Efficacy of Antidepressants and USPSTF Guidelines for Depression Screening

TO THE EDITOR: The efforts of the U.S. Preventive Service Task Force (USPSTF) to keep their evidence-based guidelines up to date are praiseworthy. It is understandable that practical concerns may limit specific questions addressed by new literature reviews. Nonetheless, it is disappointing that the questions addressed in the recent update of the depression screening guidelines (1) were not broader. In particular, the narrowly defined review did not consider new evidence on the efficacy of antidepressant treatment of depression from 2 recent meta-analyses, which included many clinical trials whose results were not published and were heretofore inaccessible.

Turner and colleagues (2) showed that results of 31% of completed trials registered with the U.S. Food and Drug Administration (FDA) for 12 antidepressant drugs were provided to the FDA but not published. Of these 23 unpublished trials, 16 did not show significant efficacy per FDA review. Meta-analysis of all trials, published and unpublished, showed that antidepressants were less efficacious than in meta-analyses of only published trials. Furthermore, Kirsch and colleagues’ meta-analysis (3) of published and unpublished trials of 6 antidepressants, all of which provided results in terms of the Hamilton Rating Scale for Depression, showed that the drugs’ effects were barely clinically significant. Thus, these 2 meta-analyses showed that failure to publish an important minority of “negative” trials of antidepressants biased the published literature in favor of these drugs, and that this bias made the drugs seem more efficacious than they really are. If these widely touted treatments of depression are really of marginal clinical effectiveness, the rationale for screening for depression comes into question.

Furthermore, the increasing number of cases in which clinical research results that did not favor the interests of the commercial sponsors of the studies were suppressed suggests that we need to rethink how evidence is gathered to support evidence-based practice guidelines and perhaps how we regulate clinical research. A recent editorial (4) in response to concerns about manipulating and suppressing evidence noted that “...the current system isn’t working. Worse than that, it gives a false sense of security. The system’s failures have left a legacy of drug evaluations for which, in the absence of better information, we must assume...confusion and uncertainty...”. Failure to consider these issues when developing evidence-based guidelines just boots the problem down the road for others to solve after it has become even more pernicious.

Roy M. Poses, MD
Foundation for Integrity and Responsibility in Medicine
Warren, RI 02885

Potential Conflicts of Interest: None disclosed.

References
1. O’Connor EA, Whitlock EP, Beil TL, Gaynes BN. Screening for depression in adult patients in primary care settings: a systematic evidence review. Ann Intern Med. 2009; 151:793-803. [PMID: 19949145]
2. Turner EH, Matthews AM, Linardatos E, Tell RA, Rosenthal R. Selective publication of antidepressant trials and its influence on apparent efficacy. N Engl J Med. 2008;358:252-60. [PMID: 18199864]
3. Kirsch I, Moore TJ, Scoboria A, Nicholls SS. The emperor’s new drugs: an analysis of antidepressant medication data submitted to the U.S. Food and Drug Administration, Prev Treat. 2002; volume 5: article 23.
4. Godlee F, Clarke M. Why don’t we have all the evidence on oseltamivir? [Editorial]. BMJ. 2009;339:b3531. [PMID: 19995815]

IN RESPONSE: We agree that trade-offs may be involved in conducting targeted systematic reviews to efficiently update an evidence-based recommendation. We refer the reader to the USPSTF’s procedure manual (1) for further clarification on their rationale and approach for conducting updates.

Dr. Poses suggests that explicit inclusion of unpublished trials in meta-analysis would reduce current estimates of antidepressant efficacy, thus undermining the rationale for depression screening in primary care. We do not believe an overestimate has been clearly established, and if it was, there are several reasons why it would not undermine the importance of screening. First and foremost, the rationale for screening relies most strongly on studies (key question 1) providing direct evidence that depression screening and care management programs increase depression response and remission compared with usual care. This evidence does not assume any particular efficacy of antidepressants per se, although efficacious treatments are part of the care pathway. Second, in the absence of direct evidence, the USPSTF’s analytic framework for screening topics requires only that 1 or more primary care-applicable treatments be effective in screen-detected disease. For depression, pharmaceuticals are only one potentially effective treatment. The effectiveness of psychotherapy is not in dispute on the basis of unpublished studies. Thus, even if the overall efficacy of antidepressants were found to be less than estimated, this would not eliminate the potential value of screening.

Although we do not dispute the “file drawer problem” (publication bias in which null studies are less likely to be published), we believe that the studies by Turner and colleagues (2) and Kirsch and colleagues (3) do not in themselves refute the efficacy of antidepressants in major depressive disorder (the focus of our review). Turner and colleagues elegantly show not only publication bias but also distortion and inflation in effect sizes with their examination of published versus unpublished antidepressant trials provided to the FDA. Although they effectively showed reporting biases that would overestimate treatment efficacy, Turner and colleagues did not attempt a true meta-analysis of published and unpublished studies of antidepressant efficacy. The study by Kirsch and colleagues has several analytic problems limiting its conclusions, particularly the probable overestimate of the proportion of drug response attributable to placebo, due to use of between-study pooling rather than within-study pooling to gauge improvement.

Although we do not agree that our overall review findings about depression screening should be called into question, we appreciate Dr. Poses’s emphasis that systematic reviews rigorously consider the full range of available data and potential biases involved in study reporting.

Evelyn P. Whitlock, MD, MPH
Elizabeth A. O’Connor, PhD
Oregon Evidence-based Practice Center, Kaiser Permanente
Center for Health Research
Portland, OR 97227

© 2010 American College of Physicians
Smoking Cessation and the Risk for Type 2 Diabetes Mellitus

TO THE EDITOR: Yeh and colleagues (1) report that smoking cessation may increase the risk for type 2 diabetes mellitus. This may not be that surprising, given the well-known relationship between smoking cessation and weight gain, which has been exploited by cigarette manufacturers for many years (2). Yeh and colleagues (1) found that weight gain did, in fact, explain some of the excess risk for incident diabetes in smokers who quit. However, the mechanism of the increased risk for type 2 diabetes in these ex-smokers is undoubtedly more complex. Of note, smoking cessation can trigger a major depressive episode (3, 4), which may put an individual at risk for type 2 diabetes as a result of being less attentive to healthy behaviors, such as following an optimum diet, taking prescribed medications, and exercising. Depression is also associated with decreased insulin sensitivity in persons at risk for type 2 diabetes (5). Furthermore, depression is associated with systemic inflammation (6), which may increase the risk for diabetes.

The article by Yeh and colleagues (1) should raise awareness that smoking cessation may increase the risk for diabetes. After individuals quit smoking, they may be more vulnerable to changes in mood that may have numerous effects on physical health and health risks. Although Yeh and colleagues did not report on depression in the patients in their study, the development of a major depressive episode should be considered as a possible mechanism for the important observation regarding smoking cessation as a risk factor for diabetes.

Roy C. Ziegelstein, MD
Johns Hopkins Bayview Medical Center
Baltimore, MD 21224

Potential Conflicts of Interest: None disclosed.

References
1. Yeh HC, Duncan BB, Schmidt MI, Wang NY, Brancati FL. Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2010;152:10-7. [PMID: 20048267]
2. Boyd TC, Boyd CJ, Greenlee TB. A means to an end: slim hopes and cigarette advertising. Health Promot Pract. 2003;4:266-77. [PMID: 14610997]
3. Covey LS, Glassman AH, Steiner F. Major depression following smoking cessation. Am J Psychiatry. 1997;154:263-S. [PMID: 9016279]
4. Glassman AH, Covey LS, Steiner F, Rivelli S. Smoking cessation and the course of major depression: a follow-up study. Lancet. 2001;357:1929-32. [PMID: 11425414]
5. Wagner J, Allen NA, Swalley LM, Melkus GD, Whittemore R. Depression, depression treatment, and insulin sensitivity in adults at risk for type 2 diabetes. Diabetes Res Clin Pract. 2009;86:S6-103. [PMID: 19720419]
6. Irwin MR, Miller AH. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun. 2007;21:374-83. [PMID: 17360153]
TO THE EDITOR: We congratulate Yeh and colleagues (1) for a job well done. Tonstad and colleagues (2) had similar findings in patients with coronary heart disease: Ex-smokers were more likely to have the full metabolic syndrome and increased waist circumference. It is reported (3, 4) that tobacco and other drugs of abuse are associated with appetite suppression and that discontinuation is associated with hyperphagia and weight gain. Discontinuation of drug use is so regularly associated with weight gain that most abstinence-oriented rehabilitation centers that provide detox services and treat addiction have incorporated prophylactic diet and exercise into their programs. Drugs of abuse and food compete at the same brain reinforcement sites; thus, cessation of an addictive substance can cause rebound hyperphagia and rapid weight gain, which is highly associated with the metabolic syndrome and diabetes (5).

It is unfortunate that data on eating habits were not available in the study by Yeh and colleagues, because frequency of consumption and types of foods consumed are important variables. Many addiction professionals and self-help groups teach that eating can soothe drug cravings and that avoiding hunger is a helpful tactic to keep from “falling off the wagon.” Thus, some patients recovering from addiction carry sugar, and many recovery meetings have cakes, cookies, and candies readily available. Some research has found that sugar placebos have effects that augment recovery rates in smoking cessation. Research (6, 7) supports the idea that overconsumption of palatable foods (high fat and carbohydrate, high salt, or high carbohydrate) may be a sign of food addiction and another cause of obesity and subsequent issues.

Patients contemplating cessation will probably need a comprehensive yet individualized program that includes checking fasting blood glucose, fasting insulin (for example, to calculate quantitative insulin-sensitivity check), and CRP; behavioral and nutritional counseling; and, for some, pharmacotherapy, such as bupropion, to mitigate the orexigenic effects of nicotine withdrawal (8) to ensure that smoking cessation does not lead to overeating, weight gain, and increased risk for diabetes (9).

It is also possible that the systemic inflammation (another risk factor for diabetes) that is supposedly reduced during smoking cessation may increase because of rebound hyperphagia or a possible loss of β₁-receptor adipocyte influence on thermogenesis during nicotine withdrawal, all resulting in rebound adiposity (10, 11). More studies are needed to shed light on this issue.

Richard L. Shriner, MD
Noni A. Graham, MPH
Mark S. Gold, MD
University of Florida College of Medicine
Gainesville, FL 32610

References
1. Yeh HC, Duncan BB, Schmidt MI, Wang NY, Brancati FL. Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2010;152:10-7. [PMID: 20048267]
2. Onat A, Ozhan H, Esen AM, Albayrak S, Karabulut A, Can G, et al. Prospective epidemiologic evidence of a “protective” effect of smoking on metabolic syndrome and diabetes among Turkish women—without associated overall health benefit. Atherosclerosis. 2007;193:380-8. [PMID: 16926017]
3. Nagaya T, Yoshida H, Takahashi H, Kawai M. Heavy smoking raises risk for type 2 diabetes mellitus in obese men; but, light smoking reduces the risk in lean men: a follow-up study in Japan. Ann Epidemiol. 2008;18:113-8. [PMID: 18083537]
4. Pankow JS, Kwan DK, Duncan BB, Schmidt MI, Couper DJ, Golden S, et al. Cardiometabolic risk in impaired fasting glucose and impaired glucose tolerance: the Atherosclerosis Risk in Communities Study. Diabetes Care. 2007;30:325-31. [PMID: 17259502]
5. Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, Collins R, et al; Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375:132-40. [PMID: 20031199]

Potential Conflicts of Interest: None disclosed.

IN RESPONSE: We agree with Dr. Ziegelstein that smoking cessation may trigger depression, which could in turn increase the risk for type 2 diabetes because of unhealthy behaviors, decreased insulin sensitivity, or increased systemic inflammation. Unfortunately, the ARIC study did not include a specific assessment for depression. At the 3-year follow-up visit, ARIC participants were asked to complete a survey of vital exhaustion (1) to measure feelings of fatigue and exhaustion that might precede myocardial infarction. As Dr. Ziegelstein suspected, vital exhaustion was greater in quitters than in never-smokers (mean score adjusted for age, sex, race, and ARIC center, 11.3 [SD, 9.3] vs. 9.1 [SD, 8.3], respectively), but adjustment for vital exhaustion did not seem to explain the higher risk for incident diabetes in quitters in the fully adjusted regression model.

Dr. Onat makes several interesting comments. First, he is correct that smokers in the lowest tertile of cumulative pack-years had no excess risk for diabetes compared with never-smokers. The lowest-tertile group mostly comprised ex-smokers (77%) who had probably quit more than 10 to 15 years before enrollment in ARIC.

Richard L. Shriner, MD
Noni A. Graham, MPH
Mark S. Gold, MD
University of Florida College of Medicine
Gainesville, FL 32610

References
1. Yeh HC, Duncan BB, Schmidt MI, Wang NY, Brancati FL. Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2010;152:10-7. [PMID: 20048267]
2. Tonstad S, Svendsen M. Premature coronary heart disease, cigarette smoking, and the metabolic syndrome. Am J Cardiol. 2005;96:1681-5. [PMID: 16360357]
3. Gambineri WC, Gold MS. Neurobiology of tobacco smoking and other addictive disorders. Psychiatr Clin North Am. 1999;22:301-12. [PMID: 10385935]
4. Hodgkins CC, Cahiil KS, Seraphine AE, Frost-Pineda K, Gold MS. Adolescent drug addiction treatment and weight gain. J Addict Dis. 2004;23:55-65. [PMID: 15256344]
5. Gold MS, Graham NA, Cocores JA, Nixon SJ. Food addiction? J Addict Med. 2009;3:42-5.
6. Cocores JA, Gold MS. The Salted Food Addiction Hypothesis may explain over-eating and the obesity epidemic. Med Hypotheses. 2009;73:892-9. [PMID: 19645950]
7. Corsica JA, Pelchat ML. Food addiction: true or false? Curr Opin Gastroenterol. 2010;26:165-9. [PMID: 20042860]
8. Richmond R, Zwar N. Review of bupropion for smoking cessation. Drug Alcohol Rev. 2003;22:203-20. [PMID: 12859077]
9. Corwin EJ, Klein LC. C-reactive protein and depressed mood in a sub-group of smokers during nicotine abstinence. Hum Psychopharmacol. 2003;18:329-37. [PMID: 12858318]
10. Jessen AB, Toubro S, Astrup A. Effect of chewing gum containing nicotine and caffeine on energy expenditure and substrate utilization in men. Am J Clin Nutr. 2003;77:1442-7. [PMID: 12791621]
11. Yarnell JW, Sweetnam PM, Rogers S, Elwood PC, Bainton D, Baker IA, et al. The association of food addiction with the metabolic syndrome. Am J Cardiol. 2005;96:1681-5. [PMID: 16360357]

IN RESPONSE: We agree with Dr. Ziegelstein that smoking cessation may trigger depression, which could in turn increase the risk for type 2 diabetes because of unhealthy behaviors, decreased insulin sensitivity, or increased systemic inflammation. Unfortunately, the ARIC study did not include a specific assessment for depression. At the 3-year follow-up visit, ARIC participants were asked to complete a survey of vital exhaustion (1) to measure feelings of fatigue and exhaustion that might precede myocardial infarction. As Dr. Ziegelstein suspected, vital exhaustion was greater in quitters than in never-smokers (mean score adjusted for age, sex, race, and ARIC center, 11.3 [SD, 9.3] vs. 9.1 [SD, 8.3], respectively), but adjustment for vital exhaustion did not seem to explain the higher risk for incident diabetes in quitters in the fully adjusted regression model.

Dr. Onat makes several interesting comments. First, he is correct that smokers in the lowest tertile of cumulative pack-years had no excess risk for diabetes compared with never-smokers. The lowest-tertile group mostly comprised ex-smokers (77%) who had probably quit more than 10 to 15 years before enrollment in ARIC.
Therefore, the results seem consistent with our finding that diabetes risk decreases to the background rate during this time. Second, he suggests that the common practice of introducing BMI into multivariable models that relate smoking to diabetes risk might constitute inappropriate overadjustment for a risk mediator (insofar as smoking-related weight loss might contribute to reduced diabetes risk) that would bias risk estimates upward. We therefore did an additional analysis excluding BMI and waist circumference from the fully adjusted model. This led to a small attenuation in the risk estimates, but the relationship remained graded and statistically significant. Finally, Dr. Onat questions the appropriateness of pooling men and women into a single analysis, because the effects of smoking on weight might differ by sex. We therefore assessed for possible interactions in models with and without BMI and waist circumference. There was no evidence of effect modification by sex in either model. We therefore stand by our pooled approach.

Finally, the comments by Dr. Shriner and colleagues regarding potential changes in eating habits after quitting are well taken. Unfortunately, we cannot test their hypothesis in the ARIC cohort. The ARIC study used a food-frequency questionnaire to collect usual dietary intake, which does not reflect daily eating behavior, but rather long-term dietary patterns. Dr. Shriner and colleagues also recommend checking fasting insulin and CRP levels as part of a postcessation monitoring plan. Although additional assays would provide further information, demographic and clinical factors readily available in the primary care setting without extra cost seem to carry a great deal of predictive information: Older men who were heavy smokers and who gained more weight after quitting have by far the highest risk for diabetes. Physicians and patients should be aware of these risk factors even without additional blood assays.

Hsin-Chieh Yeh, PhD
Frederick L. Brancati, MD, MHS
Johns Hopkins University
Baltimore, MD 21205

Potential Conflicts of Interest: None disclosed.

Reference
1. Appels A, Höppener P, Mulder P. A questionnaire to assess premonitory symptoms of myocardial infarction. Int J Cardiol. 1987;17:15-24. [PMID: 3666994]

Opioids in Management of Chronic Noncancer Pain
This conversation continues on the Web. To read more, go to http://annals.org/content/152/2/123.full/reply#annintmed_el_124279.

TO THE EDITOR: In addition to the overdose and mortality risks from prescription opioids discussed by McLellan and Turner (1), 3 additional opioid-related issues require attention: the possibility that many persons who have overdosed or died of illegally diverted prescription opioids (or heroin) initially became addicted through the use of a legitimate prescription; the prominent role of psychological disorders, which have substantially contributed to the overprescription of opioid analgesics; and the likelihood that extended-release and long-acting opioids carry greater risks for addiction, overdose, and death than shorter-acting agents.

Many persons who overdosed or died of diverted prescription opioids or heroin (obtained either from the street or from friends or relatives) may have initially been prescribed an opioid for some type of pain, which led to addiction and then to the drug-seeking behaviors associated with this disease. Likewise, many addicted persons who obtain most of their opioids through illegal “doctor shopping” may have developed their addiction through an initial or continued legal prescription for pain medicines. These common situations underscore the importance of prudent, selective prescribing of opioids for specific clinical indications for chronic noncancer pain, with close attention to the risk–benefit ratio and to recently established guidelines, as well as to careful monitoring and knowing when to discontinue or taper these potent brain-active drugs.

As stated by McLellan and Turner, opioid overdose and death were associated with depression, benzodiazepine use, and history of substance abuse. This suggests that many opioid prescriptions are written for chronic noncancer pain in which psychological disorders, such as anxiety syndromes and depressive disorders, are present but often missed. Because psychological comorbid conditions are common in chronic noncancer pain disorders, particularly fibromyalgia (2, 3), treatment with nonopioid agents and nonpharmacologic approaches is indicated, possibly including referral for psychological or behavioral therapies (4).

My observation from clinical practice and as a national disability peer-reviewer in rheumatology is that many patients have undiagnosed or underdiagnosed psychological disorders that have been inadequately addressed by focusing mainly on chronic pain misattributed solely to a somatic structure, such as degenerative discs, arthritis, or muscle tissue (such as in fibromyalgia). These somatic labels then become the indication to prescribe opioids for presumed tissue pain, while the psychological disorders underlying the pain go unrecognized. This predisposes to persistence of symptoms, drug dependence, and continued dysfunction and increases claims for long-term disability. These factors have become a major contributor to the rising health care costs affecting our nation and, unless recognized, will continue to fuel the prescription opioid epidemic and its adverse consequences, including addiction, overdose, and death.

Finally, as noted by the authors, the study by Dunn and colleagues (5) focused on short-acting opioids used by more than 90% of the cohort, but if extended-release and long-acting opioids, such as oxycodone and methadone, had been the main drugs studied, the outcomes would most likely have been worse, especially because oxycodone and methadone have resulted in the highest reported mortality rates (6). We hope to see further studies and discussions about the problems of prescription opioids, which continue to take a large toll on the public health and social systems of our nation.

Stephen G. Gelfand, MD
Cookeville, TN 38501

Potential Conflicts of Interest: None disclosed.

References
1. McLellan AT, Turner BJ. Chronic noncancer pain management and opioid overdose: time to change prescribing practices [Editorial]. Ann Intern Med. 2010;152:123-4. [PMID: 20083830]
2. Winfield JB. Psychological determinants of fibromyalgia and related syndromes. Curr Rev Pain. 2000;4:276-86. [PMID: 10953275]
3. Arnold LM, Hudson JL, Keck PE, Auchenbach MB, Javars KN, Hess EV. Comorbidity of fibromyalgia and psychiatric disorders. J Clin Psychiatry. 2006;67:1219-25. [PMID: 16965199]
TO THE EDITOR: While preparing some reading material for the trainees in pain medicine to whom I give a seminar as part of my clinical faculty teaching, I reviewed the recent editorial by McLellan and Turner (1), written in response to the study by Dunn and colleagues (2). As an addiction medicine specialist and an American Board of Medical Specialties–certified pain specialist, my teaching often focuses on the substance abuse and psychosocial aspects of the therapeutic use of controlled substances.

I will not comment on the cohort study on opioid overdose or the general details of the editorial itself. Both publications make important contributions to the field of pain medicine and public health, and I predict that the issues raised will stimulate thinking and responses that will lead to important academic and policy dialogue. However, the authors should consider modifying the statement that “[p]rescribing opioids at high doses is both dangerous and questionable for indications other than methadone treatment of opioid dependence,” by substituting “can be” for “is.”

Those familiar with the literature on pain medicine (3–6) and the standards of care across the United States (7) know that the statement overreaches and seems to overlook the ostensibly few cases of both malignant and nonmalignant pain in which the appropriate use of high-dose opioids has been both successful and accepted by the medical community and has become an essential part of the practice of medicine for a particular patient. Both the literature and the medical board guidelines emphasize diligent selectivity and continuous and careful monitoring, particularly when the opioid dose is substantial and long-term, but wisely avoid absolute statements that question or label as dangerous a particular clinical practice.

Because this statement has the imprimatur of both the White House Office of National Drug Control Policy and *Annals*, and because adverse consequences may occur both therapeutically and in medicolegal contexts as a result of this statement, I believe it is important to correct it.

Howard Kornfeld, MD
University of California, San Francisco, School of Medicine
San Francisco, CA 94122

Potential Conflicts of Interest: None disclosed.

References
1. McLellan AT, Turner BJ. Chronic noncancer pain management and opioid overdose: time to change prescribing practices [Editorial]. Ann Intern Med. 2010;152:123-4. [PMID: 20083830]
2. Dunn KM, Saunders KW, Rutter CM, Banta-Green CJ, Merrill JO, Sullivan MD, et al. Opioid prescriptions for chronic pain and overdose: a cohort study. Ann Intern Med. 2010;152:85-92. [PMID: 20083827]
3. Rosenblum A, Marsch LA, Joseph H, Portenoy RK. Opioids and the treatment of chronic pain: controversies, current status, and future directions. Exp Clin Psychophar-

Potential Conflicts of Interest: None disclosed.

Reference
1. McLellan AT, Turner BJ. Chronic noncancer pain management and opioid overdose: time to change prescribing practices [Editorial]. Ann Intern Med. 2010;152:123-4. [PMID: 20083830]

IN RESPONSE: The remarks from Dr. Gelfand and Dr. Kornfeld exemplify the wide spectrum of opinions about the use of opioids for chronic noncancer pain. Dr. Gelfand questions the use of these drugs in persons with mental health disorders, and Dr. Kornfeld takes issue with our suggestion that high-dose opioids should be avoided. However, Dr. Gelfand accurately emphasizes the high prevalence of comorbid mental health disorders in persons prescribed opioids. In a national population-based community survey (1), persons with a history of mood disorder (such as depression and anxiety disorder) were more than 4 times more likely than persons without such a history to report subsequent opioid treatment. We agree that physicians need to address mental health disorders when treating pain, but we would not deny a potentially beneficial therapy to patients just because they have such a disorder.

In his remarks supporting the use of high-dose opioids, Dr. Kornfeld does not distinguish whether this treatment is for cancer or noncancer pain, but our editorial and the article by Dunn and colleagues (2) concern only noncancer pain. The American Pain Society–American Academy of Pain Medicine Opioids Guidelines Panel stated that “…there is little evidence to guide safe and effective prescribing at higher [opioid] doses and there is no standardized definition for what constitutes a ‘high’ dose” (3). The Panel raises serious concerns, as do we, about high-dose opioid therapy (which they define as oral morphine or equivalent, >200 mg/d) because of the risks for diversion, opioid-related adverse effects, changes in health status, and poor adherence to the opioid treatment plan.

Marcus M. Reidenberg, MD
Weill Cornell Medical College
New York, NY 10065
Letters

If patients require high-dose therapy, the panel recommends using complementary nonopioid therapies to help reduce reliance on opioids and possibly rotating opioids along with dose reductions (3). An American Pain Society–American Academy of Pain Medicine panel identified related research gaps, including, “What are the benefits and harms of high (>200 mg/d of morphine or equivalent) versus lower doses of opioids for chronic noncancer pain?” and “Are high doses of opioids associated with different or unique harms compared with lower doses?” (4). Such fundamental gaps in our knowledge, along with worrisome evidence of serious risks, raise serious questions about the use of high-dose opioids to manage noncancer pain.

Finally, we thank Dr. Reidenberg for his correction. The sentence in our editorial to which he refers should have read, “Opioid overdose is among the most common causes of accidental death nationwide.” This has been corrected in the online version.

A. Thomas McLellan, MD
White House Office of National Drug Control Policy
Washington, DC 20503

Barbara J. Turner, MD, MSEd
Executive Deputy Editor

Note: The opinions expressed here do not necessarily represent those of the White House Office of National Drug Control Policy.

Potential Conflicts of Interest: None disclosed.

References
1. Sullivan MD, Edlund MJ, Zhang L, Unützer J, Wells KB. Association between mental health disorders, problem drug use, and regular prescription opioid use. Arch Intern Med. 2006;166:2087-93. [PMID: 17060538]
2. Dunn KM, Saunders KW, Rutter CM, Banza-Green CJ, Merrill JO, Sullivan MD, et al. Opioid prescriptions for chronic pain and overdose: a cohort study. Ann Intern Med. 2010;152:85-92. [PMID: 20083827]
3. Chou R, Fanciullo GJ, Fine PG, Miaskowski C, Pasik SD, Portenoy RK. Opioids for chronic noncancer pain: prediction and identification of aberrant drug-related behaviors: a review of the evidence for an American Pain Society and American Academy of Pain Medicine clinical practice guideline. J Pain. 2009;10:131-46. [PMID: 19187890]
4. Chou R, Ballantyne JC, Fanciullo GJ, Fine PG, Miaskowski C. Research gaps on use of opioids for chronic noncancer pain: findings from a review of the evidence for an American Pain Society and American Academy of Pain Medicine clinical practice guideline. J Pain. 2009;10:147-59. [PMID: 19187891]

CLINICAL OBSERVATION

Bilateral Necrosis of Earlobes and Cheeks: Another Complication of Cocaine Contaminated With Levamisole

Background: Levamisole is a veterinary anthelminthic agent that has also been used as an immunomodulating agent to treat cancer, autoimmune diseases, and the nephrotic syndrome. It has been shown to cause neutropenia and vasculitis (1–3). The practice of cutting cocaine with levamisole has been increasing since 2005, and in 2009, 70% of cocaine seized at U.S. borders contained levamisole (4). Recent reports (4, 5) have implicated levamisole as a cause of neutropenia in cocaine abusers. Two cocaine abusers with similar cases of neutropenia and vasculitis presented to the University of Rochester Medical Center, New York, within 8 days of each other. We hypothesize that cocaine contaminated with levamisole may cause not only neutropenia but also vasculitis.

Case Report: The first patient was a 57-year-old woman who presented with 2 days of worsening cutaneous lesions, fevers, chills, arthralgias, and flare-ups of recurrent Staphylococcus aureus boils. She had no significant medical history except for smoking cocaine, with her last use 4 days before presentation. On examination, she had tender palpable purpuric plaques on both cheeks and ear lobes with central areas of necrosis (Figure).

On the day of admission, the patient’s absolute neutrophil count was 2.3×10^9 cells/L; within 48 hours, it dropped to 0.5×10^9 cells/L. Anticardiolipin IgM levels were low- to medium-positive. Perinuclear antineutrophil cytoplasmic antibody (P-ANCA) was positive (titer > 1:2560). Further work-up for hematologic and rheumatologic disorders was negative. Histopathologic examination of her right cheek lesion showed organizing thrombi in small-caliber vessels associated with perivascular lymphocytic inflammatory cell infiltrates; these findings were consistent with a thrombotic disorder and would be less likely with small-vessel vasculitis. The skin lesions resolved spontaneously, and neutropenia was corrected by treatment with filgrastim.

The second patient was a 22-year-old woman who presented with 2 weeks of a painful rash on her face, ears, legs, thighs, and buttocks. Her medical history was significant for cocaine abuse. Examination revealed many exquisitely tender erythematous plaques with central necrosis on her thighs, lower extremities, and buttocks. Her cheeks had erythematous plaques, and her nose had a prominent necrotic lesion on an erythematous base.

Laboratory data showed an absolute neutrophil count less than 1.0×10^9 cells/L. Her P-ANCA results were positive (titer, 1:2560). Anticardiolipin IgM antibody and plasma serine IgM levels were elevated. Complement and protein C and S levels were moderately low. Results of further work-up for hematologic and rheumatologic disorders were negative. Toxicology screening was positive for cocaine.

A skin biopsy showed small-vessel vasculitis with associated multiple intravascular thrombi consistent with leukocyctlastic vasculitis. The patient was treated with steroids, and her lesions and neutropenia improved rapidly.

Discussion: Both patients presented with a clinical, histologic, and immunologic profile typical of levamisole toxicity. Although levamisole levels were not obtained, exposure is very likely because 70% of cocaine is contaminated by levamisole (4). Levamisole has serious side effects, such as bone-marrow suppression; skin reactions, including cutaneous vasculitis, are less frequent. Vasculitis has a very distinct presentation, with purpuric lesions preferentially involving the ear lobes and an association with anticardiolipin and P-ANCA levels similar to the presentation of our patients. Histologic examination of the skin lesions shows a vasculopathic reaction pattern ranging from leukocyctlastic and thrombotic vasculitis to vascular occlusive disease without true vasculitis (2, 3). Spontaneous resolution occurs by discontinuing levamisole use.

Conclusion: Clinicians should suspect exposure to cocaine contaminated with levamisole in patients presenting with both neutropenia and necrotic skin lesions. Testing for levamisole in urine and
blood should be done within 48 hours because of the short half-life of the drug (5.6 hours). Routine toxicology testing does not detect levamisole; gas chromatography and mass spectrometry are required.

Mark Bradford, MD
Brian Rosenberg, MD
Jorge Moreno, MS
University of Rochester Medical Center
Rochester, NY 14607

Ghinwa Dumyati, MD
Monroe County Department of Public Health
Rochester, NY 14692

Potential Conflicts of Interest: None disclosed.

References
1. Drew SI, Carter BM, Nathanson DS, Terasaki PI. Levamisole-associated neutropenia and autoimmune granulocytotoxins. Ann Rheum Dis. 1980;39:59-63. [PMID: 7377861]
2. Scheinberg MA, Bezerra JB, Almeida FA, Silveira LA. Cutaneous necrotising vasculitis induced by levamisole. Br Med J. 1978;1:408. [PMID: 624030]
3. Rongioletti F, Ghio L, Ginevri F, Bleidt D, Rinaldi S, Edefonti A, et al. Purpura of the ear: a distinctive vasculopathy with circulating autoantibodies complicating long-term treatment with levamisole in children. Br J Dermatol. 1999;140:948-51. [PMID: 10354040]
4. Centers for Disease Control and Prevention (CDC). Agranulocytosis associated with cocaine use - four States, March 2008-November 2009. MMWR Morb Mortal Wkly Rep. 2009;58:1381-5. [PMID: 20019655]
5. Knowles L, Buxton JA, Skuridina N, Achebe I, Legatt D, Fan S, et al. Levamisole tainted cocaine causing severe neutropenia in Alberta and British Columbia. Harm Reduct J. 2009;6:30. [PMID: 19919709]