Safety of checkpoint inhibitors for cancer treatment: strategies for patient monitoring and management of immune-mediated adverse events

Marianne Davies1–3
Emily A Duffield3

1Yale School of Nursing, 2Department of Medical Oncology, Yale Comprehensive Cancer Center, 3Department of Nursing, Smilow Cancer Hospital at Yale-New Haven Hospital, New Haven, CT, USA

Abstract: Immune checkpoint inhibitors (ICPIs), in the form of monoclonal antibodies against CTLA-4, PD-1, and PD-L1, have dramatically changed the treatment approach in several advanced cancers. Due to their mechanism of action, these novel agents are associated with a unique spectrum of immune-mediated adverse events (imAEs), with a safety profile that indicates they are better tolerated than traditional chemotherapeutic agents. This article aims to provide education on the current knowledge about imAEs associated with ICPI treatment, including strategies and tools for the prompt identification, evaluation, and optimal management of these events. The identification and management of imAEs are reviewed based on published literature, labeling guidelines, and the authors’ personal experience with patients. The imAE safety profiles of ICPIs vary, depending on the specific antibody and the type of cancer being treated. Although most imAEs are mild and easily managed, early identification and proactive treatment are essential actions serving both to reduce the risk of developing severe imAEs and to maximize the potential for patients to receive the benefits of ongoing ICPI treatment. As a primary point of contact for patients undergoing oncology treatment, nurses play a critical role in identifying imAEs, educating patients about the importance of timely reporting of potentially relevant symptoms, and assisting in the treatment and follow-up of patients who develop imAEs while on ICPI therapy.

Keywords: immune-mediated adverse event, checkpoint inhibitor, immunotherapy, CTLA-4, PD-1, PD-L1

Introduction

Harnessing the power of a patient’s immune system to attack cancer cells has become a reality. In recent years, immune checkpoint inhibitors (ICPIs) have emerged as a new class of drugs capable of augmenting the body’s immune response against several different tumor types.1–21 ICPIs approved by the US Food and Drug Administration (FDA) include monoclonal antibodies against CTLA-4 (ipilimumab22), PD-1 (nivolumab,23 pembrolizumab24), and, most recently, PD-L1 (atezolizumab,25 avelumab,26 and durvalumab27). Additional indications are being explored for approved agents,28–34 and other ICPIs are in late-stage development, including a new anti-CTLA-4 antibody (tremelimumab; Table 1).35 Furthermore, combination anti-CTLA-4 and anti-PD-L1 antibody therapy (ipilimumab + nivolumab) was recently added to the National Comprehensive Cancer Network Guidelines as a second-line treatment for small cell lung cancer,36 and many combinations are in development.

ICPIs are monoclonal antibodies targeting CTLA-4, PD-1, or PD-L1, checkpoint proteins known to prevent excessive immune response. ICPIs can influence the body’s
immune response against tumor cells by revitalizing suppressed immune cells, hence promoting an antitumor immune response. CTLA-4 and PD-1/PD-L1 are nonredundant T-cell activation checkpoint pathways, acting at different stages of the antitumor immune response. CTLA-4 is primarily involved in the early stages of T-cell activation within the

Table 1 ICIs approved or in late-stage development

Agent	Tumor type	ORR (%)	Approved (dose)/stage of development
Anti-CTLA-4 monotherapy			
Ipilimumab	Melanoma – unresectable or metastatic (1L+)	11²¹b	Approved²² (3 mg/kg q3w, up to four doses)
	Melanoma with pathologic involvement of regional lymph nodes – adjuvant	49²¹c	Approved²² (10 mg/kg q3w, up to four doses, then q12w up to 3 years)
Anti-PD-1 monotherapy			
Nivolumab	Melanoma – unresectable or metastatic¹	1L BRAF wt	34²³
		BRAF wt and BRAF mut+	40²³
	2L+	32²³	
	NSCLC – metastatic (2L)	Squamous	20²³
		Nonsquamous	19²³
	Renal cell carcinoma – advanced (2L)		22²³
	Urothelial carcinoma – locally advanced or metastatic (2L or 1L after neoadjuvant/adjuvant chemotherapy)⁶		20²³
	HNSCC – recurrent or metastatic (2L)		13²³
	Classical Hodgkin lymphoma – relapsed or refractory	2L after HSCT and brentuximab vedotin therapy⁸	66²³
		4L+, including prior HSCT⁸	69²³
	Glioblastoma		–
	HCC – advanced (1L)		–
	Gastric cancer and gastroesophageal junction cancer – unresectable advanced or recurrent		–
	SCLC – relapsed (2L)		–
Pembrolizumab³	Melanoma – unresectable or metastatic¹	1L	33²⁴
		Ipilimumab-refractory	21²⁴
	NSCLC (PD-L1+) – metastatic	1L PD-L1+ (high levels)	45²⁴
		2L PD-L1+	18²⁴
	HNSCC – recurrent or metastatic (2L)⁶		16²⁴
	Urothelial carcinoma – locally advanced or metastatic⁶	1L if cisplatin-ineligible⁶	29²⁴
		2L or 1L after neoadjuvant/ adjuvant chemotherapy	21²⁴
	Classical Hodgkin lymphoma – relapsed or refractory, regardless of prior HSCT or brentuximab vedotin therapy (4L)+⁸		69²⁴
		MSI-H or dMMR solid tumor – unresectable or metastatic (2L+) with no satisfactory alternative treatment options⁸	40²⁴
		MSI-H or dMMR CRC – unresectable or metastatic (2L+, after treatment with fluoropyrimidine, oxaliplatin, and irinotecan)⁸	36²⁴
	TNBC – metastatic (2L and 3L)		–
	Gastric/gastroesophageal junction adenocarcinoma – unresectable, locally advanced, or metastatic (2L)		–
Anti-PD-L1 monotherapy			
Atezolizumab	Urothelial carcinoma – locally advanced or metastatic⁶	1L if cisplatin-ineligible⁶	24²⁵
		2L or 1L after neoadjuvant/ adjuvant chemotherapy⁶	15²⁵
	NSCLC – metastatic (2L)		14¹–15²⁵

(Continued)
lymph node, whereas the PD-1/PD-L1 pathway acts at late stages of the antitumor immune response within the tumor microenvironment. Therefore, targeting both checkpoints provides the potential for additive or synergistic effects.57,58

ICPIs have improved the prognosis for patients with advanced melanoma, BRAF^wt^ mutation-positive unresectable Stage III, locally advanced, or metastatic (1L and 3L) – Phase III: MYSTIC (NCT02453282), ARCTIC (NCT02352948)

Urothelial carcinoma – locally advanced or metastatic (2L or 1L after neoadjuvant/adjuvant chemotherapy) – Phase III: JAVELIN Lung 200 (NCT02395172)

Ovarian cancer – platinum resistant/refractory (2–4L) – Phase III: JAVELIN Ovarian 200 (NCT02580058)

Combination anti-CTLA-4 + anti-PD-1/PD-L1

Agent	Tumor type	ORR (%)	Approved (dose/stage of development)
Avelumab	Merkel cell carcinoma – metastatic	33^26	Approved^28 (10 mg/kg q2w)
	Urothelial carcinoma – locally advanced or metastatic (2L or 1L after neoadjuvant/adjuvant chemotherapy)	13^26	
	Gastric or gastroesophageal cancer – unresectable, locally advanced, or metastatic (3L)	–	Phase III: JAVELIN Gastric 300 (NCT02625623)
	NSCLC (PD-L1+) – locally advanced or metastatic (2L)	–	Phase III: JAVELIN Lung 200 (NCT02395172)
	Ovarian cancer – platinum resistant/refractory (2–4L)	–	Phase III: JAVELIN Ovarian 200 (NCT02580058)
Durvalumab	Urothelial carcinoma – locally advanced or metastatic (2L or 1L after neoadjuvant/adjuvant chemotherapy)	17^27	Approved^29 (10 mg/kg q2w)
	Urothelial carcinoma – unresectable (1L)	–	Phase III: DANUBE (NCT02516241)
	NSCLC – unresectable Stage III, locally advanced, or metastatic (1L and 3L)	–	Phase III: PACIFIC (NCT02125461), MYSTIC (NCT02453282), ARCTIC (NCT02352948)
	HNSCC – recurrent/metastatic (1L and 2L)	–	Phase III: KESTREL (NCT02551159), EAGLE (NCT02369874); FDA fast-track designation^104

Notes: *Late-stage development refers to Phase III sponsored studies that expect to have primary results on or before Q1 2018 in tumor types different from those in which the agents are already approved. ^Best overall response rate. ^Recurrence-free survival rate. ^Accelerated approval for BRAF V600 mutation-positive unresectable metastatic melanoma; continued approval may be contingent on confirmatory trials. ^Accelerated approval; continued approval may be contingent on confirmatory trials. Pembrolizumab is also approved in combination with pemetrexed and carboplatin as 1L treatment for metastatic nonsquamous NSCLC (ORR, 55%). ^Accelerated approval; continued approval may be contingent on confirmatory trials.

Abbreviations: 1L, first line; 2L, second line; 3L, third line; 4L, fourth line; CRC, colorectal cancer; dMMR, mismatch repair-deficient; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; HSCT, hematopoietic stem cell transplant; ICPIs, immune checkpoint inhibitors; MSI-H, microsatellite instability-high cancer; NSCLC, non-small cell lung cancer; ORR, objective response rate; q2w, every 2 weeks; q3w, every 3 weeks; q12w, every 12 weeks; SCLC, small cell lung cancer; TNBC, triple-negative breast cancer; wt, wild type; mut, mutant; –, not available.

Due to their novel mechanism of action, ICPIs are associated with a spectrum of immune-mediated adverse events (imAEs) that differ from the typical adverse events seen with chemotherapeutic agents.57,48 By inhibiting the checkpoints for T-cell activation, ICPIs can cause the patient’s immune system to recognize and attack tumor cells. However, this deregulation of the immune system may also lead to immune-mediated toxicities, which can mimic a broad range of autoimmune conditions.49 By understanding the signs and symptoms of these unique adverse events, oncology nurses will be better equipped to educate, monitor, and manage cancer patients receiving ICPIs. This article reviews the imAE profile of anti-CTLA-4 and anti-PD-1/PD-L1 anti-
bodies, including an approach for monitoring patients and managing the imAEs associated with this new and growing therapeutic class.

Dosing of ICPIs

Dosage recommendations for ICPIs include both weight-based and fixed doses (Table 1).22–27 Although imAE risk appears to be greater with the higher dose of anti-CTLA-4 therapy (ipilimumab 10 mg/kg) than with the lower dose (ipilimumab 3 mg/kg),22 a similar dose effect on toxicity has not been observed in clinical studies of the currently marketed anti-PD-1 antibodies (nivolumab, pembrolizumab).50–53 Available safety data are based on registration studies that included varying dosing regimens for pembrolizumab (2 mg/kg or 10 mg/kg every 2 or 3 weeks)24 and weight-based dosing for nivolumab (3 mg/kg), which was the recommended dose until September 2016 when a 240 mg fixed dose was deemed to provide a similar drug exposure.23,53 Clinical registration studies of anti-PD-L1 antibodies utilized the current recommended doses (atezolizumab 1200 mg,25 avelumab 10 mg/kg,26 and durvalumab 10 mg/kg). Combination anti-CTLA-4 and anti-PD-1 therapy is currently dosed as same-day ipilimumab (3 mg/kg) followed by nivolumab (1 mg/kg) every 3 weeks for four doses, followed by nivolumab (240 mg) every 2 weeks thereafter.23 As this combination regimen is associated with greater toxicity than ICPI monotherapy,22–26 alternative dosing strategies are being evaluated in clinical studies with the objective of improving the safety/efficacy profile, including lower-dose anti-CTLA-4 antibodies in combination with anti-PD-1/anti-PD-L1 antibodies (nivolumab + ipilimumab,54 pembrolizumab + ipilimumab,55 durvalumab + tremelimumab56). Unlike chemotherapy where it is typical to dose-reduce patients to manage toxicities, the only dose modifications currently allowed with ICPIs are to either delay or discontinue therapy. Therefore, establishing the optimal dosing regimen of checkpoint inhibitors is very important.

imAEs

Typically, imAEs associated with ICPI treatment are low grade and manageable when identified promptly and treated properly.57,58 In clinical studies reporting the overall rate of imAEs, imAEs occurred in up to 90% of patients receiving ICPI monotherapy (Table 2).4,7,9,10,16–18,20,39,40,43,59,60 However, the incidence of high-grade (Grade ≥3) imAEs in these studies was generally much lower, especially with anti-PD-1 or PD-L1 antibodies. Notably, Grade ≥3 imAEs were reported to occur more frequently in patients receiving anti-CTLA-4 monotherapy (ipilimumab, 15–42%)4,9,39,40 than in those receiving anti-PD-1 (8%, nivolumab;4 5–10%, pembrolizumab16,20) or anti-PD-L1 (5–7%, atezolizumab;2,17 2%, durvalumab;59 1–2%, avelumab61) monotherapy, and the highest rate of Grade ≥3 imAEs was reported with combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab, 40–45%).49 The skin and gastrointestinal tract are the most common sites for imAEs with any of the approved ICPIs, either in monotherapy or in combination, although any organ system can be affected (Table 3). In this section, we highlight the five most common organ systems affected by imAEs in patients treated with ICPIs: dermatologic, gastrointestinal, endocrine, hepatic, and pulmonary. Less common but clinically important manifestations of imAEs are also briefly reviewed (renal, pancreatic, ocular, musculoskeletal, neurological, cardiovascular, and hematological toxicities).

Dermatologic

Rash and pruritus are the most common dermatologic adverse events observed in patients receiving ICPI therapy, occurring more frequently with anti-CTLA-4 therapy (ipilimumab: 3 mg/kg [rash, 15–30%; pruritus, 24–35%],59,42 10 mg/kg [rash, 34%; pruritus, 40%]59) than with anti-PD-1 (nivolumab/pembrolizumab: rash, 4–22%; pruritus, 2–23%)2,4,10,13,17,59–61 or anti-PD-L1 treatment (atezolizumab/avelumab/durvalumab: rash, 1–7%; pruritus, 1–11%).7,10,13,17,59–61 Skin toxicities are typically low grade, often presenting as erythematous macules/papules/plaques on the trunk or extremities with or without pruritus during the early weeks of treatment (Figure 1).57,63,64 Dermatologic toxicities have been observed more often in patients receiving ICPIs for melanoma than for NSCLC (Table 2).2,4,6,9,11,13,16,41,43,50,51,65,66 Vitiligo may occur more frequently in patients receiving anti-PD-1 antibodies (nivolumab/pembrolizumab, 7–11%) than with anti-CTLA-4 therapy (ipilimumab, 2–4%).42 Grade 3/4 skin imAEs are rare, although cases of Stevens–Johnson syndrome and toxic epidermal necrolysis have been reported in patients receiving anti-CTLA-4 (ipilimumab)2,23,57 or anti-PD-1 treatments (nivolumab/pembrolizumab).23,67

Gastrointestinal

Diarrhea is the most common gastrointestinal adverse event, occurring in 23–41% of patients treated with anti-CTLA-4 (ipilimumab: 3 mg/kg, 23–35%; 10 mg/kg, 41%),4,9,39,40,42 7–19% of patients treated with anti-PD-1 antibodies (nivolumab, 8–19%;4,6,11,13,16,41,62 pembrolizumab, 7–16%2,16,42,43,50,51), 2–15% of patients receiving anti-PD-L1 therapy (atezolizumab, 7–15%;7,13,17,44 avelumab, <1–9%;10,61
Table 2 Frequency of organ-specific imAEs in melanoma, NSCLC, and UC registration clinical trials

Grade	Dermatologic, %	Gastrointestinal, %	Endocrine, %	Pulmonary, %	Renal, %	Neurologic, %
All	All 44–63 0–3	All 29–37 8–12	All 8–15 2–4	All 2 0–1	All 2 0–1	All 2 0–1
	63 5 29–42 <1–2	46 16 12–20 1–2	38 9 7–14 0–1	25 11 3–6 1–3	2 16 11 0–1	2 0–<1 0–1
	59–73 6–9	46–49 15–20 8	30–31 5	30–32 13–19	30–32 13–19	2 0–<1 0–1
	9 0 NR NR	8 1 NR NR	4 NR NR	2 0 NR NR	4 NR NR	0–1–2
	17 1 1	9 2 NR NR	6–11 3–6	2 0 NR NR	4 2 2	1
	1 1	NR NR	0–1–2	<1–1	<1–1	<1–1
	1 0 NR NR	1 0 NR NR	1 0–1–2	4 2 NR NR	2 4 2	1–2–1
All	5 0–1–1	5 1–2 1–2 1	1 0–1–2	1 0–1–2	1 0–1–2	1–2–1
	1 0–1–2	1 0–1–2 1–2 1	1 0–1–2	1 0–1–2	1 0–1–2	1–2–1
Pruritus	24–35 0–<1	28–35 5–11	8–12 2–9	8–12 2–9	8–12 2–9	8–12 2–9
	40 2 2–22 0–1	16 8 1–3 1–2	16 8 1–3 1–2	16 8 1–3 1–2	16 8 1–3 1–2	16 8 1–3 1–2
	33–40 1–2	12–18 8–13 1–2	1–2 <1–2	<1–1	<1–1	<1–1
	2–10 NR NR	4–14 0–4 <1–1	<1–1	<1–1 <1–1	<1–1	<1–1
	17–20 8–13	0–1–2	<1–1	1–2–1	1–2–1	1–2–1
	8–13 2	9–10	1–2	1–2	1–2	1–2
	8–13 2	9–10	1–2	1–2	1–2	1–2
NSCLC	Anti-PD-1 16,18,19,20,95	2 0–1	2 0–1	2 0–1	2 0–1	2 0–1
	Anti-PD-L 17,25,44	1–2	1–2	1–2	1–2	1–2
Anti-CTLA-4	3 mg/kg					
Anti-PD-L	1–2	1–2	1–2	1–2	1–2	1–2

Notes: Pivotal trials that led to US FDA approval. Pivotal trials that led to US FDA approval.

Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; FDA, Food and Drug Administration; imAEs, immune-mediated adverse events; NR, not reported; NSCLC, non-small cell lung cancer; UC, urothelial carcinoma.
Table 3 Evaluation and management of imAEs

Organ	ImAE	Symptoms	Evaluation	Grading	Management
Dermatologic	Rash	Maculopapular rash	Rule out:	Grade 1–2:	Covers ≤30% of body surface area
	Pruritus	Pruritus	Cellulitis	±Pruritus	Start topical steroid cream, anti-itch cream, oral antihistamine, cold compresses, oatmeal baths
	Erythema	Hair color changes	Contact dermatitis	Grade 3–4:	If rash persists for >1 week or interferes with daily living, start moderate potency steroid cream
	Dry mouth	Skin discoloration	Drug reaction	≤30% of body surface area ±Pruritus	Evaluate for desquamation, hold ICPI
	Vitiligo (hair, skin)	Skin peeling, blisters	Sun exposure	Limits self-care ADLs	Refer to dermatologist, consider photoprotection
	Stevens–Johnson syndrome	Oral ulcerations	Radiation recall	Life-threatening consequences	Consider additional immunosuppressant (eg, infliximab)
	Toxic epidermal necrolysis	Eosinophil infiltrates	Laboratory: CBC		Grade 4: Permanently discontinue ICPI
		Epidermal spongiosis	Dermatology consult		Start steroid followed by tapering as for Grade 3
		Lichenoid deposits	Confirmatory testing: skin biopsy		Grade 2: Hold ICPI until Grade 1
Gastrointestinal	Diarrhea	Abdominal pain	Determine frequency and volume of stool	Grade 1:	If recurrent or if lasting >5 days, consider starting steroid dose (prednisone 1.0–2.0 mg/kg/day or equivalent)
	Colitis	Cramping	Laboratory: CBC and CMP	<4 stools over baseline	Grade 2: 4–6 stools over baseline
	Enterocolitis	Change in bowel pattern	Send stool sample for:	Asymptomatic	If imAE resolves to Grade 1 or less, taper steroid dose over 4–6 weeks and consider resuming ICPI
	Nausea	Increase in ostomy output	WBC (ratio inflammation)	Grade 2: 6–12 stools over baseline	Grade 3: Hold MPS 1.0–2.0 mg/kg/day
	Vomiting	Mucous or blood in stool	C&S and *Clostridium difficile*	IV fluids <24 hours indicated	If imAE resolves to Grade 1 or less, taper steroid dose over 4–6 weeks and consider resuming ICPI
	Gastritis	Intolerance	(ratio infection)	Colitis with abdominal pain, blood in stool, no ADL interference	Grade 4: Grade 4: Life-threatening perforation
	Ischemic gastritis	Peritoneal signs	Diagnostic testing:	Grade 3: ≥7 stools/day over baseline	Grade 4: Grade 4: Life-threatening perforation
	GI perforation		Abdominal ultrasound	IV fluids >24 hours	Grade 4: Life-threatening perforation
	Perforation sepsis		Abdominal CT scan	Interference with ADLs	Grade 4: Life-threatening perforation
	Ileus		Gastroenterology consult	Severe abdominal pain, peritoneal signs; medical intervention indicated	Grade 4: Life-threatening perforation
			Confirmatory testing	Grade 4: Life-threatening perforation	Grade 4: Life-threatening perforation
			Endoscopy	Grade 4: Life-threatening perforation	Grade 4: Life-threatening perforation
			Colonoscopy	Grade 4: Life-threatening perforation	Grade 4: Life-threatening perforation
Endocrine (thyroid)	Hyperthyroidism	Weight loss/gain	Laboratory: TSH, free T4 (thyroxine), free T3 (triiodothyronine)	Grade 1:	Grade 1: Continue ICPI
	Thyroiditis	Feeling hot/cold	Endocrinology consult	Asymptomatic	Grade 2: Hold ICPI until Grade 1
	Hypothyroidism	Changes in mood/behavior	T4 (thyroxine), T3 (triiodothyronine)	Symptomatic	Manage symptoms
		Fatigue	Endocrinology consult	Requiring hormone replacement or medical intervention	Hyperthyroidism
		Increased sweating		Grade 3–4:	Medical management for severe symptoms
		Faster/slower heart rate		Severe symptoms, life-threatening	Hyperthyroidism
		Diarrhea/constipation		Requiring hospitalization or urgent medical intervention	Initiate hormone replacement if TSH >10
		Hair loss		Limiting self-care ADL	Adjust replacement hormone dosing to maintain T4 in mid-range
		Heat/cold intolerance			Consider resuming ICPI when symptoms resolve to ≤Grade 1

(Continued)
Table 3 (Continued)

Organ (HPA axis)	ImAE	Symptoms	Evaluation	Grading*	Management
Endocrine					
Hypophysitis		Hypophysitis: visual changes, headaches, fatigue, weakness, confusion, hallucinations, memory loss, labile mood, insomnia, anorexia	Laboratory: CBC and blood cultures to rule out sepsis	Grade 1:	Continue ICPI
Adrenal insufficiency	Hypophysitis: hormone levels: ACTH, FSH, LH, prolactin, ADH, oxytocin, testosterone	Diagnostic evaluation Pituitary scan MRI of brain with pituitary Endocrinology consult	Grade 2:	Hold ICPI	
Adrenal crisis		Adrenalitis: fatigue, malaise, hypotension, vague gastrointestinal symptoms, weight loss, hypoglycemia	Hormone repletion (may require lifetime hormone replacement)	Grade 3–4:	Permanently discontinue ICPI
Hypophysitis:		Hypophysitis: hormone levels: cortisol, ACTH, cosyntropin stimulation test, aldosterone	If am cortisol <3 µg/dL: adrenal insufficiency	Grade 1:	Continue ICPI
Adrenal insufficiency	Primary adrenal insufficiency: low cortisol, high ACTH	If am cortisol <3 µg/dL: adrenal insufficiency	Grade 2:	Hold ICPI	
Adrenal crisis		Secondary adrenal insufficiency: low cortisol, low ACTH	Endocrinology consult	Grade 3–4:	Permanently discontinue ICPI
Hypophysitis:		Hypophysitis: hormone levels: cortisol, ACTH, cosyntropin stimulation test, aldosterone	If am cortisol <3 µg/dL: adrenal insufficiency	Grade 1:	Continue ICPI
Adrenal insufficiency	Laboratory: Adrenalitis: hormone levels: cortisol, ACTH, cosyntropin stimulation test, aldosterone	Laboratory: CBC and blood cultures to rule out sepsis	Grade 2:	Hold ICPI	
Adrenal crisis		Adrenalitis: hormone levels: cortisol, ACTH, cosyntropin stimulation test, aldosterone	Laboratory: CBC and blood cultures to rule out sepsis	Grade 3–4:	Permanently discontinue ICPI
Hypophysitis:		Hypophysitis: hormone levels: cortisol, ACTH, cosyntropin stimulation test, aldosterone	Laboratory: CBC and blood cultures to rule out sepsis	Grade 1:	Continue ICPI
Adrenal insufficiency	Laboratory: Adrenalitis: hormone levels: cortisol, ACTH, cosyntropin stimulation test, aldosterone	Laboratory: CBC and blood cultures to rule out sepsis	Grade 2:	Hold ICPI	
Adrenal crisis		Adrenalitis: hormone levels: cortisol, ACTH, cosyntropin stimulation test, aldosterone	Laboratory: CBC and blood cultures to rule out sepsis	Grade 3–4:	Permanently discontinue ICPI

*ICPI: Immune Checkpoint Inhibitor

Hepatic

Organ	ImAE	Symptoms	Evaluation	Grading*	Management
Elevated AST/ALT	Nausea	Elevated AST/ALT	Laboratory: liver enzymes (AST, ALT, ALK, total and direct bilirubin) every 3 days, coagulation panel	Grade 1:	AST or ALT > ULN to 3 × ULN and/or total bilirubin > ULN to 1.5 × ULN
Elevated bilirubin	Decreased appetite	Elevated bilirubin	Diagnostic evaluation: Liver ultrasound	Grade 2:	AST or ALT > ULN to 3 × ULN and/or total bilirubin > ULN to 1.5 × ULN
Hepatitis	Fever	Elevated bilirubin	Gastroenterology consult	Grade 3–4:	AST or ALT > 5 × ULN and/or total bilirubin > 3 × ULN
	Vague abdominal discomfort	Elevated bilirubin	Hepatology consult	Grade 1:	AST or ALT > 3 × ULN and/or total bilirubin > 1.5 × ULN
	RUQ pain	Elevated bilirubin	Consider liver biopsy to confirm diagnosis	Grade 2:	AST or ALT > 5 × ULN and/or total bilirubin > 3 × ULN
	Dehydration	Elevated bilirubin	Consider liver biopsy to confirm diagnosis	Grade 3–4:	AST or ALT > 5 × ULN and/or total bilirubin > 3 × ULN
	Jaundice	Elevated bilirubin	Consider liver biopsy to confirm diagnosis	Grade 1:	AST or ALT > 3 × ULN and/or total bilirubin > 1.5 × ULN
	Bleeding, bruising	Elevated bilirubin	Consider liver biopsy to confirm diagnosis	Grade 2:	AST or ALT > 5 × ULN and/or total bilirubin > 3 × ULN
	Dark urine	Elevated bilirubin	Consider liver biopsy to confirm diagnosis	Grade 3–4:	AST or ALT > 5 × ULN and/or total bilirubin > 3 × ULN

*ICPI: Immune Checkpoint Inhibitor

(Continued)
Table 3 (Continued)

Organ	ImAE	Symptoms	Evaluation	Grading	Management
Pulmonary	Ground glass opacities	Dry cough	Oxygen saturation at rest and with ambulation	Grade 1	Grade 1: Consider holding ICPI
	on imaging	Wheezing	Laboratory: CBC	Grade 2	Oxygen support; albuterol nebulizer, PRN; steroid inhaler, PRN
	Pneumonitis	Tachypnea/tachycardia	Rule out:	Grade 3	Monitor every 2–3 days
	Sarcoid-like lung	Shortness of breath at rest	Infectious cause	Grade 4	Grade 2: Hold ICPI
disease	disease	Shortness of breath at exertion	Lympangitic spread		MPS 1–2 mg/kg/day
		Hypoxia	Pulmonary embolism		Daily monitoring
		Increased oxygen requirements	Pleural effusion		If imAE resolves to baseline, consider resuming treatment after steroid tapered over 4–6 weeks
		Chest pain	Consult		Grade 3: Permanently discontinue ICPI
		Radiographic changes	Interventional pulmonology		MPS 1–2 mg/kg/day increasing to 2–4 mg/kg/day if needed; taper as listed for Grade 2
			Infectious disease		Refractory:
			Diagnostics:		Consider additional immunosuppressant (eg, infliximab)
			CT scan		Grade 1:
			Bronchoscopy with biopsy		Hold all nephrotoxic drugs
			PFTs		Hydration
					Grade 2–3:
			Monitor serum creatinine		Hold ICPI
					Hydration
					Monitor serum creatinine every 2–3 days
					MPS 0.5–1.0 mg/kg/day; if no improvement increase to 1–2 mg/kg/day
					Grade 4:
			Life-threatening		Permanently discontinue ICPI
					MPS 1–2 mg/kg/day with taper as listed for Grade 2–3
Renal	Interstitial nephritis	Often asymptomatic	Laboratory: serum creatinine, urinalysis	Grade 1	Grade 1:
	Granulomatous	Increase in serum creatinine	Nephrology consult	Grade 2	Hold all nephrotoxic drugs
	nephritis	Vague nausea	Renal ultrasound	Grade 3	Hydration
	Glomerular lupus-like	Emesis	Renal biopsy	Grade 4	Grade 2–3:
nephropathy	Renal insufficiency	Decreased urine output			Hold ICPI
	Renal failure	Cloudy/dark urine			Hydration
		Blood in urine			Monitor laboratory results at least weekly
		Ankle swelling			Grade 2–3:
					Hold ICPI
					MPS 0.5–1.0 mg/kg/day
					Grade 4:
					Permanently discontinue ICPI
					MPS 1–2 mg/kg/day with taper as for Grade 2–3
Pancreatic	Elevated amylase and	May be asymptomatic	Laboratory: amylase and lipase levels, blood glucose	Grade 1	Grade 1:
	lipase	RUQ abdominal pain	Pancreatic ultrasound	Grade 2	Monitor laboratory results at least weekly
	Pancreatitis	Nausea	CT scan	Grade 3	Grade 2–3:
	Type 1 diabetes	Vomiting	Gastroenterology consult	Grade 4	Hold ICPI
mellitus	mellitus	Increase in stool frequency, bulk, or odor	Endoscopy		MPS 0.5–1.0 mg/kg/day
		Steatorrhea			Grade 4:
					Permanently discontinue ICPI
					MPS 1–2 mg/kg/day with taper as for Grade 2–3

(Continued)
Table 3 (Continued)

Organ	ImAE	Symptoms	Evaluation	Grading^a	Management
Ocular	Uveitis	Painful, itchy, watery eyes	Rule out infection	Grade 1: Asymptomatic or mild symptoms	Grade 1: Continue ICPI
	Episcleritis	Decreased acuity	Ophthalmology consult	Grade 2: Symptoms limiting ADL	Lubricating eye drops
	Conjunctivitis	Visual deficits		Grade 2: Symptoms limiting ADL	Grade 2: Continue ICPI
	Iritis	Dry eyes		Grade 3: Anterior uveitis	Topical corticosteroid eye drops
	Blepharitis	Inflammation		Grade 3: Anterior uveitis	Consider holding ICPI
	Orbital inflammation	Erythematous soft tissue		Grade 3: Symptoms limiting self-care	Grade 3: Hold ICPI
		Injected conjunctiva		Grade 4: Posterior or panuveitis	MPS 0.5–1.0 mg/kg/day
				If imAE resolves to Grade 1, taper steroid dose over 4–6 weeks and consider resuming	Grade 4: Permanently discontinue ICPI
				ICPI^b	MPS 1–2 mg/kg/day with taper as for Grade 3
Musculoskeletal	Muscular inflammation	Mild joint ache	Rheumatology consult	Grade 1: Arthralgia; mild pain	Grade 1: Continue ICPI
	Arthritis	Joint swelling	Orthopedic consult	Grade 2: Arthritis; moderate pain; limiting instrumental ADL	Grade 2: Hold ICPI^c
	Erythematous lupus	Joint erythema		Grade 2: Arthritis; moderate pain; limiting instrumental ADL	MPS 0.5–1.0 mg/kg/day
	Polymyalgia rheumatic	Decreased range of motion of joints		If AE resolves to Grade 1, taper steroid dose over 4–6 weeks and consider resuming ICPI^b	Grade 3: Permanently discontinue ICPI
	Giant cell arteritis			MPS 1–2 mg/kg/day with taper as for Grade 2	Grade 3: Permanently discontinue ICPI
	Arthralgia				Grade 3: Permanently discontinue ICPI
	Myalgia			Grade 3: Permanently discontinue ICPI	Grade 3: Permanently discontinue ICPI

ICPI indicates immune checkpoint inhibitor.
Organ	ImAE	Symptoms	Evaluation	Grading*	Management
Neurologic	Neuralgia	Unusual weakness	MRI of brain	Grade 1:	Continue ICPI
	Guillain–Barre	Numbness	Rule out: CVA, infection, brain metastasis, leptomeningeal disease	Asymptomatic or mild symptoms	
	syndrome	Difficulty walking	Neurology consult	Grade 2:	Safety measures
	Aseptic or lymphocytic meningitis	Difficulty performing daily tasks (writing, dressing, feeding)	Lumbar puncture to evaluate CSF	New-onset moderate symptoms limiting instrumental ADLs	
	Posterior reversible encephalopathy	Neck stiffness		Grade 3–4:	Relapse of care.
	Enteric neuropathy	Headache		New-onset severe symptoms limiting self-care	
	Transverse myelitis	Confusion		Life-threatening consequences	
		Sleepiness			
		Memory difficulties			
		Hallucinations			
		Seizures			
Cardiac	Pericarditis	Chest pain	Laboratory: troponin, BNP	Grade 1:	Continue ICPI
	Myocarditis	Dyspnea	ECG	Asymptomatic	Safety measures
	Pericardial effusion	Fluid retention	Echocardiogram	Subtle ECG or physical findings (eg, rub)	Rehabilitation
		Lower extremity edema	CT of chest	Grade 2:	Grade 2: Hold ICPI^e
		Rapid/abnormal heart rhythms	MRI of heart	Symptomatic pericarditis (eg, chest pain)	MPS 0.5–1.0 mg/kg/day
		Fatigue	Cardiology consult	Grade 3:	If imAE resolves to Grade 1, consider resuming treatment after steroid tapered over 4–6 weeks^f
		Muscle pain		Symptomatic pericarditis with physiologic consequences	
				Grade 4:	Refractory: If worsens, consider additional immunosuppressant therapy
				Life-threatening consequences	

^a If imAE resolves to Grade 1, consider resuming treatment after steroid tapered over 4–6 weeks.

^b If imAE resolves to Grade 1, consider resuming treatment after steroid tapered over 4–6 weeks.^c

^c For Grade 2, taper prednisone equivalent 1–2 mg/kg/day and yes taper for Grade 3–4.

^d For Grade 2, taper prednisone equivalent 1–2 mg/kg/day and yes taper for Grade 3–4.

^e If imAE resolves to Grade 1, taper prednisone equivalent 1–2 mg/kg/day and yes taper for Grade 3–4.

^f Medical intervention as indicated.

^g Refractory: If worsens, consider additional immunosuppressant therapy.

^h Medical intervention as necessary.

ⁱ Permanent discontinuation of ICPI.

^j Permanent discontinuation of ICPI.

^k Permanent discontinuation of ICPI.

^l Permanent discontinuation of ICPI.

^m Permanent discontinuation of ICPI.
Table 3 (Continued)

Organ	ImAE	Symptoms	Evaluation	Grading[^b]	Management
Hematologic	Cytopenia	Fatigue	Monitor CBC	Grade 1:	Grade 1–2: Continue ICPI
		Weakness	Rule out infection	ANC < LLN–1 500/mm[^3]	Close monitoring
		Dyspnea	Rule out DIC	Grade 2:	Grade 3: Hold ICPI[^d]
		Petechiae	Hematology consult	Hgb < LLN–1.0 g/dL	Monitor closely
				Grade 3:	If no improvement, consider initiation of steroid with taper over 4–6 weeks once imAE resolves to Grade 1[^b]
	Acquired hemophilia A	Bruising		ANC < 1500–1000/mm[^3]	Grade 4: Permanently discontinue ICPI
		Bleeding		Hgb < 10.0–8.0 g/dL	Initiation of steroids with taper as for Grade 3
				Plt < 75,000–50,000/mm[^3]	
				ANC < 1500–5000/mm[^3]	
				Hgb < 8.0 g/dL	
				Plt < 50,000–25,000/mm[^3]	
				ANC < 25,000/mm[^3]	
				Hgb: life-threatening consequences; urgent intervention indicated	
				Plt < 25,000/mm[^3]	

Notes:
- Based on published management algorithms[^2-7,88-97] and authors’ clinical experience.
- Grading based on NCI Common Terminology Criteria for Adverse Events v4.0.
- For Yervoy (ipilimumab): hold ICPI if Grade 2 rash, consider oral systemic steroid (0.5–1.0 mg/kg/day) if persists >1 week or interferes with ADL. For Imfinzi (durvalumab): hold ICPI if Grade 2 for >1 week. For Yervoy (ipilimumab): permanently discontinue if Grade 2 imAE persists 26 weeks or unable to reduce prednisone to ≤7.5 mg prednisone or equivalent per day or to complete four-dose course within 16 weeks. For Yervoy (ipilimumab): resume treatment when imAE resolves to Grade 1 or less and is controlled with ≤7.5 mg/kg prednisone or equivalent per day. For Keytruda (pembrolizumab): permanently discontinue if any Grade 3 imAE recurs or if any persistent Grade 2 or 3 imAE (excluding endocrinopathies) does not resolve to Grade 1 within 12 weeks with ≤10 mg prednisone or equivalent per day. For Yervoy (ipilimumab): resume treatment when imAE resolves to Grade ≤1 and corticosteroid dose has been reduced to ≤10 mg prednisone or equivalent per day. For Yervoy (ipilimumab): initiate 0.5 mg/kg/day prednisone or equivalent if symptoms persist >1 week, worsen, or recur. For Yervoy (ipilimumab) or combination Yervoy + Opdivo (ipilimumab + nivolumab): permanently discontinue. For Yervoy (ipilimumab): permanently discontinue Imfinzi (durvalumab) for Grade 3 gastrointestinal imAE. For Imfinzi (durvalumab): permanently discontinue Bavencio (avelumab) if Grade 3 imAE is recurrent. For Yervoy (ipilimumab): temporarily discontinue if ≥1 week, worsen, or recur. For Yervoy (ipilimumab) or combination Yervoy + Opdivo (ipilimumab + nivolumab): permanently discontinue. For Yervoy (ipilimumab) or combination Yervoy + Opdivo (ipilimumab + nivolumab): permanently discontinue. Begin taper if AE improves to Grade 2 for Opdivo (nivolumab) or if liver function tests improve for Yervoy (ipilimumab). For Keytruda (pembrolizumab): permanently discontinue if Grade 3 with ≥8 × ULN AST/ALT or ≥5 × ULN total bilirubin or if Grade 4. Hold if Grade 3 with ≥8 × ULN AST/ALT or ≤5 × ULN total bilirubin. Permanently discontinue Yervoy (ipilimumab), Keytruda (pembrolizumab), or Imfinzi (durvalumab) for Grade 3 nephritis. Permanently discontinue Yervoy (ipilimumab) for Grade 3 pancreatitis. Discontinue Keytruda (pembrolizumab) or Opdivo (nivolumab) if recurrent Grade 2 or 3. For grade 4 serum amylase or lipase elevation, hold Yervoy (ipilimumab) and consider resuming treatment once imAE resolves to Grade ≤1 within 12 weeks and corticosteroids reduced to ≤10 mg/day oral prednisone. Hold Imfinzi (durvalumab) for Grade 2–4 type 1 diabetes mellitus; resume treatment if type 1 diabetes mellitus resolves to Grade ≤1. Permanently discontinue Yervoy (ipilimumab) if Grade ≥2 or Grade 1 not responding to steroids within 2 weeks or requiring systemic therapy. Permanently discontinue Opdivo (nivolumab), Keytruda (pembrolizumab), Tecentriq (atezolizumab), or Bavencio (avelumab) if Grade 3. For Tecentriq (atezolizumab): permanently discontinue for any grade menigitis or encephalitis and treat with steroids (MPS, 1–2 mg/kg/day); use medical intervention as appropriate for myasthenia syndrome/myasthenia gravis or Guillain-Barre syndrome. For Yervoy (ipilimumab) and Opdivo (nivolumab): treat symptoms as per institutional guidelines. For Yervoy, begin tapering steroids when Grade 3–4 imAE resolves to Grade 2. For Opdivo (nivolumab), resume ICPI if Grade 2 imAE resolves to baseline.

Abbreviations: ACTH, adrenocorticotropic hormone; ADH, antidiuretic hormone; ADL, activities of daily living; AE, adverse event; ALK, alkaline phosphatase; ALT, alanine transaminase; ANC, absolute neutrophil count; AST, aspartate transaminase; BNP, brain natriuretic peptide; CBC, complete blood count; CMP, comprehensive metabolic panel; C&S, culture and sensitivity; CSF, cerebrospinal fluid; CT, computerized tomography; CVA, cerebrovascular accident; DIC, disseminated intravascular coagulation; ECG, electrocardiogram; FSH, follicle-stimulating hormone; GI, gastrointestinal; Hgb, hemoglobin; ICPI, immune checkpoint inhibitor; imAE, immune-mediated adverse event; IV, intravenous; LH, luteinizing hormone; LLN, lower limit of normal; MPS, methylprednisolone; MRI, magnetic resonance imaging; NCI, National Cancer Institute; FTTs, pulmonary function tests; Pt, platelets; PRN, as needed; r/o, rule out; RUQ, right upper quadrant; TSH, thyroid-stimulating hormone; ULN, upper limit of normal; WBC, white blood cell count.
Figure 1 Time to onset of immune-mediated toxicities (median and range).^{22–27}

Notes: Onset patterns of imAEs in patients receiving ICPI treatment by organ system and target pathway: CTLA-4 (ipilimumab), PD-1 (nivolumab, pembrolizumab), and PD-L1 (atezolizumab, avelumab, and durvalumab).

- Dermatitis in ipilimumab studies; immune-mediated rash in nivolumab and nivolumab + ipilimumab studies.
- Enterocolitis in ipilimumab studies; colitis in nivolumab, pembrolizumab, avelumab, and nivolumab + ipilimumab studies; colitis or diarrhea in atezolizumab and durvalumab studies.
- Hypopituitarism, adrenal insufficiency, hypothyroidism, hyperthyroidism, hypogonadism, thyroiditis, Cushing’s syndrome, and Graves’ ophthalmopathy.
- Hypothyroidism and hyperthyroidism are combined for avelumab.
- Hepatitis.
- Pneumonitis.
- Nephritis or renal dysfunction in nivolumab and nivolumab + ipilimumab studies; nephritis in pembrolizumab studies.
- Neuropathy in ipilimumab studies and encephalitis in nivolumab and nivolumab + ipilimumab studies.

Abbreviations: d, days; GI, gastrointestinal; ICPI, immune checkpoint inhibitor; imAEs, immune-mediated adverse events; m, months; T1DM, type 1 diabetes mellitus.

Organ System	n	Time to Onset (Median and Range)			
Dermatologic	n = 76	22 d (11–14 d)	2.4 m (1.1 m)	16.6 m (2.1–2.2 m)	25.8 m (3.5 m)
GI	n = 62	1.4–1.7 m (1.1 m)	3.4 m (2.5 m)	4.8–5.4 m (3.3 m)	
Endocrine		21 d–1.7 m (3.5 m)	4.9 m (2.7 m)	2.1 m (2.5 m)	
All	n = 132	2.1–2.2 m (14 d)	2.6 m (2.5 m)	4.8–5.4 m (3.5 m)	21.9 m (14.2 m)
Hypophysitis	n = 12	2.7 m (1.5 m)	3.0 m (2.0 m)		
Adrenal insufficiency	n = 20	2.6 m (2.5 m)	4.4 m (3.4 m)	21.0 m (14.2 m)	
Hypothyroidism	n = 237	2.7 m (2.4 m)	4.4 m (3.1 m)	18.9 m (13.0 m)	
Hyperthyroidism	n = 54	23 d (14 d)	3.2–4.9 m (2.8 m)	31.0 m (13.0 m)	
Hepatic	n = 73	1.4–2.0 m (1.5 m)	3.3 m (2.1 m)	21.4 m (15.0 m)	
Pulmonary	n = 61	2.1 m (2.0 m)	3.3 m (3.2 m)	22.3 m (19.3 m)	
Renal	n = 23	1.7 m (1.6 m)	3.0 m (2.9–3.3 m)	18.7 m (13.9 m)	
Pancreatic (T1DM)	n = 17	2.7 m (1.7 m)	4.4 m (5.1 m)	22.0 m (12.8 m)	
Neurologic	n = 9	1.7 m (1.6 m)	7.2 m (6.4 m)	27.4 m (10.5 m)	

Anti-CTLA-4	Anti-PD-1	Anti-CTLA-4 + Anti-PD-1	Anti-PD-L1
Ipilimumab 3 mg/kg	Nivolumab	Nivolumab + Ipilimumab	Atezolizumab
Ipilimumab 10 mg/kg	Pembrolizumab		Durvalumab
Nivolumab			Avelumab

Figure 1: Time to onset of immune-mediated toxicities (median and range).^{22–27}

Notes: Onset patterns of imAEs in patients receiving ICPI treatment by organ system and target pathway: CTLA-4 (ipilimumab), PD-1 (nivolumab, pembrolizumab), and PD-L1 (atezolizumab, avelumab, and durvalumab). Dermatitis in ipilimumab studies; immune-mediated rash in nivolumab and nivolumab + ipilimumab studies. Enterocolitis in ipilimumab studies; colitis in nivolumab, pembrolizumab, avelumab, and nivolumab + ipilimumab studies; colitis or diarrhea in atezolizumab and durvalumab studies. Includes hypopituitarism, adrenal insufficiency, hypothyroidism, hyperthyroidism, hypogonadism, thyroiditis, Cushing’s syndrome, and Graves’ ophthalmopathy. Hypothyroidism and hyperthyroidism are combined for avelumab. Hepatitis. Pneumonitis. Nephritis or renal dysfunction in nivolumab and nivolumab + ipilimumab studies; nephritis in pembrolizumab studies. Neuropathy in ipilimumab studies and encephalitis in nivolumab and nivolumab + ipilimumab studies.

Abbreviations: d, days; GI, gastrointestinal; ICPI, immune checkpoint inhibitor; imAEs, immune-mediated adverse events; m, months; T1DM, type 1 diabetes mellitus.
Combination anti-CTLA-4 and anti-PD-1 therapy with ipilimumab and nivolumab.4,9 Colitis has been observed in 7–16\% of patients receiving anti-CTLA-4 therapy (ipilimumab: 3 mg/kg, 7–12\%;4,9,39,42 10 mg/kg, 16\%46), 1–3\% of patients treated with anti-IPD-1/IPD-L1 antibodies (1\% for nivolumab,4,6,11,41,62 atezolizumab,7,13,17,44 and durvalumab;30 avelumab, 2\%;26 pembrolizumab, 1–3\%2,16,18,20,42,43), and 12–18\% of patients treated with combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).4,9 Rates of Grade 3/4 diarrhea or colitis are low (≤4\%) in patients receiving anti-PD-1 or anti-PD-L1 monotherapy,2,4,6,7,10,11,13,15–17,20,41–44,50,51,59,60,62 but tend to be higher in patients treated with anti-CTLA-4 monotherapy (ipilimumab, 2–11\%4,9,39,40,42 or combination anti-CTLA-4 and anti-PD-1 therapy with nivolumab and ipilimumab (8–13\%).4,9 The median onset of immune-mediated diarrhea and/or colitis ranges from 21 days to 5.3 months in patients treated with ICPIs in clinical registration studies (Figure 1).22–27 Deaths from intestinal perforation from colitis have been reported at very low rates (<1\%) in anti-CTLA-4 monotherapy studies at both 3 mg/kg and 10 mg/kg doses.22,40

Endocrine
Autoimmune endocrinopathies (predominantly Grade 1 or 2) have been reported in patients treated with ICPIs in clinical studies, including hypothyroidism, hyperthyroidism, thyroiditis, hypophysitis (pituitary inflammation), and adrenal insufficiency.22–27 Rates of all-grade endocrinopathies are generally low in patients receiving anti-PD-1/IPD-L1 therapy, with <10\% of patients experiencing each individual endocrinopathy.22–27 Higher rates are reported in patients treated with anti-CTLA-4 therapy either as monotherapy (ipilimumab 3 mg/kg, 8–15\%;4,9,39 ipilimumab 10 mg/kg, 38\%46) or in combination with anti-PD-1 therapy (ipilimumab + nivolumab, 30–31\%4,9). Rates of Grade 3/4 endocrinopathies are generally low in patients receiving ICPI monotherapy (anti-CTLA-4: ipilimumab 3 mg/kg, 1.8\%;22 anti-PD-1/IPD-L1: nivolumab, pembrolizumab, atezolizumab, avelumab, or durvalumab, <1\%2,4,24–27 for each individual endocrinopathy); however, higher rates have been reported with high-dose anti-CTLA-4 (ipilimumab 10 mg/kg, 8\%22 and combination anti-CTLA-4 and anti-PD-1 (ipilimumab + nivolumab, 5\%).4,9 Most cases of immune-mediated hypothyroidism can be adequately treated with hormone replacement, and ICPI therapy can be continued.

Hypophysitis and thyroid dysfunction are the most common endocrine imAEs associated with ICPI treatment. Hypophysitis (median onset 2–5 months;23,24,57 Figure 1) rarely occurred in patients treated with anti-PD-1 or anti-PD-L1 monotherapy in clinical studies (<1% for nivolumab, pembrolizumab, atezolizumab, or durvalumab),23–25,27 but has been observed in 2–7% of patients receiving anti-CTLA-4 therapy (ipilimumab) at the 3 mg/kg dose4,9,42 and 18\% of patients receiving the 10 mg/kg dose,40 and in 8–13\% of patients treated with combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).4,9 The vast majority of patients who experience Grade ≥2 hypophysitis fail to recover pituitary function and require lifelong hormone replacement therapy.22,57,68 Adrenal insufficiency can arise secondary to hypopituitarism (≤1\%, anti-PD-1 monotherapy [nivolumab]23 or anti-PD-L1 monotherapy [atezolizumab,25 avelumab,26 durvalumab]27); 5\%, combination anti-CTLA-4 and anti-PD-1 [ipilimumab + nivolumab]23), typically manifesting as dehydration, hypotension, hyponatremia, and/or hyperkalemia similar to sepsis syndrome.69

Hypothyroidism has been reported in 9\% of patients treated with anti-PD-1 (nivolumab or pembrolizumab)23,24 or high-dose anti-CTLA-4 monotherapy (ipilimumab 10 mg/kg),40 in 2–13\% of patients receiving standard-dose anti-CTLA-4 monotherapy (ipilimumab 3 mg/kg),4,9,39,42 in 4–5\% of patients treated with anti-PD-L1 antibodies (atezolizumab, 4%;25 avelumab, 5%;26 durvalumab, 6%27), and in 15–17\% of patients receiving combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).4,9 In clinical registration studies, the median onset of hypothyroidism ranged from 1 to 5 months,23–27 sometimes following a brief period of hyperthyroidism (Figure 1). Hypothyroidism does not resolve for most patients, resulting in the potential need for long-term hormone supplementation.23–27,47,70 Hyperthyroidism, which is less common than hypothyroidism, resolves in the vast majority of patients.71

Hepatic
Hepatotoxicity, including hepatitis and elevated alanine transaminase (ALT)/aspartate transaminase (AST), has been documented in patients treated with ICPIs.57,58 In patients treated with anti-CTLA-4 therapy, the rate of hepatic adverse events ranged from 4\% to 9\% (ipilimumab 3 mg/kg)4,9,39 to 25\% (ipilimumab 10 mg/kg),40 with Grade 3/4 events occurring in 0\% to 2\% to 11\%, respectively. Hepatotoxicity occurred in 2–6\% (0–3\% Grade 3/4) of the patients treated with anti-PD-1 monotherapy (nivolumab)6,11,15,41,62 and in 30–32\% (13–19\% Grade 3/4) of the patients receiving combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).4,9 Immune-mediated hepatitis, reported in ≤2\% of patients treated with ICPI monotherapy23–27,39 (excluding ipilimumab 10 mg/kg dose, 15\%),22 typically presents...
at 1–3 months and resolves with steroid treatment in most patients (Figure 1).22–27 Although rare, fatal cases of immune-mediated hepatitis have occurred with ICPI monotherapy (0.2%, ipilimumab 3 mg/kg;22 0.1%, nivolumab;26 0.5%, durvalumab27). Elevated ALT/AST with concomitant elevated bilirubin may indicate a more serious hepatic injury.72,73

Pulmonary

Immune-mediated pneumonitis is a rare but potentially serious adverse event, occurring in <1% of patients treated with anti-CTLA-4 antibodies (ipilimumab 3 mg/kg or 10 mg/kg doses),22 in 1–3% of those receiving anti-PD-1/PD-L1 (nivolumab, pembrolizumab, or atezolizumab, 3%;23–25 avelumab, 1%;26 durvalumab, 0.5%),25 and in 6% of those receiving combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).23 Immune-mediated pneumonitis has been reported more frequently in patients receiving anti-PD-1 therapy (nivolumab or pembrolizumab) for NSCLC (3–6%)11,16,43,50 than for melanoma (1–2%; Table 2).2,4,41,42,62,66 Pneumonitis has a median onset ranging from 2 months to 4 months (Figure 1).23–27

Rare adverse events

A wide array of additional imAEs has been observed at low rates (<2%) in patients receiving ICPI monotherapy across other organ systems, including renal, pancreatic, ocular, musculoskeletal, neurological, cardiovascular, and hematologic toxicities (Table 3).22–27 In general, rates of these imAEs are similar or slightly higher in patients receiving combination anti-CTLA-4 and anti-PD-1 antibodies.23

Renal

Immune-mediated nephritis has been observed at low rates in patients receiving anti-CTLA-4 therapy (ipilimumab, <1%),22 anti-PD-1 antibodies (nivolumab, 1.2%;23 pembrolizumab, <0.3%34), anti-PD-L1 antibodies (avelumab, 0.1%;26 durvalumab, ≤1%),27 and combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab; 2.2%).23 The onset of renal imAEs typically occurs earlier with anti-CTLA-4 therapy (2–3 months) than with anti-PD-1 antibodies (3–10 months).74

Pancreatic

Pancreatic toxicities reported in clinical studies with ICPIs include elevated amylase/lipase, pancreatitis, and type 1 diabetes mellitus. Pancreatitis was observed in ≤1% of patients receiving ICPI monotherapy22–26 (excluding anti-CTLA-4 therapy with ipilimumab 10 mg/kg, 1.3%)22 or combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).23 Type 1 diabetes mellitus has occurred at low rates in clinical trials of patients receiving anti-PD-1 antibodies (nivolumab, 0.9%; pembrolizumab, 0.2%)23,24 and anti-PD-L1 antibodies (atezolizumab, avelumab, durvalumab, ≤0.3%),25–27 and in 1.5% of patients treated with combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).23 Although diabetes mellitus was not observed in clinical trials of anti-CTLA-4 monotherapy (ipilimumab),22 a report has described a case of diabetes insipidus associated with anti-CTLA-4 monotherapy (ipilimumab).75

Ocular

Ocular imAEs have been reported at very low rates in clinical studies of ICPI monotherapy22–27 or combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).23 Ocular imAEs included uveitis, keratitis, iritis, scleritis, episceritis, and conjunctivitis, occurring in ≤1% of patients.22–27

Musculoskeletal

Musculoskeletal imAEs have been reported at low rates in ICPI clinical studies, including polymyalgia rheumatica (<1%), myasthenia gravis, myositis (<1%), and arthritis (<2%).22–24,26,27 Although inflammatory arthritis has been reported with ICPI treatment in case series,76,77 the rate of this adverse event remains unclear due to inconsistent reporting of inflammatory arthritis in ICPI clinical studies.78

Neurologic

A wide array of neurologic imAEs has been associated with ICPI treatment, including Guillain–Barre syndrome, myasthenia gravis, encephalitis, motor dysfunction, meningitis, demyelination, neuropahty, and nerve paresis. In clinical trials, these neurologic imAEs occurred in ≤1% of patients.22–27 A recent case series, however, noted a 14% incidence of neurologic toxicities in patients treated with combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).79

Cardiovascular

Cardiovascular imAEs occurred in ≤1% of patients treated with ICPIs in clinical studies, including myocarditis, pericarditis, vasculitis, and heart failure.22–24,26,27 Case reports and case series have also documented pericardial effusion, cardiomyopathy, and myocardial fibrosis and suggest that patients with preexisting cardiac pathology may be more susceptible to cardiovascular imAEs with ICPI therapy.80,81

Hematologic

Hematologic imAEs, including hemolytic anemia and thrombocytopenic purpura, occurred in ≤1% of patients treated...
with ICPIs in clinical studies.22,24,26,27 Case reports have found hematologic imAEs in patients receiving anti-CTLA-4 or anti-PD-1 monotherapy, as well as combination anti-CTLA-4 and anti-PD-1 therapy (ipilimumab + nivolumab).82–83

Monitoring and evaluations of patients receiving ICPIs

Prior to initiating treatment and periodically thereafter, the following laboratory parameters should be assessed: complete blood count, comprehensive metabolic panel (including kidney, liver, pancreatic, and thyroid function tests), and baseline oxygen saturation (including a “walking oxygen saturation” test to facilitate detection of a decrease in oxygen saturation levels that might warrant further diagnostic imaging).22–27,86 Assessment and documentation of baseline symptoms (Table 3) will allow providers to identify even subtle changes in the patient’s status that might represent an early manifestation of an imAE. In addition, oncology nurses could engage in follow-up telephone calls with patients taking ICPIs.87 If specific organ toxicity is suspected, careful evaluation strategies, subspecialty consults, and specialized testing (eg, imaging, bronchoscopy, and colonoscopy) may help rule out other possible causes of dysfunction and delineate the extent of the toxicity to determine optimal management strategies. The National Cancer Institute Common Terminology Criteria for Adverse Events v4.088 should be used to grade baseline symptoms as well as any new symptoms because evaluation and management change according to this grading. Detailed information on evaluation strategies is provided in Table 3.

Understanding the typical time of onset for the various imAEs can be helpful, but it is important to note that the range can be quite broad (Figure 1). Due to the variable onset of imAEs, it is critical to conduct ongoing assessment of symptoms during and after treatment. Patient assessment forms can be built into the electronic medical record (EMR) to capture and communicate potential imAEs.

Special considerations for patients with preexisting autoimmune disease

Although patients with preexisting autoimmune conditions were largely excluded from clinical trials, recent retrospective studies suggest that, with close monitoring, ICPIs can be safely and effectively used in this population.89,90 Of the 52 patients with preexisting autoimmune disease included in a recent retrospective study, the objective response rate with anti-PD-1 (nivolumab or pembrolizumab) therapy was 33%, with 38% of patients experiencing a flare of their underlying autoimmune condition at a median of 38 days from the first dose of ICPI.90 The flares were generally mild, with only two patients permanently discontinuing ICPI treatment due to the flare of their autoimmune disorder.90 Four patients permanently discontinued ICPI therapy due to the emergence of imAEs.90 Due to the potentially higher risk of side effects and exacerbation of the underlying condition in patients with a history of an autoimmune disease, significant caution should be exercised when considering these patients for treatment with ICPIs. Dosing should occur only after a frank discussion between the health care provider and the patient about the nature of the potential risks and benefits of such therapy.

Management of immune-mediated toxicities

For the current FDA-approved ICPIs, clinicians should follow published guidelines for the management of imAEs.57,58,91–97 These imAE algorithms vary based on the type and grade of toxicity, with some Grade 3 imAEs managed by holding therapy and others by permanent discontinuation of ICPI (Table 3). Depending on the organ system involved and the specific ICPI, some mild-to-moderate imAEs can be managed symptomatically, with the patient remaining on ICPIs, while others require the ICPI dose be held and treatment with corticosteroids until the imAE resolves to Grade 1 (Table 3). In patients with more severe (Grade 3/4 or prolonged Grade 2) imAEs, ICPIs are typically discontinued while imAEs are managed with corticosteroids or, if needed, other immunosuppressant agents such as infliximab or mycophenolate (Table 3).57,58,91–97 The occurrence of an imAE, regardless of the need for immunosuppressant therapy, does not appear to impact the efficacy of ICPI treatment.65,98 Because ICPI treatment is relatively new, physicians and nurses may find printed materials from product companies,22–27,99 publications outlining imAE management,57,58,92,97 and online algorithm tools96,93–96,100 helpful in determining optimal imAE management strategies for their patients (Table 4). Daily communication with the patient (in person or by phone) can help track the status of an imAE and may reduce the risk of mild imAEs escalating to more serious events.87

Patients receiving corticosteroid treatment for an imAE should be closely monitored. For mild imAEs, low doses of steroids are normally utilized (methylprednisolone [MPS] 0.5–1.0 mg/kg/day intravenously or oral prednisone equivalent), while more severe imAEs require higher steroid doses (MPS 1–4 mg/kg/day intravenously or oral prednisone equivalent).57,58,91–97 Patients with severe imAEs may require hospitalization, particularly if they are hemodynamically unstable.
In patients with serious imAEs, MPS is typically administered intravenously until the toxicity is stable, after which the patient can be transitioned to oral prednisone.57,58,91–97 Once the imAE has resolved to Grade 1 per clinical assessment, steroids should be tapered slowly over approximately 1 month or longer, as tapering steroids too quickly may result in a flare of the imAE. Patients should be monitored weekly during and immediately following the steroid tapering. Often ICPIs can be resumed once the imAE has resolved or stabilized to Grade 1.57,58,91–97 In some cases, patients may need to remain on physiologic doses of prednisone (≤10 mg) to stabilize imAEs at Grade 1.57,58,91–97 In some cases, patients may need to remain on physiologic doses of prednisone (≤10 mg) to stabilize imAEs at Grade 1.57,58,91–97

Table 4 ICPI imAE management resources

Resource	URL
Print/online	
Immune-mediated adverse reactions management guide for Yervoy94	www.hcp.yervoy.com/servlet/servlet.FileDownload?file=00Pi000000TUzayEAD
Immune-mediated adverse reactions management guide for Opdivo monotherapy and Opdivo + Yervoy95	www.opdivohcp.com/servlet/servlet.FileDownload?file=00Pi000000kLoKcEAK
Opdivo safety tool96	www.opdivosafetytool.com/#/signs-symptoms-management-imars
A guide to monitoring patients during treatment with Keytruda97	www.keytruda.com/static/pdf/adverse-reaction-management-tool.pdf
A nurse’s guide to Keytruda97	www.keytruda.com/static/pdf/nurse-guide-to-treatment-monitoring.pdf
Tecentriq adverse event management brochure96	www.tecentriq.com/content/dam/gene/tecentriq/Tecentriq-Adverse-Event-Management-Brochure.pdf
The clinicians’ guide to managing immune-related adverse events: an interactive algorithm tool96	www.clinicaloptions.com/immuneeatool
Yervoy Risk Evaluation Mitigation Survey91	www.fda.gov/downloads/drugs/drugsafety/ postmarketdrugsafetyinformationforpatientsandproviders/ucm249435.pdf
Imfinzi Immune-Mediated Adverse Events Management Handbook97	www.imfinzi.com/content/dam/website-services/us/423-duvra0-com/resources/imAE_management_handbook.pdf
Lighthouse106	www.lighthouseprogram.com
Published literature	
Ipilimumab and its toxicities: a multidisciplinary approach97	www.ncbi.nlm.nih.gov/pubmed/23774827
Management of immune-related adverse events and kinetics of response with ipilimumab97	www.ncbi.nlm.nih.gov/pubmed/22614989
Management of adverse events following treatment with anti-programmed death-1 agents58	www.ncbi.nlm.nih.gov/pubmed/27401894
Prescribing information	
Yervoy (prescribing information)22	https://packageinserts.bms.com/pi/pi_yervoy.pdf
Opdivo (prescribing information)23	https://packageinserts.bms.com/pi/pi_opdivo.pdf
Keytruda (prescribing information)24	www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf
Tecentriq (prescribing information)25	www.gene.com/download/pdf/tecentriq_prescribing.pdf
Bavencio (prescribing information)26	www.bavencio.com/en_US/document/Prescribing-Information.pdf
Imfinzi (prescribing information)27	www.azpicentral.com/imfinzi/imfinzi.pdf

Abbreviations: ICPI, immune checkpoint inhibitor; imAE, immune-mediated adverse event.

Education of patients, caregivers, and healthcare providers on the signs and symptoms of immune-mediated toxicities

Most moderate and severe immune-mediated toxicities, if detected and treated early, can be managed effectively with oral or intravenous steroids; in rare steroid-refractory cases, other immunomodulatory agents (eg, infliximab or...
m cyclophosphamide or bendamustine, or rituximab in patients with bone marrow suppression. The decision to start systemic treatment depends on whether the patient is symptomatic and the severity of the symptoms.

Patient and caregiver education

A sound patient management approach includes comprehensive education of patients and caregivers about how to recognize and report suspected symptoms of immune-mediated toxicities. Nurses are frequently the first and primary contact for patients throughout treatment. They can prepare patients with the knowledge to identify the signs and symptoms of imAEs and can highlight the importance of reporting symptoms immediately. Incorporating a multimodal approach to education, including printed materials, online education modules, or educational group sessions, can support patient education and understanding. Where available, patients may benefit from live group education or videos. Toxicity checklists (available from product companies) may assist patients in recognizing imAE symptoms. Companies’ websites offer online educational resources specifically designed for patients and caregivers. Most importantly, patients should be instructed to call their doctor’s office if they experience any new, worsening, or otherwise concerning symptoms (even when mild) to maximize early recognition of imAEs.

Education of other health care providers

As the use of ICPIs becomes ubiquitous across multiple different cancer diagnoses, it is imperative that all health care providers are informed regarding the potential for imAEs in patients being treated with these agents. Several modalities are available to assist other health care providers identify imAEs in this unique group of patients. Patient immunotherapy drug “wallet safety cards” can be a useful tool to alert other providers to be aware of potential imAEs associated with ICPIs, particularly during urgent visits. Health care professionals can...
call the phone number provided on the patient wallet safety card and benefit from peer discussion with the oncology team regarding symptoms, evaluation, and appropriate management. All staff members involved in the telephone triage process who might receive incoming patient phone calls must be educated in the use of the guidelines and in communication and documentation of imAEs. The EMR may also serve as a mechanism to alert other care providers that the patient is receiving immunotherapy. Specific alert mechanisms may be incorporated, such as an alert banner on the chart or a caution alert if a provider attempts to enter an order for an immune-modulating agent. A system alert can be sent to the primary oncology team if the patient presents to the emergency room, is hospitalized, or is evaluated by another discipline.

Conclusion
Nurses play a critical role in identifying imAEs, educating patients about the importance of the timely reporting of potential imAE symptoms, and assisting in the management and follow-up of patients who develop imAEs while on ICPI therapy. ICPIs are associated with a unique safety profile, characterized by fewer and more tolerable side effects than chemotherapeutic drugs. With additional indications, combination regimens, and late-stage drugs on the horizon, the clinical use of ICPIs is expected to increase. Although most imAEs are mild and easily managed, to ensure optimal patient outcomes, imAEs must be promptly identified and treated to reduce the risk of developing severe imAEs and increase the likelihood that the patient continues to receive the benefits of ICPI treatment.

Acknowledgments
The authors wish to thank Jennifer Nepo, MS, and Francesca Balordi, PhD, of The Lockwood Group (Stamford, Connecticut, USA) for providing medical writing support, which was according to Good Publication Practice (GPP3) guidelines and funded by AstraZeneca plc (Wilmington, Delaware, USA).

Disclosure
The authors report no conflicts of interest in this work.

References
1. Diaz L, Marabelle A, Delord J-P, et al. Pembrolizumab therapy for microsatellite instability high (MSI-H) colorectal cancer (CRC) and non-CRC [abstract and poster at ASCO 2017 Annual Meeting]. J Clin Oncol. 2017;35(Suppl):abstr3071.
2. Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–918.
3. Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–965.
4. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.
5. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–1813.
6. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–135.
7. Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–1920.
8. Massard C, Gordon MS, Sharma S, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34(26):3119–3125.
9. Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17(11):1558–1568.
10. Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotheraphy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17(10):1374–1385.
11. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639.
12. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–1867.
13. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–265.
14. Younes A, Santoro A, Shipp M, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–1294.
15. Sharma P, Retz M, Sieffer-Radkte A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–322.
16. Reck M, Rodriguez-Abcu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–1833.
17. Balar AV, Galsky MD, Rosenberg JE, et al; IMVigor210 Study Group. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.
18. Balar A, Castellano D, O’Donnell P, et al. Pembrolizumab as first-line therapy in cisplatin-ineligible advanced urothelial cancer: results from the total KEYNOTE-052 study population [abstract and poster presented at ASCO 2017 Genitourinary Cancers Symposium]. J Clin Oncol. 2017;35(Suppl 6S):abstr284.
19. Apolo AB, Infante JR, Balmanoukian A, et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, Phase Ib Study. J Clin Oncol. 2017;35(19):2117–2124.
20. Bellmunt J, de Wit R, Vaughn DJ, et al; KEYNOTE-045 Investigators. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–1026.
21. Langer CJ, Gadgeel SM, Borghaei H, et al; KEYNOTE-021 investigators. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–1508.

22. Bristol-Myers Squibb Company. Yervoy® (ipilimumab) injection [prescribing information]. Princeton, NJ: Bristol-Myers Squibb Company; 2017.

23. Bristol-Myers Squibb Company. Opdivo® (nivolumab) injection [prescribing information]. Princeton, NJ: Bristol-Myers Squibb Company; 2017.

24. Merck & Company Inc. Keytruda® (pembrolizumab) for injection [prescribing information]. Whitehouse Station, NJ: Merck & Co., Inc; 2017.

25. Genentech Inc. Tecentriq® (atezolizumab) injection [prescribing information]. South San Francisco, CA: Genentech, Inc.; 2017.

26. EMD Serono Inc. Bavencio® (avelumab) injection, for intravenous use [prescribing information]. Rockland, MD: EMD Serono, Inc. and Pfizer, Inc.; 2017.

27. AstraZeneca Pharmaceuticals LP. Imfinzi™ (durvalumab) injection, for intravenous use [prescribing information]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2017.

28. Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase 1b KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460–2467.

29. Muro K, Chung HC, Shkurtan V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17(6):717–726.

30. Reardon DA, Sampson JH, Sahebjam S, et al. Safety and activity of pembrolizumab (nivo) monotherapy and nivo in combination with ipilimumab (ipi) in recurrent glioblastoma (GBM): updated results from checkmate-143 [abstract and poster presented at ASCO 2016 Annual Meeting]. J Clin Oncol. 2016;34(15 Suppl):abstr2014.

31. Antonia SJ, Lopez-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–895.

32. Hamanishi J, Manda M, Ikeda T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol. 2015;33(34):4015–4022.

33. Melero I, Sangro B, Yau T, et al. Nivolumab dose escalation and expansion in patients with advanced hepatocellular carcinoma (HCC): the CheckMate 040 study [abstract, poster, and slides presented at ASCO 2017 Gastrointestinal Cancers Symposium]. J Clin Oncol. 2016;35(35 Suppl):abstr226.

34. Pfizer. Avelumab in previously untreated patients with epithelial ovarian cancer (JAVELIN OVARIAN 100); 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT02718417. NLM identifier: NCT02718417. Accessed April 10, 2017.

35. Ribas A, Hansson DC, Nee DA, et al. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist. 2007;12(7):873–883.

36. National Comprehensive Cancer Network. Small Cell Lung Cancer (v3;2017); 2017. Available from: https://www.nccn.orgprofessionals/physician_gls/pdf/sclc.pdf. Accessed March 15, 2017.

37. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264.

38. McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med. 2013;2(5):662–673.

39. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723.

40. Eggermont AM, Chiaroni-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–530.

41. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–330.

42. Robert C, Schachter J, Long GV, et al; KEYNOTE-006 Investigators. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–2532.

43. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–1550.

44. Fehrenbacher L, Spira A, Ballinger M, et al; KEYNOTE-006 Investigators. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–1846.

45. Moskowitz C, Zinzani P, Fanale M, et al. Pembrolizumab in relapsed/refractory classical Hodgkin lymphoma: primary end point analysis of the Phase 2 KEYNOTE-037 Study [presented at ASH 58th Annual Meeting, Dec 3–6; San Diego, CA]. Blood. 2016;128(22):abstr1107.

46. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520.

47. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974–1982.

48. Kumar V, Chaudhary N, Garg M, Floudas CS, Soni P, Chandra AB. Current diagnosis and management of immune related adverse events (irAEs) induced by immune checkpoint inhibitor therapy. Front Pharmacol. 2017;8:49.

49. Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS One. 2016;11(7):e0160221.

50. Garon EB, Rizvi NA, Hui R, et al; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–2028.

51. Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–1117.

52. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–2454.

53. US Food and Drug Administration [webpage on the Internet]. Modification of the Dosing Regimen for Nivolumab; 2016. Available from: www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm520871.htm. Accessed March 24, 2017.

54. Hellmann MD, Rizvi NA, Goldman JM, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41.

55. Long G, Atkinson V, Cebon J, et al. Pembrolizumab (pembro) plus ipilimumab (ipi) for advanced melanoma: results of the KEYNOTE-029 expansion cohort [abstract and slide presentation at ASCO 2016]. J Clin Oncol. 2016;34(34 Suppl):abstr9506.

56. Rizvi N, Barlesi F, Brahmer J, et al. Phase III, randomized, open-label study of durvalumab (MED4736) in combination with tremelimumab or durvalumab alone versus platinum-based chemotherapy in first-line treatment of patients with advanced/metastatic NSCLC: MYSTIC. J Immunother Cancer. 2015;3(Suppl 2):P171.

57. Weber JS, Kahler KC, Hauschild A. Management of immune related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–2697.

58. Weber JS, Postow M, Lao CD, Schadendorf D. Management of adverse events following treatment with anti-programmed death-1 agents. Oncologist. 2016;21(10):1230–1240.

59. Powles T, O’Donnell PH, Massard C, et al. Updated efficacy and tolerability of durvalumab in locally advanced or metastatic urothelial carcinoma [abstract and poster presented at ASCO 2017 Genitourinary Cancers Symposium]. J Clin Oncol. 2017;35(6 Suppl):abstr286.
99. Merck & Company Inc. *A Nurse’s Guide to Keytruda*; 2016. Available from: https://www.keytruda.com/static/pdf/nurse-guide-to-treatment-monitoring.pdf. Accessed March 17, 2017.
100. Bristol-Myers Squibb [webpage on the Internet]. *The Opdivo Safety Tool*; 2016. Available from: https://www.opdivosafetytool.com/#/superhome. Accessed March 17, 2017.
101. Luke JJ, Ott PA. PD-1 pathway inhibitors: the next generation of immunotherapy for advanced melanoma. *Oncotarget*. 2015;6(6):3479–3492.
102. Briot K, Cortet B, Roux C, et al; Bone Section of the French Society for Rheumatology (SFR) and Osteoporosis Research and Information Group (GRIO). 2014 update of recommendations on the prevention and treatment of glucocorticoid-induced osteoporosis. *Joint Bone Spine*. 2014;81(6):493–501.
103. FDA approves Merck’s Keytruda® (pembrolizumab) for adult and pediatric patients with classical Hodgkin lymphoma (cHL) refractory to treatment, or who have relapsed after three or more prior lines of therapy [press release]; 2017.
104. US FDA accepts first biologics license application for AstraZeneca’s durvalumab in bladder cancer [press release]; 2016.
105. Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. *N Engl J Med*. 2015;372(21):2006–2017.
106. AstraZeneca Pharmaceuticals LP [homepage on the Internet]. Lighthouse Program; 2017. Available from: https://www.lighthouseprogram.com/. Accessed May 3, 2017.