A detailed experimental and theoretical study of two novel substituted trifluoromethylchromones. The influence of the bulky bromine atom on the crystal packing

C.D. Alcivar Leon a,1, G.A. Echeverria b, O.E. Piro b, S.E. Ulic a,c,⇑, J.L. Jios d,

a CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, 1900 La Plata, Argentina
b Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata, Argentina
c Departamento de Ciencias Basicas, Universidad Nacional de Lujan, Rutas 5 y 7, 6700 Lujan, Buenos Aires, Argentina
d LASEISIC-PLAPIMU (UNLP-CIC), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, 1900 La Plata, Argentina

⇑ Corresponding authors at: CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, 1900 La Plata, Argentina (S.E. Ulic).
E-mail addresses: sonia@quimica.unlp.edu.ar (S.E. Ulic), jjios@quimica.unlp.edu.ar (J.L. Jios).

1 SENESCYT-Ecuador.

ABSTRACT

The new 3-methyl-2-trifluoromethylchromone (1) and 3-bromomethyl-2-trifluoromethylchromone (2) compounds were synthesized and characterized by vibrational (IR, Raman), UV–Vis and NMR (1H, 13C and 19F) spectroscopy and MS spectrometry. The crystal structures of 1 and 2 were determined by X-ray diffraction methods. Both compounds crystallize in the monoclinic P21/c space group with Z = 4 molecules per unit cell. The structures were solved from 1423 (1) and 1856 (2) reflections with I > 2σ(I) and refined by full-matrix least-squares to agreement R1-values of 0.0403 (1) and 0.0554 (2). Because of π-bonding delocalization, the organic molecular skeletons are planar and the molecular bonding structures can be described by formally single, double and resonant bonds. In 2, the −CF3 group revealed a strong rotational disorder around the C − CF3 bond, which could be explained in terms of four split positions with about uniform angular distribution. The vibrational, electronic and NMR, spectra were discussed and assigned with the assistance of DFT calculations.

© 2014 Elsevier B.V. All rights reserved.

ARTICLE INFO

Article history:
Received 7 May 2014
Received in revised form 11 September 2014
Accepted 11 October 2014
Available online 18 October 2014

Keywords:
2-Trifluoromethylchromones
Quantum chemical calculations
Spectroscopic properties
Single crystal X-ray diffraction

HIGHLIGHTS

• Two novel substituted 2-trifluoromethylchromones were synthesized and analyzed.
• The crystal structure of both molecules was elucidated by X-ray diffraction.
• The brominated derivative shows a strong rotational disorder around the C−CF3 bond.
• DFT calculations were applied to the conformational and spectroscopic analysis.
Introduction

Chromones are bicyclic organic compounds [1,2]. They are part of a large family of heterocycles structurally constituted by a benzene ring fused to a 4-pyrole group [3,4]. A variety of metabolites with a chromone structure have been found in nature and were widely studied [5,6]. They show to be nutraceutical [7] and exhibit diverse biological properties [8–12]. Among the ample variety of substitutes that can be attached to the chromone backbone the trifluoromethyl group (−CF3) is one of the most interesting to study due to its influence on the chromone biological behavior. In fact there are several studies on the potential pharmaceutical activity of structural analogs of chromone [9,13,14].

One of the most employed methods for the synthesis of chromones involves the reaction of ortho-hydroxyacetophenones with several acid anhydrides, followed by intra-molecular cyclization and subsequent dehydration [15–18]. The preparation of new 2-trifluoromethylchromones using the above method with trifluoroacetic ethyl ester has been reported by Sosnovskikh’s group [19–22]. More recently, a new chemical pathway involving esterification and cyclization in one step using trifluoroacetic anhydride was developed in our laboratory [23]. This methodology was adopted for the synthesis of 3-methyl-2-trifluoromethylchromone (1). Subsequent bromination affords the synthesis of 3-bromomethyl-2-trifluoromethylchromone (2). The structures of the title compounds are shown in Scheme 1.

Experimental section

The 1 and 2 compounds were characterized by solution NMR (1H, 13C, 19F) and electronic (UV-Vis) spectroscopy, and mass spectrometry. The solid state vibration behavior was studied by infrared (IR) and Raman dispersion spectroscopy. The crystal structure of 1 and 2 were determined by X-ray diffraction methods. The gas phase geometry optimization of both molecules was performed by quantum chemical calculations. Additional theoretical studies were selected for calculating vibration mode frequencies (IR, Raman), UV-Vis transitions and NMR chemical shifts (1H, 13C, 19F).

Instrumentation

Infrared and Raman spectroscopy

Infrared absorption spectra (KBr pellets) were recorded on a LUMEX InfracLUM FT-02 spectrometer with a resolution of 2 cm−1 in the range from 4000 to 400 cm−1. Raman dispersion spectra of the solid were measured from powdered samples in Pyrex standard capillaries (2.5-mm i.d.) with a Perkin–Elmer FT-Raman RFS 100/s spectrometer using as exciting light source the 1064 nm line from a Nd/YAG laser (spectral resolution of 4 cm−1). The four C–CF3 and F distances to be respectively equal to one another while the bridged oxygen atom carrying the number 1) was adopted to facilitate the comparison with data reported in the literature.

UV–visible spectroscopy

The spectra of 1 and 2 in methanol were recorded using a quartz cell (10 mm optical path length) on a ChromTech CT-5700 UV/Vis spectrophotometer at 2.0 nm spectral bandwidth. Measurements were carried out in the spectral region from 190 to 700 nm.

Mass spectrometry

The MS determinations were performed by injection of methanol solutions (~1 μl) in a HP 5890 Chromatograph coupled to a HP 5972 A mass selective detector. An HP5-MS capillary column (30 m × 0.25 mm × 5 μm) has been used with H2 as the carrier gas (0.6 ml/min). The temperature set points were: 200 °C in the split injector, 300 °C in the interface, 185 °C in the ion source and the oven ramp started at 80 °C and ended at 200 °C with a heating rate of 10 °C/min. The electron energy was 70 eV with a mass range of 50–350 amu and a pressure in the mass spectrometer lower than 10−5 Torr. The mass spectra of 1 and 2 are shown in Figs. S1 and S2 of Supporting Information.

X-ray diffraction data

The measurements were performed on an Oxford Xcalibur Gemini, Eos CCD diffractometer with graphite-monochromated Cu Kα (λ = 1.54178 Å) radiation. X-ray diffraction intensities were collected (o scans with φ and θ-offsets) at 120(2) K in compound 1 and 296(2) K in compound 2, integrated and scaled with CrysAlisPro [24] suite of programs. The unit cell parameters were obtained by least-squares refinement (based on the angular setting for all collected reflections with intensities larger than seven times the standard deviations of measurement errors) using CrysAlisPro. Data were corrected empirically for absorption employing the multi-scan method implemented in CrysAlisPro. The structures were solved by direct methods with SHELXS–97 [25] and the corresponding molecular models developed by alternated cycles of Fourier method and full-matrix least-squares refinement on F2 with SHELXL–97 [26]. In the −CF3 group showed severe rotational disorder around the C–CF3 bond which could be successfully modeled in terms of four split positions with approximate uniform angular distribution. The four C–CF3 replicas were refined (with isotropic displacement parameters) by restraining all the C–F bond lengths and F...F distances to be respectively equal to one another while restraining the occupancies such to add up to one. For both compounds, a Fourier difference map phased on the heavier atoms showed all the H-atoms. In 1 these were refined at their found position with isotropic displacement parameters and in 2 they were positioned stereo-chemically and refined with the riding model. Crystal data and structure refinement results are summarized in Table S1 of Supporting Information. Crystallographic structural data have been deposited with the Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for this material should quote the full literature citation and the reference number CCDC 976319 (for 1) and CCDC 976320 (for 2).
Computational methods
Quantum chemical calculations were performed in the gas phase with the program package Gaussian 03 [27]. Scans of the potential energy surface, geometry optimizations and vibration mode frequency calculations were carried out with the density functional theory (B3LYP) method employing the 6-311+G(d,p) basis set. In all cases, the calculated vibrational properties corresponded to potential energy minima with no imaginary values for the frequencies. Electronic transitions were calculated with TD-DFT [28,29] taking into account implicitly the solvent effect (methanol). The \(^1\)H and \(^{13}\)C chemical shifts were calculated with the B3LYP/6-311+G(2d,p) optimized geometries by the GIAO method (Gauge Including Atomic Orbital) [30] using the corresponding TMS shielding, calculated at the same level of theory.

Results and discussion
Synthesis and characterization
The synthetic route is depicted in Scheme 2 (Supporting Information).

3-Methyl-2-trifluoromethylchromone (1)
Following our reported procedure [23], 2-hydroxypropiophenone (8.7 g, 57.9 mmol), trifluoroacetic anhydride (12.8 g, 60.8 mmol) and pyridine (4.8 ml), were heated with stirring at 120 °C for 6 h. The reaction mixture was treated with 1 M hydrochloric acid (3 times, 10 ml) and water (2 times, 10 ml), then the unreacted 2-hydroxypropiophenone was removed by washing several times with 10 ml of 1 M NaOH (controlling its disappearance by TLC). The organic phase was separated, and the mixture kept at room temperature in presence of visible light. The solid was dissolved in carbon tetrachloride (50 ml). A saturated solution of none (8.7 g, 57.9 mmol), trifluoroacetic anhydride (12.8 g, 60.8 mmol) was added to the organic solution and the mixture kept at room temperature in presence of visible light for 12 h under stirring. The conversion of the starting reagent 1 was monitored by TLC. Then the organic phase was separated, dried (with Na\(_2\)SO\(_4\)) and the solvent removed in a rotary evaporator to give a white solid. Recrystallization from hexane produced a crystalline solid (m.p. 99–100 °C). \(^1\)H NMR: \(\delta = 8.19\) (d, 1H, H-5, \(J = 8\) Hz; \(J_2 = 2\) Hz; \(J_3 = 0.5\) Hz), 7.72 (d, 1H, H-7, \(J = 9\) Hz; \(J_3 = 7\) Hz; \(J_2 = 2\) Hz), 7.48 (br d, 1H, H-8, \(J = 8\) Hz), 7.44 (d, 1H, H-6, \(J = 8\) Hz; \(J_1 = 7\) Hz; \(J_3 = 1\) Hz), 2.23 ppm (q, 3H, CH\(_3\), \(J_1 = 2\) Hz). \(^{13}\)C NMR: \(\delta = 177.9\) (C-4), 155.1 (C-8a), 148.2 (q, C-2, \(J_{CF} = 37\) Hz), 134.6 (C-7), 126.1 (C-5), 125.9 (C-6), 122.4 (C-4a), 120.9 (q, C-3, \(J_{CF} = 1\) Hz), 120.0 (q, CF\(_3\), \(J_{CF} = 276\) Hz), 118.2 (C-8), 8.7 ppm (t, CH\(_3\), \(J_{CF} = 3\) Hz). MS: \(m/z (%) = 228\) ([M\(^+\)], 75), 209 ([M–F\(^+\)], 5.8), 191 ([C\(_3\)H\(_7\)F\(_2\)O\(^-\)], 8.2), 120 ([C\(_3\)H\(_6\)O\(^-\)], 13.5), 92 ([C\(_3\)H\(_5\)O\(^-\)], 26). UV–Vis (methanol): \(\lambda_{max} = 204, 224, 243\) and 308 nm.

3-Bromomethyl-2-trifluoromethylchromone (2)
3-Methyl-2-trifluoromethyl chromone (1) (1.72 g, 7.54 mmol) was dissolved in carbon tetrachloride (50 ml). A saturated solution of bromine in water (160 ml) was added to the organic solution and the mixture kept at room temperature in presence of visible light for 12 h under stirring. The conversion of the starting reagent 1 was monitored by TLC. Then the organic phase was separated, dried (with Na\(_2\)SO\(_4\)) and the solvent removed in a rotary evaporator producing 2 as a white solid in quantitative yield. Recrystallization from hexane resulted in a white crystalline solid (m.p. 137–138 °C). \(^1\)H NMR: \(\delta = 8.23\) (d, 1H, H-5, \(J = 8\) Hz; \(J_2 = 1.5\) Hz), 7.79 (d, 1H, H-7, \(J = 9\) Hz; \(J_2 = 7\) Hz; \(J_3 = 2\) Hz), 7.54 (br d, 1H, H-8, \(J = 9\) Hz), 7.52 (d, 1H, H-6, \(J = 8\) Hz; \(J_1 = 7\) Hz; \(J_3 = 1\) Hz), 4.56 ppm (s, 2H, CH\(_2\)Br). \(^{13}\)C NMR: \(\delta = 175.4\) (C-4), 154.9 (C-8a), 149.9 (q, C-2, \(J_{CF} = 38\) Hz), 135.4 (C-7), 122.7 (C-5), 126.4 (C-6), 122.7 (C-4a), 121.4 (q, C-3, \(J_{CF} = 1\) Hz), 119.4 (q, CF\(_3\), \(J_{CF} = 277\) Hz), 118.4 (C-8), 18.8 ppm (q, CH\(_2\)Br, \(J_{CF} = 3\) Hz). MS: \(m/z (%) = 206\) ([M\(^+\)], 21), 227 ([M–Br\(^+\)], 100), 199 ([C\(_3\)H\(_6\)F\(_2\)O\(^-\)], 8.2), 120 ([C\(_3\)H\(_5\)O\(^-\)], 13.5), 92 ([C\(_3\)H\(_4\)O\(^-\)], 26). UV–Vis (methanol): \(\lambda_{max} = 206, 228, 247\) and 302 nm.

Crystallographic structural results

Figs. 1 and 2 are ORTEP drawings of the closely related 1 and 2 molecules. Their bond distances and angles are showed in Table 1. Because of extended π-bonding, the organic molecular skeletons are planar [rms deviations of atoms from the best least-squares plane of 0.0319 Å (1) and 0.0353 Å (2)].

The observed internuclear distances and angles are consistent with the description of the molecular structure in terms of formally single, double and resonant bonds. Particularly, in 1 the C–C distances of the phenyl ring are in the 1.379(3)–1.407(3) Å range, corresponding to a resonant-bond structure. Within the heterocycle, observed C–(C=O) distances of 1.473(3) and 1.471(2) Å agree with the single bond character for these links, and the short C6–C7 bond distance of 1.338(3) Å with its double bond character. Single bond C–O distances are 1.360(2) and 1.376(2) Å and d(C = = O) = 1.224(2) Å. Trifluoromethyl C–F bond distances are in the range from 1.326(2) to 1.333(2) Å. The crystal packing drawing of 1 is shown in Fig. S3.

As expected, 2 shows similar to 1 bond distances and angles of the common organic framework, being the C–Br bond distance equal to 1.955(3) Å. Compared with 1, the most noticeable difference in the crystal structure of 2 is the behavior of the –CF\(_3\) group. As described in the experimental section, the –CF\(_3\) group of 2 showed rotational disorder around the C–CF\(_3\) bond which was
interpreted in terms of four split positions with nearly uniform angular distribution and occupancies of 0.26(1), 0.18(1), 0.21(1), and 0.36(1).

A similar effect was found for a trifluoromethyl substituted hydrazine molecule [31]. This is probably due to the fact that neighboring bulky bromine ions left voids in the lattice large enough to afford the observed angular spread of relatively unhindered –CF$_3$ group, as can be appreciated in the PLATON [32,33] crystal packing drawing of 2 (Fig. 3). As expected, the small size of the –CH$_3$ group in the non-brominated compound 1 allows a more efficient packing. Therefore, it can be assumed that the disorder observed in 2 is produced by the steric effect of the bromine atom. In fact, MO calculations of 2 in the gas phase described below shows rotational energy minima for –CF$_3$ with barriers of less than about 0.35 kcal mol$^{-1}$, low enough to affords at room temperature (kT$_{295K}$ = 0.586 kcal mol$^{-1}$) the thermal occupation of all rotational conformers. The question of whether there is actual rotational movement of –CF$_3$ in the solid could be answered through motional narrowing [34] studies of the 19F NMR spectrum. This however lies outside the scope of this work and therefore it will not be pursue here any further.

Table 1

Param.	1	2
r(C1–C2)	1.395(3)	1.405
r(C1–C9)	1.380(3)	1.385
r(C2–C3)	1.379(3)	1.383
r(C3–C4)	1.407(3)	1.405
r(C4–C5)	1.473(3)	1.474
r(C5–C6)	1.471(2)	1.480
r(C6–C7)	1.338(3)	1.351
r(C6–C11)	1.503(3)	1.501
r(C7–O1)	1.360(2)	1.353(5)
r(C8–O1)	1.376(2)	1.368
r(C8–C9)	1.390(3)	1.397
r(C10–F1)	1.335(2)	1.352
r(C10–F2)	1.326(2)	1.338
r(C10–Br)	1.333(2)	1.352

Param.	1	2
r(C1–C7–C6)	126.28(16)	125.4
r(O1–C7–O2)	109.08(15)	110.3
r(O1–C8–C9)	115.90(16)	116.7
r(F1–C10–F3)	106.49(15)	106.9
r(F1–C10–C7)	112.12(16)	111.3
r(F2–C10–F1)	106.89(15)	107.5
r(F2–C10–F3)	107.33(17)	107.5
r(F3–C10–C7)	112.32(15)	112.1
r(O2–C5–C4)	122.56(17)	122.9

Ex.	Calc.
122.34(17)	121.7
120.10(18)	120.0
117.80(18)	118.5
119.89(19)	120.4
112.21(17)	121.6
118.34(17)	118.4
115.08(16)	115.4
112.59(17)	112.9
120.41(16)	119.9
118.63(16)	118.5
116.37(17)	116.5
124.63(16)	124.3
118.06(14)	119.5
124.98(17)	125.1

* Atom numbering scheme taken from Figs. 1 and 2.
* Experimental data from X-ray diffraction and computed parameters at the B3LYP/6-311++G(d,p) level of theory.

Fig. 3. Crystal packing of 3-bromomethyl-2-trifluoromethylchromone projected down the crystal c-axis. The b-axis is horizontal. Fluorine and bromine atoms are represented as green and yellow disks. The figure shows the four split angular positions observed for the –CF$_3$ group. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Structural properties

Potential energy curves (B3LYP/6-311++g(d,p)) for internal rotations around the $-\text{CF}_3$ and $-\text{CH}_3$ or $-\text{CH}_2\text{Br}$ groups for 1 and 2, respectively, were carried out to assess the minimum-energy molecular geometry adopted by both compounds in gas phase. Fig. 4 shows the optimized geometry of the title compounds. The molecules are characterized primarily by a planar conformation. For 1, the $-\text{CF}_3$ group has one fluorine atom in the plane of the molecule (anti respect to the $\text{C}−\text{C}$ bond) and one hydrogen atom of the $-\text{CH}_3$ group results syn to the same double bond (see Table 1). Furthermore, for 2 one fluorine atom is syn respect to the $\text{C}−\text{C}$ bond. The $-\text{CH}_2\text{Br}$ group presents the bromine atom in gauche orientation respect to the double bond and one hydrogen atom slightly deviated from the molecular plane (see Table 1). The potential energy curves of 2 for the dihedral angles O1C7C10F3 and C5C6C11Br are shown in Figs. 5a and 5b, respectively. As noted in Fig. 5a, the scan around the $-\text{CF}_3$ group indicates the presence of
Table 2
Experimental and calculated frequencies (cm⁻¹) and tentative assignment of fundamental vibration modes in 3-methyl-2-trifluoromethyl chromene (1).

Mode	IR\(^a\)	Raman	Frequency	Intensity
v₁	-	3076(27)	3204	6
v₂	-	3005(27)	3200	3
v₃	3094(vw)	3056(10)	3188	6
v₄	3072(vw)	3028(7)	3175	3
v₅	3054(vw)	3005(5)	3163	7
v₆	2981(6)	3095	5	
v₇	3030(vw)	2940(20)	3040	7
v₈	1651(vs)	1648(100)	1707	316
v₉	1614(s)	1615(43)	1674	35
v₁₀	1580(s)	1584(28)	1649	65
v₁₁	-	-	1303	5
v₁₂	-	-	1494	-123
v₁₃	-	-	1493(15)	1489
v₁₄	-	-	1405(7)	-112
v₁₅	1472(s)	1470(8)	1473	11
v₁₆	1414(m)	1414(13)	1447	5
v₁₇	1388(s)	1384(10)	1414	64
v₁₈	1342(31)	1346	1	
v₁₉	1306(vs)	1307(5)	1315	130
v₂₀	1247(vs)	1245(15)	1249	248
v₂₁	-	1238(17)	1244	67
v₂₂	1218(vs)	1215(6)	1224	103
v₂₃	1171(m)	-	1183	31
v₂₄	1151(m)	1165(12)	1171	15
v₂₅	1134(vs)	1149(11)	1160	227
v₂₆	-	-	1131	37
v₂₇	1107(m)	1109(7)	1121	275
v₂₈	-	-	1054	6
v₂₉	-	-	1052	78
v₃₀	-	1029(24)	1047	29
v₃₁	-	1009	1009	1
v₃₂	984(m)	982(12)	992	6
v₃₃	962(m)	-	985	2
v₃₄	875(vv)	-	884	1
v₃₅	864(m)	864(4)	873	6
v₃₆	838(vw)	831(6)	834	2
v₃₇	792(m)	795(4)	801	8
v₃₈	762(s)	761(3)	775	62
v₃₉	725(s)	725(38)	721	19
v₄₀	699(m)	-	710	9
v₄₁	673(m)	660(18)	697	6
v₄₂	-	673(8,5)	670	2
v₄₃	644(m)	647(6)	652	8
v₄₄	590(w)	592(6)	600	3
v₄₅	534(vv)	-	539	3
v₄₆	-	532(12)	530	1
v₄₇	519(w)	519(30)	521	2
v₄₈	-	-	514	<1
v₄₉	438(vw)	-	448	2
v₅₀	429(w)	431(12)	433	5
v₅₁	-	365(7)	357	5
v₅₂	-	342(7)	344	<1
v₅₃	-	325(9)	321	2
v₅₄	-	-	304	<1
v₅₅	-	302(28)	302	5
v₅₆	-	263(7)	253	4
v₅₇	-	235(10)	232	<1
v₅₈	-	190(7)	155	<1
v₅₉	-	162(25)	149	<1
v₆₀	-	-	110	<1
v₆₁	-	87	5	
v₆₂	-	-	22	<1

\(a\) vs. very strong; s. strong; m. medium; w. weak; vw. very weak; sh. shoulder.

\(b\) 6-311+g(d,p) calculated IR frequencies (cm⁻¹) and intensities (km mol⁻¹) in parentheses.

\(c\) \(\delta\), \(\gamma\) and \(\tau\) represent stretching, in-plane deformation, out-of-plane deformation and torsion modes.

six nearly equivalent energy minima, with a very low energy barrier, showing multiple conformation possibilities. However, in the resolved crystal structure, the –CF₃ group is disordered over four position consistent with the presence of four conformations as discussed above. This discrepancy can be attributed to the influence of crystal packing interactions not accounted in the gas phase calculations.

Furthermore, the scan around the −CH₃Br group (Fig. 5b) presents two equivalent energy minima at 90° and 270°, with the bromine atom gauche with respect to the molecular plane.
Table 3

Mode	Experimental	Calculated^b	Assignment^c	
v₁	3102(vw)	3224	4	ν₄ CH_₃
v₂	3075(vw)	3199	5	ν(C₁⁻H); ν(C₂⁻H); ν(C₃⁻H); ν(C₉⁻H)
v₃	–	3195	<1	ν(C₃⁻H); ν(C₉⁻H); ν(C₁⁻H)
v₄	3051(vw)	3183	6	ν(C₃⁻H); ν(C₉⁻H)
v₅	3022(wv)	3170	3	ν(C₁⁻H); ν(C₂⁻H)
v₆	3005(wv)	3148	2	ν₄ CH_₃
v₇	1660(wv)	1716	278	ν(C₁⁻H)
v₈	1640^w	1663	103	ν(C₆⁻C₇); ν(C₆⁻C₈)
v₉	1611(wv)	1647	28	ν(C₁⁻C₂); ν(C₇⁻C₈)
v₁₀	1579(wv)	1614	20	ν(C₁⁻C₂); ν(C₆⁻C₈)
v₁₁	1470(s)	1495	125	ν(C₁⁻H); ν(C₁⁻H); ν(C₂⁻H)
v₁₂	1434(w)	–	–	ν₆ CH_₃
v₁₃	1409(s)	1407	91	δ(CH₃)
v₁₄	1365(wv)	1363	1	ν(C₂⁻C₃); ν(C₄⁻C₈); ν(C₉⁻C₁)
v₁₅	1301(s)	1316	130	δ(C₁⁻H); δ(C₂⁻H); δ(C₃⁻H)
v₁₆	1250(s)	1262	45	Wagg. CH₃
v₁₇	–	1250	240	ν(C₃⁻H); ν(C₉⁻H); ν(C₈⁻O)
v₁₈	–	1245	78	δ(CH₃); δ(C₃⁻H)
v₁₉	1147(wv)	1139	192	ν(C₁⁻H); ν(C₅⁻C₆); ν(C₁⁻C₂)
v₂₀	1128(wv)	1122^w	230	ν₆ CH₃; Σ(C₁⁻C₂⁻H); ν(C₇⁻C₁₀)
v₂₁	1102(m)	1118	40	Σ(C₃⁻C₄⁻H); Σ(C₈⁻C₉⁻H); Σ(CH₃)
v₂₂	1027(w)	1048	6	γ(C₂⁻H); γ(CH₃)
v₂₃	987(m)	991	12	ν(C₁⁻C₂); ν(C₅⁻C₆); ν(C₅⁻C₄)
v₂₄	963(s)	988	1	γ(CH₃); γ(C₉⁻H); γ(CH₃)
v₂₅	928(s)	938	48	γ(C₁⁻H); γ(C₅⁻C₆); γ(C₁⁻H)
v₂₆	893(s)	–	–	γ(C₂⁻C₃⁻C₄); γ(C₈⁻C₉⁻C₁)
v₂₇	–	887	1	δ(CH₃); δ(CH₃)
v₂₈	–	860	1	δ(CH₃)-CH₃; δ(CH₃)-CH₃
v₂₉	817(11)	819	3	δ(CH₃)-H; δ(CH₃)-CH₃; δ(CH₃)-CH₃
v₃₀	803(13)	808	5	ν₃ CH₃; ν(CH₃); γ(CH₃)
v₃₁	767(s)	779	75	ν₃ CH₃; ν(CH₃); γ(CH₃)
v₃₂	727(m)	728	13	ν(C₈⁻C₉⁻C₁); Σ(C₂⁻C₃⁻C₄)
v₃₃	715(m)	722	18	ν₃ CH₃; ν(CH₃); γ(CH₃)
v₃₄	693(w)	701	10	δ(CH₃); δ(CH₃)
v₃₅	681(m)	690	3	δ(CH₃); δ(CH₃); δ(CH₃)
v₃₆	640(w)	646	12	ν₃ CH₃; ν(CH₃); γ(CH₃)
v₃₇	609(w)	600	15	ν₃ CH₃; ν(CH₃); γ(CH₃)
v₃₈	589(w)	595	4	δ(CH₃); δ(CH₃)
v₃₉	531(wv)	539	2	δ(CH₃); δ(CH₃)
v₄₀	515(wv)	–	–	δ(CH₃); δ(CH₃)
v₄₁	516(26)	521	2	δ(CH₃); δ(CH₃)
v₄₂	467(m)	471	25	δ(CH₃); δ(CH₃)
v₄₃	431(w)	441	4	δ(CH₃); δ(CH₃)
v₄₄	–	381	8	δ(CH₃); δ(CH₃); δ(CH₃)
v₄₅	–	357	–	δ(CH₃); δ(CH₃); δ(CH₃)
v₄₆	–	310(23)	1	δ(CH₃); δ(CH₃)
v₄₇	–	303	1	δ(CH₃); δ(CH₃)
v₄₈	–	295(18)	6	δ(CH₃); δ(CH₃); δ(CH₃)
v₄₉	–	289	2	δ(CH₃); δ(CH₃); δ(CH₃)
v₅₀	–	235(18)	1	δ(CH₃); δ(CH₃)
v₅₁	–	153(28)	1	δ(CH₃); δ(CH₃)
v₅₂	–	140(14)	1	δ(CH₃); δ(CH₃)
v₅₃	–	107	2	δ(CH₃); δ(CH₃)
v₅₄	–	–	7	δ(CH₃); δ(CH₃)
v₅₅	–	–	52	δ(CH₃); δ(CH₃)
v₅₆	–	–	33	δ(CH₃); δ(CH₃)
v₅₇	–	–	13	δ(CH₃); δ(CH₃)
v₅₈	–	–	–	δ(CH₃); δ(CH₃)

^a vs, very strong; s, strong; m, medium; w, weak; vw, very weak; sh, shoulder.

^b 6-311+g(dp) calculated IR frequencies (cm⁻¹) and intensities (km mol⁻¹) in parentheses.

^c ν, δ, γ and τ represent stretching, in-plane deformation, out-of-plane deformation and torsion modes.

Vibrational analysis

The solid state IR and Raman spectra of 1 and 2 are shown in Figs. 6 and 7, respectively. A tentative assignment of the observed fundamental transitions to vibration modes was assisted by the corresponding theoretical calculations. The results are presented in Tables 2 and 3, respectively. Only the modes of the most relevant characteristic functional groups of the molecules will be discussed.
3-Methyl-2-trifluoromethylchromone (1)

The very strong IR absorptions observed at 1177, 1128 and 987 cm\(^{-1}\) (Raman: 1154, 1112 (sh) and 985 cm\(^{-1}\)) are assigned to CF\(_3\) stretching modes (\(v_s\), \(\nu_{as}\) and \(\nu_{as}\), respectively) and the very weak bands located at 715 and 531 cm\(^{-1}\) (Raman: 716 and 531 cm\(^{-1}\)) are attributed to \(\delta_4\) and one of the \(\delta_{as}\) CF\(_3\) deformation modes. The predicted values are 722, 539 and 513 cm\(^{-1}\) (see Table 3).

Electronic spectra

The observed electronic spectra of methanol solutions of 1 (7.2 \(\times\) \(10^{-6}\) M) and 2 (5.9 \(\times\) \(10^{-6}\) M) are respectively shown in Figs. 8 and 9 where they are compared with the corresponding theoretical spectra obtained from computed electronic transitions (see below). The observed absorption maxima for both compounds are shown in Tables 4 and 5, together with the corresponding calculated values and a tentative assignment of electronic transitions. For simplicity, only the dominant transitions (chosen in accordance with their oscillator strength) are used to assign the observed bands. Based on these results it can be concluded that the

Table 4

Assignment	Experimental\(^a\)	\(\text{B3LYP}/6-311++G(d,p)\)
204	204 (0.354)	HOMO \(\rightarrow\) LUMO+1 (52\%)
217	217 (0.030)	HOMO \(\rightarrow\) LUMO+2 (35\%)
224	234 (0.368)	HOMO \(\rightarrow\) LUMO+2 (13\%)
242	242 (0.124)	HOMO \(\rightarrow\) LUMO+1 (44\%)
243\(^f\)	266 (0.100)	HOMO \(\rightarrow\) LUMO+1 (43\%)
308	299 (0.107)	HOMO \(\rightarrow\) LUMO (91\%)

\(^a\) Absorption maxima spectral positions are given in nm.
\(^b\) Oscillator strengths of calculated transitions, shown in parenthesis, are in atomic units.
\(^f\) Shoulder.
calculated transitions show a good correlation with experimental electronic spectra.

Molecular orbitals of 1

Fig. 10 shows the MO’s (HOMO: Highest Occupied MO; LUMO: Lowest Unoccupied MO) mainly involved in the electronic transitions considered to assign the experimental bands. The observed band at 204 nm (calculated: 204 nm, see Table 4), is attributed to a one-electron transitions from HOMO to LUMO+1, with minor contributions of HOMO to LUMO+2 and HOMO−3 to LUMO+2 excitations.

The absorption at 224 nm is mainly due to the contribution of one-electron HOMO to LUMO+1, HOMO to LUMO+2 and HOMO−3 to LUMO with minor contributions of other transitions. The calculated wavelengths are 217, 234 and 242 nm, respectively. The shoulder at 243 nm originates basically from HOMO−2 to LUMO one-electron excitation, which is assigned to the calculated absorption at 266 nm. Finally, the observed band at 308 nm (calc.
Table 5
Observed electronic spectrum of 3-bromomethyl-2-trifluoromethylchromone (2) along with calculated electronic transitions relevant for the assignments.

Experimentala	Calculatedb (B3LYP/6-311++G(d,p))	Assignment
202g	203 (0.056) HOMO → LUMO+3 (43%)	HOMO → LUMO+3 (43%)
	HOMO → LUMO+2 (24%)	HOMO → LUMO+2 (24%)
	HOMO – 5 → LUMO+1 (22%)	HOMO – 5 → LUMO+1 (22%)
206	208 (0.222) HOMO – 2 → LUMO+3 (73%)	HOMO – 2 → LUMO+3 (73%)
	HOMO → LUMO+2 (16%)	HOMO → LUMO+2 (16%)
	HOMO → LUMO+3 (11%)	HOMO → LUMO+3 (11%)
213	213 (0.192) HOMO – 5 → LUMO+1 (61%)	HOMO – 5 → LUMO+1 (61%)
	HOMO – 2 → LUMO+2 (17%)	HOMO – 2 → LUMO+2 (17%)
	HOMO → LUMO+3 (15%)	HOMO → LUMO+3 (15%)
225	225 (0.202) HOMO – 2 → LUMO+1 (41%)	HOMO – 2 → LUMO+1 (41%)
	HOMO – 5 → LUMO (32%)	HOMO – 5 → LUMO (32%)
	HOMO – 5 → LUMO+1 (11%)	HOMO – 5 → LUMO+1 (11%)
	HOMO – 3 → LUMO+1 (11%)	HOMO – 3 → LUMO+1 (11%)
228c	235 (0.071) HOMO – 3 → LUMO+1 (31%)	HOMO – 3 → LUMO+1 (31%)
	HOMO – 4 → LUMO+1 (29%)	HOMO – 4 → LUMO+1 (29%)
	HOMO – 2 → LUMO+1 (19%)	HOMO – 2 → LUMO+1 (19%)
	HOMO – 5 → LUMO (11%)	HOMO – 5 → LUMO (11%)
247	262 (0.214) HOMO → LUMO+1 (60%)	HOMO → LUMO+1 (60%)
302	308 (0.119) HOMO → LUMO (98%)	HOMO → LUMO (98%)

a Absorption maxima spectral positions are given in nm.
b Oscillator strengths of calculated transitions, shown in parenthesis, are in atomic units.
c Shoulder.

d 299 nm) is attributed to a dominant one-electron excitation from the HOMO to the LUMO.
As can be deduced from Fig. 10, the HOMO – 3 MO presents a π bonding character of some carbon atoms on the aromatic ring and of the heterocyclic double bond, besides the non-bonding contributions of the carbonic oxygen atom. The HOMO – 2 is mainly localized on the phenyl ring and shows a π-bonding character and non-bonding contribution of the oxygen of the carbonyl group. Moreover, the HOMO displays a π-bonding character mostly involving the carbon atoms of both rings and a non-bonding nature of both oxygen atoms. Furthermore, the LUMO shows some π anti-bonding contributions of the carbon atoms on the benzene ring, a non-bonding character of the oxygen atoms and some carbon atoms in the heterocyclic ring.

The LUMO+1 exhibits an extended π anti-bonding character throughout both rings, whereas the LUMO+2 presents a π anti-bonding contribution in most of the carbon atoms and non-bonding character in both oxygen atoms. According to the previous analysis, it can be inferred that the experimental absorptions at 204, 224 and 308 nm correspond to transitions that involve both fused rings. The band at 243 nm is mainly dominated by transitions from the aromatic to the heterocyclic ring (see Table 4).

Molecular orbitals of 2
The MO’s mainly involved in the electronic transitions used to assign the bands of the experimental spectrum are depicted in Fig. 11. The shoulder at 202 nm is attributed to one-electron transitions from HOMO to LUMO+3 and to minor contributions of HOMO to LUMO+2 and HOMO – 5 to LUMO+1, which is assigned to the transition calculated to occur at 203 nm (see Table 5).

The intense band at 206 nm arises mainly of one-electron excitation from HOMO – 2 to LUMO+3 (calc. 208 nm) and HOMO – 5 to LUMO+1 (calc. 213 nm) along with other small contributions of one-electron transitions. The shoulder at 228 nm originates basically from HOMO – 2 → LUMO+1 and HOMO – 5 → LUMO (calc. 225) and from HOMO – 3 → LUMO+1 and HOMO – 4 → LUMO+1 (calc. 235 nm) one-electron excitations. The observed shoulder at 247 nm (calc. 262 nm) is attributed to a nearly dominant one-electron excitation from HOMO → LUMO+1 with minor contribution of HOMO – 3 → LUMO. The absorption at 302 nm is dominated by a one-electron excitation from the HOMO to the LUMO and assigned to the transition calculated at 308 nm.

As can be observed in Fig. 11, the HOMO, involves the π-bonding orbitals of the aromatic ring and the non-bonding character of both oxygen and of some carbon atoms. HOMO – 2 is basically localized on the π-bonding orbitals of the benzene ring and on the non-bonding orbital of the carbonylic oxygen. HOMO – 3, HOMO – 4 and HOMO – 5 MO’s principally involve the non-bonding character of the bromine and both oxygen atoms, whereas HOMO – 5 presents besides the contribution of the π-bonding orbital of the double bond in the heterocyclic ring.

The LUMO exhibits π anti-bonding character of the carbon atoms on the aromatic ring and non-bonding character of some carbon and both oxygen atoms. The LUMO+1 presents an extended π anti-bonding character throughout both rings and non-bonding contribution of the bromine atom. LUMO+2 is mainly localized on the aromatic ring and shows π anti-bonding character, while LUMO+3 exhibits a d character on the bromine atom and π anti-bonding contribution of both rings. From the preliminary analysis it can be argued that the shoulder at 202 nm corresponds to transitions from the π-bonding orbitals of both rings and from the non-bonding orbitals of both oxygen atoms to the aromatic moiety of the molecule and to the bromine atom. The bands at 206, 228 and 247 nm are due to transitions that involve both fused rings, with minor contribution of transitions in the aromatic ring and with participation of the non-bonding and d orbitals of the bromine atom. The band at 302 nm is mainly dominated by a transition from both rings to the heterocycle (see Table 5).

NMR spectra
After full geometry optimization with the GAUSSIAN 03 program package (see ‘Computational methods’ in ‘Experimental section’) the 1H, and 13C chemical shifts (δ) were calculated with the GIAO method [30]. Table 6 shows the experimental and calculated chemical shifts using the B3LYP method and the triple-ζ basis set 6-311+g(2d,p) for both 1 and 2 compounds. All data sets showed a linear relationship with R-square values for each compound above 0.995.

The following correlations δcalc = δexp + b given in Fig. S4(a–d) (Supporting Information) were obtained. Fig. a: (R2 = 0.998; a = 1.069; b = 0.271); Fig. b: (R2 = 0.995; a = 1.021; b = 3.783); Fig. c: (R2 = 0.995; a = 1.016; b = 0.104), and Fig. d: (R2 = 0.992; a = 0.908; b = 18.75). Comparing the experimental and theoretical data of protons, a good agreement is observed with δ = δexp – δcalc deviation ranging from –0.1 to +0.5 and from +0.2 to +0.4 ppm for 1 and 2, respectively.

The δ-values found for the carbon atoms differ in up to 17.2 ppm. The greatest discrepancy was found for 2 in the prediction of the –CH2Br chemical shift, with values of δ = 17.2 ppm (see Table 6). This fact suggests that the presence of the heavy atom produces an appreciable diamagnetic shielding on the carbon atom due to its large number of electrons. The calculations overestimate the inductive effect of the bromine atom that actually should deshield the alpha carbon [36]. Moreover, a strong divergence was found in the chemical shift of halogenated compounds inclusive with those calculated at a relativistic approach with B986 [37]. Furthermore, calculations also fail in describe correctly the experimental data of carbon atoms in the trifluoromethyl group with values of δ = –12.2 and –12.0 ppm for 1 and 2, respectively (see Table 6). The isotropic shielding of the fluorine atoms is underestimated by theoretical calculations as observed in some
trifluoromethyl tetraisoquinolines [38] and trifluoromethyl chromones [35].

Conclusions

As noted by quantum chemical calculations and X-ray crystal structure results, the title compounds exhibit both planar conformations due to an extensive π-bonding conjugation, which extends almost along the whole molecule. The comparison between theoretical and experimental structural parameters is also in good agreement, showing that no drastic changes occurs going from solid to gas phase. Taking into account both crystal structures, the distinction occurs in the bromo-substituted chromone since the bulky bromine atom prevents the efficiency of
the packing and allows the observed rotational disorder around the C–CF$_3$ bond. This result was supported by theoretical calculations, which predict a very low energy barrier for the O1C7C10F3 dihedral angle and the possibility of multiple rotamers. The CASSCF approach is appropriate for predicting the H–C12C13 chemical shifts in both compounds, but it underestimates the isotropic shielding of the strong electron withdrawing fluorene and the bulky bromine atoms. In the last case, the disagreement between 13C calculated and experimental chemical shifts is attributed to the heavy atom effect. In addition, the calculated vibrational (IR and Raman) and electronic spectra are in good accordance with the experimental, supporting the assignment of the observed bands.

Acknowledgements

The authors thank Universidad Nacional de La Plata (UNLP), CONICET, DAAD-Germany, and Departamento de Ciencias Básicas de la Universidad Nacional de Luján for financial support. S.E.U, G.A.E and O.E.P are research fellows of CONICET, DAAD-Germany, and Departamento de Ciencias Básicas de la Universidad Nacional de Luján for financial support. S.E.U and J.L.J specially thanks Deutscher Akademischer Austauschdienst (DAAD) for financial support.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.saa.2014.10.022.

References

[1] L.D. Quin, J. Tyrell, Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals, Wiley, 2010.
[2] T. Eicher, S. Hauptmann, A. Speicher, The Chemistry of Heterocycles, Wiley, 2003.
[3] J.A. Joule, K. Mills, Heterocyclic Chemistry, John Wiley & Sons, 2010.
[4] G.P. Ellis, The Chemistry of Heterocyclic Compounds, Chromones, Chromanones, and Chromenes, Wiley, 2009.
[5] E. Grotewold, The Science of Flavonoids, Springer, 2007.
[6] B.M. Fraga, A.G. Gonzalez, O. Pino, Distribución de las corronas en la naturaleza: Coronas del Ceornium tricoccum L. Anal. Quim. 71 (1975) 347–369.
[7] M.T. Giardini, G. Rea, B. Berra, Bio-Farms for Nutraceuticals: Functional Food and Safety Control By Biosensors, Landes Bioscience, 2010.
A. Spek, PLATON, an integrated tool for the analysis of the results of a single crystal structure determination, Acta Crystallogr. Sect. A 46 (1990) c34.

A.L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 1998.

C.P. Slichter, Principles of Magnetic Resonance, Springer-Verlag, Heidelberg, 1990.

L.P. Avendaño Jiménez, G. Echeverría, O.E. Piro, S.E. Ulic, J.L. Jios, Vibrational, electronic and structural properties of 6-nitro- and 6-amino-2-trifluoromethylchromone: an experimental and theoretical study, J. Phys. Chem. A. 117 (2013) 2169–2180.

F.D.P. Morisso, H. Stassen, P.R. Livotto, V.E.U. Costa, 1H and 13C chemical shift calculations for 12-oxa-pentacyclo[6.2.1.16,9.02,7.02,10]dodeca-4-eno systems using GIAO method at different levels of theory, J. Mol. Struct. 738 (2005) 281–290.

A.C. Neto, L.C. Ducati, R. Rittner, C.F. Tormena, R.H. Contreras, G. Frenking, Heavy halogen atom effect on 13C NMR chemical shifts in monohalo derivatives of cyclohexane and pyran. Experimental and theoretical study, J. Chem. Theory Comput. 5 (2009) 2222–2228.

I. Cakmak, GIAO calculations of chemical shifts in enantiometrically pure 1-trifluoromethyl tetrahydroisoquinoline alkaloids, J. Mol. Struct. (THEOCHEM) 716 (2005) 143–148.