Molecule action mechanisms of NM-3 on human gastric cancer SGC-7901 cells in vivo or in vitro

Jin-Shui Zhu, Bo Shen, Jin-Lian Chen, Guo-Qiang Chen, Xiao-Hu Yu, Hua-Fang Yu, Zu-Ming Zhu

INTRODUCTION
Apoptosis plays a key role in the proliferation and turnover of malignant tumor cells. It has been known that its extent is often enhanced in gastric cancer by some anti-cancer drugs, such as chemotherapeutic drugs, hormones or immune agents, microvascular growth inhibitors have been proved to have some inhibitory effects on malignant tumors, especially on gastric tumors. But it has not been clear whether NM-3 is a microvascular inhibitory agent for solid tumor growth. It might suppress gastric cancer cell proliferation and cause tumor cell loss and nuclear condensation in vitro. Up to date, NM-3 is considered as the newest micro-vascular inhibitor. Combined with carboplatin, it can soften hard lumps and dissolve phlegm, enhance apoposis of human gastric cancer xenografts in nude mice. On the other hand, NM-3 can enhance the sensitivity of chemotherapeutic drugs on human gastric cancer. Based on previous studies, NM-3 exerts its effects on solid tumor growth by promoting apoposis of human gastric cancer cell SGC-7901 and increasing the suppressive effects of carboplatin.

MATERIALS AND METHODS
Materials
A human gastric cancer cell line SGC-7901 grafted onto nude mice was used as the animal model, the age of these 60 mice was 6-7 weeks old female balb/c-nu/nu mice (weight 18-22 g) and a human gastric cancer cell line SGC-7901 was obtained from Shanghai Tumor Institute (No: 01842). The animals were subcutaneously xenografted under abdominal skin with the SGC-7901 cell line. The tumor transplantation procedure was described previously. The animal model and SGC-7901 cell line were obtained from Shanghai Experimental Animal Centre, Chinese Academy of Sciences.

NM-3 was composed of 2-chydroxy-6-methoxy-1-oxo-1-h-2-benzopyran-3-yd, concentration of NM-3 was 100 mg L⁻¹, the concentration of carboplatin was 100 mg L⁻¹.

Methods
Experimental schedule: After grafting, these nude mice were randomly divided into 3 groups: control group and two experimental groups assigned to receive NM-3 or carboplatin respectively. Each experimental mouse in two experimental groups was given a 0.5 ml dose of NM-3 drug via intra-abdominal injection or gastric perfusion (empty control group) once every three days over a 40-day period beginning at 1st day after being xenografted. The control animals received normal saline according to the same schedule by gastric perfusion. The animals were killed 41 days after being xenografted.

In our study, NM-3 induced gastric cancer cell apoptosis, and enhanced the chemotherapeutic sensitivity of human gastric cancer cell line SGC-7901 on carboplatin in vitro. Apoptosis induced by NM-3 needed further investigation.

Therapeutic effects on human gastric cancer cell growth were assessed. Tumor size was measured twice a week by multiplying two perpendicular diameter and tumor weight was determined immediately by electron balance after the animals were killed. Apoptotic cells and apoptotic index were assessed. Tumor size was measured twice a week by multiplying two perpendicular diameters and tumor weight was determined immediately by electron balance after the animals were killed.
determined by the terminal deoxynucleotidyl transferase-mediated deoxy-uridine triphosphate-fluorescence nick end labeling (TUNEL) method and flow cytometry analysis. Morphological alterations were observed with electron microscope.

Flow cytometry analysis: Propidium iodide (PI) staining was used for flow cytometric detection of apoptosis. 1x10^6 cells from each of the samples were treated with RNase and stained with PI. The apoptotic cells labeled by DNA strand were measured with a flow cytometer (FACS Calibur, Becton Dickinson, U.S.A.). The data from 1x10^6 cells/sample were collected, stored, and analyzed using CELLQUEST™ T and MODFITLT for macV1.01 software[4-12].

Statistical analysis
The results were expressed as ±s. Student’s t test was used. P value <0.05 was considered significantly.

RESULTS
NM-3 inhibited growth of micro-vascular of tumor in nude mice with human gastric cancer SGC-7901
NM-3 group decreased significantly the neo-microvascular density (1.17±0.05 mm²) of gastric cancer tumor implanted onto nude mice was significantly decreased in NM-3 group compared with that in saline group (5.37±1.12 mm²) and carboplatin group (4.72±1.18 mm², P<0.05). The microvascular density in NM-3 combined with carboplatin group (1.18±0.05 mm²) was not significantly different from that in NM-3 group (P>0.05, Table 1).

Table 1 Growth of neo-microvascular around gastric tumor supressed by NM-3 (±s)

Treatment	n	Density (mm²)
Carboptin	10	4.72±1.18
NM-3 plus carboplatin	10	1.18±0.05
Saline	10	5.37±1.72

P>0.05, P<0.01 vs t test in saline control group.

NM-3 enhanced sensitivity of carboplatin on human gastric cancer cell line SGC-7901 in vitro or in vivo
The apoptotic index (AI) of SGC-7901 induced by carboplatin was enhanced in NM-3 group. The apoptotic index (TUNEL: 27.98±6.12 %, FACScan: 26.86±5.69 %) was markedly increased in that of carboplatin group by using either TUNEL method or flow cytometry analysis compared with the carboplatin group (TUNEL: 12.94±2.12 %, P<0.01; FACScan: 11.86±1.09 %, P<0.01). The apoptotic index in NM-3 group (TUNEL: 16.47±4.13 % FACScan: 15.97±1.49 %) was higher than that in normal saline group (TUNEL 1.83±0.12 %, P<0.01; FACScan: 1.06±0.09 %, P<0.01, Table 2).

Table 2 Apoptotic index (AI) of human gastric cancer cell line SGC-7901 enhanced by NM-3 in vitro (±s)

Treatment	n	AI (TUNEL) %	AI (FACScan) %
NM-3	10	16.47±4.12	15.97±2.49
Carboptin	10	12.94±2.12	11.86±1.09
NM-3 plus carboplatin	10	27.98±6.12	26.86±5.69
Saline	10	1.83±0.12	1.06±0.09

P>0.05, P<0.01 vs t test, in saline control group.

DISCUSSION
Gastric cancer remains one of the most common causes of cancer-related death in the world. At present, gastric cancer is still diagnosed at its advanced stage in most patients throughout the world. Even with curative resection, they remain at a high risk of relapse[13-32]. Thus, there is a great need for effective adjuvant therapy for patients with gastric cancer. Our previous clinic paired comparative studies suggested that NM-3 had therapeutic effects on advanced gastric cancer. It could increase the surviving period of the patients, improve the life quality and increase the metastasis and recurrence after operation because of its lower toxic side-effect compared with intravenous chemical therapy[33-47]. Up to date, the effect of NM-3 on human gastric cancer has not been reported in the world. So we thought it is worth to make a further research on its anti-cancer mechanisms.

Gastric cancer is not only a disease with abnormal cell proliferation and differentiation, but also a disease with abnormal apoptosis. Enhanced apoptosis in human gastric cancer cells could be observed after treatment with 5-fluorouracil, cisplatin, arsenous oxide, etc. These data suggest that it is a therapeutic method for patients with gastric cancer to induce apoptosis of cancer cells[41]. The present study indicated that tumor growth was significantly inhibited by treatment with carboplatin or NM-3. The results obtained by TUNEL method and cytometry analysis suggested that gastric cancer cells were suppressed in vivo, NM-3 was related to the induction of apoptosis of human gastric cancer cell line SGC-7901. These data suggest that NM-3 can inhibit gastric cell proliferation. So inhibition of gastric cancer induced by NM-3 is also related to the suppression of its proliferation.

Apoptosis is a complex and active cellular process, whereby individual cells are triggered to undergo self-destruction in a manner that would neither injures neighboring cells nor elicits any inflammatory reaction. Various triggering factors initiate corresponding proteo-lysis cascade reaction depending on mitochondrion or APO 1/FASCD95 receptors mediate apoptotic pathways. There are oncogenes and tumor suppressor gene products in the regulation and execution of apoptosis.
It has been proved that p53, Rb, myc, ras, raf, play important roles in apoptosis and are thus named the guardians of genomes. They monitor the state of DNA and cell cycle is blocked in case of DNA damage. This takes place through the induction of CIP/Swaf/p21. In the absence of phosphorylated active cyclin-dependent kinases, the cell cycle remains inactive (unphosphorylated). This leads to activation of DNA repair machinery. If DNA repair fails, p53 will take over again and trigger apoptosis in a process that involves upregulation of the apoptosis-inducing bax and down-regulation of the apoptotic bal.

We also detected apoptosis-inhibiting member of the bcl-2 family, bcl-2 mRNA. The interaction between NM-3 and gastric cancer process that involves upregulation of the apoptosis-inducing factor that causes selective destruction of tumor vasculature. Cancer Res 2002; 62: 7247-7253.

Clin E, Biccio S, DiBello C, Lingen MW. Prediction of in vivo synergetic activity of antiangiogenic compounds by gene expression profiling. Cancer Res 2002; 62: 7143-7148.

Giguere CM, Bauman NM, Smith RJ. New treatment options for lymphangiomas in infants and children. Ann Otol Rhinol Laryngol 2001; 110: 1006-1075.

Manley PW, Furet P, Bold G, Bruggen J, Mestan J, Meyer T, Schnell CR, Wood J, Haberey M, Huth A, Kruger M, Menrad A, Ottow E, Seidelmann D, Siemester G, Thierauch KH. Antinatalic acid amides: a novel class of antiangiogenic VEGF receptor kinase inhibitors. J Med Chem 2002; 45: 5687-5693.

Ranieri G, Gasparini G. Angiogenesis and angiogenesis inhibitors: a new potential anticancer therapeutic strategy. Curr Drug Targets Immune Endocr Metabol Disord 2001; 1: 241-253.

Lewy-Trenda I. [Neoplasms and angiogenesis]. Pol Merkuriusz Lek 2002; 13: 225-228.

Yoo GH, Piechocci MP, Ensef JF, Nguyen T, Oliver J, Meng H, Kewson D, Shibuya TY, Lonardo F, Tainsky MA. Docetaxel induced gene expression patterns in head and neck squamous cell carcinoma using cDNA microarray and PowerBlot. Clin Cancer Res 2002; 8: 3910-3921.

Casassus P, Calat-Vigneron N, Martin A, Simon J, Gallais V, Beaudry P, Eclache V, Larache O, Lortholary P, Raphael M, Leboullin M, Lortholary O. Treatment of adult systemic mastocytosis with interferon-alpha: results of a multicentre phase II trial on 20 patients. Br J Haematol 2002; 113: 1090-1107.

Hata-Sugi N, Kawai-Seigemayama R, Wakabayashi T. Characterization of rat aortic fragment within collagen gel as an angiogenesis model; capillary morphology may reflect the action mechanisms of angiogenesis inhibitors. Biol Pharm Bull 2002; 25: 446-451.

Matsumura T, Wehrrah DW, Moniz MC, Tessler M, Warlifter DC, Chillian WM. Angiostatin inhibits coroanry angiogenesis during improved production of nitric oxide. Circulation 2002; 105: 2185-2191.

Chew LJ, Pan H, Yu J, Tian S, Huang WQ, Zhang JY, Pang S, Li LY. A novel secreted splice variant of vascular endothelial cell growth inhibitor. FASEB J 2000; 14: 83-85.

Matsunaga T, Furet P, Bold G, Bruggen J, Mestan J, Meyer T, Schnell CR, Wood J, Haberey M, Huth A, Kruger M, Menrad A, Ottow E, Seidelmann D, Siemester G, Thierauch KH. Antinatalic acid amides: a novel class of antiangiogenic VEGF receptor kinase inhibitors. J Med Chem 2002; 45: 5687-5693.

Ranieri G, Gasparini G. Angiogenesis and angiogenesis inhibitors: a new potential anticancer therapeutic strategy. Curr Drug Targets Immune Endocr Metabol Disord 2001; 1: 241-253.

Lewy-Trenda I. [Neoplasms and angiogenesis]. Pol Merkuriusz Lek 2002; 13: 225-228.

Yoo GH, Piechocci MP, Ensef JF, Nguyen T, Oliver J, Meng H, Kewson D, Shibuya TY, Lonardo F, Tainsky MA. Docetaxel induced gene expression patterns in head and neck squamous cell carcinoma using cDNA microarray and PowerBlot. Clin Cancer Res 2002; 8: 3910-3921.

Casassus P, Calat-Vigneron N, Martin A, Simon J, Gallais V, Beaudry P, Eclache V, Larache O, Lortholary P, Raphael M, Leboullin M, Lortholary O. Treatment of adult systemic mastocytosis with interferon-alpha: results of a multicentre phase II trial on 20 patients. Br J Haematol 2002; 113: 1090-1107.

Hata-Sugi N, Kawai-Seigemayama R, Wakabayashi T. Characterization of rat aortic fragment within collagen gel as an angiogenesis model; capillary morphology may reflect the action mechanisms of angiogenesis inhibitors. Biol Pharm Bull 2002; 25: 446-451.

Matsumura T, Wehrrah DW, Moniz MC, Tessler M, Warlifter DC, Chillian WM. Angiostatin inhibits coronary angiogenesis during improved production of nitric oxide. Circulation 2002; 105: 2185-2191.

Chew LJ, Pan H, Yu J, Tian S, Huang WQ, Zhang JY, Pang S, Li LY. A novel secreted splice variant of vascular endothelial cell growth inhibitor. FASEB J 2000; 14: 83-85.

Matsunaga T, Furet P, Bold G, Bruggen J, Mestan J, Meyer T, Schnell CR, Wood J, Haberey M, Huth A, Kruger M, Menrad A, Ottow E, Seidelmann D, Siemester G, Thierauch KH. Antinatalic acid amides: a novel class of antiangiogenic VEGF receptor kinase inhibitors. J Med Chem 2002; 45: 5687-5693.

Ranieri G, Gasparini G. Angiogenesis and angiogenesis inhibitors: a new potential anticancer therapeutic strategy. Curr Drug Targets Immune Endocr Metabol Disord 2001; 1: 241-253.

Lewy-Trenda I. [Neoplasms and angiogenesis]. Pol Merkuriusz Lek 2002; 13: 225-228.

Yoo GH, Piechocci MP, Ensef JF, Nguyen T, Oliver J, Meng H, Kewson D, Shibuya TY, Lonardo F, Tainsky MA. Docetaxel induced gene expression patterns in head and neck squamous cell carcinoma using cDNA microarray and PowerBlot. Clin Cancer Res 2002; 8: 3910-3921.

Casassus P, Calat-Vigneron N, Martin A, Simon J, Gallais V, Beaudry P, Eclache V, Larache O, Lortholary P, Raphael M, Leboullin M, Lortholary O. Treatment of adult systemic mastocytosis with interferon-alpha: results of a multicentre phase II trial on 20 patients. Br J Haematol 2002; 113: 1090-1107.

Hata-Sugi N, Kawai-Seigemayama R, Wakabayashi T. Characterization of rat aortic fragment within collagen gel as an angiogenesis model; capillary morphology may reflect the action mechanisms of angiogenesis inhibitors. Biol Pharm Bull 2002; 25: 446-451.

Matsumura T, Wehrrah DW, Moniz MC, Tessler M, Warlifter DC, Chillian WM. Angiostatin inhibits coronary angiogenesis during improved production of nitric oxide. Circulation 2002; 105: 2185-2191.

Chew LJ, Pan H, Yu J, Tian S, Huang WQ, Zhang JY, Pang S, Li LY. A novel secreted splice variant of vascular endothelial cell growth inhibitor. FASEB J 2000; 14: 83-85.

Matsunaga T, Furet P, Bold G, Bruggen J, Mestan J, Meyer T, Schnell CR, Wood J, Haberey M, Huth A, Kruger M, Menrad A, Ottow E, Seidelmann D, Siemester G, Thierauch KH. Antinatalic acid amides: a novel class of antiangiogenic VEGF receptor kinase inhibitors. J Med Chem 2002; 45: 5687-5693.

Ranieri G, Gasparini G. Angiogenesis and angiogenesis inhibitors: a new potential anticancer therapeutic strategy. Curr Drug Targets Immune Endocr Metabol Disord 2001; 1: 241-253.

Lewy-Trenda I. [Neoplasms and angiogenesis]. Pol Merkuriusz Lek 2002; 13: 225-228.

Yoo GH, Piechocci MP, Ensef JF, Nguyen T, Oliver J, Meng H, Kewson D, Shibuya TY, Lonardo F, Tainsky MA. Docetaxel induced gene expression patterns in head and neck squamous cell carcinoma using cDNA microarray and PowerBlot. Clin Cancer Res 2002; 8: 3910-3921.

Casassus P, Calat-Vigneron N, Martin A, Simon J, Gallais V, Beaudry P, Eclache V, Larache O, Lortholary P, Raphael M, Leboullin M, Lortholary O. Treatment of adult systemic mastocytosis with interferon-alpha: results of a multicentre phase II trial on 20 patients. Br J Haematol 2002; 113: 1090-1107.

Hata-Sugi N, Kawai-Seigemayama R, Wakabayashi T. Characterization of rat aortic fragment within collagen gel as an angiogenesis model; capillary morphology may reflect the action mechanisms of angiogenesis inhibitors. Biol Pharm Bull 2002; 25: 446-451.

Matsumura T, Wehrrah DW, Moniz MC, Tessler M, Warlifter DC, Chillian WM. Angiostatin inhibits coronary angiogenesis during improved production of nitric oxide. Circulation 2002; 105: 2185-2191.
tion 1999; 100: 2108-2112

37 Shukunami C, Iyama K, Inoue H, Hiraki Y. Spatiotemporal pattern of the mouse chondromodulin-I gene expression and its regulatory role in vascular invasion into cartilage during endochondral bone formation. Int J Dev Biol 1999; 43: 39-49

38 Nakano N, Higashiyama S, Takashima S, Tsurouka N, Klagsbrun M, Taniguchi N. Purification and characterization of a novel vascular endothelial cell growth inhibitor secreted by macrophage-like U-937 cells. J Biochem 1999; 125: 368-374

39 M asood R, McGarvey ME, Zheng T, Cal J, Arora N, Smith DL, Sloane N, Gill PS. Antineoplastic urinary protein inhibits Kaposis sarcoma and angiogenesis in vitro and in vivo. Blood 1999; 93: 1038-1044

40 Zhao Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, Carter KC, Janat F, Kozak D, Xu S, Rojas L, Aggarwal BB, Ruben S, Li LY, Gentz R, Yu GL. VEGF, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J 1999; 13: 181-189

41 Van Rees BP, Caspers E, Zur Hausen A, Van Den Brule A, Drillenburg P, Weterman MA, Offerhaus GJ. Different pattern of allelic loss in Epstein-Barr virus-positive gastric cancer with emphasis on the p53 tumor suppressor pathway. Am J Pathol 2002; 161: 1207-1213

42 Hiyama T, Tanaka S, Kitadai Y, Ito M, Sumii M, Yoshihara M, Shimamoto F, Haruma K, Chayama K. p53 Codon 72 polymorphism in gastric cancer susceptibility in patients with Helicobacter pylori-associated chronic gastritis. Int J Cancer 2002; 100: 304-308

43 Murakami K, Fujitaka O, Kodama H, Honda S, Okimoto T, Oda T, Nishizono A, Sato R, Kubota T, Kagawa J, Nasu M. Analysis of p53 mutations and Helicobacter pylori infection in human and animal models. J Gastroenterol 2002; 37: 1-5

44 Chang MS, Kim HS, Kim CW, Kim YI, Lan Lee B, Kim WH. Epstein-Barr virus, p53 protein, and microsatellite instability in the adenoma-carcinoma sequence of the stomach. Hum Pathol 2002; 33: 415-420

45 Moritani S, Sugihara H, Kishima R, Hattori T. Different roles of p53 between Epstein-Barr virus-positive and -negative gastric carcinomas of matched histology. Virchows Arch 2002; 440: 367-375

46 Shigehi H, Yokokazi H, Oue N, Kuniyasu H, Kondo T, Ishikawa T, Yasui W. Increased expression of CHK2 in human gastric carcinomas harboring p53 mutations. Int J Cancer 2002; 99: 58-62

47 Kubicka S, Claas C, Staab S, Kuhnel F, Zender L, Trautwein C, Wagner S, Rudolph KL, Manns M. p53 mutation pattern and expression of c-erbB2 and c-met in gastric cancer: relation to histological subtypes, Helicobacter pylori infection, and prognosis. Dig Dis Sci 2002; 47: 114-121

48 Fox JG, Sheppard BJ, Dangar CL, Whary MT, Ihrig M, Wang TC. Germ-line p53-targeted disruption inhibits helicobacter-induced premalignant lesions and invasive gastric carcinoma through down-regulation of TH1 proinflammatory responses. Cancer Res 2002; 62: 692-702

49 Iwasu H, Nishikura K, Watanabe H, Ajikata Y, Hashidate H, Kashihara K, Asakura H. Heterogeneity of p53 mutational status in the superficial spreading type of early gastric carcinoma. Gastric Cancer 2001; 4: 20-26

50 Jenkins GJ, Morgan C, Baxter JN, Parry EM, Parry JM. The detection of mutations induced in vitro in the human p53 gene by hydrogen peroxide with the restriction site mutagenesis (RSM) assay. Mutat Res 2001; 498: 135-144

51 Li H, Chen DD, Li XH, Zhang HW, Lu YQ, Ye CL, Ren XD. Changes of NF-kB, p53, Bcl-2 and caspase apoptosis induced by JTE-522 in human gastric adenocarcinoma cell line AGS cells: role of reactive oxygen species. World J Gastroenterol 2002; 8: 431-435

52 Satomi D, Takiguchi N, Koda K, Oda K, Suzuki Y, Yasutomi J, Ishikura H, Miyazaki M. Apoptosis and apoptosis-associated gene products related to the response to neoadjuvant chemotherapy for gastric cancer. Int J Oncol 2002; 20: 1167-1171

53 Wu YL, Sun B, Zhang XJ, Wang SN, He HY, Qiao MM, Zhong J, Xu YJ. Growth inhibition and apoptosis induction of Sinulindac on human gastric cancer cells. World J Gastroenterol 2001; 7: 796-800

54 Wang J, Chi DS, Kalin GB, Sosinski C, Miller LE, Burjai, Thomas E. Helicobacter pylori infection and oncogene expressions in gastric carcinoma and its precursor lesions. Dig Dis Sci 2002; 47: 107-113

55 Zhang TC, Cao EH, Qin JF. Opposite biological effects of arsenic trioxide and arsenic acid in a different regulation of signaling in human gastric cancer MGC-803 cells. Pharmacol 2002; 64: 160-168

56 Monden N, Abe S, Hishikawa Y, Yoshimura H, Kinugasa S, Dhar DK, Tachibana M, Nagaue N. The role of P-glycoprotein in human gastric cancer xenografts in response to chemotherapy. Int J Surg Invest 1999; 1: 3-10

57 Wachcek V, Heere-Ress E, Halaschek-Wiener J, Lucas T, Meyer H, Eichler HG, Jansen B. Bcl-2 antisense oligonucleotides chemosensitize human gastric cancer in a SCID mouse xenotransplantation model. J Mol Med 2001; 79: 587-593

58 Enomoto A, Esumi M, Yamashita K, Takagi K, Takano S, Iwai S. Abnormal nuclear sequence repeat sequence in the TGF-betaRII gene in hepatocellular carcinoma and in uninvolved liver tissue. J Pathol 2001; 195: 349-354

59 Shyu RV, Lin DY, Reichert U, Jiang SY. Synthetic retinoid CD437 induces cell-dependent cycle arrest by differential regulation of cell cycle associated proteins. Anticancer Res 2002; 22: 2757-2764

60 Li Y, Lu YY. Isolation of diallyl trisulfide inducible differentially expressed genes in human astrocytoma cells by modified cDNA representational difference analysis. DNA Cell Biol 2002; 21: 771-780

61 Potthoff A, Ledig S, Martin J, Janidi O, Cornberg M, Obst B, Bel W, Manns M, Wagner S. Significance of the caspase family in Helicobacter pylori induced gastric epithelial apoptosis. Helicobacter 2002; 7: 367-377

62 Nitti D, Belluco C, Mammano E, Marchet A, Ambrosi A, Mencarelli R, Segato P, Lise M. Low level of p27(Kip1) protein expression in gastric adenocarcinoma is associated with disease progression and poor outcome. J Surg Oncol 2002; 83: 167-175

63 Chen Y, Wu Q, Song SY, Su WJ. Activation of JNK by TPA promotes apoptosis via PKC pathway in gastric cancer cells. World J Gastroenterol 2002; 8: 1014-1018

64 Liu JR, Chen BQ, Yang YM, Wang XL, Xue YB, Zheng YM, Liu RH. Effect of apoptosis on gastric adenocarcinoma cell line SGC-7901 induced by cis-9, trans-11-conjugated linoleic acid. World J Gastroenterol 2002; 8: 999-1004

Edited by Wang XL