Evidence for involvement of a transformer paralogue in sex determination of the wasp Leptopilina clavipes

E. Geuverink*, K. Kraaijeveld†‡, M. van Leussen*, F. Chen*, J. Pijpe§, M. H. K. Linskens∥, L. W. Beukeboom* and L. van de Zande*

†Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands; ‡Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; †Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; §University of Applied Sciences Leiden, Leiden, The Netherlands; and ∥Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands

Abstract

Transformer (tra) is the central gear in many insect sex determination pathways and transduces a wide range of primary signals. Mediated by transformer-2 (tra2) it directs sexual development into the female or male mode. Duplications of tra have been detected in numerous Hymenoptera, but a function in sex determination has been confirmed only in Apis mellifera. We identified a tra2 orthologue (Lc-tra2), a tra orthologue (Lc-tra) and a tra paralogue (Lc-traB) in the genome of Leptopilina clavipes (Hymenoptera: Cynipidae). We compared the sequence and structural conservation of these genes between sexual (arrhenotokous) and asexual all-female producing (thelytokous) individuals. Lc-tra is sex-specifically spliced in adults consistent with its orthologous function. The male-specific regions of Lc-tra are conserved in both reproductive modes. The paralogue Lc-traB lacks the genomic region coding for male-specific exons and can only be translated into a full-length TRA-like peptide sequence. Furthermore, unlike LC-TRA, the LC-TRAB interstrain sequence variation is not differentiated into a sexual and an asexual haplotype. The LC-TRAB protein interacts with LC-TRA as well as LC-TRA2. This suggests that Lc-traB functions as a conserved element in sex determination of sexual and asexual individuals.

Keywords: transformer orthologue, transformer-2, Hymenoptera, protein interactions, reproductive modes

Introduction

Sex determination is a ubiquitous developmental process in eukaryotes. It entails the differentiation of two sexual functions and leads to the development of female and male morphologies and behaviours. Being a basic developmental process, sex determination may be expected not to tolerate modifications in the underlying developmental pathway as these would disrupt the correct specification of the two sexes. Sex determination is nevertheless characterized by a wide variety of fast-evolving mechanisms, including duplication and subsequent recruiting of sex-determining genes (Beukeboom and Perrin, 2014; Herpin and Schartl, 2015).

Insects constitute a particularly suitable group for studying the regulation of sex determination as they have shown rapid turnover in sex determination mechanisms. The signal-transducing elements of their sex determination cascade are well conserved, but they exhibit a wide variety of upstream signals (Bopp et al., 2014). A hallmark of insect sex determination is sex-specific splicing of the transducing genes transformer (tra) and doublesex (dsx). The male splice variants of tra include exons with in-frame early STOP-codons, resulting in a truncated TRA protein. The female splice variants code for a TRA protein that belongs to a class of SR-type proteins characterized by regions rich in arginines (R) and serines (S). Despite its conserved function, tra displays high sequence divergence amongst insects, possibly as a result of accommodating many different upstream primary signals in the cascade (Verhulst et al., 2010b). It contains a number of distinctive domains of which the most conserved is the Ceratitis-Apis-Musca (CAM) domain, which is believed to implement the

First published online 1 October 2018.

Correspondence: Elzemiek Geuverink, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC Groningen, Groningen, The Netherlands. e-mail: e.geuverink@rug.nl
autoregulatory splicing loop of tra (Hediger et al., 2010). It has been found in all investigated tra orthologues, including those of Tribolium castaneum, Apis mellifera, Nasonia vitripennis, Asobara tabida and various dipterans, with the exception of drosophilids (Pane et al., 2005; Lagos et al., 2007; Ruiz et al., 2007; Hasselmann et al., 2008a; Hediger et al., 2010; Verhulst et al., 2010b; Saccone et al., 2011; Shukla and Palli, 2012; Geuverink et al., 2018). TRA also possesses order-specific domains, one of which is only shared amongst the Diptera (the DIP domain) and another that is only present in the Hymenoptera (the HYM domain) (Verhulst et al., 2010b). Despite the rapid evolution of sex determination cascades, most insect species have a functionally conserved tra orthologue as the transducer of the primary signal.

TRA and Transformer-2 (TRA2) form a complex that controls the sex-specific splicing of dsx pre-messenger RNA (pre-mRNA; Nagoshi et al., 1988; Nagoshi and Baker, 1990; Hedley and Maniatis, 1991; Hoshijima et al., 1991; Inoue et al., 1992; Tian and Maniatis, 1992, 1993; Amrein et al., 1994). TRA and TRA2 are essential components of the autoregulatory tra loop and required for splicing of dsx transcripts in T. castaneum, various dipterans, Ap. mellifera and N. vitripennis (Pane et al., 2002; Lagos et al., 2007; Ruiz et al., 2007; Hasselmann et al., 2008a; Salvemini et al., 2009; Sarno et al., 2010; Nissen et al., 2012; Shukla and Palli, 2012; Shukla and Palli, 2013; Liu et al., 2015; Geuverink et al., 2017). Tra2 can be transcribed either into a single isoform or into multiple isoforms that each code for an RNA binding domain (RBD) flanked on both sides by arginine-serine rich regions (Burghardt et al., 2005; Niu et al., 2005; Concha and Scott, 2009; Salvemini et al., 2009; Sarno et al., 2010; Martin et al., 2011; Nissen et al., 2012; Schetelig et al., 2012; Shukla and Palli, 2013; Liu et al., 2015).

Tra is considered to be ancestral to the holometabolous insects based on its conserved domains (Verhulst et al., 2010b; Geuverink and Beukeboom, 2014). However, tra orthologues appear absent in some insect groups, notably the Lepidoptera (Salvemini et al., 2013; Geuverink and Beukeboom, 2014). In the order of the Hymenoptera, tra has been found in nearly all families (except Athalia rosae, which represents the basal lineage of Tenthredinoidea (Mine et al., 2017)). In addition, paralogues of tra have been identified in multiple branches of the Aculeata (Schmieder et al., 2012; Privman et al., 2013; Koch et al., 2014). A sex-determining function of a tra parologue has thus far only been documented in Ap. mellifera, where it constitutes the complementary sex-determining locus (csd) (Beye et al., 2003; Hasselmann et al., 2008a). Interestingly, tra paralogues have been found predominantly in families that have tested positive for a complementary sex determination system (CSD), although a recent study has demonstrated tra paralogues in the suggested non-CSD clade of Chalcidoidea (Jia et al., 2016).

All Hymenoptera reproduce by haplodiploidy. Their sexual mode of reproduction is arrenotoky, in which haploid males develop from unfertilized eggs and diploid females from fertilized eggs. A large number of hymenopteran species are known to reproduce by thelytoky. Thelytokous females produce diploid females from unfertilized eggs parthenogenetically, without a paternal genome contribution. Thelytoky can be the result of infection with endosymbionts, but can also be caused by nuclear factors (Stouthamer, 1997; Lattorff et al., 2005; Sandrock and Vorburger, 2011). The manipulation of host reproduction by endosymbiotic bacteria, such as Wolbachia and Cardinium, is widespread amongst arthropods, in particular amongst Hymenoptera (O'Neill et al., 1997).

In the wasp Leptopilina clavipes (Hymenoptera; Cynipidae) both arrenotokous and Wolbachia-infected thelytokous populations exist (Pannebakker et al., 2004b; Kraaijeveld et al., 2011). The cytological mechanism of thelytokous reproduction is gamete duplication, ie diplody is restored by skipping the first mitotic anaphase division (Pannebakker et al., 2004a). This results in identical chromosome pairs and thus complete homozygosity. In northern Europe, L. clavipes populations are fixed for Wolbachia infection, meaning that they consist of infected thelytokous females only. Conversely, several southern European populations lack this Wolbachia infection, and reproduce sexually. Theory predicts that genes with sexual function will degenerate through accumulation of deleterious mutations under asexual reproduction (Kraaijeveld et al., 2016). Potential divergence or decay of the sex determination cascade in thelytokous systems has, however, not yet been studied. Furthermore, how endosymbionts achieve their host manipulation is poorly known and requires more knowledge of hymenopteran sex determination mechanisms. The L. clavipes system provides this opportunity because the sequences and regulation of sex determination genes can be directly compared between arrenotokous and thelytokous individuals.

Here we investigate whether and how tra and tra2 function in the sex determination cascade of arrenotokous and thelytokous lineages of L. clavipes. We also screen for paralogues of both genes in both lineages. Splicing patterns of the tra orthologue, parologue and tra2 are compared in both reproductive modes. Genes are expected to degenerate if they have no function in a particular reproductive mode. Therefore, if genes are only degenerated in thelytokous wasps this would suggest a loss of a sex determining related function at the onset of asexuality induction. However, if these genes are conserved in both reproductive modes and their proteins interact, it would indicate an active function in sex determination. An interaction between TRA and TRA2 is hypothesized.
to occur as a requirement for female development. Based on our results, a model for the sex determination system of *L. clavipes* will be presented and compared to known mechanisms within the Hymenoptera.

Results

Identification of *tra* homologues and their structure in *L. clavipes*

Two homologous sequences of *tra* were found in the *L. clavipes* reference genome assembly (from the thelytokous GBW strain [Kraaijeveld et al., 2016]), in two genomic scaffolds (scf7180005166757 and scf7180005164248). The two homologues shared 90.5% identity in their coding region sequence. The two homologues could also be detected in the arrhenotokous wasps by rapid amplification of cDNA ends-PCRs (RACE-PCRs) and reverse-transcription (RT-)PCRs. Although the two loci have a distinctly different genomic structure (Fig. 1), they code for similar mRNA sequences. The gene in scf7180005166757 has sex-specific splice variants that match those of known *tra* genes with a function in sex determination. The female splice variant codes for a peptide of 417 amino acids with all known functional domains of hymenopteran *tras*: the HYM domain, the CAM domain, an arginine-serine (RS)-region and a proline-rich region (Fig. 2). The predominant male-specific splice variant contains a premature STOP-codon shortly after the HYM domain, resulting in a 242-amino-acid protein. Another, less abundant male-specific splice
variant contains a STOP-codon at the same position, but merges the sixth and seventh exons (Fig. 2). Based on these observations we concluded that the gene in scf7180005166757 is the tra orthologue and named it Lc-tra.

In contrast, the gene in scf7180005164248 is not sex-specifically, indeed not even alternatively, spliced and lacks the region corresponding to male-specific exon sequences and the intron corresponding to that between exons 10 and 11 in Lc-tra (Fig. 1). The single splice variant contains an open reading frame (ORF) that closely matches the female-specific splice variant of Lc-tra. The conserved domain coding sequences of tra are present (HYM domain and CAM domain plotted in Fig. 2), whereas the coding part for the putative autoregulatory region, referred to as the CAM-domain, displays stronger divergence from other hymenopteran sequences (Fig. 3 and Supporting Information Figure S1). Based on these data, we concluded that the gene in scf7180005164248 is a paralogue of Lc-tra and named it Lc-traB.

The peptide sequence measures 429 amino acids and the amino acid sequence similarity is 74% compared to LC-TRAF.

Differential splicing of Lc-tra and Lc-traB in arrhenotokous and thelytokous L. clavipes

Arrhenotokous L. clavipes produce both female and male offspring, whereas thelytokous wasps only produce females. Thelytokous male production can however be induced by antibiotic treatment of the infected females. RNA was extracted from individual adults of each sex and both reproductive types to assess splice variation of sex determination genes. In males of either reproductive

Figure 3. Alignment of the Ceratitis-Apis-Musca (CAM) domain (putative autoregulatory region) amongst Hymenoptera. The first 10 amino acids of the transformer (TRA) orthologues are present in both males and females, the latter 15 amino acids are only translated from the female-specific splice variant. CSD and the TRA paralogue (TRAB) contain a full CAM domain in both sexes. Amel, Apis mellifera; Bter, Bombus terrestris; Aech, Acromyrmex echinatior; Acep, Atta cephalotus; Pbar, Pogonomyrmex barbatus; Cflo, Camponotus floridanus; Nvit, Nasonia vitripennis; Lcla, Leptopilina clavipes; fem, feminizer.

Figure 4. Presence of female (Lc-tra\(^{-}\)) and male (Lc-tra\(^{+}\)) specific splice variants of Leptopilina clavipes transformer (Lc-tra) and non-sex-specific splice variants of its paralogue (Lc-traB) and Lc-tra2 in adult females (F) and males (M) of thelytokous strain KBH (lanes 1–4) and arrhenotokous strain SCA (lanes 5–8). The negative control in lane 9 contains no cDNA (ntc).
mode Lc-tra pre-mRNA was spliced solely into the male variant, whereas arrhenotokous females contained a mix of the female and the male splice variants (Fig. 4). This is in contrast to the non-treated thelytokous females, which displayed only the female-specific form of Lc-tra. The single transcript of Lc-traB was abundantly present in females and males of both reproductive modes (Fig. 4). This full-length Lc-traB transcript results in the presence of a CAM-like domain coding sequence in males. No splice variation of Lc-traB was detected in either sex.

Faint traces of other amplicons were detected in the Lc-tra RT-PCR (Fig. 4). The faint band above the Lc-traM arrow was the less abundant Lc-traM2 splice variant. The amplicon between Lc-traF and Lc-traM in arrhenotokous individuals and the faint lower band in some thelytokous individuals were not successfully cloned. These potential alternative splice variants could not be detected in the transcriptome of strain EPG, which only contains an isotig of Lc-traM2 (accession: GAXY02017594) as well as Lc-traB (accession: GAXY02017595) (Peters et al., 2017), nor could they be predicted from the genomic sequence.

Sequence divergence of Lc-tra and Lc-traB in thelytokous and arrhenotokous individuals

Fragments of the two tra homologues were sequenced from stored samples of a range of arrhenotokous and thelytokous L. clavipes strains, used previously for genetic diversity assays (Pannebakker et al., 2004b; Kraaijeveld et al., 2011). An overview of these 12 thelytokous strains (AR1, AR2a, AR3a, Aust, BB1, CDB1a, GBW, KBH, MGS, STP, WB1a, WB3) and nine arrhenotokous strains (CBY, DC, EJ, EPG, Mol, MS, PdA, PIB, TL) is presented in Supporting Information Table S1.

A coding region upstream of the sex-specifically spliced exons in Lc-tra, containing two non-sex-specific exons separated by an intron, was amplified from both arrhenotokous and thelytokous individuals. The two tra homologues differ in this region by 33 single nucleotide polymorphisms (SNPs) and a 3-bp deletion (Fig. 5). No intrastrain variation was present in Lc-tra and Lc-traB. The nucleotide polymorphisms in the two tra copies were used to assess the genetic divergence between the lineages. Lc-tra polymorphisms between lineages resolve into one cluster of arrhenotokous and one cluster of thelytokous variants, with the exception of lineage KBH (which was also an outlier in Kraaijeveld et al., 2011). The arrhenotokous and thelytokous Lc-tra haplotypes can be separated by a single nonsynonymous SNP. By contrast, such separation by reproductive mode is not evident for Lc-traB, for which three haplotypes were detected (Fig. 5). The arrhenotokous lineages, except EPG, share the same haplotype of Lc-traB. The thelytokous lineages are divided into two clusters with two nonsynonymous and one synonymous SNPs separating their Lc-traB haplotypes. Notably, the Lc-traB haplotype that is found in both arrhenotokous and thelytokous lineages contains a longer intron that is similar in length (1-bp difference) to the Lc-tra intron. The other Lc-traB haplotypes contain an intron that is 76 bp shorter. The distinction of thelytokous lineages into two clusters was also observed with neutral markers (microsatellites) and mtDNA (Kraaijeveld et al., 2011).

The region between exons 3 and 9 of Lc-tra contains the male-specific exons that are spliced out in the female form. Thelytokous lineages do not produce males and this region could potentially have degenerated in these lineages without affecting the functionality of tra. This large region in Lc-tra could not be amplified by PCRs with primers located on exons 3 and 9. As an alternative approach genomic HiSeq data of thelytokous strain MGS4 and arrhenotokous strains EJ and PdA were mapped against the thelytokous GBW reference genome. Comparison of the thelytokous (MGS4/GBW) and arrhenotokous (EJ/PdA) consensus sequences yielded only one intronic

© 2018 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society, 27, 780–795
SNP in this male region of Lc-tra (Table 1). This indicates that the entire male-specific region is intact in the thelytokous Lc-tra lineage (Figs 1, 2). By contrast, the prospective promoter region, the 5′ untranslated region (5′UTR), and introns 9 and 10 contain a large number of SNPs and deletions (Table 1). Furthermore, two nonsynonymous SNPs are present between the exonic consensus sequences of the thelytokous and arrhenotokous lineages, but no synonymous SNPs. These patterns confirm the separation of Lc-tra into an arrhenotokous and a thelytokous haplotype.

Whereas the thelytokous and arrhenotokous consensus sequences of Lc-tra contain a large number of intronic SNPs, Lc-traB is almost identical between the two reproductive modes (Table 1). There is some sequence variation amongst strains, but only a single nonsynonymous mutation on exon 2 separates the sequences by reproductive mode. The Lc-traB genomic region in the thelytokous L. clavipes genome lacks the region that in Lc-tra contains male-specific exons (Fig. 1). To examine potential divergence of these regions between the tra copies of different lineages, we amplified this intronic region of Lc-traB in DNA samples of the arrhenotokous and thelytokous strains. The length of the intronic regions appear conserved in all lineages, regardless of reproductive mode (Fig. 6).

Conservation of Lc-tra and Lc-traB

The two tra copies of L. clavipes are more similar to each other than to any other hymenopteran tra homologue (Fig. 7). This matches a pattern observed in bumblebees and ants (Schmieder et al., 2012; Privman

Table 1. Comparison of promoter-region, 5′ untranslated region (5′UTR), coding DNA sequences (CDS), male-specific region and 3′ region between Leptopilina clavipes transformer (Lc-tra) of arrhenotokous strains (EJ/PdA) and Lc-tra of thelytokous strains (GBW/MGS4), the Lc-tra paralogue (Lc-traB) of arrhenotokous strains and Lc-traB of thelytokous strains, and Lc-tra2 of arrhenotokous and Lc-tra2 of thelytokous strains. The number of segregating sites includes both single nucleotide polymorphisms (SNPs) and deletions. SNPs located on exons are marked as nonsynonymous or synonymous in the right-most two columns

	Exon+intron #segregating sites	Exon #nonsynonymous mutations	Exon #synonymous mutations
Lc-tra thelytokous vs. arrhenotokous			
Promotor region (1000 bp prior to transcription start)	11	N/A	N/A
5′UTR	14	N/A	N/A
CDS exons 1–3	1	1 (P in thelytokous vs. S in arrhenotokous)	0
Male-specific exon region (intron after exon 3 until start exon 9) & 3′ (exon 9 until transcript stop)	1 (intron)	N/A	N/A
15 (14 of which in introns)	1 (P in thelytokous vs. A in arrhenotokous)	0	
Lc-traB thelytokous vs. arrhenotokous			
Promotor region (1000 bp prior to transcription start)	1	N/A	N/A
5′UTR	0	N/A	N/A
CDS exons 1–3*	1	1 (K in thelytokous vs. E in arrhenotokous)	0
Intron between exons 3 and 4	0	N/A	N/A
3′ (exon 4 until transcript stop)	0	0	0
Lc-tra2 thelytokous vs. arrhenotokous			
Promotor region (1000 bp prior to transcription start)	4	N/A	N/A
5′UTR	0	N/A	N/A
CDS	6 (all intronic)	N/A	N/A
3′UTR	2 (1 on exon, 1 in intron)	N/A	N/A

interstrain variation in this region, see Figure 4

Figure 6. Amplification of intronic regions of the Leptopilina clavipes transformer paralogue (Lc-traB) in nine arrhenotokous strains (lanes 1–9: CBY, DC, EJ, EPG, Mol, MS, PdB, PIB, TL) and 12 thelytokous strains (lanes 10–21: AR1, AR2a, AR3a, Aust, BB1, CDB1a, GBW, KBH, MGS, STP, WB1a, WB3). The negative control in lane 22 contains no cDNA (ntc). The amplified fragment is 1129 bp and includes the truncated intronic region in Lc-traB that is homologous to the region containing male-specific exons in Lc-tra.

© 2018 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society, 27, 780–795
et al., 2013; Koch et al., 2014). The tra homologue in honeybees (Ap. mellifera, Apis cerana, Apis dorsata) is called feminizer (fem) and is duplicated. This paralogue contains a hypervariable region and was identified as the complementary sex determiner (csd) locus (Hasselmann et al., 2008a, 2008b). The hypervariable region is not present in tra paralogues of bumblebees and ants, and also does not appear in Lc-traB. The similarity of Lc-tra and Lc-traB sequences between reproductive types points to a duplication event after the divergence from other hymenopterans, but before the split between thelytokous and arrhenotokous lineages of L. clavipes (Figs 5, 7).

Identification and sequence variation of Lc-tra2
The nucleotide sequence of the Lc-tra2 coding DNA sequences (CDS) was predicted from isotig C57958, nucleotide position 134 to 958 (GenBank accession: GAXY02014083) (Peters et al., 2017). This translates into a 275-amino-acid sequence containing two RS domains flanking the RBD, consistent with previously identified tra2 orthologues.

Alternative splicing was detected in Lc-tra2, but the alternative splice variants are not sex-specific (Fig. 8). Splicing variation in exon 2 results in a different length of the N-terminal RS domain. The splicing variation at the last three exons results in highly conserved peptides compared to N. vitripennis and Ap. mellifera (Nissen et al., 2012; Geuverink et al., 2017). Lc-tra2A and Lc-tra2B translate at the 3' end of the coding region to a FESRGIG motif, whereas Lc-tra2C translates into RY immediately followed by a STOP codon through the inclusion of exon 4. Owing to an A-rich region in the 3’ region it was impossible to obtain 3’RACE PCR fragments of Lc-tra2. Thus, a splice variant with a poly-A tail at the end of exon 4 could exist, but would not yield a different protein sequence or UTR compared to the variants reported here. Lc-tra2C is visible in the female samples of Fig. 4,
with LC-TRA2 and with TRA2 of *N. vitripennis* length ORF. Constitutes the only *tra* in both female and male wasps and *Lc-tra* (LC-TRA) (LC-TRA2) was selected based on transcript abundance. *Lc-traB* and *Lc-tra2* were cloned in the yeast 2-hybrid vectors.

As the results in Table 2 demonstrate, LC-TRA interacts with LC-TRA2. LC-TRAB additionally interacts with itself. Conversely NV-TRA interacts with LC-TRA2. This shows the conserved ability of TRA2 to bind diverged TRA homologues. In *D. melanogaster* TRA interacts with itself (see above), but we only observed this for NV-TRA and not for LC-TRA (Table 2). LC-TRAB showed interactions with LC-TRA2 and NV-TRA2, confirming TRA2 binding recognition of TRA-like sequences (Table 2). LC-TRAB also interacts with LC-TRA (Table 2) allowing the possibility of a trimeric protein complex of LC-TRA, LC-TRAB and LC-TRA2. LC-TRAB additionally interacts with itself.

![Exon-intron structure of the splice variants of *Leptopilina clavipes* transformer 2 (Lc-tra2). White boxes represent the 5' and 3' untranslated regions, the black boxes contain the coding sequence. Grey boxes depict the RNA binding domain.](image)

Figure 8. Exon–intron structure of the splice variants of *Leptopilina clavipes* transformer 2 (Lc-tra2). White boxes represent the 5' and 3' untranslated regions, the black boxes contain the coding sequence. Grey boxes depict the RNA binding domain.

Protein–protein interactions in the Yeast 2-Hybrid system.

Protein–protein interaction was assessed using the Matchmaker Gal4 Two-Hybrid System 3 as provided by Clontech. Briefly, the first interacting protein is fused to a DNA binding domain for the GAL promoter by cloning in one plasmid, and the second interacting protein is fused to a transcriptional activation domain by cloning in another plasmid. Both plasmids are then expressed together in a yeast strain containing several GAL promoter-driven reporter genes. The DNA binding domain recognizes, and binds, the GAL promoter. If protein interaction between the two cloned proteins occurs, the activation domain is now recruited to the GAL promoter region and induces expression of reporter genes. These reporter genes are typically for auxotrophic markers (in these experiments histidine and adenine), which allows survival of the yeast on ‘drop-out’ media. Growth is thus a measure of protein–protein interaction of the cloned genes.

Insert 1 (binding domain)	Insert 2 (activation domain)	Interaction
Leptopilina TRA	Leptopilina TRA2 ++	
Leptopilina TRAB	Leptopilina TRA2 ++	++
Leptopilina TRAB	Leptopilina TRA ++	++
Leptopilina TRAB	Leptopilina TRA2 ++	++
Nasonia TRA	Leptopilina TRA2 ++	++
Nasonia TRA	Leptopilina TRA2 ++	++
Nasonia TRA	Leptopilina TRA2 ++	++
Nasonia TRA	Leptopilina TRA2 ++	++
Nasonia TRA	Nasonia TRA2 ++	++
Nasonia TRA	Nasonia TRA2 ++	++
Nasonia TRA	Nasonia TRA2 ++	++
p53 (negative control)	Leptopilina TRA2 -	-
Lam (negative control)	Leptopilina TRA2 -	-
p33 (negative control)	Nasonia TRA2 -	-
Lam (negative control)	Nasonia TRA2 -	-

TRA, transformer; TRAB, transformer parologue.
Table 3. Ploidy assessments of arrhenotokous males, arrhenotokous females, thelytokous males and thelytokous females

Strain	Reproductive mode	Sex	Wolbachia infection	Sample size	Ploidy
CA1	Arrhenotoky	Male	No	5	Haploid
CA1	Arrhenotoky	Female	No	4	Diploid
LS1	Thelytoky	Male	No	6	Haploid
LS1	Thelytoky	Female	No	3	Diploid
LS1	Thelytoky	Female	Yes	5	Diploid

As most test combinations yielded an interaction we verified the likelihood of false positive interactions through inclusion of control plasmids that contained nonrelated proteins (murine p53 or human Lamin C). The L. clavipes constructs did not interact with these constructs, or with empty constructs (which only express either the binding or the activation domain), indicating that the observed interactions between the sex determination genes are specific (Table 2 and Supporting Information Table S2).

Ploidy of arrhenotokous and thelytokous L. clavipes

Males and females were compared for ploidy between arrhenotokous and thelytokous strains. No differences were detected between sexes of the different reproductive modes. All females were diploid and all males were haploid (Table 3).

Discussion

The transducing level of sex determination is conserved in L. clavipes

Two homologues of tra were detected in L. clavipes and both displayed strong amino acid sequence conservation compared to hymenopteran TRA orthologues. Lc-tra is probably the tra orthologue based on the sex-specific splicing of its transcripts, sequence conservation within reproductive type and the high conservation of domains and structure of the LC-TRA protein. It retains all elements required for a conserved sex determination function. Comparison of the arrenhotokous and thelytokous Lc-traF mRNAs and peptides did not reveal much divergence. Genes that have become redundant in thelytokous wasps have been observed to decay (Kraaijeveld et al., 2011). The strong sequence conservation and lack of degeneration in thelytokous lineages suggest a neutral and mitochondrial markers (Kraaijeveld et al., 2011). The strong sequence conservation and lack of degeneration in thelytokous lineages suggest a possible upon removal of *Wolbachia* endosymbionts. This suggests that the functionality of tra is retained in either reproductive mode.

Lc-tra2 contains all conserved regions associated with tra2. Its splicing variation at the 3’end corresponds with known variants in Ap. mellifera, *N. vitripennis* and As. tabida (Nissen et al., 2012; Geuverink et al., 2017, 2018). We performed protein–protein interaction assays in *N. vitripennis* to test the hypothetical TRA/TRA2 binding complex in Hymenoptera. Both tra and tra2 in *N. vitripennis* are required for the splicing of tra pre-mRNA as well as dsx pre-mRNA (Verhulst et al., 2010a; Geuverink et al., 2017). In this study we demonstrated an interaction between TRA and TRA2 in *N. vitripennis*. The conservation of this interaction in *L. clavipes*, combined with the cross interaction of TRA and TRA2 between *L. clavipes* and *N. vitripennis*, enables the possibility that tra and tra2 are also involved in tra and dsx pre-mRNA splicing in this species.

Involvement of Lc-traB in sex determination of L. clavipes

Lc-traB is neither sex-specifically nor alternatively spliced. The absence of the corresponding male-specific exon region of Lc-tra results in a default splicing of Lc-traB transcripts, similar to the female-specific tra. This suggests that traB does not need autoregulation of its splicing once switched on. The Lc-traB sequence coding for the CAM region associated with autoregulation (Hediger et al., 2010) is distinctly different compared to Lc-tra (Fig. 3). If traB had become obsolete in thelytokous sex determination this would be visible in sequence degeneration. However, this is not observed in any of the four (re)sequenced lineages. Lc-traB does group into three haplotypes independent of reproductive mode. This could reflect the evolutionary history of the lineages, rather than a functional implication, as the clustering matches divergence patterns observed with neutral and mitochondrial markers (Kraaijeveld et al., 2011). The strong sequence conservation and lack of degeneration in thelytokous lineages suggest a
conserved function. Yet, the lack of male-specific region and default splicing indicate a function different from Lc-tra. As LC-TRAB interacts with LC-TRA and LC-TRA2, this function may still be a part of the process of sex determination. Thus, we propose that a combination of Lc-tra, Lc-traB and Lc-tra2 may be required for female development in L. clavipes.

Implications for the sex determination mechanism of L. clavipes

One of the widespread mechanisms of sex determination in Hymenoptera is CSD. Under CSD female development ensues when one (single-locus CSD) or multiple (multi-locus CSD) loci are heterozygous. The only csd locus identified thus far is in Ap. mellifera and it is a parologue of fem, the Ap. mellifera orthologue of tra (Hasselmann et al., 2008a). Other paralogues of tra have been found in species with CSD, but little is known about their functionality (Schmieder et al., 2012; Privman et al., 2013). This association potentially reflects a bias in study effort, rather than a true link to CSD. Recently, three homologues of tra were reported from the fig wasp Ceratosolen solmsi, a species belonging to the Chalcidoidea in which CSD appears absent (van Wilgenburg et al., 2006; Heimpel and de Boer, 2008; Jia et al., 2016). Transcripts of the two duplicates in C. solmsi are only detected in females, but their possible role in sex determination remains unknown. Hence, the presence of a tra parologue is not informative about the presence or absence of CSD.

The lack of evidence for CSD in the Leptopilina genus (Biémont and Bouletreau, 1980; Hey and Gargiulo, 1985) requires consideration of the only other reported sex determination mechanism in Hymenoptera: maternal effect genomic imprinting. This has been described for the wasp N. vitripennis (Beukeboom and van de Zande, 2010; Verhulst et al., 2010a, 2013) and consists of a maternally imprinted (inactivated) sex determination gene [the putative womanizer (wom) gene] that can perform a feminizing function in the zygote. The non-inactivated wom of paternal origin in fertilized eggs acts in combination with maternal provisioning of tra and tra2 mRNA to effectuate female development. It is not known if this mechanism, which requires sex determination gene transcripts to be maternally provided to the eggs and involves a paternally provided factor in the fertilized egg, is present in other groups. The presence of two tra homologues in L. clavipes provides multiple options for maternal effect genes. Additional studies are required to elucidate the thelytokous (uniparental, all-female) mode of sex determination, as under thelytoky a paternally provided element is impossible. How can female development be activated in a zygote containing only maternally provided chromosome sets and gene products? One intriguing possibility is that Wolbachia provides this signal. Wolbachia may directly interfere with the splicing regulation of Lc-tra itself, resulting in the fixed splicing pattern observed in thelytokous adult females. Transcriptomes of early developmental stages need to be procured to identify these signals. This may shed more light on the diversity of sex determination mechanisms in hymenopteran insects and open the possibility of testing endosymbiont interference in insect sex determination.

Experimental procedures

Source material

Stored samples of 12 thelytokous strains (AR1, AR2a, AR3a, Aust, BB1, CDB1a, GBW, KBH, MGS4, STP, WB1a, WB3) and nine arrhenotokous strains (CBY, DC, EJ, EPG, Mol, MS, Pda, PIB, TL), as described in Pannebakker et al. (2004b), Kraaijeveld et al. (2011) and Table 1, were used to screen divergence of the tra genes. The additional SCA strain was collected in Santa Cristina d’Aro (Spain) in October 2015. The wasps were cultured on second-instar Drosophila phalerata host larvae at 25 °C under constant light. Individuals from the KBH strain were kindly provided by Todd Schlenke. Females of the KBH strain were cured from their Wolbachia infection by feeding honey with 0.5% rifampicin (Schidlo et al., 2002); this results in haploid eggs that develop into males (referred to as ‘thelytokous males’).

Identification of tra homologues and structure of tra in L. clavipes

Scaffolds containing putative tra homologues were identified from the L. clavipes genome assembly (Kraaijeveld et al., 2016) using the protein sequence of N. vitripennis tra (NP_001128299) as a query in translated BLAST (blastn) (Altschul et al., 1997). Adult males and females of the arrhenotokous strain EPG and thelytokous strain GBW were collected from laboratory cultures that were terminated immediately afterwards. RNA extractions were performed with TriZol according to the manufacturer’s protocol (Invitrogen, Carlsbad, CA, USA). All isolated total RNA was primed with oligo(dT) and random hexamers (in a mixture of 1:6) and reverse transcribed with a RevertAid™ H Minus First Strand cDNA Synthesis Kit (Fermentas, Hanover, MD, USA). Reverse transcription for 3’RACE adapter synthesis was also performed with a RevertAid™ H Minus First Strand cDNA Synthesis Kit (Fermentas) using all isolated total RNA primed with a 3’RACE adapter (5’-GGG AGG ACA GAA TTA ATA CGA CTC ACT ATA GGT GT-3’). A 5’RACE adapter containing cDNA was produced according to the manufacturer’s instructions (FirstChoice RLM-RACE kit, Ambion, Austin, TX, USA). Sequences of all primers used in this study are shown in Table 4. To assess the Lc-tra splice variants present in adult males and females 5’RACE-PCR was performed with outer primer Lcla_tra_5RACE1.
Table 4. Overview of primers used in this study

Primer name	Gene/construct	Application	Primer sequence 5'–3'
Lc-tra_5RACE1	Lc-tra	RACE-PCR	ATTAGAAGAAAGAAGAAGC
Lc-tra_3RACE2	Lc-tra	RACE-PCR	CCAATAATGATCTCCGGTCA
Lc-tra_5RACE1	Lc-tra	RACE-PCR	TGAATACTGGACACCGTGA
Lc-tra_3RACE2	Lc-tra	RACE-PCR	AACATCTGGACGCCTCGA
pGEM-T_F	Lc-tra	Colony PCR	GTAAAAGCGAGCGACAGT
pGEM-T_R	Lc-tra	Colony PCR	GGAACAGCATCACTAGT
Lc-traB_frontF	Lc-traB	RT-PCR	TGAGCAAGAAGAAGAAGC
Lc-traB_endR	Lc-traB	RT-PCR	CAGTCAAGACAGCAGAC
Lc-traB_endR	Lc-traB	RT-PCR	TACTTCTGACTGGATC
Lc-traB	Lc-traB	RT-PCR	GAGACGAAGAAGAAGAAG
Lc-traB	Lc-traB	RT-PCR	CTGGACACTCTGATGCA
Lc-traB	Lc-traB	PCR	GTCCATCATCATGACAGAC
Lc-tra_R	Lc-tra	PCR	AGGCTATTATATATGACG
Y2H_Res_Lc_lacoA_F	Lc-tra	RT-PCR	CATGGAGGGCCGATCTAGAGAGCATCACCTGAGC
Y2H_Res_Lc_lacoA_R	Lc-tra	RT-PCR	GCAGGCGAAGATCCCTAAACTGGTAAAGCAGAGG
Y2H_Res_Lc_lacoB_F	Lc-tra	RT-PCR	CATGGAGGGCCGATCTAGAGAGCATCACCTGAGC
Y2H_Res_Lc_lacoB_R	Lc-tra	RT-PCR	GCAGGCGAAGATCCCTAAACTGGTAAAGCAGAGG
Y2H_Lc_laco2_3RACE2	Lc-tra	RT-PCR	AGATGCTAGGATGACAGAGG
Y2H_Lc_laco2_5RACE2	Lc-tra	RT-PCR	GCAGGCGAAGATCCCTAAACTGGTAAAGCAGAGG
Y2H_Lc_laco2_BamHI_R	Lc-tra	RT-PCR	GCAGGCGAAGATCCCTAAACTGGTAAAGCAGAGG
Y2H_Lc_laco2_Noel_R	Lc-tra	RT-PCR	GCAGGCGAAGATCCCTAAACTGGTAAAGCAGAGG
and inner primer Lc-tra_5RACE2 in a reaction at 94 °C for 3 min, 40 cycles of 94 °C for 30 s, 54 °C for 30 s and 72 °C for 60 s, with a final extension of 10 min at 72 °C.			

Outer primer Lc-tra_3RACE1 and inner primer Lc-tra_3RACE2 were used in 3'RACE-PCR in a reaction with DreamTaq (Fermentas). Cycling conditions were 94 °C for 3 min, 35 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 2 min, with a final extension of 7 min at 72 °C.

All RACE-PCR products were ligated into pGEM-T vector (Promega, Madison, WI, USA) after purification using a GeneJET Gel Purification Kit (Fermentas). Ligation products were used to transform competent JM-109 Escherichia coli (Promega). Colony PCR was conducted by use of pGEM-T primers at 94 °C for 3 min, 40 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 2 min, with a final extension of 7 min at 72 °C.

As the lowered specificity of RACE-PCRs (one gene-specific primer per PCR) rarely permitted the detection of Lc-traB, RT-PCRs were used to detect splice variation in this gene. These PCRs were performed with primers Lc-traB_frontF and Lc-traB_endR in a reaction at 94 °C for 3 min, 40 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 2 min, with a final extension of 7 min at 72 °C.

PCR-fragments were sequenced on an ABI 3730XL (Applied Biosystems, Foster City, CA, USA) and reads were inspected in Chromas (Technelysium, South Brisbane, Australia) and aligned in MEGA7 (Kumar et al., 2016). Exon–intron structure of the genes was constructed by comparing the mRNA sequences to the genomic assembly scaffolds (Lc-tra: scf1780005166575, Lc-tra: scf1780005168428) and visualized with Exon–Intron Graphic Maker (https://wormweb.org/exonintron). Transcript sequences were deposited in GenBank (accession numbers: MG963997–MG964000).

Differential splicing of Lc-tra and Lc-traB in arrhenotokous and thelytokous L. clavipes

RNA extractions of male and female wasps were performed with TriZol (Invitrogen) according to the manufacturer’s protocol. Adult males and females of the
arrhenotokous strain SCA and thelytokous strain KBH were collected from laboratory cultures. RNA extractions were performed as described above.

The presence of sex-specific splice variants of Lc-tra in adults was tested with primers Lcla_trA_spliceA_F and Lcla_trA_spliceB_R. Transcripts of Lc-traB were detected with primers Lcla_spliceB_F and Lcla_spliceB_R. The cycling-conditions were 94 °C for 3 min, 45 cycles of 94 °C for 30 s, 57 °C (tra)/55 °C (traB) for 30 s and 72 °C for 2 min, with a final extension of 7 min at 72 °C. The resulting fragments of each category were sequenced to verify their identity as Lc-tra male- and female-specific splice variants and Lc-traB.

Sequence divergence of Lc-tra and Lc-traB in thelytokous and arrhenotokous individuals

To assess variation in the tra genes between different populations of L. clavipes DNA was individually extracted from five females per strain with a standard high salt protocol (Aljanabi and Martinez, 1997). Population variation was tested with the primer Lcla_trA_F (5'-AGGTCATTATTTACAATGATGG-3') and Lcla_trA_R (5'-AGGTCATTATTTATATCGACGG-3'). Variation was tested with the primer Lcla_trB_R (5'-GTCCATCATTCAGAGACAGAC-3') in combination with Lcla_trA_R. Transcripts of Lc-traB and Lc-traA were amplified with a final extension of 7 min at 72 °C. The resulting fragments of each category were sequenced to verify their identity as Lc-tra male- and female-specific splice variants and Lc-traB.

Table 5. Constructs for Yeast 2-Hybrid assay and primers containing restriction sites

Gene	Primer name	Restriction adapters	Annealing temperature (C)
Lc-tra	Y2H_Res_Lcla_TraA_F	EcoRI (5')	64
	Y2H_Res_Lcla_TraA_R	BamHI (3')	
Lc-traB	Y2H_Res_Lcla_TraB_F	EcoRI (5')	60
	Y2H_Res_Lcla_TraB_R	BamHI (3')	
Lc-tra2	Y2H_Lcla_Tra2_Ndel_F	Ndel (5')	62
	Y2H_Lcla_Tra2_BamHI_R	BamHI (3')	
Nv-tra	Y2H_Res_Nvitra-tra_F	EcoRI (5')	53
	Y2H_Res_Nvitra-tra_R	BamHI (3')	
Nv-tra2	Y2H_Res_Nvitra2_F	EcoRI (5')	56
	Y2H_Res_Nvitra2_R	BamHI (3')	

*Lc, Leptopilina clavipes; Nv, Nasonia vitripennis; tra, transformer; trab, tra paralogue.
and Lcla_spliceB_R. The cycling-conditions were 94 °C for 1 min, 45 cycles of 94 °C for 30s, 55 °C for 30 s and 72 °C for 2 min, with a final extension of 7 min at 72 °C.

Conservation of Lc-tra and Lc-traB

The following sequences were used in alignments and the gene tree: *Ap. mellifera fem* (AA866667) and *csd* (AA866663), *Ap. dorsata fem* (ABV56232) and *csd* (ABW36165), *Ap. cerana fem* (ABV56230) and *csd* (ABV58877), *Bombus terrestris traA* (NP_001267853) and *traB* (XP_003394693). *Bombus impatiens traA* (XP_003493796) and *traB* (XP_003491525), *N. vitripennis tra* (NP_001128299). Ant protein sequences were obtained from Privman et al.’s (2013) supplementary materials. Alignments were produced in CLC WORKBENCH (CLCbio, Aarhus, Denmark).

Identification and sequence variation of Lc-tra2

5'RACE-PCR was performed with outer primer Lcla_tr2_5RACE1 and inner primer Lcla_tr2_5RACE2. The PCR cycles were as follows: 94 °C for 3 min, 40 cycles of 94 °C for 30 s, 60 °C for 30 s and 72 °C for 2 min, with a final extension of 10 min at 72 °C. Outer primer Lcla_tr2_3RACE1 and inner primer Lcla_tr2_3RACE2 were used in 3'RACE-PCR with the same cycling conditions as the 5'RACE-PCR. RT-PCRs to verify and detect further splice variation were performed with primers Lcla_tr2_F1/Lcla_tr2_R1, Lcla_tr2_F2/Lcla_tr2_R2 and Lcla_tr2_F3/Lcla_tr2_R3 under the following conditions: 94 °C for 3 min, 40 cycles of 94 °C for 30 s, 57 °C (primer set1)/53 °C (primer set2)/52 °C (primer set3) for 30 s and 72 °C for 2 min, with a final extension of 10 min at 72 °C. Purification of PCR products, ligation, transformation, colony PCR and sequencing were performed according to the procedures described for Lc-tra identification.

Identification and sequence variation of Lc-tra2

The chosen splice variants of *tra2* (Lc-tra2*α* and *Nv-tra2*) were used to amplify full-length transcripts in RT-PCRs. These primers and corresponding restriction sites are displayed in Table 5 and the primer sequences are given in Table 4. The cycling conditions were 94 °C for 3 min, 45 cycles of 94 °C for 30 s, 53–64 °C for 30 s and 72 °C for 90 s, with a final extension of 7 min at 72 °C. Annealing temperatures per primer pair are shown in Table 4. PCR products were visualized on ethidium-bromide-containing 1.5% agarose gel with 1x TAE buffer and were purified from gel using a GeneJET Gel Extraction Kit (Thermo Fisher Scientific) according to the manufacturer’s protocol.

All PCR products were digested with restriction enzymes (Table 5) using a double digestion. Plasmids pGBK7T7 and pGADT7 (Clontech, Mountain View, CA, USA) were also double digested with both EcoRI/BamHI and *Ndel/BamHI*. Digestion reactions for transcripts Lc-tra, Lc-trab, Nv-tra and Nv-tra2 consisted of: 1 µg cleaned-up PCR product and 1 µg of both plasmids pGBK7T7 and pGADT7, 1 µl EcoRI, 0.5 µl BamHI and 2 µl BamHI buffer; the volume was increased to 20 µl with MilliQ. These reactions were incubated at 37 °C for 16 h, followed by a 20-min incubation at 80 °C. Digestion reactions for transcript Lc-tra2 consisted of: 1 µg cleaned-up PCR product and 1 µg of both plasmids pGBK7T7 and pGADT7, 4 µl *Ndel*, 1 µl BamHI and 2 µl BamHI buffer; the volume was made up to 23.5 µl with MilliQ. These reactions were incubated at 37 °C for 16 h, followed by a 20-min incubation at 80 °C. Digested PCR products were ligated into pGBK7T7 and pGADT7 using T4 DNA Ligase (New England Biolabs, Beverly, MA, USA) to yield both bait and prey vectors containing the genes listed in Table 5. Control plasmids pGBK7T7-53 (murine) and pGBK7T7-1am (human) (Clontech) were included to account for the possibility of false positive detections.

Plasmids containing bait and prey constructs were transformed into competent JM-109 *Escherichia coli* (Promega). Colony PCR was performed using primers: Y2H_T7promotor_F and Y2H_3'DNA-BD_R for pGBK7T7 constructs and Y2H_T7promotor_F and Y2H_3AD_R for pGADT7 constructs. The cycling-conditions were 94 °C for 3 min, 45 cycles of 94 °C for 30 s, 50 °C (AD)/55 °C (BD) for 30 s and 72 °C for 90 s, with a final extension of 7 min at 72 °C. PCR products were sequenced to confirm that no PCR errors were generated and that the protein is fused in-frame with the vector promoter. Plasmids containing the correct genes were isolated from the colonies using a GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific).

pGBK7T7 vectors containing binding domains were introduced into yeast strain AH109, and pGADT7 vectors containing activation domains were introduced into yeast strain Y187 to test for protein interactions.
All experimental procedures were conducted according to the Matchmaker GAL4 Two-Hybrid System 3 manual (Clontech). Protein interactions were identified by observing the growth of transformants on SD-Ade/-His/-Leu/-Trp plates as a result of the transcription of reporter genes (Fig. S2).

Ploidy of arrenhtokous and thelytokous L. clavipes

Ploidy of arrenhtokous males, arrenhtokous females, thelytokous males and thelytokous females was confirmed by flow cytometry analysis. Newly collected arrenhtokous strain CA1 and thelytokous strain LS1 were used in this assay (Table S1). A thin layer of yeast mixture containing 2.5 mg tetracycline per gram of dry yeast was added to agar bottles. Second-instar *D. phalerata* larvae were added to the bottle and parasitized by thelytokous LS1 females. All emerging F1 offspring were still female, but cured of their *Wolbachia* infection. They were hosted on regular bottles containing second-instar *D. phalerata* host larvae for parasitization. The emerging F2 offspring were solely consisted of males. These thelytokous males, their cured thelytokous mothers and nontreated thelytokous females were used to assess ploidy. Adult wasp heads were homogenized in Galbraith buffer (21 mM MgCl₂, 30 mM tri-sodium citrate hydrate, 20 mM MOPS, 0.1% Triton X-100, 1 mg/l RNAse A) using a motorized pestle, filtered by 35-µm cell strainer caps (BD Falcon Cell strainer #352235, BD Biosciences, San Jose, CA, USA) and stained with propidium iodide (Sigma, St Louis, MO, USA). Samples were loaded on a MACSQuant Analyzer (Miltenyi Biotec, Bergisch Gladbach, Germany) and analysed with FLOWLOGIC software (Miltenyi Biotec).

Acknowledgements

We thank Rogier Houwerzijl and Peter Hes for assistance with wasp and fly culturing, Todd Schlenke for supplying the KBH strain, students from the minor Genomics at the University of Applied Sciences Leiden for preparing and sequencing the HiSeq libraries, Mieke Geuverink-Bloemen and Paul Geuverink for collecting the LS1 strain and Anna Rensink for collecting the CA1 strain. This research was funded by Netherlands Organisation for Scientific Research grants no. 854.10.001 and no. 824.15.015 to L.W.B. The authors declare no conflict of interest.

References

Aljanabi, S.M. and Martinez I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. *Nucleic Acids Research*, 25(22), 4692–4693.

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller W., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research*, 25(17), 3389–3402.

Amrein, H., Hedley, M.L. and Maniatis, T. (1994) The role of specific protein-RNA and protein-protein interactions in positive and negative control of pre-mRNA splicing by Transformer 2. *Cell*, 76, 735–746.

Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Beukeboom, L.W. and Perrin, N. (2014) The Evolution of Sex Determination. Oxford: Oxford University Press.

Beukeboom, L.W. and van de Zande, L. (2010) Genetics of sex determination in the haplodiploid wasp *Nasonia vitripennis* (Hymenoptera: Chalcidoidea). *Journal of Genetics*, 89(3), 333–339.

Beye, M., Hasselmann, M., Fondrk, M.K., Page, R.E. and Omholt, S.W. (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. *Cell*, 114, 419–429.

Biémont, C. and Bouletreau, M. (1980) Hybridization and in-breeding effects on genome coadaptation in a haplo-diploid hymenoptera: *Cothonaspis boulardi* (Eucolidae). *Experientia*, 36, 45–47.

Bopp, D., Saccone, G. and Beye, M. (2014) Sex determination in insects: variations on a common theme. *Sexual Development*, 8(1-3), 20–28.

Bronner, I.F., Quail, M.A., Turner, D.J., Swerdlow, H., Bronner, I.F., Quail, M.A. et al. (2014) Improved protocols for illumina sequencing. *Current Protocols in Human Genetics*. 80, 18.2.1–18.2.42.

Burghardt, G., Hediger, M., Siegenthaler, C., Moser, M., Dübendorfer, A. and Bopp, D. (2005) The *transformer2* gene in *Musca domestica* is required for selecting and maintaining the female pathway of development. *Development Genes and Evolution*, 215(4), 165–176.

Concha, C. and Scott, M.J. (2009) Sexual development in *Lucilia cuprina* (Diptera, Calliphoridae) is controlled by the *transformer* gene. *Genetics*, 182, 785–798.

Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, 32, 1792–1797.

Fields, S. and Song, O. (1989) A novel genetic system to detect protein–protein interactions. *Nature*, 340, 245–246.

Geuverink, E. and Beukeboom, L.W. (2014) Phylogenetic distribution and evolutionary dynamics of the sex determination genes *doublesex* and *transformer* in insects. *Sexual Development*, 8, 38–49.

Geuverink, E., Rensink, A.H., Rondeel, I., Beukeboom, L.W., van de Zande, L. and Verhulst, E.C. (2017) Maternal provision of *transformer-2* is required for female development and embryo viability in the wasp *Nasonia vitripennis*. *Insect Biochemistry and Molecular Biology*, 90, 23–33.

Geuverink, E., Verhulst, E.C., van Leussen, M., van de Zande, L. and Beukeboom, L.W. (2018) Maternal provision of non-sex-specific *transformer* messenger RNA in sex determination of the wasp Asobara tabida. *Insect Molecular Biology*, 27, 99–109.

Hasselmann, M., Gempe, T., Schiatt, M., Nunes-Silva, C.G., Otte, M. and Beye, M. (2008a) Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. *Nature*, 454, 519–522.
Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger data - a tool for the inference of phylogenies. *Molecular Biology and Evolution*, 33, 1696–1700.

Hediger, M., Henggeler, C., Meier, N. Perez, R., Saccone, G. and Bopp, D. (2010) Molecular characterization of the key switch F provides a basis for understanding the rapid divergence of the sex-determining pathway in the housefly. *Genetics*, 184, 155–170.

Hedley, M.L. and Maniatis, T. (1991) Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. *Cell*, 65, 579–586.

Heimpel, G.E. and de Boer, J.G. (2008) Sex determination in the cladoceran Alona parasitoid wasp. *Genome Biology and Evolution*, 1, e182.

Jia, L.-Y., Xiao, J.-H., Xiong, T.-L., Niu, L.-M. and Huang, D.-W. (2016) Identification and functional characterization of the sex-determining gene doublesex in the sawfly, *Athalia rosae* (Hymenoptera: Tenthredinidae). *Applied Entomology and Zoology*, 52, 497–509.

Kraaijeveld, K., Franco, P., de Knijff, P., Stouthamer, R. and van Alphen, J.J.M. (2011) Clonal genetic variation in a Wolbachia-infected asexual wasp: horizontal transmission or historical sex? *Molecular Ecology*, 20, 3644–3652.

Kraaijeveld, K., Anvar, Y., Frank, J., Schmitz, A., Bast, J., Wilbrant, J. et al. (2016) Decay of sexual trait genes in an asexual parasitoid wasp. *Genome Biology and Evolution*, evw273.

Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 33, 1870–1874.

Lagos, D., Koukidou, M., Savakis, C. and Komitopoulos, K. (2007) The transformer gene in *Bactrocera oleae*: the genetic switch that determines its sex fate. *Insect Molecular Biology*, 16, 221–230.

Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. *Nature Methods*, 9, 357–359.

Lattorff, H. M.G., Montz, R.F.A. and Fuchs, S. (2005) A single locus determines thylakoid parthenogenesis of laying honeybee workers (*Apis mellifera capensis*). *Heredity*, 94, 533–537.

Liu, G., Wu, Q., Li, J., Zhang, G. and Wan, F. (2015) RNA-mediated knock-down of transformer and transformer 2 to generate male-only progeny in the oriental fruit fly, *Bactrocera dorsalis* (Hendel). *PLoS One*, 10, e0128892.

Martin, I., Ruiz, M.F. and Sánchez, L. (2011) The gene transformer-2 of *Sciara* (Diptera, Nematocera) and its effect on *Drosophila* sexual development. *BMC Developmental Biology*, 11, 19.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A. et al. (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*, 20, 1297–1303.

Mine, S., Sumitani, M., Aoki, F., Hatakeyama, M. and Suzuki, M.G. (2017) Identification and functional characterization of the sex-determining gene doublesex in the sawfly, *Athalia rosae* (Hymenoptera: Tenthredinidae). *Applied Entomology and Zoology*, 52, 497–509.

Nagoshi, R.N. and Baker, B.S. (1990) Regulation of sex-specific RNA splicing at the *Drosophila* doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns. *Genes & Development*, 4, 89–97.

Nagoshi, R.N., McKeown, M., Burtis, K.C., Belote, J.M. and Baker, B.S. (1988) The control of alternative splicing at genes regulating sexual differentiation in *D. melanogaster*. *Cell*, 53, 229–236.

Nissen, I., Müller, M. and Beye, M. (2012) The Am-tra2 gene is an essential regulator of female splice regulation at two levels of the sex determination hierarchy of the honeybee. *Genetics*, 192, 1015–1026.

Niu, B.-L., Meng, Z.-Q., Tao, Y.-Z., Lu, S.-L., Weng, H.-B., He, L.-H. et al. (2005) Cloning and alternative splicing analysis of *Bombyx mori* transformer-2 Gene using Silkworm EST Database. *Acta Biochimica et Biophysica Sinica*, 37, 728–736.

O’Neill, S.L., Hoffmann, A.A. and Werren, J.H. (1997) *Influential Passengers, Inherited Microorganisms and Arthropod Reproduction*. Oxford: Oxford University Press.

Pane, A., Salvemini, M., Delli Bovi, P., Polito, C. and Saccone, G. (2002) The transformer gene in *Ceratitis capitata* provides a genetic basis for selecting and remembering the sexual fate. *Development*, 129, 3715–3725.

Pane, A., de Simone, A., Saccone, G. and Polito, C. (2005) Evolutionary conservation of *Ceratitis capitata* transformer gene function. *Genetics*, 171, 615–624.

Pannebakker, B.A., Pijnacker, L.P., Zwaan, B.J. and van Alphen, J.J.M. (2004b) Genetic diversity and *Wolbachia* infection of the *Drosophila* parasitoid *Leptopilina clavipes* in western Europe. *Molecular Ecology*, 13, 1119–1128.

© 2018 The Authors. *Insect Molecular Biology* published by John Wiley & Sons Ltd on behalf of Royal Entomological Society, 27, 780–795.
Peters, R.S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K. et al. (2017) Evolutionary history of the Hymenoptera. Current Biology, 24, 1586–1591.

Privman, E., Wurm, Y. and Keller, L. (2013) Duplication and concerted evolution in a master sex determiner under balancing selection. Proceedings of the Royal Society B: Biological Sciences, 280, 2012–2968.

Ruiz, M.F., Milano, A., Sala, E., Eirín-López, J.M., Perondini, A.L.P., Selivon, D. et al. (2007) The gene transformer of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects. PloS One, 2, e1239.

Sacccone, G., Sala, E. and Polito, L.C. (2011) The transformer gene of Ceratitis capitata: a paradigm for a conserved epigenetic master regulator of sex determination in insects. Genetica, 139, 99–111.

Salvemini, M., Robertson, M., Aronson, B., Atkinson, P., Polito, L.C. and Sacccone, G. (2009) Ceratitis capitata transformer-2 gene is required to establish and maintain the autoregulation of Cctra, the master gene for female sex determination. The International Journal of Developmental Biology, 53, 109–120.

Salvemini, M., D’Amato, R., Petrella, V., Aceto, S., Nimmo, D., Neira, M. et al. (2013) The orthologue of the fruitfly sex behaviour gene fruitless in the mosquito Aedes aegypti: evolution of genomic organisation and alternative splicing. PLoS One, 8, e48554.

Sandrock, C. and Vorburger, C. (2011) Single-locus recessive inheritance of asexual reproduction in a parasitoid wasp. Current Biology, 21, 433–437.

Sarno, F., Ruiz, M.F., Eirín-López, J.M., Perondini, A.L.P., Selivon, D. and Sánchez, L. (2010) The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects. BMC Evolutionary Biology, 10, 140.

Schatelig, M.F., Milano, A., Sacccone, G. and Handler, A.M. (2012) Male-only progeny in Anastrepha suspensa by RNAi-induced sex reversion of chromosomal females. Insect Biochemistry and Molecular Biology, 42, 51–57.

Schiddo, N.S., Pannebakker, B.A., Zwaan, B.J., Beukeboom, L.W. and van Alphen, J.J.M. (2002) Curing thelytoky in the Drosophila parasitoid Leptopilina clavipes (Hymenoptera: Figitidae). Proceedings of the Section Experimental and Applied Entomology, 13, 93–96.

Schmieder, S., Colinet, D. and Poirié, M. (2012) Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants. Nature Communications, 3, 895.

Shukla, J.N. and Palli, S.R. (2012) Sex determination in beetles: production of all male progeny by parental RNAi knockdown of transformer. Scientific Reports, 2, 602.

Shukla, J.N. and Palli, S.R. (2013) Tribolium castaneum Transformer-2 regulates sex determination and development in both males and females. Insect Biochemistry and Molecular Biology, 43, 1125–1132.

Stouthamer, R. (1997) Wolbachia-induced parthenogenesis. In: O’Neill, S.L., Hoffmann, A.A. and Werren, J.H. (Eds.) In: O’Neill, S.L., Hoffmann, A.A. and Werren, J.H. (Eds.) Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford: Oxford University Press, pp. 102–124.

Tian, M. and Maniatis, T. (1992) Positive control of pre-mRNA splicing in vitro. Science, 256, 237–240.

Tian, M. and Maniatis, T. (1993) A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell, 74, 105–114.

Van Wilgenburg, E., Driesen, G. and Beukeboom, L.W. (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Frontiers in Zoology, 3, 1.

Verhulst, E.C., Beukeboom, L.W. and van de Zande, L. (2010a) Maternal control of haplodiploid sex determination in the wasp Nasonia. Science, 328, 620–623.

Verhulst, E.C., van de Zande, L. and Beukeboom, L.W. (2010b) Insect sex determination: it all evolves around transformer. Current Opinion in Genetics and Development, 20, 376–383.

Werren, J.H., Richards, S., Desjardins, C.A., Niehuis, O., Gadau, J., Colbourne, J.K. et al. (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 327, 343–348.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figure S1. Alignment of female-specific TRA and non-specific TRAB amino acid sequences of strains EJ, PdA, GBW and MGS4 (populations previously described in Kranjček et al., 2011). The HYM and CAM domain are depicted on top of the sequences.

Figure S2. Displayed on the left are pictures of Yeast-2 hybrid matings showing growth on SD-Ade/-His/-Leu/-Trp plates (QDO). Tables summarizing each set of matings are displayed on the right.

Table S1. Strains of L. clavipes used in this study.

Table S2. Protein-protein interactions in the Yeast 2-Hybrid system. Protein-protein interaction was assessed using the Matchmaker Gal4 Two-Hybrid System 3 as provided by Clontech. Sex determination genes constructed in combination with either the binding domain or the activation domain were tested against empty constructs.