Abstract The article reviews the current knowledge about the impulse control disorders (ICDs) with specific emphasis on epidemiological and pharmacological advances. In addition to the traditional ICDs present in the DSM-IV—pathological gambling, trichotillomania, kleptomania, pyromania and intermittent explosive disorder—a brief description of the new proposed ICDs—compulsive–impulsive (C–I) Internet usage disorder, C–I sexual behaviors, C–I skin picking and C–I shopping—is provided. Specifically, the article summarizes the phenomenology, epidemiology and comorbidity of the ICDs. Particular attention is paid to the relationship between ICDs and obsessive–compulsive disorder (OCD). Finally, current pharmacological options for treating ICDs are presented and discussed.

Key words impulse control disorders (ICDs) · obsessive–compulsive disorder (OCD) · pathological gambling (PG) · kleptomania · compulsive–impulsive (C–I) shopping · trichotillomania (TTM) · intermittent explosive disorder (IED) · C–I Internet usage disorder · C–I sexual behaviors (C–ISBs) · C–I skin picking · pyromania

Introduction

Since the early 1990s, some researchers have suggested that the impulse control disorders (ICDs) might be conceptualized as a part of an obsessive–compulsive spectrum based on their clinical characteristics, familial transmission, and response to both pharmacological and psychosocial treatment interventions [1–3]. Over a decade of study and scientific developments have led a DSM-V task force to consider two important changes: separating obsessive–compulsive disorder (OCD) from the anxiety disorders and placing it in an autonomous category—the obsessive–compulsive spectrum disorders (OCSD); and creating several new autonomous disorders from those currently subsumed under ICDs not otherwise specified (ICD-NOS) [4], specifically including four new impulsive disorders, compulsive–impulsive (C–I) Internet usage disorder C–I sexual behaviors, C–I skin picking and C–I shopping. They are called compulsive–impulsive disorders due to the impulsive features (arousal) that initiate the behavior, and the compulsive drive that causes the behaviors to persist over time.

The relationship between OCD and the OC spectrum has been supported by studies over the past decade, although recent studies have also supported additional models. Recent neuroimaging (PET, fMRI etc.) and genetics studies have increased understanding of the biological and neuroanatomical characteristics of the ICDs and have supported both the OC spectrum model and suggested other models [5, 6]. The pharmacological options, moreover, have been expanded based on recent research; traditional
treatment with the serotonin reuptake inhibitors (SRIs) supported the OC spectrum model, but recent research demonstrating the efficacy of different pharmacological interventions suggests that additional systems are involved and other models may be useful. For example, the efficacy of pharmacotherapies acting on different systems of neuromediators (opioid antagonists, mood stabilizers, dopamine reuptake inhibitors), support different theoretical models for the ICDs and make clear that it is valuable to look at the ICDs from different theoretical perspectives that suggest different mechanisms might be important and raise new research questions.

ICDs’ phenomenology, epidemiology and relationship with OCD

ICDs are characterized by repetitive behaviors and impaired inhibition of these behaviors. Important defining criteria for these disorders include:

1. The failure to resist an impulse to perform some act that is harmful to the individual or others;
2. An increasing sense of arousal or tension prior to committing or engaging in the act;
3. An experience of either pleasure, gratification, or release of tension at the time of committing the act.

In addition, there is usually a pattern of engaging in the abnormal behavior in spite of adverse consequences (e.g., criminal changes, impairment of normal functioning, etc.). To demonstrate that a relationship exists between ICDs and OCD, there should be evidence that OCD is overrepresented in patients with ICDs and/or that ICDs are overrepresented in patients with OCD. Studies examining rates of OCD in patients with ICDs have reported inconsistent results, with some ICDs showing relatively high rates of comorbidity with OCD (trichotillomania, CI-shopping), and others demonstrating low rates (intermittent explosive disorder, pathological gambling, and C–I sexual behaviors).

Pathological gambling (PG) is an impulse control disorder not otherwise specified (ICD-NOS) [4] that is characterized by recurrent and maladaptive patterns of gambling behavior that significantly disrupts the patient’s functioning in the personal, familial, or vocational spheres. Recent studies suggest that the prevalence of PG is between 1% and 3% of the adult population [7, 8], and a meta-analysis [9] estimated that 86% of the population of the USA are recreational gamblers (Table 1). The disorder usually starts during adolescence with a prevalence of approximately 4–7% in this population. However, over the last decade, there has been an unprecedented expansion of legalized gambling throughout North America, and, as a result, the prevalence of PG can be expected to increase. The disorder is currently more common in men than in women. Recent national studies on PG prevalence have also been conducted in New Zealand [10–12], Sweden [13, 14], Switzerland [15], Australia [16] and Great Britain [17], and despite the use of different methodologies and variable technical quality, problem gambling prevalence studies have shown a high degree of consistency in their general findings.

A crucial issue to consider is the high rate of comorbidity among pathological gamblers. Patients with PG, at least those seeking treatment, have been found to score significantly higher than control populations on measures of depression [18], and have high incidences of various psychiatric disorders, including bipolar, anxiety and substance use disorders [19]. This frequent comorbidity is not surprising given the psychopathological core features of PG: impulsivity, compulsive drive to gamble, addictive features such as withdrawal symptoms during gambling abstinence, and bipolar features such as urges, pleasure seeking and decreased judgment due to unrealistic appraisal of the individuals’ own abilities. Several authors have noted the link between various core features of PG and neurobiological characteris-

Impulse control disorder	Reference	Type of community	Prevalence reported
Pathological Gambling	Gerstein et al. (1999)	Adult population	1–3%
	Welte et al. (2001)	Adult population	—
Trichotillomania	Christenson et al. (1991)	Adult population	—
Pyromania	Kosky and Silburn (1984)	College students	1.5% males; 3.4% females
	Kolko et al. (1988)	Children and adolescents	2.4–3.5%
	Jacobson (1995)	Children and adolescents	—
Intermittent Explosive Disorder	Monopolis and Lion (1983)	Psychiatric surveys	1–2%
	Cocco et al. (2004)	Adult population	Lifetime 11.1%; 1 month 3.2%
Kleptomania	Goldman (1991)	Adult population	0.6%
C–I Internet Usage Disorder	—	—	—
C–I Shopping	Black et al. (2001)	Adult population	2–8%
C–I Skin Picking	Doran et al. (1985)	Dermatologic patients	2%
	Gupta et al. (1986)	Dermatologic patients	—
C–I Sexual Behaviors	Shaffer and Zimmerman (1990)	Adult population	5–6%
	Coleman, 1991	Adult population	—
tics or treatment-response, and have conceptualized PG according to different spectrums with the main psychiatric disorders of reference being OCD [1], addictive disorders [20], and affective disorders [21]. These models provide the theoretical rationale for the use of specific pharmacological treatments in PG. In addition, the models and related research findings may also suggest the presence of specific subgroups of patients with similar core features, comorbidity profiles and treatment-response within the population of pathological gamblers [22, 23]. The relationship between PG and OCD has allowed PG to be conceptualized as an OC spectrum disorder, within the impulsive cluster [1]. Patients with OC spectrum disorders, in fact, experience unpleasant feelings and physiological activation that result in an intense desire to perform a specific behavior in order to relieve the unpleasant feelings [24, 25]; this is the case in PG. In addition, a reduced capacity to resist gambling thoughts and urges leads to excessive gambling, in particular in the advanced phases of the disorder [26]. However, these patients differ from patients with OCD in important ways. Gambling behavior and thoughts are often experienced by these patients as ego-syntonic, while OCD obsessions and compulsions are generally ego-dystonic. In addition, the excessive doubt frequently experienced by OCD patients [24, 27, 28], as well as their harm avoidance, risk aversion and anticipatory anxiety [29], are not characteristic of pathological gamblers. OC spectrum disorders differ along the dimension of risk aversion vs. risk taking; the compulsive disorders are characterized by an overestimation of harm and by risk aversion while the impulsive disorders are characterized by an underestimation of risk and by risk seeking. Recently, the rate of comorbid OCD in individuals with PG was found to range from 1% to 20% [30] (Table 2).

Patients afflicted with trichotillomania (TTM) describe an overwhelming urge to pluck out specific hairs; when they do so, the anxiety is momentarily relieved but is quickly replaced by another compulsive urge to pluck and even greater anxiety [31]. The exact prevalence of TTM is unknown; however, estimates from university surveys suggest that 1.5% of males and 3.4% of females endorse clinically significant hair pulling, with .6% endorsing all diagnostic criteria of TTM [32] (Table 1). The prevalence of non-clinical hair pulling behavior is even higher, up to 15.3%, in university surveys [33] (Table 1). In describing the phenomenological similarities between OCD and TTM, Swedo [34] highlighted the egodystonic feeling and the resistance experienced by patients with TTM and OCD. In addition, patients with TTM recognize the behavior as senseless, undesirable and performed in response to increasing anxiety, with resultant tension relief. Furthermore, a higher than normal incidence of both OCD and TTM has been reported in first-degree relatives of patients with TTM [35], and comorbidity data also support a relationship between OCD and TTM [36, 37] (Table 2). However, recent investigations [38, 39] have also included TTM in a spectrum of self-injurious behaviors (SIBs), including C–I skin picking, and underscored the phenomenological link among these SIBs and the differences between TTM and OCD [39].

In pyromania there is impulsive, repetitive, deliberate fire setting without external reward (e.g., arson for money, revenge, as a political act). There are very few community sample studies of firesetting, which is understandable since it is illegal and thus likely to be kept secret. The majority of epidemiological studies have focused on pyromania in childhood and adolescence and have reported the prevalence to be between 2.4% [40] and 3.5% [41, 42] (Table 1). In addition, several lines of evidence indicate that adolescent boys may be at higher risk for firesetting than adolescent girls [43, 44]. Among juveniles, firesetting is more prevalent in males than females, peaking between 12 years and 14 years [45]. Sixty percent of all fires in large U.S. cities are lit by individuals between 11 years and 18 years [46]. Besides young age, features such as temperament, parental psychopathology, social and environmental factors, and possible neurochemical predispositions [47] have been hypothesized to cause childhood pyromania. Some

Table 2: OCD rates in impulse control disorders

Impulse control disorder	Reference	Rates of OCD
Pathological Gambling	Argo and Black (2004)	1–20%
Trichotillomania	Christophersen and Mansueto (1999)	3–27%
Pyromania	Wilhelm et al. (1999)	–
Intermittent Explosive Disorder	McElroy et al. (1998)	22%
Kleptomania	Presta et al. (2002)	6.5–60%
C–I Internet Usage Disorder	Black et al. (1999)	0% current; 10% lifetime
C–I Shopping	Christophersen et al. (1994)	15% current; 20% lifetime
C–I Skin Picking	McElroy et al. (1998)	12.5–30%
C–I Sexual Behaviors	Simeon et al. (1997)	15% current; 20% lifetime
	Arnold et al. (1998)	12.5–30%
	Wilhelm et al. (1999)	6–52%
	Kafka and Prentky (1994)	12–14%
	Black et al. (1997)	–
Based on total shoplifting costs of $10 billion in
is thought to account for 5% of shoplifting in the U.S.
2002, this 5% translates into a $500 million an-
SECRET and thus goes undiagnosed. Kleptomania
rassment surrounding kleptomania, it is often kept
informed patients (Table 1). Based on these data, the authors estimated there are
prevalence and 3.2% 1-month prevalence, in a com-
1.4 million individuals with current IED in the US and
10 million with lifetime IED. As the authors suggested,
prevalence rates so much higher than prior findings
may reflect the changes in diagnostic criteria of IED
from DSM-III to DSM-IV as well as the
changes recently proposed in the development of re-
search criteria for IED. A study by McElroy
and colleagues reported rates of OCD in individuals
with IED around 22% (Table 2); recent studies
investigating the rates of IED in patients with OCD
have given lower estimates.

Kleptomania is a disorder in which the individual
impulsively steals even though there is need to do so
(i.e., the individual has money to pay for the stolen
items or does not need the stolen goods). Like other
ICDs, kleptomania is characterized by an anxiety-
driven urge to perform an act that is pleasurable in
the moment but causes significant distress and dys-
function. The prevalence of kleptomania in the U.S. is unknown but has been estimated at 6 per 1000
people (Table 1). In addition, given the embar-
arrassment surrounding kleptomania, it is often kept
secret and thus goes undiagnosed. Kleptomania
is thought to account for 5% of shoplifting in the U.S.
Based on total shoplifting costs of $10 billion in
2002, this 5% translates into a $500 million an-
ual loss to the economy attributable to kleptomania.
This loss does not include the costs associated with
stealing from friends and acquaintances or costs in-
curred by the legal system. Kleptomaniac behavior
carries serious legal consequences: approximately 2
million Americans are charged with shoplifting
annually. If kleptomania accounts for 5% of
these, this translates into 100,000 arrests. Recent
studies assessing the rate of OCD in patients with
kleptomania have given widely differing estimates,
ranging from 6.5% to 60% (Table 2).

C–I Internet usage disorder, also referred as In-
ternet addiction or problematic Internet use, has been
proposed as an explanation for uncontrollable and
damaging use of the Internet, and has only recently
begun to appear in the psychiatric literature. People with problematic Internet use often report
increasing amounts of time spent web surfing, gam-
bling, shopping or exploring pornographic sites.
Others report spending time in chat rooms or corre-
sponding by email. Frequently these people develop a
preoccupation with the Internet, a need for escape to
the Internet and increasing irritability when trying to
cut back their Internet use. Ultimately, their attempt
to cut back is unsuccessful. Functional impairments
as a result of problematic Internet use include marital
or family strife, job loss or decreased job productivity,
legal difficulties or school failure. Although
diagnostic criteria for this disorder have been pro-
posed, methods of assessing C–I Internet usage dis-
order are limited. In addition, although increasing
research is being conducted on the topic, several
published articles contain information that has not
been empirically researched. For some individ-
uals, their excessive Internet use may be entirely ac-
counted for by another Axis I disorder such as PG or
C–I sexual behaviors; thus the Internet is functioning
simply as another outlet for that disorder rather than
being an additional disorder. Problematic Internet use
has been reported in any age, social, educational, and
economic range. However, while previous studies
tended to stereotype the classical Internet addicted
patient as a young introverted man, recent
investigations have showed increasing rates of this
disorder among women, as a result of the in-
creased availability of the Internet. The prevalence of
C–I Internet usage disorder is not known. Most of the
studies related to this condition have been conducted
with small samples. People enrolled, moreover, fre-
quently had comorbid psychiatric diagnoses. In a
recent study, Shapira and colleagues found that
patients with problematic Internet use often report
increasing amounts of time spent web surfing, gam-
bling, shopping or exploring pornographic sites.
Others report spending time in chat rooms or corre-
sponding by email. Frequently these people develop a
preoccupation with the Internet, a need for escape to
the Internet and increasing irritability when trying to
cut back their Internet use. Ultimately, their attempt
to cut back is unsuccessful. Functional impairments
as a result of problematic Internet use include marital
or family strife, job loss or decreased job productivity,
legal difficulties or school failure (72). Although
diagnostic criteria for this disorder have been pro-
posed, methods of assessing C–I Internet usage dis-
order are limited. In addition, although increasing
research is being conducted on the topic, several
published articles contain information that has not
been empirically researched (73). For some individ-
uals, their excessive Internet use may be entirely ac-
counted for by another Axis I disorder such as PG or
C–I sexual behaviors; thus the Internet is functioning
simply as another outlet for that disorder rather than
being an additional disorder. Problematic Internet use
has been reported in any age, social, educational, and
economic range (74). However, while previous studies
tended to stereotype the classical Internet addicted
patient as a young introverted man, recent
investigations have showed increasing rates of this
disorder among women (74), as a result of the in-
creased availability of the Internet. The prevalence of
C–I Internet usage disorder is not known. Most of the
studies related to this condition have been conducted
with small samples. People enrolled, moreover, fre-
quently had comorbid psychiatric diagnoses. In a
recent study, Shapira and colleagues found that
all subjects with problematic Internet use also met
DSM-IV criteria for ICD-NOS. Studies assessing comorbid rates between OCD and C–I Internet use
reported estimates ranging from 10% to 20% for
lifetime OCD and up to 15% for current OCD in In-
ternet addicted patients (71, 77, 78) (Table 2). Further
investigations on the epidemiology of this disorder
are needed to clarify the scale and demographic
characteristics of C–I Internet use.

C–I sexual behaviors (C–ISBs) include repetitive
sexual acts and compulsive sexual thoughts. The
individual feels compelled or driven to perform the
behavior, which may or may not cause subjective
distress. Although generally not ego-dystonic, the behavior may interfere with several aspects of the patient’s life, causing social or occupational impairment, or legal and financial consequences [79]. C–ISBs involve a broad range of paraphilic or non-paraphilic symptoms [80]. Paraphilic C–ISBs involve unconventional sexual behaviors in which there is a disturbance in the object of sexual gratification or in the expression of sexual gratification (e.g., exhibitionism, voyeurism). Non-paraphilic C–ISBs, on the other hand, involve conventional sexual behaviors that have become excessive or uncontrolled [80]. The true prevalence of C–ISBs remains unknown, given the heterogeneity of these disorders as well as the secretiveness of the condition for the majority of the afflicted patients. Investigations conducted in the early 1990s reported prevalence estimates of C–ISBs ranging from 5% to 6% of the US population [80, 81] (Table 1). Male patients have been traditionally reported to be more afflicted than women by C–ISBs [82, 83]. However, it is not clear how large this sex difference is and the extent to which the difference is due to men coming to the attention of professionals with greater frequency. Studies assessing the rates of OCD in patients suffering from C–ISBs [79, 84] reported estimates around 12% and 14% (Table 2).

C–I shopping, also referred as compulsive buying, is characterized by maladaptive preoccupations or impulses to buy or shop that are experienced as irresistible, intrusive and/or senseless, accompanied by frequent episodes of buying items that are not needed and/or that cost more than can be afforded. Frequently, these patients engage in these behaviors for longer periods of time than intended, and they experience distress and significant impairment in social and occupational performance. As specified for many other ICDs, the excessive buying or shopping behavior does not occur exclusively during periods of hypomania or mania [85, 86]. A recent study on C–I shopping disorder estimated the prevalence of this disorder to be between 2% and 8% of the general adult population in the US [87]; 80% to 95% of those affected are female (Table 1). Onset occurs in the late teens or early twenties, and the disorder is generally chronic. Previous studies investigating rates of OCD in patients with C–I shopping reported rates of 12.5% to 30% [86, 88] (Table 2); lower rates of compulsive buying have been found in patients with OCD (from 2.2% to 10.6%) [59–61], except for the study of Lejoyeux and colleagues (23.3%) [89].

Patients with C–I skin picking frequently present to dermatologists, and it has been estimated that about 2% of dermatology clinic patients may suffer from this condition [90, 91] (Table 1). Prevalence in the general population or in psychiatric clinics is unknown. Skin picking is often not a transient behavior but may persist with a waxing and waning lifetime course. It should be considered pathological when it becomes habitual, chronic and extensive, leading to significant distress, dysfunction or disfigurement [38]. As reported by two recent studies, the majority of patients with C–I skin picking are women and their condition is assumed to be chronic, with excoriations on both single or multiple sites [92, 93]; the face is the most common site of excoriation but picking can involve any area of the body. Both studies found the majority of patients experienced increasing tension before the act (79–81%), relief after the act (52–79%), or both (68–90%). Comorbid lifetime rates of skin picking in patients with trichotillomania were approximately 10% in both studies [92, 93], whereas comorbid lifetime OCD was present in rates ranging from 6% to 19%. Wilhelm and colleagues [94] reported rates of OCD around 52% in a sample of 31 patients with C–I skin picking (Table 2). As mentioned for trichotillomania, the inclusion of C–I skin picking within a spectrum of self-injurious behaviors is receiving increasing support from clinical and neuroimaging studies [38].

Treatment options for ICDs

Treatment options for ICDs include both pharmacotherapy and psychotherapy. During the last decade, increasing research has been conducted on different pharmacological treatments across several ICDs; however, while the efficacy of various treatments has been investigated in double-blind studies for certain disorders (i.e., PG, IED, C–I shopping), systematic research of clinical treatment is still lacking for other disorders (see Table 3). In addition, a crucial issue to take into account when considering pharmacotherapy for patients with ICDs is the comorbidity with other psychiatric conditions such as affective and addictive disorders. The presence of bipolar or addictive comorbidity, in fact, will determine the most appropriate choice when different treatments have proven to be effective for a specific disorder.

PG is a good example of the importance of comorbidity determining treatment. PG has demonstrated a good response to selective serotonin reuptake inhibitors (SSRIs), mood stabilizers and opioid antagonists in double-blind studies [22, 95–99] (Table 3). Among all the antidepressants assessed so far, fluvoxamine [100], paroxetine [97, 98], citalopram [101], nefazodone [102], bupropion [103], (although only fluvoxamine and paroxetine in double-blind studies), the most convincing evidence is for the efficacy of the SSRIs. However, a major issue for this class of medication is the presence of bipolar spectrum comorbidity in some gamblers. This possibility needs to be carefully evaluated and excluded before treating pathological gamblers with antidepressants in order to avoid the possible reemergence of manic symptoms. The opioid antagonist naltrexone was effective in a double-blind trial, however, the risk of hepatotoxicity of this drug limits its use. Of note, the
opioid antagonist nalmefene has shown to be efficacious in preliminary findings with better tolerability than naltrexone [104]. Patients with other addictive disorders (alcohol and other substances) and intense urges and craving might particularly benefit from opioid antagonists. Mood stabilizers and anticonvulsants (lithium and divalproex assessed in double-blind controlled trials) have shown good results in recent studies without any specific contraindications for their use across the different subtypes of gamblers. In addition, gamblers with consistent affective instability may particularly benefit from these treatments.

Pharmacological treatment of TTM is not well established and, although SSRIs seem to show the best efficacy and safety, double-blind controlled studies on their use have given mixed results (Table 3). Clomipramine was found to be more effective than desipramine in a 10-week crossover study [105] conducted in the late 1980s. While subsequent uncontrolled studies found fluoxetine, fluvoxamine and citalopram to be efficacious in patients with hair pulling [106–110], two controlled studies [111, 112] with fluoxetine could not replicate the positive findings reported with SSRIs in the open-label trials. Positive results have been also reported in uncontrolled studies with venlafaxine, lithium and naltrexone [113–116] as well as in open-label augmentation studies with SSRIs and pimozide [117, 118]. However, treatment response is often disrupted by significant relapse during ongoing pharmacological treatment [117]. In a recent controlled study [119] comparing cognitive behavioral therapy (CBT) to clomipramine and placebo, CBT had a dramatic effect in reducing symptoms of TTM and was significantly more effective than clomipramine or placebo, underscoring the efficacy of behavioral as well as pharmacological treatment in hair pulling.

To our knowledge, no controlled pharmacological trial has been conducted in patients with pyromania. Non-pharmacological interventions for firesetters,

Impulse Control Disorder	Double-blind studies (references)	Outcomes	Other treatment options as reported in open-label trials
Pathological Gambling	Fluvoxamine vs. PC (Hollander et al. 2000; Blancho et al. 2002)	SSD for Fluvoxamine; No SSD between Fluvoxamine and PC.	Neprazodone, Bupropion, Citiplamine, Divalproex, Topiramate
	Paroxetine vs. PC (Kim et al. 2002; Potenza et al. 2003)	SSD for Paroxetine; No SSD between Paroxetine and PC.	
	Lithium vs. PC (Hollander et al. 2005)	SSD for Lithium; SSD for Naltrexone	
	Naltrexone vs. PC (Kim et al. 2001)	SSD for Naltrexone;	
Trichotillomania	Clomipramine vs. Desipramine (Swedo et al. 1989)	SSD for Clomipramine;	
	Fluoxetine vs. PC (Christenson et al. 1991; Streichenwein and Thorbny 1995)	No SSD between Fluoxetine and PC	
Pyromania	–	–	Fluroxamine, Citalopram, Venlafaxin, Naltrexone, Lithium, CBT
Intermittent Explosive Disorder	*Lithium vs. PC (Campbell et al. 1984 and 1995; Malone et al. 1998 and 2000)	SSD for Lithium (in the Campbell’ study of 1994, Lithium was associated to Haloperidol)	CBT and other psychotherapies
	*Divalproex vs. PC (Hollander et al. 2003 and 2005)	SSD for Divalproex	Clonidine
	*Fluoxetine vs. PC (Coccaro et al. 1997)	SSD for Fluoxetine	
	*Carbamazepine vs. PC (Foster et al. 1989)	SSD for Carbamazepine	
	*Phenytoin vs. PC (Barratt et al. 1997; Stanford et al. 2001)	SSD for Phenytoin	
	*BBBlockers vs. PC (Greendyke et al. 1986a and 1986b)	SSD for BBBlockers	
	*Risperidone vs. PC (Buttelaar et al. 2001; Findling et al. 2001)	SS for Risperidone	
Kleptomania	*CBT vs. PC (Alpert et al. 1997)	SSD for CBT	
C–I Internet Usage Disorder	Escitalopram vs. PC (Dell’Osso et al. 2006***)	SSD for Escitalopram	Fluoxetine, Paroxetine, Fluvoxamine, Divalproex, Lithium, Benzodiazepines
C–I Shopping	Fluvoxamine vs. PC (Black et al. 2000; Ninan et al. 2000)	No SSD between Fluvoxamine and PC;	Fluoxetine, Naltrexone
	Citalopram vs. PC (Koran et al. 2003)	SSD for Citalopram	
C–I Skin Picking	Fluoxetine vs. PC (Simeon et al. 1997; Block et al. 2000)	SSD for Fluoxetine	Clomipramine, Sertraline
C–I Sexual Behaviors	–	–	Lithium, Tricyclics, Buspirone, Fluoxetine, Neprazodone, Sertraline, Naltrexone

SSD = statistically significant differences; CBT = cognitive behavioral therapy; PC = placebo
* Studies on patients with impulsive aggression features, rather than with a proper DSM diagnosis of IED
** Open-label study followed by double-blind discontinuation phase (Abstract)
including CBT [120], short-term counseling and day-treatment programs [121], have shown some efficacy. Undoubtedly, pyromania represents an ICD needing systematic pharmacotherapy research.

Treatment options for IED include the use of mood stabilizers, phenytoin, SSRIs, β-blockers, α₂-agonists and antipsychotics (Table 3). Actually the majority of trials with these compounds have been conducted on individuals with impulsive aggression rather than with a specific diagnosis of IED, and several authors still don’t consider the current criteria for the diagnosis of IED to be adequate [122]. Nevertheless, the presence of impulsive aggression within the core features of IED allows us to put aside this nosographic debate. Among mood stabilizers, the most convincing evidence comes from controlled studies with lithium (especially in children and adolescents) [123–127] and divalproex [128]. This last medication demonstrated significant efficacy in different populations of aggressive subjects [129, 130]. Carbamazepine has also shown some efficacy in a small double-blind study and in open-label trials [131, 132]. Phenytoin has showed positive results in two controlled double-blind studies [133, 134] at doses up to 300 mg/d. With regard to SSRIs, a double-blind placebo controlled trial of fluoxetine [135] in patients with personality disorder showed reduced scores on measures of irritability and aggression in patients taking the active medication. β-blockers propranolol and pindolol have also shown positive results in controlled studies [136, 137], reducing aggressive behaviors in patients with brain damage, although their concomitant diagnosis of IED might be arguable as the aggressive behaviors may have a different etiology. The α₂-agonist clonidine was reported to decrease aggression in an open-label trial [138] with adolescents at dosages of 0.4 mg/d, although the tolerability was a problem for some subjects. The atypical antipsychotic risperidone was also showed to be effective in treating aggression in controlled studies [139, 140]. Finally, controlled studies of behavioral interventions including CBT, group therapy, family therapy and social skill training have shown them to be valid treatments for aggressive patients [141, 142].

The pharmacological treatment of kleptomania includes SSRIs, mood stabilizers and opioid antagonists, although none of these medications have been tested in blinded, controlled trials so far (Table 3). Among SSRIs, fluoxetine, alone or in combination with lithium or tricyclics, was shown to be effective in several case-reports [64, 143, 144], as were fluvoxamine and paroxetine [145–148]. Mood stabilizer trials and reports in kleptomaniac patients showed mixed results for lithium [64, 144, 145], valproic acid [64, 149] and carbamazepine [64]. The opioid antagonist naltrexone was reported to be effective in two different case reports [148, 150]. Finally the benzodiazepines clonazepam and alprazolam provided some evidence of efficacy in treating kleptomania [64, 147]. In conclusion, as discussed in a recent review [151], SSRIs seem to be the most promising treatment for kleptomania (19 of 30 cases of successful pharmacotherapy reported in the literature), either as monotherapy or in combination with other psychotropic drugs.

Given its recent recognition as a psychiatric problem, understandably no controlled pharmacological trials have been published on the treatment of C–I Internet usage disorder so far. Recently, Sattar and Ramaswamy [152] reported the case of a 31-year-old man with severe Internet addiction successfully treated with escitalopram (10 mg/d). Most treatment strategies for problematic Internet use have involved behavioral therapy techniques, which limit the amount of time on the Internet rather than requiring abstinence, as is done with many other addictions such as substance abuse. Self-help groups (both on and offline) are also being formed to address the problem. Our group has recently completed an open-label trial of escitalopram followed by a double-blind discontinuation phase in a population of C–I Internet users with preliminary positive findings [153]. Given the increasing use of the Internet in the new generations, a growing prevalence and incidence of this disorder is arguable. Clinicians treating subjects with ICDs should always assess the presence of this disorder in these patients given the relationship between C–I Internet use and some specific ICDs, such as pathological gambling and C–I sexual behaviors [154, 155]. Finally, controlled studies are expected in order to investigate the treatment response of Internet addicted patients to pharmacotherapy and psychotherapy.

Although C–I sexual behaviors seem relatively common, controlled trials on pharmacological treatments for these disorders are still lacking, and the available literature on this topic consists essentially of open-label trials and case-report series (Table 3). Positive findings have been reported with lithium and tricyclics [156–158], SSRIs [159–162], buspirone [163, 164] and nefazodone [165]. As for other ICDs, the opioid antagonist naltrexone has recently shown to be efficacious in some case-reports [166]. Finally, different forms of psychotherapy have been shown to be effective for specific subtypes of C–I sexual behaviors [167].

There is some evidence that C–I shopping has been effectively treated with several different compounds (Table 3). McElroy’s group [86] reported on 20 patients that benefited from antidepressants, often in combination with mood stabilizers. Black [168] reported fluvoxamine to be effective in patients without comorbid major depression, suggesting that improvement was independent of the treatment of mood symptoms. Naltrexone was found to be effective in a case series [169]. Two double-blind placebo-controlled trials [170, 171] did not confirm the superiority of fluvoxamine over placebo. However, these studies had the patients in both conditions keep a log of their shopping; keeping logs is a therapeutic intervention in itself and may have led to the failure of
the fluvoxamine and placebo groups to separate. An open-label trial of citalopram [172] and a subsequent open-label trial followed by double-blind discontinuation [173], neither of which using shopping logs, reported positive results. Studies comparing the efficacy of pharmacological treatment with psychotherapy have not been published yet.

Patients suffering from C–I skin picking often meet criteria for other psychiatric disorders (BDD and OCD), and frequently, due to medical complications of their psychopathology such as infection and scarring, they are referred to clinicians other than psychiatrists (i.e. dermatologists). The first controlled trial conducted by our group [97] found fluoxetine, at a mean dose of 55 mg/d for 10 weeks, significantly superior to placebo in decreasing the behavior in 21 adults with chronic pathologic skin picking (Table 3). More recently, a combined open-label and double-blind trial [174] confirmed the efficacy of fluoxetine in subjects with C–I skin picking. Previously, a retrospective treatment review of BDD patients with skin picking indicated that SRIs were effective in about half of 33 patients, whereas other agents were not [175]. In a subsequent open-label study [176], sertraline (mean dose: 95 mg/d) showed clinically significant improvement in 68% of 30 patients with skin picking after one month of treatment. Finally, uncontrolled psychodynamically oriented treatments and behavioral interventions have given mixed results described elsewhere [177].

Conclusions

Current knowledge on ICDs in terms of epidemiology and pharmacological treatment varies notably across these disorders, with recent and continuing advances for some (i.e. pathological gambling and C–I shopping), and anecdotal and obsolete data for others. Undoubtedly, given the high prevalence estimates of some ICDs (i.e. pathological gambling and C–I sexual behaviors) as well as their comorbidity with other major psychiatric disorders, this group of disorders represents a global problem. Nevertheless, certain ICDs (i.e. pyromania, C–I Internet usage disorder) still need systematic epidemiological and pharmacological research.

Studying the relationships between specific ICDs and other major psychiatric conditions (i.e. OCD, bipolar disorders, addictive disorders) in terms of phenomenological issues and comorbidity patterns is not only of theoretical interest; indeed, it provides the rationale for the use of specific pharmacological treatments and behavioral interventions. From this perspective, more than one decade after its introduction, the conceptualization of ICDs as obsessive-compulsive related disorders is still valid and has been confirmed by numerous studies; however, there is also evidence supporting the relationship between ICDs and addictive and affective disorders. Not only are the different models of conceptualizing the ICDs not mutually exclusive, but they can contribute to recognize specific subtypes within the disorders. As a result, different models of conceptualization of ICDs have led new developments in pharmacologic treatment of these disorders, with positive results obtained with mood stabilizers and opioid antagonists in addition to the SSRIs.

References

1. Hollander E (1993) In: Hollander E (ed) Obsessive–Compulsive Related Disorders, American Psychiatric Publishing, Inc, Washington, DC, pp 1–16
2. Hollander E, Stein DJ, DeGaria GM, et al. (1992) Disorders related to OCD—neurobiology. Clin Neuropharmacol 15(5):Pt A.259A–260A
3. McElroy SL, Phillips RA, Keck PE Jr (1994) Obsessive compulsive spectrum disorder. J Clin Psychiatry 55(Suppl):33–51; discussion 52–3
4. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. text revision. American Psychiatric Association, Washington, DC
5. Asahi S, Okamoto Y, Okada G, et al. (2004) Negative Correlation between right prefrontal activity during response inhibition and impulsiveness: a fMRI study. Eur Arch Psychiatry Clin Neurosci 254(4):245–251
6. Rufer M, Fricke S, Held D, et al. (2006) Dissociation and symptom dimensions of obsessive compulsive disorder: a replication study. Eur Arch Psychiatry Clin Neurosci 256(3):146–150
7. Gerstein D, Volberg RA, Harwood H, et al. (1999) Gambling impact and behavior study. Report to the National Gambling Impact Study Commission. National Opinion Research Center at the University of Chicago, Chicago
8. Welte J, Barnes G, Wieczorek Q, et al. (2001) Alcohol and gambling pathology among U.S. adults: prevalence, demographic patterns and comorbidity. J Studies Alcohol 62:706–712
9. Shaffer H, Hall M, Vander Bilt J (1997) Estimating the prevalence of disordered gambling behavior in the United States and Canada. A meta-analysis. Presidents and Fellows of Harvard College, Boston
10. Abbott MW, Volberg RA (2000) Taking the pulse on gambling and problem gambling in New Zealand. A report on Phase One of the 1999. National Prevalence Survey. Department of International Affairs, Wellington
11. Abbott MW (2001) Problem and non problem Gamblers in New Zealand: a report on Phase II of the 1999 National Prevalence Survey. Report Number 6 of the New Zealand Gambling Survey. Department of International Affairs, Wellington
12. Abbott MW (2001) What do we know about gambling and problem gambling in New Zealand: a report on Phase II of the 1999 National Prevalence Survey. Report Number 7 of the New Zealand Gambling Survey. Department of International Affairs, Wellington
13. Ronnberg S, Volberg RA, Abbott MW, et al. (1999) Gambling and problem gambling in Sweden. Report Number 2 of the National Institute of Public Health Series on Gambling. National Institute of Public Health, Stockholm
14. Volberg RA, Abbott MW, Ronnberg S, et al. (2001) Prevalence and risks of pathological gambling in Sweden. Acta Psych Scand 104:250–256
15. Bondolfi G, Osiel C, Ferrero F (2000) Prevalence estimates of pathological gambling in Switzerland. Acta Psych Scand 101:473–475
16. Productivity Commission: Australia’s gambling industries. Report No. 10. Canberra. AusInfo
66. Goldman MJ (1998) Kleptomania. The compulsion to steal: what can be done? New Horizon Press, Far Hills, NJ
67. Grant JE, Kim SW (2002) Clinical characteristics and associated psychopathology of 22 patients with kleptomania. Compr Psychiatry 43:378–384
68. Presta S, Marazziti D, Dell’Osso L, et al. (2002) Kleptomania: clinical features and comorbidity in an Italian sample. Compr Psychiatry 43:7–12
69. Grant JE (2003) Family History and Psychiatric Comorbidity in Persons with Kleptomania. Compr Psychiatry 44:437–441
70. Stein DJ (1997) Internet addiction, internet psychotherapy [letter; comment]. Am J Psychiatry 153:890
71. Shapira NA, Goldsmith TD, Keck PA, et al. (2000) Psychiatric features of individuals with problematic Internet use. J Affect Disord 57:(issues 1–3):267–272
72. Beard KW (2005) Internet addiction: a review of current assessment techniques and potential assessment questions. Cyberpsychol Behav 8:7–14
73. Cho C, Hsiao MC (2000) Internet Addiction, usage, gratification, and pleasure experience: the Taiwanese college students’ case. Comput Educ 35:65–80
74. Young KS (1998) Caught in the net. John Wiley & Sons, New York
75. Scherer K (1997) College-life online: healthy and unhealthy Internet use. J Coll Student Dev 38:655–665
76. Young KS (1996) Psychology of computer use: XL. Addictive use of the internet: a case that breaks the stereotype. Psychol Rep 79:899–902
77. Black DW, Belsare G, Schlosser S (1999) Clinical Features, psychiatric comorbidity, and health-related quality of life in persons reporting compulsive computer use behavior. J Clin Psychiatry 60:129–134
78. Shapira NA, Lessig MC, Goldsmith TD, et al. (2003) Problematic internet use: proposed classification and diagnostic criteria. Dep Anxiety 17:207–216
79. Black DW, Kehrberg LLD, Plumerfelt DL, et al. (1997) Characteristics of 36 subjects reporting compulsive sexual behavior. Am J Psychiatry 154:243–249
80. Coleman E (1991) Compulsive sexual behavior. New concepts and treatments. J Psychol Hum Sexual 4:37–52
81. Schaffer SD, Zimmerman ML (1990) The sexual addict: a challenge for the primary care provider. Nurse Pract 15:25–33
82. Cooper AJ, Swaminath S, Baxter D, et al. (1990) A female sex offender with multiple paraphilias: a psychologic, physiologic (laboratory sexual arousal) and endocrine case study. Can J Psychiatry 35:334–337
83. Weisberg JH, Levy AN (1986) Compulsive sexual behavior. Medical Aspects Human Sexuality 20:129–132
84. Kafka MP, Prentky R (1994) Preliminary observations of DSM-III-R Axis I comorbidity in men with paraphilias and paraphilia-related disorders. J Clin Psychiatry 55:481–487
85. McElroy SL, Keck Jr PE, Phillips KA. (1995) Kleptomania, compulsive buying and binge-eating disorder. J Clin Psychiatry 56(S4):14–26
86. McElroy SL, Keck PE Jr, Pope HG Jr, et al. (1995) Compulsive buying: a report of 20 cases. J Clin Psychiatry 55:56:242–248
87. Black DW (2001) Compulsive buying disorder: definition, assessment, epidemiology and clinical management. CNS Drugs 15(1):17–27
88. Christenson GA, Faber RJ, de Zwaan M, et al. (1994) Compulsive buying: descriptive characteristics and psychiatric comorbidity. J Clin Psychiatry 55:5–11
89. Lejoeux M, Bailly F, Molla H, et al. (2005) Study of compulsive buying in patients presenting obsessive-compulsive disorder. Compr Psychiatry 46:105–110
90. Doran AR, Roy A, Wolkowitz OM (1985) Self destructive dermatoses. Psychiat Clin N Am 8:291–298
91. Gupta MA, Gupta AK, Haberman HR (1986) Neurotic exorciations: a review and some new perspectives. Compr Psychiatry 27:381–386
92. Simeon D, Stein DJ, Gross S, et al. (1997) A double-blind trial of fluoxetine in pathologic skin picking. J Clin Psychiatry 58:341–347
93. Arnold LM, McElroy SL, Mutasim DF, et al. (1998) Characteristics of 34 adults with psychogenic excoriation. J Clin Psychiatry 59:509–514
94. Wilhelm S, Keuthen NJ, Deckersbach T, et al. (1999) Self-injurious skin picking: clinical characteristics and comorbidity. J Clin Psychiatry 60:454–459
95. Blanco C, Petkova E, Izenberg A, et al. (2002) A Pilot Placebo-Controlled Study of Fluvoxamine for Pathological Gambling. Ann Clin Psychiatry 14:9–15
96. Hollander E, DeCaria CM, Finkeck JN, et al. (2000) A randomized double-blind fluvoxamine/placebo crossover trial in pathological gambling. Biol Psychiatry 47(9):813–817
97. Kim SW, Grant JE, Adson DE, et al. (2002) A Double-Blind Placebo-Controlled Study of the Efficacy and Safety of Paroxetine in the Treatment of Pathological Gambling. J Clin Psychiatry 63:501–507
98. Grant JE, Kim SW, Potenza MN, et al. (2003) Paroxetine treatment of pathological gambling: a multi-centre randomized controlled trial. Int Clin Psychopharmacol 18:243–249
99. Kim SW, Grant JE, Adson DE, et al. (2001) Double-blind naltrexone and placebo comparison study in the treatment of pathological gambling. Biol Psychiatry 49(11):914–921
100. Hollander E, DeCaria CM, Mari E, et al. (1998) Short-term single-blind fluvoxamine treatment of pathological gambling. Am J Psychiatry 155(12):1781–1783
101. Zimmerman M, Breen RB, Posternak MA (2002) An open-label study of citalopram in the treatment of pathological gambling. J Clin Psychiatry 63(1):44–48
102. Pallanti S, Baldini-Rossi N, Sood E, et al. (2002) Nefazodone treatment of pathological gambling: a prospective open-label controlled trial. J Clin Psychiatry 63(11):1034–1039
103. Black DW (2004) An open-label trial of bupropion in the treatment of pathological gambling. J Clin Psychopharmacol 24(1):108–110
104. Grant John (2005) A multicenter Investigation of the Opioid Antagonist Nalmefene in the Treatment of Pathological Gambling. Presented at the 45th NCDEU Meeting, Boca Raton, Florida, June 6–9
105. Swedo SE, Leonard HL, Rapoport JL, et al. (1989) A double-blind comparison of clomipramine and desipramine in the treatment of trichotillomania (hair pulling). N Engl J Med 321:497–501
106. Stanley MA, Bowers TC, Swann AC, et al. (1991) Treatment of trichotillomania with fluoxetine. J Clin Psychiatry 52:282
107. Heiden RL, Ringold A, Hewlett W (1992) Fluoxetine for trichotillomania: an open clinical trial. Psychopharmacol Bull 28:145–149
108. Winchel RM, Jones JS, Stanley B, et al. (1992) Clinical characteristics of trichotillomania and its response to fluoxetine. J Clin Psychiatry 53:304–308
109. van der Does CM, de Jonge P, van Dijk HM, et al. (2005) Injurious skin picking: clinical characteristics and comorbidities of 34 adults with self-injurious skin picking. J Clin Psychiatry 66:473–478
110. Christensen GA, Crow SG, Mitchell JE, et al. (1998) Fluoxetine in the treatment of trichotillomania: an 8-week, open-label study. CNS Spectrums 3:64–71
111. Christensen GA, Mackenzie TB, Mitchell JE, et al. (1991) A placebo-controlled, double-blind crossover study of fluoxetine in trichotillomania. Am J Psychiatry 148:1566–1571
112. Streichenwein SM, Thornby JI (1995) A long-term, double-blind, placebo-controlled, crossover trial of the efficacy of fluoxetine for trichotillomania. Am J Psychiatry 152:1192–1196
113. O’Sullivan RL, Keuthen NJ, Rodriguez D, et al. (1998) Venlafaxine treatment of trichotillomania: an open case series of ten cases. CNS Spectrums 3:56–63
114. Ninan PT, Knight B, Kirt L, et al. (1998) A controlled trial of venlafaxine in trichotillomania: interim phase I results. Psychopharmacol Bull 34(2):221–224
115. Christenson GA, Mackenzie TB, Mitchell JE, et al. (1991) Lithium treatment of chronic hair pulling. J Clin Psychiatry 52:116–120

116. Christenson GA, Crow JC, Mackenzie TB, et al. (1995) A placebo-controlled double-blind study of naltrexone for trichotillomania. Presented at the Annual Meeting of the American Psychiatric Association, Miami, Florida, May

117. Stein DJ, Hollander E (1992) Low-dose pimozide augmentation of serotonin reuptake blockers in the treatment of trichotillomania. J Clin Psychiatry 53:123–126

118. van Ameringen M, Mancini C (1996) Treatment of trichotillomania with haloperidol. Anxiety Disorders Association of America Annual Meeting, Orlando, FL

119. Ninan PT, Rothbaum BO, Marsteller FA, et al. (2000) A placebo-controlled trial of cognitive-behavioral therapy and clomipramine in trichotillomania. J Clin Psychiatry 61(1):47–50

120. Kolko DJ (2001) Efficacy of cognitive-behavioral treatment and fire safety education for children who set fires: initial and follow-up outcomes. J Child Psychol Psychiatry 42(3):359–369

121. Slavkin ML (2002) Child & Adolescent Psychiatry: What Every Clinician Needs to Know About Juvenile Firesetters. Psychiatr Serv 53:1237–1238

122. Coccaro EF (2000) Intermittent Explosive Disorder. CNS Drugs 2:67–71

123. Campbell M, Adams PB, Small AM, et al. (1995) Lithium in hospitalized aggressive children with conduct disorder: a double blind and placebo controlled study. J Am Acad Child Adolesc Psychiatry 34:445–453

124. Malone RP, Bennett DS, Luebbert JF, et al. (1998) Aggression classification and treatment response. Psychopharmacol Bull 34:41–45

125. Alpert JE, Spilman MK (1997) Psychotherapeutic approaches to aggression and violent patients. Psychiatr Clin N Am 20:453–471

126. Edmondson CB, Conger JC (1996) A review of treatment efficacy for individuals with anger problems: conceptual, assessment and methodological issues. Clin Psychol Rev 16:251–275

127. Schwartz JH (1992) Psychoanalytic psychotherapy for a woman with diagnosis of kleptomania. Hosp Community Psychiatry 43:109–110

128. Durst R, Katz G, Knobler HY (1997) Buspirone augmentation of fluoxetine in the treatment of fluoxetine in the treatment of kleptomania. J Nerv Ment Dis 185:586–588

129. Durst R, Dannon PN, Ziv R, et al. (1999) The treatment of kleptomania with serotonin reuptake inhibitors. Clin Neuropsychopharmacol 22:40–43

130. Dannon PN, Iancu I, Grohmann L (1999) Naltrexone treatment in kleptomanic patients. Hum Psychopharmacol 14:583–585

131. Kmetz GF, McElroy SL, Collins DJ (1997) Response of kleptomania and mixed mania to valproate. Am J Psychiatry 154:580–581

132. Kim SW (1998) Opioid antagonists in the treatment of impulse-control disorders. J Clin Psychiatry 59:159–164

133. Stein DJ, Hollander E, Anthony DT, et al. (2001) Kleptomania: diagnosis and treatment options. CNS Drugs 15:185–195

134. Sattar P, Ramaswamy S (2004) Internet gaming addiction. Can J Psychiatry 49(12):869–870

135. Dell’Osso B, Altamura AC, Hadley SJ, Baker B, Hollander E (2006) An open label trial of escitalopram in the treatment of compulsive–impulsive Internet usage disorder. Eur Neuropsychopharmacol 16(S1):82–83

136. Griffiths MD, Woods RT (2000) Risk factors in adolescence: the case of the gambling, videogame playing, and the internet. J Gambl Stud 16(2–3):199–225

137. Stein DJ, Black DW, Shapiro NA, et al. (2001) Hypersexual Disorder and Preoccupation With Internet Pornography. Am J Psychiatry 158:1590–1594

138. Cesnik J, Coleman E (1989) Use of lithium carbonate in the treatment of autoerotic asphyxia. Am J Psychiatry 43:277–285

139. Coleman E, Cesnik J, Moore A, et al. (1992) An exploratory study of the role of psychotropic medications in treatment of sex offenders. J Offend Rehabil 18:75–88

140. Kruesi MJ, Fine S, Valladres L, et al. (1992) Paraphilias: A double-blind cross-over comparison of clomipramine versus desipramine. Arch Sex Behav 21:587–593

141. Emmanuel NP, Lydiard RB, Ballenger JC (1991) Fluoxetine pharmacotherapy for sexual obsessions, sexual addiction, and paraphilias. J Clin Psychiatry 53:445–453
162. Fedoroff JP (1993) Serotonergic drugs treatment of deviant sexual interests. Annals Sex Res 6:105–121
163. Fedoroff JP (1988) Buspirone hydrochloride in the treatment of transvestic feticism. J Clin Psychiatry 49:408–409
164. Fedoroff JP (1992) Buspirone hydrochloride in the treatment of atypical paraphilia. Arch Sex Behav 21:401–406
165. Coleman E, Gratzer T, Nesvacil L, et al. (2000) Nefazodone and the treatment of nonparaphilic compulsive sexual behavior: a retrospective study. J Clin Psychiatry 61:282–284
166. Raymond NC, Grant JE, Kim SM, et al. (2002) Treatment of compulsive sexual behavior with naltrexone and serotonin reuptake inhibitors: two case studies. Int Clin Psychopharmacol 17:201–205
167. Coleman E (1995) Treatment of compulsive sexual behavior. In: Rosen RC, Leiblum SR (eds) Case Studies in Sex Therapy. Guildford Press, New York, NY, pp 333–349
168. Black DW, Monahan P, Gabel J (1997) Fluvoxamine in the treatment of compulsive buying. J Clin Psychiatry 58:159–163
169. Kim SW (1998) Opioid antagonists in the treatment of impulse-control disorders. J Clin Psychiatry 59(4):159–164
170. Ninan PT, McElroy SL, Kane CP, et al. (2000) Placebo controlled study of fluvoxamine in the treatment of patients with compulsive buying. J Clin Psychopharmacol 20:363–366
171. Black DW, Gabel J, Hansen J, et al. (2000) A double-blind comparison of fluvoxamine versus placebo in the treatment of subjects with compulsive buying disorder. Ann Clin Psychiatry 12:205–211
172. Koran LM, Bullock KD, Hartston HJ, et al. (2002) Citalopram treatment of compulsive shopping: an open-label study. J Clin Psychiatry 63(8):704–8
173. Koran LM, Chuong HW, Bullock KD, et al. (2003) Citalopram for compulsive shopping disorder: an open-label study followed by double-blind discontinuation. J Clin Psychiatry 64(7):793–798
174. Phillips KA, Taub SL (1995) Skin picking as a symptom of body dysmorphic disorder. Psychopharmacol Bull 31:289–288
175. Block MR, Elliott M, Thompson H, et al. (2001) Fluoxetine in pathologic skin-picking: open-label and double-blind results. Psychosomatics 42(4):314–319
176. Kalivas J, Kalivas L, Gilman D, et al. (1996) Sertraline in the treatment of neurotic excoriations and related disorders. Arch Dermatol 132:589–590
177. Aronowitz B (2001) Psychotherapies for Compulsive Self-Injurious Behaviors. In: Hollander E, Simeon D (eds) Self-injurious behaviors: assessment and treatment. American Psychiatric Publishing, Inc., Washington, DC, pp 97–117