Effects of zearalenone on vulva area, liver function, serum immunoglobulin, antioxidant capability and sex hormone secretion of prepubertal gilts

Fengyang Wu, Jia Cui, Xinyu Yang and Baojiang Chen

College of Animal Science and Technology, Hebei Agricultural University, Baoding, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, China

ABSTRACT

The study aimed to examine the multi-organs toxicity of zearalenone on prepubertal gilts. A total of 48 Landrace × Yorkshire prepubertal gilts were randomly divided into 4 groups with 12 replicates in each group. The control group were fed with basal diet, the experimental groups were fed test diets supplemented with 0, 200, 800 and 1600 µg/kg zearalenone in the basal diet. The experiment lasted for 28 days. The results showed that the average daily feed intake of prepubertal gilts in each group had no significant change (p > 0.05). Diets supplemented with zearalenone significantly reduced the serum immunoglobulin G, immunoglobulin M, follicle stimulating hormone concentrations and total antioxidant capacity activity of prepubertal gilts (p < 0.05). Diets supplemented with zearalenone significantly increased the vulva area, the serum concentration of interleukin-4 and activities of alanine aminotransferase and alkaline phosphatase of prepubertal gilts (p < 0.05). In conclusion, dietary supplementation of zearalenone has no obvious effect on the average daily feed intake of prepubertal gilts. However, it can increase its vulva area, produce reproductive toxicity, cause liver damage, reduce the serum immunoglobulin concentrations and antioxidant capability and disrupt the secretion of sex hormones.

HIGHLIGHTS

- Dietary supplementation of zearalenone significantly increases the vulva area of prepuber
tal gilts.
- Dietary supplementation of zearalenone significantly increases serum ALT and ALP activities of prepubertal gilts.
- Dietary supplementation of zearalenone reduce serum immunoglobulin levels and antioxi
dant capability of prepubertal gilts.
- Dietary supplementation of zearalenone decreased the secretion of FSH of prepubertal gilts.
- Zearalenone exerts its toxic effects in multiple ways simultaneously.

Introduction

Zearalenone (ZEA) is a secondary metabolite, which is mainly produced by Fusarium spp. and has immunotoxicity (Cai et al. 2019), cytotoxicity (Belgacem et al. 2019), reproductive toxicity (Grenier et al. 2019) and genotoxicity (Yang et al. 2018) effects. ZEA has a wide range of contamination. Gruber-Dorninger et al. (2019) reported that ZEA was detected in 88% of 61,413 feed ingredients and formula feed samples collected from different countries around the world. In the same study, the median value of the pollution was 55 µg/kg, and the highest was 105 mg/kg. China has a complex and diverse climate and vast territory. Raw feed materials are susceptible to ZEA in growing, harvesting, processing, transportation and storage (the worst-hit area of ZEA pollution) (Sun et al. 2017).

ZEA is one of the most common mycotoxins in pig diets. In recent years, immunity and productivity of sows declined due to ZEA pollution, which damages the economic benefits of the pig industry and becomes potentially harmful to food safety. Diets of gestation sows supplemented with ZEA can cause oxidative stress and cell apoptosis in spleen, breast, uterus and ovary, reducing the reproductive performance of first-parity gestation sows (Zhou et al. 2020). The mutagenicity, teratogenicity, carcinogenicity, immunotoxicity and genetic toxicity of ZEA have toxic effects on human and animal health (Caglayan et al. 2020).
However, most studies on the toxicity of ZEA on sows focus on one type of toxicity. There are a few reports on the multi-organs’ toxicity of ZEA to gilts, limiting the development of more effective programs to prevent mycotoxin contamination. Therefore, the prepubertal gilts, which are more sensitive to ZEA, were selected in this study to examine the effects of ZEA on vulva area, liver function, serum immunoglobulin, antioxidant capability and sex hormone secretion of prepubertal gilts.

Materials and methods

Feed preparation

ZEA (purity ≥98%) was purchased from Triplebond (Guelph Ontario, Canada). The basic diet had no anti-biotic and mildew repellent. The prepubertal gilts were fed with the diet according to the standards of the National Research Council (NRC) (2012). The feed composition has been provided in Table 1.

Experimental design and animal grouping

A total of 48 Landrace × Yorkshire prepubertal gilts (aged 65 ± 3 days, initial body weight 23.20 ± 0.68 kg) were randomly divided into three treatment (T1, T2 and T3) groups and a control group consisting of 12 replicates with 1 gilt per replicate, and each group received one of the following dietary treatments: 0, 200, 800 and 1600 µg/kg ZEA diet, which lasted for 28 d. The average daily feed intake (ADFI) was counted, and the vulvar area was measured. The blood samples were collected from the anterior vena cava of 6 prepubertal gilts in each group, and immunoglobulins, antioxidant indexes, inflammatory cytokines, reproductive hormones and biochemical indexes were analysed by enzyme-linked immunosorbent assay (ELISA). Before the experiments, the piggery was cleaned and disinfected, and the experimental prepubertal gilts were placed in separate pens.

Dietary preparation was done before the experiments, and the concentrations of ZEA, vomitoxin and aflatoxin B1 in each group were detected by ELISA on 1 and 14 days. The two test results of vomitoxin and aflatoxin B1 met the requirements of China Hygiene Standard for Feeds (GB13078-2017), and the ZEA, vomitoxin and aflatoxin B1 test results were 52.37, 241.60, 825.20, 1634.46 µg/kg and 68.61, 255.26, 837.65, 1652.39 µg/kg; 260.37, 265.11, 246.83, 251.09 µg/kg and 281.40, 276.53, 264.79, 268.21 µg/kg; 3.82, 3.75, 3.68, 3.72 µg/kg and 3.89, 3.82, 3.74, 3.76 µg/kg, respectively.

The experimental protocols were approved by the Animal Care and Use Committee of Hebei Agriculture University (Baoding, China).

All animal experiments complied with the ARRIVE guidelines were carried out in accordance with the UK Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments.

Determination indexes and methods

Vernier calliper was used to measure the vulva area of prepubertal gilts in each group on 1 and 28 days of the trial period. The vulva area of prepubertal gilts in each group was regarded as a rhombus. The area was calculated as follows: length (long diagonal length) × width (short diagonal length)/2.

On 28 days of the trial, six prepubertal gilts in each group were randomly selected for blood collection of anterior vena cava after the prepubertal gilts were fasted for 12 h. Blood (10 mL) was collected from prepubertal gilts. The serum samples were centrifuged at 3000 g at 4°C for 10 min to separate the serum, and the serum samples were taken and stored at −80°C. The concentrations of antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and alanine aminotransferase (ALT), malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-10 (IL-10), luteinizing hormone (LH), follicle-stimulating

Table 1. Composition and nutrient levels of the basal diet (air-dry basis).

Items	Content (%)
Ingredients	
Corn	65.00
Soybean meal	19.00
Wheat bran	12.00
Premix	4.00
Total	100.00

Nutrient levelsb	Content (µg/kg)
Digestible energy	14.06
Crude protein	20.34
Crude fibre	2.18
Calcium	0.88
Phosphorus	0.64
Available phosphorus	0.46
Lysine	1.22
Methionine	0.41
Threonine	0.81

*Premix provides the following (per kg of the diet): VA 360,000 IU, VD 360,000 IU, VE 375 mg, VK3 120 mg, VB1 50 mg, VB2 180 mg, VB6 90 mg, VB12 0.63 mg, niacin1000 mg, pantothenic acid 630 mg, biotin 12 mg, choline19 g, folic acid 100 mg, salt 75 g, lysine 15 g, Fe (as ferrous sulphate) 3 g, Cu (as copper sulphate) 0.375 g, Mn (as manganese sulphate) 1.047 g, Zn (as zinc sulphate), I (as potassium iodide), Se (as sodium selenite), Cr 6 mg, Ga 155 g, P 35 g.

bDE was a calculated value, while the others were measured values.
hormone (FSH), oestradiol (E2), progesterone (P) and total bile acid (TBA) in the serum were quantified using ELISA kits for porcine T-AOC, GSH-Px, SOD, MDA, TNF-α, IL-1β, IL-10, LH, FSH, E2 and P (Beijing Hairuxiangtian Biotechnology Co., Ltd, Beijing, China) and AST, ALP, ALT and TBA (Nanjing Jiancheng 122 Bioengineering Institute, Nanjing, China). The correlation coefficient R value between the sample linear regression and the expected concentration was greater than 0.990. The coefficient of variation within and between plates were less than 10%.

Statistical analysis of data

The statistical data analysis was done using Excel 2016 and SPSS 20.0 software (SPSS, Chicago, IL). One-way analysis of variance (ANOVA) was used to test the significant differences between each group data, while the Duncan method was used for multiple comparisons. A p-value less than .05 (p < .05) showed a significant difference between the groups.

Results

Average daily feed intake and vulva area

The results of the ADFI and vulva area are shown in Table 2. There were no significant differences in ADFI among the groups (p > .05). Compared with the control group, length, width, vulva area and increment of the vulva area were significantly increased in the T2 and T3 groups (p < .05).

Serum immunoglobulins

The results of serum immunoglobulin concentrations are shown in Table 3. Compared with the control group, the serum immunoglobulin G (IgG) and immunoglobulin M (IgM) concentrations in the T2 group and serum IgM concentration in the T3 group were significantly reduced (p < .05) by 13.18%, 17.86% and 15.48%, respectively. However, there was no significant difference in serum IgA concentration among the groups (p > .05).

Serum antioxidant indexes

The results of serum antioxidant indexes are shown in Table 4. Compared with the control group, the T-AOC activity in the T3 group was significantly decreased by 59.10% (p < .05). However, there were no significant differences in GSH-Px and SOD activities and MDA concentration in serum among the groups (p > .05).

Serum concentrations of inflammatory cytokines

The results of the serum concentrations of inflammatory cytokines are shown in Table 5. Compared with the control group, the concentrations of serum interleukin-4 (IL-4) in T1, T2 and T3 groups were significantly increased (p < .05) by 61.76%, 97.78% and 75.20%, respectively. However, there were no significant differences in TNF-α, IL-1β and IL-10 concentrations among the groups (p > .05).

Table 2. Effects of zearalenone on average daily feed intake (ADFI) and vulva area of prepubertal gilts (n = 12).

Items	Control	T1	T2	T3	SEM	p-Value
ADFI (kg)	1.33	1.29	1.28	1.38	0.028	.792
Vulvar length (mm)	22.21a	27.92ab	32.34b	32.41b	1.754	.024
Vulvar width (mm)	18.45a	20.89	27.43	26.89b	1.561	.036
Vulvar area (mm²)	204.79a	291.35b	440.77c	437.01c	28.623	<.001
Increment of vulva area (mm²)	72.81a	137.42b	277.72c	283.91c	15.949	<.001

ADFI: average daily feed intake; SEM: standard error of the mean.

Table 3. Effects of zearalenone on serum immunoglobulin concentrations of prepubertal gilts (ng/mL) (n = 6).

Items	Control	T1	T2	T3	SEM	p-Value
IgA	71.59	68.66	77.76	75.64	1.803	.305
IgG	363.60b	352.81ab	332.00ab	315.68a	7.943	.034
IgM	127.68b	122.54a	104.88a	107.91a	3.768	.046

IgA: immunoglobulin A; IgG: immunoglobulin G; IgM: immunoglobulin M; SEM: standard error of the mean.

Table 4. Effects of zearalenone on serum antioxidant indexes of prepubertal gilts (n = 6).

Items	Control	T1	T2	T3	SEM	p-Value
T-AOC (U/mL)	2.86b	2.12ab	1.96ab	1.17a	0.281	.046
GSH-Px (pg/mL)	123.70	123.77	96.87	87.48	7.801	.244
SOD (ng/mL)	342.50	320.94	273.86	292.34	11.035	.302
MDA (nmol/mL)	4.46	5.13	6.65	6.105	0.396	.220

T-AOC: total antioxidant power; GSH-Px: glutathione peroxidase; SOD: superoxide dismutase; MDA: malondialdehyde; SEM: standard error of the mean.

Table 5. Effects of zearalenone on serum inflammatory factors of prepubertal gilts (ng/L) (n = 6).

Items	Control	T1	T2	T3	SEM	p-Value
TNF-α	246.45	252.24	292.39	313.63	12.936	.284
IL-1β	270.31	314.85	357.83	359.22	23.446	.187
IL-4	39.64a	64.12b	78.40b	69.45b	4.708	.008
IL-10	139.80	135.08	126.49	84.77	10.560	.274

TNF-α: tumour necrosis factor-alpha; IL-1β: interleukin-1 beta; IL-4: interleukin-4; IL-10: interleukin-10; SEM: standard error of the mean.

Means in a row without the same superscript are different significantly (p < .05).
Table 6. Effect of zearalenone on blood reproductive hormones of prepubertal gilts (n = 6).

Items	Control	T1	T2	T3	SEM	p-Value
LH (IU/mL)	13.55	13.51	13.70	13.52	0.968	0.894
FSH (IU/L)	9.72^b	9.53^ab	9.42^a	9.49^ab	0.050	0.035
E2 (pmol/L)	46.75	45.95	47.90	47.72	0.359	0.189
P (pmol/L)	1 619.45	1 561.46	1 550.19	1 610.42	12.751	0.131

LH: luteinizing hormone; FSH: follicle stimulating hormone; E2: oestradiol; P: progesterone; SEM: standard error of the mean.

^a,b^ Means in a row without the same superscript are different significantly (p < .05).

Table 7. Effects of ZEA on serum biochemical indexes of prepubertal gilts (n = 6).

Items	Control	T1	T2	T3	SEM	p-Value
AST (IU/L)	74.28	72.30	78.90	77.65	1.621	0.512
ALT (IU/L)	50.67^a	50.24^a	61.12^b	63.60^b	2.185	0.512
ALP (IU/L)	115.03^a	121.72^ab	123.06^ab	135.29^b	2.805	0.044
TBA (µmol/L)	21.42	22.10	26.38	27.17	1.064	0.106

AST: aspartate aminotransferase; ALT: alanine aminotransferase; ALP: alkaline phosphatase; TBA: total bile acid; SEM: standard error of the mean.

^a,b^ Means in a row without the same superscript are different significantly (p < .05).

Serum biochemical indexes

The results of reproductive hormones in the serum are shown in Table 6. Compared with the control group, the FSH concentration in the T2 group was significantly reduced (p < .05) by 3.09%. However, there were no significant differences in E2, LH and P concentrations in serum among the groups (p > .05).

Serum reproductive hormones

The results of serum biochemical indexes are shown in Table 7. Compared with the control group, the serum ALT activity in the T2 group and the serum ALT and ALP activities in the T3 group were significantly increased (p < .05) by 20.62%, 25.52% and 17.61%, respectively. However, there were no significant differences in AST activity and TBA concentration in the serum among the groups (p > .05).

Discussion

ZEA can cause reproductive disorders, immune suppression and liver damage in pigs (Pierron et al. 2016; Wang et al. 2018; Grenier et al. 2019), which hinders the productivity of the pig industry. The lack of research on the toxic mechanism of ZEA affects the formulation of more effective anti-mildew programs.

In this study, there was no significant difference in ADFI of prepubertal gilts in each group, which is consistent with our previously published results from the first 14 days of the trial (Wu et al. 2021), indicating that feeding ZEA at this test dose for 28 days had no significant effect on ADFI of gilts. Su et al. (2018) found no significant change in ADFI of weaning gilts after adding 1 mg/kg ZEA to the diets for 28 days. Reddy et al. (2018) who fed the 6 weeks old growing pigs supplemented with 0.8 mg/kg ZEA for 28 days and found that there was no significant difference in terminal weight, ADG and ADFI of growing pigs. Shen et al. (2021) also showed that gilts fed on diets containing ZEA (about 300 µg/kg) for 25 days did not significantly affect on terminal weight, ADG and ADFI of gilts. The results of this experiment showed that ZEA had multi-organs toxicity in gilts, but had no significant effect on ADFI, which may be due to the digestive system is not the main target of the toxic effect of ZEA. The vulva area of prepubertal gilts in each treatment group increased significantly, indicating that the supplementation of 200, 800 and 1600 mg/kg ZEA could show typical symptoms of oestrogenic effects of ZEA, and the oestrogenic effects of ZEA symptoms of the T2 group were the most obvious. The addition of ZEA to the diets of weaning gilts, prepubertal gilts and first-parity gilts significantly increased the vulva area (Zinedine et al. 2007; Su et al. 2018; Reddy et al. 2018a, 2018b; Wu et al. 2021; Zhou et al. 2022).

In this study, the IgM and IgG concentrations in the serum of the prepubertal gilts of the T2 and T3 groups were significantly reduced, indicating that ZEA affected the secretion of immunoglobulins in the prepubertal gilts and the humoral immune function and reduced immunity. This may be due to the ability of ZEA to inhibit proliferation of B and T cells and reduce the number of CD4 cells (Abbès et al. 2006; Vlata et al. 2006). Yang et al. (2016) also found that the IgG and IgM concentrations in the serum of the weaning gilts in the treatment groups decreased significantly after 18 days of feeding diets supplemented with 1, 2 and 3 mg/kg of ZEA. Marin et al. (2011) reported that when the concentration of ZEA, α-zearalanol (α-ZOL) and β-zearalanol (β-ZOL) exceeded 5 µM, the concentrations of IgA, IgM and IgG were significantly reduced. Shi et al. (2018) showed that diet containing about 596.86 µg/kg ZEA and 796 µg/kg deoxynivalenol to pre-pubertal female gilts for 28 days could significantly reduce the concentration of IgG in plasma. Differences in results might be attributed to age differences in animal model and different doses of ZEA contamination. Antioxidative enzymes, such as GSH-Px, SOD and catalase (CAT), comprise the major defence systems designed to combat the deleterious effects of excess reactive oxygen species production and cellular lipid peroxidation (Sies 1991). The activities of T-AOC and SOD in the serum of the prepubertal gilts of the
treatment groups were significantly reduced, in line with previous reports (Wu et al. 2021), indicating that ZEA could reduce the antioxidant performance of the prepubertal gilts by inhibiting the activities of antioxidant enzymes. A previous study also found that the activities of T-AOC, SOD and GSH-Px were in the serum of weaning gilts fed with a diet with 1 mg/kg ZEA were significantly reduced (Shi et al. 2017). Qin et al. (2015) treated porcine ovarian granulosa cells cultured in vitro with 15, 30 and 60 μM ZEA, and found that the internal reactive oxygen levels significantly increased, and the activities of SOD and CAT were significantly reduced. Superoxide dismutase 1 (SOD1) and CAT mRNA expression levels were significantly down-regulated after 60 μM treatment for 16 h. A previous study found that diet containing 246 μg/kg to first-parity gilts could significantly decreased the serum SOD activity and significantly increased the serum MDA level (Zhou et al. 2020). ZEA can inhibit the expression of antioxidant oxidase regulatory genes, which may be the reason for the relevant results. Qin et al. (2015) reported that ZEA can inhibit the mRNA expression of antioxidant enzymes, such as SOD1 and CAT, and reduce the activity of antioxidant enzymes, decepting antioxidant performance.

In this study, compared with the control group, the concentration of IL-4 in the serum of the prepubertal gilts in each treatment group was significantly increased, in line with previous reports (Wu et al. 2021), indicating that ZEA might be causing the inflammatory response in prepubertal gilts. IL-4 is produced by Th2 cells and promotes B cell responses. Obremski (2014) found that ZEA could stimulate Th1 and Th2 lymphocytes to produce IL-4 by shifting the Th1/Th2 balance to the humoral immune response. Previous studies have shown that ZEA can inhibit the expression levels of IL-10 receptors (Reddy et al. 2018a, 2018b) and upregulate the mRNA expression level of hdac11 (IL-10 suppressor gene) (Pistol et al. 2015), which may be one of the reasons why there was no significant difference in serum IL-10 concentration in this study. Inflammatory reactions such as vaginitis, mastitis and metritis are the common symptoms of ZEA poisoning (Zhao et al. 2013). Jia et al. (2020) showed that diet containing 269.1 μg/kg ZEA to piglets for 21 days could significantly increase the levels of TNF-α, IFN-γ, IL-1β and IL-6 in the serum of the piglets. After feeding piglets with 316 g/kg ZEA supplemented diet for 18 d, the concentrations of TNF-α and IL-1β in the serum were significantly increased, and the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) mRNAs in porcine spleen were also increased (Marin et al. 2013). Differences in results might be attributed to age differences in animal model and different doses of ZEA contamination.

In this study, ZEA significantly reduced the FSH concentration in the serum of prepubertal gilts. He et al. (2018a) reported that ZEA inhibited the synthesis and secretion of FSH of pig via the non-classical oestrogen membrane receptor and G protein-coupled receptor 30 (GPR30). MicroRNA-7(MiR-7) mediates the ZEA signalling pathway, which inhibits FSH synthesis and secretion by targeting Finkel–Biskis–Jinkins murine osteosarcoma viral oncogene homolog (FOS) (He et al. 2018b). According to Fu et al. (2018), compared with the control group, the concentrations of FSH and P in the serum of the weaning piglets fed with dietary supplementation of ZEA for 21 days were significantly reduced. Similarly, serum FSH and P concentrations were significantly lower in weaning gilts fed with 1 mg/kg ZEA for 28 days than those of the control group (Su et al. 2018). We previously reported that ZEA significantly reduced the LH and E2 concentrations in the serum of prepubertal gilts (Wu et al. 2021), indicating that ZEA had a persistent disruptive effect on reproductive hormone secretion in prepubertal gilts.

In clinical medicine, the concentration of ALT and AST in blood is usually used to evaluate liver function (He et al. 2022). In the present study, the activities of ALT and ALP in the treatment groups were significantly higher than those in the control group, indicating that ZEA caused liver damage in prepubertal gilts. Jiang et al. (2012) found that the activities of AST, ALT and ALP were significantly increased in piglets after 22 days of feeding 1 mg/kg ZEA supplemented feed. Jiang et al. (2011) observed that AST, ALT and ALP activities were significantly increased in weaning gilts after 18 days of feeding 1.1, 2.0 and 3.2 mg/kg ZEA supplemented feed. ALT exists in the cytoplasm while AST exists in mitochondria. Acute liver injury is generally dominated by elevated ALT, which may be one of the reasons why AST did not show significant difference in this study. ZEA can cause liver damage by causing oxidative stress and inflammation (Wu et al. 2022). Shi et al. (2017) found that weaning gilts were fed with 1 mg/kg ZEA supplemented diet for 28 days and showed lesions in liver tissues. MDA concentration was significantly increased, and total antioxidant power, and SOD and GSH-Px activities were significantly reduced (Shi et al. 2017). ZEA can also affect the expression of genes and proteins in signalling pathways, such as mitogen-activated protein kinase...
(MAPK) (transforming growth factor-β-activated kinase 1) TAK1, JNK, (p38MAPK) p38 and nuclear factor kappa B (NF-xB), leading to immunosuppression in the liver of pigs (Pistol et al. 2015).

Conclusion
In conclusion, dietary supplementation of ZEA for 28 days has no obvious effect on the ADFI of pre-pubertal gilts, but it can increase its vulva area, produce reproductive toxicity, cause liver damage, reduce the serum immunoglobulin concentrations and antioxidant capability and disrupt the secretion of sex hormones.

Acknowledgements
Thank you to all those who contributed to this experiment.

Ethical approval
The experimental protocols were approved by the Animal Care and Use Committee of Hebei Agriculture University (Baoding, China). All animal experiments complied with the ARRIVE guidelines were carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guide-lines, EU Directive 2010/63/EU for animal experiments.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This study was supported by Key Research and Development Program of Hebei Province [20326613-D], Research Development Fund of Hebei Agricultural University [3003003] and Key Research and Development Program of China [S2016G4513].

Data availability statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

References
Abbès S, Salah-Abbès JB, Ouanes Z, Houas Z, Othman O, Bacha H, Abdel-Wahhab MA, Oueslati R. 2006. Preventive role of phyllosilicate clay on the immunological and biochemical toxicity of zearalenone in Balb/c mice. Int Immunopharmacol. 6(8):1251–1258.
Belgacem H, Ben Salah-Abbès J, Ezzdini K, Abdel-Wahhab MA, Zinedine A, Abbès S. 2019. Lactobacillus plantarum MON03 counteracts zearalenone génotoxicity in mice: chromosome aberrations, micronuclei, DNA fragmentation and apoptotique gene expression. Mutat Res Genet Toxicol Environ Mutagen. 840:11–19.
Caglayan MO, Şahin S, UstUndaG Z. 2020. Detection strategies of zearalenone for food safety: a review. Crit Rev Anal Chem. 1:1–20.
Cai GD, Pan SY, Feng NN, Zou H, Gu JH, Yuan Y, Liu XZ, Liu ZP, Bian JC. 2019. Zearalenone inhibits T cell chemotaxis by inhibiting cell adhesion and migration related proteins. Ecotoxicol Environ Saf. 175:263–271.
Fu G, Wang L, Li L, Liu J, Liu SZ, Zhao X. 2018. Bacillus licheniformis CK1 alleviates the toxic effects of zearalenone in feed on weaned female Tibetan piglets. J Anim Sci. 96(10):4471–4480.
Grenier B, Hackl M, Şkalicky S, Thamhesl M, Moll WD, Berrios R, Schatzmayr G, Nagl V. 2019. MicroRNAs in porcine uterus and serum are affected by zearalenone and represent a new target for mycotoxin biomarker discovery. Sci Rep. 9(1):9408.
Gruber-dorninger C, Jenkins T, Schatzmayr G. 2019. Global mycotoxin occurrence in feed: a ten-year survey. Toxins. 11(7):375.
He GX, Zhao QM, Zhao Y, Zong Y, Gu SG, Li MJ, Li RJ, Sun JX. 2022. Deer antler based active ingredients have protective effects on LPS/d-GalN-induced acute liver injury in mice through MAPK and NF-κB signaling pathways. Pharm Biol. 60(1):1077–1087.
He J, Wei C, Li Y, Li Y, Wang Y, Pan JR, Liu JL, Wu YJ, Cui S. 2018a. Zearalenone and alpha-zearalenol inhibit the synthesis and secretion of pig follicle stimulating hormone via the non-classical estrogen membrane receptor GPR30. Mol Cell Endocrinol. 461:43–54.
He J, Zhang J, Wang Y, Liu WQ, Gou K, Liu ZP, Cui S. 2018b. MiR-7 mediates the zearalenone signaling pathway regulating FSH synthesis and secretion by targeting FOS in female pigs. Endocrinology. 159(8):2993–3006.
Jia R, Liu W, Zhao L, Cao L, Shen Z. 2020. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicol Lett. 333:159–169.
Jiang SZ, Yang ZB, Yang WR, Gao J, Liu FX, Broomhead J, Chi F. 2011. Effects of purified zearalenone on growth performance, organ size, serum metabolites, and oxidative stress in postweaning gilts. J Anim Sci. 89(10):3008–3015.
Jiang SZ, Yang ZB, Yang WR, Wang SJ, Wang Y, Broomhead J, Johnston SL, Chi F. 2012. Effect on hepato nephric organs, serum metabolites and oxidative stress in postweaning piglets fed purified zearalenone-contaminated diets with or without Calibrin-Z. J Anim Physiol Anim Nutr. 96(6):1147–1156.
Marin DE, Pistol GC, Neagoe IV, Calin L, Taranu L. 2013. Effects of zearalenone on oxidative stress and inflammation in weanling pigs. Food Chem Toxicol. 58:408–415.
Marin DE, Taranu I, Burlacu R, Manda G, Motiu M, Neagoe I, Dragomir C, Stancu M, Calin L. 2011. Effects of zearalenone and its derivatives on porcine immune response. Toxicol In Vitro. 25(8):1981–1988.
Nutrient requirements of swine. 2012 NRC. Nutrient requirements of swine (11th ed.), Washington, DC, USA: National Academy Press, 2012.
Obremski K. 2014. The effect of in vivo exposure to zearalenone on cytokine secretion by Th1 and Th2 lymphocytes in porcine Peyer’s patches after in vitro stimulation with LPS. Pol J Vet Sci. 17(4):625–632.

Pierron A, Alassane-Kpembi I, Oswald IP. 2016. Impact of mycotoxin on immune response and consequences for pig health. Anim Nutr. 2(2):63–68.

Pistol GC, Braicu C, Motiu M, Gras AM, Marin DE, Stancu M, Calin L, Israel-Roming F, Berindan-Neagoe I, Taranu I. 2015. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen. PLoS One. 10(5):e0127503.

Pistol GC, Gras MA, Marin DE, Israel-Roming F, Stancu M, Taranu I. 2014. Natural feed contaminant zearalenone decreases the expressions of pro-inflammatory and anti-inflammatory mediators and mitogen activated protein kinase/NFκB signalling molecules in pigs. Br J Nutr. 111(3):452–464.

Qin X, Cao M, Lai F, Yang F, Ge W, Zhang XF, Cheng SF, Sun XF, Qin GQ, Shen W, et al. 2015. Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro. PLoS One. 10(6):e0127551.

Reddy KE, Jeong JY, Lee Y, Lee H, Kim MS, Kim D, Jung HJ, Choe CYK, Oh Y, Lee DS. 2018. Deoxynivalenol and zearalenone contaminated feeds alter gene expression profiles in the livers of piglets. Asian-Australas J Anim Sci. 31(4):595–606.

Reddy KE, Lee W, Jeong JY, Lee YK, Lee HJ, Kim MS, Kim DW, Yu DJ, Cho A, Oh K, et al. 2018a. Effects of deoxynivalenol and zearalenone contaminated feed on the gene expression profiles in the kidneys of piglets. Asian-Australas J Anim Sci. 31(1):138–148.

Reddy K, Song J, Lee H-J, Kim M, Kim D-W, Jung H, Kim B, Lee Y, Yu D, Kim D-W, et al. 2018b. Effects of high levels of deoxynivalenol and zearalenone on growth performance, and hematological and immunological parameters in pigs. Toxins. 10(3):114–129.

Shen WQ, Liu YJ, Zhang XY, Zhang X, Rong XP, Zhao LL, Ji C, Lei YP, Li FJ, Chen J, et al. 2021. Comparison of ameliorative effects between probiotic and biodegradable bacillus subtilis on zearalenone toxicity in gilts. Toxins. 13(12):882–895.

Shi B, Su Y, Chang S, Sun YC, Meng XY, Shan AS. 2017. Vitamin C protects the piglet liver against zearalenone-induced oxidative stress by modulating expression of nuclear receptors PXR and CAR and their target genes. Food Funct. 8(10):3675–3687.

Shi D, Zhou J, Zhao L, Rong X, Fan Y, Hamid H, Li W, Ji C, Ma Q. 2018. Alleviation of mycotoxin biodegradation agent on zearalenone and deoxynivalenol toxicosis in immature gilts. J Anim Sci Biotechnol. 9:42–53.

Sies H. 1991. Oxidative stress: from basic research to clinical application. Am J Med. 91(3):31–38.

Su Y, Sun Y, Ju D, Chang SY, Shi BM, Shan AS. 2018. The detoxification effect of vitamin C on zearalenone toxicity in piglets. Ecotoxicol Environ Saf. 158:284–292.

Sun XD, Su P, Shan H. 2017. Mycotoxin contamination of rice in China. J Food Sci. 82(3):573–584.

Vlata Z, Porichis F, Tzanakakis G, Tsatsakis A, Krambuvitis E. 2006. A study of zearalenone cytotoxicity on human peripheral blood mononuclear cells. Toxicol Lett. 165(3):274–281.

Wang N, Li P, Wang M, Chen S, Huang S, Long M, Yang S, He J. 2018. The protective role of bacillus velezensis A2 on the biochemical and hepatic toxicity of zearalenone in mice. Toxins. 10(11):449.

Wu FY, Cui J, Yang XY, Chen BJ. 2022. Effects of zearalenone on liver development, antioxidant capacity and inflammatory factors of prepubertal gilts. Anim Physiol Nutr. 106(4):832–840.

Wu FY, Cui J, Yang XY, Liu SD, Han SJ, Chen BJ. 2021. Effects of zearalenone on genital organ development, serum immunoglobulin, antioxidant capacity, sex hormones and liver function of prepubertal gilts. Toxicon. 189:39–44.

Yang DC, Jiang XW, Sun JX, Li X, Li XS, Jiao R, Peng ZY, Li YQ, Bai WB. 2018. Toxic effects of zearalenone on gametogenesis and embryonic development: a molecular point of view. Food Chem Toxicol. 119:24–30.

Yang L, Yang W, Feng Q, Huang LB, Zhang GG, Liu FX, Jiang SZ, Yang ZB. 2016. Effects of purified zearalenone on selected immunological measurements of blood in post-weaning gilts. Anim Nutr. 2(3):142–148.

Zhao LH, Lei YP, Bao YH, Jia R, Ma QG, Zhang JY, Chen J, Ji C. 2015. Ameliorative effects of Bacillus subtilis ANSB01G on zearalenone toxicosis in pre-pubertal female gilts. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32(4):617–625.

Zhou JC, Ao X, Lei YP, Ji C, Ma QG. 2020. Bacillus subtilis ANSB01G culture alleviates oxidative stress and cell apoptosis induced by dietary zearalenone in first-parity gestation sows. Anim Nutr. 6(3):372–378.

Zhou J, Zhao L, Huang S, Liu Q, Ao X, Lei Y, Ji C, Ma Q. 2022. Zearalenone toxicosis on reproduction as estrogen receptor selective modulator and alleviation of zearalenone biodegradative agent in pregnant sows. J Anim Sci Biotechnol. 13(1):36.

Zinedine A, Soriano JM, Moltó JC, Mañes J. 2007. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol. 45(1):1–18.