BEREZIN NUMBER INEQUALITIES FOR HILBERT SPACE OPERATORS

MOJTABA BAKHERAD1 AND MUBARIZ T. KARAEV2

Abstract. In this paper, by using of the definition Berezin symbol, we show some Berezin number inequalities. Among other inequalities, it is shown that if $A, B, X \in \mathbb{B}(\mathcal{H})$, then
\[
\text{ber}(AX \pmXA) \leq \text{ber}^{\frac{1}{2}} (A^*A + AA^*) \text{ber}^{\frac{1}{2}} (X^*X + XX^*)
\]
and
\[
\text{ber}^2(A^*XB) \leq \|X\|^2 \text{ber}(A^*A)\text{ber}(B^*B).
\]

1. Introduction

Let $\mathbb{B}(\mathcal{H})$ denote the C^*-algebra of all bounded linear operators on \mathcal{H} with the identity I. A functional Hilbert space is a Hilbert space $\mathcal{H} = \mathcal{H}(\Omega)$ of complex-valued functions on a set Ω, which has the property that point evaluations are continuous i.e., for each $\lambda \in \Omega$ the map $f \mapsto f(\lambda)$ is a continuous linear functional on \mathcal{H}.

Berezin set and Berezin number of the operator A are defined by $\text{Ber}(A) := \{\tilde{A}(\lambda) : \lambda \in \Omega\}$ and $\text{ber}(A) := \sup \{|\tilde{A}(\lambda)| : \lambda \in \Omega\}$, respectively. It is clear that the Berezin symbol \tilde{A} is the bounded function on Ω whose values lies in the numerical range of the operator A and hence $\text{Ber}(A) \subseteq W(A)$ (numerical radius) and $\text{ber}(A) \leq w(A)$ (numerical range) for all $A \in \mathbb{B}(\mathcal{H})$. The Berezin number of an operator A satisfies the following properties:

(i) $\text{ber}(A) \leq \|A\|$.

(ii) $\text{ber}(\alpha A) = |\alpha|\text{ber}(A)$ for all $\alpha \in \mathbb{C}$.

(iii) $\text{ber}(A + B) \leq \text{ber}(A) + \text{ber}(B)$.

The Berezin symbol is widely applied in the various questions of uniquely determines the operator and analysis. For further information about Berezin symbol we refer the reader to [4, 8, 9, 15] and references therein.

2010 Mathematics Subject Classification. Primary: 15A60, Secondary: 47B20.

Key words and phrases. Reproducing kernel, numerical range, numerical radius.
In this paper, by using some ideas of [1, 16], we present several Berezin number inequalities. In particular, we obtain the inequalities

(i) \(\text{ber}(AX \pm XA) \leq \text{ber}^{\frac{1}{2}} (A^*A + AA^*) \text{ber}^{\frac{1}{2}} (X^*X + XX^*) \);

(ii) \(\text{ber}(A^*XB + B^*YA) \leq 2\sqrt{\|X\|\|Y\|}\text{ber}^{\frac{1}{2}} (B^*B) \text{ber}^{\frac{1}{2}} (AA^*) \),

where \(A, B, X, Y \in \mathbb{B} (\mathcal{H}(\Omega)) \).

2. The results

To prove our first result, we need the following lemma.

Lemma 2.1. Let \(X \in \mathbb{B} (\mathcal{H}(\Omega)) \). Then

\[
\text{ber}(X) = \sup_{\theta \in \mathbb{R}} \text{ber} \left(\text{Re}(e^{i\theta}X) \right) = \sup_{\theta \in \mathbb{R}} \text{ber} \left(\text{Im}(e^{i\theta}X) \right),
\]

where \(\text{Re}(X) = \frac{X + X^*}{2} \) and \(\text{Im}(X) = \frac{X - X^*}{2i} \).

Proof. Let \(\hat{k}_\lambda \) be the normalized reproducing kernel of \(\mathcal{H}(\Omega) \). It follows from

\[
\sup_{\theta \in \mathbb{R}} \left\langle \text{Re}(e^{i\theta}X) \hat{k}_\lambda, \hat{k}_\lambda \right\rangle = \left| \left\langle X \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right|
\]

that

\[
\sup_{\theta \in \mathbb{R}} \text{ber} \left(\text{Re}(e^{i\theta}X) \right) = \sup_{\theta \in \mathbb{R}} \sup_{\lambda \in \Omega} \left| \left\langle \text{Re}(e^{i\theta}X) \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right|
\]

\[
= \sup_{\lambda \in \Omega} \left| \left\langle X \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right|
\]

\[
= \text{ber}(X).
\]

The proof of the second equation is similar. \(\square \)

Remark 2.2. If \(X = H + iK \) be the certain decomposition of the operator \(X \), then by using this fact

\[
|\langle Hx, x \rangle| \leq |\langle Xx, x \rangle| = |\langle Hx, x \rangle + i\langle Kx, x \rangle| = \sqrt{|\langle Hx, x \rangle|^2 + |\langle Kx, x \rangle|^2} \quad (x \in \mathcal{H})
\]

and Lemma 2.1, we have

\[
\text{ber}(H) = \text{ber} \left(\text{Re}(X) \right) \leq \text{ber}(X) \leq \sqrt{\text{ber}^2(H) + \text{ber}^2(K)}.
\]

Now, by applying Lemma 2.1, we show an upper bound for \(\text{ber}(AX \pm XA^*) \).
Theorem 2.3. Let $A, X \in B(\mathcal{H}(\Omega))$. Then

$$ber^2(AX \pmXA^*) \leq 2\|A\|^2 \left(\ber(H^2) + \ber(K^2) + \sqrt{(\ber(H^2) - \ber(K^2))^2 + \ber^2(HK + KH)} \right),$$

where $X = H + iK$ is the certain decomposition of the operator X.

Proof. Suppose that \hat{k}_λ is the normalized reproducing kernel of $\mathcal{H}(\Omega)$. Then

$$\left| \langle \Re(e^{i\theta}(AX +XA^*)) \hat{k}_\lambda, \hat{k}_\lambda \rangle \right|^2 = \left| \langle \Re \left((A\Re(e^{i\theta}X) + \Re(e^{i\theta}X)A^*) \right) \hat{k}_\lambda, \hat{k}_\lambda \rangle \right|^2$$

(since $\Re(T) = \Re(T^*)$)

$$\leq \left| \langle (A\Re(e^{i\theta}X) + \Re(e^{i\theta}X)A^*) \hat{k}_\lambda, \hat{k}_\lambda \rangle \right|^2$$

(since $|\langle \Re(T)x, x \rangle| \leq |\langle Tx, x \rangle|$)

$$\leq 2 \left(\left| \langle A\Re(e^{i\theta}X) \hat{k}_\lambda, \hat{k}_\lambda \rangle \right|^2 + \left| \langle \Re(e^{i\theta}X)A^* \hat{k}_\lambda, \hat{k}_\lambda \rangle \right|^2 \right)$$

(by the triangular inequality and the convexity $f(t) = t^2$)

$$= 2 \left(\left| \langle \Re(e^{i\theta}X) \hat{k}_\lambda, A^* \hat{k}_\lambda \rangle \right|^2 + \left| \langle A^* \hat{k}_\lambda, \Re(e^{i\theta}X) \hat{k}_\lambda \rangle \right|^2 \right)$$

$$\leq 2 \left(\|A^*\|^2 \left\| \Re(e^{i\theta}X) \hat{k}_\lambda \right\|^2 + \|A\|^2 \left\| \Re(e^{i\theta}X) \hat{k}_\lambda \right\|^2 \right)$$

$$= 4\|A\|^2 \left(\langle \Re(e^{i\theta}X) \hat{k}_\lambda, \Re(e^{i\theta}X) \hat{k}_\lambda \rangle \right)$$

$$= 4\|A\|^2 \left(\langle (\Re(e^{i\theta}X))^2 \hat{k}_\lambda, \hat{k}_\lambda \rangle \right).$$

It follows from

$$(\Re(e^{i\theta}X))^2 = (\Re(e^{i\theta}(H + iK)))^2$$

$$= (\cos \theta H - \sin \theta K)^2$$

$$= \cos^2 \theta H^2 + \sin^2 \theta K^2 - \cos \theta \sin \theta (HK + KH)$$
that
\[
\sup_{\theta \in \mathbb{R}} \left(\Re(e^{i\theta} X) \right)^2 \hat{k}_\lambda, \hat{k}_\lambda \nabla \nabla
\]
\[
= \sup_{\theta \in \mathbb{R}} \left(\cos^2 \theta \left\langle H^2 \hat{k}_\lambda, \hat{k}_\lambda \right\rangle + \sin^2 \theta \left\langle K^2 \hat{k}_\lambda, \hat{k}_\lambda \right\rangle - \cos \theta \sin \theta \left(\left\langle (HK + KH) \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right) \right)
\]
\[
\leq \sup_{\theta \in \mathbb{R}} \left(\cos^2 \theta \text{ber}(H^2) + \sin^2 \theta \text{ber}(K^2) - \cos \theta \sin \theta \left(\left\langle (HK + KH) \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right) \right)
\]
\[
\leq \frac{1}{2} \left(\text{ber}(H^2) + \text{ber}(K^2) + \sqrt{(\text{ber}(H^2) - \text{ber}(K^2))^2 + \left(\left\langle (HK + KH) \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right)^2} \right),
\]
whence
\[
\sup_{\theta \in \mathbb{R}} \left| \Re \left(e^{i\theta} (AX + XA^*) \right) \hat{k}_\lambda, \hat{k}_\lambda \right| \leq 2\|A\|^2 \left(\text{ber}(H^2) + \text{ber}(K^2) \right.
\]
\[
+ \sqrt{(\text{ber}(H^2) - \text{ber}(K^2))^2 + \left(\left\langle (HK + KH) \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right)^2} \right).
\]
Taking the supremum over all \(\lambda \in \Omega \) and using Lemma 2.1, we get
\[
\text{ber}^2(AX + XA^*)
\]
\[
= \sup_{\theta \in \mathbb{R}} \text{ber}(\Re(e^{i\theta} (AX + XA^*)))
\]
\[
\leq 2\|A\|^2 \left(\text{ber}(H^2) + \text{ber}(K^2) \right. + \sqrt{(\text{ber}(H^2) - \text{ber}(K^2))^2 + \text{ber}^2(HK + KH)} \right). \tag{2.1}
\]
Replacing \(A \) by \(iA \) in (2.1), we have
\[
\text{ber}^2(AX - XA^*)
\]
\[
\leq 2\|A\|^2 \left(\text{ber}(H^2) + \text{ber}(K^2) \right. + \sqrt{(\text{ber}(H^2) - \text{ber}(K^2))^2 + \text{ber}^2(HK + KH)} \right). \tag{2.2}
\]
Hence
\[
\text{ber}^2(AX \pm XA^*)
\]
\[
\leq 2\|A\|^2 \left(\text{ber}(H^2) + \text{ber}(K^2) \right. + \sqrt{(\text{ber}(H^2) - \text{ber}(K^2))^2 + \text{ber}^2(HK + KH)} \right)
\]
as required. \(\square \)

Theorem 2.3 includes a special case as follows.

Corollary 2.4. Let \(A, X \in \mathbb{B}(\mathcal{H}(\Omega)) \) Then
(i) If \(HK + KH = 0 \), then \(\text{ber}(AX \pm XA^*) \leq 2\|A\| \max \left(\text{ber}^\frac{1}{2}(H^2), \text{ber}^\frac{1}{2}(K^2) \right) \).
(ii) If \(X \) is self-adjoint, then \(\text{ber}(AX \pm XA^*) \leq 2\|A\| \text{ber}^\frac{1}{2}(X^2). \)
(iii) If \(X \) is self-adjoint, then \(\text{ber}(AX) \leq \|A\| \text{ber}^\frac{1}{2}(X^2) \).
where \(X = H + iK \) is the certain decomposition of the operator \(X \).
Proof. The first inequality follows from Theorem 2.3 and the inequality
\[
\text{ber}^2(AX \pm XA^*) \\
\leq 2\|A\|^2 \left(\text{ber}(H^2) + \text{ber}(K^2) + \sqrt{\text{ber}(H^2) - \text{ber}(K^2)} \right) \\
= 2\|A\|^2 (\text{ber}(H^2) + \text{ber}(K^2) + |\text{ber}(H^2) - \text{ber}(K^2)|) \\
= 4\|A\|^2 \max (\text{ber}(H^2), \text{ber}(K^2)).
\]
The second inequality follows from Theorem 2.3 and the hypotheses \(X = H + 0i\). For the third inequality we have
\[
\text{ber}(AX) = \sup_{\theta \in \mathbb{R}} \text{ber} \left(\Re(e^{i\theta} AX) \right) \\
= \frac{1}{2} \sup_{\theta \in \mathbb{R}} \text{ber} \left(e^{i\theta} AX + e^{-i\theta} XA^* \right) \\
\leq \|A\| \text{ber}^{\frac{1}{2}}(X^2) \quad \text{(by part (ii))}
\]
as required. \(\square\)

The following theorem gives some upper bounds for \(\text{ber}(AX \pm XA)\).

Theorem 2.5. Let \(A, X \in \mathbb{B}(\mathcal{H}(\Omega))\). Then

(i) \(\text{ber}(AX \pm XA) \leq \text{ber}^{\frac{1}{2}}(A^*A + AA^*) \text{ber}^{\frac{1}{2}}(X^*X + XX^*)\).

(ii) \(\text{ber}(AX \pm XA) \leq \text{ber}^{\frac{1}{2}}(A^*A + X^*X) \text{ber}^{\frac{1}{2}}(AA^* + XX^*)\).

Proof. Let \(\hat{k}_\lambda\) be the normalized reproducing kernel of \(\mathcal{H}(\Omega)\). Then
\[
\left| \left\langle (AX \pm XA) \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right| \leq \left| \left\langle AX\hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right| + \left| \left\langle XA\hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right| \\
= \left| \left\langle X\hat{k}_\lambda, A^*\hat{k}_\lambda \right\rangle \right| + \left| \left\langle A\hat{k}_\lambda, X^*\hat{k}_\lambda \right\rangle \right| \\
\leq \|X\hat{k}_\lambda\| \|A^*\hat{k}_\lambda\| + \|A\hat{k}_\lambda\| \|X^*\hat{k}_\lambda\| \\
\leq \left(\|A\hat{k}_\lambda\|^2 + \|A^*\hat{k}_\lambda\|^2 \right)^{\frac{1}{2}} \left(\|X\hat{k}_\lambda\|^2 + \|X^*\hat{k}_\lambda\|^2 \right)^{\frac{1}{2}} \\
\quad \text{(by the Cauchy-Schwartz inequality)} \\
= \left| \left\langle (A^*A + AA^*) \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right|^{\frac{1}{2}} \left| \left\langle (X^*X + XX^*) \hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right|^{\frac{1}{2}} \\
\leq \text{ber}^{\frac{1}{2}}(A^*A + AA^*) \text{ber}^{\frac{1}{2}}(X^*X + XX^*).
Hence

\[\text{ber}(AX \pm XA) = \sup_{\lambda \in \Omega} \left| \langle (AX \pm XA)\hat{k}_\lambda, \hat{k}_\lambda \rangle \right| \leq \text{ber}^\frac{1}{2}(A^*A + AA^*) \text{ber}^\frac{1}{2}(X^*X + XX^*). \]

Now, according to the inequality

\[\|X\hat{k}_\lambda\| \|A^*\hat{k}_\lambda\| + \|A\hat{k}_\lambda\| \|X^*\hat{k}_\lambda\| \leq \left(\|A\hat{k}_\lambda\| + \|X\hat{k}_\lambda\| \right)^\frac{1}{2} \left(\|A^*\hat{k}_\lambda\| + \|X^*\hat{k}_\lambda\| \right)^\frac{1}{2} \]

(by the Cauchy-Schwartz inequality)

and a similar argument of the proof of part (i) we get the second inequality. \qed

For the special case \(A = I \), we have the next result.

Corollary 2.6. Let \(X \in \mathbb{B}(\mathcal{H}(\Omega)) \). Then

(i) \(\text{ber}^2(X) \leq \text{ber}(I + X^*X) \text{ber}(I + XX^*). \)

(ii) \(\text{ber}^2(X) \leq \frac{1}{2} \text{ber}(X^*X + XX^*). \)

Remark 2.7. Corollary 2.6(ii) is an improvement of (1.1). To see this, note that

\[\text{ber}^2(X) \leq \frac{1}{2} \text{ber}(X^*X + XX^*) \]

\[\leq \frac{\text{ber}(X^*X) + \text{ber}(XX^*)}{2} \]

\[\leq \frac{\|X^*X\| + \|XX^*\|}{2} \]

\[= \|X\|^2. \]

In the following theorem, we present some upper bounds of \(\text{ber}(A^*XB) \). To achieve this propose, we need the next lemma; see [14].

Lemma 2.8. If \(X \in \mathbb{B}(\mathcal{H}) \) and \(x, y \in \mathcal{H} \), then \(|\langle Xx, y \rangle|^2 \leq \|X|x, x\rangle \langle |X^*y, y\rangle \), in which \(|X| = (X^*X)^{\frac{1}{2}} \).

Theorem 2.9. Let \(A, B, X \in \mathbb{B}(\mathcal{H}(\Omega)) \). Then

(i) \(\text{ber}^2(A^*XB) \leq \|X\|^2\text{ber}(A^*A)\text{ber}(B^*B). \)

(ii) \(\text{ber}(A^*XB) \leq \frac{1}{2} \text{ber}(B^*|X|B + A^*|X^*|A). \)
Proof. If \(\hat{k}_\lambda \) is the normalized reproducing kernel of \(\mathcal{H}(\Omega) \), then

\[
\left| \left\langle A^*XB\hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right|^2 = \left| \left\langle XB\hat{k}_\lambda, A\hat{k}_\lambda \right\rangle \right|^2 \leq \left\| XB\hat{k}_\lambda \right\|^2 \left\| A\hat{k}_\lambda \right\|^2 \leq \left\| X \right\|^2 \left\| B\hat{k}_\lambda \right\|^2 \left\| A\hat{k}_\lambda \right\|^2 \leq \left\| X \right\|^2 \left\langle B\hat{k}_\lambda, B\hat{k}_\lambda \right\rangle \left\langle A\hat{k}_\lambda, A\hat{k}_\lambda \right\rangle = \left\| X \right\|^2 \left\langle B\hat{k}_\lambda, A\hat{k}_\lambda \right\rangle \left\langle A^*A\hat{k}_\lambda, \hat{k}_\lambda \right\rangle \leq \left\| X \right\|^2 \text{ber}(A^*A) \text{ber}(B^*B),
\]

whence \(\text{ber}^2(A^*XB) = \sup_{\lambda \in \Omega} \left| \left\langle A^*XB\hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right|^2 \leq \left\| X \right\|^2 \text{ber}(A^*A) \text{ber}(B^*B) \), and so we get the first inequality. Also, we have

\[
\left| \left\langle A^*XB\hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right| = \left| \left\langle XB\hat{k}_\lambda, A\hat{k}_\lambda \right\rangle \right| \leq \left\langle |X|B\hat{k}_\lambda, B\hat{k}_\lambda \right\rangle ^{\frac{1}{2}} \left\langle |X^*|A\hat{k}_\lambda, A\hat{k}_\lambda \right\rangle ^{\frac{1}{2}} \text{ (by Lemma 2.8)} \leq \frac{1}{2} \left(\left\langle (B^*|X|B)\hat{k}_\lambda, \hat{k}_\lambda \right\rangle + \left\langle (A^*|X^*|A)\hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right) \text{ (by the convexity } f(t) = t^2) = \frac{1}{2} \left(\left\langle (B^*|X|B + A^*|X^*|A)\hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right) \leq \frac{1}{2} \text{ber} (B^*|X|B + A^*|X^*|A).
\]

Hence

\[
\text{ber}(A^*XB) = \sup_{\lambda \in \Omega} \left| \left\langle A^*XB\hat{k}_\lambda, \hat{k}_\lambda \right\rangle \right| \leq \frac{1}{2} \text{ber} (B^*|X|B + A^*|X^*|A).
\]

\[\square \]

In the special case of Theorem 2.9, for \(X = I \) we obtain the next result.

Corollary 2.10. Let \(A, B, X \in \mathcal{B}(\mathcal{H}(\Omega)) \). Then

(i) \(\text{ber}^2(A^*B) \leq \text{ber}(A^*A) \text{ber}(B^*B) \).

(ii) \(\text{ber}(A^*B) \leq \frac{1}{2} \text{ber}(A^*A + B^*B) \).
Corollary 2.11. Let $A, B, X \in \mathcal{B}(\mathcal{H}(\Omega))$. Then

(i) $\text{ber}(A^*XB) \leq \text{ber}^{\frac{1}{2}}(B^*|X|B) \text{ber}^{\frac{1}{2}}(A^*|X^*|A)$.

(ii) $\text{ber}(A^*XB) \leq \frac{1}{2} \text{ber} \left(\frac{\|B\|}{\|A\|} B^*|X|B + \frac{\|A\|}{\|B\|} A^*|X^*|A \right)$.

Proof. By Theorem 2.9(ii), we have

$$\text{ber}(A^*XB) \leq \frac{1}{2} \text{ber} \left(B^*|X|B + A^*|X^*|A \right) \leq \frac{1}{2} \left(\text{ber} (B^*|X|B) + \text{ber} (A^*|X^*|A) \right).$$

Now, if we replace A and B by tA and $\frac{1}{t}B$ ($t > 0$) in inequality (2.3), respectively, then we get

$$\text{ber}(A^*XB) \leq \frac{1}{2} \left(\frac{1}{t^2} \text{ber} (B^*|X|B) + t^2 \text{ber} (A^*|X^*|A) \right).$$

It follows from

$$\min_{t>0} \left(\frac{1}{t^2} \text{ber} (B^*|X|B) + t^2 \text{ber} (A^*|X^*|A) \right) = 2\text{ber}^{\frac{1}{2}} (B^*|X|B) \text{ber}^{\frac{1}{2}} (A^*|X^*|A)$$

that we get the first inequality. Moreover, if we replace A and B by $\sqrt{\frac{\|A\|}{\|B\|}} A$ and $\sqrt{\frac{\|B\|}{\|A\|}} B$ Theorem 2.9(ii), respectively, we reach the second inequality. □

Using Theorem 2.9, we demonstrate some upper bounds for $\text{ber}(A^*XB + B^*YA)$.

Theorem 2.12. Let $A, B, X, Y \in \mathcal{B}(\mathcal{H}(\Omega))$. Then

(i) $\text{ber}(A^*XB + B^*YA) \leq \sqrt{2} \|X\| + |Y^*| \| \text{ber}^{\frac{1}{2}} (B^*B) \text{ber}^{\frac{1}{2}} (AA^*)$.

(ii) $\text{ber}(A^*XB + B^*YA) \leq 2\sqrt{\|X\|\|Y\|} \text{ber}^{\frac{1}{2}} (B^*B) \text{ber}^{\frac{1}{2}} (AA^*)$.

Proof. Applying Lemma 2.1 and Theorem 2.9(i), we have

$$\text{ber} (\Re(e^{i\alpha}(A^*XB \pm B^*YA))) = \text{ber} (\Re(e^{i\alpha}X \pm e^{-i\alpha}Y^*)B))$$

(since $\Re(T) = \Re(T^*)$)

$$\leq \text{ber} (A^*(e^{i\alpha}X \pm e^{-i\alpha}Y^*)B))$$

(by Lemma 2.1 for $\theta = 0$)

$$\leq \|e^{i\alpha}X \pm e^{-i\alpha}Y^*\| \text{ber}^{\frac{1}{2}} (B^*B) \text{ber}^{\frac{1}{2}} (AA^*)$$

(by Theorem 2.9(i)). (2.4)
It follows from the inequalities
\[
\| e^{i\alpha} X \pm e^{-i\alpha} Y^* \| = \left\| \begin{bmatrix} e^{i\alpha} X \pm e^{-i\alpha} Y^* & 0 \\ 0 & 0 \end{bmatrix} \right\| \\
= \left\| \begin{bmatrix} e^{i\alpha} & e^{-i\alpha} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \pm Y^* & 0 \\ X & 0 \end{bmatrix} \right\| \\
\leq \sqrt{2} \left\| \begin{bmatrix} X & 0 \\ \pm Y^* & 0 \end{bmatrix} \right\| \\
= \sqrt{2} \left| |X|^2 + |Y^*|^2 \right|^{\frac{1}{2}} \\
\leq \sqrt{2} \| X \| + |Y^*| \|
\]
(\text{applying [2, p. 775] to the function } h(t) = t^{\frac{1}{2}}),
\]
\[(2.4) \text{ and Lemma 2.1 that}
\]
\[
\ber (A^* XB \pm B^* Y A) = \sup_{\alpha \in \mathbb{R}} \ber (\Re(e^{i\alpha}(A^* XB \pm B^* Y A))) \\
\leq \sqrt{2} \| X \| + |Y^*| \| \ber^{\frac{1}{2}} (B^* B) \ber^{\frac{1}{2}} (AA^*) .
\]
Thus, we get the first inequality. Moreover, Using inequality (2.4) we have
\[
\ber (\Re(e^{i\alpha}(A^* XB \pm B^* Y A))) \leq \| e^{i\alpha} X \pm e^{-i\alpha} Y^*\| \ber^{\frac{1}{2}} (B^* B) \ber^{\frac{1}{2}} (AA^*) \\
\leq (\| X \| + \| Y \|) \ber^{\frac{1}{2}} (B^* B) \ber^{\frac{1}{2}} (AA^*) .
\]
\[(2.5)\]
Now, if we replace \(A \) by \(\sqrt{t} A \), \(B \) by \(\sqrt{t} B \), \(X \) by \(tX \) and \(Y \) by \(\frac{1}{t} Y \) (\(t > 0 \)) in inequality (2.5), then we get
\[
\ber (\Re(e^{i\alpha}(A^* XB \pm B^* Y A))) \leq \left(t \| X \| + \frac{1}{t} \| Y \| \right) \ber^{\frac{1}{2}} (B^* B) \ber^{\frac{1}{2}} (AA^*) .
\]
\[(2.6)\]
It follows from \(\min_{t>0} (t \| X \| + \frac{1}{t} \| Y \|) = 2\sqrt{\| X \| \| Y \|} \) and inequality (2.6) that
\[
\ber (A^* XB \pm B^* Y A) = \sup_{\alpha \in \mathbb{R}} \ber (\Re(e^{i\alpha}(A^* XB \pm B^* Y A))) \\
\leq 2\sqrt{\| X \| \| Y \|} \ber^{\frac{1}{2}} (B^* B) \ber^{\frac{1}{2}} (AA^*) .
\]
Hence, we get the second inequality. \(\square \)
Corollary 2.13. If $A, B, X \in \mathcal{B}(\mathcal{H}(\Omega))$, then

(i) $\ber(A^*X \pm XA) \leq 2\|X\|\ber^{1/2}(AA^*)$.

(ii) $\ber(A^*B \pm B^*A) \leq 2\ber^{1/2}(B^*B)\ber^{1/2}(AA^*)$.

Proof. If we put $B = I$ and $X = Y$ in Theorem 2.12(ii), then we reach the first inequality and if we take $X = Y = I$ in Theorem 2.12(ii), then we get the second inequality. □

It is well known that $w(A^n) \leq w^n(A)$ (2.7) for any $A \in \mathcal{B}(\mathcal{H})$ and $n \geq 1$. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Note that for any Toeplitz operator T_ϕ with $\phi \in L^\infty(\partial\mathbb{D})$ we have $\tilde{T}_\phi(\lambda) = \tilde{\phi}(\lambda) (\lambda \in \mathbb{D})$, where $\tilde{\phi}$ is the harmonic extension of ϕ into \mathbb{D} (see, for instance Engliš [4]). Therefore, it is easy to see that

$$\ber(T_\phi) = \|\phi\|_\infty = \|T_\phi\| = w(T_\phi),$$

which implies that $\ber((T_\phi)^n) \leq \ber^n(T_\phi)$ for any positive integer n. In general, inequality (2.7) and the trivial inequality $\ber(A) \leq w(A)$ imply that

$$\ber(A^n) \leq \ber^n(A) \left(\frac{w(A)}{\ber(A)}\right)^n$$

for any $A \in \mathcal{B}(\mathcal{H}(\Omega))$ and $n \geq 1$.

It is natural to ask: does the same property holds true for the Berezin number of A, i.e. is it true that $\ber(A^n) \leq \ber^n(A)$?

Here we give some partial answers to this question.

Theorem 2.14. Let $A \in \mathcal{B}(\mathcal{H}(\Omega))$ be an operator such that

(i) $\lim_{\lambda \to \partial\mathbb{D}} \tilde{A}^n(\lambda) \neq 0$ for any integer $n \geq 1$;

(ii) $\lim_{\lambda \to \partial\mathbb{D}} \|(A^* - \tilde{A}^n(\lambda))k_\lambda\| = 0$.

Then $\ber(A^n) \leq \ber^n(A)$ for any integer $n \geq 1$.

Proof. First, let us prove by induction that if $\ber(A) \leq 1$, then $\ber(A^n) \leq 1$ for any integer $n \geq 1$. In fact, for $n = 1$ it is trivial. For $n = k$ we assume that $\ber(A^k) \leq 1$, and we prove that $\ber(A^{k+1}) \leq 1$. We set $L := \ber(A^{k+1})$. Then $\tilde{A}^{k+1}(\lambda) \leq L$ for all $\lambda \in \Omega$, and by virtue of condition (i), for any sequence $(\epsilon_n) \subset (0, 1)$ such that
\[\lim_{n \to \infty} \epsilon_n = 0 \text{ there exists the sequence } (\lambda_n) \subset \Omega \text{ with } \lim_{n \to \infty} \lambda_n = \xi_0 \in \partial \mathbb{D} \text{ such that } |A^{k+1}(\lambda_n)| > L - \epsilon_n \quad (n \geq 1). \]

Then, by using that \(\text{ber}(A^k) \leq 1 \), we have

\[
L - \epsilon_n < |\tilde{A}^{k+1}(\lambda_n)| = |\left\langle A^{k+1}\hat{k}_{\lambda_n}, \hat{k}_{\lambda_n} \right\rangle| = |\left\langle A^k\hat{k}_{\lambda_n}, A^*\hat{k}_{\lambda_n} \right\rangle| = |\left\langle A^k\hat{k}_{\lambda_n}, A^*(\lambda_n)\hat{k}_{\lambda_n} \right\rangle + \hat{A}(\lambda_n) \left\langle A^k\hat{k}_{\lambda_n}, \hat{k}_{\lambda_n} \right\rangle|
\leq \|A^k\|\|A^*\hat{k}_{\lambda_n} - \hat{A}^*(\lambda_n)\hat{k}_{\lambda_n}\| + |\hat{A}(\lambda_n)||\hat{A}^k(\lambda_n)|
\leq \|A^k\|\|A^* - \hat{A}^*(\lambda_n)\|\hat{k}_{\lambda_n} + \text{ber}(A)\text{ber}(A^k),
\]

whence

\[
L \leq \|A^k\|\|A^*\hat{k}_{\lambda_n} - \hat{A}^*(\lambda_n)\hat{k}_{\lambda_n}\| + 1 + \epsilon_n.
\]

Using condition (ii) we get \(L \leq 1 \) whenever \(n \) tends to infinity. Now, since the operator \(\frac{A}{\text{ber}(A)} \) also satisfies conditions (i) and (ii), and \(\text{ber} \left(\frac{A}{\text{ber}(A)} \right) = 1 \) we obtain \(\text{ber} \left(\left(\frac{A}{\text{ber}(A)} \right)^n \right) \leq 1 \), which implies \(\text{ber}(A^n) \leq \text{ber}^n(A) \), as required and this completes the proof. \(\square \)

Remark 2.15. Every Toeplitz operator on the Hardy space \(\mathcal{H}^2(\mathbb{D}) \) satisfies condition (ii) of Theorem 2.14 (see Englisch [4] and Karaev [10]), and there are many Toeplitz operators satisfying conditions of Theorem 2.14 (see Axler and Zheng [3], Englisch [4] and Karaev et al. [12]).

Note that Berezin symbol has not in general multiplicative property \(\tilde{A}\tilde{B} = \tilde{AB} \) (for more information, see Kilič [13]). Our next result proves the inequality \(\text{ber}(AB) \leq \text{ber}(A)\text{ber}(B) \) for some operators.

Proposition 2.16. Let \(A, B \in \mathbb{B}(\mathcal{H}(\Omega)) \). If \(\lim_{\lambda \to \xi_0}\|(A - \tilde{A}(\lambda))^*\hat{k}_{\lambda}\| = 0 \) for some \(\xi_0 \in \partial \mathbb{D} \), then

\[
\lim_{\lambda \to \xi_0}|\tilde{A}\tilde{B}(\lambda)| \leq \text{ber}(A)\text{ber}(B).
\]

In particular, if \(\lim_{\lambda \to \xi_0}|\tilde{A}\tilde{B}(\lambda)| = \text{ber}(AB) \), then \(\text{ber}(AB) \leq \text{ber}(A)\text{ber}(B) \).
Proof. It follows from \(\widetilde{A}^* = \overline{A} \) that for all \(\lambda \in \mathbb{D} \) we have
\[
\widetilde{AB}(\lambda) = \left| \langle AB\hat{k}_\lambda, \hat{k}_\lambda \rangle \right|
= \left| \langle B\hat{k}_\lambda, A^*\hat{k}_\lambda \rangle \right|
\leq \|B\|\left\| A^*\hat{k}_\lambda - \widetilde{A}^*(\lambda)\hat{k}_\lambda \right\| + \text{ber}(A)\text{ber}(B),
\]
from which by using the hypotheses of the theorem, we have that there exists a point \(\xi_0 \in \partial \mathbb{D} \) such that \(\lim_{\lambda \to \xi_0} \widetilde{AB}(\lambda) \leq \text{ber}(A)\text{ber}(B) \), as desired. The second assertion of the theorem is immediate from the first one. The proposition is proved. \(\square \)

Proposition 2.17. If \(A, B \in \mathbb{B}(\mathcal{H}(\Omega)) \) and \(\widetilde{AB}(\lambda) \to 0 \) whenever \(\lambda \to \partial \Omega \), then there exists a point \(\lambda_0 \in \Omega \) such that
\[
\text{ber}(AB) - \text{ber}(A)\text{ber}(B) \leq \sqrt{B^*B(\lambda_0)(\widetilde{AA}^*(\lambda_0) - |\widetilde{A}(\lambda_0)|^2)}.
\]

Proof. By the same argument as in the proof of Proposition 2.16, we have
\[
\widetilde{AB}(\lambda) \leq \text{ber}(A)\text{ber}(B) + \|B\|\left\| A^*\hat{k}_\lambda - \widetilde{A}^*(\lambda)\hat{k}_\lambda \right\|
= \text{ber}(A)\text{ber}(B) + \sqrt{B^*B(\lambda)(\widetilde{AA}^*(\lambda) - |\widetilde{A}(\lambda)|^2)}
\]
for \(\lambda \in \Omega \). Since the set \(\left\{ \langle AB\hat{k}_\lambda, \hat{k}_\lambda \rangle : \lambda \in \Omega \right\} \) is bounded, there exists a sequence \((\lambda_n) \subset \Omega \) such that \(\text{ber}(AB) = \sup_{\lambda \in \Omega} \left| \widetilde{AB}(\lambda) \right| = \lim_{n \to \infty} \left| \langle AB\hat{k}_{\lambda_n}, \hat{k}_{\lambda_n} \rangle \right| \). On the other hand, by the hypotheses \(\widetilde{AB}(\lambda) \to 0 \) whenever \(\lambda \to \partial \Omega \), and hence the sequence \((\lambda_n) \) can not approach to the boundary \(\partial \Omega \). This shows there exists \(\lambda_0 \in \Omega \) such that \(\lim_{n \to \infty} \lambda_n = \lambda_0 \). Then we obtain from the last inequality that
\[
\text{ber}(AB) - \text{ber}(A)\text{ber}(B) \leq \sqrt{B^*B(\lambda_0)(\widetilde{AA}^*(\lambda_0) - |\widetilde{A}(\lambda_0)|^2)}.
\]
\(\square \)

Acknowledgement. The first author would like to thank the Tusi Mathematical Research Group (TMRG). The second author was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.
REFERENCES

[1] A. Abu-Omar and F. Kittaneh, *Numerical radius inequalities for products and commutators of operators*, Houston J. Math. **41** (2015), no. 4, 1163–1173.

[2] T. Ando and X. Zhan, *Norm inequalities related to operator monotone functions*, Math. Ann. **315** (1999), no. 4, 771–780.

[3] S. Axler and D. Zheng, *The Berezin transform on the Toeplitz algebra*. Studia Math. **127** (1998), no. 2, 113–136.

[4] M. Engliš, *Toeplitz operators and the Berezin transform on H^2*, Special issue honoring Miroslav Fiedler and Vlastimil Pták. Linear Algebra Appl. **223/224** (1995), 171–204.

[5] K.E. Gustafson and D.K.M. Rao, *Numerical Range, The Field of Values of Linear Operators and Matrices*, Springer, New York, 1997.

[6] M.T. Karaev, *Berezin symbol and invertibility of operators on the functional Hilbert spaces*, J. Funct. Anal., **238** (2006) 181–192.

[7] M.T. Karaev, *On the Berezin symbol*, J. Math. Sci. (New York) **115** (2003) 2135–2140. Translated from: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) **270** (2000) 80–89.

[8] M.T. Karaev, *Functional analysis proofs of Abels theorems*, Proc. Amer. Math. Soc. **132** (2004) 2327–2329.

[9] M.T. Karaev and S. Saltan, *Some results on Berezin symbols*, Complex Var. Theory Appl. **50** (3) (2005) 185-193.

[10] M.T. Karaev, *On the Riccati equations*, Monatsh. Math. **155** (2008), no. 2, 161–166.

[11] M.T. Karaev, *Reproducing kernels and Berezin symbols techniques in various questions of operator theory*, Complex Anal. Oper. Theory **7** (2013), no. 4, 983–1018.

[12] M.T. Karaev, M. Gürdal and M.B. Huban, *Reproducing kernels, Engliš algebras and some applications*, Studia Math. **232** (2016), no. 2, 113–141.

[13] S, Kilič, *The Berezin symbol and multipliers of functional Hilbert spaces*, Proc. Amer. Math. Soc. **123** (1995), no. 12, 3687–3691.

[14] F. Kittaneh, *Notes on some inequalities for Hilbert space operators*, Publ. Res. Inst. Math. Sci. **24** (2) (1988), 283–293.

[15] E. Nordgren and P. Rosenthal, *Boundary values of Berezin symbols*, Oper. Theory Adv. Appl. **73** (1994) 362–368.

[16] T. Yamazaki, *On upper and lower bounds of the numerical radius and an equality condition*, Studia Math. **178** (2007), 83–89.

1Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, I.R.Iran.

E-mail address: mojtaba.bakherad@gmail.com; bakherad@member.ams.org

2Department of Mathematics, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia

E-mail address: mgarayev@ksu.edu.sa