PHARMACOGNOSTIC, ETHNOPHARMACOLOGICAL, PHYTOCHEMICAL AND PHARMACOLOGICAL PROFILE OF WILD GUAVA I.E. Careya Arborea Roxb

MANBIR KAUR*1,2, RAKESH YADAV1

1Department of Pharmaceutical Sciences, Banasthali Vidyapeeth, Banasthali, Rajasthan, 2Khalsa college of Pharmacy, G. T. Road, Amritsar, Punjab, India

Email: manbirmanu@yahoo.com

Received: 27 Dec 2016, Revised and Accepted: 20 Mar 2017

ABSTRACT

Careya arborea Roxb. is a medium-sized deciduous tree of 9 to 18 m height, surviving throughout India up to an altitude of 1,500 meters and other Asian countries. The tree belongs to Family Lecythidaceae and has folklore use in treating cold, cough, tumours, asthma, inflammations, ulcers and skin infections. The present review reveals updated, comprehensive and categorized information on pharmacognostical evaluation containing morphology as well as microscopic studies, ethnopharmacology, physiochemical parameters, preliminary photochemical screening, phytochemistry and elaborated pharmacological studies.

Keywords: Careya arborea, Slow match tree, Lecythidaceae, Microscopy, Biological activity

INTRODUCTION

Nature has been a source of therapeutic agents for thousands of years and a tremendous number of novel drugs have been discovered from natural sources. India is known as “Botanical Garden of the world” as it has a huge diversity of medicinal plants. Moreover, Medicinal plants have played important role in the development of material medica.

In 1819 a genus of flowering plants in the family Lecythidaceae was described as Careya [1]. Lecythidaceae is included in the order Ericales, is considered monophyletic [2]. The word Lecythidaceae means large woody trees bearing large fruits with woody skins. The family comprises of tropical trees consisting of about 20 genera and 450 species [2, 3].

The genus careya includes three different species which includes Careya sphaceraica Roxb, Careya herbacea Roxb and Careya arborea Roxb. Careya arborea is a deciduous tree about 20 m high and is known as 'Padmaka' in Ayurveda [4]. The accepted botanical name is kumbi [5] and “Wild guava” in English [6].

The leaves are simple, broadly obovate in shape, acuminate apex with crenate, dentate margin, petioles (0.1–1.8 cm) long. Flower yellowish white, ill-smelling, sessile; fruits large, round, green and fleshy; seed embedded in the fleshy pulp of the fruit. Bark dark grey exfoliating in thin strips.

Leaf microscopy [8]

8. Transverse section of the leaf through midrib region shows slight upper epidermis and large epidermis at the lower surface (fig. 2). Epidermal cells are thin walled and rectangular in shape, covered with thick cuticle followed by collenchymatous ground tissue.
Palisade cell is single layered; midrib region shows one median large size vascular bundle and two lateral vascular bundles. Sclerenchyma is present at the upper notched side above the median vascular bundle. Xylem is arranged in cup-shaped and surrounded by phloem facing toward the lower side. Xylem consists of vessels, tracheids, fibres and xylem parenchyma. The lateral vascular bundle also shows sclerenchymatous bundle sheath which encircles the vascular bundle. Sclerenchymatous bundle sheath is broad on both surfaces and only 1 or 2 layered on the lateral side. TS passing through lamina region showed single layered palisade cells followed by several layers of spongy mesophyll embedded with lateral vascular bundles. C. arborea leaf surface shows the anisocytic stomata which is characteristic of Family Lecthyidaceae.

Stem microscopy [8]

The stem of Careya arborea under a microscope shows outer cork (3 to 4 layered); cork cambium (1 to 2 layered) followed by collenchymatous cortex with embedded vascular bundles (fig. 3). Cortical vascular bundles of various shape and size are present and surrounded by sclerenchymatous bundle sheath. Pericycle is present. Phloem, consisting of phloem fibers, sieve tubes, companion cells and phloem parenchyma followed by vascular cambium 4 to 5 layered and 4 to 5 cells broad in continuous layers. Xylem consists of vessels, tracheids, fibres and xylem parenchyma; medullary rays 1 to 2 cells broad and radiating; vessels are mostly solitary towards the centre and in a group of 2 to 4 towards the periphery. The Central portion is occupied by collenchymatous pith.
Stem bark microscopy [9, 10]

Transverse section of bark has been reported to have prominent cork, cortex and secondary phloem. The cork cells consist of 8–16 layered, thick wall, rectangular and blackish brown in colour. Beneath the cork, there are 2-3 layers of phellogen and then the phelloderm. The cortex consists of rectangular to polygonal cells of parenchyma. The secondary phloem is made up of fibres, phloem parenchyma, medullary rays (1-2 seriate) and vessels. Calcium oxalate crystals are present in cells of cortex and phloem parenchyma in secondary phloem. Few starch grains are also found to be present.
Ethnopharmacological uses

The therapeutical importance of Careyaarborea is mentioned in Materia Medica, Ayurveda, Siddha and Unani system of medicines. The root paste is used in body ache. Moreover, it is taken in the morning in empty stomach against joint pain for five days. Root-bark decoction (with long pepper) is used in fever, Stem-bark decoction (paste with honey) is given to children in cold and cough; Stem-bark (paste with marjosa) heals leucoderma. The bark of the tree and the sepals of the flowers are used as astringent and mucilaginous being administered internally in coughs and colds and applied externally as an embrocation. The stem bark of C. arborea is traditionally used in the treatment of tumours, bronchitis, skin disease, epileptic fits, astringent antitode to snake venom, abscesses, boil and ulcer [11]. Infusion of the flower is used after childbirth to heal rupture caused by childbirth.

Physicochemical parameters

Physicochemical parameters of the leaf and the stem bark are listed in table 1 [8, 12, 13, 15].

Physicochemical constants	Leaf (%)	Stem bark (%)
Foreign matter (% w/w)	0.20	0.80
Total ash (% w/w)	6.00	4.50
Acid insoluble ash (% w/w)	1.40	0.17
Water soluble ash (% w/w)	2.20	1.10
Loss on drying (% w/w)	3.20	6.00
Swelling index (mL)	4.70	3.73
Water soluble extractive (% w/w)	18.4	16.0
Alcohol soluble extractive (% w/w)	8.20	7.20

Phytochemical screening, table 2 [14] revealed the presence of alkaloids, flavonoids, phenols, tannins, sterols and fixed oils.

Reagents	Color/precipitate	Constituents
Mayer’s reagent	No precipitate	Alkaloids absent
Dragendorff reagent	No precipitate	Alkaloids absent
5% Ferric chloride test	Greenish black precipitate	Phenols present
N P reagent	Yellow fluorescence	Flavonoids present
15% Ferric chloride test	Greenish black precipitate	Tannins present
Aq. Lead acetate	White precipitate	Tannins present
Lieberman Burchard’s Test	Reddish brown colour	Sterols present
Spot test	Stains observed	Fixed oils present

Phytochemistry

The plant has been extensively investigated and chemical constituents from the barks, leaves and seeds of the plant have previously been reported to include triterpenoids [15], flavonoid [16], coumarin [17] saponins and tannins [18]. Careyaarborea also contains five Saponins (sapogenols-careyagenol A, B, C, D and E); sterols, α-spinasterol and α-spinosterone [7].

Table 3: Phytoconstituents present in different parts of Careyaarborea

Plant part	Phytoconstituents
ROOTS	Phytosterogens, Sito-sterol [19]
STEM BARK	lupeol, β-sitosterol, betulin, betulinic acid, 1-5-(1,3-hexadiol-5-yl)-1-oxo-2,4-pentadienyl piperidine[20]
SEEDS	α- spinasterol, Δ22-stigmastenol [21], Triterpenoids, Barringtonol C
LEAVES	Careyagenolide, maslinic acid, 2α-hydroxyursolic acid [21], p-hexacosanol, α-spinasterol, taraxerol, taraxeryl acetate, β-sitosterol, ellagic acid and quercitin[16], Triterpene ester-careaborin[22], Tannins[23] valoneic acid dilactone[17]
FLOWERS	Steroids and triterpenoids, Phenols, Tannins [10]
Fig. 5: Structures of some phytoconstituents present in *Careya arborea*, 1. α-spinasterone [21], 2. α-spinasterol [21], 3. 16-desoxybarringtogenol C [24], 4. Barringtogenol C [25-27], 5. Barringtogenol D [25-27], 6. Triterpenoid lactone careyagenolide [15], 7. Maslinic acid [15] and, 8. 2α-hydroxyursolic acid [15], 9. Desacylescin III [28], 10. Careyaborin–I [20], 11. Careyagolide [20], 12. Careyagenol E [20], 13. Careyagenol D [20]
Pharmacological profile

Hepatoprotective and antioxidant activity

Sambhatkumar et al., (2005) [29] evaluated the hepatoprotective and antioxidant effect of methanolic extract of stem bark Careya arborea Roxb in Wistar albino rats. The hepatotoxicity was induced by carbon tetrachloride (30% CCL4, 1 ml/kg body weight) in liquid paraffin. Three doses 50, 100 and 200 mg/kg (i.p.) at 72 h interval and Silimarin 25 mg/kg were administered to the CCL4 treated rats. Analytical parameters like GOT, GPT, ALP, bilirubin, uric acid, and total protein were measured in the rats' induced hepatotoxicity by CCL4. The effect of the extract on Lipid Peroxidation, enzymatic antioxidant's and Catalase, and nonenzymatic anti oxidants, vitamin.

C and vitamin E were estimated. The extract and silymarin produced significant (p<0.05) hepatoprotective effect by decreasing the activity of serum enzymes bilirubin, uric acid and lipid peroxidation and significantly (p<0.05) increased the level of SOD, CAT, GSH, vitamin C, vitamin E and protein in a dose-dependent manner. Thus, methanolic extract of stem bark Careya arborea Roxb possesses potent hepatoprotective and antioxidant activity. Senthil kumar et al., (2008) [31] studied the Antioxidant and hepatoprotective activity of the methanol extract of Careya arborea bark in Ehrlich ascites carcinoma (EAC) bearing mice. Tumor control animals inoculated with EAC showed a significant alteration in the levels of antioxidant and hepatoprotective parameters. The extract treatment at 50, 100 and 200 mg/kg body weight doses given orally caused a significant reversal of these biochemical changes towards the normal in serum, liver and kidney when compared to tumor control animals indicating the potent antioxidant and hepatoprotective nature of the standardized extract.

Anticancer activity

Anticancer potentials of the methanol extract of Careya arborea Roxb bark against Dalton’s lymphoma ascites (DLA)-induced ascitic and solid tumors was studied by Natesan et al., (2007) [31]. The methanol extract of its bark given orally to mice at the dose of 250 or 500 mg/kg body weight for 10 d caused a significant reduction in percent increase in body weight, packed cell volume, and viable tumor cell count when compared to the mice of the DLA control group. Restoration of haematological and biochemical parameters towards normal was also observed. Histological observations of liver and kidney also indicated repair of tissue damage caused by tumor inoculation. The extract at the dose of 5 or 25 mg/kg body weight given i.p. daily for 14 d significantly reduced the solid tumor volume induced by DLA cells. Kumar et al., (2008) [32] studied the antimicrobial and antioxidant activities of methanol extract of Careya arborea stem barks in various in vitro systems. Antimicrobial activities were carried out using disc diffusion methods with Gram positive and Gram negative strains of bacteria and some fungal species. The extract showed broad spectrum antimicrobial activity against all tested microorganisms. Antioxidant and free radical scavenging activities of methanol extract of Careya arborea stem barks was assessed by using DPPH, superoxide anion radical, nitric oxide radical and hydroxyl radical scavenging assays. The result indicates that the methanol extract of Careya arborea can use as antimicrobial and antioxidant agents.

Antifungal activity

Kumar R. S, 2006 [33] revealed the Antifungal activity of methanolic extract of the bark against Candida albicans, Aspergillus flavus, Aspergillus niger and Alternaria solani was revealed.

CNS depressant activity

Kumar et al., (2008) [32] studied the methanol extract of barks of Careya arborea to investigate central nervous system activity in Seduced albino mice and Wistar albino rats. General behaviour, exploratory behaviour, muscle relaxant activity and phenobarbitone sodium-induced sleeping time were studied. The results revealed that the methanol extract of barks of Careya arborea at 100 and 200 mg/kg caused a significant reduction in the spontaneous activity (general behavioral profile), remarkable decrease in exploratory behavioral pattern (Y-maze and head dip test), a reduction in muscle relaxant activity, and also significantly potentiated pento barbital sodium-induced sleeping time, the result showed significant CNS depressant activity in tested animal models.

Anti-ulcer activity

Kamal Kumar et al., 2013, [34] studied that ethanol extract of the stem bark of Careyaarborea Roxb. have anti-ulcer effect by using Models such as ethanol-induced, cold stress induced and pyloric ligation Model. The studies were performed on Wister rats of either sex. The anti-ulcer effect was contrasted with standard drug (ranitidine 30 mg/kg) orally. The maxiumum ulcer protection of ethanol extract of Careya arborea has been shown in the Ethanol-induced and cold stress induced models and a significant effect was found at both 300 mg/kg and 600 mg/kg dose levels.

Anti-diarrhoeal activity

The methanol extract of the Careya arborea Roxb. bark significantly reduced castor oil induced diarrhoea in mice. This effect supports the local traditional use of the plant against diarrhoea and was proved by Rahman et al., (2002) [35].

Anti-inflammatory and analgesic activity

The anti-inflammatory and analgesic effect of methanolic extract of Careya arborea stem bark is carried out by Sambhatkumar et al., (2005) [29]. The effect on the acute and chronic phases of inflammation was studied in carrageenan, dextran and mediators (histamine and serotonin) induced paw edema and cotton pellet induced granuloma respectively. Analgesic effect was evaluated in acetic acid induced writhing and hot plate test.

The antiedema effect was compared with indomethacin 10 mg/kg orally. In the acute phase of inflammation a maximum inhibition of 50.56, 48.86, 47.12 and 48.23 % (p<0.05) was noted at the dose rate of 200 mg/kg bw after 3 h of treatment with methanolic extract of Careya arborea, dextran, histamine and serotonin induced paw edema respectively. Administration of methanolic extract at the dose of 200 mg/kg and indomethacin (10 mg/kg) significantly (p<0.05) decreased the formation of granuloma tissue induced by cotton pellet method at a rate of 53.91% and 57.60% respectively. The methanolic extract revealed significant (p<0.01) analgesic activity in both models.

Antifertility activity

The methanolic root extract of Careya arborea Roxb. Showed antifertility activity (pregnancy inhibition) in 3 mo old Swiss albino mice at the dose level 1000 mg/kg bw, when administered orally for a short period (14 d) by Jogen Chandra K et al., (2011) [36]. Animals were treated with different doses of extract: 250 mg/kg bw, 500 mg/kg bw 750 mg/kg body weight and 1000 mg/kg body weight for a short period of 14 consecutive days. The extracts were administered orally at the 24th interval. The minimum effective dose of the root extract to prevent pregnancy was found to be 500 mg/kg. The dose of the extract that could induce strong pregnancy inhibitory activity was 1000 mg/kg bw. The root extract had a significant dose-dependent pregnancy inhibitory effect.

Anticoagulant activity

It was reported that the methanolic extract Careya arborea (bark) possess anticoagulant activity via assay of activated partial thromboplastin time (aPTT), Prothrombin time (PT), and thrombin time (TT). It was shown that bark extract caused a significant increase (p<0.05) in aPTT, PT and TT at all doses and results were almost equivalent to the response of warfarin [37].

Market formulations

Kumbhajatu Ayurveda Rasashala, treat hyperlipidemia [38].
Jigrine Hamdard Laboratories, treat liver problems [34, 40].
Habb-E-Kabid Naushadri Hamdard Laboratories treat liver disorders [41].
Hamdard Ghutti Hamdard Laboratories, a paediatric preparation used to treat constipation of newborn and infants [42].
This review concludes that Careya arborea has emerged as a good source of the traditional medicine for tumours, bronchiitis, skin disease, epileptic fits, astrigent antidote to snake venom and ulcers. Many traditional uses have now been evaluated by modern pharmacology research. Intensive investigations related to bioactive constituents for specific pharmacological action, their mechanism of action, safety and efficacy could be the future research interests to explore the plant exhaustively.

CONFLICT OF INTERESTS

Declare none

REFERENCES

1. Roxburgh, William. Plants of the Coast of Coromandel 3:13 and Tropics, Careya Roxb; 1819.
2. Anderberg AA, Rydin C, Källersjö M. Phylogenetic relationships in the order ericales: analyses of molecular data from five genes from the plastid and mitochondrial genomes. Am J Botany 2002;89:677-87.
3. Mori SA, Tsou CH, Wu CC, Cronholm B, Anderberg AA. Evolution of Lecythidaceae with an emphasis on the circumscription of neotropical genera: Information from combined ndhF and tml-F sequence data. Am J Botany 2007;94:289-301.
4. Anonymous: ayurvedic formulae of India, part 1. first ed. Govt. of India, New Delhi; 1978. p. 6.
5. Yoganarasimha SN. Medicinal plants of India, Cyber media, Tamil Nadu, Bangalore, II; 2000. p. 263.
6. Gurudeva MR, Divya CP. Botanical and Vernacular names of south Indian plants, Bangalore; 2001. p. 92.
7. The Ayurvedic Pharmacopoeia of India. Part-I. Vol. V; 2008. p. 1-199.
8. Gupta PC, Sharma N, Rao CV. Pharmacognoistic studies of the leaves and stem of Careya arborea Roxb. Asian Pac J Trop Biomed 2012;2:404-8.
9. Wadkar KA, Chandrakant MS. Pharmacognoitic profiles of the bark of Careya arborea Roxb. J Pharmaogn Phytother 2009;1:64-6.
10. Shanth TR, Pasupathy S, Yoganarasimhan SN. Identification, macro, microscopic and physicochemical details of a market sample of padmaka (Careya arborea Roxb). Indian J For 1987;10:131-9.
11. Nadkararni KM. Medicinal plants of India. Reprint Prakashan, Bangalore; 1996. p. 95.
12. Goyal KK, Kumar BNS, Mruthunjaya K, Yoganarasimhan SN. Pharmacognostical report on Careyaarborea Roxb. in albinio mice. NEBIO 2011;6:701-6.
13. Basak A, Banerjee BL, Basu K. Chemical examination of the leaves of Careya arborea Roxb. Indian J Chem Soc 1976;53:639-40.
14. Haloi K, Kalita E, Kalit JC. Effects of methanolic root extract of Careyaarborea Roxb on ovarian histology of albino mice. NEBIO 2010;1:14-7.
15. Yoganarasimhan SN. Medicinal plants of India (Karnataka). Interline Publishing Pvt Ltd, Bangalore, I; 1996. p. 95.
16. Mahato SB, Dutta NL. Phytochemistry: sterols from Careya arborea Roxb. JRAP 1972;11:21-6.
17. Talapatra B, Basak RA, Talapatra SK. Terpenoids and related compounds Part XX, Careabinon, a new triterpene ester from the leaves of Careya arborea Roxb. Indian Chem Soc 1981;58:814-5.