Rapidly evaluating the compact binary likelihood function via interpolation

R. J. E. Smith,1 C. Hanna,2 I. Mandel,1 and A. Vecchio1

1School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

(Dated: May 17, 2013)

Bayesian parameter estimation on gravitational waves from compact binary coalescences (CBCs) typically requires millions of template waveform computations at different values of the parameters describing the binary. Sampling techniques such as Markov chain Monte Carlo and nested sampling evaluate likelihoods, and hence compute template waveforms, serially; thus, the total computational time of the analysis scales linearly with that of template generation. Here we address the issue of rapidly computing the likelihood function of CBC sources with non-spinning components. We show how to efficiently compute the continuous likelihood function on the three-dimensional subspace of parameters on which it has a non-trivial dependence – the chirp mass, symmetric mass ratio and coalescence time – via interpolation. Subsequently, sampling this interpolated likelihood function is a significantly cheaper computational process than directly evaluating the likelihood; we report improvements in computational time of two to three orders of magnitude while keeping likelihoods accurate to $\lesssim 0.025\%$. Generating the interpolant of the likelihood function over a significant portion of the CBC mass space is computationally expensive but highly parallelizable, so the wall time can be very small relative to the time of a full parameter-estimation analysis.

PACS numbers: 04.30.-w, 04.80.Nn

Introduction—The direct detection of gravitational waves will initiate an entirely new kind of astronomy, offering an unprecedented probe of relativistic astrophysics and strong-field gravity. Ground-based gravitational-wave interferometers LIGO [1] and Virgo [2] are undergoing upgrades to their second generation designs, Advanced LIGO/Virgo (aLIGO/AdV), and are expected to be operational around 2015 [3, 4]. In addition two new detectors in India and Japan, LIGO India [5] and KAGRA [6] respectively, are expected to be operational around 2020. These advanced instruments will be an order of magnitude more sensitive than their predecessors [7] and are expected to usher in routine detections of gravitational waves [8]. The coalescence of compact binaries, consisting of neutron stars and/or black holes, are prime targets for gravitational-wave observatories, with realistic estimates of detection rates $\sim 1 - 100\text{ yr}^{-1}$ [8]. Estimating the parameters of CBC sources – e.g. their masses, spins and sky location – is a crucial aspect of gravitational-wave astronomy, but remains challenging in practice.

The goal of Bayesian parameter estimation is to compute the posterior probability density function (PDF) of a set of parameters, $\vec{\theta}$, which underlie a model assumed to describe a data set d. The PDF is related to the likelihood function and prior probability via Bayes’ theorem:

$$p(\vec{\theta}|d) = \frac{P(\vec{\theta}) \mathcal{L}(d|\vec{\theta})}{p(d)},$$

where $\mathcal{L}(d|\vec{\theta})$ is the likelihood and $P(\vec{\theta})$ is the prior probability which encodes our a priori belief in the distribution of $\vec{\theta}$. The quantity in the denominator, $p(d)$, is known as the “evidence”. Computing [1] requires evaluating the likelihood.

For binaries with non-spinning components $\vec{\theta}$ is nine dimensional. Exploring such a high dimensional space requires sophisticated stochastic Bayesian inference techniques [9, 11] which preferentially sample the parameter space in regions of high posterior probability. The bulk of the computational cost of evaluating the likelihood function comes from computing template waveforms. Analyses on first-generation interferometer data require computing $O(10^6)$ such waveforms [10, 12]. Sampling techniques such as Markov chain Monte Carlo (MCMC) [10, 11] and nested sampling [9, 12] evaluate likelihoods, and hence compute template waveforms, serially. Thus the total computational time to fully sample the parameter space scales linearly with the total time spent generating template waveforms. It can take hours to weeks to analyse a single stretch of data of a few seconds in duration, depending on the choice of the template waveform family. This problem will be exacerbated when analysing second-generation interferometer data as the waveforms will be forty times longer in duration if the starting frequency f_{min} is changed from 40 Hz to 10 Hz.

For binaries with non-spinning components, the frequency-domain waveform $\tilde{h}(\vec{\theta}; f)$ has the schematic form

$$\tilde{h}(\vec{\theta}; f) = \sum_{\mu=+,-} A_{\mu}(\vec{\theta}_L)\tilde{h}_0(\mathcal{M}, \eta; f)e^{2\pi if\gamma_{\mu}},$$

where $A_{+,\times}$ denotes the (scalar) amplitudes of the “plus-” and “cross-” polarization states of the waveform. In general \tilde{h}_0 depends on the waveform family being used and can be computed by Fourier transforming the associated time-domain representation of the waveform family. The parameters which describe the binary are the chirp mass and
symmetric mass-ratio, \mathcal{M} and η, the time at coalescence t_c and a set of parameters which describe the location and orientation of the binary $\tilde{\theta}_L$.

Evaluating the likelihood function on the three-dimensional subspace of parameters (\mathcal{M}, η, t_c) represents the largest computational burden to parameter estimation on gravitational waves from CBC sources with non-spinning components because the likelihood function depends non-trivially on these parameters, and so requires a new waveform evaluation. In [12], we considered interpolation between waveforms over the mass parameter space as a way to reduce computational cost. Here, we demonstrate that the evaluation of an interpolated likelihood function over the (\mathcal{M}, η, t_c) subspace is a much faster computational procedure than the standard calculation of the likelihood (3) by using either full or interpolated waveforms. For the purposes of parameter estimation, one is not interested in template waveforms per se, but rather in the posterior probability distributions of the underlying parameters of the template waveforms that are assumed to describe the data. By directly using interpolated likelihood functions, one effectively bypasses template waveform generation during the sequential steps of an MCMC. This likelihood-interpolation technique is robust and could, in principle, be generalized to arbitrary template waveform families, in particular those that describe CBCs with spinning components.

Directly interpolating the likelihood function— We wish to generate a representation of the likelihood function over the continuous \mathcal{M}, η and t_c subspace. To achieve this we will interpolate the likelihood function over \mathcal{M}, η and t_c. The likelihood function that describes the probability of observing a data stream $d = h + n$ containing a given gravitational-wave signal $h(\tilde{\theta}; t)$ and Gaussian and stationary noise $n(t)$ is [9]

$$\log \mathcal{L}(d|\tilde{\theta}) = (d|h(\tilde{\theta})) - \frac{1}{2} \left[(h(\tilde{\theta})|h(\tilde{\theta})) + (d|d) \right],$$

where $(a|b)$ is the usual noise-weighted inner product [14]. We define the complex-valued time-series corresponding to the inner product between two time series $a(t)$ and $b(t)$ as one is shifted by an amount t_c with respect to the other:

$$z[a, b](t_c) := 4 \int_{t_{\text{min}}}^{t_{\text{max}}} df \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_n(f)} e^{-2\pi i ft_c},$$

In the above, $\tilde{a}(f)$ is the Fourier transform of $a(t)$ and $S_n(f)$ is the detector noise power spectral density (PSD). The limits of integration are in general specified by the bandwidth over which an analysis is being conducted. In terms of $z(t_c)$ the inner products in (3) are succinctly expressed as

$$z[a, b](t_c) = \mathfrak{R}a(\tilde{\theta}_L)z[h_0(\mathcal{M}, \eta), h_0(\mathcal{M}, \eta)](t_c),$$

and $\mathfrak{A}(\tilde{\theta}_L)$ and $\mathfrak{B}(\tilde{\theta}_L)$ are known projections which contain the $\tilde{\theta}_L$ dependence in the likelihood function.

We have previously interpolated template waveforms over the mass parameters [12, 15], and here we show that the same technique can be applied to interpolating the time series $z[d, h_0(t_c)]$. The interpolation of $z[d, h_0(t_c)]$ is based on the SVD of a set of (discretely sampled) time series distributed on a two-dimensional grid. In this case the two-dimensional grid spans \mathcal{M} and η and the time parameter is t_c. We use the notation $\tilde{z}[d, h_0]$ to describe the discretely sampled $z[d, h_0(t_c)]$. Recall that the SVD of the discretely sampled time series $\tilde{z}[d, h_0]$ allows it to be written as a linear superposition of orthonormal basis vectors \tilde{u}_μ and projection coefficients M_μ [16]:

$$z[d, h_0(\mathcal{M}, \eta)] = \sum_\mu M_\mu(\mathcal{M}, \eta) \tilde{u}_\mu.$$

The coefficients M_μ can be interpolated over \mathcal{M} and η and we follow the method in [15] which uses Chebyshev polynomials of the first kind.

Interpolation of $z[h_0, h_0](0)$ over \mathcal{M} and η is as it is scalar valued and we again use Chebyshev polynomials of the first kind. Below we provide an example of the interpolation technique outlined here.

Likelihood interpolation: Examples— We compare interpolated likelihood functions to those generated by direct evaluation of waveforms and inner products. We consider two test cases: (i) the coalescence of binary black holes, and (ii) the coalescence of binary neutron stars.

We generate a discretely sampled, simulated data set \tilde{d} for a single interferometer consisting of Gaussian and stationary noise \tilde{n} and a gravitational-wave signal \tilde{h}. The data set is 32 s in duration and has a sampling rate in the time domain of 4096 Hz. For binary black holes we model the gravitational-wave signal \tilde{h} using the effective one-body approach calibrated to numerical relativity simulations (EOBNR) [17]. Such a gravitational-wave signal describes the full inspiral, merger and ringdown phases of coalescence. For binary neutron stars we model the gravitational waveform using a post-Newtonian (PN) model computed to 3.5 PN order in phase [18], which describes the inspiral phase of the coalescence only. We use an implementation of EOBNR and post-Newtonian waveforms from the LSC Algorithms Library (LAL) [19] corresponding to the approximants EOBNRv2 and TaylorT4 respectively.

Generating the interpolant of the likelihood function requires the following stages: (i) patch the mass space into smaller domains, (ii) generate a set of waveforms over a dense grid in each patch, (iii) filter the data with the template waveforms to compute the likelihoods, (iv) pack the likelihoods into a matrix and perform the SVD, (v) build the interpolant in each patch. Only after these stages have been completed can the interpolated likelihood function be sampled.
We first construct a discrete, uniform grid of template waveforms in $\mathcal{M} - \eta$ parameter space. We will use a small region around the parameters of the signal, as \mathcal{M} and η are typically constrained to $\lesssim 1\%$ and $\lesssim 10\%$, respectively, depending on the signal parameters and signal-to-noise ratio (SNR) $\approx 12,20$. The region in $\mathcal{M} - \eta$ where the posterior has significant support can be found quickly during the burn-in phase of the MCMC, which requires a small fraction of the total number of samples necessary to evaluate the posterior probability distribution function.

We use the Chebyshev interpolation described in [15] to interpolate $\vec{z}[d, h_0](0)$ for waveforms across the grid. To interpolate $\vec{z}[d, h_0]$ we first find the basis vectors \vec{u}_μ by constructing a matrix from the set of $\{\vec{z}[d, h_0]\}$, the columns of which correspond to a unique $\vec{z}[d, h_0]$ on the grid of waveforms, which we factor using the SVD. After performing the SVD, we truncate the number of basis vectors such that on average the norm of each \vec{z} is conserved to one part in 10^5 [15]. This can significantly reduce the number of basis vectors. We then apply the Chebyshev interpolation [15] to interpolate projection coefficients across the $\mathcal{M} - \eta$ grid.

Example 1: High-mass binary black holes— The signal is parameterized by $\vec{\theta}^* = (\mathcal{M} = 15.01 M_\odot, \eta = 0.205, D = 100 \text{ Mpc}, t = 0, \psi = 0, \alpha = 0, \delta = 0, t_c = 0.1 \text{ s}, \phi_c = 0)$. We use a noise PSD typical of initial LIGO [1]. The signal has an SNR of ≈ 14. We again use a noise PSD typical of initial LIGO [1], $\approx 100 \text{ Mpc}, t = 0, \psi = 0, \alpha = 0, \delta = 0, t_c = 0.1 \text{ s}, \phi_c = 0)$. We use a noise PSD typical of initial LIGO [1]. The signal has an SNR of ≈ 143. We again use a noise PSD typical of initial LIGO [1].

Example 2: Binary neutron stars— The signal is parameterized by $\vec{\theta}^* = (\mathcal{M} = 1.217 M_\odot, \eta = 0.2497, D = 20 \text{ Mpc}, t = 0, \psi = 0, \alpha = 0, \delta = 0, t_c = 0.1 \text{ s}, \phi_c = 0)$. We again use a noise PSD typical of initial LIGO [1], and the signal has SNR ≈ 15. We interpolate the likelihood function over a small region of $\mathcal{M} - \eta$ space whose boundaries are given by $1.199 M_\odot \leq \mathcal{M} \leq 1.235 M_\odot$ and $0.212 \leq \eta \leq 0.25$. Assuming a statistical measurement uncertainty on \mathcal{M} and η of 1% and 10%, respectively, the parameter ranges correspond to a $\sim 3\sigma$ range about the signal value. Note that we cannot go about $\eta = 0.25$ in the η interval. We further restrict our range in t_c to be in a $\pm 0.2 \text{ s}$ window about the trigger time, which is a common time prior in Bayesian parameter estimation [9].

In Fig. (1) we compare a likelihood function generated via direct evaluation of inner products, to one which we have generated via SVD-interpolation. We find that we are able to reconstruct the log likelihood function by interpolation to within a fractional percentage error of at most 0.025%. While we have only plotted an interpolated likelihood function at the signal values of \mathcal{M} and η, the errors quoted here are typical across the mass range we have considered. Meanwhile, for this waveform model and parameters, computing the likelihood via the interpolation procedure is around two orders of magnitude faster than generating a template waveform and directly evaluating the inner products in [5].

Example 2: Binary neutron stars— The signal is parameterized by $\vec{\theta}^* = (\mathcal{M} = 1.217 M_\odot, \eta = 0.2497, D = 20 \text{ Mpc}, t = 0, \psi = 0, \alpha = 0, \delta = 0, t_c = 0.1 \text{ s}, \phi_c = 0)$. We again use a noise PSD typical of initial LIGO [1], and the signal has SNR ≈ 15. We interpolate the likelihood function over a small region of $\mathcal{M} - \eta$ space whose boundaries are given by $1.199 M_\odot \leq \mathcal{M} \leq 1.235 M_\odot$ and $0.212 \leq \eta \leq 0.25$. Assuming a statistical measurement uncertainty on \mathcal{M} and η of 0.5% on \mathcal{M} and 5% on η, these parameter ranges correspond to a $\sim 3\sigma$ range about the signal value. Note that we cannot go about $\eta = 0.25$ in the η interval. We restrict our range in t_c to be in a $\pm 0.2 \text{ s}$ window about the trigger time.

Again, we find that we are able to reconstruct the log likelihood function to within a fractional percentage error of at most 0.025%. For the binary neutron star case, we find that computing the likelihood via interpolation is around three orders of magnitude faster than direct evaluation. This difference is larger than for the higher-mass binary black hole case because the waveform duration is significantly longer for binary neutron stars, whereas the cost of computing interpolated likelihoods remains fixed.

Below we discuss practical issues pertaining to incorporating interpolated likelihoods into real gravitational-wave parameter-estimation pipelines.

Practical considerations— For our interpolation technique to be viable for real data analyses, the total computational time of first constructing the interpolated likelihood
function, and then sequentially sampling the interpolated likelihood function, must be less than the time for sequentially sampling the likelihood function directly.

Parameter estimation requires sampling the parameter space until the sampler has met its convergence criterion. The total number of likelihood evaluations for convergence is typically $\mathcal{O}(10^{3})$ [10][12]. When directly evaluating the likelihood function, the number of likelihood evaluations is a reasonable proxy for the number of waveform evaluations, which dominate the computational cost.

To sample the interpolated likelihood function there is an additional upfront cost of constructing the interpolant of the likelihood function. This cost will depend on the region of the parameter space over which the likelihood function needs to be interpolated and template waveforms must be computed. However, building the interpolant is highly parallelizable and computing it over an extended region of parameter space could be split into multiple independent subsets. This could greatly reduce the wall time of computing the interpolant. We have noted that one can restrict the range in parameter space over which the interpolant is built by using an MCMC to sparsely explore the parameter space in regions of high posterior probability. In practice, the number of samples for this “burn-in” is often $\mathcal{O}(10^{4})$ [12], and the likelihood has significant support in a relatively small patch in parameter space. The likelihoods computed during the burn-in evaluation could thus be stored for future interpolation.

One could also interpolate $\tilde{z}(t_c)$ over many patches covering the parameter space in parallel. We have not investigated optimal patching, nor the required denseness of likelihood template calculation in order to generate a good basis for $\tilde{z}(t_c)$; this will be the subject of future work.

Once the interpolant is constructed, the cost of sampling the parameter space will depend on that of computing the interpolated likelihood function. In our example we found that computing the interpolated likelihood function is between two and three orders of magnitude cheaper than directly evaluating the likelihood function, depending on the region in parameter space in which the likelihood function is being computed. The actual improvement will depend on the typical cost of waveform computation, which is a function of both the template waveform family used and the waveform parameters.

Here we had used the SVD to find a basis for the set of $\tilde{z}(t_c)$. The SVD is not a unique technique for finding a basis set, and we note that Field et al. [21] and Canizares et al. [22] employ a greedy algorithm to efficiently generate a set of bases for gravitational waveforms which could in principle be applied to a set of $\tilde{z}(t_c)$.

We have so far discussed interpolation in the mass parameters. It may also be necessary to interpolate the quantities $z(d, h_0)(t_c)$ in the t_c direction, because the coalescence time in a particular interferometer may lie in between discretely sampled time points. Second-order interpolation provides sufficient accuracy when the waveform is sampled at $4\,\text{kHz}$.

Discussion and conclusion— We have demonstrated a method to sample the CBC likelihood function via interpolation, with improvements of two to three orders of magnitude in efficiency. Our method utilizes a SVD of the likelihood function on a three-dimensional subspace of parameters: the chirp mass M, symmetric mass-ratio η and time at coalescence t_c. The SVD factors the likelihood function into a set of scalar coefficients which describe a surface in $M - \eta$ plane and then trivially scaled by elements of the basis vectors which describe how the surface is translated along t_c. The projection coefficients can be interpolated on the $M - \eta$ plane and then trivially scaled by elements of the basis vectors to generate the likelihood at (M, η, t_c). This provides an efficient means to interpolate in three dimensions.

We note that while we have chosen an interpolation technique based on the SVD, it is by no means unique and other interpolation techniques have been applied to gravitational-wave data analysis [e.g., [22]. Notably, Mitra et al. [23] considered interpolating the matched-filtered output of gravitational-wave searches. They interpolated the signal-to-noise ratio, which is effectively a component of the likelihood function, and so their method could, in principle, be extended to interpolate likelihood functions. The key difference with our approach is that we use a decomposition of the likelihood as a function of time, while [23] treat it as a scalar quantity. This provides us with an efficient means of reducing the total data needed for interpolation, exploiting correlations along the t_c direction by ranking the basis vectors in order of importance in reconstructing the likelihood function. Hence, we can effectively exorcise redundant information based on our accuracy requirements. The number of bases needed to approximately reconstruct the likelihood to high accuracy using the SVD is generally small compared to the number of raw likelihood vectors which we decompose.

Likelihood interpolation appears to be more robust than waveform interpolation [12], and so utilizing interpolated likelihood functions may also be a stepping stone to tackling the more difficult issue of rapidly estimating the parameters of binaries with spinning components.

Acknowledgments— We thank Kipp Cannon and Drew Keppel for many helpful discussions. RJES acknowledges support from a Perimeter Institute visiting graduate fellowship. Research at Perimeter Institute is supported through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation.

[1] D. Sigg and the LIGO Scientific Collaboration, Class. Quant. Grav. 25, 114041 (2008).
[2] F. Acernese et al., Classical and Quantum Gravity 25, 114045 (2008).
[3] G. M. Harry and the LIGO Scientific Collaboration, Classi-
[4] The Virgo Collaboration (2009), URL https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf

[5] B. Iyer, T. Souradeep, C. Unnikrishnan, S. Dhurandhar, S. Raja, A. Kumar, and A. S. Sengupta, Ligo-india tech. rep. (2011), URL https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=75988

[6] K. Somiya, Classical and Quantum Gravity 29, 124007 (2012).

[7] S. Hild, Classical and Quantum Gravity 29, 124006 (2012).

[8] J. Abadie and The LIGO Scientific Collaboration, Class. Quant. Grav. 27, 173001 (2010).

[9] J. Veitch and A. Vecchio, Phys Rev. D 81, 062003 (2010).

[10] V. Raymond, M. V. van der Sluys, I. Mandel, V. Kalogera, C. Rover, and N. Christensen, Class. Quant. Grav. 26, 114007 (2009).

[11] M. van der Sluys, I. Mandel, V. Raymond, V. Kalogera, C. Roever, and N. Christensen, Class. Quant. Grav. 26, 204010 (2009).

[12] R. Smith, K. Cannon, C. Hanna, D. Keppel, and I. Mandel, arXiv:1211.1254 (2012).

[13] J. Skilling, AIP Conf. Ser. Vol. 735 p. 395 (2004).

[14] B. J. Owen, Phys. Rev. D 53, 6749 (1996).

[15] K. Cannon, C. Hanna, and D. Keppel, Phys. Rev. D 85, 081504 (2012).

[16] K. Cannon, A. Chapman, C. Hanna, D. Keppel, A. C. Searle, and A. J. Weinstein, Phys. Rev. D 82, 044025 (2010).

[17] Y. Pan, A. Buonanno, M. Boyle, L. T. Buchman, L. E.kidder, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 84, 124052 (2011).

[18] A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan, and B. S. Sathyaprakash, Phys. Rev. D 80, 084043 (2009).

[19] The LIGO Scientific Collaboration, Lsc algorithm library (lal) (2013), URL https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html

[20] The LIGO Scientific Collaboration and The Virgo Collaboration, arXiv:1304.1775 (2013).

[21] S. E. Field, C. R. Galley, F. Herrmann, J. S. Hesthaven, E. Ochsner, and M. Tiglio, Physical Review Letters 106, 221102 (2011), 1101.3765.

[22] P. Canizares, S. E. Field, J. R. Gair, and M. Tiglio, arXiv:1304.0462 (2013).

[23] S. Mitra, S. V. Dhurandhar, and L. S. Finn, Phys. Rev. D 72, 102001 (2005).