SUPPLEMENTAL MATERIALS

Stabilization of metal(II)oxides on the nanoscale

Boyil Qua, Cecile S. Bonifacioa,b, Hasti Majidia,c, and Klaus van Benthema*

a Dept. Materials Science and Engineering, University of California, 1 Shields Ave, Davis, CA 95616, USA

b now at: E.A. Fischione Instruments, Inc., 9003 Corporate Circle, Export, PA 15632, USA

c now at: Alta Devices, 545 Oakmead Pkwy, Sunnyvale, CA 94085, USA

* Corresponding author; email: benthem@ucdavis.edu

Figure S1: In-situ heating. (a) and (b) show series of annular dark field STEM images that were recorded during in situ annealing of (a) isolated iron oxide nanoparticles from 25°C to 800°C, and (b) nanochains from 25°C to 900°C. The amorphous carbon film supporting the individual nanoparticles appears as diffuse contrast in (a). The micrographs in a) and b) origin form two specific sample areas, respectively, but reveal morphological changes representative for 30 different areas across 6 different TEM samples.