Fermions tunnelling from the charged dilatonic black holes

De-You Chen1, Qing-Quan Jiang2,3 and Xiao-Tao Zu1

1 School of Physical Electronics, University of Electronic Science and Technology of China, Sichuan, Chengdu 610054, People’s Republic of China
2 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China

E-mail: jiangqq@iopp.ccnu.edu.cn

Received 18 May 2008, in final form 9 July 2008
Published 30 September 2008
Online at stacks.iop.org/CQG/25/205022

Abstract
Kerner and Mann’s recent work shows that for an uncharged and non-rotating black hole its Hawking temperature can be correctly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein–Maxwell–dilaton–axion (EMDA) black hole and the rotating Kaluza–Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.

PACS numbers: 04.70.Dy, 04.62.+v, 11.30.−j

1. Introduction

Since Hawking proved that a black hole can radiate thermally [1], many papers have appeared to deeply discuss the quantum radiation of black holes via different methods [2]. Recently, Wilczek and his collaborators have proposed two universal methods to correctly recover the Hawking radiation of black holes. In [3], when the classically irrelevant ingoing modes at the event horizon of the black hole are neglected, the effective chiral theory contains an anomaly with respect to general coordinate symmetry, which is often named as a gravitational anomaly. To cancel the gravitational anomaly and restore the general coordinate covariance at the quantum level, an energy momentum tensor flux must be introduced at the horizon. The result shows that the compensating energy momentum tensor flux has an equivalent form as that of (1+1)-dimensional blackbody radiation at the Hawking temperature. Later, much work further promotes this method to the cases of different-type black holes [4–6].
On the other hand, Hawking radiation could be viewed as a semi-classical quantum tunnelling process. According to the WKB approximation, the tunnelling rate takes the form $\Gamma \propto \exp(-2 \text{Im } I)$, where I is the classical action of the trajectory. Thus, the calculation of the imaginary part of the action becomes most important for this tunnelling method. In general, two universal methods are applied in references to derive the action. The first method is called the null geodesic method (a detailed description is available in [7]), and regarding the imaginary part of the action as the only contribution of the momentum p_r of the emitted null s-wave. Another method, proposed by Srinivasan and Padmanabhan [8] and recently developed by Angheben et al [9], is successfully presented to derive the imaginary part of the action by solving the Hamilton–Jacobi equation, which is, later, called the Hamilton–Jacobi method.

To date, a lot of work has already been successfully carried out on further development of the tunnelling approach, but all of them are only focused on the Hawking radiation of scalar particles from various black hole spacetimes [10, 11]. In fact, a black hole can radiate any type of particles at the Hawking temperature, and the true emission spectrum should contain contributions of particles with charge and all possible spins. Recently, Kerner and Mann have succeeded in applying uncharged fermion tunnelling from a non-rotating black hole to correctly recover its Hawking temperature [12]. Subsequently, people extend the analysis to the cases of Kerr black hole, Kerr–Newman black hole and dynamical horizon and all the results are satisfying [13]. In this paper, we further improve it to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein–Maxwell–dilaton–axion (EMDA) black hole and the rotating Kaluza–Klein (KK) black hole.

The rest of the paper is organized as follows. In section 2, we study charged fermion tunnelling from the charged, spherically symmetric dilatonic black hole and the expected Hawking temperature is well recovered. In sections 3 and 4, for a broad extension, we again check charged fermions tunnelling from the rotating EMDA and KK black holes. Section 5 contains some discussions and conclusions.

2. Fermions tunnelling from the charged, spherically symmetric dilatonic black hole

In this section, we focus our attention on the Hawking radiation of fermions via tunnelling from the charged, spherically symmetric dilatonic black hole. A dilaton field is a kind of scalar field which occurs in the low energy limit of the string theory where the Einstein action is supplemented by the fields such as axion, gauge fields and dilaton coupling in a nontrivial way to the other fields. Solutions for charged dilaton black holes in which the dilaton is coupled to the Maxwell field have been obtained and have many differences from that of ordinary black holes obtained in the Einstein gravitational theory. As the presence of a dilaton has important consequences on the causal structure and the thermodynamic properties of the black hole, there is much interest in studying the dilaton black holes. The spherically symmetric solution [14] is obtained from the four-dimensional low-energy Lagrangian

$$S = \int dx^4 \sqrt{-g}\left[-R + 2(\nabla \Phi)^2 + e^{-2a\Phi} F^2\right],$$

where a is a parameter, and denotes the strength of the coupling of the dilaton field Φ to the Maxwell field F. When $a = 0$, it reduces to the usual Einstein–Maxwell scalar theory. When $a = 1$, it is part of the low-energy action of string theory. The metric of the charged, spherically symmetric dilatonic black hole (also called as GH dilatonic black hole) reads
The motion equation of the charged fermion in the electromagnetic field can be written as

$$i\gamma^\mu \left(\partial_\mu + \frac{i}{e} A_\mu \right) \psi + \frac{m}{\hbar} \psi = 0,$$

where γ^μ matrices satisfy

$$\{ \gamma^\mu, \gamma^\nu \} = 2g^{\mu\nu} \times I,$$

and $\Omega_\mu = \frac{i}{\hbar} \{ A_\mu, \gamma^\nu \}$, $\sum_{\alpha\beta} = \frac{i}{4} [\gamma^\alpha, \gamma^\beta]$, and γ^μ matrices satisfy

$$\{ \gamma^\mu, \gamma^\nu \} = 2g^{\mu\nu} \times I.$$

Here, σ^i is the Pauli sigma matrix. For a fermion with spin 1/2, the wavefunction has two spin states (namely, spin up (\uparrow) and down (\downarrow) states), so we can take the following ansatz as

$$\Psi_\uparrow = \begin{pmatrix} A(t, r, \theta, \phi) \\ B(t, r, \theta, \phi) \\ 0 \\ 0 \end{pmatrix} \exp \left(\frac{i}{\hbar} I_\uparrow(t, r, \theta, \phi) \right),$$

$$\Psi_\downarrow = \begin{pmatrix} 0 \\ C(t, r, \theta, \phi) \\ D(t, r, \theta, \phi) \\ 0 \end{pmatrix} \exp \left(\frac{i}{\hbar} I_\downarrow(t, r, \theta, \phi) \right).$$

where Ψ_\uparrow denotes the wavefunction of the spin up particle and Ψ_\downarrow is for the spin down case. Inserting equation (5) for the spin up particle into the Dirac equation and dividing the exponential term and multiplying by \hbar, we have

$$\left(\frac{iA}{\sqrt{e^{2U}(r)}} \partial_t I_\uparrow + eA_t + B\sqrt{e^{2U}(r)} \partial_r I_\uparrow \right) + mA = 0,$$

(6)

$$\left(\frac{iB}{\sqrt{e^{2U}(r)}} \partial_t I_\uparrow + eA_t - A\sqrt{e^{2U}(r)} \partial_r I_\uparrow \right) + mB = 0,$$

(7)

$$\frac{B}{R(r)} \partial_\theta I_\uparrow + \frac{iB}{R(r) \sin \theta} \partial_\phi I_\uparrow = 0,$$

(8)

$$\frac{A}{R(r)} \partial_\theta I_\uparrow + \frac{iA}{R(r) \sin \theta} \partial_\phi I_\uparrow = 0.$$

(9)
It is difficult to directly solve the action from the above equations. Considering the symmetries of the spacetime, we can carry out separation of variables for the action as

\[I^\uparrow = -\omega t + W(r) + \Theta(\theta, \phi), \]

(10)

where \(\omega \) is the energy of the emitted particle. Then substituting equation (10) into equations (6) and (7), the radial function \(W(r) \) satisfies the following equations:

\[
\begin{align*}
\left(\frac{iA}{\sqrt{e^{2U}(r)}}(\omega - eA_t) - B\sqrt{e^{2U}(r)\partial_r}W(r) \right) + mA &= 0, \\
-\left(\frac{iB}{\sqrt{e^{2U}(r)}}(\omega - eA_t) + A\sqrt{e^{2U}(r)\partial_r}W(r) \right) + mB &= 0.
\end{align*}
\]

(11)

(12)

Here, we neglect the equations about the \(\Theta(\theta, \phi) \) function. Although \(\Theta(\theta, \phi) \) could provide a contribution to the imaginary part of the action, its total contributions to the tunnelling rate are cancelled out [12]. At the event horizon, the radial function \(W(r) \) can be written as

\[
W_{\pm}(r) = \pm \int \sqrt{(\omega - eA_t)^2 + m^2 e^{2U}(r)} dr
\]

\[= \pm i\pi r_h (\omega - eA_0) \left(1 - \frac{r_+}{r_h} \right) \frac{a^2 - 1}{a^2 + 1}. \]

(13)

where +/- correspond to the outgoing/ingoing solutions and \(A_h = Q/r_h \) is the electric potential at the event horizon. So the tunnelling probability of charged fermion is

\[
\Gamma = \frac{P_{\text{emission}}}{P_{\text{absorption}}} = \frac{\exp(-2 \text{ Im } I_{1+})}{\exp(-2 \text{ Im } I_{1-})} = \frac{\exp(-2 \text{ Im } W_+)}{\exp(-2 \text{ Im } W_-)}
\]

\[= \exp \left(-4\pi r_h (\omega - eA_0) \left(1 - \frac{r_+}{r_h} \right) \frac{a^2 - 1}{a^2 + 1} \right). \]

(14)

which means the Hawking temperature of the dilatonic black hole is

\[T = \frac{1}{4\pi r_h} \left(1 - \frac{r_+}{r_h} \right) \frac{a^2 - 1}{a^2 + 1}. \]

(15)

Now the Hawking temperature has been correctly derived via fermion with spin up tunnelling from the dilatonic black hole. For the spin down case, the similar process is adopted and the same result can be recovered. When \(a = 0 \), metric (2) is the solution of the Reissner–Nordström black hole and the Hawking temperature is recovered from equation (15) as

\[T = \frac{1}{2\pi} \sqrt{M^2 - Q^2}. \]

(16)

In the extreme limit \(r_h = r_- \), it is found that the surface gravity is zero and the Hawking temperature of the black holes (the extreme Reissner–Nordström black hole and the extreme \(U(1) \) dilatonic black hole) vanishes for all \(0 \leq a < 1 \). But for \(a = 1 \) the surface gravity is a constant; and for \(a > 1 \), it diverges because the black hole approaches its extremal limit [15], at the time the nearly extremal black hole behaves more like elementary particles.
3. Fermions tunnelling from the rotating EMDA black hole

In this section, we study charged fermions tunnelling from the rotating Einstein–Maxwell–dilaton–axion black hole. In 1995, García et al gave a class of stationary axisymmetric solutions of the Einstein–Maxwell–dilaton–axion field equations. From the action

\[S = \int d^4x \sqrt{-g} \left[R - 2g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} e^{2\phi} g^{\mu\nu} \partial_\mu \kappa \partial_\nu \kappa - e^{-2\phi} F_{\mu\nu} F^{\mu\nu} - \kappa F_{\mu\nu} \tilde{F}^{\mu\nu} \right], \]

(17)

the solution of the EMDA black hole [16] can be obtained as

\[ds^2 = -\Delta - a^2 \sin^2 \theta \, dt^2 + \frac{2a \sin^2 \theta (r^2 + 2br + a^2 - \Delta)}{\sum} \, dt \, d\phi + \sum \, dr^2 + \sum \, d\theta^2 + \frac{(r^2 + 2br + a^2)^2 - \Delta a^2 \sin^2 \theta}{\sum} \, \sin^2 \theta \, d\phi^2, \]

(18)

where

\[A_\mu = A_t \, dt + A_\phi \, d\phi = \frac{Qr}{\sum} \, dt - \frac{Qra \sin^2 \theta}{\sum} \, d\phi, \]

(19)

\[\Delta = r^2 - 2mr + a^2 = (r - r_h)(r - r_-), \]

\[r_h = m + \sqrt{m^2 - a^2}, \quad r_- = m - \sqrt{m^2 - a^2}. \]

The dilaton \(\phi \) and axion scalar \(\kappa \) fields are, respectively, given as \(\exp(2\phi_0) = \omega \) and \(\kappa = \kappa_0 \), where \(\omega \) and \(\kappa_0 \) are constants, and \(r_h/r_- \) are the outer/inner horizons of the black hole. The parameters \(m, a \) and \(b \) are, respectively, the mass, angular momentum per unit mass and dilatonic constant of the black hole, which are related to the ADM mass \(M \), charge \(Q \) and angular momentum \(J \) of the black hole as

\[M = m + b, \quad Q^2 = 2b(m + b), \quad J = (m + b)a. \]

(20)

When \(a = 0 \), the EMDA metric reduces to the Garfinkle–Horowitz–Strominger dilatonic solution. When \(b = m \sinh^2 \left(\frac{\alpha}{2} \right) \) and \(\omega = 1 \), one can derive the parameters of characterizing the Kerr–Sen black hole. For simplicity of our computation, we introduce the dragging coordinate transformation as \(\phi = \varphi - \Omega t \), where

\[\Omega = \frac{a(r^2 + 2br + a^2 - \Delta)}{(r^2 + 2br + a^2)^2 - \Delta a^2 \sin^2 \theta}, \]

(21)

to metric (18), then the new metric takes the form

\[ds^2 = -f(r) \, dt^2 + \frac{1}{g(r)} \, dr^2 + \sum \, d\theta^2 + g_{33} \, d\phi^2, \]

(22)

where

\[f(r) = \frac{\Delta \sum}{(r^2 + 2br + a^2)^2 - \Delta a^2 \sin^2 \theta}, \quad g(r) = \frac{\Delta}{\sum}, \quad g_{33} = \frac{(r^2 + 2br + a^2)^2 - \Delta a^2 \sin^2 \theta}{\sum} \, \sin^2 \theta. \]

(23)

The corresponding potential is

\[A_\mu = A_t \, dt + A_\phi \, d\phi = \frac{(r^2 + 2br + a^2)Qr}{(r^2 + 2br + a^2)^2 - \Delta a^2 \sin^2 \theta} \, dt - \frac{Qra \sin^2 \theta}{\sum} \, d\phi. \]

(24)
In order to solve the Dirac equation, we must first introduce the metrics γ^μ. As mentioned in section 2, there are many different ways to choose them. Considering the similarity between metrics (2) and (22), we choose γ^μ matrices as

$$\gamma^t = \frac{1}{\sqrt{f(r)}} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \gamma^\phi = \frac{1}{\sqrt{33}} \begin{pmatrix} 0 & \sigma^2 \\ \sigma^2 & 0 \end{pmatrix},$$

$$\gamma^r = \sqrt{g(r)} \begin{pmatrix} 0 & \sigma^3 \\ \sigma^3 & 0 \end{pmatrix}, \quad \gamma^\theta = \frac{1}{\sqrt{g(\sigma^1)}} \begin{pmatrix} 0 & \sigma^1 \\ \sigma^1 & 0 \end{pmatrix}. \quad (25)$$

We still choose the same form as given in equation (5) for the wavefunctions of charged fermion tunnelling from the EMDA black hole, and only explore the spin up case. Substituting the γ^μ matrices (25) and the wavefunction into the Dirac equation (3), we have

$$-\left(\frac{i A}{\sqrt{f(r)}} (\partial_t I^\uparrow + eA_t) + B\sqrt{g(r)} \partial_r I^\uparrow + eA_b \right) + mA = 0, \quad (26)$$

$$\left(\frac{i B}{\sqrt{f(r)}} (\partial_t I^\uparrow + eA_t) - A\sqrt{g(r)} \partial_r I^\uparrow + eA_b \right) + mB = 0, \quad (27)$$

$$B \sum \partial_\theta I^\uparrow + \frac{i B}{\sqrt{g_{33}}} (\partial_\phi I^\uparrow + eA_b) = 0, \quad (28)$$

$$A \sum \partial_\theta I^\uparrow + \frac{i A}{\sqrt{g_{33}}} (\partial_\phi I^\uparrow + eA_b) = 0. \quad (29)$$

There are four equations, but our interest is the first two ones because the tunnelling rate is directly related to the imaginary part of the radial function, and the angular contribution can be cancelled out when dividing the outgoing probability by the ingoing probability. In view of the properties of the rotating EMDA spacetime, one can carry out separation of variables for the action as

$$I^\uparrow = -(\omega - j\Omega_1)t + W(r) + j\phi + \Theta(\theta), \quad (30)$$

where ω is the energy of the emitted particle for the observer at infinity and j is the angular quantum number about ϕ. Inserting action (30) into equations (26) and (27) yields

$$\left(\frac{i A}{\sqrt{f(r)}} (\omega - j\Omega_1 - eA_t) + B\sqrt{g(r)} \partial_r W(r) \right) + mA = 0, \quad (31)$$

$$-\left(\frac{i B}{\sqrt{f(r)}} (\omega - j\Omega_1 - eA_t) + A\sqrt{g(r)} \partial_r W(r) \right) + mB = 0. \quad (32)$$

Two cases exist here. When $m = 0$, the above equations describe the radial wavefunction for the massless particle. When $m \neq 0$, charged massive fermion is in consideration, and solving the above equations yields

$$W_{\pm}(r) = \pm i \pi \sqrt{\frac{f(r)g(r)}{f(r)g(r)}} \int dr \frac{(\omega - j\Omega_1 - eA_t)^2 + m^2 f(r)}{f(r)g(r)}$$

$$= \pm i \pi \frac{\omega - j\Omega_b - eA_t(r_b)}{\sqrt{f(r_b)g(r_b)}}. \quad (33)$$

where $+(-)$ correspond to the outgoing (ingoing) solutions and $\Omega_b = \Omega(r_b) = a \sqrt{r_b^2 + 2br_b + a^2}$ is the angular velocity at the event horizon of the EMDA black hole. Thus, the tunnelling
probability of the charged fermion can be written as
\[
\Gamma = \frac{P_{\text{emission}}}{P_{\text{absorption}}} = \frac{\exp(-2 \text{ Im } I_{+})}{\exp(-2 \text{ Im } I_{-})} = \exp\left(-4\pi \frac{\omega - j\Omega - eA_{\nu}(r_{h})}{\sqrt{f(r_{h})g'(r_{h})}}\right).
\] (34)

According to the relationship between the tunnelling rate and Hawking temperature, the Hawking temperature of the EMDA black hole can be obtained as
\[
T = \frac{\sqrt{f'(r_{h})g'(r_{h})}}{4\pi} = \frac{1}{2\pi} \frac{r_{h} - m}{r_{h}^{2} + 2br_{h} + a^{2}}.
\] (35)

When \(b = 0 \), the Hawking temperature \(T \) can be written as
\[
T = \frac{1}{2\pi} \frac{\sqrt{m^{2} - a^{2}}}{(m + \sqrt{m^{2} - a^{2}}) + a^{2}},
\] (36)
which is the Hawking temperature of the Kerr black hole. For \(b = 0 \) and \(a = 0 \) (the Schwarzschild black hole case), the Hawking temperature equals \(1/8\pi m \). So fermions tunnelling from these black holes can correctly recover Hawking temperatures.

4. Fermions tunnelling from the rotating Kaluza–Klein black hole

The solution of the rotating Kaluza–Klein black hole [17], denoted a five-dimensional spacetime with a translational symmetry in a spacelike direction in four-dimensional metrics \(g_{\mu\nu} \), is obtained from action (1) with \(a = \sqrt{3} \), which reads
\[
ds^{2} = -\frac{\Delta - a^{2} \sin^{2} \theta}{\Pi} \sum \frac{\Delta}{\Pi} d\tau^{2} + \Pi \sum \Delta d\tau^{2} + \Pi \sum d\theta^{2} + \left[\Pi(r^{2} + a^{2}) + \frac{Z}{\Pi} a^{2} \sin^{2} \theta \right] \sin^{2} \theta d\varphi^{2} - \frac{2aZ \sin^{2} \theta}{\Pi \sqrt{1 - v^{2}}} dt d\varphi,
\] (37)

with the dilaton field \(\Phi = -(\sqrt{3} \ln \Pi)/2 \), and the electromagnetic potential
\[
A_{\mu} = \frac{v}{2(1 - v^{2})} \frac{Z}{\Pi} dt - \frac{va \sin^{2} \theta}{2\sqrt{1 - v^{2}}} \frac{Z}{\Pi^{2}} d\varphi,
\] (38)

where
\[
Z = \frac{2mr}{\sum}, \quad \Pi = \sqrt{1 + \frac{v^{2}Z}{1 - v^{2}}},
\]
\[
\sum = r^{2} + a^{2} \cos^{2} \theta, \quad \Delta = r^{2} - 2mr + a^{2},
\]
\[
r_{h} = m + \sqrt{m^{2} - a^{2}}, \quad r_{-} = m - \sqrt{m^{2} - a^{2}},
\] (39)

and \(a \) and \(v \) are the rotation parameter and boost velocity, respectively. The outer (inner) horizons are described by the parameters \(r_{h} \) (\(r_{-} \)) and satisfy \(\Delta = 0 \). The solution reduces to the Kerr solution for \(v = 0 \). The physics mass \(M \), charge \(Q \) and angular momentum \(J \) of the black hole are related to the parameters \(m, a \) and \(v \) as
\[
M = \frac{m}{2} \cdot \frac{2 - v^{2}}{1 - v^{2}}, \quad Q = \frac{mv}{1 - v^{2}}, \quad J = \frac{ma}{\sqrt{1 - v^{2}}},
\] (40)
As mentioned in section 3, to easily investigate charged fermions tunnelling from the black hole, we first introduce the dragging coordinate transformation as
\[\phi = \varphi - \Omega t, \]

where
\[
\Omega = \frac{aZ}{[\Pi^2(r^2 + a^2) + Za^2 \sin^2 \theta]^{1/2} - v^2}.
\]

Then the new metric takes the form
\[ds^2 = -F(r) \, dt^2 + \frac{1}{G(r)} \, dr^2 + \Pi \sum d\theta^2 + g_{33} \, d\phi^2, \]

with the new electromagnetic potential
\[A_\mu = A_t \, dt + A_\phi \, d\phi \]

\[= \frac{Qr}{\Pi} \left(\frac{r^2 + a^2}{\Pi} \sum \frac{\Delta(1 - v^2)}{r^2 + a^2} \right) \, dt - \frac{v a \sin^2 \theta}{2\sqrt{1 - v^2} \, \Pi} \, Z \, d\phi, \]

and
\[F(r) = -\frac{\Pi}{\sum} \left(\frac{\Delta}{r^2 + a^2} - \frac{\Delta}{r^2 + a^2} \right), \]

\[g_{33} = \left(\frac{\Pi}{r^2 + a^2} + \frac{Z}{\Pi} a^2 \sin^2 \theta \right) \sin^2 \theta, \quad G(r) = \frac{\Delta}{\Pi}. \]

As metric (42) takes the similar form as that of (22), we can choose the similar \(\gamma^\mu \) matrices as equation (25) for the black hole, specifically taking
\[\gamma^t = \frac{1}{\sqrt{F(r)}} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \gamma^\theta = \frac{1}{\sqrt{\Pi}} \begin{pmatrix} 0 & \sigma^1 \\ \sigma^1 & 0 \end{pmatrix}, \]

\[\gamma^r = \sqrt{G(r)} \begin{pmatrix} 0 & \sigma^3 \\ \sigma^3 & 0 \end{pmatrix}, \quad \gamma^\phi = \frac{1}{\sqrt{g_{33}}} \begin{pmatrix} 0 & \sigma^2 \\ \sigma^2 & 0 \end{pmatrix}. \]

Substituting the above \(\gamma^\mu \) matrices and the wavefunction with spin up given in (5) into the Dirac equation yields
\[-\left(\frac{iA}{\sqrt{F(r)}} (\bar{\psi} I_\uparrow + e A_t) + B \sqrt{G(r)} \bar{\psi} I_\uparrow \right) + mA = 0, \]

\[\left(\frac{iB}{\sqrt{F(r)}} (\bar{\psi} I_\uparrow + e A_t) - A \sqrt{G(r)} \bar{\psi} I_\uparrow \right) + mB = 0, \]

\[\frac{B}{\sqrt{\Pi}} \sum \bar{\psi} I_\uparrow + \frac{iB}{\sqrt{g_{33}}} (\bar{\psi} I_\uparrow + e A_\phi) = 0, \]

\[\frac{A}{\sqrt{\Pi}} \sum \bar{\psi} I_\uparrow + \frac{iA}{\sqrt{g_{33}}} (\bar{\psi} I_\uparrow + e A_\phi) = 0. \]

Although there are four equations, our attention is also focused on the first two equations. Considering the properties of the Kaluza–Klein spacetime, we carry out separation of variables as equation (30). Inserting the action \(I_\uparrow \) into equations (46) and (47) yields
\[\left(\frac{iA}{\sqrt{F(r)}} (\omega - j \Omega - e A_t) - B \sqrt{G(r)} \bar{\psi} W(r) \right) + mA = 0, \]

\[-\left(\frac{iB}{\sqrt{F(r)}} (\omega - j \Omega - e A_t) + A \sqrt{G(r)} \bar{\psi} W(r) \right) + mB = 0, \]

9
where ω denotes the energy of the emitted particles measured by the observer at infinity and j is the angular quantum number about ϕ. In the case $m \neq 0$, solving the above equations, we have

$$W_{\pm}(r) = \pm \int \sqrt{(\omega - j\Omega - eA_t)^2 + m^2F(r)} \frac{dr}{F(r)G(r)} = \pm i\pi \frac{\omega - j\Omega_h - eA_t(r_h)}{\sqrt{F'(r_h)G'(r_h)}},$$

where $+(−)$ signs represent the outgoing (ingoing) solutions and $\Omega_h = \Omega(r_h)$ is the angular velocity at the outer horizon of the KK black hole. So the tunnelling probability of charged fermion of the black hole can be written as

$$\Gamma = \frac{P_{(\text{emission})}}{P_{(\text{absorption})}} = \exp(-2\text{ Im } I_+) = \exp(-2\text{ Im } W_+)$$

$$= \exp\left(-4\pi \frac{\omega - j\Omega_h - eA_t(r_h)}{\sqrt{F'(r_h)G'(r_h)}}\right).$$

Thus, the Hawking temperature of the Kaluza–Klein black hole takes the form as

$$T = \frac{\sqrt{F'(r_h)G'(r_h)}}{4\pi} = \frac{1}{4\pi} \sqrt{\frac{(1 - v^2)(m^2 - a^2)}{m(m + \sqrt{m^2 - a^2})}}.$$

When $v = 0$ and $Q = 0$, the Hawking temperature of equation (54) equals equation (36), which means, in that case, the KK black hole can reduce to the Kerr black hole. And for $v = 0$ and $a = 0$, it describes a Schwarzschild black hole, and its Hawking temperature equals $1/8\pi m$. Obviously, the results once again prove the validity of the charged fermions tunnelling method.

5. Conclusions and discussions

In this paper, we attempted to apply Kerner and Mann’s fermion tunnelling method to charged fermion cases. As an example, the Hawking radiation of charged fermions for a general charged, spherically symmetric dilatonic black hole is first studied via the tunnelling method. For a wide extension, charged fermions tunnelling from the rotating dilatonic black holes, specifically including the rotating Einstein–Maxwell–dilaton–axion and Kaluza–Klein black holes, are also considered in the paper. As a result, the correct Hawking temperatures are well described by charged fermions tunnelling from these black holes.

For simplicity to choose the metrics γ^μ when dealing with the Hawking radiation of charged fermions tunnelling from the rotating dilatonic black holes in sections 3 and 4, we carried out the dragging coordinate transformation. In fact, such behaviour would not stop us from getting the correct Hawking temperature of these black holes, as in [12] to discuss the Hawking radiation of black holes in the Painlevé and Kruskal–Szekers coordinate systems. In addition, after charged fermions have tunneled out, we assumed that the energy, charge and angular momentum of the dilatonic black holes keep the same as before. If the emitted particle’s self-gravitational interaction is incorporated into the Hawking radiation of fermions tunnelling, Hawking temperatures will be corrected slightly, but their leading terms take the same form as equations (16), (35) and (54).

In summary, we have succeeded in dealing with the Hawking radiation of the rotating black holes via charged fermions tunnelling. This method can also be directly extended to the case of the non-stationary charged rotating black holes.
Acknowledgments

This work was partially supported by the Natural Science Foundation of China under Grant nos 10675051, 10705008 and 10773008, and a Graduate Innovation Foundation by CCNU.

References

[1] Hawking S W 1974 Nature 30 248
Hawking S W 1975 Commun. Math. Phys. 43 199
[2] Damour T and Ruffini R 1976 Phys. Rev. D 14 332
Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2752
Zhu J Y, Bao A D and Zhao Z 1995 Int. J. Theor. Phys. 34 2049
Jing J L 2001 Chin. Phys. 10 234
Wu S Q and Cai X 2000 Nuovo Cimento B 115 143
[3] Robinson S P and Wilczek F 2005 Phys. Rev. Lett. 95 011303
[4] Iso S, Umetsu H and Wilczek F 2006 Phys. Rev. Lett. 96 151302
[5] Murata K and Soda J 2006 Phys. Rev. D 74 044018
Vagenas E C and Das S 2006 J. High Energy Phys. JHEP10(2006)025
Xu Z B and Chen B 2007 Phys. Rev. D 75 024041
Setare M R 2007 Eur. Phys. J. C 49 865
[6] Xiao K, Liu W B and Zhang H B 2007 Phys. Lett. B 647 482
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Rev. D 75 064029
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Lett. B 651 65
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Lett. B 651 58
Iso S, Morita T and Umetsu H 2007 Phys. Rev. D 75 124004
Iso S, Morita T and Umetsu H 2007 Phys. Rev. D 76 064015
Iso S, Morita T and Umetsu H 2008 Phys. Rev. D 77 045007
[7] Parikh M K and Wiltzek F 2000 Phys. Rev. Lett. 85 5024
Shankaranarayanan S, Srinivasan K and Padmanabhan T 1999 Phys. Rev. D 60 024007
[8] Parikh M K and Wiltzek F 2000 Phys. Rev. Lett. 85 5024

Acknowledgments

This work was partially supported by the Natural Science Foundation of China under Grant nos 10675051, 10705008 and 10773008, and a Graduate Innovation Foundation by CCNU.

References

[1] Hawking S W 1974 Nature 30 248
Hawking S W 1975 Commun. Math. Phys. 43 199
[2] Damour T and Ruffini R 1976 Phys. Rev. D 14 332
Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2752
Zhu J Y, Bao A D and Zhao Z 1995 Int. J. Theor. Phys. 34 2049
Jing J L 2001 Chin. Phys. 10 234
Wu S Q and Cai X 2000 Nuovo Cimento B 115 143
[3] Robinson S P and Wilczek F 2005 Phys. Rev. Lett. 95 011303
[4] Iso S, Umetsu H and Wilczek F 2006 Phys. Rev. Lett. 96 151302
[5] Murata K and Soda J 2006 Phys. Rev. D 74 044018
Vagenas E C and Das S 2006 J. High Energy Phys. JHEP10(2006)025
Xu Z B and Chen B 2007 Phys. Rev. D 75 024041
Setare M R 2007 Eur. Phys. J. C 49 865
[6] Xiao K, Liu W B and Zhang H B 2007 Phys. Lett. B 647 482
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Rev. D 75 064029
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Lett. B 651 65
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Lett. B 651 58
Iso S, Morita T and Umetsu H 2007 Phys. Rev. D 75 124004
Iso S, Morita T and Umetsu H 2007 Phys. Rev. D 76 064015
Iso S, Morita T and Umetsu H 2008 Phys. Rev. D 77 045007
Shin H and Kim W 2007 J. High Energy Phys. JHEP07(2007)012
[7] Parikh M K and Wiltzek F 2000 Phys. Rev. Lett. 85 5024
Shankaranarayanan S, Srinivasan K and Padmanabhan T 1999 Phys. Rev. D 60 024007
[8] Parikh M K and Wiltzek F 2000 Phys. Rev. Lett. 85 5024

Acknowledgments

This work was partially supported by the Natural Science Foundation of China under Grant nos 10675051, 10705008 and 10773008, and a Graduate Innovation Foundation by CCNU.

References

[1] Hawking S W 1974 Nature 30 248
Hawking S W 1975 Commun. Math. Phys. 43 199
[2] Damour T and Ruffini R 1976 Phys. Rev. D 14 332
Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2752
Zhu J Y, Bao A D and Zhao Z 1995 Int. J. Theor. Phys. 34 2049
Jing J L 2001 Chin. Phys. 10 234
Wu S Q and Cai X 2000 Nuovo Cimento B 115 143
[3] Robinson S P and Wilczek F 2005 Phys. Rev. Lett. 95 011303
[4] Iso S, Umetsu H and Wilczek F 2006 Phys. Rev. Lett. 96 151302
[5] Murata K and Soda J 2006 Phys. Rev. D 74 044018
Vagenas E C and Das S 2006 J. High Energy Phys. JHEP10(2006)025
Xu Z B and Chen B 2007 Phys. Rev. D 75 024041
Setare M R 2007 Eur. Phys. J. C 49 865
[6] Xiao K, Liu W B and Zhang H B 2007 Phys. Lett. B 647 482
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Rev. D 75 064029
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Lett. B 651 65
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Lett. B 651 58
Iso S, Morita T and Umetsu H 2007 Phys. Rev. D 75 124004
Iso S, Morita T and Umetsu H 2007 Phys. Rev. D 76 064015
Iso S, Morita T and Umetsu H 2008 Phys. Rev. D 77 045007
Shin H and Kim W 2007 J. High Energy Phys. JHEP07(2007)012
[7] Parikh M K and Wiltzek F 2000 Phys. Rev. Lett. 85 5024
Shankaranarayanan S, Srinivasan K and Padmanabhan T 1999 Phys. Rev. D 60 024007
[8] Parikh M K and Wiltzek F 2000 Phys. Rev. Lett. 85 5024
Medved A J M 2002 *Class. Quantum Grav.* **19** 589
Arzano M, Medved A J M and Vagenas E C 2005 *J. High Energy Phys.* JHEP09(2005)037
Medved A J M and Vagenas E C 2005 *Mod. Phys. Lett.* A **20** 1723
Hemming S and Keski-Vakkuri E 2001 *Phys. Rev.* D **64** 044006

[11] Zhang J Y and Zhao Z 2005 *Phys. Lett.* B **618** 14
Zhang J Y and Zhao Z 2005 *Mod. Phys. Lett.* A **20** 1673
Zhang J Y and Zhao Z 2005 *J. High Energy Phys.* JHEP10(2005)055
Zhang J Y and Zhao Z 2005 *Nucl. Phys.* B **725** 173
Hu Y F, Zhang J Y and Zhao Zheng 2007 *Int. J. Mod. Phys.* D **16** 847
Liu C Z and Zhu J Y 2007 arXiv:gr-qc/0703055
Ali M H 2007 *Class. Quantum Grav.* **24** S849
Pilling T 2008 *Phys. Lett.* B **660** 402
Kim S P 2007 *J. High Energy Phys.* JHEP11(2007)048 (arXiv:0709.4313)
Sarkar S and Kothawala D 2008 *Phys. Lett.* B **659** 683
Sekiwa Y 2008 arXiv:0802.3266
Jiang Q Q and Wu S Q 2006 *Phys. Lett.* B **635** 151
Jiang Q Q, Wu S Q and Cai X 2006 *Phys. Rev.* D **73** 064003
Zhao L 2007 *Commun. Theor. Phys.* **47** 835
Ding C K and Jing J L 2008 *Class. Quantum Grav.* **25** 145015
Banerjee R and Majhi B R 2008 *Phys. Lett.* B **662** 62
Banerjee R, Majhi B R and Samanta S 2008 arXiv:0801.3583

[12] Kerner R and Mann R B 2008 *Class. Quantum Grav.* **25** 095014

[13] Li R and Ren J R 2008 *Class. Quantum Grav.* **25** 125016
Li R and Ren J R 2008 *Phys. Lett.* B **661** 570
Kerner R and Mann R B 2008 arXiv:0803.2246

[14] Gibbons G W and Maeda K 1988 *Nucl. Phys.* B **298** 741
Garfinkle D, Horowitz G T and Strominger A 1991 *Phys. Rev.* D **43** 3140
Horne J and Horowitz G T 1992 *Phys. Rev.* D **46** 1340

[15] Horne J and Horowitz G T 1992 *Phys. Rev.* D **46** 1340

[16] Garcia A, Galtsov D and Kechkin O 1995 *Phys. Rev. Lett.* **74** 1276

[17] Horne J and Horowitz G T 1992 *Phys. Rev.* D **46** 1340

Frolov V, Zelnikov A and Bleyer U 1987 *Ann. Phys.* **44** 371