GETMe.anis: On geometric polygon transformations leading to anisotropy

Dimitris Vartziotis† ‡ Juri Merger*
May 7, 2018

Summary
This work contributes to the analysis of linear geometric polygon transformations with the aim to force a desired shape by an iterative procedure.

Keywords: Linear algebra, polygon transformations, anisotropy

1 Introduction

For several decades the finite element method is state-of-the-art when it comes to numerical simulations in various engineering fields. Hereby, the discretization of the continuous problem of solving partial differential equations takes places on two sides. On the one hand, the weak formulation considering an infinite dimensional space of trial functions is replaced by a finite dimensional space consisting of polygonal trial functions. On the other hand, also the domain of the partial differential equation is discretized by a polygonal mesh. In practice it turned out that the latter point is the most time consuming step in a numerical simulation. The convergence and error properties of the numerical approximation of the continuous problem is strictly connected to the finite element mesh quality. Therefore, a huge effort is being done in order to derive efficient mesh generation and smoothing methods. One direction is the geometric element transformation methods that improved the mesh quality by an iterative application of a geometric transformation to the elements of the mesh \cite{10, 18, 15, 20, 12}. See also

* TWT GmbH Science & Innovation, Department for Mathematical Research, Ernsthaldenstraße 17, 70565 Stuttgart, Germany
† NIKI Ltd. Digital Engineering, Research Center, 205 Ethnikis Antistasis Street, 45500 Katsika, Ioannina, Greece
‡ Corresponding author. E-mail address: dimitris.vartziotis@nikitec.gr
for the analysis of various aspects of geometric polygon transformations. In line of this research the current work is extending the topic to anisotropic limit polygons, as the aim of the previous work is to generate meshes with as regular as possible elements.

2 Linear polygon-transformation with variations along different edges

For a polygon $P \in \mathbb{C}^n$ and a vector $w \in \mathbb{C}^n$ we define the following transformation

$$P = (z_1, \ldots, z_n)^\top \mapsto M P,$$

where the transition matrix M is defined as follows:

$$M = \begin{pmatrix} 1 - w_1 & w_1 & 0 & \cdots \\ 0 & 1 - w_2 & w_2 & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ w_n & \cdots & 0 & 1 - w_n \end{pmatrix} \quad (1)$$

This transformation maps a vertex z_i to a point that is constructed as follows. Consider the line that is orthogonal to the line connecting z_i and z_{i+1}, whose intersection point with that line has a distance of $\Re(w_i) |z_{i+1} - z_i|$ from z_i, where a negative distance value represents a point on opposite side of z_{i+1}. Further, we construct a line through z_i whose angle with the line between z_i and z_{i+1} is the same as the angle of w_i, which equals $\arctan\left(\frac{\Im(w_i)}{\Re(w_i)}\right)$. The point z_i is mapped on the intersection point of these two lines, which happens to be $z_i + w_i(z_{i+1} - z_i)$. This is a generalization of the λ-θ transformation for not only $\lambda \in (0, 1)$ and $\theta \in \left[0, \frac{\pi}{2}\right]$, but also for $\lambda \in \mathbb{R}$ and $\theta \in [0, 2\pi]$. The key for the investigation of the limit behavior of the sequence $M^n P$ are the eigenvalues and -vectors of the matrix M. As the eigenvectors of M and $M - I$ are the same and the eigenvalues of $M - I$ are given by $\mu_k - 1$, where μ_k are eigenvalues of M, we investigate the matrix $M - I$. Therefore, we
compute the characteristic polynom of $M - I$, which is given by

$$p(x) = det (xI - (M - I)) = det \begin{pmatrix} x + w_1 & -w_1 & 0 & \cdots \\ 0 & x + w_2 & -w_2 & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -w_n & \cdots & 0 & x + w_n \end{pmatrix}$$

$$= \prod_{i=1}^{n} (x + w_i) + (-1)^{n-1} \prod_{i=1}^{n} (-w_i)$$

$$= \prod_{i=1}^{n} (x + w_i) - \prod_{i=1}^{n} w_i$$

There are two cases:

1. When one of the complex number w_i equals zero, we can easily compute the eigenvalues of $M - I$, as we have

$$p(x) = x \prod_{i=2}^{n} (x + w_i),$$

where we w.l.o.g. have assumed that $w_1 = 0$ holds. Hence, the eigenvalues of M are given by $\mu_i = 1 - w_i$. The eigenvector corresponding to μ_k is given by $v_k = (0, 1, \frac{w_2 - w_k}{w_2}, \frac{w_2 - w_k}{w_2} \frac{w_3 - w_k}{w_3}, \ldots, \frac{i-1}{j=2} \frac{w_j - w_k}{w_j}, 0, \ldots)\top$.

This can be verified by

$$M v_k = \begin{pmatrix} w_1 \\ (1 - w_2) \frac{w_2 - w_k}{w_2} + \frac{w_3 - w_k}{w_3} \\ \vdots \\ (1 - w_k) \prod_{j=2}^{i-1} \frac{w_j - w_k}{w_j} + w_i \prod_{j=2}^{i} \frac{w_j - w_k}{w_j} \\ \vdots \end{pmatrix} = \begin{pmatrix} 0 \\ (1 - w_k) \frac{w_2 - w_k}{w_2} \\ \vdots \\ (1 - w_k) \prod_{j=2}^{i} \frac{w_j - w_k}{w_j} \end{pmatrix}$$

Note also that from the equation $(M - I)v = -w_k v$, we can conclude

$$-w_i v_i + w_i v_{i+1} = -w_k v_i$$

for $i = 1, \ldots, n$, which is equivalent to

$$v_{i+1} = \frac{w_i - w_k}{w_i} v_i$$

for $i = 1, \ldots, n$ for all i such that $w_i \neq 0$.

3
Note that the transformation described above is translation and scale invariant. Hence, we can transform each desired polygon w.l.o.g. such that \(v_1 = 0 \) and it follows that \(w_1 = 0 \), which means that we can compute the eigenvalues exactly.

2. The case, where \(w_i \neq 0 \) for all \(i = 1, \ldots, n \) is more involved and still an open question up to now.

3 Constructing weights for an arbitrary limit polygon

In this section we analyse the inverse problem. Given a desired limit polygon \(v \in \mathbb{C}^n \) we want to construct weights \(w_i \) \((i = 1, \ldots, n)\), such that the sequence \(z^{(k)} := M^k z^{(0)} \) converges to \(v \) as \(n \) tends to infinity, where \(M \) is given by (1).

This is the case, when \(v \) is an eigenvector of the matrix \(M \) and the corresponding eigenvalue has an absolute value larger than all other eigenvalues. Here, we can ignore the eigenvalue for the eigenvector \((1, \ldots, 1)^\top\), as the corresponding \(n \)-gon is the pointed polygon, which has no effect on the shape.

Assume that \(v \in \mathbb{C} \) is given and define the auxiliary weights \(\tilde{w}_i = \frac{v_i}{v_{i+1} - v_i} \).

Then, \(v \) is an eigenvector with eigenvalue \(2 \) of the corresponding transformation matrix \(\tilde{M} \). This follows by

\[
(\tilde{M}v)_i = (1 - \tilde{w}_i)v_i + \tilde{w}_iv_{i+1} = \left(1 - \frac{v_i}{v_{i+1} - v_i}\right)v_i + \frac{v_i}{v_{i+1} - v_i}v_{i+1} = \frac{v_i}{v_{i+1} - v_i}v_i + \frac{v_i}{v_{i+1} - v_i}v_{i+1} = 2v_i.
\]

Let us denote by \(1 + \mu_i \) \((i = 1, \ldots, n - 1)\) the remaining eigenvalues of \(\tilde{M} \), where we have w.l.o.g. \(\mu_1 = 1 \), as we have \(\tilde{M}(1, \ldots, 1)^\top = (1, \ldots, 1)^\top \). It is in general not true that we have \(|1 + \mu_i| < 2 \) for all \(i = 2, \ldots, n - 1 \). Hence, we use transformed weights \(w_i := \lambda \tilde{w}_i \) for a complex number \(\lambda \in \mathbb{C} \). Observe that the corresponding matrix \(M \) has the same eigenvectors as \(\tilde{M} \) and but the eigenvalues are given by \(\mu_1 \), \(1 + \lambda \mu_2 \), \ldots, \(1 + \lambda \mu_{n-1} \), and \(1 + \lambda \), where \(\lambda \) is the eigenvalue to the eigenvector \(v \), which is the desired \(n \)-gon. Our aim is now to find a \(\lambda \) such that we have

\[|1 + \lambda| > |1 + \lambda \mu_i| \quad \text{for all } i = 2, \ldots, n - 1 \]

Therefore, we have the following theorem.

Theorem 1. Let \(\mu \) be a complex number. The set \(\Lambda_\mu \) of all complex numbers \(\lambda \in \mathbb{C} \) such that

\[|1 + \lambda|^2 > |1 + \lambda \mu|^2 \]
holds is given by

- **Case 1:** \(|\mu| < 1\) the exterior of the circle with radius \(\omega\) and midpoint \(\omega\), where we have \(\omega = \frac{1-\pi}{|\mu|^2-1}\), i.e.
 \[\Lambda_\mu = \{ \lambda \in \mathbb{C} : |\lambda - \omega| > |\omega| \}, \]

- **Case 2:** \(|\mu| = 1\) an open half plane of all complex number, whose angle to the point \(\overline{\mu} - 1\) is less than 90°, i.e.
 \[\Lambda_\mu = \{ \lambda \in \mathbb{C} : \angle \lambda \in \left(\angle (\overline{\mu} - 1) - \frac{\pi}{2}, \angle (\overline{\mu} - 1) + \frac{\pi}{2} \right) \}, \]

- **Case 3:** \(|\mu| > 1\) the interior of the circle with radius \(\omega\) and midpoint \(\omega\), where we have \(\omega = \frac{1-\pi}{|\mu|^2-1}\), i.e.
 \[\Lambda_\mu = \{ \lambda \in \mathbb{C} : |\lambda - \omega| < |\omega| \}. \]

Proof. Algebraic manipulations.

Theorem 2. Let \(\mu_i\) be defined as above. Assume that the set \(\bigcap_{i=2}^{n-1} \Lambda_\mu_i\) is not empty. Then, there exist weights \(w_i\) such that \(v\) is the limit polygon of the transformation matrix \(M\).

Proof. Choose \(\lambda \in \bigcap_{i=2}^{n-1} \Lambda_\mu_i\) and define the weights as above. Then, we have \(|1 + \lambda| > |1 + \lambda \mu_i|\) for all \(i = 2, \ldots, n - 1\). This has the statement of the theorem as a consequence.

3.1 Triangles \((n = 3)\)

For transformations on triangles \((n = 3)\) the intersection in Theorem 2 is trivially non-empty as there is only one competing eigenvalue. Consequently, there exist weights such that any triangle is the limit of the polygon sequence \(M^k z^{(0)}\) regardless the initial triangle \(z^{(0)}\). In particular, we can choose \(\lambda = -\mu_2^{-1}\) and transform the only competing eigenvalue to zero. This means that any initial triangle is transformed in exactly one step to the desired triangle. Hence, we have the following algorithm:

1. Choose arbitrary \(v \in \mathbb{C}^3\).
2. Compute temporary transformation weight \(\tilde{w}_i = \frac{v_i}{v_{i+1} - v_i}\).
3. Compute the third eigenvalue of \(M - I\), which is given by \(\mu = \sum_{i=1}^{3} \tilde{w}_i \tilde{w}_{i+1}\).
 The other two eigenvalues are 0 and 1.
4. Compute scaled weights \(w_i = -\tilde{w}_i \mu^{-1}\).
3.2 Quadrangles \((n = 4)\)

In this subsection we concentrate on quadrangles. Here, we have two competing eigenvalues which we denote by \(\mu_2\) and \(\mu_3\). We have to analyze the possibility that the intersection \(\Lambda_{\mu_2} \cap \Lambda_{\mu_3}\) is empty. This can happen for example if we have case 3 in Theorem \([\text{I}]\) for both eigenvalues and the line between \(\omega_2 = \frac{1-\mu_2}{|\mu_2|^2 - 1}\) and \(\omega_3 = \frac{1-\mu_3}{|\mu_3|^2 - 1}\) covers the origin \(z = 0\), e.g. \(\omega_2 = -\omega_3\). In this situation the corresponding circles do not intersect. The same can happen for half planes in case 2.

Remark 1. It is up to now an open question whether there are quadrangles \(v \in C^4\) such that these cases occur and the intersection is empty. In this case we have proven that there exist no weights \(w_i\) such that \(v\) is the limit of the polygon sequence.

Assuming that the intersection is non-empty we can choose \(\lambda\) in the following way:

\(\mu_2	< 1 \land	\mu_3	< 1\)	\(\lambda\)								
\(\mu_2	< 1 \land	\mu_3	= 1\)	\(2 \ (\omega_2 + \omega_3)\)								
\(\mu_2	< 1 \land	\mu_3	> 1\)	\(\omega_2 + \frac{\omega_3 - \omega_2}{	\omega_3 - \omega_2	} \frac{	\omega_3 - \omega_2	+	\omega_1	+	\omega_2	}{2}\)
\(\mu_2	= 1 \land	\mu_3	< 1\)	\(3	\omega_2	(\bar{\mu}_3 - 1)\)						
\(\mu_2	= 1 \land	\mu_3	= 1\)	\(\bar{\mu}_2 - 1 + \bar{\mu}_3 - 1\)								
\(\mu_2	> 1 \land	\mu_3	< 1\)	\(\omega_2 + \frac{\omega_3 - \omega_2}{	\omega_3 - \omega_2	} \frac{	\omega_3 - \omega_2	+	\omega_1	+	\omega_2	}{2}\)
\(\mu_2	> 1 \land	\mu_3	= 1\)	\(\omega_2 + \frac{\omega_3 - \omega_2}{	\omega_3 - \omega_2	} \frac{	\omega_3 - \omega_2	+	\omega_1	+	\omega_2	}{2}\)
\(\mu_2	> 1 \land	\mu_3	> 1\)	\(\omega_2 + \frac{\omega_3 - \omega_2}{	\omega_3 - \omega_2	} \frac{	\omega_3 - \omega_2	+	\omega_1	+	\omega_2	}{2}\)

where \(x\) is given by the distance of \(\omega_2\) and the line through the origin which is orthogonal to the vector \(\bar{\mu}_2 - 1\).

4 Discussion

This work extends the idea of geometric polygon transformations to regularize finite element meshes beyond regular elements. In use cases where anisotropy inside a mesh is desired, alternative transformations can be used to force finite elements to obtain a certain anisotropy. As previously shown this is always possible for triangles and mostly also for quadrangles.

A further approach can be to temporarily change the metric for the GETMe algorithm such that it regularizes the elements of the mesh with respect to a metric that induces an anisotropy as desired.
References

1. Philip J. Davis. Cyclic transformations of \(n \)-gons and related quadratic forms. *Linear Algebra and its Applications*, 25:57–75, 1979.

2. Philip J. Davis. *Circulant Matrices*. Chelsea Publishing, 2 edition, 1994.

3. Jiu Ding, L. Richard Hitt, and Xin-Min Zhang. Markov chains and dynamic geometry of polygons. *Linear Algebra and its Applications*, 367:255–270, 2003.

4. Jesse Douglas. On linear polygon transformations. *Bulletin of the American Mathematical Society*, 46:551–560, 1940.

5. David Merriell. Further remarks on concentric polygons. *American Mathematical Monthly*, 72:960–965, 1965.

6. B.H. Neumann. A remark on polygons. *Journal of the London Mathematical Society*, s1-17:165–166, 1942.

7. K. Petr. Ein Satz über Vielecke. *Archiv der Mathematik und Physik: mit besonderer Rücksicht auf die Bedürfnisse der Lehrer an höheren Unterrichtsanstalten*, 13:29–31, 1908.

8. Wolfgang Schuster. Regularisierung von Polygonen. *Mathematische Semesterberichte*, 45(1):77–94, 1998.

9. G.C. Shephard. Sequences of smoothed polygons. In András Bezdek, editor, *Discrete Geometry*, Pure and Applied Mathematics, pages 407–430. Marcel Dekker, 2003.

10. Dimitris Vartziotis, Theodoros Athanasiadis, Iraklis Goudas, and Joachim Wipper. Mesh smoothing using the Geometric Element Transformation Method. *Comput. Methods Appl. Mech. Engrg.*, 197(45–48):3760–3767, 2008.

11. Dimitris Vartziotis and Doris Bohnet. Regularizations of non-euclidean polygons. *arXiv:1312.2500 [math.MG]*, 2013.

12. Dimitris Vartziotis and Doris Bohnet. Convergence properties of a geometric mesh smoothing algorithm. *arXiv:1411.3869 [math.NA]*, 2014.

13. Dimitris Vartziotis and Doris Bohnet. Existence of an attractor for a geometric tetrahedron transformation. *Differential Geometry and its Applications*, 49:197 – 207, 2016.

14. Dimitris Vartziotis and Simon Huggenberger. Iterative geometric triangle transformations. *Elem. Math.*, 67(2):68–83, 2012.

15. Dimitris Vartziotis and Manolis Papadrakakis. Improved GETMe by adaptive mesh smoothing. *Computer Assisted Methods in Engineering and Science*, 20:55–71, 2013.
16. Dimitris Vartziotis and Joachim Wipper. Classification of symmetry generating polygon-transformations and geometric prime algorithms. *Math. Pannon.*, 20(2):167–187, 2009.

17. Dimitris Vartziotis and Joachim Wipper. On the Construction of Regular Polygons and Generalized Napoleon Vertices. *Forum Geom.*, 9:213–223, 2009.

18. Dimitris Vartziotis and Joachim Wipper. The Geometric Element Transformation Method for Mixed Mesh Smoothing. *Eng. Comput.*, 25(3):287–301, 2009.

19. Dimitris Vartziotis and Joachim Wipper. Characteristic parameter sets and limits of circulant Hermitian polygon transformations. *Linear Algebra Appl.*, 433(5):945–955, 2010.

20. Dimitris Vartziotis, Joachim Wipper, and Manolis Papadrakakis. Improving mesh quality and finite element solution accuracy by GETMe smoothing in solving the Poisson equation. *Finite Elem. Anal. Des.*, 66:36–52, 2013.