Genome-wide identification and expression analyses of R2R3-MYB transcription factor genes from two Orchid species

Honghong Fan Equal first author, 1, Manli Cui Equal first author, 1, Ninghong Li 1, Xujuan Li 1, Yuxuan Liang 2, Lin Liu 1, Yongping Cai Corresp. 1, Yi Lin Corresp. 1

1 School of Life Sciences, Anhui Agricultural University, Hefei, China
2 Faculty of Forestry, University of British Columbia, Vancouver, Canada

Corresponding Authors: Yongping Cai, Yi Lin
Email address: swkx12@ahau.edu.cn, linyi1957@126.com

MYB transcription factors play important roles in different plant biological processes during plant growth, development and stress response. In this study, 101 (DoMYB1–101) and 99 (PaMYB1–99) R2R3-MYB genes were identified in the genomes of *Dendrobium officinale* and *Phalaenopsis aphrodite*, respectively. To classify the isolated candidate genes, the R2R3-MYB genes from *A. thaliana* were selected as references. As a result, all identified DoMYB and PaMYB genes were classified into 22 subfamilies. Phylogenetic analysis revealed that S21 had the largest number of members of all the subfamilies. The numbers of introns, exons and conserved sequences in all of the identified genes are different. In addition, 20 DoMYB genes from six subfamilies were selected for further analysis of tissue-specific expression and responses to various abiotic stresses treatments. The results showed that all of the DoMYB genes in S4 and S19 subfamily exhibited the highest relative expression levels in flowers. And five DoMYB genes including DoMYB31, DoMYB40, DoMYB49, DoMYB52 and DoMYB54, responded to the stress response. These results may provide useful information for further studies of the R2R3-MYB gene family.
Genome-wide identification and expression analyses of R2R3-MYB transcription factor genes from two Orchid species

Honghong Fan†1, Manli Cui†1, Ninghong Li1, Xujuan Li1, Yuxuan Liang2, Lin Liu1, Yongping Cai*1, Yi Lin*1

1. School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
2. Faculty of Forestry, University of British Columbia, Vancouver V6T1Z4, Canada;
hhfan0551@126.com (H.F.); 1289121655@qq.com (M.C.); lnh0411@163.com (N.L.)
lxj152567@163.com (X.L.); liulin2018@ahau.edu.cn (L.L.).
*Correspondence: swkx12@ahau.edu.cn (Yongping Cai); linyi1957@126.com (Yi Lin)
Tel: +86-551-65786340 (Yongping Cai); +86-551-65786340 (Yi Lin)
† These authors contributed equally to this work.
Abstract

MYB transcription factors play important roles in different plant biological processes during plant growth, development and stress response. In this study, 101 (DoMYB1–101) and 99 (PaMYB1–99) R2R3-MYB genes were identified in the genomes of *Dendrobium officinale* and *Phalaenopsis aphrodite*, respectively. To classify the isolated candidate genes, the R2R3-MYB genes from *A. thaliana* were selected as references. As a result, all identified DoMYB and PaMYB genes were classified into 22 subfamilies. Phylogenetic analysis revealed that S21 had the largest number of members of all the subfamilies. The numbers of introns, exons and conserved sequences in all of the identified genes are different. In addition, 20 DoMYB genes from six subfamilies were selected for further analysis of tissue-specific expression and responses to various abiotic stresses treatments. The results showed that all of the DoMYB genes in S4 and S19 subfamily exhibited the highest relative expression levels in flowers. And five DoMYB genes including DoMYB31, DoMYB40, DoMYB49, DoMYB52 and DoMYB54, responded to the stress response. These results may provide useful information for further studies of the R2R3-MYB gene family.

Key words: *Dendrobium officinale*; *Phalaenopsis aphrodite*; Orchidaceae; R2R3-MYB; Gene family
Introduction

As a superfamily of transcription factors (TFs), MYB proteins comprise one of the largest gene families in plants. They play important roles in controlling metabolism regulation and abiotic or biotic responses during the whole processes of plant growth and development (Chen et al., 2005; Du et al., 2012; Dubos et al., 2010; Peng et al., Nesi et al., 2001). For example, MYB TFs are involved in the regulation of various phytochemical biosynthesis pathways (Adato et al., 2009). They are closely related to the regulation of several developmental processes, secondary cell wall biosynthesis, the development of stem apical meristems, and the synthesis of plant lignin (Zhong et al., 2008; Kirik et al., 1998).

The MYB gene was firstly identified in maize and then successively isolated from many other plants. MYB TFs contain a highly conserved DNA binding domain (R) with 50 to 53 amino acids and a conserved tryptophan at every 18 amino acids. Based on the number of special R domains, MYB TFs can be divided into four categories, namely, R1R2R3-MYB, R2R3-MYB, R1-MYB, and 4R-MYB (Dubos et al., 2010). Among them, R2R3-MYB contains two conserved domains (2R) with five tryptophan residues in the repeat sequence, which forms a helix-turn-helix motif at the N-terminus and plays a vital role in maintaining the stability of the MYB TFs (Rabinowicz et al., 1999; Stracke et al., 2001).

Recently, the *R2R3-MYB* gene family has been identified in many plants. There are at least 126, 109, 157 and 192 members of *R2R3-MYB* genes in *Arabidopsis thaliana*, *Oryza sativa*, *Zea mays* and *Populus trichocarpa*, respectively (Dubos et al., 2010; Du et al., 2012; Katiyar et al., 2012; Wilkins et al., 2009). Clustering analysis of the *R2R3-MYB* gene family in *A. thaliana* revealed that the *R2R3-MYB* genes could be divided into 25 subfamilies (Matus et al., 2009; Stracke et al., 2001). Of all these subfamilies, the S4 subfamily was involved in the synthesis of various alkenes in *Oil palm* (Li et al., 2017). The S6 subfamily was proved to be closely related to the synthesis of carotenoids and anthocyanins (Li et al., 2017). The S7 subfamily was demonstrated to play a regulatory role in the terpenoid synthesis pathway in *A. thaliana* and *M. spicata* (Reddy et al., 2017; Stracke et al., 2007).

The orchid species are widely distributed in the world. For their ornamental value and medical use, four species of Orchidaceae including *Apostasia shenzhenica*, *Vanilla fragrans*, *Phalaenopsis aphrodite* and *Dendrobium officinale* have completed the whole genome sequencing (Zhang et al., 2017). Further biological evolution analysis revealed that orthologous genes might contribute to evolutionary innovations of nonfunctional, subfunctional or new...
functional genes after the evolutions of common ancestors for plants (Riechmann et al., 2000). MYB TFs are involved in all aspects of plant development and metabolism. Nevertheless, the reports on MYB TFs in orchids are few. In this study, the R2R3-MYB gene families were identified from D. officinale (DoMYB) and P. aphrodite (PaMYB). The analysis of the classification, phylogenetics, and chromosomal distribution was conducted. Otherwise, the expression patterns of the DoMYB genes were analyzed. The results may provide novel insights into the roles of MYB transcription factors in D. officinale, P. aphrodite, and other orchid plants.

Materials & Methods

Identification and classification of R2R3-MYB genes in D. officinale and P. aphrodite

The genomes of D. officinale (http://herbalplant.ynau.edu.cn/) and P. aphrodite (http://orchidstra2.abrc.sinica.edu.tw/orchidstra2/padownload.php) were downloaded to identify the candidate R2R3-MYB genes as previously described by Cao et al. (2016). Specifically, the Hidden Markov Model (HMM) in Pfam2 database was used to generate conserved domains (PF00249). It was then used to blast against the genome (E-value <1e^-3) to obtain candidate R2R3-MYB genes. All candidate sequences were confirmed with the SMART tool (http://smart.embl-heidelberg.de). The uncertain R2R3-MYB proteins were filtered out. For further analysis of the phylogenetic relationships for the R2R3-MYB gene members in D. officinale and P. aphrodite, a phylogenetic dendrogram was constructed based on the full sequences of candidate proteins using MEGA5.2 software with the neighbor-joining (NJ) method. In detail, a phylogeny test was performed using the bootstrap method with 1000 replicates, substitution with the Possion model, and Gaps/Missing Data treatment with pairwise deletion. The uniform rates were used as the rates among sites. The number of threads is 7 (Tamura et al., 2011). The gap open and gap extend are -2.9 and 0, respectively. According to the classification of MYB subfamily in A. thaliana, the R2R3-MYB gene members were eventually divided into 25 subfamilies (Matus et al., 2009; Stracke et al., 2001).

Intron-exon structure and domain analysis of R2R3-MYB genes from D. officinale and P. aphrodite

The Gene Structure Display Server 2.04 (GSDS) was used to analyze the exons-introns structures of the obtained full sequences (Cao et al., 2016). The MEME suite (Multiple Expectation Maximization for Motif Elicitation, version 5.1.0) was employed to analyze the conserved motif (Bailey et al., 2006). The parameters were set as follows, 0 or 1 occurrence per
sequence to be distributed in sequences; maximum number of motifs to find, 8; minimum width of motif, 6; maximum width of motif, 100; and the motif must be present in all members within the same subgroup. Subsequently, MAST XML output was used to analysis protein databases and finally redraw motif pattern. The annotations of the conservative patterns were performed using Pfam and SMART.

Calculations of synonymous substitutions (Ks) and nonsynonymous substitutions (Ka)

According to the phylogenetic tree, two sequences of candidate genes with similar genetic relationships were isolated. The gene pairs were compared using DNAMAN software. Gene pairs with a consistency greater than 60% were selected for the calculation of Ka (nonsynonymous substitution) and Ks (synonymous substitution). The values of Ka/Ks, Ka, and Ks were calculated using DnaSP 5.0 software (Librado et al., 2009). A Ka/Ks ratio of 1.0 has been suggested to be a useful cut-off value to identify genes under positive selection. Generally, Ka/Ks<1.0 indicates purifying or negative selection. Ka/Ks=1.0 shows neutral selection, and Ka/Ks > 1.0 means positive selection (Zhang et al., 2006).

R domain and gene ontology (GO) annotation analysis

The sequences of the R2 and R3 domains of 101 DoMYBs and 99 PaMYBs were aligned using MEGA 5.0 to identify their features in the sequences. The multiple alignment files for these domains were submitted to WebLogo (http://weblogo.berkeley.edu/logo.cgi) using the default settings to acquire sequence logos as previously described by Cao et al. (2016). The protein sequences of DoMYBs and PaMYBs were aligned to the NCBI non-redundant protein database by BLASTp using Blast2GO software with the default parameters (Conesa et al., 2005). The functions of the R2R3-MYB proteins were predicted by GO annotation analysis. The GO classifications were performed using the WEGO online tool (Ye, 2006).

Physical distribution of PaMYB genes in chromosomes

To understand the chromosomal location of PaMYBs, the GFF (General Feature Format) file containing the P. aphrodite chromosome information was downloaded from the website (http://orchidstra2.abrc.sinica.edu.tw/orchidstra2/pagenome.php) (Chao et al., 2018). MapInspect software was used to visualize physical location information. DNAMAN was used to compare the similarity of the PaR2R3-MYB cluster.

Bioinformatics analysis of R2R3-MYB genes expression in D. officinale

The transcriptome of D. officinale were downloaded from the NCBI SRA database with the accession number PRJNA348403. Clean reads were obtained by removing the low-quality base
calls (Q<20) using FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit), then mapped to the reference genome using TopHat2 software with the default parameters and assembled using Cufflinks software (Kim et al., 2013; Trapnell et al., 2012). The expression profiles were presented using MeV 4.9 with Pearson correlation using average linkage clustering.

To verify the transcriptome data, 20 genes were selected to perform qRT-PCR analysis. Three biological repeats were conducted. The average data was used to construct heatmap by MeV 4.9 with Pearson correlation using average linkage clustering.

A co-expression network of 20 DoMYB genes in response to five different treatments was constructed based on the Pearson correlation coefficients (PCCs). It was better to understand the topological relationships between stress-responsive DoMYB genes. All of the available gene expression data were averaged, and the PCC was calculated between any pair of 20 genes (Tang et al., 2013). All 20 genes were selected to evaluate a co-expression network based on the PCCs at a 0.05 significance level (p-value) using Cytoscape 3.3 (http://www.cytoscape.org).

Expression analysis

R2R3-MYB genes under different treatments in D. officinale

One-year-old plantlets of D. officinale were cultivated in an incubator at 25 °C with 12 h light and 12 h dark. The protocorms of D. officinale were cultivated at 25 °C in the dark. For the stress treatment, an equal mass protocorm of the same period was placed in MS liquid medium with an additional 300 mM NaCl, 300 mM mannitol and 100 μM abscisic acid (ABA), respectively. Then, protocorms with the same quality were collected at 0, 1, 2, 3, 4, and 7 d for further experiment. Moreover, for the treatment with hormone, the protocorms with the same size in the same period were cultivated in MS liquid medium additionally containing 100 μM methyl jasmonate (MeJA) and 100 μM salicylic acid (SA), respectively. The protocorms were collected at 0, 2, 4, 8, 24, 48 and 72 h. Protocorms, 0 h cultivated in a different medium, were selected as controls, respectively. Each experiment was repeated three times.

Total RNA was extracted by using RNAprep Pure Plant Kit (Tiangen, China). Primer Premier 5.0 was used to design the corresponding primers of DoMYB (Supplementary Table S4). The gene β-actin was selected as an internal reference (GeneBank ID: JX294908). The qPCR system consisted of 12.5 μl of SYBR® Premix Ex TaqTM II, 2 μl of cDNA, 2 μl primers and 8.5 μl of ddH2O. The PCR reaction procedure was as follows: 95 °C for 30 s, 95 °C for 5 s, 60 °C for 30 s, 40 cycles (Jin et al., 2013). The relative expression level of genes was calculated using the 2^−ΔΔCt method (Livak et al., 2001). Three biological repeats were conducted.
Results

Phylogenetic analysis and classification of the R2R3-MYB genes from D. officinale and P. aphrodite

As was shown in Fig. 1, total of 101 DoMYBs and 99 PaMYBs were identified (Supplementary Table S1). Then, 126 R2R3-MYB genes from Arabidopsis (AtMYBs) were selected as references to construct the neighbor-joining tree. The results showed that all identified R2R3-MYB genes could be divided into 22 subgroups with the number of members ranging from 1 to 16. Of 22 subgroups, the subfamily S21 contained the most members of R2R3-MYB genes with 16 DoMYBs and 11 PaMYBs, followed by S14 subfamily with 10 DoMYBs and 11 PaMYBs. The subfamily S18 contained 12 DoMYBs and 6 PaMYBs. Interestingly, nine subfamilies, including S1, S3, S4, S9, S13, S16, S17, S19, and S23, contained the same numbers of R2R3-MYBs from both D. officinale and P. aphrodite. For example, both six members of DoMYBs and PaMYBs were divided into S17 subfamily. S1 and S4 subfamilies included both five R2R3-MYBs for D. officinale and P. aphrodite. The subfamily S13 contained four R2R3-MYBs from both D. officinale and P. aphrodite. Otherwise, no R2R3-MYB genes were classified into the subfamilies S6, S12, and S15 from the two Orchidaceae species. So, the distributions of most R2R3-MYB genes were similar between D. officinale and P. aphrodite.

Gene structure analysis of the R2R3-MYB protein from D. officinale and P. aphrodite

The R2R3-MYB protein sequences of D. officinale and P. aphrodite were used to create a phylogenetic tree using MEGA5.2 software (Fig. 2A and Supplementary Fig. S1A). The conserved motifs were identified using the MEME tool. The results showed that most of R2R3-MYB proteins in the same subfamily contained similar motifs, which further verifying the closeness of their evolutionary relationship with the phylogenetic tree (Fig. 2B and Supplementary Fig. S1B). Nevertheless, motif 3, which didn’t belong to the conserved domain R2 or R3, was included in almost half of R2R3-MYB members in D. officinale and P. aphrodite. Otherwise, the subfamilies S4, S8, S9, S10, S11 and S13, all contained the motif 4 in D. officinale. Furthermore, the gene structure analysis of the R2R3-MYB genes revealed that most of these genes consisted of three exons and two introns (Fig. 2C and Supplementary Fig. S1C). These results indicated that the intron patterns were highly conserved.

Strong purifying selection analysis of the R2R3-MYB genes from D. officinale and P. aphrodite
To examine the selection pressure on the $R2R3$-MYB genes, 16 gene pairs between $P. aphrodite$ and $D. officinale$, 19 gene pairs of $P. aphrodite$ and four gene pairs of $D. officinale$ with close genetic affinities were selected to calculate the Ka/Ks ratio. As a result, of 16 gene pairs between two species, 87% showed a rate less than 0.3. Of the 19 gene pairs from $D. officinale$, 79% exhibited a Ka/Ks ratio between 0 and 0.5, and only four gene pairs scored a Ka/Ks ratio greater than 0.5. Moreover, the Ka/Ks ratios of the four gene pairs from $P. aphrodite$ were between 0 and 1 (Supplementary Table S2). These results implied that most of the $R2R3$-MYB gene pairs from $D. officinale$ and $P. aphrodite$ mainly evolved under the influence of purifying selection.

Gene ontology annotation and R domain characteristics analysis the $R2R3$-MYB genes from $D. officinale$ and $P. aphrodite$

The functions of the $R2R3$-MYB proteins were predicted by GO annotation analysis. Based on amino acid similarity, the $R2R3$-MYB proteins from two Orchidaceae species were classified into three categories: biological process (BP), cellular component (CC), and molecular function (MF) (Supplementary Table S5, Fig. S2). The majority of the $R2R3$-MYB proteins from $D. officinale$ and $P. aphrodite$ were enriched in two categories: biological process and molecular function. Only a small portion of the $R2R3$-MYB proteins was enriched in the cellular component (Supplementary Fig. S2AC).

To analyze the presence of conserved sequences at particular positions, WebLogo was used to generate sequence logos. As is shown in Fig. 3, A and B indicated the repeats of the R2 and R3 sequences of $D. officinale$, respectively. C and D showed the repeats of the R2 and R3 sequences of $P. aphrodite$, respectively. These results indicated that most amino acids are conservatively presented in the R2 and R3 repeats between two Orchidaceae species (Fig. 3). Otherwise, some amino acids are more conservative. For example, tryptophan was identified at the sites approximately per every 18 amino acids. There were three tryptophans in R2 and two in R3.

Chromosomal location analysis of the $PaMYB$ genes

To study the relationship between genetic divergence and gene duplication within the $R2R3$-MYB gene family in $P. aphrodite$, the locations and distribution of the $R2R3$-MYB genes were analyzed. As a result, of the 99 $PaMYB$ genes, 85 genes were mapped and distributed in 17 chromosomes of $P. aphrodite$. The distribution of genes was uneven. Chromosome 9 contained the most $R2R3$-MYB genes (10 $PaMYB$ genes), followed by chromosome 18, which contained 9 $PaMYB$ genes. The other chromosomes contained $R2R3$-MYB genes, ranging from 1 to 8,
respectively (Supplementary Fig. S3). In addition, 33 pairs of R2R3-MYB proteins were isolated with similar sequences by using sequence alignment in DNAMAN (Supplementary Table S6). Of these proteins, two pairs were proved to be segmental duplication for their high similarity values (PaMYB64/PaMYB65, PaMYB73/PaMYB91). PaMYB64 and PaMYB65 have an identical sequence with the same position on chromosome 9 (Supplementary Table S6). PaMYB73 and PaMYB91 showed a high similarity value of 87.25% (Supplementary Table S6).

Expression analysis of DoMYB genes in different tissues

The transcriptome data of seven tissues including root tips (RT), roots (RO), stems (ST), leaves (LE), flower buds (FB), columns (CO), and sepals (SP) were downloaded from the NCBI SRA (Sequence Read Archives) database. 65 of 101 DoMYB genes were detected in the transcriptome analysis (Fig. 4). They were clustered into five groups (A-E). Among those groups, 17 genes were classified in group A with relatively high expression levels in roots and/or stems. Four genes in group B displayed low expression levels in various tissues. Out of 65 genes, 22 genes were clustered in group C. They had the highest transcript abundance in the roots and/or root tips. All 12 genes in group D exhibited a high expression levels in columns and/or sepals. The remaining ten genes were all in group E. They had higher expression in flower buds if compared with that in other tissues. Moreover, several genes showed tissue-specific expression patterns. For example, seven genes were only expressed in flowers (DoMYB4, DoMYB12, DoMYB40, DoMYB52, DoMYB58, DoMYB86, DoMYB94), three genes were only expressed in roots (DoMYB6, DoMYB78, DoMYB81) (Supplementary Table S3).

D. officinale is a valuable medicinal plant for its high content of secondary metabolites, including polysaccharides, alkaloids and terpenes. Due to its strict requirements on the growth environment, it usually suffers from various biotic or abiotic stresses during its development and growth. Based on the reported functions of R2R3-MYB in other plants, we screened out 20 DoMYBs belonged to six subfamilies to study the role of R2R3-MYB in the regulation of secondary metabolism and the responses to abiotic stress for D. officinale (Stracke et al., 2007; Adato et al., 2009). Their expression patterns in different tissues (Fig. 5) and under various abiotic stresses were tested (Fig. 6, 7). Among the five genes of the S1 subfamily, DoMYB30, DoMYB49, and DoMYB101 showed higher expression levels in flowers, DoMYB29 had higher expression levels in protocorms, and DoMYB93 displayed higher expression levels in stems. Otherwise, five genes of the S4 subfamily showed higher expression levels in flowers. Among the S7 subfamily, DoMYB26 had the highest expression level in stems, and DoMYB32 had the
The highest expression level in flowers. Among the S9 subfamily, \textit{DoMYB11} and \textit{DoMYB46} had higher expression levels in flowers, and \textit{DoMYB31} had higher expression level in stems. In the S19 subfamily, \textit{DoMYB40} and \textit{DoMYB52} had higher expression levels in flowers. In the S22 subfamily, \textit{DoMYB4} and \textit{DoMYB8} had higher expression levels in flowers. Otherwise, \textit{DoMYB20} had higher expression level in roots. These results are in accord with transcriptome data.

\textbf{Expression pattern of DoMYB genes in response to abiotic stress in protocorms}

To explore the functions of the \textit{R2R3-MYB} genes in \textit{D. officinale}, the expression patterns of 20 \textit{DoMYB} genes were analyzed under drought and salt stress. Multiple genes were upregulated, yet a few genes were downregulated in response to drought and salt stress. \textit{DoMYB20}, \textit{DoMYB29} and \textit{DoMYB69} showed downregulated expression patterns under either drought or salt stress. Five \textit{DoMYB} genes, \textit{DoMYB31}, \textit{DoMYB40}, \textit{DoMYB49}, \textit{DoMYB52} and \textit{DoMYB54}, showed increased expression levels at different times under the drought treatment (Fig. 6). The expression levels of \textit{DoMYB31}, \textit{DoMYB40} and \textit{DoMYB54}, were significantly increased after one day of treatment. The expression of \textit{DoMYB49} increased after seven days of treatment. \textit{DoMYB52} exhibited an increased expression level after three days of treatment. Also, \textit{DoMYB26}, \textit{DoMYB31} and \textit{DoMYB67} were identified to respond to salt stress (Fig. 7). \textit{DoMYB26} had an increased expression level after one day of treatment. \textit{DoMYB31} showed an increased expression level with approximately 40-fold after four days of treatment. \textit{DoMYB67} exhibited an elevated expression level after seven days of treatment.

\textbf{Co-expression network analysis of DoMYB genes in different tissues and different treatments}

To analyze the relationship of 20 \textit{DoMYB} genes, a co-expression network was constructed using Cytoscape 3.3. Based on the data of the relative transcript abundance in different tissues under various kinds of treatments, a tissue co-expression network and a post-processing gene co-expression network were constructed to explore the relationship of the \textit{MYB} genes in \textit{D. officinale} (Supplementary Fig. S4A/B). The results showed that the tissue co-expression network contained 17 nodes (\textit{DoMYB} Genes) and 66 edges (co-expressed gene pairs), representing PCCs between tissue co-expressing events. Moreover, the processed co-expression network contained 16 nodes and 44 edges, representing the handling of PCCs between co-expression events. Each node had a different number of regulatory edges, ranging from 1 to 11.
Discussion

MYB transcription factors (TFs) are a large gene family in plants. Previous studies have identified many MYB genes in Orchidaceae. For example, by RT-PCR, 21 R2R3-MYB genes have been isolated from the *Dendrobium* orchid hybrid Woo Leng. Four of these genes, *DwMYB1*, *DwMYB2*, *DwMYB8*, and *DwMYB10*, belong to typical plant R2R3-MYB genes (Wu et al., 2003). Otherwise, three R2R3-MYB transcription factors, including *PeMYB2*, *PeMYB11* and *PeMYB12*, have been identified and proven to be concomitant with the red color formation in flowers from *Phalaenopsis* spp (Hsu et al., 2015). Similarly, *DhMYB1* has been confirmed to be involved in the development of the conical cell shape of epidermis cells of the *Dendrobium* hybrid flower labellum (Lau et al., 2015). In this study, 101 *DoMYBs* and 99 *PaMYBs* of R2R3-MYB genes were identified from genomic database sequences and classified into 22 subfamilies. In contrast to the R2R3-MYB gene numbers found in other species, the numbers of R2R3-MYB genes in *D. officinale* and *P. aphrodite* were less than those in *A. thaliana* (126), *O. sativa* (109), *Z. mays* (157) and *P. trichocarpa* (192). All of the identified R2R3-MYB genes were divided into different subfamilies. The subfamilies S14, S18 and S21, contained the most MYBs. Nine subfamilies included the same number of R2R3-MYB genes from both *D. officinale* and *P. Aphrodite*. There were no R2R3-MYB members found in the S6, S12, and S15 R2R3-MYB subfamilies. These results may imply the special characteristics R2R3-MYB genes in two Orchidaceae species (Fig. 2).

It has been reported that several R2R3-MYB genes are involved in regulating responses to biotic and abiotic stresses. For example, the S1 subfamily genes *AtMYB96* and *OsMYB4* were confirmed to be involved in the drought response of plants (Seo et al., 2009; Vannini et al., 2004). *AtMYB41* and *AtMYB102* contribute to plant resistance against wounding and osmotic stress (Denekamp et al., 2003; Lippold et al., 2009). Overexpression of *AtMYB2* can be induced by dehydration and salt stress (Abe et al., 2003). *AtMYB62* participates in response to phosphate starvation (Devaiah et al., 2009). Besides, the S22 subfamily gene *AtMYB44* has been shown to be induced by drought and high salt. Overexpression of *AtMYB44* obviously enhances drought and salt tolerance in plants (Jung et al., 2007). *AmMYB1* is related to the enhancement of tolerance to NaCl stress in transgenic tobacco (Ganesan et al., 2012). In this study, 20 R2R3-MYB genes were tested in response to drought and salt stress treatments. Significant changes in the expression levels of all of the members of the S19 subfamily were detected (Fig. 6 and Fig. 7). For example, *DoMYB40* showed increased expression after one day of drought treatment.
Then, the expression level of DoMYB40 gradually decreased. DoMYB52 displayed the highest expression level after three days of treatment. On the other hand, after undergoing NaCl-simulated salt stress, DoMYB40 reached the highest expression level under treatment for three days, after which, its expression level decreased. DoMYB52 expression increased after four days of treatment and decreased after that. These results may imply the vital role of the S19 subfamily members in response to abiotic stress.

Conclusions

In this study, 101 and 99 R2R3-MYB genes were identified from the genomes of Dendrobium officinale and Phalaenopsis aphrodite. They were distributed into 22 subfamilies based on the homologous analysis. To test the function of identified R2R3-MYB genes, the expression pattern analysis of the DoMYB genes from six subfamily members in different tissues revealed that the S4 and S19 subfamily members had the highest gene expression levels in flowers. Besides, determination of expression level of DoMYBs verified that some of them were responsible for the stress response. These results may provide useful information for further studies of the R2R3-MYB gene family.

Acknowledgments

This work was supported by a scholarship from the China Scholar Council and Anhui Provincial Department of Education (gxfx2017006), Science and Technology Major Project in Anhui province (17030701031) and Anhui Natural Science Foundation (1908085MC59).

Author Contributions

H.H. Fan and M.L. Cui designed the experiment, performed the experiment procedure and wrote the manuscript. N.H. Li performed gene expression experiment, analyzed data. X.J. Li helped with the experiment. Y.X. Liang helped a lot in the process of revision. L. Liu helped revise the manuscript. Y.P. Cai helped with data analysis. Y. Lin designed the experiment, supervised the research and revised the manuscript before submitting it to the journal.

Additional Information

Supplementary Materials: Supplementary Table S1: The correspondence between gene serial number and nomenclature, Supplementary Table S2: Ka/Ks analysis of R2R3-MYB genes from D. officinale and P. aphrodite, Supplementary Table S3: The FPKM values of R2R3-MYB genes in
344 different tissues of *D. officinale*, Supplementary Table S4: Primer sequences of partial subfamily
345 members of *DoMYB* genes, Supplementary Table S5: Blast2Go annotation details of MYB
346 protein sequences, Supplementary Table S6: The similarity values of *PaMYB* cluster,
347 Supplementary Fig. S1: Phylogenetic relationships, intron pattern, and architecture of conserved
348 protein motifs in R2R3-MYB proteins from *P. aphrodite*, Supplementary Fig. S2: Gene
349 Ontology (GO) analysis of R2R3-MYB genes from *D. officinale* (A/B) and *P. aphrodite* (C/D),
350 Supplementary Fig. S3: Chromosomal location analysis of the *PaMYB* genes, Supplementary Fig.
351 S4: Co-expression network of *DoMYB* genes in tissues (A) and their responses to salt, drought,
352 MeJA, SA, and ABA treatments (B).

Conflicts: The authors declare no conflict of interest.

References

Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez E, Wang Z, De Vos
357 RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A. 2009. Fruit-Surface
358 Flavonoid Accumulation in Tomato Is Controlled by a *SlMYB12*-Regulated Transcriptional
359 Network. *PLOS Genetics* 5, e1000777.

Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-shinozaki K. 2003. Arabidopsis
361 *AtMYC2* (bHLH) and *AtMYB2* (MYB) function as transcriptional activators in abscisic acid
362 signaling. *Plant Cell* 15, 63-78.

Bailey TL, Williams N, Misleh C, Li WW. 2006. MEME: discovering and analyzing DNA and
364 protein sequence motifs. *Nucleic Acids Research* 34(Web Server issue), 369-373.

Cao YP, Han YH, Li DH, Lin Y, Cai YP. 2016. MYB Transcription Factors in Chinese Pear
366 (*Pyrus bretschneideri* Rehd.): Genome-Wide Identification, Classification, and Expression
367 Profiling during Fruit Development. *Frontiers in Plant Science* 7, 1-14.

Chao YT, Chen WC, Chen CY, Ho HY, Yeh CH, Kuo YT, Su CL, Yen SH, Hsueh HY, Yeh JH,
369 Hsu HL, Tsai YH, Kuo TY, Chang SB, Chen KY, Shih MC. 2018. Chromosome-level
370 assembly, genetic and physical mapping of *Phalaenopsis aphrodite* genome provides new
371 insights into species adaptation and resources for orchid breeding. *Plant Biotechnology
372 Journal* 16, 2027-2041.

Chen BJ, Wang Y, Hu YL, Wu Q, Lin ZP. 2005. Cloning and characterization of a drought-
373 inducible MYB gene from *Boea crassifolia*. *Plant Science* 168, 493-500.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* 21, 3674-3676.

Denekamp M, Smeekens SC. 2003. Integration of wounding and osmotic stress signals determines the expression of the *AtMYB102* transcription factor gene. *Plant Physiology* 132, 1415-1423.

Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG. 2009. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the *MYB62* transcription factor in *Arabidopsis*. *Molecular Plant* 2, 43-58.

Du H, Feng BR, Yang SS, Huang YB, Tang YX. 2012. The R2R3-MYB Transcription Factor Gene Family in Maize. *PLOS ONE* 7, e37463.

Dubos C, Strack R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in *Arabidopsis*. *Trends in Plant Science* 15, 573-581.

Ganesan G, Sankararamasubramanian HM, Harikrishnan M, Ashwin G, Parida A. 2012. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco. *Journal of Experimental Botany* 63, 4549-4561.

Guo AY, Zhu QH, Chen X, Luo JC. 2007. GSDS: a gene structure display server. *Hereditas* (Beijing) 29(8), 1023-1026.

Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH. 2015. Three *R2R3-MYB* transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis orchids. *Plant Physiology* 168, 175-191.

Jin Q, Yao Y, Cai YP, Lin Y. 2013. Molecular cloning and sequence analysis of a phenylalanine ammonia-lyase gene from *Dendrobium*. *PLOS ONE* 8, e62352.

Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ. 2007. Overexpression of *AtMYB44* enhances stomatal closure to confer abiotic stress tolerance in transgenic *Arabidopsis*. *Plant Physiology* 146, 623-635.

Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC. 2012. Genome-wide classification and expression analysis of MYB transcription factor families in rice and *Arabidopsis*. *BMC Genomics* 13, 544-562.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biology* 14, R36.
Kirik V, Kolle K, Wohlfarth T, Misera S, Baumlein H. 1998. Ectopic expression of a novel MYB gene modifies the architecture of the Arabidopsis inflorescence. The Plant Journal 13, 729-742.

Lau SE, Schwarzacher T, Othman RY, Harikrishna JA. 2015. dsRNA silencing of an R2R3-MYB transcription factor affects flower cell shape in a Dendrobium hybrid. BMC Plant Biology 15, 194.

Li R, Reddy VA, Jin J, Rajan C, Wang Q, Yue G, Lim CH, Chua NH, Ye J, Sarojam R. 2017. Comparative transcriptome analysis of oil palm flowers reveals an EAR-motif containing R2R3-MYB that modulates phenylpropene biosynthesis. BMC Plant Biology 17, 219.

Li WB, Ding ZH, Ruan MB, Yu XL, Peng M, Liu YF. 2017. Kiwifruit R2R3-MYB transcription factors and contribution of the novel AcMYB75 to red kiwifruit anthocyanin biosynthesis. Scientific Reports 7, 16861.

Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatic 25, 1451-1452.

Lippold F, Sanchez DH, Musialak M, Schlereth A, Scheible WR, Hincha DK, Udvardi, MK. 2009. AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiology 149, 1761-1772.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.

Matus JT, Aquea F, Arce-Johnson P. 2009. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology 8, 83.

Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. 2001. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13, 2099-2114.

Peng X, Liu H, Wang D, Shen S. 2016. Genome-wide identification of the Jatropha curcas MYB family and functional analysis of the abiotic stress responsive gene JcMYB2. BMC Genomics 17(1), 251-251.

Rabinowicz PD, Braun EL, Wolfe AD, Bowen B, Grotewold E. 1999. Maize R2R3-MYB genes: sequence analysis reveals amplification in the higher plants. Genetics 153, 427-444.
Reddy VA, Wang Q, Dhar N, Kumar N, Sarojam R. 2017. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU). *Plant Biotechnology Journal* 15, 1105-1119.

Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GL. 2000. *Arabidopsis* transcription factors: Genome-wide comparative analysis among eukaryotes. *Science* 290, 2105-2110.

Seo PJ, Xiang F, Qiao M, Park JY, Park CM. 2009. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in *Arabidopsis*. *Plant Physiology* 151, 275-289.

Stracke R, Ishihara H, Barsch GHA, Mehrtens F, Niehaus K, Weisshaar B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in differene parts of *Arabidopsis thaliana* seeding. *The Plant Journal* 50, 660-677.

Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in *Arabidopsis thaliana*. *Current Opinion in Plant Biology* 4, 447-456.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology and Evolution* 28, 2731-2739.

Tang J, Wang F, Wang Z, Huang ZN, Xiong AS, Hou XL. 2013. Characterization and co-expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak-choi (*Brassica campestris* ssp. chinensis). *BMC Plant Biology* 13, 188.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with Tophat and Cufflinks. *Nature Protocols* 7, 562-578.

Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M. 2004. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. *Plant Journal* 37, 115-127.

Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM. 2009. Expansion and Diversification of *populus* R2R3-MYB Family of Transcription Factors. *Plant Physiology* 149, 981-993.
Wu XM, Lim SH, Yang WC. 2003. Characterization, expression and phylogenetic study of R2R3-MYB genes in orchid. *Plant Molecular Biology* 51, 959-972.

Ye J. 2006. WEGO: a web tool for plotting GO annotations. *Nucleic Acids Research* 34 (Web Server issue), W293-W297.

Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, Wang JY, Lin YC, Xu Q, Chen LJ, Yoshida K, Fujiwara S, Wang ZW, Zhang YQ, Mitsuda N, Wang M, Liu GH, Pecoraro L, Huang HX, Xiao XJ, Lin M, Wu XY, Wu WL, Chen YY, Chang SB, Sakamoto S, Ohme-Takagi M, Yagi M, Zeng SJ, Shen CY, Yeh CM, Luo YB, Tsai WC, Van de Peer Y, Liu ZJ. 2017. The Apostasia genome and the evolution of orchids. *Nature* 549, 379-383.

Zhang Z, Li J, Zhao XQ, Wang J, Wong GKS, Yu J. 2006. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. *Genomics Proteomics and Bioinformatics* 4, 259-263.

Zhong RQ, Lee CH, Zhou JL, McCarthy RL, Ye ZH. 2008. A Battery of Transcription Factors Involved in the Regulation of Secondary Cell Wall Biosynthesis in *Arabidopsis*. *Plant Cell* 20, 2763-2782.
Figure 1

Phylogenetic analysis of R2R3-MYB proteins from *Dendrobium officinale* and *Phalaenopsis aphrodite*.

Totally, 101 R2R3-MYB proteins from *D. officinale*, 99 R2R3-MYB proteins from *P. aphrodite* and 126 R2R3-MYB proteins from *A. thaliana* were selected to construct the neighbor-joining tree with 1000 bootstraps. S1-S25 indicated the divided subfamilies according to the categories of R2R3-MYB proteins in *A. thaliana*.
Figure 2

Phylogenetic relationships, intron pattern, and architecture of conserved protein motifs in R2R3-MYB proteins from *D. officinale*.

A, The phylogenetic tree constructed with 101 R2R3-MYB proteins from *D. officinale*. S1-S25 indicated the divided subfamilies. B, Architecture of conserved protein motifs in different subfamilies. The colored boxes indicated the different motifs as listed at the bottom of the figure. C, The predicted exon-intron structures. The yellow boxes and black lines exhibited exons and introns, respectively.
Figure 3

Sequence logos of the R2 (A&C) and R3 (B&D) MYB repeats

A & B respectively indicated the R2 and R3 logos based on multiple alignment analysis of 101 DoR2R3-MYB proteins. C & D indicated the R2 and R3 logos of 99 PaR2R3-MYB proteins. * indicated typical conserved Trp residues in the MYB domain.
Figure 4

RNA-seq analysis of R2R3-MYB transcription factors in *D. officinale*.

The heatmap was generated using R gplots package, and the FPKM values of *D. officinale* genes were evaluated and normalized based RNA-seq data from NCBI SRA database. Differential expression pattern of 65 annotated R2R3-MYBs in various tissues, including root tips (RT), roots (RO), stems (ST), leaves (LE), flower buds (FB), columns (CO), and sepals (SP). The expression values are available in Supplementary Table S3.
Figure 5

qRT-PCR validation of R2R3-MYB transcription factors of *D. officinale* in different tissues.

Twenty genes were selected to perform qRT-PCR analysis to verify the transcriptome data. Three biological repeats were conducted. The average data was used to construct heatmap by MeV 4.9 with Pearson correlation using average linkage clustering.
Figure 6

Expression patterns of the *DoMYB* genes in response to drought treatment.

The relative expression levels of 20 *DoMYB* genes were examined by qRT-PCR and normalized to the reference gene β-actin. Every experiment had three biological repeats. The x-axis indicated the time course of each stress treatment, and the y-axis represented the relative expression level. Mean values and standard deviations (SDs) indicated by error bars. ** significant difference (P < 0.01), *significant difference at P < 0.05. The details of the letters A-T were listed as follows. A: *DoMYB4*, B: *DoMYB8*, C: *DoMYB11*, D: *DoMYB20*, E: *DoMYB26*, F: *DoMYB29*, G: *DoMYB30*, H: *DoMYB31*, I: *DoMYB32*, J: *DoMYB40*, K: *DoMYB46*, L: *DoMYB49*, M: *DoMYB52*, N: *DoMYB54*, O: *DoMYB62*, P: *DoMYB67*, Q: *DoMYB69*, I: *DoMYB72*, S: *DoMYB93*, T: *DoMYB101*. The letters A-T in the following figure are the same.
Manuscript to be reviewed
Figure 7

Expression patterns of the DoMYB genes under salt treatment.

The relative expression level of 20 DoMYB genes was evaluated by qRT-PCR. The gene β-actin was selected as a reference. Every experiment had three biological repeats. The x-axis indicated the time course of each stress treatment, and the y-axis represented the relative expression level. Mean values and standard deviations (SDs) indicated by error bars. ** significant difference (P < 0.01), * significant difference at P < 0.05. The details of the letters A-T were listed as follows. A: DoMYB4, B: DoMYB8, C: DoMYB11, D: DoMYB20, E: DoMYB26, F: DoMYB29, G: DoMYB30, H: DoMYB31, I: DoMYB32, J: DoMYB40, K: DoMYB46, L: DoMYB49, M: DoMYB52, N: DoMYB54, O: DoMYB62, P: DoMYB67, Q: DoMYB69, I: DoMYB72, S: DoMYB93, T: DoMYB101.
