Pediatric Kidney Transplantation: Frameshift in Medical and Surgical Management. Does the Perioperative Setting Have an Impact on Transplant Outcome? A Single-Center Experience

Berenice Bergel1†, Tamara Geppert1†, Beatriz Bañuelos Marco1, Frank Friedersdorff1,2, Dominik Müller3, Caroline Kempf4, Nils Lachmann4 and Anja Lingnau1*

1 Department of Urology, Charité – Universitätsmedizin Berlin, Berlin, Germany; 2 Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany; 3 Department of Pediatric Gastroenterology, Berlin Institute of Health, Nephrology and Metabolic Disorders, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; 4 Berlin Institute of Health, Institute of Transfusion Medicine, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany

Introduction: Frameshift in medical management as well as in surgical thinking is putting the patient as a whole is the focus, rather than just the disease. To optimize the treatment of our pediatric transplant patients in our institution, we changed in 2013 the transplant program setting, treating, and operating all patients with pediatric transplant exclusively in a pediatric environment. The aim of this study was to analyze whether or not this change had an impact on patients safety, patient population, and patients and transplant outcome.

Methods: In the retrospective analysis, we compared transplant outcome of two eras. Era 1 (2008–2012) solely included patients treated in the adult facilities, era 2 (2013–2017) patients were exclusively treated in the pediatric environment.

Results: There were 53 patients with renal transplant, with era 1 (28 patients) and era 2 (25 patients). Overall mortality was 5.6%. Median recipient age at transplantation was 13.2 years in era 1 and 8.59 years in era 2, median recipient weight at transplantation was 41.7 kg in era 1 vs. 26 kg in era 2, median size 149.5 cm (era 1) vs. 123 cm in era 2 (p = 0.05). In the subgroup of patients with congenital anomalies of the kidney and urinary tract (CAKUT) those were significantly younger at onset of dialysis (p < 0.001) and at time of transplantation (p < 0.001), also they were less in body weight (p < 0.01), and body size (p < 0.001), this subgroup was larger in era 2. HLA mismatch data, serum creatinine, and GFR yield comparable results in both groups. Median time to detection of DSA was 46.2 month (3.8 years).
INTRODUCTION

Renal transplantation remains the treatment of choice for children with end-stage renal disease (ESRD). It confers improved survival (1), growth (2), and health-related quality of life (3) compared to dialysis. Due to new immunosuppressive medication, decreased number of rejections and improvement of transplant- and patient outcome is seen.

However, since the first pediatric renal transplant in the 1960’s the field of pediatric renal transplantation is still evolving in many fields like immunosuppression, surgical techniques, pre-, peri-, and postoperative care, donor-recipient matching and patients and donor selection, and medical management with a frameshift also in surgical thinking putting the patient as a whole is the focus, rather than just the disease (4, 5).

To optimize the treatment of the pediatric patient population in our institution, we changed in 2013 the transplant program setting.

Pediatric renal transplants were performed over a long period in the general urology and high-volume transplant setting. Pediatric transplant patients were transported to the site of transplantation, postoperative care was performed in adult intensive care and when patients were stable enough, they were transported back to the pediatric facilities, which were at a different hospital site across town.

In 2013, the decision was made to change this setting to save the children, the transportation and pediatric transplantations were since then solely carried out in the pediatric hospital setting. Pre- and postoperative care was performed in pediatric nephrology, pediatric anesthesia, pediatric intensive care, and surgery in pediatric operating theater mostly by pediatric urologists. Also pre-transplantation patient evaluation was performed by the pediatric team (urology, nephrology, and anesthesia).

The aim of this study was to analyze whether or not this change had an impact on patients safety, patient population, and patients and transplant outcome.

PATIENTS AND METHODS

This study is a retrospective analysis. We reviewed medical records of all patients and collected data on medical history, clinical, and radiological findings in a database with standardized variables. Our database included pediatric renal transplantations (0–18 years) from January 2008 to December 2017. We decided to select patients from this era (the last 5 years in the adult setting and the first 5 years in the pediatric setting) mainly due to the fact that in this period of time the immunosuppression maintenance included steroids, mycophenolate mofetil (MMF), and tacrolimus as standard in all patients.

In Era1 (2008–2012) solely included patients treated in the adult facilities, in era2 (2013–2017) patients were exclusively treated in the pediatric environment.

We evaluated preoperative parameters: patients and donors demographic data (age, body weight and height, patient’s primary disease, type, and duration of dialysis, HLA-A, B and DR mismatch (according to the EUROTRANSPLANT matching criteria), intraoperative parameters such as operating technique, intraoperative complications, ischemia time, and postoperative parameters as function of transplant, serum creatinine and glomerular filtration rate (GFR), calculated according to the Schwartz formula (6), and duration of hospitalization, panel reactive antibodies (PRA) (solid phase assay, pre-transplantation, and in follow-up assessments post-transplantation, donor specific antibodies (DSA) (LABScreen® Mixed and Single Antigen Beads (OneLambda, West Hills, CA, USA)) (7). Samples were measured on a Luminex® 200 (Luminex®, Austin, TX, USA) and analyzed using the HLA Fusion software (OneLambda).

Information from the hospital archive, electronic medical records, and EUROTRANSPLANT were used for extracting the data.

STATISTICAL ANALYSES

SPSS 22 (IBM Corporation, Somers, NY, USA) was used to perform statistical analyses. Non-parametric tests (Mann–Whitney U test, Kruskal–Wallis test) were performed. The chi-square test was used to evaluate categorical variables. A p-value of <0.05 was considered significant.

RESULTS

There were 53 patients with renal transplant altogether, in era1 (2008–2012) were 28 patients and era2 (2013–2017) 25 patients, respectively.

Overall mortality was 1, 9%, 0% in era1, and 4% (n = 1) in era 2 (patient died of multi organ failure due to sepsis 1 month after transplantation).

The number living donor transplantations was higher in era2 (44 vs. 32.1% in era 1), also in era 2 were more boys (64 vs. 46.5% in era 1).
Mean follow up time for transplant outcome was minimally 3 years in both groups, for era 1 longer follow up data is available, this applied for donor specific antibody (DSA) measurements.

Leading causes for ESRD was in era 1 the hemolytic uremic syndrome (HUS) (21.4%), unspecified reasons such as stones, vasculitis, and postnatal hypoxia (21.4%) followed by congenital disorders of the kidneys and the urinary tract (CAKUT) (17.8%). Primary diagnosis in era 2 was CAKUT (39.1%), glomerulonephritis (30.4%) and polycystic kidney disease (ADPKD) (17.3%).

Patients in era 2 were also younger when dialysis was initiated (median 11.5 years era 1 vs. 6.89 years in era 2) and spent more time on dialysis (526 days in era 1 and 651 days in era 2). The number of HLA mismatches and cold ischemia time showed no significant difference amongst the eras (data is also shown in Table 1).

Since demographic data revealed differences in recipient’s characteristics (primary disease, age, size and body weight at time of transplantation) we further analyzed this data and found that the subgroup of patients with CAKUT as primary diagnosis were significantly younger at onset of dialysis ($p < 0.001$) and at time of transplantation ($p < 0.001$), also they were less in body weight ($p < 0.001$), and body size ($p < 0.001$); see Figure 3.

DISCUSSION

Outcome after pediatric kidney transplantation continuously improved over the last decades (8). Also, children are assigned additional waiting points in the Eurotransplant Kidney Allocation System (ETKAS) to equalize imbalances in organ exchange (9). Many transplant programs worldwide have a similar approach and prioritize children in solid organ allocation since children seem to benefit from this organ for a longer period of time (10). Therefore, constant evaluation of transplant outcome data remains crucial. In the present study, we wanted to know, whether pediatric renal transplantation outside of an adult transplantation unit with high volume throughput is a safe option for pediatric renal transplantation. Our Data clearly shows that this is the case. Results in patient, graft survival and graft function were excellent, improved over the years and are in line with the literature (8).

Our data also shows that the pediatric patient pool did not remain stable over the years. One aspect is the trend to transplant children at a younger age, which can also be seen in the NAPRTCS (North American Pediatric Renal Trials and Collaborative Studies) data (8). For small recipients (below 20 kg) we were accepting smaller donors in era 2 with equally good results. Recently published data support this approach in utilizing small donor kidneys for small recipients (11). In our study, we found a very big subgroup of patients with HUS as primary diagnosis in era 1 (2008–2013). In 2011, an *Escherichia coli* strain caused in Germany an outbreak of >800 cases of HUS, including 90 children. However, since most of the children recovered in the intermediate follow up, they were not found

FIGURE 1 | Primary diagnosis in the analyzed eras. Era 1 2008–2012, era 2 2013–2017.
TABLE 1	Demographic data of donor and recipients, HLA mismatches and ischemia time.		
Recipient (parameters at time of transplant)	Median	Mean ± SD	p-value
Age in years			
2008–2012	13.27	11.62 ± 5	0.12
2013–2017	8.59	9.35 ± 5	
Body weight in kg			
2008–2012	41.7	38.23 ± 16.19	0.175
2013–2017	26	27.88 ± 13.94	
Body size in cm			
2008–2012	149.5	139.53 ± 27.81	0.05
2013–2017	123	124.8 ± 27.93	
Age at onset of dialysis			
2008–2012	11.54	9.68 ± 5.2	0.31
2013–2017	6.89	7.83 ± 5.5	
Days on dialysis			
2008–2012	526	678 ± 527	0.47
2013–2017	651	621 ± 606	
Waiting time for organ in months			
2008–2012	6.2	16.11 ± 21.12	0.22
2013–2017	5.1	11.25 ± 16.98	
Hospital stay after operation in days			
2008–2012	24	24.71 ± 7.2	0.78
2013–2017	23.3	24.88 ± 6.7	
Donor			
Donor age in years			
2008–2012	40	29.9 ± 17.9	0.11
2013–2017	24	22.7 ± 16.5	
Donor weight in kg			
2008–2012	62	61.5 ± 26.3	0.47
2013–2017	65	56.2 ± 26.3	
Ratio weight recipient/donor			
2008–2012	0.57	0.67 ± 0.28	0.21
2013–2017	0.54	0.68 ± 0.57	
HLA mismatch			
HLA-A,B,DR			
2008–2012	3	3.14 ± 1.5	0.77
2013–2017	3	3.3 ± 1.34	
HLA-DR			
2008–2012	1	1.1 ± 0.68	0.8
2013–2017	1	1.08 ± 0.49	
Cold ischemia time in min			
2008–2012	626	582 ± 72.55	0.41
2013–2017	505	505 ± 63.37	
HLA antibodies positive in %			
Pre-transplant			
2008–2012	17.85		
2013–2017	28		0.38
Post-transplant			
2008–2012	71.42		
2013–2017	40		n/a (longer f up)
DSA positive in %			
Pre-transplant			
2008–2012	3.57		
2013–2017	0		0.345
Post-transplant			
2008–2012	42.85		
2013–2017	8		n/a (longer fu)
in the patient pool in our cohorts (12). We can only speculate
that advances in treatment for pediatric HUS with better renal
outcome reduced the number of these patients in the second
era (13).
In developed countries, CAKUT and is the main cause for
ESRD in children (14). Our data shows that children with
CAKUT as primary diagnosis are significantly younger and
smaller at onset of dialysis and at time of transplantation, which
is a discussed topic in the literature (15). One might speculate
that the shift of primary diagnosis might be a direct result of
improved survival of these children in the postnatal period.
Further epidemiological data needs to be collected.
Pediatric interdisciplinary care at any time during in-patient
stay at renal transplantation in era 2 leads to comparable
outcome to era 1 though recipients were even younger and thus
had a lower body weight. Encouraging data of other studies
and of our cohort in era 2 might support efforts to offer
smaller donor kidneys aiming for shorter waiting time but with

FIGURE 2 | Clinical course of serum creatinine and GFR.
comparable outcome of patients with pediatric renal transplant in the future.

CONCLUSION

Since children with ESRD at the time of transplant trend to be younger and smaller over the years; it is crucial to ensure a medical environment that is able to address their particular challenges in perioperative care according to their individual needs. Even in this more challenging recipient cohort, renal transplantation can be performed safely as outlined by our data.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

REFERENCES

1. McDonald SP, Craig JC. Long-term survival of children with end-stage renal disease. *N Engl J Med.* (2004) 350:2654–62. doi: 10.1056/NEJMoa031643
2. Nissel R, Braza I, Feneberg R, Wigger M, Greiner C, Querfeld U, et al. Effect of renal transplantation in childhood on longitudinal growth and adult height. *Kidney Int.* (2004) 66:792–800. doi: 10.1111/j.1523-1755.2004.00805.x
3. Goldstein SL, Graham N, Burwinkle T, Warady B, Farrah R, Varni JW. Health-related quality of life in pediatric patients with ESRD. *Pediat Nephrol.* (2006) 21:846–50. doi: 10.1007/s00467-006-0081-y
4. Verghese PS. Pediatric kidney transplantation: a historical review. *Pediat Res.* (2017) 81:259–64. doi: 10.1038/pr.2016.207

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Charité Universitätsmedizin Berlin Ethikkommission Campus Virchow Klinikum Antrag EA2/026/22. Written informed consent to participate in this study was provided by the participants' legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

BBe, AL, TG, and CK had substantial contributions in data acquisition and design of the work. BBa, FF, DM, and AL were responsible for conception and interpretation of the data for the work. All authors revised the work critically for intellectual content and gave final approval for publication and are accountable for all aspects of the work.
5. McBride CA, Holland AJ. Theatre of paediatric surgery. *J Paediatr Child Health.* (2015) 51:98. doi: 10.1111/jpc.12810

6. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. *Pediatrics.* (1976) 58:259–63.

7. Lachmann N, Todorova K, Schulze H, Schönemann C, Lumineux® and its applications for solid organ transplantation, hematopoietic stem cell transplantation, and transfusion. *Transfus Med Hemother.* (2013) 40:182–9. doi: 10.1159/000351459

8. Chua A, Cramer C, Moudgil A, Martz K, Smith J, Blydt-Hansen T, et al. Kidney transplant practice patterns and outcome benchmarks over 30 years: the 2018 report of the NAPRTCS. *Pediatr Transplant.* (2019) 23:e13597. doi: 10.1111/petr.13597

9. Tieken CM de Boer J. Kidney (ETKAS and ESP). Eurotransplant Manual® – Version 82. (2019) 14. Available online at: https://www.eurotransplant.org/wp-content/uploads/2020/01/H4-Kidney-2021-2-April-2021.pdf (accessed February 20, 2022).

10. Wu DA, Watson CJ, Bradley JA, Johnson RJ, Forsythe JL, Oniscu GC. Global trends and challenges in deceased donor kidney allocation. *Kidney Int.* (2017) 91:1287–99. doi: 10.1016/j.kint.2016.09.054

11. Cetiner M, Paul A, Treckmann JW, Dittmann S, Büscher R, Hoyer PF, et al. Small donors for small recipients - excellent growth and long-term function of single kidney grafts. *Transpl Int: Off J Eur Soc Organ Transplant.* (2021) 34:2735–45. doi: 10.1111/tri.14129

12. Loos S, Aulbert W, Hoppe B, Ahlenstiel-Grunow T, Kranz B, Wahl C, et al. Intermediate follow-up of pediatric patients with hemolytic uremic syndrome during the 2011 outbreak caused by *E. coli O104:H4*. *Clin Infect Dis.* (2017) 64:1637–43. doi: 10.1093/cid/cix218

13. Rainer R, Vijayvargiya N, Khooball A, Melachuri M, Deshpande S, Sharma D, et al. Pediatric atypical hemolytic uremic syndrome advances. *Cells.* (2021) 10. doi: 10.3390/cells10123580

14. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. *Pediatr Nephrol.* (2012) 27:363–73. doi: 10.1007/s00467-011-1939-1

15. Wühl E, van Stralen KJ, Verrina E, Bjerre A, Wanner C, Heaf JG, et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. *Clin J Am Soc Nephrol.* (2013) 8:67–74. doi: 10.2215/cjn.03310412

Conflict of Interest: NL reports personal fees from BnIT GmbH, outside the submitted work.

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Bergel, Gepbert, Bañuelos Marco, Friedersdorff, Müller, Kempf, Lachmann and Lingnau. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.