Structural Insights into Cellulolytic and Chitinolytic Enzymes Revealing Crucial Residues of Insect β-N-acetyl-D-hexosaminidase

Tian Liu1, Yong Zhou2, Lei Chen1, Wei Chen1, Lin Liu1, Xu Shen3, Wenqing Zhang4, Jianzhen Zhang5, Qing Yang1*

1 School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China, 2 School of Software Technology, Dalian University of Technology, Dalian, China, 3 State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 4 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 5 Research Institute of Applied Biology, Shandong University, Taiyuan, China

Abstract

The chemical similarity of cellulose and chitin supports the idea that their corresponding hydrolytic enzymes would bind β-1,4-linked glucose residues in a similar manner. A structural and mutational analysis was performed for the plant cellulolytic enzyme BGlu1 from *Oryza sativa* and the insect chitinolytic enzyme OffHex1 from *Ostrinia furnacalis*. Although BGlu1 shows little amino-acid sequence or topological similarity with OffHex1, three residues (Trp490, Glu328, Val327) were identified as being conserved in the +1 sugar binding site. OffHex1 Glu328 together with Trp490 was confirmed to be necessary for substrate binding. The mutant E328A exhibited a 8-fold increment in $K_m$ for (GlcNAc)_2 and a 42-fold increment in $K_i$ for TMG-chitotriomycin. A crystal structure of E328A in complex with TMG-chitotriomycin was resolved at 2.5 Å, revealing the obvious conformational changes of the catalytic residues (Glu328 and Asp367) and the absence of the hydrogen bond between E328A and the C3-OH of the +1 sugar. V327G exhibited the same activity as the wild-type, but acquired the ability to efficiently hydrolyse β-1,2-linked GlcNAc in contrast to the wild-type. Thus, Glu328 and Val327 were identified as important for substrate-binding and as glycosidic-bond determinants. A structure-based sequence alignment confirmed the spatial conservation of these three residues in most plant cellulolytic, insect and bacterial chitinolytic enzymes.

Introduction

Cellulose and chitin, both β-1,4-linked linear saccharides composed of glucose (Glc) or N-acetylglucosamine (GlcNAc), respectively, are the two most abundant biomasses distributed in the plant and animal kingdoms, respectively [1,2]. The biodegradation of these saccharides proceeds via the same path, endo-enzymes first degrade higher degree polymerized saccharides into oligosaccharides and then exo-enzymes degrade oligosaccharides into monosaccharides. Cellulase (EC 3.2.1.4) and chitinase (EC 3.2.1.14) are the endo-splitting enzymes, and β-glucosidase (EC 3.2.1.21) and β-N-acetyl-D-hexosaminidase (EC 3.2.1.52) are the exo-splitting enzymes required for cellulose and chitin degradation, respectively [1,2]. The similarity between these two biomolecules hints at a convergent evolution between the degradation enzymes from plants and chitin-containing animals. The recent crystal structural information of exo-splitting enzymes provides evidence of this linkage.

Rice (*Oryza sativa*) β-glucosidase BGlu1 (Os3BGlu1), which exhibits high activity toward cellobiose[6,7], belongs to glycosyl hydrolase family 1 according to the CAZy database [4]. The catalysis proceeds via a double displacement mechanism by which two acidic residues act as nucleophile and acid/base catalyst, respectively [5]. The crystal structure of BGlu1 revealed that BGlu1 possesses a classic β/α8-barrel catalytic domain constituting a substrate binding pocket with subsites for binding both the leaving Glc (-1 subsite) and the other cellobiose[6,7]. The amino acid residues constituting the subsites for binding the cellobiose[6,7] residues, in particular the +1 subsite, are thus determinants for both substrate affinity and specificity. Three residues, Trp358, Ile179 and Tyr131, are found to be crucial for the +1 Glc binding. Trp258 stacks with the +1 Glc through its indolyl group, Ile179 forms a hydrophobic interaction with the +1 Glc through its isopropyl group, and Tyr131 forms a hydrogen bond with the C3-OH of the +1 Glc through its phenolic hydroxyl group [6,7]. In this way, the +1 and -1 sugars are stabilized and exist around a 90° dihedral angle adjacent to each other, yielding a conformation where the glycosidic bond between them becomes more susceptible to attack by the catalytic residues.

The structural alignment reveals that the active pocket architecture of OfHex1 and BGlu1 is very similar although their
overall topology as well as amino acid sequence shares very little similarity [Fig. 1] [8]. Insect OfHex1 from the Asian corn borer (Ostrinia furnacalis) is a β-N-acetyl-D-hexosaminidase specialized for chitin degradation during molting and metamorphosis [9]. This enzyme attracts much attention because of its potential as a species-specific target for developing eco-friendly pesticides [10–15]. OfHex1 shows high activity toward β-1,4-linked chitooligosaccharides but is not able to hydrolyse β-1,2-linked GlcNAc from N-glycans, thus exhibiting very high substrate specificity [9]. According to the CAZy database [4], β-N-acetyl-D-hexosaminidase belongs to family 20, and uses a substrate-assisted double displacement mechanism by which the 2-acetamido group in the substrate GlcNAc, instead of the acidic residue in a β-glucosidase, acts as the nucleophile [16,17]. OfHex1 also contains a -1 subsite and +1 subsite for sugar moiety binding, and the three corresponding amino acid residues found in BGlu1 for binding the +1 GlcNAc are found in OfHex1(Val327, Glu328 and Trp490).

We thus hypothesized that both cellulolytic and chitinolytic enzymes may possess a similar mechanism to increase their affinities and specificities toward physiological substrates. In this study, a comparative structural investigation between BGlu1 and OfHex1 was performed. Although the two enzymes exhibit no similarity in either their overall structure or amino acid composition of their active pockets, crucial conserved residues were discovered by structure-based sequence alignment among cellulolytic and chitinolytic enzymes from different species. The significance of these residues was investigated by site-directed mutagenesis, biochemical characterization and crystal structure analysis. This research may provide a basis for the development of pesticides that are suitable for use in cases where plant protection is a priority.

Materials and Methods

Structure Comparison and Multiple Sequence Alignment

Structure comparison was performed by PyMOL (Schrodinger LLC, Portland, OR) and structural figures were also prepared by PyMOL. Multiple sequence alignments were performed using PROMALS3D [18] and the alignment figure was prepared with ESPript [19].

Preparation of Enzymes

Mutations of OfHex1 (V327G, E328Q and E328A) were made by In-Fusion™ Advantage PCR Cloning Kit (TaKaRa) using the following primers: V327G (forward primer, 5'-GGTGAGCCCC-CATCGGCTCAGCTC-3'; reverse primer, 5'-CGGATG-GGGGCTCAACGCAGTATGTATTTC-3'); E328Q (forward primer: 5'- CAGGCCCCCATGCGGTCAGCTCA-3', reverse primer: 5'- ACCGATGGGGGGCTGACGCAG -3'); E328A (forward primer: 5'- GCGCCCCCATGCGGTCAGCTCA-3', reverse primer: 5'- ACCGATGGGGGGCTGACGCAG -3'); W490A (forward primer: 5'- GCTCGTTTCTCCTTGACGCTCAGCTCA-3', reverse primer: 5'-GCGCCCCCATGCGGTCAGCTCA-3'); L314-335 and L478-496 (pink; TMG-chitotriomycin in green) were used. Full-length PCR products were cloned into the expression vector pPIC9 (Invitrogen). Then the expression vector plasmids were linearized by PmeI (New England Biolabs) and transformed into Pichia Pastoris GS115 cells by electroporation. After growing on a RDB plate at 30°C for 48 h, the positive clones were selected by PCR [20].

The positive clones were cultured in BMGY broth at 30°C for 144 h, and methanol (1% of the total volume) was added every 24 h. Wild-type and mutant OfHex1 were purified from the culture supernatant by ammonium sulfate precipitation (65% saturation), affinity chromatography on a HiTrap™ HP column (5 ml, GE Healthcare) followed by anion exchange chromatography on a Mono Q™ 5/50 GL column (1 ml, GE Healthcare) [20]. The purity of the mutants was analyzed by SDS-PAGE.

The β-N-acetyl-D-hexosaminidase from Streptomyces plicatus (SpHex) was purchased from New England Biolabs. The β-N-acetyl-D-hexosaminidase from Ostrinia furnacalis (OfHex1) is a β-N-acetyl-D-hexosaminidase specialized for chitin degradation during molting and metamorphosis [9]. This enzyme attracts much attention because of its potential as a species-specific target for developing eco-friendly pesticides [10–15]. OfHex1 shows high activity toward β-1,4-linked chitooligosaccharides but is not able to hydrolyse β-1,2-linked GlcNAc from N-glycans, thus exhibiting very high substrate specificity [9]. According to the CAZy database [4], β-N-acetyl-D-hexosaminidase belongs to family 20, and uses a substrate-assisted double displacement mechanism by which the 2-acetamido group in the substrate GlcNAc, instead of the acidic residue in a β-glucosidase, acts as the nucleophile [16,17]. OfHex1 also contains a -1 subsite and +1 subsite for sugar moiety binding, and the three corresponding amino acid residues found in BGlu1 for binding the +1 GlcNAc are found in OfHex1 (Val327, Glu328 and Trp490).

We thus hypothesized that both cellulolytic and chitinolytic enzymes may possess a similar mechanism to increase their affinities and specificities toward physiological substrates. In this study, a comparative structural investigation between BGlu1 and OfHex1 was performed. Although the two enzymes exhibit no similarity in either their overall structure or amino acid composition of their active pockets, crucial conserved residues were discovered by structure-based sequence alignment among cellulolytic and chitinolytic enzymes from different species. The significance of these residues was investigated by site-directed mutagenesis, biochemical characterization and crystal structure analysis. This research may provide a basis for the development of pesticides that are suitable for use in cases where plant protection is a priority.

Materials and Methods

Structure Comparison and Multiple Sequence Alignment

Structure comparison was performed by PyMOL (Schrodinger LLC, Portland, OR) and structural figures were also prepared by PyMOL. Multiple sequence alignments were performed using PROMALS3D [18] and the alignment figure was prepared with ESPript [19].

Preparation of Enzymes

Mutations of OfHex1 (V327G, E328Q and E328A) were made by In-Fusion™ Advantage PCR Cloning Kit (TaKaRa) using the following primers: V327G (forward primer, 5'-GGTGAGCCCCCATCGGCTCAGCTC-3'; reverse primer, 5'-CGGATGGGGGCTCAACGCAGTATGTATTTC-3'); E328Q (forward primer: 5'- CAGGCCCCCATGCGGTCAGCTCA-3', reverse primer: 5'- ACCGATGGGGGCTGACGCAG -3'); E328A (forward primer: 5'- GCGCCCCCATGCGGTCAGCTCA-3', reverse primer: 5'- ACCGATGGGGGCTGACGCAG -3'); W490A (forward primer: 5'- GCTCGTTTCTCCTTGACGCTCAGCTCA-3', reverse primer: 5'-GCGCCCCCATGCGGTCAGCTCA-3'); L314-335 and L478-496 (pink; TMG-chitotriomycin in green) were used. Full-length PCR products were cloned into the expression vector pPIC9 (Invitrogen). Then the expression vector plasmids were linearized by PmeI (New England Biolabs) and transformed into Pichia Pastoris GS115 cells by electroporation. After growing on a RDB plate at 30°C for 48 h, the positive clones were selected by PCR [20].

The positive clones were cultured in BMGY broth at 30°C for 144 h, and methanol (1% of the total volume) was added every 24 h. Wild-type and mutant OfHex1 were purified from the culture supernatant by ammonium sulfate precipitation (65% saturation), affinity chromatography on a HiTrap™ HP column (5 ml, GE Healthcare) followed by anion exchange chromatography on a Mono Q™ 5/50 GL column (1 ml, GE Healthcare) [20]. The purity of the mutants was analyzed by SDS-PAGE.

The β-N-acetyl-D-hexosaminidase from Streptomyces plicatus (SpHex) was purchased from New England Biolabs. The β-N-
Figure 2. Multiple sequence alignment and structure comparison of chitinolytic β-N-acetyl-D-hexosaminidases. (A) Multiple sequence alignments of chitinolytic β-N-acetyl-D-hexosaminidases. They are from Drosophila melanogaster (AAF47881), Fenneropenaeus chinensis (ABB86961), Daphnia pulex (EFX90079), Candida albicans (AAA34346), Arabidopsis thaliana (NP_172050) and Monosiga brevicollis (EDQ91031). The PDB files of OfHex1 (3NSN), SmChb (1QBB) and SpHex (1HP5) were selected as inputted structures. The conserved Val, Glu and Trp residues are shaded. (B) Overlapping of Loop A and Loop B segments of three chitinolytic β-N-acetyl-D-hexosaminidases. They are OfHex1 (3NSN, in blue), SmChb (1QBB, in white) and SpHex (1HP5, in orange). The conserved Val and Trp residues are shown as sticks. The directions of loops are shown by arrows. (C) Crucial Residues of Insect Hexosaminidase
acetyl-D-hexosaminidase from Serratia marcescens (SmChb) was expressed and purified according to the reported method [21].

Enzymatic Assay

The enzymatic properties of wild-type and mutant forms of OfHex1, SmChb and SpHex were determined using GlcNAcβ1,4GlcNAc [GlcNAcβ2, Sigma] and GlcNAcβ1,2Man (Dextra Laboratories).

For the substrate (GlcNAc)2, the reaction mixtures contained 0.04, 0.08, 0.12, 0.16 and 0.2 mM of substrate and an appropriate amount of enzyme in 50 μl of Britton-Robinson’s wide range buffer [pH 7.0 for OfHex1, mutants of OfHex1(V327G, E328A, E328Q and W490A) and SmChb, pH 4.0 for SpHex]. For GlcNAcβ1,2Man, the reaction mixtures contained 0.03, 0.05, 0.1, 0.2 and 0.4 mM of substrate and an appropriate amount of enzyme in 50 μl of Britton-Robinson’s wide range buffer at the same pHs mentioned above. After incubation at 25°C for a specific period, 10 μl of the reaction was immediately analysed using a TSKgel amide-80 column (4.6×250 mm, Tosoh) at 25°C. The reaction velocity was quantified by comparing the peak area of the product GlcNAc to a standard curve of GlcNAc at known concentrations. In both cases, the substrate consumption was limited to less than 10%. The $K_{cat}$ and $k_{cat}$ values were also calculated by linear regression of the data using Lineweaver-Burk plots.

TMG-chitotriomycin was kindly provided by Professor Biao Yu (Institute of Organic Chemistry, Chinese Academy of Science). The inhibitory kinetics of TMG-chitotriomycin for the wild-type and mutant forms of OfHex1, SmChb and SpHex were studied using 4MU-β-GlcNAc (4-methylumbelliflorone-4-acetyl-D-glucosaminide, Sigma) as a substrate [8]. The $K_{i}$ values were calculated by linear regression of the data using Dixon plots.

Crystallization and Data Collection

Mutant OfHex1 (E328A) was incubated with excessive TMG-chitotriomycin (5-fold the amount of protein), and then concentrated to ~7 mg/ml. Vapour diffusion crystallization experiments were set up at 4°C by mixing 1 μl of protein and 1 μl of mother liquor consisting of 100 mM HEPES (pH 7.4), 200 mM MgCl2, and 33% PEG400. Diffraction data of mutant OfHex1 (E328A)-TMG-chitotriomycin complex was collected using an in-house Rigaku Micromax-007 HF (Rigaku Raxis IV++) Image Plate, wavelength 1.5418 Å, at 180 K, and processed using the Crystal Clear software package [22].

Determination and Refinement of Structures

The structure of mutant OfHex1 (E328A)-TMG-chitotriomycin complex was solved by molecular replacement with Molrep [23] using the structure of OfHex1-TMG-chitotriomycin complex (PDB accession number: 3NSS) as the search model. There was one monomer in the asymmetric unit for the structure. Structure refinement was achieved by Refmac5 [24] and CNS [25]. Model building was performed in Coot [26]. The quality of the final model was checked by PROCHECK [27]. All structural figures were prepared by PyMOL.

Results

Structure Comparisons between BGlu1-cellotetraose and OfHex1-TMG-Chitotriomycin

Structural comparisons between BGlu1-cellotetraose (PDB accession number: 3F5J) [7] and OfHex1-TMG-chitotriomycin (PDB accession number: 3NSS) [8] were performed to reveal structural differences and similarities.

BGlu1 is a monomeric enzyme with only one catalytic domain while OfHex1 is a dimeric enzyme with an N-terminal zincin-like domain and a C-terminal catalytic domain in each subunit. Although both BGlu1 and OfHex1 possess non-classical catalytic (β/ω)-barrels, the overall topology of the two enzymes’ catalytic domain is quite different as supported by the fact that the Ca atoms of the catalytic domain of BGlu1 (residues 1 to 476) superimposed on those of OfHex1 (residues 207 to 594) gives a RMSD value of 3.8 Å (based on the overlap of 275 Ca atoms) by a Dali pairwise comparison (Fig. 1A) [28]. In addition, BGlu1 has four distinguished loops (Loop A, residues 25–65; Loop B, residues 177–206; Loop C, residues 314–363; Loop D, residues 387–403) while OfHex1, in accordance with BGlu1, has two corresponding loops including $L_{314–335}$ (residues 314–335) and $L_{478–496}$ (residues 478–496).

Figure 3. HPLC analysis of the enzymatic hydrolysis of (GlcNAc)2 (GlcNAcβ1,4GlcNAc) and GlcNAcβ1,2Man by the V327G mutant of OfHex1. (A) Hydrolysis of (GlcNAc)2 by the V327G mutant of OfHex1. (B) Hydrolysis of GlcNAcβ1,2Man by the V327G mutant of OfHex1. C, control sample; R, reaction sample.

doi:10.1371/journal.pone.0052225.g003
By using the pair-fitting alignment using the atoms in the ring of the -1 sugar (5 carbon atoms and 1 oxygen atom) as fitting pairs, the spatial arrangements of the residues comprising the -1 subsites of BGlu1 and OfHex1 are different. Except for the His130/Asn175/Glu176 in BGlu1 and His303/Asp367/Glu368 in OfHex1 constituting the catalytic residue clusters, only two pairs of residues were found to be spatially conserved and with similar functions. Trp433 in BGlu1 and Trp523 in OfHex1 are located in the bottoms of the -1 subsites and stack with the non-reducing end sugar rings while Glu328 in OfHex1 is positioned in the same location as a water molecule in BGlu1 which intermediates hydrogen bonding formation between the +1 sugar and BGlu1. One may notice that BGlu1 Glu328 also makes a water-mediated hydrogen bond with the C3-OH of the +1 sugar, and is almost close enough to make a direct hydrogen bond (3.4 Å in the 3F5K structure), although it also H-bonds to O4 and O6 of the -1 subite glycosyl residue. However, OfHex1 does not contain such a residue in the active site. Thus, the spatial conservation of the residues Val327/Trp490 in OfHex1 is believed to be functionally important.

**Conservation of Residues in the +1 Subsite among Chitinolytic Enzymes**

Structure-based multiple sequence alignments were performed to determine whether the Val327, Glu328 and Trp490 residues in OfHex1 are spatially conserved at the +1 subsite among all chitinolytic β-N-acetyl-D-hexosaminidasises. The sequences selected for analysis were taken from representative species including: 1) a choanoflagellate (Monosiga brevicollis), a close living relative of animal ancestors [29]; 2) a branchiopod (Daphnia pulex), a close relative of the ancestors of higher crustaceans and insects [30]; 3) a crustacean (Fenneropenaeus chinensis); 4) an insect (Drosophila melanogaster); 5) a fungus (Candida albicans) and 6) a plant (Arabidopsis thaliana). OfHex1 (PDB accession number: 3NSN) and two bacterial β-N-acetyl-D-hexosaminidasises, SmChb from S. marcescens (PDB accession number: 1QBB) [16] and SpHex from S. pilcatu (PDB accession number: 1HPS) [17], were selected as input structures.

The results of the amino acid sequence alignment indicated that, although the length of the loop varies, Trp490 in the loop (L478–496) in OfHex1 is highly conserved in all of the selected chitinolytic β-N-acetyl-D-hexosaminidasises (Fig. 2A, Fig. S2). This demonstrated that the stacking interaction between the +1 sugar and the conserved Trp is vital for the function of the chitinolytic β-N-acetyl-D-hexosaminidasises. Compared to the loop L478–496, the loop L314–335 varies in both length and amino acid composition, a function of the biodiversity of the species chosen for the sequence alignment (Fig. 2A).

The residues in the L314–335, namely Val327 and Glu328 in OfHex1, are also conserved in most β-N-acetyl-D-hexosaminidas-
es (Fig. 2A). Although the enzymes from *S. mancesens* and *D. pulex* possess a Glu instead of Gln, this may be considered a conservative substitution in terms of the similar possibilities for hydrogen bond formation. 

Val327 was replaced by a smaller residue (Ala or Ser) in the *L. denticulata* enzymes from lower species. Moreover, the absence of Val327 in enzymes from lower species 

To study the role of Val327, Gln328 and Trp490 during substrate binding and catalysis, the enzymatic properties of both the wild-type and mutants of OfHex1 were compared using GlcNAc2 as the substrate, the catalytic efficiency after site-directed mutagenesis was determined (Fig. 3A). The *k*<sub>cat</sub>/*K*<sub>m</sub> values of the mutants, V327G, E328Q, E328A and W490A were found to be lower than the wild-type, ranging from 12% (E328Q) to 26% (V327G) (Table 1). The *K*<sub>m</sub> values of V327G, E328Q, E328A and W490A mutants were 1-, 2.5-, 8.6- and 12.7-fold higher, respectively, than that of the wild-type. Based on the *k*<sub>cat</sub>/*K*<sub>m</sub> values, the catalytic efficiencies of the mutants for GlcNAc2 were much lower (from 1.3- to 14.7-fold) than the wild-type. Furthermore, using 4MU-β-GlcNAc as the substrate, the *K*<sub>m</sub> values of TMG-chitotriomycin for the wild-type and mutants V327G, E328Q, E328A and W490A were determined (Table 2). The *K*<sub>m</sub> values for TMG-chitotriomycin toward the mutants, V327G, E328Q, E328A and W490A, were increased by 1.1-, 1.6-, 42- and 2277-fold, respectively, compared to the wild-type. It is worthy to note that the mutation of Glu328 to Ala instead of Gln seriously impaired the ability of OfHex1 to bind the substrate. These results demonstrated that Glu328 and Trp490 but not Val327 are vital for substrate binding.

To better understand the function of Val327, additional substrates were studied. As OfHex1 has evolved to degrade β1,4-glycosidic bonds in linear chitooligosaccharides, it is surprising to observe that the mutation of Val327 to Gly results in OfHex1 having the remarkable capability to hydrolyze the substrate GlcNAcβ1,2Man (Table 1 and Fig. 3B). The catalytic efficiency of V327G will be further explored in the discussion section.

Crystal Structure Analysis of E328A Complexed with TMG-chitotriomycin

To reveal the structural basis behind the biochemical data, crystal structural information is needed. Since we have obtained the structure of OfHex1 V327G mutant previously [12], in this study, the crystallization of E328A in complex with TMG-chitotriomycin was performed and the complex structure was resolved to 2.5 Å. The statistics of data collection and structure refinement are summarized in Table 3. The coordinates were deposited in the Protein Data Bank with accession number 3VTR. The structure showed well defined unbiased map for TMG-chitotriomycin (except GlcNAcIII at the reducing end) and side chains of Asp367 and Glu368 (Fig. 4A).

Structure alignment of the OfHex1-TMG-chitotriomycin complex with the E328A-TMG-chitotriomycin complex was performed using PyMOL. According to the alignment, the mutation of Glu328 to Ala resulted in obvious conformation changes (Fig. 4B). The catalytic residues, Glu358 and Asp367 are rotated about 180° and 90° compared to those in the apo-structure of OfHex1. The rotation of Glu358 led to the collapse of the two important hydrogen bond networks (Asp367-His358-Glu368 and Glu368-H2O [β-Glu368] [8]). In addition, the mutation of Glu328 to Ala increased the volume of the active pocket from 646.8 Å³ to 758.3 Å³ as measured with CASTp [31], suggesting an important role of Glu328 in constructing the active pocket.

### Table 3. Details of data collection and structure refinement.

| Data collection | OfHex1(E328A)-TMG-chitotriomycin |
|-----------------|----------------------------------|
| Space group     | P 3_21                           |
| Cell dimensions |                                  |
| a, b, c (Å)     | 107.9, 107.9, 174.9               |
| α, β, γ (°)     | 90.0, 90.0, 120.0                 |
| Resolution (Å)  | 53.97-2.50 (2.59-2.50)*           |
| R<sub>merge</sub> or R<sub>free</sub> | 0.110 (0.376) |
| No. of reflections (total) | 173,820 |
| No. of reflections (unique) | 41,167 |
| R<sub>merge</sub>/R<sub>free</sub> | 0.214/0.244 |
| No. of atoms    | Protein: 4611, Ligand/ion: 85, Water: 254 |
| β-factors       | protein: 23.0, ligand: 33.3, water: 24.4 |
| Root mean square deviations | Bond lengths (Å): 0.009, Bond angles (°): 1.137 |
| Ramachandran plot | Most favoured (%): 91, Additionally allowed (%): 9 |
| PDB code        | 3VTR                             |

*Values in parentheses are for the highest resolution shell. doi:10.1371/journal.pone.0052225.t003

### Significance of the Residues Conserved in the +1 Subsite

The structural comparison revealed that the direction of the loop (L314-335 of OfHex1 and SmChb) is clockwise while that of SpHex is counter-clockwise (Fig. 2B). Although the primary structures of L314-335 and I470-496 in these enzymes are totally different (Fig. 2A), both Val327 and Trp490 in OfHex1 can be found in SpHex and SmChb (Val326 and Trp496 in SpHex, Val328 and Trp492 in SmChb) (Fig. 2B). For Glu328 in OfHex1, SmChb possesses Glu394 but SpHex does not possess any comparable residues in this position (Fig. 2C). Glu328 in OfHex1 functions through a hydrogen bond with the C3-OH of the +1 sugar GlcNAcβ2 as the substrate, the catalytic efficiency after site-directed mutagenesis was determined (Fig. 3A). The *k*<sub>cat</sub>/*K*<sub>m</sub> values of the mutants, V327G, E328Q, E328A and W490A were found to be lower than the wild-type, ranging from 12% (E328Q) to 26% (V327G) (Table 1). The *K*<sub>m</sub> values of V327G, E328Q, E328A and W490A mutants were 1-, 2.5-, 8.6- and 12.7-fold higher, respectively, than that of the wild-type. Based on the *k*<sub>cat</sub>/*K*<sub>m</sub> values, the catalytic efficiencies of the mutants for GlcNAc2 were much lower (from 1.3- to 14.7-fold) than the wild-type. Furthermore, using 4MU-β-GlcNAc as the substrate, the *K*<sub>m</sub> values of TMG-chitotriomycin for the wild-type and mutants V327G, E328Q, E328A and W490A were determined (Table 2). The *K*<sub>m</sub> values for TMG-chitotriomycin toward the mutants, V327G, E328Q, E328A and W490A, were increased by 1.1-, 1.6-, 42- and 2277-fold, respectively, compared to the wild-type. It is worthy to note that the mutation of Glu328 to Ala instead of Gln seriously impaired the ability of OfHex1 to bind the substrate. These results demonstrated that Glu328 and Trp490 but not Val327 are vital for substrate binding.

To better understand the function of Val327, additional substrates were studied. As OfHex1 has evolved to degrade β1,4-glycosidic bonds in linear chitooligosaccharides, it is surprising to observe that the mutation of Val327 to Gly results in OfHex1 having the remarkable capability to hydrolyze the substrate GlcNAcβ1,2Man (Table 1 and Fig. 3B). The catalytic efficiency of V327G will be further explored in the discussion section.
The conformation of TMG-chitotriomycin, in particular the GlcNAcII moiety, was found to be very different from that observed in the wild-type (Fig. 4C). Although the sugar rings of GlcNAcII in both complexes are in the 1C4 conformation and are superimposable, the C5-hydroxymethyl groups of GlcNAcII orient to different directions.

In addition, the conformation of GlcNAcIII in OfHex1 is 0S2, but the electron density was not clear enough to identify its conformation in OfHex1 (E328A). However, there is no obvious minus peaks found around GlcNAcIII with the current conformation (0O2) in the difference map. Therefore, this unclarity of the electron density map can be considered as the result of the flexibility of GlcNAcIII.

Furthermore, mutation of Glu328 to Ala leads to changes in polar interactions between the wild type and the mutant when complexed with TMG-chitotriomycin (Fig. 4C). The most obvious change is the absence of short polar interaction between Glu328 and the C3-OH of GlcNAcI of TMG-chitotriomycin. Interestingly, a water molecule was found to occupy the position of the side chain of Glu328.

Several other changes in intermolecular polar interactions were also observed in the E328A-TMG-chitotriomycin complex when compared to the wild type (Fig. 4C). Firstly, the distance between the nitrogen atom of the 2-acetamido group (GlcNAcI) and the oxygen atom of the carbonyl group (main chain of Trp490) is increased from 2.8 Å to 3.2 Å. The interaction between the nitrogen atom of the 2-acetamido group (GlcNAcII) and the oxygen atom of the carbonyl group (main chain of Trp490) is missing, but instead, C6-OH of GlcNAcII forms a hydrogen bond with the main chain of Val327.

**Discussion**

Enzymes capable of degrading cellulose and chitin are undoubtedly significant because these saccharides are the two most abundant forms of biomass in nature. Since cellulose and chitin are similar in both their chemical structure and catabolic procedures, it can be deduced that the associated hydrodase would share some commonalities, for example, their substrate binding mechanism or glycosidic bond preference. A structural comparison may provide new clues to uncover the evolutionary divergence of these enzymes between plants and animals as well as provide supporting information for the use of their associated biomass in industrial or medical applications. However, to date, little work has been performed with regard to comparing cellulosyl enzymes with chitinolytic enzymes. Herein, we investigated the structures of a plant cellulosyl enzyme (BGlu1) and an insect chitinolytic enzyme (OfHex1) in an attempt to find their similarities and differences.

A structural comparison revealed that both GH1 BGlu1 and GH20 OfHex1 possess three residues essential for binding the +1 sugar of substrates [6-8]. Site-directed mutagenesis, enzyme kinetics as well as crystal structure determination of OfHex1 revealed that Glu328 and Val327 are both essential residues for determining glycosidic bond specificity and the +1 sugar binding, respectively.

**BGlu1Tyr131 vs. OfHex1Glu328**

Both Tyr131 (BGlu1) and Glu328 (OfHex1) residues form hydrogen bonds with the C3-OH of the +1 sugar. Tyr131 (BGlu1), the residue conserved in most plant cellulolytic β-glucosidases [6,7], interacts with the +1 sugar in BGlu1 via a water molecule. Accordingly, OfHex1 Glu328, the residue conserved or conservatively replaced (e.g., by Gln) in chitinolytic β-N-acetyl-D-hexosaminidases (Fig. 2A), directly interacts with the +1 sugar in OfHex1. Like BGlu1 Tyr131, the conservatively replaced residue, Gln328, in SmChb also interacts with the +1 sugar via a water molecule.

Site-directed mutagenesis indicated the change of Glu328 to Ala impaired OfHex1’s affinity toward the substrate, (GlcNAc)2, by 8-fold and the inhibitory activity of TMG-chitotriomycin by 42-fold (Tables 1 & 2). However, the mutation of Glu328 to Gln only caused a slight impairment in binding (Tables 1 & 2). Thus, we deduced that the impairment is most likely caused by the absence of a strong polar interaction (2.67 Å) between Glu328 and GlcNAcI (Fig. 4C).

Moreover, using (GlcNAc)2 as the substrate, the K_m values of SmChb (with Gln324 corresponding to Glu328 of OfHex1) is in...
accordance with that of E328Q, and the $K_m$ values of SpHex (no residue at the corresponding spatial location) is in accordance with that of E328A (Table 1). These results further confirmed the involvement of Glu$_{328}$ in substrate binding of OfHex1.

Taken together, since all the chitinolytic enzymes including SmChb, SpHex and OfHex1 contain the conserved Val and Trp residues at their +1 sugar binding sites, the difference in their affinities for (GlcNAc)$_2$ is most likely because of the presence of Glu$_{328}$ (in OfHex1). The appearance of a conserved Glu at the +1 sugar binding sites might be the result of positive evolution.

BGLu1 Ile$_{179}$ vs. OfHex1 Val$_{327}$

Both Ile$_{179}$ (BGLu1) and Val$_{327}$ (OfHex1) function at the +1 subsites by sandwiching the +1 sugar together with the residue Trp$_{490}$ (BGLu1) and Trp$_{490}$ (OfHex1), respectively. Sequence alignment indicated that the BGLu1 Ile$_{179}$ is replaced by Val in the plant cellulolytic $\beta$-glucosidase BQG60 from Hordeum vulgare [32–35]. Accordingly, OfHex1 Val$_{327}$ was conserved in most chitinolytic $\beta$-N-acetyl-D-hexosaminidases, although there are several exceptions from A. thaliana, M. brevicollis and D. pulex, the corresponding residue of which is replaced by Ser or Ala.

As indicated by the $K_m$ values for cellobiose, BQG60 has much higher binding affinity at +1 subsite than BGLu1 [32–35]. But the mutation of Ile$_{179}$ to Val does not improve BGLu1’s affinity for cellobiose, indicating Ile$_{179}$ is not essential for the cellobiose binding [6]. Accordingly, mutation of Val$_{327}$ to Gly did not impair OfHex1’s affinity for the substrate [(GlcNAc)$_2$] and the inhibitor (TMG-chitotriomycin) (Tables 1 & 2). These results lead us to believe that OfHex1 Val$_{327}$ may not be so crucial for substrate binding (Fig. 2A).

However, a dramatic conformational change in Val$_{327}$ is observed after OfHex1 binds TMG-chitotriomycin [8], namely the isopropyl group of Val$_{327}$ moves from a vertical position to a parallel position around the indolyl plane of Trp$_{490}$. As a result, the entrance size of the active pocket is enlarged from 7.25 A to 8.26 A. Thus, we assumed that this conformation change may suggest that Val$_{327}$ plays some other essential role.

Based on the $k_{cat}/K_m$ values, although V327G hydrolyses GlcNac$_{\beta,2}$Man 3623-fold slower than (GlcNac)$_2$, it is still 9% faster than StrH. StrH is a bacterial $\beta$-N-acetyl-D-hexosaminidase from Streptococcus pneumoniae that is believed to be able to specifically hydrolyse $\beta$-linked GlcNac substrates [36]. According to the structural comparison of OfHex1 wild-type, V327G and StrH (GH20A-GlcNac$_{\beta,2}$Man complex), OfHex1 has a narrow active site pocket (Fig. S3A) which constrains the +1 GlcNac sugar via hydrophobic and polar interactions with Val$_{327}$, Glu$_{328}$ and Trp$_{490}$ (Fig. 4C). However, StrH (GH20A) has a shallow active site pocket (Fig. S3A) in which the +1 Man is almost solvent exposed [37]. Furthermore, as shown in Fig. S3B, the conformations of both the +1 mannose in the StrH complex and the +1 GlcNac in the OfHex1 complex are $\text{C4}_i$ chairs, but the two superimposed sugar ring is separated by a 35.4$^\circ$ dihedral angle [37]. Thus, if GlcNac$_\beta$1,2Man binds to the active pocket of OfHex1, steric hindrance might be encountered between the C3-OH and C6-OH of the +1 Man and the isopropyl group of Val$_{327}$. This steric hindrance is removed by the mutation of Val$_{327}$ to Gly. Thus, V327G is conferred with the ability to catalyse the hydrolysis of GlcNac$_\beta$1,2Man. On the basis of the above findings, Val$_{327}$ was speculated to have a role in the 1,4 glycosidic bond specificity of chitinolytic $\beta$-N-acetyl-D-hexosaminidases.

In summary, two conserved residues in chitinolytic $\beta$-N-acetyl-D-hexosaminidases with totally different functions were discovered by comparative structural analysis between the insect chitinolytic $\beta$-N-acetyl-D-hexosaminidase OfHex1 and the plant cellulolytic $\beta$-glucosidase BGLu1. OfHex1Glu$_{328}$ is vital for the binding of chitooligosaccharides while OfHex1Val$_{327}$ is responsible for the glycosidic bond specificity. Together with the previously determined role of Trp$_{490}$ in binding chitooligosaccharides, the functions of all the three conserved residues comprising the +1 subsite of chitinolytic $\beta$-N-acetyl-D-hexosaminidases have been revealed.

Supporting Information

Figure S1 Structural comparison of residues comprising the -1 subsites of BGLu1 (A) and OfHex1 (B). The residues with similar spatial locations and functions are underlined.

Figure S2 Sequence alignment of chitinolytic GH20 $\beta$-N-acetyl-D-hexosaminidases.

Figure S3 Structure comparison of wild-type OfHex1, mutant OfHex1 (V327G) and StrH. (A) Comparison of the active-pocket architectures of OfHex1 and StrH. TMG-chitotriomycin and GlcNac$_\beta$1,2Man are shown in green and magenta, respectively. (B) Comparison of OfHex1 (in white) in complex with TMG-chitotriomycin and V327G (in blue) in complex with GlcNac$_\beta$1,2Man (A model obtained by superposition of the -1 sugars of GlcNac$_\beta$1,2Man in StrH complex and TMG-chitotriomycin in OfHex1 complex and superposition of wild-type OfHex1 and V327G).

Acknowledgments

The authors thank Professor Biao Yu (Institute of Organic Chemistry, Chinese Academy of Science) for providing TMG-chitotriomycin.

Author Contributions

Conceived and designed the experiments: TL QY XS. Performed the experiments: TL LG WC LL. Analyzed the data: TL YZ QY WZ, JZ. Wrote the paper: TL QY.

References

1. Beguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44: 219–248.
2. Merzenich H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206: 4393–4412.
3. Opasassi R, Hua Y, Wara-Awashapati O, Akiyama T, Sawai J, et al. (2004) $\beta$-glucosidase, exo-$\beta$-fructanase and pyridoxine transglucosylase activities of rice BGLu1. Biochim J 379: 125–131.
4. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37: D233–238.
5. Kurudat Cairns J, Eson A (2011) $\beta$-Glucosidases. Cell Mol Life Sci 67: 3309–3405.
6. Chuanchaw W, Penghaisong S, Robinson RC, Yuwaniyama J, Oonanant W, et al. (2008) Structural insights into rice BGL1 $\beta$-glucosidase oligosaccharide hydrolysis and transglycosylation. J Mol Biol 377: 1200–1213.
7. Chuanchaw W, Penghaisong S, Robinson RC, Yuwaniyama J, Sawai J, et al. (2011) The structural basis of oligosaccharide binding by rice BGL1 $\beta$-glucosidase. J Struct Biol 173: 169–179.
8. Liu T, Zhang H, Liu F, Wu Q, Shen X, et al. (2011) Structural determinants of insect hexosaminidase specialized as a chitinolytic enzyme. J Biol Chem 286: 4049–4058.
9. Yang Q, Liu T, Liu F, Qu M, Qian X (2008) A novel β-N-acetyl-D-hexosaminidase from the insect Ostrinia furnacalis (Gueneé). FEBS J 275: 5690–5702.

10. Yang Y, Liu T, Wu Q, Yang Q, Yu B (2009) Synthesis, evaluation, and mechanism of N,N,N-trimethyl-D-glucosamine-1,4-chitooligosaccharides as selective inhibitors of glycoyl hydrolase family 20 β-N-acetyl-D-hexosaminidase. Chembiochem 12: 457–467.

11. Usuki H, Yamamoto Y, Kurnagai Y, Nitoda T, Kanzaki H, et al. (2011) MS/MS fragmentation-guided search of TMG-chitooligosaccharides and their structure-activity relationship in specific β-N-acetylglucosaminidase inhibition. Org Biomol Chem 9: 2943–2951.

12. Liu T, Zhang H, Liu F, Chen L, Shen X, et al. (2011) Active-pocket size differentiating insecticidal from bacterial chitinolytic β-N-acetyl-D-hexosaminidases. Biochem J 438: 467–474.

13. Sumida T, Stubbs KA, Ito M, Yokoyama S (2012) Gaining insight into the inhibition of glycoside hydrolase family 20 exo-β-N-acetylhexosaminidases using a structural approach. Org Biomol Chem 10: 2607–2612.

14. Wang Y, Liu T, Yang Q, Li Z, Qian X (2012) A modeling study for structure features of β-N-acetyl-D-hexosaminidase from Ostrinia furnacalis and its novel inhibitor allosamidin: species selectivity and multi-target characteristics. Chem Biol Drug Des 79: 572–582.

15. Liu J, Liu M, Yao Y, Wang J, Li Y, et al. (2012) Identification of novel potential β-N-acetyl-D-hexosaminidase inhibitors by virtual screening, molecular dynamics simulation and MM-PBSA calculations. Int J Mol Sci 13: 4545–4563.

16. Tews I, Perrakis A, Oppeheim A, Duster Z, Wilson KS, et al. (1996) Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat Struct Biol 3: 638–648.

17. Mark BL, Vocadlo DJ, Knapp S, Triggs-Raine BL, Withers SG, et al. (2001) Crystallographic evidence for substrate-assisted catalysis in a bacterial β-N-acetylgalactosaminidase. J Biol Chem 276: 10330–10337.

18. Peru JM, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36: 2295–2300.

19. Guiot P, Robert X, Courcelle E (2009) ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 37: 3520–3523.

20. Liu T, Liu F, Yang Q, Yang J (2009) Expression, purification and characterization of the chitinolytic β-N-acetyl-D-hexosaminidase from the insect Ostrinia furnacalis. Protein Expr Purif 68: 99–103.

21. Tews I, Vincentelli R, Vorgias CE (1996) N-acetylglucosaminidase (chitobiase) from Serratia marcescens: gene sequence, and protein production and purification in Escherichia coli. Gene 170: 63–67.

22. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276: 307–326.

23. Vagin A, Teplyakov A (1997) MOLREP, an automated program for molecular replacement. J Appl Crystallogr 30: 1022–1025.

24. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D Biol Crystallogr 53: 240–255.

25. Brunger AT, Adam PD, Clore GM, DeLano WL, Gros P, et al. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D Biol Crystallogr 54: 903–921.

26. Emley P, Gouet P (2006) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr 62: 2162–2163.

27. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck-a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26: 203–209.

28. Holm L, Rosenstrom P (2010) DALI server: conservation mapping in 3D. Nucleic Acids Res 38: W554–559.

29. King N, Westbrook MJ, Young SL, Kuo A, Abedin M, et al. (2008) The genome of the chironomid Diptera Musca domestica and the origin of metazoa. Nature 451: 783–788.

30. Colbourne JK, Pfenninger ME, Gilbert D, Thomas WK, Tucker A, et al. (2011) The ecoresponsive genome of Daphnia pulex. Science 331: 555–561.

31. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, et al. (2008) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 36: W116–118.

32. Kear K, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed α-glucosidase. J Biol Chem 270: 15789–15797.

33. Hrmova M, Harvey AJ, Fernández GB (1998) Substrate binding and catalytic mechanism of a barley β-D-glucan exohydrolase. J Biol Chem 273: 11134–11143.

34. Hrmova M, Harvey AJ, Fernández GB, Fincher GB (1999) Substrate binding and catalytic mechanism of a barley β-D-glucan exohydrolase. J Biol Chem 274: 5277–5286.

35. Hrmova M, MacGregor EA, Biely P, Seward RJ, Fincher GB (1998) Substrate binding and catalytic mechanism of a barley β-D-glucanase/1,4-alpha-D-glucan exohydrolase. J Biol Chem 273: 11314–11317.

36. Kuntothom T, Luang S, Harvey AJ, Fincher GB, Opassiri R, et al. (2009) Rice family GH1 glycoside hydrolases with β-D-glucosidase and β-D-mannosidase activities. Arch Biochem Biophys 491: 85–95.

37. Jiang YL, Yu WL, Zhang JW, Frolet C, Di Guilmi AM, et al. (2012) Structural characterization of the chitinolytic β-N-acetylgalactosaminidase activity. Purification, characterization, and determination of primary structure from a cDNA clone. J Biol Chem 277: 5277–5286.

38. Hrmova M, Harvey AJ, Fernández GB (2008) Structural characterization of the chitinolytic β-N-acetylgalactosaminidase activity. Purification, characterization, and determination of primary structure from a cDNA clone. J Biol Chem 273: 11314–11317.

39. Pluvinage B, Higgins MA, Abbott DW, Robb C, Dalia AB, et al. (2012) Structural characterization of the chitinolytic β-N-acetylgalactosaminidase activity. Purification, characterization, and determination of primary structure from a cDNA clone. J Biol Chem 273: 11314–11317.

40. Pluninage B, Higgins MA, Abbott DW, Robb C, Dalia AB, et al. (2012) Structural characterization of the chitinolytic β-N-acetylgalactosaminidase activity. Purification, characterization, and determination of primary structure from a cDNA clone. J Biol Chem 273: 11314–11317.