Osteopontin is a marker for cancer aggressiveness and patient survival

GF Weber*,1,2, GS Lett3 and NC Haubein3

1University of Cincinnati Academic Health Center, James L. Winkle College of Pharmacy, 3225 Eden Avenue, Cincinnati, OH 45267-0004, USA; 2MetaMol Theranostics, Cincinnati, OH, USA; 3The BioAnalytics Group, Jamesburg, NJ, USA

BACKGROUND: Only a fraction of molecular cancer markers identified in the scientific literature have found clinical use. Specifically, few predictors of invasiveness are established in diagnostics. Meta-analysis is a valuable tool for biomarker validation. Here, we evaluate Osteopontin as a marker for tumor aggressiveness (grade, stage, early progression) and patient survival.

METHODS: Publications through 2008 with the keywords ‘osteopontin AND cancer’ were retrieved. Titles and abstracts were screened for studies presenting original data on human subjects. This left 228 publications for data extraction. We applied categorical data analysis for testing the relationship between Osteopontin and a clinical variable.

RESULTS: Osteopontin ranks correlated with lower overall and disease-free/relapse-free survival in all tumors combined, as well as in lung cancer, breast cancer, prostate cancer, head and neck cancer, and liver cancer. Further, Osteopontin levels correlated with tumor grade and stage for all tumors combined and for several individual tumor types. Osteopontin levels were significantly associated with the early progression of eight cancers, independent in one, and inversely correlated in two.

CONCLUSIONS: Osteopontin is significantly associated with survival in several forms of cancer. Osteopontin levels are also markers for stage, grade, and early tumor progression in multiple cancers, reflecting a common molecular underpinning for distinct clinical measures. Osteopontin has value as a clinical tumor progression marker.

British Journal of Cancer (2010) 103, 861 – 869. doi:10.1038/sj.bjc.6605834 www.bjcancer.com

Keywords: metastasis; survival; grade; stage

In recent years, substantial progress has been made in the detection and diagnosis of early stage cancers. This is mostly due to improved imaging technologies and new biomarkers in histological and hematologic testing. However, there still is a dearth of molecular indicators that distinguish highly aggressive tumors from moderately aggressive and non-aggressive ones. Specifically, few markers that predict invasiveness have been firmly established. Better molecular prognostics are needed to accurately assess disease. One candidate marker for the progression of various malignant tumors has been Osteopontin. In cancer, this molecule can support cell invasion and anchorage independence, thus enhancing tumor progression and metastasis formation (Weber, 2008). Despite a large literature on Osteopontin as a cancer marker, it is not in routine diagnostic use. One reason may be the diversity of source materials and cancer-associated readouts that have been investigated in correlation to Osteopontin levels. Therefore, it is important to analyze the comprehensive published evidence to discern which aspects of cancer pathophysiology are consistently associated with elevated Osteopontin levels, thus validating this molecule as a candidate marker.

The scientific literature on biomarkers has grown disproportionately more rapidly than the application of promising markers in clinical practice. Among the reasons for the delay are high barriers in the regulatory process and limited available resources for the recruitment and analysis of sufficiently large patient populations. Meta-analysis is a suitable approach to enhancing knowledge about the diagnostic potential of individual biomarkers within these confines. Yet, conventional regression algorithms have had limited capability of combining distinct data sets and have therefore often fallen short of improving confidence. This is a particular problem for immunohistochemistry, where variable staining protocols combined with the semi-quantitative nature of the examination generate substantial study-to-study fluctuations. Categorical data analysis can limit such heterogeneity. The evaluation of within-study ranks results in a self-normalization of variable data sets. When applied to the meta-analysis of biomarkers, categorical data analysis has a dramatically higher sensitivity than conventional regression algorithms for detecting trends in data sets from disparate sources.

METHODS

Data extraction

A PubMed search with the keywords ‘osteopontin AND cancer’ through December 2008 resulted in 800 hits. Titles and abstracts were screened for studies involving human subjects, yielding 271 papers for initial analysis. 36 articles (including reviews, commentaries, experiments only on cell lines, no results on cancer, etc.) did not contain new data on Osteopontin in human cancer.
Four articles were not obtained, even after request through interlibrary loan. Three papers were excluded because they contained one retraction, one article that pooled diverse primary tumors without separating them by tumor type, and one paper that applied scientifically questionable methodology (bidigital O-ring test). This left 228 publications to be used for data extraction (Table 1). Of articles not written in English, only the abstracts (not the full texts) were drawn on for obtaining data. For data extraction, numbers from the article text were applied directly; data presented in the format of graphs were measured and converted to the relevant units. Data from Kaplan-Meier survival curves were digitized using the software DataThief.

The cancers covered by the original publications include: breast cancer (34), ovarian cancer (25), liver cancer (21), lung cancer (20), head and neck cancer (15), colorectal cancer (14), gastric cancer (14), prostate cancer (13), bone cancer (9), oral cancer (9), melanoma (9), pancreatic cancer (8), renal cancer (8), esophageal cancer (7), glioma (7), mesothelioma (7), thyroid cancer (7), endometrial cancer (6), myeloma (6), cervical cancer (4), gestational trophoblastic tumor (4), leukemia/lymphoma (3), granular cell tumor (2), non-melanoma skin cancer (2), amniary papillary cancer (2), bladder cancer (2), medulloblastoma (2), soft tissue tumors (2), teratoid tumor (2), adrenocortical cancer (1), neuroblastoma (1), pilomatrixoma (1), renal pelvis cancer (1), von Hippel-Lindau disease (1). The numbers in parentheses indicate the number of publications for each type of cancer. Note that several papers contain data on more than one type of cancer and are counted here for each. Therefore the sum is larger than the 228 original publications used for the data extraction.

Data analysis

A significance level of 95% \((P<0.05) \) was applied to all studies. The correlation between Osteopontin expression levels and the clinical variables of interest was examined with a categorical approach (using ranked values). Within a study, the clinical variables were ranked from low to high and then normalized by the number of examples in the study. Studies that combined a range of grades were assigned the mean grade. Also within a study, the Osteopontin scores were ranked from low to high. In the case of immunohistochemistry scores that reported graded results on a 0–3+ scale, a composite score for the study was computed by weighting each score by the fraction of patients reported for that score. For studies using an expanded scoring system, the scores were grouped at low, medium, and high levels and treated in the same way as the 0–3+ results. For studies that only reported mean or median results, the raw values were simply ranked. Ranking accomplishes a self-normalization within each study (Hong et al., 2006; Hong and Breitling, 2008) and permits the simultaneous analysis of both the summary results (mean, median only) and permits the simultaneous analysis of both the summary results (mean, median only) and various graded results. In the case of immunohistochemistry, this reduces the effects of different pathologists scoring the samples. In other assay types, such as ELISA or quantitative RT-PCR, this eliminates the need for a normal standard under the assumption that all samples within a study are compared against the same standard.

We utilized the Pearson \(\chi^2 \) test (Agresti, 2007) for independence to assess whether the Osteopontin ranks are independent of the clinical variable ranks. This test was carried out by constructing contingency tables using the ranks for each variable, and populating each cell with the total number of patients reporting that combination of ranks. Separate tables were constructed for sets of studies with 2, 3, or more ranks to avoid structural zeros. The Mantel-Haenszel \(\chi^2 \) test (Agresti, 2007) was used to test the hypothesis that the ranking of a particular clinical variable within a study is linearly related to the Osteopontin level. We then tested for a non-linear trend by examining the residuals between the observed values and a linear model of the data.

Receiver operator characteristic (ROC) curves are commonly used to assess diagnostic performance of a particular measurable quantity. The most common feature used to quantify this characteristic is the area under the curve, which can be interpreted here as the probability that for two randomly chosen samples, the one with the higher Osteopontin rank will also have a higher rank for the clinical variable in question (Rice and Harris, 2005). In the case of the ranked data in this study, that probability can be calculated for each clinical study. Each pair of patient groups in the study was examined, and the fraction of those where a group with higher clinical variable rank also had a higher Osteopontin level rank is reported here. The statistical significance of this fraction was tested by carrying out a Monte Carlo simulation to estimate the distribution of fractions expected for random ranks.

Reporting standards

The data applied to this study were not skewed by publication bias according to a funnel plot analysis. The present study has been conducted according to the standards of the PRISMA Statement (Moher et al., 2009).

RESULTS

Osteopontin in patient survival

We applied categorical meta-analysis to the evaluation of Osteopontin as a prognostic marker. The distribution of ranks for published overall and disease-free/relapse-free survival versus measured Osteopontin levels displayed an aggregation along the diagonal in bar graphs, indicating a good correspondence for higher Osteopontin rank to lower mean survival time (Figure 1A and B). To further quantify these results, we determined the probability that for two patient groups selected at random from a study, the one that had the higher Osteopontin score would also have a shorter mean survival time. This resulted in a probability of 90.8%, \(P<1 \times 10^{-5} \) for overall survival and a probability of 92.9%, \(P=1 \times 10^{-4} \) for disease-free/relapse-free survival, where the significance was estimated using a permutation test. These results indicate that Osteopontin rank is a good predictor of survival outcome rank within a study. The actual probability calculated from the meta-analysis of the data was significant when compared to the estimated probability distribution under the null hypothesis that Osteopontin and mean survival time are independent (Figure 1C and D). When broken down to individual cancers, the association between Osteopontin levels and overall survival was significant for lung cancer, breast cancer, prostate cancer, head and neck cancer, and liver cancer (Table 2). Similar results were obtained using the meta-analysis function in Oncomine (Supplement 1). For several cancer types, only one published study was available. Those cases were excluded from the meta-analysis.

In clinical practice, the detection of Osteopontin is particularly important in two settings. In serum or plasma, Osteopontin may serve as a prognostic marker associated with a minimally invasive procedure. After a biopsy, Osteopontin may serve as a prognostic marker directly linked to the tumor. Therefore, we separately analyzed the patient survival data for Osteopontin in these distinct types of specimens. For all cancers combined, the levels of Osteopontin in plasma, in serum, and in tumors significantly identified subpopulations with shorter mean survival (Table 3). In tumors, the highest Osteopontin groups had a mean survival 850 days shorter than the lowest Osteopontin groups. For plasma, the highest Osteopontin groups had a mean survival 560 days shorter than the lowest Osteopontin groups. The concordance between Osteopontin ranks and risk for reduced survival was confirmed for several individual cancers (Table 3). However, the sample sizes for several individual cancers were not sufficiently

Moher et al, 2009. British Journal of Cancer (2010) 103(6), 861 – 869 © 2010 Cancer Research UK
Table 1 Source references for data extraction

Reference	Year
1. Bachmann IM, Ladstein RG, Straume O, Naumov GN, Akslen LA.	2008
2. Capilla S, Rigi L, Mirabeli D, Ceppi P, Bacillo E, et al.	2008
3. Carlos-Brigny R, Contreras E, Hiraki KR, Vargas PA, León JE, et al.	2008
4. Caramer A, Zuccon S, Balani A, Pintor M, et al.	2008
5. Canuso OJ, Carmack AJ, Lokeswar VB, Duncan RC, Soloway MS, et al.	2008
6. Castellano G, Malangonte G, Mazarrino MC, FGIN, M Marchese F, et al.	2008
7. Chang PL, Harkins L, Hiserie YH, Hicks P, Sappatayosok K, et al.	2008
8. Che H, Hong SW, Oh YJ, Kim MA, Kang E, et al.	2008
9. Creaney J, Yeoman D, Demelker Y, Segal A, Musk AW, et al.	2008
10. Fredriksson S, Horendia J, Brustugun OT, Schillingmann J, Koeng AC, et	2008
11. Galamb O.	2008
12. Hui EP, Sung FL, Yu BK, Wong CS, Ma BB, et al.	2008
13. Katase N, Tamamura R, Gunduz M, Murakami J, Asaumi J, et al.	2008
14. Kato N, Motoyama T.	2008
15. Kittaka N, Takemasa I, Takeda Y, Marubushi S, Nagano H, et al.	2008
16. Korda PV, Walaik T, Shirai Y, Matsuda Y, Sakata J, et al.	2008
17. Lee CY, Tien HF, Hou HA, Chou WC, Lin LI.	2008
18. Lian HX, Liu JX, Lin SY, Shi K, et al.	2008
19. Liu J, Wang J, Bai F, Zhai H, Gao J, et al.	2008
20. Liao HW, Personett D, Baskerville KA, Menkem DE, Jaeckle KA, et al.	2008
21. McGillicty SS, Gifford AM, Greiner AL, Kelleher SP, Saebeler MP, et al.	2008
22. Mirza M, Shaughnessy H, Hurley JK, Vanpatten KA, Pestano GA, et al.	2008
23. Moore RG, Brown AK, Miller MC, Skates S, Allard WJ, et al.	2008
24. Nordsmark M, Eriksen JG, Gebski V, Alsner J, Horsman MR, et al.	2008
25. Ohike N, Sato M, Kawaara M, Ohtsuka Y, Mochett N, et al.	2008
26. Patani N, Jiang W, Mokbel K.	2008
27. Range K, Nisiroti M, Toharia M, Shaha L, Leong SP, et al.	2008
28. Ribeiro-Silva A, Oliveira da Costa JP.	2008
29. Shimizu S, Tsukada J, Sugimoto T, Kikuvaka N, Sasaki K, et al.	2008
30. Tang H, Wang J, Bai F, Zhai H, Gao J, et al.	2008
31. Tun HW, Personett D, Baskerville KA, Menkem DE, Jaeckle KA, et al.	2008
32. Vergis R, Corblishley CM, Norman AR, Bartlett J, Jhavar S, et al.	2008
33. Visintin I, Feng Z, Longton G, Ward DC, Alvero AB, et al.	2008
34. Wang X, Chao L, Ma G, Chen L, Tian B, et al.	2008
35. Wu IC, Wu MT, Chou SH, Yang SF, Goan YG, et al.	2008
36. Yang GH, Fan J X, Yu Q, Si J, Yang XR, et al.	2008
37. Zdzisinska B, Bojanska-Junak A, Dmoszyckas A, Kandefer-Szerszen M.	2008
38. Zhao J, Lu B, Xu H, Tong X, Wu G, et al.	2008
39. Zhao L, Li T, Wang Y, Pan Y, Ning H, et al.	2008
40. Alonso SR, Tracey L, Ortiz P, Perez-Gomez B, Palacios J, et al.	2008
41. Bao LH, Sakaguchi H, Fujimoto J, Tamaya T.	2008
42. Bloomston M, Ellison EC, Muscarella P, Al-Saif O, Martin EW, et al.	2008
43. Chandran UR, Ma C, Dhir R, Biscegla M, Lyons-Weiler M, et al.	2008
44. Chang YS, Kim HJ, Chang J, Ahn CM, Kim SK, et al.	2008
45. Dai N, Bao Q, Lu A, Li J.	2008
46. Del Sordo R, Cavaliere A, Sidoni A.	2008
47. Dizdar O, Barista I, Kaloyouc U, Karadag O, Hascelik G, et al.	2008
48. Eto M, Koda K, Nomii M, Uemura M, Suzuki M.	2008
49. Frey AB, Wali A, Pass H, Lonsardo F.	2008
50. Gallot D, Marceau G, Launichese-Delmas H, Vanlieferinghen P, Dechelotte PJ, et al.	2008
51. Ghert M, Simunovic N, Cowan RW, Colterjohn N, Singh G.	2008
52. Grigoriu BD, Scherpereel A, Devos P, Chaine B, Letourneux M, et al.	2008
53. Grisaru D, Hauppy J, Prasad M, Albert M, Murphy KJ, et al.	2008
54. Guglimeri G, Ciberti A, Fondris R, Ambrosino N, Chella A, et al.	2008
55. Gui SY, Li HJ, Zuo L, Zhou Q, Wu Q, et al.	2008
56. Higashiwama M, Ito T, Tanaka E, Shimada Y.	2008
57. Hu Z, Xiao T, Lin DM, Guo SP, Zhang ZQ, et al.	2008
58. Jaeger K, Koczan D, Thiesen HJ, Ibrahim SM, Gross G, et al.	2008
59. Katakaru A, Kamiyama I, Takano N, Shibahara T, Muramatsu T, et al.	2008
60. Kuroda N, Hamaguchi N, Ohara M, Hirotsu T, Mizuno K, et al.	2008
61. Le QT, Kong C, Lavori PW, Obyrne K, Erler JT, et al.	2008
62. Lian HX, Pan HW, Peng SY, Lai PL, Kuo WS, et al.	2008
63. Li Y, Lu Y, Ceng Y, Yang X.	2008
64. Lin HM, Chatterjee A, Lin YH, Anjomsheoa A, Fukuzawa R, et al.	2008
65. Matsuzaki H, Shima K, Muramatsu T, Ro Y, Hashimoto S, et al.	2008
66. Meinhold-Heerlein I, Bauscherg D, Zhou Y, Sapinomi LM, Ching K, et al.	2008
67. Mountzios G, Dimopoulos MA, Bamias A, Papadopoulos G, Kastritis E, et al.	2008
68. Mountzios G, Dimopoulos MA, Bamias A, Papadopoulos G, Kastritis E, et al.	2008
69. Nordmark E, Mihajna M, Horsman MR, et al.	2008
70. Ogubureke KU, Nikitakis NG, Warburton G, Ort D, Saul J, et al.	2008
71. Pascaretti-Grizon F, Gaudin-Audrain C, Gallis Y, Retalloud-Gaborit N, Basle M.	2008
72. Ramakulov A, Len M, Kristiansen G, Loening SA, Jung K.	2008

© 2010 Cancer Research UK
Table 1 (Continued)

Reference	Title	Year
73	Ramankulov A, Lein M, Kristiansen G, Meyer HA, Loening SA, et al.	2006
74	Reinerig IW, Wolf A, Weige-Lussen U, Mueller AJ, Kampik A, et al.	2005
75	Robbiano DF, Colon K, Elly S, Elly S, Chesi M, et al.	2007
76	Rohde F, Rimkus C, Friederichs M, Rosenberg R, Martin C, et al.	2006
77	Said HM, Hagemann C, Staab A, Stojic J, Kuhnel S, et al.	2006
78	Sakaguchi H, Fujimoto J, Hong BL, Tamaya T.	2005
79	Shin HD, Park BL, Cheong HS, Yoon JH, Kim YJ, et al.	2005
80	Sokolli K, Luik M, Nummela P, Virolainen S, Jalkola T, et al.	2005
81	Staibano S, Merolla F, Testa D, Iovine R, Mascolo M, et al.	2006
82	Togni DY, Weidert JA.	2005
83	Winfield HL, Kirkland F, Rames-Ceballos IL, Horn TD.	2005
84	Wu CY, Wu MS, Chang EP, Wu CC, Chen YJ, et al.	2006
85	Xie H, Song J, Du R, Liu K, Wang J, et al.	2006
86	Allan AL, George R, Vantyghem SA, Lee MM, Hodgson NC, et al.	2006
87	Bache M, Reichenbach R, Holzhausen HJ, Taubert H, et al.	2006
88	Benoist-Lasselin C, de Margerie E, Gibbs S, Connor S, Silve C, et al.	2006
89	Bramwell VH, Doig GS, Tuck AB, Wilson SM, Tonkin KS, et al.	2006
90	Briese J, Schulte HM, Bamberger CM, Lonig T, Bamberger AM.	2006
91	Colin C, Baeza N, Bartoli C, Fina F, Eudes N, et al.	2006
92	Dall европейская, Yoshimoto M, Lee CH, Joshua AM, de Toledo SR, et al.	2006
93	Darling MR, Gauthier M, Jackson-Boeters L, Daley TD, Chambers AF, et al.	2006
94	Debucquoy A, Goethals L, Geboes K, Roels S, Mc Bride WH, et al.	2006
95	Feng HC, Tsao SW, Ngan HY, Kwan HS, Shm SM, et al.	2006
96	Fuge Ø, Bruland O, Akslen LA, Lillegaard JR, Valhaug JE.	2006
97	Forootan SS, Foster CS, Asahi VR, Adamson J, Smith PH, et al.	2006
98	Gong YH, Sun LP, Yuan Y.	2006
99	Hashiguchi Y, Tsuda H, Bandera CA, Nishimura H, Inoue T, et al.	2006
100	Huang J, Cheng HH, Shen T, Hu Y, Xiao HS, et al.	2006
101	Kadiel SS, Lin AI, Barak V, Kalidjian I, Leach L, et al.	2006
102	Kim K, Ji SS, Lee SD, Han CJ, Kim YC, et al.	2006
103	Kita Y, Natsugoe S, Okumura H, Matsumoto M, Uchikado Y, et al.	2006
104	Köbel M, Langhammer T, Huttelmaier S, Schmitt WD, Kriese K, et al.	2006
105	Libra M, Indelicato M, De Re V, Zignego AL, Chiocchetti A, et al.	2006
106	Le QT, Chen E, Salim A, Cao H, Kong PS, et al.	2006
107	Luo JH, Ren B, Keryanov S, Tseng GC, Rao UN, et al.	2006
108	Matsushita K, Dordentric G, Stepan D, Mozetic V, Linck K.	2006
109	Miller CT, Lin L, Casper AM, Lim J, Thomas DG, et al.	2006
110	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
111	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
112	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
113	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
114	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
115	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
116	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
117	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
118	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
119	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
120	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
121	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
122	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
123	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
124	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
125	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
126	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
127	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
128	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
129	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
130	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
131	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
132	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
133	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
134	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
135	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
136	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
137	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
138	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
139	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
140	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
141	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
142	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
143	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
144	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006
145	Nakae M, Iwamoto I, Fukuda A, Kurosawa A, Fujino T, et al.	2006

Osteopontin as a cancer biomarker
GF Weaver et al
Table 1 (Continued)

Authors	Journal	Year

(2005) | Zhonghua Zhen Liu Za Zhi, 27, 292, Chinese |
large to obtain 95% significance for the rank statistic used here (in plasma for gastric, cervical, liver, teratoid, esophageal, and renal cancers; in serum for breast cancer, head and neck cancer, and mesothelioma; in tumors for colorectal, ovarian, and prostate cancers, mesothelioma, and glioma). In tumors, discordance (i.e. higher Osteopontin groups had longer mean survival times) was observed for one study each on bone cancer, endometrial cancer, and melanoma.

Osteopontin in tumor grade, stage and early progression

Osteopontin immunohistochemistry score ranks and tumor grade and stage ranks were dependent ($P < 0.001$) for all cancers combined (Figure 2A), as well as for 12 individual cancers for grade, 13 individual cancers for stage T, 8 individual cancers for stage N, and 9 individual cancers for stage M (Table 4).

Table 2

Cancer	Concordance	P-value	Studies
Lung	1.000	0.001	3
Breast	0.917	0.004	8
Prostate	1.000	0.013	3
Head and neck	1.000	0.020	4
Liver	0.875	0.033	8
Cervical	1.000	0.126	3
Esophageal	1.000	0.126	3
Gastric	0.750	0.189	3
Kidney	1.000	0.249	2
Mesothelioma	1.000	0.249	2

Published curves for overall survival were digitised for analysis. P-values in bold are considered significant. They indicate that Osteopontin over-expression is associated with elevated risk for death from cancer. For several cancer types, only one published study was available. Those cases were excluded from the meta-analysis. Shown are only cancers for which more than one published study was available for evaluation.
diagonal in bar graphs (Figure 2B). To further quantify these ranked data, we determined the probability that for two patient groups, the one that had the higher Osteopontin rank would also have a higher grade or stage rank. In 66.3% of these comparisons, the group with higher Osteopontin rank was also the group with a higher tumor grade, which Monte Carlo analysis revealed to be significant (P = 0.004). Positive comparisons were also seen in 81.3% of cases for tumor stage N (node involvement, P = 0.01), 54.5% of cases for tumor stage T (primary tumor, P = 0.28), and 70% of cases with higher tumor grade M (metastasis, P = 0.18).

For stage T and M, the positive relationship identified in the comparison of ranks was not statistically significant, possibly due to insufficient sample size. Advantageously, the categorical analysis can be applied to heterogeneous data sets. By combining immunohistochemistry with the other published tests, we identified a statistically significant relationship between Osteopontin levels and clinical variables. The categorical analysis had higher sensitivity than a conventional meta-analysis approach (Supplement 2).

In the early stages of transformation, tumor progression can be described as the transition from normal tissue to precancerous lesions (dysplasia, metaplasia), preinvasive cancer, and cancer. According to categorical meta-analysis, Osteopontin expression levels were significantly associated with the progression of eight cancers, independent in one, and inversely correlated in two (skin cancer and gestational trophoblastic tumor) (Table 5). Of note, while Osteopontin appears to be a cancer biomarker for 31 individual malignancies its levels were significantly reduced below normal in non-melanoma skin cancer and gestational trophoblastic tumor. This suggests a unique role for Osteopontin in these two malignancies.

DISCUSSION

High levels of Osteopontin in several cancers are indicative of a poor prognosis. Overall and disease-free survival are inversely related to Osteopontin levels in several cancers. There is strong correspondence between high Osteopontin and lower mean survival time in tumor (82%) and plasma (100%) measurements, with large mean differences in survival times, indicating a useful role for Osteopontin in patient stratification. Patient survival is largely determined by tumor aggressiveness. Hence, it is not unexpected that Osteopontin, a prognostic measure for survival, is also a marker for grade, stage, and early progression. It is likely

Table 3 Osteopontin and survival in distinct clinical specimens

Specimen	Number of studies	Concordance	P-value
All tumors combined			
Tumor	31	0.825	<0.0001
Plasma	14	1	<0.0001
Serum	3	1	0.04
(A) All tumors combined			
Liver	7	0.857	0.06
Breast	5	0.800	0.19
Esophageal	2	1	0.24
Head and neck	2	1	0.25
Lung	2	1	0.25
Cervical	2	1	0.25
Gastric	2	0.714	0.28

(C) Tumor, individual cancers

Cancer type	Number of studies	Concordance	P-value
Liver	7	0.857	0.06
Breast	5	0.800	0.19
Esophageal	2	1	0.24
Head and neck	2	1	0.25
Lung	2	1	0.25
Cervical	2	1	0.25
Gastric	2	0.714	0.28

The concordance and probability of error were calculated for the null-hypothesis that Osteopontin levels are not correlated with high risk for short survival. (A) All tumors combined in distinct types of clinical samples. (B) Plasma Osteopontin in individual cancers (for serum Osteopontin see main text). (C) Tumor Osteopontin in individual cancers. Bold values indicate P<0.1

Figure 2 By categorical meta-analysis, Osteopontin levels correlate with stage and grade of cancers. (A) The Pearson r² test of ranked Osteopontin immunohistochemistry scores with tumor grade and stage shows a significant dependence between Osteopontin rank and clinical variable. (B) The bar graphs of Osteopontin rank versus rank of grade or stage display an aggregation of data along the diagonal, indicating a positive relationship between Osteopontin levels and clinical variables. The associations are statistically significant for grade and node positivity, but not for stage T and M. (C) Expanded analysis of grade and stage ranks to all published measures. In five studies with duplicate data sets only the immunohistochemistry results were used. We computed a measure analogous to that represented by the area under a ROC curve (see Methods). For all grade and stage measures, Osteopontin is a significant positive indicator.
that patients with elevated Osteopontin at the time of diagnosis warrant more forceful treatment regimens than are suitable for patients with low levels of Osteopontin.

Although tumor grade, tumor stage, and early tumor progression are distinct measures for the clinical presentation of a cancer they are not mutually unrelated. A dedifferentiated, high grade tumor is more aggressive, and consequently more likely to disseminate and become high stage than a low grade tumor. The molecular mechanisms driving progression, grade, and stage are overlapping. Osteopontin is associated with all of them. In patient care, the diagnosis and assessment of cancer is typically made on the basis of clinical and histo-morphologic criteria. However, molecular markers are more quantifiable and may be more reflective of underlying disease mechanisms. The incomplete convergence between clinical and molecular descriptors may require a reevaluation of how we assess cancer (Weber, 2010).

Table 4 Categorical meta-analysis of tumor grade and stage

Cancer type	Studies	Patients	Pearson P-value	Linear P-value	Correlation coefficient	Non-linear P-value	
(A) Tumor grade							
All	42	4408	<0.001	<0.001	0.27	<0.001	
Breast	6	1061	<0.001	<0.001	0.28	<0.001	
Endometrial	3	236	<0.001	0.004	−0.19	<0.001	
Esophageal	2	161	<0.001	0.001	−0.26	<0.001	
Gastric	3	428	<0.001	<0.001	−0.65	<0.001	
Glial	5	180	<0.001	<0.001	0.89	<0.001	
Head & neck	2	92	<0.001	<0.001	0.59	<0.001	
Liver	6	870	<0.001	<0.001	0.72	<0.001	
Lung	4	610	<0.001	<0.001	−0.24	<0.001	
Oral	3	103	<0.001	0.170	0.14	<0.001	
Ovarian	5	379	<0.001	<0.001	0.68	<0.001	
Prostate	2	117	<0.001	<0.001	0.45	<0.001	
Renal	1	171	<0.001	<0.001	1		
(B) Tumor stage (T)							
All	56	4480	<0.001	<0.001	0.70	<0.001	
Breast	3	236	<0.001	0.003	0.20	<0.001	
Cervical	2	170	0.416	0.417	−0.06	N/A	
Colorectal	6	420	<0.001	<0.001	0.84	<0.001	
Endometrial	4	122	<0.001	0.052	−0.18	<0.001	
Esophageal	6	284	<0.001	<0.001	0.67	<0.001	
Gastric	8	772	<0.001	<0.001	0.85	<0.001	
Head & neck	5	569	<0.001	<0.001	1.00	N/A	
Liver	4	497	<0.001	<0.001	0.89	<0.001	
Lung	5	692	<0.001	<0.001	0.96	<0.001	
Myeloma	1	30	<0.001	<0.001	1.00	N/A	
Oral	1	26	<0.001	<0.001	−1.00	1	
Ovarian	8	444	<0.001	<0.001	0.22	<0.001	
Prostate	1	47	<0.001	<0.001	−1.00	1	
Renal	1	171	<0.001	<0.001	1.00	N/A	
(C) Tumor stage (N)							
All	27	3159	<0.001	<0.001	0.81	<0.001	
Breast	7	909	<0.001	<0.001	0.59	N/A	
Colorectal	3	336	<0.001	<0.001	1.00	N/A	
Gastric	7	1013	<0.001	<0.001	1.00	N/A	
Head & neck	4	469	<0.001	<0.001	1.00	N/A	
Liver	2	145	0.055	0.056	−0.16	N/A	
Lung	1	130	<0.001	<0.001	0.43	<0.001	
Myeloma	1	68	<0.001	<0.001	1.00	N/A	
Oral	1	46	<0.001	<0.001	1.00	N/A	
Ovarian	1	43	<0.001	<0.001	1.00	N/A	
(D) Tumor stage (M)							
All	28	1900	<0.001	<0.001	0.72	N/A	
Bladder	1	23	<0.001	<0.001	1.00	N/A	
Breast	3	102	<0.001	<0.001	0.34	N/A	
Colorectal	1	10	0.002	0.003	1.00	N/A	
Gastric	4	612	<0.001	<0.001	1.00	N/A	
Head & neck	3	113	<0.001	<0.001	1.00	N/A	
Liver	5	187	<0.001	<0.001	−0.40	N/A	
Lung	6	644	<0.001	<0.001	0.75	N/A	
Myeloma	2	43	<0.001	<0.001	1.00	N/A	
Oral	1	26	<0.001	<0.001	1.00	N/A	
Ovarian	1	10	0.002	0.003	1.00	N/A	
Thyroid	1	130	<0.001	<0.001	1.00	N/A	

Published Osteopontin levels in relation to tumor grade or tumor stage were analyzed. As a test for independence of the ranked data we used the Pearson χ²-test. To assess linear and non-linear trends of the ranked data we applied the Mantel–Haenszel χ²-test. N/A indicates that there were only two outcomes, and a non-linear fit is not measurable.
In the early stages of transformation, tumor progression can be described as the transition from normal tissue to precancerous lesions (dysplasia, metaplasia), preinvasive cancer, and cancer. The ranked levels of Osteopontin expression are significantly associated with the progression of liver cancer, myeloma, head and neck cancer, cervical cancer, and prostate cancer, oral cancer, breast cancer, and mesothelioma. Unexpectedly, the meta-analysis reveals an inverse correlation to the progression of skin cancer and gestational trophoblastic tumor. Non-mel. = non-melanoma skin cancer.

For the evaluation of Osteopontin as a biomarker for cancer, we have found conventional and categorical meta-analysis to be in agreement. This was not the case for the correlation of Osteopontin levels with tumor grade and stage (Figure 2 and Supplementary Figure S1). Here, the improved sensitivity of the categorical analysis is required to detect the existing trends in the published data sets.

ACKNOWLEDGEMENTS

This study was supported by NIH grant R43CA136011 to GFW.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Agresti A (2007) 2nd edn. An Introduction to Categorical Data Analysis. John Wiley and Sons, Inc: Hoboken, NJ

Alonso SR, Tracey L, Ortiz P, Perez-Gomez B, Palacios J, Pollan M, Linares J, Serrano S, Saez-Castillo AJ, Sánchez L, Pajares R, Sánchez-Aguilera A, Artiga MJ, Piris MA, Rodriguez-Peralto JL (2007) A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 67: 3450–3460

Ebert W, Muley T, Drings P (1996) Does the assessment of serum markers in patients with lung cancer aid in the clinical decision making process? Anticancer Res 16: 2161–2168

Hong F, Breitling R (2008) A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 24: 374–382

Hong F, Breitling R, McIntee CW, Wittner BS, Nemhauser JL, Chory J (2006) RankProd: a biocductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22: 2825–2827

Koopmann J, Rosenzweig CN, Zhang Z, Canto MI, Brown DA, Hunter M, Yeo C, Chan DW, Breit SN, Goggins M (2006) Serum markers in patients with resectable pancreatic adenocarcinoma: macropage inhibitory cytokine 1 versus CA19-9. Clin Cancer Res 12: 442–446

Moher D, Liberati A, Tetzlaff J, Altman DG (2009) The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339: b2535

O’Neill CJ, Deavers MT, Malpica A, Foster H, McCluggage WG (2005) An immunohistochemical comparison between low-grade and high-grade ovarian serous carcinomas: significantly higher expression of p53, MIB1, BCL2, HER-2/neu, and C-KIT in high-grade neoplasms. Am J Surg Pathol 29: 1034–1041

Reinholz MM, Iturria SJ, Ingle JN, Roche PC (2002) Differential gene expression data sets. Analysis is required to detect the existing trends in the published data sets.

Table 5 Categorical meta-analysis of tumor progression

Cancer Type	Studies	Patients	Pearson P-value	Linear P-value	Correlation coefficient	Non-linear P-value
All	34	2425	<0.001	<0.001	0.68	<0.001
Breast	1	172	<0.001	<0.001	0.75	<0.001
Cervical	1	398	<0.001	<0.001	1.00	1.00
Esophageal	1	46	<0.001	<0.001	0.77	<0.001
Gestational Trophoblastic tumor	4	86	<0.001	<0.001	1.00	N/A
Head and neck	1	82	<0.001	<0.001	1.00	1.00
Liver	7	731	<0.001	<0.001	1.00	1.00
Mesothelioma	3	148	<0.001	<0.001	1.00	1.00
Myeloma	3	208	<0.001	<0.001	1.00	1.00
Non-mel.	1	36	<0.001	<0.001	1.00	1.00
Oral	2	230	<0.001	<0.001	1.00	N/A
Ovarian	5	213	<0.001	<0.001	1.00	1.00
Prostate	2	75	<0.001	<0.001	1.00	N/A

In this analysis, the concordance between Osteopontin expression rank and stage or grade rank was 67–84% over all types of cancer. This is comparable to the accuracy commonly estimated for existing tumor markers, including CEA, CA 15-3, CA 19-9 and PSA (Ebert et al, 1996; Koopmann et al, 2006; Ulmert et al, 2009). When applied to select cancers, the accuracy of Osteopontin increases. Future research needs to assess whether the combination of Osteopontin with other markers can further improve its diagnostic value (Reinholz et al, 2002; O’Neill et al, 2005; Alonso et al, 2007; Ribeiro-Silva and Oliveira da Costa, 2008).

Meta-analysis has been a valuable tool in biomarker validation. One of its major limitations is the detection of true signals over the noise of heterogeneous input data. Categorical data analysis has a self-normalizing effect on study-to-study variations and may therefore be superior to conventional meta-regression algorithms.