Article title: Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments

Authors: Na Wei, Richard Cronn, Aaron Liston, and Tia-Lynn Ashman

Article acceptance date: 24 September 2018

The following Supporting Information is available for this article:

Methods S1 Additional details of Materials and Methods.

Fig. S1 Distinct separation between diploid and high-order polyploid *Fragaria*, with stomatal length as an example.

Fig. S2 Collection map of *Fragaria*.

Fig. S3 Climatic niche distances of 72 source *Fragaria* populations to the common gardens.

Fig. S4 Maximum-likelihood (ML) plastid phylogeny of *Fragaria*.

Fig. S5 Model comparisons for evolutionary dependence control, with stomatal length as an example.

Fig. S6 Model comparisons for evolutionary dependence control, with fitness as an example.

Fig. S7 Central leaflet width was similar among diploid and polyploid *Fragaria* taxa.

Fig. S8 Similar scales of three fitness components.

Table S1 Genotypes and populations of diploid and polyploid *Fragaria*

Table S2 Soil properties of the three common gardens

Table S3 Pairwise correlations between trait means and trait plasticities

Table S4 Differences in leaf functional traits between diploids and polyploids

Table S5 Pairwise correlations between trait plasticities and between functional traits

Table S6 Differences in trait plasticity between diploids and polyploids

Table S7 Differences in fitness between diploids and polyploids

Table S8 Relationships between average fitness and trait means and trait plasticities
Methods S1 Additional details of Materials and Methods

Common garden soil
Newport beds used a mixture of equal parts beach sand and Bandon fine sandy loam, a low clay content (5–15%) soil derived from the sandy alluvium of coastal marine terraces. Corvallis beds used Chehalis silt clay loam, a richer soil characterized by higher clay content (typically 35–45%). Bend beds used Lundgren ashy sandy loam, a soil characterized by high volcanic ash, glass, and pumice content.

Common garden weather data
We obtained daily data of temperature and rainfall for the three common gardens from different sources: Newport data from the Hatfield Marine Science Center (http://weather.hmsc.oregonstate.edu/weather/weatherproject/archive/), Corvallis and Bend data from AgriMet (https://www.usbr.gov/pn/agrimet/webagdayread.html). We then calculated the monthly mean temperature, monthly rainfall and monthly growing degree days (i.e. the cumulative heat above 10°C) for each garden location, during the course of the field experiment from October 2015 to mid July 2016.

Measurements of leaf functional traits
We collected the largest, fully expanded leaf from each experimental plant in selected beds in each garden. The leaves were scanned using a CanoScan LiDE 220 (Canon, Melville, NY, USA) with an antiglare styrene sheet. We used ImageJ v1.51a (Schneider et al., 2012) to measure leaf area (LA) and the central leaflet width (CLW).

The seven leaf functional traits included: specific leaf area (SLA), which measures the light-capturing leaf area per unit investment of dry mass (Poorter et al., 2009); leaf nitrogen content (N_{mass}), which influences photosynthetic potential (Wright et al., 2004); stomatal length (SL) and stomatal density (SD) that regulate plant CO$_2$ intake and water transpiration (Hetherington & Woodward, 2003); minor vein density (VLA) that reflects hydraulic conductance (Sack & Scoffoni, 2013); trichome density (TD), which can protect plants against water loss (Ehleringer & Björkman, 1978; Sletvold & Ågren, 2012); and carbon isotope
discrimination ($\Delta^{13}C$) that indicates plant intrinsic water use efficiency (Farquhar & Richards, 1984).

We obtained four leaf punches (each of 6 mm in diameter) from the middle portion of the central leaflet of the collected trifoliate leaf each sample, avoiding the midvein. Two leaf punches were used for measuring stomatal density and stomatal length of the abaxial and adaxial sides; one leaf punch was for measuring SLA; and one was for measuring trichome density and then vein density. When the central leaflet was not large enough for all trait measurements, we obtained two leaf punches from the central leaflet for stomatal density and stomatal length measurements, and one leaf punch from each of the two lateral leaflets for SLA, and trichome density and vein density, respectively.

For SLA estimation, one leaf punch per sample was stored in 96-well microplates (Thermo Fisher Scientific, Hampton, NH, USA), and dried at 65°C for 24 h. Leaf punches were then weighed using a Cahn C-35 microbalance (Thermo Fisher Scientific; with precision of 0.0001 mg). SLA was calculated using the known punch area divided by punch weight.

For stomatal measurements, we used a vinyl polysiloxane impression method to obtain the abaxial and adaxial stomata from leaf punches. First, we mixed the vinyl polysiloxane impression material (Patterson Dental, Pittsburgh, PA, USA) of the base and catalyst, and put the mixture onto a microscope slide. Two punches per sample were placed immediately onto the mixture, one for each side of the leaf. We placed another microscope slide on the top, and pressed slightly and held two slides together using binder clips. After the mixture dried (c. 15 min), the top slide and leaf punches were removed from the mixture using forceps to obtain permanent leaf impression. We applied clear nail polish to the impression and peeled off the impression using clear tapes, and placed it onto a new microscope slide for measuring stomatal density and stomatal length. The abaxial and adaxial stomata were counted using a Leica DM500 microscope (Leica Microsystems, Wetzlar, Germany) under 400× (10 × 40) magnification. Specifically, we counted the total number of stomata within two randomly selected fields of view (FOV) for each side. Stomatal density was calculated as the average number of stomata within a FOV divided by the area of the FOV. We took images of the abaxial and adaxial stomata, and measured the guard cell lengths of up to five stomata of each side and
obtained the average stomatal length. As most *Fragaria* plants only produce stomata on the abaxial side, we only reported abaxial stomatal density and stomatal length.

For trichome density estimation, one leaf punch per sample was stored in 70% ethanol. We counted the number of trichomes on both sides of a leaf punch under a dissecting microscope. If there were no more than 50 trichomes on one side, we counted all the trichomes. If there were >50 trichomes on one side, we counted trichomes within two randomly selected areas (each area = 1.5 mm × 1.5 mm) of a leaf punch. We summed the abaxial and adaxial trichome density for calculating TD. Leaf punches were then returned to 70% ethanol for subsequent vein density measurement.

Vein density here is defined as the total lengths of minor veins per unit leaf area. We only focused on minor veins, as they account for >80% of the total veins of a leaf and are key to leaf hydraulic capacity and photosynthesis (Sack & Scoffoni, 2013). We followed the protocol of Quantifying Leaf Vein Traits (http://prometheuswiki.org/tiki-index.php?page=Quantifying+leaf+vein+traits), using leaf punches stored in 70% ethanol. We took leaf vein images using a Leica DM500 microscope under 40× magnification, and used ImageJ to record the total lengths of minor veins within a 1 mm × 1 mm area.

The remaining leaf tissue after four leaf punches being taken was dried at 65°C for 48 h, and sent to the Cornell Isotope Laboratory for carbon isotope composition (δ\(^{13}\)C) and \(N_{\text{mass}}\) analysis using a Thermo Delta V isotope ratio mass spectrometer and a NC2500 elemental analyzer. Carbon isotope discrimination (Δ\(^{13}\)C) was calculated using the following formula (Farquhar & Richards, 1984):

\[
\Delta^{13}C = \frac{\delta^{13}C_{\text{air}} - \delta^{13}C_{\text{plant}}}{1 + \delta^{13}C_{\text{plant}} / 1000}, \%
\]

where \(\delta^{13}C_{\text{air}}\) equals -8‰.

Plastid phylogeny

The chloroplast nucleotide supermatrix (with 64645 characters), composed of the diploid and polyploid *Fragaria* taxa in this study (except *F. chiloensis* ssp. *chiloensis*) and three other diploid *Fragaria* taxa, as well as the outgroup *Dasiphora fruticosa* ssp. *floribunda* (Fig. S4), was kindly provided by M.S. Dillenberger (Oregon State University). We performed phylogenetic inference
using the maximum likelihood (ML) method with the GTR+Γ model in RAxML v.8.0.26 (Stamatakis, 2014). Confidence in node support was determined with 1000 bootstrapping replicates.

Phylogenetic general linear mixed models (PLMMs)

PLMMs were performed to validate our use of nested random effects in LMMs (i.e. populations nested in taxa and taxa in ploidy levels, ploidy/taxon/population; see main text) to control for evolutionary dependence among populations and taxa. Here we used the bifurcating, plastid tree (Fig. S4) for fitting PLMMs, due to the difficulty of accounting for reticulate evolutionary histories among diploid and polyploid taxa (Fig. 1) in PLMMs. Owing to the lack of *F. chiloensis* ssp. *chiloensis* in the plastid tree, we assumed that it had the same evolutionary history as *F. chiloensis* ssp. *pacific*. We conducted PLMMs using the R package MCMCglmm (Hadfield, 2010), with one functional trait (stomatal length, Fig. S5) and the composite fitness (Fig. S6) as examples.

To evaluate how diploids and polyploids differ in stomatal length, similar to the LMM fitted using restricted maximum likelihood (REML) with the package lme4 (Bates et al., 2015) (see main text; Fig. S5, Model 1), we first fitted the same LMM using the Bayesian method with MCMCglmm (Fig. S5, Model 2), where the random effects included ploidy/taxon/population. Then for PLMMs, we fitted two models that differed from the LMMs (Model 1 and Model 2) only in random effects: one PLMM model considered only phylogenetic covariance among taxa (random effects = phylo; Fig. S5, Model 4); one PLMM model considered both populations nested in taxa and phylogenetic covariance among taxa (random effects = taxon/population + phylo; Fig. S5, Model 3). We performed the same four types of models for modeling fitness (Fig. S6).

To fit MCMCglmm models, we used default priors for predictors (fixed effects) and uninformative priors (*V* = 1, *nu* = 0.02) for all random effects and residual variance. Models were run with 200000 total MCMC iterations (burn of 100000, and thinning of 100), and convergence was checked graphically. For Bayesian model comparisons based on the deviance
information criterion (DIC), we used the package MuMIn (Bartoń, 2017). Least-squares means of predictors in MCMCglmm models were estimated using the package lsmeans (Lenth, 2016).

For both the functional trait (Fig. S5) and composite fitness (Fig. S6), LMM Model 2 (the Bayesian version of Model 1) with nested random effects outperformed PLMM Model 4 that only considered phylogenetic relatedness among taxa, but performed as well as PLMM Model 3 that considered both populations nested in taxa and phylogenetic relatedness among taxa.
Fig. S1 Distinct separation between diploid and high-order polyploid *Fragaria*, with stomatal length (SL) as an example. The least-squares mean of SL and 1 SEM are plotted. Significant differences are only observed between diploids \((2n = 2x)\) and high-order polyploids \((2n \geq 6x)\). The response variable (SL) was power transformed to improve normality in a general linear mixed model, where the fixed effects included central leaflet width + climatic niche distance + garden + ploidy + ploidy: garden + ploidy: climatic niche distance, and the nested random effects included ploidy/taxon/population. Owing to the distinct separation between diploids and high-order polyploids, and the dominance of the 8x taxa and genotypes (Table S1; also smaller SEM relative to the 6x and 10x here), we defined ploidy level broadly as diploid or polyploid in the main text and all downstream analyses.
Fig. S2 Collection map of *Fragaria* from our Wild Strawberry website (http://wildstrawberry.org/; accessed on April 25, 2018). This worldwide collection of *Fragaria* was conducted as an international collaborative effort from 2013 to 2014. Each dot represents one population, and the collection data of genotypes within each population are available from the Wild Strawberry website. Briefly, achenes (averagely 70 per plant) were collected from 1–28 plants (mean = 15) of individual populations. For this study, we considered *Fragaria* that occur in North America, South America, Europe and Japan.
Fig. S3 Climatic niche distances of 72 source *Fragaria* populations to the common gardens. (a) The first two principal components of PCA of the 19 bioclimatic variables and elevation estimates of the 72 source *Fragaria* populations and the three common gardens (the stars). The variables with the largest loadings are indicated by the arrows. (b) The first five PCs, accounting for 94.2% of the variation, were used to calculate Euclidean climatic niche distance between each source population and each garden.
Fig. S4 Maximum-likelihood (ML) plastid phylogeny of Fragaria. This phylogeny reflects only the evolutionary histories of the plastid genome, but not the reticulate histories of the nuclear genome among diploid \((2n = 2x)\) and polyploid \((2n \geq 6x)\) taxa (Fig. 1) that are difficult to be incorporated into general linear mixed models for controlling for evolutionary dependence among taxa. This phylogeny included the diploid and polyploid Fragaria in this study (black), and those not (grey). Numbers associated with branches are ML bootstrap support values (%) from 1000 replicates.
Fig. S5 Model comparisons for controlling for evolutionary dependence among populations and taxa, with stomatal length (SL) as an example. The response variable (SL) was power transformed to improve normality. LMM Model 2 (the Bayesian version of Model 1) with nested random effects outperformed PLMM Model 4 that only considered phylogenetic covariance among taxa. The least-squares mean and 1 SEM are plotted for diploids (blue) and polyploids (red) at each garden location for each model.

Model	Fixed effects	Random effects	Model type	Method	DIC	ΔDIC
1	CLW + climatic niche distance + ploidy/taxon/population	LMM	REML^a	-887.9	0	
2	garden + ploidy + ploidy:garden	LMM	Bayesian^b	-887.8	0.15	
3	+ ploidy:climatic niche distance	PLMM	Bayesian^b	-854.1	33.79	
4	taxon/population + phylo phylo	PLMM	Bayesian^b	-854.1	33.79	

LMM, general linear mixed model
PLMM, phylogenetic general linear mixed model
REML, restricted maximum likelihood
^ausing lme4 package; ^busing MCMCglmm package
CLW, central leaflet width
Fig. S6 Model comparisons for controlling for evolutionary dependence among populations and taxa, with the composite fitness as an example. The response variable (the composite fitness index) was power transformed (with power parameter = 0.1) to improve normality. LMM Model 2 (the Bayesian version of Model 1) with nested random effects outperformed PLMM Model 4 that only considered phylogenetic covariance among taxa. The least-squares mean and 1 SEM are plotted for diploids (blue) and polyploids (red) at each garden location for each model.

Model	Fixed effects	Random effects	Model type	Method	DIC	ΔDIC
1	ploidy/taxon/population	ploidy/taxon/population	LMM	REML\(^a\)		
2	climatic niche distance + garden + ploidy	ploidy/taxon/population	LMM	Bayesian\(^b\)	-426.0	0
3	+ ploidy:climatic niche distance + ploidy:climatic niche distance	taxon/population + phylo	PLMM	Bayesian\(^b\)	-424.9	1.1
4	+ ploidy:climatic niche distance	phylo	PLMM	Bayesian\(^b\)	-352.9	73.05

LMM, general linear mixed model
PLMM, phylogenetic general linear mixed model
REML, restricted maximum likelihood
\(^a\)using lme4 package; \(^b\)using MCMCglmm package

LMM, general linear mixed model
PLMM, phylogenetic general linear mixed model
REML, restricted maximum likelihood
\(^a\)using lme4 package; \(^b\)using MCMCglmm package
Fig. S7 Central leaflet width was similar among diploid and polyploid *Fragaria* taxa. Individual dots represent genotypic values of each taxon in the three common gardens. The boxes denote the 25th, 50th (median) and 75th percentiles, and whiskers mark 1.5 times the interquartile range from the boxes.
Fig. S8 Similar scales of three fitness components. Genotypic median values of survival rate (median = 1), growth (i.e. plant size since transplanting; median = 0.64 dm²) and asexual reproduction (i.e. stolon dry mass; 0.56 g), together with the 25th and 75th percentiles, are marked by the boxes. The whiskers mark the range of the 10th and 90th percentiles.
Table S1 Genotypes and populations of diploid and polyploid *Fragaria*

Ploidy	Taxon	Population	Genotype	Clone	Latitude	Longitude	Altitude (m)
diploid	*F. vesca* ssp. americana	NA.IA.1	2	23	41.7753	-94.4646	362
diploid	*F. vesca* ssp. americana	NA.NH.3	4	47	44.8710	-71.5036	339
diploid	*F. vesca* ssp. americana	NA.ON.2	4	48	43.4727	-80.0803	307
diploid	*F. vesca* ssp. bracteata	NA.BC.2	1	12	48.7990	-123.1370	188
diploid	*F. vesca* ssp. bracteata	NA.CA.1	4	48	38.7751	-120.4570	1075
diploid	*F. vesca* ssp. bracteata	NA.CA.7	4	48	40.8961	-123.7700	850
diploid	*F. vesca* ssp. bracteata	NA.CO.2	4	48	38.7615	-106.7670	2833
diploid	*F. vesca* ssp. bracteata	NA.ID.1	4	48	44.0270	-115.8550	1146
diploid	*F. vesca* ssp. bracteata	NA.OR.3	4	48	44.4348	-120.3370	1573
diploid	*F. vesca* ssp. bracteata	NA.OR.4	4	48	44.4955	-123.5450	763
diploid	*F. vesca* ssp. bracteata	NA.OR.8	4	48	42.5768	-124.3900	130
diploid	*F. vesca* ssp. bracteata	NA.UT.3	4	48	40.4349	-111.6310	2313
diploid	*F. vesca* ssp. bracteata	NA.WA.2	4	41	48.4819	-118.7270	629
diploid	*F. vesca* ssp. bracteata	NA.WA.3	4	48	47.9640	-117.1010	912
diploid	*F. vesca* ssp. vesca	EU.AT.1	3	36	47.8114	13.0867	558
diploid	*F. vesca* ssp. vesca	EU.CH.5	4	48	46.4909	6.8235	915
diploid	*F. vesca* ssp. vesca	EU.CZ.1	4	48	50.1550	12.2186	632
diploid	*F. vesca* ssp. vesca	EU.DE.5	4	47	47.8636	7.8543	833
diploid	*F. vesca* ssp. vesca	EU.ES.1	4	48	41.2292	-3.4214	1498
diploid	*F. vesca* ssp. vesca	EU.ES.5	4	48	42.0957	0.6254	1051
diploid	*F. vesca* ssp. vesca	EU.FI.4	4	48	46.2333	25.7000	113
diploid	*F. vesca* ssp. vesca	EU.FR.3	4	48	43.3051	-1.2410	242
diploid	*F. vesca* ssp. vesca	EU.HR.1	4	48	45.8680	15.8462	128
diploid	*F. vesca* ssp. vesca	EU.IT.1	4	48	46.1636	10.9217	2100
diploid	*F. vesca* ssp. vesca	EU.NO.1	4	48	60.4119	10.5330	240
diploid	*F. vesca* ssp. vesca	EU.PL.3	4	48	54.2795	18.0036	178
diploid	*F. vesca* ssp. vesca	EU.RO.1	4	48	46.4367	23.7638	347
diploid	*F. vesca* ssp. vesca	EU.SE.1	4	42	55.5222	14.0158	40
diploid	*F. vesca* ssp. vesca	EU.SE.5	4	48	57.7889	11.8332	13
diploid	*F. vesca* ssp. vesca	EU.SI.2	4	48	46.5769	15.6092	332
diploid	*F. viridis*	EU.AT.5	1	12	48.2331	14.8897	230
diploid	*F. viridis*	EU.CZ.4	4	48	50.5508	14.3697	320
diploid	*F. viridis*	EU.CZ.7	4	48	50.4067	13.8067	294
diploid	*F. viridis*	EU.DE.2	4	48	49.8042	7.7410	183
diploid	*F. viridis*	EU.ES.2	4	48	41.4269	-3.7666	1169
diploid	*F. viridis*	EU.NO.3	4	48	60.4332	10.4990	211
Species	Collection	Samples	Averages	Standard Deviation	Count		
------------------------------	------------	---------	----------	--------------------	-------		
diploid *F. viridis*	EU.SE.1	4	48	55.5222	14.0158	40	
diploid *F. viridis*	EU.SE.10	1	12	59.9255	17.6264	21	
diploid *F. iinumae*	JP.HK.3	4	48	42.8477	141.0960	922	
diploid *F. iinumae*	JP.HK.7	3	36	42.8685	140.6760	795	
polyploid *F. moschata*	EU.AT.4	4	45	47.8125	13.0989	672	
polyploid *F. moschata*	EU.CZ.6	1	12	50.5200	14.3625	285	
polyploid *F. moschata*	EU.SI.1	4	48	46.6827	16.2951	213	
polyploid *F. moschata*	EU.SI.3	4	48	46.2847	15.5876	626	
polyploid *F. virginiana ssp. platypetala*	NA.CA.12	3	36	40.1418	-121.2670	1323	
polyploid *F. virginiana ssp. platypetala*	NA.OR.3	4	48	44.4348	-120.3370	1573	
polyploid *F. virginiana ssp. platypetala*	NA.UT.2	4	48	40.3149	-111.2590	2434	
polyploid *F. virginiana ssp. platypetala*	NA.WA.1	4	47	47.5269	-121.0790	1022	
polyploid *F. virginiana ssp. virginiana*	NA.AB.2	4	47	50.6129	-115.1200	1697	
polyploid *F. virginiana ssp. virginiana*	NA.AK.4	4	48	64.7293	-148.1640	120	
polyploid *F. virginiana ssp. virginiana*	NA.CO.1	4	48	38.1133	-106.9320	3041	
polyploid *F. virginiana ssp. virginiana*	NA.MI.2	4	48	44.6271	-84.5132	349	
polyploid *F. virginiana ssp. virginiana*	NA.NY.1	4	48	41.8640	-74.3461	384	
polyploid *F. virginiana ssp. virginiana*	NA.ON.1	4	48	45.5701	-78.4340	403	
polyploid *F. virginiana ssp. virginiana*	NA.ON.2	4	48	43.4727	-80.8030	307	
polyploid *F. virginiana ssp. virginiana*	NA.PA.1	4	48	41.6415	-80.4329	310	
polyploid *F. virginiana ssp. virginiana*	NA.VT.1	4	48	42.8852	-73.1156	417	
polyploid *F. virginiana ssp. virginiana*	NA.WI.1	2	24	45.2327	-90.6861	392	
polyploid *F. chiloensis ssp. pacifica*	NA.AK.1	4	39	58.4290	-135.7610	21	
polyploid *F. chiloensis ssp. pacifica*	NA.CA.10	4	39	38.3139	-123.0470	4	
polyploid *F. chiloensis ssp. pacifica*	NA.CA.11	3	22	36.3305	-121.8920	38	
polyploid *F. chiloensis ssp. pacifica*	NA.CA.2	5	49	37.4666	-122.4450	11	
polyploid *F. chiloensis ssp. pacifica*	NA.CA.8	4	45	39.4616	-123.8070	18	
polyploid *F. chiloensis ssp. pacifica*	NA.CA.9	4	34	40.7730	-124.2140	3	
polyploid *F. chiloensis ssp. pacifica*	NA.OR.1	4	38	44.9167	-124.0270	5	
polyploid *F. chiloensis ssp. chiloensis*	SA.CL.2	4	48	-45.5500	-72.0667	268	
polyploid *F. chiloensis ssp. chiloensis*	SA.CL.3	4	48	-37.6333	-73.4333	162	
polyploid *F. chiloensis ssp. chiloensis*	SA.CL.4	4	48	-38.7333	-71.2500	1255	
polyploid *F. chiloensis ssp. chiloensis*	SA.CL.5	4	48	-40.5333	-73.2333	11	
polyploid *F. cascadensis*	NA.OR.5	4	48	44.4036	-122.0760	1080	
polyploid *F. cascadensis*	NA.OR.7	4	48	44.5779	-122.1230	1267	
Sum		269	3137				
Table S2 Soil properties of the three common gardens

Unit	Variable	Newport	Corvallis	Bend	Method
%	Sand	89	59	65	Hydrometer method
%	Silt	6	32	28	
%	Clay	5	9	7	
%	Moisture	0.4	1.2	0.6	
%	C	0.93	0.59	0.59	
ratio	N	0.07	0.09	0.07	Elementar
	C:N	13.3	6.6	8.4	
ppm = mg nutrient/kg soil	NO3-N	1.71	5.49	2.87	Lachat
	P	12.1	33.1	29.0	
	K	41	106	449	
	S	530	650	740	
	Ca	241	1873	1651	
	Mg	41	485	386	Mehlich 3 Extraction
	Mn	2.4	39.4	70.4	
	Cu	1.4	4.9	4.1	
	Zn	0.3	2.1	3.0	
	Fe	12.5	25.6	16.0	
	B	0.3	0.3	0.5	

Soils were collected from each garden in June 2016, and were sent to the Central Analytical Laboratory at Oregon State University for analysis.
Table S3 Pairwise correlations between trait means and trait plasticities for diploids and polyploids

Pairwise comparison		All			Diploids			Polyploids		
		Correlation coefficient			Correlation coefficient			Correlation coefficient		
		(r)	P value		(r)	P value		(r)	P value	
SLA.RDPI SLA.mean		0.08	0.210	-0.02	0.782	0.17	0.075			
SD.RDPI SD.mean		0.03	0.612	-0.01	0.872	0.06	0.499			
SL.RDPI SL.mean		0.10	0.111	-0.15	0.071	0.10	0.285			
VLA.RDPI VLA.mean		0.01	0.864	-0.08	0.372	0.14	0.155			
TD.RDPI TD.mean		-0.17	0.010	-0.21	0.018	-0.19	0.057			
Δ13C.RDPI Δ13C.mean		-0.02	0.889	0.14	0.408	-0.11	0.573			
N\textsubscript{mass}.RDPI N\textsubscript{mass}.mean		-0.11	0.363	-0.10	0.549	-0.11	0.572			

Non-parametric Kendall rank correlation coefficient (r) was estimated using the R package psych (Revelle, 2017). Functional trait mean was genotypic trait value averaged across all garden environments.
Table S4 Differences in leaf functional traits between diploids and polyploids

Functional trait	Fixed effects (Predictors)	Sum Sq	df	F	Pr(>F)
SLA	central leaflet width	36.36	1	10.38	0.001
	climatic niche distance	11.00	1	3.14	0.077
	garden	712.47	2	101.66 < 2.2e-16	0.000
	ploidy	10.87	1	3.10	0.100
	ploidy:garden	55.94	2	7.98	0.000
	ploidy:climatic niche	5.11	1	1.46	0.228
	distance				
	R^2_m: 0.448				
	R^2_c: 0.750				
SL (log)	central leaflet width	0.001	1	0.06	0.805
	climatic niche distance	0.008	1	0.49	0.486
	garden	3.093	2	91.38 < 2.2e-16	0.000
	ploidy	0.636	1	37.56	0.000
	ploidy:garden	0.606	2	17.90	0.000
	ploidy:climatic niche	0.036	1	2.13	0.145
	distance				
	R^2_m: 0.594				
	R^2_c: 0.700				
SD (sqrt)	central leaflet width	0.37	1	0.12	0.734
	climatic niche distance	14.82	1	4.60	0.032
	garden	83.61	2	12.96	0.000
	ploidy	13.55	1	4.20	0.049
	ploidy:garden	37.91	2	5.88	0.003
	ploidy:climatic niche	3.11	1	0.96	0.327
	distance				
	R^2_m: 0.105				
	R^2_c: 0.346				
VLA (log)	central leaflet width	0.239	1	8.43	0.004
	climatic niche distance	0.110	1	3.89	0.050
	garden	0.455	1	16.02	0.000
	ploidy	0.135	1	4.74	0.037
	ploidy:garden	0.008	1	0.28	0.597
	ploidy:climatic niche	0.035	1	1.25	0.265
	distance				
	R^2_m: 0.359				
	R^2_c: 0.530				
TD (sqrt)	Central leaflet width	2.43	1	10.96	0.001
-------------------------	-----------------------	------	---	-------	-------
	Climatic niche distance	0.46	1	2.09	0.149
	Garden	70.03	1	316.10	2.2e-16
	Ploidy	0.21	1	0.96	0.346
	Ploidy:garden	1.83	1	8.26	0.004
	Ploidy:climatic niche distance	0.01	1	0.04	0.840
	R²_m: 0.249				
	R²_c: 0.799				
N_mass	Central leaflet width	0.79	1	4.64	0.033
	Climatic niche distance	0.02	1	0.10	0.747
	Garden	29.12	2	85.21 2e-16	
	Ploidy	0.10	1	0.57	0.453
	Ploidy:garden	1.02	2	2.99	0.053
	Ploidy:climatic niche distance	0.15	1	0.88	0.349
	R²_m: 0.660				
	R²_c: 0.701				
Δ¹³C	Central leaflet width	1.14	1	2.22	0.138
	Climatic niche distance	4.25	1	8.30	0.004
	Garden	19.79	2	19.34	0.000
	Ploidy	0.75	1	1.46	0.233
	Ploidy:garden	1.50	2	1.47	0.234
	Ploidy:climatic niche distance	1.10	1	2.15	0.144
	R²_m: 0.220				
	R²_c: 0.448				

General linear mixed model (LMM) specification:
model <- lmer(Functional trait ~ Fixed effects + (1 | Nested random effects))
Fixed effects: central leaflet width + climatic niche distance + garden + ploidy + ploidy:garden + ploidy:climatic niche distance
Nested random effects: ploidy/taxon/population
The response variable of each LMM was power transformed if necessary. R^2_m, model marginal R^2 representing variance explained by fixed effects; R^2_c, model conditional R^2 representing variance explained by both fixed effects and random effects.
Table S5 Pairwise correlations between trait plasticities and between functional traits for each taxon

Taxon	Trait	Trait	Correlation coefficient (r)	P value	Trait	Trait	Correlation coefficient (r)	P value
Fragaria vesca ssp. *americana*	SLA	SD	-0.11	0.760	-0.24	0.496		
	SLA	SL	-0.07	0.855	0.16	0.668		
	SD	SL	-0.11	0.760	0.07	0.855		
	SLA	VLA	-0.11	0.776	-0.06	0.887		
	SD	VLA	0.22	0.566	-0.50	0.170		
	SL	VLA	0.39	0.301	-0.28	0.469		
	SLA	TD	0.39	0.301	0.33	0.381		
	SD	TD	0.17	0.668	-0.44	0.231		
	SL	TD	-0.11	0.776	-0.11	0.776		
	VLA	TD	0.06	0.887	0.50	0.170		
	SLA	Δ^{13}C	-0.33	0.784	0.33	0.784		
	SD	Δ^{13}C	-0.33	0.784	-0.33	0.784		
	SL	Δ^{13}C	-0.33	0.784	1.00	**0.000**		
	VLA	Δ^{13}C	0.33	0.784	-0.33	0.784		
	TD	Δ^{13}C	0.33	0.784	-0.33	0.784		
	SLA	N$_{mass}$	-0.33	0.784	1.00	**0.000**		
	SD	N$_{mass}$	1.00	**0.000**	-1.00	**0.000**		
	SL	N$_{mass}$	1.00	**0.000**	0.33	0.784		
	VLA	N$_{mass}$	0.33	0.784	0.33	0.784		
	TD	N$_{mass}$	-1.00	**0.000**	0.33	0.784		
	Δ^{13}C	N$_{mass}$	-0.33	0.784	0.33	0.784		
Fragaria vesca ssp. *bracteata*	SLA	SD	-0.02	0.893	-0.10	0.522		
	SLA	SL	-0.01	0.972	0.14	0.361		
	SD	SL	-0.11	0.484	-0.15	0.337		
	SLA	VLA	0.01	0.975	0.15	0.484		
	SD	VLA	-0.24	0.248	-0.15	0.484		
	SL	VLA	-0.18	0.389	-0.20	0.338		
	SLA	TD	-0.05	0.800	0.07	0.728		
	SD	TD	0.02	0.924	0.03	0.874		
	SL	TD	-0.13	0.525	-0.19	0.354		
	VLA	TD	0.07	0.728	0.34	0.096		
	SLA	Δ^{13}C	-0.24	0.496	-0.24	0.496		
	SD	Δ^{13}C	0.38	0.282	0.24	0.496		
	SL	Δ^{13}C	-0.02	0.951	0.07	0.855		
	Δ¹³C	N_{mass}		Δ¹³C	N_{mass}			
------	-------	----------	------	-------	----------			
VLA	-0.50	0.170	0.06	0.887				
TD	-0.22	0.566	0.22	0.566				
SL	0.56	0.095	0.04	0.902				
SD	-0.16	0.668	0.31	0.376				
SL	0.33	0.347	-0.09	0.805				
VLA	0.28	0.469	-0.33	0.381				
TD	-0.11	0.776	-0.06	0.887				
Δ¹³C	-0.42	0.224	0.27	0.451				

Fragaria vesca ssp. vesca
SL
SL
SD
SL
SD
SL
SL
SD
SL
VLA
SL
SD
SL
VLA
TD
SL
SD
SL
VLA
TD
Δ¹³C

Fragaria viridis
SL
SL
SD
SL
SD
SL
SL
SD
SL
VLA
SL
SD
SL

	SLA	SD	SL	VLA	TD	Δ¹³C	N_mass		
	SLA	SD	SL	VLA	TD	Δ¹³C	N_mass		
	SLA	SL	SD	SL	SL	VLA	TD	Δ¹³C	N_mass
	SLA	SD	SL	VLA	TD	Δ¹³C	N_mass		
	SLA	SD	SL	VLA	TD	Δ¹³C	N_mass		
	SLA	SD	SL	VLA	TD	Δ¹³C	N_mass		

Fragaria iinumae

	VLA	TD	SLA	SD	SL	VLA	TD	Δ¹³C	N_mass
	Δ¹³C	--	0.36	0.21	-0.07	0.867	0.610		
	0.21	0.867	0.50	0.207	0.14	0.36	0.867		
	0.14	0.736	0.43	0.337	0.33	0.337	0.33		

Fragaria moschata

	VLA	TD	SLA	SD	SL	VLA	TD	Δ¹³C	N_mass
	Δ¹³C	--	0.36	0.21	-0.07	0.867	0.610		
	0.21	0.867	0.50	0.207	0.14	0.36	0.867		
	0.14	0.736	0.43	0.337	0.33	0.337	0.33		
SLA	Δ^{13}C	0.00	1.000	0.33	0.667				
-----	----------------	------	--------	------	-------				
TD	Δ^{13}C	0.00	1.000	-0.33	0.667				
SLA	N_{mass}	0.00	1.000	0.00	1.000				
SD	N_{mass}	0.33	0.667	0.67	0.333				
SL	N_{mass}	0.67	0.333	-0.33	0.667				
VLA	N_{mass}	0.00	1.000	0.67	0.333				
TD	N_{mass}	0.67	0.333	0.00	1.000				
Δ^{13}C	N_{mass}	0.33	0.667	0.00	1.000				
SLA	SD	0.01	0.973	-0.10	0.710				
SLA	SL	-0.05	0.866	-0.01	0.973				
SD	SL	0.56	**0.029**	-0.39	0.150				
SLA	VLA	-0.09	0.761	0.16	0.564				
SD	VLA	0.22	0.433	-0.07	0.813				
SL	VLA	0.39	0.150	-0.12	0.660				
SLA	TD	0.12	0.660	-0.01	0.973				
SD	TD	0.05	0.866	0.33	0.225				
SL	TD	-0.16	0.564	-0.22	0.433				
VLA	TD	-0.01	0.973	-0.28	0.319				
SLA	Δ^{13}C	0.00	1.000	0.67	0.333				
SD	Δ^{13}C	0.00	1.000	0.00	1.000				
SL	Δ^{13}C	0.00	1.000	-0.67	0.333				
VLA	Δ^{13}C	0.00	1.000	-1.00	**0.000**				
TD	Δ^{13}C	-0.33	0.667	0.00	1.000				
SLA	N_{mass}	0.00	1.000	0.33	0.667				
SD	N_{mass}	0.00	1.000	-0.33	0.667				
SL	N_{mass}	0.00	1.000	0.33	0.667				
VLA	N_{mass}	0.00	1.000	0.00	1.000				
TD	N_{mass}	0.33	0.667	-1.00	**0.000**				
Δ^{13}C	N_{mass}	0.33	0.667	0.00	1.000				

Fragaria virginiana ssp. platypetala

SLA	SD	0.04	0.793	0.21	0.211
SLA	SL	0.07	0.690	-0.28	0.092
SD	SL	0.18	0.286	-0.46	**0.003**
SLA	VLA	-0.02	0.926	0.27	0.106
SD	VLA	0.02	0.926	0.27	0.097
SL	VLA	-0.02	0.899	-0.28	0.085
SLA	TD	0.15	0.380	0.07	0.678
SD	TD	-0.04	0.819	-0.04	0.799
SL	TD	0.37	**0.021**	-0.15	0.371
VLA	TD	0.06	0.728	0.25	0.136
SLA	Δ^{13}C	-0.38	0.282	0.07	0.855
SD	Δ^{13}C	0.56	0.095	0.16	0.668
SL	Δ^{13}C	0.07	0.855	0.24	0.496
	$\Delta^{13}C$	N_{mass}	$\Delta^{13}C$	N_{mass}	
-----	----------------	-----------	----------------	-----------	
VLA	-0.02	0.951	-0.42	0.224	
TD	-0.20	0.580	-0.07	0.855	
SLA	0.20	0.580	-0.20	0.580	
SD	-0.20	0.580	0.07	0.855	
SL	0.02	0.951	0.16	0.668	
VLA	-0.16	0.668	-0.33	0.347	
TD	0.20	0.580	-0.33	0.347	
$\Delta^{13}C$	0.02	0.951	0.29	0.418	

Fragaria chiloensis
ssp. pacifica

	$\Delta^{13}C$	N_{mass}	$\Delta^{13}C$	N_{mass}	
SLA	SD	0.06	0.754	0.06	
	SL	0.11	0.601	-0.19	
	SD	-0.08	0.709	-0.27	
	SL	0.32	0.140	-0.08	
	SD	-0.16	0.476	0.11	
	SL	-0.18	0.429	-0.05	
	SLA	TD	0.07	0.774	
	SD	TD	0.07	0.774	
	SL	TD	-0.02	0.935	
	VLA	TD	-0.43	0.053	
	SLA	$\Delta^{13}C$	0.24	0.607	
	SD	$\Delta^{13}C$	0.33	0.465	
	SL	$\Delta^{13}C$	-0.33	0.465	
	VLA	$\Delta^{13}C$	0.05	0.919	
	TD	$\Delta^{13}C$	0.24	0.607	
	SLA	N_{mass}	0.43	0.337	
	SD	N_{mass}	-0.24	0.607	
	SL	N_{mass}	-0.14	0.760	
	VLA	N_{mass}	-0.14	0.760	
	TD	N_{mass}	0.43	0.337	
$\Delta^{13}C$	N_{mass}	0.43	0.337	-0.62	0.138

Fragaria chiloensis
ssp. chiloensis

	$\Delta^{13}C$	N_{mass}	$\Delta^{13}C$	N_{mass}												
SLA	SD	-0.10	0.713	-0.20												
	SL	-0.05	0.854	0.13												
	SD	0.15	0.579	-0.27												
	SL	-0.05	0.873	0.24												
	SD	0.05	0.873	0.02												
	SL	-0.02	0.958	-0.09												
	SLA	TD	-0.36	0.245												
	SD	TD	0.27	0.391												
	SL	TD	0.42	0.169												
	VLA	TD	-0.16	0.631												
	SLA	$\Delta^{13}C$	-0.33	0.667												
	SD	$\Delta^{13}C$	0.67	0.333												
	SL	$\Delta^{13}C$	-0.33	0.667												
	VLA	Δ\(^{13}\)C	TD	Δ\(^{13}\)C	SLA	N\(_{\text{mass}}\)	SD	N\(_{\text{mass}}\)	SL	N\(_{\text{mass}}\)	VLA	N\(_{\text{mass}}\)	TD	N\(_{\text{mass}}\)	Δ\(^{13}\)C	N\(_{\text{mass}}\)
-------	-------	-------------	-------	-------------	-------	----------------	-------	----------------	-------	----------------	-------	----------------	-------	----------------	-------------	----------------
SLA	0.33	0.784	0.33	0.784	-0.33	0.667	0.67	0.333	-0.33	0.667	1.00	0.000	0.33	0.667	-0.33	0.667
SD	0.67	0.333	0.67	0.333	-0.67	0.333	0.67	0.333	-0.67	0.333	1.00	0.000	0.67	0.333	0.67	0.333
SL	1.00	\textbf{0.000}	-0.33	0.667	1.00	0.000	0.33	0.667	1.00	\textbf{0.000}	0.33	0.667	1.00	\textbf{0.000}	0.33	0.667
VLA	0.67	0.333	0.67	0.333	0.33	0.667	0.67	0.333	0.33	0.667	0.67	0.333	0.67	0.333	0.67	0.333

Fragaria cascadensis

	SLA	SD	0.21	0.610	-0.36	0.385	0.29	0.493	0.00	1.000	0.00	1.000	0.00	1.000	0.00	1.000
SLA	0.07	0.867	-0.50	0.207	-0.50	0.207	0.64	0.086	0.50	0.207	0.50	0.207	0.50	0.207	0.50	0.207
SD	0.00	1.000	-0.14	0.736	-0.14	0.736	0.36	0.385	-0.36	0.385	-0.36	0.385	-0.36	0.385	-0.36	0.385
SL	0.00	1.000	0.36	0.385	0.36	0.385	0.07	0.867	0.14	0.736	0.14	0.736	0.14	0.736	0.14	0.736
VLA	0.07	0.867	-0.29	0.493	-0.29	0.493	0.14	0.736	0.07	0.867	0.07	0.867	0.07	0.867	0.07	0.867

Non-parametric Kendall rank correlation coefficient (r) was estimated using the R package `psych` (Revelle, 2017). Functional trait mean was genotypic trait value averaged across all garden environments. Missing r values were due to few data for carbon isotope discrimination and nitrogen content in some taxa.
Table S6 Differences in trait plasticity between diploids and polyploids

Plasticity index	Trait plasticity	Fixed effects (Predictors)	Sum Sq	df	F	Pr(>F)
RDPI	SLA.RDPI	climatic niche distance mean	0.0024	1	1.00	0.323
		ploidy	0.0022	1	0.89	0.353
		climatic niche distance mean	0.0021	1	0.86	0.358
		ploidy:climatic niche distance mean				
		R²_m : 0.012				
		R²_c : 0.154				
		ploidy:climatic niche distance mean				
		R²_m : 0.012				
		R²_c : 0.154				
SL.RDPI		climatic niche distance mean	0.0038	1	1.75	0.200
		ploidy	0.0035	1	1.62	0.221
		climatic niche distance mean	0.0012	1	0.56	0.462
		ploidy:climatic niche distance mean				
		R²_m : 0.051				
		R²_c : 0.173				
SD.RDPI (sqrt)		climatic niche distance mean	0.0008	1	0.06	0.801
		ploidy	0.0045	1	0.37	0.547
		climatic niche distance mean	0.0153	1	1.25	0.273
		ploidy:climatic niche distance mean				
		R²_m : 0.026				
		R²_c : 0.088				
VLA.RDPI (sqrt)		climatic niche distance mean	0.0170	1	1.08	0.305
		ploidy	0.0001	1	0.01	0.934
		ploidy:climatic niche distance mean				
		R²_m : 0.006				
		R²_c : 0.084				
TD.RDPI		climatic niche distance mean	0.0009	1	0.03	0.865
		ploidy	0.0653	1	2.14	0.150
		ploidy:climatic niche distance mean				
		R²_m : 0.015				
		R²_c : 0.327				
N_mass.RDPI		climatic niche distance mean	0.0358	1	5.51	0.029
		ploidy	0.0001	1	0.02	0.881
		ploidy:climatic niche distance mean				
		R²_m : 0.082				
		R²_c : 0.109				
Variable	Description	Mean	ploidy	ploidy:climatic niche distance mean	R^2_m	R^2_c
----------	-------------	------	--------	-----------------------------------	---------	---------
Δ^{13}C.RDPI (sqrt)	climatic niche distance mean	0.0003	1	0.14	0.714	
	ploidy	0.0011	1	0.58	0.459	
	ploidy:climatic niche distance mean	0.0001	1	0.06	0.808	
	R^2_m: 0.077					
	R^2_c: 0.083					
PI	SLA.PI	climatic niche distance mean	0.0024	1	0.41	0.526
	ploidy	0.0042	1	0.71	0.406	
	ploidy:climatic niche distance mean	0.0038	1	0.64	0.427	
	R^2_m: 0.007					
	R^2_c: 0.150					
SL.PI	climatic niche distance mean	0.0109	1	1.81	0.192	
	ploidy	0.0103	1	1.70	0.207	
	ploidy:climatic niche distance mean	0.0042	1	0.70	0.411	
	R^2_m: 0.043					
	R^2_c: 0.135					
SD.PI (sqrt)	climatic niche distance mean	0.0085	1	0.36	0.551	
	ploidy	0.0197	1	0.83	0.365	
	ploidy:climatic niche distance mean	0.0358	1	1.49	0.223	
	R^2_m: 0.012					
	R^2_c: 0.012					
VLA.PI (sqrt)	climatic niche distance mean	0.0364	1	1.00	0.323	
	ploidy	0.0000	1	0.00	0.982	
	ploidy:climatic niche distance mean	0.0000	1	0.00	0.979	
	R^2_m: 0.006					
	R^2_c: 0.086					
TD.PI	climatic niche distance mean	0.0001	1	0.00	0.968	
	ploidy	0.1507	1	3.09	0.084	
	ploidy:climatic niche distance mean	0.1595	1	3.27	0.075	
	R^2_m: 0.017					
	R^2_c: 0.060					
$N_{mass}.PI$	climatic niche distance mean	0.0709	1	6.25	0.022	
	ploidy	0.0001	1	0.01	0.919	
	ploidy:climatic niche distance mean	0.0001	1	0.01	0.932	
	R^2_m: 0.087					
	R^2_c: 0.093					
$Δ^{13}C\text{PI (sqrt)}$

	climatic niche distance mean	ploidy	ploidy:climatic niche distance mean
	0.0003	1	0.09
		0.0027	1
			0.772
			0.72
			0.409
			0.0005
			1
			0.12
			0.735

$R^2_m: 0.078$

$R^2_c: 0.093$

General linear mixed model (LMM) specification:

```r
model <- lmer(Trait plasticity ~ Fixed effects + (1 | Nested random effects))
```

Fixed effects: climatic niche distance mean (i.e. genotypic climatic niche distance averaged across all garden environments) + ploidy + ploidy:climatic niche distance mean

Nested random effects: ploidy/taxon/population

RDPI, relative distance plasticity index; PI phenotypic plasticity index. The response variable of each LMM was power transformed if necessary. R^2_m, model marginal R^2 representing variance explained by fixed effects; R^2_c, model conditional R^2 representing variance explained by both fixed effects and random effects.
Table S7 Differences in fitness between diploids and polyploids

Fitness	Fixed effects (Predictors)	ANOVA table with Type III sums of squares		
(Composite fitness	Sum Sq	df	F	Pr(>F)
climatic niche distance	2.23	1	71.54	2.22E-16
garden	35.08	2	562.96	< 2.2E-16
ploidy	0.62	1	20.02	7.05E-05
ploidy:garden	0.31	2	4.99	0.007
ploidy:climatic niche	0.32	1	10.24	0.001
distance				
R^2_m: 0.614				
R^2_c: 0.712				

General linear mixed model (LMM) specification:

```
model <- lmer(Fitness ~ Fixed effects + (1 | Nested random effects))
```

Fixed effects: climatic niche distance + garden + ploidy + ploidy:garden + ploidy:climatic niche distance

Nested random effects: ploidy/taxon/population

The response variable of the LMM was power transformed (power parameter = 0.1). R^2_m, model marginal R^2 representing variance explained by fixed effects; R^2_c, model conditional R^2 representing variance explained by both fixed effects and random effects.
Table S8 Relationships between average fitness and trait means and trait plasticities in heterogeneous garden environments

Functional trait model	Fixed effects (Predictors)	Sum Sq	df	F	Pr(>F)
SLA	climatic niche distance mean	0.055	1	2.22	0.141
	SLA.RDPI	0.034	1	1.37	0.243
	SLA.mean	0.137	1	5.57	**0.019**
	ploidy:SLA.RDPI	0.004	1	0.17	0.681
	ploidy:SLA.mean	0.049	1	1.99	0.175
	R^2_m: 0.053				
	R^2_c: 0.581				
SL	climatic niche distance mean	0.043	1	1.91	0.172
	SL.RDPI	0.511	1	22.72	**0.000**
	SL.mean	0.235	1	10.46	**0.001**
	ploidy:SL.RDPI	0.033	1	1.47	0.226
	ploidy:SL.mean	0.000	1	0.01	0.925
	R^2_m: 0.253				
	R^2_c: 0.553				
SD	climatic niche distance mean	0.049	1	2.01	0.161
	SD.RDPI	0.001	1	0.05	0.818
	SD.mean	0.013	1	0.55	0.459
	ploidy:SD.RDPI	0.185	1	7.58	**0.006**
	ploidy:SD.mean	0.030	1	1.23	0.276
	R^2_m: 0.192				
	R^2_c: 0.539				
VLA	climatic niche distance mean	0.008	1	0.36	0.553
	VLA.RDPI	0.000	1	0.00	0.997
	VLA.mean	0.106	1	4.69	**0.031**
	ploidy:VLA.RDPI	0.085	1	3.76	0.054
	ploidy:VLA.mean	0.159	1	7.03	**0.015**
	R^2_m: 0.203				
	R^2_c: 0.575				
TD	climatic niche distance mean	0.020	1	0.98	0.326
	TD.RDPI	0.360	1	17.62	**0.000**
	TD.mean	0.122	1	5.98	**0.015**
	ploidy:TD.RDPI	0.048	1	2.36	0.126
	ploidy:TD.mean	0.050	1	2.45	0.124
	R^2_m: 0.265				
General linear mixed model specification:
model <- lmer((Fitness mean)^0.1 ~ Fixed effects + (1 | Nested random effects))
Fixed effects: climatic niche distance mean + trait plasticity + trait mean + ploidy:trait plasticity + ploidy:trait mean, where climatic niche distance mean and trait mean represent genotypic values averaged across all garden environments
Nested random effects: ploidy/taxon/population
The response variable (genotypic fitness averaged across all garden environments) of each LMM was power transformed (power parameter = 0.1). R^2_m, model marginal R^2 representing variance explained by fixed effects; R^2_c, model conditional R^2 representing variance explained by both fixed effects and random effects.
References

Bartoń K. 2017. MuMIn: Multi-model inference. R package version 1.40.40. https://CRAN.R-project.org/package=MuMIn.

Bates D, Machler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects models using lme4. *Journal of Statistical Software* 67: 1-48.

Ehleringer JR, Björkman O. 1978. Pubescence and leaf spectral characteristics in a desert shrub, *Encelia farinosa*. *Oecologia* 36: 151-162.

Farquhar GD, Richards RA. 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. *Australian Journal of Plant Physiology* 11: 539-552.

Hadfield JD. 2010. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. *Journal of Statistical Software* 33: 1-22.

Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. *Nature* 424: 901-908.

Lenth RV. 2016. Least-squares means: the R package lsmeans. *Journal of Statistical Software* 69: 1-33.

Poorter H, Niinemets U, Poorter L, Wright IU, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. *New Phytologist* 182: 565-588.

Revelle W. 2017. psych: Procedures for personality and psychological research, Northwestern University, Evanston, Illinois, USA. R package version 1.7.8. https://CRAN.R-project.org/package=psych.

Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. *New Phytologist* 198: 983-1000.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. *Nature Methods* 9: 671-675.

Sletvold N, Ågren J. 2012. Variation in tolerance to drought among Scandinavian populations of *Arabidopsis lyrata*. *Evolutionary Ecology* 26: 559-577.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30: 1312-1313.

Wright IU, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. *Nature* 428: 821-827.