Archaeological Ground Point Filtering of Airborne Laser Scan Derived Point-Clouds in a Difficult Mediterranean Environment
Michael Doneus, Gottfried Mandlburger, Nives Doneus

To cite this version:
Michael Doneus, Gottfried Mandlburger, Nives Doneus. Archaeological Ground Point Filtering of Airborne Laser Scan Derived Point-Clouds in a Difficult Mediterranean Environment. Journal of Computer Applications in Archaeology, Ubiquity Press, 2020, 3 (1), pp.92-108. 10.5334/jcaa.44 . hal-02567709

HAL Id: hal-02567709
https://hal.archives-ouvertes.fr/hal-02567709
Submitted on 7 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1. Introduction
Within the last one and a half decades, airborne laser scanning (ALS) has become a widely used technology in archaeology. This is due to the possibility of deriving detailed digital terrain models (DTM – please note that we are following a Eurocentric diction) even under dense vegetation and shallow water, the growing availability of countrywide ALS-derived DTMs (at least in Europe), and its seeming ease of use. A simple hill-shaded representation of the DTM is almost self-explanatory, even allowing archaeologists untrained in remote sensing to identify previously unknown archaeological and palaeo-environmental features. As a result, ALS has become a fixed component of integrated prospection approaches and has dramatically changed our understanding of archaeological sites, monuments, and landscapes, especially in wooded areas.

The downside of this alleged ease of use is a certain ignorance of the underlying modelling and data processing strategies combined with a naivety of expectations, followed by an incorrect use that might lead to disappointment. Knowledge about its basic principles and workflow is, therefore, a prerequisite for assessment of the suitability of ALS-based datasets for a certain purpose. Consequently, the only eligible countermeasure to this scenario is training and information about the whole process of ALS, from project planning to final visualization.

The basic steps during an ALS workflow are (Crutchley, 2010; Doneus & Briese, 2011; Opitz, 2013; Fernandez-Diaz et al., 2014; Shan & Toth, 2018):

- Project planning (including defining the purpose of the scan),
- system calibration (determination of lever arms, boresight angles, range and scan angle offsets, and scales),
- data acquisition (instrumentation and settings, time-frame and flight mission parameters),
- geo-referencing (direct geo-referencing of scan data by combining scanner range and deflection angle measurements and trajectory data derived from GNSS and inertial measurement devices),
- refraction correction when employing water-penetrating green lasers,
- flight strip adjustment,
- classification/ground point filtering (although today, classification (and recently ‘semantic labelling’) seems
to be the more widely used term, we will be mainly using the term ground point filtering throughout this paper. While ‘classification’ is the assignment of points to different classes, ‘ground point filtering’ is the removal of all points from the georeferenced point-cloud that do not contribute to an archaeologically relevant DTM),
· DTM interpolation, and finally,
· visualization.

All these workflow steps require considerations and decisions that will affect the suitability of the resulting DTM for a certain purpose.

For archaeology, the most critical part of the workflow is ground point filtering – the removal of all points from the geometrically calibrated, georeferenced point-cloud that do not contribute to an archaeologically relevant DTM (see next section). It is comparatively rare that archaeologists will have the possibility to independently generate a DTM from ALS data, a process requiring access to the unfiltered point-cloud, classification software, and respective data processing expertise. Consequently, ground point filtering is a blackbox in (not only) archaeological applications. ALS data providers usually do not report on software and settings used for classification. In these cases, even when working with project-based data that were specifically acquired for archaeological purposes, reproducibility of the provided DTM is not possible and – even worse – its archaeological value is difficult to assess. This makes it even more important to understand constraints and pitfalls that come along with ground point filtering in order to evaluate the archaeological suitability of an ALS-based DTM.

Still, little has been published on this topic (Doneus & Briese, 2006; Cifani et al., 2007; Crow et al., 2007; Lasaponara & Masini, 2009; Heinzel & Sittler, 2010; Lasaponara et al., 2011; Lugmayr, 2013; Opitz & Nuninger, 2014). To the best of our knowledge, no information can be found on archaeology-oriented ALS-point cloud classification of extremely difficult situations, including varying vegetation cover, however, might prevent most laser pulses from reaching the ground, resulting in a high quantity of vegetation, buildings, cars and the like, an archaeologically relevant DTM may differ from this specification. When a DTM is used to identify archaeological features, a DTM also needs to be void of any vegetation, but buildings (e.g., ruined castles), standing stones, walls, roads, channels, earthworks and the like should survive any filtering and be represented in the final “DTM.” Therefore, it might be rather called an “archaeological digital elevation model.”

2. Ground point filtering of ALS derived point-clouds

As mentioned in the introduction, a crucial step of archaeological DTM generation is filtering the point cloud into terrain and off-terrain points. Any DTM is a representa-
The most problematic settings are mixed situations with an extremely varying topography (e.g., a mixture of smooth and predominantly horizontal terrain, undulating terrain, and steep slopes) and disparity of vegetation density. These cases usually cannot be classified with a single parameter set. However, to our knowledge, there is no classification software available that could handle such difficult settings using adaptive parameters based on vegetation density and slope. In order to receive optimum results for such diverse areas, repeated classification with particular parameter sets for dense vegetation and more open areas are necessary, resulting in multiple DTMs. For practical reasons during visualization and interpretative mapping, the resulting DTMs should, however, be combined into a single terrain model. In the following, this approach is demonstrated using the case study of a Mediterranean landscape in Croatia.

3. Case study: The Mediterranean landscape of the Medulin Bay, Croatia

The northern Adriatic peninsula of Istria lies between the Gulf of Trieste, Italy, and the Kvarner Bay, next to Rijeka, Croatia. Along with the port of Pula and the bay of Raša, the Medulin Bay is one of the largest natural anchorages in Istria (Figure 1). It is situated at the southernmost tip of Istria, between Marlera and Kamenjak Cape with a total area of 22 km². The water depth has an average of less than 8 m in the inner bay. A few small, uninhabited islands are scattered around the bay. In the west, the bay of Medulin is bordered by the peninsula of Premantura, in the north and east it is connected to the villages of Pomer and Medulin. The relief is represented by hills and limestone terraces with a maximum height of 80 m and steep slopes towards the coast in the southern part. The vegetation cover consists of open areas (agricultural and grassland), olive plantations, as well as extremely dense and evergreen macchia vegetation (Figure 2).

The region is mainly known for its numerous Roman sites (Koncari Ubač, 2008; Girardi-Jurkić, 2013), the most notable being the villa maritima of Vižula (Džin & Girardi Jurkić, 2008), situated in the municipality of Medulin. Remains of Roman architecture, partly submerged due to the rising sea level, have been documented here over a total length of 1.2 km. The site has been investigated through underwater and terrestrial excavations (Girardi Jurkić et al., 2012; Miholjek, 2012) since the mid-1990s, and via large-scale geophysical prospection from 2014. The EU project “Archaeological Park Vižula” (2017–2019), led by the Municipality of Medulin to preserve and present the site to the public, provided the acquisition of new data by means of ALS in 2018. The objective was to combine underwater and terrestrial research and to understand the relationship between the site and the past landscape.

4. Data

Approximately 24 km² of land and underwater terrain were scanned in the area of Medulin Bay, including Vižula and the peninsula Premantura (Figure 3). A topo-bathymetric laser scanner operating at a wavelength of 532 nm (i.e., visible green domain of the electromagnetic spectrum), which can penetrate clear water (see also Doneus et al., 2013), was used due to the fact that the Roman architecture is currently partly submerged (Vacchi et al., 2016). Data was acquired in March 2018 using a Riegl VQ-820-G.

Figure 1: Map of the northern Adriatic coast indicating the location of the Medulin Bay (red rectangle). Data Source: SRTM. North is up.
The topo-hydrographic airborne laser scanner (Steinbacher et al., 2012) operated by Airborne Technologies GmbH in calm water conditions. The entire area was covered in two blocks, with 29 flight strips overlapping at least by 50%. The scan settings are listed in Table 1. Additionally, a medium format digital RGB camera IGI DigiCam-H/39 (equipped with a Hasselblad lens HC 3.5/50) simultaneously documented the area with a ground sampling distance of 7 cm.

Each of the scanned strips has an average laser pulse density of 6 shots/m². As the strips have overlaps between 50 and 60%, the laser pulse density has an overall mean of 12 shots/m². This number is, however, not uniform as it varies depending on the number of strips overlapping in an area. Also, areas of deeper water did not return any echoes, and in that way, reducing the average laser pulse density (see Figure 3b). Within a more typical project region (on land with mainly 2-3-fold strip overlap and a mix of open area and high vegetation – as in Figures 6 and 7), the mean pulse density is 15 points/m² (see Table 1).

Due to the diverse vegetation, the classification resulted in an uneven distribution of ground points, which will be detailed in the following sections. Overall, the average of classified ground points is 11 points/m². The ratio of laser pulse density and resulting ground points typically lies between 1 (in open areas and shallow water) and 4 (dense Macchia). In the region of dense Macchia from Figures 2b and 10, the average pulse density is as high as 21 (the high number is due to a cross-strip flown over this area), while the average ground point density is only 7.5 points/m².

Data pre-processing was carried out by the lead author using the software package OPALS (Mandlburger et al., 2009; Pfeifer et al., 2014) and comprised the following steps:

1. Echo detection: this was achieved using the scanner’s online waveform processing capability (Pfennigbauer & Ullrich, 2010; Pfennigbauer et al., 2014) and the scanner manufacturer’s software RiProcess.
2. Derivation of a water surface model. Due to the calm water conditions and short acquisition time, modelling in the air-water-interface with a single horizontal surface at the water level was considered sufficient. Minor influences from residual waves and tidal differences were ignored.
3. Georeferencing of each scanned strip by first combining the synchronously captured flight trajectory (GNSS/IMU) and scanner measurements (raw range and scan angle), and by subsequently performing range and refraction correction of the water echoes based on the water surface model (Snell’s law).
4. Strip adjustment of georeferenced point cloud including quality control of the results (Ressl et al., 2008; Ressl et al., 2011).

The application of these four processing steps resulted in a dataset of 29 georeferenced, refraction-corrected, and adjusted point clouds in ASPRS LAS format, each representing one of the original strips.

5. Ground point filtering methodology
Strip adjustment is usually followed by the classification, which uses appropriate algorithms to classify the geometrically calibrated point cloud amongst others into...
ground points, clutter points (low and high points), low, medium, and high vegetation. This process is also known as semantic labelling of the dataset. In our case, the aim was to derive an archaeological digital elevation model as specified in Section 2. The software package SCOP++ was employed, which uses robust hierarchic interpolation with an eccentric and asymmetrical weight function (Kraus & Pfeifer, 1998; Pfeifer et al., 2001; see Doneus et al., 2008: 887). Because of the extreme variance in vegetation density, two DTM’s had to be derived, applying different parameter sets: (1) a filter strategy was adapted to open areas and underwater surfaces, (2) a filter for very dense vegetation.

Both filters were developed within SCOP++ in a hierarchical framework (Table 2). Each filter is composed of 13 steps arranged in five groups. Each of the first three groups contains:

Figure 3: (a) Orthophoto mosaic of the scanned area. The aerial photographs were acquired simultaneously with the laser scan in March 2018. (b) Laser pulse density (representative pulse per square meter). (c) The density of ground points after classification using the ‘Dense Vegetation’ setting (see next section). (d) The ration of laser pulse density and classified ground points. Low numbers (i.e., number of ground points equals laser pulse density) are due to open areas, modern settlements, and shallow water; high numbers indicate dense macchia vegetation.
Doneus et al: Archaeological Ground Point Filtering of Airborne Laser Scan Derived Point-Clouds in a Difficult Mediterranean Environment

Table 1: Most important metadata of the airborne laser scan covering the Medulin Bay.

Date of acquisition	March 2018
Instrument	Riegl VQ-820-G
Scanner type	Full waveform (with online waveform processing)
Pulse repetition rate (PRR) [kHz]	284
Altitude ground level (AGL) [m]	400
Footprint diameter [m]	0.4
Field of view (FOV) [deg]	42
Scan lines per second	157
Average speed [kts]	108
Average laser pulse density per m² (in a typical area with at least 50% strip-overlap)	15
Average ground point density per m²	11

Table 2: Filter steps and relevant parameters of both filter strategies defined within the framework of SCOP++.

Steps	Step name	Parameters	Open area	Dense vegetation
1	ThinOut	Cell size	10	10
		Thinning method	mean	mean
		Level k	–	–
	Filter	Lower branch	4;4;8	4;4;8
		Upper branch	0.15;0.15;0.3	0.15;0.15;0.3
		Trend	below	below
		Prediction	below	below
		Penetration rate	80%	40%
		Interpolation	Grid width: 10m CU:20 Covariance function: bell curve	Grid width: 10m CU:20 Covariance function: bell curve
2	SortOut	Upper distance	0.7	0.7
		Lower distance	7.0	7.0
		Slope dependency	2.0	2.0
	ThinOut	Cell size	5	5
		Thinning method	mean	k-th lowest (4)
	Filter	Lower branch	0.7;0.7;1.0	0.7;0.7;1.0
		Upper branch	0.3;0.3;0.3	0.3;0.3;0.3
		Trend	below	below
		Prediction	below	below
		Penetration rate	80%	40%
		Interpolation	Grid width: 4.0 CU:20 CF: bell curve	Grid width: 4.0 CU:20 CF: bell curve
3	SortOut	Upper distance	0.5	0.5
		Lower distance	1.0	2.0
		Slope dependency	2.0	2.0
4	ThinOut	Cell size	1.5	1.5
		Thinning method	mean	k-th lowest (2)

(Contd.)
A ThinOut step, where the point cloud is thinned out using a raster with user-defined cell size. For each cell, one output point is chosen using a specified parameter (for a DTM, one would usually choose lowest, k-th lowest, or mean).

A Filter step, applying a robust filter with an eccentric and asymmetric weight function to the thinned point cloud: First, an initial surface is computed using linear prediction (equivalent to ordinary Kriging) and equally weighted points. Then, each point is assigned an individual weight based on the distance from the initial surface using a user-defined weight function. Points below the computed surface receive a higher weight than points lying above the surface (= unsymmetrical weight function – see Figure 4). After that, a new surface is calculated based on the applied weights. The procedure is iterated until a certain threshold is reached.

A SortOut step, which calculates the z-difference of each point of the original point cloud and the resulting surface from the previous filter step. Points located outside a user-specified interval around the filtered surface are disregarded for the subsequent iteration round.

This sequence of ThinOut – Filter – SortOut is repeated within the first three groups with consecutive finer settings (see Table 2). In the fourth group, ThinOut and Filter are followed by an interpolation of the resulting DTM. Finally, a threshold-based classification is applied that allocates all original points into high vegetation, medium vegetation, low vegetation, ground, and points below DTM.

The most important parameters of both filter strategies are listed in Table 2. Due to many clutter points both below and above the actual terrain, the thinning method had to be set to “mean” in the first group (step 1). Such clutter points are typical for any (topo-) bathymetric scanners employing highly sensitive receivers to detect very weak echoes from the benthic layer (see Figure 5). This led to a surface that would be close to the actual terrain in open areas, at the same time being above the terrain.
in vegetated areas. While the most excessive clutters had been removed by the first SortOut (step 3), clutter points closer to the actual terrain surface were still present. To force the surface down towards the actual terrain in vegetated areas, the thinning method is subsequently set to “k-th lowest” in steps 4 and 7 for the “dense vegetation” parameter set.

6. Result
The final DTMs differ, each displaying varying degrees of success in representing archaeologically relevant terrain, as demonstrated in Figure 6, which depicts a section of a coastal area. The area is characterized by small parts of open land alternating with dense macchia. The lower half of the image is dominated by the clear waters of the Mediterranean Sea, in which the green laser was able to penetrate down to 8 m depth.

The hillshade in Figure 6a is based on the ground point filtering that resulted from the “dense vegetation” parameter set. Here, the vegetation was removed. Consequently, the area in the upper half shows the terrain, which includes archaeologically relevant structures (a collapsed and eroded dry-stone wall – Figure 6a/1). However, the open area was not modelled correctly. In particular, the terrain of the seabed displays an abundance of seemingly pit-like structures. These must be regarded as artificial features resulting from clutter points below the seabed surface that could not be completely removed due to the filter settings.

The hillshaded terrain model in the lower image (Figure 6b) is based on the “open area” parameter-set. It exhibits a well-filtered surface in the non-vegetated areas and under shallow water. Without the disturbing pit-like structures, the hillshade now even shows traces of...
submerged walls (Figure 6b/2). However, in this case, the dense vegetation was not filtered properly. As a result, the area in the upper half of the image is largely disturbed. The imperfectly filtered vegetation produces a seemingly raised “terrain” that obscures the actual ground surface and all the archaeologically relevant dry-stone walls.

6.1. Merging DTMs

The comparison of both datasets indicates that a single filter setting would not have been a useful approach, as it would have ended in a less than optimal compromise. When comparing both filtered DTMs, it becomes apparent that the well-filtered areas are exclusive in each DTM. Therefore, in order to obtain a single terrain model that would be entirely useful for our archaeological purpose, the most suitable solution was to merge both DTMs.

To identify a ruleset for merging both datasets into a single, archaeologically optimal DTM, both filtered models were analysed together with the orthophotographs and point density maps of the classified ground and vegetation points. During analysis, it became evident that there were two key factors behind an archaeological ground point filtering strategy:

1. Vegetation density was the key factor that made two different filter-sets necessary. After visual inspection of the open area DTM with the overlaid vegetation point density map, empirical testing showed that the “open area” parameter set failed to remove vegetation if the vegetation point densities (counting all echoes) exceeded 6 points/m² (Figure 7).

2. On some occasions, underwater areas were falsely classified as vegetation during classification (Figure 8).
7. Discussion

The merged DTM represents a surface that is an optimal compromise of two ground point filtering processes adapted to different environmental settings: it retains micro-topographic detail and displays an archaeologically interpretable surface, even below areas of dense vegetation (Figure 9). In order to merge DTMs based on a point density layer, the underlying point density maps should be derived for cell sizes of at least 5 m edge length or smoothed with a similar kernel size. The reason for this is that densely vegetated areas often expose small areas of 1×1 or 2×2 m2 containing little or no vegetation. Using point density raster maps with a smaller cell size would lead to the effect that, while the cells of densely vegetated areas receive height values from the “dense vegetation”
Figure 8: Orthophotograph (a – top left) and hillshaded DTM of parameter set “open area” (b – top right) are overlain by a transparent raster of the vegetation point density raster clipped at a value of 6 (compare with Figure 7). As can be seen, some underwater areas were falsely classified as dense vegetation, which would lead to errors in the merged DTM (c 1 and c 2 – bottom left). Therefore, it was necessary to apply an additional merging rule, where all cell values exposing a terrain height below the water surface would receive the cell values of the “open area” DTM (d – bottom right).

Figure 9: Final merged DTM (see text for explanation).
DTM, some smaller less vegetated patches would receive height values from the “open area” DTM, causing substantial differences (perhaps even a few meters above ground). Consequently, the small patches receive “incorrect” heights (by roughly 0.5 to 3 m) from the surrounding cells, resulting in a combined DTM that is not useable.

The quality of the ground point filtering is also demonstrated in Figure 10, which displays an area with extremely dense vegetation (corresponding to the on-site photograph displayed in Figure 2b). Still, the filter could classify enough ground points, so that past field boundaries (visible today only as shallow earthworks) become evident in the resulting hillshade. At the same time, detailed topographic features such as the submerged wall (Figure 10/1) are preserved in the merged DTM. Still – as mentioned in Section 2 – we cannot ascertain that the ground was correctly classified in the entire area. Other, maybe less pronounced or non-linear archaeological features still might have been filtered out. Note that the holes in the DTM denote areas where ground points could not be classified for coherent gridding at 0.5 m resolution.

While the merged DTM combines the archaeologically relevant terrain information from (in this case) two filter settings, it still represents only a model of the

Figure 10: Upper: vegetation density map of a coastal area with extremely dense macchia in the center of the image (compare also with on-site photograph in Figure 2b). Lower: Hillshade of merged DTM. The dense vegetation could be removed by the filter (setting for “dense vegetation”), while the underwater surface (color-coded in blue) shows details of a submerged wall (No. 1 in upper image).
real-world-terrain. Although it can be regarded as an optimized version, accuracy and archaeological detail will still largely depend on the quality of the filtered input, which is affected by the original data (data acquisition, state of vegetation, quality of georeferencing, type and nature of recent and archaeological features) and on the used classification software and its settings.

This is exemplified in Figure 11, which displays the remains of Roman buildings submerged 2 m below the water level. The left image is noisy and shows less detail as a result of missing refraction correction and consequently, sub-optimal strip adjustment. On the right side, the same scene has become much clearer after the correction of refraction and subsequent strip-adjustment.

It is important to note that the presented method was tested in a relatively small area of 24 km² comprising a known variety of environmental settings, where the merging ruleset could be adjusted to specific and known parameters. Also, the results could be checked and verified using orthophotographs and on-site visits. Threshold-values were determined through empirical observation. This may be unsuitable for large project (Canuto et al., 2018; Evans et al., 2013) or country-wide datasets containing a wide and unknown variety of environmental settings (Cowley et al., in prep; Fernandez-Diaz and Cohen, in press).

Here, more research needs to be done towards automated adaptive ground point filtering strategies. While the presented approach is simple in the sense that it is based on established and proven standard classification techniques built around clear geometric reasoning, the current trend in semantic labelling of 3D point clouds is indisputably focussed on unsupervised machine learning techniques with a clear trend towards deep learning. Popular techniques like convolutional neural networks (CNNs) outperform most traditional classification techniques, especially in the area of pattern recognition. In the context of classification of 3D ALS point clouds, grid and voxel-based approaches based on 2D- and 3D-CNNs (Zhao et al., 2018; Schmohl & Sörgel, 2019), as well as single point based networks (Winiharter et al., 2019), are used. While all these approaches have already proven their competitiveness compared to standard classification techniques, they still need abundant training data. In contrast, ready-to-use DTMs for archaeological mapping purposes can be easily achieved with well-defined and easily comprehensible modifications to existing techniques using the approach presented in this paper.

Nevertheless, for smaller and known project areas, merging various DTMs derived from adapted ground point filters is a viable method to combine the advantage of each into a single terrain model. In this rather simple example, different filter settings were applied due to a difference in vegetation cover. Other scenarios might include varying filter settings induced by other factors, such as topography, tree species, or buildings. Accordingly, merging rules would differ and might include information from slope-maps or thematic maps.

The implications of this approach might be important for rethinking archaeological use of ALS-based datasets. Applying adapted ground point filters and defining rules for merging the results demand to be more explicit on filtering strategies. Consequently, the blackbox of ALS-based DTM generation will open with an improved evaluation of the archaeological usefulness of the resulting datasets. Publishing filter strategies are the only way to guarantee the reproducibility of results, at the same time reducing archaeologist’s dependence on serendipity.

Normally, archaeologists will not have the skills and specialised software to process ALS data on their own. Still, to make the best use of such data for archaeological prospection, knowledge (in ideal cases), control of data acquisition, and the processing workflow are of crucial importance. When working with project-based data that were specifically acquired for archaeological purposes, georeferencing and ground point filtering of the dataset should not be left to the data providers without supervision (unless they are specialized in laser scanning for archaeological purposes). Maintaining a close contact,

![Figure 11](image-url) **Figure 11**: Hillshade of a submerged area. In the upper-right part of the images, the remains of a Roman building (see arrow) are visible in the DTM. The left image shows less detail due to a missing refraction correction and a failed strip adjustment.
including feedback loops, is necessary for a successful archaeological DTM generation. Also, it is recommended to demand for the raw data, i.e. at least the strip-wise recorded echoes from the scanner, the trajectory file(s) and information on scanner-GNSS offsets, as this data is not delivered by default (see also Payne, 2009: chapter 3.1). As methodological and software developments are constantly improved, re-processing and re-filtering might become desirable later. This will, however, require access to the abovementioned raw data (see Fernandez-Diaz and Cohen, in press).

For general purpose data, unfiltered point clouds may be available, and it might be worthwhile to invest time and expenditure into a better ground point filtering that is more archaeologically relevant. Even if this is not possible, knowledge about metadata will help to evaluate the archaeological potential of a given general-purpose data-set and therefore will assure a reasonable and successful application of ALS for archaeology (Payne, 2009; Doneus & Briese, 2011; Opitz, 2013; Grussenmeyer et al., 2016; Boardman & Bryan, 2018).

8. Conclusion
Airborne laser scanning has great potential to reveal archaeological remains in a variety of contexts. This could be demonstrated in the area of the Medulin Bay on the southern extent of Istria, a typical Mediterranean environment with varying degrees of vegetation, including open areas as well as dense and mainly evergreen macchia. Testing various filters to remove the dense vegetation while keeping archaeological detail in less overgrown areas showed that there was no single filter setting that would achieve a satisfying result. As an optimal ground point filtering compromise was unfeasible, two different filters were applied for the same dataset. These resulted in two DTMs that were subsequently merged by rule-based raster calculations and can be regarded as a first step towards an adaptive filtering strategy that might be useful far beyond the field of archaeology.

The merged DTM represents an optimal compromise of two ground point filtering processes adapted to different environmental settings: it keeps micro-topographic detail and displays an archaeologically interpretable surface even below dense vegetation. Therefore, being more explicit on ground point filtering should become best practice (at least for projects which rely on commissioned project-data), as it will enable reproducibility of processing results and make the current blackbox more transparent. This study also stresses the importance of raw data management.

Acknowledgements
The ALS data acquisition was funded by the project “Archaeological park Vižula” (2017–2019), European Regional Development Fund, Competitiveness and Cohesion OP 2014–2020. We would like to thank the Municipality of Medulin for the successful partnership. The authors also want to express their gratitude for the excellent cooperation and support in the field:

• Igor Miholjek, head of the underwater research in Vižula and his team, Odjel za podvodnu arheologiju, Hrvatski restauratorski zavod/Department for Underwater Archaeology, Croatian Conservation Institute.
• Kristina Džin, Head of the terrestrial research in Vižula and her team, Institut društvenih znanosti Ivo Pilar/Ivo Pilar Institute of Social Sciences.

Gottfried Mandlburger’s contribution to this paper was conducted within the project “Bathymetry by Fusion of Airborne Laser Scanning and Multispectral Aerial Imagery” (SO 935/6-2) funded by the German Research Foundation (DFG).

The authors finally express their thanks to Christopher Sevara (University of Vienna, Department of Prehistoric and Historical Archaeology), for discussion and proof-reading of the text.

Publication funds were provided by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 639828).

Competing Interests
The authors have no competing interests to declare.

Author Contributions
• MD: Outline of research, setting up ground point filtering strategies, general text, images.
• GM: Setting up processing workflow in OPALS, revision of text, feedback.
• ND: Management of data acquisition, archaeological interpretation, section on case study area, revision of text, feedback.

References
Boardman, C and Bryan, P, 2018. 3D laser scanning for heritage: Advice and guidance on the use of laser scanning in archaeology and architecture. Third edition. London: Historic England.
Brodu, N and Lague, D, 2012. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing, 68: 121–134. DOI: https://doi.org/10.1016/j.isprsjprs.2012.01.006
Canuto, MA, Estrada-Belli, F, Garrison, TG, Houston, SD, Acuna, MJ, Kovac, M, Marken, D, Nondedeo, P, Auld-Thomas, L, Castanet, C, Chatelain, D, Chiriboga, CR, Drapea, T, Lieskovsky, T, Tokovinine, A, Velasquez, A, Fernandez-Diaz, JC and Shrestha, R, 2018. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. Science, 361(6409): DOI: https://doi.org/10.1126/science.aau0137
Cifani, G, Opitz, RS and Stoddard, S, 2007. Mapping the Ager Faliscus road-system: The contribution of LiDAR (light detection and ranging) survey. Journal of Roman Archaeology, 20: 165–176. DOI: https://doi.org/10.1017/S1047759400005353
Cowley, DC, Banaszek, L, Geddes, G and Millican, KM. In Prep. Making LiGHT work of large area survey? Developing approaches to rapid archaeological mapping and the creation of systematic national-scaled heritage data. *Journal of Computer Applications in Archaeology*, this Special Collection.

Crow, P, Benham, S, Devereux, B and Amable, G. 2007. Woodland vegetation and its implications for archaeological survey using LiDAR. *Forestry*, 80: 241–252. DOI: https://doi.org/10.1093/forestry/cpm018

Crutchley, S. 2010. The Light Fantastic: Using airborne lidar in archaeological survey. Swindon: English Heritage Publishing.

Doneus, M and Briese, C. 2006. Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laserscanning. In *The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST* (2006), Ioannides, M, Arnold, D, Niccolucci, F and Mania, K (eds.), 155–162.

Doneus, M and Briese, C. 2011. Airborne Laser Scanning in Forested Areas – Potential and Limitations of an Archaeological Prospection Technique. In *Remote Sensing for Archaeological Heritage Management: Proceedings of the 11th EAC Heritage Management Symposium*, Reykjavík, Iceland, 25–27 March 2010, Cowley, D (ed.), 53–76. Budapest: Archaeolingua; EAC.

Doneus, M, Briese, C, Fera, M and Janner, M. 2008. Archaeological prospection of forested areas using full-waveform airborne laser scanning. *Journal of Archaeological Science*, 35: 882–893. DOI: https://doi.org/10.1016/j.jas.2007.06.013

Doneus, M, Doneus, N, Briese, C, Pregesbauer, M, Mandlburger, G and Verhoeven, G. 2013. Airborne Laser Bathymetry – detecting and recording submerged archaeological sites from the air. *Journal of Archaeological Science*, 40: 2136–2151. DOI: https://doi.org/10.1016/j.jas.2012.12.021

Džin, K and Girardi Jurkić, V. (eds.) 2008. *Vižula i Burle u antici: Vižula and Burle in Roman period*. Pula: Arheološki Muzej Istre.

Evans, D, Fletcher, FJ, Pottier, C, Chevancne, J-B, Sourif, D, Tan, BS, Im, S, Ea, D, Tin, T, Kim, S, Cromarty, C, De Greef, S, Hanus, K, Baty, P, Kuszcinger, R, Shimoda, I and Boornazian, G. 2013. Uncovering archaeological landscapes at Angkor using lidar. *Proceedings of the National Academy of Sciences*, 110(31): 12595–12600. DOI: https://doi.org/10.1073/pnas.1306539110

Fernandez-Diaz, J, Carter, W, Shrestha, R and Glennie, C. 2014. Now You See It... Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. *Remote Sensing*, 6: 9951–10001. DOI: https://doi.org/10.3390/rs6109951

Fernandez-Diaz, JC and Cohen, AS. In Press. Whose data is it anyway? Lessons in data management and sharing from resurrecting and repurposing lidar data for archaeological research in Honduras. *Journal of Computer Applications in Archaeology*, this Special Collection.

Forte, M and Campana, S. (eds.) 2017. *Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing*. Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-40658-9

Girardi Jurkić, V. 2013. Povijesni i gospodarski razvitak južne Istre u antici. In *Monografija općine Medulin*, 44–77. Medulin.

Girardi Jurkić, V, Džin, K, Paić, A and Ettinger Starčić, Z. 2012. Vižula kod Medulina. Rezidencijska maritimna vila: Istraživačka kampanja 2011. *Histria antiqua*, 509–523.

Grussenmeyer, P, Landes, T, Doneus, M and Lerma, JL. 2016. Basics of Range-Based Modelling Techniques in Cultural Heritage 3D Recording. In *3D recording, documentation and management of cultural heritage*, Stylianidis, E and Remondino, F (eds.), 305–364. Caithness: Whittles Publishing.

Heinzel, J and Sittler, B. 2010. LiDAR surveys of ancient landscapes in SW Germany: Assessment of archaeological features under forests and attempts for automatic pattern recognition. In *Space, time, place: Third International Conference on Remote Sensing in Archaeology, 17th–21st August 2009*, Tiruchirappalli, Tamil Nadu, *Indien*, Forte, M, Campana, S and Liuza, C (eds.), 113–121. Oxford: Archaeopress.

Koncani Uhač, I. (ed.) 2008. *Poluotok uronjen u more. Podmorska arheologija južne Istre u antici: Peninsula imersed in the sea*. Underwater archaeology of southern Istria in Roman antiquity. Pula.

Kraus, K and Pfeifer, N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. *ISPRS Journal of Photogrammetry and Remote Sensing*, 53: 193–203. DOI: https://doi.org/10.1016/S0924-2716(98)00009-4

Lasaponara, R, Coluzzi, R and Masini, N. 2011. Flights into the past: full-waveform airborne laser scanning data for archaeological investigation. *Journal of Archaeological Science*, 38: 2061–2070. DOI: https://doi.org/10.1016/j.jas.2010.10.003

Lasaponara, R and Masini, N. 2009. Full-waveform Airborne Laser Scanning for the detection of medi- eval archaeological microtopographic relief. *Journal of Cultural Heritage*, 10: e78–e82. DOI: https://doi.org/10.1016/j.jculher.2009.10.004

Lugmayr, A. 2013. ALS filtering. http://lbi-archpro.org/als-filtering/. Accessed 8/20/2019.

Mandlburger, G, Otepká, J, Karel, W, Wagner, W and Pfeifer, N. 2009. Orientation and Processing of Airborne Laser Scanning data (OPALS) – concept and first results of a comprehensive ALS software. In *ISPRS Workshop Laserscanning '09: Paris, France, September 1–2, 2009*, Bretar, F, Pierrot-Deseilligny, M and Vosselman, G (eds.). Société Française de Photogrammétrie et de Télédétection.
Doneus et al: Archaeological Ground Point Filtering of Airborne Laser Scan Derived Point-Clouds in a Difficult Mediterranean Environment

Miholjek, I. 2012. Podmorsko istraživanje antičkih osta-
taka arhitekture na Vižuli – kampanja 2011. Histria antiqua, 525–531.

Opitz, RS. 2013. An overview of airborne and terres-
trial laser scanning in archaeology. In Interpreting
archaeological topography: Airborne laser scanning,
3D data and ground observation, Opitz, RS and
Cowley, D (eds.), 13–31. Oxford: Oxbow Books. DOI:
https://doi.org/10.2307/j.ctvh1dqd7.7

Opitz, R and Nuninger, L. 2014. Point Clouds Segmenta-
tion of Mixed Scenes with Archeological Stand-
ing Remains: A Multi-Criteria and Multi-Scale
Iterative Approach. International Journal of Heritage
in the Digital Era, 3: 287–304. DOI: https://doi.
org/10.1260/2047-4970.3.2.287

Payne, A. 2009. ADS Guides to Good Practice. Laser Scan-
ning for Archaeology: A Guide to Good Practice#,
https://guides.archaeologydataservice.ac.uk/g2gp/
LaserScan_Toc. Accessed 1/13/2020.

Pfeifer, N, Mandlburger, G, Otepka, J and Karel, W.
2014. OPALS – A framework for Airborne Laser
Scanning data analysis. Computers, Environment
and Urban Systems, 45: 125–136. DOI: https://doi.
org/10.1016/j.compenvurbsys.2013.11.002

Pfeifer, N, Stadler, P and Briese, C. 2001. Derivation of
digital terrain models in the SCOP++ environment.
In Proceedings of OEEPE Workshop on Airborne
Laserscanning and Inferometric SAR for Detailed
Digital Terrain Models, OEEPE (ed.). Stockholm, Sweden.

Pfennigbauer, M and Ullrich, A. 2010. Improving quality of
laser scanning data acquisition through calibrated
amplitude and pulse deviation measurement. In
Proc.: SPIE 7684, Laser Radar Technology and Appli-
cations XV, Turner, MD and Kamerman, GW (eds.),
76841. DOI: https://doi.org/10.1117/12.849641

Pfennigbauer, M, Wolf, C, Weinkopf, J and Ullrich,
A. 2014. Online waveform processing for demanding
target situations. In Proc.: SPIE 9080, Laser Radar
Technology and Applications XIX; and Atmos-
pheric Propagation XI, Turner, MD, Kamerman, GW,
Wasiczko, LM and Spiller, EJ (eds.), 90800J. DOI:
https://doi.org/10.1117/12.2052994

Polat, N and Uysal, M. 2015. Investigating performance of
Airborne LiDAR data filtering algorithms for DTM
generation. Measurement, 63: 61–68. DOI: https://
doi.org/10.1016/j.measurement.2014.12.017

Ressl, C, Kager, H and Mandlburger, G. 2008. Quality
checking of ALS projects using statistics of strip dif-
fferences. IAPRS, XXXVII: 253–260.

Ressl, C, Pfeifer, N and Mandlburger, G. 2011. Applying
3d affine transformation and least squares matching
for airborne laser scanning strips adjustment with-
out gns/simu trajectory data. ISPRS – International
Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XXXVIII-5/W12:
67–72. DOI: https://doi.org/10.5194/isprsarchives-
XXXVIII-5-W12-67-2011

Schmohl, S and Sörgel, U. 2019. Submanifold sparse
convolutional networks for semantic segmentation
of large-scale als point clouds. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, IV-2/W5: 77–84. DOI: https://doi.
org/10.5194/isprs-annals-IV-2-W5-77-2019

Shan, J and Toth, CK. 2018. Topographic laser ranging and
scanning: Principles and processing. Second edition.
Boca Raton: CRC Press/Taylor & Francis Group. DOI:
https://doi.org/10.1201/9781315154381

Sithole, G and Vosselman, G. 2003. Comparison of
filtering algorithms. In Proceedings of the ISPRS
working group III/3 workshop “3-D reconstruction
from airborne laserscanner and InSAR data”, Maas,
H-G, Vosselman, G and Streilein, A (eds.), XXXIV,
3/W13: 71–78. Dresden, Germany.

Steinbacher, F, Pfennigbauer, M, Aufleger, M and
Ullrich, A. 2012. High Resolution Airborne Shallow
Water Mapping. ISPRS – International Archives of the
Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, XXXIX-B1: 55–60. DOI: https://doi.
org/10.5194/isprsarchives-XXXIX-B1-55-2012

Vacchi, M, Marriner, N, Morhange, C, Spada, G,
Fontana, A and Rovere, A. 2016. Multiproxy
assessment of Holocene relative sea-level changes
in the western Mediterranean: Sea-level variability
and improvements in the definition of the isostatic
signal. Earth-Science Reviews, 155: 172–197. DOI:
https://doi.org/10.1016/j.earscirev.2016.02.002

Winiwarter, L, Mandlburger, G, Schmohl, S and
Pfeifer, N. 2019. Classification of ALS Point
Clouds Using End-to-End Deep Learning. PFG –
Journal of Photogrammetry, Remote Sensing
and Geoinformation Science, 87: 75–90. DOI: https://
doi.org/10.1007/s41064-019-00073-0

Zhao, R, Pang, M and Wang, J. 2018. Classifying airborne
LiDAR point clouds via deep features learned by a
multi-scale convolutional neural network. Interna-
tional Journal of Geographical Information Science,
32: 960–979. DOI: https://doi.org/10.1080/13658
816.2018.1431840
