Benefits of future clean air policies in Europe

Proposed analyses of the mortality impacts of PM$_{2.5}$ and NO$_2$

Barbara Hoffmanna, Bert Brunekreefb, Zorana J. Andersenc, Francesco Forastiered, Hanna Boogaarde

Introduction

Health impact assessments (HIA) and cost-benefit analyses (CBA) play a major role in the ongoing revision of the European Union Ambient Air Quality Directive (EU AAQD). HIAs quantify the public health impacts of the air pollution levels a population is exposed to. CBAs quantify the economic costs of achieving lower air pollution levels and the (monetized) benefits for public health that result from these lower pollution levels. In this commentary, we consider the recent body of evidence on the effects of long-term exposure to fine particulate matter (PM$_{2.5}$) and nitrogen dioxide (NO$_2$) on total mortality from natural causes and present the rationale for conducting additional analyses within the framework of the HIA conducted for the revision of the EU AAQD, based on the recently published European “Effects of Low-Level Air Pollution: A Study in Europe” (ELAPSE) study.

The air pollution-related burden (presented as impact on mortality from natural causes) for Europe has been estimated since 2014 in the annual “Air Quality in Europe” reports published by the European Environment Agency (EEA). EEA in their HIA has used relative risk estimates from meta-analyses by Hoek and colleagues1 in 2013, based on evidence published before January 2013: 1.06 (1.04, 1.08) for PM$_{2.5}$ and 1.05 (1.03, 1.08) for NO$_2$, both per 10 µg/m3. The EEA, in its latest HIA for 2019, assumed no threshold for PM$_{2.5}$ and a threshold of 20 µg/m3 for NO$_2$, and estimated 307,000 and 40,400 premature deaths in the EU27 associated with PM$_{2.5}$ and NO$_2$, respectively.2

In support of the recent development of the 2021 World Health Organization (WHO) Air Quality Guidelines, new systematic reviews of the evidence of effects of air pollutants on mortality were published in 2020.$^3,^4$ These reviews include studies conducted in all parts of the world and across a wide range of exposure levels. The linear summary estimates from these global systematic reviews are used in the current HIA and CBA informing the revision of the EU AAQD. The systematic review on PM$_{2.5}$ and total mortality documented a summary estimate of 1.08 per 10 µg/m3 with a confidence interval of (1.06, 1.09), based on 25 studies.3 The systematic review on NO$_2$ and total mortality reported a summary estimate of 1.02 per 10 µg/m3 with a confidence interval of (1.01, 1.04), based on 24 studies.4

This latter review has also reported an association between long-term, warm season ozone exposure and total mortality with a summary effect estimate of 1.01 (1.00, 1.02) per 10 µg/m3, which is being used to estimate the impacts of long-term warm season ozone concentration in the revision of the EU AAQD.

These systematic reviews were published in 2020 and included studies available until September 2018. They do not include important new European studies that have been published since. We propose that additional analyses should be conducted based on these new studies to ensure that the HIA and CBA to inform the revision of the EU AAQD considers the most recent and relevant evidence. We suggest using effect estimates from recent European studies only, as these are the most relevant to estimating impacts and benefits for recent European exposure levels and populations. While studies conducted outside of Europe form an important part of the overall evidence base, when quantifying risks in Europe, it is important to use exposure-response estimates from epidemiologic studies that reflect European population demographics, air quality and exposure patterns, healthcare systems (particularly for outcomes based on administrative databases), and baseline mortality and morbidity rates. Geographical restriction for HIA and CBA purposes is common practice in many other countries, including the policy assessment for the review of National Ambient Air Quality Standards in the United States.

We recommend the use of the exposure-response relationship estimates from ELAPSE for these additional analyses. ELAPSE is the largest study in Europe by far, designed specifically to address the effects of exposure to low levels of air pollution—below current EU air quality limit values—and represents the latest and most relevant data for Europe. ELAPSE has estimated associations between long-term exposure to air pollution and mortality using two approaches: a pooled cohort of over 325,000 persons from eight cohorts from six EU countries, published in Strak et al.1 and analyses of 28 million people from seven large administrative nationwide (Denmark, Netherlands, Norway, United Kingdom, Switzerland, Belgium) and citywide (Rome) cohorts, published in Staﬀoggia et al.4 The pooled cohort had access to detailed information, such as smoking, physical activity, body mass index, and alcohol intake. The very large administrative cohorts have less detailed information on lifestyle and social factors, and they used an “indirect” approach to account for those factors in the analyses. ELAPSE includes data on a very large number of participants in 11 European countries in total, almost all of whom were exposed to levels of PM$_{2.5}$ and NO$_2$.

Keywords: Air pollution; Health impact assessment; Mortality
below current EU limit values.5–7 Several other European studies have been published very recently as well, and we have included those results for comparison and completeness. In the absence of convincing new studies on long-term ozone and mortality for Europe, we do not propose additional analyses for ozone.

Mortality estimates from recent European studies

The results of the ELAPSE study for associations of PM$_{2.5}$ with total mortality are shown in Figure 1.7 The figure includes the combined estimates from two ELAPSE analyses: a large, pooled cohort study of eight individual cohorts from six EU countries,4 and seven separate very large nationwide or citywide administrative cohorts.6 Importantly, all estimates adjusted for smoking and other important lifestyle and social factors. The summary effect estimate for PM$_{2.5}$ is 1.118 (1.060, 1.179) per 10 µg/m3, which is larger than the 1.08 (1.06, 1.09) summary effect estimate from the WHO systematic review.3

Figure 2 shows the results of ELAPSE for NO$_2$. This figure again includes the estimates from a large, pooled cohort study including data from eight cohorts from six EU countries,5 and seven separate very large administrative cohorts.6,7 As for PM$_{2.5}$, these estimates represent analyses adjusted for smoking and other important lifestyle and social factors. The summary estimate is 1.045 (1.026, 1.063) per 10 µg/m3, which is larger than the 1.02 (1.01, 1.04) effect estimate from the WHO systematic review.5

Figures 3 and 4 show the mortality results of other recent European studies for long-term PM$_{2.5}$8–15 and NO$_2$11–19 respectively, which were published after the closing dates of the WHO systematic reviews. The results from these studies are compared with the summary estimates from the WHO systematic reviews (red vertical line) and the summary estimate from the ELAPSE study. The findings corroborate the ELAPSE findings, namely that the PM$_{2.5}$ and NO$_2$ effects on mortality in Europe are generally larger than the estimates of the global WHO systematic reviews. This is due in part to the supra-linear form of the exposure-response function.

Additional considerations: larger associations at lowest concentrations

Recent studies have documented a supra-linear form of the exposure-response relationship between long-term exposure to PM$_{2.5}$ and NO$_2$ with multiple health outcomes, “supra-linear” to be understood as higher effect estimates per additional microgram of exposure at low pollutant concentrations than at high concentrations (see, for instance, Burnett and colleagues20). The ELAPSE study made a systematic effort to estimate associations in subpopulations exposed to concentrations below certain cutpoints in Europe. Those results are summarized in tables 7 and 20 of the main report.7 They show that in the pooled cohort of eight cohorts from six EU countries, the effect estimate for PM$_{2.5}$ was about twice higher in the subpopulation exposed to concentrations below 15 µg/m3 than in the full population. This subpopulation contained about half of all study participants. For NO$_2$, the effect estimate was about 30% higher in the subpopulation exposed to concentrations below 30 µg/m3 than in the full population. This subpopulation contained about 75% of all study participants. Analyses of the shape of the exposure-response functions based on the full population in the pooled cohort supported this finding, showing a supra-linear curve (Figure 5).

Table 1. Total mortality and PM$_{2.5}$

Cohort	Weights	HR [95% CI]
Belgian 2001 Census		
Danish cohort		
DUELS		
NORCOHORT		
Rome Longitudinal study		
Swiss National Cohort		
English CPRD		
ELAPSE pooled cohort		

RE Model	Q	p	f
	102.66	0.00	95.3%

Figure 1. Total mortality and long-term PM$_{2.5}$ from ELAPSE.7 “Effect estimates were indirectly adjusted for smoking and BMI for six of the administrative cohorts. The English CPRD cohort adjusted for smoking and BMI directly. The pooled cohort adjusted for smoking and BMI as well, and the time varying effect estimate was extracted. BMI indicates body mass index; CI, confidence interval; HR, hazard ratio.
Similar findings were observed in the analysis of the seven administrative cohorts within ELAPSE. The effect estimate for PM$_{2.5}$ was about 80% higher in the subpopulation exposed to concentrations below 12 μg/m3 than in the full population. This subpopulation contained about 4.5 million study subjects. For NO$_2$, the effect estimate was about 40% higher in the subpopulation exposed to concentrations below 20 μg/m3 than in the full population. This subpopulation contained about 6 million study participants. Analyses of the exposure-response function supported this finding, showing supra-linear curves in the meta-analysis of the seven administrative cohorts and for most of the individual cohorts. As the administrative cohorts were very large, precise and statistically significant effect estimates could still be obtained from those subgroup analyses.

Because those subgroup analyses are not usually conducted in other studies, we do not propose to use these even higher effect estimates in the additional analyses, in part because of the smaller sample sizes, and because of the importance of generalizability for use in HIA and CBA. However, they do support the use of the ELAPSE effect estimates as shown in Figures 1 and 2 as additional analyses.

Additional considerations: air pollution and morbidity

The above considerations are restricted to effects on mortality only, which contribute to the years of life lost due to air pollution. They do not cover morbidity outcomes, which translate into years lived with disability, which is the second major component of the burden of disease. Recent reviews document that air pollution is associated with a growing list of various diseases (e.g., Thurston and colleagues 21). ELAPSE also documented clear associations between long-term exposure to PM$_{2.5}$ and/or NO$_2$ and the incidence of lung cancer, cerebrovascular events, chronic obstructive pulmonary disease (COPD), asthma, and liver cancer. Furthermore, long-term NO$_2$ exposure in urban areas was associated with asthma onset in children. In addition, emerging evidence reports a likely association of air pollution with diabetes, low birth weight, preterm births, cognitive decline and dementia, Parkinson’s diseases, impaired cognitive development in children, and mental health outcomes. These associations may lead to sick days, doctor visits, need for medication and hospital care, and to huge costs related to health care, loss in productivity, and reducing quality of life.

Several systematic reviews have been conducted recently on which a comprehensive impact assessment of the years lived with disability due to PM$_{2.5}$ and NO$_2$ could be based. For example, the United Kingdom has undertaken a comprehensive

Table 1.

Pollutant	Per mean-5th percentile	Single pollutant HR	Three-pollutant HR
PM$_{2.5}$	5.0 μg/m3	1.035 (1.029, 1.041)	1.011 (1.003, 1.020)
O$_3$	9.5 ppb	1.031 (1.025, 1.036)	1.018 (1.010, 1.026)
NO$_2$	8.1 ppb	1.052 (1.045, 1.059)	1.045 (1.037, 1.052)
Cumulative	NA	1.123 (NA)	1.075 (1.064, 1.082)

Cumulative HRs are derived by multiplying the three individual pollutant HRs. HR indicates hazard ratio; NA, not applicable.

Figure 2. Total mortality and long-term NO$_2$ from ELAPSE*. Effect estimates were indirectly adjusted for smoking and BMI for six of the administrative cohorts. The English CPRD cohort adjusted for smoking and BMI directly. The pooled cohort adjusted for smoking as well, and the main exposure effect estimate was extracted since no difference with time-varying exposure estimate. BMI indicates body mass index; CI, confidence interval; CPRD, clinical practice research datalink; DUELS = The dutch environmental longitudinal study; HR, hazard ratio; NORCOHORT = norwegian cohort; RE = random effects.
assessment of morbidity outcomes, including stroke incidence, asthma incidence in children, and lung cancer incidence.28 A similar effort has been undertaken in France.29 At WHO, multiple efforts are underway to inform exposure-response estimates for morbidity outcomes for use in HIA, such as the Estimation of Morbidity from Air Pollution and its Economic Costs project (EMAPEC), and an active Global Air Pollution and Health-Technical Advisory Group (GAPH-TAG). We propose to include morbidity outcomes in future HIAs and CBAs that will be conducted for informing policy making.

Figure 3. Total mortality and long-term PM\textsubscript{2.5} from other European studies published since the WHO systematic review by Chen and Hoek*.3 *Red line indicates the summary estimate from the systematic review by Chen and Hoek.*3 Mean PM\textsubscript{2.5} exposure in European studies range from 5.8 to 20.5 µg/m3. CI indicates confidence interval; HR, hazard ratio.

Author and year	Area	HR [95% CI] per 10 µg/m3
Chen & Hoek 2020 (WHO Systematic review)		1.080 [1.060, 1.090]
ELAPSE pooled estimates (Figure 1)		1.118 [1.060, 1.179]
Other European Studies published after Chen & Hoek 2020		
Fischer 2020	The Netherlands	1.172 [1.138, 1.195]
Hvidtfeldt 2019	Copenhagen & Aarhus, Denmark	1.277 [1.103, 1.464]
Nieuwenhuijsen 2018	Barcelona, Spain	1.061 [0.980, 1.124]
Raaschou-Nielsen 2020	Denmark	1.080 [1.040, 1.130]
So 2020	Denmark	1.142 [1.023, 1.242]
So 2022	Denmark	1.232 [1.180, 1.270]
Sommar 2021b	Umeå, Sweden	1.082 [0.372, 3.168]
Sommar 2021b	Stockholm, Sweden	1.638 [1.000, 2.690]
Sommar 2021b	Gothenburg, Sweden	0.656 [0.336, 1.300]
Sommar 2021b	Gothenburg, Sweden	1.613 [1.188, 2.220]
Wang 2022	United Kingdom	1.270 [1.050, 1.550]

Figure 4. Total mortality and long-term NO\textsubscript{2} from other European published since the WHO systematic review by Huangfu and Atkinson*.4 *Red line indicates the summary estimate from the systematic review by Huangfu and Atkinson.*4 Mean NO\textsubscript{2} exposure in European studies range from 7.1 to 53.4 µg/m3. CI indicates confidence interval; HR, hazard ratio.

Author and year	Area	HR [95% CI] per 10 µg/m3
Huangfu & Atkinson, 2020 (WHO meta analysis)		1.020 [1.010, 1.040]
ELAPSE pooled estimate (Figure 2)		1.045 [1.026, 1.065]
Other European studies published after Huangfu & Atkinson, 2020		
Gariazzo 2021	Rome, Italy	1.010 [1.004, 1.016]
Hvidtfeldt 2019	Copenhagen & Aarhus, Denmark	1.070 [1.040, 1.100]
Klompnaker 2020	The Netherlands	0.987 [0.960, 1.013]
Nieuwenhuijsen 2018	Barcelona, Spain	1.020 [1.000, 1.040]
Raaschou-Nielsen 2020	Denmark	1.050 [1.040, 1.060]
Sanyal 2018	Metropolitan France	1.012 [0.999, 1.027]
So 2022	Denmark	1.060 [1.050, 1.070]
Sommar 2021a	Northern Sweden	1.077 [0.783, 1.371]
Wang 2022	UK	1.050 [1.015, 1.085]
Conclusions

To estimate the potential benefit of air pollutant reductions as accurately as possible, HIA and CBA need to include the latest and most relevant information on the relation between air pollutants and adverse health outcomes. Effect estimates from ELAPSE represent the largest and most relevant data for Europe to date.

We recommend analyses using ELAPSE for inclusion in the HIA and CBA to inform the revision of the EU AAQD that is currently ongoing. Specifically, we suggest analyses for total mortality and long-term PM$_{2.5}$ and NO$_2$ using a summary estimate of 1.118 (1.060, 1.179) for PM$_{2.5}$ and 1.045 (1.026, 1.065) for NO$_2$, both per 10 μg/m3.

Acknowledgments

We thank Rina So and Massimo Stafoggia for conducting the meta-analyses and developing the figures.

References

1. Hoek G, Krishnan RM, Beelen R, et al. Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ Health. 2013;12:43.

2. European Environment Agency. Air Quality in Europe - 2021 Report. Available at: https://www.eea.europa.eu/publications/air-quality-in-europe-2021. Accessed 16 August 2022.

3. Chen J, Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: a systematic review and meta-analysis. Environ Int. 2020;143:105974.

4. Huanglu P, Atkinson R. Long-term exposure to NO$_2$ and O$_3$ and all-cause and respiratory mortality: a systematic review and meta-analysis. Environ Int. 2020;144:105998.

5. Strak M, Weinmayr G, Rodopoulou S, et al. Long-term exposure to low-level air pollution and mortality among 28 million people. Results from seven large European cohorts within the ELAPSE project: pooled analysis. BMJ. 2021;374:n1904.

6. Stafoggia M, Oftedal B, Chen J, et al. Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project. Lancet Planet Health. 2022.6:e9–e18.

7. Brunkreer B, Straak M, Chen J. Mortality and Morbidity Effects of Long-term Exposure to Low-level PM$_{2.5}$, BC, NO$_2$, and O$_3$: an analysis of European cohorts in the ELAPSE project. Health Effects Institute; 2021. Available at: https://www.healtheffects.org/publication/mortality-and-morbidity-effects-long-term-exposure-low-level-pm2.5-bc-no2-and-o3-analysis. Accessed 16 August 2022.

8. Fischer PH, Marra M, Ameling CB, et al. Particulate air pollution from different sources and mortality in 7.5 million adults - The Dutch Environmental Longitudinal Study (DUELS). Sci Total Environ. 2020;705:135778.

9. Sommar JN, Andersson EM, Andersson N, et al. Long-term exposure to particulate air pollution and black carbon in relation to natural and cause-specific mortality: a multicohort study in Sweden. BMJ Open. 2021;11:e046400.

10. So R, Jorgensen JT, Lim YH, et al. Long-term exposure to low levels of air pollution and mortality adjusting for road traffic noise: a Danish Nurse Cohort study. Environ Int. 2020;143:105983.

11. Hvidtfeldt UA, Sorensen M, Geels C, et al. Long-term residential exposure to PM$_{2.5}$, PM$_{10}$, black carbon, NO$_2$, and ozone and mortality in a Danish cohort. Environ Int. 2019;123:265–272.

12. Nieuwenhuijsen MJ, Gascon M, Martinez D, et al. Air pollution, noise, blue space, and green space and premature mortality in Barcelona: a mega cohort. Int J Environ Res Public Health. 2018;15:E2405.

13. Raaschou-Nielsen O, Thorsteinson E, Antonsen S, et al. Long-term exposure to air pollution and mortality in the Danish population a nationwide study. EClinicalMedicine. 2020;2:8100605.
14. Wang M, Zhou T, Song Q, et al. Ambient air pollution, healthy diet and vegetable intakes, and mortality: a prospective UK Biobank study. Int J Epidemiol. 2022;51:1243–1253.

15. So R, Andersen ZJ, Chen J, et al. Long-term exposure to air pollution and mortality in a Danish nationwide administrative cohort study: beyond mortality from cardiopulmonary disease and lung cancer. Environ Int. 2022;164:107241.

16. Gariazzo C, Carlino G, Silibello C, et al. Impact of different exposure models and spatial resolution on the long-term effects of air pollution. Environ Res. 2021;192:110351.

17. Klopmpaker JO, Hock G, Bloemsma LD, et al. Surrounding green, air pollution, traffic noise exposure and non-accidental and cause-specific mortality. Environ Int. 2020;134:105341.

18. Sanyal S, Rochereau T, Maesano CN, et al. Long-term effect of outdoor air pollution on mortality and morbidity: a 12-year follow-up study for metropolitan France. Int J Environ Res Public Health. 2018;15:E2487.

19. Sommar JN, Hvidtfeldt UA, Geels C, et al. Long-term residential exposure to particulate matter and its components, nitrogen dioxide and ozone—a Northern Sweden cohort study on mortality. Int J Environ Res Public Health. 2021a;18:8476.

20. Burnett R, Chen H, Szyszkowicz M, et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci U S A. 2018;115:9592–9597.

21. Thurston GD, Kipen H, Annesi-Maesano I, et al. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J. 2017;49:1600419.

22. Hvidtfeldt UA, Severi G, Andersen ZJ, et al. Long-term low-level ambient air pollution exposure and risk of lung cancer - a pooled analysis of 7 European cohorts. Environ Int. 2021;146:106249.

23. Wolf K, Hoffmann B, Andersen ZJ, et al. Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: a pooled analysis of six European cohorts within the ELAPSE project. Lancet Planet Health. 2021;5:e620–e632.

24. Liu S, Jørgensen JT, Ljungman P, et al. Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease: the ELAPSE project. Environ Int. 2021;146:106267.

25. Liu S, Jørgensen JT, Ljungman P, et al. Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE project. Eur Respir J. 2021;57:2003099.

26. So R, Chen J, Mehta AJ, et al. Long-term exposure to air pollution and liver cancer incidence in six European cohorts. Int J Cancer. 2021;149:1887–1897.

27. Anenberg SC, Mohrge A, Goldberg DL, et al. Long-term trends in urban NO₂ concentrations and associated paediatric asthma incidence: estimates from global datasets. Lancet Planet Health. 2022;6:e49–e58.

28. Public Health England. Estimation of costs to the NHS and social care due to the health impacts of air pollution. 2018. Available at: https://www.gov.uk/government/publications/air-pollution-a-tool-to-estimate-healthcare-costs. Accessed 16 August 2022.

29. French Agency for Food, Environmental and Occupational Health & Safety. Particulate Matter in Ambient Air. Health Effects According to Components, Sources and Particle Size. 2019. Available at: https://www.anses.fr/en/system/files/AR2014SA0156RaEN.pdf. Accessed 16 August 2022.

30. Crouse DL, Peters PA, Hystad P, et al. Ambient PM₁₀, O₃, and NO₂ exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ Health Perspect. 2015;123:1180–1186.