Estimation of drug cost avoidance and pathology cost avoidance through participation in NCIC Clinical Trials Group phase III clinical trials in Canada

P.A. Tang MD,* A.E. Hay MB ChB,† C.J. O’Callaghan DVM MSc PhD,‡ N. Mittmann MSc PhD,†‡ C.R. Chambers BSc(Pharm) MBA,* J.L. Pater MD MSc,† and N.B. Leighl MD MSc§

ABSTRACT

Background Cost avoidance occurs when, because of provision of a drug therapy [drug cost avoidance (dca)] or a pathology test [pathology cost avoidance (pca)] during trial participation, health care payers need not pay for standard treatments or testing. The aim of our study was to estimate the total dca and pca for Canadian patients enrolled in relevant phase iii trials conducted by the NCIC Clinical Trials Group.

Methods Phase iii trials that had completed accrual and resulted in dca or pca were identified. The pca was calculated based on the number of patients screened and the test cost. The dca was estimated based on patients randomized, the protocol dosing regimen, drug cost, median dose intensity, and median duration of therapy. Costs are presented in Canadian dollars. No adjustment was made for inflation.

Results From 1999 to 2011, 4 trials (1479 patients) resulted in pca and 17 trials (3195 patients) resulted in dca. The total pca was estimated at $4,194,849, which included testing for KRAS ($141,058), microsatellite instability ($18,600), and 21-gene recurrence score ($4,035,191). The total dca was estimated at $27,952,512, of which targeted therapy constituted 43% (five trials). The combined pca and dca was $32,147,361.

Conclusions Over the study period, trials conducted by the NCIC Clinical Trials Group resulted in total cost avoidance (pca and dca) of approximately $7,518 per patient. Although not all trials lead to cost avoidance, such savings should be taken account when the financial impact of conducting clinical research is being considered.

Key Words Cost avoidance, phase iii trials

INTRODUCTION

Clinical trials play a pivotal role in improving the care of patients with cancer. They evaluate novel diagnostic, therapeutic, and palliative interventions. Cooperative group trials are created in collaboration with academic oncologists in the absence of commercial bias1. Cooperative group trials focus on scholarly questions, with an emphasis on patient-centred outcomes and public health. The conduct of clinical trials has become increasingly complex, leading inevitably to increasing costs.

Per-patient funding is often lower for cooperative group and investigator-initiated trials than for industry-sponsored trials. Because of such differences in per-patient funding, many academic institutions underwrite or limit accrual to cooperative group trials2. Institutional cost recovery for “non-standard-of-care” activities has increased, including but not limited to fees for protocol review by pharmacies, research ethics boards, and laboratories. At the same time, institutional funding for staffing clinical trials units has declined.

In cancer clinical trials, health care payers benefit not only from the academic rewards of disseminating trial...
results in peer-reviewed journals, but also in terms of cost avoidance, which occurs when trial participation leads to provision of a drug therapy [drug cost avoidance (dca)] or a pathology test [pathology cost avoidance (pca)]. Thus, payment for a standard treatment or test is not required. To date, studies evaluating dca have focused on either small geographic areas or short time intervals

The aim of the present study was therefore to estimate the total dca and pca for Canadian patients enrolled in ncic Clinical Trials Group (ncic ctg) phase iii trials over a 13-year period.

METHODS

Phase iii trials that involved systemic therapy and completed accrual during the period of interest (1999–2011) were identified using the ncic ctg Web site (https://www.ctg.queensu.ca/public/Clinical_Trials/clinical_trials.html). Trials were either led or sponsored by the ncic ctg. Eligible trials were defined as those that resulted in dca through the provision of a ncic ctg-supplied drug or pca through ncic ctg funding of a pathology test. Trials that led to registration of novel agents and that randomized patients to placebo or best supportive care were excluded.

To estimate dca, details about drug dosing, schedule, and protocol-specified duration of therapy were extracted from trial protocols (Tables i and ii). If actual drug administration data were not available, those data were estimated based on a body surface area of 1.8 m², a body weight of 70 kg, the published dose intensity, and the median number of cycles (for palliative trials) or the protocol-specified duration. Historical Canadian drug costs were obtained from the Ontario Drug Benefit Formulary for the period during which the trial was conducted. If those costs were unavailable, prices from the Alberta cancer formulary were used. For trials that supplied drugs to the experimental arm, patients randomized to the experimental arm were considered to have avoided the cost of the standard-of-care therapy identified from the protocol. The dca was calculated using the number of Canadian patients randomized to the experimental arm, the median drug administered per patient in the standard arm, and the cost of the standard-of-care therapy. For trials that supplied drugs to the experimental and standard arms, both arms of the trial were considered to have dca. The total dca for the trial was calculated using the number of Canadian patients accrued to the experimental and standard arms, the median drug administered per patient, and the cost of standard-of-care therapy. The mean drug administered was not reported for those trials, hence the use of medians.

The pca was estimated using the cost of the test and the number of patients tested for the trial. The cost of the 21-gene recurrence score for the years of accrual to the mac.12/tailorx trial (2007–2010) was obtained from genomic health (wong n. personal communication). The cost was converted to Canadian dollars using bank of Canada exchange rates for the respective years. The average cost of the assay over the study period was calculated in Canadian dollars, and the pca was obtained by multiplying the average cost of the assay by the number of registered patients. The cost of kras mutation testing for codons 12 and 13 at the university health network molecular diagnostics laboratory and at calgary laboratory services was compared, and the lower cost was used. The cost of microsatellite instability testing by immunohistochemistry was obtained from calgary laboratory services.

The overall dca and pca for Canadian patients on ncic ctg trials was calculated. Some trials provided both dca and pca, and thus total cost avoidance per patient was determined by dividing the sum of the dca and pca by the number of unique patients. All costs are reported in Canadian dollars with no adjustment for inflation.

RESULTS

Cost avoidance occurred in 19 of 117 phase iii clinical trials coordinated by the ncic ctg from 1999 to 2011 (Figure 1). Four trials resulted in pca (three in colorectal cancer and one in breast cancer). Total pca was $4,194,849 for 1479 tests (Table iii). The 21-gene recurrence score from the tailorx trial (nct00310180) accounted for 96% of the pca.

Seventeen trials resulted in dca, with the most common tumour types being breast (n = 6), colorectal (n = 4), and ovarian (n = 2). In eight trials, dca occurred because of sponsor drug provision for the standard arm as well as the experimental arm or arms. Total dca was estimated at $27,952,512 for 3195 patients across seventeen trials ($8,749 per patient, Tables iv and v). Per-patient dca for trials involving non-targeted therapies ranged from $90 to $13,665 (Table iv, figure 2). In comparison, per-patient dca for non-hormonal targeted therapies ranged from $4,290 to $22,588 (Table v, figure 2). Nonhormonal targeted therapy from five trials constituted 43% of the total dca ($11,900,775, Table v).

The combined pca and dca was $32,147,361, for a total cost avoidance per patient of $7,518.

CONCLUSIONS

The ultimate goal of clinical trials is to establish new therapies that improve patient outcomes and quality of life. Although not all trials lead to improvements in patient outcomes, some trials lead to cost avoidance or savings for health care payers. The cumulative cost savings because of provision of drug or pathology tests by the ncic ctg on account of participation in ncic ctg phase iii trials over the study period was $32,147,361. If the participating patients had not been treated on trial, most of those costs would have been borne by the Canadian health care system.

In Canada, decisions about drug funding approval and time to placement of a drug on the provincial formulary show considerable interprovincial variability(19). Payment for drugs not funded by the provincial health care system comes from patients, industry-sponsored drug access programs, and sometimes third-party health insurance payers. For example, the co.20 trial (open to accrual between February 2008 and 2011) provided cetuximab for patients with metastatic colorectal cancer in both the standard and the experimental arms. Provincial approval for, and access to, cetuximab funding ranged from August 2009 in british columbia to April 2011 in newfoundland and labrador. Clearly, the lag in funding approval for the standard of care was bridged in part by participation in clinical trials that supplied the drug. In such cases, dca actually benefits
patients by accelerating access to new therapies and alleviates the burden on the health care system.

The dca from both industry and cooperative oncology trials has previously been described\(^3,6,7\). In an evaluation of 101 trials conducted in Alberta during 1992–1997, median dca per patient ranged from $1,377 to $23,751\(^3\). Across eighty-eight trials conducted in eleven German hospitals, dca was US$2 million during 2002–2005\(^7\). In 2008, a single centre in Taiwan estimated dca to be $3,900 per participant-year, representing a total dca of US$11.2 million\(^6\).

TABLE I Assumptions made in estimating drug cost avoidance for cytotoxic therapies by trial

Trial	Arms\(^a\)	Drug	Dose intensity	Duration of therapy	
MA.27\(^8\)	Anastrozole	X	Anastrozole	62% completed 5 years, remaining 38% assumed to have stayed on treatment for 2.5 years (median time on treatment)	
	Exemestane	X			
MAC.1\(^9\)	CMF×6 or AC×4	X	CMF (n=5) or AC (n=8) (same ratio as full trial population)	100%	Completed all cycles
	Capecitabine				
MAC.4\(^10\)	Tamoxifen	X	Tamoxifen	Of patients randomized to tamoxifen, 21.7% discontinued early	If patients stopped early, they were assumed to have stopped halfway through (2.5 years); the rest of the patients were assumed to have completed 5 years
	Tamoxifen–OFS				
	Exemestane–OFS	X			
MAC.5\(^10\)	Tamoxifen–OFS	X	Tamoxifen	Of patients randomized to tamoxifen, 21.7% discontinued early	If patients stopped early, they were assumed to have stopped halfway through (2.5 years); the rest of the patients were assumed to have completed 5 years
	Exemestane–OFS	X			
MAC.7	Anastrozole	X	Anastrozole	Assumed 100%	Duration of therapy on control arm was used even though duration of therapy was slightly longer on experimental arm
	Anastrozole–fulvestrant	X			
HN.6\(^b\)	Cisplatin plus RT	X	Cisplatin	100%	70% received all 3 doses of cisplatin, 23% received 2 doses, and 7% were assumed to have received 1 dose
	Panitumumarb plus RT	X			
CO.13\(^12\)	IFL	X	Irinotecan	Median of 4 cycles in IFL arm (Goldberg RM. Personal communication)	
	FOLFOX	X			
	IROX	X			
CRC.2\(^13\)	FOLFOX	X	Oxaliplatin	Median dose intensity: to cycle 6, 99.4%; to cycle 12: 76.4%	Finished 12 cycles: 79%
	FOLFOX–ceutiximab	X			
PA.2\(^14\)	FUFA	X	FUFA	79%	4 Cycles
	Gemcitabine	X			
OV.16	Carboplatin–paclitaxel×8	X	Paclitaxel	99.4% (from NCIC CTG)	4 Cycles
	Cisplatin–topotecan×4 and carboplatin–paclitaxel×4	X			
OV.17\(^15\)	Carboplatin–paclitaxel×6	X	Paclitaxel	99%	6 Cycles
	Carboplatin–PLD×6	X			
LY.12	Rituximab–DHAP×2	X	Cytarabine	100% (from NCIC)	2 Cycles
	Rituximab–GDP×2	X			
BRC.3\(^16\)	Cisplatin–etoposide×4	X	Etoposide	78%	67% completed 4 cycles; rest assumed to have completed 2 cycles
	Cisplatin–irinotecan×4	X			

\(^a\) Drugs in boldface type were provided by the trial. Control arm of each trial is listed first.

\(^b\) Extrapolated from Forastiere et al., 2003\(^11\).

CMF = cyclophosphamide–methotrexate–5-fluorouracil; AC = doxorubicin–cyclophosphamide; OFS = ovarian function suppression; RT = radiation therapy; IFL = irinotecan–5–fluorouracil–leucovorin; FOLFOX = oxaliplatin–5–fluorouracil–leucovorin; IROX = irinotecan–oxaliplatin; FUFA = 5–fluorouracil–leucovorin; CTG = Clinical Trials Group; PLD = pegylated liposomal doxorubicin; DHAP = dexamethasone–cytarabine–cisplatin; GDP = gemcitabine–dexamethasone–cisplatin.
Our analysis has several limitations. Cost estimates did not account for inflation, the potential for temporal changes in drug prices, and interregional variability in drug prices. Drug administration data was used when available; however, patient nonadherence was not factored into the estimate. The data were insufficient to provide a range for the actual dca per trial based on factors such as duration of therapy on trial, dose intensity, and (for certain drugs) body surface area. The present work was not a cost-effectiveness analysis, and thus the clinical benefits with respect to patient outcomes and the costs of managing adverse events were not included. Unfortunately, drugs provided through clinical trials can be wasted because of storage temperature excursions, drug expiry dates, and the NCIC CTG policy of prohibiting the sharing of intravenous drug vials between patients. (Standard practice permits sharing.)

Our study did not incorporate the incremental patient care costs associated with clinical trial participation such as extra clinic visits, drug administration, nursing time, and laboratory and radiologic investigations. The Cambridge University Hospitals NHS Foundation Trust evaluated the treatment cost difference for industry and non-industry trial therapies compared with standard-of-care therapy. An overall treatment cost saving of £388,719 in 2009 and £496,556 in 2010 was observed, largely attributable to dca. Access to clinical trials for Medicare patients in the United States has improved since the institution of the Patient Protection and Affordable Care Act. However, details about coverage for the costs associated with clinical trial participation are lacking. The potential for cost avoidance through trial participation should be considered for such patients.

In summary, the present analysis of cost avoidance as associated with NCIC CTG phase III clinical trials demonstrates a wide range of per-patient dca and pca. The estimates are conservative, given that we analyzed only phase III trials.

TABLE II

Trial	Assumptions made in estimating drug cost avoidance for nonhormonal targeted therapies by trial
CO.20	Cetuximab X Cetuximab–brivanib X Cetuximab 239 mg/m² weekly 15.1 Weeks
CRC.5	Chemotherapy plus bevacizumab X Bevacizumab 83% 12 Cycles
MA.31	Taxane plus trastuzumab X Trastuzumab 100% (data from NCIC) 36 Weeks
REC.1	Interferon alfa X Interferon alfa Median dose intensity: 96% in interferon-only arm 4.2 Cycles in interferon-only arm
LY.12	Rituximab–DHAP X Rituximab 100% (data from NCIC) 2 Cycles
LY.12	Rituximab–GDP X Rituximab 100% (data from NCIC) 2 Cycles

Notes:
- Drugs in boldface type were provided by the trial. Control arm of each trial is listed first.
- Chemotherapy was the investigator's choice and consisted of 5-fluorouracil, leucovorin, and either oxaliplatin or irinotecan (FOLFOX or FOLFIRI). Preliminary results from the study were presented in abstract form; no information about the duration of therapy was provided. Extrapolated from Saltz et al., 2008.
- Extrapolated from Escudier et al., 2007.
- DHAP = dexamethasone-cytarabine-cisplatin; GDP = gemcitabine-dexamethasone-cisplatin.

FIGURE 1

Evaluation of trials for cost avoidance.

TABLE III

Pathology cost avoidance by trial
Trial
CO.20
CRC.3
CRC.5
MAC.12
randomizing patients to a standard-of-care arm. Cost avoidance in NCIC CTG phase II studies was not included, nor was avoidance in phase III studies that established a new standard of care that would normally be observed23–25.

Our results echo other cost-avoidance studies evaluating oncology trials performed in Europe, North America, and Asia3–7. The cumulative global impact is unmeasured and could be a focus for future research. Beyond raising the bar for cancer care, some clinical trials provide a financial savings opportunity for the health care system. Those opportunities are yet another reason for health care payers to continue and to improve their support of clinical research.

ACKNOWLEDGMENTS
This study was supported by the Canadian Cancer Society Research Institute (grant no. 021039).

CONFLICT OF INTEREST DISCLOSURES
We have read and understood Current Oncology’s policy on disclosing conflicts of interest, and we declare that we have none.

AUTHOR AFFILIATIONS
*Tom Baker Cancer Centre, University of Calgary, Calgary, AB; 1NCIC Clinical Trials Group, Kingston, ON; 2Health Outcomes and Pharmacoeconomic (HOPE) Research Centre, Sunnybrook Health Sciences Centre, Toronto, ON; 3Princess Margaret Cancer Centre, Toronto, ON.

TABLE IV Drug cost avoidance for non-targeted therapies by trial

Trial	Armsa	Pts (n)b	Drug cost avoidance	Drug	Mean $ per patient	Total $ for trial
MA.27	Anastrozole	640	Anastrozole	7,317	9,519,856	
	Exemestane	661				
MAC.1	CMF or AC	15	CMF or AC	535	6959	
	Capecitabine	13				
MAC.4	Tamoxifen	45	Tamoxifen	569	26,764	
	Tamoxifen plus OFS	41				
	Exemestane plus OFS	47				
MAC.5	Tamoxifen plus OFS	85	Tamoxifen	569	50,111	
	Exemestane plus OFS	88				
MAC.7	Anastrozole	21	Anastrozole	2,005	88,209	
	Anastrozole plus fulvestrant	23				
HN.6	Cisplatin plus RT	160	Cisplatin	90	14,391	
	Panitumumab plus RT	160				
CO.13	IFL	45	Irinotecan	10,565	1,595,249	
	FOLFOX	67				
	IROX	39				
CRC.2	FOLFOX	142	Oxaliplatin	13,665	3,689,425	
	FOLFOX plus cetuximab	128				
PA.2	FUFA	45	FUFA	93	3,993	
	Gemcitabine	43				
OV.16	Carboplatin plus paclitaxel×8	235	Paclitaxel	3,011	710,586	
	Carboplatin–topotecan×4 and carboplatin–paclitaxel×4	236				
OV.17	Carboplatin plus paclitaxel×6	42	Paclitaxel	4,996	169,858	
	Carboplatin plus PLD×6	34				
LY.12	Rituximab plus DHAP	158	Cytarabine	1,088	171,914	
	Rituximab plus GDP	158				
BRC.3	Cisplatin plus etoposide	3	Etoposide	1,106	4,423	
	Cisplatin plus irinotecan	4				

a Drugs in boldface type were provided by the trial. Control arm of each trial is listed first.

b Boldface type indicates arm with cost avoidance.

Pts = patients; CMF = cyclophosphamide–methotrexate–5-fluorouracil; AC = doxorubicin–cyclophosphamide; OFS = ovarian function suppression; RT = radiation therapy; IFL = irinotecan–5-fluorouracil–leucovorin; FOLFOX = oxaliplatin–5-fluorouracil–leucovorin; IROX = irinotecan–oxaliplatin; FUFA = 5-fluorouracil–leucovorin; PLD = pegylated liposomal doxorubicin; DHAP = dexamethasone–cytarabine–cisplatin; GDP = gemcitabine–dexamethasone–cisplatin.
REFERENCES

1. Schilsky RL. Wither the cooperative groups? J Clin Oncol 2014;32:251–4.
2. Seow HY, Whelan P, Levine MN, et al. Funding oncology clinical trials: are cooperative group trials sustainable? J Clin Oncol 2012;30:1456–61.
3. Bredin C, Eliasziw M, Syme R. Drug cost avoidance resulting from cancer clinical trials. Contemp Clin Trials 2010;31:524–9.
4. LaFleur J, Tyler LS, Sharma RR. Economic benefits of investigational drug services at an academic institution. Am J Health Syst Pharm 2004;61:27–32.
5. McDonagh MS, Miller SA, Naden E. Costs and savings of investigational drug services. Am J Health Syst Pharm 2000;57:40–3.
6. Shen LJ, Chou H, Huang CF, Chou GM, Chan WK, Wu FL. Economic benefits of sponsored clinical trials on pharmaceutical expenditures at a medical center in Taiwan. Contemp Clin Trials 2011;32:485–91.
7. Uecke O, Reszka R, Linke J, Steul M, Posselt T. Clinical trials: considerations for researchers and hospital administrators. Health Care Manage Rev 2008;33:103–12.
8. Goss PE, Ingle JN, Pritchard Kl, et al. Exemestane versus anastrozole in postmenopausal women with early breast...
cancer: NCIC CTG MA.27—a randomized controlled phase III trial. *J Clin Oncol* 2013;31:1398–404.

9. Muss HB, Berry DA, Cirrincione CT, et al. Adjuvant chemotherapy in older women with early-stage breast cancer. *N Engl J Med* 2009;360:2055–65. [Erratum in: *N Engl J Med* 2009;361:1714]

10. Francis PA, Regan MM, Fleming GF, et al. on behalf of the text and soft Investigators and the International Breast Cancer Study Group. Adjuvant ovarian suppression in premenopausal breast cancer. *N Engl J Med* 2015;372:436–46.

11. Forastiere AA, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. *N Engl J Med* 2003;349:2091–8.

12. Hillner BE, Schrag D, Sargent DJ, Fuchs CS, Goldberg RM. Cost-effectiveness projections of oxaliplatin and infusional fluorouracil versus irinotecan and bolus fluorouracil in first-line therapy for metastatic colorectal carcinoma. *Cancer* 2005;104:1871–84.

13. Alberts SR, Sargent DJ, Nair S, et al. Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. *JAMA* 2012;307:1383–93.

14. Neoptolemos JP, Stocken DD, Bassi C, et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. *JAMA* 2010;304:1073–81.

15. Pujade-Lauraine E, Wagner U, Aavall-Lundqvist E, et al. Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. *J Clin Oncol* 2010;28:3323–9.

16. Lara PN Jr, Natale R, Crowley J, et al. Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage small-cell lung cancer: clinical and pharmacogenomic results from swog 0124. *J Clin Oncol* 2009;27:2530–5.

17. Siu LL, Shapiro JD, Jonker DJ, et al. Phase III randomized, placebo-controlled study of cetuximab plus brivanib alаниzate versus cetuximab plus placebo in patients with metastatic colorectal carcinoma: the NCIC Clinical Trials Group and AGITG CO.20 trial. *J Clin Oncol* 2013;31:2477–84.

18. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. *J Clin Oncol* 2008;26:2013–19.

19. Escudier B, Pluzanska A, Koralewski P, et al. on behalf of the AVOREN trial investigators. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. *Lancet* 2007;370:2103–11.

20. Ezeife DA, Truong TH, Heng DY, Bourque S, Welch SA, Tang PA. Comparison of oncology drug approval between Health Canada and the US Food and Drug Administration. *Cancer* 2015;121:1688–93.

21. Liniker E, Harrison M, Weaver JM, et al. Treatment costs associated with interventional cancer clinical trials conducted at a single UK institution over 2 years (2009–2010). *Br J Cancer* 2013;109:2051–7.

22. Martin PJ, Davenport-Ennis N, Petrelli NJ, Stewart FM, Appelbaum FR, Benson A 3rd. Responsibility for costs associated with clinical trials. *J Clin Oncol* 2014;32:3357–9.

23. Goss PE, Ingle JN, Martino S, et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. *N Engl J Med* 2003;349:1793–802.

24. Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. *N Engl J Med* 2007;357:2040–8.

25. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. *N Engl J Med* 2005;353:123–32.