Synthesis of quantum images using phase rotation

Shiping Du1,2 · Daowen Qiu1,2,3,4 · Jozef Gruska3 · Paulo Mateus4

Received: 22 October 2018 / Accepted: 23 July 2019 / Published online: 6 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
A topic about synthesis of quantum images is proposed, and a specific phase rotation transform constructed is adopted to theoretically realize the synthesis of two quantum images. The synthesis strategy of quantum images comprises three steps, which include: (1) in the stage of phase extraction, we obtain the phases of the state of the quantum image by transforming the state of the quantum image to prepare the conditions for multiple phases extraction. (2) In the stage of rotation operator construction, the phases obtained in the first stage are used to construct the rotation operator where a mechanism is introduced into it to reduce the phase overflow. (3) In the stage of application of the rotation operator, we apply the operator constructed in the second stage on the state of quantum image to get a goal state. Additionally, numerical analysis gives the joint uncertainty relation of the pixel of the synthesized quantum image. The analysis result about the compression ratio indicates that the phase rotation transform and the overflow control mechanism are effective.

Keywords Quantum image · Image synthesis · Phase errors · Multiple phase estimation

1 Introduction
Since quantum world tools have been shown to be more powerful than tools of the classical world in many areas, it is natural, and actually very important, to try to explore [1–3] in depth the methods and properties of the quantum image processing.
Quantum images have already been prepared with several mature technologies using different methods in laboratories. For example, four wave mixing (FWM) [4] is the widely used one [5]. On the other side, in spite of the fact that quantum images can be easily prepared in physical laboratory, how to specify the information of a quantum images in a quantum computer [6,7] remains a problem. Recently, some papers have discussed relevant topics, such as [8–11], where the authors propose or summarize different mathematic forms of the state representation of quantum images. Typically, for example, flexible representation of quantum images (FRQI) [8,9] which uses a single qubit to encode the gray level, novel enhanced quantum representation (NEQR) [12] which improves the expression with two qubits, binary key image generation [13], and flexible quantum representation for gray-level quantum images (FQRGI) [14] which firstly proposes how to represent a gray-level image with a flexible way et al.

Based on these types of state representation of quantum image, different operations to the image are explored, such as [15–21]. Jiang et al. [21] creatively propose a quantum version algorithm based on the improved NEQR [12] to implement the scaling of the quantum image. Caraiman et al. [22] realized the image segmentation on a quantum computer.

Before introducing our topic, let us recall the quantum information hiding algorithm according to a complete review provided by Yan et al. [23], where this algorithm included two operations, encryption and decryption. In encryption stage, the scrambled quantum image is obtained via scrambling the quantum watermark with scrambling algorithm. Then the scrambled quantum image is embedded into the quantum carrier image, and we get the watermarked quantum image. In the decryption stage, the following procedure is applied to complete the information extraction: Firstly, quantum carrier image could be extracted from the watermarked quantum image with an inverse operation. Secondly, applying unscrambling algorithm on the output of the previous step, the quantum watermark is got. It is obvious that this algorithm includes a specified image manipulation, and that is the embedding of image information. In our paper, we call this operation as image synthesis. Actually, Song et al. [24] also proposed a similar operation in their algorithm. For the relevant literatures, see also [25–28]. However, quantum image synthesis is not implemented before. So this paper gives a detailed process to describe how to realize the synthesis of quantum images. Actually, since classical synthesis has wide applications in reality [29], we believe that more quantum image synthesis algorithms to be explored in the future have great significance.

Since the image is constituted with pixels, the essence of quantum image synthesis is actually pixel synthesis. That’s why our paper could analyze the joint uncertainty of the synthesized pixel in Sect. 4.2. One basic problem for quantum image synthesis is handling of the brightness of pixels. Based on the state representation of quantum images and phase rotation operation adopted, by comparing the operability of control parameters, the phases are chosen to be the available parameters used for implementing the gray-level control; so, the image synthesis is equivalent to the corresponding pixel synthesis of two quantum images, and pixels synthesis is equivalent to the synthesis of two phases. So how to ensure the precision of the phase extracting from the state of the quantum image and how to effectively restrain the
phases to make them in a specified range are the critical point for us to get a synthesized image successfully. The analysis about effectiveness of overflow control is in Sect. 4.3.

The rest of the paper is organized as follows. Section 2 introduces the preliminary knowledge about the state representation of the quantum images. Section 3 describes the algorithm of quantum image synthesis. Section 4 analyzes the joint uncertainty of the pixel of the synthesized image and discusses the effectiveness of phase compression. Section 6 is a toy example. The last two parts are comparison and conclusion, respectively.

2 Preliminary

2.1 Fundamental theory of quantum image transform

The state representation of quantum images has to be consistent with images produced by technologies and convenient for the theoretical computation in the future. Concretely, the state representation of quantum images should capture and reflect the following facts.

Facts

(a) Quantum image can be expressed, using complex amplitudes mathematical expression, in quantum optics.

(b) Quantum image is composed of pixels [30]. How to define the pixel of the quantum image? In light of the authoritative view of Kolobov [30], the brightness of each pixel of a quantum image is determined by the intensity of photons. Meanwhile, pixel defined by Kolobov [30] is the integration of photon number within a certain time period at this pixel point. However, to operate on all photons in one pixel point individually and simultaneously is difficult in reality.

(c) The brightness of each pixel point is associated with the fluctuation of intensity of the photons [30].

(d) Each pixel is associated with a coordinate.

(e) A judgment with high feasibility proposed by Szczykulska et al. [31] pointed out that the phases could be used to describe the pixel of the quantum image, and this is the reason why we choose phase as the control parameter in the state representation of quantum images.

Considering to store the pixel information in the phases and controlling the brightness of each pixel point through modulating the phases of the state of quantum image, we can realize effectively to control the pixels of the quantum image. Assume that the phases $\theta_i \in (0, \pi)$ are from the phase space θ, and let η_i be from the photon number space \(\eta \) representing the number of photons. (i labels the different colors of the quantum image, so the maximal i is the color type defined in the quantum image).

Defining a mapping f from the variables θ_i to η_i

$$f : \theta_i \rightarrow \eta_i.$$ (1)
Obviously, corresponding to θ_i, η_i also represents the brightness of the pixel point. For θ_i, motivated by Facts (b) and (c) and Eq. (1), as long as we know the phase, the number of photons in one pixel point is also determined. In addition, it is necessary to assume that the function f is monotonically increasing.

Now combining the operability of the state representation of quantum image in real unitary transformation and the view in Facts (e), we choose the following state $|I(\theta)\rangle$ as the state representation of a quantum image:

$$
|I(\{\theta_j\})\rangle = \frac{1}{2^n} \sum_{j=0}^{2^{2n}-1} (|0\rangle + e^{i\theta_j}|1\rangle) \bigotimes |j\rangle,
$$

(2)

where $\{\theta_j\} = (\theta_0, \theta_2, \ldots, \theta_{2^{2n}-1})$, $\theta_j \in (0, \pi/2)$, $j = 0, 1, \ldots, 2^{2n} - 1$. The relative phase information θ_j in $|0\rangle + e^{i\theta_j}|1\rangle$ encodes the gray level. $|j\rangle$, $j \in \{0, 1, \ldots, 2^{2n} - 1\}$, is a 2^{2n}-dimensional basis state, and $|j\rangle$ represents the coordinate of jth pixel point in the pixel matrix of a quantum image. The feature of state of quantum images in Eq. (2) indicates that the synthesis of quantum image can be implemented only through phase rotation. Therefore, to extract phases from the state of quantum images is the first and necessary step.

3 Synthesis of quantum images

In order to better clarify how to synthesize two quantum images, at first, we give the definition of the synthesis of two quantum images.

Definition 1 Synthesis of two quantum images Consider two quantum images, say a carrier [represented by $|I(\theta_j)\rangle$], where $j \in \{0, 1, \ldots, 2^{2n} - 1\}$, and n is the particle number used, see the interpretation of Eq. (2) in the previous section—Preliminary] and an embedder (an image to be embedded is represented by $|I(\beta_j)\rangle$, where j is same as carrier’s). $|I(\theta_j)\rangle$ and $|I(\beta_j)\rangle$ are consistent with the form as Eq. (2). The synthesis of $|I(\theta_j)\rangle$ and $|I(\beta_j)\rangle$ will lead to the pixel accumulation as $|I(\theta_j + \beta_j')\rangle$ and give rise to the brightness change in the overlapped positions correspondingly, where β_j' is the estimation result of β_j (the detail sees Sect. 3.1).

Since the pixels of the quantum image are represented with phases, we should obtain all phases of the quantum image before starting to synthesize two quantum images. In our paper, MPE (multiple phase estimation, for details, see also [32,33]) is considered to be an effective method to obtain phases for the given state of quantum images. Figure 1 shows the procedure of synthesizing two images. There are three steps needed in total. (Appendix B lists different cases of phase overflow. This is why we correct the rotation operator in Algorithm 1). The synthesis algorithm of quantum images can be described with algorithm 1, where $|I(\{\theta_j\})\rangle$ and $|I(\{\varphi_j\})\rangle$ are the states of quantum images defined as Eq. (2).
Fig. 1 Scheme of synthesis of two quantum images using phase rotation. There are three steps in the algorithm. That is, multiple phase extraction, construction of rotation operator and image synthesis. Particularly, rotation operator construction should be corrected by embedding the overflow control mechanism.

Algorithm 1: Synthesis($|I(\{\theta_j\})\rangle, |I(\{\varphi_j\})\rangle$)

Input: Two states of quantum images to be synthesized: $|I(\{\theta_j\})\rangle, |I(\{\varphi_j\})\rangle$.

Output: The state of synthesized quantum image.

1. Extracting phases from two states $|I(\{\theta_j\})\rangle, |I(\{\varphi_j\})\rangle$ with MPE;
2. Rotation operator U' constructed and corrected;
3. Applying U' on the state $|I(\{\varphi_j\})\rangle$;

We have the following instructions:

Step 1 complete phases extraction. Actually, we should cope with many same quantum states $|I(\{\theta_j\})\rangle$ and $|I(\{\varphi_j\})\rangle$, and then, we could obtain these phases from two different states.

Step 2 construct rotation operator which is embedded in the internal error correction mechanism.

Step 3 complete the synthesis of the state of quantum images. The state $|I(\{\varphi_j\})\rangle$ used in this step is also same as the backup in the first step.

3.1 Phase extraction

Appendix A (see also [35]) indicates that the quantum state with phases to be extracted must be of the following form [that is, Eq. (67)]

$$|I(\{\phi_j\})\rangle = \frac{1}{\sqrt{d}} (|0\rangle + e^{i\phi_1}|1\rangle + \cdots + e^{i\phi_d-1}|d-1\rangle),$$

(3)

which is not equivalent to the form of the state representation of quantum images as Eq. (2) intuitively. In order to obtain the phases of the state of the quantum image, we should transform the representation of the quantum image from the form as Eq. (2) to a similar form as Eq. (3).

To this end, note that Eq. (2) could be expressed as the following form,

$$|I(\{\theta_j\})\rangle = \frac{1}{2^n} \sum_{j=0}^{2^n-1} |0\rangle|j\rangle + \frac{1}{2^n} \sum_{j=0}^{2^n-1} e^{i\theta_j}|1\rangle|j\rangle.$$

(4)
Let the states associated with phases in Eq. (4) be a set A, then

$$A = \{|1\rangle|0\rangle, \{|1\rangle|1\rangle, \{|1\rangle|2\rangle, \ldots, \{|1\rangle|2^{2n} - 1\rangle\},$$

where the left qubit $|1\rangle$ in A is a computational basis. Given another set B,

$$B = \{|1\rangle, |2\rangle, |3\rangle, \ldots, |2^{2n}\rangle\},$$

where $|1\rangle$ in B is not the computational basis. In order to conveniently distinguish where the vectors are from, we rewrite A and B as A' and B' (actually, $A = A'$ and $B = B'$). That is,

$$A' = \{|1\rangle|0\rangle_A, \{|1\rangle|1\rangle_A, \{|1\rangle|2\rangle_A, \ldots, \{|1\rangle|2^{2n} - 1\rangle_A\},$$

and

$$B' = \{|1\rangle_B, |2\rangle_B, |3\rangle_B, \ldots, |2^{2n}\rangle_B\},$$

where the index A and B in Eqs. (7) and (8) denote where we choose the vectors, e.g., $|0\rangle|1\rangle_A$ represents the vector $|0\rangle|1\rangle$ is chosen from Eq. (5) (or set A), and the index B in $|1\rangle_B$ denote the vector $|1\rangle$ is chosen from Eq. (6) (or set B), etc. Let $|1\rangle_B \equiv |1\rangle|0\rangle_A, |2\rangle_B \equiv |1\rangle|1\rangle_A, \ldots, |2^{2n}\rangle_B \equiv |1\rangle|2^{2n} - 1\rangle_A$. That is, encoding A with B, we get

$$|I([\theta j])\rangle' = \frac{1}{2^n} \sum_{j=0}^{2^{2n}-1} |0\rangle|j\rangle + \frac{1}{2^n} \sum_{j=1}^{2^{2n}-1} e^{i\theta j} |j\rangle,$$

where, as far as phase estimation concerned, Eq. (9) is consistent with the form as Eq. (3), so MPE can be applied on Eq. (9) to extract its phases.

3.2 Rotation operator constructed

Common sense indicates that if phase estimation is reduced, then the error of measurement is reduced also. Naturally, compared with the phase error introduced from the simultaneous phase estimation of two different states of quantum images (carrier and embedder, see Eq. (19)), if here we just estimate one of two images, e.g., if we only estimate the phases of the embedder (that is, if we do not estimate the phases of the carrier), and use the estimated phase to construct a rotation operator, then, this operation can reduce the error in the image synthesis. Actually, since we do not know the phase information of carrier, controlling the result of the phase addition is impossible. Therefore the cost of this measure may increase the risk of phase overflow. Appendix B is the interpretation of such an example.

According to our basic requirements, phase which reaches or exceeds $\frac{\pi}{2}$ is an exception. In order to avoid exception, an unitary transformation $U_n(\theta'_j, \varphi'_j), j \in \{0, 1, \ldots, 2^{2n} - 1\}$, is constructed and used to restrain the phases in $(0, \frac{\pi}{2})$, where θ'_j and φ'_j denote the estimated phases of the embedder and the carrier, respectively.
In order to guarantee that the synthesized pixels are in \((0, \frac{\pi}{2})\) as much as possible, a monotone increasing function \(\tanh(x)\) is required,

\[
\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \in (-1, 1), \quad \frac{\pi}{2} \tanh(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).
\] \tag{10}

\(\tanh(x)\) is monotone increasing when \(\tanh(x) \in [0, 1]\). Numerical simulation shows that when \(x \geq 3\), \(\tanh(x) \approx 1\).

Taking a two-dimensional transform \(U_2\) as an example (namely, the image just has one pixel point). Assume that the state of the embedder and carrier are \(|0\rangle + e^{i\theta}|1\rangle\) and \(|0\rangle + e^{i\varphi}|1\rangle\), respectively. On the other hand, let the phase estimated from the state \(|0\rangle + e^{i\theta}|1\rangle\) be \(\theta'\), and the phase estimated from the state \(|0\rangle + e^{i\varphi}|1\rangle\) be \(\varphi'\). We define operator \(U_2(\theta', \varphi')\) with the following transform,

\[
U_2(\theta', \varphi')(|0\rangle + e^{i\varphi}|1\rangle) \rightarrow |0\rangle + e^{i\left[\frac{\pi}{2} \tanh(g(\theta', \varphi')) - \varphi'\right]}|1\rangle,
\] \tag{11}

where we define

\[
g(\theta', \varphi') \doteq \theta' + \varphi',
\] \tag{12}

then the synthesized result would be in \((0, \frac{\pi}{2})\) with a high possibility when the error of \(\theta'\) and \(\varphi'\) is as small as possible. The phase accumulation with Eq. (11) degrading the risk of overflow could be proved in Sect. 4.3.

In Eq. (11), \(U_2(\theta', \varphi')\) is unitary; this is because

\[
U_2(\theta', \varphi')e^{i\varphi}|1\rangle \rightarrow e^{i\left[\frac{\pi}{2} \tanh(g(\theta', \varphi')) + \varphi\right]}|1\rangle,
\] \tag{13}

and

\[
U_2(\theta', \varphi')|0\rangle = |0\rangle.
\] \tag{14}

That is,

\[
U_2(\theta', \varphi')|1\rangle \rightarrow e^{i\left[\frac{\pi}{2} \tanh(g(\theta', \varphi')) - \varphi'\right]}|1\rangle,
\] \tag{15}

we have

\[
U_2(\theta', \varphi')|1\rangle\langle 1| \rightarrow e^{i\left[\frac{\pi}{2} \tanh(g(\theta', \varphi')) - \varphi'\right]}|1\rangle\langle 1|.
\] \tag{16}

On the other way, since \(U(\theta', \varphi')|0\rangle \rightarrow |0\rangle\),

\[
U_2(\theta', \varphi') = e^{i\left[\frac{\pi}{2} \tanh(g(\theta', \varphi')) - \varphi'\right]}|1\rangle\langle 1| + |0\rangle\langle 0|.
\] \tag{17}

Thus we have

\[
U_2(\theta', \varphi')U_2(\theta', \varphi')^\dagger = I.
\] \tag{18}
Therefore, \(U_2(\theta', \varphi') \) is unitary.

The approach above means that we should get the phases of the embedder and the carrier before constructing this operator. Once the phases of two different images could be estimated with higher precision, the overflow control would be better [the limit is 0 error, thus \(\varphi_j - \varphi'_j = 0 \) in Eq. (13)]. Actually, owing to the shot noise limit, the error in phase estimation always exists, so \(\varphi_j - \varphi'_j = 0 \) is impossible. About the effectiveness of overflow control, see Sect. 4.3. For two-dimensional case, the element of rotation matrix \(U_2(\theta', \varphi') \) should be

\[
U_2(\theta', \varphi') = \begin{pmatrix}
1 & 0 \\
0 & e^{i \left[\frac{\pi}{2} \tanh(\theta' + \varphi') - \varphi' \right]}
\end{pmatrix},
\]

Equation (19) shows that there exists an unitary operator which can be used to restrain the phase overflow. We now extend the dimension of \(U_2(\theta', \varphi') \) from 2 dimensions to \(2^{2n+1} \) dimension to get \(U' \), which can be used to transform the state of the quantum image as Eq. (2) to get a feasible goal state. Constructing the operator \(U' \) should estimate and get all the phases of the embedder and carrier. Suppose that the estimated phases of two kinds of images (that is, the carrier and the embedder) to be synthesized are \(\{\varphi'_1, \varphi'_2, \ldots, \varphi'_{2n}\} \) and \(\{\theta'_1, \theta'_2, \ldots, \theta'_{2n}\} \), respectively. Then, the operator which could be employed to transform \(2^{2n} \)-dimensional image as Eq. (2) is in the following form.

\[
U' = \begin{pmatrix}
1_1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 1_2 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1_{2^{2n}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & \exp_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \exp_2 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \exp_3 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \exp_4 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \exp_{2^{2n-1}}
\end{pmatrix}
\]

where

\[
\exp_1 = e^{i \left[\frac{\pi}{2} \tanh(\theta'_1 + \varphi'_1) - \varphi'_1 \right]} \\
\exp_2 = e^{i \left[\frac{\pi}{2} \tanh(\theta'_2 + \varphi'_2) - \varphi'_2 \right]} \\
\cdots \\
\exp_{2^{2n}} = e^{i \left[\frac{\pi}{2} \tanh(\theta'_{2^{2n}} + \varphi'_{2^{2n}}) - \varphi'_{2^{2n}} \right]}
\]
3.3 State of the synthesized image

Applying U' on the state as Eq. (2), the state of the synthesized quantum image should be

$$|\text{res}\rangle = \frac{1}{2^n} \sum_{j=0}^{2^{2n}-1} (|0\rangle + e^{i\frac{\pi}{2} \tanh(\theta_j + \phi_j) + \delta_j} |1\rangle) \otimes |j\rangle. \quad (24)$$

where $\delta_j = \varphi_j - \varphi'_j$ is an error item. φ_j is the original true phase at position j. δ_j is the difference between the true phase and the estimated phase of the carrier image.

Open problem One of the critical step in Algorithm 1 is estimation of phases of two states of quantum images. So MPE is introduced, and the error of the estimated values could not be avoided. This means that some errors in the synthesized result are inevitable. That’s to say, the synthesis of quantum image could be distorted to some extent. Theoretically, this problem could be resolved via increasing the number operator to restrain the error (see Sect. 4.3); after all, the error could not be eliminated.

4 Analysis of synthesis operation

4.1 Computation complexity of the preparation of quantum images

Since the measurement will lead to state collapse, to complete the phase estimation for each kind of image with pixels $2^n \times 2^n$, $O(2^{2n})$ particles [35] which take the same phase information are needed. The state preparation of quantum images as Eq. (25) has already been discussed in [8],

$$|\psi(\{\beta_j\})\rangle = \frac{1}{2^n} \sum_{j=0}^{2^{2n}-1} (\cos \beta_j |0\rangle + \sin \beta_j |1\rangle) \otimes |j\rangle. \quad (25)$$

where $\cos \beta_j |0\rangle + \sin \beta_j |1\rangle$ (where $\beta_j \in [0, \frac{\pi}{2}], (j \in [0, 2^{2n} - 1]))$ encodes the pixel information at jth position. The process of the state preparation shows the following Theorem 1.

Theorem 1 (Yan et al. [8]) Given an angle vector $\theta = (\theta_0, \theta_1, \ldots, \theta_{2^{2n}-1})$, there is an unitary transform P that can be implemented by a quantum circuit with polynomial number of Hadamard gates to transform the input state $|0\rangle^{2n+1}$ to a FRQI state Eq. (25).

Note, the proof of the Theorem 1 confers Appendix C, or see also [8]. To describe the state of a quantum image, even the essence of representing the quantum image is the same, but the form of Eq. (2) [34] (representing pixels with angles) is different from Eq. (25) (representing pixels with phases).
Theorem 2 (Song and Niu [34]) *Given a quantum image* \(|I(\{\theta_j\})\rangle = \frac{1}{2^n} \sum_{j=0}^{2^n-1} (|0\rangle + e^{i\theta_j}|1\rangle) \otimes |j\rangle \), *there is a* \(2n+1 \) *qubits unitary transform* \(C \) *that transforms a quantum image* \(|I(\theta)\rangle \) *to the quantum image* \(|I(\{\psi_j\})\rangle = \frac{1}{2^n} \sum_{j=0}^{2^n-1} (|0\rangle + e^{i\psi_j}|1\rangle) \otimes |j\rangle \).\]

Note, the proof of Theorem 2 is similar to the proof of Theorem 1, so we omit its proof. In Theorem 2 (see also [34]), Song et al. claim that polynomial qubits are needed when we decompose the relation between \(|I(\theta)\rangle \) and \(|I(\psi)\rangle \). Comparing the proof procedures between Theorems 1 and 2, we give a complete procedure of preparing the state of quantum image from the state \(|0\rangle \otimes 2^{n+1} \) in the following Theorem 3.

Theorem 3 *For any initial input state* \(|0\rangle^{2^{n+1}} \), *there exists an unitary operator* \(P \) *to transform the initial input state to the state* \(|I(\{\theta_j\})\rangle = \frac{1}{2^n} \sum_{j=0}^{2^n-1} (|0\rangle + e^{i\theta_j}|1\rangle) \otimes |j\rangle \), *and only a polynomial number of Hadamard gates are needed to complete this transformation.*

Proof This theorem can be proven with the same way as Theorems 1 and 2. In order to obtain the goal state \(I(\theta_j)\rangle \), we assume that the initial state of the system is \(|0\rangle \otimes 2^{n+1} = |0\rangle \otimes |0\rangle \otimes 2^n \). This task can be realized in the following two steps.

Step 1 Applying Hadamard gate to the initial state, we then get
\[
|\psi\rangle = (H \otimes H \otimes 2^n)(|0\rangle \otimes |0\rangle \otimes 2^n) = \frac{1}{2^{n+1}}(|0\rangle + |1\rangle) \otimes \sum_{j=0}^{2^n-1} |j\rangle.
\] (26)

Step 2 Constructing and applying a rotation operator \(R_z(\theta_k) \),
\[
R_z(\theta_k) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta_k} \end{pmatrix},
\] (27)
to rotate the phase at the \(k \)th pixel location of the quantum image, we get the following operator \(R_k \).
\[
R_k = \left(I \otimes \sum_{j=0, j \neq k}^{2^n-1} |j\rangle \langle j| \right) + R_z(\theta_k) \otimes |k\rangle \langle k|.\] (28)

Notice that \(R_k R_k^\dagger = I \) and therefore \(R_k \) is an unitary operator. Applying \(R_k \) on \(|\psi\rangle \), we get
\[
R_k \frac{1}{2^{n+1}}(|0\rangle + |1\rangle) \otimes \sum_{j=0}^{2^n-1} |j\rangle = \frac{1}{2^{n+1}} \left[(I \otimes \sum_{j=0, j \neq k}^{2^n-1} |j\rangle) + (|0\rangle + e^{i\theta_j}|1\rangle) \otimes |j\rangle \right].\] (29)

Assume that we have an operator \(R_p \), which is similar to \(R_k \). \(R_p \) is applied to the result of last step, we have
\[
\otimes Springer
\[R_p R_k \frac{1}{2(n+1)} \left[(|0\rangle + |1\rangle) \bigotimes \sum_{j=0}^{2^n-1} |j\rangle \right] \]
\[= \frac{1}{2(n+1)} \left[\left(I \bigotimes \sum_{j=0, j \neq k, p}^{2^n-1} |j\rangle \right) + \left(|0\rangle + e^{i\theta_j} |1\rangle \right) \bigotimes |j\rangle \right. \]
\[+ \left. \left(|0\rangle + e^{i\theta_p} |1\rangle \right) \bigotimes |p\rangle \right]. \]

(31)

(32)

It is obvious that we can design our goal state \(|I(\{\theta_j\})\rangle\) using the above operators repeatedly. That’s to say, the operator \(P\) could be constructed as,

\[P = \left(\prod_{i=1}^{2^n} R_i \right) \]

(33)

Since all \(R_i\) are unitary, \(\prod_{i=1}^{2^n} R_i\) is also unitary, and \(P = \prod_{i=1}^{2^n} R_i\) is unitary. By induction of Eqs. (29) and (31), we have

\[|I(\{\theta_j\})\rangle = P|\psi\rangle. \]

(34)

The number of Hadamard gates used in the process of preparing the state of the quantum image as Eq. (2) is \(O(n)\). In summary, the claim holds. \(\square\)

4.2 Uncertainty relation of the synthesized pixel

Since covariance measurement is used to estimate the multiple phases of the state of quantum image (see also, [35]), shot noise limit is the reason of inevitable phase error. In this part, we explore the uncertainty relations of a single pixel of the synthesized image.

Actually, Holevo’s theoretical analysis [36] shows that covariant measurement has an uncertainty relation between the number operator and phases. Consider the complex random variable \(e^{i\varphi}\) taking values on the unit circle \((-\pi, \pi)\). The variance then is

\[D\{e^{i\varphi}\} = \int_{-\pi}^{\pi} |e^{i\varphi} - E\{e^{i\varphi}\}|^2 P(d\varphi) \]

(35)

where \(E\{e^{i\varphi}\} = \int e^{i\varphi} P(d\varphi)\). Then the value of the uncertainty of \(\varphi\) is formulated as

\[\Delta\{\varphi\}^2 = \frac{D\{e^{i\varphi}\}}{|E\{e^{i\varphi}\}|^2}. \]

(36)

Let \(\mathcal{H}\) be an infinite dimensional Hilbert space and \(|n\rangle; n = 0, 1, \ldots\) is a basis, and let \(N\) be the number operator,
\[N = \sum_{n=0}^{\infty} n|n\rangle\langle n|, \]
\[\Delta N = \|(N - \bar{N})|\varphi\rangle\|^2, \bar{N} = \langle \varphi | N | \varphi \rangle. \]

(Generally, constant is also an operator, if we multiply it with an identity operator). Then we have the following lemma.

Lemma 1 (Holevo [36]) For any covariant measurement \(M \)

\[\Delta_M\{\varphi\}^2 \geq \left(1 - \frac{1}{2} \left| \langle \varphi | 0 \rangle \right|^2 \right)^{-1} \left(\frac{1}{4(\Delta N)^2} + \frac{1}{2} \left| \langle \varphi | 0 \rangle \right|^2 \right), \]
\[\Delta_M\{\varphi\} \cdot \Delta N \geq \frac{1}{2}. \]

where \(\Delta_M\{\varphi\} \) is same as the variance of Eq. (36), and \(|\varphi\rangle = \sum_n \varphi_n |n\rangle \).

The detailed procedure of proving Lemma 1 confers Appendix D (see also [36]). The uncertainty relation inequality (40) obviously holds, because \(1 - \frac{1}{2} \left| \langle \varphi | 0 \rangle \right|^2 > 1; \) meanwhile \(\frac{1}{2} \left| \langle \varphi | 0 \rangle \right|^2 > 0 \). Inequality (40) is a general inequality relation about two objects \(\Delta_M\{\varphi\} \) and \(\Delta N \).

Since the phase obtained from the state of the quantum image complies with the uncertainty relation as inequality (40), the pixel of the synthesized image has some implied uncertainty relations. Note that, the embedder (whose true phase is represented with \(\theta_j \)) is embedded into the carrier (whose true phase is represented with \(\varphi_j \)).

So for the pixel of the synthesized image, we have a general uncertainty relation described as Theorem 4.

Theorem 4 For synthesis operation of quantum images, given two quantum images \(|I(\{\varphi_j\})\rangle \) (carrier) and \(|I(\{\theta_j\})\rangle \) (embedder), which are represented as the form as Eq. (2). \(\varphi_j \) and \(\theta_j \) are the phases of the state of two images \(|I(\{\varphi_j\})\rangle \) and \(|I(\{\theta_j\})\rangle \) at \(j \)th position, respectively. Suppose that the number operator is \(N = \sum_{n=0}^{\infty} n|n\rangle\langle n|, \) and \(\{|n\rangle, n = 0, 1, \ldots \} \) is a basis of Hilbert space. Measuring \(|I(\{\varphi_j\})\rangle \) and \(|I(\{\theta_j\})\rangle \), we get the estimated phases \(\varphi_j' \) and \(\theta_j' \) corresponding to their true phase \(\varphi_j \) and \(\theta_j \) individually and respectively, then the lower bound of the joint uncertainty of the pixel of the synthesized image is \(\tanh(1) + \frac{1}{2} \).

Proof To prove this result, it only needs to be checked whether the following three conditions are true simultaneously:

(I) In this paper, the method used to estimate all the phases is the covariance measurement which is provided by Macchiavello [35] (detailed information see Sect. Appendix A). This is consistent with the method used in [36].

(II) The quantum state which is used for extracting the phase is consistent with the state definition of quantum images. That is, the state representation of quantum image
\begin{equation}
|I(\{\theta_j\})⟩ = \frac{1}{2n} \sum_{j=0}^{2^n-1} (|0⟩ + e^{i\theta_j} |1⟩) \otimes |j⟩ \tag{41}
\end{equation}

can be turned to the form as Eq. (4).

\begin{equation}
|I(\{\theta_j\})⟩ = \frac{1}{\sqrt{2^{2n}}}(|0⟩ + e^{i\theta_1} |1⟩ + \cdots + e^{i\theta_{2^n}} |2^{2n})⟩ \tag{42}
\end{equation}

The two points (I) and (II) guarantee that the phases could be extracted from the quantum state.

Since the \(j\)th position of carrier image and the \(j\)th position of embedder image are two independent physical system, for a synthesized pixel point, to distinguish two different independent physical systems, we label the number operators used in two independent physical systems for the phase extraction as \(N_1\) and \(N_2\). By applying Lemma 1, the uncertainty relation for each physical system could be represented as,

\begin{equation}
\Delta_M\{\varphi\} \cdot \Delta N_1 \geq \frac{1}{2}, \quad \Delta_M\{\theta\} \cdot \Delta N_2 \geq \frac{1}{2}, \tag{43}
\end{equation}

where \(\Delta N_1\) and \(\Delta N_2\) represent the variance of the number operator in the first and second physical systems. Similarly, \(\Delta M\{\varphi\}\) and \(\Delta M\{\theta\}\) are the variance of phases calculated with phases estimated from two kinds of states of the quantum images.

(III) Let \(\text{var}_j\) be the general phase formula of the synthesized image. It is known from Eq. (40) that the pixel of the synthesized image could be represented as

\begin{equation}
\text{var}_j = \frac{\pi}{2} \tanh(\theta_j' + \varphi_j') + \delta_j. \tag{44}
\end{equation}

Note that, the first and most important is that, the pixel information of the synthesized image is taken by an independent physical system. Secondly, there is a linear operation about the estimated phase \(\varphi_j'\) in \(\delta_j\). Thirdly, there is a linear operation about two estimated value \(\varphi_j'\) and \(\theta_j'\). Namely, \(\varphi_j' + \theta_j'\). Fourthly, there is a nonlinear operation which is applied on \(\theta_j' + \varphi_j'\). Namely, \(\tanh(\theta_j' + \varphi_j')\). Particularly, to obtain the phases of the state of two different images is independent in the two different physical systems. Thus we have

\begin{equation}
\Delta_M\{\varphi\} \cdot \Delta N_1 + \Delta_M\{\theta\} \cdot \Delta N_2 \geq 1. \tag{45}
\end{equation}

Combined with inequality (43) and inequality (45), the pixel uncertainty of the synthesized image has the relation

\begin{equation}
\tanh(\Delta_M\{\varphi\} \cdot \Delta N_1 + \Delta_M\{\theta\} \cdot \Delta N_2) + \Delta_M\{\varphi\} \cdot \Delta N_1 \geq \tanh(1) + \frac{1}{2}. \tag{46}
\end{equation}

So the result holds. \(\Box\)
Fig. 2 a Coherent state satisfies the equivalence of the lower bound. b, c describe two uncertainty relations where the orthogonal components of the squeezed state are compressed. d The uncertainty with larger particles number (represented by N) than e

Table 1 Uncertainty relation in single physical system for extracting a phase from carrier image ($\Delta_M\{\varphi\} \cdot \Delta N_1 \geq \frac{1}{2}$)

The trend of N	Phase precision
$N_1 \uparrow$	$\varphi_j \uparrow$
$N_1 \downarrow$	$\varphi_j \downarrow$

Table 2 Uncertainty relation in single physical system for extracting a phase from embedder image ($\Delta_M\{\theta\} \cdot \Delta N_2 \geq \frac{1}{2}$)

The trend of N	Phase precision
$N_2 \uparrow$	$\theta_j \uparrow$
$N_2 \downarrow$	$\theta_j \downarrow$

The uncertainty relation reflected by inequality (40) could be summarized by the following figures. Figure 2a shows that the boundary conditions of satisfying the minimum uncertainty relation are when the quantum state of the system is coherent state. Figure 2b, c describe two uncertainty relations between P (phase) and N (number operator) where the components of the squeezed state are compressed. We use Fig. 2a–c to induct the meaning of Fig. 2d, where if the number operator N is sufficiently large (or enough large), the phase will be exactly estimated.

Before interpreting the meaning of the uncertainty relation in inequality (46), we emphasize that inequality (46) describes an uncertainty relation of a pixel of a new independent physical system. This is because the final phase of the state of the synthesized image [see Eq. (44)] is generated by applying the unitary operator U' [see Eq. (20)] on the state of quantum image [note, this quantum image state is a particle with phases’ information, see Eq. (2)]. Based on this view, we simultaneously know that Eq. (46) reflects a joint uncertainty of a new physical system. $\Delta_M\{\varphi\} \cdot \Delta N_1 \geq \frac{1}{2}$ and $\Delta_M\{\theta\} \cdot \Delta N_2 \geq \frac{1}{2}$ are two independent physical systems, and the uncertainty relations could be described with Tables 1 and 2 (for number operator, \uparrow means that the number operator becomes larger, for precision of phase, the sign \downarrow means that the precision of the phase estimation decreases, and so on), respectively. Finally, $\Delta_M\{\varphi\} \cdot \Delta N_1 \geq \frac{1}{2}$ and $\Delta_M\{\theta\} \cdot \Delta N_2 \geq \frac{1}{2}$ induce the joint uncertainty relation between θ'_j, φ'_j and N_1, N_2 with inequality (46) (see Table 3).
Table 3 The joint uncertainty relation of the synthesized pixel of the synthesized image

The trend of N1	Trend of N2	Precision of joint phase
N1 ↑	N2 ↑	(θ_j + ϕ_j) ↑
N1 ↓	N2 ↑	(θ_j + ϕ_j) uncertain
N1 ↑	N2 ↓	(θ_j + ϕ_j) uncertain
N1 ↓	N2 ↓	(θ_j + ϕ_j) ↓

The joint uncertainty relation between N1, N2 and θ_j' + ϕ_j'
(tanh(Δ_M{ϕ} · ΔN1 + Δ_M{θ} · ΔN2) + Δ_M{ϕ} · ΔN1 ≥ tanh(1 + 1/2))

4.3 Effectiveness analysis of overflow control

The core of Algorithm 1 is to control the phase overflow, so the effectiveness of Algorithm 1 is decided by the effectiveness of phase overflow control. Once getting the phases which are estimated from some quantum states, we then can analyze these phases with classical methods, because these values are classical information. On the other hand, note that the phases required in Eq. (2) are in (0, π/2), and the error of phase estimation always exists [see inequality (40)], so it is possible the measurement results exceed π/2. For the sake of consistency and rationality, we should guarantee that all these phases exceeding π/2 remain in a legal range.

Restrictions 1 Assume that ϕ'_j is the phase got by applying MPE on the state of quantum image at the jth position. Thus we have the following restrictions:

\[
\begin{align*}
\varphi'_j &= \varphi'_j \mod \frac{\pi}{2}, & \text{if } \varphi'_j > \frac{\pi}{2} \\
\varphi'_j &= \varphi'_j, & \text{if } 0 < \varphi'_j < \frac{\pi}{2}.
\end{align*}
\]

(47)

That is, ϕ'_j ∈ (0, π/2) is a mandatory requirement. Let the estimated phases ϕ'_j do operation (ϕ'_j mod π/2), and the results also are labeled with ϕ'_j.

Restrictions 2 If the phases in the quantum state of the synthesized image exceed π/2, then these phases are called exception phases.

From Eq. (24), we know that the general phase expression in the state of the synthesized image is

\[
\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j) + \delta_j.
\]

(48)

According to the restrictions 2, if Eq. (48) exceeds π/2, then the jth pixel is an exception pixel.

Definition 2 Let ψ_{in} be the length of the phase space to be compressed, and ψ_{out} be the length of the phase space compressed, then we call the ratio \(\frac{\psi_{out}}{\psi_{in}}\) the compression ratio (of overflow control).

From the common sense, if such a ratio \(\frac{\psi_{out}}{\psi_{in}} < 1\), then the strategy is effective. If \(\frac{\psi_{out}}{\psi_{in}} = 1\), then the strategy is ineffective.
4.3.1 Compression ratio and effectiveness of the algorithm

By compressing phase information to control the phase in the specified range $(0, \frac{\pi}{2})$, the advantage of our control strategy is reflected by a compression ratio. About the effectiveness of the overflow control, we have the following result.

Theorem 5 Assume that θ_j and φ_j are the jth estimated phase corresponding to their true phase θ_j and φ_j of two different images, $(j \in \{1, 2, \ldots, 2^n\})$, respectively. Let $\delta_j = \varphi_j - \varphi_j'$, when the number operator N_1 and N_2 used in two physical systems are enough large, the limit of the compression ratio of phase is $\frac{1}{2}$.

Proof According to the known conditions, such a ratio could be expressed

$$\frac{\frac{\pi}{2} \tanh(\theta_j' + \varphi_j')}{\theta_j' + \varphi_j'} + \delta_j.$$

(49)

When N_1 and N_2 are enough large, then δ_j is an infinitesimal. Equation (49) approximates

$$\frac{\frac{\pi}{2} \tanh(\theta_j' + \varphi_j')}{\theta_j' + \varphi_j'}.$$

(50)

Since

$$\theta_j' + \varphi_j' \in (0, \pi), \quad \frac{\pi}{2} \tanh(\theta_j' + \varphi_j') \in \left(0, \frac{\pi}{2}\right).$$

(51)

that’s to say, the interval $(0, \pi)$ is compressed into $(0, \frac{\pi}{2})$. Thus the compression ratio is $\frac{\frac{\pi}{2}}{\pi} = \frac{1}{2}$. So the result holds.

Note that $\tanh(x)$ is a canonical function about x, and the feature of $\tanh(x)$ implies that, the compression ratio in interval $(0, 3)$ is greater than ratio in the interval $(3, \pi)$. Therefore, the compression ratio is non-uniform when x of $\tanh(x)$ changes in the interval $(0, \pi)$.

Corollary 1 Assume that N_1 is a general number operator used for phase extraction of the carrier image, then the compression ratio is in the range $(0, \frac{1}{2})$.

Proof When N_1 is a general number, it includes two cases. Firstly, when N_1 is sufficient large, $\delta_j \approx 0$ with high probability. From Theorem 5, we can conclude that the upper bound of the compression ratio approximates $\frac{1}{2}$. Secondly, it is known from the inequality $\Delta M_1(\varphi_j') \cdot \Delta N_1 \geq \frac{1}{2}$, when N_1 is not sufficient large, we know $\delta_j \neq 0$ with high probability. Since

$$\varphi_j \in \left(0, \frac{\pi}{2}\right), \quad \varphi_j' \in \left(0, \frac{\pi}{2}\right),$$

(52)

(note, φ_j is a true phase of the image at position j) then

\[\Box\] Springer
\[\delta_j = \varphi_j - \varphi'_j \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right). \]

Further, since \(\theta'_j > 0 \) and \(\varphi'_j > 0 \), we have

\[\pi > \frac{\pi}{2} \tanh(\theta'_j + \varphi'_j) + \delta_j > -\frac{\pi}{2}. \]

We do not consider the exception case of overflow. Then according to the definition of the compression ratio, inequality (54) includes the lower bound of the synthesized pixel (or phase information). That is, if

\[\theta'_j + \varphi'_j = \frac{\pi}{2} \tanh(\theta'_j + \varphi'_j) + \delta_j, \]

namely, when

\[\delta_j = \theta'_j + \varphi'_j - \frac{\pi}{2} \tanh(\theta'_j + \varphi'_j), \]

then, according to Definition 2, \(\psi_{\text{out}} = \theta'_j + \varphi'_j - \left(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j) + \delta_j \right) = 0 \). So, 0 compression ratio happens. Because the phases estimated satisfy the uncertainty relations, such case is possible. Therefore, the compression ratio is in the range \([0, \frac{1}{2})\). In a word, the result holds.

Corollary 2 Achieving the maximal compression ratio is a sufficient but not a necessary conditions for \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j) + \delta_j < \frac{\pi}{2} \).

Proof Assume that the number operator used to estimate the \(j \)th phases of two physical systems is \(N_1 \) and \(N_2 \). On the one hand, according to Theorem 5 and Corollary 1, the maximal compression ratio means that \(N_1 \) and \(N_2 \) are sufficient large, namely, \(\delta_j \approx 0 \). Then, the phase of the state of the synthesized image at \(j \)th position approximates \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j) \), (\(j \) could be any one of \(0, 1, 2, \ldots, 2^{2^n} - 1 \)). Obviously, no matter what \(\theta'_j + \varphi'_j \in (0, \pi) \) is, the synthesized result of the phase could not overflow. On the other hand, whether the result of the synthesized phase overflow or not is determined by \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j) \) and \(\delta_j \) simultaneously. It is apparent that the condition which satisfies \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j) + \delta_j < \frac{\pi}{2} \) if \(\theta'_j + \varphi'_j \) and \(\delta_j \) are not too large, such as, when \(\theta'_j + \varphi'_j = \frac{\pi}{10} \), and \(\delta_j = \frac{\pi}{10} \). That’s to say, \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j) + \delta_j < \frac{\pi}{2} \) does not mean that the compression ratio achieves the maximal compression ratio. So, the result holds.

4.3.2 Overflow risk and restraint mechanism

In this section, \(\theta'_j \) and \(\varphi'_j \) are assumed to be the \(j \)th estimated phase corresponding to the true phase \(\theta_j \) and \(\varphi_j \) of two different images, (\(j \in \{1, 2, \ldots, 2^{2^n}\} \)), respectively. Intuitively, since

\[0. \]
\[\delta_j = \varphi_j - \varphi'_j, \quad \theta_j, \varphi_j \in \left(0, \frac{\pi}{2}\right), \quad \theta'_j, \varphi'_j \in \left[0, \frac{\pi}{2}\right], \]

(57)

the mathematic relation inequality (54) holds. Particularly, we note that \((-\frac{\pi}{2}, 0)\) and \([\frac{\pi}{2}, \pi)\) are the two phase overflow intervals for the state of the synthesized quantum image. Indeed, it seems to be unfortunate. However, through analyzing some numerical relations, we will know that, though these overflow cases are possible to happen, the actual fact is not so bad.

Actually, the risks are degraded when the two parts \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j)\) and \(\delta_j\) are combined. On the one side, owing to \(\tanh(3) \approx 1\), thus when \(x \in (0, 3), \ x + \Delta x \in (0, 3), \text{ and } x - \Delta x \in (0, 3),\) (58)

the steep function curve of \(\tanh(x)\) means that a little deviation \(\Delta x\) will lead to a larger difference. That is,

\[\frac{\pi}{2} \tanh(x + \Delta x) \gg \frac{\pi}{2} \tanh(x). \]

(59)

Similarly, we have

\[\frac{\pi}{2} \tanh(x - \Delta x) \ll \frac{\pi}{2} \tanh(x). \]

(60)

On the other side, \(\delta_j > 0\) implies that \(\varphi'_j\) is less than \(\varphi_j\), so

\[\frac{\pi}{2} \tanh(\theta'_j + \varphi_j) > \frac{\pi}{2} \tanh(\theta'_j + \varphi'_j). \]

(61)

Namely, \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j)\) decreases, and if \(\theta'_j + \varphi'_j \in (0, 3), \frac{\pi}{2} \tanh(\theta'_j + \varphi'_j)\) reduces more. Correspondingly, \(\delta_j < 0\) means that \(\varphi'_j\) is larger than \(\varphi_j\), so

\[\frac{\pi}{2} \tanh(\theta'_j + \varphi_j) < \frac{\pi}{2} \tanh(\theta'_j + \varphi'_j). \]

(62)

Obviously, \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j)\) increases, and if \(\theta'_j + \varphi'_j \in (0, 3), \frac{\pi}{2} \tanh(\theta'_j + \varphi'_j)\) increases more. Thus the analysis could be summarized as follows. If \(\delta_j > 0\), then \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j)\) becomes smaller, \(\delta_j\) becomes larger. If \(\delta_j < 0\), then \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j)\) becomes larger, \(\delta_j\) becomes smaller. So there exists a compromise relation between \(\frac{\pi}{2} \tanh(\theta'_j + \varphi'_j)\) and \(\delta_j\). However, the degree of compromise could not be measured strictly with numerical relation, because all these relations remain the extension of the uncertainty relation [see inequality (40)]. In brief, the phase overflow mechanism proposed in this paper degrades the possibility of happening phase overflow. So to some extent, Algorithm 1 effectively restrains the possibility of the phase overflow.
4.3.3 Effectiveness and uncertainty of the synthesized pixel

Theorem 5 shows that the maximal compression ratio exists and equals $\frac{1}{2}$. Corollary 1 points out that the range of the compression ratio is in the range $[0, \frac{1}{2})$. Corollary 2 discusses the properties of the maximal compression ratio. These three results indicate that the phase overflow control in Algorithm 1 is effective on the whole. Theorem 5 also indirectly indicates that the operator constructed as Eq. (20) to implement the phase rotation is rational.

The compression ratio is associated with the precision of the phase estimation. Taking two corresponding pixels to be synthesized as an example, assume that the number operators used to extract the phases of two corresponding physical systems are N_1 and N_2, if N_1 and N_2 become larger, then it indicates the higher precision of the phase estimation, the less δ_j, and the larger compression ratio with higher probability. So the compression ratio is determined by N_1 and N_2. Owing to the uncertainty relation $\Delta_M\{\phi_j\} \cdot \Delta\{N_1\} \geq \frac{1}{2}$, and according to Theorem 5 and Corollary 1, except for the exception case of phase overflow, the compression ratio of the overflow control in the synthesized image is in the range $[0, \frac{1}{2})$, but uncertain. Whether the phase obtained is larger or smaller than its true phase is a probability issue, not a deterministic issue. So it is impossible to determine whether the specified pixel overflows or not. However, for quantum image synthesis, if only the number operators used in the covariance measurement are sufficiently large, we then could judge that the effectiveness of the synthesized pixels of the quantum image could be good.

5 Quantum versus classical image processing

In our quantum images synthesizing procedure, a quantum image with 2^{2n} phases as the input is taken, where n is the number of pixels on vertical and horizontal coordinates, respectively. By applying MPE, 2^{2n} phases are obtained. We compare the classical and quantum image processing from the following aspects. (1) Image edition is a general task in the classical image processing. The synthesis procedure of quantum image in this paper shows that quantum images can also be edited. This paper illustrates what aspects should be considered if we want to implement the quantum image synthesis successfully. (2) Compared with classical image processing, quantum image processing relies on the quantum and classical methods simultaneously. (3) Since to process a large-size image in a classical computer is very difficult, modern image processing on the classical computers always depends on the deep learning network. Otherwise, it is hard to deal with it effectively. However, this task could be implemented on a quantum computer with matrix computation. (4) The greatest advantage in quantum image processing is that much less of memory is needed for storing a quantum image.

For a quantum image represented with a matrix of the size $2^n \times 2^n$, $2n + 1 = \log_2(2^{2n}) + 1$ qubits is enough to store phase (pixel) matrix. This means that the storage space needed for storing the pixel information of a quantum image is drastically reduced. (5) However, the auxiliary space remains $O(2^{2n})$ needed to ensure the phase precision when we estimate phases with MPE.
6 A toy example

At last, we end the paper with an example of numerical simulation, which demonstrates how the algorithm implements the synthesis of two quantum images. The objects in the example are the story about panda and bamboo, and we know that the panda likes

Fig. 3 a The quantum image of original bamboo, and it is the image to be embedded into b. b An image about panda, which is a carrier image. c Assumed to be the extracted quantum bamboo information from a with multiple phase estimation. d The ideal synthesis result with a and b in an extreme ideal case. e The synthesis result with c and b in reality
to eat bamboo very much. Assume that the five figures in Fig. 3 are quantum images and their state representation are consistent with Eq. (2).

Figure 3a, b is the bamboo image to be embedded (the bamboo is green). Here we just treat the black-and-white image and a panda image to be synthesized, respectively. Synthesis of quantum images means that an embedder image is embedded into the carrier image. Our goal is to synthesize Fig. 3a, b, and we let Fig. 3a, b correspond to the embedder ($|I(\beta_j)\rangle$) and carrier ($|I(\theta_j)\rangle$), respectively. In order to extract the phase information of the embedder’s, the more copies of Fig. 3a are needed. The impossible synthesis result is give in Fig. 3d (which can be denoted by $|I(\theta_j + \beta_j)\rangle$), but the real synthesis result is probable Fig. 3e $|I(\theta_j + \beta'_j)\rangle$, where β'_j is an estimation of β_j. Note that, the quantum image representation of Fig. 3a, b is satisfied with Eq. (2). The difference between Fig. 3d, e shows that, the errors in the final synthesized result is introduced by phase estimation, and make the synthesized image vague (this also can compare Fig. 3a, c). Particularly, we note that the carrier image does not produce any error. So the panda image in Fig. 3e is clear before and after synthesis.

7 Conclusions

This paper has raised how to implement synthesis of quantum images, and a method has been brought forward to resolve this problem. Since the pixel is represented with phase, to obtain the phases of the quantum image to be synthesized is the first step of implementing the synthesis of quantum images. Thus MPE has been applied to obtain the multiple phases of the quantum images. However, since the error could be introduced by MPE and phase addition operation could lead to the phase overflow, a rotation operator which was embedded the overflow control mechanism has been constructed. Applying this rotation operator on the state of carrier, we could get the goal state of the synthesized quantum image. Then, we have computed the joint uncertainty relation of the pixel of the synthesized image. Based on this calculating result, the discussion about compression ratio shows that the overflow control mechanism proposed in this paper to reduce the possibility of overflow is effective. In this paper, we have tried to give a quantum image processing method for synthesizing two quantum images, so some defects might be in it, such as the complexity. Therefore, better algorithms are expected to improve the performance of the quantum image synthesis further in the future.

Acknowledgements The authors would like to thank the referees for useful suggestions that help us improve the quality of the paper. The first author also would thank Guangping He for giving useful suggestions. This work was partly supported by the National Natural Science Foundation of China (Nos. 61572532, 61876195, 61272058), the Natural Science Foundation of Guangdong Province of China (No. 2017B030311011), the Fundamental Research Funds for the Central Universities of China (No. 17lgjc24).

A Multiple phase estimation

Parallelism is an important attribute of quantum information processing and due to that we can also expect that quantum information processing of phases can be done
simultaneously and efficiently. There are, naturally, quite a few ways to deal with this problem. Humphreys et al. [37] proposed one method to implement the MPE via finding simultaneous estimates of \(D \) phases of the state \(|\psi_0\rangle = \sum_{k=1}^{D} \alpha_k e^{iN_k \phi} |N_k\rangle \), where \(N_k \) is a number operator and \(D \) is a configuration number. However, this approach cannot be used here because our form of the state of the quantum image is not consistent with the state considered in [37]. On the other side, the method proposed in [35] can handle this problem. We will summarize the main idea of Macchiavello’s [35] in the following.

We consider the estimation theory of \(M \) independent phases \(\phi_j \) \((j = 1, \ldots, M)\) through the unitary transformation

\[
\rho_{\{\phi_j\}} = \exp \left(-i \sum_{j=1}^{M} \phi_j \hat{H}_j \right) \rho_0 \exp \left(i \sum_{j=1}^{M} \phi_j \hat{H}_j \right)
\]

where \(\hat{H}_j \) represent \(M \) commuting self-adjoint operators which are defined on the Hilbert space \(\mathcal{H} \) of the considered quantum system. The vectors \(\{|n_j\rangle\} \) denote now eigenvectors corresponding to the eigenvalues \(n_j \) of the operator \(\hat{H}_j \).

According to the general framework of quantum estimation theory, a cost function \(\bar{C} \) of \(C(\bar{\phi}_j, \phi_j) \) is defined as

\[
\bar{C} = \int_0^{2\pi} \cdots \int_0^{2\pi} \rho_0(\{\phi_j\}) \int_0^{2\phi} \cdots \int_0^{2\phi} C(\bar{\phi}_j, \phi_j) p(\bar{\phi}_j | \phi_j),
\]

and depends on the set of the \(M \) estimated values \(\{\bar{\phi}_j\} \) corresponding to the \(M \) actual values \(\{\phi_j\} \). The estimation problem is reduced to the problem of minimizing the average cost \(\bar{C} \) by optimizing POVM \(d\mu(\bar{\phi}_j) \). In the view of the basic laws of quantum mechanics, the relation \(\int d\mu(\bar{\phi}_j) = I \) has to be satisfied. Since there is no contribution to the average cost, \(d\mu_{\perp}(\phi_j) \) is out of considerations. For the detailed definition see [35]. \(\rho_0(\phi_j) \) and \(p(\bar{\phi}_j | \phi_j) \) are prior probability densities for real values \(\phi_j \) and the conditional probability of estimating the set of values \(\bar{\phi}_j \) given to real values of \(\phi_j \).

When a general class of cost functions is considered, then by Holevo’s outcomes, the optimal POVM takes the form

\[
d\mu_{||}(\phi_j) = \frac{d\phi_1}{2\pi} \cdots \frac{d\phi_M}{2\pi} |e(\phi_j)\rangle \langle e(\phi_j)|.
\]

where \(|e(\phi_j)\rangle \) is defined as

\[
|e(\phi_j)\rangle = \sum_{n_j} \exp \left(i \sum_j n_j \phi_j \right) |\{n_j\}\rangle.
\]

In such a case, the multiple phases of the state...
\[|I(\phi_j)\rangle = \frac{1}{\sqrt{d}} \left(|0\rangle + e^{i\phi_1}|1\rangle + \cdots + e^{i\phi_{d-1}}|d-1\rangle \right) \]

(67)

can be estimated with the general POVM

\[|e(\phi_j)\rangle = \sum_{n_j} \exp\left(i \sum_{j=1}^{d-1} n_j \phi_j \right) |n_0, n_1, \ldots, n_{d-1}\rangle_s \]

(68)

with the fidelity

\[F(\phi_j) = |\langle \psi_0 | \psi(\phi_j) \rangle|^2 = \frac{1}{d^2} \left[d + 2 \sum_{j=1}^{d-1} \cos \phi_j + 2 \sum_{j>k} \cos(\phi_j - \phi_k) \right], \]

(69)

(70)

where

\[|\psi_0\rangle = \frac{1}{d^N} \sum_{n_j} \sqrt{\frac{N!}{n_0!n_1! \ldots n_{d-1}!}} |n_0, n_1, \ldots, n_{d-1}\rangle_s \]

(71)

and where \(N \) is the number of states \(|e(\phi_j)\rangle\) that need to be prepared.

B Shortcoming of constructing operator by using embedder’s phases

This section gives another method to construct a phase rotation transform. The main goal is to compare with Eqs. (20) and (72), and then, we can explore the advantage or disadvantage for the different transforms. Let the phase extracted from Eq. (9) be \((\theta_1', \theta_2', \ldots, \theta_{2n}').\) Thus using \((\theta_1', \theta_2', \ldots, \theta_{2n}')\) to construct a rotation operator \(U,\) we have

\[U =
\begin{bmatrix}
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & e^{i\theta_1'} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & e^{i\theta_2'} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & e^{i\theta_3'} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & e^{i\theta_4'} & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & e^{i\theta_{2n}'} \\
\end{bmatrix}
\]

(72)
where $1_1, 1_2, \ldots, 1_{2^n}$ are 1. The index in each 1 denotes how many 1 used on the diagonal line (there are 2^{2n} 1 in total). Apparently, $UU^\dagger = I$, so U is unitary.

Applying U on $|I(\varphi_j)\rangle$, we get the phase accumulation result $|res\rangle = U|I(\theta_j)\rangle$,

$$|res\rangle = \frac{1}{2^n} \sum_{j=0}^{2^n-1} |0\rangle |j\rangle + \frac{1}{2^n} \sum_{j=0}^{2^n-1} e^{i(\theta'_j+\varphi_j)} |1\rangle |j\rangle. \quad (73)$$

That is,

$$|res\rangle = \frac{1}{2^n} \sum_{j=0}^{2^n-1} (|0\rangle + e^{i(\theta'_j+\varphi_j)} |1\rangle) \otimes |j\rangle. \quad (74)$$

The analysis below will show that some problems exist if we directly apply U on the state of quantum images.

According to the state representation of quantum image (see Eq. (2)), and combing with the restrictions 1 and restrictions 2 in Sect. 4.3, for Eq. (74), we have

$$\varphi_j, \theta'_j \in \left(0, \frac{\pi}{2}\right), \quad j = \{0, 1, \ldots, 2^{2n} - 1\}. \quad (75)$$

However, according to the phase requirement about state representation of quantum images, we have

$$\varphi_j + \theta'_j \in \left(0, \frac{\pi}{2}\right), \quad j = \{0, 1, \ldots, 2^{2n} - 1\}. \quad (76)$$

That is, the allowable maximal phase is $\frac{\pi}{2}$ [the upper bound of the phase accumulation is determined by Eq. (2)]. The phases in Eq. (2) which are not in the range $(0, \frac{\pi}{2})$ are undefined. However, the addition in Eq. (76) is a common mathematic operation about two real values, and the result should be

$$\varphi_j + \theta'_j \in (0, \pi), \quad j = \{0, 1, \ldots, 2^{2n} - 1\}. \quad (77)$$

The contradiction between Eqs. (76) and (77) indicates that the overflow happens with high risks. If nothing measures are to be taken, it is probable that the synthesized phases exceed $\frac{\pi}{2}$.

Two points should be emphasized. Firstly, since the phase estimation for the case of 0 phase (pixel is 0), the outcome will be empty, and the synthesis operation above will not affect the case of 0 phases. Secondly, $\theta'_j + \varphi_j$ in Eq. (74) may exceed $\frac{\pi}{2}$ if nothing measure is to be taken.

Compared with Eq. (20), the advantage of this method is to reduce the times of measurement, so the error of phase is reduced one half. But the disadvantage is also very obvious, that is, there is nothing we can do to restrain the overflow when the overflow happens. For example, we do not introduce $\text{tanh}(x)$ to Eq. (72), because one half of phases are unknown. This is the reason why we choose Eq. (20) as the phase rotation transform.
C Proof of Theorem 1

The following procedures of proving theorem 1 are digested from [8]. Two steps implement the preparation of the quantum state.

Step 1. Applying transform $\mathcal{H} = I \otimes H^{(2n+1)}$, and the result is assumed as $|S\rangle$, we have

$$|S\rangle = \mathcal{H}|0\rangle \otimes |0\rangle \otimes 2^n = \frac{1}{2^n} |0\rangle \otimes \sum_{j=0}^{2n} |j\rangle. \quad (78)$$

Then, construct the rotation matrices $R_y(2\theta_j)$ (along the Y-axis by the angle $2\theta_j$) and controlled rotation matrices R_j, ($j = 0, 1, \ldots, 2^{2n} - 1$),

$$R_y(2\theta_j) = \begin{pmatrix} \cos \theta_j - \sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}, \quad \text{(79)}$$

$$R_j = \left(I \otimes \sum_{i=0, i \neq 1}^{2^{2n}-1} |i\rangle \langle i| \right) + R_y(2\theta_j) \otimes |j\rangle \langle j|. \quad \text{(80)}$$

Since $R_j R_j^\dagger = I^{2n+1}$, R_j is unitary. Applying R_k and $R_l R_k$ on $|S\rangle$ gives rise to the following result:

$$R_k(|S\rangle) = R_k \left(\frac{1}{2^n} |0\rangle \otimes \sum_{j=0}^{2^{2n}-1} |i\rangle \right)$$

$$= \frac{1}{2^n} \left[|0\rangle \otimes \sum_{i=0, i \neq k}^{2^{2n}-1} |i\rangle \langle i| + (\cos \theta_k |0\rangle + \sin \theta_k |1\rangle) \otimes |k\rangle \right], \quad \text{(81)}$$

$$R_l R_k |S\rangle = \frac{1}{2^n} \left[|0\rangle \otimes \sum_{i=0, i \neq k}^{2^{2n}-1} |i\rangle \langle i| \right.$$

$$+ (\cos \theta_l |0\rangle + \sin \theta_l |1\rangle) \otimes |l\rangle \right] + (\cos \theta_k |0\rangle + \sin \theta_k |1\rangle) \otimes |k\rangle \right]. \quad \text{(82)}$$

Thus we can conclude that $R|S\rangle = (\prod_{i=0}^{2^{2n}-1} R_i) |S\rangle$, and this is the final state what we intend to prepare for. The scale of the resource overhead is described as Theorem 1.

D Proof of Lemma 1

This theory evolves from the uncertainty relation between the rotation angle θ and the angular momentum L of the particles.
In this part, we'll introduce covariance measurement and uncertainty relation referred. The complete introduction confers [36].

Let \(G \) be a locally compact transitive group of transformations of a parametric set \(\theta \), and \(\{ V_g \} \) a continuous unitary ray representation of \(G \) in a Hilbert space \(\mathcal{H} \). Let \(M(d\theta) \) be a \(\theta \)-measurement, that is a generalized resolution of identity in \(\mathcal{H} \) on Borel subsets of \(\theta \). A measurement \(M(d\theta) \) is covariant with respect to \(\{ V_g \} \) if

\[
V_g^* M(B) V_g = M(g^{-1}B),
\]

for any Borel \(B \subset \theta \). The covariant measurement has the general form as

\[
M(d\theta) = e^{iL\theta} P_0 e^{-iL\theta} \frac{d\theta}{2\pi},
\]

where \(P_0 \) is a positive operator.

The optimal covariant measurement is defined as

\[
\langle |M_*(d\theta)|m' \rangle = e^{i(m-m')\theta} \frac{\varphi_m \cdot \bar{\varphi}_{m'}}{|\varphi_m| \cdot |\varphi_{m'}|} \frac{d\theta}{2\pi}
\]

The proof of Lemma 1 starts from the uncertainty of angular momentum.

Let \(M \) be a covariant measurement with both Bayes and minimax for any measure of deviation, then

\[
E_M e^{i\theta} = \sum_{-l+1}^{1} \psi_{m-1} p_{m-1,m} \psi_m, \text{ where } M \text{ represents the expectation of } P_M.
\]

Introducing the operators \(E_\mp = \int_{-\pi}^{\pi} e^{\pm i\theta} M^*(d\theta) \), so that

\[
E_- = \frac{1}{2}(E_+ - E_-), \quad E_+ = I - |l\rangle \langle l|,
\]

Further introducing cosine operator \(C = \frac{1}{2}(E_+ + E_-) \) and sine operator \(S = \frac{i}{2}(E_+ - E_-) \), and we have

\[
C^2 + S^2 = I - \frac{1}{2}[|l\rangle \langle l| + | - l\rangle \langle -l|], \quad [C, S] = i \frac{1}{2} [|l\rangle \langle -l| - | - l\rangle \langle l|].
\]

\[
E_{M_*} \{ e^{i\theta} \} = \langle \varphi | E_- | \varphi \rangle \equiv C^2 + S^2,
\]

\[
|E_{M_*}|^2 = C^2 + S^2.
\]

Using Eq. (87), we have

\[
D_{M_*} \{ e^{i\theta} \} = ||(C - \bar{C})\varphi||^2 + ||(S - \bar{S})\varphi||^2 + \frac{1}{2}(||\varphi_-||^2 + ||\varphi_+||^2)
\]

\[
\equiv (\Delta C)^2 + (\Delta S)^2 + \frac{1}{2}(||\varphi_-||^2 + ||\varphi_+||^2).
\]

Since \([C, L] = -iS \) and \([S, L] = iC \), the uncertainty relation satisfies with

\[
(\Delta C)^2 + (\Delta S)^2 \geq \frac{1}{4} \bar{S}^2, \quad (\Delta S)^2 (\Delta L)^2 \geq \frac{1}{4} C^2.
\]
By applying Eqs. (87), (88), (90), and inequality (92), we obtain

$$\Delta M_\star \{ \theta \}^2 \geq \frac{1}{4(\Delta)^2} + \frac{1}{2}(|\varphi_{-l}|^2 + |\varphi_l|^2)|E_{M_\star \{ e^{i\theta} \}}|^{-2}. \quad (93)$$

Based on Eq. (85), introducing phase operator

$$P = \int_{-\pi}^{\pi} e^{i\varphi} M_\star (d\varphi), \text{ and } P^\star = \int_{-\pi}^{\pi} e^{-i\varphi} M_\star (d\varphi) \quad (94)$$

which has the relation

$$PP^\star = I, \quad P^\star P = I - |0\rangle\langle 0|. \quad (95)$$

With this condition, through analogizing the uncertainty relation about angular momentum, we can get

$$\Delta M \{ \varphi \} \geq \left(1 - \frac{1}{2} |\langle 0 | \varphi \rangle|^2 \right)^{-1} \left(\frac{1}{4(\Delta N)^2} + \frac{1}{2} |\langle 0 | \varphi \rangle|^2 \right), \quad (96)$$

the following uncertainty relation holds

$$\Delta M \{ \varphi \} \cdot \Delta N \geq \frac{1}{2}. \quad (97)$$

References

1. Gatti, A., Brambilla, E., Lugiato, L.A., et al.: Quantum entangled images. Phys. Rev. Lett. 83, 1763–1766 (1999)
2. Li, H.S., Qingxin, Z., Lan, S., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12, 2269–2290 (2013)
3. Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14, 1717–1734 (2015)
4. Boyer, V., Marino, A.M., Pooser, R.C., et al.: Entangled images from four-wave mixing. Science 321, 544–547 (2008)
5. Lawrie, B.J., Pooser, R.C.: Toward real-time quantum imaging with a single pixel camera. Opt. Express. 21, 7549–7559 (2013)
6. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)
7. Lloyd, S.: A potentially realizable quantum computer. Science 261, 1569–1571 (1993)
8. Yan, F., Iliyasu, A.M., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16, 5290–5338 (2013)
9. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)
10. Hu, B.Q., Huang, X.D., Zhou, R.G., et al.: A theoretical framework for quantum image representation and data loading scheme. Sci. China (Inf. Sci.) 57, 1–11 (2014)
11. Yan, F., Iliyasu, A.M., Venegasandra, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016)
12. Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)
13. Naseri, M., Abdolmaleky, M., Parandin, F., et al.: A new quantum gray-scale image encoding scheme. Commun. Theor. Phys. 69, 215 (2018)
14. Yang, Y.G., Jia, X., Xu, P., et al.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12, 2765–2769 (2013)
15. Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1–18 (2015)
16. Yang, Y.G., Tian, J., Lei, H., et al.: Novel quantum image encryption using one-dimensional quantum cellular automata. Inf. Sci. 345, 257 (2016)
17. Yang, Y.G., Jia, X., Sun, S.J., et al.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445 (2014)
18. Wei, Z., Chen, X., Shuijiang, X., et al.: A spatial domain quantum watermarking scheme. Commun. Theor. Phys. 66(7), 66–76 (2016)
19. Laurel, C.O., et al.: Equivalence of a bit pixel image to a quantum pixel image. Commun. Theor. Phys. 64, 501 (2015)
20. Naseri, M., Heidari, S., Gheibi, R., et al.: A novel quantum binary images thinning algorithm: a quantum version of the Hilditch’s algorithm. Optik 131, 678–686 (2017)
21. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571 (2015)
22. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14, 1693–1715 (2015)
23. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15, 1730001 (2017)
24. Song, X.H., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12, 3689–3706 (2013)
25. Heidari, S., Pourarian, M.R., Gheibi, R., et al.: Quantum red–green–blue image steganography. Int. J. Quantum Inf. 15, 1750039 (2017)
26. Heidari, S., Naseri, M., Gheibi, R., et al.: A new quantum watermarking based on quantum wavelet transforms. Commun. Theor. Phys. 67, 732–742 (2017)
27. Naseri, M., Heidari, S., Baghfalaki, M., et al.: A new secure quantum watermarking scheme. Optik Int. J. Light Electr. Opt. 139, 77–86 (2017)
28. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 10, 1–14 (2016)
29. Molnar, S., Eyles, J., Poulton, J.: PixelFlow: high-speed rendering using image composition. In: Conference on Computer Graphics & Interactive Techniques, pp. 231-240. ACM (1992)
30. Kolobov, M.I. (ed.): Quantum Imaging. Springer, Berlin (2007)
31. Szczykulska, M., Baumgratz, T., Datta, A.: Multi-parameter quantum metrology. Adv. Phys. X 1, 621–639 (2016)
32. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)
33. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Springer, Berlin (2011)
34. Song, X.H., Niu, X.M.: Comment on: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 13, 1301–1304 (2014)
35. Macchiavello, C.: Optimal estimation of multiple phases. Phys. Rev. A 67, 062302–062306 (2003)
36. Holevo, A.S.: Covariant measurements and uncertainty relations. Rep. Math. Phys. 16, 385–400 (1979)
37. Humphreys, P.C., Barbieri, M., Datta, A., et al.: Quantum enhanced multiple phase estimation. Phys. Rev. Lett. 111, 070403–070407 (2013)