Advances in Ca\(^{2+}\) modulation of gastrointestinal anion secretion and its dysregulation in digestive disorders (Review)

WEIXI SHAN\(^{1*}\), YANXIA HU\(^{1*}\), JIANHONG DING\(^{1}\), XIAOXU YANG\(^{1}\), JUN LOU\(^{1}\), QIAN DU\(^{1}\), QIUSHI LIAO\(^{1}\), LIHONG LUO\(^{2}\), JINGYU XU\(^{1}\) and RUI XIE\(^{1}\)

\(^{1}\)Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003; \(^{2}\)Department of Oncology and Geriatrics, Traditional Chinese Medicine Hospital of Chishui City, Guizhou 564700, P.R. China

Received January 15, 2020; Accepted May 22, 2020

DOI: 10.3892/etm.2020.9136

Abstract. Intracellular calcium (Ca\(^{2+}\)) is a critical cell signaling component in gastrointestinal (GI) physiology. Cytosolic calcium ([Ca\(^{2+}\)]\(_{cyt}\)) as a secondary messenger, controls GI epithelial fluid and ion transport, mucus and neuropeptide secretion, as well as synaptic transmission and motility. The key roles of Ca\(^{2+}\) signaling in other types of secretory cell (including those in the airways and salivary glands) are well known. However, its action in GI epithelial secretion and the underlying molecular mechanisms have remained to be fully elucidated. The present review focused on the role of [Ca\(^{2+}\)]\(_{cyt}\) in GI epithelial anion secretion. Ca\(^{2+}\) signaling regulates the activities of ion channels and transporters involved in GI epithelial ion and fluid transport, including Cl\(^{-}\) channels, Ca\(^{2+}\)-activated K\(^{+}\) channels, cystic fibrosis (CF) transmembrane conductance regulator and anion/HCO\(_{3}^{-}\) exchangers. Previous studies by the current researchers have focused on this field over several years, providing solid evidence that Ca\(^{2+}\) signaling has an important role in the regulation of GI epithelial anion secretion and uncovering underlying molecular mechanisms. The present review is largely based on previous studies by the current researchers and provides an overview of the currently known molecular mechanisms of GI epithelial anion secretion with an emphasis on Ca\(^{2+}\)-mediated ion secretion and its dysregulation in GI disorders. In addition, previous studies by the current researchers demonstrated that different regulatory mechanisms are in place for GI epithelial HCO\(_{3}^{-}\) and Cl\(^{-}\) secretion. An increased understanding of the roles of Ca\(^{2+}\) signaling and its targets in GI anion secretion may lead to the development of novel strategies to inhibit GI diseases, including the enhancement of fluid secretion in CF and protection of the GI mucosa in ulcer diseases.

Contents

1. Introduction
2. General aspects of GI epithelial anion secretion
3. Ca\(^{2+}\) modulation of GI epithelial anion secretion
4. Associated GI diseases
5. Conclusion

1. Introduction

It is well known that [Ca\(^{2+}\)]\(_{cyt}\) has an essential role in numerous important mammalian cell functions, including neurotransmitter release, gene regulation, muscle contraction, cell proliferation, differentiation and apoptosis (1). Since the function of [Ca\(^{2+}\)]\(_{cyt}\) as the cell's secondary messenger is based on the presence of a concentration gradient between [Ca\(^{2+}\)]\(_{cyt}\) and external Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_{ext}\)), normal [Ca\(^{2+}\)]\(_{cyt}\) homeostasis is important. Under normal physiological conditions, the concentration of [Ca\(^{2+}\)]\(_{cyt}\) is <100 nM, which is ~10,000 times lower than [Ca\(^{2+}\)]\(_{ext}\)(>1 mM) (3,4). Furthermore, the membrane potential of ~60 mV adds to the large electrochemical gradient and this huge concentration gradient favors the entry of Ca\(^{2+}\) into cells (5). Therefore, when cells are activated, Ca\(^{2+}\) is transported down this electrochemical gradient into the cells through the specific transmembrane Ca\(^{2+}\) channels, leading to increases in the [Ca\(^{2+}\)]\(_{cyt}\) (5).

To restore the resting levels of [Ca\(^{2+}\)]\(_{cyt}\), Ca\(^{2+}\) is transported back to the extracellular space or stored in intracellular Ca\(^{2+}\) pools by Ca\(^{2+}\) pumps and transporters (6,7). Furthermore, [Ca\(^{2+}\)]\(_{cyt}\) exhibits differences functions in different type of cells (8). These are key factors that determine different specific Ca\(^{2+}\)-dependent cellular responses affected by complex, spatiotemporal variations in [Ca\(^{2+}\)]\(_{cyt}\) (Fig. 1). A major determinant of these variations are different functionally distinct membrane calcium channels and exchangers, such as the receptor-operated calcium channels, voltage-gated channels, Na\(^{+}/Ca\(^{2+}\) exchangers (NCX) and calcium pumps (9). In addition, the intracellular stores are an important determinant.
for Ca$^{2+}$ release (10). To date, the ryanodine receptor (RyR) and inositol triphosphate receptor (IP$_3$R) channels on the endoplasmic reticulum (ER), have been identified, which lead to Ca$^{2+}$-induced Ca$^{2+}$ release (CICR) or release of IP$_3$, respectively, to mediate the release of Ca$^{2+}$ from intracellular stores and increasing the [Ca$^{2+}$]$_{cyt}$ (11).

In the digestive system, [Ca$^{2+}$]$_{cyt}$ also has critical roles in the regulation of digestive functions (12,13). This includes GI motility and ion transport, food digestion and nutrient absorption (14). In the epithelial cells of the GI tract, ion secretion and absorption of electrolytes and fluid are two essential functions and ion transport is also a critical physiological process in the human GI tract (15). GI epithelium secretes anions (Cl$^-$ and HCO$_3^-$), providing the driving force for fluid transport to maintain fluid homeostasis in the human body (16). GI epithelial anion secretion is controlled by several neuro-humoral factors, including prostaglandin E2 (PGE2), acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) (17). These factors mediate epithelial anion secretion mainly through Ca$^{2+}$, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling pathways (17).

The physiological roles and molecular mechanisms of cAMP- and cGMP-dependent regulation of GI epithelial anion secretion have been extensively defined (18). Since certain adenylyl cyclase subtypes are Ca$^{2+}$-dependent and multiple interactions between Ca$^{2+}$ and cAMP signaling pathways exist in mammalian cells, it was previously thought that Ca$^{2+}$ may mediate epithelial anion secretion indirectly through cAMP signaling (19).

However, various lines of evidence indicate that Ca$^{2+}$ signaling is able to mediate epithelial anion secretion in a cAMP-independent manner (19,20). Although the critical role of Ca$^{2+}$-dependent regulation has been verified, the underlying regulatory mechanisms remain to be fully elucidated. The current researchers have been investigating the Ca$^{2+}$-mediated regulation of anion secretion by GI epithelium and provided solid evidence for a regulatory role of Ca$^{2+}$ signaling in a cAMP-independent manner, as well as the underlying molecular mechanisms (19).

While the critical role of Ca$^{2+}$ signaling in other types of secretory cell (such as those of the airways and salivary gland) is well known (21), the roles of Ca$^{2+}$ signaling in GI epithelial secretion and its molecular mechanisms have remained to be fully elucidated. Further research is required to molecularly identify the Ca$^{2+}$-activated ion transporters in GI epithelial cells. In addition, the application of mucaricin agonists was observed to lead to an increase in [Ca$^{2+}$]$_{cyt}$ in secretory cells and promote GI anion secretion (22). However, this phenomenon has been extensively studied in other types secretory cells, such as the secretory cells in the avian basal gland (21).

Overall, the Ca$^{2+}$ signaling and anion secretion mechanisms are of important clinical relevance and need to be further elucidated. In cystic fibrosis (CF), certain calcium agonists stimulate Ca$^{2+}$-activated Cl$^-$ channel (CaCC)-dependent and CF transmembrane conductance regulator (CFTR)-independent secretion and agents that stimulate Ca$^{2+}$ signaling may be used therapeutically to restore ion and fluid secretion defects (23). Conversely, in certain other types of GI disease, such as intestinal inflammation and diarrhea, inhibition of intracellular Ca$^{2+}$ signaling may have therapeutic potential to ameliorate excessive fluid secretion (24,25) (Table 1). Therefore, in the present review, the current state of knowledge regarding Ca$^{2+}$ signaling in the regulation of GI epithelial anion secretion and the associated GI disorders was summarized.

2. General aspects of GI epithelial anion secretion

GI epithelial HCO$_3^-$ secretion. GI epithelial bicarbonate (HCO$_3^-$) is produced on the surface GI epithelial cells and secreted to the luminal side of the epithelium; it is involved in the formation of gastrointestinal mucus with a slightly alkaline pH (12). The basolateral side of electroneutral Na$^+$-coupled HCO$_3^-$ cotransporter is one of the important transporters for HCO$_3^-$ absorption (12). With the help of the carbonic anhydrase, the HCO$_3^-$ is taken up and it is also generated inside the cells (26).

To date, several pathways for the export of HCO$_3^-$ into the luminal side of the GI mucosa have been elucidated: i) the CFTR or the CaCC is able to promote electrogenic HCO$_3^-$ efflux, ii) luminal electroneutral anion/HCO$_3^-$ exchangers have been confirmed to contribute to the transport of HCO$_3^-$ and iii) HCO$_3^-$ may be bistransported via the short-chain fatty acids (SCFA)/HCO$_3^-$ exchanger in the colon (27,28). Electroneutral secretion of HCO$_3^-$ is paralleled by the activity of Na$^+$/H$^+$ exchanger-3 (29). Furthermore, the luminal Cl$^-$ channels, as a recycling pathway for Cl$^-$, are important for HCO$_3^-$ secretion and they may serve in the electrogenic secretion of HCO$_3^-$ via the luminal Cl$^-$/HCO$_3^-$ antiporters (27). One of the Cl$^-$ channels, CFTR, which is located on the apical side, was clearly demonstrated to be involved in the response of HCO$_3^-$ secretion in the intestine a pancreatic duct (30). Besides the CFTR, Ca$^{2+}$, cAMP and cGMP were indicated to induce HCO$_3^-$ secretion in the small intestine (31). Current data has also demonstrated that the CFTR is involved in the regulation of the intracellular pH and that the expression and function of Cl$^-$/HCO$_3^-$ exchangers and down-regulated in adenoma were regulated by the CFTR (32). Of note, CFTR is necessary for HCO$_3^-$ secretion in numerous other epithelial tissues as well (33). Thus, it is likely that the CFTR contributes to anion secretion and control of the luminal pH in the entire GI tract, but in the mammalian colon, the SCFA-dependent HCO$_3^-$ secretion is the primary mechanism of HCO$_3^-$ secretion (34). Well-regulated HCO$_3^-$ secretion is critical for the mucosal defense against luminal acid due to its neutralization effect in the upper GI tract and against bacteria in the lower GI tract due to its stimulation of mucus secretion and maintenance of the intestinal barrier function (35). Aside from mechanisms of mucosal protection, normal HCO$_3^-$ secretion in the small intestine is assumed to establish and maintain an optimal pH for the activity of luminal digestive enzymes (35). The small intestine is in an alkaline range of pH 6.7-8.0, which is the best pH value for the optimal activity of pancreatic enzymes (36). The duodenum in particular is an important organ exerting pH control for enzymatic digestion (37).

Defective intestinal HCO$_3^-$ secretion has been indicated to be a risk factor for intestinal inflammation and peptic ulcer diseases (38). Furthermore, intestinal HCO$_3^-$ secretion has been critically involved in the pathophysiology of acute infectious diarrhea (39). Cholera and numerous other acute diarrheal illnesses may increase the intestinal secretion and
loss of HCO$_3^-$, which may result in a severe HCO$_3^-$ deficit and metabolic acidosis (40). Defective GI epithelial HCO$_3^-$ secretion has been critically implicated in the pathogenesis of CF (30). A previous study examining the human duodenum indicated a CFTR-dependent alkaline transport in subjects without CF, which was absent in patients with CF (41). Furthermore, electrogenic HCO$_3^-$ secretion was detected in the colon of mice without CF, while it was absent in mice with CF (42). The defective HCO$_3^-$ transport in CF may be crucial for the severity of the symptoms of CF (43). Defective HCO$_3^-$ transport probably causes obstruction of the pancreatic duct and exocrine pancreatic insufficiency (44). Impaired duodenal HCO$_3^-$ production and failure to buffer gastric acid is responsible for an increased incidence of epigastric pain and morphological changes in the duodenum of patients with CF (45).

GI epithelial Cl$^-$ secretion. In GI physiology, fluid secretion has a critical role and is driven by active Cl$^-$ transport from the basolateral to the apical side of enterocytes (46). The basolateral Na$^+$.K$^+$.2Cl$^-$ cotransporter (NKCC1) is one of the important transporters for Cl$^-$ secretion (47). The rate secretion of Cl$^-$ is regulated by the activity of NKCC1, which is dependent on the intracellular Cl$^-$ concentration, cell swelling and probably phosphorylation (47). It has also been confirmed that the cAMP-activated KVLQT1/KCNE3 and Ca$^{2+}$.activated K$^+$ channels are able to maintain Cl$^-$ transport (48). The basolateral Cl$^-$ is taken up by NKCC; however, its exit is primarily via the apical CFTR. Channels such as CaCC and other Cl$^-$ channels may also take part in apical Cl$^-$ secretion (49). Na$^+$ and water follow via a paracellular route (50). These ion and fluid transports initiated by pathogens (e.g., cholera toxin and rotavirus) involve multiple factors, such as 5-HT, substance P, ACh and vasoactive intestinal peptide, as well as the release of inflammatory mediators from mast cells and neutrophils [e.g. interleukins (ILs) and prostaglandins] (51). Ion and fluid secretion may be activated by different mechanisms that involve second messengers (cAMP, cGMP or Ca$^{2+}$) to activate membrane ion channels (20).

Differences between GI epithelial secretion of Cl$^-$ and HCO$_3^-$. It is generally assumed that the GI epithelial HCO$_3^-$ and Cl$^-$ secretion have the same regulatory mechanisms (52). However, this notion requires to be confirmed through a systematic comparison between them (52). As mentioned earlier, GI epithelial Cl$^-$ and HCO$_3^-$ secretion is mainly controlled by cAMP and Ca$^{2+}$ signaling, which may interact and cross-talk to regulate epithelial ion transport (13,27). Previous studies have demonstrated that most well-known secretagogues, including 5-HT, ACh, forskolin and PGE$_2$, stimulate intestinal HCO$_3^-$ and Cl$^-$ secretion in parallel (53-55). However, whether epithelial HCO$_3^-$ and Cl$^-$ secretion occur in parallel and whether they are regulated by the same or different signaling/mechanisms currently
remains elusive. Notably, it has been indicated that both forskolin- and carbachol (CCh)-induced rat colonic Cl secretion was inhibited by estrogen (56) and further studies by the current researchers revealed that estrogen stimulates duodenal bicarbonate secretion (DBS) in humans and mice without altering basal duodenal short-circuit current (Isc), an index primarily of epithelial Cl secretion (57,58). These results demonstrated that estrogen may have different roles in regulating intestinal HCO3⁻ and Cl⁻ secretion. These findings also suggest that GI epithelial HCO3⁻ and Cl⁻ secretion may not be necessarily triggered in the same way or by identical signaling/mechanisms. Furthermore, a previous study by the current researchers revealed that calcium-sensing receptor (CaSR) activation raises [Ca^{2+}]_{cyt}; however, it reduces cAMP-induced exclusive duodenal HCO3⁻ secretion without simultaneously altering duodenal Cl⁻ secretion (13). Similarly, Tang et al (59) demonstrated that CaSR activation stimulated colonic HCO3⁻ secretion via SCFA/HCO3⁻ and Cl⁻/HCO3⁻ exchangers; however, it inhibited Cl⁻ secretion via the cAMP/Cftr pathway. It may, therefore, be proposed that a different regulatory mechanism likely exists for GI epithelial HCO3⁻ and Cl⁻ secretion. While cAMP may have a critical role in CFTR-mediated Cl⁻ secretion, Ca²⁺ signaling may be critical in anion/HCO3⁻-mediated HCO3⁻ secretion.

Table I. Ca²⁺-mediated GI epithelial anion secretion and the membrane ion channels involved.

Ion channel	Mechanism	Expression	Related diseases	Author (refs)
HCO₃⁻	Maintenance of intestinal barrier function. Mechanisms of mucosal protection. Establishes and maintains optimal pH for the activity of luminal digestive enzymes	GI epithelial cells	Intestinal inflammation, peptic ulcers, acute infectious diarrhea, metabolic acidosis, CF, obstruction of the pancreatic duct, exocrine pancreatic insufficiency, CLD, IBD	Chen et al (26); Fei et al (36); Kuna et al (38); Gennari et al (40); Ramos et al (45)
Cl⁻	Transports the secreted fluid from the lateral base to the apical side of intestinal cells	Basolateral GI epithelial cells	Acute infectious diarrhea, metabolic acidosis, CLD, IBD	Frizzell et al (27); Mohammad-Panah (49)
CFTR	Contributes to the secretion of anions and fluids in enterotoxin-induced secretory diarrhea	Pancreas, epithelial cells in airways, intestinal tract	CF	Goodman et al (66); Deachapunya et al (67)
CaCC	May participate in anion secretion in the mammalian GI epithelium	Intestinal tract	CF	Caputo et al (76); Yang et al (17); Morris et al (79); Kunzelmann et al (83)
Anion/ HCO₃⁻ exchangers	Protects gastric mucosa by combating aggressive factors	Apical membrane of intestinal epithelial cells	Acute infectious diarrhea, metabolic acidosis, IBD, CLD, CF	Singh et al (92); Tang et al (59); Smith et al (94)
SOC and STIM/Orai channels	Gene expression, cell growth and organ development	Intestinal epithelial cells	CF	Rao et al (105); Onodera et al (106)
K_{Ca}	Contributes to the stabilization of membrane voltage and provides the driving force for electrogenic anion transport	Intestinal epithelium	CLD, IBD, secretory diarrhea, CF	Julio-Kalajžić et al (114); Dong et al (121,127); Xie et al (13); Assaha et al (115); Wang et al (116)
NCX	Maintenance of Ca²⁺ homeostasis in a variety of tissues. Involved in the Ca²⁺-dependent anion secretion	Cardiomyocytes, vascular cells, neurons, small intestinal epithelial cells	Intestinal inflammation, acute infectious diarrhea, metabolic acidosis, CLD, IBD	Lee et al (124); Seipel et al (126); Dong et al (121,127); Kocks et al (110)

GI, gastrointestinal; HCO₃⁻, bicarbonate; CF, cystic fibrosis; CLD, congenital chloride diarrhea; IBD, inflammatory bowel disease; Cl⁻, chloride; CFTR, cystic fibrosis transmembrane conductance regulator; CaCC, Ca²⁺-activated Cl⁻ channel; SOC, store-operated calcium channels; STIM, stromal interaction molecule; Orai, ORAI calcium release-activated calcium modulators; K_{Ca}, Ca²⁺-activated K⁺ channel; NCX, Na⁺/Ca²⁺ exchangers.
3. Ca$^{2+}$ modulation of GI epithelial anion secretion

Evidence for Ca$^{2+}$-mediated anion secretion. Although Ca$^{2+}$ may mediate epithelial anion secretion through the cAMP signaling pathway, growing lines of evidence indicate that Ca$^{2+}$ signaling is able to mediate epithelial anion secretion in a cAMP-independent manner (19). The evidence is as follows: i) The increase in [Ca$^{2+}$]$_{cyt}$ induced by stimulation of cholinergic muscarinic type 3 receptor (M3R) were indicated to be due to activation of basolateral K$^{+}$ channels, which enhanced the driving force for luminal anion exit (60); ii) Ca$^{2+}$/calmodulin and protein kinase C (PKC) was demonstrated to be involved in the CCh-mediated regulation of luminal and basolateral K$^{+}$ channels (61); iii) several previous studies suggested a contribution of Ca$^{2+}$/PKC to CFTR activation (62,63); and iv) activation of muscarinic receptors resulted in an increase in [Ca$^{2+}$]$_{cyt}$, however, it decreased cAMP levels, which indeed triggered Ca$^{2+}$-dependent duodenal transepithelial HCO$_3^-$ secretion (13). Since cAMP-mediated ion transport has been extensively reviewed (64), the present study focused on Ca$^{2+}$-mediated GI epithelial anion secretion and the membrane ion channels involved.

Apical CFTR. CFTR is expressed in different tissue types, including the pancreas, epithelial cells in the airways, GI tract and other fluid-transporting tissues (30). CF is caused by mutations in the CFTR gene, resulting in impaired Cl$^{-}$ and HCO$_3^-$ transport and plasma membrane targeting (65). CFTR is mainly located in the luminal membrane of enterocytes and has a major role to contribute to the secretion of anions and fluid in enterotoxin-induced secretory diarrheas such as cholera (66). Numerous lines of solid evidence suggest a pivotal role for CFTR in GI anion and fluid secretion (27,30,65,66).

Numerous in vitro studies have indicated that the application of glibenclamide and 5-nitro-2-(3-phenylpropylamino) benzoic acid further inhibited the PGE$_2$ and cAMP-mediated increase in I_n and anion secretion in GI epithelial sheets and cell lines (67,68). Mice with gene ablation of CFTR developed intestinal obstruction (69,70). The resultant characteristic ion transport impairment resulted in defective intestinal anion and fluid secretion and increased fluid absorption (71). In CFTR-null mice, increased expression of alternative Cl$^{-}$ channels was present and the development of mild intestinal symptoms was observed (72). Furthermore, in CFTR-knockout mice, cholera toxin failed to cause massive fluid secretion through CFTR-dependent protein (72). CFTR has long been considered a primarily cAMP-activated Cl$^{-}$ channel to activate GI epithelial anion secretion (30). The majority of studies have confirmed that CFTR also responds to Ca$^{2+}$-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues (30,62).

CFTR channels may be stimulated by the G-protein-coupled receptor-mediated signal via Gq protein α subunit, further activating Ca$^{2+}$-dependent adenyl cyclase and tyrosine kinases, and by inhibition of protein phosphatase type 2A (PP2A) (72). For instance, the M3R couples strongly to G$_{q}$-βγ. Stimulation of M3R produces diacylglycerol and IP$_3$ to activate PKC and mobilize intracellular Ca$^{2+}$, which in turn activates the proline-rich tyrosine kinase 2/Src complex (62). Src stimulates CFTR activity by phosphorylating it directly and inhibiting its dephosphorylation through the inactivation of PP2A (62). Under basal conditions, constitutive Ca$^{2+}$ entry through store-operated Ca$^{2+}$ channels partially activates adenylyl cyclase and induces tonic CFTR activity (62).

A recent in vitro study by the current researchers revealed that the stimulation of mouse duodenal I_n by CCh was significantly inhibited in a Ca$^{2+}$-free solution (17). After the application of CCh, the intracellular calcium was significantly increased; however, there was no increase cAMP and compared to the CFTR-knockout mice, CCh-induced Ca$^{2+}$ was involved in the duodenal Cl$^{-}$ and HCO$_3^-$ secretion in wild-type mice. The CCh-induced intracellular calcium signaling also stimulated the phosphorylation of CFTR and promoted the CFTR transport to the plasma membrane of duodenal epithelial cells. Furthermore, CCh induced duodenal ion secretion and stimulated PI3K/Akt signaling pathway in duodenal epithelium and all of these effects were attenuated by selective PI3K inhibitors. Therefore, a novel molecular mechanism of Ca$^{2+}$ signaling in CFTR-mediated ion secretion via PI3K/Akt was indicated.

Rasmussen et al (73), revealed that cigarette smoking increased [Ca$^{2+}$]$_{cyt}$-induced CFTR internalization, which was prevented by chelation of cytoplasmic Ca$^{2+}$. Furthermore, this phenomenon was inhibited by the macrolide antibiotic bafilomycin A1, which inhibited cigarette smoking-induced Ca$^{2+}$ release and prevented CFTR clearance from the plasma membrane, further linking cytoplasmic Ca$^{2+}$ and CFTR internalization. Patel et al (74), also indicated that an increase in [Ca$^{2+}$]$_{cyt}$ induced a reduction of cell surface CFTR expression. Therefore, CFTR appears to be the channel that is in charge of not cAMP-activated, Ca$^{2+}$-activated Cl$^{-}$ and HCO$_3^-$ secretion in human GI mucosa (30).

Apical CaCC. There is currently evidence that the CaCC are a further class of important Cl$^{-}$ channels that may participate in anion secretion in the mammalian GI epithelium (75). In luminal membranes of GI epithelia of subjects with and without CF, CaCC are stimulated by Ca$^{2+}$-ionophores and Ca$^{2+}$-mobilizing secretagogues (76), including acetylcholine, bradykinin, histamine, CCh and extracellular nucleotides adenosine triphosphate (ATP) and uridine triphosphate (UTP) (77,78). In mice with CF, the expression of Ca$^{2+}$-dependent Cl$^{-}$ channels was detectable in the intestine and was age-dependent. In young mice (age, 2-3 weeks), Cl$^{-}$ secretion was induced by carbachol in the small intestine (17). Furthermore, it was indicated that in non-CF and CF mouse pup crypts, the application of nonstructural protein 4 (NSP4) caused severe diarrhea (79). However, compared to the young CF mice, the NSP4-induced Cl$^{-}$ secretion was largely reduced in adult CF mice. These data further support that the expression and function of CaCC are age-dependent. Indeed, it was also revealed that the adult CF mice (age, 6-12 weeks) did not exhibit CFTR-dependent Cl$^{-}$ secretion; however, they did have a partial CFTR-independent duodenal HCO$_3^-$ secretion in response to CCh (17). Therefore, CaCC may have an important role in the regulation of intestinal Cl$^{-}$ secretion in young CF mice and may be important for duodenal HCO$_3^-$ secretion in adult CF mice.

The Ca$^{2+}$-activated TMEM16A anion channel (or anoctamin 1) was reported to be able to conduct HCO$_3^-$ upon a
significant increase in cytosolic Ca\(^{2+}\) levels (80). However, the role of anoctamin 1 in GI epithelial anion secretion remains under debate (81). More recently, a study by the current researchers indicated that caffeine-stimulated Ca\(^{2+}\)-dependent duodenal anion secretion was attenuated by niflumic acid and T16Ainh-A01, two selective CaCC blockers with different chemical structures, suggesting that the TMEM16A anion channel is likely one of the downstream effectors of Ca\(^{2+}\) signaling (82).

It has been demonstrated that a residual cholineric Cl\(^{-}\) secretion was preserved in a subset of patients with CF with a mild phenotype (83). In T84 colonic carcinoma cells, the role of CaCC has also been characterized and it was indicated to be responsible for Ca\(^{2+}\)-mediated Cl\(^{-}\) secretion in these cells (83). However, other studies suggested that the integrated function of CFTR is important for CaCC (84), as Ca\(^{2+}\)-dependent cholineric Cl\(^{-}\) secretion was able to be completely inhibited by the deactivation of CFTR (85). All those results suggest that residual cholineric Cl\(^{-}\)secretion in CF tissues depends on the residual function of mutant CFTR. Therefore, although there is evidence for an alternative CaCC in the mouse colon and human colonic carcinoma cell lines, the promotion by CaCC is probably limited (86).

Apical anion/HCO\(_3\)\(^{-}\)exchangers. It has been generally accepted that HCO\(_3\)\(^{-}\) secretion from the upper GI tract is important for the protection of normal mucosa (87). There are three anion/HCO\(_3\)\(^{-}\) exchangers: Solute carrier family 26 member 6 [SLC26A6; also known as putative anion transporter 1 (PAT1)], DAR and SLC4A9 (also known as anion exchange protein 4); all those channels contribute to the DBS to resist various aggressive factors, such as the acidic gastric output (88,89). However, at least three distinct mechanisms of HCO\(_3\)\(^{-}\) secretion have been described in the distal colon of rats (90,91): i) Cl-dependent: The HCO\(_3\)\(^{-}\) secretion mediated by a brush-border Cl/HCO\(_3\)\(^{-}\) exchange; ii) SCFA-dependent: HCO\(_3\)\(^{-}\) secretion as a result of activation of SCFA/HCO\(_3\)\(^{-}\) exchange; and iii) cAMP-induced: HCO\(_3\)\(^{-}\) secretion associated with a CFTR (91).

As Cl/HCO\(_3\)\(^{-}\) exchanger was expressed on the apical membrane of the small intestinal epithelium and likely has a role in secretagogue-stimulated DBS (92,93), its possible involvement in estrogen-stimulated DBS was assessed in a study by the current researchers (94). The results suggested that estradiol (E\(_2\)) indeed stimulatedmurine DBS, which was attenuated by 4,4'-disothiocyanostilbene-2,2'-disulfonic acid, a commonly used inhibitor of Cl/HCO\(_3\)\(^{-}\) exchanger. E\(_2\) was also able to increase [Ca\(^{2+}\)]\(_{\text{lum}}\) in duodenal epithelial cells expressing estrogen receptor, whereas 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) one of an intracellular calcium chelator inhibited the E\(_2\)-stimulated murine DBS. It was therefore suggested that the activation of estrogen receptor stimulates the Ca\(^{2+}\)-dependent DBS via Cl/HCO\(_3\)\(^{-}\) exchanger.

Colonic bicarbonate secretion (CBS) is closely linked to electrolyte movement and overall fluid in the colon (59). As mentioned earlier, CaSR activation increases [Ca\(^{2+}\)]\(_{\text{lum}}\); however, it decreases intracellular cAMP production. Consistently, Tang et al (59) reported that CaSR activation inhibited cAMP-activated CBS; however, it increased the lumen Cl\(^{-}\) and SCFA-dependent CBS. Consequently, upon activation of electroneutral Cl/HCO\(_3\)\(^{-}\) and SCFA/HCO\(_3\)\(^{-}\) exchangers, CaSR stimulated CBS; by contrast, if forskolin-stimulated electrogenic CFTR-mediated HCO\(_3\)\(^{-}\) conductance dominated, CaSR inhibited CBS. Consistently with the results on the Ca\(^{2+}\)-mediated regulation of Cl/HCO\(_3\)\(^{-}\) exchanger-mediated DBS reported by the current researchers (13), these results further suggest a critical role of Ca\(^{2+}\) signaling in the regulation of Cl/HCO\(_3\)\(^{-}\) and SCFA/HCO\(_3\)\(^{-}\) exchanger-mediated CBS (59). Therefore, modulation of CaSR activity may provide a new therapeutic approach to correct HCO\(_3\)\(^{-}\) deficits and metabolic acidosis, a primary cause of morbidity and mortality in acute infectious diarrheal illnesses (59). However, Lamprecht et al (95) reported on Ca\(^{2+}\)-mediated inhibition of colonic DRA. Both the calcium ionophore A23187 and UTP that increased Ca\(^{2+}\) were able to inhibit DRA in these cells.

Basolateral store-operated channels and stromal interaction molecule (STIM)/Orai calcium release-activated calcium modulators. Store-operated calcium channels (SOC) are important for calcium signaling in virtually all mammalian cells and involved a variety of functions, including gene expression, cell growth and organ development (96-98). The SOC is stimulated by the diverse set of surface receptors via depletion of the Ca\(^{2+}\) concentration from the ER (99). The stromal interaction molecule (STIM) proteins were identified as the ER Ca\(^{2+}\) sensors and the Orai proteins as store-operated channels and since then, rapid progress has been made in the elucidation of the unique mechanisms of store-operated calcium entry (SOCE) (99). The role of STIM1/Orai signaling was previously studied mostly in nonpolarized cells, such as lymphocytes (100,101) or nonconfluent 293 cells (102,103). However, only a few studies have assessed the function of STIM1/Orai signaling in polarized GI epithelia (104-106). In the human colonic tumor cell line NCM460, STIM1 stimulated by the emptying of intracellular Ca\(^{2+}\) stores after the production of cAMP (104). In addition, in the intestinal epithelial cell (IEC)-6 cell line from rat intestinal crypts, STIM1/Orai was indicated to have a role in wound healing (105). In the rat colonic epithelium, STIM1/Orai was identified as a key component of intracellular Ca\(^{2+}\) signaling involved in the regulation of both apical and basolateral Ca\(^{2+}\) influx (106).

Although the critical role of Ca\(^{2+}\) signaling in GI epithelial anion secretion is well-known (13), the mechanisms by which [Ca\(^{2+}\)]\(_{\text{cyt}}\) homeostasis in GI epithelial cells is controlled remain to be fully elucidated (11). Under normal physiological conditions, in non-excitable epithelial cells, the occurrence of Ca\(^{2+}\) entry mainly depends on the SOC (99). In non-excitable cells, agonists induce Ca\(^{2+}\) signaling mostly depending on the intracellular Ca\(^{2+}\) release mainly from the ER and Ca\(^{2+}\) influx from the extracellular medium (107). IP\(_3\)-sensitive and ryano dine-sensitive Ca\(^{2+}\) stores have been identified within the ER (108,109). The former is activated by the binding of IP\(_3\) to IP\(_3\)R, while the latter is activated by the binding of ryano dine to RyR to induce ER Ca\(^{2+}\) release into the cytosol (110).

The IP\(_3\)R-mediated Ca\(^{2+}\) influx pathway was reported to have a role in the regulation of GI epithelial anion secretion (109,111). Similarly, a study by the current researchers indicated that muscarinic receptors were activated after the application of CCh and induced mouse intestinal Cl\(^{-}\) secretion, which was significantly inhibited by selective SOC blockers added to the serosal side of duodenal tissues in a Ca\(^{2+}\)-free
serosal solution (82). Furthermore, the study revealed that calcium release-activated calcium/Orai channels may represent the molecular candidate of SOC involved in the CCh-induced increase of intracellular Ca\(^{2+}\) in GI epithelium. As the underlying mechanisms of RyR-mediated ER Ca\(^{2+}\) release as an important component of SOCE to contribute to GI epithelial anion secretion had remained elusive, the role of RyR/Ca\(^{2+}\) storage was also further investigated by Dong et al (82). The results suggested that caffeine, a selective RyR activator, markedly increased mouse intestinal Cl\(^{−}\) and HCO\(_3^{−}\) secretion. However, this process was suppressed by Ca\(^{2+}\)-free serosal solutions and selective blockers of SOC/Ca\(^{2+}\) and knockdown of the protein expression of Orai1 channels also inhibited the Cl\(^{−}\) and HCO\(_3^{−}\) secretion on the serosal side of duodenal tissue. Furthermore, the caffeine-induced anion secretion was inhibited by ER Ca\(^{2+}\) chelator and RyR blockers (82). In addition, the protein expression of STIM1 and Orai1 channels also inhibited the Cl\(^{−}\) and HCO\(_3^{−}\) secretion on the serosal side of duodenal tissue. In IEC cells, the caffeine-induced SOCE was attenuated by selective SOC inhibitor (82).

It was therefore concluded that the RyR/Orai1/Ca\(^{2+}\) signaling on the basolateral side has a critical role in the regulation of GI epithelial anion secretion (67). Leftkimmiat et al (112) indicated that in a newly identified type of SOC termed ‘store-operated cAMP signaling’ (SOcAMPS), the luminal ER Ca\(^{2+}\) sensor STIM1 does not depend on changes in [Ca\(^{2+}\)]\(_{cyt}\). The decreasing free Ca\(^{2+}\) concentration within the ER lumen induces a rise in intracellular cAMP. Therefore, they proposed the SOcAMPS, in which the content of internal Ca\(^{2+}\) stores is directly connected to cAMP signaling through a process that involves STIM1. Subsequently, Nichols et al (113) determined that in T84 colonic cells, the \(I_{\text{cAMP}}\) and PKA activity was increased under Ca\(^{2+}\)-free conditions after treatment with Ca\(^{2+}\)-releasing agonist CCh and Ca\(^{2+}\) ionophore and suppressed by pre-treatment with BAPTA-AM. Furthermore, the effects of ER Ca\(^{2+}\) store depletion on cAMP/PKA activity were attenuated by Ca\(^{2+}\) entering from the extracellular space, indicating that the production of cAMP decreased after Ca\(^{2+}\) influx. They proposed that a discrete component of the ‘Ca\(^{2+}\)-dependent’ secretory activity in the colon is derived from cAMP generated through SOcAMPS. These studies further support the notion that Ca\(^{2+}\) and cAMP signaling may independently trigger epithelial ion transport.

Basolateral Ca\(^{2+}\)-activated K\(^{+}\) channels (\(K_{\text{ca}}\)). In GI epithelial cells, K\(^{+}\) channels are important in the intestinal epithelium, contribute to the stabilization of membrane voltage and provide the driving force for electrogenic anion transport (114). The concept that cholinergic agents promote the intestinal Cl\(^{−}\) secretion via the activation of membrane K\(^{+}\) conductance and maintain the cellular Cl\(^{−}\) transport has been widely accepted (115). Certain cholinergic agents, such as CCh, activate muscarinic receptors or acetylcholine raises the [Ca\(^{2+}\)]\(_{cyt}\), which activates \(K_{\text{ca}}\) conductance and secondarily stimulates Cl\(^{−}\) secretion via the apical CFTR (116). Therefore, basolateral K\(^{+}\) channels hyperpolarize apical membrane potential and increase the electrical driving force for anion (Cl\(^{−}\) and HCO\(_3^{−}\)) secretion to maintain electroneutrality.

To date, three different subtypes of \(K_{\text{ca}}\) channels expressed on colonic surface and crypt cells have been identified: Large-conductance \(K_{\text{ca}}\) channels, intermediate-conductance \(K_{\text{ca}}\) channels (\(IK_{\text{ca}}\)) and small-conductance \(K_{\text{ca}}\) channels (117,118). Among them, \(IK_{\text{ca}}\) channels have an important role in epithelial Cl\(^{−}\) secretion. A selective blocker of \(IK_{\text{ca}}\) channels, clotrimazole, inhibited the Cl\(^{−}\) secretion in intact colonic epithelium and human colonic T84 cells (119). In addition, it has been demonstrated that activation of CFTR alone is insufficient to evoke transepithelial Cl\(^{−}\) secretion and that basolateral membrane K\(^{+}\) channels are also necessary components of the secretory response (30). Therefore, basolateral membrane \(K_{\text{ca}}\) channels represent an important potential therapeutic target to increase Cl\(^{−}\) secretion in patients with CF.

While the expression and function of \(K_{\text{ca}}\) channels and their role in the regulation of duodenal epithelial ion transport and DBS in the duodenal epithelium have remained elusive, it is well known that [Ca\(^{2+}\)]\(_{cyt}\) has an important role in epithelial ion transport (2,11); however, the underlying mechanisms of [Ca\(^{2+}\)]\(_{cyt}\) to induce duodenal HCO\(_3^{−}\) secretion, or indeed other ion transport systems, had not been explored in detail. Therefore, the functionality of \(K_{\text{ca}}\) and their role in the regulation of duodenal mucosal ion transport were explored. A previous review by the current researchers provided evidence that \(IK_{\text{ca}}\) or intermediate conductance calcium-activated potassium channel protein 4/SK4 channels are located on the basolateral side of duodenal epithelial cells and are involved in the regulation of Ca\(^{2+}\)-mediated duodenal Cl\(^{−}\) and HCO\(_3^{−}\) secretion (120). Furthermore, it was indicated that clotrimazole, a selective blocker of basolateral \(IK_{\text{ca}}\), was able to inhibit Ca\(^{2+}\)-mediated duodenal Cl\(^{−}\) and HCO\(_3^{−}\) secretion, suggesting its potential utility as an anti-diarrheal drug for the treatment of secretory diarrhea (13,121).

NCX. The plasma membrane NCX is an important membrane transporter and has a critical role in the maintenance of Ca\(^{2+}\) homeostasis in a variety of tissue types (122).

NCX is a bidirectional plasma membrane transporter and in each cycle, three Na\(^{+}\) for one Ca\(^{2+}\) are transported in the opposite direction and this process depends on electrochemical gradients (123). The expression and function of NCX have been demonstrated in cardiomyocytes, vascular cells and neurons (124). They are able to function in a forward mode to excrete intracellular Ca\(^{2+}\) and in reverse mode to induce extracellular Ca\(^{2+}\) entry and various associated signal transduction pathways (124). NCX was previously reported to be expressed in small intestinal epithelial cells and to function in the forward mode that is involved in the absorption of Ca\(^{2+}\) into the bloodstream. However, NCX also has a role in GI epithelial anion secretion (125).

Seipel et al (126), demonstrated an interaction between SOC and NCX in the rat colon, where the influx of Na\(^{+}\) across SOC serves to reduce the driving force for Ca\(^{2+}\) extrusion via the NCX and thereby maintains the increase in [Ca\(^{2+}\)]\(_{cyt}\) during the induction of rat colonic anion secretion. Consistently, Kocks et al (110) reported a cross-talk between the depletion of intracellular Ca\(^{2+}\) stores and NCX, which may maintain a long-lasting increase in [Ca\(^{2+}\)]\(_{cyt}\) to amplify Ca\(^{2+}\)-dependent colonic Cl\(^{−}\) secretion. While it was demonstrated that muscarinic receptor induced the activation of [Ca\(^{2+}\)]\(_{cyt}\) increases, which regulates anion secretion, the underlying mechanisms of Ca\(^{2+}\) remained largely elusive. A previous study by the current researchers determined whether NCX has a role in the regulation of duodenal mucosal anion secretion by controlling
Ca\(^{2+}\) homeostasis (127). The results indicated that activation of muscarinic receptors stimulated NCX activity in a reverse mode to increase [Ca\(^{2+}\)]\(_{cyt}\) in epithelial cells, leading to Ca\(^{2+}\)-dependent HCO\(_3^-\) secretion (127). In conclusion, NCX has an important role in Ca\(^{2+}\)-dependent anion secretion by controlling Ca\(^{2+}\) homeostasis in GI epithelial cells.

4. Associated GI diseases

Ulcers. Ulcers refer to mucosal injury reaching the submucosa in the GI tract (128). Peptic ulcers may develop in the stomach or proximal duodenum and at the margin of a gastrointestinal diverticulum, Meckel's diverticulum or the esophagus (128).

Helicobacter pylori (*H. pylori*) infection, non-steroidal anti-inflammatory drugs and stress cause a large proportion of peptic ulcers (129). Since patients with ulcers usually have hyperchlorhydria, proton-pump inhibitors are used to inhibit gastric acid secretion, besides eradication of *H. pylori* infection with antibiotics (130). It is well established that GI epithelial HCO\(_3^-\) secretion is critical for defending the vulnerable epithelium against various aggressive factors (87). The mucus secreted on the surface of GI mucosa and the bicarbonate ions secreted by the GI epithelium form a mucus bicarbonate barrier (87). When H\(^+\) in gastric acid diffuses to the stomach wall, it is neutralized by HCO\(_3^-\) secreted by epithelial cells (87). In this way, the surface of the gastric mucosa remains in a neutral or partially alkaline state, preventing gastric acid and pepsin from attacking the mucosa (131). The esophagus also requires HCO\(_3^-\) secretion to protect the epithelial surface from acid reflux (132). Furthermore, normal mucus release from GI epithelium requires concurrent HCO\(_3^-\) secretion, which is essential for the release of mucin molecules and their proper expansion on the surface of epithelium as well (133). As a matter of fact, DBS, as an important protector, has been confirmed in patients with duodenal ulcer whose acid-stimulated DBS is only 41% of that of healthy subjects (94). The defect in intestinal HCO\(_3^-\) secretion has further been indicated to be a risk factor for peptic ulcer diseases (134).

Additionally, normal colonic HCO\(_3^-\) secretion is critical for the mucosal defense against bacteria in the lower GI tract (87). The luminal pH was indicated to be acidic in the colon of patients with ulcerative colitis (UC), which may be caused at least in part by disturbances in the ion transport in the inflamed colon (135). Therefore, it appears important to recover normal GI epithelial HCO\(_3^-\) secretion in patients with peptic ulcers and inflamed colon to prevent their recurrence. It is of growing interest to discover novel drugs to stimulate sufficient GI epithelial HCO\(_3^-\) secretion for mucosal protection as a potential adjuvant therapy for ulcer diseases or prevention of their recurrence.

CF. Epithelial HCO\(_3^-\) secretion is impaired in the GI tract of patients with CF, suggesting a pivotal role of the CFTR in mediating epithelial HCO\(_3^-\) secretion (64). Patients with CF usually have an epithelial HCO\(_3^-\) deficit. As discussed earlier, while the CFTR is mainly triggered by the cAMP/PKA pathway, most of the channels involved in GI epithelial anion secretion, including CaCC, anion exchangers, K\(_o\), and even CFTR, may be generally triggered by Ca\(^{2+}\) signaling (136). For instance, the CaCC is stimulated by Ca\(^{2+}\) ionophores and Ca\(^{2+}\)-mobilizing secretagogues in luminal membranes of GI epithelia from subjects with or without CF (136), including ACh, CCh, histamine, bradykinin, ATP and UTP (77,78). Furthermore, a previous study by the current researchers demonstrated that adult CF mice exhibited a partial CFTR-independent duodenal HCO\(_3^-\) secretion in response to CCh, although they did not display CFTR-dependent Cl secretion (58). More recently, a study by the current researchers demonstrated that caffeine stimulated Ca\(^{2+}\)-dependent duodenal anion secretion, which was able to be attenuated by selective CaCC blockers, suggesting that the CaCC is one of the downstream effectors of Ca\(^{2+}\) signaling (82). Therefore, after the cAMP-activated CFTR is impaired in CF, targeting the Ca\(^{2+}\)‑mediated pathway may be a potential adjuvant for CF therapy. Calcium ions have a critical role in the normal functioning of the gastrointestinal system (137). Certain calcium channel blockers were used to affect all of the organs of the gastrointestinal tract and may have therapeutic efficacy against esophageal spasm, mesenteric vascular insufficiency, irritable bowel syndrome, dyskinesis of the Sphincter of Oddi and insulinoma (137); however, this requires further intensive investigation.

Inflammatory bowel disease (IBD). IBD, including Crohn's disease and UC, is a group of chronic inflammatory disorders of the GI tract. Diarrhea is the most highly prevalent and debilitating symptom of IBD (138). The pathogenesis of IBD is multifactorial and involves variations in patients' genome, immune response, the intestinal microbiome and environmental factors to result in an excessive and abnormal host immune response (139). However, the change of expression and/or function of epithelial ion channels and transporters may result in electrolyte retention and water accumulation in the intestinal lumen, leading to diarrhea in IBD (139). IBD is a chronic inflammatory disorder with high complex endogenous inflammatory mediators, including IL-1\(\beta\), tumor necrosis factor-\(\alpha\), interferon-\(\gamma\), IL-6, monochloramine and nitric oxide (140). They may act on intestinal epithelial ion transport and smooth muscle (141). Furthermore, the colon of patients with UC has an acidic luminal pH, which impairs the ion transport in the inflamed colon (142). Consistently, the expression of Cl/HCO\(_3^-\) exchanger SLC26A3 (DRA) was reported to be markedly decreased in the inflamed colon (143). The expression of DRA was also indicated to be absent exclusively in UC patients, indicating inadequate membrane trafficking events (144,145). Furthermore, in a recent genome-wide association study, a single-nucleotide polymorphism in the SLC26A3 gene was identified as a risk factor for UC development (146). A strong reduction in Cl secretion was identified in parallel with a low expression of DRA in UC patients, indicating inadequate membrane trafficking events (144,145). Furthermore, in a recent genome-wide association study, a single-nucleotide polymorphism in the SLC26A3 gene was identified as a risk factor for UC development (146). A strong reduction in Cl secretion was identified in parallel with a low expression of DRA in UC patients, indicating inadequate membrane trafficking events (144,145). Furthermore, in a recent genome-wide association study, a single-nucleotide polymorphism in the SLC26A3 gene was identified as a risk factor for UC development (146). A strong reduction in Cl secretion was identified in parallel with a low expression of DRA in UC patients, indicating inadequate membrane trafficking events (144,145). Furthermore, in a recent genome-wide association study, a single-nucleotide polymorphism in the SLC26A3 gene was identified as a risk factor for UC development (146). A strong reduction in Cl secretion was identified in parallel with a low expression of DRA in UC patients, indicating inadequate membrane trafficking events (144,145). Furthermore, in a recent genome-wide association study, a single-nucleotide polymorphism in the SLC26A3 gene was identified as a risk factor for UC development (146). A strong reduction in Cl secretion was identified in parallel with a low expression of DRA in UC patients, indicating inadequate membrane trafficking events (144,145). Furthermore, in a recent genome-wide association study, a single-nucleotide polymorphism in the SLC26A3 gene was identified as a risk factor for UC development (146). A strong reduction in Cl secretion was identified in parallel with a low expression of DRA in UC patients, indicating inadequate membrane trafficking events (144,145). Furthermore, in a recent genome-wide association study, a single-nucleotide polymorphism in the SLC26A3 gene was identified as a risk factor for UC development (146). A strong reduction in Cl secretion was identified in parallel with a low expression of DRA in UC patients, indicating inadequate membrane trafficking events (144,145). Furthermore, in a recent genome-wide association study, a single-nucleotide polymorphism in the SLC26A3 gene was identified as a risk factor for UC development (146).
evidence of an absence of Cl⁻/HCO₃⁻ exchange in the colon and ileum (149). Therefore, the characteristics of patients with CLD include voluminous diarrhea, massive loss of Cl⁻ via the stool and metabolic alkalosis. Furthermore, the pH of the ileocolonic lumen in patients with IBD has been reported to be reduced due to limited HCO₃⁻ secretion (146). Since DRA serves as the major luminal intestinal Cl⁻/HCO₃⁻ exchanger responsible for bulk intestinal Cl⁻ absorption and HCO₃⁻ secretion, DRA deficiency is one of the important factors in the pathogenesis CLD and IBD (147). Therefore, based on the reported Ca²⁺-mediated inhibition of colonic DRA, it may be speculated that inhibition of intracellular Ca²⁺ signaling may have therapeutic potential to improve excessive fluid secretion, thereby providing a novel research direction for the treatment of CLD and IBD.

5. Conclusion

GI epithelial anion and fluid transport have critical roles in maintaining normal physiological functions in the GI tract. Defective GI epithelial anion secretion has been critically implicated in the pathophysiology of ulcer diseases, CF, intestinal inflammation, diarrhea/constipation and even metabolic acidosis. Similarly, [Ca²⁺]ᵢ also has a critical role in the regulation of digestive functions. GI epithelial anion secretion is known to be controlled by several neuro-humoral factors, including PGE₂, ACh and 5-HT. These factors mediate epithelial anion secretion mainly through Ca²⁺, cAMP and cGMP signaling pathways. Although multiple interactions exist between Ca²⁺ signaling and the cAMP pathway to trigger GI epithelial anion secretion, growing lines of evidence indicated that Ca²⁺ signaling may mediate epithelial anion secretion in a cAMP-independent manner. Ca²⁺ signaling modulates GI epithelial anion secretion through acting on CFTR, CaCC, Cl⁻/HCO₃⁻ exchanger, SOC, Kᵥ and NCX. It was previously assumed that those channels and transporters involved in GI epithelial secretion of Cl⁻ and HCO₃⁻ are identical; however, emerging evidence suggests they are different. While cAMP may be a critical factor in CFTR-mediated Cl⁻ secretion, Ca²⁺ signaling may have a critical role in Cl⁻/HCO₃⁻-mediated HCO₃⁻ secretion. Elucidation of the precise regulatory mechanisms of Ca²⁺-mediated GI epithelial Cl⁻ and HCO₃⁻ secretion will markedly enhance the current knowledge of ion and fluid transport in the GI tract. Further investigation on the differences between GI epithelial secretion of Cl⁻ and HCO₃⁻ may provide novel potential drug targets to protect the upper GI tract against ulcer diseases and promote epithelial HCO₃⁻ secretion.

Acknowledgements

The authors thank Professor Biguang Tuo (Department of Gastroenterology, Affiliated Hospital to Zunyi Medical University, Zunyi, China) for his assistance with the grammar, spelling and formatting of the manuscript.

Funding

The current study was supported by research grants of the National Natural Science Foundation of China (no. 81660412 to RX and no. 81970541 to JYX).

Availability of data and materials

Not applicable.

Authors’ contributions

WS, YH, JD, XY, JL, QD, QL and LL conceived the current review article. JX and RX were responsible for the collection and assembly of the articles/published data for inclusion and interpretation in this review. All authors were involved in the writing of the manuscript. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Berridge MJ, Lipp P and Bootman MD: The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1: 11-21, 2000.
2. Clapham DE: Calcium signaling. Cell 131: 1047-1058, 2007.
3. Kristián T and Siesjö BK: Calcium in ischemic cell death. Stroke 29: 705-718, 1998.
4. Berridge MJ, Bootman MD and Roderick HL: Calcium signaling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4: 517-529, 2003.
5. Dong Z, Saikumar P, Weinberg JM and Venkatachalam MA: Calcium in cell injury and death. Annu Rev Pathol 1: 405-434, 2006.
6. Romac JM, Shahid RA, Swain SM, Vigna SR and Liddle RA: Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis. Nat Commun 9: 1715, 2018.
7. Cridle DN, McLaughlin E, Murphy JA, Petersen OH and Sutton R: The pancreas misled: Signals to pancreatitis. Pancreatology 7: 436-446, 2007.
8. Lee PJ and Papachristou GI: New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol 16: 479-496, 2019.
9. Karlstad J, Sun Y and Singh BB: Ca(2+) signaling: An outlook on the characterization of Ca(2+) channels and their importance in cellular functions. Adv Exp Med Biol 740: 143-157, 2012.
10. Kim JG and Schnetkamp PPM: Ca²⁺ chemistry, storage and transport in biologic systems: An overview. Mol Biol Intell Unit, pp11, 1970.
11. Foskett JK, White C, Cheung KH and Mak DO: Inositol trisphosphate receptor Ca²+ release channels. Physiol Rev 87: 593-658, 2007.
12. He Y, Yang X, Guo Y, Zhang F, Wan H, Sun X, Tuo B and Dong H: Ca²⁺ signaling in HCO₃⁻ secretion and protection of upper GI tract. Oncotarget 8: 102681-102689, 2017.
13. Xie R, Dong X, Wong C, Vallon V, Tang B, Sun J, Yang S and Dong H: Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion. J Biol Chem 289: 34642-34653, 2014.
14. Abdulnour-Nakhaul S, Nakhaul HN, Kalliny MI, Gyftopoulos A, Rabon E, Doetjes R, Brown K and Nakhaul NL: Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands. Am J Physiol Regul Integr Comp Physiol 301: R83-R96, 2011.
15. Kiela PR and Ghishan FK: Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol 30: 145-159, 2016.
16. Bachmann O and Seidler U: News from the end of the gut-how the highly segmental pattern of colonic HCO3- transport relates to absorptive function and mucosal integrity. Biol Pharm Bull 34: 2072-2078, 2011.

17. Yang X, Wen G, Tao B, Zhang F, Han H, He J, Yang S and Dong H: Molecular mechanisms of calcium signaling in the modulation of small intestinal ion transports and bicarbonate secretion. Oncotarget 9: 3772-3740, 2017.

18. Tuø B, Wen G, Zhang Y, Liu X, Wang X, Liu X and Dong H: Involvement of phosphatidylinositol 3-kinase in cAMP- and cGMP-induced duodenal epithelial CFTR activation in mice. Am J Phys Cell Physiol 297: C305-C315, 2009.

19. Ahuja M, Jha A, Maléj J, Park S and Mualem S: cAMP and Ca2+ signaling in secretory epithelia: Crosstalk and synergism. Calc Res 53: 305-313, 2014.

20. Lee RJ and Foskett JK: cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 120: 3137-3148, 2010.

21. Kallenborg LA: Calcium signalling in secretory cells. Arch Physiol Biochem 108: 385-390, 2000.

22. Lee MG, Ohana E, Park HW, Yang D and Mualem S: Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 92: 39-74, 2012.

23. Ambudkar IS: Ca2+ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium 55: 297-305, 2014.

24. Lina-Macias RA, Bader A, Soghomonyan S, Zuleta-Alarcon A, Copolla V and Christofi FL: Mechanosensory signaling in enterochromaffin cells and 5-HT release: Potential implications for gut inflammation. Front Neurosci 10: 56-64, 2016.

25. Thiagarahar JY, Donowitz M and Verkman AS: Secretory diarrhea: Crosstalk of intestinal ion absorptive and secretory processes. Nat Rev Gastroenterol Hepatol 12: 446-457, 2015.

26. Chen M, Praetorius J, Zheng W, Xiao F, Riederer B, Singh AK, Stieger S and Sjövall H: Carbachol-induced colonic mucus formation. J Physiol 593: 3317-3333, 2012.

27. Frizzell RA and Hannah JW: Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2: 009563, 2012.

28. Quinton PM: Role of epithelial HCO3- transport in mucin secretion: Lessons from cystic fibrosis. Am J Physiol Cell Physiol 299: C745-C753, 2015.

29. Furukawa O, Bi LC, Guth PH, Engel E, Hirokawa M and Kaunitz JD: NH3 inhibition activates duodenal bicarbonate secretion in the rat. Am J Physiol Gastrointest Liver Physiol 286: G102-G109, 2004.

30. Saint-Criq V and Gray MA: Role of CFTR in epithelial physiology. Cell Mol Life Sci 74: 93-115, 2017.

31. Yang N, Garcia MA and Quinton PM: Normal mucus formation requires CAMP-dependent HCO3- secretion and Ca2+-mediated mucin exocytosis. J Physiol 591: 4581-4593, 2013.

32. Chávez JC, Hernández-González EO, Wertheimer E, Núñez PA and Tovar A: Gastrointestinal bicarbonate secretion: A neglected aspect of colonic ion transport. J Clin Gastroenterol 38: 385-393, 2012.

33. Kim H, Ohara A, Yamada T, Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Murooka K and Christofi FL: Neuronal activation of enterochromaffin cells regulating colonic mucus secretion. Cell Mol Life Sci 74: 93-115, 2017.

34. Lee MG, Lamprecht G, Scholte BJ, et al: Rescue of epithelial HCO3- secretion in murine intestine by apical membrane expression of the cystic fibrosis transmembrane conductance regulator mutant F508del. J Physiol 590: 5317-5332, 2012.

35. Ehre C, Ridley C and Thornton DJ: Cystic fibrosis: An inherited disease affecting mucin-producing organs. Int J Biochem Cell Biol 52: 136-145, 2014.

36. Wilschanski M and Novak I: The cystic fibrosis of exocrine pancreas. Cold Spring Harb Perspect Med 3: a009746, 2013.

37. Ramos AF, de Fuccio MB, Moretzsohn LD, Barbosa AJ, Passos Mdo C, Carvalho RS and Coelho LG: Cystic fibrosis, gastroduodenal inflammation, duodenal ulcer, and H. pylori infection: The ‘cystic fibrosis paradox’ revisited. J Cyst Fibros 12: 305-310, 2013.

38. Kuwahara A: Involvement of the gut chemosensory system in the regulation of colonic anion secretion. Biomed Res Int 2015: 403919, 2015.

39. Markadieu N and Delpire E: Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch 466: 91-105, 2014.

40. Flores CA, Melvin JE, Figueroa CD and Sepúlveda FV: Activation of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+-dependent K+ channel Kcnk4. J Physiology 583: 705-717, 2007.

41. Mohammad-Panah R, Ackerley C, Rommens J, Chaudhury M, Wang Y and Bear CE: The chloride channel CIC-4 co-localizes with cystic fibrosis transmembrane conductance regulator and may mediate chloride flux across the apical membrane of intestinal epithelia. J Biol Chem 277: 566-574, 2002.

42. Argentozzi RA, Whipple RA and Glöck RD: Pathophysiology of severe dysentery: Colonic transport and permeability studies. J Infect Dis 142: 676-684, 1980.

43. Lakhan SE and Kirchgessner A: Neuroinflammation in inflammatory bowel disease. J Neuroinflammation 7: 57, 2010.

44. Park HW and Lee MG: Transepithelial bicarbonate secretion: Lessons from the pancreas. Cold Spring Harb Perspect Med 2: a009571, 2012.

45. Kaji I, Akiba Y, Said H, Narimatsu K and Kaunitz JD: Luminal 5-HT stimulates colonic bicarbonate secretion in rats. Br J Pharmacol 172: 4655-4670, 2015.

46. Sugamoto S, Kawauch S, Furukawa O, Mikami TH and Takeuchi K: Role of endogenous nitric oxide and prostaglandin in duodenal bicarbonate response induced by mucosal acidification in rats. Dig Dis Sci 46: 1208-1216, 2001.

47. Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA and Bridges RJ: Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Physiol 113: 743-760, 1999.

48. Condiffe SB, Doolan CM and Harvey BJ: 17beta-oestradiol acutely regulates Cl- secretion in rat distal colonic epithelium. J Physiol 519: 549-556, 1999.

49. Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA and Bridges RJ: Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Physiol 113: 743-760, 1999.

50. Condliffe SB, Doolan CM and Harvey BJ: 17beta-oestradiol acutely regulates Cl- secretion in rat distal colonic epithelium. J Physiol 519: 549-556, 1999.

51. Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA and Bridges RJ: Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Physiol 113: 743-760, 1999.
65. Shah VS, Ernst S, Tang XX, Karp PH, Parker CP, Oestgaard LS and Welsh MJ: Relationships among CFTR expression, HCO3-secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies. Proc Natl Acad Sci USA 113: 5382-5387, 2016.

66. Goodman BE and Percy WH: CFTR in cystic fibrosis and cholaera: From membrane transport to clinical practice. Adv Physiol Educ 29: 75-82, 2005.

67. Deachapunya C and O'Grady SM: Regulation of chloride secretion across human colonic crypt/montoidal epithelial cells by prostannglandin E2. J Physiol 508: 31-47, 1998.

68. Hoffmann EK, Lambert IH and Pedersen SF: Physiology of cell volume regulation in vertebrates. Physiol Rev 89: 193-277, 2009.

69. Borowit D and Gelfond D: Intestinal complications of cystic fibrosis. Curr Gastroenterol Rep 19: 676-680, 2013.

70. Kelly T and Buxbaum J: Gastrointestinal manifestations of cystic fibrosis. Dig Dis Sci 60: 1903-1915, 2015.

71. Lavelle GM, White MM, Browne N, McElvany NG and Reeves EP: Animal models of cystic fibrosis pathophysiology: Phenotypic parallels and divergences. Biomed Res Int 2016: 5258727, 2016.

72. Li C, Dandridge KS, Di A, Marrs KL, Harris EL, Roy K, Jackson JS, Makarova NV, Fujiwara Y, Farrar PL, et al: Lyosphosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J Exp Med 202: 979-994, 2005.

73. Rasmussen JE, Sheridan JT, Polk W, Davies CM and Tarran R: Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. J Biol Chem 289: 7671-7681, 2014.

74. Pabis WP, Pal S, Sassano MF, Lopes-Pacheco M, Aleksandrov AA, Amaral MD, Tarran R and Gray MA: Increases in cytosolic Ca2+ induce dynamin- and calcineurin-dependent internalisation of CFTR. Cell Mol Life Sci 76: 977-994, 2019.

75. He J, Yang X, Guo Y, Zhang F, Wan H, Sun X, Tuo B and Dong H: Ca2+ signaling in HCO3- secretion and protection of upper villous epithelium of the murine duodenum. Am J Physiol Cell Physiol 298: C1057-C1065, 2010.

76. Singh AK, Liu Y, Riederer B, Engelhardt R, Thakur BK, Soleimani M and Seidler U: The switch of intestinal Slc26c exchangers from anion absorptive to HCO3(secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol 298: C1057-C1065, 2010.

77. Zimmermann H: Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 12: 25-57, 2016.

78. Beech DJ: Inhibitory effects of histamine and bradykinin on calcium current in smooth muscle cells isolated from guinea-pig ileum. J Physiol 463: 565-583, 1993.

79. Morris AP, Scott JK, Ball JM, Zeng CQ, O'Neal WK and Baggiolini M: Differential regulation of calcium-dependent chloride channel activity. Science 322: 590-594, 2008.

80. Vidyasagar S, Barmeyer C, Geibel J, Binder HJ and Vidyasagar S: STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10: 688-697, 2008.

81. Prakriya M and Lewis RS: Store-operated calcium channels. Physiol Rev 95: 1383-1436, 2015.

82. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M and Karosaki T: Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA 103: 16704-16709, 2006.

83. Barr VA, Bernot KM, Srikantan S, Gwack Y, Balagopalan L, Regan CK, Helman DJ, Sommers CL, Oh-Hora M, Rao A and Samelson LE: Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: Puncta and distal caps. Mol Biol Cell 21: 2802-2817, 2008.

84. Smyth JT, Lemonnier L, Vazquez G, Bird GS and Putney JW Jr: Dissociation of regulated trafficking of TRPC3 channels to the plasma membrane from their activation by phospholipase C. J Biol Chem 281: 11712-11720, 2006.

85. Mercer JC, Dehavan WN, Smyth JT, Wedel B, Boyles RR, Bird GS and Putney JW Jr: Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281: 24997-24999, 2006.

86. Lefkimmiatis K, Moyer MP, Curci S and Hofer AM: ‘cAMP sponge’: A buffer for cyclic adenosine 3',5'-monophosphate. PLoS One 4: e7649, 2009.

87. Rao JN, Rathor N, Zou T, Liu L, Xiao L, Yu TX, Cui YH and Wang JY: STIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1-mediated Ca2+ signaling after wounding. Am J Physiol Cell Physiol 299: C579-C588, 2010.

88. Onodera K, Pouokam E and Diener M: STIM1-regulated Ca2+ influx across the apical and the basolateral membrane in colonic epithelial cells. J Membr Biol 216: 271-285, 2003.

89. Smyth JT, Dehavan WJ, Bird GS and Putney JW Jr: Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J Cell Sci 120: 3762-3771, 2007.

90. Seo MD, Enomoto M, Ishiyama N, Stathopoulos PB and Ikura M: Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. Biochim Biophys Acta 169: 1980-1991, 2015.
109. Putney JW Jr: Capacitative calcium entry revisited. Cell Calcium 11: 611-624, 1990.

110. Kocks S, Schultheiss G and Diener M: Ryanodine receptors and their role in Ca2+-dependent anion secretion across rat colon. Pfugers Arch 445: 390-397, 2002.

111. Prole DL and Taylor CW: Insoluble 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 594: 2849-2866, 2016.

112. Lefkimmiatis K, Srikantana M, Maiello R, Moyer MP, Curci S and Hefer AM: Store-operated cyclic AMP signaling mediated by STIM1. Nat Cell Biol 13: 443-442, 2009.

113. Nichols JM, Maiello I, Abi-Jaoude J, Curci S and Hoffer AM: “Store-operated” CAMP signaling contributes to Ca2+-activated Cl- secretion in T84 colonic cells. Am J Physiol Gastrointest Liver Physiol 309: G670-G679, 2015.

114. Julio-Kalajzic F, Villanueva S, Burgos J, Ojeda M, Cid LP, Jentsch TJ and Sepulveda FV: Kv� TASK-2 and KCNQ1-KCNE3 K+ channels are major players contributing to intestinal anion and fluid secretion. J Physiol 596: 395-407, 2018.

115. Assaha DVM, Ueda A, Sanceko H, Al-Yahyai R and Yuash MW: The role of Na+ and K+ transporters in salt stress adaptation in glycopeptides. Front Physiol 8: 509, 2017.

116. Wang J, Haanes KA and Novak I: Purinergic regulation of CFTR and Ca(2+)-activated Cl(-) channels and Kv channels in human pancreatic duct epithelium. Am J Physiol Cell Physiol 304: G673-G681, 2013.

117. Joiner WJ, Basavappa S, Vidyasagar S, Nehrke K, Krishnan S, Binder HJ, Boulpaep EL and Rajendran VM: Active K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon. Am J Physiol Gastrointest Liver Physiol 285: G196-G203, 2003.

118. Thompson-Vest N, Shimizu Y, Hune B and Furness JB: The distribution of intermediate-conductance, calcium-activated, potassium (IK) channels in epithelial cells. J Anat 208: 219-229, 2006.

119. McNamara B, Winter DC, Cuffe JE, O’Sullivan GC and Harvey BJ: Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon. J Physiol 519: 250-261, 1999.

120. Du C, Chen S, Wan H, Chen L, Li L, Guo H, Tao B and Dong H: Different functional roles for K+ channel subtypes in regulating small intestinal glucose and ion transport. Biol Open 8: bio042200, 2019.

121. Dong H, Smith A, Hovaida M and Chow JY: Role of Ca2+-activated K+ channels in duodenal mucosal ion transport and bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 291: G1120-G1128, 2006.

122. Ottolia M and Philipson KD: NCX1: Mechanism of transport. Adv Exp Med Biol 961: 49-54, 2013.

123. Brini M and Carafoli E: The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3: a004168, 2011.

124. Lee SY and Kim JH: Mechanisms underlying presynaptic Ca2+-transient and vesicular glutamate release at a CNS nerve terminal during in vitro ischaemia. J Physiol 593: 2793-2806, 2015.

125. Liao QS, Du Q, Lou J, Xu JY and Xie R: Roles of Na+/Ca2+ exchanger 1 in digestive system physiology and pathophysiology. World J Gastroenterol 25: 287-299, 2019.

126. Seip G, Schultheiss G, Kocks SL and Diener M: Interaction between store-operated non-selective cation channels and the Na+(+)Ca2+(+) exchanger during secretion in the rat colon. Exp Physiol 86: 461-468, 2001.

127. Dong H, Sellers ZM, Smith A, Chow JY and Barrett KE: Na+(+)Ca2+(+) exchange regulation by Ca2+(+) and Na(+) dependent duodenal mucosal ion transport and HCO3(-) secretion in mice. Am J Physiol Gastrointest Liver Physiol 288: G457-G465, 2005.

128. Narayanan M, Reddy KM and Marsicano E: Peptic ulcer disease and Helicobacter pylori infection. Med Clin 115: 219-224, 2018.

129. Iijima K, Kanno T, Koike T and Shimosegawa T: Helicobacter pylori-negative, non-steroidal anti-inflammatory drug: Negative idiopathic ulcers in Asia. World J Gastroenterol 20: 706-713, 2014.

130. Goderska K, Agudo Pena S and Alarcón T: Helicobacter pylori treatment: Antibiotics or probiotics. Appl Microbiol Biotechnol 102: 1-7, 2018.

131. Phan J, Benhammou JN and Pisegna JR: Gastric hyposecretory states: Investigation and management. Curr Treat Options Gastroenterol 13: 386-397, 2015.

132. Mejia A and Kraft WK: Acid peptic diseases: Pharmacological approach to treatment. Expert Rev Clin Pharmacol 2: 295-314, 2009.

133. García MA, Yang N and Quinton PM: Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest 119: 2613-2622, 2009.

134. Allen A and Flemström G: Gastroduodenal mucus bicarbonate barrier: Protection against acid and pepsin. Am J Physiol Cell Physiol 288: C1-C19, 2009.

135. Barkas P, Liberopoulos E, Kei A and Elsaf M: Electroyte and acid-base disorders in inflammatory bowel disease. Ann Gastroenterol 26: 23-28, 2013.

136. Hwang SJ, Basma N, Sanders KM and Ward SM: Effects of new-generation inhibitors of the calcium-activated chloride channel aniontamin on slow waves in the gastrointestinal tract. Br J Pharmacol 173: 1339-1349, 2016.

137. Findling R, Frishman W, Javed MT, Heffer S and Brandt L: Calcium channel blockers and the gastrointestinal tract. Am J Ther 3: 383-408, 1996.

138. Zhang YZ and Li YY: Inflammatory bowel disease: Pathogenesis. World J Gastroenterol 20: 9199-9204, 2014.

139. Tameo T, Umesaki Y and Honda K: Immune responses to gut microbiota-commensals and pathogens. Gut Microbes 2: 224-233, 2010.

140. Ghishan FK and Kiela PR: Epithelial transport in inflammatory bowel diseases. Inflamm Bowel Dis 20: 1099-1109, 2014.

141. Lau KS, Nakashima O, Aalund GR, Hogarth L, Uijie K, Yuan J and Star RA: TNF-alpha and IFN-gamma induce expression of nitric oxide synthase in cultured rat medullary interstitial cells. Am J Physiol 269: F212-F217, 1995.

142. Das S, Jayaratne R and Barrett KE: The role of ion transporters in the pathophysiology of infectious diarrhea. Cell Mol Gastroenterol Hepatol 6: 33-45, 2018.

143. Manoharan P, Coon S, Baseler W, Sundaram S, Kekuda R and Sundaram U: Prostaglandins, not the leukotrienes, regulate Cl(-)/HCO3(-)-exchange (DRA, SLC26A3) in villus cells in the chronically inflamed rabbit ileum. Biochim Biophys Acta 1828: 179-186, 2013.

144. Yang D, Shcheynikov N, Zeng W, Ohana E, So I, Ando H, Mizutani A, Mikoshiba K and Mulalem S: IRBIT coordinates epithelial fluid and HCO3- secretion by stimulating the transporters pNBC1 and CFT in the murine pancreatic duct. J Clin Invest 119: 193-202, 2009.

145. Lohi H, Kujala M, Kerkelä E, Saarialho-Kere U, Keisti M and Kere J: Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchange. Genomics 70: 102-112, 2000.

146. Anbazhagan AN, Priyamvada S, Alrefai WA and Dudeja PK: Pathophysiology of IBD associated diarrhea. Tissue Barriers 6: e163897, 2018.

147. Priyamvada S, Gomes R, Gill RK, Sakseha S, Alrefai WA and Dudeja PK: Mechanisms underlying dysregulation of electrolyte absorption in inflammatory bowel disease-associated diarrhea. Inflamm Bowel Dis 21: 2926-2935, 2015.

148. Priyamvada S, Anbazhagan AN, Gujral T, Borthakur A, Sakseha S, Gill RK, Alrefai WA and Dudeja PK: All-trans-retinoic acid increases SLC26A3 DRA (Down-regulated in Adenoma) expression in intestinal epithelial cells via HNF-1[alpha]. J Biol Chem 290: 15066-15077, 2015.

149. Seidler U and Nikolovska K: Slc26 Family of anion transporters in the gastrointestinal tract: Expression, function, regulation, and role in disease. Compr Physiol 9: 839-872, 2019.