Genome-wide identification and evolutionary analysis of RLKs involved in the response to aluminium stress in peanut

Xin Wang¹, Ming-Hua Wu¹, Dong Xiao¹,²,³*, Ruo-Lan Huang¹, Jie Zhan¹,²,³, Ai-Qin Wang¹,²,³ and Long-Fei He¹,²,³

Abstract

Background: As an important cash crop, the yield of peanut is influenced by soil acidification and pathogen infection. Receptor-like protein kinases play important roles in plant growth, development and stress responses. However, little is known about the number, location, structure, molecular phylogeny, and expression of RLKs in peanut, and no comprehensive analysis of RLKs in the Al stress response in peanuts have been reported.

Results: A total of 1311 AhRLKs were identified from the peanut genome. The AhLRR-RLKs and AhLecRLKs were further divided into 24 and 35 subfamilies, respectively. The AhRLKs were randomly distributed across all 20 chromosomes in the peanut. Among these AhRLKs, 9.53% and 61.78% originated from tandem duplications and segmental duplications, respectively. The ka/ks ratios of 96.97% (96/99) of tandem duplication gene pairs and 98.78% (646/654) of segmental duplication gene pairs were less than 1. Among the tested tandem duplication clusters, there were 28 gene conversion events. Moreover, all total of 90 Al-responsive AhRLKs were identified by mining transcriptome data, and they were divided into 7 groups. Most of the Al-responsive AhRLKs that clustered together had similar motifs and evolutionarily conserved structures. The gene expression patterns of these genes in different tissues were further analysed, and tissue-specifically expressed genes, including 14 root-specific Al-responsive AhRLKs were found. In addition, all 90 Al-responsive AhRLKs which were distributed unevenly in the subfamilies of AhRLKs, showed different expression patterns between the two peanut varieties (Al-sensitive and Al-tolerant) under Al stress.

Conclusions: In this study, we analysed the RLK gene family in the peanut genome. Segmental duplication events were the main driving force for AhRLK evolution, and most AhRLKs subject to purifying selection. A total of 90 genes were identified as Al-responsive AhRLKs, and the classification, conserved motifs, structures, tissue expression patterns and predicted functions of Al-responsive AhRLKs were further analysed and discussed, revealing their putative roles. This study provides a better understanding of the structures and functions of AhRLKs and Al-responsive AhRLKs.

Keywords: Peanut, RLK, Gene family, Genome-wide analysis, Al stress

Background

Aluminium (Al) is one of the most harmful factors in plant growth in acidic soils, and Al can cause 25% to 80% yield losses depending on the crop [1, 2]. Al signalling induces a series of physiological events in plant cells. The most obvious phenomena of Al toxicity are inhibition of cell elongation in the apical region and induction of programmed cell death (PCD) [3–5]. PCD is an active,
orderly, and genetically controlled form of cell death and occurs in plants throughout development and in response to environmental stresses [6]. Early studies found that Al-treatment can enhance Fe$^{3+}$-induced lipid peroxidation and PCD in tobacco cells [7]. For decades, Al-induced PCD has been proven in many plant species including: soybean (Glycine max) [8], maize (Zea mays) [9], barley (Hordeum vulgare) [10], tomato (Lycopersicon esculentum) [11] and peanut (Arachis hypogaea) [12]. Al-induced PCD is mediated through two cell signal transduction pathways: a mitochondrial-dependent pathway and a nuclear-dominated mitochondrial-independent pathway [5]. However, Al signal information and its transmembrane transduction are unknown. Both pathways use plasma membrane and/or cell wall-localized receptors to sense environmental stimuli and efficiently transduce signals between cells, which perceive and transduce signals to modulate gene expression and/or enzyme activity as well as motility [13]. Receptor-like protein kinase (RLK) play important roles in the process of cell signal transduction, and are involved in a variety of plant physiological processes including: self-incompatibility [14], environmental signal processing [15], organ shape and meristem activity [16], hormone signal transduction [17], PCD [18], and tolerance to oxidative stress [19]. RLKs sense and transduce signals through protein interaction and phosphorylation [20]. Based on the structure of the extracellular domain, RLKs have been classified into several families such as S-RLKs, LRR-RLKs, EGF-RLKs, LecRLKs, TNFR-RLKs and PR5K-RLKs [21]. While many RLKs involved in the environmental stress response have been found, few RLKs have been reported to be involved in Al stress response. WAK1, which mediates the interaction between the cell wall and cytoplasm and may participate in cell elongation and morphogenesis [22], was the first RLK that was found to be involved in the Al stress response. The overexpression of WAK1 was reported to enhance Al tolerance in Arabidopsis [23]. The results showed that RLKs play an important role in Al-induced PCD, but the mechanism of RLKs in the regulation of Al-induced PCD is unknown.

Peanuts are an important oil crop worldwide. Al-dependent inhibition of growth causes a reduction in peanut yield in acidic soil. There is no comprehensive analysis of the RLK gene family in the peanut. In the present study, recently released peanut whole genome sequence data (http://peanutgr.fafu.edu.cn/index.php) were utilized to analyse the RLK gene family in peanut. A total of 1311 AhRLKs have been identified. The LRR-RLKs and LecRLKs were further divided into 24 and 35 subfamilies, respectively based on a phylogenetic analysis. The evolution and collinearity of AhRLKs were investigated. The evolutionary patterns of the RLK gene family were tested by investigating gene duplication events in the peanut. In addition, 90 AhRLKs in response to Al stress were identified by transcriptomic analysis, and the expression profiles of AhRLKs at different Al treatment time-points were comprehensively determined. These results will provide a basis for further research on the evolution and physiological functions of AhRLKs in response to Al stress in the peanut.

Results
Identification of AhRLKs in the peanut
To identify the members of AhRLKs in the peanut, we downloaded publicly available peanut genome sequence data and used the Arabidopsis RLK sequence as a query to perform a genome-wide similarity search. After filtration of the sequence, a total of 1311 AhRLKs that contained at least one kinase domain were initially identified, including 548 LRR-RLKs, 274 LecRLKs, 83 cysteine-rich RLKs, 76 EGF RLKs, 49 proline-rich RLKs, 46 s-domain RLKs, 22 TMK-RLKs, 2 TNFR-RLKs, 1 RRO-RICH RLK, 28 RLCK-RLKs, 24 LysM-RLKs, and 158 no obvious domains (Additional files 1 and 2). LRR-RLKs and LecRLKs were considered for further analyses.

Phylogenetic analysis of LRR-RLKs and LecRLKs in the peanut
To explore the phylogenetic relationships within the AhRLK class, full-length amino acid sequences of LRR-RLKs and LecRLKs were analysed separately. AhLRR-RLKs and AhLecRLKs were clustered with AtLRR-RLKs (209) and AtLecRLKs (76) respectively. The RLK classification in Arabidopsis was followed to analyse the phylogenetic relationship of peanut RLKs. AhLRR-RLKs were divided into 24 subclades in the ML tree (Fig. 1). The largest subclade LRR-XII contains 74 members, while the smallest subclade LRR-V contains only 1 member. Following the classification standards of Marcella [24] and Klass [25], peanut LecRLKs were classified into 35 subfamilies and subdivided into 3 classes: C-type LecRLKs (C-LecRLKs), L-type LecRLKs (L-LecRLKs) and G-type LecRLKs (G-LecRLKs) (Fig. 2). The largest subclades G-LecRLKs-X and L-LecRLKs-IX contains 37 and 28 members separately, while no members from G-LecRLKs-VII, G-LecRLKs-VIII, G-LecRLKs-V, G-LecRLKs-X, G-LecRLKs-III, L-LecRLKs-V, L-LecRLKs, L-LecRLKs-II, L-LecRLKs-III, and L-LecRLKs-V were found in the peanut.

Chromosomal location and gene duplication of AhRLKs
Physical positions of AhRLKs obtained from the “Peanut Genome resource” (http://peanutgr.fafu.edu.cn/) [26] were used to map them onto peanut chromosomes. Chromosome location information demonstrated that
all the AhRLKs were unevenly distributed among the 20 chromosomes of the peanut, and 1.14% (15/1311) did not show assembly information (Fig. 3). Many AhRLKs were located on chromosomes 14 (111, 8.47%) and 13 (106, 8.09%), while only 31 (2.36%) AhRLKs were located on chromosome 6. Regarding LRR-RLKs, subfamilies LRR-XI and LRR-III were present on all chromosomes, while others were found only on some chromosomes. The majority of the LRR-RLKs and LecRLKs were located on chr 3, 13, 8 and 18 (Additional file 3), in particular, all members of the G-LecRLKs-XVII and G-LecRLKs-VIa subfamilies were distributed on chr 8 and 18 (Additional file 4, Fig. 4).

Gene replication events play an important role in the evolution of new functions of proteins and the expansion of genomes. Segmental duplication and tandem duplication are the main causes of the expansion of gene families in plants [27]. The position of two or more AhRLKs on the chromosome within 100 kb was considered a tandem duplication cluster. The results showed that approximately 9.53% (125/1311) of the genes were located in tandem duplication regions and constituted 52 clusters (Additional file 5). Among these genes, 5.66% (31/548) of AhLRR-RLKs and 17.51% (48/274) of AhLecRLKs were located in regions with tandem duplications. The largest tandem duplication cluster contained five genes, while the smallest cluster contained only two. Approximately 61.78% (810/1311) of the gene (810/1311) genes were located in segmental duplication regions. Up to 66.60% (365/548) of AhLRR-RLKs and 37.96% (104/274) of AhLecRLKs were located in regions with segmental duplications. To investigate the selection forces acting upon individual AhRLKs, the ratio of the nonsynonymous
substitution rate to the synonymous substitution rate (Ka/Ks) was calculated. Among the 99 tandem duplicated gene pairs, the Ka/Ks ratios of 96.97% (96/99) of the gene pairs were less than 1 and 2.02% (2/99) were more than 1. One tandem duplication gene pair could not calculate the Ka/Ks value. Among the 654 segmental duplication gene pairs, the Ka/Ks ratios of 646 pairs (98.78%) were less than 1, and 4 pairs (0.61%) were more than 1. For four segmental duplication gene pairs Ka/Ks values could not be calculated (Fig. 5). In addition, we calculated the divergence time with the formula $T = \frac{Ks}{2r}$, in which r is the rate of divergence for nuclear genes from plants. The r of dicotyledonous plants was taken to be 1.5×10^{-8} synonymous substitutions per site per year according to the methods of Koch [28]. The results showed that 82.82% (82/99) of tandem duplication events occurred 0–10 MYA, and 72.78% (476/654) of segmental duplication events occurred from 0–30 MYA (Additional file 6). Gene conversions play an important role in the coevolution of duplicated genes. Among the 52 tandem duplication clusters, 19 (36.54%) clusters showed statistically significant gene conversion events ($P < 0.05$). A total of 28 gene transformation events occurred in 52 tandem duplication clusters. The tract length of gene conversion ranged size from 16 to 1771 bp (Additional file 7).

Phylogenetic analysis of Al-responsive AhRLKs

In a previous study, we performed a transcriptome analysis to identify differentially expressed genes (DEGs) and pathways between two peanut cultivars under Al Stress [29]. In this study, we scrutinized transcriptome data to detect the AhRLKs involved in the Al response. Genes with log2-transformed ratio FPKM values greater than 1 or less than -1 were defined as differentially expressed genes. A total of 90 Al-responsive

Fig. 2 Phylogenetic analysis and classification of peanut and A. thaliana LecRLK proteins. The phylogenetic tree was established with full sequences using the maximum-likelihood method with 1000 bootstrap replications and the evolutionary distances were computed using the p-distance method. Red sequences indicated the AtLecRLKs. Each RLK clade was depicted by a different colour, representing the 35 clades that were identified; labelled lines on the outside of the tree represent clade names as defined in the text.
AhRLKs, including 44 LRR-RLKs, 19 LecRLKs, 8 cysteine-rich RLKs, 1 EGF-RLKs, 2 proline-rich RLKs, 4 s-domain RLKs, 1 TMK RLK, 1 RLCK RLK, 1 LysM domain RLK, and 9 no obvious domains (Additional file 2). To reveal the evolutionary relationships of these proteins, a phylogenetic tree was constructed using the ML method (Fig. 6). Phylogenetic analysis of all 90 AhRLKs revealed that the Al-responsive AhRLKs were further classified into 7 groups, including 48.9% LRR-RLKs, 21.1% LecRLKs and 8.9% CRKs. The phylogenetic tree showed that most of these genes belonged to LRR-RLKs and LecRLKs, covering the main subfamilies of LRR-RLKs and LecRLKs. Interestingly, these Al-responsive AhRLKs were evenly distributed across the LecRLK family, but unevenly distributed across the LRR-RLK families, focusing on LRR-III, LRR-XI, LRR-XII, LRR-VIII-1, and LRR-VIII-2.

Characterization of the amino acid sequences and gene structure of Al stress-related AhRLKs

As shown in Fig. 7, 90 Al stress-related AhRLKs were divided into 7 groups. The diversification of exons/introns has been reported to be an important reason for the evolution of certain gene families [30]. The distribution of exons/introns of AhRLKs was further analysed. The results showed that 7.8% of Al stress-related AhRLKs (7/90) had no introns. One, two and three introns were found in 30% (27/90), 15.6% (14/90) and 1.1% (1/90) Al stress-related AhRLKs, respectively. Meanwhile, 45.6% (41/90) of the genes had more than three introns. All genes in subgroups I, II and VII contained more than three introns. Among these 30 genes, only one was LRR-RLK gene in subgroup II while 15 were LecRLKs in subgroups I and II (Fig. 6, Additional file 2). The majority of genes in subgroups III, IV and VI contained one or two

Fig. 3 Genomic distribution of AhRLKs across peanut chromosomes. Chromosomal locations of AhRLKs are indicated based on the physical position of each gene. The positions of genes on each chromosome were drawn with MG2C (Map Gene 2 Chromosome v2) software and the number of chromosomes was labelled on the top of each chromosome.
introns, of which 70.6% (36/51) were LRR-RLKs, and 7.8% (4/51) were LecRLKs. This result was similar to the study in which most LRR-RLKs in Arabidopsis had fewer than three introns [31]. Moreover, to analyse the diversity of the Al stress-related AhRLKs, the MEME tool was used to predict putative motifs of these proteins. A total of 5 different motifs were detected in Al stress-related AhRLKs and named motifs 1 to 5 (Additional file 8).

Genes in subgroup I 82.4% (14/17), 70% (7/10) of genes in subgroup II, 50% of genes in subgroup III, 42.9% (6/14) of genes in subgroup IV, 88.9% (8/9) of genes in subgroup V, 75.8% (25/33) of genes in subgroups VI, and 33.3% (1/3) of genes in subgroup VII were shown to contain the same motif composition as motif 3-motif 4-motif 1-motif 2-motif 5.

Expression profiles of Al-responsive AhRLKs in different tissues
To further understand the role of Al-responsive AhRLKs in peanut growth and development, the expression profiles of Al-responsive AhRLKs from different organs, including leaves, stems, florescence, roots and root tips, were tested in a cultivated variety (A. hypogaea L.) using transcriptomic data (Fig. 8). Among these Al-responsive AhRLKs, the majority (78/90, 86.7%) were expressed in all organs examined. Six genes (6.7% AH16G41130.1, AH07G04000.1, AH07G24540.1, AH07G24580.1, AH08G04680.1, and AH16G09430.1) were expressed at a high level (value > 5) in leaves, 12 genes (13.3% AH05G37250.1, AH04G28680.1, AH16G41130.1, AH01G21880.1, AH07G04000.1, AH07G24540.1, AH07G24580.1, AH03G13700.1, AH10G03910.1, AH08G04680.1, AH08G04640.1, AH16G09430.1) in stems, 6 genes (6.7%, AH16G41130.1, AH01G21880.1, AH07G04000.1, AH07G24540.1, AH08G04640.1, and AH16G09430) in florescences, and 14 genes (15.6%, AH07G04000.1, AH03G13700.1, AH10G03910.1, AH08G04680.1, AH08G04640.1, AH16G09430.1, AH14G07810.1, AH03G21680.1 AH19G41030.1, AH13G57290.1,
AH10G29990.1, AH08G20520.1, AH08G06390.1, and AH01G04120.1) in roots or root tips.

Expression patterns of Al-responsive AhRLKs under Al stress
To further investigate the putative functions of Al-responsive AhRLKs, an RNA-Seq dataset that was generated from different Al treatment time points were utilized to reveal the expression profiles of these genes under Al stress. The expression profiles of Al-responsive AhRLKs are shown in histograms (Fig. 9). As shown in Fig. 9, 41.1% (37/90) of AhRLKs exhibited > twofold upregulation under Al stress for 8 h in 99–1507. A total of 12.2% (11/90) and 8.9% (8/90) of AhRLKs exhibited > twofold down regulation under Al stress for 8 h in ZH2 and 99–1507, respectively. Among the AhRLKs, 3.3% (3/90) and 12.2% (11/90) exhibited > twofold up regulation in the 24 h vs 0 h Al-treatment comparison, 6.7% (6/90) and 1.1% (1/90) AhRLKs exhibited > twofold down regulation in 24 h vs 0 h Al-treatment comparison in the ZH2 and 99–1507, respectively (Additional file 9).
Discussion

Segmental duplication events played an important role in AhRLK family evolution

RLKs are involved in a variety of plant physiological processes and various abiotic and biotic stress responses [32, 33]. In this study, a total of 1311 AhRLKs, including 548 LRR-RLKs, 274 LecRLKs, 83 cysteine-rich RLKs, 76 EGF-RLKs, 49 proline-rich RLKs, 46 s-domain RLKs, 22 TMK-RLKs, 2 TNFR-RLKs, 1 RRO-RICH RLK, 28 RLCK-RLKs, 24 LysM-RLKs, and 158 no obvious domain RLKs, were identified from whole peanut genome sequences (Additional file 1).

The 548 LRR-RLKs were classified into 24 subfamilies (I to XXIV) based on their phylogenetic relationship with Arabidopsis, which was 2 times the number of Arabidopsis LRR-RLKs (Fig. 1). In general, the number of LRR-RLKs for most of the subfamilies among the peanut was two times the number of LRR-RLKs of Arabidopsis, except LRR-XII, LRR-XIV, LRR-XV and LRR-XVI, which had more than three times the number of members of Arabidopsis. Only one subfamily, LRR-V, had fewer members than Arabidopsis. The number of LecRLKs was over 3 times the number of AtLecRLKs (Fig. 2). The subfamilies in the peanut such as L-LecRLK-VII, L-LecRLKs-IX and G-LecRLKs-VIa were much larger than the subfamilies in Arabidopsis, while some subfamilies, including G-LecRLKs-VIb, G-LecRLKs-VIII, G-LecRLKs-VII, G-LecRLKs-X, G-LecRLKs-III, L-LecRLKs-VI, L-LecRLKs-I, L-LecRLKs-II, L-LecRLKs-III and L-LecRLKs-V, were not found in the peanut (Tables 1 and 2). Polyploidy may cause an increase in the number of genome genes in the peanut. In recent research, a total of 309, 379, 467, 531, and 543 LRR-RLKs have been identified in diploid rice [34], diploid poplar [35], tetraploid soybean [36], allohexaploid wheat [37] and tetraploid cotton [38], respectively, indicating that larger gene families are present in polyploid plants. Other factors, including tandem duplication, segmental duplication, and exon

Fig. 6 Phylogenetic analysis of Al-responsive AhRLKs. The full-length amino acid sequences of 90 Al-responsive AhRLKs were aligned by Clustal X, and the phylogenetic tree was constructed using MEGA 7. All Al-responsive AhRLKs were classified into 7 distinct groups based on the nomenclature of Arabidopsis LRR-RLKs and LecRLKs
duplication and shuffling, also contribute to the expansion of gene families.

Gene duplication was the main mechanism for evolutionary events [39]. The gene duplication results revealed that 9.53% (125/1311) of AhRLKs were located in regions with tandem duplications, and 61.78% (810/1311) were located in regions with segmental duplications, which indicated that segmental duplication played a major role in the evolution of AhRLKs (Additional file 5). Among the AhLRR-RLKs, 5.66% (31/548) and 66.60% (365/548) were found to be located in the tandem duplication region and the segmental duplication region, respectively. This finding is consistent with the work in soybean that segmental duplication may be the main mechanism of LRR-RLK amplification [36]. In addition, the ka/ks ratios of 94.9% (1290/1360) of AhRLKs were less than 1, which suggested that most AhRLKs were selected for purification (Fig. 5). The ka/ks ratios of six gene pairs including, AH16G29500.1 and AH16G29530.1, AH16G29500.1 and AH16G29560.1, AH08G17100.1 and AH18G07640.1, AH03G13490.1 and

Fig. 7 Phylogenetic relationships, gene structures and compositions of the conserved protein motifs of the Al-responsive AhRLKs. a The phylogenetic tree was constructed based on the full-length amino acid sequences of Al-responsive AhRLKs using MAGA 7. b Exon–intron structures of Al-responsive AhRLKs. Green boxes indicate untranslated 5'- and 3'-regions; yellow boxes indicate exons, and black lines indicate introns. c The motif compositions of the Al-responsive AhRLKs. The motifs, numbered 1–5, are displayed in different coloured boxes. The scale bar at the bottom indicates the base pair of genes.
Fig. 8 Expression profiles of Al-responsive AhRLKs in different tissues. FPKM values were used to create the heat map with clustering. The scale represents the relative signal intensity of FPKM values.
Fig. 9 Expression profiles of Al-responsive AhRLKs in the two varieties. The RNA-seq data of each gene in peanut root tips under Al stress in the two cultivars are shown here. Heatmap showed the log2-transformed ratio FPKM values. The genes were on the right of the expression bar.
AH13G15990.1, AH08G05340.1 and AH17G29130.1 and AH14G36690.1 and AH14G43630.1 were more than 1, which indicated that these genes were in a state of positive selection in peanuts, evolving rapidly, and might be very important for the evolution of the peanut. We also calculated the divergence time, and the results showed that many tandem duplication events appeared to have occurred during relatively recent key periods 0–10 MYA, and many segmental duplication events appeared to have occurred during 0–30 MYA (Fig. 5b; Additional file 6), illustrating that these \textit{AhRLK}s were generated by recent gene duplication events in \textit{Arachis hypogaea} L. Moreover, 28 gene transformation events were detected among the genes in the 52 tandem duplication clusters, and 44 genes involved in at least one gene conversion event, which suggested that gene conversion events had taken place between the duplicated \textit{AhRLK}s. Gene conversion is implicated in the concerted evolution of multigene families, which helps gene evolution by allowing more time for duplicated genes to obtain selectable differences [40, 41]. As changes in expression patterns are an important factor that cause genes to gain selectable differences [40, 42], studying the temporal

Table 1	Total number of receptors distributed in the different subfamilies of LRR-RLKs		
Subfamilies	Plant species	Peanut	A. thaliana
LRR-I	34	38	
LRR-II	27	13	
LRR-III	70	41	
LRR-IV	10	4	
LRR-V	1	9	
LRR-VI-1	17	6	
LRR-VI-2	9	4	
LRR-VII	9	8	
LRR-VIII-1	18	7	
LRR-VIII-2	32	12	
LRR-IX	3	4	
LRR-X-a	11	4	
LRR-X-b	6	9	
LRR-XI	74	29	
LRR-XII	61	9	
LRR-XIII-a	7	3	
LRR-XIII-b	4	3	
LRR-XIV	10	3	
LRR-XV	6	2	
LRR-XVI	5	1	
LRR-XVII	65	0	
LRR-XVIII	6	0	
1RR-XIX	15	0	
LRR-XX	32	0	
LRR-XXI	2	0	
LRR-XXII	2	0	
LRR-XXIII	2	0	
LRR-XXIV	10	0	
Total	548	209	

Table 2	Total number of receptors distributed in the different subfamilies of LecRLKs		
Subfamilies	Plant species	Peanut	A. thaliana
G-LecRKS-I	16	2	
G-LecRKS-II	7	2	
G-LecRKS-III	0	2	
G-LecRKS-IV	2	2	
G-LecRKS-V	18	3	
G-LecRKS-Via	29	2	
G-LecRKS-Vib	0	3	
G-LecRKS-Vilb	0	5	
G-LecRKS-Villb	0	9	
G-LecRKS-VIII	0	1	
G-LecRKS-IX	2	1	
G-LecRKS-V	1	1	
G-LecRKS-XI	37	0	
G-LecRKS-XII	2	0	
G-LecRKS-XIII	16	0	
G-LecRKS-XIV	6	0	
G-LecRKS-V	9	0	
G-LecRKS-VI	14	0	
G-LecRKS-VII	10	0	
G-LecRKS-VIII	9	0	
G-LecRKS-XIX	1	0	
G-LecRKS-XX	12	0	
G-LecRKS-XXI	15	0	
L-LecRKS-I	0	11	
L-LecRKS-II	0	2	
L-LecRKS-III	0	2	
L-LecRKS-IV	4	4	
L-LecRKS-V	0	9	
L-LecRKS-VI	0	4	
L-LecRKS-VII	2	3	
L-LecRKS-VIII	7	4	
L-LecRKS-IX	28	2	
L-LecRKS-X	4	1	
L-LecRKS-XI	1	0	
L-LecRKS-XII	6	1	
L-LecRKS-XIII	2	0	
C-LecRKS	2	1	
Total	274	76	
and spatial expression patterns of these genes would be of interest.

Conservation of the AhRLKs in response to Al stress
In this study, a total of 90 AhRLKs were identified as Al stress-related genes, which were divided into 7 groups (Fig. 7). Most of the subgroups show certain regularity of exon–intron structure. For instance, all genes in subgroups I, II and VII contained more than three introns. Members belonging to the same subgroup had similar exon/intron organization. Furthermore, 5 conserved motifs were identified in these AhRLKs and the motif compositions among subgroups were consistent with the phylogenetic classification. These results indicated that the members in the subgroups were more conservative in the evolution.

Diversity roles of Al-responsive AhRLKs in different subgroups
To further understand the Al-responsive AhRLKs in the peanut, we investigated the potential functions of each subgroup (Table 3). In subgroup I, PERK1 has been reported to regulate ABA signalling pathways and modulate the expression of genes related to cell elongation and ABA signalling during root growth [43], implying that the genes in Subgroup I were essential to plant signalling and growth. The inhibition of root elongation is known to be the primary symptom of Al toxicity, and the members of subgroup I may take part in the Al response by influencing cell elongation. The genes known to function in subgroup II were reported to play a role in plant signal transduction, plant growth and biotic stress response, for instance, PXCI and CRCK1 played a role in signal transduction [44, 45], PRK1 was essential for the postmeiotic development of pollen [46], FLS2 was involved in preinvasive immunity against bacterial infection [47], and RCH1 was critical to the resistance of the hemibiotrophic fungal pathogen Colletotrichum higginsinaum [48]. In Subgroup III, ANXUR1/ANXUR2 were involved in controlling pollen tube rupture during the fertilization process and regulating signal transduction [49]. FERONIA was required for cell elongation during vegetative growth [50], suggesting that the genes in subgroup III might play an important role in plant morphology. In subgroup IV, TMK1 was an essential enzyme for DNA synthesis in bacteria [51], which indicated that the genes of subgroup IV might play a critical role in cell expansion and proliferation regulation. The subgroup V gene RLK1 was reported to increase tolerance to salinity, heavy metal stresses, and Botrytis cinerea infection [52], suggesting that the genes of subgroup V are implicated in both abiotic and biotic stress responses. In subgroup VI, CRKS was reported to respond to drought and salt stresses [53], and CRK45 was a potentially positive regulator of ABA signalling in early seedling growth [54] and stomatal movement [55], indicating that the genes of subgroup VI are critical to the abiotic stress response and related to plant morphology. The reported genes in subgroup VII, such as GsSRK, were shown to be positive regulators of plant tolerance to salt stress [56], and SDI-29 improved plant resistance to bacteria [57], showing that the genes of subgroup VII have critical roles in the response to biotic and abiotic stresses. In general, Al-responsive AhRLKs in different subgroups take part in the Al response by different pathways. Subgroups I and II are related to signal transduction, subgroup II is implicated in the biotic stress response, subgroups III and VI play an essential role in plant morphology, subgroup IV plays a critical role in cell expansion and proliferation regulation, and subgroups V and VII are critical to the biotic stress and abiotic stress response (Table 3).

The AtRLK gene family plays a role in plant growth and development processes [63]. As shown in the histograms in Fig. 8, the expression pattern of the Al-responsive AhRLKs exhibited tissue specificity, and approximately 2.2% (2/90, AH07G04000.1 and AH16G09430.1) of Al-responsive AhRLKs were expressed in all four tested organs with high expression levels (value > 5) in the peanut, implying that these genes might play essential roles in plant growth and development. Approximately 2.2% (2/90, AH16G41130.1 and AH07G24540.1) of Al-responsive AhRLKs were expressed specifically and at a high level in aerial organs. About 8.8% (8/90, AH14G07810.1, AH03G21680.1, AH19G41030.1, AH10G29990.1, AH08G20520.1, AH08G06390.1, and AH01G04120.1) of Al-responsive AhRLKs were expressed specifically and at a high level in roots or root tips. The tissue specificity of these Al-responsive AhRLKs indicates their key roles in tissue development or tissue functions. Additionally, 6 tissue nonspecific genes (AH07G04000.1, AH03G13700.1, AH10G03910.1, AH08G04680.1, AH08G04640.1, and AH16G09430.1) that were expressed at a high level specifically in roots are also worth considering. As shown in the histograms in Fig. 9, the majority of the Al-responsive RLKs were upregulated after 8 h of Al treatment in 99–1507, while only moderate changes were detected in some Al-responsive RLKs in ZH2, which suggested that Al-responsive RLKs responded rapidly to Al stress in the Al-tolerant variety. Although the genes had different expression profiles under Al stress in different varieties, the expression levels of 12 genes (AH04G28680.1, AH16G41130.1, AH01G21880.1, AH10G16100.1, AH08G24070.1,
Table 3 The classification of subgroups for Al responsive AhRLKs

Subgroups	Gene ID	Gene Name	Reported	Function
I	AH05G06780.1	Proline-rich receptor-like kinase	PERK1	responses to wounding and treatment with salicylic acid and PERK1 mRNA accumulation in response to these treatments shows a role in plant defense signaling [43]
II	AH09G18420.1	Leucine-rich repeat receptor-like	PXC1	a regulator of secondary wall formation correlated with the TDF-PXY/TDR-WOX4 signaling pathway [44]
II	AH01G04120.1	Calmodulin-binding receptor-like	CRCK1	plays a role in stress signal transduction in plants [45]
II	AH13G3400.1	Probable LRR receptor-like serine/threonine-protein kinase	RKF1	regulates early flower primordia during stamen development [58]
II	AH13G49190.2	LRR receptor-like serine/threonine-protein kinase	FLS2	involves in preinvasive immunity against bacterial infection [59]
II	AH02G15400.1	Proline-rich receptor-like protein	PERK1	responses to wounding and treatment with salicylic acid and PERK1 mRNA accumulation in response to these treatments shows a role in plant defense signaling [43]
II	AH01G20770.1	Pollen receptor-like kinase 3	PRK1	PRK1 is essential for postmeiotic development of pollen [46]
II	AH09G25780.1	LRR receptor-like serine/threonine-protein kinase	ERL1	regulates elongation of above-ground organs [60]
II	AH08G04970.1	LRR receptor-like serine/threonine-protein kinase	RCH1	resistances to the hemibiotrophic fungal pathogen collerotrichum higginsianum [48]
II	AH09G16620.1	Leucine-rich repeat receptor-like	PXL1	regulates signal transduction pathways under temperature fluctuations [61]
II	AH05G37250.1	Proline-rich receptor-like tyrosine-protein kinase	PXC3	a regulator of secondary wall formation correlated with the TDF-PXY/TDR-WOX4 signaling pathway [44]
II	AH05G22210.1	LRR receptor-like serine/threonine-protein kinase	HSL2	involves in floral organ abscission and lateral root emergence [62]
II	AH05G25480.1	Receptor-like protein kinase HSL1	HSL1	participates in the Repression of Seed Maturation Genes in Arabidopsis Seedlings [63]
II	AH02G27570.1	Probable LRR receptor-like serine/threonine-protein kinase	RKF1	regulates early flower primordia during stamen development [58]
II	AH01G26450.1	Receptor-like protein kinase ANXUR1	ANXUR1/ANXUR2	control pollen tube rupture during the fertilization process in A. thaliana [49]
III	AH10G66000.1	Receptor-like protein kinase FERONIA	FERONIA	affects plant reproduction, development, and stress tolerance [50]
III	AH14G3820.1	LysM domain receptor-like kinase 4	RLK1	activates defense and Abiotic-Stress Responses [52]
III	AH05G0280.1	Receptor-like protein kinase ANXUR2	ANXUR1/ANXUR2	control pollen tube rupture during the fertilization process in Arabidopsis thaliana [49]
III	AH11G35150.1	LRR receptor-like serine/threonine-protein kinase	HSL2	involved in Floral organ abscission and lateral root emergence [62]
IV	AH02G03870.1	Receptor protein kinase TMK1	TMK1	an essential enzyme for DNA synthesis in bacteria, phosphorylating deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP), and thus is a potential new antibacterial drug target [51]
V	AH01G31190.1	G-type lectin S-receptor-like serine/threonine-protein kinase RLK1 isoform X2	RLK1	activates defense and Abiotic-Stress Responses [52]
VI	AH09G27120.1	Cysteine-rich receptor-like protein kinase 29	CRK45/CRKS	response to abscisic acid and abiotic stressing potentially positive regulator of ABA signaling in early seedling growth, stomatal movement and plant drought tolerance [53, 54]
Table 3 (continued)

Subgroups	Gene ID	Gene Name	Reported Function
VI	AH08G24070.1	Cysteine-rich receptor-like protein kinase 25	CRK45/CRKS response to abscisic acid and abiotic stresses, a potentially positive regulator of ABA signaling in early seedling growth, stomatal movement and plant drought tolerance [53, 54]
	AH14G27000.1		
VI	AH10G29990.1	Cysteine-rich receptor-like protein kinase 10	CRK45/CRKS response to abscisic acid and abiotic stresses, a potentially positive regulator of ABA signaling in early seedling growth, stomatal movement and plant drought tolerance [53, 54]
	AH13G57290.1		
	AH09G27070.1		
VI	AH03G40310.1	Cysteine-rich receptor-like protein kinase 2	CRK45/CRKS response to abscisic acid and abiotic stresses, a potentially positive regulator of ABA signaling in early seedling growth, stomatal movement and plant drought tolerance [53, 54]
	AH11G34340.1		
	AH06G07770.1		
	AH14G40110.1		
	AH10G26000.1		
	AH02G15400.1		
	AH11G35150.1		
	AH14G40170.1		
	AH08G04660.1		
VII	AH10G03910.1	G-type lectin S-receptor-like serine/threonine-protein kinase B120	GSRSK a positive regulator of plant tolerance to salt stress [56]
VII	AH10G04020.1	Receptor-like serine/threonine-protein kinase SD1-8	SD1-29 resistances to bacteria in crop species [64]
	AH06G22100.1		
VII	AH01G24170.1	G-type lectin S-receptor-like serine/threonine-protein kinase B120	GSRSK a positive regulator of plant tolerance to salt stress [56]

Note: only the Al responsive AhRLKs with characterized homologs were listed in the table.

Conclusions

In this study, a total of 1311 RLKs were identified in the peanut genome, 2 times the number of Arabidopsis RLKs, including 548 LRR-RLKs and 274 LecRLKs. LRR-RLK represented the largest RLK gene family identified in plants. Among them, AH01G21880.1 and AH04G28680.1 were expressed at a high level in stems, implying their potential roles in regulating the growth of stems. AH13G57290.1 was expressed specifically and at a high level in roots, implying its critical roles in mediating the Al response in peanut. AH07G04000.1 was expressed in all four tested organs with high expression levels, and it might play essential roles in plant growth and development under Al stress. Taken together, our results revealed that 13 genes (AH11G35150.1, AH08G24070.1, AH13G57290.1, AH02G27070.1, AH05G06780.1, AH02G15400.1, AH01G35150.1, AH14G27090.1, AH05G37250.1, AH10G03910.1, AH19G41030.1, AH10G29990.1, and AH10G26000.1), whose homologues have been reported to be involved in early seedling growth regulation, early flower primordia and stamen development, lateral root emergence, abiotic stress responses and plant defence signalling in Arabidopsis thaliana, were important Al-responsive genes that may be suitable candidates for interpreting the mechanisms underlying the Al response in peanuts in future work.

Methods

The resources of peanut AhRLKs

All RLK full-length amino acid sequences in Arabidopsis were downloaded from UniProt (https://www.uniprot.org/) and these sequences were used as queries to perform a BLASTP search against A. duranensis RLKs...
by NCBI (https://www.ncbi.nlm.nih.gov/). These resulting sequences were then used as new queries to conduct a BLASTP search again in PEANUT GENOME RESOURCE (http://peanutgr.fafu.edu.cn/), to avoid missing potential members. The redundant entries were removed manually. Then the resulting unique sequences were analysed with both SMART (http://smart.embl-heidelberg.de) [65] and NCBI’s Conserved Domains Database (CDD; http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) to ensure the presence of the RLK domains in newly identified members. Only proteins containing at least one kinase domain were considered putative AhRLKs, and 1311 AhRLKs were finally obtained. The amino acid residue base, and molecular weight were predicted with ExPaSy ProtParam tool (https://web.expasy.org/protparam/). The genome sequence, protein sequences and genome annotation of the peanut were performed according to PEANUT GENOME RESOURCE (http://peanutgr.fafu.edu.cn/).

Multiple sequence alignments and phylogenetic tree construction of AhRLKs
The full-length amino acid sequences of LRR-AhRLKs, LecRLKs and 90 Al-responsive AhRLKs defined in the previous section were aligned using ClustalX in MEGA 7 with default parameters [66]. The phylogenetic tree based on the multiple sequence alignments of peanut LRR-RLKs (Fig. 1), LecRLKs (Fig. 2) and 90 AhRLKs in response to Al stress (Fig. 6) was generated by MEGA 7. A Poisson correction model was used to account for multiple substitutions, while alignment gaps were removed with partial deletion. The statistical strength was estimated by bootstrap resampling using 1000 replicates. Based on the multiple sequence alignment and the previously reported classification of Arabidopsis thaliana, the peanut RLKs were assigned to different subfamilies and subgroups [24, 67].

Chromosomal locations and duplication analysis for peanut RLKs
The physical location of AhRLKs on the chromosomes was obtained from the PEANUT GENOME RESOURCE database (http://peanutgr.fafu.edu.cn/). All members of AhRLKs were mapped onto peanut chromosomes based on their physical positions, and chromosomal location images were produced with the online software MapGene 2 Chromosome v2 (MG2C:http://mg2c.iask.in/mg2c_v2.0/). The chromosome location information of the peanut was extracted from GFF files that contain the information of peanut genome annotation. BLASTP was performed to search for potential homologous gene pairs (E-value<1e-20) across genomes. Information on homologous pairs was used as input to identify syntenic chains by MCScanX [68]. In addition, MCScanX was also used to identify tandem and segmental duplications in the AhRLK gene family. RLKs clustered together within 100 kb were regarded as tandem duplicated genes based on the criteria of other plants. The diagram was generated by TBtools [69]. The nonsynonymous (Ka) and synonymous (Ks) substitution ratios were calculated by Simple Ka/Ks Calculator in TBtools. The divergence time was calculated with the formula T=Ks/2r, and the r of dicotyledonous plants was 1.5*10^-8 synonymous substitutions per site per year [70]. We used the Geneconv program with default parameters to search evidence for tandem duplication cluster gene conversion (http://www.math.wustl.edu/~sawyer/geneconv/) [71]. Since GENECONV required at least three sequences for detecting gene conversion events, tandem duplication clusters that contained at least 3 genes were detected. For this program, the clustalW (CDS) alignment was used as the input. Geneconv can detect candidate fragments of directed gene conversion between gene pairs (allowing mismatch). Gene conversion events were considered as statistically significant when \(P < 0.05 \).

Gene structure and motif analysis of AhRLKs in response to Al stress
The exon–intron structures of 90 peanut Al-responsive AhRLKs were determined based on their coding sequence alignments and their respective genomics sequences, while diagrams were obtained from the online program Gene Structure Display Server with default parameters (http://gsds.cbi.pku.edu.cn/) [72]. To identify the conserved motifs of the Al response AhRLKs, the MEME (Multiple Em for Motif Elicitation) tool was used to predict putative motifs of these proteins (http://meme-suite.org/) [73]. The combination of phylogenetic tree, gene and protein structures was generated using TBtools.

Expression Pattern Analysis for Al-responsive AhRLKs
By scrutinizing the existing transcriptome data, the expression profiles of Al-responsive AhRLKs in different tissues under normal conditions and in the root tips of different peanut varieties under Al stress were analysed. The raw RNA-seq reads in five tissues, including leaf, stem, florescence, root and root tips, were available at Peanut Genome Resource (http://peanutgr.fafu.edu.cn/). The RNA-seq data of ZH2 (ZhongHua No.2, Al sensitive) and 99–1507 (Al tolerant) under Al treatment were deposited in the database of the National Center for Biotechnology Information (NCBI) under accession number PRJNA525247 (https://www.ncbi.nlm.nih.gov/sra/PRJNA525247). Heat maps of the Log2-transformation ratio of FPKM values and gene FPKM values in...
AI-responsive AhRLKs of different varieties or tissues were visualized using TBtools.

Abbreviations

Ah: *Arachis hypogaea* L.; Al: Aluminum; At: Arabidopsis thaliana; EGF-RLK: Epidermal growth factor like RLK; LecRLK: Lectin-like RLK; LRR-RLK: Leucine-Rich Repeat RLK; PCD: Programmed Cell Death; PR5K-RLK: Pathogenesis related protein-5 like receptor kinases RLK; MEME: Multiple Em for Motif Elicitation; ML: Maximum Likelihood; RLK: Receptor-like protein Kinase; S-RLK: S-domain RLK; TNFR-RLK: Tumor-necrosis factor receptor-like RLK; WAK1: Cell wall-associated receptor kinase 1.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12870-021-03031-4.

Additional file 1: Complete list and classification of 1311 AhRLKs in peanut.

Additional file 2: Complete list and classification of Al response AhRLKs in peanut.

Additional file 3: Subfamily and chromosome distribution of AhLRR-RLKs in peanut.

Additional file 4: Subfamily and chromosome distribution of AhLecRLKs in peanut.

Additional file 5: Tandem duplication clusters of AhRLKs.

Additional file 6: Devergence time among AhRLKs tandem duplication pairs and segmental duplication pairs.

Additional file 7: Tandom duplicated genes analyzed for gene conversion.

Additional file 8: The motif of AI stress-related AhRLKs.

Additional file 9: Expression Profiles of AI-responsive AhRLKs under AI stress.

Acknowledgements

We thank Miss Xia Li and Miss Li Wei developed the biological experiments for the transcriptome sequencing.

Authors’ contributions

DX and LFH conceived the experiments. DX and XW designed the experiments. XW, MHW and RLH performed the data analysis, XW, DX wrote the manuscript. DX, XW, LFH, AQW and JZ revised this manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31701356, 31862034). Apart from providing financial support, funding bodies were not involved in the study design, data analyses, and interpretation of results or manuscript preparation.

Availability of data and materials

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request. The RNA-seq data of ZH2 and 99–1507 under Al treatment had been deposited in the database of the National Center for Biotechnology Information (NCBI) under accession number PRJNA525247 (https://www.ncbi.nlm.nih.gov/submit). The raw RNA-seq reads in different tissues and AhRLKs sequences are available at Peanut Genome Resource (http://peanutgrfafu.edu.cn/).

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China.

2 Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China. 3 Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning 530004, China.

Received: 5 July 2020 Accepted: 11 May 2021

Published online: 21 June 2021

References

1. Uexküll HR, Mutert E. Global extent, development and economic impact of acid soils. Plant Soil. 1995;171(1):1–15.

2. Sade H, Meriga B, Surapu V, Gadi J, Sunita MSL, Suravajhala P, Kishor PBK. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals. 2016;29(2):187–210.

3. Matsumoto H, Motoda H. Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress. Plant Sci. 2012;185–186:1–8.

4. Yao S, Huang W, Pan C, Zhan J, He LF. Caspase-like proteases regulate aluminum-induced programmed cell death in peanut. Plant Cell Tissue Organ Cult. 2016;127(3):1–13.

5. He H-Y, Gu M-H, He L-F. Signaling Pathways of Aluminum-Induced Programmed Cell Death in Higher Plants. In: Panda SK, Baluška F, editors. Aluminum Stress Adaptation in Plants. Cham: Springer International Publishing; 2015. p. 63–80.

6. Daneva A, Gao Z, Yan DM, Nowack MK. Functions and regulation of programmed cell death in plant development. Ann Rev Cell Dev Biol. 2016;32(1):111315–24915.

7. Yamamoto YHAMH. Oxidative Damage to Membranes by a Combination of Aluminum and Iron. Plant Cell Physiol. 1997;38(12):1333–9.

8. Rath I, Barz W. The role of lipid peroxidation in aluminium toxicity in soybean cell suspension cultures. Z Naturforsch C J Biosci. 2000;55(11–12):957–64.

9. Boscolo PRS, Menossi M, Jorge RA. Aluminum-induced oxidative stress in maize. Phytochemistry. 2003;62(2):181–9.

10. Tamás L, Budíková S, Huttová J, Mistrík I, Šimonovičová M, Široká B. AhRLKs in different tissues and AhRLKs sequences are available at Peanut Genome Resource (http://peanutgrfafu.edu.cn/).

11. Tamás L, Budíková S, Huttová J, Mistrík I, Šimonovičová M, Široká B. S-domain RLK; TNFR-RLK: Tumor-necrosis factor-like RLK; WAK1: Cell wall-associated receptor kinase 1.

12. Tamás L, Budíková S, Huttová J, Mistrík I, Šimonovičová M, Široká B. S-domain RLK; TNFR-RLK: Tumor-necrosis factor-like RLK; WAK1: Cell wall-associated receptor kinase 1.

13. Yuan N, Rai KM, Balasubramanian VK, Upadhyay SK, Luo H, Mendu V. Functional conservation of the SIF subfamily in cotton (Gossypium hirsutum L.). BMC Plant Biol. 2018;18(1):185.

14. Giranton J, Lee CD, Jackson J. The integral membrane S-locus receptor kinase of Brassica rapa has serine/threonine kinase activity in a membranous environment and spontaneously forms oligomers in planta. Proc Natl Acad Sci USA. 2000;7(97):3759–64.
15. Deeken R, Kaldenhoff R. Light-repressible receptor protein kinase: a novel photo-regulated gene from Arabidopsis thaliana. Planta. 1997;202(4):479–86.

16. Clark SE WRME, Clark SE, Williams RW, Meyerowitz EM. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell. 1997;89:575–85.

17. Kline KGCMJ. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. P Natl Acad Sci U SA. 2010;107(36):15986–91.

18. Chen KDL2C. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like-protein kinase in Arabidopsis. Plant Mol Biol. 2003;53:61–74.

19. Pitorre D, Lauro C, Jobert E, Guillemont J, Bizard JP, Delseny M, Lasserre E. RLK7, a leucine-rich repeat receptor-like kinase, is required for proper germination speed and tolerance to oxidative stress in Arabidopsis thaliana. Planta. 2010;232(6):1339–53.

20. Feng Y, Zhu CS, Pang BP. Advance in research of plant receptor-like protein kinases. Acta Botan Boreali-Occiden Sin. 2009;24:851–8.

21. Stone JM, Walker JC. Plant protein kinase families and signal transduction. Plant Physiol. 1995;108(2):451–7.

22. Lally D, Ingrima P, Tong HY, He ZH. Antisense expression of a cell wall-associated protein kinase, WAM4, inhibits cell elongation and alters morphology. Plant Cell. 2001;13(6):1317–31.

23. Mayandi S, Bunichi E, Zheng-Hui H, Hongyun T, Hiroki O, Frantisek B, Dieter V, Hideaki M. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol. 2003;132(4):2256–66.

24. Teixeira MA, Rajewski A, He J, Castaneda OG, Litt A, Kaloshian I. Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genomics. 2018;19(1):239.

25. Bouwmeester K, Govers F. Arabidopsis L-type lectin receptor kinase, LEC1, is required for proper germination speed and tolerance to oxidative stress in Arabidopsis thaliana. Plant Mol Biol. 2003;53:61–74.

26. Zhuang W, Chen H, Yang M, Al E. The genome of cultivated peanut (Arachis hypogaea L) reveals insights into the biology of domestication. Plant J. 2010;63(3):15986–91.

27. Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe. 2014;15(3):329–38.

28. Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A. CRK1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Clotropilium hirginianum. Mol Plant Microbe Interact. 2004;17(7):749–62.

29. Du S, Qu L, Xiao J. Crystal structures of the extracellular domains of the CRLK1 receptor-like kinases ANXUR1 and ANXUR2. Protein Sci. 2013;22(4):866–82.

30. David C, Yunqing Y, Assmann SM. A kinase-dead version of FERO-NIA receptor-like kinase has dose-dependent impacts on rosette morphology and RALF1-mediated stomatal movements. FEBS Lett. 2018;592(20):3429–37.

31. Martinez-Botella G, Loch JT, Green OM, Kawatkar SP, Oliver NB, Boriack-Sjodin PA, Keating TA. Sulfonylpyrimidines as novel, antibiotic inhibitors of Gram-positive thymidylate kinase (TMK). Bioorg Med Chem Lett. 2013;23(1):169–73.

32. Silva NF, Goring DR. The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol Biol. 2002;50(4):567–65.

33. Wang J, Kuczoklu M, Zhang L, Chen P, Weiner D, Linson O, Jones B, Sandberg G, Zheng B, the Arabidopsis LRR-RLK, PK1, is a regulator of secondary wall formation correlated with the TDF-PXY/TKR-WOX4 signaling pathway. BMC Plant Biol. 2013;13:194.

34. Yang T, Chaudhuri S, Yang L, Chen Y, Poovasa BV, Calumium/calmodulin up-regulates a cytoplasmic receptor-like kinase in plants. J Biol Chem. 2004;279(41):42525–9.

35. Lee HS, KunanandaND M, Babbin A, Gilroy S, Kao TH. PRK1, a receptor-like kinase of Petunia inflata, is essential for postmeiotic development of pollen. Plant J. 2003;30(5):613–24.

36. Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe. 2014;15(3):329–38.

37. Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A. CRK1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Clotropilium hirginianum. Mol Plant Microbe Interact. 2004;17(7):749–62.

38. Du S, Qu L, Xiao J. Crystal structures of the extracellular domains of the CRLK1 receptor-like kinases ANXUR1 and ANXUR2. Protein Sci. 2013;22(4):866–82.

39. David C, Yunqing Y, Assmann SM. A kinase-dead version of FERO-NIA receptor-like kinase has dose-dependent impacts on rosette morphology and RALF1-mediated stomatal movements. FEBS Lett. 2018;592(20):3429–37.

40. Martinez-Botella G, Loch JT, Green OM, Kawatkar SP, Oliver NB, Boriack-Sjodin PA, Keating TA. Sulfonylpyrimidines as novel, antibiotic inhibitors of Gram-positive thymidylate kinase (TMK). Bioorg Med Chem Lett. 2013;23(1):169–73.

41. YarivBrotman USJ. The lysm receptor-like kinase LysmRLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in arabidopsis plants. Mol Plant. 2012;5:1113–24.

42. Lu K, Liang S, Wu Z, Bi C, Yu YT, Ma Y, Wang X, Zhang DP. Overexpression of an Arabidopsis cysteine-rich receptor-like kinase, CRKS, enhances abscisic acid sensitivity and confers drought tolerance. J Exp Bot. 2016;67(17):5009–27.

43. Zhang X, Yang G, Shi R, Han X, Qi L, Wang R, Xiong L, Li G. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. Plant Physiol Biochem. 2013;67(67C):189–98.

44. Zhang X, Guayou R, Rui S, Xiaomin H, Liangw Q, Ruihang W, Xiaoj L, Guojing N, L. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. Plant Physiol Biochem. 2013;67(67C):189–98.

45. Sun XL, Yu QQ, Tang LL, Ji BW, Bai C, Cai H, Liu XF, Ding XD, Zhu YM. GS-SRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J Plant Physiol. 2013;170(5):505–15.

46. Huard-Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T, Karl S, Bergelson J, Roux F, Roby D, McDowell JM. An Atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. Plant Physiol. 2013;160(9):e013766.

47. Takahashi T, Mu J, Gasch A, Chua N. Identification by PCR of receptor-like protein kinases from Arabidopsis flowers. Plant Mol Biol. 1998;37(4):97–106.
59. Gómezgómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell. 2000;5(6):1003–11.

60. Lease KA, Lau NF, Schuster RA, Toni KU, Walker JC. Receptor serine/threonine protein kinases in signalling: analysis of the ecto-kinase-like kinase of Arabidopsis thaliana. New Phytol. 2010;151(1):133–43.

61. Jung CG, Hwang S, Park YC, Park HM, Kim DS, Park DH, Jang CS. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations. J Plant Physiol. 2015;176:38–46.

62. Wang X, Hou S, Wu Q, Lin M, Acharya BR, Wu D, Zhang W. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves. Plant J. 2017;89(2):250–63.

63. Zhou Y, Tan B, Luo M, Li Y, Liu C, Chen C, Yu C, Yang S, Dong S, Ruan J. Histone deacetylase19 interacts with HSL1 and participates in the repression of seed maturation genes in arabidopsis seedlings. Plant Cell. 2013;25(1):134–48.

64. Rand S, Gisch N, Sch Ffer M, Illig T, Westphal L, Knirel YA, Sánchez-Carballeira PM, Hringer UZ, Buchholzov E, Lee J. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol. 2015;16(4):426–33.

65. Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucl Acids Res. 2015;43(D1):D257–60.

66. Sudhir K, Glen S, Koichi K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.

67. Magalhães DM, Scholte LLS, Silva NV, Oliveira GC, Zipfel C, Takita MA, De Souza AA. LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects. BMC Genomics. 2016;17(1):623.

68. Yupeng W, Hailao T, DJ D, Xu T, Jingping L, Xiyan W, Tae-ho L, Huizhe J, Barry M, Hui G, et al. MCoScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucl Acids Res. 2012;40(7):e49.

69. Chen C, Chen H, Zhang Y, Thomas HR, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.

70. Koch MA, Bernhard H, Thomas M. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in arabidopsis, arabis, and related genera (Brassicaceae). Mol Biol Evol. 2000;10:10.

71. Sawyer SA. Statistical tests for detecting gene conversion. Mol Biol Evol. 1999;6(5):526–38.

72. Hu B, Jin J, Guo AY, Zhang H, Gao G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics. 2014;31(8):1296.

73. BT L, Mikael B, Buske A F, F Martin, Grant C E, Luca C, Jingyuan R, Li W W, Noble S W. MEME Suite: tools for motif discovery and searching. Narnia. 2009;37(suppl2):W202-8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.