The Effector Function of Allergens

Stéphane Hazebrouck¹, Nicole Canon² and Stephen C. Dreskin²*

¹ Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France, ² Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, CO, United States

Allergens are antigens that generate an IgE response (sensitization) in susceptible individuals. The allergenicity of an allergen can be thought of in terms of its ability to sensitize as well as its ability to cross-link IgE/IgE receptor complexes on mast cells and basophils leading to release of preformed and newly formed mediators (effector activity). The identity of the allergens responsible for sensitization may be different from those that elicit an allergic response. Effector activity is determined by (1) the amount of specific IgE (sIgE) and in some circumstances the ratio of sIgE to total IgE, (2) the number of high affinity receptors for IgE (FcεR1) on the cell surface, (3) the affinity of binding of sIgE for its epitope and, in a polyclonal response, the collective avidity, (4) the number and spatial relationships of IgE binding epitopes on the allergen and (5) the presence of IgG that can bind to allergen and either block binding of sIgE and/or activate low affinity IgG receptors that activate intracellular inhibitory pathways. This review will discuss these important immunologic and physical properties that contribute to the effector activity of allergens.

Keywords: allergens, effector function, FcεR1, IgE, mast cells, cross-linking, epitope, degranulation

INTRODUCTION

The word allergen refers to a specific molecule, usually a protein that generates an IgE response as opposed to a more general term, antigen that is a molecule that induces any immune response (1). Allergenicity can refer to the ability of an antigen to elicit the production of specific IgE (sIgE), bind to sIgE antibodies, induce cross-linking of sIgE bound to the high affinity receptor, FcεR1, for IgE (IgE/FcεR1 complexes) and trigger cell degranulation that may ultimately lead to an allergic reaction in a sensitized subject (2, 3). Arguably, all of these aspects must be present for an allergen to be clinically relevant although there are exceptions due to cross-reactivity when IgE sensitization is primarily induced by a different allergen (2, 3). The concept of “allergenicity” in general or in a specific context has been reviewed previously, most often focusing on the ability of allergens to elicit an IgE response but also acknowledging the importance of clinical reactions (4–16). This review is focused solely on the effector function of allergens and the ability of an allergen to elicit an allergic reaction by cross-linking of IgE/FcεR1 complexes to activate mast cells and basophils. The examples given are frequently regarding peanut allergens as these have been extensively studied. However, these concepts likely apply to most, if not all, allergens.

Before discussing the effector function of allergens, it is important to note that the allergens within an allergic source (e.g., a food) that are the most potent for sensitization may be different from the allergens that are responsible for elicitation of the allergic response. As an example, sensitization to peanuts may be mediated primarily by Ara h 1, which is a vicilin, also known as a 7S globulin (17, 18). In another mouse model, IgE sensitization to Ara h 1 was induced after oral sensitization to raw or roasted peanut (19). In contrast, production of IgE to Ara h 6 was not induced in mice sensitized to raw peanut and purified native Ara h 6 also displayed limited...
intrinsic sensitization capacity (19). The formation of large complexes during heat-treatment, notably between Ara h 1 and Ara h 6, were probably required for Ara h 1 to act as carrier for Ara h 6 uptake, activation of dendritic cells, and induction of specific Th2 immune response to Ara h 6. On the other hand, the 25 albumsins of peanuts, Ara h 2 and Ara h 6, have been shown to be much more potent than Ara h 1 or Ara h 3, an 11S-globulin, for eliciting IgE-mediated mast cell activation in peanut allergy (16, 17, 20–22). The mechanism whereby one allergenic protein may sensitize and thus generate an IgE response that allows a different but homologous allergen to cause an effector response, likely involves cross-reactive linear and/or conformational epitopes (23, 24). However, for proteins displaying low overall identity such as between Ara h 1 and Ara h 2 or between peanut and tree-nut proteins, the mechanism is less well-understood and may involve discrete sequences similar in physicochemical properties (16, 25-27).

Allergenic proteins are limited to a small number of protein families (28). In some cases, the effector function is predominantly mediated by even a smaller number of allergens that can be specifically depleted by specific high affinity antibodies. This has been tested for peanut allergens, where, following immunodepletion, Ara h 2 and Ara h 6 were found to account for most of the allergenic activity of a peanut whole extract (22, 29). Similarly, immunodepletion of Fel d 1 from an extract of cat allergens demonstrated that Fel d 1 is the most potent cat allergen (30). On the other hand, other allergenic extracts appear to have multiple allergens that contribute to effector function with combinations that vary in clinical relevancy for different individuals (31).

Thus, the ability of an allergen to cross-link IgE/FceR1complexes on mast cells and basophils is determined by (1) the amount of specific IgE (slgE) and the ratio of slgE to total IgE (tIgE), (2) the number of FceR1 molecules on the cell surface, (3) the affinity of binding of slgE for its epitope and, in a polyclonal response, the collective avidity, (4) the number and spatial relationships of IgE binding epitopes on the allergen and (5) the presence of IgG that can bind to allergen and either block binding of slgE and/or activate low affinity IgG receptors (FcεR2 in humans and FcγR2b in mice) that activate intracellular inhibitory pathways (32–36).

TOTAL AND SPECIFIC IgE

The term specific IgE has evolved over the years. This was initially referring to IgE detected when a saline extract of an allergenic source such as individual animal danders, specific pollens, mold spores or food was used as the capture in an absorbent assay. More recently, specific IgE refers to IgE that binds an individual allergenic protein such as Fel d 1 from cat or Ara h 2 from peanut as discussed in this review. slgE can be measured in research labs using ELISA assays and commercially in the ImmunoCap® (ThermoFisher) or other similar format. Microarray technology (e.g. ISAC® by ThermoFisher) has allowed simultaneous measurement of IgE binding to a variety of purified or recombinant allergens (37).

As the Cε3 region of the Fc portion of IgE binds to the alpha chain of FceR1, there is equal binding of all IgE molecules to FceR1, independent of specificity which resides in the Fab region. However, the density of any given specific IgE on the cell surface is inversely proportional to the amount of IgE of other specificities. Therefore, the effector activity of an allergen is influenced not only by the number of IgE/FceR1 complexes but also by the ratio of slgE to tIgE. This becomes important when considering slgE in a sample with a substantial portion of the IgE directed at other allergens or without known specificity. Consequently, if the ratio of slgE to tIgE is high, the probability of the same allergen to cross-link with slgE and meet the threshold of complexes required to generate a measurable effector response is easier to reach than if the ratio of slgE to tIgE is low (see below).

Blanc et al. showed that sera exhibiting a lower ratio slgE to tIgE required higher concentrations of allergens to trigger RBL SX-38 degranulation, which was not efficiently induced when the ratio was <2% (21). However, using human cultured mast cells, the lowest fraction of slgE able to activate cells was around 0.3% (38). Hemmings et al. reported that, for peanut allergens, the ratio of slgE to tIgE, along with the diversity of the slgE repertoire to peanut allergens, were the major determinants of basophil and mast cell activation (39). In that study, compared to the level of slgE alone, the ratio slgE to Ara h 2 and Ara h 6 to tIgE improved the discrimination between patients who were clinically allergic peanut as opposed to those who were only sensitized (39). In addition to the amount of slgE, the affinity of that IgE for binding to allergens is important (34, 38). This is further discussed below.

EFFECTOR CELLS AND FCεR1

The effector function of an allergen requires that slgE be bound to FceR1 on mast cells and basophils. While the half-life of circulating IgE is ~1 day (40), IgE bound to FceR1, due to the slow off rate of this interaction (K_D of 10^-9 M), remains on the cell surface for several weeks (41). The function of FceR1 has been extensively studied on rat basophilic leukemia (RBL) cells using the 2H3 clone (34) and on human basophils (42, 43). Using a monoclonal IgE, crosslinking as few as 100 FceR1-IgE complexes leads to measurable cell activation and 50% cell activation was seen with crosslinking of 300-2000 FceR1-IgE complexes (42, 44). Whereas, the number of FceR1 on the RBL-2H3 cells is stable, the expression of FceR1 on human basophils is upregulated by the concentration of circulating IgE so that naturally occurring basophils can have from 5 X 10^4 to 5 X 10^6 receptors per cell (42). Of note, in addition to their capacity to up-regulate FceR1 levels on the cell surface, IgE antibodies also enhance mast cell survival and expansion (45). The density of FceR1 on the cell surface is thus important in assessing the allergen concentration capable to trigger mast cell degranulation.

An interesting caveat that has been recognized for some time is that some patients may produce IgE that has an increased propensity to be cross-linked but the molecular basis of this finding was not understood (46). Recently, characterization by mass spectrometry of serum IgE glycosylation revealed that tIgE from peanut-allergic patients have increased terminal sialylation
compared to tIgE from non-atopic controls. Of note, IgE sialylation did not impact the binding of IgE to FcεRI but was found to modulate the signaling downstream of the receptor (47). The general impact of this observation has not been established.

NOT ALL ALLERGENS THAT BIND IgE HAVE SIMILAR EFFECCTOR ACTIVITY

Levels of sIgE can be evaluated through different approaches and assays such as immunoblots, ELISA and competitive inhibition of IgE-binding. However, IgE-binding does not necessarily correlate with relevant clinical activity. To date, 17 peanut proteins have been reported as allergenic by the WHO/IUIS Allergen Nomenclature Sub-Committee. Among them, four peanut allergens, Ara h 1, Ara h 2, Ara h 3 and Ara h 6 bind large amounts of IgE on immunoblots which is is true for the majority of patients (48, 49). However, when studied in functional assays, it was found that Ara h 2 and Ara h 6 account for 70–90% of the allergic effector activity of peanuts (50). In addition, desensitization with only a combination of Ara h 2 and Ara h 6 protected peanut allergic mice from anaphylaxis elicited by whole peanut extract (29). Moreover, although co-sensitization to both Ara h 2 and Ara h 6 generally occurs in patients, IgE cross-reactivity can lead to a high level of IgE-sensitization to both allergens, as determined by ELISA, whereas for some patients, only one of the two 2S-albumins can effectively trigger mast cell degranulation in vitro (51).

THE CONTRIBUTION OF PHYSICAL STABILITY AND STRUCTURE TO EFFECCTOR FUNCTION

Inhalant allergens have immediate interactions with the respiratory mucosa and do not have to be particularly stable (12). For example, the PR-10 allergens are generally sensitive to heat and to digestion. Consequently, they often can elicit allergic reactions at mucosal surfaces of the respiratory tract but not of the digestive tract (52). On the other hand, food allergens must be stable enough to withstand the environment of the digestive tract. Moreover, to enter the systemic circulation, soluble allergens are more efficiently transferred across the intestinal epithelial barrier, through transcytosis, than particulate allergens, which are processed through Peyer's patches (53). Therefore, soluble allergens are more potent in triggering anaphylactic reaction while particulate allergens, like aggregates resulting from heat-treatment, food processing or gastric acidity, could be more potent in inducing IgE sensitization (53). For these reasons, physical stability and structural elements such as size, oligomerization, aggregation or formation of micelles are important attributes of food allergens that, when studied, can greatly affect their effector function (6).

For example, Ara h 2 and Ara h 6 are much more resistant to gastric acid and digestive enzymes than are Ara h 1 and Ara h 3. This resistance likely enhances their effector activity (54–60). Furthermore, digestion products of peanut 2S albumins yield a large and a small subunit (5 and 9 kDa) that remain associated by disulfide bridges so that the resulting heterodimer is as immunoreactive as the intact protein. Hence, immunoreactive Ara h 2 and Ara h 6 can be still detected and quantified in the bloodstream and in breast milk of non-peanut allergic human volunteers after peanut consumption or in the blood of peanut allergic patients after oral food challenge (61). These proteins have been shown to bind IgE and to be active in functional assays with RBL SX-38 cells (60, 62–66). On the other hand, the primary allergen in wheat induced anaphylaxis, ω-gliadin, although stable to digestion, is a larger 30–50 kDa protein (67, 68) that requires cofactors that either augment gut permeability or cell responsiveness to cause anaphylaxis (69–71).

IgE-EPITOPE INTERACTIONS

In addition to the number of allergen-specific IgE molecules, the affinity of binding is important (34). The complex relationship between the IgE repertoire and IgE affinity has been recently explored (38, 72, 73) underscoring the importance of tIgE, sIgE, IgE binding affinity and the diversity of the epitopes that bind IgE (72–74). The extent of effector cell activation is also linked to an allergen's oligomeric state, and the valency, spacing/proximity and flexibility of the IgE-binding epitopes (75, 76).

Identification of the IgE-binding epitopes has typically focused on linear sequences as they can be exhaustively and easily characterized by using overlapping peptide libraries and high-throughput technologies (77, 78). Recent diagnostic developments have successfully used peptide microarrays and bead-based epitope assays for profiling epitope-specific IgE repertoire in the context of peanut allergy (79–82). However, conformational epitopes (formed by 3D-folding of the primary amino acid sequences of a protein) are now thought to be critical for high affinity IgE binding to a number of important allergens, including Ara h 1 (83, 84), Ara h 2 (85–87), Ara h 6 (85–87) and others (88–92). The importance of conformational epitopes has been clearly shown by disrupting the disulfide bonds that play an important role in maintaining the structure of the 2S albumins. Chemical reduction and alkylation of these disulfide bonds lead to a loss of secondary, tertiary and quaternary structures with concomitant changes in biochemical as well as immunological characteristics (77, 93, 94).

The importance of conformational structure for Ara h 2 and Ara h 6 was best demonstrated with several reports showing the loss of IgE binding and mast cell activation following reduction and alkylation (77, 94–97). For Ara h 6, IgE-binding was shown to be critically dependent upon conformational epitopes (87, 98). For Ara h 2, around three quarters of 48 peanut allergic patients recognized conformational epitopes to a similar or greater extent than linear ones (99). That said, the contribution of linear vs. conformational epitopes in the overall IgE-binding capacity of Ara h 2 is highly variable among patients (98).

Indeed, the IgE-binding capacity of the entire allergen could be recapitulated by combining a synthetic peptide containing the immunodominant linear epitope plus a mutant of Ara h 2 in which this immunodominant linear epitope had been deleted. That peptide, which is found within an unstructured surface
loop of Ara h 2, contains the repeated linear motifs DPYSPOH5, for which IgE-binding is highly dependent upon the presence of hydroxyproline, a post translational modification that occurs commonly in nature (98). On average, IgE-binding to this linear motif account for half of the total IgE-binding capacity of Ara h 2. The remaining IgE binding activity is to conformational epitopes (51, 98).

High-affinity IgE antibodies may appear as a prerequisite because slgE is 105 times less prevalent than IgG. These IgE antibodies must compete with lower affinity slgG to bind allergen and initiate the allergic response. Thus, it has been shown that basophil degranulation is enhanced when the allergen is first anchored at the surface of the effector cell by high-affinity IgE bound to the FcεRI. Low-affinity IgE may then contribute almost as efficiently as high-affinity IgE to cell activation when cross-linking occurs with the second IgE (100). Another example is found with the IgE binding to the unstructured region of Ara h 2 that is discussed above. Here, IgE-binding to free peptides found in this region occurs without the large loss of affinity usually observed with free peptide compared to the full allergen (100). This is probably due to an increased avidity caused by the repetition of the motif DPYSPOH5 two- and three-times in the isoforms Ara h 2.01 and Ara h 2.02, respectively. Accordingly, the free peptide containing three DPYSPOH5 motifs displayed a higher capacity to inhibit IgE-binding to nAra h 2 and a higher potency in mast cell degranulation than the one with a lower valency (98). Of note, the two motifs in the shorter peptide are separated by only one residue. In this regard, the influence of spacing between IgE epitopes was also investigated by using rigidly spaced bis- and trivalent haptons or artificial multivalent allergens (33, 36). In the latter case, a non-allergenic myoglobin, in which 4 repetitions of the same IgE-reactive peptide were grafted and separated by a linker of 6 Gly residues, triggered RBL degranulation more efficiently than derivatives carrying only 2 repetitions or more distant IgE epitopes (76). In these settings, multivalency of allergens, spatial clustering of IgE epitopes on a particular segment of the allergen and high-avidity interactions can overcome the need for high-affinity interactions to trigger cell degranulation, thus offering an explanation for clinical reactivity induced by unexpected low-affinity IgE cross-reactivity among different allergens (75, 101, 102).

IgG Regulation of Effector Function

IgG to allergens occur naturally and can be further induced by specific immunotherapy. This has been best studied in the field of food allergy. IgG induced by oral immunotherapy for food allergy can bind to allergen and either block binding of IgE and/or activate low affinity IgG receptors (FcγR2 in humans and FcγR2b in mice) that activate intracellular inhibitory pathways (79, 103, 104). So, the effector function of an allergen is affected not only by the amount and affinity of slgE, but also by the presence of specific IgG that may bind to the same epitope as the IgE (blocking IgG) and IgG that may bind to different parts of the allergen and activate inhibitory pathways (104).

Conclusion

The determinants of the effector function of an allergen are complex and are affected by multiple components (Table 1). These include binding characteristics such as the amount and affinity of the IgE that binds to the allergen, and the presence of either non-specific IgE or IgE of other specificities that may effectively dilute out the allergen-specific IgE. The intrinsic properties of the allergen such as its stability and surface structure (number, spacing and spatial relationships of IgE binding epitopes) also play a vital role. Other contributing factors include the presence of IgG that may either compete with the IgE for specific epitopes or may bind to other epitopes and activate inhibitory receptors. Cellular features such as the numbers of high affinity receptors for IgE may render the same IgE-allergen interaction more clinically severe in one patient compared to another.

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Funding

This work was supported AlimH department of INRAE (SH) and by RO1AI165866 (SCD) and R21AI135397 (SCD).
REFERENCES

1. Pomes A, Davies JM, Gademairer G, Higler C, Holzhauser T, Lidholm J, et al. WHO/IUIS allergen nomenclature: providing a common language. *Mol Immunol.* (2018) 100:3–13. doi: 10.1016/j.molimm.2018.03.003

2. Aalberse RC. Structural biology of allergens. *J Allergy Clin Immunol.* (2000) 106:228–38. doi: 10.1067/mci.2000.108434

3. Aalberse RC. Structural features of allergenic molecules. *Chem Immunol Allergy.* (2006) 193:14–46. doi: 10.1159/000090277

4. Traidl-Hoffmann C, Jakob T, Behrendt H. Determinants of allergenicity. *J Allergy Clin Immunol.* (2009) 123:558–66. doi: 10.1016/j.jaci.2008.12.003

5. Deifl S, Bohle B. Factors influencing the allergenicity and adjuvanticity of allergens. *Immunotherapy.* (2011) 3:881–93. doi: 10.2217/imt.11.69

6. Masilamani M, Commins S, Shreffler W. Determinants of food allergy. *Immunol Allergy Clin North Am.* (2013) 32:31–33. doi: 10.1016/j.iac.2012.11.003

7. Masthoff LJ, Hoff R, Verhoeckx KC, van Os-Medendorp H, Michelsen-Huisman A, Baumert JL, et al. A systematic review of the effect of thermal processing on the allergenicity of tree nuts. *Allergy.* (2013) 68:983–93. doi: 10.1111/all.12185

8. Zhou Y, Wang JS, Yang XJ, Lin DH, Gao YF, Su YJ, et al. Peanut allergy, allergen composition, and methods of reducing allergenicity: a review. *Int J Food Sci.* (2013) 2013:99140. doi: 10.1155/2013/99140

9. Costa J, Carrapatoso I, Oliveira MB, Mafra I. Walnut allergens: molecular characterization, detection and clinical relevance. *Clin Exp Allergy.* (2014) 44:34–91. doi: 10.1177/0305053812472830

10. Dunn SE, Vicini JL, Glenn KC, Fleischer DM, Greenhawt MJ. The allergenicity of genetically modified foods from genetically engineered crops: a narrative and systematic review. *Ann Allergy Asthma Immunol.* (2017) 119:214–22 e3. doi: 10.1016/j.anai.2017.07.010

11. Stephen JN, Sharp MF, Ruethers T, Taki A, Campbell DE, Lopata AL. Allergenicity of bony and cartilaginous fish - molecular and immunological properties. *Clin Exp Allergy.* (2017) 47:500–12. doi: 10.1111/cea.12892

12. Pekar J, Ret D, Untersmayr E. Stability of allergens. *Mol Immunol.* (2018) 100:14–20. doi: 10.1016/j.molimm.2018.03.017

13. Jin Y, Acharya HG, Acharya D, Jorgensen R, Gao H, Secord J, et al. Advances in molecular mechanisms of wheat allergenicity in animal models: a comprehensive review. *Molecules.* (2019) 24:1142. doi: 10.3390/molecules24061142

14. Carballo L, Valента R, Puerta L, Pomes A, Zakzuk J, Fernandez-Caldas E, et al. The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. *World Allergy Organ J.* (2020) 13:100118. doi: 10.1016/j.wsaoj.2020.100118

15. Costa J, Bavarro SL, Benede S, Diaz-Perales A, Bueno-Diaz C, Bavaro SL, et al. Determinants of allergenicity. *Clin Transl Allergy.* (2015) 5:13. doi: 10.1186/s13601-015-0056-9

16. Chruszcz M, Malecki SJ, Majorek KA, Demas M, Bublin M, Solberg R, et al. Structural and immunological characterization of Ara h 1, a major peanut allergen. *J Biol Chem.* (2011) 286:39318–27. doi: 10.1074/jbc.M111.348028

17. Ortega E, Schweitzer-Stenner R, Pecht I. Possible orientational constraints of affinity-purified Fel d I and of Fel d I-depleted extract. *J Allergy Clin Immunol.* (1998) 82:778–86. doi: 10.1016/S0091-6749(88)91079-6

18. Hjort C, Schiotz PO, Ohlin M, Wurtzen PA, Christensen LH, Hoffmann MW, et al. Effector activity of peanut allergens: a critical role for Ara h 2, Ara h 6, and their variants. *Clin Exp Allergy.* (2009) 39:1099–108. doi: 10.1365/2009.03.2373

19. Huisman A, Baumert JL, et al. A systematic review of the effect of processing of peanut seed enhances the sensitization potential of the major peanut allergen Ara h 6. *Pediatr Allergy Immunol.* (2015) 26:2495–504. doi: 10.1111/pai.12563

20. Jorgensen R, Nopp A, Kleine-Tebbe J. Advances in IgE binding molecules from indoor allergen sources. *Pediatr Allergy Immunol.* (2016) 27(Suppl. 23):1–250. doi: 10.1111/pai.12571

21. Blaas E, Espevik S, Holm P. Possible orientation constraints of IgE-receptor complexes at the cell surface: synthesis and characterization of a long bivalent hapten that is capable of triggering mast cells and rat basophilic leukemia cells. *Mol Immunol.* (1986) 23:783–90. doi: 10.1016/0161-5896(86)90090-8

22. Metzger H, Eglite S, Haleem-Smith SM, Reischl I, Torigoe C. Quantitative aspects of signal transduction by the receptor with high affinity for IgE. *Mol Immunol.* (2002) 38:1207–11. doi: 10.1016/S0161-5890(02)00065-2

23. Ortega, Erwette-Strasser N, Pecht I. Possible orientational constraints determine secretory signals induced by aggregation of IgE receptors on mast cells. *EMBO J.* (1988) 7:4011–9. doi: 10.1002/j.1460-2076.1988.tb03304.x

24. Sim J, Pennings MT, Vliemeksen K, van Roest M, van Hoepen E, Pieters RH. Heterogeneous responses and cross reactivity between the major peanut allergens Ara h 1, 2 and 6 in a mouse model for peanut allergy. *Clin Transl Allergy.* (2015) 5:13. doi: 10.1186/s13601-015-0056-9

25. Koppelman SJ, Wensing M, Ertmann M, Knutl AC, Knut EF. Relevance of Ara h 1, Ara h 2 and Ara h 3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h 2 is the most important peanut allergen. *Clin Exp Allergy.* (2004) 34:583–90. doi: 10.1111/j.1365-2222.2004.1923.x

26. Blanc F, Adel-Patient K, Drumare MF, Paty E, Wal JM, Bernard H. Capacity of purified peanut allergens to induce dermalization in a functional in vitro assay: Ara h 2 and Ara h 6 are the most efficient elicitors. *Clin Exp Allergy.* (2009) 39:1277–85. doi: 10.1111/j.1365-2222.2009.03294.x

27. Hemmings O, Niazi U, Kwok M, James LK, Lack G, Santos AF. Peanut allergens Ara h 2 and Ara h 6 have similar allergenic activity and are substantially redundant. *Int Arch Allergy Immunol.* (2013) 160:251–8. doi: 10.1159/000341642

28. Sil D, Lee JB, Luo D, Holodwa B, Divalent ligands with rigid DNA spacers reveal structural requirements for IgE-receptor signaling in RBL mast cells. *J Allergy Clin Immunol Pract.* (2020) 8:2495–504. doi: 10.1016/j.jaip.2020.07.021

29. Hjort C, Schiotz PO, Ohlin M, Wurtzen PA, Christiansen LH, Hoffmann HI. The number and affinity of productive IgE pairs determine allergen activation of mast cells. *J Allergy Clin Immunol.* (2017) 140:1167–70 e2. doi: 10.1016/j.jaci.2017.04.014

30. Hemmings O, Niazi U, Kwok M, James LK, Lack G, Santos AF. Peanut diversity and specific activity are the dominant IgE characteristics for effector cell activation in children. *J Allergy Clin Immunol.* (2021) 148:495–505 e4.

31. Dreskin SC, Goldsmith PK, Strober W, Zech LA, Gallin JJ. Metabolism of immunoglobulin E in patients with markedly elevated serum immunoglobulin E levels. *J Clin Invest.* (1987) 79:1764–72. doi: 10.1172/JCI113017
56. Murtagh GJ, Dumoulin M, Archer DB, Alcocer MJ. Stability of recombinant food allergens to digestion: mediated through differentiated IgE affinity. J Immunol. (2010) 70:1212–21. doi: 10.1111/all.12677

57. Albrecht M, Kuhne Y, Ballmer-Weber BK, Becker WM, Holzhauser T, et al. Cooking birch pollen-related food: divergent consequences for IgE- and T-cell-mediated reactivity in vitro and in vivo. J Allergy Clin Immunol. (2008) 63:882–90. doi: 10.1385/ceai:29:1:049

58. Astwood JD, Leach JN, Fuchs RL. Stability of food allergens to digestion in vitro. Nat Biotechnol. (1994) 12:1697–8. doi: 10.1038/nbt1096-1269

59. Koppelman SJ, Hefle SL, Taylor SL, de Jong GA. Digestion of peanut allergens Arach1, Arach2, Arach3, and Arach6: a comparative in vitro and partial characterization of digestion-resistant peptides. Mol Nutr Food Res. (2010) 54:1711–21. doi: 10.1002/mnfr.201000011

60. Murtagh GJ, Dimoulin M, Archer DB, Alcocer MJ. Stability of recombinant 2S albumin allergens in vitro. Biochim Soc Trans. (2002) 30:913–5. doi: 10.1042/bst0300913

61. Oettgen HC. Fifty years later: emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol. (2016) 137:1631–45. doi: 10.1016/j.jaci.2016.04.009

62. Baumert JL, Taylor SL, Koppelman SJ. Purification and immunoglobulin E-binding properties of the peanut allergen Ara h 6: evidence for cross-reactivity with Ara h 2. Clin Exp Allergy. (2005) 35:490–7. doi: 10.1111/j.1365-2222.2005.02204.x

63. Moreno FJ, Clemente A. 2S albumin storage proteins: what makes them food allergens? Open Biochem J. (2008) 2:16–28. doi: 10.2174/1874091X008010200106

64. Prodic I, Stanic-Vucinic D, Apostolovic D, Mihailovic J, Radbratovic M, Radosavljevic J, et al. Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides. Clin Exp Allergy. (2018) 48:731–40. doi: 10.1111/cea.13113

65. Metzger H, Goldstein B, Kent U, Mao SY, Pribluda C, Pribluda V, et al. Release of major peanut allergens from their matrix under various pH conditions. J Allergy Clin Immunol. (2018) 10:1281. doi: 10.3390/nu10091281

66. Schocker F, Scharf A, Kul S, Jappe U. Detection of the peanut allergens Ara h 2 and Ara h 6 in human breast milk: development of 2 sensitive and specific sandwich ELISA assays. Int Arch Allergy Immunol. (2017) 174:17–25. doi: 10.1159/000479388

67. Gieras A, Linhart B, Roux KH, Dutta M, Khodoun M, Zafred D, et al. Pasteurization of milk proteins promotes allergic sensitization in vivo. J Allergy Clin Immunol. (2008) 121:29249. doi: 10.1016/j.srep.29249

68. Oettgen HC. Fifty years later: emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol. (2016) 137:1631–45. doi: 10.1016/j.jaci.2016.04.009

69. Prodic I, Stanic-Vucinic D, Apostolovic D, Mihailovic J, Radibratovic M, Koppelman SJ, Smits M, Tomassen M, de Jong GAH, Baumert J, Taylor SL, et al. Release of major peanut allergens from their matrix under various pH conditions. J Allergy Clin Immunol. (2018) 10:1281. doi: 10.3390/nu10091281

70. Metzger H, Goldstein B, Kent U, Mao SY, Pribluda C, Pribluda V, et al. Quantitative aspects of receptor aggregation. Adv Exp Med Biol. (1994) 365:175–83. doi: 10.1007/978-1-4899-0987-9_18

71. Munoz-Cano R, San Bartolome C, Casas-Saucedo R, Araujo G, Christensen LH, Riise E, Bang L, Zhang C, Lund K. Isoallergen variations contribute to the overall complexity of effector cell degranulation: a comparative study and partial characterization. J Allergy Clin Immunol. (2020) 147:1154–63. doi: 10.1016/j.jaci.2020.11.004

72. Koppelman SJ, de Jong GA, Laaper-Ertmann M, Peeters KA, Knulst AC, Hefle SL, et al. Purification and immunoglobulin E-binding properties of the peanut allergen Ara h 6: evidence for cross-reactivity with Ara h 2. Clin Exp Allergy. (2005) 35:490–7. doi: 10.1111/j.1365-2222.2005.02204.x

73. Christensen LH, Holm J, Lund G, Riise S, Ghafoor M, et al. Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement. Allergy. (2015) 70:1212–21. doi: 10.1111/all.12677

74. Ansley L, Bonini M, Delgado L, Del Giacco S, Du Toit G, Khaitov M, et al. Transglutaminase-mediated cross-linking of a peptic fraction of omega-5 gliadin enhances IgE reactivity in wheat-dependent, exercise-induced anaphylaxis. J Allergy Clin Immunol. (2003) 111:1386–92. doi: 10.1067/mai.2003.14198

75. Palouso K, Varjonen E, Nurkkala J, Kalkkinen N, Harvima R, Reunala T, et al. Transglutaminase-mediated cross-linking of a peptic fraction of omega-5 gliadin enhances IgE reactivity in wheat-dependent, exercise-induced anaphylaxis. Clin Exp Allergy. (2016) 46:10–20. doi: 10.1111/cea.12640

76. Gieras A, Linhart B, Roux KH, Dutta M, Khodoun M, Zafred D, et al. Release of major peanut allergens from their matrix under various pH conditions. J Allergy Clin Immunol. (2018) 10:1281. doi: 10.3390/nu10091281

77. Albrecht M, Kuhne Y, Ballmer-Weber BK, Becker WM, Holzhauser T, et al. Pasteurization of milk proteins promotes allergic sensitization in vivo. J Allergy Clin Immunol. (2008) 121:29249. doi: 10.1016/j.srep.29249

78. Scherf KA, Brockow K, Biedermann T, Koehler P, Wieser H. Wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy. (2016) 46:10–20. doi: 10.1111/cea.12640

79. Metzger H, Goldstein B, Kent U, Mao SY, Pribluda C, Pribluda V, et al. Quantitative aspects of receptor aggregation. Adv Exp Med Biol. (1994) 365:175–83. doi: 10.1007/978-1-4899-0987-9_18

80. Astwood JD, Leach JN, Fuchs RL. Stability of food allergens to digestion in vitro. Nat Biotechnol. (1994) 12:1697–8. doi: 10.1038/nbt1096-1269

81. Koppelman SJ, Hefle SL, Taylor SL, de Jong GA. Digestion of peanut allergens Arach1, Arach2, Arach3, and Arach6: a comparative in vitro and partial characterization of digestion-resistant peptides. Mol Nutr Food Res. (2010) 54:1711–21. doi: 10.1002/mnfr.201000011

82. Astwood JD, Leach JN, Fuchs RL. Stability of food allergens to digestion in vitro. Nat Biotechnol. (1994) 14:1269–73. doi: 10.1038/nbt1096-1269

83. Koppelman SJ, Hefle SL, Taylor SL, de Jong GA. Digestion of peanut allergens Arach1, Arach2, Arach3, and Arach6: a comparative in vitro and partial characterization of digestion-resistant peptides. Mol Nutr Food Res. (2010) 54:1711–21. doi: 10.1002/mnfr.201000011

84. Metzger H, Goldstein B, Kent U, Mao SY, Pribluda C, Pribluda V, et al. Release of major peanut allergens from their matrix under various pH and simulated salivary conditions: Arach2 and Arach6 are readily bio-accessible. Nutrients. (2018) 10. doi: 10.3390/nu10091281

85. Moreno FJ, Clemente A. 2S albumin storage proteins: what makes them food allergens? Open Biochem J. (2008) 2:16–28. doi: 10.2174/1874091X008010200106
activity of food allergens. J Allergy Clin Immunol. (2009) 124:328–36:36 e1–6. doi: 10.1016/j.jaci.2009.05.031

78. Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, et al. Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys. (1997) 342:244–53. doi: 10.1006/abbi.1997.9998

79. Santos AF, Barbosa-Morais NL, Hurlburt BK, Ramaswamy S, Hemmings O, Kwok M, et al. IgE to epitopes of Ara h 2 enhance the diagnostic accuracy of Ara h 2-specific IgE. Allergy. (2020) 75:2309–18. doi: 10.1111/all.14301

80. Suarez-Farinas M, Suprun M, Bahnson HT, Raghunathan R, Getts R, du Toit G, et al. Evolution of epitope-specific IgE and IgG4 antibodies in children enrolled in the LEAP trial. J Allergy Clin Immunol. (2021) 148:835–42. doi: 10.1016/j.jaci.2021.01.030

81. Suarez-Farinas M, Suprun M, Kearney P, Getts R, Grishina G, Hayward C, et al. Accurate and reproducible diagnosis of peanut allergy using epitope mapping. Allergy. (2021) 76:3789–97. doi: 10.1111/all.14905

82. Suprun M, Sicherer SH, Wood RA, Jones SM, Leung DYM, Henning AK, et al. Early epitope-specific IgE antibodies are predictive of childhood peanut allergy. J Allergy Clin Immunol. (2020) 146:1080–8. doi: 10.1016/j.jaci.2020.08.005

83. Bogh KL, Nielsen H, Eiwegger T, Madsen CB, Mills EN, Rigby NM, et al. IgE versus IgG4 epitopes of the peanut allergen Ara h 1 in patients with severe allergy. Mol Immunol. (2014) 58:169–76. doi: 10.1016/j.molimm.2013.11.014

84. Neshit JB, Hurlburt BK, Schein CH, Cheng H, Maleki SJ. Ara h 1 structure is retained after roasting and is important for enhanced binding to IgE. Mol Nutr Food Res. (2012) 56:1739–47. doi: 10.1002/mnfr.201100815

85. Barre A, Borges JP, Culerrier R, Rouge P. Homology modelling of the major peanut allergen Ara h 2 and surface mapping of IgE-binding epitopes. Immunol Lett. (2005) 100:153–8. doi: 10.1016/j.imlet.2005.03.014

86. Barre A, Sordet C, Culerrier R, Rance F, Didier A, Rouge P. Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes. Mol Immunol. (2008) 45:1231–40. doi: 10.1016/j.molimm.2007.09.014

87. OtSU K, Guo R, Dreskin SC. Epitope analysis of Ara h 2 and Ara h 6: characteristic patterns of IgE-binding fingerprints among individuals with similar clinical histories. Clin Exp Allergy. (2015) 45:471–84. doi: 10.1111/cea.12407

88. Gieras A, Cejka P, Blatt K, Focke-Tejkl M, Linhartz B, Flicker S, et al. Mapping of conformational IgE epitopes with peptide-specific monoclonal antibodies reveals simultaneous binding of different IgE antibodies to a surface patch on the major birch pollen allergen, Bet v 1. J Immunol. (2011) 186:5333–44. doi: 10.4049/jimmunol.1000804

89. Devanaboyina SC, Cornelius C, Lupinek C, Fauland K, Dall’Antonia F, Suprun M, et al. Development of a novel Ara h 2 hypoallergen with no IgE binding or anaphylactogenic activity. J Allergy Clin Immunol. (2020) 145:229–38. doi: 10.1016/j.jaci.2019.08.036

90. Aalberse RC, Crameri R. IgE-binding epitopes: a reappraisal. Allergy. (2011) 66:1231–41. doi: 10.1111/j.1398-9999.2011.02656.x

91. Chang X, Zha L, Wallmann A, Mohsen MO, Krenger P, Liu X, et al. Low-affinity but high-avidity interactions may offer an explanation for IgE-mediated allergen cross-reactivity. Allergy. (2021) 76:2565–74. doi: 10.1111/all.14864

92. Flicker S, Steinberger P, Ball T, Krauth MT, Verdino P, Valent P, et al. Spatial clustering of the IgE epitopes on the major timothy grass pollen allergen Phl p 1: importance for allergenic activity. J Allergy Clin Immunol. (2006) 117:1336–43. doi: 10.1016/j.jaci.2006.02.012

93. Burton OT, Tamayo JM, Stranks AJ, Kolegouklou KJ, Oettgen HC. Allergen-specific IgE antibody signaling through FcσRIαβ promotes food tolerance. J Allergy Clin Immunol. (2018) 141:189–201 e3. doi: 10.1016/j.jaci.2017.03.045

94. Eckl-Dorna J, Villazala-Merino S, Linhart B, Karaulov AV, Zhernov N, Khaitov M, et al. Allergen-specific antibodies regulate secondary allergen-specific immune responses. Front Immunol. (2018) 9:3131. doi: 10.3389/fimmu.2018.03131

Author Disclaimer: Contents are the authors’ sole responsibility and do not necessarily represent official NIH views.

Conflict of Interest: SCD has received grant support from the National Institutes of Health.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Hazebrouck, Canon and Dreskin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.