Fortification of chitosan and mangrove flour as windu shrimp feed (Penaeus monodon) against infection white spot syndrome virus

Herkules Manik, Marniati Solin, Khairul Thami, Fitriani, Beni Al Fajar*

Department of Biology, Faculty of Engineering, Samudra University, Kampus Unsam Meurandeh, Langsa 24415 Indonesia

*benialfajar@yahoo.com

Abstract. Langsa is one of the largest Windu shrimp producing areas in ACEH that holds considerable potential in the cultivation of windu shrimp. But recently the production of tiger shrimp has deteriorated due to various disease attacks that have caused shrimp deaths including White Spot Syndrome Virus. This disease is a crop failure disease with high levels of morbidity and mortality. Transmission of WSSV was very fast and led to a 100% death within 3-10 days since the clinical symptoms arose. Therefore, research is conducted to prevent and treat WSSV by using shrimp skin and mangrove flour as feed. Chitosan flour from shrimp skin waste has the potential to be used as feed. The aim of this study was to determine the effect of fortification of chitosan and mangrove flour as windu shrimp feed on physiological conditions of windu shrimp. Physiological observations carried out include feeding responses, swimming, body redness (body color changes), white spots on the carapace and counting shrimp that die during maintenance. Based on the results of the study show that the more mangrove flour and chitosan fortified in shrimp feed, the level of shrimp resistance to white spot syndrome virus infection is increasing which is characterized by a low mortality rate.

1. Introduction

Langsa is one of the largest Windu shrimp producing areas in ACEH that holds considerable potential in the cultivation of windu shrimp. But recently the production of tiger shrimp has deteriorated due to various disease attacks that have caused shrimp deaths including White Spot Syndrome Virus [1]. White spot Syndrome Virus (WSSV) is a disease that most causes economic loss, this virus infects shrimp at the premolting stage, giving rise a spotting pattern at post molting [2]. Spotting patterns is caused by the destruction of ectodermal cells resulting in the process of calcium deposition to be abnormal on the cuticle resulting in white lesions due to the transfer of exudate from epithelial cells to the cuticle through cuticular pore canal. According to [3] this disease is a crop failure disease with high levels of morbidity and mortality.

The transmission of WSSV was very fast and led to a 100% death within 3-10 days since the clinical symptoms arose. Until now, the treatment of WSSV is unknown; usually prevention is only done by selecting superior seeds, good cultivation management, and vaccines. Therefore, research is conducted to prevent and treat WSSV by using shrimp skin and mangrove flour as feed. Chitosan flour from shrimp skin waste has the potential to be used as feed. This is due to shrimp skin flour containing lysosim enzymes and...
aminopolysacharide groups as antimicrobial substances that can inhibit microbial growth. In addition, shrimp skin also contains chitosan which is quite efficient in inhibiting microbial activity. In this case [4] said that chitosan is able to suppress bacterial growth because chitosan has a positively charged poly cation that can inhibit bacterial and mold growth. Thus the provision of skin flour chitosan is expected to inhibit the activity of White Spot Syndrome Virus.

Mangrove flour derived from mangrove leaves and fruit which are used as shrimp feed. Mangroves contain flavonoids and saponins which can be used as antimicrobial and antivirus agents by inhibiting the virus respiration system [5]. Some flavonoids inhibit phosphodiesterase, aldoreductase, monoamine oxidase, protein kinase, reverse transcriptase, DNA polymerase and lipoxygenase in viruses and microbes. Therefore, the addition of chitosan flour and mangrove flour is expected to reduce the level of mortality in tiger shrimp by increasing immunity in tiger shrimp against viral infections, especially White Spot Syndrome Virus.

2. Material and Methods

2.1 Material

The main material were White Spot Syndrome Virus and *Paneusmonodon* from Balai Besar Pengembangan Budidaya Air Payau (BBPABP). All chemichal used for study were analytical grade and obtained from C.V Multikreasi Medan.

2.2 Method

2.2.1 Preparation of feed

a. Manufacture of Mangrove Flour (MF)

The mangrove plants are used in the form of the 3rd leaf to the top and fruit. The method of manufacture mangrove flour using method of [6]

b. Manufacture of Chitosan Flour (CF)

The waste of shrimp skin is washed with flowing water to remove the impurities attached, then dried in the oven with a temperature of 80 °C for 3 hours. After that the dried shrimp skin is ground until smooth with a size of 40 mesh [7].

c. Feed composition

The composition of windu shrimp feed in the form of supplement products from shellfish flour and mangrove flour which will be given when the shrimp is 15-45 days old ((pre molting and post molting) and previously the shrimp was also given feed commonly given by farmers.

2.2.2. Virus Provision

The purification od the spora fungus was carried out by transferring the fungus which has grown by 0.5 cm into the medium PDA. An identification book room from Nakagiri [] is used as a reference to identify morphology and pathogen fungi covering macroscopisana microscopic observations. The same colonies were considered in same isolate, and each representative colony was separated into isolated.

2.2.3 Preparation of laboratory animals and experimental design

a. Maintenance of laboratory animals

This study used PL20 juvenile windu shrimp with a density of 7 tails / liter maintained in an aquarium for 25 days with sufficient aeration for each treatment. Feed given is in the form of supplementation of mangrove and chitosan flour and artificial feed in the form of pellets with
a frequency of giving as much as 4 times at 07.00, 11.00, 3:00 p.m. and 7:00 p.m. After 25 days, a challenge test with WSSV was carried out. Daily observations include: Development and condition of larvae, survival and checking of water quality including preparation, 30-50% water change / day.

b. Treatment
The dose of addition of shrimp skin flour in making 1 kg of tiger shrimp feed consisting of 4 treatments: Control treatment = 0 gram CF (P0), 100 gram CF (P1), 200 gram CF (P2), 300 gram CF (P3). The dose of TM addition in making 1 kg of windu shrimp feed consisting of 4 treatments: Control treatment = 0 gram MF (C0), 100 gram MF (C1), 200 gram MF (C2), 300 gram MF (C3). So that the number of samples used was 96 samples of windu shrimp. Giving with the addition of MF and CF carried out when the shrimp is 15-35 days old, then at the age of 35 days the shrimp is challenged with the white spot virus syndrome and its development is observed.

c. Challenge Test with WSSV Virus
The WSSV transmission test is carried out through immersion in 1 liter of the virus solution with a 10-3 dilution (concentration of 20 µg / ml) into the transmission container for 90 minutes. The test shrimp is maintained for 35 days. Observations were made after 12 hours of challenging tests on the first day and then carried out every 24 hours.

2.2.4 Observation of Animals Laboratory
Physiological observations carried out include feeding responses, swimming, body redness (body color changes), white spots on the carapace and counting shrimp that die during maintenance [7]. Sampling of test shrimp was carried out every 12 hours on the first day and 24 hours on the next day as many as 2 tails for each treatment.

3. Result and Discussions
The results of observation of physiological shrimp responses after treatment are presented in Table 4.3 below:

Table 1. Changes in the condition of test shrimp during maintenance after challenging tests with WSSV

Parameter	Start-up time (Day-to-day)
	PO CO PO C1 PO C2 PO C3 P0 CO P0 C1 P0 C2 P0 C3 P1 CO P1 C1 P1 C2 P1 C3 P2 CO P2 C1 P2 C2 P2 C3 P3 CO P3 C1 P3 C2 P3 C3
Swimming activity increases	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
Decreased appetite	26 23 23 22 2 - - - 21 - - - 1 - - -
The colour of the body becomes clear	32 18 18 15 1 13 13 1 12 7 7 7 8 5 5 5
Eyes reddened	8 -
White spots	4 - - - 6 - - - 6 - - - 1 - - -
a. Swiming activity

Based on Table 1 shows that on days 1 and 2 there was a change in swimming activity towards a more active one in all treatments except the control on day 8. In this case [8] reported that decreased consumption of food, weak, loose cuticles, and color fading in the hepato pancreas from pink to reddish brown, anorexia, lethargi, redness of the abdomen and white spots which are clinical symptoms in infected shrimp.

b. Decreased appetite

Decrease in appetite occurred on day 26 of the control treatment, day 23 in the treatment of POC1, POC2, and POC3, day 22 in treatment P0C3, day 21 in treatment P1C0 and P2C0 and day 18 in treatment P3C0. The decrease in shrimp appetite can be seen from the amount of residual feed in the maintenance medium which reaches half of the feed given. Feeding response is getting better with increasing treatment doses. This is because shrimp is stressed due to WSSV attack [9] reports that characteristics of stressed shrimp can be seen from visual observations such as shrimp loss of appetite seen from lack of response to feed and swimming without direction.

c. Body discoloration (red eyes, clear body and white spots)

The higher the treatment dose, the higher the shrimp health level. It can be seen from the colour of the shrimp body that looks clear, the colour of the eye that is not red and the absence of white spots on the skin of the shrimp. In the control treatment the appearance of white spots and reddish eyes appears faster than other treatments resulting shrimp deaths early (Table 1). White spots are a specific symptom in WSSV-infected shrimp while lethargy such as decreased appetite and swimming activity are common symptoms of animals infected with WSSV ([10]). Spotting patterns is caused by the destruction of ectodermal cells resulting in the process of calcium deposition to be abnormal on the cuticle resulting in white lesions due to the transfer of exudate from epithelial cells to the cuticle through cuticular pore canal.

d. Death post infection WSSV

Based on Table 4.1, it can be seen that the higher the mangrove flour and chitosan fortified in shrimp feed, hence the level of shrimp resistance against white spot syndrome virus infection compared to the control that began to die on the 5th day post infection. It caused mangrove flour and chitosan fortified in feed can increase the resistance of shrimp to infection with whotspot syndrome virus. Maggrove flour acts as an immune stimulant so that it can increase the body resistance of shrimp. In this case [11] reported that administration of maggrove extract can reduce mortality of tiger shrimp treated with WSSV. Chitosan flour also plays a role in stimulating the immune system. In this case, [12] reported that the addition of chitosan to the feed can stimulate immune function,
improve digestion and absorption of nutrients and increase the protein content of Indian major carp (Labeo Rohita) so that it can improve growth performance.

e. **Total death**

Based on Table 4.1, it can be seen that the more mangrove flour and chitosan are fortified in shrimp feed, the more total time of death of shrimp after white spot syndrome virus infection compared to control died on the 9th day after infection. This is because mangroves fortified in feed contain flavonoids and saponins which can be used as antimicrobial and antiviral agents by inhibiting the virus respiration system [13]. Some of flavonoids inhibit phosphodiesterase, aldoreductase, monoamine oxidase, protein kinase, reverse transcriptase, DNA polymerase and lipookigenase in viruses and microbes. While chitosan as a non-toxic natural polymer can stimulate the development of the immune system, accelerate wound healing and is antibacterial [13]. Chitosan is used for immune stimulants, can improve digestion and absorption of feed nutrients given. In this case [12] reported that the addition of chitosan at a dose of 1% can stimulate the immune function of Indian major carp (Labeorohita). The use of immune stimulants as a feed supplement can increase the natural defense of fish so that it is resistant to pathogens during periods of stress [14].

4. Conclusion

Chitosan fortification (300 gr) and mangrove (300 gr) in 1 kg of commercial feed can increase shrimp resistance to white spot syndrome virus infections which are increasingly characterized by low mortality rates.

References

[1] Jasmani, S., Jayasankar, V., Shinjim J., and Wilder, M., 2011. Carbonic anhydrase and Na/K-ATPase activities during the molt cycle of low salinity-reared white shrimp Litopenaeusvannamei. *Fish Sci.* 76:219–225

[2] Thuong, K.V., Van, T., Sorvelloos, P., Bossier, and Nauwynck, J. 2017. Effects of acute change in salinity and molting on the infection of white leg shrimp (*Penaeus vannamei*) with white spot syndrome virus upon immersion challenge. *Journal of Fish diseases.* 15(3): 1675-1686.

[3] Amriillah, M.A., Widyarti, S., dan Kilawati, Y. 2015. Dampak stres salinitas terhadap prevalens white spot syndrome virus (wssv) dan survival rate udang vannamei (litopenaeus vannamei) pada kondisi terkontrol. *Research Journal of Life Science.* 2(2). 165-173

[4] Kong M., Xi Guang Chen, Ke Xing and Hyung Jin Park. 2010. Antimicrobial properties of chitosan and mode of action: a state of the review. *International Journal of Food Microbiology.* 144:51-63

[5] Agati, G., Azzarello, A., Pollastri, S., and Tattini, M. 2012. Flavonoids as antioxidants in plants: location and functional significance. *Journal Plant Science,* 196: 67–76.

[6] Sudheer NS, Philip Rosamma, Bright Singh IS (2013) *In vivo* screening of mangrove plants for anti WSSV activity in *Penaeus monodon*, and evaluation of *Ceriopstagal* as a potential source of antiviral molecules. *Aquaculture,* 311:36–41

[7] Kulabhusan, P.K., Rajwade., and Hameed, S.A. 201. Lateral flow assay for rapid detection of *white spot syndrome virus*(WSSV) using a phage-displayed peptide as bio-recognition probe. *Applied Microbiology and Biotechnology.* 101(11): 4459–4469
[8] Hameed, A. S. S, M. Anilkumar, M.L.S.Raj and K. Jayaraman. 1998. Studies on the pathogenicity of systemic ectodermal mesodermal baculovirus and its detection in shrimp by immunological methods. *Aquaculture* 160 : 31- 45

[9] Evan, Y. 2009. Uji Ketahanan beberapa Strain Larva Udang Galah (Macrobrachium rosenbergii de Man) Terhadap Bakteri Vibrio harveyi. Skripsi. Institut Pertanian Bogor. Bogor. 51 pp

[10] Vlak, Just M., Jean-Robert Bonami, Tim W. Flegel, Guang-Hsiung Kou, Donald V. Lighner, Chu-fang Lo, Philip C. Loh and Peter J. Walker. 2002. A New virus family infecting aquatik invertebrates. XIIth International Congress of Virology. Paris.

[11] Wahyujuningrum, Sholeh and Nuryati. 2006. Prevention of White Spot Syndrome Virus Infection on Penaeus monodon by Immersion in CEPM Extract of *Avicennia* sp. and *Sonneratia* sp. Jurnal Akuakultur Indonesia, 5(1):65-75

[12] Aathi, K., V. Ramasubramanian, V. Uthayakumar and S. Munirasu. 2013. Effect of Chitosan Supplemented Diet on Survival, Growth, Hematological, Biochemical and Immunological Responses of Indian Major Carp *Labeorohita*. *International Research Journal of Pharmacy*, IV(5) : 141-147

[13] Supriatna, A. 2004. Pengaruh perendaman ekstrak biji mangrove, *Xylocarpus granatum* (25, 50 dan 100 ppm selama 30 menit) terhadap patogenitas White Spot Syndrom Virus (WSSV) pada udang windu (*Penaeus monodon Fabr.*). Skripsi. Jurusan Budidaya Perairan, Fakultas Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor. Bogor

[14] Kumari, J. and Sahoo, P.K., 2006. Non-specific immune response of healthy and immunocompromised Asian catfish (*Clarias batrachus*) to several immunostimulants. *Aquaculture*, 255, 133-141