Corrosion of Different Materials Connected to Carbon Fiber

Jordan Angel Ortiz
University of Rhode Island, ortiz.jordan3@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation
Ortiz, Jordan Angel, "Corrosion of Different Materials Connected to Carbon Fiber" (2018). Open Access Master's Theses. Paper 1212.
hits://digitalcommons.uri.edu/theses/1212

This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
MASTER OF SCIENCE THESIS

OF

JORDAN ANGEL ORTIZ

APPROVED:

Thesis Committee:

Major Professor       Richard Brown
                     David Taggart
                     Mercedes Rivero-Hudec
                     Mohammad Faghri
                     Nasser H. Zawia
                     DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2018
ABSTRACT

In this study, Impedance Spectroscopy (EIS), was performed. The corrosion resistance versus time of exposure of both carbon fiber and metal alloys were thoroughly examined and compared for just over a 200-day period. Collecting this data revealed drastic changes in impedance values for several of the 11-examined fastener/carbon fiber interconnections immersed in 3.5% sodium chloride (NaCl) solution, from day one of exposure to day sixty specifically. The range of impedance values directed the pre-selection of one stainless-steel and titanium fastener for further assessment, with the goal of recognizing that EIS could detect trends of corrosion and degradation of material.

Equivalent R/C Circuit modeling was created and conducted from the impedance data obtained via potentiostat for selected stainless steel and titanium fasteners. This was done to determine how many interfaces the interconnected model contained. After trials of 1RC, 2RC, 3RC and 4RC imbedded circuit analysis, the identification of three overall interfaces was suggested. This meant the interconnected system contained three interfaces that were reacting with seawater within the replicated galvanic system. After EIS and equivalent R/C circuit analysis was complete, the identification of interactions between the interfaces and what type of surface changes had taken place was completed by a well-known electron microscopy process.

Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) was conducted on both selected fasteners and carbon fiber coupons. The primary focus was on the metal fasteners, the carbon fiber was to be studied in the future. The enhanced photos revealed corrosion of the stainless-steel fastener. Specifically, there was signs
of crevice corrosion on the outer threads in between two interfaces. There was also the identification of chlorine atoms on the surface of stainless steel fasteners, recognizing the cause of corrosion was by chemical reaction and not mechanical failure.
ACKNOWLEDGMENTS

I would like to thank my major professor Dr. Richard Brown for his knowledge, guidance and time during my two years of graduate studies at the University of Rhode Island. To my co-major professor Dr. David Taggart, I am appreciative for your stellar academic advice and management of my degree plan and overall graduate studies. To Dr. Mercedes Rivero-Hudec and Dr. Mohammad Faghri, I am appreciative of their roles as active members on my masters committee.

My upmost gratitude to my United States Coast Guard colleagues at Sector Southeastern New England, Mr. Carl Moberg, Mr. Joseph Miner, Mr. Sydney Glass, Mr. Jonathan Shipperley, Mr. Michael St. Louis and Mr. Roger Mulford, for their unwavering motivation and support in regards to completing this renowned personal and professional goal. I want to also thank my thesis partner, Mr. Daniel Danckert, for his significant contributions to include but are not limited to; team cohesion, corroboration of data collection/analysis and efforts to complete the research as a team. To the University of Rhode Island Environmental SEM Laboratory, thank you for your assistance in the critical investigation of materials for the entire thesis.

Lastly, thank you to family, friends and partner Elizabeth Vazquez for their aid in being a strong support system during a challenging two years of Graduate Studies.
# TABLE OF CONTENTS

ABSTRACT .................................................................................................................. ii

ACKNOWLEDGMENTS .......................................................................................... iv

TABLE OF CONTENTS ............................................................................................. v

LIST OF TABLES ....................................................................................................... vii

LIST OF FIGURES .................................................................................................. viii

CHAPTER 1 ................................................................................................................. 1

INTRODUCTION ........................................................................................................ 1

PURPOSE OF EXPERIMENT .................................................................................. 1

CHAPTER 2 ................................................................................................................. 4

REVIEW OF LITERATURE ........................................................................................ 4

THEORETICAL BACKGROUND – ELECTROCHEMICAL PROCESS ......................... 4
THEORETICAL BACKGROUND – GALVANIC CORROSION ...................................... 4
THEORETICAL BACKGROUND – EIS ........................................................................ 6
THEORETICAL BACKGROUND – R/C EQUIVALENT MODELING ............................... 6
THEORETICAL BACKGROUND – SEM-EDS ............................................................. 7

CHAPTER 3 ................................................................................................................. 9

METHODOLOGY ....................................................................................................... 9

ELECTROCHEMICAL TESTING ............................................................................. 9
EXPERIMENTAL TECHNIQUES ........................................................................... 10
DISCUSSION OF EXPERIMENTAL TECHNIQUES ........................................... 13
EQUIVALENT CIRCUIT MODELING - TECHNIQUES ........................................... 24
EQUIVALENT CIRCUIT MODELING - DISCUSSION ............................................ 25
SCANNING ELECTRON MICROSCOPY-ENERGY DISPERSIVE SPECTROSCOPY (SEM-EDS) ........................................................................................................... 35
SEM-EDS – EXPERIMENTAL TECHNIQUES ....................................................... 36
CHAPTER 4 ............................................................................................................... 53

RESULTS AND DISCUSSION ................................................................................ 53

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ........................................ 53
EQUIVALENT R/C MODELING ........................................................................... 54
SCANNING ELECTRON MICROSCOPY-ENERGY DISPERSIVE SPECTROSCOPY 55

CHAPTER 5 ............................................................................................................... 58

CONCLUSIONS ........................................................................................................ 58

PROPOSED FUTURE STUDIES ............................................................................. 59
MECHANICAL TESTING ......................................................................................... 59
FUTURE SCANNING ELECTRON MICROSCOPY EVALUATION ...................... 60

APPENDIX A – RC MODELING GRAPHS .............................................................. 62

APPENDIX B - EIS DATA TABLES ......................................................................... 92

APPENDIX C – CREVICE CORROSION CHEMICAL REACTION ...................... 98

BIBLIOGRAPHY ...................................................................................................... 99
LIST OF TABLES

TABLE                      PAGE
Table 1. Cell cable connection for EIS program set-up .............................................. 21
Table 2. Impedance Vs Time Data Day 1 and last data point (11 Samples) ................. 22
Table 3. Long Term Titanium Impedance Values (Day 1-215) at 0.1 Hz ................... 22
Table 4. Long Term Stainless Steel Impedance Values (Day 1-206) ........................ 23
Table 5. Total length of fastener and carbon fiber exposed to seawater for SS2 and Ti2 samples ........................................................................................................................ 23
Table 6. SS2 R/C Modeling Data (Nine Selected Erratic Points) .............................. 33
Table 7. Ti2 R/C Modeling Data (Five Selected Erratic Points) .............................. 34
Table 8. SS1 EIS Experimental Data ......................................................................... 92
Table 9. SS2 EIS Experimental Data ......................................................................... 92
Table 10. SS3 EIS Experimental Data ....................................................................... 93
Table 11. SS4 EIS Experimental Data ....................................................................... 93
Table 12. SS5 EIS Experimental Data ....................................................................... 94
Table 13. SS6 EIS Experimental Data ....................................................................... 94
Table 14. Ti1 EIS Experimental Data ....................................................................... 95
Table 15. Ti2 EIS Experimental Data ....................................................................... 95
Table 16. Ti3 EIS Experimental Data ....................................................................... 96
Table 17. Ti4 EIS Experimental Data ....................................................................... 96
Table 18. Ti5 EIS Experimental Data ....................................................................... 97
# LIST OF FIGURES

| FIGURE | PAGE |
|--------|------|
| Figure 1. EIS experimental set-up diagram & Simple Randles Equivalent Single Circuit | 15 |
| Figure 2. Solid-works 3D Model – Sample set-up | 16 |
| Figure 3. SAE Standard Taps (ANSI Left/8-32 and Right/10-24) | 16 |
| Figure 4. Original Carbon Fiber Sample | 17 |
| Figure 5. Drill and Tap set-up (Centered and aligned using bench vise) | 17 |
| Figure 6. Experimental set-up | 18 |
| Figure 7. Universal Dummy Cell for calibration of EIS system | 18 |
| Figure 8. EIS input values for potentiostatic system | 19 |
| Figure 9. Impedance Vs Time Bar Graph Day 1 and last test date (11 Samples) at 0.1 Hz | 19 |
| Figure 10. Impedance | 20 |
| Figure 11. Impedance (unstable area to be evaluated) | 20 |
| Figure 12. Impedance | 20 |
| Figure 13. Impedance | 21 |
| Figure 14. Bode Plot of SS2 Day 1 (2RC, 3RC, 4RC) | 26 |
| Figure 15. SS2 Day 1 2RC Model Data & Goodness of Fit Value | 26 |
| Figure 16. SS2 Day 1 3RC Model Data & Goodness of Fit Value | 27 |
Figure 17. SS2 Day 1 4RC Model Data & Goodness of Fit Value
Figure 18. Bode Plot of Ti2 Day 1 (2RC, 3RC, 4RC)
Figure 19. Ti2 Day 1 2RC Model Data & Goodness of Fit Value
Figure 20. Ti2 Day 1 3RC Model Data & Goodness of Fit Value
Figure 21. Ti2 Day 1 4RC Model Data & Goodness of Fit Value
Figure 22. Interfaces reacting within sample
Figure 23. 2 RC Equivalent Model
Figure 24. 3 RC Equivalent Model
Figure 25. 4 RC Equivalent Model
Figure 26. Simple Randles Equivalent Circuit
Figure 27. Single Paint Coating Equivalent Circuit
Figure 28. SS2 and Ti2 Fasteners removed from inter-connection post 365 days
Figure 29. SS2 and Ti2 Fasteners stripped for SEM-EDS
Figure 30. SS2 and Ti2 Fasteners prepped for SEM-EDS with copper sheathing
detailing area exposed
Figure 31. JEOL JSM-5900 Low Vacuum SEM-EDS System
Figure 32. SEM-EDS Sample set-up plate for insertion in to chamber
Figure 33. Carbon Fiber Sample with tapped hole not exposed to 3.5% NaCl for SEM
Figure 34. Carbon fiber sample detached from SS2 fastener and PVC
Figure 35. Carbon fiber sample detached from Ti2 fastener and PVC
Figure 36. Crevice Corrosion on SS2 fastener X400 resolution
Figure 37. Start of Crevice Corrosion on SS2 fastener X400 resolution and formation
of Chloride ions........................................................................................................... 42
Figure 38. Crevice Corrosion at outer thread of SS2 fastener X 200 resolution ....... 43
Figure 39. Chloride ion formation at thread region of SS2 fastener X 190 resolution43
Figure 40. Carbon Fiber threaded region X40 resolution – SS2......................... 44
Figure 41. Carbon Fiber threaded region X40 resolution with delamination due to Fe
ion formation (rust) – SS2........................................................................................... 44
Figure 42. Carbon Fiber delamination X100 resolution – SS2......................... 45
Figure 43. Carbon Fiber threaded region with adhesive present X40 resolution –
SS2 .................................................................................................................................. 45
Figure 44. Ti2 fastener at exposed area to NaCl X100 resolution......................... 46
Figure 45. Carbon Fiber threaded region X40 resolution – Ti2.......................... 46
Figure 46. EDS report, SS2 fastener at 300X resolution (1st area) ...................... 47
Figure 47. EDS report, SS2 fastener at 400X resolution (2nd area)...................... 47
Figure 48. EDS report, SS2 fastener at 400X resolution (area of flaking of surface
metal)............................................................................................................................ 48
Figure 49. EDS report, Ti2 fastener at 100X resolution (exposed area)............... 48
Figure 50. EDS report, SS2 Carbon Fiber Sample at 40X resolution (1st area) ..... 49
Figure 51. EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution
(2nd area) ..................................................................................................................... 49
Figure 52. EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution
(3rd area) ..................................................................................................................... 50
Figure 53. EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution
(4th area) ..................................................................................................................... 50
Figure 54. EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution (5th area) ..................................................................................................................... 51

Figure 55. EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution (6th area) ..................................................................................................................... 51

Figure 56. EDS report, Ti2 Carbon Fiber Sample with tapped hole at 40X resolution (1st area) ...................................................................................................................... 52

Figure 57. EDS report, Carbon Fiber Sample with tapped hole only at 40X resolution (1st area) ...................................................................................................................... 52

Figure 58. Epoxy/Resin filled sample for SEM continuation ........................................ 61

Figure 59. Bode Plot of SS2 Day 1 (2RC, 3RC, 4RC) ..................................................... 62

Figure 60. SS2 Day 1 2RC Model Data & Goodness of Fit Value.............................. 62

Figure 61. SS2 Day 1 3RC Model Data & Goodness of Fit Value.............................. 63

Figure 62. SS2 Day 1 4RC Model Data & Goodness of Fit Value.............................. 63

Figure 63. Bode Plot of SS2 Day 30 (2RC, 3RC, 4RC) ............................................ 64

Figure 64. SS2 Day 30 2RC Model Data & Goodness of Fit Value............................ 64

Figure 65. SS2 Day 30 3RC Model Data & Goodness of Fit Value............................ 65

Figure 66. SS2 Day 30 4RC Model Data & Goodness of Fit Value............................ 65

Figure 67. SS2 Bode Plot of SS2 Day 50 (2RC, 3RC, 4RC) .................................... 66

Figure 68. SS2 Day 50 2RC Model Data & Goodness of Fit Value............................ 66

Figure 69. SS2 Day 50 3RC Model Data & Goodness of Fit Value............................ 67

Figure 70. SS2 Day 50 4RC Model Data & Goodness of Fit Value............................ 67

Figure 71. Bode Plot of SS2 Day 138 (2RC, 3RC, 4RC) ............................................. 68
Figure 72. SS2 Day 138 2RC Model Data & Goodness of Fit Value ......................... 68
Figure 73. SS2 Day 138 3RC Model Data & Goodness of Fit Value ......................... 69
Figure 74. SS2 Day 138 4RC Model Data & Goodness of Fit Value ......................... 69
Figure 75. Bode Plot of SS2 Day 140 (2RC, 3RC, 4RC) ........................................... 70
Figure 76. SS2 Day 140 2RC Model Data & Goodness of Fit Value ......................... 70
Figure 77. SS2 Day 140 3RC Model Data & Goodness of Fit Value ......................... 71
Figure 78. SS2 Day 140 4RC Model Data & Goodness of Fit Value ......................... 71
Figure 79. Bode Plot of SS2 Day 145 (2RC, 3RC, 4RC) ........................................... 72
Figure 80. SS2 Day 145 2RC Model Data & Goodness of Fit Value ......................... 72
Figure 81. SS2 Day 145 3RC Model Data & Goodness of Fit Value ......................... 73
Figure 82. SS2 Day 145 4RC Model Data & Goodness of Fit Value ......................... 73
Figure 83. Bode Plot of SS2 Day 152 (2RC, 3RC, 4RC) ........................................... 74
Figure 84. SS2 Day 152 2RC Model Data & Goodness of Fit Value ......................... 74
Figure 85. SS2 Day 152 3RC Model Data & Goodness of Fit Value ......................... 75
Figure 86. SS2 Day 152 4RC Model Data & Goodness of Fit Value ......................... 75
Figure 87. Bode Plot of SS2 Day 171 (2RC, 3RC, 4RC) ........................................... 76
Figure 88. SS2 Day 171 2RC Model Data & Goodness of Fit Value ......................... 76
Figure 89. SS2 Day 171 3RC Model Data & Goodness of Fit Value ......................... 77
Figure 90. SS2 Day 171 4RC Model Data & Goodness of Fit Value ......................... 77
Figure 91. Bode Plot of SS2 Day 206 (2RC, 3RC, 4RC) ........................................... 78
Figure 92. SS2 Day 206 2RC Model Data & Goodness of Fit Value ......................... 78
Figure 93. SS2 Day 206 3RC Model Data & Goodness of Fit Value ......................... 79
Figure 94. SS2 Day 206 4RC Model Data & Goodness of Fit Value ......................... 79
Figure 95. Bode Plot of Ti2 Day 1 (2RC, 3RC, 4RC) ................................................ 80
Figure 96. Ti2 Day 1 2RC Model Data & Goodness of Fit Value .............................. 80
Figure 97. Ti2 Day 1 3RC Model Data & Goodness of Fit Value .............................. 81
Figure 98. Ti2 Day 1 4RC Model Data & Goodness of Fit Value .............................. 81
Figure 99. Bode Plot of Ti2 Day 30 (2RC, 3RC, 4RC) .............................................. 82
Figure 100. Ti2 Day 30 2RC Model Data & Goodness of Fit Value ......................... 82
Figure 101. Ti2 Day 30 3RC Model Data & Goodness of Fit Value ......................... 83
Figure 102. Ti2 Day 30 4RC Model Data & Goodness of Fit Value ......................... 83
Figure 103. Bode Plot of Ti2 Day 49 (2RC, 3RC, 4RC) ............................................ 84
Figure 104. Ti2 Day 49 2RC Model Data & Goodness of Fit Value ......................... 84
Figure 105. Ti2 Day 49 3RC Model Data & Goodness of Fit Value ......................... 85
Figure 106. Ti2 Day 49 4RC Model Data & Goodness of Fit Value ......................... 85
Figure 107. Bode Plot of Ti2 Day 138 (2RC, 3RC, 4RC) .......................................... 86
Figure 108. Ti2 Day 138 2RC Model Data & Goodness of Fit Value ....................... 86
Figure 109. Ti2 Day 138 3RC Model Data & Goodness of Fit Value ....................... 87
Figure 110. Ti2 Day 138 4RC Model Data & Goodness of Fit Value ....................... 87
Figure 111. Bode Plot of Ti2 Day 176 (2RC, 3RC, 4RC) .......................................... 88
Figure 112. Ti2 Day 176 2RC Model Data & Goodness of Fit Value ....................... 88
Figure 113. Ti2 Day 176 3RC Model Data & Goodness of Fit Value ....................... 89
Figure 114. Ti2 Day 176 4RC Model Data & Goodness of Fit Value ....................... 89
Figure 115. Bode Plot of Ti2 Day 215 (2RC, 3RC, 4RC) .......................................... 90
Figure 116. Ti2 Day 215 2RC Model Data & Goodness of Fit Value ....................... 90
Figure 117. Ti2 Day 215 3RC Model Data & Goodness of Fit Value ....................... 91
Figure 118. Ti2 Day 215 4RC Model Data & Goodness of Fit Value ....................... 91
Figure 119. Mechanism of Crevice Corrosion – Chemical Reaction ......................... 98
CHAPTER 1

INTRODUCTION

PURPOSE OF EXPERIMENT

The main focus and goal of this research was to determine what metals would work best with carbon fiber when immersed in seawater environments. Specifically, the idea was to fasten the metal to the carbon fiber and re-create a steady state sea condition of a possible vessel, offshore drilling vessel or offshore wind farm. The U.S. Coast Guard and Maritime Industry also have thousands of small passenger vessels that are built with composite materials and fastened with various metal alloys. The fasteners are used for the structure, vital systems and through hull penetrations which are directly exposed to the seawater environment, ultimately corroding after time and exposure. Therefore, by utilizing modern day electro-chemistry, corrosion and analysis techniques, a display of what could happen with metal selection would be investigated and proven.

There were three main investigations of carbon fiber to metal galvanic interactions in this study, by applying electron impedance spectroscopy (EIS), equivalent R/C modeling and lastly scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). These investigative techniques were selected due to having a history of use and proven to be extremely accurate within the world of corrosion evaluation. The materials used were chosen for their known properties and also their ranking on the galvanic series. [1, 2] The carbon fiber was sourced from the
Department of Defense and its overall lay-up and properties are proprietary information that was not disclosed for the study. However, carbon itself was designated for multiple reasons, one due to the fact that it serves as a conductor and is very noble on the galvanic series. [1, 2] When connected to some metal alloys this creates an anodic reaction for the metal and a cathodic reaction for the composite, leading to corrosion of the metal, along with de-lamination, fracture and blistering of composite vessel hulls. For this study, stainless-steel and titanium metal alloys were the metals chosen for the anode of a galvanic system. Each metal alloy was in the form of fasteners to be connected to the carbon fiber via tap and threading. Titanium was utilized due to its inherently strong resistance to corrosion and high nobility. In comparison, stainless-steel is much lower on the Galvanic Series and is less noble. The idea was to select metals that were far apart on the Galvanic Series and also factually have been subjected to corrosion in all engineering fields.

This type of situation in terms of corrosion is prevalent during internal structure and dry-dock examinations conducted by owners, operators and Coast Guard Marine Inspectors. There has been an extensive amount of research completed in the field of electrochemical corrosion for materials which include; graphite-polymer composites, graphite-epoxy composites and fasteners immersed in seawater. [1-9] This research qualitatively indicated that metals can be induced to corrode by connection to carbon fiber composite in a marine environment and at the same time the composites are damaged by blistering or cracking of polymer over fibers. However, importantly, there is no quantitative electrochemical information and no time dependent data or models directly related to carbon fiber galvanically connected to metal alloys which
would assist in early detection of damage processes and determination of electrochemical behavior.

Further research is needed in order to improve decision making for materials used during new construction of vessels and engineering applications. A substantial amount of principal will be saved on the behalf of the maritime industry. The prevention of catastrophic failure would be significantly decreased, saving the lives of thousands of passengers and licensed mariners. With that stated, the objective of the overall research was to investigate metal alloy behavior when connected to carbon fiber and immersed in seawater to determine if they would corrode and degrade. This would then give a direction to the engineering and maritime industry as to what to expect in the future and assist with material selection.
CHAPTER 2

REVIEW OF LITERATURE

THEORETICAL BACKGROUND – ELECTROCHEMICAL PROCESS

In this study an electrochemical process was the main operating process to cause damage. This process occurs when there is a known transfer of electrons between atoms and molecules, which either go to or from them. This results in the change of oxidation state. This process transpires when a voltage is applied directly to a metal alloy for example a difference in potentials between materials. With this reaction there comes the depletion or degradation of the materials involved in the process. This progression is normal in the marine environments, especially in seawater. The ocean water is approximately 3.5% NaCl and is an extremely good environment for corrosion to take place. [2] There are two main factors that cause this corrosion specifically to occur, one being conductivity and the other oxygen solubility. Metal alloys react differently in this environment due to their variable compositions resulting in nobility and individualistic properties. With that said, it is important that the control of corrosion is to be consistently studied and prevented.

THEORETICAL BACKGROUND – CORROSION

There are several types of corrosion that occur on the surface of different metal alloys. Each type of corrosion is dependent on several factors. For the purpose of metals in a seawater environment the following corrosion cases can occur; crevice,
Corrosion is initiated by having four necessary elements. The interaction of these elements directly leads to corrosion. First is an anode, which is the electrode where oxidation reactions generate electrons and positive metallic ions are formed from atoms. Normally the anode is deemed the “sacrificial anode”, which is the metal that in fact corrodes. The second element of this cell is a cathode, which is the electrode that is on the receiving end of the electrons produced by the anode. In the marine environment, negative hydroxyl ions will be produced at the cathode. The cathode is usually totally protected from corrosion. However, in the case of carbon fiber composites, these hydroxyl ions can cause damage in the form of blisters or cracking as they combine with positive sodium ions and form sodium hydroxide on the carbon fiber surface. Sodium hydroxide forms an osmotic cell which increases pressure inside the composite, resulting in blisters or cracking of polymer. The third element is an electrolyte, which would be seawater. This liquid will serve as the main conductor to which current can flow and be carried. Lastly, the fourth element is a return current path, meaning a conductive pathway is needed to connect the anode to the cathode, which in this case is direct contact between the metals and carbon fibers in the thread region. If one of these elements is not present then it is fair to say that corrosion will not occur. When corrosion does occur on the surface of metal, it is affected in the forms of pits, crevices and overall material loss.
THEORETICAL BACKGROUND – EIS

Electrochemical Impedance Spectroscopy (EIS) has been utilized for several years to detect and monitor corrosion rates of materials over a period of time. What the process completes, is the measurement of a metal's impedance to current flow, which is also directly related to the corrosion current. The impedance of a material is defined as the difference of frequency-dependent potential divided by the frequency-dependent current. A potentiostat delivers a small voltage perturbation, between a reference electrode and a working electrode within an electrochemical cell. Then the potentiostat measures the current response between the working electrode and a counter electrode and associated control software computes the impedance. The overall test time varies for each metal or material being studied. However, utilizing recent software and programs, it can take as long as just a few minutes to gather the data. The impedance values are then plotted in the form of impedance versus frequency curves, which can later be analyzed.

THEORETICAL BACKGROUND – R/C EQUIVALENT MODELING

Electrochemical cells can be modeled as an equivalent electrical circuit for the purpose of further analyzing impedance data. The circuit is created similarly to that of a normal closed loop circuit in the field of electrical engineering, using a resistor and capacitor in parallel to represent an electrochemical interface such as a metal to solution interface. Historically in electrochemistry, the simplest circuit to represent an electrochemical interface is known as the single Randles circuit, Figure 1. [2] Depending on how many interfaces the metal-based system being measured contains,
the number of parallel RC elements in the model to be applied will be increased to represent each interface. The EIS response of an equivalent circuit can therefore be calculated and compared to the actual EIS response to an electrochemical cell. This means that the measured impedance can be compared to theoretical models and the individual circuit elements values can be computed to provide the theoretical data. These elements can be compared in order to prove how many interfaces from a combination of resistors and capacitances of the material being measured is interacting within the cell. An example of a double interface could be paint on the surface of metal. The paint and solution represent one interface and the metal and solution represent a second interface.

THEORETICAL BACKGROUND – SEM-EDS

Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) is commonly used in several engineering applications. Its purpose is to obtain detailed high-resolution examination of surfaces of a material being studied, to determine if any surface dependent processes have occurred that changes the appearance and provides information towards the mechanism for the changes. This technique depends on an electron beam interacting with the surface of interest. A primary electron beam is directed onto a material surface, then electrons will be emitted from that surface, which include backscattered electrons, secondary electrons and in addition x-rays. These secondary electrons are collected by a detector within the system and from the magnitude of the collected signal as a function of spatial position on the materials surface, an image is produced. Backscattered electron images differentiate areas by
atomic number, meaning it allows the identification of heavy or light elements that are present on the surface of the material being studied. If the x-rays emitted from the surface are collected they can be analyzed by their energy, which is unique for each element, permitting detection of elements on the surface being inspected.
CHAPTER 3

METHODOLOGY

ELECTROCHEMICAL TESTING

Electrochemical Impedance Spectroscopy (EIS) is a non-destructive process used to determine the corrosion resistance of materials with extended time periods. [1, 2, 3, 8, 10] The term impedance refers to the frequency dependent resistance to current flow of a circuit element (resistor, capacitor, inductor, etc.) This technique measures a periodic small-amplitude alternating current (AC) signal resulting from application of an AC voltage signal, which is conducted for several pre-determined sinusoidal frequencies (cycles/s) to investigate the working electrode (WE).

In this study metal fasteners will serve as a WE. The application of small sinusoidal potential of a fixed frequency induces a current with the WE then the impedance, the voltage divided by the resulting current is computed at each frequency. By using small amplitude, it does not disturb the properties of the material being evaluated, essentially making EIS a non-destructive test (NDT). This directly correlates to what is happening on a samples surface in terms of corrosion rate. A common three electrode electrochemical cell is utilized for the entire cycle of the experiment conducted on the carbon fiber and metal samples. The EIS set-up is detailed in Figure 1. [11] The carbon fiber sample is detailed in Figure 2, reconstructed using a 3D modeling program.
EXPERIMENTAL TECHNIQUES

Carbon fiber test coupons were machined to be an approximate cross section of 1.25 inches by 1.0 inches; each were fastened with one of the two types of alloy (stainless steel and titanium) to be evaluated. The carbon fiber samples were drilled and tapped using ANSI standard, 8-32 tap for the stainless steel and 10-24 for the titanium fasteners. The exact taps used for the purpose of the experiment are detailed in Figure 3. The layup of the carbon fiber was 0/90 unidirectional ply laminates, each ply was approximately 12 microns thick. The volume ratio of fibers to polymer was approximately 70 to 30. The samples were obtained from a 0.1-inch-thick sample with dimensions of 6.0 inches by 1.0 inches, Figure 4. The drill and tap were directly centered on the sample in order to capture maximum surface area during the experiment, presented in Figure 5. The area of the carbon fiber sample that was exposed to the electrolyte solution was 0.7 inches in diameter of the surface layer for all samples along with the fastener fixed at the center, in the upright direction, Figure 2. The pipes utilized were 4.0 inches in length, the inner diameter was 0.7 inches and outer diameter was 1.0 inches. A sealant was used, 3M FM-5200 fast cure industrial grade adhesive, which provided a bond between the sectioned PVC tubing, carbon fiber and fastener which in turn prevented leaks from occurring throughout the overall experiment. The long-term samples were set up on 04/29/17 and the short-term samples were set up on 10/16/2017.

After the initial set-up of the sample was complete and the adhesive had time to cure, then the 3.5 % NaCl solution was added. A period of 24 hours was given to every sample in order for the seawater solution to stabilize. At that point EIS was
performed over a time period of exposure. This exposure time started at days 1, 3, 5 then continued to day 30, 60 and ultimately ending just over 200 for all the samples. There were long-term (LT) and short-term (ST) samples created for this experiment. Time dependent impedance data was recorded.

In terms of the experimental set-up, the electrodes utilized were the counter electrode (CE), reference electrode (RE) and the sample, which was the working electrode (WE). The CE used was platinum, this electrode was used due to its stability [1, 2], the WE were the actual carbon fiber/fastener interconnection and the RE was a saturated calomel electrode, Figure 6. The electrochemical impedance $|Z|$ of each sample was measured at intervals to collect time dependent data. All the electrodes were electrically connected to a PC via cell cables in order to acquire proper readings. The system was calibrated each time readings were taken in advanced to ensure accuracy using a “Dummy Cell”, Figure 7. A pre-test was performed on other steel and aluminum metal alloys in order to validate the system was taking accurate readings, this delivered precise analyses for each sample connected. Respectively, each cell cable was color coordinated in order to guarantee correct experimental set-up, Table 1.

After initial set-up the EIS was performed, recording data, which commenced at day 1 and continued to day 30 and ultimately until just over 200 days. The overall testing schedule for recording purposes was days 1, 3, 5, 10 then every three days until over 200 days was achieved. Time dependent impedance data $|Z|$ in ohms ($\Omega$) was recorded along with the solution resistance ($Rs$) in ohms ($\Omega$), frequency ($F$) in Hertz (Hz) and phase angle ($PA$) in degrees. [Appendices] Impedance curves ($|Z|$-Curves)
were generated for all 11 samples, determining if any increase or decrease in data gave indications of possible corrosion or degradation of material. The increase or decrease in values were recorded in order to identify future trends or stability of the material being evaluated. The potentiostat was fixed with initial parameters detailed in Figure 8, which remained consistent for entire study.

Calculations of impedance data versus area of fastener exposed inside the three-electrode electrochemical cell were derived using a dial caliper, Table 5. This determined if the amount of area exposed (fastener) associated with the impedance values obtained via potentiostat, Table 2. The main focus after obtaining the impedance data was to somehow correlate or compare the data to the amount of metal surface area exposed to the seawater solution. This would determine if the higher or lower \(|Z|\) values were surface area dependent. This would indicate that the higher the value of impedance obtained was due to the surface area exposed for each metallic alloy.

Subsequently, when the surface areas were obtained the next phase was to attempt to identify which samples were showing the most significant changes in impedance over the time exposed. This would recognize any developments of increase or decrease in values and be used as a secondary proof, isolating which metals needed to be studied further. Graphs were produces to represent at frequency of 0.01 Hz and 60 days of exposure, detailing how stable or unstable the samples actually were and if values were similar or different, Figures 10, 11, 12, 13. Also a bar graph was generated to represent all the stainless steel (SS) and titanium (Ti) impedance readings from day 1 and over day 200, Figure 9. This information was
specifically utilized to isolate which samples were to be chosen for supplementary analysis.

DISCUSSION OF EXPERIMENTAL TECHNIQUES

In general, both these materials, stainless steel and titanium alloys obtain their corrosion protection by forming passivating surface layers during exposure. Titanium alloys are thought to be stronger passivators than stainless steel. This is mainly due to the stainless steels relying on chromium for passivation, which is usually only 18% by weight of the material, while titanium is usually around 90% by weight in alloys. The greater amount of passivators in the titanium alloy would suggest a better passivating system, especially as Pourbaix diagrams indicate that titanium has a much more stable passive layer over a wide pH range. Indeed, data from US Navy test on crevice corrosion indicates 304 and 316 stainless steels were not particularly resistant to crevice corrosion, and this is also supported by experimental data. On the other hand, titanium alloys are strongly resistant to crevice corrosion in a marine environment from both empirical and experimental data. One interpretation of the data would then follow along the lines that the continual decrease in long term data, along with some scatter would be indicative of an unstable passive film for stainless steel, while a very stable impedance value after a slight decrease would be indicative of a stable surface condition for the titanium.

For stainless steels, the presence of the chloride ion in solution is a destabilizing ion for the passive film that is formed. As it is present in the sodium chloride solution, then crevice corrosion would be expected. In addition, the cathodic carbon fibers would polarize the steel into its anodic region and tend to induce crevice
corrosion. For titanium alloys the chloride ion at neutral pH ranges is not a destabilizing ion and crevice corrosion would not be expected.

After all the EIS data was collected and analyzed, the next phase was to determine how many actual interfaces were required to model the experimental data to provide an indication of the processes occurring. The way this was to be accomplished was by performing equivalent R/C circuit modeling. This process has been completed in the past and in previous studies for composite materials and metals containing surface layers, for example paint on the surface of a steel vessel hull. [6, 7] The idea is to represent the physical sample in an analog circuit. Bode plots will be generated from analyzing the single circuit and the curves will be compared with the EIS data $|Z|$ curve. Both curves will be evaluated to determine if they match. The notion is if they match and are a “true fit”, then the exact number of interfaces will be confirmed. This modeling will be described in the next chapter.
Figure 1: EIS experimental set-up diagram & Simple Randles Equivalent Single Circuit
Figure 2: Solid-works 3D Model - Sample set-up

Figure 3: SAE Standard Taps (ANSI Left/8-32 and Right/10-24)
Figure 4: Original Carbon Fiber Sample

Figure 5: Drill and Tap set-up (Centered and aligned using bench vise)
Figure 6: Experimental set-up

Figure 7: Universal Dummy Cell for calibration of EIS system
Figure 8: EIS input values for potentiostatic system

Figure 9: Impedance Vs Time Bar Graph Day 1 and Day 60 (11 Samples) at 0.1 Hz
Figure 10: Impedance $|Z|$ Data of Ti2 over time of exposure

Figure 11: Impedance $|Z|$ Data of Ti2 over time of exposure (unstable area to be evaluated)

Figure 12: Impedance $|Z|$ Data of SS2 over time of exposure
Figure 13: Impedance $|Z|$ Data of SS2 over time of exposure (unstable area to be evaluated)

| Color | Type          | Name            | Normal Connection                      |
|-------|---------------|-----------------|----------------------------------------|
| Blue  | Banana Plug   | Working Sense   | Connected to metal sample #1           |
| Green | Banana Plug   | Working Electrode | Connected to metal sample #1          |
| White | Pin Jack      | Reference Electrode | Connected to reference electrode    |
| Red   | Banana Plug   | Counter Electrode | Connected to metal sample #2          |
| Orange| Banana Plug   | Counter Sense   | Connected to metal sample #3          |
| Long Black | Banana Plug | Floating Ground | Leave open or connected to a Faraday shield |
| Short Black | Banana Plug | Chassis Ground | Connect to Faraday Shield to reduce EMI |

Table 1: Cell Cable Connections for EIS program set-up
### Table 2: Impedance Vs Time Data Day 1 and last data point (11 Samples)

| Samples | Day 1 Z (Ω) | Last Data Point (Ω) | Difference in Z (Ω) |
|---------|-------------|---------------------|---------------------|
| SS1 (L.T.) | 1.91E+04 | 1.46E+03 | 17603 |
| SS2 (L.T.) | 9.91E+03 | 1.98E+03 | 7932 |
| SS3 (L.T.) | 5.58E+03 | 1.74E+03 | 3841 |
| SS4 (S.T.) | 5.88E+03 | 4.63E+03 | 1246 |
| SS5 (S.T.) | 3.93E+03 | 4.87E+03 | -947 |
| SS6 (S.T.) | 2.46E+03 | 5.32E+03 | -2854 |
| Ti1 (L.T.) | 8.03E+03 | 2.68E+03 | 5351 |
| Ti2 (L.T.) | 4.95E+03 | 2.75E+03 | 2203 |
| Ti3 (L.T.) | 5.54E+03 | 2.64E+03 | 2907 |
| Ti4 (S.T.) | 6.96E+03 | 6.70E+03 | 266 |
| Ti5 (S.T.) | 7.22E+03 | 5.94E+03 | 1280 |

### Table 3: Long Term Titanium Impedance Values (Day 1-215) at 0.1 Hz

| Sample ID | Date       | Day # | Impedance (Ω) |
|-----------|------------|-------|----------------|
| Ti2       | 4/28/2017  | 0     | 4.95E+03       |
| Ti2       | 5/27/2017  | 29    | 2.67E+03       |
| Ti2       | 6/16/2017  | 49    | 2.63E+03       |
| Ti2       | 9/13/2017  | 138   | 2.60E+03       |
| Ti2       | 9/15/2017  | 140   | 2.53E+03       |
| Ti2       | 9/18/2017  | 143   | 2.61E+03       |
| Ti2       | 9/20/2017  | 145   | 2.65E+03       |
| Ti2       | 9/27/2017  | 152   | 2.62E+03       |
| Ti2       | 9/29/2017  | 154   | 2.65E+03       |
| Ti2       | 10/2/2017  | 157   | 2.71E+03       |
| Ti2       | 10/4/2017  | 159   | 2.69E+03       |
| Ti2       | 10/6/2017  | 161   | 2.60E+03       |
| Ti2       | 10/11/2017 | 166   | 2.64E+03       |
| Ti2       | 10/16/2017 | 171   | 2.69E+03       |
| Ti2       | 10/18/2017 | 173   | 2.74E+03       |
| Ti2       | 10/21/2017 | 176   | 2.67E+03       |
| Ti2       | 10/23/2017 | 178   | 2.42E+03       |
| Ti2       | 10/30/2017 | 185   | 2.71E+03       |
| Ti2       | 11/6/2017  | 192   | 2.70E+03       |
| Ti2       | 11/17/2017 | 203   | 2.78E+03       |
| Ti2       | 11/29/2017 | 215   | 2.75E+03       |
### Table 4: Long Term Stainless Steel Impedance Values (Day 1-206)

| Sample ID | Date       | Day # | Impedance (Ω) |
|-----------|------------|-------|---------------|
| SS2       | 4/28/2017  | 0     | 9.1E+03       |
| SS2       | 5/27/2017  | 29    | 3.6E+03       |
| SS2       | 6/16/2017  | 49    | 3.8E+03       |
| SS2       | 9/15/2017  | 130   | 3.8E+03       |
| SS2       | 9/18/2017  | 143   | 1.7E+03       |
| SS2       | 9/20/2017  | 145   | 3.71E+03      |
| SS2       | 9/27/2017  | 152   | 1.91E+03      |
| SS2       | 10/2/2017  | 157   | 2.06E+03      |
| SS2       | 10/4/2017  | 159   | 1.90E+03      |
| SS2       | 10/6/2017  | 161   | 1.98E+03      |
| SS2       | 10/11/2017 | 166   | 2.09E+03      |
| SS2       | 10/16/2017 | 171   | 1.89E+03      |
| SS2       | 10/18/2017 | 173   | 2.08E+03      |
| SS2       | 10/21/2017 | 175   | 2.21E+03      |
| SS2       | 10/30/2017 | 185   | 2.18E+03      |
| SS2       | 11/1/2017  | 187   | 1.99E+03      |
| SS2       | 11/15/2017 | 201   | 2.08E+03      |
| SS2       | 11/20/2017 | 206   | 1.98E+03      |

### Table 5: Total length of fastener and carbon fiber exposed to seawater for SS2 and Ti2 samples

| SS2 Measurement (in) | Ti2 Measurement (in) | LOA SS2 (in) | LOA Ti2 (in) | CF Thickness (in) | SS2 | CF Thickness (in) | Ti2 |
|----------------------|----------------------|--------------|--------------|-------------------|-----|-------------------|-----|
| 0.75                 | 1.09                 | 0.975        | 1.45         | 0.148             | 0.1475 | 0.1475 |
| 0.75                 | 1.09                 | 0.976        | 1.448        | 0.1475            | 0.148 |
| 0.75                 | 1.11                 | 0.975        | 1.451        | 0.1455            | 0.148 |
| 0.762666667          | 1.096666667         | 0.975333333  | 1.449666667  | 0.147             | 0.147833333 |

| Total Fastener Exposed (in) | Ti2 | SS2 |
|-----------------------------|-----|-----|
|                             | 0.353 | 0.212666667 |
EQUIVALENT CIRCUIT MODELING - TECHNIQUES

Modeling is a very important factor in the process of electrochemical impedance spectroscopy (EIS). It serves as a tool to determine the corrosion resistance of a material. This process works in various ways in terms of set-up and overall techniques. However, an equivalent model begins with a simple “Randles Circuit” which can be viewed in Figures 1 and 26. The circuit has one resistor representing the solution or electrolyte resistance, $R_s$, and one resistor, $R_{ct}$ representing the charge transfer resistance and one capacitor, representing the double layer capacitance, in parallel representing the metal interface.

For this experiment, the relationship between impedance experimental data and the number of electrochemical interfaces representing the galvanic system of a metal fastener in a carbon fiber composite in a marine environment was investigated. The electrochemical interface was represented by a combination of a resistor and capacitance or a constant phase element indicating a non-perfect capacitor. This number of interfaces was unknown at the start of EIS testing and so was a new development in corrosion studies. Theoretically the overall electrochemical model could have at least three interfaces as suggested by the schematic diagram of a fastener in the composite, Figure 22. With that said 2, 3 and 4 R/C interface circuits were investigated to determine which correctly simulated the experimental data. Each can be viewed separately in Figures 23, 24 and 25 respectively. The objective was to run a given model to fit data for stainless-steel and titanium fasteners previously identified, SS2 and Ti2. After the model is created and run, it then produces a curve showing the model data compared to the experimental data.
To determine which circuit would work best and give the most accurate analog display of the interconnected model, trial and error was employed. The R/C circuits also had to be created similarly to that of what is known to be done with a close looped circuit that is in series. This way if a 2R/C circuit did not operate and did not show a good “fit” in comparison to the impedance curve selected, then a 3R/C circuit would be attempted. However, the circuits would need to be imbedded within each other to remain a closed loop. With the EIS data obtained over all 11 samples, random test dates were selected. Then, each model was running to determine what equivalent R/C circuit created was best fit. A rank order was completed for the selected dates, from 1-3, and if a tie took place it was noted between R/C circuits. The goal was to be as exact as possible in determining which R/C circuit represented the number of interfaces that were actually present.

EQUIVALENT CIRCUIT MODELING - DISCUSSION

Before analysis could be completed the SS2 and Ti2 Impedance |Z| data over time of exposure needed to be evaluated at the unstable areas, Figures 11, 13. Meaning, the erratic increases and decreases of a specific day was selected to be modeled between 2RC, 3RC and 4RC fashioned circuits. For the Ti2 data there was a total of five points selected for circuit analysis and nine for SS2. Each R/C model would create a corresponding Y2- Fit Z Curve. Each of these fit curves were then produced on a Bode Plot to be analyzed for the best match along with the original Z-Curve from the EIS data collected. Figures 14 through 21 show each R/C circuit modeled, from 2 to 4 R/C, for SS2 and Ti2. Their respective resistance values are captured in the “Goodness of Fit” figures.
Figure 14: Bode Plot of SS2 Day 1 (2RC, 3RC, 4RC)

Figure 15: SS2 Day 1 2RC Model Data & Goodness of Fit Value
Figure 16: SS2 Day 1 3RC Model Data & Goodness of Fit Value

Figure 17: SS2 Day 1 4RC Model Data & Goodness of Fit Value
Figure 18: Bode Plot of Ti2 Day 1 (2RC, 3RC, 4RC)

Figure 19: Ti2 Day 1 2RC Model Data & Goodness of Fit Value
Figure 20: Ti2 Day 1 3RC Model Data & Goodness of Fit Value

Figure 21: Ti2 Day 1 4RC Model Data & Goodness of Fit Value
Figure 22: Interfaces reacting within sample

Figure 23: 2 RC Equivalent Model

Figure 24: 3 RC Equivalent Model
Rs = Solution Resistance

Rct = Resistance to charge transfer across metal/electrolyte interfaces

Cdl – Double layer capacitance from charging of the double layer
Rs = Solution Resistance

Cdl – Double layer capacitance from charging of the metal solution double layer

Rpo – Paint Resistance between paint and solution

Rct – Charge transfer resistance between metal and solution

Cc – Coating Capacitance

Figure 27: Single Paint Coating Equivalent Circuit
| Sample ID | Data Date | SS2 | SS2 | SS2 | SS2 | SS2 |
|-----------|-----------|-----|-----|-----|-----|-----|
|           | 2/28/2017 | 2 RC | 3 RC | 4 RC | 2 RC | 3 RC |
|           | 3/27/2017 | 2 RC | 3 RC | 4 RC | 2 RC | 3 RC |
|           | 4/26/2017 | 2 RC | 3 RC | 4 RC | 2 RC | 3 RC |
|           | 5/27/2017 | 2 RC | 3 RC | 4 RC | 2 RC | 3 RC |
|           | 6/27/2017 | 2 RC | 3 RC | 4 RC | 2 RC | 3 RC |
|           | 7/27/2017 | 2 RC | 3 RC | 4 RC | 2 RC | 3 RC |
| Goodness of Fit Value | 1.69E-04 | 1.81E-04 | 8.14E-05 | 2.63E-02 | 7.10E-04 | 9.02E-04 | 4.56E-04 | 2.15E-03 | 1.66E-03 | 6.00E-03 | 6.08E-03 | 1.93E-03 |
| Curve Fitment Ranking | 2 | 3 | 1 | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 |
| R² ohm | Initial Resistance | 7.677 | 7.727 | 7.881 | 16.65 | 16.57 | 16.87 | 12.11 | 12.13 | 12.16 | 3.958 | 3.948 | 4.379 |
| R² ohm | Resistance Interce | 3 | 3.65E+03 | 3.08E+03 | 1.74E+03 | 2.15E+02 | 6.34E+01 | 7.52E-05 | 7.94E+00 | 1.82E+02 | 1.99E+02 | 7.22E+02 | 1.68E+02 |
| R² ohm | Resistance Interce | 4 | 9.46E+04 | 5.02E+04 | 388.7 | 7.69E+09 | 4.98E+09 | 166.1 | 1.36E+07 | 6.38E+02 | 8.51E+02 | 1.21E+09 | 1.49E+06 |
| R² ohm | Resistance Interce | 5 | 2.47E+04 | 8.13E+04 | 1.87E+06 | 1.78E+03 | 3.60E+06 | 5.66E+02 | 2.98E+02 | 9.24E+03 | 6.12E+03 |
| R² ohm | Resistance Interce | 6 | 9.55E+04 | 9.55E+04 | 388.7 | 7.69E+09 | 4.98E+09 | 166.1 | 1.36E+07 | 6.38E+02 | 8.51E+02 | 1.21E+09 | 1.49E+06 |
| R² ohm | Resistance Interce | 7 | 3.17E+04 | 1.13E+04 | 1.01E+04 | 2.48E-04 | 1.68E+04 | 1.01E+04 | 2.03E+04 | 1.19E+04 | 7.77E-05 | 2.06E-04 | 2.06E-04 |
| R² ohm | Resistance Interce | 8 | 6.78E+01 | 6.78E+01 | 8.78E-01 | 5.98E+01 | 6.22E+01 | 6.80E+01 | 6.25E-01 | 6.71E-01 | 7.06E-01 | 6.12E-01 | 6.12E-01 |
| R² ohm | Resistance Interce | 9 | 1.35E+05 | 2.35E+05 | 1.59E+05 | 1.38E+04 | 6.82E-05 | 9.15E-07 | 1.88E+04 | 6.69E-05 | 9.02E-05 | 1.02E-05 | 1.02E-05 |
| R² ohm | Resistance Interce | 10 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 11 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 12 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 13 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 14 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 15 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 16 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 17 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 18 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 19 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |
| R² ohm | Resistance Interce | 20 | 8.39E+01 | 8.39E+01 | 8.61E+01 | 9.57E+01 | 8.24E+01 | 6.38E+01 | 1.78E+01 | 9.83E+01 | 1 | 1 | 8.65E+01 |

Table 6: SS2 R/C Modeling Data (Nine Selected Erratic Points)
### Table 7: Ti2 R/C Modeling Data (Five Selected Erratic Points)

| Sample ID | Ti2 | Ti2 |
|-----------|-----|-----|
| Data Date |     |     |
| 4/28/2017 |     |     |
| 5/27/2017 |     |     |

| Model Used | Goodness of Fit Value | Curve Fitment Ranking (1-3) | R1 ohm | R2 ohm | R3 ohm | R8 ohm | R11 ohm | Yo4 S骑α | a5 | Yo6 S骑α | a7 | Yo9 S骑α | a10 | Yo12 S骑α | a13 |
|------------|-----------------------|----------------------------|--------|--------|--------|--------|---------|---------|----|---------|----|---------|----|---------|----|
|            | 9.51E-03              | 3                           | 15.62  | 14.1   | 14.27  | 11.82  | 11.74   | 11.69   |    | 2.35E-04 | 4.24E-04 | 9.18E-03 | 2.51E-03 | 2.50E-03 |        |
|            | 2.42E-04              | 3                           | 3.93   | 39.39  | 31.61  | 1.25E+03| 31.69   |         |    | 8.66E+05 | 8.70E+05 |           |          |            |        |
|            | 2.50E-03              | 2                           |        |        |        |        |         |         |    | 52.88   | 2.781 |           |    |          |    |

| Interface #1 | Interface #2 | Interface #3 | Interface #4 | Interface #5 | Interface #6 | Interface #7 | Interface #8 | Interface #9 | Interface #10 | Interface #11 | Interface #12 | Interface #13 |
|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|--------------|--------------|
| 3.07E-04      | 1.74E-05     | 1.49E-04     | 1.08E-04     | 1.09E-04     |              |              |              |              |               |              |              |              |
| 7.11E-01      | 7.28E-01     | 8.27E-01     | 6.80E-01     | 7.03E-01     | 7.01E-01     |              |              |              |              |               |              |              |
| 3.21E-09      | 1.91E-04     | 2.19E-04     | 3.71E-04     | 2.49E-04     | 2.58E-04     |              |              |              |              |               |              |              |
| 7.36E-01      | 7.30E-01     | 7.24E-01     | 7.02E-01     | 7.59E-01     | 7.54E-01     |              |              |              |              |               |              |              |
| 4.12E-05      | 4.79E-05     | 1.85E-04     | 1.76E-04     |              |              |              |              |              |              |               |              |              |
| 9.35E-01      | 9.07E-01     | 9.68E-01     | 9.93E-01     |              |              |              |              |              |              |               |              |              |
| 1.92E-05      |              |              |              |              |              |              |              |              |              |               |              |              |
| 6.57E-01      |              |              |              |              |              |              |              |              |              |               |              |              |

| 6/16/2017 | Ti2 | 9/13/2017 | Ti2 | 10/21/2017 | Ti2 | 11/29/2017 | Ti2 |
|-----------|-----|-----------|-----|------------|-----|------------|-----|
| 2.8E-03   |     | 2.8E-03   |     | 2.8E-03    |     | 2.8E-03    |     |
| 2.58E-03  | 9.00E-03 | 3.01E-03  | 7.08E-04 | 5.51E-03   | 6.25E-03 | 2.23E-04  | 7.92E-03 |
| 2.8E-03   |     | 2.8E-03   |     | 2.8E-03    |     | 2.8E-03    |     |
| 1.35E-03  | 3.49E-04 | 1.01E-04  | 2.18E-05 | 4.13E-04   | 3.82E-04 | 5.44E-05  | 4.00E-04 |
| 1.25E-04  | 6.70E-01 | 7.16E-01  | 8.35E-01 | 6.37E-01   | 6.46E-01 | 7.60E-01  | 6.34E-01 |
| 1.25E-04  | 2.13E-04 | 2.37E-04  | 1.74E-04 | 1.15E-04   | 1.79E-04 | 2.15E-04  | 1.34E-04 |
| 7.68E-01  | 7.88E-01 | 7.94E-01  | 8.99E-01 | 7.53E-01   | 7.28E-01 | 7.85E-01  | 7.05E-01 |
| 2.34E-04  | 2.27E-04 | 2.06E-04  | 1.01E-04 | 1.76E-04   | 2.47E-04 | 1.16E-04  | 1.66E-04 |
| 9.77E-01  | 9.52E-01 | 8.01E-01  | 8.29E-01 | 9.62E-01   | 9.51E-01 | 9.62E-01  | 9.77E-01 |
| 1.38E     | 2.40E    | 2.05E     | 2.19E    | 9.67E      | 9.67E    | 9.67E     | 9.67E     |
The main purpose of SEM-EDS is to provide visual proof of what is occurring on the surface at an extremely high resolution in the form of an image. The primary electron beam scanned across a materials surface, it then causes secondary electrons to be emitted. Then a detector analyzes the secondary electrons and an image is formed for review and analysis. [2] In this research, there was a great significance of utilizing this well-known engineering process. With the culmination of using the non-destructive test of; electrochemical impedance spectroscopy and equivalent circuit R/C circuit analysis, SEM-EDS surface examination was the final step in verifying exactly what was happening chemically or mechanically to both the fastener and carbon fiber coupon. The main subject for analysis under high-resolution were the SS2 and Ti2 galvanic samples.

Energy dispersive X-ray Spectroscopy was a tool for the chemical identification of individual elements during this research utilized in conjunction with SEM. [2, 15] The method would aid in determining what elements were present at the surface of either the metal or carbon fiber at high special resolution. This would assist in determination of whether corrosion or degradation of material present was caused by a chemical reaction or from another possible source. The SEM-EDS testing machine used was the JEOL JSM-5900 low vacuum SEM that was modified to acquire and display the video signal through an X-Stream imaging system. The SEM came with an 8” chamber, 5 axis motorized stage, Oxford EDS, and chamber-view system, which is detailed in Figures 32 and 33.
SEM-EDS – EXPERIMENTAL TECHNIQUES

There were several conditions and techniques that were required to obtain the samples for high-resolution images. After SS2 and Ti2 were selected for examination these galvanic samples were then emptied of the electrolyte solution immediately and the solution collected into vials for potential future study. Then each emptied sample was placed into individual packages to preserve the samples and not allow any risk of contamination. After this took place, methods to remove the fasteners from the carbon fiber without any damage needed to be considered. This consideration was due to the fact that the fasteners were threaded very carefully into the carbon fiber samples by hand and sealed with a marine grade adhesive, possibly posing difficulty for detachment. Fortunately, the fasteners were able to be extracted manually due to the adhesive not being epoxy/resin based. A small amount of heat was applied to the adhesive and the fasters were removed accordingly. At this point both the SS2 and Ti2 fasteners were placed in separate packages, to be later cleaned and surface prepared for evaluation.

The carbon fiber test coupons were similarly removed by hand from the plastic tubes with minimal heat applied and placed in a separate container and dated accordingly. The next phase was to determine how to clean the surface area on the fasteners that retained adhesive outside of the area either in the carbon fiber or in the salt water, without causing any mechanical damage or remove valuable information. It was critical to preserve any surface coatings that were created due to the fasteners being immersed in the electrolyte for the extended period of time. A low power rotary tool was utilized, along with a rotary brass cleaning brush bit. This cleaned the area
which retained adhesive, Figure 28. After the fasteners were stripped, they were then prepared by placing a piece of copper tape to delineate the exposed area of carbon fiber and salt water contact and ready for SEM analysis, Figure 30. This was extremely important for the SEM-EDS progression, and the ability to distinguish the exact area that was exposed to the electrolyte solution as well as the carbon fiber/fastener interface. The specific distances were already determined previously, which can be identified in Table 5 of Chapter II.

Once the removal and surface preparation were completed then the fasteners and carbon fiber coupons were ready for SEM-EDS evaluation. The examination was conducted with the University of Rhode Island Environmental SEM Laboratory (ESEM). The Ti2 and SS2 fasteners along with the carbon fiber coupons they were adhered to, were then placed into the SEM-EDS chamber, as shown in Figure 32. At that point after the items were placed inside the chamber they were then analyzed at several selected points in real time. First, the SS2 fastener was examined following the Ti2 fastener then their respective carbon fiber coupons. The detailed high-resolution images that were taken and are detailed in Figures 36-45.

Once the SEM portion of the process was completed, then the EDS was accomplished for both fasteners and carbon fiber coupons. The ESEM Laboratory processed individualistic spectrum reports, which provided critical information for the fasteners and carbon fiber coupons. Certain points on each fastener and carbon fiber coupon where investigated for elements that may be present on the surface, which would indeed aid in confirming that corrosion was present on an atomic element level. These reports are provided in Figures 46-57 respectively.
Figure 28: SS2 and Ti2 Fasteners removed from inter-connection post 365 days.

Figure 29: SS2 and Ti2 Fasteners stripped for SEM-EDS
Figure 30: SS2 and Ti2 Fasteners prepped for SEM-EDS with copper sheathing detailing area exposed.

Figure 31: JEOL JSM-5900 Low Vacuum SEM-EDS System
Figure 32: SEM-EDS Sample set-up plate for insertion in to chamber

Figure 33: Carbon Fiber Sample with tapped hole not exposed to 3.5% NaCl for SEM
Figure 34: Carbon fiber sample detached from SS2 fastener and PVC

Figure 35: Carbon fiber sample detached from Ti2 fastener and PVC
Figure 36: Crevice Corrosion on SS2 fastener X400 resolution

Figure 37: Start of Crevice Corrosion on SS2 fastener X400 resolution and formation of Chloride ions.
Figure 38: Crevice Corrosion at outer thread of SS2 fastener X 200 resolution.

Figure 39: Chloride ion formation at thread region of SS2 fastener X 190 resolution.
Figure 40: Carbon Fiber threaded region X40 resolution – SS2

Figure 41: Carbon Fiber threaded region X40 resolution with delamination due to Fe ion formation (rust) – SS2
Figure 42: Carbon Fiber delamination X100 resolution – SS2

Figure 43: Carbon Fiber threaded region with adhesive present X40 resolution – SS2
Figure 44: Ti2 fastener at exposed area to NaCl X100 resolution

Figure 45: Carbon Fiber threaded region X40 resolution – Ti2
Figure 46: EDS report, SS2 fastener at 300X resolution (1st area)

Figure 47: EDS report, SS2 fastener at 400X resolution (2nd area)
Figure 48: EDS report, SS2 fastener at 400X resolution (area of flaking of surface metal)

Figure 49: EDS report, Ti2 fastener at 100X resolution (exposed area)
Figure 50: EDS report, SS2 Carbon Fiber Sample at 40X resolution (1\textsuperscript{st} area)

Figure 51: EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution (2\textsuperscript{nd} area)
Figure 52: EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution

(3\textsuperscript{rd} area)

Figure 53: EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution

(4\textsuperscript{th} area)
Figure 54: EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution

(5th area)

Figure 55: EDS report, SS2 Carbon Fiber Sample with tapped hole at 40X resolution

(6th area)
Figure 56: EDS report, Ti2 Carbon Fiber Sample with tapped hole at 40X resolution

(1<sup>st</sup> area)

Figure 57: EDS report, Carbon Fiber Sample with tapped hole only at 40X resolution

(1<sup>st</sup> area)
CHAPTER 4

RESULTS AND DISCUSSION

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

After completion of EIS, the figures were collected via potentiostat software and converted into excel with the main focus on impedance values over time. After close examination of the data, SS2 and Ti2 were chosen for further study, Table 2, Table 3 and Table 4. The selection process was directly gauged on their significant changes in values. The stainless steel (SS2) fastener, at day 1 of exposure displayed an impedance value of 9.91E+03 Ω. Then when readings were taken at day 206 of exposure, the impedance values drastically decreased to 1.98E+03 Ω. As for the titanium (Ti2) fastener, the impedance value began at 4.95E+03 Ω, then at day 215 is declined to 2.75E+03 Ω. This change indicated that the material being evaluated over time and exposure was experiencing possible corrosion or there was something happening to the material overall. However, the titanium samples inclusively remained consistent in terms of the impedance values after a certain period of time. After about the first 10 days of exposure to seawater solution the impedance remained in the range of 2.67E+03 Ω to 2.78E+03 Ω. This was preliminarily expected to happen for the titanium sample, due to nobility and high ranking on the galvanic series [1, 2].
EQUIVALENT R/C MODELING

For the purposes of modeling, the potentiostat software contained pre-created models which were used initially to see how good a fit they were. There were two main equivalent circuit models used, a carbon fiber based and the other paint based. The paint-based R/C model can be viewed in Figure 27. These models were the starting point for developing an EIS model using electrical circuit elements. This led to correlating theoretically how many interfaces the inter-connected model created contained. Therefore, the model was analyzed first for possible interfaces within the galvanic system of a metal fastener in a carbon fiber composite. A detailed 3-D model was completed to represent the hypothetical interfaces that reacted with the electrolyte solution, 3.5% NaCl, Figure 22. After trial and error, the two pre-created models were not showing accurate results via Y2 Fit Z-Curves.

This then led to attempting to re-create circuits that would represent what physically is occurring in the cell on an analog scale. Initially a 2R/C circuit was created then a 3R/C and lastly a 4R/C, Figures 23, 24 and 25. After this was completed then circuit analysis took place, specifically for SS2 and Ti2. Each Y2 Fit Z-Curve was generated by the potentiostat software and each R/C model was ranked for goodness of fit from 1 to 3, best fit to worst, or a tie in between a respective two models, Tables 6 and 7.

After review of the erratic points that corresponded to certain dates when EIS was conducted, it was suggested that overall that the 3R/C circuit was the best and true fit. What this meant was that the SS2 and Ti2 fasteners contained the same number of interfaces, which are indicated to be three overall. These interfaces are as follows;
carbon fiber to fastener, fastener to electrolyte and lastly carbon fiber to electrolyte, as shown in Figure 22. This successful circuit analysis further indicated that the initial assumptions and theories at the initial set-up of the inter-connected model.

Previous research involving carbon fibers under an impressed voltage, from a potentiostat [9] modeled EIS data, and successfully used a 2R/C model. As shown here this model was not applicable when the voltage of the system was controlled by galvanic interactions. To understand this, further work should be considered as it is important to understand the exact process occurring.

SCANNING ELECTRON MICROSCOPY-ENERGY DISPERSIVE SPECTROSCOPY

After performing SEM-EDS the following results were identified for the galvanic samples. The SS2 fastener showed direct crevice corrosion in between two interfaces. These interfaces were the metal to electrolyte and the other being the carbon fiber to fastener. In Figure 36 and 38, there was clear crevice corrosion present at the exposed area of the fastener. Figure 37 and 39 identified the presence of a surface coating on the fasteners as well as cubic formation of sodium chloride. As for the carbon fiber coupons, there was signs of delamination of the woven fibers, detailed in Figures 41 and 42. EDS revealed that there was in fact iron elements present on the surface of the carbon fiber which is detailed in Figures 51 through 54. The spectroscopy also identified that the SS2 fastener had the key presence of chloride (Cl) and iron (Fe) peaks, which is evident in Figures 46, 47 and 49. The Ti2 sample presented no evidence of corrosion throughout the course of the entire experiment, as seen in Figure 44 and 49.
When the SEM-EDS was completed for SS2 and Ti2, there was visual support for corrosion at the crest of the stainless-steel fasteners that were immersed in seawater. The form of corrosion that formed on the stainless-steel fastener, SS2, was crevice corrosion. There are mechanisms for this type of corrosion, which is considered localized [1]. Crevice corrosion usually occurs on a metal that comes into contact with another mating surface. In this case, the mating surfaces are the carbon fiber composite and metal interface. The crevice actually can take place within a crack of the metal or under a surface deposit in a form of an acid solution. This reaction that takes place and causes a depletion of oxygen and is consumed. Usually crevice corrosion takes a long period of time, however when you have a case of extremely dissimilar or less noble metals, the process can be accelerated. Titanium is significantly more resistance to crevice corrosion than stainless steels for that very reason, its nobility is much greater.

The carbon fiber was not focus of this research, however future experiments should take place to determine the adverse effects that the material withstood, if any. It can be implied that by performing SEM-EDS after EIS data and equivalent circuit modeling, that the SEM-EDS information supported the suggestion that scatter and the large drop in the EIS data were indicative of corrosion, while a lower drop in EIS data with time and stable EIS data over a long period indicated no corrosion was occurring. It also indicated the mechanism of corrosion was in fact crevice corrosion. As crevice corrosion occurs at an interface, it is hidden from view. This is a then an interesting situation, as the threads of the fastener in the case of stainless steel are being removed, reducing the load bearing capability of the fastener. For the case of titanium, no
crevice corrosion was found and so the fastener and carbon fiber composite would be 
a much more stable load bearing situation. Further work on the reduction of load 
bearing capability by the crevice corrosion process would be interesting to continue 
further investigation.
CHAPTER 5

CONCLUSIONS

The experimental data proved by electron impedance spectroscopy (EIS),
indicated several interesting features regarding the behavior of metal fasteners in
contact with carbon fiber in a marine environment, facts were determined and proven
to be accurate. The titanium samples remained consistent in terms of impedance
values, showing no significant loss of material, nor did the data reveal a possibility of
corrosion. The initial high values of impedance across all 11 samples did in fact
correlate to the surface area and amount of metal expose to the seawater solution. The
data collected for the stainless-steel samples unswervingly displayed rapid decrease in
impedance values consistently. This suggested, that in fact there was a significant
change occurring to the metal or carbon fiber. The EIS data also validated which
samples to continue to analyze, and for this study SS2 and Ti2 where selected.

After performing equivalent R/C modeling a 3R/C EIS model was found to
provide the best fit of EIS experimental data for a galvanic system, independent of
metal alloy behavior. Then SEM-EDS process revealed that corrosion in fact took
place on the stainless-steel fasteners. Although only one was identified for further
investigation, it can be directly inferred that the other five fasteners exhibited similar
behavior. To be exact crevice corrosion took place after the formation of sodium
chloride atoms on the surface of the metal and having the other three elements needed
for corrosion to exist. As for the titanium fasteners, it was originally theorized that the
metal would not exhibit much if any corrosion behavior. This was due to previous studies along with the material properties of the metal itself, being extremely noble. The carbon fiber did show signs of delamination; however, it couldn’t be determined if it was caused by a chemical reaction or from mechanical failure from tapping the coupons.

Overall there is minimal or no research completed in terms of impedance within a “galvanic system”. The outcome was not certain upon the start of the experimentation; however, it was proven that impedance values can be studied within a three-electrode connection. It has also been confirmed that the research has directly related corrosion to the instability and magnitude of the absolute drop of impedance. Lastly it was proven that corrosion occurred on the stainless-steel fasteners and the identification was directly attributed to the process of EIS and equivalent R/C modeling.

PROPOSED FUTURE STUDIES

MECHANICAL TESTING

The study of corrosion of metals and degradation of carbon fiber that is interconnected and immersed in seawater needs to be constant. It is vital to understand that this form of corrosion can be detrimental and ultimately lead to engineering failure at a large scale. There were certain items that were not accomplished in this research. Mechanical evaluation needed to be completed in the form of tensile (tension) and Barcol hardness tests. Meaning, the carbon fiber test coupon in its entirety, a coupon that was tapped then ultimately a coupon tapped and subjected to the seawater
environment. The tensile test of these three individual specimens would produce data relevant to the overall ultimate tensile and breaking strength along with significant elongation properties of the carbon fiber. The Barcol hardness test would be performed to gain an idea or a baseline of how the carbon fiber would react under loads and also how the fasteners when corroded were affected in terms of material properties and ability to remain whole.

FUTURE SCANNING ELECTRON MICROSCOPY EVALUATION

Although; due to the data and analysis completed by EIS and Modeling, which led to a significant corrosion evidence. There were also nine other fasteners that needed to be evaluated under SEM-EDS. Those specific fasteners were filled with epoxy resin, which can be seen in Figure 58. This was an original intended process; however due to time constraints, total cutting, surface preparation and polishing it was unable to be accomplished. The idea was to cut the samples in half creating a cross section that would then be slowly sanded down to the surface of the trenched region. Then the samples would be polished and placed into the SEM-EDS chamber for assessment. A burn out test also was unable to be completed, to determine the official lay-up and thickness of the carbon fiber. This specific test would also reveal how the material would withstand in extreme changes in temperature, hot/cold. Since the material was proprietary and distributed by the U.S. Government, the measurements taken for the purpose of research were done by hand. The determination of these unknowns, would aid in understanding the overall behavior of metals and materials subject to this environmental condition.
Figure 58: Epoxy/Resin filled sample for SEM continuation
APPENDIX A – RC MODELING GRAPHS

Figure 59: Bode Plot of SS2 Day 1 (2RC, 3RC, 4RC)

Figure 60: SS2 Day 1 2RC Model Data & Goodness of Fit Value
Figure 61: SS2 Day 1 3RC Model Data & Goodness of Fit Value

Figure 62: SS2 Day 1 4RC Model Data & Goodness of Fit Value
Figure 63: Bode Plot of SS2 Day 30 (2RC, 3RC, 4RC)

Figure 64: SS2 Day 30 2RC Model Data & Goodness of Fit Value
Figure 65: SS2 Day 30 3RC Model Data & Goodness of Fit Value

Figure 66: SS2 Day 30 4RC Model Data & Goodness of Fit Value
Figure 67: SS2 Bode Plot of SS2 Day 50 (2RC, 3RC, 4RC)

Figure 68: SS2 Day 50 2RC Model Data & Goodness of Fit Value
Figure 69: SS2 Day 50 3RC Model Data & Goodness of Fit Value

Figure 70: SS2 Day 50 4RC Model Data & Goodness of Fit Value
Figure 71: Bode Plot of SS2 Day 138 (2RC, 3RC, 4RC)

Figure 72: SS2 Day 138 2RC Model Data & Goodness of Fit Value
Figure 73: SS2 Day 138 3RC Model Data & Goodness of Fit Value

Figure 74: SS2 Day 138 4RC Model Data & Goodness of Fit Value
Figure 75: Bode Plot of SS2 Day 140 (2RC, 3RC, 4RC)

Figure 76: SS2 Day 140 2RC Model Data & Goodness of Fit Value
Figure 77: SS2 Day 140 3RC Model Data & Goodness of Fit Value

Figure 78: SS2 Day 140 4RC Model Data & Goodness of Fit Value
Figure 79: Bode Plot of SS2 Day 145 (2RC, 3RC, 4RC)

Figure 80: SS2 Day 145 2RC Model Data & Goodness of Fit Value
Figure 81: SS2 Day 145 3RC Model Data & Goodness of Fit Value

Figure 82: SS2 Day 145 4RC Model Data & Goodness of Fit Value
Figure 83: Bode Plot of SS2 Day 152 (2RC, 3RC, 4RC)

Figure 84: SS2 Day 152 2RC Model Data & Goodness of Fit Value
Figure 85: SS2 Day 152 3RC Model Data & Goodness of Fit Value

Figure 86: SS2 Day 152 4RC Model Data & Goodness of Fit Value
Figure 87: Bode Plot of SS2 Day 171 (2RC, 3RC, 4RC)

Figure 88: SS2 Day 171 2RC Model Data & Goodness of Fit Value
Figure 89: SS2 Day 171 3RC Model Data & Goodness of Fit Value

Figure 90: SS2 Day 171 4RC Model Data & Goodness of Fit Value
Figure 91: Bode Plot of SS2 Day 206 (2RC, 3RC, 4RC)

Figure 92: SS2 Day 206 2RC Model Data & Goodness of Fit Value
Figure 93: SS2 Day 206 3RC Model Data & Goodness of Fit Value

Figure 94: SS2 Day 206 4RC Model Data & Goodness of Fit Value
Figure 95: Bode Plot of Ti2 Day 1 (2RC, 3RC, 4RC)

Figure 96: Ti2 Day 1 2RC Model Data & Goodness of Fit Value
Figure 97: Ti2 Day 1 3RC Model Data & Goodness of Fit Value

Figure 98: Ti2 Day 1 4RC Model Data & Goodness of Fit Value
Figure 99: Bode Plot of Ti2 Day 30 (2RC, 3RC, 4RC)

Figure 100: Ti2 Day 30 2RC Model Data & Goodness of Fit Value
Figure 101: Ti2 Day 30 3RC Model Data & Goodness of Fit Value

Figure 102: Ti2 Day 30 4RC Model Data & Goodness of Fit Value
Figure 103: Bode Plot of Ti2 Day 49 (2RC, 3RC, 4RC)

Figure 104: Ti2 Day 49 2RC Model Data & Goodness of Fit Value
Figure 105: Ti2 Day 49 3RC Model Data & Goodness of Fit Value

Figure 106: Ti2 Day 49 4RC Model Data & Goodness of Fit Value
Figure 107: Bode Plot of Ti2 Day 138 (2RC, 3RC, 4RC)

Figure 108: Ti2 Day 138 2RC Model Data & Goodness of Fit Value
Figure 109: Ti2 Day 138 3RC Model Data & Goodness of Fit Value

Figure 110: Ti2 Day 138 4RC Model Data & Goodness of Fit Value
Figure 111: Bode Plot of Ti2 Day 176 (2RC, 3RC, 4RC)

Figure 112: Ti2 Day 176 2RC Model Data & Goodness of Fit Value
Figure 113: Ti2 Day 176 3RC Model Data & Goodness of Fit Value

Figure 114: Ti2 Day 176 4RC Model Data & Goodness of Fit Value
Figure 115: Bode Plot of Ti2 Day 215 (2RC, 3RC, 4RC)

Figure 116: Ti2 Day 215 2RC Model Data & Goodness of Fit Value
Figure 117: Ti2 Day 215 3RC Model Data & Goodness of Fit Value

Figure 118: Ti2 Day 215 4RC Model Data & Goodness of Fit Value
### Table 8: SS1 EIS Experimental Data

| Date       | F   | RS (kΩ) @ 100 mHz | Z       | PA (°) @ 100 mHz |
|------------|-----|-------------------|---------|-----------------|
| 9/15/2017  | 0.099994 | 1.922             | 1921.78 | -44.0451        |
| 9/18/2017  | 0.099994 | 2.749             | 2749.42 | -73.66          |
| 9/20/2017  | 0.099994 | 2.859             | 2858.68 | -71.8954        |
| 9/27/2017  | 0.099994 | 2.7              | 2699.61 | -74.39          |
| 9/29/2017  | 0.199461 | 1.271             | 1270.7  | -70.4882        |
| 10/2/2017  | 0.099994 | 2.427             | 2426.52 | -71.82          |
| 10/4/2017  | 0.099994 | 1.822             | 1821.92 | -57.9809        |
| 10/6/2017  | 0.099994 | 1.712             | 1712.05 | -67.4606        |
| 10/11/2017 | 0.099994 | 1.944             | 1944.45 | -79.09          |
| 10/14/2017 | 0.099994 | 1.9              | 1899.66 | -71.31          |
| 10/18/2017 | 0.099994 | 1.765             | 1765.41 | -65.7273        |
| 10/21/2017 | 0.099994 | 1.932             | 1931.69 | -69.9788        |
| 10/23/2017 | 0.099994 | 1.547             | 1547    | -61.2           |
| 10/25/2017 | 0.099994 | 1.646             | 1645.61 | -61.58          |
| 10/30/2017 | 0.099994 | 1.704             | 1703.67 | -62.1033        |
| 11/1/2017  | 0.099994 | 1.115             | 1115.42 | -53.48          |
| 11/5/2017  | 0.099994 | 1.736             | 1735.69 | -53.4365        |
| 10/4/2017  | 0.099994 | 1.909             | 1908.64 | -53.27          |
| 10/2/2017  | 0.099994 | 2.06              | 2060.29 | -56.16          |
| 10/6/2017  | 0.099994 | 1.903             | 1902.95 | -56.475         |
| 10/11/2017 | 0.099994 | 1.984             | 1983.71 | -56.7914        |
| 10/14/2017 | 0.099994 | 2.087             | 2086.83 | -63.14          |
| 10/16/2017 | 0.099994 | 1.885             | 1884.83 | -60.05          |
| 10/18/2017 | 0.099994 | 2.083             | 2082.53 | -59.7516        |
| 10/21/2017 | 0.099994 | 2.205             | 2205.15 | -58.9306        |
| 10/23/2017 | 0.099994 | 2.207             | 2207.43 | -50.07          |
| 10/25/2017 | 0.099994 | 2.175             | 2174.69 | -59.69          |
| 11/1/2017  | 0.099994 | 1.989             | 1988.53 | -51.6262        |
| 11/5/2017  | 0.099994 | 2.083             | 2082.84 | -56.7           |

### Table 9: SS2 EIS Experimental Data
| Date      | Value1 | Value2 | Value3 | Value4   | Value5 | Value6 |
|-----------|--------|--------|--------|----------|--------|--------|
| 9/15/2017 | 0.099994 | 1.825  | 100    | 1824.67  | -65.2929 | -65.29  | 100    |
| 9/18/2017 |        |        |        |          |        |        |
| 9/20/2017 | 0.099994 | 1.882  | 100    | 1881.56  | -67.76  | 100    |
| 9/27/2017 | 0.199461 | 1.11   | 199.5  | 1109.51  | -65.1161 | -65.12  | 199.5  |
| 10/2/2017 | 0.099994 | 1.884  | 100    | 1883.96  | -67.99  | 100    |
| 10/4/2017 | 0.099994 | 1.75   | 100    | 1749.88  | -68.2985 | -68.3   | 100    |
| 10/6/2017 | 0.099994 | 1.865  | 100    | 1864.8   | -70.3799 | -70.38  | 100    |
| 10/11/2017| 0.099994| 1.866  | 100    | 1865.8   | -70.53  | 100    |
| 10/14/2017|        |        |        |          |        |        |
| 10/16/2017| 0.099994| 1.624  | 100    | 1624.31  | -61.56  | 100    |
| 10/18/2017| 0.099994| 1.644  | 100    | 1644.1   | -67.8733 | -67.87  | 100    |
| 10/21/2017| 0.099994| 1.965  | 100    | 1964.89  | -70.7076 | -70.71  | 100    |
| 10/23/2017| 0.099994| 1.784  | 100    | 1783.69  | -61.07  | 100    |
| 10/25/2017|        |        |        |          |        |        |
| 10/30/2017| 0.099994| 1.941  | 100    | 1940.81  | -70.54  | 100    |
| 11/1/2017 | 0.099994| 1.965  | 100    | 1964.54  | -70.943 | -70.94  | 100    |
| 11/6/2017 |        |        |        |          |        |        |
| 11/15/2017|        |        |        |          |        |        |
| 11/17/2017| 0.099994| 1.682  | 100    | 1682.07  | -68.8187 | -68.82  | 100    |

Table 10: SS3 EIS Experimental Data

| Date      | Value1 | Value2 | Value3 | Value4   | Value5 | Value6 |
|-----------|--------|--------|--------|----------|--------|--------|
| 9/15/2017 | 0.099994 | 6.361  | 100    | 6360.55  | -67.5169 | -67.52  | 100    |
| 9/18/2017 |        |        |        |          |        |        |
| 9/20/2017 | 0.099994 | 6.948  | 100    | 6948.25  | -72.44  | 100    |
| 9/27/2017 | 0.099994 | 7.21   | 100    | 7210.03  | -73.79  | 100    |
| 9/29/2017 | 0.099994 | 5.118  | 100    | 5118.31  | -70.27  | 100    |
| 10/2/2017 | 0.099994 | 5.209  | 100    | 5209.32  | -70.8444 | -70.84  | 100    |
| 10/4/2017 | 0.099994 | 6.282  | 100    | 6282.1   | -73.2   | 100    |
| 10/6/2017 | 0.099994 | 6.044  | 100    | 6044.01  | -72.836 | -72.84  | 100    |
| 10/11/2017| 0.099994| 7.099  | 100    | 7098.92  | -75.4789 | -75.48  | 100    |
| 10/14/2017| 0.099994| 6.888  | 100    | 6887.92  | -75.49  | 100    |
| 10/15/2017|        |        |        |          |        |        |
| 10/17/2017| 0.099994| 4.691  | 100    | 4691.45  | -70.55  | 100    |
| 10/18/2017| 0.099994| 6.881  | 100    | 6881.49  | -75.99  | 100    |
| 10/21/2017| 0.099994| 5.588  | 100    | 5588.23  | -72.2628 | -72.26  | 100    |
| 10/23/2017| 0.099994| 2.937  | 100    | 2936.87  | -63.96  | -63.96  | 100    |
| 10/25/2017| 0.099994| 6.003  | 100    | 6002.92  | -71.41  | 100    |
| 10/30/2017| 0.099994| 4.815  | 100    | 4815.02  | -68.3842 | -68.38  | 100    |
| 11/1/2017 | 0.099994| 6.647  | 100    | 6647.17  | -74.56  | 100    |
| 11/6/2017 | 0.099994| 5.714  | 100    | 5713.53  | -71.9865 | -71.99  | 100    |
| 11/17/2017| 0.099994| 6.739  | 100    | 6739.85  | -73.48  | 100    |

Table 11: SS4 EIS Experimental Data
| Date       | Value1 | Value2 | Value3 | Value4 | Value5 | Value6 | Value7 | Value8 | Date       | Value1 | Value2 | Value3 | Value4 | Value5 | Value6 | Value7 | Value8 |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 9/15/2017  | 0.099994 | 5.857  | 100    | 5856.69| -65.2878| -65.29 | 100    |
| 9/18/2017  | 0.099994 | 6.59   | 100    | 6590.3 | -70.18  | 100    |
| 9/20/2017  | 0.099994 | 5.524  | 100    | 5524.49| -68.315 | -68.32 | 100    |
| 9/27/2017  | 0.099994 | 5.405  | 100    | 5405.34| -68.33  | 100    |
| 9/29/2017  | 0.099994 | 6.312  | 100    |        | -71.64  | 100    |
| 10/2/2017  | 0.099994 | 5.541  | 100    | 5541.22| -69.5   | 100    |
| 10/4/2017  | 0.099994 | 6.222  | 100    | 6222.05| -71.4472| -71.45 | 100    |
| 10/6/2017  | 0.099994 | 5.068  | 100    | 5067.53| -59.16  | 100    |
| 10/11/2017 | 0.099994 | 7.281  | 100    | 7281.16| -75.75  | 100    |
| 10/14/2017 | 0.099994 | 6.044  | 100    | 6043.6 | -71.67  | 100    |
| 10/16/2017 | 0.099994 | 6.998  | 100    | 6998.21| -74.16  | 100    |
| 10/18/2017 | 0.099994 | 6.057  | 100    | 6056.74| -71.114 | -71.11 | 100    |
| 10/21/2017 | 0.099994 | 7.394  | 100    | 7393.66| -73.52  | 100    |
| 10/23/2017 | 0.099994 | 3.043  | 100    | 3042.98| -64.31  | 100    |
| 10/25/2017 | 0.099994 | 4.697  | 100    | 4697.1 | -67.0945| -67.09 | 100    |
| 10/30/2017 | 0.099994 | 4.031  | 100    | 4031.3 | -51.23  | 100    |
| 11/1/2017  | 0.099994 | 5.549  | 100    | 5549.05| -66.7831| -66.78 | 100    |
| 11/6/2017  | 0.099994 | 4.381  | 100    | 4381.36| -61.75  | 100    |
| 11/15/2017 |        |        |        |        |        |        |        |        | 11/17/2017 | 0.099994 | 5.295  | 100    | 5294.62| -70.887 | -70.89 | 100    |

Table 12: SS5 EIS Experimental Data

| Date       | Value1 | Value2 | Value3 | Value4 | Value5 | Value6 | Value7 | Value8 | Date       | Value1 | Value2 | Value3 | Value4 | Value5 | Value6 | Value7 | Value8 |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 9/15/2017  | 0.099994 | 3.036  | 100    | 3036.21| -60.4144| -60.41 | 100    |
| 9/18/2017  | 0.099994 | 4.715  | 100    | 4714.6 | -67.61  | 100    |
| 9/20/2017  | 0.099994 | 5.063  | 100    | 5062.84| -69.8582| -69.86 | 100    |
| 9/27/2017  | 0.099994 | 4.249  | 100    | 4248.74| -66.01  | 100    |
| 9/29/2017  | 0.099994 | 5.264  | 100    | 5264.03| -53.8198| -53.82 | 100    |
| 10/2/2017  | 0.099994 | 6.75   | 100    | 6750.22| -72.79  | 100    |
| 10/4/2017  | 0.099994 | 6.715  | 100    | 6714.51| -72.0049| -72    | 100    |
| 10/6/2017  | 0.099994 | 6.159  | 100    | 6159.04| -71.8153| -71.82 | 100    |
| 10/11/2017 | 0.099994 | 4.568  | 100    | 4568.21| -67.38  | 100    |
| 10/14/2017 | 0.099994 | 7.474  | 100    | 7474.26| -73.61  | 100    |
| 10/16/2017 | 0.099994 | 5.843  | 100    | 5843.26| -70.48  | 100    |
| 10/18/2017 | 0.099994 | 6.067  | 100    | 6066.64| -70.4407| -70.44 | 100    |
| 10/21/2017 | 0.099994 | 7.332  | 100    | 7331.81| -72.3135| -72.31 | 100    |
| 10/23/2017 | 0.099994 | 5.47   | 100    | 5469.81| -68    | 100    |
| 10/25/2017 | 0.099994 | 5.636  | 100    | 5635.98| -68.5248| -68.52 | 100    |
| 10/30/2017 | 0.099994 | 6.166  | 100    | 6165.75| -70.41  | 100    |
| 11/1/2017  | 0.099994 | 6.281  | 100    | 6280.62| -70.7831| -70.78 | 100    |
| 11/6/2017  | 0.099994 | 5.812  | 100    | 5811.94| -69.27  | 100    |
| 11/15/2017 |        |        |        |        |        |        |        |        | 11/17/2017 | 0.099994 | 5.528  | 100    | 5528.45| -69.8467| -69.85 | 100    |

Table 13: SS6 EIS Experimental Data
Table 14: Ti1 EIS Experimental Data

| Date   | Q   | Z   | %   | Z(1) | %   |
|--------|-----|-----|-----|------|-----|
| 9/15/17 | 0.099994 | 2.296 | 100 | 2296.02 | -74.5769 |
| 9/18/17 | 0.099994 | 2.586 | 100 | 2585.64 | -76.56 |
| 9/20/17 | 0.099994 | 2.436 | 100 | 2436.47 | -74.29 |
| 9/27/17 | 0.099994 | 2.593 | 100 | 2592.71 | -71.12 |
| 9/29/17 | 0.099994 | 2.585 | 100 | 2584.63 | -77.22 |
| 10/2/17  | 0.099994 | 2.681 | 100 | 2681.03 | -72.99 |
| 10/4/17  | 0.099994 | 2.676 | 100 | 2676.41 | -77.73 |
| 10/6/17  | 0.099994 | 2.422 | 100 | 2421.85 | -76.16 |
| 10/11/17 | 0.099994 | 2.619 | 100 | 2619.11 | -77.86 |
| 10/14/17 | 0.099994 | 2.665 | 100 | 2664.91 | -77.98 |
| 10/17/17 | 0.099994 | 2.709 | 100 | 2708.9 | -77.5 |
| 10/18/17 | 0.099994 | 2.689 | 100 | 2688.69 | -77.55 |
| 10/21/17 | 0.099994 | 2.603 | 100 | 2603.47 | -77.6 |
| 10/23/17 | 0.099994 | 2.64 | 100 | 2640.48 | -77.6 |
| 10/25/17 | 0.099994 | 2.79 | 100 | 2709.29 | -77.53 |

Table 15: Ti2 EIS Experimental Data

| Date   | Q   | Z   | %   | Z(1) | %   |
|--------|-----|-----|-----|------|-----|
| 9/15/17 | 0.099994 | 2.533 | 100 | 2533.17 | -76.0289 |
| 9/18/17 | 0.099994 | 2.612 | 100 | 2611.8 | -76.38 |
| 9/20/17 | 0.099994 | 2.65 | 100 | 2649.6 | -76.83 |
| 9/27/17 | 0.099994 | 2.621 | 100 | 2621.3 | -76.67 |
| 9/29/17 | 0.099994 | 2.65 | 100 | 2649.75 | -77.27 |
| 10/2/17  | 0.099994 | 2.79 | 100 | 2708.9 | -77.5 |
| 10/4/17  | 0.099994 | 2.689 | 100 | 2688.69 | -77.55 |
| 10/6/17  | 0.099994 | 2.603 | 100 | 2603.47 | -77.6 |
| 10/11/17 | 0.099994 | 2.64 | 100 | 2640.48 | -77.6 |
| 10/14/17 | 0.099994 | 2.79 | 100 | 2708.91 | -76.52 |
| 10/16/17 | 0.099994 | 2.686 | 100 | 2685.54 | -77.73 |
| 10/18/17 | 0.099994 | 2.74 | 100 | 2740.44 | -77.11 |
| 10/21/17 | 0.099994 | 2.674 | 100 | 2674.07 | -75.9291 |
| 10/23/17 | 0.099994 | 2.419 | 100 | 2419 | -73.72 |
| 10/25/17 | 0.099994 | 2.79 | 100 | 2708.91 | -76.52 |
| 11/1/17  | 0.099994 | 2.64 | 100 | 2640.48 | -77.6 |
| 11/6/17  | 0.099994 | 2.969 | 100 | 2695.73 | -76.95 |
| 11/15/17 | 0.099994 | 2.777 | 100 | 2776.61 | -77.5 |
| 11/17/17 | 0.099994 | 2.777 | 100 | 2776.61 | -77.5 |

95
Table 16: Ti3 EIS Experimental Data

| Date       | Time  | Current | Temperature | Resistance | Frequency | Phase Angle | Percent |
|------------|-------|---------|-------------|------------|-----------|-------------|---------|
| 9/15/2017  | 9:00  | 0.099994| 2.463       | 100        | 2463.37   | -74.9667    | 100     |
| 9/18/2017  | 9:00  | 0.099994| 2.546       | 100        | 2545.57   | -75.35      | 100     |
| 9/20/2017  | 9:00  | 0.099994| 2.467       | 100        | 2467.26   | -74.58      | 100     |
| 9/27/2017  | 9:00  | 0.099994| 2.538       | 100        | 2538.28   | -75.62      | 100     |
| 9/29/2017  | 9:00  | 0.099994| 2.502       | 100        | 2502.19   | -75.43      | 100     |
| 10/2/2017  | 9:00  | 0.099994| 2.632       | 100        | 2632.23   | -76.4       | 100     |
| 10/4/2017  | 9:00  | 0.099994| 2.629       | 100        | 2628.97   | -76.66      | 100     |
| 10/6/2017  | 9:00  | 0.099994| 2.562       | 100        | 2561.97   | -76.33      | 100     |
| 10/11/2017 | 9:00  | 0.099994| 2.529       | 100        | 2529.33   | -76.15      | 100     |
| 10/14/2017 | 9:00  | 0.099994| 2.603       | 100        | 2603.05   | -76.59      | 100     |
| 10/18/2017 | 9:00  | 0.099994| 2.649       | 100        | 2649.17   | -76.96      | 100     |
| 10/21/2017 | 9:00  | 0.099994| 2.665       | 100        | 2665.08   | -76.05      | 100     |
| 10/23/2017 | 9:00  | 0.099994| 2.6        | 100        | 2599.89   | -74.78      | 100     |
| 10/25/2017 | 9:00  | 0.099994| 2.673       | 100        | 2632.67   | -75.76      | 100     |
| 10/30/2017 | 9:00  | 0.099994|            |            |           |             |         |
| 11/1/2017  | 9:00  | 0.099994|            |            |           |             |         |
| 11/6/2017  | 9:00  | 0.099994| 2.614       | 100        | 2613.78   | -75.87      | 100     |
| 11/15/2017 | 9:00  | 0.099994|            |            |           |             |         |
| 11/17/2017 | 9:00  | 0.099994| 2.685       | 100        | 2684.82   | -76.19      | 100     |

Table 17: Ti4 EIS Experimental Data

| Date       | Time  | Current | Temperature | Resistance | Frequency | Phase Angle | Percent |
|------------|-------|---------|-------------|------------|-----------|-------------|---------|
| 9/15/2017  | 9:00  | 0.099994| 7.829       | 100        | 7829.03   | -71.45      | 100     |
| 9/18/2017  | 9:00  | 0.099994| 8.294       | 100        | 8294.04   | -72.72      | 100     |
| 9/20/2017  | 9:00  | 0.099994| 8.188       | 100        | 8166.06   | -72.73      | 100     |
| 9/27/2017  | 9:00  | 0.099994| 6.795       | 100        | 6795.37   | -75.55      | 100     |
| 9/28/2017  | 9:00  | 0.099994| 6.77        | 100        | 6769.68   | -78.10      | 100     |
| 10/2/2017  | 9:00  | 0.099994| 6.871       | 100        | 6870.69   | -78.32      | 100     |
| 10/4/2017  | 9:00  | 0.099994| 6.799       | 100        | 6798.79   | -79.15      | 100     |
| 10/6/2017  | 9:00  | 0.099994| 5.711       | 100        | 5710.62   | -76.53      | 100     |
| 10/11/2017 | 9:00  | 0.099994| 6.514       | 100        | 6513.72   | -78.99      | 100     |
| 10/14/2017 | 9:00  | 0.099994| 6.527       | 100        | 6527.38   | -78.68      | 100     |
| 10/16/2017 | 9:00  | 0.099994| 5.965       | 100        | 6687.17   | -79.07      | 100     |
| 10/18/2017 | 9:00  | 0.099994| 6.73        | 100        | 6730.14   | -79.05      | 100     |
| 10/21/2017 | 9:00  | 0.099994| 6.604       | 100        | 6604.31   | -78.12      | 100     |
| 10/23/2017 | 9:00  | 0.099994| 6.713       | 100        | 6713.21   | -78.51      | 100     |
| 10/25/2017 | 9:00  | 0.099994| 6.74        | 100        | 6740      | -79.09      | 100     |
| 10/30/2017 | 9:00  | 0.099994|            |            |           |             |         |
| 11/1/2017  | 9:00  | 0.099994| 6.694       | 100        | 6693.74   | -78.7       | 100     |
| 11/6/2017  | 9:00  | 0.099994|            |            |           |             |         |
| 11/15/2017 | 9:00  | 0.099994| 6.812       | 100        | 6812.26   | -78.89      | 100     |

96
| Date       | Value 1  | Value 2  | Value 3  | Value 4  | Value 5  | Value 6  | Value 7  |
|------------|----------|----------|----------|----------|----------|----------|----------|
| 9/15/2017  | 0.099994 | 7.612    | 100      | 7612.32  | -66.56   | 100      |
| 9/18/2017  | 0.099994 | 6.679    | 100      | 6679.05  | -70.21   | 100      |
| 9/20/2017  | 0.099994 | 6.122    | 100      | 6122.48  | -76.07   | 100      |
| 9/27/2017  | 0.099994 | 5.841    | 100      | 5841.4   | -75.63   | 100      |
| 9/29/2017  | 0.099994 | 5.91     | 100      | 5909.77  | -76.14   | 100      |
| 10/2/2017  | 0.099994 | 5.997    | 100      | 5986.89  | -75.8    | 100      |
| 10/4/2017  | 0.099994 | 5.97     | 100      | 5970.1   | -76.49   | 100      |
| 10/6/2017  | 0.099994 | 5.858    | 100      | 5857.78  | -76.13   | 100      |
| 10/11/2017 | 0.099994 | 5.843    | 100      | 5843.36  | -76.01   | 100      |
| 10/14/2017 | 0.099994 | 5.924    | 100      | 5923.86  | -76.65   | 100      |
| 10/16/2017 | 0.099994 | 5.965    | 100      | 5964.77  | -74.94   | 100      |
| 10/18/2017 | 0.099994 | 6.008    | 100      | 6008.48  | -76.05   | 100      |
| 10/21/2017 | 0.099994 | 4.752    | 100      | 4752.13  | -71.39   | 100      |
| 10/23/2017 | 0.099994 | 5.952    | 100      | 5951.75  | -73.7    | 100      |
| 10/25/2017 | 0.099994 | 6.179    | 100      | 6179.12  | -71.44   | 100      |
| 10/30/2017 |          |          |          |          |          |          |          |
| 11/1/2017  | 0.099994 | 5.866    | 100      | 5866.18  | -75.41   | 100      |
| 11/6/2017  |          |          |          |          |          |          |          |
| 11/15/2017 |          |          |          |          |          |          |          |
| 11/17/2017 | 0.099994 | 5.942    | 100      | 5941.58  | -74.88   | 100      |

Table 18: Ti5 EIS Experimental Data
Figure 119: Mechanism of Crevice Corrosion – Chemical Reaction
BIBLIOGRAPHY

1. Corrosion Engineering, 2nd Edition, Fontana, published by McGraw Hill
   Fontana, Mars Guy. "Corrosion Engineering, 1986." McGraw-Hill

2. Handbook of Corrosion Engineering, 2nd Edition, Pierre R. Roberge, published
   by McGraw Hill Roberge, Pierre R. Handbook of corrosion engineering.
   McGraw-Hill, 2000.

3. Tucker, Wayne C., Richard Brown, and Laureen Russell. "Corrosion between
   a graphite/polymer composite and metals." Journal of Composite Materials
   24.1 (1990): 92-102.

4. Hack, Harvey P. Seawater Corrosion of Fasteners in Various Structural
   Materials. No. DTNSRDC-76-0034. DAVID W TAYLOR NAVAL SHIP
   RESEARCH AND DEVELOPMENT CENTER BETHESDA MD, 1976.

5. Aylor, Denise M., and John N. Murray. The effect of a seawater environment
   on the galvanic corrosion behavior of graphite/epoxy composites coupled to
   metals. No. SME/92-32. NAVAL SURFACE WARFARE CENTER
   CARDEROCK DIV BETHESDA MD, 1992.
6. Lasia, Andrzej. "Electrochemical impedance spectroscopy and its applications." *Modern aspects of electrochemistry*. Springer US, 2002. 143-248.

7. Zelinka, Samuel L., et al. "Electrochemical impedance spectroscopy (EIS) as a tool for measuring corrosion of polymer-coated fasteners used in treated wood." *Forest products journal* 59.1/2 (2009): 77.

8. Brown, R., and W. H. E. Reynolds. *The effect of various chloride environments on degradation of a carbon fiber composite*. No. CONF-950304-. NACE International, Houston, TX (United States), 1995.

9. Alias, M. N., and R. Brown. "Corrosion behavior of carbon fiber composites in the marine environment." *Corrosion science* 35.1-4 (1993): 395-402.

10. Van Leaven, L., M. N. Alias, and R. Brown. "Corrosion behavior of ion plated and implanted films." *Surface and Coatings Technology* 53.1 (1992): 25-34.

11. Chu, Chung-Tse, Peter D. Fuqua, and James D. Barrie. "Corrosion characterization of durable silver coatings by electrochemical impedance spectroscopy and accelerated environmental testing." *Applied optics* 45.7 (2006): 1583-1593.
12. Electrochemical Impedance and Noise, R. Cottis and S. Turgoose, NACE International, 1999. ISBN 1-57590-093-9.

13. Electrochemical Impedance: Analysis and Interpretation, STP 1188, Edited by Scully, Silverman, and Kendig, ATSM, ISBN 0-8031-1861-9.

14. “Market Leader in the Support of Electrochemical Research.” Electrochemical Instruments-Galvanostat/Potentiostat Manufacturer, www.gamry.com/.

15. Newbury*, D. E. and Ritchie, N. W. M. (2013), Is Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) Quantitative?. Scanning, 35: 141–168. doi:10.1002/sca.21041.

16. Li, Yan. “Corrosion Behavior of Hot Dip Zinc and Zinc-Aluminum Coatings on Steel in Seawater.” Bulletin of Materials Science, vol. 24, no. 4, 2001, pp. 355–360., doi:10.1007/bf02708631.

17. Macdonald, D. D. “Some Advantages and Pitfalls of Electrochemical Impedance Spectroscopy.” Corrosion, vol. 46, no. 3, 1990, pp. 229–242., doi:10.5006/1.3585096.

18. Crevice Corrosion (2/2), faculty.kfupm.edu.sa/ME/hussaini/Corrosion%20Engineering/04.11.02.htm.