Density distribution investigation through the geometrical structure for the 27S halo nucleus

J Islam1,2,3, S Radiman1,2 and K S. Khoo1,2*

1Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.
2Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.
3Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.

*khoo@ukm.edu.my

Abstract. 27S was predicted as a proton halo nucleus in the $2s_{1/2}$ state due to the abnormally large protons root mean square radius. The presence of weakly bound ($S_{2n} = 0.90(20)$ MeV) two valence protons in the 27S nucleus strongly supported this prediction. The core density, matter density, and halo density for this nucleus (27S) have been investigated in this study. The geometrical halo structure has been used for different parameter calculations to investigate these density distributions since sufficient experimental data are not available for this 27S nucleus. The parameters’ values were calculated easily following this geometrical structure. Gaussian-Gaussian (GG) distribution has been applied to investigate these densities. In our present study, the 27S nucleus was investigated as a $2-p$ halo nucleus due to its low valence two-protons separation energy (0.90 MeV). The $2-p$ halo 27S nucleus was described having (25Si) + p + p configuration. These measured parameters’ values were then used to investigate the Gaussian-Gaussian (GG) density distributions. MATLAB computational software was also used for these distribution investigations. From these density distributions, a maximum density of 1.042%, 1.001%, and 0.4789% at the centre of the nucleus was obtained for the core density (ρ_c), matter density (ρ_m), and halo density (ρ_h), respectively. The presence of longer tails on the halo and matter distributions also support the prediction as a two-proton halo nucleus.

1. Introduction

The 27S nucleus is located at the proton-drip line in the nuclear landscape, and the nucleus is a proton halo candidate. In 1996, this candidature was confirmed and the 27S nucleus is a proton halo nucleus based on the mean-square radius of proton for the $2s_{1/2}$ state [1]. The low separation energy of the two-valence protons on the 27S nucleus emphasizes the two-proton ($2-p$) halo nucleus demand [2,3]. In addition, its root mean square (rms) halo radius (R_h) is larger than the rms core radius (R_c) and rms matter radius (R_m). Considering the two-proton halo configuration of the nucleus 27S, we have focused our work on the nuclear density distributions (ρ_c, ρ_m, and ρ_h) of this nucleus. The Gaussian-Gaussian (GG) density distributions depend on the rms core, matter and halo radii [4]. However, there is a lack of sufficient experimental data to study the nuclear properties, especially the density distributions for the 27S nucleus [5]. Therefore, to investigate these density distributions, we have calculated the density parameters such as distance between core and centre of mass of two valence protons, half distance of...
the two-valence protons, distance between two-valence protons, etc. using a geometrical halo structure.

We have calculated the nuclear density distributions (ρ_c, ρ_m and ρ_h) for the nucleus 27S theoretically using MATLAB computational software in our present work.

2. Theoretical Frameworks

The simplest shell-model structure consists of $2s_{1/2}$ valence orbital, which is filled up by two protons for $Z = 16$, and the $1d_{3/2}$ valence orbital which is filled up by protons for $Z = 14$ and neutron number $N = 11$ [2]. For this shell-model, the 25Si nucleus was considered as the core of the halo nucleus 27S. To study the density distributions of the halo nucleus (27S), we have applied a geometrical structure for the halo nucleus since this geometrical structure was used for the study of the 6He two-neutron structure [6]. The core nucleus was considered inside a cluster core model (CCM). The geometrical structure for this core and the valence two-proton are shown in Figure 1.

![Figure 1. The geometrical structure for the 27S halo nucleus.](image)

Through this geometrical structure, all parameters for the core (25Si) and 27S nucleus can be determined based on the following:

- The distance ρ_c between the nuclear centre of mass and the core centre is [7]:
 \[
 \rho_c = \left(\frac{R_{sm}^2}{A_c} - \frac{R_m^2}{A} \right)^{1/2}
 \]
 where, R_{sm} is rms matter radius of the core (25Si) nucleus, R_m^2 is the rms matter radius of 27S, R_{sm}^2 is the rms radius of the 25Si nucleus and A_c is the mass number of the 25S.

- The core radius of the centre of mass R_c is:
 \[
 R_c = \left(R_{sm}^2 + \rho_c^2 \right)^{1/2}
 \]

- The vector R_{2p} joining the nuclear centre of mass and the midpoint of the line connecting the two halo protons is determined from the balancing condition:
 \[
 A_c \rho_c = A_h R_{2p}, \text{where } A_c = 25, \ A_h = 2
 \]
• The distance R_{c-2p} from the core centre to the two halo protons is:

$$R_{c-2p} = \rho_c + R_{2p}$$ \hspace{1cm} (4)

• The distance R_{p-p} between the two halo neutrons is given by:

$$R_{p-p} = 2R_{dip}, \text{ where } R_h^2 = R_{2p}^2 + R_{dip}^2$$ \hspace{1cm} (5)

• The rms halo radius of the 27S nucleus is [7]:

$$R_h = \left(\frac{1}{2} \left((A_c + 2)R_m^2 - A_c R_{sm}^2 \right) \right)^{1/2}$$ \hspace{1cm} (6)

where, from Equation (3) to Equation (5) are taken from the Ref. [6].

Moreover, the Gaussian-Gaussian (GG) density distributions equations for ρ_c, ρ_m and ρ_h can be written as [4][6]:

$$\rho_{core(halo)}(r) = \left(\frac{3}{2\pi \rho_c^{(h)}}\right)^{3/2} \exp\left(-\frac{3r^2}{2\rho_c^{(h)}}\right)$$ \hspace{1cm} (7)

and,

$$\rho_m(r) = \frac{1}{A} [N_{core}\rho_{core}(r) + N_{halo}\rho_{halo}(r)]$$ \hspace{1cm} (8)

where N_{core} and N_{halo} are the number of nucleons in the core and halo respectively and A is the mass number of the halo nucleus. r is the radial distance from the centre of the nucleus’ core to infinity. We have carried out all calculations including the core, matter and halo distribution calculations etc. through the MATLAB codes.

3. Result and discussion

Using Equations (1) – (6) through the geometrical halo structure, we obtained the calculated values tabulated in Table 1. From these measurements, the rms core, halo, and matter radii of the 27S nucleus were determined 3.1632 fm, 4.0994 fm, and 3.2347 fm respectively. Using these rms radii in Equations (7) and (8), the core density, halo density, and matter density were calculated. These density distributions are shown in Figure 2.

Nucleus	Parameter Name	Parameters	Parameter Values
25Si	Matter radius	R_{sm}	3.1553
	Distance between core and centre of mass	ρ_c	0.2232
27S	Core radius	R_c	3.1632
	Matter radius	R_m	3.2347
	Distance between centre of mass and the mid-point of two valence protons	R_{2p}	2.7900
	Halo radius	R_h	4.0994
	Half distance of the two-valence protons	R_{dip}	3.0035
	Distance between two-valence protons	R_{p-p}	6.0071
The maximum density values of 1.042%, 1.001%, and 0.4789% are noted at the centre of the nucleus respectively for the core density, matter density, and halo density which are shown in Figure 2.

![Density Distributions for the 27S Halo Nucleus](image)

Figure 2. GG density distributions for the 27S halo nucleus.

4. Conclusion
The 27S nucleus core density (ρ_c) is at maximum for all ρ_c, ρ_h and ρ_m and all neutrons are distributed in the nucleus’ core. Furthermore, the matter density (ρ_m) is less than ρ_c and the tail of the proton halo density (ρ_h) is larger than ρ_c and ρ_m. This indicates that the protons are distributed at larger radius from the nucleus centre and exist outside the core of the nucleus. Ultimately, ρ_h has the smallest density at the core of the 27S nucleus and the tail of this density is at the largest up to 7 fm in radius which indicates that the protons are lying further away from the nucleus’ core. The nucleons’ distribution at further distances and the halo density distribution’s large tail show that the 27S nucleus is a proton-halo nucleus.

5. References
[1] Ren Z, Chen B, Ma Z and Xu G 1996 *Phys. Rev. C* **53**(2) R572.
[2] Brown B A and Hansen P G 1996 *Phys. Lett. B* **381** 391.
[3] Audi G and Wapstra A H 1995 *Nucl. Phys. A* **595** 409.
[4] Aygün M 2016 *GU J Sci* **29**(2) 263.
[5] Sawhney G and Gupta R K 2016 *Acta Physica Polonica B* **47**(3) 959.
[6] Chung L X, Kiselev O A, Khoa D T and Egelhof P 2015 *Phys. Rev. C* **92** 034608.
[7] Tanihata I, Savajols H, and Kanungo R 2013 *Prog. Part. Nucl. Phys.* **68** 215.

Acknowledgment
Authors would like to thanks Universiti Kebangsaan Malaysia (UKM) for the financial support through grant scheme GGP-2017-003.