On the maximum of a type of random processes

Xuan Liu*

March 11, 2016

Abstract

Let \( \Omega, \{ \mathcal{F}_t \}, \mathcal{F}, \mathbb{P} \) be a filtered probability space satisfying the usual conditions. We consider random processes \( X_t, t \in [0, T] \), which satisfy the following condition:

\[
\mathbb{E} \left( \left| \mathbb{E} \left( X_t | \mathcal{F}_s \right) - X_s \right|^p \right) \leq A_{p,h} |t-s|^{ph}, \quad \text{for all } 0 \leq s < t \leq T.
\]

where \( p > 1 \) and \( h \in (0, 1] \) are some constants satisfying \( ph > 1 \), and \( A_{p,h} \) is a constant depending only on \( p \) and \( h \). Typical examples of such processes are martingales and processes with the following increment control:

\[
\mathbb{E} \left( |X_t - X_s|^p \right) \leq A_{p,h} |t-s|^{ph}, \quad \text{for all } s, t \in [0, T],
\]

We are interested in estimate of the tail probability of the supremum

\[
P \left( \sup_{t \in [0,T]} |X_t| \geq \lambda \right),
\]

for which we will show that a Doob type inequality (see Theorem 1.1) holds for processes satisfying (1). As an application, we show that with the condition (2) given, the decay of (3) behaves (roughly speaking) in the same manner as the marginal

\[
P (|X_t| \geq \lambda).
\]

1 A Doob type maximal inequality

Lemma 1.1. For any \( s_0, t_0 \in [0, T], s_0 < t_0 \), it holds that

\[
\mathbb{E} \left( \sup_{s_0 \leq s < t \leq t_0} |\mathbb{E}(X_t | \mathcal{F}_s) - X_s|^p \right) \leq C_{p,h,\theta} A_{p,h} |t_0 - s_0|^{ph},
\]

where

\[
C_{p,h,\theta} = [2\zeta(\theta)]^{p-1} \left( \frac{p}{p-1} \right)^p \left( \frac{4}{ph - 1} \right)^{\theta(p-1)+1} \Gamma \left[ \theta(p-1) + 1 \right],
\]

with an arbitrary constant \( \theta > 1 \), \( \zeta(\theta) = \sum_{m=1}^{\infty} m^{-\theta} \) is the Riemann zeta function and \( \Gamma(z) \) is the Gamma function.

Proof. Let \( s, t \in [s_0, t_0], s < t \) be fixed temporarily. Denote by

\[
I_t^n = [t_{n-1}^m, t_n^m] = s_0 + (t_0 - s_0) \times \left[ \frac{l-1}{2^m}, \frac{l}{2^m} \right]
\]

*Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom. Email: xuan.liu@maths.ox.ac.uk
the dyadic sub-intervals of \([s, t]\). Then there exists a sequence \( \{J_k\} \subseteq \{I_l^m : 1 \leq l \leq 2^m, m \geq 0\} \) such that

i) \( J_k, k = 1, 2, \ldots, \) are mutually disjoint;

ii) for any \( m \geq 1 \), there are at most two elements of \( \{J_k\} \) with length \((t_0 - s_0)2^{-m}\);

iii) \( [s, t] = \bigcup_{k=1}^\infty J_k \).

Denote \( J_k = [u_{k-1}, u_k] \). Then

\[
|\mathbb{E}(X_t | F_s) - X_s| = \sum_{k=1}^\infty \mathbb{E}( \Delta X_{J_k} | F_s )
\]

\[
\leq \sum_{k=1}^\infty \mathbb{E} \left[ \mathbb{E} \left( \Delta X_{J_k} | F_{u_{k-1}} \right) | F_s \right]
\]

\[
= \sum_{m=1}^\infty \sum_{\{J_k : |J_k| = (t_0 - s_0)2^{-m}\}} \mathbb{E} \left[ \mathbb{E} \left( \Delta X_{J_k} | F_{u_{k-1}} \right) | F_s \right],
\]

where \( \Delta X_{J_k} = X_{u_k} - X_{u_{k-1}} \). Let \( \xi^m_l = \mathbb{E} \left( \Delta X_{I_l^m} | F_{s_l^m} \right), 1 \leq l \leq 2^m, m = 1, 2, \ldots \). For any \( \theta > 1 \), by Jensen’s inequality,

\[
|\mathbb{E}(X_t | F_s) - X_s|^p \leq \left( \sum_{m=1}^\infty \frac{1}{\zeta(\theta)m^\theta} \right) \left( \sum_{\{J_k : |J_k| = (t_0 - s_0)2^{-m}\}} \mathbb{E} \left[ \mathbb{E} \left( \Delta X_{J_k} | F_{u_{k-1}} \right) | F_s \right] \right)^p
\]

\[
\leq \zeta(\theta)^{p-1} \sum_{m=0}^\infty m^{\theta(p-1)} \left( \sum_{\{J_k : |J_k| = (t_0 - s_0)2^{-m}\}} \mathbb{E} \left[ \mathbb{E} \left( \Delta X_{J_k} | F_{u_{k-1}} \right) | F_s \right] \right)^p
\]

\[
\leq [2\zeta(\theta)]^{p-1} \sum_{m=0}^\infty m^{\theta(p-1)} \sum_{r \in [s_0, t_0]} \sup_{1 \leq l \leq 2^m} \left[ \mathbb{E} \left( \xi^m_l | F_{r} \right) \right]^p,
\]

where the inequality in the fourth line is due to the property ii) of \( \{J_k\} \). Hence,

\[
\sup_{s_0 \leq s \leq t \leq t_0} |\mathbb{E}(X_t | F_s) - X_s|^p \leq [2\zeta(\theta)]^{p-1} \sum_{m=0}^\infty m^{\theta(p-1)} \sum_{r \in [s_0, t_0]} \sup_{1 \leq l \leq 2^m} \left[ \mathbb{E} \left( \xi^m_l | F_{r} \right) \right]^p.
\]
By Doob’s maximal inequality for martingales,
\[
\mathbb{E} \left( \sup_{s_0 \leq s < t \leq t_0} [\mathbb{E}(X_t | \mathcal{F}_s) - X_s]^p \right) \leq [2 \zeta(\theta)]^{p-1} \sum_{m=1}^{\infty} m^{\theta(p-1)} \sum_{l=1}^{2^m} \mathbb{E} \left( \sup_{r \in [s_0, t_0]} \left[ \mathbb{E} \left( |\xi|^p \right) \right] \right) \]
\[
\leq [2 \zeta(\theta)]^{p-1} \sum_{m=1}^{\infty} m^{\theta(p-1)} \sum_{l=1}^{2^m} \left( \frac{p}{p-1} \right)^p \mathbb{E} \left( \left[ \mathbb{E} \left( |\xi|^p \right) \right] \right) \]
\[
\leq [2 \zeta(\theta)]^{p-1} \left( \frac{p}{p-1} \right)^p \sum_{m=1}^{\infty} m^{\theta(p-1)} \cdot 2^m \cdot \left( \frac{|t_0 - s_0|}{2^m} \right)^{p\theta} \]
\[
= C_{p, \theta} [2 \zeta(\theta)]^{p-1} \left( \frac{p}{p-1} \right)^p \left[ \sum_{m=1}^{\infty} m^{\theta(p-1)} \cdot 2^{-m(p\theta-1)} \right].
\]
where \( C_{p, \theta} = [2 \zeta(\theta)]^{p-1} \left( \frac{p}{p-1} \right)^p \left[ \sum_{m=1}^{\infty} m^{\theta(p-1)} \cdot 2^{-m(p\theta-1)} \right] \). Note that
\[
\sum_{m=1}^{\infty} m^{\theta(p-1)} \cdot 2^{-m(p\theta-1)} \leq \sum_{m=1}^{\infty} 2^{\theta(p-1)} \int_{m-1}^{m} \left( \frac{4}{p\theta-1} \right)^{\theta(p-1)+1} \int_{0}^{\infty} r^{\theta(p-1)} e^{-r} \, dr \]
\[
= \left( \frac{4}{p\theta-1} \right)^{\theta(p-1)+1} \Gamma[\theta(p-1) + 1].
\]
This completes the proof. \( \square \)

As an application of Lemma 1.1, we show that a Doob-type inequality holds for processes satisfying the condition (1). To this end, we shall need the following elementary result.

**Lemma 1.2.** Let \( Y_t, t \in [0, T] \), be any right continuous random process such that \( Y_t \) is integrable for each \( t \), and let \( 0 \leq s_0 < t_0 \leq T \). Then

1) For any stopping time \( \tau \) with \( s_0 \leq \tau \leq t_0 \), it holds that
\[
|\mathbb{E}(Y_{t_0} | \mathcal{F}_\tau) - Y_\tau| \leq \mathbb{E} \left( \sup_{u \in [s_0, t_0]} |\mathbb{E}(Y_{t_0} | \mathcal{F}_u) - Y_u| \right) \mathbb{E}(\mathcal{F}_\tau).
\] \quad (4)

2) For any \( \lambda > 0 \), it holds that
\[
\mathbb{P} \left( \sup_{u \in [s_0, t_0]} Y_u \geq \lambda \right) \leq \frac{1}{\lambda} \int_{\left\{ \sup_{u \in [s_0, t_0]} Y_u \geq \lambda \right\}} \left( \sup_{u \in [s_0, t_0]} |\mathbb{E}(Y_{t_0} | \mathcal{F}_u) - Y_u| + Y_{t_0} \right) d\mathbb{P}. \quad (5)
\]

**Proof.** 1) By the right continuity of \( Y_t \), we may assume that \( \tau \) takes only countably many values \( \{u_k :
\[ k = 1, 2, \cdots \} \subseteq [s_0, t_0]. \text{ Then} \]

\[
\left| \mathbb{E} \left( Y_{t_0} \mid \mathcal{F}_\tau \right) - Y_\tau \right| = \sum_{k=1}^{\infty} \left| \mathbb{E} \left( Y_{t_0} \mid \mathcal{F}_\tau \right) - Y_\tau \right| 1_{\{\tau = u_k\}} \\
= \sum_{k=1}^{\infty} \left| \mathbb{E} \left( (Y_{t_0} - Y_\tau) 1_{\{\tau = u_k\}} \right| \sigma(\mathcal{F}_\tau \cap \{\tau = u_k\}) \right| \\
= \sum_{k=1}^{\infty} \left| \mathbb{E} \left( (Y_{t_0} - Y_{u_k}) \left| \mathcal{F}_{u_k} \right. \right) 1_{\{\tau = u_k\}} \sigma(\mathcal{F}_\tau \cap \{\tau = u_k\}) \right| \\
\leq \sum_{k=1}^{\infty} \left( \sup_{u \in [s_0, t_0]} \left| \mathbb{E} \left( Y_{t_0} \mid \mathcal{F}_u \right) - Y_u \right| \right) 1_{\{\tau = u_k\}} \sigma(\mathcal{F}_\tau \cap \{\tau = u_k\}) \\
= \sum_{k=1}^{\infty} \left( \sup_{u \in [s_0, t_0]} \left| \mathbb{E} \left( Y_{t_0} \mid \mathcal{F}_u \right) - Y_u \right| \left| \mathcal{F}_\tau \right. \right) 1_{\{\tau = u_k\}} \\
= \mathbb{E} \left( \sup_{u \in [s_0, t_0]} \left| \mathbb{E} \left( Y_{t_0} \mid \mathcal{F}_u \right) - Y_u \right| \left| \mathcal{F}_\tau \right. \right).
\]

2) Let \( \tau = \inf \{ u \in [s_0, t_0] : Y_u \geq \lambda \} \wedge T. \) Then \( \{ \sup_{t \in [s_0, t_0]} Y_t \geq \lambda \} = \{ \tau < T \} \cup \{ \tau = t_0, Y_{t_0} \geq \lambda \} \in \mathcal{F}_\tau. \) Therefore, by (4),

\[
\int_{\{\sup_{u \in [s_0,t_0]} Y_u \geq \lambda\}} Y_\tau d\mathbb{P} = -\int_{\{\sup_{u \in [s_0,t_0]} Y_u \geq \lambda\}} \left( \mathbb{E} \left( Y_{t_0} \mid \mathcal{F}_u \right) - Y_u \right) d\mathbb{P} + \int_{\{\sup_{u \in [s_0,t_0]} Y_u \geq \lambda\}} Y_{t_0} d\mathbb{P} \\
\leq \int_{\{\sup_{u \in [s_0,t_0]} Y_u \geq \lambda\}} \left( \sup_{u \in [s_0,t_0]} \left| \mathbb{E} \left( Y_{t_0} \mid \mathcal{F}_u \right) - Y_u \right| + Y_{t_0} \right) d\mathbb{P}.
\]

**Proposition 1.1.** Let \( 0 \leq s_0 < t_0 \leq T, \) and let \( X^* = \sup_{u \in [s_0,t_0]} X_u. \) Then for any \( 1 < q \leq p, \)

\[
\|X^*\|_{L^q} \leq \frac{q}{q - 1} \left[ C_{p,h,t_0}^{1/p} \mathbb{P}(t_0 - s_0) + \|X_{t_0}\|_{L^q} \right].
\]

where \( C_{p,h,t_0} \) is a constant which differs from the constant \( C_{p,h,t_0} \) in Lemma [17] by a multiple depending only on \( p, \) and \( \delta > 0 \) is an arbitrary constant.

**Proof.** Denote \( Y = \sup_{u \in [s_0,t_0]} \left| \mathbb{E} \left( X_{t_0} \mid \mathcal{F}_u \right) - X_u \right| + |X_{t_0}|. \) Then \( \{ X^* \geq \lambda \} \subseteq \left\{ \sup_{u \in [s_0,t_0]} X_u \geq \lambda \right\}. \) By Lemma [12] and Lemma [13],

\[
\|X^*\|_{L^q}^q = q \int_{0}^{\infty} \lambda^{q-1} \mathbb{P}(X^* \geq \lambda) d\lambda \\
\leq q \int_{0}^{\infty} \lambda^{q-2} \int_{\{\sup_{u \in [s_0,t_0]} X_u \geq \lambda\}} \lambda Y d\mathbb{P} d\lambda \\
\leq q \int_{0}^{\infty} \lambda^{q-2} \int_{\{X^* \geq \lambda\}} Y d\mathbb{P} \lambda Y d\lambda \\
= q \int_{\Omega} \left( \int_{0}^{X^*} \lambda^{q-2} \lambda Y d\lambda \right) Y d\mathbb{P} \\
= \frac{q}{q - 1} \int_{\Omega} \|X^*\|_{L^q}^{q/q - 1} Y d\mathbb{P} \\
\leq \frac{q}{q - 1} \|X^*\|_{L^q}^q \|Y\|_{L^q},
\]

4
where \( q' \) is the conjugate exponent of \( q \). Therefore,

\[
\|X^*\|_{L^q} \leq \frac{q}{q-1} \|Y\|_{L^q} \\
\leq \frac{q}{q-1} \left( \left\| \sup_{t \in [s_0,t_n]} |\mathbb{E}(X_{t_n} | F_t) - X_t| \right\|_{L^q} + \|X_{s_0}\|_{L^q} \right) \\
\leq \frac{q}{q-1} \left[ c^{1/p}_{p,h,\theta} \|X_{t_n} - s_0\|^h + \|X_{t_0}\|_{L^q} \right].
\]

}\]

\[\square\]

## 2 Tail decay of the supremum

**Definition 2.1.** The marginals of the process \( X_t \) are said to have uniform \( \alpha \)-exponential decay, if there exist constants \( \alpha > 0 \), \( C > 0 \) and \( D > 0 \) such that

\[
\mathbb{P}(|X_t| \geq \lambda) \leq C \exp(-D\lambda^\alpha), \quad \text{for all} \; \lambda > 0 \; \text{and all} \; t \in [0,T].
\]

(7)

We shall show that the distributions of the \( \sup_{t \in [0,T]} |X_t| \) have \( \alpha \)-exponential decay, if and only if the marginals of \( X_t \) have uniform \( \alpha \)-exponential decay. It follows from a simple computation that

**Lemma 2.1.** Let \( X_t, t \in [0,T] \) be a random process satisfying (1), and let \( q > 0 \). Then

\[
\mathbb{E}(|X|^q) \leq CD^{-q/\alpha} \left( \frac{q}{\alpha} + 1 \right).
\]

**Theorem 2.1.** Let \( X_t, t \in [0,T] \) be a random process satisfying (1). Suppose that there exist constants \( \alpha > 0 \), \( D > 0 \), and \( \delta_0 \geq 0 \) such that

\[
\mathbb{P}(|X_t| \geq \lambda) \leq C \exp(-D\lambda^\alpha), \quad \text{for all} \; \lambda > 0 \; \text{and all} \; t \in [0,T].
\]

Then

\[
\mathbb{P} \left( \sup_{t \in [0,T]} |X_t| \geq 2\lambda \right) \leq K\lambda^{-p/\alpha} \exp \left[ - \left( 1 - \frac{1}{ph} \right) D\lambda^\alpha \right], \quad \text{for all} \; \lambda \geq \delta_0,
\]

where \( K = 4T \left[ c^{1/p}_{p,h,\theta} A^{1/p}_{p,h} \right] \frac{\alpha}{\alpha} \left[ 1 + C \left( \frac{\alpha}{\alpha} \right)^{p-1} \right] \), and the constant \( C_{p,h,\theta} \) is the same as in Lemma 1.1.

*Proof.* For \( N \in \mathbb{N}_+ \), let \( I_n = [t_{n-1}, t_n] = [(n-1)T/N, nT/N] \). Then

\[
\left\{ \sup_{t \in [0,T]} |X_t| \geq 2\lambda \right\} \subseteq \bigcup_{n=1}^N \left\{ \sup_{t \in I_n} \mathbb{E}(X_{t_n} | F_t) - X_t \geq \lambda \right\} \bigcup_{n=0}^{N-1} \left\{ \sup_{t \in I_n} \mathbb{E}(X_{t_n} | F_t) \geq \lambda \right\}.
\]

Therefore,

\[
\mathbb{P} \left( \sup_{t \in [0,T]} |X_t| \geq 2\lambda \right) \leq \sum_{n=1}^N \mathbb{P} \left( \sup_{t \in I_n} \mathbb{E}(X_{t_n} | F_t) - X_t \geq \lambda \right) + \sum_{n=0}^{N-1} \mathbb{P} \left( \sup_{t \in I_n} \mathbb{E}(X_{t_n} | F_t) \geq \lambda \right).
\]

(8)

By Lemma 1.1

\[
\mathbb{P} \left( \sup_{t \in I_n} \mathbb{E}(X_{t_n} | F_t) - X_t \geq \lambda \right) \leq C_{p,h,\theta} A_{p,h} \frac{1}{\lambda^p} \left( \frac{T}{N} \right)^{ph}.
\]

(9)
We need to estimate $\mathbb{P}(\sup_{t \in I_n} |\mathbb{E}(X_{t_n}|F_t)| \geq \lambda)$. If $\alpha > p$, by Doob’s inequality and Lemma 2.1,

$$
\mathbb{E}\left(\sup_{t \in I_n} |\mathbb{E}(X_{t_n}|F_t)|^\alpha\right) \leq \left(\frac{\alpha}{\alpha - 1}\right)^\alpha \mathbb{E}(|X_{t_n}|^\alpha) \\
\leq C \left(\frac{p}{p - 1}\right)^p D^{-1}.
$$

If $\alpha \leq p$, the above yields that

$$
\mathbb{E}\left(\sup_{t \in I_n} |\mathbb{E}(X_{t_n}|F_t)|^\alpha\right) \leq \mathbb{E}\left(\sup_{t \in I_n} |\mathbb{E}(X_{t_n}|F_t)|^p\right)^{\alpha/p} \leq C \left(\frac{p}{p - 1}\right)^p D^{-1}.
$$

Moreover, for any $q \geq 2$, by a similar argument,

$$
\mathbb{E}\left(\sup_{t \in I_n} |\mathbb{E}(X_{t_n}|F_t)|^{\alpha q}\right) \leq \mathbb{E}\left(\sup_{t \in I_n} |\mathbb{E}(|X_{t_n}|^\alpha|F_t)|^q\right) \\
\leq \left(\frac{q}{q - 1}\right)^q \mathbb{E}(|X_{t_n}|^{\alpha q}) \\
\leq C \left(\frac{q}{D(q - 1)}\right)^q \Gamma(q + 1) \\
\leq C(2D^{-1})^q \Gamma(q + 1).
$$

Therefore,

$$
\mathbb{E}\left[\exp\left(\frac{D}{4} \sup_{t \in I_n} |\mathbb{E}(X_{t_n}|F_t)|^\alpha\right)\right] = \sum_{q=0}^{\infty} \frac{(D/4)^q}{q!} \mathbb{E}\left(\sup_{t \in I_n} |\mathbb{E}(X_{t_n}|F_t)|^{\alpha q}\right) \\
\leq 1 + \frac{C}{4} \left(\frac{p}{p - 1}\right)^p + C \sum_{q=2}^{\infty} 2^{-q} \\
\leq 2 \left[1 + C \left(\frac{p}{p - 1}\right)^p\right].
$$

By Chebyshev’s inequality,

$$
\mathbb{P}(\sup_{t \in I_n} |\mathbb{E}(X_{t_n}|F_t)| \geq \lambda) \leq 2 \left[1 + C \left(\frac{p}{p - 1}\right)^p\right] \exp\left(-\frac{D}{4} \lambda^\alpha\right). \quad (10)
$$

Therefore, by (8), (9) and (10).

$$
\mathbb{P}\left(\sup_{t \in [0,T]} |X_t| \geq 2\lambda\right) \leq C_{p,h,\theta} A_{p,h} \frac{N}{\lambda^p} \left(\frac{T}{N}\right)^{ph} + 2N \left[1 + C \left(\frac{p}{p - 1}\right)^p\right] \exp\left(-\frac{D}{4} \lambda^\alpha\right).
$$

Setting $N$ to be the integer part of $\left[C_{p,h,\theta} A_{p,h} T^{ph} \lambda^{-p} \exp(D\lambda^\alpha)\right]^{\frac{1}{ph}}$ gives that

$$
\mathbb{P}\left(\sup_{t \in [0,T]} |X_t| \geq 2\lambda\right) \leq 4T \left[C_{p,h,\theta} A_{p,h}\right]^{\frac{1}{ph}} \left[1 + C \left(\frac{p}{p - 1}\right)^p\right]^{\frac{1}{ph} - \frac{1}{ph}} \lambda^{-\frac{1}{ph}} \exp\left[-\left(1 - \frac{1}{ph}\right) D\lambda^\alpha\right].
$$

\(\square\)

Example 2.1. We consider the tail decay of the supremum of a standard fractional Brownian motion $B^h_t$, $t \in [0,T]$, with Hurst parameter $h \in (0,1)$, that is, a Gaussian process with $B^h_0 = 0$ and covariance
function

\[ R(t, s) = \frac{1}{2} \left( (|t|^{2h} + |s|^{2h} - |t - s|^{2h}) \right), \quad t, s \in [0, T]. \]

For the fractional Brownian motion, one has \( B^h_t - B^h_s \sim N \left( 0, \frac{1}{2} |t - s|^{2h} \right) \), and therefore,

\[ E \left( |B^h_t - B^h_s|^p \right) = A_p |t - s|^{ph}, \quad t, s \in [0, T], \]

where

\[ A_p = \frac{1}{\sqrt{\pi}} \left( \frac{p + 1}{2} \right). \]

For any \( t \in [0, 1] \) and any \( \lambda > 0 \), one has

\[
\P \left( |B_t^h| \geq \lambda \right) = \frac{1}{\sqrt{2\pi \lambda}} \int_0^\infty \exp \left( -\frac{1}{2} u^2 \right) du \leq \frac{\lambda^h}{2\sqrt{\pi \lambda}} \exp \left( \frac{-\lambda^2}{2\lambda h} \right) \leq \frac{1}{2\sqrt{\pi \lambda}} \exp \left( -\lambda^2 \right).
\]

Now put \( \phi(\lambda) = \frac{1}{2\sqrt{\pi \lambda}} \exp \left( -\lambda^2 \right) \). For any \( p > 1/h \), by Lemma 2.1, 2,

\[
\P \left( \sup_{t \in [0, 1]} |B_t^h| \geq 2\lambda \right) \leq 2 |C_{p,h,\theta} A_p| \lambda^{1-\frac{1}{p}} \log(\lambda) \exp \left( -\frac{\lambda^2}{2} \right), \quad \text{for all } \lambda > 0,
\]

where

\[ C_{p,h,\theta} = [2\zeta(\theta)]^{p-1} \left( \frac{p}{p-1} \right)^p \left( \frac{4}{ph - 1} \right)^{\theta(p-1) + 1} \Gamma [\theta(p-1) + 1] \]

with an arbitrary constant \( \theta > 1 \). Setting \( p = 2/h, \theta = p/(p - 1) \) gives

\[
\P \left( \sup_{t \in [0, 1]} |B_t^h| \geq 2\lambda \right) \leq \frac{C_h}{\lambda} \exp \left( -\frac{\lambda^2}{2} \right), \quad \text{for all } \lambda > 0,
\]

where \( C_h \) is a constant depending only on \( h \). By scaling, we deduce that

\[
\P \left( \sup_{t \in [0, T]} |B_t^h| \geq 2\lambda \right) \leq \frac{C_h T^h}{\lambda} \exp \left( -\frac{\lambda^2}{2T^{2h}} \right), \quad \text{for all } \lambda > 0.
\]

**Example 2.2.** Let \( a = (a_1, a_2, \ldots) \) be a sequence of real numbers, let \( f_k(t), k = 1, 2, \ldots \), be a sequence of real functions defined on \([0, T]\), and let \( \xi_k, k = 1, 2, \ldots \), be i.i.d. Rademacher random variables. In [?], Theorem I, p. 339, R. Paley and A. Zygmund showed that if

\[ \sum_{k=1}^\infty a_k^2 < \infty \]

and

\[ \int_0^T f_k(t)^2 dt \leq A, \quad k = 1, 2, \ldots, \]

for some constant \( A < \infty \), then for almost all \( \omega \in \Omega \), the series \( \sum_{k=1}^\infty a_k \xi_k(\omega) f_k(t) \) converges for a.e. \( t \in [0, T] \), and the limit is an element in \( L^2([0, T]) \).

Let \( H \subseteq [0, T] \times \Omega \) be the set of \((t, \omega)\) at which \( \sum_{k=1}^\infty a_k \xi_k(\omega) f_k(t) \) converges. Then the projection
of $H$ on $\Omega$ has probability one. We shall show that, under some stronger assumption, $\sum_{k=1}^{\infty} a_k \xi_k f_k(t)$ converges uniformly in $t \in H^\omega$ for any $\omega \in \Omega$. Here $H^\omega = \{t \in [0, T] : (t, \omega) \in H\}$ has Lebesgue measure $T$ for almost all $\omega \in \Omega$. Suppose that $h \in (0, 1)$ and that $f_k(t)$, $k = 1, 2, \ldots$, be $h$-Hölder continuous with Hölder constants $L_k$, that is, $|f_k(t) - f_k(s)| \leq L_k |t - s|^h$.

Suppose that
$$\sum_{k=1}^{\infty} a_k^2 \left[ f_k(0)^2 + L_k^2 \right] < \infty.$$ Then for a.e. $\omega \in \Omega$,
$$\sum_{k=1}^{\infty} a_k \xi_k f_k(t)$$ converges uniformly in $t \in [0, T]$. 

**Proof.** Let $X(t, \omega) = \sum_{k=1}^{\infty} a_k \xi_k(\omega) f_k(t) 1_H(t, \omega)$. And to simplify the notation, we refer to $\sum_{k=1}^{\infty} a_k \xi_k(\omega) f_k(t)$ by simply writing $\sum_{k=1}^{\infty} a_k \xi_k(\omega) f_k(t)$. 

For any $p > 0$, by Khintchine’s inequality,
$$\mathbb{E} \left[ \left\| \sum_{k=1}^{\infty} a_k \xi_k f_k(0) \right\|^p \right] \leq C_p \left[ \sum_{k=1}^{\infty} a_k^2 f_k(0)^2 \right]^{p/2},$$
where
$$C_p = \max \left( \sqrt{\frac{2p}{\pi}} \Gamma \left( \frac{p+1}{2} \right), 1 \right).$$ Similarly,
$$\mathbb{E} \left[ \left\| \sum_{k=1}^{\infty} a_k \xi_k (f_k(t) - f_k(0)) \right\|^p \right] \leq C_p \left[ \sum_{k=1}^{\infty} a_k^2 L_k^2 \right]^{p/2} t^{ph}. $$

By the above, we see that
$$\mathbb{E} (|X_t|^p) \leq 2^{p/2} C_p \left[ \sum_{k=1}^{\infty} a_k^2 \left( f_k(0)^2 + L_k^2 \right) \right]^{p/2}$$ (11)
and
$$\mathbb{E} (|X_t - X_s|^p) \leq 2^{p/2} C_p \left[ \sum_{k=1}^{\infty} a_k^2 L_k^2 \right]^{p/2} |t - s|^{ph}$$ (12)
for all $p > 0$. Put
$$A_{p,h} = \frac{2^p}{\sqrt{\pi}} \Gamma \left( \frac{p+1}{2} \right) \left[ \sum_{k=1}^{\infty} a_k^2 L_k^2 \right]^{p/2}.$$ (13)

Then condition (2) is satisfied for any $p > 1/h$.

We now give an estimate of the tail decay of the marginals $X_t$. For any $u \geq 0$, by (11) and Stirling’s
Then we obtain that

\[
E[\exp (u|X_t|)] \leq \sum_{p=0}^{\infty} \frac{2^{p/2} u^p C_p}{p!} \left[ \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \right]^{p/2}.
\]

Now, by Chebyshev's inequality,

\[
\sum_{p=0}^{\infty} \frac{2^{p/2} u^p C_p}{p!} \left[ \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \right]^{p/2} = K \sum_{p=0}^{\infty} \frac{\sqrt{\pi}}{\Gamma \left( \frac{p}{2} + 1 \right)} \left[ a_k^2 (f_k(0)^2 + L_k^2) \right]^{p/2} \leq K \left( \sum_{p=0}^{\infty} \frac{1}{\Gamma \left( \frac{p}{2} + 1 \right)^2} \right)^{1/2} \left[ \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \right],
\]

where \( K \) is a universal constant that might be different from line to line. Since

\[
\Gamma \left( \frac{p}{2} + 1 \right)^2 \geq \Gamma \left( \frac{p + 2}{2} \right) \Gamma \left( \frac{p + 1}{2} \right) = 2^{-p} \sqrt{\pi} \Gamma (p + 1) = \frac{\sqrt{\pi} p^p}{2^p},
\]

we obtain that

\[
E[\exp (u|X_t|)] \leq K \left( \sum_{p=0}^{\infty} \frac{1}{p!} \left[ 2u^2 \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \right] \right)^{1/2} = K \exp \left[ u^2 \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \right].
\]

Now, by Chebyshev's inequality,

\[
P(|X_t| \geq \lambda) \leq K \exp \left[ -u\lambda + a^2 \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \right].
\]

Setting \( u = \lambda \left[ 2 \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \right]^{-1} \) gives that

\[
P(|X_t| \geq \lambda) \leq K \exp \left[ -\lambda^2 \left( \frac{1}{2} \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \right) \right]. \tag{14}
\]

Now by Theorem 2.2, we have

\[
P \left( \sup_{t \in [0,T]} \left| \sum_{k=1}^{\infty} a_k \xi_k f_k(t) \right| \geq 2\lambda \right) \leq C_h \exp \left[ -\frac{D_h \lambda^2}{\sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2)} \right], \tag{15}
\]

where \( C_h, D_h \) are constants depending only on \( h \in (0,1) \).

Now, for any \( u \in [0,1] \), denote \( \sigma^2 = \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \), and let

\[
l(u) = \inf \left\{ l \in \mathbb{R}_+ : \int_0^l \sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) 1_{[k-1,k]}(s) ds > u\sigma^2 \right\}. \tag{16}
\]

Then \( l(u) \to \infty \) as \( u \to 1 \).

To show the a.s. uniform convergence of \( \sum_{k=1}^{\infty} a_k \xi_k f_k(t) \), we need to show that

\[
P \left( \bigcap_{0<u<1} \left\{ \sup_{n \geq l(u)} \sup_{t \in [0,T]} \left| \sum_{k=1}^{\infty} a_k \xi_k f_k(t) \right| \geq 2\lambda \right\} \right) = 0.
\]
for any $\lambda > 0$. Clearly, it suffices to show that
\[
\lim_{u \to 1} \mathbb{P} \left( \sup_{n \geq l(u)} \sup_{t \in [0,T]} \left| \sum_{k=1}^{\infty} a_k \xi_k f_k(t) \right| \geq 2\lambda \right) = 0. \tag{17}
\]

Define
\[
Y_u = \sup_{t \in [0,T]} \left| \int_0^{l(u)} \sum_{k=1}^{\infty} a_k \xi_k f_k(t) 1_{(k-1,k]}(s) ds \right|, \quad u \in [0,1].
\]

To prove (17), it suffices to show that
\[
\lim_{u \to 1} \mathbb{P} \left( \sup_{v \in [u,1]} Y_v \geq 2\lambda \right) = 0. \tag{18}
\]

We first note that, for $0 \leq u < v \leq 1$,
\[
|Y_v - Y_u| \leq \sup_{t \in [0,T]} \left| \int_0^{l(u)} \sum_{k=1}^{\infty} a_k \xi_k f_k(t) 1_{(k-1,k]}(s) ds \right|.
\]

In fact, let $t^* \in \arg \max_{t \in [0,T]} \left| \int_0^{l(v)} \sum_{k=1}^{\infty} a_k \xi_k f_k(t) 1_{(k-1,k]}(s) ds \right|$. Then
\[
Y_v - Y_u \leq \left| \int_0^{l(v)} \sum_{k=1}^{\infty} a_k \xi_k f_k(t^*) 1_{(k-1,k]}(s) ds \right| - \left| \int_0^{l(u)} \sum_{k=1}^{\infty} a_k \xi_k f_k(t^*) 1_{(k-1,k]}(s) ds \right|
\leq \left| \int_0^{l(v)} \sum_{k=1}^{\infty} a_k \xi_k f_k(t^*) 1_{(k-1,k]}(s) ds \right| - \left| \int_0^{l(u)} \sum_{k=1}^{\infty} a_k \xi_k f_k(t) 1_{(k-1,k]}(s) ds \right|
\leq \sup_{t \in [0,T]} \left| \int_0^{l(v)} \sum_{k=1}^{\infty} a_k \xi_k f_k(t) 1_{(k-1,k]}(s) ds \right|. \tag{19}
\]

Similarly, $Y_u - Y_v \leq \sup_{t \in [0,T]} \left| \int_0^{l(v)} \sum_{k=1}^{\infty} a_k \xi_k f_k(t) 1_{(k-1,k]}(s) ds \right|$.

For any $u < v$, by the definition of $l(u)$,
\[
\sum_{k=1}^{\infty} a_k^2 (f_k(0)^2 + L_k^2) \int_{l(u)}^{l(v)} 1_{(k-1,k]}(s) ds = (v-u)\sigma^2. \tag{20}
\]

Now, applying (15) to the sequence $(a_1', a_2', \ldots)$ with
\[
a_k' = a_k \left( \int_{l(u)}^{l(v)} 1_{(k-1,k]}(s) ds \right)^{1/2}, \quad k \geq 1,
\]
we obtain that
\[
\mathbb{P} \left( |Y_v - Y_u| \geq 2\lambda \right) \leq C_h \exp \left[ -\frac{D_h \lambda^2}{|v-u|\sigma^2} \right], \tag{21}
\]
where $C_h$ and $D_h$ are constants depending only on $h$ and might vary from line to line. In particular, noting that $Y_1 = 0$,
\[
\mathbb{P} \left( |Y_v| \geq 2\lambda \right) \leq C_h \exp \left[ -\frac{D_h \lambda^2}{(1-u)\sigma^2} \right], \quad \text{for all } v \in [u,1]. \tag{22}
\]

Since (21) implies that
\[
\mathbb{E} \left( |Y_v - Y_u|^p \right) \leq C_h |v-u|^{p/2}
\]
for any \( p > 2 \). We are now in a position to apply Theorem 2.1 again, and deduce that

\[
\mathbb{P} \left( \sup_{v \in [u,1]} Y_v \geq 2\lambda \right) \leq C_h \exp \left[ - \frac{D_h \lambda^2}{(1 - u)\sigma^2} \right].
\]

Thus, (18) follows readily. \( \square \)

3 An estimate for the up-crossing number of processes with increment controls

We now give an estimate for the up-crossing number of processes \( X_t \) which satisfies the condition (2).

Lemma 3.1. For any \( 0 < q \leq p, 0 < \alpha < \frac{h-1/p}{1/q-1/p} \), and any random times \( \tau, \sigma \) such that \( 0 \leq \sigma \leq \tau \leq T \), it holds that

\[
\mathbb{E}(|X_\tau - X_\sigma|^q) \leq K_{q,\alpha} C_{p,h,\theta} A_{q/p}^{p,h} \mathbb{E}\left( \left[ \frac{\tau - \sigma}{T} \right]^\alpha \right)^{1-q/p},
\]

where \( K_{q,\alpha} = 4^q \left[ 1 - 2^{-q(h-1/p)+(1-q/p)\alpha} \right]^{-1} \), and the constant \( C_{p,h,\theta} \) is the same as in Lemma 1.1.

Remark. It is noticed that, when \( q = p \), \( K_{q,\alpha} = 4^p \left[ 1 - 2^{-p} \right]^{-1} \) for all \( \alpha > 0 \).

Proof. We first note that, by virtue of Lemma 1.1 applied to the filtration \( \mathcal{F}_t = \mathcal{F}_T, 0 \leq t \leq T \), one has

\[
\mathbb{E}(|X_\tau - X_\sigma|^p) \leq 2^{p-1} C_{p,h,\theta} A_{p,h} |t_0 - s_0|^{ph}
\]

for any random times \( \tau \) and \( \sigma \) with \( s_0 \leq \sigma \leq \tau \leq t_0 \).

Now, for any random times \( \tau, \sigma \) with \( 0 \leq \sigma \leq \tau \leq T \), define

\[
A_{r,k} = \left\{ T(r - 1)2^{-k} \leq \sigma < T r 2^{-k} \leq T(r + 1)2^{-k} \leq \tau < T(r + 2)2^{-k} \right\}, \quad 1 \leq r \leq 2^k - 1, \ k \geq 1.
\]

Then \( \{\tau \neq \sigma\} = \bigcup_{r,k} A_{r,k} \), and the union of sets is disjoint. Therefore,

\[
X_\tau - X_\sigma = \sum_{r,k} (X_{\tau_{r,k}} - X_{\sigma_{r,k}}) 1_{A_{r,k}}.
\]

Let

\[
\tau_{r,k} = \left( \tau \vee \frac{T r}{2^k} \right) \wedge \frac{T(r + 1)}{2^k},
\]

\[
\sigma_{r,k} = \left( \sigma \vee \frac{T r}{2^k} \right) \wedge \frac{T(r + 1)}{2^k}.
\]

Then

\[
X_\tau - X_\sigma = \sum_{r,k} (X_{\tau_{r+1,k}} - X_{\sigma_{r-1,k}}) 1_{A_{r,k}}.
\]
Since \( A_{r,k} \) are mutually disjoint, we have
\[
\mathbb{E} \left( |X_r - X_\sigma|^q \right) = \mathbb{E} \left( \left| \sum_{r,k} (X_{\tau_{r+1,k}} - X_{\tau_{r-1,k}}) 1_{A_{r,k}} \right|^q \right) \\
= \mathbb{E} \left( \sum_{r,k} |X_{\tau_{r+1,k}} - X_{\tau_{r-1,k}}|^q 1_{A_{r,k}} \right) \\
\leq \sum_{r,k} \mathbb{E} \left( |X_{\tau_{r+1,k}} - X_{\tau_{r-1,k}}|^q \right)^{\frac{q}{p}} \mathbb{P}(A_{r,k})^{1-\frac{q}{p}}.
\]

Note that \( T(r - 1)2^{-k} \leq \sigma_{r-1,k} \leq T(r + 2)2^{-k} \). By (24),
\[
\mathbb{E} \left( |X_r - X_\sigma|^q \right) \leq \sum_{r,k} \left( 2^{p-1}C_{p,h,\theta} A_{r,k} \left( \frac{T}{2^{k-2}} \right)^{ph} \right)^{q/p} \mathbb{P}(A_{r,k})^{1-\frac{q}{p}} \\
\leq 2^k C_{p,h,\theta}^{q/p} A_{r,k}^{q/p} \sum_{r,k} \left( \frac{T}{2^{k-2}} \right)^{qh} \mathbb{P}(A_{r,k})^{1-\frac{q}{p}}. \tag{25}
\]

By the fact that \( \bigcup_{r=1}^{2^k-1} A_{r,k} \subseteq \{ |\tau - \sigma| > T2^{-k} \} \) and Chebyshev’s inequality,
\[
\sum_{r=1}^{2^k-1} \mathbb{P}(A_{r,k}) \leq \mathbb{P} \left( |\tau - \sigma| > T2^{-k} \right) \leq 2^{k\alpha} \mathbb{E} \left( \left( \frac{\tau - \sigma}{T} \right)^\alpha \right).
\]

By Jensen’s inequality,
\[
\sum_{r=1}^{2^k-1} \mathbb{P}(A_{r,k})^{1-\frac{q}{p}} \leq 2^k \left[ 2^{-k} \sum_{r=1}^{2^k-1} \mathbb{P}(A_{r,k}) \right]^{1-\frac{q}{p}} \\
\leq 2^{k\left[ q/p + (1-\frac{q}{p})\alpha \right]} \left[ \mathbb{E} \left( \left( \frac{\tau - \sigma}{T} \right)^\alpha \right) \right]^{1-\frac{q}{p}}. \tag{26}
\]

Therefore, by (25) and (26),
\[
\mathbb{E} \left( |X_r - X_\sigma|^q \right) \leq 2^q C_{p,h,\theta}^{q/p} A_{r,k}^{q/p} \sum_{k=1}^{\infty} \left( \frac{T}{2^{k-2}} \right)^{qh} \sum_{r=1}^{2^k-1} \mathbb{P}(A_{r,k})^{1-\frac{q}{p}} \\
\leq 4^q C_{p,h,\theta}^{q/p} A_{r,k}^{q/p} T^{qh} \sum_{k=1}^{\infty} 2^k \left[ q/p + (1-\frac{q}{p})\alpha - qh \right] \left[ \mathbb{E} \left( \left( \frac{\tau - \sigma}{T} \right)^\alpha \right) \right]^{1-\frac{q}{p}}.
\]

Since \( \alpha < \frac{h-1/p}{T^{q-1/p}} \), setting \( K_{q,\alpha} = 4^q \sum_{k=2}^{\infty} 2^k \left[ q/p + (1-\frac{q}{p})\alpha - qh \right] \) completes the proof.

**Definition 3.1.** \( \{ Y_t : t \in [0, T] \} \) be a random process. Let \( D : 0 = t_0 < \cdots < t_N = T \) be a finite subset of \([0, T]\). For any \( a, b \in \mathbb{R}, a < b, \) let
\[
T_0 = \inf \{ t \in D : Y_t < a \}, T_1 = \inf \{ t \in D : t > T_0, Y_t > b \}, \\
T_{2k} = \inf \{ t \in D : t > T_{2k-1}, Y_t < a \}, T_{2k+1} = \inf \{ t \in D : t > T_{2k}, Y_t > b \}, \quad k \geq 1.
\]
The up-crossing number $U_{a}^{b}(D)$ of $Y_{t}$ through $[a, b]$ sampled in $D$ is given by

\[ U_{a}^{b}(D) = \sup \{ k \geq 1 : T_{2k-1} \leq T \} . \]

And the up-crossing number $U_{a}^{b}$ of $Y_{t}$ through $[a, b]$ is defined as

\[ U_{a}^{b} = \sup_{D} U_{a}^{b}(D), \]

where $\sup_{D}$ is taken over all finite subsets $D$ of any countable dense subset of $[0, T]$.

By definition, one has

\[ \{ U_{a}^{b}(D) \geq k \} = \{ T_{2k-1} \leq T \}, \quad k \geq 1 \]

and

\[ \{ U_{a}^{b}(D) = k \} = \{ T_{2k-1} \leq T, T_{2k+1} = \infty \}, \quad k \geq 1. \]

For the up-crossing number $U_{a}^{b}(D)$ of a general random process $Y_{t}$, $t \in [0, T]$, we have the following elementary but useful result.

**Lemma 3.2.** With the same notation as in Definition 3.1, one has

\[ (b - a)1\{ U_{a}^{b}(D) \geq k \} \leq - (Y_{T} - Y_{T_{2(k-1)}})1\{ T_{2(k-1)} \leq T, T_{2k-1} = \infty \} + Y_{T_{2k-1}} - T_{2k-1}^{1} - T_{2(k-1)}^{1}, \]

for any $k \geq 1$.

**Proposition 3.1.** Let $D : 0 = t_{0} < \cdots < t_{N} = T$ be a finite subset of $[0, T]$, and let $U_{a}^{b}(D)$ be the up-crossing number of $X_{t}$ through $[a, b]$ sampled in $D$. Then, for any $0 < \delta < 1 - \frac{1}{p}$,

\[ \mathbb{E} \left( U_{a}^{b}(D)^{\delta} \right) < \frac{K_{\delta}}{b - a} T^{h}, \]

where

\[ K_{\delta} = 2 \left( C_{p,h,\theta}^{1/p} A_{p,h}^{1/p} + 4^{q} \left( 1 - 2^{-q(h-1)/p} + (1-q/p)^{\alpha} \right)^{-\frac{1}{\alpha}} \left( \frac{1}{1 - \alpha (1-q/p)} \right)^{1-\alpha(1-q/p)} C_{p,h,\theta}^{q/p} A_{p,h}^{q/p} \right), \]

and $q$ and $\alpha$ are any constants satisfying $\frac{1}{k-1/p} < q < 1/h$ and $\frac{1}{1-q/p} < \alpha < \frac{h-1/p}{1/q-1/p}$.

**Proof.** By Lemma 3.2 and Lemma 3.1

\[ \frac{b - a}{k-1} \mathbb{P} \left( U_{a}^{b}(D) \geq k \right) \leq \frac{1}{k-1} \mathbb{E} \left[ \sup \_{u,v \in [0,T]} |X_{u} - X_{v}| \mathbb{1}_{\{ T_{2(k-1)} \leq T, T_{2k-1} = \infty \} } \right] + \frac{1}{k-1} \mathbb{E} \left( Y_{T_{2k-1}} - Y_{T_{2(k-1)}} \right), \]

\[ \leq \mathbb{E} \left[ \sup \_{u,v \in [0,T]} |X_{u} - X_{v}| \mathbb{1}_{\{ T_{2(k-1)} \leq T, T_{2k-1} = \infty \} } \right] + \frac{1}{k-1} \mathbb{E} \left( Y_{T_{2k-1}} - Y_{T_{2(k-1)}} \right), \]

\[ \leq \mathbb{E} \left[ \sup \_{u,v \in [0,T]} |X_{u} - X_{v}| \mathbb{1}_{\{ T_{2(k-1)} \leq T, T_{2k-1} = \infty \} } \right] + \frac{1}{k-1} K_{q,\alpha} \mathbb{E} \mathbb{1}_{\{ T_{2k-1} \leq T, T_{2(k-1)} \leq T \}^{\alpha}} \left( \frac{T_{2k-1} - T_{2(k-1)} \wedge T}{T} \right)^{1-q/p}, \]

where $0 < q \leq p$, $0 < \alpha < \frac{h-1/p}{1/q-1/p}$, and $K_{q,\alpha} = 4^{q} \left( 1 - 2^{-q(h-1)/p} + (1-q/p)^{\alpha} \right)^{-1}$. Since $\{ T_{2(k-1)} \leq T, T_{2k-1} = \infty \}$,
\( k \geq 1 \), are mutually disjoint, we have

\[
(b - a) \sum_{k=1}^{\infty} \frac{1}{k^{1-\delta}} \mathbb{P} \left( U_a^b(D) \geq k \right) \leq E \left[ \sup_{u,v \in [0,T]} |X_u - X_v| \right] + K_{q,\alpha} C_{p,h,\sigma} q/p T h \sum_{k=1}^{\infty} \frac{1}{k^{1-\delta}} \mathbb{E} \left( \left[ T_{2k-1} \wedge T - T_{2(k-1)} \wedge T \right] / T \right)^{\alpha (1-q/p)}.
\]

(27)

Since \( 0 < \delta \leq 1 - \frac{1}{h} \), one may choose \( q < p \) and then \( \alpha \) such that \( \frac{\delta}{h-1/p} < q < 1/h \) and \( \frac{\delta}{1/q-1/p} < 1 \). By (27) and Hölder’s inequality,

\[
(b - a) \sum_{k=1}^{\infty} \frac{1}{k^{1-\delta}} \mathbb{P} \left( U_a^b(D) \geq k \right) \leq E \left[ \sup_{u,v \in [0,T]} |X_u - X_v| \right]^{1/p} + K_{q,\alpha} C_{p,h,\sigma} q/p T h \sum_{k=1}^{\infty} \frac{1}{k^{1-\delta}} \mathbb{E} \left( \left[ T_{2k-1} \wedge T - T_{2(k-1)} \wedge T \right] / T \right)^{\alpha (1-q/p)}

\leq C_{p,h,\sigma}^{1/p} \sum_{k=1}^{\infty} \frac{1}{k^{1-\delta}} \mathbb{E} \left( \left[ T_{2k-1} \wedge T - T_{2(k-1)} \wedge T \right] / T \right)^{\alpha (1-q/p)}

\times E \left( \left[ T_{2k-1} \wedge T - T_{2(k-1)} \wedge T \right] / T \right)^{\alpha (1-q/p)}.
\]

(28)

It follows from \( \alpha > \frac{\delta}{1-\delta} \). Therefore, \( \zeta \left( \frac{\delta}{1-\delta} \right) = \sum_{k=1}^{\infty} k^{-\frac{1-\delta}{1-\delta}} < \infty \). Note that the sequence \( T_j \wedge T, j \geq 0 \), is increasing and bounded by \( T \). We deduce that

\[
\sum_{k=1}^{\infty} E \left( \left[ T_{2k-1} \wedge T - T_{2(k-1)} \wedge T \right] / T \right) \leq E \left( \lim_{k \to \infty} \frac{T_{2k} \wedge T - T_0 \wedge T}{T} \right) \leq 1.
\]

Now (28) and the above yield that

\[
(b - a) \sum_{k=1}^{\infty} \frac{1}{k^{1-\delta}} \mathbb{P} \left( U_a^b(D) \geq k \right) \leq C_{p,h,\sigma}^{1/p} \sum_{k=1}^{\infty} \frac{1}{k^{1-\delta}} \mathbb{E} \left( \left[ T_{2k-1} \wedge T - T_{2(k-1)} \wedge T \right] / T \right)^{\alpha (1-q/p)} + K_{q,\alpha} C_{p,h,\sigma} q/p T h.
\]

(29)

Since

\[
(k + 1)^{\delta} - k^{\delta} = k^{\delta} \left[ \left( 1 + \frac{1}{k} \right)^{\delta} - 1 \right] < k^{\delta} \frac{1}{k^{1-\delta}} \leq \frac{2}{(k+1)^{1-\delta}},
\]
for any $0 < \delta < 1$, summing by parts, we deduce from (29) that

$$E\left(U^b_a(D)^\delta\right) = \sum_{k=1}^{\infty} k^\delta \mathbb{P}\left(U^b_a(D) = k\right)$$

$$= \sum_{k=1}^{\infty} (k^\delta - (k-1)^\delta) \mathbb{P}\left(U^b_a(D) \geq k\right)$$

$$\leq 2 \sum_{k=1}^{\infty} \frac{1}{k^{1-\delta}} \mathbb{P}\left(U^b_a(D) \geq k\right)$$

$$\leq \frac{2}{b-a} \left( C_{p,h,\delta}^{1/p} A_{p,h}^{1/p} + K_{\delta,\alpha} \zeta \left( \frac{1-\delta}{1-\alpha(1-q/p)} \right)^{1-\alpha(1-q/p)} C_{p,h,\delta}^{q/p} A_{p,h}^{q/p} \right) T^h.$$  

This completes the proof.

By Fatou’s lemma and Proposition 3.1, one has the following

**Theorem 3.1.** Let $U^b_a$ be the up-crossing number of $X_t$ through $[a, b]$. Then, for any $0 < \delta < 1 - \frac{1}{ph}$,

$$E\left[(U^b_a)^\delta\right] < K_\delta \frac{b-a}{T^h},$$

where the constant $K_\delta$ is the same as in Proposition 3.1. In particular, $U^b_a < \infty$ a.s.

**References**

[1] R. Paley and A. Zygmund, On some series of functions (1), In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 26, pages 337-357. Cambridge University Press, 1930.