공항별 공항수하물처리시스템에 필요한 Self Bag Drop 시스템 시뮬레이션 개발

Self Bag Drop Simulation Development of Systems for Airport Baggage Handling System

이 강석1·지민석2·최원혁2*
1한서대학교 항공교통물류학부
2한서대학교 항공전자공학과

Kang-Seok Lee1·Min-Seok Jie2·Won-Hyuck Choi2*
1School of Aeronautic, Hanseo University, Chungcheongnam-do 357-953, Korea
2Department of Avionics Engineering Hanseo University, Chungcheongnam-do 357-953, Korea

요 약
공항을 이용하는 승객들의 체크인 과정은 출국하는데 있어서 많은 시간이 소요되고 총 탑승시간까지 상당한 시간이 지체되어 진다. 따라서 수하물의 처리 시 대기시간을 줄이기 위해 공항에서는 셀프서비스가 확대되고 있다. 또한 국내의 생산자동화 시스템에 대한 개발과 제조와 관련한 능력, IT기술은 세계적인 수준이다. 그러므로 SBD (self bag drop) 시스템의 국산화를 위하여 국내기술에 접목시킴은 물론 서비스 경쟁력을 갖추어 보다 효율적인 공항운영이 될 것이라 본다. 이를 위하여 본 논문에서는 공항에서 승객이 SBD를 이용할 경우 공항 이용의 최적 상태를 알아보기 위하여 시스템 관련 시뮬레이션을 개발한다. 그리고 국외공항에서의 승객관련 데이터를 확보하여 시뮬레이션을 하여 SBD 시스템 사용할 경우 최적의 승객운영 시스템을 분석한다.

Abstract
The passenger who use airport spend a lot of time in check-in. They are also delayed in their readiness for departure. Therefore, for decrease in time that is waiting time for handling luggage, recently many airports are expanding self-service. Also internal development and manufacturing for production automation system and IT technology are world-class. So, for localization of self bag drop (SBD) system, I think that application this system in domestic technique and constructing competitive in customer reception system will be efficient airport management. To this end, for looking for optimal conditions when passengers use SBD, this thesis include development simulation of relevance to system. Also this thesis secures information for passenger’s in foreign country airport and simulate this data. Finally, that analysis the best management passenger system when the passenger use SDB.

Key word : Check-in process, Simulation system, Self bag drop, IT technology, Operating system
Ⅰ. 서론

공항 이용하는 승객들의 체크인 과정은 출국하는데 있어  
서 많은 시간이 소요되고 탑승 시간까지 상당한 시간이 지체 
되어진다. 따라서 수하물의 처리 시 대기 시간을 줄이기 위해 공  
항에서는 셀프서비스가 확대되고 있다.

유업을 중심으로 해외 선진 공항들은 SBD (self bag drop) 시 
스템이 도입되어 첨단화 공항으로 변모 되어가고 있다. 인천  
공항은 2015년 2월부터 SBD 시험운영 중이며, 국내 지방공  
항들은 아직 SBD 시스템이 도입되어 있지 않고 있다. 인천공항의  
경우 피크타임에 체크인 카운터의 수가 부족하여 2015년부터 여객의 수요 증가에 따른 터미널 포화가 예상되지만 증가하는 이용객의 수요를 수용하기 위해 공항시설의 확충만으로는 투자대비 효율성에 한계가 있어 효율성 높은 무인  
자동화 체크인 시스템이 필요하다고 판단된다. 해외 공항의 경  
우 self check-in이 SBD 시스템과 연계되어 이용률이 증가하는  
추세이나 국내공항의 경우 SBD 시스템과의 연계 부재로 해외  
선진 공항에 비해 이용률이 낮다. 따라서 여객 간소화 서비스  
지원 및 탑승수속 시간을 감소시키고 효율적으로 운영하기 위  
한 self check-in 시스템과 함께 여객 수하물의 자동위탁 처리를  
위한 SBD 시스템의 구축이 시급하다고 사료된다. [1].

 국내에서 생산자동화 시스템에 대한 개발과 제조와 관련한  
능력, IT 기술은 세계적인 수준이다. 그러므로 SBD 시스템의 국  
산화를 위하여 국내기술에 접목시킴은 물론 서비스 경쟁력을  
갖추어 보다 효율적인 공항운영이 될 것이라 본다. SBD 체계를  
갖추면 공항을 이용하는 승객에게 편의를 제공하고 항공사와  
공항을 운영하는 주체인 공항공사에 경비 절감과 혼잡도 완화 
에 효과가 있을 것으로 기대된다.

Ⅱ. SBD 시스템

SBD 시스템은 공항을 이용하는 승객들이 기내에 휴대하지  
않고 위탁하는 수하물 (checked baggage)를 승객 스스로 키오스  
(self kiosk) 또는 통합된 자체 SBD에서 Bag Tag를 인쇄하고  
가방에 부착하여 대기시간을 감소시킬 수 있는 장비이다. SBD  
장비는 수하물처리시스템 (BHS; baggage handling  
system) 중 체크인 카운터를 무인으로 전환하는 대표적인 기술  
이다. SBD 장비의 대표적인 기술은 발권 (check-in)에 필요한  
대기 시간을 줄이고 서비스의 수준을 높이면서 공항 이용자의  
편의가 향상되고 공항 이용객은 증가한다. 또한 자동화를 통한 인건비 감소는 공항 운영비용의 탁월한 절감효과를 가  
져온다. [2].

2-1 SBD 시스템 운영 특징

유럽의 SBD 시스템은 지능적인 수하물 처리를 위해 항공사,  
공항 및 지상 처리기를 제공한다. 주요 목적은 수하물 체크인에  
필요한 시간을 줄이기 위해 승객에 대한 편리한 서비스를 제공  
하는 것이다. 자동화된 승객 및 수하물 체크인, SBD, 서비스 지  
원을 옵션으로 제공하며, 독일의 프랑크푸르트, 마인, 뮌헨, 뒤셀도르  
프, 루이스바크 공항 등에 설치되어있다. 출발 제어 시스템  
(DCS; departure control system) 또는 다른 시스템의 세부 정보 
가 필요하지 않고, 스크린, 전자 및 셔틀 등 bag drop 시스템을  
RFID 기술로 초과 수하물을 처리한다.

SBD 시스템은 수하물 체크인과 보조 서비스를 제공하며, 수  
하물 체크인 프로세스는 에어로드로 셀프서비스, 기내 손목밴드를 제공하고, 무인화된 승객 및 수하물 처리를 할 수 있도록 기능을 통합  
한 자동화 시스템 수하물 처리 대기시간이 획기적으로 절감되  
으며, 고객 서비스가 향상되고 공항 이용객은 증가한다. 또한 자동화된 승객 및 수하물 처리를 할 수 있도록 기능을 통합한  
자동화 시스템 수하물 처리 대기시간이 획기적으로 절감될으  
로써 고객서비스가 향상되고 공항 이용객은 증가한다. 또한 자동  
화된 승객 및 수하물 처리는 공항 운영비용의 탁월한 절감효과를 가  
져온다. 아래 그림 1은 국내에서 개발 중인 SBD시스템 이다  
[3],[5].
자유한 공항수하물처리시스템에 필요한 Self Bag Drop 시스템 시뮬레이션 개발

III. SDB 시스템 시뮬레이션

시뮬레이션 모델 개발에서 적용되는 체크인 카운터와 SBD 시스템의 운영은 체크인, 태그 부착, 계량 등이 이뤄지고 수하물이 목적지로 부터 만들어진다. 수하물은 체크인 카운터 혹은 SBD 시스템에서 체크인 된 후, 카운터의 컨베이어 벨트를 통해 출발 수하물 분류 장소로 보내진다. 또한 체크인 카운터 수가 적을 경우 긴 대기 행렬과 대기시간을 야기하고, 이를 수용하기 위해 넓은 지역을 필요로 한다.

각 카운터 운영에는 수하물 처리를 위한 공간이 있어야 한다. 카운터의 모양에 따라 수하물 처리 공간의 배치는 달라지며, 이는 계측기와 컨베이어 벨트의 위치에 영향을 미친다. 따라서 카운터의 유형에 따라 요구되는 공간이 달라진다.

카운터의 수는 출발 승객의 수, 승객 당 평균 처리시간에 따라 다르며 또한 승객의 동료사람이 배치로 승객 수에 영향을 미친다. 이와 같이 체크인 시스템의 수가 수용할 수 있는 승객 수에 영향을 미친다. 이 시스템의 카운터 수는 공항의 수하물 처리 구역에 영향을 미친다.

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템의 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.

\[ N_s = f(t_s, \alpha, Q, Type) \]  

\( N_s \): number of servers  
\( t_s \): service time  
\( \alpha \): array representing distribution of arrival counts  
\( Q \): queue system applied  
\( Type \): check-in counter configuration

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템은 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.

\[ N_s = f(t_s, \alpha, Q, Type) \]  

\( N_s \): number of servers  
\( t_s \): service time  
\( \alpha \): array representing distribution of arrival counts  
\( Q \): queue system applied  
\( Type \): check-in counter configuration

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템은 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.

\[ N_s = f(t_s, \alpha, Q, Type) \]  

\( N_s \): number of servers  
\( t_s \): service time  
\( \alpha \): array representing distribution of arrival counts  
\( Q \): queue system applied  
\( Type \): check-in counter configuration

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템은 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.

\[ N_s = f(t_s, \alpha, Q, Type) \]  

\( N_s \): number of servers  
\( t_s \): service time  
\( \alpha \): array representing distribution of arrival counts  
\( Q \): queue system applied  
\( Type \): check-in counter configuration

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템은 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.

\[ N_s = f(t_s, \alpha, Q, Type) \]  

\( N_s \): number of servers  
\( t_s \): service time  
\( \alpha \): array representing distribution of arrival counts  
\( Q \): queue system applied  
\( Type \): check-in counter configuration

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템은 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.

\[ N_s = f(t_s, \alpha, Q, Type) \]  

\( N_s \): number of servers  
\( t_s \): service time  
\( \alpha \): array representing distribution of arrival counts  
\( Q \): queue system applied  
\( Type \): check-in counter configuration

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템은 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.

\[ N_s = f(t_s, \alpha, Q, Type) \]  

\( N_s \): number of servers  
\( t_s \): service time  
\( \alpha \): array representing distribution of arrival counts  
\( Q \): queue system applied  
\( Type \): check-in counter configuration

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템은 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.

\[ N_s = f(t_s, \alpha, Q, Type) \]  

\( N_s \): number of servers  
\( t_s \): service time  
\( \alpha \): array representing distribution of arrival counts  
\( Q \): queue system applied  
\( Type \): check-in counter configuration

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템은 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.

\[ N_s = f(t_s, \alpha, Q, Type) \]  

\( N_s \): number of servers  
\( t_s \): service time  
\( \alpha \): array representing distribution of arrival counts  
\( Q \): queue system applied  
\( Type \): check-in counter configuration

운영 카운터 수는 최대대기행렬을 수용할 수 있어야 한다. 하지만 카운터 수를 고려해야 하며, 최소 수량으로 최대서비스를 제공하기 위한 방법으로서 Hon(1999)은 intelligent resource simulation system을 제시했다. 이 시스템은 수에 부담하는 체크인 카운터 수를 정한다. 계산에 필요한 요소는 다음과 같다.
으로 구성되며, 시뮬레이션의 초기 설정화면은 그림 2와 같다.

그림 2. 초기설정 프런트 패널
Fig. 2. Initial setup front panel.

그림 3. 시스템설정 부분 프런트 패널
Fig. 3. System settings portion of the front panel.

그림 4. 그래프 프런트패널
Fig. 4. Front panel graph.

그림 5. SBD 시스템 시뮬레이션 블록다이어그램
Fig. 5. SBD system simulation block diagram.
공항별 공항수하물처리시스템에 필요한 Self Bag Drop 시스템 시뮬레이션 개발

kiosk에서 탐승권 발권과 bag tag를 출력 후 출력된 bag tag을 가방에 부착하여 bag drop zone으로 이동하여 수하물을 위탁하는 방식이다. 다음 표는 각 방식에 의해 운영되는 공항 현황이다.

하지만 일부 공항에서는 SBD 시스템과 전통적인 유인카운터를 병행하여 이용할 수 있다. 본 시뮬레이션을 통해 유인카운터가 설치 된 공항의 수하물 누적 처리시간과 SBD 시스템의 누적 처리시간을 비교하고, 유인카운터와 SBD 시스템을 복합적으로 사용하는 경우에 누적처리 소요시간에 대해서도 확인한다.

표 2는 시뮬레이션에 적용되어진 파라미터 값이다. 승객의 수는 100명으로 어른 70명, 노인 30명의 비율로 적용하였으며, 이동 시간은 gate에서 발권장소(키오스크, 유인카운터 등)까지의 거리를 나타내고, 발권(티켓팅)시간은 어른은 평균 180초, 노인은 평균 300초로 한다. 이론과 노인은 만 50세 기준으로 구분하였는데, 실제 이용시간(만 50세 미만 이용자와 50세 이상 이용자의 실제 서비스시간을 기준으로 산정)을 참고한 값이다.

유인카운터와 SBD 시스템 작동시간을 제외하고는 동일한 조건으로 시뮬레이션 한다. 단, 복합시스템의 경우에는 직원의 도움을 받는 유인카운터가 포함되어 전체 티켓팅 시간은 50% 감소한 값을 반영하였다.

대부분의 승객들은 공항 이용 시 유인카운터를 이용한다. 유인카운터 직원의 도움으로 티켓팅과 bag drop을 할 수 있다. 장점으로는 직원의 도움을 얻기 때문에 승객의 입장에서 신뢰성, 수속 절차상의 편의를 제공한다. 하지만 승객의 이용수가 증대하였을 때, 항공사의 처리량이 증가되어 승객들의 대기시간이 길어진다.

그림 6의 좌측 그래프는 2개의 유인카운터가 설치되었을 때, 수하물의 누적처리 소요시간이 나타내고, 우측 그래프는 4개의 유인카운터가 설치되었을 때 수하물의 누적처리 소요시간을 나타낸다. 그래프에서 볼 수 있듯이 2개의 유인카운터가 설치되었을 때보다 누적처리 소요시간이 감소되었음을 볼 수 있다.

### 3-2 Self Kiosk + Bag Drop(2 Step)

전반적으로, 특히 북미권 공항에서는 self kiosk + bag drop의 2 step 방식을 이용하여 수하물을 처리하고 있다. bag drop의 경우는 self kiosk에서 티켓팅을 한 후 직원의 도움으로 수하물을 처리한다.

이러한 시스템의 장점으로는 2단계 절차를 가진으로서 공항 내 여객을 분산시켜 혼잡을 완화하고, 수하물 위탁시 신속 제작인으로 보안을 강화할 수 있다. 하지만 bag drop zone의 과부화로 인해 처리시간이 길어질 수 있다.

그림 7의 그래프는 유인카운터 2대 운영동과 그림 (우)는

| Operating Airport                                    | Table 1. Airports operations by SBD.                                                                 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1 Step                                                | Orly Airport, Charles de Gaulle Airport, Frankfurt Main Airport, Amsterdam Airport Schiphol, Brussels Airport, Heathrow Airport...Operating Primarily in the Europe |
| 2 Step                                                | Los Angeles International Airport, Dallas Fort Worth International Airport, Chicago O'Hare International Airport, Philadelphia International Airport, Lester B.Pearson International Airport...Operating Primarily in North America |

| Table 2. Simulation parameters.                      |                                                                                                      |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Travel time                                          |                                                                                                      |
| Manned counters                                     |                                                                                                      |
| Kiosk                                                |                                                                                                      |
| SBD operating time                                   |                                                                                                      |
| Ticketing                                            |                                                                                                      |
| Manned counters                                     | 120sec                                                | 60sec                                                | x                                      | x  |
| 2 Step (Self Kiosk + Bag Drop)                       | 120sec                                                | 60sec                                                | 30sec                                  | x  | Adult : 180sec Old : 300sec |
| 1 Step (SBD)                                         | 120sec                                                | x  | 30sec                                  | 30sec                                  | Adult : 180sec Old : 300sec |
| Manned counter + SBD                                 | 120sec                                                | 60sec                                                | 30sec                                  | 30sec                                  | Adult : 90sec Old : 150sec |

적용에 의한 평균 대기시간을 비교하는 그래프
Fig. 6. The graph of the two counters manned operation (left) during the fourth operating (right).

self kiosk+bag drop 2대 운영동안에 처리되는 시간을 비교하여 나타내는 그림. 그래프에서 볼 수 있듯이 2개의 유인카운터의 누적
처리 소요시간(약 5800초)보다 self kiosk + bag drop 2대 운영동안(약 6100초)에 증가됨을 볼 수 있다. 유인카운터의 이용 시 직원의 도움을 받기에 원활한 티켓팅이 가능함에 비해 self kiosk는 조작 능력에 따라 누적처리 소요시간이 증가된다.

그림 8의 그래프는 self kiosk + bag drop 4대를 100명의 승객들이 사용할 때 처리되는 시간(약 3300초)을 나타낸다. 누적 처리 소요시간은 self kiosk + bag drop 2대를 운영(약 5800초)하였을 때 보다 줄어든 것을 볼 수 있다.

3-3 SBD 시스템(1 Step)

유럽권 허브 공항에서는 많은 승객들이 수하물 처리시간을 단축시키기 위하여 SBD 시스템을 사용한다. SBD 시스템만을 이용하였을 때 공항의 혼잡도를 다소 줄일 수 있지만, 기존의 유인카운터를 사용하던 승객들은 SBD 시스템의 경험이 부족하므로 처리시간이 길어질 수 있다.

그림 9의 그래프는 SBD 시스템 2대를 100명의 승객들이 사용할 때 처리되는 시간(약 6100초)을 나타낸다. self kiosk + bag drop을 이용하였을 때의 누적처리시간(약 6000초)과 SBD 시스템만을 이용하였을 때의 처리시간의 차이는 크지 않다는 것을 알 수 있다.

그림 10의 그래프는 SBD 시스템 4개를 100명의 승객들이 사용할 때 처리되는 시간을 나타낸다. 누적 처리 소요시간은 SBD 시스템 2개를 이용하였을 때 보다 줄어든 것을 볼 수 있다.

3-4 복합 카운터 (2 Step)

복합 카운터는 SBD 시스템과 유인카운터를 혼용하여 사용하는 경우이다. 유인카운터만을 사용할 때의 경우에는 승객들의 증가에 따라 대기시간이 길어지는 단점이 있다. 이 단점을 극복하기 위하여 SBD 시스템을 복합적으로 사용함에 따라 대기시간을 단축시키고, 공항의 혼잡도를 완화한다.

그림 7. 유인카운터 2대 운영(좌)와 self kiosk + bag drop 2대 운영(우) 그래프

Fig. 7. Two counters manned operation (left) during two self kiosk + bag drop operating (right) graph.

그림 8. 2대의 self kiosk + bag drop 운영(좌), 4대의 self kiosk + bag drop 운영(우)

Fig. 8. Two self kiosk + bag drop operation (left), four self kiosk + bag drop operation (right).
공항별 공항수하물처리시스템에 필요한 Self Bag Drop 시스템 시뮬레이션 개발

그림 11. 2개의 유인카운터(좌), 2대의 SBD 시스템(중), 2대의 복합시스템(우)
Fig. 11. Two manned counters (left), two SBD system (medium), two hybrid system (right).

그림 12. 4개의 유인카운터(좌), 4대의 SBD 시스템(중), 4대의 복합시스템(우)
Fig. 12. Four manned counters (left), four SBD system (M), four composite system (right).

그림 13. 4대의 복합카운터(좌), 6대의 복합카운터(우)
Fig. 13. Four composite counter (left) and six composite counter (right).

그림 14. 6대의 복합카운터(좌), 8대의 복합카운터(우)
Fig. 14. Six composite counter (left) and eight composite counter (right).

그림 11의 그래프는 1개의 유인카운터와 1대의 SBD 시스템을 복합적으로 운영하였을 때의 그레프이다. 2대의 복합시스템 누적처리 소요시간(약 5900초)은 2개의 유인카운터를 이용하였을 때의 누적처리 소요시간(약 5800초)보다 증가하였지만, 2대의 SBD 시스템을 사용하였을 때의 누적처리 소요시간(약 6000초)보다는 감소하였음을 볼 수 있다.

그림 12의 그래프는 2개의 유인카운터와 2대의 SBD 시스템을 복합적으로 운영하였을 때의 그레프이다. 4대의 복합시스템 누적처리 소요시간(약 3200초)은 4개의 유인카운터를 이용하였을 때의 누적처리 소요시간(약 3150초)보다 증가하였지만, 4대의 SBD 시스템을 사용하였을 때의 누적처리 소요시간(약 3200초)보다는 감소하였음을 볼 수 있다.

그림 13의 그래프는 3개의 유인카운터와 3대의 SBD 시스템을 복합적으로 운영하였을 때의 그레프이다. 6대의 복합카운터 누적처리 소요시간(약 2300초)은 4대의 복합카운터를 사용하여 발생한 누적처리 소요시간(약 2400초)보다 감소하였음을 볼 수 있다.

그림 14의 그레프는 4개의 유인카운터와 4대의 SBD 시스템을 복합적으로 운영하였을 때의 그레프이다. 8대의 복합카운터 누적처리 소요시간(약 1900초)은 6대의 복합카운터를 사용하였을 때의 누적처리 소요시간(약 2300초)보다 감소하였음을 볼 수 있다.

Ⅳ. 결 론

허브 공항들은 공항의 혼잡도를 줄이기 위해 SBD 시스템을 주로 사용한다. SBD 시스템은 ‘1 step’방식으로 공항을 이용하는 승객이 탑승권과 bag tag를 출력하여 bag drop zone을 통해...
수화물은 지하철에서 운송하는 데, 항공
의 혼잡도를 줄일 수는 있지만 시뮬레이션 모델을 통해 확인한
결과에 비해 유인카운터에 누적 처리 소요시간에 비해 SBD 시스
템의 누적 처리 소요시간이 증가할 것을 볼 수 있다. self kiosk
와 함께 도중의 변화를 받아 bag drop을 사용하는 '1 Step'의 누적 처
리 소요시간과 SBD 시스템의 누적 처리 소요시간은 많은 차이가
있다는 것을 시뮬레이션 모델을 통해 알 수 있다.

유인카운터의 혼잡도 문제, 승객의 이용이 증가하였을 때 공항의 혼잡도를 줄일 수는 있지만 시뮬레이션 모델을 통해 확인한
결과에 비해 유인카운터에 누적 처리 소요시간에 비해 SBD 시스
템의 누적 처리 소요시간이 증가할 것을 볼 수 있다. self kiosk
와 함께 도중의 변화를 받아 bag drop을 사용하는 '1 Step'의 누적 처
리 소요시간과 SBD 시스템의 누적 처리 소요시간은 많은 차이가
있다는 것을 시뮬레이션 모델을 통해 알 수 있다.

이러한 경험의 한정적 문제, 승객의 이용이 증가하였을 때 공항의 혼잡도를 줄일 수는 있지만 시뮬레이션 모델을 통해 확인한
결과에 비해 유인카운터에 누적 처리 소요시간에 비해 SBD 시스
템의 누적 처리 소요시간이 증가할 것을 볼 수 있다. self kiosk
와 함께 도중의 변화를 받아 bag drop을 사용하는 '1 Step'의 누적 처
리 소요시간과 SBD 시스템의 누적 처리 소요시간은 많은 차이가
있다는 것을 시뮬레이션 모델을 통해 알 수 있다.

이러한 경험의 한정적 문제, 승객의 이용이 증가하였을 때 공항의 혼잡도를 줄일 수는 있지만 시뮬레이션 모델을 통해 확인한
결과에 비해 유인카운터에 누적 처리 소요시간에 비해 SBD 시스
템의 누적 처리 소요시간이 증가할 것을 볼 수 있다. self kiosk
와 함께 도중의 변화를 받아 bag drop을 사용하는 '1 Step'의 누적 처
리 소요시간과 SBD 시스템의 누적 처리 소요시간은 많은 차이가
있다는 것을 시뮬레이션 모델을 통해 알 수 있다.

이러한 경험의 한정적 문제, 승객의 이용이 증가하였을 때 공항의 혼잡도를 줄일 수는 있지만 시뮬레이션 모델을 통해 확인한
결과에 비해 유인카운터에 누적 처리 소요시간에 비해 SBD 시스
템의 누적 처리 소요시간이 증가할 것을 볼 수 있다. self kiosk
와 함께 도중의 변화를 받아 bag drop을 사용하는 '1 Step'의 누적 처
리 소요시간과 SBD 시스템의 누적 처리 소요시간은 많은 차이가
있다는 것을 시뮬레이션 모델을 통해 알 수 있다.

이러한 경험의 한정적 문제, 승객의 이용이 증가하였을 때 공항의 혼잡도를 줄일 수는 있지만 시뮬레이션 모델을 통해 확인한
결과에 비해 유인카운터에 누적 처리 소요시간에 비해 SBD 시스
템의 누적 처리 소요시간이 증가할 것을 볼 수 있다. self kiosk
와 함께 도중의 변화를 받아 bag drop을 사용하는 '1 Step'의 누적 처
리 소요시간과 SBD 시스템의 누적 처리 소요시간은 많은 차이가
있다는 것을 시뮬레이션 모델을 통해 알 수 있다.

이러한 경험의 한정적 문제, 승객의 이용이 증가하였을 때 공항의 혼잡도를 줄일 수는 있지만 시뮬레이션 모델을 통해 확인한
결과에 비해 유인카운터에 누적 처리 소요시간에 비해 SBD 시스
템의 누적 처리 소요시간이 증가할 것을 볼 수 있다. self kiosk
와 함께 도중의 변화를 받아 bag drop을 사용하는 '1 Step'의 누적 처
리 소요시간과 SBD 시스템의 누적 처리 소요시간은 많은 차이가
있다는 것을 시뮬레이션 모델을 통해 알 수 있다.

이러한 경험의 한정적 문제, 승객의 이용이 증가하였을 때 공항의 혼잡도를 줄일 수는 있지만 시뮬레이션 모델을 통해 확인한
결과에 비해 유인카운터에 누적 처리 소요시간에 비해 SBD 시스
템의 누적 처리 소요시간이 증가할 것을 볼 수 있다. self kiosk
와 함께 도중의 변화를 받아 bag drop을 사용하는 '1 Step'의 누적 처
리 소요시간과 SBD 시스템의 누적 처리 소요시간은 많은 차이가
있다는 것을 시뮬레이션 모델을 통해 알 수 있다.
공항별 공항수하물처리시스템에 필요한 Self Bag Drop 시스템 시뮬레이션 개발

이 강 석 (Kang-Seok Lee)
2000년 2월 : 한국항공대학교 항공교통 (이학박사)
2001년 3월 ~ 현재 : 한서대학교 항공교통물류학부 교수
※ 관심분야 : 항공법, 항공안전분야, 공항운영

지 민 석 (Min-Seok Jie)
2006년 2월 : 한국항공대학교 항공전자공학과 (공학박사)
2008년 2월 ~ 현재 : 한서대학교 항공전자공학과 교수
※ 관심분야 : 자동제어, 로봇공학, 무인기

최 원 혁 (Won-Hyuck Choi)
2006년 2월 : 한국항공대학교 항공전자공학과 (공학박사)
2014년 2월 ~ 현재 : 한서대학교 항공전자공학과 교수
※ 관심분야 : 임베디드 시스템, 사물인터넷, 무선통신