Length of separable states and symmetrical informationally complete (SIC) POVM

Lin Chen1,2

1Department of Pure Mathematics and Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
2Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 11754

(Dated: February 5, 2013)

This short note reviews the notion and fundamental properties of SIC-POVM and its connection with the length of separable states. We also review the t-design.

PACS numbers: 03.67.Mn, 03.65.Ud

I. DEFINITION AND BACKGROUND OF SIC-POVM

1. [3, 12, 17] In the d-dimensional Hilbert space, a SIC-POVM consists of d^2 outcomes that are subnormalized projectors onto pure states $\Pi_j = \frac{1}{d}\left| \psi_j \right\rangle \left\langle \psi_j \right|$ for $j, k = 1, \ldots, d^2$, such that

$$\left| \langle \psi_j | \psi_k \rangle \right|^2 = \frac{1 + d\delta_{jk}}{d + 1}. \quad (1)$$

2. [12, Theorem 2] Using Eq. (1) we can show that any SIC-POVM forms a 2-design:

$$\sum_{i=1}^{d^2} \left| \psi_i, \psi_i \right\rangle \left\langle \psi_i, \psi_i \right| = \frac{2d}{d+1} S_d. \quad (2)$$

Here, the operator S_d denotes the $d \times d$ symmetrizer operator, i.e.,

$$S_d := \sum_{i=1}^{d} \left| ii \right\rangle \left\langle ii \right| + \sum_{j>i=1}^{d} \frac{|ij| + |ji|}{\sqrt{2}} \frac{|ij| + |ji|}{\sqrt{2}}. \quad (3)$$

3. Eq. (2) implies that $\sum_{j=1}^{d^2} \Pi_j = I$, so SIC-POVM is a complete measurement in physics.

4. Three basic papers on SIC-POVMs are [3, 12, 17].

- (1) G. Zauner, "Quantendesigns - Grundzüge einer nicht kommutativen Designtheorie," PhD thesis (University of Vienna, 1999).
- (2) J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, J. Math. Phys. 45, 2171 (2004). (provide analytical $d = 2, 3, 4$, numerical $d \leq 45$)
- (3) D. M. Appleby, J. Math. Phys. 46, 052107 (2005). It provides the analytical solutions of SIC-POVM for $d = 2, \ldots, 7, 19$.

*Electronic address: cqtcl@nus.edu.sg (Corresponding Author)
5. Example 1 SIC-POVM for $d=2$. Let

$$|\psi_0\rangle = \frac{\sqrt{3+\sqrt{3}}}{6}|0\rangle + e^{\pi i/4}\frac{\sqrt{3-\sqrt{3}}}{6}|1\rangle,$$

$$|\psi_1\rangle = \frac{\sqrt{3+\sqrt{3}}}{6}|0\rangle - e^{\pi i/4}\frac{\sqrt{3-\sqrt{3}}}{6}|1\rangle,$$

$$|\psi_2\rangle = \frac{\sqrt{3+\sqrt{3}}}{6}|1\rangle + e^{\pi i/4}\frac{\sqrt{3-\sqrt{3}}}{6}|0\rangle,$$

$$|\psi_3\rangle = \frac{\sqrt{3+\sqrt{3}}}{6}|1\rangle - e^{\pi i/4}\frac{\sqrt{3-\sqrt{3}}}{6}|0\rangle.$$

Then one can verify

$$\sum_{i=0}^{3} |\psi_i\rangle \langle \psi_i| = \frac{4}{3}S_2.$$

The four states $|\psi_i\rangle$, $i=1,2,3,4$ form a regular tetrahedron when represented on the Bloch sphere.

6. Analytical SIC-POVMs have been constructed for dimension $d=2,\cdots, 16, 19, 24, 28, 31, 35, 37, 43, 48$, see [14]. Numerical SIC-POVMs have been constructed for $d \leq 67$, see the details in [20]. This is achieved by the popular method of Weyl-Heisenberg group in quantum information community. However the construction becomes hard for higher dimensions. So it is unknown, though widely believed, that whether SIC-POVM exists for any dimension d.

7. Constructing SIC-POVM is one of the most important questions in quantum information. It is related to quantum tomography [18], Mutually unbiased bases (MUBs) [4, 16], entanglement theory [7, 19], Lie Algebra [2], Galois field [1], foundations of quantum mechanics [9] and so on.

II. RELATING SIC-POVM TO LENGTH

For a bipartite state ρ acting on the Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$, the partial transpose computed in the standard orthonormal (o.n.) basis $\{|i\rangle\}$ of system A, is defined by $\rho^\Gamma_B = \sum_{ij} |j\rangle \langle i| \otimes \langle i| \rho^\Gamma|j\rangle$. One can similarly define the partial transpose Γ_A on the system A. Let $r(\rho)$ denote the rank of ρ. We call the integer pair $(r(\rho), r(\rho^\Gamma))$ the birank of ρ, and the two integers may be different. The length, $L(\rho)$, of a separable state ρ is the minimal number of pure product states over all such decompositions of ρ [3]. It is known that $L(\rho) \geq \max\{r(\rho), r(\rho^\Gamma)\}$.

One can verify that the partial transpose of the state $\rho_2 = \frac{1}{d^2+d}I + |\Psi_d\rangle \langle \Psi_d|$ is

$$\rho_2^\Gamma = \frac{1}{d^2+d}(I + |\Psi_d\rangle \langle \Psi_d|),$$

where $|\Psi_d\rangle = \sum_{i=1}^{d} |ii\rangle$ is the non-normalized d-level maximally entangled state. So the separable state ρ_2 has birank $(\frac{d^2+d}{d^2+d}, d^2)$. Therefore we have $L(\rho_2) \geq d^2$. The equality holds for $d=2$ by Example 1. It also holds for $d=2, \cdots, 16, 19, 24, 28, 31, 35, 37, 43, 48$ [14]. However the question is whether

Conjecture 2 $L(\rho_2) = d^2$ for any $d \geq 2$.

The positive answer of this conjecture would imply that the SIC-POVM exists for any integer $d \geq 2$. This argument has been proved by using the notion of weighted 2-design in [13, Theorem 4]. On the other hand if Conjecture 2 turned out to fail for some d, i.e., $L(\rho_2) > d^2$, then SIC-POVM would not exist for this d. This argument has been proved by Eq. (2) and [12, Theorem 2].

To conclude, either the positive or negative answer to Conjecture 2 will solve the SIC-POVM problem.
III. MORE GENERAL BACKGROUND: T-DESIGN

Let $t \geq 1$ be an integer. The t-design of dimension d is defined as a set S of pure product states $|a_i⟩ ∈ C^d$ if

$$\frac{1}{|S|} \sum_i |a_i⟩⟨a_i|^{⊗t} = ρ_t = \left(\frac{d + t - 1}{t}\right)^{-1} S_{d,t}, \quad (10)$$

where $S_{d,t}$ is the t-partite symmetrizer operator in the space $(C^d)^{⊗t}$. For example, $S_{d,t} = S_d$ for $t = 2$ in Eq. (3). It is known \cite{13} that the number of design points satisfies

$$|S| \geq \left(\frac{d + \lceil t/2 \rceil - 1}{\lfloor t/2 \rfloor}\right) \left(\frac{d + \lceil t/2 \rceil - 1}{\lfloor t/2 \rfloor}\right). \quad (11)$$

A design which achieves this lower bound is called tight. For example, the bound is equal to d, d^2 and $d^2(d + 1)/2$ for $t = 1, 2, 3$, respectively. The t-designs exist for any d \cite{13}. In the language of quantum information, it means that any t-partite symmetrizer operator is a non-normalized separable state. However it is unknown that whether tight t-designs exist, i.e., whether the length of t-partite symmetrizer operator reaches the lower bound in Eq. (11).

Here are a few known results from the field of t-designs. For $d = 2$, tight t-designs exist for $t = 1, 2, 3, 5$ \cite{11}. For a few $d > 2$, tight t-designs exist for $t = 1, 2, 3, 5 \cite{12}$. Here is the detail. It is trivial that tight 1-designs exist for any d. The existence of tight 2-designs is equivalent to the positive answer for Conjecture [2] in terms of Eq. (10). So far this is true for $d = 2, \cdots, 16, 19, 24, 28, 31, 35, 37, 43, 48$, see \cite{14}. Third, the tight 3-designs are known only for $d = 2, 4, 6 \cite{10}$. In particular for $d = 2$, the six states from an MUB in C^2 form a tight 3-design \cite{20}. It can also be directly verified by computing the frame potential.

Note that $ρ_t$ is a t-partite separable state. We have

Lemma 3 The tight t-design of dimension d exists if and only if $L(ρ_t) = \left(\frac{d + \lceil t/2 \rceil - 1}{\lfloor t/2 \rfloor}\right) \left(\frac{d + \lceil t/2 \rceil - 1}{\lfloor t/2 \rfloor}\right)$.

The proof is based on Ref. [41,42] of \cite{12}. Nevertheless, it is known that the tight t-design does not exist for $d ≥ 3, t ≥ 5 \cite{13}$.

Acknowledgments

I thank Dr. Huangjun Zhu for careful reading this note and pointing out a few errors in an early version of this note.

\[\text{References}\]

[1] D. M. Appleby, Hulya Yadsan-Appleby, Gerhard Zauner, *Galois Automorphisms of a Symmetric Measurement*, quant-ph/1209.1813 (2012).
[2] D. M. Appleby, S. T. Flammia, and C. A. Fuchs, *The Lie algebraic significance of symmetric informationally complete measurements*, J. Math. Phys. 52, 022202 (2011).
[3] D. M. Appleby, J. Math. Phys. 46, 052107 (2005).
[4] D. M. Appleby. *SIC-POVMs and MUBs: Geometrical relationships in prime dimension*, AIP Conf. Proc. 1101, 223 (2009).
[5] Bannai E and Hoggar S G, *On tight t-designs in compact symmetric spaces of rank one*, Proc. Japan Acad. 61, 78 (1985).
[6] Bannai E and Hoggar S G *Tight t-designs and squarefree integers* Eur. J. Comb. 10, 113 (1989).
[7] Lin Chen, Huangjun Zhu, and Tzu-Chieh Wei, *Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation*, Phys. Rev. A 83, 012305 (2010).
[8] D.P. DiVincenzo, B.M. Terhal, and A.V. Thapliyal, *Optimal decomposition of barely separable states*, J. Mod. Opt. 47 (2000), 377-385.
[9] Christopher A. Fuchs and Ruediger Schack, *Quantum-Bayesian Coherence: The No-Nonsense Version*, quant-ph/1301.3274 (2013).
[10] Hoggar S G, *t-designs in projective spaces*, Eur. J. Comb. 3, 233 (1982).
[11] Hardin R H and Sloane N J A, *McLaren’s improved snub cube and other new spherical designs in three dimensions Discrete Comput. Geom. 15, 429 (1996).*
[12] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, J. Math. Phys. 45, 2171 (2004).
[13] A. J. Scott, *Tight informationally complete quantum measurements*. J. Phys. A -Mathematical and General, 2006. 39(43): p. 13507-13530.
[14] A. J. Scott and M. Grassl, *SIC-POVMs: A new computer study*, J. Math. Phys. 51, 042203 (2010).
[15] Seymour P D and Zaslavsky T, *Averaging sets: a generalization of mean values and spherical designs*, Adv. Math. 52, 213 (1984).

[16] W. K. Wootters. *Quantum measurements and finite geometry*, Found. Phys., 36, 112, (2006).

[17] G. Zauner, Ph.D. thesis, University of Vienna, 1999; available online at http://www.gerhardzauner.at/qdmye.html. See also the English version: *Quantum designs: foundations of a noncommutative design theory*, International Journal of Quantum Information (IJQI) 9(1): 445 (2011).

[18] H. Zhu and B.-G. Englert, *Quantum state tomography with fully symmetric measurements and product measurements*, Phys. Rev. A 84, 022327 (2011).

[19] H. Zhu, Y. S. Teo, and B.-G. Englert. *Two-qubit symmetric informationally complete positive-operator-valued measures*, Phys. Rev. A, 82, 042308 (2010).

[20] H. Zhu, PhD Thesis, http://scholarbank.nus.edu.sg/handle/10635/35247