A Review of the Traditional Uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicology of Corydalis yanhusuo

Jingxia Zhang¹,², Surong He¹,², Jing Wang¹, Changli Wang¹,², Jianhua Wu¹, Weifeng Wang³, Fan Li², Shasha Li³, Chongbo Zhao¹,², and Fang Li¹,³

Abstract

Corydalis yanhusuo W. T. Wang (Papaveraceae) is a traditional Chinese herbal medicine that has long been used to treat several conditions and is widely distributed in Asian countries. This review focuses on the traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology of C. yanhusuo. The literature on C. yanhusuo was reviewed using several resources, including classic books on Chinese herbal medicine and scientific databases, namely, PubMed, Springer, Web of Science, Science Direct, and China National Knowledge Infrastructure. Based on information from these databases regarding the chemical components of C. yanhusuo, we evaluated the underlying interaction network between chemical components, biological targets, and associated diseases using Cytoscape software. To date, more than 160 compounds have been isolated and identified from C. yanhusuo, including alkaloids, organic acids, volatile oils, amino acids, nucleosides, alcohols, and sugars. The crude extracts and purified compounds of this plant have analgesic, antiarrhythmic, and antipeptic ulcer properties, along with hypnotic effects. However, studies on the pharmacokinetics of C. yanhusuo extracts remain limited. C. yanhusuo has therapeutic potential in diseases such as cancer and depression, probably due to glaucine and corydaline. Our network pharmacology analysis revealed interactions between 20 compounds, 54 corresponding targets, and 4 health conditions. We found that leonticine, tetrahydroberberine, and corydalmine may regulate the expression of PTGS2, PTGS1, KCNH2, SCN5A, RXRA, CAMKK2, NCOA2, and ESR1, representing a potential treatment strategy against pain, gastric ulcers, inflammation, and cardiac arrhythmias. Additionally, this article discusses the future directions of research on C. yanhusuo.

Keywords

alkaloids, corydalis yanhusuo, pharmacokinetics, pharmacology, phytochemistry, traditional medicine

Received: May 4th, 2020; Accepted: August 13th, 2020.

Corydalis yanhusuo, also known as Yanhusuo or Xuanhu, is a perennial herb widely distributed in China, Japan, Korea, Russia, and other Asian countries.¹,² In China, C. yanhusuo is mainly distributed in the Zhejiang Province. Corydalis yanhusuo has been shown to improve blood circulation, alleviate pain caused by blood stasis, promote movement of Qi, and alleviate Qi stagnation-induced pain.³ Details regarding the pharmacological efficacy of C. yanhusuo are reported in the Chinese Pharmacopoeia (2015 edition). To date, more than 160 compounds have been isolated and identified from C. yanhusuo, including alkaloids, organic acids, volatile oils, amino acids, nucleosides, alcohols, and sugars.¹ This herb is often used to treat symptoms such as the chest, abdominal, and menstrual pain² and has been demonstrated to have several pharmacological effects: antinociceptive, antitumor, antibacterial, anti-inflammatory, and antidepressant effects, among others.⁵,⁶ Herein, we comprehensively reviewed available literature on C. yanhusuo, including its traditional uses and botany, as well as

¹College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
²College of Pharmacy, Engineering Technology Research Center of Shaanxi Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
³Institute of Tradition Chinese Medicine, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi’an, P. R. China

Corresponding Authors:
Chongbo Zhao, College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Avenue, Xianyang 712046, P. R. China.
Email: 218030112382@email.sntcm.edu.cn
Fang Li, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi’an, Shaanxi 710003, P. R. China.
Email: 218030112382@email.sntcm.edu.cn

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
advances in phytochemistry, pharmacology, pharmacokinetics, and toxicology, from Chinese medicine books and scientific databases, namely, PubMed, Science Direct, Web of Science, Springer, Baidu Scholar, Elsevier, and China National Knowledge Infrastructure. Additionally, we present potential research pathways and new perspectives on C. yanhusuo.

Traditional Uses

Corydalis yanhusuo was first reported in Lei Gong Pao Zhi Lun (Northern and Southern Dynasties, 618-907 AD) and has been used as an analgesic agent in traditional Chinese medicine for over 1100 years, primarily for the treatment of chest pain. According to Hai Yao Ben Cao (Tang Dynasty, 907-960 AD), *C. yanhusuo* was used to treat postpartum blood stasis, whereas Yi Xue Qi Yuan (Jin and Yuan Dynasties, 1115-1368 AD) reported the use of this plant to treat spleen and stomach stasis and as an adjuvant to digestion. Ben Cao Gang Mu (Ming Dynasty, 1551-1578 AD) also reported its use in improving blood circulation and Qi, relieving pain, and micturition. In China, Japan, Korea, Russia, and other Asian countries, *C. yanhusuo* has been used to treat Qi stagnation, blood stasis, chest pain, abdominal pain, amenorrhea, dysmenorrhea, and postpartum stasis. Moreover, *C. yanhusuo* is commercially available in the United States as a dietary supplement.

Corydalis yanhusuo has been reported to have various pharmacological effects; over 20 different prescriptions of this plant are listed in the *Chinese Pharmacopeia*, Han Fang Biao Dian, Dong Yi Shi Shou Bao Yuan, Dong Yi Bao Jian, and Zhongyao chengfang zhiji. The forms of these prescriptions include tablets, granules, and powders, among which tablets are the most commonly used form (Table 1). However, owing to the poor analgesic effect of raw *C. yanhusuo*, vinegar-processed products are widely used in the clinical setting. Alkaloids present in the herb are insoluble in water; therefore, they are processed with acetic acid to enhance their activity. Briefly, the rhizoma of *C. yanhusuo* is soaked in vinegar (20 L of vinegar per 100 kg of *C. yanhusuo*), first, sealed infiltration for 30 minutes then 150-160°C temperature and at a frequency of 40 times per minute turn, fried for 6 minutes and then cooled. Vinegar-processed *C. yanhusuo* effectively promotes blood circulation and Qi and relieves pain.

Botany

Corydalis yanhusuo belongs to the genus *Corydalis* of the Papaveraceae family. It is a glabrous perennial herb, approximately 10-20 cm in height, with spherical or oblate spheroid-shaped tubers (0.5-2.5 cm in diameter) and a yellowish interior. Its leaves are either 2-lobed or 3-lobed, with lanceolate segments that are often 2-3 parted, and its racemes contain 5-15 sparse flowers. The sepals are small and caducous with a symmetrical corolla. It has 4 petals, which are either purple or red; the upper part of the outer wheel is the largest, with a length of 1.5-2 cm; its top is dimpled, and its tail extends cylindrically having a length of 1.1-1.3 cm. Male flowers have 6 stamens bundled into 2 filaments, whereas female flowers have an oblate-columnar ovary, a subcircular stigma, and a linear capsule. Flowering occurs during April, while fruiting occurs from May to June (Figure 1).

Corydalis yanhusuo is distributed in China, Japan, Korea, Russia, and other Asian countries, with a wide ecological niche. In China, it is primarily distributed in Anhui, Jiangsu, Zhejiang, Hubei, Henan, and Shaanxi provinces. The Zhejiang province is famous for its high production and quality of *C. yanhusuo*, as it has the largest areas for cultivation.

Phytochemistry

To date, more than 160 constituents of *C. yanhusuo* have been isolated and identified. Alkaloids and terpenoids were identified as the characteristic components of this species. The following section details phytochemical studies conducted on *C. yanhusuo*. The compounds identified from this plant are listed in the relevant tables, and their structures are also presented.

Alkaloids

The earliest known study of *Corydalis* alkaloids was published in 1928. Alkaloids are the primary constituents of *C. yanhusuo*.
Preparation name	Main composition	Traditional and clinical applications
Yuan Hu Zhi Tong Pian	Rhizoma Corydalis, Radix Angelicae dahuricae	Treating stomachache, headache, and dysmenorrhea caused by qi deficiency
Qi Zhi Wei Tong Pian	Radix Bupleuri, Fructus Aurantii, Rhizoma Cyperi	Treating abdominal pain and pelvic inflammation
Fu Le Ke Li	Caulis Lonicerae japonicae, Radix Glycyrrhizae	Treating abdominal pain and pelvic inflammation; treating symptoms caused by qi and blood stagnation
Shen Yang Hong Yao Jiao	Radix and Rhizoma Angelicae Sinensis, Rhizoma Paeoniae rubra	Treating wind dampness caused by blood stasis
Jin Fo Zhi Tong Pills	Radix Paeoniae Alba, Rhizoma Corydalis	Treating abdominal pain, dysmenorrhea, peptic ulcer, and chronic gastritis caused by qi stagnation and blood stasis
Du Sheng Huo Xue Pian	Radix and Rhizoma Caulis Spatholobi	Treating pain caused by qi and blood stagnation
Yang Xue Qing Nao Pills	Radix and Rhizoma Caulis Spatholobi	Treating headache and insomnia
Zhen Xin Tong Kou Fu Ye	Radix Codonopsis, Bulbus Corydalis	Treating chest pain caused by qi and blood stagnation
Xuan Hu Suo San	Rhizoma Achyranthis Bidentatae, Radix Corydalis	Treating abdominal pain caused by qi and blood stagnation
Fu Nv Tong Jing Wan	Rhizoma Corydalis, Feces m, Radix and Rhizoma Trogopterori	Treating abdominal pain caused by qi and blood stagnation
Yan Bing Pian	Rhizoma Achyranthis Bidentatae, Borneolum Syntheticum	Treating coronary heart disease and angina pectoris
Ba Wei Tong Jing Pian	Radix Cyathulae, Radix Paeoniae Alba, Radix Corydalis	Treating pain caused by qi and blood stagnation
Ru Shen Tang	Radix Corydalis, Radix Angelicae Sinensis, Cortex Cyperi, Radix Glycyrrhizae	Treating pain caused by qi and blood stagnation
Fu Yuan Tong Qi San	Fructus Auranti, Radix Paeoniae rubra, Radix Corydalis, Pericarpium Citri Reticulatae	Treating pain caused by qi and blood stagnation
Nang Sinensis, Eupolyphaga	Radix and Rhizoma Caulis Spatholobi	Treating osteoarthritis and joint swelling
Jin Fo Zhi Tong Pills	Radix and Rhizoma Caulis Spatholobi	Treating pain caused by qi and blood stagnation
Gu You Ling Cha Ji	Radix and Rhizoma Caulis Spatholobi, Rhei Radix and Rhizoma, Radix and Rhizoma Caulis Spatholobi	Treating pain caused by qi and blood stagnation
Fu Le Ke Li	Caulis Lonicerae japonicae, Radix Glycyrrhizae	Treating abdominal pain and pelvic inflammation; treating symptoms caused by qi and blood stagnation
Shen Yang Hong Yao Jiao	Radix and Rhizoma Angelicae Sinensis, Radix Paeoniae rubra	Treating wind dampness caused by blood stasis
Jin Fo Zhi Tong Pills	Radix Paeoniae Alba, Radix Corydalis	Treating abdominal pain, dysmenorrhea, peptic ulcer, and chronic gastritis caused by qi stagnation and blood stasis
Du Sheng Huo Xue Pian	Radix and Rhizoma Caulis Spatholobi	Treating pain caused by qi and blood stagnation
Yang Xue Qing Nao Pills	Radix and Rhizoma Caulis Spatholobi	Treating headache and insomnia
Zhen Xin Tong Kou Fu Ye	Radix Codonopsis, Bulbus Corydalis	Treating chest pain caused by qi and blood stagnation
Xuan Hu Suo San	Rhizoma Achyranthis Bidentatae, Radix Corydalis	Treating abdominal pain caused by qi and blood stagnation
Fu Nv Tong Jing Wan	Radix and Rhizoma Caulis Spatholobi	Treating pain caused by qi and blood stagnation
Yan Bing Pian	Rhizoma Achyranthis Bidentatae, Borneolum Syntheticum	Treating coronary heart disease and angina pectoris
Ba Wei Tong Jing Pian	Radix Cyathulae, Radix Paeoniae Alba, Radix Corydalis	Treating pain caused by qi and blood stagnation
Ru Shen Tang	Radix Corydalis, Radix Angelicae Sinensis, Cortex Cyperi, Radix Glycyrrhizae	Treating pain caused by qi and blood stagnation
Fu Yuan Tong Qi San	Fructus Auranti, Radix Paeoniae rubra, Radix Corydalis, Pericarpium Citri Reticulatae	Treating pain caused by qi and blood stagnation
Nang Sinensis, Eupolyphaga	Radix and Rhizoma Caulis Spatholobi	Treating osteoarthritis and joint swelling
and play an important role in pain relief. To date, 64 alkaloids have been isolated from the plant; they are primarily categorized as isoquinoline alkaloids based on their structure. Other alkaloids include berberine, aporphine, proto-opioid base, isoquinoline benzylimidazole, and benzophenanthridine. 19

Alkaloids are presented in Table 2, and their structures are shown in Figure 2.

Water-Soluble Nonalkaloids

Water-soluble nonalkaloids present in *C. yanhusuo* have high polarity due to their hydroxyl, amino, and carboxyl groups. Water-soluble components, such as organic acids, amino acids, and carbohydrates are commonly separated by alumina adsorption, column chromatography, gel column chromatography, reverse-phase adsorption column chromatography, and gas chromatography-mass spectrometry. 38-40 Analysis of 80% ethanol extract of *C. yanhusuo* isolated using a DA201 type macroporous adsorption resin revealed that the fraction eluted with

![Figure 1. *Corydalis yanhusuo* plant (A), *C. yanhusuo* rhizoma (B), vinegar-fried *C. yanhusuo* (C).](image-url)
pure water shows anti-ischemic effects. Moreover, the polysaccharide YHP-1 extracted from *C. yanhusuo* exhibited antitumor activity. Therefore, it is important to extract and isolate its water-soluble compounds. Organic acids, amino acids, and alcohols and sugars isolated from *C. yanhusuo* are presented in Tables 3–5, respectively. The structures of these compounds are shown in Figures 3–5, respectively.

Volatile Oils

Most volatile oils obtained from plants have various medicinal and health-promoting effects. The most abundant volatile oil in *C. yanhusuo* is 2′-hydroxy-4′-methoxyacetophenone, which is known to show analgesic, antimicrobial, anti-inflammatory, and antitumor activities and can be used to treat cardiovascular diseases. Moreover, another volatile oil in *C. yanhusuo*—α-bisabolol—has been demonstrated to have anti-inflammatory and spasmolytic properties and is widely used in some European countries. Volatile oil from the rhizoma of *C. yanhusuo* is extracted using the heating reflux, rope extraction, and ultrasonic extraction methods. The chemical constituents of volatile oils have been analyzed using Fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. Volatile oils from *C. yanhusuo* are presented in Table 6, and their structures are shown in Figure 6.

Nucleosides

Nucleosides have various biological functions and are crucial for living cells. They participate in deoxyribonucleic acid metabolic processes, show anticancer and antiviral activities, and can be used in gene therapy. For example, adenosine improves cardio-cerebral blood circulation, prevents arrhythmia, inhibits neurotransmitter release, and regulates adenylate cyclase activity. Nucleosides isolated from *C. yanhusuo* are presented in Table 7, and their structures are shown in Figure 7.

Other Compounds

In addition to the aforementioned components, anthraquinones (*emodin* and *physcion*), terpenoids (3β-hydroxy-olean-11,13(18)-dien-28-oic acid), steroids (*stigmasterol*, β-sitosterol, and *daucosterol*), inorganic acids (phosphoric acid), some trace elements (*Pb*, *Cr*, *Cd*, *Cu*, *Mn*, *Fe*, *Zn*, *Al*, *Ba*, *B*, *Ca*, *Mg*, *Zn*), and polysaccharide are presented in Table 8, and their structures are shown in Figure 8.
P, Sr, Ti, and V, and some unsaturated fatty acids (trans-linoleic acid and hexadecanoic acid) have also been isolated from *C. yanhusuo*.\(^{50}\)

Pharmacology

Corydalis yanhusuo has various pharmacological effects on the digestive, nervous, and cardiovascular systems and has therapeutic benefits in treating complications associated with thrombosis and cancer. In the following section, the primary pharmacological activities of *C. yanhusuo*, including its active ingredients, minimum effective concentration, and relevant in vitro and in vivo research, are discussed (Table 8).

Effects on the Central Nervous System

Corydalis yanhusuo primarily shows analgesic, sedative, and hypnotic effects on the central nervous system, with alkaloids mostly contributing to the analgesic effects. Vinegar-processing can enhance the effects of *Rhizoma Corydalis* to facilitate blood flow and relieve stasis,\(^{98,99}\) while water extracts of *C. yanhusuo* effectively attenuate acute inflammatory and neuropathic pain in mice.\(^{9}\) Tetrahydropalmatine extracted from *C. yanhusuo* is widely used to treat chronic dull pain and persistent pain.\(^{29}\) Moreover, both tetrahydropalmatine and corydaline significantly increase mechanical and thermal pain threshold in rats.\(^{51}\) with similar analgesic effects.\(^{8}\)

Tetrahydropalmatine from *Corydalis L* and *Corydalis J* show sedative and hypnotic activities in rabbits, mice, dogs, and monkeys, and significantly reduce spontaneous and passive activities.\(^{52,53}\) Tetrahydropalmatine also has anxiolytic effects\(^{54}\) and is effective against depression.\(^{55}\) Lastly, the total alkaloid of *C. yanhusuo* showed antifatigue, antihypoxia, and antistress activity in mice.\(^{56}\)

Effects on the Digestive System

The pharmacological effects of *C. yanhusuo* on the digestive system include antigastric ulcer and hepatoprotective activities and effects on smooth muscle activation and contraction. The active components of *C. yanhusuo* with such properties are tetrahydropalmatine and protopine. In particular, tetrahydropalmatine protected rats from gastrointestinal injury, an effect that may be associated with its impact on gastric mucosal blood flow and regulation of dopamine transmitters.\(^{100}\) Another study in mice demonstrated the hepatoprotective effect of tetrahydropalmatine.\(^{57}\) Oral administration of tetrahydropalmatine (20, 40, 80, 160, and 320 mg/kg) reduced intestinal motive force in healthy mice; at 320 mg/kg it inhibited spontaneous contractions in isolated rabbit duodenum, thereby inhibiting

![Chemical structures of alkaloids in *Corydalis yanhusuo*.](image-url)
Figure 3. Chemical structures of organic acids in *Corydalis yanhusuo*.
intestinal smooth muscle activity. Lastly, corydaline was shown to promote gastric emptying and small intestinal transit, as well as facilitate gastric accommodation.

Effects on the Cardio-Cerebrovascular System

Corydalis yanhusuo can promote coronary artery dilation, protect against arrhythmia and myocardial and cerebral ischemia-reperfusion injury, and alleviate myocardial infarction. Tetrahydropalmatine can decrease norepinephrine and catecholamine in rat blood vessels and peripheral tissues, respectively, which may subsequently contribute to reduced heart rate and blood pressure. This compound can also lower blood pressure by blocking voltage-dependent calcium channels. In contrast, the total alkaloids from *C. yanhusuo* were found to exhibit protective effects in experimental models of acute myocardial ischemia, alleviate oxidative stress induced by isoproterenol, protect cardiac function, and reduce myocardial injury and apoptosis in rats with myocardial infarction. Kang et al described similar effects of total alkaloids in dogs.

Tetrahydropalmatine alleviates cerebral ischemia/reperfusion injury by antagonizing free radicals and calcium ions and by regulating Ca\(^{2+}\)-ATPase activity. It significantly reduces arrhythmias during ischemia/reperfusion injury and reduces lipid peroxides in the myocardium to prevent myocardial injury. This compound significantly increased the activity of Na\(^+\)-K\(^+\)-ATPase and Ca\(^{2+}\)-ATPase in the cell membrane, alleviated intracellular Ca\(^{2+}\)-overload, and ultimately reduced cerebral ischemia-reperfusion injury in rats. Moreover, it showed protective effects in focal cerebral ischemia-reperfusion injury in rats, which is related to lipid peroxidation. However, another study showed that the antimyocardial ischemic effect of *C. yanhusuo* could be related to the direct protective effect of tetrahydropalmatine, dehydrocorydaline, berberine, and palmatine on myocardial cells, rather than its antioxidative mechanisms. *Corydalis yanhusuo* rhizoma extract regulates the expression of Bel-2 family proteins to inhibit cardiomyocyte apoptosis.

Corydalis yanhusuo alkaloids were shown to protect against coronary heart disease and arrhythmia. High concentrations of tertiary amine base and quaternary ammonium hydroxide were also found to prolong the duration of action potentials in ventricular myocytes of guinea pigs. However, these 2 alkaloids can also have the opposite effect when administered at low concentrations. *Corydalis yanhusuo* extract can protect against myocardial damage and provide resistance to arrhythmia.

Other studies have also revealed that *C. yanhusuo* extract can improve hemorheology in rats in a hypercoagulable state and inhibit the formation of venous, arterial, and arteriovenous bypass thromboses. Tetrahydropalmatine inhibits platelet aggregation induced by adenosine diphosphate, arachidonic acid, and collagen, resulting in antithrombotic activity.
Antitumor Activity

Recently, in vitro studies have elucidated the antitumor effects of *C. yanhusuo*, which are primarily mediated by alkaloids and polysaccharides. Alkaloid extracts of *C. yanhusuo* and berberine markedly inhibit angiogenesis, which could have a significant impact on tumor growth and metastasis. The polysaccharide YHPS-1 inhibited the growth of murine sarcoma and lung cancer cell lines. Corydalis yanhusuo alkaloids can also inhibit P-glycoprotein activity in tumor cells and reverse multidrug resistance. The total alkaloids from *C. yanhusuo* were found to significantly inhibit the proliferation of human liver cells as well as 10 human tumor cell lines derived from different tissues, notably, treatment-resistant gastric cancer cell lines. Corydalis yanhusuo extract also inhibits the proliferation of MCF-7 and MDA-MB-231 breast cancer cells, while it inhibits H22 hepatocellular carcinoma in mice. Tetrahydropalmatine was also shown to inhibit the proliferation and promote apoptosis of U251MG malignant glioma cells in vitro and significantly prevent malignant glioma growth in vivo. It also inhibits a human leukemia cell line.

Antibacterial and Anti-Inflammatory Effects

The chloroform extract of *C. yanhusuo* has high microbiostatic activity against *Fusarium*, *Helminthosporium*, and anthracnose-related fungus, as well as against some bacteria. Palmatine and berberine also inhibit the growth of *Clostridium perfringens*. The 95% ethanol extract of *C. yanhusuo* was shown to have significant anti-inflammatory effects, which were mostly attributed to the activities of coptisine, berberine, palmatine, dihydrosanguinarine, and dehydrocorydaline. Corydalis yanhusuo alkaloids also inhibited the activity of human immunodeficiency virus type 1 reverse transcriptase. Furthermore, berberine shows antibacterial and anti-inflammatory effects by inducing the expression of toll-like receptor 2, activating IκB and interferon signaling pathways, and promoting the secretion of tumor necrosis factor.

Other Pharmacological Effects

Besides the above-mentioned properties, tetrahydropalmatine can also prevent the formation of portal hypertension in cirrhosis and significantly reduce glucagon levels. Moreover, it protects against acute radiation-induced lung injury in rats by inhibiting apoptosis and reducing oxidative damage.
leonticine (degree = 31), tetrahydroberberine (degree = 28), and corydalmine (degree = 25), all of which showed properties for treating pain, gastric ulcers, inflammation, and cardiac arrhythmias through the regulation of PTG32, PTG38, KCNH2, SCN5A, RXR4, C-AMKK2, NCO-A2, and ESR1.

Pharmacokinetics

To date, few studies have investigated the pharmacokinetics of *C. yanhusuo* extracts and compounds. The pharmacokinetics of intramuscularly injected tetrahydropalmatine sulfate and polycystic liposomes of tetrahydropalmatine sulfate (both at 10 mg/kg) were evaluated in mice. The time taken for the plasma drug concentration to decline to half ($t_{1/2}$) was 3.09 ± 0.37 and 33.97 ± 4.78 hours, respectively, while the peak concentration (C_{max}) was 289.05 ± 30.37 and 68.34 ± 8.72 μg/L, respectively. The time taken to reach C_{max} (T_{max}) for intramuscularly injected tetrahydropalmatine sulfate and polycystic liposomes of tetrahydropalmatine sulfate was 0.93 ± 0.15 and 3.92 ± 0.43 hours, respectively. These data indicate significant differences in pharmacokinetics depending on the route of administration. Additional studies on rabbits and rats also demonstrated that tetrahydropalmatine and corydalmine plasma concentrations were positively correlated with their C_{max} and T_{max}. These findings suggest that the bioavailability of tetrahydropalmatine can be improved using polycystic liposomes. Moreover, intragastric administration of total alkaloids of *C. yanhusuo* at doses of 125, 250, and 500 mg/kg in rats revealed that the blood concentration of tetrahydropalmatine was positively correlated with its C_{max} and T_{max}. Additional studies on rabbits and rats also demonstrated that tetrahydropalmatine and corydalmine plasma concentrations were positively correlated with their C_{max} and T_{max}. Furthermore, the plasma concentration of 1-tetrahydropalmatine was shown to always exceed that of D-tetrahydropalmatine in rats treated with 40 mg/kg tetrahydropalmatine. The combination of P-glycoprotein and D-tetrahydropalmatine may be responsible for the difference in stereoselective absorption. D-tetrahydropalmatine was found to have no significant inhibitory effect on the CYP450 subtypes of phase I drug-metabolizing enzymes in human liver microsomes. However, 1-tetrahydropalmatine had strong inhibitory effects on CYP2D6 (half-maximal inhibitory concentration = 0.46 μmol/L). Rats treated intragastrically

Table 6. Volatile Oils From Corydalis yanhusuo.

Identifier	Name	Plant part	References
1	2’-Hydroxy-4’-methoxacetophenone	Roots	42
2	Benzene, 1-(1,5-dimethyl-4-hexen-1-yl)-4-methyl	Roots	42
3	Linoleic alcohol	Roots	42
4	Eicosane	Roots	42
5	Heneicosane	Roots	42
6	Carveol	Roots	42
7	2,3-Dihydropyranal	Roots	43
8	3,4-Dimethyloctane	Roots	43
9	2-Methyl-2-phenylpropene	Roots	43
10	γ-Terpine	Roots	43
11	Verbenone	Roots	43
12	1-Methoxy-4-(1-propenyl)-benzene	Roots	43
13	Diphenylamine	Roots	43
14	2-Beta-methoxy-5-alpha-cholestan-19-oic acid	Roots	43
15	a-Bisabolol	Roots	43
16	Abietic acid	Roots	43
17	Spiro[2.4]hepta-4,6-diene	Roots	44
18	Heptacosane	Roots	43
19	(Methoxymethyl)trimethylsilane	Roots	44
20	Heptadecane	Roots	45
21	Hexadecane	Roots	45
22	Caryophyllene oxide	Roots	45
23	Pentadecane	Roots	45

Table 7. Nucleosides Isolated From Corydalis yanhusuo.

Identifier	Name	Plant part	References
1	Cytidine	Roots	46
2	Uridine	Roots	46
3	Adenosine	Roots	26
4	2’-Deoxyadenosine	Roots	46
5	Thymidine	Roots	46
6	Guanosine	Roots	46
7	Xanthosine	Roots	21

Network Pharmacology

The pharmacological effects of traditional Chinese medicines are complex, with multicomponent and multitarget characteristics. Network pharmacology explains the therapeutic effect of herb pairs. We cross-referenced the chemical compositions and pharmacological effects of traditional Chinese medicines. The pharmacological effects of traditional Chinese medicines are complex, with multicomponent and multitarget characteristics. Network pharmacology explains the therapeutic effect of herb pairs.
Figure 6. Chemical structures of volatile oils in *Corydalis yanhusuo*.
Pharmacological effects	Details	Extracts/compounds	Minimal toxic concentration/dose	Type of experiment	References
Effect on the nervous system					
Analgesic effects		Water extract	100 mg/kg (i.p.)	In vivo	9
Analgesic effects		Corydaline	10 mg/kg (i.p.)	In vivo	8
Analgesic effects		Tetrahydropalmatine	10 mg/kg (i.p.)	In vivo	81
Analgesic effects		Tetrahydropalmatine	1 mg/kg (i.p.)	In vivo	9
Analgesic effects		Corydaline	30 mg/kg (i.c.)	In vivo	52
Analgesic effects		Tetrahydropalmatine	15 mg/kg (i.c.)	In vivo	52
Analgesic effects		Tetrahydrocolumbamine	10 mg/kg (i.c.)	In vivo	52
Sedative and hypnotic effects		Tetrahydropalmatine	40 mg/kg (i.p.)	In vivo	53
Sedative and hypnotic effects		Tetrahydrocolumbamine	40 mg/kg (i.p.)	In vivo	53
Sedative and hypnotic effects		d-Glaucine	10 mg/kg (i.p.)	In vivo	53
Anxiolytic effects		Tetrahydropalmatine	25 mg/kg (i.p.)	In vivo	54
Total alkaloids		6 g/kg (i.g.)	In vivo		55
Antihypoxia ability		Total alkaloids	50 mg/kg (i.g.)	In vivo	56
Effects on the digestive system		Total alkaloids	50 mg/kg (i.g.)	In vivo	57
Protection of liver function		Tetrahydropalmatine	20 mg/kg (i.g.)	In vivo	57
Inhibiting smooth muscle activity		Tetrahydropalmatine	20 mg/kg (i.g.)	In vivo	58
Promote gastric emptying and small intestinal transit		Corydaline	0.1 µg/kg (p.o.)	In vivo	59
Reduced blood pressure		Tetrahydropalmatine	20 mg/kg (i.v.)	In vivo	60
Effects on the cardio-cerebrovascular system					
Reduced blood pressure		Tetrahydropalmatine	5 mg/kg (i.g.)	In vivo	61
Reduced blood pressure		Tetrahydropalmatine	10 µmol/L	In vitro	62
Reduced blood pressure		Total alkaloids	1 mg/kg (i.g.)	In vivo	63,64
Reduced blood pressure		Alcohol extract	50 mg/kg (p.o.)	In vivo	65
Protective effects on myocardium		Total alkaloids	27.9 mg/kg (enteral)	In vivo	66
Protective effects on myocardium		Tetrahydropalmatine	5 mg/kg (i.v.)	In vivo	66
Protective effects on myocardium		Tetrahydropalmatine	1 µmol/L	In vitro	669
Protective effects on myocardium		Tetrahydropalmatine	10 mg/kg (i.v.)	In vivo	70
Protective effects on myocardium		Tetrahydropalmatine	50 mg/L	In vivo	71
Protective effects on myocardium		Dehydrocorybulbine	1.25 mg/L	In vitro	71
Protective effects on myocardium		Coptisine	4 mg/L	In vitro	71
Protective effects on myocardium		Palmatine	30 mg/L	In vitro	71
Protective effects on myocardium		Alcohol extract	100 mg/kg (p.o.)	In vivo	72
Protective effects on myocardium		Total alkaloids	0.2 g/kg (i.g.)	In vivo	73
Antiarrhythmic effects		Tetrahydropalmatine	5 mg/kg (i.v.)	In vivo	63
Antiarrhythmic effects		Total alkaloids	0.5 g/kg (i.g.)	In vivo	73
Antiarrhythmic effects		Tertiary alkaloids	30 mg/L	In vitro	74
Antiarrhythmic effects		Quaternary alkaloids	1 mg/L	In vitro	74
Antiarrhythmic effects		Alcohol extract	0.81 g/kg (i.g.)	In vitro	75
Antiarrhythmic effects		Tetrahydropalmatine	20 mg/kg (i.g.)	In vivo	76
Antiarrhythmic effects		Water extract	1.44 g/kg (i.p.)	In vivo	77
Antiarrhythmic effects		Tetrahydropalmatine	7.5 mg/kg (i.v.)	In vivo	78

(Continued)
Table 8. Continued

Pharmacological effects	Details	Extracts/compounds	Minimal toxic concentration/dose	Type of experiment	References
Antitumor effects	Angiogenesis-limiting effect	Alkaloid extract	10 µg/mL	In vitro	79,80
	Inhibitory effect on the growth of sarcoma 180 and Lewis lung cancer in mice	Polysaccharide	100 mg/kg (i.p.)	In vivo	41
	Inhibit P-glycoprotein activity	Tetrahydropalmatine	2.5 µg/mL	In vitro	81,82
	Inhibitory effects on 10 human tumor cells	Total alkaloids	IC50 = 18.39 µg/mL	In vitro	83
	Inhibitory effects on the proliferation of 6 human gastric cancer cells	Total alkaloids	200 mg/mL	In vitro	84
	Inhibit HepG2 cells	Total alkaloids	200 mg/mL	In vitro	84
	Inhibit the growth of A549 cells	13-methyl-palmatrubine	3 mg/kg	In vitro	85
	Inhibit MDA-MB-231 cell line	Alkalol extract	3 mg/mL	In vitro	86
	Inhibits MCF-7 cell	Alkalol extract	50 µg/mL	In vitro	87
	Antimouse liver cancer H22	Powder suspension	1 mg/kg (i.g.)	In vivo	88
	Inhibit U251MG cell line	Tetrahydropalmatine	1 mg/kg (i.p.)	In vivo	89
	Inhibits HL-60 and K562 cell	Tetrahydropalmatine	0.1 mmol	In vitro	90
Antibacterial and anti-inflammatory effects	Inhibit white rot fungus and Curvularia leaf spot fungus	Chloroform extract	125 mg/L	In vitro	91
	Inhibit *Clostridium perfringens*	Palmatine, berberine	IC50 = 18.39 µM	In vitro	92
	Anti-inflammatory	Alkalol extract	1 µmol/L	In vitro	93
	Inhibitory effect on human immunodeficiency virus-1 reverse transcriptase	Total alkaloids	5 mg/mL	In vitro	94
	Promoting effect on the secretion of anti-inflammatory factors IL-10 and IL-13	Berberine	100 µmol/L	In vitro	95
Other pharmacological effects	Portal vein pressure-lowering effect	Tetrahydropalmatine	1 mg/kg (i.v.)	In vivo	96
	Protects lung injury	Tetrahydropalmatine	40 mg/kg (i.p.)	In vivo	97

Abbreviations: IC50, half-maximal inhibitory concentration; i.g., intragastric; IL, interleukin; i.p., intraperitoneal; i.v., intravenous; p.o., orally.
with tetrahydropalmatine at a dose of 40 mg/kg revealed that
tetrahydropalmatine is distributed in all tissues, except the
lungs, with higher accumulation in the liver. These findings
indicate that, in rats, the pharmacokinetics of C. yanhusuo extract and tetrahydropalmatine show stereoselectivity.

Toxicology
The Chinese Pharmacopeia provides no information regarding C. yanhusuo's toxicity. However, there are some reports on this matter. One study evaluated the impact of intraperitoneal injection of 150 mg/kg of glaucine in mice. After only 5 minutes following the injection, the mice started to convulse and died quickly of paralysis. The median lethal dose (LD50) of glaucine was calculated to be 127 mg/kg. Furthermore, the administration of fumarole extract at 40 g/kg resulted in reduced overall activity, slow breathing, changes in movement and posture, and increased heart and breathing rates in mice. In this study, the mortality rate on the following day was 10%. The LD50 of the total alkaloids in C. yanhusuo acetic acid extract was 0.86 g/kg in mice, with most mice having died 3 hours following the gastric administration of the extract. This study demonstrated the toxicity and lethality of these alkaloids in mice. Moreover, microscopic examination of tissue samples revealed renal arteriole hemorrhage in some mice. Administration of water extracts of Rhizoma Corydalis processed with industrial and edible acetic acid by oral gavage also was found to be toxic to mice, with all animals being reported dead after 72 hours.

To date, the number of studies investigating the toxicity of C. yanhusuo remains limited, and most studies have focused on extracts (Table 9). Certain populations should consume this plant cautiously, including pregnant women and women with postpartum blood deficiency and metrorrhagia.

Future Perspectives and Conclusions
In summary, as traditional Chinese medicine, C. yanhusuo is used to treat Qi stagnation and blood stasis. Although various chemical components have been isolated and identified from the plant,

Table 9. Toxicologic Effects of Corydalis yanhusuo.

Extracts/compounds	Animal	Minimal toxic concentration/dose	Toxic effect	References
Glaucine	Mice	LD50 = 127 mg/kg (i.p.)	Death	52
Alcohol extract	Mice	40 g/kg (i.g.)	Death	114
Acetic acid extract	Mice	LD50 = 0.86 g/kg (i.g.)	Death	115
Water extract	Mice	-	Death	116

Abbreviations: i.g., intragastric; i.p., intraperitoneal; LD50, median lethal dose.
alkaloids are its main active ingredients. Over the past decade, major breakthroughs have been made toward elucidating the active constituents and therapeutic efficacy of *C. yanhusuo*. However, the development of new drugs derived from this plant remains challenging. Thus, it warrants further studies.

Studies have primarily focused on the active components of tetrahydropalmatine, corydaline, berberine, palmatine, and coptisine, among others. For example, *C. yanhusuo* has been reported to contain high glaucine and corydaline content. Glaucine can inhibit breast cancer cell migration and invasion. Therefore, this plant could be a potential source for a novel antitumor drug. In contrast, few studies have evaluated the activity and impact of papaverine and corydaline. Hence, their pharmacodynamics and pharmacokinetics remain unclear.

Evaluation of the medicinal potential of *C. yanhusuo* has mostly focused on its tubers and on the chemical components and pharmacological activities of its stems, leaves, and fibrous roots. Presently, commercially available products labeled to contain *C. yanhusuo* have been found to contain similar *Corydalis* species like *Corydalis tartschaninovii* Bess, *Corydalis repens* Mandl et Kuhldorf, *Corydalis americana* Cham. Et Sch. and *Corydalis decumbent* (Thunb.) Pers. Because these species are highly toxic, it is important to identify the actual species in such products to ensure public safety. Researchers have designed a polymerase chain reaction method based on the ITS2 sequence to distinguish *C. yanhusuo* from its counterfeit products. Authentic *Corydalis* generates a single band of approximately 200-300 bp, whereas counterfeit products do not. Therefore, future studies should aim to improve the quality of medicinal materials extracted from *C. yanhusuo*.

Traditional Chinese medicine has multicomponent and multitarget characteristics, and its pharmacological properties cannot be completely attributed to a single component. Quality markers (Q-markers) in Yuanhu Zhitong Dropping Pills include tetrahydropalmatine, corydaline, protopine, imperatorin, and isoimperatorin. Q-markers are the best choice for quality control indicators. It is especially crucial to establish appropriate and feasible Q-marker systems for Chinese herbal medicines. The Q-marker system can be established from the morphological, chemical, and biological aspects of *C. yanhusuo*. Lastly, the potential cellular targets of
C. yanhusuo for the treatment of pain, gastric ulcers, arrhythmias, and inflammation were determined using network pharmacology. However, follow-up studies should aim to verify these targets using in vitro and in vivo experiments.

In conclusion, we provide a comprehensive review of the traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology of C. yanhusuo. Altogether, growing evidence paves the way for the development of novel C. yanhusuo-based therapeutic agents with broad medicinal applications.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China [grant number 81803732].

ORCID ID
Fan Li https://orcid.org/0000-0001-8871-956X

References
1. He XF, Zhang J, Zhang M. Research progress on chemical constituents, pharmacological activities and toxic side effects of Rhizoma Corydalis. Shanghai J Tradit Chinese Med. 2017;51(11):97-100.
2. Huang X. Brief introduction of Japan’s crude drug resources and imports (continued 4). Int J Tradit Chinese Med. 2001;359-361.
3. Luo Y, Wang C-Z, Sawadogo R, Tan T, Yuan C-S. Effects of herbal medicines on pain management. Am J Chin Med. 2020;48(1):1-16. doi:10.1164/s0192415X20500019
4. Editorial Committee of Chinese Pharmacopoeia eds. China Pharmacopoeia. China Medical Science and Technology Press; 2015.
5. Du WJ, Jin LS, Li LP, et al. Development and validation of a HPLC-ESI-MS/MS method for simultaneous quantification of fourteen alkaloids in mouse plasma after oral administration of the extract of Corydalis yanhusuo tuber: application to pharmacokinetic study. Molecules. 2018;23(4):714.
6. He K, Gao JL, Zhao GS. Advances in studies on chemistry, pharmacology, and quality control of Corydalis yanhusuo. Yao Xue Xue Bao [Chin Tradit Herb Drugs]. 2017;38(12):1909-1912.
7. Yang XB, Yang XW, Liu JX. Study on material base of Rhizoma Corydalis. Zhengguo Zhong Yao Za Zhi [China J Chin Mat Med]. 2014;39(1):20-27.
8. He ZD. Analgesic Effect of Tetrahydropalmatine A and B on Sciatica Rats and its Anti-TRPV-1 Mechanism [doctoral thesis]. Guangzhou University of Traditional Chinese Medicine; 2012.
9. Wang L, Zhang Y, Wang Z, et al. The antinociceptive properties of the Corydalis yanhusuo extract. PLAS One. 2016;11(9):e0162875. doi:10.1371/journal.pone.0162875
10. Jiang M. Study on the Effect of Vinegar on the Content and Pharmacodynamics of Main Active Ingredients in Corydalis Yanhusuo [master’s thesis]. Hubei University of Chinese Medicine; 2016.
11. Chen YT, Cao W, Xie YH, et al. Effects of yuanhu zhihong tablet and its main components on experimental dysmenorrhea in rats. Shaanxi Chin Med. 2013;34:11-14.
12. State Drug Administration. eds. Zhongyao Chengjiang Zhi. Science and Technology Press of Shanghai; 2002.
13. Song MX, Guo WJ, ed. Goujia Zhongshengyao. People’s Medical Publishing House; 2002.
14. Cai CX. Chinese Medical Encyclopedia: Korean Medicine. Shanghai Science and Technology Press; 1992.
15. Xu JZ. Dong Yi Bao Jian. People’s Medical Publishing House; 1982.
16. Editorial Committee of Flora of China. Flora of China. Science Press; 1999.
17. Li YS. Research progress on preparation technology and pharmacological action of tetrahydropalmatine. Pharm J Chin PLA. 2013;29:480-483.
18. Chou TQ. The alkaloids of Chinese Corydalis ambigua, Cham. Et Sch. (Yen-Hu-So). Chin J Physiol. 1928;25(7):544-547.
19. Lu CM. Advances in chemical constituents and pharmacological activities of Corydalis yanhusuo. Chin J Med Drug App. 2011;5:126-127.
20. Hu TM, Zhao SX. Alkaloids from the aerial parts of Corydalis yanhusuo. J Nanjing Coll Pharm. 1985;16:7-11.
21. Zhou Q. Studies on Chemical Constituents of CorydalisYanhusuo and Chemical Characteristic Expression of Its Herbal Characteristic System [master’s thesis]. Peking Union Medical College; 2012.
22. Fu XY. Identification of compounds in aqueous extract from aerial parts of Corydalis yanhusuo WT. Wang by HPLC-ESI-Q-TOF-MS/MS. Northwest Pharm J. 2017;32(1):13-17.
23. Hu TT, Zhang X, Ma SZ, Cheng YY, Yao XS. Alkaloids in Corydalis yanhusuo. Zhongguo Zhong Yao Za Zhi [China J Chin Mat Med]. 2009;34:1917-1920.
24. Yang XB, Liu YZ, Yang XW. Study on chemical constituents of Corydalis yanhusuo in Pan’lan. Yao Xue Xue Bao [Chin Tradit Herb Drugs]. 2013;44(16):2200-2207.
25. Cheng X-Y, Shi Y, Zhen S-I, Sun H, Jin W. HPLC-MS analysis of ethanol extract of Corydalis yanhusuo and simultaneous determination of eight protoberberine quaternary alkaloids by HPLC-DAD. J Chromatogr Sci. 2010;48(6):441-444. doi:10.1093/chrmsci/48.6.441
26. Lv ZM, Sun WX, Duan XH, Yang Z, Liu Y, Tu PF. Chemical constituents from Corydalis yanhusuo. Zhongguo Zhong Yao Za Zhi [China J Chin Mat Med]. 2012;37(2):235-237.
27. Zhou Q, Deng A-J, Qin H-L. Two new quaternary protoberberine alkaloids from Corydalis yanhusuo. J Asian Nat Prod Res. 2012;14(5):476-481. doi:10.1080/10286020.2012.677038
28. Lu Y, Ma Q, Fu C, Chen C, Zhang D. Quality evaluation of Corydalis yanhusuo by high-performance liquid chromatography fingerprinting coupled with multicomponent quantitative analysis. Sci Rep. 2020;10(1):4996. doi:10.1038/s41598-020-61951-x
29. Feng ZL, Zhao ZD, Liu JX. Research progress on chemical components and pharmacological effects of *Corydalis yanhusuo*. Nat Prod Res Dev. 2018;30(11):2000-2008.
30. Xu XH, Wang ZT, GD Y, Ruan BF, Li J. Study on alkaloids in *Corydalis yanhusuo*. J China Pharm Univ. 2002;6(6):29-32.
31. Hu TT. Research Progress on Chemical Constituents and Their Bioactivities of *Corydalis Yanhusuo* W. T. Wang [master's thesis]. Shenyang Pharmaceutical University; 2009.
32. Zhu M, Chen BZ, Lian WY, et al. Study on *Corydalis yanhusuo*. Chin Tradit Herb Drugs. 1986;17(4):150-152.
33. Bao L. [master's thesis]. Peking Union Medical College; 2010.
34. Fu XY, Liang WZ, Tu GS. Chemical study of *Corydalis yanhusuo*. Chin J Chin Mat Med. 2006;24(2):235-239. doi: 10.1002/cjoc.200690045
35. Shi HQ, Chen B, Shao JN, Cheng CG. Analysis and comparison of volatile components of *Corydalis yanhusuo* by headspace solid phase microextraction-GC-MS. Chin J Pharm. 2014;45:66-68.
36. Chen DD, Chen YP, Zhou P, Li X, Chen JW. Simultaneous determination of 6 nucleoside components in *Corydalis yanhusuo* WT. Wang by high performance liquid chromatography. Nat Prod Res Dev. 2015;27(9):1571-1575.
64. Yang K, ZZ L, Pan L, et al. Protective effects of total fumaric alkaloids on myocardium of rats with isoproterenol-induced myocardial infarction. Chin J Clin Res. 2016;29(8):1057-1061.

65. Wu L, Ling H, Li L, Jiang L, He M. Beneficial effects of the extract from Corydalis yanhusuo in rats with heart failure following myocardial infarction. J Pharm Pharmaco. 2007;59(5):695-701. doi:10.1211/jpp.59.5.0010

66. Kang TJ, Jia JL, Tian B, et al. Effect of tetrahydropalmatine on myocardial infarction. World Chin Med. 2019;47:41-44.

67. Wang YX, Zheng YM, Tan YH. Antiarrhythmic effect of tetrahydropalmatine on ischemia-reperfusion arrhythmia and its mechanism. Chin Pharm Bull. 1993(5):358-361.

68. Liu JI, Liu H. Protective effect of tetrahydropalmatine on cardiac reperfusion injury aggravated by exogenous free radicals in rats. Chin Pharm J. 1994;9:462-464.

69. Zhou YG, Su MH, Yang GT. Protective effect of tetrahydropalmatine on calcium overload injury in rat hippocampal neurons. Chin J Int Med Cardio-Cerebro Dis. 2010;8:81-82.

70. Li P, Ren JG, Duan CI, Lin CR, Liu JX. Effects of four components of Rhizoma Corydalis on anoxia and peroxidation injuries in neonatal cardiomyocytes. Zhongguo Zhong Yao Za Zhi [China J Chin Mat Med]. 2010;35(1):84-88.

71. Li R. Protective effects of tetrahydropalmatine on lipid peroxidation and behavioral and pathological changes in rats with cerebral ischemia-reperfusion injury. Chin Pharm Bull. 1999;15:167-169.

72. Li P, Ren JG, Duan CI, Lin CR, Liu JX. Effects of four components of Rhizoma Corydalis on anoxia and peroxidation injuries in neonatal cardiomyocytes. Zhongguo Zhong Yao Za Zhi [China J Chin Mat Med]. 2010;35(1):84-88.

73. Wang YX, Zheng YM, Tan YH. Antiarrhythmic effect of tetrahydropalmatine on ischemia-reperfusion arrhythmia and its mechanism. Chin Pharm Bull. 1993(5):358-361.

74. Kang TJ, Jia JL, Tian B, et al. Effect of tetrahydropalmatine on myocardial infarction. World Chin Med. 2019;47:41-44.

75. Zhang Y, Zhao Y, Zhang Q, et al. Alkaloid extract of Corydalis yanhusuo inhibits angiogenesis via targeting vascular endothelial growth factor receptor signaling. BMC Complement Altern Med. 2019;19(1):359. doi:10.1186/s12906-019-2739-6

76. Gao J-L, Shi J-M, Lee SM-Y, Zhang Q-W, Wang Y-T. Angiogenic pathway inhibition of Corydalis yanhusuo and berberine in human umbilical vein endothelial cells. Oncol Res. 2009;17(11-12):519-526. doi:10.3727/096504009789745575

77. Lei Y, Tan J, Wink M, Ma Y, Li N, Su G. An isoquinoline alkaloid from the Chinese herb parsley plant Corydalis yanhusuo. W. T. Wang inhibits P-glycoprotein and multidrug resistance-associate protein 1. Food Chem. 2013;136(3-4):1117-1121.

78. Zhang Y, Zhao Y, Zhang Q, et al. Alkaloid extract of Corydalis yanhusuo on uptake of ~99Tc~m-MIBI by human breast cancer cell line MCF-7. Chin J Nuclear Med. 2006;313.

79. Mou WS. Inhibitory effect of total alkaloids of Corydalis on human hepatocellular carcinoma cell line HepG2 and its effect on microRNA expression profile. J Nanjing Univ Tradit Chin Med. 2009;25:181-183.

80. Zhang Y, Zhao Y, Zhang Q, et al. Antiproliferation effect of total alkaloid fraction of Yanhusuo on six human gastric cancer cell lines in vitro. Chin J Integr Tradit West Med Dig. 2009;17(2):81-85.

81. Chen J, Lu X, Lu C, et al. 13-Methyl-palmatrubine induces apoptosis and cell cycle arrest in A549 cells in vitro and in vivo. Oncol Rep. 2016;36(5):2526-2534. doi:10.3892/or.2016.5093

82. Gao JI, Shi JM, He K. Yanhusuo extract inhibits metastasis of breast cancer cells by modulating mitogenic-activated protein kinase signaling pathways. Oncol Rep. 2008;20(4):819-819.

83. Xu Z, Chen X, Zhang Q, Chen L, Wang Y. Corydalis yanhusuo W.T. Wang extract inhibits MCF-7 cell proliferation by inducing cell cycle G2/M arrest. Am J Chin Med. 2011;39(3):579-586. doi:10.1142/S0192415X11009441

84. Mou WS. Inhibitory effect of Yanhusuo powder on H22 hepatoma in mice. Med Information. 2010;23:1241-1242.

85. Zhang J. Effects of Simulated Microgravity and Tetrahydropalmatine on Apoptosis of Malignant Glioma U251MG Cells and Its Mechanism [doctoral thesis]. The Fourth Military Medical University; 2015.

86. Cui L, Wu T. Tetrahydropalmatine enhances the inhibitory effect of vincristine on human leukemia cell line. Chin Pharm B. 1995;54:348-348.

87. Shen XH, Li XG, Liu HF, Quan BW, Tian GL. Antifungal activities of extracts from Corydalis and Pulsatilla in vitro. J Agr Sci Yunnan Univ. 2006;28(1):35-40.

88. Kim JH, Ryu YB, Lee WS, Kim YH. Neuraminidase inhibitory activity of Corydalis rhizome. Biorg Med Chem. 2014;22(21):6047-6052. doi:10.1016/j.bmc.2014.09.004

89. Ma NN, Li X, Jin H, et al. Spectrum-effect relationship and mechanism of anti-inflammatory effects of different extracts of Corydalis yanhusuo. Yao Xue Xue Bao [Chin Tradit Herb Drugs]. 2019;50(10):2413-2419.
94. Wang HX, Ng TB, lectins Eof. Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases. *Planta Med.* 2001;67(7):669-672. doi:10.1055/s-2001-17359

95. Li ZQ. Effect of berberine on toll-like receptor 2 signaling pathway and inflammatory cytokines. *China Pharm.* 2010;21(11):980-982.

96. Shao LN, Yan JM. Effect of levo-tetrahydropalmatine on portal venous pressure and its mechanism. *Chin Pharmacoal Bull.* 1995:248-250.

97. Yu J, Liu L, Zhang Y, Yang F, Cao BW. Tetrahydropalmatine protects against acute radiation-induced lung injury in rats. *J Clin Pathologic Res.* 2017;37(1):62-68.

98. Xie M. Determination of total alkaloids in Rhizoma Corydalis vinegar and comparison of analgesic effects on mice. *Strait Pharm J.* 2014;33-34.

99. Li R, Cai QQ, Niu YB, SC D, Dou ZY. Comparative study between crude Rhizoma Corydalis and vinegar Rhizoma Corydalis in pharmacological action. *Chin J Exp Tradit Med Form.* 2014;20(19):133-137.

100. Xu JY, Bai WF, Qiu CK, Tu P, Yu SY, Luo SY. Effect of Corydalis yanhusuo and L-THP on gastrointestinal dopamine system in morphine-dependent rats. *Zhong Yao Ca.* 2015;38(12):2568-2572.

101. Lei HQ, YX X, Ju M, Zhao GS. Effects of tetrahydropalmatine and sinomenine on the activity of rabbit oviduct smooth muscle. *J Xi’an Jiantong Univ.* 1993(3):219-222.

102. Zhang Q, Gao W, Wang WY, Yang SY, Qi L. Effects of tetrahydropalmatine on cerebral ischemia-reperfusion injury. *J Jilin Med Univ.* 2001;67(7):669-672. doi:10.1055/s-2001-17359

103. Sang XY, Zhang L, Liu L. A study on extraction and anti-inflammatory activity of the Rougui-Fuzi herb pair in the treatment of cardiocerebral vascular diseases. *Evid Based Complement Alternat Med.* 2020;2020(7):1-17. doi:10.1155/2020/5196302

104. Li C, Du X, Liu Y, et al. A systems pharmacology approach for identifying the multiple mechanisms of action for the Rougui-Fuzi herb pair in the treatment of cerebrocerebral vascular diseases. *Evid Based Complement Alternat Med.* 2020;2020(7):1-17. doi:10.1155/2020/5196302

105. Liu JM, Wang F, Ye YJ, et al. Preparation and pharmacokinetics in rats of tetrahydropalmatine multivesicular liposomes. *Chin J Exp Tradit Med Form.* 2014;20:124-127.

106. Liu XY. Pharmacokinetics of tetrahydropalmatine in rats. *J Nanjing Univ Tradit Chin Med.* 2012;28:555-557.

107. Lin L, Liu JY, Zhang Y, Lin CR, Duan CL. Pharmacokinetic studies of tetrahydropalmatine and dehydrocorydaline in rat after oral administration of Yanzhusuo extraction by LCMS/MS method. *Yao Xue Xue Bao [Chin Tradit Herb Drug].* 2008;43(11):1123-1127.

108. Hu N, Liang RX, Wang L, et al. Pharmacokinetics study of Corydalis extracts in rat plasma. *Chin J Exp Tradit Med Form.* 2011;17(4):186-189.

109. Pan ZG, Wang BQ, Wang CY, Huang H. Study on pharmacokinetics of tetrahydropalmatine in rabbit plasma. *Chin J Pharm Anal.* 1995;15:13-16.

110. Hong ZY, Fan GR, Chai YF, Wen J, Yin XP, YT W. Stereoselective pharmacokinetics of tetrahydropalmatine in rats. *Yao Xue Xue Bao [Chin Tradit Herb Drug].* 2005;40(8):746-749.

111. Wu P-S, Huang S-D, Ye Y-J, Sun S-Y, Jiang H-D. Difference absorption of l-tetrahydropalmatine and dl-tetrahydropalmatine in intestine of rats. *Yao Xue Xue Bao.* 2007;42(5):534-534.

112. Yan J, Feng S, He LN, He X. Inhibitory mechanism of tetrahydropalmatine enantiomers on cytochrome P450 in human liver microsomes. *Yao Xue Xue Bao [Chin Tradit Herb Drug].* 2015;46(4):534-540.

113. Du WJ. *Pharmacokinetics of Corydalis Yanhusuo Extract in Mice* [master's thesis]. Zhejiang University; 2017.

114. Wang SC, Liu MY, Hu YW. Toxicity of angelica, curcuma, Corydalis yanhusuo and their compatibility in mice. *Li Shi Zhen Med Mater Res.* 2004;15:211-213.

115. Jiao YH, Jiang B, Yu M, et al. Acute toxicity test of total alkaloids of Corydalis yanhusuo acetate (LD50 determination). Presented at the 2010 National Academic Conference on Pharmacotoxicology; August 12, 2010, 2010; Qinghai Province, China.

116. Cheng LP, Gu XY, Mao SJ. Acute toxicity of different types of vinegar in mice and analgesic effect of processed Corydalis. *Chin J Exp Tradit Med Form.* 2010;16:71-72.

117. Liao XY. *BenCao JingShu*. Shanshi Science and Technology Press; 1980.

118. Zhang D, Wang CL, Pu DD, Song X. Simultaneous determination of 5 alkaloids in Rhizoma Corydalis by HPLC. *Central South Pharm.* 2015;403(1-2):85-94. doi:10.1007/s11010-015-2339-9

119. Kang H, Jang S-W, Pak JH, Shim S. Glaucine inhibits breast cancer cell migration and invasion by inhibiting MMP-9 gene expression through the suppression of NF-κB activation. *Med Cell Biochem.* 2015;403(1-2):85-94. doi:10.1007/s11010-015-2339-9

120. Xu CX. Identification of Corydalis Yanhusuo and Its Counterfeits [master's thesis]. Guangzhou University of Traditional Chinese Medicine; 2016.

121. Chan Q-Y, Jiang L, Cheng M-E, et al. Identification of Corydalis yanhusuo, C. turtschaninovii, C. decumbens by allele-specific PCR. *Zhongguo Zong Yao Za Zhi.* 2019;44(15):3261-3267. doi:10.19540/j.cnki.cjcm.20190527.108

122. Zhang TJ, Xu J, Shen XP, et al. Relation of “property-response-component” and action mechanism of Yuanhu Zhitong Dropping Pills based on quality marker (Q-Marker). *Yao Xue Xue Bao [Chin Tradit Herb Drug].* 2016;47(13):2199-2211.