Understanding the factors that determine the emergence of anthroponotic cutaneous leishmaniasis due to *Leishmania tropica* in Morocco: Density and mitochondrial lineage of *Phlebotomus sergenti* in endemic and free areas of leishmaniasis

Patricia Gijón-Robles1 | Naima Abattouy2 | Gemma Merino-Espinosa1 | Nora El Khalfou2 | Francisco Morillas-Márquez1 | Victoriano Corpas-López1 | Noureddine Jaaouani4 | Victoriano Díaz-Sáez1 | Myriam Riyad3 | Joaquina Martín-Sánchez1

1 Department of Parasitology, Faculty of Pharmacy, University of Granada, Spain
2 Higher Institute of Nursing and Health Techniques, Laâyoune, Morocco
3 Laboratory of Cellular and Molecular Pathology/Research Team on Immunopathology of Infectious and Systemic Diseases, Hassan II University of Casablanca, Morocco
4 Délégation du Ministère de la Santé, province de Settat, Morocco

Correspondence
Joaquina Martín-Sánchez, Faculty of Pharmacy, Department of Parasitology, Campus Universitario de Cartuja, Granada, Spain. Email: joaquina@ugr.es
Patricia Gijón-Robles is a PhD student of the doctoral programme in Pharmacy, University of Granada.

Funding Information
University of Granada

Abstract
Anthroponotic cutaneous leishmaniasis (ACL) due to *Leishmania tropica* is spreading to new areas in Morocco. Exposure to the vector, *Phlebotomus sergenti*, is the only proven risk factor. Our objective was to compare the densities and genetic characteristics of *P. sergenti* populations in two nearby localities in Morocco, one in an ACL endemic area (El Borouj) and another in a nonendemic area (Sidi Hajjaj). *P. sergenti* density was significantly higher in the endemic area than in the nonendemic town (*p* = 0.032). A different predominant *P. sergenti* mitochondrial lineage was evidenced in each one of the two localities, and for the first time, the *P. sergenti* lineage acting as a vector of *L. tropica* has been identified. Bioclimatic differences were detected between both localities. In conclusion we found differences in both the density and the mitochondrial lineage of *P. sergenti* populations that may explain the different epidemiological situation. Given that the density of *P. sergenti* in the locality without ACL cases seems sufficient to allow transmission, the main factor that would justify its nonendemic character could be the absence of *P. sergenti* Lineage IV, which seems to prefer warmer and drier climates.

Keywords
anthroponotic cutaneous leishmaniasis, *Leishmania tropica*, mitochondrial lineage, Morocco, *Phlebotomus sergenti*, vector density

1 INTRODUCTION

Leishmania tropica (Kinetoplastida: Trypanosomatidae) is the major cause of anthroponotic cutaneous Leishmaniasis (ACL) in the Middle East and some areas of North Africa (Pratlong et al., 2009) and *Phlebotomus sergenti* Parrot, 1917 (Diptera: Psychodidae) is its main vector (Guilvard et al., 1991; Schnur et al., 2004). For a long time, *P. sergenti* was considered the sole vector of *L. tropica* (Al-Zahrani et al., 1988; Guilvard et al., 1991) however, the vectorial capacity of *Phlebotomus arabicus* has been demonstrated in a focus in northern Israel (Svobodová...
et al., 2006), and Phlebotomus similis is considered a probable vector on the island of Crete (Ntais et al., 2014). Although P. sergenti is believed to have a marked preference for semi-arid habitats (Boussaoua et al., 2009), this species exhibits a wide ecological plasticity in Morocco making increased vector surveillance essential to prevent and control leishmaniasis outbreaks. In emerging ACL Moroccan foci, P. sergenti density varies from 4 to 16 specimens/m² (Ramaoui et al., 2008) and relative abundance ranges from 12.8% to 76.7% (Boussaoua et al., 2009).

The World Health Organization included Morocco among one of the 12 high-burden countries for CL (WHO, 2016). There are three endemic Leishmania species in Morocco: Leishmania major, L. tropica, (both dermotropic) and Leishmania infantum (mainly viscerotropic). Leishmania tropica has the widest geographic distribution (Ministry of Health, Morocco, 2016; Mouttaki et al., 2014) but until 1989, ACL had been mainly reported in hypendemic rural foci scattered around the sub-arid area of central Morocco. Later, ACL emerged in several northern, central and southern provinces of the country, initially as new outbreaks and then establishing endemic foci that highlighted the expansion of this Leishmania species (Ajaoud et al., 2013). The first CL case in Settat province (central Morocco) was detected in El Borouj locality in 2006, preceding an epidemic outbreak and then becoming endemic (Amari et al., 2015; Gijón-Robles et al., 2018). Currently, El Borouj is the only active CL focus in the province of Settat (Ministry of Health, Morocco, 2016).

The identification of factors that determine the emergence and expansion of ACL is required to develop better interventions for this largely neglected disease. We showed that differences in the exposure to the L. tropica vector, reflected by differences in P. sergenti density in the households, was the only factor associated with CL cases in the El Borouj focus (Gijón-Robles et al., 2018). On the other hand, three of the four mitochondrial (mt) lineages previously reported within P. sergenti are present in Morocco (Barón et al., 2008; Merino-Espinosa et al., 2016; Yahia et al., 2004). Phenotypic differences of biomedical importance may exist between these mitochondrial lineages, thus population genetics could help to assess the threat of the geographical expansion of ACL.

Therefore, our objective was to compare the densities and genetic characteristics of P. sergenti populations in two nearby localities in Morocco, one within an ACL endemic area (El Borouj) and another in a nonendemic region (Sidi Hajjaj).

2 MATERIAL AND METHODS

2.1 Study area

El Borouj (coordinates 07°36′W-32°29′N) and Sidi Hajjaj (07°24′W-33°06′43′N) are situated at an altitude of 410 and 547 m above sea level respectively, in the Settat province, central Morocco. Both localities are separated by only 51 km and have common rural features and an economic activity mainly based on agriculture and animal husbandry. In both towns, the population is around 20,000 inhabitants and the average growth rate is close to 2%. ACL by L. tropica is endemic in El Borouj whereas no cases have been reported in Sidi Hajjaj (Ministry of Health, Morocco, 2016).

2.2 Sand fly collection and species identification

Sand flies were caught in both localities using CDC light traps inside households and sticky papers outside dwellings, from June 20 to July 10 and from September 20 to October 10, 2015. In El Borouj, houses with and without ACL cases were sampled. One to two CDC traps were set in each selected house for one night under favourable weather conditions. Sticky traps consisted of 21 × 29.5 cm sheets of papers covered in castor oil, 9–17 traps were set the same day in adult sand fly resting places (holes in house walls and other nearby walls) and left for 4 days. The captured sand flies were stored in 70% alcohol. Males and females were separated and morphologically identified using taxonomic keys (Benabdennbi et al., 1999; Berchi et al., 2007; El Sawaf et al., 1989; Gil Collado et al., 1989; Leger et al., 1983; Rioux & Golvan, 1969; Rioux et al., 1978; Sáez et al., 2018). The specimens were placed in Marc André solution and heated to boiling point, and finally mounted on slides under a coverslip using Berlese solution. The genitalia of P. sergenti specimens were individually removed and mounted on slides under a coverslip for morphological identification whereas the rest of the body was stored at −20°C for DNA extraction.

The gonotrophic cycle of the female sand flies was categorised as blood-fed, non-fed or gravid. Density (sand flies/trap), relative abundance (% specimens of a given species/total sand flies) and frequency (% positive sampling stations for a given species) data were estimated by species.

2.3 Sand fly DNA extraction

Genomic DNA was extracted from the head, thorax and attached anterior abdomen of individual P. sergenti males and females (Martin-Sánchez et al., 2000). A commercially available kit was used [RealPure kit from REAL (Ref. RBMEG01)], according to the manufacturer instructions. Each sand fly was individually placed in a sterile 1.5 mL Eppendorf tube and kept in liquid nitrogen for a few seconds to facilitate the mechanical rupture of the tissues using a pestle. The DNA was resuspended in 20 µL of bidistilled water and kept at −20°C until use.

2.4 Mitochondrial lineage determination by mt DNA Cyt b PCR-RFLP

Polymerase chain reaction (PCR) was used to amplify a 550-bp fragment containing the 3’ end of the Cytochrome b mitochondrial gene (mt DNA Cyt b) following the methodology described by Esseghir et al. (1997).

Restriction fragment length polymorphism (RFLP) was carried out through the digestion of a 550-bp mtDNA Cyt b fragment with Hae III (Thermo Scientific, Germany). The reaction was performed at 37°C
for 10 minutes in a 20 μL total volume, containing 16 μL of PCR product, 2 μL of enzyme (10 U/μL) and 2 μL of standard buffer (10x). The digested samples were separated by electrophoresis in a 3% agarose gel and their sizes determined by comparison with HyperLadder V (Bio-line, UK) leading to a characteristic banding pattern for each of the four mitochondrial lineages: Lineage I, two fragments (290 and 220 bp); Lineage II, two fragments (290 and 260 bp); Lineage III, three fragments (290, 140 and 110 bp) and Lineage IV, two fragments (330 and 220 bp) (Merino-Espinosa et al., 2016).

2.5 Detection of *Leishmania tropica* DNA

The presence of *L. tropica* DNA was investigated in *P. sergenti* females captured in Sidi Hajjaj, using Granalleish Multiplex qPCR (University of Granada, Spain, Trade Mark Number 3667362/5). This PCR technique can differentiate between *L. infantum*, *L. tropica* and *L. major* and allows quantification of the parasite load (Merino-Espinosa et al., 2018). Primers F, R and the 3 Taqman probes were provided by the manufacturer. The following thermal profile was used: 10 minutes at 95°C, then 36 cycles of 30 seconds at 95°C and 60 seconds at 60°C.

2.6 Bioclimatic differences between El Borouj and Sidi Hajjaj

In order to investigate the possible association between bioclimatic characteristics and the presence/absence of ACL in the two studied localities, a logistic regression analysis was carried out including the locality as a dependent variable and each bioclimatic variable under study as an independent variable. The bioclimatic data analysed were as follows: mean monthly average temperature (from January to December), maximum monthly average temperature (from January to December), minimum monthly average temperature (from January to December), maximum annual average temperature, minimum annual average temperature, monthly precipitation (from January to December), annual mean temperature (BIO1), mean diurnal range (mean of monthly – max temp – min temp –), Isothermality (BIO2/BIO7 × 100 (BIO3), temperature seasonality (standard deviation × 100) (BIO4), max temperature of warmest month (BIO5), min temperature of coldest month (BIO6), temperature annual range (BIO5–BIO6) (BIO7), mean temperature of wettest quarter (BIO8), mean temperature of driest quarter (BIO9), mean temperature of warmest quarter (BIO10), mean temperature of coldest quarter (BIO11), annual precipitation (BIO12), precipitation of wettest month (BIO13), precipitation of driest month (BIO14), precipitation seasonality (coefficient of variation) (BIO15), precipitation of wettest quarter (BIO16), precipitation of driest quarter (BIO17), precipitation of warmest quarter (BIO18) and precipitation of coldest quarter (BIO19). This information was taken from the WorldClim global climate data (www.worldclim.org/) considering the average values from 2007 to 2015. Data were analysed with IBM SPSS Statistics 20.0 for Windows (IBM Corp., Armonk, NY, USA).

Average values (95% confidence interval) and minimum and maximum values of each of the bioclimatic variables from El Borouj and Sidi Hajjaj are shown as supplementary data.

3 RESULTS

3.1 Sand fly fauna and abundance by species

Species distribution by sex, sampling method, sampling period and site are shown in Table 1. In total 5674 sand fly specimens, 2215 females (39.0%) and 3459 males (61.0%), were collected. The mean density values in El Borouj were 14.9 sand flies/CDCtrap/night and 26.1 sand flies/m² whereas in Sidi Hajjaj were 8.1 sand flies/CDCtrap/night and 14.8 sand flies/m². Thirteen sand fly species were present (9 from *Phlebotomus* genus and 4 from *Sergentomyia* genus) and differences in density, relative abundance and frequency were observed between species and localities (Table 1). *Phlebotomus chabaudi, Phlebotomus alexandri, Phlebotomus dubosci, Sergentomyia antenata* and *Sergentomyia dreyfussi* were caught in low numbers in El Borouj and were absent in Sidi Hajjaj. In both localities, *Sergentomyia minuta* was the most abundant species in the captures with adhesive traps whereas *Phlebotomus sergenti* was the most abundant species in the intra-household captures collected with CDC traps (Table 1).

Sand fly density was higher in El Borouj and significant differences were found in catches carried out peridomestically in June ($p < 0.0001$) and intradomiciliary in October ($p = 0.066$). *Phlebotomus sergenti* density was also higher in this locality and significant differences were detected in peridomestic captures performed in June ($p = 0.007$), intradomestic captures in October ($p = 0.007$), in global intradomiciliary collections ($p = 0.032$) and peridomestically ($p = 0.022$) (Table 1). Regarding differences between capture periods the intradomiciliary density of *P. sergenti* was significantly higher in June in El Borouj ($p = 0.012$) and in Sidi Hajjaj ($p = 0.020$).

Blood-fed, non-fed and gravid *P. sergenti* females were found both in intradomiciliary and peridomestic captures in both localities; density values were higher in El Borouj (Table 2).

3.2 *Leishmania* infection rate in the vector

L. tropica DNA was not detected in any of the 84 female *P. sergenti* captured in Sidi Hajjaj.

3.3 Mitochondrial lineage determination by mtDNA Cyt b PCR-RFLP

The mitochondrial lineage was identified in 81 male and female *P. sergenti*, 41 from El Borouj and 40 from Sidi Hajjaj. The results are shown in Table 3.

The females captured in El Borouj in which *L. tropica* DNA was detected in a previous study (Gijón-Robles et al., 2018) were identified as lineage IV.
TABLE 1 Comparison of species and densities of sand flies captured in El Borouj (ACL endemic) and Sidi Hajjaj (ACL free) in the two sampling periods, June and October 2015, both in intradomiciliary with CDC light traps and peridomiciliary with sticky papers

Species	El Borouj	Sidi Hajjaj																											
	Capture intradomiciliary	Capture peridomiciliary	Capture intradomiciliary	Capture peridomiciliary																									
	J	O	G	J	O	G	J	O	G	J	O	G	J	O	G														
Number of stations	7	46	53	35	44	79	4	9	13	10	18	28																	
Number of traps	14 CDC traps	69 CDC traps	83 CDC traps	693.2 ST (85.9 m²)	381.6 ST (47.3 m²)	1074.9 ST (133.2 m²)	8 CDC traps	11 CDC traps	19 CDC traps	133 ST (16.5 m²)	309.8 ST (38.4 m²)	442.8 ST (54.9 m²)																	
P. sergenti	N	352	(189/163)	231	(108/123)	583	(297/286)	462	(370/92)	274	(232/42)	736	(602 + 134)	105	(47/58)	7	(47/58)	105	(47/58)	7	(47/58)	105	(47/58)	7	(47/58)	105	(47/58)	7	(47/58)
	D	25.14	3.35**	7.02*	5.38**	5.79	5.53*	13.13	0.64**	5.89*	0.61**	1.33	1.11*	82.68	25.93	72.73	45.45	6.49	7.53										
	A	42.21	57.61	47.21	27.62	15.21	21.18	1.00	0.44	0.62	0.40	0.67	0.57																
	Fr	0.86	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83																
P. longicuspis	N	415	(257/158)	56	(22/34)	471	(279/192)	45	(39/6)	21	(21/0)	66	(60/6)	20	(8/12)	11	(5/4)	31	(13/18)	2	(2/0)	86	(82/4)	88	(84/4)				
	D	29.64	0.81	5.67	0.52	0.44**	0.50*	2.50	1.00	1.63	0.12	2.21**	1.60*																
	A	49.76	13.97	38.14	2.69	1.17	1.90	15.75	40.74	20.13	9.09	10.91	10.86																
	Fr	0.71	0.37	0.42	0.89	0.64	0.75	0.75	0.56	0.62	0.10	0.67	0.57																
P. perniciosus	N	43	(31/12)	25	(21/4)	68	(52/16)	78	(72/6)	73	(62/11)	151	(134/17)	1	(0/1)	1	(0/1)	2	(1/1)	0		91	(81/10)	91	(81/10)				
	D	3.07	0.36	0.82	0.91*	1.54	1.13	0.13	0.09	0.11	0*	2.35	1.66																
	A	5.16	6.23	5.51	4.66	4.05	4.35	0.79	3.70	2.13	9.09	10.91	10.86																
	Fr	0.57	0.26	0.30	0.46	0.34	0.39	0.25	0.11	0.15	0	0.56	0.36																
P. langeroni	N	4	(4/0)	1	(1/0)	5	(5/0)	0	0	0	1	(1/0)	7	(1/0)	8	(7/1)	0	(8/1)	9	(8/1)									
	D	0.29	0.01*	0.06*	0	0*	0**	0.13	0.64*	0.42*	0	0.23**	0.16***																
	A	0.48	0.25	0.40	0	0	0	0.79	25.93	5.19	0	1.15	1.11																
	Fr	0.29	0.02	0.06	0	0	0	0.25	0.22	0.23	0	0.33	0.21																

(Continues)
Table 1 (Continued)

	El Borouj		Sidi Hajjaj	
	Capture intradomiciliary	Capture peridomiciliary	Capture intradomiciliary	Capture peridomiciliary
P. papatasi				
N (M/F)	17 (10/7)	35 (19/16)	52 (29/23)	119 (90/29)
D	121 1	0.51 1	0.63 1**	1.39 1**
A	2.04	8.73	4.21	7.11
Fr	0.71	0.37	0.42	0.54
N (M/F)	17 (10/7)	35 (19/16)	52 (29/23)	119 (90/29)
D	121 1	0.51 1	0.63 1**	1.39 1**
A	2.04	8.73	4.21	7.11
Fr	0.71	0.37	0.42	0.54
P. bergeroti				
N (M/F)	0 (0/6)	6 (0/6)	6 (2/1)	3 (0/4)
D	0	0.09	0.07	0.03
A	0	1.50	0.49	0.18
Fr	0	0.13	0.11	0.09
N (M/F)	1 (0/1)	13 (8/5)	14 (8/6)	671 (358/313)
D	0.07	0.19	0.17	7.81 1**
A	0.12	3.24	1.13	40.11
Fr	0.14	0.22	0.21	0.89
S. minuta				
N (M/F)	1 (0/1)	29 (17/12)	30 (17/13)	290 (198/92)
D	0.07	0.42	0.36	3.38 1**
A	0.12	7.23	2.43	17.33
Fr	0.14	0.22	0.21	0.63
S. fallax				
N (M/F)	1 (0/1)	29 (17/12)	30 (17/13)	290 (198/92)
D	0.07	0.42	0.36	3.38 1**
A	0.12	7.23	2.43	17.33
Fr	0.14	0.22	0.21	0.63
Total	834 1	401 1	1235 1	1673 3
N (M/F)	834 1	401 1	1235 1	1673 3
D	59.57	5.81	14.88	19.48 1**
A	0.86	0.89	0.89	0.95

\(N = \text{number of captured sandflies}, \ M = \text{males}, \ F = \text{females}, \ D = \text{density (no. of captured sandflies/CDC trap/night or no. captured sandflies/area, m}^2\text{)}, \ A = \text{relative abundance (representative percentage of each species with respect to total captured in a given period)}, \ Fr = \text{frequency (presence of a given species in the stations sampled in each time period).} \)

*\(J = \text{June, } O = \text{October, } G = \text{global results. Total number of sand flies also includes: } 1 P. alexandri; 2 P. chabaudi, 1 P. duboscqi and 3 S. dreyfussi; 5 S. antennata. Statistical differences were detected at } p < 0.05 \text{ level, } p < 0.01, \text{ } p < 0.001. \)
TABLE 2
Number of nonfed (U), blood-fed (B), and gravid (G) female sand flies, captured in the two sampling periods (June and October 2015) in both localities, El Borouj (ACL endemic) and Sidi Hajaj (ACL free)

Species	Capture intradomiciliary	Capture peridomiciliary									
	El Borouj	Sidi Hajaj									
	J	O	J	O	J	O	J	O			
Number of stations	7	46	35	44	4	9	10	18			
Number of traps	14 CDC	69 CDC	693.3 ST (85.9 m²)	381.6 ST (47.3 m²)	8 CDC	11 CDC	133 ST (16.5 m²)	309.8 ST (38.4 m²)			
Species	**U**	**B**	**G**	**U**	**B**	**G**	**U**	**B**	**G**		
P. sergenti	NF	71	25	67	44	24	55	50	18		
	D	5.07	1.79	4.79	0.64	0.35	0.80	0.58	0.21		
	A	20.70	7.29	19.53	21.57	11.76	26.96	9.28	3.34		
P. longicuspis	NF	141	13	4	21	10	3	2	3		
	D	10.07	0.93	0.29	0.30	0.14	0.04	0.02	0.03		
	A	41.11	3.79	1.17	10.29	490	1.47	0.37	0.56		
P. perniciosus	NF	7	3	7	2	2	1	1	5	2	4
	D	0.50	0.21	0.14	0.03	0.01	0.01	0.05	0.01		
	A	2.04	0.87	0.58	0.10	0.05	0.05	0.74	0.19		
P. papatasi	NF	1	2	5	9	5	2	18	6		
	D	0.14	0.36	0.13	0.07	0.03	0.21	0.07	0.06		
	A	0.58	1.46	4.41	245	0.98	3.34	1.11	0.93		
S. minuta	NF	1	0	0	4	1	0	280	11		
	D	0.07	0	0	0.06	0.01	0	3.26	0.13		
	A	0.29	0	0	1.96	0.49	0	51.95	2.04		
S. fallax	NF	1	0	0	11	1	0	86	1		
	D	0.07	0	0	0.16	0.01	0	1.00	0.01		
	A	0.29	0	0	5.39	0.49	0	15.96	0.19		
Total U, B and G females	NF	222	43	78	98	43	63	440	40		
	D	15.86	3.07	5.57	1.02	0.45	0.66	5.12	0.47		
	A	64.72	12.54	22.74	48.04	2108	30.88	81.63	7.42		
Total females	NF	343	204	3.4	539	774	71	107			
	D	24.50	2.96	6.28	16.37	8.88	0.91	0.67	6.85		
	A	100	100	100	100	100	100	100	100		

NF = number of captured females, **D** = density (no. of females/no. of CDC traps/night or no. of females/area in m² in case of adhesive traps), **A** = relative abundance (representative percentage of each species of the total captured specimens), **J** = June, **O** = October. Total number of females also includes: 1 P. alexandri; 2 P. bergeroti and 3 S. dreyfussi; 3 P. bergeroti; 4 P. bergeroti and 1 P. chabaudi; 5 P. bergeroti; 6 P. bergeroti; 7 P. langeroni; 8 P. bergeroti; 9 P. langeroni.
TABLE 3 Number of Phlebotomus sergenti specimens from El Borouj (ACL endemic) and Siddi Hajjaj (ACL free) in captures made throughout 2015 analysed by mt DNA Cytb PCR-RFLP with Hae III restriction enzyme and the mitochondrial lineage identified

Locality	Number	Mitochondrial lineage and Hae III RFLP banding pattern			
		I (290 and 220 bp)	II (290 and 260 bp)	IV (330 and 220 bp)	
Sidi Hajjaj	Male	26	4	22	0
	Female	14	4	10	0
	Total	40	8 (20%)	32 (80%)	0 (0%)
El Borouj	Male	21	0	0	21
	Female	20	0	1	19
	Total	41	0 (0%)	1 (2.4%)	40 (97.6%)

TABLE 4 Average values (95% confidence interval), and minimum and maximum values of each of the bioclimatic variables in El Borouj (ACL endemic) and Siddi Hajjaj (ACL free) for which differences were detected

Bioclimatic variable	Siddi Hajjaj Average value (95% confidence interval), and minimum and maximum values	El Borouj Average value (95% confidence interval), and minimum and maximum values	p Value by logistic regression
Maximum temperature July	34.74 (34.66–34.81) 34.6–34.9 °C	36.42 (36.41–36.43) 36.3–36.5 °C	Absolute differences
Rainfall September	11.14 (10.93–11.35) 11–12 mm	Constant value of 9 mm	Absolute differences
Rainfall October	Constant value of 37 mm	Constant value of 34 mm	Absolute differences
BIO3	Constant value of 49	Constant value of 47	Absolute differences
BIO15	68.4 (68.1–68.7) 68–69	68.1 (68.1–68.2) 68–69	0.009 (OR = 0.218 IC95% 0.07–0.68).
BIO18	13.14 (12.93–13.35) 13–14 mm	Constant value of 11 mm	Absolute differences

BIO3 = isothermality; BIO15 = precipitation seasonality; BIO18 = precipitation of warmest quarter.

3.4 | Bioclimatic differences between El Borouj and Siddi Hajjaj

Bioclimatic data were collected from 199 georeferenced points, 185 houses with ACL cases and 14 houses in Siddi Hajjaj. Table 4 shows the average values (95% confidence interval), and minimum and maximum values of each of the bioclimatic variables in El Borouj and Siddi Hajjaj for which differences were detected. Significant differences were detected at precipitation seasonality (BIO15, p = 0.009) which was 78% lower in El Borouj [OR = 0.22 (IC95% 0.07–0.68)] whereas both localities showed absolute differences at maximum annual temperature in July, rainfall in September and October, isothermality (BIO3) and precipitation of warmest quarter (BIO18).

4 | DISCUSSION

In Morocco, ACL due to L. tropica is transmitted by P. sergenti which has a large geographic distribution probably related to the wide ecological plasticity of this vector (Boussaa et al., 2009; Ramaoui et al., 2008; Rioux et al., 1986). CL due to L. tropica is an emerging disease even though the geographical extension of the vector is greater than that of the parasitic protozoan, and the identification of factors for parasite expansion is essential for effective disease control. Phlebotomus sergenti density and genetic characteristics were investigated as determining factors for the existence of ACL transmission. Comparative intradomiciliary and peridomiciliary sand fly captures in the ACL endemic locality of El Borouj and the non-endemic locality of Siddi Hajjaj were made using CDC light traps and sticky papers. Phlebotomus sergenti density in Siddi Hajjaj was lower than that of the endemic locality, both in peridomiciliary settings and within households. Interestingly, P. sergenti was the most abundant and densest species within households in Siddi Hajjaj, however it was the fourth species outdoors, after S. minuta and the L. infantum vectors, P. perniciosus and P. longicuspis (Table 1). The relative abundance of P. sergenti males and females varied between the trapping methods since the males were more abundant in the sticky papers. In both localities, the density of P. sergenti females was higher in the intradomiciliary captures carried out in June and non-fed, fed and gravid females, were found (Table 2).

Although to date no ACL cases have been diagnosed in Siddi Hajjaj, these sand fly density figures seem sufficient for the maintenance of
L. tropica transmission (Barón et al., 2013; Ramaoui et al., 2008; Rioux et al., 1986) and would make this locality susceptible to the establishment of an ACL transmission cycle. Over the last few decades, L. tropica foci have spread to several regions of Morocco including those where CL caused by L. major or L. infantum has been reported, which shows the changing geographical patterns of this species (Baghad et al., 2020). The growing mobility of humans raises the possibility of new emerging foci in areas where P. sergenti populations are well established. Kholoud et al. (2020) suggested that ACL dissemination in Morocco is associated to an increase in human travel and local tourism linked to economic expansion and infrastructure development as shown by the synchronized occurrence of new ACL foci with the construction of new motorways. However, the factors underlying the spatio-temporal transmission dynamics of leishmaniasis are not well understood, and the epidemiological picture is not as simple as deduced from the previous statement.

The molecular characterization of P. sergenti populations in both localities using the PCR-RFLP technique of the cytochrome b mitochondrial gene, has allowed us to find that the lineage IV is the main mitochondrial lineage of P. sergenti in El Borouj (97.6%) while the remaining 2.4% belong to lineage II. In contrast, lineage II was the most abundant in Sidi Hajjaj (80%) followed by the lineage I (20%). Therefore, a different main P. sergenti mitochondrial lineage was dominant in each locality under study. Phlebotomus sergenti is characterised by its high genetic diversity and classified with at least 20 haplotypes in four mitochondrial lineages (Barón et al., 2008; Yahia et al., 2004).

In El Borouj, L. tropica DNA was detected in 5 out of 184 (2.7%) P. sergenti females in captures made in 2014 and 2015 (Gijón-Robles et al., 2018). The five infected females belong to lineage IV, the most prevalent P. sergenti lineage in El Borouj. This is the first time that a mitochondrial lineage of P. sergenti is involved as a vector for L. tropica. A local increase in the abundance of this P. sergenti lineage that seems to transmit L. tropica more efficiently, could explain the emergence of ACL in El Borouj and its absence in Sidi Hajjaj.

Lineage I is over-represented in southwestern Europe (Merino-Espinosa et al., 2016) and this is the first time that its presence in Morocco is reported. No autochthonous ACL cases have been detected in the Iberian Peninsula, despite P. sergenti being commonly found at sufficient densities to act as a vector, and the existence of 2 mitochondrial lineages, one of them, held in common with Morocco (Lineage III) (Barón et al., 2008, 2013; Merino-Espinosa et al., 2016). The existence of differential ecological traits between P. sergenti mitochondrial lineages has been pointed out: Merino-Espinosa et al. (2016) found that Lineage I appear to have adaptive advantages represented by a wider tolerance to temperature and altitude changes that would make it better suited to lead a geographical expansion into Europe. Similarly, there are bioclimatic differences between El Borouj and Sidi Hajjaj (Table 4) that could explain the over representation of lineage IV in El Borouj, which is warmer and drier, and its absence in Sidi Hajjaj.

In general, rainfall is greater in Sidi Hajjaj than in El Borouj with a strong seasonality from July to October. In contrast, temperatures are almost two degrees higher in El Borouj throughout the year; however, the differences were only significant between the maximum temperature of July. The coefficient of isothermality reflects well these differences in temperature between both localities, being two points higher in El Borouj. Environmental humidity and temperature are two determining factors in the distribution of P. sergenti (Barón et al., 2013) and within this species there appear to be lineages with different ranges of tolerance. Particularly in El Borouj, the presence of water wells was independently associated with a greater P. sergenti density in the households (Gijón-Robles et al., 2018).

5 | CONCLUSION

The density and genetic background of the L. tropica vector, P. sergenti, seem to play a significant role in the prevalence of ACL in Morocco. Differences in both the vector density and its main mitochondrial lineage in two localities, one endemic and the other free of the disease, may explain the different epidemiological situation. Given that the P. sergenti density in Sidi Hajjaj seems sufficient to allow transmission, the main factor that would explain the absence of ACL cases could be the lack of P. sergenti lineage IV, which seems to prefer warmer and drier climates.

ACKNOWLEDGEMENT

This study was funded by the University of Granada (Centro de Iniciativas de Cooperación al Desarrollo, CICODE, 2013). Funding for open access charge: Universidad de Granada/CBVA.

CONFLICT OF INTEREST

The authors declare no competing interests.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Joaquina Martín-Sánchez https://orcid.org/0000-0003-3981-9227

REFERENCES

Ajoud, M., Es-sette, N., Hamdi, S., El-Idrissi, L. A., Riyad, M. & Lemrani, M. (2013). Detection and molecular typing of Leishmania tropica from Phlebotomus sergenti and lesions of cutaneous leishmaniasis in an emerging focus of Morocco. Parasite & Vectors, 6, 217. https://doi.org/10.1186/1756-3305-6-217

Al-Zahrani, M. A., Peters, W., Evans, P. A., Ching-Chin, I., Smith, V. & Lane, R. P. (1988). Phlebotomus sergenti, a vector of Leishmania tropica in Saudi Arabia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 82(3), 416.

Amarir, F., Sebti, F., Fellah, H., Pratlong, F., Dedet, J. P., El Mansouri, B., Hmamouch, A., Delouane, B., Habbari, K., Sadak, A., Abassi, I. & Rhajaoui, M. (2015). Epidemiological characteristics of a new focus of cutaneous leishmaniasis caused by Leishmania tropica in Settat, Morocco. Acta Tropica, 150, 116–121. https://doi.org/10.1016/j.actatropica.2015.07.020

Baghad, B., Razanapinaritra, R., Maksouri, H., El Bouri, H., Outiloua, A., Fellah, H., Lemrani, M., Akarid, K., Martin-Sanchez, J., Chiheb, S. & Riyad, M. (2020). Possible introduction of Leishmania tropica to urban areas determined by epidemiological and clinical profiles of patients with cutaneous
leishmaniasis in Casablanca (Morocco), Parasite Epidemiology and Control, 9, e00129. https://doi.org/10.1016/j.parepi.2019.e00129
Barón, S., Martín-Sánchez, J., Gállego, M., Morales-Yuste, M., Boussaia, S. & Morillas-Márquez, F. (2008). Intraspecific variability (rDNA ITS and mtDNA Cy b) of Phlebotomus sergenti in Spain and Morocco. Acta Tropica, 107, 259–267. https://doi.org/10.1016/j.actatropica.2008.07.003
Barón, S. D., Morillas-Márquez, F., Morales-Yuste, M., Díaz-Sáez, V., Gállego, M., Molina, R. & Martín-Sánchez, J. (2013). Predicting the risk of an endemic focus of Leishmania tropica becoming established in South-Western Europe through the presence of its main vector, Phlebotomus sergenti Parrot, 1917. Parasitology, 140, 1413–1421. https://doi.org/10.1017/S0031182013000942
Benabdennbi, I., Pesson, B., Cadi-Soussi, M. & Morillas-Márquez, F. (1999). Morphological and isoenzymatic differentiation of sympatric populations of Phlebotomus perniciosus and Phlebotomus longicuspis (Diptera: Psychodidae) in northern Morocco. Journal of Medical Entomology, 36, 116–120. https://doi.org/10.1093/jmedent/36.1.116
Berchi, S., Bounamous, A., Louadi, K. & Pesson, B. (2007). Differentiation morphologique de deux espèces sympatriques: Phlebotomus perniciosus Newstead 1911 et Phlebotomus longicuspis Nitzulescu 1930 (Diptera: Psychodidae), Annales de la Société Entomologique de France (n.s.1, 43, 201–203.
Boussaia, S., Pesson, B. & Boumezzough, A. (2009). Faunistic study of the sandflies (Diptera: Psychodidae) in an emerging focus of cutaneous leishmaniasis in Al Haouz province, Morocco. Annals of Tropical Medicine and Parasitology, 103, 73–83. http://doi.org/10.1179/13648509X484910
El Sawaf, B. M., Mansour, N. S., El Said, S. M., Daba, S., Youssef, F. G., Kenawy, M. A. & Beier, J. C. (1989). Feeding patterns of Phlebotomus papatasi (Diptera, Phlebotomidae) of the Mediterranean region. Annales de Parasitologie Humaine et Comparée, 58, 611–623. https://doi.org/10.1016/S0043-6000(89)80011-6
Esseghir, S., Ready, P. D., Killik-Kendrick, R. & Ben-Ismaïl, R. (1997). Mitochondrial haplotypes and geographical vicariance of Phlebotomus vectors of Leishmania major. Insect Molecular Biology, 6, 211–225.
Gil Collado, J., Morillas Márquez, F. & Sanchis Marin, M. C. (1989). Los flebotomas en España. Revista de Sanidad y Higiene Pública, 63, 15–34.
Gijón-Robles, P., Abattouy, N., Merino-Espinosa, G., Chiheb, S., Fellah, H., Martín-Sánchez, J. & Riyad, M. (2014). Molecular diagnosis of cutaneous leishmaniasis and identification of the causative Leishmania species in Morocco by using three PCR-based assays. Parasite & Vectors, 47(1), 420. https://doi.org/10.1186/1756-3305-7-420
Ntai, P., Christodoulou, V., Tsirigotakis, N., Dokianakis, E., Dedet, J. P., Pratlong, F. & Antoniou, M. (2014). Will the introduction of Leishmania tropica MON-58, in the island of Crete, lead to the settlement and spread of this rare zymodeme? Acta Tropica, 132, 125–135. https://doi.org/10.1016/j.actatropica.2014.01.003
Pratlong, F., Dereure, J., Ravel, C., Lami, P., Balard, Y., Serres, G., Lanotte, G., Rioux, J. A. & Dedet, J. P. (2009). Geographical distribution and epidemiological features of Old World cutaneous leishmaniasis foci, based on the isoenzyme analysis of 1048 strains. Tropical Medicine and International Health, 14(9) 1071–1085. https://doi.org/10.1111/j.1365-3156.2009.02397.x
Ramaouli, K., Guernaoui, S. & Boumezzough, A. (2008). Entomological and epidemiological study of a new focus of cutaneous leishmaniasis in Morocco. Parasitology Research, 103, 859–63. https://doi.org/10.1007/s00463-008-1068-3
Rioux, J. A. & Golván, Y. J. (1969). Épidémiologie des leishmanioses dans le sud de la France. Institut National de la Santé et de la Recherche Médicale. Paris (16°) 288-32-84.
Rioux, J. A., Lanotte, G., Petter, F., Dereure, J., Akalay, O., Pratlong, F., Velez, I. D., Fikri, N. D., Maazoun, R., Denial, N., Jarry, D. M., Zahaf, A., Ashford, R. W., Cadi-Soussi, M., Killik-Kendrick, R., Bennansour, N., Moreno, G., Périères, J., Guivlard, E., ... Serres, E. (1986). Les leishmanioses cutanées du bassin méditerranéen occidental; De l’identification enzymatique à l’analyse éco-épidémiologique; L’exemple de trois “foyers”, tunisien, marocain, et français. In Leishmania. Taxonomie et Phylogénèse. Applications Eco-épidémiologiques, J.A Rioux (ed.), pp. 365–395. CNRS/INSERM/OMS, Institut Méditerranéen d’Études Épidémiologiques et Ecologiques, Montpellier.
Rioux, J. A., Perieres, J., Killik-Kendrick, R., Maître, M. & Bayar, N. (1978). Confirmation de l’existence en Tunisie de Sergentomyia antennata (Newstead, 1912) (Diptera-Psychodidae). Annales de Parasitologie Humaine et Comparée, 53(4), 431–435.
Sáez, V. D., Morillas-Márquez, F., Merino-Espinosa, G., Corpas-López, V., Morales-Yuste, M., Pesson, B., Barón-López, S., Lucientes-Curdi, J. & Martín-Sánchez, J. (2018). Phlebotomus lanceroni Nitzulescu (Diptera, Psychodidae) a new vector for Leishmania infantum in Europe. Parasitology Research, 117, 1105–1113. https://doi.org/10.1007/s00436-018-5788-8
Schnur, L. F., Nasereddin, A., Eisenberger, C. L., Jaffe, C. L., El Fari, M., Azmi, K., Anders, G., Killik-Kendrick, M., Killik-Kendrick, R., Dedet, J. P., Pratlong, F., Kanaan, M., Grossman, T., Jacobson, R. L., Schonian, G. & Warburg, A. (2004). Multifarious characterization of Leishmania tropica from a Judean desert focus, exposing intraspecific diversity and incriminating Phlebotomus sergenti as its vector. American Journal of Tropical Medicine and Hygiene, 70, 364–372.
Svobodova, M., Votyka, J., Peckova, J., Dvorak, V., Nasereeddin, A., Baneth, G., Sztren, J., Kravchenko, V., Orr, A., Meir, D., Schnur, L. F., Volt, P. & Warburg, A. (2006). Distinct transmission cycles of Leishmania tropica in 2 adjacent foci, Northern Israel. Emerging Infectious Diseases, 12, 1860–1868. https://doi.org/10.3201/eid1212.060497
WHO (2016). Leishmaniasis in high-burden countries: An epidemiological update based on data reported in 2014. *Weekly Epidemiology Records*, 91(22), 287–296.

Yahia, H., Ready, P. D., Hamdani, A., Testa, J. M. & Guessous-Idrissi, N. (2004). Regional genetic differentiation of *Phlebotomus sergenti* in three Moroccan foci of cutaneous leishmaniasis caused by *Leishmania tropica*. *Parasite*, 11, 189–199.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Gijón-Robles, P., Abattouy, N., Merino-Espinosa, G., El Khalfaoui, N., Morillas-Márquez, F., Corpas-López, V., Jaaouani, N., Díaz-Sáez, V., Riyad, M., Martín-Sánchez, J. (2021). Understanding the factors that determine the emergence of anthroponotic cutaneous leishmaniasis due to *Leishmania tropica* in Morocco: density and mitochondrial lineage of *Phlebotomus sergenti* in endemic and free areas of leishmaniasis. *Transboundary and Emerging Diseases*. 1–10. https://doi.org/10.1111/tbed.14179