A MIKLIN–HÖRMANDER MULTIPLIER THEOREM FOR THE PARTIAL HARMONIC OSCILLATOR

XIAOYAN SU, YING WANG, AND GUIXIANG XU

Abstract. We prove a Mikhlin–Hörmander multiplier theorem for the partial harmonic oscillator $H_{\text{par}} = -\partial_{\rho}^2 - \Delta_x + |x|^2$ for $(\rho, x) \in \mathbb{R} \times \mathbb{R}^d$ by using the Littlewood–Paley g and g^* functions and the associated heat kernel estimate. The multiplier we have investigated is defined on $\mathbb{R} \times \mathbb{N}$.

1. Introduction

In this paper, we prove a Mikhlin–Hörmander multiplier theorem for the partial harmonic oscillator in \mathbb{R}^{d+1}:

$$H_{\text{par}} = -\partial_{\rho}^2 - \partial_{x_1}^2 - \cdots - \partial_{x_d}^2 + |x|^2.$$

The Schrödinger flows for the operator H_{par} arises in various branches of physics, such as the Bose–Einstein condensates, and the propagation of mutually incoherent wave packets in nonlinear optics (see [6]).

The classical Mikhlin–Hörmander multiplier theorem states that for $1 < p < \infty$, $\|(m\hat{f})^\vee\|_p \leq C_{p,d}\|f\|_p$ provided that the Fourier multiplier $m \in C^{(\frac{d}{2}+1)}(\mathbb{R}^d \setminus \{0\})$ and satisfies $|\partial^\alpha m(\xi)| \leq C_{\alpha} |\xi|^{-\alpha}$ for all multi-indices α with $|\alpha| \leq \lfloor \frac{d}{2} \rfloor + 1$. This result can be proved either by the Calderón–Zygmund singular integral operator theory in [5, 11], or by the Littlewood–Paley g-functions in [12]. The use of the Fourier transform stems from the fact that the Laplacian operator only has the continuous spectrum in \mathbb{R}^d.

For the operators with discrete spectrum, such as the spherical Laplacian operator $-\Delta_{S^d}$, or the Hermite operator $-\Delta_x + |x|^2$, a sufficient condition to guarantee the L^p-boundedness of multipliers is the proper decay in the finite differences. More precisely, the multiplier operator for Hermite expansions is defined by

$$T_m f(x) = \sum_{\mu \in \mathbb{N}^d} m(2|\mu| + d) (f(x), \Phi_\mu) \Phi_\mu(x),$$

where Φ_μ is a Hermite function, see Section 2 below. By Theorem 1 in [14], T_m is bounded on $L^p(\mathbb{R}^d)$ for $1 < p < \infty$ provided that

$$|\Delta_j^k m(k)| \leq C_N k^{-j} \quad \text{for} \quad j = 0, 1, \ldots, N,$$

whenever $N > \frac{d}{2}$, where Δ_j^k is the j-th forward finite difference. This above result is shown by use of the Littlewood–Paley g-functions, see [1, 14].

In this paper, our goal is to show a Mikhlin–Hörmander multiplier theorem for the Schrödinger operator H_{par}, which serves as an example for which the multiplier is defined in both continuous and discrete variables. We remark that the operator...
H_{par} is a polynomial perturbation of the Laplacian operator. Some multiplier results and Littlewood–Paley square function estimates for operators with polynomial perturbations have been established in [2, 3, 4] by using nilpotent Lie algebras. Recently, Killip, Miao, etc, make use of by the Calderón–Zygmund singular integral operator theory in [5, 11] to show the Mikhlin-Hörmander multiplier theorem for the Schrödinger operator $L_a := -\Delta + \frac{a}{\rho^2}$, $a \geq \frac{(d-2)^2}{4}$ in [7]. This result was crucially used in [8, 10] to obtain the scattering result of the solution for nonlinear Schrödinger and wave equations with the inverse-square potential.

Our method closely relies on the structure of the operator H_{par} and the Mehler formula, and offers a different view towards understanding the operator H_{par}. We can refer to a companion paper [13] for the Riesz transform and Sobolev spaces associated to the operator H_{par}.

1.1. Main result. For smooth function $f \in C^\infty_0(\mathbb{R}^{d+1})$, $H_{\text{par}} f$ can be reformulated by Fourier analysis as follows:

$$H_{\text{par}} f(\rho, x) = \sum_{\mu \in \mathbb{N}^{d+1}} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i\tau \rho} (\tau^2 + 2|\mu| + d)(F_{\rho} f(\tau, \cdot), \Phi_{\mu}(\cdot)) \Phi_{\mu}(x) \, d\tau$$

$$= \sum_{k=0}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i\tau \rho} (\tau^2 + 2k + d) P_k F_{\rho} f(\tau, x) \, d\tau, \quad (1.1)$$

where $F_{\rho} f$ is the Fourier transform with respect to ρ, and P_k is the projection to the kth eigenspace of the operator H_{par} in x, which is spanned by the eigenfunctions Φ_k's for $|\mu| = k$: see Section 2.2 below.

Let $m = m(\tau, k)$ be defined on $\mathbb{R} \times \mathbb{N}$. We define the operator T_m for H_{par} by

$$T_m f(\rho, x) = \sum_{k=0}^{\infty} \int_{\mathbb{R}} e^{i\tau \rho} m(\tau, k) P_k F_{\rho} f(\tau, x) \, d\tau, \quad \text{for any } f \in C^\infty_0(\mathbb{R}^{d+1}). \quad (1.2)$$

In particular, if $m(\tau, k) = m(\tau^2 + 2k + d)$, the multiplier operator T_m coincides with $m(H_{\text{par}})$ defined by the functional calculus (see [13]), so the multipliers defined in (1.2) are more general than those defined by the spectral measure.

The main result in this paper is as follows:

Theorem 1.1 (Mikhlin–Hörmander multiplier). Suppose that a function $m(\tau, k)$ defined on $\mathbb{R} \times \mathbb{N}$ satisfies the estimates

$$\left| \frac{\partial^N}{\partial \tau^N} m(\tau, k) \right| \leq C(\tau^2 + 2k + d)^{-\frac{N}{2}}$$

and

$$|\Delta_k^N m(\tau, k)| \leq C(\tau^2 + 2k + d)^{-N} \quad (1.3)$$

for all $0 \leq N \leq \left\lfloor \frac{d+1}{2} \right\rfloor + 1$. Then, we have for any $1 < p < \infty$

$$\|T_m f\|_{L^p(\mathbb{R}^{d+1})} \leq C\|f\|_{L^p(\mathbb{R}^{d+1})}.$$

Remark 1.2. The similar result for the generalized partial harmonic oscillator $-\Delta_y - \Delta_x + |x|^2$ with $y \in \mathbb{R}^d_1$ and $x \in \mathbb{R}^d_2$ holds by the same argument.

Let $m(r) \in C^\infty_0(\mathbb{R}; [0, 1])$ with $\text{supp } m \subseteq [\frac{3}{4}, \frac{3}{2}]$. Denote $m_{\pm}(r) = m(2^{-j} r)$, and the operator $D_j f(\rho, x) = T_{m_{\pm}(\sqrt{\tau^2 + 2k + d})} f(\rho, x)$. As a direct consequence of Theorem 1.1 and Khintchine’s inequality, we have the following Littlewood–Paley square function estimates for the operator H_{par}.

Corollary 1.3. For $1 < p < \infty$, we have
\[
\|f\|_{L^p(\mathbb{R}^{d+1})} \sim \left\| \left(\sum_{j=0}^{\infty} |\Delta_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^{d+1})}.
\]
Furthermore, for $\alpha \geq 0$, $1 < p < \infty$, the Sobolev spaces $W^\alpha_{H_{par}}$ associated to the operator H_{par} (see [13]) can be characterized by
\[
\|f\|_{W^\alpha_{H_{par}}(\mathbb{R}^{d+1})} \sim \left\| \left(\sum_{j=0}^{\infty} |2^{j\alpha} \Delta_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^{d+1})}.
\]
We omit the proof and the readers can refer to [5, 11].

Lastly, this paper is organized as follows: in Section 2, we introduce some preliminary results about Hermite functions, the Mehler formula and the heat kernel of the operator H_{par}. In Section 3, we show the proof of Theorem 1.1.

Acknowledgements. The authors would like to thank Professor Changxing Miao for his valuable comments and suggestions. G. Xu was supported by National Key Research and Development Program of China (No. 2020YFA0712900) and by NSFC (No. 11831004).

2. Preliminaries

2.1. Hermite functions. We first recall the Hermite functions on \mathbb{R}^d as in [15]. The Hermite functions h_k on \mathbb{R} are defined by
\[
h_k(x) = (2^{k}k!\sqrt{\pi})^{-1/2}(-1)^k \frac{d^k}{dx^k}(e^{-x^2})e^{-x^2/2}.
\]
Let $\mu = (\mu_1, \ldots, \mu_d)$ be a multi-index and $x \in \mathbb{R}^d$. The Hermite functions Φ_μ on \mathbb{R}^d, is defined by taking the product of the 1-dimensional Hermite functions $h_{\mu_j}(x_j)$:
\[
\Phi_\mu(x) = \prod_{j=1}^{d} h_{\mu_j}(x_j).
\]
The functions Φ_μ form a complete orthonormal system for $L^2(\mathbb{R}^d)$. If we define the operators $A_j = -\frac{\partial}{\partial x_j} + x_j$ for $1 \leq j \leq d$, then
\[
A_j \Phi_\mu = \sqrt{2(\mu_j + 1)} \Phi_{\mu + e_j},
\]
where e_j is the jth coordinate vector in \mathbb{N}^d.

Denote by P_k the spectral projection to the kth eigenspace of $-\Delta_x + |x|^2$,
\[
P_k f(x) = \int_{\mathbb{R}^d} \sum_{|\mu| = k} \Phi_\mu(x) \Phi_\mu(x') f(x') \, dx'.
\]
These projections are the integral operators with kernels
\[
\Phi_k(x, x') = \sum_{|\mu| = k} \Phi_\mu(x) \Phi_\mu(x').
\]
The Mehler formula for $\Phi_k(x, x')$ is
\[
\sum_{k=0}^{\infty} r^k \Phi_k(x, x') = \pi^{-d/2}(1 - r^2)^{-d/2} e^{-\frac{1}{2} \frac{|x|^2 + |x'|^2 + \frac{2 \rho \rho'}{1 - r^2}}{1 - r^2}},
\]
for $0 < r < 1$, see [15, p. 6].

The following lemmas are the direct consequences of the Mehler formula, which will be frequently used in the next section.

Lemma 2.1 ([15], P. 92). For all $t > 0$, we have
\[
\sum_{\mu \in \mathbb{N}^d} e^{-t|\mu|} \phi_{\mu}(x) \lesssim t^{-\frac{d}{2}}, \quad \forall x \in \mathbb{R}^d,
\]
\[
\int_{\mathbb{R}^d} \left(\sum_{\mu \in \mathbb{N}^d} e^{-t(2|\mu|+d)} \phi_{\mu}(x) \right) dx = C(\sinh t)^{-d}.
\]

2.2. Heat kernel for the operator H_{par}.

We write $z = (\rho, x)$ or $z' = (\rho', x')$ to denote variables in \mathbb{R}^{d+1} with $\rho, \rho' \in \mathbb{R}$ and $x, x' \in \mathbb{R}^d$.

From (1.1), we can define the heat semigroup with $f \in C_0^\infty(\mathbb{R}^{d+1})$ as follows:
\[
e^{-tH_{\text{par}}} f(\rho, x) = \sum_{\mu \in \mathbb{N}^d} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i\tau \rho} e^{-t(\tau^2 + 2|\mu| + d)} (F_\mu f(\tau, \cdot), \phi_{\mu}(\cdot)) \phi_{\mu}(x) d\tau
\]
\[
= \sum_{k=0}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i\tau \rho} e^{-t(\tau^2 + 2k + d)} P_k(F_\mu f)(\tau, x) d\tau
\]
\[
= \int_{\mathbb{R}^{d+1}} K(t, z, z') f(z') dz',
\]
where we use the Mehler formula (2.3) in the last step and
\[
K(t, z, z') = 2^{\frac{d+2}{2}} \pi^{\frac{d+1}{2}} t^{-1/2} (\sinh 2t)^{-d/2} e^{-B(t, z, z')},
\]
and
\[
B(t, z, z') = \frac{1}{4} (2 \coth 2t - \tanh t) |x - x'|^2 + \frac{\tanh t}{4} |x + x'|^2 + \frac{(\rho - \rho')^2}{4t}.
\]

3. Proof of Theorem 1.1

We follow the arguments as in [5, 12]. It suffices to show the following estimates
\[
\|T_m f\|_{L^p} \leq C \|g_{N+1}(T_m f)\|_{L^p} \leq C \|g_N(f)\|_{L^p} \leq C \|f\|_{L^p}
\]
for some integer $N \in \mathbb{N}$.

First, given $N \in \mathbb{N}$, we define the Littlewood–Paley g_N-function by
\[
g_N(f)(z) = \left(\int_0^\infty |\partial_t^N e^{-tH_{\text{par}}} f(z)|^2 t^{2N-1} dt \right)^{1/2}.
\]

Lemma 3.1. For each $N \geq 1$ and $f \in L^2(\mathbb{R}^{d+1})$, there holds
\[
\|g_N(f)\|_{L^2(\mathbb{R}^{d+1})}^2 \leq 2^{-2N} \Gamma(2N) \|f\|_{L^2(\mathbb{R}^{d+1})}^2.
\]

\(\square\)
Proof. By the orthogonality of Hermite functions, we have
\[\| e^{-tH_{\rho}} f \|_{L^2(\mathbb{R}^d)}^2 = \sum_{k=0}^{\infty} \left\| e^{i\tau k} (\tau^2 + 2k + d)^N e^{-t(\tau^2 + 2k + d)} P_k(\mathcal{F}_\rho f)(\tau, \cdot) \right\|_{L^2(\mathbb{R}^d)}^2. \]

It follows from the Plancherel theorem in ρ that
\[g_N(f)(z) \parallel_{L^2(\mathbb{R}^{d+1})} = \sum_{k=0}^{\infty} \int_{\mathbb{R}^{d+1}} \int_{0}^{\infty} |\partial_{\tau} e^{-tH_{\rho}} f| (z) |(\tau^2 + 2k + d)^N e^{-t(\tau^2 + 2k + d)} P_k(\mathcal{F}_\rho f)(\tau, \cdot)|^2 t^{2N-1} dt \, d\tau \, dx \]
\[= \sum_{k=0}^{\infty} \int_{\mathbb{R}^{d+1}} |P_k(\mathcal{F}_\rho f)(\tau, \cdot)|^2 \left[\int_{0}^{\infty} (\tau^2 + 2k + d)^N e^{-2t(\tau^2 + 2k + d)} t^{2N-1} dt \right] d\tau \, dx \]
\[= 2^{-2N} \Gamma(2N) \sum_{k=0}^{\infty} \int_{\mathbb{R}^{d+1}} |P_k(\mathcal{F}_\rho f)(\tau, \cdot)|^2 d\tau \, dx \]
\[= 2^{-2N} \Gamma(2N) \parallel f \parallel_{L^2(\mathbb{R}^{d+1})}^2, \]
which completes the proof. \qed

Lemma 3.2 (Equivalence of L^p norms). Let $1 < p < \infty$ and $N \in \mathbb{N}$. Then, there exist $C_1, C_2 > 0$ such that for all $f \in L^p$, we have
\[C_1 \parallel f \parallel_{L^p(\mathbb{R}^{d+1})} \leq \parallel g_N(f) \parallel_{L^p(\mathbb{R}^{d+1})} \leq C_2 \parallel f \parallel_{L^p(\mathbb{R}^{d+1})}. \]

Proof. The fact that $\parallel g_N(f) \parallel_{L^2(\mathbb{R}^{d+1})} = C \parallel f \parallel_{L^2(\mathbb{R}^{d+1})}$ is given by Lemma 3.1. For general case $p \in (1, \infty)$, we will view g_N as a singular integral with a kernel taking values in the Hilbert space $\mathcal{H}_2 := L^2(\mathbb{R}^+; t^{2N-1} dt)$ by the auxiliary function
\[\tilde{g}_N(f)(t, z) = \int_{\mathbb{R}^{d+1}} \frac{\partial^N K(t, z, z')}{\partial t^N} f(z') \, dz', \]
where $K(t, z, z')$ is the kernel (2.6). By definition, we have
\[\parallel \tilde{g}_N(f)(\cdot, z) \parallel_{\mathcal{H}_2} = g_N(f)(z), \]
\[\parallel \parallel \tilde{g}_N(f)(\cdot, z) \parallel_{\mathcal{H}_2} = \parallel g_N(f) \parallel_{L^p(\mathbb{R}^{d+1})}. \]

The kernel of $\tilde{g}_N(f)$ is
\[G_N(t, z, z') = \frac{\partial^N K(t, z, z')}{\partial t^N}. \]

We claim the following facts hold:
\[|G_N(t, z, z')| \lesssim t^{-\frac{d+1}{2}} e^{-\frac{1}{16} |z-z'|^2}, \tag{3.3} \]
\[|\partial_z G_N(t, z, z')| + |\partial_{z'} G_N(t, z, z')| \lesssim t^{-\frac{d+1}{2}} e^{-\frac{1}{16} |z-z'|^2}. \tag{3.4} \]

Now we show the estimates (3.3) and (3.4). For $N = 0$, the basic estimates that
\[2 \coth 2t - \tanh t > \coth 2t > \frac{1}{2t}, \]
\[\tanh t > t, \ \sinh 2t \geq t \]

imply the upper bound
\[|K(t, z, z')| \leq C t^{-\frac{d+1}{2}} e^{-\frac{1}{16} |z-z'|^2} e^{-\frac{1}{16} |z-z'|^2}. \]
Let $N \geq 1$. By using the high order derivative formula
\[
\frac{d^N \sinh t}{dt^N} = -i^{N+1} \sin \left(it + \frac{\pi N}{2} \right)
\]
and the Faà di Bruno formula, we get
\[
\frac{d^N (\sinh t)^{-d/2}}{dt^N} = \sum_{m_1, \ldots, m_N} C_{N, m_1, \ldots, m_N} (\sinh t)^{-d/2 - (m_1 + \cdots + m_N)} \prod_{j=1}^N \left(\frac{d^j \sinh t}{dt^j} \right)^{m_j},
\]
where the sum is over all $m_i \in \mathbb{Z}_{\geq 0}$ such that $m_1 + 2m_2 + \cdots + Nm_N = N$. As
\[
|\sin \left(it + \frac{\pi N}{2} \right)| \lesssim \begin{cases} 1, & 0 < t < 1, \\ e^t, & t > 1, \end{cases}
\]
it follows that
\[
\left| \frac{d^N (\sinh 2t)^{-d/2}}{dt^N} \right| \lesssim t^{-d/2 - N}. \tag{3.5}
\]
To estimate the derivatives for $B(t, z, z')$, we use the following formulas:
\[
\frac{d^N \coth t}{dt^N} = (-1)^N 2^{N+1} \Li_{-N}(e^{-2t}),
\]
\[
\frac{d^N \tanh t}{dt^N} = -2^{N+1} \Li_{-N}(-e^{2t}),
\]
where \Li_{-N} is the polylogarithm in [9]. Hence, we have
\[
\frac{\partial^N B(t, z, z')}{\partial t^N} = \frac{1}{4} \left[2^{N+1} (-1)^N 2^{N+1} \Li_{-N}(e^{-4t}) - 2^{N+1} \Li_{-N}(-e^{2t}) \right] |x - x'|^2
\]
\[
- 2^{N-1} \Li_{-N}(-e^{2t}) |x + x'|^2 + C_N \frac{(\rho - \rho')^2}{t^{N+1}}. \tag{3.6}
\]
Since $|\Li_{-N}(s)| \lesssim 1$ for $0 < s < 1/2$, we have $|\Li_{-N}(e^{-t})| \lesssim 1$ when $t > 1$. By (7.187) and (7.191) in [9], we also have $|\Li_{-N}(-e^t)| \lesssim 1$ when $t > 1$.

When $0 < t < 1$, by the Laurent expansions of $\tanh t$ and $\coth t$, we have
\[
\left| \frac{d^N \coth t}{dt^N} \right| \lesssim t^{-(N+1)}, \quad \left| \frac{d^N \tanh t}{dt^N} \right| \lesssim 1.
\]
From this and (3.6), we have for $N \geq 1$ that
\[
\left| \frac{\partial^N B(t, z, z')}{\partial t^N} \right| \lesssim t^{-(N+1)} |z - z'|^2 + |x + x'|^2. \tag{3.7}
\]
Direct computation gives the following upper bound for the derivatives in z and z',
\[
\left| \frac{\partial^{N+1} B(t, z, z')}{\partial t^N \partial z} \right| + \left| \frac{\partial^{N+1} B(t, z, z')}{\partial t^N \partial z'} \right| \lesssim t^{-(N+1)} |z - z'| + |x + x'|. \tag{3.8}
\]
Therefore, we obtain
\[
\frac{\partial^N K(t, z, z')}{\partial t^N} = \sum_{N_1+N_2=N} C_{N_1,N_2} \frac{d^{N_1}(t^{-1/2})}{dt^{N_1}} \frac{d^{N_2}(\sinh 2t)^{-d/2}}{dt^{N_2}} e^{-B(t,z,z')} + \sum_{N_1+N_2+N_3=N} C_{N_1,N_2,N_3} \frac{d^{N_1}(t^{-1/2})}{dt^{N_1}} \frac{d^{N_2}(\sinh 2t)^{-d/2}}{dt^{N_2}} e^{-B(t,z,z')} \partial^{N_3} B(t, z, z').
\]
Using the upper bound of (3.5), (3.7), and \(\lambda^N e^{-\lambda} \lesssim 1\), we have
\[
\left| \frac{\partial^N}{\partial t^N} K(t, z, z') \right| \lesssim \sum_{N_1+N_2=N} t^{-1/2-N_1-\frac{d}{2}-N_2} e^{-\frac{1}{16} |z-z'|^2 - \frac{1}{4} |x+x'|^2} + \sum_{N_1+N_2+N_3=N} t^{-1/2-N_1-\frac{d}{2}-N_2} \left(t^{N_3-1} e^{-\frac{1}{16} |z-z'|^2 - \frac{1}{4} |x+x'|^2} \right)
\]
\[
\lesssim t^{-\frac{d+1}{2}} e^{-\frac{1}{16} |z-z'|^2} + \sum_{N_3 \geq 1} t^{-\frac{d+1}{2}+N_3-N} e^{-\frac{1}{16} |z-z'|^2}
\]
which is (3.3). By (3.8), the similar argument gives (3.4).

The estimates (3.3) and (3.4) would imply that \(G_N\) is a Calderón–Zygmund kernel with value in \(\mathcal{H}_2\), and hence we have \(\|g_N(f)\|_{L^p(\mathbb{R}^{d+1})} \leq C_2 \|f\|_{L^p(\mathbb{R}^{d+1})}\). The reverse inequality follows from the boundedness of \(g_N\), duality argument and Lemma 3.1. In fact, by integrating (3.3) in \(t\),
\[
\|G_N(\cdot, z, z')\|_{\mathcal{H}_2}^2 \lesssim \int_0^1 t^{-(d+1)-2N} e^{-\frac{1}{16} |z-z'|^2} \, dt + \int_1^\infty t^{-(d+1)-2N} e^{-\frac{1}{16} |z-z'|^2} \, dt
\]
\[
\lesssim |z' - z|^{-2(d+1)} + e^{-|z-z'|^2}
\]
\[
\lesssim |z' - z|^{-2(d+1)}.
\]
Similarly, by (3.4), we have
\[
\|\partial_z G_N(\cdot, z, z')\|_{\mathcal{H}_2}, \|\partial_{z'} G_N(\cdot, z, z')\|_{\mathcal{H}_2} \lesssim |z' - z|^{-(d+2)}.
\]
That is, \(G_N(t, z, z')\) is a Calderón–Zygmund kernel with value in \(\mathcal{H}_2\), and hence for all \(p \in (1, \infty)\),
\[
\|g_N(f)\|_{L^p(\mathbb{R}^{d+1})} = \|\tilde{g}_N(f)(\cdot, z)\|_{L^p(\mathbb{R}^{d+1})} \leq C \|f\|_{L^p(\mathbb{R}^{d+1})}.
\]
As mentioned above, by the duality argument, we can obtain the reverse inequality, and complete the proof.

Next, we define the \(g_N^*\) function by
\[
g_N^*(f)(z) = \int_0^\infty \int_{\mathbb{R}^{d+1}} t^{1-\frac{d+1}{4}} (1 + t^{-1} |z' - z|^2)^{-N} |\partial_t e^{-tH|z'|} f(z')|^2 \, dz' \, dt.
\] (3.9)
By (1.1), the Schwartz kernel of the operator $e^{-t\partial_{Hpar}}T_m$ is

$$M_t(z, z') = \sum_{\mu \in \mathbb{N}^d} \int_{\mathbb{R}} e^{\tau (\mu - \mu')} e^{-t(\tau^2 + 2|\tau| + d)} m(\tau, |\mu|) d\tau \Phi_\mu(x') \Phi_\mu(x)$$

$$= \sum_{k=0}^{\infty} \int_{\mathbb{R}} e^{\tau (\mu - \mu')} e^{-t(\tau^2 + 2k + d)} m(\tau, k) \Phi_k(x, x') d\tau. \quad (3.10)$$

The following result is the key estimate to show the second inequality in (3.1), that is where we use the decay assumption on m.

Lemma 3.3 (Pointwise estimate). Under the assumption (1.3), for any $z \in \mathbb{R}^{d+1}$, the following pointwise estimate

$$g_{N+1}(T_m f)(z) \leq C g_N^*(f)(z) \quad (3.11)$$

holds for all $0 \leq N \leq \lfloor \frac{d+1}{2} \rfloor + 1$.

Proof. Observe that

$$\partial^N \partial_s e^{-(t+s)\partial_{Hpar}}(T_m f)(z) = \partial^N (e^{-t\partial_{Hpar}}T_m)(\partial_s e^{-s\partial_{Hpar}} f)(z). \quad (3.12)$$

In particular, by choosing $s = t$, we have

$$\partial^N e^{-2t\partial_{Hpar}}(T_m f)(z) = \partial^N (e^{-t\partial_{Hpar}}T_m)(\partial_t e^{-t\partial_{Hpar}} f)(z).$$

In order to show (3.11), it suffices to show for $t > 0$ and each $z \in \mathbb{R}^{d+1}$ that

$$|\partial^N e^{-2t\partial_{Hpar}}(T_m f)(z)|^2 \lesssim t^{-\frac{d+1}{2} - 2N} \int_{\mathbb{R}^{d+1}} (1 + t^{-1}|z' - z|^2)^{-N} |\partial_t e^{-t\partial_{Hpar}} f(z')|^2 dz'. \quad (3.13)$$

This estimate (3.13) follows from the following claim whose proof we postpone in next lemma:

$$\int_{\mathbb{R}^{d+1}} (1 + t^{-1}|z' - z|^2)^N |\partial^N M_t(z, z')|^2 dz' \lesssim t^{-\frac{d+1}{2} - 2N}. \quad (3.14)$$

By (3.12), (3.14) and the Cauchy–Schwarz inequality, we obtain

$$|\partial^N e^{-2t\partial_{Hpar}}(T_m f)(z)|^2 = |\partial^N (e^{-t\partial_{Hpar}}T_m)(\partial_t e^{-t\partial_{Hpar}} f)(z)|^2$$

$$\lesssim \int_{\mathbb{R}^{d+1}} (1 + t^{-1}|z' - z|^2)^N |\partial^N M_t(z, z')|^2 dz'$$

$$\times \int_{\mathbb{R}^{d+1}} (1 + t^{-1}|z' - z|^2)^{-N} |\partial_t e^{-t\partial_{Hpar}} f(z')|^2 dz'$$

$$\lesssim t^{-\frac{d+1}{2} - 2N} \int_{\mathbb{R}^{d+1}} (1 + t^{-1}|z' - z|^2)^{-N} |\partial_t e^{-t\partial_{Hpar}} f(z')|^2 dz',$$

which gives (3.13) and hence completes the proof.

Now we turn to show the claim (3.14), which follows from the following lemma.
Lemma 3.4 (Estimates for the kernel M_t). Under the assumption (1.3), for all $0 \leq N \leq \left[\frac{d+1}{2}\right] + 1$, we have

$$|\partial^N_t M_t(z, z')| \lesssim_N t^{-\frac{d+1}{2} - N},$$

$$\int_{\mathbb{R}^{d+1}} |z' - z|^{2N} |\partial^N_t M_t(z, z')|^2 \, dz' \lesssim_N t^{-\frac{d+1}{2} - N}. \tag{3.16}$$

Proof. We firstly prove the pointwise estimate (3.15). By (2.4), (3.10), the Cauchy–Schwarz inequality, the L^∞ bound of m, and the fact that $\lambda^\mathcal{N} \leq 1$, for any $\lambda > 0$, we have

$$|\partial^N_t M_t(z, z')|$$

$$= \left| \sum_{\mu \in \mathbb{N}^d} \int_{\mathbb{R}} e^{ir(\rho - \rho')}(r^2 + 2|\mu| + d)^N e^{-t(r^2 + 2|\mu| + d)} m(\tau, |\mu|) \, d\tau \Phi_\mu(x') \Phi_\mu(x) \right|$$

$$\lesssim t^{-N} \sum_{\mu \in \mathbb{N}^d} \int_{\mathbb{R}} e^{-\frac{1}{2}(r^2 + 2|\mu| + d)} \, d\tau |\Phi_\mu(x') \Phi_\mu(x)|$$

$$\lesssim t^{-N} e^{-\frac{1}{2}d^2} \int_{\mathbb{R}} e^{-\frac{1}{2}r^2} \, d\tau \left(\sum_{\mu \in \mathbb{N}^d} e^{-t|\mu|} |\Phi_\mu(x')|^2 \right)^{\frac{1}{2}} \left(\sum_{\mu \in \mathbb{N}^d} e^{-t|\mu|} |\Phi_\mu(x)|^2 \right)^{\frac{1}{2}}$$

$$\lesssim t^{-\frac{d+1}{2} - N},$$

which gives (3.15).

Next, we show (3.16). We firstly consider the case $N = 0$, that is

$$\int_{\mathbb{R}^{d+1}} |M_t(z, z')|^2 \, dz' \lesssim t^{-\frac{d+1}{2}}. \tag{3.17}$$

From (3.10), we know that

$$M_t(z, z') = \int_{\mathbb{R}} e^{-ir\rho} \left\{ e^{ir\rho} \sum_{\mu \in \mathbb{N}^d} e^{-t(r^2 + 2|\mu| + d)} m(\tau, |\mu|) \Phi_\mu(x') \Phi_\mu(x) \right\} \, d\tau.$$

Combining this with the Plancherel theorem in ρ', the L^∞ bound of m, (2.4) and (2.5), we have

$$\int_{\mathbb{R}^{d+1}} |M_t(z, z')|^2 \, dz' = \int_{\mathbb{R}^{d+1}} \left| \sum_{\mu \in \mathbb{N}^d} e^{-t(r^2 + 2|\mu| + d)} m(\tau, |\mu|) \Phi_\mu(x') \Phi_\mu(x) \right|^2 \, d\tau \, dx'$$

$$\lesssim \int_{\mathbb{R}} e^{-2r^2} \, d\tau \int_{\mathbb{R}^{d+1}} \left| \sum_{\mu \in \mathbb{N}^d} e^{-t(2|\mu| + d)} \Phi_\mu(x') \right|^2 \, dx' \sum_{\mu \in \mathbb{N}^d} e^{-t(2|\mu| + d)} \Phi_\mu(x)^2$$

$$\lesssim t^{-\frac{d}{2}}(\sinh t)^{-d} e^{-td} t^{-\frac{d}{2}} \lesssim t^{-\frac{d+1}{2}}. \tag{3.18}$$

This implies (3.16) when $N = 0$.

For $N \geq 1$, by the triangle inequality, we have

$$\int_{\mathbb{R}^{d+1}} |z' - z|^{2N} |\partial^N_t M_t(z, z')|^2 \, dz'$$

$$\lesssim \int_{\mathbb{R}^{d+1}} |(\rho' - \rho)^N \partial^N_t M_t(z, z')|^2 \, dz' + \sum_{\beta \in \mathbb{N}^d: |\beta| = N} \int_{\mathbb{R}^{d+1}} |(x - x')^\beta \partial^N_t M_t(z, z')|^2 \, dz'$$

$$=: I_N + \Pi_N. \tag{3.19}$$
For the first term, by integration by parts, we have
\[
(\rho - \rho')^N \partial^N_t M_t(z, z') = \int_\mathbb{R} e^{-i\tau \rho'} \left\{ (-i)^N e^{i\rho} \sum_{\mu \in \mathbb{N}^d} \frac{\partial^N}{\partial \tau^N} \left[(\tau^2 + 2\mu| + d)^N e^{-(\tau^2 + 2\mu| + d)} m(\tau, |\mu|) \right] \Phi_{\mu}(x') \Phi_{\mu}(x) \right\} d\tau.
\]

In the following, we write \(f(\tau, k) = (\tau^2 + 2k + d)^N e^{-(\tau^2 + 2k + d)} m(\tau, k) \) for brevity. By the Plancherel theorem in \(\rho' \), we have
\[
I_N = \int_{\mathbb{R}^{d+1}} \left| (\rho' - \rho)^N \partial^N_t M_t(z, z') \right|^2 dz' = \int_{\mathbb{R}^{d+1}} \left| \sum_{\mu \in \mathbb{N}^d} \frac{\partial^N}{\partial \tau^N} f(\tau, k) \Phi_{\mu}(x') \Phi_{\mu}(x) \right|^2 d\tau dx'.
\]

We claim the following estimate holds under the first assumption in (1.3),
\[
\left| \frac{\partial^N}{\partial \tau^N} f(\tau, |\mu|) \right| \lesssim t^{-\frac{N}{2}} e^{-\frac{\tau}{4}(\tau^2 + 2|\mu| + d)}.
\]

In fact, notice that for \(j \geq 3 \), we have
\[
\frac{\partial}{\partial \tau}(\tau^2 + 2|\mu| + d) = 2\tau, \quad \frac{\partial^2}{\partial \tau^2}(\tau^2 + 2|\mu| + d) = 2, \quad \text{and} \quad \frac{\partial^j}{\partial \tau^j}(\tau^2 + 2|\mu| + d) = 0.
\]

Then the Faà di Bruno formula gives
\[
\left| \frac{\partial^{N_1}}{\partial \tau^{N_1}} (\tau^2 + 2|\mu| + d)^N \right| = \left| \sum_{m_1 + 2m_2 = N_1} C_{N_1,m_1,m_2}(\tau^2 + 2|\mu| + d)^{N - m_1 - m_2}(2\tau)^{m_1} \right| \lesssim (\tau^2 + 2|\mu| + d)^{N - \frac{N_1}{2}}.
\]

By the Faà di Bruno formula again for \(e^{-t(\tau^2 + 2|\mu| + d)} \), we have
\[
\left| \frac{\partial^{N_2}}{\partial \tau^{N_2}} e^{-t(\tau^2 + 2|\mu| + d)} \right| = \left| \sum_{n_1 + 2n_2 = N_2} C_{N_2,n_1,n_2} e^{-t(\tau^2 + 2|\mu| + d)} (-2t\tau)^{n_1} \right| \lesssim t^{N_2} e^{-t(\tau^2 + 2|\mu| + d)} (\tau^2 + 2|\mu| + d)^{N_2/2}.
\]

By the Leibniz rule and the assumption that
\[
\left| \frac{\partial^{N_3}}{\partial \tau^{N_3}} m(\tau, |\mu|) \right| \lesssim (\tau^2 + 2|\mu| + d)^{-N_3/2},
\]
we obtain
\[
\left| \frac{\partial^N}{\partial \tau^N} f(\tau, |\mu|) \right| \lesssim (\tau^2 + 2|\mu| + d)^{-N_3/2},
\]
again by using that \(\lambda^N e^{-\lambda} \lesssim_N 1 \) for any \(\lambda > 0 \), we can obtain (3.21).
Inserting (3.21) into (3.20), we have
\[I_N \lesssim t^{-N} \int_{\mathbb{R}^{d+1}} \left| \sum_{\mu \in \mathbb{Z}^d} e^{-\frac{t^2}{2(\tau^2 + 2|\mu| + d)}} \Phi_{\mu}(x') \Phi_{\mu}(x) \right|^2 d\tau \lesssim t^{-\frac{d+1}{2} - N}. \] (3.22)

Next, we estimate \(II_N \). It suffices to show
\[II_N = \int_{\mathbb{R}^{d+1}} \left| (x - x')^\beta \partial_t^N M_t(z, z') \right|^2 dz' \lesssim t^{-\frac{d+1}{2} - N}, \quad \text{for all } |\beta| = N. \] (3.23)

We rewrite \(M_t(z, z') \) as
\[\partial_t^N M_t(z, z') = (-1)^N \sum_{k=0}^{\infty} \Psi_k^N(\rho - \rho') \Phi_k(x, x'), \]
where \(\Psi_k^N(\rho - \rho') = \int_{\mathbb{R}} e^{i\tau(\rho - \rho')} f(\tau, k) d\tau \). Recall that \(A_j = -\frac{\partial}{\partial x_j} + x_j \). Define also \(A_j' = -\frac{\partial}{\partial x_j} + x_j' \). From Lemma 3.2.3 in [15], we have
\[(x - x')^\beta \partial_t^N M_t(z, z') = \sum_{k=0}^{\infty} \sum_{\gamma, \delta} C_{\gamma, \delta} \Delta_k^{|\delta|} \Psi_k^N(\rho - \rho')(A' - A)^\gamma \Phi_k(x, x'), \]
where \((A' - A)^\gamma = \prod_{j=1}^{d} (A_j' - A_j)^{\gamma_j} \), and \(\sum_{\gamma, \delta} \) denotes the sum over all multi-indices \(\gamma \) and \(\delta \) satisfying \(2\delta_j - \gamma_j = \beta_j \) and \(\delta_j \leq \beta_j \). Hence,
\[(x - x')^\beta \partial_t^N M_t(z, z') = \int_{\mathbb{R}} e^{-i\rho'} \left\{ e^{i\rho} \sum_{k=0}^{\infty} \sum_{\gamma, \delta} C_{\gamma, \delta} \Delta_k^{|\delta|} f(\tau, k) (A' - A)^\gamma \Phi_k(x, x') \right\} d\tau. \]

Using the Plancherel theorem in \(\rho' \), we get
\[\int_{\mathbb{R}^{d+1}} \left| (x - x')^\beta \partial_t^N M_t(z, z') \right|^2 dz' \lesssim C \int_{\mathbb{R}^{d+1}} \left| \sum_{k=0}^{\infty} \sum_{\gamma, \delta} C_{\gamma, \delta} \Delta_k^{|\delta|} f(\tau, k) (A' - A)^\gamma \Phi_k(x, x') \right|^2 d\tau dx'. \] (3.24)

On one hand, we claim that the second assumption in (1.3) implies that
\[\left| \Delta_k^{|\delta|} f(\tau, k) \right| \lesssim t^{-(N - |\delta|)} e^{-t(\tau^2 + 2k + d)}. \] (3.25)

Indeed, this follows from the following Leibniz rule for finite differences,
\[\Delta_k^{|\delta|}(f(k)g(k)h(k)) = \sum_{m_1 + m_2 + m_3 = N} C_{m_1, m_2, m_3} \Delta_k^{m_1} f(k) \Delta_k^{m_2} g(k + m_1) \Delta_k^{m_3} h(k + m_1 + m_2), \]
the second assumption in (1.3), and the bounds
\[\left| \Delta_k^{N_1}(\tau^2 + 2k + d)^{N_1} \right| \lesssim (\tau^2 + 2k + N_1 + d)^{N - N_1}, \]
\[\left| \Delta_k^{N_2} e^{-t(\tau^2 + 2k + d)} \right| \lesssim t^{N_2} e^{-t(\tau^2 + 2k + d)}. \]
On the other hand, by using (2.1) to expand \((A' - A)^{\gamma} \Phi_k(x, x')\), we obtain
\[
(A' - A)^{\gamma} \Phi_k(x, x') = \sum_{|\mu| = k} \sum_{\tau + \sigma = \gamma} A^\gamma \Phi_{\mu}(x)(A')^\tau \Phi_{\mu}(x')
\]
\[
= (2k + 1) |\tau| \sum_{|\mu| = k} \sum_{\tau + \sigma = \gamma} \Phi_{\mu+\tau}(x)\Phi_{\mu+\sigma}(x').
\]
(3.26)

Inserting (3.25) and (3.26) into (3.24), we obtain (3.23) as follows:
\[
\int_{\mathbb{R}^{d+1}} |(x - x')^\beta \partial_t^N M_t(z, z')|^2 \, dz'
\]
\[
\lesssim \int_{\mathbb{R}^{d+1}} \left| \sum_{k \geq 0, \gamma, \delta} t^{-N + |\delta|} e^{-t(\tau^2 + 2k + d)} (2k + 1) |\tau| \sum_{|\mu| = k} \sum_{\tau + \sigma = \gamma} \Phi_{\mu+\tau}(x)\Phi_{\mu+\sigma}(x') \right|^2 \, d\tau \, dx'
\]
\[
\lesssim t^{-N} \left(\sum_{\mu \in \mathbb{N}^d} e^{-t(\tau^2 + 2|\mu| + d)} \sum_{\gamma, \delta} \sum_{\tau + \sigma = \gamma} \Phi_{\mu+\tau}(x)\Phi_{\mu+\sigma}(x') \right)^2 \, d\tau \, dx'
\]
\[
\lesssim t^{-\frac{d+1}{2} - N}.
\]

Finally, by combining (3.17), (3.19), (3.22) and (3.23), we obtain (3.16), which concludes the proof of Lemma 3.4.

At last, we are ready to show the boundedness of the operator \(g_N^*\) by the Hardy-Littlewood maximal function estimate and the boundedness of \(g_N\).

Lemma 3.5. Let \(2 < p < \infty\) and \(N > \frac{d+1}{2}\). Then we have
\[
\|g_N^*(f)\|_{L^p(\mathbb{R}^{d+1})} \leq C\|f\|_{L^p(\mathbb{R}^{d+1})}.
\]

Proof. Let \(q\) be the Hölder conjugate exponent of \(p/2\). It is easy to see that
\[
t^{-\frac{d+1}{2}} \int_{\mathbb{R}^{d+1}} (1 + t^{-1}|z' - z|^2)^{-N}|h(z)| \, dz \lesssim Mh(z'), \quad \text{for } N > \frac{d+1}{2},
\]
where \(M\) is the Hardy–Littlewood maximal operator. Therefore, we have
\[
\|g_N^*(f)\|_{L^2(\mathbb{R}^{d+1})}^2 = \sup_{\|h\|_{L^q} = 1} \left| \int_{\mathbb{R}^{d+1}} (g_N^* f)^2 h(z) \, dz \right|
\]
\[
\lesssim \sup_{\|h\|_{L^q} = 1} \int_{\mathbb{R}^{d+1}} \int_0^\infty |t|^2 |\partial_t e^{-tH_{|h|} f}(z')|^2 \, dt \, dz' \lesssim \sup_{\|h\|_{L^q} = 1} \int_{\mathbb{R}^{d+1}} ((g_1 f)(z')^2 M(|h(z')|) \, dz' \lesssim \sup_{\|h\|_{L^q} = 1} \|g_1 f\|_{L^p}^2 M(|h|) \|h\|_{L^q} \lesssim \|f\|_{L^p(\mathbb{R}^{d+1})}^2,
\]
where we have used Lemma 3.2 in the last inequality. This completes the proof.

3.1. Proof of Theorem 1.1

We are now ready to show
\[
\|T_m f\|_{L^p(\mathbb{R}^{d+1})} \lesssim \|f\|_{L^p(\mathbb{R}^{d+1})}, \quad \text{for } 1 < p < \infty,
\]
under the assumption (1.3).
For the case $p = 2$, the Plancherel theorem in ρ gives

$$\|T_m f(\cdot, x)\|_{L^2_\rho} = \left\| \sum_{k=0}^{\infty} m(\tau, k) P_k(\mathcal{F}_{\rho} f)(\cdot, x) \right\|_{L^2_\rho}.$$

By the orthogonality of Hermite functions, we have

$$\|T_m f(\cdot, x)\|_{L^2_\rho L^2_x}^2 = \sum_{k=0}^{\infty} \| m(\tau, k) P_k(\mathcal{F}_{\rho} f)(\cdot, x) \|_{L^2_\rho L^2_x}^2$$

$$\leq \| m(\tau, k) \|_{L^\infty} \sum_{k=0}^{\infty} \| P_k(\mathcal{F}_{\rho} f)(\cdot, x) \|_{L^2_\rho L^2_x}^2$$

$$\lesssim \| f \|_{L^2(\mathbb{R}^{d+1})}^2.$$

Hence, the result in Theorem 1.1 holds for $p = 2$.

For the case $2 < p < \infty$. Let $N_0 = \left\lfloor \frac{d+1}{2} \right\rfloor + 1$, by Lemmas 3.2, 3.3 and 3.5, we have

$$\|T_m f\|_{L^p} \leq C\|g_{N_0+1}^*(T_m f)\|_{L^p} \leq C\|g_{N_0}^*(f)\|_{L^p} \leq C\|f\|_{L^p}.$$

Finally, the boundedness of the operator T_m in $L^p(\mathbb{R}^{d+1})$ with $1 < p < 2$ follows from the duality argument. \hfill \Box

REFERENCES

[1] A. Bonami, J. L. Clerc, Sommes de Cesaro et multiplicateurs des développements en harmonics sphériques, Trans. Amer. Math. Soc., 183(1973), 223–263.

[2] J. Dziubanski, A note on Schrödinger operators with polynomial potentials, Colloq. Math., 78(1998), 149–161.

[3] J. Dziubanski, J. Zienkiewicz, Hardy spaces associated with some Schrödinger operators, Studia Math., 126 (1997), 149–160.

[4] J. Dziubanski, Spectral multiplier theorem for H^1 spaces associated with some Schrödinger operators, Proc. Am. Math. Soc., 127(1999), 3605–3613.

[5] L. Grakafos, Classical Fourier Analysis, Grad. Texts Math. 249, New York, NY: Springer, 2014.

[6] C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14(2001), 25–62.

[7] R. Killip, C. Miao, M. Visan, J. Zhang, J. Zheng, Sobolev spaces adapted to the Schrödinger operator with inverse-square potential. Math. Z., 288 (2018), 1273–1298.

[8] R. Killip, C. Miao, M. Visan, J. Zhang, J. Zheng, The energy-critical NLS with inverse-square potential, Discrete Contin. Dyn. Syst., 37(2017), 3831–3866.

[9] L. Lewin, Polylogarithms and Associated Functions, North-Holland Publishing Co., New York, 1981.

[10] C. Miao, J. Murphy, J. Zheng, The energy-critical nonlinear wave equation with an inverse-square potential, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 37(2020), 417–456.

[11] C. Muscalu, W. Schlag, Classical and multilinear harmonic analysis. Volume I, Camb. Stud. Adv. Math. 137, Cambridge: Cambridge University Press, 2013.

[12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1971.

[13] X. Su, Y. Wang, G. Xu, Riesz transforms and Riesz transforms and Sobolev spaces associated to the partial harmonic oscillator, arXiv:2207.10461.

[14] S. Thangavelu, Multipliers for Hermite Expansions, Rev. Mat. Iberoam., 3(1987), 1–24.

[15] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton Univ. Press, Princeton, 1993.
Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
Email address: suxiaoyan0427@qq.com

Graduate School of China Academy of Engineering Physics, Beijing, China, 100088
Email address: wsming@bupt.cn

Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, People’s Republic of China.
Email address: guixiang@bnu.edu.cn