Estimated quantity of swine virus genomes based on quantitative PCR analysis in spray-dried porcine plasma samples collected from multiple manufacturing plants

Elena Blázquez¹,²,³, Joan Pujols¹,³, Joaquim Segalés³,⁴,⁵, Carmen Rodríguez², Joy Campbell⁶, Louis Russell⁶, Javier Polo²,⁶*

¹ IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA), Bellaterra, Barcelona, Spain, ² APC EUROPE S.L.U., Granollers, Barcelona, Spain, ³ OIE Collaborating Centre for the Research and Control of Emerging and Reemerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain, ⁴ Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain, ⁵ UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, ⁶ APC LLC, Ankeny, Iowa, United States of America

* javier.polo@apc-europe.com

Abstract

This survey was conducted to estimate the incidence and level of potential viral contamination in commercially collected porcine plasma. Samples of spray dried porcine plasma (SDPP) were collected over a 12-month period from eight spray drying facilities in Spain, England, Northern Ireland, Brazil, Canada, and the United States. In this survey, viral load for several porcine pathogens including SVA, TGEV, PRRSV (EU and US strains), PEDV, PCV-2, SIV, SDCoV and PPV were determined by qPCR. Regression of Ct on TCID₅₀ of serial diluted stock solution of each virus allowed the estimate of potential viral level in SDPP and unprocessed liquid plasma (using typical solids content of commercially collected porcine plasma). In this survey, SVA, TGEV or SDCoV were not detected in any of the SDPP samples. Brazil SDPP samples were free of PRRSV and PEDV. Samples of SDPP from North America primarily contained the PRRSV-US strain while the European samples contained the PRRSV-EU strain (except for one sample from each region containing a relatively low estimated level of the alternative PRRSV strain). Estimated viral level tended to be in the range from <1.0 log₁₀ TCID₅₀ to <2.5 log₁₀ TCID₅₀. Estimated level of SIV was the exception with a very low incidence rate but higher estimated viral load <3.9 log₁₀ TCID₅₀. In summary, the incidence of potential viral contamination in commercially collected porcine plasma was variable and estimated virus level in samples containing viral DNA/RNA was relatively low compared with that occurring at the peak viremia during an infection for all viruses or when considering the minimal infectious dose for each of them.
Funding: Funding for this study was provided by APC Europe, S.L.U., Granollers, Spain, and APC LLC, Ankeny, IA, 50021, USA. These companies manufacture animal blood products for animal consumption. The funders provided support in the form of salaries for authors EB, CR, JC, LR and JPolo, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section.

Competing interests: The authors have read the journal’s policy and the authors of this manuscript have the following competing interests: EB, CR, and JPolo are employed by APC Europe, S.L.U. Granollers, Spain and JC, LR and JPolo are employed by APC LLC, Ankeny, IA, USA. APC Europe and APC LLC manufactures and sells spray-dried animal plasma; however, the companies did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. This does not alter the authors’ adherence to all PLOS ONE policies on sharing data and materials. JPujols, and JS declared no conflict of interest.

Introduction

Spray dried porcine plasma (SDPP) is a complex mixture of functional components including immunoglobulins, albumin, transferrin, fibrinogen, lipids, growth factors, bioactive peptides, enzymes, hormones, and amino acids commonly used in feed for young animals including pigs, calves, and poultry [1–4].

It has been speculated that the use of SDPP in swine feed contributed to the spread of infectious viruses such as *Porcine circovirus 2* (PCV-2) and *Porcine epidemic diarrheea virus* (PEDV) [5–7]. However, other evidence demonstrates that reduced mortality and morbidity is associated with the use of SDPP in pig diets [1, 3, 8, 9] and experimental and epidemiological evidence demonstrate that SDPP does not spread diseases [10–12].

The manufacturing process to produce SDPP includes multiple hurdles steps that have been validated to inactivate potential viral contamination. These hurdles include spray drying (SD, 80˚C throughout substance), ultraviolet light (UV) treatment (3000 J/L) and post drying storage (PDS) at 20˚C for 14 d [13–19]. Depending on the virus, the theoretical cumulative inactivation for SD and PDS range from 5.8 to 9.1 log_{10} TCID_{50}/g liquid plasma, while SD, PDS and UV range from 11.7 to 20.9 log_{10} TCID_{50}/g liquid plasma (Table 1). The World Health Organization recommends cumulative robust inactivation procedures capable of inactivating 4 log_{10} of virus by each of these steps in the manufacturing process for human blood and plasma products [20, 21].

While the inactivation capacity of the multiple hurdle manufacturing process has been validated for several economically important swine viruses, it is also important to estimate the potential virus quantity in liquid plasma used to produce SDPP. Therefore, this survey was conducted to estimate the quantity and determine the frequency of genome detection of different swine viruses in commercially produced SDPP samples collected from 8 different manufacturing plants. Results obtained from quantitative polymerase chain reaction (qPCR) analyses of the SDPP samples were used to infer the potential viral contamination in the liquid porcine plasma from which it was produced.

### Table 1. Different inactivation steps involved in the manufacturing process of spray dried porcine plasma.

| Virus Type                  | Spray-Drying | UV-C*         | Storage at 20˚C for 14 d | Combined Theoretical Inactivation | References |
|-----------------------------|--------------|---------------|--------------------------|-----------------------------------|------------|
| **RNA Enveloped**           |              |               |                          |                                   |            |
| Porcine reproductive and respiratory syndrome virus (PRRSV) | >4.0         | 12.9 ± 0.3    | >4.0                     | >20.9                             | [13, 17, 62]|
| Swine influenza virus (SIV) | 2.8**        | ± 0.2         | 3.2**                    | 13.9                              | [17]       |
| Porcine epidemic diarrheea virus (PEDV) | 5.1          | 6.6 ± 0.1     | 3.8                      | 14.6–15.5                         | [15–17]    |
| Classical swine fever virus (CSFV) | 5.8          | 7.9 ± 0.2     | ND                       | >13.7                             | [17, 63]   |
| **Naked**                   |              |               |                          |                                   |            |
| Swine vesicular disease virus (SVDV) | 6.7          | 3.5 ± 0.07    | ND                       | >10.2                             | [14, 17]   |
| Senecavirus A (SVA)         | ND           | 4.0 ± 0.08    | >5.0**                   | >9.0                              | [17]       |
| **DNA Enveloped**           |              |               |                          |                                   |            |
| Pseudorabies virus (PRV)    | 5.3          | 8.1 ± 0.2     | ND                       | >13.4                             | [13, 17]   |
| African swine fever virus (ASFV) | 4.1 ± 0.2    | 6.8 ± 0.1     | >5.7                     | >16.6                             | [17, 19, 63]|
| **Naked**                   |              |               |                          |                                   | [17]       |
| Porcine parvovirus (PPV)    | 2.7**        | 6.0 ± 0.1     | 3.1**                    | >11.8                             | [17]       |

LRVs with symbol > results indicate the inactivated amount in the processed sample exceeded the amount inoculated in the initial sample before processing or storage.

*ND = Not determined.

The UV log-kill estimated values were calculated commercial UV dosage (3251 J/L) by the estimated D-value from Blázquez et al., [17].

**University of Minnesota. Understanding the risk of virus transmission in spray dried porcine plasma—food safety assessment. 2020. Unpublished data.

https://doi.org/10.1371/journal.pone.0259613.t001
Material and methods

Ethical statement

No animals were used for the study conducted.

Spray-dried porcine plasma sample collection

One sample per month was collected from a randomly selected commercial lot of SDPP during 12 consecutive months from eight different manufacturing plants located in Iowa, USA (IA-USA), North Carolina, USA (NC-USA), Santa Catarina, Brazil (SC-Brazil), central Spain (C-Spain), northeastern Spain (NE-Spain), central England (C-England) and Northern Ireland (N-Ireland). The N-Ireland manufacturing plant collects porcine blood from abattoirs located both, in Republic of Ireland and Northern Ireland. Samples from a manufacturing plant located in Quebec, Canada (QB-Canada), were taken biweekly during a 6 month-period.

Samples were collected from July 2018 to June 2019 (SC-Brazil), August 2018 to July 2019 (IA-USA, NE-Spain, C-Spain and N-Ireland) or September 2018 to August 2019 (NC-USA, C-England). The QB-Canada plant provided 12 samples randomly collected from March to August 2019. The collected SDPP samples represented a single point in time, not the entire month. Whole blood or plasma was chilled and stored in insulated agitated tanks at the abattoir. transported to the spray drying facility in dedicated tankers and stored and may be blended with plasma from different slaughterhouses in agitated silos before drying. In the manufacturing plants used in this study, a manufacturing lot of SDPP can range between 3,000 to 15,000 kg of plasma depending on the plant. Therefore, one lot of SDPP represented between 16,650 to 166,500 pigs. During the 12-month collection period, samples were stored in whirl packs (Whirl-Pak®, Nasco, Madison, WI) and held at each plant in the quality assurance laboratory (room temperature) during the collection period. Subsequently, all SDPP samples were sent to the IRTA-CReSA Animal Health Research Center in Barcelona, Spain, and stored (-20°C) until analyses for virus genome. One sample collected in December from the IA-USA plant was damaged during transport and was not used for analysis. Therefore, a total of 95 SDPP samples were analyzed.

Sample analysis by PCR

All SDPP samples were re-solubilized in distilled water at the ratio 1:9 of SDPP: water volume to represent the typical solid content in liquid plasma. Two hundred milliliters of diluted plasma sample were used for nucleic acid extraction using MagMAX™ Pathogen RNA/DNA Kit (Thermo Fisher Scientific, MA, USA). The recommended quantity of purified nucleic acids was amplified using real time PCR kits for PCV-2 (LSI VetMAX™ Porcine Circovirus Type 2 Quantification, Thermo Fisher Scientific, MA, USA), Porcine reproductive and respiratory syndrome virus [PRRSV] European and North American strains (LSI VetMAX™ PRRSV EU/NA Real-Time PCR Kit; Thermo Fisher Scientific, MA, USA), Swine influenza virus [SIV] (EXOOne Influenza A, EXOPOL, Zaragoza, Spain), Porcine parvovirus [PPV] (VetMAX™ Porcine Parvovirus Kit, Thermo Fisher Scientific, MA, USA), PEDV, Transmissible gastroenteritis virus [TGEV] and Swine deltacoronavirus [SDCoV] (VetMAX™ PEDV/TGEV/SDCoV, Thermo Fisher Scientific, MA, USA) and Senecavirus A [SVA] (EXOOne Seneca Virus Valley, EXOPOL, Zaragoza, Spain).

According to all PCR kit guidelines, virus genome results with Ct values >40 were considered negative.
Virus stock production for development of standard curves to convert PCR Ct to TCID\textsubscript{50}/g SDPP

From those viruses detected in SDPP by qPCR, a stock of each virus was produced in the laboratory. Seven serial dilutions of viral stocks (PEDV, PRRSV-1 (EU strain), PRRSV-2 (US strain), PPV-1, PCV-2 and SIV) were analyzed by quantitative PCR/RT-PCR (obtaining the corresponding Ct value) and TCID\textsubscript{50} titration. Standard curves were established for each virus by regressing TCID\textsubscript{50}/g SDPP on Ct results [Fig 1]. Those viral stocks were used as an internal standard on each amplification run/plate and quantitative PCR/RT-PCR Ct values extrapolated to TCID\textsubscript{50}. Potential viral quantity determined on SDPP was corrected for typical solids content for each commercially collected plasma. TCID\textsubscript{50} titers were calculated by the Reed and Muench method [22].

**Porcine reproductive and respiratory syndrome virus.** Porcine reproductive and respiratory syndrome virus 3268 EU strain was propagated in porcine alveolar macrophages (PAM) grown in standard growth media (SGM) containing minimum essential medium eagle (MEM-E; ThermoFisher, Waltham, MA, USA) supplemented with 1% penicillin 10,000 U/mL and streptomycin 10 mg/mL (ThermoFisher), 0.5% Nystatin 10,000 IU/mL (Sigma-Aldrich, Burlington, MA, USA), 1% L-glutamine 200 mM (ThermoFisher) plus 5% fetal bovine serum (FBS). Cells were cultured in 75-cm\textsuperscript{2} flasks. When cells were confluent, the media was discarded, and the adsorption was done using the virus at 0.01 multiplicity of infection (MOI). After 1.5 hours at 37ºC, inoculum was removed, and 30 mL of medium were added. Titration was done in triplicate obtaining a final titer of 10\textsuperscript{5.3±0.2} TCID\textsubscript{50}/mL.

**Porcine epidemic diarrhea virus.** Porcine epidemic diarrhea virus CV777 strain [23], kindly provided by Dr. Hans Nauwynck (University of Ghent, Belgium), was propagated in VERO cells (ATCC CCL-81) grown in SGM with 10% FBS. Cells were cultured in 175-cm\textsuperscript{2} flask and when they were confluent, the media was removed, and cells were rinsed twice with phosphate buffered saline (PBS). Finally, inoculum was added at 0.001 MOI and adsorption was done for 1 hour at 37ºC. Subsequently, the inoculum was discarded, flasks were rinsed twice with PBS and SGM supplemented with 10 mg/mL trypsin, and 0.3% tryptose (Sigma-Aldrich, Burlington, MA, USA). The viral stock was produced in the same cells and was titrated in triplicate obtaining a suspension with a viral titer of 10\textsuperscript{5.4±0.1} TCID\textsubscript{50}/mL.

**Swine influenza virus.** Swine influenza virus strain H1N1 A/Swine/Spain/2017 [24] was propagated in MDCK cell line (ATCC CCL-34) grown in DMEM (ThermoFisher, Waltham, MA, USA) supplemented with 1% penicillin (10,000 U/mL), 1% streptomycin (10 mg/mL; ThermoFisher), 0.5% Nystatin (10,000 U/mL) (Sigma-Aldrich, Burlington, MA, USA), 1% L-glutamine 200 mM (ThermoFisher) and 5% FBS. Cells were cultured in 175-cm\textsuperscript{2} flask. When cells were confluent, the media was discarded, and the adsorption was done at 0.1 MOI. After 1 hour at 37ºC, inoculum was removed, and 30 mL of medium were added. The viral suspension was titrated in triplicate and the final virus titer was 10\textsuperscript{7.6±0.2} TCID\textsubscript{50}/mL.

**Porcine circovirus 2.** Porcine circovirus 2 genotype b isolate Sp-10-7-54-13 [25] was cultured in the PK-15 cell line (provided by the Institute of Virology UE and OIE Reference Laboratory for CSFV, Hannover), grown in SGM with 10% FBS. A mix of 6 mL of virus stock and 7 x 10\textsuperscript{6} PK-15 cells resuspended in 50 mL of MEM-E (MOI 0.1) were added in 175 and 25 cm\textsuperscript{2} flasks. At 24 hours cells were treated with glucosamine (Sigma-Aldrich, Burlington, MA, USA)
Fig 1. Regression curves between Ct values and tissue culture infectious dose 50 (TCID$_{50}$/g) or Genome equivalent copies (GEC/g) of spray-dried porcine plasma (SDPP). Values expressed in log$_{10}$ TCID$_{50}$/g SDPP or log$_{10}$ GEC/g SDPP. Each box includes the spot values of the SDPP samples analyzed and the regression equation between Ct and TCID$_{50}$/g or GEC/g SDPP and the $r^2$ value. A. Regression curves for porcine epidemic diarrhea virus (PEDV); B. Regression curves for porcine circovirus type-2 (PCV-2); C. Regression curves for porcine parvovirus (PPV); D. Regression curves for swine influenza virus H1N1; E. Regression curves for porcine reproductive and respiratory syndrome virus (PRRSV) US strain; F. Regression curves for PRRSV EU strain.

https://doi.org/10.1371/journal.pone.0259613.g001
to facilitate the virus infection. Forty-eight hours later, viral infection was checked by immunoperoxidase monolayer assay (IPMA) [26] in the 25 cm² flask. If more than 25 positive cells were counted in a microscope field, the 175 cm² flask was trypsinized and the cells were transferred to 3 new 175 cm² flasks. The virus stock was titrated in triplicate with a final titer of $10^{5.5 \pm 0.04} \text{TCID}_{50}/\text{mL}$.

**Porcine parvovirus.** Porcine parvovirus strain NADL-2 was kindly provided by Dr Albert Bosch (Department of Genetics, Microbiology and Statistics School of Biology, University of Barcelona, Spain). It was propagated in SK-RST cells (ATCC CRL-2842), grown in SGM supplemented with 5% FBS. One mL of virus stock and 9 mL of MEM-E supplemented with 1% pyruvate (Merck KGaA, Darmstadt, Germany) were added to a conical tube with $16 \times 10^6$ SK-6 cells and shaken for 30 minutes at 104 rpm and 37°C. After that time, the contents of the tube were transferred to a 175 cm² flask, in which 40 mL of MEM-E supplemented with 1% pyruvate were added. Inoculated flasks were incubated for four days at 37°C until CPE was observed. A viral suspension was obtained and titrated in triplicate, obtaining a final viral solution of $10^{6.6 \pm 0.2} \text{TCID}_{50}/\text{mL}$.

**Estimation of TCID$_{50}$ and genomic equivalent copies (GEC) from Ct values obtained from q-PCR results**

To establish equivalence of positive qPCR results (measured as Ct values) with TCID$_{50}$/mL and viral genome equivalent copies (GEC) content, seven serial dilutions of abovementioned titrated virus stocks were performed, and virus genome amplified with a second set of PCR kits (GPS, Genetic PCR Solutions Alicante, Spain). Each kit contained a genome quantified standard for the different viruses tested: PRRSV (PRRSV-I dtec-RT-qPCR, PRRSV-II dtec-RT-qPCR), PEDV (PEDV dtec-RT-qPCR), PPV (PPV-1 dtec-RT-qPCR) and SIV (SIV dtec-RT-qPCR).

**Statistical analysis**

Dilutions of titrated viral stocks were included as an internal standard on each amplification PCR run containing SDPP samples. The Excel software was used to obtain the equation correlating TCID$_{50}$ and Ct values as well as GEC and Ct values. Then, results of the different PCR techniques originally expressed as Ct values for each SDPP sample tested were extrapolated to virus infectious particles and GEC based on the obtained regression formuals.

Average, number of observations, standard deviation, minimum value, maximum value, and ranges were calculated within each virus and for each SDPP producing plant using LSMEANS (SAS 9.4, 2016).

**Results and discussion**

In this survey, viral loads for several porcine pathogens including SVA, TGEV, PRRSV (EU and US strains), PEDV, PCV-2, SIV, SDCoV and PPV were determined by qPCR in reconstituted commercial SDPP. First, the Ct values from serial dilutions of a stock solution for each virus allowed the development of a regression equation between Ct and TCID$_{50}$ that allowed an estimate of the viral titers in the SDPP samples. Finally, using typical solids content of unprocessed liquid plasma, the viral level in liquid plasma was adjusted per gram (TCID$_{50}$/g liquid plasma). The relationships between Ct and TCID$_{50}$ of serial diluted stock solutions were linear with a correlation coefficient from 0.95 to 0.995 (Fig 1). Similar correlation coefficients were found when regressing Ct on $\log_{10}$ GEC/g on the tested samples (Fig 1). The slope of the lines for either TCID$_{50}$ or GEC/g were similar, while the intercepts were different (Fig 1), consistent with the fact that not all viral genome copies are infective [27]. There was variability.
between infectious particles and genome copy numbers observed among tested viruses, with less than 1 log difference for SIV to around 4 log differences for PCV-2.

Previous research has shown PCR/RT-PCR Ct values in SDPP to be relatively stable during normal storage conditions [19, 28, 29]. Similar levels of viral genome were detected in plasma inoculated with PCV-2 or SIV before and after spray drying (E. Blázquez, personal communication). The stability of PCR Ct values, the linear relationship between Ct and TCID\(_{50}\) and the linear relationship between Ct and GEC provides additional assurance that estimated viral contamination of commercially collected SDPP and estimates of liquid plasma are accurate.

Frequency of detection and estimated quantity of virus in SDPP samples mimicking unprocessed liquid plasma samples collected at different plants is presented in Tables 2 and 3.

The S1 Table -SDPP includes monthly (during the years 2018–2019) Ct values and estimated virus levels reported as log\(_{10}\) GEC/g and log\(_{10}\) TCID\(_{50}\)/g in reconstituted SDPP from the different manufacturing plants located in different swine production areas around the world.

Table 2. Ct values and estimated viral genome presence expressed in log\(_{10}\) genome equivalent copies (GEC) and log\(_{10}\) TCID\(_{50}\)/g spray dried porcine plasma in manufacturing plants located in different swine production areas around the world during the years 2018–2019. Values expressed as Average ± SD for positive samples.

| Plant | US-IA (n = 11) | US-NC (n = 12) | Canada (n = 12) | Spain-NE (n = 12) | Spain-C (n = 12) | England (n = 12) | NI (n = 12) | Brazil (n = 12) |
|-------|----------------|----------------|----------------|------------------|------------------|-----------------|-----------|----------------|
| PEDV  |                |                |                |                  |                  |                 |           |                |
| Ct    | 33 ± 3         | 34 ± 2         | 34             | 35 ± 1           | 35 ± 1           | Neg             | Neg       | Neg            |
| log\(_{10}\) GEC/g | 2.9 ± 0.9       | 2.7 ± 0.6      | 2.7           | 2.4 ± 0.3        | 2.4 ± 0.4        |                 |           |                |
| log\(_{10}\) TCID\(_{50}\)/g | 0.3 ± 0.9       | 0.1 ± 0.6      | 0.3           | 0.01 ± 0.33      | -0.05 ± 0.38     |                 |           |                |
| % Positive samples | 82             | 50             | 8             | 83               | 67               | 0               | 0         | 0              |
| PCV-2 |                |                |                |                  |                  |                 |           |                |
| Ct    | 32 ± 1         | 31 ± 2         | 30 ± 1         | 30 ± 1           | 30 ± 1           | 31 ± 1          | 31 ± 1    | 31.0 ± 0.4    |
| log\(_{10}\) GEC/g | 5.3 ± 0.2       | 5.5 ± 0.5      | 5.7 ± 0.3      | 5.5 ± 0.2        | 5.6 ± 0.3        | 5.4 ± 0.4      | 5.4 ± 0.2 | 5.3 ± 0.1     |
| log\(_{10}\) TCID\(_{50}\)/g | 1.4 ± 0.2       | 1.6 ± 0.5      | 1.8 ± 0.3      | 1.6 ± 0.2        | 1.7 ± 0.3        | 1.5 ± 0.4      | 1.5 ± 0.2 | 1.4 ± 0.1     |
| % Positive samples | 100            | 100            | 100           | 100              | 100              | 100             | 100       | 100            |
| PPV   |                |                |                |                  |                  |                 |           |                |
| Ct    | 30 ± 1         | 32 ± 2         | 31 ± 1         | 31 ± 3           | 31 ± 1           | 30 ± 1          | 28.4 ± 0.5 | 31 ± 1        |
| log\(_{10}\) GEC/g | 4.0 ± 0.3       | 3.5 ± 0.6      | 3.9 ± 0.3      | 3.9 ± 0.8        | 3.9 ± 0.3        | 4.0 ± 0.3      | 4.4 ± 0.1 | 3.8 ± 0.2     |
| log\(_{10}\) TCID\(_{50}\)/g | 2.8 ± 0.3       | 2.4 ± 0.6      | 2.8 ± 0.4      | 2.7 ± 0.8        | 2.8 ± 0.3        | 2.9 ± 0.3      | 3.3 ± 0.1 | 2.6 ± 0.3     |
| % Positive samples | 100            | 100            | 100           | 100              | 100              | 100             | 100       | 100            |
| SIV   |                |                |                |                  |                  |                 |           |                |
| Ct    | 38             | Neg            | 35             | 23 ± 4           | 19.6 ± 0.3       | 24 ± 11         | 21         | 28 ± 10       |
| log\(_{10}\) GEC/g | -1.3           | 0.4            | 3.9 ± 1.1      | 5.0 ± 0.1        | 3.8 ± 3.0        | 4.6           | 2.7 ± 2.7   |
| % Positive samples | 9              | 0              | 8             | 17               | 17               | 25            | 8          | 25            |
| PRRS-US |                |                |                |                  |                  |                 |           |                |
| Ct    | 33 ± 2         | 34 ± 1         | 34 ± 2         | Neg              | 36               | Neg            | Neg       | Neg            |
| log\(_{10}\) GEC/g | 2.4 ± 0.5       | 2.1 ± 0.4      | 2.2 ± 0.7      |                  | 1.6              |               |           |                |
| log\(_{10}\) TCID\(_{50}\)/g | -1.3 ± 0.5      | -1.5 ± 0.4     | -1.5 ± 0.7     |                  | -2.1             |               |           |                |
| % Positive samples | 100            | 17             | 50            | 0                | 8                | 0             | 0         | 0              |
| PRRS-EU |                |                |                |                  |                  |                 |           |                |
| Ct    | 36             | Neg            | Neg            | 35 ± 1           | 34 ± 2           | 34 ± 1          | 34 ± 1    | Neg            |
| log\(_{10}\) GEC/g | 2.1            | 2.4 ± 0.3      | 2.6 ± 0.5      | 2.7 ± 0.4        | 2.6 ± 0.3        |               |           |               |
| log\(_{10}\) TCID\(_{50}\)/g | -0.3           | 0.03 ± 0.24    | 0.2 ± 0.4      | 0.3 ± 0.4        | 0.2 ± 0.3        |               |           |               |
| % Positive samples | 9              | 0              | 0             | 33               | 58               | 50            | 83        | 0              |

https://doi.org/10.1371/journal.pone.0259613.t002
The S2 Table (Raw Plasma) includes estimated viral levels in unprocessed plasma reported as \( \log_{10} \text{TCID}_{50}/g \). It is important to recognize that a positive PCR/RT-PCR does not imply infectivity [16], a fact that was observed for all the viruses studied in the present work.

In this survey neither SVA, TGEV nor SDCoV were detected in any of the SDPP samples. SVA infection has been detected in the Americas and Asia, but not in Europe [30]. Viremia and clinical signs in SVA infected pigs appear within 2 to 3 days post-inoculation and last for few days [31, 32]; therefore, there was minimal chance of an infected pig being undetected at the farm or during ante-mortem inspection. Despite SVA infected animals have been sporadically detected on-farm and at abattoirs during ante-mortem inspection [33], effective identification of farm outbreaks and surveillance system in place probably contributed to the absence of SVA genome in the tested SDPP samples. Further supporting this hypothesis, a US survey reported only 1.2% of oral samples from 25 states being RT-PCR positive for SVA [34]. On the other hand, the inability to detect TGEV in these samples is also consistent with a very low incidence in the US and European swine population [35–37]. In case of SDCoV, the current data agree with prevalence results from Puente et al. [38] that indicated absence of SDCoV and TGEV in 106 Spanish pig farms analyzed between 2017–2019. Furthermore, Ajayi et al. [39] indicated that the presence of SDCoV in Ontario farms decreased from 1.14% in 2014 to 0.08% in 2016, matching with our results of very low presence of SDCoV in the North American pig population analyzed in 2018–19. Noteworthy, samples from Brazil were negative for both PRRSV and PEDV, which is consistent with other reports indicating that these viruses are not present in this country [40–45].

All SDPP samples were tested for both the EU and US strains of PRRSV independently of the geographical origin of the SDPP. Samples from the US contained PRRSV genotype 2, except for one sample from US-IA that had a PRRSV genotype 1 RT-PCR positive result (Ct of 36, equivalent to \(-0.3 \log_{10} \text{TCID}_{50}/g \) SDPP). Similarly, the samples from EU contained the PRRSV genotype 1, except for one sample from Spain-C that had PRRSV genotype 2 positivity (Ct of 36, equivalent to \(-2.1 \log_{10} \text{TCID}_{50}/g \) SDPP). The detection frequency of positive samples differed between plants, with 100% in those from US-IA, 17% in US-NC and 50% in Canada production plants. In Europe, the RT-PCR positivity against PRRSV was 33% for Spain-NE, 58% for Spain-C, 50% for England and 83% for N-Ireland. However, in both the US and in the EU, the estimated PRRSV TCID\(_{50}\) in SDPP was < 2 virus particle/g SDPP, with an average Ct of 34 ± 2 and 34 ± 1 for genotype 2 and 1, respectively. Other works have reported low incidence of PRRSV viremia in slaughtered aged pigs [46] and differences in infection prevalence among US geographical areas [47], which is aligned with the results obtained in the present survey.

### Table 3. Estimated quantification of different viruses’ genomes expressed in \( \log_{10} \text{TCID}_{50}/g \) ± SD (percentage of positive samples) in unprocessed raw liquid plasma from PCR or RT-PCR analyses of spray dried porcine plasma samples collected at different plants.

| Plant          | PEDV   | PCV-2  | PPV    | SIV    | PRRS-US | PRRS-EU |
|----------------|--------|--------|--------|--------|---------|---------|
| US-IA          | -0.8 ± 0.9 | 0.3 ± 0.2 | 1.7 ± 0.3 | -2.5 | -2.4 ± 0.5 | -1.4 |
| US-NC          | -0.9 ± 0.6 | 0.6 ± 0.5 | 1.3 ± 0.6 | Neg   | 2.6 ± 0.4 | Neg    |
| Canada         | -0.8 | 0.6 ± 0.3 | 1.7 ± 0.4 | -0.7 | -2.5 ± 0.7 | Neg    |
| Spain-NE       | -1.0 ± 0.3 | 0.6 ± 0.2 | 1.7 ± 0.8 | 2.9 ± 1.1 | Neg | -1.0 ± 0.3 |
| Spain-C        | -1.2 ± 0.4 | 0.5 ± 0.3 | 1.7 ± 0.3 | 3.8 ± 0.1 | -3.2 | -0.9 ± 0.4 |
| England        | Neg   | 0.5 ± 0.4 | 1.9 ± 0.3 | 2.8 ± 3 | Neg | -0.8 ± 0.4 |
| Northern Ireland | Neg  | 0.4 ± 0.2 | 2.2 ± 0.1 | 3.5 | Neg | -0.9 ± 0.3 |
| Brazil         | Neg   | 0.3 ± 0.1 | 1.5 ± 0.3 | 1.6 ± 2.7 | Neg | Neg    |
| Range          | -1.8–0.5 | -0.3–1.4 | -0.2–2.6 | -2.5–4.6 | -3.2–1.5 | -1.5–0.2 |

https://doi.org/10.1371/journal.pone.0259613.t003

The S2 Table (Raw Plasma) includes estimated viral levels in unprocessed plasma reported as \( \log_{10} \text{TCID}_{50}/g \). It is important to recognize that a positive PCR/RT-PCR does not imply infectivity [16], a fact that was observed for all the viruses studied in the present work.
Estimated PEDV levels in SDPP was $<2.0 \log_{10} \text{PEDV/g SDPP}$. The detection frequency of positive samples was 82% in US-IA, 50% in US-NC and 8% in Canada. These results indicated that PEDV genome distribution was low in Eastern Canada compared with the USA and agrees with surveillance of PEDV cases reported in North America [48, 49]. In Europe, the incidence of positive PEDV samples was 83% in Spain-NE, and 67% in Spain-C while in England and N-Ireland the samples were negative. Although the present study was not designed to elucidate seasonal differences in the estimated quantity for PEDV genome in the different parts of the world, the results suggest a higher frequency of detection and viral loads during the winter, while it was lower in summertime (S1 and S2 Tables). These results are consistent with the observation that PEDV is more stable in cold environments [50] and has a lower incidence of clinical diarrhea cases at farms during the summer season [51].

Both PPV and PCV-2 are stable non-enveloped DNA viruses [52, 53]. Frequency of detection of both PPV and PCV-2 was 100%, since all samples tested positive for genetic material. In all regions, the estimated level of PCV-2 was $<2.0 \log_{10} \text{TCID}_{50}/\text{g SDPP}$, while PPV presence was $<3.0 \log_{10} \text{TCID}_{50}/\text{g SDPP}$. Other studies have reported low levels of PCV-2 viremia in finishing swine [54, 55], in part due to the widespread use of PCV-2 vaccine [56, 57]. In addition, PCV-2 infections typically occur during the nursery and growing periods, so, most of animals reach slaughterhouse immunized and with low levels or no circulating virus [58]. On the other hand, PPV vaccines are commonly used in sows globally; considering the duration of PPV maternally derived immunity [53], it was expected to have evidence of natural infection in late finisher pigs. This was confirmed with the present study.

Detection frequency of SIV RNA was very sporadic and the range of potential viral contamination was variable. In IA, NC and Canada, 9%, 0% and 8% of samples yielded positive results, respectively, and estimated amount of viable virus was $<1.0 \log_{10} \text{TCID}_{50}/\text{g SDPP}$. Similarly, the frequency of detection of SIV in Spain-C, Spain-NE, England, N-Ireland and Brazil was 17%, 17%, 25%, 8% and 25%, respectively. However, when SIV was present, a very wide range of viral loads were obtained, from 0.3 to 5.6 $\log_{10} \text{TCID}_{50}/\text{g liquid raw plasma}$. It is speculated that slower line speed of abattoirs in Europe and Brazil compared to that in US and Canada, resulting in longer time for blood collection that may contribute to increased levels of SIV contamination.

Estimated levels of infectious viruses in commercially collected porcine plasma was significantly lower than viral levels at peak viremia of pigs [31, 46, 56, 59]. Commercially collected porcine plasma is harvested from animals that have been inspected and passed as fit for slaughter for human consumption, precluding collection of blood from clinically sick animals. Typically, market hogs have been vaccinated for many of the economically important diseases and have developed effective immunity [60, 61]. Combined inactivation by multiple hurdles for the viruses analyzed in this study would be $>6 \log_{10} \text{TCID}_{50}/\text{g SDPP}$ for spray drying and post drying storage and $>10 \log_{10} \text{TCID}_{50}/\text{g SDPP}$ if UV-C if also included (Table 1).

In summary, the data from this survey allowed the estimation of potential viral contamination in commercially collected porcine plasma. Estimated level of viral contamination in commercially collected porcine plasma ranged from $<2.0 \log_{10} \text{TCID}_{50}$ for most viruses with infrequent SIV levels as high as 4.5 $\log_{10} \text{TCID}_{50}/\text{g liquid plasma}$. The multiple hurdles in the manufacturing process (UV-C, spray drying and post drying storage) are theoretically capable of inactivating much higher levels of virus (11 to 20 $\log_{10} \text{TCID}_{50}$). These data suggest that the multiple hurdles in the manufacturing process of SDPP should be sufficient to inactivate much higher loads of viruses than the potential viral contamination that can be detected in commercially collected porcine plasma.
Supporting information

S1 Table. SDPP. Ct values and estimated virus genome presence in SDPP per months during the years 2018–2019.
(XLSX)

S2 Table. Raw plasma. Estimated virus genome presence in raw plasma per months during the years 2018–2019.
(XLSX)

Acknowledgments
The authors want to appreciate the help provided by the manufacturing and quality assurance staff of all the manufacturing plants involved in this research for their support providing the samples used in this study.

Author Contributions

Conceptualization: Elena Blázquez, Joan Pujols, Joaquim Segalés, Louis Russell.

Data curation: Elena Blázquez, Joan Pujols, Javier Polo.

Formal analysis: Elena Blázquez, Joan Pujols, Joaquim Segalés, Joy Campbell, Louis Russell, Javier Polo.

Funding acquisition: Carmen Rodríguez, Joy Campbell, Louis Russell, Javier Polo.

Investigation: Elena Blázquez, Joan Pujols, Joaquim Segalés, Carmen Rodríguez, Joy Campbell, Louis Russell, Javier Polo.

Methodology: Elena Blázquez, Joan Pujols, Joaquim Segalés.

Project administration: Carmen Rodríguez, Javier Polo.

Resources: Elena Blázquez, Javier Polo.

Software: Elena Blázquez, Joan Pujols, Joy Campbell.

Supervision: Joan Pujols, Joaquim Segalés, Carmen Rodríguez, Joy Campbell, Louis Russell, Javier Polo.

Validation: Elena Blázquez, Joan Pujols, Joaquim Segalés, Joy Campbell, Louis Russell, Javier Polo.

Visualization: Elena Blázquez, Javier Polo.

Writing – original draft: Elena Blázquez, Joan Pujols, Joaquim Segalés, Joy Campbell, Louis Russell, Javier Polo.

Writing – review & editing: Elena Blázquez, Joan Pujols, Joaquim Segalés, Carmen Rodríguez, Joy Campbell, Louis Russell, Javier Polo.

References

1. Torrallardona D. Spray dried animal plasma as an alternative to antibiotics in weanling pigs. Asian-Australasian J Anim Sci. 2010; 23: 131–48. https://doi.org/10.5713/ajas.2010.70630

2. Remus A, Andretta I, Kipper M, Lehnern CR, Klein CC, Lovatto PA, et al. A meta-analytical study about the relation of blood plasma addition in diets for piglets in the post-weaning and productive performance variables. Livest Sci, 2013; 155: 294–300. https://doi.org/10.1016/j.livsci.2013.04.020
3. Pérez-Bosque A, Polo J, Torrailhardona D. Spray dried plasma as an alternative to antibiotic in piglet feeds, mode of action and biosafety. Porcine Health Manag. 2016; 2:16. https://doi.org/10.1186/s40813-016-0034-1 PMID: 28405442

4. Campbell JM, Crenshaw JD, Gonzalez-Esquerra R, Polo J. Impact of spray-dried plasma on intestinal health and broiler performance. Microorganisms. 2019; 7:219. https://doi.org/10.3390/microorganisms7090219 PMID: 31357672

5. Patterson AR, Madson DM, Opriessnig T. Efficacy of experimentally produced spray-dried plasma on infectivity of porcine circovirus type 2 J Anim Sci. 2010; 88:4078–4085. https://doi.org/10.2527/jas.2009-2696 PMID: 20675601

6. Pasick J, Berhane Y, Ojkic D, Maxie G, Embuty-Hyatt C, Swekla K, et al. Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada. Transbound Emerg Dis. 2014; 61:397–410. https://doi.org/10.1111/tbed.12269 PMID: 25098383

7. Aubry P, Thompson JL, Pasma T, Furness MC, Tataryn J. Weight of the evidence linking feed to an outbreak of porcine epidemic diarrhea in Canadian swine herds. J Swine Health Prod. 2017; 25(2):69–72. https://www.asi.k-state.edu/research-and-extension/swine/Compressed%20Feed%20linked%20to%20PEDV%20outbreak%20in%20Canada.pdf

8. Messier S, Gagne-Fortin C, Crenshaw J. Dietary spray-dried porcine plasma reduces mortality attributed to porcine circovirus associated disease syndrome. Proc. Amer. Assoc. Swine Vet. 2007; p 147–150.

9. Pujols J, Segalés J, Polo J, Rodríguez C, Campbell J, Crenshaw J. Influence of spray dried porcine plasma in starter diets associated with a conventional vaccination program on wean to finish performance. Porcine Health Manag. 2016; 2:4. https://doi.org/10.1186/s40813-016-0021-6 PMID: 28405430

10. Dewey CE, Johnston WT, Gould L, Whiting TL. Postweaning mortality in Manitoba swine. Can J Vet Res. 2006; 70:161–167. PMID: 16850937.

11. Shen HG, Schalk S, Halbur PG, Campbell JM, Russell LE, Opriessnig T. Commercially produced spray-dried porcine plasma contains increased concentrations of porcine circovirus type 2 DNA but does not transmit porcine circovirus type 2 when fed to naïve pigs. J Anim Sci. 2011; 89:1930–1938. https://doi.org/10.2527/jas.2010-3502 PMID: 21278103

12. Russell LE, Polo J, Meeker D. 2020. The Canadian 2014 porcine epidemic diarrhoea virus outbreak: Important risk factors that were not considered in the epidemiological investigation could change the conclusions. Transbound Emerg Dis. 2020; 67:1101–1112. https://doi.org/10.1111/tbed.13496 PMID: 31995852

13. Polo J, Quigley JD, Russell LE, Campbell JM, Pujols J, Lukert PD. Efficacy of spray-drying to reduce infectivity of pseudorabies and porcine reproductive and respiratory syndrome (PRRS) viruses and seroconversion in pigs fed diets containing spray-dried animal plasma. J Anim Sci. 2005; 83:1933–1938. https://doi.org/10.2527/2005.8381933x PMID: 16024714

14. Pujols J, Rosell R, Russell L, Campbell J, Crenshaw J. Inactivation of swine vesicular disease virus in porcine plasma by spray-drying. Am Assoc Swine Vet. 2007; Perry, IA: p.281–284.

15. Gerber PF, Xiao C-T, Chen Q, Zhang J, Halbur PG, Opriessnig T. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma. Vet. Microbiol. 2014; 174:427–432. https://doi.org/10.1016/j.vetmic.2014.09.008 PMID: 25281254

16. Pujols J, Segalés J. Survivability of porcine epidemic diarrhea virus (PEDV) in bovine plasma submitted to spray drying processing and held at different time by temperature storage conditions. Vet Microbiol. 2014; 174:86–92. https://doi.org/10.1016/j.vetmic.2014.09.008 PMID: 25281254

17. Blázquez E, Rodríguez C, Ródenas J, Navarro N, Riquelme C, Rosell R, et al. Evaluation of the effectiveness of the SurePure Turbulator ultraviolet-C irradiation equipment on inactivation of different enveloped and non-enveloped viruses inoculated in commercially collected liquid animal plasma. PLoS One. 2019; 14:e0212332. https://doi.org/10.1371/journal.pone.0212332 PMID: 30789926

18. Blázquez E, Rodríguez C, Ródenas J, Segalés J, Pujols J, Polo J. Biosafety steps in the manufacturing process of spray-dried plasma: a review with emphasis on the use of ultraviolet irradiation as a redundant biosafety procedure. Porcine Health Manag. 2020; 6:16. https://doi.org/10.1186/s40813-020-00155-1 PMID: 32690994

19. Fischer M, Pikalo J, Beer M, Blome S. Stability of African swine fever virus on contaminated spray dried porcine plasma. Transbound Emerg Dis. 2021;1–6. https://doi.org/10.1111/tbed.14192 PMID: 34171166

20. WHO. Annex 4 Guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products, vol.924: Geneva: World Health Organisation; 2004. p. 150–224.
21. Goodrich RP, Custer B, Keil S, Busch M. Defining “adequate” pathogen reduction performance for transfused blood components. Transfusion 2010; 50:1827–1837. https://doi.org/10.1111/j.1537-2995.2010.02635.x PMID: 20374558

22. Reed MJ, Muench H. A simple method for estimating fifty percent end points. Am J Hyg. 1938; 27: 493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

23. Debouck P, Pensaert M. Experimental infection of pigs with a new porcine enteric coronavirus, CV 777. Am. J. Vet. Res. 1980; 41: 219–223. PMID: 6245603.

24. Baratelli M, Córdoba L, Pérez LJ, Maldonado J, Fraile L, Núñez JL, et al. Genetic characterization of influenza A viruses circulating in pigs and isolated in north-east Spain during the period 2006–2007. Res Vet Sci. 2014; 96: 380–388. https://doi.org/10.1016/j.rvsc.2013.06.002 PMID: 24461956

25. Fort M, Sibila M, Nofraíiras M, Pérez-Martín E, Olvera A, Mateu E, et al. Porcine circovirus type 2 (PCV2) Cap and Rep proteins are involved in the development of cell-mediated immunity upon PCV2 infection. Vet Immunol Immunopathol. 2010; 137: 226–234. https://doi.org/10.1016/j.vetimm.2010.05.013 PMID: 20566220

26. Rodríguez-Arrioja GM, Segalés J, Calsamiglia M, Resendes AR, Balasch M, Plana-Durán J, et al. Dynamics of porcine circovirus type 2 infection in a herd of pigs with postweaning multisystemic wasting syndrome. Am J Vet Res. 2002; 63: 354–357. https://doi.org/10.2460/ajvr.2002.63.354 PMID: 11911570

27. Parker J, Fowler N, Walmsley M-L, Schmidt T, Scharrer J, Kowaleski J, et al. Analytical sensitivity comparison between singleplex real-time PCR and a multiplex PCR platform for detecting respiratory viruses. Plos One. 2015; 10(11):e0143164. https://doi.org/10.1371/journal.pone.0143164 PMID: 26569120

28. Cochrane RA, Dritz SS, Woodworth JC, Huss AR, Stark CR, Hesse RA, et al. Evaluating Chemical Mitigation of Porcine Epidemic Diarrhea Virus (PEDV) in Swine Feed and Ingredients. Kansas Agricultural Experiment Station Research Reports 2015; Vol. 1: Iss. 7. http://dx.doi.org/10.4148/2378-5977.1110.

29. Dee S, Neill C, Clement T, Singrey A, Christopher-Hennings J, Nelson E. An evaluation of porcine epidemic diarrheal virus survival in individual feed ingredients in the presence or absence of a liquid antimicrobial. Porc Health Manag 2015; 1: 9. https://doi.org/10.1186/s40813-015-0003-0 PMID: 28405416

30. Houston E, Temeeyasen G, Piñeiro PE. Comprehensive review on immunopathogenesis, diagnostic and epidemiology of Senecavirus A. Virus Res. 2020; 286:198038. https://doi.org/10.1016/j.virusres.2020.198038 PMID: 32479975

31. Joshi LR, Fernandes MHV, Clement T, Lawson S, Pillatzki A, Resende TP, et al. Pathogenesis of Senecavirus A infection in finishing pigs. J Gen Virol. 2016; 97: 3267–3279. https://doi.org/10.1099/jgv.0.000631 PMID: 27902357

32. Zhang H, Chen P, Hao G, Liu W, Chen H, Qian P, et al. Comparison of the Pathogenicity of Two Different Branches of Senecavirus a Strain in China January 2020. Pathogens 2020; 9(1): 39. https://doi.org/10.3390/pathogens9010039 PMID: 31906571

33. Baker KL, Mowrer C, Canon A, Linhares DCL, Rademacher C, Karriker LA, et al. Systematic Epidemiological Investigations of Cases of Senecavirus A in US Swine Breeding Herds. Transbound Emerg Dis. 2017; 64:11–18. https://doi.org/10.1111/tbed.12598 PMID: 27888583

34. Leme RA, Alfieri AF, Alfieri AA. Update on Senecavirus A Infection in Pigs. Viruses. 2017; 9:170. https://doi.org/10.3390/v9070170 PMID: 28671611

35. Schwegmann-Wessels C, Herrler G. Transmissible gastroenteritis virus infection: a vanishing specter. Dtsh Tierarztl Wochenschr. 2006; 113(4):157–159. PMID: 16716052.

36. Pensaert MB, Martelli P. Porcine epidemic diarrhea: a retrospect from Europe and matters of debate. Virus. Res. 2016; 226:1–6. https://doi.org/10.1016/j.virusres.2016.05.030 PMID: 27317168

37. Chen F, Knutson TP, Rossov S, Saif LJ, Marthaler DG. Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States. Sci Rep. 2019; 9:3953. https://doi.org/10.1038/s41598-019-40564-z PMID: 30850666

38. Puente H, Argüello H, Mencia-Ares O, Gómez-García M, Rubio P, Carvajal A. Detection and genetic diversity of porcine coronavirus involved in diarrhea outbreaks in Spain. Front. Vet. Sci. 2021; 8: 651999. https://doi.org/10.3389/fvets.2021.651999 PMID: 33718476

39. Ajayi T, Dara R, Misener M, Pasma T, Moser L, Poljak Z. Herd-level prevalence and incidence of porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada. Transbound Emerg Dis. 2018; 65:1197–1207. https://doi.org/10.1111/tbed.12858 PMID: 29607611

40. Crenshaw JD, Campbell JM, Polo J. Analysis of spray dried porcine plasma (SDPP) produced in Brazil and Western Canada confirm negative porcine epidemic diarrhea virus (PEDV) status of pigs in these
41. Crenshaw J, Pujols J, Polo J, Campbell J, Rodríguez C, Navarro N, et al. Analysis of spray dried porcine plasma indicates absence of PRRSV infection in Brazilian pigs. 23rd IPVS Congress 2014. Cancun, México. June 8–11, 2014. p. 556. Poster 576.

42. Gava D, Caron L, Schaefer R, Santiago-Silva V, Weiblen R, Furtado-Flores E, et al. A retrospective study of porcine reproductive and respiratory syndrome virus infection in Brazilian pigs from 2008 to 2020. Transbound Emerg Dis. 2021; 00:1–5. https://doi.org/10.1111/tbed.14036 PMID: 33590723

43. OIE, World Organisation of Animal Health. World Animal Health Information Database (WAHIS) Interface. https://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/statuslist.

44. Rech RR, Gava D, Silva MC, Fernandes LT, Haach TW, Kim HK. Effect of vaccination with a modified live porcine reproductive and respiratory syndrome virus vaccine on growth performance in fattening pigs under field conditions. J Vet Med Sci. 2016; 78(9):1533–1536. https://doi.org/10.1292/jvms.16-0137 PMID: 27264966

45. Alkhamsi MA, Arruda AG, Vilalta C, Morrison RB, Perez AM. Surveillance of porcine reproductive and respiratory syndrome virus in the United States using risk mapping and species distribution modeling. Prev Vet Med. 2018; 150, 135–142. https://doi.org/10.1016/j.prevetmed.2017.11.011 PMID: 29169685

46. Machado G, Vilalta C, Recamonde-Mendoza M, Cozio C, Torremorell M, Perez A, et al. Principal ameaças sanitárias endêmicas da cadeia produtiva de suínos no Brasil. Pesq. agropec. bras., Brasília. 2016; 51 (5):443–453. https://doi.org/10.1590/S0100-204X2016000500004

47. Lyoo KS, Choi JY, Hahn TW, Park KT, Kim HK. Effect of vaccination with a modified live porcine reproductive and respiratory syndrome virus vaccine on growth performance in fattening pigs under field conditions. J Vet Med Sci. 2016; 78(9):1533–1536. https://doi.org/10.1292/jvms.16-0137 PMID: 27264966

48. Alkhamsi MA, Arruda AG, Vilalta C, Morrison RB, Perez AM. Surveillance of porcine reproductive and respiratory syndrome virus in the United States using risk mapping and species distribution modeling. Prev Vet Med. 2018; 150, 135–142. https://doi.org/10.1016/j.prevetmed.2017.11.011 PMID: 29169685

49. CSHIN quarterly producer report. Can Swine Health Intelligent Network. 2019. https://www.cpc-ccp.com/uploads/userfiles/files/CSHIN%202019%20Q3%20Producer%20Report_FINAL%20EN.pdf

50. Kong F, Xu Y, Ran W, Yin B, Feng L, Sun D—Cold Exposure -Induced Up-Regulation of Hsp70 Positively Regulates PEDV mRNA Synthesis and Protein Expression In Vitro. Pathogens. 2020; 9(4): 246. https://doi.org/10.3390/pathogens9040246 PMID: 32224931

51. Dvorak CMT, Yang Y, Haley C, Sharma N, Murtaugh MP. National reduction in porcine circovirus type 2 prevalence following introduction of vaccination. Vet Microb. 2016; 189: 86–90. https://doi.org/10.1016/j.vetmic.2016.05.002 PMID: 27759831

52. Oliver-Ferrando S, Segalés J, Lopez-Soria S, Callén A, Merdy O, Joisel F, et al. Evaluation of natural porcine circovirus type 2 (PCV2) subclinical infection and seroconversion dynamics in piglets vaccinated at different ages. M Vet Res. 2016; 47(1):121. https://doi.org/10.1186/s13576-016-0405-2 PMID: 27912792

53. Opriessnig T, Gerber PF, Xiao C-T, Halbur PG, Matzinger SR, Meng X-J. Commercial PCV2a-based vaccines are effective in protecting naturally PCV2b-infected finisher pigs against experimental challenge with a 2012 mutant PCV2. Vaccine. 2014; 32(34):4342–4348. https://doi.org/10.1016/j.vaccine.2014.06.004 PMID: 24929119

54. Vittu M, Holtslag H, Neill T, Segers R, Fachinger V. Efficacy and safety of a combined porcine circovirus and Mycoplasma hyopneumoniae vaccine in finishing pigs. Trials Vaccinol. 2015; 4:43–49. http://dx.doi.org/10.1016/j.trivacc.2015.04.002.

55. Rose N, Opriessnig T, Graslund B, Jestin A. Epidemiology and transmission of porcine circovirus type 2 (PCV2). Virus Res. 2012; 164(1–2):78–89. https://doi.org/10.1016/j.virusres.2011.12.002 PMID: 22178804

56. Kong F, Xu Y, Ran W, Yin B, Feng L, Sun D—Cold Exposure -Induced Up-Regulation of Hsp70 Positively Regulates PEDV mRNA Synthesis and Protein Expression In Vitro. Pathogens. 2020; 9(4): 246. https://doi.org/10.3390/pathogens9040246 PMID: 32224931

57. Oliver-Ferrando S, Segalés J, Lopez-Soria S, Callén A, Merdy O, Joisel F, et al. Evaluation of natural porcine circovirus type 2 (PCV2) subclinical infection and seroconversion dynamics in piglets vaccinated at different ages. M Vet Res. 2016; 47(1):121. https://doi.org/10.1186/s13576-016-0405-2 PMID: 27912792

58. Opriessnig T, Gerber PF, Xiao C-T, Halbur PG, Matzinger SR, Meng X-J. Commercial PCV2a-based vaccines are effective in protecting naturally PCV2b-infected finisher pigs against experimental challenge with a 2012 mutant PCV2. Vaccine. 2014; 32(34):4342–4348. https://doi.org/10.1016/j.vaccine.2014.06.004 PMID: 24929119

59. Witvliet M, Holtslag H, Neill T, Segers R, Fachinger V. Efficacy and safety of a combined porcine circovirus and Mycoplasma hyopneumoniae vaccine in finishing pigs. Trials Vaccinol. 2015; 4:43–49. http://dx.doi.org/10.1016/j.trivacc.2015.04.002.
experimental PCV2 challenge. BMC Vet Res. 2012; 8:194. https://doi.org/10.1186/1746-6148-8-194 PMID: 23078878

60. PIC Gilt and Sow Management Guidelines. 2021. PIC-Gilt-Sow-Management-Guidelines_05122%20(1).pdf

61. PIC Wean to Finish Guidelines. 2019. Wean-to-Finish-Manual-2019-Final%20(1).pdf

62. Sampredo F, Snider T, Bueno I, Bergeron J, Urriola PE, Davies PR. Risk assessment of feed ingredients of porcine origin as vehicles for transmission of Porcine Epidemic Diarrhea Virus (PEDv). National Pork Board. 2015;1–117.

63. Blázquez E, Rodríguez C, Ródenas J, Rosell R, Segalés J, Pujols J, et al. Effect of spray-drying and ultraviolet C radiation as biosecurity steps for CSFV and ASFV inactivation in porcine plasma. Plos One. 2021; 16(4): e0249935. https://doi.org/10.1371/journal.pone.0249935 PMID: 33909651