Mixed $\text{Ru}_x\text{Ir}_{1-x}\text{O}_2$ Supported on Rutile TiO$_2$: Catalytic Methane Combustion, a Model Study

Omeir Khalid*[a, b], Alexander Spriewald Luciano*[a, b], Goran Drazic[c] and Herbert Over*[a, b]

With a modified Pechini synthesis, mixed $\text{Ru}_x\text{Ir}_{1-x}\text{O}_2$ is grown on rutile-TiO$_2$ with full control of the composition x, where the preformed TiO$_2$ particles serve as nucleation sites for the active component. Catalytic and kinetic data of the methane combustion over $\text{Ru}_x\text{Ir}_{1-x}\text{O}_2$ supported on $\text{Ru}_x\text{Ir}_{1-x}\text{O}_2$ and unsupported $\text{Ru}_x\text{Ir}_{1-x}\text{O}_2$ catalysts reveal that the least active catalyst is RuO_2 (onset temperature: 270 °C), while the most active catalyst is $\text{Ru}_{0.25}\text{Ir}_{0.75}\text{O}_2$ with an onset temperature below 220 °C. Surprisingly, even $\text{Ru}_{0.25}\text{Ir}_{0.75}\text{O}_2$ is remarkably active in methane combustion (onset temperature: 230 °C), indicating that little iridium in the mixed $\text{Ru}_x\text{Ir}_{1-x}\text{O}_2$ oxide component already improves the activity of the methane combustion considerably. We conclude that iridium in the mixed $\text{Ru}_x\text{Ir}_{1-x}\text{O}_2$ oxide enables efficient methane activation, while ruthenium promotes the subsequent oxidation steps of the methyl group to produce CO$_2$. Kinetic data provide a reaction order in O$_2$ of zero, while that of methane is close to one, indicating that the methane activation is rate limiting. The apparent activation energy varies among $\text{Ru}_x\text{Ir}_{1-x}\text{O}_2$ from 110 (x = 0) to 80 kJ mol$^{-1}$ (x = 1). This variation in the apparent activation energy may be explained by the variation in adsorption energy of oxygen. Under the given reaction conditions the catalyst’s surface is saturated with adsorbed oxygen and only if oxygen desorbs, methane can be activated and the methyl group can be accommodated at the liberated surface metal sites.

1. Introduction

Methane, the primary constituent of natural gas, is a promising alternative fuel in mobile and stationary applications due to its relatively high abundance, lower cost compared to other fuels and the lowest C/H ratio among organic molecules so that combustion leads to the lowest amount of CO$_2$ per energy unit.[1,2] Methane is also a promising energy vector for future circular energy economy based on renewable energies.[3]

However, methane is a potent greenhouse gas with a global warming factor that is 28–34 times higher than that of CO$_2$. Therefore, the use of natural- and biogas based fuels in transportation requires an efficient oxidation catalyst in particular under lean conditions to prevent methane-slip to the atmosphere.[4] Unfortunately, methane is the most difficult hydrocarbon to catalytically oxidize so that a relatively high temperature is needed for the reaction to proceed with an acceptable rate.[5,6]

While several studies about non noble-metal catalysts such as perovskite type materials with high activity have been reported over the last two decades,[7,8,9] palladium based catalysts are generally considered to be the most promising candidates for methane combustion.[1,10–13] Especially at low reaction temperatures Pd is more active than rhodium and platinum.[5,10,12] There is general consensus that higher temperatures stabilize the metallic Pd as the (more) active phase, while at lower temperatures PdO governs the stable activity.[4] Pd or rather PdO has shown even higher activities when supported on γ-Al_2O_3, demonstrating beneficial interactions between the support and the active component.[14] Since Pt and Rh show also high activity in methane combustion (although less active than Pd),[15] the methane combustion activity may be traced to properties typical for the platinum group members to which ruthenium and iridium belong.

Recently, an oxidized Ir(100) single-crystalline surface was reported to be surprisingly efficient in the low-temperature methane activation. In temperature programmed reaction (TPR) experiments the oxidized surface of Ir(100) was covered with methane (and oxygen) at temperatures below \sim173 °C and then the products were recorded with mass spectrometry while ramping the sample to 427–527 °C.[16,17] The active phase has been assigned to a IrO$_x$(110) layer, as previously predicted by Wang et al. on the basis of density functional theory (DFT) calculations.[18] We should emphasize here that these TPR experiments are mere transient and not catalytic experiments; for catalytic experiments one needs to demonstrate steady state conversion under flow reaction conditions. The methane
activation process was further examined by in-situ DRIFTS and Raman experiments for IrO$_2$ nanoparticles in a constant flow of pure CH$_4$, emphasizing the important role of the oxidation state of iridium$^{[19,20]}$. Metallic iridium (supported on alumina) has briefly explored as a part of catalyst screening of noble metals for methane combustion at 475°C, revealing, however, iridium to be inferior to the remaining platinum group members.$^{[26]}

While IrO$_2$ is efficient for methane activation$^{[18]}$, its total oxidation capability is quite poor as demonstrated by a recent study on the CO oxidation over Ru$_x$Ir$_{1-x}$O$_2$ powder catalysts with the composition x ranging from 0 to 100 mol%.$^{[21]}$ Quite in contrast, RuO$_2$ is well-documented to be an efficient oxidation catalyst.$^{[22]}$ Therefore, we anticipated that mixed Ru$_x$Ir$_{1-x}$O$_2$ may offer synergy effects for the combustion of methane by promoting the methane activation step by iridium, while the subsequent oxidation steps towards CO$_2$ are promoted by ruthenium centers.

In order to have full control of the composition of the mixed Ru$_x$Ir$_{1-x}$O$_2$ oxide component we designed a modified Pechini synthesis route where preformed rutile-TiO$_2$ powder was used to provide nucleation sites for the formation and deposition of Ru$_x$Ir$_{1-x}$O$_2$, thereby producing a supported Ru$_x$Ir$_{1-x}$O$_2$@TiO$_2$ catalyst with well-defined composition x. In this study we present catalytic and kinetic data for the methane combustion over supported Ru$_x$Ir$_{1-x}$O$_2$@rutile TiO$_2$ catalysts in comparison with data from unsupported powder Ru$_x$Ir$_{1-x}$O$_2$. This paper focuses on the intrinsic activity in the combustion of methane, and how this activity can be modified by mixing RuO$_2$ with IrO$_2$.

Experimental Details

Modified Pechini synthesis

The synthesis of unsupported Ru$_x$Ir$_{1-x}$O$_2$ was described recently.$^{[21]}$ The supported catalysts (Ru$_x$Ir$_{1-x}$O$_2$@TiO$_2$) were synthesized with a modification of the Pechini route$^{[22]}$ by adding pure rutile-TiO$_2$ (particle size < 100 nm) before complexation of the ruthenium- and iridium-cations by citric acid. Rutile TiO$_2$ as carrier was chosen since we expected a high dispersion of rutile Ru$_x$Ir$_{1-x}$O$_2$ from previous surface science studies of RuO$_2$ and IrO$_2$ on rutile TiO$_2$.$^{[110,24,25]}$ The added rutile-TiO$_2$ support particles are trapped in the carbon network after polymerization of citric acid and ethylene glycol. The ruthenium and iridium cations either nucleate directly on the support surface or mixed ruthenium-iridium particles nucleate first and then adhere to the support material, resulting in both cases in highly dispersed supported ruthenium-iridium mixed oxide particles after final calcination.

Throughout the manuscript the supported samples are referred to as Ru$_x$@TiO$_2$, with x being the nominal composition of ruthenium in mol% changing from 0 mol% to 100 mol% in steps of 25 mol% (pure iridium sample is referred to as Ir$_{100}$@TiO$_2$ instead of Ru$_{0}$@TiO$_2$) while unsupported powder catalysts are abbreviated by Ru$_x$. The relative amount of active component with respect to the support is chosen to be 5 mol%. This amount represents a reasonable compromise for having enough active component for in-depth characterization and catalytic measurements, while being low enough to ensure that most of the active component is supported on rutile TiO$_2$. Further details on the preparation of supported materials can be found in the supporting information.

Characterization techniques

The samples were degassed in vacuum for 12 h at 120°C before conducting Kr-physisorption experiments at −196°C with the Autosorb 6 of Quantachrome. The Brunauer-Emmett-Teller (BET) method was employed to quantify the specific surface area (referred to as BET), regardless of whether this comes from the active component or from the carrier.

The CO-pulse-experiments (CO up-take experiments) were conducted in a home-built apparatus in order to determine the number of active sites provided by the active component of the ruthenium-iridium mixed oxide samples. In general, the titration experiment quantifies the amount of accessible surface noble-metal atoms per gram catalyst according to the number of adsorbed CO molecules.$^{[23,24]}$ With the approximation that each of these ruthenium/iridium sites is an active center for the methane conversion the number of active sites is equal to the number of adsorbed CO molecules. Even if this approximation of every metal site being an active center might not entirely be correct, it still provides the relative concentration of the number of actives sites between the different samples for a proper normalization of the catalytic STY (space time yield) data to the accessible surface of the supported active component.

X-ray diffraction (XRD) measurements were carried out in θ–2θ geometry (Bragg Brentano) on a Panalytical X’Pert PRO diffractometer with a Cu Kα source (40 kV, 40 mA) with a step size of 0.013° in 2θ and a scanning speed of about 0.8’’ min$^{-1}$. LaB$_6$ standards (NIST) were added to correct the 2θ shift due for instance to different sample holder positions. The position of the rutile ruthenium-iridium mixed oxide (101) reflection can be used to determine the composition of that oxide by Vegard’s law.$^{[21]}$

The ratio of iridium to ruthenium concentration in the near-surface region of the Ru$_x$@TiO$_2$ samples was quantified by X-ray photoelectron spectroscopy (XPS) (PHI VersaProbe II). Deconvolution of the XP spectra are performed using the CASAXPS software.

Low resolution transmission electron microscopy (TEM) was performed on a Philips CM30 instrument operated at 300 kV. For detailed structural, morphological and chemical analysis, a Cs probe-corrected scanning transmission electron microscope (STEM) was employed. Further details about the used characterization techniques are collected in the supporting information.

Flow reactor for methane combustion reaction

The catalytic and kinetic experiments are conducted in a home-built reactor system (cf. Figure S1). With mass flow controllers (MFC, MKS Instruments 1179 C) the desired reaction feed is mixed, consisting of CH$_4$ and O$_2$ balanced by N$_2$, and fed into the reactor that consists of a quartz tube, 6 mm inner diameter, placed in a ThermConcept tube furnace. The catalytic experiments are designed to collect microkinetically controlled activity data so that the reactor is employed in a differential way (further description is given in the supporting information). The purities of used gases CH$_4$ (Linde) and O$_2$ (NipponGases) are 4.7 and 4.0, respectively. The carrier gas nitrogen is generated by the Hampson-Linde cycle so that it must be dried and purified prior to admission to the mass flow system. A nondispersive infrared (NDIR)-sensor detects the volumetric concentration of C–H bonds giving the portion of CH$_4$ CO$_2$ is also detected and used primarily to quantify the space time yield [Eq. (1)]

$$\text{STY} \sim \frac{V_{\text{cat}} \cdot m_{\text{cat}}^{-1}}{V_{\text{total}} \cdot m_{\text{cat}}^{-1}}. \quad (1)$$
where \(\dot{V}_{\text{total}} \) is the total volume flow rate. In this work the catalytic performance is quantified by the space time yield (STY, \([\text{mol (CO}_2\cdot \text{h}^{-1} \cdot \text{kg}_{\text{cat}}^{-1})]\) which is easily calculated by the detectable variables. Under the chosen reaction conditions, we do not detect any trace of CO (NDIR) and \(\text{H}_2 \) (GCMS) in the product stream. For a direct comparison among the studied samples the STY can also be normalized to the number of active sites (CO-pulse-experiments) that is proportional to the turnover frequency (TOF). A mass flow meter downstream the reactor measures the apparent total flow rate \(\dot{V}_{\text{total,apparent}} \) which can be converted to the actual \(\dot{V}_{\text{total}} \) besides the \(\text{CO}_2 \) concentration, required to quantify the space time yield [Eq. (4)]. Further details are provided in the supporting information.

\[
\frac{\dot{V}_{\text{GHSV}}}{m_{\text{cat}}} = \frac{115 \text{cm}^3 \cdot \text{min}^{-1}}{0.042 \text{g}} \quad (2)
\]

or 345.000 ml·g\(^{-1}\)·h\(^{-1}\) if normalized to the average mass of catalyst [Eq. (3)].

\[
\frac{\dot{V}_{\text{GHSV}}}{m_{\text{cat}}} = \frac{115 \text{cm}^3 \cdot \text{min}^{-1}}{0.02 \text{ g}} \quad (3)
\]

The catalyst bed has been prepared by placing the pure sample (10 mg to 30 mg) on a 1 mm thick layer of quartz sand in order to obtain a catalyst bed as flat as possible that is important for accurate kinetic data. Analogous the catalyst material is covered with a 1 mm thick layer of quartz to prevent the nano-powder from carrying away downstream. The entire reactor is placed vertically in the oven to maintain a stable shape of catalyst bed during operation.

2. Experimental Results

2.1. Characterization of mixed ruthenium-iridium supported on rutile-\(\text{TiO}_2 \)

With XPS we investigated the actual near-surface composition of the supported ruthenium-iridium catalysts (Ru\(_x\)@\(\text{TiO}_2 \)) for varying nominal composition \(x \) (cf. Figure 1); in these spectra the background and the C1s component are subtracted for clarity reasons. From the energetic positions of the main components in the Ru3d spectra (cf. Figure 1a) we can clearly conclude that ruthenium is always in the \(4^+ \) oxidation state with no sign of metallic Ru (cf. Figure 1c). The Ir4f spectra are dominated by Ir\(^{4+}\) (cf. Figure 1b) but exhibit also some minor contribution of metallic Ir (cf. Figure 1c). Similar results were reported for the unsupported mixed ruthenium-iridium oxide samples\(^{[21]}\) and were interpreted in terms of agglomerates of oxide particles adhering to a buried mixed metal particle. Therefore, the observed methane combustion activity can solely be ascribed to the mixed oxide phase. In Figure 1c detailed deconvolutions of experimental Ru3d and Ir4f XP spectra are shown exemplarily for the Ru\(_{25}\)@\(\text{TiO}_2 \) sample; the deconvolution of the other samples can be found in the supporting information (cf. Figure S2, Table S1).

Within the XP spectra of a single sample, the intensities of Ru3d and Ir4f are strictly correlated so that from these spectra the mean ruthenium and iridium composition as well as the composition \(x \) of the mixed oxide component Ru\(_x\)Ir\(_{1-x}\)O\(_2\)@\(\text{TiO}_2 \)
of each sample can be determined quite accurately; recall that the active components form solid solutions as for the unsupported system.\[^{31,32}\] For determining the mean composition, the integral intensity of Ru3d and Ir4f (without C1s in case of Ru3d and background) are used, while for determining the composition \(x\) of the mixed oxide, only the integral intensity of Ru\(^{3+}\) 3d and Ir\(^{4+}\) 4f are taken. The thus estimated compositions remarkably agree with the nominal composition as given by the molar ratio of the used precursors in the synthesis (see. Table 1), emphasizing the high level of control of the composition of the supported mixed oxides.

However, the intensities among the Ru3d and Ir4f of different samples are not strictly correlated due to slightly varying experimental conditions and to varying dispersion of the active component supported on the rutile-TiO\(_2\). Yet, a comparison of the experimental Ru3d and Ir4f spectra in Figure 1a,b reveals that the intensity variation among the Ru3d (Ir4f) spectra qualitatively reflects the concentration of the nominal ruthenium (iridium) of all samples, but the pure Ru\(_{100}@\)TiO\(_2\), whose intensity is close to that of Ru\(_{50}@\)TiO\(_2\).

The experimental spectra can, however, be normalized to the integral Ti2p intensity and additionally to the actual concentration of iridium and ruthenium as given in Table S2 (cf. Figure S3). From these normalized spectra one can determine the relative near-surface amount of the active component (Ru\(_+\)/(Ru\(_+\)+Ir\(_+\)+Ti)) that nominally should be 5 mol\%. We can clearly see in Table 1 that these values are several times higher than 5 mol\%, thus indicating substantial dispersion of the active component. Also obvious is that the dispersion of pure Ru\(_{100}@\)TiO\(_2\) is the lowest among the mixed samples Ru\(_x@\)TiO\(_2\). Further details are provided in the supporting information (cf. Tables S3, S4).

With powder XRD we examine the structure of the supported catalysts (cf. Figure 2a). The XRD scans are governed by the rutile-TiO\(_2\) support, but there is also a faint but clearly visible (101) reflection of mixed ruthenium-iridium oxide that shifts with increasing ruthenium concentration to higher diffraction angles. In order to be able to quantify this shift, we employed LaB\(_6\) with its sharp reflections to calibrate the 2-theta axis. This allows us to determine the chemical composition of the mixed ruthenium-iridium oxide utilizing a Vegard plot (cf. Figure 2b).

\[\text{Figure 2. XRD patterns of supported Ru\(_x@\)TiO\(_2\) samples normalized to TiO\(_2\) (101) reflection. LaB\(_6\) was added for calibrating the 2theta axis. The (101) reflection of ruthenium-iridium mixed oxide is indicated. Growth and sharpening of the (101) reflection with higher amount of ruthenium evidence that the particle size increases with higher ruthenium content. All reflections which are marked with * belong to the pure support material rutile TiO\(_2\). The (101) diffraction line is the only clearly visible one for the mixed Ru\(_{50}@\)TiO\(_2\) oxide (m. o.) component in the shown 2 theta range. The (200) at about 40.0°, the (111) at about 40.5° and the (210) at about 45.0° of the mixed Ru\(_{50}@\)TiO\(_2\) oxide are buried in the background noise since all these diffraction lines have one to three orders of magnitude lower intensities.}\]
The mean crystallite size steadily increases to 11 nm for Ru$_{75}$@TiO$_2$. This size effect is most prominent with the pure RuO$_2$@TiO$_2$ system (referred to as Ru$_{100}$@TiO$_2$) with a mean crystallite size of 22 nm. However, one needs to recall that the XRD technique overestimates the crystallite size in that already small concentrations of large crystallites may dominate the intensities of XRD scans, while diffraction from small crystallites contribute mainly to the background intensity. Therefore, a microscopic technique, such as TEM, is needed to countercheck for the size of supported particles (cf. Figure 3).

In Figure 3, we can recognize that the dispersion of the supported mixed ruthenium-iridium particles varies with composition. For the case of Ir$_{100}$@TiO$_2$, clearly many supported particles are discernible with a narrow size distribution. Quite in contrast, pure Ru$_{100}$@TiO$_2$ does not show any sign of supported particles. Instead, most of RuO$_2$ forms unsupported particles as shown with element mapping (cf. Figure S5). In between these extremes supported particles are clearly visible, but it is also obvious that its concentration decreases with increasing ruthenium content. In Table 2 we summarize the average particle sizes derived from TEM images in Figure 3. The particles size from TEM is systematically smaller than the XRD-derived ones that is explainable since XRD intensities are dominated by the bigger particles.

High resolution STEM together with element mapping supports this view. For pure Ir$_{100}$@TiO$_2$, there is no indication that unsupported IrO$_2$ particles are formed, while already for the Ru$_{25}$@TiO$_2$ agglomeration of mixed ruthenium-iridium particles is apparent (cf. Figure 4), although most of the particles adhere to the rutile TiO$_2$ support particles. Element mapping in Figure 4 reveals that all supported particles comprise a mixture of ruthenium and iridium; with 30±10 mol% ruthenium that is reconciled with the nominal concentration of 25 mol% ruthenium. A separation into pure RuO$_2$ and IrO$_2$ can be ruled out since XRD reveals an average crystallite size of 8 nm (Table 2) for the active component in Ru$_{25}$@TiO$_2$ and such big particles of pure RuO$_2$ and IrO$_2$ conflicts with the identical intensity distribution of ruthenium and iridium in the EDS mappings in Figure 4.

The morphology of the pure Ru$_{100}$@TiO$_2$ sample is studied by HRTEM providing evidence that RuO$_2$ forms a thin layer (1–2 nm thick) of RuO$_2$ on rutile TiO$_2$ (Figure S6), while most of the RuO$_2$ agglomerates, forming larger particles that do not adhere to the TiO$_2$ support (cf. Figure S5). These larger RuO$_2$ agglomerates are responsible for the sharp (101) reflection in XRD (cf. Figure 3).

![Figure 3](image-url)
Figure 2a) that corresponds to an averaged single crystalline particle size in the agglomerate of 22 nm (cf. Table 2).

For the comparison of activity data among various supported Ru_x@TiO_y samples it is required that the space time yield STY is normalized to the active surface area. For mixed ruthenium-iridium powder samples this can be accomplished by measuring the BET surface area. However, for supported catalysts this approach is not reasonable since the catalytically inactive support dominates the BET surface area. Therefore, we measured the relative active surface area by CO uptake experiments, assuming that the number of adsorbed CO molecules is strictly correlated with the number of active sites of the active component and independent of the actual composition of the mixed oxide catalyst. In Table 3 we summarize these experimental results.

As suggested by HRTEM and XRD, the active surface areas of Ir_100@TiO_2 and Ru_25@TiO_2 are the highest, while the ones of Ru_50@TiO_2 and Ru_75@TiO_2 are the lowest. Quite surprisingly, the active surface area of Ru_100@TiO_2 is high and apparently conflicts with the large average RuO_2 particle size of 22 nm as derived from XRD. However, HRTEM reveals that the TiO_2 particles are partly covered by a thin RuO_2 layer of 1–2 nm thickness. These layers are likely to be responsible for the observed high active surface area, but do not contribute to the XRD pattern.

2.2. Kinetic data of methane combustion over mixed ruthenium-iridium supported on rutile-TiO_2

Figure 5 summarizes the light-off curves of methane combustion over supported catalysts Ru_x@TiO_y with varying composition x; in Figure 5a the original experimental data are shown, while in Figure 5b these light-off curves are normalized to the number of active sites from Table 3. In the light-off experiments the temperature is linearly ramped with 1 °C·min⁻¹ up to T10 where the conversion X of the methane combustion reaction reaches 10% with a reaction feed of 2 sccm methane and 8 sccm O_2 balanced by 90 sccm N_2; generally, the temperature sweep rate needs to be low enough to maintain steady state conditions during the temperature ramp.

These light-off temperatures T10 as well as T2 (X = 2%) and T5 (X = 5%) values are collected in Table 4. Ru_100@TiO_2 with RuO_2 as the active component clearly reveals the lowest activity in methane combustion. However, it is equally evident that not the pure Ir_100@TiO_2 (with IrO_2 as the active component) but instead Ru_25@TiO_2 is the most active catalyst in methane combustion for conversions lower than 10%. When normalizing

| Table 4. Light-off temperatures T2 (X=2%), T5 (X=5%) and T10 (X=10%) for supported mixed Ru_x@TiO_y materials applied to methane combustion reaction. Kinetic parameters: Apparent activation energies E_a and pre-factors STY (normalized to the mass of the catalysts) STYh (normalized to the number of active sites) as well as the reaction orders R.O. in oxygen and methane. |
sample	T2 [°C]	T5 [°C]	T10 [°C]	E_a [kJ·mol⁻¹]	STYh [mol(CO_2)·h⁻¹·kg⁻¹]	STYh [mol(CO_2)·h⁻¹·(μmol a.s.)⁻¹]	R.O. in O_2	R.O. in CH_4
Ir_100@TiO_2	281	304	322	105	3×10⁻¹⁵	3×10⁻³	0.0	1.0
Ru_25@TiO_2	274	296	313	107	6×10⁻¹⁵	8×10⁻³	0.0	0.9
Ru_50@TiO_2	299	324	344	104	1×10⁻¹⁵	2×10⁻³	0.0	0.8
Ru_75@TiO_2	296	323	346	93	1×10⁻¹⁵	2×10⁻³	0.0	0.9
Ru_100@TiO_2	339	374	403	82	4×10⁻¹⁵	5×10⁻³	0.0	0.9

© 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH
the activity data to the number of active sites (cf. Figure 5b), Ir_{100}@TiO_{2}, Ru_{50}@TiO_{2}, and Ru_{75}@TiO_{2} show similar activity that is substantially higher than pure Ru_{100}@TiO_{2}, but still significantly lower than that of Ru_{25}@TiO_{2}.

The activity data shown in Figure 5a,b can also be represented as Arrhenius plots (cf. Figure 5c,d) in order to extract kinetic data such as the apparent activation energies E_{act} and the pre-factors STY_0 which are compiled in Table 4. The apparent activation energies are independent of the normalization procedure, but the pre-factor values STY_0, STY_n depend of course on the normalization [Eqs. (4) and (5)] and are separately listed in Table 4.

$$STY = STY_0 \exp \left(- \frac{E_{\text{act}}}{RT} \right)$$

$$STYn = STYn_0 \exp \left(- \frac{E_{\text{act}}}{RT} \right)$$

The highest activity is paralleled by the highest values of the pre-factors, while the apparent activation energies counteract these values by high apparent activation energies for active catalysts and lower values for the less active catalyst. The pre-factor for Ru_{100}@TiO_{2} is three order of magnitude lower than that of Ru_{25}@TiO_{2}, making Ru_{100}@TiO_{2} substantially less active than Ru_{25}@TiO_{2}. A similar pattern in the apparent activation energies and pre-factors was encountered for the CO oxidation over mixed ruthenium-iridium oxide catalysts.

To conclude the kinetic study, we performed experiments to determine the reaction order $R.O.$ (cf. Figure 6). Here the ln(STY) is shown as a function of the logarithm of the reaction feed. The reaction temperature is chosen for each sample in a way that the conversion is $X = 10\%$ for a reaction mixture of 8 sccm O$_2$ and 2 sccm methane. After reaching T10 the reaction order is determined by changing the volumetric concentration of oxygen from 8 sccm to 2 sccm in steps of 2 sccm while keeping the methane concentration constant at 2 sccm. Subsequently, the oxygen concentration is kept constant at 2 sccm and the methane concentration is decreased in steps of 0.5 sccm back from 2 sccm to 1 sccm. Finally, the oxygen concentration is raised from 1 sccm to 1.5 sccm to 2 sccm, thereby returning to the starting gas composition. This protocol enables an investigation of the reaction order of oxygen and methane over a wide range of reaction conditions from oxidizing (Vol $\%$(O$_2$) = 8%, Vol $\%$(CH$_4$) = 2%), stoichiometric (Vol $\%$(O$_2$) = 4%, Vol $\%$(CH$_4$) = 2%) to reducing (Vol $\%$(O$_2$) = 2%, Vol $\%$(CH$_4$) = 2%) conditions. The reaction orders are summarized in Table 4. It turns out that the reaction order in O$_2$ in all cases is zero, while the reaction order in methane is close to unity. From these values we infer that the oxygen supply on the catalyst’s surface is not rate limiting, while methane activation
seems to dominate the reaction kinetics. Together with the apparent activation energies E_{act}, these kinetic data culminates in the formal kinetic law [Eq. (6)]:

$$r = STY_0 \exp\left(-\frac{E_{act}}{RT}\right) \cdot [CH_4]$$

with the methane concentration [CH$_4$]. This kinetic law is consistent with that found for methane reaction on Ni-based catalysts.[31]

For comparison reason we carried out similar kinetics experiments for unsupported mixed ruthenium-iridium oxide powder catalysts with the same composition x as studied here and already characterized in a previous work.[21] These results are summarized in the supporting information (cf. Figure S7 and S8, Table S5), and similar conclusions can be drawn about activity and kinetics as for the supported catalyst. Pure RuO$_2$ turns out to be the least active catalyst in the methane combustion, while the Ru$_{25}$ sample is the most active catalyst. Also, the apparent activation energies and the reaction orders vary similarly as the corresponding supported samples, indicating that the rutile-TiO$_2$ support does not significantly affect the intrinsic catalytic activity by additional metal-support interactions.

In Figure S9 light off experiments for both the unsupported and supported material are depicted. While for low conversion up to 10% mainly the intrinsic activity (microkinetics) is reflected, the performance of the catalysts at higher conversion is increasingly more governed by heat and mass transfer. From the complete light-off curves T_{50}, T_{70} and T_{90} values (temperature for 50%, 70% and 90% conversion) can be extracted for the various catalyst’s compositions. Up to the conversion T_{70} the light off curves shown in Figure S9 correspond to the previous kinetic light off experiments of both unsupported (Figure S7) and supported (Figure 5) materials. For the unsupported material, the light off curves at higher conversions are in line with the extrapolation based on corresponding activation energies from Table S5. Transport limitations seem to occur quite late allowing Ru$_{25}$, Ru$_{75}$ and Ir$_{100}$ to reach 90% conversion at temperatures lower than 475°C. In the case of the supported materials the trend of the light-off curves changes. Table 5 summarizes the light off temperatures T_{50}, T_{70} and T_{90} for both unsupported and supported materials. The lowest T_{90} value is revealed for the unsupported Ru$_{25}$ catalyst that underlines its high catalytic activity throughout the reaction.

Table 5. Light-off temperatures T_{50}, T_{70} and T_{90} for both unsupported mixed Ru$_x$ and supported mixed Ru$_x$@TiO$_2$ samples applied to the methane combustion reaction. The reproducibility of the light-off temperatures is ±5°C.

sample	T_{50} [°C]	T_{70} [°C]	T_{90} [°C]	loading [mol%]	T_{50} [°C]	T_{70} [°C]	T_{90} [°C]
Ir$_{100}$	400	422	465	-	346	359	447
Ru$_{25}$	360	371	408	5/11	364	420	-
Ru$_{50}$	416	458	-	5/10	421	473	-
Ru$_{75}$	388	405	447	5/7	363	385	469
Ru$_{100}$	-	-	-	Ru$_{100}$@TiO$_2$	5/6	-	-
whole conversion range, while Ru$_{75}$ is the second best performing catalyst. For the supported materials, the catalytic performance ofRu$_{25}$@TiO$_2$ above a conversion of 10% becomes inferior compared to the pure Ir$_{100}$@TiO$_2$ but also to the Ru$_{75}$@TiO$_2$ sample. Altogether, Ru$_{25}$@Ir$_{0.25}$O$_2$ reveals a surprisingly good catalytic performance for both supported and unsupported materials.

After the catalytic and kinetic experiments, the Ru$_x$@TiO$_2$ catalysts were post-characterized by TEM (cf. Figure S10). A comparison with the as-prepared Ru$_x$@TiO$_2$ catalysts reveals that no reaction-induced alterations are discernible, i.e., the catalysts are stable under the applied reaction conditions.

3. Discussion

3.1. Synthesis

We successfully synthesized mixed Ru$_x$Ir$_{1-x}$O$_2$ oxide supported on rutile-TiO$_2$ with well-defined composition x. In all cases 5 mol% of active component was employed, in order to allow for in-depth characterization of the active component by XRD, XPS, TEM, and CO uptake experiments. Most notably, XPS and also STEM element mapping indicate that the composition x of mixed Ru$_x$Ir$_{1-x}$O$_2$ corresponds to that of the molar ratio of iridium and ruthenium precursors employed in the synthesis, clearly demonstrating our high level of control on the composition x. We should emphasize that a similar level of control of the composition x of mixed Ru$_x$Ir$_{1-x}$O$_2$ cannot be achieved by simple impregnation methods.

Rutile-TiO$_2$ particles serve here as nucleation centers in the Pechini method. While the dispersion of pure IrO$_2$ particles turns out to be high, deposition of pure RuO$_2$ on rutile TiO$_2$ is less clear-cut. According to HRTEM, RuO$_2$ forms thin layers on rutile-TiO$_2$ and in addition unsupported larger RuO$_2$ particles. This observation is consistent with a previous study, where pure RuO$_2$ was reported to grow epitaxially on rutile-TiO$_2$ but not on anatase TiO$_2$ particles.[22] TEM clearly reveals that the other Ru$_x$Ir$_{1-x}$O$_2$ samples with varying compositions of 25 mol%, 50 mol%, and 75 mol% form supported particles besides agglomerates of unsupported mixed ruthenium-iridium oxide particles with the density of supported particles being significantly lower than that of Ir$_{100}$@TiO$_2$.

Obviously, pure IrO$_2$ and pure RuO$_2$ adhere differently to the supporting rutile-TiO$_2$ particles. Surface science studies revealed rutile RuO$_2$ to form a strained pseudomorphic RuO$_2$(110) layer adopting the surface lattice constants of the supporting rutile-TiO$_2$(110).[24] while rutile IrO$_2$(110) grows with much less strain on rutile-TiO$_2$(110).[25,53] Since the surface energy of IrO$_2$ is substantially higher than that of TiO$_2$ and the interfacial energy IrO$_2$/TiO$_2$ remains high, this may explain why IrO$_2$ forms particles rather than a wetting film on rutile TiO$_2$ with a small surface and interface area. Due to the quasi pseudomorphic growth of RuO$_2$ on rutile-TiO$_2$, the interfacial energy RuO$_2$/TiO$_2$ is low so that RuO$_2$ is now able to wet partly the TiO$_2$ particles, despite similar surface energies of RuO$_2$ and IrO$_2$.[24] Further growth of RuO$_2$ proceeds in separate particles with its native lattice constants. Obviously, this is energetically more favorable than increasing the RuO$_2$ film thickness beyond 1–2 nm.

CO uptake experiments successfully quantify the number of active sites or the relative active surface area for Ru$_x$@TiO$_2$ (cf. Table 3). The number of active sites is found to be high for Ir$_{100}$@TiO$_2$ while with increasing concentration of ruthenium the number of active sites decreases by a factor of 2–3. This decline in active sites can be related to the decreased concentration of supported particles. However, for pure Ru$_{100}$@TiO$_2$ the number of active sites (cf. Table 3) is surprisingly high and not reconciled with large RuO$_2$ particles evidenced by XRD. The high active surface area of Ru$_{100}$@TiO$_2$ is attributed to the observed thin layer growth of RuO$_2$ on rutile-TiO$_2$.

3.2. Methane combustion activity

We studied the activity and the kinetics of catalytic methane combustion over supported Ru$_x$@TiO$_2$ and unsupported Ru$_x$ catalysts with varying compositions x ranging from pure RuO$_2$ to pure IrO$_2$ in steps of 25 mol%. To the best of our knowledge, these are the first catalytic methane combustion studies of this mixed oxide system. A comparison between supported and unsupported catalysts reveals practically identical trends in the activity for $X=0\%$ to $X=10\%$ and identical kinetics as a function of the composition. Therefore, the rutile TiO$_2$ support seems to have virtually no impact on the microkinetics of the methane combustion. However, for higher conversions the different dispersions of the active component on the support material seems to differently influence the heat and mass transfer which lead to re-ordering of the light-off curves. We have to bear in mind that this situation may change when the TiO$_2$ support is replaced for instance by CeO$_2$ or Al$_2$O$_3$, where charge transfer and spill-over phenomena are known to be operative.[35] At least for Pd-based catalysts, the standard catalyst for methane combustion,[37] the support has shown to play an important role.[38] For Pd embedded in CeO$_2$ the activity in methane combustion could be increased considerably.[39] Recall that under typical reaction conditions of methane combustion not metallic Pd but rather PdO is the active phase.[39]

In our low conversion catalytic tests (cf. Figure 5) the most active catalyst turned out to be Ru$_{25}$@TiO$_2$ (Ru$_{25}$) followed by Ir$_{100}$@TiO$_2$ (Ir$_{100}$) and then with increasing ruthenium concentration the activity declines steadily with pure Ru$_{100}$@TiO$_2$ (Ru$_{100}$) being by far the least active catalyst. Pure IrO$_2$ is substantially more efficient than pure RuO$_2$ in methane combustion. This finding is in accordance with surface science experiments which demonstrated that methane can be activated even at low temperature on IrO$_2$(110),[20] while under the very same conditions RuO$_2$(110) is virtually inactive.[19] Obviously, methane activation is an important step in methane combustion and therefore Ru$_{100}$@TiO$_2$ is the least active catalyst among the homologous series Ru$_x$@TiO$_2$. From these surface science studies it is quite surprising that pure RuO$_2$ is active at all in methane combustion. But the observed activity of RuO$_2$ is consistent with a recent study where RuO$_2$ supported...
on Gamma Alumina was discussed as alternative catalyst for methane combustion.[40]

Pure RuO$_2$(110) is, however, known to be an excellent catalyst in the CO oxidation reaction,[22] while on IrO$_2$(110) the adsorption of CO was found to be much stronger than on RuO$_2$.[41] In fact, RuO$_2$ has shown to be more active in the CO oxidation than IrO$_2$.[21] Therefore, we expected a synergism effect of ruthenium on the activity of methane combustion. Indeed, 25 mol\% ruthenium (75 mol\% iridium) in the mixed oxide catalysts reveals a significant improvement of the catalytic performance in methane combustion. In order to decide whether this improvement is due to the higher dispersion of Ru$_{\text{Ir}}$ on rutile TiO$_2$ or to an increase in intrinsic activity, we needed to normalize the STY values to the number of active surface sites as provided by CO uptake experiments (Table 3). Since the trend in activity among Ru$_{\text{x}}$@TiO$_2$ is not affected by this normalization procedure, we ascribe the improved performance of the Ru$_{25}$@TiO$_2$ sample in methane combustion to an increase in the intrinsic activity of the mixed oxide. A very similar trend in activity is found for the unsupported Ru$_x$ catalyst (supporting information) when normalizing STY to the BET surface area.

The superior performance of Ru$_{25}$@TiO$_2$ in methane combustion points towards an intimate interplay of methane activation (by IrO$_2$) and the subsequent formation of an oxygenated reaction intermediate from the methyl fragment, such as CO, CH$_2$O, or CHO$_2$ or the final oxidation step to CO$_2$ by RuO$_2$. Of course, RuO$_2$ may equally promote the oxidation of the abstracted H from methane to form water. This may be evident when again considering corresponding surface science experiments: Hydrogen adsorption and subsequent annealing of the sample leads to water formation between 127 $^\circ$C to 227 $^\circ$C for RuO$_2$(110),[42] but results in a broad water desorption feature ranging from 127 $^\circ$C to 477 $^\circ$C for IrO$_2$(110).[43]

Also quite surprising is the observation that Ru$_{75}$@TiO$_2$ and Ru$_{75}$, although being not the most active catalyst, are substantially more active than Ru$_{100}$@TiO$_2$ and Ru$_{100}$ (Figure 5d) by decreasing the reaction temperature T$_{\text{10}}$ by 80 $^\circ$C. This means that already a relatively small concentration of iridium improves the low temperature methane activity of RuO$_2$ considerably.

The observed kinetics (for conversions lower than 10\%) of the methane combustion over unsupported Ru$_x$ (Table S3) and supported Ru$_x$@TiO$_2$ (cf. Table 4) are virtually identical, corroborating the view that the rutile-TiO$_2$ support does hardly affect the catalytic behavior of the active component. From the kinetic data of Ru$_x$@TiO$_2$ in Table 4, the catalysts can be grouped in two categories, one with a high concentration of ruthenium (50 mol\%, 75 mol\%) and the other with low ruthenium concentration (0 mol\%, 25 mol\%, 50 mol\%). The apparent activation energies and the pre-factors of the ruthenium-rich catalysts (80–90 kJ mol$^{-1}$) are significantly lower than those of the iridium-rich catalysts (105 ± 2 kJ mol$^{-1}$). The most active catalyst Ru$_{25}$@TiO$_2$, reveals the highest apparent activation energy and the highest pre-factor, resulting in a catalyst that at higher reaction temperature is even more active than the others. Obviously, the higher apparent activation energy is overcompensated by the high value of the pre-factor. This compensation effect is known as the Cremer-Constable relation. Similar apparent activation energies as for the present iridium-rich catalysts were also reported for supported Pd and Pt based catalysts.[5]

For methane combustion over both Ru$_x$@TiO$_2$ and Ru$_x$, the reaction order in methane is close to one, while that in oxygen is zero. Similar reaction orders in methane and oxygen are reported for Pd-based catalyst.[5] These reaction orders for the total methane oxidation reaction over Ru$_x$@TiO$_2$ and Ru$_x$ agree remarkably well with those reported for other noble metal catalysts.[44]

For the unsupported material Ru$_{25}$ and Ru$_{75}$ remain the most active catalysts in the entire temperature and conversion range. Due most likely to transport limitations which vary among the supported materials with their varying dispersions and particle sizes, the catalytic activity of Ru$_{25}$@TiO$_2$ decreases with increasing conversion and Ir$_{100}$@TiO$_2$ and Ru$_{75}$@TiO$_2$ become the most promising catalysts. At high conversions, the catalytic performance of Ru$_{75}$ and Ru$_{75}$@TiO$_2$ approaches even that of pure Ir$_{100}$ and Ir$_{100}$@TiO$_2$ catalysts.

In Table 6 the catalytic performance (T$_{50}$ and T$_{90}$) of Ir$_{100}$@TiO$_2$ and Ru$_{75}$@TiO$_2$ in the catalytic methane combustion is compared to supported Pd catalysts defining the benchmark catalyst for low temperature methane combustion. Unfortunately, a direct comparison of T$_{50}$ and T$_{90}$ values is hampered by differences in the mass of catalyst, the loading of the active component, the gas composition fed to the reactor, and the contact time with the catalyst material; all these factors affect the light-off curves.

From the T$_{50}$ and T$_{90}$ values summarized in Table 6 we conclude that the activities of both Ir$_{100}$@TiO$_2$ and Ru$_{75}$@TiO$_2$ are comparable to that of Pd@Al$_2$O$_3$. A direct comparison of the Ir$_{100}$@TiO$_2$ and Ru$_{75}$@TiO$_2$ with Pd@TiO$_2$ reveals that T$_{90}$ is 44 to 66 $^\circ$C lower. However, it needs to be noted that in our study the methane fed is two times higher and the amount of the active component is about 2 to 3 times lower than in the study of Pd@TiO$_2$. Besides activity, a critical issue in catalytic methane combustion is catalyst poisoning by water, sulfur and other constituents in the exhaust gas[50] that needs to be studied for mixed ruthenium/iridium oxide catalysts.

Table 6. Comparison of T$_{50}$ and T$_{90}$ values of Ir$_{100}$@TiO$_2$ and Ru$_{75}$@TiO$_2$ with those of Pd@Al$_2$O$_3$ and Pd@TiO$_2$ under similar reaction conditions.

Sample	Mass of catalyst [mg]	Loading [sccm]	Flow rate [sccm]	%CH$_4$	T$_{50}$ [°C]	T$_{90}$ [°C]
Ir$_{100}$@TiO$_2$	20	5 mol% (10 wt%)	100	2	346	447
Ru$_{75}$@TiO$_2$	20	5 mol% (7 wt%)	100	2	363	469
Pd@TiO$_2$	100	5 wt%	100	0.8	331	403
Pd@Al$_2$O$_3$	120	5 wt%	100	1	350	400
Pd@Al$_2$O$_3$	100	0.5 wt%	100	1	395	460
Pd@Al$_2$O$_3$	200	2 wt%	100	0.2	600	660
Pd@Al$_2$O$_3$	200	20	200	0.25	340	560
Pd@Al$_2$O$_3$	320	20	100	1	460	–
catalysts in the future. We do not expect that IrO₂ catalysts will replace Pd-based catalysts for the methane combustion due to the limited amount of mined Ir (6 t/a). On the other hand, RuO₂ is not an efficient oxidation catalyst for methane combustion, and under oxidizing conditions, RuO₂ is vulnerable to over-oxidation to form volatile RuO₃ and RuO₂ above 500–600 °C. However, mixing 25 mol% or less of IrO₂ into RuO₂ improves the activity steeply and thermally stabilizes RuO₂. Since Ru is significantly more abundant than Ir (30 t/a) and about eight times less expensive than Pd, RuO₂ with little IrO₂ could therefore be a promising option for catalytic methane combustion.

3.3. Molecular insight

From kinetic data only, we cannot decipher the actual reaction mechanism of methane combustion over RuₓIr₁₋ₓO₂. Instead, we would need to perform operando spectroscopy experiments to identify the reaction intermediates and to conduct first principles kinetics simulations to simulate the experimental kinetics. However, from experimental kinetic data we can draw some mechanistic conclusions about the catalytic reaction. For instance, from a reaction order in methane of one and a reaction order in oxygen of zero we can safely conclude that methane activation constitutes the rate limiting step in the combustion process. A similar conclusion was previously drawn for supported Ir-clusters. A reaction order in oxygen of zero means that always enough surface oxygen is available at the active sites, thus favoring a Mars-van-Krevelen mechanism over the Langmuir-Hinshelwood mechanism. For a firm conclusion about the question of Langmuir-Hinshelwood versus Mars-van-Krevelen mechanism one needs to conduct isotope labelling experiments of ¹⁸O and ¹⁶O which are, however, beyond the scope of the present paper.

First principle calculations for methane combustion over RuₓIr₁₋ₓO₂ are not available. However, for a similar catalyst system PdO(101), a recent first principle microkinetic study has shown that the reaction mechanism constitute a combination of Langmuir-Hinshelwood and Mars van Krevelen mechanism depending on the reaction temperature.

In the methane activation step two different surface sites are involved. Vacant undercoordinated metal sites (likely Ir sites) are required to adsorb the methyl group, while undercoordinated surface oxygen sites can accommodate the abstracted hydrogen species. Therefore, these surface species participate in the catalytically active sites, i.e., the number of active sites is proportional to the number of surface metal sites.

There are DFT studies available for the methane activation on IrO₂(110). From these calculations the apparent activation energy for methane activation turns out to be negative since the adsorption energy of intact methane is with 60 kJ·mol⁻¹ higher than the actual activation barrier for dissociation (about 30 kJ·mol⁻¹). This result is not reconciled with the observed apparent activation energies of 80–110 kJ·mol⁻¹ depending on the composition of the mixed Ru–Ir oxide. However, this variation in apparent energy fits remarkably well to the adsorption energy of oxygen on IrO₂ and RuO₂. From thermal desorption spectroscopy of IrO₂(110) and RuO₂(110) the O–Ir bond is shown to be slightly stronger than the Ru–O bond. Under lean methane oxidation reaction conditions the catalyst’s surface is likely saturated and therefore blocked by adsorbed oxygen so that methane activation is suppressed. The apparent activation energy may therefore correspond to the activation of oxygen desorption, thereby liberating metallic adsorption sites for methane activation.

4. Conclusions

We present here stable activity data of methane combustion on mixed ruthenium-iridium based catalysts RuₓIr₁₋ₓO₂ supported on rutile-TiO₂ in comparison with those on unsupported Ruₓ catalysts. Both types of mixed catalysts are prepared by a (modified) Pechini synthesis in order to ensure full control of the composition x in the mixed RuₓIr₁₋ₓO₂. From the direct comparison of supported and unsupported catalysts, it turns out that the rutile-TiO₂ support does not affect the catalytic performance in methane combustion.

Pure Ir₁₀₀@TiO₂ is much more active in the combustion of methane than pure Ru₁₀₀@TiO₂, with the former exhibiting an onset temperature of about 220 °C that is similar to onset temperatures encountered for Pd and Pt based catalysts. The most active catalyst among the series of Ruₓ@TiO₂ and Ruₓ turned out to be Ru₂₅@TiO₂ (Ru₂₅) with an apparent activation energy of 105 kJ·mol⁻¹ and a required reaction temperature of 313 °C to achieve 10% conversion at GHSV of 164,000 h⁻¹ (corresponding to 345,000 ml·g⁻¹·h⁻¹ if normalized to mass of catalyst). The catalytic performance of RuO₂@TiO₂ and RuₓIr₁₋ₓO₂@TiO₂ in methane combustion in terms of T₅₀ and T₉₀ (the reaction temperature to achieve 50% and 90% conversion) is comparable to that reported for typical Pd catalysts (cf. Table 6).

Ru₇₅@TiO₂ and Ru₇₅, although being not the most active catalyst, are substantially more active than Ru₁₀₀@TiO₂ and Ru₁₀₀ by decreasing the T₁₀₀ temperature by 80 °C; the onset temperature of Ru₇₅@TiO₂ is about 230 °C. This means that already a small concentration of iridium improves the activity of RuO₂ in methane combustion considerably.

From a reaction order of unity in methane we conclude that the methane activation step is rate determining in the methane combustion over mixed ruthenium-iridium based catalysts. There is evidence that the apparent activation energy is related to the activation energy of molecular oxygen desorption from the catalyst’s surface. In this way active metal sites are liberated to accommodate the methyl group in methane activation step. Methane activation by IrO₂, although mandatory, is however only part of the story. The further oxidation of methyl to CO₂ is apparently another important step which is promoted by the addition of RuO₂.
Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version.

Acknowledgements

We thank financial support by the DFG within the SPP2080. We acknowledge support from the Laboratory of Materials Research at the JLU. Sebastian Werner is acknowledged for performing the BET experiments. Felix Walther is acknowledged for taking the XP spectra. Goran Drazic acknowledges the financial support from Slovenian Research Agency (P2-0393). Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Methane combustion • heterogeneous catalysis • mixed RuIr, _O_ oxide catalysts • catalytic tests • kinetic experiments

[1] D. Ciuparu, M. R. Lyubovskiy, E. Altman, L. D. Pfefferle, A. Datye, Catal. Rev. Sci. Eng. 2002, 44, 593–649.
[2] H. Hao, Z. Liu, F. Zhao, W. Li, Renewable Sustainable Energy Rev. 2016, 62, 521–533.
[3] L. He, Y. Fan, J. Belletrte, J. Yue, L. Luo, Renewable Sustainable Energy Rev. 2020, 19.
[4] S. Perathoner, G. Centi, Science and Technology Roadmap on Catalysis for Europe, EU commission, 2016.
[5] J. Chen, H. Arandiyan, X. Gao, J. Li, Int. J. Energy Res. 2019, 43, 7755–7789.
[6] J. Yang, Y. Guo, Chin. Chem. Lett. 2018, 29, 252–260.
[7] M. Monal, T. Montini, R. J. Gorte, P. Fornasiero, Eur. J. Inorg. Chem. 2018, 2018, 2884–2893.
[8] J. H. Lee, D. L. Trim, Fuel Process. Technol. 1995, 42, 339–359.
[9] R. Burch, F. J. Urban, Appl. Catal. A 1995, 124, 121–138.
[10] Q. Duan, C. Zhang, S. Sun, Y. Pan, X. Zhou, Y. Liu, K. Chen, C. Li, X. Wang, W. Li, J. Mater. Chem. A 2020, 8, 7395–7404.
[11] M. Lyubovskiy, L. Pfefferle, Appl. Catal. A 1998, 172, 107–119.
[12] K. Murata, D. Kosuge, J. Ohyama, Y. Mahara, Y. Yamamoto, S. Arai, A. Satsuma, ACS Catal. 2020, 10, 1381–1387.
[13] Z. Liang, T. Li, M. Kim, A. Asthagiri, J. F. Weaver, Science 2017, 356, 299–303.
[14] M. Kim, A. D. Franklin, R. Martin, Y. Bian, J. F. Weaver, A. Asthagiri, J. Catal. 2020, 383, 181–192.
[15] C. C. Wang, S. S. Siao, J. C. Jiang, J. Phys. Chem. C 2012, 116, 6367–6370.
[16] Y. C. Liu, C. H. Yeh, Y. F. Lo, S. Nachimuthu, S. D. Lin, J. C. Jiang, J. Catal. 2020, 385, 265–273.
[17] W. Kumsung, M. Chareonpanich, P. Kongkachuchay, S. Senkan, A. Seubsai, Catal. Commun. 2018, 110, 83–87.
[18] O. Khalid, T. Weber, G. Drazic, I. Djerdj, H. Over, J. Phys. Chem. C 2020, 124, 18670–18683.