Modeling of Ozone Interactions with Various Air Pollutants and Meteorological Factors Using Jaya and Teaching-Learning Based Optimization (TLBO) Algorithms

Nurcan ÖZTÜRK a, *

a Department of Civil Engineering, Faculty of Technology, Karadeniz Technical University, Trabzon, TURKEY
*Corresponding author’s e-mail address: nurcan@ktu.edu.tr
DOI: 10.29130/dubited.682602

ABSTRACT
Ozone (O$_3$), nitrogen oxides (NOx) and carbon monoxide (CO) concentrations and some meteorological parameters measured hourly have been analyzed to examine the interaction patterns between O$_3$ and NOx, CO, air temperature, wind speed, relative humidity, and air pressure by taking into account the diurnal variations of them at urban site (Akçaabat) in Trabzon. Variations of O$_3$ levels have been modeled via Jaya and Teaching-Learning Based Optimization (TLBO) algorithms considering the effects of certain parameters (NOx and CO concentration, air temperature, wind speed, relative humidity, and air pressure) called as the independent variables. The accuracy of Jaya and TLBO methods has been determined and these methods have been carried out with four different functions: quadratic, exponential, linear and power. Some statistical indices have been applied to evaluate the performance of these models. In conclusion, it is shown that Jaya and TLBO algorithms can be used in the optimization of the regression function coefficients in modelling some air pollutants interactions and the best-fit equation for each parameter is obtained from the quadratic function.

Keywords: Air pollution, Ozone concentration, Modeling

Jaya ve Öğretme-Öğrenme Tabanlı Optimizasyon Algoritmalarını Kullanarak Meteorolojik Faktörler ve Çeşitli Hava Kirleticileri ile Ozon Etkileşimlerinin Modellenmesi

ÖZET
Ozon (O$_3$), azot oksitler (NO$_x$) ve karbon monoksit (CO) konsantrasyonları ve saatlik olarak ölçülen bazı meteorolojik parametreler, O$_3$ ile NO$_x$, CO, hava sıcaklığı, rüzgar hızı, bağılı nem ve hava basınçını arasındaki etkileşim eğilimini incelemek için, onların Trabzon'daki kentsel alanda (Akçaabat) günlük değişimlerini dikkate alarak analiz edildi. Bağımsız değişkenler olarak adlandırılan belirli parametrelerin (NO$_x$ ve CO konsantrasyonu, hava sıcaklığı, rüzgâr hızı, bağılı nem ve hava basınçını) etkilerini dikkate alarak O$_3$ seviyelerinin değişimleri Jaya ve Öğretme-Öğrenme Tabanlı Optimizasyon (TLBO) algoritmaları ile modellenmiştir. Jaya ve TLBO yöntemlerinin doğruluğunu belirlemiş ve bu yöntemler ikinci dereceden, üstel, doğrusal ve güç olmak üzere dört farklı fonksiyona uygulanmıştır. Bu modellerin başarısını test etmek için bazı istatistiksel belirteçler (ortalama karesel hata, ortalama karesel hatanın karekökü, ortalama mutlak hata, ortalama mutlak yüzde hata ve belirleme katsayısı) kullanılmıştır. Sonuç olarak, Jaya ve TLBO algoritmalarının, bazı hava kirleticileri etkileşimlerinin modellenmesinde regresyon fonksiyonu kataylıkların optimizasyonunda kullanılabileceğini ve her parametre için en uygun denklemin ikinci derece fonksiyonundan elde edildiği görülmüştür.

Keywords: Hava Kirliliği, Ozon konsantrasyonu, Modelleme
I. INTRODUCTION

Photochemical air pollution is formed through the interactions between ozone (O\textsubscript{3}) and its main precursors of nitrogen oxides (NO\textsubscript{x}) and volatile organic compounds (VOC\textsubscript{y}) under intense sunlight. It is known that O\textsubscript{3} has an important function in upper layers of atmosphere as it conserves living organisms from sun radiation, but it is accepted as harmful gas in layers nearer to earth's surface. According to Turkey and European Union countries Air Quality Assessment and Management Regulation, the average O\textsubscript{3} amount of 8 hours must be 120 µg/m3 [1]. Potential impacts of O\textsubscript{3} to health are irritation to eyes, nose and throat, as well as its effects on vegetation and materials. Surface O\textsubscript{3} is a major component of photochemical smog characterized by high O\textsubscript{3} owing to complex and non-linear chemistry and meteorology. The concentration of ozone in the atmosphere changes with the formation and transport of ozone, photochemical reactions and meteorological factors. O\textsubscript{3} is produced by the reaction of an oxygen molecule (O\textsubscript{2}) with an oxygen atom occurring from the photolysis of nitrogen dioxide (NO\textsubscript{2}) by solar radiation. However, O\textsubscript{3} is destroyed by reacting with NO to form NO\textsubscript{2} and O\textsubscript{2}. In addition, hydrocarbons and VOC\textsubscript{y} in the atmosphere are oxidized to CO, CO\textsubscript{2} and water vapour. The oxidation processes include a number of cyclic stages driven by the hydroxyl radical (OH) leading to reactions with the present NO and therefore, leading to the accumulation of O\textsubscript{3}. As these complex reactions happen in the atmosphere, measuring O\textsubscript{3} levels alone cannot help in evaluating photochemical conditions [2-7].

Meta-heuristic optimization algorithms solve optimization problems by imitating animal behavior, biological or physical events. Today, a range of meta-heuristic optimization algorithms such as Jaya[8], Teaching-Learning-Based Optimization (TLBO) [9], Artificial Bee Colony (ABC) [10], Coyote Optimization (COA) [11], Cuckoo Search (CS) [12], Crow Search (CSA) [13], Differential Search (DS) [14], Grey Wolf Optimizer (GWO) [15], Harris Hawks Optimization (HHO) [16], Neural Network (NNA) [17], Symbiosis Organisms Search (SOS) [18], Teaching-Learning Based Artificial Bee Colony (TLABC) [19], Weighted Differential Evolution (WDE) [20] are widely used in solving problems.

In this study, O\textsubscript{3} concentration and its correlation with NO\textsubscript{x}, CO and some meteorological parameters in Trabzon (Akçaabat) for 2016 and 2017 datasets obtained from Ministry of Environment and Urban Planning-air quality monitoring stations [21] are modelled using Jaya and TLBO algorithms. There are several studies on estimation algorithms in the literature [22-26].

Jaya algorithm, meaning “victory” in Indian language, was developed by Rao in 2016. This algorithm can maximize the size of a target function by trying to get closer to the best and to get away from the worst among the candidate solutions that are created and refreshed in each iteration [8].

TLBO algorithm simulates the relationship between students and the teacher in the class. The algorithm is consisting of teacher and student stages. The teacher phase represents the education of the students by the teacher. Also, the student phase represents the learning which is the result of the interaction among the students themselves. Further information about the algorithm can be obtained from related reference[9].

The objective of this study is to generate equations being quadratic, exponential, linear and power functions for modeling of O\textsubscript{3} levels via Jaya and TLBO algorithms.

II. METHODOLOGY

Trabzon is a city located at the geographic coordinates of 40°N and 39°E with a population over 779000 with an area of about 4664 km2. Although there are six different stations measured various pollutants in Trabzon, in this study, Akçaabat station has been chosen because of regional characteristic, providing
different emissions, particularly O₃. Relationships between O₃ emission levels and some meteorological parameters - the other emission (NOₓ, CO) levels have been modelled via Jaya and TLBO methods.

In the present work, the objective function of the models is minimization of mean square error (MSE) calculated as follows:

$$\min f(x) = \frac{1}{N} \sum_{i=1}^{N} (P_i - E_i)^2$$ \hspace{1cm} (1)

where N is the number of data sets, Eᵢ is the iᵗʰ measured O₃ amount, and Pᵢ is the iᵗʰ estimated O₃ amount for the regression functions. Root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R²) for data sets have been selected to measure the performance of models of Jaya and TLBO.

$$\text{RMSE} = \left[\frac{1}{N} \sum_{i=1}^{N} (P_i - E_i)^2 \right]^{\frac{1}{2}}$$ \hspace{1cm} (2)

$$\text{MAE} = \frac{1}{N} \sum_{i=1}^{N} |P_i - E_i|$$ \hspace{1cm} (3)

$$\text{MAPE} = \frac{1}{N} \sum_{i=1}^{N} \frac{|P_i - E_i|}{E_i}$$ \hspace{1cm} (4)

$$R^2 = 1 - \left(\frac{\sum_{i=1}^{N} (P_i - E_i)^2}{\sum_{i=1}^{N} (P_i - \bar{P})^2} \right)$$ \hspace{1cm} (5)

Jaya and TLBO algorithms have been applied to reach optimum coefficient of the regression functions (quadratic, exponential, linear and power) formed with eight delayed data sets. For example, these regression functions have been created depending on time for two independent variables and two delayed data sets as follows:

$$Y(t) = w_1 + w_2 \cdot X_1(t-2) + w_3 \cdot X_1(t-1) + w_4 \cdot X_1(t) + w_5 \cdot X_2(t-2) + w_6 \cdot X_2(t-1) + w_7 \cdot X_2(t) + w_8 \cdot Y(t-2) + w_9 \cdot Y(t-1)$$ \hspace{1cm} (6)

$$Y(t) = w_1 + \exp(w_2 + w_3 \cdot X_1(t-2) + w_4 \cdot X_1(t-1) + w_5 \cdot X_1(t) + w_6 \cdot X_2(t-2) + w_7 \cdot X_2(t-1) + w_8 \cdot X_2(t) + w_9 \cdot Y(t-2) + w_{10} \cdot Y(t-1))$$ \hspace{1cm} (7)

$$Y(t) = w_1 \cdot X_1(t-2)^{w_2} \cdot X_1(t-1)^{w_3} \cdot X_1(t)^{w_4} \cdot X_2(t-2)^{w_5} \cdot X_2(t-1)^{w_6} \cdot X_2(t)^{w_7} \cdot Y(t-2)^{w_8} \cdot Y(t-1)^{w_9}$$ \hspace{1cm} (8)

$$Y(t) = w_1 + w_2 \cdot X_1(t-2) + w_3 \cdot X_1(t-1) + w_4 \cdot X_1(t) + w_5 \cdot X_1(t-2) \cdot X_1(t-1) + w_6 \cdot X_1(t-2) \cdot X_1(t) + w_7 \cdot X_1(t-1) + w_8 \cdot X_1(t) + w_9 \cdot X_1(t-2) \cdot X_1(t-1) + w_{10} \cdot X_1(t) + w_{11} \cdot X_2(t-2) \cdot X_2(t-1) + w_{12} \cdot X_2(t-2) \cdot X_2(t) + w_{13} \cdot X_2(t-1) + w_{14} \cdot X_2(t) + w_{15} \cdot X_2(t-2) \cdot X_2(t-1) + w_{16} \cdot X_2(t-2) \cdot X_2(t) + w_{17} \cdot X_2(t-1) \cdot X_2(t) + w_{18} \cdot X_2(t-2) + w_{19} \cdot X_2(t-1) + w_{20} \cdot X_2(t) + w_{21} + w_{22} \cdot Y(t-2) + w_{23} \cdot Y(t-1) + w_{24} \cdot Y(t-2) + w_{25} \cdot Y(t-1) + w_{26} \cdot Y(t-1)^2$$ \hspace{1cm} (9)
Population size and maximum number of cycles of the algorithms have been taken 20 and 8000, respectively. The algorithms have been programmed in MATLAB (2014).

III. RESULT AND DISCUSSION

The main statistics of the data sets are given in Table 1. There is a negative correlation between O_3 concentration and NO$_x$, CO and relative humidity, while air temperature, wind speed and air pressure have a positive correlation.

Table 1. The main statistics of the data sets

Data sets	Unit	Min	Mean	Max	Standard Deviation	Coefficient of variation	Correlation
NO$_x$	µg/m3	11	35.056	197	21.733	61.995	-0.245
CO	µg/m3	111	1618.634	4151	924.303	57.104	-0.223
Air temperature	°C	0	15.973	29	7.216	45.175	0.051
Wind speed	m/s	1	1.603	3	0.509	31.755	0.196
Relative humidity	%	31	73.896	96	11.12	15.049	-0.194
Air pressure	mbar	998	1013.131	1035	6.262	0.618	0.11

When the findings obtained from models developed with TLBO and Jaya algorithms are examined, it is seen that the best relationship between dependent variable and independent variables is between NO$_x$-relative humidity and O_3 and the worst relationship is between air pressure and O_3. Considering the functions used in modeling these relationships, it is understood that the function giving the smallest error is quadratic, and the function giving the largest error is the exponential function (Table 2 and 3).

Table 2. Results of TLBO algorithm model

Independent Variable	Dependent Variable	Function	MSE	RMSE	MAE	MAPE	R2
Relative Humidity	O_3	Linear	24.9541	4.9954	3.8567	0.0826	0.7225
	O_3	Power	24.9017	4.9902	3.8801	0.0833	0.7231
	O_3	Exponential	25.8241	5.0817	3.9591	0.0852	0.7128
	O_3	Quadratic	22.8448	4.7796	3.7002	0.0792	0.7459
Air Pressure	O_3	Linear	26.1388	5.1126	3.9375	0.0846	0.7093
	O_3	Power	26.2456	5.1231	3.9597	0.0853	0.7081
	O_3	Exponential	27.6076	5.2543	4.0609	0.0876	0.6930
	O_3	Quadratic	24.1535	4.9146	3.8693	0.0829	0.7314
CO	O_3	Linear	26.4889	5.1467	3.9919	0.0852	0.7054
	O_3	Power	26.6624	5.1636	4.036	0.0863	0.7035
	O_3	Exponential	27.8172	5.2742	4.0894	0.0878	0.6906
	O_3	Quadratic	24.11	4.9102	3.7942	0.0803	0.7319
Table 2 (continuation). Results of TLBO algorithm model

Independent Variable	Dependent Variable	Function	MSE	RMSE	MAE	MAPE	R²
NO₂	O₃	Linear	25.088	5.0088	3.9106	0.0832	0.7210
		Power	25.0103	5.001	3.9343	0.084	0.7218
		Exponential	25.9412	5.0933	3.9984	0.0853	0.7115
		Quadratic	23.3103	4.8281	3.7382	0.0792	0.7408
NO₂-Relative Humidity	O₃	Linear	20.5103	4.5288	3.485	0.0742	0.7719
		Power	20.6423	4.5434	3.5139	0.0754	0.7704
		Exponential	21.5837	4.6458	3.6256	0.0777	0.7600
		Quadratic	19.5954	4.4267	3.4084	0.0723	0.7821
NO₂-CO	O₃	Linear	24.1502	4.9143	3.7867	0.0804	0.7314
		Power	24.2741	4.9269	3.85	0.0821	0.7300
		Exponential	25.4763	5.0474	3.9186	0.0834	0.7167
		Quadratic	22.8192	4.7769	3.7425	0.0789	0.7462
NO₂-Air Temperature	O₃	Linear	24.0054	4.8995	3.7834	0.0806	0.7330
		Power	24.1707	4.9164	3.8135	0.0815	0.7312
		Exponential	25.1732	5.0173	3.9114	0.0838	0.7200
		Quadratic	22.2127	4.713	3.6721	0.0776	0.7530
NO₂-Relative Humidity-Wind Speed	O₃	Linear	20.8774	4.5692	3.5222	0.0752	0.7678
		Power	21.1807	4.6023	3.5513	0.0762	0.7644
		Exponential	21.6881	4.657	3.6596	0.0785	0.7588
		Quadratic	19.8181	4.4518	3.4388	0.0734	0.7796
NO₂-Air Temperature-Wind Speed	O₃	Linear	22.6849	4.7629	3.6651	0.078	0.7477
		Power	23.0582	4.8019	3.7316	0.0795	0.7436
		Exponential	23.9079	4.8896	3.7838	0.0812	0.7341
		Quadratic	21.8516	4.6746	3.6214	0.0769	0.7570

Table 3. Results of Jaya algorithm model

Independent Variable	Dependent Variable	Function	MSE	RMSE	MAE	MAPE	R²
Relative Humidity	O₃	Linear	25.0469	5.0047	3.8678	0.0829	0.7214
		Power	24.9278	4.9928	3.8823	0.0833	0.7228
		Exponential	28.4483	5.3337	4.1710	0.0886	0.6836
		Quadratic	23.0213	4.4041	3.3021	0.0796	0.7320
Air Pressure	O₃	Linear	26.3712	5.1353	3.9638	0.0854	0.7067
		Power	26.3020	5.1286	3.9693	0.0855	0.7075
		Exponential	28.4661	5.3354	4.1563	0.0900	0.6834
		Quadratic	25.8934	5.0643	3.8432	0.0842	0.7120
Table 3 (continuation). Results of Jaya algorithm model

Independent Variable	Dependent Variable	Function	MSE	RMSE	MAE	MAPE	R^2
CO							
O$_3$	Linear	27.5249	5.2464	4.0798	0.0871	0.6937	
O$_3$	Power	27.7776	5.2704	4.1210	0.0883	0.6909	
O$_3$	Exponential	29.9449	5.4722	4.2226	0.0906	0.6668	
O$_3$	Quadratic	26.7520	5.1732	3.9877	0.0834	0.7182	
NO$_x$							
O$_3$	Linear	26.0840	5.1073	3.9975	0.0853	0.7097	
O$_3$	Power	25.8172	5.0811	4.0216	0.0859	0.7127	
O$_3$	Exponential	27.6407	5.2574	4.1382	0.0883	0.6924	
O$_3$	Quadratic	24.9367	5.0122	3.9562	0.0809	0.7238	
NO$_x$-Relative Humidity							
O$_3$	Linear	22.6981	4.7642	3.6572	0.0778	0.7474	
O$_3$	Power	22.1524	4.7066	3.6758	0.0794	0.7535	
O$_3$	Exponential	27.3535	5.2301	4.0873	0.0878	0.6956	
O$_3$	Quadratic	**20.2672**	**4.4910**	**3.0435**	0.0786	0.7052	
NO$_x$-CO							
O$_3$	Linear	26.7909	5.1760	4.0365	0.0863	0.7019	
O$_3$	Power	29.5671	5.4376	4.2719	0.0886	0.6710	
O$_3$	Exponential	30.2055	5.4960	4.2862	0.0946	0.6639	
O$_3$	Quadratic	26.1360	5.0645	3.9031	0.0823	0.7080	
NO$_x$-Air Temperature							
O$_3$	Linear	25.6974	5.0693	3.9716	0.0845	0.7140	
O$_3$	Power	26.3697	5.1351	4.0540	0.0870	0.7066	
O$_3$	Exponential	27.7133	5.2643	4.1176	0.0886	0.6916	
O$_3$	Quadratic	24.3560	5.0192	3.7396	0.0810	0.7235	
NO$_x$-Relative Humidity-Wind Speed							
O$_3$	Linear	23.8372	4.8823	3.6551	0.0786	0.7347	
O$_3$	Power	21.9946	4.6898	3.6256	0.0776	0.7552	
O$_3$	Exponential	24.8762	4.9876	3.8821	0.0844	0.7232	
O$_3$	Quadratic	21.5493	4.5239	3.5927	0.0740	0.0765	
NO$_x$-Air Temperature-Wind Speed							
O$_3$	Linear	25.4261	5.0424	3.9448	0.0845	0.7171	
O$_3$	Power	27.6849	5.2616	4.1076	0.0864	0.6919	
O$_3$	Exponential	31.3367	5.5979	4.3522	0.0941	0.6513	
O$_3$	Quadratic	24.3786	5.0213	3.3826	0.0823	0.7195	

Optimum coefficients (w_i) of the independent variables (x_i) from these regression functions by both algorithms have been obtained. Obtained optimum coefficients from Jaya analysis of linear function explaining relationship between NO$_x$ emission levels - relative humidity and O$_3$ emission levels are shown as an example in Table 4.
Table 4. The coefficient obtained from Jaya analysis

Coefficients	W_1	W_2	W_3	W_4	W_5	W_6	W_7	W_8	W_9	W_10
	0.027	0.094	-0.072	0.049	-0.010	0.165	0.047	-0.036	0.372	-0.614

Coefficients	W_{11}	W_{12}	W_{13}	W_{14}	W_{15}	W_{16}	W_{17}	W_{18}	W_{19}	W_{20}
	0.035	0.007	-0.017	0.119	0.033	0.098	0.030	0.038	-0.332	0.070

Coefficients	W_{21}	W_{22}	W_{23}	W_{24}	W_{25}	W_{26}	W_{27}
	0.032	-0.002	0.078	0.056	0.034	0.121	0.545

Figure 1 illustrates a comparison of the measured O_3 with the predicted ones from the determined quadratic function by depending on NO_X and relative humidity. Figure 2 also supplies a different presentation of the performance for the obtained best fitting model via Jaya analysis. If the points gather around the diagonal, smaller error and greater R^2 values are obtained.

![Figure 1](image-url)
IV. CONCLUSION

In order to model which chemicals and meteorological factors are more effective in the formation of O\(_3\), which is a component of photochemical air pollution, the data set was first analyzed, and then the relationship between O\(_3\) concentration and some parameters was modeled with Jaya and TLBO algorithms. When the main statistics of the data sets were analyzed, it was observed that the O\(_3\) concentration was negative correlation between NO\(_X\), CO and relative humidity, while it was positively correlated with other parameters. According to the data obtained from both algorithms, the best fit equation between ozone and NO\(_X\) - relative humidity is obtained from the quadratic function. Also, the results of the study show that the quadratic function provide the best fit equation for each parameter. Higher correlations of ozone with NO\(_X\)-relative humidity than of ozone with the other independent variables are found pointing that NO\(_X\) and relative humidity are highly effective on modelling of ozone. However, the Jaya model shows the relationship between ozone with NO\(_X\) and relative humidity by a slightly higher correlation than the TLBO model. On the other hand, lower correlations pointed that the ozone formation in this region depends on many meteorological and chemical factors. Results of both models suggest that formation of surface ozone pollution is much more closely related to the amount of NO\(_X\) and relative humidity rather than other parameters.

V. REFERENCES

[1] Ecolex. (22020, January 5). Regulation on air quality assessment and management [Online]. Available: https://www.ecolex.org/details/legislation/regulation-on-air-quality-assessment-and-management-lex-fao082742.
[2] S.C. Pryor, “A case study of emission changes and ozone responses,” Atmos. Environ., vol. 32, no. 2, pp. 123-131, 1998.

[3] J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics From Air Pollution to Climate Change, USA: John Wiley&Sons, 1998.

[4] U. Im, M. Tayanç and O. Yenigün, “Analysis of major photochemical pollutants with meteorological factors for high ozone days in Istanbul, Turkey,” Water Air Soil Pollut., vol. 175, pp. 335-359, 2006.

[5] N. Çetin, B. Bilge Alyüz and Ş. Ayberk, “Tropospheric ozone formation, ist negative effects and current situation in city of Kocaeli,” 21st Engineering and Environmental Problems Symposium, Pennsylvania, 2008.

[6] U. Im, M. Tayanç and O. Yenigün, “Interaction patterns of major photochemical pollutants in Istanbul, Turkey,” Atmos. Res., vol. 89, pp. 382-390, 2008.

[7] U. Im, S. Incecik, M. Güler, A. Tek, S. Topcu, Y.S. Unal, O. Yengün, T. Kindap, M.T. Odman and M. Tayanc, “Analysis of surface ozone and nitrogen oxides at urban, semi-rural and rural sites in İstanbul, Turkey,” Sci. Total Environ., vol. 443, pp. 920-931, 2013.

[8] R. Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems,” Int. J. Ind. Eng. Comput., vol. 7, pp. 19-34, 2016.

[9] R.V. Rao, V.J. Savsani and D.P. Vakharia, “Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems,” Inf. Sci., vol. 183, no. 1, pp. 1-15, 2012.

[10] B. Akay and D. Karaboga, “A modified artificial bee colony algorithm for real-parameter optimization,” Inf. Sci. (Ny), vol. 192, pp. 120–142, 2012.

[11] J. Pierezan and L. Dos Santos Coelho, “Coyote optimization algorithm: A new metaheuristic for global optimization problems,” 2018 IEEE Congr. Evol. Comput. CEC 2018, Brazil, 2018.

[12] X.S. Yang and S. Deb, “Cuckoo search via Lévy flights” 2009 World Congr. Nat. Biol. Inspired Comput. NABIC 2009, India, 2009.

[13] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm,” Comput. Struct., vol. 169, pp. 1–12, 2016.

[14] P. Civicioglu, “Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm,” Comput. Geosci., vol. 46, pp. 229–247, 2012.

[15] S. Mirjalili, S.M. Mirjalili and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014.

[16] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja and H. Chen, “Harris hawks optimization: Algorithm and applications,” Futur. Gener. Comput. Syst., vol. 97, pp. 849–872, 2019.

[17] A. Sadollah, H. Sayyaadi and A. Yadav, “A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm,” Appl. Soft Comput. J., vol. 71, pp. 747–782, 2018.

[18] M.Y. Cheng and D. Prayogo, “Symbiotic organisms search: A new metaheuristic optimization algorithm,” Comput. Struct., vol. 139, pp. 98–112, 2014.
[19] X. Chen and B. Xu, “Teaching-learning-based artificial bee colony,” *Springer International Publishing*, 2018.

[20] P. Civicioglu, E. Besdok, M.A. Gunen and U.H. Atasever, “Weighted differential evolution algorithm for numerical function optimization: A comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms,” *Neural Comput. Appl.*, vol. 5, 2018.

[21] T.C. Çevre ve Şehircilik Bakanlığı. (2019, 10 Ocak) [Online]. Erişim: https://www.havaizleme.gov.tr/.

[22] H. T. Kahraman, “Metaheuristic linear modeling technique for estimating the excitation current of a synchronous motor,” *Turk J. Elec Eng & Comp Sci.*, vol. 22, no. 6, pp. 1637-1652, 2014.

[23] O. Kaplan and E. Celik, “Simplified model and genetic algorithm based simulated annealing approach for excitation current estimation of synchronous motor,” *Adv. Electr. Comp. Eng.*, vol. 18, no. 4, pp.75-85, 2018.

[24] H. B. Bui, H. Nguyen, Y. Choi, X. N. Bui, T. Nguyen-Thoi and Y. Zandi, “A novel artificial intelligence technique to estimate the gross calorific value of coal based on meta-heuristic and support vector regression algorithms,” *Appl. Sci.*, vol. 9, no. 22, pp. 4868, 2019.

[25] M. Naderi, E. Khamehchi and B. Karimi, “Novel statistical forecasting models for crude oil price, gas price, and interest rate based on meta-heuristic bat algorithm,” *J Petrol Sci Eng.*, vol. 172, pp. 13-22, 2019.

[26] K. Sakunthala, S. Iniyan and S. Mahalingam, “Forecasting energy consumption in Tamil Nadu using hybrid heuristic based regression model,” *Therm Sci.*, vol. 23(5 Part B), pp. 2885-2894, 2019.