RECOMMENDATIONS

Summary of recommendations on percutaneous coronary intervention for the reperfusion of acute ST elevation myocardial infarction

G Montalescot, H R Andersen, D Antoniucci, A Betriu, M J de Boer, L Grip, F J Neumann, M T Rothman

Since primary percutaneous coronary intervention (PCI) is the mainstay of reperfusion in acute myocardial infarction (AMI), and because AMI represents the most urgent situation for PCI, recommendations based on scientific evidence and expert experience would be useful for centres practising primary PCI or those looking to set up a primary PCI programme. With this in mind, a group of eight European interventional cardiologists (all based at high volume centres) formed an expert consensus to provide recommendations on this subject.

The recommendations are intended for specialists who possess the necessary knowledge, experience, and skills to perform PCI, and who work in environments with appropriate resources and facilities.

RECOMMENDATIONS FOR PCI IN AMI

When performed by experienced operators, we strongly recommend PCI as the reperfusion strategy of choice for patients with AMI. When thrombolysis is contraindicated or has failed, or when patients are in cardiogenic shock, rapid transfer to a secondary unit should be ensured. Studies have shown that, where facilities are available, most AMI patients are candidates for PCI, and that PCI is effective in re-establishing coronary artery perfusion and in providing a good outcome in both the short and long term.

We strongly recommend that PCI for AMI is performed swiftly, with a door-to-balloon time of <2 hours. The benefit of reperfusion with primary PCI is maximal within two hours of symptom onset, but appears to be present in a time of reperfusion with primary PCI is maximal within two hours. The benefit of reperfusion 90 minutes after starting the therapy, transfer for rescue PCI should be considered. A number of studies and a recent meta-analysis have demonstrated the feasibility and efficacy of abciximab in reducing ischaemic complications after coronary angioplasty is widely accepted and therefore aspirin should be given as early as possible, with a recommended starting dose >160 mg; intravenous administration is preferable.

Whenever possible, a loading dose of 300–600 mg clopidogrel is recommended before intervention and a daily dose of at least 75 mg clopidogrel for at least one month post-intervention.

To date, abciximab is the only glycoprotein IIb/IIIa inhibitor proven to be clinically effective in PCI for AMI. Trials, including RAPPORT, ISAR-2, ADMIRAL, CADILLAC, and ACE, have demonstrated the efficacy of abciximab during PCI for AMI. All five trials testing abciximab in primary angioplasty showed significant reductions in ischaemic events at 30 days. Therefore, immediate administration of abciximab on first presentation is recommended for AMI patients scheduled for primary PCI.

We recommend the administration of heparin at a dose adjusted to weight and/or activated clotting time (ACT).

Abbreviations: ACT, activated clotting time; AMI, acute myocardial infarction; IABP, intra-aortic balloon pump; PCI, percutaneous coronary intervention; UFH, unfractionated heparin.
recommend 70 U of unfractionated heparin (UFH) per kilogram in patients undergoing PCI with adjuvant glycoprotein IIb/IIIa inhibitors. Higher doses of UFH used together with glycoprotein IIb/IIIa inhibitors are associated with a risk of over-anticoagulation. Substitution of low molecular weight heparin for UFH appears promising but firm recommendations cannot be given at this time.

The American College of Cardiology recommends that patients not receiving glycoprotein IIb/IIIa inhibitors should be given sufficient UFH during coronary angioplasty to achieve an ACT of 250–300 s and 300–350 s. The UFH bolus should be reduced when glycoprotein IIb/IIIa inhibitors are given to achieve a target ACT of 200 s.1

CONCLUSION
This is the first paper to draw together a full range of recommendations for PCI in AMI including timing, adjunc-
tive pharmacological therapies and length of hospital stay post-PCI. More detailed analysis of the evidence supporting these recommendations can be found in the electronic version of this paper.

ACKNOWLEDGEMENTS
This European Expert Consensus was supported by an unrestricted educational grant from Eli Lilly and Company.

Table 1 Recommendations for specific cases and post-PCI

Case	Recommendation
Facilitated PCI	Facilitated PCI with pharmacological treatment helps establish early reperfusion
	before catheterisation
	Facilitation with abciximab is the only recommendation based on published
	positive studies
PCI in coronary artery	When dilating a saphenous vein graft, the use of distal protection devices or
bypass grafts	thrombectomy devices may help prevent post-procedural events, such as no
	reflow and cardiogenic shock
Culprit vessel versus all	Considering the limited options available, PCI is a valid therapeutic strategy in
vessel intervention	these patients
Cardiogenic shock	Given the lack of conclusive supporting evidence, the consensus among experts
	is that “culprit only” intervention should be the recommended strategy. However,
	all accessible vessels should be treated in patients with shock
	We recommend careful assessment of the risk of developing cardiogenic shock
	in each patient to ensure early diagnosis and to allow rapid transfer and
	adequate intervention
No reflow and myocardial	Glyceryl trinitrate, verapamil, papaverine, nitroprusside, and adenosine are not
blush below grade 3	recommended at this time. Optimal treatment for no reflow remains
	undetermined
Elderly patients	Elderly patients are generally good candidates for angioplasty (and less so for
	thrombolysis
Post-PCI	Early discharge (day 3) after optimal PCI for uncomplicated AMI in low risk
Length of hospital stay	Early discharge is not recommended in high risk patients or following any
	complication or unsatisfactory procedure.

REFERENCES
1 Smith SC Jr, Dove JT, Jacobs AK, et al. American College of Cardiology; American Heart Association task force on practice guidelines. Committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty. ACC/AHA guidelines of percutaneous coronary interventions (revision of the 1993 PTCA guidelines): executive summary. A report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol 2001;37:2215–39
2 Breide BR, Grines Cl, Ivanhoe R, et al. Six-month clinical and angiographic follow-up after direct angioplasty for AMI: final results from the primary angioplasty registry. Circulation1994;90:156–62
3 Cannon CP, Gibson CM, Labresh CT, et al. Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 2000;283:2941–7
4 Dolly M, Bouazmanda A, Iacobi PH, et al. Transfer for primary angioplasty versus thrombolysis in acute myocardial infarction. A meta-analysis. Circulation 2003;108:1809–14
5 Aversano T, Aversano UT, Passamani E, et al. for the Atlantic Cardiovascular Patient Outcomes Research Team (C-PORr) Thrombolytic therapy vs primary percutaneous coronary intervention for myocardial infarction in patients presenting to hospitals without on-site cardiac surgery: a randomized controlled trial. JAMA 2002;287:1943–51
6 Stone GW, Grines Cl, Cox DA, et al. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 2002;346:957–66
7 Brener SJ, Barr IA, Burchenal JE, et al. Randomized, placebo-controlled trial of platelet glycoprotein IIb/IIIa blockade with primary angioplasty for acute myocardial infarction. ReoPro and primary PTCA organization and randomized trial (RAPPORT) investigators. Circulation1998;98:734–41
8 Neumann FJ, Kastrati A, Schmitt C, et al. Effect of glycoprotein IIb/IIIa receptor blockade with abciximab on clinical and angiographic restenosis rate after the placement of coronary stents following acute myocardial infarction. J Am Coll Cardiol 2000;35:915–21
9 Montalescot G, Barroquin P, Wittenberg O, et al. Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial infarction. N Engl J Med 2001;344:1895–903
10 Antoniucci D. The ACE trial — a prospective multicenter study of carbon coated stenting in AMI with and without abciximab. Transaether Cardiovascular Therapeutics 2002;10:28–29 September 2002, Washington, DC, USA.