WHEN THE NUMBER OF DIVISORS IS A QUADRATIC RESIDUE

OLIVIER BORDELLÈS

Abstract. Let \(q > 2 \) be a prime number and define \(\lambda_q := \left(\frac{n}{q} \right) \) where \(\tau(n) \) is the number of divisors of \(n \) and \(\left(\frac{\cdot}{q} \right) \) is the Legendre symbol. When \(\tau(n) \) is a quadratic residue modulo \(q \), then \((\lambda_q \ast 1)(n)\) could be close to the number of divisors of \(n \). This is the aim of this work to compare the mean value of the function \(\lambda_q \ast 1 \) to the well known average order of \(\tau \). The proof reveals that the results depend heavily on the value of \(\left(\frac{2}{q} \right) \). A bound for short sums in the case \(q = 5 \) is also given, using profound results from the theory of integer points close to certain smooth curves.

1. Introduction and main result

If \(\lambda = (-1)^{\Omega} \) is the Liouville function, then

\[
L(s, \lambda) = \frac{\zeta(2s)}{\zeta(s)} \quad (\sigma > 1).
\]

This implies the convolution identity

\[
\sum_{n \leq x} (\lambda \ast 1)(n) = \left\lfloor x^{1/2} \right\rfloor.
\]

Define \(\lambda_3 := \left(\frac{n}{3} \right) \) where \(\tau(n) \) is the number of divisors of \(n \) and \(\left(\frac{\cdot}{3} \right) \) is the Legendre symbol modulo 3. Then from Proposition \[3\] below

\[
L(s, \lambda_3) = \frac{\zeta(3s)}{\zeta(s)} \quad (\sigma > 1)
\]

implying the convolution identity

\[
\sum_{n \leq x} (\lambda_3 \ast 1)(n) = \left\lfloor x^{1/3} \right\rfloor.
\]

Now let \(q > 2 \) be a prime number and define \(\lambda_q := \left(\frac{n}{q} \right) \) where \(\left(\frac{\cdot}{q} \right) \) is the Legendre symbol modulo \(q \). Our main aim is to investigate the sum

\[
\sum_{n \leq x} (\lambda_q \ast 1)(n).
\]

When \(\tau(n) \) is a quadratic residue modulo \(q \), one may wonder if \((\lambda_q \ast 1)(n)\) has a high probability to be equal to the number of divisors of \(n \). It then could be interesting to study its average order and to compare it to that of \(\tau \), i.e.

\[
\sum_{n \leq x} \tau(n) = x(\log x + 2\gamma - 1) + O(x^{\theta + \varepsilon})
\]

where \(\frac{1}{4} \leq \theta \leq \frac{131}{316} \), the left-hand side being established by Hardy \[5\], the right-hand side being the best estimate to date due to Huxley \[6\]. The main result of this paper can be stated as follows.

Theorem 1. Let \(q > 3 \) be a prime number.

\(\therefore \) If \(q \equiv \pm 1 \pmod{8} \)

\[
\sum_{n \leq x} (\lambda_q \ast 1)(n) = x\zeta(q)P_q(1)\left\{ \log x + 2\gamma - 1 + q\zeta'(q) + \frac{P'_q}{P_q}(1) \right\} + O_{q, x}\left(x^{\max(1/c_q, \theta) + \varepsilon}\right)
\]

2010 Mathematics Subject Classification. Primary 11N37; Secondary 11A25, 11M41.
Key words and phrases. Number of divisors, Legendre symbol, mean values, Riemann hypothesis.
where θ is defined in (1), c_q is given in (2) and

$$P_q(1) = \prod_p \left(1 + \sum_{m=c_q}^{q-1} \left\{ (\frac{m+1}{q}) - (\frac{m}{q}) \right\} \frac{1}{p^m} \right)$$

$$\frac{P_q'(1)}{P_q(1)} = -\sum_p \log p \left(\frac{\sum_{m=c_q}^{q-1} \left\{ (\frac{m+1}{q}) - (\frac{m}{q}) \right\} m}{1 + \sum_{m=c_q}^{q-1} \left\{ (\frac{m+1}{q}) - (\frac{m}{q}) \right\} m} \right)$$

\[\triangleright\] If $q \equiv \pm 1 \pmod{24}$

$$\sum_{n \leq x} (\lambda_q \ast 1)(n) = x^{1/2} \zeta\left(\frac{1}{2}\right) R_q\left(\frac{1}{2}\right) + O_{q,x}\left(x^{1/3+\varepsilon}\right)$$

where

$$R_q\left(\frac{1}{2}\right) := \prod_p \left(1 + \sum_{m=3}^{q-1} \left\{ (\frac{m+1}{q}) + (\frac{m}{q}) \right\} \frac{1}{p^{m/2}} \right).$$

\[\triangleright\] If $q \equiv \pm 5 \pmod{24}$, there exists $c > 0$ such that

$$\sum_{n \leq x} (\lambda_q \ast 1)(n) \ll_q x^{1/2} e^{-c(\log x)^{3/5} (\log \log x)^{1/5}}.$$

Furthermore, if the Riemann hypothesis is true, then for x sufficiently large

$$\sum_{n \leq x} (\lambda_q \ast 1)(n) \ll_{q,c} x^{1/4} e^{(\log \sqrt{q})^{1/2} (\log \log \sqrt{q})^{3/2+\varepsilon}}.$$

Example 2.

$$\sum_{n \leq x} (\lambda_2 \ast 1)(n) \approx 0.454 x (\log x + 2\gamma + 0.784) + O_{\varepsilon}\left(x^{1/2+\varepsilon}\right).$$

$$\sum_{n \leq x} (\lambda_{23} \ast 1)(n) \approx 0.899 x (\log x + 2\gamma - 0.678) + O_{\varepsilon}\left(x^{131/416+\varepsilon}\right).$$

$$\sum_{n \leq x} (\lambda_{13} \ast 1)(n) \approx 1.969 x^{1/2} + O_{\varepsilon}\left(x^{1/3+\varepsilon}\right).$$

$$\sum_{n \leq x} (\lambda_5 \ast 1)(n) \ll x^{1/2} e^{-c(\log x)^{3/5} (\log \log x)^{1/5}}.$$

2. Notation

In what follows, $x \geq e^4$ is a large real number, $\varepsilon \in (0, \frac{1}{4})$ is a small real number which does not need to be the same at each occurrence, $s := \sigma + it \in \mathbb{C}$, q always denotes an odd prime number, $\left(\frac{\cdot}{q} \right)$ is the Legendre symbol modulo q and define

$$\lambda_q := \left(\frac{x}{q} \right)$$

where $\tau(n) := \sum_{d|n} 1.$ Also, 1 is the constant arithmetic function equal to 1.

For any arithmetic functions F and G, $L(s, F)$ is the Dirichlet series of F, the Dirichlet convolution product $F \ast G$ is defined by

$$(F \ast G)(n) := \sum_{d|n} F(d)G(n/d)$$

and F^{-1} is the Dirichlet convolution inverse of F. If $r \in \mathbb{Z}_{\geq 2}$, then

$$a_r(n) := \begin{cases} 1, & \text{if } n = m^r; \\ 0, & \text{otherwise}. \end{cases}$$

For some $c > 0$, set

$$\delta_c(x) := e^{-c(\log x)^{3/5} (\log \log x)^{-1/5}}$$

and

$$\omega(x) := e^{(\log x)^{1/2} (\log \log x)^{5/2+c}}.$$
Proposition 3. Let \(q \geq 3 \) be a prime number. For any \(s \in \mathbb{C} \) such that \(\sigma > 1 \)

\(\triangleright \) If \(q \equiv \pm 1 \pmod{8} \)

\[
L(s, \lambda_q) = \zeta(qs) \zeta(s) \prod_p \left(1 + \sum_{m=c_q}^{q-1} \left\{ \frac{m+1}{q} - \frac{m}{q} \right\} \frac{1}{p^{ms}} \right)
\]

where

\[
c_q := \begin{cases}
2, & \text{if } q \equiv \pm 7 \pmod{24}; \\
\geq 4, & \text{if } q \equiv \pm 1 \pmod{24}.
\end{cases}
\]

\(\triangleright \) If \(q \equiv \pm 3 \pmod{8} \)

\[
L(s, \lambda_q) = \frac{\zeta(qs) \zeta(2s)}{\zeta(s)} \prod_p \left(1 + \sum_{m=d_q}^{q-1} \left\{ \frac{m+1}{q} + \frac{m}{q} \right\} \frac{1}{p^{ms}} \right)
\]

where

\[
d_q := \begin{cases}
2, & \text{if } q \equiv \pm 5 \pmod{24} \text{ or } q = 3; \\
3, & \text{if } q \equiv \pm 11 \pmod{24}.
\end{cases}
\]

Proof. Set \(\chi_q := \left(\frac{q}{p} \right) \) for convenience. From [8, Lemma 2.1], we have

\[
L(s, \lambda_q) = \prod_p \left(1 + \sum_{\alpha=1}^{\infty} \frac{\chi_q(\alpha+1)}{p^{\alpha s}} \right) = \prod_p \left(1 + p^s \sum_{\alpha=2}^{\infty} \frac{\chi_q(\alpha)}{p^{\alpha s}} \right)
\]

\[
= \prod_p \left\{ 1 + p^s \left(\left(1 - \frac{1}{p^s} \right)^{-1} \sum_{m=1}^{q-1} \left(\frac{m}{q} \right) \frac{1}{p^{ms}} - p^{-s} \right) \right\}
\]

\[
= \prod_p \left(1 - \frac{1}{p^s} \right)^{-1} \sum_{m=1}^{q-1} \left(\frac{m}{q} \right) \frac{1}{p^{(m-1)s}}
\]

\[
= \zeta(qs) \prod_p \left(1 + \sum_{m=2}^{q-1} \left(\frac{m}{q} \right) \frac{1}{p^{(m-1)s}} \right).
\]

If \(q \equiv \pm 1 \pmod{8} \), then \(\left(\frac{2}{q} \right) = 1 \) and

\[
L(s, \lambda_q) = \zeta(qs) \zeta(s) \prod_p \left(1 - \frac{1}{p^s} + \left(1 - \frac{1}{p^s} \right) \sum_{m=2}^{q-1} \left(\frac{m}{q} \right) \frac{1}{p^{(m-1)s}} \right)
\]

where

\[
\left(1 - \frac{1}{p^s} \right) \sum_{m=2}^{q-1} \left(\frac{m}{q} \right) \frac{1}{p^{(m-1)s}} = \sum_{m=2}^{q-1} \left(\frac{m}{q} \right) \left(\frac{1}{p^{(m-1)s}} - \frac{1}{p^{ms}} \right)
\]

\[
= \sum_{m=2}^{q-2} \left(\frac{m+1}{q} \right) \frac{1}{p^{ms}} - \sum_{m=2}^{q-1} \left(\frac{m}{q} \right) \frac{1}{p^{ms}}
\]

\[
= \left(\frac{2}{q} \right) \frac{1}{p^s} + \sum_{m=2}^{q-1} \left\{ \left(\frac{m+1}{q} \right) - \left(\frac{m}{q} \right) \right\} \frac{1}{p^{ms}} - \frac{q}{q} \frac{1}{p^{(q-1)s}}
\]

\[
= \sum_{m=2}^{q-1} \left\{ \left(\frac{m+1}{q} \right) - \left(\frac{m}{q} \right) \right\} \frac{1}{p^{ms}} + \frac{1}{p^s}.
\]

Similarly, if \(q \equiv \pm 3 \pmod{8} \), then \(\left(\frac{2}{q} \right) = -1 \) and

\[
L(s, \lambda_q) = \frac{\zeta(qs) \zeta(2s)}{\zeta(s)} \prod_p \left(1 + \frac{1}{p^s} + \left(1 + \frac{1}{p^s} \right) \sum_{m=2}^{q-1} \left(\frac{m}{q} \right) \frac{1}{p^{(m-1)s}} \right)
\]
where
\[
\left(1 + \frac{1}{p^s}\right) \sum_{m=2}^{q-1} \left(\frac{m}{q}\right) \frac{1}{p^{(m-1)s}} = \sum_{m=2}^{q-1} \left(\frac{m}{q}\right) \frac{1}{p^{(m-1)s}} + \frac{1}{p^ms} = \sum_{m=1}^{q-1} \left(\frac{m+1}{q}\right) \frac{1}{p^{m}} + \frac{q}{q} \frac{1}{p^{m}} - \frac{1}{p^{m}a}
\]
\[
= \left(\frac{2}{q}\right) \frac{1}{p^s} + \frac{q}{q} \frac{1}{p^{m}} - \frac{1}{p^{m}a}
\]
\[
= \sum_{m=2}^{q-1} \left(\frac{m+1}{q}\right) \frac{1}{p^{m}} - \frac{1}{p^{m}a}
\]

We achieve the proof noting that, if \(q \equiv \pm 1 \pmod{24}\), then \(\left(\frac{2}{q}\right) = \left(\frac{q}{2}\right) = 0\) and, similarly, if \(q \equiv \pm 11 \pmod{24}\), then \(\left(\frac{2}{q}\right) = 0\) whereas \(\left(\frac{q}{2}\right) = 2\).

4. Proof of Theorem

4.1. The case \(q \equiv \pm 1 \pmod{8}\). For \(s > 1\), we set
\[
G_q(s) = \zeta(qs) \prod_p \left(1 + \sum_{m=q}^{q-1} \left(\frac{m+1}{q}\right) \frac{1}{p^{m}}\right) = \zeta(qs)P_q(s) := \sum_{n=1}^{\infty} \frac{g_q(n)}{n^s}.
\]

First observe that \(c_q < q\) in the case \(q \equiv \pm 1 \pmod{24}\). Indeed, among the \(q - 4\) integers \(m \in \{4, \ldots, q-1\}\), it is known from [3] p.76 that there are \(\frac{1}{4}(q-3)-3\) of them such that \(\left(\frac{m}{q}\right) = \left(\frac{m+1}{q}\right)\). Consequently there are \(\frac{1}{4}(q+1)\) integers \(m \in \{4, \ldots, q-1\}\) verifying \(\left(\frac{m}{q}\right) \neq \left(\frac{m+1}{q}\right)\), and the inequality follows.

Thus this Dirichlet series is absolutely convergent in the half-plane \(s > \frac{1}{c_q}\) where \(c_q\) is given in [2], so that
\[
\sum_{n \leq x} g_q(n) \ll_{q,\varepsilon} x^{1/c_q+\varepsilon}.
\]

By partial summation, we infer
\[
\sum_{n \leq x} \frac{g_q(n)}{n} = \zeta(q)P_q(1) + O \left(x^{-1+1/c_q+\varepsilon}\right)
\]
\[
\sum_{n \leq x} \frac{g_q(n)}{n} \log \frac{x}{n} = \zeta(q)P_q(1) \log x + qP_q(1)\zeta'\left(q\right) + P_q'(1)\zeta\left(q\right) + O \left(x^{-1+1/c_q+\varepsilon}\right).
\]

From Proposition [3] \(\lambda_q * 1 = g_q * \tau\). Consequently
\[
\sum_{n \leq x} \left(\lambda_q * 1\right) (n) = \sum_{d \leq x} g_q(d) \sum_{k \leq x/d} \tau(k)
\]
\[
= \sum_{d \leq x} g_q(d) \left\{\frac{x}{d} \log \frac{x}{d} + \frac{\gamma - 1}{d} \frac{x}{d} + O \left(\left(\frac{x}{d}\right)^{\theta+\varepsilon}\right)\right\}
\]
\[
= x \left\{\zeta(q)P_q(1) \log x + qP_q(1)\zeta'\left(q\right) + P_q'(1)\zeta\left(q\right) + (2\gamma - 1)\zeta\left(q\right)P_q(1)\right\}
\]
\[
+ O \left(x^{\max(1/c_q,\theta)+\varepsilon}\right)
\]

where \(\theta\) is defined in [1] and where we used
\[
x^{-\varepsilon} \sum_{d \leq x} \frac{|g_q(d)|}{d^\theta} \ll \begin{cases} x^{1/c_q-\theta}, & \text{if } c_q^{-1} \geq \theta; \\ 1, & \text{otherwise}. \end{cases}
\]
4.2. The case $q \equiv \pm 11 \pmod{24}$. For $\sigma > 1$, we set

$$H_q(s) = \zeta(qs) \prod_p \left(1 + \sum_{m=3}^{q-1} \left\{ \frac{m+1}{q} + \frac{m}{q^s} \right\} \right)^{1/p^{ms}} := \zeta(qs)R_q(s) := \sum_{n=1}^{\infty} \frac{h_q(n)}{n^s}.$$\)

Since $q > 5$, this Dirichlet series is absolutely convergent in the half-plane $\sigma > \frac{1}{3}$, so that

$$\sum_{n \leq x} |h_q(n)| \ll q^{-\epsilon} x^{1/3+\epsilon}.$$\)

From Proposition 3, $\lambda_q \ast 1 = h_q \ast a_2$, hence

$$\sum_{n \leq x} (\lambda_q \ast 1)(n) = \sum_{d \leq x} h_q(d) \left\lfloor \frac{x}{d} \right\rfloor = x^{1/2} \sum_{d \leq x} \frac{h_q(d)}{\sqrt{d}} + O \left(x^{1/3+\epsilon} \right) = x^{1/2} H_q \left(\frac{1}{2} \right) + O \left(x^{1/3+\epsilon} \right).$$\)

4.3. The case $q \equiv \pm 5 \pmod{24}$. In this case, it is necessary to rewrite $L(s, \lambda_q)$ in the following shape.

Lemma 4. Assume $q \equiv \pm 5 \pmod{24}$. For any $\sigma > 1$, $L(s, \lambda_q) = \frac{K_q(s)}{\zeta(s)\zeta(2s)}$ with

$$K_q(s) := \begin{cases}
\zeta(5s), & \text{if } q = 5 \\
\zeta(4s)L_q(s), & \text{if } q \equiv \pm 19, \pm 29 \pmod{120} \\
\zeta(s)\zeta(4s), & \text{if } q \equiv \pm 43, \pm 53 \pmod{120}
\end{cases}$$\)

where

$$L_q(s) := \zeta(qs) \prod_p \left(1 + \frac{2(p^{2s} + p^s + 1)}{p^{3s} - p^{3s}} + \frac{p^{2s} + 1}{p^{3s} - 1} \sum_{m=6}^{q-1} \left\{ \frac{m+1}{q} + \frac{m}{q^s} \right\} \frac{1}{p^{ms}} \right)$$\)

and

$$\mathcal{L}_q(s) := \zeta(qs) \prod_p \left(1 - \frac{2p^{2s} - 1}{(p^{2s} - 1)^3 (p^{2s} + 1)} + \frac{p^{2s}}{(p^{2s} - 1)^3 (p^{2s} + 1)} \sum_{m=6}^{q-1} \left\{ \frac{m+1}{q} + \frac{m}{q^s} \right\} \frac{1}{p^{ms}} \right).$$\)

The Dirichlet series L_q is absolutely convergent in the half-plane $\sigma > \frac{1}{5}$, and the Dirichlet series \mathcal{L}_q is absolutely convergent in the half-plane $\sigma > \frac{1}{6}$.

Proof. From Proposition 3, we immediately get

\[(3) \]

$$L(s, \lambda_q) = \frac{\zeta(5s)}{\zeta(s)\zeta(2s)}.$$\)

Now suppose $q > 5$ and $q \equiv \pm 5 \pmod{24}$. In this case, $\left(\frac{3}{q}\right) + \left(\frac{2}{q}\right) = -2$ and $\left(\frac{4}{q}\right) + \left(\frac{4}{q}\right) = 0$ so that we may write by Proposition 3

$$L(s, \lambda_q) = \frac{\zeta(qs)\zeta(2s)}{\zeta(s)\zeta(2s)} \prod_p \left(1 - \frac{2}{p^{2s} + \sum_{m=4}^{q-1} \left\{ \frac{m+1}{q} + \frac{m}{q^s} \right\} \frac{1}{p^{ms}} \right)$$\)

where

$$K_q(s) := \zeta(qs) \prod_p \left(1 - \frac{1}{(p^{2s} - 1)^2} + \frac{p^{4s}}{(p^{2s} - 1)^2} \sum_{m=4}^{q-1} \left\{ \frac{m+1}{q} + \frac{m}{q^s} \right\} \frac{1}{p^{ms}} \right).$$\)
Assume \(q \equiv \pm 19, \pm 29 \pmod{120} \). Then
\[
\left(\frac{5}{q} \right) + \left(\frac{4}{q} \right) = \left(\frac{6}{q} \right) + \left(\frac{5}{q} \right) = 2.
\]

\(K_q(s) \) can therefore be written as
\[
K_q(s) = \zeta(qs) \prod_p \left(1 + \frac{p^s + 2}{p^s (p^{2s} - 1)^2} + \frac{q^{4s}}{(p^{2s} - 1)^2} \sum_{m=6}^{q-1} \left(\frac{m+1}{q} \right) \frac{1}{p^m} \right)
\]
\[
= \zeta(qs) \zeta(4s) \prod_p \left(1 + \frac{2(p^s - 1) + 1}{p^s - p^{2s}} + \frac{q^{2s} + 1}{p^{2s} - 1} \sum_{m=6}^{q-1} \left(\frac{m+1}{q} \right) \frac{1}{p^m} \right)
\]
\[
= \zeta(4s) L_q(s).
\]

Similarly, if \(q \equiv \pm 43, \pm 53 \pmod{120} \), then
\[
\left(\frac{5}{q} \right) + \left(\frac{4}{q} \right) = \left(\frac{6}{q} \right) + \left(\frac{5}{q} \right) = 0.
\]

Hence
\[
K_q(s) := \zeta(qs) \prod_p \left(1 - \frac{1}{(p^{2s} - 1)^2} + \frac{p^{4s}}{(p^{2s} - 1)^2} \sum_{m=6}^{q-1} \left(\frac{m+1}{q} \right) \frac{1}{p^m} \right)
\]
\[
= L_q(s) \zeta(4s).
\]

The proof is complete.

We now are in a position to prove Theorem 1 in the case \(q \equiv \pm 5 \pmod{24} \).

Assume first that \(q \equiv \pm 19, \pm 29 \pmod{120} \) and let \(\ell_q(n) \) be the \(n \)-th coefficient of the Dirichlet series \(L_q(s) \). From Lemma 4 \(\lambda_q * 1 = \ell_q * a_1 * a_2^{-1} \) and therefore
\[
\sum_{n \leq x} (\lambda_q * 1) (n) = \sum_{d \leq x} \ell_q(d) \sum_{m \leq (x/d)^{1/4}} M \left(\frac{1}{m^2} \sqrt{\frac{x}{d}} \right) = \sum_{d \leq x} \ell_q(d) L \left(\sqrt{\frac{x}{d}} \right).
\]

Since \(L(z) \ll z \delta_c(z) \) for some \(c > 0 \)
\[
\sum_{n \leq x} (\lambda_q * 1) (n) \ll x^{1/2} \sum_{d \leq x} \frac{\ell_q(d)}{\sqrt{d}} \delta \left(\sqrt{\frac{x}{d}} \right)
\]
\[
\ll x^{1/2} \left(\sum_{d \leq x} + \sum_{\sqrt{x} < d \leq x} \right) \frac{|\ell_q(d)|}{\sqrt{d}} \delta \left(\sqrt{\frac{x}{d}} \right)
\]
\[
\ll x^{1/2} \delta_c \left(x^{1/4} \right) + x^{1/2} \sum_{d > \sqrt{x}} \frac{|\ell_q(d)|}{\sqrt{d}}.
\]

The Dirichlet series \(L_q(s) := \sum_{n=1}^{\infty} \ell_q(n) n^{-s} \) is absolutely convergent in the half-plane \(\sigma > \frac{1}{4} \), consequently
\[
\sum_{d \leq x} |\ell_q(d)| \ll q, \epsilon \ z^{1/5+\epsilon}
\]
and by partial summation
\[
\sum_{d > x} \frac{|\ell_q(d)|}{\sqrt{d}} \ll q, \epsilon \ z^{-3/10+\epsilon}.
\]

We infer that
\[
\sum_{n \leq x} (\lambda_q * 1) (n) \ll x^{1/2} \delta_c \left(x^{1/4} \right) + x^{7/20+\epsilon} \ll x^{1/2} \delta_c \left(x^{1/4} \right).
\]

Now suppose that the Riemann hypothesis is true. By [11], which is a refinement of [9], we know that \(M(z) \ll q, z^{1/2} \omega(z) \). The method of [9] [11] may be adapted to the function \(L \) yielding
\[
L(z) \ll q, z^{1/2} \omega(z) \log z.
\]

Observe that, for any \(a \geq 2, \epsilon > 0 \) and \(z \geq e^{\epsilon} \)
\[
\log z \exp \left(\sqrt{\log z (\log \log z)^a} \right) \ll \exp \left(\sqrt{\log z (\log \log z)^{a+\epsilon}} \right)
\]
so that \(L(z) \ll e^{z} \log z \) and hence

\[
\sum_{n \leq x} (\lambda_q \star 1)(n) \ll x^{1/4} \sum_{d \leq x} \frac{|\lambda_q(d)|}{d^{1/4}} \omega \left(\sqrt{\frac{x}{d}} \right) \ll x^{1/4} \omega \left(\sqrt{x} \right)
\]

achieving the proof in that case. The case \(q = 5 \) is similar but simpler since \(\lambda_5 \star 1 = a_5 \star a_2^{-1} \) by \(\text{[3]} \).

Finally, when \(q \equiv \pm 43, \pm 53 \pmod{120} \), we proceed as above. Let \(\nu_q(n) \) be the \(n \)-th coefficient of the Dirichlet series \(\mathcal{L}_q(s) \). Then \(\lambda_q \star 1 = \nu_q \star a_2^{-1} \star a_2^{-1} \) from Lemma \(\text{[4]} \) so that

\[
\sum_{n \leq x} (\lambda_q \star 1)(n) = \sum_{d \leq x} \nu_q(d) \sum_{m \leq (x/d)^{1/4}} \mu(m)M \left(\frac{1}{m^2} \sqrt{\frac{x}{d}} \right)
\]

and estimating trivially yields

\[
\sum_{n \leq x} (\lambda_q \star 1)(n) \ll x^{1/2} \sum_{d \leq x} \frac{|\nu_q(d)|}{\sqrt{d}} \sum_{m \leq (x/d)^{1/4}} \frac{1}{m^2} \delta_c \left(\frac{1}{m^2} \sqrt{\frac{x}{d}} \right)
\]

and we complete the proof as in the previous case. \(\square \)

Remark 5. Let us stress that a bound of the shape

\[
\sum_{n \leq x} (\lambda_q \star 1)(n) \ll x^{1/4 + \varepsilon}
\]

for all \(x \) sufficiently large and small \(\varepsilon > 0 \), is a necessary and sufficient condition for the Riemann hypothesis. Indeed, if this estimate holds, then by partial summation the series \(\sum_{n=1}^{\infty} (\lambda_q \star 1)(n)n^{-s} \) is absolutely convergent in the half-plane \(\sigma > \frac{5}{4} \). Consequently, the function \(K_q(s) \zeta(2s)^{-1} \) is analytic in this half-plane. In particular, \(\zeta(2s) \) does not vanish in this half-plane, implying the Riemann hypothesis, proving the necessary condition, the sufficiency being established above.

5. **A short interval result for the case \(q = 5 \)**

5.1. **Introduction.** This section deals with sums of the shape

\[
\sum_{x < n \leq x + y} (\lambda_5 \star 1)(n)
\]

where \(x^\varepsilon \leq y \leq x \). From Theorem \(\text{[11]} \)

\[
\sum_{x < n \leq x + y} (\lambda_5 \star 1)(n) \ll x^{1/2} e^{-c \left(\log x^{1/4} \right)^{3/5} \left(\log \log x^{1/4} \right)^{-1/5}}
\]

and if the Riemann hypothesis is true, then

\[
\sum_{x < n \leq x + y} (\lambda_5 \star 1)(n) \ll e^{c \left(\log x \right)^{1/2} \left(\log \log x \right)^{-3/2 + \varepsilon}}
\]

The purpose is to improve significantly upon these estimates when \(y = o(x) \), by using fine results belonging to the theory of integer points near a suitably chosen smooth curve. To this end, we need the following additional specific notation. Let \(\delta \in (0, \frac{1}{4}) \), \(N \in \mathbb{Z}_{\geq 1} \) large, \(f : [N, 2N] \rightarrow \mathbb{R} \) be any map, and define \(R(f, N, \delta) \) to be the number of elements of the set of integers \(n \in [N, 2N] \) such that \(\|f(n)\| < \delta \), where \(\|x\| \) is the distance from \(x \) to its nearest integer. Note that the trivial bound is given by

\[
\sum_{x < n \leq x + y} (\lambda_5 \star 1)(n) \ll \sum_{x < n \leq x + y} \tau(n) \ll y \log x.
\]

5.2. **Tools from the theory.** In what follows, \(N \in \mathbb{Z}_{\geq 1} \) is large and \(\delta \in (0, \frac{1}{4}) \). The first result is \(\text{[7]} \) Theorem 5] with \(k = 5 \). See also \(\text{[2]} \) Theorem 5.23 (iv)].

Lemma 6 (5th derivative test). Let \(f \in C^5[N, 2N] \) such that there exist \(\lambda_4 > 0 \) and \(\lambda_5 > 0 \) satisfying \(\lambda_4 = N \lambda_5 \) and, for any \(x \in [N, 2N] \)

\[
|f^{(4)}(x)| \asymp \lambda_4 \quad \text{and} \quad |f^{(5)}(x)| \asymp \lambda_5.
\]

Then

\[
R(f, N, \delta) \ll N \lambda_5^{1/15} + N \delta^{1/6} + (\delta \lambda_4^{-1})^{1/4} + 1.
\]
Lemma 9. Let \(f \in C^1 \left([N, 2N] \right) \) such that there exist \(\lambda_1 > 0 \) such that \(|f'(x)| \geq \lambda_1 \). Then
\[
\mathcal{R}(f, N, \delta) \ll N \lambda_1 + N \delta + \delta \lambda_1^{-1} + 1.
\]
This result is essentially a consequence of the mean value theorem.

The second tool is \([4] \) Theorem 7] with \(k = 3 \).

Lemma 8. Let \(s \in \mathbb{Q}^* \setminus \{ \pm 2, \pm 1 \} \) and \(X > 0 \) such that \(N \leq X^{1/s} \). Then there exists a constant \(c_3 := c_3(s) \in (0, \frac{1}{2}) \) depending only on \(s \) such that, if
\[
N^2 \delta \leq c_3
\]
then
\[
\mathcal{R} \left(\frac{X}{n^s}, N, \delta \right) \ll (XN^{3-s})^{1/7} + \delta (XN^{59-s})^{1/21}.
\]

Our last result relies the short sum of \(\lambda_5 \ast 1 \) to a problem of counting integer points near a smooth curve.

Lemma 9. Let \(1 \leq y \leq x \). Then
\[
\sum_{x < n \leq x + y} (\lambda_5 \ast 1)(n) \ll \max_{(16y^2 x^{-1})^{1/5} < N \leq (2x)^{1/5}} \mathcal{R} \left(\frac{x}{n^5}, N, \frac{y}{\sqrt{N^{3/5}}} \right) \log x + y x^{-1/2} + x^{-1/3} y^{2/5}.
\]

Proof. Using (3), we get
\[
\sum_{n \leq x} (\lambda_5 \ast 1)(n) = \sum_{d \leq \sqrt{x}} \mu(d) \left(\frac{x}{d^5} \right)^{1/5}
\]
so that
\[
\sum_{x < n \leq x + y} (\lambda_5 \ast 1)(n) \ll \sum_{d \leq \sqrt{x}} \mu(d) \left(\left[\frac{x + y}{d^5} \right]^{1/5} - \left[\frac{x}{d^5} \right]^{1/5} \right) + \sum_{\sqrt{x} < d \leq x + y} \mu(d)
\ll \sum_{d \leq \sqrt{x}} \left(\left[\frac{x + y}{d^5} \right]^{1/5} - \left[\frac{x}{d^5} \right]^{1/5} \right) + y x^{-1/2}
\ll \sum_{d \leq \sqrt{x}} \sum_{x < d^2 n \leq x + y} 1 + y x^{-1/2}
\ll \sum_{n \leq (2x)^{1/5}} \sum_{x < d^2 n \leq x + y} \left[\frac{x + y}{n^5} \right]^{1/5} - \left[\frac{x}{n^5} \right]^{1/5} + x^{-1/3} y^{2/5} + y x^{-1/2}
\ll \max_{(16y^2 x^{-1})^{1/5} < N \leq (2x)^{1/5}} \mathcal{R} \left(\frac{x}{n^5}, N, \frac{y}{\sqrt{N^{3/5}}} \right) \log x + y x^{-1/2} + x^{-1/3} y^{2/5}
\]
and for any integers \(N \in (16y^2 x^{-1})^{1/5}, (2x)^{1/5} \) and \(n \in [N, 2N] \)
\[
\sqrt{\frac{x + y}{n^5}} - \sqrt{\frac{x}{n^5}} < \frac{y}{\sqrt{N^{3/5}}} < \frac{1}{4}
\]
so that the sum does not exceed
\[
\ll \max_{(16y^2 x^{-1})^{1/5} < N \leq (2x)^{1/5}} \mathcal{R} \left(\frac{x}{n^5}, N, \frac{y}{\sqrt{N^{3/5}}} \right) \log x + x^{-1/3} y^{2/5} + y x^{-1/2}
\]
as asserted. \(\square \)

5.3. The main result.

Theorem 10. Assume \(y \leq c_3 x^{1/20} \) where \(c_3 := c_3 \left(\frac{5}{4} \right) \) is given in (3). Then
\[
\sum_{x < n \leq x + y} (\lambda_5 \ast 1)(n) \ll \left(x^{1/12} + y x^{-4/9} \right) \log x.
\]
Furthermore, if \(y \leq c_3 x^{10/36} \)
\[
\sum_{x < n \leq x + y} (\lambda_5 \ast 1)(n) \ll x^{1/12} \log x.
\]
Proof. We split the first term in Lemma 4 into three parts, according to the ranges
\[(16y^2 x^{-1})^{1/5} < N \leq 2x^{1/10}, \quad 2x^{1/10} < N \leq 2x^{1/6} \quad \text{and} \quad 2x^{1/6} < N \leq (2x)^{1/5}.
\]
In the first case, we use Lemma 8 with
\[
\lambda_4 = (xN^{-13})^{1/2} \quad \text{and} \quad \lambda_5 = (xN^{-15})^{1/2}
\]
which yields
\[
\max_{(16y^2 x^{-1})^{1/5} < N \leq 2x^{1/10}} \mathcal{R} \left(\frac{x}{n^5}, N, \frac{y}{\sqrt{N^3 x}} \right) \ll x^{1/12} + x^{-1/40} y^{1/6} + x^{-3/20} y^{1/4}.
\]

For the second range, we use Lemma 8 with
\[X = x^{1/2}, \ s = \frac{5}{2}, \text{ and } \delta = y \left(N^3 x \right)^{-1/2}.
\]
Notice that the conditions
\[N > 2x^{1/10} \quad \text{and} \quad y \leq c_3 x^{11/20}
\]
ensure that
\[\delta < \frac{1}{2} \quad \text{and} \quad N^2 \delta \leq c_3.
\]
We get
\[
\max_{2x^{1/10} < N \leq 2x^{1/6}} \mathcal{R} \left(\frac{x}{n^5}, N, \frac{y}{\sqrt{N^3 x}} \right) \ll x^{1/12} + yx^{-4/9}.
\]

The last range is easily treated with (4), giving
\[
\max_{2x^{1/6} < N \leq (2x)^{1/5}} \mathcal{R} \left(\frac{x}{n^5}, N, \frac{y}{\sqrt{N^3 x}} \right) \ll x^{1/12} + yx^{-3/4}.
\]

Using Lemma 9 we finally get
\[
\sum_{x < n \leq x+y} \lambda_5 \ast 1 (n) \ll \left(x^{1/12} + x^{-1/40} y^{1/6} + x^{-3/20} y^{1/4} + yx^{-4/9} \right) \log x + x^{-1/5} y^{2/5}
\]
and note that
\[x^{-1/40} y^{1/6} + x^{-3/20} y^{1/4} + x^{-1/5} y^{2/5} \ll x^{1/12} \quad \text{as soon as} \quad y \ll x^{13/20}.
\]
This completes the proof of the first estimate, the second one being obvious.

\[\square\]

6. Acknowledgments

The author deeply thanks Prof. Kannan Soundararajan for the help he gave him to adapt his result to the function \(L(x) \), and Benoit Cloitre for bringing this problem to his attention.

References

[1] M. Balazard and A. de Roton, Notes de lecture de l'article "Partial sums of the Môbius function" de Kannan Soundararajan. arXiv.org, 2008, arXiv:0810.3587v1.
[2] O. Bordelès, Arithmetic Tales, Springer, 2012.
[3] H. Davenport, The Higher Arithmetic, 5th edition, Cambridge University Press, London, New York, 1982.
[4] M. Filaseta and O. Trifonov, The distribution of fractional parts with applications to gap results in number theory, Proc. London Math. Soc. 73(3) (1996), 241–278.
[5] G. H. Hardy, On Dirichlet's divisor problem, Proc. London Math. Soc. 15 (1916), 1–25.
[6] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87 (2003), 591–609.
[7] M. N. Huxley & P. Sargos, Points entiers au voisinage d’une courbe plane de classe \(C^n \), II, Functiones et Approximatio 35 (2006), 91–115.
[8] R. K. Muthumalai, Note on Legendre symbols connecting with certain infinite series, Notes on Number Theory and Discrete Mathematics 19 (2013), 77–83.
[9] K. Soundararajan, Partial sums of the Môbius function, J. Reine Angew. Math. 631 (2009), 141–152.

2 allée de la combe, 43000 Aiguilhe, France
E-mail address: borde43@wanadoo.fr