Heavy Quasiparticles in the Anderson Lattice Model

K. Tsutsui1, Y. Ohta2, R. Eder3, S. Maekawa4, E. Dagotto4, and J. Riera5

1Department of Applied Physics, Nagoya University, Nagoya 464-01, Japan
2Department of Physics, Chiba University, Chiba 263, Japan
3Department of Applied and Solid State Physics, University of Groningen, The Netherlands
4Department of Physics, National High Magnetic Field Laboratory and Martech, Florida State University, Tallahassee, FL 32306, USA
5Departamento de Fisica, Fac. de Cs. Exactas e Ingenieria, 2000-Rosario, Argentina

An exact-diagonalization technique on small clusters is used to study the dynamics of the one-dimensional symmetric Anderson lattice model. Our calculated excitation spectra reproduce key features expected for an infinite Kondo lattice such as nearly localized low-energy spin excitations and extended regions of ‘heavy-quasiparticle’ bands. We show that, in contrast to the hybridization picture, low-energy spin excitations of the nearly-localized \textit{f}-electron system play a key role in the formation of an almost dispersionless low-energy band of heavy quasiparticles.

PACS numbers: 71.27.+a, 71.28.+d, 75.20.Hr

The origin of the anomalous behavior of \textit{f}-electron compounds is an unresolved issue in the theory of strongly-correlated electron systems. Thereby the way in which a periodic array of magnetic ions interacting with a sea of conduction electrons can give rise to either the extreme low-energy scale in the Landau-type quasiparticle bands of heavy-Fermion compounds or to gaps of apparent many-body origin in the excitation spectra of Kondo insulators is not yet understood. On a phenomenological level, heavy-Fermion compounds have been described with considerable success by the ‘renormalized band theory’ where the effect of electron correlations is described by the renormalization of on-site energy and hybridization strength of the magnetic ions.

In this Letter we study the Anderson lattice model (ALM), the simplest model relevant for \textit{f}-electron compounds, by Lanczos diagonalization of small clusters, the simplest model relevant for \textit{f}-electron compounds, by Lanczos diagonalization of small clusters, and show that such a renormalized band picture on one hand may provide a reasonable phenomenological description of the dispersion relations, but on the other hand is not really adequate on a microscopic level: contrary to the one-particle picture, the heavy quasiparticles may be viewed as loosely-bound states of conduction electrons and spin-wave–like excitations of the nearly-localized \textit{f}-electron system. The emerging picture is thus more reminiscent of the spin polaron discussed recently which a periodic array of magnetic ions interacting with a sea of conduction electrons can give rise to either the extreme low-energy scale in the Landau-type quasiparticle bands of heavy-Fermion compounds or to gaps of apparent many-body origin in the excitation spectra of Kondo insulators is not yet understood. On a phenomenological level, heavy-Fermion compounds have been described with considerable success by the ‘renormalized band theory’ where the effect of electron correlations is described by the renormalization of on-site energy and hybridization strength of the magnetic ions.

In this Letter we study the Anderson lattice model (ALM), the simplest model relevant for \textit{f}-electron compounds, by Lanczos diagonalization of small clusters, and show that such a renormalized band picture on one hand may provide a reasonable phenomenological description of the dispersion relations, but on the other hand is not really adequate on a microscopic level: contrary to the one-particle picture, the heavy quasiparticles may be viewed as loosely-bound states of conduction electrons and spin-wave–like excitations of the nearly-localized \textit{f}-electron system. The emerging picture is thus more reminiscent of the spin polaron discussed recently which a periodic array of magnetic ions interacting with a sea of conduction electrons can give rise to either the extreme low-energy scale in the Landau-type quasiparticle bands of heavy-Fermion compounds or to gaps of apparent many-body origin in the excitation spectra of Kondo insulators is not yet understood. On a phenomenological level, heavy-Fermion compounds have been described with considerable success by the ‘renormalized band theory’ where the effect of electron correlations is described by the renormalization of on-site energy and hybridization strength of the magnetic ions.

In this Letter we study the Anderson lattice model (ALM), the simplest model relevant for \textit{f}-electron compounds, by Lanczos diagonalization of small clusters, and show that such a renormalized band picture on one hand may provide a reasonable phenomenological description of the dispersion relations, but on the other hand is not really adequate on a microscopic level: contrary to the one-particle picture, the heavy quasiparticles may be viewed as loosely-bound states of conduction electrons and spin-wave–like excitations of the nearly-localized \textit{f}-electron system. The emerging picture is thus more reminiscent of the spin polaron discussed recently which a periodic array of magnetic ions interacting with a sea of conduction electrons can give rise to either the extreme low-energy scale in the Landau-type quasiparticle bands of heavy-Fermion compounds or to gaps of apparent many-body origin in the excitation spectra of Kondo insulators is not yet understood. On a phenomenological level, heavy-Fermion compounds have been described with considerable success by the ‘renormalized band theory’ where the effect of electron correlations is described by the renormalization of on-site energy and hybridization strength of the magnetic ions.

In this Letter we study the Anderson lattice model (ALM), the simplest model relevant for \textit{f}-electron compounds, by Lanczos diagonalization of small clusters, and show that such a renormalized band picture on one hand may provide a reasonable phenomenological description of the dispersion relations, but on the other hand is not really adequate on a microscopic level: contrary to the one-particle picture, the heavy quasiparticles may be viewed as loosely-bound states of conduction electrons and spin-wave–like excitations of the nearly-localized \textit{f}-electron system. The emerging picture is thus more reminiscent of the spin polaron discussed recently which a periodic array of magnetic ions interacting with a sea of conduction electrons can give rise to either the extreme low-energy scale in the Landau-type quasiparticle bands of heavy-Fermion compounds or to gaps of apparent many-body origin in the excitation spectra of Kondo insulators is not yet understood. On a phenomenological level, heavy-Fermion compounds have been described with considerable success by the ‘renormalized band theory’ where the effect of electron correlations is described by the renormalization of on-site energy and hybridization strength of the magnetic ions.

In this Letter we study the Anderson lattice model (ALM), the simplest model relevant for \textit{f}-electron compounds, by Lanczos diagonalization of small clusters, and show that such a renormalized band picture on one hand may provide a reasonable phenomenological description of the dispersion relations, but on the other hand is not really adequate on a microscopic level: contrary to the one-particle picture, the heavy quasiparticles may be viewed as loosely-bound states of conduction electrons and spin-wave–like excitations of the nearly-localized \textit{f}-electron system. The emerging picture is thus more reminiscent of the spin polaron discussed recently which a periodic array of magnetic ions interacting with a sea of conduction electrons can give rise to either the extreme low-energy scale in the Landau-type quasiparticle bands of heavy-Fermion compounds or to gaps of apparent many-body origin in the excitation spectra of Kondo insulators is not yet understood. On a phenomenological level, heavy-Fermion compounds have been described with considerable success by the ‘renormalized band theory’ where the effect of electron correlations is described by the renormalization of on-site energy and hybridization strength of the magnetic ions.
and the inverse photoemission (IPES) spectrum

\[A_{\gamma}^\pm (k, \omega) = \pm \frac{1}{\pi} \langle \Psi^N_{\phi} | \gamma_{k\sigma} \frac{1}{\omega - (H - E^N_{\phi}) - i\epsilon} \gamma_{k\sigma} | \Psi^N_{\phi} \rangle, \]

(2)

and the inverse photoemission (IPES) spectrum

\[A_{\gamma}^\pm (k, \omega) = \pm \frac{1}{\pi} \langle \Psi^N_{\phi} | \gamma_{k\sigma} \frac{1}{\omega - (H - E^N_{\phi}) - i\epsilon} \gamma_{k\sigma} | \Psi^N_{\phi} \rangle, \]

(3)

where \(E^N_{\phi} (|\Psi^N_{\phi}\rangle) \) denote the ground state energy (wave function) with \(N \) electrons and twisted BC of phase \(\phi \). The operator \(\gamma_{k\sigma} \) refers to the Fourier transform of the operator for either conduction electrons (\(c_{i\sigma} \)) or the \(f \) electrons (\(f_{i\sigma} \)). Results for \(A_{\gamma} (k, \omega) \) obtained by the standard Lanczos procedure are given in Figure 1. One can identify the ‘upper- and lower-Hubbard bands’ for the \(f \) electrons, separated by an energy \(\sim U \). They are dispersionless and somewhat broadened, with almost pure \(f \) character. In addition to this typical strong-correlation feature, there are two bands which are more reminiscent of noninteracting electrons: one can identify the unrenormalized \(f \)-electron band of width \(4t \), apparently split into two bands by hybridization with a ‘renormalized’ \(f \) level in the middle of the Hubbard gap. This feature first results in a well-defined gap between PES and IPES spectra and second in extended regions of ‘heavy’ bands with apparently pure \(f \) character. The dispersion of the two ‘hybridization bands’ as well as the change from almost pure \(c \) character to almost pure \(f \) character around \(\pi/2 \) thereby are both roughly consistent with the picture of noninteracting electrons. The spectral weight of the parts with \(f \) character, however, is substantially smaller than in the parts with \(c \) character; comparison shows that this asymmetry is the more pronounced the larger the ratio \(U/V \).

The change of \(A_{\gamma} (k, \omega) \) with hole doping is at first sight completely consistent with the picture of noninteracting electrons \cite{3}: the chemical potential seems to shift into the ‘heavy’ band, so that a kind of Fermi surface emerges, and upper- and lower-Hubbard bands remain unaffected. In addition to this rigid-band-like behavior, however, there is also a modification of the ‘light’ parts of the band structure, far from \(E_F \): \(c \)-type spectral weight is transferred from PES to IPES near \(\pi/2 \), i.e., the Fermi momentum for a half-filled band of unhybridized conduction electrons. The change of \(A_{\gamma} (k, \omega) \) thus is reminiscent of unhybridized conduction electrons. On a phenomenological level, this could be reproduced if one assumed that the ‘renormalized’ \(f \)-level energy is pinned near the chemical potential of \(N-N \) unhybridized conduction electrons, i.e., the Fermi energy of a ‘frozen-core’ band structure.

We now want to clarify the nature of the heavy-band states. Important information can be obtained from the momentum distribution function \(n_{\gamma\sigma}(k) = \langle \gamma_{k\sigma}^\dagger \gamma_{k\sigma} \rangle \); more precisely, we study the change of \(n_{\gamma\sigma}(k) \) upon removing one electron. In a six unit-cell system, we evaluate the difference \(\Delta n_{\gamma\sigma}(k) \) between the \(n_{\gamma\sigma}(k) \) in the lowest state with 5 down-spin and 6 up-spin electrons at the total momentum \(k_{\text{tot}} \) and the \(n_{\gamma\sigma}(k) \) of the ground state at half-filling. We choose \(k_{\text{tot}} \) such that the single-hole state belongs to the ‘heavy’ part of the band. In the hybridization model, the creation operators in the lower hybridization band would read \(a_{k\sigma}^\dagger = u_k c_{i\sigma}^\dagger + v_k f_{i\sigma}^\dagger \), so that \(\Delta n_{\gamma\uparrow}(k) = u_k c_{i\sigma}^\dagger - v_k f_{i\sigma}^\dagger \), \(\Delta n_{\gamma\downarrow}(k) = -|v_k|^2 \delta_k - k_{\text{tot}}, \) \(\Delta n_{\gamma\uparrow}(k) = -|v_k|^2 \delta_k - k_{\text{tot}} \). Since one may expect \(u_k \approx 0 \) and \(v_k \approx 1 \) in the heavy band, the electron is removed only from the \(f \) species with spin down and at \(k = -k_{\text{tot}} \). The calculated results for \(\Delta n_{\gamma\sigma}(k) \) are shown in Figure 2, where we note the following features, almost all of which are in contrast to these predictions:

(i) Independently of the actual momentum \(k_{\text{tot}} \) of the single-hole state, \(c \) electrons of both spin directions are removed at the two \(k_F \),

(ii) The resulting loss of up-spin electrons is compensated by an almost \(k \)-independent spin polarization of the \(f \) electrons,

(iii) As the only agreement with the hybridization model there is an extra ‘dip’ in \(n_{f\uparrow}(k) \) for \(k = -k_{\text{tot}} \), which however diminishes rapidly in magnitude for decreasing \(V/U \). These results establish first of all that the ‘heavy quasiparticle’ is predominantly a ‘missing \(c \) electron’ with only small admixture of \(f \) character (for large \(U/V \)). By contrast, the pure \(f \) character of the lower Hubbard band suggests that it is in this band where an \(f \) electron is missing. We thus have an energy separation of \(c \)-like and \(f \)-like degrees of freedom (of order \(U/2 \)), in contrast to the hybridization scenario. However, there must be some mechanism which renders the missing \(c \) electron ‘invisible’ in \(A_{\gamma}(k, \omega) \) when \(k \) is in the ‘heavy’ band.

As for this latter issue, we note that the spin polarization of the \(f \) electrons suggests the presence of a spin excitation. We therefore consider the spin-excitation spectrum

\[S_\alpha(q, \omega) = \frac{1}{\pi} \langle \Psi^N_{\phi} | \sigma_{\alpha q}^\dagger \frac{1}{\omega - (H - E^N_{\phi}) - i\epsilon} \sigma_{\alpha q} | \Psi^N_{\phi} \rangle, \]

(4)

where \(S_{\alpha q}^+ \) is the Fourier transform of either the total-spin raising operator \(c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger + f_{i\uparrow}^\dagger f_{i\downarrow}^\dagger (\alpha = \text{tot}) \) or the \(f \)-electron spin raising operator \(f_{i\uparrow}^\dagger f_{i\downarrow}^\dagger (\alpha = f) \). The calculated spectrum (see Figure 3) show strong low-energy peaks with negligible dispersion, which probably are the (almost) local singlet-triplet excitations expected for a Kondo lattice. In \(S_f(q, \omega) \), these low-energy peaks are enhanced whereas the smaller peaks at higher energies are suppressed: obviously the spin-flip of an \(f \) electron in the ground state to exciton approximation produces another eigenstate. There is a pronounced \(k \)-dependence of the peak intensity, similar to spin waves in an antiferromagnet. One may assume that this reflects the antiferromagnetic spin correlations due to the RKKY-type interaction. We also study the change of the momentum distribution of the half-filled system due to a spin excitation; more precisely we consider the difference between the momentum distribution for the lowest state with \(S_z = 1 \) and momentum \(\pi \) (i.e., the final state for the low-energy peak in \(S_N(q, \omega) \)) and that for the ground state. This difference is shown...
in the inset of Figure 3. Whereas the c electrons remain virtually unaffected by the spin excitation, there is an almost k-independent polarization of the f electrons, as one would expect it for a quantum spin system without charge degrees of freedom. Again we find a remarkable degree of separation of the c- and f-electron ‘subsystems’, which may also provide a natural explanation for the strongly different spin and charge excitations found in previous studies [11,12,14,8,15–19] of Kondo insulators.

Let us now combine the above results to obtain a simple picture of the heavy states. Since they represent the parts of the PES/IPES spectrum with the lowest excitation energy, let us consider the limit $V \to 0$ and ask ‘How can we remove or add an electron so as to lower the energy most efficiently?’ In the half-filled ground state, there is on the average one f-electron per unit cell, with only a small admixture of the empty or doubly occupied f site. Removing or adding an f-electron will on the average raise the energy by $U/2$, and thus is unfavorable. Accordingly, the state $f_{\sigma} \vert \Psi_N^f \rangle$, which would be the most natural ansatz within the hybridization picture, has only small overlap with the ‘true’ heavy state, particularly in the strong correlation case (i.e. small V/U). One measure for the weight of this state in the ground state would be the ‘depth’ of the dip in $n_{f \sigma}(k)$. On the other hand, a c-electron can be removed or added with practically no cost in energy if that is done near k_F^c. Next, the f-electron spin excitations with their small excitation energies offer a way to dispose of ‘excess momentum’ with almost no cost in energy. This suggests to remove or add the c-electron always at k_F^c, and transfer the excess momentum to an f-spin excitation. This picture immediately explains the reduction of $n_{f \sigma}(k_F^c)$, as well as the spin polarization of the f-electron system due to the accompanying f-spin excitation. We are thus led to the following ansatz for a hole-like ‘heavy state’:

$$\Psi(k) = \left\{ u_k f_{-k\downarrow} + \sum_{k_F^c} v_{k_F^c} \left[c_{k_F^c \downarrow} S_{k_F^c}(k + k_F^c) \right. \right. - \left. \left. c_{k_F^c \uparrow} S_{k_F^c}^\dagger(k + k_F^c) \right\} \vert \Psi_N^f \rangle. \right. \left(5\right)$$

Here $S_{k}(q)$ is the z-spin operator for the f-electrons with momentum transfer q, and u_k and $v_{k_F^c}$ are (variational) parameters. The state (Eq. (5)) has momentum k, z-spin $1/2$, and total spin $S=1/2$, i.e., the spins of f-electron excitation and c-electron hole maximally compensate each other. This is reminiscent of the ‘quenching’ of a Kondo-impurity spin due to bound-state formation. The variational parameters in (5) are determined from the requirement that $\vert \Psi(k) \rangle$ has norm 1 and maximum overlap with the exact ‘heavy’ state with momentum k. Figure 4 shows the overlap $\langle \Psi(k) \vert \Psi_{N-1}^f \rangle^2$ for different values of V/t and U/t at $k=\pi/6$; here $\vert \Psi_{N-1}^f \rangle$ denotes the exact ‘heavy’ state and $\vert \Psi(k) \rangle$ is given by Eq. (5). For comparison, the overlap of the state $f_{-k\downarrow} \vert \Psi_N^f \rangle$ (normalized to unity) with $\vert \Psi_{N-1}^f \rangle$ is also shown (in the hybridization picture, the latter quantity would be 1). While the ‘bare f-electron’ is a good approximation only in the small U/V case, the overlap of the state in Eq. (5) is $\gg 90\%$, for all parameter values, so that we find a good description of the heavy-band states in the strong correlation region.

In summary, we have studied the single-particle spectral function and dynamical spin-correlation function for finite clusters of the Anderson lattice model at and near half filling. Despite the necessarily rather coarse energy scales available in the clusters, our results do reproduce key features expected for infinite Kondo lattices, namely extended heavy bands and almost dispersionless low-energy spin excitations. On a phenomenological level, the low-energy parts of the spectral function can be described reasonably well by a renormalized band picture where an ‘effective f level’ pinned to the ‘frozen-core’ Fermi energy mixes with the conduction band. This picture, however, has not much significance beyond a purely phenomenological level: there is a clear separation between the low-energy ‘hybridization bands’ which correspond to a missing (or extra) c electron and the two ‘Hubbard bands’ which correspond to a missing (or extra) f electron. The heavy quasiparticles rather have the character of loosely bound states between a conduction electron at the Fermi momentum of the unhybridized conduction-electron system and a spin-wave–like excitation of the f-electron lattice which acts very much like a pure quantum-spin system.

Since the ‘spin polaron bands’ are formed by bound states, rather than by true hybridization, it seems natural to assume that the breaking of the bound states will completely remove the heavy parts of the band structure and leave behind only the frozen-core Fermi surface. Since the heavy quasiparticles involve the spin compensation of f excitation and c hole, it is moreover clear that they can be broken by a magnetic field. Then, the breaking of the heavy polaron by a magnetic field and the corresponding collapse of the Fermi surface to the frozen-core volume then appears as a natural explanation for the so-called metamagnetic transition associated with ‘itinerant-to-localized’ nature of f electrons [21].

We thank S. Haas for useful conversations. This work was supported by Priority-Areas Grants from the Ministry of Education, Science, and Culture of Japan, the New Energy and Industrial Technology Development Organization (NEDO), and the Office of Naval Research under Grant No. ONR-N00014-93-1-0495. Support of R. E. by the European Community is acknowledged. Computations were carried out in the Nagoya University Computation Center, the Computer Center of Institute for Molecular Science, Okazaki National Research Institutes, and the Cray C90 at Pittsburg Supercomputer Center.
FIG. 1. Single-particle excitation spectra $A_{\gamma}(k, \omega)$ for $N_s=6$ with different φ for $V/t=1$ and $U/t=6$. The spectra at $k=0, \pi/3, 2\pi/3$, and π correspond to $\varphi=0$ (i.e., periodic BC). The f spectra are multiplied by -1 for better distinction, the Lorentzian-broadening is $\epsilon=0.02t$. The upper panel shows the spectra for the half-filled ground state, the lower panel for the ground state with 5 up and 5 down electrons (i.e., with two holes). The vertical dashed line shows the chemical potential.

FIG. 2. Difference $\Delta n_{\gamma\sigma}(k)$ between zero-hole and one-hole ground states at $U/t=6$: (a) $V/t=1$, $k_{\text{tot}}=5\pi/6$, $\varphi=\pi$ (i.e., antiperiodic BC), (b) $V/t=1$, $k_{\text{tot}}=\pi$, $\varphi=0$ (c) $V/t=0.5$, $k_{\text{tot}}=5\pi/6$, $\varphi=\pi$. As a reference $n_{\gamma\sigma}(k)$ for the zero-hole ground state at $V/t=1$ is shown in (d).

FIG. 3. Spin-excitation spectra $S_{\alpha}(q, \omega)$ for $V/t=1$ and $U/t=6$, $\varphi=0$. The Lorentzian-broadening $\epsilon=0.02t$. Inset shows the change of $n_{\gamma\sigma}(k)$ due to the spin excitation.

FIG. 4. Overlap of the state given by Eq. (5) (white symbols) and the state $f_{-k}\langle \Psi_{N,\varphi}^{N-1} \rangle / \langle f_{-k} f_{-k} | \Psi_{N,\varphi}^{N} \rangle^{1/2}$ (black symbols) with the exact ‘heavy’ state $|\Psi_{N,\varphi}^{N-1}\rangle$ at $k=5\pi/6$ and $\varphi=\pi$ as functions of U/t.

[1] P. Fulde, J. Keller, and G. Zwicknagel, Solid State Physics 41, 1 (1988).
[2] P. Coleman, Physica B 206-207, 872 (1995).
[3] J. C. Cooley, et al. Phys. Rev. Lett. 74, 1629 (1995).
[4] C.-H. Park, et al., unpublished.
[5] R. Jullien and R. M. Martin, Phys. Rev. B 26, 6173 (1982).
[6] A. M. Tsvelik, Phys. Rev. Lett. 72, 1048 (1994).
[7] C. M. Varma and A. Zawadowski, Phys. Rev. B 32, 7399 (1985); K. Penc and S. Solyom, Phys. Rev. B 41, 704 (1990).
[8] C. C. Yu and S. R. White, Phys. Rev. Lett. 71, 3866 (1993).
[9] J. A. Riera, Phys. Rev. B 43, 3681 (1991).
[10] D. Poilblanc, Phys. Rev. B 44, 9562 (1991).
[11] H. Tsunetsugu et al. Phys. Rev. B 46, 3175 (1992).
[12] T. Nishino and K. Ueda, Phys. Rev. B 47, 12451 (1993).
[13] S. Maekawa et al., unpublished.
[14] R. Jullien and R. M. Martin, Phys. Rev. B 26, 6173 (1982).
[15] A. M. Tsvelik, Phys. Rev. Lett. 72, 1048 (1994).
[16] C.-H. Park, et al. Phys. Rev. B 206-207, 872 (1995).
[17] J. C. Cooley, et al. Phys. Rev. Lett. 74, 1629 (1995).
[18] C. M. Varma and A. Zawadowski, Phys. Rev. B 32, 7399 (1985); K. Penc and S. Solyom, Phys. Rev. B 41, 704 (1990).
[19] C. M. Varma and A. Zawadowski, Phys. Rev. B 32, 7399 (1985); K. Penc and S. Solyom, Phys. Rev. B 41, 704 (1990).