Research Paper
Frequency of Vectors of Methicillin-resistant Staphylococcus Aureus Among Emergency Staff of Vali-e-Asr Hospital in Arak City, 2018

Ramin Parvizrad1, *Sara Khalili Dermani2, Azam Ahmadi2

1. Department of Emergency Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
2. Infectious Diseases Research Center, Arak University of Medical Sciences, Arak, Iran.

Citation: Parvizrad R, Khalili Dermani S, Ahmadi A. [Frequency of Vectors of Methicillin-resistant Staphylococcus Aureus Among Emergency Staff of Vali-e-Asr Hospital in Arak City, 2018 (Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2020; 23(3):292-299. https://doi.org/10.32598/JAMS.23.3.5943.1

ABSTRACT

Background and Aim: Staphylococcus aureus is common pathogens of nosocomial infections. Nasal swabs in hospital staff is main sources of hospital infections are considered. The aim of this study was to determine the frequency of nasopharyngeal carriers of methicillin-resistant Staphylococcus aureus and microbial contamination of health care workers’ cell phones in Emergency department of Vali-e-Asr Hospital in Arak City.

Methods & Materials: In this descriptive study, nose swabs and cell phone levels were taken from 70 health care workers in the emergency ward of Vali-e-Asr Hospital. The Staphylococcus aureus clinical isolates were identified using standard microbiological methods (catalase, coagulase, mannitol fermentation and DNase). The susceptibility to oxacillin and cefoxitin was detected by the disk diffusion and the mecA genes in this clinically isolated strain of staphylococci was investigated by Polymerase Chain Reaction (PCR).

Ethical Considerations: This study was approved by the Research Ethics committee of Arak University of Medical Sciences. (Code: IR.ARAKMU.REC.1396.282).

Results: According the results, Staphylococcus aureus was isolated in 16 cases, which 5 cases were methicillin-sensitive S. aureus (MSSA), and 11 cases were Methicillin resistant S. aureus (MRSA). Also, 3 cell phones were infected with Staphylococcus aureus, which 1 case was MRSA and 2 cases were MSSA.

Conclusion: The results of this study showed that frequency of MSSA strains is significant in emergency personnel of the hospital. Thus, regarding to the risk of epidemics due to nosocomial infections, periodic testing for the identification and treatment of carriers among employees for controlling and preventing hospital infections seems necessary.

Key words: Staphylococcus aureus, Colonization, Emergency, Methicillin

Extended Abstract

1. Introduction

Nosocomial infections are a global problem and many factors are involved in its occurrence. The microorganisms that cause these infections are changing every year. Since the 1980s, gram-positive microorganisms, especially staphylococcus aureus, have emerged as a major cause of nosocomial infections [1].

Methicillin resistance is a type of chromosomal resistance caused by changes in PBP2a due to the mecA gene, which leads to a decrease in affinity for this type of PBP to beta-lactams. Organisms that have this type of resistance are called MRSA (Methicillin-Resistant Staphylococcus aureus) and are not affected by any of the beta-lactam antibiotics [4, 5].

* Corresponding Author:
Sara Khalili Dermani, MSc.
Address: Infectious Diseases Research Center, Arak University of Medical Sciences, Arak, Iran.
Tel: +98 (918) 8645783
E-mail: sarakhali89@yahoo.com
Due to the importance of nosocomial infections, identifying and treating hospital staff who carry Staphylococcus can reduce the incidence of methicillin-resistant Staphylococcus aureus. This study was performed to determine the prevalence of carriers of methicillin-resistant Staphylococcus aureus nasopharynx and bacterial contamination of cell phones’ surfaces among emergency staff of Vali-e-Asr Hospital in Arak City.

2. Materials and Methods

This descriptive study was performed on the staff working in emergency ward of Vali-e-Asr Hospital in Arak City, 2018, after obtaining their informed consent. Exclusion criteria were the subjects’ dissatisfaction and recent history of rhinoplasty. The subjects completed a questionnaire including demographic characteristics and history of antibiotic consumption in the past 3 weeks. After the subjects were present at work, samples of their nasal mucous discharge and surface of cell phones were collected. Samples were collected by soaking the cotton part of the swab with nasal mucous discharge and by rubbing a wet swab for 4 to 5 seconds on the entire surface of the mobile phone.

These samples were transferred to the TSB transport medium and sent to the laboratory within a maximum of 2 hours. These samples were cultured in plates containing mannitol salt agar (MSA) at 37° C for 48-72 hours. The plates were examined after 18-24 hours of incubation at 37° C to isolate and identify gram-positive cocci. Staphylococcus strains were then isolated by standard microbiological methods (catalase, coagulase, mannitol fermentation and DNase). The susceptibility of the samples to the disc of cefoxitin and oxacillin was investigated and the presence of mecA gene in the mentioned strains was evaluated by polymerase chain reaction method.

3. Results

In this study, 70 employees of the emergency department of Vali-e-Asr Hospital in Arak City and their cell phones were tested. The results of culture of nasal mucous discharge and cell phone samples of these employees showed that 16 personnel and 3 cell phones were infected with Staphylococcus aureus. The results of this study also showed that among the positive test samples, 11 cases of nasal mucous discharge and one case of mobile phone samples were MRSA and the other positive cases were MSSA. Molecular testing of all 19 positive samples also confirmed MRSA strains (Figure 1).

a. Evaluation of the mecA gene for confirmation of MRSA strains (line 1: bp 100 marker; line 2: positive control; lines 3-10: positive samples; line 11: negative control); b. Sa442 gene in isolated Staphylococcus aureus on agarose gel (line 1: bp 100 marker; line 2: positive control; lines 3-9: positive samples; line 10: negative control, distilled water).

The results of this study showed that the occupational distribution of people infected with this bacterium included 11 nurses, 4 physicians and 1 service personnel.

4. Discussion

One of the basic principles in the control of nosocomial infections is the constant monitoring of the status of microorganisms in the hospital and the antibiotic resistance of these organisms [12]. In this study, out of 70 emergency personnel, 16 (22.8%) were carriers of Staphylococcus aureus, of which 11 samples (15.7% of samples and 68.7% of carriers) were MRSA and 5 samples (7% of samples and 31.3% of carriers) were MSSA. Also, Staphylococcus aureus was isolated from three cell phones (4.2%), one of which was MRSA.

Similar studies were performed on the frequency of carriers of methicillin-resistant Staphylococcus aureus among hospital staff in Iran, which showed different results. For example, among the staff of Imam Khomeini Hospital in Tabriz City 37.4% [13], among the staff of clinical wards of Ali Ibn Abi Taleb Hospital in Rafsanjan City 77.3% [14], among the staff of Namazi Hospital in Shiraz City 5.3% [15], among the staff of Hazrat Masoumeh Hospital in Qom City 10.8% [16], and in Shahrekord City 44% [5] was reported.
In a study conducted in 2016 among the staff of Qazvin Hospital, out of 198 samples, 32 people (16%) were carriers of staphylococcus, the highest frequency (20.3%) belonged to the intensive care unit staff, and the prevalence of MRSA in the total study population was 3% [17]. In a study conducted in Tehran City, frequency of staphylococci carriers was 48.25% and MRSA was 10.82% [18]. In Sari City, the prevalence was 19.4% for staphylococci and 7.1% for MRSA [19]. Also in similar studies in other countries, the prevalence of methicillin-resistant Staphylococcus aureus among hospital staff in Turkey was 2.9% [20], in Toronto (Canada) 0% [21], in Saudi Arabia 18% [22], in France 6.2%, in Ireland 7.5% and in New York (USA) 6.6%.

In a study conducted in Tabriz City to investigate the microbial contamination of cell phones of Sina Hospital staff, 84.28% of cell phones were contaminated. The highest frequency of microorganisms was related to staphylococcus coagulase negative and bacillus species, and 3.57% was related to staphylococcus aureus.

In general, the results of this study showed that the frequency of methicillin-resistant staphylococcus strains among the emergency staff of Vali-e-Asr Hospital in Arak City was significant and the highest infection was observed among the nurses in this ward.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics committee of Arak University of Medical Sciences with code: IR.ARAKMU.REC.1396.282

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

All contributed in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to express their gratitude to the staff of the Infectious Diseases Research Center of Arak University of Medical Sciences who cooperated in carrying out this research.
فراوانی ناقلین استافیلوکوکوس اورئوس مقاوم به متی سیلین در کارکنان اورژانس بیمارستان ولی عصر اراک

رامین پرویززاده ۱ سارا خلیلی درمنی ۲

۱. گروه طب اورژانس، دانشگاه علوم پزشکی اراک، اراک، ایران
۲. مرکز تحقیقات ملی، دانشگاه علوم پزشکی اراک، اراک، ایران

مقدمه
عفونت های بیمارستانی یک معضل جهانی هستند و عوامل متعددی در بروز آن دخالت دارند. استافیلوکوکوس اورئوس یک شیوع بالای عفونت های بیمارستانی را در نظر می گیرد. استافیلوکوکوس اورئوس مچالی در سطح تلفن های همراه کارکنان اورژانس بیمارستان ولی عصر اراک بررسی شد.

مواد و روش‌ها
بررسی شد. ابتدا نمونه‌های سواب از بینی روی محیط مانیتول سالت آگار کشت داده شد، سپس سویه های استافیلوکوکوس از سواب جدا شد و با روش های استاندارد میکروب شناسی (کاتالاز، کواگولاز، تخمیر مانیتول و DNase) شناسایی شدند. در ادامه حساسیت نمونه‌ها نسبت به بنگت‌های استافیلوکوکوس، کلونیزاسیون، و انواع نهادی از نظر ژن پیچیدگی (mecA) بررسی شد و وجود وجود ژن mecA به تصویب کمیته اخلاق مراجعه ای (IR.ARAKMU.REC.1396.282) رسید.

یافته‌ها
بنا بر نتایج، استافیلوکوکوس اورئوس از شانزده نفر از پرسنل جداسازی شد که در یک نفر حساس به متی سیلین بود. همچنین سه تلفن همراه آلوده به استافیلوکوکوس اورئوس بود که MRSA و در یازده نفر مقاوم به متی سیلین MSSA بود.

کلیدواژه‌ها: استافیلوکوکوس اورئوس، کلونیزاسیون، اورژانس، متی سیلین

اطلاعات مقاله:
تیر: ۱۳۹۸، تاریخ دریافت: ۱۳۹۸، تاریخ پذیرش: ۱۳۹۹، تاریخ انتشار: ۱۳۹۹

1. Affinity

1. Affinity
استافیلوکوکوس اورئوس، بهبهان‌سازی MRSA آن چالش می‌شود. ارگانیسم‌هایی که این نوع مقاومت را داشته باشند، MRSA نامیده می‌شوند. این نوع مقاومت معمولاً از آنتی‌بیوتیک‌های بتالاکتام پیروی می‌کند و در بیمارستان‌ها بستری شدن و بیمارستانی شدن افراد تهدید می‌کند. همچنین، MRSA به‌طور گسترده‌ای در بیمارستان‌ها یافت می‌شود. هر دو بیمارستان و بیمارستان‌های عامل متغیر بیمار‌ها و افراد در حال بستری می‌باشند. در این نوع مقاومت هیچ یک از MRSA بیمارستانی می‌باشد.

آنتی‌بیوتیک‌های بتالاکتام را نمی‌توان استفاده کرد؛ زیرا تأثیری بر میکروارگانیسم ندارند.

MRSA استافیلوکوکوس اورئوس بهبود این نوع سویه در بیمارستان‌ها به ویژه سویه‌های مهمی در کنترل عفونت‌ها محسوس می‌شود. داروهای درسترس سمی، گران و گاه ناکارآمد بوده و مقاومت آنتی‌بیوتیکی گسترده‌ای در اکثر نمونه‌های ناپیونده می‌شود. این اتفاق، این نوع MRSA را ممکن می‌آورد که با چندین انتی‌بیوتیک مقاومت شود.

MRSA به قرار داشتن داروهای درسترس سمی، گران و گاه ناکارآمد، مقاومت آنتی‌بیوتیکی گسترده و همچنین ناپایداری داروهای درسترس سمی، گران و گاه ناکارآمد، مقاومت آنتی‌بیوتیکی گسترده و همچنین ناپایداری داروهای درسترس سمی، گران و گاه ناکارآمد، مقاومت آنتی‌بیوتیکی گسترده و همچنین ناپایداری داروهای درسترس سمی، گران و گاه ناکارآمد، مقاومت آنتی‌بیوتیکی گسترده و همچنین ناپایداری داروهای درسترس سمی، گران و گاه ناکارآمد، مقاومت آنتی‌بیوتیکی گسترده و همچنین ناپایداری داروهای درسترس سمی، گران و گاه ناکارآمد، مقاومت آنتی‌بیوتیکی گسترده و همچنین N

مواد و روش‌ها

این مطالعه توصیفی در سال 1397 در بخش اورژانس بیمارستان ولی عصر اراک، وابسته به دانشگاه علوم پزشکی اراک، انجام گرفت. نمونه گیری با وارد کردن سوآپ سرپنبه‌ای استریل به ناحیه قدامی بینی هر فرد انجام شد و نمونه‌ها بلافاصله در محیط مانیتول سالت آگار کشت گردیدند. برای نمونه‌گیری از تلفن همراه، سوپ مرطوب را به مدت 37 درجه سانتی‌گراد در محیط های بلاد آگار (شرکت مرک، آلمان) پس از 72-48 ساعت انکوباسیون در دمای 37 درجه سانتی‌گراد، به‌منظور جدا کردن و شناسایی کوکسی‌های گرم مثبت مورد بررسی قرار گرفتند. استافیلوکوکوس‌های جداشده با استفاده از روش‌های استاندارد میکرو‌شناختی شامل رنگ‌آمیزی گرم، تست کاتالاز، تست تخمیر مانیتول، تست DNase و بررسی تغییر مایلیش نسانسی و تایید

| نام زن
طول باند	تُنول برایم	رفرنس
Sa442	108bp	AATCTTGCGTACAGATATTTCTCCAGC
mecA	162bp	CGTAAAGAGTACGAGTAAACAGC

بررسی
3. Clinical and laboratory standards institute
2. Methicillin-Resistant Staphylococcus aureus

جدول 1. مشخصات ترجمه ای استاندارد استفاده در تحقیق CLSI A mecA
برایی از لیزوزی دانه‌ها، جدایی از آن ممکن است گر این باکتری در کارکنان بیمارستان آموزشی درمانی امام خمینی (ره) و در مشکین شهر، ایران مطالعات مشابهی روی فراوانی ناقلین استافیلوکوکوس اورئوس مقاوم به متی سیلین در کارکنان اورژانس بیمارستان ولی عصر اراک و در شهرکرد، شهرستان تبریز، و در مشکین شهر، ایران انجام شد.

در این مطالعه هفتاد نفر از کارکنان بخش اورژانس بیمارستان ولی عصر اراک در حجم 2.5 درصد نمونه‌های مربوط به استافیلوکوکوس اورئوس مربوط به پرستاران بوده است.

استافیلوکوکوس اورئوس مقاوم به متی سیلین (MRSA) به روش PCR مدل می‌تواند شناسایی شود.

برای این کار، از الکتروفورز جهت شناسایی ژن mecA استفاده می‌گردد.

التیکار دمای موردنظر با استفاده از نگهداری PCR 25 درجه سانتی گراد به مدت 3 دقیقه و سپس 30 ثانیه با دمای اصلی 45 درجه سانتی گراد به مدت 1 دقیقه و سپس 30 ثانیه با دمای اصلی 72 درجه سانتی گراد به مدت 1 دقیقه و سپس 30 ثانیه با دمای اصلی 94 درجه سانتی گراد به مدت 1 دقیقه و سپس 30 ثانیه با دمای اصلی 72 درجه سانتی گراد پس از 5 سیکل، رنگ شدن محصول با استفاده از آب مقطر در حجم 20 μl، و حجم مخلوط واکنش با استفاده از آب مقطر در حجم 1 μl در روئی ال آگار 1 درصد بایو می‌گردد.

بر اساس آنچه که مربوط به استافیلوکوکوس اورئوس مربوط به پرستاران است، همه نمونه‌های MRSA مربوط به استافیلوکوکوس اورئوس مربوط به پرستاران بوده است.

استفاده شد.
مطالعه شماره ۲۳ دوره ۱۳۹۹ ماه مرحوم و شهریور

در بخش اورژانس بیمارستان انگام شد. استافیلوکوکوس
لوله، آن‌ها در مدت ۲۱-۴۵ روز به‌طور متوسط به شماره کوکولاسیون و ملکیت های گونه‌ها. در سایر بخش‌ها، سری‌های
84/28 درصد از میکروباها در این بخش و ۵۸/۲۷ درصد میکروباها در
استافیلوکوکوس اورئوس بوده است. تفاوت‌های موجود بین حاملین استافیلوکوکوس اورئوس در بیمارستان ها در نقاط مختلف می‌تواند به تفاوت اقدامات
گندزدایی سطوح و تجهیزات بیمارستانی، عملکرد واحد کنترل
عفونت‌های بیمارستانی، توجه به اصول بهداشت فردی در میان
کارکنان و چهار شستن دست‌ها، استفاده از ماسک و ماسکی
در بیمارستان، نوی انتی‌بیوتیک‌های مرسوم، میکرو‌ویکستفاده در
بخش و چهار مصرف آن‌ها و مصونیت مولکول‌های پنهان استفاده
از روش‌های پیشگیری در نمونه‌گیری، جامعه مورد پیامد‌ها، چگونگی
انجام آزمایش و نحوه بیمارستان‌های مروناظر بالاخره.

نتیجه‌گیری

یافته‌های این مطالعه نشان داد فراوانی سویه استافیلوکوکوس مقاوم به متی سیلین، در کارکنان اورژانس
بیمارستان ولی عصر اراک بوده است. در مقطعه‌ی جهت بررسی استفاده از
فرود خدمت تخصصی در بیمارستان ولی عصر و پزشکی از بیمارستان
پزشکی از ۱۴۶ برنامه راه‌نوردی، بین‌بندی دارویی و نظارت
عفونت‌های کارکنان و خدمات و درمان‌های با استفاده
از آزمایش‌های خلاصه‌گیری در بد و جهنم، نموداری خورشید به پژوهشی این مقاله از

ملاحظات اخلاقی

مورد از اصول اخلاقی پژوهش‌نگاری

این مطالعه با کد اخلاقی ۲۸۲۲-۳۲۸۲۱۱۳۹۶.۲۸۲۲ به
تصویر کمی اخلاق مولولوی پژوهشی دانشگاه معلوم پژوهشی
لاراک رسیده.

حامی مالی

این پژوهش حامی مالی نداشته است.
References

[1] Klevens RM, Morrison MA, Nadle J, Pettit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections among health care workers in a downtown emergency department in Toronto, Ontario. Can J Infect Dis Med Microbiol. 2013; 24(3):57-60. [DOI:10.1155/2013/549891] [PMCID] [PMID]

[2] Vandenberghe MF, Verbrugh HA. Carriage of Staphylococcus aureus: Epidemiology and clinical relevance. J Lab Clin Med. 1999; 133(6):525-34. [DOI:10.1016/S0022-2143(99)90181-6]

[3] Klevene RM, Morrison MA, Nadle J, Pettit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007; 298(15):1763-71. [DOI:10.1001/ jama.298.15.1763] [PMID]

[4] Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL. Harrison’s principle of internal medicine [CD-ROM]. New York: McGraw-Hill; 2001. [PMID] [PMCID]

[5] Kalhor H, Validi M, Nafisi MR. Evaluation of the frequency of Methicillin-Resistant Staphylococcus isolated from nose of nursing personnel of Hajar Hospital of Shahrekord. Qom Univ Med Sci J. 2013; 7(1):42-9.

[6] Katayama Y, Zhang HZ, Hong D, Chambers HF. Jumping the barrier to β-lactam resistance in Staphylococcus aureus. J bacteriol. 2003; 185(18):5465-72. [DOI:10.1128/JB.185.18.5465-5472.2003] [PMID] [PMCID]

[7] Wertheim HE, Melles DC, Vos MC, Leeuwen VW, Belkum AV, Verbrugh HA, et al. The role of nose carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005; 5(12):751-62. [DOI:10.1016/S1473-5399(05)70295-4]

[8] David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010; 23(3):616-87. [DOI:10.1128/CMR.00081-09] [PMID] [PMCID]

[9] Vinodhkumaradithyaa A, Uma A, Shirivasan M, Ananthakashmi I, Nallasivam P, Thirumalaikolundusubramanian P. Nasal carriage of methicillin-resistant Staphylococcus aureus among surgical unit staff. Jpn J Infect Dis. 2009; 62(3):228-9. [PMID]

[10] Ghaznavi-Rad E, Nasr Shamsudin M, Sekawi Z, van Belkum AV, Neela S. Resistant Staphylococcus aureus among surgical unit staff. Jpn J Infect Dis. 2009; 62(3):228-9. [PMID]

[11] Alavi R, Darvishi M, Izadi M, Hami A, Hattami H. [Determination of the staphylococcus aureus nasal carriers prevalence and antibiotic resistance pattern in Surgical wards staff (Persian)]. Iran Infect Trop Med J. 2005; 9(1):43-6.

[12] Askarian M, Zeinalzadeh A, Japoni A, Alborzi A, Memish ZA. Prevalence of nasal carriage of methicillin-resistant Staphylococcus aureus and its antibiotic susceptibility pattern in healthcare workers at Namazi Hospital, Shiraz, Iran. Int J Infect Dis. 2009; 13(5):241-7. [DOI:10.1016/j. ijid.2008.11.026] [PMID]

[13] Tafaroji J, Aghamali M, Heydari H. An investigation of the frequency of Staphylococcus aureus Nasal carriers and its antibiotic susceptibility pattern in the staff of different wards of Qom Hazrat Masumeh hospital, 2015. Iran. Qom Univ Med Sci J. 2017; 10(11):79-84. http://journal.ruq. ac.ir/article-1-1337-en.html

[14] Nikbakht M, Hassan Nagad S, Rezaadeh B, Nagizadeh Baghi A, Gorbani F, Faraji F, et al. Antibiotic resistance pattern of isolated strains of staphylococci from personnel nasal specimens in Meshgin Shahar Valiasr hospital. J Ardabil Univ Med Sci. 2009; 9(1):80-8. http://journals.arams.ac.ir/article-1-293-en.html

[15] Oguzkaya-Artan M, Baykan Z, Artan C, Aysarogullari L. Prevalence and risk factors for methicillin resistant Staphylococcus aureus carriage among emergency department workers and bacterial contamination on touch surfaces in Erciyes University Hospital, Kayseri, Turkey. Afr Health Sci. 2015; 14(4):1289-94. [DOI:10.4314/ahs.v15i4.31] [PMCID] [PMID]

[16] Saito G, Thom J, Wei Y, Gnanasuntharam P, Gnanasuntharam P, Kreiswirth N, et al. Methicillin-resistant Staphylococcus aureus colonization among health care workers in a downtown emergency department in Toronto, Ontario. Can J Infect Dis Med Microbiol. 2013; 24(3):57-60. [DOI:10.1155/2013/549891] [PMCID] [PMID]

[17] Al-Humaidan OS, El-Kersh TA, Al-Akeel RA. Risk factors of nasal carriage of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus among health care staff in a teaching hospital in central Saudi Arabia. Saudi Med J. 2015; 36(9):1084-90. [DOI:10.15577/ smj.2015.9.12460] [PMID] [PMCID]

[18] Evelillard M, Martin Y, Hidi N, Boussougent Y, Joly-Guillou ML. Carriage of methicillin-resistant Staphylococcus aureus among hospital employees: prevalence, duration, and transmission to households. Infect Control Hosp Epidemiol. 2004; 25(2):114-20. [DOI:10.1086/502360]

[19] Baldwin NS, Gispen DF, Hughes CM, Kearney MP, Gardiner DA, Cardwell Ch, et al. Prevalence of methicillin-resistant Staphylococcus aureus colonization in residents and staff in nursing homes in Northern Ireland. J Am Geriatr Soc. 2009; 57(4):620-6. [DOI:10.1111/j.1532-5415.2009.02181.x] [PMID] [PMCID]

[20] Elie-Turenne MC, Fernandes H, Medivia JR, Mathema B, Singh A, Cohen TR, et al. Prevalence and characteristics of Staphylococcus aureus colonization among healthcare professionals in an urban teaching hospital. Infect Control Hosp Epidemiol. 2010; 31(6):574-80. [DOI:10.1086/652525]

[21] Julian T, Singh A, Rousseau J, Weese JS. Methicillin-resistant staphylococcal contamination of cellular phones of personnel in a veterinary teaching hospital. BMC Res Notes. 2012; 5(1):193. [DOI:10.1186/1756-0500-5-193] [PMID] [PMCID]

[22] Rasti F, Asghari E, Shahsavaria K, Motazediz D, Dehghani L. Microbial contamination of health care workers’ mobile phones in Sina hospital, Tabriz. Hayat. 2016; 22(2):128-37. http://hayat.tums.ac.ir/article-1-1434-en.html