Measurement of D^0 decays to $K^0_L\pi^0$ and $K^0_S\pi^0$ at Belle

The Belle Collaboration

Abstract

We present a preliminary measurement of the ratio of D^0 decay rates into $K^0_L\pi^0$ and $K^0_S\pi^0$ final states. This ratio can be used to disentangle the Cabibbo favored $D^0 \to K^0\pi^0$ and doubly Cabibbo suppressed $D^0 \to K^0\pi^0$ amplitudes, and contributes to the important goal of constraining the strong phase $\delta_{K\pi}$ between $D^0 \to K^-\pi^+$ and $D^0 \to K^+\pi^-$. The measurement is based on a large data set accumulated by the Belle detector at the KEKB e^+e^- collider, with K^0_L candidates reconstructed using hadronic clusters in the KLM (K^0_L and μ identification system), together with a D^0 mass constraint and D^* tag.

PACS numbers: 13.25.Ft
Gyeongsang National University, Chinju
University of Hawaii, Honolulu HI
High Energy Accelerator Research Organization (KEK), Tsukuba
Hiroshima Institute of Technology, Hiroshima
Institute for Cosmic Ray Research, University of Tokyo, Tokyo
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
Institute of High Energy Physics, Vienna
Institute for Theoretical and Experimental Physics, Moscow
Kanagawa University, Yokohama
Korea University, Seoul
Kyoto University, Kyoto
Kyungpook National University, Taegu
University of Melbourne, Victoria
Nagoya University, Nagoya
Nara Women’s University, Nara
National Kaohsiung Normal University, Kaohsiung
National Lien-Ho Institute of Technology, Miao Lì
National Taiwan University, Taipei
H. Niewodniczanski Institute of Nuclear Physics, Krakow
Niigata University, Niigata
Niigata University, Niigata
Osaka City University, Osaka
Osaka University, Osaka
Panjab University, Chandigarh
Princeton University, Princeton NJ
Saga University, Saga
Seoul National University, Seoul
Sungkyunkwan University, Suwon
University of Sydney, Sydney NSW
Toho University, Funabashi
Tohoku Gakuin University, Tagajo
Tohoku University, Sendai
University of Tokyo, Tokyo
Tokyo Institute of Technology, Tokyo
Tokyo Metropolitan University, Tokyo
Tokyo University of Agriculture and Technology, Tokyo
Toyama National College of Maritime Technology, Toyama
University of Tsukuba, Tsukuba
Utkal University, Bhubaneswer
Virginia Polytechnic Institute and State University, Blacksburg VA
Yokkaichi University, Yokkaichi
Yonsei University, Seoul
The search for $D^0 - \bar{D}^0$ mixing has long been one of the most interesting projects in charm physics. Recent publications by the FOCUS [1] and CLEO [2] collaborations have stimulated a series of new measurements, including an updated γ_{CP} measurement by the Belle collaboration [3], reported at the summer conferences. However, the experimental situation is still not clear.

An important quantity in the interpretation of $D^0 - \bar{D}^0$ mixing results is the phase difference $\delta_{K\pi}$ between the Cabibbo favored (CF) and doubly Cabibbo suppressed (DCS) neutral D meson decays. As has been shown in [4], new information on $\delta_{K\pi}$ may be obtained by measuring the asymmetry between the decay rates of D^0 into $K^0_S\pi^0$ and $K^0_L\pi^0$, where the effect may be as large as $O(\tan^2 \theta_c)$, i.e. at the 5% level.

In this paper we present the first measurement of the $D^0 \rightarrow K^0_L\pi^0/D^0 \rightarrow K^0_S\pi^0$ decay rate asymmetry, using the Belle detector at the KEKB e^+e^- collider. In order to cancel out most of the systematic effects of the detector, we extract the K^0_L/K^0_S relative detection efficiency from the ratio of $K^0_L\pi^+\pi^-$ and $K^0_S\pi^+\pi^-$ modes via the decay $D^0 \rightarrow K^{*-}\pi^+$. The presence of $K^{*-} \rightarrow K^0\pi^-$ in the decay chain ensures equal rates of K^0_L and K^0_S in this case.

Throughout this paper, the inclusion of CP-conjugate processes is implied. In particular, we combine $D^0 \rightarrow K^0_L\pi^0$ with $\bar{D}^0 \rightarrow K^0_S\pi^0$, and so on. We thus treat the K^0_L and K^0_S as CP-eigenstates (the error is negligible) and assume that direct CP violation in $D \rightarrow K\pi$ and $K\pi$ decays, if present, may be ignored at our present sensitivity.

II. K^0_L RECONSTRUCTION TECHNIQUE

The key point in the analysis of final states containing K^0_L is the reconstruction of its momentum. The technique presented below makes use of the KLM (K^0_L and μ identification) subsystem of the Belle detector [5], which consists of several layers of iron absorber interspaced with resistive plate chambers. The system enables one to reconstruct muon tracks as well as hadronic showers. Those showers which do not have a matching charged track are assumed to be produced by K^0_L, with the position of the shower giving information about the flight direction of the K^0_L. The direction resolution is improved if the K^0_L deposits energy in the electromagnetic calorimeter in front of the KLM, in which case the position of the calorimeter cluster is used to determine the K^0_L flight direction.

To extract the magnitude of the K^0_L momentum one needs to employ additional constraints. In particular to reconstruct D^0 decays into K^0_LX where X is a fully reconstructed system, one can apply a D^0 mass constraint and solve the resulting 4-momentum equation with respect to the magnitude of the K^0_L momentum, and then exploit the $D^* \rightarrow D^0\pi$ decay to tag the signal.

To monitor the performance of the method we utilize the same D^0 decay modes but with K^0_S instead of K^0_L in the final state. We use the K^0_S flight direction reconstructed by its decay into $\pi^+\pi^-$, and then apply the same procedure as for K^0_L: henceforth such K^0_S are referred to as \tilde{K}^0_L (pseudo K^0_L).

Since the equation for the magnitude of the K^0_L momentum is quadratic there may be up to two solutions. However one of those, even if present, is non-physical in more than 90% of events. For simplicity, in this analysis we use only the one with the larger momentum.
III. DATA SET AND EVENT SELECTION

The data sample used for this analysis amounts in total to an integrated luminosity of 23.6 fb\(^{-1}\). We select \(D^*\) candidates with reconstructed scaled momentum \(x_p > 0.6\), which rejects \(D^*\) from \(B\)-meson decays and suppresses the combinatoric background. In addition to the standard reconstruction procedure for \(\pi^\pm, \pi^0\), and \(K^0_S\), the latter are required to satisfy the following quality criteria:

- the \(K^0_S \rightarrow \pi^+\pi^-\) vertex should be separated from the interaction point in the plane perpendicular to the beam axis by more than 500 \(\mu m\);
- the distance along the beam axis between the \(\pi^\pm\) tracks at the \(K^0_S\) vertex must be less than 1 cm;
- the cosine of the angle between the assumed \(K^0_S\) flight path from the interaction point to the decay vertex and the reconstructed \(K^0_S\) momentum in the transverse projection with respect to the beam must be more than 0.95.

When reconstructing \(K^0_L\), there is a potential background due to KLM clusters caused by unreconstructed charged particles, in particular when these particles do not originate from the interaction region (e.g. \(K\) and \(\pi\) decays in flight). To reject such cases we veto any KLM cluster matched to a calorimeter cluster with an energy between 0.15 and 0.3 GeV, corresponding to minimum ionization.

The dominant part of the background is due to the pickup of arbitrary soft pions when forming a \(D^0\) candidate. A characteristic feature of such combinations is that the \(D^0\) mass is accommodated by assigning a large momentum to the \(K^0\), which then accounts for most of the \(D^0\) momentum. Therefore the \(K^0\) flight angle with respect to the \(D^0\) boost (hereafter \(\theta_{DK}\)) for this background tends to peak in the forward direction (Fig. 1b) while for the signal the underlying distribution is isotropic, with a slight tilt to the forward direction in the measured distribution (Fig. 1a) due to detector efficiency.

![PSfrag replacements](image)

FIG. 1: \(K^0\) flight angle with respect to the \(D^0\) boost for \(D^0 \rightarrow \bar{K}_L^0\pi^0\)

The sharp peak around \(\cos \theta_{DK} = -1\) is due to the degenerate case when a random \(\pi^0\) or \(\pi^+\pi^-\) system can form a “good” \(D^0\) with a \(K^0\) (almost) at rest in the lab: to exclude these cases,
we require \(\cos \theta_{DK} > -0.95 \). The upper cut on this quantity needs optimization which has been performed using signal MC and data in the \(M(D^*) \) sideband: we require \(\cos \theta_{DK} < 0.2 \) for all four modes.

The invariant mass of the \(K^0 \pi^- \) combination in the \(K^0 \pi^+ \pi^- \) mode is required to lie within 50 MeV/c\(^2\) of the nominal \(K^*(892) \) mass. In addition the invariant mass of the \(\pi^+ \pi^- \) pair is required to be less than 0.7 GeV/c\(^2\) to make the signal and the control modes kinematically similar, and to suppress the contribution from \(K^0 \rho \) decays.

Since the kinematics in the \(K^0_L \) and the corresponding \(K^0_S \) modes is the same we can use the fully controlled \(K^0_S \pi^0 \) and \(K^0_S \pi\pi \) modes to select a region in the \(K^0_L \) lab momentum where the efficiency of the kinematical cuts, which is independent of the \(K^0 \) flavor, is the same (see Fig. 2). Hence we can average over this region and all the efficiencies including that of \(K^0_L \) reconstruction cancel out. We select the \(K^0 \) lab momentum range from 0.6 GeV/c to 2.5 GeV/c for this analysis.

IV. DETERMINATION OF \(K^0_L \) AND \(K^0_S \) RATE RATIO

The resulting \(D^* \) mass plots for the four \(D^0 \) decay modes under study are shown in Figure 3. For the modes including \(K^0_S \) these are mass difference plots in the traditional reconstruction with a very loose cut on the \(D^0 \) mass (within 100 MeV from the nominal value). The distributions for the \(K^0_S \) modes have been fit to a sum of two gaussians representing the signal and its tails and a first order polynomial multiplied by a square root threshold factor to describe the background, while for the signal in the \(K^0_L \) modes a single gaussian was used. The central value of all the gaussians was fixed at the nominal charged \(D^* \) mass; all other parameters were allowed to float.

The yields obtained from the fit are

\[
\begin{align*}
N(K^0_S \pi^0) &= 4715 \pm 91, \\
N(K^0_L \pi^0) &= 1839 \pm 101, \\
N((K^0_S \pi)\pi) &= 2524 \pm 77, \\
N((K^0_L \pi)\pi) &= 1119 \pm 84.
\end{align*}
\]

They are used to calculate the ratio of branching fractions of \(D^0 \to K^0_L \pi^0 \) and \(D^0 \to K^0_S \pi^0 \)

\[
\frac{\mathcal{B}(D^0 \to K^0_L \pi^0)}{\mathcal{B}(D^0 \to K^0_S \pi^0)} = \frac{N(K^0_L \pi^0)/N(K^0_S \pi^0)}{N((K^0_L \pi)\pi)/N((K^0_S \pi)\pi)} = 0.88 \pm 0.09(\text{stat})
\]

V. EVALUATION OF SYSTEMATIC ERRORS

Due to the similarities in the behavior of the signal \(K^0 \pi^0 \) and control \((K^0 \pi)\pi \) modes most of the systematic errors cancel out. However some steps in the analysis are different and thus may have different systematic effect on the result.

We consider the following potential sources of systematic errors which may not cancel:

- the effect of the residual difference in \(K^0_L \) lab momentum spectra, which can lead to a bias in the result if the \(K^0_L \) reconstruction efficiency strongly depends on momentum;

- systematic errors due to the imperfect fitting function.
FIG. 2: K^0 lab momentum spectra for (a) $K_S^0 \pi^0$ and (b) $(K_S^0 \pi)\pi$; (c) shows the ratio of (a) to (b) as a function of momentum.

In order to estimate the bias induced by the residual difference in K_L^0 lab momentum spectra, an artificial momentum-dependent “efficiency” was introduced in $K_S^0 \pi^0$ and $(K_S^0 \pi)\pi$ modes by applying a weight depending on the K_S^0 lab momentum. The weight changed linearly from 0 at 0.6 GeV/c to 1 at 2.5 GeV/c, representing the worst possible case. The resulting change in the ratio of yields was less than 3%.

Systematic errors arising from imperfections of the fitting model were evaluated by varying the functions describing the signal and the background: in particular we employed a double gaussian to describe the signal in K_L^0 modes as well as in K_S^0, and a second order polynomial multiplied by the square root threshold factor to fit the background. The yield ratio remained stable within 6%
under all variations of the fitting model that were studied.

In addition, the stability of the fit against variation of the background level was studied by simultaneously varying the cut on cos θ_{DK} in all the four modes: we estimate the error on the yield ratio due to this source to be 8%.

Adding these sources of error in quadrature, we estimate the total systematic error to be 10%. Since this error is dominated by the difficulty of parametrizing the background, there is potential for improvement if the shape of the background can be simplified. One technique currently being studied is the replacement of the \(M(D^0) \) constraint with a constraint on \(M(D^0)^2 - M(D^0)^2 \) when forming the \(K^0 \) momentum: the signal yield is then extracted from the resulting \(M(D^0) \) distribution. As there is no natural threshold in this case, we expect the yield to be relatively stable under variations of cuts, fit functions and so on.

VI. CONCLUSION

In summary, we have demonstrated the viability of this method of measuring the ratio of \(D^0 \) decay rates into \(K^0_L\pi^0 \) and \(K^0_S\pi^0 \). Our preliminary measurement of this ratio is

\[
\frac{\mathcal{B}(D^0 \to K^0_L\pi^0)}{\mathcal{B}(D^0 \to K^0_S\pi^0)} = 0.88 \pm 0.09\text{(stat)} \pm 0.09\text{(syst)};
\]
expressing the result in terms of the rate asymmetry defined in \[4\], we find

\[
\mathcal{A} \equiv \frac{\Gamma(D^0 \rightarrow K^0_S \pi^0) - \Gamma(D^0 \rightarrow K^0_L \pi^0)}{\Gamma(D^0 \rightarrow K^0_S \pi^0) + \Gamma(D^0 \rightarrow K^0_L \pi^0)} = 0.06 \pm 0.05(\text{stat}) \pm 0.05(\text{syst}),
\]

which is consistent with unity. At the current level of precision we are therefore not able to place any strong constraint on the parameters of \(D \rightarrow K \pi\) decays, and so the strong phase \(\delta_{K\pi}\). However the statistical error will soon improve as more data is accumulated by the Belle detector; changes of technique to reduce the systematic error are also being actively studied.

Acknowledgments

We wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator. We acknowledge support from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Industry, Science and Resources; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the Center for High Energy Physics sponsored by the KOSEF; the Polish State Committee for Scientific Research under contract No.2P03B 17017; the Ministry of Science and Technology of Russian Federation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

[1] J. M. Link et al. (E687 Collaboration), Phys. Lett. B 485, 62 (2000).
[2] R. Godang et al. (CLEO Collaboration), Phys. Rev. Lett. 84, 5038 (2000).
[3] K. Abe et al. (Belle Collaboration), BELLE-CONF-0131 (2001).
[4] E. Golowich and S. Pakvasa, Phys. Lett. B 505, 94 (2001).
[5] K. Abe et al. (Belle Collaboration), KEK Progress Report 2000-4 (2000), to be published in Nucl. Inst. and Meth. A.
[6] D. E. Groom et al. (Particle Data Group), Eur. Phys. J. C15, 1 (2000).