CIS 5560

Cryptography
Lecture 9

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan
Announcements

• HW 3 due next Friday
• HW2 due tomorrow!
Recap of last lecture
Pseudorandom Functions

Collection of functions \(\mathcal{F}_\ell = \{ F_k : \{0,1\}^\ell \rightarrow \{0,1\}^m \}_{k \in \{0,1\}^n} \)
- indexed by a key \(k \)
- \(n \): key length, \(\ell \): input length, \(m \): output length.
- Independent parameters, all poly(sec-param) = poly\((n) \)
- \#functions in \(\mathcal{F}_\ell \leq 2^n \) (singly exponential in \(n \))

\textbf{Gen}(1^n): Generate a random \(n \)-bit key \(k \).

\textbf{Eval}(k, x) is a poly-time algorithm that outputs \(F_k(x) \)
Security: Cannot distinguish from random function

\[\left| \Pr [A^{f_k}(1^n) = 1 \mid k \leftarrow \{0,1\}^\ell] - \Pr [A^F(1^n) = 1 \mid F \leftarrow \text{Fns}] \right| \leq \text{negl}(n). \]
PRP/Block Cipher

A **block cipher** is a pair of efficient algs. \((E, D)\):

A canonical example:

1. **AES**: \(n=128\) bits, \(k = 128, 192, 256\) bits
2. **3DES**: \(n=64\) bits, \(k = 168\) bits (historical)
Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) || G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.

Each path/leaf labeled by $x \in \{0,1\}^\ell$ corresponds to $f_s(x)$.
Today’s Lecture

• Proof of security for MAC
• Short MAC \rightarrow Long MACs
Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) || G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.

Each path/leaf labeled by $x \in \{0,1\}^\ell$ corresponds to $f_s(x)$.
Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) \| G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.

The pseudorandom function family \mathcal{F}_ℓ is defined by a collection of functions f_s where:

$$f_s(x_1 x_2 \ldots x_\ell) = G_{x_\ell}(G_{x_{\ell-1}}(\ldots G_{x_1}(s)))$$

* f_s defines 2^ℓ pseudorandom bits.

* The x^{th} bit can be computed using ℓ evaluations of the PRG G (as opposed to $x \approx 2^\ell$ evaluations as before.)
GGM PRF: Proof of Security

By contradiction. Assume there is a ppt \(D \) and a poly function \(p \) s.t.

\[
\left| \Pr \left[A_f^k(1^n) = 1 \mid k \leftarrow \{0,1\}^\ell \right] - \Pr \left[A_F^F(1^n) = 1 \mid F \leftarrow \text{Fns} \right] \right| \geq \frac{1}{p(n)}.
\]

The pseudorandom world

\[
f \leftarrow \mathcal{F}_\ell
\]

\[
x \quad \Downarrow \quad f(x)
\]

Distinguisher D

0/1

The random world

\[
f \leftarrow \text{Fns}
\]

\[
x \quad \Downarrow \quad f(x)
\]

Distinguisher D

0/1
The pseudorandom world:
Hybrid 0

Problem:
Hybrid argument on leaves doesn’t work. Why?
The pseudorandom world:
Hybrid 0

Key Idea:
Hybrid argument by levels of the tree
The pseudorandom world:

Hybrid 0

Hybrid 1

\[s \]

\[G_0(s) \]

\[G_1(s) \]

\[G_0(G_0(s)) \]

\[G_1(G_0(s)) \]

\[G_{x,\ell}(G_{x,\ell-1}(\ldots(s))) \]

\[b_1 \ b_2 \ b_3 \ldots \ b_x \ldots b_{2^\ell} \]

\[s_0 \]

\[s_1 \]

\[b_1 \ b_2 \ b_3 \ldots \ b_x \ldots b_{2^\ell} \]

\[x \]

\[f(x) \]

\[D \]
Hybrid 1

\[s_0 \text{ and } s_1 \text{ are random} \]

\[G_1(G_0(s)) \]

\[b_1 \ b_2 \ b_3 \ldots \ b_x \ldots \ b_2^\ell \]

Hybrid 2

\[s_{00}, \ldots s_{11} \text{ are random} \]

\[s_{00} \quad s_{01} \quad s_{10} \quad s_{11} \]

\[b_1 \ b_2 \ b_3 \ldots \ b_x \ldots \ b_{2^\ell} \]
The random world:
Hybrid ℓ

$\text{Hybrid } \ell$

\[
\begin{align*}
\mathbf{b}_1 & \quad \mathbf{b}_2 & \quad \mathbf{b}_3 & \quad \cdots & \quad \mathbf{b}_x & \quad \cdots & \quad \mathbf{b}_{2\ell} \\
\hline
\mathbf{O} & \quad \mathbf{O} & \quad \mathbf{O} & \quad \cdots & \quad \mathbf{O} & \quad \cdots & \quad \mathbf{O}
\end{align*}
\]

\[x \quad \downarrow \quad f(x) \quad \uparrow \]

\[D\]
Hybrid i

S_{0i}, \ldots, S_{1i} are random

$b_1, b_2, b_3, \ldots, b_x, \ldots, b_{2^\ell}$

Q: Is the function in the hybrid efficiently computable?

A: Yes! Lazy Evaluation.
GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials ℓ, m, there exists a PRF family $\mathcal{F}_\ell = \{ f_s : \{0,1\}^\ell \to \{0,1\}^m \}_{s \in \{0,1\}^n}$.

Some nits:

- **Expensive**: ℓ invocations of a PRG.

- **Sequential**: bit-by-bit, ℓ sequential invocations of a PRG.

- **Loss in security reduction**: break PRF with advantage $\varepsilon \implies$ break PRG with advantage $\varepsilon / q \ell$, where q is an arbitrary polynomial = #queries of the PRF distinguisher. Tighter reduction? Avoid the loss?
The authentication problem

This is known as a **man-in-the-middle attack**.
How can Bob check if the message is indeed from Alice?
The authentication problem

We want Alice to generate a tag for the message m which is **hard to generate** without the secret key k.

Can also alter/inject more messages!
Wait... Does encryption not solve this?

\[m \rightarrow_{Enc(k, m)} Bob \]

Alice
\[\text{key } k \]

Bob
\[\text{Key } k \]
Wait... Does encryption not solve this?

One-time pad (and encryption schemes in general) are **malleable**.
Wait... Does encryption not solve this?

One-time pad (and encryption schemes in general) are **malleable**.

Privacy and Integrity are very **different goals**!
Message Authentication Codes (MACs)

A triple of algorithms (Gen, MAC, Ver):

- **Gen**: Produces a key $k \leftarrow \mathcal{K}$.
- **MAC**: Outputs a tag t (may be deterministic).
- **Ver**: Outputs Accept or Reject.

Correctness: $\Pr[\text{Ver}(k, m, \text{MAC}(k, m) = 1) = 1] = 1$

Security: *Hard to forge.* Intuitively, it should be hard to come up with a new pair (m', t') such that Ver accepts.
What is the power of the adversary?

- Can see many pairs \((m, \text{MAC}(k, m))\).
- Can access a MAC oracle \(\text{MAC}(k, \cdot)\)
 - Obtain tags for message of choice.

This is called a *chosen message attack (CMA)*.
Defining MAC Security

- **Total break**: The adversary should not be able to recover the key k.
- **Universal break**: The adversary can generate a valid tag for every message.
- **Existential break**: The adversary can generate a new valid tag t for some message m.

We will require MACs to be secure against the existential break!!
EUF-CMA Security

Existentially Unforgeable against Chosen Message Attacks

Want: \(\Pr((m, t) \leftarrow A^{MAC(k, \cdot)}(1^n), \ Ver(k, m, t) = 1, (m, t) \notin Q)) = \text{negl}(n) \).

where \(Q \) is the set of queries \(\left\{ (m_i, t_i) \right\}_i \) that \(A \) makes.
Let $I = (S, V)$ be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that

$$\text{MAC}(k, m_0) = \text{MAC}(k, m_1) \quad \text{for } \frac{1}{2} \text{ of the keys } k \text{ in } K$$

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m_0 or m_1

No, this MAC can be broken using a chosen msg attack

It depends on the details of the MAC

$$\text{Adv}[A, I] = \frac{1}{2}$$
Let $I = (S, V)$ be a MAC.

Suppose $\text{MAC}(k, m)$ is always 5 bits long.

Can this MAC be secure?

No, an attacker can simply guess the tag for messages.

It depends on the details of the MAC.

Yes, the attacker cannot generate a valid tag for any message.

$$\text{Adv}[A, I] = \frac{1}{32}$$
Dealing with Replay Attacks

• The adversary could send an old valid \((m, \text{tag})\) at a later time.
 – In fact, our definition of security does not rule this out.

• In practice:
 – Append a time-stamp to the message. Eg. \((m, T, \text{MAC}(m, T))\) where \(T = 21\ \text{Sep 2022, 1:47pm}\).
 – Sequence numbers appended to the message (this requires the MAC algorithm to be stateful).