Magnetic anisotropy and spin-spiral wave in V, Cr and Mn atomic chains on Cu(0 0 1) surface: first principles calculations

J C Tung¹, Y K Wang¹ and G Y Guo²,³

¹ Center for General Education and Department of Physics, National Taiwan Normal University, Taipei 106, Taiwan
² Graduate Institute of Applied Physics, National Chengchi University, Taipei 116, Taiwan
³ Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan

E-mail: gyguo@phys.ntu.edu.tw

Received 28 January 2011, in final form 6 April 2011
Published 3 May 2011
Online at stacks.iop.org/JPhysD/44/205003

Abstract
Recent ab initio studies of the magnetic properties of all 3d transition metal (TM) freestanding atomic chains have predicted that these nanowires could have a giant magnetic anisotropy energy (MAE) and might support a spin-spiral structure, thereby suggesting that these nanowires would have technological applications in, e.g. high-density magnetic data storage. In order to investigate how the substrates may affect the magnetic properties of the nanowires, here we systematically study V, Cr and Mn linear atomic chains on a Cu(0 0 1) surface based on the density functional theory with the generalized gradient approximation. We find that V, Cr and Mn linear chains on the Cu(0 0 1) surface still have a stable or metastable ferromagnetic state. However, the ferromagnetic state is unstable against the formation of a noncollinear spin-spiral structure in the Mn linear chains and also the V linear chain on the atop sites on the Cu(0 0 1) surface, due to the frustrated magnetic interactions in these systems. Nonetheless, the presence of the Cu(0 0 1) substrate does destabilize the spin-spiral state already present in the freestanding V linear chain and stabilizes the ferromagnetic state in the V linear chain on the hollow sites on Cu(0 0 1). When spin–orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged due to the weakness of SOC in 3d TM chains. Furthermore, both the orbital magnetic moments and MAEs for V, Cr and Mn are small, in comparison with both the corresponding freestanding nanowires and also the Fe, Co and Ni linear chains on the Cu(0 0 1) surface.

(Some figures in this article are in colour only in the electronic version)

1. Introduction
Nanostructured magnetic materials have recently received enormous attention because of their fascinating physical properties and potential applications. Finite freestanding gold atomic chains in break-junction experiments were first reported in 1998 [1, 2]. However, these freestanding atomic chains are unstable and transient. Physically stable magnetic nanowires deposited on metallic substrates are one of the most important magnetic nanostructures, and many techniques have been used to prepare and study them. In particular, Gambardella et al [3, 4] succeeded in preparing a high density of parallel atomic chains along steps by growing Co on a high-purity Pt(9 9 7) vicinal surface in a narrow temperature range, 10–20 K. The magnetism of Co wires was also investigated by x-ray magnetic circular dichroism [4]. Recently, Fe double chains deposited on an Ir(001) surface were prepared [5], and their structures were investigated by both scanning tunnelling microscopy measurements [5] and theoretical calculations [6].
2. Theory and computational method

The present calculations are based on density functional theory with the generalized gradient approximation (GGA) [13]. The accurate frozen-core full-potential projector augmented-wave (PAW) method [14], as implemented in the Vienna Ab-initio Simulation Package (VASP) [15, 16], is used. A large plane-wave cutoff energy of 350 eV is used for all the systems considered. The V, Cr and Mn linear atomic chains along the surface-normal direction, and structural relaxations are performed using the conjugate gradient method. We focus on the nonmagnetic (NM) and ferromagnetic (FM) states of the V, Cr and Mn linear chains deposited on a Cu(001) surface, in order to study how the presence of the substrate would modify the magnetic properties of the V, Cr and Mn nanowires.

More recently, we have performed systematic ab initio studies of magnetic anisotropy [7] and spin-spiral wave in all 3d transition metal (TM) freestanding linear chains. Interestingly, we found that Fe and Ni freestanding linear chains have a gigantic magnetic anisotropy energy (MAE) [7], and that the magnetic couplings in V, Mn and Fe linear chains are frustrated, resulting in the formation of stable spin-spiral structures [8]. Saubanere et al also found a stable spiral magnetic order in a freestanding V atomic chain in their recent ab initio theoretical study of TM nanowires [9]. Experimentally, copper and tungsten are excellent substrates for growth of Fe thin films [10, 11] because of the small lattice constant mismatch between Fe and Cu(3.61 Å) as well as W(3.61 Å). This stimulated, e.g. a recent theoretical study of the magnetic order and exchange interactions of 3d TM monoatomic chains on the (1 1 0) surface of Cu, Pd, Ag and NiAl [12]. Here in this paper, we perform first principles calculations for magnetic moments, MAEs and spin-spiral wave energies of V, Cr and Mn linear chains deposited on a Cu(001) surface. We also consider the transverse spin-spiral states where all the spins rotate in a plane perpendicular to the atomic chain axis. The generalized Bloch theorem [17, 18] is used to calculate self-consistently the total energies of the transverse spin spirals as a function of the spin-spiral wave vector. Therefore, the relativistic spin–orbit coupling (SOC) is not included in these calculations. A denser 25 × 5 × 1 k-point mesh is used for the V and Mn chains, in order to ensure that the calculated spin wave excitation energies (see figure 3(a)) and also the first and second near-neighbour exchange interaction parameters (i.e. J_{01} and J_{02} in table 2) are converged to within a few per cent.

Ab initio calculation of the MAE is computationally very demanding because of the smallness of MAE, and thus needs to be carefully carried out [19]. Here we use the total energy difference approach rather than the widely used force theorem to determine the MAE, i.e. the MAE is calculated as the difference between the full self-consistent total energies for the two different magnetization directions concerned. The total energy convergence criterion is 10^{-8} eV/atom. The same k-point mesh is used for the density of states (DOS) calculations. The MAEs calculated with a denser 32 × 6 × 1 k-point mesh hardly differ from that obtained with the 20 × 5 × 1 k-point mesh (within 0.01 meV per magnetic atom).

3. Results and discussion

3.1. Formation energy and spin magnetic moment

To see how the Cu substrate interacts with the V, Cr and Mn chains, we first study the chain formation energy. The
chain formation energy E^f describes the difference in the total energy of the combined system of the Cu substrate and a TM chain before and after the TM chain is deposited on the substrate. As in [8], we introduce the chain formation energy as $E^f = \frac{1}{2}(E_1 - nE_{\text{Cu}}^{\text{bulk}} - mE_{\text{chain}}^{\text{TM}})$ where E_1 is the total energy of the system in the FM state, $E_{\text{Cu}}^{\text{bulk}}$ is the total energy of the bulk Cu and $E_{\text{chain}}^{\text{TM}}$ is the total energy of the freestanding TM nanowires in the FM state. n and m are the numbers of Cu and TM atoms in the system, respectively. It should be noted that there is no universal definition for the chain formation energy. The calculated formation energies of all the V, Cr and Mn nanowires are listed in Table 1. The formation energies for the Fe, Co and Ni linear chains on the Cu(0 0 1) surface, reported recently [20], are also listed in Table 1 for comparison. It is clear from Table 1 that it is more energetically favourable when the TM atoms are placed on the hollow sites, as might be expected because the hollow site has a higher coordination number. Among all the 3d TM nanowires, Ni nanowire is the most energetically favourable on both the hollow and atop sites. Generally, the V, Cr and Mn chains are less energetically favourable than the corresponding Fe, Co and Ni chains (Table 1). Interestingly, the formation energy of the V chain on the atop site is almost zero, thereby suggesting that this chain would not be stable.

Table 1 shows that the interlayer distance between the V, Cr and Mn nanowires on the hollow (atop) site and the Cu substrate is 1.70 (2.03) Å, 1.80 (2.18) Å and 1.73 (2.37) Å, respectively. The ideal interlayer distance for the Cu substrate is 1.81 Å. Therefore, the copper substrate seems to pull (push) the TM nanowires when deposited on the hollow (atop) site. In all the cases considered here, the equilibrium interlayer distance is larger in the FM state than in the NM state. This is due to the larger kinetic energy in a magnetic state which makes the magnetic materials softer and larger in size (see Table 1). Table 1 also shows that when the interlayer distance changes, the spin magnetic moment changes as well. In general, for all the 3d TM nanowires considered, an increase in interlayer distance will result in an increase in the spin moment. This is because the stronger overlap between TM 3d orbitals and the Cu substrate would result in a decrease in the magnetic moment. The interatomic distance between the deposited TM atoms in all the cases considered here is 2.55 Å. The calculated spin moments of the V, Cr and Mn atoms on the hollow (atop) sites are 2.11 (3.30) μ_B/atom, 4.23 (4.60) μ_B/atom and 4.14 (4.53) μ_B/atom, respectively. In comparison, the calculated spin moments at the same bond length (2.55 Å) of the freestanding V, Cr, Mn, Fe, Co and Ni nanowires, reported recently [7], are 4.07 μ_B/atom, 5.06 μ_B/atom, 4.53 μ_B/atom, 3.30 μ_B/atom, 2.30 μ_B/atom and 1.14 μ_B/atom, respectively. Clearly, placing the 3d TM nanowires on the hollow sites significantly reduces or even quenches the spin moments on the nanowires, whilst the spin moments are much less affected when the nanowires are deposited on the atop sites.

The obtained magnetic moments of the V, Cr and Mn nanowires can be understood in terms of the calculated spin-polarized DOS, as displayed in figure 2. In figure 2, the Fermi level is set to be zero, the DOS spectra for the minority spin are multiplied by -1, and the sp orbital decomposed DOS are scaled up by a factor of 10 for clarity. Clearly, the d orbitals of the V, Cr and Mn nanowires on both sites are significantly localized due to the reduction in the coordination number whilst the sp orbitals are more dispersive. The reduction in coordination number thus induces considerable enhancement in the spin splitting of the V, Cr and Mn 3d bands. The spin splitting values of the V, Cr and Mn 3d bands for the hollow (atop) site are 1.48 (2.01) eV, 2.65 (2.93) eV and 2.98 (3.30) eV, respectively. The interlayer distance between the TM nanowires and Cu substrate is larger on the atop site. This indicates that the overlaps between the TM and substrates are smaller, and hence the spin magnetic moments are larger. The splitting of the 3d band is approximately proportional to the spin moment.

3.2. Spin-spiral wave and exchange interaction

In our recent study of noncollinear magnetism in freestanding 3d TM nanowires [8], V, Mn and Fe chains were found to have a stable noncollinear spin-spiral structure due to the frustrated exchange interactions in these systems whilst Cr chain was found to have an antiferromagnetic (AF) ground state. Therefore, here we perform total energy calculations for the spin-spiral structure in V, Cr and Mn chains on Cu(0 0 1) to examine how these interesting magnetic properties would be modified in the presence of the Cu substrate. The calculated total energies $E(q, \theta)$ of the V, Cr and Mn linear chains on Cu(0 0 1) are plotted as a function of the spin-spiral wave vector q in figure 3(a). Since here only the transverse spin-spiral waves along the chain direction (i.e. x-axis) are considered, the angle between the chain axis and the magnetization direction $\theta = \pi / 2$, and hence we simply write $E(q, \theta = \pi / 2) = E(q)$. The spin-spiral structure at $q = 0$ corresponds to the collinear FM state, whilst the state at $q = 0.5 (2\pi / d)$ corresponds to the AF state. Figure 3(a) shows that the FM state in all the 3d TM chains considered here, except the hollow-site V chain, is unstable against the formation of a spin-spiral
calculated total energy of the spin-spiral state as $\varepsilon(q)$.

Destabilize the noncollinear spin-spiral state and stabilize the equilibrium bond length has a stable spin-spiral state with the magnetization energy of the AF state is rather small (~ 0.016 eV/atom). The genuine stable spin-spiral state occurs in the atop-site V chain and hollow-site (atop-site) Mn chain ($h\omega(q) = 0$). The genuine stable spin-spiral state and stabilize the FM state.

The energy of a spin-wave excitation (i.e. the magnon dispersion relation) $\varepsilon(q)$ (or $h\omega(q)$) can be related to the calculated total energy of the spin-spiral state as [8, 22, 23]

$$\varepsilon(q) = \frac{4\mu_B}{m_{so}}[E(q) - E(0)],$$ \hspace{1cm} (1)

where m_{so} is the spin magnetic moment per site at $q = 0$. In the range of small q, $\varepsilon(q) = Dq^2$, where the spin-wave stiffness constant D relates the spin-wave energy $\varepsilon(q)$ to the wave vector q in the long wavelength limit. The spin-wave stiffness constant D of an atomic chain can be estimated by fitting an even order polynomial to the corresponding spin-wave spectrum shown in figure 3(a). The spin-wave stiffness constant D obtained in this way for the V, Cr and Mn linear chains on Cu(001) are listed in table 2. A negative value of D means that the FM state is not stable against a spin-spiral wave excitation. As mentioned above, the FM state in all the atop-site TM chains and also in the hollow-site Cr chain is unstable and hence D for these nanowires is negative (table 2).

Interestingly, D for the hollow-site Mn chain is nearly zero and this is because the $E(q)$ curve is very flat in the range $0 < q < 0.2$ (figure 3(a)). Furthermore, when deposited on the hollow sites on Cu(001), the spin-wave stiffness D of the V chain changes from -424 meV Å2 (freestanding chain) [8] to 345 meV Å2.

In the frozen magnon approach, the exchange interaction parameters J_{ij} between atom i and atom j on a TM chain...
are related to the magnon excitation energy $\varepsilon(q)$ by a Fourier transformation:

$$J_{0j} = \frac{1}{N_q} \sum_{q} e^{-iq \cdot R} J(q),$$

where N_q is the number of q points in the BZ included in the summation. $J(q)$ is the Fourier transformation of the exchange parameters J_{ij} and is related to the magnon excitation energy $\varepsilon(q)$ by

$$\varepsilon(q) = -\frac{2\mu_B}{m_{\alpha}} J(q).$$

Here the negligible induced magnetization on all the Cu atoms is neglected and hence only the TM atoms on the deposited chain are considered in the summation. The calculated exchange parameters J_{ij} are plotted in figure 3(b) and also listed in table 2. The magnetic coupling between two first near neighbours in the V chains and also the hollow-site Mn chain is FM ($J_{01} > 0$), whilst it is AF ($J_{01} < 0$) in the rest of the Cr and Mn chains (figure 3(b) and table 2). Interestingly, the magnetic coupling between two second near neighbours in the V and Mn chains is AF ($J_{02} < 0$), whilst it is FM ($J_{02} > 0$) in the Cr chains, i.e. the second near-neighbour magnetic coupling is opposite to the first near-neighbour magnetic coupling in all the nanowires considered here except for the atop-site Mn chain.

3.3. Magnetic anisotropy energy

Relativistic SOC is essential for orbital magnetization and magnetocrystalline anisotropy in solids, although it may be weak in 3d TM systems. Therefore, we perform further self-consistent calculations with SOC included in order to study the magnetic anisotropy and also orbital magnetization of the V, Cr and Mn nanowires on Cu(001), and the results are summarized in table 3. For comparison, the same results for the Fe, Co and Ni linear chains on Cu(001) reported recently [20] are also listed in table 3. First, when the SOC is taken into account, the spin magnetic moments for the V, Cr and Mn TM nanowires on the hollow (atop) site are 2.11 (3.30), 4.23 (4.60) and 4.14 (4.53) μ_B/magnetic atom, being almost identical to the corresponding one obtained without SOC. This is due to the weakness of the SOC in the 3d TMs. Nevertheless, including the SOC gives rise to orbital magnetic moments in the 3d TM nanowires and, importantly, allows us to determine the easy magnetization axis in the nanowires. If the magnetization lies along the chain direction (i.e. the x-axis) and the chain is on the hollow (atop) site, the calculated orbital moments for the V, Cr and Mn atoms are 0.01 (−0.06) μ_B/magnetic atom, 0.01 (0.01) μ_B/magnetic atom and 0.02 (0.02) μ_B/magnetic atom (see table 3), respectively, being small when compared with the Fe, Co and Ni chains. For comparison, we note that the corresponding orbital moments in the freestanding V, Cr and Mn nanowires are −0.16 μ_B/magnetic atom, 0.04 μ_B/magnetic atom, 0.02 μ_B/magnetic atom, respectively [7].
was also found that the magnetization of the freestanding 3d TM nanowires has a strong directional dependence, and that the orbital moment is larger when the magnetization lies along the chain direction. Table 3 shows that the directional dependence of the orbital moment is weak in the on-hollow-site V, Cr, and Mn chains but is rather significant when the V, Cr, and Mn chains are on the atop sites.

The calculated MAEs of the V, Cr, Mn, Fe, Co and Ni nanowires are listed in table 3. The MAEs E_1 and E_2 are defined as the energy differences $E_1 = E^{100} - E^{001}$ and $E_2 = E^{100} - E^{010}$, where the E^{100} is the calculated total energy when the magnetization lies along the x direction. If both the E_1 and E_2 are negative, the magnetization prefers to lie along the chain (x-axis) direction. The MAEs of the V, Cr and Mn nanowires on both hollow and atop sites are quite small. In contrast, the MAEs E_1 of the freestanding V, Cr, and Mn chains are -0.45 meV/magnetic atom, -0.07 meV/magnetic atom and 0.28 meV/magnetic atom, respectively, with $E_2 = 0$ [7]. In [20], it was found that the Fe chain on Cu(0 0 1) has an out-of-plane anisotropy while the Co and Ni chains on Cu(0 0 1) have an in-plane anisotropy (table 3). In contrast, here we find that the Cr and Mn chains on Cu(0 0 1) have an in-plane anisotropy, however, with the total energy changes due to the magnetization rotation from the x-, through y-, to z-axes being very small. Clearly, when the 3d TM chains are deposited on Cu(0 0 1), the MAEs generally become smaller due to the overlap of the wave functions between the TM nanowires and substrate (table 3). In particular, the MAEs of the V, Cr and Mn chains become very small when they are deposited on the Cu(0 0 1) substrate.

m_s (μB)	m_o (μB)	MAE (meV)			
	100	010	001	E_1	E_2
H-site					
V	2.11	0.01	0.01	0.01	0.00
Cr	4.23	0.01	0.01	0.01	0.01
Mn	2.41	0.02	0.03	0.03	0.01
Fea	3.07	0.10	0.10	0.10	0.32
Coa	1.78	0.27	0.18	0.17	0.18
Nia	0.02	0.02	0.00	0.00	0.00
A-site					
V	3.30	0.06	0.18	0.03	0.00
Cr	4.60	0.01	0.09	0.01	0.01
Mn	4.53	0.02	0.21	0.03	0.01
Fea	3.28	0.12	0.11	0.13	0.38
Coa	1.99	0.19	0.25	0.12	0.40
Nia	0.64	0.13	0.27	0.11	0.05

a Theoretical calculations ([20]).

4. Conclusions

We have performed systematic ab initio GGA calculations for V, Cr, and Mn linear atomic chains on a Cu(0 0 1) surface in order to examine how the substrate would affect the magnetic properties of the nanowires. We found that V, Cr and Mn linear chains on the Cu(0 0 1) surface still have a stable or metastable FM state. Nonetheless, we also found that the ferromagnetic state is unstable against the formation of a noncollinear spin-spiral structure in the Mn linear chains and also the V linear chain on the atop sites on the Cu(0 0 1) surface, due to the frustrated magnetic interactions in these systems. The presence of the Cu(0 0 1) substrate does destabilize the spin-spiral state already present in the freestanding V linear chain and stabilizes the ferromagnetic state in the V linear chain on the hollow sites on Cu(0 0 1). When spin-orbit coupling (SOC) is included for the collinear ferromagnetic state, the spin magnetic moments remain unchanged, due to the weakness of SOC in 3d TM chains. Furthermore, both orbital magnetic moments and MAEs (within 0.01 meV/magnetic atom) for V, Cr and Mn are small, in comparison with both the corresponding freestanding nanowires and also the Fe, Co and Ni linear chains on a Cu(0 0 1) surface.

Acknowledgments

The authors acknowledge support from the National Science Council and the NCTS of Taiwan as well as the computing time from the National Center for High-performance Computing of Taiwan.

References

[1] Ohnishi H, Kondo Y and Takayanagi K 1998 Nature 395 780
[2] Yanson A I, Bollinger G R, van der Brom H E, Agrait N and van Ruitenbeek JM 1998 Nature 395 785
[3] Gambardella P, Blanc P, Burgi M, Kuhnke L and Kern K 2000 Surf. Sci. 449 93
[4] Gambardella P, Dallmeyer A, Maiti K, Malagoli M C, Eberhardt W, Kern K and Carbone C 2002 Nature 416 301
[5] Hammer L, Meier W, Schmidt A and Heinz K 2003 Phys. Rev. B 67 125422
[6] Mazzarello R and Tosatti E 2009 Phys. Rev. B 79 134402
[7] Tung J C and Guo G Y 2007 Phys. Rev. B 76 094413
[8] Tung J C and Guo G Y 2011 Phys. Rev. B 83 144403
[9] Saubanere M, Tanveer M, Ruiz-Diaz P and Pastor G M 2010 Phys. Status Solidi b 247 2610
[10] Hauschild J, Elmer H J and Gradmann U 1998 Phys. Rev. B 57 R677
[11] Tian D, Jona F and Marcus P M 1992 Phys. Rev. B 45 11216
[12] Mokrousov Y, Bihlmayer G, Bluge S and Heinze S 2007 Phys. Rev. B 75 104413
[13] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
[14] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[15] Blöchl P E 1994 Phys. Rev. B 60 17953
[16] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[17] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[18] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[19] Herring C 1966 Magnetism ed G T Rado and H Suhl (New York: Academic)
[18] Sandratskii L M 1991 J. Phys.: Condens. Matter \textbf{3} 8565
Sandratskii L M 1991 J. Phys.: Condens. Matter \textbf{3} 8587

[19] Guo G Y, Temmerman W M and Ebert H 1991 Physica B \textbf{172} 61

[20] Tung J C and Guo G Y 2011 Comput. Phys. Commun. \textbf{182} 84

[21] Guo G Y and Wang H H 2000 Phys. Rev. B \textbf{62} 5136

[22] Rosengaard N M and Johansson B 1997 Phys. Rev. B \textbf{55} 14975

[23] Niu Q, Wang X, Kleinman L, Liu W-M, Nicholson D M C and Stocks G M 1999 Phys. Rev. Lett. \textbf{83} 207