Stripes in a three-chain Hubbard ladder: a comparison of density-matrix renormalization group and constrained-path Monte Carlo results

J. Bonča
Department of Physics, FMF and J. Stefan Institute, Ljubljana, Slovenia

J. E. Gubernatis and M. Guerrero
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Eric Jeckelmann and Steven R. White
Department of Physics and Astronomy, University of California, Irvine, CA 92697
(December 31, 2021)

Abstract

Using both the density-matrix renormalization group method and the constrained-path quantum Monte Carlo method, we have studied the ground-state energies and the spin and hole densities of a 12×3 Hubbard model with open boundary conditions and 6 holes doped away from half-filling. Results obtained with these two methods agree well in the small and intermediate U regimes. For $U/t \geq 6$ we find a ground-state with stripes.
One lesson learned from the search for an electronic model of high temperature superconductivity is that computing the low lying states of even simple many-electron models is difficult. The difficulty in fact has prevented definitive statements about the superconducting nature of the ground state of the one and three-band Hubbard models and the t-J model in two dimensions. Recently, two new methods for computing ground-state properties of many-body systems were developed that in a number of respects represent significant advances over previous methods. These are the density-matrix renormalization group (DMRG) and the constrained-path Monte Carlo (CPMC) methods.

The DMRG method \cite{1} is a variational procedure which produces reliable estimates of the ground-state energy as well as an exact upper bound on this energy. It can also be used to compute various kinds of correlation functions. The DMRG method is extremely accurate for low-dimensional many-body systems with short-range interactions. Unfortunately, it has trouble dealing with periodic boundary conditions, and in two dimensions its computational effort increases very quickly (probably exponentially) with the width of the system, although only linearly with the length. The largest DMRG calculations for a two-dimensional doped system have been for 16×8 t-J lattices \cite{2}. However, these calculations were not nearly as accurate as previous DMRG calculations on narrower ladder systems.

Like the DMRG method, the CPMC method \cite{3} produces a variational upper bound on the ground-state energy and seemingly accurate correlation functions. It is a quantum Monte Carlo method that projects the ground state from a trial state $|\Psi_T\rangle$ by means of a branched random walk. It prevents the Fermion sign problem from occurring by eliminating any random walker whose state $|\phi\rangle$ develops a negative overlap $\langle \Psi_T | \phi \rangle$ with the trial state. This constraint converts the procedure, which is otherwise exact within statistical errors, into one which produces a variational upper bound on the energy. It can treat relatively large systems sizes (e.g. 16×16 lattices), and unlike the DMRG method, without any limitations arising from dimensionality or boundary conditions.

While the existence of striped states was predicted nearly a decade ago by Hartree-Fock \cite{4}, confirmation of stripe formation with more reliable numerical techniques was lacking.
Recently, however, there has been a surge of interest in stripes because of their apparent experimental observation not only in the superconducting cuprates [5] but also in non-superconducting nickelates. A stripe is simply a domain wall ordering of holes and spins. Spins in the regions between the walls are anti-ferromagnetically ordered and across a wall are correlated with a π phase shift. The wall, at most a few lattice spacings wide, is a hole rich region. Very recently, White and Scalapino [2,6,7] used the DMRG method in several studies of the existence and structure of striped states in the two-dimensional t-J model and in t-J ladders of several widths. They found that stripes form under a wide variety of circumstances. Since the t-J model is a strong-coupling approximation to the Hubbard model, it is natural to ask if numerical methods can find stripes in the latter model and if these states also appear in the weak coupling limit. It is known that within the Hartree-Fock approximation for the Hubbard model stripes exist when the Coulomb interaction U/t exceeds a critical value which is approximately 3.

In this communication we report on a numerical study of striped states in a three-chain Hubbard model, based on both the CPMC and DMRG methods. The two methods complement each other, and their results merge naturally into those of the t-J model. In this system the DMRG method is most effective for large U, while the CPMC method is most effective for small U. We find the two methods agreeing pleasingly well in both the small and intermediate U regimes. We do not find stripes at small U; at $U/t \sim 6$ stripes appear and the Hubbard results map nicely onto previous DMRG t-J results.

We used the Hubbard model

$$H = -t \sum_{\langle i,j \rangle, \sigma} (c_{i\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{i\sigma}) + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

(1)

defined on a rectangular lattice with open boundary conditions. Open boundary conditions are used to break the translational invariance of the system, allowing striped patterns to appear as local density variations. Open boundary conditions also make the DMRG method more accurate. We report results on a 12×3 three-chain ladder, doped six holes away from half-filling, as a function of U/t. This system was selected based on t-J results showing two
pronounced 3-hole transverse stripes \[.]

For different values of \(U\), we computed the ground-state energy and ground state expectation values of the rung spin density

\[S(i) = \sum_j (-1)^{j-1} \langle s_j^z(i) \rangle, \quad (2) \]

and the rung hole density

\[R(i) = \sum_{j\sigma} \langle 1 - n_{j\sigma}(i) \rangle, \quad (3) \]

Here \(i\) labels the rung, and \(j\) is the chain index. We remark that in all of our results \(\sum R(i) = N_h = 6\).

The CPMC method uses a trial wave function \(|\Psi_T\rangle\) for three purposes: as a starting point, an importance function, and a constraining function. The first use influences the Monte Carlo dynamics; the second, the statistical error of the results; and the third, the systematic error. In the simulations reported here, we used two types of trial functions. One is the wave function of the non-interacting (\(U = 0\)) problem, the free-electron (FE) solution. This single Slater determinant state does not exhibit a striped pattern. The second is the unrestricted Hartree-Fock (UHF) solution. This single Slater determinant shows a striped pattern provided \(U/t\) is approximately 3 or larger. We note that for \(U/t = 3\) the value of the overlap \(\langle \text{UHF}|\text{FE}\rangle\) is small (\(\sim 0.1\)) and becomes even smaller (\(\sim 10^{-5}\)) as \(U/t\) is increased to 8.

In our “quick and dirty” method of obtaining the UHF solution, each \(\langle n_{i\sigma} \rangle\) was obtained independently without imposing the point group symmetry of the rectangle. Accordingly the UHF wave function did not precisely display the symmetries of the rectangle, with the mirror symmetry, \(y \leftrightarrow -y\), being noticeably absent. If we used multiple Slater determinants for \(|\Psi_T\rangle\) that restored the broken mirror symmetry, either as a two determinant trial function with the UHF solution and its mirror symmetric solution or as a four determinant solution obtained by applying the four group operations of the rectangle to the UHF solution, we would find the expectation value of the energy and the rung densities virtually unchanged.
The main difference is the symmetrized UHF state has \(\langle s_z^i(i) \rangle = 0 \); the unsymmetrized state does not. In the results reported below we used the single Slater determinant UHF state as our constraining and initial wavefunctions.

We remark that we used the UHF solution for \(U/t = 3 \) even though the simulation was for a Hubbard model with a larger \(U \). The smaller \(U \) starting point, a point at which a striped state in the UHF wavefunction has become easily noticeable, produced expectation values with less variance than results obtained by starting with the UHF solution for the value of \(U \) in the simulation. The smaller \(U \) starting point also tended to produce less localized stripes. The Hartree-Fock solution for the larger values of \(U \) has a more spatially restricted domain wall, eventually becoming one rung of lattice sites. When we put the FE wave function as \(|\Psi_T\rangle \), the final result for any \(U \) does not have stripes, and when we put UHF wavefunctions as \(|\Psi_T\rangle \), it does for \(U/t \geq 5 \). The CPMC simulations generally used 500 random walkers (on the average). We estimate that the systematic error due to the Trotter approximation was within the statistical error.

We also remark that finding a striped ground state is not simply a matter of starting the calculations with a striped state. The situation is more subtle. For example, in the CPMC simulations the same wavefunction does not have to be used as the initial and the constraining states. If the constraining state is chosen to be a linear combination of the FE and UHF wavefunctions, then within statistical error the same ground-state energy and non-striped hole and spin density are found irrespective of whether the FE or UHF wavefunction was used as the initial state.

Unlike the Monte Carlo method the DMRG method does not have a statistical error which is reduced by increasing the length of simulations. Instead it has a truncation error which is reduced by keeping larger numbers \(m \) of density matrix eigenstates (for more details see [1]). Varying \(m \) allows one to compute physical quantities for different truncation errors and thus to obtain error estimates on these quantities. In Fig. [1] we show the DMRG ground-state energy as a function of the truncation error parameterized by \(m \). For large \(m \) the energy \(E(P_m) \) decreases almost linearly with the truncation error \(P_m \). Thus, we can extrapolate to
the limit $P_m \to 0$ to estimate the ground-state energy $E(P_m = 0)$ more accurately. Usually the slight deviation from linearity in the function $E(P_m)$ has a positive second derivative, so extrapolated values usually increase slightly when the accuracy is increased. Thus our results for $E(P_m \to 0)$ are likely to be slightly lower than the exact results. Based on observation of the dependence of the rung densities on m, we estimate that the errors in the rung densities are generally no more than 1%.

As for the CPMC method, the starting wavefunction used by the DMRG method can be varied. This starting wavefunction is simply the DMRG approximation to the ground state at the end of the warmup sweep, before the finite system sweeps begin. After these initial sweeps the initial wavefunction has no effect. However, it may be that there are a few “metastable” ground states, in which case, with a poor initial wavefunction, the DMRG method can become stuck for a significant number of sweeps. If m is increased enough, the method will always find the correct ground state, but the calculation may not always be practical. Thus it is often wise, particularly in 2D systems, to try several different initial wavefunctions [2]. Usually we generate distinct initial wavefunctions by varying the quantum numbers of the target state as the system is built up from scratch. This crude approach is usually sufficient to avoid getting stuck in metastable states. For the system studied here, it was feasible to increase m enough to tunnel out of metastable ground states, which allowed a check on whether we had tried enough initial wavefunctions.

Our main results for the energies are reported in Table 1. Two sets of CPMC results are given. The labels FE and UHF indicate the choice of $|\Psi_T\rangle$. For U/t less than about 8, the FE CPMC energies lie lower than the UHF CPMC energies, suggesting the CPMC state associated with the FE trial state is the one most representative of the ground state. This state does not show a static striped state. For $U/t = 6$ and 7 the difference in the FE and UHF CPMC energies is of the order of 10^{-2} which is likely to be the size of the systematic error.

Two sets of DMRG results are also presented in Table 1: the lowest variational bounds obtained (with the largest number of states m used to reach this bound also given) and the
extrapolated ground-state energies $E(P_m = 0)$. For $U/t < 6$ DMRG bounds lie above the FE CPMC results and the extrapolated DMRG energies agree with the FE CPMC energies within error estimations. This demonstrates the accuracy of both methods in the weak coupling regime.

For $U/t < 6$ neither the CPMC nor DMRG ground states show a static striped state. This is consistent with weak coupling renormalization group calculations which do not show any indication of stripes in 3-chain Hubbard ladders [8]. However, the UHF CPMC results and some results for metastable DMRG ground states suggest that low-lying states with stripes exist for relatively small U.

Results are significantly different for $U/t \geq 6$. DMRG variational bounds are now lower than the CPMC energies, although differences remain small. Moreover, DMRG ground states clearly show striped hole patterns in this regime. Therefore, these results suggest that stripes appear in the ground state of the 3-chain Hubbard model around $U/t = 6$. However, for $U/t \leq 8$ both the FE CPMC results and DMRG metastable state results show that there are states without stripes very close to the ground state. For larger U/t (≥ 12) DMRG calculations converge very easily to a ground state with stripes and show little indication of low-lying states without stripes. CPMC simulations were not attempted for these larger values of U. In Figs. 2 and 3, we show the striped spin and holes densities for the $U/t = 8$ case, along with UHF results for $U/t = 3$ and 8. We note the striking similarity of the CPMC and the DMRG results with each other and with the $U/t = 3$ UHF results, even though the UHF state has a much higher energy. (The UHF energies for $U/t = 3$ and 8 are -33.3009 and -19.1907.) From Fig. 2, we identify two domain walls to be at rung positions 3 and 4 and at 9 and 10. In each case the spins on either side of the wall are ferromagnetically aligned but shifted by a phase π from what they would be if there were complete anti-ferromagnetic order. Anti-ferromagnetic order exists between the walls. We remark the two-rung domain wall width is similar to that found by White and Scalapino for the t-J model.

The major import of this work are the qualitative conclusions that (1) the same char-
acteristic features, indicating a striped state that were found in the 3-chain t-J model \[\text{[citation]} \], are also found in the Hubbard model at strong to intermediate interaction \(U \); and (2) these features disappear at weaker coupling. These conclusions suggests that the striped state may be a new strong-coupling fixed point, inaccessible to weak-coupling approaches.

Furthermore, the extent to which two quite different numerical methods agree on a very subtle issue is remarkable. As used here, these methods come at the problem with different strengths and hence mutually calibrate each other. However, it is crucial to point out that great care must be used in applying the methods to avoid coming to erroneous conclusions. In particular, the CPMC method does not show stripes even at large \(U \) when the FE trial function is used. This underscores the importance of using trial wavefunctions appropriate to the parameter range of the model, particularly when the nature of the ground state is unknown.

The work of M. G. and J. E. G. was supported by the Department of Energy. Some of their calculations used the computers at NERSC. They also thank J. Carlson, J. Zaanen, and Shiwei Zhang for helpful comments. J. B. thanks the Los Alamos National Laboratory for its hospitality while he performed part of his work. E.J. and S.R.W. acknowledge the support of the NSF under Grant No. DMR-9509945 and of the Campus Laboratory Collaborations Program of the University of California.
REFERENCES

[1] S.R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48, 10345 (1993); Phys. Rev. Lett. 77, 3633 (1996).

[2] S.R. White and D.J. Scalapino, cond-mat/9705128.

[3] Shiwei Zhang, J. Carlson and J. E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995); Phys. Rev. B, 55 7464 (1997).

[4] J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989); D. Poilblanc and T.M. Rice, Phys. Rev. B 39, 9749 (1989); H.J. Schulz, J. Physique, 50, 2833 (1989); K. Machida, Physica C 158, 192 (1989); K. Kato, K. Machida, H. Nakanishi and Fujita, J. Phys Soc. Jpn. 59, 1047 (1990); J.A. Vergés et. al., Phys. Rev. B 43, 6099 (1991); M. Inui and P.B. Littlewood, Phys. Rev. B 44, 4415 (1991); J. Zaanen and A.M. Oles, Ann. Physik 5, 224, (1996).

[5] J. M. Tranquada et al., Nature 375, 561 (1995); Phys. Rev. B 54, 7489 (1996); Phys. Rev. Lett. 78, 338 (1997); Phys. Rev. Lett. 79, 2133 (1997).

[6] S.R. White and D.J. Scalapino, Phys. Rev. B 55, 14701 (1997).

[7] S.R. White and D.J. Scalapino, cond-mat/9706250, to appear in Phys. Rev. B.

[8] H. Lin, L. Balents and M.P.A. Fisher, Phys. Rev. B 56, 6569 (1997).
TABLE I. Ground-state energies. For the CPMC results, FE and UHF refer to results obtained when either the free-electron or unrestricted Hartree-Fock wavefunction was chosen for both the initial and constraining wavefunctions. The numbers in parenthesis are the estimated statistical error. For the DMRG results the variational energy is the one obtained for the maximum number of states kept. This number is shown in parenthesis. The extrapolated values are the results obtained by the analysis illustrated in Fig. 1. The number in parenthesis is an estimate of the error.

U/t	CPMC	DMRG		
	FE	UHF	Var. bound (m)	Extrapolation
1	-45.4171 (4)	-45.4161 (4)	-45.3985 (2200)	-45.419 (4)
2	-40.581 (2)	-40.560 (2)	-40.5436 (1600)	-40.590 (9)
3	-36.622 (1)	-36.566 (7)	-36.6056 (1600)	-36.627 (4)
4	-33.438 (2)	-33.364 (7)	-33.4259 (2200)	-33.448 (6)
5	-30.911 (2)	-30.807 (7)	-30.8927 (1600)	-30.915 (8)
6	-28.873 (4)	-28.807 (6)	-28.8962 (2600)	-28.907 (4)
7	-27.211 (5)	-27.133 (6)	-27.2537 (1200)	-27.31 (1)
8	-25.93 (3)	-25.94 (8)	-25.9502 (1200)	-25.997 (9)
12	-	-	-22.5688 (800)	-22.63 (1)
16	-	-	-20.7596 (800)	-20.81 (1)
FIGURES

FIG. 1. The DMRG ground-state energy for $U/t = 6$ as a function of the truncation energy parameterized by m, the number of density matrix eigenstates.

FIG. 2. For $U/t = 8$, the expectation values of the z-component of the rung spin as a function of rung position along the middle chain. The solid line is the CPMC result using the $U/t = 3$ UHF wavefunction as the initial and constraining state. Also shown are the UHF results for $U/t = 3$ and 8. The DMRG predicts a zero expectation value.

FIG. 3. For $U/t = 8$, the expectation values of the rung hole density as a function of rung position. The solid line is the CPMC result using the $U/t = 3$ UHF wavefunction as the initial and constraining state. The dotted line is the DMRG results. Also shown are the UHF results for $U/t = 3$ and 8.
Truncation error (10^{-4})

Ground state energy

-28.75
-28.85
-28.95

Truncation error (x10^{-4})

Ground state energy

FE CPMC
UHF CPMC

2200
1300
900
600
1800
2600
300
400
