On exploration of geometrically constrained space by medicinal leeches *Hirudo verbana*

Andrew Adamatzky
Unconventional Computing Centre and Bristol Robotics Lab,
University of the West of England, UK
December 8, 2015

Abstract

Leeches are fascinating creatures: they have simple modular nervous circuitry yet exhibit a rich spectrum of behavioural modes. Leeches could be ideal blue-prints for designing flexible soft robots which are modular, multi-functional, fault-tolerant, easy to control, capable for navigating using optical, mechanical and chemical sensorial inputs, have autonomous inter-segmental coordination and adaptive decision-making. With future designs of leech-robots in mind we study how leeches behave in geometrically constrained spaces. Core results of the paper deal with leeches exploring a row of rooms arranged along a narrow corridor. In laboratory experiments we find that rooms closer to ends of the corridor are explored by leeches more often than rooms in the middle of the corridor. Also, in series of scoping experiments, we evaluate leeches capabilities to navigating in mazes towards sources of vibration and chemo-attraction. We believe our results lay foundation for future developments of robots mimicking behaviour of leeches.

Keywords: medicinal leech, space exploration, maze navigation, bio-robotics

1 Introduction

Creatures explore space around them in a search for nutrients, mating partners, or more favourable environmental conditions: exact search strategies vary amongst species yet common features include regular scanning with sensors and following gradients towards attractants or away from repellents [12, 9, 57, 30, 69, 70, 46, 68, 8, 54, 41, 51, 60]. Principles, mechanisms and strategies of the explorative and foraging behaviour were extensively used and adopted in bio-inspired algorithms of computational optimisation [28, 27, 29, 74, 76, 75, 77, 1, 42, 84, 65, 66], software governing navigation of mobile bio-inspired robots [71, 39, 20, 62, 59, 55, 25, 10] and embedded unconventional robotic controllers [53, 3, 2, 4].
Designing robots with worm-like bodies became now one of the most hot topics in bio-inspired robotics. This is because worm and snake like robots have advantages of high flexibility, modularity, multi-functionality, distributed adaptability, relative ease of controllability, allow for multiple engineering implementations, and can be manufactured from a wide range of materials. A key feature of worm-robots is that they are capable for accessing places other, wheeled or walking, robots can not access. The feature becomes of a particular importance when the main task of the robots is to implement search and rescue operations [38]. Research in worm-robots produced a great variety of high-impact results. Representative examples include climbing worm robots controlled by oscillatory networks [67], worm robots propagating in flexible environments [82], neumatic flexible robot prototype for pipes inspection [11], earthworm inspired robot [81], robots capable for drilling and excavation applications [47], robots with magnetizable elastic body [85], ring-worm like robot [7], robots propelled by peristaltic motion with artificial muscles [13, 6], Oligochaetes-inspired robots [61], and elastic robots for endoscopy [52].

Despite such immense progress in the design of worm-inspired robots the issues of space exploration by robots, especially in the situations, when there are no attracting or repelling stimuli, remain largely not addressed. What bio-inspired robots do when they have not a clue of what they are searching for. This is why we decided to conduct a series of experiments in uncovering principal patterns of geometrically constrained space exploration by leeches. Why leeches? Why geometrically constrained space? The answers are below.

The leech Hirudo medicinal and its South European analog Hirudo verbana are amongst most common living creatures explored in laboratory conditions. The leeches has relatively simple nervous system yet they exhibit a wide spectrum of complex behaviour, sometimes even sophisticated traits of parental care [48], mapped to identified neural circuits. A leech is amongst most popular living substrates for modelling nervous system and locomotion control [43, 49, 18, 36, 24, 14, 33, 14, 50], modulating behaviour of neuro-mediators [80, 5, 37], developmental processes in complex neuronal circuits [45], and mathematical and computers models of circuits responsible for regular pattern generations [64, 83, 58, 17]. The leeches’ neural networks are simple yet efficient, they are equivalent in their computational power to basic perceptrons [49].

Leeches are ideal inspirations for amphibious soft robots, capable for reaching spaces not accessible by other devices. The reasons are following. A leech has a modular structure, its body segmentation along the anterior-posterior axis is very convenient for robotic implementations. A single segment of the leech’s body contains isolated ganglion. It is capable for exhibiting swimming activity even when the segment has been neurally isolated from the rest of the leech’s body for one-two weeks [43]. A spectrum of leeches’ behaviour traits is well classified, and therefore can be adopted with minimal efforts in amphibious soft robots.
ous robotic devices: a leech positions itself at the water surface in resting state; the leech swims towards the source of a mechanical or optical stimulation; the leech stops swimming when comes into contact with any geometrical surface; then, the leech explores the surface by crawling; when a leech finds a warm (37-40°C) region the leech bites. Moreover, a behaviour of a leech is context based: the leech can respond to constant sensorial inputs with variable motor outputs.

We focus on geometrically constrained spaces because behaviour of leeches in uniform spaces is analysed in full details: in empty space leeches wander around uniformly with no preferential direction or location. Little known about leeches behavioural patterns in complex geometries (apart of the fact that leeches show positive stigmotaxis which lead them to crawl into body cavities for feeding and under logs and stones when fed), and, to our knowledge, no results are published on a role of geometries of environmental shapes in patterning the leeches’s behaviour.

The paper is structured as follows. Section 2 introduces the problem and experimental design used to study behaviour of leeches in a corridor with a row of rooms. Statistical analysis of the behaviour and finite state machine model are presented in Sect. 3. Scoping experiments on navigation of leeches in complex geometrically spaces — mazes, and ways of potential further developments are outlined in Sect. 4. Final touching remarks are done in Sect. 5.

2 Methods

Question 1. Let you be in a hotel, standing in a long corridor with a row of rooms on one side. The hotel soon to be invaded by giant leeches. What room you must hide in to decrease your chances of being bitten by the leeches?

We used three weeks old leeches *Hirudo verbana* obtained from Biopharm Leeches (Hendy, Carmarthenshire SA4 0X, UK). Leeches varied in size from 15 to 20 cm length in elongated state and 1-2 mm width. Leeches awaiting experiments were kept in securely covered, yet with air access, glass containers in a dechlorinated water away from direct sunlight. As per recommendation leeches were kept in a cool, c. 15°C, environment to lessen their needs for feeding and to enhance their performance in exploration of experimental templates. The water was refreshed every other day. When moving leeches between storage containers and experimental templates we used non-serrated forceps. The template was printed from polylactic acid thermoelastic polyester (Fig. 1a) with the following dimensions: length 138 mm, width 31 mm, height 17 mm, wall where 2 mm in width everywhere. The internal space was subdivided by eight rooms and a corridor. The corridor width was 10 mm. Each room had dimensions 15×15 mm with 2 mm opening into the corridor. Experimental template was cleaned to remove any substances with odour or state that might affect behaviour of leeches in the templates. The template was filled with dechlorinated water, depth 10-15 mm; the leeches were able to swim if they wanted to. The
Figure 1: Experimental setup. (a) Scheme of the template used: initial position of a leech is shown by star, rooms are numbered as in the picture. (b) Photographs of a sample experiment; time shown is the time elapsed from the moment the leech was placed in the template.
dechlorinated water in the experimental templates was changed after each experiment to prevent metabolites and ions released by leeches to affect behaviour of their successors. The template was illuminated by LED lamp, illumination level at the bottom of the template was 37 LUX. No sharp gradients of optical, chemical or electoral stimuli were allowed; the only stimulation occurred was mechanical ones when leeches come into contact with walls of the templates. Experiments were conducted in a room temperature of 20°C.

We conducted 40 experiments using 20 leeches; each leech was used twice with at least 24 h interval between experiments. In each trial a leech was placed at the right end of the corridor as marked by star in Fig. 1a.

The experiments were recorded on Coolpix P90 digital camera, 640 × 480 pixels frame size and 25 frames per second speed. Each video was recorded for c. 25–30 min. The videos were analysed by in-house software written in Processing, as follows. For every second of video we extracted coordinates of pixels with colour values less than 30-50 in RGB mode (exact threshold was quickly adjusted for each video). Such pixel represented body of the leech. Their coordinates with time tags were stored for further analyses. Configurations of leeches exploring the template were converted to overlay images with colours (Fig. 2) as follows. For any trial/video a duration of recording is normalised to the interval [0,1] and then mapped to a colour scale (00B) → (0BG) → (RG0) → (R00), i.e. the blue pixel represent leech at the beginning of experiment and red pixel at the end of experiment.

3 Results

Exemplar snapshots of an experiment are show in Fig. 1b–j. In this particular experiment a leech released in the right end of the corridor crawls along the corridor towards its left end (Fig. 1b). On reaching the end of the corridor the leech starts to explore room 1 (Fig. 1c): this is a positive stigmotaxis, coming into contact with walls, especially in corners, evokes the explorative behaviour. On leaving room 1 the leech crawls along the corridor (Fig. 1d) and then enters room 7 where she remains (exploring the corners of the room) for half a minute (Fig. 1ef). The leech’s further activities involved swimming along corridor (Fig. 1g) and exploration of rooms 8 (Fig. 1h) and 6 (Fig. 1i).

Representatives examples of leeches exploratory trajectories are shown in Fig. 2. In experiment Fig. 2a a leech crawls into room 7, then gets out of the room and moves into room 5. Further the leech crawls towards left end of the corridor and explores room 1. While exploring the room 1 the leech raises above water surface and leans to the room 2. During experiment shown in Fig. 2b a leech visits room 7 then moves along the corridor back and forth and visits rooms 8 and 3. The leech visits room 7 once, rooms 8 and 3 twice, room 2 twice, and room 1 at least four times. Experiments illustrated in Fig. 2c–h demonstrate that in majority of trials leech definitely visits rooms 1 and 8, and with lesser chances rooms 2, 3 and 6, 7 and even more rarely rooms 4 and 5.

Statistical evaluation of room exploration is shown in Fig. 3. In majority of trials
Figure 2: Overlay of patterns of the leech exploring the template for eight exemplary, and most typical, trials.
Figure 3: Statistics of the template exploration by leeches. (a) Frequency of room visits. (b) Ratio of time spent in each particular room.
Leeches explore rooms at the ends of the corridor, room 1 and 8 (Fig. 3a). Then chances of a room being visited by a leech are inversely proportional to a distance from closest end of the corridor and the room. Amount of the time a leech spends in a room is also inversely proportional to a distance between the room and the closest end of the corridor (Fig. 3b). For example, a leech typically spends five times more time in the room 8 than in the room 6, or three times more in the room 1 than in the room 4. Slight apparent increase of time spent by leeches in room 5 might be due to unknown reasons or noise in experimental evaluations.

Answer 1. Being in a corridor with a row of rooms to be invaded by leeches the best way to escape the leeches is to hide in a room in the middle of the row.

All four forms of leech behaviour, as classified in [35], were observed: stationary/still (interior and posterior sucker attached to the bottom of the template and leech does not make any motion), swimming (undulatory movement of the entire body), crawling (alternating steps of elongation and contraction with posterior and anterior suckers attached in turns), exploratory (irregular oscillations of the head and anterior part of the body with the posterior sucker attached)\(^2\). Indeed feeding is a dominant pattern of leech behaviour [56], however leeches did not have a chance to feed in our experiments, therefore we did not include feeding in out analysis. Swimming form of behaviour was quite rare: only eight of 40 experiments leeches were observed swimming along the corridor. Crawling, exploratory and stationary/still modes were most common.

Leeches make their decisions sequentially [31], thus we can propose a leech automaton, a finite state machine equipped with mechanoreceptor and a timer: \(\mathcal{L} = (Q, M, T)\), where \(Q = \{\text{Still, Crawl, Explore}\}\) is a set of leech’s behavioural mods; \(M = \{0, 1\}\) is a set of of states of mechanoreceptors, where ‘1’ means the mechanoreceptor detects obstacles and ‘0’ no obstacle is detected; \(T\) is set of timer states.

At each iteration the automaton \(\mathcal{L}\) is represented by its internal state \(s^t \in Q\), state of its mechanoreceptors \(m_t \in M\) and its timer \(t \in T\). The timer state \(t\) is reset, \(t ← 0\), when automaton \(\mathcal{L}\) undergoes transitions: \{Crawl, Explore\} → Still or Still → \{Crawl, Explore\}, otherwise timer state increments \(t ← t + 1\). The timers imitates spontaneous transitions

\(^2\)Definitions of the types are taken almost verbatim from [35]
between inactive and active states: “hungry leeches often initiate swimming bouts which are interposed between longer periods of quiescent resting at the water surface” [26].

Conditions of the transitions between the internal states Q, expressed in terms of probabilities are shown in Tab. 1. Probabilities of transitions are as follows $p_1 = (\tau_s - t + 1)^{-1}$, $p_2 = (\tau_a - t + 1)^{-1}$, where τ_s and τ_a are time intervals a leech spends in still or active (crawling or exploring) modes, respectively. Value of τ_a observed in our experiments varies from 10 min to 20 min, value of τ_s will be estimated in further studies. The probability p_3 of switching from crawling mode to explorative mode is derived from our experimental data (Fig. 3): if x is a distance from a room to the closest end of the corridor, than a probability that a leech visits the room at least once is $p_3 = 0.35 \cdot x^{-0.82}$. The structure of the leech automaton L proposed conforms to results by Garcia-Perez et al. [35] that the leech’s behavioural changes are well described by Markov processes, with transition rates controlled by the firings of command-like neurons.

4 Discussion: Further developments and scoping experiments

To evaluate how well leeches propagate in geometrically constrained space, which are a bit more complex than the row of rooms, we used two templates of mazes (15 cm diameter round maze printed in nylon and 7×7 cm square acrylic maze) and a three-dimensional template of Balkans (printed from nylon, 20×14×7 cm).

Results were promising. In three-dimensional template of Balkans, just slightly (c. 3-5 mm) covered by dechlorinated water leeches navigated around elevations, see examples in Fig. 4. In a maze the leeches moved along the channels (Fig. 5). As shown in Fig. 5 in many case a leech explores corners of the maze channels or even checks the space above the wall in the corner before making a turn. We concluded that long term experimenting with leeches in the maze would be unreasonable because the leeches frequently attempt, and often succeed, in making short-cuts by crawling over walls between the maze channels. Thus below we discuss a bit of our findings in potential ways of guiding leeches towards targets in complex geometries.

In experiments described in Sect. 3 there were no attractants or repellents because we aimed to study how only geometrical constrains affect leeches behaviour. Leeches, such Hirudo verbana determine prey location by sensing water disturbances using both visual and tactile sensors [78, 26, 40]. A typical scenario would be as follows. A leech is resting near water surface or on the bottom of a pond. Animals enter the pond for drinking, their moving tongues generate waves which are projected as intermittent stripes of shadows and light on the bottom of the pond. Leeches swim towards the surface. Then they start utilising feedback from their mechanical sensors and propagate towards the source of waves. Exact place of the leeches attachment to their prey is determined by temperature and, possibly, chemical gradients. Leeches respond to mechanical stimulation from surface generated waves but orienting towards the source of the waves using their mechanical
Figure 4: Photographs (abc) and an exemplar time-snapshots (d) of leeches navigating around three-dimensional terrain of Balkans. Time is encoded from blue to green to red.
receptors systems; visual stimuli evoke less accurate responses [19]. Experiments presented in paper [40] demonstrate that leeches do not move towards source of tactile stimulation ballistically but under a guidance of continuous sensory input.

To check ability of leeches to navigate in complex geometries guided by attractants we conducted a series of scoping experiments, as follows.

To induce surface waves we used Pico Vibe™ Vibration Motor (Precision Microdrives, London, UK). The motors has 8 mm body diameter, 2.15 mm body length, 3 V rated operating voltage, 17,000 rpm rated vibration speed, 72 mA operating current, and 0.93 G typical normalised amplitude. The motor was suspended vertically above room 4 of the setup (Fig. 1a) so that only 2 mm of its body is immersed into the water (Fig. 6a). We conducted eight experiments, in each experiment a leech was placed in the standard position indicated by a star in Fig. 1a. A representative time-snapshots of a typical experiment are shown in Fig. 6b. A leech explores terminal rooms 1 and 8 with higher frequency, yet sometimes visit room 4 and adjacent rooms. ‘Sometimes’ is quantified in the graph Fig. 6c. Position of a generator of water waves in room 4 causes flattening of the rooms explorations frequencies: compare Fig. 3a and Fig. 6c: The room 4, where the vibrator was position, did not get any preferential visits from leech, possibly because actual configuration of waves strongly affected by walls of the template and thus it was difficult for a leech to pinpoint exact location of the vibration source. Experiments with small (7×7 cm) maze with a vibrating motor placed in the central chamber were inconclusive. Leeches exploring the maze were approaching the source of vibration in all six experiments, see two exemplary time-snapshots in Fig. 7 however, after almost closed contact with the vibrating motor they were moving away.

Figure 5: Time-snapshots of leeches propagating in labyrinth. Time is encoded from blue to green to red.
Figure 6: Guiding a leech by waves. (a) Photo of experimental setup: the vibrating motor is suspend above room 4 and slightly immersed in the water, leech is entering the room 4. (b) Time-snapshots of the leech exploratory activities. (c) Statistics of rooms exploration collected in eight experiments.
Figure 7: Two exemplary time-snapshots of a leech exploring small maze where a vibrating motor was placed in a central chamber.

Figure 8: Exemplary images of a leech moving to a central chamber of the maze, where 0.25 ml of fresh blood were placed. (a) Time-snapshots. (b) Activity-snapshots: the longer leech stays in a site the brighter/lighter is a colour of pixels at this site.
There are no definite proofs that a blood *per se* attracts leeches; leeches can be fed with with glucose, galactose and some other sugars if NaCl is present in the feeding solution [34]. It is reported, that exposure to an artificial blood actually reduces chances of swimming activity in leeches [15]. Nevertheless, we have done ten scoping experiments. In each experiment c. 0.25 ml of human blood (drawn from the ring finger of a healthy male individual using Unistick 3 Comfort safety lancets) was placed in the central chamber of a larger (15 cm in diameter) maze, printed from nylon. Immediately after this a leech was introduce to the maze. Leeches initially positioned further than 5 cm away from the central chamber explored the maze disorderly without showing any preferential movement towards the source of blood.

In three experiments leeches were placed at 5 cm distance from the source of blood, after 2-3 min being in a still mode they moved towards the central chamber. One such experiment is illustrated in Fig. 8. Temporal movement is straightforward (Fig. 8a): at the beginning of the experiment the leech crawled towards the central chamber. When presented with a choice of turning right and heading straight, the leach explored the space (you see the leech turning right in (Fig. 8a) but then continues propagation towards the central chamber. Activity-snapshots give us more insight onto modes of the leech’s behaviour (Fig. 8b): the leech is in still till mode at the beginning of the experiment (bright, almost white blob in Fig. 8a), then hesitates a bit before entering the main chamber (small bright blob), and then switches into the still inside the central chamber, surrounded by fresh human blood slightly diluted by water in the chamber.

Returning back to our original experiments on exploration of the row of rooms we must highlight that our interpretation put a key role on tactile sensors and mechanical stimulation. There is indeed a chance a leech deposits some chemical substances while propagating along the corridor. More substances could be deposited at the end of the corridor due to leech spending more time their while turning her body to move in the opposite direct. It might be that excessive concentration of deposited substances attract the leech. Said we did not find any evidence in the published literature that leeches behave as e.g. ants do, i.e. by following trails of their own pheromones. Therefore we left verification of the 'chemical deposits' hypothesis to further studies.

5 Conclusion

When placed in geometrically constrained spaces leeches *Hirudo verbana* exhibits three key behavioural modes of behaviour: still, crawling and exploration (swimming mode was rarely observed in water layers 5 mm or less). Switching between still and active (crawling and exploration) modes happens when time limit in current mode elapses. The leech goes into exploration mode when it encounters a mechanical obstacle. A probability of returning from exploratory mode to crawling mode decreases proportionally to a distance from last mechanical obstacle. When placed in a corridor with a raw of rooms on one side the leech
explores rooms near end of the corridor with higher probability and rooms near the centre of the corridor with lower probability. Thus, answer to our toy question ‘Where is the best place to hide from a leech?’ would ‘In the room in the middle of the corridor’. Based on the results of our laboratory experiments we formalised behaviour of a leech in terms of probabilistic finite state machines with binary inputs. The structure of the machines could be used as a blueprint in designing of future leech-robots.

In our scoping experiments with leeches in mazes we found that leeches display slight preferential directions of movements towards sources of blood and sources of vibration. However, experiments were inconclusive and more work is necessary towards establishing exact role of tactical behaviour of leeches during navigation in complex environments. Chances are that vibration and temperature gradients do not develop well in complex mazes due to low sound and thermal insulation properties of the maze walls. Without well developed gradients it might be difficult for a leech to find exact path towards a source of vibration or high temperature. Said that we believe even the debatable results obtained in the scoping experiments indicate that leeches are very promising prototypes of future flexible amphibian rescue robots. Such robots will adopt all four important traits of leeches locomotion [32]: hormonal control of movement initiation expressed in probabilities of spontaneous transitions between still and active states, effective control movement achieved via integration of optical, mechanical and chemical sensory feedback with central control circuits, autonomous inter-segmental coordination and adaptive decision-making.

References

[1] Andrew Adamatzky. Physarum machines: computers from slime mould, volume 74. World Scientific, 2010.

[2] Andrew Adamatzky, Benjamin de Lacy Costello, Chris Melhuish, and Norman Ratcliffe. Experimental implementation of mobile robot taxis with onboard belousov–zhabotinsky chemical medium. Materials Science and Engineering: C, 24(4):541–548, 2004.

[3] Andrew Adamatzky, Benjamin de Lacy Costello, Chris Melhuish, and Norman Ratcliffe. Experimental reaction–diffusion chemical processors for robot path planning. Journal of Intelligent and Robotic Systems, 37(3):233–249, 2003.

[4] Andrew Adamatzky and Maciej Komosinski. Artificial life models in hardware. Springer, 2009.

[5] Bilal A Alkatout, Nicole M Marvin, and Kevin M Crisp. Serotonin delays habituation of leech swim response to touch. Behavioural brain research, 182(1):145–149, 2007.
[6] Paolo Arena, Claudia Bonomo, Luigi Fortuna, and Mattia Frasca. Electro-active polymers as cnn actuators for locomotion control. In *Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on*, volume 4, pages IV–281. IEEE, 2002.

[7] Paolo Arena, Luigi Fortuna, and Marco Branciforte. Reaction-diffusion cnn algorithms to generate and control artificial locomotion. *Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on*, 46(2):253–260, 1999.

[8] John D Armstrong, Victoria A Braithwaite, and Felicity A Huntingford. Spatial strategies of wild atlantic salmon parr: exploration and settlement in unfamiliar areas. *Journal of Animal Ecology*, pages 203–211, 1997.

[9] Jelle Atema. Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. *Biological Bulletin*, pages 129–138, 1996.

[10] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic systems. In *Robots and Biological Systems: Towards a New Bionics?*, pages 703–712. Springer, 1993.

[11] A Manuello Bertetto and M Ruggiu. In-pipe inch-worm pneumatic flexible robot. In *Advanced Intelligent Mechatronics, 2001. Proceedings. 2001 IEEE/ASME International Conference on*, volume 2, pages 1226–1231. IEEE, 2001.

[12] Lynda IA Birke and John Archer. Some issues and problems in the study of animal exploration. *Exploration in animals and humans*, pages 1–21, 1983.

[13] Alexander S Boxerbaum, Hillel J Chiel, and Roger D Quinn. A new theory and methods for creating peristaltic motion in a robotic platform. In *Robotics and Automation (ICRA), 2010 IEEE International Conference on*, pages 1221–1227. IEEE, 2010.

[14] Peter D Brodfuehrer, Andreas M Kogelnik, W Otto Friesen, and Avis H Cohen. Effect of the tail ganglion on swimming activity in the leech. *Behavioral and neural biology*, 59(2):162–166, 1993.

[15] Peter D Brodfuehrer, Lauren Tapyrik, Nicole Pietras, Ghazal Zekavat, and Maureen Convery. Modification of leech behavior following foraging for artificial blood. *Journal of Comparative Physiology A*, 192(8):817–825, 2006.

[16] Peter D Brodfuehrer and Maria Stella E Thorogood. Identified neurons and leech swimming behavior. *Progress in neurobiology*, 63(4):371–381, 2001.

[17] Pietro-Luciano Buono and A Palacios. A mathematical model of motorneuron dynamics in the heartbeat of the leech. *Physica D: Nonlinear Phenomena*, 188(3):292–313, 2004.
[18] Doris Campos, Carlos Aguirre, Eduardo Serrano, Francisco de Borja Rodríguez, Gonzalo G de Polavieja, and Pablo Varona. Temporal structure in the bursting activity of the leech heartbeat cpg neurons. *Neurocomputing*, 70(10):1792–1796, 2007.

[19] Tracy Carlton and Alistair Mcvean. A comparison of the performance of two sensory systems in host detection and location in the medicinal leech *Hirudo medicinalis*. *Comparative Biochemistry and Physiology Part A: Physiology*, 104(2):273–277, 1993.

[20] Oscar Castillo, Ricardo Martínez-Marroquín, Patricia Melin, Fevrier Valdez, and José Soria. Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. *Information Sciences*, 192:19–38, 2012.

[21] Alessandro Crespi, André Badertscher, André Guignard, and Auke Jan Ijspeert. An amphibious robot capable of snake and lamprey-like locomotion. In *Proceedings of the 35th international symposium on robotics (ISR 2004)*, number BIOROB-CONF-2004-003, 2004.

[22] Alessandro Crespi, André Badertscher, André Guignard, and Auke Jan Ijspeert. Amphibot i: an amphibious snake-like robot. *Robotics and Autonomous Systems*, 50(4):163–175, 2005.

[23] Alessandro Crespi, André Badertscher, André Guignard, and Auke Jan Ijspeert. Swimming and crawling with an amphibious snake robot. In *Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on*, pages 3024–3028. IEEE, 2005.

[24] Kevin M Crisp, Brian R Gallagher, and Karen A Mesce. Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons. *The Journal of experimental biology*, 215(17):3028–3036, 2012.

[25] Nicolas Cuperlier, Mathias Quoy, and Philippe Gaussier. Neurobiologically inspired mobile robot navigation and planning. *Frontiers in neurorobotics*, 1, 2007.

[26] Michael H Dickinson and Charles M Lent. Feeding behavior of the medicinal leech, hirudo medicinalis l. *Journal of Comparative Physiology A*, 154(4):449–455, 1984.

[27] Marco Dorigo. *Ant Colony Optimization and Swarm Intelligence: 5th International Workshop, ANTS 2006, Brussels, Belgium, September 4-7, 2006, Proceedings*, volume 4150. Springer, 2006.

[28] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: optimization by a colony of cooperating agents. *Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on*, 26(1):29–41, 1996.
[29] Marco Dorigo and Thomas Stützle. Ant colony optimization: overview and recent advances. In Handbook of metaheuristics, pages 227–263. Springer, 2010.

[30] Paul Ellen, EM Parko, Charlene Wages, D Doherty, and T Herrmann. Spatial problem solving by rats: Exploration and cognitive maps. Learning and motivation, 13(1):81–94, 1982.

[31] Teresa Esch, Karen A Mesce, and William B Kristan. Evidence for sequential decision making in the medicinal leech. The Journal of neuroscience, 22(24):11045–11054, 2002.

[32] W Otto Friesen and William B Kristan. Leech locomotion: swimming, crawling, and decisions. Current opinion in neurobiology, 17(6):704–711, 2007.

[33] WO Friesen and RA Pearce. Mechanisms of intersegmental coordination in leech locomotion. In Seminars in Neuroscience, volume 5, pages 41–47. Elsevier, 1993.

[34] Rachel Galun and SH Kindler. Chemical specificity of the feeding response in H. hirudo medicinalis. Comparative biochemistry and physiology, 17(1):69–73, 1966.

[35] Elizabeth Garcia-Perez, Alberto Mazzoni, Davide Zoccolan, Hugh PC Robinson, and Vincent Torre. Statistics of decision making in the leech. The Journal of neuroscience, 25(10):2597–2608, 2005.

[36] Quentin Gaudry and William B Kristan. Feeding-mediated distention inhibits swimming in the medicinal leech. The Journal of Neuroscience, 30(29):9753–9761, 2010.

[37] Shannon P Gerry, Amanda J Daigle, Kara L Feilich, Jessica Liao, Azzara L Oston, and David J Ellerby. Serotonin as an integrator of leech behavior and muscle mechanical performance. Zoology, 115(4):255–260, 2012.

[38] S Gorges, C Riehs, K Zimmermann, and T Kästner. A cascaded worm-like locomotion system–constructive design, software and experimental environment. 2014.

[39] Robert Grabowski, Luis E Navarro-Serment, Christiaan JJ Paredis, and Pradeep K Khosla. Heterogeneous teams of modular robots for mapping and exploration. Autonomous Robots, 8(3):293–308, 2000.

[40] Cynthia M Harley, Matthew Rossi, Javier Cienfuegos, and Daniel Wagenaar. Discontinuous locomotion and prey sensing in the leech. The Journal of experimental biology, 216(10):1890–1897, 2013.

[41] Corinne Hutt. Exploration and play in children. In Symposiums of the Zoological Society of London, volume 18, pages 61–81. The Society, 1966.
[42] Jeff Jones and Andrew Adamatzky. Computation of the travelling salesman problem by a shrinking blob. *Natural Computing*, 13(1):1–16, 2014.

[43] William B. Kristan Jr. and Peter B. Guthrie. Acquisition of swimming behavior in chronically isolated single segments of the leech. *Brain Research*, 131(1):191 – 195, 1977.

[44] William B Kristan Jr, Ronald L Calabrese, and W Otto Friesen. Neuronal control of leech behavior. *Progress in neurobiology*, 76(5):279–327, 2005.

[45] William B Kristan Jr, F James Eisenhart, Lisa A Johnson, and Kathleen A French. Development of neuronal circuits and behaviors in the medicinal leech. *Brain research bulletin*, 53(5):561–570, 2000.

[46] Christian C Krohn. Behaviour of dairy cows kept in extensive (loose housing/pasture) or intensive (tie stall) environments. iii. grooming, exploration and abnormal behaviour. *Applied Animal Behaviour Science*, 42(2):73–86, 1994.

[47] Takashi Kubota, Kenji Nagaoka, Satoru Tanaka, and Taro Nakamura. Earth-worm typed drilling robot for subsurface planetary exploration. In *Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on*, pages 1394–1399. IEEE, 2007.

[48] Ulrich Kutschera and Peter Wirtz. A leech that feeds its young. *Animal behaviour*, 34(3):941–942, 1986.

[49] Shawn R Lockery and Terrence J Sejnowski. The computational leech. *Trends in neurosciences*, 16(7):283–290, 1993.

[50] SR Lockery and TJ Sejnowski. A lower bound on the detectability of nonassociative learning in the local bending reflex of the medicinal leech. *Behavioral and neural biology*, 59(3):208–224, 1993.

[51] Simone Macrì, Walter Adriani, Flavia Chiarotti, and Giovanni Laviola. Risk taking during exploration of a plus-maze is greater in adolescent than in juvenile or adult mice. *Animal Behaviour*, 64(4):541–546, 2002.

[52] Thomas Manwell, Tomas Vitek, Tommaso Ranzani, Arianna Menciassi, Kaspar Althoefer, and Hongbin Liu. Elastic mesh braided worm robot for locomotive endoscopy. In *Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE*, pages 848–851. IEEE, 2014.

[53] Chris Melhuish, Andrew Adamatzky, and Brett A Kennedy. Biologically inspired robots. In *SPIE’s 8th Annual International Symposium on Smart Structures and Materials*, pages 16–27. International Society for Optics and Photonics, 2001.
[54] Claudia Mettke-Hofmann, Hans Winkler, and Bernd Leisler. The significance of ecological factors for exploration and neophobia in parrots. *Ethology*, 108(3):249–272, 2002.

[55] Michael Milford and Gordon Wyeth. Spatial mapping and map exploitation: a bio-inspired engineering perspective. In *Spatial Information Theory*, pages 203–221. Springer, 2007.

[56] Lisa M Misell, Brian K Shaw, and William B Kristan Jr. Behavioral hierarchy in the medicinal leech, *Hirudo medicinalis*: feeding as a dominant behavior. *Behavioural brain research*, 90(1):13–21, 1998.

[57] Linda B Murphy. The practical problems of recognizing and measuring fear and exploration behaviour in the domestic fowl. *Animal Behaviour*, 26:422–431, 1978.

[58] RA Pearce and WO Friesen. A model for intersegmental coordination in the leech nerve cord. *Biological cybernetics*, 58(5):301–311, 1988.

[59] Rolf Pfeifer, Max Lungarella, and Fumiya Iida. The challenges ahead for bio-inspired’soft’robotics. *Communications of the ACM*, 55(11):76–87, 2012.

[60] Jianhua Qin and Aaron R Wheeler. Maze exploration and learning in c. elegans. *Lab on a Chip*, 7(2):186–192, 2007.

[61] Sangok Seok, Cagdas Denizel Onal, Kyu-Jin Cho, Robert J Wood, Daniela Rus, and Sangbae Kim. Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. *Mechatronics, IEEE/ASME Transactions on*, 18(5):1485–1497, 2013.

[62] Denis Sheynikhovich, Ricardo Chavarriaga, Thomas Strösslin, and Wulfram Gerstner. Spatial representation and navigation in a bio-inspired robot. In *Biomimetic Neural Learning for Intelligent Robots*, pages 245–264. Springer, 2005.

[63] Pankaj Taneja and John Rowson. National survey of the use and application of leeches in oral and maxillofacial surgery in the united kingdom. *British Journal of Oral and Maxillofacial Surgery*, 49(6):438–441, 2011.

[64] Adam Taylor, Garrison W Cottrell, and William B Kristan Jr. A model of the leech segmental swim central pattern generator. *Neurocomputing*, 32:573–584, 2000.

[65] MA Tsonpanas, G Sirakoulis, and A Adamatzky. Evolving transport networks with cellular automata models inspired by slime mould. *IEEE Transactions on Cybernetics, submitted*, 2013.

[66] Michail-Antisthenis I Tsonpanas, Georgios Ch Sirakoulis, and Andrew I Adamatzky. Physarum in silicon: the greek motorways study. *Natural Computing*, pages 1–17, 2014.
[67] Wei Wang, Yingying Wang, Jinghao Qi, Houxiang Zhang, and Jianwei Zhang. The cpg control algorithm for a climbing worm robot. In Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on, pages 675–679. IEEE, 2008.

[68] David GM Wood-Gush and Klaus Vestergaard. Inquisitive exploration in pigs. Animal behaviour, 45(1):185–187, 1993.

[69] DGM Wood-Gush, Alex Stolba, and Candace Miller. Exploration in farm animals and animal husbandry. Exploration in animals and humans, pages 198–209, 1983.

[70] DGM Wood-Gush, K Vestergaard, H Volker Petersen, et al. The significance of motivation and environment in the development of exploration in pigs. Biology of Behaviour, 15(1):39–52, 1990.

[71] Brian Yamauchi. Frontier-based exploration using multiple robots. In Proceedings of the second international conference on Autonomous agents, pages 47–53. ACM, 1998.

[72] Qinghai Yang, Junzhi Yu, Rui Ding, and Min Tan. Body-deformation steering approach to guide a multi-mode amphibious robot on land. In Intelligent Robotics and Applications, pages 1021–1030. Springer, 2008.

[73] Qinghai Yang, Junzhi Yu, Min Tan, and Weibing Wang. Preliminary development of a biomimetic amphibious robot capable of multi-mode motion. In Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on, pages 769–774. IEEE, 2007.

[74] Xin-She Yang. Engineering optimizations via nature-inspired virtual bee algorithms. In Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, pages 317–323. Springer, 2005.

[75] Xin-She Yang. Firefly algorithms for multimodal optimization. In Stochastic algorithms: foundations and applications, pages 169–178. Springer, 2009.

[76] Xin-She Yang. Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[77] Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICS 2010), pages 65–74. Springer, 2010.

[78] SR Young, RD Dedwylder II, and WO Friesen. Responses of the medicinal leech to water waves. Journal of comparative physiology, 144(1):111–116, 1981.

[79] Shumei Yu, Shugen Ma, Bin Li, and Yuechao Wang. An amphibious snake-like robot: design and motion experiments on ground and in water. In Information and Automation, 2009. ICIA’09. International Conference on, pages 500–505. IEEE, 2009.
[80] Maria Luisa Zaccardi, Giovanna Traina, Enrico Cataldo, and Marcello Brunelli. Sensitization and dishabituation of swim induction in the leech *H. medicinalis*: role of serotonin and cyclic amp. *Behavioural brain research*, 153(2):317–326, 2004.

[81] David Zarrouk, Inna Sharf, and Moshe Shoham. Analysis of earthworm-like robotic locomotion on compliant surfaces. In *Robotics and Automation (ICRA), 2010 IEEE International Conference on*, pages 1574–1579. IEEE, 2010.

[82] David Zarrouk, Inna Sharf, and Moshe Shoham. Conditions for worm-robot locomotion in a flexible environment: theory and experiments. *Biomedical Engineering, IEEE Transactions on*, 59(4):1057–1067, 2012.

[83] Min Zheng, W Otto Friesen, and Tetsuya Iwasaki. Systems-level modeling of neuronal circuits for leech swimming. *Journal of computational neuroscience*, 22(1):21–38, 2007.

[84] Liping Zhu, Masashi Aono, Song-Ju Kim, and Masahiko Hara. Amoeba-based computing for traveling salesman problem: Long-term correlations between spatially separated individual cells of *P. polycephalum*. *BioSystems*, 112(1):1–10, 2013.

[85] Klaus Zimmermann, Vera A Naletova, Igor Zeidis, Vladimir A Turkov, Emil Kolev, Mikhail V Lukashevich, and Gennadij V Stepanov. A deformable magnetizable worm in a magnetic field: prototype of a mobile crawling robot. *Journal of Magnetism and Magnetic Materials*, 311(1):450–453, 2007.