RESEARCH ARTICLE

Influence of CO₂ injection on the pore size distribution and petrophysical properties of tight sandstone cores using nuclear magnetic resonance

Jinsheng Zhao¹² | Pengfei Wang¹² | Yanming Zhang³⁴ | Liang Ye³⁴ | Yu Shi¹²

¹Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an Shiyou University, Xi’an, China
²School of Petroleum Engineering, Xi’an Shiyou University, Xi’an, China
³Oil and Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi’an, China
⁴National Engineering Laboratory of Low-permeability Oil & Gas Exploration and Development, Xi’an, China

Abstract

CO₂ injection has been proposed as an efficient method for enhanced oil recovery in low-permeability sandstone reservoirs. When CO₂ is injected into such reservoirs, the petrophysical properties as well as the pore size distribution of tight formation can be altered due to the interactions between CO₂, water, and rock minerals. In this work, CO₂ is introduced into the water-saturated sandstone cores; nuclear magnetic resonance technique is then applied to obtain T_2 spectrum of the sandstone cores before and after CO₂ injection. The effect of CO₂ injection on the pore size distribution is analyzed by comparing the obtained T_2 spectrum. In addition, the change of petrophysical properties, that is, total porosity, porosity of the movable fluid, and permeability, are also discussed in this work. Test results show that after introducing CO₂, the total volume of small pores is significantly increased. On the contrary, the total volume of medium pores decreases. In addition, the immovable fluid porosity increases in the small pores, while it decreases in the medium pores after injecting CO₂. Based on the composition analysis, the concentration of the ions of Na⁺, K⁺, Ca²⁺, and Mg²⁺ increases in the produced fluid due to the interactions between CO₂ and albite, and potash feldspar. After CO₂ injection, the total porosity, movable fluid porosity, and permeability of these tight cores are significantly improved. This study is expected to be significant for understanding the mechanisms of alterations of petrophysical properties and pore size distribution of tight sandstone cores due to the CO₂ flooding.

KEYWORDS

CO₂ injection, nuclear magnetic resonance technique, petrophysical properties, pore size distribution, tight sandstone

1 | INTRODUCTION

CO₂ flooding has been recognized as an efficient method for enhancing oil recovery from unconventional reservoirs, which has been confirmed by laboratory tests and field applications.¹⁻⁴ Due to the unique characteristics of unconventional reservoirs, physical properties of fluids, such as phase behavior and adsorption behavior, in such reservoirs...
are quite different from those in conventional reservoirs.5,8 CO\textsubscript{2} has the superiority of easily dissolving in crude oil, which can significantly reduce the viscosity of crude oil and surface tension between two immiscible fluids.9,10 The dissolution of CO\textsubscript{2} into crude oil can make oil swell and extensively increases the elastic energy of crude oil.10,11 After injecting CO\textsubscript{2} in oil reservoirs, some chemical reactions may take place among CO\textsubscript{2}\textsubscript{2}, water, and the core minerals. It has been found that the reactions due to the CO\textsubscript{2} injection can greatly improve the petrophysical properties of oil reservoirs.12,13 However, some precipitation can also be resulted from the reactions between CO\textsubscript{2} and core minerals, such as carbonate. Such precipitation can block pores present in reservoir formation, leading to a poor condition for enhancing oil recovery with CO\textsubscript{2} injection.14,15 Tight sandstone reservoirs have complex pore throat structure with a wide pore throat sizes ranging from the nanoscale to microscale. The microstructure of pore throat affects reservoir property and oil displacement efficiency.16,17 Thereby, investigation of the variations of reservoir properties due to CO\textsubscript{2} injection is beneficial for understanding the fundamental mechanisms of CO\textsubscript{2} injection for enhanced oil recovery in tight sandstone reservoirs.

Previous studies have been conducted to investigate the variation of petrophysical properties of oil reservoirs due to the CO\textsubscript{2} injection. Mohamed et al18 investigated the changes of petrophysical properties of some core samples during CO\textsubscript{2} flooding; they observed that the porosity and permeability of these core samples were greatly improved. Moreover, some previous studies found that the porosity and permeability of core samples either from sandstone or from carbonate reservoirs are enhanced due to the interactions of feldspar-CO\textsubscript{2} or carbonate-CO\textsubscript{2}.19-21 As for sandstone reservoirs, it has been found that some carbonate minerals such as dolomite and calcite should firstly be dissolved in CO\textsubscript{2}-rich solution and then followed by the dissolution of the silicate minerals such as feldspar.22-24 In addition, the solubility of carbonate minerals is found to be higher than that of silicate minerals.25,26 On the contrary, some studies proposed that CO\textsubscript{2} can also bring some negative effects on oil reservoirs. For example, some mineral deposits due to the chemical reactions can somewhat block pores present in oil reservoirs, which significantly decreases the porosity and permeability of the reservoirs.27-29 Although extensive studies have been carried to investigate the change of petrophysical properties, such as porosity and permeability due to CO\textsubscript{2} injection, the effect of CO\textsubscript{2} on pore size distribution is scarcely published in the literature, which, however, is fundamental for understanding the mechanisms of using CO\textsubscript{2} for enhanced oil recovery.

Previous works14,30,31 have been conducted to investigate the reactions that may occur in oil reservoirs due to the CO\textsubscript{2} injection. After injected into water-containing oil reservoir, CO\textsubscript{2} is readily dissolved into the formation water, forming weak acid solution.15,30,31 It has been proposed that CO\textsubscript{2} will first form carbonic acid after dissolving into formation water. The carbonic acid will decompose into bicarbonate ion and hydrogen ion. Minerals can thus dissolve into the acid solutions.15,30,31 The formation of acid solution can be expressed as,

\begin{equation}
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3
\end{equation}

\begin{equation}
\text{H}_2\text{CO}_3 \leftrightarrow \text{H}^+ + \text{HCO}_3^-
\end{equation}

Minerals in sandstone reservoirs are mainly carbonate mineral, such as dolomite and calcite, and silicate minerals of feldspar, including potassium feldspar, sodium feldspar, and calcium feldspar. These minerals are readily dissolved into the carbonic acid solution.30,31 The possible reactions are given as follows,15,27,28

\begin{equation}
2\text{H}^+ + \text{CaMg} \left(\text{CO}_3\right)_2 \rightarrow \text{Mg}^{2+} \text{Ca}^{2+} + 2\text{HCO}_3^-
\end{equation}

\begin{equation}
\text{H}^+ + \text{CaCO}_3 \rightarrow \text{Ca}^{2+} + \text{HCO}_3^-
\end{equation}

\begin{equation}
2\text{KAlSi}_3\text{O}_8 \rightarrow 2\text{H}^+ + 3\text{H}_2\text{O} \rightarrow \text{Al}_2\text{Si}_2\text{O}_5 \left(\text{OH}\right)_4 + 2\text{K}^+ + 4\text{H}_2\text{SiO}_4
\end{equation}

\begin{equation}
2\text{NaAlSi}_3\text{O}_8 \rightarrow 2\text{H}_2\text{O} + 2\text{CO}_2 \rightarrow \text{Al}_2\text{Si}_2\text{O}_5 \left(\text{OH}\right)_4 + 4\text{SiO}_2 + 2\text{Na}^+ + 2\text{HCO}_3^-
\end{equation}

\begin{equation}
\text{CaAlSi}_2\text{O}_8 \rightarrow \text{H}_2\text{CO}_3 + \text{H}_2\text{O}
\end{equation}

\begin{equation}
\text{CaCO}_3 + \text{Al}_2\text{Si}_2\text{O}_5 \left(\text{OH}\right)_4
\end{equation}

Nuclear magnetic resonance (NMR) is a technique used for detecting the distribution of hydrogen-containing fluid in porous media. When hydrogen-containing fluids are exposed in a static magnetic field, the nuclear magnetic resonance can occur due to the oscillating magnetic field.32,33 NMR technique has been used for evaluating the movable fluid porosity in low-permeability reservoirs.34,35 As for low-permeability reservoirs, fluid cannot flow readily in micro- or nanoscale pores due to the complex pore throat structure, which may directly affect the productivity and development potential of low-permeability reservoirs. The movable fluid porosity is defined as the ratio of the pore volume occupied by movable fluid divided by the total pore volume, which can be used to characterize the features of movable fluid in reservoir. Thereby, the movable fluid porosity is quite important for evaluating the development potential of low-permeability reservoirs.36 Commonly, the centrifugal method based on the NMR technique is mostly applied in determining the movable fluid porosity.36,37 Recently, NMR technique is also used in the oil industry for determining the pore size distribution and the permeability of rock samples derived from oil reservoirs.38-40 To
obtain the pore size distribution, the measured T_2 spectrum should be firstly transformed into pore radius. Based on the mechanisms of NMR technique, the measured T_2 spectrum represents the distribution of transverse relaxation time of hydrogen nucleus of fluid in pores.41,42 Thereby, the pore size correlates with the corresponding transverse relaxation time.43,44 Conventionally, pore size distribution is determined by three commonly used methods, that is, mercury injection, nitrogen adsorption, and micro-CT.10,44,45 Compared to the conventional methods, nuclear magnetic resonance (NMR) technology has no damage to core samples and can determine the pore size distribution more accurately.44 Especially, NMR technique can achieve an accurate description of pores in the micron-nanometer scale, rendering the NMR more potentially applicable in evaluating the pore size distribution of core samples.46-48

In order to avoid the precipitation generated by the reaction between CO\textsubscript{2} and formation water, and the asphaltene precipitation caused by CO\textsubscript{2} extraction light hydrocarbons from crude oil, which can change core physical properties and pore throat distribution, the core samples are saturated only with distilled water but not with formation water and crude oil. Therefore, in comparison with previous publications.46-48 This study is devoted to studying the effects of the chemical reactions between CO\textsubscript{2} and rock minerals on core physical properties and pore size distribution. In this work, the NMR technique is used to investigate the change of pore size distribution and petrophysical properties of sandstone core samples due to the CO\textsubscript{2} injection. Based on the measured T_2 spectrum before and after CO\textsubscript{2} injection, the effect of CO\textsubscript{2} on three kinds of pores, that is, small pores, medium pores, and large pore, is discussed. In addition, the change of petrophysical properties, that is, total porosity, movable fluid porosity, and permeability of the sandstone core samples due to the presence of CO\textsubscript{2}, is also investigated. To our knowledge, studying the effect of asphaltene precipitation on the change of pore size distribution and petrophysical properties during CO\textsubscript{2} flooding using NMR technique has been reported.46-48 but using NMR technique for investigating the effect of CO\textsubscript{2}-core mineral reactions on the change of pore size distribution and petrophysical properties due to CO\textsubscript{2} injection is scarcely reported. This study is expected to help in understanding the fundamental mechanisms of enhancing oil recovery using CO\textsubscript{2} in tight sandstone oil reservoirs.

TABLE 1

Core sample	Clastic materials (wt\%)	Interstitial materials (wt\%)							
	Quartz	Potash feldspar	Plagioclase	Debris type	Hydromica	Chlorite	Calcite	Siliceous	Dolomite
#1	32.7	10.6	26.9	13.8	6.7	2.3	4.8	0.9	1.3
#2	31.4	9.3	27.1	14.9	7.5	2.0	4.7	0.8	2.3

2 | SAMPLES AND METHODS

2.1 Materials

In this study, two sandstone core samples, labeled with #1 and #2, are obtained from Ansai oilfield in Chang 6 Reservoir of China. The length of core samples #1 and #2 is 3.83 and 3.80 cm, respectively, while the two core samples have a uniform core radius of 2.52 cm. The mineral compositions of the two core samples are analyzed using the X-ray diffraction (XRD) analysis. The mineral composition of the two cores is summarized in Table 1. CO\textsubscript{2} used in this experiment has a purity of 99.99 mol\% (Xi’an Guodu Gas Supply Station). Distilled water is used to saturate the core samples.

2.2 Experimental setups

NMR apparatus (Mini-MR, Niumag), as the key apparatus in this experiment, is mainly applied to obtain the T_2 spectrum of the tight sandstone cores. The confinement pressure and back pressure are maintained by a syringe pump (Hai’an Co., Ltd.) and a back pressure valve (Hai’an Co., Ltd.); the measured pressure is read with an accuracy of ±0.5 kPa. The system temperature is controlled by a thermostat with an accuracy of ±0.5 K. A centrifuge setup (Nantong Co., Ltd.) is employed to centrifuge the movable water from core samples. The mineral composition of the two core samples and the produced fluids is analyzed using the X-ray diffraction (XRD) analysis. A core-saturation equipment (Hongbo Co., Ltd.) is used to saturate distilled water into core samples.

2.3 Experimental procedures

Figure 1 presents the schematic of CO\textsubscript{2} injection for investigating the variation of pore size distribution and petrophysical properties of sandstone cores using NMR technique. In this experiment, CO\textsubscript{2} is first injected into the water-saturated core samples. NMR technique is then used to investigate the change of pore size distribution and petrophysical properties of core samples by comparing the measured T_2 spectrum.
before and after CO₂ injection. The detailed experimental procedures are described as follows:

Before the experiment, two core samples are first cleaned with benzene. The cleaned core samples are then dried at 373.15 K for 24 hours to remove the moisture. A permeability meter is then employed to measure the initial permeability of the core samples. The details for the gas permeability measurement can be found anywhere in the literature. Core samples are then vacuumed to saturate with distilled water using a core-saturation equipment. NMR apparatus is then used to scan the saturated core samples to obtain the T_2 spectrum. The measured T_2 spectrum is analyzed to estimate the original total porosity and pore size distribution of the core samples. To obtain the original movable fluid porosity, the water-saturated core samples are first centrifuged for 60 minutes at a constant rate of 9000 r/min to remove the movable water in core samples. T_2 spectrum of the centrifuged core samples is then measured to assess the porosity of the immovable fluid, which is then used to infer the movable fluid porosity.

Next, distilled water is resaturated into the centrifuged core samples. CO₂ is then injected into the core samples at a constant injection rate of 0.5 mL/min at 343.15 K for 48 hours. The back pressure is controlled at a constant pressure of 10.0 MPa. With the knowledge of the total porosity of these core samples, the total injected volume is calculated as about 1000 PV. Meanwhile, the produced fluid is collected instantaneously during the CO₂ injection. The ionic composition of the produced fluid is analyzed to estimate the reactions that may occur among CO₂, water, and core minerals. After CO₂ injection, the core samples are dried again at 373.15 K for 24 hours, of which the gas permeability after CO₂ injection is then measured. By comparing the permeability of core samples before and after CO₂ injection, the effect of CO₂ on the permeability of sandstone cores is analyzed.

The core samples are then saturated with the distilled water again. After water saturation, the core samples are scanned to obtain the T_2 spectrum, which is used to determine the total porosity and pore size distribution of core samples after CO₂ injection. The core samples are consequently centrifuged at a constant rate of 9000 r/min for 60 minutes to remove the movable water residing in core samples. T_2 spectrum is measured again to infer the movable fluid porosity after CO₂ injection. Based on the mechanisms of NMR technique, the T_2 spectra obtained before and after CO₂ injection are converted into pore radius. By comparing the pore size distribution before and after CO₂ injection, the influence of CO₂ injection on pore size distribution in sandstone cores is discussed.

3 | NUCLEAR MAGNETIC RESONANCE (NMR) TECHNIQUE

Based on the mechanisms of NMR technique, nuclear magnetic resonance can occur when hydrogen proton-containing molecules are placed in a static magnetic field. Tight core belongs to solid porous media. In a porous media, the measured T_2 spectrum in a magnetic field is generally affected by the bulk relaxation, diffusion in magnetic gradients, and surface relaxation, which can be expressed as,

$$
\frac{1}{T_2} = \frac{1}{T_{2B}} + \frac{1}{T_{2D}} + \frac{1}{T_{2S}}
$$

(8)

where T_{2B} corresponds to the transverse time due to bulk relaxation, ms; T_{2D} is the transverse time due to the diffusion in magnetic gradients, ms; and T_{2S} represents the transverse time due to the surface relaxation, ms. It has been found that in tight cores, the diffusion relaxation is too small and can be neglected. The surface relaxation strongly correlates with the specific surface area of the tight core, here, the ratio of the pore's surface area to the total pore volume. Therefore, Equation 8 can be transformed to,

$$
\frac{1}{T_2} = \frac{1}{T_{2B}} + \frac{1}{T_{2S}} = \frac{1}{T_{2B}} + \frac{\rho S}{V}
$$

(9)
Where ρ represents the relaxation rate, μm/ms; and S/V represents the specific area, $1/\mu$m; The specific area (S), as depicted in Equation 9, correlates to the radius of the pore throat ($1/\mu$m). The relationship between T_2 spectrum and the radius of the pore throat can be expressed with the following equation,

$$r = CT_2$$

where r is the radius of the pore throat (μm); T_2 spectrum is the transverse relaxation time (ms); and C is a proportional constant (dimensionless). In order to convert T_2 spectrum to pore distribution, the constant C should be determined. As for low-permeability sandstone, the constant C can be determined by the following equation,

$$C = 0.038e^{-0.2872\sqrt{\phi}}$$

where ϕ is the porosity of core sample (%); and k is the permeability of core sample (mD). After obtaining the constant C from Equation 11, the T_2 spectrum of NMR can be eventually converted into the curve of pore size distribution.

4 | RESULTS AND DISCUSSION

4.1 | Variation of the pore size distribution due to the CO$_2$ injection

Figures 2 and 3 present the pore size distribution of the two core samples before and after CO$_2$ injection. Generally, the pore size distribution of core samples after CO$_2$ injection is quite different from that of the original cores. Specifically, by introducing CO$_2$ into core samples, which are initially saturated with distilled water, total volume of the small pores (ie, 0.0001-0.035 μm) increases, while the total volume of the medium pores (ie, 0.035-0.35 μm) decreases. On the contrary, total volume of the large pores (ie, 0.35-20 μm) either increases or decreases depending on the physical properties of core samples. When CO$_2$ is injected into core samples, CO$_2$ can react with core minerals present in the core samples, such as feldspar and carbonate minerals. Small pores may form in the core samples due to the reactions. It is probably the main reason why the total volume of small pores increases. However, the reactions between dissolved CO$_2$ and these core minerals can possibly form precipitate, such as calcium carbonate and kaolinite, which may consequently block the medium pores and further increase the total volume of small pores. As for the core sample #1, the total pore volume of large pores increases, while it decreases for that of the core sample #2. Due to the heterogeneity of the tight core samples, the mineral composition may show a difference in the large pores between the core samples #1 and #2. As for the core sample #1, corrosion reactions dominate between core minerals and the injected CO$_2$, which thus increases the total pore volume of the large pores. However, as for the core sample #2, precipitates resulted from the CO$_2$-core mineral reactions can significantly block the large pore, decreasing the total pore volume of the large pores. In addition, the dissolved CO$_2$ in medium pores may corrode the core minerals by forming large pores, which increases the pore volume of large pores. On the contrary, precipitation resulted from these reactions can also block the large pores, which, however, decreases the total pore volume of large pore. In summary, for the CO$_2$ injection in tight sandstone cores, the pore size distribution of core samples changes greatly before and after CO$_2$ injection. Compared with the large pores, the volume of small pores and medium pores varies greatly, but the total pore volume including small pores, medium pores, and large pores increases (see Table 2), which results in the increase in core physical properties (see Table 3). The variation of pore size distribution for the two core samples is summarized in Table 2.

FIGURE 2 Pore size distribution of the core sample #1 before and after CO$_2$ injection

FIGURE 3 Pore size distribution of the core sample #2 before and after CO$_2$ injection
4.2 Variation of the immovable fluid distribution due to the CO₂ injection

Figures 4 and 5 present distribution of the immovable fluid in pores of the two core samples before and after CO₂ injection. As for the two core samples, we observe that more immovable fluid appears in the small pores after introducing CO₂, while the immovable fluid in the medium pores slightly decreases. CO₂ is not likely affecting the distribution of immovable fluid in the large pores. As has been mentioned above, when CO₂ is injected into core samples, CO₂ can react with the core minerals, forming bunch of small pores. Reservoir fluids may enter and be locked in these created small pores, becoming immovable fluid. Similarly, due to the chemical reactions in medium pores, the medium pores are altered into large pores. As a result, the immovable fluid in medium pores then becomes movable fluid. That is the main reason why the immovable fluid in medium pores decreases.

4.3 Variation of the petrophysical properties of core samples due to the CO₂ injection

Due to the injection of CO₂, the petrophysical properties of reservoir cores, such as total porosity, porosity of the movable fluid, and permeability, are altered. Figures 6 and 7 show the measured \(T_2 \) spectrum of the core samples #1 and #2 before and after CO₂ injection. We calculate the porosity accumulation for the two core samples before and after CO₂ injection, as depicted in Figures 6 and 7. As for the two core samples, the total porosity increases after CO₂ injection due...
to the corrosion of CO\textsubscript{2} on core samples. However, by comparing Figure 6A,B and comparing Figure 7A,B, we find that the immovable fluid in core samples after CO\textsubscript{2} injection changes slightly. By subtracting the porosity of the immovable fluid from the total porosity, the porosity of the movable fluid in each core is obtained, as depicted in Figures 6 and 7. We observe that the porosity of the movable fluid in the two core samples is significantly improved after CO\textsubscript{2} injection.

We measure the permeability of the two core samples before and after CO\textsubscript{2} injection, as summarized in Table 3. It shows that the permeability after CO\textsubscript{2} injection is significantly higher than that of the original core samples. The change of permeability is mainly caused by the reactions between the injected CO\textsubscript{2} and core minerals. As shown in Table 1, based on the XRD analysis, the two core samples contain minerals including feldspar, calcite, and dolomite, which are ready to react with the injected CO\textsubscript{2}. To confirm this conclusion, we measure the ion concentration in the produced fluid. The ion concentration is summarized in Table 4. We find that the ions of Na+, K+, Ca2+, and Mg2+ appear in the produced fluid after CO\textsubscript{2} injection due to the reactions between CO\textsubscript{2} and core minerals. Moreover, the ion concentration of Na+ is much higher than that of K+ and Ca2+, which is because the solubility of albite in acid solution is higher than that of potash feldspar and anorthite.56 As depicted in Equations 5 and 6, Na+ ion and K+ ion in the produced fluid are derived from albite and potash feldspar due to the chemical reactions with CO\textsubscript{2}. In addition, Mg2+ ion appeared in the produced fluid may derive from dolomite due to the reaction with CO\textsubscript{2}, as expressed in Equation 3. The Ca2+ ion in the produced fluid is expected

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{The measured T_2 spectrum of the core sample #1 (A) before and (B) after CO\textsubscript{2} injection. We also show the porosity accumulation for the core sample #1 before and after CO\textsubscript{2} injection in this figure.}
\end{figure}
to derive from the dolomite and calcite because of the reactions between CO$_2$ and dolomite and calcite, which is the main reason that the total porosity and movable fluid porosity increase.

Interestingly, we observe that for the two core samples, the increase in the permeability is uniformly greater than that of porosity. It is likely because the solubility of carbonate minerals in carbonic acid solution is much higher than that of silicate minerals. Thereby, the interstitial minerals, that is, dolomite and calcite, can extensively dissolve, increasing the connectivity of pore throats in core samples; it thus improves the permeability. Additionally, the mineral dissolution also produces some new mineral precipitates during CO$_2$ injection, which blocks the pores present in the core samples. It can be inferred that permeability of the ultra-low-permeability sandstone reservoirs may be more improved than the total porosity after CO$_2$ injection. It is important for improving the seepage characteristics, which can enhance the oil displacement efficiency in ultra-low-permeability sandstone reservoirs.

FIGURE 7 The measured T_2 spectrum of the core sample #2 (A) before and (B) after CO$_2$ injection. We also show the porosity accumulation for the core sample #2 before and after CO$_2$ injection.

TABLE 4 Ion concentrations detected in the produced fluid.

Core No.	Ions	Na$^+$ (mg/L)	K$^+$ (mg/L)	Ca$^{2+}$ (mg/L)	Mg$^{2+}$ (mg/L)
1#		52.64	6.13	28.15	25.06
2#		48.27	7.05	25.62	24.03
5 | CONCLUSIONS

In this work, the change of pore size distribution and petrophysical properties of two sandstone cores is quantitatively compared before and after CO₂ injection using low-field NMR technique. Specifically, by reasonably converting the measured T₂ spectrum to pore radius, the pore size distribution is divided into three kinds of pores; the effect of CO₂-water-rock interactions on different pores is thus evaluated. Moreover, the effect of CO₂ on the petrophysical properties, that is, total porosity, movable fluid porosity, and permeability, is also discussed. The detailed conclusions are summarized as follows:

- By comparing the pore size distribution before and after CO₂ injection, the total volume of small pores is significantly increased, while the volume of medium pores decreases. CO₂ exhibits the least effect on the large pores. It indicates that the reactions among CO₂, water, and core minerals create small pores; however, the precipitation due to the reaction can possibly block the medium pores;
- Due to the interactions among CO₂, water, and core minerals, the immovable fluid porosity increases in the small pores but decreases in the medium pores. It suggests that CO₂ injection increases the total volume of the small pores, while fluid in these created small pores is locked, becoming immovable fluid. Such effect makes the fluid residing in small pores more difficultly be recovered;
- Based on the composition analysis of the produced fluid, it can be inferred that the injected CO₂ reacts with the core minerals, such as albite and potash feldspar. It is the main reason resulting in the appearance of the ions of Na⁺, K⁺, Ca²⁺, and Mg²⁺ in the produced fluid;
- After CO₂ injection, the total porosity, movable fluid porosity, and permeability of the two core samples are improved. More importantly, the increase in permeability is much higher than that of the total porosity, which is critical for the improvement of sandstone tight reservoirs.

ACKNOWLEDGMENTS

This study is financially supported by the National Natural Science Foundation of China (No. 51774236) and Graduate Student Innovation and Practice Ability Training Project of Xi’an Shiyou University (No. YCS19212044), the Youth Innovation Team of Shaanxi Universities. We also greatly acknowledge Dr Hai Huang and Dr Dazhong Ren, who have assisted in conducting the experiments.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Jinsheng Zhao https://orcid.org/0000-0002-8583-683X

REFERENCES

1. Li Q, Li H, Xiao Q. Application of CO₂ miscible flooding on Gao 89-1 low permeability reservoir. SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia. 2011.
2. Jinlong J, Liwen C. An experimental study on the permeability changes of anthractice reservoirs in different depths of Qinshui Basin induced by supercritical CO₂ injection. Energy Sci Eng. 2019;00:1-16. https://doi.org/10.1002/esce.555
3. Li S, Zhang K, Jia N, Liu L. Evaluation of four CO₂ injection schemes for unlocking oils from low-permeability formations under immiscible conditions. Fuel. 2018;234:814-823.
4. Farokhpoor R, Torsater O, Baghbanbashi T, Mork A, Lindeberg EGB. Experimental and numerical simulation of CO₂ injection into upper-triassic sandstones in Svalbard, Norway. SPÉ International Conference on CO₂ Capture, Storage, and Utilization, 10-12 November, New Orleans, Louisiana, USA, 2010.
5. Zhang K, Jia N, Liu L. CO₂ storage in fractured nanopores under-ground: phase behaviour study. Appl Energy. 2019;238:911-928.
6. Liu Y, Jin Z, Li H. Comparison of Peng-Robinson equation of state with capillary pressure model with engineering density-functional theory in describing the phase behavior of confined hydrocarbons. SPE J. 2018;23:1784-1797.
7. Kong S, Huang X, Li K, Song X. Adsorption/desorption isotherms of CH₂ and C₂H₆ on typical shale samples. Fuel. 2019;255:115632.
8. Zhao Y, Sun Y, Liu S, Chen Z, Yuan L. Pore structure characterization of coal by synchrotron radiation nano-CT. Fuel. 2018;215:102-110.
9. Li B, Bai H, Li A, Zhang L, Zhang Q. Experimental investigation on influencing factors of CO₂ Huff and Puff under fractured low-permeability conditions. Energy Sci Eng. 2019;7:1621-1631.
10. Huang T, Zhou X, Yang H, Liao G, Zeng F. CO₂ flooding strategy to enhance heavy oil recovery. Petroleum. 2017;3:68-78.
11. Wu S, Li Z, Wang Z, Sarma HK, Zhang C, Wu M. Investigation of CO₂/N₂ injection in tight oil reservoirs with confinement effect. Energy Sci Eng. 2019;00:1-15. https://doi.org/10.1002/esce.5378
12. Zhao M, Yang Y, Yang H. The study on depositional condition of bitumen and displacement characteristics effect of CO₂ flooding. Sci Technol Eng. 2013;23:50-52. In Chinese.
13. Rosenbauer RJ, Koksalan T, Palandri JL. Experimental investigation of CO₂ brine rock interactions at elevated temperature and pressure: implications for CO₂ sequestration in deep-saline aquifers. Fuel Process Technol. 2005;86:1581-1597.
14. Saeedi A, Piane C, Esteban L, Xie Q. Flood characteristic and fluid rock interactions of a supercritical CO₂, brine, rock system: South West Hub, Western Australia. Int J Greenh Gas Con. 2016;2016(54):309-321.
15. Christina H, Wolfgang VB. Change in cap rock porosity triggered by pressure and temperature dependent CO₂-water-rock interactions in CO₂ storage systems. Petroleum. 2017;3:96-108.
16. Lai J, Wang G, Wang Z, et al. A review on pore structure characterization in tight sandstones. Earth-Sci Rev. 2018;177:436-457.
17. Lai J, Wang G, Chai Y, et al. Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: Examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa depression, Tarim basin of China. AAPG Bull. 2017;101(6):829-862.
22. Assayag N, Iglesias R, Einloft S. Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. *Appl Geochem*. 2009;24:760-767.

23. Fischer RS, Lierscher A, Wandrey M. CO2-brine-rock interactions in deep saline aquifers by mineral trapping and the implications for Songliao Basin, Northeast China. *Energy Sci Eng*. 2017;5(2):81-89.

24. Oussama G, Branko B, Edo B. Changes in pore structure and connectivity induced by CO2 injection in carbonates: a combined poro-scale approach. *Energy Procedia*. 2013;37:5367-5378.

25. Jin C, Liu L, Li Y, Zeng R. Capacity assessment of CO2 storage in deep saline aquifers by mineral trapping and the implications for Songliao Basin, Northeast China. *Energy Sci Eng*. 2017;5(2):81-89.

26. Luquot L, Aadreani M, Gouzer P. CO2 percolation experiment and alteration effects. *Chem Erde-Geochem*. 2010;70(s3):155-164.

27. Luquot L, Aadreani M, Gouzer P. CO2 percolation experiment through chlorite /zeolite-rich sandstone (Pretty Hill Formation- Otway Basin-Australia). *Chem Geol*. 2012;294:75-88.

28. Shiraki R, Dunn TL. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. *Appl Geochem*. 2000;3:265-279.

29. Bacci G, Korre A, Durucan S. The effect of simulated CO2 flooding on the permeability of reservoir rocks. *Enhanced oil recovery proceedings of the third European Symposium, Portsmouth, United Kingdom*. 1981.

30. Assayag N, Iglesias R, Einloft S. Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. *Appl Geochem*. 2009;24:760-767.

31. Oussama G, Branko B, Edo B. Changes in pore structure and connectivity induced by CO2 injection in carbonates: a combined poro-scale approach. *Energy Procedia*. 2013;37:5367-5378.

32. Jin C, Liu L, Li Y, Zeng R. Capacity assessment of CO2 storage in deep saline aquifers by mineral trapping and the implications for Songliao Basin, Northeast China. *Energy Sci Eng*. 2017;5(2):81-89.

33. Liu Y, Wang C. Determination of the absolute adsorption isotherms of CH4 on shale with low-field nuclear magnetic resonance. *Fuel*. 2012;95:152-158.

34. Liu T, Wang S, Fu R. Analysis of rock pore throat structure with NMR technique. *Fuel*. 2019;33:7147-7154.

35. Hornak JP. The basics of NMR. 1996. https://www.cis.rit.edu/htbooks/nmr/inside.htm

36. Zheng K, Xu H, Chen J. Movable fluid study of low permeability reservoir with nuclear magnetic resonance technology. *Geoscience*. 2013;27(3):710-718. In Chinese.

37. Wang W, Miao S, Liu W. A Study to Determine the Moveable Fluid Porosity Using NMR Technology in the Rock Matrix of Xiaoguai Qilfield. *SPE International Oil and Gas Conference and Exhibition in China*, Beijing, China. 1998.

38. Li Z, Wu S, Xia D. An investigation into pore structure and petrophysical property in tight sandstones: a case of the Yanchang Formation in the southern Ordos Basin, China. *Mar Petrol Geol*. 2018;97:390-406.

39. Appel M, Stallmach F, Thomann H. Irreducible fluid saturation determined by pulsed field gradient NMR. *J Pet Sci Eng*. 1998;19:45-54.

40. Bai J, Wang G, Fan Z, et al. Insight into the pore structure of tight sandstones using NMR and HPMI measurements. *Energ fuel*. 2016;30:10200-10214.

41. Bai J, Wang G, Fan Z, et al. Insight into the pore structure of tight sandstones using NMR and HPMI measurements. *Energ fuel*. 2016;30:10200-10214.

42. Yao Y, Liu D. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distribution of coals. *Fuel*. 2012;95:152-158.

43. Lai J, Li P, Sun Z. A new method for analysis of dual pore size distributions in shale using nitrogen adsorption measurements. *Fuel*. 2017;210:446-454.

44. Wang C, Li T, Gao H. Study on the blockage in pores due to asphaltene precipitation during different CO2 flooding schemes with NMR technique. *Petrol Sci Technol*. 2017;16:1600-1666.

45. Wang C, Li T, Gao H. Quantitative study on the blockage degree of pores due to asphaltene precipitation in low-permeability reservoirs with NMR technique [J]. *J Petrol Sci Eng*. 2018;163:703-711.

46. Huang X, Li A, Li X, Liu Y. Influence of typical core minerals on asphaltene precipitation during different CO2 flooding schemes with NMR technique. *Petrol Sci Technol*. 2017;16:1600-1666.

47. Lai J, Li P, Sun Z. A new method for analysis of dual pore size distributions in shale using nitrogen adsorption measurements. *Fuel*. 2017;210:446-454.

48. Wang C, Li T, Gao H. Study on the blockage in pores due to asphaltene precipitation during different CO2 flooding schemes with NMR technique. *Petrol Sci Technol*. 2017;16:1600-1666.

49. Wang C, Li T, Gao H. Quantitative study on the blockage degree of pores due to asphaltene precipitation in low-permeability reservoirs with NMR technique [J]. *J Petrol Sci Eng*. 2018;163:703-711.

50. Huang X, Li A, Li X, Liu Y. Influence of typical core minerals on tight oil recovery during CO2 flooding using the nuclear magnetic resonance technique. *Fuel*. 2013;108:292-302.

51. Huang X, Li A, Li X, Liu Y. Influence of typical core minerals on tight oil recovery during CO2 flooding using the nuclear magnetic resonance technique. *Fuel*. 2013;108:292-302.

52. Coates GR, Xiao L, Prammer MG. NMR Logging Principles and Applications. Houston: Halliburton Energy Services Publication.

53. Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance. *Phys Rev*. 1948;73(3):679-712.

54. Gao H, Liu YL, Zhang Z. Impact of secondary and tertiary floods on microscopic residual oil distribution in medium-to-high
permeability cores with NMR technique. *Energy Fuel.* 2015;29:4721-4729.

55. Fang T, Zhang L, Liu N. Quantitative characterization of pore structure of tight gas sandstone reservoirs by NMR T_2 spectrum technology: a case study of Carboniferous-Permian tight sandstone reservoir in Linqing depression. *Acta Petrolei Sinica.* 2017;8:903-916. In Chinese.

56. Chi EX, Lan B, Xiao YQ. Impact of temperature and CO$_2$ in solution on feldspar solubility. *J Water Resour Water Eng.* 2014;25:230-232.

How to cite this article: Zhao J, Wang P, Zhang Y, Ye L, Shi Y. Influence of CO$_2$ injection on the pore size distribution and petrophysical properties of tight sandstone cores using nuclear magnetic resonance. *Energy Sci Eng.* 2020;8:2286–2296. https://doi.org/10.1002/ese3.663