The TRENDS High-Contrast Imaging Survey. VII.
Discovery of a Nearby Sirius-like White Dwarf System
(HD 169889)

Justin R. Crepp¹, Erica J. Gonzales¹,²,⁹, Brendan P. Bowler³,⁷, Farisa Morales⁴, Jordan Stone⁵, Eckhart Spalding⁵, Amali Vaz⁵,⁶, Philip Hinz⁵, Steve Erte⁵, Andrew Howard⁷, Howard Isaacson⁸
jcrepp@nd.edu

ABSTRACT

Monitoring the long-term radial velocity (RV) and acceleration of nearby stars has proven an effective method for directly detecting binary and substellar companions. Some fraction of nearby RV trend systems are expected to be comprised of compact objects that likewise induce a systemic Doppler signal. In this paper, we report the discovery of a white dwarf (WD) companion found to orbit the nearby (\(\pi = 28.297 \pm 0.066\) mas) G9 V star HD 169889. High-contrast imaging observations using NIRC2 at Keck and LMIRCam at the LBT uncover the (\(\Delta H = 9.76 \pm 0.16, \Delta L' = 9.60 \pm 0.03\)) companion at an angular separation of 0.8'' (28 au). Thirteen years of precise Doppler observations reveal a steep linear acceleration in RV time series and place a dynamical constraint on the companion mass of \(M \geq 0.369 \pm 0.010 M_\odot\). This “Sirius-like” system adds to the census of WD companions suspected to be missing in the solar neighborhood.

Subject headings: keywords: techniques: radial velocities, high angular resolution; astrometry; stars: individual (HD 169889, HIP 90365, SAO 123479), white dwarfs

1. INTRODUCTION

Many undiscovered white dwarf (WD) companions remain hidden in the solar neighborhood, their faint signals overwhelmed by the glare of light emitted from a now-brighter unevolved companion star at optical and infrared wavelengths. The occurrence of these “Sirius-like” systems — binaries with a WD orbiting a solar-type or earlier-type star — represents only \(\approx 8\%\) of known WDs in close proximity to the Sun; this rate falls precipitously at distances beyond \(\approx 25\) pc due to observational bias ([Holberg et al. 2013]). WD companions are routinely missed from seeing-limited surveys that are relegated to studying large projected separations ([Parsons et al. 2016]).

Directly imaged WDs in Sirius-like systems are valuable benchmark objects that confer information regarding: empirical mass–radius relations; the luminosity function of WDs from precise parallax measurements of the host star; calibration of progenitor mass relations; atmospheric characterization and chemical constituents; and cooling timescale based on age estimates of the host star.
Hubble Space Telescope imaging follow-up measurements based on the presence of excess UV flux has been shown as a reliable method to identify Sirius-like WD companions (Parsons et al. 2016). At near-infrared wavelengths, ground-based adaptive optics (AO) observations of Sun-like stars can also be employed. Given that a blind survey (that is uninformed by dynamical signposts or other means) to detect WD companions would be inefficient, long-term radial velocity (RV) monitoring of Sun-like stars can instead be used to reveal the presence of compact objects as their orbits evolve over timescales of years to decades (Crepp et al. 2014; Rodigas et al. 2016). Orbital monitoring through imaging and precise RV measurements further permits studies of the period and eccentricity distribution of WD companions as currently only a handful have complete orbits (Bond et al. 2017). The orbital architecture of WD binaries informs studies that relate orbital evolution to the loss of companions (the rate of which is predicted to be significant at short orbital periods), circumstellar disks, mass transfer, and type Ia supernovae explosions (Parsons et al. 2016).

In this paper, we report the discovery of a Sirius-like WD companion orbiting the nearby \((d = 35.34 \pm 0.08 \text{ pc})\) Sun-like star HD 169889. The companion was originally mistaken as a brown dwarf candidate based on its brightness and neutral infrared color. However, RV measurements over a time baseline of 13 years combined with AO imaging places a lower-limit on the companion mass of \(M \geq 0.369 \pm 0.010 M_\odot\). We describe the observations acquired from Keck and the Large Binocular Telescope that detect (2), confirm (3), and provide a provisional characterization of the physical properties of the WD (5). HD 169889 B adds to a small but growing list of compact objects in the local sample that can be studied in detail by inferring properties from its optical host star and understanding their interaction.

HD 169889 Properties
right ascension (J2000)
declination (J2000)
\(B\) (mag)
\(V\) (mag)
\(R\) (mag)
\(I\) (mag)
\(J\) (mag)
\(H\) (mag)
\(K_s\) (mag)
\(\pi\) (mas)
\(d\) (pc)
\(\mu_\alpha\) (mas yr\(^{-1}\))
\(\mu_\delta\) (mas yr\(^{-1}\))
Mass \((M_\odot)\)
Radius \((R_\odot)\)
log \(L\) \((L_\odot)\)
log \(R'_{H,K}\)
\(S_{ave}\)
Gyro Age (Gyr)
SME Age (Gyr)
\([\text{Fe}/\text{H}]\) (dex)
log \(g\) (cm s\(^{-2}\))
\(T_{eff}\) (K)
Spectral Type
\(v \sin(i)\) (km s\(^{-1}\))

\(^1\) NIR magnitudes from 2-Micron All Sky Survey (2MASS) catalog of point sources (Cutri et al. 2003; Skrutskie et al. 2006).
\(^2\) Parallax from Gaia mission DR2 (Gaia Collaboration et al. 2016, 2018).
\(^3\) Gyrochronological age based upon empirical relations (Mamajek & Hillenbrand 2008).
\(^4\) Spectral fitting results from (Brewer et al. 2016).

Table 1: Upper panel: Observational parameters of HD 169889 A. Lower panel: Physical properties are derived from HIRES template spectra and theoretical isochrones (Valenti & Fischer 2005).

2. OBSERVATIONS

2.1. High-Resolution Spectroscopy

Precise stellar radial velocity measurements were obtained as part of the California Planet Search program (Howard et al. 2010). HD 169889 was observed using the High Resolution Echelle Spectrometer (HIRES) with the Keck I telescope (Vogt et al. 1994). Standard methods for precise
Doppler observations were used for spectral calibration, extraction, and RV analysis [Howard et al. 2010]. A total of eight Doppler measurements (relative to an arbitrary zero-point) were recorded from 2003 through 2016 (Table 2); a significant acceleration was noticed within the first several years of RV follow-up. HD 169889 was subsequently observed with a relatively low cadence compared to Doppler searches meant specifically for planets. As with other TRENDS discoveries, visual inspection of RV time series measurements along with numerical investigation of Doppler accelerations led to the identification of HD 169889 as a high priority target for follow-up high-contrast imaging (Crepp et al. 2012, 2014).

Fitting the RV slope as a straight line, we find an average acceleration of $\dot{v} = 32.42 \pm 0.18 \, \text{m s}^{-1} \, \text{yr}^{-1}$. As can be seen in Figure [1] when comparing a systemic trend to the HIRES measurements a low-level change in the acceleration over time can be seen. While the instantaneous acceleration places a lower limit on the directly imaged companion mass (see [4]), curvature information (the “jerk”, \ddot{v}) can ultimately be used to constrain eccentricity and other orbital parameters given sufficient imaging and RV data (Crepp et al. 2012).

Date (UT)	BJD	RV (m s$^{-1}$)	Uncertainty (m s$^{-1}$)
2003-07-12	2832.8151	-212.01	1.16
2004-05-28	3154.0357	-183.81	3.12
2004-08-23	3240.8538	-178.44	0.84
2005-06-25	3546.8841	-153.44	0.81
2006-09-05	3983.7572	-123.22	0.80
2013-08-08	6512.7585	102.17	1.16
2014-08-24	6893.7523	135.61	0.90
2016-06-29	7568.8750	216.75	0.88

Table 2: Relative stellar RV measurements for HD 169889. A horizontal line denotes the division between data sets when the HIRES detector was upgraded (August 2004) requiring a relative RV offset for analysis.
HD 169889 was observed using NIRC2 with the Keck II AO system on 2015-May-29 UT, 2015-Aug-28 UT, and 2016-Apr-21 UT (Wizinowich et al. 2000). Measurements were obtained at near-infrared wavelengths using the narrow field camera mode (1024 × 1024 pixels with 10 mas plate scale). The field derotator was turned off (vertical angle mode) to enable speckle suppression through angular differential imaging (Marois et al. 2006). Table 3 lists a summary of the observations.

Initially meant to vet the target for binarity with a snap-shot imaging sequence, the first observations of HD 169889 acquired in May 2015 resulted in a marginal detection of what would later be confirmed as the optical companion which we refer to as HD 169889 B. Figure 2 shows the dipole pattern that results from a partially subtracted companion point spread function (PSF) close to the optical host star ($\theta \approx 832$ mas). Given that the first epoch yielded only coarse astrometry and photometry information, subsequent epochs with larger angular rotation were obtained to avoid self-subtraction and distinguish the object from speckle noise. Follow-up observations were obtained in H and K_s with NIRC2 in subsequent observing seasons to assess companion color and relative proper-motion. Due to constraints from weather, parallel observing programs, and other logistics, unsaturated images of the optical host star were only obtained in the H-band (April 2016) to allow for relative photometry measurements, making the K_s data (August 2015, August 2016) only helpful for astrometry (\S 3). Standard data analysis methods were used to fully process the differential imaging sequence as employed in other TRENDS detections (Crepp et al. 2014, 2016).

LBT/LMIRCam

A separate sequence of mid-infrared observations were recorded by LMIRCam at the Large Binocular Telescope (LBT) on June 20 2016 UT (Skrutskie et al. 2010). With fewer optical reflections than traditional AO systems, LBT offers lower thermal background levels in the mid-infrared. Imaging measurements were obtained using the LBT Interferometer (LBTI) but using only the left side 8.4m aperture (Hinz et al. 2016). Since the LBTI instrument has no de-rotator, all fields are observed to rotate with the parallactic angle on the detector. To track time-variable sky background and detector drifts we nodded the star up and down with a throw of 4.5" every 50 frames.

Data were reduced using the LEECH-survey pipeline (Skemer et al. 2014). In short, the pipeline implements the following steps. Bad pixels are fixed by replacing their values with the median of the nearest eight functioning pixels. The median of each detector channel is subtracted from the corresponding pixel columns to correct for bias drifts on timescales shorter than nods. Background emission is removed from each image by subtracting the median of 50 images recorded in the opposite nod position taken closest in time. Each image is dewarped using the coefficients reported by (Maire et al. 2015). Since LBTI/LMIRCam pixels over sample the single-aperture PSF, we bin each image into 2×2 pixels,
The LEECH pipeline implements principal component analysis (PCA) to fit and remove the influence of the central star before de-rotating and stacking images \citep{Soummer2012, Amara2012}. PCA proceeds annulus-by-annulus using a width of 9 pixels ($\approx 2\lambda/D$) to fit for the starlight and then subtracting the best fit from an annulus only 1-pixel wide. We fit for the optimal number of principal components at each radius by injecting fake planets and iterating until we reach the best contrast. The position and flux of HD 169889 B were fit simultaneously by subtracting a shifted and scaled image of the unsaturated primary star, which we used as a model PSF. This was done for the median combined images before the high-contrast data processing steps to properly account for algorithm effective throughput.

We use the spectral-type–color relations from \cite{Bessell1988} to estimate the L' magnitude of HD 169889 A, finding $L' = 6.44$. This result is consistent with WISE photometry, $W_1 = 6.45 \pm 0.07$, which is comparable to L' at this level of precision. The resulting apparent magnitude and absolute magnitude of HD 169889 B are listed in Table 4.

3. Astrometry

HD 169889 has a large proper motion across the sky (Table 1). An astrometric time baseline of 1.2 years (May 2015 to August 2016), which includes five imaging detections, provided unambiguous confirmation that the companion was comoving.
We plot the measured position of HD 169889 B relative to HD 169889 A and compare to the null-hypothesis that describes the path of a distant background source (Fig. 3). As mentioned previously, the discovery image of HD 169889 B from May 2015 achieved only marginal parallactic angle rotation (Table 3). Nevertheless, we still use astrometry from this epoch. Though the dipole intensity pattern of the companion could not be removed, it can still be modeled by injecting fake companions. Following a procedure similar to that which allows for photometric calibration of self-subtraction, we estimate the position angle (PA) of the companion from this epoch and adopt conservative uncertainties to accommodate systematics from rotational shear (Table 4). All other epochs were analyzed self-consistently using the methods described in other TRENDS discoveries (Crepp et al. 2014; Crepp et al. 2016).

4. Companion Mass Limit from Dynamics

We use the precise stellar RV measurements obtained from HIRES along with imaging follow-up measurements to place a lower limit on the mass of HD 169889 B from dynamics. The eight Doppler measurements are fit with a straight line to estimate the acceleration of the star induced by the companion. We augment the internal RV uncertainties listed in Table 2 with a “jitter” term that is added in quadrature to accommodate the expected level of noise introduced from stellar variability. HD 169889 A has a visual color of $B-V = 0.75$ and median activity index $S_{HK} = 0.18$. We assume a $B-V$ uncertainty of 0.01 mags. Using empirical relations from Isaacson & Fischer (2010), we estimate a jitter value of $\sigma = 2.2 \pm 0.1$ m/s.

A straight line is fit using Markov Chain Monte Carlo (MCMC) methods to find a best-fitting RV slope of $\dot{v} = 32.42 \pm 0.18$ m s$^{-1}$ yr$^{-1}$. Combined with the direct imaging projected separation, we use the relation from Liu et al. (2002) to derive a lower limit to the companion mass of $m_{\text{min}} = 0.369 \pm 0.010 M_\odot$. Clearly, HD 169889 B cannot be a brown dwarf but is instead a compact object provided the acceleration is attributable to this object.

A more careful treatment would consider the slight curvature noticeable by eye in the RV time series as well as astrometry (Figure 1). However, only a small fraction of the companion orbit has been traced in either data set. Further, the astrometry measurements were obtained with

Table 3: Summary of high-contrast imaging observations showing the number of coadds (N_{coadds}), frames (N_{fr}), exposure time per frame (Δt_{exp}), and change in parallactic angle $\Delta \pi$ (°).

Date (UT)	Instrument	Filter	$\Delta t_{\text{exp}} \times N_{\text{coadds}} \times N_{\text{fr}}$	$\Delta \pi$ (°)
29 May 2015	NIRC2	K_s	$5 \times 10 \times 18$	1.8
28 August 2015	NIRC2	K_s	$5 \times 10 \times 30$	48.7
21 April 2016	NIRC2	H	$3 \times 15 \times 30$	10.5
20 June 2016	LMIRCam	L'	$0.08733 \times 1 \times 3948$	50
20 August 2016	NIRC2	K_s	$10 \times 3 \times 45$	20.5

Table 4: Summary of astrometry measurements. Position angle (P.A.) measurements are referenced with respect to the equator of the observing epoch.

Date (UT)	JD-2,450,000	ρ (mas)	P. A. (°)	Proj. Sep. (au)
29 May 2015	7171.9	$\approx 832 \pm 10$	$\approx 163 \pm 1$	29.4 \pm 0.4
28 August 2015	7262.8	816 \pm 6	161.7 \pm 0.8	28.8 \pm 0.2
21 April 2016	7500.1	789 \pm 12	162.1 \pm 0.7	27.9 \pm 0.4
20 June 2016	7559.9	828 \pm 3	162.0 \pm 0.5	29.3 \pm 0.1
20 August 2016	7620.8	796 \pm 6	161.5 \pm 0.7	28.1 \pm 0.2

2 NIRC2 was opened for installation of new filters just prior to the first observation of HD 169889 B. The plate scale, image distortion solutions, and position angle offset from Service et al. (2016) are applicable to all measurements.
two different instruments using three different filters. The systematics that result from combining these observations can be noticed in the zoomed in portion of Figure 5 at the $\approx 1\sigma$ level (10 mas). The WD companion appears to be moving to the north, i.e. closer to HD 169889 A, but further AO follow-up imaging is required to confirm.

5. White Dwarf Properties

Empirical relations between WD masses and their progenitors have been established based on the study of open clusters, globular clusters, and common proper motion pairs (Weidemann 2000; Williams et al. 2009). Using the dynamical mass lower limit from RVs and imaging, we attempt to place a lower limit on the companion progenitor mass (M_i) by inverting the empirical relationship

\[
M_f = (0.096 \pm 0.005) M_i + (0.429 \pm 0.015), \quad (1)
\]

Table 5: Photometric results and companion properties.

	HD 169889 B
ΔH	9.76 ± 0.16
$\Delta L'$	9.60 ± 0.03
L'	16.32 ± 0.16
M_H	13.59 ± 0.16
$M_{L'}$	13.32 ± 0.08
$M_{\text{dyn}} (M_\odot)$	$\geq 0.369 \pm 0.010$
t_{cooling} (Gyr)	$\leq 5.2^{+1.3}_{-1.5}$

Fig. 5.— Proper motion and parallactic motion analysis taking into account the path that an infinitely distant background object would traverse is compared to the separation of HD 169889 B over time. Angular offsets are measured relative to the optical primary star. The inset shows a zoomed in view of individual astrometric measurements. The companion shares the same space motion demonstrating that they are gravitationally associated.
which is applicable for $M_i \leq 2.7M_\odot$ stars.\footnote{Both M_i and M_f are implicitly listed in solar mass units.} We find however that the dynamical mass lower limit is smaller than all final mass (M_f) values used to establish the empirical relation. Naively extrapolating the equation to smaller masses is not (justifiable nor) informative since the corresponding progenitor mass (M_i) becomes smaller than the mass of HD 169889 A ($M_i \leq 0.89M_\odot$), which cannot be true provided the pair formed at the same time.

We instead place a constraint on the nuclear-burning plus cooling age of the WD by estimating the age of HD 169889 A\footnote{Progenitor mass estimates are further complicated by chemical composition, e.g. whether the atmosphere is hydrogen dominated, helium rich, or a combination thereof.}. Using gyrochronology relations from Mamajek & Hillenbrand (2008), we find $P_{rot} = 33 \pm 4$ days, corresponding to a gyrochronological age of $\tau = 5.2^{+1.3}_{-1.5}$ Gyr (Wright et al. 2004). This estimate, which is based on the $B - V = 0.75$ color of the primary (we assume ± 0.01 uncertainty) and $R_H = -4.9$ value (we assume ± 0.1 uncertainty), is consistent with the broad range suggested from an isochronal analysis (SME, Table 1).

To break the degeneracy between nuclear-burning timescale and cooling age it is necessary to precisely determine the WD effective temperature (Liebert et al. 2005). With only two broadband photometry measurements available, we consider the Rayleigh Jeans tail of the Planck curve to get a handle on the WD effective temperature. Using the H and L' measurements to obtain SED slope information, $dB_3/d\lambda \approx (B_L' - B_H)/\Delta \lambda$, we find a temperature of $T \approx 2150$ K. This value however would imply a black body peak in the near-infrared ($\lambda_0 \approx 1.4 \, \mu m$) and is therefore inconsistent with the presumption that the WD is hot in the first place. We adopt $T = 2150$ K as a lower-limit to the companion temperature, noting that WD’s this cool have not been detected.

Knowing a priori that ultra-cool WDs are scarce, we fit a full black body curve to the SED by incorporating the distance to the source. We find that hotter temperatures, $T \approx 10,000$ K, are also consistent with the limited photometry available; however, large discrepancies still remain in the mid-infrared suggesting that the presence of Hydrogen and Helium may need to be accounted for to properly fit the data set.

Finally, we use the H-band absolute magnitude of HD 169889 B and compare to WD cooling models (see Holberg & Bergeron 2006; Kowalski & Saumon 2006; Tremblay et al. 2011; Bergeron et al. 2011). Masses in the range from $M = 0.4-1.2M_\odot$ are considered. The mass lower-limit is matched to the lower-limit from dynamics, and the mass upper limit corresponds to that available from theoretical evolutionary sequences. In this range, pure Hydrogen atmospheres result in an effective temperature range of $\approx 4000-12,000$ K with a cooling age of $5.3-1.9$ Gyr, and pure Helium atmospheres result in an effective temperature range of $\approx 4000-14,000$ K with a cooling age of $5.8-1.3$ Gyr. Given the gyrochronological age estimate of HD 169889 A of $\tau = 5.2^{+1.3}_{-1.5}$ Gyr, we cannot at this point identify any tension with the models without further refinements to the companion mass. While these estimates are consistent with the black-body temperature approximated using the H-L color, low resolution spectroscopy is needed to further characterize the WD and understand its composition, cooling age, and progenitor mass.

6. Concluding Remarks

We have detected a WD companion that orbits a bright ($V = 8.27$) and well characterized solar-type (G9 V) star with a precisely determined parallax (28.297 ± 0.066 mas). The census of these “Sirius-like” systems is known to be incomplete just beyond the solar neighborhood ($d \approx 25$). The second WD discovery of the TRENDS high-contrast imaging program, HD 169889 B offers an up-close view of a directly imaged compact object for which dynamical mass information is available.

We have estimated the nuclear-burning timescale plus cooling age of the WD using gyrochronology of HD 169889 A. At present however degeneracies between effective temperature, composition, and the companion final mass preclude an estimate of the compact object progenitor mass. Broader SED information along with continued Doppler and astrometric monitoring is warranted to further characterize the companion atmosphere and
other physical properties. Space-based observations could provide complementary photometric and spectroscopic measurements and potentially allow for an estimate of log(g) through the Balmer line profile, and a gravitational red-shift measurement would yield the WD mass-to-radius ratio provided contamination from the bright optical host star can be mitigated. It may be worth investigating indirect evidence for past mass transfer from HD 169889 “B” to its optical host star through studies of enhanced metallicity in the optical spectrum. Finally, the companion will be valuable for characterizing high-contrast imaging spectrographs given its flux ratio and presumed featureless spectrum.

7. ACKNOWLEDGEMENTS

The TRENDS high-contrast imaging program is supported in part by NASA Origins of Solar Systems grant NNX13AB03G. JRC acknowledges support from the NASA Early Career Fellowship and NSF Career Fellowship. EJG acknowledges support from the NSF graduate research fellowship program. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This paper made use of WD cooling models from http://www.astro.umontreal.ca/~bergeron/CoolingModels We are deeply grateful for the vision and support of the Potenziani and Wolfe families.

REFERENCES

Amara, A., & Quanz, S. P. 2012, MNRAS, 427, 948
Bacchus, E., Parry, I. R., Oppenheimer, R., et al. 2017, MNRAS, 469, 4796
Bergeron, P., Wesemael, F., Dufour, P., et al. 2011, ApJ, 737, 28
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Bond, H. E., Bergeron, P., & Bédard, A. 2017, ApJ, 848, 16
Brewer, J. M., Fischer, D. A., Valenti, J. A., & Piskunov, N. 2016, ApJS, 225, 32
Catalán, S., Isern, J., García-Berro, E., & Ribas, I. 2008, MNRAS, 387, 1693
Crepp, J. R., Johnson, J. A., Howard, A. W., et al. 2012, ApJ, 761, 39
Crepp, J. R., Johnson, J. A., Fischer, D. A., et al. 2012, ApJ, 751, 97
Crepp, J. R., Johnson, J. A., Howard, A. W., et al. 2013, ApJ, 774, 1
Crepp, J. R., Johnson, J. A., Howard, A. W., et al. 2014, ApJ, 781, 29
Crepp, J. R., Gonzales, E. J., Bechter, E. B., et al. 2016, ApJ, 831, 136
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog, 2246
Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, arXiv:1804.09365
Harris, H. C., Munn, J. A., Kilic, M., et al. 2006, AJ, 131, 571
Hinz, P. M., Defrère, D., Skemer, A., et al. 2016, Proc. SPIE, 9907, 990704
Holberg, J. B., & Bergeron, P. 2006, AJ, 132, 1221
Holberg, J. B., Oswalt, T. D., Sion, E. M., Barstow, M. A., & Burleigh, M. R. 2013, MNRAS, 435, 2077
Holberg, J. B., Oswalt, T. D., Sion, E. M., & McCook, G. P. 2016, MNRAS, 462, 2295
Howard, A. W., Johnson, J. A., Marcy, G. W., et al. 2010, ApJ, 721, 1467
Howard, A. W., Marcy, G. W., Johnson, J. A., et al. 2010, Science, 330, 653
Isaacson, H., & Fischer, D. 2010, ApJ, 725, 875
Joyce, S. R. G., Barstow, M. A., Casewell, S. L., Holberg, J. B., & Bond, H. E. 2017, 20th European White Dwarf Workshop, 509, 389
Kilic, M., Munn, J. A., Harris, H. C., et al. 2006, AJ, 131, 582
Kowalski, P. M., & Saumon, D. 2006, ApJ, 651, L137
Liebert, J., Young, P. A., Arnett, D., Holberg, J. B., & Williams, K. A. 2005, ApJ, 630, L69
Liu, M. C., Fischer, D. A., Graham, J. R., et al. 2002, ApJ, 571, 519
Maire, A.-L., Skemer, A. J., Hinz, P. M., et al. 2015, A&A, 579, C2
Mamajek, E. E., & Hillenbrand, L. A. 2008, ApJ, 687, 1264-1293
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., & Nadeau, D. 2006, ApJ, 641, 556
Matthews, C. T., Crepp, J. R., Skemer, A., et al. 2014, ApJ, 783, L25
Parsons, S. G., Rebassa-Mansergas, A., Schreiber, M. R., et al. 2016, MNRAS, 463, 2125
Parsons, S. G., Gänsicke, B. T., Marsh, T. R., et al. 2017, MNRAS, 470, 4473
Rodigas, T. J., Bergeron, P., Simon, A., et al. 2016, ApJ, 831, 177
Service, M., Lu, J. R., Campbell, R., et al. 2016, PASP, 128, 095004
Skemer, A. J., Hinz, P., Esposito, S., et al. 2014, Proc. SPIE, 9148, 91480L
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Skrutskie, M. F., Jones, T., Hinz, P., et al. 2010, Proc. SPIE, 7735, 77353H
Soummer, R., Pueyo, L., & Larkin, J. 2012, ApJ, 755, L28
Torres, G. 1999, PASP, 111, 169
Tremblay, P.-E., Bergeron, P., & Gianninas, A. 2011, ApJ, 730, 128
Valenti, J. A., & Fischer, D. A. 2005, ApJS, 159, 141
Vogt, S. S., Allen, S. L., Bigelow, B. C., et al. 1994, Proc. SPIE, 2198, 362
Weidemann, V. 2000, A&A, 363, 647
Williams, K. A., Bolte, M., & Koester, D. 2009, ApJ, 693, 355
Wizinowich, P., Acton, D. S., Shelton, C., et al. 2000, PASP, 112, 315
Wright, J. T., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2004, ApJS, 152, 261

This 2-column preprint was prepared with the AAS LaTeX macros v5.2.