Compact spacelike surfaces in four-dimensional Lorentz-Minkowski spacetime with a non-degenerate lightlike normal direction

Francisco J. Palomo* and Francisco J. Rodríguez
Dep. Matemática Aplicada, Universidad de Málaga
29071-Málaga (Spain)
fpalomo@ctima.uma.es, fjrodri@ctima.uma.es
Alfonso Romero*
Dep. Geometría y Topología, Universidad de Granada
18071-Granada (Spain)
aromero@ugr.es

Abstract

A spacelike surface in four-dimensional Lorentz-Minkowski spacetime through the light-cone has a meaningful lightlike normal vector field η. Several sufficient assumptions on such a surface with non-degenerate η-second fundamental form are established to prove that it must be a totally umbilical round sphere. With this aim, a new formula which relates the Gauss curvatures of the induced metric and of the η-second fundamental form is developed. Then, totally umbilical round spheres are characterized as the only compact spacelike surfaces through the lightcone such that its η-second fundamental form is non-degenerate and has constant Gauss curvature two. Another characterizations of totally umbilical round spheres in terms of the Gauss-Kronecker curvature of η and the area of the η-second fundamental form are also given.

1 Introduction

The geometry of spacelike surfaces in 4-dimensional Lorentz-Minkowski spacetime \mathbb{L}^4 through the future lightcone Λ is very rich and appealing. In fact, any 2-dimensional simply-connected Riemannian manifold may be isometrically immersed into Λ, [10], [12]. In particular, any Riemannian metric on the sphere \mathbb{S}^2 may be realized as the induced metric of a spacelike immersion of \mathbb{S}^2 in \mathbb{L}^4 through Λ. This situation is quite different when Λ is replaced by a (non-degenerate) hypersurface of \mathbb{L}^4. For instance, there is no spacelike immersion of \mathbb{S}^2 in the unit De Sitter spacetime $\mathbb{S}_1^4 \subset \mathbb{L}^4$ such that the Gauss curvature of the induced metric satisfies $K > 1$, [3, Cor. 10]. On the other hand, the existence of an isometric immersion of an $n(\geq 3)$-dimensional Riemannian manifold in \mathbb{L}^{n+2} through the corresponding future lightcone has a clear geometric meaning; namely, an $n(\geq 3)$-dimensional simply-connected Riemannian manifold M^n admits an isometric immersion in \mathbb{L}^{n+2} through the lightcone if and only if M^n is conformally flat [4], which is a nice characterization of conformally flatness in terms of Lorentzian geometry.

Motivated in part by these results, spacelike surfaces through the lightcone in \mathbb{L}^4 have been studied from different viewpoints, [8], [9], [10]. Focusing our approach here, if $\psi : M^2 \rightarrow \mathbb{L}^4$
is a spacelike immersion such that \(\psi(M^2) \subset \Lambda \), the position vector field \(\psi \) is clearly normal and lightlike. The corresponding Weingarten operator satisfies \(A_\psi = -I \), where \(I \) denotes the identity transformation, and, therefore, it provides no information on the extrinsic geometry of \(M^2 \). However, there is another lightlike normal vector field \(\eta \), uniquely defined by \(\langle \eta, \eta \rangle = 0 \) and \(\langle \psi, \eta \rangle = 1 \). The Weingarten operator \(A_\eta \) is closely related to both intrinsic and extrinsic geometry of \(M^2 \) by the equations

\[
\tr(A_\eta) = -K = -\langle H, H \rangle,
\]

where \(K \) is the Gauss curvature of the induce metric and \(H \) the mean curvature vector field of \(\psi \) (Section 2). Moreover, the lightlike normal vector fields \(\psi \) and \(\eta \) are connected to the so-called \(S^2 \)-valued Gauss maps \(G^F \) and \(G^P \), introduced in a more general context in [7], by

\[
G^F = \frac{1}{\psi_0} \psi \quad \text{and} \quad G^P = -\frac{1}{\eta_0} \eta,
\]

where \(\psi_0 \) and \(\eta_0 \) are the time coordinates of \(\psi \) and \(\eta \), respectively.

In that follows, given a spacelike surface \(M^2 \) in \(\mathbb{L}^4 \) through \(\Lambda \), we will say that \(\eta \) is non-degenerate if the \(\eta \)-second fundamental form, \(\Pi_\eta \), is a non-degenerate metric on \(M^2 \). The assumption \(\eta \) is non-degenerate has the following geometric meanings. On the one hand, \(\eta \) is non-degenerate if and only if the Gauss map \(G^P \) is a local diffeomorphism from \(M^2 \) to \(S^2 \). On the other hand, \(\eta \) is non-degenerate if and only if \(\tilde{\psi} := -\eta \) is also a spacelike immersion (Lemma 2.5). In this case, \(\tilde{\psi} \) is said to be the conjugate immersion to \(\psi \). It is remarkable that given a non-degenerate spacelike surface through \(\Lambda \), it is totally umbilical if and only if its conjugated surface is also totally umbilical (Corollary 2.8).

A compact spacelike surface \(M^2 \) in \(\Lambda \) must be topologically a sphere \(S^2 \), [12]. It is then natural to wonder for some additional assumption in order to conclude that \(M^2 \) is a totally umbilical round sphere. Recall that all the totally umbilical compact spacelike immersions of \(S^2 \) in \(\mathbb{L}^4 \) through \(\Lambda \) were explicitly constructed in [12] as follows. If \(\psi \) is such an immersion, there exist \(u \in \mathbb{L}^4 \), \(\langle u, u \rangle = -1 \), with \(u_0 < 0 \) and \(r > 0 \), such that,

\[
\psi(S^2) = S^2(u, r) := \{ x \in \mathbb{L}^4 : \langle x, x \rangle = 0, \langle u, x \rangle = r \}.
\]

In this case, \(A_\eta = -(1/2r^2)I \) and the Riemannian metric on \(M^2 \) given by \(\Pi_\eta(X, Y) := -\langle A_\eta(X), Y \rangle \) has constant Gauss curvature \(K^\eta = 2 \), [12]. As shown in [12] Theor. 5.4] a compact spacelike surface \(M^2 \) in \(\Lambda \) with constant Gauss curvature is a totally umbilical round sphere in \(\mathbb{L}^4 \). This result gives an answer to the previous question from an intrinsic point of view. In the same philosophy of [1], [2] and [3], the main aim of this paper is to obtain several extrinsic characterizations of the totally umbilical spacelike spheres in \(\mathbb{L}^4 \) among all the compact spacelike surfaces in \(\mathbb{L}^4 \) which factors through \(\Lambda \).

When a spacelike surface \(M^2 \) in \(\Lambda \) is compact, the non-degeneracy of \(\eta \) implies that \(\Pi_\eta \) is in fact Riemannian (Proposition 2.3). Our main goal here is (Theorem 4.1),

For a compact spacelike surface \(M^2 \) of \(\mathbb{L}^4 \) through \(\Lambda \) with \(\eta \) non-degenerate, the following assertions are equivalent:

1. \(M^2 \) is a totally umbilical round sphere,
2. The Gauss-Kronecker curvature \(\mathfrak{d} = \det(A_\eta) \) is constant,
3. The Gauss curvature of the Riemannian metric \(\Pi_\eta \) satisfies \(K^\eta = 2 \).
Moreover, each one of these assumptions is equivalent to the constancy of the Gauss curvature of the induced metric on M^2 [12, Theor. 5.4].

In order to prove this result, our main tool will be a new formula which, for any spacelike surface of L^4 through Λ with non-degenerate η, relates the Gauss curvature K of the induced metric, the Gauss curvature K^η of Π_η and the Gauss-Kronecker curvature d (Theorem 3.1). Note that this extrinsic quantity is closely related to the notion of quartic curvature H of the spacelike surface [7]. In fact, it is not difficult to see that $H = 2d$.

The paper ends with the statement of two equivalent conditions each one equivalent to each of the three previously stated (Propositions 4.3, 4.4):

Each of the three equivalent assertions above is equivalent to,

4. The Π_η-area of M^2 satisfies, $\text{area}(M^2, \Pi_\eta) = 2\pi$, or

5. The first non-trivial eigenvalue, λ_1, of the Laplacian of the induced metric on M^2 satisfies,

$$
\lambda_1 = 2 \frac{\int_{M^2} \langle H, H \rangle \, dA}{\text{area}(M^2, \langle, \rangle)}.
$$

2 Preliminaries

Let L^4 be the Lorentz-Minkowski spacetime, that is, \mathbb{R}^4 endowed with the Lorentzian metric,

$$
\langle \, , \rangle = -(dx_0)^2 + (dx_1)^2 + (dx_2)^2 + (dx_3)^2,
$$

where (x_0, x_1, x_2, x_3) are the canonical coordinates of \mathbb{R}^4. A smooth immersion $\psi : M^2 \to L^4$ of a 2-dimensional (connected) manifold M^2 is said to be a spacelike if the induced metric via ψ (denoted also by \langle, \rangle) is a Riemannian metric on M^2.

Let ∇ and ∇^\perp be the Levi-Civita connections of M^2 and L^4, respectively, and let ∇^\perp be the normal connection. The Gauss and Weingarten formulas are,

$$
\nabla_X Y = \psi_*(\nabla_X Y) + \Pi(X, Y) \quad \text{and} \quad \nabla_X N = -\psi_*(A_N X) + \nabla^\perp_X N,
$$

for any $X, Y \in \mathcal{X}(M^2)$ and $N \in \mathcal{X}^\perp(M^2)$, where Π denotes the second fundamental form of ψ. The shape (or Weingarten) operator A_N corresponding to N is related to Π by,

$$
\langle A_N X, Y \rangle = \langle \Pi(X, Y), N \rangle,
$$

for all $X, Y \in \mathcal{X}(M^2)$. The mean curvature vector field of ψ is given by $H = \frac{1}{2} \text{tr}(\langle , \rangle) \Pi$. For each $N \in \mathcal{X}^\perp(M^2)$, the Codazzi equation gives,

$$
(\nabla_X A_N) Y - (\nabla_Y A_N) X = A_{\nabla^\perp_X N} Y - A_{\nabla^\perp_Y N} X.
$$

(1)

We denote by Π_N the symmetric tensor field on M^2 defined by,

$$
\Pi_N(X, Y) = -\langle A_N X, Y \rangle.
$$

We will call $\text{det}(A_N)$ the Gauss-Kronecker curvature of M^2 with respect to the normal vector field N. The normal vector field N is said to be non-degenerate whenever $\text{det}(A_N) \neq 0$ at every point $p \in M^2$, [5]. When N is non-degenerate, Π_N is a semi-Riemannian metric on M^2.

We write,
\[\Lambda = \{ v \in \mathbb{L}^4 : \langle v, v \rangle = 0, v_0 > 0 \}, \]
for the future lightcone of \mathbb{L}^4. A spacelike surface $\psi : M^2 \to \mathbb{L}^4$ factors through the lightcone if $\psi(M^2) \subset \Lambda$. Every spacelike surface in \mathbb{L}^4 which factors through the lightcone must be orientable [12, Lemma 3.2]. Therefore, we can globally take a lightlike vector field $\eta \in X^+(M^2)$ with $\langle \psi, \eta \rangle = 1$.

From now on, unless otherwise was stated, we will assume $\psi : M^2 \to \mathbb{L}^4$ is a spacelike surface which factors through the lightcone. Recall briefly several local geometric properties of such a surface. Proofs for these features can be found in [12]. First, the lightlike normal vector fields ψ and η are parallel with respect to the normal connection. The corresponding Weingarten operators are given by,
\[A_\psi = -I, \quad A_\eta = - \frac{1 + \|\nabla \psi_0\|^2}{2\psi_0^2} I + \frac{1}{\psi_0} \nabla^2 \psi_0, \tag{2} \]
where $\nabla^2 \psi_0(v) = \nabla_v(\nabla \psi_0)$ for every $v \in T_pM^2$, $p \in M^2$ and we have written ψ_0 for $x_0 \circ \psi$. Recall that the Gauss curvature for the induced metric on M^2 satisfies,
\[K = -\text{tr}(A_\eta) = \langle \mathbf{H}, \mathbf{H} \rangle, \]
and therefore, the second fundamental form satisfies,
\[\langle \mathbf{II}, \mathbf{II} \rangle(p) = \sum_{i,j=1}^2 \langle \mathbf{II}(e_i, e_j), \mathbf{II}(e_i, e_j) \rangle = 2K(p), \]
where $\{e_1, e_2\}$ is an orthonormal basis of T_pM^2, $p \in M^2$.

We write $\mathfrak{d} = \text{det}(A_\eta)$ for the Gauss-Kronecker curvature with respect to η. From formula (3), we arrive to the following technical result which will be useful along this paper.

Lemma 2.1. Let $\psi : M^2 \to \mathbb{L}^4$ be a spacelike immersion which factors through the lightcone Λ. Then,
\[4\mathfrak{d} \leq K^2 \leq 2 \text{tr}(A_\eta^2), \tag{4} \]
and one equality holds (if and only if the other one also holds) if and only if M^2 is totally umbilical.

Remark 2.2. Note that if M^2 is assumed to be compact, there exists $p_0 \in M^2$ such that equalities (4) hold at p_0. In fact, otherwise we can define two smooth functions f_1 and f_2 on M^2 with $f_1 < f_2$ and $\{f_1(p), f_2(p)\}$ are the eigenvalues of A_η at every point $p \in M^2$. Each one of the eigendirections provides a 1-dimensional distribution on M^2. Since M^2 must be a topological sphere S^2, this is not possible.

On the contrary, the situation for noncompact complete spacelike surfaces is completely different. Consider the following isometric immersion ψ of the Euclidean plane \mathbb{E}^2 in \mathbb{L}^4 through the lightcone,
\[\psi(x, y) = (\cosh x, \sinh x, \cos y, \sin y), \]
$(x, y) \in \mathbb{E}^2$. The lightlike normal vector field η is given by $\eta(x, y) = \frac{1}{2}(-\cosh x, -\sinh x, \cos y, \sin y)$. A direct computation shows $A_\eta(\partial_x) = -(1/2) \partial_x$ and $A_\eta(\partial_y) = (1/2) \partial_y$. Therefore, $\mathfrak{d} = -1/4$, $K = 0$ and $2 \text{tr}(A_\eta^2) = 1$.

As a direct consequence of (2) we get.
Proposition 2.3. Let \(\psi : M^2 \rightarrow \mathbb{L}^4 \) be a spacelike immersion which factors through the lightcone \(\Lambda \). If the function \(\psi_0 \) attains a maximum value at \(p_0 \in M^2 \), then \(\Pi_\eta \) is positive definite in a neighborhood of \(p_0 \). In particular, if \(M^2 \) is compact and \(\eta \) is non-degenerate, \(\Pi_\eta \) is a Riemannian metric.

Remark 2.4. (a) If \(\Pi_\eta \) is a Riemannian metric on \(M^2 \), we get from (3) that \(K > 0 \) on all \(M^2 \).

(b) For a noncompact complete spacelike surface we can have even \(A_\eta \equiv 0 \). In fact, consider the isometric immersion \(\varphi \) of the Euclidean plane \(\mathbb{E}^2 \) in \(\mathbb{L}^4 \), given by,

\[
\varphi(x, y) = \left(\frac{x^2 + y^2 + 1}{2}, \frac{x^2 + y^2 - 1}{2}, x, y \right).
\]

Clearly \(\varphi(\mathbb{E}^2) \subset \Lambda \), \(\eta(x, y) = (-1, -1, 0, 0) \) and therefore \(A_\eta = 0 \) at every point \((x, y) \in \mathbb{E}^2\).

For every spacelike immersion \(\psi : M^2 \rightarrow \mathbb{L}^4 \) which factors through the lightcone \(\Lambda \), we consider the smooth map \(\tilde{\psi} : M^2 \rightarrow \Lambda \) given by \(\tilde{\psi} = -\eta \). In general, \(\tilde{\psi} \) fails to be an immersion (see previous Remark). In fact, for every \(v \in T_pM^2 \), we have that \(\tilde{\psi}_*(v) = -\nabla_v \eta = \psi_*(A_\eta(v)) \).

Hence we get the following result.

Lemma 2.5. Let \(\psi : M^2 \rightarrow \mathbb{L}^4 \) be a spacelike immersion which factors through the lightcone \(\Lambda \). Then, \(\tilde{\psi} \) is an immersion if and only if \(\eta \) is non-degenerate. In this case, the induced metric from \(\tilde{\psi} \) is Riemannian and agrees with the third fundamental form corresponding to \(\eta \), that is,

\[
\tilde{\psi}^*(u, v) = \langle A_\eta^2(u), v \rangle,
\]

for every \(u, v \in T_pM^2 \), \(p \in M^2 \).

If \(\eta \) is assumed to be non-degenerate, we will write \(\tilde{\psi}^*(u, v) = \Pi_{\tilde{\eta}} \) and \(\tilde{\eta} \) will denote the lightlike normal vector field corresponding to \(\tilde{\psi} \). Observe that \(\tilde{\eta} = -\psi \), in particular \(\tilde{\psi} = \psi \).

The Weingarten operators and the second fundamental form for \(\tilde{\psi} \) will be represented by \(\tilde{A} \) and \(\Pi_{\tilde{\eta}} \), respectively. Note that, in general, \(\tilde{A}_{\tilde{\eta}} = \tilde{A} - \psi \neq I \). The spacelike surface \(\tilde{\psi} : M^2 \rightarrow \Lambda \) is called the conjugated surface to \(\psi \).

Proposition 2.6. Let \(\psi : M^2 \rightarrow \mathbb{L}^4 \) be a spacelike immersion which factors through the lightcone \(\Lambda \). Assume \(\eta \) is non-degenerate. Then we have,

1. \(\tilde{A}_{\tilde{\eta}} = A_\eta^{-1} \).
2. \(\tilde{\Pi}_{\tilde{\eta}} = \Pi_\eta \).

Proof. The Weingarten equation for \(\tilde{\psi} \) can be written as follows,

\[
\nabla_v \tilde{\eta} = -\tilde{\psi}_*(\tilde{A}_{\tilde{\eta}}(v)) = -\psi_*(A_\eta(\tilde{A}_{\tilde{\eta}}(v)) \),
\]

for every \(v \in T_pM^2 \), \(p \in M^2 \). On the other hand, \(\nabla_v \tilde{\eta} = -\psi_*(v) \) and we deduce the first assertion. Now, for \(u, v \in T_pM^2 \),

\[
\tilde{\Pi}_{\tilde{\eta}}(u, v) = -\langle A_\eta^2(\tilde{A}_{\tilde{\eta}}(u)), v \rangle = \Pi_\eta(u, v).
\]
Corollary 2.7. Let $\psi : M^2 \to \mathbb{L}^4$ be a spacelike immersion which factors through the lightcone Λ. If η is non-degenerate, then,

$$K^{\Pi_\eta} = \frac{K}{\circ}.$$

(5)

Proof. This easily follows from previous result taking into account [3] for $\tilde{\psi}$. □

Now, Lemma 2.1 and Proposition 2.6 give.

Corollary 2.8. Let $\psi : M^2 \to \mathbb{L}^4$ be a spacelike immersion which factors through the lightcone Λ. Assume η is non-degenerate. Then ψ is totally umbilical if and only if $\tilde{\psi}$ is totally umbilical.

Remark 2.9. An interesting question on spacelike surfaces which factor through the lightcone is the behavior under the effect of expansions. That is, let $\psi : M^2 \to \mathbb{L}^4$ be a spacelike immersion which factors through the lightcone Λ. For every $\sigma \in C^\infty(M^2)$, consider the immersion $\psi_\sigma := e^{\sigma} \psi$. Clearly, ψ_σ factors through the lightcone and $g_\sigma = \psi_\sigma^* (,) = e^{2\sigma} (,)$, where as usual we have written $\psi^* (,) = (,)$. Therefore, ψ_σ is spacelike and the Gauss curvature K_σ of g_σ satisfies,

$$K_\sigma = K - \triangle \sigma e^{2\sigma}.$$

(6)

Let $\eta_\sigma = e^{-\sigma} \eta$ be the lightlike normal vector field such that $\langle \psi_\sigma, \eta_\sigma \rangle = 1$. A straightforward computation from (2) gives that for every $X \in \mathfrak{X}(M^2)$,

$$A^\sigma_{\eta_\sigma}(X) = \frac{1}{e^{2\sigma}} \left(A_\eta(X) + \nabla_X \nabla \sigma + \frac{||\nabla \sigma||^2}{2} X - X \sigma \cdot \nabla \sigma \right),$$

where $A^\sigma_{\eta_\sigma}$ denotes the Weingarten operator corresponding to η_σ with respect to the spacelike immersion ψ_σ. Observe that (6) also achieves from $K_\sigma = -\tr(A^\sigma_{\eta_\sigma})$. Assume now $A^\sigma_{\eta_\sigma}$ is non-degenerate, then

$$\Pi^\sigma_{\eta_\sigma} = \Pi_\eta + d\sigma \otimes d\sigma - \frac{||\nabla \sigma||^2}{2} (,) - \text{Hess}^\sigma.$$

In particular, if σ is a constant $\Pi^\sigma_{\eta_\sigma} = \Pi_\eta$. The converse holds in the compact case. In fact, from $\Pi^\sigma_{\eta_\sigma} = \Pi_\eta$ we get $\triangle \sigma = 0$.

3 The Gauss curvature of Π_η

Assume now Π_η is a Riemannian metric on M^2. This section is devoted to obtain a formula which relates the Gauss curvature K of the induced Riemannian metric $(,)$ and the Gauss curvature K^η of the metric Π_η.

Let ∇^{Π_η} be the Levi-Civita connection of the metric Π_η. The difference tensor L between the Levi-Civita connections ∇^{Π_η} and ∇ is the symmetric tensor given by,

$$L(X, Y) = \nabla^{\Pi_\eta} X Y - \nabla_X Y,$$

for all $X, Y \in \mathfrak{X}(M^2)$. The Koszul formula [11, p. 61] for Π_η, the Codazzi equation (1) and $\nabla^{\perp_\eta} = 0$ show,

$$L(X, Y) = \frac{1}{2} A^{-1}_\eta \left[(\nabla_X A_\eta) Y \right].$$

(7)

The Riemannian curvature tensor R^η of Π_η is obtained as,

$$R^\eta = R + Q_1 + Q_2,$$
where R is the Riemannian curvature tensor of the induced metric and
\[Q_1(X, Y)Z = (D_X L)(Y, Z) - (D_Y L)(X, Z), \]
\[Q_2(X, Y)Z = L(Y, L(X, Z)) - L(X, L(Y, Z)), \]
for all $X, Y, Z \in \mathfrak{X}(M^2)$. Therefore the Gauss curvature K_η satisfies,
\[2K_\eta = \text{tr}_{\Pi_\eta} (\text{Ric}) + \text{tr}_{\Pi_\eta} (\hat{Q}_1) + \text{tr}_{\Pi_\eta} (\hat{Q}_2), \tag{8} \]
where $\hat{Q}_i(X, Y) = \text{tr} \{ Z \mapsto Q_i(Z, X)Y \}$ and tr_{Π_η} stands for the trace of the $(1,1)$-tensor \hat{T} defined by $\Pi_\eta(\hat{T}(X), Y) = T(X, Y)$.

Theorem 3.1. Let $\psi : M^2 \to \mathbb{L}^4$ be a spacelike immersion which factors through the lightcone Λ such that Π_η is a Riemannian metric. Then,
\[2K_\eta = \frac{K^2}{\delta} + \Pi_\eta(L, L) - \frac{1}{4\delta^2} \Pi_\eta(\nabla^{\Pi_\eta} \delta, \nabla^{\Pi_\eta} \delta). \tag{9} \]

Proof. Fix $p \in M^2$ and let $\{e_1, e_2\}$ be an orthonormal basis of $T_p M^2$ for \langle , \rangle which satisfies $A_\eta(e_i) = -\lambda_i e_i$ with $\lambda_i > 0$ for $i = 1, 2$. Then $\{w_1, w_2\}$, where $w_i = (\lambda_i)^{-1/2} e_i$, is an orthonormal basis for Π_η. Taking into account (3), a direct computation shows that,
\[\text{tr}_{\Pi_\eta} (\text{Ric}) = \frac{K^2}{\delta}. \]

From (7), we obtain that $\Pi_\eta(L(X, Y), Z)$ is symmetric in all three variables and therefore,
\[\Pi_\eta(Q_1(X, Y)Y, X) = \Pi_\eta(Q_1(X, Y)X, Y). \]

Now, it is easily deduced that,
\[\text{tr}_{\Pi_\eta} (\hat{Q}_1) = 0. \]

Taking into account (7), we obtain,
\[\Pi_\eta(L(X, Y), Z) = \Pi_\eta(L(X, Z), Y), \]
for every $X, Y, Z \in \mathfrak{X}(M^2)$. A straightforward computation shows,
\[\text{tr}_{\Pi_\eta} (\hat{Q}_2) = 2 \left(\Pi_\eta(L(w_1, w_2), L(w_1, w_2)) - \Pi_\eta(L(w_1, w_1), L(w_2, w_2)) \right) \]
\[= \Pi_\eta(L, L) - \Pi_\eta(\text{tr}_{\Pi_\eta}(L), \text{tr}_{\Pi_\eta}(L)), \]
where
\[\Pi_\eta(L, L) = \sum_{i,j} \Pi_\eta(L(w_i, w_j), L(w_i, w_j)), \]
and
\[\text{tr}_{\Pi_\eta}(L) = -L(w_1, w_1) - L(w_2, w_2), \]
denotes the vector field obtained from the Π_η-contraction of L.

We end the proof with an explicit expression of $\text{tr}_{\Pi_\eta}(L)$. Let $\{E_1, E_2\}$ be a local orthonormal frame for \langle , \rangle which satisfies $A_\eta(E_i) = -f_i E_i$ for smooth functions $f_i > 0$, $i = 1, 2$ (see comment...
in [I p. 1815]). Then, \{W_1, W_2\}, where \(W_i = (f_i)^{-1/2}E_i\), is a local orthonormal frame for \(\Pi_\eta\). Recall that \(\nabla^\perp \eta = 0\). Now a direct computation shows that,

\[\langle \nabla X A_\eta E_i, E_i \rangle = X(f_i)\]

for any \(X \in \mathfrak{X}(M^2)\), and the Codazzi equation implies,

\[X(f_i) = \langle \nabla E_i A_\eta E_i, X \rangle. \quad (10)\]

Finally, from (10) and (7) we obtain,

\[X(\log \vartheta) = \langle \nabla W_1 A_\eta W_1, X \rangle + \langle \nabla W_2 A_\eta W_2, X \rangle = -2\Pi_\eta (\text{tr}_{\Pi_\eta}(L), X).\]

Therefore,

\[\text{tr}_{\Pi_\eta}(L) = \frac{\nabla \Pi_\eta \vartheta}{2\vartheta}, \quad (11)\]

which completes the proof.

Remark 3.2. An alternative proof of this formula can be achieved, using a local computation, from [6, Exercise I.18]; compare with [3, Propssion 3.4]. On the other hand, a key fact in order to get formula (9) has been \(\nabla^\perp \eta = 0\). For an arbitrary spacelike surface in \(L^4\), every lightlike normal vector field \(\eta\) must be recurrent. That is, we have \(\nabla^\perp \eta = \omega \otimes \eta\) where \(\omega\) is a one form on \(M^2\). If in addition, \(\eta\) is assumed to be non-degenerate, a formula relating the Gauss curvatures \(K\) and \(K_\eta\) can be also obtained as a wide extension of (9).

Proposition 3.3. Let \(\psi : M^2 \to L^4\) be a spacelike immersion which factors through the lightcone \(\Lambda\) and assume \(\Pi_\eta\) is a Riemannian metric. Then, \(M^2\) is totally umbilical in \(L^4\) if and only if the Gauss-Kronecker curvature with respect to \(\eta\) is a constant and \(K_\eta = 2\).

Proof. Assume \(A_\eta = \lambda I\), where \(\lambda \in \mathbb{R}\). Then (9) reduces to,

\[2K_\eta = \frac{K^2}{\lambda^2}.\]

Now from (11) we get that \(K_\eta = 2\). For the converse, note that (9) implies that \(K^2 \leq 4 \vartheta\), and Lemma 2.1 applies to end the proof.

Remark 3.4. From Proposition 3.3 and Remark 2.4 every complete spacelike surface \(M^2\) in the lightcone \(\Lambda\) with \(\Pi_\eta\) a Riemannian metric and totally umbilical satisfies \(K = 2|\lambda| > 0\). As a consequence of the classical Myers theorem, if we assume \(M^2\) geodesically complete, \(M^2\) must be compact, and hence a round sphere.

4 Main results

For compact surfaces, Proposition 3.3 can be improved as the following result states.

Theorem 4.1. Let \(\psi : M^2 \to L^4\) be a compact spacelike immersion which factors through the lightcone \(\Lambda\). Assume \(\eta\) is non-degenerate. Then the following conditions are equivalent:
1. M^2 is a totally umbilical round sphere,

2. The Gauss-Kronecker curvature $\det(A_\eta)$ is constant,

3. The Gauss curvature of the Riemannian metric Π_η satisfies $K^\eta = 2$.

Proof. From Proposition 2.3, the metric Π_η is Riemannian. If we assume M^2 is totally umbilical, Proposition 3.3 gives that ∂ is constant and $K^\eta = 2$. Assume now the Gauss-Kronecker curvature ∂ is constant. Since M^2 is a topological 2-sphere \[12\], we have $\partial > 0$. Therefore, Lemma 2.1 assures that $K^\eta \geq 2\sqrt{\partial}$, with equality if and only if M^2 is totally umbilical. Now from Theorem 3.1,

$$2K^\eta \geq \frac{K^2}{\partial} \geq \frac{2K}{\sqrt{\partial}}. \tag{12}$$

The area elements corresponding to \langle , \rangle and Π_η are related by $dA_{\Pi_\eta} = \sqrt{\partial} dA_{\langle , \rangle}$. Hence the Gauss-Bonnet formula and (12) imply,

$$8\pi = \int_{M^2} 2K^\eta dA_{\Pi_\eta} \geq 2 \int_{M^2} \frac{K}{\sqrt{\partial}} dA_{\Pi_\eta} = 2 \int_{M^2} K dA_{\langle , \rangle} = 8\pi.$$

We get the equality in (12) and so $K = 2\sqrt{\partial}$ and $K^\eta = 2$. Finally, under the assumption $K^\eta = 2$, Lemma 2.1 can be rewritten as follows: $K^\eta \sqrt{\partial} \leq K$, again equality holds if and only if M^2 is totally umbilical. From the Gauss-Bonnet formula,

$$4\pi = \int_{M^2} K^\eta dA_{\Pi_\eta} = \int_{M^2} K^\eta \sqrt{\partial} dA_{\langle , \rangle} \leq \int_{M^2} K dA_{\langle , \rangle} = 4\pi,$$

and $K^\eta \sqrt{\partial} = K$. \qed

Remark 4.2. A compact spacelike immersion ψ which factors through the lightcone Λ with constant Gauss curvature must be totally umbilical \[12\, Theorem 5.4\]. From (5) and Corollary 2.8 it follows that ψ is totally umbilical if and only if K/∂ is a constant.

We end the paper with the statement of two results which complement Theorem 4.1 from points of view.

Proposition 4.3. Let $\psi : M^2 \to \mathbb{L}^4$ be a compact spacelike immersion which factors through the lightcone Λ. Assume η is non-degenerate. Then,

$$\text{area}(M^2, \Pi_\eta) \leq 2\pi,$$

and equality holds if and only if M^2 is totally umbilical.

Proof. In Theorem 4.1 we have pointed out that $dA_{\Pi_\eta} = \sqrt{\partial} dA_{\langle , \rangle}$ and $2\sqrt{\partial} \leq K$. Therefore, the result follows as a consequence of the Gauss-Bonnet formula and Lemma 2.1. \qed

For a compact submanifold M^n of an Euclidean space \mathbb{E}^{n+p} there is a well-known upper bound of the first non-trivial eigenvalue λ_1 of the Laplacian of M^n called the classical Reilly formula \[13\]. This upper bound depends on the integral of the square length of the mean curvature vector field and the $n-$dimensional area of M^n. It was shown in \[12\] that the same formula does not work for any compact spacelike surface in \mathbb{L}^4. However,
Proposition 4.4. Let $\psi : M^2 \to \mathbb{L}^4$ be a compact spacelike immersion which factors through the lightcone Λ. We have the following inequality,

$$\lambda_1 \leq 2 \frac{\int_{M^2} \langle H, H \rangle \, dA}{\text{area}(M^2, \langle \cdot, \cdot \rangle)},$$

and equality holds if and only if M^2 is totally umbilical.

Proof. The inequality was obtained in [12] as a consequence of the Hersch inequality [?], taking into account (3). The equality holds in (13) if and only if M^2 has constant Gauss curvature. Now, [12, Theorem 5.4] ends the proof.

A compact spacelike surface M^2 in the 3-dimensional de Sitter space \mathbb{S}^3_1 with non-degenerate second fundamental form is totally umbilical if and only if the Gauss curvature K^{II} of its second fundamental form is constant, [3]. A key tool in order to get this result is the Gauss formula $K = 1 - \det(A)$ where K and A are the Gauss curvature and the Weingarten operator of M^2, respectively. This relationship permits to obtain a formula which relates K and K^{II} and involves different ingredients of (9). This makes that the technique in [3] does not work in order to show that a compact spacelike surface in Λ, with K^η a constant, must be totally umbilical. Note that from Theorem 4.4, this assertion is in fact equivalent to the following one: if K^η is a constant for such a spacelike surface, then $K^\eta = 2$. At the moment the authors have no argument to support this assertion, although we think that it holds true.

Note that M^2 compact, η non-degenerate and K^η constant imply $K^\eta \geq 2$. To prove this fact, take a point $q_0 \in M^2$ where the function ∂ attains its maximum value. From Lemma 2.1 and Theorem 3.1 we deduce that, $2K^\eta \geq K^2(q_0)/\partial(q_0) \geq 4$.

In view of the previous discussion, we state the following

Conjecture. Every compact spacelike surface in \mathbb{L}^4 which factors through the lightcone Λ such that η is non-degenerate and $K^\eta =$ constant must be totally umbilical (that is, $K^\eta = 2$).

References

[1] J.A. Aledo, L.J. Alías and A. Romero, A new proof of Liebmann classical rigidity theorem for surfaces in space forms, Rocky Mt. J. Math., 35 (2005), 1811–1824.

[2] J.A. Aledo, S. Haesen and A. Romero, Spacelike surfaces with positive definite second fundamental form in 3D spacetimes, J. Geom. Physics, 57 (2007), 913–923.

[3] J.A. Aledo and A. Romero, Compact spacelike surfaces in the 3-dimensional de Sitter space with non-degenerate second fundamental form, Differ. Geom. Appl., 19 (2003), 97–111.

[4] A. Asperti and M. Dajczer, Conformally flat Riemannian manifolds as hypersurfaces of the light cone, Can. Math. Bull., 32 (1989), 281–285.

[5] B.Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.

[6] L.P. Eisenhart, Riemannian Geometry, 6th Edition, Princeton Univ. Press, 1996.

[7] M. Kossowski, The S^2-valued maps and split total curvature of a spacelike codimension-2 surface in Minkowski space, J. London Math. Soc., 40 (1989), 179–192.

[8] H.L. Liu, Surfaces in lightlike cone, J. Math. Anal. Appl., 325 (2007), 1171–1181.
[9] H.L. Liu and S. D. Jung, Hypersurfaces in lightlike cone, *J. Geom. Phys.*, **58** (2008), 913–922.

[10] H. Liu, M. Umehara and K. Yamada, The duality of conformally flat manifolds, *Bull. Braz. Math. Soc.*, **42** (2011), 131–152.

[11] B. O’Neill, *Semi-Riemannian Geometry with Applications to Relativity*, Academic Press, New York, 1983.

[12] F.J. Palomo and A. Romero, On spacelike surfaces in 4-dimensional Lorentz-Minkowski spacetime through a lightcone, to appear in *P. Roy. Soc. Edinb. A Mat.*

[13] R.C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, *Comment. Mat. Helvetici*, **52** (1977), 525–533.