CENTRAL ELEMENTS OF THE JENNINGS BASIS AND
CERTAIN MORITA INVARIANTS

TARO SAKURAI (樱井太朗)

Abstract. From Morita theoretic viewpoint, computing Morita invariants is important. We prove that the intersection of the center and the n-th (right) socle \(ZS^n(A) := Z(A) \cap \text{Soc}^n(A) \) of a finite-dimensional algebra \(A \) is a Morita invariant; this is a generalization of important Morita invariants — the center \(Z(A) \) and the Reynolds ideal \(ZS^1(A) \).

As an example, we also studied \(ZS^n(FG) \) for the group algebra \(FG \) of a finite \(p \)-group \(G \) over a field \(F \) of positive characteristic \(p \). Such an algebra has a basis along the socle filtration, known as the Jennings basis. We prove certain elements of the Jennings basis are central and hence form a linearly independent set of \(ZS^n(FG) \). In fact, such elements form a basis of \(ZS^n(FG) \) for every integer \(1 \leq n \leq p \) if \(G \) is powerful. As a corollary we have \(\text{Soc}^p(FG) \subseteq Z(FG) \) if \(G \) is powerful.

Key Words: Morita invariant, center, socle, Reynolds ideal, \(p \)-group, Jennings basis, dimension subgroup.

2000 Mathematics Subject Classification: Primary 16G30; Secondary 16U70, 16D90, 16D25, 20C20.

1. はじめに

表現論において森田同値でない多元環を区別するために森田不変量を計算することは大切である。本報告では有限次元多元環 \(A \) の中心 \(Z(A) \) と \(n \) 番目の台 \(\text{Soc}^n(A) \) (Loewy 列の長さが高々 \(n \) となる最大の部分加群) の共通部分

\[
ZS^n(A) := Z(A) \cap \text{Soc}^n(A)
\]

を扱う。これは中心 \(Z(A) \) や Reynolds イデアル \(ZS^1(A) \) の一般化であり、森田不変量でもある (Theorem [11]). すでに研究がされている他の一般化としては正標数体上の有限次元対称多元環に対する定義される Kulshammer イデアルがある [2, 12, 13].

とりわけ有限群の群多元環の場合にこのようなイデアルは興味深いと言える。いま \(G \) を有限群、\(F \) を正標数 \(p \) の代数的閉体とする。まず中心 \(Z(FG) \) の次元は通常既約指標の数 \(k(G) \) と一致し、Reynolds イデアル \(ZS^1(FG) \) の次元はモジュラー既約指標の数 \(\ell(G) \) と一致する。また共役類の和が中心の基底をなし、\(p' \) セクションの和が Reynolds イデアルの基底をなす [3]. さらに奥山 [8] によって

\[
\dim ZS^2(FG) = \ell(G) + \sum \dim \text{Ext}^1_{FG}(S,S)
\]

が成り立つことも知られている（実際にはブロックに対して同様の式が成り立つことが示されている）。ここで右辺の和は単純加群の同型類について取る。（[11] も参照）これらを Table [1] にまとめる。

The detailed version [11] of this paper has been submitted for publication elsewhere.
Table 1. \(ZS^n (FG) = Z (FG) \cap \Soc^n (FG) \) について知られていること

次元 (表現論的)	基底 (群論的)	
\(Z(FG) \)	\(k(G) \)	共役類の和
\(ZS^n (FG) \)	未知	未知
\(ZS^2 (FG) \)	\(\ell(G) + \sum \dim \Ext^1 (S, S) \)	未知
\(ZS^1 (FG) \)	\(\ell(G) \)	\(p' \) セクションの和

以上のようなことが知られているので、一般に次元や基底がどのようになっているのかを知りたい (Problem 4)。表列 \(\Soc^n (FG) \) の部分を記述することが一般には難しいが、\(G \) が \(p \) 群の場合には群論的に扱える Jennings 基底と呼ばれるものがある。そこで \(ZS^n (FG) \) について理解を深めるために「Jennings 基底の元はいつ中心的になるのか」を調べた。その結果、ある特別な形をした Jennings 基底の元は中心的であることが証明できた (Theorem 11)。さらに \(p \) 群がべき充足という性質を満たすならば、そのような元が \(ZS^n (FG) \) の基底になることも証明できた (Theorem 12)。[11] で得られた以上のような結果について日本語で簡単に紹介をする。

2. 森田不変量

Theorem 1 (Sakurai [11]). \(A \) と \(B \) を森田同値な有限次元多元環とする。このとき多元環としての同型 \(Z (A) \to Z (B) \) で \(ZS^n (A) \) を一つに \(ZS^n (B) \) へ移すものが存在する。ときに \(\dim ZS^n (A) \) は森田不変量である。

Remark 2. イデアル列 \(ZS^n (A) \leq Z (A) \) は中心 \(Z (A) \) から定まるわけではないことに注意。たとえば \(ZS^n (A) \) は導来同値で保たれない [11]。

Proposition 3 (Sakurai [11]). \(F \) を正標数 \(p \) の体、\(G \) を有限群とする。このとき \(n \in \mathbb{N} \) に対して

\[
ZS^n (FG) = ZS^n (\mathbb{F}_p G) \otimes_{\mathbb{F}_p} F
\]

が成り立つ。

直前の命題と上の表から次のような問いを考えるのは興味深いのではないかと思われる。

Problem 4 (Sakurai [11]). \(G \) を有限群、\(p \) を位数 \(|G| \) の素因数とする。このとき \(n \in \mathbb{N} \) に対して \(ZS^n (\mathbb{F}_p G) \) の次元と基底を求めよ。

Remark 5. \(A \) を分解体上の有限群の群多元環のブロックとする。\(\{ e_i \} \) を直交原始べき等元の完全代表系とすると

\[
\dim ZS^n (A) \leq \sum_i \dim e_i Ae_i / e_i \Rad^n (A) e_i
\]

が成り立つことが音喜多 [4] により最近示されている。

\footnote{有限 \(p \) 群の場合は既知 [11, Remark 4.9].}
\footnote{短報講演のスライド http://fuji.cec.yamanashi.ac.jp/ring/kan/Oct7/Sakurai.pdf にも参照。}
3. JENNINGS 理論

この章以降では \(F \) を正標数 \(p \) の体、\(G \) を有限 \(p \) 群とする。以下、記法を固定するために Jennings 理論について必要なことを述べる。

Definition 6. 自然数 \(i \in \mathbb{N} \) に対して \(G \) の第 \(i \) 次元部分群（あるいは Jennings 部分群）を
\[
D_i := \{ g \in G \mid g - 1 \in \text{Rad}^i (FG) \}
\]
で定める。これらは \(G \) の特性部分群であり、商 \(D_i / D_{i+1} \) は基本可換群になる。

Notation 7. \(D_i \) を第 \(i \) 次元部分群とする。このとき \(t := \min \{ i \in \mathbb{N} \mid D_i = 1 \} \) とおく。
\(D_i > D_{i+1} \) となる \(1 \leq i < t \) に対し、元 \(g_{i1}, \ldots, g_{ir_i} \in D_i \) を \(\{ g_{ij}D_{i+1} \mid 1 \leq j \leq r_i \} \) が\(D_i / D_{i+1} \) の極小生成系となるように選び、固定する。また \(\prod' \) で添字に関する辞書式順序の積を表すことにする。

Theorem 8 (Jennings). 非負整数 \(n \) に対し
\[
\text{Soc}^n (FG) = \bigoplus F \prod'_{1 \leq i < t, 1 \leq j \leq r_i} (g_{ij} - 1)^{m_{ij}}
\]
が成り立つ。ただし直和は
\[
\sum_{1 \leq i < t, 1 \leq j \leq r_i} i(p - 1 - m_{ij}) < n
\]
を満たす整数 \(0 \leq m_{ij} < p \) すべてについて取る。

Proof. [III, Theorem 3.6(iii)] 参照。\qed

Theorem 9 (Jennings, Brauer).
\[
D_i = \begin{cases}
G & (i = 1) \\
(D_{i/p})^p [D_{i-1}, G] & (i > 1)
\end{cases}
\]

Proof. [3, Theorem 5.5] 参照。\qed

Definition 10. \(FG \) の基底
\[
\left\{ \prod'_{1 \leq i < t, 1 \leq j \leq r_i} (g_{ij} - 1)^{m_{ij}} \mid 0 \leq m_{ij} < p \right\}
\]
を Jennings 基底という。

4. 主定理

前節で導入した Notation に引き続き用いる。

Theorem 11 (Sakurai [III]). \(s \in \mathbb{N} \) が \(D_s \geq [G, G] \) を満たすとする。このとき
\[
\prod'_{1 \leq i < s, 1 \leq j \leq r_i} (g_{ij} - 1)^{m_{ij}} \prod'_{s \leq i < t, 1 \leq j \leq r_i} (g_{ij} - 1)^{p-1}
\]
の形をした Jennings 基底の元は中心的である。とくに \(n \in \mathbb{N} \) に対して

\[
ZS^n (FG) \supseteq \bigoplus F \prod_{1 \leq i < s} (g_{ij} - 1)^{m_{ij}} \prod_{1 \leq j < r_i}^\prime (g_{ij} - 1)^{p-1}
\]

が成立立つ。ただし直和は

\[
\sum_{1 \leq i < t \leq t \leq r_i} i(p - 1 - m_{ij}) < n
\]

を満たす整数 \(0 \leq m_{ij} < p \) すべてについて取る。

Remark 12. \(D_2 \geq [G, G] \) は常に成立立つ。

Remark 13. (命題) より \(n_s := 1 + (p - 1) \sum ir_i \) とけば

\[
\dim ZS^{n_s} (FG) \geq |G/D_s|
\]

が成立立つ。

特別な \(p \) 群のクラスに対しては (命題) で等号が成立立つことがわかる。

Definition 14 (Lubotzky-Mann [10]). \(G \) がべき充足\(^2\)であるとは \(G^p \geq [G, G] \) かつ \(p > 2 \)、または \(G^1 \geq [G, G] \) かつ \(p = 2 \) であることをいう。

Theorem 15 (Sakurai [11]). \(G \) がべき充足ならば整数 \(1 \leq n \leq p \) に対して

\[
ZS^n (FG) = \bigoplus F \prod_{1 \leq j \leq r_i}^\prime (g_{ij} - 1)^{m_{ij}} \prod_{1 \leq j \leq r_i}^\prime (g_{ij} - 1)^{p-1}
\]

が成立立つ。ただし直和は

\[
\sum_{1 \leq j \leq r_i} (p - 1 - m_{ij}) < n
\]

を満たす整数 \(0 \leq m_{ij} < p \) すべてについて取る。

Corollary 16 (Sakurai [11]). \(G \) がべき充足ならば \(\text{Soc}^p (FG) \) は中心 \(Z (FG) \) に含まれる。

5. 具体例

奇素数 \(p \) を取り、\(G \) を位数 \(p^3 \)、べき指数 \(p^2 \) のエクストトラ・スペシャル \(p \) 群

\[
G := p_1^{l+2} = \langle a, b \mid a^p = b^{p^2} = 1, \ b^a = b^{1+p} \rangle
\]

とする。また \(x := a - 1, \ y := b - 1, \ z := c - 1 \) とおく。ただし \(c := b^p \) である。この群はべき充足であり、その次元部分群は

\[
D_1 = \langle a, b \rangle, \ D_2 = \cdots = D_p = \langle c \rangle, \ D_{p+1} = 1
\]

となる。また次を示すことができる。

\(^2\)powerful \(p \)-group の訳語。定訳がないようなので、このように替した。

\[
Z (FG) = \bigoplus_{0 \leq i,j < p} F x^i y^j z^{p-1} \oplus \bigoplus_{0 \leq k < p-1} F z^k
\]
\[
\text{Soc}^n (FG) = \bigoplus_{0 \leq i,j < p} F x^i y^j z^k .
\]
(5.2)
\[
Z S^n (FG) = \bigoplus_{0 \leq i,j < p} F x^i y^j z^{p-1} \oplus \bigoplus_{0 \leq k < p-1} F z^k
\]
\[
2(\text{p-1})-(i+j)<n .
\]
\[
(\text{p+2})(\text{p-1})-(i+j+pk)<n .
\]

したがって
\[
\text{Remark 17. 上の例では } Z S^n (FG) \text{ の基底として } x^i y^j z^{p-1} \text{ と } z^k \text{ の形の元が取れた。（もちろん, 一般には基底として Jennings 基底の部分集合が取れるとは限らない [11] と述べている。）ここで } z^k \text{ が中心であることは定義から明らかであるが, } x^i y^j z^{p-1} \text{ が中心的であることは定義から明らかでない。Theorem [11] は } x^i y^j z^{p-1} \text{ のような形の元は常に中心的であると述べている。}
\]

参考文献

[1] The GAP Group, GAP — groups, algorithms, and programming, (2017) version 4.8.7. [http://www.gap-system.org].
[2] L. Héthelyi, E. Horváth, B. Külshammer, and J. Murray, Central ideals and Cartan invariants of symmetric algebras, J. Algebra 293 (2005) 243–260. doi:10.1016/j.jalgebra.2005.01.052, MR 2173973, Zbl 1088.16025.
[3] S. A. Jennings, The structure of the group ring of a \(p \)-group over a modular field, Trans. Amer. Math. Soc. 50 (1941) 175–185. doi:10.2307/1989916, MR 4626, Zbl 0025.24401.
[4] S. Koshitani, Endo-trivial modules for finite groups with dihedral Sylow 2-groups, RIMS Kôkyûroku 2003 (2016) 128–132.
[5] B. Külshammer, Bemerkungen über die Gruppenalgebra als symmetrische Algebra (German), J. Algebra 72 (1981) 1–7. doi:10.1016/0021-8693(81)90308-2, MR 634013, Zbl 0472.16007.
[6] A. Lubotzky and A. Mann, Powerful \(p \)-groups. I. Finite groups, J. Algebra 105 (1987) 484–505. doi:10.1016/0021-8693(87)90211-0, MR 873681, Zbl 0626.20010.
[7] H. Nagao and Y. Tsushima, Representations of Finite Groups, (Academic Press, Boston, 1989). MR 998775, Zbl 0673.20002.
[8] T. Okuyama, Ext\(^1\)(\(S, S \)) for a simple \(kG \)-module \(S \) (Japanese), in Proceedings of the Symposium “Representations of Groups and Rings and Its Applications,” ed. S. Endo (1981), pp. 238–249.
[9] Y. Otokita, On diagonal entries of Cartan matrices of \(p \)-blocks, preprint (2016), arXiv:1605.07387.
[10] T. Sakurai, Central elements of the Jennings basis and certain Moïrtà invariants, preprint (2017), arXiv:1701.03739.
[11] T. Sakurai, zs-pgrp, Zenodo (2017). doi:10.5281/zenodo.823791.
[12] A. Zimmermann, Invariance of generalised Reynolds ideals under derived equivalences, Math. Proc. R. Ir. Acad. 107A (2007) 1–9. doi:10.3318/PRIA.2007.107.1.1, MR 2289793, Zbl 1131.16003.
[13] ______, On the use of Kulshammer type invariants in representation theory, Bull. Iranian Math. Soc. 37 (2011) 291–341. MR 2890588, Zbl 1263.16014.
