Appearance of Agronomic Characters and Genetic Parameters Estimation on M₃ Population of Roselle [*Hibiscus sabdariffa* L.]

D S Hanafiah¹, **G Rakasiwi**¹, **M Fahreza**¹, **Rosmayati**¹, **L A M Siregar**¹ and **Meiriani**²

¹Department of Plant Breeding, Faculty of Agriculture, Universitas Sumatera Utara, Indonesia
²Department of Agronomy, Faculty of Agriculture, Universitas Sumatera Utara, Indonesia

E-mail: *diana.hanafiah@usu.ac.id*

Abstract. The morphology of mutant putative plant population can be influenced by genetic factors and environmental factors. M₃ generation population was thought to have wide character variability. The objective of this study was to determine the performance of agronomic characters and to estimate genetic parameters values of M₃ generation in mutant populations of 150 Gy and 450 Gy. Seeds from mutant population 150 Gy and 450 Gy in M₂ generation were harvested, and then their seeds were grown as M₃ generation. Variations that were obtained of each character at generation M₃ influences plants growth and development. The difference in character variability from the two mutant putative populations causes significant differences compared to the mean value character of control plants population. The heritability values of all characters observed range from low to high. Character canopy diameter and number of fruits per plant can be used as a character of selection in the next generation.

1. Introduction

Hibiscus sabdariffa L. had benefited to health and medicine. The Roselle flower calyx thought to have immune stimulatory effects because the calyx has secondary metabolites such as of phenols and flavonoids [1]. Roselle leaf extract has high polyphenol content and plays a role in inhibiting the development of prostate cancer cells [2].

Roselle was a self-pollinating plant. This population of rosella was homogeneity and the mutation were the one technique in plant breeding to increase genetic variation. Mutation breeding improves the traits of the plant. The variance of agronomic characters in roselle after being irradiated by gamma rays are assumed genetically controlled. The high genetic diversity is very important in the selection process.

Previous researchers have reported hereditary changes in the desirable characters in crop plant by using gamma rays as a physical mutagen, which has been used to develop 64 % of the radiation-induced mutant varieties [3]. Several research [4-8] conducted about gamma irradiation. The objective of this study was to determine the performance of agronomic characters and to estimate genetic parameters values of M₃ generation in mutant populations of 150 Gy and 450 Gy.
2. Materials and Methods
Field research was conducted at Faculty of Agriculture Universitas Sumatera Utara, Medan. Roselle seeds were planted obtained from restricted bulk genotypes obtained from the of M$_2$ generation. A total of 300 seeds (M$_3$) were planted with a spacing 1.5 x 1 m2 from each mutant population of 150 Gy and 450 Gy. The control plant was Rosellindo 2 variety as the control and parent plant. The data was analysed using t test and MINITAB program.

3. Results and Discussion
This study used 2 mutant putative plant populations of 150 Gy and 450 Gy (M$_3$ generation). The results showed that there were significant differences in the mean value of some characters observed from 2 mutant putative populations of M$_3$ generation compared to control plant populations.

Table 1. The mean of valued characters in the vegetative stage of the control plant population and mutant putative population of 150 Gy and 450 Gy in M$_3$ generation

No.	Characters	Populations		
		0 Gy	150 Gy	450 Gy
1	Plant height (cm)	168.60	186.14**	181.40**
2	Number of productive branches per plant	22.84	23.11	25.34**
3	Canopy diameter(cm)	137.30	146.52**	128.80**

Note: Analyze by compared mutant population with control population based on t test

Table 1 showed that the mean value of plant height and canopy diameter in mutant putative populations of 150 Gy were significantly different compared to the mean value of control population characters. The increase in the mean value were found in both characters observed. All mean value of plant height, number of productive branches per plant and canopy diameter of the mutant putative population of 450 Gy also were showed significantly different compared to the mean of control population characters. Gamma ray irradiation dose is different for each species [9].

The data showed that populations of 150 Gy and 450 Gy gave differences in the mean value of the characters observed in the generative stage. The difference mean value from each mutant putative population compared to the control plant population can be seen from Table 2.

Table 2. The mean of valued characters in the generative stage of the control plant population and mutant putative population of 150 Gy and 450 Gy in M$_3$ generation

No.	Characters	Populations		
		0 Gy	150 Gy	450 Gy
1	Age of flowering (days)	80.82	77.54**	77.79*
2	Age of harvesting (days)	117.55	112.52**	113.30**
3	Fruit calyx weight per plant (g)	83.60	76.10	96.50*
4	Capsule weight per plant (g)	77.60	70.40	84.40
5	No. of fruits per plant	51.19	71.7**	21.20**

Note: Analyse by compared mutant population with control population based on t test
Table 3. Genetic variability (σ^2_g), phenotype variability (σ^2_p), coefficient variation genetic (CVG) and heritability mutant putative population of 150 Gy and 450 Gy in M_3 generation

Characters	150 Gy	450 Gy
Plant Height (cm)		
σ^2_p	99.79	302.50
σ^2_g	20.45	101.06
h2	0.20(m)	0.3(m)
CVG (%)	2.43	5.54
CVG criteria	narrow	narrow
Number of productive branches per plant		
σ^2_p	10.91	24.05
σ^2_g	2.91	0.15
h2	0.27(m)	0.01(l)
CVG (%)	7.38	1.51
CVG criteria	narrow	narrow
Canopy diameter (cm)		
σ^2_p	439.98	413.00
σ^2_g	273.93	199.65
h2	0.62(h)	0.48(m)
CVG (%)	11.30	10.97
CVG criteria	moderate	moderate
Age of flowering (days)		
σ^2_p	58.78	54.18
σ^2_g	23.19	4.03
h2	0.39(m)	0.07(l)
CVG (%)	6.21	2.58
CVG criteria	narrow	narrow
Age of harvesting (HST)		
σ^2_p	58.75	53.62
σ^2_g	27.70	9.78
h2	0.47(m)	0.18(l)
CVG (%)	4.68	2.76
CVG criteria	narrow	narrow
Number of fruits per plant		
σ^2_p	104.16	113.78
σ^2_g	48.26	59.63
h2	0.46(m)	0.52(h)
CVG (%)	9.69	36.50
CVG criteria	moderate	wide
Fruit calyx weight per plant (g)		
σ^2_p	139.57	2511.86
σ^2_g	37.31	1041.29
h2	0.27(m)	0.41(m)
CVG (%)	8.03	33.45
CVG criteria	narrow	wide
Capsule weight per plant (g)		
σ^2_p	122.19	1937.51
σ^2_g	31.84	880.48
h2	0.26(m)	0.45(m)
CVG (%)	8.01	35.14
CVG criteria	narrow	wide

Note: (h): high, (m): moderate, (l): low.
The mean value increase in mutant putative population of 150 Gy was found in the number of fruits per plant, while the mean value decrease was found in the age of flowering and harvesting. These mean values were very significantly different from the mean of control population.

The mean value of the age of flowering and harvesting of the 450 Gy population showed significantly different when compared to the mean value of control plant population. The mean value increase of the fruit calyx weight per plant in the population of 450 Gy was significantly different from the mean value of the same character from control population. This supports the selection in obtaining high yield production plants from the mutant plant population of rosella. The character changes cause by gamma irradiation induction that occur in several studies [10-12].

In this M3 generation, genetic variation depends on the agronomic characters observed. The character of canopy diameter and number of fruits per plant have heritability values ranging from moderate to high at mutant putative populations of 150 Gy and 450 Gy. This result showed that the genetic factors were more involved than environmental factors. The coefficient variation genetic also ranges from moderate to wide which showed the variation of the observed characters. Both characters can be used as character selection in the next generation (Table 3).

Almost all production characters observed (number of fruits per plant, fruits calyx weight per plant, capsule weight per plant) in mutant putative populations of 450 Gy had heritability values and coefficient variation genetic ranging from moderate to wide. This shows that the mutant putative population of 450 Gy is a potential population to produce high yield roselle line. Some studies [4-14] resulted that irradiation has been used to increase the genetic variation, quantitative characters and improve the nutrition and quality of roselle plants.

4. Conclusion
There is a variation of morphological characters and genetic variability in mutant putative populations of 150 Gy and 450 Gy. The difference in character variability in the two putative populations of mutants caused significant differences compared to the control plant population [Rosellindo2 variety population]. The heritability values of all characters observed ranged from low to high. Character canopy diameter and number of fruits per plant can be used as a character of selection in the next generation.

References
[1] Puspitowati O H, Ulfah M and Sasmito E 2012 Uji aktivitas imunostimulator fraksi air dari ekstrak etanol kelopak bunga rosella (Hibiscus sabdariffa L.) terhadap proliferasi sel limfosit mencit galur swiss secara in vitro beserta identifikasi kandungan kimianya [The immunostimulatory activity of water fraction test of roselle (Hibiscus sabdariffa L.) calyx ethanol extract on cell proliferation of lymphocytes of Swiss mice strain by in vitro as well as identification of chemical] Jurnal Ilmu Farmasi dan Farmasi Klinik 9 2 pp 23-31
[2] Chiu C T, Chen J H, Chou F P and Lin HH 2015 Hibiscus sabdariffa leaf extract inhibits human prostate cancer cell invasion via down-regulation of Akt/NF-kB/MMP-9 Pathway Nutrients J 7 pp 5065-87
[3] Ahlloowalia B, Maluszynski M and Nichterlein K 2004 Global impact of mutation-derived varieties Euphytica 135 pp 187-204
[4] Hanafiah D S, Siregar L A M and Putri M D 2017 Effect of gamma rays irradiation on M1 generation of roselle (Hibiscus sabdariffa L.) International J. of Agr.Research. 12 pp 28-35
[5] Atmarazaqi IW. 2013. Phenotype analysis and content of anthocyanin to red Rosella (Hibiscus sabdariffa L.) after gamma irradiation [Thesis] (Yogyakarta, Indonesia: UIN Sunan Kalijaga)
[6] El Sherif F, Khattab S, Ghoname E, Salem N and Radwan K 2011 Effect of gamma irradiation on enhancement of some economic traits and molecular changes in Hibiscus Sabdariffa L. Life Sci. J. 8 3 pp 220-29
[7] Harding S S and Mohamad O 2009 Radiosensitivity test on two varieties of Terengganu and Arab used in mutation breeding of roselle (Hibiscus sabdariffa L.) African J. of Plant Sci. 3 8 pp 181-3

[8] Sanni T A, Ogundele J O, Ogunbusola E M and Oladimeji O 2015 Effect of gamma irradiation on mineral, vitamins and cooking properties of sorrel (Hibiscus Sabdariffa L.) seeds 2nd Int. Conf.on Chemical, Biological, and Env. Sci. ICCBES 15 (Dubai)

[9] Piri I, Babayan M, Tavassoli A and M Javaheri 2011 The use of gamma irradiation in agriculture. African J. of Microbiology Research 53 2 pp 5806-11

[10] Diouf M, Boureima S, Diop T and Cagirgan I M 2010 Gamma rays induced mutant spectrum and frequency in sesame. Turkish J. of Field Crops 15 1 pp 99-105

[11] Sakin M A 2002 The use of induced micro-mutation for quantitative traits after EMS and gamma ray treatments in Durum wheat breeding Pakistan J of Applied Sci 2 12 pp 1102-7

[12] Hanafiah D S, Trikoesoemaningtyas, Yahya S and Wirnas D 2010 Induced mutations by gamma ray irradiation to Argomulyo soybean (Glycine max) variety Nusantara Bioscience 2 3 pp 121-5

[13] Syahputra A, Hanafiah D S and Khardinata E H 2017 Variations of morphological characters on M2 Generation of Roselle (Hibiscus sabdariffa L.) induced by gamma irradiation Int. and National Seminar Indonesia Breeding Science Society (Bogor)

[14] Kumar A, Chaurasia A K, Markeri S, Shukla P K, Rai P K, Verma P K and Bara B M 2016 Effect of gamma radiation of macro mutations, effectiveness and efficiency under M2 generation in Pea (Pisum sativum L.) Annals of West University of Timișoara, ser. Biology 19 1 pp 71-6

Acknowledgement
The authors wish to thank Rector of the Universitas Sumatera Utara and Ministry of Research, Technology and Higher Education, Republic of Indonesia that has supported and funded this research through TALENTA Research No: 144/UN5.2.3.1/PPM/KP-TALENTA USU/2018.