Strong Tunneling in the Single-Electron Box

Jürgen König and Herbert Schoeller
Institut für Theoretische Festkörperphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
(March 24, 2022)

We study strong tunneling (i.e. transmission $\hbar/e^2R_T \gg 1$) in the single-electron box with many transverse modes at zero temperature. We develop a new renormalization group method which includes all charge states and requires no initial or final energy cutoff. We determine the ground-state energy, the average charge and the renormalized charging energy. The covered range for the coupling constant and the gate voltage is much increased in comparison to recent perturbative approaches, poor man scaling methods and Quantum Monte Carlo simulations. We reach the regime where Coulomb blockade become practically unobservable.

$E_C(n_x) = \frac{1}{2} \frac{\partial^2 E_0}{\partial n_x^2} (n_x)$.

Perturbative approaches\cite{5,7} in $\alpha = T/(4\pi^2)$ up to α^3 can describe $E_C(0)$ up to $T \sim 15$. However, within this approach, the range of allowed values for T decreases considerably for $n_x \rightarrow 1/2$, and the average charge turns out to be divergent at $n_x = 1/2$.

Therefore, nonperturbative approaches have been developed to describe the system near the degeneracy point of adjacent charge states either within a “non-crossing” expansion scheme\cite{6,10–12} or using an effective two-state system\cite{9,11}. But for $T \gtrsim 1$ the broadening $h/(R_TC) \sim E_C/\pi$ of the charge states is of the same order as the energy gap E_C, i.e., all charge states become important. And even for weaker coupling the results from a renormalization group (RG) treatment\cite{8,10} depend on both a high-energy and a low-energy cutoff. The first one, of the order of the charging energy, accounts for the neglected higher charge states. The second one is provided by the dominant low-energy scale, energy gap or temperature. As a result, quantitative statements depend on adjustable parameters.

For very strong coupling, $T \gg 1$, instanton methods have been developed, which predict an exponential decrease of Coulomb blockade phenomena: $E_C^\ast(0)/E_C \sim T^\eta \exp(-T/2)$,\cite{13,14}. However, the exponent η is still controversial. Poor man scaling methods in $1/T$ reveal a strong renormalization of T to smaller values\cite{10,11}. This analysis is performed in the phase representation for the topological sector with winding number zero. However, for decreasing T all winding numbers become important. Consequently, a quantitative matching to the two-charge state approximation is not possible\cite{14}.

Even recent quantum Monte Carlo (QMC) simulations\cite{13,14,15,16} have led to different results for $E_C^\ast(0)$ in the regime $T > 15$. Furthermore, the error bars and the computing time are very large for $T \gg 1$ and/or $n_x \rightarrow 1/2$ and extrapolation to zero temperature in order to describe ground state properties becomes difficult. As a consequence, a large gap still remains between the small and large T-regions, the latter being even controversial.

It is the purpose of this letter to present an independent, real-time RG-method which covers self-consistently level-renormalization and -broadening together with vertex corrections, and includes all charge states without the need of initial or final energy cutoffs. In contrast to QMC simulations our theory works also at zero temperature. For $E_C^\ast(0)$ we find good agreement with the QMC sim-
ulation of Refs. [13]. We also find agreement with the exponential behavior of $E^c_0(0)$ for $T \gtrsim 20$, as predicted by the controversial instanton results in Refs. [3,4] but with a different preexponent. We calculate $\langle N \rangle(n_z)$ for all n_z and predict that for $T > 27$ charge quantization will be suppressed such that the deviation from a straight line is less than 1%. We find that the slope of $\langle N \rangle$ at $n_z = 1/2$ is always infinite.

Model. The system is modeled by the Hamiltonian $H = H_0 + H_T$, in which

$$H_0 = \sum_{k,n} \epsilon_{k,n} a_{k,n}^\dagger a_{k,n} + \sum_{q,n} \epsilon_{q,n} c_{q,n}^\dagger c_{q,n} + \sum_{N} E_N |N\rangle \langle N|$$

(4)

describes the box without tunneling. The operators $a^{(t)}$ and $c^{(t)}$ annihilate (create) electrons in the lead and island electrode, respectively. The tunneling coupling is given by

$$H_T = \sum_N \sum_{\sigma = \pm} g^\sigma_N |N + \sigma\rangle \langle N| J_\sigma$$

(5)

with $J_- = \sum_{k,q} T_{kq}^n a_{k,n}^\dagger c_{q,n}$ and $J_+ = J_\dagger_-$. The channel number $n = 1, \ldots, N_{ch}$ accounts for both the transverse wave number and the spin and is conserved during a tunnel process. We assume here a wide metallic junction with a large number of transverse channels. The matrix elements T_{kq}^n are assumed to be independent of the states k and q. They are related to the tunnel resistance by $1/R_T = (2\pi e^2/h) \sum_n N_L(0)N_I(0)|T_n|^2$, where $N_L,I(0)$ are the density of states of the lead and the island. The factor g^σ_N describes the relative strength of the tunnel coupling. At the beginning, we have $g^\sigma_N = 1$ for all N and σ. But under the renormalization group procedure, the coupling will indeed depend on the charge state n_z and on σ. We define $\alpha_N = \alpha g^\sigma_N g^\sigma_{N+1}$.

Renormalization group procedure. The invariant quantity under the RG is the S-matrix $S = T \exp(-i\int dt H(t))$. The idea of the RG is to start with some high-energy cutoff, reducing it by integrating out the corresponding degrees of freedom, and end up with an effective low-energy theory. All the energies and coupling constants will be renormalized, and, simultaneously, new terms which are not present in the original Hamiltonian may be generated. We will proceed in three steps. (i) We introduce a time cutoff t_c. (ii) The cutoff is increased $t_c \rightarrow t_c + dt_c$, thus flowing from t^0_c to t^1_c. The invariance condition for the S-matrix demands

$$T e^{-i\int dt H(t)} |_{t_c} = T e^{-i\int dt H'(t)} |_{t_c+dt_c}$$

(6)

for each RG step. (iii) We take $t^0_c \rightarrow 0$ and $t^1_c \rightarrow \infty$.

(i) The S-matrix reads in interaction picture $S = T \exp(-i\int dt H_0)T \exp(-i\int dt H_T(t))$ in which $H_T(t)$ is the tunnel part of the Hamiltonian in interaction picture with respect to H_0. The expansion of the second exponential yields

$$S = T e^{-i\int dt H_0} \sum_{n=0}^{\infty} (-i)^n \int_{t_1>\cdots>t_n} H_1 \ldots H_n,$$

(7)

where $H_i = H_T(t_i)$. Next, we perform a normal ordering of the fermion operators $c^{(t)}$ and $a^{(t)}$ involved in H_i,

$$H_1 : = H_1 :$$

$$H_1 H_2 : = H_1 H_2 : + H_1 H_2$$

(8)

$$H_1 H_2 H_3 : = H_1 H_2 H_3 : + H_1 H_2 H_3$$

$$+ H_1 H_2 H_3 + H_1 H_2 H_3$$

(9)

(10)

where : : : stands for normal ordering and $H_1 H_2$ represents contractions of all the Fermi operators $c^{(t)}$ and $a^{(t)}$ in H_1 and H_2 with the relative time $t_1 - t_2$. In principle the two Fermi operators of H_1 may be contracted with Fermi operators of different H_ν's. For a large number of channels, $N_{ch} \rightarrow \infty$, however, these contributions are negligible. The only combination of contractions which enter here is (at zero temperature)

$$\langle J_\pm(t_1)J_\mp(t_2)\rangle_{eq} = -\frac{\alpha}{(t_1 - t_2)^2} + i\alpha \pi \delta'(t_1 - t_2).$$

(11)

We now introduce a cutoff t_c by multiplying the right hand side of Eq. (11) with $\Theta(t_1 - t_2 - t_c)$. Consequently, via Eqs. (9)-(10), the S-matrix is well-defined with a sharp cutoff t_c.

(ii) The increase of the cutoff $t^1_c = t_c + dt_c$ leads to correction terms $H_1 H_2, H_1 H_2 H_3$, etc. The cross indicates that the time difference is between t_1 and t^1_c. We interpret such many-time objects as clusters with one time argument for the time ordering (we choose t_2). It is possible to reexponentiate the sum of terms and correction terms. The renormalized exponent reads

$$-i \int H'_1 = -i \int H_1 + (-i)^2 \int_{t_1>t_2} H_1 H_2$$

$$+ (-i)^3 \int_{t_1>t_2>t_3} \left\{ H_1 H_2 H_3 - H_2 H_1 H_3 \right\}$$

(12)

plus higher-order correction terms which we truncate. This is the central equation since it determins the renormalization of all quantities. The second term (propagator renormalization) can be absorbed in a change of the energies, while the third term (vertex corrections) renormalizes the coupling strength.

(iii) The limit $t^0_c \rightarrow 0$ is possible if we take into account all charge states. There are no divergences like in a two-state approximation. After performing the limit $t^1_c \rightarrow \infty$
we end up with an effective theory for the charge degrees of freedom without any contractions. To present the results, we introduce the abbreviations
\[l = \ln(t_c/t_0^n), \quad \Delta_N = E_{N+1} - E_N, \quad \bar{E}_N = E_N t_c, \quad \Delta_N = \Delta_N t_c. \]
The RG equations, then, are
\[
\frac{d\bar{E}_N}{dl} = E_N + i \left(\alpha_{N-1} e^{i\Delta_N - 1} + \alpha_N e^{-i\Delta_N} \right) \tag{13}
\]
\[
\frac{d\Delta_N}{dl} = \Delta_N + i \left(\alpha_N e^{i\Delta_N - 1} + \alpha_{N+1} e^{-i\Delta_{N+1}} - \alpha_N e^{-i\Delta_N} - \alpha_{N-1} e^{i\Delta_{N-1}} \right) \tag{14}
\]
\[
\frac{d\alpha_N}{dl} = \alpha_N \left\{ 2\alpha_{N+1} \frac{e^{-i\Delta_{N+1}} - e^{-i\Delta_N}}{-i(\Delta_{N+1} - \Delta_N)} + 2\alpha_{N-1} \frac{e^{i\Delta_{N-1}} - e^{i\Delta_N}}{i(\Delta_N - \Delta_{N-1})} - \alpha_N e^{i\Delta_N} - \alpha_{N+1} e^{-i\Delta_{N+1}} - \alpha_N e^{-i\Delta_N} - \alpha_{N-1} e^{i\Delta_{N-1}} \right\}. \tag{15}
\]

Discussion of the RG equations. We note the following:
- All energies become complex, which is related to the broadening of the levels.
- The coupling strength α_N and the difference $\Delta_{N+1} - \Delta_N$, which are initially α and $2E_c$, respectively, evolve different for different charge states N.
- The RG equations contain all terms from perturbation theory up to $O(\alpha^2)$.
- Eqs. (14) and (13) include also all terms of the poor man’s scaling. If one considers for $n_x \approx 1/2$ only two charge states $N = 0, 1$, and expands all exponentials $\exp(\pm i\bar{E}_0) \approx 1 \pm i\bar{E}_0$, Eqs. (14) and (13) reduce to the well-known formulas $d\bar{E}_0/dl = \Delta_0(1-2\alpha_0)$ and $d\alpha_0/dl = -2\alpha_0^2$, with solutions $\Delta_0(l)/\Delta_0(0) = \alpha_0(l)/\alpha_0(0) = [1 + 2\alpha_0(l)]^{-1}$ with $\alpha_0(0) = \alpha$.

Results. In Figs. 1-3 we show E_0, $\langle N \rangle$, and E_C^* as function of n_x up to $\alpha = 0.5$ ($T \sim 20$) and compare with QMC data from Refs. 4-5. From the numerics we had to choose the initial cutoff t_0^n much smaller than $0.1E_0^{-1}$. Here, we chose $0.01E_0^{-1}$. As expected we find a gradual flattening of the ground-state energy with increasing coupling and a rounding of the average charge towards a linear function. The average charge $\langle N \rangle(n_x)$ agrees well with available QMC data for $\alpha \leq 0.3$, except for $n_x \gtrsim 0.4$. This deviation can be traced back to a finite temperature used in the QMC simulations 4-6. From our results we conclude: (i) For $T \sim 27$, the shape of $\langle N \rangle(n_x)$ is nearly indistinguishable from a straight line within an error of 1%. (ii) The slope of $\langle N \rangle$ at $n_x = 1/2$ is infinite, i.e., there is always a very small crossover region around the degeneracy point showing a deviation from a straight line. This is explicitly shown in Fig. 2 for the renormalized charging energy which diverges at $n_x = 1/2$. However, this region is so small that it can hardly be identified experimentally. (iii) The renormalized charging energy at $n_x = 0$ decreases with increasing coupling. This reveals another indication for the washing out of charge quantization and is shown in more detail in Fig. 4 using a logarithmic scale for $E_C^*(0)$ as function of the coupling α. Here we find very good agreement of our results with perturbation theory \[4-6\] up to $\alpha \sim 0.4$ ($T \sim 15$) and with the QMC data of Ref. 1. Fig. 5 shows the comparison to other QMC simulations. Including error bars, our data are consistent with the QMC data of Ref. 1 (the authors report that the saturation for the largest T is still unclear \[20\]), but are slightly lower than those of Ref. 17, and higher than those of Ref. 18. For $T > 25$ no QMC data are available yet but the numerical solution of the RG-equations \[4-6\] is stable until $T \sim 50$. For $T \gtrsim 20$ our data are consistent with the exponential behavior $E_C^*(0)/E_C \sim T^\eta \exp(-T/2)$ predicted by instanton techniques \[4-6\] but with $\eta = 6.5$ rather than $\eta = 2$ or 3.

Summary. We have investigated strong tunneling in the single-electron box with the help of a new, renormalization group method beyond the perturbative regime. All charge states are included and, therefore, all results are cut-off independent. We analyzed the observability of charging effects at zero temperature by computing the average charge as function of the gate voltage. We found a deviation of less than 1% from a straight line for $T > 27$ and an infinite slope at the degeneracy point. Furthermore we compared our results to contradicting QMC simulations and instanton techniques.

We acknowledge useful discussions with G. Göppert, H. Grabert, C.P. Herrero, G. Schön, and A.D. Zaikin. This work was supported by the "Deutsche Forschungsgemeinschaft" as part of "SFB 195".

[1] D.V. Averin and K.K. Likharev, in Mesoscopic Phenomena in Solids, ed. B.L. Altshuler et al. (Elsevier, 1991).
[2] Single Charge Tunneling, NATO ASI Series 294, H. Grabert and M.H. Devoret, eds., (Plenum Press, 1992).
[3] G. Schön, Single-Electron Tunneling, in Quantum Processes and Dissipation (VCH Publishers, 1998), T. Dittrich et al., eds., Chapter 3, p.149-212.
[4] P. Lafarge et al., Z. Phys. B 85, 327 (1991); P. Joyez, V. Bouchiat, D. Esteve, C. Urbina, and M.H. Devoret, Phys. Rev. Lett. 79, 1349 (1997); D. Chouvaev, L.S. Kuzmin, D.S. Golubev, and A.D. Zaikin, cond-mat/9803013.
[5] H. Grabert, Phys. Rev. B 50, 17364 (1994).
[6] G. Göppert, H. Grabert, N. Proko'ev, and B. Svistunov, cond-mat/9802248.
[7] J. König, H. Schoeller, and G. Schön, Phys. Rev. Lett. 78, 4482 (1997); and in cond-mat/9801214.
[8] K.A. Matveev, Sov. Phys. JETP 72, 892 (1991), [Zh.
[9] D.S. Golubev and A.D. Zaikin, Phys. Rev. B 50, 8736 (1994).

[10] G. Falci, G. Schönh, and G.T. Zimanyi, Phys. Rev. Lett. 74, 3257 (1995).

[11] H. Schoeller and G. Schönh, Phys. Rev. B 50, 18436 (1994); Physica B 203, 423 (1994).

[12] J. König, H. Schoeller, and G. Schönh, Europhys. Lett. 31, 31 (1995); and in Quantum Dynamics of Submicron Structures, eds. H. A. Cerdeira et al., NATO ASI Series E, Vol. 291 (Kluwer, 1995), p.221.

[13] S.V. Panyukov, A.D. Zaikin, Phys. Rev. Lett. 67, 3168 (1991).

[14] X. Wang, H. Grabert, Phys. Rev. B 53, 12621 (1996).

[15] W. Hofstetter and W. Zwerger, Phys. Rev. Lett. 78, 3737 (1997).

[16] D.S. Golubev, J. König, H. Schoeller, G. Schönh, and A.D. Zaikin, Phys. Rev. B 56, 15782 (1997).

[17] X. Wang, R. Egger, and H. Grabert, Europhys. Lett. 38, 545 (1997).

[18] C.P. Herrero, G. Schönh, and A.D. Zaikin, preprint.

[19] C.P. Herrero, private communication.

[20] W. Hofstetter, private communication.

FIG. 1. Ground-state energy as function of n_x.

FIG. 2. Average charge as function of n_x. The step at $n_x = 1/2$ is rounded for increasing α, approaching more and more a straight line. The circles are QMC data from Ref. [6] for $\alpha = 0.3, 0.2, 0.1$. The triangles are QMC data from Ref. [1] for $\alpha = 0.25330, 0.12665$.

FIG. 3. E^*_C as a function of n_x. For $n_x \to 1/2$ it diverges.

FIG. 4. E^*_C as function of α for $n_x = 0$. Solid line: renormalization group method described in this letter. Dashed lines: perturbation theory of order α, α^2, and α^3 from Refs. [1,4]. Long-dashed lines: large-α expansions from Refs. [14] (upper curve) and [1] (lower curve). Dot-dashed line: For $\alpha > 0.5$ our data are consistent with $0.5(2\pi\alpha)^{6.5}\exp(-2\pi^2\alpha)$. Circles: QMC data from Ref. [6].
FIG. 5. E_C^* as function of α for $n_x = 0$. Solid line: renormalization group method described in this letter. Dashed lines: perturbation theory of order α^3 [6]. QMC data from Ref. [17] (\diamond), [6] (\circ), [15] (\blacklozenge) and [18] (\ast).