WITNESSING THE BIRTH OF A QUASAR

TAKAMITSU TANAKA, ZOLTÁN HAIMAN, AND KRISTEN MENOU

Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA

Received 2010 April 29; accepted 2010 June 19; published 2010 July 15

ABSTRACT

The coalescence of a supermassive black hole binary (SMBHB) is thought to be accompanied by an electromagnetic (EM) afterglow, produced by the viscous infall of the surrounding circumbinary gas disk after the merger. It has been proposed that once the merger has been detected in gravitational waves (GWs) by the Laser Interferometer Space Antennae (LISA), follow-up EM observations can search for this afterglow and thus help identify the EM counterpart of the LISA source. Here, we study whether the afterglows may be sufficiently bright and numerous to be detectable in EM surveys alone. The viscous afterglow is characterized by an initially rapid increase in both the bolometric luminosity and the spectral hardness of the source. For binaries with a total mass of 10^5–$10^8 M_\odot$, this phase can last for years to decades, and if quasar activity is triggered by the same major galaxy mergers that produce SMBHBs, then it could be interpreted as the birth of a quasar. Using an idealized model for the post-merger viscous spreading of the circumbinary disk and the resulting light curve, and using the observed luminosity function of quasars as a proxy for the SMBHB merger rate, we delineate the survey requirements for identifying such birthing quasars. If circumbinary disks have a high disk surface density and viscosity, an all-sky soft X-ray survey with a sensitivity of $F_X \lesssim 3 \times 10^{-14}$ erg s$^{-1}$ cm$^{-2}$, which maps the full sky at least once per several months, could identify a few dozen birthing quasars with a brightening rate of $d \ln F_X / dt > 10^% \text{yr}^{-1}$ maintained for at least several years. If >1% of the X-ray emission is reprocessed into optical frequencies, several dozen birthing quasars could also be identified in optical transient surveys, such as the Large Synoptic Survey Telescope. Distinguishing a birthing quasar from other variable sources may be facilitated by the monotonic hardening of its spectrum, but will likely remain challenging. This reinforces the notion that observational strategies based on joint EM-plus-GW measurements offer the best prospects for the successful identification of the EM signatures of SMBHB mergers.

Key words: accretion, accretion disks – black hole physics – gravitational waves – quasars: general

Online-only material: color figures

1. INTRODUCTION

Observational evidence robustly indicates that all or nearly all galaxies harbor a supermassive black hole (SMBH) in their nucleus (e.g., Magorrian et al. 1998). Since cosmological structure formation models predict a hierarchy of galaxy mergers, if nuclear SMBHs were indeed common at earlier times, then these mergers should result in the formation of SMBH binaries (SMBHBs; Begelman et al. 1980), and these binaries should then be common throughout cosmic time (Haehnelt 1994; Menou et al. 2001; Volonteri et al. 2003; Wyithe & Loeb 2003; Sesana et al. 2007b; Lippai et al. 2009; Tanaka & Haiman 2009).

It has also long been known, both observationally (e.g., Sanders et al. 1988) and theoretically (e.g., Barnes & Hernquist 1991), that galaxy mergers can drive gas to the nucleus of the merger remnant, which could facilitate the merger of the nuclear SMBHs on the one hand, while also providing fuel for quasar activity on the other hand. Mergers are generically also therefore believed to trigger quasar activity; the rate of major galaxy mergers can indeed provide an explanation for the observed evolution of the quasar population as a whole (Carlberg 1990; for more recent work, see, e.g., Hopkins et al. 2007a and Wyithe & Loeb 2009 and references therein).

Despite their expected ubiquity, observational evidence for SMBHBs is scarce, and the precise timing of any quasar activity, when it occurs relative to the merger of the nuclear SMBHB, remains unclear (Kocsis et al. 2006). A handful of pairs of active SMBHs in the same galaxy have been resolved directly at ∼kpc separation in X-ray (Komossa et al. 2003) and optical (Comerford et al. 2009) images and at ∼10 pc separation in the radio (Rodriguez et al. 2006), confirming that gas is present around the SMBHB and that quasar activity can, at least in some systems, commence prior to their coalescence. However, there has been at least one suggestion that luminous activity can occur later, at the time of the merger as well, momentarily interrupted by the coalescence of the SMBHs and reactivated afterward (Liu et al. 2003b). While there are many more observed SMBHB candidates with small separations (e.g., Roos et al. 1993; Schoenmakers et al. 2000; Merritt & Ekers 2002; Sudou et al. 2003; Liu 2004; Boroson & Lauer 2009), the evidence for these tighter binaries is indirect, and each candidate system has alternative explanations. The expectation is that at large separations, the binaries rapidly lose orbital angular momentum through dynamical friction with background stars and through tidal–viscous interaction with the surrounding gas (Ivanov et al. 1999; Armitage & Natarajan 2002; Escala et al. 2005; Merritt & Milosavljević 2005; Dotti et al. 2007; Sesana et al. 2007a; Cuadra et al. 2009; Callegari et al. 2009; Colpi et al. 2009; Haiman et al. 2009; Chang et al. 2010). Once sufficiently compact, gravitational wave (GW) emission rapidly shrinks the orbit, culminating in a merger. How long this process lasts, and at what stage(s) the SMBHs light up as luminous quasars, is, however, also poorly understood theoretically.

Apart from the cosmological context, interest in electromagnetic (EM) signatures of SMBH mergers surged recently (e.g., Milosavljević & Phinney 2005; Bode & Phinney 2007; Lippai et al. 2008; Schnittman & Krolik 2008; Shields & Bonning 2008;...
In this paper, we focus on one particular signature of SMBHB coalescence, which we will hereafter refer to as the “viscous afterglow.” The physics of this model were discussed by Liu et al. (2003b) in the context of the interruption of jets in double–double radio galaxies and later by Milosavljević & Phinney (2005; hereafter MP05) in the context of EM counterparts of LISA sources. Prior to the merger, the SMBHB torques open and maintain a cavity in the center of a thin circumbinary gas disk (Artymowicz & Lubow 1994). When the binary becomes sufficiently compact, GW emission causes the binary orbit to shrink faster than the gas just outside the cavity can viscously respond. The merger takes place inside the cavity, which is subsequently filled as the disk viscously spreads inward. Because the refilling inner disk produces higher energy photons than the outer regions, the disk is predicted to transition from an X-ray-dim state to an X-ray-bright one, with its bolometric luminosity increasing by a factor of ∼10 during this time. This transition is expected to take place on humanly manageable timescales, with the cavity filling in ∼10(1 + z)(M/10^6 M⊙)^1.3 yr, where M is the total mass of the binary. A study of an optically selected sample by Gibson et al. (2008) found an X-ray-dim active galactic nucleus (AGN) to be rare (<2% at z ∼ 2), suggesting that it would be manageable to catalog and monitor such systems for possible observational signatures of a merger afterglow.

In the observational scenario originally proposed by MP05, LISA would detect the GWs from the merger and determine the merger’s approximate location in the sky to within ∼0.1°, triggering a follow-up search to identify the EM counterpart and host galaxy. A natural question to ask, however—and the subject of this paper—is whether the viscous afterglows may be sufficiently bright and numerous to be detectable in EM surveys alone, even before LISA is launched. The identification of mergers by their EM signatures alone could, in principle, be valuable for several reasons. First, LISA would be sensitive to GWs from relatively low-mass SMBBHs, with total masses of ∼(10^4–10^7)/(1 + z) M⊙. EM studies could, in principle, detect coalescing SMBBHs outside this mass range, and could therefore complement the LISA binary population. Second, while many models for the cosmological evolution of SMBBHs predict that LISA will detect dozens or hundreds of mergers (if “seed” BHs are abundant and merge often; e.g., Sesana et al. 2007b), there are some SMBH assembly scenarios that may result in fewer LISA events (i.e., if seeds are rare and grow primarily through rapid accretion or are very massive already at formation; Tanaka & Haiman 2009; Lippai et al. 2009). It is therefore plausible that EM surveys could deliver a larger SMBBH sample than available from GWs. Third, several transient EM surveys are already under way, or are planned to be completed before the expected launch date of the LISA mission around 2020.

If luminous quasar activity is triggered by major mergers of galaxies, as argued above, then the viscous afterglow could plausibly be interpreted as the signature of the birth of a quasar. In this paper, we estimate the number of identifiable afterglow sources, i.e., birthing quasars, in the sky, by (1) adopting an idealized time-dependent model (Tanaka & Menou 2010, hereafter TM10) of the evolution of the disk structure, to calculate the photometric light curve and variability of the afterglow, and (2) using the observed luminosity function of quasars as a proxy for the SMBHB merger rate. Our two main goals are as follows.

1. To assess whether there is any hope of detecting and identifying the viscous afterglows with conventional EM telescopes alone.
2. To see how the identifiability of the afterglows depends on theoretical parameters and to delineate the ideal survey attributes (wavelength, angular coverage, and depth). We compare the derived attributes to those similar to planned large surveys of the transient sky: a soft-X-ray survey with specs similar to those that were unsuccessfully proposed recently, for the Lobster-Eye Wide-Field X-ray Telescope3 (LWFT) mission and the Large Synoptic Survey Telescope4 (LSST) in the optical.

We find that the detectability of the afterglow is sensitive to the properties of the circumbinary disk, in particular to the ratio of the viscous stress to the gas pressure, and to the surface density of the disk. We conclude that purely EM identification of the afterglows by the planned surveys is unlikely, unless the surface density and the viscosity in the circumbinary disk are at the high end of the expected range. In this latter, optimistic scenario, several dozen birthing quasars could be identified in a soft X-ray transient survey. We also find that if ≥1% of the X-ray radiation emitted in the central regions is reprocessed into the optical frequencies by dust surrounding the source, or by warps or geometric splaying in the disk itself (TM10), several dozen afterglows could be detected in an optical transient survey, such as LSST.

This paper is organized as follows. In Section 2, we summarize the viscous afterglow model and describe our methods for estimating the identifiable population of AGNs harboring a recently merged SMBBH. In Section 3, we present estimates for the number of identifiable afterglow sources in the sky. We summarize our results and offer our conclusions in Section 4.

2. A SIMPLE MODEL FOR THE AFTERGLOW POPULATION

In this section, we describe the model and underlying assumptions used to estimate the number of observable afterglow sources in the sky. We use the idealized Newtonian viscous evolution model described by TM10 to calculate the light-curve and spectral evolution of the source and to obtain light curves in fixed frequency bands. Then, following Haiman et al. (2009) we assume that every SMBBH merger ultimately leads to a bright

2 http://lisa.nasa.gov/
3 http://www.star.le.ac.uk/lwft/
4 http://www.lsst.org/lsst
quasar episode. Using the bolometric quasar luminosity function of Hopkins et al. (2007b) as a proxy for the underlying SMBH mass function, we estimate the number of afterglow sources in the sky that exhibit identifiable photometric brightening.\footnote{As discussed by Haiman et al. (2009), an alternative method for constructing the luminosity function is to calculate the SMBH merger rate from the merger rate of dark matter halos and to apply the post-merger light curve \(L(t, M, q) \) to each merger event. That method requires a third ingredient, namely a way to prescribe the SMBH masses from the halo masses. Given the approximate nature of our calculation, we choose the simpler method described in the text.}

Throughout this paper, \(M = M_1 + M_2, q = M_1/M_2, \) and \(a \) denote the binary mass, mass ratio, and semi-major axis, respectively. The physical constants \(G, c, \) and \(k_B \) have their usual meanings.

2.1. Modeling Afterglow Light Curves

Below, we briefly recapitulate the main features of the viscous afterglow model, which was advanced by MP05 and elaborated upon by TM10 (see also Shapiro 2010). We refer the reader to those earlier works for further details; a derivation of the disk evolutionary equations, in particular, can be found in Appendix A of TM10.

An SMBHB in a circular orbit of semi-major axis \(a \) will open an annular gap in a thin circumbinary disk at a radial distance \(R_{\text{wall}} \sim 2a \) from the binary’s center of mass (Artymowicz et al. 1991). The binary will gradually shrink by depositing orbital angular momentum in the disk, maintaining a nearly self-similar geometry with \(R_{\text{wall}}/(2a) \sim 1 \). The kinematic viscosity \(\nu_{\text{gas}} \) of the gas comprising the disk is a weak function of radius \(R \), and thus the viscous timescale \(\tau_{\text{visc}}(R) = (2/3)R^3/\nu_{\text{gas}} \) roughly scales just outside the cavity as \(\tau_{\text{visc}}(R_{\text{wall}}) \propto a^2 \). Because GW emission shrinks the orbit on a timescale \(\tau_{\text{GW}} \equiv (d \ln a/ dt)^{-1} \propto a^2 \), a value of \(a \) exists inside of which the binary orbit begins to shrink faster than the circumbinary gas can viscously follow. This critical binary separation is on the order of \(a \sim 100 \, \text{GM/c}^2 \); past this point, the evolution of the binary and the disk are decoupled.

After decoupling, the evolution of the disk surface density \(\Sigma \) can be described by the standard equation for a thin, Keplerian accretion disk (e.g., Frank et al. 2002):

\[
\frac{\partial}{\partial t} \Sigma(R, t) = 3 \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} (R^{1/2} \nu \Sigma) \right].
\]

In the special case when the dependence of the gas viscosity on radius can be approximated as a power law, \(\nu \propto R^n \), the surface density evolution \(\Sigma(R, t) \) can be solved semi-analytically with a Green’s function formalism (Lynden-Bell & Pringle 1974; TM10), starting from an arbitrary initial distribution \(\Sigma(R, t = 0) \).

The subsequent evolution of the circumbinary disk is sensitive to several properties of the binary-plus-disk system. For a given total binary mass \(M \equiv M_6 \times 10^6 \, M_\odot \), the relevant observable quantities can be expressed in terms of the following eight system parameters.

1. The parameter \(\zeta \equiv 4q(1 + q)^{-2} \leq 1 \) is the symmetric mass ratio of the binary, scaled to unity for equal-mass binaries.
2. The ratio of the diameters of the circumbinary cavity and the binary separation at decoupling is specified by the parameter \(\lambda = R_{\text{wall}}/(2a) \sim 1 \).
3. The gas viscosity is parameterized via the ratio of the viscous stress to the gas pressure, \(\alpha = \nu_{\text{gas}} \Omega_k T / P_{\text{gas}} \) (Shakura & Sunyaev 1973). The choice to scale the viscosity by the gas pressure and not the total pressure is motivated by calculations that suggest that radiation pressure-dominated thin disks may be thermally unstable (Shakura & Sunyaev 1976; Pringle 1976).\footnote{Even if thermally stable (Hirose et al. 2009), such disks may still be viscously unstable (Lightman & Eardley 1974; Piran 1978; Hirose et al. 2009).}
4. The parameter \(\beta \) gives the ratio, at decoupling, of the timescale \(t_{\text{GW}} \) on which the binary shrinks due to GW emission to the viscous time \(t_{\text{visc}} \) of the gas at the cavity wall. MP05 prescribed \(\beta = 0.1 \), based on the fact that the gas near the cavity wall has a very steep density gradient and will move on a characteristic timescale \(\sim 0.1 t_{\text{visc}} \) after the binary torques vanish. However, the calculations by TM10 suggest that the lower value of \(\beta \sim 0.05 \) is more appropriate, as it gives a closer approximation to the time elapsing between the merger and when the binary torques cease to influence the gas.
5. The disk porosity parameter, \(\theta \), prescribes how the optical thickness \(\tau \) between the disk midplane and the height where the emitted photons are thermalized relates to the surface density \(\tau = \theta \Sigma_{\text{esc}} \), where \(\sigma_{\text{esc}} \) is the electron-scattering cross section.
6. The viscous evolution model assumes a radial power law for the kinematic viscosity, \(\nu_{\text{gas}} \propto R^n \). Prior to the merger, viscosity in a circumbinary decretion disk may be expected to be a weak function of radius, with \(n \lesssim 0.1 \); after the merger, \(n \sim 0.4 \) may be expected in the accretion region of interest (TM10).
7. Another parameter of interest is the radial power-law index \(m \equiv \partial (\ln \nu_{\text{gas}}) / \partial \ln R \) of the disk mass profile at decoupling. The standard steady-state solution for a thin accretion disk around a single central object satisfies \(m = 0 \), with mass flow \(M = 3 \pi \nu_{\text{gas}} \Sigma \) constant with radius. However, at the cavity wall the binary torques decrease the gas outward; in this regime, the disk would more likely satisfy \(m = -1/2 \), with torque density \(\nu_{\text{gas}} \Sigma R^{1/2} \) constant (e.g., Pringle 1991).

We prescribe initial surface density profiles satisfying

\[
\Sigma(R \lesssim R_{\text{wall}}) \ll \Sigma(R \gtrsim R_{\text{wall}}) \propto R^{-n+m},
\]

with a steep exponential drop-off in \(\Sigma \) near \(R \sim R_{\text{wall}} \) (MacFadyen & Milosavljević 2008; TM10).

8. The value of the surface density \(\Sigma_{\text{wall}} \) at the cavity wall at decoupling depends on how much gas has piled up due to accretion of outer gas and decretion of the gas just inside. We parametrize this value as \(\Sigma_{\text{wall}} = \Sigma_{\text{Edd}}/(3\pi v) \), where \(\Sigma_{\text{Edd}} \) is the accretion rate that would produce a luminosity corresponding to the Eddington limit for the binary mass \(M \), assuming a radiative efficiency of \(\eta = 10\% \). The parameter \(\Sigma \) can be thought of as the product of two quantities: the mass supply rate \(M \) to the disk in Eddington units and the enhancement of the disk surface density just outside the cavity due to mass accumulation. The second factor may be expected to exceed unity.

In addition to the above parameters, the cosmological redshift \(z \) of the source will also obviously affect the observed spectra, luminosity, and brightening rates of the sources.
For a given set of parameters, we use the corresponding surface density evolution $\Sigma(R, t)$ to calculate the disk temperature profile at depths where the emitted photons are thermalized, which in turn is used to obtain the monochromatic luminosity in the source rest frame:

$$L_\nu(t) \sim 2 \times \int_{R_{\text{ISCO}}}^{10R_{\text{ISCO}}} \pi \frac{2e_c}{1 + e_c} B_\nu 2\pi RdR. \quad (2)$$

The leading factor of 2 on the right-hand side of Equation (2) accounts for the fact that the disk radiates from two faces B_ν is the Planck function $e_c \equiv \kappa_{\text{abs}}/\kappa_{\text{esc}}$ is the ratio of the absorption to the total opacity and the fraction $2e_c/(1 + e_c)$ is the deviation of the flux from a blackbody (e.g., Rybicki & Lightman 1986; Blaes 2004). The effective temperature in the inner region of the disk is higher than a blackbody disk with the same surface density distribution, and thus it produces a harder spectrum. The lower limit of integration, R_{ISCO}, is the radius of the innermost stable circular orbit, for which we adopt the value $3GM/c^2$, consistent with the assumption that the binary remnant has moderate spin, $0.6 \lesssim a_0 \lesssim 0.9$. The choice for the upper limit of integration is somewhat arbitrary and does not significantly affect $L_\nu(t)$ as long as it is sufficiently large; at larger radii the flux is significantly lower and evolves on much longer timescales than the inner region originally occupied by the cavity.

The overall disk evolution timescale is roughly the viscous time at the cavity wall, evaluated at decoupling:

$$t_{\text{visc}} \sim 120 \text{ yr} \times M_6^{0.32} \zeta^{-0.45} \lambda^{-2/3} \alpha_{-1}^{-0.45} \beta_{-1}^{-1} \eta_{0.2}^{-0.34} \quad (3)$$

Although the disk continues to brighten and spectrally harden for $\sim t_{\text{visc}}$ after the merger, the most dramatic evolution takes place in the first $\sim \beta t_{\text{visc}}$, which corresponds to the faster viscous spreading of the sharp density edge at $R \lesssim R_{\text{wall}}$.

The time-dependent spectrum of the viscously spreading disk can be divided into two parts: a nearly static low-frequency component produced predominantly by gas outside R_{wall} and a rapidly evolving high-frequency component produced predominantly by the gas flowing into the central cavity. The characteristic frequency that marks the boundary between the static and variable parts of the spectrum can be approximated in the source rest frame (TM10) as

$$h\nu_{\text{var}} \sim 30 \text{ eV} \times M_6^{-0.32} \zeta^{-0.45} \alpha_{-1}^{-0.36} \beta_{-1}^{-0.45} \eta_{0.2}^{0.09} \quad (4)$$

or, in terms of the wavelength,

$$\lambda_{\text{var}} \sim 40 \text{ nm} \times M_6^{0.32} \zeta^{-0.45} \alpha_{-1}^{-0.36} \beta_{-1}^{-0.45} \eta_{0.2}^{-0.09} \quad (5)$$

Above, we have defined $\alpha_{-1} \equiv \alpha/0.1$, $\beta_{-1} \equiv \beta/0.1$, and $\eta_{0.2} \equiv \theta/0.2$. These equations have already revealed that significant brightening will occur primarily at photon energies in the hard UV to X-ray bands. While the characteristic frequency in Equation (4) can move into the optical bands for the most massive SMBHs, the overall evolutionary timescale for these sources, Equation (3), becomes long. The most rapid evolution takes place as the cavity fills; once it is filled, the system evolves more gradually to approach a standard steady thin accretion disk solution around a single SMBH, with the quantity νL_ν peaking at a frequency of roughly $\nu_{\text{peak}} \sim 15\nu_{\text{var}}$. The spectrum falls off steeply at higher frequencies, and is likely unobservable above $\nu \gtrsim 3\nu_{\text{peak}}$.

Prior to decoupling, the luminosity of the disk at frequencies $\nu \gtrsim \nu_{\text{var}}$ is negligible. Once the cavity is filled, the monochromatic luminosity at frequencies $\nu_{\text{var}} \lesssim \nu \lesssim \nu_{\text{peak}}$ reaches

$$\nu L_\nu \sim (5-30) \times 10^{42} \text{ erg s}^{-1} M_6^{0.92} \zeta^{-0.42} \alpha_{-1}^{-0.34} \beta_{-1}^{-0.42} S_{\theta_{0.2}}^{1.2} \eta_{0.2}^{0.08} \quad (6)$$

In order to be identifiable in a survey, an afterglow source must exhibit significant brightening, at least comparable to the typical variability of an AGN, at luminosities and frequencies to which the survey is sensitive.

2.2. Modeling the Population of Afterglow Sources

We now turn to estimating the number of identifiable afterglow sources. The approach described below closely follows that described in Haiman et al. (2009) for estimating the number of pre-merger sources that may be detectable by their periodic variability. We begin by prescribing the quasar luminosity function as a proxy for the SMBH mass function. Specifically, we adopt the bolometric luminosity function of Hopkins et al. (2007b) and suppose that during a typical bright quasar phase, the luminosity and SMBH mass are related via a simple approximate relation, $L(M) \sim f_{\text{Edd}} L_{\text{Edd}}(M)$, where $L_{\text{Edd}}(M)$ is the Eddington luminosity for an object with mass M and f_{Edd} is a constant. This is an admittedly rough estimate, as f_{Edd} is known to have a non-negligible spread among the population of bright quasars. However, our simple estimate is sufficient for a proof of concept; a more precise calculation is not warranted, given the approximate and highly idealized nature of the afterglow model and the uncertainty in the system parameters. We choose the fiducial values $f_{\text{Edd}} \sim 1.14$ (e.g., Kollmeier et al. 2006) and assume a rest-frame quasar lifetime of $t_0 \sim 10^7$ yr (e.g., Martini 2004).

We further assume that there is a one-to-one correspondence between an SMBHB merger and a bright quasar episode, i.e., that an SMBHB merger ultimately triggers quasar activity. This assumption is consistent with our post-merger disk evolution model, which naturally leads to a state with a fully extended disk around a single SMBH, as long as fuel remains available to maintain a near-Eddington accretion rate at the outer edge of the disk. Given the comoving number density of AGNs dn_{AGN}/dM, we are interested in the subset of SMBH merger remnants that are producing an observable, brightening afterglow, and have not yet settled to a later, presumably steadier quasar phase. To estimate this fraction of SMBHs, we use the afterglow model described above and calculate the duration t_{ag} over which the photometric emission from a circumbinary disk brightens at a rate exceeding some threshold value. This threshold should be chosen to correspond to a brightening rate that is not only measurable, but is also distinguishable from other possible sources of time variability. The number of variable sources N_{ag} in the sky of such SMBHB remnants in a given mass and redshift range is then

$$N_{\text{ag}} \sim 42 n_{\text{AGN}} A_{\text{v}} \int_{t_{\text{Q}}}^{\infty} dn_{\text{AGN}} \int_{M}^{M_{\text{max}}} \frac{t_{\text{ag}}(M)}{t_{\text{Q}}} dM, \quad (7)$$

where A_{v} is the cosmological comoving volume between redshifts z_{Q} and z_{hi} and n_{AGN} is the space density of SMBHs of mass M, inferred from the quasar luminosity function evaluated at $L(M)$. It is worth emphasizing that this expression does not assume that a birthing quasar has a bolometric
luminosity of $L(M)$—rather, $L(M)$ here represents the characteristic luminosity that is produced by SMBHs of mass M in their quasi-steady quasar state; this asymptotic luminosity is reached only $\gtrsim 100$ yr after the merger, according to our afterglow models.

3. RESULTS AND DISCUSSION

3.1. Basic Parameter Dependencies

The dependence of the number of detectable variable sources on the various model parameters for the binary-plus-disk population is of obvious interest, and is not trivial, as each parameter differently affects the luminosity, spectral frequency, and brightening rate of the afterglow. For example, increasing the binary mass M increases the source luminosity and lowers the characteristic frequency of the source, while making the afterglow evolve more slowly—thus, the brightening and hardening rates both decrease (making identification more difficult) while the total flux and the total afterglow lifetime both increase (making a detection easier).

To illustrate how each of the parameters and the source redshift affect the detectability of variable afterglow sources, in Figure 1 we first plot the basic quantity $\tau_{ag,obs} = (1 + z)\tau_{ag}$, representing the amount of time a source is observed to spend at or above the required threshold for the brightening rate. The threshold in this figure is set at $d\ln L_X/d\ln t_{obs}$ of at least 10% yr$^{-1}$, in the soft X-ray frequency window of 0.1–3.5 keV (motivated by the proposed all-sky X-ray transience survey LWFT; see below). The solid black curve in each panel shows $\tau_{ag,obs}$ for the fiducial parameter values $q = \alpha_{-1} = \lambda = S = \theta_{0,2} = 1$, $\beta = 0.05$, $n = 0.4$, $m = -1/2$, and $z = 2$. In each panel, we show how the apparent duration of the rapidly brightening phase is affected by changes (dashed and dotted lines) in one of the system parameters.

In Figure 2, we plot the corresponding number $dN_{ag}/d\ln M$ of sources that exhibit a band luminosity L_X of at least 10^{40} erg s$^{-1}$ and an observed brightening rate $d\ln L_X/dt_{obs}$ of at least 10% yr$^{-1}$ in the same 0.1–3.5 keV frequency window. This is given by the product of the duty cycle $t_{ag,obs}/t_Q$ and the space density of SMBHs (Equation (7)), except that a further cut is imposed in luminosity. This is because the brightening rate may initially exceed the threshold for SMBHs with masses near the low-mass end of the range shown in the figure, but their band fluxes are still below the imposed threshold; these sources are excluded by subtracting the duration of this initial, sub-luminous state from the duty cycle $t_{ag,obs}/t_Q$. The number is computed for the whole sky, and over a redshift range $1 < z < 3$. The line-style scheme is the same as in Figure 1: the solid black curves show $dN_{ag}/d\ln M$ for fiducial parameter values, and the dashed and dotted curves show how the number of rapidly brightening sources depends on each parameter. The optimistic luminosity and brightening thresholds in this figure are chosen purely for demonstrative purposes. For reference, a source with $L_X \sim 10^{40}$ erg s$^{-1}$ and $z \sim 1$ would, in fact, have a flux of only $\lesssim 10^{-18}$ erg s$^{-1}$ cm$^{-2}$, and thus be too faint to be monitored for variability. Also, AGNs have been observed to vary in their X-ray brightness by as much as order unity on timescales of years. Although the afterglows in question would exhibit a monotonic increase in X-ray brightness, along with a corresponding monotonic spectral hardening, it is unclear whether a brightening rate of 10% yr$^{-1}$, even if sustained for several years and accompanied by a monotonic hardening of the spectrum, would be sufficient to distinguish an afterglow candidate from other X-ray variable sources.
The steep cutoff at high binary masses seen in both t_{ag} and $d N_{\text{ag}} / d \ln M$, in Figures 1 and 2, respectively, has two causes. One is that for sufficiently large M, the emission frequency of the source becomes too low and falls out of the soft X-ray window. The other reason is that the disk evolution timescale t_{visc} scales as $\propto M^{-1.3}$, so that for sufficiently large M the disk evolves so slowly that its brightening rate never reaches the adopted threshold of $10\% \text{yr}^{-1}$.

Figures 1 and 2 also show that the duration of the brightening phase and the mass function of the afterglow sources depend strongly only on the parameters α, β, and S. This is due to the fact that the afterglow frequency range and evolution timescale scale steeply with these parameters (see Equations (3) and (4)). Increasing α, increasing S, and decreasing β relative to their fiducial values all have the effect of increasing the afterglow emission frequency and pushing it further into the survey frequency window, while also increasing the brightening rate of the afterglow. Both of the quantities v_{esc} and t_{visc} depend only weakly on θ, and ξ varies too weakly in the range $0.1 \leq \xi \leq 1$ to have a sizable effect. Increasing (decreasing) the parameter λ results in afterglows that are further inside (outside) the frequency window but evolve much more slowly (quickly)—the two effects tend to cancel out and yield a relatively weak overall effect on $d N_{\text{ag}} / d \ln M$.

It is worth noting that the brightest afterglow sources satisfying a fixed $d \ln L_X / d \text{obs} > 10\% \text{yr}^{-1}$ are not the most massive ones. This is because disks around more massive BHs evolve more slowly, and the brightening rate is greatest early in the post-decoupling disk evolution when the source is dimmer. For most of the parameter value combinations probed in Figure 2—except for α, β, and S—the most luminous sources brightening at or above the threshold rate are those with binary masses of $(0.5–2) \times 10^6 M_{\odot}$. Interestingly, this mass range lies in the middle of LISA’s sensitivity window.

The maximum band luminosities of these sources are typically $(1–4) \times 10^{43} \text{erg s}^{-1}$ and behave roughly as described in Equation (6). For $\alpha = 1$ and $S = 3$, the masses and luminosities for the brightest afterglow sources are somewhat greater: $\gtrsim 5 \times 10^6 M_{\odot}$ and $\gtrsim 10^{44} \text{erg s}^{-1}$.

The range of luminosities across the parameter combinations probed in Figures 1 and 2 corresponds to an observed soft X-ray flux of $F_X \sim (10^{-16}–10^{-14}) \times S^{1.2} \text{erg s}^{-1} \text{cm}^{-2}$ in the range $1 \leq \zeta \leq 3$. Thus, if the approximate location of the source is known via a prior GW detection, the afterglow would be observable during the rapidly brightening phase at the sensitivity achieved by existing instruments such as XMM-Newton, ROSAT HRI, and Chandra (at ~100 ks exposure; see, e.g., Brandt & Hasinger 2005). For the parameter combinations probed in Figures 1 and 2, there are at least ~100 sources in the sky with $L_X \gtrsim 10^{43} \text{erg s}^{-1}$ and $d \ln L_X / d \text{obs} > 10\% \text{yr}^{-1}$, and they maintain this luminosity and brightening rate for $t_{\text{ag, obs}} \sim 10\text{ yr}$ in the observer frame.

Figure 2. Approximate number of afterglow sources in the sky at any given moment whose luminosity in the 0.1–3.5 keV energy range is (1) at least $10^{40} \text{erg s}^{-1}$ and (2) increasing by at least $10\% \text{yr}^{-1}$. We use the AGN luminosity function of Hopkins et al. (2007b) as a proxy for the SMBH mass function and associate each episodic activity of AGNs with an SMBH merger whose afterglow light curve is given by the time-dependent model of Tanaka & Menou (2010). The solid curve in each panel shows the fiducial set of parameters, $q = 0.1 = 0 = 0 = 1$, $\beta = 0.05$, $1 < \zeta < 2.5$, $n = 0.4$, and $m = -1/2$. The dotted and dashed curves show how the number of sources is affected by changes in each of the parameters. Note that the most massive sources are not the most luminous in the band of interest (see the text). For plausible parameter values, the most luminous sources have masses, band luminosities, and number in the sky of $\gtrsim 10^7 M_{\odot}$, $L \gtrsim 10^{43} \text{erg s}^{-1}$, and overall number $N_{\text{ag}} \lesssim 100$, respectively. The masses of luminous sources of interest coincide with the LISA sensitivity window, $10^5–10^7(1 + z)^{-1} M_{\odot}$.

(A color version of this figure is available in the online journal.)
In Figure 3, we present the X-ray source counts of objects increasing in band luminosity by at least 3% yr$^{-1}$, 10% yr$^{-1}$, 30% yr$^{-1}$, and 100% yr$^{-1}$ in the relevant frequency band. (Note that the energy range approximately coincides with the sensitivity window of existing deeper-exposure telescopes such as Chandra and XMM-Newton, and the planned all-sky survey eROSITA.) In the figure, the height of the histogram pillars is the number of sources in each logarithmic flux bin, with each bin having a width $\Delta \log_{10}(F \text{ erg}^{-1} \text{ cm}^{-2} \text{ s}^{-1}) = 0.5$. The dashed vertical line in each panel shows the approximate source confusion flux limit. These results suggest that only if S is large, i.e., if there is significant mass accumulation at the inner wall of the circumbinary disk, then rapidly brightening afterglow sources could be detected by the model mission: several sources at $S \sim 3$ and as many as dozens of sources for $S \sim 10$. The brightest of these sources have central SMBH masses of $M \gtrsim 10^9 \text{M}_\odot$, and thus most of the X-ray-detectable sources would also be observable by LISA. However, for $S \gtrsim 3$, some would fall outside LISA’s sensitivity window. These sources are expected to continue to brighten at a slightly reduced rate at higher frequencies, $h\nu > 3.5 \text{ keV}$, this is a prediction that could be tested with pointed follow-up observations. Our calculations indicate that birthing quasars will be difficult to identify with existing and planned wide-angle soft-X-ray surveys. For example, the eROSITA all-sky survey is expected to have a semi-annual flux limit of $\gtrsim 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$ with a time resolution of \sim months at those flux levels. Intrinsic absorption of soft X-rays by the birthing quasar itself could also be an observational barrier for at least some of the sources (see, e.g., Brandt et al. 2000), especially if galaxies harboring SMBHBs tend to be more heavily shrouded in gas and dust than the general population of active galaxies.

Whether the monotonic brightening of the afterglow would be sufficiently distinguishable from the X-ray variability of faint AGNs and other sources is an open (and more difficult) question. Luminous X-ray AGNs have been known to vary by as much as $\sim 10\%$–100% yr$^{-1}$ (e.g., Mushotzky et al. 1993). Any monotonic brightening in the X-ray must be distinguished from other sources of intrinsic variability, in addition to any instrumental error close to the faint-flux detection limit. It would appear likely, however, that a source that monotonically increases its X-ray luminosity by up to order unity per year for several years, while showing a consistent and monotonic hardening of its spectrum for the entire duration, would be fairly unusual. While an increase in the accretion rate through a standard thin accretion disk is also expected to produce a simultaneous brightening and spectral hardening, the spectral evolution will be different in detail. We also note that a variability survey, utilizing the ROSAT all sky survey, as well as pointed ROSAT observations (Grupe et al. 2001) found no correlation between changes in flux and spectral hardening in a sample of luminous soft-X-ray AGNs. If the brightening is caused by the viscous afterglow, it would also slow down on humanly manageable timescales and the light curve could be checked at different observational frequencies against the evolutionary models for the viscously spreading disk. This feature would also help distinguish birthing quasars from tidal disruption events.

It is worth emphasizing that a major caveat of the above analysis is that the thin-disk formalism adopted in our afterglow model breaks down for models with $S \gtrsim 3$. Indeed, in this massive regime, the disk midplane temperature becomes sufficiently high that a one-dimensional estimate for the disk...
We choose this band because it is the LSST filter with the highest frequency range, and thus the one in which the afterglow brightening is likely to be the most prominent. The results are presented in Figure 4. In both panels, the dashed vertical lines demarcate the limiting flux to a signal-to-noise ratio of 50 over an ~1 yr period (~450 s accumulated exposure). With the fiducial parameter choices in the left panel, there is clearly no hope of a detection. We also find that, unlike in the X-ray bands, raising the value of S does not increase the source counts. This is because while increasing S beyond the fiducial value pushes the evolving portion of the spectrum into the model instrument band, it pushes it further out of the LSST u band, reducing the optical variability. Therefore, in the right panel of Figure 4, we show the expected number counts for the larger value $\alpha = 1$, on which the emission frequency depends less strongly instead.

We find that the sources are still likely to be too dim and too few to be identifiable with high confidence from among the large number of AGNs expected to be detected by LSST. However, gradually brightening optical AGNs could still be cataloged, and their X-ray luminosities could be cross-checked with data from instruments such as eROSITA for subsequent X-ray afterglows, which may still prove useful.

The possibility that the X-ray afterglow may be promptly reprocessed into optical or infrared frequencies, either by dust surrounding the source (MP05) or by warps and vertical splaying in the circumbinary disk (TM10) is more promising for optical surveys. If a significant portion of the X-ray emission is reprocessed, then the afterglow source will appear as an AGN whose optical/infrared luminosities can brighten by $d \ln L_{\nu}/dt \gtrsim 10\% \text{yr}^{-1}$. Such a monotonic variability would exceed the typical long-term rms variability in AGN brightness at these frequencies, and is likely to be identifiable by LSST.

For purely demonstrative purposes, here we adopt a simple theoretical model, in which a fraction f_{rp} of the emitted power above $\nu > 1$ keV in the source’s rest frame is reprocessed (thermalized) and re-emitted at frequencies below the ultraviolet energy 10 eV, so that the power below $\nu V < 10$ eV is enhanced as

$$L_{\nu < 0.1\text{keV}}^{\text{rep}} \sim L_{\nu < 0.1\text{keV}} + f_{\text{rp}} L_{\nu > 1\text{keV}}.$$ (8)

We further assume that the fractional energy enhancement is roughly uniform in the optical and infrared—i.e., we ignore line emission from recombination processes—so that for our purposes the optical spectral emission is given by

$$\nu L_{\nu}^{\text{rep}} \sim \nu L_{\nu} \times \left(1 + f_{\text{rp}} \frac{L_{\nu > 1\text{keV}}}{L_{\nu < 0.1\text{keV}}} \right).$$ (9)

This prescription is similar in spirit to the model of Gierliński et al. (2009), who showed that the reprocessing signature of the X-ray outbursts of the stellar-mass black hole system XTE J1817-330 is consistent with reprocessing a constant fraction of the bolometric X-ray luminosity. We also neglect the reprocessing time, which is dominated by the light-travel time and much shorter than the variability timescales of interest here (see, e.g., Peterson & Horne 2004).

The source counts in the LSST u band for this model, for a reprocessing fraction $f_{\text{rp}} = 10^{-2}$, are shown in Figure 5. Our simple calculations suggest that perhaps dozens of afterglows could be detected if the X-ray emission is reprocessed for moderately optimistic parameter values, e.g., for $S \gtrsim 1$. It is worth cautioning that the reprocessed fraction f_{rp} is highly dependent on the vertical disk geometry, which itself may be rapidly evolving during the afterglow. For instance, TM10 found...
in their non-irradiated afterglow models that the H/R can be a steeply increasing function of radius during the period when the cavity is refilling, but not necessarily before or after this phase. Such complications should be included, along with details of radiative transfer, in a more realistic analysis of disk irradiation and reprocessing. Finally, absorption of the reprocessed UV/optical emission by gas and dust, surrounding the nuclear SMBH on larger scales, could be another observational hindrance for at least some of the sources.

4. CONCLUSIONS

Using an idealized model for the population of coalescing SMBHBs and for the light curve of the afterglow produced by the viscously spreading post-merger circumbinary disk, we have shown that ongoing afterglows of SMBHB mergers may be present in the data sets of wide X-ray and optical surveys. In soft X-ray bands, this requires that the surface density and the viscosity in the circumbinary disk be at the high end of the expected range, while afterglows could only be found in optical surveys if the X-ray emission is promptly and significantly reprocessed into optical frequencies.

Despite the highly approximate nature of our analysis and other model uncertainties, our calculations provide a proof-of-concept for a very general hypothesis: SMBHB mergers may exhibit an identifiable, steady brightening rate for a period on the order of decades, and such afterglows could be detected serendipitously in a large survey that revisits the sky at least every few months for several years. Our more specific findings can be summarized as follows.

1. For optimistic parameter values, several birthing quasars, brightening by at least $d \ln L_X/dt_{\text{obs}} > 30\%$ yr$^{-1}$ for several years, could be identified in the 0.1–3.5 keV soft X-ray band by an all-sky survey with specifications comparable to those proposed for the LWFT mission.

2. At any given time, there could be up to $N_{\text{ag}} \sim 100$ sources in the sky that exhibit a brightening rate at or above $d \ln L_X/dt_{\text{obs}} > 10\%$ yr$^{-1}$, with soft X-ray luminosities $L_X \gtrsim 10^{42}$ erg s$^{-1}$. The most luminous sources typically spend $t_{\text{afterglow}} \gtrsim 10$ yr in this state, and thus can be monitored on humanly manageable timescales. These numbers depend weakly on most system parameters.

3. To have any hope of detecting birthing quasars, a survey has to reach a depth of at least a few 10^{-13} erg s$^{-1}$ cm$^{-2}$. However, the slopes of our calculated $\log N - \log S$ distributions at fluxes just below this threshold are relatively shallow (Figures 3, 4, and 5), implying that surveys should favor large angular sky coverage over depth, once they reach this flux threshold.

4. If identified, candidate sources can be followed up by pointed observations at higher frequencies, where they are expected to continue both their monotonic brightening and their spectral hardening.

5. Most birthing quasars that are identifiable have, coincidentally, SMBH masses lying in the middle of LISA’s sensitivity window ($M \sim 10^5 M_\odot$), and are thus members of the same population that would be probed by GW detections. However, a minority (\lesssim a few % for $S \gtrsim 3$) of the detectable X-ray variables have masses of $\gtrsim 10^7 M_\odot$, probing a population above LISA’s range.

6. These sources may be identifiable by LSST if a fraction as low as $\sim 1\%$ of the X-ray flux is promptly reprocessed into the optical frequencies.

Our calculations are contingent on theoretical caveats of the afterglow scenario we have considered. The two primary uncertainties regarding the post-merger evolution of the circumbinary cavity are related to the viscous and advective properties of the disk. As stated in Section 2.1, the viscosity of accretion flows, including the possibility of viscous instability, is not well understood when radiation pressure dominates gas pressure, which is the relevant regime for the gas refilling the circumbinary cavity. Additionally, the disk may be geometrically thick (MP05; TM10), either right at decoupling or later during the afterglow phase, which suggests that horizontal advection may play a significant role in determining the surface density evolution and the disk net emission properties. The importance of viscous instabilities in radiation-dominated accretion flows remains a general open question, and the role of advection in a viscously spreading accretion flow remains a largely unexplored regime. More detailed studies of the circumbinary cavity will be needed to address how these effects may affect the emission predicted by simple analyses based on a thin disk formalism such as ours. Another major uncertainty is the validity of our assumption that quasar activity can be associated with SMBH coalescence. In reality, there may not be a one-to-one relation: it is possible that for at least some AGNs, gas accretion or changes in radiative efficiency are triggered by mechanisms other than SMBH mergers; conversely, some SMBH mergers may not trigger prolonged quasar activity. If the former is true, our analysis overestimates the number of identifiable afterglow sources; if the latter is true, then our results could in principle be an underestimate.

For completeness, we note that while we focused on the viscous afterglows, other SMBHB merger-related signatures could also be looked for in EM surveys. For example, the GW-emission-induced mass-loss and recoil can cause strong disturbances in the circumbinary disk, which can produce a detectable afterglow (Lippai et al. 2008; Schnittman & Krolik 2008; Shields & Bonning 2008; O’Neill et al. 2009; Megevand et al. 2009; Corrales et al. 2010; Rossi et al. 2010). For the low SMBH masses of $\sim 10^4 M_\odot$ relevant for LISA, these signatures are expected to have a short duration of \sim few years (e.g., Corrales et al. 2010) and would be too rare to be
found serendipitously, without a trigger from LISA. However, Schnittman & Krolik (2008) and Shields & Bonning (2008) focused on these signatures in disks around more massive SMBHs, which occur on longer (∼10^9 yr) timescales, and proposed detecting a flare by monitoring a population of AGNs in the infrared or X-ray bands. Another possibility is that the binary is activated and produces periodic emission, tracking the orbital frequency, prior to the merger. Haiman et al. (2009) argued that as long as this emission is at a few percent of the Eddington luminosity, a population of these variable sources, with periods of tens of weeks, may be identifiable in optical or X-ray surveys.

To conclude, the concomitant observation of an SMBHB merger based on GW and EM signals remains by far the most promising scenario for the unambiguous detection of such systems. The precision with which LISA would determine the masses, spins, and luminosity distances of coalescing binaries cannot be replicated by current or planned EM telescopes. However, detections based on EM signatures alone could still help identify SMBHB mergers before LISA is launched, and perhaps more importantly, possibly outside LISA’s mass sensitivity window. Detecting the EM signatures from the mergers of the most massive SMBHs would complement the synergistic EM-plus-GW observations of lower mass systems and help provide a more complete picture of the accretion physics and cosmological evolution history of SMBHBs.

T.T thanks Joshua Peek and Jennifer Sokoloski, and Z.H thanks Stefanie Komossa, Jules Halpern, and Richard Mushotzky, for useful conversations on AGN surveys. This work was supported by the Polányi Program of the Hungarian National Office for Research and Technology (NKTH) and by NASA ATPF grant NNX08AH35G.