Effects of Baicalin on Blood Pressure and Left Ventricular Remodeling in Rats with Renovascular Hypertension

ADE Hualei Dai
BC Xinjin Zhang
DEF Zhigang Yang
BC Jianmei Li
AG Jialin Zheng

Background: This study aimed to explore the effect of baicalin, which is a kind of bioactive flavonoid, on blood pressure and left ventricular remodeling in rats with renovascular hypertension.

Material/Methods: A total of 40 male Wistar rats were randomly assigned into sham-operation (n=10) and renal hypertension model groups (2-kidney-1 clip; 2K-1C, n=30). The rats in the renal hypertension model group were randomly subdivided into 2K-1C (n=13) and 2K-1C/Baicalin groups (n=14). The cardiac function indexes were determined after 4 weeks. The morphological changes in the myocardial tissue were observed using hematoxylin and eosin and Masson staining. The myocardial apoptosis was detected using the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling method, and the expression of C/EBP homologous protein and caspase-3 was monitored by Western blot. The expression of GRP78 and GRP94 in myocardial cells of rats was detected by qPCR and Western blot technology.

Results: No significant change in blood pressure was observed in the 2K-1C/Baicalin group compared with the 2K-1C group, but the indexes of left ventricular remodeling significantly improved. Pathological myocardial fibrosis and expression of fibrosis-related factors significantly decreased in the 2K-1C/Baicalin group compared with the 2K-1C group. The expression of glucose-regulated protein (GRP)78, GRP94, CHOP, and caspase-3, and apoptosis of cardiomyocytes also decreased in the 2K-1C/Baicalin group.

Conclusions: Baicalin has no significant antihypertensive effect, but reduced pathological changes in the myocardium, alleviated endoplasmic reticulum stress, and reduced myocardial apoptosis, reverting left ventricular remodeling in rats with renovascular hypertension.

MeSH Keywords: Cystic Fibrosis • Endoplasmic Reticulum Stress • Hypertension, Renovascular

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/902536
Material and Methods

Reagents and instruments

Reagents and instruments used were as follows: Baicalin (Jiangbei Medicine, China); MP150 multilead physiological record analyzer (BIA PAC, USA); optical microscope (Olympus, Japan); NO-501 nitric oxide detector (IMN, Japan); WD-9405B cord analyzer (BIA PAC, USA); optical microscope (Olympus, Japan); MP150 multilead physiological re...
Immunohistochemical analysis

Freshly excised heart from each rat was obtained after trans-thoracic echocardiography. Briefly, the rats were sacrificed by cervical dislocation. The left rib cage of the rats was cut out in an aseptic state with an ophthalmic scissor. The heart was then fully exposed and extracted carefully, followed by fixing with 4% paraformaldehyde solution, embedding in paraffin, and sectioning at 10 mm. The sections were stained with hematoxylin and eosin and Masson to observe the myocardial pathological changes in each group using a light microscope. Image J 6.0 software was used to analyze the collagen volume fraction (CVF) of myocardial tissue in each figure. CVF=collagen area/total area.

Analysis of apoptosis

For detecting apoptosis, the sections were treated with 2% H₂O₂ to quench endogenous peroxidase and permeated with 0.1% Triton X-100 for 10 min, followed by 10 mg/mL proteinase K (Sigma, USA) for 20 min at room temperature. After washing, the sections were incubated with the TUNEL reaction solution, containing terminal deoxynucleotidyl transferase and fluorescein-labeled dUTP, at 37°C for 60 min in the dark. Then, DAPI was added for staining. Finally, the sections were sealed with anti-fluorescence quenching sealed tablets after washing 3 times with phosphate-buffered saline. The number of apoptotic cells was counted using a high-power light microscope when reddish brown cells were observed under adjacent 10 fields. Apoptotic index (AI)=number of positive cells/total number of cells ×100%.

ELISA analysis

Matrix metalloproteinase (MMP)-9, MMP-2, connective tissue growth factor (CTGF), and transforming growth factor-beta (TGF-β) in the ventricular homogenate of rats were measured with a commercial enzyme-linked immunosorbent assay (ELISA) kit (WAK-Chemie, Bad Soden, Germany) as described by the manufacturer.

RNA extraction and quantitative real-time PCR

Total RNA from samples was isolated by TRIzol reagent (Invitrogen, USA) according to the manufacturer’s protocol and reverse transcribed to cDNA using a reverse transcription kit. The total volume of the reaction system was 20 μL, and the conditions were as follows: 16°C (30 min), 45°C (30 min), and 85°C (5 min). The qRT-PCR reactions on diluted cDNA were performed using Power SYBR Green PCR Master Mix in triplicate. The data were analyzed using Roche Lightcycler 480 Real-Time PCR System under the following conditions: 2 min of pre-denaturing at 95°C and 40 cycles at 95°C (15 s) and at 60°C (60 s). Relative miRNA and mRNA expression levels were determined using the 2^-ΔΔCt method and normalizing to β-actin. The primer sequence of each mRNA is shown in Table 1.

Names	Sequence
GRP78	F: 5'-GATAATCAGCCACCGTAA-3' R: 5'-TTTTCCTGTGCTTGTGTT-3'
GRP94	F: 5'-GATGTTGATGCTGACTAG-3' R: 5'-GTCATTATTGTGATGCTGA-3'
β-actin	F: 5'-CTCAATGAGCTGGCTTGG-3' R: 5'-CGTGGAGGATCTTCTATGAG-3'

Western blot analysis

Heart tissues were homogenized in homogenization buffer and centrifuged at 10,000 revolutions per min for 10 min. The protein concentration in the supernatant was determined using a bicinchoninic acid protein assay kit. Equal amounts of proteins were added for sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted onto polyvinylidene difluoride membranes. The membranes were probed with antibodies against GRP78, GRP94, CHOP, and caspase-3 overnight at 4°C followed by incubation with secondary antibody for 1 h at room temperature. The specific proteins were detected using an enhanced chemiluminescence detection system (Millipore, Merck, Germany) as described by the manufacturer.

Statistical analyses

Statistical analyses were performed using SPSS18.0 software (SPSS, IL, USA). The differences between groups were analyzed using the t test (when only 2 groups were compared) or the Student-Newman-Keuls test (when more than 2 groups were compared). The significance level was P<0.05.

Results

Survival rate of renovascular hypertension

Unfortunately, 1 rat died due to postoperative infection in the sham-operation group, and 2 rats died due to deep anesthesia and 1 due to postoperative infection at week 3 after surgery in the 2K-1C group. In the 2K-1C/Baicalin group, 1 rat died due to deep anesthesia and 2 died after surgery. The details are shown in Table 2.
Baicalin had no effect on blood pressure in rats with renovascular hypertension

Table 3 shows that the blood pressure of rats was significantly higher in the 2K-1C and 2K-1C/Baicalin groups than in the sham-operation group (\(P < 0.05 \)). However, the blood pressure in the 2K-1C/Baicalin group slightly dropped, but with no statistical difference compared with the 2K-1C group.

Results of high-frequency cardiac ultrasonography

The IVSd and LVPWd were significantly thickened, and the LVIDd was distinctly larger in the 2K-1C group compared with the sham-operation group (\(P < 0.05 \)). However, the blood pressure in the 2K-1C/Baicalin group slightly dropped, but with no statistical difference compared with the 2K-1C group.

Baicalin mitigated left ventricular remodeling of rats with renovascular hypertension

General changes in hearts in each group were recorded. When hearts were exposed, no obvious abnormalities were observed in the sham-operation group. On the contrary, despite no change in color, the ventricle was significantly dilated, with the hard texture of ventricular muscle and poor elasticity, in the 2K-1C group. The aforementioned changes in the 2K-1C group remarkably improved in the 2K-1C/Baicalin group. On the basis of these findings, we further explored whether pathological alterations occurred. HE-stained sections were observed under a light microscope, and the results suggested that the ventricular muscle fibers were thickened, the intervals were widened accompanied by infiltration of masses of lymphocytes, and the nuclei of cells were disorderly arranged in the 2K-1C group compared with the sham-operation group. However, myocardial fibers in the 2K-1C/Baicalin group were arranged closely in neat rows, and the intercellular space was small with karyopyknosis in few cardiomyocytes (Figure 2). Furthermore, Masson staining indicated that few fibrous tissues were evenly distributed between ventricular muscle tissues of rats in the sham-operation group, with a CVF value of \((3.74\pm0.41)\% \) (Figure 3A). A large number of fibrous tissues were observed around the blood vessels and myocardial cells in the 2K-1C group, and the CVF of these tissues was \((13.76\pm1.37)\% \). Severe fibrosis in the ventricular tissues was observed in the 2K-1C group compared with the sham-operation group (\(P < 0.05 \)). Interestingly, myocardial fibrosis was significantly reduced in the sham-operation group compared with the 2K-1C group when treated with baicalin, with the CVF value of \((8.63\pm0.47)\% \) (\(P < 0.05 \)) (Figure 3C).

Baicalin reduced the apoptosis of ventricular muscle cells

Only a few apoptotic ventricular myocytes were observed in the sham-operation group (apoptotic index (AI)=2.78±1.14) (Figure 4). Unfortunately, a large number of apoptotic cells were found in the 2K-1C group compared with the sham-operation group (AI=21.98±2.1, \(P < 0.01 \)). However, apoptotic ventricular muscle cells were significantly reduced on treating 2K-1C rats with a certain concentration of baicalin (AI=7.43±0.72, \(P < 0.01 \)) (Figure 4C). Taken together, the data suggested that baicalin could reduce the apoptosis of ventricular muscle cells in vivo.

Table 2. Success rate of surgery of rats.

Group	Number	Surgery	Molded quantity	Success rate of surgery (%)	Modeling (%)
Sham-operation	10	9	9	90	90
2K-1C	15	13	10	86.67	66.66
2K-1C/Baicalin	15	14	11	93.33	73.33

Table 3. Change in blood pressure in each group (X±s).

Group	Before surgery (kPa)	After surgery (kPa)	After treatment (kPa)
Sham-operation	16.53±0.43	16.32±0.64	16.82±1.04
2K-1C	16.47±1.85	22.54±1.33**	23.53±1.94**
2K-1C/Baicalin	15.91±1.32	23.53±2.42	22.67±0.76

* \(P <0.05 \), ** \(P <0.01 \) versus sham group.
Baicalin suppressed the expression of fibrosis-associated factors in ventricular muscle cells

The relative expression of MMP-9, MMP-2, CTGF, and TGF-β1 was detected by ELISA tests to investigate whether baicalin affected fibrosis in ventricular muscle cells. The results showed that the expression of fibrosis-associated factors significantly increased in the 2K-1C group compared with the sham-operation group (P<0.01). When the rats in the 2K-1C/Baicalin group were given baicalin through gavage, the relative expression of MMP-9, MMP-2, CTGF, and TGF-β1 was suppressed. The relative expression of these fibrosis-associated factors is shown in Table 5.

Baicalin attenuated endoplasmic reticulum stress in rats with renovascular hypertension

The relative expression of GRP78 mRNA and GPR94 mRNA, reported as a chaperone protein of endoplasmic reticulum stress (ERS), was investigated by RT-PCR to explore whether baicalin could attenuate ERS in rats with renovascular hypertension. The relative expression of GRP78 mRNA and GPR94 mRNA was markedly upregulated in the 2K-1C group compared with the sham-operation group (P<0.01) (Figure 5 and Table 6). The expression was partly downregulated in the 2K-1C/Baicalin group (P<0.01). Furthermore, the expression of GRP78, GPR94, CHOP, and caspase-3 protein was evaluated.

Table 4. Change in cardiac ultrasonography of rats in each group (X±s).

Group	n	IVSd (mm)	LVPWd (mm)	LVIDd (mm)
Sham operation	9	1.93±0.01	1.85±0.04	4.85±0.28
2K-1C	10	2.54±0.02**	2.37±0.13**	5.64±0.31**
2K-1C/Baicalin	11	2.05±0.08**	2.03±0.09**	5.03±0.39**

* P<0.05, ** P<0.01 versus sham group; * P<0.05, ** P<0.01 versus 2K-1C group.

Figure 1. Results of cardiac ultrasonography in each group. (A) Sham group; (B) 2K-1C; (C) 2K-1C/Baicalin.
Figure 2. Results of HE staining under a light microscope (×200). (A) Sham-operation; (B) 2K-1C; (C) 2K-1C/Baicalin.

Figure 3. Results of Masson staining under a light microscope (×200). (A) Sham-operation; (B) 2K-1C; (C) 2K-1C/Baicalin.
by Western blot. Figure 6 and Table 7 indicate that GRP78, GRP94, CHOP, and caspase-3 protein expression levels were significantly higher in the 2K-1C group than in the sham-operation group (P<0.01). On the contrary, the expression of these proteins decreased when rats with renovascular hypertension were treated with baicalin (P<0.01).

Discussion

Hypertension is an important public health challenge worldwide because of its high frequency and concomitant risks of cardiovascular and kidney diseases. The prevalence of hypertension in the Asian population is 20–30% higher compared with Western countries [14]. Due to elevated blood pressure in patients with hypertension, the resistance of periphery blood vessels and the load of the heart increase, resulting in compensatory myocardial hypertrophy and left ventricular remodeling. Once decompensation occurs, heart failure is inevitable, reducing the quality of life of patients and even causing adverse events [15]. Thus, attenuating left ventricular remodeling has become an important treatment of hypertension [16,17].

Baicalin is an effective component of traditional Chinese medicine Scutellaria baicalensis. It has various pharmacological actions, including antiviral, antioxidative, antitumor, antiapoptosis, and antihypertensive effects. Wei et al. reported that baicalin significantly attenuated angiotensin II – induced endothelial dysfunction and oxidative stress [18]. Liu et al. investigated acute myocardial infarction in rats pretreated with different concentrations of baicalin and found that baicalin significantly reduced the infarct size and levels of myocardial enzymes.

Table 5. Relative expression of MMP-9, MMP-2, CTGF, and TGF-β1 (X±s).

Group	MMP-9 (ng/mL)	MMP-2 (ng/mL)	CTGF (pg/mL)	TGF-β1 (pg/mL)
Sham operation	107.53±8.31	135.37±10.63	376.22±24.61	294.31±19.66
2K-1C	365.06±21.75**	254.31±27.46**	742.45±46.32**	643.96±53.01**
2K-1C/Baicalin	158.64±9.77**	139.53±7.54**	458.52±31.91**	375.04±28.48**

* P<0.05, ** P<0.01 versus sham group; # P<0.05, ## P<0.01 versus 2K-1C group.

Figure 4. Ventricular muscle cell apoptosis was observed by TUNEL method (×400). (A) Sham-operation; (B) 2K-1C; (C) 2K-1C/Baicalin.

Table 6. MMP-9, MMP-2, CTGF, and TGF-β1 expression levels in different groups.

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS] [Index Copernicus]
Table 6. Relative expression of GRP78 and GRP94 mRNA ($2^{-\Delta\Delta Ct}$ X±s).

Group	After surgery (kPa)	After treatment (kPa)
Sham operation	1.00±0.01	1.00±0.02
2K-1C	2.59±0.12**	1.45±0.11**
2K-1C/Baicalin	1.85±0.08**	1.17±0.06*

* P<0.05, ** P<0.01 versus sham group; * P<0.05, ** P<0.01 versus 2K-1C group.

Table 7. Relative expression of GRP78, GRP94, CHOP, and caspase-3 proteins (X±s).

Group	GRP78/β-actin	GRP94/β-actin	CHOP/β-actin	Caspase-3/β-actin
Sham operation	1.00±0.05	1.00±0.01	1.00±0.01	1.00±0.03
2K-1C	3.69±0.25**	2.36±0.18**	2.84±0.09**	1.93±0.02**
2K-1C/Baicalin	1.95±0.22**	1.54±0.08**	0.94±0.02**	0.86±0.15**

* P<0.05, ** P<0.01 versus sham group; * P<0.05, ** P<0.01 versus 2K-1C group.
Ventricular remodeling refers to alterations in anatomical and histological structures of ventricles due to elevated pressure, insufficient blood supply, and damage caused by drugs. It is involved in lesion repair, ventricular compensation, and secondary pathophysiological response to damage [21]. Studies have confirmed a close correlation of myocardial apoptosis and fibrosis with ventricular remodeling [22,23], but the underlying mechanism is complex. Many studies have reported that the activation of ERS in the heart was closely related to myocardial apoptosis [24], hypertrophy [25], and fibrosis [26], the pathological processes common in the development of ischemic and hypertrophic heart diseases. The ER is an intracellular organelle in which most of the secretory and membrane proteins are synthesized, post-translationally modified, and folded into their correct conformations. ERS is a result of an imbalance between protein load and folding capacity [27]. A moderate degree of ERS can be alleviated by upregulating the expression of molecular chaperones GRP78 and GRP94, inhibiting protein synthesis, and accelerating degradation of misfolding and unfolding proteins [28]. However, persistent or severe ERS can trigger apoptotic signals, induce the expression and activation of pro-apoptotic factors such as CHOP and caspase-3, and cause the apoptosis of cells [24,29]. MMPs are proteinases that participate in extracellular matrix remodeling and degradation [30]. Evidence suggests that the levels of MMP-9, MMP-2, CTGF, and TGF-β1 are elevated after myocardial infarction [31]. TGF-β1 is involved in the regulation of cell growth and differentiation. It is known to induce myofibroblastic activation, increased collagen deposition, and wound contraction [32]. It also appears to play a vital role in fibrogenesis and fibroproliferative disorders [33,34]. It is a key mediator of fibrosis in myocardial injury [35] and has been confirmed to contribute to unresolved cardiac pro-fibrotic remodeling [36]. CTGF, a member of the CCN (ctgf/cyr61/nov) gene family, has been demonstrated to play an important role in promoting mitosis, proliferation of cardiac fibroblasts, and stimulation of extracellular matrix formation, thus contributing to switching of fibroblasts to myofibroblasts and promoting myocardial fibrosis [37,38]. Moreover, CTGF is suggested to play a role in the extracellular matrix deposition as an important downstream mediator of TGF-β [39].

In this study, rats with renovascular hypertension were treated with a certain concentration of baicalin. An antihypertensive effect of baicalin was observed, but with no statistical significance. This result could not rule out the limitation of the small sample size or lower drug concentration. The indicators of IVSD, LVpWd, and LVIDd significantly improved in the 2K-1C/Baicalin group compared with the 2K-1C group. The results of the pathological examination indicated that baicalin can reverse the disordered arrangement of myocardial fibers in rats with renovascular hypertension, reduce degenerative or necrotic cardiomyocytes, attenuate interstitial fibrosis, and downregulate the expression of MMP-9, MMP-2, CTGF, and TGF-β1. Also, the expression of GRP78, GRP94, CHOP, and caspase-3 was suppressed by baicalin, suggesting that it can attenuate ERS in rats with renovascular hypertension, reduce the apoptosis of ventricular muscle cells, and inhibit left ventricular remodeling.

Conclusions

In summary, this novel study demonstrated the effect of baicalin on the reversal of left ventricular remodeling in rats with renovascular hypertension. However, further studies are required to determine how baicalin inhibits the ERS-related apoptotic signaling pathway or other apoptosis pathways. Baicalin may serve as a useful therapeutic alternative for treating cardiovascular diseases.

Conflict of interest

None.

References:

1. Ettehad D, Emdin CA, Kiran A et al: Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet, 2016; 387(10022): 957–67

2. Lewington S, Clarke R, Qizilbash N et al: Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002; 360(9349): 1903–13

3. Ye Y, Gong H, Wang X et al: Combination treatment with antihypertensive agents enhances the effect of qiliqiangxin on chronic pressure overload-induced cardiac hypertrophy and remodeling in male mice. J Cardiovasc Pharmacol, 2015; 65(6): 628–39

4. Tumanan-Mendoza BA, Dans AL, Villacin LL et al: Dechallenge and rechallenge method showed different incidences of cough among four ACE-Is. J Clin Epidemiol, 2007; 60(6): 547–53
5. Hackam DG, Khan NA, Hemmelgarn BR et al: The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2 – therapy. Can J Cardiol, 2010; 26(5): 249–58

6. Roskiewicz F, Andriamanana I, Gras-Champel V et al: [Iatrogenic angioedema: the role of angiotensin converting enzyme inhibitor and angiotensin II receptor blockers.] Nephrol Ther, 2007, 3(3): 89–95 [in French]

7. Grothusen A, Dvichev D, Luchtefeld M, Schieffer B: Angiotensin II type 1 receptor blockade: High hopes sent back to reality? Minerva Cardioangiol, 2009; 57(6): 773–85

8. Sipahi I, Debanne SM, Rowland DY et al: Angiotensin-receptor blockade and risk of cancer: Meta-analysis of randomised controlled trials. Lancet Oncol, 2010; 11(7): 627–36

9. Valli G, Giardina EG: Benefits, adverse effects and drug interactions of herbal placebos with cardiovascular effects. J Am Coll Cardiol, 2002; 39(7): 1083–95

10. Tachjian A, Maria V, Jahangir A: Use of herbal products and potential interactions in patients with cardiovascular diseases. J Am Coll Cardiol, 2010; 55(6): 515–25

11. Lee HZ, Leung HW, Lai MY, Wu CH: Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells. Anticancer Res, 2005; 25(2a): 959–64

12. Chao JL, Su WC, Liu HF: Baicalein induces cancer cell death and proliferation retardation by the inhibition of CD2C kinase and survivin associated with opposite role of p38 mitogen-activated protein kinase and AKT. Mol Cancer Ther, 2007; 6(11): 3039–48

13. Castro MM, Rizzi E, Rodrigues GI et al: Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med, 2009; 46(9): 1298–307

14. Kearney PM, Whelton M, Reynolds K et al: Global burden of hypertension: part 2 – therapy. Can J Cardiol, 2010; 26(5): 217–23

15. Klatt N, Scherschel K, Schad C et al: Development of nonfibrotic left ventricular hypertrophy in rats via mediating the mitogen-activated protein kinase pathway. Biol Pharm Bull, 2013; 36(6): 988–94

16. Anand I, McMurray J, Cohn JN et al: Long-term effects of darusen antagonist in patients with congestive heart failure: part 2 – therapy. Can J Cardiol, 2010; 26(5): 249–58

17. Guan HS, Shangguan HJ, Shang Z et al: Endoplasmic reticulum stress caused by left ventricular hypertrophy in rats: Effects of telmisartan. Am J Med Sci, 2011; 342(4): 318–23

18. Wei X, Zhu X, Hu N et al: Baicalin attenuates angiotensin II-induced cardiac fibrosis and protect from RV heart failure. Biomed Res Int, 2015; 204(5): 1–10

19. Liu X, Gu J, Fan Y et al: Baicalin attenuates acute myocardial infarction. Circ Res, 2012; 110(6): 851–56

20. Luo T, Chen B, Wang X: Baicalin prevents pressure overload-induced myocardial hypertrophy and interstitial fibrosis by attenuating endoplasmic reticulum stress. Chem Biol Interact, 2015; 242(4): 676–74

21. Guan HS, Shangguan HJ, Shang Z et al: Endoplasmic reticulum stress caused by left ventricular hypertrophy in rats: Effects of telmisartan. Am J Med Sci, 2011; 342(4): 318–23

22. Zhao YX, Yin HQ, Yu QT et al: ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction. Hum Gene Ther, 2010; 21(11): 1545–54

23. Sari FR, Watanabe K, Thandavaranay RA et al: 14-3-3 protein protects against cardiac endoplasmic reticulum stress (ERS) and ERS-initiated apoptosis in experimental diabetes. J Pharmacol Sci, 2010; 113(4): 325–34

24. Guan HS, Shangguan HJ, Shang Z et al: Endoplasmic reticulum stress caused by left ventricular hypertrophy in rats: Effects of telmisartan. Am J Med Sci, 2011; 342(4): 318–23

25. Luo T, Kim JK, Chen B et al: Attenuation of ER stress prevents post-infarction-induced cardiac rupture and remodeling by modulating both cardiac apoptosis and fibrosis. Chem Biol Interact, 2015; 225: 90–98

26. Miao Y, Bi XY, Zhao M et al: Acetycholine inhibits tumor necrosis factor alpha activated endoplasmic reticulum apoptotic pathway via EGFR-PI3K signaling in cardiomyocytes. J Cell Physiol, 2015; 230(4): 767–74

27. Tachjian A, Maria V, Jahangir A: Use of herbal products and potential interactions in patients with cardiovascular diseases. J Am Coll Cardiol, 2010; 55(6): 515–25

28. Bharti S, Rani N, Bhatia I, Aya DS: 5-HT2B receptor blockade attenuates beta-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis, 2015; 20(4): 455–65

29. Moore CS, Crocker SJ: An alternate perspective on the roles of TIMPs and MMPs in pathology. Am J Pathol, 2012; 180(1): 12–16

30. Bharti S, Rani N, Bhatia I, Aya DS: 5-HT2B receptor blockade attenuates beta-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis, 2015; 20(4): 455–65

31. Briassouls A, Toussilas D, Papageorghiou N et al: Novel therapeutic approaches targeting matrix metalloproteinases in cardiovascular disease. Curr Top Med Chem, 2012; 12(10): 1214–21

32. Kane CJ, Hebda PA, Mainsbridge JN, Hanawalt PC: Direct evidence for spatial and temporal regulation of transforming growth factor beta 1 expression during cutaneous wound healing. J Cell Physiol, 1991; 148(1): 157–73

33. Kang KW, Ha JR, Kim CW et al: 2-(Allylthio)pyrazine, a cancer chemopreventive agent, inhibits liver fibrosis induced by dimethylsulfoxamine in rats: Role of inhibition of transforming growth factor-beta1 expression. Pharmacol Toxicol, 2001; 89(1): 23–29

34. Zheng G, Zhang J, Zhao H et al: alpha3 Integrin of cell-cell contact mediates kidney fibrosis by integrin-linked kinase in proximal tubular E-cadherin deficient mice. Am J Pathol, 2016; 188(7): 1847–60

35. Janssen W, Schymura Y, Novoyatleva T et al: 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. Biomed Res Int, 2015; 2015: 438403

36. Meredith A, Boroomand S, Carthy J et al: A, 125 Dihydroxyvitamin D3 inhibits its TGFbeta1-mediated primary human cardiac myofibroblast activation. PLoS One, 2015; 10(6): e0128655

37. Bradham DM, Ignarashi A, Potter RL, Grotendorst GR: Connective tissue growth factor: A cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol, 1991; 114(6): 1285–94

38. Rasoul S, Carretero OA, Peng H et al: Antifibrotic effect of Ac-SDKP and angiotensin-converting enzyme inhibition in hypertension. J Hypertens, 2004; 22(5): 593–603

39. Leask A, Abraham DJ: TGF-beta signaling and the fibrotic response. Faseb J, 2004, 18(7): 816–27

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [Chemical Abstracts/CAS] [Index Copernicus]