CASE REPORT

Hematochezia Due to Panitumumab-induced Colitis with Vitamin K Deficiency

Hotaka Tamura, Koji Nakashima, Naomi Uchiyama, Souichiro Ogawa, Hiroshi Hatada, Naoki Yoshida, Keisuke Uchida, Yoshinori Ozono, Hiroyuki Tanaka, Koji Yamamoto and Hiroshi Kawakami

Abstract:
Panitumumab, a fully human anti-epidermal growth factor receptor (EGFR) monoclonal antibody, has been shown to be useful in treating either advanced or recurrent KRAS/NRAS/BRAF wild-type colorectal cancer. We herein report the case of a 60-year-old man with short bowel syndrome who developed hematochezia due to panitumumab-induced colitis with vitamin K deficiency during third-line chemotherapy. The cause of vitamin K deficiency was the lack of intravenous vitamin K supplementation following a change from central venous nutrition to peripheral venous nutrition. We advise clinicians to carefully check for colitis and manage the infusions of chemotherapy patients with short bowel syndrome.

Key words: panitumumab, drug-induced colitis, hematochezia, vitamin K deficiency, short bowel syndrome

(Intern Med 61: 1503-1509, 2022) (DOI: 10.2169/internalmedicine.8254-21)

Introduction
Panitumumab, a fully human anti-epidermal growth factor receptor (EGFR) monoclonal antibody, has been proven to be useful in the treatment of unresectable advanced or recurrent KRAS/NRAS/BRAF wild-type colorectal cancer, not only when used in combination with 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX), or with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first- or second-line chemotherapy, but also as salvage monotherapy (1-3). Diarrhea has been reported to occur in approximately 20% of all patients receiving panitumumab monotherapy (4), and there have been no reports of hematochezia. Although the mechanism of diarrhea induced by anti-EGFR monoclonal antibody therapy remains unclear, one hypothesis points to excessive chloride secretion and deficient sodium absorption (5).

Vitamin K, a fat-soluble vitamin, is a necessary cofactor for the activation of coagulation factors II, VII, IX, X, and proteins C and S. Therefore, vitamin K deficiency leads to bleeding tendency. The main causes of vitamin K deficiency are the lack of hepatic storage in newborns, liver insufficiency, malabsorption, dietetic deficiency, and the administration of antibiotics and coumarins (6).

Case Report
A 60-year-old man was transferred to our hospital with abdominal pain and hematochezia. He had a history of operable KRAS/NRAS/BRAF wild-type sigmoid colon cancer two years previously, for which he underwent resection of the primary lesion (Hartmann’s operation) and colostomy of the ascending colon. However, multiple peritoneal disseminations were observed intraoperatively. After the surgery, he received S-1 plus oxaliplatin (SOX) as first-line chemotherapy. Bevacizumab (BV) was then added to the second course of SOX therapy, but a small bowel perforation occurred 21 days after initiation. An artificial anus was made at the jejunum approximately 120 cm from the ligament of Treitz. Although oral intake continued, he developed short bowel syndrome and required central venous nutrition.
(CVN) through a central venous access device (CVAD). SOX was re-administered without BV following the perforation. After 16 courses of SOX, he received FOLFIRI as a second-line chemotherapy; however, this was discontinued after one course because of drug-induced interstitial pneumonia.

The patient was started on panitumumab monotherapy as third-line chemotherapy, but developed a catheter-related bloodstream infection after the first course. The CVAD was removed, and peripheral venous nutrition (PVN) was initiated. He was also treated with antibiotics (tazobactam and piperacillin) for 11 days. Although the second course of panitumumab was administered during antibiotic administration, no diarrhea or abdominal pain occurred. The third course of panitumumab was started 22 days after the discontinuation of antibiotics. Three days after the re-administration of panitumumab, hematochezia was observed from the colostomy of the descending colon and anus. This was not observed in the artificial anus of the jejunum. After the fourth course of panitumumab treatment, the hematochezia worsened, and abdominal pain occurred. Computed tomography showed a diffuse edematous wall of the colon (Fig. 1), and colonoscopy (CS) showed spontaneous bleeding of the entire colon, loss of vascular permeability, and rough mucosa (Fig. 2). He was transferred to our hospital 25 days after the onset of hematochezia. Laboratory studies at admission showed mild anemia, coagulation disorders, and a marked increase in protein induced by vitamin K absence or antagonist-II (PIVKA-II) levels. A stool culture test showed a normal bacterial flora and no growth of Campylobacter jejuni, enterohemorrhagic Escherichia coli, and Klebsiella oxytoca (Table 1, 2). There were no notable medications, including nonsteroidal anti-inflammatory drugs. Based on the clinical course and laboratory studies, bleeding due to vitamin K deficiency secondary to PVN was diagnosed. CVN containing 2,000 μg of vitamin K1 was administered immediately. The hematochezia resolved the following day. On the third day of hospitalization, his prothrombin time (PT) and activated partial thromboplastin time (APTT) improved, and his vitamin K1 and K2 levels returned to normal (Table 2). CS, performed on the 12th day of hospitalization, revealed a diffuse coarse mucosa with loss of vascu-
Figure 2. Colonoscopy findings during the previous hospital admission. (a: upper left) In the terminal ileum, a normal mucosa was seen. (b: upper right) At the artificial anus of the descending colon, mucosal redness and edema with ulcerations were seen. (c: lower left) In the ascending colon, spontaneous bleeding, loss of vascular permeability, and rough mucosa were seen. A mucosal laceration was seen by air infusion. (d: lower right) In the rectum, the findings were similar to those of the ascending colon.

Table 1. Laboratory Findings (Hematologic Test, Chemistry, and Laboratory Culture).

Hematologic test	Chemistry
White blood cells	AST
Neutrophil	ALT
Lymphocyte	LDH
Monocyte	ALP
Eosinophil	γ-GT
Basophil	Total bilirubin
Red blood cells	Total protein
Hemoglobin	Albumin
Platelet count	BUN
Stool	Creatinine
Laboratory culture	Sodium
	Potassium
	Chloride
	CRP
	Glucose

- AST: aspartate aminotransferase
- ALT: alanine aminotransferase
- LDH: lactate dehydrogenase
- ALP: alkaline phosphatase
- γ-GT: γ-glutamyl transpeptidase
- BUN: blood urea nitrogen
- CRP: C-reactive protein

Despite the laceration, partial cryptitis, and neutrophilic and eosinophilic tissue infiltration, the bleeding showed improvement (Fig. 3). Biopsy specimens from the descending colon showed lymphocytic infiltration of the mucosa, neutrophilic and eosinophilic tissue infiltration, and partial cryptitis. However, no apoptotic bodies were observed (Fig. 4). T lymphocytic infiltration of the epi-
Table 2. Laboratory Findings (coagulation).

Parameter	Normal value	Unit	Day 1	Day 3	Day 28
PT	10.5-12.5 s		20.0	13.0	12.1
PT-INR	0.85-1.15		2.23	1.19	1.10
APTT	25-35 s		48.0	31.3	27.3
Fibrinogen	200-400 mg/dL		323		
D-dimer	<5 µg/mL		5.2		
Coagulation factors activity					
II	75-135 %		55		
V	70-135 %		92		
VII	75-140 %		63		
VIII	60-150 %		154		
IX	70-130 %		86		
X	70-130 %		64		
Protein S activity	60-150 %		58		
Protein C activity	54-146 %		85		
PIVKA-II	<40 mAU/mL		17,227	68	
Vitamin K1	0.25-1.25 ng/mL		2.33		
Vitamin K2	<0.10 ng/mL		Undetectable		

PT: prothrombin time, INR: international normalized ratio, APTT: activated partial thromboplastin time, FDP: fibrin/fibrinogen degradation products, PIVKA-II: protein induced by Vitamin K absence or antagonists-II

Discussion

Drug-induced enterocolitis involves a variety of morphological and functional abnormalities in the small and large intestines following either short-term or long-term exposure to a drug. No clear diagnostic criteria currently exist, and the diagnosis is made based on a comprehensive evaluation of the patient’s history, laboratory findings, and clinical course. The chemotherapy drugs most frequently associated with diarrhea are 5-fluorouracil (a thymidylate synthase inhibitor) and irinotecan (a topoisomerase I inhibitor) (7). Although 5-fluorouracil (5-FU) is one of the most widely used chemotherapy drugs, it causes intestinal mucositis with diarrhea, nausea, vomiting, and anorexia (8, 9). The mechanisms of intestinal mucositis due to 5-FU are believed to be a combination of several factors, including direct cytotoxicity, reactive oxygen, apoptosis, inflammatory cytokines, and dysbiosis (10, 11). Irinotecan causes acute and late diarrhea. Acute diarrhea, which occurs within minutes to up to 24 hours after administration of irinotecan, is due to the inhibition of acetylcholine esterase. However, it can be easily controlled with atropine (7). One proposed mechanism for late diarrhea is that the active metabolite of irinotecan, SN-38, is 100 to 1,000 times more cytotoxic than the parent compound. In animals, irinotecan causes villous atrophy and crypt damage in the small intestine, severe colonic mucosal damage with crypt hypoplasia, and increased mucus secretion (12). Each chemotherapy drug presents with a different mechanism of diarrhea and colitis.

On the other hand, EGFR inhibitors, cetuximab and panitumumab, also cause diarrhea, but their mechanisms are unknown (7). Yohann et al. suggested that the mechanism of diarrhea, caused by EGFR inhibitors, is secretory in nature and inhibits EGFR effects on chloride secretion. However, more than one mechanism could be likely involved. As EGFR is expressed by epithelial cells throughout the gastrointestinal tract, possibilities include altered gut motility, colonic crypt damage, changes to intestinal microflora, altered nutrient metabolism, absorption, and altered transport in the colon (5).

In our case, bacterial colitis and antibiotic-associated hemorrhagic colitis (AAHC) were initially suspected. The former was ruled out on the basis of stool culture tests. The latter was also excluded because it differed from the characteristics of AAHC: Klebsiella oxytoca is cultured in a stool culture, onset is within a week from the start of antibiotic therapy, and the range of lesions is segmental without the...
rectum (13). The side effects of 5-fluorouracil and irinotecan were completely ruled out because five months had elapsed since they were last administered.

Individual histological features such as apoptosis, eosinophilic tissue infiltration, and increased intraepithelial lymphocytes within the gut mucosa may suggest drug-induced enterocolitis, but these are not specific (14). Our findings of lymphocytic mucosal infiltration with neutrophilic and eosinophilic tissue infiltration were histopathologically inconclusive for the diagnosis of drug-induced colitis. However, panitumumab-induced colitis was strongly suspected based on the clinical course, given that the symptom onset was 3 days after the re-administration of panitumumab, hematochezia worsened with continuation of panitumumab, and the colitis improved with the subsequent discontinuation of panitumumab. This diagnosis was further supported by the positive DLST results for panitumumab.

The DLST is commonly used for suspected drug allergic reactions, but its accuracy differs depending on the target organ or drug. Saito et al. investigated the diagnostic accuracy of DLST for mesalazine allergy in 104 patients with ulcerative colitis by comparing the DLST results of 24 patients with a history of adverse events to mesalazine in 80 patients without. Symptoms of these mesalazine allergy include diarrhea, hematochezia, and abdominal pain (15). The SI of each group was at 243.9±291.1% and 119.8±53.0%, respectively, and the SI was significantly higher (p=0.030) in the group with known adverse events. DLST may also be useful for symptomatic cases. Based on the clinical course and DLST results (SI, 242%) in our case, we concluded that the patient had panitumumab-induced colitis. Saito et al. also reported that the period from the start of mesalazine administration to the onset was 14.3±7.5 days (15). This is a shorter period than that in our case. These differences were based on whether the administration was daily or every two weeks. In our case, it may have been sensitized during the first or second course of panitumumab and elicited during the third course.

In our patient, coagulation abnormalities due to vitamin K deficiency manifested as hematochezia. Vitamin K is a fat-soluble vitamin that is chemically composed of 2-methyl-1,4-naphthoquinone. Vitamin K includes two natural vitamins, vitamin K1 and K2. Vitamin K1 is synthesized by plants and is mainly found in leafy green vegetables, while vitamin K2 is synthesized by intestinal bacteria and is found in animal-sourced foods. Vitamin K is absorbed in the jejunum and ileum. Being a cofactor of gamma-glutamyl carboxylase, it is required for the gamma-carboxylation of coagulation factors II (prothrombin), VII, IX, X, protein C, and protein S. Therefore, vitamin K deficiency or antago-
Histological findings of biopsy specimens from the descending colon (Hematoxylin and Eosin staining). (a: upper left) Active enteritis with erosive changes and partial cryptitis were seen (×40). (b: upper right) In the lamina propria, moderate to severe lymphoplasmacytic infiltration was observed (×100). (c: lower left) Intermingled neutrophils and eosinophils were also observed, but no definite apoptotic bodies were detected (×400).

The authors state that they have no Conflict of Interest (COI).

References

1. Douillard JY, Siena S, Cassidy J, et al. Randomized phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28: 4697-4705, 2010.

2. Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 28: 4706-4713, 2010.

3. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25: 1658-1664, 2007.

4. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26: 1626-1634, 2008.

5. Loriot Y, Perlemuter G, Malka D, et al. Drug Insight: gastrointestinal and hepatic adverse effects of molecular-targeted agents in cancer therapy. Nat Clin Pract Oncol 5: 268-278, 2008.

6. Mijares ME, Nagy E, Guerrero B, Arocha-Piñango CL. Vitamin K: biochemistry, function, and deficiency. Invest Clin 39: 213-229, 1998.
ment of diarrhea during cancer chemotherapy. Lancet Oncol 15: 447-460, 2014.
8. Benson AB, Ajani JA, Catalano RB, et al. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J Clin Oncol 22: 2918-2926, 2004.
9. Symonds RP. Treatment-induced mucositis: an old problem with new remedies. Br J Cancer 77: 1689-1695, 1998.
10. Hamouda N, Sano T, Oikawa Y, et al. Apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of 5-fluorouracil-induced intestinal mucositis in mice. Basic Clin Pharmacol Toxicol 121: 159-168, 2017.
11. Sonis ST. The pathobiology of mucositis. Nat Rev Cancer 4: 277-284, 2004.
12. Gibson RJ, Bowen JM, Inglis MR, Cummins AG, Keefe DM. Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. J Gastroenterol Hepatol 18: 1095-1100, 2003.
13. Högenauer C, Langner C, Beubler E, et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N Engl J Med 355: 2418-2426, 2006.
14. Price AB. Pathology of drug-associated gastrointestinal disease. Br J Clin Pharmacol 56: 477-482, 2003.
15. Saito D, Hayashida M, Sato T, et al. Evaluation of the drug-induced lymphocyte stimulation test for diagnosing mesalazine allergy. Intest Res 16: 273-281, 2018.
16. Fusaro M, Gallieni M, Rizzo A, et al. Vitamin K plasma levels determination in human health. Clin Chem Lab Med 55: 789-799, 2017.
17. Crowther MA, Julian J, McCarty D, et al. Treatment of warfarin-associated coagulopathy with oral vitamin K: a randomized controlled trial. Lancet 356: 1551-1553, 2000.
18. Sokoll LJ, Sadowski JA. Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am J Clin Nutr 63: 566-573, 1996.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).