Ovaries absent links dLsd1 to HP1a for local H3K4 demethylation required for heterochromatic gene silencing

Fu Yang1*, Zhenghui Quan1, Huanwei Huang1, Minghui He1, Xicheng Liu1, Tao Cai1, Rongwen Xi1,2*

1National Institute of Biological Sciences, Beijing, China; 2Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China

Abstract Heterochromatin Protein 1 (HP1) is a conserved chromosomal protein in eukaryotic cells that has a major role in directing heterochromatin formation, a process that requires co-transcriptional gene silencing mediated by small RNAs and their associated argonaute proteins. Heterochromatin formation requires erasing the active epigenetic mark, such as H3K4me2, but the molecular link between HP1 and H3K4 demethylation remains unclear. In a fertility screen in female Drosophila, we identified ovaries absent (ova), which functions in the stem cell niche, downstream of Piwi, to support germline stem cell differentiation. Moreover, ova acts as a suppressor of position effect variegation, and is required for silencing telomeric transposons in the germline. Biochemically, Ova acts to link the H3K4 demethylase dLsd1 to HP1a for local histone modifications. Therefore, our study provides a molecular connection between HP1a and local H3K4 demethylation during HP1a-mediated gene silencing that is required for ovary development, transposon silencing, and heterochromatin formation.

Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.40806.001

Introduction

In eukaryotic genomes, heterochromatin is mainly composed of repetitive sequences such as transposons that require active silencing (Slotkin and Martienssen, 2007). Heterochromatin is defined by the presence of repressive epigenetic methylation of histone H3 at lysine 9 (H3K9me) and by heterochromatin protein 1 (HP1), which binds to H3K9me sites (Lachner et al., 2001; Bannister et al., 2001). Heterochromatin formation is mediated by co-transcriptional gene silencing, a process that requires small RNAs and their associated argonaute proteins (Martienssen and Moazed, 2015). In Drosophila, the argonaute protein Piwi and Piwi-interacting RNAs (piRNAs) use base-pairing to target nascent transcripts to the corresponding transposon regions. The Piwi/piRNAs then recruit gene silencing machinery, including HP1a and the H3K9 methyltransferase Egg to form heterochromatin (Yang and Xi, 2017; Czech and Hannon, 2016; Brower-Toland et al., 2007). The formation of heterochromatin also requires erasing of active epigenetic mark by the H3K4 demethylase dLsd1 (Rudolph et al., 2007), but the molecular link between HP1a and local H3K4 demethylation remains elusive.

Piwi, a founding member of the piRNA pathway in Drosophila, was initially identified as a fertility factor; its mutation results in germline degeneration and sterility (Cox et al., 1998; Lin and Spradling, 1997). To identify new genes involved in Piwi/piRNA-mediated gene silencing, we here conducted a female fertility screen by EMS mutagenesis and identified a novel recessive mutation on
the second chromosome. The homozygous mutant males are semi-lethal (*Supplementary file 1*, Table 1), but females are viable but do not lay any eggs; other than sterility, these females do not have other notable defects. Dissection revealed that these females had rudimentary ovaries: rather than a normal ovary, each oviduct in these mutant females was connected to only a tiny mass of cells (*Figure 1a,b*). Given this nearly ‘ovaryless’ phenotype, we named the gene associated with this mutation as *ova* and named this mutant allele *ova*1.

Complementation mapping with deficiency lines, followed by sequencing of candidate genes led us to identify a single nucleotide deletion in an exon of CG5694, which results in a truncated protein of 387 amino acids (aa) rather than the predicted 623 aa full length protein (*Figure 1—figure supplement 1a,b*). CG5694 encodes a protein with no obvious sequence similarity to any existing proteins in the NCBI database, but does have a conserved nuclear respiratory factor-1 (NRF-1)-like domain at its N-terminus (15–105 aa); this DNA-binding domain was initially identified in the mammalian transcription factor NRF-1 and are known to occur in at least one other *Drosophila* transcription factor, Erect Wing (Ewg) (*Figure 1—figure supplement 1c,d*). We used CRISPR-Cas9 to generate a knock-out allele in which the entire coding region of CG5694 was deleted (*Figure 1—figure supplement 1e*). Homozygous knock-out allele females are sterile and exhibit virtually identical ‘ovaryless’ phenotypes as the *ova*1 females (*Figure 1a*). Additionally, transgenic expression of a genomic DNA fragment containing the ova gene region was able to effectively rescue the ovary defect and restore fertility of *ova*1 homozygous or CG5694 null females (*Figure 1a,b*). Therefore, ova is allelic to CG5694.

Normally, oogenesis initiates in the germarium, an anterior part of the ovariole where germline stem cells (GSCs) reside. Each germarium normally harbors 2–3 GSCs that can be distinguished by spherically-shaped spectrosome and by their direct contact with the cap cell niche (*Figure 1c*). The decedents of GSCs move posteriorly as they differentiate into germline cyst, and then bud off from the germarium to form egg chambers (*Xie, 2013; Spradling, 1993*). Immunostaining of *ova*1 homozygous and *ova*1/4 trans-heterozygous ovaries revealed that the mutant ovaries completely lacked...
Figure 1. Ova is a niche factor for GSCs and ovary development in Drosophila. (a) Phase contrast images of dissected ovaries from flies of indicated genotypes. Scale bar, 500 μm. (b) A graph shows the total offspring number of indicated females (n = 20, 20, 16, 16, 20 respectively). (c) Representative image of germaria from indicated genotypes labeled by α-Spectrin (red), Vasa (green), and DAPI (blue). ova1/1 and ova1/4 ovaries have numerous spherical-shaped spectrosome-containing cells (tumorous) or are empty of germline cells (germless), indicated by lack of germline cell marker Vasa.
vitellaria, and the germaria were either full of GSC-like cells [77% (n = 117) of ova1 germaria] (Figure 1c,d,g) or entirely germless (lacking Vasa expression (Figure 1c,d,g), suggesting that ova is required for GSC differentiation and for germline survival.

To determine whether ova functions cell-autonomously in the germline and/or non-cell-autonomously in somatic supporting cells to regulate GSCs, we conducted mosaic analysis by inducing mitotic clones using a FLP-FRT system (Xu and Rubin, 1993). Similar to wild-type control clones, ova1 mutant GSC clones behaved normally: the mutant GSCs were properly maintained in the niche, and their descendant cells were properly differentiated into germline cysts and egg chambers with properly specified oocytes (Figure 1—figure supplement 2a–d), although germline mutant eggs failed to hatch (Figure 1b). Similarly, germline-specific knocking down pMad and Dad-lacZ positive cell numbers from germaria of indicated genotypes. Values are mean ± SEM.; n > 20. P values by two-tailed Student t-test.

DOI: https://doi.org/10.7554/eLife.40806.003

The following figure supplements are available for figure 1:

Figure supplement 1. Ova is allelic to CG5694.

DOI: https://doi.org/10.7554/eLife.40806.004

Figure supplement 2. Ova is not cell-autonomously required for GSC differentiation.

DOI: https://doi.org/10.7554/eLife.40806.005

...
Figure 2. Ova acts downstream of Piwi genetically. (a) Phase contrast images of dissected ovaries from flies of indicated genotypes. Scale bar, 500 μm. (b) A graph shows the percentages of germaria with rudimentary or rescued ovaries (n = 62, 51, 143, 198 respectively). (c) Confocal sections of piwi2/3 and ova-rescued ovaries. Arrow indicates the GSC-like tumor; asterisk indicates the developing germline cyst. Red, α-Spectrin. Scale bars, 10 μm. (d) Confocal sections of piwi RNAi and panx RNAi germaria. Red, α-Spectrin. Scale bars, 10 μm. (e) Quantification of GSC-like cell number in germaria of Figure 2 continued on next page.
The phenotypic and molecular similarities between the ova and piwi mutants led us to further test whether Ova and Piwi act via the same genetic pathway to regulate GSCs. As expected, we observed that homozygous piwi mutant females had rudimentary ovaries. As a positive control, escort cell-specific expression of a piwi transgene was sufficient to rescue the piwi mutant ovary phenotype (Figure 2a,b). On the one hand, transgenic expression of ova in escort cells of piwi mutants also partially rescued the ovary morphology phenotype with the frequent appearance of developing germline cysts, including late stages of egg chambers, although oogenesis was still abnormal, GSC-like tumor still remained, and no mature eggs were produced (Figure 2a,b,c). On the other hand, transgenic expression of piwi in escort cells of ova mutants could not rescue any ovary phenotypes (Figure 2a,b). Consistent with previous reports of piwi phenotypes, escort cell-specific knocking down of other Piwi/piRNA pathway effectors, such as panx, also showed a similar GSC-l accumulation phenotype (Figure 2d,e), further supporting the idea that Ova may participate in the same Piwi/piRNA pathway. Next, we tested whether overexpression of ova could rescue the germline TE upregulation phenotype caused by piwi mutation. As a control, ubiquitous expression of piwi, but not soma-only expression of piwi was able to effectively rescue the TE upregulation phenotype. However, neither ubiquitous nor soma-specific expression of ova could rescue the TE upregulation phenotype in piwi mutants (Figure 2f). These observations suggest that, genetically, ova acts downstream of piwi, but there must be additional factors downstream of piwi that cooperatively function with ova to regulate GSC differentiation and transposon silencing.

Given that Piwi is associated with a number of chromatin factors that are known to regulate heterochromatin formation and germline transposon silencing, and considering that dpp silencing in escort cells can be attributed to Piwi-dependent gene silencing, we asked whether Ova is also associated with these silencing machinery components and somehow participates in these processes. We performed a yeast two-hybrid (Y2H) screen for potential physical interactions among Ova and other known essential components of the heterochromatin silencing machinery (Yu et al., 2015; Sienski et al., 2015; Sienski et al., 2012), including: Panoramix (Panx), Arx, and Mael, which participates in Piwi/piRNA-mediated gene silencing (Yu et al., 2015; Sienski et al., 2015; Sienski et al., 2012; Muerdter et al., 2013; Döbert et al., 2013; Ohtani et al., 2013); HP1a, the H3K9me3 methyltransferase Eggless (Egg), and the Egg cofactor Windei (Wde) (Seum et al., 2007; Tzeng et al., 2007; Koch et al., 2009); and Piwi. The Y2H screen identified two positive interactions: Ova and HP1a, and Ova and dLsd1 (Figure 3a and Figure 3—figure supplement 1). Notably, the previously reported interaction between HP1a and Piwi was not observed in our screen here (Figure 3—figure supplement 1) (Brower-Toland et al., 2007), possibly due to different expression systems used in the studies. Co-immunoprecipitation experiments also showed positive interactions between Ova and HP1a and between Ova and dLsd1 in ovary lysates (Figure 3b,c). Collectively, these results indicate that Ova is physically associated with the co-transcriptional silencing machinery and directly interacts with HP1a and with dLsd1. Previous studies have reported that HP1a and dLsd1 function in the escort cell niche to restrict dpp signaling and to facilitate GSC differentiation (Wang et al., 2011; Eliazer et al., 2011). These reports, considered alongside the known role of Piwi-dependent gene silencing of the dpp gene locus in normal escort cells, further supporting the notion that these three Piwi-associated factors (Ova, HP1a, dLsd1) function in a shared pathway in escort cells to establish a repressive chromatin state for the dpp gene locus.

We next tested whether Ova, similar to HP1a and dLsd1 (Wang and Elgin, 2011; Czech et al., 2013), is required for heterochromatin formation and germline transposon silencing. The white locus of ln(lw^m4h) chromosomal reversion flies is relocated to a position next to a heterochromatin region, and this relocation often causes heterochromatin-based silencing of this gene, resulting from a genomic phenomenon referred to as position effect variegation (PEV), these flies typically display mosaic eyes with red and white facets as a result of this relocation based silencing (Wallerth and Elgin,
Figure 3. Ova interacts with the heterochromatin machinery. (a) Y2H assay for protein interaction between Ova and proteins as indicated. (b–c) Western blots showing reciprocal co-IP between Ova and HP1a, and between Ova and dLsd1. The RFP-HP1a transgene was driven by the endogenous promoter. The dLsd1-GFP transgene was driven by a ubiquitous promoter. The Flag-ova transgene was driven by nos-GAL4. (d) Heat map displaying steady state mRNA levels as reads per million (rpm) for the top 60 detected transposons in nosGAL4 driven ova-RNAi, EGFP-RNAi, and w1118 ovaries. The average of three replicates is shown. The most upregulated transposons are highlighted in bold. (e) Correlation scatter plot of log_{10} transposon mRNA-seq reads between ova GLKD and dLsd1 GLKD ovaries. $R = 0.9463$, $p < 2.2 \times 10^{-16}$ by Pearson's correlation coefficient. The most upregulated transposons in both genotypes are highlighted in red dots.

DOI: https://doi.org/10.7554/eLife.40806.007

The following figure supplements are available for figure 3:

Figure supplement 1. Protein interaction mapping among components of heterochromatin machinery by Y2H assay.
DOI: https://doi.org/10.7554/eLife.40806.008

Figure supplement 2. Ova acts as a suppressor of position-effect variegation (PEV).
DOI: https://doi.org/10.7554/eLife.40806.009

Figure supplement 3. Ova is not required for piRNA biogenesis.
DOI: https://doi.org/10.7554/eLife.40806.010
Figure 4. Ova acts as a protein adaptor to link dLsd1 with HP1a. (a) Schematic drawings of full length and truncated forms of Ova. (b) Mapping the reciprocal-binding regions between HP1a and Ova by Y2H assay. (c) Mapping the reciprocal-binding regions between HP1a and dLsd1 by Y2H assay. (d) Ovaries from flies of indicated genotypes. Escort cell-specific expression of ova full length, ova250-486 or HP1a::dLsd1 rescued ova1/4 ovary defect. Scale bar, 500 μm. (e) A representative image of ova1/4 germarium rescued by escort cell-specific expression of HP1a::dLsd1. Red, α-spectrin; Blue, Figure 4 continued on next page.
DAPI. Scale bar, 10 μm. (f) A graph shows the total offspring number of indicated females (n = 11, 23 respectively). (g) A graph shows fold changes of TEs in total ovarian RNA from indicated genotypes (normalized to actin5c). Values are means ± SEM.; n > 4. P values by two-tailed t-test.

Figure supplement 1. HP1α::dLsd1 expression rescues ova loss induced derepression of protein-coding genes.

DOI: https://doi.org/10.7554/eLife.40806.012

The following figure supplement is available for figure 4:

Figure 4 continued

...adaptor that links HP1α and dLsd1. To functionally test this putative adaptor function in vivo, we...
Figure 5. Ova regulates HP1a-induced local H3K4 demethylation. (a) Graphs showing H3K4me2 and Pol II ChIP-seq profiles mapped to indicated transposon loci in control versus ova GLKD ovaries. Dashed boxes, enhancer regions of transposons. RPM, reads per million. Bin, 100 bp. (b) Quantitative comparison of H3K4me2 and Pol II densities in the indicated enhancer regions in 5a (dashed boxes). P values by two-tailed Student’s t-test. (c) Ovarioles with indicated genotypes expressing ubiquitous lacO-GFP reporter in the germline cells. GFP was visualized by antibody staining. Figure 5 continued on next page.
generated a transgene expressing HP1a::dLsd1 fusion protein. If Ova merely functions as an adapter that bridges the two proteins, the HP1a::dLsd1 transgene should render Ova dispensable and therefore should be able to rescue the ova mutant phenotypes. Strikingly, transgenic expression of HP1a::dLsd1 in escort cells was sufficient to rescue the rudimentary ovary phenotype of ova mutants (Figure 4e). Eighty percent of the HP1a::dLsd1 rescued germaria contained 2–5 GSC-l (n = 41) and all the germaria had properly differentiating cysts. Moreover, ubiquitous expression of HP1a::dLsd1 also significantly rescued the transposon silencing defects of ova mutants and partially restored female fertility (Figure 4f). Given that the genomic fragment transgene of ova (ova-g), which includes the cis-elements of ova, could fully restore fertility (Figure 1a), the incomplete rescue of fertility by the HP1a::dLsd1 fusion could be due to non-physiological levels of the transgene expression. Alternatively, ova could have additional roles beyond the adaptor role that are important for female fertility. In addition to increased expression of transposons, ova germline mutant ovaries also showed moderate upregulation of many protein-coding genes (Figure 4—figure supplement 1). Interestingly, this transgene expression also effectively brought the expression of many protein-coding genes back to wild-type levels (Figure 4—figure supplement 1). These observations indicate that HP1a and Ova may participate in transcriptional silencing of many regular protein-coding genes, in addition to transposons. We conclude that Ova acts as a protein adaptor to link HP1a to dLsd1 to promote HP1a-mediated gene silencing.

Since dLsd1 catalyzes H3K4me2 demethylation, Ova may function to link dLsd1 and HP1a for local H3K4 demethylation during heterochromatic gene silencing. Indeed, ChIP-seq analysis revealed that the H3K4me2 density was specifically increased at Het-A and TAHRE loci but not other TE loci (Figure 5—figure supplement 1). Further analysis revealed that there was a significant increase in H3K4me2 levels and in RNA Pol II occupancy at the 3'UTR of the Het-A and TAHRE transposons in ova GLKD ovarian germline cells (Figure 5a,b). Note that these telomeric transposons are arranged in a head-to-tail fashion; therefore, the 3’ UTR of one element likely directs the transcription of its downstream neighbor (Danilevskaya et al., 1997). To further test this potential role of Ova in linking H3K4 demethylation during HP1a-mediated gene silencing in vivo, we used a clean lacI/lacO reporter system to tether lacI-HP1a to the promoter of a lacO-GFP reporter (Sienksi et al., 2015). We found that 26% of ovarioles examined (n = 131) had reduced GFP signal in their germline upon lacI-HP1a induction (Figure 5c,d), although there was no significant reduced in the overall level of GFP mRNA (P value by two-tailed Student t-test, Figure 5e). Importantly, co-expression of ova in the germline caused a significant increase in the number of ovarioles with reduced or abolished GFP signal [86% (n = 138)], and the overall GFP mRNA level was also significantly reduced in these samples (P value by two-tailed Student t-test, Figure 5c–e). ChIP-seq analysis showed that this reduction in reporter expression was accompanied by significantly reduced H3K4m2 levels near the promoter region of the GFP gene reporter (Figure 5f,h).

To further confirm that the alteration of H3K4 deposition is a consequence of Ova recruitment, rather than a secondary effect following altered gene transcription, we performed a similar set of experiments, but with a modified lacO-terminator-GFP reporter that has a transcriptional terminator
immediately following the promoter (Figure 5g). This should result in blocked transcription no matter whether a transcriptional activator/repressor is present or not. As expected, this reporter showed a significant reduction of baseline transcription (down to approximately 3.8%) (P value by two-tailed Student t-test, Figure 5i). We found that tethering lacI-HP1a to the promoter failed to alter the H3K4me2 level proximal to the tethering site. Co-expression of Ova, however, almost erased entirely the H3K4me2 marks in the proximal region (Figure 5g,h). These observations further support the notion that Ova links HP1a and dLsd1 for local erasing of H3K4me2 marks.

We also tested whether Ova itself can induce gene silencing by tethering Ova directly to DNA and to mRNA using in vivo reporter systems in the ovarian germline. We used a lacI-Ova and lacO-GFP binary system to tether Ova to genomic DNA (Sienski et al., 2015) and found that such tethering did not have any obvious effect on GFP expression (Figure 5—figure supplement 2a–c). Similarly, tethering Ova to mRNA using a λN-Ova and GFP-boxB binary system did not cause any obvious effect on GFP expression (Figure 5—figure supplement 2d–f). These results are consistent with the idea that Ova acts downstream of HP1a in heterochromatic gene silencing.

Similar to other ‘effector step’ mutations, the loss of ova or dlsd1 only causes de-repression of a subset of transposons; this is in contrast with the widespread transposon de-repression that is common in mutations affecting piRNA biogenesis (Czech et al., 2013). This disparity can possibly be explained by the existence of different silencing mechanisms for particular subsets of transposons. Illustrating this idea, our work suggests that transposons with bivalent histone marks may be preferential targets for Ova and dLsd1. A bivalent pattern of histone methylation may help to regulate the expression of transposons that require a delicate On/Off balance, for example with the expression of telomeric repeats known to be required for normal telomere function (e.g., Het-A, TAHR, and Tart). The results of our study establishes that Ova has an indispensable role in facilitating dLsd1’s H3K4 demethylation activity during HP1a-induced heterochromatic gene silencing and demonstrates that this Ova function is essential for germline development, heterochromatin formation, and Piwi/piRNA-mediated co-transcriptional gene silencing. Our study suggests that the Piwi/piRNA pathway may adapt a similar effector machinery to repress regular genes, such as the dpp gene in escort cells, in addition to TEs. A study in S. pombe reported a mechanism in which a RNAi protein complex links the activity of the H3K9 methyltransferase Clr4 with H3K4 demethylation by the H3K4 demethylase Lid2 (Li et al., 2008), indicating an evolutionarily conserved interplay of epigenetic marks during transcriptional gene silencing. Given that the mechanisms underlying heterochromatic gene silencing are known to be strongly conserved from Drosophila to mammals, an equivalent functional module that links HP1a with H3K4 demethylation likely exists in mammals as well.

Materials and methods

Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Genetic reagent (Drosophila melanogaster)	ova[1]	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	ova[4]	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	c587-GAL4	(Song et al., 2004) (DOI: 10.1242/dev.01026)	RRID:BDSC_67747	
Genetic reagent (Drosophila melanogaster)	Dad-lacZ	(Tsuneizumi et al., 1997) (DOI: 10.1038/39362)	RRID:DGGR_118114	
Genetic reagent (Drosophila melanogaster)	bam-GFP	(Chen and McKearin, 2003)	RRID:DGGR_118177	

Continued on next page
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Genetic reagent (Drosophila melanogaster)	piwi[2]	(Lin and Spradling, 1997)	RRID:BDSC_43319	
Genetic reagent (Drosophila melanogaster)	piwi[3]	(Lin and Spradling, 1997)	RRID:BDSC_12225	
Genetic reagent (Drosophila melanogaster)	GFP-piwi	Katalin Toth (California Institute of Technology)		
Genetic reagent (Drosophila melanogaster)	118E-10	Lori Wallrath (University of Iowa)		
Genetic reagent (Drosophila melanogaster)	118E-15	Lori Wallrath (University of Iowa)		
Genetic reagent (Drosophila melanogaster)	6 M-193	Lori Wallrath (University of Iowa)		
Genetic reagent (Drosophila melanogaster)	39C.72	Lori Wallrath (University of Iowa)		
Genetic reagent (Drosophila melanogaster)	dLsd1-GFP	Yu Yang (Institute of Biophysics, Chinese Academy of Science)		
Genetic reagent (Drosophila melanogaster)	EGFP-RNAi	Bloomington Drosophila Stock Center	#41553	
Genetic reagent (Drosophila melanogaster)	RFP-HP1a	Bloomington Drosophila Stock Center	#30562	
Genetic reagent (Drosophila melanogaster)	UAS-Dcr2, nos-GAL4	Bloomington Drosophila Stock Center	#25751	
Genetic reagent (Drosophila melanogaster)	tub-GAL4	Bloomington Drosophila Stock Center	#5138	
Genetic reagent (Drosophila melanogaster)	tub-GAL80ts	Bloomington Drosophila Stock Center	#7016, #7018	
Genetic reagent (Drosophila melanogaster)	Df(2L)BSC144	Bloomington Drosophila Stock Center	#9504	
Genetic reagent (Drosophila melanogaster)	attP2	Bloomington Drosophila Stock Center	#25710	
Genetic reagent (Drosophila melanogaster)	In(1)mmdh	Kyoto Stock Center	#101652	
Genetic reagent (Drosophila melanogaster)	Df(2L)ED737	Kyoto Stock Center	#150520	
Genetic reagent (Drosophila melanogaster)	ova-RNAi	Vienna Drosophila Research Center	#102156	
Genetic reagent (Drosophila melanogaster)	piwi-RNAi	Vienna Drosophila Research Center	#101658	

Continued on next page
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Genetic reagent (Drosophila melanogaster)	panx-RNAi	Vienna Drosophila Research Center	(#102702)	
Genetic reagent (Drosophila melanogaster)	EGFP-5xBoxB	Vienna Drosophila Research Center	(#313408)	
Genetic reagent (Drosophila melanogaster)	lacO-GFP-Piwi	Vienna Drosophila Research Center	(#313394)	
Genetic reagent (Drosophila melanogaster)	lacl-HP1a, lacO-GFP-Piwi	Vienna Drosophila Research Center	(#313409)	
Genetic reagent (Drosophila melanogaster)	nos-Cas9	Jianquan Ni (Tsinghua University)		
Genetic reagent (Drosophila melanogaster)	pCasper4-ova-g	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	GFP-ova	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	UASP-ova	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	UASP-piwi	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	UASP-ova1-249	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	UASP-ova250-486	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	UASP-ova388-623	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	UASP-ova1-388	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	UASP-HP1a::dLsd1	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	UASP-\lambda-ova	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	UASP-lacl-ova	This paper		See Materials and methods
Genetic reagent (Drosophila melanogaster)	lacO-terminator-GFP-Piwi	This paper		See Materials and methods
Recombinant DNA reagent	UASP-\lambda	Julius Brennecke (Institute of Molecular Biotechnology)		
Recombinant DNA reagent	UASP-lacl			
Recombinant DNA reagent	lacO-GFP-Piwi			

Continued on next page
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Recombinant DNA reagent	pGBKT7	Clontech (Cat#630443)	RRID:AB_2617125	IHC(1:1000)
Recombinant DNA reagent	pGAD	Clontech (Cat#630442)	RRID:AB_2687418	IHC(1:3000)
Antibody	rabbit polyclonal anti-pMad	Ed Laufer (Columbia University Medical Center)	RRID:AB_1157911	WB(1:2000)
Antibody	rabbit polyclonal anti-β-galactosidase	MP Biologica (Cat#0855976)	RRID:AB_221569	IHC(1:1000) WB(1:10000)
Antibody	mouse monoclonal anti-α-Spectrin	Developmental Studies Hybridoma Bank	RRID:AB_306327	WB(1:6000)
Antibody	mouse monoclonal anti-Tubulin	Developmental Studies Hybridoma Bank	RRID:AB_1975001	WB (1:2000)
Antibody	rabbit polyclonal anti-mCherry	ZSJO-BIO (cat#ZB2301)	RRID:AB_732924	
Antibody	rabbit polyclonal anti-H3K4me2	Abcam (cat#ab7766)	RRID:AB_306327	
Antibody	mouse monoclonal anti-RNA polymerase II	Abcam (cat#ab817)	RRID:AB_439685	IHC(1:300) WB(1:6000)
Antibody	mouse monoclonal anti-Flag	Sigma (cat#F1804)	RRID:AB_1975001	
Chemical compound, drug	4',6'-diamidino-2-phenylindole	Sigma (cat#10236276001)		
Commercial assay or kit	anti-Flag resin	Sigma (cat#A2220)	RRID:AB_10063035	
Commercial assay or kit	GFP-Trap agarose	Chromoteck (cat#gta-10)		
Commercial assay or kit	RFP-Trap agarose	Chromoteck (cat#rta-10)		
Commercial assay or kit	Qiagen Plasmid Midi Kit	Qiagen (#12145)		
Commercial assay or kit	Immobilon Western Chemiluminescent HRP Substrate Kit	Millipore (cat#WBKLS0500)		
Commercial assay or kit	HiScript II Q RT SuperMix	Vazyme Biotech (cat#R223-01)		
Commercial assay or kit	ChamQ SYBR qPCR master Mix	Vazyme Biotech (cat#Q331)		
Commercial assay or kit	Oligo d(T)25 Magnetic beads	NEB (cat#S1419S)		
Commercial assay or kit	NEBNext Ultra I1DNA Library Prep Kits for Illumina	NEB (cat# E7645S)		
Commercial assay or kit	VAHTS Small RNA Library Prep Kit for Illumina	Vazyme Biotech (cat#NR801)		
Commercial assay or kit	VAHTS Universal DNA Library Prep Kit	Vazyme Biotech (cat#ND607)		
Commercial assay or kit	TruePrep Index Kit	Vazyme Biotech (cat#TD202)		

Continued on next page
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Software, algorithm	GraphPad Prism	GraphPad Prism [https://graphpad.com]	RRID:SCR_002798	See Supplementary file 1, Table 2
Sequenced-based reagent	RT-qPCR primers	This paper		

Drosophila strains

Flies were cultured on standard media with yeast paste added to the food surface. The culture temperature was 25°C unless otherwise noted. Strains used in this study were as follows: ova¹ is nucleotide loss allele (A1045) generated in this study, ova² is a knock-out allele generated in this study by CRISPR-Cas9 (Ren et al., 2013). c587-GAL4 (Song et al., 2004); Dad-lacZ (Tsuneizumi et al., 1997); bam-GFP (Chen and McKearin, 2003); piwi (Lachner et al., 2001); piwi (Bannister et al., 2001); 118E-10, 118E-15, 6M-193, and 39C.72 (gift from Lori Wallrath, University of Iowa); dLsd1-GFP (gift from Yang Yu, Institute of Biophysics IBP, Chinese Academy of Sciences); from Bloomington Drosophila Stock Center (BDSC): EGFP-RNAi (#41553) RFP-HP1a (#30562); UAS-Dcr2; nos-GAL4 (#25751); tub-GAL4 (#5138); tub-GAL80ts (#7016, #7018); Df(2L)BSC144 (#9504); attP2 (#25710); from Kyoto Stock Center: In(1)w¹¹¹B (#101652); Df(2L)ED737 (#150520); from Vienna Drosophila Research Center: ova-RNAi (#102156); piwi-RNAi (#101658); panx-RNAi (#102702); EGFP-5xBoxB (#313408); lacO-GFP-Piwi (#313394); lacI-HP1a; lacO-GFP-Piwi (#313409).

Generation of knock-out and transgenic flies

To obtain ova knock-out allele, two gRNAs (gRNA1: aagtctttacagccttgatc and gRNA2: cgttgggttgaggtacatac) were designed that target ova 5'UTR and 3'UTR respectively and cloned into U6b vector. The plasmids were introduced into nos-Cas9 embryos (Ren et al., 2013). Obtained flies were backcrossed with w¹¹¹B for at least three generations to eliminate potential off-target events. For ova-g transgenic fly, w¹¹¹B genomic region (2L: 10226867–10234857) was cloned intro pCasper4 vector. The attP-UASP vector was used to generate UASP-Flag-ova, UASP-Flag-ova1-388, UASP-Flag-ova1-249, UASP-Flag-ova250-486, UASP-Flag-ova388–623, UASP-ova, UASP-piwi, and UASP-HP1a::dLsd1. The GFP-ova construct was obtained using Gateway cloning technology (Invitrogen) and pUGW (DGRC1283) vector. Ova cDNA was cloned into UASP-λ-N and UASP-lac (gifts from Julius Brennecke, Institute of Molecular Biotechnology) to generate the UASP-λ-N-ova and UASP-lac-ova transgenes respectively. For the lacO-terminator-GFP reporter, 555 bp VASA terminator was injected immediately following start codon of GFP in the lacO-GFP reporter. All the plasmids were purified using a Qiagen Plasmid Midi Kit (#12145) and the DNA sequencing verified plasmids were introduced into embryos using either P-element or nos-phiC31 system to generate transgenic flies according to a standard procedure.

Immunostaining

Drosophila ovaries were dissected and immunostained as described previously (Yang et al., 2015). Briefly, ovaries were fixed in 4% paraformaldehyde for 15 min, and blocked in 5% normal goat serum in PBT (10 mM NaH₂PO₄, 175 mM NaCl, pH 7.4, 0.1% Triton X-100). The following primary antibodies were used: rabbit anti-pMad (1:1000, gift from Ed Laufer, Columbia University Medical Center, New York), rabbit anti-β-galactosidase (1:3000; MP Biologicals, 0855976), mouse anti-α-Spectrin (1:50; DSHB), rabbit anti-GFP (1:1000; Life, A11122), mouse anti-Flag (1:300; Sigma, F1804). Secondary antibodies, including goat anti-rabbit, anti-mouse IgGs, conjugated to Alexa (488 or 568) (Molecular Probes) were used at a dilution of 1:300 and tissues were also stained with 0.1 mg/ml DAPI (4',6'-diamidino-2-phenylindole; Sigma) for 5 min. Images were collected using either a Zeiss LSM510/LSM 800 or Nikon A1 confocal microscope system. All acquired images were processed in Adobe Photoshop and Illustrator.
Fertility test
To test female fertility, for each vial, three newly enclosed females were collected and mated with three 5–7 days old w^1118^ males in cornmeal food with yeast paste for two days, then the flies were transferred to a cornmeal food vial without yeast paste. After another three days, the flies were dumped out. The number of offspring was accounted until 16 days after eclosion. Mean values are reported as SEM.

Drosophila eye pigmentation assay
To measure eye pigmentation, the heads of ten 5–7 days old flies of each genotype were manually dissected. The isolated heads were homogenized in 0.2 ml of methanol, acidified with 0.1% HCl and warmed at 50°C for 5 min; The homogenate was clarified by centrifugation, and the OD at 480 nm of 0.15 ml supernatant was recorded. Mean values are reported with SEM.

Yeast two-hybrid experiment
Yeast Two-hybrid experiment was performed as described previously (Yang et al., 2015). Briefly, cDNA encoding interesting genes were amplified from w^1118^ ovary cDNA and cloned into either pGBKT7 bait vector or pGAD prey vector (Clontech). The pGBKT7 and pGAD plasmid carrying interesting genes were co-transformed into AH109 yeast cells according to a standard procedure. Colonies appearing on media lacking tryptophan and leucine (SC-WL) were picked onto selection plate lacking tryptophan, leucine and histidine (SC-WLH) or tryptophan, leucine, histidine and adenine (SC-WLHA) to determine proteins interaction.

Co-immunoprecipitation
Co-IP was done as previously described (Yang et al., 2015), with minor modifications. Female flies of appropriate genotypes were dissected in ice cold PBS. Ovaries were lysed in lysis buffer (10 mM Hepes pH 7.0, 150 mM NaCl, 5 mM MgCl_2_, 10% glycerol, 1% Triton X-100, 1x complete protease inhibitor (Roche), 1 mM DTT, 1 mM EDTA, 0.1 mM PMSF) at 4°C for 30 min and spun for 10 min at max speed in a table top centrifuge at 4°C. The supernatant was incubated with tag-recognizing beads including anti-Flag resin (Sigma), GFP-Trap agarose beads (Chromotech) and RFP-Trap agarose beads (Chromotech). After incubation, the beads were washed three times with lysis buffer and eluted by boiling in SDS loading buffer, loaded onto SDS-PAGE gels, and analyzed by immunoblotting with indicated antibodies. The following primary antibodies were used: anti-Flag (Sigma, 1:6000), anti-GFP (Life, 1:10000), anti-mCherry (BioVision, 1:2000), anti-Tubulin (DSHB, 1:2000). Secondary antibodies, including: anti-mouse and anti-rabbit IgG-HRP (ZSJQ-BIO, 1:10000). The membrane was developed by Immobilon Western Chemiluminescent HRP Substrate Kit (Millipore) according to the manufacturer’s instructions.

RNA purification and real-time quantitative PCR (RT-qPCR)
Total RNA from 10 to 20 ovaries was extracted using TRIzol reagent (TaKaRa). After DNase treatment, complementary DNA (cDNA) was synthesized using HiScript II Q RT SuperMix (Vazyme Biotech, R223-01). RT-qPCR was performed in three duplicates using ChamQ SYBR qPCR master Mix (Vazyme Biotech, Q331) on an ABI PRISM 7500 fast real-time PCR system (Applied Biosystems). Fold changes for mRNA were calculated using the ΔΔCt method (Livak and Schmittgen, 2001). Primers used were shown in Supplementary file 1, Table 2.

RNA sequencing and computational analysis
Total RNA from ovaries was isolated using TRIzol reagent (TaKaRa). 10 μg of total RNA from each sample used for library preparation after poly(A)-containing mRNA molecule purification (NEB, #S1419S), RNA amplification, double-strand cDNA synthesis, and adaptor ligation (NEB, #E7645S). For the small RNA sequencing, 10 μg enriched small RNA were separated on a 15% denaturing polyacrylamide gel and 18- to 30-nt RNAs were purified according to RNA oligo markers. All the libraries were prepared by following the manufacturer’s instructions and subsequent sequencing on the Illumina GAIL instrument (Vazyme, NR801). For CDS gene expression analysis, all the sequencing reads were mapped to the D.mel genome (BDGP6) using STAR program (options: –outFilterMultimapNmax 20 –alignIntronMin 20 –alignIntronMax 500000). The mapped reads were used for expression
analysis via Cufflinks package with reference gene annotation from Ensembl. And Cuffdiff was used to perform differential expression. For transposon expression analysis, sequencing reads were mapped to the transposon sequences which download from flybase website using STAR program with default parameters. Then alignment reads were used for calculating the expression level of transposons. Different transposons were combined together if they belong to the same one. The expression levels were normalized to reads per million (RPM). For small RNA analysis, Cutadapt package was used to remove adapter from 3’ end. The reads were aligned to the genome sequence by Bowtie. The reads were discarded which mapped to rRNA, tRNA, snoRNA sequences. And retained reads were aligned to miRNA (pre-miRNA sequences download from miRBase) and whole genome sequences (r5.42) with one mismatch and unique hit. Sequences in the 25–32 nt size range, not annotated as a previously known RNA were classified as candidate piRNAs. The expression levels of small RNA were normalized to RPM according to the total mapped reads number.

ChIP-seq analysis

ChIP was performed as previously described (Sienski et al., 2012). Briefly, about 200 pairs of ovaries were dissected into cold PBS and washed once. Ovaries were cross-linked in 1.8% paraformaldehyde for 10 min at room temperature then quenched with glycerine. Ovaries were homogenized by douncing. Pellet was resuspended in lysis buffer and incubated 10 min on ice. Chromatin was sonicated for immunoprecipitation and followed by reverse crosslink and DNA purification. Recovered DNA fragment was used to prepare libraries using VAHTS Universal DNA Library Prep Kit (Vazyme, ND607) and TruePrep Index Kit (Vazyme Biotech, TD202) sequencing was done on HiSeq2500 (Illumina). Antibodies: polyclonal rabbit anti-H3K4me2 (Abcam, ab7766) and monoclonal mouse anti-RNA polymerase II (Abcam, ab817). ChIP-seq reads were aligned using Bowtie (version 1.1.2) to build version BDGP6 of the Drosophila melanogaster genome. MACS (version 1.4.1) was used to identify regions of ChIP-seq enrichment. The density of reads in each region was normalized to 10 million reads library size. For lacO-GFP ChIP-seq, normalized reads were removed w/118 ChIP reads as the reporter unique mapped reads due to lacO-GFP reporter shared common sequences in fly genome. BigWig files were generated for visualization using Homer package. For transposons, all raw reads were mapped to the transposon database using Bowtie (version 1.1.2) with –v 3 –-best parameters. The sum of the number reads that mapped to genome and transposon was used as a normalization factor for all samples, reporting all feature abundances as RPM mapped.

Acknowledgements

We thank the members of the fly community as cited in the Materials and Methods for generously providing fly stocks and antibodies, the Bloomington Drosophila Stock Center, Vienna Drosophila Stock Center, Tsinghua Fly Center, and Developmental Studies Hybridoma Bank (DSHB) for reagents, Dr. Bing Zhu for reading of the manuscript, and Drs. Julius Brennecke, Allan Spradling, and Yang Yu for scientific discussions. This work was supported by the National Key Research and Development Program of China (2017YFA0103602 to RX), National Basic Research Program of China (2014CB850002 to RX), and National Natural Science Foundation of China (31601059 to FY).

Additional information

Funding

Funder	Grant reference number	Author
Ministry of Science and Technology of the People’s Republic of China	2017YFA0103602, 2014CB850002	Rongwen Xi
National Natural Science Foundation of China	31601059	Fu Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Author contributions
Fu Yang, Conceptualization, Data curation, Formal analysis, Funding acquisition, Validation, Investigation, Visualization, Methodology, Writing—original draft, Writing—review and editing; Zhenghui Quan, Data curation, Formal analysis, Validation, Investigation, Visualization, Writing—original draft; Huanwei Huang, Data curation, Software, Formal analysis, Methodology; Minghui He, Data curation, Formal analysis, Investigation; Xicheng Liu, Data curation, Methodology; Tao Cai, Software, Formal analysis, Supervision; Rongwen Xi, Conceptualization, Resources, Formal analysis, Supervision, Funding acquisition, Investigation, Visualization, Writing—original draft, Project administration, Writing—review and editing

Author ORCIDs
Xicheng Liu http://orcid.org/0000-0001-7257-1396
Rongwen Xi http://orcid.org/0000-0001-5543-1236

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.40806.021
Author response https://doi.org/10.7554/eLife.40806.022

Additional files
Supplementary files
• Supplementary file 1. Table 1: Viability test of ova mutants. Table 2: Primers used in this study.
 DOI: https://doi.org/10.7554/eLife.40806.016
• Transparent reporting form
 DOI: https://doi.org/10.7554/eLife.40806.017

Data availability
High-throughput sequence data GEO link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104925

The following dataset was generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Huang H	2018	Impact of CG5694/ova in Drosophila ovaries	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104925	NCBI , GSE104925

References
Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124. DOI: https://doi.org/10.1038/35065138, PMID: 11242054

Brand AH, Perrimon N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415. PMID: 8223268

Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, Zhou P, Elgin SC, Lin H. 2007. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes & Development 21:2300–2311. DOI: https://doi.org/10.1101/gad.1564307, PMID: 17875665

Chen D, McKearin D. 2003. Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Current Biology 13:1786–1791. DOI: https://doi.org/10.1016/j.cub.2003.09.033, PMID: 14561403

Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H. 1998. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes & Development 12:3715–3727. DOI: https://doi.org/10.1101/gad.12.23.3715, PMID: 9851978

Czech B, Preall JB, McGinn J, Hannon GJ. 2013. A transcriptome-wide RNAi screen in the Drosophila ovaries reveals factors of the germline piRNA pathway. Molecular Cell 50:749–761. DOI: https://doi.org/10.1016/j.molcel.2013.04.007, PMID: 23665227

Czech B, Hannon GJ. 2016. One loop to rule them all: The Ping-Pong cycle and piRNA-Guided silencing. Trends in Biochemical Sciences 41:324–337. DOI: https://doi.org/10.1016/j.tibs.2015.12.008, PMID: 26810602
Danilevskaya ON, Arkhipova IR, Traverse KL, Pardue ML. 1997. Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell 88:647–655. DOI: https://doi.org/10.1016/S0092-8674(00)81907-8, PMID: 9054504

Dénertads D, Sienksi G, Brennecke J. 2013. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes & Development 27:1693–1705. DOI: https://doi.org/10.1101/gad.221150.113, PMID: 23913922

Eliazer S, Shalaby NA, Buszczak M. 2011. Loss of lysine-specific demethylase 1 nonautonomously causes stem cell tumors in the Drosophila ovary. PNAS 108:7064–7069. DOI: https://doi.org/10.1073/pnas.1015874108, PMID: 21482791

Jin Z, Flynt AS, Lai EC. 2013. Drosophila piwi mutants exhibit germline stem cell tumors that are sustained by elevated Dpp signaling. Current Biology 23:1442–1448. DOI: https://doi.org/10.1010/j.cub.2013.06.021, PMID: 23891114

Kirrily D, Wang S, Xie T. 2011. Self-maintained escort cells form a germline stem cell differentiation niche. Development 138:5087–5097. DOI: https://doi.org/10.1242/dev.067850, PMID: 22031542

Klenov MS, Lavrov SA, Korbut AP, Stolyarenko AD, Yakushev EY, Reuter M, Pillai RS, Gvozdev VA. 2014. Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries. Nucleic Acids Research 42:6208–6218. DOI: https://doi.org/10.1093/nar/gku268, PMID: 24782529

Koch CM, Honemann-Capito M, Egger-Adam D, Wodarz A. 2009. Windei, the Drosophila homolog of mAM/MCAF1, is an essential cofactor of the H3K9 methyl transferase dSETDB1/Eggless in germ line development. PLOS Genetics 5:e1000644. DOI: https://doi.org/10.1371/journal.pgen.1000644, PMID: 19750210

Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120. DOI: https://doi.org/10.1038/35065132, PMID: 11242053

Li F, Huarte M, Zariategui M, Vaughn MW, Shi Y, Martienssen R, Cande WZ. 2008. Lid2 is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin. Cell 135:272–283. DOI: https://doi.org/10.1016/j.cell.2008.08.036, PMID: 18957202

Lin H, Spradling AC. 1997. A novel group of pumilio mutations affects the asymmetric division of germ cell stem cells in the Drosophila ovary. Development 124:2463–2476.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. DOI: https://doi.org/10.1016/S1046-2023(00)80040-9, PMID: 11846609

Ma X, Wang S, Do T, Song X, Inaba M, Nishimoto Y, Liu LP, Gao Y, Mao Y, Li H, McDowell W, Park J, Malanowski K, Peak A, Perera A, Li H, Gaudenz K, Haug J, Yamashita Y, Lin H, et al. 2014. Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary. PLOS ONE 9:e90267. DOI: https://doi.org/10.1371/journal.pone.0090267, PMID: 24658126

Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, Hannon GJ. 2009. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:552–555. DOI: https://doi.org/10.1016/j.cell.2009.03.040, PMID: 19395010

Martienssen R, Moazed D. 2015. RNAi and heterochromatin assembly. Cold Spring Harbor Perspectives in Biology 7:a019323. DOI: https://doi.org/10.1101/cshperspect.a019323, PMID: 26238358

McGuire SE, Mao Z, Davis RL. 2004. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Science Signaling 2004:pl6. DOI: https://doi.org/10.1126/sci.kte.2202004p16

Morris LX, Spradling AC. 2011. Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 138:2207–2215. DOI: https://doi.org/10.1242/dev.065508, PMID: 21558370

Muerdtfer F, Guzzardo PM, Gillis J, Luo Y, Yu Y, Shen C, Fekete R, Hannon GJ. 2013. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Molecular Cell 50:736–748. DOI: https://doi.org/10.1016/j.molcel.2013.04.006, PMID: 23665228

Ohltani H, Iwasaki YW, Shibuya A, Siomii H, Siomii MC, Saito K. 2013. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes & Development 27:1656–1661. DOI: https://doi.org/10.1101/gad.221150.113, PMID: 23913921

Olivieri D, Sykora MM, Sachidanandam R, Mechtler K, Brennecke J. 2010. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. The EMBO Journal 29:3301–3317. DOI: https://doi.org/10.1038/emboj.2010.212, PMID: 20818334

Ren X, Sun J, Housden BE, Hu Y, Roessel C, Lin S, Liu LP, Yang Z, Mao D, Sun L, Wu Q, Ji Y, Xi J, Mohr SE, Xu J, Perrimon N, Ni JQ. 2013. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. PNAS 110:19012–19017. DOI: https://doi.org/10.1073/pnas.1318481110, PMID: 24191015

Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schäfer C, Phalke S, Walther M, Schmidt A, Schmeling T, Reuter M, Pillai RS, Mechtler K, Jenuwein T, Reuter G. 2007. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Molecular Cell 26:103–115. DOI: https://doi.org/10.1016/j.molcel.2006.07.025, PMID: 17434130

Schottka G, Ebert A, Dorn R, Reuter G. 2003. Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Seminars in Cell & Developmental Biology 14:67–75. DOI: https://doi.org/10.1016/S0092-8674(02)00139-6, PMID: 12524009

Seum C, Reo E, Peng H, Rauscher FJ, Spierer P, Bontron S. 2007. Drosophila SETDB1 is required for chromosome 4 silencing. PLOS Genetics 3:e76. DOI: https://doi.org/10.1371/journal.pgen.0030076, PMID: 17500594
Sienski G, Dönertas D, Brennecke J. 2012. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151:964–980. DOI: https://doi.org/10.1016/j.cell.2012.10.040, PMID: 23159368

Sienski G, Batki J, Senti KA, Dönertas D, Tirian L, Meixner K, Brennecke J. 2015. Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery. Genes & Development 29:2258–2271. DOI: https://doi.org/10.1101/gad.271908.115, PMID: 26494711

Slotkin RK, Martienssen R. 2007. Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics 8:272–285. DOI: https://doi.org/10.1038/nrg2072, PMID: 17363976

Song X, Wong MD, Kawase E, Xi R, Ding BC, McCarthy JJ, Xie T. 2004. Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 131:1353–1364. DOI: https://doi.org/10.1242/dev.01026, PMID: 14973291

Spradling AC. 1993. Bate M, Martinez Arias A (Eds). The Development of Drosophila Melanogaster. Cold Spring Harbor Laboratory Press.

Tsuneizumi K, Nakayama T, Kamoshida Y, Kornberg TB, Christian JL, Tabata T. 1997. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389:627–631. DOI: https://doi.org/10.1038/39362, PMID: 9335506

Tzeng TY, Lee CH, Chan LW, Shen CK. 2007. Epigenetic regulation of the Drosophila chromosome 4 by the histone H3K9 methyltransferase dSETDB1. PNAS 104:12691–12696. DOI: https://doi.org/10.1073/pnas.0705534104, PMID: 17652514

Wallrath LL, Elgin SC. 1995. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes & Development 9:1263–1277. DOI: https://doi.org/10.1101/gad.9.10.1263, PMID: 7758950

Wang SH, Elgin SC. 2011. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. PNAS 108:21164–21169. DOI: https://doi.org/10.1073/pnas.1107392109, PMID: 22160707

Wang X, Pan L, Wang S, Zhou J, McDowell W, Park J, Haug J, Staehling K, Tang H, Xie T. 2011. Histone H3K9 trimethylase eggless controls germline stem cell maintenance and differentiation. PLOS Genetics 7:e1002426. DOI: https://doi.org/10.1371/journal.pgen.1002426, PMID: 22216012

Xie T. 2013. Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors. Wiley Interdisciplinary Reviews. Developmental Biology 2:261–273. DOI: https://doi.org/10.1002/wdev.60, PMID: 24009036

Xu T, Rubin GM. 1993. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237. PMID: 8404527

Yang F, Zhao R, Fang X, Huang H, Xuan Y, Ma Y, Chen H, Cai T, Qi Y, Xi R. 2015. The RNA surveillance complex Polo-Hbs1 is required for transposon silencing in the Drosophila germline. EMBO Reports 16:965–974. DOI: https://doi.org/10.15252/embr.201540084, PMID: 26124316

Yang F, Xi R. 2017. Silencing transposable elements in the Drosophila germline. Cellular and Molecular Life Sciences 74:435–448. DOI: https://doi.org/10.1007/s00018-016-2353-4, PMID: 27600679

Yu Y, Gu J, Jin Y, Luo Y, Preall JB, Ma J, Czech B, Hannon GJ. 2015. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science 350:339–342. DOI: https://doi.org/10.1126/science.aab0700, PMID: 26472911