The Impact of Game-Based, Modeling, and Collaborative Learning Methods on the Achievements, Motivations, and Visual Mathematical Literacy Perceptions

Aziz İlhan

Abstract
The present study aimed to investigate the effects of geometry instruction activities conducted in nature based on modeling, game-based, and cooperative learning methods on achievement, mathematical motivation, and visual mathematical literacy perceptions of third-grade elementary school students. The present study is a quantitative study conducted with a pre-test/post-test experimental design with a control group. The study was conducted with 61 students (35 students in the experimental group and 26 students in the control group). Modeling-, game-, and collaborative learning-based activities were conducted with the students in the experimental group. It was determined that the achievements of students who were instructed with modeling-based activities in geometry were high when compared to that of the students instructed with collaborative learning- and game-based methods, and those in the control group where no intervention was applied. This group was followed by the game-based and collaborative learning groups. Based on the variable of motivation, the mean motivation of the students in the modeling group was higher when compared to that of the students in the collaborative learning, game-based, and conventional instruction groups. This group was followed by the collaborative and game-based learning groups. Also, based on the visual mathematical literacy perception variable, the mean visual mathematics literacy perception of the students in the collaborative learning group was higher when compared to that of the students in the groups where the modeling, game-based, and conventional instruction methods were used. This group was followed by the modeling and game-based learning groups.

Keywords
mathema modeling, game-based learning, collaborative learning, geometrical achievement, mathematical motivation, visual mathematical literacy perception

Introduction
Teachers’ use of games in the classroom environment affects the perspectives of the children on the school and mathematics (Turgut & Temur, 2017). One of the objectives of mathematics instruction with games is to improve the love of the students for mathematics and to allow them to develop positive attitudes toward mathematics. Thus, the active participation of the students who are more interested in and love mathematics would be possible, and their achievements could increase (Biriktir, 2008). The games allow the children to acquire mathematical concepts since the attention, interest, and curiosity of the children increase automatically during gameplay (Aksoy & Çiftçi, 2014). When it is considered that the fear of mathematics starts even before the student starts school, integrating mathematics and games, which is the most popular activity for the primary school children, could be an instrument in overcoming this fear (Aksoy, 2010). Games could change the perception of the students that mathematics is difficult and make them feel comfortable during the learning process (Turgut & Temur, 2017). Tilton (2019) stated that game-based learning has a high experiential learning potential that can create constructive or interactive environments. The game provides an environment for the children to communicate. From a social point of view, it is important for children to talk, to get feedback about their questions, and to communicate with their peers and teachers to learn mathematics (Turgut & Temur, 2017). Schlosser and Balzano (2014) also stated that the professional knowledge and skills of teachers who participate in the game-based learning process improved.

1Munzur University, Tunceli, Turkey

Corresponding Author:
Aziz İlhan, Cemîsezkê Vocational School, Munzur University, Tunceli 62000, Turkey.
Email: ailhan@munzur.edu.tr
The elementary school-age children are in the concrete operational stage. Therefore, mainly geometric models and experiences related to their application in life should be instructed in geometry courses (Biriktir, 2008). Models are conceptual systems used to describe, explain, and construct mathematical systems, or to express these using exogenous systems (Lesh & Doer, 2003). Lesh et al. (2006) defined models as conceptual or representative instruments that allow individuals to better understand how they learn, develop, and apply the concepts. Modeling is a complex process that involves several activities (Justi & Gilbert, 2002). Lehrer and Schauble, 2007 referred to the concept of the model as a metaphor that links simply a previously unknown system to a familiar system. Models define our belief in how the world works. In a mathematical model, these beliefs are translated into a mathematical language (Lawson & Marion, 2008). Mathematical modeling can be used for many different reasons. The extent to which a particular target is achieved depends both on the status of the knowledge about the system and how well the model was constructed (Lawson & Marion, 2008). Mathematical modeling provides an alternative and dynamic method that could reduce the gap between mathematics and the real world (Ortiz & Santos, 2011, p. 127). It is important to learn and apply the mathematical modeling process in mathematics education. This means that the words and pictures outside mathematics are not just hollow ornaments. The fact that the involved numbers are true in size and accurate in real life requires to ask real-world questions. It also means which aspects of the real-world facts we consider keeping, and which aspects we would ignore (Consortium for Mathematics and Its Applications, 2012). According to Lehrer and Schauble, 2007, it is the use or co-interpretation of more than one mathematical representation in the process of constructing the mathematical model of an everyday situation. A mathematical model could be considered as a simplification or isolation of a real-world problem or situation in a mathematical form. Then, the mathematical problem could be solved with known mathematical techniques and the solution could be interpreted and transformed into a real-life problem (Ang, 2010; Kertil, 2008).

In collaborative learning, which is one of the instructional methods where the teacher leads and the students actively participate in the teaching-learning processes (Ünlü & Aydintan, 2011), students work in small groups and help each other to learn in the classroom environment for a common goal (Açıkgöz, 2011, p. 172). In other words, collaborative learning is a method where students learn a topic by working together in heterogeneous small groups for a common objective such as solving a problem or accomplishing a task (Akınoglu, 2016, p. 172). Collaborative learning utilizes a sitting order and working mode that maximizes the interaction among the students in small groups (Cumhur & Baydar, 2017). In a collaborative group, participants interact and take mutual responsibility as learners and constructors of knowledge based on their experiences, skills, and relationships (Burress & Peters, 2015). The collaborative learning process allows students to be active in the learning process and facilitates their motivation (Güven, 2015, p. 221). The limitations of collaborative learning are as follows: it may be time-consuming, shy students may not participate in group work, disputes may arise within the group, responsibility may be limited to certain individuals, and target achievements might not be realized if the evaluations are not adequate (Sarıtaş, 2016, p. 188). In collaborative learning, individual tests are provided to all students to assess student achievements. The most successful group with the highest score based on individual achievements is rewarded. Furthermore, the students in the group are rewarded based on their contribution to the total group score (Akınoglu, 2016, p. 170). How the cognitive load of the group is shared in collaborative groups could be determined by asking questions, sharing ideas, and discussing and detailing these ideas (Moore et al., 2019).

One of the requirements for being contemporary lifelong learners is visual literacy (Ev-Çimen & Aygünér, 2018). According to Tekin and Tekin (2004), individuals with visual mathematics literacy could recognize and analyze shape, space, time, and movement-based experiences and the representatives of these concepts using all their senses. Visual mathematics literacy is a concept that combines visual literacy and mathematical literacy and can be considered as an intersection of these literacy clusters (Ev-Çimen & Aygünér, 2018). Visual mathematics literacy perception is defined as the perception, interpretation, evaluation, and utilization of daily life problems visually and spatially and on the contrary, perception, interpretation, evaluation, and utilization of visual or spatial information mathematically (Bekdemir & Duran, 2012). Visual mathematical literacy, in other words, is defined as the process of using intellectual activities in constructing the encountered images with the support of paper, pen, or technology, and using these images for a mathematical discovery or understanding (Çilingir Altın & Artut, 2017). Duran and Bekdemir (2013) stated that the visual mathematics literacy perceptions of the students affect their visual mathematics achievements and motivations. According to Açıkgöz (2003), one of the most important factors that affect success in mathematics education is the motivation level of the students. It is possible to find studies that measured the impact of motivation on mathematical achievement, researched the mathematical motivation or the effect of different instructional methods on motivation or mathematical achievement in the literature (Aktan & Tezci, 2013; İnan & Ünsal, 2017; Tahiroğlu & Çakır, 2014).

Among the reasons why students do not like geometry courses in mathematics, lack of adequate instruction for the characteristics of the course, attitude and behavior of the teacher, and the high number of rules related to the abstract structure of mathematics could be mentioned. The use of student-centered new instruction methods and techniques in mathematics courses could lead to active, permanent, and entertaining learning and increase achievements. Thus, the
students would be more interested in the courses that they are successful at, their motivation to study this course would improve, and their anxiety levels would be reduced. Three instruction methods where the teacher only leads and the learners play an active role are game-based, modeling, and collaborative learning methods. The use of these student-centered instruction methods in the instruction process was considered to increase the interest in the course and student achievement. The mean mathematics scores of the students in these exams are below 20%. It was observed that Turkish students were at lower competency levels in geometry content knowledge based on mathematics competency levels in international exams such as Program for International Student Assessment (PISA, 2015) and Trends in International Mathematics and Science Study (TIMSS). Thus, the achievements of Turkish students are not satisfactory in mathematics and geometry in international examinations as well. Therefore, the present study aimed to investigate the effect of the implementation of three student-oriented instruction methods that are considered to have a more permanent impact on achievement, motivation, and visual mathematics literacy perception. The inclusion of the latter variable in the study was because the concepts of mathematical literacy and visual mathematics literacy perception were included among the skills that the students should acquire according to the National Council of Teachers of Mathematics (NCTM) as of 2000, and these concepts were introduced by the Ministry of Education in 2017 and 2018 mathematics curricula (MoNE, 2018; NCTM, 2000). The fact that the literature review revealed no studies that analyzed achievement, visual mathematics literacy perception, and mathematical motivation based on the above-mentioned three methodologies underlines the unique character of the present study.

Aim of the Study

The study aimed to investigate the effects of geometry instruction activities in nature conducted with modeling, game-based, and collaborative learning methods on geometry achievements, motivation, and visual mathematics literacy perceptions of elementary school students. Based on this general objective, the following sub-objectives were determined.

In the experimental groups where the geometry was instructed with modeling, game-based, and collaborative learning methods, and in the control group where the geometry was instructed with conventional methods detailed in the current curriculum:

1. Is there a significant difference between the pre-test and post-test achievement scores?
2. Is there a significant difference between the post-test achievement scores when the pre-test achievement scores were controlled?
3. Is there a significant difference between the pre-test and post-test motivation scores?
4. Is there a significant difference between the pre-test motivation scores when the post-test motivation scores were controlled?
5. Is there a significant difference between the pre-test and post-test visual mathematics literacy perception scores?
6. Is there a significant difference between the post-test visual mathematics literacy perception scores when the pre-test visual mathematics literacy perception scores were controlled?

Method

Research Model

The study was designed with the quantitative model that aims to collect and analyze numerical data (Büyüköztürk et al., 2016, p. 251). The study was conducted with a pre-test/post-test experimental design with a control group. In real experimental designs, the subjects are assigned to the groups randomly to ensure maximum control of various variables. Due to the control they provide, they are the most frequently recommended and used designs in experimental research in education (Ary et al., 2010, p. 305). The difference between this design and quasi-experimental designs is the use of more than one group (Baştürk, 2009, p. 38). In the pre-test/post-test experimental design with a control group, the experiment and control groups are initially formed by random assignment. Then, the measurements for the dependent variables are conducted for the groups before the application. The experimental process of which effect is tested in the application process is conducted only with the experimental group or groups. Finally, the measurements for the dependent variables are conducted again for the subjects in the groups using the same instrument or a similar form (Büyüköztürk et al., 2016, p. 205). In the present study, the independent variable was the three instruction methods conducted within the context of geometry activities performed in nature, and the dependent variables were the Geometry Achievement Test (GAT), Mathematical Motivation Scale (MMS), and the Visual Mathematical Literacy Perception Scale (VMLPS) scores.

Study Group

The present study group included third-grade students attending three public primary schools located at a lower socio-economic area in Southeast Anatolian Region in Turkey during the 2018–2019 academic year spring semester. After meetings were conducted with the Provincial Directorate of National Education, three primary schools were randomly determined. As a result of the meetings conducted with the principals and classroom teachers in selected schools, 35 third-grade students were randomly assigned to the experimental group and 26 students were randomly
assigned to the control group where the instruction method indicated in the current curriculum was implemented. The students in the experimental group were then randomly selected for the modeling (Experiment A = 11), collaborative (Experiment B = 12), and game-based learning (Experiment C = 12) groups. The application processes for geometry instruction activities conducted in the experimental and control groups are presented in Table 1.

As seen in Table 1, GAT, MMS, and VMLPS were applied as the present to the students in the experimental and control groups before the activities. Then, game-based geometry activities were conducted in the Experiment A group, modeling based geometry activities were conducted in the Experiment B group, and collaborative learning-based geometry activities were conducted in the Experiment C group. In the control group, the instruction method indicated in the current curriculum was implemented. In the mathematics curriculum published by MoNE (2018), 22 classes were allocated for 10 achievements in the third-grade fifth unit of the geometry learning area. Thus, the activities in each experimental group were conducted for 24 hr in 6 days. After the activities were conducted, GAT, MMS, and VMLPS were applied as a post-test to the experimental and control groups.

Data Collection Instruments

GAT. This test was developed by the authors to examine the change in geometry achievements due to the geometry instruction activities conducted with the students in nature. The draft test was developed based on the third-grade mathematics curriculum and the textbook published by the MoNE (2018) Board of Education and included 30 multiple-choice questions based on 10 geometry learning achievements. There were three questions for each achievement in the draft test. The views of four academicians and three classroom teachers, who were experts in the fields of mathematics education, geometry, measurement, and evaluation, were obtained to determine the functionality and content validity of the test. Based on these achievements, the required editing was conducted based on expert opinions. The draft test was applied to 256 third-grade students who were not included in the project. After the pilot scheme, the test items were analyzed based on the responses, and the difficulty level and discrimination indices for each item were calculated and the test that included 20 questions was finalized. Furthermore, the KR-20 reliability coefficient was calculated as .779. This test was applied as a pre-test and post-test to the students in the experimental and control groups as part of the project activities.

MMS. The objective of the scale developed by Aktan and Tezci (2013) based on the section related to motivation in the Motivated Strategies for Learning Questionnaire (MSLQ) scale developed by Pintrich et al. (1993) is to determine the mathematical motivation of primary school students. The lowest possible score is 27, and the highest possible score is 135 on the 5-point Likert-type scale. Items are scored as “Strongly disagree” (1), “Disagree” (2), “Neutral” (3), “Agree” (4), and “Strongly agree” (5). Scale items were grouped under the six factors of “Intrinsic Goal Orientation,” “Extrinsic Goal Orientation,” “topic value and task value,” “learning beliefs,” “self-efficacy,” and “test anxiety.” Certain scale items include the following: “I would like to learn the topics I like in the mathematics course although they might be difficult,” “I like to learn the topics I like in the mathematics course,” and “I feel distressed and uncomfortable in math exams.” The Cronbach alpha reliability coefficient for the scale was .910. The scale was considered highly reliable since this value was larger than .80 (Kayış, 2005, p. 405).

VMLPS. The objective of the scale, developed by the authors for this project, is to determine the visual math literacy perceptions of primary school students. The draft scale was developed based on the third-grade mathematics curriculum published by the MoNE (2018) Board of Education and included 44 items based on the 10 geometry learning achievements. Each achievement was reflected in four to five items on the draft scale. The views of four academicians and three classroom teachers, who were experts in the fields of mathematics education, geometry, measurement, and evaluation, were obtained to determine the functionality and content validity of the scale. Based on these achievements, the required editing was conducted based on expert opinions. The draft scale was applied to 256 third-grade students who were not included in the project. The lowest possible score is
scores, and the findings are presented in tables. The activities were analyzed based on the GAT, MMS, and VMLPS groups, and the differences between the experimental method pre-test and post-test scores in the experimental and control groups were analyzed with related samples test, the significance of the differences between the pre-test and post-test scores in the experimental and control groups were analyzed with related samples t-test, the significance of the differences between the groups was determined with analysis of covariance (ANCOVA), and the group that showed significant benefits was determined with the Bonferroni test. The test results demonstrated GAT \(p = .213 \), MMS \(p = .288 \), and VMLPS \(p = .199 \) in the form of applications \(p > .05 \) and exhibited a normal distribution. The differences between the pre-test and post-test scores in the experimental and control groups were analyzed with related samples t-test, the significance of the differences between the groups was determined with analysis of covariance (ANCOVA), and the group that showed significant benefits was determined with the Bonferroni test. The test results demonstrated GAT \(p = .213 \), MMS \(p = .288 \), and VMLPS \(p = .199 \) in the form of applications \(p > .05 \) and exhibited a normal distribution. The differences between the pre-test and post-test scores in the experimental and control groups were analyzed with related samples t-test, the significance of the differences between the groups was determined with analysis of covariance (ANCOVA), and the group that showed significant benefits was determined with the Bonferroni test (Büyüköztürk et al., 2016). Thus, the differences between the pre-test and post-test scores in the experimental and control groups, and the differences between the experimental methods, were analyzed based on the GAT, MMS, and VMLPS scores, and the findings are presented in tables.

Data Analysis

The data obtained with GAT, MMS, and VMLPS applied to the students in the study were analyzed with the SPSS 23.0 software. Büyükoztürk (2016, pp. 42–49) stated that the Shapiro–Wilk test could be employed to determine normality. Thus, the Shapiro–Wilk test was preferred to determine the normal distribution of the data. The test results demonstrated GAT \(p = .213 \), MMS \(p = .288 \), and VMLPS \(p = .199 \) in the form of applications \(p > .05 \) and exhibited a normal distribution. The differences between the pre-test and post-test scores in the experimental and control groups were analyzed with related samples t-test, the significance of the differences between the groups was determined with analysis of covariance (ANCOVA), and the group that showed significant benefits was determined with the Bonferroni test (Büyüköztürk et al., 2016). Thus, the differences between the pre-test and post-test scores in the experimental and control groups, and the differences between the experimental methods, were analyzed based on the GAT, MMS, and VMLPS scores, and the findings are presented in tables.

Application Process

Preparations. During the preparatory phase, project experts were appointed as mentors for each instructor (mentee). Mentors conducted mentorship training meetings with mentees and developed syllabi and course materials. The daily syllabi were developed by the mentees under the guidance of the mentors and based on the activities developed by the authors before the experimental process so that the syllabi would include 24 course-hours in 6 days of instruction for each group. All daily syllabi for the experimental group were developed based on the objectives, content, and evaluation procedures defined in MoNE (2018) mathematics curriculum, only the methods used in the instruction process differed. Attention was paid to the fact that the spaces where the activities were conducted were similar in all groups. The process of syllabi development in the experimental groups is described below.

Development and application of Experiment A group syllabus. The group that was instructed with the game-based learning method included the activities that were developed by the experts in the project team and conducted in nature and historical spaces. Mentorship training was provided for the mentees on the instruction process based on game-based learning. During the activities conducted in this group, the instruction processes conducted with game-based learning that were reported in the literature were implemented. The structure of game-based learning includes knowledge patterns specific to the subject area that help learners to develop their skills. In addition to the capacity of the game-based learning environments to provide students with an opportunity to spend a good time, it could also teach and reinforce through the activities during gameplay. On the other hand, the use of educational games in education makes the instruction process interesting and entertaining by removing the boring environment of the conventional classroom (Akın & Atçu, 2015). Thus, the activities for the first day were conducted in the Başur recreational area. Students were allowed to trek to find geometric concepts they learned in nature. During the observations conducted in nature, the photographs of the objects that were examples of patterns, squares, rectangles, and triangles were taken. The photographs taken in the nature trek were viewed at the campsite and the students were provided with the necessary feedback. During the activity, the game of cube bowling was played with students. The aim of the cube bowling game was the comprehension of the corners, sides, and number of surfaces in geometric shapes and instruction of similarities and differences between these shapes. The second-day activities were conducted at Gökçebağ Primary School. Students were allowed to take a walk on the school grounds to find geometric concepts they learned about. During the observations, the photographs of objects that were samples of points, lines, beams, and straight-line sections were taken. The educator played games with students at the playground and instructed the concepts of points, lines, beams, and straight-line sections with groups of six, five, and four students. The students then moved to the preselected field to plant seedlings. In this field, using the rope drawn to plant the seedlings on a straight line, the students were allowed to find samples of lines, beams, and straight lines. Students planted the seedlings. The third-day activities were conducted in Hasankeyf and the groups of students visited the historical Hasankeyf bridge and bazaar, Hasankeyf Mosque, the caves, which were ancient settlements, hexagonal nomad tents produced with goat hair and Hasankeyf promenade terrace, and geometrical shapes found in the natural and historical places were observed by the students, and the target achievements were acquired by the students through games. The fourth-day activities were conducted in the Başur recreational area. A field survey was conducted in the recreational area and the students were asked to take photographs of regular and non-regular geometric objects in the environment. In the course of
the activity, the photographs were discussed, and the best examples were selected. With the tower bowling game, the angle of the arm to the body was emphasized and angles and angle types were instructed. Fifth-day activities were conducted in Tillo, and the historic tomb of His Holiness Ibrahim Hakkı, the Great Mosque, and the Tillo Museum were visited. During these visits, the light phenomenon that was designed by His Holiness Ibrahim Hakkı for His Holiness Ismail Fakirullah was explained to the students. Furthermore, the students also observed the geometric models in historical venues and the museum. The tower that is the home of the light phenomenon was visited and the photograph printouts of square, rectangular, and triangular areas and a game developed by the students were put on a canvas and their knowledge on the number of sides and corners of geometric shapes was reinforced. The sixth-day activities were conducted in His Holiness Veyes Karani complex. The students observed the geometric shapes in the complex. The students were gathered by the instructor in an adequate area in the garden of the complex and the game of symmetry was played with the students. During this game, a symmetrical line and the symmetry model were created and the students acquired the required achievements.

Development and application of Experiment B group syllabus.

The group that was instructed with the model-based learning method included the activities that were developed by the experts in the project team and conducted in nature and historical spaces. Mentorship training was provided for the mentees on the instruction process with modeling-based learning. During the activities conducted in this group, the instruction processes conducted with modeling-based learning that were reported in the literature were implemented. The mathematical modeling process commences with a real-life situation. To obtain the real model, the case is simplified to construct the mathematical model. During this period, thoughts generate mathematical results that should be reinterpreted for real-life situations. Then, the accuracy of the results is checked (Kaiser & Schwarz, 2006). Developing models in mathematical modeling activities leads to a shared and reusable model (Doruk, 2010). Thus, the first-day activities were conducted in the Başur recreation area, where students discovered the nature and built a geometric nature model using the geometric models they observed in nature. On the second day, tree-planting activities were conducted at Gokcebag Primary School garden and the students examined and discussed the geometric models available in nature and created during tree planting and tried to learn these models. The third-day activities were conducted in Hasankeyf and the groups of students visited the historical Hasankeyf bridge and bazaar, Hasankeyf Mosque, ancient settlements in the caves, hexagonal nomad tents produced with goat hair and Hasankeyf promenade terrace, and geometrical models found in nature and historical places were investigated by the students. The fourth-day activities were conducted in the Başur recreation area and the natural geometry model was completed during the nature walks. Furthermore, angle models were drawn on soil, students formed geometric models using the material they found in nature such as branches, and so on. The Fifth-day activities were conducted in Tillo, and the historic tomb of His Holiness Ibrahim Hakkı, the Great Mosque, and the Tillo Museum were visited. During these visits, the light phenomenon that was designed by His Holiness Ibrahim Hakkı for His Holiness Ismail Fakirullah was explained to the students. The geometric models found in this phenomenon were identified. Furthermore, students observed geometric models found in historical spaces and the museum. The tower that is the home of the light phenomenon was visited and the activity was completed with a re-discussion of the geometric models. The sixth-day activities were conducted in His Holiness Vveys Karani complex. The students observed the geometric models in the complex. The students were gathered by the instructor in an adequate area in the garden of the complex and a symmetrical line and symmetrical model were developed with the students. Symmetrical models and other geometric models identified by the students in the complex were discussed.

Development and application of Experiment C group syllabus.

The group that was instructed with the collaborative learning method included the activities that were developed by the experts in the project team and conducted in nature and historical spaces. Mentorship training was provided for the mentees on the instruction process with collaborative learning. The learning processes in this group were conducted with the collaborative learning method student team achievement group technique. The reason for the use of this technique was the fact that it is more successful in the retention of mathematical knowledge when compared with other collaborative techniques and it is one of the most frequently used techniques (Arsoy & Tarim, 2013). The student team success group technique developed by Slavin (1994) has five application stages. These are the presentation, teams, exams, individual improvement scores, and team prizes. Information about the application process of this technique was adopted from the books authored by Slavin (1994) and Açikgöz (1992). Thus, the first-day activities were conducted in the Başur recreation area. The students conducted the activities in three groups of four. The students in the groups walked around the recreation area with their instructors. They were asked to observe the prism and cylinder-like objects such as tree logs, trash cans, bridges, and so on they saw in the environment while walking. After the groups reviewed and evaluated the materials that they identified, the group spokespersons shared these with their peers to ensure the learning of each student. Then, geometric shapes similar to the related material were created using various objects found in nature and hanged on the geometry tree. For the patterns, the groups took another walk in nature, and the collected leaves were arranged based on a certain
pattern. Patterns that included at least three steps were produced with leaves and stones by the groups. The second-day activities were conducted at Gökçebağ Elementary School garden. After each group built a fishing line model with tree branches, they provided examples for horizontal, vertical, and oblique lines, which are included in the achievements, using these fishing lines. In which previously dig holes the seedlings will be planted was determined by the groups and their instructors. The necessary steps to plant the seedlings were explained by the instructors and saplings were planted by four students from each group. The group spokespersons explained to the group after the seedlings were planted that the rope they used to measure the distance between two seedlings was a straight line and the seedling itself was a beam model. The third-day activities were conducted in Hasankeyf and the groups of students visited the historical Hasankeyf bridge and bazaar, Hasankeyf Mosque, the caves, which were ancient settlements, hexagonal nomad tents produced with goat hair and Hasankeyf promenade terrace, and geometrical shapes found in nature and historical places were observed by the students. The fourth-day activities were conducted in the Başur recreation area. The first student group took pictures of triangle-like objects during the trip; the second group collected square and rectangular-shaped materials; and the third group prepared the point, line, and straight-line models using stones and tree branches. The groups produced angle models with their instructors using the geometrical board and tree branches. The Fifth-day activities were conducted in Tillo, and the historic tomb of His Holiness Ibrahim Hakki, the Great Mosque, and the Tillo Museum were visited. During these visits, the light phenomenon that was designed by His Holiness Ibrahim Hakki for His Holiness Ismail Fakirullah was explained to the students. Furthermore, the students also observed geometric models in historical venues and the museum. The tower that is the home of the light phenomenon was visited and activities were conducted with student groups in that location. Members of each group were asked to fold a broadband, the sheet was unfolded a little to drop a few drops of ink, and the paper was folded again and left for a while and then unfolded. The resulting shapes were compared, and the groups discussed whether they were symmetrical. Using straws and reeds, awareness on the concepts of square, rectangular, and triangular areas has been established. The sixth-day activities were conducted in His Holiness Veynse Karani complex. The students observed the geometric shapes in the complex. The students were gathered by the instructor in an adequate area in the garden of the complex and the activity was conducted using worksheets.

Development and application of the control group syllabus. The control group students were instructed based on the syllabi developed by the teachers in the schools where the sample was selected and instructed. The syllabi developed by the teachers were reviewed by the project experts and an attempt was made to control the external variables by providing adequate feedback.

Application of the pre-tests. The study data collection instruments, GAT, MMS, and VMLPS, were applied by the authors at the beginning of the experimental process as a pre-test 1 day apart.

Experimental process. Experimental procedures were conducted by the project instructors based on the above-mentioned syllabi in the experiment and control groups. The photographs of the experiments are presented in Figure 1.

Application of the post-tests. GAT, MMS, and VMLPS that were applied as pre-test were applied by the authors after the experimental process as a post-test 1 day apart.

Findings

In this section, the findings related to the impact of activities conducted with the game-based, modeling, collaborative, and conventional instructional methods on geometry achievements, mathematical motivations, and visual mathematics literacy perceptions of the students are presented, respectively. Initially, the effect of the game-based, modeling, collaborative, and conventional instruction activities on geometry achievement was investigated and whether there was a significant difference between mean pre-test and post-test scores was analyzed with related samples t-test. The findings are presented in Table 2.

As seen in Table 2, there was no significant difference between the mean pre-test achievement score and mean post-test score of the students in the Experiment A group, $t(11) = 1.60, p > .05$. The effect size was not calculated since the difference was not significant. However, there was a significant difference between the mean pre-test and mean post-test achievement scores of the students in the Experiment B group favoring the mean pre-test score, $t(10) = 2.36, p < .05$. Thus, the effect size was calculated to determine the significance of this difference. In scientific research, the effect size calculated with paired samples t-test provides information about the size of the analyzed variance and is calculated with the ratio of the t-value calculated in the test to the square root of the number of individuals in the sample. The effect size is considered small if it is between 0.20 and 0.50, moderate between 0.50 and 0.80, and high if it is equal to or greater than 0.80 (Green & Salkind, 2008, p. 165). Thus, the calculated effect size ($d = 0.71$) indicated that the difference was moderate. There was a significant difference between the mean pre-test and mean post-test achievement scores of the students in the Experiment C group favoring the mean post-test score, $t(11) = 4.98, p < .05$. The calculated effect size ($d = 1.44$) indicated that the difference was high. In the study, the difference between the mean pre-test and post-test geometric achievement scores of the students in the control...
group, where conventional instruction method was implemented, was analyzed and a significant difference was determined in favor of the mean post-test score, $t(25) = 4.66, p < .05$. The calculated effect size ($d = 0.91$) demonstrated that the corresponding difference was high. It was stated that one of the most adequate statistical methods to determine the impact of the experimental process between the groups in the pre-test/post-test empirical designs with the control group was the single-factor ANCOVA where the pre-test is controlled as a covariate (Büyüköztürk et al., 2016, p. 124). In the ANCOVA conducted in the present study, pre-test geometric achievement scores that were effective on the
post-tests were included in the analysis as the covariate. Thus, the adjusted post-test scores when the group pre-test scores were controlled are presented in Table 3.

As seen in Table 3, adjusted mean post-test scores were calculated for the game-based learning group (Adj. M = 17.12), modeling group (17.55), collaborative learning group (16.71), and the control group (16.39). The significance of the difference between the adjusted group scores was analyzed with ANCOVA. The findings are presented in Table 4.

Table 4 demonstrates that there was a significant difference between the mean post-test scores adjusted by controlling the pre-test geometry achievement scores of the groups where the three instruction methods were implemented, $F(3, 53) = 2.95, p < .05$. The results of the Bonferroni test applied to determine the difference between the groups demonstrated that the mean geometric achievement score of the students in the modeling group was higher when compared with the mean geometric achievement scores of the students in the collaborative, game-based, and conventional instruction groups. This group was followed by the experiment groups of the game-based learning group and the cooperative learning group. Second, the effects of activities conducted with the game-based, modeling, collaborative, and conventional instruction approaches on the mathematical motivation of the students were determined in the study, and whether there was a significant difference between the pre-test and post-test mean motivation scores of the students was analyzed with related samples t-test. The findings are presented in Table 5.

Table 5 demonstrates that there was no significant difference between the mean pre-test and mean post-test motivation scores of the students in the Experiment A group, $t(11) = 0.84, p > .05$. The effect size was not calculated since the difference was not significant. There was a statistically significant difference between the mean pre-test and post-test motivation scores of the students in the Experiment B group, $t(10) = 3.19, p < .05$, favoring the mean post-test score. The calculated effect size ($d = 0.99$) indicated that the difference was high. There was a significant difference between the mean pre-test and post-test motivation scores of the students in the control group, where the conventional instruction method was implemented, was
analyzed and it was found that there was no significant difference between the mean motivation scores, \(t(25) = -0.72, p > .05 \). The effect size was not calculated since this difference was not significant. In the ANCOVA conducted in the study, the pre-test motivation scores, which were effective on the post-tests were included as a covariate. Thus, the adjusted post-test scores when the group pre-test scores were controlled are presented in Table 6.

Based on Table 6, adjusted mean post-test scores were calculated for the game-based learning group \((\text{Adj. } M = 4.07) \), modeling group \((4.52) \), collaborative learning group \((4.46) \), and the control group \((3.24) \). The significance of the difference between the adjusted group scores was analyzed with ANCOVA. The findings are presented in Table 7.

Table 7 demonstrated that there was a significant difference between the mean post-test group scores adjusted by controlling the motivation pre-test scores of the groups where the three instruction methods were implemented, \(F(3, 53) = 4.35, p < .05 \). The Bonferroni test conducted to determine the difference between the groups demonstrated that the mean motivation score of the students in the modeling group was higher when compared with the mean motivation score of the students in the collaborative, game-based, and conventional instruction method groups. This group was followed by experimental collaborative learning and game-based learning groups, respectively. Finally, the effects of the activities conducted with the game-based, modeling, collaborative, and conventional instruction approaches on the visual mathematics literacy perception of the students were determined and analyzed with related samples \(t \)-test to determine whether there was a significant difference between the mean pre-test and post-test scores. The findings are presented in Table 8.

Table 8 demonstrates that there was no significant difference between mean pre-test and post-test visual mathematics literacy perception scores of the students in Experiment A group, \(t(11) = -0.05, p > .05 \). The effect size was not calculated since the difference was not significant. However, there was a statistically significant difference between the mean pre-test and post-test visual mathematics literacy perception scores of the students in Experiment B group favoring the mean post-test score, \(t(10) = 3.41, p < .05 \). Thus, the effect size was calculated to determine the significance of the difference. The calculated effect size \((d = 1.07) \) demonstrated that the difference was high. There was a significant difference between the mean pre-test and post-test visual mathematics literacy perception scores of the students in the Experiment C group favoring the mean post-test score, \(t(11) = 9.09, p < .05 \). The calculated effect size \((d = 2.62) \) indicated that the difference was high. In the study, the difference between mean pre-test and post-test visual mathematics literacy perception scores of the students in the control group, where the conventional instruction method was implemented, was analyzed and it was found that there was no significant difference between the mean scores, \(t(25) = -0.72, p > .05 \). The effect size was not calculated since this difference was not significant. In the ANCOVA conducted in the study, the pre-test visual mathematics literacy perception scores, which were effective on the post-tests, were included as a covariate. Thus, the adjusted post-test scores when the group pre-test scores were controlled are presented in Table 9.

Based on Table 9, adjusted mean post-test scores were calculated for the game-based learning group \((\text{Adj. } M = 2.53) \), modeling group \((2.79) \), collaborative learning group

Table 5. Mathematical Motivation Scale: Pre-test and Post-test Scores and t-Test Results.

Groups	Test	N	M	Standard deviation	df	t	p
Experiment A (game-based learning)	Pre-test	12	4.20	0.60		0.84	.41
	Post-test	12	4.70	0.59		3.19	.01
Experiment B (modeling based learning)	Pre-test	11	4.14	0.41	10	7.14	.00
	Post-test	11	4.52	0.28		11	
Experiment C (collaborative learning)	Pre-test	12	4.38	0.28			
	Post-test	12	4.46	0.40			
Control (conventional learning)	Pre-test	26	3.13	0.87	25	-0.72	.48
	Post-test	26	3.24	0.82			

Table 6. Group Adjusted Post-test Scores.

Applications	N	M	Standard deviation	Adj. M
Experiment A (game-based learning)	12	4.70	0.59	4.07
Experiment B (modeling based learning)	11	4.52	0.28	4.52
Experiment C (collaborative learning)	12	4.46	0.40	4.46
Control (conventional learning)	26	3.24	0.82	3.24
Ilhan

Table 7. Group Mathematical Motivation Scale: Post-test Score and ANCOVA Results.

Source of the variance	Sum of squares	df	Mean of squares	F	p
Pre-test	3.37	1	3.37	3.70	.01
Group	1.09	3	0.36	4.35	.00
Error	4.44	53	0.08		
Total	961.14	61			

Table 8. Visual Mathematical Literacy Perception Scale: Pre-test Post-test Scores and t-Test Results.

Groups	Test	N	M	Standard deviation	df	t	p
Experiment A (game-based learning)	Pre-test 12	2.80	0.25	11	-0.05	.95	
	Post-test 12	2.81	0.43				
Experiment B (modeling based learning)	Pre-test 11	2.45	0.26	10	3.41	.00	
	Post-test 11	2.79	0.21				
Experiment C (collaborative learning)	Pre-test 12	2.52	0.32	11	9.09	.00	
	Post-test 12	3.55	0.69				
Control (conventional learning)	Pre-test 26	2.51	0.25	25	0.63	.54	
	Post-test 26	2.58	0.22				

Table 9. Group Adjusted Post-test Scores.

Applications	N	M	Standard deviation	Adj. M
Experiment A (game-based learning)	12	2.81	0.43	2.53
Experiment B (modeling based learning)	11	2.79	0.21	2.79
Experiment C (collaborative learning)	12	3.55	0.69	2.80
Control (conventional learning)	26	2.58	0.22	2.52

Table 10. Group Visual Mathematical Literacy Perception Scale: Post-test Score and ANCOVA Results.

Source of the variance	Sum of squares	df	Mean of squares	F	p
Pre-test	0.18	1	0.06	0.314	.00
Group	0.29	3	0.09	1.059	.00
Error	4.93	53	0.09		
Total	427.928	61			

(2.80), and the control group (2.52). The significance of the difference between the adjusted group scores was analyzed with ANCOVA. The findings are presented in Table 10.

Table 10 demonstrates that there was a significant difference between the mean post-test group scores adjusted by controlling the visual mathematics literacy perception pre-test scores of the groups where the three instruction methods were implemented, $F(3, 53) = 0.31, p < .05$. The Bonferroni test conducted to determine the difference between the groups demonstrated that the mean mathematics literacy perception score of the students in the collaborative learning group was higher when compared with the mean motivation score of the students in the modeling, game-based, and conventional instruction method groups. This group was followed by the experimental modeling and game-based learning groups, respectively.

Conclusion, Discussion, and Recommendation

In this study, the difference between the pre-test and post-test geometry achievement scores of all the experimental groups and the control group was analyzed and it was observed that there were significant differences between the pre-test and post-test achievement scores of modeling, collaborative, and control groups except the game-based learning group. In other words, while student achievements did not exhibit any significant difference at the end of the instruction process.
conducted with the game-based learning method, the impact of the modeling, collaborative, and conventional instruction models on achievement was significant. This could be due to the fact that the activities carried out in the instruction process had a positive impact on achievement. There are studies in the literature which determined that the mathematics or geometry achievements increased based on the instruction methods. In an experimental study conducted by Çoban et al. (2016), it was found that modeling-based instruction did not lead to a significant improvement in metacognitive awareness of eighth-grade students in the secondary school; however, it exhibited a significant improvement favoring the experimental group in conceptual comprehension. There was a significant difference between the mathematics course academic achievements (in the unit “there is no mathematics without geometry”) of the students in the experiment group where collaborative learning was implemented and the control group where conventional instruction techniques were used favoring the experimental group in a study by Şahin et al. (2017). Thus, they concluded that the inclusion of collaborative learning in the instruction process increased student achievements. İşik and Çelik (2017) found that the collaborative learning method significantly improved the academic achievements of students when compared with the conventional instruction method among seventh-grade students in four operations with rational numbers topic. In a study on the instruction of decimal fractions to fourth-grade students conducted by Özdoğan (2008), it was determined that collaborative learning improved the attitudes and academic achievements of the students. Jacobs et al. (1996) found that collaborative learning methods were more beneficial when compared with traditional learning methods in increasing the academic achievements of third-, fourth-, and fifth-grade students in the mathematics course. In a study conducted by Altunay (2004) with fifth-grade students, it was found that game-assisted geometry instruction in the experimental group improved the mathematics achievements of the students more when compared with the conventional instruction method implemented in the control group.

Following the analysis of the pre-test and post-test geometry achievement scores in the study, the geometry achievement scores of the experimental and control groups were analyzed within the groups to determine which instruction method was more effective on achievement. The analyses demonstrated that the mean geometry achievements of the students in the modeling group were higher when compared with the mean achievement scores of the students in the collaborative, game-based, and conventional instruction groups. This group was followed by the experimental game-based learning group and the collaborative learning group. This could be due to the raised awareness of the students about the natural models at the end of the instruction. Furthermore, students could have prioritized group achievements in a collaborative learning environment. It could also be due to the focus of the students on the games in game-based learning. A literature review revealed studies with consistent results with the above-mentioned finding. Ünal-Çoban and Ergin (2013) found that the modeling-based education did not lead to a significant difference in students’ understanding of scientific knowledge quantitatively and the improvement of the students who were instructed with modeling-based learning was better when the development of the students was observed qualitatively within the groups. In a study by Bilgin (2004), it was determined that the achievements of the students in the group where the course was instructed with collaborative learning method student teams achievement section technique were significantly higher in the mathematics course (polygons topics) when compared with the control group. Chianson et al. (2010) found that students who were instructed with the collaborative learning method learned geometrical concepts better when compared with the students who were instructed with conventional learning methods. In the literature, certain studies argued that collaborative learning had no effect on achievement. Kenneth and Young (1999) found that collaborative learning did not have a significant impact on the academic achievements of pre-service teachers. Similarly, Akbayır (2017) determined that there was no significant difference between the academic achievements of the ninth-grade students in the topic of clusters when they are instructed with the collaborative learning method and the conventional method. Certain studies in the literature reported that game-based learning improved student achievement. In a meta-analysis conducted by Turgut and Temur (2017) on the effect of the game-assisted mathematics instruction in Turkey on mathematics achievement, 31 studies were included. The study findings demonstrated that games in mathematics instruction had a moderate and positive effect on mathematics achievement. In a study, Durgut (2016) determined that the academic achievement of the students in the group where educational math games were used was higher when compared with the student group where the conventional instruction method was used. Vankus (2008) reported that the attitudes of 12-year-old students, who were instructed with didactic games, toward mathematics instruction exhibited a more positive development when compared with the groups of students who were not instructed with didactic games. It was also stated that certain educational games provided a good opportunity for students to improve their communication and argumentation skills, and social and reasoning abilities. Başün and Doğan (2018) reported that students had positive views on the use of game-based instruction method in acquisition of the achievements in middle school sixth-grade factors sub-learning area.

Second, the difference between the pre-test and post-test mathematics motivation scores of the experimental group and control group was analyzed, and it was determined that there was a difference between the pre-test and post-test scores of the modeling and collaborative learning groups. In other words, while mathematics motivation of the students did not exhibit a significant difference with the
implementation of the game-based and conventional instruction methods, their motivation significantly increased with the application of modeling and collaborative instruction methods. This could be due to the fact that the instructional activities conducted in nature positively affected student motivation. The literature review also demonstrated that certain studies reported that instruction processes conducted with these instruction methods increased mathematical motivation. In a study by Urhan and Dost (2016), teachers considered that modeling activities contributed to mathematics instruction, and students could associate daily-life topics more easily with mathematical modeling, which could in turn increase student motivation. Tobias (1992) investigated the reasons for the negative attitudes of the students toward the instruction process and stated that this was due to their lack of interest and motivation in the course, pacifism, and emphasis on grade competition instead of collaboration. However, there are also studies in the literature which claimed that collaborative learning reduced motivation. Klein and Schnackenberg (2000) investigated the effects of informal collaborative learning on achievement, participation motivation, attitude, and communication. The study determined that the participants who used individual strategies learned in the course better than the users of informal collaborative strategies and were highly motivated to work alone. Shachar and Fischer (2004) reported that group research, a collaborative learning technique, was associated with a decrease in student motivation. Certain studies reported that game-based learning increased motivation. Bakar et al. (2008) found that students liked educational game environments and that using such a supplementary environment increased their motivation in the course. Kebritchi et al. (2010) and Lopez-Morteo and Lopez (2007) reported that the use of educational games in mathematics instruction increased motivation in their studies. Van-Eck (2006) stated that games were motivating.

After the analysis of the pre-test and post-test motivation scores in the study, in-group motivation scores for the experimental and control groups were analyzed to determine which instruction method was more effective on motivation when compared with the others. The analyses demonstrated that the mean motivation score of the students in the modeling group was higher when compared with the mean motivation scores of the students in collaborative, game-based, and conventional learning groups. This group was followed by the collaborative learning and the game-based learning groups, respectively. This could be due to the fact of the common achievement in cooperative learning or game-based activities. Also, models may have provided students with convenience and increased motivation. The literature review revealed that there were other studies with consistent findings. In a study conducted by Kal (2013), it was determined that the use of mathematical modeling activities in the instruction process increased the motivation and interest of the students. Ören-Vural et al. (2013) stated that the relationship established between daily life and mathematics through modeling activities improved the motivation of students in mathematics. Hancock (2004) studied the effects of peer-based learning using collaborative learning strategies on the achievements and motivation of the students and concluded that highly focused students were more motivated in learning when compared with those with lower motivation. In a study by Veenman et al. (2005), it was stated that the use of motivational resources in the mathematics course instructed with the collaborative learning method in the study group affected the students’ attitudes positively when compared with the control group. Bayırtepe and Tüzün (2007) stated that games increased the level of motivation among the learners, their interest in the topic, self-confidence that they can learn, their comfort, and motivation among the students. Vankus (2008) observed that students in the groups where instructional games were played were motivated for active participation in mathematics courses where instructional games were integrated. Baccus (2004) found that teachers’ attitudes, beliefs, and instructional methods they used were significantly correlated with the motivation of students. Partovi and Razavi (2019) and Sung et al. (2012) reported that game-based learning had positive effects on academic achievement and motivation in primary school students.

Finally, the difference between the pre-test and post-test visual mathematics literacy perception scores of the experiment and control groups were analyzed and it was determined that there was a difference between the pre-test and post-test scores of modeling and collaborative learning groups. In other words, at the end of the instruction process conducted with game-based learning and conventional instruction method, visual mathematics literacy perceptions of the students did not exhibit any significant difference; however, the instruction processes conducted with modeling and collaborative instruction methods resulted in significant increases. This could be due to the fact that nature activities increased the level of perception in the instructional process and resulting development in literacy. In the literature review, it was observed that certain studies revealed that the visual mathematics literacy perception or mathematics literacy increased as a result of the instruction processes conducted with these instruction methods. Biembengut (2006) indicated that it was not difficult to plan activities for primary school children that would enable them to understand mathematical relations and use mathematical language or literacy, and mathematical modeling can contribute to the development of important skills in individuals and these concepts. Tekdal and Sönmez (2018) stated that the collaborative learning method, which is one of the modern learning methods, could be used effectively in literacy classes. Çakerer (2017) stated that to support language development or literacy skills, language-related material should be placed in an area where the child normally prefers to play, and they could develop language skills by playing games with these materials.
After the analysis of the pre-test and post-test visual mathematics literacy perception scores in the study, in-group visual mathematics literacy perception scores for the experimental and control groups were analyzed to determine which instruction method was more effective on visual mathematics literacy perception when compared with the others. The analysis results demonstrated that the students in the collaborative learning group exhibited a higher mean visual mathematical literacy perception score when compared with that of the students in the modeling, game-based, and conventional instruction method groups. This group was followed by the modeling and game-based learning groups, respectively. This could be due to the fact that verbal communication improved literacy or models improved perception in the cooperative learning process. The literature review revealed that there were other studies with consistent findings. In a study by Erol (2015) conducted with the ninth-grade students, it was determined that there was an increase in mathematical literacy levels of the study group students where modeling activities were conducted when compared with the control group where conventional instruction method was implemented. In their study, Swan et al. (2006) stated that modeling developed students’ ability to use mathematical language and their capacity to ask questions and respond. In a study by Tekdal and Şömez (2018), it was found that literacy instruction with collaborative learning was more effective when compared with the conventional learning method. In a study by Uyanık (2013), it was noted that the skills of effective language use could be acquired with game activities in preschool mathematics education. Based on the study findings, the following recommendations were made for researchers in the field of mathematics instruction and related fields:

1. The achievements, motivation, and visual mathematics literacy perception levels of the students could be improved by emphasizing the methods discussed in the present study or other student-oriented instruction methods in the instruction process;
2. Further analyses could be conducted by comparing other student-oriented instruction methods that are used in instruction processes;
3. Longitudinal or cross-sectional comparisons could be conducted on student-oriented instruction methods based on different sample groups;
4. Variables that are different from the ones used in the present study could be analyzed when comparing student- or teacher-oriented instruction methods to contribute to the field of mathematics instruction.

Acknowledgments

We thank everyone who participated in this study.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) as project. The Project number was 118B500.

ORCID iD

Aziz İlhan https://orcid.org/0000-0001-7049-5756

References

Açıkgöz, K. Ü. (1992). Collaborative learning: Theory, research, and application. Ugurel Publishing.

Açıkgöz, K. Ü. (2003). Efficient learning and instruction. Education Word Publishing.

Açıkgöz, K. Ü. (2011). Active learning. Biliş Publishing.

Akın, F. A., & Ateş, B. (2015). The effect of game-based learning environments on student success and opinions. *Turkish Journal of Educational Studies*, 2(2), 75–102.

Akın, F. A., & Ateş, B. (2014). Game in early childhood. Pegem Academy Publishing.

Akbayır, K. (2017). The effectiveness of the mathematics course of the 9th grade school teaching method of cooperative learning in teaching the “cluster.” *Turkish Studies Educational Science*, 12(17), 1–14.

Aksos, A. B., & Çiftçi, H. D. (2014). Game in early childhood. Pegem Academy Publishing.

Aksos, N. C. (2010). The effects of game-supported mathematics learning unit of fractions for developments of 6th grade students? Achievement, achievement motivation, self-efficacy and attitude [Published master thesis]. Institute of Education Sciences, Gazi University.

Aktan, S., & Tezci, E. (2013). The mathematical motivation scale (MMS) study of reliability and validity. *The Journal of Academic Social Science Studies*, 6(4), 57–77.

Altunay, D. (2004). The study of mathematics teaching which is supported with games on the students’ success and the permanence of the knowledge learned [Published master thesis]. Institute of Education Sciences, Gazi University.

Ang, K. C. (2010, December 17–21). *Teaching and learning mathematical modelling with technology* [Paper presentation]. The 15th Asian Technology Conference in Mathematics, Le Meridien, Kuala Lumpur.

Arisoy, B., & Tarım, K. (2013). The effects of cooperative learning on students’ academic achievement, retention and social skill levels. *Hacettepe University Journal of Education*, 28(3), 1–14.

Ary, D., Jacobs, L. C., Sorensen, C., & Razavieh, A. (2010). *Introduction to research in education* (8th ed.). Cengage Learning Publishing.
Baccus, A. A. (2004). Urban fourth and fifth grade teachers’ reading instruction and efficacy beliefs: Relationships to reading instruction and to students’ attitudes and efficacy beliefs [Published doctoral thesis]. Faculty of the Graduate School, University of Maryland.

Bakar, A., Tüzün, H., & Çığıltay, K. (2008). Students’ opinions of educational computer game utilization: A social studies course case. Hacettepe University Journal of Education, 33(1), 27–37.

Baştürk, R. (2009). Experiment models. In A. Tanrıöğen (Ed.), Scientific research methods (pp. 29–54). Ami Publishing.

Başınen, A. R., & Doğan, M. (2018). Multipliers and multiple student learning negotiations on learning in the lower learning field. Journal of Social Sciences, 5(19), 482–491.

Bayrntepe, E., & Tüzün, H. (2007). The effects of game-based learning environments on students’ achievement and self-efficacy in a computer course. Hacettepe University Journal of Education, 33(1), 41–54.

Bekdemir, M., & Duran, M. (2012). Development of a visual math literacy self-efficacy perception scale (VMLSEPS) for elementary students. Ondokuz Mayis University Journal of Faculty of Education, 31(1), 89–115.

Biembengut, S. (2006). Modelling and applications in primary education. In P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 451–456). Springer.

Bilgin, T. (2004). The use of student teams’ success sections technique in elementary school seventh grade mathematics (on polygons) and application results. Uludag University Faculty of Education Journal, 17(1), 19–28.

Birikitr, A. (2008). The effect of the game method on achievement in teaching mathematics lesson geometry subjects in fifth grade of primary school [Published master’s thesis]. Institute of Educational Sciences, Selçuk University.

Burress, M. D., & Peters, J. M. (2015). Collaborative learning in a Japanese language course: Student and teacher experiences. SAGE Open. https://doi.org/10.1177/2158244015581016

Büyüköztürk, Ş. (2016). Manual of data analysis for social sciences. Pegem Academy Publishing.

Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2016). Scientific research methods (21st ed.). Pegem Academy Publishing.

Cakırer, B. H. (2017). Travel to the realm of knowledge in the adventure of learning: Game-based instruction programs. In E. Aktaç Acar (Ed.), Early childhood education mosaic (pp. 387–426). Nobel Publishing.

Chianson, M. M., Kurumeh, M. S., & Obida, J. A. (2010). Effect of cooperative learning strategy on students’ retention in circle geometry in secondary schools in Benue State, Nigeria. American Journal of Scientific and Industrial Research, 2(1), 33–36.

Cumhur, F., & Elmas-Baydar, H. (2017). The effect of cooperative learning method in the teaching of GCD-LCM. Kastamonu Education Journal, 25(5), 1663–1680.

Çilingir Altuner, E., & Artut, P. D. (2017). The effect of instruction based realistic mathematics education on elementary students’ achievement, visual mathematic literacy and problem solving attitude. Marmara University Atatürk Faculty of Education Journal of Educational Sciences, 46(46), 1–19.

Çoban, G. Ü., Sağlam, M. K., & Solmaz, G. (2016). The effect of model based teaching on metacognitive awareness, attitudes and conceptual understanding. West Anatolia Journal of Educational Sciences, 7(13), 61–104.

Consortium for Mathematics and Its Applications. (2012). Mathematical modeling handbook. https://www.comap.com/

Doruk, B. K. (2010). The effects of mathematical modeling on transferring mathematics into daily life [Published doctoral thesis]. Institute of Educational Sciences, Hacettepe University.

Duran, M., & Bekdemir, M. (2013). Evaluation of visual math literacy self-efficacy perception with visual mathematics accomplishment. Pegem Journal of Education and Instruction, 3(3), 27–40.

Erol, M. (2015). The effects of mathematical modeling activities on 9th grade students’ mathematical literacy and belief [Published doctoral thesis]. Institute of Sciences, Balıkesir University.

Ev-Cimen, E., & Aygünener, E. (2018). An analysis of eight grade students’ self-efficacy perception of visual mathematics literacy and their actual performance. Elementary Education Online, 17(2), 675–696.

Green, S. B., & Salkind, N. J. (2008). Using SPSS for Windows and Macintosh: Analyzing and understanding data (5th ed.). Pearson.

Güven, M. (2015). Instruction learning process. In B. Duman (Ed.), Instruction principles and methods (pp. 154–261). Ami Publishing.

Hancock, D. (2004). Cooperative learning and peer orientation effects on motivation and achievement. Journal of Educational Research, 97(3), 159–166.

İnam, A., & Ünsal, H. (2017). Evaluation of the effect of teaching web-based applications of maths subject on 5th grade students’ performance and motivation through student’s views. HAYEF: Journal of Education, 14(27), 203–221.

İşik, A., & Çelik, E. (2017). The effects to academic success of collaborative learning in the field of rational numbers learning. The Journal of International Education Sciences, 4(11), 369–386.

Jacobs, D., Watson, T. G., & Sutton, J. P. (1996). Effects of a cooperative learning method on mathematics achievement and affective outcomes of students in a private elementary school. Journal of Research & Development in Education, 29(4), 195–202.

Justi, R. S., & Gilbert, J. K. (2002). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273–1292.

Kaiser, G., & Schwarz, B. (2006). Mathematical modelling as bridge between school and university. Central Branch for Mathematics Education, 38(2), 196–208.

Kal, F. M. (2013). The impact of mathematical modelling activities to the attitudes of primary school 6th grade students in solving maths problems [Published master’s thesis]. Institute of Sciences, Kocaeli University.

Kayış, A. (2005). Reliability analysis. In Ş. Kalayci (Ed.), Multivariate statistical techniques with SPSS applied (pp. 404–409). Asil Publishing Distribution.

Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers & Education, 55(2), 427–443.

Kenneth, D. J., & Young, A. M. (1999). Is cooperative learning effective for high achieving entrance students? Implications
for policy and teaching Resources. *Journal of Research and Development in Education*, 33(1), 27–35.

Kertil, M. (2008). Investigating problem solving ability of pre-service mathematics teachers in modeling process [Published master’s thesis]. Institute of Educational Sciences, Marmara University.

Klein, J. D., & Schnackenberg, H. L. (2000). Effects of informal cooperative learning and the affiliation motive on achievement, attitude and student interactions. *Contemporary Educational Psychology*, 25(3), 332–341.

Lawson, D., & Marion, G. (2008). *An introduction to mathematical modelling*. https://people.maths.bris.ac.uk/~madjl/course_text.pdf

Lehrer, R., & Schauble, L. (2007). A developmental approach for supporting the epistemology of modeling. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), *New ICMI study series. Modeling and applications in mathematics education* (pp. 153–160). Springer.

Lesh, R., Carmona, G., Hjalmarsen, M., & Mason, G. (2006). Working group models and modeling. *PME-NA Proceedings*, 1(1), 92–95.

Lesh, R., & Doer, H. M. (2003). Foundations of a models and modelling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), *Beyond constructivism: A models and modeling perspective on mathematics problem solving, learning and teaching* (pp. 3–33). Lawrence Erlbaum.

Lopez-Morteo, G., & Lopez, G. (2007). Computer support for learning mathematics: A learning environment based on recreational learning objects. *Computers & Education*, 48(4), 618–641.

Ministry of National Education. (2018). *Mathematics course curriculum (primary and middle school 1, 2, 3, 4, 5, 6, 7 and 8. grades)*. http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=329

Moore, B., Boardman, A. G., Smith, C., & Ferrell, A. (2019). Enhancing collaborative group processes to promote academic literacy and content learning for diverse learners through video reflection. *SAGE Open*. https://doi.org/10.1177/2158244019861480

National Council of Teachers of Mathematics. (2000). *Principles and standards for school mathematics*. Südwestdeutscher Verlag fürologie und 影像学. (pp. 3–33). Lawrence Erlbaum.

Ören-Vural, D., Çetinkaya, B., Erbaş, A. K., Alacaci, C., & Çakiroğlu, E. (2013, June 20–22). The views of high school mathematics teachers on modeling and the use of modeling in mathematics instruction: The effect of an in-service training program [Paper presentation]. 1st Turkish computer and mathematics education symposium, Trabzon, Turkey.

Ortiz, J., & Santos, A. D. (2011). Mathematical modelling in secondary education: A case study. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), *International perspectives on the teaching and learning of mathematical modelling book series. Trends in teaching and learning of mathematical modelling* (pp. 127–136). Springer.

Özdoğan, E. (2008). The effect of cooperative learning method to the fourth grade students attitude and achievement on mathematical learning: The computer supported collaborative learning (CSCL) and team assisted individualization method (TAİ) [Published master’s thesis]. Institute of Social Sciences, Ege University.

Partovi, T., & Razavi, M. R. (2019). The effect of game-based learning on academic achievement motivation of elementary school students. *Learning and Motivation*, 68, 101592.

Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1993). Reliability and predictive validity of the motivated strategies for learning questionnaire (MSLQ). *Educational and Psychological Measurement*, 53(3), 801–813.

Programme for International Student Assessment. (2015). *PISA 2015 final national report*. http://pisa.meb.gov.tr/wp-content/uploads/2014/11/PISA2015_UlusalRapor.pdf

Şahin, B. N. B., Brouin, M. S. T., & Gülşar, A. (2017, October 19–21). Collaborative learning: Geometry instruction example [Paper presentation]. 2nd international good practices and innovations in education conference, Izmir, Turkey.

Sarıtaş, E. (2016). Instruction methods. In A. S. Saracoğlu & A. Küçükoğlu (Eds.), *Instruction principles and methods* (pp. 170–188). Pegem Academy Publishing.

Schlosser, L. K., & Balzano, B. (2014). Playing to learn: How after-school clubs influence teachers’ beliefs about instruction. *SAGE Open*. https://doi.org/10.1177/2158244014558031

Shachar, H., & Fischer, S. (2004). Cooperative learning and the achievement of motivation and perceptions of students in 11th grade chemistry classes. *Journal of Learning and Instruction*, 14(1), 69–87.

Slavin, R. E. (1994). *Using student team learning* (4th ed.). Johns Hopkins University, Center for Social Organization of Schools.

Sung, H. Y., Hwang, G. J., Hung, C. M., & Huang, I. W. (2012, September 20–22). Effect of learning styles on students’ motivation and learning achievement in digital game-based learning [Paper presentation]. 2012 III international conference on Advanced Applied Informatics, Washington, DC, United States.

Swan, M., Turner, R., Yoon, C., & Muller, E. (2006). The roles of modelling in learning mathematics. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), *Modelling and applications in mathematics education: The 14th ICMI study* (pp. 275–284). Springer.

Tahiroğlu, M., & Çakır, S. (2014). Development of mathematics motivation scale related to elementary education 4th grade. *Ahi Evran University Journal of Kırşehir Faculty of Education*, 15(3), 29–48.

Tekdal, M., & Sönmez, S. (2018). The effect of using jigsaw cooperative learning technique in teaching computer literacy on students’ achievement and retention. *Cukurova University Faculty of Education Journal*, 47(1), 37–59.

Tekin, B., & Tekin, S. (2004). *A research on mathematical literacy levels of mathematics teacher candidates*. http://www.matder.org.tr/amatik-ogretmen-adaylarinin-matematiksel-okury-azarlik-duzyeleri-uzerine-bir-arastirma/

Tilton, S. (2019). Winning through deception: A pedagogical case study on using social deception games to teach small group communication theory. *SAGE Open*. https://doi.org/10.1177/2158244019834370

Tobias, S. (1992). *Revitalizing undergraduate science: Why some things work and most don’t*. An occasional paper on neglected problems in science education. Research Corporation.

Turgut, S., & Temur, Ö. D. (2017). The effect of game-assisted mathematics education on academic achievement in Turkey: A meta-analysis study. *International Electronic Journal of Elementary Education*, 10(2), 195–206.
Ünal-Çoban, G., & Ergin, Ö. (2013). Examining the effects of model based science education regarding the scientific knowledge. *Hacettepe University Journal of Education, 28*(2), 505–520.

Ünlü, M., & Aydıntan, S. (2011). The effect of cooperative learning method on the student’s success and recall levels of the 8th grade students learning in permutation and probability subject. *Journal of Kirsehir Education Faculty, 12*(3), 1–16.

Urhan, S., & Dost, Ş. (2016). The use of mathematical modelling activities in courses: Teacher perspectives. *Electronic Journal of Social Science, 15*(59), 1279–1295.

Uyanık, Ö. (2013). The effect of academic and language skills education program on 61-66 month old children’s cognitive skills and early academic and language skills [Published doctoral thesis]. Institute of Educational Sciences, Gazi University.

Van-Eck, R. (2006). Digital game-based learning: It’s not just the digital natives who are restless. *EDUCAUSE Review, 41*(2), 16–30.

Vankus, P. (2008). Games based learning in teaching of mathematics at lower secondary school. *Acta Didactica Universitatis Comenianae Mathematics, 8*, 103–120.

Veenman, S., Denessen, E., Van-Den-Akker, A., & Van-Der-Rijt, J. (2005). Effects of a cooperative learning program on the elaborations of students during help seeking and help giving. *American Educational Research Journal, 42*(1), 115–151.