Nilmanifolds with a calibrated G_2-structure

Diego Conti and Marisa Fernández

April 1, 2011

Abstract

We introduce obstructions to the existence of a calibrated G_2-structure on a Lie algebra g of dimension seven, not necessarily nilpotent. In particular, we prove that if there is a Lie algebra epimorphism from g to a six-dimensional Lie algebra h with kernel contained in the center of g, then h has a symplectic form. As a consequence, we obtain a classification of the nilpotent Lie algebras that admit a calibrated G_2-structure.

MSC classification: Primary 53C38; Secondary 53C15, 17B30

Key words: calibrated G_2 forms, nilpotent Lie algebras, Lefschetz property

1 Introduction

A Riemannian 7-manifold with holonomy contained in G_2 can be characterized by the existence of an associated parallel 3-form. The first examples of complete metrics with holonomy G_2 were given by Bryant and Salamon in [4], and the first examples of compact manifolds with such a metric were constructed by Joyce in [16]. Explicit examples on solvable Lie groups were constructed in [3]; examples on nilpotent Lie groups can be obtained by taking a nilpotent six-dimensional group with a half-flat structure and solving Hitchin’s evolution equations (see [9, 15]). More generally, one can consider G_2-structures where the associated 3-form φ is closed: then φ defines a calibration ([14]), and the G_2-structure is said to be calibrated. An equivalent condition is that the intrinsic torsion lies in the component $\mathcal{X}_2 \cong g_2$ ([10]).

Compact calibrated G_2 manifolds have interesting curvature properties. It is well known that a G_2 holonomy manifold is Ricci-flat, or equivalently, both Einstein and scalar-flat. On a compact calibrated G_2 manifold, both the Einstein condition ([6]) and scalar-flatness ([8]) are equivalent to the holonomy being contained in G_2. In fact, [4] shows that the scalar curvature is always non-positive.

Constructing examples is not a straightforward task. For instance, [7] classifies calibrated G_2-manifolds on which a simple groups acts with cohomogeneity one, and no compact manifold occurs in this list. On the other hand, the second author exhibited the first example of a compact calibrated G_2-manifold that
does not have holonomy G_2 \[11\]. This example is given in terms of a nilpotent Lie algebra \mathfrak{g} and an element of $\Lambda^3 \mathfrak{g}^*$ that corresponds to a closed left-invariant 3-form on the associated simply-connected Lie group. Since the structure constants are rational, there exists a uniform discrete subgroup \[18\]; the quotient, called a nilmanifold, has an induced calibrated G_2-structure.

In this paper we pursue this approach, and classify the nilpotent 7-dimensional Lie algebras that admit a calibrated G_2-structure. Since the structure constants turn out to be rational, each Lie algebra determines a nilmanifold. So, we obtain 12 compact calibrated G_2 nilmanifolds (see Theorem \[4\] Lemma \[5\] and Lemma \[6\]). Three of them are reducible: they are the product of a circle with a symplectic half-flat nilmanifold, the latter being classified in \[8\]. The remaining nine are new.

The proof is based on two necessary conditions that a Lie algebra must satisfy for a calibrated G_2-structure to exist (see Proposition \[1\] and Lemma \[3\]).

Our first obstruction is related to a construction of \[11\]. Suppose that M is a 7-manifold with a calibrated G_2 form φ, and X is a unit Killing field, i.e. $\mathcal{L}_X \varphi = 0$. Then if $\eta = X^\flat$, we can write

$$\varphi = \omega \wedge \eta + \psi^+,$$

where ω, ψ^+ and $d\eta$ are basic forms with respect to the 1-dimensional foliation defined by X. Suppose in addition that X is the fundamental vector field of a free S^1 action; then basic forms can be identified with forms on M/S^1. By

$$0 = \mathcal{L}_X \varphi = d(X \lrcorner \varphi) = d\omega,$$

ω is a symplectic form on M/S^1. Moreover

$$0 = \omega \wedge d\eta + d\psi^+$$

implies that $[d\eta]$ is in the kernel of the map

$$H^2(M/S^1) \to H^4(M/S^1), \quad [\beta] \to [\beta \wedge \omega].$$

If this map is an isomorphism, then the S^1-bundle is trivial: this puts topological restrictions on M, which translate to algebraic conditions in our setup. A similar method was used in \[8\].

In principle, these restrictions reduce our problem to the classification of symplectic nilpotent Lie algebras of dimension six for which the map $H^2 \to H^4$ is non-injective (see the remark before Lemma \[3\]). The complexity of the required calculations, however, motivate a different approach. In analogy with \[9\], we introduce a second obstruction, that requires computing the space of closed 3-forms. It consists in the observation that $(X \lrcorner \varphi)^3$ must be nonzero, whenever X is a nonzero vector and φ a 3-form defining a G_2-structure.

The final ingredient is Gong's classification of 7-dimensional indecomposable nilpotent Lie algebras \(12\). This list contains 140 Lie algebras and 9 one-parameter families; in addition, there are 35 decomposable nilpotent Lie algebras \(17, 19\). Calculations on a case-by-case basis show that our list of 12 examples is complete.
2 Calibrated G_2-structures and obstructions

In this section we show obstructions to the existence of a calibrated G_2 form on a Lie algebra (not necessarily nilpotent). First, we recall some definitions and results about G_2-structures.

Let us consider the space O of the Cayley numbers, which is a non-associative algebra over \mathbb{R} of dimension 8. Thus, we can identify \mathbb{R}^7 with the subspace of O consisting of pure imaginary Cayley numbers. Then, the product on O defines on \mathbb{R}^7 the 3-form given by

$$e^{127} + e^{347} + e^{567} + e^{135} - e^{236} - e^{146} - e^{245}$$

(1)

(see [10] and [13] for details), where $\{e^1, \ldots, e^7\}$ is the standard basis of $(\mathbb{R}^7)^*$. Here, e^{127} stands for $e^1 \wedge e^2 \wedge e^7$, and so on. The group G_2 is the stabilizer of (1) under the standard action of $GL(7, \mathbb{R})$ on $\Lambda^3(\mathbb{R}^7)^*$. G_2 is one of the exceptional Lie groups, and it is a compact, connected, simply connected simple Lie subgroup of $SO(7)$ of dimension 14.

A G_2-structure on a 7-dimensional Riemannian manifold (M, g) is a reduction of the structure group $O(7)$ of the frame bundle to G_2. Manifolds admitting a G_2-structure are called G_2 manifolds. The existence of a G_2-structure on (M, g) is determined by a global 3-form φ (the G_2 form) which can be locally written as (1) with respect to some (local) basis $\{e^1, \ldots, e^7\}$ of the (local) 1-forms on M. We say that the G_2 manifold M has a calibrated G_2-structure if φ is closed, i.e. $d\varphi = 0$, where d denotes the Chevalley-Eilenberg differential on \mathfrak{g}^*. If Γ is a discrete subgroup of G, a G_2-structure on \mathfrak{g} induces a G_2-structure on the quotient $\Gamma \backslash G$. Moreover, in [18] it is proved that if \mathfrak{g} is nilpotent with rational structure constants, then the associated simply connected Lie group G admits a uniform discrete subgroup Γ. Therefore, a G_2-structure on \mathfrak{g} determines a G_2-structure on the compact manifold $\Gamma \backslash G$, which is called a compact nilmanifold; and if \mathfrak{g} has a calibrated G_2-structure, the G_2-structure on $\Gamma \backslash G$ is also calibrated.

In order to show obstructions to the existence of a calibrated G_2 form on a Lie algebra \mathfrak{g}, let us consider first a direct sum $\mathfrak{g} = \mathfrak{h} \oplus \mathbb{R}$. If φ is a G_2 form on \mathfrak{g}, and the decomposition is orthogonal with respect to the underlying metric, then

$$\varphi = \omega \wedge \eta + \psi^+,$$
where ω, ψ^+ are forms on \mathfrak{h} and η generates the dual of the ideal \mathbb{R}. The pair (ω, ψ^+) defines an SU(3)-structure on \mathfrak{h}. The condition that φ is closed is equivalent to both ω and ψ^+ being closed; this means that the SU(3)-structure is symplectic half-flat. There are exactly three nilpotent Lie algebras of dimension six that admit a symplectic half-flat structure, classified in [8]. So, if we focus our attention on decomposable nilpotent Lie algebras, there are at least three 7-dimensional Lie algebras with a calibrated G$_2$-structure; we will see that these are all.

More generally, every 7-dimensional nilpotent Lie algebra fibres over a nilpotent Lie algebra of dimension six. In fact if ξ is in the center of \mathfrak{g}, then the quotient $\mathfrak{g}/\text{Span}\{\xi\}$ has a unique Lie algebra structure that makes the projection map $\mathfrak{g} \rightarrow \mathfrak{g}/\text{Span}\{\xi\}$ a Lie algebra morphism. Moreover, due to the nilpotency assumption every epimorphism $\mathfrak{g} \rightarrow \mathfrak{h}$, with \mathfrak{h} of dimension six, is of this form. Using the pullback, we can identify forms on the quotient with basic forms on \mathfrak{g}; in this setting, α is basic if $\xi \lrcorner \alpha = 0$.

Given a G$_2$-structure on \mathfrak{g} with associated 3-form φ and a nonzero vector ξ in the center, let $\eta = \xi \flat$; then we can write

$$\varphi = \omega \wedge \eta + \psi^+, \quad \xi \lrcorner \omega = 0 = \xi \lrcorner \psi^+, \quad \xi \lrcorner \eta = 0,$$

and up to a normalization coefficient the forms (ω, ψ^+) define an SU(3)-structure on the six-dimensional quotient (see also [1]). In analogy with the case of a circle bundle, we shall think of η as a connection form, and $d\eta$ as the curvature.

Proposition 1. Let \mathfrak{g} be a 7-dimensional Lie algebra with a calibrated G$_2$-structure and a non-trivial center. If $\pi: \mathfrak{g} \rightarrow \mathfrak{h}$ is a Lie algebra epimorphism with kernel contained in the center, and \mathfrak{h} of dimension six, then \mathfrak{h} admits a symplectic form ω, and the curvature form is in the kernel of

$$H^2(\mathfrak{h}^*) \xrightarrow{\wedge \omega} H^4(\mathfrak{h}^*). \quad (2)$$

If the curvature form is exact on \mathfrak{h}, then $\mathfrak{g} \cong \mathfrak{h} \oplus \mathbb{R}$ as Lie algebras.

Proof. Write

$$\varphi = \pi^* \omega \wedge \eta + \pi^* \psi^+$$

where (ω, ψ^+) are forms on \mathfrak{h}. Since d commutes with the pullback,

$$0 = d\varphi = d\pi^* \omega \wedge \eta + \pi^* \omega \wedge d\eta + \pi^* d\psi^+, \quad \pi^* d\omega, \; d\eta \text{ and } \pi^* d\psi^+ \text{ are basic.}$$

Thus ω is a symplectic form and $d\eta$ is in the kernel of (2).

Now suppose that $d\eta$ is exact on \mathfrak{h}. Then, the epimorphism $\pi: \mathfrak{g} \rightarrow \mathfrak{h}$ is trivial, that is $\mathfrak{g} = \mathfrak{h} \oplus \mathbb{R}$. More precisely, we can choose a different, closed connection form $\tilde{\eta}$, and $\mathfrak{g} = \ker \tilde{\eta} \oplus \ker \pi$ is a direct sum of Lie algebras; by construction, $\ker \tilde{\eta}$ is isomorphic to \mathfrak{h}.

\qed
Remark. In the previous Proposition, we must notice that when the curvature form is zero, \((\omega, \psi^+\)) is a symplectic half-flat structure on \(\mathfrak{h}\). Therefore, if \(\mathfrak{h}\) is nilpotent, by [8], \(\mathfrak{h}\) is one of
\[(0, 0, 0, 0, 0, 0), \quad (0, 0, 0, 0, 12, 13), \quad (0, 0, 0, 12, 13, 23).
\]
With notation from [19], \((0, 0, 0, 0, 12, 13)\) represents a Lie algebra with a fixed basis \(e^1, \ldots, e^6\) of \(\mathfrak{g}^*\), satisfying
\[de^1 = 0 = de^3 + de^4, \quad de^5 = e^{12}, \quad de^6 = e^{13}.
\]

Remark. Another obstruction to the existence of a calibrated \(G_2\)-structure on a nilpotent Lie algebra is given by the condition \(b_3 > 0\). Indeed, if \(\varphi\) is a closed \(G_2\) form on a nilpotent Lie algebra \(\mathfrak{g}\), and \(X\) is a nonzero vector in the center of \(\mathfrak{g}\), then \(\mathcal{L}_X \varphi = 0\), so \(X \cdot \varphi\) is closed. If \(\varphi\) were exact, say \(\varphi = d\beta\), then the 7-form
\[(X \cdot \varphi) \wedge (X \cdot \varphi) \wedge \varphi = d((X \cdot \varphi) \wedge (X \cdot \varphi) \wedge \beta)
\]
would also be exact, hence zero, which is absurd. On the other hand, \(b_3\) is always positive on a nilpotent Lie algebra of dimension seven.

Proposition 1 motivates the following definition. We say that a 6-dimensional Lie algebra \(\mathfrak{h}\) satisfies the 2-Lefschetz property if, for every symplectic structure on \(\mathfrak{h}\), the map (2) is an isomorphism. This condition holds trivially when \(\mathfrak{h}\) has no symplectic structure, namely when \(\mathfrak{h}\) is one of
\[(0, 0, 0, 12, 23, 14 + 35), \quad (0, 0, 0, 12, 23, 14 - 35), \quad (0, 0, 0, 12, 15 + 34),
\]
\[(0, 0, 0, 0, 12 + 34), \quad (0, 0, 12, 13, 14 + 23, 34 + 52), \quad (0, 0, 12, 13, 14, 34 + 52), \quad (0, 0, 0, 12, 14, 24).
\]

It is well known [2] that if \((\mathfrak{h}, \omega)\) is a 6-dimensional, symplectic nilpotent Lie algebra, the map
\[H^1(\mathfrak{h}^*) \overset{\wedge \omega^2}{\longrightarrow} H^5(\mathfrak{h}^*).
\]
is not surjective. However, in the next proposition, we prove that some of those Lie algebras satisfy the 2-Lefschetz property.

Proposition 2. Among 6-dimensional nilpotent Lie algebras with a symplectic structure, those that satisfy the 2-Lefschetz property are
\[(0, 0, 0, 0, 0, 0); \quad (0, 0, 12, 13, 23, 14); \quad (0, 0, 12, 13, 23, 14 + 25).
\]

Proof. In the abelian case, the bilinear map
\[H^2 \otimes H^2 \rightarrow H^4
\]
induced by the wedge product is non-degenerate, in the sense that for every nonzero \(\beta \in H^2\), the induced linear map \(\cdot \wedge \beta: H^2 \rightarrow H^4\) is an isomorphism.
For the second Lie algebra, the cohomology class of a generic symplectic form is represented by
\[\omega = \lambda_1 e^{16} + \lambda_2 (e^{15} + e^{24}) + \lambda_3 e^{25} + \lambda_4 (e^{34} - e^{26}); \]
non-degeneracy implies \(\lambda_4 \neq 0 \). The map \(H^2 \to H^4 \) of (2) is represented by the matrix
\[
\begin{pmatrix}
\lambda_3 & 2\lambda_4 & \lambda_1 & 2\lambda_2 \\
\lambda_4 & 0 & 0 & \lambda_1 \\
0 & 0 & 0 & -2\lambda_4 \\
0 & 0 & \lambda_4 & \lambda_3
\end{pmatrix}
\]
which is invertible by the assumption \(\lambda_4 \neq 0 \).

Similarly, for the last Lie algebra
\[\omega = \lambda_1 e^{14} + \lambda_2 (e^{15} + e^{24}) - \lambda_3 (e^{26} - e^{34}) + \lambda_4 (e^{16} + e^{35}). \]
The map (2) is represented by
\[
\begin{pmatrix}
\lambda_3 & 2\lambda_4 & \lambda_1 & 2\lambda_2 \\
-\lambda_4 & 2\lambda_3 & 2\lambda_2 & -\lambda_1 \\
0 & 0 & -2\lambda_3 & 2\lambda_4 \\
0 & 0 & -\lambda_4 & -\lambda_3
\end{pmatrix}
\]
which is invertible unless \(\lambda_2^2 + \lambda_3^2 = 0 \), which makes \(\omega \) degenerate.

For all but three of the remaining Lie algebras, we observe that the bilinear map
\[H^2 \otimes H^2 \to H^4 \]
is degenerate in the sense that, for every nonzero \(\beta \in H^2 \), the map
\[\alpha \to \alpha \wedge \beta, \quad H^2 \to H^4 \]
is non-injective. The three exceptions are
\((0, 0, 12, 13, 23, 14 - 25), \quad (0, 0, 0, 12, 13, 23), \quad (0, 0, 0, 0, 0, 12). \)

However, either Lie algebra has a symplectic form that makes the map (2) non-injective. In fact, on the Lie algebra \(\mathfrak{h} \) defined by the equations \((0, 0, 12, 13, 23, 14 - 25) \), consider the symplectic form
\[\omega = -e^{16} + e^{15} + e^{35} + e^{34} + e^{24} - e^{26}. \]
Then one can check that \(e^{14} + e^{25} + e^{15} + e^{24} \) defines a non-trivial class in \(H^2(\mathfrak{h}^*) \), but
\[(e^{14} + e^{25} + e^{15} + e^{24}) \wedge \omega = 2e^{1245} = 2d(e^{146}). \]
Now, on the Lie algebra \((0, 0, 0, 12, 13, 23) \) we consider the symplectic form \(\omega = e^{14} + e^{26} + e^{35} \). Then,
\[(-e^{15} - e^{24} + e^{36}) \wedge \omega = d(e^{356}); \]
finally, on the Lie algebra \((0, 0, 0, 0, 0, 12) \),
\[(e^{16} + e^{25} + e^{34}) \wedge e^{13} = -d(e^{356}). \]
In principle, one could try to classify all pairs \((\mathfrak{h}, \omega)\), with \(\mathfrak{h}\) nilpotent of dimension six and \(\omega\) a symplectic form on \(\mathfrak{h}\), for which (2) is non-injective. This means that \(\omega \wedge \gamma = d\psi^+\), for some \(\psi^+ \in \Lambda^3\mathfrak{h}^*\) and some closed non-exact 2-form \(\gamma \in \Lambda^2\mathfrak{h}^*\). If in addition, \((\omega, \psi^+)^\perp\) are compatible in the sense that they define an SU(3)-structure, then declaring \(de^\gamma = \gamma\) one obtains a 7-dimensional Lie algebra \(\mathfrak{g}\) with a calibrated \(G_2\)-structure. By Proposition 1 all calibrated \(G_2\)-structures on indecomposable nilpotent Lie algebras are obtained in this way.

However, these calculations turn out to be difficult (although in one dimension less a similar approach was pursued successfully in [8]), and for this reason we shall use a different method (see Section 4), starting with Gong’s classification of 7-dimensional Lie algebras. In fact, given a Lie algebra, it is straightforward to compute the space of its closed 3-forms. In the spirit of [9], the existence of a calibrated \(G_2\)-structure puts restrictions on this space. Whilst straightforward, the following result turns out to give an effective obstruction.

Lemma 3. Let \(\mathfrak{g}\) be a 7-dimensional nilpotent Lie algebra. If there is a nonzero \(X\) in \(\mathfrak{g}\) such that \((X \cdot \phi)^3 = 0\) for every closed 3-form on \(\mathfrak{g}\), then \(\mathfrak{g}\) has no calibrated \(G_2\)-structure.

Proof. Obvious.

Remark. When \(\mathfrak{g}\) fibers over a non-symplectic Lie algebra \(\mathfrak{h}\), this obstruction is satisfied automatically. Indeed, suppose \(\pi: \mathfrak{g} \to \mathfrak{h}\) is a Lie algebra epimorphism; then any closed 3-form on \(\mathfrak{g}\) can be written as
\[
\pi^*\omega \wedge \eta + \pi^*\psi^+,
\]
as in the proof of Proposition 1. So \(\omega\) is a closed form on \(\mathfrak{h}\); if we assume \(\mathfrak{h}\) has no symplectic form, then \(\omega^3 = 0\). Then the condition of Lemma 3 is satisfied with \(X\) a generator of \(\ker \pi\).

3 Decomposable case

In this section we classify the decomposable nilpotent Lie algebras with a calibrated \(G_2\)-structure. Indeed, we prove:

Theorem 4. Among the 35 decomposable nilpotent Lie algebras of dimension 7, those that have a calibrated \(G_2\)-structure are
\[
(0, 0, 0, 0, 0, 0, 0), \quad (0, 0, 0, 0, 12, 13, 0), \quad (0, 0, 0, 12, 13, 23, 0).
\]

Proof. By the remark at the beginning of Section 2 we know that these three Lie algebras have a calibrated \(G_2\)-structure (see [11] where the second of these Lie algebras was considered). In fact, on the non-abelian Lie algebras \((0, 0, 0, 0, 12, 13)\) and \((0, 0, 0, 12, 13, 23)\) we can consider the symplectic half-flat structure \((\omega_1, \psi_1^+)\) and \((\omega_2, \psi_2^+)\), respectively, defined by
\[
\omega_1 = e^{14} + e^{26} + e^{35}, \quad \psi_1^+ = e^{123} + e^{156} + e^{245} - e^{346},
\]
and
\[\omega_2 = e^{16} + 2e^{25} + e^{34}, \quad \psi_2^+ = e^{123} + e^{145} + e^{246} - e^{356}. \]

Using Lemma 3 we can see that the decomposable Lie algebra
\[0, 0, 0, 12, 34, 36 \]
has no calibrated G_2-structure. Indeed a basis of the space Z^3 of the closed 3-forms is given by
\[e^{123}, e^{124}, e^{125}, e^{134}, e^{135}, e^{136}, e^{137}, e^{145}, e^{146}, e^{234}, e^{235}, e^{236}, \]
\[e^{237}, e^{245}, e^{246}, -e^{126} + e^{345}, e^{346}, e^{347}, e^{127} + e^{356}, e^{367}, e^{467}. \]

Thus $e_7 \cdot Z^3$ is the span of $e^{13}, e^{23}, e^{12}, e^{14}, e^{25}, e^{34}, e^{36}, e^{46}$, which contains only degenerate forms.

Since this is the only decomposable nilpotent Lie algebra of dimension seven which does not have the form $\mathfrak{h} \oplus \mathbb{R}$, it remains to prove that if $\mathfrak{g} = \mathfrak{h} \oplus \mathbb{R}$ has a calibrated G_2 form, then \mathfrak{g} must be as in the statement.

Clearly, if \mathfrak{h} is one of the eight Lie algebras defined by (2), Proposition 1 implies that the Lie algebra $\mathfrak{g} = \mathfrak{h} \oplus \mathbb{R}$ has no calibrated G_2 form.

Also, one can check that none of the five Lie algebras defined by
\[
(0, 0, 12, 13, 23, 14, 0), \quad (0, 0, 12, 13, 23, 14 + 25, 0), \quad (0, 0, 12, 13, 23, 14 - 25, 0), \\
(0, 0, 0, 13 + 42, 14 + 23, 0), \quad (0, 0, 0, 0, 12, 14 + 23, 0),
\]
has a calibrated G_2 form because each of these is a bundle over a non-symplectic Lie algebra of dimension six. Explicitly, the base of the bundle and curvature form are given by
\[
\pi: (0, 0, 12, 13, 23, 14, 0) \rightarrow (0, 0, 12, 13, 23, 0), \quad d\eta = e^{14}, \\
\pi: (0, 0, 12, 13, 23, 14 + 25, 0) \rightarrow (0, 0, 12, 13, 23, 0), \quad d\eta = e^{14} + e^{25}, \\
\pi: (0, 0, 12, 13, 23, 14 - 25, 0) \rightarrow (0, 0, 12, 13, 23, 0), \quad d\eta = e^{14} - e^{25},
\]
\[
\pi: (0, 0, 0, 13 + 42, 14 + 23, 0) \rightarrow (0, 0, 0, 0, 13 + 42, 0), \quad d\eta = e^{14} + e^{23}, \\
\pi: (0, 0, 0, 0, 12, 14 + 23, 0) \rightarrow (0, 0, 0, 0, 14 + 23, 0), \quad d\eta = e^{12}.
\]

For each of the remaining 18 Lie algebras of the form $\mathfrak{g} = \mathfrak{h} \oplus \mathbb{R}$, listed in Table 1 along with a basis of the space of closed 3-forms, one can check that the hypothesis of Lemma 3 is satisfied with $X = e_6$.

\[\square\]

4 Indecomposable case

In this section we complete the classification of 7-dimensional nilpotent Lie algebras with a calibrated G_2-structure. We have seen that there are exactly three decomposable Lie algebras of this type. In order to discuss the indecomposable
Table 1: Closed 3-forms on decomposable Lie algebras

| (0, 0, 12, 13, 14 + 23, 24 + 15, 0) | e_{123}, e_{124}, e_{125}, e_{126}, e_{127}, e_{134}, e_{137}, e_{136} + e_{135}, e_{137}, e_{154}, e_{147}, e_
Lie algebras, we refer to Gong’s classification in [12]. This list consists of 140 Lie algebras and 9 one-parameter families.

The one-parameter families are the following:

\[147E = (0, 0, 0, e^{12}, e^{23}, -e^{13}, \lambda e^{26} - e^{15} - (-1 + \lambda)e^{34}), \quad \lambda \neq 0, 1;\]
\[1357M = (0, 0, e^{12}, 0, e^{24} + e^{13}, e^{14}, -(1 + \lambda)e^{34} + e^{15} + e^{26}\lambda), \quad \lambda \neq 0;\]
\[1357N = (0, 0, e^{12}, 0, e^{13} + e^{24} + e^{14}, e^{46} + e^{34} + e^{15} + e^{23}\lambda);\]
\[1357S = (0, 0, e^{12}, 0, e^{13}, e^{24} + e^{23}, e^{25} + e^{34} + e^{16} + e^{15} + \lambda e^{26}), \quad \lambda \neq 1;\]
\[12457N = (0, 0, e^{12}, e^{13}, e^{23}, e^{24} + e^{15}, \lambda e^{25} + e^{26} + e^{34} - e^{35} + e^{16} + e^{14});\]
\[123457I = (0, 0, e^{12}, e^{13}, e^{14} + e^{23}, e^{15} + e^{24}, \lambda e^{25} - (1 + \lambda)e^{34} + e^{16});\]
\[147E1 = (0, 0, 0, e^{12}, e^{23}, -e^{13}, 2e^{26} - 2e^{34} - e^{16}\lambda + \lambda e^{25}), \quad \lambda > 1;\]
\[1357QRS1 = (0, 0, e^{12}, 0, e^{13} + e^{24}, e^{14} - e^{23}, e^{25}\lambda + e^{15} - e^{34}(-1 + \lambda)), \quad \lambda \neq 0;\]
\[12457N2 = (0, 0, e^{12}, e^{13}, e^{23}, -e^{14} - e^{25}, e^{15} - e^{35} + e^{16} + e^{24} + e^{25}\lambda), \quad \lambda \geq 0.\]

Recall that a 3-form of type G_2 has the form ω with respect to some coframe e^1, \ldots, e^7; such a coframe identifies the G_2-structure.

Lemma 5. Exactly three of the above Lie algebras admit a calibrated G_2-structure. Explicit examples are given in terms of a coframe by

\[1357N(\lambda = 1): \quad \sqrt{3}(2e^1 - e^7 - e^6 - e^5), \sqrt{3}(e^4 + e^3 - 2e^2 - e^6 + e^5), 2e^3 - e^6, 2e^5,\]
\[-e^3 + 3e^4 + e^5 - e^6, 2e^3 - e^5 - e^6 + 3e^7, -\sqrt{3}e^6;\]
\[1357S(\lambda = -3): \quad \sqrt{7}(2e^1 + e^2 - e^5 + e^6), 7e^2 + 3e^5 + 5e^6, \sqrt{7}(e^3 + 2e^4 - e^7),\]
\[3e^3 + \frac{7}{2}e^7, -\sqrt{70}e^6, \sqrt{10}(2e^5 + e^6), -2\sqrt{10}e^3.\]
\[147E1(\lambda = 2): \quad \sqrt{3}(2e^1 + e^5 - e^2 - e^6), 3e^2 - e^5 + e^6, e^3 + 2e^4, \sqrt{3}(e^3 + e^7),\]
\[\sqrt{5}(e^6 - e^5), \sqrt{6}(e^5 + e^6), 2\sqrt{2}(e^4 - e^3).\]

Proof. It is straightforward to verify that each coframe in the statement determines a calibrated G_2-structure on the corresponding Lie algebra. Conversely, for each Lie algebra \mathfrak{g} the vector e^7 is in the center, and determines an epimorphism on a 6-dimensional Lie algebra \mathfrak{h}; we view de^7 as the curvature form on \mathfrak{h}, and apply Proposition I.

In the case of 1357M, the generic element of $H^2(\mathfrak{h}^*)$ is represented by

\[\omega = \lambda_6 e^{46} + \lambda_3 e^{23} + \lambda_1 e^{13} + \lambda_5 (e^{15} + e^{34}) + \lambda_2 e^{16} + \lambda_4 (e^{15} + e^{26}).\]

Assume $de^7 \wedge \omega$ is exact. Then λ_3, λ_6 are zero, $\lambda_4 = -\lambda_5 \lambda$ and

\[(\lambda - \lambda^2 - 1)\lambda_5 = 0.\]

Since $\lambda^2 - \lambda + 1$ has no real zeroes, λ_4 and λ_5 are zero as well, and therefore ω^3 is zero. So there is no symplectic form in the cohomology class of ω. By
Proposition 1 if a calibrated G_2-structure existed, then \mathfrak{g} would have to be decomposable, which is absurd.

The other cases are similar.

We now turn to the rest of the list, where no parameters appear.

Lemma 6. In Gong’s list, only six Lie algebras with no parameters in their definition admit a calibrated G_2-structure, which can be expressed in terms of a coframe as follows:

\[
\begin{align*}
0, 0, 12, 0, 0, 13 + 24, 15 & \quad e^1, e^2, e^5, e^6, e^3, e^7, e^4 \\
0, 0, 12, 0, 0, 13, 14 + 25 & \quad e^1, e^3, e^5, e^7, e^2, e^6, e^4 \\
0, 0, 0, 12, 13, 14, 15 & \quad e^1, e^2, e^4, e^7, e^3, e^6, e^3 \\
0, 0, 0, 12, 13, 14 + 23, 15 & \quad e^2 + e^7, e^3 + e^6, e^7, e^6, e^5, e^4, e^1 \\
0, 0, 12, 13, 23, 15, 15 + 24, 16 + 34 & \quad e^2 + e^4, e^7, e^2, e^5, e^3, e^6, e^1 \\
0, 0, 12, 13, 23, 15 + 24, 16 + 25 + 34 & \quad \sqrt{3}(2e^2 + e^5 + e^7), 2e^4 - 3e^5 - e^7, \sqrt{3}(e^1 - e^3 + 2e^6), \\
& \quad e^1 + 3e^3, \sqrt{6}e^7, \sqrt{2}(2e^4 - e^7), 2\sqrt{2}e^1
\end{align*}
\]

Theorem 7. Up to isomorphism, there are exactly 12 nilpotent Lie algebras that admit a calibrated G_2-structure, namely those appearing in Theorem 4, Lemma 5 and Lemma 6.

Proof. We must show that the remaining Lie algebras in Gong’s list satisfy one of the two obstructions of Section 2; we do so in the Appendix, where we reproduce Gong’s list, and note which obstruction applies to each Lie algebra (as a preference, we try to use Proposition 1 rather than Lemma 3 whenever possible, because the former does not require computing the space of closed 3-forms).

Appendix

This appendix contains a list of all indecomposable nilpotent Lie algebras of dimension 7, taken from [12], except the 9 one-parameter families that we listed at the beginning of Section 4. Alongside each Lie algebra \mathfrak{g}, we give a chosen vector $\xi \in \mathfrak{g}$ which satisfies the conditions of Proposition 1 (when marked with a (P)) or Lemma 3 and the structure constants of the quotient $\mathfrak{g}/\text{Span}\{\xi\}$. The word “resists” marks instead the six Lie algebras that resist the obstructions. Below each Lie algebra, we give a basis of its space of closed 3-forms, except when Proposition 1 applies.
Table 2: Step 2 nilpotent Lie algebras of dimension 7

0, 0, 0, 0, 12, 23, 24	e_7	[0, 0, 0, 0, $e_{12}^\parallel, e_{23}^\parallel$]
$e_{123}, e_{124}, e_{125}, e_{126}, e_{127}, e_{134}, e_{135}, e_{136}, e_{145}, e_{137}, e_{146} + e_{127}, e_{147}$		
$e_{234}, e_{235}, e_{236}, e_{237}, e_{245}, e_{246}, e_{256}, e_{257}, e_{345} + e_{137}$		

0, 0, 0, 0, 12, 23, 34	e_7	[0, 0, 0, 0, $e_{12}^\parallel, e_{24}^\parallel$]
$e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{136}, e_{145}, e_{137}, e_{146} - e_{127}, e_{147}$		
$e_{234}, e_{235}, e_{236}, e_{237}, e_{245}, e_{246}, e_{256}, -e_{127} + e_{345}, e_{346}, e_{347}, e_{367}$		

0, 0, 0, 0, 12 + 34, 23, 24	e_5	[0, 0, 0, 0, $e_{12}^\parallel, e_{24}^\parallel$]
$e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{136}, e_{137} + e_{125}, e_{145}, -e_{125} + e_{146}$		
$e_{147}, e_{234}, e_{235}, e_{236}, e_{237}, e_{245}, e_{246}, e_{247}, e_{267}, -e_{125} + e_{345}, e_{346}, e_{347}$		
$e_{347}, -e_{256} + e_{367}, -e_{257} + e_{367}$		

0, 0, 0, 0, 12 + 34, 13, 24	e_7	[0, 0, 0, 0, $e_{12}^\parallel, e_{24}^\parallel, e_{13}^\parallel$]
$e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{136}, e_{137} + e_{125}, e_{145}, e_{146}, e_{147}$		
$e_{234}, e_{235}, e_{236}, e_{237}, e_{245}, e_{246} + e_{125}, e_{247}, -e_{125} + e_{345}, e_{346}, e_{347}$		

0, 0, 0, 0, 12, 14 + 35	$e_6(P)$	[0, 0, 0, 0, 0, $e_{14}^\parallel, e_{15}^\parallel$]
$e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{136}, e_{145}, e_{146}, e_{147}$		
$e_{234}, e_{235}, e_{236}, e_{237}, e_{245}, e_{246} + e_{125}, e_{247}, -e_{125} + e_{345}, e_{346}, e_{347}$		

0, 0, 0, 0, 12 + 34, 15 + 23	$e_7(P)$	[0, 0, 0, 0, 0, $e_{12}^\parallel]
$e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{136}, e_{145}, e_{146}, e_{147}$		
$e_{234}, e_{235}, e_{236}, e_{237}, e_{245}, e_{246} + e_{125}, e_{247}, -e_{125} + e_{345}, e_{346}, e_{347}$		

0, 0, 0, 0, 0, 12 + 34 + 56	e_7	[0, 0, 0, 0, 0, 0]
$e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{136}, e_{145}, e_{146}, e_{147}$		
$e_{234}, e_{235}, e_{236}, e_{237}, e_{245}, e_{246}, e_{256}, e_{345}, e_{346}, e_{356}, e_{456}$		

0, 0, 0, 0, 12 + 34, 13 + 24, 14	e_6	[0, 0, 0, 0, 0, $e_{12}^\parallel, e_{24}^\parallel, e_{13}^\parallel$]
$e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{136}, e_{145}, e_{146}, e_{147}$		
$e_{234}, e_{235}, e_{236}, e_{237}, e_{245}, e_{246}, -e_{125} + e_{246}, e_{247}, e_{125} + e_{345}, e_{346}, e_{347}$		
$e_{347}, e_{457} + e_{167}, e_{467} + e_{157}$		

0, 0, 0, 0, 12 + 34, 13 + 24, 14 - 23	e_7	[0, 0, 0, 0, 0, $e_{12}^\parallel, e_{24}^\parallel, e_{13}^\parallel, e_{14}^\parallel$]
$e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{136}, e_{145}, e_{146}, e_{147}$		
$e_{234}, e_{235}, e_{236}, e_{237}, e_{245}, -e_{125} + e_{246}, e_{247}, e_{125} + e_{345}, e_{346}, e_{347}$		
Table 3: Step 3 nilpotent Lie algebras of dimension 7

Dimension	Lie Algebra	Injection	Description
0, 0, 12, 0, 13, 24, 14	\(e_5\)	\([0, 0, e^{12}, 0, e^{24}, e^{14}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146}, e^{147}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237}, e^{136} - e^{136}, e^{124} - e^{24}, e^{247}, e^{248}, e^{246}, e^{145} - e^{156}, e^{154} + e^{267}, e^{347} + e^{167}, e^{467}\)
0, 0, 12, 0, 13 + 24, 14	\(e_7(P)\)	\([0, 0, e^{12}, 0, e^{13}, e^{23}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146}, e^{147}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
0, 0, 12, 0, 13 + 24, 15	\(e_6\)	\([0, 0, e^{12}, 0, e^{24} + e^{14}, e^{14}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146} + e^{135}, e^{147}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
0, 0, 12, 0, 13 + 24, 15	\(e_7\)	\([0, 0, e^{12}, 0, e^{14} + e^{14}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146} + e^{147}, e^{156}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
0, 0, 12, 0, 13 + 24, 15	\(e_7(P)\)	\([0, 0, e^{12}, 0, e^{14} + e^{14}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146} + e^{147}, e^{156}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
0, 0, 12, 0, 13 + 45, 24	\(e_5\)	\([0, 0, e^{12}, 0, e^{24}, e^{14}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146}, e^{147}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
0, 0, 12, 0, 13 + 45, 15 + 24	\(e_7(P)\)	\([0, 0, e^{12}, 0, e^{14} + e^{14}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146}, e^{147}, e^{156}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
0, 0, 12, 0, 13 + 45, 15 + 24	\(e_6\)	\([0, 0, e^{12}, 0, e^{14} + e^{13}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146}, e^{147}, e^{156}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
0, 0, 12, 0, 13 + 45, 15 + 24	\(e_7(P)\)	\([0, 0, e^{12}, 0, e^{14} + e^{14}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146}, e^{147}, e^{156}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
0, 0, 12, 0, 13 + 45, 15 + 24	\(e_6\)	\([0, 0, e^{12}, 0, e^{14} + e^{14}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146}, e^{147}, e^{156}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
0, 0, 12, 0, 13 + 45, 15 + 24	\(e_7(P)\)	\([0, 0, e^{12}, 0, e^{14} + e^{14}]\)	\(e^{123}, e^{124}, e^{125}, e^{126}, e^{127}, e^{134}, e^{135}, e^{137}, e^{145}, e^{146}, e^{147}, e^{156}, e^{157}, e^{234}, e^{235}, e^{236}, e^{237} + e^{135}, -e^{135} + e^{245}, e^{246}, e^{247}, e^{248} - e^{345} + e^{167}, e^{346} + e^{267}, e^{347} + e^{157}\)
Page	Description		
------	-------------		
0.0, 0, 12, 13, 14, 15	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14, 35	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 35, 15	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 25 + 34	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 24 + 35, 25 + 34	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 15 + 24 + 35, 25 + 34	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 23, 15	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 15 + 24, 23	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 23, 25 + 34	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 15 + 23, 25 + 34	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 24 + 35, 15	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 23, 25 + 34	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 15 + 23, 25 + 34	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 23, 15	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 15 + 24, 23	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 23, 25 + 34	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 14 + 15 + 23, 25 + 34	\(e_7(P) \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 0, 13 + 24 + 56	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 0, 16 + 25 + 34	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 13, 0, 14 + 26 + 35	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 23, -13, 15 + 26 + 16 - 2 * 34	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
0.0, 0, 12, 34, 15 + 36	\(e_7 \)	\([0, 0, 0, e_{12}, e_{13}, e_{14}] \)	
Model	Score	Name	Text
-------	-------	------	------
0, 0, 0, 0, 12, 34, 15 + 24 + 36	e_7	$e^{123}, e^{124}, e^{125}, e^{134}, e^{135}, e^{136}, e^{137}, e^{138}, e^{145}, e^{146}, e^{147}, e^{234}, e^{235}, e^{236}, e^{245}, e^{246}, e^{247}, e^{256}, e^{345}, e^{346}, e^{347}, e^{356}, e^{357}, e^{367}$	
0, 0, 0, 0, 12, 14 + 23, 16 − 35	e_7	$e^{123}, e^{124}, e^{125}, e^{134}, e^{135}, e^{136}, e^{137}, e^{138}, e^{145}, e^{146}, e^{147}, e^{234}, e^{235}, e^{236}, e^{245}, e^{246}, e^{247}, e^{256}, e^{345}, e^{346}, e^{347}, e^{356}, e^{357}, e^{367}$	
0, 0, 0, 0, 12, 14 + 23, 16 + 24 − 35	e_7	$e^{123}, e^{124}, e^{125}, e^{134}, e^{135}, e^{136}, e^{137}, e^{138}, e^{145}, e^{146}, e^{147}, e^{234}, e^{235}, e^{236}, e^{245}, e^{246}, e^{247}, e^{256}, e^{345}, e^{346}, e^{347}, e^{356}, e^{357}, e^{367}$	
0, 0, 0, 0, 12, 14 + 23, 16 + 24 + 25	e_7	$e^{123}, e^{124}, e^{125}, e^{134}, e^{135}, e^{136}, e^{137}, e^{138}, e^{145}, e^{146}, e^{147}, e^{234}, e^{235}, e^{236}, e^{245}, e^{246}, e^{247}, e^{256}, e^{345}, e^{346}, e^{347}, e^{356}, e^{357}, e^{367}$	
0, 0, 0, 0, 12, 13, 24 + 35	e_6(P)	$0, 0, 0, 0, e^{12}, e^{13}, e^{14}, e^{24} + e^{25}$	
0, 0, 0, 0, 12, 13, 24 − 35, 25 + 34	e_7(P)	$0, 0, 0, 0, e^{12}, e^{13}, e^{14}, e^{25} − e^{26} + e^{24} + e^{25}$	
0, 0, 0, 0, 12, 13, 24 + 35, 25 − 34	e_7(P)	$0, 0, 0, 0, e^{12}, e^{13}, e^{14}, e^{25} − e^{26} + e^{25} − e^{24} + e^{26}$	
0, 0, 0, 0, 12, 13, 0, 16 + 24 + 35	e_7	$0, 0, 0, 0, e^{12}, e^{13}, e^{14}, 0$	
0, 0, 0, 0, 13 + 24, 14 − 23, 15 + 26	e_7	$0, 0, 0, 0, e^{12}, e^{14}, e^{24}, e^{14} − e^{24}$	
0, 0, 0, 0, 13 + 24, 14 − 23, 15 + 26	e_7	$0, 0, 0, 0, e^{12}, e^{14}, e^{24}, e^{14} − e^{24}$	

Table 4: Step 4 nilpotent Lie algebras of dimension 7
Table 5: Step 5 nilpotent Lie algebras of dimension 7

0.0, 0.0	12.13, 14, 15, 23	e_6(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 25−34, 23	e_7(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 15+23, 25−34	e_6(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 15+23, 25−34	e_6(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 15+23, 25−34	e_7(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 15+23, 25−34	e_6(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 15+23, 25−34	e_7(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 15+23, 25−34	e_6(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 15+23, 25−34	e_7(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 15+23, 25−34	e_6(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
0.0, 0.0	12.13, 14, 15+23, 25−34	e_7(P)	[0.0, 0.0, e^{12}, e^{13}, e^{14}, e^{15}, e^{23}]
Equation	Description
$0, 0, 12, 13, 14 + 23, 0, 16 + 25 - 34$	e_7, $e_{123}, e_{124}, e_{125}, e_{126}, e_{131}, e_{132}, e_{136}, e_{145} + e_{127}, e_{146}, e_{147}, e_{157} + e_{158}$, $e_{236}, e_{237} + e_{156}, e_{137} + e_{245}, e_{246} + e_{156}, e_{147} + e_{145}, e_{145}, e_{146}, e_{147}, e_{156}, e_{157}, e_{158}$
$0, 0, 12, 13, 14, 23, 15 + 26$	$e_7(P)$, $0, 0, e_{12}, e_{13}, e_{14}, e_{23}$
$0, 0, 12, 13, 14, 23, 16 + 24 + 25 - 34$	$e_7(P)$, $0, 0, e_{12}, e_{13}, e_{14}, e_{23}$
$0, 0, 12, 13, 14, 23, 15 + 26 - 34$	$e_7(P)$, $0, 0, e_{12}, e_{13}, e_{14}, e_{23}$
$0, 0, 12, 13, 0, 14 + 25, 16 + 35$	e_7, $e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{145} + e_{127}, e_{136}, e_{145}, e_{146}, e_{157}$, $e_{236}, e_{237} - e_{245} - e_{246} - e_{146}$, $-e_{135}, e_{146}, e_{147}, -e_{235}, e_{237} - e_{257} + e_{156} - e_{147}, e_{157}$
$0, 0, 12, 13, 0, 14 + 25, 16 + 25 + 35$	e_7, $e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{145} + e_{127}, e_{136}, e_{145}, e_{146}, e_{157}$, $e_{237}, e_{235} - e_{245} + e_{246} + e_{146}$, $-e_{257} + e_{156} + e_{146}, e_{147}, -e_{235}, e_{237} - e_{257} + e_{156} - e_{147}$
$0, 0, 12, 13, 0, 14 + 25, 26 - 34$	e_7, $e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{145} + e_{127}, e_{136}, e_{145}, e_{146}, e_{147}$, $e_{235}, e_{236} + e_{137}, e_{146}, e_{147}, e_{157} + e_{158}, e_{237}$
$0, 0, 12, 13, 0, 14 + 25, 15 + 26 - 34$	e_7, $e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{145} + e_{127}, e_{136}, e_{145}, e_{146}, e_{157}$, $e_{235}, e_{236} + e_{137}, e_{146}, e_{147}, e_{157} + e_{158}, e_{237}$
$0, 0, 12, 13, 0, 14 + 23 + 25, 16 + 24 + 35$	e_7, $0, 0, e_{12}, e_{13}, e_{14}, e_{23} + e_{25} + e_{23}$
$0, 0, 12, 13, 0, 14 + 23 + 25, 16 - 34$	e_7, $0, 0, e_{12}, e_{13}, 0, e_{23} + e_{24} + e_{25}$
$0, 0, 12, 13, 0, 14 + 23 + 25, 26 - 34$	e_7, $e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{145} + e_{127}, e_{136}, e_{145}, e_{146}, e_{157}$, $e_{235}, e_{236} + e_{137}, e_{146}, e_{147}, e_{157} + e_{158}, e_{237}$
$0, 0, 12, 13, 0, 14 + 23 + 25, 15 + 26 - 34$	e_7, $0, 0, e_{12}, e_{13}, 0, e_{23} + e_{25} + e_{23}$
$0, 0, 12, 13, 0, 14 + 23 + 25, 15 + 26 + 24 + 34$	e_7, $0, 0, e_{12}, e_{13}, 0, e_{23} + e_{25} + e_{23}$
$0, 0, 12, 13, 15 + 24, 16 + 34$	e_7, $e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{145} + e_{127}, e_{136}, e_{145} + e_{146}$, $e_{147}, e_{234}, e_{235}, e_{236} + e_{137}, e_{146}, e_{147}, e_{148}, e_{156}, e_{157}, e_{158}$, $e_{235}, e_{236} + e_{137}, e_{146}, e_{147}, e_{148}, e_{156}, e_{157}, e_{158}$
$0, 0, 12, 13, 15 + 24, 16 + 25 + 24$	e_7, $e_{123}, e_{124}, e_{125}, e_{126}, e_{134}, e_{135}, e_{145} + e_{127}, e_{136}, e_{145} + e_{146}$, $e_{147}, e_{234}, e_{235}, e_{236} + e_{137}, e_{146}, e_{147}, e_{148}, e_{156}, e_{157}, e_{158}$
$0, 0, 12, 13, 15 + 24, 16 + 25 + 34$	e_7, $0, 0, e_{12} + e_{13}, e_{23} + e_{24} + e_{25}$
$0, 0, 12, 13, 15 + 24, 16 + 25 + 34$	e_7, $0, 0, e_{12} + e_{13}, e_{23} + e_{24} + e_{25}$
$0, 0, 12, 13, 15 + 24, 16 + 25 + 34$	e_7, $0, 0, e_{12} + e_{13}, e_{23} + e_{24} + e_{25}$
Acknowledgments. This work has been partially supported through Project MICINN (Spain) MTM2008-06540-C02-01.

References

[1] V. Apostolov and S. Salamon, Kähler reduction of metrics with holonomy G_2, Comm. Math. Phys. 246 (2004) 43–61.

[2] C. Benson and C. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988) 513–518.

[3] R. L. Bryant, Some remarks on G_2-structures. Proceedings of Gökova Geometry-Topology Conference 2005, Gökova Geometry/Topology Conference (GGT), Gökova, 2006, pp. 75–109.
[4] R. Bryant and S. Salamon, On the construction of some complete metrics with exceptional holonomy, *Duke Math. J.* 58 (1989) 829–850.

[5] S. Chiossi and A. Fino, Conformally parallel G_2 structures on a class of solvmanifolds, *Math. Z.* 252 (2006) 825–848.

[6] R. Cleyton and S. Ivanov, On the geometry of closed G_2-structures, *Comm. Math. Phys.* 270 (2007) 53–67.

[7] R. Cleyton and A. Swann, Cohomogeneity-one G_2-structures, *J. Geom. Phys.* 44 (2002) 202–220.

[8] D. Conti and A. Tomassini, Special symplectic six-manifolds, *Q. J. Math.* 58 (2007) 297–311.

[9] D. Conti, Half-flat nilmanifolds, 2010, *Math. Ann.* In press.

[10] M. Fernández and A. Gray, Riemannian manifolds with structure group G_2, *Annali di Mat. Pura Appl.* 32 (1982) 19–45.

[11] M. Fernández, An example of a compact calibrated manifold associated with the exceptional Lie group G_2, *J. Differ. Geom.* 26 (1987): 367–370.

[12] M-P. Gong, *Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and \mathbb{R})*, Ph. D. Thesis, University of Waterloo, Ontario, Canada, 1998.

[13] A. Gray, Vector cross products on manifolds, *Trans. Amer. Math. Soc.* 141 (1969) 463–504.

[14] R. Harvey and H. B. Lawson, Calibrated geometries, *Acta Math.* 148 (3) (1982) 47–157.

[15] N. Hitchin, Stable forms and special metrics, in *Global Differential Geometry: The Mathematical Legacy of Alfred Gray* volume 288 of *Contemp. Math.*, Amer. Math. Soc., 2001, pp. 70–89.

[16] D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G_2, I and II, *J. Diff. Geom.* 43 (1996) 291–328 and 329–375.

[17] L. Magnin, Sur les algèbres de Lie nilpotentes de dimension ≤ 7, *J. Geom. Phys.* 3 (1986) 119–144.

[18] A. I. Malcev. On a class of homogeneous spaces, reprinted in *Amer. Math. Soc. Translations* Series 1, 9 (1962), 276–307.

[19] S. Salamon, Complex structures on nilpotent Lie algebras, *J. Pure Appl. Algebra* 157 (2001) 311–333.

Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano, Italy.
diego.conti@unimib.it

Universidad del País Vasco, Facultad de Ciencia y Tecnología, Departamento de Matemáticas, Apartado 644, 48080 Bilbao, Spain.
marisa.fernandez@ehu.es