RNA-sequence-based microRNA expression signature in breast cancer: tumor-suppressive miR-101-5p regulates molecular pathogenesis

Hiroko Toda1, Naohiko Seki2, Sasagu Kurozumi3, Yoshiaki Shinden1, Yasutaka Yamada2, Nijiro Nohata4, Shogo Moriya5, Tetsuya Idichi3, Kosei Maemura1, Takaaki Fujii3, Jun Horiguchi6, Yuko Kijima1,7 and Shoji Natsugoe1

1 Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
2 Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan
3 Department of General Surgical Science, Gunma University Graduate School of Medicine, Japan
4 MSD K.K., Tokyo, Japan
5 Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Japan
6 Department of Breast Surgery, International University of Health and Welfare, Chiba, Japan
7 Department of Breast Surgery, Fujita Health University, Aichi, Japan

Keywords
breast cancer; GINS1; microRNA; miR-101-5p; pathogenesis; tumor suppressor

Correspondence
N. Seki, Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
Fax: +81 43 227 3442
Tel: +81 43 226 2971
E-mail: naoseki@faculty.chiba-u.jp

(Received 21 June 2019, revised 5 November 2019, accepted 19 November 2019, available online 29 December 2019)
doi:10.1002/1878-0261.12602

Aberrantly expressed microRNA (miRNA) are known to disrupt intracellular RNA networks in cancer cells. Exploring miRNA-dependent molecular networks is a major challenge in cancer research. In this study, we performed RNA-sequencing of breast cancer (BrCa) clinical specimens to identify tumor-suppressive miRNA in BrCa. In total, 64 miRNA were identified as candidate tumor-suppressive miRNA in BrCa cells. Analysis of our BrCa signature revealed that several miRNA duplexes (guide strand/passenger strand) derived from pre-miRNA were downregulated in BrCa tissues (e.g. miR-99a-5p/-3p, miR-101-5p/-3p, miR-126-5p/-3p, miR-143-5p/-3p, and miR-144-5p/-3p). Among these miRNA, we focused on miR-101-5p, the passenger strand of pre-miR-101, and investigated its tumor-suppressive roles and oncogenic targets in BrCa cells. Low expression of miR-101-5p predicted poor prognosis in patients with BrCa (overall survival rate: \(P = 0.0316 \)). Ectopic expression of miR-101-5p attenuated aggressive phenotypes, e.g. proliferation, migration, and invasion, in BrCa cells. Finally, we identified seven putative oncogenic genes (i.e. High Mobility Group Box 3, Epithelial splicing regulatory protein 1, GINS complex subunit 1 (GINS1), Tumor Protein D52, Serine/Arginine-Rich Splicing Factor Kinase 1, Vang-like protein 1, and Mago Homolog B) regulated by miR-101-5p in BrCa cells. The expression of these target genes was associated with the molecular pathogenesis of BrCa. Furthermore, we explored the oncogenic roles of GINS1, whose function had not been previously elucidated, in BrCa cells. Aberrant expression of GINS1 mRNA and protein was observed in BrCa clinical specimens, and high GINS1 expression significantly predicted poor prognosis in patients with BrCa (overall survival rate: \(P = 0.0126 \)). Knockdown of GINS1 inhibited the malignant features of BrCa cells. Thus, identification of tumor-suppressive miRNA and molecular networks controlled by these miRNA in

Abbreviations
BrCa, breast cancer; ESRP1, Epithelial splicing regulatory protein 1; GEO, Gene Expression Omnibus; GINS1, GINS complex subunit 1; HMGB3, High Mobility Group Box 3; MAGOH, Mago Homolog B; miRNA, microRNA; RISC, RNA-induced silencing complex; SRPK1, Serine/Arginine-Rich Splicing Factor Kinase 1; TCGA, The Cancer Genome Atlas; TPD52, Tumor Protein D52; VANGL1, Vang-like protein 1.
BrCa cells may be an effective strategy for elucidation of the molecular pathogenesis of this disease.

1. Introduction

Breast cancer (BrCa) is the most common malignancy among women, and ~ 2 million cases are newly diagnosed each year, resulting in more than 620 000 deaths annually (Bray et al., 2018; Ferlay et al., 2015). In the general population, ~ 12% of women will develop BrCa in their lifetime (Howlader et al., 2017). In contrast, ~ 70% of women who inherit BRCA1 or BRCA2 mutations will develop BrCa by 80 years of age (Kuchenbaecker et al., 2017). A recent study reported that germline mutations in TP53 and PTEN also increase the risk of BrCa development (Economopoulou et al., 2015).

Based on gene expression signature analysis, BrCa can be classified into intrinsic molecular subtypes (Perou et al., 2000; Sotiriou et al., 2003). According to the 12th St Gallen International Breast Cancer Conference, BrCa can be classified into the following five subtypes, which can facilitate the selection of treatment strategies: luminal-A, luminal-B [human epidermal growth factor receptor 2 (HER2)-positive], luminal-B (HER2-negative), HER2-positive, and triple negative (Goldhirsch et al., 2011). These intrinsic molecular subtypes are related to the biological features of BrCa and are essential for treatment selection.

Many studies have indicated that noncoding RNAs derived from the human genome are functional and play pivotal roles in various cellular activities, e.g. cell proliferation, movement, and death (Gebert and MacRae, 2019; Treiber et al., 2019). Among noncoding RNAs, microRNA (miRNA) are short RNA molecules (19–22-nucleotide single-stranded RNA molecules) that play roles in regulating protein-coding and noncoding RNA expression in cells (Gebert and MacRae, 2019; Treiber et al., 2019). Importantly, a single miRNA regulates many RNA transcripts, and bioinformatics studies have shown that more than half of the RNA molecules transcribed from the genome are controlled by miRNA (Bartel, 2009). In cancer cells, intracellular RNA networks are disrupted due to the influence of abnormally expressed miRNA. These aberrantly expressed miRNA play critical roles in the malignant transformation of cancer cells.

To identify tumor-suppressive or oncogenic miRNA in cancers, miRNA expression signatures provide valuable information. RNA-sequencing technology is suitable for producing miRNA signatures. Recently, we reported the miRNA expression signature of triple-negative BrCa (TNBC), and 104 miRNA (56 upregulated miRNA and 48 downregulated miRNA) were found to be significantly dysregulated in TNBC tissues (Toda et al., 2018). TNBC is a subtype of BrCa in which estrogen receptor (ER), progesterone receptor, and HER2 are not expressed; ~ 15–20% of BrCa cases are TNBC (Foulkes et al., 2010; Goldhirsch et al., 2011). TNBC is highly aggressive in nature, and metastases are frequently observed. Therefore, the prognosis of TNBC is worse than that of other subtypes of BrCa (Foulkes et al., 2010; Goldhirsch et al., 2011). Based on our TNBC signatures, we identified tumor-suppressive miR-204-5p and novel oncogenic genes regulated by this miRNA (Toda et al., 2018). Interestingly, several miR-204-5p target genes were found to be closely associated with BrCa pathogenesis (Toda et al., 2018). The discovery of oncogenic networks mediated by tumor-suppressive miRNA will contribute to the elucidation of the molecular mechanisms mediating the pathogenesis of BrCa.

Breast cancer is a heterogeneous cancer, and treatment strategies differ for each subgroup (Foulkes et al., 2010; Goldhirsch et al., 2011; Perou et al., 2000; Sotiriou et al., 2003). Thus, elucidation of the universal molecular pathways mediating BrCa will lead to the development of new treatment strategies for this disease. Accordingly, in this study, we created the RNA-sequencing-based miRNA expression signature of BrCa using clinical BrCa specimens, including ER-positive, HER2-positive, and TNBC specimens. In total, 64 miRNA were identified as candidate tumor-suppressive miRNA in BrCa cells. Analysis of our BrCa signature revealed that several miRNA duplexes (guide strand/passenger strand) derived from pre-miRNA were downregulated in BrCa tissues. Despite the general consensus that passenger strands derived from miRNA duplexes have no regulatory activity, our recent studies have revealed that some passenger strands actually function by targeting several genes (Mah et al., 2010; McCall et al., 2017).

Based on our current miRNA signature of BrCa, the expression levels of both strands of the miR-101 duplex (miR-101-5p: the passenger strand and miR-101-3p: the guide strand) were significantly reduced in cancer tissues, suggesting that these miRNA have
tumor-suppressive functions. Many previous reports have demonstrated that miR-101-3p acts as a tumor-suppressive miRNA in various cancers (Wang et al., 2018). In contrast to miR-101-3p, the functional significance of miR-101-5p and RNA networks regulated by this miRNA in cancer cells is poorly understood. Accordingly, in this study, we showed that ectopic expression of miR-101-5p attenuated aggressive phenotypes, e.g. proliferation, migration, and invasion, in BrCa cells. Moreover, GINS complex subunit 1 (GINS1) was directly controlled by miR-101-5p in BrCa cells, and its expression contributed to BrCa oncogenesis.

2. Materials and methods

2.1. Collection of clinical breast cancer specimens, breast epithelial specimens, and BrCa cell lines

To construct the miRNA expression signature of BrCa, 20 clinical tissue specimens (five specimens each for ER-positive BrCa, HER2-positive BrCa, TNBC, and normal breast epithelium) were collected following surgical resection at Gunma University Hospital. To validate the expression levels of miRNA and target genes, 27 clinical specimens (18 BrCa specimens and nine normal breast epithelial tissues) were collected at Kagoshima University Hospital. Twenty-one paraffin blocks of BrCa specimens were used for immunostaining. The clinical features of these patients are shown in Table 1. Informed consent was obtained from all patients. This study was approved by the Bioethics Committee of Gunma University (approval nos 2016-023 and 2017-167) and Kagoshima University (approval no. 160038:28-65). The study methodologies conformed to the standards set by the Declaration of Helsinki.

Two BrCa cell lines, i.e. MDA-MB-231 and MCF-7, were used in this study. MDA-MB-231 cells (acc. no. 92020424, Lot: 15J060) were obtained from Public Health England (Salisbury, UK). MCF-7 cells (resource no. RCB1904, Lot: 13) were obtained from RIKEN BRC CELL BANK (Tsukuba, Ibaraki, Japan).

2.2. Construction of the miRNA expression signature for BrCa

The miRNA expression signatures of 20 samples with BrCa (Table 1) were generated by small RNA sequencing using HiSeq 2000 (Illumina, San Diego, CA, USA). Small RNA sequencing and data mining were performed as previously described, and a false discovery rate (FDR) less than 0.05 was considered significant (Goto et al., 2017; Koshizuka et al., 2017; Toda et al., 2018; Yonemori et al., 2017).

2.3. RNA preparation and quantitative reverse transcription polymerase chain reaction (qRT-PCR)

Total RNA including miRNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) in clinical specimens and ISOGENT reagent (NIPPON GENE, Tokyo, Japan) in BrCa cells. The qRT-PCR was performed as previously described (Idichi et al., 2018; Yamada et al., 2018a,b,c). TaqMan probes and primers used in this study are listed in Table S1.

2.4. Transfection of BrCa cells with miRNA, small interfering RNA (siRNA), and plasmid vectors

The miRNA, siRNA, and vectors were transfected into cancer cells as described in our previous reports using the reagents listed in Table S1 (Idichi et al., 2018; Yamada et al., 2018a,b,c).

2.5. Assays of cell proliferation, cell cycle, migration, and invasion

Cell proliferation, migration, and invasion were assessed as described previously (Idichi et al., 2018; Yamada et al., 2018a,b,c).

2.6. Assay of miR-101-5p incorporation into the RNA-induced silencing complex (RISC)

MDA-MB-231 cells were transfected with 10 nM control miRNA, miR-101-5p, or miR-101-3p. After 72 h, miRNA incorporated into the RISC were isolated using a human AGO2 miRNA isolation kit (Wako Pure Chemical Industries, Ltd., Osaka, Japan). Expression miR-101-5p was examined as described above (Idichi et al., 2018; Yamada et al., 2018a,b,c).

2.7. Isolation of putative oncogenic targets regulated by miR-101-5p in BrCa cells

Putative target genes possessing binding sequences to miR-101-5p were isolated using the TargetScan Human database ver.7.1 (http://www.targetscan.org/vert_71/). Gene expression data (protein-coding RNAs) for BrCa
Table 1. Clinical features of 50 patients with BrCa.

Age	T factors	Lymph node metastasis	Stage	ER	PgR	HER2	Ki67	Lymphatic invasion	Venous invasion	Nuclear Grade	Remarks
BC1	66	Yes	ⅡA	Positive	Positive	Negative	5–10	1	0	3	RNA seq.
BC2	66	No	Ⅰ	Positive	Positive	Negative	18-23	0	0	2	RNA seq.
BC3	50	Yes	ⅡB	Positive	Positive	Negative	10–15	1	0	3	RNA seq.
BC4	47	Yes	ⅡB	Positive	Positive	Negative	15–20	1	0	2	RNA seq.
BC5	70	Yes	ⅡB	Positive	Positive	Negative	15–20	1	0	2	RNA seq.
BC6	69	No	ⅡA	Negative	Negative	Positive	58	1	0	3	RNA seq.
BC7	59	Yes	ⅡB	Positive	Positive	Positive	50–60	0	0	3	RNA seq.
BC8	48	No	ⅠA	Positive	Positive	Negative	22–27	1	1	3	RNA seq.
BC9	68	No	ⅡA	Positive	Positive	Negative	83	1	1	3	RNA seq.
BC10	67	Yes	ⅠA	Negative	Negative	Positive	20–30	0	0	3	RNA seq.
BC11	58	Yes	ⅡA	Negative	Negative	Negative	70–80	0	0	3	RNA seq.
BC12	44	No	ⅡA	Negative	Negative	Negative	70–80	0	0	3	RNA seq.
BC13	83	No	ⅡA	Negative	Negative	Negative	60	0	0	3	RNA seq.
BC14	66	No	ⅡA	Negative	Negative	Negative	70–80	0	0	3	RNA seq.
BC15	47	No	ⅠA	Negative	Negative	Negative	Unavailable	0	1	3	RNA seq.
BC16	79	No	ⅡA	Negative	Negative	Negative	70–80	0	0	3	RNA seq.
BC17	49	Yes	ⅠA	Positive	Positive	Negative	4	1	0	1	RT-PCR/IHC
BC18	82	1a	Ⅰ	Positive	Positive	Negative	10	0	0	1	RT-PCR/IHC
BC19	56	2	ⅡA	Positive	Positive	Negative	13	0	0	3	RT-PCR/IHC
BC20	44	1c	Ⅰ	Positive	Positive	Negative	26	1	0	1	RT-PCR/IHC
BC21	86	1c	ⅡA	Positive	Positive	Negative	26	1	0	3	RT-PCR/IHC
BC22	63	2	ⅡA	Positive	Negative	Negative	90	1	0	3	RT-PCR/IHC
BC23	42	2	ⅢA	Positive	Negative	Positive	Unavailable	1	0	3	RT-PCR/IHC
BC24	62	2	ⅢC	Positive	Positive	Negative	39	1	0	3	RT-PCR/IHC
BC25	73	2	ⅢA	Positive	Positive	Positive	8	1	0	1	RT-PCR/IHC
BC26	43	4c	ⅢC	Negative	Negative	Negative	Unavailable	1	0	3	RT-PCR/IHC
BC27	46	2	ⅢC	Negative	Negative	Positive	35	1	0	3	RT-PCR/IHC
BC28	70	2	ⅢA	Negative	Negative	Positive	52	0	0	3	RT-PCR/IHC
BC29	69	1mi	Ⅰ	Negative	Positive	Positive	13	0	0	1	RT-PCR/IHC
BC30	39	2	ⅢC	Negative	Negative	Positive	35	1	1	2	RT-PCR/IHC
BC31	59	1b	ⅢA	Negative	Negative	Negative	98	1	1	3	RT-PCR/IHC
BC32	64	4b	ⅢB	Negative	Negative	Negative	50	1	0	3	RT-PCR/IHC
BC33	65	1c	ⅡA	Negative	Negative	Negative	91	1	1	3	RT-PCR/IHC
BC34	41	2	ⅢC	Negative	Negative	Negative	Unavailable	1	1	3	IHC
BC35	38	1c	Ⅰ	Negative	Negative	Negative	Unavailable	0	0	3	IHC
BC36	39	2	ⅠA	Positive	Positive	Positive	28	0	0	1	IHC

N1 50 RNA seq.
N2 26 RNA seq.
N3 62 RNA seq.
N4 65 RNA seq.
N5 52 RNA seq.
N6 79 RT-PCR
N7 38 RT-PCR
N8 85 RT-PCR
N9 44 RT-PCR
N10 61 RT-PCR
N11 56 RT-PCR
N12 69 RT-PCR
N13 62 RT-PCR
N14 59 RT-PCR
clinical specimens were obtained by oligo-microarray analyses.

2.8. Evaluation of miR-101-5p binding sites by luciferase reporter assays

The 3′ UTR of GINS1 and the 3′-UTR lacking the putative miR-101-5p binding sites were cloned into the psiCHECK-2 vector (C8021; Promega, Madison, WI, USA). Luciferase reporter assays were performed as previously described (Idichi et al., 2018; Yamada et al., 2018a,b,c). The cloned sequences are shown in Figs 4 and S1.

2.9. Clinical data analyses of BrCa

The clinical significance of miRNA and their target genes was investigated with The Cancer Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/) in BrCa. Gene expression levels and clinical information obtained from cBioPortal (http://www.cbioportal.org/) and OncoLnc (http://www.oncolnc.org/) were applied. The data were downloaded on 28 September 2018.

2.10. Western blotting and immunohistochemistry

Western blotting and immunohistochemistry were performed as described previously (Idichi et al., 2018; Yamada et al., 2018a,b,c). Primary antibodies are listed in Table S1.

2.11. Genes affected by GINS1 expression in BrCa cells

Gene expression levels and clinical information were downloaded from cBioPortal (http://www.cbioportal.org/) on 8 January 2019. The normalized mRNA expression levels of RNA-sequencing data were provided as Z-scores. Gene set enrichment analysis (GSEA) was performed based on mRNA sequence data from cBioPortal. A heatmap of gene expression was constructed using the BrCa RNA-sequence database. Overexpressed genes in BrCa tissues showing high GINS1 expression in TCGA were classified into known pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database with the Enrichr program.

2.12. Statistical analysis

Mann–Whitney U tests were applied for comparisons between two groups. For multiple groups, one-way analysis of variance and Tukey tests for post-hoc analysis were applied. These analyses were performed with GRAPHPAD PRISM 7 (GraphPad Software, La Jolla, CA, USA) and JMP PRO 14 (SAS Institute Inc., Cary, NC, USA). For other analyses, EXPERT STATVIEW (version 5, SAS Institute, Inc.) was used.

3. Results

3.1. Creation of a miRNA expression signature for BrCa by small RNA sequencing

RNA sequencing was performed to create the miRNA expression signature of BrCa. We sequenced 20 small RNA libraries (15 BrCa specimens and five normal breast epithelium specimens). The clinical features of the specimens used to create the miRNA signature are summarized in Table 1.

We obtained between 10 112 255 and 15 495 422 total reads in this study. After filtering out noise (fragments that did not completely match the human genome sequence), between 4 781 591 and 13 003 597 miRNA reads were mapped on the human genome sequence (Table S2). Read sequences matching the human genome were categorized into small RNA according to their biological functions (Table S2). Finally, we constructed the miRNA expression signature of BrCa containing miRNA with markedly down-regulated expression (Table 2; FDR < 0.05).

In total, 64 miRNA were significantly downregulated in BrCa tissues (Table 2). Analysis of our BrCa signature revealed that 11 miRNA duplexes (guide strand/passenger strand) derived from pre-miRNA were downregulated in BrCa tissues (Table S3).

3.2. Expression levels of both strands of the miR-101 duplex (miR-101-5p and miR-101-3p) in BrCa tissues and cell lines

In the human genome, pre-miR-101 is located at two chromosomal loci, pre-miR-101-1 (1p31.3) and pre-miR-101-2 (9q24.1; Fig. S2). In this study, we focused on miR-101-1-5p (mature sequence: 5′-caguuau-cacagugcugaugcu-3′) and miR-101-3p (5′-uacaguacugu-aacugaa-3′). According to the TargetScan database, miR-101-5p is the passenger strand (minor strand), whereas miR-101-3p is the guide strand (major strand).

To verify the credibility of the BrCa signature, expression levels of miR-101-5p and miR-101-3p in clinical specimens (18 BrCa specimens and nine normal breast epithelial specimens) and two cell lines (MDA-MB-231 and MCF-7) were measured. Table 1 shows
the information on the clinical specimens used for this study. The expression levels of the two miRNA, i.e. miR-101-5p (P = 0.0396) and miR-101-3p (P = 0.0047), were significantly reduced in BrCa tissues (Fig. 1A,B). Moreover, we confirmed that the expression levels were low in the two cell lines (Fig. 1A,B).

Next, we analyzed whether miRNA expression affected the prognosis of patients with BrCa by TCGA database analysis. Kaplan–Meier overall survival curves showed that low expression levels of miR-101-5p were low in the two cell lines (Fig.1A,B). Moreover, we confirmed that the expression levels were significantly reduced in BrCa tissues (Fig.1A,B). miR-101-5p (study. The expression levels of the two miRNA, i.e. miR-101-5p and miR-101-3p=0.0316 and miR-101-3p (P = 0.0280) were associated with overall survival in patients with BrCa (Fig. 1C,D).

3.3. Expression of miR-101-5p and miR-101-3p inhibited the aggressive phenotypes of BrCa cells

To verify that miR-101-3p and miR-101-5p had tumor-suppressor functions in BrCa cells, we performed ectopic expression assays using mature miRNA transfection into BrCa cell lines (MDA-MB-231 and MCF-7). Cell proliferation assays showed that miR-101-5p- and miR-101-3p-transfected BrCa cells exhibited reduced cell growth compared with miR-control-transfected BrCa cells (Fig. 1E). We also performed cell cycle assays to determine the effects of miR-101-5p expression. Our data showed that G0/G1 phase arrest was observed following miR-101-5p expression in MDA-MB-231 cells (Fig. S3).

Additionally, cell migratory and invasive abilities were markedly attenuated in cells transfected with miR-101-5p and miR-101-3p (Fig. 1F,G).

3.4. MicroR-101-5p was incorporated into the RNA-induced silencing complex (RISC) in BrCa cells

Next, we aimed to verify that miR-101-5p (passenger strand) had actual functions in BrCa cells. It is essential that miRNA are incorporated into the RISC to control target genes. Ago2 is a fundamental component of the RNA-induced silencing complex (RISC). Therefore, immunoprecipitation using anti-Ago2 antibodies was performed after transfection of miR-101-5p into MDA-MB-231 cells. The amount of miR-101-5p incorporated into the protein was measured by PCR. Levels of miR-101-5p in the immunoprecipitates were much higher than those in mock-, miR-control- or miR-101-3p-transfected cells (P < 0.0001; Fig. S4).

3.5. Candidate oncogenic targets regulated by miR-101-5p in BrCa cells

The TargetScan Human 7.1 database predicted that 2896 candidate genes had miR-101-5p binding sites in the 3′-UTR. We also investigated genes that were upregulated in clinical BrCa specimens by microarray analysis [Gene Expression Omnibus (GEO) accession number: GSE118539] and compiled a list of 1121 genes. Finally, 104 oncogenic targets regulated by miR-101-5p were identified in BrCa cells (Table 3). Our selection strategy for miR-101-5p targets is shown in Fig. S5.

Next, we examined the relationship between the pathogenesis of BrCa and these targets using TCGA database. Among 104 targets, seven genes [High Mobility Group Box 3 (HMGB3): P = 0.0013, Epithelial splicing regulatory protein 1 (ESRP1): P = 0.0013, GINS1: P = 0.0126, Tumor Protein D52 (TPD52): P = 0.0223, Serine/Arginine-Rich Splicing Factor Kinase 1 (SRPK1): P = 0.0225, Vang-like protein 1 (VANGL1): P = 0.0447, and Mago Homolog B (MAGOHB): P = 0.0471] were significantly associated with poor prognosis in patients with BrCa (Fig. 2).

Moreover, we confirmed that three genes (i.e. GINS1, TPD52, and SRPK1) were significantly down-regulated by miR-101-5p transfection into both MDA-MB-231 and MCF-7 cells (Fig. 3). These three genes are essential for biological analysis of BrCa cells. We further analyzed the oncogenic functions of GINS1 in BrCa cells because this gene has not been described frequently in studies of cancer.

3.6. Direct regulation of GINS1 by miR-101-5p in BrCa cells

Expression levels of GINS1 mRNA and GINS1 protein were significantly reduced by miR-101-5p transfection (Figs 3 and 4A).

TargetScan database analysis showed that one putative miR-101-5p binding site was present in the 3′-UTR of GINS1 (Figs 4B and Fig. S1). Additionally, luciferase reporter assays showed that the luminescence intensity was markedly decreased by cotransfection with miR-101-5p and a vector carrying wild-type GINS1 3′-UTR. In contrast, the vector with a deleted miR-101-5p target site showed no change in luminescence intensity (Fig. 4C). These data indicated that GINS1 was directly regulated by miR-101-5p in BrCa cells.

We also investigated the direct regulation of TPD52 and SRPK1 by miR-101-5p in BrCa cells. The luminescence intensities were significantly reduced by cotransfection with miR-101-5p and vectors carrying wild-type TPD52 and SRPK1 3′-UTR, suggesting that these two genes were directly regulated by miR-101-5p (Fig. S6).
miRNA	miRBase accession	Location	Log₂FC	P-value	FDR
hsa-miR-204-5p	MIMAT0000265	9q21.12	-4.6141	2.58E-12	9.51E-10
hsa-miR-551b-3p	MIMAT0003233	3q26.2	-4.0638	7.63E-13	3.93E-10
hsa-miR-139-5p	MIMAT0000250	11q13.4	-3.9735	3.64E-24	9.38E-21
hsa-miR-378i	MI0016902	22q13.2	-3.8250	9.48E-07	6.60E-05
hsa-miR-422a	MI0001444	15q22.31	-3.8117	2.10E-07	1.80E-05
hsa-miR-144-5p	MI00001729	17q11.2	-3.6452	2.03E-12	8.73E-10
hsa-miR-891a-5p	MIMAT0004902	7q32.2	3.5033	3.97E-05	6.37E-04
hsa-miR-335-5p	MI00000765	17q11.2	3.6452	2.03E-12	9.51E-10
hsa-miR-144-3p	MI0001444	7q32.2	3.6452	2.03E-12	8.73E-10
hsa-miR-451a	MI0001729	17q11.2	3.6452	2.03E-12	8.73E-10
hsa-miR-139-5p	MI0000250	7q32.2	3.6452	2.03E-12	8.73E-10
hsa-miR-378i	MI0000265	9q21.12	-4.6141	2.58E-12	9.51E-10
hsa-miR-422a	MI0001444	15q22.31	-3.8117	2.10E-07	1.80E-05
hsa-miR-144-5p	MI00001729	17q11.2	-3.6452	2.03E-12	8.73E-10
hsa-miR-891a-5p	MIMAT0004902	7q32.2	3.5033	3.97E-05	6.37E-04
hsa-miR-335-5p	MI00000765	17q11.2	3.6452	2.03E-12	9.51E-10
hsa-miR-144-3p	MI0001444	7q32.2	3.6452	2.03E-12	8.73E-10
hsa-miR-451a	MI0001729	17q11.2	3.6452	2.03E-12	8.73E-10
hsa-miR-139-5p	MI0000250	7q32.2	3.6452	2.03E-12	8.73E-10
Table 2. (Continued).

miRNA	miRBase accession	Location	Log2FC	P-value	FDR
hsa-miR-143-5p	MIMAT0004599	5q32/C0	1.4443	2.24E-04	6.20E-03
hsa-miR-152-3p	MIMAT0000438	17q21.32/C0	1.4362	4.80E-05	1.77E-03
hsa-miR-195-3p	MIMAT0004615	1p31.33p24.1/C0	1.3746	1.51E-06	9.59E-05
hsa-miR-30e-3p	MIMAT0000693	17p13.1/C0	1.3699	3.85E-04	9.62E-03
hsa-miR-424-5p	MIMAT0001341	Xq26.3/C0	1.3396	5.65E-07	4.15E-05
hsa-miR-574-3p	MIMAT0003239	4p14/C0	1.3074	2.40E-03	4.45E-02
hsa-let-7g-3p	MIMAT0004584	3p21.2/C0	1.2822	7.99E-05	2.64E-03
hsa-miR-374a-5p	MIMAT000727	Xq13.2/C0	1.0676	2.29E-03	4.31E-02

Fig. 1. The clinical significance of miR-101-5p and miR-101-3p expression in BrCa. (A,B) Downregulation of miR-101-5p and miR-101-3p expression in BrCa specimens and two cell lines (MDA-MB-231 and MCF-7). Expression of RNU48 was used as an internal control. (C,D) Kaplan–Meier overall survival curve analyses of patients with BrCa using data from TCGA database. Patients were divided into two groups according to miRNA expression and analyzed. (E-G) Functional assays of miR-101-5p and miR-101-3p in BrCa cells (MDA-MB-231 and MCF-7). Cell proliferation, migration, and invasion were significantly blocked by ectopic expression of miR-101-5p or miR-101-3p. Error bars are represented as mean ± SD. P-values were calculated using Bonferroni-adjusted Mann-Whitney U-test. *P < 0.01, **P < 0.0001.
Table 3. Identification of target genes (TargetScan + Upregulated mRNA FC > 1.5).

Gene Symbol	Ensembl ID	Gene name	Total sites	Fold change
HIST1H2AG	ENST00000399137	Histone cluster 1, H2ag	2	5.661
PBK	ENST00000301905	PDZ binding kinase	2	4.654
SPP1	ENST00000308064	Secreted phosphoprotein 1	1	4.244
CXCL9	ENST00000268888	Chemokine (C-X-C motif) ligand 9	1	3.896
LMNB1	ENST00000460265	Lamin B1	1	3.826
GINS1	ENST00000262460	GINS1 (Psf1 homolog)	1	3.790
HMGB3	ENST00000325307	High Mobility Group Box 3	1	3.380
SBK1	ENST00000341901	SH3 domain binding kinase 1	1	3.313
LRP8	ENST00000306052	Low density lipoprotein-related protein B, apolipoprotein receptor	1	3.285
TRIM59	ENST00000309784	Tripartite motif containing 59	1	3.124
ESRP1	ENST00000517556	Epithelial Splicing Regulatory Protein 1	1	3.081
ESPL1	ENST00000552462	Extra spindle pole bodies homolog 1 (Saccharomyces cerevisiae)	1	3.060
MAD2L1	ENST00000504707	MAD2 mitotic arrest deficient-like 1 (yeast)	1	2.994
ATAD2	ENST00000287394	ATPase family, AAA domain containing 2	3	2.722
SELC	ENST00000236147	Selectin L	1	2.633
COL5A1	ENST00000618395	Collagen, type V, alpha 1	1	2.519
PARPBP	ENST00000327680	PARP1 binding protein	1	2.472
TFEC	ENST00000393485	Transcription factor EC	3	2.459
PMAP1	ENST00000316660	Phorbol-12-myristate-13-acetate-induced protein 1	1	2.425
SLC7A11	ENST00000280612	Solute carrier family 7 (anionic amino acid transporter light chain, xc- system), member 1	2	2.399
SLC37A2	ENST00000526400	Solute carrier family 37 (glucose-6-phosphate transporter), member 2	1	2.390
HIST2HAB	ENST00000578195	Histone cluster 2, H4b	2	2.370
DONSON	ENST00000442660	Downstream neighbor of SON	1	2.336
LAX1	ENST00000442561	Lymphocyte transmembrane adaptor 1	2	2.326
LILRB1	ENST00000421584	Leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 1	1	2.318
PNP	ENST00000554056	Purine nucleoside phosphorylase	1	2.318
PAG1	ENST00000220597	Phosphoprotein associated with glycosphingolipid microdomains 1	1	2.316
CHML	ENST00000366553	Choroideremia-like (Rab escort protein 2)	3	2.312
HIST1H2AH	ENST00000570101	0 histone cluster 1, H2ah	1	2.312
DIO2	ENST00000557010	Deiodinase, iodothyronine, type II	1	2.278
ASPN	ENST00000375544	asporin	1	2.249
CXADR	ENST00000401665	Coxsackie virus and adenovirus receptor	1	2.248
IFI44L	ENST00000476521	Interferon-induced protein 44-like	1	2.222
KNTC1	ENST00000333479	Kinetochore associated 1	1	2.221
HELL9	ENST00000394036	Helicase, lymphoid-specific	1	2.214
MTL5	ENST00000256807	Metallothionein-like 5, testis-specific (tesmin)	1	2.201
CXCR6	ENST00000437375	Chemokine (C-X-C motif) receptor 6	1	2.189
ADAM12	ENST00000366879	ADAM metalloproteinase domain 12	1	2.174
LILRB2	ENST00000493242	Leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2	1	2.141
ITGA4	ENST00000614742	Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)	1	2.127
TEMEM97	ENST00000226230	Transmembrane protein 97	1	2.121
HIST1H2AK	ENST00000618958	Histone cluster 1, H2ak	1	2.118
FAM84A	ENST00000331243	Family with sequence similarity 84, member A	1	2.089
CKAP2	ENST00000258607	Cytoskeleton associated protein 2	2	2.000
PTPRC	ENST00000442510	Protein tyrosine phosphatase, receptor type C	1	1.989
IGSF6	ENST00000268389	Immunoglobulin superfamily, member 6	1	1.988
TPDS2	ENST00000448733	Tumor Protein D52	1	1.958
SLC20A1	ENST00000490674	Solute carrier family 20 (phosphate transporter), member 1	1	1.934
LPCP2	ENST00000520322	Lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa)	1	1.926
OCIA4D2	ENST00000381464	OCIA domain containing 2	1	1.926
Gene Symbol	Ensembl ID	Gene name	Total sites	Fold change
-------------	------------	---	-------------	-------------
SLC17A9	ENST00000488738	Solute carrier family 17 (vesicular nucleotide transporter), member 9	1	1.896
SSTR2	ENST00000357585	Somatostatin receptor 2	2	1.894
NLRRC3	ENST00000615877	NLR family, CARD domain containing 3	1	1.874
VANG1	ENST00000310260	VANG planar cell polarity protein	1	1.861
ZFP69B	ENST00000469416	ZFP69 zinc finger protein B	2	1.848
CEACAM7	ENST00000067244	Carcinoembryonic antigen-related cell adhesion molecule 7	1	1.846
SORD	ENST00000562107	Sorbitol dehydrogenase	2	1.844
AARDC	ENST00000378279	Alanine- and arginine-rich domain containing protein	2	1.830
MMS22L	ENST00000275053	MMS22-like, DNA repair protein	2	1.824
ANGPT2	ENST00000352503	Angiopoietin 2	1	1.824
NCAPOG2	ENST00000467785	Non-SMC condensin II complex, subunit G	1	1.804
HIST1H2BN	ENST00000357520	Histone cluster 1, H2bn	1	1.790
CENPW	ENST00000365835	Centromere protein W	2	1.790
IFI44	ENST00000485662	Interferon-induced protein 44	1	1.779
KCNE4	ENST00000281830	Potassium voltage-gated channel, isk-related family, member 4	1	1.776
MGAT4A	ENST00000409391	Mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase, isozyme A	2	1.770
TAGAP	ENST00000326965	T-cell activation RhoGTPase activating protein	1	1.760
FYB	ENST00000351578	FYN binding protein	1	1.748
CD84	ENST00000369047	CD84 molecule	1	1.746
AMMECR1	ENST00000262844	Alport syndrome, mental retardation, midface hypoplasia and elliptocytosis	2	1.740
CYTIP	ENST00000264192	Cytohesin 1-interacting protein	2	1.734
SKA2	ENST00000583976	Spindle and kinetochore associated complex subunit 2	3	1.706
ANP32E	ENST00000436748	Acidic (leucine-rich) nuclear phosphoprotein 32 family, member E	1	1.706
FAM83B	ENST00000369858	Family with sequence similarity 83, member B	1	1.702
BCL3	ENST00000164227	B-cell CLL/lymphoma 3	1	1.701
HEYL	ENST00000372865	Hairy-enhancer-of-split related with YRPW motif-like	1	1.691
BORA	ENST00000613797	Bora, aurora kinase A activator	1	1.658
FAXC	ENST00000389677	Fused axon connections homolog (Drosophila)	1	1.657
PRKDC	ENST00000338368	protein kinase, DNA-activated, catalytic polypeptide	1	1.643
SFMB1	ENST00000394752	Scm-like with four mbt domains 1	1	1.639
CCRL2	ENST00000409882	Chemokine (C-C motif) receptor-like 2	1	1.636
GEN1	ENST00000381254	GEN1 Holliday junction 5' flap endonuclease	1	1.629
MSH2	ENST00000543555	mutS homolog 2	1	1.623
SLC22A15	ENST00000369503	Solute carrier family 22, member 15	1	1.615
TMEM154	ENST00000304385	Transmembrane protein 154	2	1.592
MAGOHB	ENST00000537852	Mago-nashi homolog B (Drosophila)	1	1.583
AK2	ENST00000373449	Adenylate kinase 2	1	1.577
USB1	ENST00000372750	U6 snRNA biogenesis	1	1.577
IL10RA	ENST00000322775	Interleukin 10 receptor, alpha	1	1.575
FM122B	ENST00000465128	Family with sequence similarity 122B	1	1.574
TRPV2	ENST00000338560	transient receptor potential cation channel, subfamily V, member 2	2	1.559
XRC3	ENST00000554811	X-ray repair complementing defective repair in Chinese hamster cells 3	1	1.556
KCTD5	ENST00000301738	Potassium channel tetramerization domain containing 5	1	1.550
MYCBP	ENST00000465771	MYC binding protein	1	1.548
NDC1	ENST00000371429	NDC1 transmembrane nucleoporin	2	1.545
SRFK1	ENST00000373822	SRF protein kinase 1	1	1.532
FGFR1OP	ENST00000349566	FGFR1 oncogene partner	1	1.531
PRPS2	ENST00000380688	Phosphoribosyl pyrophosphate synthetase 2	1	1.529
TNSF13B	ENST00000486502	tumor necrosis factor (ligand) superfamily, member 13b	2	1.527
SLC36A1	ENST00000243389	solute carrier family 36 (proton/amino acid symporter), member 1	1	1.526
CBX3	ENST00000481057	Chromobox homolog 3	1	1.516
EPT1	ENST00000613147	ethanolaminephosphotransferase 1 (CDP-ethanolamine-specific)	3	1.516
CD300E	ENST00000392619	CD300e molecule	1	1.510
WHSC1	ENST00000312087	Wolf-Hirschhorn syndrome candidate 1	2	1.510
miR-101-5p regulates BrCa pathogenesis

Fig. 2. Relationship between the expression levels of seven genes (HMGB3, ESRP1, GINS1, TPD52, SRPK1, VANGL1, and MAGOHb) and clinical significance based on data from TCGA database. The Kaplan–Meier overall survival curve analyses of patients with BrCa using data from TCGA database. Patients were divided into two groups according to gene expression and analyzed.

Fig. 3. Regulation of seven genes (HMGB3, ESRP1, GINS1, TPD52, SRPK1, VANGL1, and MAGOHb) by miR-101-5p transfection in BrCa cells (MDA-MB-231 and MCF-7). Expression levels of seven genes were evaluated by qRT-PCR (72 h after miR-101-5p transfection). GUSB was used as a loading control. Error bars are represented as mean ± SD. P-values were calculated using Bonferroni-adjusted Mann-Whitney U-test. *P < 0.01.
3.7. Expression and clinical significance of GINS1/GINS1 in BrCa specimens

We evaluated overexpression of GINS1 in BrCa specimens (the same samples used as for validation of miR-101-5p expression; Fig. 1A). GINS1 expression was significantly upregulated in BrCa issues compared with normal tissues ($P = 0.0020$; Fig. 5A). Spearman’s rank tests showed a tendency toward an inverse correlation between GINS1 and miR-101-5p expression ($P = 0.0532$, $r = -0.379$; Fig. 5B). We also investigated the inverse correlation between GINS1 and miR-101-5p expression in BrCa clinical specimens using TCGA database. An inverse correlation was detected between expression of miR-101-5p and GINS1 by Spearman’s rank tests ($P = 0.00103$, $r = -0.082$; Fig. S7).

A multivariate Cox proportional hazards model showed that high expression of GINS1 was an independent predictive factor for survival [hazard ratio (HR): 1.64, 95% confidence interval (CI): 1.12–2.41, $P = 0.0102$], as were well-known clinical prognostic factors such as N stage and M stage (Fig. 5C). Next, we investigated the expression levels of GINS1 in BrCa clinical specimens by immunostaining. GINS1 was strongly overexpressed in several cancer lesions compared with that in adjacent noncancerous lesions (Fig. 6). The clinical features of the specimens used to immunostaining are summarized in Table 1.

3.8. Effects of GINS1 silencing in BrCa cells

To validate the oncogenic functions of GINS1 in BrCa cells, we used knockdown assays with siRNA in two BrCa cell lines, MDA-MB-231 and MCF-7 (Fig. 5A). The two siRNA, siGINS1-1 and siGINS1-2, used in this assay significantly suppressed GINS1/GINS1 expression in BrCa cells (Fig. 7A,B).

Functional assays showed that malignant phenotypes of BrCa cells (e.g. cell proliferation, migration, and invasive abilities) were significantly blocked by siGINS1 transfection in BrCa cells (Fig. 7C–E). Furthermore, cell cycle assays showed that G0/G1 phase arrest was detected in siGINS1-transfected cells (Fig. S3).

Similar results were observed in another cell line, MDA-MB-157. Indeed, ectopic expression of miR-101-5p and knockdown of GINS1 significantly blocked
cancer cell aggressive phenotypes in MDA-MB-157 cells (Fig. S8).

3.9. Genes affected by GINS1 expression in BrCa clinical specimens

Finally, we identified the differentially expressed genes that were affected by GINS1 in BrCa. Our strategy is shown in Fig. S9. GSEA for the differentially expressed genes in BrCa tissues showing high expression of GINS1 in TCGA identified 11 signaling pathways (Fig. S10). We categorized GINS1-regulated genes using KEGG pathways. In total, seven pathways were identified based on overexpressed genes in BrCa tissues showing high GINS1 expression in TCGA (Fig. 8A). In particular, genes involved in DNA replication pathways were identified by heatmap analysis (Fig. 8B).

Among these genes involved in DNA replication pathways, we investigated the clinical significance of the relationship between gene expression and prognosis of the patients with BrCa by TCGA database analysis. High expression of four genes (GINS1, MCM4, MCM6, and RFC3) was significantly associated with poor prognosis in patients with BrCa (Fig. 8C).

4. Discussion

Notably, a single miRNA regulates a wide range of different RNA transcripts (protein-coding and non-protein-coding genes) in various normal and abnormal cells. Based on the unique nature of miRNA, novel RNA networks in human cancer cells can be identified from analysis of relevant miRNA. Currently available high-throughput technologies, e.g. oligo-microarrays, PCR-based arrays, and RNA-sequencing, have enabled the construction of miRNA expression signatures of BrCa (Ma et al., 2018), revealing the abnormal expression of many miRNA (Adhami et al., 2018; Gupta et al., 2019; Khordadmehr et al., 2019; Klinge, 2018; Kurozumi et al., 2017; Mehrgou and Akouchekian, 2017). One approach to identify the most important miRNA from a large number of candidate miRNA is to identify crossovers of miRNA that have been reported in multiple independent studies. Previous studies have shown that miR-139-5p, miR-195-3p, miR-
miR-101-5p, and miR-99a-5p are frequently downregulated and function as tumor-suppressive miRNA in BrCa cells (Adhami et al., 2018; Gupta et al., 2019; Khordadmehr et al., 2019; Klinge, 2018; Kurozumi et al., 2017; Mehrgou and Akouchekian, 2017). These miRNA were included in the signature we created in this study.

Furthermore, a major advantage of this signature is that it contained multiple passenger strands of miRNA derived from miRNA duplexes, e.g. miR-99a-3p, miR-101-5p, miR-144-5p, and miR-145-3p. As a general theory of miRNA biogenesis, the guide strand of miRNA derived from the miRNA duplex is incorporated into the RISC and regulates gene expression (Bhayani et al., 2012; Mah et al., 2010; McCall et al., 2017). In contrast, the passenger strand is degraded and does not regulate genes in cells (Bhayani et al., 2012; Mah et al., 2010; McCall et al., 2017).
et al., 2010; McCall et al., 2017). However, our recent studies have shown that some passenger miRNA have tumor-suppressive functions in cancer cells (e.g. miR-144-5p, miR-145-3p, miR-150-3p, and miR-455-5p) (Arai et al., 2019; Misono et al., 2018; Misono et al., 2019; Uchida et al., 2019). These miRNA and their target oncogenic genes are closely associated with cancer pathogenesis (Arai et al., 2019; Misono et al., 2018; Misono et al., 2019; Uchida et al., 2019). In the future, we will attempt to clarify the new molecular networks of BrCa using passenger strands of miRNA as indicators.

We focused on miR-101-5p and explored new aspects of this miRNA in BrCa cells. Many studies...
have shown that downregulation of miR-101-3p (the guide strand) occurs frequently in many cancers and that this miRNA acts as a tumor suppressor (Wang et al., 2018). Previous studies have clarified that miR-101-3p regulates various pivotal oncogenes and that downregulation of this miRNA affects cancer cell proliferation, metastasis, drug resistance, and angiogenesis via targeting of several oncogenic targets, e.g. EZH2, STMN1, VHL, SOX2, and DNMT3A (Wang et al., 2018). In BrCa, downregulation of miR-101-3p was detected in all subtypes of BrCa tissues, and miR-101-3p acted as a tumor suppressor (Liu et al., 2015; Liu et al., 2016; Ren et al., 2012; Zhang et al., 2015, 2019, 2015, 2019). Compared with reports of miR-101-3p, few studies have reported the tumor-suppressive functions of miR-101-5p and its target molecules in cancer cells. More recently, downregulation of miR-101-5p was reported in non-small cell lung carcinoma tissues compared with that in normal tissues (Chen et al., 2019). Overexpression of miR-101-5p was shown to suppress the aggressive phenotypes of cancer cells (in vitro) and pulmonary metastasis (in vivo) by regulating CXCL6 (Chen et al., 2019). Our data also showed that miR-101-5p acted as an antitumor miRNA in BrCa cells. Notably, both strands of miRNA derived from the miR-101 duplex were found to have tumor-suppressive functions in cancer cells.

Next, we aimed to elucidate miR-101-5p-regulated oncogenes and oncogenic pathways in BrCa cells. Analysis of our miRNA target search revealed that seven genes (HMGB3, ESRP1, GINS1, TPD52, SRPK1, VANGL1, and MAGOHB) were closely associated with poor prognosis. Among these targets, three genes (GINS1, TPD52, and SRPK1) were strongly controlled by miR-101-5p in BrCa cells. Aberrant expression of TPD52 (encoding TPD52) has been reported in a wide range of cancers, including BrCa, and several tumor-suppressive miRNA have been reported to be involved in regulating the expression of these genes (Balleine et al., 2000; Byrne et al., 2014; Li et al., 2016; Roslan Fig. 8. Genes affected by GINS1 expression in BrCa clinical specimens. (A) Identification of overexpressed genes affected by GINS1 expression in BrCa tissues in TCGA-BrCa and categorized by KEGG pathways. (B) Heatmap analysis of genes involved in DNA replication pathways. (C) The clinical significance of MCM4, MCM6, and RFC3 expression in BrCa. Kaplan–Meier overall survival curve analyses of patients with BrCa using data from TCGA database. Patients were divided into two groups according to miRNA expression and analyzed.
et al., 2014). *SRPK1* (encoding serine-arginine protein kinase 1) is involved in the regulation of several mRNA processing pathways, and its overexpression has been reported in multiple cancers (Patel et al., 2019). High expression of *SRPK1* is correlated with poor disease outcomes in patients with BrCa (Hayes et al., 2007; van Roosmalen et al., 2015). Knockdown of *SRPK* in BrCa cells inhibits metastasis to distant organs (Hayes et al., 2007; van Roosmalen et al., 2015). Further functional analyses of these genes will reveal the biological characteristics of BrCa. Starting from antitumor miRNA and using TCGA database analyses, we were able to identify effective prognostic markers and therapeutic targets for BrCa, indicating that our miRNA-based strategy was feasible.

In this study, we focused on *GINS1* and showed that its aberrant expression was closely related to BrCa malignant phenotypes. Chromosomal DNA replication is a tightly controlled essential process in the eukaryotic cell cycle, and many proteins are involved in each step of DNA replication (Labib and Gambus, 2007; MacNeill, 2010; Seo and Kang, 2018; Sun et al., 2016). The GINS complex (*SLD5, GINS1, GINS2, and GINS3*) is involved in the minichromosome maintenance complex and Cdc45 with proteins in a replisome progression complex (Labib and Gambus, 2007; MacNeill, 2010; Seo and Kang, 2018; Sun et al., 2016). A previous study of *GINS1* in BrCa cells showed that knockdown of *GINS1* inhibited BrCa cell growth by delaying DNA replication (Nakahara et al., 2010). This result was consistent with our current data. Another study showed that high expression of *GINS1* in cancer cells promoted cell proliferation, transplantaion, and metastatic properties (Nagahama et al., 2010). Overexpression of *PSF1* was reported non-small lung cancers, and its expression was useful as a prognostic marker (Kanzaki et al., 2016). These findings indicated that aberrantly expressed *GINS1* was involved in cancer pathogenesis.

Anlotinib is a newly developed multitarget receptor tyrosine kinase inhibitor used for patients with treatment failure non-small cell lung cancer with metastases (Shen et al., 2018). Interestingly, *GINS1* was identified as an anlotinib-mediated downstream gene, and knockdown of *GINS1* markedly inhibited the proliferation of synovial sarcoma cells (Tang et al., 2019). Aberrant expression of cell cycle-regulated genes is a common molecular mechanism of cancer cell malignancies, and these genes are potential cancer therapeutic targets. Cyclin-dependent kinases, i.e. CDK4 and CDK6, are essential for transition from the G0/G phase to the S phase of the cell cycle. Recently, several CDK4/6 inhibitors (e.g. abemaciclib, palbociclib, and ribociclib) have been developed, and several clinical trials have demonstrated the therapeutic effects of these inhibitors on hormone receptor-positive/HER-negative BrCa (Iwata, 2018; Matutino et al., 2018; Spring et al., 2019). Clinical trials of CDK4/6 inhibitors are also progressing in other subtypes of BrCa (Iwata, 2018; Spring et al., 2019). Our current data showed that knockdown of *GINS1* could markedly suppress malignant phenotypes in BrCa cells by affecting several cell cycle- and DNA replication-controlled genes. Controlling genes involved in DNA replication may represent a potential approach for cancer treatment. Thus, *GINS1* could be a novel diagnostic and therapeutic target for patients with BrCa.

5. Conclusion

We produced a novel RNA-sequencing-based BrCa miRNA signature. Our signature revealed that several novel miRNA, including passenger strands of miRNA, were downregulated in BrCa tissues. The BrCa miRNA signature created in this study established a basis for exploring new molecular RNA networks in BrCa. This is the first report demonstrating that *miR-101-5p* (the passenger strand of the *miR-101* duplex) acted as a tumor-suppressive miRNA in BrCa cells. Several oncogenic targets regulated by *miR-101-5p* were closely associated with BrCa pathogenesis and oncogenesis. Moreover, we demonstrated that *GINS1*, which we identified from analyses of genes regulated by *miR-101-5p*, may be a novel diagnostic and therapeutic target in BrCa. Our approach based on analysis of miRNA signatures could contribute to elucidation of the molecular pathogenesis of cancer.

Acknowledgements

This study was supported by KAKENHI (grant nos 16K19906, 17H04285, 18K16322, 18K09338 and 19K09049).

Conflict of interest

The authors declare no conflict of interest. NN is an employee of MSD KK, a subsidiary of Merck & Co., Inc., and reports personal fees from MSD KK, outside this study.

Author contributions

Conceptualization, NS, SK, and SN; methodology, NS; validation, HT, SK, and NN; formal analysis, YY, NN, SM, and TI; investigation, HT, YY, NN,
SM, and TI; resources, KM, TF, JH, YK, and SN; writing—original draft preparation, HT and NS; writing—review and editing, NS, SK, and SN; visualization, HT, YY, and NN; supervision, NS; funding acquisition, NS, SK, and SN.

References

Adhami M, Haghdooost AA, Sadeghi B and Malekpour Afshar R (2018) Candidate miRNA in human breast cancer biomarkers: a systematic review. Breast Cancer 25, 198–205.

Arai T, Kojima S, Yamada Y, Sugawara S, Kato M, Yamazaki K, Naya Y, Ichikawa T and Seki N (2019) Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p. Mol Oncol 13, 322–337.

Balleine RL, Fejzo MS, Sathasivam P, Basset P, Clarke CL and Byrne JA (2000) The hD52 (TPD52) gene is a candidate target gene for events resulting in increased 8q21 copy number in human breast carcinoma. Genes Chromosomes Cancer 29, 48–57.

Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.

Bhayani MK, Calin GA and Lai SY (2012) Functional relevance of miRNA sequences in human disease. Mutat Res 731, 14–19.

Bray F, Ferlay J, Soerjomataram I, Torre LA and Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394–424.

Byrne JA, Frost S, Chen Y and Bright RK (2014) Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? Tumour Biol 35, 7369–7382.

Chen Q, Liu D, Hu Z, Luo C and Zheng SL (2019) miRNA-101-5p inhibits the growth and aggressiveness of NSCLC cells through targeting CXCL6. Onco Targets Ther 12, 835–848.

Economopoulou P, Dimitriadis G and Psyrri A (2015) Beyond BRCA: a new hereditary breast cancer susceptibility genes. Cancer Treat Rev 41, 1–8.

Ferlay J, Soerjomataram I, Dikshit R, Esor S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136, E359–E386.

Foulkes WD, Smith IE and Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363, 1938–1948.

Gebert LFR and MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20, 21–37.

Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ and Panel Members (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22, 1736–1747.

Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, Kato M, Yamazaki K, Ishida Y, Naya Y et al. (2017) Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Cancer 117, 409–420.

Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S and Al Moustafa AE (2019) Triple negative breast cancer profile, from gene to microRNA, in relation to ethnicity. Cancers Basel, 11, pii: E363.

Hayes GM, Carrigan PE and Miller LJ (2007) Serine-arginine protein kinase 1 overexpression is associated with tumorigenic imbalance in mitogen-activated protein kinase pathways in breast, colon, and pancreatic carcinomas. Cancer Res 67, 2072–2080.

Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ and Cronin KA eds. (2017) SEER Cancer Statistics Review, 1975–2014. National Cancer Institute, Bethesda, MD, https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER website.

Idichi T, Seki N, Kurahara H, Fukulisa H, Toda H, Shimonosono M, Okato A, Arai T, Kita Y, Mataka Y et al. (2018) Molecular pathogenesis of pancreatic ductal adenocarcinoma: impact of passenger strand of pre-miR-148a on gene regulation. Cancer Sci 109, 2013–2026.

Iwata H (2018) Clinical development of CDK4/6 inhibitor for breast cancer. Breast Cancer 25, 402–406.

Kanzaki R, Naito H, Kise K, Takara K, Eino D, Minami M, Shintani Y, Funaki S, Kawamura T, Kimura T et al. (2016) PSF1 (partner of SLD five 1) is a prognostic biomarker in patients with non-small cell lung cancer treated with surgery following preoperative chemotherapy or chemoradiotherapy. Ann Surg Oncol 23, 4093–4100.

Khordadmehr M, Shahbazi R, Ezzati H, Jigari-Asl F, Sadreddini S and Baradaran B (2019) Key microRNAs in the biology of breast cancer; emerging evidence in the last decade. J Cell Physiol 234, 8316–8326.

Klinge CM (2018) Non-coding RNAs in breast cancer: intracellular and intercellular communication. Noncoding RNA 4, pii: E40.

Koshizuka K, Nohata N, Hanazawa T, Kikkawa N, Arai T, Okato A, Fukumoto I, Katada K, Okamoto Y and Seki N (2017) Deep sequencing-based microRNA expression signatures in head and neck squamous cell carcinoma: dual strands of pre-miR-150 as antitumor miRNA. Oncotarget 8, 30288–30304.

Kuchenbuecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, Jervis S, van Leeuwen FE,
miR-101-5p regulates BrCa pathogenesis

Li G, Yao L, Zhang J, Li X, Dang S, Zeng K, Zhou Y
Labib K and Gambus A (2007) A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17, 271–278.

Matsumoto H and Horiguchi J (2017) Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 62, 15–24.

Labib K and Gambus A (2007) A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17, 271–278.

Matsumoto H and Horiguchi J (2017) Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 62, 15–24.

Mehrgou A and Akouchekian M (2017) Therapeutic impacts of microRNAs in breast cancer by their roles in regulating processes involved in this disease. J Res Med Sci 22, 130.

Misono S, Seki N, Mizuno K, Yamada Y, Uchida A, Arai T, Kumamoto T, Sanada H, Suetsugu T and Inoue H (2018) Dual strands of the miR-145 duplex (miR-145-3p and miR-145-3p) regulate oncogenes in lung adenocarcinoma pathogenesis. J Hum Genet 63, 1015–1028.

Misono S, Seki N, Mizuno K, Yamada Y, Uchida A, Sanada H, Moriya S, Kikkawa N, Kumamoto T, Suetsugu T et al. (2019) Molecular pathogenesis of gene regulation by the miR-150 duplex: miR-150-3p regulates TNS4 in lung adenocarcinoma. Cancers 11, 601.

Nagahama Y, Ueno M, Miyamoto S, Morii E, Minami T, Mochizuki N, Saya H and Takakura N (2010) PSF1, a DNA replication factor expressed widely in stem and progenitor cells, drives tumorigenic and metastatic properties. Cancer Res 70, 1215–1224.

Nakahara I, Miyamoto M, Shibata T, Akashi-Tanaka S, Kinoshita T, Mogushi K, Oda K, Ueno M, Takakura N, Mizushima H et al. (2010) Up-regulation of PSF1 promotes the growth of breast cancer cells. Genes Cells 15, 1015–1024.

Patel M, Sachidanandan M and Adnan M (2019) Serine arginine protein kinase 1 (SRPK1): a moonlighting protein with theranostic ability in cancer prevention. Mol Biol Rep 46, 1487–1497.
Toda H, Kurozumi S, Kijima Y, Idichi T, Shinden Y, Yamada Y, Arai T, Maemura K, Fuji T, Horiguchi J et al. (2018) Molecular pathogenesis of triple-negative breast cancer based on microRNA expression signatures: antitumor miR-204-5p targets AP1S3. J Hum Genet 63, 1197–1210.

Treiber T, Treiber N and Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20, 5–20.

Uchida A, Seki N, Mizuno K, Misono S, Yamada Y, Wang CZ, Deng F, Li H, Wang DD, Zhang W, Ding L, Yamada Y, Arai T, Kojima S, Sugawara S, Okato A, Kato M, Yamada Y, Sugawara S, Arai T, Kojima S, Kato M, Yonemori K, Seki N, Idichi T, Kurahara H, Osako Y, Zhang X, Gao D, Fang K, Guo Z and Li L (2019) Med19 regulates BrCa pathogenesis. Cancer Sci 110, 420–432.

van Roosmalen W, Le Devedec SE, Golani O, Smid M, Pulyakhina I, Timmermans AM, Look MP, Zi D, Pont C, de Graauw M et al. (2015) Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant. J Clin Invest 125, 1648–1664.

Wang CZ, Deng F, Li H, Wang DD, Zhang W, Ding L and Tang JH (2018) MiR-101: a potential therapeutic target of cancers. Am J Transl Res 10, 3310–3321.

Yamada Y, Arai T, Koijma S, Sugawara S, Kato M, Okato A, Yamazaki K, Naya Y, Ichikawa T and Seki N (2018a) Regulation of antitumor miR-144-5p targets oncogenes: direct regulation of syndecan-3 and its clinical significance. Cancer Sci 109, 2919–2936.

Yamada Y, Arai T, Sugawara S, Okato A, Kato M, Koijma S, Yamazaki K, Naya Y, Ichikawa T and Seki N (2018b) Impact of novel oncogenic pathways regulated by antitumor miR-451a in renal cell carcinoma. Cancer Sci 109, 1239–1253.

Yamada Y, Sugawara S, Arai T, Koijma S, Kato M, Okato A, Yamazaki K, Naya Y, Ichikawa T and Seki N (2018c) Molecular pathogenesis of renal cell carcinoma: impact of the anti-tumor miR-29 family on gene regulation. Int J Urol 25, 953–965.

Yonemori K, Seki N, Idichi T, Kurahara H, Osako Y, Koshizuka K, Arai T, Okato A, Kita Y, Arigami T et al. (2017) The microRNA expression signature of pancreatic ductal adenocarcinoma by RNA sequencing: anti-tumour functions of the microRNA-216 cluster. Oncotarget 8, 70097–70115.

Zhang X, Gao D, Fang K, Guo Z and Li L (2019) Med19 is targeted by miR-101-3p/miR-422a and promotes breast cancer progression by regulating the EGFR/MEK/ERK signaling pathway. Cancer Lett 444, 105–115.

Zhang X, Schulz R, Edmunds S, Kruger E, Markert E, Gaedeke J, Cornet-Boyaka E, Ghadimi M, Beissbarth T, Levine AJ et al. (2015) MicroRNA-101 suppresses tumor cell proliferation by acting as an endogenous proteasome inhibitor via targeting the proteasome assembly factor POMP. Mol Cell 59, 243–257.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. A partial sequence of the 3′ untranslated region (3′-UTR) of the GINS1 gene. A putative binding site for miR-101-5p is shown in the 3′-UTR.

Fig. S2. Sequences of miR-101-1 and miR-101-2 in the human genome. Stem-loop sequences of miR-101-1 and miR-101-2; red characters indicate mature miRNA.

Fig. S3. Cell cycle assays (flow cytometry) in MDA-MB-231 cells with ectopic expression of miR-101-5p and siGINS1. Cell cycle phase distributions (G0/G1, S, and G2/M) are shown in the bar chart. By transfection of miR-101-5p and siGINS1, G0/G1 phase arrest was detected in MDA-MB-231 cells.

Fig. S4. Incorporation of miR-101-5p into the RISC in BrCa cells. Mature miRNA (miR-101-5p and miR-101-3p) were transfected into MAD-MB-231 cells, and incorporated miRNA was immunoprecipitated using anti-Ago2 antibodies. Incorporated miRNA was evaluated by qRT-PCR (*P < 0.0001). Expression of miR-21-5p was used for normalization. Error bars are represented as mean ± SD. P-values were calculated using Bonferroni-adjusted Mann-Whitney U-test.

Fig. S5. The strategy for identification of miR-101-5p target oncogenes in BrCa cells.

Fig. S6. Direct regulation of TPDS2 and SRPK1 by miR-101-5p in BrCa cells. Dual luciferase reporter assays showed that luminescence activities were reduced by cotransfection with wild-type vectors (A: TPDS2 and B: SRPK1) and miR-101-5p in MDA-MB-231 cells. Normalized data were calculated as Renilla/firefly luciferase activity ratios (*P < 0.001). Error bars are represented as mean ± SD. P-values were calculated using Bonferroni-adjusted Mann–Whitney U-test.

Fig. S7. Inverse correlation between expression of miR-101-5p and GINS1 in BrCa patients (TCGA database analysis, n = 1006), as detected by Spearman’s rank tests (P = 0.00103, r = −0.082).

Fig. S8. Expression of GINS1 was significantly reduced by siGINS1 transfection into MDA-MB-157 cells (A). Functional assays, cell proliferation (B), migration (C), and invasion (D), in MDA-MB-157 cells with transfection of miR-101-5p and siGINS1. Cell proliferation, migration, and invasion assays were described in Materials and Methods (2.4 and 2.5). *P < 0.001, **P < 0.05. Error bars are represented as mean ± SD. P-values were calculated using Bonferroni-adjusted Mann–Whitney U-test.
Fig. S9. The strategy for identification of GINS1 affected genes/pathways in BrCa tissues in TCGA.

Fig. S10. Gene set enrichment analysis (GSEA) based on mRNA sequence data in TCGA-BrCa tissues.

Table S1. Reagents used in this study.

Table S2. Annotation of reads aligned to small RNA.

Table S3. Downregulated miRNA in BrCa compare with normal breast (guide/passenger strand).