Introduction

Obesity has long been considered to be an affliction of the affluent world. The World Health Organisation (WHO) declared obesity as a ‘global epidemic’ in 1997 [1]. However since then the ‘globesity’ epidemic has spread to developing countries as well. The third National Family Health Survey in India showed a staggering increase of 25% in the rates of obesity amongst Indian women [2-4]. High pre-pregnancy body mass index (BMI) as well as high BMI in the first trimester has consistently been associated with adverse maternal and perinatal outcomes [5-12]. However in the developing world, obstetricians see majority of their patients for the first time in the second trimester, thus missing out on an important predictor of outcome of pregnancy. This study was undertaken to evaluate whether BMI estimation in the second trimester is predictive of adverse maternal and neonatal outcomes and whether it can be used as a clinically relevant screening tool.

Materials and methods

This retrospective study was conducted at a tertiary care teaching hospital from May 2012 to April 2015. Low risk women with singleton pregnancies who had presented to the hospital for the first time in their second trimester of pregnancy were recruited. The study was approved by the Hospital Ethical Committee. An informed consent had been taken from all women who were enrolled. All women had their height and weight taken at the booking visit. Exclusion criteria were advanced maternal age, pregnancy conceived by in vitro fertilization (IVF) and pre-existing medical conditions like hypertension, diabetes, heart disease, etc. A total of 1768 women fitted the inclusion criteria. BMI was calculated as weight in kilograms divided by height in meters squared. All patients were followed up as per hospital protocol.
Second Trimester Body Mass Index (BMI) as a Predictor of Adverse Maternal and Perinatal Outcome

and maternal and perinatal outcomes noted. Since there are no defined cut offs for BMI in pregnancy, a nomogram was prepared for the study population. BMI less than 5th centile (2SD below mean) was taken as ‘underweight’ and BMI more than 95th centile (2SD above mean) was taken as ‘obese’. Both maternal and perinatal outcomes were noted for the two extremes. Maternal outcomes that were studied included development of gestational hypertension and pre eclampsia, gestational diabetes, preterm delivery (less than 34 weeks and less than 37 weeks), caesarean delivery and postpartum haemorrhage. Gestational hypertension was defined as systolic blood pressure (BP) of more than 140 mm Hg and diastolic BP of more than 90 mm Hg on two separate occasions 4 hours apart, first noted after 20 weeks of gestation. Preeclampsia was defined as gestational hypertension with proteinuria (>+2 urine albumin on dipstick or >300 mg/litre protein in 24 hour urine sample). Gestational diabetes (GDM) was diagnosed as per Carpenter and Coustner criteria after 100 gram oral glucose load given between 24 to 26 weeks gestation. Perinatal outcomes included congenital anomaly in the fetus, prematurity (less than 34 weeks and less than 37 weeks), low birth weight (less than 2500 grams), macrosomia (more than 4000 gm) and perinatal mortality.

Statistical Analysis

Data were analyzed using SPSS version 17 (IBM, Armonk, NY, USA) and Microsoft Excel (Redmond, WA, USA). A p value of <0.05 was considered statistically significant. Logistic regression models were used to calculate the odds ratios (ORs) with the group of women with BMI between 5th and 95th centiles serving as the reference group.

Results

The mean BMI and 5th and 95th centiles were calculated for the study population and plotted to make a gestational age specific nomogram (Figure 1). BMI appears to remains almost stable throughout the second trimester showing a slight increase after 24 weeks reflecting the physiological weight gain in pregnancy. The study population was thus divided into three groups: group I with BMI less than 5th centile who were considered ‘underweight’, group II with BMI between the 5th and 95th centile who were considered ‘normal’ weight and group III including those with BMI above the 95th centile who were categorized as ‘overweight’.

The demographic data for each of these groups is summarised in Table 1. The maternal and perinatal complications for women in each group are given in Table 2. Odds ratios were calculated for each complication as a function of BMI and are shown in Figure 2.

Table 1: Demographic data of study population (n = 1768).

| Parameter                     | Group I (BMI<5th centile) | Group II (BMI 5th – 95th centile) | Group III (BMI>95th centile) |
|-------------------------------|---------------------------|-----------------------------------|-----------------------------|
| Number (%                     | 89 (5.03)                 | 1583 (89.54)                      | 96 (5.43)                   |
| Age (years, mean ± SD)        | 24.01 (±3.32)             | 24.03 (±2.94)                     | 26.17 (±3.00)               |
| Parity (Median)               | 1                         | 1                                 | 1                           |
| BMI (kg/m², mean ± SD)        | 17.85 (±0.89)             | 23.21 (±2.94)                     | 34.46 (±3.00)               |
| Per capita income (mean ± S D)| 1293.01 (±3.32)           | 1443.55 (±3.38)                   | 1476.88 (±4.25)             |
| Birth weight (gm, mean ± SD)  | 2585.01 (±978.43)         | 2731.48 (±1229.37)                | 2990.61 (±1321.83)          |

Figure 1: Mean gestational age specific BMI (+ 2SD) of the study population.

Figure 2: Odds ratio of maternal and perinatal outcome as a function of BMI.

There was a significant increase in the development of gestational hypertension and preeclampsia in women with BMI above the 95th centile. High BMI was also associated with a significant increase in the development of gestational diabetes. Women in the ‘overweight’ category had significantly more infants who were large for gestational age. Infants born to women with high BMI were more likely to have Apgar scores of less than 7 at 5 minutes; although this difference did not attain statistical significance. There was no significant increase in the perinatal mortality in either group I or group III. There was a significant association between low birth weight and women with BMI less than the 5th centile. There was no significant correlation between preterm delivery and either extreme of BMI.
Although increased risk of postpartum PIH/Preeclampsia was significant in overweight and obese women respectively [10]. We also found that neonates born to overweight women were 264 (2.5) times higher in overweight and obese women respectively [10]. There was a significant increase in gestational diabetes in the overweight group in our study population. This is consistent with previous studies correlating pre-pregnancy BMI. We did not have information on the incidence of shoulder dystocia in our study population; however previous studies have reported increased risk of shoulder dystocia in obese women [11] mainly attributable to macrosomia. The percentage of caesarean deliveries in our study was higher in the high BMI category; however it did not reach statistical significance. Studies consistently report increased caesarean section rates for obese women [11,12]. Of note are the low caesarean section rates across all categories which probably reflect the rigorous check on unindicated caesarean deliveries in a teaching hospital. (Can we write this sentence?) Although increased risk of postpartum haemorrhage is reported in obese mothers [12], we did not find an increase in the rates of PPH in our high BMI group. This might be due to the low absolute caesarean section rate in group III. We also found that women with low BMI were at increased risk of having low birth weight babies. This is consistent with previous studies correlating low BMI at conception with LBW [13]. The rates of preterm delivery, however, were similar in all three groups. This is in contrast with previous studies reporting an increased risk of preterm delivery both in underweight [14,15] as well as obese women [11]. A recent systematic review and meta-analysis concluded that there is an overall increase in the risk of preterm delivery including iatrogenic preterm delivery in obese women [16]. All the above findings remained same when data was analysed using 10th centile and 90th centile as cut-offs.

Developing countries are struggling with the dual problems of under-nutrition and over-nutrition both of which have an adverse impact on obstetric outcomes. Our study shows that even when
women present for the first time in the second trimester, BMI can be a useful clinical parameter for triaging women into ‘high risk’ category thus allowing appropriate resource allocation. Thus women in the overweight category would benefit from increased surveillance for development of hypertension. This group of women would also be suitable for oral glucose tolerance test for screening as well as diagnosing gestational diabetes. Conversely, women in the ‘underweight’ group would be candidates for dietary advice and help from the social welfare services which would selectively concentrate in providing nutritional supplements to this group of women.

Conclusion

The present study highlights that both ends of the spectrum of BMI are correlated with adverse outcomes in pregnant women. Hence it is important to record maternal height and weight even when they present in the second trimester. This simple parameter which does not need any specialised equipment can easily triage women. This would translate into limiting frequent hospital visits and monitoring to women who are deemed ‘high risk’. This will ensure optimum utilization of resources. However since there are no defined cut offs, local population nomograms and cut offs will need to be established.

References

1. World Health Organization (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. WHO Technical Report Series No. 894. World Health Organization, Geneva, Switzerland.
2. Garg C, Khan SA, Ansari SH, Garg M (2010) Prevalence of obesity in Indian women. Obes Rev 11(2): 105-108.
3. International Institute for Population Sciences & ORC Macro (2000) National Family Health Survey India 1998/99. Andhra Pradesh International Institute for Population Sciences, Mumbai, India, pp. 1-539.
4. International Institute for Population Sciences & ORC Macro (2006) Third National Family Health Survey, IIPS; Mumbai, India.
5. Bodnar LM, Catov JM, Klebanoff MA, Ness RB, Roberts JM (2007) Prepregnancy body mass index and the occurrence of severe hypertensive disorders of pregnancy. Epidemiology 18(2): 234-239.
6. Samuels-Kalow ME, Funai EF, Buhimschi C, Norwitz E, Perrin M, et al (2007) Prepregnancy body mass index, hypertension, and long-term maternal mortality. Am J Obstet Gynecol 197(5): 490.e1-490.e6.
7. Doherty DA, Magann EF, Francis J, Morrison JC, Newnham JP (2006) Prepregnancy body mass index and pregnancy outcomes. Int J Gynaecol Obstet 95(3): 242-247.
8. Callaway LK, Prins JB, Chang AM, McIntyre HD (2006) The prevalence and impact of overweight and obesity in an Australian obstetric population. Med J Aust 184(2): 56-59.
9. Athukorala C, Rumbold AR, Willson KJ, Crowther CA (2010) The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth 10: 56.
10. Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, et al (2007) Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 30(8): 2070-2076.
11. Magann EF, Doherty DA, Sandlin AT, Chauhan SP, Morrison JC (2013) The effects of an increasing gradient of maternal obesity on pregnancy outcomes. Aust NZ J Obstet Gynaecol 53(3): 250-257.
12. Bhattacharya S, Campbell DM, Liston WA, Bhattacharya S (2007) Effect of Body Mass Index on pregnancy outcomes in nulliparous women delivering singleton babies. BMC Public Health 24(7): 168.
13. Ehrenberg HM, Dierker LRN, Milluzzi C, Mercer BM (2003) Low maternal weight, failure to thrive in pregnancy and adverse pregnancy outcomes. Am J Obstet Gynecol 189(6): 1726-1730.
14. Khashan AS, Kenny LC (2009) The effects of maternal body mass index on pregnancy outcome. Eur J Epidemiol 24(1): 697-705.
15. Chung JH, Melspot KA, Gilbert WM, Caughay AB, Walker CK, et al (2012) Increasing pre-pregnancy body mass index is predictive of a progressive escalation in adverse pregnancy outcomes. J Matern Fetal Neonatal Med 25(9): 1635-1639.
16. McDonald SD, Han Z, Mulla S, Beyene J (2010) Overweight and obesity in mothers and risk of preterm birth and low birth weight infants: systematic review and meta-analyses. BMJ 341: c3428.
17. Durie DE, Thornburg LL, Glantz JC (2011) Effect of Second-Trimester and Third-Trimester Rate of Gestational Weight Gain on Maternal and Neonatal Outcomes. Obstet Gynecol 118(3): 569-575.
18. WHO expert consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403): 157-163.
19. Deurenberg P, Yap M, van Staveren WA (1998) Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 22(12): 1164-1171.