Equivalent Circuit Model of a Pulse Planar Transformer and Endurance to Abrupt dv/dt

Loreine Makki ©, Antoine Laspeyres ©, Corentin Darbas, Anne-Sophie Descamps, Marc Anthony Mannah, Christophe Batard ©, and Nicolas Ginot ©

Abstract—Wide-bandgap (WBG) semiconductor materials offer faster and more reliable power electronic components in electric energy conversion systems. However, their faster switching speed and abilities to operate at higher frequency than silicium devices have brought new challenges, such as electromagnetic interference (EMI) issues. In gate driver applications, EMI issues must be tackled given the close proximity between gate driver systems and WBG power modules. This article focuses on planar pulse transformers for gate drivers in high power applications (3.3 kV, 500 A SiC module). This article tries to give a standard procedure to design, then, simulate pulse transformers with their electrostatic shielding. First, a design guideline using Altium designer is proposed to respect the European standards. A method to extract the transformer design from Altium to Ansys is also proposed. Finally, a frequency analysis is discussed to use in Ansys simulations and parameters extraction. Tests have been performed to check the proposed transformer’s electromagnetic compatibility immunity under a 125 kV μs$^{-1}$ common mode transient immunity test.

Index Terms—Altium designer, ANSYS Q3D, driver circuits, electromagnetic compatibility (EMC), planar transformer, pulse transformer, silicon carbide (SiC) metal oxide semiconductor field effect transistor (MOSFET).

I. INTRODUCTION

In high-power applications (>100 kW), dedicated gate drivers are often used to operate power semiconductor devices. They must provide an optimal command for power semiconductors using an electrically insulated circuit. Gate drivers design can be divided into four functions [1]: the transmission of command orders through the galvanic isolation, isolated power supply, output stage, and protection functions, such as short-circuit protection.

Manuscript received November 4, 2021; revised February 8, 2022; accepted March 7, 2022. Date of publication March 17, 2022; date of current version May 23, 2022. This work was supported by the Additive Manufactured high voltage high current diode less SiC smart Power Module (AM-PM) DGA RAPID project from the IETR laboratory, the French ministry of defense, SAFRAN Tech and DEEP concept. Recommended for publication by Associate Editor B. Chen. (Corresponding author: Antoine Laspeyres.)

Loreine Makki is with the Electrical Engineering, The International University of Beirut, Beirut 1107 2020, Lebanon (e-mail: loreine.makki@etu.univ-nantes.fr).
Antoine Laspeyres, Corentin Darbas, Anne-Sophie Descamps, Christophe Batard, and Nicolas Ginot are with the CNRS, IETR UMR 6164, Nantes University, F-44000 Nantes, France (e-mail: antoine.laspeyres@univ-nantes.fr; corentin.darbas@univ-nantes.fr; anne-sophie.descamps@univ-nantes.fr; christophe.batard@univ-nantes.fr; nicolas.ginot@univ-nantes.fr).
Marc Anthony Mannah is with the Lebanese International University, Beirut 14604, Lebanon (e-mail: marc.mannah@liu.edu.lb).
Color versions of one or more figures in this article are available at https://doi.org/10.1109/TPEL.2022.3160278.
Digital Object Identifier 10.1109/TPEL.2022.3160278

A. Gate Driver Functions

The transmission of command orders through the galvanic isolation is often realized by digital isolators or pulse transformers. Fig. 1 shows a typical structure used in recent gate drivers, such as the CMT-TIT8244 from Cissoid [2] or the CGD1700HB3P-HM3 from Wolfspeed [3].

To drive power semiconductors, an open-loop dc–dc converter is used for the isolated power supply. Transformer-based converters using push–pull topologies are widely used. As the power consumption is low in gate driver applications (<5 W), these topologies’ efficiency and good electromagnetic interference (EMI) while being simple to design make them attractive [4].

The output-stage circuit is placed as close to the power semiconductor as possible to drive it. Even if the mean power consumption is low, a gate current inrush of several amperes is needed to turn ON and OFF power semiconductors. The output stage allows signal buffering in order to drive the gate voltage of the power transistor. To drive silicon carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs), gate voltage applied by the output stage ranges from +20 V to 5 V for second generation SiC devices to +15 V to −4 V for third generation ones.

In recent gate drivers, various protection functions are implemented. This allows the gate driver to detect or prevent abnormal operations of the power component. In high power applications, three main features are often available. An overcurrent-detection method detects short circuits, and turns the power component as fast as possible to avoid short-circuit failure and the component destruction. Antioverlap protection system prevents both power components to turn ON at the same time to avoid short-circuit
situations. Undervoltage lockout (UVLO) systems are also used to detect low power supply in the gate driver, which can lead to fail operation of the power component.

B. Isolation Technology and EMC Issues

Wide-bandgap (WBG) semiconductors, such as SiC MOSFETs, allow higher frequency switching power electronics for better efficiency [5]. Nevertheless, as switching frequency increases, WBG poses new EMI issues, such as switching oscillations [6]–[8]. Given the close proximity between gate drivers and power component, this EMI sources create common currents though the gate driver, as shown in Fig. 2. To ensure that common mode (CM) current does not trigger the output stage, close attention must be paid to reduce the parasitic capacitance of the transmission line through the galvanic isolation. Common mode transient immunity (CMTI) defines the maximum tolerable rate of rise or fall of the CM voltage applied between both isolated circuits, which will not trigger the detection circuits. This ensures both transmitter and receiver sides of the isolated transmission line to function without error within the specified application.

In high-power applications, optoisolator technologies are rarely used given their parasitic capacitance and the difficulties for integration of optical fibers commands. Recent gate drivers mainly use two technologies: digital isolators and pulse transformers.

Digital capacitive isolators allow unidirectional isolated data transmission. A single-ended input signal (IN) is split into two differential signal components to pass through the isolation barrier. Each signal component is differentiated to be compared with one another. These transient inputs are then converted into short pulses, thanks to Schmitt triggers. As long as the positive input of a comparator has a higher potential than its negative input, the comparator output will present a logical high, thus converting an input transient into a short output pulse. The IN is then reconstructed with a NOR-gate flip-flop (see Fig. 3).

In pulse transformer-based drivers, the transient signal is applied to the pulse transformer. The transient signal is then decoded on the other side of the pulse transformer. A serial capacitance is connected with the primary to prevent the dc magnetic field in the pulse transformer, which can lead to the core saturation. Bidirectional communication is possible by applying a longer pulse to the secondary winding of the pulse transformer. Error message is usually sent using this method in order to not increase the parasitic capacitance by adding a dedicated transmission line (see Fig. 4).

In order to reduce the circuit size, new gate driver-integrated circuits (ICs) using coreless transformer technology have been developed [12]. This design allows smaller parasitic capacitance and a greater operating limit because of the core saturation. Table I provides additional information of each solutions.

This article focuses on a planar transformers technology in order to improve their CMTI while reducing the parasitic capacitance as low as possible by adding electrostatic shielding. The targeted application is the transmission line of high-power gate driver for a 3300 V, 500 A MOSFET SiC module. The operating voltage chosen is 2.5 kV. First, a design method for pulse planar transformers with Altium designer is proposed. Then, a simulation methodology of said pulse transformers using

TABLE I

COMPARISON BETWEEN THE DIFFERENT SOLUTIONS FOR ISOLATED GATE DRIVING [12]

Parameter	Planar Pulse transformer	isolated gate-driver IC (coreless pulse transformer)	Digital capacitive isolator
isolation level	Reinforced, basic or functional	Reinforced, basic or functional	Reinforced, basic or functional
propagation delay	$\geq 35 \text{ ns}$	$\approx 35 \text{ ns}$	$\approx 50 \text{ ns}$
Parasitic in-out capacitance	$\leq 10 \text{ pF}$	$\leq 2 \text{ pF}$	$\approx 1 \text{ pF}$
CMTI	$\geq 150 \text{ kV} \mu\text{A}^{-1}$	$\geq 150 \text{ kV} \mu\text{A}^{-1}$	$\geq 100 \text{ kV} \mu\text{A}^{-1}$
Ansys is exposed. Finally, experimental results are compared with Ansys simulation using 125 kV μs⁻¹ dv/dt to simulate the switching of a power transistor connected to the gate driver.

II. PULSE TRANSFORMER DESIGN USING ALTUIUM DESIGNER

Pulse transformer is one of the mainstream solutions used to drive power components in HB configuration. This transformer must provide galvanic isolation between the controller connected to the primary side and the power component connected to the secondary side. Moreover, pulse transformers are often used as a dc supply to drive the power components [12]. Recent gate drivers (CMT-TIT8244 and CGD1700HB3P-HM3) often use a dedicated dc power supply to power new features, such as UVLO or short-circuit detection. In such applications, pulse transformers do not need to supply dc energy reducing the risk of magnetic saturation. In aeronautical applications, planar design presents two advantages: reduced footprint and good reliability due to the isolation properties of FR-4 epoxy [1].

Due to EMC issues and CM current issues, the pulse transformer integrates electrostatic shielding between the primary and the secondary windings. Electrostatic shielding acts as a Faraday cage to block the effect of an electric field. They can reduce the electrostatic field created by CM currents while being transparent to pulses as they are ineffective against magnetic field. These screens are commonly linked to their respective ground in order to drain CM currents and reduce EMC noises. Planar topology allows easier screen design and integration. The pulse transformer structure is shown in Fig. 5.

A. Standard Requirement

Pulse transformers must provide galvanic isolation between the primary side and the secondary side. As the secondary side is connected to the power component, its potential can rise from 0 V to the power component maximum potential (2.5 kV in this article). To ensure people safety who are connected to the primary side, the pulse transformer must respect electrical standard isolation. In planar applications, electrical standards can be divided into three measures: clearance, creepage distance, and solid isolation. Fig. 6 shows the three standard parameters.

Clearance is the shortest distance in the air between two conductors. This standard value ensures that conductors will not arc through the air. In planar transformer applications, one must know that ferrite cores are considered as conductors. Thus, the distance between two conductors must be clearance distance plus ferrite cores’ width. Creepage distance is the shortest distance to another conductor along the surface of the insulating material of the printed circuit board (PCB). This distance ensures that conductors will not arc if conductive dust particles were to settle on the PCB. Finally, solid isolation gives the peak voltage solid isolators, such as FR4-Epoxy must hold to ensure that conductors will not arc. When dealing with solid isolation, planar transformers design usually considers the direct path between both conductors. Red arrow in Fig. 7 shows this path. As stated previously, ferrite cores offer a zero length path for electricity as those are electrical conductors. Thus, one must take into consideration the electrical path going through the ferrite core. One example of such a path is shown in yellow in Fig. 7.

B. Pulse Transformer Design

1) Standard Requirements: The pulse transformer design focuses on a 3300 V, 500 A SiC MOSFET module. The operating voltage chosen is 2.5 kV. The European standard EN 50178 [13] is used as a requirement for aeronautical purposes. The reinforced isolation was used. The European standard gives a 22.9 mm clearance as well as a 25 mm creepage distance. According to the standard, solid isolation must withstand a 18.4 kV impulse voltage. The MCL-E-679F (J) FR4 epoxy multilayer material is used for solid isolation because of its high dielectric strength (≥40 kV mm⁻¹). Therefore, the solid isolation between each conductor must be higher than 460 μm.
2) Magnetic Core Requirements: In pulse transformer applications, a rectangular shape pulse is applied across the transformer winding. If a voltage V is applied to a coil of N turns during Δt time, a magnetic flux density ΔB will build up. To avoid saturation of the magnetic core, the core area A must be chosen to respect the basic pulse transformer (1) [14].

$$V \cdot \Delta t = N \cdot A \cdot \Delta B. \quad (1)$$

In this article, 25 ns long pulses are used under a 15 V voltage constant (see Fig. 10). To reduce the transformer size as much as possible, the smallest planar core from ferroxcube was used (E14/3.5/Core 5/R). Assuming a maximum magnetic flux density $\Delta B = 50$ mT to reduce core loss, (1) gives a minimum of turns $N = 0.7$.

3) Coil Turn Requirements: To simply pulse transformers transient behavior analysis for operation with rectangular pulse, the IEEE standardized the equivalent circuit of pulse transformers [15]. In this simplified model 2, resulting criteria are mainly discussed: the overshoot and the rising time of the rectangular pulse. In their study, Bortis et al. [16] discussed about the transformer leakage inductance and capacitance impact regarding these criteria. To have the fastest rising time possible, leakage inductance must be kept as low as possible. Nevertheless, if the transformer leakage inductance is too low, high voltage overshoot is to be expected.

As leakage inductance is proportional to N^2 [16], a balance must be achieved to keep a fast rising time while minimizing the resulting overshoot. Several designs with $N \in [1; 5]$ were simulated using Ansys. A number of turns $N = 3$ was finally chosen.

4) Resulting Design: The pulse transformer is composed of three turns with an electrostatic screen 210 μm away from the primary side. The secondary side is a mirror of the primary side to get a winding ratio of 1 between primary and secondary circuits. As solid isolation is critical in planar transformer application, a safety factor of 2 was applied to the standard impulse voltage resulting. Thus, each side is separated from the other by a 1 mm FR-4 epoxy distance to respect standard. A minimum distance of 1 mm was also applied between conductors and ferrite according to Fig. 7. To design such transformer, a glued double E core is used as it is not a typical PCB with a thickness of 1.6 mm. Fig. 8 shows the planar transformers characteristics.

III. PULSE TRANSFORMER SIMULATION METHODOLOGY

The employed simulation process in ANSYS included alternative software tools. The model being primarily implemented in Altium designer was imported into ANSYS SIWAVE using specific data exchange files. After being verified in terms of layer stack up, thickness, and material assignment, it was exported into ANSYS Q3D extractor, which can be dynamically linked with ANSYS circuit design for further analysis.

Being the leading extraction parasitic tool, ANSYS Q3D extractor was employed to simulate and analyze the planar pulse transformer model. The electromagnetic field simulations conducted by this software are vital for the extraction of resistance, conductance, partial inductance, and capacitance, known as RLG parameters [17]. The central objective is to ensure compliant simulation and experimental results, which will establish a reliable foundation for imminent experimentations. The Q3D Extractor exploits the finite element method and method of moments to provoke an electromagnetic field solution. It relies on the simplification of Maxwell’s equations, termed quasi-static approximation by anticipating that the size of the analyzed design is diminutive compared with the wavelength of maximum sought frequency, where the coupling between magnetic and electric fields can be ignored [9].

As shown in Fig. 9, the modeled design in Altium designer was imported into ANSYS SIWAVE to verify layer stack up and material assignment before being exported into ANSYS Q3D Extractor. The complete analysis performed in the latter allows the determination of RLG parameters. The analyzed...
model can be dynamically linked with ANSYS circuit design as it grants coordinated simulation of the subcircuit with the project’s original simulator. This will permit the determination of the transformer scattering (S) parameters and effectively analyze the transformer equivalent circuit model, which will be demonstrated in the sections thereafter. The model reveals the copper windings and shielding layers that are integrated in an FR4 Epoxy dielectric material, all secured by an EE 3F36 ferrite core.

IV. TRANSFORMER SCATTERING PARAMETERS

A. Transformer Eligible Frequency Band

As the pulse transformer was exported into ANSYS, a spectral analysis is need to estimate the frequency band used in the short-pulse transmission. The method used to pass data through the galvanic isolation can be described as follow: a positive pulse on the primary winding means a rising edge of the PWM input and a negative pulse means a falling edge. With WBG semiconductors and the rising in the switching frequency, short pulses were chosen to maximize the gate driver switching frequency. Based on the pulse generator (UCC27517DBV) used, 25 ns long short pulse was targeted. Pulse parameters can be seen in Fig. 10.

The signal of Fig. 10 was implemented on MATLAB, and a frequency bandwidth analysis was performed using the obw function. Fig. 11 shows the function result. A 50 kHz PWM was chosen with a duty cycle of 50%. Sampling time is 0.7 ns.

A frequency domain analysis is realized by setting up a linear network analysis over the previously specified frequency band. This final step will enable the computation of the frequency-dependent scattering parameters, which will be compared with the experimental measurements revealed in Section IV-C.

B. S Parameter Simulation

Intending to study the electrical behavior of the planar transformer and demonstrate a reliable simulation criterion, S parameter simulation analysis was implemented and compared with the experimental results. In order to achieve this evaluation, the pulse planar transformer was simulated in ANSYS Q3D Extractor by assigning a frequency sweep in accordance with the eligible frequency band ranging from 100 kHz to 85 MHz. Furthermore, the model was analyzed based on designating all conductors as nets, which allows the computation of GC matrices, whereas ac/dc RL analysis requires the assignment of source and sink excitations, which signify where the current enters and exits the windings, respectively.

After a successful analysis, the model was dynamically linked to ANSYS circuit design as a four-port subcircuit demonstrated with the source and sink excitations of the primary and secondary winding, as shown in Fig. 12. In order to reproduce an experimental examination, 50 Ω impedance interface ports were connected to the source pin of each winding and distinctive ground ports to the sink pins.

A frequency domain analysis is realized by setting up a linear network analysis over the previously specified frequency band. This final step will enable the computation of the frequency-dependent scattering parameters, which will be compared with the experimental measurements revealed in Section IV-C.

C. S Parameter Experimental Validation

To authenticate the simulation results, the pulse planar transformer was fabricated in accordance with the design modeled in Altium designer. S-parameter measurements were conducted using a two-port, 50 Ω vector network analyzer. Fig. 13
correlates the agreeable S-parameter results over a frequency band from 100 kHz to 100 MHz. The dashed lines represent the simulated results, whereas solid lines depict the experimental ones. S_{11} and S_{22} refer to the reflection coefficients of ports 1 and 2, respectively, yet S_{21} and S_{12}, identify the transmission coefficients from ports 1 to 2 and contrarily, respectively [18]. The symmetrical structure of the planar transformer explains the parity of S_{11} and S_{22} and S_{12} and S_{21}.

It is imperative to proclaim that this experimental verification was performed to reveal result conformity, which grants reliable reliance on the simulation analysis implemented. Thus, fortifying the ability to propose an equivalent circuit model of the planar transformer relying on ANSYS Q3D Extractor RLGC parameters conferred thereafter.

V. ELECTROMAGNETIC COMPATIBILITY (EMC) ADHERENCE

Medium-voltage, SiC, and MOSFETs acquire significant intrinsic properties, making it viable to intensify the switching frequency of converters from a few hundred kHz to the MHz region [19], [20]. Nonetheless, with every upgrade, researchers encounter challenges and restrictions to achieve enhanced power converter designs. Advantageous rapid switching frequency realization becomes detrimental when resulting in high dv/dt amounting to 100 kV μs$^{-1}$, generating electromagnetic disturbances in gate driver circuits due to the passage of CM currents through parasitic capacitances, known as interwinding capacitances [21]. Hence, being responsible for invoking semiconductor switching orders, critical attention is required when designing pulse planar transformers. This section will reveal the endurance of the pulse planar transformer to a steep dv/dt occurrence by performing an innovative simulation test of an equivalent circuit model and complying the results to experimental examination while ensuring EMC standards.

A. Pulse Transformer Equivalent Circuit Model

A generic and symmetrical equivalent high-frequency circuit model of the pulse planar transformer is shown in Fig. 14. The electrical model comprises an ideal transformer with a turn’s ratio m, magnetizing inductance L_m, core resistance R_c, leakage inductances L_P and L_S, winding resistances R_P and R_S and stray capacitances C_w, C_{mc1}, and C_{mc2}. This model mainly focuses on the values of the interwinding capacitances C_{mc1} and C_{mc2} as they are the CM current passage route connecting the primary and secondary winding which will be quantifies in the section thereafter.

B. Pulse Transformer Parameter Extraction

In order to extract the parasitic parameters of the simulated pulse planar transformer and establish an equivalent circuit model, ANSYS Q3D extractor tool was utilized [22]. As previously shown in Fig. 12, the model is set up by assigning material characteristics, net identifications, and conductor excitation allocations. RLGC parameters were quantified over a sufficient frequency band extending from 100 kHz till 85 MHz. The reduce matrix feature in ANSYS Q3D was used to evaluate the resistance, inductance, and capacitance values of the transformer model. The main objective is to investigate the susceptibility of the equivalent circuit model of the planar transformer to an application of high dv/dt switching transition.

Table II tabulates the consistency of the parameters L_P, L_S, L_m, C_{mc1}, and C_{mc2} over the desired frequency span which holds remarkable significance. The variation of R_P and R_S is common

Frequency (MHz)	C_{mc1} (pF)	C_{mc2} (pF)	R_P (Ω)	R_S (Ω)	L_P (nH)	L_S (nH)	L_m (μH)
0.1	0.47	0.61	0.47	0.47	249	249	10.1
1	0.47	0.61	0.52	0.52	246	246	10.1
10	0.46	0.58	0.99	0.99	230	230	10.1
20	0.45	0.58	1.3	1.3	226	226	10.1
30	0.45	0.58	1.55	1.55	225	225	10.1
40	0.45	0.57	1.77	1.77	224	224	10.1
50	0.45	0.57	1.96	1.96	223	223	10.1
60	0.45	0.57	2.12	2.12	223	223	10.1
70	0.45	0.57	2.28	2.28	222	222	10.1
80	0.45	0.57	2.42	2.42	222	222	10.1
due to skin effect phenomenon, however, negligible over the tested frequency range.

Several simulations were conducted to create a definitive model of the transformer independent of the applied frequency. The examination was implemented based on two approaches. The first approach was by averaging the value of each element over the frequency span. The second approach was testing the model at a frequency of 10 MHz and 50 MHz separately. Nevertheless, the simulation results of all the aforementioned propositions yielded to an agreeable outcome.

Hence, the equivalent circuit model shown in Fig. 14 at a peculiar frequency of 50 MHz is considered with \(m = 1 \), \(R_C = 500 \, \Omega \), and \(C_w = 21.37 \, \text{pF} \). The aim is to perform a high \(\text{dv/dt} \) application on this model and compare the results to an actual experimented observation, which will be subsequently discussed.

C. \(\text{dv/dt} \) Simulated Immunity Test Setup

ANSYS circuit design software was used to simulate a \(\text{dv/dt} \) application on the modeled pulse transformer [23]. To replicate a severe switching condition of power semiconductors, a steep \(\text{dv/dt} \) of 125 kV \(\mu \text{s}^{-1} \) was applied between the primary and secondary windings’ disparate grounds, as shown in Fig. 15. First, on the primary side, short 25 ns pulses with a 15 V amplitude are connected to transmit turn ON and turn OFF signals intended to switch a 1200 V SiC MOSFET. At the secondary side, pulse selection is essential to segregate positive and negative pulses, and a filter stage necessary to curtail the signal noise for a 0–3.3 V logic at the output. After setting up and verifying the design, a transient analysis from 0 till 2000 ns was applied to evaluate the results.

D. \(\text{dv/dt} \) Experimental Immunity Test Setup

The pulse generator is composed of two NAND gates, which receive respectively the IN and its inverted counterpart. This allows to select the rising edge of the input or its falling edge. A NXOR gate is used to convert the input signal into transient signals whenever there is a change in its state. The duration of the transient signal is dictated by the \(RC \) filter time response \(\tau = RC \). Then, two gate drivers buff the signal to pass through the pulse transformer. Fig. 15 shows the experimental circuit.

The pulse planar transformer was tested at IETR Lab using the circuit shown in Fig. 15. A 50 kHz PWM signal is generated with a 0.5 duty cycle by the function generator. A Haefely generator is connected to both grounds to perform a steep \(\text{dv/dt} \) immunity test between the primary and secondary sides of the pulse transformer. A series of bursts are generated in sync with the PWM signal to simulate the power semiconductor switching. A 125 kV \(\mu \text{s}^{-1} \) voltage slope is used, which is the theoretical maximum switching speed of the power module multiplied by a safety factor of 4. The installation of the experimental setup of the planar pulse transformer CMTI test is shown in Fig. 16.

E. \(\text{dv/dt} \) Immunity Test Results

Static CMTI monitors the output stage of the pulse planar transformer when a CMT strike happens. Testing conditions cover the input logic condition and the CMT waveform. In high-power gate driver, parasitic turn ON is a major issue as it can lead to short-circuit situations. In this application, the input
is tied in logic low (i.e., power component turned OFF). At 0.8 μs, a transient signal is sent in the input to simulate a switch ON. Then, at 1 μs, a common mode transient voltage (CMTV) of 125 kV μs⁻¹ is generated between the primary and secondary sides. Noise sustainability results are taken from the SET input of the NOR-gate flip-flop in Fig. 15 to check if the CMTV triggers the output stage. Fig. 17 displays the experimental CMTV generated by the Haefely generator. To match the experimental setup, a similar CMTV was used in the simulated test.

Fig. 18 shows convenient experimental and simulation results after applying the input signal. CMTI results show a good correlation between the experimental results and the simulated ones, with 0.55 V CMT parasitic voltage and 0.45 V, respectively, at the flip-flop input. The values are minor with respect to the threshold voltage (VT⁺ = 1.88 V) of the Schmitt-trigger logic gate circuitry [24].

In order to compare the shielding effect on the pulse transformer sustainability, another transformer was produced without shielding. Ansys simulation gives an increase of the \(C_{mc1} \) and \(C_{mc2} \) values by a factor 2. CMTI results show again a good correlation between the experimental results and the simulated ones, with near 1 V CMT parasitic voltage and 0.9 V, respectively, at the flip-flop input as presented in Fig. 19.

In the end, both transformers give minor voltage spikes under a 125 kV μs⁻¹ applications with respect to the threshold voltage of the Schmitt-trigger logic gate circuitry. In the shielded pulse transformer case, a higher CMTI is achieved.

VI. CONCLUSION

A planar pulse transformer using electrostatic shielding for 3.3 kV applications with respect to the European standard EN 50178 was proposed in this article. The simulation analysis used alternative software tools, Altium designer to design, and ANSYS Q3D with dynamic links to further analyze the transformer.

After performing a spectral analysis on the applied pulse signal, an eligible frequency band was identified to extract RLGC parasitic parameters in ANSYS Q3D Extractor that revealed coherent results. The study contributed to construct an equivalent circuit model of the transformer at a specific frequency and investigate the latter under abrupt \(dv/dt \) conditions, which simulate the rapid switching of power semiconductors. Convenient CM noise results reveal EMC conservancy and simulation analysis reliability.

In this article, two pulse transformers were designed: one with shielding and one without. In both cases, a CMTI test was performed using a 125 kV μs⁻¹ \(dv/dt \). The shielded transformer show a better \(dv/dt \) immunity than the nonshielded one by a factor 2.

REFERENCES

[1] J. Weckbrodt, N. Ginot, C. Batard, and S. Azzopardi, “Short pulse transmission for SiC communicating gate driver under high DV/DT,” in Proc. Int. Exhibition Conf. Power Electron., Intell. Motion, Renewable Energy Manage., 2018, pp. 1–6.

[2] “CMT-TIT8244 1700v half-bridge SiC MOSFET gate driver (optimized for 62mm power modules),” Cissoid. Accessed: Apr. 12, 2022. [Online]. Available: https://www.cissoid.com/high-temperature-electronics/gate-drivers/titan-cmt/tmtit8243-1200v-high-temperature-half-bridge-sic-mosfet-gate-driver-for-62mm-power-modules/

[3] “CGD1700HB3P-HM3 dual channel differential isolated gate driver HM3 CPM3 SiC half-bridge module companion tool,” Wolfspeed. Accessed: Apr. 12, 2022. [Online]. Available: https://www.wolfspeed.com/cgd1700hb3p-hm3

[4] A. Kamath, “Push-pull converter simplifies isolated power supply design in HEV/EV systems,” Analog Des. J. Texas Instrum., no. 1Q, pp. 1–6, 2020.

[5] A. Morya, M. Moosavi, M. C. Gardner, and H. A. Toliyat, “Applications of wide bandgap (WBG) devices in ac electric drives: A technology status review,” in Proc. IEEE Int. Elect. Mach. Drives Conf., 2017, pp. 1–8.

[6] B. Zhang and S. Wang, “An overview of wide bandgap power semiconductor device packaging techniques for EMI reduction,” in Proc. IEEE Symp. Electromagn. Compatibility, Signal Integrity Power Integrity, 2018, pp. 297–301.

[7] H. Geramirad et al., “Experimental EMI study of A 3-phase 100kw 1200V dual active bridge converter using SiC MOSFETs,” in Proc. 22nd Eur. Conf. Power Electron. Appl., 2020, pp. 1–10.
et al. was born in France in 1995. He received the M.Sc. degree from the University of Nantes, Nantes, France, 2015. In 2019, he joined the Institut Universitaire of Technology, Nantes, France, as an Assistant Professor with the Institut d’Electronique et des Technologies du numérique (IN2P3, France), where he is currently working toward the Ph.D. degree in power electronics with the University of Nantes, Nantes, France.

Her research interests include smart grids, energy efficiency, power electronic applications, and renewable systems.

Corentin Darbas was born in France in 1995. He received the M.Sc. degree in electrical engineering and the M.Sc. degree in electrical management from Ecole Polytech’Nantes, Nantes Université, Nantes, France, both in 2018. He is currently working toward the Ph.D. degree in power electronics with the University of Nantes, Nantes, France.

His research interests include power electronics, smart gate drivers, innovative decentralized control of cascaded converter, galvanic insulation, multilevel modulations, integration of smart gate drivers in modular multilevel converter structures, the daisy chaining of such drivers, and the integration of decentralized control features on the gate driver structure.

Loreine Makki was born in Lebanon in 1991. She received the M.Sc. degree in electrical engineering from Lebanese International University, Beirut, Lebanon, in 2015. She is currently working toward the Ph.D. degree in power electronics with the University of Nantes, Nantes, France.

Her research interests include planar technology, integrated magnetic structures, gate drivers, high-frequency converters using SiC devices, and applications of FEA in power electronics and electromagnetic compatibility.

Antoine Laspeyres was born in France in 1996. He received the M.Sc.Eng. degree in electrical engineering from the École Normale Supérieure Paris-Saclay, Cachan, France, in 2020. He is currently working toward the Ph.D. degree in power electronics from the University of Nantes, Nantes, France.

His research interests include smart gate drivers, WBG power semiconductors, electromagnetic compatibility, and development of a dedicated smart gate driver for a high power SiC intelligent power module in the additive manufactured high voltage high current diode less SiC power module (AM-PM) project.

Marc Anthony Mannah was born in Lebanon in 1983. He received the M.S. degree from Lebanese University, Beirut, Lebanon, in 2006, and the Ph.D. degree in electrical engineering from the University of Nantes, Nantes, France, in 2010.

From 2011 to 2021, he was a Faculty Member with Lebanese International University, Beqaa Valley, Lebanon. Between 2010 and 2015, he was a Consultant Engineer in France and Lebanon. Since 2021, he has been an Associate Professor with ECAM LaSalle France, Lyon, France. His research interests include smart grids, energy efficiency, power electronic applications, and renewable systems.

Christophe Batard was born in France in 1965. He received the Ph.D. degree in electrical engineering from the Institut National Polytechnique de Toulouse, Toulouse, France, in 1992, and the Research Supervision Habilitation Diploma in electrical engineering from the University of Nantes, Nantes, France, 2015.

In 1993, he joined the Institut Universitaire de Technologie, Nantes, France, as an Assistant Professor. His research works with the Institut d’Electronique et des Technologies du numérique (IN2P3, France), Rennes, France, include the conversion of electrical energy and the design of intelligent gate-drivers for wide-gap power components.

Nicolas Ginot was born in France in 1977. He received the B.S. degree in engineering from the Ecole Polytechnique de l’Université de Nantes, Nantes, France, in 2001, and the Ph.D degree in electrical engineering from the University of Nantes, Nantes, France, 2004.

From 2001 to 2007, he was with the Industry on Military and Railway Power Electronic Converters. He is currently a Professor with the Institut Universitaire de Technologie, Nantes, France, and the Institut d’Electronique et des Technologies du numérique (IN2P3, France), Nantes, France, where he works on communicating system for power electronic applications and smart drivers.