Half-Magnetic Topological Insulator with Magnetization-Induced Dirac Gap at a Selected Surface

Ruie Lu,1,*, Hongyi Sun,1,*, Shiv Kumar,2,*, Yuan Wang,1,*, Mingqiang Gu,1, Meng Zeng,1, Yu-Jie Hao,1, Jiayu Li,1, Jifeng Shao,1, Xiaoming Ma,1, Zhanyang Hao,1, Ke Zhang,2, Wumiti Mansuer,2, Jiawei Mei,1, Yue Zhao,1, Cai Liu,1, Ke Deng,1, Wen Huang,1, Bing Shen,3, Kenya Shimada,2, Eike F. Schwier,2,† Chang Liu,1,§ Qiang Liu,1,‡ and Chaoyu Chen1,‖

1Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
2Hiroshima Synchrotron Radiation Centre, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
3School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

†Corresponding author.
‡Corresponding author.
§Corresponding author.
*These authors contributed equally to this work.
Phy.
©2021 APS. All rights reserved. DOI: 10.1103/PhysRevX.11.011039

I. INTRODUCTION

Magnetic topological insulators (TI) showcase quantum magnetism and nontrivial band topology, thereby providing a unique playground for exploring exotic quantum phenomena in condensed matter physics [1–16]. One paradigmatic example is the so-called axion-insulator phase, which exhibits bulk topological magnetoelastic response with the phase angle $\theta = \pi$ protected by either inversion or time-reversal symmetry [10,15,16]. The resultant bulk-boundary correspondence is the predicted half-quantized surface Hall conductance $e^2/2h$ in the absence of an external magnetic field given that a magnetic gap exists at the surface. The intrinsic magnetic TI MnBi$_2$Te$_4$/(Bi$_2$Te$_3$)$_n$ ($n = 1, 2, 3, \ldots$), comprising alternating layers of magnetic TI MnBi$_2$Te$_4$ and nonmagnetic TI Bi$_2$Te$_3$, has the potential for realizing both the quantum anomalous Hall (QAH) insulator and the axion-insulator phases [1–4,17–22]. In principle, these compounds are ideal candidates for the inversion-preserved axion insulators with a persistent surface gap originating from the long-range magnetic order. However, it remains controversial whether the topological surface states (TSS) of MnBi$_2$Te$_4$/ (Bi$_2$Te$_3$)$_n$ are gapped or gapless [23–31]. Recent angle-resolved photoemission spectroscopy (ARPES) measurements unexpectedly revealed an almost gapless surface Dirac cone in MnBi$_2$Te$_4$ and MnBi$_2$Te$_4$ termination of MnBi$_2$Te$_4$.

Topological magnets are a new family of quantum materials providing great potential to realize emergent phenomena, such as the quantum anomalous Hall effect and the axion-insulator state. Here, we present our discovery that the stoichiometric ferromagnet MnBi$_2$Te$_3$ with natural heterostructure MnBi$_2$Te$_4$/(Bi$_2$Te$_3$)$_3$ is an unprecedented “half-magnetic topological insulator,” with the magnetization existing at the MnBi$_2$Te$_4$ surface but not at the opposite surface terminated by triple Bi$_2$Te$_3$ layers. Our angle-resolved photoemission spectroscopy measurements unveil a massive Dirac gap at the MnBi$_2$Te$_4$ surface and a gapless Dirac cone on the other side. Remarkably, the Dirac gap (about 28 meV) at the MnBi$_2$Te$_4$ surface decreases monotonically with increasing temperature and closes right at the Curie temperature, thereby representing the first smoking-gun spectroscopic evidence of a magnetization-induced topological surface gap among all known magnetic topological materials. We further demonstrate theoretically that the half-magnetic topological insulator is desirable to realize the surface anomalous Hall effect, which serves as direct proof of the general concept of axion electrodynamics in condensed matter systems.
MnBi$_4$Te$_7$ [32–34], which may be attributed to reduced effective magnetic moments due to the extension of the surface states to the bulk [28,35]. On the other hand, various surface gaps have been reported in this material family [1,2,25,35], where the speculated mechanisms of the gap opening are from magnetization, hybridization, dephasing, Coulomb scattering, and so on. Furthermore, none of these reported gaps has directly proved to originate from magnetic orders since they remain open within the high-temperature paramagnetic (PM) phase [25,35–37], which makes the realization of the axion-insulator phase obsolete.

Here, we conduct ARPES measurements on stoichiometric MnBi$_4$Te$_7$ [MnBi$_2$Te$_4$/(Bi$_3$Te$_3$)$_n$ with $n = 3$], with an intrinsic ferromagnetic (FM) ground state. At the MnBi$_2$Te$_4$ septuple-layer (SL) termination, we have directly revealed a surface gap of about 28 meV below the Curie temperature of $T_C = 10.5$ K, which decreases monotonically with increasing temperature and closes right at T_C to form a gapless Dirac cone, proving its magnetic nature. These results represent the first direct spectroscopic evidence of a magnetization-induced topological surface gap among all known magnetic topological materials. In sharp contrast, a gapless Dirac cone with negligible FM proximity is observed on the opposite surface terminated by the triple Bi$_3$Te$_3$ quintuple layers (QL), analogous to the situation in nonmagnetic TI Bi$_3$Te$_3$. Recalling that a typical magnetic TI manifests magnetic gaps at both surfaces (e.g., top and bottom) perpendicular to the magnetic moment, here we refer to the ferromagnet MnBi$_8$Te$_{13}$ as a “half-magnetic TI,” in which the MnBi$_2$Te$_4$ SL surface is gapped by surface magnetization while the opposite triple-Bi$_3$Te$_3$ QL surface remains nonmagnetic and thus gapless. Utilizing density functional theory (DFT) calculations, we find half-QAH conductivity well localized at the SL termination, regardless of the cleavage of the other termination. Therefore, the half-magnetic TI provides an ideal platform for observing the half-QAH effect at a single surface and the related axion physics.

II. MnBi$_8$Te$_{13}$ SINGLE CRYSTAL WITH FM GROUND STATE

Single-crystal MnBi$_8$Te$_{13}$ has a trigonal structure [38], with a space group of $Rar{3}m$. The lattice of MnBi$_8$Te$_{13}$ consists of one MnBi$_2$Te$_4$ SL and three Bi$_3$Te$_3$ QLs stacking alternately along the c axis [Fig. 1(a)]. These SLs or QLS are coupled through weak van der Waals (vdW) forces. Cleaving the single crystal perpendicular to the c axis could yield four possible terminations, namely, the S termination, Q termination, QQ termination, and QQQ termination. The crystallinity was examined by x-ray diffraction (XRD). As shown in Fig. 1(b), all of the diffraction peaks, particularly the low-angle ones, can be well indexed by the (00l) reflections with lattice parameter $c \approx 132.6$ Å (calculated from the Rietveld
refinement of powder XRD, as shown in Fig. S1 in the Supplemental Material [39]), in agreement with previous work [40].

The temperature-dependent anisotropic magnetic susceptibility [Fig. 1(c)] shows Curie-Weiss (CW) behavior above 150 K (inset) with the characteristic temperature \(\theta_{CW} = 12.5 \) K and 10.5 K for \(H//c \) and \(H//ab \), respectively, through a fitting with \(\chi(T) = \chi_0 + C/(T - \theta_{CW}) \). Around \(T_C = 10.5 \) K, a FM transition was revealed by magnetic susceptibility [Fig. 1(c)] and resistivity measurements [Fig. 1(d)]. The frustration parameter \((\theta_{CW}/T_C) \) for \(H//c \) was calculated to be about 2, indicating a moderate magnetic frustration. For \(H//c \), the observed larger bifurcation between zero-field cooling (ZFC) and field cooling (FC) magnetization [Fig. 1(c)] and magnetic hysteresis loop [Fig. 1(e)] indicate an easy axis along the c axis and an Ising-type exchange interaction between adjacent Mn layers. The saturation moment \(M_{sat} = 3.58 \mu_B/\text{Mn} \) is close to that of 3.56 \(\mu_B/\text{Mn} \) in MnBi\(_4\)Te\(_4\) [41] and 3.58 \(\mu_B/\text{Mn} \) in MnBi\(_8\)Te\(_7\) [29]. The above magnetic properties suggest a FM order with an out-of-plane magnetic moment configuration in MnBi\(_8\)Te\(_{13}\), in contrast to the A-type AFM ground states found in other MnBi\(_2\)Te\(_4\)/(Bi\(_2\)Te\(_3\))\(_n\) compounds \((n = 0, 1, 2) [42,43]\).

The field-dependent Hall resistivity \(\rho_{xy}(H) \) and magnetoresistance \(\rho_{xx} = \rho_{xx}(H)/\rho_{xx}(0) - 1 \) are shown in Figs. 1(f) and 1(g), as well as Fig. S3 in the Supplemental Material [39]. The negative slope of \(\rho_{xy}(H) \) in Fig. S3(f) indicates electron-type carriers, and the obvious anomalous Hall effect is observed for \(H//c \). In a ferromagnet, the Hall resistivity is described by the formula \(\rho_{xy} = R_0H + \rho_{xy}^A = R_0H + R_s M \), where \(R_0 \) is the ordinary Hall coefficient, \(\rho_{xy}^A \) is the anomalous Hall resistivity, \(R_s \) is the anomalous Hall coefficient, and \(M \) is the magnetization. Above \(T_C (20 \) K), \(\rho_{xy}(H) \) exhibits the same slope at all \(H \) [see Fig. S3(f)], indicating a constant \(R_0 \), which allows us to subtract the ordinary Hall resistivity to obtain the anomalous part, as shown in Fig. 1(f). Note that \(R_s \) scales well with the \(M-H \) curve to the anomalous part of the Hall resistivity and is calculated to be \(R_s = 1.76 \times 10^{-6} \text{ m}^2/\text{C}, 2 \) orders of magnitude larger than \(R_0 = 1.15 \times 10^{-8} \text{ m}^2/\text{C}. \) Unlike the previous report [40], the MR from both increasing and decreasing field measurements maintains a near-vanishing value (<0.1%) and exhibits sharp peaks without any overlap at the appearance of the anomalous Hall plateau. This feature is reminiscent of the MR behavior in Cr-doped (Bi, Sb)\(_2\)Te\(_3\) films when approaching the quantum anomalous Hall region [11,12].

III. GAPPED AND GAPLESS TSS DIRAC CONE IN MnBi\(_8\)Te\(_{13}\)

We employ a \(\mu \)-laser-ARPES system [44], with a focused laser spot size of about 5 \(\mu \)m, to measure the termination-sensitive band structure of MnBi\(_8\)Te\(_{13}\). Figures S4 and S5 present the spectra in a high-symmetry direction, as well as a set of constant energy contours for all four terminations. In Fig. 2, we highlight the band structure of the S termination and its opposite cleaving plane, the QQ termination. Shown are spectra taken at 7 K and 20 K, which correspond to FM and PM phases, respectively. In the FM phase, the S termination shows an unambiguous energy gap of about 28 meV at the Dirac point [Fig. 2(c)], which is in sharp contrast to other Mn-Bi-Te family members such as MnBi\(_2\)Te\(_4\) [30,32–34], MnBi\(_8\)Te\(_7\) [24,30,36], and MnBi\(_8\)Te\(_{10}\) [28,30], whose S terminations consistently show no apparent gap opening at the Dirac point below the magnetic transition [45]. Above \(T_C \) in the PM phase, a gapless Dirac cone is observed [Fig. 2(d)]. Comparison between the FM and PM phases suggests that the origin of the surface gap for the S termination is magnetism. The gap opening is captured by an effective massive Dirac Hamiltonian \(H_{surf}(k) = (\sigma_x k_x - \sigma_y k_y) + m_{eff} \sigma_z \), where the first two terms describe a Dirac cone and the last the effective Zeeman field induced by the ferromagnetically ordered Mn atoms. The gap size, \(m_{eff} \approx 28 \) meV, is in qualitative agreement with our DFT prediction [Fig. 2(b)]. The detailed comparison between the DFT and the ARPES results is provided in Fig. S4.

At the QQ termination, the gapless Dirac surface states appear to persist below \(T_C \). At first sight, this case seems to contradict the broken time-reversal symmetry. However, given the considerable spatial separation between the top Bi\(_2\)Te\(_3\) QL and the magnetic MnBi\(_8\)Te\(_4\) SL, it is reasonable to assume a negligibly small effective Zeeman field for the surface states. Such a conjecture is indeed supported by our DFT calculation, which also reproduces the gapless Dirac cone despite a magnetic ground state [Fig. 2(f)]. Here, we note that the DFT surface-only spectra agree with the ARPES spectra better than the DFT bulk spectra, likely because of the limited photoemission probing depth [47]. Similar gapless Dirac cones have been observed by ARPES at the FM phase for both Q and QQ terminations, owing to the hybridization between the TSS and the bulk bands that buries the Dirac point [28], shown in Fig. S6. To sum up, MnBi\(_8\)Te\(_{13}\) is a half-magnetic topological insulator. The time-reversal symmetry is broken at the S termination, which shows a temperature-dependent gap, while it is approximately preserved at the other surface, which shows a gapless state.

Furthermore, in contrast to the unambiguous temperature evolution of the TSS, we find the band-structure change of the bulk states between the FM [Fig. 2(c), 7 K] and PM [Fig. 2(d), 20 K] to be negligible, which is probably attributed to the reduced effective magnetic moments that the particular bulk band feels.
FIG. 2. Temperature evolution of the TSS Dirac cone gap at the S and QQQ termination of MnBi$_2$Te$_4$. (a)–(d) ARPES results for the S termination. (a) Schematic structural stacking configuration of the S termination. (b) DFT band structure calculated for the FM state, with the surface-only states (dark violet to black) being superposed on the bulk states (yellow, orange, and light violet). (c) Band structure along $\vec{M} - \vec{\Gamma} - \vec{M}$ measured at 7 K (FM state). (d) Band structure along $\vec{M} - \vec{\Gamma} - \vec{M}$ measured at 20 K (PM state). Data in panels (c) and (d) are shown in the form of the ARPES original spectra (top panel) and the 2D curvature spectra [46] (bottom panel). (e)–(h) Same as panels (a)–(d) but for the QQQ termination. Clearly, entering the FM state opens a gap at the TSS Dirac cone for the S termination, while no such gap is observed for the QQQ termination.

IV. NATURE OF THE TSS DIRAC GAP AT S TERMINATION

Having established a TSS Dirac-point gap opening in the S termination of FM MnBi$_2$Te$_4$, we now demonstrate that this gap is indeed opened because of the long-range FM order of the magnetic moments. A zoomed-in ARPES $k - E$ map of the S termination in the PM state (15 K) is shown in Fig. 3(a), while that in the FM state (7 K) is shown in Fig. 3(d). The magnetic-order-induced spectral change is concentrated at the Dirac point, as highlighted in Figs. 3(b) and 3(e). For the PM S termination, a gapless “X”-shape Dirac cone can be clearly resolved, with its Dirac point being indicated by the black arrow in Fig. 3(b). The corresponding energy distribution curve (EDC) taken across the Dirac point can be fitted with two Lorentzian peaks, with the dominating one (dark blue) centered at the Dirac-point energy $E_D \approx -0.21$ eV [Fig. 3(c)].

For the FM S termination, as presented in Fig. 3(e), the upper and lower Dirac cones are separated in energy by a sizable gap, with the two cones clearly detaching from each other. Fitting the corresponding EDC yields three Lorentzian peaks. The two dark-blue peaks, located at $E_1 \approx -0.19$ eV and $E_2 \approx -0.22$ eV, correspond to the upper Dirac cone minimum and lower Dirac cone maximum, respectively. These two peaks originate from the splitting of the gapless Dirac-point peak centered at $E_D \approx -0.21$ eV [Fig. 3(c)], resulting in a Dirac-point gap of $\Delta = E_1 - E_2 \approx 28$ meV [Fig. 3(f)]. The light-blue peak corresponds to a weak shoulder found in both PM and FM EDCs, whose peak position remains at the same energy at different temperatures and potentially originates from disorder.

In Fig. 3(g), systematic Lorentzians fitting to the $\vec{\Gamma}$ EDCs at various temperatures below and above the bulk PM-FM transition (10.5 K) are presented. The constant energy mapping and dispersions corresponding to each temperature are shown in Figs. S7 and S8, allowing us to unambiguously extract the dispersion at the Γ point. At the lowest temperature (6 K), similarly, three Lorentzian peaks are needed to fit the EDC, of which two dark-blue peaks (E_1 and E_2) correspond to the split Dirac cone. The Dirac cone gap size $\Delta = E_1 - E_2$, and its temperature evolution is plotted in Fig. 3(h). With increasing temperature, E_1 and E_2 move closer to each other (Δ decreases) and eventually merge into one Lorentzian peak at 11 K (gap closes), strongly suggesting a clear correlation between the size of this Dirac-point gap and the FM exchange interaction. It is worth noting that, while, similarly, we can also assume two dark-blue peaks (E_1 and E_2) for the EDCs measured at $T \geq 11$ K, the fitting iterations always result in
The saturated exchange splitting energy is fitted as derived Curie temperature well within the fitting error.

\[\Delta \sim E_0 (1 - T/T_0)^{2\beta} \]

where \(E_0 \) represents the saturated exchange splitting energy at \(T = 0 \) K. Fitting the \(\Delta(T) \) curve with this power-law function yields \(T_0 = 11 \pm 1 \) K and \(\beta = 0.23 \pm 0.02 \). The fitted onset temperature \(T_0 \) matches the susceptibility-derived Curie temperature well within the fitting error.

The saturated exchange splitting energy is fitted as \(E_0 = 33 \pm 1 \) meV. We thus established a FM-induced Dirac-point gap in the S termination of MnBi\(_3\)Te\(_{13}\). It is noteworthy that, although Dirac-point gaps have been reported for other members of the Mn-Bi-Te family [25,35–37], these observations are still controversial [24,28,30,32–34]. In particular, all the reported gaps remain open above the magnetic transition temperature, contradicting the scenario of the restoration of time-reversal symmetry. Consequently, our results—that a TSS Dirac cone gap decreases monotonically with increasing temperature and closes right at \(T_C \), forming a gapless Dirac cone—represent the first smoking-gun evidence of TSSs gapped by the magnetic order among all known magnetic topological materials.

One may wonder why this magnetic gap can be observed in FM MnBi\(_3\)Te\(_{13}\) but not in its other AFM sisters. While the mechanism of the gapless Dirac cone in AFM Mn-Bi-Te family members remains an open issue, in the study of the surface band structure of MnBi\(_3\)Te\(_{13}\), we pointed out that surface-bulk band hybridization may cause the surface Dirac cone distribution to extend to the bulk [28]. In an AFM background, this extension could result in much-reduced effective magnetic moments, which the surface state can feel, thus a (nearly) gapless Dirac cone...
with AFM order. In a FM background, the redistribution of the surface state does not change the effective magnetic moments, leading to the gapped Dirac cone.

V. SURFACE ANOMALOUS HALL CONDUCTANCE AS A SIGNATURE OF AXION INSULATOR

So far, we have demonstrated a magnetic gap at the S termination and a gapless feature at the QQQ termination of MnBi₈Te₁₃, rendering the material a “half-magnetic topological insulator.” To further identify its topological nature, we next theoretically analyze the surface anomalous Hall conductance (AHC) of this gapped surface and the corresponding experimental signatures. Because of the inversion symmetry, the band structure of MnBi₈Te₁₃ may be characterized by a higher-order topological invariant, i.e., the Z₄ number (the symmetry indicator of inversion [49,50]). Our explicit computation shows that MnBi₈Te₁₃ has Z₄ = 2, in agreement with a previous study [40] (Fig. S10 and Table S1 in Ref. [39]). For a FM compound, while Z₄ = 1 or 3 implies a Weyl semimetal, Z₄ = 2 corresponds to an axion insulator or a 3D Chern insulator, with distinct surface AHC behavior [13]. Therefore, we compute the surface AHC by integrating the local Chern numbers through surface-related layers for two-dimensional slabs of MnBi₈Te₁₃, expressed as

\[\sigma_{xy}(L) = e^2 \frac{-A}{h} \text{Im} \sum_{i=0}^{L} \sum_{k} \sum_{v'c'} X_{vck} Y_{v'c'k} \rho_{v'c'}(l), \]

where X and Y are the position operators along the x and y directions, respectively, which are directly computed from the velocity operators through X(Y)_{vck} = \langle \psi_{vck} | i\hbar \partial_x \psi_{vck} \rangle / (E_{vck} - E_{vck}). The indices v and c denote the valence and conduction bands, respectively. Here, \rho_{v'c'}(l) is the projection matrix on the corresponding layer l, which implies a summation over all atoms within a vdW layer. To uncover the locality of the surface AHC, we construct two slabs with different thicknesses. For the S termination of a 16-vdW-layer slab, when \(E_F \) lies in the gap of this surface, the layer-integrated AHC reaches about \(e^2/2h \) at the second layer from the surface termination [Fig. 4(a)]. On the other hand, the metallic QQQ surface does not have a well-defined surface Chern number because \(E_F \) inevitably cuts the surface bands (Fig. S11). In comparison, the slab with 17 vdW layers is symmetric and has a global band gap, leading to a well-defined integer-quantized Chern number for the whole slab, i.e., C = 1. Figure 4(b) clearly shows that both top and bottom surfaces contribute a half-quantized AHC, while the internal layers do not contribute to the global AHC. In the bulk, there is an oscillation around \(e^2/2h \) with a period of the unit cell thickness (four vdW layers) starting from the fourth layer from the surface. Therefore, the half-quantized AHC of MnBi₈Te₁₃ is a local quantity at the S termination, indicating an axion-insulator phase.

Though direct experimental measurement of the half-quantized surface AHC is challenging for various reasons—including sample quality, possible electrode scattering, actual size of the surface gap, and the electron chemical potential in the sample—numerical validation in MnBi₈Te₁₃/[Bi₂Te₃]₇ [13] and an experimental proposal based on nonlocal transport measurement have recently been provided [14], with a hexagonal six-contact-probing setup shown in Fig. 4(c). In the case of MnBi₈Te₁₃, as discussed above, magnetism opens a gap in the S termination surface. We compute the spectral functions at the hinges and the center of the top surface (S termination) [Fig. 4(d)], validating the existence of the chiral hinge state at the S termination. It clearly shows that, although the center of the S termination [point 2 in Fig. 4(c)] has a gap, nonvanishing chiral states exist near the boundary formed by the x – y top surface and the x – z side surface, i.e., points 1 and 3, with opposite velocity. Such chiral hinge states are embedded within the side surface states, causing imbalanced densities of states at the two sides of the Dirac cone. In this sense, MnBi₈Te₁₃ is an excellent candidate for observing the signature of the long-sought axion insulator and topological magnetoelectric effect.
ACKNOWLEDGMENTS

We thank Ni Ni, Haizhou Lu, and Hu Xu for helpful discussions. This work is supported by National Key R&D Program of China (Grants No. 2020YFA0308900 and No. 2019YFA0704900), the National Natural Science Foundation of China (NSFC) (Grants No. 12074163, No. 12074161, No. 11804144, No. 11674149, No. 11874195, and No. 11804402), the Shenzhen High-level Special Fund (Grants No. G02206304 and No. G02206404), the Guangdong Innovative and Entrepreneurial Research Team Program (Grants No. 2019ZT08C044, No. 2017ZT07C062, and No. 2016ZT06D348), Shenzhen Science and Technology Program (Grant No. KQTD20190929173815000), the University Innovative Team in Guangdong Province (No. 2020KCXTD001), the Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20150630145302240 and No. K YTDPT20181011104202253), the Highlight Project (No. PHYS-HL-2020-1) of the College of Science at SUSTech, Guangdong Provincial Key Laboratory for Computational Science and Material Design under Grant No. 2019BS0301001, and Center for Computational Science and Engineering of Southern University of Science and Technology. ARPES measurements were performed with the approval of the Proposal Assessing Committee of the Hiroshima Synchrotron Radiation Center (Proposals No. 19BG044, No. 19BU002, No. 19BU005, and No. 19BU012).

APPENDIX: MATERIALS AND METHODS

1. Sample growth

MnBi$_8$Te$_{13}$ single crystals were grown by the conventional high-temperature solution method using Bi$_2$Te$_3$ as the flux. Mn (purity 99.98%), Bi (purity 99.999%), and Te (99.999%) blocks were placed in an alumina crucible with a molar ratio of Mn:Bi:Te = 1:12.3:19.4. Then, the alumina crucible was sealed in a quartz tube under the argon environment. The assembly was first heated up in a box furnace to 950°C, held for 10 hrs, and then cooled down slowly to 574°C over 120 hrs. After this heating procedure, the quartz tube was taken out quickly and then decanted into the centrifuge to remove the excess flux from the single crystals. Because the temperature window for the growth of MnBi$_8$Te$_{13}$ is very narrow and Bi$_2$Te$_3$ is an inevitable by-product, we cut the single crystals into thin pieces and checked using single-crystal x-ray diffraction on both sides to select only the pure phase of MnBi$_8$Te$_{13}$ single crystals.

2. Transport and magnetic measurements

The structure of the crystals was characterized by x-ray diffraction with Cu $K\alpha$ radiation at room temperature using a Rigaku Miniex diffractometer. The diffraction pattern can be well indexed by the (001) reflections with $\Delta_{20} \sim 2^\circ$ for adjacent peaks, especially at lower angles (<20°). Resistivity measurements were performed by a Quantum Design (QD) Physical Properties Measurement System (PPMS) with a standard six-probe method, using a drive current of 8 mA. The current flows in the ab plane, and the magnetic field is perpendicular to the current direction. Magnetic measurements were performed using the QD Magnetic Property Measurement System (MPMS) with the Vibrating Sample Magnetometer (VSM) mode. Temperature-dependent magnetization results were collected with an external magnetic field of 100 Oe, both along and perpendicular to the (001) direction of the sample.

3. ARPES measurement

The μ-laser-ARPES [44] measurements were performed at the Hiroshima Synchrotron Radiation Center (HSRC), Hiroshima, Japan with a VG Scienta R4000 electron analyzer and a photon energy of 6.36 eV. The energy and angular resolution were better than 3 meV and less than 0.05°, respectively. Samples were cleaved in situ along the (001) crystal plane under ultrahigh-vacuum conditions with pressure better than 5 × 10$^{-11}$ mbar and temperatures below 20 K.

4. First-principles calculations

DFT calculations [51,52] were conducted by using the projector-augmented wave (PAW) pseudopotentials [53], and exchange correlation was described by the Perdew-Burke-Ernzerhof (PBE) version of the GGA functional [54,55] as implemented in the Vienna ab-initio Simulation Package (VASP) [56]. Considering the transition-metal element Mn in MnBi$_8$Te$_{13}$, the PBE + U functional with $U = 5$ eV was used for Mn 3d orbitals for all the results in this work [57]. The k-mesh, energy cutoff, and total energy tolerance for the self-consistent calculations were $5 \times 5 \times 5$, 500 eV, and 10^{-5} eV, respectively. The experimental lattice constants ($a_0 = 4.37$ Å and $c_0 = 132.32$ Å) were taken, while the atomic positions were fully relaxed until the force on each atom was less than 10^{-2} eV/Å. Spin-orbit coupling was included in the calculations self-consistently. We constructed Wannier representations by projecting the Bloch states from the first-principles calculations of bulk materials onto Mn-d, Bi-p, and Te-s orbitals. The TSS, as well as the surface anomalous Hall conductivity, were calculated in tight-binding models constructed by these Wannier representations, as implemented in the WannierTools package [58–61].

[1] M. M. Otrokov et al., Prediction and Observation of an Antiferromagnetic Topological Insulator, Nature (London) 576, 416 (2019).
[2] E. D. L. Rienks et al., Large Magnetic Gap at the Dirac Point in Bi$_2$Te$_3$/MnBi$_2$Te$_4$ Heterostructures, Nature (London) 576, 423 (2019).

[3] Y. Deng et al., Quantum Anomalous Hall Effect in Intrinsic Magnetic Topological Insulator MnBi$_2$Te$_4$, Science 367, 895 (2020).

[4] C. Liu et al., Robust Axion Insulator and Chern Insulator Phases in a Two-Dimensional Antiferromagnetic Topological Insulator, Nat. Mater. 19, 522 (2020).

[5] R. S. K. Mong, A. M. Essin, and J. E. Moore, Antiferromagnetic Topological Insulators, Phys. Rev. B 81, 245209 (2010).

[6] E. Liu et al., Giant anomalous Hall Effect in a Ferromagnetic Kagome-Lattice Semimetal, Nat. Phys. 14, 1125 (2018).

[7] D. F. Liu et al., Magnetic Weyl Semimetal Phase in a Kagomé Crystal, Science 365, 1282 (2019).

[8] N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Fermi-Arc Diversity on Surface Terminations of the Magnetic Weyl Semimetal CO$_3$Sn$_2$S$_5$, Science 365, 1286 (2019).

[9] Y. Tokura, K. Yasuda, and A. Tsuzuki, Magnetic Topological Insulators, Nat. Rev. Phys. 1, 126 (2019).

[10] N. P. Armitage and L. Wu, On the Matter of Topological Insulators as Magnetoelectrics, SciPost Phys. 6, 046 (2019).

[11] C.-Z. Chang et al., Experimental Observation of the Quantum Anomalous Hall Effect in a Topological Insulator, Science 340, 167 (2013).

[12] C. Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S.-C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, High-Precision Realization of Robust Quantum Anomalous Hall State in a Hard Ferromagnetic Topological Insulator, Nat. Mater. 14, 473 (2015).

[13] M. Gu, J. Li, H. Sun, Y. Zhao, C. Liu, J. Liu, and Q. Liu, Spectral Signatures of the Surface Anomalous Hall Effect in Magnetic Axion Insulators, arXiv:2005.13943.

[14] R. Chen, S. Li, H.-P. Sun, Y. Zhao, H.-Z. Lu, and X. C. Xie, Using Nonlocal Surface Transport to Identify the Axion Insulator, arXiv:2005.14074.

[15] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological Field Theory of Time-Reversal Invariant Insulators, Phys. Rev. B 78, 195424 (2008).

[16] A. M. Essin, J. E. Moore, and D. Vanderbilt, Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators, Phys. Rev. Lett. 102, 146805 (2009).

[17] J. Ge et al., High-Chern-Number and High-Temperature Quantum Hall Effect without Landau Levels, Natl. Sci. Rev. 7, 1280 (2020).

[18] Y. Gong et al., Experimental Realization of an Intrinsic Magnetic Topological Insulator, Chin. Phys. Lett. 36, 076801 (2019).

[19] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, and Y. Xu, Intrinsic Magnetic Topological Insulators in van der Waals Layered MnBi$_2$Te$_4$-Family Materials, Sci. Adv. 5, eaaw5685 (2019).

[20] M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Yu, Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Armu, and E. V. Chulkov, Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi$_2$Te$_4$ Films, Phys. Rev. Lett. 122, 107202 (2019).

[21] H. Sun, B. Xia, Z. Chen, Y. Zhang, P. Liu, Q. Yao, H. Tang, Y. Zhao, H. Xu, and Q. Liu, Rational Design Principles of the Quantum Anomalous Hall Effect in Superlattice-like Magnetic Topological Insulators, Phys. Rev. Lett. 123, 096401 (2019).

[22] D. Zhang, M. Shi, T. Zhu, H. Zhang, and J. Wang, Topological Axion States in the Magnetic Insulator MnBi$_3$Te$_2$ with the Quantized Magnetoelectric Effect, Phys. Rev. Lett. 122, 206401 (2019).

[23] K. N. Gordon, H. Sun, C. Hu, A. G. Linn, H. Li, Y. Liu, P. Liu, S. Mackey, Q. Liu, N. Ni, and D. Dessau, Strongly Gapped Topological Surface States on Protected Surfaces of Antiferromagnetic MnBi$_4$Te$_7$, and MnBi$_6$Te$_{10}$, arXiv:1910.13943.

[24] L. X. Xu et al., Persistent Gapless Surface States in MnBi$_2$Te$_3$/Bi$_2$Te$_3$ Superlattice Topological Insulator, arXiv:1910.11014.

[25] N. H. Jo, L.-L. Wang, R.-J. Slager, J. Yan, Y. Wu, K. Lee, B. Schrunk, A. Vishwanath, and A. Kaminski, Intrinsic Axion Insulating Behavior in Antiferromagnetic MnBi$_4$Te$_7$, Phys. Rev. B 102, 045130 (2020).

[26] S. Tian et al., Magnetic Topological Insulator MnBi$_6$Te$_{10}$ with a Zero-Field Ferromagnetic State and Gapped Dirac Surface States, Phys. Rev. B 102, 035144 (2020).

[27] R. C. Vidal et al., Topological Electronic Structure and Intrinsic Magnetization in MnBi$_2$Te$_4$: A Bi$_2$Te$_3$ Derivative with a Periodic Mn Sublattice, Phys. Rev. X 9, 041065 (2019).

[28] X.-M. Ma et al., Hybridization-Induced Gapped, and Gapless States on the Surfaces of Magnetic Topological Insulators, Phys. Rev. B 102, 245136 (2020).

[29] C. Hu et al., A van der Waals Antiferromagnetic Topological Insulator with Weak Interlayer Magnetic Coupling, Nat. Commun. 11, 97 (2020).

[30] Y. Hu et al., Universal Gapless Dirac Cone and Tunable Topological States in (MnBi$_2$Te$_4$)$_n$(Bi$_2$Te$_3$)$_m$ Heterostructures, Phys. Rev. B 101, 161113 (2020).

[31] X. Wu et al., Distinct Topological Surface States on the Two Terminations of MnBi$_5$Te$_7$, Phys. Rev. X 10, 031013 (2020).

[32] Y. J. Chen et al., Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi$_2$Te$_4$, Phys. Rev. X 9, 041040 (2019).

[33] Y.-J. Hao et al., Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi$_2$Te$_4$, Phys. Rev. X 9, 041038 (2019).

[34] P. Swatek, Y. Wu, L.-L. Wang, K. Lee, B. Schrunk, J. Yan, and A. Kaminski, Gapless Dirac Surface States in the Antiferromagnetic Topological Insulator MnBi$_2$Te$_4$, Phys. Rev. B 101, 161109 (2020).

[35] A. M. Shikin et al., Nature of the Dirac Gap Modulation and Surface Magnetic Interaction in Axion Antiferromagnetic Topological Insulator MnBi$_2$Te$_4$, Sci. Rep. 10, 13226 (2020).

[36] H. Li et al., Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn$_2$As$_2$ and MnBi$_{2n}$Te$_{3n+1}$, Phys. Rev. X 9, 041039 (2019).
[37] X.-M. Ma et al., Spectroscopic Realization of Large Surface Gap in a Doped Magnetic Topological Insulator, arXiv:2004.09123.

[38] I. I. Klimovskikh et al., Tunable 3D/2D Magnetism in the (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_m$ Topological Insulators Family, npj Quantum Mater. 5, 54 (2020).

[39] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevX.11.011039 for more information on x-ray diffraction, magnetic and electric properties, comparison between DFT and ARPES results, and the determination of the band topology.

[40] C. Hu et al., Realization of an Intrinsic Ferromagnetic Topological State in MnBi$_4$Te$_{13}$, Sci. Adv. 6, eaba4275 (2020).

[41] J. Q. Yan, S. Okamoto, M. A. McGuire, A. F. May, R. J. McQueeney, and B. C. Sales, Evolution of Structural, Magnetic, and Transport Properties in MnBi$_2$–Sb$_2$Te$_4$, Phys. Rev. B 100, 104409 (2019).

[42] L. Ding, C. Hu, F. Ye, E. Feng, N. Ni, and H. Cao, Crystal and Magnetic Structures of Magnetic Topological Insulators MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$, Phys. Rev. B 101, 020412 (2020).

[43] J. Q. Yan, Y. H. Liu, D. S. Parker, Y. Wu, A. A. Aczel, M. Matsuda, M. A. McGuire, and B. C. Sales, A-Type Antiferromagnetic Order in MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$ Single Crystals, Phys. Rev. Mater. 4, 054202 (2020).

[44] H. Iwasawa, E. F. Schwier, M. Arita, A. Ino, H. Namatame, M. Taniguchi, Y. Aiura, and K. Shimada, Development of Laser-Based Scanning Micro-ARPES System with Ultimate Energy and Momentum Resolutions, Ultramicroscopy 182, 85 (2017).

[45] It is still controversial whether a topological surface gap exists in MnBi$_2$Te$_4$. While one recent work (Ref. [36]) reports two types of gaps that persist at AFM and PM phases (nonmagnetic), we always observe a gapless Dirac cone in MnBi$_2$Te$_4$ at AFM and PM phases (Ref. [24]).

[46] P. Zhang, P. Richard, T. Qian, Y.-M. Xu, X. Dai, and H. Ding, A Precise Method for Visualizing Dispersive Features in Image Plots, Rev. Sci. Instrum. 82, 043712 (2011).

[47] C. J. Powell, A. Jablonski, I. S. Tilinin, S. Tanuma, and D. R. Penn, Surface Sensitivity of Auger-Electron Spectroscopy and X-Ray Photoelectron Spectroscopy, J. Electron Spectrosc. Relat. Phenom. 98–99, 1 (1999).

[48] D. A. Estyunin et al., Signatures of Temperature Driven Antiferromagnetic Transition in the Electronic Structure of Half-Magnetic Topological Insulator MnBi$_2$Te$_4$, APL Mater. 8, 021105 (2020).

[49] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J. Slager, Topological Classification of Crystalline Insulators through Band Structure Combinatorics, Phys. Rev. X 7, 041069 (2017).

[50] W. Haruki, P. H. Chun, and V. Ashvin, Structure and Topology of Band Structures in the 1651 Magnetic Space Groups, Sci. Adv. 4, eaat8685 (2018).

[51] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964).

[52] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965).

[53] G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B 59, 1758 (1999).

[54] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[55] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996); Phys. Rev. Lett. 78, 1396 (1997).

[56] G. Kresse and J. Furthmüller, Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B 54, 11169 (1996).

[57] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA + U Study, Phys. Rev. B 57, 1505 (1998).

[58] N. Marzari and D. Vanderbilt, Maximalized Wannier Functions for Composite Energy Bands, Phys. Rev. B 56, 12847 (1997).

[59] I. Souza, N. Marzari, and D. Vanderbilt, Maximalized Wannier Functions for Entangled Energy Bands, Phys. Rev. B 65, 035109 (2001).

[60] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, An Updated Version of Wannier90: A Tool for Obtaining Maximalized Localised Wannier Functions, Comput. Phys. Commun. 185, 2309 (2014).

[61] Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov, WannierTools: An Open-Source Software Package for Novel Topological Materials, Comput. Phys. Commun. 224, 405 (2018).