Experimental simulation analysis for single phase transformer tests

Ali N. Hamoodi, Bashar A. Hammad, Fawaz S. Abdullah
Engineering Technical College, Northern Technical University, Iraq

ABSTRACT

Transformer is one of main components in electrical power system which role to increase or reduce voltage. Characteristics of transformer would be vital to ensure the voltage is fully transferred. A single-phase transformer is a type of power transformer that utilizes single-phase alternating current, meaning the transformer relies on a voltage cycle that operates in a unified time phase. This article describes a workflow executed with Mat lab simulation and practical measurements for single-phase power transformer, no-load, short-circuit test and load test are achieved in this work. The test procedures are implemented on areal transformer (terco-type) which has a specification (1 KVA, 220/110 V, 50 Hz). Finally, the simulation results are appeared a proximately seminar from the practical results. The results indicated that the the technique and manner which presented in the current study can be depended as a miniproject in electrical technology mater for undergraduate studies.

1. INTRODUCTION

The energy is transferring from primary side (first electrical circuit) to another secondary side (second electrical circuit) by magnetic field intermediate without a change in frequency by using transformer. Primary winding is taken the energy from the applied voltage and transferring it to the load is called the secondary winding. In a transformer there are no movable parts so that, the efficiency is obtained with negligible amount of maintenance [1-10].

2. MATERIALS AND METHODS

A transformer (terco type) is used in this study as shown in Figure 1. The following parts were used for simulation and practical test:
- Voltmeter
- Ammeter
- Wattmeter
- Load

Transformer specifications are:
- Single-phase: 1KVA
- Frequency: 50-60 Hz

This is an open access article under the CC BY-SA license.

Journal homepage: http://beei.org
- Primary voltage 230V ± 5%
- Secondary:4x5.7 V ± 5%

The transformer test procedures are demonstrated in Figure 2.

Figure 1. Real 1KVA transformer (terco-type)
Figure 2. Transformer tests procedures

2.1. Transformer model

Referring to primary side, the equivalent circuit of a single-phase transformer is shown in Figure 3. To delineate the pertinence between the mutual flux, current and voltages in the core of the transformer is given as:

$$ E = R.I + L \frac{\Delta I}{\Delta t} + L \frac{\Delta \Phi}{\Delta t} $$

(1)

Assuming the shunt branch impedance to be very large as compared with series branch, R_c and X_m can be neglected. Also, the series parameters R_{eq} is very small than X_{eq}. Therefore, the series impedance can be neglected. Therefore, the transformer model can be represented by the leakage reactance X_{eq} only as shown in Figure 4 [11-17].

The working methodology of simulation is based on open-circuit and short-circuit tests of transformer. Simulation model is designed using MATLAB package. This model needs only current, voltage and power calculations of the transformer primary side but the calculations of the current; voltage and efficiency are taken on the secondary side [18-22].

Figure 3. Transformer model
Figure 4. Simplified equivalent circuit of transformer

3. RESULTS

3.1. Transformer open-circuit test

Figure 5 shows the transformer equivalent circuit at no-load (open-circuit) test [23]. To confirm the suggested simulation models, the equivalent circuit parameters that calculated from practical connection are compared with those from simulation results. The real transformer 1 KVA, 50 Hz. (Terco-Company) which tested in the Lab. is shown in Figure 6. The readings that obtained from above test are given in Table 1.

Experimental simulation analysis for single phase transformer tests (Ali N. Hamoodi)
3.2. Transformer short-circuit test

Copper losses calculated based on short-circuit test transformer which shown in Figure 7, the secondary winding of the transformer is shorted, after that a low voltage supply will connect to the primary side. As the maximum is flowing in the secondary windings, V_{sc}, I_{sc} represent the short circuit voltage and current as respect to the primary side. P_{sc}, Q_s represent the input active and reactive power [24-28].

R_{sc}, X_{sc} represent the short-circuit resistance and reactance which can be calculated from these equations.

\[R_{sc} = \frac{P_{sc}}{I_{sc}^2} \]
(2)

\[X_{sc} = \frac{Q_{sc}}{I_{sc}^2} \]
(3)

where, the inductance L_{sc} is:

\[L_{sc} = \frac{X_{sc}}{2 \times \pi \times f} \]
(4)

The transformer short-circuit test is realized practically on the same real transformer that used in the previous test (open-circuit test) as shown in Figure 8. The readings that obtained from above circuits are given in Table 2. To prove the ability of the simulation model as compared with practical connection. The transformer equivalent circuit parameters that obtained from the experimental tested is given in Table 3.

Table 1. Transformer open-circuit test readings

Voc (V)	I_1 (A)	P (W)	Q (VAR)
220	0.19	20	110
200	0.1	12	100

Figure 5. Transformer equivalent circuit (open-circuit)
Figure 6. Practical connection of transformer open-circuit test
Figure 7. Transformers short-circuit connection
Experimental simulation analysis for single phase transformer tests (Ali N. Hamoodi)
3.4. Modeling circuit of transformer

Modeling circuit of open-circuit transformer test is depicted in Figure 11. The secondary winding of the transformer is remaining opened and AC supply with variable value and constant frequency is fed to the primary winding. No-load current can be obtained by current measurement block, the primary voltage (V_p) can be obtained by voltage measurement block and subsystem of wattmeter gives no-load power (P_0), which gives core loss. The power, current and voltage values versus time are obtained from simulation circuit as shown in Figure 12. After the open-circuit and short-circuit tests are implemented in the lab, the transformer equivalent circuit parameters are determined. These parameters are put in the simulation circuit which represents the simulation equivalent transformer circuit and the model. Simulation results for active power, reactive power, current and voltage are given in Table 4. The error ratio into the form of a percentage for voltage and current that calculated by a comparison between the simulation results and the practical results are shown in Table 5.
Figure 12. Simulation results of transformer short-circuit test, (a) Short-circuit power vs time, (b) Short-circuit current vs time, (c) Short-circuit voltage vs time

Table 4. Simulation results of the transformer tests

Test type	V (V)	I1 (A)	I2 (A)	P (W)	Q (V/R)
Open-circuit test	220	0.18	0	19.84	36.56
Short-circuit test	59	5.03	10.02	47.81	293.2

Table 5. Equivalent circuit parameters and relative errors

Rp	Rc	Xp	Xm	Rs	Xs
Value (Ω)	0.94	2439	5.78	1324	0.23
Error (%)	0.27	0.78	0.51	0.40	0.25

3.5. Load test

Transformer load test is achieved by MATLAB's M. file, in order to find the efficiency on assignment is given to update steady state model of the transformer to amendment the simulation model of transformer test by adding a load of the terminal of the transformer secondary winding. Figure 13 depicts a typical efficiency curves generated by program. The relationship between the efficiency and load current for 0.8 unity power factor is given in Figure 13. It shows the load type and power factor on the transformer efficiency.
Figure 13. Load test (efficiency vs. load current)

4. CONCLUSION

The results that obtained from simulation are approximately similar to those obtained from practical connection. The technique and manner that presented in this article can be depended as a miniproject in electrical technology mater for undergraduate studies. The transformer efficiency that calculated after load is connected at the secondary terminals in MATLAB simulation is appeared very near from the real value.

REFERENCES
[1] R. Singuor, et al., “Simulation of Single Phase Transformer with Different Supplies,” International Journal of Scientific and Research Publications, vol. 2, no. 4, pp. 1-5, Apr 2012.
[2] 1KVAtransformer, [Online] Available at: www.tercosweden.com.
[3] C. Lei, et al., “Measurement of inrush current in transformer based on optical current transducer,” Journal of Physics: Conference Series, vol. 1187, no. 2, p. 022004, Apr 2019.
[4] G. Aponte, et al., “A methodology for obtaining by measurements the transformer physical-circuitual model parameters,” Electrical and Review Poland, vol. 9, pp. 12-15, 2012.
[5] J. Baraniak, et al., “Determination of parameters of an equivalent circuit of a single-phase transformer using a remote laboratory,” World Transactions on Engineering and Technology Education, vol. 14, no. 4, pp. 445-450, 2016.
[6] R. Majumder, et al., “Transient Analysis of Single Phase Transformers Using State Model,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 5, no. 3, pp. 3300-3306, Mar 2016.
[7] N. Jalalinezhad and H. Jenaabadi, “Studying Effect of Communication Skills and Leadership Styles of Manager on Knowledge Management of Zahedan University of Medical Sciences, Iran,” Journal of Management and Accounting Studies, vol. 2, no. 2, pp. 31-37, 2014.
[8] M. H. Firouz and N. Ghadimi, “Wind Energy Uncertainties in Multi-objective Environmental/Economic Dispatch Based on Multi-objective Evolutionary Algorithm,” Journal of Research in Science, Engineering and Technology, vol. 3, no. 3, pp. 8-15, 2015.
[9] K. Gopalakrishnan, et al., “Digital Signature Manager,” International Journal of Communication and Computer Technologies, vol. 5, no. 2, pp. 53-57, 2017.
[10] K. R. Fan, et al., “Investigating the neuroprotective effect of Copolymer 1 in acute primary angle closure-Interim report of a randomized placebo controlled double masked clinical trial,” Acta ophthalmologica, vol. 97, no. 6, pp. 827-832, Mar 2019.
[11] C. I. Martínez-Alcalá, et al., “Assistance and Support of Primary Caregivers through an eService Platform,” Journal of Information Systems Engineering & Management, vol. 3, no. 1, pp. 09-15, 2018.
[12] M. D. Farahani and H. Shahsavari, “GIS Modeling of Earthquake Damage Zones Using ETM Data and Remote Sensing- Bojnoord, Khorasan Province,” UCT Journal of Research in Science, Engineering and Technology, vol. 1, no. 1, pp. 7-11, 2013.
[13] Z. Elandaloussi, et al., “The Impact of SCRM strategies on supply chain resilience: A quantitative study in the Moroccan manufacturing industry,” International Journal of Supply Chain management, vol. 6, no. 4, pp. 70-75, 2017.
[14] M. Montazeri-Gh and M. Mahmoodi-k, “Development a new power management strategy for power split hybrid electric vehicles,” Transportation Research Part D: Transport and Environment, vol. 37, pp. 79-96, Jun 2015.
[15] S. Hildayanti and J. Alie, “Factors Influenced Paddy Farmers To Use Or Not Use Organic Fertilizers In South Sumatera, Indonesia,” Humanities & Social Sciences Reviews, vol. 4, no. 1, pp. 53-58, Jan 2016.

[16] S. Sadeghnejad, et al., “Contact Force Estimation of Viscoelastic Sandwich Structures under Low Velocity Impact, Using Artificial Neural Network (ANN),” The 3rd International Conference on Composites: Characterization, Fabrication and Application (CCFA-3), Dec 2012.

[17] M. Rizwan, et al., “Ideology and Politics of Jamiat Ulema-i-Islam (1947-1973),” Global Social Sciences Review, vol. 3, no. 1, pp. 44-55, Mar 2018.

[18] S. Rauf, et al., “Impact of Electronic Media on Pakistan’s Security,” Global Social Sciences Review, vol. 3, no. 1, pp. 434-446, Mar 2018.

[19] Y. Pourasad, et al., “Design of an optimal active stabilizer mechanism for enhancing vehicle rolling resistance,” Journal of Central South University, vol. 23, no. 5, pp. 1142-1151, May 2016.

[20] N. Shah, et al., “Failure in the English Subject in Government High Schools for Boys in District Mardan, Khyber Pakhtunkhwa Pakistan,” Global Social Sciences Review, vol. 3, no. 2, pp. 147-160, Jun 2018.

[21] M. Saleem, et al., “Wh-Movement Pattern in the Spoken Discourse of Teachers A Syntactic Analysis,” Global Social Sciences Review, vol. 3, no. 2, pp. 400-420, 2018.

[22] Swetapadma P. and Amarnath T., “Modeling and simulation of three phases cascaded H-bridge grid-tied PV inverter,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 8, no. 1, pp 1-9, Mar 2019.

[23] Mukrimah N., et al., “Effective and efficient network anomaly detection system using machine learning algorithm,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 8, no. 1, pp. 46-51, Mar 2019.

[24] A. Pirhadi, et al., “Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer,” Progress In Electromagnetics Research, vol. 70, pp. 1-20, 2007.

[25] N. A. Malik, et al., “Investigation of lower limb’s muscles activity during performance of salat between two age groups,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 2, pp. 608-617, May 2019.

[26] M. S. M. Gismalla and M. F. L. Abdullah, “Performance evaluation of optical attenucs configuration in an indoor visible light communication,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 14, no. 2, pp. 668-676, May 2019.

[27] Hualei W., et al., “The Impact of HVDC Links on Transmission System Collapse,” Indonesian Journal of Electrical Engineering and Informatics, vol. 16, no. 1, pp. 21-31, Mar 2018.

[28] Garima S., et al., “A Comparative Strategy Using PI & Fuzzy Controller for Optimization of Power Quality Control,” Indonesian Journal of Electrical Engineering and Informatics, vol. 6, no. 1, pp. 118-124, Mar 2018.

BIOGRAPHIES OF AUTHORS

Dr. Ali Nathim Hamoodi obtained his M.Sc. (2000), and Ph.D. (2011) in electrical engineering, from the University of Aleppo, Syria. Currently, he is working as a lecturer in the Electrical Engineering, specializing in High Voltage, at Northern Technical University/Engineering Technical College (N.T.U), Mosul-Iraq.

Bashar Abdullah Hamad obtained his M.Sc. (2007), in electrical engineering, from the University of Mosul, Iraq. Currently, he is working as a Assi. lecturer in the Electrical Engineering, specializing in Electrical Machines, at Northern Technical University/Engineering Technical College (N.T.U), Mosul-Iraq.

Dr. Fawaz Sultan Abdulla obtained his M.Sc. (1989), and Ph.D. (2009) in electrical engineering, from the Technical University Sofia, Bulgaria. Currently, he is working as a Assi.Prof in the Electrical Engineering, specializing in power generation at Northern Technical University (N.T.U)/Engineering Technical College Mosul-Iraq.