Arylnaphthalene lactones: structures and pharmacological potentials

Soyoung Park · Seungsu Kim · Dongyun Shin

Abstract Natural arylnaphthalene lactones are representative lignans that are found in various dietary and medicinal plants. Their unique structural features and significant pharmacological activity have attracted considerable attention from both synthetic and medicinal chemists. Owing to their unique structural features such as relative rigid tetracyclic skeleton, structural diversity of more than five substituents, and no chiral center, arylnaphthalene lactones are recognized as a valuable scaffold for drug discovery, in addition to their significant pharmacological activities. This review covers the structures and isolation of all naturally occurring arylnaphthalene lactone congeners reported. Based on the aryl substituents, they were categorized as Type I and Type II and further classified according to the oxidation state of the ring and glycosylation level. Special attention has been paid to natural arylnaphthalene lactones owing to their broad spectrum of biological activities such as cytotoxic, antiplatelet, antiviral, anti-HIV, antifungal, neuroprotective, and anti-inflammatory properties. All the products were reorganized based on their biological activities, and selected data are presented.

Keywords Arylnaphthalene lactones · Lignan · Medicinal · Natural · Activity

Introduction

Arylnaphthalene lignan lactones are naturally occurring fused tricyclic naphthalene lactones with aryl substituents. Structurally, arylnaphthalene lignan lactones consist of two arylpropanoid units and are classified as Type I and Type II (Fig. 1) based on the relative position of lactone and the aryl substituents (Teponno et al. 2016). Approximately 59 natural arylnaphthalene lignan lactones and their glycosylated congeners have been isolated from various dietary and medicinal plants and structurally elucidated. The broad spectrum of their pharmacological benefits has also been reported such as antiproliferative, antiplatelet aggregation, antiviral, antifungal, neuroprotective, and anti-inflammatory activities.

The unique structural features as well as promising bioactivities of arylnaphthalene lactones have drawn considerable attention from synthetic chemists. Since the first synthesis of an arylnaphthalene lignan lactone skeleton in 1895 by the Bucher group (Michael and Bucher 1895) via the condensation of aryliopropionic
acids, various synthetic approaches for arylnaphthalene lignan lactones have been designed and applied successfully. Major synthetic approaches include the intramolecular Diels–Alder reaction for the construction of an arylnaphthalene lactone from arylpropiolic anhydride (Brown and Stevenson 1964, 1965; Maclean and Stevenson 1966; Block and Stevenson 1971; Holmes and Stevenson 1970, 1971; Stevenson and Holmes 1971; Stevenson and Block 1971; Block and Stevenson 1973; Stevenson and Weber 1989, 1991; Anastas and Stevenson 1991; Park et al. 2014). Intermolecular Diels–Alder approaches were also investigated using isobenzofuranans and acetylenedicarboxylate (de Silva et al. 1980; Plaumann et al. 1980). Other valuable synthetic methodologies utilizing key reactions such as the Blaise reaction-intramolecular [4 + 2] reaction (He et al. 2012), Garratt–Braverman cyclization (Block and Stevenson, 1971, 1973; Arnold et al. 1973; Yamamoto et al. 2015), benzoin condensation-thermal cyclization (Hayat et al. 2015a, b), and transition-metal catalyzed synthesis (Park et al. 2020) have been reported.

Although the isolation and chemistry of natural lignan products has been broadly reviewed (Teponno et al. 2016; Li et al. 2020), a focused and comprehensive review on the structures and beneficial biological activities of natural arylnaphthalene lignan lactones has not been published. The purpose of this review is to provide a compilation of naturally occurring arylnaphthalene lignan lactones in terms of structure, isolation, and pharmacological activity.

Structures and isolation

Arylnaphthalene lignan lactones are found in a variety of dietary and medicinal herbs including Phyllanthus, Justicia, Haplophyllum, and Cleistanthus. Arylnaphthalene lignan lactones are classified into two types based on their structures, 1-phenyl-2-hydroxymethyl-arylpropiolic acid lactone (Type I) and 1-phenyl-3-hydroxymethylarylpropiolic acid lactone (Type II). To provide a visual reference guide for each compound and to present an overview of the biological activities of arylnaphthalene lactones, all naturally occurring derivatives are classified by their types in Figs. 2 and 3. In Fig. 2, Type I compounds are presented, and they can be divided into three groups as 7-unsubstituted, 7-oxygenated-, and 7-O-glycosylated arylnaphthalene lactones. The first subclass of arylnaphthalene lactones includes four oxygenated congeners: justicidin B (1) (Gözler et al. 1984; Luo et al. 2014; Rao et al. 2006; Batsuren et al. 1981; Batirov et al. 1981; Lin et al. 1995; Gertsch et al. 2003; Hesse et al. 1992; Hemmati et al. 2016; Mohagheghzadeh et al. 2002) taiwanin C (2) (Yang et al. 2006; Anjaneyulu et al. 1981; Ban et al. 2002; Sastry and Rao 1983), daurinol (4) (Batsuren et al. 1981; Hesse et al. 1992), isodaurinol (5) (Hesse et al. 1992), and chinensin (7) (Ghosal et al. 1974; Cow et al. 2000), which are basic forms of natural arylnaphthalene lactones and only differ in the substituents on the alcohols. Several compounds that are further oxygenated at ring A or ring D such as deoxydehydrodopodophyllotoxin (8) (Novelo et al. 1993), dehydro-β-peltatin methyl ether (11) (Novelo et al. 1993), phyllamyrin C (12) (Rao et al. 2006; Lin et al. 1995), koelreuterin-1 (6) (Song et al. 1994), and justicidin H (3) (Yang et al. 2006) have been identified. Justicidinamide C (9) (Asano et al. 1996), which is the mono-glycosylated product of justicidin C, has also been isolated. 9-Hydroxy or 9-methoxy arylpropiolic acid lactones such as piscatorin (10) (Widayani et al. 2014; Gertsch et al. 2003), phyllamyrin...
A. Type I arylnaphthalene lactones

1. Justicidin B
 Gozler, Gozler et al. 1984
 H. buxbaumil
 Luo, Hu et al. 2014
 J. procumbens
 Rao, Fang et al. 2006
 P. polyphyllus
 Batsuren, Batirov et al. 1981
 H. dauricum

2. Taiwanin C
 Lin, Lee et al. 1995
 P. myrtilloides
 Gertsch, Tobler et al. 2003
 P. piscatorum
 Hesse, Gozler et al. 1992
 H. cappadocicum
 Ban, Lee et al. 2002
 A. chisanaensis
 Sastry and Rao 1983
 C. patulus

3. Justicidin H
 (6'-Hydroxy Justicidin B)
 Yang, Wu et al. 2006
 J. procumbens

4. Dauroinol
 (5'-Demethyljusticidin B)
 Batsuren, Batirov et al. 1981
 H. dauricum
 Hesse, Gozler et al. 1992
 H. cappadocicum

5. Isodaurinol
 Hesse, Gozler et al. 1992
 H. cappadocicum

6. Koelreuterin-1
 Hesse, Gozler et al. 1992
 H. cappadocicum
 Song, Zhang et al. 1994
 K. henryi

7. Chinensin
 Ghosal, Chauhan et al. 1974
 P. chinensis

8. Deoxydehydropodophyllotoxin
 Novelo, Cruz et al. 1993
 H. verticillata

9. Justicidinoside C
 Asano, Chiba et al. 1996
 J. procumbens

10. Piscatorin
 Windayani 2014
 P. myrtilloides
 Gertsch, Tobler et al. 2003
 P. piscatorum

11. Dehydro-β-peltatin methyl ether
 Novelo, Cruz et al. 1993
 H. verticillata

12. Phyllamyricin C
 Rao, Fang et al. 2006
 P. polyphyllus
 Lin, Lee et al. 1995
 P. myrtilloides

13. Phyllamyricin D
 Lin, Lee et al. 1995
 P. myrtilloides

14. Phyllamyricin E
 Lin, Lee et al. 1995
 P. myrtilloides

Fig. 2 Structure and isolation of Type I arylnaphthalene lactones
15. Procumbenoside L
 Jin et al. 2017
 J. procumbens

16. 5-(4-Hydroxy-3-methoxyphenyl)tetra[3',4';6,7]naphtaphen(2,3-d)-1,3-dioxol-5(6H)-one
 Liu et al. 2008
 B. marginatum

17. 3,4-Dimethoxy-3',4'-methylenedioxy-2',7'-cycloflora-7,7'-dieno-9,9'-lactone
 Mohagheghsadeh et al. 2002
 L. austriacum

B. 7-Oxygenated Type I arylaphthalene lactones

18. Diphyllin
 Burden, Crombie et al. 1969
 H. tuberculatum
 Chien, Hsin et al. 1996
 J. procumbens
 Rao, Fang et al. 2006
 P. polyphyllus
 Gozler, Gozler et al. 1984
 H. vulcanicum

19. Chinensinaphthol (Iso-diphyllin)
 Chen, Hsin et al. 1996
 J. procumbens
 Day, Chiu et al. 1999
 J. ciliata
 Ghosai, Chauhan et al. 1974
 P. chinensis

20. Taiwania E
 Chen, Hsin et al. 1996
 J. procumbens
 Arjaneleyu, Ramalath et al. 1981
 C. collinus
 Hesse, Gozler et al. 1992
 H. cappadocicum
 Susplugas, Hung et al. 2005
 J. patelliflora
 Sastri and Rao 1963
 C. patillus

21. Cleistanone
 Ramesh, Ravindranath et al. 2003
 C. collinus

22. Harrismyrin
 Wu and Wu 2006
 P. oligospernum
 Evdoin, Gozler et al. 1986
 H. myrtifolium

23. 5-Methoxy-dehydrodoprophylotoxin
 Novello, Cruz et al. 1993
 H. verticillata

24. Dehydrodoprophylotoxin
 Novello, Cruz et al. 1993
 H. verticillata

25. 2'-Hydroxy-justinumalin
 Rezanka et al. 2009
 A. mollis

26. Justiciadin A
 Burden, Crombie et al. 1969
 H. tuberculatum
 Day, Lin et al. 2002
 J. procumbens
 Wu and Wu 2006
 P. oligosperum
 Lin, Lee et al. 1995
 P. myrtifolium

27. 6'-Hydroxy-justicadin A
 Yang, Wu et al. 2006
 J. procumbens

Fig. 2 continued
Fig. 2 continued
C. 7-O-glycosylated Type I arylnaphthalene lactones

41. Tuberculatin (diphyllin aposide)
Susplugas, Hung et al. 2005
J. patentiflora
Innocenti, Puricelli et al. 2002
H. patavinum

42. Cleistanthin D
Anjaneyulu, Ramala et al. 1981
C. collinus

43. Diphyllin acetylapioside (mono-O-acetyl diphyllin)
apioside
Nukul, Abu Zarga et al. 1987
H. buxbaumii
Prieto, Giner et al. 2002
H. hispanicum

44. Haplophytoseide
Gozier, Gozler et al. 1996
H. Cappadocium

45. Cleistanthin A
Anjaneyulu, Ramala et al. 1981
C. collinus
Sastry and Rao 1983
C. patulus
Tuchinda et al., 2006
P. taxodifolius

46. Cleistanthin A methyl ether
Tuchinda et al., 2006
P. taxodifolius

47. Cleistanthin B (Diphyllin O-glicoside)
Anjaneyulu, Ramala et al. 1981
C. collinus
Al-Abed, Sabri et al. 1990
H. buxbaumii
Ren, Lantvit et al. 2014
P. poilanei

48. Mananthoside A
Chen, Liu et al. 2002
M. patentiflora

49. Phyllanthusmin B
Lin, Lee et al. 1995
P. myrtifolius
Ren, Lantvit et al. 2014
P. poilanei

50. Phyllanthusmin C
Lin, Lee et al. 1995
P. myrtifolius
Ren, Lantvit et al. 2014
P. poilanei

51. Phyllanthusmin D
Ren, Lantvit et al. 2014
P. poilanei

52. Phyllanthusmin E
Ren, Lantvit et al. 2014
P. poilanei
D (13) (Lin et al. 1995), and phyllamyricin E (14) (Lin et al. 1995) have been reported.

The second structural subclass includes C7-oxygenated Type I arynaphthalene lactones. To date, 23 congeners have been isolated, in which the C7 of arynaphthalene lactone is substituted with either the hydroxyl or methoxy group. Diphyllin (18) (Burden et al. 1969; Chen et al. 1996; Rao et al. 2006; Gözler et al. 1984; Anjaneyulu et al. 1981; Hesse et al. 1992; Susplugas et al. 2005; Sastry and Rao 1983),
Fig. 2 continued
Fig. 2 continued

1. **Procumbenoside M**
 Jin et al. 2017
 J. procumbens

2. **Reticulatuside A**
 Ma et al. 2012
 P. reticulatus

3. **Reticulatuside B**
 Ma et al. 2012
 P. reticulatus

4. **Pronaphthalide J**
 Jin et al. 2014
 J. procumbens

5. **Diphyllin 7-O-α-L-arabinopyranosyl-(1″-3″)-α-L-arabinopyranoside**
 Yu et al. 2016
 P. glaucus

6. **Qudsine**
 Al-Abed, Sabri et al. 1990
 H. buxbaumii

7. **Mananthoside D**
 Tian et al. 2006
 M. patentiflora

8. **Mananthoside E**
 Tian et al. 2006
 M. patentiflora

9. **Procumbenoside E**
 Wu et al. 2012
 J. procumbens
chinesinaphthol (19) (Chen et al. 1996; Day et al. 1999; Ghosal et al. 1974), taiwanin E (20) (Chen et al. 1996; Anjaneyulu et al. 1981; Wang et al. 2014), cleistanone (21) (Ramesh et al. 2003), 6’-hydroxyjusticidin A (27) (Yang et al. 2006), 5-hydroxyjusticidin A (36) (Tian et al. 2006a, b), dehydropodophyllotoxin (24) (Novelo et al. 1993), 2’-hydroxyjustirumalin (25) (Rezanka et al. 2009), justicidin A (26) (Burden et al. 1969; Day et al. 2002; Wu and Wu 2006; Lin et al. 1995; Hesse et al. 1992; Day et al. 1999; Susplugas et al. 2005; Khalid et al. 1981), haplomyrtin (22) (Wu and Wu 2006; Evcim et al. 1986), 5-methoxydehydropodophyllotoxin (23) (Novelo et al. 1993), cilinaphthalide A (28) (Day et al. 1999), cilinaphthalide B (29) (Weng et al. 2004; Day et al. 1999), chinensinaphthol methyl ether (30) (Luo et al. 2014), phyllanthusmin A (31) (Wu and Wu 2006; Ren et al. 2014), justicidin F (32) (Chen et al. 1996; Day et al. 1999), justicidin P (33) (Wang and Ripka 1983), justicinol (34) (Susplugas et al. 2005), and justicidinoside (35)
(Asano et al. 1996), justalakonin (37) (Kavitha et al. 2003), procumbenoside K (38) (Jin et al. 2017), pronaphthalide A (39) (Jin et al. 2014) and 4′-O-demethyl-7-O-methyldehydropodophylotoxin (40) (Wei et al. 2018) have been reported. Among these, justicidin P is a 7-oxygenated derivative of justicidin A and justicidinoside B is the glycosylated product of 6′-hydroxyjusticidin A.

The third subclass of Type I arylnapthalene lactones are 7-O-glycosyl congeners. A variety of saccharides are conjugated at the 7-hydroxy group of diphyllin, haplomyrtin, taiwanin E, and 4-hydroxydaurinol. The 7-O-glycosylated Type I naphthalene lactones presented in Fig. 1 summarize the naturally occurring glycosylated congeners. Monosaccharide-conjugated derivatives include tuberculatin (41)
B. 7- Oxygenated Type II arynaphthalene lactones

103. Justicidin C
 (Neojusticidin B)
 Day, Chiu et al. 1999
 J. ciliata
 Ohta and Munakata 1970
 J. procumbens

104. 6'-Hydroxyjusticidin C
 Yang, Wu et al. 2006
 J. procumbens

105. Justicidin D
 (Neojusticidin A)
 Ohta and Munakata 1970
 J. procumbens

106. Justicidinoside A
 Asano, Chiba et al. 1996
 J. procumbens

107. Neojusticin C
 Yang, Wu et al. 2006
 J. procumbens

Fig. 3 continued

(diphyllin apioside) (Susplugas et al. 2005; Innocenti et al. 2002), cleistanthin D (42) (Anjaneyulu et al. 1981), diphyllin acetylapioside (43) (Nukul et al. 1987; Prieto et al. 2002), haplomyrtose (44) (Gözler et al. 1996), cleistanthin A (45) (Anjaneyulu et al. 1981; Sastry and Rao 1983; Tuchinda et al. 2006), cleistanthin A methyl ether (46) (Tuchinda et al. 2006), cleistanthin B (47) (diphyllin O-glycoside) (Anjaneyulu et al. 1981; Al-Abed et al. 1990; Ren et al. 2014), mananthoside A (48) (Chen et al. 2002), phyllanthusmin B (49) (Lin et al. 1995; Ren et al. 2014), phyllanthusmin C (50) (Lin et al. 1995; Ren et al. 2014), phyllanthusmin D (51) (Ren et al. 2014), phyllanthusmin E (52) (Ren et al. 2014), procumbenoside C (53) (Liu et al. 2008a), procumbenoside D (54), Liu et al. (2008b), patenflorin A (55) (Susplugas et al. 2005), patenflorin B (56) (Susplugas et al. 2005), procumbenoside I (57) (Jin et al. 2017) acutissimalignan A (58) (Tuchinda et al. 2008) 7-O-β-D-glucopyranosyljusticidin B (59) (Borges et al. 2018), 7-O-(β-D-glucopyranosyl)-dehydrodopodophyllotoxin (60) (Liu et al. 2015) and 4''-O-acetylpatenflorin B (61) (Susplugas et al. 2005). Disaccharide-conjugated congeners include majidine (62) (Al-Abed et al. 1990; Innocenti et al. 2002), procumbenoside A (63) (Day et al. 2002), procumbenoside B (64) (Weng et al. 2004), justiprocumin A (65) (Zhang et al. 2017), justiprocumin B (66) (Zhang et al. 2017), ramontoside (67) (Satyanarayana et al. 1991), cleistanthin C (68) (Anjaneyulu et al. 1981), mananthoside B (69) (Chen et al. 2002), 4''-O-acetylmananthoside B (70) (Susplugas et al. 2005), mananthoside C (71) (Tian et al. 2006a, b), mananthoside F (72) (Tian et al. 2006a, 2006b), mananthoside I (73) (Tian et al. 2008), taxodiifoloside (74) (Tuchinda et al. 2006), arabelline (75) (Al-Abed et al. 1990; Innocenti et al.
2002), and 7-O-β-D-apiofuranosyl-(1’’’→6’’’)-β-D-glucopyranosylidiphyllin (76) (Pandey et al. 2011), procumbenoside M (77) (Jin et al. 2017), reticulatuside A (78) (Ma et al. 2012), reticulatuside B (79) (Ma et al. 2012), pronathalide J (80) (Jin et al. 2014), Diphyllin 7-O-α-L-arabinopyranosyl-(1’’’→3’’’)-α-L-arabinopyranoside (81) (Yu et al. 2016) and cleistanthoside A (86) (Zhang et al. 2014). Eight trisaccharide-conjugated diphyllins, namely mananthoside D (83) (Tian et al. 2006a, b), mananthoside E (84) (Tian et al. 2006a, b), procumbenoside E (85) (Wu et al. 2012), mananthoside J (88) (Tian et al. 2006a, b), patavine (87) (Innocenti et al. 2002), ciliatoside B (89) (Day et al. 2000), ciliatoside A (90) (Burden et al. 1969), and qudsine (82) (Al-Abed et al. 1990), have been reported.

Type II arylnaphthalene lactones are characteristic by the trans relationship of lactone carbonyl and the aryl group. Twelve Type II congeners were isolated and structurally elucidated, including retrojusticidin B (92) (Weng et al. 2004), phyllamyricin A (93) (Widayanii et al. 2014), detetrahydroconidendrin (94) (Kuo et al. 1990), retrochinensin (95) (Ghosal and Banerjee 1979), justicidin E (96) (Wada and Munakata 1970), jusmicanthin (97) (Rajasekhar and Subbaraju 2000), helioxanthin (98) (Ban et al. 2002; Ghosal et al. 1974; Burden et al. 1969), and elenoside (99) (Navarro et al. 2001), vitexdoin I (100) (Zheng et al. 2014), chaihunaphthone (102) (Liu et al. 2008a, b) and 5,3’’-dihydroxy-4,4’’-dimethoxy-2,7’’-cycloiligna-7,7’’-diene-9,9’’-lactone (103) (Zhang et al. 2010).

Pharmacological activities

Cytotoxic activities

The reported antiproliferative activities of natural arylnaphthalene lactones are presented in Fig. 4. Significant cytotoxic activity was observed with justicidin A (26) and tuberculatin (41) against human hepatoma cellular carcinoma (Hep3B and HepG2), human breast cancer (MCF-7 and MCF-7-ras), human cervical carcinoma (SiHa), and other cancer cell lines. In addition, these two compounds strongly enhanced tumor-necrosis factor α (TNF-α) generation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells (Day et al. 2002). Later, 6’-hydroxyjusticidin A (27), which was isolated from Justicia procumbens, was evaluated for its cytotoxicity against human cancer cell lines. It showed remarkable inhibitory activity in human bladder cancer cells (EJ) with 50% inhibitory concentration (IC50) values of 57.1 μM and enhanced the generation of reactive oxygen species and induced apoptosis through the caspase pathway (He et al. 2012). Similar results of the mechanism of action were reported by Luo and Hu et al. in 2014. They isolated five lignans, 6’-hydroxyjusticidin A (27), justicidin H (3), justicidin B (1), chinensaphthol methyl ether (30), and taimain E methyl ether (32) from J. procumbens and tested their cytotoxic activities. Justicidin H (3) exhibited the best inhibitory activity against human promyelocytic leukemia (HL-60) and mouse lymphocytic leukemia (L1210 and P3881D1) cells with an IC50 ranging from 3.9 to 26.2 μM (Luo et al. 2014). To investigate the mechanism of action of justicidin H (3), these authors also evaluated its effects on human leukemia K562 cells. The IC50 of justicidin H (3) was 15.07 μM for K562 cells and reduced mitochondria membrane potential (deltapsi(m)). It also increased the expression of TRPC6 related to regulating calcium homeostasis in cell signaling and induced apoptosis through the caspase pathway (Luo et al. 2018).

Diphyllin (18) was tested to investigate whether it could act as a vacuolar-ATPase (V-ATPase) inhibitor against human gastric cancer cells (SGC7901) and esophageal cancer cells (TE-1 and ECA-109). The IC50 for SGC7901 was demonstrated to be 7.8 μM. Diphyllin (18) also inhibited the expression of V-ATPases in a dose-dependent manner. In addition, the transmembrane pH gradient was reversed, thereby causing tumor microenvironment acidification (Shen et al. 2011). It also showed significant inhibition against TE-1 and ECA-109 cells with IC50 values of 0.3 and 0.2 μM, respectively, with S-phase arrest and reduced V-ATPase activity. Reportedly, diphyllin inhibited mammalian target of rapamycin complex 1 (mTORC1), hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) mRNA expression (Chen et al. 2018). Three diphyllin glycosides cleistanthin A (45), cleistanthoside A (86), and cleistanthoside A tetraacetate were also evaluated for their effect as V-ATPases and their cytotoxicity against human cell lines. Apart from cleistanthoside A (86), cleistanthin A (45) and cleistanthoside A tetraacetate were more potent than paclitaxel against...
HepG2 cells with the IC$_{50}$ values of 36 and 39 nM, respectively. They also inhibited V-ATPase activity, which is critical to tumor invasion and metastasis development. At nanomolar concentrations, they neutralize the pH of lysosomes (Zhang et al. 2014).

A bioassay-guided fractionation of the stems and roots of *Phyllanthus oligospermus* resulted in the isolation of arylnaphthalene lactones with cytotoxic activity against different cell lines. Hep3B, human cervical carcinoma; HepG2, human hepatoma cell; MCF-7, human breast cancer cell; MCF-7 ras, Ha-ras oncogene transformed from MCF-7; EJ, human bladder cell; K562, human leukemia cell; SGC7901, human gastric cancer cell; TE-1 and ECA-109, human esophageal cancer cells; SK-OV-3, human ovarian carcinoma; SK-MEL-5, melanoma; PLC/PRF/5, human hepatoma; HT-3, SiHa, and CaSki, human cervical carcinoma.

HepG2 cells with the IC$_{50}$ values of 36 and 39 nM, respectively. They also inhibited V-ATPase activity, which is critical to tumor invasion and metastasis development. At nanomolar concentrations, they neutralize the pH of lysosomes (Zhang et al. 2014).
isolation of three arylnaphthalene lignan lactones, phyllanthusmin A-C (31, 49, 50). The most active compound was phyllanthusmin A (31) showing a marked cytotoxic effect against mouse leukemia (P-388) and human epidermoid carcinoma (KB) cells with IC\textsubscript{50} values of 0.13 and 2.24 \mu g/mL, respectively (Wu and Wu 2006). Phyllanthusmin A-E (31, 49–52), diphyllin (18), and cleistanthin B (47) were also evaluated for cytotoxicity against colon cancer cells (HT-29). Phyllanthusmin D (51) was the most potent with IC\textsubscript{50} values at 170 nM; however, cleistanthin B (47) and phyllanthusmin A (31) were inactive. These results suggest that the presence of more lipophilic acetyl groups results in higher cytotoxicity. In this connection, mechanistic studies of phyllanthusmin D (51) were also evaluated. It was found that unlike etoposide, phyllanthusmin D (51) did not mediate its cytotoxic effects by inhibiting DNA topoisomerase II\alpha but did so by inducing HT-29 apoptosis through caspase-3 activation (Ren et al. 2014). However, daurinol (4) acts as a catalytic human topoisomerase II\alpha inhibitor and demonstrated significant cytotoxic activity against human colorectal cancer cells (HCT116) with an IC\textsubscript{50} of 2.03 \mu M. It induced S-phase arrest through the increased expression of cyclin E and A (Kang et al. 2011). In a further investigation, Woo et al. (2017) evaluated daurinol (4) for anti-metastatic activity against human breast cancer cells (MDA-MB-231) and human lung cancer cells (A549). Daurinol (3) decreased the expression of focal adhesion kinase, which is hyper-activated and overexpressed in most solid tumors, but did not block the AKT pathway in both cell lines. Using a trans-well assay, daurinol (3) was found to inhibit migration and invasion (Woo et al. 2017).

Among the eight compounds, cilinaphthalide A (28), cilinaphthalide B (29), chinensinaphthol methyl ether (30), justicidin A (26), neojusticin B (103), taiwanin E methyl ether (32), neojusticin B (103), chinensinaphthol methyl ether (30), taiwanin E (20), chinensinaphthol (19), and diphyllin (18) were isolated from the whole plant of Justicia ciliate. The potent cytotoxic effects of justicidin A (26) were reported against human cervical carcinoma (CaSkii, SiHa, and HT-3) and human hepatoma (PLC/PRF/S and T-24) cells with IC\textsubscript{50} values at 3.0×10^{-3}, 7.4×10^{-3}, 1.8×10^{-3}, 2.2×10^{-3}, and 2.0×10^{-3} \mu g/mL, respectively (Day et al. 1999). Significant cytotoxicity was observed for most of the compounds, justicinol (34), patentiflorin A-B (55, 56), 4'-O-acetylpatentiflorin B (61), and 4''-O-acetylmananthoside B (70), isolated from the leaves and stems of Justicia patentiiflora with nanomolar values of IC\textsubscript{50}. The most active compound was patentiflorin A (55) with the nanomolar range of IC\textsubscript{50} 0.004 and 0.003 against mouth epidermoid carcinoma (KB) and breast cancer (MCF-7) cells, respectively (Susplugas et al. 2005).

Antiplatelet aggregation activities

In 1996, Chen et al. determined the 50% inhibitory activity to the arachidonic acid (AA)-induced aggregation of rabbit platelets at 20 \mu g/mL from the EtOH extract of the whole plant of J. procumbens. They isolated nine arylnaphthalide lignans, neojusticin A (105), justicidin B (1), justicidin A (26), taiwanin E methyl ether (32), neojusticin B (103), chinensinaphthol methyl ether (30), taiwanin E (20), chinensinaphthol (19), and diphyllin (18), from J. procumbens and evaluated these for their antiplatelet activity. All compounds were less effective than indomethacin; however, neojusticin A (105), taiwanin E methyl ether (32), justicidin B (1), and taiwanin E (20) were more active than aspirin with IC\textsubscript{50} values at 1.1, 1.7, 8.0, and 8.0 \mu M, respectively (C.-C. Chen et al. 1996). In a further study, Weng et al. isolated two additional new arylnaphthalide lignans, procumbenoside B (64) and cilinaphthalide B (29) from J. procumbens and tested the antiplatelet effects induced by adrenaline in human platelet-rich plasma. Cilinaphthalide B (29), justicidin A (26), and taiwanin E methyl ether (32) exhibited a moderate antiplatelet activity in a concentration-dependent manner. Among these, at high concentrations, taiwanin E methyl ether (32) completely abolished the aggregation with an IC\textsubscript{50} value of 27.7 \mu M and inhibited the secondary phase aggregation at low concentrations. These results indicate that justicidin A (26) and taiwanin E methyl ether (32) likely suppress cyclooxygenase activity and reduce thromboxane formation (Weng et al. 2004) (Fig. 5).

Antiviral activities

A series of lignans isolated from J. procumbens were tested for activities against the vesicular stomatitis virus. Justicidin A-B (26, 1), diphyllin (18), diphyllin apioside (41), and diphyllin apioside-5-acetate exhibited strong antiviral activities. Their minimum inhibitory concentration (MIC) values were less than
whereas 6'-glucosides justicidinoside A-C (106, 35, 9) and Type II justicidin C and D (103, 105) exhibited lower antiviral activity (the MICs ranged from 16 to 125 μg/mL). It is tempting to suggest that the weak activity of justicidinoside A-C (106, 35, 9) is because of the steric bulk of their sugar moiety and that Type I arylnaphthalene lactones were more effective than Type II (Luo et al. 2018). Using the standard plaque reduction assay against human cytomegalovirus, only taiwanin C (2) and retrojusticidin B (91) showed clear antiviral activity with half maximal effective concentration (EC50) values at 1.2 and 7.2 μM, respectively (Chen et al. 1996). Similar antiviral activities were reported for helioxanthin (98) in HepG2.2.15 cells using Southern blot hybridization with the EC50 value at 1 μM. Helioxanthin (98) reduced 3.5 kb of hepatitis B virus mRNA in a dose-dependent manner with EC50 values at 0.09 μM (Li et al. 2005). In addition, helioxanthin (98) also exhibited strong antiviral activities against hepatitis C virus and herpes simplex virus type 1 with EC50 values at 3 and 2 μM, respectively, but showed weak activity against herpes simplex virus type 2 and Epstein–Barr virus with EC50 values at 35 and above 20 μM, respectively (Yeo et al. 2005) (Table 1).

Anti-HIV activities

Anti-HIV bioassays with six lignans, phyllamyricin A (93), phyllamyricin B, phyllamyricin C (12), retrojusticidin B (91), justicidin A (26), and justicidin B (1) isolated from Phyllanthus myrtifolius were first

Table 1 Arylnaphthalene lactones with antiviral activities

Compound	Virus	MIC (μg/mL)
Justicidin A (26)	Vesicular stomatitis virus	0.13
Justicidin B (1)	Vesicular stomatitis virus	≥ 0.06
Diphyllin (18)	Vesicular stomatitis virus	0.25
Tuberculatin (41)	Vesicular stomatitis virus	0.25
	EC50 [μM]	
Taiwanin C (2)	Cytomegalovirus	1.2
Retrojusticidin B (91)	Cytomegalovirus	7.2
Helioxanthin (98)	Cytomegalovirus	7.3
	Hepatitis B virus	1
	Hepatitis C virus	3
	Herpes simplex virus type 1	2

MIC, minimum inhibitory concentration; EC50, half maximal effective concentration.
Conducted by Chang et al. (1995) using human immunodeficiency virus-1 reverse transcriptase assay (HIV-RT). Among these, phyllamyricin B and retrojusticidin B (91) were shown to contribute to the selective inhibitory effect against HIV-RT with IC₅₀ values at 3.5 and 5.5 μM, respectively, whereas they exhibited much lower activity against human DNA polymerase-α (hDNAP-α) with IC₅₀ values at 289 and 989 μM (Chang et al. 1995) (Table 2). In a subsequent study in 1996, Lee et al. identified additional lignans from *P. myrtifolius* and evaluated their anti-HIV activities. Phyllamyricin B and C were inactive and phyllamyricin E (14) exhibited very low anti-HIV-RT activity; however, phyllamyricin A (93) showed an increase in HIV-RT activity by 65% at 1.89 μM (Lee et al. 1996). From the stems and barks of *Justicia gendarussa* justiprocumin A and B (65, 66) were isolated and justiprocumin B (66) was assayed for its anti-HIV activity against four HIV-1 isolates using a standardized human peripheral blood mononuclear cell culture assay. The HIV-1 isolates BAL, SF162, LAV0.04, and 89.6 were used. Justiprocumin B exhibited IC₅₀ values at 15, 15, 14, and 21 nM, respectively, whereas the clinically used drug for HIV-1 zidovudine (AZT) showed less activity with the IC₅₀ value ranging from 77 to 95 nM (Zhang et al. 2017).

Antifungal activities

Antifungal activities of arynaphthalene lactones are summarized in Table 3. In 2003, the Gertsch group validated antifungal properties of water, dichloromethane, and MeOH extracts of *Phyllanthus piscatorum*. While the extracts did not exhibit an inhibitory effect against gram-positive bacterial strains of *Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus*, and *Staphylococcus epidermis*, they showed significant activity against *Aspergillus fumigatus, Aspergillus flavus*, and *Candida albicans* (Gertsch et al. 2004). In a subsequent study, the dichloromethane extract of *P. piscatorum* resulted in the activity of arylnaphthalene lactone justicidin B (1) and piscatorin (10) when tested against *A. flavus, A. fumigatus*, and *C. albicans*. The most active compound was justicidin B (1) with MIC values ranging from 1 to 16 μg/mL; however, showing a higher concentration of 128 μg/mL against *Blastoschizomyces capitatus* and *Cryptococcus neoformans neoformans* (Gertsch et al. 2003). Bioassay-guided fractionation of the leaf extract of *P. myrtifolius* led to the isolation of seven lignans, namely, phyllamyricin C (12), retrojusticidin B (91), phyllamyricin A (93), phyllamyricin F, justicidin B (1),

Table 2 Anti-HIV activities of arynaphthalene lignan lactones

Compound	IC₅₀
Retrojusticidin B (91)	5.5 μM
Justiprocumin B (66)	BAL 15 nM
	SF162 15 nM
	LAV0.04 14 nM
	89.6 21 nM

BAL, SF162, LAV0.04, and 89.6 are HIV-1 clinical isolates

Table 3 Antifungal activities of arynaphthalene lignan lactones

Compound	MIC [μg/mL]			
	Fusarium oxysporum	*Aspergillus fumigatus*	*Candida albicans*	*Aspergillus flavus*
Retrojusticidin B (91)	16	–	–	–
Phyllamyricin A (93)	32	–	–	–
Phyllamyricin C (12)	4	–	–	–
Phyllamyricin E (14)	16	–	–	–
Piscatorin (10)	16	≥3	≥8	≥25
Justicidin B (1)	8	≥1	≥4	≥16

MIC, minimum inhibitory concentration
phyllamyricin E (14), and piscatorin (10). Their activities were validated using the susceptibility test and conidial germination inhibition assay. Phyllamyricin A (93), phyllamyricin E (14), justicidin B (1), and phyllamyricin F exhibited strong inhibition against *Fusarium oxysporum* ATCC 44,187 with an average inhibition zone of 62–68% (1000 µg/mL) against *Fusarium oxysporum* (induced by amyloid beta (Aβ)25-35). Phyllamyricin A and phyllamyricin C (12) showed the most significant antifungal activity with MIC and minimum fungicidal concentration values of 4.0 and 62.5 µg/mL, respectively, and the seven lignans inhibited conidia germination of *F. oxysporum* in a concentration-dependent manner (Windyayani et al. 2014).

Neuroprotective activities

Justicidin A (26) was investigated for neuroprotective activities in a cellular model of Alzheimer’s disease induced by amyloid beta (Aβ)25-35 in SH-SY5Y cells. Aβ25-35-induced hyperphosphorylation of tau and okadaic acid-induced hyperphosphorylation were significantly inhibited by pre-treatment with justicidin A at 62.5, 125, and 250 nM in a dose-dependent manner. At the same concentration, justicidin A produced a significant level of decrease in the phosphorylation of glycogen synthase kinase-3beta (GSK-3β) and stimulated the phosphorylation of AMP-activated protein kinase (AMPK). In addition, treatment with justicidin A resulted in an increase in the level of the LC3 II/I ratio. These results show that justicidin A induced autophagy and inhibited neuronal cell death through reducing hyperphosphorylation of tau (Gu et al. 2016).

Anti-inflammatory activities

Prieto et al. (1996) reported for the first time the anti-inflammatory activity of a MeOH extract of *Haplophyllum hispanicum*. The edema of carrageenan-induced paw and TPA-induced ear in mice showed 50% and 37% inhibition at 0.5 mg/ear. Following the guided bioassay, the active compound diphyllin acetylapioside (43) was isolated and showed a significant inhibitory effect against TPA-induced inflammation in mice with a 50% inhibitory dose (ID50) value at 0.27 µM/ear (Prieto et al. 1996). In a further investigation, the same authors validated the anti-inflammatory effects on eicosanoid metabolism using an HPLC–DAD-based method. Diphyllin acetylapioside showed complete inhibition of 5-lipoxygenase activity at 50 µM and exhibited strong inhibitory effects against LTB4 and 5-hydroxy-6,8,11,14-eicosatetraenoic acid with IC50 values of 0.6 and 0.7 µM, respectively; however, diphyllin apioside (41) did not exhibit any effect on 5-lipoxygenase (Prieto et al. 2002). Five lignans isolated from the root of *Acanthopanax chiisanensis* were examined for their effect on the production of TPA-induced PGE2 in rat peritoneal macrophages to elucidate their mechanism of action. Taiwanin C (2) exhibited the most significant inhibitory effect with an IC50 value at 0.12 µM but showed no effect on the expression of TPA-induced COX-2 protein. However, with IC50 values at 1.06 and 9.3 1 µM, taiwanin C inhibited the activities of separated COX-1 and COX-2. These results suggest that taiwanin C (2) inhibits PGE2 production by directly inhibiting COX enzymatic activity (Ban et al. 2002). Three arylnaphthalide lignans from *Phyllanthus polyphyllus* displayed anti-inflammatory effects as measured by NO, TNF-α, and interleukin (IL-12). Justicidin B (1) exhibited the highest IC50 values of NO production from LPS/IFN-γ-stimulated peritoneal macrophages at 12.5 µM followed by phyllamyricin C (12) at 25 µM, and dipyllin (18) at 50 µM and 100 µM showing inhibition percentages of 99%, 99%, and 64%, respectively. In addition, they showed significant inhibition of IL-12 and TNF-α production with IC50 values ranging from 12.5 to 100 µM (Rao et al. 2006).

Conclusion

Natural arylnaphthalene lactones have a 7′-phenyl naphthalene lactone skeleton in which the phenyl ring and naphthalene ring are polyhydroxylated, which are further transformed to methyl ethers or dioxolane. The hydroxy group, especially that at the C7 position is commonly conjugated with a variety of sugars to present mono-, di-, and triglycoside metabolites. Structurally, they can be classified into Type I and Type II arylnaphthalene lactones by the cis and trans relationship of lactone carbonyl and the aryl substituents. More than a hundred natural arylnaphthalene lactones have been reported from a wide range of natural sources such as Acanthaceae, Phyllanthaceae, and Schisandraceae.

Arylnaphthalene lactones exhibit various significant biological activities, which have been
summarized here based on their pharmacological activity. Although all the natural compounds were not fully evaluated, some results such as antiproliferative and antiviral activity could give insights for drug discovery. In fact, several arynaphthalene lactones such as diphyllin and daurinol have been investigated as anticancer drug candidates with impressive in vitro and in vivo antiproliferative activity. More recently, daurinol was investigated extensively as an anti-autoimmune arthritis drug candidate. In the realm of medicinal chemistry, identifying new and valuable scaffolds is always of great interest. Thus, arylnaphthalene lactones attract considerable attention owing to their unique structural features, which include a relative rigid structure, no stereogenic center, and more than nine potential derivatizable sites. The unique structural features and promising pharmacological activities of arylnaphthalene lactones provide great prospects for future drug discovery.

Author contributions DS planned this manuscript. SP and SK searched the reported publications related to this review article. DS and SP wrote the draft of the manuscript, and SP prepared all figures. All authors approved the manuscript in its final form for publication.

Funding This work was supported by grants from the Science Research Program through the National Research Foundation of Korea (NRF), Grant No. NRF-2018M3A9C8024360 and NRF-2020R1A6A1A03043708.

Compliance with ethical standards Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Al-Abed Y, Sabri S, Zarga MA, Shah Z, Atta-ur-Rahman (1990) Chemical constituents of the flora of jordan, part V-B. Three new arynaphthalene lignan glucosides from Haplophyllum buxbaumii. J Nat Prod 53(5):1152–1161
Anastas PT, Stevenson R (1991) Synthesis of natural lignan arynaphthalene lactones, daurinol and retrochinosin. J Nat Prod 54:1687–1691
Anjaneyulu ASR, Ramaiah PA, Row LR, Venkateswarlu R, Pelter A, Ward RS (1981) New lignans from the heartwood of cleistanthus collinus. Tetrahedron 37(21):3641–3652
Arnold BJ, Mellows SM, Sammes PG (1973) Photochemical reactions. Part I. A new route to tetradehydropodophyllotoxin, taiwanin E, and related compounds. J Chem Soc Perkin Trans 1:1266–1270
Asano J, Chiba K, Tada M, Yoshii T (1996) Antiviral activity of lignans and their glycosides from Justicia procumbens. Phytochem 42(3):713–717
Ban HS, Lee S, Kim YP, Yamaki K, Shin KH, Ohuchi K (2002) Inhibition of prostaglandin E(2) production by taiwanin C isolated from the root of Acanthopanax chiisanensis and the mechanism of action. Biochem Pharmacol 64(9):1345–1354
Batsuren D, Batirov ĖK, Malikov VM, Zemlyanskiǐ VN, Yagudaev MR (1981) Arylnaphthalene lignans of Haplophyllum dauricum. The structure of daurinol. Chem Nat Compd 17(3):223–225
Block E, Stevenson R (1971) Synthesis of model aryltetralin ligands: adducts of o-methylbenzophenone with unsymmetrical dienophiles. J Chem Soc D Chem Commun. https://doi.org/10.1039/C29710000711
Block E, Stevenson R (1973) The irradiation of 2-methylbenzophenone in the presence of dienophiles. J Chem Soc Perkin Trans 1:308–313
Borges LDC, Negrao-Neto R, Pampolina S et al (2018) Antiinflammatory and antinociceptive studies of hydroalcoholic extract from the leaves of Phyllanthus brasiliensis (Aubl.) Poir. and isolation of 5-O-b-D-glucopyranosyljusticidinB and six other lignans. Molecules 23:941
Brown D, Stevenson R (1964) Action of N, N-dicyclohexylcarbodiimide on phenylpropionic acids: synthesis of dehydro-otobain. Tetrahedron Lett 5:3213–3216
Brown D, Stevenson R (1965) Synthesis of dehydrotoiban. J Org Chem 30:1759–1763
Bucher JE (1910) The acids of the phenylpropiolic series and their constitution of two new lignans. J Am Chem Soc 32:212–221
Burden RS, Crombie L, Whiting DA (1969) The extracts of Phyllanthus mitriformis. Antiviral Res 27(4):367–374
Chang MW, Lin MT, Lee SS, Liu KCSC, Hsu FL, Lin JY (1995) Differential inhibition of reverse transcriptase and cellular DNA polymerase-α activities by lignans isolated from Chinese herbs, Phyllanthus mitriformis Moon, and tannins from Lonicer japonica Thumb and Castanopsis hyssrix. Antiviral Res 27(4):367–374
Chang WL, Chiu LW, Iai JH et al (2003) Immunosuppressive flavones and lignans from Bupleurum scorzonering. Phytochem 64:1375–1379
Chen CC, Hsin WC, Ko FN, Huang YL, Ou JC, Teng CM (1996) Antiplatelet arylnaphthalide lignans from Justicia procumbens. J Nat Prod 59(12):1149–1150

Chen B, Liu Y, Feng C, Li BG, Zhang GL (2002) Two new arylnaphthalene lignan glycosides from Mananthes patensitiflora. Chin Chem Lett 13(10):959–962

Chen H, Liu P, Zhang T, Gao Y, Zhang Y, Shen X, Li X, Shen W (2018) Effects of diphyllin as a novel V-ATPase inhibitor on TE-1 and ECA-109 cells. Oncol Rep 39(3):921–928

Cow C, Leung C, Charlton JL (2000) Antiviral activity of arylnaphthalene and arylidihyronaphthalene lignans. Can J Chem 78(5):553–561

Day SH, Chiu NY, Tsao LT, Wang JP, Lin CN (2002) Potent cytotoxic lignans from Justicia ciliata. J Nat Prod 65(3):379–381

Day SH, Chiu NY, Tsao LT, Wang JP, Lin CN (2000) New lignan glycosides with potent antiinflammatory effect, isolated from Justicia ciliata. J Nat Prod 63(11):1560–1562

Day SH, Lin YC, Tsai ML, Tsaow LT, Ko HH, Chung MI, Lee JC, Wang JP, Won SJ, Lin CN (2002) Potent cytotoxic lignans from Justicia procumbens and their effects on nitric oxide and tumor necrosis factor-α production in mouse macrophages. J Nat Prod 65(3):379–381

De Silva SO, Denis CS, Rodrigo R (1980) A regiocontrolled synthesis of some arylnaphthalene lignans. J Chem Soc Chem Comm 995–997

Evcim U, Gözler B, Freyer AJ, Shamma M (1986) Haploymyrin and (−)-haploymyrtin: two lignans from haplophyllum myrtifolium. Phytochemistry 25(8):1949–1951

Gertsch J, Tobler RT, Brun R, Sticher O, Heilmann J (2003) Isodaurinol, an arylnaphthaline lignan. Molecules 21(7):820

Gertsch J, Tobler RT, Brun R, Sticher O, Heilmann J (2003) Antifungal, antiprotozoal, cytotoxic and piscicidal properties of Justicidin B and a new arylnaphthalene lignan from Phyllanthus piscatorum. Planta Med 69(05):420–424

Gertsch J, Niomawe Gertsch-Roost K, Sticher O (2004) Haplomyrtin: a new lignan from haplophyllum cappadocicum. Phytochemistry 65(3):379–381

Gertsch J, Niomawe Gertsch-Roost K, Sticher O (2004) Juspurpurin, an Unusual Secolignan Glycoside from Justicia purpurea. J Nat Prod 67(9):1933–1936

Gozler T, Gozler B, Patra A, Leet JE, Freyer AJ, Shamma M (1984) Konyanin: a new lignan from haplophyllum valcaniclm. Tetrahedron 40(7):1145–1150

Gözler T, Gözler B, Patra A, Leet JE, Freyer AJ, Shamma M (1986) Haplotubercutanum: a new lignan from Haplophyllum tuberculatum. Phytochemistry 25(8):1949–1951

Hayat F, Kang L, Lee CY, Shin D (2015b) Synthesis of arylnaphthalene lignan lactone using benzoin condensation, intramolecular thermal cyclization and Suzuki coupling. Tetrahedron 71:2945–2950

Hayat F, Park SH, Choi NS, Lee J, Park JS, Shin D (2015a) Synthesis and anticancer activity of 4-aza-daurinol derivatives. Arch Pharm Res 38(11):1975–1982

He XL, Zhang P, Dong XZ, Yang MH, Chen SL, Bi MG (2012) JR6, a new compound isolated from Justicia procumbens, induces apoptosis in human bladder cancer EJ cells through the caspase-dependent pathway. J Ethnopharmacol 144(2):284–292

Hemmati S, Seradj H (2016) Justicidin B: a promising bioactive lignan. Molecules 21(7):820

Hesse M, Gozler B, Arar G, Gozler T (1992) Isodaurinol, an arylnaphthalene lignan from Haplophyllum cappadocicum. Phytochem 31(7):2473–2475

Holmes TL, Stevenson R (1971) Arylnaphthalene lignans: synthesis of helioxanthin. J. Chem. Soc. C Org 1991–2094

Innocenti G, Puricelli L, Piaceante S, Caniatio R, Filippini R, Cappelletti EM (2002) Patavine, a new arylnaphthalene lignan glycoside from shoot cultures of Haplophyllum patavinum. Chem Pharm Bull 50(6):844–846

Jin H, Yin HL, Liu SJ et al (2014) Cytotoxic activity of lignans from Justicia procumbens. Fitoterapia 94:70–76

Jin H, Yang S, Dong JX (2017) New lignan glycosides from Justicia procumbens. J Asian Nat Prod Res 19:1–8

Kang K, Oh SH, Yun JH, Jho EH, Kang JH, Batsuren D., Tunsag J, Park KH, Kim MI, Nho CW (2011) A novel topoisomerase inhibitor, daurinol, suppresses growth of HCT116 cells with low hematological toxicity compared to etoposide. Neoplasia (New York, N.Y.) 13(10):1043-1057

Kavitha J, Gopalakrishna K, Rajasekhar D et al (2003) Juspurpurin, an Unusual Secolignan Glycoside from Justicia purpurea. J Nat Prod 66:1113–1115

Khalid SA, Waterman PG (1981) Alkaloid, lignan and flavonoid constituents of Haplophyllum tuberculosis from Sudan. Planta Med 43(10):148–152

Kuo Y-H, Wu T-R, Cheng M-C, Wang Y (1990) Five new compounds from the heartwood of Juniperus formosana Hayata. Chem Pharm Bull 38(12):3195–3201

Lee SS, Lin MT, Liu CL, Lin YY, Karin CS, Liu C (1996) Six lignans from Phyllanthus myrtifolius. J Nat Prod 59(11):1061–1065

Li Y, Fu L, Yeo H, Zhu JL, Chou CK, Kou YH, Yeh SF, Gullen E, Austin D, Cheng YC (2005) Inhibition of Hepatitis B virus gene expression and replication by helioxanthin and its derivative. Antivir Chem Chemother 16(3):193–201

Li S, Liang J, Li J, Zhang X, Zheng R, Zhao C (2020) Update on naturally occurring novel arylnaphthalenes from plants. Phytochem Rev 19:337–403

Lin MT, Lee SS, Liu KCSC (1995) Phyllamyricins A-C, three new arylnaphthalene lignans from Juniperus marginatum WALL. Helv Chim Acta 78(9):1933–1936

Luo J, Hu Y, Kong W, Yang M (2014) Evaluation and structure-activity relationship analysis of a new series of antiproliferative compounds from Cleistanthus boivinianus from the madagascar dry forest. J Nat Prod 78:1543–1547

Luo J, Hu Y, Kong W, Yang M (2012) Antiproliferative compounds from Cleistanthus boivinianus from the madagascar dry forest. J Nat Prod 78:1543–1547

Mizuno JA, Holmstad SS, Bocanegra JJ, Casteel JM, Graham RB (2001) Synthesis and antiproliferative activity of 4-aza-daurinol derivatives. J. Org. Chem. 66(21):7247–7256

Phytochem Rev 2021;20:1033–1054

© Springer
arylnaphthalene lignans as potential anti-tumor agents. PLoS ONE 9(3):e93516
Luo J, Qin J, Fu Y, Zheng S, Zhang X, Yang M (2018) 6’-Hydroxy Justicidin B triggers a critical imbalance in Ca(2+) homeostasis and mitochondrion-dependent cell death in human leukemia K562 cells. Front Pharmacol 9:601–601
Ma JX, Lan MS, Qu SJ et al (2012) Arylnaphthalene lignan glycosides and other constituents from Phyllanthus reticulatus. J Asian Nat Prod Res 14:1073–1077
Maclean I, Stevenson R (1966) Synthesis of (+)-otobain. J Chem Soc C: Org 1717-1719
Michael A, Bucher JE (1895) Ueber die einwirkung von Essigsau¨reanhydrid auf sa¨uren der acetylenreihe. Ber Deutsch Chem Ges 28:2511–2512
Mohagheghzadeh A, Schmidt TJ, Alfermann AW (2002) Arylnaphthalene lignans from in vitro cultures of Linum austriacum. J Nat Prod 65:69–71
Navarro E, Alonso SJ, Trujillo J, Jorge E, Pérez C (2001) General behavior, toxicity, and cytotoxic activity of a lignoside, a lignan from Justicia hyssopofolia. J Nat Prod 64(1):134–135
Novelo M, Cruz JG, Hernández L, Pereda-Miranda R, Chai H, Nukul GS, Abu Zarga MH, Sabri SS, Al-Eisawi DM (1987) Synthesis of (±)-otobain. J Chem Soc C: Org 1717-1719
Ohta K, Munakata K (1970) Justicidin C and D, the 1-methoxy-naphthalene lignan glycosides, a lignan from Justicia hyssopifolia. J Chem Soc C: Org 1717-1719
Park MJ, Moon SJ, Lee EJ, Kim BK, Beak JA, Kim SY, Jung KA, Lee SH, Choi JW, Kim DS, Min JK, Park SH, Shin DY, Cho ML (2019) Daurinol Attenuates Autoimmune Arthritis via Stabilization of Nrp1–PTEN–Foxp3 Signaling. J Biol Chem 294:11026–11036
Park MI, Moon SJ, Lee EJ, Kim BK, Beak JA, Kim SY, Jung KA, Lee SH, Choi JW, Kim DS, Min JK, Park SH, Shin DY, Cho ML (2019) Daurinol Attenuates Autoimmune Arthritis via Stabilization of Nrp1–PTEN–Foxp3 Signaling in Regulatory T Cells Front Immunol; 10: article 1526
Park S, Kim JH, Kim SH, Shin D (2020) Transition metal-mediated annulation approaches for synthesis of aryl-naphthalene lignan lactones. Chem. Front. https://doi.org/10.3389/fchem.2020.00628
Plaumann HP, Smith JG, Rodrigo R (1980) Potential isobenzoarurans: their use in the synthesis of naturally occurring 1-arylnaphthalide lignans. J Chem Soc, Chem Commun 8:354–355
Prieto JM, Recio MC, Giner RM, Mañez S, Massmanian A, Waterman PG, Riós JL (1996) Topical Anti-Inflammatory Lignans from Flacourtia thoside A. Planta Med 47(04):227–229
Prieto JM, Giner RM, Recio MF, Schinella G, Manez S, Riós JL (2002) Diphyllin acetylapioside, a 5-lipoxygenase inhibitor from Flacourtia hispanicum. Z Naturforsch 51c:618–622
Prieto JM, Giner RM, Recio MF, Schinella G, Manez S, Riós JL (2002) Diphyllin acetylapioside, a 5-lipoxygenase inhibitor from Flacourtia hispanicum. Z Naturforsch 51c:618–622
Rajasekhar D, Subbaraju GV (2000) Jusmicranthin, a new arylnaphthalide lignan from Justicia neesii. Fittoterapia 71(5):598–599
Ramesh C, Ravindranath N, Ram TS, Das B (2003) Arylnaphthalide lignans from Cleistanthus collinus. Chem Pharm Bull 51(11):1299–1300
Rao YK, Fang SH, Tzeng YM (2006) Anti-inflammatory activities of constituents isolated from Flacourtia polypallysin. J Ethnopharmacol 103(2):181–186
Ren Y, Lantvit DD, Deng Y, Kanagasabai R, Gallucci JC, Ninh TN, Chai HB, Soejarto DD, Fuchs JR, Yalowich JC, Yu J, Swanson SM, Kinghorn AD (2014) Potent cytotoxic arylnaphthalene lignan lactones from Flacourtia poitanei. J Nat Prod 77(6):1494–1504
Rezanka T, Rezanka P, Sigler K (2009) Glycosides of arylnaphthalene lignans from Acanthus mollis having axial chirality. Phytochem 70:1049–1054
Sastry KV, Rao EV (1983) Isolation and Structure of Cleistanthoside A. Planta Med 47(04):227–229
Satyanarayana V, Krupadanam GL, Srimannarayana G (1991) A butyro lactone lignan disaccharide from Flaccourtia ramonichi. Phytochem 30(3):1026–1029
Shen W, Zou X, Shen Y, Huang S, Guo H, Zhang L (2011) Effects of diphyllin as a novel V-ATPase inhibitor on gastric adenocarcinoma. Eur J Pharmacol 667(1):330–338
Song YN, Zhang HL, Chang CJ, Bollag DM (1994) Cytotoxic cyclolignans from Koelreuteria henryi. J Nat Prod 57(12):1670–1674
Stevenson R, Block E (1971) Lignan lactones. Synthesis of (±)-collinusin and justicidin B. J Org Chem 36:3453–3455
Stevenson R, Holmes TL (1971) Arylnaphthalene lignans. Synthesis of justicidin E, taiwanin C, dehydrodimethylconidendrin, and dehydrodimethylfretodendrin. J Org Chem 36:3450–3453
Stevenson R, Weber JV (1989) Improved methods of synthesis of lignan arylnaphthalene lactones via arylpropargyl arylpropiolate esters. J Nat Prod 52:367–375
Stevenson R, Weber JV (1991) Synthesis of lignan arylidihydropyranalactone lignans by cyclization of cinnamyl arylpropiolate esters-revised structure of beta apopolycamatin. J Nat Prod 54:310–314
Susplugas S, Hung NV, Bignon J, Thoison O, Kruczynski A, Sévenet T, Guéritte F (2005) Cytotoxic arylnaphthalene lignans from a Vietnamese Acanthaceae, Justicia patensiflora. J Nat Prod 68(5):734–738
Teponno RB, Kusari S, Spiteller M (2016) Recent advances in research on lignans and neolignans. Nat Prod Rep 33:1044–1092
Tian JM, Hao XJ, He HP (2006a) A new lignan and four new lignan glycosides from Mananthes patentiflora. Helv Chim Acta 89:291–298
Tian J, Hao X, He H (2006b) A new lignan and four new lignan glycosides from Mananthes patentiflora. Helv Chim Acta 89(2):291–298
Tian JM, He HP, Di YT, Yang XW, Gao ZL, Hao XJ (2008) Three new lignan glycosides from Mananthes patentiflora. J Asian Nat Prod Res 10(3):228–232
Tuchinda P, Kumkao A, Pohnakotr M, Sophasan S, Santisuk T, Reutrakul V (2006) Cytotoxic arylnaphthalide lignan...
glycosides from the aerial parts of *Phyllanthus taxodiifolius*. Planta Med 72(1):60–62
Tuchinda P, Kornsakulkarn J, Pohmakotr M et al (2008) Dichapetalin-type triterpenoids and lignans from the aerial parts of *Phyllanthus acutissima*. J Nat Prod 71:655–663
Wada K, Munakata K (1970) (−) Parabenzlactone, a new piperolignanolide isolated from *Parabenzoin trilobum nakai*. Tetrahedron Lett 11(23):2017–2019
Wang CLJ, Ripka WC (1983) Total synthesis of (±,−)-justicidin P. A new lignan lactone from *Justicia extensa*. J Org Chem 48(15):2555–2557
Wang HC, Tseng YH, Wu HR, Chu FH, Kuo YH, Wang SY (2014) Anti-proliferation effect on human breast cancer cells via inhibition of pRb phosphorylation by taiwanin E isolated from *Eleutherococcus trifoliatus*. Nat Prod Commun 9(9):1303–1306
Wei CY, Wang SW, Ye JW et al (2018) New anti-inflammatory aporphine and lignan derivatives from the root wood of *Hernandia nymphaefolia*. Molecules 23:2286
Weng JR, Ko HH, Yeh TL, Lin HC, Lin CN (2004) Two new arylnaphthalide lignans and antiplatelet constituents from *Justicia procumbens*. Arch Pharm 337(4):207–212
Windayani N, Rukayadi Y, Hakim EH, Ruslan K, Syah YM (2014) Antifungal activity of lignans isolated from *Phyllanthus myrtifolius Moon.* against *Fusarium oxysporum*. Phytochem 12:33–39
Woo JK, Jung HJ, Park JY, Kang JH, Lee BI, Shin D, Nho CW, Cho SY, Seong JK, Oh SH (2017) Daurinol blocks breast and lung cancer metastasis and development by inhibition of focal adhesion kinase (FAK). Oncotarget 8(34):57058–57071
Wu SJ, Wu TS (2006) Cytotoxic arylnaphthalene Lignans from *Phyllanthus oligospermus*. Chem Pharm Bull 54(8):1223–1225
Wu WW, Liao LP, Wang XJ et al (2012) A new lignan glycoside procumbenoside E from *Justicia procumbens L.* Chin J Pharm 43:669–672
Yamamoto Y, Mori S, Shibuya M (2015) A combined transition-metal-catalyzed and photopromoted process: synthesis of 2,3-fused 4-Phenylnaphthalen-1-yl carboxylates from 1,7-diaryl-1,6-diynes. Chem Eur J 21:9093–9100
Yang M, Wu J, Cheng F, Zhou Y (2006) Complete assignments of 1H and 13C NMR data for seven arylnaphthalide lignans from *Justicia procumbens*. Magn Reson Chem 44(7):727–730
Yeo H, Li Y, Fu L, Zhu JL, Gullen EA, Dutschman GE, Lee Y, Chung R, Huang ES, Austin DJ, Cheng YC (2005) Synthesis and antiviral activity of Helioxanthin analogues. J Med Chem 48(2):534–546
Yu Z, Dan W, Jie H, Li Z (2010) Synthesis and bioevaluation of novel analogues of justicidin A. Med Chem Res 19(1):71–76
Yu S, Lv JJ, Zhao JQ et al (2016) New cytotoxic lignan glycosides from *Phyllanthus glaucus*. Nat Prod Res 30:419–425
Zhang ZZ, Ownby S, Wang P et al (2010) New phenolic compounds from *Liatris elegans*. Nat Prod Res 24:1079–1085
Zhang Z, Ma J, Zhu L, Zhao Y (2014) Synthesis and identification of cytotoxic diphyllyn glycosides as vacuolar H+-ATPase inhibitors. Eur J Med Chem 82:466–471
Zhang HJ, Rumschlag-Booms E, Guan YM, Liu KL, Wang DY, Li WF, Nguyen VH, Cuong NM, Soejarto DD, Fong HHS, Rong L (2017) Anti-HIV diphyllyn glycosides from *Justicia gendarussa*. Phytochem 136:94–100
Zheng CJ, Zhang XW, Han T et al (2014) Anti-inflammatory and anti-osteoporotic lignans from *Vitex negundo* seeds. Fitoterapia 93:31–38

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.