Phylogenetic and morphological classification of Ophiocordyceps species on termites from Thailand

Kanoksri Tasanathai¹, Wasana Noisripoom¹, Thanyarat Chaitika¹, Artit Khonsanit¹, Sasitorn Hasin², Jennifer Luangsa-ard¹

¹ Plant Microbe Interaction Research Team, Bioscience and Biotechnology for Agriculture, BIOTEC, NST-DA, 113 Thailand Science Park, Phabonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
² Innovation of Environmental Management, College of Innovative Management, Valaya Alongkorn Rajabhat University under the Royal Patronage, Khlong Luang, Pathum Thani 12120, Thailand

Corresponding author: Jennifer Luangsa-ard (jajen@biotec.or.th)

Abstract
Seven new species occurring on termites are added to Ophiocordyceps – O. asiatica, O. brunneirubra, O. khokpasiensis, O. mosingtoensis, O. pseudocommunis, O. pseudorhizoidea and O. termiticola, based on morphological and molecular phylogenetic evidence. O. brunneirubra possesses orange to reddish-brown immersed perithecia on cylindrical to clavate stromata. O. khokpasiensis, O. mosingtoensis and O. termiticola have pseudo-immersed perithecia while O. asiatica, O. pseudocommunis and O. pseudorhizoidea all possess superficial perithecia, reminiscent of O. communis and O. rhizoidea. Phylogenetic analyses based on a combined dataset comprising the internal transcribed spacer regions (ITS) and the largest subunit (LSU) of the ribosomal DNA, partial regions of the elongation factor 1-α (TEF) and the largest and second largest subunits for the RNA polymerase genes (RPB1, RPB2) strongly support the placement of these seven new species in Ophiocordyceps.

Keywords
Entomopathogenic fungi, Hypocreales, Isoptera, Ophiocordycipitaceae, Taxonomy

Copyright Kanoksri Tasanathai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

The entomopathogenic genus *Ophiocordyceps* was established by Petch in 1931. His description was based on four specimens including *O. blattae* Petch, the type species, occurring on a cockroach collected from Sri Lanka, *O. unilateralis* (Tul. & C. Tul.) Petch on ants, *O. peltata* (Wakef.) Petch on Coleoptera larva (*Cryptorhynchus* sp.) and *O. rhizoidea* (Höhn.) Petch on Coleoptera larva. The distinction of the genus from *Cordyceps* Fr. was made due the presence of clavate asci that gradually narrowed to a thickened apex, as opposed to the cylindrical asci in many *Cordyceps* species. The ascospores in *Ophiocordyceps sensu* Petch are elongated fusoid, multi-septate that remain whole after discharge. Sung et al. (2007) emended the definition of *Ophiocordyceps* to contain the anamorphic genera *Hirsutella* Pat., *Hymenostilbe* Petch, *Paraisaria* Samson & Brady and *Syngliocladium* Petch, with the stromata or subiculum of the teleomorphs mostly darkly pigmented [e.g. *O. acicularis* (Ravenel) Petch, *O. heteropoda* (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, *O. entomorrhiza* (Dicks.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, *O. unilateralis* species complex] and sometimes brightly coloured [e.g. *O. irangiensis* (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, *O. nutans* (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, *O. sphecocephala* (Klotzsch ex Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora]. The ascospores are usually cylindrical, multi-septate that could either dissociate into part-spores (*O. sphecocephala, O. nutans*) or remain whole ascospores (*O. unilateralis*). To date, *Ophiocordyceps* is the most speciose genus in Ophiocordycipitaceae with 235 names of accepted species (Spatafora et al. 2015; Khonsanit et al. 2018; Luangsa-ard et al. 2018). Most Asian species of *Ophiocordyceps* have fibrous, hard and pliant to wiry, dark coloured stromata with superficial to immersed perithecia (Kobayasi 1941; Kobmoo et al. 2012, 2015; Luangsa-ard et al. 2018).

Only a few species of entomopathogenic fungi have been reported from termites. Currently accepted species include *Ophiocordyceps bispora* (Stifler) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora on *Macrotermes* from Tanzania, *O. koningsbergeri* (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, known only from the type locality (Java, Indonesia) (Kobayasi 1941), *C. termitophila* Kobayasi & Shimizu known from Japan and Taiwan (Kobayasi and Shimizu 1978) and *O. octospora* (M. Blackw. & Gilb.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora on *Tenuirostritermes* from Mexico (Blackwell and Gilbertson 1981). Penzig and Saccardo (1904) found *O. koningsbergeri* to be similar to *O. myrmecophila* (Ces., in Rabenshorst 1858) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora in that it had a terminal, globose head with immersed perithecia.

Termites (Isoptera) are one of the eusocial and soil insects that have successfully evolved since the Cretaceous Period and are classified into 7 families, 14 subfamilies, 280 genera and 2,500 species (Pearce 1999). They occur throughout tropic and sub-tropic regions and can also be found in many temperate areas and semi-arid environments of the world (Eggleton et al. 2000). Termites are abundant in Thailand and are found in natural forests as well as urban areas, mostly considered as serious pests of
Ophiocordyceps species on termites from Thailand

Ophiocordyceps species on termites from Thailand

wooden constructions. Current records of termite species from Thailand have been 199 species, 39 genera, 10 subfamilies and 4 families (Sornnuwat et al. 2004). Relationships between termites and fungi are classified into two categories. Firstly, termites cultivate fungi (Termitomyces spp.) in their fungus gardens within the subterranean nest or mound of fungus-growing termites (subfamily Macrotermitinae). Secondly, a parasitic interaction, in which fungi infect and consume termites as food for its nutrient value (Abe et al. 2000). Some species of fungi are known as pathogens of termites and they can be used as potential agents of biological control for each of the host’s (i.e. termites) specificities (Rath 2000).

In surveys of entomopathogenic fungi in national parks and community forests collections of termite pathogens, most with superficial perithecia and rarely with immersed perithecia were found. The phenotypic characters of the collections in having wiry and pliant, darkly pigmented stromata identifies them primarily to be members of the Ophiocordycipitaceae, mostly as Ophiocordyceps communis. The aims of this study are (1) to clarify the relationships of these collections to known members of the Ophiocordycipitaceae, (2) to uncover hidden species in O. communis species complex and (3) to describe new taxa to accommodate species diversity in Ophiocordyceps.

Material and methods

Collection and isolation

Species occurring on termites (Isoptera) were found in the ground. The specimens were excavated carefully so as not to lose the host, which could be buried as deep as 15 cm under the ground and were placed in small plastics boxes before returning to the laboratory for isolation. The materials were examined under a stereomicroscope (OLYMPUS SZ61, Olympus Corporation, Japan). The fertile heads of the specimens containing mature perithecia were carefully placed over the Potato Dextrose Agar plate (PDA; fresh diced potato 200 g, dextrose 20 g, agar 15 g, in 1 litre distilled water). These were placed in a plastic box with moist tissue paper overnight to create a humid chamber. The following morning plates were examined with a stereomicroscope to check the discharged ascospores. Discharged ascospores were examined daily for germination and also for fungal contaminants.

Morphological study

The newly collected specimens were noted and photographed in the field using a digital Nikon D5100 camera and were taken to the laboratory and photographed using an Olympus SZX12 before they were placed in a moist chamber to facilitate ascospore discharge. The colour of the freshly collected specimens and cultures were characterised with the colour standard of the Online Auction Colour Chart. One to two perithecia
were removed from the stroma and mounted on a glass slide using lactophenol cotton blue to measure their sizes and shapes, as well as the sizes and shapes of the asci and ascospores. Cultures on PDA, Potato Sucrose Agar plate (PSA: potato 200 g/l, sucrose 20 g/l, calcium carbonate 5g/l, agar 20g/l) and quarter strength Sabouraud Dextrose Yeast Agar (SDYA/4; Difco) were observed using light microscopy (Olympus SZ60, CX 30) daily to check for germination and contamination for 2–3 wks. Colony growth rates and characteristics (colour, texture, pigmentation) under dark/light condition (L:D = 14:10) were recorded and photos were taken using the Nikon D5100 camera.

For micro-morphological description, microscope slide cultures were prepared from a block of media (PDA, PSA and SDYA/4, ca. 5 × 5 mm2) inoculated with the fungus and overlaid by a glass coverslip. The cultures were incubated at 25 °C. Observations, measurements of the conidiogenous cells and conidia of the asexual morphs and photographs were taken with an Olympus DP11 microscope.

Host identification

Dead termite hosts were identified, based on morphological characteristics, such as mandibulate mouthparts, antennae, shape of head and thoraxes. The identification of dead insects was conducted after pure cultures were acquired. Termites were identified by using the extant families of Isoptera after Sornnuwat et al. (2004) and Krishna et al. (2013).

DNA extraction, PCR amplification and sequencing

Cultivation of fungi for molecular work. – Pure cultures were grown on PDA. After approximately 2 wks, the plates were checked for contaminants and small agar blocks were inoculated into sterile Erlenmeyer flasks containing 50 ml Sabouraud Dextrose Broth (Difco) and incubated for 1–2 wks at 25 °C without shaking. Mycelium was then harvested by filtration and washed several times with sterile distilled water. Filtered mycelium was lyophilised. The material was extracted from mycelium by a modified CTAB method as previously described (Luangsa-ard et al. 2004, 2005).

PCR amplification. – Five nuclear loci including the nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS), nuc 28S rDNA (LSU), the translation elongation factor 1-α gene (TEF) and the genes for RNA polymerase II largest (RPB1) and second largest (RPB2) subunits were sequenced. PCR primers used to amplify the gene regions for this study were: ITS5, ITS4 for ITS, LROR and LR7 for LSU (White et al. 1990), 983F and 2218R for TEF, CRPB1 and RPB1Cr for RPB1, RPB2-5F2 and RPB2-7Cr for RPB2 (Castlebury et al. 2004). The PCR reaction mixture consisted of 1× PCR buffer, 200 μM of each of the four dNTPs, 2.5 mM MgCl$_2$, 0.4 M Betaine, 1 U Taq DNA Polymerase, recombinant (Thermo Scientific, US) and 0.2 μM of each primer in a
total volume of 50 μl. PCR cycle conditions were as previously described in Sung et al. (2007). PCR amplicons were visualised by ethidium bromide staining after gel electrophoresis of 4 μl of the product in 0.8% agarose gel. Quantification of the PCR products was performed using a standard DNA marker of known size and weight. PCR products were purified using Qiagen columns (QIAquick PCR Purification Kit). Purified PCR products were sequenced with the PCR amplification primers.

Sequencing alignment and phylogenetic analyses

The DNA sequences, generated in this study, were examined for ambiguous bases using BioEdit 7.2.5 (Hall 2004) and then submitted to GenBank (Table 1). The dataset of taxa in Cordycipitaceae was assembled from previously published studies (Sung et al. 2007; Kepler et al. 2017) and were downloaded from GenBank for the construction of the phylogenetic tree (Table 1). Alignments were performed using MUSCLE 3.6 software with default settings (Edgar 2004). Sequences of *Cordyceps kyusyuensis* and *Cordyceps militaris* in the Cordycipitaceae were used as the outgroup.

Maximum Likelihood (ML) analyses was performed with RAxML-HPC2 on XSEDE v8.2.10 (Stamatakis 2014) with the use of GAMMA Model parameters. The reliability of ML internal branches was assessed using a non-parametric bootstrap method with 1000 replicates. Bayesian (BI) phylogenetic inference was performed with MrBayes on XSEDE v3.2.6 (Ronquist and Huelsenbeck 2003) using the GTR+I+G model as selected by MrModeltest v2.2 (Nylander 2004). The chain length of the Bayesian analyses was 5,000,000 generations, sampled every 1000 generations and a burn-in of 10% of the total run. Maximum parsimony analysis was conducted on the combined dataset using PAUP 4.0b10 (Swofford 2002).

Results

Phylogenetic analysis

We obtained 96 new sequences from 20 specimens (Table 1). The combined dataset of five genes consisted of 4013 bp (ITS 527 bp, LSU 824 bp, TEF 901 bp, RPB1 874 bp, RPB2 854 bp) and 99 taxa were analysed.

The ML and BI analyses displayed similar topologies resolving seven new species in *Ophiocordyceps* (Fig 1). The final ML optimisation likelihood = -51972.210615 and tree length = 5.567057. The parameters included base frequencies—A = 0.227576, C = 0.299408, G = 0.284488, T = 0.188528 and the rate matrix for the substitution model: [AC] = 1.240734, [A-G] = 2.882814, [A-T] = 0.983408, [C-G] = 1.338444, [C-T] = 5.445401, [G-T] = 1.000000. In the BI analyses, the model selected was GTR+I+G, -lnL = 52578.1641. The parameters used included base frequencies—freqA = 0.1918,
Table 1. List of species and GenBank accession numbers of sequences used in this study.

Species	Strain nr.	Host/Substratum	GenBank accession no.
Hirsutella hirsuta	ARSEF 2226	Coleoptera: Curculionidae	KM652110\(^a\), KM651993\(^a\), KM652033\(^a\)
Hirsutella hirsuta	ARSEF 5473	Coleoptera: Pteropalaenae	KM652115\(^a\), KM652019\(^a\), KM652023\(^a\)
Hirsutella hirsuta	ARSEF 1446	Hemiptera: Cixiidae	KM652154\(^a\), KM652106\(^a\), KM651990\(^a\), KM652031\(^a\)
Hirsutella hirsuta	ARSEF 1035	Hemiptera: Cixiidae	KM652015\(^3\), KM652105\(^3\), KM651989\(^3\), KM652032\(^3\)
Hirsutella hirsuta	ARSEF 4517	Hemiptera: Pseudococcidae	KM652157\(^a\), KM652109\(^a\), KM651992\(^a\), KM652031\(^a\)
Hirsutella hirsuta	ARSEF 5473	Coleoptera: Curculionidae	KM652110\(^a\), KM651993\(^a\), KM652033\(^a\)
Hirsutella hirsuta	ARSEF 30	Coleoptera: Pteropalaenae	–, –, JX66980\(^a\), KM652034\(^a\)
Hirsutella hirsuta	ARSEF 2226	Coleoptera: Pteropalaenae	KM652159\(^3\), –, KM651995\(^3\), KM652036\(^3\)
Hirsutella hirsuta	ARSEF 5539	Hemiptera: Aphididae	KM652160\(^a\), KM652112\(^a\), KM651996\(^a\), KM652037\(^a\)
Hirsutella hirsuta	ARSEF 8888	Hemiptera: Coccidae	KM652162\(^a\), KM652114\(^a\), KM651985\(^a\), KM652038\(^a\)
Hirsutella hirsuta	ARSEF 9603	Lepidoptera: Cossidae	KM652163\(^a\), KM652115\(^a\), –, –, –
Hirsutella hirsuta	ARSEF 5549	Acati	KM652164\(^a\), KM652116\(^a\), KM651999\(^a\), KM652039\(^a\)
Hirsutella hirsuta	ARSEF 5473	Lepidoptera: Pyralidae	KM652165\(^a\), KM652117\(^a\), KM652000\(^a\), KM652040\(^a\)
Hirsutella hirsuta	ARSEF 1369	Dipipera	–, KM652119\(^a\), KM652002\(^a\), KM652042\(^a\)
Hirsutella hirsuta	ARSEF 2348	Hemiptera: Delphacidae	KM652167\(^3\), KM652120\(^3\), KM652003\(^3\)
Hirsutella hirsuta	ARSEF 2931	Tylenchida: Heteroderidae	KM652168\(^3\), KM652121\(^3\), KM652004\(^3\)
Hirsutella hirsuta	ARSEF 996	Lepidoptera: Pyralidae	KM652172\(^3\), KM652125\(^3\), KM652008\(^3\), KM652047\(^3\)
Hirsutella sp.	ARSEF 8378	Hemiptera: Cixiidae	–, KM652127\(^a\), KM652010\(^a\), KM652049\(^a\)
Hirsutella striigosa	ARSEF 2197	Hemiptera: Coccidaelidae	KM652175\(^a\), KM652129\(^a\), KM652012\(^a\), KM652050\(^a\)
Hirsutella subulata	ARSEF 2227	Lepidoptera: Microlepidoptera	KM652176\(^a\), KM652130\(^a\), KM652013\(^a\), KM652051\(^a\)
Hirsutella subulata	ARSEF 257	Acati: Eriophyidae	KM652182\(^3\), KM652136\(^3\), KM652019\(^3\), KM652054\(^3\)
Hirsutella subulata	ARSEF 414	Acati: Eriophyidae	KM652184\(^3\), KM652139\(^3\), KM652021\(^3\), KM652056\(^3\)
Hirsutella subulata	ARSEF 3323	Acati: Tenuipalpalidae	KM652188\(^3\), KM652143\(^3\), KM652024\(^3\), KM652059\(^3\)
Hirsutella subulata	ARSEF 3482	Acari: Eriophyidae	KM652189\(^3\), KM652144\(^3\), KM652025\(^3\), KM652060\(^3\)
Hirsutella subulata	ARSEF 253	Acati: Eriophyidae	KM652179\(^3\), KM652133\(^3\), KM652016\(^3\)
Hirsutella subulata	ARSEF 256	Acati: Eriophyidae	KM652181\(^3\), KM652135\(^3\), KM652018\(^3\), KM652053\(^3\)
Hirsutella subulata	ARSEF 258	Acati: Eriophyidae	–, KM652137\(^3\), KM652020\(^3\), KM652055\(^3\)
Hirsutella subulata	ARSEF 2800	Acati	KM652187\(^3\), KM652142\(^3\), KM652023\(^3\), KM652058\(^3\)
Hirsutella thompsonii	ARSEF 1947	Acati: Tarsenemidae	KM652191\(^3\), KM652146\(^3\), KM652026\(^3\)
Hirsutella thompsonii	ARSEF 5412	Acati: Tetranychidae	KM652193\(^3\), KM652148\(^3\)
Hirsutella thompsonii	ARSEF 254	Acati: Eriophyidae	KM652194\(^3\), KM652149\(^3\), KM652028\(^3\), KM652062\(^3\)
Hirsutella thompsonii	ARSEF 1037	Hemiptera: Membracidae	–, KM652150\(^3\), KM652029\(^3\), KM652063\(^3\)
Ophiocordyceps acicularis	OSC 110988	Coleoptera (larva)	–, EF668804\(^a\), EF668745\(^a\), EF668853\(^a\)
Ophiocordyceps acicularis	OSC 110987	Coleoptera (larva)	–, EF668805\(^a\), EF668744\(^a\), EF668852\(^a\)
Ophiocordyceps acicularis	ARSEF 5892	Coleoptera (larva)	JN049819\(^a\), DQ518754\(^3\), DQ522322\(^3\), DQ522368\(^3\), DQ522418\(^3\)
Ophiocordyceps species on termites from Thailand

Species	Strain nr.	Host/Substratum	GenBank accession no.				
			ITS rDNA	LSU	TEF	RPB1	RPB2
Ophiocordyces							
aphodii	ARSEF 5498	Coleoptera	–	DQ518755¹	DQ522323¹	–	DQ522419¹
appendiculata	NBRC 106960	Coleoptera (larva)	JN943326¹	JN941413¹	–	JN992462¹	–
asiatica	BCC 30516	Termitidae (adult termite)	MH754722	MH753675	MK284263	MK214105	MK214091
	BCC 86435	Termitidae (adult termite)	MH754723	MH753676	–	MK214106	MK214092
communis	BCC 1842	Termitidae (adult termite)	MH754726	MH753680	MK284266	MK214110	MK214096
	BCC 1874	Termitidae (adult termite)	MH754725	MH753679	MK284267	MK214109	MK214095
	BCC 2754	Termitidae (adult termite)	MH754727	MH753681	MK284268	MK214111	MK214097
brunneipunctata	OSC 128576	Coleoptera (Elateridae larva)	–	DQ518756¹	DQ522324¹	DQ522369¹	DQ522420¹
brunneirubra	BCC 14384	Termitidae (adult termite)	MH754736	MH753690	GU797121	MK751465	MK751468
	BCC 14478	Termitidae (adult termite)	MH754734	MH753688	GU797122	MK751466	MK214102
	BCC 14477	Termitidae (adult termite)	MH754735	MH753689	GU797123	MK751467	MK214103
dipterigena	OSC 151911	Diptera (adult fly)	–	KJ878886¹	KJ878966¹	KJ879000¹	–
elongata	OSC 110989	Lepidoptera (larva)	–	EF468808¹	EF468748¹	EF468856¹	–
gracilioides	HUA 186095	Coleoptera (Elateridae larva)	–	–	KM411994¹	KP212914¹	–
	HUA 186092	Coleoptera (Elateridae larva)	–	KJ130992¹	–	KP212915¹	–
gracilis	EFCC 8572	Lepidoptera (larva)	JN049851¹	EF468811¹	EF468751¹	EF468859¹	EF468912¹
	EFCC 3101	Lepidoptera (larva)	–	EF468810¹	EF468750¹	EF468858¹	EF468913¹
granosa	BCC 82255	Hymenoptera (Polyrhachis sp.)	MH028143⁴	MH028156⁴	MH028185⁴	MH02816⁴	MH02817⁴
heteropoda	EFCC 10125	Hemiptera (cicada nymph)	JN049852⁴	EF468812⁴	EF468752⁴	EF468860⁴	EF468914⁴
intogenisis	BCC 82793	Hymenoptera (Polyrhachis illaudata)	MH028141⁴	–	MH028185⁴	MH028163⁴	MH02817⁴
	BCC 82795	Hymenoptera (Polyrhachis sp.)	MH028142⁴	–	MH028186⁴	MH028164⁴	MH02817⁴
khaoyaiensis	BCC 82796	Hymenoptera (Polyrhachis armata)	MH028150⁴	MH028153⁴	MH028187⁴	MH028165⁴	MH02817⁴
	BCC 82797	Hymenoptera (Polyrhachis armata)	MH028151⁴	MH028154⁴	MH028188⁴	MH028166⁴	MH02817⁴
khokpasiensis	BCC 48071	Termitidae (adult termite)	MH754728	MH753682	MK284269	MK214112	–
	BCC 48072	Termitidae (adult termite)	MH754729	MH753683	MK284270	MK214113	–
	BCC 1764	Termitidae (adult termite)	MH754730	MH753684	MK284271	MK214114	MK214098
konnoana	EFCC 7315	Coleoptera (larva)	–	–	EF468753¹	EF468861¹	EF468916¹
longissima	NBRC 108989	Hemiptera (cicada nymph)	AB968407¹	AB968421¹	AB968585¹	–	–
	EFCC 6814	Hemiptera (cicada nymph)	–	EF468817²	EF468757²	EF468865²	–
Species	Strain nr.	Host/Substratum	GenBank accession no.				
------------------------	------------	---	-----------------------				
		ITS rDNA	LSU	TEF	RPB1	RPB2	
Ophiocordyces							
masingtoensis	BCC 30904	Termitidae (adult termite)	MH754732	MH753686	MK284273	MK214115	MK214100
	BCC 36921	Termitidae (adult termite)	MH754731	MH753685	MK284272	MK214116	MK214099
myrmecophilica	CEM 1710	Hymenoptera (Adult ant)	–	KJ878994	KJ878974	KJ879008	–
myrmicarum	ARSEF 11864	Hymenoptera: Formicidae	–	–	JX566973	KJ60151	–
nigrella	EFCC 9247	Lepidoptera (larva)	JN049853	EF468818	EF468758	EF468866	EF468920
pseudocommunis	BCC 16757	Termitidae (adult termite)	MH754733	MH753687	MK284274	MK214117	MK214101
pseudocommunis	NHJ 12581	Termitidae (adult termite)	–	EF468831	EF468775	–	EF468930
	NHJ 12582	Termitidae (adult termite)	–	EF468830	EF468771	–	EF468926
pseudorhizoidea	BCC 48879	Termitidae (adult termite)	MH754720	MH753673	MK284261	MK214104	MK214089
	BCC 86431	Termitidae (adult termite)	MH754721	MH753674	MK284262	MK214169	MK214090
	NHJ 12522	Termitidae (adult termite)	JN0498572	EF468825	EF468764	EF468873	EF468923
	NHJ 12529	Termitidae (adult termite)	–	EF468824	EF468762	EF468872	EF468922
pseudotermicola	TNS-F-30044	Hymenoptera	–	–	GU904209	GU904210	–
psilinotata	OSC 110995	Coleoptera (larva)	–	DQ518764	DQ522334	DQ522379	–
ravenellii	KEW 27083	Lepidoptera (Hepialidae)	–	EF468826	EF468766	–	–
robertsi	J7	Hymenoptera (Polyhachia lamellidens)	–	KX713599	KX713683	KX713711	–
satoi	J19	Hymenoptera (Polyhachia lamellidens)	–	KX713601	KX713684	KX713710	–
sinensis	ARSEF 6282	Lepidoptera; Hepialidae (larva)	KM652173	KM652126	KM652099	KM652048	–
	EFCC 7287	Lepidoptera; Hepialidae (larva)	JN049854	EF468827	EF468767	EF468874	EF468925
sobolifera	KEW 78842	Hemiptera; (cicada nymph)	JN049855	EF468828	–	EF468875	DQ522432
spataphora	NHJ 12525	Hemiptera	–	EF469078	EF469063	EF469092	EF469111
sphaerocephala	OSC 128575	Hemiptera	–	EF469079	EF469064	EF469093	EF469110
stylophora	NBRC 10146	Hymenoptera (adult wasp)	–	JN941443	–	JN992432	–
stylophora	OSC 111000	Coleoptera; Elateridae (larva)	JN049828	DQ518766	DQ522337	DQ522382	–
termicitola	BCC 1920	Termitidae (adult termite)	MH754724	MH753678	MK284265	MK214108	MK214094
	BCC 1770	Termitidae (adult termite)	GU723780	MH753677	MK284264	MK214107	MK214093
unilateralis	OSC 128574	Hymenoptera	–	DQ518768	DQ522339	DQ522385	DQ522436
xuefengensis	GZUHHN 13	Lepidoptera; Phassus nodus (larva)	KC631804	–	KC631790	KC631795	–
yakusimensis	HMAS 19960	Hemiptera; (cicada nymph)	–	KJ878902	–	KJ879018	KJ878953
Purpureocillium	CBS 284.36	Soil	AY624189	–	EF468792	EF468898	EF468941
bicladium	CBS 431.87	Nematoda	AY624188	EF468844	EF468791	EF468897	EF468940

Note. The accession numbers marked in bold font refer to sequences new in this study or have been generated by our group in Thailand.

1Ban et al. (2015), 2Sanjuan et al. (2015), 3Simmons et al. (2015), 4Khonsanit et al. (2018), 5Araújo et al. (2018), 6Luangsa-ard et al. (2018)
Figure 1. Phylogenetic tree based on combined data set of ITS, LSU, TEF, RPB1 and RPB2 sequences showing the relationship of seven new species on termites from Thailand with other species of *Ophiocordyceps*. Numbers above lines at significant nodes represent Maximum Likelihood bootstrap values, Bayesian posterior probabilities and MP bootstrap values. Bold lines mean support for the tree analyses were 100%.
freqC = 0.3427, freqG = 0.2769, freqT = 0.1886 and the rate matrix for the substitution model: [AC] = 1.2356, [A-G] = 3.1814, [A-T] = 1.1029, [C-G] = 1.1220, [C-T] = 4.7720, [G-T] = 1.0000. The MP analyses resulted in 32 equally most parsimonious trees with 4013 characters, 1912 of which are constant, 355 are variable and parsimony-uninformative, while 1746 are parsimony-informative and tree length has 10669 steps (CI, 0.348; RI, 0.689; RC, 0.240; HI, 0.652).

Taxonomy

Ophiocordyceps asiatica Tasanathai, Noisripoom & Luangsa-ard, sp. nov.
MycoBank MB 831297

Figure 2

Typification. THAILAND. Nakhon Ratchasima Province, Khao Yai National Park; 14°7'11"N, 101°42'1"E; on termite; 21 May 2008; K. Tasanathai, S. Mongkolsamrit, B. Thongnuch, P. Srikitikulchai, R. Ridkaew, A. Khonsanit (holotype BBH 38718 dried culture; ex-type living culture, BCC 30516). GenBank: ITS = MH754722, LSU = MH753675, TEF = MK284263, RPB1 = MK214105, RPB2 = MK214091

Etymology. ‘asiatica’ referring to Asia.

Description. Stroma solitary, simple, filiform, up to 15 cm long, 1 mm wide, orange-brown (oac48-50), ca. 10 cm emerging above leaf litter, 5 cm buried in the soil. Asexual state (*Hirsutella*) produced at the terminal part of the stroma, ca. 2 cm long, light brown to grey. *Perithecia* superficial covering middle part of stroma, globose to subglobose, (240–)261.5–302(–320) × (180–)205–240.5(–260) μm. *Asci* 8-spored, filiform, (92.5–)104–143.5(–175) × 5–6.5 μm with cap, 2 × 2 μm. *Ascospores* whole, filiform, (80–)100–122.5(–132.5) × 1–2 μm, with septate. Asexual state *Hirsutella*, phialides arising singly or laterally from the hyphae along the terminal part of the stroma, (9–)9.5–13(–15) × (3–)3.5–4.8(–5) μm, *conidia* hyaline, fusiform, 4–5×2–3 μm.

Culture characteristics. Colonies on PDA, attaining a diam. of 27 mm after 20 d at 25 °C, mycelium sparse to abundant, grey in the middle to pale brown. *Conidiogenous cells* developing directly on the aerial mycelium, swollen towards the base, hyaline, smooth, tapering gradually towards the apex, which often forms a thin warty neck (1 μm), monophialidic or rarely polyphialidic 15–18.5(–20) × 2–3 μm μm. *Conidia* aseptate, hyaline, smooth, arising from phialides at the apex of each neck, fusiform, (7–)7.6–9 × 2–3 μm, with a mucous sheath.

 Colonies on PSA, attaining a diam. of 25 mm after 20 d at 25 °C, *Conidiogenous cells* swollen towards the base, hyaline, smooth, tapering gradually towards the apex, which often forms a thin neck, monophialidic, (15–)17–21(–23) × 3–4 μm. *Conidia* aseptate, hyaline, smooth, arising from phialides at the apex of each neck, fusiform, (6–)6.5–8.5(–10) × 2–3 μm, with a mucous sheath.

 Colonies on SDYA/4, slow-growing, attaining a diam. of 30 mm after 20 d at 25 °C. *Conidiogenous cells* swollen towards the base, hyaline, smooth, tapering gradu-
Figure 2. *Ophiocordyceps asiatica* (BBH38718, BCC30516) A stroma of fungus emerging from termite B phialide on specimen C part of stroma showing perithecia D perithecium E asci F ascospores G colony on PDA at 20 d obverse and reverse H, I phialides with conidia on PDA J, K conidium L colony on PSA at 20 d obverse and reverse M, N phialides with conidia on PSA O conidium P colony on SDYA/4 at 20 d obverse and reverse Q, R phialides with conidia S conidia T–X scanning electron micrographs of phialides with conidia on PDA. Scale bars: 10 mm (A, G, L, P); 5 μm (B); 1 mm (C); 8 μm (D); 15 μm (E); 10 μm (F, I); 3 μm (H, J, K, M, N, S, T, V); 2 μm (O, Q, R, U, W, X).
ally towards the apex, which often forms a thin neck, monophialidic or polyphialidic, (10–)12–15(–17) × (2–)2.5–3 μm. Conidia aseptate, hyaline, smooth, arising from phialides at the apex of each neck, fusiform, (7–)8.5–11.5(–13) × 2–3 μm, with a mucous sheath.

Distribution. Thailand, only known from Khao Yai National Park.

Ecology. Parasitic on a pair of termites from a reproductive caste (Order Isoptera: Family Termitidae, Subfamily Macrotermitinae) and these specimens were buried in the soil. The fungus emerged from the segment between the prothorax and mesothorax of one of the termite pairs.

Additional specimens examined. THAILAND. Saraburi Province, Khao Yai National Park; 14°586′N, 100°998′E; on termite; 4 June 2017; S. Mongkolsamrit, U. Pinruan, P. Srikitsikulchai, R. Promharn, S. Sommai (BBH45363, BBC86435).

Notes. Four species, O. asiatica, O. communis, O. pseudocommunis and O. pseudorhizoidea look morphologically similar in having superficial perithecia and long wiry, pliant stroma emerging from the ground. In O. asiatica and O. communis, the stroma is dark brown, while in O. pseudocommunis and O. pseudorhizoidea it is cream to light brown. The perithecia in O. communis, O. pseudocommunis and O. pseudorhizoidea are larger than O. asiatica, but its ascospores are larger than in O. pseudorhizoidea.

Ophiocordyceps brunneirubra Tasanathai, Noisripoom, Luangsa-ard & Hywel Jones, sp. nov.

MycoBank MB 831289

Figure 3

Typification. THAILAND. Uthai Thani Province, Huai Kha Khaeng Wildlife Sanctuary; 15°605′N, 99°330′E; on termite; 28 August 2003; N.L. Hywel-Jones (holotype BBH 9008 dried culture; ex-type living culture: BCC14478). GenBank: ITS = MH754734, LSU = MH753688, TEF = GU797122, RPB1 = MK751466, RPB2 = MK214102

Etymology. ‘brunneirubra’ referring to the reddish-brown appearance of the fertile head.

Description. Stroma solitary, simple or branched, narrowly clavate, slender and wiry, up to 9.5 cm long, 0.5 mm wide. Fertile head cylindric, orange brown (oac642) to red brown (oac635), up to 8 mm long, 1 mm wide. Perithecia immersed, ovoid, ordinal in arrangement, (300–)334.5–400(–403) × (130–)138.5–178(–200) μm. Asci 8-spored, cylindrical, (155–)176–214.5(–225) × 4.5–7(–8) μm. Ascospores whole, filiform, 156.5–197.5 × 2–3 μm, with septa.

Culture characteristics. Colonies on PDA, attaining a diam. of 25 mm within 20 d at 25 °C, orange (oac651) to orange brown (oac639). Conidiogenous cells monophialidic, arising from hyphae laterally or terminally, hyaline, tapering gradually or abruptly into a long slender neck, (32–)35.5–43.5(–50) μm long, (2–)2.5–3μm wide at the base, 1–1.5 μm wide at tip with warty surface. Conidia hyaline, one-celled, with
Figure 3. *Ophiocordyceps brunneirubra* (BBH 9008, BCC14478) **A, B** fungus on termite **C** part of stroma showing perithecia **D** immersed perithecia **E** asci **F** ascospore **G, H** colony on PDA at 20 d **(G)** colony obverse **(H)** colony reverse **I, J, K** phialides with conidia on PDA **L, M** conidia on PDA **N, P, O** sclerotia formed in culture **Q, R, S** scanning electron micrographs of phialides with conidia **T, U** colony on PSA at 20 d **(T)** colony obverse **(U)** colony reverse **V, W, X** phialides with conidia on PSA **Y** conidia on PSA. Scale bars: 25 mm **(A)**; 15 mm **(B, G, H, T, U)**; 1 mm **(C)**; 130 μm **(D)**; 10 μm **(I, Q, W)**; 15 μm **(J)**; 3 μm **(K, R)**; 5 μm **(L)**; 4 μm **(M, S, Y)**; 6 μm **(V)**; 7 μm **(X)**.
a distinct gold cap covering the tip of the conidia, fusiform, (12–13.5–15.5–17 × 2–3 (–4) μm. Sclerotia formed in culture after 1 month, dark brown (oac635).

Colonies on PSA, attaining a diam. of 25 mm within 20 d at 25 °C, orange brown (oac716) to brown (oac721), reverse orange brown (oac721). Conidiogenous cells monophialidic, arising from hyphae laterally or terminally, hyaline, tapering gradually or abruptly into a long slender neck, (30–)32.5–39.5–(41) μm long, (2–)2.5–3.5–(4) μm wide at the base, 1–1.5 μm wide at tip with warty surface. Conidia hyaline, one-celled, arising from phialides, with a distinct gold cap covering the tip of the conidia, fusiform, (13–)14–16–(17) × 2–3 μm.

Colonies on SDYA/4, attaining a diam. of 25 mm within 20 d at 25 °C, dark brown (oac733), reverse orange brown (oac728). Conidiogenous cells monophialidic, arising from hyphae laterally or terminally, hyaline, tapering gradually or abruptly into a long slender neck, 25–40 μm long, 2–4 μm wide at the base, 1 μm wide at tip with warty surface. Conidia hyaline, one-celled, arising from phialides, with a distinct gold cap covering the tip of the conidia, fusiform, 12–15 × 2–3 μm.

Distribution. Thailand, only known from Huai Kha Kaeng Wildlife Sanctuary.

Ecology. Parasitic on a subterranean termite (Order Isoptera: Family Termitidae, Subfamily Macrotermitinae), collected from the soil. These termites belong to the reproductive caste (king or queen alates). The fungus emerged from between head and thoraxes of termite alates.

Additional specimens examined. THAILAND. Uthai Thani Province, Huai Kha Khaeng Wildlife Sanctuary; at 15°605’N, 99°330’E; on termites; 28 Aug 2003; N.L. Hywel-Jones (BBH9009, BCC14477), (BBH9005, BCC14384).

Notes. This species differs from other species on termites collected in Thailand in being singly infected by fungus instead of termite pairs and having immersed perithecia and red brown fertile terminal stroma. The species is not commonly found since it could easily be mistaken as a plant material sprouting from the ground. It is reminiscent of *O. brunneipunctata* but only on a different host. The shape of the conidia, like a banana with a hat or a cap, has never been seen in any kind of fungal spore morphology before.

Ophiocordyceps khokpasiensis Tasanathai, Noisripoom & Luangsa-ard, sp. nov. MycoBank MB 831290

Figure 4

Typification. THAILAND. Kalasin Province, Phu Si Than Wildlife Sanctuary, Khok Pa Si Community Forest; 16°562’N, 104°103’E; on termite; 14 June 2011; K. Tasanathai, P. Srikitikulchai, A. Khonsanit, K. Sansatchanon, W. Noisripoom (holotype BBH32173 dried culture; ex-type living culture: BCC48071). GenBank: ITS = MH754728, LSU = MH753682, TEF = MK284269, RPB1 = MK214112

Etymology. ‘khokpasiensis’ referring to Khok Pa Si community forest, site of collection of type species.
Figure 4. *Ophiocordyceps khokpasiensis* (BBH32173, BCC48071)
A fungus on termite
B part of stroma showing perithecia
C pseudo-immersed perithecia
D asci
E ascospore
F phialides with conidia from synnema
G conidia from synnema
H colony on PDA at 20 d colony obverse and reverse
I, J phialides with conidia on PDA
K, L conidium
M, N, O scanning electron micrographs of phialides with conidia on PDA
P colony on PSA at 20 d obverse and reverse
Q, R, S phialides with conidia on PDA
T, U conidium
V colony on SDYA/4 at 20 d obverse and reverse
W, X, Y phialides with conidia
Z conidium.
Scale bars: 2.5 cm (**A**); 1 mm (**B**); 100 μm (**C**); 5 μm (**D, G, I, J, K, L**); 20 μm (**E**); 6 μm (**F**); 7 mm (**H, P, V**); 3 μm (**M, N, O, Q, R, S, T, U**); 4 μm (**W, X, Y**); 2 μm (**Z**).
Description. Stroma solitary, simple, cylindrical, 16 cm long, 1 mm wide, brown (oac48-50), ca. 5.5 cm emerging above the leaf litter, ca. 10.5 cm buried in the soil. Asexual state (*Hirsutella*) produced ca. 1.5 cm at the terminal part of the stroma, light brown to grey. *Perithecia* pseudo-immersed, subglobose to broadly ellipsoidal, covering middle part of stroma, (200–)214–248.5–250 × (120–)140–186–200 μm. *Asci* 8-spored, filiform, (62.5–)86–115–(125) × 4–5 μm. *Ascospores* whole, filiform, (46–)51–74–(90) × 2–3 μm. Asexual state *Hirsutella*, phialides arising singly or laterally from the hyphae along the terminal part of the stroma, (8–)9–11–(12) × 3–4 μm. Conidia, hyaline, oval, 5–6.5(–7) × 2–3 μm.

Culture characteristics. Colonies on PDA, attaining a diam. of 25.5 mm within 20 d at 25 °C, cream (oac900) to grey (oac893). *Conidiogenous cells* swollen towards the base, hyaline, smooth, tapering gradually towards the apex, which often forms a thin neck, monophialidic or polyphialidic, (15–)16.5–23–28 × 3–4.5(–5) μm. *Conidia* arising from phialides at the apex of each neck, globose to oval, one-celled (4–)4.5–5.5(–6) × 2.5–4 μm, embedded in a mucous sheath.

Colonies on PSA, attaining a diam. of 24 mm within 20 d at 25 °C, white to grey (oac843). *Conidiogenous cells* swollen towards the base, hyaline, smooth, tapering gradually towards the apex, which often forms a thin neck, monophialidic or polyphialidic, (14–)15.5–22.5–28 × 3–4.5(–5) μm. *Conidia* arising from phialides at the apex of each neck, globose to oval, one-celled 4–5(–6) × (2–)2.5–3.5(–5) μm, embedded in a mucous sheath.

Colonies on SDYA/4, attaining a diam. of 25 mm within 20 d at 25 °C, grey to brown (oac473). *Conidiogenous cells* swollen towards the base, hyaline, smooth, tapering gradually towards the apex, which often forms a thin neck, monophialidic or polyphialidic, (9–)11.5–15.5–(19) × (2–)3–3.5(–4) μm. *Conidia* arising from phialides at the apex of each neck, globose to oval, one celled 3.5–4.5(–5) × 2.5–3 (–3.5) μm, embedded in a mucous sheath.

Distribution. North-eastern Thailand.

Ecology. Parasitic on a pair of termites from a reproductive caste (Order Isoptera: Family Termitidae, Subfamily Macrotermitinae) and these specimens were buried in the soil. The fungus emerged from the segment between the prothorax and mesothorax of one of the termite pairs.

Additional specimens examined. THAILAND. Saraburi Province, Namtok Samlan National Park (Phra Buddha Chai); 14°526’N, 100°9’E; on termite; 15 June 1996; Hywel-Jones, NL (BBH5116, BCC1764). Kalasin Province: Phu Si Than Wildlife Sanctuary, Khok Pa Si Community Forest; 16°562’N, 104°103’E; on termite; 14 June 2011; K. Tasanathai, P. Sraitikulchai, A. Khonsanit, K. Sansatchanon, W. Noisriipoom (BBH32173, BCC48072).

Notes. Other *Ophiocordyceps* species reported on termites with pseudo-immersed perithecia are *O. mosingtoensis* and *O. termiticola*. *O. khokpasiensis* and *O. termiticola* shares similarity in the colour of the perithecia but in *O. termiticola*, the perithecia are denser while it is loosely arranged in *O. khokpasiensis*. *O. mosingtoensis* produces a more
robust stroma compared to *O. khokpasiensis* and *O. termiticola*. The gross morphology of *O. khokpasiensis* is similar to *O. asiatica*, *O. communis*, *O. pseudocommunis* and *O. pseudorhizoidea*. However, all these other species produce superficial perithecia.

Ophiocordyceps mosingtoensis Tasanathai, Noisripoom & Luangsa-ard, sp. nov.
MycoBank MB 831291

Figure 5

Typification. THAILAND. Nakhon Ratchasima Province, Khao Yai National Park; 14°7'11"N, 101°42'1"E; on termite; 17 June 2009; K. Tasanathai, P. Srikitikulchai, S. Mongkolamsrit, T. Chohmee, R. Ridkaew, N.L. Hywel-Jones (holotype BBH26809 dried culture; ex-type living culture, BCC36921). GenBank: ITS = MH754731, LSU = MH753685, TEF = MK284272, RPB1 = MK214116, RPB2 = MK214099

Etymology. ‘mosingtoensis’ referring to name after the type locality.

Description. Stroma solitary, simple, cylindrical, up to 11 cm long, 1 mm wide, brown (oac 48-50), ca. 8.5 cm emerging above the leaf litter, ca. 2.5 cm buried in the soil. Asexual state (*Hirsutella*) produced ca. 1 cm at the terminal part of the stroma, light brown to grey. **Perithecia** pseudo-immersed, broadly ovoid covering middle part of stroma, (400–)414–469 (–500) × (200–)208–263(–300) μm. **Asci** 8-spored, filiform, (187.5–) 217–265(–287.5) × 4.5–6.5(–7.5) μm with cap, 2 μm. **Ascospores** whole, filiform, (230–)240–291(–315) × 1.5–3 μm, with septa.

Culture characteristics. Colonies on PDA, attaining a diam. of 16 mm within 20 d at 25 °C, cream (oac872) to grey (oac909). **Conidiogenous cells** swollen towards the base, hyaline, smooth, tapering gradually towards the apex, which often forms a thin neck, monophialidic, (10–)12.5–16 (–17) × (2–) 2.5–3 μm. **Conidia** arising from phialides at the apex of each neck, oval, 3–4.5(–5) × 2–2.5(–3) μm.

Colonies on PSA, attaining a diam. of 17 mm within 20 d at 25 °C, white to grey (oac872). **Conidiogenous cells** swollen towards the base, hyaline, smooth, tapering gradually towards the apex, which often forms a thin neck, monophialidic, (10–)11.5–15(–17) × (2–)2.5–3.5(–4) μm. **Conidia** arising from phialides at the apex of each neck, oval, (3–)3.5–5(–5.5) × 2–3 μm.

Colonies on SDYA/4, attaining a diam. of 17 mm within 20 d at 25 °C, white to grey (oac802). **Conidiogenous cells** swollen towards the base, hyaline, smooth, tapering gradually towards the apex, which often forms a thin neck, monophialidic or polyphialidic, (9–)10.5–14.5(–17) × (2–)2.5–3 μm. **Conidia** arising from phialides at the apex of each neck, oval, (3–)3.5–4.5(–5) × 2–3 μm.

Distribution. Thailand, only known from Khao Yai National Park.

Ecology. Parasitic on a pair of termites from a reproductive caste (Order Isoptera: Family Termitidae, Subfamily Macrotermitinae) and these specimens were buried in the soil. The fungus emerged from the segment between the prothorax and mesothorax of one of the termite pairs.
Figure 5. *Ophiocordyceps mosingtoensis* (BBH26809, BCC36921)

A stroma of fungus emerging from termite

B part of stroma showing perithecia

C pseudo-immersed perithecia

D, E ascus

F ascospore

G, L, Q, V scanning electron micrographs of phialides with conidia on PDA

H colony on PDA at 20 d obverse and reverse

I, J phialides with conidia

K conidium

M colony on PSA at 20 d obverse and reverse

N, O phialides with conidia

P conidium

R colony on SDYA/4 at 20 d obverse and reverse

S, T phialides with conidia

U conidium. Scale bars: 10 mm (A); 1 mm (B); 150 μm (C); 25 μm (D); 4 μm (E); 30 μm (F); 10 μm (G); 8 mm (H, M, R); 3 μm (I, J, N, O, S, T); 2 μm (K, L, P, Q, U); 1 μm (V).
Ophiocordyceps species on termites from Thailand

Additional specimens examined. THAILAND. Nakhon Ratchasima Province, Khao Yai National Park; 14°711’N, 101°421’E; on termite; 18 June 2008; J.J. Luangsa-ard, K. Tasanathai, S. Mongkolsamrit, B. Thongnuch, P. Sritikitkulchai, R. Ridkaew (BBH 23860, BCC 30904).

Note. *O. mosintoensis* has a sturdier, robust stroma compared with *O. termiticola* and *O. khokpasensis* which also produce pseudo-immersed perithecia.

Ophiocordyceps pseudocommunis Tasanathai, Noisripoom & Luangsa-ard, sp. nov.

MycoBank MB 831351

Figure 6

Typification. THAILAND. Nakhon Nayok Province, Khao Yai National Park; 14°163’N, 101°268’E; on termite; 13 July 2004; S. Sivichai, K. Tasanathai, N. Boonyuen, P. Puyngain (holotype BBH10001 dried culture; ex-type living culture, BCC16757). GenBank: ITS = MH754733, LSU = MH753687, TEF = MK284274, RPB1 = MK214117, RPB2 = MK214101

Etymology. 'pseudocommunis' referring to close affinity to *Ophiocordyceps communis*.

Description. Stroma solitary, simple, cylindrical, 21.5 cm long, 0.5 mm wide, brown (oac48-50), ca. 12 cm emerging above the leaf litter, ca. 9 cm buried in the soil. Asexual state (Hymenostilbe-like) produced ca. 5 cm at the terminal part of the stroma, light brown to brown. Perithecia superficial, subglobose, covering middle part of the stroma, (520–)536.5–596.5–(600) × (360–)373.5–425–(440) μm. Asci, 8-spored, filiform, 160–164.5(165) × 14–17 μm. Ascospores whole, filiform, (107.5–120.5–138 –(147.5) × (6–)6.5–7.5–(7.5) μm, with 7–8 septa. Asexual state Hymenostilbe-like, conidiogenous cells forming a compact hymenium-like layer and had two to four denticles at their apices, cylindrical to clavate, (17–)18.5–21–(22) × (2–)2.5–4.5–(4) μm. Conidia, hyaline, fusiform, (6–)6.5–7.5(–8) × 2–3 μm.

Culture characteristics. Colonies on PDA, attaining a diam. of 26.5 mm within 20 d at 25 °C, white (oac909) to grey (oac851). Conidiogenous cells arising from hyphae laterally or terminally, hyaline, tapering gradually or abruptly into a long slender neck. Conidia hyaline, septate (2–3), arising from phialides at the apex of each neck, fusiform, (13–)14.5–20.5–(27) × (3–)3.5–5 μm.

Colonies on PSA, attaining a diam. of 15 mm within 20 d at 25 °C, white (oac909) to grey (oac851). Conidiogenous cells arising from hyphae laterally or terminally, hyaline, tapering gradually or abruptly into a long slender neck. Conidia hyaline, septate (1–4), arising from phialides at the apex of each neck, fusiform, (7–)9–15.5–(20) × (2–)2.5–4 μm.

Colonies on SDYA/4, attaining a diam. of 19 mm within 20 d at 25 °C, cream (oac816) to brown (oac781). Conidiogenous cells arising from hyphae laterally or terminally, hyaline, tapering gradually or abruptly into a long slender neck. Conidia hyaline, septate, arising from phialides at the apex of each neck, fusiform, (7–)9–18.5–(27) × (3–)3.5–6–(8) μm.

Distribution. Only reported from Khao Yai National Park.
Figure 6. *Ophiocordyceps pseudocommunis* (BBH10001, BCC16757)
A stroma of fungus emerging from termite
B part of stroma showing superficial perithecia
C perithecium
D ascospore
E phialides with conidia from synnema
F conidia from synnema
G, L, M, N, O, P scanning electron micrographs of phialides with conidia on PDA
H colony on PDA at 20 d obverse and reverse
I, J phialides with conidia on PDA
K conidium
Q colony on PDA at 20 d obverse and reverse
R phialides with conidia on PSA
S conidium
T colony on SDYA/4 at 20 d obverse and reverse
U phialides with conidia
V conidium.
Scale bars: 10 mm (A); 0.5 mm (B); 150 μm (C); 6 μm (D); 7 μm (E); 2 μm (F); 4 μm (G); 8 mm (H, Q, T); 8 μm (I); 5 μm (J, K, U, V); 3 μm (R, S).
Ecology. Parasitic on a pair of termites from a reproductive caste (Order Isoptera: Family Termitidae, Subfamily Macrotermitinae) and these specimens were buried in the soil. The fungus emerged from the segment between the prothorax and mesothorax of one of the termite pairs.

Additional specimens examined. THAILAND. Nakhon Ratchasima Province, Khao Yai National Park; 14°711’N, 101°421’E; on termite; 22 July 2003; R. Nasit, N.L. Hywel-Jones, J.W. Spatafora (NHJ12581, NHJ12582).

Ophiocordyceps pseudorhizoidea Tasanathai, Noisripoom & Luangsa-ard, sp. nov. MycoBank MB 830982

Figure 7

Typification. THAILAND. Khonkaen Province, Phu Wiang National Park; 16°799’N, 102°279’E; on termite; 17 July 2017; K. Tasanathai, S. Mongkolsamrit, W. Noisripoom (holotype BBH45361 dried culture; ex-type living culture, BCC86431). GenBank: ITS = MH754721, LSU = MH753674, TEF = MK284262, RPB1 = MK751469, RPB2 = MK214090

Etymology. ‘pseudorhizoidea’ referring to close affinity to what was called *Ophiocordyceps rhizoidea* on termites by NHJ.

Description. Stroma solitary, simple, filiform, up to 21 cm long, 1 mm wide, light-brown (oac675), ca. 15 cm emerging above leaf litter, 5.5 cm buried in the soil. Asexual state (*Hirsutella*) produced at the terminal part of the stroma, ca. 6 cm long, light brown to grey. *Perithecia* superficial, ovoid, covering the middle part of stroma, (280–) 287.5–315.5 (–390) × (160–) 177–209.5 (–220) μm. *Asci* 8-spored, cylindrical, 120–150 × 5–7 μm with cap, 3–4 × 4–5 μm. *Ascospores* whole, filiform, (65–) 69.5–78.5 (–82.5) × 2–2.8 (–3) μm, with septate. Asexual state *Hirsutella*. Phialides (10–)15.5–23.5(–26) × 3–4(–5) μm, conidia hyaline, fusiform, (5–)5.5–6.5(–7) × 3–4 μm.

Culture characteristics. Colonies on PDA, attaining a diam. of 10 mm within 20 d at 25 °C, cream to grey (oac844), reverse oac772 to oac815. *Conidiogenous cells* monophialidic, arising from hyphae laterally or terminally, hyaline, tapering gradually or abruptly into a long slender neck, (9–)10.5–17.5(–21) μm long, 2–3.2(–4) μm wide at the base, 1–1.5 μm wide at tip with warty surface. *Conidia* hyaline, one-celled, fusiform, (5–)6.5–8.5(–10) × 1–2 μm. with mucous sheath.

Colonies on PSA, attaining a diam. of 10 mm within 20 d at 25 °C, (oac841) to (oac843), reverse (oac868). *Conidiogenous cells* monophialidic cells arising from hyphae laterally or terminally, hyaline, tapering gradually or abruptly into a long slender neck, (10–)12–16.5(–19) μm long, 2–3 μm wide at the base, 1–1.5 μm wide at tip with warty surface. *Conidia* hyaline, one-celled, arising from phialides, fusiform, (6–)6.5–8(–8.5) × 1.5–2.5(–3) μm with mucous sheath.

Colonies on SDYA/4, attaining a diam. of 10 mm within 20 d at 25 °C, oac844, reverse oac722 in middle to oac815. *Conidiogenous cells* monophialidic cells arising from hyphae laterally or terminally, hyaline, tapering gradually or abruptly into a long...
slender neck, (13–)17–25.5(–30) μm long, (3–)3.5–4 μm wide at the base, 1 μm wide at tip with warty surface. Conidia hyaline, one-celled, arising from phialides, fusiform, (6–)7.5–9(–10) × 1–2 μm with mucous sheath.

Distribution. Thailand.

Ecology. Parasitic on a pair of termites from a reproductive caste (Order Isoptera: Family Termitidae, Subfamily Macrotermitinae) and these specimens were buried in the soil. The fungus emerged from the segment between the prothorax and mesothorax of one of the termite pairs.
Ophiocordyceps species on termites from Thailand

Additional specimens examined. THAILAND. Chanthaburi Province, Khao Soi Dao Wildlife Sanctuary; 13°136'N, 102°218'E; on termite; 8 June 2011; K. Tasanathai, P. Srikitikulchai, S. Mongkolsamrit, A. Khonsanit, K. Sansatchanon (BBH31259, BCC 48879).

Notes. Like O. communis and O. pseudocommunis, this species shows similarity to O. rhizoidea. However, von Hohnel’s description of the host in O. rhizoidea was a Coleoptera larva. O. rhizoidea has longer and wider ascii and ascospores than O. pseudorhizoidea, while in O. communis and O. pseudocommunis, they are distinctly longer (Table 2).

Ophiocordyceps termiticola Tasanathai, Noisripoom & Luangsa-ard, sp. nov.
MycoBank MB 831296
Figure 8

Typification. THAILAND. Kanchanaburi Province, Khao Laem National Park; 14°746'N, 98°625'E; on termite; 20 June 1995; N.L. Hywel-Jones, R. Nasit, S. Sivichai (holotype BBH5634 dried culture; ex-type living culture, BCC 1920). GenBank: ITS = MH754724, LSU = MH753678, TEF = MK284265, RPB1 = MK214108, RPB2 = MK214094

Species	Host	Stromata (cm)	Perithecia (µm)	Asci (µm)	Ascospores (µm)	Reference
Ophiocordyceps asiatica	Termites	solitary, simple, filiform, up to 15 long orange brown	superficial, globose to subglobose 240–320 × 180–260	filiform 92.5–175 × 5–6.3	whole with septate 90–132.5 × 1–2	This study
Ophiocordyceps brunneirubra	Termites	solitary, simple or branched, narrowly clavate, slender and wiry, 9.5 cm long, orange brown to red brown	Immersed, ovoid, 300–400 × 130–200	cylindrical, 155–225 × 4.5–8	filiform, whole with septate, 156.5–197.5 × 2–3	This study
Ophiocordyceps kholpapinarai	Termites	solitary, simple cylindrical, 16 cm long, brown	pseudo-immersed, subglobose 200–250 × 120–200	filiform, 62.5–125 × 4–5	filiform, whole, 46–90 × 2–3	This study
Ophiocordyceps mincofterenai	Termites	solitary simple cylindrical, 11 cm long, brown to grey	pseudo-immersed, ovoid 400–500 × 200–300	filiform, 187.5–287.5 × 4.5–7.5	whole with septate, 230–315 × 1.5–3	This study
Ophiocordyceps pseudocommunis	Termites	solitary simple cylindrical, 21 cm long, brown	superficial, subglobose 520–600 × 360–440	filiform, 160–165 × 14–17	whole with 7–8 septa, 107.5–147.5 × 6–7.5	This study
Ophiocordyceps communis	Termites	solitary simple filiform, 5-13 cm long, yellow brown	superficial 285–675 × 195–390	filiform, 215–250 × 15	filiform, whole, 100–180 × 5–6	Sung et al. 2007
Ophiocordyceps pseudorhizoidea	Termites	solitary, simple, filiform, up to 21 cm long, light brown	superficial, ovoid 280–390 × 160–220	cylindrical, 120–150 × 5–7	whole with septate 65–82.5 × 2–3	This study
Ophiocordyceps rhizoidea	Coleoptera larva	simple, solitary, 7–8 cm long, 0.5-1 mm	superficial 360 × 300	160–210 × 13–16	ca 80 × 5–7	von Höhnel, 1909
Ophiocordyceps termiticola	Termites	solitary, simple, filiform, up to 14 cm long yellow brown	pseudo-immersed, globose to subglobose 200–280 × 150–250	filiform 62.5–110 × 4–6	filiform, whole, 85 × 2	This study
Figure 8. Ophiocordyceps termiticola (BBH5634, BCC 1920) A stroma of fungus emerging from termite B part of stroma showing perithecia C perithecia D ascus E ascospore F phialides with conidia on synnema G conidium H colony on PDA at 20 d obverse and reverse I phialides with conidia on PDA J conidium K–O scanning electron micrographs of phialides with conidia on PDA P colony on PSA at 20 d obverse and reverse Q phialides with conidia on PSA R colony on SDYA/4 at 20 d obverse and reverse S phialides with conidia. Scale bars: 2 cm (A); 1 μm (B, K, O); 100 μm (C); 15 μm (D); 8 μm (E); 5 μm (F, G); 7 mm (H, P, R); 3 μm (I, J, L, M, N, Q, S).
Etymology. ‘termiticola’ referring to the host family, Termitidae.

Description. Stroma solitary, simple, filiform, up to 14 cm long, 1 mm wide, yellow-brown, ca. 6 cm emerging above the leaf litter, ca. 8 cm buried in the soil. Asexual state (Hymenostilbe-like) produced ca. 1 cm at the terminal part of the stroma, grey. *Perithecia* pseudo-immersed, globose to subglobose, produced on one-third of the terminal part of the stroma ending near the apex, (200–)225–261(–280) × (150–)178–229(–250) μm. *Asci* 8-spored, filiform, (62.5–)76.5–100.5(–110) × (4–)4.5–5.5(–6) μm. *Ascospores* whole, filiform, 85 × 2 μm, Asexual state Hymenostilbe-like, conidiogenous cells formed a compact hymenium-like layer and had from two to four denticles at their apices, cylindrical to clavate, (10–)11.5–16(–17) × 3–5(–6) μm. Conidia, hyaline, fusiform 7 × 3 μm.

Culture characteristics. Colonies on PDA, attaining a diam. of 28 mm within 20 d at 25 °C, grey (oac781) to pale grey (oac851). *Conidiogenous cells* monophialidic to polyphialidic, arising from hyphae laterally, with an inflated base (7–)7.5–10(–11) × (2.5–) 3–3.5(–4) μm. *Conidia* hyaline, globose, 2.5–3 (–3.5) μm, one-celled with warty surface.

Colonies on PSA, attaining a diam. of 22 mm within 20 d at 25 °C, white to pale grey, cotton-like. *Conidiogenous cells* monophialidic to polyphialidic, hyaline, smooth, with an inflated base (7–)8–10.5(–13) × 3–4 (–5) μm. *Conidia* hyaline, globose, (2–)2.7–3.4(–4) μm, one celled with warty surface.

Colonies on SDYA/4, attaining a diam. of 29 mm within 20 d at 25 °C, grey to pale grey (oac851). *Conidiogenous cells* monophialidic to polyphialidic, hyaline, smooth, with an inflated base (7–)8–10.5(–13) × 3–4 μm. *Conidia* hyaline, globose, 3–3.5(–4) μm, one celled with warty surface.

Distribution. Thailand.

Ecology. Parasitic on a pair of termites from a reproductive caste (Order Isoptera: Family Termitidae, Subfamily Macrotermitinae) and these specimens were buried in the soil. The fungus emerged from the segment between the prothorax and mesothorax of one of the termite pairs.

Additional specimens examined. THAILAND. Chanthaburi Province, Khao Soi Dao Wildlife Reserve; 13°136’N, 102°218’E; on termite; 20 June 1996; R. Nasit, S. Sivichai, K. Tasanathai (BBH5179, BCC1770).

Notes. Both *O. termiticola* and *O. khokpasiensis* produce pseudo-immersed reddish perithecia on a stroma. In *O. termiticola*, the perithecia are tightly packed, while in *O. khokpasiensis*, they are loosely aggregated and the length of the anamorphic layer at the end of the fertile part is longer in the latter.

Discussion

Out of the 230+ species of Ophiocordyceps worldwide, less than 10 species occur on termites. The majority of these species produce cylindrical, wiry to pliant, mostly simple, seldom multiple, stromata. *Species found in Africa and Mexico*, *O. bispora* (*Cordycepioideus bisporus*) and *O. octospora* (*Cordycepioideus octosporus*), produce thick-walled,
multiseptate ascospores, suggesting an adaptation to the harsh environmental conditions in these countries (Ochiel et al. 1997; Blackwell and Gilbertson 1981, 1984). All termite pathogenic species in Thailand including O. asiatica, O. bruneirubra, O. communis, O. khokpasiensis, O. mosingtoensis, O. pseudocommunis, O. pseudorhizoidea and O. termiticola produce filiform, multiseptate, whole ascospores on predominantly superficial and pseudo-immersed perithecia. The dark to pallidly coloured stroma of these species are cylindrical, wiry and pliant and the anamorph is produced at the terminal part of the stroma, after the fertile part.

Interestingly, our results clearly present *Ophiocordyceps* species occurring on reproductive castes of termites, especially subterranean termite species in the Family Termitidae, Subfamily Macrotermitinae. All species of subterranean termites construct their nests below ground or build mounds above ground and excavate their foraging tunnel in several ways (Eggleton 2010; Ahmad et al. 2018). Usually, the reproductive caste of termites, i.e. flying termites, includes male and female swarms during mating season at the start of the rainy season. The winged queen emerges from the colony for her nuptial flight or the mating flight, releasing pheromones to attract the males to mate. When the male finds the queen, they do a tandem run that lasts for as long as the pair finds a suitable place to start a new colony, during which they shed their wings. In termites, both male and female are the same size (Howard and Thorne 2010; Ahmad et al. 2018). Specimens of termites might have been infected by *Ophiocordyceps* species after their nuptial flight, when they bury themselves in the ground to establish a nesting area for starting a new colony.

Fungi represent a silent threat to the termite community. Termites have many predators, such as other amphibians (toads), birds, reptiles (lizards, gecko, snakes), small mammals, rodents and even humans. The percentage of the infection to these reproductive castes may be low in comparison to the individuals in a termite swarm, however, only few survive or evade the imminent threat of arthropods and other animals. Eventually, the number of infections caused by *Ophiocordyceps* becomes significant when only a few can actually survive to start a new colony.

The number of available morphological characters needed to delimit species in fungi are so limited and this may be an important reason why cryptic species are abundant in Kingdom Fungi, i.e. morphologically indistinguishable biological/phylogenetic units present within taxonomic species (Balasundaram et al. 2015) or, as Bickford et al. (2007) put it: ‘two or more distinct species that are erroneously classified (and hidden) under one species name’. Many species of entomopathogenic fungi in Ophiocordycipitceae belong to species complexes or are cryptic species. Zombie ant pathogens in *Ophiocordyceps* have all been classified as *Ophiocordyceps unilateralis sensu lato* until morphological and molecular studies, including host identification, were completed (Araujo et al. 2015, 2018; Luangsa-ard et al. 2010; Kobmoo et al. 2012, 2015). The use of DNA-based molecular analyses has subsequently uncovered several new species in the genus (Khonsanit et al. 2018; Luangsa-ard et al. 2018). In culture, the conidiogenous cells of these termite pathogens produce phialides that are either monophialidic or have several lateral necks. The anamorphs of these species do not always form *Hirsutella* asexual states but more of an intermediate between *Hirsutella*
and *Hymenostilbe*. This could either be a transition into a different genus or forming a diverging lineage in *Ophiocordyceps* – in the process of a speciation event or that the production of these anamorphs are so plastic that they cannot be used in taxonomy.

The knowledge that *Ophiocordyceps* species infect reproductive castes of termites can be used as basic information to study the biological control of subterranean termite pests and to better implement them. All specimens of termites collected are subterranean termites and produce relatively fast growing synnemata with numerous infectious propagules (ascospores) which can be developed further for biological control strategies.

Acknowledgements

The authors are grateful to Platform Technology Management Section, National Center for Genetic Engineering and Biotechnology (BIOTEC), Grant No. P19-50231 and CPMO Grant No. P15-51452 for their support of the biodiversity studies of invertebrate-pathogenic fungi in Thailand. We thank the Department of National Parks for their kind support and permission to collect fungi in the national parks. We also thank Suchada Mongkolsamrit for her help in collecting fungi. This study was supported by National Science and Technology Development Agency (NSTDA). We are grateful to the reviewers whose comments and suggestions helped improve our manuscript.

References

Abe T, Bignell DE, Higashi M (2000) Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer academic publishers, London, United Kingdom, 247p. https://doi.org/10.1007/978-94-017-3223-9

Ahmad SK, Dawah HA, Khan A (2018) Ecology of Termites, 47–68. In: Khan MdA, Ahmad W (Eds) Termites and Sustainable Management Volume 1 – Biology, Social Behaviour and Economic Importance. https://doi.org/10.1007/978-3-319-72110-1_3

Araújo JPM, Evans HC, Geiser DM, Mackay WP, Hughes DP (2015) Unravelling the diversity behind the *Ophiocordyceps unilateralis* (Ophiocordycipitaceae) complex: three new species of zombie-ant fungi from the Brazilian Amazon. Phytotaxa 220(3): 224–238. https://doi.org/10.11646/phytotaxa.220.3.2

Araújo JPM, Evans HC, Kepler RM, Hughes DP (2018) Zombie-ant fungi across continents: 15 new species and new combinations within *Ophiocordyceps*. I. *Myrmecophilous* hirsutelloid species. Studies in Mycology 90: 119–160. https://doi.org/10.1016/j.simyco.2017.12.002

Balasundaram SV, Engh IB, Skrede I, Kauserud H (2015) How many DNA markers are needed to reveal cryptic fungal species? Fungal Biology 119: 940–945. https://doi.org/10.1016/j.funbio.2015.07.006

Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004
Blackwell M, Gilbertson RL (1981) Cordycepioideus octosporus, a termite suspected pathogen from Jalisco, Mexico. Mycologia 73: 358–362. https://doi.org/10.2307/3761220

Blackwell M, Gilbertson RL (1984) New information on Cordycepioideus bisporus and Cordycepioideus octosporus. Mycologia 76: 763–765. https://doi.org/10.1080/00275514.1984.12023912

Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research 108(8): 864–872. https://doi.org/10.1017/S0953756204000607

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340

Eggleton P (2000) Termites: Evolutions, Sociality Symbioses, Ecology. Kluwer Academic Publishers, Dordrecht, 25–51. In: Abe T, Bignell DE, Higashi M (Eds)

Eggleton P (2010) An Introduction to Termites: Biology, Taxonomy and Functional Morphology. In: Bignell DE, Roisin Y, Lo N (Eds) Biology of Termites: a Modern Synthesis. Springer, Dordrecht, 1–26. https://doi.org/10.1007/978-90-481-3977-4_1

Hall T (2004) BioEdit, version 6.0.7. Department of Microbiology, North Carolina State University.

Howard KJ, Thorne BL (2010) Eusocial Evolution in Termites and Hymenoptera: 97–132. In: Bignell DE, Roisin Y, Lo N (Eds) Biology of Termites: a Modern Synthesis. Springer Science & Business Media, London, New York. https://doi.org/10.1007/978-90-481-3977-4_5

Khonsanit A, Luangsa-ard JJ, Thanakitpipattana D, Kobmoo N, Piasai O (2018) Cryptic species within Ophiocordyceps myrmecophila complex on formicine ants from Thailand. Mycological Progress 18: 147–161. https://doi.org/10.1007/s11557-018-1412-7

Kobayasi Y (1941) The genus Cordyceps and its allies. Science reports of the Tokyo Bunrika Daigaku 84: 53–260.

Kobayasi Y, Shimizu (1978) Cordyceps species from Japan. Bull. Natn. Sci. Mus. Tokyo, 4: 43–63.

Kobmoo N, Mongkolsamrit S, Tasanathai K, Thanakitpipattana D, Luangsa-ard JJ (2012) Molecular phylogenies reveal host-specific divergence of Ophiocordyceps unilateralis sensu lato following its host ants. Molecular Ecology 21: 3022–3031. https://doi.org/10.1111/j.1365-294X.2012.05574.x

Kobmoo N, Mongkolsamrit S, Wutikhun T, Tasanathai K, Khonsanit A, Thanakitpipattana D, Luangsa-ard JJ (2015) Ophiocordyceps unilateralis, an ubiquitous pathogen of ants from Thailand. Fungal Biol 119: 44–52. https://doi.org/10.1016/j.funbio.2014.10.008

Krishna K, Grimaldi DA, Krishna V, Engel MS (2013) Treatise on the Isoptera of the world: Introduction. Bulletin of the American Museum of Natural History, 2704 pp. https://doi.org/10.1206/377.6

Luangsa-ard JJ, Hywel-Jones NL, Samson RA (2004) The polyphyletic nature of Paecilomyces sensu lato based on 18S-generated rDNA phylogeny. Mycologia 96: 773–780. https://doi.org/10.1080/15572536.2005.11832925

Luangsa-ard JJ, Hywel-Jones NL, Manoch L (2005) On the relationships of Paecilomyces sect. Isarioidae species. Mycological Research 109: 581–589. https://doi.org/10.1017/S0953756205002741
Luangsa-ard JJ, Ridkaew R, Tasanathai K, Thanakitpipattana D, Hywel-Jones NL (2011) Ophiocordyceps halabalaensis: a new species of Ophiocordyceps pathogenic to Camponotus gigas in Hala Bala Wildlife Sanctuary, Southern Thailand. Fungal Biology 115: 608–614. https://doi.org/10.1016/j.funbio.2011.03.002

Luangsa-ard JJ, Tasanathai K, Thanakitpipattana D, Khonsanit A, Stadler M (2018) Novel and interesting Ophiocordyceps spp. (Ophiocordycipitaceae, Hypocreales) with superficial perithecia from Thailand. Studies in Mycology 89: 125–142. https://doi.org/10.1016/j.simyco.2018.02.001

Nylander JAA (2004) MrModeltest v.2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.

Ochiel GRS, Evans HC, Eilenberg J (1997) Cordycepioideus, a pathogen of termites in Kenya. Mycologist 11: 7–9. https://doi.org/10.1016/S0269-915X(97)80059-6

Pearce MJ (1999) Termites: Biology and Pest Management. CAB International, London.

Penzig O, Saccardo PA (1904) Icones Fungorum Javanicum: 55–57. https://doi.org/10.5962/bhl.title.17234

Petch T (1931) Notes on entomogenous fungi. Transactions of the British Mycological Society 16(1): 55–75. https://doi.org/10.1016/S0007-1536(31)80006-3

Rath AC (2000) The Use of Entomopathogenic Fungi for Control of Termites, Biocontrol Science and Technology 10: 5, 563–581. https://doi.org/10.1080/095831500750016370

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Spatafora JW, Quandt CA, Kepler RM, Sung GH, Shrestha B, Hywel-Jones NL, Luangsa-ard JJ (2015) New 1F1N species combinations in Ophiocordycipitaceae (Hypocreales). IMA Fungus 6(2): 357–362. https://doi.org/10.5598/imafungus.2015.06.02.07

Sornnuwat Y, Vongkaluang C, Takematsu Y (2004) A systematic key to termites of Thailand. Kasetsart J. (Nat. Sci.) 38: 349–368.

Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5–59. https://doi.org/10.3114/sim.2007.57.01

Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland.

White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a guide to methods and applications. Academic Press, San Diego, California 18(1): 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1