase (based on patterns of linkage disequilibrium and estimates of statistical power).

*Minor and major alleles are switched between the two racial groups.

well (Bu et al., 2010; Xu et al., 2010; Jung et al., 2011; Zhang et al., 2012). Further genotyping in the rest of the study cohort focused on rs7041 (a coding SNP) and rs222020 (an intronic SNP).

Frontiers in Genetics | Pharmacogenetics and Pharmacogenomics November 2013 | Volume 4 | Article 234 | 4
VARIANCE IN log10-TRANSFORMED SERUM 25(OH)D CONCENTRATION EXPLAINED BY GC GENOTYPES AND OTHER PERTINENT FACTORS

At least six factors independently contributed to the variability in log10-transformed serum 25(OH)D concentration (Table 5). When sorted by their relative impact (i.e., beta estimate and semi-partial R^2 value), race (AAs vs. other), and season had the greatest effects (adjusted $p < 0.0001$ and $p < 0.001$, respectively), followed by latitude (in three major grids; $p < 0.001$), BMI ($p = 0.008$), use of EFV ($p = 0.016$), and rs222020-G ($p = 0.023$). Collectively, these factors accounted for 38.0% of variance in the log10-transformed 25(OH)D concentration at baseline ($p < 0.0001$). Other potential factors, including sex, age, and additional GC SNP variants were firmly dismissed (adjusted $p > 0.25$).

Ranking of the six individual (independent) predictors of log10-transformed serum 25(OH)D concentration was often complicated by issues with partial overlap. For example, variance explained by the rs222020-G allele varied substantially (from 2.9 to 10.7%) according to the order in which three partially overlapping factors (race, use of EFV, and rs222020-G) were added to the model. In addition, the variance attributable to rs222020-G differed somewhat between AAs (4.5%, adjusted $p = 0.029$) and others (3.3%, adjusted $p = 0.080$) when conditioned on the effect of EFV (Table 7). In contrast, after accounting for the effect of rs222020-G, the impact of EFV use on 25(OH)D was only apparent in AAs (adjusted $R^2 = 8.8\%$, $p = 0.003$) and not in others (adjusted $R^2 = 0.1\%$, $p = 0.812$; Table 7).

INTERACTION TERMS

Multivariable models further revealed several pairwise interactions, i.e., rs222020-G × season ($p < 0.001$), latitude × season (especially fall and winter; $p < 0.01$), and race × EFV use ($p = 0.024$). Seasonality of the rs222020-G effect on 25(OH)D was apparently restricted to spring, as genotype-specific differences were not detected in other seasons (Figure 3).
At least two racial differences were noted in separate analyses of rs222020-G with 25(OH)D was restricted to AAs (adjusted \(R^2 = 0.812 \)) after accounting for the effect of EFV (\(p = 0.003 \)) and not other subjects (3.3%, adjusted \(p = 0.029 \)) and not other races (3.3%, adjusted \(p = 0.0001 \)).

DISCUSSION

Despite a modest sample size, our analyses here reveal five major findings concerning vitamin D metabolism in youth living with HIV-1 infection. First, serum 25(OH)D concentration is relatively stable over a 12-week period regardless of race. Second, at least one GC SNP variant, the rs222020-G allele, is independently predictive of suboptimal serum 25(OH)D, especially during the spring and summer seasons.

Table 3 | Univariable analyses of seven GC SNPs using baseline (week 0) serum 25(OH)D concentration as three ordinal categories (deficiency, insufficiency, and sufficiency).

GC SNP genotypes	n (AA + other)	pDR	p	FDR
rs7041 (GG + GT vs. TT)	90 (46 + 44)	3.41	0.003	0.010
rs222016A (GG + AG vs. AA)	90 (46 + 44)	0.17	0.0003	0.002
rs222020G (GG + AA vs. AG)	90 (46 + 44)	0.17	0.0002	0.002
rs222029G (GG + AG vs. AA)	90 (46 + 44)	0.24	0.001	0.006
rs35096192 (TT vs. AA)	90 (46 + 44)	2.35	0.047	0.100
rs3688434 (TT + AT vs. AA)	91 (47 + 44)	0.24	0.025	0.060
rs8006172 (TT + TC vs. CC)	91 (47 + 44)	0.24	0.025	0.060

Table 5 | Independent predictors of baseline (week 0) serum 25(OH)D concentration among 192 youth living with HIV-1 infection: alternative analyses after considering environmental factors.

GC variant and demographic features	Relative impact* on log_{10} 25(OH)D (multivariable model)		
	\(\Delta \) (Mean ± SE)	\(R^2 \)	\(p \)
rs222020G*	-0.07 ± 0.03	0.018	0.233
Being African-American	-0.15 ± 0.03	0.089	<0.0001
Use of efavirenz (EFV)	0.07 ± 0.03	0.020	0.016
BMI (per unit change)*	-0.01 ± 0.00	0.025	0.008
Latitude*	-0.06 ± 0.02	0.045	<0.001
Season*	NA	0.073	<0.001
Spring vs. winter	0.12 ± 0.04	NA	0.003
Summer vs. winter	0.19 ± 0.04	NA	<0.0001
Fall vs. winter	0.13 ± 0.04	NA	0.002

*The AA genotype is treated as the referent for rs222020 allele G.

**As defined in Table 1.

1. For each individual factor, the independent (adjusted) effect size is measured first by the difference (\(\Delta \)) in serum log_{10} 25(OH)D and then by the IP value (all are underestimated because of partial overlap). For the overall model, \(R^2 = 0.380 \) (\(p < 0.0001 \)).
Third, use of EFV is associated with low serum 25(OH)D in the combined cohort based on univariable models, but the EFV effect is restricted to AAs when the rs222020-G allele is added to multivariable models. Fourth, the exact contribution of genetic effect is restricted to AAs when the rs222020-G allele is added to multivariable models, but the EFV season. Third, use of EFV is associated with low serum 25(OH)D concentration, especially since its biological relevance is so obvious for all factors) and then by the \(R^2 \) values.

As a main focus of this study, the GC gene\(^2\) consists of 13 exons and has hundreds of known SNPs, but neither genome-wide association studies nor candidate gene approaches reported in the literature have covered this locus sufficiently enough to allow fine-mapping. To avoid heavy penalty for multiple testing, the exact contribution of genetic and non-genetic factors (latitude, season, BMI, and race) can be obscured by partial overlaps and frequent interactions. Fifth, and non-genetic factors (latitude, season, BMI, and race) can serve as a useful biomarker for disparity in serum 25(OH)D concentration. The log\(_{10}\)-transformed 25(OH)D ng/ml values in 192 HIV-1-infected youth are plotted according to the "enrollment season" and three genotypes defined by the GC SNP rs222020 (major allele A and minor allele G).

Table 7 | Examples of racial differences in genetic association with serum 25(OH)D concentration.

GC variant and two other factors	Relative impact\(^1\) on log\(_{10}\) 25(OH)D (multivariable model)	\(\Delta \) (Mean ± SE)	\(R^2 \)	\(P \)
Overall cohort (\(N = 192 \))	rs222020-G\(^a\)	–0.09 ± 0.03	0.033	0.004
Being African–American	–0.17 ± 0.03	0.113	2.9 × 10\(^{-5}\)	
Use of efavirenz (EFV)	–0.07 ± 0.03	0.021	0.024	
African–Americans only (\(n = 99 \))	rs222020-G\(^a\)	–0.12 ± 0.05	0.045	0.029
Use of efavirenz (EFV)\(^b\)	–0.14 ± 0.04	0.088	0.003	
Others only (\(n = 93 \))	rs222020-G\(^a\)	–0.07 ± 0.04	0.035	0.071

\(^{a}\) Homozygosity with the major allele A serves as the referent for rs222020.

\(^{b}\) Rho is a statistically significant factor in the model for other races adjusted \(R^2 = 0.001, p = 0.812 \).

\(^{1}\) For each factor shown in individual models, the independent effect size is measured first by the difference (\(\Delta \) in serum log\(_{10}\) 25(OH)D (the reference group is negative for all factors) and then by the \(R^2 \) values.

\(\chi^2 \)-test, assuming a dominant effect of allele G (see Table 6 for full analyses of interactions between rs222020-G and enrollment season).

![Graph showing season-dependent association of GC genotypes with serum 25-hydroxyvitamin D [25(OH)D] concentration.](image)

FIGURE 3 | Season-dependent association of GC genotypes with serum 25-hydroxyvitamin D [25(OH)D] concentration. The log\(_{10}\)-transformed 25(OH)D ng/ml values in 192 HIV-1-infected youth are plotted according to four enrollment seasons and three genotypes defined by the GC SNP rs222020 (major allele A and minor allele G). For each season, the horizontal bars connected by a vertical line correspond to the mean ± standard deviation (SD). The nominal \(p \) values are based on Student’s \(t \)-test, assuming a dominant effect of allele G (see Table 6 for full analyses of interactions between rs222020-G and enrollment season).

Table 8 | Examples of racial differences in genetic association with serum 25(OH)D concentration.

GC variant and two other factors	Relative impact\(^1\) on log\(_{10}\) 25(OH)D (multivariable model)	\(\Delta \) (Mean ± SE)	\(R^2 \)	\(P \)
Overall cohort (\(N = 192 \))	rs222020-G\(^a\)	–0.09 ± 0.03	0.033	0.004
Being African–American	–0.17 ± 0.03	0.113	2.9 × 10\(^{-5}\)	
Use of efavirenz (EFV)	–0.07 ± 0.03	0.021	0.024	
African–Americans only (\(n = 99 \))	rs222020-G\(^a\)	–0.12 ± 0.05	0.045	0.029
Use of efavirenz (EFV)\(^b\)	–0.14 ± 0.04	0.088	0.003	
Others only (\(n = 93 \))	rs222020-G\(^a\)	–0.07 ± 0.04	0.035	0.071

\(^{a}\) Homozygosity with the major allele A serves as the referent for rs222020.

\(^{b}\) Rho is a statistically significant factor in the model for other races adjusted \(R^2 = 0.001, p = 0.812 \).

\(^{1}\) For each factor shown in individual models, the independent effect size is measured first by the difference (\(\Delta \) in serum log\(_{10}\) 25(OH)D (the reference group is negative for all factors) and then by the \(R^2 \) values.

1. http://www.ncbi.nlm.nih.gov/gene/2638

2. Porter et al. GC genotypes and vitamin D deficiency in youth

(Dunham et al., 2012; Horrow et al., 2012; Rosenbloom et al., 2012; Wang et al., 2013).

Two other prominent GC SNPs, rs7041, and rs4588, do cause amino acid substitutions at codon 416 (DVE) and codon 420 (T/K), respectively, in exon 11. Three haplotypes involving these non-synonymous SNPs correspond to different protein isoforms known as GC1F, GC1S, and GC2. Earlier studies have demonstrated the potential importance of rs7041 variants alone (Wood et al., 2011) or in conjunction with rs4588 variants (Fang et al., 2009). Although rs7041-G appeared to be highly favorable in our initial screening (univariable models only), it was subsequently dismissed by multivariable models in which race and other prominent factors were treated as covariates. The distribution of rs7041-G differs between AAs (low) and other races (high; Table 2), so definitive analyses may require a third population with intermediate allele frequency. Nonetheless, rs7041-G may serve as a useful biomarker for disparity in serum 25(OH)D concentration, especially since its biological relevance is so obvious. Additional GC SNPs of interest, including rs2282679 (Wood et al., 2011) and rs2283679 (Vimalawaran et al., 2013), are not part of our study design. Judging by their reported effect sizes, it is unlikely that inclusion of these SNPs will alter our main conclusions.
Our finding on GC SNP rs222020 here is highly consistent with earlier observations based on two independent Caucasian populations (Bu et al., 2010). The effect size (\(B^2\)) reported for rs222020 ranges from 1% to 4% in Caucasians, which is quite similar to what we can demonstrate for YLH (Table 5). However, by our assessment, the association of rs222020 genotypes with 25(OH)D concentration is heavily dependent on seasonal fluctuation. Studies that evaluate subjects in the spring season alone can lead to over-estimates, while analyses biased for other seasons can easily miss the genetic effect (Table 6, Figure 3). Future studies will clearly need to consider the strong impact of season and latitude on vitamin D metabolism.

Recognition of EVF as another factor that influences vitamin D metabolism is also well expected (Childs et al., 2012; Havens et al., 2012). Over-estimates, while analyses biased for other seasons can easily miss the genetic effect (Table 6, Figure 3). Future studies will clearly need to consider the strong impact of season and latitude on vitamin D metabolism.

Our finding on GC SNP rs222020 is also well expected (Childs et al., 2012; Havens et al., 2012). Of note, the unfavorable impact of EVF was mostly restricted to AAAs. Such racial disparities may reflect the sensitivity or vulnerability of AAs to therapeutic complications when they are already prone to having suboptimal 25(OH)D concentration. Fortunately, response to vitamin D supplementation is not compromised by use of EVF (Havens et al., 2012). Further elucidation of race-specific effects of EVF will need to rely on large cohorts with prospective data.

In summary, our study identified at least six partially overlapping but independent factors that collectively account for 38% of variance in serum 25(OH)D concentration. The complex picture can attest to the need for cautionary interpretation of results from univariable models, as exemplified by analysis of GC SNPs rs7404 and rs222020. Fine-mapping of the GC locus for causal variants is more difficult than expected because (i) rs222020-G and related GC variants are not in clear LD with coding and promoter sequence polymorphisms; (ii) the effects of rs7404-G is clearly confounded by racial background, and (iii) serum 25(OH)D concentration as a quantitative or semi-quantitative trait can fluctuate over time (seasonality). These observations should benefit follow-up studies on GC genotypes and vitamin D metabolism, probably beyond the setting of chronic HIV infection and long-term therapeutic complications.

AUTHOR CONTRIBUTIONS

Charles B. Stephens, Kathleen Malligan, Brandy Rutledge, Patricia M. Flynn, Jorge Lujan-Zibermann, Rohan Hazra, Craig M. Wilson, Peter L. Havens, and Jianming Tang designed the study. Jorge Lujan-Zibermann helped with patient recruitment and enrollment at one of the sites for Adolescent Medicine Trials Network for HIV/AIDS Interventions. Tris V. Porter, Peter L. Havens, and Jianming Tang procured samples and reagents. Tris V. Porter, Xuexin Li, and Jianming Tang managed and analyzed the data. All authors contributed to the writing and proof reading of this manuscript.

ACKNOWLEDGMENTS

This work was the result of collective efforts by the ATN 063 protocol team (Havens et al., 2012a). We thank principal investigators, their staff, as well as participants at all clinical sites for their valuable contribution to various aspects of this study. We also thank Wei Song for interim data analyses. Funding for this study came from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), through grant U51-HD040553 to CMW. The contents in this manuscript are the responsibility of the study authors and do not necessarily reflect the views of NICHD or the United States government.
Porter et al. GC genotypes and vitamin D deficiency in youth

Ramasu, M. S. (2009). The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat. Rev. Endocrinol. 5, 611–619. doi: 10.1038/nrendo.2009.196

Richards, J. B., Karouss, F. K., Rodaunt, F., Styrkarsdottir, U., Estrada, K., Halsdorson, B. V., et al. (2009). Collaborative meta-analytic associations of 150 candidate genes with osteoporosis and osteoporotic fractures. Ann. Intern. Med. 151, 528–537. doi: 10.7326/0003-4819-151-8-200910200-00006

Rudominer, E., Styrkarsdottir, U., Estrada, K., Halsdorson, B. V., Hui, Y. H., Richards, J. B., et al. (2009). Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41, 1199–1206. doi: 10.1038/ng.446

Rowe, C. J. (2011). Clinical practice. Vitamin D insufficiency. N. Engl. J. Med. 364, 248–254. doi: 10.1056/NEJMp1009570

Rosenblom, K. R., Dessureault, T. R., Long, J. C., Mallia, V. S., Sloan, C. A., Raney, B. J., et al. (2012). ENCODE whole-genome data in the UCSC genome browser: update 2012. Nucleic Acids Res. 40, D912–D917. doi: 10.1093/nar/gkr1012

Schlingmann, K. P., Kaufmann, M., Weber, S., Irwin, A., Goos, C., John, U., et al. (2011). Mutations in CYP24A1 and idiopathic infantile hypercalcaemia. N. Engl. J. Med. 365, 410–421. doi: 10.1056/NEJMoa1103864

Vimalawarana, S., Berry, D. I., Liu, C., Tikkonen, E., Pilk, S., Hiraki, L. T., et al. (2013). Causal relationship between obesity and vitamin D status: Bi-directional mendelian randomization analysis of multiple cohorts. PLoS Med. 10:e1001583. doi: 10.1371/journal.pmed.1001583

Wang, J., Zhang, J., Ivey, S., Lim, X. Y., Gevev, M. C., Kim, B. H., et al. (2013). Factobook.org: a Wiki-based database for transcription factor binding data generated by the ENCODE consortium. Nucleic Acids Res. 41, D171–D176. doi: 10.1093/nar/gks1221

Wang, T. J., Zhang, F., Richards, J. B., Kestenbaum, B., Van Meurs, J. B., Berry, D., et al. (2010). Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376, 180–188. doi: 10.1016/S0140-6736(10)60588-0

Wood, A. M., Bassford, C., Webster, D., Neerby, P., Rajiah, P., Steckler, B. A., et al. (2011). Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax 66, 205–210. doi: 10.1136/thoraxjnl-2010-100291

Xu, X. J., Xiong, D. H., Liu, X. G., Guo, Y., Chen, Y., Zhao, J., et al. (2010). Association analyses of vitamin D-binding protein gene with compression strength index variation in Caucasian nuclear families. Osteoporos. Int. 21, 91–98. doi: 10.1007/s00198-009-9920-7

Yue, L., Premiere, H., Arienti, P., Song, W., He, D., Lakh, S., et al. (2013). Cumulative impact of host and viral factors on HIV-1 viral load control during early infection. J. Virol. 87, 708–715. doi: 10.1128/JVI.02118-12

Zhang, Y., Wang, X., Liu, Y., Qu, H., Qu, S., Wang, W., et al. (2012). The GC, CYP2R1 and DHCR7 genes are associated with vitamin D levels in northeastern Han Chinese children. Swiz Med. Wkly. 142, w13630. doi: 10.4414/smw.2012.13630

Zwart, S. R., Hargens, A. R., Lee, S. M., Macin, B. R., Watenpaugh, D. E., Tse, K., et al. (2007). Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins. J. Bone 40, 529–537. doi: 10.1016/j.jbme.2008.09.014

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 03 September 2013; accepted: 22 October 2013; published online: 14 November 2013.

Citation: Porter TR, Li X, Stephenson CB, Mulligan K, Rutledge B, Flynn PM, Lujan-Zilbermann J, Hazra R, Wilson CM, Berry D, for the Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) 063 study team (2013) Genetic associations with 25-hydroxyvitamin D deficiency in HIV-1-infected youth: fine-mapping for the GC/DBP gene that encodes the vitamin D-binding protein. Front. Genet. 4:234. doi: 10.3389/fgene.2013.00234

This article was submitted to Pharmacogenetics and Pharmacogenomics, a section of the journal Frontiers in Genetics. Copyright © 2013 Porter, Li, Stephenson, Mulligan, Rutledge, Flynn, Zilbermann, Hazra, Wilson, Berry, and for the Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) 063 study team. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.