Automatic Input Enrichment for Selecting Reading Material
Online Study with English Teachers

Maria Chinkina, Ankita Oswal, Detmar Meurers
BEA13 in New Orleans, USA
06/05/2018
Outline

1. Motivation
2. Input enrichment
3. FLAIR system
4. The online study
5. Discussion and Outlook
Motivation

- **Input Hypothesis** (Krashen, 1977)
 - Exposure to input containing target constructions

- **Frequency of forms** (Slobin, 1985)
 - The more frequent the construction in input, the more it facilitates acquisition

- **Input Enrichment**
 (Related to *input flood* by Trahey and White, 1993)
 - Ensuring a high number of target constructions in text
Problem

Material of interest is readily available on the Web. But the linguistic forms are unevenly distributed across texts.

The top 60 results for the query *Brexit*:
Problem

Material of interest is readily available on the Web. But the linguistic forms are unevenly distributed across texts.

The top 60 results for the query Brexit:

1. How do teachers and learners get to the best results?
2. Are those results still good content-wise?
Solution: Automatic input enrichment

We re-rank the search results based on the representation of the selected linguistic forms in them.
FLAIR (Chinkina & Meurers, 2016) helps teachers search for texts appropriate in form, content, and reading level. It:

- **retrieves** the search results from Microsoft Bing or lets the user **upload** their own texts,
- **identifies** 87 linguistic forms from the official curriculum,
- **reranks** the results based on the selected linguistic forms,
- **thus, provides** systematic automatic input enrichment.
Performance evaluation

Manual annotation of 351 sentences:

Linguistic target	Prec.	Rec.	F₁
Yes/no questions	1.00	1.00	1.00
Irregular verbs	1.00	0.96	0.98
used to	0.83	1.00	0.91
Phrasal verbs	1.00	0.61	0.76
Tenses (Present Simple, ...)	0.95	0.84	0.88
Conditionals (real, unreal)	0.65	0.83	0.73
Mean (81 targets)	0.94	0.90	0.91
Median (81 targets)	1.00	0.97	0.95
Use Cases of FLAIR

- It supports language teachers and learners in searching for linguistically rich reading material.

- It can serve as a front-end for input enhancement (Meurers et al., 2010) and exercise generation systems (Burstein et al., 2012).

- It provides a platform for Second Language Acquisition studies on input enrichment and enhancement.
Use Cases of FLAIR

- It supports language teachers and learners in searching for linguistically rich reading material.

- It can serve as a front-end for input enhancement (Meurers et al., 2010) and exercise generation systems (Burstein et al., 2012).

- It provides a platform for Second Language Acquisition studies on input enrichment and enhancement.
Studies on Input Enrichment

Studies on input enrichment with *language learners* have yielded mixed results (Trahey and White, 1993; Reinders and Ellis, 2009).

What about *language teachers*? Do they need automatic input enrichment when selecting reading material for their students?
Online Study with English Teachers

- **Read** pairs of news articles (one from Bing, one from FLAIR)
- **Rate** each of the news articles
- **Select** one news article in each pair as a reading assignment
Topic 1/10

Topic: Rogers Cup 2017

Linguistic forms: regular verbs *(typed)*
irregular verbs *(bought)*

Start
"Pliskova reaches Rogers Cup quarters after Osaka retires ..." (click the title to read)

1. How relevant is the article to the topic?
 (irrelevant) 1 2 3 4 5 (relevant)

2. How rich is the representation of the two target linguistic forms in the article?
 (poor) 1 2 3 4 5 (good)
"Canada's Bouchard ousted in first round of home tournament ..." (click the title to read)

1. How relevant is the article to the topic?
 (irrelevant) 1 2 3 4 5 (relevant)

2. How rich is the representation of the two target linguistic forms in the article?
 (poor) 1 2 3 4 5 (good)
Question

Which news article would you give as a reading assignment to your students?

Text 1: "Pliskova reaches Rogers Cup quarters after Osaka retires ..."

Text 2: "Canada"s Bouchard ousted in first round of home tournament ..."

- Definitely Text 1 - Likely Text 1 - Doesn't matter - Likely Text 2 - Definitely Text 2

Submit
Repeated-measures Design

12 participants produced 240 responses by rating 20 articles in pairs:

– one top news article from Bing (original)
– one top news article from FLAIR (re-ranked)

Each pair had the same topic, the same pair of linguistic forms, was of comparable length and readability level.
Topics

60 news articles from Reuters on 10 popular topics:

- Game of Thrones
- healthcare
- street artists
- Roger’s Cup 2017
- SpaceX
- electric cars
- Bitcoin
- Venezuela coup
- Brexit
- opioid epidemic
Pairs of Linguistic Forms

Category	Form	Mean relative frequencies	Bing	FLAIR
frequent	regular verbs		0.012	0.020
	irregular verbs		0.012	0.019
mixed	present simple		0.011	0.014
	present continuous		0.001	0.005
infrequent	comparative d. of short adj. and adv.		0.001	0.003
	comparative d. of long adj. and adv.		0.001	0.001
Sanity check

Linguistic representation: was FLAIR rated higher than Bing?

Linguistic representation	Bing	FLAIR
(1 – 5)	$M = 2.51$	$M = 3.22$
	$SD = 1.15$	$SD = 1.07$

Logistic regression was significant:

$b = 1.89$, $SE = 0.51$, $p < .001$

$=>$ **FLAIR > Bing** with regard to representation of linguistic forms
Hypotheses

Input enrichment: FLAIR
Baseline: Microsoft Bing

H1: When selecting a *reading assignment:* FLAIR > Bing

H2: Relevance of the *content* to the topic: FLAIR < Bing

H3: The *more infrequent* the target linguistic forms are, the more FLAIR > Bing
H1: Selecting a reading assignment: FLAIR > Bing?

- Definitely Text 1
- Likely Text 1
- Doesn't matter
- Likely Text 2
- Definitely Text 2

'Doesn't matter' items (25%) were excluded from the analysis.

- English teachers selected FLAIR 71% of the time, significantly more than Bing:
 \[\chi^2(1) = 16.04, p < .001 \]

- 'Definitely' was selected 3 times more for FLAIR than for Bing:
 \[\chi^2(1) = 12.60, p < .001 \]

=> FLAIR > Bing when selecting a reading assignment

A strong argument in support of automatic input enrichment.
H2: Relevance of content to the topic: FLAIR \prec Bing?

Relevance of content	Bing	FLAIR
(1 – 5)	$M = 3.58$	$M = 3.67$
	$SD = 1.00$	$SD = 1.08$

Logistic regression was not significant:
$b = 0.53, SE = 0.74, p = .470$

Was it due to chance or is FLAIR = Bing with regard to content?
H2: Relevance of content to the topic: FLAIR < Bing?

Equivalence tests \((d = 0.5, \alpha = .05)\) were significant:
\[
\begin{align*}
 t_1 &= 4.55, p_1 < .001 \\
 t_2 &= -3.19, p_2 < .001 \\
 CI &= [-0.13; 0.31]
\end{align*}
\]

\(\Rightarrow\) **FLAIR = Bing** with regard to relevance of content to topic

No trade-off between content and linguistic representation in the top 20 results for popular topics in English.
H2: Relevance of content to the topic: FLAIR < Bing?

Equivalence tests ($d = 0.5, \alpha = .05$) were significant:

$t_1 = 4.55, p_1 < .001$

$t_2 = -3.19, p_2 < .001$

$CI [-0.13; 0.31]$

$=> FLAIR = Bing$ with regard to relevance of content to topic

No trade-off between content and linguistic representation in the top 20 results for popular topics in English.
H2: Relevance of content to the topic: FLAIR < Bing?

Equivalence tests \((d = 0.5, \alpha = .05)\) were significant:
\[
t_1 = 4.55, p_1 < .001 \\
t_2 = -3.19, p_2 < .001 \\
CI [−0.13; 0.31]
\]

\(\Rightarrow\) FLAIR = Bing with regard to relevance of content to topic

No trade-off between content and linguistic representation in the top 20 results for popular topics in English.

BUT: Correlation of the answers to the two questions (form and content) was 0.2 \((p < .001)\).
H3: The More Infrequent, the More FLAIR > Bing?

Mean preference for FLAIR (1 – 5):

	Frequent	Mixed	Infrequent
	Regular and irregular verbs	Present Simple and Present Continuous	Comparative degree of short and long adj. and adv.
M	3.46	3.92	3.69
SD	1.39	1.99	1.30

=> Automatic input enrichment seems particularly beneficial for targeting linguistic forms of lower frequency levels.
H3: The More Infrequent, the More FLAIR > Bing?

Mean preference for FLAIR (1 – 5):

Frequent	Mixed	Infrequent
Regular and irregular verbs	Present Simple and Present Continuous	Comparative degree of short and long adj. and adv.
\(M = 3.46 \)	\(M = 3.92 \)	\(M = 3.69 \)
\(SD = 1.39 \)	\(SD = 1.99 \)	\(SD = 1.30 \)

\(\Rightarrow \) Automatic input enrichment seems particularly beneficial for targeting linguistic forms of lower frequency levels.

2-way rANOVa was not significant: \(F(2, 90) = 0.87, p = .419 \)

\(\Rightarrow \) No statistically significant linear relationship between frequency of linguistic forms and preference for FLAIR
H3: The More Infrequent, the More FLAIR > Bing?

Check for pairwise differences (*paired 2-samples Wilcoxon tests*):

Pairs of linguistic forms	Z	p
Frequent – Mixed	157	.643
Infrequent – Mixed	128	.352
Infrequent – Frequent	217	.727

=> **No statistically significant differences** in preference for FLAIR when targeting linguistic forms of different frequencies
Conclusion

- Teachers preferred FLAIR over Bing when selecting a reading assignment.

- There was no trade-off between relevance of content and linguistic representation: FLAIR was rated as high as Bing with regard to content.

- The preference for FLAIR did not significantly differ when targeting frequent and infrequent linguistic forms.
Outlook

Possible empirical studies:

- A set of **independent studies** with English teachers looking at content, linguistic forms and selecting reading material separately

- A randomized controlled field study to compare the **learning outcomes of students** using web search vs. automatic input enrichment

Possible system extensions:

- Providing a **variety of contexts** in which linguistic forms are used, with their different meanings

- Integration of a component that **automatically generates exercises** targeting the selected linguistic forms
Take-Home Messages

1. Develop systems for English teachers – they appreciate it!

2. Let them give you feedback – you will appreciate it!
References

1. Burstein, J., Shore, J., Sabatini, J., Moulder, B., Holtzman, S., & Pedersen, T. (2012). The language musesm system: Linguistically focused instructional authoring. ETS Research Report Series, 2012(2).

2. Chinkina, M., & Meurers, D. (2016). Linguistically aware information retrieval: Providing input enrichment for second language learners. In Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications (pp. 188-198).

3. Krashen, S. (1977). The monitor model for adult second language performance. Viewpoints on English as a second language, 152-161.
References

4. Meurers, D., Ziai, R., Amaral, L., Boyd, A., Dimitrov, A., Metcalf, V., & Ott, N. (2010, June). Enhancing authentic web pages for language learners. In Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educational Applications (pp. 10-18). Association for Computational Linguistics.

5. Reinders, H., & Ellis, R. (2009). The effects of two types of input on intake and the acquisition of implicit and explicit knowledge. Implicit and explicit knowledge in second language learning, testing and teaching, 281-302.

6. Slobin, D. I. (1985). The crosslinguistic study of language acquisition: Vol. 2. Theoretical issues. LEA New Jersey.

7. Trahey, M., & White, L. (1993). Positive evidence and preemption in the second language classroom. Studies in second language acquisition, 15(2), 181-204.
Thank you.

Contact:

Maria Chinkina
maria.chinkina@uni-tuebingen.de