THE NUMBER OF HOMOMORPHISMS FROM THE HAWAIIAN EARRING GROUP

SAMUEL M. CORSON

Abstract. We show a dichotomy for groups of cardinality less than continuum. The number of homomorphisms from the Hawaiian earring group to such a group G is either the cardinality of G in case G is noncommutatively slender, or the number is $2^{2^{\aleph_0}}$ in case G is not noncommutatively slender. An example of a noncommutatively slender group with nontrivial divisible element is exhibited.

1. Introduction

The fundamental group of the Hawaiian earring, which we call the Hawaiian earring group and denote HEG, has become a subject of expanding use and interest in topology and group theory (see [MM], [Sm], [EK], [CC1], [CC2], [FZ], [ADTW]). Though not itself free, the structure of HEG has some analogies to that of free groups. The fundamental group of the infinitary torus T^∞, which is isomorphic to the product $\prod_{\omega} \mathbb{Z}$, has comparable similarities to free abelian groups while not being itself free abelian. The group HEG is both residually and locally free, and the group $\prod_{\omega} \mathbb{Z}$ is residually and locally free abelian. There is an easy-to-define continuous map from the Hawaiian earring to T^∞ which induces a surjection from HEG to $\prod_{\omega} \mathbb{Z}$. For these and other reasons, one can imagine HEG to be the unabelian version of $\prod_{\omega} \mathbb{Z}$.

These comparisons motivate an extension of certain abelian group notions to more general settings, where definitions involving $\prod_{\omega} \mathbb{Z}$ have HEG substituted. For example, an abelian group A is said to be slender (see [F]) if for every homomorphism $\phi : \prod_{\omega} \mathbb{Z} \to A$ there is a natural number $n \in \omega$ such that $\phi \circ p_n = \phi$, where $p_n : \prod_{\omega} \mathbb{Z} \to \prod_{i=0}^{n-1} \mathbb{Z}$ is the retraction to the subgroup for which only the first n coordinates are possibly nonzero. The Hawaiian earring group similarly has retraction maps p_n to free subgroups HEG_n, which maps correspond to the topological retractions given by mapping all points not on the largest n circles to the wedge point. Thus Eda defines a group G to be noncommutatively slender (or n-slender for short) if for every homomorphism $\phi : \text{HEG} \to G$ there exists $n \in \omega$ such that $\phi \circ p_n = \phi$ (see [E1]). The abelian n-slender groups are precisely the slender abelian groups [E1, Theorem 3.3], so n-slenderness is conceptually an extension of slenderness.

Unsurprisingly, slenderness is better understood than n-slenderness. The slender groups are completely characterized in terms of subgroups: an abelian group is slender if and only if it is torsion-free and does not contain a subgroup isomorphic to \mathbb{Q}, $\prod_{\omega} \mathbb{Z}$ or the p-adic completion of the integers for any prime p (see [Nu]). By

2010 Mathematics Subject Classification. Primary 55Q20, 20E06; Secondary 57M30.

Key words and phrases. Hawaiian earring, harmonic archipelago, wild space, slender.
contrast, no such straightforward characterization for n-slender groups is known. The problem of finding such a general characterization seems intractable. For example, if G is the fundamental group of a path connected, locally path connected first countable Hausdorff space which lacks a universal cover then one gets a homomorphism (induced by a continuous map) from HEG to G witnessing that G is not n-slender. Such fundamental groups seem varied and complicated.

Even for countable groups it is unknown as of this writing whether a group is n-slender if and only if it is torsion-free and does not contain \mathbb{Q}, though certainly it is necessary that n-slender groups not contain torsion or \mathbb{Q}. Many well known groups are known to be n-slender. For example, free groups, free abelian groups, torsion-free word hyperbolic groups, torsion-free one-relator groups, and Thompson’s group F are n-slender (see [Hi], [D], [Co1], [Co2], [CoCo]). Despite our rather limited knowledge of small cardinality n-slender groups we get the following ($|X|$ is the cardinality of X and $\text{Hom}(H,G)$ denotes the set of group homomorphisms from H to G):

Theorem A. If G is a group with $|G| < 2^{\aleph_0}$ then

$$|\text{Hom}(\text{HEG}, G)| = \begin{cases} |G| & \text{if } G \text{ is n-slender} \\ 2^{2^{\aleph_0}} & \text{if } G \text{ is not n-slender} \end{cases}$$

The difficulty in proving Theorem A lies in producing $2^{2^{\aleph_0}}$-many distinct homomorphisms from HEG to G given the existence of a map witnessing that G is not n-slender. One cannot simply take such a map and precompose with sufficiently many endomorphisms of HEG, for HEG has only 2^{\aleph_0}-many endomorphisms (this follows immediately from [E2, Corollary 2.11]). Previously it was known that for any nontrivial finite group G there exist $2^{2^{\aleph_0}}$-many surjections from HEG to G [CS]. More generally it is now known that given a compact Hausdorff topological group G there are $|G|^{2^{\aleph_0}}$ homomorphisms from HEG to G. This latter fact is seen by combining the main result of [T] with [Z, Theorem 0.1]. The dichotomy of Theorem A fails to hold when G is of size 2^{\aleph_0} since HEG is a group which is not n-slender and $\text{Hom}(\text{HEG}, G)$ is of cardinality 2^{\aleph_0}. We give the abelian version of Theorem A as well (see Theorem 3.1), though it is a great deal easier to prove.

Theorem A is proved using the fundamental group of the harmonic archipelago [BS], which we denote HAG. The group HAG is a quotient of HEG but enjoys much greater freedom as to mappings, as is witnessed in the following theorem:

Theorem B. The group $\text{Aut}(\text{HAG})$ contains an isomorphic copy of the full symmetric group $S_{2^{\aleph_0}}$ on a set of cardinality continuum. Thus $\text{Aut}(\text{HAG})$ is of cardinality $2^{2^{\aleph_0}}$ and all groups of size at most 2^{\aleph_0} are subgroups.

The group $\text{Aut}(\text{HEG})$ is only of size 2^{\aleph_0} (using [E2, Corollary 2.11]).

Section 2 provides some necessary background definitions and results. In Section 3 we prove Theorems A and B. In Section 3 we turn our attention to homomorphisms from a group to an n-slender group and consider two subgroups which completely determine whether a group of small cardinality is n-slender. Using the machinery used to compare these subgroups we produce some more examples of n-slender groups, including an n-slender group with a nontrivial divisible element (see Example 3). We then prove a theorem characterizing the n-slender subgroups of HEG via subgroups and pose two questions related to this theorem.
2. Preparatory Results

We give some necessary background information, including a combinatorial characterization of the Hawaiian earring group and the harmonic archipelago group, as well as some relevant facts related to them. The Hawaiian earring group HEG can be described as a set of infinitary words on a countable alphabet. Let \(\{a_n\} \) be a countably infinite set where each element has a formal inverse. A word \(W \) is a function whose domain is a totally ordered set \(\mathbb{W} \), whose codomain is \(\{a_n\} \) such that for each \(n \in \omega \) the set \(\{i \in \mathbb{W} | W(i) \in \{a_n\}\} \) is finite. It follows that for any word \(W \) the domain \(\mathbb{W} \) is a countable total order.

We understand two words \(W_0 \) and \(W_1 \) to be the same, and write \(W_0 \equiv W_1 \), provided there exists an order isomorphism \(i : \mathbb{W}_0 \to \mathbb{W}_1 \) such that \(W_1(i(i)) = W_0(i) \). Let \(\mathbb{W} \) denote the set of \(\equiv \) equivalence classes. For each \(n \in \omega \) we define the function \(p_n : \mathbb{W} \to \mathbb{W} \) by setting \(p_n(W) = \{i \in \mathbb{W} | W(i) \in \{a_n\}\} \). Clearly \(p_m \circ p_n = p_m \) whenever \(m \geq n \). The word \(p_n(W) \) has finite domain, and we write \(W_0 \sim W_1 \) if for every \(n \in \omega \) we have \(p_n(W_0) \) equal to \(p_n(W_1) \) as elements in the free group over \(\{a_m\}_{m=0} \). Write \([W] \) for the equivalence class of \(W \) under \(\sim \).

Given two words \(W_0 \) and \(W_1 \), we define their concatenation \(W_0W_1 \) to be the word whose domain is the disjoint union of \(\mathbb{W}_0 \) and \(\mathbb{W}_1 \) under the order extending that of the two subsets which places elements of \(\mathbb{W}_0 \) below those of \(\mathbb{W}_1 \), and such that

\[
W_0W_1(i) = \begin{cases}
W_0(i) & \text{if } i \in \mathbb{W}_0 \\
W_1(i) & \text{if } i \in \mathbb{W}_1
\end{cases}
\]

More generally suppose \(\{W_\lambda\}_{\lambda \in \Lambda} \) is a collection of words with \(\Lambda \) a totally ordered set and for each \(\lambda \in \Lambda \) the set \(\{\lambda \in \Lambda \mid (\exists i \in \mathbb{W}_\lambda)W_\lambda(i) \in \{a_n\}\} \) is finite. We obtain an infinite concatenation \(W = \prod_{\lambda \in \Lambda} W_\lambda \) by setting \(W \) to be the disjoint union \(\bigsqcup_{\lambda \in \Lambda} W_\lambda \) under the obvious order and setting \(W(i) = W_\lambda(i) \) where \(i \in \mathbb{W}_\lambda \). We'll use the notation \(\prod_{\lambda \in \Lambda} I_\lambda \) for the concatenation of ordered sets \(I_\lambda \) in the obvious way. Given \(W \in \mathbb{W} \) we let \(W^{-1} \) be the word whose domain is \(\mathbb{W} \) under the reverse order and such that \(W^{-1}(i) = (W(i))^{-1} \).

The set \(\mathbb{W}/\sim \) has a group structure defined by setting \([W_0][W_1] = [W_0W_1] \) and \([W]^{-1} = [W^{-1}] \). The identity element is the \(\sim \) class of the empty word \(E \). This group is isomorphic to the fundamental group of the Hawaiian earring and we denote it HEG. For each \(n \in \omega \) the word map \(p_n \) defines a retraction homomorphism, also denoted \(p_n \), which takes HEG to a subgroup which is isomorphic to the free group on \(\{a_m\}_{m=0} \), which we denote HEG\(_n\). Again, \(p_m \circ p_n = p_m \) whenever \(m \geq n \). The set of all elements of HEG which have a representative using no letters in \(\{a_m\}_{m=0} \) is also a retract subgroup, which we denote HEG\(_n^\ast \). There is a natural isomorphism HEG \(=\) HEG\(_n^\ast \) HEG\(_n^\ast^\).}

Definition 2.1. A group \(G \) is noncommutatively slender, or \(n \)-slender, if for every homomorphism \(\phi : \text{HEG} \to G \), there exists \(n \in \omega \) such that \(\phi \circ p_n = \phi \). Equivalently, \(G \) is \(n \)-slender if for every homomorphism \(\phi : \text{HEG} \to G \) there exists \(n \in \omega \) such that \(\text{HEG}^n \leq \ker(\phi) \). The \(n \)-slender groups do not contain torsion or \(\mathbb{Q} \) as a subgroup (E[1] Theorem 3.3, [Sa]). Free (abelian) groups, one-relator groups, and a host of other groups are \(n \)-slender (see [Co2], [CoCo] Theorems A, B).

As is the case with a free group, there exists a characterization of HEG which utilizes so-called reduced words. We say \(W \in \mathbb{W} \) is reduced if for every writing \(W = W_0W_1W_2 \) such that \(W_1 \sim F \) we have \(W_1 \sim E \). It is clear that if \(W \) is reduced then so is \(W^{-1} \), and if \(W \sim W_0W_1 \) is reduced then so are \(W_0 \) and \(W_1 \). We have the following (see [E1] Theorem 1.4, Corollary 1.7).
Lemma 2.2. Given $W \in \mathcal{W}$ there exists a reduced word $W_0 \in \mathcal{W}$ such that $[W] = [W_0]$, and this W_0 is unique up to \equiv. Moreover, letting W_0 and W_1 be reduced, there exist unique words $W_{0,0}, W_{0,1}, W_{1,0}, W_{1,1}$ such that

1. $W_0 \equiv W_{0,0}W_{0,1}$
2. $W_1 \equiv W_{1,0}W_{1,1}$
3. $W_{0,1} \equiv W_{1,0}$
4. $W_{0,0}W_{1,1}$ is reduced

Thus one can consider HEG to be the set of all reduced words $\text{Red} \subseteq \mathcal{W}$ and define the binary operation via the concatenation (4).

Some endomorphisms of HEG can be defined by simply using mappings of the set $\{a_n\}_{n \in \omega}$. For this, suppose that $\{W_n\}_{n \in \omega}$ is a collection of words such that for every $m \in \omega$ the set $\{n \in \omega : (\exists i \in W_m)W_n(i) \in \{a_{n+1}^\pm\}\}$ is finite. Defining $f : \{a_{n+1}^\pm\}_{n \in \omega} \to \{W_n\}_{n \in \omega}$ by $f(a_{n+1}^\pm) = W_n^\pm$ one can extend f to all of \mathcal{W} by letting $f(W) = \prod_{n \in \mathcal{W}} f(W(i))$. This induces an endomorphism $\phi_f : \text{HEG} \to \text{HEG}$ by letting $\phi_f([W]) = [f(W)]$ (see [E2] Proposition 1.9). Surprisingly, every endomorphism is equal, up to conjugation, to a homomorphism defined in this way (this is essentially [E2] Corollary 2.11):

Lemma 2.3. If $\phi \in \text{Hom}(\text{HEG}, \text{HEG})$ there exists $h \in \text{HEG}$ and a mapping $f : a_n \to W_n$ such that $\phi(g) = h^{-1}\phi_f(g)h$.

An important quotient of HEG is the so called harmonic archipelago group HAG, which we define by HEG/\langle \langle \text{divides}.alt0 \rangle \rangle. This uncountable group is isomorphic to the fundamental group of the harmonic archipelago (see [CHM] or [Ho]). Let $\pi : \text{HEG} \to \text{HAG}$ denote the quotient map. We write $[[W_0]] = [[W_1]]$ if $\pi([W_0]) = \pi([W_1])$. Since $[[W]] = [[E]]$ for any finite $W \in \mathcal{W}$, it is clear that assuming $W \equiv W_0W_1W_2$ with W_1 finite, we have $[[W]] = [[W_0W_2]]$. In consequence, we obtain:

Lemma 2.4. For all $n \in \omega$, we have $\pi([\text{HEG}^n]) = \text{HAG}$. If HAG has a nontrivial homomorphic image in G then G is not n-slender.

Proof. The first claim follows from the fact that HEG \simeq HEG$_n \ast$ HEGn and elements of HEG$_n$ have a representative which is a finite word. For the second claim, if $\phi(\text{HAG})$ has nontrivial image then $\phi \circ \pi$ witnesses that G is not n-slender by the first claim. \hfill \Box

When $|G| < 2^{8\omega}$, the converse of the second claim in Lemma 2.4 holds as well. First we state a lemma (which is a special instance of [CC2] Theorem 4.4 (1)):

Lemma 2.5. If $|G| < 2^{8\omega}$ and $\phi : \text{HEG} \to G$ is a homomorphism then the sequence of images $\phi(\text{HEG}^n)$ eventually stabilizes.

The following is an argument of Conner [C]:

Lemma 2.6. Suppose $\phi : \text{HEG} \to G$ and $S \subseteq \bigcap_{n \in \omega} \phi(\text{HEG}^n)$ with S countable. Then there exists a homomorphism $\psi : \text{HAG} \to G$ with $\psi(\text{HAG}) \supseteq S$.

Proof. Let $S = \{g_0, g_1, \ldots\}$ be an enumeration of S. For each $m \in \omega$ and $n \geq m$ select $[W_{(m,n)}] \in \text{HEG}^n$ such that $\phi([W_{(m,n)}]) = g_m$. Let $f : \omega \to ((m,n) \in \omega^2 : n \geq m)$ be a bijection. We get an endomorphism $\Xi : \text{HEG} \to \text{HEG}$ such that $\Xi([a_k]) = [W_{f(k)}]$, and letting $\phi_0 = \phi \circ \Xi$ we see that for each $m \in \omega$ there exist arbitrarily large $k \in \omega$ such that $\phi_0([a_k]) = g_m$. \hfill \Box
Now for each \(m \in \omega \) we let \(N_m = \{ k \in \omega : \phi_0([a_k]) = g_m \} \) and notice that \(\omega = \bigsqcup_{m\in\omega} N_m \) and each \(N_m \) is infinite. Enumerate each \(N_m \) in the standard way \(N_m = \{ k_{(m,0)}, k_{(m,1)}, \ldots \} \) so that \(k_{(m,i)} < k_{(m,i+1)} \). Let \(\gamma : \omega \to \omega^2 \) be a bijection. Define the endomorphism \(\tau : \text{HEG} \to \text{HEG} \) such that \(\tau([a_p]) = [a_{\gamma(p)}a_{\gamma(p)}^{-1}a_{\gamma(p)}a_{\gamma(p)}^{-1}a_{\gamma(p)}a_{\gamma(p)}^{-1}a_{\gamma(p)} \cdots] \) (here \(\text{proj}_i \) denotes projection to the \(i \) coordinate). Notice now that \(\phi \circ \tau : \text{HEG} \to \text{HEG} \) has \(\phi_1([a_j]) = 1_G \) for every \(j \in \omega \). Thus \(\phi_1 \) descends to a homomorphism \(\psi : \text{HAG} \to G \) with the same image as \(\phi_1 \). We shall be done if we show that \(S \subseteq \phi(\text{HEG}) = \psi(\text{HAG}) \).

Letting \(m \in \omega \) be given we notice that
\[
g_m = \phi_0([a_{k_{(m,0)}}]) = \phi_0([a_{k_{(m,0)}}a_{k_{(m,1)}}^{-1}a_{k_{(m,2)}}^{-1}a_{k_{(m,3)}}^{-1}a_{k_{(m,4)}}^{-1} \cdots]) = \phi_1 \circ \tau([a_{\gamma^{-1}(m,0)}a_{\gamma^{-1}(m,1)} \cdots]) = \psi([[a_{\gamma^{-1}(m,0)}a_{\gamma^{-1}(m,1)} \cdots]]) \in \psi(\text{HAG})
\]

\(\square \)

Combining Lemmas 2.7 and 2.8 one immediately obtains:

Lemma 2.7. If \(|G| < 2^{80} \) with \(G \) not n-slender, then there is a nontrivial homomorphism from \(\text{HAG} \) to \(G \).

Next we state a special case of [E3] Theorem 1.3:

Lemma 2.8. If \(\phi : \text{HEG} \to *_{j \in J} H_j \) is a homomorphism to a free product, then for some \(n \in \omega \) and \(j \in J \) the image \(\phi(\text{HEG}^n) \) lies in a conjugate of \(H_j \).

Consequently we obtain:

Lemma 2.9. If \(\phi : \text{HAG} \to *_{j \in J} H_j \) then for some \(j \in J \) the image \(\phi(\text{HAG}) \) is a subgroup of a conjugate of \(H_j \).

Finally, we note that extending the set \(\{ a_n^{+1} \}_{n \in \omega} \) to \(\{ a_n^{+1}, b_n^{+1}, c_n^{+1} \}_{n \in \omega} \), we analogously define the set \(\mathcal{W}_{a,b,c} \) of words, the set of reduced words \(\text{Red}_{a,b,c} \subseteq \mathcal{W}_{a,b,c} \) the Hawaiian earring group \(\text{HEG}_{a,b,c} \) and the harmonic archipelago group \(\text{HAG}_{a,b,c} \). Using the bijection \(\Gamma : \{ a_n^{+1} \}_{n \in \omega} \to \{ a_n^{+1}, b_n^{+1}, c_n^{+1} \}_{n \in \omega} \) given by
\[
\Gamma(a_n^{+1}) \mapsto \begin{cases}
a_n^{+1} & \text{if } n = 3m \\
b_n^{+1} & \text{if } n = 3m + 1 \\
c_n^{+1} & \text{if } n = 3m + 2
\end{cases}
\]

the elements of \(\mathcal{W} \) are placed in bijection with those of \(\mathcal{W}_{a,b,c} \) by letting \(\Gamma(W) = \prod_{i \in \mathcal{W}} \Gamma(W(i)) \). This bijection satisfies \(\Gamma(\text{Red}) = \text{Red}_{a,b,c} \) and induces an isomorphism \(\text{HEG} \cong \text{HEG}_{a,b,c} \) where the latter group is defined analogously to the former. This isomorphism also descends to an isomorphism \(\text{HAG} \cong \text{HAG}_{a,b,c} \). By deleting the elements of \(\{ b_n^{+1}, c_n^{+1} \}_{n \in \omega} \) we obtain retractions \(r_a : \mathcal{W}_{a,b,c} \to \mathcal{W}, r_b : \text{HEG}_{a,b,c} \to \text{HEG}, \) and \(r_c : \text{HAG}_{a,b,c} \to \text{HAG} \). We can similarly define the set of words \(\mathcal{W}_{b,c} \subseteq \mathcal{W}_{a,b,c} \) which have range disjoint from \(\{ a_n^{+1} \}_{n \in \omega} \), the set of reduced words \(\text{Red}_{b,c} = \mathcal{W}_{b,c} \cap \text{Red}_{a,b,c} \), an isomorph of the Hawaiian earring group \(\text{HEG}_{b,c} \cong \text{HEG}_{a,b,c} \) and an isomorph of the harmonic archipelago group \(\text{HAG}_{b,c} \cong \text{HAG}_{a,b,c} \).

The inclusion \(\text{HAG}_{b,c} \subseteq \ker(r_a) \) holds.
3. Theorems \(A \) and \(B \)

We begin by stating and proving the abelian version of Theorem \(A \).

Theorem 3.1. If \(A \) is an abelian group with \(|A| < 2^\omega \) then
\[
|\text{Hom}(\prod_\omega Z, A)| = \begin{cases}
|A| & \text{if } A \text{ is slender} \\
2^{2^\omega} & \text{if } A \text{ is not slender}
\end{cases}
\]

Proof. Suppose that \(A \) is slender. If \(A \) is the trivial group then there is exactly one homomorphism from \(\prod_\omega Z \) to \(A \). If \(A \) is nontrivial then \(A \) is infinite, torsion-free. Since \(A \) is slender we see that \(\text{Hom}(\prod_\omega Z, A) = \bigcup_{n<\omega} \{ \phi : \prod_\omega Z \to A \mid \phi \circ p_n = \phi \} \). The set \(\{ \phi : \prod_\omega Z \to A \mid \phi \circ p_1 = \phi \} \) has cardinality exactly \(|A| \), and since \(A \) is infinite it is in fact true that for each \(n \in \omega \) we have \(\{ \phi : \prod_\omega Z \to A \mid \phi \circ p_n = \phi \} \) is of cardinality \(|A| \). Then \(\text{Hom}(\prod_\omega Z, A) \) has cardinality \(|A| \) in this case as well.

Suppose that \(A \) is not slender. By \(\text{Sø} \) we know that \(A \) must contain an isomorphic copy of \(\mathbb{Q} \) or of the cyclic group \(\mathbb{Z}/p \) for some prime \(p \). If \(\mathbb{Q} \leq A \), we take a subgroup \(F \leq \prod_\omega Z \) which is a free abelian group of rank \(2^\omega \). The construction of such an \(F \) follows a straightforward induction. There are \(2^{2^\omega} \) distinct homomorphisms from \(F \) to \(\mathbb{Q} \), and since \(\mathbb{Q} \) is an injective \(\mathbb{Z} \)-module, each of these homomorphisms may be extended to \(\prod_\omega Z \). Thus in this case there are at least \(2^{2^\omega} \) homomorphisms from \(\prod_\omega Z \) to \(A \), and since \(|A| < 2^\omega \) we have precisely \(2^{2^\omega} \) homomorphisms.

If \(\mathbb{Z}/p \leq A \) then we use the epimorphism \(\epsilon : \prod_\omega Z \to \prod_\omega (\mathbb{Z}/p) \) and notice that \(\prod_\omega (\mathbb{Z}/p) \) is a vector space over the field \(\mathbb{Z}/p \), so by selecting a basis we obtain a group isomorphism \(\prod_\omega (\mathbb{Z}/p) \cong \bigoplus_{2^\omega}(\mathbb{Z}/p) \). For each \(S \leq 2^\omega \) we get a homomorphism \(\epsilon_S : \bigoplus_{2^\omega}(\mathbb{Z}/p) \to \mathbb{Z}/p \) given by taking the sum of the \(S \) coordinates. Each such \(\epsilon_S \) is a distinct homomorphism and so each composition \(\epsilon_S \circ \epsilon : \prod_\omega Z \to \mathbb{Z}/p \) is distinct. Thus there exist at least \(2^{2^\omega} \) homomorphisms from \(\prod_\omega Z \) to \(A \), and again by \(|A| < 2^\omega \) we see that there are exactly \(2^{2^\omega} \) homomorphisms. \(\square \)

Next, we prove Theorem \(A \) modulo a proposition which proves the existence of many homomorphisms.

Theorem \(A \) If \(G \) is a group with \(|G| < 2^\omega \) then
\[
|\text{Hom}(\text{HEG}, G)| = \begin{cases}
|G| & \text{if } G \text{ is n-slender} \\
2^{2^\omega} & \text{if } G \text{ is not n-slender}
\end{cases}
\]

Proof. Suppose \(G \) is n-slender and \(|G| < 2^\omega \). If \(G \) is trivial then there is exactly one homomorphism from HEG to \(G \). If \(G \) is nontrivial then \(G \) is infinite and \(\text{Hom}(\text{HEG}, G) = \bigcup_{n<\omega} \{ \phi : \text{HEG} \to G \mid \phi \circ p_n = \phi \} \). Moreover since \(\text{HEG} \cong \text{HEG}_n \times \text{HEG}^n \) for all \(n \in \omega \) and \(\text{HEG}_n \) is a free group of rank \(n \), we get \(\text{Hom}(\text{HEG}, G) \) as a countable union of sets of cardinality \(|G| \). Thus \(|\text{Hom}(\text{HEG}, G)| = |G| \) in either case.

Suppose \(G \) is not n-slender and \(|G| < 2^\omega \). By Lemma \(2.7 \) there exists a nontrivial homomorphism from HAG to \(G \). By Proposition \(3.2 \) there are at least \(2^{2^\omega} \) homomorphisms from HAG to \(G \) and precomposing these homomorphisms with the surjective map \(\pi : \text{HEG} \to \text{HAG} \) we obtain at least \(2^{2^\omega} \) homomorphisms from HEG to \(G \). Since \(|\text{HEG}| = 2^\omega \) and \(|G| < 2^\omega \) we get \(|\text{Hom}(\text{HEG}, G)| = 2^{2^\omega} \). \(\square \)

Proposition 3.2. If \(|\text{Hom}(\text{HAG}, G)| > 1 \) then \(|\text{Hom}(\text{HAG}, G)| \geq 2^{2^\omega} \).
We prove Proposition 3.2 after a sequence of lemmas.

Lemma 3.3. If \(\phi_0 : \text{HAG} \to G \) is a nontrivial homomorphism there exists a homomorphism \(\phi : \text{HAG}_{a,b,c} \to G \) such that \(\phi([[a_0a_1a_2\cdots]]) \neq 1_G \) and \(\text{HAG}_{b,c} \leq \ker(\phi) \).

Proof. Select \(g \in \phi_0(\text{HAG}) \setminus \{1_G\} \). By Lemma 2.3 we select for each \(n \in \omega \) an element \([W_n] \in \text{HEG}^n \) such that \(\phi_0 \circ \pi([W_n]) = g \). Let \(\sigma_0 : \text{HEG} \to \text{HEG} \) be the endomorphism determined by \(a_n \mapsto W_n \). Letting \(\phi_1 = \phi_0 \circ \sigma_0 : \text{HEG} \to G \), we have \(\phi_1([a_n]) = g \) for all \(n \in \omega \).

Now let \(\sigma_1 : \text{HEG} \to \text{HEG} \) be the endomorphism determined by \(a_n \mapsto a_na_{n-1}^{-1} \).

Notice that \(\phi_2 = \phi_1 \circ \sigma_1 \) satisfies \(\phi_2([a_n]) = 1_G \) for all \(n \in \omega \). Thus \(\phi_2 \) descends to a map \(\phi' : \text{HAG} \to G \) by letting \(\phi'([[W]]) = \phi_2([W]) \). Moreover we have \(\phi_2([[a_0a_1a_2\cdots]]) = g \) and so \(\phi'([[a_0a_1a_2\cdots]]) = g \). Letting \(r_a : \text{HAG}_{a,b,c} \to \text{HAG} \) be the retraction map, define \(\phi : \text{HAG}_{a,b,c} \to G \) by \(\phi = \phi' \circ r_a \). Thus \(\text{HAG}_{b,c} \leq \ker(\phi) \) and \(\phi([[a_0a_1a_2\cdots]]) \neq 1_G \).

Let \(\Sigma \) be a collection of subsets of \(\omega \) such that each \(S \in \Sigma \) is infinite, for distinct \(S_0, S_1 \in \Sigma \) the intersection \(S_0 \cap S_1 \) is finite, and \(|\Sigma| = 2^{2^{\alpha_0}} \). Such a construction is fairly straightforward (see [Ku] II.1.3)). For each \(S \in \Sigma \) define a word \(U_S \in \text{Red}_{b,c} \)

by \(\overline{U_S} = \omega \) and \(U_S(n) = \begin{cases} b_n & \text{if } n \in S \\ c_n & \text{if } n \notin S \end{cases} \). For each \(n \in \omega \) and \(S \in \Sigma \) let \(U_{S,n} = W \upharpoonright (\omega \setminus \{0, \ldots, n-1\}) \). Thus \(U_{S,0} = U_S \) and for each \(n \in \omega \) we have \([U_{S,n}] \in \text{HEG}^n_{b,c} \).

Let \(T \) be a symbol such that \(T \notin \Sigma \) and define a word \(U_T \in \text{Red} \) by \(U_T \equiv a_0a_1a_2\cdots \) and let \(U_{T,n} \equiv a_na_{n+1}\cdots \).

Given a word \(W \in \text{Red}_{a,b,c} \) we say an interval \(I \subseteq \overline{W} \) participates in \(\Sigma \) for \(W \) if \(W \upharpoonright I \equiv U_{S,n} \) or \(W \upharpoonright I \equiv U_{S,n}^{-1} \) for some \(S \in \Sigma \) and \(n \in \omega \). Similarly, given a word \(W \in \text{Red}_{a,b,c} \) we say an interval \(I \subseteq \overline{W} \) is maximal in \(\Sigma \) for \(W \) if \(I \) participates in \(\Sigma \) and there does not exist a strictly larger interval \(\overline{W} \supset I \) which participates in \(\Sigma \).

Lemma 3.4. If \(W \in \text{Red}_{a,b,c} \) and \(I \subseteq \overline{W} \) is an interval which participates in \(\Sigma \) for \(W \) then \(I \) is contained in a unique interval \(I' \supset I \) which is maximal in \(\Sigma \) for \(W \).

Proof. Let \(I \subseteq \overline{W} \) satisfy the hypotheses. Suppose \(W \upharpoonright I \equiv U_{S,n} \). By the definition of the \(U_{S,n} \), it is clear that if \(m \in \omega \) and \(S' \in \Sigma \) also satisfy \(W \upharpoonright I \equiv U_{S',m} \) then \(S = S' \) and \(m = n \). Also, it cannot be that \(W \upharpoonright I \equiv U_{S,n}^{-1} \), since \(U_{S,n} \) has order type \(\omega \) and \(U_{S,n}^{-1} \) has order type \(-\omega \). If there does not exist an immediate predecessor \(i < \min(I) \) such that \(W \upharpoonright (I \cup \{i\}) \equiv U_{S,n-1} \) then \(I \) is maximal in \(\Sigma \) for \(W \). Otherwise we get \(W \upharpoonright (I \cup \{i\}) \equiv U_{S,n-1} \) and apply induction on \(n \).

The proof in case \(W \upharpoonright I \equiv U_{S,n}^{-1} \) is similar.

Lemma 3.5. Given \(W \in \text{Red}_{a,b,c} \), if subintervals \(I_0, I_1 \subseteq \overline{W} \) are both maximal in \(\Sigma \) for \(W \) then either \(I_0 \cap I_1 = \emptyset \) or \(I_0 = I_1 \).

Proof. Suppose \(I_0 \cap I_1 \neq \emptyset \) and select \(i \in I_0 \cap I_1 \). If \(W(i) \) does not have superscript \(-1\) then by how we have defined the words \(U_{S,n} \) we see that \(I_0 \) and \(I_1 \) are both of order type \(\omega \). Since \(I_0 \cap I_1 \neq \emptyset \) and both \(I_0 \) and \(I_1 \) are intervals of order type \(\omega \), we get either \(I_0 \subseteq I_1 \) or \(I_1 \subseteq I_0 \) and since both are maximal in \(\Sigma \) for \(W \) we get \(I_0 = I_1 \) by Lemma 3.4. The case where \(W(i) \) has superscript \(-1\) is handled similarly.
Lemma 3.6. If \(W \in \text{Red}_{a,b,c} \) there is a unique decomposition \(\overline{W} = \prod_{\lambda} I_\lambda \) such that \(I_\lambda \) is either maximal in \(\Sigma \) for \(W \) or a maximal interval which does not intersect with any interval which is maximal in \(\Sigma \) for \(W \).

Proof. To begin we let \(\{ I_\lambda \}_{\lambda \in \Lambda} \) be the collection of intervals which are maximal in \(\Sigma \) for \(W \). Next, by Zorn’s Lemma we select all maximal intervals \(\{ I_\lambda \}_{\lambda \in \Lambda'} \) which are disjoint from the elements of \(\{ I_\lambda \}_{\lambda \in \Lambda''} \). Taking \(\Lambda = \Lambda' \cup \Lambda'' \) and endowing this set with the obvious ordering, we see that \(\overline{W} = \prod_{\lambda \in \Lambda} I_\lambda \). Uniqueness is clear. \(\square \)

Lemma 3.6 gives a word \(W \in \text{Red}_{a,b,c} \) a unique decomposition \(W = \prod_{\lambda} I_\lambda \). Now, given a function \(f : \Sigma \to \Sigma \cup \{ T \} \) we define a function \(F_f : \text{Red}_{a,b,c} \to \text{W}_a,b,c \) by letting

\[
F_f(W) = \prod_{\lambda} I_\lambda
\]

where

\[
W = \prod_{\lambda} W_\lambda
\]

is the aforementioned decomposition implied by Lemma 3.6 and

\[
W_\lambda = \begin{cases} W_\lambda \upharpoonright I_\lambda & \text{if } I_\lambda \text{ is not maximal in } \Sigma \text{ for } W \\ U_{f(S),n} & \text{if } W \upharpoonright I_\lambda \equiv U_{S,n} \text{ with } S \in \Sigma \\ U_{f(S),n}^{-1} & \text{if } W \upharpoonright I_\lambda \equiv U_{S,n}^{-1} \text{ with } S \in \Sigma \end{cases}
\]

The object \(\prod_{\lambda} W_\lambda \) is evidently a function whose domain is a totally ordered set which is order isomorphic to \(\overline{W} \). It has as codomain \(\{ a^{ n \pm 1 }, b^{ n \pm 1 }, c^{ n \pm 1 } \}_{n \in \omega} \). Moreover, for each \(n \in \omega \) the set of elements \(i \in \prod_{\lambda} W_\lambda \) for which the subscript of \(\prod_{\lambda} W_\lambda \) is \(\leq n \) has the same cardinality as the set of elements \(i \in \overline{W} \) such that \(W(i) \) has subscript \(\leq n \). Thus \(\prod_{\lambda} W_\lambda \in \text{W}_a,b,c \).

We check that the map \(\psi_f : \text{HEG} \to \text{HAG} \) given by \(\psi_f(W) = \lfloor [F_f(W)] \rfloor \) is a homomorphism. Towards this we give the following lemma.

Lemma 3.7. If \(W \in \text{Red}_{a,b,c} \) and \(W = W_0W_1 \) then \(\psi_f(W) = \psi_f(W_0)\psi_f(W_1) \).

Proof. If \(W = \prod_{\lambda} W_\lambda \) is the decomposition given by Lemma 3.6 then one of the following holds:

1. There exist \(\Lambda_0, \Lambda_1 \subseteq \Lambda \) such that all elements of \(\Lambda_0 \) are below those of \(\Lambda_1 \), \(W_0 = \prod_{\lambda \in \Lambda_0} W_\lambda \) and \(W_1 = \prod_{\lambda \in \Lambda_1} W_\lambda \).
2. There exists \(\zeta \in \Lambda \) such that \(W_\zeta = W_{0,\zeta}W_{1,\zeta} \) and \(W_0 = (\prod_{\lambda \prec \zeta} W_\lambda)W_{0,\zeta} \) and \(W_1 = W_{1,\zeta}(\prod_{\lambda \prec \zeta} W_\lambda) \).

In case (1) the decompositions of \(W_0 \) and \(W_1 \) given by Lemma 3.6 are respectively \(W_0 = \prod_{\lambda \in \Lambda_0} W_\lambda \) and \(W_1 = \prod_{\lambda \in \Lambda_1} W_\lambda \). Thus in this case we get \(F_f(W) \equiv F_f(W_0)F_f(W_1) \) and \(\psi_f(W) = \psi_f(W_0)\psi_f(W_1) \) is immediate.

In case (2) there are several subcases. We mention each of these subcases and state the Lemma 3.6 decomposition for \(W_0 \) and \(W_1 \).

\begin{enumerate}
 \item If \(\overline{W_\zeta} \) was maximal in \(\Sigma \) for \(W \) with \(W_\zeta = U_{S,n} \) then \(W_{1,\zeta} = U_{S,n'} \) for some \(n' > n \) and \(W_{0,\zeta} \) will be a finite word which is a prefix to \(U_{S,n} \).
 \item If in addition to 2.1 there is an immediate predecessor \(\zeta' < \zeta \in \Lambda \) and \(\overline{W_{\zeta'}} \) is not maximal in \(\Sigma \) for \(W \), then the decomposition of \(W_0 \) is \(W_0 = (\prod_{\lambda \prec \zeta'} W_\lambda)(W_{0,\zeta}W_{0,\zeta'}) \) and the decomposition of \(W_1 \) is \(W_1 = W_{1,\zeta}(\prod_{\lambda \prec \zeta} W_\lambda) \). By this we mean that the decomposition of word \(W_0 \) has index of order type \(\{ \lambda \in \Lambda \mid \lambda < \zeta' \} \) and the last word of the decomposition is \(W_{0,\zeta} \). The decomposition of \(W_1 \) has index of order type \(\{ \lambda \in \Lambda \mid \zeta \leq \lambda \} \) and the first word of the decomposition is \(W_{1,\zeta} \). Here we get
$F_f(W_0) \equiv (\Pi_{\lambda<\zeta} W'_\lambda)(W_{0,\zeta})$ and $F_f(W_1) \equiv W'_{1,\zeta} \Pi_{\zeta<\lambda} W'_\lambda$ and since the $[[\cdot]]$ class of a word is closed under modifying a finite subword we get

\[\psi_f(W_0) \psi_f(W_1) = [[[\Pi_{\lambda<\zeta} W'_\lambda)(W_{0,\zeta})]][[W'_{1,\zeta} \Pi_{\zeta<\lambda} W'_\lambda]]] \]

2.2.1 If in addition to 2.1 there is an immediate successor $\zeta' < \zeta$ in Λ and $W_{\zeta'}$ is maximal in Σ for W then the decomposition of W_0 is $W_0 = (\Pi_{\lambda<\zeta} W_{-1})W_{0,\zeta}$ and $W_1 = (\Pi_{\lambda<\zeta} W_{1,\zeta})W_{0,\zeta}$ are the decompositions. We get that

\[\psi_f(W_0) \psi_f(W_1) = [[[\Pi_{\lambda<\zeta} W'_\lambda)(W_{0,\zeta})]][[W'_{1,\zeta} \Pi_{\zeta<\lambda} W'_\lambda]]] \]

2.2.2 If in addition to 2.1 there is an immediate successor $\zeta' < \zeta$ in Λ and $W_{\zeta'}$ is maximal in Σ for W then the decomposition of W_0 is $W_0 = (\Pi_{\lambda<\zeta} W_{0,\zeta})W_{0,\zeta}$ and the decomposition of W_1 is $W_1 = (W_{1,\zeta})(W_{-1})_{\Lambda}$ W_{ζ} is maximal for Σ in λ and the decomposition of W_1 is $W_1 = (W_{1,\zeta})(W_{-1})_{\Lambda}$ W_{ζ} is the claim in this subcase follows along the same lines as 2.2.1.

2.2.3 If in addition to 2.2 there is no immediate successor $\zeta' < \zeta$ in Λ then W_{ζ} was not maximal for Σ in W, then the decompositions of W_0 and W_1 are $W_0 = (\Pi_{\lambda<\zeta} W_{0,\zeta})W_{0,\zeta}$ and $W_1 = (W_{1,\zeta})(W_{-1})_{\Lambda}$ W_{ζ} is the claim in this subcase follows along the same lines as 2.2.1.

2.2.4 If in addition to 2.2 there is no immediate successor $\zeta' < \zeta$ in Λ then W_{ζ} was not maximal for Σ in W, then the decompositions of W_0 and W_1 are $W_0 = (\Pi_{\lambda<\zeta} W_{0,\zeta})W_{0,\zeta}$ and $W_1 = (W_{1,\zeta})(W_{-1})_{\Lambda}$ W_{ζ} is the claim in this subcase follows along the same lines as 2.2.1.

2.3.1 If in addition to 2.2 there is no immediate successor $\zeta' < \zeta$ in Λ then W_{ζ} was not maximal for Σ in W, then the decompositions of W_0 and W_1 are $W_0 = (\Pi_{\lambda<\zeta} W_{0,\zeta})W_{0,\zeta}$ and $W_1 = (W_{1,\zeta})(W_{-1})_{\Lambda}$ W_{ζ} is the claim in this subcase follows along the same lines as 2.2.1.
and the claim follows in all circumstances.

Lemma 3.8. The function $\psi_f : HEG_{a,b,c} \rightarrow HAG_{a,b,c}$ is a homomorphism which descends to a homomorphism $\phi_f : HAG_{a,b,c} \rightarrow HAG_{a,b,c}$.

Proof. Let $W_0, W_1 \in \text{Red}_{a,b,c}$. We let

\[
\begin{align*}
W_0 & \equiv W_{0,0}W_{0,1} \\
W_1 & \equiv W_{1,0}W_{1,1} \\
W_0^{-1} & \equiv W_{0,1}^{-1}W_{0,0}^{-1} \\
W_{0,0}W_{1,1} & \in \text{Red}_{a,b,c}
\end{align*}
\]

according the conclusion of Lemma 2.2. We have

\[
\begin{align*}
\psi_f(W_0)\psi_f(W_1) &= \psi_f(W_{0,0})\psi_f(W_{0,1})\psi_f(W_{1,0})\psi_f(W_{1,1}) \\
&= \psi_f(W_{0,0})\psi_f(W_{0,1})\psi_f(W_{0,1})\psi_f(W_{1,1}) \\
&= \psi_f(W_{0,0})\psi_f(W_{0,1})^{-1}\psi_f(W_{1,1}) \\
&= \psi_f(W_{0,0})\psi_f(W_{1,1}) \\
&= \psi_f(W_{0,0}W_{1,1})
\end{align*}
\]

where the first and last equality come from Lemma 3.7 and the third equality is clear since the map ψ_f obviously satisfies $\psi_f(W^{-1}) = \psi_f(W)^{-1}$. Thus ψ_f is a homomorphism and it is easy to check that $\bigcup_{n \in \mathbb{N}} HEG_{a,b,c} \subseteq \ker(\psi_f)$, and so ψ_f induces a homomorphism $\phi_f : HAG_{a,b,c} \rightarrow HAG_{a,b,c}$.

Now we are ready to prove Proposition 3.2. Supposing there exists a nontrivial homomorphism from HAG to G we obtain by Lemma 3.3 a homomorphism $\phi : HAG_{a,b,c} \rightarrow G$ such that $\phi([U_T]) \neq 1_G$ and $HAG_{b,c} \subseteq \ker(\phi)$. Given a subset $S \subseteq \Sigma$ we define a function $f_S : \Sigma \rightarrow \Sigma \cup \{T\}$ by $f_S(S) = \begin{cases} S & \text{if } S \notin S \\ T & \text{if } S \in S \end{cases}$. The accompanying $\phi_{f_S} : HAG \rightarrow HAG$ satisfies

$$\phi_{f_S}([S]) = \begin{cases} [S] & \text{if } S \notin S \\ [T] & \text{if } S \in S \end{cases}$$

and so $[S] \in \ker(\phi \circ \phi_{f_S})$ if and only if $S \notin S$. Thus $|\text{Hom}(HAG,G)| \geq 2^{2^{\omega_0}}$.

We end this section by restating and proving Theorem B.

Theorem B. The group $\text{Aut}(HAG)$ contains an isomorphic copy of the full symmetric group $S_{2^{\omega_0}}$ on a set of cardinality continuum. Thus $\text{Aut}(HAG)$ is of cardinality $2^{2^{\omega_0}}$ and all groups of size at most 2^{ω_0} are subgroups.

Proof. Supposing that $\sigma : \Sigma \rightarrow \Sigma$ is a bijection, we get an endomorphism $\phi_\sigma : HAG \rightarrow HAG$ and notice that $\phi_{\sigma^{-1}}\phi_\sigma = \phi_\sigma\phi_{\sigma^{-1}} = \text{Id}_{HAG}$. Thus the mapping ϕ_σ is an automorphism, and it is straightforward to check that $\phi_{\sigma_1\sigma_1} = \phi_{\sigma_1}, \phi_{\sigma_1}$, so $\sigma \mapsto \phi_\sigma$ is a homomorphism to $\text{Aut}(HAG)$. If $\sigma(S) = S' \neq S$ then $\phi_\sigma([S]) = [S'] \neq [S]$, and so the mapping $\sigma \mapsto \phi_\sigma$ has trivial kernel. Thus we see that $\text{Aut}(HAG)$ has a copy of $S_{2^{\omega_0}}$. From this, and since HAG is of cardinality 2^{ω_0}, we see that $\text{Aut}(HAG)$ is of cardinality $2^{2^{\omega_0}}$. Since $S_{2^{\omega_0}} \leq \text{Aut}(HAG)$ every group of cardinality at most 2^{ω_0} is also a subgroup by considering the left action of a group on itself.

\[\square\]
4. RESIDUAL SLENDERNESS AND SUBGROUPS

The techniques used so far suggest that residuality can be considered in determining the n-slenderness of small cardinality groups. Theorem 4.1 below makes this explicit. We explore two subgroups of a group G whose triviality precisely determines n-slenderness in a group of small cardinality. Further, an example is shown in which these two subgroups are not equal. From this, a new family of groups is shown to be n-slender. We motivate and then present Theorem 4.8 which determines which subgroups of HEG are n-slender (they are precisely those which do not contain an isomorph of HEG as a subgroup). Finally, we leave the reader with two open questions.

Theorem 4.1. If G is a group such that $|G| < 2^{80}$ then G is n-slender if and only if G is residually n-slender.

Proof. The direction (\Rightarrow) is obvious by using the identity homomorphism. For (\Leftarrow), we assume G is residually n-slender and $|G| < 2^{80}$. If G fails to be n-slender, we have by Lemma 2.7 a nontrivial homomorphism $\phi : \text{HAG} \rightarrow G$. Letting $g \in \phi(HAG) \setminus \{1_G\}$ we pick a homomorphism $\psi : G \rightarrow H$ such that H is n-slender and $\psi(g) \neq 1_H$. Then $\psi \circ \phi$ is a nontrivial homomorphism from HAG to the slender group H, contradicting Lemma 2.4.

The statement of Theorem 4.1 can fail to hold if one drops the condition $|G| < 2^{80}$. For example, HEG is residually n-slender (since HEG is residually free) but the identity map witnesses that HEG is not n-slender. Theorem 4.1 motivates the following definition.

Definition 4.2. Given a group G we define the slender kernel $\text{slk}(G)$ to be the intersection of all kernels of homomorphisms from G to noncommutatively slender groups, that is

$$\text{slk}(G) = \bigcap \{\ker(\phi) \mid \phi : G \rightarrow H \text{ with } H \text{ n-slender}\}$$

This normal subgroup of G records some of the obstruction which exists for the noncommutative slenderness of G. All torsion elements of G are in $\text{slk}(G)$ and all subgroups isomorphic to \mathbb{Q} are included therein. By Theorem 4.1 the slender kernel of G is precisely the obstruction for noncommutative slenderness of G when $|G| < 2^{80}$ that is, such a G is noncommutatively slender if and only if $\text{slk}(G)$ is trivial. By Lemmas 2.7 and 2.8 we see that the existence of a nontrivial homomorphic image of HAG in G is also a precise obstruction of n-slenderness for such groups G of small cardinality. Let $\text{HAGim}(G)$ denote the subgroup

$$\text{HAGim} = \{\cup \{\phi(\text{HAG}) \mid \phi : \text{HAG} \rightarrow G \text{ is a homomorphism}\}\}$$

This subgroup is obviously normal. By the proof of Theorem 4.1 we have $\text{HAGim}(G) \leq \text{slk}(G)$ for any group G.

Example 1. We notice that $\text{HAGim}(G)$ need not be the union $\bigcup \{\phi(\text{HAG}) \mid \phi : \text{HAG} \rightarrow G \text{ is a homomorphism}\}$. To see this we let $G = (\mathbb{Z}/2) * (\mathbb{Z}/2)$. We know that $\mathbb{Z}/2$ is a homomorphic image of HAG (this group is not n-slender), and so in this case $\text{HAGim}(G) = G$. However, any homomorphism $\phi : \text{HAG} \rightarrow (\mathbb{Z}/2) * (\mathbb{Z}/2)$ has image which is contained in a conjugate of the first or the second copy of $\mathbb{Z}/2$ by applying Lemma 2.9. Thus if $\langle h_0 \rangle$ is the first copy of $\mathbb{Z}/2$ and $\langle h_1 \rangle$ is the second copy, the element $h_0h_1 \in G$ would never be in the image of a homomorphism from HAG.
Since \(\text{HAGim}(G) \leq \text{slk}(G) \) it seems natural to ask whether equality always holds. We give an example of a countable torsion-free group for which this fails, after first proving a lemma. Recall that a subgroup \(H \leq G \) is central provided \(H \) is a subgroup of the center of \(G \). Central subgroups are always normal.

Lemma 4.3. Suppose \(\{H_i\}_{i \in I} \) is a collection of groups and \(H \) is a group such that for each \(i \) we have a monomorphism \(\phi_i : H \to H_i \) with \(\phi_i(H) \) in the center of \(H_i \). Let \(*_{H}H_i \) denote the amalgamated free product obtained by identifying the copies of images of \(H \) via the maps \(\phi_i \). If \(\phi : \text{HEG} \to *_{H}H_i \), then for some \(n \in \mathbb{N} \), \(j \in I \) and \(g \in *_{H}H_i \) we have \(\phi(\text{HEG}^n) \leq g^{-1}H_jg \).

Proof. Since \(\phi_i(H) \) is central in \(H_i \) for every \(i \in I \), we have \(H \leq *_{H}H_i \) a central subgroup, and therefore normal. The isomorphism \((*_{H}H_i) / H \cong *_{\ell_{I}}(H_i / H) \) is clear, and let \(\psi : *_{H}H_i \to *_{\ell_{I}}(H_i / H) \) be the quotient map. Given a map \(\phi : \text{HEG} \to *_{H}H_i \), we notice by Lemma 2.8 that for some \(n \in \mathbb{N} \), \(j \in I \) and \(h \in *_{H}H_i \), the inclusion \(\psi \circ \phi(\text{HEG}^n) \leq h^{-1}(H_j / H)h \). Selecting \(g \in *_{H}H_i \) satisfying \(\psi(g) = h \) it is easy to see that \(\phi(\text{HEG}^n) \leq g^{-1}H_jg \). \(\square \)

Example 2. Consider \(2\mathbb{Z} \) both as a subgroup of \(\mathbb{Z} \) as well as a subgroup of \(\mathbb{Q} \). Let \(G \) be the amalgamated free product \(\mathbb{Z} *_{2\mathbb{Z}} \mathbb{Q} \) which identifies the copy of \(2\mathbb{Z} \) in \(\mathbb{Z} \) with that in \(\mathbb{Q} \). As both \(\mathbb{Z} \) and \(\mathbb{Q} \) are torsion-free, the group \(G \) is torsion-free.

By Lemma 4.3 any homomorphism \(\phi : \text{HAG} \to G \) must either have \(\phi(\text{HAG}) \) as a subgroup of a conjugate of \(\mathbb{Z} \) or a conjugate of \(\mathbb{Q} \). As there is no nontrivial map from \(\text{HAG} \) to \(\mathbb{Z} \), we see that any nontrivial image of \(\text{HAG} \) must lie inside a conjugate of \(\mathbb{Q} \). Thus \(\text{HAGim}(G) \leq \langle \langle \mathbb{Q} \rangle \rangle \leq G \), and since each conjugate of \(\mathbb{Q} \) is in \(\text{HAGim}(G) \) we get \(\text{HAGim}(G) = \langle \langle \mathbb{Q} \rangle \rangle \).

Since \(\text{slk}(G) \geq \text{HAGim}(G) \) and \(\text{HAGim}(G) \) is of index 2 in \(G \), it is clear that \(\text{slk}(G) = G \) since \(n \)-slender groups are torsion-free.

Theorem 4.4. Assume the hypotheses of Lemma 4.3. If each of the groups \(H_i \) is \(n \)-slender, then so is \(*_{H}H_i \).

Proof. Assume the hypotheses and suppose \(\phi : \text{HEG} \to *_{H}H_i \) is a homomorphism. By Lemma 4.3 select \(n \in \mathbb{N} \), \(j \in I \) and \(g \in *_{H}H_i \) so that \(\phi(\text{HEG}^n) \leq g^{-1}H_jg \). Since \(H_j \) is slender there exists \(m \geq n \) so that \(\phi(\text{HEG}^m) \) is trivial. Thus \(*_{H}H_i \) is \(n \)-slender.

This theorem provides new examples of \(n \)-slender groups, as seen in the next example.

Example 3. Let \(\{s_n\}_{n \in \omega} \) be a sequence in \(\mathbb{Z} \setminus \{0\} \) such that \(s_0 = 1 \). Since \(\mathbb{Z} \) is \(n \)-slender, the amalgamated free product \(\{(a_n)_{n \in \omega} | (a_0 = a_0^+)_{n \in \omega}\} \) is \(n \)-slender by Theorem 4.3. If one lets \(s_n = n + 1 \), then the element \(a_0 \) has an \(n \)-th root for every \(n \in \omega \setminus \{0\} \). As far as the author is aware, this gives the first known example of an \(n \)-slender group which has a nontrivial divisible element. Notice that a nontrivial group in which every element is divisible cannot be \(n \)-slender. Such a group will either have torsion or it will be torsion-free, in which case one can easily piece together a subgroup which is isomorphic to \(\mathbb{Q} \).

We end by motivating a noncommutative version of a theorem regarding slender subgroups and posing two questions. The following is an immediate corollary to Theorem 4.4.
Corollary 4.5. Every subgroup of the Hawaiian earring group of cardinality \(< 2^{\aleph_0} \) is noncommutatively slender.

Although the group HEG is locally free, there exist countable subgroups which are not free (see the discussion following [Hi, Theorem 6]). Thus Corollary 4.5 gives examples of non-free n-slender groups. By contrast, the group \(\prod_\omega Z \) is \(\aleph_1 \)-free- that is, every countable subgroup is free abelian [Sp]. There is an analogous abelian version of Corollary 4.5 which follows immediately from the classification of slender groups of small cardinality in [Sa]:

Observation 4.6. Every subgroup of \(\prod_\omega Z \) of cardinality \(< 2^{\aleph_0} \) is slender.

In light of \(\aleph_1 \)-freeness and the fact that free abelian groups are slender, this observation does not furnish many new examples unless the continuum hypothesis fails. Moreover, in light of [Nu] one gets the stronger observation:

Observation 4.7. A subgroup of \(\prod_\omega Z \) fails to be slender if and only if it contains a subgroup isomorphic to \(\prod_\omega Z \).

We give the non-abelian analog to this stronger observation.

Theorem 4.8. A subgroup of HEG fails to be n-slender if and only if it contains a subgroup isomorphic to HEG.

For this we first prove a straightforward lemma regarding free groups.

Lemma 4.9. Let \(F(X) \) be the free group on generators \(X \), let \(Y \subseteq X \) and \(w \in F(X) \) be a reduced word that utilizes an element of \(X \setminus Y \). Letting \(t \) be a symbol such that \(t \notin X \), the mapping \(f : \{t\} \cup Y \to \{w\} \cup Y \) given by \(f(t) = w \) and \(f(y) = y \) for \(y \in Y \) extends to an isomorphism \(\phi : F(\{t\} \cup Y) \to (\{w\} \cup Y) \).

Proof. By freeness of \(F(\{t\} \cup Y) \) we get an extension \(\phi : F(\{t\} \cup Y) \to (\{w\} \cup Y) \), and we need only check that this is injective. We consider elements of free groups as reduced words in the appointed generators. Write \(w \equiv w_0 w_1 w_2 w_3^{-1} w_4 \), where \(w_0 \) is the maximal prefix of \(w \) which uses only letters in \(Y^{\pm 1} \), \(w_3 \) is the maximal suffix of \(w \) which uses only letters in \(Y^{\pm 1} \), and \(w_2 \) is the cyclic reduction of the remaining middle word \(w_1 w_2 w_3 w_4^{-1} \). Since \(w \) uses a letter not in \(Y \), the remaining middle word \(w_1 w_2 w_3^{-1} \) is not the empty word, and therefore \(w_2 \) is also nonempty.

Supposing we have a multiplication \(wvw \) with \(v \) nontrivial \(F(Y) \), we consider the maximum extent of letter cancellation. We have

\[
wwv \equiv w_0 w_1 w_2^{-1} w_3 w_4 w_5 w_6 w_7 w_8^{-1} w_9
\]

and the greatest extent of letter cancellation has \(w_3 w_4 w_5 \) cancelling entirely, so that \(w_1^{-1} w_2 w_3 w_4 w_5 \) cancels entirely, but the cancellation may go no further since \(w_2 \) was cyclically reduced. Supposing we have multiplication \(wvw^{-1} \) with \(v \) nontrivial in \(F(Y) \), we consider the maximum extent of cancellation within

\[
wwv^{-1} \equiv w_0 w_1 w_2^{-1} w_3 w_4^{-1} w_5 w_6^{-1} w_7 w_8 w_9^{-1}
\]

Since \(v \) is nontrivial we see that \(w_3 w_4 w_5^{-1} \) is not trivial. Thus in both cases, the nontrivial word \(w_2^{-1} \) remains untouched after a maximal cancellation, and the multiplication \(w^{-1} w^{-1} \) yields the same conclusion, as do products \(ww \) and \(w^{-1} w^{-1} \). This is sufficient for showing that a nontrivial reduced word in \(F(\{t\} \cup Y) \) maps nontrivially.

\[
\square
\]
Proof. (of Theorem 4.8) Only the (\Rightarrow) direction is nontrivial. Suppose $G \leq \text{HEG}$ is not n-slender and let $\phi_0 : \text{HEG} \to G$ witness this. By Lemma 2.3 we can conjugate both G and the homomorphism and obtain a new homomorphism ϕ_1 determined by a mapping $a_n \mapsto W_n$ where $[W_n] \in \text{HEG}^n$ and $j_n \not\sim \infty$ which witnesses that the conjugate of G is not n-slender. It will be sufficient to find a subgroup of this conjugate which contains HEG as a subgroup, so without loss of generality we replace G with this conjugate.

Since ϕ_1 witnesses the negation of n-slenderness, we can select a sequence V_n of reduced words such that $[V_n] \in \text{HEG}^n$ and $\phi_1(V_n) \in \text{HEG}^n \setminus \{1\}$ and we let U_n be the reduced word such that $U_n \in \phi(V_n)$. The mapping $f : a_n \mapsto U_n$ induces an endomorphism $\phi_2 : \text{HEG} \to \text{HEG}$ such that $\phi_2(\text{HEG}) \leq G$ and $\phi_2([a_n]) \in \text{HEG}^n \setminus \{1\}$ for all $n \in \omega$. Now, for each $n \in \omega$ there exists $m_n \in \omega$ such that $p_{m_n}((a_n)) = 1$. Thus by using a subsequence we produce an endomorphism ϕ such that $\phi(\text{HEG}) \leq G$, $p_{m_n}([a_n]) = 1$ and $\phi([a_{n+1}]) \in \text{HEG}^{m_n}$. This last condition guarantees that $p_{m_{n-1}} \circ \phi \circ p_n = p_{m_{n-1}} \circ \phi$. It also guarantees that given $n < j$ there exists a letter utilized in $p_{m_{j-1}} \circ \phi([a_n])$ which is not one of the generators of the free group $\text{HEG}_{m_{n-1}} \cap \text{HEG}^{m_j}$.

We claim that for each $n \in \omega$ the restriction $p_{m_{n-1}} \circ \phi \upharpoonright \text{HEG}_n$ is an injection. Fix n. We know $p_{m_{n-1}} \circ \phi([a_0])$ utilizes a letter that is not a generator in $\text{HEG}_{m_{n-1}} \cap \text{HEG}^{m_n}$, so by Lemma 4.9 we get the isomorphism

$$\langle t_0 \rangle * (\text{HEG}_{m_{n-1}} \cap \text{HEG}^{m_n}) \cong \{ p_{m_{n-1}} \circ \phi([a_0]) \} \cup (\text{HEG}_{m_{n-1}} \cap \text{HEG}^{m_n})$$

Since the subgroup $\{ p_{m_{n-1}} \circ \phi([a_1]), \ldots, p_{m_{n-1}} \circ \phi([a_{n-1}]) \}$ is included in the group $\text{HEG}_{m_{n-1}} \cap \text{HEG}^{m_n}$, we get a fortiori that

$$\langle t_0 \rangle * (p_{m_{n-1}} \circ \phi([a_1]), \ldots, p_{m_{n-1}} \circ \phi([a_{n-1}]) \rangle = p_{m_{n-1}} \circ \phi([a_0]), \ldots, p_{m_{n-1}} \circ \phi([a_{n-1}])$$

Continuing to argue in this manner we get that $\{ p_{m_{n-1}} \circ \phi([a_0]), \ldots, p_{m_{n-1}} \circ \phi([a_{n-1}]) \}$ is a free group in its listed generators, so $p_{m_{n-1}} \circ \phi \upharpoonright \text{HEG}_n$ is injective.

Now, given $[W] \in \text{HEG} \setminus \{1\}$ we select $n \in \omega$ such that $p_n([W]) \neq 1$. Then $p_{m_{n-1}} \circ \phi \circ p_n([W]) \neq 1$ since $p_{m_{n-1}} \circ \phi \upharpoonright \text{HEG}_n$ is injective. Thus

$$1 \neq p_{m_{n-1}} \circ \phi \circ p_n([W]) = p_{m_{n-1}} \circ \phi([W])$$

so that $\phi([W]) \neq 1$. Then ϕ is a monomorphism and we are done. \square

The classification in Theorem 4.8 cannot be strengthened by more generally considering subgroups of residually free groups, since $\prod_{n} \mathbb{Z}$ is residually free, fails to be n-slender, and does not contain HEG as a subgroup.

In light of the result of \cite{N} we ask whether the analogous situation holds in the non-abelian case:

Question 4.10. Does there exist a countable set of groups $\{ G_n \}_{n \in \omega}$ such that a group fails to be n-slender if and only if it includes one of the G_n as a subgroup?

As a weakening of Question 4.10 we ask whether the main result of \cite{S} holds in the non-abelian case:

Question 4.11. Does there exist a countable set of groups $\{ G_n \}_{n \in \omega}$ such that a countable group fails to be n-slender if and only if it includes one of the G_n as a subgroup?

As has already been mentioned, it is even unknown whether there exists a countable group not containing \mathbb{Q} or torsion which fails to be n-slender.
REFERENCES

[ADTW] S. Akiyama, G. Dorfer, J. Thuswaldner, R. Winkler, *On the fundamental group of the Sierpiński-gasket*, Topol. Appl 156 (2009), 1655-1672.

[BS] W. Bogley, A. Sieradski, *Weighted combinatorial group theory and wild metric complexes*, Groups–Korea ’98 (Pusan), de Gruyter, Berlin, 2000, 53-80.

[CC1] J. Cannon, G. Conner, *The combinatorial structure of the Hawaiian earring group*, Topol. Appl 106 (2000), 225-271.

[CC2] J. Cannon, G. Conner, *On the fundamental groups of one-dimensional spaces*, Topol. Appl 153 (2006), 2648-2672.

[C] G. Conner, personal communication.

[CoCo] G. Conner, S. Corson, *A note on automatic continuity*, arXiv 1710.04787

[CHM] G. Conner, W. Hojka, M. Meilstrup, *Archipelago groups*, Proc. of the Amer. Math. Soc. 143 (2015), 4973-4988.

[CS] G. R. Conner, K. Spencer. *Anomalous behavior of the Hawaiian earring group*, J. Group Theory 8 (2005), 225-227.

[Co1] S. Corson, *Torsion-free word hyperbolic groups are n-slender*, Int. J. Algebra Comput. 26 (2016), 1467-1482.

[Co2] S. Corson, *Root extraction in one-relator groups and slenderness*, arXiv:1709.02906

[D] R. Dudley, *Continuity of homomorphisms*, Duke Math. J. 28 (1961), 587-594.

[E1] K. Eda, *Free σ-products and noncommutatively slender groups*, J. Algebra 148 (1992), 243-263.

[E2] K. Eda, *Free σ-products and fundamental groups of subspaces of the plane*, Topol. Appl 84 (1998), 283-306.

[E3] K. Eda, *Atomic property of the fundamental groups of the Hawaiian earring and wild locally path-connected spaces*, J. Math. Soc. Japan 63 (2011), 769-787.

[EK] K. Eda, K. Kawamura, *The singular homology of the Hawaiian earring*, J. London Math. Soc. 62 (2000), 305-310.

[F] L. Fuchs. *Infinite Abelian Groups*, Vols 1,2, Academic Press, San Diego 1970, 1973.

[FZ] H. Fischer, A. Zastrow, *The fundamental groups of subsets of closed surfaces inject into their first shape groups*, Algebr. Geom. Topol. 5 (2005), 1655-1676.

[Hi] G. Higman, *Unrestricted free products and varieties of topological groups*, J. London Math. Soc. 27 (1952), 73-81.

[Ho] W. Hojka, *The harmonic archipelago as a universal locally free group*, J. Algebra 437 (2015), 44-51.

[Ku] K. Kunen. *Set Theory: An Introduction to Independence Proofs*, North-Holland, Amsterdam, 1980.

[MM] J. Morgan, I Morrison, *A van Kampen theorem for weak joins*, Proc. London Math. Soc. 53 (1986), 562-576.

[Nu] R. Nunke, *Slender groups*, Bull. Amer. Math. Soc. 67 (1961), 274-275.

[Sa] E. Sasiada, *Proof that every countable and reduced torsion-free abelian group is slender*, Bull. Acad. Polon. Sci. 7 (1959), 143-144.

[Sm] B. de Smit, *The fundamental group of the Hawaiian earring is not free*, Int. J. Algebra Comput. 2 (1992), 33-37.

[Sp] E. Specker, *Additive Gruppen von folgen Ganzer Zahlen*, Portugal. Math. 9 (1950), 131-140.

[T] T. Tlas, *Big free groups are almost free*, Int. J. Algebra Comput. 25 (2015), 855-.

[Z] A. Zastrow, *The non-abelian Specker group is free*, J. Algebra 229 (2000), 55-85.

IKERBASQUE- BASQUE FOUNDATION FOR SCIENCE AND MATHEMATICA SAILA, UPV/EHU, SARRIENA S/N, 48940, LEIOA - BIZKAIA, SPAIN
E-mail address: sammyc973@gmail.com