Comprehensive analysis of lncRNA–miRNA–mRNA during proliferative phase of rat liver regeneration

Haijing Bai1,2* | Jianlin Guo1,2* | Cuifang Chang1,2 | Xueqiang Guo1,2 | Cunshuan Xu1,2 | Wei Jin1,2

1College of Life Science, Henan Normal University, Xinxiang, Henan, China
2State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China

Correspondence
Cunshuan Xu and Wei Jin, College of Life Science, Henan Normal University, 453007 Xinxiang, Henan, China. Email: cellkeylab@126.com (CX); jinwei@htu.edu.cn (WJ)

Funding Information
Wei Jin, Grant/Award Number: 31601038; Cunshuan Xu, Grant/Award Number: 31572270;

Abstract
This study aims to reveal the regulatory mechanism of lncRNAs–miRNAs–mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA–miRNA–mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.

KEYWORDS
high-throughput sequencing technology, lncRNA, miRNA, mRNA, rat liver regeneration

1 | INTRODUCTION

The liver is one of the important organs in human and animal, which is responsible for a variety of physiological functions. It has a strong ability of regeneration after liver loss or toxic injury. Liver regeneration is a highly organized tissue growth process of restoring the original framework structure and tissue specific function after liver injury (Jeon et al., 2013). It was usually divided into three phases including initiation, proliferation, and termination. In the proliferative phase, the main process is the proliferation of hepatocyte, which replicate once or twice under the synergistic action of various growth factors and inflammatory cytokines. Long noncoding RNA (lncRNA) is a class of RNA molecules with a length of more than 200 nucleotides (nt) and lacking an open reading frame that plays crucial roles in epigenetics, transcriptional regulation, and posttranscriptional regulation (Maruyama & Suzuki, 2012). Studies have shown that lncRNAs were not only involved in normal physiological activities but also related to the occurrence and development of various tumors (Chen et al., 2013). MicroRNA (miRNA) is a class of endogenous noncoding single-stranded RNA molecules with a length of approximately 22 nt. It plays important roles in regulating the expression of messenger RNAs (mRNAs) through specifically binding to the 3′-untranslated region (3′-UTR) of the encoding gene. There is evidence that miRNAs can regulate a variety of cell processes and
developmental processes (Krol, Loedige, & Filippowicz, 2010). Salmena, Poliseno, Tay, Kats & Pandolfi (2011) proposed a competition endogenous RNA (ceRNA) hypothesis, which pointed that miRNA, transcriptional pseudogenes and long noncoding RNA could communicate to each other through their ability to compete for miRNA binding using microRNA response elements (MREs) (Wang, Zhang, He, & Gou, 2018; Salmena et al., 2011). Subsequently, increasing evidence indicated that lncRNAs, as ceRNA, were associated with a variety of cancers, including hepatocellular carcinoma (HCC) (Wang et al., 2015). Accordingly, it is necessary to explore the regulatory network of lncRNA-miRNA-mRNA during the proliferative phase of liver regeneration (LR). In present study, high-throughput sequencing technology was performed to obtain the miRNA, mRNA, and lncRNAs expression data during the proliferative phase of liver regeneration (LR). In present study, high-throughput sequencing technology was performed to obtain the miRNA, mRNA, and lncRNAs expression data during the proliferative phase of liver regeneration (LR). In present study, high-throughput sequencing technology was performed to obtain the miRNA, mRNA, and lncRNAs expression data during the proliferative phase of liver regeneration (LR).

2 MATERIALS AND METHODS

2.1 Preparation of rat LR model after 2/3 hepatectomy

The healthy adult male Sprague–Dawley (SD) rats weighing 210–250 g were provided by Laboratory Animal Center of Zhengzhou University (Zhengzhou, China). These rats were raised in a controlled temperature room 19–23°C with a relative humidity 50–70% and illumination time 12 hr/day (8:00–20:00), and permitted to freely have water and food. A total of 36 rats were randomly divided into six groups with six rats per group: Five partial hepatectomy (PH) groups and one normal group (CG). The rats in PH group were subjected to 2/3 PH in accordance with the method of Xu C. et al. (2010). They were anesthetized and killed at 0, 12, 24, 30, 36, and 72 hr after surgery. The right liver lobe was mixed each time point of six rats and restored in ~80°C. All operations conformed to the Animal Protection Law of China and Animal Ethics.

2.2 Sequencing of IncRNA and mRNA and identification of DE IncRNA and DE mRNA

The mirVana miRNA Isolation Kit (Ambion) and TruSeq Small RNA Sample Prep Kits were used to extract total RNA and construct the cDNA libraries. The whole process was carried out in strict accordance with the reagent instructions. First, T4 ligase was used to ligate a 5′ adapter and a 3′ adapter to the RNA molecules. Then a SuperScript II Reverse Transcription Kit (Invitrogen) was used to reverse-transcribed 5′ and 3′ adapter-ligated RNA to cDNA and PCR amplification was performed. Finally, the cDNA product was purified by RNA Gel Electrophoresis and gel recovery. The size and purity of the sample were determined using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara), The Illumina sequencing platform was used for sequencing analysis.

Raw reads of fastq format were processed consisting of removing adapter and low-quality reads including sequences with quality score less than 20 and sequences with N base to obtain high-quality clean reads. The Bowtie2 was used to map the clean reads to mature miRNAs in miRBase 21.0 database. These consistent sequences were considered as the known miRNAs. The expression level of miRNAs was measured by FPKM. The differentially expressed miRNAs (DE miRNAs) and differentially expressed IncRNAs (DE IncRNAs) were detected by the negative binomial distribution test based on the DESeq package (1.18.0). The fold change ≥ 2 or fold change ≤ 0.5, and p value < 0.05 were used as the cut-off criteria.

2.4 Function enrichment analysis

To analyse the biological function of IncRNAs, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the DE mRNAs and predicted target genes of DE miRNA and DE IncRNAs using GeneCodis3 bioinformatics resources (http://genecodis.cnb.csic.es)
and DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/). GO enrichment analysis included biological process (BP), molecular function (MF), and cellular component (CC). The p values have been obtained through hypergeometric analysis corrected by the false discovery rate (FDR) method. Both GO terms and KEGG pathways were considered to be significantly enriched with FDR < 0.05.

2.5 Construction of the ceRNAs regulatory network

Candidate mRNAs, an IncRNAs regulated by the DE miRNAs, were predicted by Shanghai OE biotech Co., Ltd using miRanda v3.3a. The Miranda algorithm was based on dynamic programming to comprehensively evaluate the target genes through miRNA–3′-UTR sequencing matching and energy stability. The threshold parameter was set as described previously: S ≥ 150, ΔG ≤ −30 kcal/mol and strict 5’ seed pairing (Zhao et al., 2018). S refers to single residue pair match scores in the matching area, and ΔG refers to free energy when the double chains combine. Among these predicted DE miRNA–DE mRNA pairs, DE mRNAs opposite with their corresponding DE miRNAs in this study were defined as the targets of DE miRNA with high accuracy. Based on the DE miRNA–DE mRNA interaction analysis and DE miRNA–DE IncRNA interaction analysis, an IncRNA–miRNA–mRNA regulatory network was constructed and visualized by Cytoscape (v3.6.1) software.

2.6 Construction of TF–miRNA–IncRNA regulatory network

The mRNAs in the IncRNA–miRNA–mRNA interaction network was analyzed by AnimalTFDB database (http://bioinfo.life.hust.edu.cn/AnimalTFDB#!/) to identify transcription factors (TF). Then a TF–miRNA–IncRNA regulatory network was constructed based on TF–miRNA and miRNA–IncRNA interaction pairs and visualized by Cytoscape (v3.6.1) software.

3 RESULTS

3.1 DE mRNAs, DE miRNA, and DE IncRNAs during the proliferative phase of rat LR

The expression profiles of IncRNAs, miRNAs, and mRNAs during the proliferative phase of rat LR were detected by high-throughput sequencing technique. Compared with normal group (CG, 0 hr), a total of 1,738 DE IncRNAs were identified, with 1,069 upregulated, 653 downregulated, and 16 up/downregulated (p < 0.05) at 12, 24, 30, 36, and 72 hr after PH (Figure 1a; Additional file 1). Among them, 637 IncRNAs were detected at 12 hr after PH, 688 at 24 hr, 602 at 30 hr, 610 at 36 hr, and 561 at 72 hr (Figure 1d). A total of 167 known DE IncRNAs was identified, with 113 upregulated, and 54 downregulated at 12, 24, 30, 36, and 72 hr after PH (p < 0.05; Figure 1b; Additional file 2). Among them, 52 mRNAs were detected at 12 hr after PH, 58 at 24 hr, 44 at 30 hr, 46 at 36 hr, and 84 at 72 hr (Figure 1e). A total of 2,727 DE mRNAs were identified, with 1,515 upregulated, 1,186 downregulated and 26 up/downregulated at 12, 24, 30, 36, and 72 hr after PH (p < 0.05; Figure 1c; Additional file 3). Among them, 1,143 mRNAs were detected at 12 hr after PH, 1,143 at 24 hr, 1,107 at 30 hr, 1,108 at 36 hr, and 1,110 at 72 hr (Figure 1f).

3.2 Function analysis of DE miRNAs, DE IncRNAs, and DE mRNAs during rat LR

Of the 167 DE miRNA, 20 miRNAs have been studied to be correlation with LR, such as miR-127 (Pan et al., 2012), miR-21 (Castro et al., 2010), miR-34a (X. P. Wang et al., 2017), miR-429 (C. Zhang et al., 2018), miR-376b (Lu et al., 2015), miR-382 (Bei et al., 2016), miR-378 (Song et al., 2010), miR-155 (Lin et al., 2018), miR-25 (X. Xu et al., 2016), miR-106b (X. Xu et al., 2016), miR-133b (Gjymishka et al., 2016), miR-125b (Hyon, Wang, Kim, Kim, & Jung, 2015), miR-144 (Chaveles et al., 2012), miR-451 (Chaveles et al., 2012), miR-582-3p (Chaveles et al., 2012), miR-181c (Geng et al., 2016), miR-183 (Geng et al., 2016), miR-429 (Geng et al., 2016), miR-27a (Ji et al., 2009), and miR-30e (Ling et al., 2018). Unlike the DE miRNAs, most of the 1,738 DE IncRNAs were with unknown function. Functional analysis of DE miRNAs indicated that the most significant enriched BP were cell division, chromosome segregation, mitotic nuclear division, DNA replication, and oxidation-reduction process, and so forth. Pathways in cell cycle, metabolic pathways, extracellular matrix (ECM)-receptor interaction, focal adhesion, p53 signaling pathway, PI3K-Akt signaling pathway, FOXO signaling pathway, and insulin signaling pathway may be closely enriched during the proliferative phase of rat LR.

3.3 Construction of IncRNA–miRNA–mRNA regulatory network during the proliferative phase of rat LR

The DE mRNAs targeted by DE miRNAs were predicted using miRanda algorithm according to the miRNA–mRNA binding data. Totally, 373 miRNA–mRNA target pairs removing duplicates were obtained which were consisted of 54 miRNAs and 307 mRNAs (Additional file 4). Five significant miRNAs, rno-miR-370-3p (degree = 53), rno-miR-324-3p (degree = 35), rno-miR-6315 (degree = 27), rno-miR-1956-5p (degree = 25), and rno-miR-484 (degree = 25) had the most target mRNAs. In the next step, the DE IncRNAs regulated by DE miRNAs were analyzed by miRanda algorithm. Totally, 116 miRNA–IncRNA regulatory pairs were identified including 34 miRNAs and 108 IncRNAs (Additional file 5). In the miRNA–IncRNA network, rno-miR-296-3p (degree = 12), rno-miR-324-3p (degree = 11), rno-miR-370-3p (degree = 11), rno-miR-331-3p (degree = 8), and rno-miR-6315 (degree = 8) had the most target IncRNAs.

Based on the regulatory pairs of miRNA–mRNA and miRNA–IncRNA, a IncRNA–miRNA–mRNA network was constructed, consisted of 32 miRNAs, 107 IncRNAs, and 270 mRNAs (Figure 2).
Of these mRNAs, 63 were upregulated, and 207 were downregulated. Each mRNA or lncRNA could be regulated by one or more miRNA and vice versa.

3.4 Function annotation of candidate genes during proliferative phase of rat LR

First, gene ontology (GO) enrichment analysis of the 270 mRNAs was conducted to reveal their functions. The result showed that 86 BP terms, 19 MF terms, and 34 CC terms were enriched (Additional file 6). The most enriched BP terms were multicellular organismal development, anatomical structure development, cellular component organization, nitrogen compound metabolic process, and cellular metabolic process. As for MF, the most enriched GO terms were protein binding, nucleotide binding, sequence-specific DNA binding transcription factor activity, transferase activity, and nucleic acid binding. The most enrichment CC terms were intracellular, cell part, intracellular part, intracellular organelle, and membrane-bounded organelle. Then Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the 270 mRNAs was performed to explore the signaling pathways involved. A total of nine significant pathways were enriched including insulin signaling pathway, pyrimidine metabolism, carbohydrate digestion and absorption, and pyruvate metabolism.

3.5 The screening of core lncRNAs during the proliferative phase of rat LR

The lncRNAs–miRNA–mRNA network was consisted with 107 lncRNAs, 32 miRNAs, and 270 mRNAs. Of these miRNAs, five were reported to play an important role during LR, including miR-21, miR-127, miR-34a, miR-378, and miR-125b, and they were regarded as the core miRNAs. The core lncRNAs were selected with a differently expression, and they were associated with the five miRNAs. Finally, nine core lncRNAs were correspondingly identified (Figure 3).
3.6 TF–miRNA–lncRNA regulatory network

TFs in the lncRNA–miRNA–mRNA network were analyzed using AnimalTFDB database. The result showed that 21 TFs (CSRN1P1, MYBL2, TEAD4, EGR2, ERBB4, ARID1B, ZBTB20, NFYC, SREBF2, HNF4A, PRKAG1, NFAT5, SREBF1, ERG, ZFP384, CLOCK, RORC, MAFB, GPBP1L1, ZBTB7C, and ADNP) were identified to be involved, and then a TF–miRNA–lncRNA regulatory network was constructed (Figure 4).

4 DISCUSSION

Previous studies have shown that LR was regulated by a number of biological molecules including hormones, growth factors, and cytokines. However, most of these studies are limited to the protein-coding genes, and it is still largely unknown how these genes are regulated during LR. Therefore, it is necessary to find new regulators involved in LR for better understanding the mechanism. Recent studies have shown that IncRNAs were important regulators of gene expression and associated with many important cellular physiological activities such as cell proliferation and differentiation (Ma et al., 2015; Zhu & Xu, 2013). IncRNAs could act as miRNA sponges to regulate the target mRNAs. The role of IncRNAs has been studied in a variety of cancer-related diseases including HCC. Staff et al. identified two miRNAs (miR-192 and miR-204) could directly suppress IncRNA HOTTIP expression and interrupt GLS1-mediated glutaminolysis in HCC (Staff, 2016). Chen et al. indicated that IncRNA PTENP1 could modulate cell proliferation, migration, autophagy, and apoptosis by decoying miR-17, miR-19b, and miR-20a in HCC cell (C. L. Chen et al., 2015). However, the role of IncRNA–miRNA–mRNA network remains largely unknown during the proliferative phase of rat LR.

In this study, high-throughput sequencing was conducted to analyze the expression changes of IncRNAs, miRNAs, and mRNAs during the...
FIGURE 3 Core ceRNA network during the proliferative phase of rat LR. Rectangles, triangle, and ellipses represented DE lncRNAs, DE miRNAs, and DE mRNAs, respectively. Pink, light blue, and purple color represented upregulation, downregulation, and up/downregulation. CeRNA: competition endogenous RNA; DE: differently expressed; lncRNAs: long noncoding RNAs; miRNAs: microRNAs; mRNAs: messenger RNAs [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 The regulatory network for TFs. Rectangles, triangle, and diamond represented DE lncRNAs, DE miRNAs, and TFs, respectively. Pink, light blue, and purple color represented upregulation, downregulation, and up/downregulation. DE: differently expressed; lncRNAs: long noncoding RNAs; miRNAs: microRNAs; TFs: transcription factors [Color figure can be viewed at wileyonlinelibrary.com]
proliferative phase of rat LR. Based on the RNA sequence data, 286 DE miRNAs, 1,738 DE lncRNAs, and 2,727 DE mRNAs were identified during the proliferative phase of LR compared with the normal group. Some DE miRNAs have been reported to be associated with LR. However, the function of most lncRNAs has not been studied. Then, an lncRNA–miRNA–mRNA interaction network was constructed during the proliferative phase of rat LR involving 107 lncRNAs, 32 miRNAs, and 270 mRNAs. To study the underlying role of lncRNAs during the proliferative phase of rat LR, GO enrichment analysis of the target mRNAs was performed. The result indicated that a large amount of proliferative phase of rat LR, GO enrichment analysis of the target and 270 mRNAs. To study the underlying role of lncRNAs during the proliferative phase of rat LR involving 107 lncRNAs, 32 miRNAs, and 270 mRNAs. To study the underlying role of lncRNAs during the proliferative phase of rat LR, GO enrichment analysis of the target mRNAs was performed. The result indicated that a large amount of significant GO terms were related to cellular metabolic process, cell adhesion, cellular response to stimulus, cell communication, and cell cycle, which had been reported as important physiological activities during the proliferative phase of rat LR (Erickson, Thompson, & Hixson, 2006; Kotsis et al., 2018; Loyer et al., 1994; Qin, Zhao, Chen, & Xu, 2006; Zheng, Weng, & Yu, 2009). KEGG pathway analysis identified nine signaling pathways including insulin signaling pathway and substance metabolism including pyrimidine metabolism, carbohydrate digestion and absorption, and pyruvate metabolism. Sasaki et al. indicated that insulin transmitted signal to intracellular regulators involved in hepatocyte growth through insulin receptor substrate 1 (IRS-1) during rat LR (Sasaki, Zhang, Nishiyama, Avruch, & Wands, 1993). The substance metabolism could supply energy and materials for the synthesis of DNA and proteins during the proliferative phase of rat LR (Yin, Chang, & Xu, 2017). In the lncRNA–miRNA–mRNA interaction network, five core miRNAs (miR-21-3p, miR-34a-5p, miR-127-3p, miR-378a-5p, and miR-125b-5p) and nine core lncRNAs (NONRATT026569.2, NONRATT030768.2, NONRATT012812.2, NONRATT00367.2, NONRATT0210242, NONRATT07218.2, TCONS_00008697, TCONS_00008701, and NONRATT01051.2) were identified according to the literature and regulation relationship between lncRNAs and miRNAs.

Some studies indicated that miR-21 was upregulated and played a significant role in modulating cell cycle progression and hepatocyte proliferation by targeting PTEN, FASLG, CCND1, BTG2, and PEL1 during LR (Castro et al., 2010; X. Chen et al., 2016; Li, Chan, Leung, Wang, & Xu, 2015; Marquez, Wendlandt, Galle, Keck, & McCaffrey, 2010; Ng, Song, Roll, Frandsen, & Willenbring, 2012; Song et al., 2010). Thus, NONRATT026569.2 and NONRATT030768.2 might regulate cell cycle progression and hepatocyte proliferation to contribute to rat LR by interacting with miR-21-3p. A few studies demonstrated that miR-34a was upregulated and was associated with the suppression of hepatocyte proliferation and cell apoptosis by targeting Notch receptors, BCL-2, BCL-XL, INHBB, and MET during LR (H. Chen et al., 2011; X. P. Wang et al., 2017). Therefore, NONRATT012812.2 might regulate hepatocyte proliferation and cell apoptosis to control rat LR by targeting miR-34a-5p. Pan et al. suggested that miR-127 was downregulated and might facilitate hepatocyte proliferation by releasing BCL6 and SETD8 during rat LR (Pan et al., 2012). Hence, NONRATT00367.2 and NONRATT0210242 might accelerate hepatocyte proliferation by regulating miR-127-3p. Song et al. discovered that miR-378 directly inhibits ornithine decarboxylase (Odc1), which is known to promote DNA synthesis in hepatocytes after 2/3 PH (Song et al., 2010). So NONRATT07218.2, TCONS_00008697 and TCONS_00008701 might control hepatocyte proliferation during rat LR by interacting with miR-378a-5p. In this study, miR-127-3p was also predicted to target ENSRNOT0000079185 (ODC1), which was consistent with previous study. Hyun et al. showed that miR-125b could contribute to liver regeneration by mediating Hedgehog signaling (Hyun et al., 2015). It suggested that NONRATT01051.2 might be conducive to liver regeneration by targeting miR-125b-5p.

Many TFs have been reported during rat LR including E2F2, KLF2, STAT3, NFkappaB, AP-1, C/EBPbeta, and Nr2f. In this study, 21 transcription factors (CSRNP1, MYBL2, TEAD4, EGR2, ESRA, ARID1B, ZBTB20, NFYC, SREBF2, HNF4A, PRKAG1, NFAT5, SREBF1, ERG, ZFP384, CLOCK, RORC, MAFB, GBP11L1, ZBTB7C, and ADNP) were found to be involved in TF-miRNAs regulation network during the proliferative phase of rat LR. Zinc-finger protein ZBTB20, also named DPZF, HOF, and ZNF288, was a critical regulator of EGFR expression and hepatocyte proliferation in mouse liver regeneration (H. Zhang et al., 2018). HNF4α, a member of the nuclear receptor family of transcription factors, could maintain hepatocyte differentiation in the adult healthy liver, and its loss may directly contribute to hepatocellular carcinoma development (Bono, Ferry, Matsubara, Kim, & Gonzalez, 2012). CLOCK, belonging to the bHLH-PAS family, located in the cell nucleus, played an important role in the regulation of liver gene expression (Malatasta, Baldelli, Marcheggiani, & Gazzanneli, 2003). The nuclear factor of activated T-cells (NFAT) transcription factors represented a family of gene transcription signaling intermediates that translate receptor-dependent signaling events into specific transcriptional responses using the Ras/Raf pathway, and NFAT4 played an important role in liver regeneration (Pierre et al., 2009). However, the function of most TFs was still unclear.

Some limitations were existed in this study. LncRNAs have a variety of functions. However, only the role of lncRNAs as mRNA sponges was analyzed through building the regulatory network of IncRNA–miRNA–mRNA and IncRNA–miRNA–TF. In addition, key lncRNAs predicted by bioinformatics analysis were not experimentally verified during the proliferative phase of rat LR.

5 | CONCLUSIONS

First, DE lncRNA, DE miRNA, and DE mRNA were analyzed by high-throughput sequencing technology, and then the IncRNA–miRNA–mRNA regulatory network was constructed according to the regulation mechanism of IncRNAs. Finally, through literature review and IncRNA–miRNA regulatory pairs, nine key IncRNAs, and five key miRNAs were screened out, which may play an important role during the proliferative phase of rat LR. This study provided clues for revealing the mechanism of LR and offered new ideas for the treatment of liver-associated diseases.

ACKNOWLEDGMENTS

The study was financially supported by the National Natural Science Foundation of China (No. 31572270 and No. 31601038).
All experimental procedures in this study were approved by and performed according to the guidelines for the care and use of experimental animals that have been established by the Animal Care and Use Committee of the Ministry of Science of the People's Republic of China.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHORS CONTRIBUTION

Haijing Bai wrote the manuscript and analyzed data. Cunshuan Xu participated in its design and interpretation. Wei Jin, Jianlin Guo, Xueqiang Guo, and Cuifang Chang critically revised the manuscript, and all authors have read and given approval of the manuscript.

DATA SHARING AND DATA ACCESSIBILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Cunshuan Xu http://orcid.org/0000-0003-4194-5871

REFERENCES

Bej, Y., Song, Y., Wang, F., Dimitrova-Shumkovska, J., Xiang, Y., Zhao, Y., ... Yang, C. (2016). miR-382 targeting PTEN-Akt axis promotes liver regeneration. Oncotarget, 7, 1584–1597. https://doi.org/10.18632/oncotarget.6444

Bonzo, J. A., Ferry, C. H., Matsubara, T., Kim, J. H., & Gonzalez, F. J. (2012). Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4alpha in adult mice. Journal of Biological Chemistry, 287, 7345–7356. https://doi.org/10.1074/jbc.M111.334599

Castro, R. E., Ferreira, D. M., Zhang, X., Borralho, P. M., Sarver, A. L., Zeng, Y., & Rodrigues, C. M. (2010). Identification of microRNAs during rat liver regeneration after partial hepatectomy and modulation by ursodeoxycholic acid. American Journal of Physiology, Gastrointestinal and Liver Physiology, 299, G887–G897. https://doi.org/10.1152/ajpgi.00216.2010

Chaveles, I., Zaravinos, A., Habeo, I. G., Karavias, D. D., Maroulis, I., Spandidos, D. A., & Karavias, D. (2012). MicroRNA profiling in murine liver after partial hepatectomy. International Journal of Molecular Medicine, 29, 747–755. https://doi.org/10.3892/ijmm.2012.902

Chen, C. L., Tseng, Y. W., Wu, J. C., Chen, G. Y., Lin, K. C., Hwang, S. M., & Hu, Y. C. (2015). Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials, 44, 71–81. https://doi.org/10.1016/j.biomaterials.2014.12.023

Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., & Cui, Q. (2013). LncRNA Disease: A database for long non-coding RNA-associated diseases. Nucleic Acids Research, 41, D983–D986. https://doi.org/10.1093/nar/gks1099

Chen, H., Sun, Y. M., Dong, R. Q., Yang, S. S., Pan, C. Y., Xiang, D., & Jiao, B. H. (2011). Mir-34a is upregulated during liver regeneration in rats and is associated with the suppression of hepatocyte proliferation. PLoS One, 6, e20238. doi: ARTN e20238. 10.1371/journal.pone.0020238

Chen, X., Song, M., Chen, W., Dimitrova-Shumkovska, J., Zhao, Y., Cao, Y., & Yang, C. (2016). MicroRNA-21 contributes to liver regeneration by targeting PTEN. Medical Science Monitor, 22, 83–91. https://doi.org/10.12659/MSM.896157

Erickson, B. M., Thompson, N. L., & Hixson, D. C. (2006). Tightly regulated baculovirus mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. FEBS Letters, 583, 759–766. https://doi.org/10.1016/j.febslet.2009.01.034

Gjymishka, A., Pi, L., Oh, S. H., Jorgensen, M., Liu, C., Protopapadakis, Y., & Petersen, B. E. (2016). miR-133b regulation of connective tissue growth factor: A novel mechanism in liver pathology. American Journal of Pathology, 186, 1092–1102. https://doi.org/10.1016/j.ajpath.2015.12.022

Hyun, J., Wang, S., Kim, J., Kim, G. J., & Jung, Y. (2015). MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorioclon plate-derived mesenchymal stem cells. Scientific Reports, 5, 14135. https://doi.org/10.1038/srep14135

Jeon, M., Kwon, H. J., Kim, Y. H., Han, K. I., Nam, K. W., Baik, Y., & Han, M. D. (2013). Administration of rHIL-2 upregulates HGF in the cirrhotic liver of partial hepatectomized rats. Animal Cells and Systems, 17, 179–185. https://doi.org/10.1097/1079768354.2013.801365

Ji, J., Zhang, J., Huang, G., Qian, J., Wang, X., & Mei, S. (2009). Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Letters, 583, 759–766. https://doi.org/10.1016/j.febslet.2009.01.034

Kotsis, T., Nastos, C., Stamatis, K., Chondroudaki, I., Papiti, A., Frangou, M., & Fotopoulos, A. (2018). Insulin metabolism and assessment of hepatic insulin extraction during liver regeneration. A study in a rat model. Journal of Investigative Surgery, 30, 1–8. https://doi.org/10.1080/08941939.2018.1472317

Krol, J., Loedige, I., & Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 11, 597–610. https://doi.org/10.1038/nrg2843

Li, J. J., Chan, W. H., Leung, W. Y., Wang, Y., & Xu, C. S. (2015). MicroRNA-21 promotes proliferation of rat hepatocyte BRL-3A by targeting FASLG. Genetics and Molecular Research, 14, 4150–4160. https://doi.org/10.4238/2015.April.27.30

Lin, X., Chen, L., Li, H., Liu, Y., Guan, Y., Li, X., & Xiao, D. (2018). miR-155 accelerates proliferation of mouse hepatocytes during liver regeneration by directly targeting SOCS1. American Journal of Physiology. Gastrointestinal and Liver Physiology, 315, G443–G453. https://doi.org/10.1152/ajpgi.00072.2018

Ling, L., Zhang, S. H., Zhi, L. D., Li, H., Wen, Q. K., Li, G., & Zhang, W. J. (2018). MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2. Biomedicine & Pharmacotherapy = Biomédicine & Pharmacothérapie, 104, 411–419. https://doi.org/10.1016/j.biopha.2018.05.042

Loyer, P., Glaise, D., Cariou, S., Baffet, G., Meijer, L., & Guguen-Guillouzo, C. (1994). Expression and activation of cdks (1 and 2) and cyclins in the cell cycle progression during liver regeneration. Journal of Biological Chemistry, 269, 2491–2500.

Lu, S., Jiao, H., Xu, J., Zheng, Y. X., Sun, Y. M., & Chen, H. (2015). Downregulation of IL6 targeted MIR376b may contribute to a positive IL6 feedback loop during early liver regeneration in mice.
