Genetic Variation in WNT9B Increases Relapse Hazard in Multiple Sclerosis

Marijne Vandebergh, MSc 1,2, Till F. M. Andlauer, PhD 3, Yuan Zhou, PhD 4, Klara Mallants, BSc 1,2, Friederike Held, MD 3, Lilian Aly, MD 3, Bruce V. Taylor, MD, PhD 4, Bernhard Hemmer, MD, PhD 3,5, Bénédicte Dubois, MD, PhD 1,2,6 and An Goris, PhD 1,2

Objective: Many multiple sclerosis (MS) genetic susceptibility variants have been identified, but understanding disease heterogeneity remains a key challenge. Relapses are a core feature of MS and a common primary outcome of clinical trials, with prevention of relapses benefiting patients immediately and potentially limiting long-term disability accrual. We aim to identify genetic variation associated with relapse hazard in MS by analyzing the largest study population to date.

Methods: We performed a genomewide association study (GWAS) in a discovery cohort and investigated the genomewide significant variants in a replication cohort. Combining both cohorts, we captured a total of 2,231 relapses occurring before the start of any immunomodulatory treatment in 991 patients. For assessing time to relapse, we applied a survival analysis utilizing Cox proportional hazards models. We also investigated the association between MS genetic risk scores and relapse hazard and performed a gene ontology pathway analysis.

Results: The low-frequency genetic variant rs11871306 within WNT9B reached genomewide significance in predicting relapse hazard and replicated (meta-analysis hazard ratio (HR) = 2.15, 95% confidence interval (CI) = 1.70–2.78, p = 2.07 × 10⁻¹⁰). A pathway analysis identified an association of the pathway “response to vitamin D” with relapse hazard (p = 4.33 × 10⁻⁶). The MS genetic risk scores, however, were not associated with relapse hazard.

Interpretation: Genetic factors underlying disease heterogeneity differ from variants associated with MS susceptibility. Our findings imply that genetic variation within the Wnt signaling and vitamin D pathways contributes to differences in relapse occurrence. The present study highlights these cross-talking pathways as potential modulators of MS disease activity.

© 2021 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
Materials and Methods

Discovery Phase

Study Population. Patients with MS fulfilled McDonald diagnostic criteria 2017 and were recruited at the Department of Neurology of the University Hospitals Leuven upon providing written informed consent. The study was approved by the Ethics Committee of the University Hospitals Leuven (S60222). Clinical data, including relapse and treatment history, were collected during clinical follow-up by the same treating clinician (author B.D.). Relapse was defined as the patient reported symptoms or objectively observed signs typical of an acute inflammatory demyelinating event in the CNS with a duration of at least 24 hours, in the absence of fever or infection, according to the 2017 McDonald criteria. Onset was defined as the occurrence of first symptoms. A total of 506 patients with bout-onset MS with a median duration of 4 years between disease onset and either the start of any immunomodulatory treatment or the end of follow-up in untreated patients were included. A description of the study cohort is provided in Table 1.

Genotyping. Participants of this study were genotyped for 700,078 variants using the Infinium HTS assay on Illumina Global Screening Array BeadChips (version 1.0) in 2 batches as part of genotyping of a larger cohort of individuals, including participants of a companion study published previously (batch 1 = 216 cases, 503 controls; and batch 2 = 477 cases, 96 controls). Genotype calling was conducted in GenomeStudio version 2011.1.

Genotype Quality Control. Genotype quality control (QC) was performed jointly for all individuals. Sample and variant QC were performed with PLINK version 1.0.9b5.4, as described previously, and following guidelines from Anderson CA et al. For the individual-level QC, a subset of common, high-quality variants with a minor allele frequency (MAF) ≥5%, a genotyping success rate ≥98% and a Hardy–Weinberg equilibrium (HWE) test \(p > 10^{-6} \) was used. In total, 14 individuals who showed either a genotype call rate <98% or excess heterozygosity (>3 standard deviations from the sample mean) were removed. The mean homozygosity rate across X chromosome markers was calculated to exclude individuals with discordant sex information (n = 9). The biological relationship of all individuals was verified based on a pairwise identity by descent (IBD) estimate, and duplicate (n = 11) or related (PI-HAT >0.1875) individuals (n = 12) were removed. For each pair showing cryptic relatedness, the individual with the lower genotyping call rate was removed from further analysis or, for MS cases, the individuals with the shortest follow-up or the least characterized. Genetic ancestry multidimensional scaling (MDS) components were calculated and plotted combined with the 1,000 Genomes project phase I reference panel to identify individuals with ancestry different from the European cluster (n = 12). For both IBD and MDS analyses, regions of extended linkage disequilibrium (LD) were removed, and the dataset was pruned so that no pair of single nucleotide polymorphisms (SNPs) within a given window of 50 kb was correlated (ie, LD \(r^2 > 0.2 \)). A total of 660 MS cases and 574 controls remained after sample QC.

Variant-level QC was performed in the cleaned dataset. Alleles were aligned to the National Center for Biotechnology Information (NCBI) build 37 forward strand alleles to match the 1,000 Genomes phase III version 5 imputation haplotype reference panel. Variants with an MAF <1%, a call rate <98% for common (MAF >5%) or <99% for less frequent variants (1% ≤ MAF ≤5%), or a significant deviation from the HWE (HWE test \(p < 10^{-6} \)) were excluded (n = 197,497). In addition, the following variants were excluded: A/T and G/C SNPs with an MAF >0.4 (n = 407), SNPs missing in the 1,000 Genomes reference panel (n = 229), sex-chromosome and mitochondrial SNPs (n = 876), indels (n = 108), SNPs with non-matching alleles in 1,000 Genomes (n = 495), duplicate SNPs (n = 256), and SNPs showing an allele frequency difference >0.2 with the reference panel (n = 859). Finally, variants with batch effects were removed (n = 61).
For this purpose, MS cases and controls were extracted from the cleaned sample set, with the batch number in which they were genotyped as the phenotype. For both MS cases and control individuals, a logistic regression analysis for the genotyping batch was performed. Outlier genetic variants were defined as reaching $p < 0.05$ (Bonferroni adjusted p value for the number of SNPs) in cases and/or controls. A total of 4 individuals were genotyped in both batch 1 and batch 2. Both batches were merged with PLINK with a report of mismatching non-missing calls. Outliers were defined as variants appearing different between 2 batches in more than one sample. A total of 487,395 SNPs remained after QC.

Genotype Imputation. Genotypes were pre-phased with SHAPEIT2 (version 2.12)16 using the 1,000 Genomes phase III EUR reference panel (October 2014). Imputation was performed using IMPUTE version 2.017,18 and all 1,000 Genomes populations in approximately 5 Mb chunks (http://dougspeed.com/imputation-regions/). The INFO metric reflects the SNP imputation accuracy. Any missing genotypes for directly genotyped variants (INFO = 1) were filled in with the -pgs-miss parameter. The HWE test p value was obtained using QCTOOL version 2. Variants with an imputation INFO metric ≥ 0.9, an MAF $\geq 2\%$ (corresponding to an expected minimum of 20 effect alleles), and an HWE test $p > 1 \times 10^{-6}$ were retained for GWAS. The final dataset contained 7,344,935 autosomal variants, including 6,118,705 common (MAF $> 5\%$) and 1,226,230 less common variants (MAF 2–5%). Genotype probabilities were converted into minor allele dosages. When <6 individuals showed a dosage > 1.5 for a specific variant, all dosages > 1 were set to 1. Thereby, we used dominant inheritance models for low frequency variants, comparing carriers with noncarriers. All remaining variants were analyzed using additive models.

Top-associated SNPs that were directly genotyped were validated by inspection of cluster plots. For imputed SNPs, the discordance rate of the nonreference allele was assessed via Sanger sequencing and TaqMan genotyping. For the low frequency SNP rs11871306, the discordance rate of the nonreference allele was assessed via Sanger sequencing and TaqMan genotyping. To estimate the median time to relapse, corresponding to the time at which 50% of the individuals (carriers vs noncarriers of the rs11871306 C allele) remain relapse-free after the previous event, we passed the fitted Cox proportional hazards model to the survfit function in R.

GWAS Analysis. The association analysis of genetic variants coded as minor allele dosages and the time to relapses were assessed using a Cox proportional hazards model calculated with the coxph function in the “survival” package in R version 3.4.2. Only relapses at baseline (before treatment initiation) were included. The disease onset was defined as the first relapse, and any subsequent relapse was considered as an event. Each relapse resets the time to zero, as described previously.6 As censor, either the start of immunomodulatory treatment or – for untreated patients – the end of follow-up was considered. The different time periods were analyzed separately and adjustment of standard errors (SEs) for clusters of correlated observations (relapses within the same individual) was performed by applying the cluster function in the Cox proportional hazards model and by calculating robust SEs. The hazard ratio (HR) was estimated by considering each time at which an event occurred; the overall HR across the baseline duration was averaged over the event times.19 Model significance was assessed using the Wald test, not assuming independence of observations within clusters. Likewise, time to treatment initiation, based on clinical assessment by the same treating neurologist, was analyzed with the Cox proportional hazards model, using the end of follow-up as the censor. We confirmed the proportional hazards assumption with the Schoenfeld residuals test. For plots of the predicted survival curve (time to relapse), the Cox proportional hazards model was fitted using genotypes determined via TaqMan and Sanger sequencing. To estimate the median time to relapse, corresponding to the time at which 50% of the individuals (carriers vs noncarriers of the rs11871306 C allele) remain relapse-free after the previous event, we passed the fitted Cox proportional hazards model to the survfit function in R.

Genetic MDS ancestry components were calculated in PLINK version 1.09b6.9, based on the set of variants with an MAF $\geq 2\%$, genotyping success rate $\geq 98\%$ and HWE test $p > 10^{-6}$ and after removing regions of extended LD12,14,15 and dataset pruning so that no pair of SNPs within a given window of 50 kb was correlated (ie, LD $r^2 > 0.2$). As eigenvalues were <2.0, the primary analysis was performed without MDS components as covariates.20 Sensitivity analyses were performed for the replicated genetic variants, including age at onset, sex, and the first 8 ancestry MDS components as covariates.

The Manhattan plot was created using the “CMplot” package in R version 3.6.1. Regional association plots were generated using the LocusZoom21 webtool. Independent genomewide significant ($p < 5 \times 10^{-8}$) SNPs were defined as having $r^2 < 0.1$ in the 1,000 Genomes phase III EUR super population in LDmatrix (https://ldlink.nci.nih.gov/?tab=ldmatrix). Functional annotation was done using RegulomeDB version 1.122 and HaploReg version 4.1.23

MS Genetic Risk Score. The latest MS genomic map includes 200 independent autosomal susceptibility variants outside the major histocompatibility complex (MHC), of
which 138 are primary, independent effects, as well as 31 statistically independent variants within the MHC region. In a primary analysis, the non-MHC MS genetic risk score was calculated starting from the 138, primary, independent non-MHC effects. Strand-ambiguous SNPs with an effect allele frequency between 40% and 60% were replaced by non-strand-ambiguous proxy SNPs showing \(r^2 > 0.9 \) with the published lead variants. A total of 135 non-MHC SNPs (including 5 proxy SNPs showing \(r^2 > 0.9 \) with the published lead variants) were present in the imputed genetic data and hence included in the MS genetic risk score (Table S1). In addition, 22 MHC risk variants were present in the imputed genetic data and included in the MHC MS genetic risk score (Table S2).

In a secondary analysis, we included both primary and secondary independent effects in the non-MHC region. The secondary effects emerged from conditional modeling in the original susceptibility analysis. The genetic risk score was weighted using the marginal odds ratios. A total of 195 non-MHC SNPs were included in our secondary analysis (including 6 proxy SNPs showing \(r^2 > 0.9 \) with the published lead variants; Table S3).

Classical human leukocyte antigen (HLA) alleles, amino acid polymorphisms, and SNPs in the MHC region were imputed with SNP2HLA version 1.0.3 and the T1DGC reference panel (build 37). To investigate a region where imputed with SNP2HLA version 1.0.3 and amino acid polymorphisms, and SNPs in the MHC region were compared to the published lead variants; Table S3). Classical human leukocyte antigen (HLA) alleles, amino acid polymorphisms, and SNPs in the MHC region were imputed with SNP2HLA version 1.0.3 and the T1DGC reference panel (build 37). To investigate a potential association between the burden of MS susceptibility variants and relapse hazard, weighted MS genetic risk scores for the non-MHC SNPs and MHC risk variants were calculated using PRSice version 2.3.1 e, assuming an additive genetic model. The association between the weighted MS genetic risk scores and time to relapses was assessed using a Cox proportional hazards model, as described above.

Gene Ontology Pathway Analysis. Genetic variants were assigned to their corresponding genes based on their position according to the NCBI 37.3 (hg19) build with MAGMA version 1.07. For each gene, a \(p \) value was calculated using a SNP-wise multi model (ie, by integrating the \(p \) values for the mean and top SNP association within a gene into an aggregated \(p \) value for that gene). Subsequently, a competitive gene-set analysis was performed to test whether the mean association with relapse hazard of genes in a specific gene set is greater than that of genes not in the gene set while conditioning on gene size, gene density, inverse minor allele count, log (gene size), log (gene density), and log (inverse minor allele count) according to standard settings. This analysis was repeated for each of the 10,181 Gene Ontology gene sets from the Molecular Signatures Database website (MSigDB, release 7.1, March 2020). We applied a Bonferroni correction for the number of gene sets tested (\(\alpha = 0.05/10,181 = 4.91 \times 10^{-6} \)).

Replication Phase

Study Population. For replication, 485 patients with relapsing–remitting MS were analyzed. This cohort included all patients with available genotype and longitudinal relapse data diagnosed after 2010 at the Klinikum rechts der Isar of the Technical University of Munich. Diagnoses and the definition of relapses were based on the 2017 McDonald criteria. Among these 485 patients, 819 relapses were captured over a median baseline duration of 0.5 years before receiving any treatment (see Table 1). Written informed consent was obtained from all patients according to the Declaration of Helsinki and samples were collected with ethical approval of the Klinikum rechts der Isar.

Genotyping, QC, and Imputation. SNPs were genotyped using Illumina OmniExpress BeadChips. QC was conducted using PLINK version 1.90b7, as described previously. QC and imputation were carried out within a larger dataset of patients with MS. In brief, individuals were removed if fulfilling any of the following criteria: sex mismatches; genotyping rate <98%; cryptic relatedness >1/M; genetic outliers (distance in the first 8 MDS components of the identity-by-state matrix >4 standard deviations); a significant deviation in autosomal heterozygosity from the mean (>4.4 standard deviations); and X-chromosomal heterozygosity ≤0.2. Variants were excluded according to the following criteria: call rate <98%; MAF <1%; HWE test \(p < 1 \times 10^{-6} \); A/T and G/C variants; variants not present in the 1,000 Genomes phase III reference panel. Genotype data were imputed to the 1,000 Genomes phase III reference panel using SHAPEIT2 and IMPUTE2. The resulting dataset contained 8,964,526 high-quality variants with an MAF ≥0.01 and INFO ≥0.8.

Association Analysis. A total of 8 SNPs reaching genomewide significance in the discovery cohort were present in the replication cohort. For these SNPs, association analysis between the minor allele dosages and time to relapses was assessed using the Cox proportional hazards model, including the first 8 MDS components as covariates.

Meta-Analysis

A variant was considered as replicated if the two-sided \(p \) in the replication sample <0.006 (≈ 0.05/8 SNPs in replication phase) with an effect in the same direction, and a meta-analysis \(p < 5 \times 10^{-8} \) using the inverse variance-weighted method and the fixed-effects model in META version 1.7.
Results

MS Genetic Risk Scores are not Associated With Relapse Hazard

Among 506 Belgian patients with MS, 1,412 relapses were captured over a median baseline duration of 4 years before receiving any treatment (see Table 1). Neither the MS genetic risk score consisting of 135 primary, independent SNPs outside the MHC region (HR = 0.95, 95% confidence interval [CI] = 0.87–1.05, \(p = 0.33 \)) nor the MHC genetic risk score (HR = 1.01, 95% CI = 0.94–1.10, \(p = 0.76 \)) was associated with relapse hazard at baseline. Including both primary and secondary independent SNPs outside the MHC region in the MS genetic risk score, resulted in very similar findings (HR = 0.95, 95% CI = 0.87–1.03, \(p = 0.24 \)). Thus, genetic variants conveying MS disease risk did not appear to be major drivers of relapse hazard in our cohort, warranting genomewide approaches.

Genomewide Association Study Identifies rs11871306 as a Novel SNP Affecting Relapse Hazard

We analyzed 7,344,935 SNPs with an MAF \(\geq \) 2%, HWE test \(p > 1 \times 10^{-6} \), and INFO \(\geq 0.9 \) after imputation and QC, with the Manhattan plot shown in Figure 1. The genomic inflation factor (\(\lambda \)) of the GWAS was 1.02, indicating no inflation of test statistics. In this discovery stage GWAS, 10 independent loci passed the threshold for genomewide significance (\(p < 5 \times 10^{-8} \); Table 2). For imputed SNPs, nonreference allele discordance rates (4–18%), calculated based on direct genotyping and Sanger sequencing, were in line with expectations, especially for low-frequency variants.

Eight of the genomewide significant loci in the discovery cohort were available and passed postimputation QC in the replication cohort, capturing 819 relapses over a median baseline duration of 0.5 years in 485 treatment-naïve patients (see Tables 1 and 2). For the directly genotyped variant rs11871306 on chromosome 17, the association with relapse hazard replicated after Bonferroni correction for multiple testing (\(p = 1.01 \times 10^{-6} \)). Sensitivity analyses indicated that including covariates did not substantially alter the results (Table S4) and that the Cox proportional hazards assumption was fulfilled (Schoenfeld residual test \(p \) value for discovery cohort = 0.27). In an inverse variance-weighted fixed-effects meta-analysis using direct genotypes for both the discovery and replication cohorts, variant rs11871306 was associated with relapse hazard with HR = 2.15, 95% CI = 1.70–2.78, and \(p = 2.07 \times 10^{-10} \) (Fig 2).

WNT9B rs11871306 Minor Allele Carriers Show More Disease Activity

Depending on the isoform, rs11871306 is either located in an intron or the 3’ untranslated region (UTR) of the gene Wnt family member 9B (WNT9B; Fig 3). The variant maps to a DNaseI hypersensitivity cluster identified in
several cell types, including both immune and brain cells from the ENCODE and Roadmap Epigenomics projects. The minor allele C, with a frequency of 2% in European but up to 29% in African populations, disrupts a binding motif for the transcription factor c-Ets-1. The associated region is located toward the telomeric end of a well-known large 900 kb inversion (H1/H2), but is not in linkage disequilibrium (LD) with SNPs (rs1800547 and rs9468) tagging this inversion ($r^2 = 0.0003$).27 Of note, in both the discovery and replication phase of our study, rs11871306 was associated with relapse hazard but this variant is not associated with MS susceptibility (OR = 1.01, $p = 0.90$) in the most recent published MS risk GWAS.2

In both the discovery and replication cohorts, individuals carrying the minor rs11871306*C allele had a shorter time to relapse compared with noncarriers (Fig 4). The median time that patients remained relapse-free in the discovery cohort was 0.95 years for carriers versus 2.22 years for noncarriers. In the replication cohort, individuals carrying the rs11871306*C allele similarly showed a shorter time to relapse compared with noncarriers, with a median time to relapse of 0.59 versus 2.00 years. A secondary analysis in the discovery cohort showed that rs11871306*C carriers had received treatment earlier than noncarriers (HR = 1.90, 95% CI = 1.16–3.10, $p = 0.01$), based on standard clinical evaluation by the same treating neurologist.

Pathway Analysis Implicates Vitamin D Response in Susceptibility to Relapses

Using the discovery-stage GWAS summary statistics, a gene-set analysis based on Gene Ontology pathways was performed to further explore the underlying biology of relapses. The only significant pathway after correction for multiple testing was “Response to vitamin D” (GO: 0033280; uncorrected $p = 4.33 \times 10^{-6}$; Table 3). This pathway is defined in Gene Ontology as “reflecting processes that result in a change in state or activity of a cell or an organism as a result of a vitamin D stimulus.” Other pathways ranking among the top 10 results but not meeting the Bonferroni correction threshold include response to viruses and interferon-α secretion (see Table 3). Of note, the biological process “Cell-cell signaling by WNT” (GO: 0198738), including WNT9B, ranked at 210 of 10,181 (2.06%; Table S5).

Discussion

In the present study, we identified low-frequency variation in the gene WNT9B to increase relapse hazard in MS cases. Combining 2 longitudinal cohorts, capturing a total of 2,231 relapses in 991 treatment-naïve individuals, rs11871306, mapping to the WNT9B gene, reached genomewide significance. Individuals carrying the minor allele showed a more than doubled relapse hazard.

TABLE 2. Independent ($r^2 < 0.1$) Genomewide Significant Associations With Relapse Hazard in the Discovery Cohort

SNP	CHR:POS	A1	A2	HR	SE	P	MAF	INFO	DISC	HR	SE	P	MAF	INFO
rs139075191	2:183736241	G	A	1.85	0.11	4.44 $\times 10^{-8}$	0.03	0.98	14	1.06	0.24	0.80	0.03	0.93
rs36084110	2:163160798	T	C	2.58	0.13	7.72 $\times 10^{-14}$	0.02	0.91	5	1.22	0.24	0.41	0.03	0.89
8:1197491	8:1197491	C	G	2.36	0.15	1.31 $\times 10^{-8}$	0.02	0.95	NA	0.57	0.33	0.09	0.02	0.92
rs79434188	12:33587295	A	T	0.49	0.13	1.90 $\times 10^{-8}$	0.03	0.95	4	1.02	0.37	0.96	0.02	0.84
rs117185095	12:117089904	G	T	2.58	0.16	1.23 $\times 10^{-9}$	0.02	1	NA	NA	NA	NA	NA	NA
rs77836326	13:50601566	G	A	0.52	0.12	1.42 $\times 10^{-8}$	0.03	1	NA	0.99	0.36	0.98	0.02	0.91
rs17817182	15:33716899	C	A	2.00	0.13	4.85 $\times 10^{-8}$	0.03	1	NA	NA	NA	NA	NA	NA
rs79719335	15:51835376	A	G	2.13	0.14	4.04 $\times 10^{-8}$	0.02	0.94	18	1.43	0.24	0.14	0.02	0.94
rs76915261	17:774611	T	C	2.00	0.13	2.85 $\times 10^{-8}$	0.03	1	NA	1.70	0.29	0.06	0.03	0.87
rs11871306	17:44954984	C	T	2.08	0.17	3.37 $\times 10^{-8}$	0.02	0.97	10	2.53	0.24	1.01 $\times 10^{-4}$	0.02	1.00

All variants with an INFO value of 1 were genotyped.

A1 = minor allele (effect allele); A2 = major allele; CHR = chromosome; DISC = percentage of discordant non-reference alleles between direct genotyping and imputation; HR = hazard ratio; INFO = imputation INFO metric; MAF = minor allele frequency; NA = not applicable/not available; P = p-value; POS = position (hg19); SE = robust standard error.
The protein Wnt-9b functions in the canonical Wnt/β-catenin signaling pathway as a component of the Wnt-Fzd-LRP5-LRP6 signaling complex. Wnt/β-catenin signaling plays a critical role in nervous system development, axonal guidance, and synapse formation. It has been implicated in neuropsychiatric disorders, such as autism and schizophrenia, and in neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease.
In the mouse model Experimental Autoimmune Encephalitis (EAE), the effects of the Wnt/β-catenin pathway depend on the specific cell types in which the pathway is active. Endothelial Wnt/β-catenin signaling protects cerebrovascular integrity, and reduces immune cell infiltration by decreasing vascular cell adhesion molecule (VCAM)-1 and Caveolin1 expression. Downregulation of Wnt signaling in oligodendrocytes after white matter injury may, on the other hand, support regenerative myelination. Upregulation of the Wnt pathway in oligodendrocyte precursor cells induces a negative feedback loop involving production of the Wnt inhibitory factor (Wif1), which may add to a disruption of the blood-brain barrier. Overall, the Wnt/β-catenin pathway appears to have

In the mouse model Experimental Autoimmune Encephalitis (EAE), the effects of the Wnt/β-catenin pathway depend on the specific cell types in which the pathway is active. Endothelial Wnt/β-catenin signaling protects cerebrovascular integrity, and reduces immune cell infiltration by decreasing vascular cell adhesion molecule (VCAM)-1 and Caveolin1 expression. Downregulation of Wnt signaling in oligodendrocytes after white matter injury may, on the other hand, support regenerative myelination. Upregulation of the Wnt pathway in oligodendrocyte precursor cells induces a negative feedback loop involving production of the Wnt inhibitory factor (Wif1), which may add to a disruption of the blood-brain barrier. Overall, the Wnt/β-catenin pathway appears to have

TABLE 3. Top-10 Gene Ontology Terms Enriched for Associations with Relapse Hazard

GO terms	GO ID	N GENES	BETA	SE	p
Response to vitamin D	GO:0033280	32	0.76	0.17	4.33 × 10⁻⁶
Detection of virus	GO:0009597	6	1.53	0.37	1.55 × 10⁻⁵
Positive regulation of heterotypic cell–cell adhesion	GO:0034116	16	0.93	0.23	2.79 × 10⁻⁵
αβ T-cell receptor complex	GO:0042105	5	1.59	0.40	3.64 × 10⁻⁵
Origin recognition complex	GO:0008088	9	0.86	0.22	3.89 × 10⁻⁵
Interferon-α secretion	GO:0072642	9	1.17	0.30	4.59 × 10⁻⁵
Negative regulation of fibroblast migration	GO:0010764	6	1.25	0.32	5.60 × 10⁻⁵
Presynaptic active zone cytoplasmic component	GO:0098831	16	0.94	0.24	5.82 × 10⁻⁵
Regulation of cell chemotaxis to fibroblast growth factor	GO:1904847	6	1.29	0.33	6.13 × 10⁻⁵
Positive regulation of mRNA processing	GO:0050685	29	0.53	0.14	8.82 × 10⁻⁵

P values that passed Bonferroni correction (alpha = 0.05/10,181) are highlighted in bold font.
BETA = the regression coefficient of association with relapse hazard for gene sets in the GO pathway; GO = Gene Ontology; ID = identifier, N GENES = number of genes in the data that are part of the GO pathway; P = p-value; SE = standard error.

In the mouse model Experimental Autoimmune Encephalitis (EAE), the effects of the Wnt/β-catenin pathway depend on the specific cell types in which the pathway is active. Endothelial Wnt/β-catenin signaling protects cerebrovascular integrity, and reduces immune cell infiltration by decreasing vascular cell adhesion molecule (VCAM)-1 and Caveolin1 expression. Downregulation of Wnt signaling in oligodendrocytes after white matter injury may, on the other hand, support regenerative myelination. Upregulation of the Wnt pathway in oligodendrocyte precursor cells induces a negative feedback loop involving production of the Wnt inhibitory factor (Wif1), which may add to a disruption of the blood-brain barrier. Overall, the Wnt/β-catenin pathway appears to have
a beneficial effect on EAE: deletion of the Wnt co-
receptors LRP5 and LRP6 or of β-catenin in dendritic cells
exacerbates EAE disease severity, whereas β-catenin ago-
nist treatment of healthy mice before disease induction
results in a delayed EAE onset and reduced EAE severity.
Likewise, therapeutic activation of β-catenin after disease
induction reduces clinical severity of EAE and CNS
pathology.38

Data on the Wnt pathway in the context of human
MS are limited, but whole-blood RNA gene expression
analysis in cases and controls revealed an upregulation of
Wnt signaling in MS cases versus controls.39 Similarly,
upregulation of the Wnt pathway in MS lesions37 and
brain blood vessels54 has been observed. Our data now
add that genetic variation in the Wnt pathway contributes
to differences in relapse hazard between patients.

Following the GWAS identifying an association of a
variant in the WNT9B gene with relapse hazard, we con-
ducted a pathway-based association analysis. Pathways
ranking highly within the top 10 association results
included “detection of virus” and “Interferon-α secretion.”
As a role of viruses in triggering relapses and of type I
interferon in preventing relapses has been well
described,40 finding supports the validity of our
analysis. Our pathway analysis identified vitamin D
response as significantly associated after the highly conser-
vative Bonferroni correction for multiple testing, given
that pathways were partially overlapping. Vitamin D is a
known immunomodulator, skewing cells of the adaptive
immune system toward a more tolerogenic status
in vitro.42 Increased levels of 25-hydroxyvitamin D (25
(OH)D) are associated with a decrease in relapses in MS
observational studies.43 Increased in addition, the low-density
lipoprotein receptor-related protein 2 (LRP2), previously
associated with relapse hazard,6,7 and in the discovery
cohort reaching HR = 1.17, 95% CI = 1.02–1.32, and
\(p = 0.02 \), is a transmembrane receptor that mediates
uptake and activation of 25(OH)D through endocytosis
in renal45 and mesenchymal stem cells.46 Crosstalk
between vitamin D and the Wnt pathway is suggested,
with the direction of effect depending on the biological
system. In cancer cells, vitamin D can act as an antagonist
of Wnt/β-catenin, but it may act as a co-activator in other
cell types, such as osteoblasts and keratinocytes.37 In mice,
maternal vitamin D deficiency led to lower levels of
Wnt3a, β-catenin, and the tight junction protein
claudin-1 and to a higher permeability in the offspring’s
intestinal epithelial barrier.48 This barrier shows similari-
ties with the blood–brain-barrier.49

Neither the WNT9B variant we report here nor the
previously identified LRP2 variant are associated with MS
susceptibility.7 The genetic risk burden is a more powerful
instrument than the analysis of single variants for dis-
tinguishing differences in susceptibility, and has previously
been associated with the presence of oligoclonal bands in
the cerebrospinal fluid.50 Our findings do not confirm the
previously reported trend for an association of the non-
MHC genetic risk burden with higher baseline relapse
rate,50 in line with other studies investigating the associa-
tion between weighted genetic MS risk scores and relapses.51 Similarly, analyses for other diseases, such as
Crohn’s disease, emphasize the difference between suscep-
tibility and disease course heterogeneity after onset.52 Our
data suggest that the genetic basis for relapse hazard is dis-
tinct from genetic factors driving disease susceptibility.
However, larger studies are required to exclude a more
modest effect of MS-associated variants on relapse.

Our main association results point to the involve-
ment of less common variants (MAF 2–5%) in relapse
hazard with relatively large effect sizes. The previously
published GWAS investigating the association between
genetic variants and relapse hazard was limited to common
SNPs (MAF >5%).6 A second strength of the present
study is that we only included relapses before treatment to
prevent the confounding effect of treatment on relapse
hazard, as effective disease-modifying treatments reduce
relapse rates. In the pooled analysis, 991 individuals were
included, rendering this the largest study population to
date for relapse hazard in MS. However, to fully identify
the genetic architecture of relapse in MS, larger study
cohorts with even longer follow-up periods are required.
Limitations of our study include the higher complexity of
disease heterogeneity phenotypes compared with suscepti-
bility.53 However, all relapses in our discovery cohort were
registered by one expert clinician and our findings were
replicated in an independent replication cohort.

The HR of 2 observed in both cohorts in this study
indicates clinically meaningful differences, comparable to
primary outcome effect sizes expected in clinical trials.54 In
the discovery cohort, this translates in carriers of the minor
allele remaining relapse-free for a median duration of
1 year versus more than 2 years in noncarriers. The con-
verging impact of the Wnt and vitamin D pathways on
blood–brain barrier integrity and immune cell infiltration
provides an immediate parallel with existing efficacious
treatments. Blockade of VCAM-1 interactions with its cog-
nate lymphocyte ligand integrin α4 decreases immune cell
infiltration into the CNS and reduces the clinical severity
of EAE.55 This constitutes the basis for the MS disease
modifying treatment (DMT) natalizumab, which reduces
the rate of relapse by 68%56 and is regarded as a high effi-
cacy DMT, albeit with safety considerations.57

In conclusion, we have identified an association
between genetic variation in WNT9B and in the vitamin
D pathway with relapse hazard. Further functional assessment of the Wnt/β-catenin and vitamin D pathway in MS disease activity is necessary to provide an improved mechanistic understanding of the association underlying patient-to-patient variation in relapse hazard, potentially leading to improved opportunities for therapeutic intervention.

Acknowledgments
B.D. is a Clinical Investigator and M.V. a Research Fellow (11Z36401N) of the Research Foundation Flanders (FWO-Vlaanderen). M.V. received travel grants from the Research Foundation Flanders (FWO-Vlaanderen) (V414719N) and from YouReCa Junior Mobility Programme of KU Leuven (JUMO/18/040). The Belgian part of this study was supported by the Research Fund KU Leuven (C24/16/045), the Research Foundation Flanders (FWO G.07334.15), the Belgian Charcot Foundation and MS Liga Vlaanderen. We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics (funded by Wellcome Trust grant reference 090532/Z/09/Z) for the generation of the genotyping data and the McCarthy group at the Wellcome Trust Centre for Human Genetics (funded by Wellcome Trust grant reference 090532/Z/09/Z) for the generation of the genotyping data and the McCarthy group at the Wellcome Trust Centre for Human Genetics for providing the tools for imputation preparation (https://www.well.ox.ac.uk/~wrayner/tools/index.html). The computational resources and services used in this work were provided by the Flemish Supercomputer Center (VSC), funded by the Research Foundation Flanders (FWO-Vlaanderen) and the Flemish Government (department EWI). The German part of this study was supported by a grant from the German Federal Ministry of Education and Research (BMBF; grant 01GI1601D for the German Competence Network Multiple Sclerosis, KKNMS) and is associated with DIFUTURE (Data Integration for Future Medicine, BMBF grant 01ZZ1804[A-I]). A.G., B.D., and B.H. have received funding for the present study from the Horizon2020 "MultipleMS" consortium (grant EU RIA 733161). B.H. has received funding for the present study from the German Research Foundation (DFG) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy—ID 390857198). Y.Z. was supported by an MS Research Australia postdoctoral fellowship as well as NHMRC investigator grant L1 (GNT1173155). B.V.T. was supported by a MS Research Australia-Macquarie Foundation Senior clinical Fellowship, the Australian Medical Research Future Fund, the National Health and Medical Research Council Australia and MS Research Australia.

Author Contributions
M.V., T.A., Y.Z., B.T., B.H., B.D., and A.G. contributed to the conception and design of the study. M.V., T.A., K.M., F.H., L.A., B.H., and B.D. contributed to the acquisition and analysis of data. M.V., T.A., and A.G. contributed to drafting the text and preparing the figures.

Potential Conflicts of Interest
The authors declared no conflict of interest.

References
1. International Multiple Sclerosis Genetics Consortium. Low-frequency and rare-coding variation contributes to multiple sclerosis risk. Cell 2018;175:1679–1687.e7.
2. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019;365:eaav7188.
3. Moutsianas L, Jostins L, Beecham AH, et al. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat Genet 2015;47:1107–1113.
4. Andlauer TF, Buck D, Antony G, et al. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Sci Adv 2016;2:e1501678.
5. Lavery AM, Verhey LH, Waldman AT. Outcome measures in relapsing-remitting multiple sclerosis: capturing disability and disease progression in clinical trials. Mult Scler Int 2014;2014:262350.
6. Zhou Y, Graves JS, Simpson S Jr, et al. Genetic variation in the gene LRP2 increases relapse risk in multiple sclerosis. J Neurol Neurosurg Psychiatry 2017;88:864–868.
7. Hilven K, Vandebergh M, Smets I, et al. Genetic basis for relapse rate in multiple sclerosis: association with LRP2 genetic variation. Mult Scler 2018;24:1773–1775.
8. Goris A, Pauwels I, Gustavsen MW, et al. Genetic variants are major determinants of CSF antibody levels in multiple sclerosis. Brain 2015;138:632–643.
9. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17:162–173.
10. Lagou V, Garcia-Perez JE, Smets I, et al. Genetic architecture of disease key immune regulators. Cell Rep 2018;25:798–810 e6.
11. Chang CC, Chow CC, Tellier LC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015;4:7.
12. Anderson CA, Pettersson FH, Clarke GM, et al. Data quality control in genetic case-control association studies. Nat Protoc 2010;5:1564–1573.
13. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56–65.
14. Price AL, Weale ME, Patterson N, et al. Long-range LD can confound genome scans in admixed populations. Am J Hum Genet 2008;83:132–135; author reply 5–9.
15. Weale ME. Quality control for genome-wide association studies. Methods Mol Biol 2010;628:341–372.
16. Delanoeu O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods 2013;10:5–6.

17. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009;5:e1000529.

18. Howie B, Fuchsberger C, Stephens M, et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 2012;44:955–959.

19. Bellera CA, MacGregor G, Debled M, et al. Variables with time-varying effects and the Cox model: some statistical concepts illustrated with a prognostic factor study in breast cancer. BMC Med Res Methodol 2010;10:20.

20. Amare AT, Schubert KO, Hou L, et al. Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Mol Psychiatry 2020. Online ahead of print. https://doi.org/10.1038/s41380-020-0689-5.

21. Prunin RJ, Welch RP, Sanna S, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010;26:2336–2337.

22. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012;22:1790–1797.

23. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012;40:D930–D934.

24. Jia X, Han B, Onengut-Gumuscu S, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 2013;8:e64683.

25. Choi SW, O'Reilly PF. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience. 2019;8(7):giz082.

26. Mitt M, Kals M, Parn K, et al. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel. Eur J Hum Genet 2017;25:869–876.

27. Stefansson H, Helgason A, Thorleifsson G, et al. A common inversion genetically linked variants. Nucleic Acids Res 2012;40:D930–D934.

28. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods 2013;10:5–6.

29. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009;5:e1000529.

30. Howie B, Fuchsberger C, Stephens M, et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 2012;44:955–959.

31. Bellera CA, MacGregor G, Debled M, et al. Variables with time-varying effects and the Cox model: some statistical concepts illustrated with a prognostic factor study in breast cancer. BMC Med Res Methodol 2010;10:20.

32. Amare AT, Schubert KO, Hou L, et al. Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Mol Psychiatry 2020. Online ahead of print. https://doi.org/10.1038/s41380-020-0689-5.

33. Prunin RJ, Welch RP, Sanna S, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010;26:2336–2337.

34. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012;22:1790–1797.

35. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012;40:D930–D934.

36. Jia X, Han B, Onengut-Gumuscu S, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 2013;8:e64683.