Supplementary Material

A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation, and optimization for histone deacetylase inhibitors

Eugen Rempel1,2*, Lisa Hoelting3,4*, Tanja Waldmann3, Nina V. Balmer3, Stefan Schildknecht3, Marianna Grinberg1, John Antony Das Gaspar5, Vaibhav Shinde5, Regina Stoebe6, Rosemarie Marchan6, Christoph van Thriel5, Thriel, Julia Liebing6, Johannes Meisig7,8, Nils Blüthgen7,8, Agapios Sachinidis5, Jörg Rahnenführer1#, Jan G. Hengstler6#, Marcel Leist3#

Archives of Toxicology

1TU Dortmund University, Department of Statistics, 44139 Dortmund, Germany
2Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
3University of Konstanz, Department of in vitro toxicology and biomedicine, 78457 Konstanz, Germany
4Konstanz Graduate School Chemical Biology KORS-CB, University of Konstanz, 78457 Konstanz, Germany,
5Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
6Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
7Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany
8Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt Universität, 10115 Berlin, Germany
*shared first authorship, #shared senior authorship

Table of Contents

Supplementary Figure S1: Literature data on toxicological effects of mercurials relevant for developmental toxicity (DT) or developmental neurotoxicity (DNT). page: 2

Supplementary Figure S2: Determination of the benchmark concentration (BMC) used for toxicant testing on microarrays. page 4

Supplementary Figure S3: Identification of HDACi consensus genes. page: 5

Supplementary Figure S4: Transcription factor binding sites (TFBS) overrepresented amongst up- and down-regulated HDACi consensus genes. page: 6

Supplementary Figure S5: Visualization of a transcription factor (TF) network. page: 7

Supplementary Figure S6: Identification of transcription factors (TF) with HDACi consensus genes enriched among targets. page: 8

Supplementary Figure S7: Transcriptome-based classifier. page: 9

Supplementary Figure S8: Transcriptome-based 100 PS classifier. page: 10

Supplementary Figure S9: Regulation of tissue specific transcription factors (TF). page: 11
Compound	Molecular mechanism	Human evidence for DNT	Reference relevant to DT/DNT
MeHg	Oxidative stress, ROS, lipoperoxidation, GSH inhibition, Disruption of Ca homeostasis, Inhibition of protein synthesis, Apoptosis, Microtubule disruption, Mitochondria toxicity, Mitotic arrest, Reaction with DNA and RNA	+	[1-15]
Thimerosal	Mitochondria toxicity, Reduced oxidative reduction activity, Oxidative stress, Lipid peroxidation, Protein alkylation, Microtubuli disassembly, inhibition of tubuli assembly, Cellular degeneration, Oxidative stress	-	[16-22]
HgBr₂ / HgCl₂	Cytoskeletal disassembly, tubulin degradation, Disruption of Ca homeostasis, Apoptosis, cell shrinking, chromosome condensation, Mitochondrial dysfunction, Necrosis, Oxidative stress	-	[23-30]
PMA	ATPase inhibition, Peptidases / proteases inhibition	-	[31-33]
PCMBBA	Matrix metalloprotease, cleavage and activation	-	[34]

Rempel et al., 2015, Supplementary Fig. S1

Suppl. Fig. S1: Literature data on toxicological effects of mercurials relevant for developmental toxicity (DT) or developmental neurotoxicity (DNT). The six mercurials (methylmercury, thimerosal, mercury(II)chloride, mercury(II)bromide, 4-chloromercuribenzoic acid and phenylmercuric acid), which were used in the present study have one mercury atom in common. A literature research was performed for mechanism relevant for DT and DNT. The heterogeneous mode of action and the potential to cause DNT of the respective mercurials is listed.

List of references:
1. Grandjean, P. and P.J. Landrigan, (2006) Developmental neurotoxicity of industrial chemicals. Lancet. 368. 2167-2178.
2. Grandjean, P. and P.J. Landrigan, (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol. 13. 330-338.
3. Grandjean, P. and K.T. Herz, (2011) Methylmercury and brain development: imprecision and underestimation of developmental neurotoxicity in humans. Mt Sinai J Med. 78. 107-118.
Continuation list of references:

4. Burbacher, T.M., P.M. Rodier, and B. Weiss, (1990) Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol. 12, 191-202.

5. Castoldi, A.F., et al., (2008) Human developmental neurotoxicity of methylmercury: impact of variables and risk modifiers. Regul Toxicol Pharmacol. 51, 201-214.

6. Hwang, G.W., (2012) Role of intracellular defense factors against methylmercury toxicity. Biol Pharm Bull. 35. 1881-1884.

7. Atchison, W.D. and M.F. Hare, (1994) Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 8, 622-629.

8. Sarafian, T. and M.A. Verity, (1991) Oxidative mechanisms underlying methyl mercury neurotoxicity. Int J Dev Neurosci. 9. 147-153.

9. Reddy, C.C., R.W. Scholz, and E.J. Massaro, (1981) Cadmium, methylmercury, mercury, and lead inhibition of calf liver glutathione S-transferase exhibiting selenium-independent glutathione peroxidase activity. Toxicol Appl Pharmacol. 61. 460-468.

10. Kuznetsov, D.A., N.V. Zavijalov, A.V. Govorkov, and T.M. Sibileva, (1987) Methyl mercury-induced nonselective blocking of phosphorylation processes as a possible cause of protein synthesis inhibition in vitro and in vivo. Toxicol Lett. 36. 153-160.

11. Castoldi, A.F., et al., (2000) Early acute necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar granule neurons exposed to methylmercury. J Neurosci Res. 59. 775-787.

12. Sone, N., M.K. Larsstuvold, and Y. Kagawa, (1977) Effect of methyl mercury on phosphorylation, transport, and oxidation in mammalian mitochondria. J Biochem. 82. 859-868.

13. Sager, P.R., R.A. Doherty, and P.M. Rodier, (1982) Effects of methylmercury on developing mouse cerebellar cortex. Exp Neurol. 77, 179-193.

14. Gruenwedel, D.W. and D.S. La, (1970) Changes in the sedimentation characteristics of DNA due to methylmercurcation. Biochem Biophys Res Commun. 40. 542-548.

15. Gruenwedel, D.W. and M.K. Cruikshank, (1979) Effect of methylmercury (II) on the synthesis of deoxyribonucleic acid, ribonucleic acid and protein in HeLa S3 cells. Biochem Pharmacol. 28, 651-655.

16. Brunner, M., S. Albertini, and F.E. Wurgler, (1991) Effects of 10 known or suspected spindle poisons in the in vitro porcine brain tubulin assembly assay. Mutagenesis. 6. 65-70.

17. Anundi, I., J. Hogberg, and A.H. Stead, (1979) Glutathione depletion in isolated hepatocytes: its relation to lipid peroxidation and cell damage. Acta Pharmacol Toxicol. 45. 45-51.

18. Geier, D.A., P.G. King, and M.R. Geier, (2009) Mitochondrial dysfunction, impaired oxidative-reduction activity, degeneration, and death in human neuronal and fetal cells induced by low-level exposure to thimerosal and other metal compounds. Toxicol Environ Chem. 91. 735-749.

19. Sharpe, M.A., A.D. Livingston, and D.S. Baskin, (2012) Thimerosal-Derived Ethylmercury Is A Mitochondrial Toxin in Human Astrocytes: Possible Role of Fenton Chemistry in the Oxidation and Breakage of mtDNA. J Toxicol. 2012. 373678.

20. Marques, R.C., J.G. Dorea, and J.V. Bernardi, (2010) Thimerosal exposure (from tetanus-diphtheria vaccine) during pregnancy and neurodevelopment of breastfed infants at 6 months. Acta Paediatr. 99. 934-939.

21. Parker, S.K., B. Schwartz, J. Todd, and L.K. Pickering, (2004) Thimerosal-containing vaccines and autistic spectrum disorder: a critical review of published original data. Pediatrics. 114. 793-804.

22. Heron, J., J. Golding, and A.S. Team, (2004) Thimerosal exposure in infants and developmental disorders: a prospective cohort study in the United kingdom does not support a causal association. Pediatrics. 114. 577-583.

23. Xu, F., et al., (2012) Mercury-induced toxicity of rat cortical neurons is mediated through N-Methyl-D-Aspartate receptors. Mol Brain. 5. 30.

24. Szucs, A., C. Angiello, J. Salanki, and D.O. Carpenter, (1997) Effects of inorganic mercury and methylmercury on the ionic currents of cultured rat hippocampal neurons. Cell Mol Neurobiol. 17. 273-288.

25. Arraghi, S., et al., (2003) Mercuric chloride induces apoptosis via a mitochondrial-dependent pathway in human leukemia cells. Toxicology. 184. 1-9.

26. Goering, P.L., D. Thomas, J.L. Rogko, and A.D. Lucas, (1999) Mercuric chloride-induced apoptosis is dependent on protein synthesis. Toxicol Lett. 105. 183-195.

27. Shenker, B.J., T.L. Guo, and I.M. Shapiro, (2000) Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptotic pathway is mercurial species dependent. Environ Res. 84. 89-99.

28. Issa, Y., et al., (2003) Mercuric chloride: toxicity and apoptosis in a human oligodendroglial cell line MO3.13. Biomaterials. 24. 981-987.

29. Gutierrez, L.L., et al., (2006) Peripheral markers of oxidative stress in chronic mercuric chloride intoxication. Braz J Med Biol Res. 39. 767-772.

30. Joshi, D., et al., (2014) N-acetyl cysteine and selenium protects mercuric chloride-induced oxidative stress and antioxidant defense system in liver and kidney of rats: a histopathological approach. J Trace Elem Med Biol. 28. 218-226.

31. Pedersen, P.L., (1976) Adenosine triphosphatase from rat liver mitochondria - evidence for a mercurial-sensitive site for the activation of mitochondrial ions. Biochim Biophys Acta. 377. 52-60.

32. Yoshimoto, T., W.H. Simmons, T. Kita, and D. Tsuru, (1981) Post-proline cleaving enzyme from lamb brain. J Biochem. 90. 325-334.

33. Du, P.G., et al., (2001) Rat tripeptidyl peptidase I: molecular cloning, functional expression, tissue localization and enzymatic characterization. Biol Chem. 382. 1715-1725.

34. Warren, M.C., E.A. Bump, D. Medeiros, and S.J. Braunhut, (2000) Oxidative stress-induced apoptosis of endothelial cells. Free Radic Biol Med. 29. 537-547.
Rempel et al., 2015, Supplementary Fig. S2

Suppl. Fig. S2: Determination of the benchmark concentration (BMC) used for toxicant testing on microarrays. Compounds (here exemplified for the HDACi SAHA and the mercurial thimerosal) were tested at multiple dilutions in the standard UKN1 setup for 6 days. On DoD6, the viability was measured by a resazurin reduction assay, and data were normalized to untreated control samples. Experiments were performed in 3-4 cell preparations (each indicated by a different colour of data point and curves). An average curve (black) was calculated to determine the concentration at which viability was reduced to 90% (=BMC). Then the lower 95% confidence interval of this concentration was calculated (=BMCL). This value was used for all compounds to obtain microarray data (and is referred to as “BMC” in the text).
A

Genes up-regulated by x HDACi

x = 4	5	6
73	32	16
58	41	13
42	29	12
22	28	16
3	12	6
0	1	1
0	0	0

Sum: 198 143 64

B

Genes down-regulated by x HDACi

x = 4	5	6
22	6	2
53	14	6
13	13	3
33	14	4
3	2	2
0	0	0
0	0	0

Sum: 124 49 17

C

Genes regulated by mercurials

x = 3	4	5	6	
UP	184	51	2	0
DOWN	177	12	0	0

Rempel et al., 2015, Supplementary Fig. S3

Suppl. Fig. S3: Identification of HDACi consensus genes. The UKN1 test system was exposed to 6 HDACi and 6 mercurials (as in Fig. 1) and DEG were identified (see Fig 2B). (A) The genes that were up-regulated by 4, 5, or 6 HDACi were counted (see “sum” line). The gene lists were further differentiated as to whether genes did not affect any mercurial (top line) or they were affected by the indicated numbers of mercurials. (B) The same procedure as in A was applied to down-regulated genes. (C) For a complete overview, the genes up- or down-regulated by at least 3 mercurials were compiled. For the gene list see suppl. Table S2.
Suppl. Fig. S4: Transcription factor binding sites (TFBS) overrepresented amongst up- and down-regulated HDACi consensus genes. The UKN1 test system was exposed to 6 HDACi (as in Fig. 1) and amongst the DEG, up- and down-regulated HDACi consensus genes were identified (see Fig. S3). The overrepresented TFBS in these sets of genes were determined by using oPOSSUM web tool and JASPAR database.
Supplementary Fig. S5: Visualization of a transcription factor (TF) network. (A) The CellNet database (2839 microarray sets from all major tissues) was used to construct a generic human TF network, based on statistical co-expression information and graph-theoretical design principles. Each node (n=1000) represents a TF gene, and each edge suggests co-regulation. The edge lengths is driven by the number of edges on neighbouring nodes, not by the strength of co-regulation. Nodes are placed according to the Fruchterman-Reingold algorithm. Clusters (coded by same colours) were defined by an optimization algorithm that tries to maximize the modularity of the division of the graph into clusters. Then GO term overrepresentation analysis was performed for each cluster to identify its biological role, and naming of the 16 clusters is based on these findings. The figure is similar to Fig. 4A, but it allow better reading of all node names.

Rempel et al., 2015, Supplementary Fig. S5
Suppl. Fig. S6: Identification of transcription factors (TF) with HDACi consensus genes enriched among targets. An enrichment analysis was performed using the interaction scores generated by the CLR algorithm. For each TF, the scores with the HDACi consensus genes were compared to the distribution of the scores of all genes using Wilcoxon's rank-sum test. TFs with an enrichment p-value less than 10^{-20} were marked red in the network.
Rempel et al., 2015, Supplementary Fig. S7

Suppl. Fig. S7: Transcriptome-based 10 PS classifier. To calculate classifier value the fold change (FC) of each PS is multiplied with the weighting coefficient γ and summed up over all classifier components (i = 1-8 for 10 PS classifier as shown, i = 1-100 for 100 PS classifier). The offset 0.896 is added.

$$x = \sum_{i=1}^{8} (\gamma_i \cdot FC_i) + 0.896$$

Afterwards, a logistic transformation was applied. $logit(x) = \frac{1}{1+exp(Ax+B)}$

with A = -2.57 and B = 0.03 (For 100 PS classifier: A = -2.41; B = -0.12). The result is the probability of a compound to represent an HDACi. For the genes constituting the minimal HDACi classifier (10 PS, corresponding to 8 genes), the regulation (of all 6 HDACi) and the weighting factor are listed.

Minimal HDACi classifier gene	Belinostat	Entinostat	Panobinost	SAHA	TSA	VPA	weight factor γ	Reference relevant to role and function (see also Fig. 7C)
FZRL2	0.69	0.17	0.27	0.48	0.25	0.10	0.262	1
TFAP2B	3.79	1.26	17.08	8.90	51.84	5.17	-0.102	2
EDNRA	2.44	0.95	8.69	7.67	60.13	9.90	-0.014	3
FOXD3	6.44	3.46	17.99	7.23	33.41	4.02	-0.26	4
SIX3	0.46	0.25	0.11	0.33	0.05	0.06	0.086	5
MT1E	0.83	1.26	1.26	0.92	1.04	3.12	0.136	6
ETS1	0.13	1.29	11.24	5.37	43.90	5.40	-0.04	7
LHX2	0.45	0.15	0.14	0.27	0.04	0.14	0.094	8

Reference to classifier genes:
1. Zhang, H. and I.G. Macara, (2006) *The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis*, Nat Cell Biol, 8 227-237.
2. Damberg, M., (2005) *Transcription factor AP-2 and monoaminergic functions in the central nervous system*, J Neural Transm, 112 1281-1296.
3. Lehmann, L.H., D.A. Stanmore, and J. Backs, (2014) *The role of endothelin-1 in the sympathetic nervous system in the heart*, Life Sci, 118 165-172.
4. Fairchild, C.L., J.P. Conway, A.T. Schiffmacher, L.A. Taneyhill, and L.S. Gammill, (2014) *FoxD3 regulates cranial neural crest EMT via downregulation of tetraspanin18 independent of its functions during neural crest formation*, Moch Dev, 132 1-12.
5. Lagutin, O.V., C.C. Zhan, D. Kobayashi, J. Topczewski, K. Shimamura, L. Puuelles, H.R. Russell, P.J. McKinnon, L. Solnica-Krezel, and G. Oliver, (2003) *Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development*, Genes Dev, 17 368-379.
6. Ito, Y., H. Tanaka, and H. Hara, (2013) *The potential roles of metallothionein as a therapeutic target for cerebral ischemia and retinal diseases*, Curr Pharm Biotechnol, 14 400-407.
7. Gao, Z., G.H. Kim, A.C. Mackinon, A.E. Hagg, B. Bassett, J.U. Earley, and E.C. Svensson, (2010) *Ets1 is required for proper migration and differentiation of the cardiac neural crest*, Development, 137 1543-1551.
8. Marcos-Mondejar, P., S. Peregirn, J.Y. Li, L. Carlsson, S. Toke, and G. Lopez-Bendito, (2012) *The lhx2 transcription factor controls thalamocortical axonal guidance by specific regulation of robo1 and robo2 receptors*, J Neurosci, 32 4372-4385.
| ID | Symbol | Weights γ | ID | Symbol | Weights γ |
|--------|--------|-----------|--------|--------|-----------|
| 230147 | F2RL2 | 2.12 | 206588 | DAZL | 5.17 |
| 214451 | TFAP2B | -2.17 | 236359 | SCN4B | -1.72 |
| 204463 | EDNRA | -1.06 | 204745 | MT1G | 0.69 |
| 204464 | EDNRA | -1.61 | 230895 | HAPLN1 | -1.25 |
| 155399 | TFAP2B | -2.66 | 230204 | HAPLN1 | -1.36 |
| 241612 | FOXD3 | -4.18 | 205113 | NEFM | 0.76 |
| 242054 | SIX3 | 1.94 | 228875 | FAM162B| -5.85 |
| 212859 | MT1E | 1.54 | 214265 | ITGA8 | 0.07 |
| 224833 | ETS1 | -2.64 | 235666 | ITGA8 | -0.51 |
| 206140 | LHX2 | 1.33 | 219179 | DACT1 | -2.37 |
| 208581 | MT1X | 0.998 | 201468 | NQO1 | 2.82 |
| 206461 | MT1H | 1.07 | 237056 | INSC | -1.57 |
| 21139 | SNAI2 | -1.39 | 1555800| ZNF385B| 0.63 |
| 229125 | KANK4 | -1.47 | 206018 | FOXG1 | -1.52 |
| 238878 | ARX | 0.1 | 209199 | MEF2C | -0.71 |
| 221086 | FEZF2 | 1.22 | 205430 | BMP5 | 2.44 |
| 204326 | MT1X | 2.82 | 215729 | VGLL1 | 1.13 |
| 203789 | SEMA3C | 0.0657 | 228658 | MIAT | 2.89 |
| 209160 | AKR1C3 | 3.03 | 1555414| C6orf141| 0.592 |
| 220184 | NANOG | -10.3 | 209200 | MEF2C | -0.75 |
| 217165 | MT1F | 1.37 | 208096 | COL21A1| -0.083 |
| 212185 | MT2A | 1.69 | 211456 | MT1H1 | 1.53 |
| 216336 | NA | 0.631 | 219054 | NPR3 | -0.845 |
| 227238 | MUC15 | -1.23 | 1556378| LOC440896| 0.755 |
| 233972 | FEZF2 | 0.695 | 210524 | NA | 2.06 |
| 210302 | MAB21L2| 1.18 | 201012 | ANXA1 | 1.48 |
| 226213 | ERBB3 | -0.835 | 237435 | NA | -1.5 |
| 204653 | TFAP2A | -4.28 | 243611 | MICALCL| -7.71 |
| 209875 | SPP1 | 1.28 | 206029 | ANKRD1 | -0.257 |
| 239205 | NA | -7 | 230493 | SHISA2 | 0.722 |
| 204273 | EDNRB | -2.71 | 230008 | THSD7A | 2.17 |
| 203665 | HMOX1 | -1.19 | 237322 | MIAT | 4.29 |
| 206634 | SIX3 | 3.03 | 210729 | NPY2R | 0.902 |
| 1555801| ZNF385B| 1.06 | 204932 | TNFRSF11B| -2.57 |
| 205523 | HAPLN1 | -0.91 | 229004 | ADAMTS15| -3.8 |
| 243555 | NA | -1.54 | 210519 | NQO1 | 3.77 |
| 223044 | SLC40A1| -1.08 | 205923 | RELN | -1.04 |
| 206801 | NPPB | 3.02 | 228367 | ALPK2 | 2.93 |
| 240055 | NA | -0.423 | 219197 | SCUBE2 | -0.141 |
| 214920 | THSD7A | 0.92 | 219058 | ME1 | 4.33 |
| 228347 | SIX1 | -0.744 | 227241 | MUC15 | 1.47 |
| 221950 | EMX2 | -1.53 | 242193 | MIR124-2HG| 0.228 |
| 202454 | ERBB3 | -2.41 | 204112 | HNMT | 1.75 |
| 213629 | MT1F | 1.3 | 209735 | ABCG2 | 1.27 |
| 209723 | SERPINB9| -4.99 | 216235 | EDNRA | -3.25 |
| 213894 | THSD7A | -0.888 | 210303 | MAB21L2| 4.66 |
| 1552521| TMEM74 | 0.6 | 1561101| JAKMIP2-AS1| -3.27 |
| 1554012| RSP02 | 1.52 | 237449 | SP8 | 0.75 |
| 221245 | FZD5 | 1.55 | 203324 | CAVE2 | 2.74 |
| 213943 | TWIST1 | -0.0731 | 205286 | TFAP2C | -5.4 |

Rempel et al., 2015, Supplementary Fig. S8

Suppl. Fig. S8: Transcriptome-based 100 PS classifier. To calculate the classifier value, the foldchange of each PS is multiplied with the respective weighting coefficient $\gamma (=\text{weight/100})$, summed up and further processed as described in suppl. Fig. S7.
Suppl. Fig. S9: Regulation of tissue specific transcription factors (TF). (A) Tissue-specific TF were determined as follows. First, the CellNet tissue data was used to calculate the average expression of each TF in each tissue. Subsequently, the average expression was binned into 10 quantiles from 0 (lowest) to 9 (highest). To determine TF with preferential expression in one tissue, we computed the tissue specificity index \(t \) proposed in (Yanai et al. 2005).

\[
t_j = \frac{\sum_{i=1}^{N} 1 - x_{ij}/\text{max}_i(x_{ij})}{N-1}
\]

In the above formula, \(i \) runs over all tissues, \(N \) is the number of tissues, \(x_{ij} \) is the expression quantile of TF \(j \) in tissue \(i \). The top 50% TF with the highest specificity index \(t \) were then assigned to the tissue in which they were expressed most highly. This resulted in 671 TF with ‘tissue specific expression’. The absolute number for five tissues are listed.

(B) The percentage of tissue specific TF, which were up-regulated at DoD6 vs DoD0 in untreated cells was determined. (C) The percentage of tissue-specific TF found in up- and down-regulated HDACi consensus genes was counted.

Tissue	Number (N)	Percentage of tissue-specific TF up-regulated at DoD6 vs DoD0 in untreated cells	Percentage of tissue-specific TF found in HDACi consensus genes
Neuron	48	17% (1)	3% (4)
ESC	96	13% (2)	11% (1)
Colon	31	7% (4)	4% (2)
Ovary	85	12% (3)	4% (2)
MuscleSkel	104	4% (5)	3% (4)

Numbers in brackets indicate rank position in list

Rempel et al., 2015, Supplementary Fig. S9