Cost-effectiveness of whole-exome sequencing in progressive neurological disorders of children

Juho Aaltio, MDa *, Virva Hyttinen, PhDbe, Mika Kortelainen, PhDbd, Gerardus W.J. Frederix, PhDedef, Tuula Lönnqvist, MD, PhDg, Anu Suomalainen, MD, PhDah, Pirjo Isohanni, MD, PhDIg

Affiliations: aResearch Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland; bVATT Institute for Economic Research, Helsinki, Finland; cDepartment of Health and Social Management, University of Eastern Finland, Kuopio, Finland; dDepartment of Economics, Turku School of Economics, Turku, Finland; eDepartment of Genetics, University Medical Center Utrecht, The Netherlands; fJulius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands; gDepartment of Child Neurology, Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; hNeuroscience Center, University of Helsinki, Helsinki, Finland

*Contributed equally as co-first authors

Address correspondence to: Juho Aaltio, Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland. P.O. Box 63, 00014 University of Helsinki, juho.aaltio@helsinki.fi, +358 91 912 5000

Short title: WES cost-effectiveness in children’s encephalopathies

Conflicts of Interest Disclosures: The authors have no financial relationships relevant to this article to disclose.

Funding: This work was supported, as part of the Neurogenomics Finland consortia project, was supported by the pHealth academy program of the Academy of Finland (sub grant number 292584). The funding source had no role in conducting this study.

Abbreviations: WES – Whole-Exome Sequencing, ICER – Incremental Cost-Effectiveness Ratio, NGS – Next-Generation Sequencing, WGS – Whole-Genome sequencing, HUS – Hospital District of Helsinki and Uusimaa, IQR – Interquartile Range, CI – Confidence Interval, SD – Standard Deviation
Abstract

Objectives: To clarify the diagnostic utility and the cost-effectiveness of whole-exome sequencing (WES) as a routine early-diagnostic tool in children with progressive neurological disorders.

Methods: Patients with infantile-onset severe neurological diseases or childhood-onset progressive neurological disorders were prospectively recruited to this WES study, in the pediatric neurology clinic at Helsinki University Hospital during 2016–2018. A total of 48 patients underwent a singleton WES. A control group of 49 children underwent traditional diagnostic examinations and were retrospectively collected from the hospital records. Their use of health care services, related to the diagnostic process, was gathered. Incremental cost-effectiveness ratio (ICER) per additional diagnosis was calculated from the health care provider perspective. Bootstrapping methods were used to estimate the uncertainty of cost-effectiveness outcomes.

Results: WES provided a better diagnostic yield (38%) than diagnostic pathway that did not prioritize WES in early diagnosis (25%). WES outperformed other diagnostic paths especially when made early, within one year of first admission (44%). Cost-effectiveness in our results are conservative, affected by WES costs during 2016-18.

Conclusions: WES is an efficient and cost-effective diagnostic tool that should be prioritized in early diagnostic path of children with progressive neurological disorders. The progressively decreasing price of the test improves cost-effectiveness further.

Keywords: Whole-exome sequencing, WES, Cost-effectiveness, Encephalopathy
1 Introduction

The Online Mendelian Inheritance of Man database recognizes over 4000 clinical synopses with neurological involvement, out of which over 3000 with a confirmed molecular basis. The genetic complexity is significant: the same disease can be caused by variants in several different genes, for example Leigh disease \(^1\) can be due to variants in more than 75 different genes, and even a single variant may cause variable symptoms in different patients such as in X-linked adrenoleukodystrophy \(^2\). The development of next-generation sequencing (NGS) methods for the human genome dramatically improved the diagnostic approaches \(^3\), sometimes providing targeted approaches for treatment \(^4\). In addition, early genetic diagnosis provides tools for counseling \(^5\) and guidance for reproductive planning \(^6\).

Whole-exome sequencing (WES) provides data from protein-coding genes of the genome \(^7\). Sequence analysis of all the genes, instead of single candidate genes, reduces the time required for identification of gene defects exponentially, and enables discovery of novel disease-causing genes. Method development has also progressively reduced the costs of the analysis, making it feasible for routine diagnostics \(^7\). However, health care providers still may consider NGS methods expensive for clinical practice \(^8\), which calls for cost-effectiveness studies to support decision-making.

The improved and efficient diagnostic yield as a consequence of NGS-analysis might result in better health outcomes or more efficient use of health care services \(^3\). A recent meta-analysis found that the pooled diagnostic utility, meaning the rate of definitive diagnoses achieved, for WES was 36\% in children with suspected genetic diseases \(^9\). However, current studies on cost-effectiveness and economic outcomes of WES are limited to few studies \(^3\). In a diagnostic work up to reach a diagnosis, the largest cost drivers are found to be the costs of genetic tests and costs of WES \(^10\), but
if WES is used as a near first-line test in a selected cohort of patients, overall budget increase may
not be required.

Here, we report diagnostic utility and cost-effectiveness of WES as a routine diagnostic tool in
progressive neurological disorders of children.

2 Materials and methods
2.1 Study population and data collection
Patients with infantile-onset severe neurological disease or childhood-onset progressive neurological
disorder were prospectively recruited to the WES study at Children’s Hospital at Helsinki University
Hospital, a tertiary care hospital, during the years 2016–2018. Exclusion criteria were non-
progressive intellectual disability or autism spectrum disorder, family history of a known genetic
disorder, or otherwise clinically identifiable genetic disorder. In total, 48 non-consanguineous
pediatric patients underwent the singleton WES as a routine diagnostic test (“WES group”). Short
clinical descriptions, including genetic testing before recruitment to the study, are presented in
Appendix 1.

The control group included 49 children, who suffered from similar disorders as the WES group, but
had often undergone some conventional diagnostic tests, such as metabolic investigations, Sanger
sequencing, NGS gene panels, and karyotyping, but not WES. They were retrospectively collected
from the hospital records, with earliest investigations for one patient starting in 2002. The data of
study participants was collected until date of diagnosis or end of observation period in November
2018. Observation periods for the groups, 1,315 days (median 897; IQR 373–1,973) for prospective
patients and 1,453 days (median 1,139; IQR 684–2,200) for controls, did not differ significantly
(p=0.4380) from each other.
2.2 Patient cohort

The median age of study subjects was 2.4/0.9 years (range 0-16/0-17 years) at the beginning of the first diagnostic visit, and 63%/51% were male among WES group and control group, respectively (Table 1). There were statistically significant differences with residence district between WES and control groups (p<0.001). The collection of data was more comprehensive concerning clinical visits for the control group, who were more likely to live in our hospital district.

Both patient cohorts consisted of heterogeneous phenotypes, with the majority affected by encephalopathy (54%/61%) and neuromuscular disorders (31%/29%). Additionally, patients undergoing WES were further characterized by how many years of investigations they had had in Children’s Hospital before being recruited to this study. Patients getting WES during their first year of investigations (48%) constitute our early WES patient group.

The use of health care services related to the diagnostic path of study participants was gathered retrospectively from patient records. The data consisted of all diagnostic health care visits and investigations including hospitalizations, clinical visits, laboratory tests, imaging, and genetic testing. Only events considered relevant for the diagnostic process were included, and the events were reviewed individually by study physicians. In addition, gender and age at the first visit in the hospital, the date of diagnosis and timing of WES along the diagnostic path were recorded.

2.3 Whole-exome sequencing

WES was performed using exome capture by Agilent SureSelect V5 kit and Illumina MiSeq sequencing at the Finnish Institute of Molecular Medicine (FIMM) as described in Sainio et al. (11). A customized exome analysis pipeline (11) was used to analyse the genetic data, and the gene
findings were compared to phenotype with study physicians and thus to reach a definitive diagnosis. Sanger sequencing was used as an additional independent method to confirm findings and segregation in patient and family samples.

2.4 Diagnostic yield
Effectiveness outcome was diagnostic yield, which was calculated as a proportion of definitive diagnoses to the total number of patients in both groups. It was also calculated separately for the different time-subgroups.

2.5 Cost-effectiveness analysis
Economic analysis was performed from health care provider (hospital) perspective. Costs of laboratory tests, imaging and genetic tests were obtained from the hospital (Hospital District of Helsinki and Uusimaa, HUS) and diagnostic laboratory documentation (tests performed outside the hospital). Clinical visit costs were defined according to the hospital district’s outpatient product costs for specialized somatic health care visits. The costs for hospitalization periods were determined from the estimates by Finnish National Institute for Health and Welfare for the unit costs of social and health care in 2011 (12). The costs of non-WES diagnostic tests in 2019 were converted to 2018 prices in euros using the national health and social care price index by the Association of Finnish Local and Regional Authorities (13) and currency converter (14), or the current price was used, e.g. for diagnostic tests performed outside the hospital. WES price, including all technical and analytical costs including staff salaries, was estimated to be 1,375 € per singleton WES according to the commercial price used in Helsinki hospital district’s laboratory (HUSLAB) in November 2019.
Baseline characteristics of children in WES group and control group were compared by cross tabulation and chi-square and Fisher’s exact tests. Continuous variables were analysed by Wilcoxon rank-sum test. Mean diagnostic costs per patient were calculated with standard deviations, medians and 95% confidence intervals (CI). In addition, mean costs per diagnosis were calculated by dividing total costs by the total number of diagnoses in the groups.

In the cost-effectiveness analysis incremental cost-effectiveness ratio (ICER = ∆Costs/(∆Diagnostic yield)) per additional diagnosis was calculated by dividing the difference in mean costs per patient between WES and control groups by the difference in diagnostic yield (diagnosis rate) between the groups. Mean differences of the total costs per patient between WES and control groups were analyzed using Wilcoxon rank-sum test. Bootstrapping simulation with 1,000 replications was used to estimate the uncertainty of cost-effectiveness analysis. Bootstrapping resamples the data with replacement to building an empirical estimate e.g. of the mean costs or ICER of the sampling data ((15), p. 299). The early-WES subgroup was analysed separately. Since information on patient clinical visits was not comprehensive for the exome group and thus more favourable for the group, the additional analyses were done without clinical visit costs, with a third analysis with all study subjects.

Statistical significance was set at p-value <0.05. All analyses were made using Stata 15.1 (Stata, College Station, TX) except for bootstrap simulations, which were performed in Microsoft Excel.

2.6 Ethics

Ethical approval for the study was granted by the coordinating ethical committee of The Hospital District of Helsinki and Uusimaa. Informed consents were gathered from the parents of child participants.
3 Results

3.1 Diagnostic yield

Definitive diagnosis was obtained for 18/48 patients (38%) in the WES-group and for 12/49 patients (25%) in the control group (p=0.122). The “early WES patients” had a slightly higher diagnostic yield with 10/23 patients diagnosed (43%).

3.2 Costs and cost-effectiveness

Mean cost per diagnosis was lower in the WES group (25,433€ vs. 40,467€). Mean costs per patient were 9,537€ (range 3,387-27,308€) in the WES group and 9,910€ (2,088-23,310€) in the control group (Table 2). WES yielded more definitive diagnoses with slightly lower costs and could therefore be considered dominant over standard care. However, the cost difference was not statistically significant (p=0.5302).

Main cost drivers were genetic tests (32%, including the price of WES) and clinical visits (26%) in the WES group. In the control group, the largest cost drivers were clinical visits (33%) and genetic tests (26%). Control patients had on the average 3.0 genetic tests (range 0-7), whereas patients in the WES group had had 1.4 tests (range 0-8) before inclusion to the study. For patients that had WES done early after manifestation, the mean was 0.6 (range 0-3). Prior to the study, 40% of the patients in the WES group had been tested for chromosomal anomalies, 42% had at least one gene analysed by Sanger sequencing, and 19% had a gene panel analysis done (corresponding to 73%, 65%, and 31% for controls). In the WES group, the mean number of clinical visits were 4.9 (ranging 1–17) and in the control group, 6.5 visits (1–13) (p<0.01).
Additional analyses (Table 3) were done without clinical visit costs. When only early WES-patients were included in the treatment group, WES was dominant, meaning potentially cost-effective, as WES had a greater diagnostic yield with lower costs (mean cost per diagnosis 5,502€ vs. 6,674€). The cost difference was not statistically significant (p=0.3309).

A third analysis showed that mean costs per patient were slightly higher in the WES group than in the control group if clinical visit costs were not included. Still, cost-effectiveness analysis showed that WES yielded the incremental cost of 2,847€ per one additional diagnosed patient.

4 Discussion

This study evaluates the diagnostic utility and cost-effectiveness of WES as a routine diagnostic tool in pediatric patients with progressive neurological disorders. Our results show that WES provides better diagnostic yield (37.5 vs. 24.5%) compared to conventional diagnostic path utilizing clinical diagnostic means complemented with gene panel testing. First-year “early-WES” was clearly most successful (43%). Our diagnostic yield in the WES group is in line with a recently published meta-analysis of children with suspected genetic diseases (9). Considering patients that were recruited to the study even after three years of prior investigations (31%), who had been examined with a large set of standard diagnostic tools, WES resulted in previously unachievable diagnoses for four out of fifteen patients.

We chose to collect full costs of both WES and conventional diagnostic path, to elucidate the full costs related to the examinations. Previous studies have not used a similar control group of patients (16). Many of the previous studies were modeled with diagnostic scenarios in the same study cohort (17-21) or using a hypothetical WES trajectory (22). In addition, only a few studies were conducted in Europe (10, 22). Also, previous studies mainly investigated cost-effectiveness of WES in pediatric
patients with any suspected monogenic disorders (6, 19-21) or with specific disorders, such as epilepsy (17) or muscle disorders (18). The finding that clinical visits and genetic tests were the main drivers of costs in both study groups are in line with previous studies, in pediatric cohorts (10) and mixed cohorts of children and adults (23) with complex neurological problems. Most of the previous studies have reached incremental cost savings per additional diagnosis when WES was used as a first-line test (18, 19, 21). In a population-based study by Howell et al. (17) WES also yielded cost savings per additional diagnosis only when WES was targeted early and metabolic testing was limited compared to standard care without WES in patients with severe infantile epilepsies. In other pathways, including metabolic testing, repeated magnetic resonance imaging or skin and muscle biopsies before WES, the incremental cost per additional diagnosis was $3,250–8,559. One of the few European studies (22) evaluated that WES (trio) resulted in an ICER of 8,950 € per additional diagnosis among children with complex pediatric neurological disorders. In our study, from the hospital perspective, singleton-WES yielded incremental cost of 2,847 € per one additional diagnosis compared to traditional diagnostic path (without clinical visits), whereas WES performed during first year of investigations caused cost-savings.

Previously, health status or quality of life have been discussed not to necessary be the only outcome measures in health economic evaluations of genetic testing, as genetic information itself is valued and can influence one’s ability to make an informed decision (24). However, there is no single threshold for interpreting the ICER result of our study, so cost-effectiveness depends on the payer’s willingness to pay for one additional diagnosis. Further studies remain to be performed to estimate such willingness to pay and to outline whether payers are eager to reimburse on such outcome measures. The importance of genetic testing cannot be over-emphasized, as it provides considerable personal benefit by ending diagnostic examinations, offering exact genetic diagnosis and counseling, providing prognosis, and sometimes directing therapy decisions.
The strength of this study is a prospective cohort study design, which allowed investigation of WES as a routine diagnostic tool. In addition, the study includes a retrospectively collected control group of patients who underwent traditional diagnostic tests. However, this study also has limitations. First, living district may present a selection bias and second, the sample size is relatively small. Diagnostic yield in different studies varies based on how well the original patient population was preselected, and directly affects cost-effectiveness. The diagnostic yield could have increased if trio-analysis had been implemented. However, in WES-studies often yields from 30-40% are achieved, pointing to the value of the diagnostic tool. In a benchmark meta-study of children with heterogeneous suspected genetic conditions, diagnostic yield for singleton-WES was found to be 26.5% (95% CI: 12.9-42.9) across studies, suggesting this range of yield to be characteristic for child manifestations (25). Our study’s sample size, limited due to financial capacity to do WES, potentially also widened the confidence intervals of the bootstrapped results. Third, as the purpose of the study was to clarify the costs of early WES analysis, this sample is a selected subsample. Last, infantile encephalopathies and progressive neurological disorders of childhood are a clinically heterogeneous group of patients, and tour-de-force of examinations are often initiated to gain a specific diagnosis increasing the non-WES diagnostic costs. Similar cost-effectiveness studies for different kinds of patient groups would be informative.

The results are highly interesting, as our study group was clinically broadly defined – progressive neurological disorder of childhood – and genetically heterogeneous. We propose that WES could be used in first-line diagnosis of undefined progressive neurological disorders of children, as a third of such patients would obtain a diagnosis directly, and the care could be targeted based on the specific disease. The development in NGS methods and analysis, and progressively decreasing price of WES makes the method highly valuable in diagnostic path of children. In future studies, economic
evaluations from the societal perspective including also costs after WES should be conducted; a recent paper (26) finds that diagnosis-related physician consultations do not decline after a negative WES. In addition, the cost-effectiveness should be studied based on other more generic effectiveness measures, such as quality adjusted life years (QALYs).
References

1. Lake N, Compton A, Rahman S, Thorburn D. Leigh syndrome: One disorder, more than 75 monogenic causes. Annals of Neurology. 2015;79(2):190-203.

2. Kemp S, Pujol A, Waterham H, van Geel B, Boehm C, Raymond G et al. ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: Role in diagnosis and clinical correlations. Human Mutation. 2001;18(6):499-515.

3. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med. 2018;20(10):1122-30.

4. Grosse SD, Wordsworth S, Payne K. Economic methods for valuing the outcomes of genetic testing: beyond cost-effectiveness analysis. Genet Med. 2008;10(9):648-54.

5. Bourchany A, Thauvin-Robinet C, Lehalle D, Bruel AL, Masurel-Paulet A, Jean N, et al. Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses. Eur J Med Genet. 2017;60(11):595-604.

6. Stark Z, Schofield D, Martyn M, Rynehart L, Shrestha R, Alam K, et al. Does genomic sequencing early in the diagnostic trajectory make a difference? A follow-up study of clinical outcomes and cost-effectiveness. Genet Med. 2019;21(1):173-80.

7. Frank M, Prenzler A, Roland E, Graf von der Schulenburg JM. Genome sequencing: a systematic review of health economic evidence. Health Economics Review. 2013;3(1):29.

8. van Nimwegen KJM, van Soest RA, Veltman JA, Nelen MR, van der Wilt GJ, Vissers LE, et al. Is the $1000 Genome as Near as We Think? A Cost Analysis of Next-Generation Sequencing. Clin Chem. 2016;62(11):1458-64.

9. Clark MM, Stark Z, Farnaes L, Tan TY, White SM, Dimmock D, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom Med. 2018;3:16.

10. Sagoo GS, Norbury G, Mohammed S, Kroesen M. Whole-exome sequencing in clinical genetics: A health economic evaluation. Cambridge: PHG Foundation. 2017.

11. Sainio MT, Valipakka S, Rinaldi B, Lapatto H, Paetau A, Ojanen S, et al. Recessive PYROXD1 mutations cause adult-onset limb-girdle-type muscular dystrophy. J Neurol. 2019;266(2):353-60.

12. Kapiainen S, Väisänen A, Haula T. Unit costs in social and health care in Finland in 2011. Report 3/2014. 2014 [Available from: http://www.julkari.fi/bitstream/handle/10024/114683/THL_RAPO3_2014_web.pdf?sequence=1.

13. The Association of Finnish Local and Regional Authorities: Kuntatalouden indeksijä (municipal economy indexes); 2019 [Available from: https://www.kuntaliitto.fi/asiantuntijapalvelut/talous/kuntataloudn-indeksjaj

14. OANDA. Currency converter 2019 [Available from: https://www1.oanda.com/currency/converter.

15. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the Economic Evaluation of Health Care Programmes. Oxford: Oxford University Press. 2015.

16. Smith HS, Swint JM, Lalani SR, Yamal JM, de Oliveira Otto MC, Castellanos S, et al. Clinical Application of Genome and Exome Sequencing as a Diagnostic Tool for Pediatric Patients: a Scoping Review of the Literature. Genet Med. 2019;21(1):3-16.

17. Howell KB, Eggers S, Dalziel K, Riseley J, Mandelstam S, Myers CT, et al. A population-based cost-effectiveness study of early genetic testing in severe epilepsies of infancy. Epilepsia. 2018;59(6):1177-87.

18. Schofield D, Alam K, Douglas L, Shrestha R, MacArthur DG, Davis M, et al. Cost-effectiveness of massively parallel sequencing for diagnosis of paediatric muscle diseases. NPJ Genom Med. 2017;2.

19. Stark Z, Lunke S, Brett GR, Tan NB, Stapleton R, Kumble S, et al. Meeting the challenges of implementing rapid genomic testing in acute pediatric care. Genet Med. 2018;20(12):1554-63.

20. Stark Z, Schofield D, Alam K, Wilson W, Mupfeki N, Macciocca I, et al. Prospective comparison of the cost-effectiveness of clinical whole-exome sequencing with that of usual care overwhelmingly supports early use and reimbursement. Genet Med. 2017;19(8):867-74.
21. Tan TY, Dillon OJ, Stark Z, Schofield D, Alam K, Shrestha R, et al. Diagnostic Impact and Cost-effectiveness of Whole-Exome Sequencing for Ambulant Children With Suspected Monogenic Conditions. JAMA Pediatr. 2017;171(9):855-62.
22. van Nimwegen KJM. Health Technology Assessment of Next-Generation Sequencing. Nijmegen, The Netherlands: Radboud University. 2017.
23. van Nimwegen KJM, Schieving JH, Willemsen MAAP, Veltman JA, van der Burg S, van der Wilt GJ, et al. The diagnostic pathway in complex paediatric neurology: A cost analysis. European Journal of Paediatric Neurology. 2015;19(2):233-9.
24. Payne K, Eden M, Davison N, Bakker E. Toward health technology assessment of whole-genome sequencing diagnostic tests: challenges and solutions. Per Med. 2017;14(3):235-47.
25. Dragojlović N, Elliott AM, Adam S, van Karnebeek C, Lehman A, Mwenifumbo JC, et al. The cost and diagnostic yield of exome sequencing for children with suspected genetic disorders: a benchmarking study. Genet Med. 2018;20(9):1013-21.
26. Dragojlović N, van Karnebeek C, Ghani A, Genereaux D, Kim E, Birch P, et al. The cost trajectory of the diagnostic pathway for children with suspected genetic disorders. Genet Med. 2020;22(2):292-300
Table 1. Demographics of participants

	WES group (n=48)	Control group (n=49)	p value
Sex			
Male (%)	30 (62)	25 (51)	0.254
Female (%)	18 (38)	24 (49)	
Mean age at the first visit in hospital, years [SD]	5.4 [5]	3.7 [1]	0.0864
Living district			<0.001
HUS district (%)	26 (54)	43 (88)	
Other district (%)	22 (46)	6 (12)	
Diagnosis (%)	18 (38)	12 (25)	0.122
Time before WES			
1 year (%)	23 (48)	NA	
>1–3 years (%)	10 (21)	NA	
>3–5 years (%)	7 (15)	NA	
> 5 years (%)	8 (16)	NA	

WES, whole-exome sequencing; HUS, Hospital district of Helsinki and Uusimaa; SD, standard deviation; NA, not available

1From the first visit in hospital
Table 2. Cost drivers and mean costs per diagnosis and per patient in the WES and control groups

Cost Drivers	WES group	Control group	Difference
	(n=48)	(n=49)	
Total costs, € (%)	457,790 (100)	485,604 (100)	-27,814
WES (%)	66,000 (14)	NA	66,000
Genetics\(^1\) (%)	79,849 (17)	126,656 (26)	-46,807
Imaging (%)	25,275 (6)	22,526 (5)	2,749
Non-genetic laboratory tests (%)	67,274 (15)	87,243 (18)	-19,969
Hospitalisation periods (%)	42,694 (9)	56,283 (11)	-13,589
Clinical visits (%)	119,661 (26)	158,567 (33)	-38,906
Other examinations\(^2\) (%)	57,038 (13)	34,329 (7)	24,709
Total number of diagnoses (%)	18 (38)	12 (25)	6 (13)
Mean cost per diagnosis, €	25,433	40,467	-15,034
(SD, 95% CI)	(9,537; 8,964–10,979)	(9,910; 8,531–11,290)	(SE 992; -2,342–1,596)
Mean cost per patient, €	9,537	9,910	-373
Median (IQR)	8,945	9,615	-670
(5,771–11,560)	(5,926–12,200)		

ICER, € (Dominant)

WES, whole-exome sequencing; NA, not available; SE, standard error; CI, confidence interval; IQR, interquartile range.

\(^1\)Genetics referring to all other genetic testing besides WES, including e.g. Sanger sequencing, molecular karyotypes, gene panels.

\(^2\)Including e.g. electroencephalography (EEG) and electroneuromyography (ENMG) investigations and clinical exercise tests.
Table 3. Early WES patients and an additional analysis without clinical visit costs

	WES group	Control group	Difference
	n=23	n=49	
WES in 1 year (without clinical visit costs)			
Total number of diagnoses (%)	10 (43)	12 (25)	2 (19)
Mean cost per diagnosis, €	12,655	27,253	-14,598
Mean cost per patient, €	5,502	6,674	-1,172
(SD, 95% CI)	(3,047; 4,185–6,820)	(4,413; 5,407–7,942)	(SE 1,020; -3,205–862)
Median (IQR)	5,193 (2,782–7,095)	5,832 (3,605–7,905)	-639
ICER, €			
WES (without clinical visit costs)			
Total number of diagnoses (%)	18 (38)	12 (25)	6 (13)
Mean cost per diagnosis, €	18,785	27,253	-8,468
Mean cost per patient, €	7,044	6,674	370
(SD, 95% CI)	(4,304; 5,795–8,294)	(4,413; 5,407–7,942)	(SE 885; -1,388–2,128)
Median (IQR)	6,230 (4,305–7,524)	5,832 (3,605–7,905)	398
ICER, €			
Bootstrapped ICER, € (95% CI)	3,253 (-24,046–26,877)		

WES, whole-exome sequencing; SD, standard deviation; SE, standard error; CI, confidence interval; IQR, interquartile range; ICER, incremental cost-effectiveness ratio
Number	Age at inclusion (years)	Sex	Number of tests performed	Symptomatology/clinical diagnosis with HPO terms
#1	0.0	F	1	Molecular karyotype
#2	0.2	M	2	Molecular karyotype, larger sequencing of ARMD
#3	0.2	F	1	Molecular karyotype
#4	0.5	F	0	Nystagmus, muscular hypotonia, and vitreous body
#5	0.7	M	2	Peripheral axonal neuropathy, larger sequencing of PPTS
#6	1.1	M	2	Molecular karyotype, gene panel, Sanger sequencing of SMA, DM1
#7	1.1	F	0	Global developmental delay, autism, ataxia, and exercise intolerance
#8	1.5	M	0	Spastic paraparesis, with infantile onset
#9	2.2	F	1	Myopathy, dystonia, delayed speech, and language development
#10	2.6	M	0	Pancreatic dysplasia, developmental delay, and exercise intolerance with infantile onset
#11	3.3	M	0	Generalized contractures, global developmental delay and cerebellar learning disability with infantile onset
#12	4.4	F	2	Fibrillating weakness with infantile onset
#13	6.9	M	0	Sensorineural polynucleopathy affecting cone, face, and movements, motor delay, and exercise intolerance
#14	11.4	F	0	Sensorineural polynucleopathy with pediatric onset
#15	12.0	F	0	Perinatal seizure, neuropathy with childhood onset
#16	12.7	M	0	Progressive spasticity with infantile onset
#17	13.0	M	0	Perinatal seizure, neuropathy with childhood onset
#18	13.6	M	0	Exercise-induced myalgia in children with pediatric onset
#19	13.6	F	0	Progressive tremor with childhood onset
#20	13.7	F	1	Gene panel
#21	13.9	F	0	Perinatal seizure, neuropathy with childhood onset
#22	14.5	M	0	Pancreatic dystrophy, polyneuropathy, and dystonia with pediatric onset
#23	15.9	M	0	Pancreatic dysplasia and migraine with pediatric onset
#24	16.1	M	4	Molecular karyotype, gene panels x3, larger sequencing of ARMD, DM1, SMA, HMP
#25	16.2	F	1	Molecular karyotype, gene panel, larger sequencing of SMA, DM1
#26	16.3	M	4	Molecular karyotype, gene panels x4, larger sequencing of SMA, DM1
#27	16.5	M	1	Molecular karyotype, gene panel, larger sequencing of SMA, DM1
#28	16.6	F	1	Molecular karyotype, gene panel, larger sequencing of SMA, DM1
#29	16.6	M	4	Molecular karyotype, gene panel, larger sequencing of SMA, DM1
#30	16.7	M	2	Gene panel, larger sequencing
#31	16.8	F	3	Molecular karyotype, gene panel, larger sequencing of SMA, DM1
#32	16.9	M	1	Gene panel, larger sequencing
#33	17.0	F	1	Gene panel, larger sequencing
#34	17.1	M	1	Gene panel, larger sequencing
#35	17.2	M	1	Gene panel, larger sequencing
#36	17.3	F	1	Gene panel, larger sequencing
#37	17.4	M	1	Gene panel, larger sequencing
#38	17.5	M	1	Gene panel, larger sequencing
#39	17.6	F	1	Gene panel, larger sequencing
#40	17.7	M	1	Gene panel, larger sequencing
#41	17.8	M	1	Gene panel, larger sequencing
#42	17.9	F	1	Gene panel, larger sequencing
#43	18.0	F	1	Gene panel, larger sequencing
#44	18.1	M	1	Gene panel, larger sequencing
#45	18.2	M	1	Gene panel, larger sequencing
#46	18.3	F	1	Gene panel, larger sequencing
#47	18.4	M	2	Molecular karyotype, gene panel, larger sequencing of SMA, DM1
#48	18.5	F	0	Spastic paraplegia with childhood onset
Conflicts of Interest Disclosures: The authors have no financial relationships relevant to this article to disclose.