Nematicidal Activity of Essential Oils on a Psychrophilic *Panagrolaimus* sp. (Nematoda: Panagrolaimidae)

Violeta Oro 1,*, Slobodan Krnjajic 2, Marijenka Tabakovic 3, Jelena S. Stanojevic 4 and Snezana Ilic-Stojanovic 4

1 Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
2 Institute for Multidisciplinary Research, University of Belgrade, 11000 Belgrade, Serbia; slobodan.krnjajic@imsi.bg.ac.rs
3 Agroecology and Cropping Practices Group, Maize Research Institute, 11000 Belgrade, Serbia; mtabakovic@mrizp.rs
4 Faculty of Technology Leskovac, University of Nis, 16000 Leskovac, Serbia; jstanojevic@tf.ni.ac.rs (J.S.S.); snezanai@tf.ni.ac.rs (S.I.-S.)

* Correspondence: viooro@yahoo.com; Tel.: +381-11-2660-049

Received: 9 October 2020; Accepted: 9 November 2020; Published: 17 November 2020

Abstract: Essential oils (EOs) have historically been used for centuries in folk medicine, and nowadays they seem to be a promising control strategy against wide spectra of pathogens, diseases, and parasites. Studies on free-living nematodes are scarce. The free-living microbivorous nematode *Panagrolaimus* sp. was chosen as the test organism. The nematode possesses extraordinary biological properties, such as resistance to extremely low temperatures and long-term survival under minimal metabolic activity. Fifty EOs from 22 plant families of gymnosperms and angiosperms were tested on *Panagrolaimus* sp. The aims of this study were to investigate the in vitro impact of EOs on the psychrophilic nematode *Panagrolaimus* sp. in a direct contact bioassay, to list the activity of EOs based on median lethal concentration (LC50), to determine the composition of the EOs with the best nematicidal activity, and to compare the activity of EOs on *Panagrolaimus* sp. versus plant parasitic nematodes. The results based on the LC50 values, calculated using Probit analysis, categorized the EOs into three categories: low, moderate and highly active. The members of the laurel family, i.e., *Cinnamomum cassia* and *C. burmannii*, exhibited the best nematicidal activity. Aldehydes were generally the major chemical components of the most active EOs and were the chemicals potentially responsible for the nematicidal activity.

Keywords: essential oils; *Panagrolaimus* sp.; LC50; aldehydes

1. Introduction

Nematodes are mostly microscopic size invertebrates that inhabit terrestrial and aquatic areas. Beside their significant economic importance as human, animal and plant parasites, they can also be beneficial, free-living microbivorous organisms. It has been estimated that about 2.5 million tons of pesticides are used on crops each year [1]. Such a practice has resulted in the decline of many beneficial organisms, such as nitrogen-fixing soil bacteria [2], blue-green algae [3], mycorrhizal fungi [4], water fishes [5], aquatic mammals [6], and birds [7]. In addition, the pesticide residues in food and water are massive long-term threats for human health at a global level. According to the European legislation (Regulation (EC) no. 1107/2009), the application of non-chemical and natural alternatives should be the first choice in plant protection and integrated pest management. The Regulation requires that substances or products produced or placed on the market do not have any harmful effect on human
Plants 2020, 9, 1588 2 of 15

or animal health or any unacceptable effects on the environment, such as an impact on non-target species and impact on biodiversity and the ecosystem.

The use of essential oils (EOs) is known from folk medicine centuries ago [8]. Nowadays, it seems to be a promising control strategy against different nematode plant and animal parasites (Bursaphelenchus xylophilus, Cooperia spp., Ditylenchus dipsaci, Haemonchus contortus, Meloidogyne chitwoodi, M. incognita, M. javanica, Oesophagostomum spp., Pratylenchus penetrans, Steinernema feltiae, Trichostrongylus spp., Tylenchulus semipenetrans) [9–23]. Microbivorous nematodes contribute to decomposition of organic matter and the release of nutrients for plant uptake [24], which makes them important components of the soil microfauna. A free-living, microbivorous nematode, Panagrolaimus sp. Fuchs, was chosen as a test organism. Panagrolaimus sp. is a non-target organism, easy to maintain, does not have a complex life cycle, in contrast to plant parasitic nematodes [25], and possesses some extraordinary biological properties. This nematode, known as the Antarctic nematode, is famous for its resistance to intracellular freezing and extremely cold environmental conditions [26]. Panagrolaimus aff. detritophagus is the first viable multicellular organism, isolated from 30,000–40,000-year-old permafrost deposits [27].

This study aims to: (i) investigate the in vitro impact of EOs on the psychrophilic nematode Panagrolaimus sp. in a direct contact bioassay, (ii) list the activity of the EOs based on median lethal concentration (LC50), (iii) determine the composition of the EOs with the best nematicidal activity, and (iv) compare the activity of EOs on the non-target panagrolaimid nematode versus plant parasitic nematodes.

2. Results

The nematicidal activity of the EOs on the Panagrolaimus sp. juveniles are presented in Table 1.

Table 1. LC50 (in µL/mL with 95% confidence limits and the slope values) of 50 plant essential oils investigated on Panagrolaimus sp. juveniles.

Species Name	Plant Part	Family	LC50 (95% CL)	Slope
Pogostemon cablin	leaves	Lamiaceae	5.641 (3.18–17.10)	2.14
Pinus pinaster	needles	Pinaceae	5.078 (3.38–9.65)	1.65
Santalum album	wood	Santalaceae	4.781 (3.45–6.34)	2.12
Azadirachta indica	seeds	Meliaceae	4.082 (2.52–10.01)	2.02
Boswellia serrata	resin	Burseraceae	4.394 (3.44–5.53)	3.03
Comminiphora myrrha	resin	Burseraceae	4.301 (2.81–6.98)	2.79
Juniperus virginiana	wood	Juniperaceae	3.782 (2.43–5.48)	1.81
Cupressus sempervirens	needles	Cupressaceae	3.360 (2.47–4.82)	1.85
Abies sibirica	needles	Pinaceae	3.269 (2.14–5.41)	1.58
Cedrus atlantica	wood	Pinaceae	2.943 (2.04–4.43)	1.62
Juniperus communis	berries	Juniperaceae	2.513 (1.64–3.83)	1.68
Eucalyptus globulus	leaves	Myrtaceae	1.994 (1.47–2.56)	3.70
Myrtus communis	leaves	Myrtaceae	1.933 (1.34–2.65)	2.27
Piper nigrum	peppercorns	Piperaceae	1.775 (1.37–2.25)	2.37
Petroselinum crispum	seeds	Apiaceae	1.704 (1.14–2.38)	4.08
Zingiber officinale	roots	Zingiberaceae	1.633 (1.28–2.09)	1.98
Turnera diffusa	leaves/flowers	Passifloraceae	1.550 (1.14–2.04)	3.11
Abies alba	needles	Pinaceae	1.444 (1.03–1.95)	1.87
Taxandria fragrans	leaves	Myrtaceae	1.437 (0.99–1.93)	2.49
Melaleuca alternifolia	leaves	Myrtaceae	1.150 (0.76–1.57)	4.83
Vanilla planifolia	beans	Orchidaceae	1.135 (0.83–1.50)	2.08
Salvia rosmarinus	leaves/flowers	Lamiaceae	1.128 (0.88–1.41)	3.04
Curcuma longa	rhizomes	Zingiberaceae	1.116 (0.70–1.62)	1.50
Lavandula sp.	leaves/flowers	Lamiaceae	0.810 (0.62–1.01)	3.49
Laurus nobilis	leaves	Lauraceae	0.594 (0.31–0.92)	4.80
Melaleuca quinquenervia	leaves	Myrtaceae	0.593 (0.40–0.82)	1.76
Origaniun vulgare	leaves/flowers	Lamiaceae	0.508 (0.38–0.65)	3.33
Table 1. Cont.

Species Name	Plant Part	Family	LC50 (95% CL)	Slope
Mentha spicata	leaves/flowers	Lamiaceae	0.505 (0.39–0.64)	2.78
Pimpinella anisum	seeds	Apiaceae	0.450 (0.26–0.63)	4.87
Salvia sclarea	leaves/flowers	Lamiaceae	0.430 (0.31–0.57)	1.81
Anethum graveolens	seeds	Apiaceae	0.428 (0.32–0.56)	3.00
Mentha piperita	leaves/flowers	Lamiaceae	0.405 (0.23–0.58)	3.93
Thymus vulgaris	leaves/flowers	Lamiaceae	0.391 (0.29–0.50)	2.22
Gaultheria procumbens	leaves	Ericaceae	0.367 (0.26–0.48)	2.25
Myristica fragrans	seeds	Myristicaceae	0.345 (0.23–0.48)	4.24
Pelargonium asperum	leaves	Geraniaceae	0.279 (0.20–0.37)	3.03
Cymbopogon martini	grass blades	Poaceae	0.275 (0.20–0.35)	4.06
Syzygium aromaticum	buds	Myrtaceae	0.272 (0.20–0.34)	3.91
Ocimum basilicum	leaves/flowers	Lamiaceae	0.263 (0.19–0.35)	2.65
Uncaria tomentosa	bark	Rubiaceae	0.222 (0.17–0.29)	2.47
Illicium verum	seeds	Schisandraceae	0.191 (0.14–0.25)	2.94
Cinnamomum verum	leaves	Lauraceae	0.172 (0.12–0.23)	5.00
Cananga odorata	flowers	Annonaceae	0.145 (0.10–0.19)	5.00
Melissa officinalis	leaves	Lamiaceae	0.124 (0.09–0.16)	2.74
Litsea citrata	fruits	Lauraceae	0.091 (0.06–0.12)	3.14
Foeniculum vulgare	seeds	Apiaceae	0.080 (0.05–0.11)	3.68
Cymbopogon flexuosus	grass blades	Poaceae	0.071 (0.05–0.09)	2.92
Coriandrum sativum	leaves	Apiaceae	0.044 (0.02–0.04)	3.95
Cinnamomum cassia	bark	Lauraceae	0.034 (0.02–0.04)	2.00
Cinnamomum burmannii	bark	Lauraceae	0.033 (0.02–0.04)	2.73

The results based on the median lethal concentration (LC50) of 50 EOs are in range from 0.033 to 5.641 µL/mL. The list of all EOs could be divided into three groups. The first group is made up of those with LC50 values higher than 1 µL/mL, the next group with LC50 values in the range 0.1 to 1 µL/mL, and the last group with the LC50 values lower than 0.1 µL/mL. The lowest nematicidal impact is observed in the first group containing EOs from different plants with a significant content of gymnosperms, represented by the families Pinaceae and Cupressaceae. In the same group are some members of angiosperms, such as Burseraceae, Myrtaceae, etc. The second group with a moderate nematicidal effect on the panagrolaimid nematode had EOs originating mainly from the family Lamiaceae and some representatives from individual families. This study demonstrates, for the first time, the nematicidal activity of Turnera diffusa, Taxandria fragrans and Uncaria tomentosa EOs originating from the families Passifloraceae, Myrtaceae, and Rubiaceae, respectively. The best nematicidal activity among the three species was exhibited by Uncaria tomentosa EO, with an LC50 of 0.222 µL/mL. The highest nematicidal impact was observed with three representatives from the family Lauraceae, namely Litsea citrata, Cinnamomum cassia, and C. burmannii, two representatives from the family Apiaceae—i.e., Foeniculum vulgare and Coriandrum sativum—and the single species Cymbopogon flexuosus from the family Poaceae, with LC50 values ranging from 0.033 to 0.091 µL/mL. The best nematicidal effect on panagrolaimid nematodes was shown by Cinnamomum burmannii EO, extracted from the bark. The chemical composition of the EOs with the best nematicidal performance on Panagrolaimus sp., with the retention time (RT, in minutes) and the retention indices obtained experimentally and from the literature (RI_exp and RI_lit, respectively), are given in Tables 2–7.

According to the gas chromatography/mass spectrometry (GC/MS) result obtained, 24 compounds were identified, representing 99.2% of total Litsea. citrata EO composition. The main components belong to oxygen-containing monoterpenes (contributing 84.3%), with citral—i.e., geranial (43.4%) and neral (32.2%)—as their representatives present in the highest percentage. They are followed by monoterpene hydrocarbons with 12.2% and limonene as their representative with a contribution of 9.4%, and sesquiterpene hydrocarbons ((E)-caryophyllene, β-elemene and α-humulene) with a contribution of 1.9% to the total EO composition (Table 2).
Table 2. Chemical composition of *Litsea citrata* essential oil (EO).

RT	Compound	Molecular Formula	RI^{exp}	RI^{lit}	%
18.23	Geranial (=E-citral)	C$_{10}$H$_{16}$O	1274	1267	43.4
16.94	Nerol (=Z-citral)	C$_{10}$H$_{16}$O	1243	1238	32.2
8.49	Limonene	C$_{10}$H$_{16}$	1028	1029	9.4
8.57	1,8-Cineole	C$_{15}$H$_{24}$O	1030	1031	1.9
24.27	(E)-Caryophyllene	C$_{15}$H$_{24}$	1419	1419	1.6
13.17	Citronellal	C$_{10}$H$_{16}$O	1153	1153	1.4
11.03	Linalool	C$_{10}$H$_{16}$O	1100	1096	1.2
5.70	α-Pinene	C$_{10}$H$_{16}$	933	939	1.1
14.40	(E)-Isocitral	C$_{10}$H$_{16}$O	1183	1180	1.1
17.42	Geraniol	C$_{10}$H$_{16}$O	1255	1252	0.9
6.87	β-Pinene	C$_{10}$H$_{16}$	977	979	0.8
7.10	6-Methyl-5-hepten-2-one	C$_{8}$H$_{14}$O	985	985	0.8
13.66	(Z)-Isoeostil	C$_{10}$H$_{16}$O	1164	1164	0.8
6.76	Sabinene	C$_{10}$H$_{16}$	973	975	0.6
14.71	α-Terpineol	C$_{10}$H$_{16}$O	1190	1188	0.6
16.31	Nerol	C$_{10}$H$_{16}$O	1229	1229	0.4
6.10	Camphene	C$_{10}$H$_{16}$	948	954	0.3
7.25	Dehydro-1,8-cineole	C$_{10}$H$_{16}$O	991	991	0.2
23.10	β-Elemene	C$_{15}$H$_{24}$	1392	1390	0.2
12.84	exo-Isocitral	C$_{10}$H$_{16}$O	1144	1144	0.1
14.17	Terpinen-4-ol	C$_{10}$H$_{16}$O	1177	1177	0.1
25.65	α-Humulene	C$_{15}$H$_{24}$	1453	1454	0.1
5.51	α-Thujene	C$_{10}$H$_{16}$	926	930	tr
8.35	o-Cymene	C$_{10}$H$_{14}$	1024	1026	tr

Total identified 99.2

* RT—retention time, * RI^{exp}—retention index obtained experimentally, ** RI^{lit}—retention index from the literature, tr—traces.

According to the results of GC/MS analysis of *Foeniculum. vulgare* EO, 18 compounds were identified, representing 99.1% of total EO composition. The main components were aromatic compounds (78.5%), with (E)-anethole as their representative present in the highest percentage (74.3%), followed by oxygen-containing monoterpenes (14.8%) and their representatives fenchone (2.1%) and carvone (2.1%), and monoterpene hydrocarbons (5.8%) with the highest amount of limonene (2.3%) (Table 3).

Table 3. Chemical composition of *Foeniculum vulgare* EO.

RT	Compound	Molecular Formula	RI^{exp}	RI^{lit}	%
18.93	(E)-Anethole	C$_{10}$H$_{15}$O$_2$	1291	1284	74.3
11.28	α-Pinene oxide	C$_{10}$H$_{16}$O	1106	1099	9.0
15.06	Methyl chavicol (=Estragol)	C$_{10}$H$_{12}$O	1199	1196	2.9
5.71	α-Pinene	C$_{10}$H$_{16}$	933	939	2.3
8.48	Limonene	C$_{10}$H$_{16}$	1028	1029	2.3
10.62	Fenchone	C$_{10}$H$_{16}$O	1088	1086	2.1
16.94	Carvone	C$_{10}$H$_{14}$O	1244	1243	2.1
17.39	p-Anis aldehyde	C$_{8}$H$_{8}$O$_2$	1254	1250	1.3
8.33	o-Cymene	C$_{10}$H$_{14}$	1024	1026	0.7
12.81	Camphor	C$_{10}$H$_{16}$O	1144	1146	0.6
8.57	1,8-Cineole	C$_{10}$H$_{18}$O	1030	1031	0.5
11.07	Linalool	C$_{10}$H$_{18}$O	1001	1096	0.4
9.53	γ-Terpineol	C$_{10}$H$_{16}$	1058	1059	0.3
6.10	Camphene	C$_{10}$H$_{16}$	948	954	0.1
Table 3. Cont.

RT	Compound	Molecular Formula	RI^{exp}	RI^{lit}	%
6.87	β-Pinene	C₁₀H₁₆	977	979	0.1
11.79	α-Campholenal	C₁₀H₁₆O	1119	1126	0.1
6.76	Sabinene	C₁₀H₁₆	973	975	tr
7.24	Myrcene	C₁₀H₁₆	991	990	tr

Total identified 99.1

* RT—retention time, ** RI^{exp}—retention index obtained experimentally, *** RI^{lit}—retention index from the literature, tr—traces.

The results of the GC/MS analysis of the *Cymbopogon flexuosus* EO revealed 32 compounds, representing 97.3% of total EO composition. The main components were oxygen-containing monoterpenes (86.3%) with geranial and neral (citral), contributing 40.3% and 30.9%, respectively, geranyl acetate and geraniol (5.4% and 4.5%, respectively), followed by sesquiterpene hydrocarbons (4.0%) and their representative (E)-caryophyllene (2.1%) (Table 4).

Table 4. Chemical composition of *Cymbopogon flexuosus* EO.

RT	Compound	Molecular Formula	RI^{exp}	RI^{lit}	%
18.24	Geranial (E-citral)	C₁₀H₁₆O	1274	1267	40.3
16.94	Neral (Z-citral)	C₁₀H₁₆O	1244	1238	30.9
22.86	Geranyl acetate	C₁₂H₂₀O₂	1385	1381	5.4
17.45	Geraniol	C₁₀H₁₆O	1255	1252	4.5
7.10	6-Methyl-5-hepten-2-one	C₆H₁₄O	985	985	2.7
24.27	(E)-Caryophyllene	C₁₅H₂₄	1419	1419	2.1
11.03	Linalool	C₁₀H₁₆O	1101	1096	1.4
28.08	γ-Cadinene	C₁₅H₂₄	1514	1513	1.4
14.38	(E)-Isocitral	C₁₀H₁₆O	1182	1180	1.3
6.10	Camphene	C₁₀H₁₆	948	954	1.1
8.48	Limonene	C₁₀H₁₆	1028	1029	1.1
13.64	(Z)-Isocitral	C₁₀H₁₆O	1164	1164	0.9
5.71	α-Pinene	C₁₀H₁₆	933	939	0.3
7.24	1,8-Dehydro-cineole	C₁₀H₁₆O	991	990	0.3
8.56	1,8-Cineole	C₁₀H₁₆O	1030	1031	0.3
13.03	trans-α-Nerodol	C₁₀H₁₆O	1149	1148	0.3
13.16	Citronellal	C₁₀H₁₆O	1152	1153	0.3
28.45	δ-Cadinene	C₁₅H₂₄	1523	1523	0.3
30.72	Caryophyllene oxide	C₁₅H₂₄O	1582	1582	0.3
8.76	(Z)-β-Ocimene	C₁₀H₁₆	1036	1037	0.2
25.64	α-Humulene	C₁₅H₂₄	1453	1454	0.2
5.43	Tricyclene	C₁₀H₁₆	922	926	0.1
8.34	α-Cymene	C₁₀H₁₄	1024	1026	0.1
9.14	(E)-β-Ocimene	C₁₀H₁₆	1046	1050	0.1
10.62	Terpinolene	C₁₀H₁₆	1088	1088	0.1
12.84	exo-Isocitral	C₁₀H₁₆O	1144	1144	0.1
14.08	Rosefuran epoxide	C₁₀H₁₄O₂	1175	1177	0.1
14.72	α-Terpineol	C₁₀H₁₆O	1191	1188	0.1
16.32	Nerol	C₁₀H₁₆O	1229	1229	0.1
6.87	β-Pinene	C₁₀H₁₆	977	979	tr
7.60	n-Octanal	C₈H₁₆O	1003	998	tr

Total identified 97.3

* RT—retention time, ** RI^{exp}—retention index obtained experimentally, *** RI^{lit}—retention index from the literature, tr—traces.

GC/MS analysis of the *Coriandrum sativum* EO resulted in identifying 29 compounds, representing 97.5% of total EO composition. The main components were aldehydes (contributing 51.8%),
with (2E)-decenal as their representative, followed by aliphatic alcohols (among which (2E)-decen-1-ol was present in the highest percentage of 16.3%) and oxygen-containing monoterpenes (21.7%) with linalool as the most abundant compound (18.4%) (Table 5).

Table 5. Chemical composition of *Coriandrum sativum* EO.

RT	Compound	Molecular Formula	R1^{exp}	R1^{lit}	%
17.78	(2E)-Decenal	C₁₀H₁₈O	1263	1263	28.2
18.10	(2E)-Decen-1-ol	C₁₀H₂₀O	1271	1271	16.3
11.08	Linalool	C₁₀H₁₈O	1101	1096	18.4
26.20	(2E)-Dodecaenal	C₁₂H₂₂O	1467	1466	8.8
15.35	n-Decanal	C₁₀H₂₀O	1206	1201	6.2
18.19	n-Decanol	C₁₀H₂₂O	1273	1269	5.4
34.07	n-Tetradecanol	C₁₄H₃₀O	1673	1672	4.0
21.97	(2E)-Undecenal	C₁₁H₂₀O	1363	1360	1.7
12.80	Camphor	C₁₀H₁₈O	1143	1146	1.2
23.85	Dodecanal	C₁₂H₂₄O	1409	1408	1.1
8.34	α-Cymene	C₁₀H₁₄	1024	1026	0.9
5.71	α-Pinene	C₁₀H₁₆	933	939	0.7
15.00	(4E)-Decenal	C₁₀H₁₈O	1198	1196	0.6
17.43	Geraniol	C₁₀H₁₈O	1255	1252	0.6
10.03	cis-Linalool oxide	C₁₀H₁₈O₂	1072	1072	0.4
10.62	trans-Linalool oxide	C₁₀H₁₈O₂	1088	1086	0.4
19.62	Undecanal	C₁₁H₂₂O	1307	1306	0.4
22.85	Geranyl acetate	C₁₂H₂₀O₂	1384	1381	0.4
7.60	n-Octanal	C₈H₁₆O	1003	998	0.3
8.48	Limonene	C₁₀H₁₆	1028	1029	0.3
31.86	Tetradecanal	C₁₄H₂₈O	1613	1612	0.3
8.57	1,8-Cineole	C₁₀H₁₈O	1030	1031	0.2
9.53	γ-Terpinene	C₁₀H₁₆	1058	1059	0.2
14.85	(4Z)-Decenal	C₁₀H₁₈O	1194	1194	0.2
6.10	Camphene	C₁₀H₁₆	948	954	0.1
6.88	β-Pinene	C₁₀H₁₆	977	979	0.1
14.71	α-Terpineol	C₁₀H₁₈O	1190	1188	0.1
13.69	Borneol	C₁₀H₁₈O	1165	1169	tr
14.17	Terpinen-4-ol	C₁₀H₁₈O	1177	1177	tr

Total identified 97.5

* RT—retention time, ** R1^{exp}—retention index obtained experimentally, *** R1^{lit}—retention index from the literature, tr—traces.

The GC/MS analysis of *Cinnamomum cassia* EO revealed 32 compounds, representing 99.3% of total EO composition. The main components belong to the group of aromatic compounds, contributing 91.8%, followed by sesquiterpene hydrocarbons (6.7%). (E)-Cinnamaldehyde and eugenol acetate were identified as the representatives of aromatic compounds contributing 76.7% and 7.4%, respectively. On the other hand, δ-cadinene with a contribution of 6.2% to the total EO composition, was identified as a representative compound from the sesquiterpene hydrocarbons group (6.7%) (Table 6).

According to the GC/MS results, 43 compounds, representing 98.1% of total *C. burmanii* EO composition, were identified. The main components belong to aromatic compounds (contributing 84.5% in the total EO composition), with (E)-cinnamaldehyde as their representative (80.5%). They are followed by sesquiterpene hydrocarbons (7.0%) with δ-cadinene and α-copaene as their members present in the amounts of 1.7% and 1.5%, respectively and oxygenated monoterpenes (5.5%) with α-terpineol (1.9%) as their main representative (Table 7).
Table 6. Chemical composition of *Cinnamomum cassia* EO.

RT *	Compound	Molecular Formula	R exp **	R lit ***	%
24.54	(E)-Cinnamaldehyde	C\textsubscript{6}H\textsubscript{8}O	1272	1267	76.7
33.02	Eugenol acetate	C\textsubscript{12}H\textsubscript{14}O\textsubscript{3}	1535	1521	7.4
32.39	δ-Cadinene	C\textsubscript{15}H\textsubscript{24}	1517	1522	6.2
29.95	(E)-Cinnamyl acetate	C\textsubscript{11}H\textsubscript{12}O\textsubscript{2}	1448	1443	4.0
17.88	Phenethyl alcohol	C\textsubscript{8}H\textsubscript{10}O	1126	1106	0.8
11.96	Benzaldehyde	C\textsubscript{6}H\textsubscript{6}O	962	952	0.7
21.91	(Z)-Cinnamaldehyde	C\textsubscript{6}H\textsubscript{10}O	1220	1217	0.6
22.78	Carvone	C\textsubscript{10}H\textsubscript{14}O	1243	1239	0.4
19.69	Hydrocinnamaldehyde	C\textsubscript{6}H\textsubscript{10}O	1163	1163	0.3
25.28	α-Methylcinnamaldehyde	C\textsubscript{10}H\textsubscript{10}O	1332	1318	0.3
30.51	Coumarine	C\textsubscript{6}H\textsubscript{8}O\textsubscript{2}	1456	1432	0.3
15.10	γ-Terpinene	C\textsubscript{10}H\textsubscript{16}	1056	1054	0.2
23.20	2-Phenyl ethyl acetate	C\textsubscript{10}H\textsubscript{12}O\textsubscript{2}	1259	1254	0.2
27.57	α-Copaene	C\textsubscript{15}H\textsubscript{24}	1368	1374	0.2
10.93	α-Pinene	C\textsubscript{10}H\textsubscript{16}	929	932	0.1
14.39	1,8-Cineole	C\textsubscript{10}H\textsubscript{18}O	1027	1026	0.1
19.88	Borneol	C\textsubscript{10}H\textsubscript{18}O	1168	1165	0.1
20.19	Terpinen-4-ol	C\textsubscript{10}H\textsubscript{18}O	1174	1174	0.1
26.98	Eugenol	C\textsubscript{10}H\textsubscript{12}O\textsubscript{2}	1359	1356	0.1
30.99	γ-Muurolene	C\textsubscript{15}H\textsubscript{24}	1470	1478	0.1
31.11	β-Selinene	C\textsubscript{15}H\textsubscript{24}	1478	1489	0.1
32.51	trans-Cadina-1,4-diene	C\textsubscript{15}H\textsubscript{24}	1526	1533	0.1
25.90	1-epi-Cubenol	C\textsubscript{15}H\textsubscript{26}O	1622	1627	0.1
12.48	β-Pinene	C\textsubscript{10}H\textsubscript{16}	973	974	tr
14.25	β-Phellandrene	C\textsubscript{10}H\textsubscript{16}	1025	1025	tr
16.93	Terpinolene	C\textsubscript{10}H\textsubscript{16}	1087	1086	tr
27.27	Cyclosativene	C\textsubscript{15}H\textsubscript{24}	1357	1358	tr
28.10	Sativene	C\textsubscript{15}H\textsubscript{24}	1382	1374	tr
28.84	Isosativene	C\textsubscript{15}H\textsubscript{24}	1401	1417	tr
29.14	(E)-Caryophyllene	C\textsubscript{15}H\textsubscript{24}	1413	1417	tr
31.76	α-Muurolene	C\textsubscript{15}H\textsubscript{24}	1494	1500	tr

Total identified: 99.3

* RT—retention time, ** Rexp—retention index obtained experimentally, *** Rlit—retention index from the literature, tr—traces.

Table 7. Chemical composition of *Cinnamomum burmannii* EO.

RT *	Compound	Molecular Formula	R exp **	R lit ***	%
24.51	(E)-Cinnamaldehyde	C\textsubscript{6}H\textsubscript{8}O	1272	1267	80.5
20.70	α-Terpinene	C\textsubscript{10}H\textsubscript{18}O	1189	1186	1.9
32.51	δ-Cadinene	C\textsubscript{15}H\textsubscript{24}	1517	1522	1.7
27.57	α-Copaene	C\textsubscript{15}H\textsubscript{24}	1368	1374	1.5
21.82	(Z)-Cinnamaldehyde	C\textsubscript{6}H\textsubscript{8}O	1220	1217	1.5
19.60	Hydrocinnamaldehyde	C\textsubscript{6}H\textsubscript{10}O	1163	1163	1.3
19.79	Borneol	C\textsubscript{10}H\textsubscript{18}O	1168	1165	1.2
20.17	Terpinen-4-ol	C\textsubscript{10}H\textsubscript{18}O	1174	1174	1.2
31.74	α-Muurolene	C\textsubscript{15}H\textsubscript{24}	1494	1500	1.2
29.05	(E)-Caryophyllene	C\textsubscript{15}H\textsubscript{24}	1413	1417	0.8
17.10	Linalool	C\textsubscript{10}H\textsubscript{18}O	1100	1095	0.5
11.87	Benzaldehyde	C\textsubscript{6}H\textsubscript{8}O	962	952	0.4
24.54	Safrole	C\textsubscript{10}H\textsubscript{10}O\textsubscript{2}	1288	1285	0.4
28.76	Isosativene	C\textsubscript{15}H\textsubscript{24}	1401	1417	0.4
31.32	α-Selinene	C\textsubscript{15}H\textsubscript{24}	1487	1498	0.4
24.75	Tridecane	C\textsubscript{13}H\textsubscript{28}	1295	1300	0.3
14.29	β-Phellandrene	C\textsubscript{10}H\textsubscript{16}	1025	1025	0.2
Table 7. Cont.

RT	Compound	Molecular Formula	RI_{exp}	RI_{lit}	%
15.84	cis-Linalool oxide	C₁₀H₁₈O₂	1071	1067	0.2
20.54	Cryptone	C₉H₁₄O	1185	1183	0.2
28.03	Sativene	C₁₅H₂₄	1382	1374	0.2
30.92	γ-Muurolene	C₁₅H₂₄	1470	1478	0.2
31.15	β-Selinene	C₁₅H₂₄	1478	1489	0.2
30.21	(E)-Cinnamyl acetate	C₁₁H₁₂O₂	1448	1443	0.2
36.26	epi-α-Murolol	C₁₅H₂₆O	1639	1640	0.2
13.37	α-Phellandrene	C₁₀H₁₆	1002	1002	0.1
14.42	1,8-Cineole	C₁₀H₁₈O	1027	1026	0.1
14.96	γ-Terpineene	C₁₀H₁₆	1056	1054	0.1
16.62	p-Cymenene	C₁₀H₁₄	1087	1089	0.1
16.99	Terpinolene	C₁₀H₁₆	1087	1086	0.1
18.87	trans-Limonene oxide	C₁₀H₁₆O	1137	1137	0.1
25.24	α-Methylcinnamaldehyde	C₁₀H₁₀O	1332	1318	0.1
27.18	Cyclosativene	C₁₅H₂₄	1357	1358	0.1
28.25	β-Elemene	C₁₅H₂₄	1386	1389	0.1
28.54	(Z)-Caryophyllene	C₁₅H₂₄	1400	1408	0.1
29.82	Humulene	C₁₅H₂₄	1446	1452	0.1
30.51	Coumarin	C₉H₆O₂	1456	1432	0.1
36.35	α-Muurol (Torreyol)	C₁₅H₂₆O	1643	1644	0.1
12.83	Myrcene	C₁₀H₁₆	994	998	tr
17.70	Phenethyl alcohol	C₈H₁₀O	1126	1106	tr
19.45	Isoborneol	C₁₀H₁₈O	1154	1155	tr
32.80	trans-Cadina-1,4-diene	C₁₅H₂₄	1526	1533	tr
33.15	α-Calacorene	C₁₅H₂₀	1538	1544	tr
32.92	Benzyl benzoate	C₁₄H₁₂O₂	1772	1759	tr

Total identified 98.1

* RT—retention time, ** RI_{exp}—retention index obtained experimentally, *** RI_{lit}—retention index from the literature, tr—traces.

3. Discussion

Essential oils with the highest nematicidal activity, demonstrated in this study, have been reported to be efficient against wide spectra of pathogens, diseases, and parasites.

The *Litsea citrata* EO showed antibacterial, antifungal, acaricidal, and nematicidal activities. The fruit essential oil of *Litsea cubeba* (syn. *Litsea citrata*) exhibited antibacterial activity against *Bacillus cereus*, *Staphylococcus aureus*, *Vibrio parahaemolyticus*, and *Klebsiella pneumoniae* [28]. As an antifungal agent it was effective against *Candida krusei* and *C. guilliermondii* but did not act against *C. albicans*, *C. tropicalis* and *C. parapsilosis* [29]. The *Litsea cubeba* EO had acaricidal activity against house dust mites, *Dermatophagoides farinae* and *D. pteronyssinus*, and stored food mites, *Tyrophagus putrescentiae* [30]. The LC50 values of ajowan, allspice and litsea were 0.431, 0.609 and 0.504 mg/mL, respectively, and exhibited good nematicidal activity against *B. xylophilus* [31].

Citral, i.e., geranial and neral, were the main compounds in the *Litsea citrata* EO in this study. Citral (3,7-dimethyl-2,6-octadienal) is the monoterpene aldehyde representing natural mixture of the two geometric isomers: geranial (trans-isomer) with a strong lemon odor and neral (cis-isomer) with a lemon odor that is less intense and sweeter than geranial [32].

The *Foeniculum vulgare* EO exhibited antifungal, antibacterial, antiviral, and nematicidal activities. In the inverted petriplate method, the volatile oil showed complete zone inhibition against *Aspergillus niger*, *A. flavus*, *Fusarium graminearum*, and *F. moniliforme* at a 6-µL dose [33]. Hot water extracts of fennel seeds was effective against *Enterococcus faecalis*, *S. aureus*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Salmonella typhimurium*, *S. typhi*, and *Shigella flexneri* [34]. The DNA virus *Herpes simplex* type-1 (HSV-1) and the RNA virus parainfluenza type-3 (PI-3) were inhibited by the
was inhibitory to \(\text{Pyricularia oryzae} \) [54].

Trans-anethole was the most abundant compound in the \(\text{Foeniculum vulgare} \) EO, reaching 74% of the total identified constituents. Propenylbenzenes, such as anethole, were reported to be mutagenic for \(\text{Salmonella} \) tester strains and also carcinogenic in the induction of hepatomas in B6C3F1 mice and skin papillomas in CD-1 mice [36].

The \(\text{Cymbopogon flexuosus} \) lemongrass EO was reported to have antibacterial, antifungal and anti-inflammatory activity. The EO from \(\text{C. flexuosus} \) exhibited an antimicrobial effect against \(\text{B. subtilis}, \text{Staphylococcus aureus}, \text{A. flavus} \) and \(\text{A. fumigatus} \) [37]. The lemongrass (\(\text{C. flexuosus} \)) inflorescence EO was inhibitory to \(\text{Pyricularia oryzae, Drechslera oryzae, A. niger} \) and \(\text{Penicillium italicum} \) [38]. Lemongrass EO, which has citral as its main component, has exhibited an anti-inflammatory effect in both animal and human cells [39]. In this study, the content of the lemongrass EO’s major compounds, geraniol and neral, was similar to their content in the \(\text{L. citrata} \) EO with slightly lower amounts—40.3% and 30.9%, respectively.

The \(\text{Coriandrum sativum} \) EO exhibited antifungal, antibacterial, insecticidal, and nematicidal activities. The \(\text{Coriandrum sativum} \) EO showed excellent antifungal activity against seedborne pathogens \(\text{P. oryzae}, \text{Bipolaris oryzae, Alternaria alternata, Tricoconis padwickii, Drechslera tetramera, D. halodes, Curvularia lunata, F. moniliforme, and F. oxysporum} \) [40]. The methanolic extract of \(\text{C. sativum} \) showed antibacterial activity against \(\text{E. coli, P. aeruginosa, S. aureus, and K. pneumoniae} \) [41]. The leaf oil had significant toxic effects against the larvae of \(\text{Aedes aegypti} \) with an LC50 value of 26.93 ppm and an LC90 value of 37.69 ppm, and the stem oil has toxic effects against the larvae of \(\text{A. aegypti} \) with an LC50 value of 29.39 ppm and an LC90 value of 39.95 ppm [42]. Among the 28 plant EOs tested for their nematicidal activities against the pine wood nematode, \(\text{B. xylophilus} \), the best nematicidal activity was achieved with the EO of coriander [43]. In this study, the major compound in the \(\text{C. sativum} \) EO was trans-2-decenal with 28.2%, aminated to the group of medium-chain aldehydes. Aliphatic aldehydes (mainly \(\text{C}_{10-16} \) aldehydes), with their unpleasant odor, are the main components of the volatile oil from the fresh herb [44]. Aldehydes present in the coriander EO are important biologically active substances due to their possible toxic activity against tropical mosquitoes transmitting dangerous illnesses [45].

The \(\text{Cinnamomum cassia} \) EO exhibited antimicrobial, antiviral, insecticidal, and nematicidal activities. The cassia EO acted as fungal growth inhibitor against \(\text{A. flavus} \) and \(\text{A. oryzae} \) [46] and as a bacterial inhibitor of \(\text{S. aureus} \) and \(\text{E. coli} \) [47]. The silver nanoparticles derived from cinnamon extract enhanced the antiviral activity and were found to be effective against highly pathogenic avian influenza virus subtype H7N3, when incubated with the virus prior to infection and introduced to cells after infection [48]. The chloroform extract from \(\text{C. cassia} \) was the most effective against \(\text{Dermestes maculatus} \) larvae, the pest of Egyptian mummies [8]. Cassia oil was efficient against \(\text{Sitophilus zamais} \) [49], and the booklice \(\text{Liposcelis bostrychophila} \) [50]. As judged by the 24-h LC50 values, two cassia oils (0.084–0.085 mg/mL) and four cinnamon oils (0.064–0.113 mg/mL) were toxic toward adult \(\text{B. xylophilus} \) [51].

As opposed to cassia, \(\text{Cinnamomum burmannii} \) EO has been less studied. The \(\text{Cinnamomum burmannii} \) EO exhibited significant antibacterial properties against five common foodborne pathogenic bacteria, namely, \(\text{B. cereus, L. monocytogenes, S. aureus, E. coli, and Salmonella anatum} \) [52].

The major component of cinnamon bark EO is (E)-cinnamaldehyde. In the contact with bacterial membrane, cinnamaldehyde causes the loss of membrane functionality or the loss of channel proteins in the membrane, resulting in death of bacterial cells [53]. Besides this, (E)-cinnamaldehyde was significantly more effective than its corresponding acid (cinnamic acid) and alcohol (cinnamyl alcohol) and could be used as a fumigant with contact action in the control of house dust mites, \(\text{D. farinae} \) and \(\text{D. pteronyssinus} \) [54].

It has been emphasized that the major components play important roles in the toxicity of EOs [31,42,55] and the majority of them belong to the class of terpenes. Terpenes are the largest class
of secondary metabolites and basically consist of five carbon isoprene units, which are assembled to each other (many isoprene units) by thousands of ways. Terpenes are simple hydrocarbons, while terpenoids (monoterpenes, sesquiterpenes, diterpenes, sesterpenes, and triterpenes) are a modified class of terpenes with different functional groups and an oxidized methyl group moved or removed at various positions [56].

Organic compounds that contain the group -CHO (the aldehyde group; i.e., a carbonyl group (C=O) with a hydrogen atom bound to the carbon atom) are known as aldehydes. In systematic chemical nomenclature, aldehyde names end with the suffix -al [57].

In this study, the major components and presumably the most active components (geranial, neral, trans-2-decenal, and trans-cinnamaldehyde) of Litsea citrata, Cymbopogon flexuosus, Coriandrum sativum, Cinnamomum cassia, and C. burmannii EOs are aldehydes. Aldehydes are highly reactive molecules that may have a variety of effects on biological systems. Although some aldehyde-mediated effects are beneficial, many effects are deleterious, including cytotoxicity, mutagenicity, and carcinogenicity [58], and generally, they are toxic to the human body [59] and evidently, to nematodes. Despite the potential risks of aldehyde exposure, the toxic mechanisms are only understood in general terms. Human exposure to aldehydes represents a significant toxicological concern and, therefore, understanding the corresponding molecular mechanism of toxicity is important for accurate risk assessment and remediation. In this perspective, it has been shown that environmental and endogenous aldehydes can be described by their relative softness and electrophilicity, which are important electronic determinants of the respective second order reaction rates with nucleophilic targets on macromolecules. These soft-soft and hard-hard adduct reactions appear to mediate toxicity by impairing the function of macromolecules (e.g., proteins, DNA, and RNA) that play critical roles in cytophysiological processes. However, more research is needed to broaden our understanding of how these specific covalent reactions disable macromolecular targets [60].

Comparing the results for the toxicity of EOs for nematodes with a different oral apparatus, they are mostly in agreement. However, some results for Panagrolaimus sp. deviate from those obtained for plant parasitic nematodes.

The Rosmarinus officinalis (syn. Salvia rosmarinus) EO at 2 µg/mL induced 100% mortality of Xiphinema index adults [61], while in this study, the same EO was characterized as having low toxicity and classified into the first group of EOs.

The LC50 of the M. spicata EO was 0.2 mg/mL, for M. javanica juveniles [62], while in this study the same oil was characterized as having low toxicity and classified into the first group of EOs.

The LC50 of the M. spicata EO was 0.2 mg/mL, for M. javanica juveniles [62], while in this study the same oil was characterized as having low toxicity and classified into the first group of EOs.

The LC50 of the M. spicata EO was 0.2 mg/mL, for M. javanica juveniles [62], while in this study the same oil was characterized as having low toxicity and classified into the first group of EOs.

Variations in acute toxicity among EOs of the same plant species are greatly influenced by production, storage conditions, climatic or edaphic factors [64]. The chemical content varies even within the same crop. Significant variations were found in many EO components, both across years and throughout harvest dates within locations [65]. However, the different impact of the same EO on free-living versus plant parasitic nematodes may be due to different feeding behaviors, different dimensions, and different metabolic activities and demonstrate a possible direction in the search for active compounds that will be at the same time toxic to plant parasitic nematodes and not have unacceptable effects on the environment and non-target species.
4. Materials and Methods

4.1. Nematode Culture and Direct Contact Bioassay

A culture of *Panagrolaimus* sp. was grown monoxenically on previously frozen agricultural compost and extracted from it with a Baerman funnel [66] over 24 h. Using a compound microscope and a micropipette, juveniles were separated from adult nematodes, counted in aliquots of 50 in 20 µL of water suspension and the live specimens were used in the experiments. The 50 commercial plant EOs from 22 families were purchased from the market and used to investigate their in vitro nematicidal activity against the panagrolaimid nematode *Panagrolaimus* sp. (Table 1). Serial dilutions starting from 0.2 µL/mL, in a double decreasing range up to 0.00975 µL/mL of EOs, were made and stabilized with 0.1-µL/mL Break-Thru® 446 oil enhancer. The direct contact bioassay was performed in small glass petri dishes containing 2 mL of solution and 50 nematodes incubated at 18 °C in the dark. The experiments were performed in five replicates. The lethal effect was monitored after 24 h. An aqueous solution of the emulsifier without EO served as the control. Prior to the assessment of the EOs, the mortality of panagrolaimid nematodes in the aqueous solution was compared with the mortality of nematodes in 0.1-µL/mL emulsifier and no significant differences between the treatments were observed. The nematodes were considered dead if they did not react on touching with a small needle.

4.2. Chemical Analyses

The gas chromatography/mass spectrometry (GC/MS) analysis was performed on an Agilent 6890N network gas chromatograph attached to a mass spectrometer (Agilent 5975B) equipped with a fused silica capillary column (HP-5ms) with dimensions as follows: 30-m length, 0.25-mm internal diameter, 0.25-µm film thickness, coated with 5% diphenyl- and 95% dimethyl-polysiloxane. The samples were diluted in diethyl ether (1:10) and a volume of 1.0 µL was injected. The injector was set at 220 °C and performed in the split mode at a ratio of 1:20. Helium was used as the carrier gas at a flow rate of 0.9 mL/min. The oven temperature increased from 60 to 246 °C at a rate of 3 °C/min. Temperatures of the mass selective detector (MSD) transfer line, ion source and quadruple mass analyzer were set at 280, 230 and 150 °C, respectively. The ionization voltage was 70 eV and the scan range was 35–400 m/z.

Compound identifications were based on comparisons of their mass spectra with the mass spectra obtained from the National Institute of Standards and Technology database and by comparisons of the retention indices with values reported in the literature (RI\textsubscript{lit}) [67]. A homologous series of n-alkanes (C\textsubscript{8}–C\textsubscript{34}) was run under the same operating conditions as the EO to determine the experimental retention indices (RI\textsubscript{exp}). The relative amounts of individual components (expressed in percentages) were calculated via peak area normalization, without the use of correction factors. Compounds present in traces (tr) with their amounts less than 0.05% are indicated (Tables 2–7).

4.3. Statistical Data Analysis

In order to evaluate the nematicidal activity of the EOs, median lethal concentration (LC50) was calculated using the Probit Analysis program [68]. The *Panagrolaimus* mortality was corrected using Abbott’s formula [69]. The nematicidal activity, i.e., acute toxicity of the examined EOs based on the median lethal concentration, was designated as high (LC50: <0.1 µL/mL), moderate (LC50: 0.1–1 µL/mL) and low (LC50: >1 µL/mL) (Table 1).

Author Contributions: Conceptualization, V.O., S.K., M.T. and S.I.-S.; Methodology, V.O., S.K., M.T. and J.S.S.; Formal Analysis, V.O., M.T. and J.S.S.; Investigation, V.O. and S.I.-S.; Resources, S.K.; Data Curation, V.O., M.T. and J.S.S.; Writing—Original Draft Preparation, V.O., M.T. and J.S.S.; Writing—Review and Editing, S.K. and S.I.-S.; Visualization, V.O., M.T. and J.S.S.; Supervision, S.I.-S.; Funding Acquisition, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Serbian Ministry of Education, Science and Technological Development.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. *Biopest. Int.* 2008, 4, 63–84.

2. Santos, A.; Flores, M. Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. *Lett. Appl. Microbiol.* 1995, 20, 349–352. [CrossRef]

3. Saygideger, S.D.; Okkay, O. Effect of 2,4-dichlorophenoxyacetic acid on growth, protein and chlorophyll—A content of *Chlorella vulgaris* and *Spirulina platensis* cells. *J. Environ. Biol.* 2008, 29, 175–178. [PubMed]

4. Zaller, J.G.; Heigl, F.; Rues, L.; Grabmaier, A. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. *Sci. Rep.* 2014, 4, 5634. [CrossRef] [PubMed]

5. Ibrahim, L.; Preuss, T.G.; Ratte, H.T.; Hommen, U. A list of fish species that are potentially exposed to pesticides in edge-of-field water bodies in the European Union—A first step towards identifying vulnerable representatives for risk assessment. *Environ. Sci. Pollut. Res.* 2013, 20, 2679–2687. [CrossRef]

6. Leonards, P.E.; Zierikzee, Y.; Brinkman, U.A.T.; Cofino, W.P.; van Straalen, N.M.; van Hattum, B. The selective effects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. *Sci. Rep.* 2015, 6, 2679–2687. [CrossRef] [PubMed]

7. Brain, R.A.; Anderson, J.C. The agro-enabled urban revolution, pesticides, politics, and popular culture: A case study of land use, birds, and insecticides in the USA. *Environ. Sci. Pollut. Res.* 2019, 26, 21717–21735. [CrossRef]

8. Abdel-Maksoud, G.; El-Amin, A.-R.; Afifi, F. Insecticidal activity of *Cinnamomum cassia* extractions against the common Egyptian mummies’ insect pest (*Dermestes maculatus*). *Int. J. Conserv. Sci.* 2014, 5, 355–368.

9. Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal activity of essential oils and their components against the root-knot nematode. *Phytopathology* 2000, 90, 710–715. [CrossRef]

10. Pérez, M.P.; Navas-Cortés, J.A.; Pascual-Villalobos, M.J.; Castillo, P. Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes. *Plant Path.* 2003, 52, 395–401. [CrossRef]

11. Park, I.; Park, J.; Kim, K.; Choi, K.; Choi, I.; Kim, C. Nematicidal activity of plant EOs and components from garlic (*Allium sativum*) and cinnamon (*Cinnamomum verum*) oils against the pine wood nematode (*Bursaphelenchus xylophilus*). *Nematology* 2005, 7, 767–774. [CrossRef]

12. Elbadri, G.A.; Lee, D.W.; Park, J.C.; Yu, H.B.; Choo, H.Y.; Lee, S.M.; Lim, T.H. Nematicidal screening of essential oils and herbal extracts against *Bursaphelenchus xylophilus*. *Plant Pathol. J.* 2008, 24, 178–182. [CrossRef]

13. Barbosa, P.; Lima, A.S.; Vieira, P.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, J.G.; Figueriedo, A.C.; Mota, M. Nematicidal activity of essential oils and volatiles derived from Portuguese aromatic flora against the pine wood nematode, *Bursaphelenchus xylophilus*. *Nematologica* 2010, 42, 8–16. [PubMed]

14. Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Phytochemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components. *J. Agric. Food Chem.* 2010, 58, 7856–7863. [CrossRef]

15. Andrés, M.F.; González-Coloma, A.; Sanz, J.; Burillo, J.; Sainz, P. Nematicidal activity of essential oils: A review. *Phytochem. Rev.* 2012, 11, 371–390. [CrossRef]

16. Caboni, P.; Saba, M.; Tocco, G.; Casu, L.; Murgia, A.; Spiroandi, U.M.; Ntalii, N. Nematicidal activity of mint aqueous extracts against the root-knot nematode *Meloidogyne incognita*. *J. Agric. Food Chem.* 2013, 61, 9784–9788. [CrossRef]

17. Kim, S.I.; Lee, J.K.; Na, Y.E.; Yoon, S.T.; Oh, Y.J. Nematicidal and ovicidal activities of *Dryobalanops aromatica* and *Mentha haplocalyx* var. piperascens-derived materials and their formulations against *Meloidogyne incognita* second-stage juveniles and eggs. *Nematology* 2014, 16, 193–200. [CrossRef]

18. Faria, J.M.S.; Sena, I.; Ribeiro, B.; Rodrigues, A.M.; Maleita, C.M.N.; Abrantes, I.; Bennett, R.; Mota, M.; Da Silva Figueiredo, A.C. First report on *Meloidogyne chitwoodi* hatching inhibition activity of essential oils and essential oils fractions. *J. Pest Sci.* 2016, 89, 207–217. [CrossRef]

19. André, W.P.P.; Ribeiro, W.L.C.; Oliveira, L.M.B.D.; Macedo, I.T.F.; Rondon, F.C.M.; Bevilacqua, C.M.L. Óleos essenciais e seus compostos bioativos no controle de nematoides gastrintestinais de pequenos ruminantes. *Acta Sci. Vet.* 2018, 46, 1514–1522. [CrossRef]
20. Ferreira, L.E.; Benincasa, B.I.; Fachin, A.L.; Contini, S.H.T.; França, S.C.; Chagas, A.C.S.; Beleboni, R.O. Essential oils of Citrus aurantifolia, Anthemis nobile and Lavandula officinalis: In Vitro anthelmintic activities against Haemonchus contortus. Parasites Vectors 2018, 11, 269. [CrossRef]

21. Saha, S.; Lachance, S. Effect of essential oils on cattle gastrointestinal nematodes assessed by egg hatch, larval migration and mortality testing. J. Helminthol. 2020, 94, e111. [CrossRef] [PubMed]

22. Pardavella, I.; Nasiou, E.; Daferera, D.; Trigas, P.; Giannakou, I. The use of essential oil and hydrosol extracted from Satureja helenica for the Control of Meloidogyne incognita and M. javanica. Plants 2020, 7, 856. [CrossRef]

23. Oka, Y.; Ben-Daniel, B.; Cohen, Y. Nematicidal activity of the leaf powder and extracts of Myrtus communis against the root-knot nematode Meloidogyne javanica. Plant Path 2012, 1–9. [CrossRef]

24. Ferris, H.; Venette, R.C.; Van der Meulen, H.R.; Lau, S.S. Nitrogen mineralization by bacterial-feeding nematodes: Verification and measurement. Plant Soil 1998, 203, 159–171. [CrossRef]

25. Oro, V.; Knezevic, M.; Dinic, Z.; Delic, D. Bacterial microbiota isolated from cysts of Globodera rostochiensis (Nematoda: Heteroderidae). Plants 2020, 9, 1146. [CrossRef]

26. Seybold, A.C.; Wharton, D.A.; Thorne, M.A.; Marshall, C.J. Establishing RNAi in a non–model organism: The Antarctic nematode Panagrolaimus sp. DAW1. PloS ONE 2016, 11, e0166228. [CrossRef]

27. Shatilovich, A.V.; Tchesunov, A.V.; Neretina, T.V.; Grabarnik, I.P.; Gubin, S.V.; Vishnivetskaya, T.A.; Onstott, T.C.; Rivkina, E.M. Viable nematodes from late Pleistocene permafrost of the Kolyma river lowland. Dokl. Biol. Sci. 2018, 480, 100–102. [CrossRef]

28. Su, Y.-C.; Ho, C.-L. Essential oil compositions and antimicrobial activities of various parts of Litsea cubeba from Taiwan. Nat. Prod. Comm. 2016, 11, 4515–4518. [CrossRef]

29. Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour Fragr. J. 2016, 31, 302–309. [CrossRef]

30. Jeon, Y.-J.; Lee, H.-S. Chemical composition and acaricidal activities of essential oils of Litsea cubeba fruits and Mentha arvensis leaves against house dust and stored food mites. J. Essent. Oil Bear. 2016, 19, 1721–1728. [CrossRef]

31. Park, I.-K.; Kim, J.; Lee, S.-G.; Shin, S.-C. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Nematol. 2007, 39, 275–279. [PubMed]

32. Di Mola, A.; Massa, A.; De Feo, V.; Basile, A.; Pascale, M.; Aquino, R.P.; De Caprariis, P. Effect of citral and cital related compounds on viability of pancreatic and human B-lymphoma cell lines. Med. Chem. Res. 2017, 26, 631–639. [CrossRef]

33. Singh, G.; Maurya, S.; De Lampasona, M.P.; Catalan, C. Chemical constituents, antifungal and antioxidantative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 2006, 17, 745–752. [CrossRef]

34. Kaur, G.J.; Arora, D.S. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement. Altern. Med. 2009, 9, 30. [CrossRef]

35. Orhan, I.E.; Ozcelik, B.; Kartal, M.; Kan, Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turk. J. Biol. 2012, 36, 239–246.

36. Kim, S.G.; Liem, A.; Stewart, B.C.; Miller, J.A. New studies on trans-anethole oxide and trans-asarone oxide. Carcinogenesis 1999, 20, 1303–1307. [CrossRef]

37. Kakarla, S.; Ganjewala, D. Antimicrobial activity of essential oils of four lemongrass (Cymbopogon flexuosus (Steud) varieties. Med. Aromat. Plant Sci. Biotechnol. 2009, 3, 107–109.

38. Sarma, A.; Saikia, R.; Sarma, T.C.; Boruah, P. Lemongrass [Cymbopogon flexuosus (Steud) Wats] inflorescence oil: A potent anti fungal agent. J. Essent. Oil Bear. 2004, 7, 87–90. [CrossRef]

39. Han, X.; Parker, T.L. Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti–inflammatory effect in pre-inflamed human dermal fibroblasts. Biochim. Open 2017, 4, 107–111. [CrossRef]

40. Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [CrossRef]

41. Ratha bai, V.; Kanimotozhi, D. Evaluation of antimicrobial activity of Coriandrum sativum. IJSRR 2012, 1, 1–10.

42. Chung, J.M.; Ahmad, A.; Kim, S.J.; Naik, P.M.; Nagella, P. Composition of the essential oil constituents from leaves and stems of Korean Coriandrum sativum and their immunotoxicity activity on the Aedes aegypti L. Immunopharmacol. Immunotoxicol. 2012, 34, 152–156. [CrossRef] [PubMed]
43. Kim, J.; Seo, S.M.; Lee, S.G.; Shin, S.C.; Park, I.K. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pinewood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem. 2008, 56, 7316–7320. [CrossRef] [PubMed]

44. Potter, T.L.; Fagerson, I.S. Composition of coriander leaf volatiles. J. Agric. Food Chem. 1990, 38, 2054–2056. [CrossRef]

45. Bhuiyan, N.I.; Begum, J.; Sultana, M. Chemical composition of leaf and seed essential oil of Coriandrum sativum L. from Bangladesh. Bangladesh J. Pharmacol. 2009, 4, 150–153. [CrossRef]

46. Kocevski, D.; Du, M.; Kan, J.; Jing, C.; Lacanin, I.; Pavlovic, H. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against population of Aspergillus species. J. Food Sci. 2013, 78, M731–M737. [CrossRef]

47. Huang, D.F.; Xu, J.-G.; Liu, J.-X.; Zhang, H.; Hu, Q.P. Chemical constituents, antibacterial activity and mechanism of action of the essential oil of Cinnamomum cassia bark against four food related bacteria. Microbiology 2014, 63, 357–365. [CrossRef]

48. Munazza, F.; Najam-us-Sahar, S.Z.; Deeba, A.; Farhan, A. In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza A virus. J. Microbiol. Biotechnol. 2016, 26, 151–159. [CrossRef]

49. Yang, Y.; Isman, M.B.; Tak, J.-H. Insecticidal activity of 28 essential oils and a commercial product containing Cinnamomum cassia bark essential oil against Sitophilus zeamais Motschulsky. Insects 2020, 11, 474. [CrossRef]

50. Liu, X.C.; Cheng, J.; Zhao, N.N.; Liu, Z.L. Insecticidal activity of essential oil of Cinnamomum cassia and its main constituent, trans-cinnamaldehyde, against the booklice, Liposcelis bostrychophila. Trop. J. Pharm. Res. 2014, 13, 1697–1702. [CrossRef]

51. Kong, J.-O.; Lee, S.-M.; Moon, Y.-S.; Lee, S.-G.; Ahn, Y.-J. Nematicidal activity of cassia and cinnamon oil compounds and related compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J. Nematol. 2007, 39, 31–36. [PubMed]

52. Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): Activity against foodborne pathogenic bacteria. J. Agric. Food Chem. 2007, 55, 5484–5490. [CrossRef] [PubMed]

53. Song, Y.R.; Choi, M.S.; Choi, G.W.; Park, I.K.; Oh, C.S. Antibacterial activity of cinnamaldehyde and estragole extracted from plant essential oils against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Plant Pathol. J. 2016, 32, 363–370. [CrossRef] [PubMed]

54. Wang, Z.; Kim, H.K.; Tao, W.; Wang, M.; Ahn, Y.-J. Contact and fumigant toxicity of cinnamaldehyde and cinnamic acid and related compounds to Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol. 2011, 48, 366–371. [CrossRef]

55. Echeverriagary, S.; Zacaria, J.; Beltrão, R. Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathology 2010, 100, 199–203. [CrossRef]

56. Perveen, S. Terpenes and Terpenoids; IntechOpen: Rijeka, Croatia, 2018; pp. 1–13. [CrossRef]

57. Daintith, J. A Dictionary of Chemistry, 6th ed.; Oxford University Press: Oxford, UK, 2008; pp. 16–17.

58. Lindahl, R. Aldehyde dehydrogenases and their role in carcinogenesis. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 283–335. [CrossRef]

59. Laskar, A.A.; Younus, H. Aldehyde toxicity and metabolism: The role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab. Rev. 2019, 1–23. [CrossRef]

60. Lopachin, R.M.; Gavin, T. Molecular mechanisms of aldehyde toxicity: A chemical perspective. Chem. Res. Toxicol. 2014, 27, 1081–1091. [CrossRef]

61. Avato, P.; Laquale, S.; Argentieri, M.F.; Lamiri, A.; Radici, V.; D’Addabbo, T. Nematicidal activity of essential oils from aromatic plants of Morocco. J. Pest Sci. 2017, 90, 711–722. [CrossRef]

62. Santana, O.; Andrés, M.F.; Sanz, J.; Errahmani, N.; Abdeslam, L.; González-Coloma, A. Valorization of essential oils from Moroccan aromatic plants. NPC 2014, 9, 1109–1114. [CrossRef]

63. Ibrahim, S.K.; Traboulsi, A.F.; El-Haj, S. Effect of essential oils and plant extracts on hatching, migration and mortality of Meloidogyne incognita. Phytopathol. Mediterr. 2006, 45, 238–246. [CrossRef]

64. Kim, J.; Seo, S.-M.; Park, I.-K. Nematicidal activity of plant essential oils and components from Gaultheria fragrantissima and Zanthoxyllum alatum against the pine wood nematode, Bursaphelenchus xylophilus. Nematology 2011, 13, 87–93. [CrossRef]
65. Napoli, E.; Giovino, A.; Carrubba, A.; Siong, V.H.Y.; Rinoldo, C.; Nina, O.; Ruberto, G. Variations of essential oil constituents in oregano (Origanum vulgare subsp. viridulum (= O. heracleoticum) over cultivation cycles. *Plants* 2020, 9, 1174. [CrossRef] [PubMed]

66. Hooper, D.J. Extraction of free-living stages from soil. In *Laboratory Methods for Work with Plant and Soil Nematodes*, 6th ed.; Southey, J.F., Ed.; Ministry of Agriculture, Fisheries and Food: London, UK, 1986; pp. 5–30.

67. Adams, R.P. *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry*, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; pp. 1–804.

68. Daum, R.J. Revision of two computer programs for Probit analysis. *Bull. Entomol. Soc. Am.* 1970, 16, 10–15. [CrossRef]

69. Abbott, W.S. A method of computing the effectiveness of an insecticide. *J. Am. Mosq. Control Assoc.* 1987, 3, 302–303. [CrossRef]

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).