Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

Luis Felipe Reyes1,2,3*, Srinivas Murthy4, Esteban Garcia-Gallo2, Laura Merson1, Elsa D. Ibáñez-Prada2,3, Jordi Rello5,6, Yuli V. Fuentes2,3, Ignacio Martin-Loeches7, Fernando Bozza8,9,10, Sara Duque2, Fabio S. Taccone11,12, Robert A. Fowler13, Christiana Kartsonaki1, Bronner P. Gonçalves1, Barbara Wanjiru Citarella1, Dipesh Aryal14, Erlina Burhan15, Matthew J. Cummings16, Christelle Delmas17, Rodrigo Diaz18, Claudia Figueiredo-Mello19, Madiha Hashmi20, Prasan Kumar Panda21, Miguel Pedrera Jiménez22, Diego Fernando Bautista Rincon23, David Thomson24, Alistair Nichol25, John C. Marshall26, Piero L. Olliaro1 and the ISARIC Characterization Group

Abstract

Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs).

Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support.

Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was...
Background
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected over 500 million people worldwide and resulted in more than 6 million deaths (https://covid19.who.int) [1, 2]. COVID-19, the disease caused by the SARS-CoV-2, is a multisystemic disease [3]. Its most severe presentation is acute respiratory distress syndrome (ARDS), secondary to pneumonia [4–6]. Most critically ill patients with COVID-19 receive advanced respiratory support, defined as high-flow nasal cannula (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV) [3, 7, 8]. Up to 30% of hospitalised patients with COVID-19 are treated with one of these interventions [9, 10]; however, the use and need for support have changed over time depending on COVID-19 vaccination coverage, circulating viral variants, an evolving treatment evidence base and practice variation [11, 12].

Given the high demand for respiratory support and the insufficient capacity of intensive care units (ICU) and resources during the pandemic, especially in low- and middle-income countries (LMIC), the use of less invasive alternatives emerged as an alternative to provide advanced respiratory support [13, 14]. A global survey in 2020 found that HFNC (54%) and NIV (47%) were the most frequently used types of advanced respiratory support in patients with severe COVID-19 [15]. Up to 37% of patients who received NIV support ultimately required IMV [16], with high fatality ratios, especially in Latin America [17].

The objectives of this global study are to describe the clinical characteristics and outcomes of patients treated with HFNC, NIV, and IMV during the first two years of the pandemic, to determine risk factors associated with HFNC and NIV failure, and to estimate the association of later administration of IMV on clinical outcomes. We also compare the respiratory support types used in high-income countries (HICs) with those used in LMIC.

Methods
This is a prospective observational study of hospitalised patients from five continents. The study Consortium framework is provided by the International Severe Acute Respiratory and Emerging Infection (ISARIC)—World Health Organization (WHO) Clinical Characterisation Protocol for Severe Emerging Infections [18, 19]. The protocol, case report forms, consent forms, and study information are available on the ISARIC website (https://isaric.org). This standardised protocol uses tiered data collection tailored to a range of resource settings [19]. Investigators from 69 countries collected prospective data using the ISARIC case report form (CRF) built on Research Electronic Data Capture (REDCap, version 8.11.11, Vanderbilt University, Nashville, Tenn.) [20] hosted by the University of Oxford. Other investigators collected data using locally hosted systems and submitted it to the ISARIC dataset for centralised mapping. All investigators retain full rights to their data.

This observational study required no change to clinical management and encouraged patient enrolment in other research projects. The ISARIC-WHO Clinical Characterisation Protocol was approved by the World Health Organization Ethics Review Committee (RPC571 and RPC572). Also, local ethics approval was obtained for each participating country and site according to local requirements.

Study population
We included hospitalised patients with confirmed SARS-CoV-2 infection by reverse transcription-polymerase chain reaction (RT-PCR) in a respiratory sample treated with advanced respiratory support, defined as either HFNC, NIV, or IMV [3]. Patients with no recorded demographic data or vital signs within the first 24 h of hospital admission were excluded, as were patients whose 28-day vital status was unknown.

15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97–2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14–1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25–1.30]).

Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leukocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality.

Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable.

Keywords: Invasive mechanical ventilation, High flow nasal cannula, COVID-19, Critical care
Variables and measurement
We recorded age, sex, income classification according to the World Bank (https://data.worldbank.org/country) of the country of recruitment, comorbidities, vital signs on admission, laboratory measurements during the first 24 h of hospital admission, treatment with advanced respiratory support at any point during hospitalisation, systemic complications, and treatments used during hospitalisation. The case report form completion guide is available online (https://isaric.org).

We identified the first wave of the pandemic for each participating country and composed a dichotomous variable to evaluate the impact of being admitted during the first wave on clinical outcomes.

We stratified patients in the cohort based on the first type of respiratory support received within the first 24 h of hospital admission. High-flow nasal cannula (HFNC) was defined as respiratory support continuously applied through large-bore nasal prongs using a heated and humid gas flow at an initial flow more significant than 20 L/min (or up to 80 L per minute) and a fraction of inspired oxygen of up to 1.0. Non-invasive mechanical ventilation (NIV) was defined as any type of positive pressure therapy delivered through a fitted mask and was preferred in patients with oxygen requirements over 6–15 L/min or laboured breathing. Continuous positive pressure (CPAP) or bi-positive pressure (BiPAP) may occur and be considered NIV. Invasive mechanical ventilation (IMV) is any mechanical ventilation administered to the patient after endotracheal intubation or tracheostomy. The decision to use this modality was left to the health care providers and not per study protocol.

Patients were considered to have failed the non-invasive respiratory strategy (i.e. HFNC or NIV) if they were subsequently treated with IMV during hospitalisation.

Outcomes
The primary outcome evaluated in this study was 28-day mortality. Secondary outcomes included the rate of and risk factors for failing non-invasive respiratory support (i.e. HFNC or NIV), the association of failure with clinical outcomes, and the frequency of respiratory strategies used in HIC versus LMICs.

Statistical methods
Continuous variables were expressed as median (interquartile range), and categorical variables as counts (percentages). For the primary outcome of 28-day mortality and secondary outcome of non-invasive respiratory failure, random forest (RF) models were used to identify the factors associated with these outcomes. The RF model uses multiple randomised individual decision trees that operate as an ensemble, where each decision tree gives a predicted class. The class obtained most frequently among the decision trees becomes the RF model prediction. A total of 500 estimators were used in this model. A more detailed explanation of the RF models is presented in the supplement.

To evaluate the performance of the RF model, the area under the model’s receiver operating characteristics curve (AUROC) was used; for this, a tenfold cross-validation method was used, in which the data set was divided into ten subsets, and the validation was repeated ten times. Each time, one of the subsets was used as the test cohort, and the other nine subsets were used as training subsets, then the average AUROC was calculated and reported. When used for classification, RF models perform an implicit feature selection, a general indicator of each specific feature relevance, and can be computed as the Gini importance.

Then, we fitted two multivariable logistic regression models to estimate associations with the risk of 28-day fatality ratio or non-invasive respiratory failure, respectively. Variables identified as relevant by the RF model were included as explanatory variables. Odds ratios (ORs) were presented with forest plots.

A patient treated with respiratory support might receive different strategies during hospital admission. Thus, we developed alluvia diagrams to understand how patients were treated with other respiratory methods over time, stratified by the countries’ income classification. We constructed chord diagrams to provide a graphical representation of these patients’ comorbid conditions and demographics differentiated by the income classification. A significance level of <0.001 and a confidence level of 95% was chosen to determine statistical differences. This was selected as large datasets, such as the ISARIC COVID-19 dataset, might identify minor differences as significant even when the differences are not clinically relevant. Adjusting the rejection level of the null hypothesis could control this limitation inherent to large datasets and the possibility of incurring type one error. All data processing and statistical analysis were performed using Python version 3.8 with the following data packages: Pandas version 1.2.4, Tidyverse version 1.3.0, Bioconductor version 3.12.

Results
A total of 66,565 patients were included in this study (Fig. 1). Most patients were male (63.5% [42,256/66,565]) and treated in HICs (82.6% [55,004/66,565]). Specifically, 78.2% ([52,039/66,565]) of the cohort was hospitalised and treated in Europe. Regarding the age of the patients included in the cohort, 44.0% ([29,317/66,565]) of patients were between 60 and 80 years old. During the
first 24 h of hospital admission, patients were most frequently treated with HFNC (42.5% [28,256/66,565]), followed by NIV (36.2% [24,112/66,565]) and IMV (21.3% [14,197/66,565]). Demographic characteristics, physiological variables and laboratories at hospital admission are shown in Fig. 2 and Tables 1 and 2.

Patients' characteristics, in-hospital treatments, and systemic complications
More than 85% of the patients had at least one comorbidity. Hypertension (41.3% [27,521/66,565]) and diabetes mellitus (30.3% [20,164/66,565]) were the most frequently reported comorbid conditions (Table 1). A total of 22.8% [15,190/66,565] of patients were current or past smokers. Complications were also common during the hospital admission (not at hospital presentation), 23.2% [15,470/66,565] developed ARDS, and 20.1% [13,353/66,565] were reported to have an acute renal injury (ARI).

During hospital admission, 61.3% (40,810/66,565) patients received corticosteroid treatment, and 54.6% [36,336/66,565] were admitted to the ICU. Vasopressor/inotrope therapy was used in a quarter of all patients (20.4% [13,592/66,565]), increasing in use according to ventilatory requirement (7.7% [2188/28,256] vs. 17.8% [4282/24,112] vs 50.2% [7122/14,197]). Approximately half of those treated with IMV received vasopressors/inotropes at some point during hospitalisation (50.2% [7122/14,197]). Almost one-quarter of the patients were placed in prone position (23.7% [15,778/66,565], more commonly in those patients treated with IMV (12.0% [3384/28,256] vs. 27.5% [6628/24,112] vs 40.6% [5766/14,197]). A total of 15.5% [10,287/66,565] of patients failed HFNC/NIV. Moreover, 71.2% [7327/10,287] of the patients that failed HFNC/NIV were registered in HIC and 28.8% [2960/10,287] in LMIC. Finally, 28-day mortality was similar between the different advance ventilatory supports (33.9% [9581/28,256] vs. 38.1% [9177/24,112] vs. 37.1% [5263/14,197]).
Comparing respiratory support of patients admitted in HIC or LMIC

The cumulative frequency of advanced respiratory treatments was stratified by national income classification (Fig. 3). Patients admitted to the hospital in HICs were more frequently treated with HFNC (48.0% [26,399/55,004]), followed by NIV (38.6% [21,237/55,004]) and IMV (13.4% [7368/55,004]). In contrast, patients admitted in LMICs were less frequently treated with HFNC (16.1% [1857/11,561]), and the majority received IMV (59.1% [6829/11,561]) (Table 1; Fig. 3). We also found differences in distribution among
Characteristic	All n = 66,565	HFNC n = 28,256	NIV n = 24,112	IMV n = 14,197	p value
Demographics, n (%)					
Female	24,309 (36.5)	11,188 (39.6)	8600 (35.7)	4521 (31.8)	<0.001
Age 0–20 years old	558 (0.9)	188 (0.7)	156 (0.6)	214 (1.5)	<0.001
Age 20–40 years old	4888 (7.4)	1800 (6.3)	1635 (6.8)	1453 (10.2)	<0.001
Age 40–60 years old	19,514 (29.3)	6907 (24.5)	7429 (30.8)	5178 (36.5)	<0.001
Age 60–80 years old	29,317 (44.0)	11,350 (40.2)	11,505 (47.7)	6462 (45.5)	<0.001
Age ≥100 years old	12,232 (18.4)	7962 (28.1)	3382 (14.1)	888 (6.2)	<0.001
Pandemic wave in which patients were admitted, n (%)					
First COVID-19 wave	27,044 (40.6)	13,363 (47.3)	7888 (32.7)	5793 (40.8)	<0.001
Continent of admission, n (%)					
Africa	89 (0.1)	17 (0.1)	3 (0.0)	69 (0.5)	<0.001
Asia	10,488 (15.8)	1520 (5.4)	2590 (10.7)	6378 (44.9)	<0.001
Europe	52,039 (78.2)	25,586 (90.6)	20,924 (86.8)	5529 (38.9)	<0.001
North America	2434 (3.7)	561 (2.0)	277 (1.1)	1596 (11.2)	<0.001
Oceania	260 (0.4)	155 (0.5)	8 (0.0)	97 (0.7)	<0.001
South America	1255 (1.9)	417 (1.5)	310 (1.3)	528 (3.7)	<0.001
Regional income stratification, n (%)					
High-income country	55,004 (82.6)	26,399 (93.4)	21,237 (88.1)	7368 (51.9)	<0.001
Low middle-income country	11,561 (17.4)	1857 (6.6)	2875 (11.9)	6829 (48.1)	<0.001
Chronic comorbidities, n (%)					
Asthma	8097 (12.2)	3596 (12.7)	3413 (14.2)	1088 (7.7)	<0.001
Chronic cardiac disease (not hypertension)	14,678 (22.1)	7794 (27.6)	5153 (21.4)	1731 (12.2)	<0.001
Chronic kidney disease	7533 (11.3)	4135 (14.6)	2571 (10.7)	827 (5.8)	<0.001
Chronic neurological disorder	4944 (7.4)	2808 (9.9)	1560 (6.5)	576 (4.1)	<0.001
Chronic pulmonary disease (not asthma)	8856 (13.3)	4459 (15.8)	3551 (14.7)	846 (6.0)	<0.001
Dementia	3964 (6.0)	3032 (10.7)	818 (3.4)	114 (0.8)	<0.001
Diabetes mellitus	20,164 (30.3)	8273 (29.3)	7343 (30.5)	4548 (32.0)	<0.001
HIV	271 (0.4)	105 (0.4)	93 (0.4)	73 (0.5)	0.08
Arterial hypertension	27,521 (41.3)	11,855 (42.0)	9874 (41.0)	5792 (40.8)	0.02
Hypothyroidism	1632 (2.5)	864 (3.1)	598 (2.5)	170 (1.2)	<0.001
Immunosuppression	1242 (1.9)	659 (2.3)	491 (2.0)	92 (0.6)	<0.001
Malignant neoplasm	5115 (7.7)	2811 (9.9)	1803 (7.3)	501 (3.5)	<0.001
Malnutrition	894 (1.3)	565 (2.0)	229 (0.9)	100 (0.7)	<0.001
Mental disorder	1042 (1.6)	541 (1.9)	418 (1.7)	83 (0.6)	<0.001
Moderate or severe liver disease	880 (1.3)	465 (1.6)	282 (1.2)	133 (0.9)	<0.001
Obesity	10,793 (16.2)	3960 (14.0)	4883 (20.3)	1950 (13.7)	<0.001
Rheumatological disorder	5412 (8.1)	3033 (10.7)	1989 (8.2)	390 (2.7)	<0.001
Smoking	15,190 (22.8)	6948 (24.6)	6521 (27.0)	1721 (12.1)	<0.001
Solid tumour	522 (0.8)	307 (1.1)	186 (0.8)	29 (0.2)	<0.001
Complications, n (%)					
Acute kidney injury	13,353 (20.1)	5146 (18.2)	4525 (18.8)	3682 (25.9)	<0.001
Anaemia	10,031 (15.1)	3803 (13.5)	3492 (14.5)	2736 (19.3)	<0.001
ARDS	15,470 (23.2)	4846 (17.2)	5625 (23.3)	4999 (35.2)	<0.001
Bacteraemia	3966 (6.0)	1191 (4.2)	1381 (5.7)	1394 (9.8)	<0.001
Cardiac arrest	3882 (5.8)	1215 (4.3)	1275 (5.3)	1392 (9.8)	<0.001
Cardiac arrhythmia	5989 (9.0)	2070 (7.3)	2208 (9.2)	1711 (12.1)	<0.001
Cardiac ischemia	1175 (1.8)	471 (1.7)	426 (1.8)	278 (2.0)	0.10
Coagulation disorder	3231 (4.9)	1122 (4.0)	1346 (5.6)	763 (5.4)	<0.001
the different types of respiratory support when stratified by income classification and respiratory support (Fig. 4).

Patients treated with IMV in HICs had fewer comorbid conditions and were more frequently between 40 and 70 years old. In sharp contrast, patients in LMIC who were younger than 40 years old often received IMV and were more frequently male. Also, they were mostly treated with IMV rather than non-invasive respiratory strategies (Fig. 4).

Changes in respiratory supports

Figure 5 presents the alluvia diagrams illustrating how patients progressed among respiratory support during hospital admission. Notably, patients who required more than one respiratory treatment had higher mortality than those treated with only one type of support, whether the first respiratory support was HFNC, NIV, or IMV (Fig. 5).

Risk factors for failing HFNC or NIV as first respiratory support

The failure rate of HFNC or NIV was 15.5% [10,287/66,565]. According to the Gini importance, the variables most strongly associated with non-invasive ventilation failure (either HFNC or NIV) were age, lower platelets, and higher leukocyte count during the first 24 h of hospital admission (Fig. 6A). In the logistic regression analysis, we found that high leukocyte counts at hospital admission (OR [95% CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95% CI]; 2.04 [1.97–2.11]), and tachypnoea at hospital admission (OR [95% CI]; 1.16 [1.14–1.18]) were strongly associated factors with IMV treatment as rescue treatment (Fig. 6B, C).

Clinical outcomes and risk factors associated with 28-day fatality ratio

Almost half of the patients treated with HFNC [46.3%; 11,954/28,256] and 37.1% (5263/14,197) of patients treated with IMV died within 28 days. The variables identified as risk factors associated with the 28-day fatality ratio are shown in Fig. 7. Older age (OR [95% CI]; 2.42 [2.36–2.48]), cardiac arrest during hospitalisation (OR [95% CI]; 1.86 [1.81–1.92]), receiving treatment in an LMIC (OR [95% CI]; 1.56 [1.53–1.60]), and higher leukocyte counts at hospital admission (OR [95% CI]; 1.47 [1.39–1.55]) were the main adjusted risk factors associated with 28-day mortality. Notably, NIV/HFNC failure (OR [95% CI]; 1.27 [1.25–1.30]) was also highly associated with fatality. Other factors were acute kidney injury (OR [95% CI]; 1.23 [1.21–1.25]), ARDS (diagnosed during the hospital admission, not during the first 24 h) (OR [95% CI]; 1.12 [1.10–1.14]), increased heart rate at admission (OR [95% CI]; 1.15 [1.13–1.18]), increased respiratory rate at admission (OR [95% CI]; 1.15 [1.13–1.17]), chronic cardiac diseases (OR [95% CI]; 1.17 [1.14–1.19]), chronic pulmonary diseases (OR [95% CI]; 1.12

Table 1 (continued)

Characteristic	All n = 66,565	HFNC n = 28,256	NIV n = 24,112	IMV n = 14,197	p value
Congestive heart failure	2188 (3.3)	1159 (4.1)	749 (3.1)	280 (2.0)	<0.001
Gastrointestinal bleeding	1130 (1.7)	519 (1.8)	310 (1.3)	301 (2.1)	<0.001
Liver dysfunction	5600 (8.4)	1972 (7.0)	2176 (9.0)	1452 (10.2)	<0.001
Neurological complication	1206 (1.8)	522 (1.8)	458 (1.9)	226 (1.6)	0.08
Pleural effusion	3967 (6.0)	1858 (6.6)	1285 (5.3)	824 (5.8)	<0.001
Pneumothorax	1590 (2.4)	458 (1.6)	671 (2.8)	461 (3.2)	<0.001
Pulmonary embolism	1951 (2.9)	667 (2.4)	869 (3.6)	415 (2.9)	<0.001
Stroke	918 (1.4)	358 (1.3)	302 (1.3)	258 (1.8)	<0.001
Treatments, n (%)					
Prone	15,778 (23.7)	3384 (12.0)	6628 (27.5)	5766 (40.6)	<0.001
Vasopressors/inotropes	13,592 (20.4)	2188 (7.7)	4282 (17.8)	7122 (50.2)	<0.001
Corticoids	40,810 (61.3)	15,586 (55.2)	17,043 (70.7)	8181 (57.6)	<0.001
Intensive care unit	36,336 (54.6)	8302 (29.4)	14,180 (58.8)	13,854 (97.6)	<0.001
Hospital discharge	33,627 (50.5)	16,302 (57.7)	12,115 (50.2)	5210 (36.7)	<0.001
28-day fatality ratio	24,021 (36.1)	9581 (33.9)	9177 (38.1)	5263 (37.1)	<0.001
Non-invasive ventilation failure (HFNC and NIV)	10,287 (15.5)	3538 (12.5)	6749 (28.0)		<0.001

Bold values indicate statistical significance

HFNC high-flow nasal cannula, NIV non-invasive mechanical ventilation, IMV invasive mechanical ventilation, HIV human immunodeficiency virus, ARDS acute respiratory distress syndrome
Table 2 Physiological parameters and laboratories of patients during the first 24-h hospital admission, stratified by the different advance ventilatory supports

Measure	All	HFNC	NIV	IMV
	Value (n, interquartile range)	Value (n)	Value (n)	Value (n)
Physiological parameters on admission, median (IQR)				
Glucose (mmol/L)	7.55 (6.2–10.4)	7.0 (5.9–9.3)	7.6 (6.3–10.5)	7.5 (6.3–10.5)
Haematocrit (%)	39.0 (34.6–42.3)	39.7 (35.1–43.0)	39.0 (35.0–42.8)	38.5 (34.0–42.0)
Haemoglobin (g/L)	13.0 (11.7–14.0)	13.0 (11.8–14.0)	13.0 (11.0–14.0)	13.0 (11.0–14.0)
Interleukin 6 (ng/L)	67.6 (23.0–169.0)	43.51 (13.3–89.3)	49.5 (21.4–129.5)	49.4 (21.4–129.5)
Lactate dehydrogenase (U/L)	487.0 (349.0–684.0)	54.65 (328.0–621.5)	53.0 (374.0–741.0)	53.0 (374.0–741.0)
Lactic acid (mmol/L)	1.5 (1.1–2.1)	1.4 (1.05–2.0)	1.5 (1.1–2.04)	1.5 (1.1–2.04)
Leukocytes (10^9/L)	8.0 (5.7–12.0)	7.0 (5.4–10.5)	7.4 (5.8–11.3)	7.5 (5.8–11.3)
Lymphocytes (10^9/L)	0.8 (0.58–1.2)	0.8 (0.59–1.2)	0.8 (0.58–1.11)	0.8 (0.58–1.11)
Lymphocytes/leukocytes (%)	9.7 (5.35–15.65)	4.35 (1.33–8.93)	4.9 (21.48–129.5)	4.9 (21.48–129.5)
Neutrophils (10^9/L)	5.8 (4.0–8.63)	5.6 (3.87–8.31)	5.8 (4.0–8.43)	5.8 (4.0–8.43)
Neutrophils/leukocytes (%)	82.0 (72.9–88.0)	81.9 (74.4–87.3)	80.4 (70.0–87.7)	80.4 (70.0–87.7)
Platelets (10^9/L)	199.0 (140.0–265.0)	50.263 (157.0–271.0)	20.811 (148.0–265.0)	20.811 (148.0–265.0)
Potassium (mmol/L)	4.1 (3.8–4.5)	3.901 (3.74–4.75)	4.5 (3.8–4.5)	4.5 (3.8–4.5)
Procalcitonin (ug/L)	0.24 (0.12–0.7)	0.2 (0.1–0.51)	0.24 (0.12–0.62)	0.24 (0.12–0.62)
Prothrombin intl. (ratio)	1.1 (1.02–1.3)	1.09 (1.0–1.2)	1.1 (1.03–1.3)	1.1 (1.03–1.3)
Prothrombin time (s)	13.0 (11.3–14.5)	12.8 (11.1–14.4)	13.0 (11.4–14.5)	13.0 (11.4–14.5)
Sodium (mmol/L)	136.0 (133.0–140.0)	137.0 (134.0–140.0)	136.0 (133.0–139.0)	136.0 (133.0–139.0)
Troponin I (ug/L)	0.07 (0.02–0.69)	0.03 (0.01–0.25)	0.08 (0.02–0.10)	0.08 (0.02–0.10)
Urea nitrogen (mmol/L)	7.7 (5.1–12.85)	7.1 (4.9–11.5)	7.3 (5.0–11.6)	7.3 (5.0–11.6)

Bold values indicate statistical significance.

HFNC high-flow nasal cannula, NIV non-invasive mechanical ventilation, IMV invasive mechanical ventilation, IQR interquartile range, PTT partial thromboplastin time
and diabetes mellitus (OR [95% CI]; 1.07 [1.05–1.09]). The model used to predict the 28-day fatality ratio had a good discriminatory capacity when evaluated by the AUROC (mean [SD] 0.78 [0.05], Fig. 7).

Discussion

In this large, multinational, prospective cohort study, we found that patients with severe COVID-19 were mainly treated with non-invasive respiratory strategies (i.e. HNFC or NIV) in HICs; in contrast, patients with severe COVID-19 in LMICs were more frequently treated with IMV. We found that the 28-day fatality ratio was similar among patients treated with HFNC, NIV, or IMV worldwide. Notably, we found that patients treated with IMV as rescue therapy (i.e. failure of non-invasive treatments) had a higher 28-day fatality ratio than patients treated with IMV earlier in their disease course. The risk factors associated with failing the non-invasive respiratory strategies were high leukocyte counts at admission, increased heart rate at admission, and being treated in an LMIC. Notably, being admitted during the first pandemic wave did not impact clinical outcomes or respiratory treatments.

Early in the pandemic, healthcare workers identified that patients with hypoxemia could be treated with HFNC [21–23]. International guidelines also recommend non-invasive respiratory support as the first treatment, and many centres utilise HFNCs outside formal ICU settings [13]. Notably, the widespread usage of HFNC and NIV in patients with severe COVID-19 was recommended by experts and guidelines but not supported by high-quality data. Later, Ospina-Tascon et al. [12] carried out a multicentre, open randomised clinical trial and found that the early treatment with HFNC compared to conventional oxygen treatment was associated with a lower necessity of IMV (34.3 Vs 51.0, HR:

Fig. 3 Cumulative frequency (net number of patients) of ventilation treatment given to patients. A Complete cohort. B Patients from high-income countries. C Patients from low middle-income countries

Fig. 4 Chord graphic with demographics and comorbidities of patients according to the type of first ventilation treatment received. A Complete cohort. B Patients from high-income countries. C Patients from low middle-income countries

[1.10–1.14]),
Fig. 5 Alluvia diagram of the patients’ transitions between ventilation treatments and clinical outcomes. The width of the links is proportional to the number of patients. **A** Complete cohort. **B** Patients from high-income countries. **C** Patients from low-middle-income countries.
1.39; 95% CI 1.00–1.92; \(p = 0.04 \)). Then, Perkins et al. [24] in the RECOVERY-RS trial found that NIV was associated with a lower requirement of tracheal intubation and lower 30-day mortality when compared to conventional oxygen therapy (absolute difference, \(-8\%\) [95% CI, \(-15\%\) to \(-1\%\)], \(p = 0.03 \)). Our study found that HFNC, NIV, and IMV have similar 28-day fatality ratios, in concordance with prior literature. However, we found that HFNC was mainly used in HIC, which might be in relation to the capacity of these countries to acquire this new technology during the pandemic and the ability of these countries to expand their bed capacity to treat patients with HFNC outside of the ICU. Also, some patients or their families do not accept endotracheal intubation and prefer non-invasive strategies, though our study did not collect these data.

In contrast to HIC, the most common respiratory treatment in patients with severe COVID-19 utilised in LMIC has been IMV, as is evident in our data. Estenssoro et al. [17] described the results of a prospective observational cohort of patients admitted to 64 ICUs in Argentina. They included 1909 patients treated with IMV and found that lung-protective respiratory strategies were widely used but with a high fatality rate among patients included...
in the cohort (57.7%, 1101/1909). In another study in Brazil, Ranzani et al. [7] found that 23% (45,205/232,036) of patients admitted to the hospital were treated with IMV. They also found that the mortality rate among those receiving IMV was 80% during the first pandemic wave and 87% during the second wave [7, 25]. Notably, they found that 14% (5976/44,055) of the patients treated with IMV were treated outside of the ICU [25]. These results highlight that fatality rates and treatments changed during the pandemic and differed for each country. Moreover, these data align with our results, showing that IMV was frequently used in LMIC and that many patients with severe COVID-19 were treated outside of ICU [8, 26]. Notably, the impact of ICU admission on clinical outcomes was already explored in our cohort and published elsewhere [3]. We found that ICU admission was associated with better clinical outcomes independently of disease severity, treatments received, income classification, and system saturation (i.e. the number of new COVID-19 detected the day patients was admitted).

Even though non-invasive respiratory support has been proven effective in treating patients with severe hypoxemia during COVID-19, up to 30% of the patients were treated with IMV as a rescue treatment. Thus, it is essential to identify which patients might be at risk of failing under the non-invasive respiratory strategy and not to delay IMV in these patients. Rodriguez A. et al., in one of the largest prospective cohorts of patients admitted to the ICU due to severe flu infection, found that patients who failed NIV had a mortality rate three times higher than those who did not fail [27]. Also, they found that patients who failed NIV had higher mortality than those treated with IMV as initial treatment (38.4 vs 31.3, p = 0.18). In a multicentre COVID-19 study, Boscolo A. et al. found that 704 patients who failed non-invasive respiratory support had an accumulative fatality rate of 43% [28]. Our findings support that patients with severe COVID-19 who fail the initial respiratory support with non-invasive treatments have a higher mortality rate and were independently associated with 28-day fatality. Also, we found that patients with higher leukocyte counts at admission, higher respiratory rate at admission, and being in an LMIC were at higher risk of failing the non-invasive respiratory strategies. Thus, patients with these characteristics should be carefully evaluated to avoid delays in initiating IMV when appropriate.

Our study has strengths and limitations that are important to acknowledge. First, the respiratory support interventions were not according to a standardised protocol, leaving clinical teams to choose when to use HFNC, NIV, or IMV; thus, demographic or clinical characteristics may differ across the groups studied. However, we performed a robust statistical analysis using random forest analyses and logistic regression, adjusting for several confounders. This allowed us to evaluate linear and nonlinear relations in a supervised statistical approach. Second, most patients in our study were registered in Europe and HICs, which might constitute a significant selection bias. However, we had more than 11,000 patients in LMICs in Africa, South America, and Asia, including a large cohort of patients and contributing to our results’ global generalisability. Third, we do not have complete data on specific respiratory parameters used during the support (i.e. peep, flows, FiO2, volumes, among many others), limiting our capacity to assess the rates of protective respiratory strategies, among other essential factors. Thus, these results cannot imply a causal association between respiratory support device treatments and clinical outcomes. Each patient should be evaluated carefully with decisions on the type of respiratory support based upon the evolving evidence base applied to their specific clinical condition and goals of care. Finally, throughout the COVID-19 pandemic, patients were treated with a large variety of medications and supportive clinical protocols; it is challenging to make conclusions about the factors associated with 28-day fatality using observational study methodologies in such a dynamic context.

Conclusions

Patients hospitalised with confirmed COVID-19 are often treated with advanced respiratory support. HFNC was the primary initial respiratory support used during the pandemic; however, this treatment was mainly used in HIC. In contrast, IMV was the primary respiratory treatment utilised in LMIC. Non-invasive respiratory treatments (i.e. HFNC and NIV) could be used as the first respiratory support in patients with severe COVID-19; however, it is crucial to identify patients at risk of failing because delaying IMV may be associated with worse clinical outcomes. Further studies are needed to confirm these associations.

Abbreviations

ICU: Intensive care unit; VA-LRTI: Ventilator-associated lower respiratory tract infection; COVID-19: Coronavirus disease-19; HIV/AIDS: Human immunodeficiency virus/acquired immunodeficiency syndrome; SARS-CoV-2: Severe Respiratory Syndrome Coronavirus 2; VAP: Ventilator-associated pneumonia; VAT: Ventilator-associated tracheobronchitis; RT-PCR: Reverse transcription-polymerase chain reaction; IMV: Invasive mechanical ventilation; ERS: European Respiratory Society; ESICM: European Society of Intensive Care Medicine; ESCMID: European Society of Clinical Microbiology and Infectious Diseases; ALAT: Asociación Latinoamericana del Torax; ETA: Endotracheal aspirates; LOS: Length of stay; RF: Random forest; AUROC: Area under the model’s receiver operating curve; ORs: Odds ratios; IQR: Interquartile range; CRP: C reactive protein; AKI: Acute renal injury; HRs: Hazard ratio.
Selvanayagam, Caroline Semaiile, Malcolm G. Semple, Eric Senneneville, Filipa Sequeira, Tânia Sequeira, Ary Serpa Neto, Pablo Serrano Balazote, Ellen Somers, Jeanne Sommet, Myung Jin Song, Rima Silva, Rogério Silva, Wai Ching Sin, Budha Charan Singh, Punam Singh, Pompini Sibiude, Atif Siddiqui, Louise Sigfrid, Piret Sillaots, Catarina Silva, Maria Joao Pramesh Sundar Shrestha, Hoi Ping Shum, Nassima Si Mohammed, Jeanne Shadowitz, Mohammad Shamsah, Shaikh Sharjeel, Pratima Sharma, Catherine A. Shaw, Victoria Shaw, Ahsaf Sheharyar, Dr. Rajesh Mohan Shetty, Haixia Shi, Mohiuddin Shiek, Keki Shirmoham, Sally Sharpeel, Shubha Kalyan Shrestha, Premsh Sundar Shrestha, Hoi Ping Shum, Nissima S Mohammed, Jeanne Sibiude, Atif Siddiqui, Louise Sigfrid, Pier Silauto, Catarina Silva, Maria Joao Silva, Rogério Silva, Wai Ching Sin, Budha Charan Singh, Punam Singh, Pompini Sibiude, Atif Siddiqui, Louise Sigfrid, Pier Silauto, Catarina Silva, Maria Joao Silva, Rogério Silva, Wai Ching Sin, Budha Charan Singh, Punam Singh, Pompini Agnès Sitiomor, Vagad Skegon, Sue Smith, Benjamin Smollin, Collin Smyth, Michelle Smyth, Michelle Smyth, Morgane Snacken, Dominic So, Joshua Solomon, Tom Solomon, Emily Somers, Agnès Sommer, Myung Jin Song, Jinn Song, Tae Song, Jack Song Chia, Albert Soto, Edouard Soum, Ana Chour Sousa, Marta Sousa, Maria Sousa Uva, Alexandra Sperry, Elisabetta Spinuza, B. P. Sanka Ruwan Sri Darshana, Shiranee Sriskandan, Sarah Stabler, Thomas Staudinger, Stephanie-Susanne Stecher, Ymkje Stienstra, Birgitte Stiksrud, Eva P. Sanka Ruwan Sri Darshana, Shiranee Sriskandan, Sarah Stabler, Thomas Staudinger, Stephanie-Susanne Stecher, Ymkje Stienstra, Birgitte Stiksrud, Eva P. Stoeter, Amy Stone, Adrian Streinu-Cercel, Anca Streinu-Cercel, Ami Stuart, David Stuwart, Gabriel Suen, Jacky S. Yuen, Asifa Sultan, Charlotte Summers, Dubravka Supic, Magdalena Surowcova, Andrey Systunov, Konstantinos Syrgos, Jaques Szatnbok, Konstanty Szuldzynski, Shinri Tanabri, Fabio S. Taccone, Lyn Tagherts, Sara Taleb, Jelmer Talsma, Maria Lawrensia Tampubolon, Hiroiuki Tanaka, Huda Taqdees, Archad Taqi, Coralie Tardivon, Pierre Tattevin, M Azhari Taufik, Hassan Tavaklf, Richard S. Tedder, J sao Teixeira, Sofia Tejada, Marie-Capucine Tellier, François Téoule, Pleun Terpstra, Olivier Terrier, Nicolas Terzis, Hubert Tesser-Grenier, Adrian Tey, Anand Thukur, Vincent Thibault, Simon-Djamel Thiberville, Benoit Tillot, Shaun Thompson, David Thomson, Emma C. Thomson, Ryson S. Thwaites, Paul Tierney, Yadim Tieroshtey, P Steven Timasheva, Jean-François Timits, Bharath Kumar Tirupakudai Vijayaraghavan, Noelème Tissot, Maria Toki, Kristian Tonby, Marta Torre, Antoni Torres, Margarida Torres, Hernando Torres-Zevallos, Michael Towers, Tony Tranapi, Theo Treadwell, Cécile Trompeur, Ioannis Tronnas, Tiffany Trouillon, Jeanne Troung, Christelle Tual, Sarah Tubiana, Helen Tutte, Jean-Marie Tumel, Lance C.W. Turtle, Pavel Twardowski, Makoto Uchiyama, PG Ishara Udayanga, Paul Udy, Roman Ullrich, Alberto Uribe, Abad Usman, Timothy M. Uyeki, Cristina Vajdovics, Luis Val-Flores, Amelie Valran, Stijn Van de Velde, Marcel van den Berge, Job van der Palen, Paul van der Valk, Nicky Van Der Vekens, Peter Van der Voort, Sylvie Van Der Werf, Laura van Gulik, Jarne Van Hattem, Carolien van Netten, Ilonka van Veen, Neomie Vanel, Henk Vanverschelde, Pooja Varghese, Charline Vauchy, Aurelie Veislinger, Sebastian Vencken, Sara Ventura, Annelies Verbon, James Vickers, José Ernesto Vidal, César Vieira, Deepak Vajji, Joy Ann Villanueva, Judith Villar, Pierre-Marc Villeneuve, Andrea Vilcoold, Benoît Vissieux, Hannah Visser, Chiara Vitelli, Harald Vonkeman, Fanny Voutto, Wan Fadzillah Wan Muhd Shukeri, Chih-Hsien Wang, Steve Webb, Jia Wei, Katharina Weer, Sanne Wessels, T. Eoin West, Murray Wham, Bryan Whelan, Nicole White, Paul Heni Wicky, Aurelie Wiedemann, Surya Oti Wiwaja, Keith Wille, Suzette Willems, Virginia Willians, Evert-Jan Wils, Ng Wing Yin, Calvin Wong, Ioanngxynolagas, Masaki Yamazaki, Yazdan Yazdanpanah, Céclle Yelnik, Stephanie Yerkovich, Toshiki Yokuoyama, Hodane Yonis, Obadah Youfat, Saptadi Yuliarto, Akram Zaaqoo, Marion Zabbe, Maram Zahrn, Maria Zambon, Alberto Zanella, Hiba Zayed, Alexander Zoufaly, David Zucman, Mazankowski Heart Institute.

This work was supported by the UK Foreign, Commonwealth, and Development Office and Wellcome [215091/27/Z8/18/Z] and the Bill & Melinda Gates Foundation [OPP1209335]. CIHR Coronavirus Rapid Research Funding Opportunity O2170359; Grants from Rapid European COVID-19 Emergency Response research (RECOVER) [H2020 Project 101003589] and European Clini- cal Research Alliance on Infectious Diseases (ECCRAID) [K66513]; The Imperial NIHR Biomedical Research Centre; The Cambridge NInR Biomedical Research Centre; and Endorsed by the Irish Critical Care-Clinical Trials Group, co-ordinated in Ireland by the Irish Critical Care-Clinical Trials Network at University College Dublin and funded by the Health Research Board of Ireland [CTN-1412]. This work uses Data/Materials provided by patients and collected by the NHS as part of their care and support #DataSavesLives. The Data/materials used for this research were obtained from ISARIC4C. The COVID-19 Clinical Information Network (CO-CIN) data was collated by ISARIC4C Investigators. Data and Material provision were supported from grants from: the National Institute for Health Research (NIHR, award CO-CIN-01), the Medical Research Council (MRC, Grant MC_PC_19059), and the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at the University of Liverpool in partnership with Public Health England (PHE), (Award 2000967), Wellcome Trust (Turtle L Austria Sommel 205228/Z/16/Z), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (Award 200927), Liverpool Experimental Cancer Medicine Centre (Grant C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (Award IS-BRC-1215-20013), and NIHR Clinical Research Network providing infrastructure support. This work was possible due to the dedication and hard work of the Norwegian SARS-CoV-2 study team and supported by grants from Research Council of Norway Grant No. 312780 and a philanthropic donation from Vivaldi Invest A/S owned by Jon Stephenson von Tetzchner; The dedication and hard work of the Groote Schuur Hospital Covid ICU Team, and supported by the Groote Schuur nursing and University of Cape Town register bodies coordinated by the Division of Critical Care at the University of Cape Town; and supported by the COVID clinical management team, AiLMS, Rishikesh, India.

Availability of data and materials
The datasets used and/or analysed during the current study are available in the Infectious Diseases Data Observatory (IDDO, www.iddo.org).

Declarations
Ethics approval and consent to participate
The ISARIC-WHO Clinical Characterisation Protocol was approved by the World Health Organization Ethics Review Committee (RPC571 and RPC572). Also, local ethics approval was obtained for each participating country and site according to local requirements.

Consent for publication
Not applicable.

Competing interests
See Additional file 2.

Author details
1 Pandemic Sciences Institute, University of Oxford, Oxford, UK. 2Infectious Diseases Department, University of La Sabana, Chía, Colombia. 3Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia. 4Department of Infectious Diseases, University of British Columbia, Vancouver, Canada. 5Division of Pulmonary, Critical Care Research and Epidemiology in Pneumonia & Sepsis (CRPS), Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain. 6Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain. 7Department of Clinical Medicine, St James’ Hospital, Multidisciplinary Intensive Care Research Organization (MICRO), Dublin, Ireland. 8Department of Respiratory and Critical Care Medicine, University of Toronto, Toronto, ON, Canada. 9Infectious Disease, Department of Pulmonology and Respiratory Medicine, Universitas Indonesia, Depok, Indonesia. 10Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University-Vagelos College of Physicians and Surgeons, New York, NY, USA. 11IAMIE, INSERM, Paris, France. 12Intensive Care Unit, Clínica Las Condes, Santiago, Chile. 13Instituto de Infectología Emilio Ribas, São Paulo, Brazil. 14Critical Care Asia and Ziauddin University, Karachi, Pakistan. 15All India Institute of Medical Sciences (AIIMS), Rishikesh, India. 16Hospital 12 de Octubre, Madrid, Spain. 17Department of Intensive Care, Fundación Valle del Lili, Cali, Colombia. 18Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada. 19Infectious Disease, Department of Pulmonology and Respiratory Medicine, Universitas Indonesia, Depok, Indonesia. 20Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University-Vagelos College of Physicians and Surgeons, New York, NY, USA. 21IAMIE, INSERM, Paris, France. 22Hospital 12 de Octubre, Madrid, Spain. 23Department of Intensive Care, Fundación Valle del Lili, Cali, Colombia. 24Division of Critical Care, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa. 25University College Dublin Critical Care Research Centre.
References

1. Alkbir S, Pan D, Ehdade A, Islam R, Abouzaid A, Balasundaram K, Shihaudeh M, Patel K, Othman G, Umeh O, et al. Prognostic value of maximum NEWS-2 scores in addition to ISARIC 4C scores for patients admitted to hospital with COVID-19. J Infect. 2022;66(6).

2. Knight SR, Gupta RK, Ho A, Pius R, Buchan I, Carson G, Drake TM, Dunning CJ, Gamble C, et al. Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. Thorax. 2022;77(6):606–15.

3. Reyes LF, Murthy S, Garcia-Gallo E, Irvine M, Merson L, Martin-Loeches I, Rello J, Taccone FS, Fowler RA, Docherty AY, et al. Clinical characteristics, risk factors and outcomes in patients with severe COVID-19 registered in the International Severe Acute Respiratory and Emerging Infection Consortium WHO clinical characterisation protocol: a prospective, multinational, multicentre, observational study. ERU Open Res. 2022;8(1):66.

4. Weerakkody S, Arina P, Glenister J, Cottrell S, Boscaini-Gilroy G, Singer M, Montgomery HE. Non-invasive respiratory support in the management of acute COVID-19 pneumonia: considerations for clinical practice and priorities for research. Lancet Respir Med. 2022;10(2):199–213.

5. Nethven E, Loutet CJ, Rios FG, Kanoore Edul VS, Plotnikov G, Andrian M, Romero I, Piesoy D, Bezzi M, Mandich V, et al. Clinical characteristics and outcomes of invasively ventilated patients with COVID-19 in Argentina (SATICOVID): a prospective, multicentre cohort study. Lancet Respir Med. 2021;9(9):989–98.

6. ISARIC Clinical Characterisation Group. COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study. Infection. 2021;49(5):889–905.

7. ISARIC Clinical Characterisation Group, Garcia-Gallo E, Merson L, Kenna K, Kelly S, Giarrella BW, Fryer DV, Sharpnel S, Lee J, Duque S, et al. ISARIC-COVID-19 dataset: a prospective, standardized, global dataset of patients hospitalized with COVID-19. Sci Data. 2022;9(1):1545.

8. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informationsupport. J Biomed Inform. 2009;42(2):377–81.

9. Li J, Fink JB, Ehrmann S. High-flow nasal cannula for COVID-19 patients: low risk of bio-aerosol dispersion. Eur Respir J. 2020;55(6).

10. Wang K, Zhao W, Li J, Shu W, Duan J. The experience of high-flow nasal cannula in hospitalized patients with 2019 novel coronavirus-infected pneumonia in two hospitals of Chongqing, China. Ann Intensive Care. 2020;10(1):37.

11. Arentz M, Yim E, Klaflf L, Lokhandwala S, Riedo FX, Chong M, Lee M. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020;323(16):1612–4.

12. Perkins GD, Ji C, Connolly BA, Couper K, Lall R, Baille JK, Bradley JM, Dark P, Dave C, De Soysa A, et al. Effect of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxic respiratory failure and COVID-19: the RECOVERY-LS randomized clinical trial. JAMA. 2022;327(6):546–58.

13. Boscolo A, Pasin L, Sella N, Pretto C, Tocco M, Tamburini E, Rosi P, Polati E, Donadello K, Gottin L, et al. Outcomes of COVID-19 patients intubated after failure of non-invasive ventilation: a multicenter observational study. Sci Rep. 2021;11(1):17730.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.