Biosynthesis of silver nanoparticles using *Penicillium verrucosum* and analysis of their antifungal activity

Mohamed A. Yassin a,b,⁎, Abdallah M. Elgorban a,b,c, Abd El-Rahim M.A. El-Samawaty a,b, Bandar M.A. Almunqedhi a

a Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
b Agricultural Research Centre, Plant Pathology Research Institute, Giza, Egypt
c Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia

Abstract

The present study describes the biosynthesis of silver nanoparticles, using the fungus *Penicillium verrucosum*. The silver nanoparticles were synthesised by reacting silver nitrate (AgNO₃) with the cell free filtrates of the fungal culture, and were then characterized by UV–visible spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive, and X-ray diffraction analysis to further evaluate their successful biosynthesis, optical and morphological features (size and shape), and crystallinity. The bioactivity of the synthesized nanoparticles against two phytopathogenic fungi i.e.: *Fusarium chlamydosporum* and *Aspergillus flavus* was evaluated using nanomaterial seeding media. These biogenic silver nanoparticles were polydisperse in nature, with a size of 10–12 nm. With regard to the antifungal activity, 150 ppm of the nanoparticles suppressed the growth of *F. chlamydosporum* and *A. flavus* by about 50%. To the best of our knowledge, this is the first report on the use of *P. verrucosum* to synthesise silver nanoparticles. The present study demonstrates a novel, simple, and eco-friendly process for the generation of biofunctionally useful biogenic nanoparticles.

© 2021 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The field of nanoscience is a prospering one that holds a great future. It deals with materials in the 1–100-nm size range, the properties of which are different from those of their bulkier counterparts (Saxena et al., 2014). Nanoscale-sized materials exhibit novel chemical, physical, electronic, and magnetic properties, granting them tremendous potential for use in a wide range of applications in agriculture (Thul et al., 2013), medicine (Nosrati et al., 2021), and various areas of technological importance (Thiruvengadam et al., 2018). Over the years, researchers have put much effort into understanding the different characteristics of nanomaterials, such as their size, shape, and chemical compositions (Murray et al., 1993; Manna et al., 2002). Noble metals have served as the materials of choice ever since such research began, given that these nanoproducts can come in direct contact with humans in the form of jewellery and ornaments (Pienpinijtham and Thongnopkun, 2015).

Although chemical and physical methodologies are readily available for the synthesis of nanomaterials, the techniques usually require high temperatures, employ toxic chemicals, and release hazardous by-products (Elgorban et al., 2016a, 2016b). To address these concerns, researchers have shifted their focus towards biological methods that occur at ambient conditions, as happens in nature. For example, microbes that have been used to synthesise materials at the nanoscale include bacteria (Elblbesy et al., 2014), cyanobacteria (Chakraborty et al., 2009), algae (Mata et al., 2009), and diatoms (Schröfel et al., 2011).

In the laboratory, bacteria (Dahikar and Bhutada, 2013), fungi (Syed et al., 2013), and even viruses (Dujardin et al., 2003) have been successfully used to generate nanomaterials; for example, the production of silver nanoparticles using bacteria from a silver mine (*Pseudomonas stutzeri* AG 256) (Klaus et al., 1999) and from buttermilk (*Lactobacillus*) (Nair and Pradeep, 2002). Fungal-based...
approaches have been preferred over those employing plants for the
generation of nanomaterials, as fungi secrete more enzymes and
are easier to cultivate and grow in the laboratory.

Microbial-based nanomaterials, in particular fungal-based ones,
are being extensively investigated for novel properties. Fungal spe-
cies is chosen widely as it could produce particles with high stability
and thus preventing aggregation and enhance longevity (Castro-
Longoria et al., 2011). Fungi are relatively more resourceful than bac-
teria in the biosynthesis of nanoparticles due to the presence of a
number of bioactive metabolites, high accumulation and enhanced
production (Alghuthaymi et al., 2015). In that context, it is interesting
that Verticillium sp. (Mukherjee et al., 2001), Fusarium oxysporum
(Ahmad et al., 2003) and Phoma leveillei (Yassin et al., 2017a,
2017b) produce intracellular and extracellular nanomaterials respect-
ively. Various fungal strains are adding to the menu of nanomateri-
als which are being extensively researched for their potential
applications (Siddiqi and Husen, 2016). These microbial processes
are being used for the generation of nanomaterials with different
chemical compositions, morphologies (size and shape), and biological
activities. In the current study, we screened a number of fungi in the
laboratory and identified Penicillium verrucosum as a good candidate
for the synthesis of silver nanoparticles. Upon their biosynthesis,
we evaluated the physical characteristics of the myco-synthesised silver
nanoparticles as well as their antifungal activities against Fusarium
chlamydosporum and Aspergillus flavus in vitro.

2. Materials and methods

2.1. Biosynthesis of the silver nanoparticles

All the materials (chemicals and medium) used in the experi-
ment were procured from Sigma-Aldrich, Darmstadt, Germany,
and used as received (i.e. without further purification).

The processes for the fungus cultivation and biomass produc-
tion were adopted from our previous report (Elgorban et al.,
2016a, 2016b). P. verrucosum, isolated from vegetable-cultivated
greenhouse soil (Alharj, Riyadh, Saudi Arabia), was maintained
on potato dextrose agar (PDA) medium. For the biosynthesis of sil-
ver nanoparticles, the fungus was grown in liquid medium contain-
ing malt extract (0.3%), yeast extract (0.3%), glucose (1.5%), and
peptone (0.5%). Erlenmeyer flasks were inoculated with a spore
suspension of P. verrucosum and incubated at 25 °C on a rotary sha-
kier (150 rpm) for 7 days. Thereafter, the mycelial mat was col-
cected by paper filtration (Whatman No. 1) and washed with
sterile water. A 20 g sample of this mycelial mat was added to a
flask containing 200 mL of sterilised distilled water and incubated
at 25 °C for 24 h. The fungal biomass was refined, and the resultant
cell-free crude filtrate was used for the synthesis of silver nanoparti-
cles. In brief, 100 mL of the cell-free filtrate was mixed with
20 mL (1:5 ratio) of an aqueous 10 mmol/L silver nitrate solution
in a 250-mL Erlenmeyer flask and incubated at 25 °C (5 °C)
for 7 days.

A flask containing fungal filtrate without silver nitrate solution
was used as the control. The silver nanoparticles obtained by this
green synthesis approach were collected by centrifugation at
11,000 rpm (twice for 20 min each time) and then stored for fur-
ther study (Yassin et al., 2017a, 2017b).

2.2. Characterisation of the biogenic silver nanoparticles

The biogenic silver nanoparticles were characterised using stan-
dard techniques; namely, UV–Vis spectroscopy, transmission elec-
tron microscopy (TEM), scanning electron microscopy (SEM),
ergy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction
(XRD) analysis (Carvajal, 1993; Prema, 2010). To obtain the UV–
Vis absorption spectrum, a stock solution of the silver nanoparti-
cles was diluted to 5 mg/5 mL and the spectrum of this diluted
solution was recorded in the range of 300–800 nm using a
LAMBDA 35 UV–Vis spectrophotometer (PerkinElmer, Rodgau,
Germany). The size of the synthesised nanoparticles were mea-
sured by TEM with a JEM-1011 microscope (JEOL, Peabody, MA,
USA), operated at 120 kV accelerated voltage. The TEM samples
were prepared by drop casting of the silver nanoparticles onto a
copper grid. After about 6 h of drying in an 80 °C oven, the grid
was observed at high magnification for the size determination of
the nanoparticles. The morphological analysis was conducted by
SEM with a JSM-6380 LA microscope (Japan) operating at 2 kV.
EDS was carried out on a Rigaku MiniFlex X-ray diffractometer
(Kr; λ = 1.5406 Å). The patterns were recorded in the 2θ range from
10° to 90°, with a scanning rate of 0.05 mV/s.

2.3. Inhibitory activity of the biogenic silver nanoparticles

The fungal growth inhibition assay method was adopted from
our previous report (Yassin et al., 2013). In brief, the antifungal
activity of the silver nanoparticles against Fusarium chlamydo-
sporum and Aspergillus flavus was evaluated using nanomaterial seed-
ning media. PDA medium was first autoclaved and cooled to about
45 °C. The silver nanoparticles were then added to the medium
to obtain final concentrations of 0, 50, 100, 150, and 200 ppm.
Mycelial plugs of about 3-mm diameter, cut out from the periphery
of 7-day-old cultures of the tested fungi, were inoculated (asepti-
cally) upside down on the nanoparticle-containing PDA. The plates
(in triplicate per treatment) were incubated at 27 ± 2 °C.
The growth of the tested fungi was recorded for 7 days and the percent-
age inhibition of mycelial growth was compared with that of the
control (0 ppm silver nanoparticles). The median effective dose
(ED50) and the dose required for a desired effect in 95% of the fun-
gal culture (ED95) were also determined.

Statistical analysis of the antifungal activity of the silver
nanoparticles was carried out using Statistics for the Social
Sciences (SPSS) software, and data are presented as the mean ± s-
standard error of the mean (SE). The ED50, ED95, and slope of the
activity of the nanoparticles against the tested fungi were obtained
using probit analysis (Bahkali et al., 2015).
Fig. 4 shows the results of the XRD analysis to further confirm the crystalline nature of the synthesised silver nanoparticles. The Bragg reflections that corresponded to the (111), (200), (220), (311), and (222) planes agreed with those reported for silver nanoparticles.

3.2. Inhibitory effect of the biogenic silver nanoparticles

The data in Table 1, indicate that the silver nanoparticles inhibited the linear growth of *F. chlamydosporum* and *A. flavus* by about 50% at the concentration of 150 ppm (ED$_{50}$ = 174.68, ED$_{95}$ = 838.3, slope = 2.33 ± 0.11) and by more than 50% at 200 ppm (ED$_{50}$ = 156.08, ED$_{95}$ = 1936.6, slope = 1.76 ± 7.1).

4. Discussion

Distinct brown colour following the bio-reaction of fungal cell-free extract and silver ions were attributed to the surface plasmon resonance in metals (Skottrup et al., 2007), indicating the formation of silver nanoparticles. The excitation at 420 nm was due to the strong SPR property of particles (Li et al., 2008; Tilaki et al., 2006). Even months past reaction, the solution showed high stability with no flocculation evidence of nanoparticles. It is established that capping and stabilization of the nanoparticles is brought about by different protein and other biomolecules secreted by microorganisms (Mazumdar et al., 2015). The extracellular synthesis of nanoparticles involves trapping the metal ions on the surface of the cells and reducing ions in the presence of enzymes (Li et al., 2011). Recently, different filamentous fungi were reported to be proficient in the biosynthesis of noble metal NPs. The authors proposed that the fungal compounds, reductase enzymes and fungal media components potentially played a role in stabilizing the nanoparticles (Molnár et al., 2018). The researchers reported that the biosynthesis occurred by fungi and reducing sugars were involved to tailor spherical metal NPs. They studied the biosynthesis of Au NPs and established the role of specific fungal proteins in
the capping of the metal NPs (Zhang et al., 2011). Chowdhury et al. (2014) synthesized AgNPs by using a fungus *Macrophomina phaseolina* and reported that the NPs are stabilized by proteins. Hence, the stability of green ZV-AgNPs due to the capping proteins could have an additional advantage as antimicrobial agents. The results on particle size and nanocrystal structure revealed by XRD analysis (Fig. 4) were in line with Kalishwaralal et al. (2008), who reported the synthesis of AgNPs from *B. licheniformis* with similar diffraction peaks.

At the higher concentrations, the inhibitory effect of the silver nanoparticles was higher against *A. flavus* than against *F. chlamydosporum*. Antifungal activity could be attributed to the size, shape, and capping proteins attached to the AgNPs. These finding are in agreement with those obtained by Elgorban et al. (2016a, 2016b) and Yassin et al. (2017a, 2017b). Elgorban et al. (2017) also found that Ag⁺ and silver nanoparticles were highly effective against *Cladosporium fulvum*, which causes tomato leaf mould. Lamsal et al. (2011) reported that silver nanoparticles inhibited the growth of *Colletotrichum* species (the causal agent of pepper anthracnose) both in *vitro* and *in vivo*. This high antifungal activity of silver nanoparticles may be related to their high concentration in the solution at which they can saturate and adhere to hyphae. On the other hand, Feng et al. (2000) confirmed that both *Escherichia coli* and *Staphylococcus aureus* DNAs lost the ability to replicate when the bacterial cultures were treated with silver nanoparticles, which might lead to the damaged expression of ribosomal subunit proteins (Yamanaka et al., 2005; Kim et al., 2012). This could be true for the antifungal effect as well. Overall, our biogenic silver nanoparticles showed promising antifungal results, especially at

![Fig. 3. The EDS micrograph of biosynthesized silver nanoparticles.](image1)

![Fig. 4. X-ray diffraction spectrum of the biogenic silver nanoparticles.](image2)

Nanomaterial concentrations (ppm)	*F. chlamydosporum*	*A. flavus*		
	RG	% inhibition	RG	% inhibition
0	90.00	00.00	80.75	00.00
50	80.75	10.28	66.50	17.65
100	63.75	29.17	56.50	30.03
150	52.25	41.94	44.75	44.58
200	39.00	56.67	33.00	59.13
ED₅₀	174.68	156.08	1936.6	136.5
ED₉₀	836.3	1536.5	136.5	
Slope ± SE	2.33 ± 0.11	1.76 ± 7.1		

ED₅₀: Median effective dose to kill 50% of the fungus; *ED₉₀:* Dose required for a desired effect in 95% of the fungal culture; *RG:* radial growth; *Inh.* (%): percentage inhibition.
high concentrations, and may be effective against other test organisms.

5. Conclusion

In summary, a simple and feasible route for the generation of silver nanoparticles, using the fungus *P. verrucosum*, has been demonstrated. The fungus bioreduced the aqueous silver nitrate solution and stabilised the nanoparticles formed in reaction. The biogenic nanoparticles were spherical in shape and 10–12 nm in size, and could inhibit the radial growth of *F. chlamydosporum* and *A. flavus* at concentrations of 50–200 ppm. Thus, these easily bio-derived and biofunctionally useful silver nanoparticles may find applications in areas such as catalysis, medicine, and optoelectronics, among others.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this Research Group No. (RG-298).

References

Ahmad, A., Mukherjee, P., Senapati, S., et al., 2003. Extracellular biosynthesis of silver nanoparticles using the fungus *Fusarium oxysporum*. Colloids Surf. B: Biointerfaces 29, 313–318.

Alghuthaymi, M.A., Almoammar, H., Rai, M., Sayed, T., Alshammari, K.A., 2015. Mycoplanocysis: synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 29, 221–236. https://doi.org/10.1080/13102818.2015.100819.

Bahkali, A.H., Elgorban, A.M., Abd El-Rahim, M.A., et al. 2015. In vitro susceptibility of clinical Aspergillus species to some antifungal agents. Int. J. Pharmacol. 11, 496–501.

Carvajal, R.J.R., 1993. advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 55–69.

Castro-Longoria, E., Vilchis-Nestor, A.R., Avalos-Borja, M., 2011. Biosynthesis of silver nanoparticles from phytopathogenic fungus *Macrophomina paseolina*. Bioresources. 6, 42–48. https://doi.org/10.11610/colsurf.2010.10.035. Epub 2010 Oct 30. PMID: 21087843.

Chakraborty, N., Banerjee, A., Lahiri, S., Panda, A., Ghosh, A.N., Pal, P., 2009. Biorecovery of gold by cyanobacteria and an eukaryotic alga with special reference to nanogold formation - a novel phenomenon. J. Appl. Physiol. 21, 145–152.

Chowdhury, S., Basu, A., Kundu, S., 2014. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus *Macrophoma paseolina*. Nanoscale Res. Lett. 9, 365. https://doi.org/10.1186/1556-276X-9-365.

Dahlor, S.B., Bhutada, S.A., 2013. Biosynthesis of silver nanoparticles using Bacillus megaterium and their antibacterial potential. IJDRD 3 (1), 13–19.

Dujardin, E., Peet, C., Stubbs, G., et al., 2003. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett. 3, 413–417.

Ellibesy, M.A., Madbouly, A.K, Hamdan, T.A., 2014. Bio-synthesis of magnetite nanoparticles by bacteria. Am. J. Nano. Res. Appl. 2 (5), 98–103.

Elgorban, A.M., Al-Rahman, A.N., Sayed, S.R., et al., 2016a. Antimicrobial activity and green synthesis of silver nanoparticles using *Trichoderma viride*. Biotechnol. Biotechnol. Equip. 30, 299–304.

Elgorban, A.M., El-Samawaty, M.A., Abd-El-Kader, O.H., et al., 2017. Bioengineered silver nanoparticles using *Curvularia luteola* and its fungicidal activity against *Cadorsporium fulvum*. Saudi J. Biol. Sci. 24 (7), 1522–1528.

Elgorban, A.M., El-Samawaty, M.A., Yassin, M.A., et al. 2016b. Antifungal silver nanoparticles: synthesis, characterization and biological evaluation. Biotechnol. Biotechnol. Equip. 30, 56–62.

Feng, Q.L., Wu, J., Chen, G.Q., et al., 2000. A mechanistic study of the antibacterial effect of silver ions on *Escherichia coli* and *Staphylococcus aureus*. J. Biomed. Mater. Res. 52, 662–668.