Genetic Polymorphisms in LDLR, APOB, PCSK9 and Other Lipid Related Genes Associated with Familial Hypercholesterolemia in Malaysia

Say-Hean Lye1, Jagdish Kaur Chahil1, Pramod Bagali1, Livy Alex1*, Jamunaranji Vadivelu2, Wan Azman Wan Ahmad2, Siew-Pheng Chan2, Meow-Keong Thong2, Shamsul Mohd Zain3, Rosmawati Mohamed2

1 INFOVALLEY Group of Companies, Jalan Tasik, MINES Resort City, Selangor, Malaysia, 2 Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 3 The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Abstract

Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by elevations in total cholesterol (TC) and low density lipoprotein cholesterol (LDLc). Development of FH can result in the increase of risk for premature cardiovascular diseases (CVD). FH is primarily caused by genetic variations in Low Density Lipoprotein Receptor (LDLR), Apolipoprotein B (APOB) or Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) genes. Although FH has been extensively studied in the Caucasian population, there are limited reports of FH mutations in the Asian population. We investigated the association of previously reported genetic variants that are involved in lipid regulation in our study cohort. A total of 1536 polymorphisms previously implicated in FH were evaluated in 141 consecutive patients with clinical FH (defined by the Dutch Lipid Clinic Network criteria) and 111 unrelated control subjects without FH using high throughput microarray genotyping platform. Fourteen Single Nucleotide Polymorphisms (SNPs) were found to be significantly associated with FH, eleven with increased FH risk and three with decreased FH risk. Of the eleven SNPs associated with an increased risk of FH, only one SNP was found in the LDLR gene, seven in the APOB gene and three in the PCSK9 gene. SNP rs12720762 in APOB gene is associated with the highest risk of FH (odds ratio 14.78, p<0.001). Amongst the FH cases, 108 out of 141 (76.60%) have had at least one significant risk-associated SNP. Our study adds new information and knowledge on the genetic polymorphisms amongst Asians with FH, which may serve as potential markers in risk prediction and disease management.

Introduction

Familial hypercholesterolemia (FH) (ICD-10 code E78.0) was the first genetic disease of lipid metabolism to be clinically and molecularly characterized [1]. It is an inherited disorder of lipoprotein metabolism, transmitted in an autosomal dominant manner [2]. FH is characterized by elevated levels of low density lipoprotein cholesterol (LDLc) and total cholesterol (TC) in the circulation, deposits of cholesterol in peripheral tissues, presence of tendon xanthomas and accelerated atherosclerosis, leading to premature cardiovascular events [1,3,4,5,6].

Heterozygous FH is one of the most frequent Mendelian disorders with a frequency of 1 in 500 but has a much higher incidence in certain populations, such as the Afrikaners, Christian Lebanese, Finns, and French-Canadians [7]. The frequency of homozygous FH is 1 in a million, with symptoms appearing in childhood [8].

FH can result primarily from mutations in either Low Density Lipoprotein-Receptor gene (LDLR), Apolipoprotein B-100 gene (APOB), or Proprotein Convertase Subtilisin/Kexin type 9 gene (PCSK9), singly or in combination [1]. Genetic variations in the LDLR gene are commonly loss-of-function mutations, which result in increased plasma LDLc levels [9]. Genetic variations in the APOB gene, and the PCSK9 gene give rise to the same lipid homeostasis functional defects [1]. To date, genetic variants in an excess of 1000 have been identified in the LDLR, APOB & PCSK9 genes as reported by British Heart Foundation (BHF) and other public databases. In addition, other genes associated with lipid control and regulatory regions such as Upstream Transcription Factor 1 gene (USF1), Apolipoprotein E gene (APOE), Lipoprotein Lipase gene (LPL), Fibrinogen Beta Chain gene (FGB), and Hepatic Lipase gene (LIPC) can manifest as hypercholesterolemia and have been shown to predispose to premature cardiovascular diseases [10,11,12,13,14]. Results from SNPs study should be interpreted with caution, as SNPs may exert their effects individually, or multiple SNPs can act synergistically to cause a functional difference between haplotypes. Interaction among multiple SNPs may jointly affect a disease’s risk. Assessing the independent individual SNP without considering the SNP-SNP interactions forms (even on SNPs that show very weak associations with
estimated odds ratios) will fail to discover weak associations [15,16].

Clinical management of FH focuses on early detection and control of hypercholesterolemia to decrease the risk of atherosclerosis and to prevent premature cardiovascular disease [17]. Establishing an accurate diagnosis of FH is often difficult. In spite of its prevalence, and considerable benefit associated with its early detection and treatment, FH is often under-diagnosed in many countries [18,19]. Systematic genetic screening for mutations in those at risk of FH has been found to be cost effective and will help in better prognosis [20]. However, most genetic studies in FH were conducted in non-Asian populations and the allelic variants prevailing here in South East Asia are not known. In South East Asia, specifically in Malaysia, only few studies have been carried out on these genes [21,22,23,24,25,26]. Thus, the aim of this study is to determine the genetic variants in the LDLR, APOB, PCSK9 and other lipid related genes in a study cohort with clinical FH.

Materials and Methods

Subject Recruitment

Consecutive 141 patients with high LDLc levels above 4 mmol/L were recruited between January 2007 and September 2009 from the medical out-patient clinics at the University Malaya Medical Centre (UMMC), Kuala Lumpur. The FH-Dutch Lipid Clinic Network (DLCN) criteria [27,28] was adopted as the diagnostic scoring method to clinically diagnose/screen for FH, excluding molecular diagnosis criterion, and stratify subjects into possible FH, probable FH or definite FH. One hundred and one control subjects consisted of those who were genetically unrelated, with normal LDLc levels, absence of family history of FH, hyper/hypothyroidism, chronic kidney disease, diabetes, chronic liver disease and characterized as not FH by DLCN criteria (Table S1). The protocol was approved by the UMMC’s Medical Ethics Committee (Ref: 546.16) and written informed consents were obtained from all patients.

Questionnaire and Data Collection

The data included socio-demographic characteristics (age, sex, and occupation), personal and family history of hypertension, hypercholesterolemia, CVD and other lifestyle habits, such as smoking status, and physical activity. Body mass index (BMI), waist circumferences (WC) and blood pressure were also measured.

DNA Isolation

Genomic DNA from all subjects was isolated from whole blood using QIAamp DNA Mini Kit (QIAGEN, USA) in 200 μl of total volume according to user protocol. Qualitative and quantitative estimations were carried out on the DNA samples. All DNA samples were normalized to concentration of 50 ng/μl for genotyping.

Selection of Genes/SNPs and Microarray Probes Synthesis

Genetic variations implicated in FH from three publically available databases, BHF (www.ucl.ac.uk) [29], dbSNP (ncbi.nlm.nih.gov/SNP/) [30] and SNPedia (www.snpedia.com), were selected based on the following attributes: i) conventional SNPs known to cause FH in genes encoding LDLR, APOB and PCSK9 ii) SNPs in USF1, APOE, LPL, FGB and LIPC that were known to have functional effects by in vitro assays or were non-synonymous in lipid regulatory regions. Though our initial research and mining led us to 1850 SNPs, which were sent to Illumina for designing the probes, only 1536 could be of designable standards as per Illumina criteria.

A tool called Assay Design Tool (ADT) of Illumina ranks SNPs based on an in-built algorithm where SNPs scoring below 0.4 have a rank of zero suggesting the probe is not designable by Illumina. SNPs scoring between 0.4 and 0.6 get a rank 0.5 whereas a score above 0.6 is ranked 1. SNPs scoring 0.5 and 1 are technically ranked as SNPs that can be successfully designed as probes by Illumina. The assay has an average 30-fold redundancy for each probe thus making the quality control robust. In all, 231 probes had score of 0.5 and 1305 had a score of 1.0. Only 1536 SNPs were chosen because that was the maximum plexity Illumina platform could accommodate.

Most of the reported studies till date were from Caucasian population, and hence we were keenly interested to re-look at the reported SNPs using a population based approach, and check if the interpretations are extraplatable to Asian population.

Designability scores were graded and qualified probes were selected and synthesized for the custom GoldenGate™ genotyping assay (GGGT) (www.illumina.com). Of the 1850 SNPs mined, 1536 SNPs were synthesized as probes, comprising of 811 in LDLR, 245 in APOB, 284 in PCSK9, and another 196 lipid-regulatory related SNPs.

Genotyping

Genotyping was performed on Universal BeadChips (Illumina, USA) according to the manufacturer’s protocol and was carried out in compliance with MIAME (Minimum Information about a Microarray Experiment) guidelines [31]. All the raw data from our GGGT microarray assays were imported into the GenomeStudio™ software (Illumina, USA) for allelic analysis and deviation from Hardy-Weinberg equilibrium. Average call rate of 70–80% was observed, which is expected of a custom GGGT assay.

Statistical Analysis

Statistical analysis was performed using the SPSS software v16.0 (SPSS Inc., Chicago, Illinois). The test of normality (Kolmogorov-Smirnov) was employed to determine the normality of the variables. Descriptive analysis and statistical significance of the association were assessed by independent t-test. Logistic regression was applied to obtain the Odds Ratio (OR) and the p-values for the tested SNPs (p-values ≤0.05 were considered to be significant). An OR>1.0 was used as the cut-off for the baseline of risk-associated SNPs, and the baseline risk-lowering SNPs as OR<1.0. An OR equal to 1 was a neutral value and deemed as normal. Analysis of variance (ANOVA) test was conducted for comparison of means between clinical profiles and three genotype groups. Minor allele frequency (MAF) for this study was calculated. MAF for the most closely related ethnic group to our study were also extracted from public database (NCBI dbSNP Build 137). A Chi-Square Test was performed to determine whether there was a significant difference between our study’s MAF and public databases’ MAF. Bonferroni correction for multiple comparisons of SNPs on the same gene was performed. Unless otherwise specified, all data were presented as means and standard deviations.

Additional Validation of Genotype Calls by Sequencing

Microarray calls were validated by blindly re-genotyping some SNPs in a number of subjects randomly selected from cases using DNA sequencing. Primers were synthesized for regions encompassing a few significant SNPs and the PCR products amplified from the genomic DNA of FH cases were sent for sequencing (First BASE Laboratories, www.base-asia.com).
Results

Subjects Demographics and Clinical Profiles

Of the 141 FH subjects and 111 control subjects included in the study, 24 were classified as definite FH, 25 as probable FH and 92 as possible FH from cases based on DLCN criteria. There was no significant gender bias observed between FH subjects (73 males; 68 females) and control subjects (46 males; 65 females) that were recruited into the study (p = 0.104). The mean age of the FH subjects was 46.84 (SD ± 11.2), while control subjects were 44.00 (SD ± 9.9) with significant difference (p < 0.001). The BMI (p = 0.239), waist circumference (p = 0.356) and HDL cholesterol (HDLc) level (p = 0.420) were similar between the two study groups. FH subjects were found to have significantly higher levels of triglycerides (TG) (p = 0.001), TC and LDLc (p < 0.001) as compared to controls (Table 1).

FH Associated SNPs

A total of 14 SNPs were found to be significantly associated with FH. Eleven out of 14 were associated with high risk of FH (OR >1), while the remaining three were protective against FH (OR <1). Of the 11 associated SNPs, one (rs2569556) was found in the LDLR gene, seven in the APOB gene (rs1720762, rs13306187, rs13306194, rs12714238, rs12720772, rs57825321 and rs41291161) and three (rs12084215, rs565436 and rs28362269) in the PCSK9 gene. The APOB rs12720762 is associated with the highest risk of FH with OR of 14.78. Amongst the FH subjects, 108 (76.60%) subjects have had at least one significant risk-associated SNP. 17 out of 24 definite FH subjects (70.83%), 19 out of 25 probable FH subjects (76%) and 72 out of 92 possible FH subjects (78.26%) had at least one significant risk-associated SNP (Table 2).

The APOB rs57825321 and USF1 rs3737787 and rs2516839 were found to have a protective effect against FH in this case-control association study (Table 2). No significant associations were found with the other 1522 SNPs (99.09%) genotyped (Statistical data not shown but available upon request).

SNPs Association with Clinical and Demographic Profile

We also investigated the association of significant SNPs with the clinical and demographic profile of FH patients. There was no significant association between most of the SNPs with the clinical and demographic profile. However, the APOB rs13306194 and rs57825321 were significantly associated with HDLc level (p < 0.001). APOB rs12720772 was associated with TC (p = 0.0275) and BMI (p = 0.0337) while the PCSK9 rs12084215 was associated with HDLc level (p = 0.0090) and BMI (p = 0.0228) (Table 3, 4, 5, and 6). Clinical and demographic profile of control subjects was also examined similarly. No significant association was seen between most of the SNPs with the clinical and demographic profile. However, rs12084215 (PCSK9) was significantly associated with TG level (p = 0.0052) and waist circumference measurement (p = 0.0214) (Table 7).

Table 1. Demographics and clinical profiles of the subjects.

Characteristic	Over all FH cases	Definite FH	Probable FH	Possible FH	Controls	p-value Over all FH cases vs. Controls	
Males : Females	73:68	11:13	15:10	47:45	46:65	0.104	
Age (years)	46.84 (±11.2)	42.37 (±17.4)	45.60 (±18.6)	48.34 (±8.5)	40.00 (±9.3)	<0.001	
BMI (kg/m²)	26.42 (±5.4)	22.79 (±5.1)	26.49 (±5.2)	27.32 (±5.2)	25.62 (±4.9)	0.239	
WC (cm)	86.21 (±17.5)	76.64 (±19.1)	85.37 (±18.6)	88.90 (±16.0)	83.05 (±12.2)	0.356	
TG (mmol/L)	1.79 (±1.0)	1.99 (±1.8)	2.00 (±1.0)	1.69 (±0.7)	1.23 (±0.7)	0.001	
TC (mmol/L)	8.86 (±5.1)	13.23 (±10.7)	9.51 (±2.4)	7.47 (±1.2)	5.18 (±0.9)	<0.001	
HDLc (mmol/L)	1.25 (±0.7)	1.17 (±0.4)	1.53 (±1.5)	1.20 (±0.3)	1.34 (±0.3)	0.420	
LDLc (mmol/L)	6.37 (±2.3)	9.23 (±3.4)	6.96 (±2.3)	5.49 (±1.0)	3.28 (±0.7)	<0.001	

BMI, Body Mass Index.
WC, Waist circumference.
TG, Triglyceride.
TC, Total Cholesterol.
HDLc, High Density Lipoprotein Cholesterol.
LDLc, Low Density Lipoprotein Cholesterol.
The data are expressed as mean (±SD).
p-values were obtained by comparing the phenotypes between the two groups using Student’s t-test.
doi:10.1371/journal.pone.0060729.t001

Table 2. FH associated SNPs, (p<0.05).

Gene	rs number	Nucleotide change	p-value	OR (CI)
LDLR	rs2569556	[G>A]	0.0140	1.77 (1.12–2.78)
APOB	rs13306187	[G>A]	<0.0001	6.76 (3.28–13.90)
APOB	rs13306194	[G>A]	0.0154	2.25 (1.17–4.34)
APOB	rs12714238	[G>A]	<0.001	8.04 (3.20–20.20)
APOB	rs12720772	[G>A]	0.0130	2.00 (1.16–3.46)
APOB	rs12720762	[G>C]	<0.001	14.78 (5.03–43.44)
APOB	rs41291161	[T>A]	<0.0001	11.51 (4.32–30.69)
APOB	rs57825321	[A>T]	0.0304	2.02 (1.07–3.83)
APOB	rs12714254	[T>G]	<0.001	0.22 (0.11–0.50)
PCSK9	rs12084215	[C>A]	0.0064	3.87 (1.46–10.23)
PCSK9	rs565436	[A>G]	0.0020	5.00 (1.80–13.89)
PCSK9	rs28362269	[G>A]	<0.001	5.43 (2.76–10.65)
USF1	rs3737787	[A>G]	0.0174	0.55 (0.33–0.90)
USF1	rs2516839	[A>G]	0.0317	0.67 (0.46–0.97)

rs number, NCBI Reference SNP (rs) Number, an identification tag assigned by NCBI to SNPs [30].
CI, Confidence interval. Odds ratio (OR) between groups was determined by logistic regression.
doi:10.1371/journal.pone.0060729.t002

Polymorphisms of Familial Hypercholesterolemia

BMSX Polymorphisms of Familial Hypercholesterolemia

The data are expressed as mean (±SD).
p-values were obtained by comparing the phenotypes between the two groups using Student’s t-test.
doi:10.1371/journal.pone.0060729.t001

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e60729
Additional Validation of Genotype Calls by Sequencing

Bonferroni Correction

Five out of the eight significant SNPs of \textit{APOB} gene (rs13306187, rs12720772, rs12714238, rs12720762, rs41291161, rs12714254) and all three \textit{PCSK9} gene SNPs (rs12084215, rs565436 and rs28362269) survived significance after a conservative Bonferroni correction for multiple testing, (0.05/9, p<0.0056) and (0.05/4, p<0.0125) respectively, none of the SNPs of \textit{USF1} gene is significant following Bonferroni correction. These 8 SNPs are thus of sufficient interest to warrant further investigation.

Additional Validation of Genotype Calls by Sequencing

A few samples were sent for sequencing to rule out any genotyping errors and results were concordant with the genotype calls generated from the microarray data (Figure S1).

Discussion

Fourteen out of 1536 SNPs evaluated in this study were significantly associated with FH, with 11 SNPs associated with increasing risk for FH, while the remaining three SNPs associated with decreasing risk for FH. Among the risk-increasing SNPs, allele A of rs2569556 in \textit{LDLR} gene was identified among 55 out of 141 FH cases (39.0%), with 48 heterozygous and seven in homozygous genotypes. SNP rs13306187 in \textit{APOB} gene also demonstrated risk association on allele A among 11 FH cases. Ten of the FH cases were heterozygous and only one of the FH case was observed in homozygous genotype. Other risk associated SNPs on \textit{APOB} gene were only observed to occur in heterozygous genotype and these included 64 cases for rs12720772; six cases for rs12714238, 121 cases for rs57825321, 17 cases for rs13306194, six cases for rs12714238, and four cases for rs12720762. Three \textit{PCSK9} SNPs were observed to be associated with increased risk in a heterozygous manner (six cases for rs65436, six cases for rs12084215, and 15 cases for rs28362269). Only two risk-elevating SNPs (rs2569556 in \textit{LDLR} gene and rs13306187 in \textit{APOB} gene) were observed to be in the homozygous state; while other 9 SNPs presented in a heterozygous manner, which may demonstrate a milder phenotypic effect of FH. In general, 17 definite FH subjects (70.83%), 19 probable FH subjects (76%) and 72 possible FH subjects (78.26%) had at least one SNP out of the risk-increasing SNPs. The remaining 33 FH subjects (23.40%) did not have any risk-increasing SNPs indicating that there are other genetic or environmental factors causing hypercholesterolemia that were undetected by our study and which has the potential for future investigation. Besides the risk-increasing SNPs, there were 3 other SNPs with OR<1 (rs12714254 in \textit{APOB} gene, and rs2516839 and rs3737787 in the \textit{USF1} gene) which confer lower risk against FH. \textit{USF1} gene was studied because \textit{USF1} protein regulates the transcriptional activation of a variety of genes involved in glucose, lipid and apolipoproteins (\textit{APOCIII}, \textit{APOAI} and \textit{APOE}) metabolism in the development of atherosclerosis [32,33,34,35]. Results for SNPs in other candidate genes such as \textit{APOE}, \textit{LPL}, \textit{FGB} and \textit{LIPC} were analysed and found not to be significant in our study (p>0.05).

Clinical parameters were compared between the significant genotypes among FH patients (Table 3, 4, 5, and 6). Allele A of \textit{APOB} rs12720772 in heterozygous GA patients is associated with significantly higher level of plasma TC compared to the G allele (p = 0.0275), while allele A in \textit{APOB} rs12720772 (p = 0.0337) and \textit{PCSK9} rs12084215 (p = 0.0228) were associated with higher BMI.

Table 3. Comparison of clinical profiles between rs13306194 genotypes among FH patients.
Clinical Profiles
Age
TG
TC
HDLc
LDLc
BMI
WC

Data are presented in mean ± SD.
p-values were obtained by comparing the phenotypes among the genotypes using Analysis of Variance (ANOVA).
doi:10.1371/journal.pone.0060729.t003

Table 4. Comparison of clinical profiles between rs57825321 genotypes among FH patients.
Clinical Profiles
Age
TG
TC
HDLc
LDLc
BMI
WC

Data are presented in mean ± SD.
p-values were obtained by comparing the phenotypes among the genotypes using Analysis of Variance (ANOVA).
doi:10.1371/journal.pone.0060729.t004

Table 5. Comparison of clinical profiles between rs12720772 genotypes among FH patients.
Clinical Profiles
Age
TG
TC
HDLc
LDLc
BMI
WC

Data are presented in mean ± SD.
p-values were obtained by comparing the phenotypes among the genotypes using Analysis of Variance (ANOVA).
doi:10.1371/journal.pone.0060729.t005
Interestingly, we observed that 3 risk alleles have the effect of significantly higher level of plasma HDLc in their heterozygous form in 3 SNPs (GA, rs13306194; AT, rs57825321 of APOB; CA, rs12084215 of PCSK9). For control subjects, similar approach for clinical and demographic profile was also performed. Only allele A in SNP rs12084215 of PCSK9 was associated with higher level of TG (p = 0.0052) and waist circumference measurement (p = 0.0214) with heterozygous AC (Table 7). It is noteworthy that all the parameter-associated SNPs presented with homozygous wild type (+/-+) and heterozygous (+/--) but extremely low or no homozygous mutant (-/-). This finding is commonly observed among the heterozygous FH associated SNPs [36] (Table 3, 4, 5, 6, and 7).

MAF from the studied population were calculated and compared with the MAF information on public database. Han Chinese subjects, where available, were selected as the targeted group for comparison as this Asian ethnicity were believed to closely resemble the ethnic groups of our study population. The results demonstrated that six of our SNPs differed in the frequency of MAF in public database [37]. Disparity in frequency could be due to founder-effects, natural selection or multi-ethnic groups in the study population [38] (Table 8).

Out of the 1536 SNPs that were studied, 1522 SNPs (99.09%) did not show any significant result or association. This is because besides the SNPs being mono-allelic (non-polymorphic) [37], we also observed an almost equal number of the predicted risk alleles present in both case subjects and control subjects across our 252 samples. Thus analyses of these polymorphisms were not statistically significant and therefore, regarded as having non-pathogenic phenotype. These findings suggest that many SNPs published in public databases might just be non-pathogenic polymorphisms in Malaysia. This will require further validation in a larger population of Asian descent.

For the SNPs association study, we included all significant SNPs, inclusive of SNPs with relatively low odds ratio (LDLR rs2569556, OR 1.77), as SNPs usually work with other functionally relevant SNPs additively or synergistically, to manifest a disease condition in certain population [16]. Therefore, including these SNPs with relatively low ORs might aid future research on SNP-SNP interaction and polygenic effect of FH. Furthermore, 12 SNPs that were reported as significant were in the intronic and untranslated region (UTR) of genes. These SNPs could be in linkage disequilibrium with other functional SNPs involved in potential regulatory regions or splice site variants that may be associated with lipid related disorders. Exons 2 to 6 fall in the untranslated region (UTR) of genes. These SNPs could be in linkage disequilibrium with other functional SNPs involved in potential regulatory regions or splice site variants that may be associated with lipid related disorders. Exons 2 to 6 fall in the

Table 6. Comparison of clinical profiles between rs12084215 genotypes among FH patients.

Clinical Profiles	CC (% = 91)	CA (% = 9)	AA (% = 0)	p-value
Age	44.39 ± (11.3)	53.50 ± (2.6)	-	0.0558
TG	1.72 ± (0.8)	1.68 ± (0.9)	-	0.9069
TC	8.35 ± (3.1)	7.65 ± (1.4)	-	0.5927
HDLc	1.18 ± (0.5)	2.32 ± (2.8)	-	0.0090
LDLc	6.32 ±(3.0)	4.56 ± (1.8)	-	0.1602
BMI	25.80 ± (5.7)	31.57 ± (5.9)	-	0.0228
WC	84.33 ± (17.0)	94.58 ± (6.4)	-	0.1518

Data are presented in mean ± SD. p-values were obtained by comparing the phenotypes among the genotypes using Analysis of Variance (ANOVA).

doi:10.1371/journal.pone.0060729.t006

Table 7. Comparison of clinical profiles between rs12084215 genotypes among Control subjects.

Clinical Profiles	CC (n = 71%)	AC (n = 26%)	AA (n = 3%)	p-value
Age	38.05 ± (9.11)	37.67 ± (5.92)	41.00 ± (4.24)	0.8686
TG	1.07 ± (0.57)	2.90 ± (n/a)	-	0.0052
TC	5.11 ± (0.93)	6.20 ± (n/a)	-	0.2659
HDLc	1.42 ± (0.35)	0.98 ± (n/a)	-	0.2368
LDLc	3.20 ± (0.78)	3.90 ± (n/a)	-	0.3934
BMI	25.55 ± (4.91)	24.98 ± (5.08)	25.14 ± (2.27)	0.9313
WC	78.64 ± (8.96)	98.50 ± (14.85)	-	0.0214

Data are presented in mean ± SD. p-values were obtained by comparing the phenotypes among the genotypes using Analysis of Variance (ANOVA).

doi:10.1371/journal.pone.0060729.t007
Table 8. Minor allele frequency of significant SNPs.

Gene	rs no.	Region	Chr	Nucleotide change	MAF (Total)	MAF (Cases)	MAF (Controls)	MAF (PD)	p-value (Total vs. PD)	MAF source
LDLR	rs2569556	Intron 6	19	G>A	0.263	0.316	0.223	0.209	0.3853	HapMap-HCB
APOB	rs13306187	Exon 25	2	G>A	0.111	0.197	0.043	0.035	0.0314	HapMap-HCB
APOB	rs13306194	Exon 12	2	G>A	0.091	0.128	0.061	0.133	0.2784	Pilot 1 CHB+JPT low coverage panel
APOB	rs12714238	Intron 5	2	G>A	0.072	0.136	0.022	0.011	0.0311	Pharmacogenetics Network for Cardiovascular Risk Therapy
APOB	rs12720722	Intron 18	2	G>A	0.301	0.352	0.260	0.000	<0.0001	HapMap-CHB
APOB	rs12720762	Intron 1	2	G>C	0.076	0.159	0.014	0.021	0.0741	Pharmacogenetics Network for Cardiovascular Risk Therapy
APOB	rs41291161	Intron 14	2	T>A	0.077	0.149	0.021	0.001	<0.0001	ABECASIS CLINICAL PANEL
APOB	rs57825321	Intron 16	2	A>T	0.403	0.429	0.369	0.158	<0.0001	Pilot 1 CHB+JPT low coverage panel
APOB	rs12714254	Intron 3	2	T>G	0.405	0.342	0.454	0.100	<0.0001	Pilot 1 CHB+JPT low coverage panel
PCSK9	rs12084215	Intron 3	1	C>A	0.102	0.164	0.046	NA	NA	Pilot 1 CHB+JPT low coverage panel
PCSK9	rs565436	Intron 9	1	A>G	0.079	0.145	0.036	0.100	0.6627	Pilot 1 CHB+JPT low coverage panel
PCSK9	rs28362269	Intron 9	1	G>A	0.112	0.188	0.053	0.059	0.1289	Pilot 1 YRI low coverage panel
USF1	rs2516839	5′ UTR	1	G>A	0.408	0.360	0.447	0.366	0.5197	HapMap-CHB
USF1	rs3737787	3′ UTR	1	G>A	0.163	0.117	0.199	0.250	0.1032	HapMap-HCB

rs no, NCBI Reference SNP (rs) Number, an identification tag assigned by NCBI to SNPs.
Chr, Chromosome.
p-value obtained by comparing frequencies using Chi-Square Test.
MAF (Total), minor allele frequency obtained from total sum of case and control subjects in this study.
MAF (PD), minor allele frequency information from public database, NCBI dbSNP Build 137.
doi:10.1371/journal.pone.0060729.t008
homeostasis by either modulating the expression of hepatic \textit{LDLR} [45] or controlling the activity of cholesterol \textit{タルハ-ヒドロキシラーゼ} (CYP7A1), a rate-limiting enzyme in the synthesis of bile acid from cholesterol [46]. Presence of FH causal SNPs along with increasing age accelerates the hypercholesterolemia. This bias was beyond our control as our recruitment of subjects was based on volunteered patients who visit UMMC.

Another limitation of our study was that the microarray genotyping platform used in this study only allowed us to study published SNPs. It is possible that rare risk-associated SNPs may be discovered in future using other existing technologies such as sequencing. The authors also recognise that the genotype scores are not true reflection of the biological characteristics of FH as all alleles were given the same statistical weight. Therefore, a model of association of SNPs should be created to calculate the overall genetic risk. These 14 SNPs identified could provide more insights in future studies on screening markers for FH management and warrants further investigation.

Supporting Information

Figure S1 Validation by sequencing.

Table S1 The Dutch lipid network criteria.

References

1. Kader BJ, Cohen J, Hobbs HH (2003) Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 111: 1795-1803.
2. Alonso R, Defoche JC, Tejedor D, Castillo S, Stref M, et al. (2009) Genetic diagnosis of familial hypercholesterolemia using a DNA-array based platform. Clin Biochem 42: 899–903.
3. Stancler J, Wentworth D, Neaton JD (1986) Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screeners of the Multiple Risk Factor Intervention Trial (MRFT). JAMA 256: 2823–2828.
4. Wilson PW, Garrison RJ, Castelli WP, McNamara PM, et al. (1988) Prevalence of coronary heart disease in the Framingham Offspring Study: role of lipoprotein cholesterol. Am J Cardiol 66: 649-654.
5. Castelli WP, Anderson K, Wilson PW, Levy D (1992) Lipids and risk of coronary heart disease. The Framingham Study. Am J Epidemiol 2: 23-25.
6. Steinberg D, Witzum JL (1990) Lipoproteins and atherosclerosis. Current concepts. JAMA 264: 3047–3052.
7. Marais AD (2004) Familial hypercholesterolaemia. Clin Biochem Rev 25: 49–58.
8. Rentoul AK, Nasumova RP (2007) Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med 4: 214–225.
9. Anderson RG (2003) Joe Goldstein and Mike Brown: from cholesterol homeostasis to new paradigms in membrane biology. Trends Cell Biol 13: 534–539.
10. Lee JC, Weisgraber-Volkov D, Kyttala M, Sinheimer JS, Jokisaato A, et al. (2007) USF1 contributes to high serum lipid levels in Dutch FCHL families and U.S. whites with coronary artery disease. Arterioscler Thromb Vasc Biol 27: 2222–2227.
11. de Krijff P, Haverk LE (1996) Apolipoprotein E as a risk factor for coronary heart disease: a genetic and molecular biology approach. Curr Opin Lipidol 7: 59–63.
12. Alonso-Orgaza S, Moreno L, Macaya C, Rico L, Mateos-Caceres PJ, et al. (2006) Proenminostudy of plasma from moderate hypercholesterolaemic patients. J Proenin Res V 5: 2301–2306.
13. Ando H, Nishimura Y, Nemoto T, Takamura T, Nagai Y, et al. (2001) Sever hypercholesterolemia in a double heterozygote for lipoprotein lipase deficiency (LPL(Ardia)) and apolipoprotein epsilon4: a report of a family with LPL(Ardia). Endocr J 48: 113–118.
14. Meng L, Xu X, Zhang J, Wang Y, et al. (2010) Association of LIPC with serum lipid levels in the Guangzhou Bai Ku Yao and Han populations. Lipids Health Dis 9: 28.
15. Dinh L, Mahasirimongkol S, Liu Q, Yanai H, Sharaf Eldin N, et al. (2012) SNP-SNP interactions discovered by logic regression explain Crohn’s disease genetics. PLoS One 7: e43035.
16. Osay VU, Briallo LR, Knight JA, Shi E, Wang Y, et al. (2006) SNP-SNP interactions in breast cancer susceptibility. BMC Cancer 6: 114.
17. Al-Allah FA, Coutelle G, Waddington SN, David AL, Harbolte R, et al. (2010) LDLR-Gene therapy for familial hypercholesterolemia: problems, progress, and perspectives. Int Arch Med 3: 36.
18. Dorsch MF, Lawrance RA, Durham NP, Hall AS (2001) Familial hypercholesterolemia is underdiagnosed after AMI. BMJ 322: 111.
19. Renn A (2008) Familial hypercholesterolemia: underdiagnosed and undertreated. Eur Heart J 29: 2583-2584.
20. Jarvik GP, Brunzell JD, Motulsky AG (2006) Frequent detection of familial hypercholesterolemia mutations in familial combined hyperlipidemia. J Am Coll Cardiol 52: 1534–1536.
21. Al-Khatereh A, Zahri MK, Mohamad MS, Saqoung TH, Ibrahim S, et al. (2011) Analysis of sequence variations in low-density lipoprotein receptor gene among Malaysian patients with familial hypercholesterolemia. BMC Med Genet 12: 40.
22. Khoo KL, Tan H, Liew YM (2000) Familial hyperlipidaemia in Malaysian children. Med J Malaysia 55: 249–258.
23. Khoo KL, Van Acker P, Tan H, Despres JP (2000) Genetic causes of familial hypercholesterolemia in a Malaysian population. Med J Malaysia 55: 409–410.
24. Khoo KL, van Acker P, Defoche JC, Tan H, van der Kerkhof L, et al. (2000) Low-density lipoprotein receptor gene mutations in a Southeast Asian population with familial hypercholesterolemia. Clin Genet 58: 98–105.
25. Khoo KL, Tan H, Liew YM, Despres JP, Janus E (2003) Lipids and coronary heart disease in Asia. Atherosclerosis 169: 1–10.
26. Azian M, Hapizah MN, Khalid BA, Khalid Y, Rosli A, et al. (2006) Use of the denaturing gradient gel electrophoresis (DGGE) method for mutational screening of patients with familial hypercholesterolemia (FH) and Familial defective apolipoprotein B100 (FDB). Malay J Pathol 20: 7–15.
27. Foucher SW, Defoche JC, Umano-Eekenhausen MV, Kastelein JP (2001) The molecular basis of familial hypercholesterolemia in The Netherlands. Hum Genet 109: 602–615.
28. Bettejdruc J (2000) Lipids and vascular disease : current issues. London: Martin Dunitz.
29. Leigh SE, Foster AH, Whittall RA, Hubbard CS, Humphries SE (2008) Update and analysis of the University College London low density lipoprotein receptor familial hypercholesterolemia database. Ann Hum Genet 72: 483-498.
30. Sherry SI, Ward MH, Khodorov B, Baker J, Phan L, et al. (2001) dbSNP, the NCBI database of genetic variation. Nucleic Acids Res 29: 308-311.
31. Braza A, Hingamp P, Quackenschulz J, Sherlock G, Spellman P, et al. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29: 365-371.
32. Casado M, Vallet VN, Kuhn A, Vaulont S (1999) Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J Biol Chem 274: 2009-2013.
33. Rehavi A, Pasier B, Kamholz J, Chambaz J, Cardot P (1999) Cooperative binding of upstream stimulatory factor and hepatic nuclear factor 4 drives the transcription of the human apolipoprotein A-II gene. J Biol Chem 274: 1216-1225.
34. Pastier D, Lacorte JM, Chambaz J, Cardot P, Ribeiro A (2002) Two initiator-like elements are required for the combined activation of the human apolipoprotein C-III promoter by upstream stimulatory factor and hepatic nuclear factor-4. J Biol Chem 277: 15199–15206.

35. van der Vleuten GM, Isaacs A, Hijmans A, van Duijn CM, Stalenhoef AF, et al. (2007) The involvement of upstream stimulatory factor 1 in Dutch patients with familial combined hyperlipidemia. J Lipid Res 48: 193–200.

36. Yuan G, Wang J, Hegele RA (2006) Heterozygous familial hypercholesterolemia: an underrecognized cause of early cardiovascular disease. CMAJ 174: 1124–1129.

37. Alex L, Chahil JK, Lye SH, Bagali P, Lzl LW (2012) Differences in allele frequencies of autosomal dominant hypercholesterolemia SNPs in the Malaysian population. J Hum Genet 57: 358–362.

38. Austin MA, Hutter CM, Zimmern RL, Humphries SE (2004) Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 160: 487–490.

39. Lombardi P, Sijbrands EJ, van de Giessen K, Smelt AH, Kastelein JJ, et al. (1995) Mutations in the low density lipoprotein receptor gene of familial hypercholesterolemic patients detected by denaturing gradient gel electrophoresis and direct sequencing. J Lipid Res 36: 860–867.

40. Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, et al. (2005) Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 37: 1243–1246.

41. Salaun G, Amounnza G, Ntani EE, Ioannidis JP (2005) Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet 13: 840–848.

42. Cox DG, Kraft P (2006) Quantification of the power of Hardy-Weinberg equilibrium testing to detect genotyping error. Hum Hered 61: 10–14.

43. Ballding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7: 781–791.

44. Trapani L, Pallottini V (2010) Age-Related Hypercholesterolemia and HMG-CoA Reductase Deregulation: Sex Does Matter (A Gender Perspective). Curr Gerontol Geriatr Res: 420139.

45. Mataconsi M, Parini P, Angelin B, Rudling M (2005) Pituitary control of cholesterol metabolism in normal and LDL receptor knock-out mice: effects of hypophysectomy and growth hormone treatment. Biochim Biophys Acta 1736: 221–227.

46. Rudling M, Parini P, Angelin B (1997) Growth hormone and bile acid synthesis. Key role for the activity of hepatic microsomal cholesterol 7alpha-hydroxylase in the rat. J Clin Invest 99: 2239–2245.