Investigation on Mechanical Properties of Coir Fiber Reinforced Polymer Resin Composites Saturated with Different Filling Agents

S. Nallusamy a *, R. Suganthini Rekha b, A. Karthikeyan c
a Professor and Dean, b Assistant Professor, c Research Scholar, Department of Mechanical Engineering, Dr. M G R Educational and Research Institute, Chennai, 600095, Tamilnadu, India
a e-mail: ksnallu@gmail.com, b e-mail: rekha.mira24@gmail.com, c e-mail: karthi646@gmail.com

Abstract: The main objective of this research article is to assess the mechanical properties and fracture analysis of bone and sea shell powders independently integrated with coir fiber polymer composites. The specimen was fabricated with coir fiber at various dimensions of coir fiber like diameter, length, content and mesh size of the powder. Tensile, compressive, flexural and impact tests were conducted in the prepared composite materials as per the techniques of ASTM standard. The fracture faces were explored with the help of SEM images. From the final results it was concluded that the sea shell powder composite provides good tensile and flexural strength than bone powder composite, while bone powder composite material gives good compressive and impact strength than sea shell powder composite material.

Keywords: Composite, Mechanical Properties, Coir Fiber, Bone and Sea Shell Powder, SEM

1. INTRODUCTION

Composite materials play an vital role in the area of engineering applications due to the ease in making multifaceted shape of materials and their high tensile and compressive strength [1]-[3]. A mixture of more than two materials differing in form or composition on a macro scale is called as composite materials, which exhibits better characteristics than that of the individual material [4]-[6]. In general, there are two phases in a composite such as reinforcing phase and matrix phase. Reinforcing materials are used to carry the loads and material matrix is used to join and transmit the load to fibers. In recent days the composites based on polymer are mostly utilized because of their superior mechanical properties as compared with other composites [7], [8]. Due to extensive appliances of polymer composites, it is very much encouraging to study on the deployment of local cheap renewable sources of fiber and fillers available for polymer matrix composite (PMC) manufacturing [9]-[11]. Fillers are simply increase the bulk volume which results in reduction of price are called as extender fillers at the same time as those which enhance the mechanical properties, mainly tensile strength are termed as reinforcing fillers. Several million metric tons of fillers and reinforcements are used annually by the plastic industry. In plastics the usage of these additives is likely to rise with the introduction of improved compounding agents that permit the
use of high filler/reinforcement content [12], [13]. An experimental analysis was carried out on the heat transfer of nanofluids using carbon nanotubes and the results reveals that the addition of carbon nanotube to the E-Glass fiber composites increased the flexural properties [14]. An analysis was carried on erosion in fibre and particulate filled PMCs with the new concepts of strength improvement [15]. In general, particles have more strength which acts as a reinforcement in PMCs. In these laminations, 75µm sized composite gives better results when compared to other size of particles content composites [16]-[18]. Based on the above mentioned factors this work was taken up to develop a coir fiber based hybrid composite using sea shell powder (SSP) and bone powder (BP) as filling agent. The composites were prepared with different layers and the mechanical properties of the BP mixed composite and SSP added coir fiber composite were studied with ASTM standards and SEM.

2. MATERIALS AND METHODS

The bone acquired from animals can be crushed up to 425µ, the collective usage of BP particles controls crack development in plastic shrinkage at an early age. BP is very much attractive product since it has low thermal conductivity and bulk density. The addition of BP increases the thermal capacity of the composite specimens and yielded a light weight product. Here 100µm particle sized BP was used to fabricate the composite. SSP is a strong material available in sea shore. The sea shell was crushed and pulverized using ball mill and the powder was sieved and 100µm particle sized SSP was used for the development of the composite laminates. Coir fiber is a reinforced material, a natural product available from coconut. It is generally differentiable by its length and its diameter. The available length of the coir is normally between 10mm to 150mm and for our experimental specimen fabrication 50mm length was chosen. Similarly, the obtainable diameter of coir fiber is between 0.1mm to 3mm and we have selected 0.5mm diameter for fabrication of the composite laminates. Orthothlic polyester resin was used as a matrix, cobalt naphthanate acts as an accelerator and methyl ethyl ketone peroxide (MEKTP) acts as a catalyst. Accelerator and catalyst were mixed with the resin, and were used to start and finish the curing process. Polyester is widely used as matrix for fiber reinforced PMCs and also as structural adhesives. Fiber-reinforced orthothlic polyester resin matrix composite is preferred in load bearing frame works such as aircrafts, automotive, buildings and ships comparative to conventional massive and uniform materials such as wood and metals because of their greater chemical and mechanical properties and also due to their high strength to weight ratios.

Hand lay-up method was used to fabricate the composite material which is one of the well known processes of open molding and simplest technique for fabrication of the PMCs. It is a slow, manual and labour consuming method. The resin and the powder contents were mixed in the % of weight ratio 70:30. The anti adhesive agent was coated on the mould to avoid sticking of the constituent on the surface of the mould. The prime surface coating of the component was formed when the gel coating was applied. The accelerator and catalyst were mixed with polyester resin in proper ratio, this proportion works to bind the materials. Then the prepared powder content was mixed with the binding materials. Coir fiber was spread over the mould. Then the mixture of resin and powder was poured into the mould without any space. The roller was rotated in the mould cavity. The lid was placed on the top of the mould frame which helps to distribute the binding material in the full area of the frame and the load was uniformly applied on the
mould. The set of connections was kept in the dry place for 24 hours. The curing product was taken away from the mould after 24 hours. At last, the PMC was fabricated. Two types of laminates were prepared with the below mentioned % of weight, BP and coir fiber with 15% of weight each and polyester resin composite with 70% of weight. Similarly coir fiber and coconut shell powder with 15% of weight each and polyester resin composite with 70% of weight were prepared. Finally, the laminate was cut by the cutter machine in various shapes and sizes according to the test standards.

3. RESULTS AND DISCUSSION

All the five fabricated specimens were tested individually and the results with various mechanical properties results were obtained. The observed results of BP fiber reinforced polymer composite (FRPC) are given in Table I. Similarly the results of SSP FRPC are given in Table II. The average values were taken for the analysis.

3.1 Tensile Strength and Compressive Strength

The tensile strength of BP and SSP composites were compared and the results are given in Fig. 1. The average tensile strength value of BP based composite and SSP based composite was 27.464MPa and 31.004MPa respectively and it was found that the tensile strength of the SSP composite was better than BP composite. Similarly the compressive strength of BP and SSP composites were calculated and the comparison results are given in Fig. 2. It was found that the average compressive strength value of BP based composite and SSP based composite was 59.228MPa and 55.440MPa respectively and it was found that the compressive strength of the BP composite was better than SSP composite.

Specimen	Tensile Strength (MPa)	Compressive Strength (MPa)	Flexural Strength (MPa)	Impact Strength (MPa)
BP1	26.43	58.23	52.56	70.11
BP2	28.28	61.11	54.67	68.01
BP3	27.08	57.63	53.36	68.45
BP4	27.16	59.41	51.23	65.89
BP5	28.37	59.76	51.05	67.55
Average	27.464	59.228	52.574	68.002

Specimen	Tensile Strength (MPa)	Compressive Strength (MPa)	Flexural Strength (MPa)	Impact Strength (MPa)
SSP1	31.32	54.37	54.34	61.12
SSP2	30.71	55.63	56.11	61.45
SSP3	32.06	53.86	55.76	62.37
SSP4	31.04	57.45	58.63	60.38
SSP5	29.89	55.89	56.03	60.45
Average	31.004	55.44	56.174	61.154
Fig. 1 Average Values of Tensile Strength

Fig. 2 Average Values of Compressive Strength

Fig. 3 Average Values of Flexural Strength

Fig. 4 Average Values of Impact Strength

3.2 Flexural Strength and Impact Strength

The flexural strength of BP and SSP composites were calculated and the comparison results are given in Fig. 3. From the figure, it was observed that the average flexural strength value of BP based and SSP based composites was 52.574 Mpa and 56.174 Mpa respectively and it was found that the flexural strength of the SSP composite was better than BP composite. Similarly the impact strength of BP and SSP composites were calculated and shown in Fig. 4. It was found that the average impact strength of BP based and SSP based composites was 68.002 kJ/m² and 61.154 kJ/m² respectively and it was observed that the impact strength of the BP composite was better than SSP composite.

3.3 Characterization of Composites

The microstructure compositions of the phases present in the SSP based composite was studied using Scanning Electron Microscope equipment. The analyzing specimen was placed over the sample holder and the images were captured under a variety of magnifications. Microscopic layer is composed of parallel rows of first-order lamellae and the first order lamellae in the middle
layer are oriented 90° to the first order lamellae in the inner and outer layers. Each first-order lamella in turn is composed of parallel rows of second-order lamellae, which are oriented 45° to the first-order lamellae. The second-order lamellae are further subdivided into third-order lamellae. The basic building blocks are the third order lath-shaped aragonite crystals with internal twins. In particular, in the middle layer the second-order lamellae are alternating the first-order lamellae by 90° rotation. As far as the field stress is increased on the fracture specimen, a white region appears and progressively increases in size. This whitening is an indication of tablet sliding and inelastic deformations, with the voids left by tablet separation scattering light (this phenomenon is similar to stress whitening associated with crazing in polymers). In the literature dealing with fracture mechanics, such as inelastic region is referred to as the process zone. Fig. 5 to Fig. 12 shows the Scanning Electron Microscope (SEM) images of fractured surfaces of BP based composite as well as SSP based composite after the mechanical testing.

Fig. 5 SEM Image of BP Based Composite Fig. 6 SEM Image of SSP Based Composite

After the tensile test was carried out the SEM image of BP based composite was clearly identified and shown in Fig. 5. Similarly for SSP based composite the SEM image after tensile test was carried out and given in Fig. 6. From the SEM images it was clearly noticed that the composite particles and coir fiber were integrated with the PMC material. When these two composite materials were compared, the coir fiber was pulled out in more amounts from the BP based composite material during the tensile test hence there was a decrease in tensile strength of the BP based composite. Fig. 7 and Fig. 8 shows the SEM images of BP and SSP based composites after compressive test respectively. In general, bone material has more strength when compared with sea shell. Consequently BP based composite material offers good strength in compressive than the SSP based composite material.
Flexural test SEM images of BP and SSP based composite materials are illustrated in Fig. 9 and Fig. 10 respectively. It was found that the coir fiber was pulled out from the composite material in BP based composite after the flexural test was done, but in the composite with SSP no blow holes were identified. Hence it was concluded that the composite with SSP provides better results over the composite material with BP during the flexural testing.
Fig. 11 SEM Image of BP Based Composite

Fig. 12 SEM Image of SSP Based Composite

Similarly SEM images of BP based composite material and SSP based composite material after impact test is illustrated in Fig. 11 and Fig. 12 respectively. It was observed that the coir fiber was pulled out from the matrix material in the SSP based composites after the impact test. In the BP based composites, there was no pull out of fiber from the matrix and hence, fibers get expanded and rupture. So the impact strength was high in BP based composite material compared with SSP composite material.

4. CONCLUSION

Based on the above experimental analysis of BP and SSP added coir fiber composite material, the following conclusions were made.

- From the results it was found that the SSP filled coir fiber composite provides better results when compared to BP filled coir fiber polyester composite when subjected to tensile and flexural test.
- Similarly it was observed that the BP filled coir fiber polyester composite provides better results when compared to SSP filled coir fiber composite when subjected to compressive and impact test.
- The fracture surfaces were analyzed through SEM images and the same results obtained through mechanical properties were observed.

The research may be extended through similar characteristics related to performance evaluation of composite materials with appropriate techniques.

REFERENCES

[1] Gopinath, M. Senthil Kumar and A. Elayaperumal, “Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices”, Procedia Engineering, vol. 97, pp. 2052-2063, 2014.
[2] H. Abdellaoui, H. Bensalah, J. Echaabi, R. Bouhfid and A. Qaiss, “Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin”, Materials and Design, vol. 68, pp. 104-113, 2015.

[3] S. Nallusamy and A. Manoj Babu, “X-Ray diffraction and FESEM analysis for mixture of hybrid nano particles in heat transfer applications”, Journal of Nano Research, vol. 37, pp. 58-67, 2015.

[4] Sanjay, Arpitha and Yogesha, “Study on mechanical properties of natural - glass fibre reinforced polymer hybrid composites: A review”, Materials Today: Proceedings, vol. 2, pp. 2959-2967, 2015.

[5] S. Nallusamy and Gautam Majumdar, “Effect of stacking sequence and hybridization on mechanical properties of jute-glass fiber composites”, International Journal of Performability Engineering, vol. 12(3), pp. 229-239, 2016.

[6] Asha and V. Chandra Sekhar, “Investigation on the mechanical properties of egg shell powder reinforced polymeric composites”, International Journal of Research and Technology, vol. 3(12), pp. 288-291, 2014.

[7] Sanjay and Yogesha, “Studies on mechanical properties of jute/e-glass fiber reinforced epoxy hybrid composites”, Journal of Minerals and Materials Characterization and Engineering, vol. 4(1), pp. 15-25, 2016.

[8] Verma, Gope, Shandilya, Gupta and Maheshwari, “Coir fibre reinforcement and application in polymer composites-A review”, Journal of Materials and Envi. Sci., vol. 4(2), pp. 263-276, 2013.

[9] S. Nallusamy, “A review on the effects of casting quality, microstructure and mechanical properties of cast Al-Si-0.3Mg alloy”, Int. Journal of Performability Engg., vol. 12(2), pp. 143-154, 2016.

[10] Asuake, Aigbodion, Abdulwahab, Fayomi, Popoola, Nwoyi and Garba, “Effects of bone particle on the properties and microstructure of polypropylene/bone ash particulate composites”, Results in Physics, vol. 2, pp. 135-141, 2012.

[11] Verma, Gope, Shandilya, Gupta and Maheshwari, “Coir fibre reinforcement and application in polymer composites-A review”, Journal of Materials and Environmental Science, vol. 4(2), pp. 263-276, 2013.

[12] S. Nallusamy, “Characterization of epoxy composites with TiO$_2$ additives and E-glass fibers as reinforcement agent”, Journal of Nano Research, vol. 40, pp. 99-104, 2016.

[13] Manohara, Sreenivasa and Bharath, “Evaluation of tensile behavior of sea shell jute fabric reinforced composite”, International Journal of Advanced Research in Mechanical and Production Engineering and Development, vol. 1(3), pp. 141-147, 2014.

[14] S. Nallusamy, A. Manoj Babu and N. Manikanda Prabu, “Investigation on carbon nanotubes over review on other heat transfer nano fluids”, International Journal of Applied Engineering Research, vol. 10(62), pp. 112-117, 2014.

[15] Patnaika, Amar, Alok Satapathyb, Navin Chandc, Barkoulad and Sandhyarani Biswab, “Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: A review”, Wear, vol. 268(1-2), pp. 249-263, 2010.

[16] Lawrence Fernandes, Vinay, Kiran Prakash and Pavitra Ajagol, “Shellfish shell as a bio-filler: Preparation, characterization and its effect on the mechanical properties on glass fiber
reinforced polymer matrix composites”, The International Journal of Engineering and Science, vol. 3(8), pp. 23-26, 2014.

[17] Odusanya, Bolasodun and Madueke, “Property evaluation of hybrid seashell/snail shell filler reinforced unsaturated polyester composite in comparison with seashell and snail shell filler reinforced unsaturated polyester composite”, The International Journal of Engineering and Science, vol. 3(12), pp. 80-90, 2014.

[18] Odusanya, Bolasodun and Madueke, “Property evaluation of sea shell filler reinforced unsaturated polyester composite”, International Journal of Scientific and Engineering Research, vol. 5(11), pp. 1343-1349, 2014.

Dr. S. Nallusamy is currently working as Professor and Dean of Mechanical Engineering at Dr. M.G.R. Educational and Research Institute, Chennai, India. He received his B.E. (Mechanical Engineering) from Madras University, M.E. (Industrial Engineering) from Anna University and also awarded his Ph.D from Jadavpur University, Kolkata in the year 2009. His research interest includes Composite Materials, Nanomaterials, TQM, Supply Chain Management etc. He has published around fifty Scopus indexed articles in international and national journals and nineteen papers in conferences. Also he has published two text books of Industrial Engineering and Management and Automobile Technology with twenty three years of teaching and research experience.

Mrs. R. Suganthini Rekha obtained her B.E. (ECE) from Madras University in 2003 and M.E. (Product Design and Development) from Anna University, Chennai in 2007. Currently, she is working as an Assistant Professor in the Department of Mechanical Engineering at Dr. M.G.R. Educational and Research Institute, Chennai from 2012 onwards. She is doing research in the area of manufacturing lead time reduction and composite materials.

Mr. A. Karthikeyan obtained his B.E. (Mech.) from Sri Balaji Chockalingam Engineering College in 2010 and M.E. (Engineering Design) from St. Peter’s University, Chennai in 2013. He is working as Assistant Professor, Dr. M.G.R. Polytechnic College, Tamilnadu. Currently, he is engaged in research on wear testing of different composite materials in Mechanical Engineering Department at Dr. M.G.R. Educational and Research Institute, Chennai from 2015 onwards.