FIMP Dark Matter Freeze-in Gauge Mediation and Hidden Sector

Kuo-Hsing Tsao1,2,3

1Braviant Holdings, Chicago, IL, 60606
2Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607
3Numina Group, Woodridge, IL, 60517

E-mail: tsaokuohsing@gmail.com

Abstract. We explore the dark matter freeze-in mechanism within the gauge mediation framework, which involves a hidden Feebly Interacting Massive Particle (FIMP) coupling feebly with the messenger fields while the messengers are still in the thermal bath. The FIMP is the fermionic component of the pseudo-moduli in a generic metastable supersymmetry (SUSY) breaking model and resides in the hidden sector. The relic abundance and the mass of the FIMP are determined by the SUSY breaking scale and the feeble coupling. The gravitino, which is the canonical dark matter candidate in the gauge mediation framework, contributes to the dark matter relic abundance along with the freeze-in of the FIMP. The hidden sector thus becomes two-component with both the FIMP and gravitino lodging in the SUSY breaking hidden sector. We point out that the ratio between the FIMP and the gravitino is determined by how SUSY breaking is communicated to the messengers. In particular when the FIMP dominates the hidden sector, the gravitino becomes the minor contributor in the hidden sector. Meanwhile, the neutralino is assumed to be both the Weakly Interacting Massive Particle (WIMP) dark matter candidate in the freeze-out mechanism and the Lightest Observable SUSY Particle (LOSP). We further find out the neutralino has the sub-leading contribution to the current dark matter relic density in the parameter space of our freeze-in gauge mediation (FIGM) model. Our result links the SUSY breaking scale in the gauge mediation framework with the FIMP freeze-in production rate leading to a natural and predicting scenario for the studies of the dark matter in the hidden sector.

Keywords: Dark Matter Relic Density, Freeze-in, Gauge Mediation

Submitted to: J. Phys. G: Nucl. Phys.

1. Introduction

SUSY is widely considered to be the most compelling theory beyond the Standard Model (SM) and provides a good candidate for the WIMP dark matter, such as the neutralinos through the conventional freeze-out mechanism. However, the degeneracies
of superpartners of the SM particles are not present in our visible world. Therefore, SUSY must be broken at certain energy scale M_{SUSY}. Gauge mediation is one of the most promising ways of transmitting SUSY breaking from the hidden sector to the observable world. Moreover, the null of positive results from the dark matter search suggests that dark matter might reside in the hidden sectors or non-WIMP dark matter for examples [1–5]. Especially in the direct detection experiments, the scattering cross section is proportional to the strength of the dark matter interaction. None of the positive results [6–9] leads the particle physics community to consider an alternative dark matter production mechanism, “freeze-in”, which could become favorable if dark matter direct detection result was inconsistent with the WIMP frozen-out parameter space. [10–20].

In contrast to the conventional freeze-out process, the freeze-in production of dark matter happens while the initial relic density of dark matter is negligible and the dark matter couples to the hot bath particles which are still in thermal equilibrium at the early universe. In the freeze-in framework, the current relic density of the FIMP is determined when the temperature drops below the hot bath particle freeze-out temperature. In this paper, we explore a new scenario: the freeze-in gauge mediation (FIGM) model in which SUSY is broken by metastable vacua. The FIMP is the fermionic component of the metastable SUSY breaking pseudo-moduli which couples to the hot bath gauge mediation messengers feebly. The relic abundance of the FIMP is set by the SUSY breaking scale and the feebly coupling. In the FIGM scenario, the FIMP lodges in the hidden sector with the canonical dark matter candidate in the gauge mediation framework, the gravitino. We formulate the relic density ratio between the FIMP and the gravitino in the hidden sector and link the mass scale of the FIMP with the freeze-in production rate.

In the gauge mediation models, the gauge messenger generates the gaugino spectrum via the loop correction. Thereby the mass scale of the neutralino WIMP is linked with the messenger scale M_{mess} and the SUSY breaking effect F for gauge mediation models as shown in Eq.(1). (See [21] for more details).

$$m_{\tilde{\chi}^0} \approx \frac{g^2}{16\pi^2} \frac{F}{M_{\text{mess}}} \sim O(\text{TeV})$$

For $g \sim O(1)$, the SUSY breaking scale is bounded $\frac{F}{M_{\text{mess}}} \gtrsim 100$ TeV from the current LHC collider limit on the WIMP mass [22–25] and this lower bound will be further applied to constraint the parameter space of the FIMP. In addition, the gravitino is the exceptional lightest supersymmetric particle (LSP) and the dark matter candidate with R-parity conserved, and the gravitino abundance is generated by either the thermal scattering or the hot bath particles decay. The gravitino production rate is related to the reheat temperature T_R, the LOSP mass spectrum and the messenger scale [15,21,26–32]. Since the valid thermal leptogenesis requires the high reheat temperature [28, 31], $T_R > M_{\text{mess}} > M_{\text{MSSM}}$ is assumed to be higher than the Minimal Supersymmetric Standard Model (MSSM) mass scale without lack of generosity. Under this reheat temperature condition, the gravitino production from the messengers is the dominant
source [28–32] and the potential gravitino overproduction or the universe overclosure issue in the early universe is resolved by some mechanisms, e.g. [29, 30, 32–37]. We further show that the gravitino relic density will also be suppressed by the FIMP feeble coupling to the messengers in the hidden sector.

The FIGM links a generic metastable SUSY breaking model with the FIMP freeze-in production which provides a predictive scenario for the SUSY breaking scale from the cosmological dark matter relic density observations. The FIMP dark matter $\tilde{\chi}^h$ in the hidden sector feebly interacts with the hot bath messenger fields in the early universe and then freezes-in via the thermal scattering of hot bath particles. Furthermore, the mass of FIMP is generated by the loop correction of messengers, which is analogous to gaugino mass in the visible sector. The FIMP is the fermionic component of the SUSY breaking pseudo-moduli and receives mass after getting lifted a the quantum level [38].

$$m_{\tilde{\chi}^h} \approx \frac{\lambda_{\text{hidden}}^2}{16\pi^2} \frac{F}{M_{\text{mess}}}$$

We show that the FIMP is the LSP from Eq. (2) when the current dark matter density is dominated by the FIMP. On the other hand, the traditional WIMP candidates, the neutralino, now becomes the LOSP and only has the sub-leading contribution to the relic density. As mentioned earlier, the gravitino is the typical LSP in gauge mediation framework. Therefore the hidden sector becomes two-component and we estimate the ratio of the relic density between the gravitino and FIMP. This ratio is related to how SUSY breaking is commuted to the messenger sector and the feeble couplings of FIMP and we parametrize the condition in which FIMP is the majority of the hidden sector.

This paper is structured as follows. In section 2, we introduce and summarize the FIGM mechanism and outline the relic density of the FIMP in the parameter space of the FIGM. In section 3, we show the relic density ratio between the gravitino and the FIMP in the two-component hidden space. Section 4 compares the relic density between the neutralino freeze-out and the FIMP freeze-in productions. We also show that under certain parameter space the neutralino becomes the sub-leading term in the current relic density when the FIMP has the dominant contribution. We conclude our results and outlook in section 5.

2. FIMP Freeze-in Gauge Mediation

First, we demonstrate the FIGM mechanism in which the FIMP is the fermion component of pseudo-moduli in the metastable SUSY breaking vacua. The FIMP is massless at tree level and then becomes massive from the loop contribution of gauge messengers [39–41]. The FIMP resides in a hidden sector and feebly couples to the gauge messenger sector. This tree-level massless fermion should be distinguished from the Goldstino, the spin-1/2 Goldstone Fermion for the spontaneous SUSY breaking. If the Goldstino is eaten by gravity, it becomes a spin-3/2 gravitino by the Super-Higgs Mechanism [42]. The FIMP is generated by the decay of gauge mediation messengers and thermal scattering of other hot bath particles. The relic density of the FIMP is highly
linked with the SUSY breaking scale and the reheating temperature of the Universe after inflation. Here, for simplicity, we assume that the gravitino relic density contribution is derived mainly from the hot bath particles and the gravitino relic density can be diluted by some mechanisms e.g. late entropy production, low reheat temperature, low SUSY-breaking scale, sequestering gravitino, etc. [28–30,32,33,35]. Therefore the gravitino relic density can be the valid fraction of the dark sector. We will discuss this two-component dark sector in Section 3. Since the FIGM model is a generic metastable SUSY breaking model [39], the dynamical evolution of the pseudo-module [29, 30] naturally coincides with the metastable SUSY breaking model presented here.

We assume the FIMP superfield X is the spurion-like superfield with SUSY breaking scale F_X. The standard gauge mediation SUSY breaking messengers (Φ, $\tilde{\Phi}$) commute with both the MSSM sector and the hidden sector. There is no direct mediation between the MSSM and the hidden sectors shown in Eq. (3) and the FIGM interactions in Eq. (4):

$$W = \lambda_x X \tilde{\Phi} \Phi + \lambda_{zi} Z_i \tilde{\Phi} \Phi + W_{OR}(X, Z_i)$$

$$\mathcal{L}_{FIGM} = \lambda_x \phi \tilde{\psi} \tilde{\chi}^h + \lambda_x \phi \tilde{\psi} \tilde{\chi}^h + h.c.$$

where Eq. (3) is a generic O’Raifeartaigh SUSY breaking model. Z_i are the hidden SUSY breaking chiral superfields (the SM singlets) and will not directly participate in the FIGM mechanism. The FIMP is generated from the thermal scattering of hot bath particles within the messenger portal and the decay of messengers in Eq. (4). We will show the latter makes the sub-leading contribution in the current relic density.

Note that one of the Z_i is the canonical moduli which breaks SUSY spontaneously and its fermion component is a massless Goldstino except the appearance of gravity mentioned above. Here, we assume SUSY is broken by meta-stable vacua [39]. The $\lambda_{zi} Z_i \tilde{\Phi} \Phi$ term provides the gravitino production channels from the decay and scattering of messengers similar to FIMP. For simplicity, we assume $i = 1$ from now on. Φ and $\tilde{\Phi}$ are the gauge mediation messengers which have the SM-charged scalar and fermion components (ϕ, ψ), ($\tilde{\phi}, \tilde{\psi}$). The dark matter is the fermionic component noted as $\tilde{\chi}^h$ which is stabilized by R-parity. The R-parity assignment is shown in TABLE. 1 where both scalar and fermion masses of X are generated by the loop correction of the messengers:

$$m_{\tilde{\chi}^h} \sim \frac{\lambda_x^2}{16\pi^2} \left(\frac{\lambda_x F_X}{M_\phi} \right)$$

$$M_S^2 \sim \frac{\lambda_x^2}{16\pi^2} \left(\frac{\lambda_x F_X}{M_\phi} \right)^2$$

and we also assume $\sqrt{\lambda_x F_X} \ll M_\phi$ for simplicity.

Within the freeze-in model, we assume $\tilde{\chi}^h$ has negligible initial thermal abundance in the early universe and that feebly couples to thermal hot bath when both the messengers and the MSSM particles are still in the thermal equilibrium.‡When the

‡ The scalar partner of FIMP, S, is generated by freeze-in first and then decay to di-jet and di-photon via messenger loop. The effect on the relic density from the late decay of S is negligible.
Table 1. The R-parity assignment of the chiral superfields in FIGM model.

	X	Z	Φ	$\bar{\Phi}$
Scalar	S	G	ϕ	$\bar{\phi}$
R-parity	+	+	−	−
Fermion	$\tilde{\chi}^h$	\tilde{G}	ψ	$\bar{\psi}$
R-parity	−	−	+	+

Figure 1. The leading order of the FIGM mechanism has two modes: (a) The decay of the scalar component of the gauge mediation messenger into the hidden sector and (b) FIMP $\tilde{\chi}^h$ freezing into the hidden sector by thermal scatterings of the hot bath particles, e.g. the gaugino $\tilde{\lambda}$ and the fermionic component of messengers.

Reheat temperature T_R is still higher than the mass of hot bath particles ($T_R > M_\phi > M_{\text{MSSM}}$), the yield of $\tilde{\chi}^h$ is produced by the decay of the messenger field and the thermal scattering of the MSSM particles illustrated in Figure 1(a) and 1(b):

\[
Y_{1\rightarrow 2} \approx \frac{135 \times g_\phi}{8\pi^3 \times 1.66 \times g_\psi^S \times \sqrt{g_\psi^s}} \times \frac{M_{\text{Pl}} \Gamma_{\phi \rightarrow \psi \tilde{\chi}^h}}{M_\phi^2} \tag{7}
\]

\[
Y_{2\rightarrow 2} \approx \frac{135 \times g^2 \lambda_x^2}{512 \pi^5 \times 1.66 \times g_\psi^S \times \sqrt{g_\psi^s}} \times \frac{M_{\text{Pl}}}{\Gamma_{\phi}^{\text{total}}} \tag{8}
\]

where g is the gauge coupling of MSSM particle to messengers, g_ϕ is degree of freedom of ϕ, g_ψ^S and g_ψ^s are the degree of freedom in the hot bath at freeze-in temperature $T_{FI} > M_\phi$ for the entropy S, the energy density ρ, $M_{\text{Pl}} \approx 10^{18}$GeV and the decay widths are:

\[
\Gamma_{\phi \rightarrow \psi \tilde{\chi}^h} \approx \frac{1}{8\pi} \lambda_x^2 M_\phi \left(1 - \frac{M_\psi}{M_\phi}\right)^2 = \frac{\lambda_x^4 F_X^2}{8\pi M_\phi^3} \tag{9}
\]

\[
\Gamma_{\phi}^{\text{total}} \approx \frac{1}{8\pi} (g^2 + \lambda_x^2) M_\phi \approx \frac{g^2}{8\pi} M_\phi, \ g \gg \lambda_x \tag{10}
\]

where $M_\phi^2 = M_\psi^2 \pm \lambda_x F_X$ ($M_\phi^2 \gg \lambda_x F_X$).

We show that when $\lambda_x \ll \mathcal{O}(1)$ and $\lambda_x F_X \ll M_\phi^2$, the ratio of FIMP density

\[
\frac{\rho_{\text{FIMP}}}{{\rho}_M} \approx \frac{135 \times g_\phi}{8\pi^3 \times 1.66 \times g_\psi^S \times \sqrt{g_\psi^s}} \times \frac{M_{\text{Pl}}}{\Gamma_{\phi}^{\text{total}}} \tag{11}
\]
between the decay and the scattering of the hot bath particles is:
\[
\frac{Y_{\tilde{\chi}_h^{1\rightarrow 2}}}{Y_{\tilde{\chi}_h^{2\rightarrow 2}}} \approx \left(\frac{x F_X}{\lambda_2 M_{\phi}^2} \right)^2 \lesssim 1
\]
(11)
which implies that the scattering process is the dominant channel for FIMP freeze-in relic abundance.

On the other hand, if \(T_R < M_{\phi} \) then the messengers are not in the thermal bath which leads the thermal scattering in Figure 1(b) to become an off-shell process \cite{43} and thus the number density becomes:
\[
Y_{\tilde{\chi}_h^{2\rightarrow 2}, \text{off-shell}} \approx \frac{90 \times g^2 \lambda_2^2}{128 \pi^2 \times 1.66 \times g_s^4 \times \sqrt{g_s} \times \frac{M_{Pl} T_R^3}{M_{\phi}^4}} \]
(12)

Here we focus on the former case, i.e. \(T_R > M_{\phi} \) and the relic abundance of \(\tilde{\chi}_h \) from the scattering of messengers:
\[
\Omega_{\tilde{\chi}_h} = \frac{S_0}{\rho_c} m_{\tilde{\chi}_h} Y_{\tilde{\chi}_h}
\]
(13)
where \(S_0 \approx 2.8 \times 10^3 \text{ cm}^{-3} \) is the current entropy and critical density \(\rho_c \approx 10^{-5} h^2 \text{ GeVcm}^{-3} \). Since \(m_{\tilde{\chi}_h} \) is generated by the messenger loop correction Eq. (5), we can further write Eq. (13) in terms of SUSY breaking scale \(F_X \) and messenger mass \(M_{\phi} \):
\[
\Omega_{\tilde{\chi}_h} h^2 \approx \frac{2.8 \times 10^8 \text{ GeV}}{m_{\tilde{\chi}_h} Y_{\tilde{\chi}_h} \rho_c}
\]
\[\approx 0.12 \times \left(\frac{\lambda x}{10^{-5}} \right)^5 \times \left(\frac{F_X}{10^{16} \text{ GeV}^2} \right) \times \left(\frac{10^6 \text{ GeV}}{M_{\phi}} \right)^2 \]
(14)
where \(M_{Pl} \approx 10^{18} \text{ GeV} \), \(g_\phi = 1 \) and \(g_s^S \) and \(g_\rho^S \) are about \(O(10^2) \). The MSSM gauginos also receive masses from messenger loop correction and the current LHC lower bound limits on gaugino masses give us \(\lambda x F_X / M_{\phi} \approx 100 \text{ TeV} \). We present the feeble coupling with respect to different messengers and the SUSY breaking scale in Eq. (3) in order to have FIMP relic abundance \(\Omega_{\tilde{\chi}_h} h^2 = \Omega_{DM} h^2 \approx 0.12 \) shown in Figure 2. As you can see, \(\lambda x \) is about \(O(10^{-5}) \) to \(O(10^{-4}) \) in the inclusive \(F_X \) and \(M_{\phi} \) parameter space from the current LHC \(\lambda x F_X / M_{\phi} \leq 100 \text{ TeV} \) limit and the \(\lambda x F_X < M_{\phi}^2 \) assumption.

To summarize FIGM mechanism, we begin with a generic metastable SUSY breaking model in the gauge mediation framework:

- R-parity \cite{44,45} makes pseudo-moduli FIMP \(\tilde{\chi}_h \) stable.
- The tree-level mass of pseudo-moduli FIMP is forbidden by R-symmetry. \cite{38}
- \(\tilde{\chi}_h \) obtains mass at one-loop correction from integrating out the massive messengers.
- Messengers are in thermal equilibrium with the hot bath particles \((T_R > M_{\phi}) \), and \(\tilde{\chi}_h \) is produced from the hot bath particles scattering and resides in the SUSY breaking sector with feebly coupling to the messengers.
• The initial negligible relic abundance of the FIMP $\tilde{\chi}$ increases due to the feebly interaction with the hot bath particles and then the relic density of FIMP freezes in when the hot bath particles freeze out.

3. Two-component Hidden Sector

The gravitino (the typical LSP of gauge mediation models) resides in the hidden sector along with the FIMP. Both the gravitino and the FIMP have the same production modes shown in Figure 1(a) and 1(b): the thermal scattering and decay of the messengers. Hence the hidden sector becomes two-component.\footnote{In the condition of $T_R > M_\phi$, the production of gravitino from other hot bath particles is highly suppressed \cite{28}.} Due to the mass generation method difference and how canonical moduli and pseudo-moduli feels the SUSY breaking effect, we further show that the two-component hidden sector phenomenon is linked with the SUSY breaking scales and the feeble coupling of the FIMP.

First, we define k as the Goldstino portion of SUSY breaking effect:

\[k \equiv \frac{F_Z}{F} = \frac{F_Z}{\sqrt{F_X^2 + F_Z^2}} \approx \frac{F_Z}{F_X}, \quad F_X \gg F_Z \]

(15)

where F_X, F_Z, and F are the FIMP pseudo-module, the gravitino module and the total SUSY breaking effect respectively. λ_x and λ_z are the hidden (the FIMP) and the visible

\[\Omega_{\tilde{\chi}^h} h^2 \approx 0.12 \]

\[F_x (\text{GeV}^2) \]

\[M_\phi (\text{GeV}) \]

\[10^{-6} \]

\[10^{-5} \]

\[10^{-4} \]

\[10^{-3} \]

\[10^{-2} \]

\[10^{-1} \]

\[10^6 \]

\[10^8 \]

\[10^{10} \]

\[10^{12} \]

\[10^{14} \]

\[10^{16} \]

\[10^{18} \]

\[10^{20} \]

\[10^{22} \]

\[10^{24} \]

\[\text{Figure 2.} \] The contour plot of feeble coupling λ_x. The framed box shows the value of λ_x in order for the dark matter relic abundance $\Omega_{\tilde{\chi}^h} h^2 \approx 0.12$ with respect to different SUSY breaking effects F_x and messenger masses. The lower-right blue region shows the exclusive region $\lambda_x F_X/M_\phi \leq 100$ TeV from current LHC limits and the upper-left orange region is due to $\lambda_x F_X > M_\phi^2$ assumption.
sector (the gravitino) couplings to the messengers respectively. Hence, the gravitino mass leads to:

$$m_{3/2} = \frac{F_Z}{k\sqrt{3}M_{pl}}$$ \hspace{1cm} (16)$$

and the gravitino relic density is dominated mainly by the thermal scattering of the messengers. The MSSM sector has a negligible contribution when reheat temperature is larger than M_{mess}. We also ignore the model dependent superWIMP scenario [15, 28, 32, 46].

The interaction between the gravitino and the messengers

$$\mathcal{L} = \lambda_z k \phi \tilde{\psi} \tilde{G} + \lambda_z k \tilde{\phi} \psi \tilde{G} + h.c.$$ \hspace{1cm} (17)$$

which leads to the gravitino number density ratio between the decay and the scattering from messengers as shown below:

$$\frac{Y_{\tilde{G}}^1 \rightarrow 2}{Y_{\tilde{G}}^2 \rightarrow 2} \approx \left(\lambda_z^2 k^2 \frac{F_X}{M_{\phi}^2} \right)^2 \ll 1.$$ \hspace{1cm} (18)$$

Similar to the FIMP, the gravitino abundance is also dominated by the hot bath particles scattering rather than the decay.

Therefore, the relic density of the gravitino is:

$$\Omega_{\tilde{G}} h^2 \approx 0.1 \times \left(\frac{\lambda_z}{10^{-2}} \right)^4 \times \left(\frac{F_Z/M_{\phi}}{10^2 \text{ GeV}} \right) \times \left(\frac{k}{10^{-3}} \right)$$ \hspace{1cm} (19)$$

Now we realize the relic density of the hidden sector is composed of the sum of gravitino relic density in Eq. (19) and FIMP in Eq. (13). The two-component hidden sector can be presented by the ratio as shown below:

$$\frac{\Omega_{\tilde{G}} h^2}{\Omega_{\tilde{\chi} h} h^2} \approx \left(\frac{10^{-5}}{\lambda_z} \right)^4 \times \left(\frac{\lambda_z}{10^{-2}} \right)^2 \times \left(\frac{k}{10^{-3}} \right)^2 \times \left(\frac{M_{\phi}}{10^6 \text{ GeV}} \right)$$ \hspace{1cm} (20)$$

We can see that the ratio between the gravitino and the FIMP is controlled by the freeze-in couplings and k for a given gauge messenger mass scale.

Here we illustrate the two-component hidden sector relic density $\Omega_{DM} = \Omega_{\tilde{\chi} h} + \Omega_{\tilde{G}}$ by considering a branching point $T_R \gg M_{\phi} = 10^7 \text{ GeV}$ and $F_Z = 10^{17} \text{ GeV}^2$ in Figure 3. In particular, the gravitino overproduces when k and λ_z are about $O(1)$. As you can see, when k or λ_z becomes infinitesimal the FIMP dominates the hidden sector, which means the SUSY breaking effect is mainly dominated by the FIMP sector $F \approx F_X$. The masses of the FIMP and gravitino are about $O(\text{KeV})$ and $O(10^2 \text{ MeV})$ respectively at this branching point of parameter space. The mass hierarchy between FIMP and gravitino in the parameter space of FIGM shown in Figure 2:

$$\frac{m_{\tilde{G}}}{m_{\tilde{\chi} h}} \approx 10^5 \left(\frac{M_{\phi}}{10^6 \text{ GeV}} \right) \times \left(\frac{10^{-5}}{\lambda_z} \right)^3$$ \hspace{1cm} (21)$$

We conclude the relic density ratio of the two-component hidden sector with Eq. (19) and (20) in which the FIMP dominates the hidden sector majorly in the FIGM parameter space of F_X and M_{ϕ} from Figure 2 and SUSY breaking effect at $F_X \gg F_Z$ or parametrically $k < 10^{-2}$ and $\lambda_z < 10^{-2}$.

$\Omega_{\tilde{G}}h^2 \sim h^2 > 0.12$

$\Omega_{DM} h^2 \approx 0.12$

$\lambda_x \approx 10^{-4} - 10^{-5}$

10^{-2}

10^{-4}

10^{-6}

10^{-2}

10^{-4}

10^{-6}

10^{-6}

10^{-4}

10^{-2}

λ_Z

k

$M_{mess} = 10^7$ GeV,

$F_x = 10^{17}$ GeV2

Figure 3. The asymmetric hidden sector behavior of the relic density in the plot of the coupling of gravitino to messengers and k at one branching point $M_\phi = 10^7$ GeV and $F_x = 10^{17}$ GeV2. The number in the framed box is the ratio of $\Omega_{\tilde{G}}h^2 / \Omega_{\tilde{\chi}}h^2$. The Red region exclusively shows gravitino overproduction parameter space when k and λ_z larger than $\mathcal{O}(10^{-1})$. The White region shows the ratio of gravtino to FIMP $\Omega_{\tilde{G}}h^2 / \Omega_{\tilde{\chi}}h^2$ while the combination of gravitino and FIMP relic density $\Omega_{DM} h^2 = \Omega_{\tilde{G}}h^2 + \Omega_{\tilde{\chi}}h^2 \approx 0.12$ and $\lambda_x \approx 10^{-5}$.

4. LOSP Neutrino Freeze-Out Versus FIMP Freeze-In

When the FIMP and the gravitino freeze-in from the decay of gauge messengers or the scattering between the neutralino and chargino, the neutralino ($\tilde{\chi}^0$) freeze-out process also might contribute to the relic density of dark matter when the neutralino is assumed to be the lightest observable SUSY particle (LOSP) in the visible sector. Here we estimate the portion of the neutralino in the dark matter relic density by considering the tree level annihilation of the neutralinos. In contrast to the freeze-in process, the neutralino freezes-out with the co-moving volume number density:

$$Y_{\tilde{\chi}^0} \approx \frac{1}{\langle \sigma_{ann} v \rangle M_{pl} m_{\tilde{\chi}^0}}, \quad \langle \sigma_{ann} v \rangle \approx \frac{g_a^4}{16\pi^2 m_{\tilde{\chi}^0}^2} \quad (22)$$

where g_a is the neutralino gauge coupling in the annihilation process. We can further rewrite Eq.(22) with neutralino mass generated by the loop correction of the messengers so that the relic density of the neutralino leads to Eq. (23)

$$m_{\tilde{\chi}^0} \approx \frac{g_n^2}{16\pi^2} \frac{\lambda_x F_x}{M_\phi} \approx 1 \text{ TeV} \times \left(\frac{g_n}{\mathcal{O}(1)} \right)^2 \times \left(\frac{\lambda_x F_x / M_\phi}{10^5 \text{ GeV}} \right)$$

$$\Omega_{\tilde{\chi}^0} h^2 \approx 0.017 \times \left(\frac{\lambda_x F_x / M_\phi}{10^5 \text{ GeV}} \right)^2 \times \left(\frac{g_n}{g_a} \right)^4 \quad (23)$$
where g_n is the gauge coupling of the neutralino. As $g_n \sim g_a$, the neutralino relic density is the sub-leading term compared to Eq. (14), however, the ratio between the FIMP and the neutralino is determined by the SUSY breaking scale, the messenger mass scale and the FIMP feeble coupling λ_x as shown in Eq. (24).

$$\frac{\Omega_{\tilde{\chi}^0} h^2}{\Omega_{\tilde{\chi}} h^2} \approx \left(\frac{10^{-5}}{\lambda_x}\right)^4 \times \left(\frac{\lambda_x F_x / M_\phi}{10^5 \text{ GeV}}\right) \times \left(\frac{M_\phi}{10^6 \text{ GeV}}\right)$$

We present the ratio of the neutralino relic density to the FIMP relic density and λ_x is chosen to make $\Omega_{\tilde{\chi}} h^2 \approx 0.12$ in Figure 4. As it shows that the neutralino has sub-leading or negligible relic density when $\lambda_x \approx 10^{-5}$ and neutralino mass is about few TeV.

![Figure 4](image-url)

Figure 4. We show the ratio between the FIMP and the neutralino (LOSP) at different SUSY breaking scales and messenger masses where λ_x is chosen to satisfy $\Omega_{\tilde{\chi}} h^2 \approx 0.12$. The Grey region is excluded when LOSP has more relic density than currently observed dark matter relic density. The Pink region is where LOSP becomes the sub-leading term compared to FIMP: $0 < \Omega_{\tilde{\chi}} h^2 < 1$. The White region shows where FIMP dominates the hidden sector and neutralino relic density is negligible. The lower-right Blue region shows the exclusive region $F_x / M_\phi \leq 10^2$ TeV from current LHC limits.

5. Summary and Outlook

In this paper, we explore the FIMP dark matter freeze-in gauge mediation (FIGM) model. The FIMP is a metastable SUSY breaking pseudo-moduli fermion feebly coupling to the gauge messengers and receives mass from the loop correlation of the messengers. When the messengers are still in the hot bath at the early universe and in the condition of $T_R > M_\phi$, the FIMP is created mainly through the scattering of the hot bath particles via the messenger mediator shown in Figure 1(b) and the FIMP relic
density freezes-in when the temperature drops below the hot bath particle mass. The accessible FIGM parameter space includes the feeble coupling between the FIMP and messengers, the messenger scale, and the SUSY breaking scale based on the current LHC searching limits on the neutralino mass presented in Figure 2. We further compare the relic density between the FIMP and the gravitino which is the expected hidden sector particle in the gauge mediation framework. We find out the gravitino becomes the sub-leading or even negligible contributor in the hidden sector when the SUSY breaking effect is mainly dominated by the FIMP field which becomes a new strategy to suppress the gravitino relic density. Both the FIMP freeze-in and the neutralino freeze-out processes summarize the FIGM parameter space. We conclude that the FIMP dominates the most of hidden sector relic density when the parameters fit in Figure 3 and 4.

The FIGM provides a natural and alternative scenario for the future hidden sector studies especially when conventional WIMP parameter space is facing severe challenges from the current dark matter searches. Particularly when the physics community begins to suggest the dark matter direct detection searches for KeV to MeV dark matter mass range [47–52], which coincides the FIMP mass range discussed here. The FIMP mass range is also optimal for the dark matter indirect detection scenarios like the nuclear beta decay and the electron capture processes [53–57]. Moreover, the FIGM links the dark matter density with SUSY breaking scale, and FIMP mass scale which leads to an alternative but highly predictable direction for the future SUSY and dark matter searches. In a forthcoming paper, the details of the connection between dynamical SUSY breaking models and FIMP relic density will be discussed.

6. Acknowledgments

We gratefully acknowledge C.-H. Chang, I. Dalianis, A. Ismail, W.-Y. Keung, T.-C. Kuo, S. Seto and S. Sharp for useful discussions and to J. Unwin for the early cooperation.

References

[1] Feng JL, Kumar J. The WIMPless Miracle: Dark-Matter Particles without Weak-Scale Masses or Weak Interactions. Phys Rev Lett. 2008;101:231301.
[2] Feng JL, Tu H, Yu HB. Thermal Relics in Hidden Sectors. JCAP. 2008;0810:043.
[3] Ibarra A, Ringwald A, Weniger C. Hidden gauginos of an unbroken U(1): Cosmological constraints and phenomenological prospects. JCAP. 2009;0901:003.
[4] McKeen D. WIMPless Dark Matter and Meson Decays with Missing Energy. Phys Rev. 2009;D79:114001.
[5] Foot R, Vagnozzi S. Dissipative hidden sector dark matter. Phys Rev. 2015;D91:023512.
[6] Akerib DS, et al. Results from a search for dark matter in the complete LUX exposure. Phys Rev Lett. 2017;118(2):021303.
[7] Akerib DS, et al. Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure. Phys Rev Lett. 2017;118(25):251302.
[8] Cui X, et al. Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment. Phys Rev Lett. 2017;119(18):181302.
[9] Aprile E, et al. First Dark Matter Search Results from the XENON1T Experiment. Phys Rev Lett. 2017;119(18):181301.
[10] Hall LJ, Jedamzik K, March-Russell J, West SM. Freeze-In Production of FIMP Dark Matter. JHEP. 2010;03:080.
[11] Hall LJ, March-Russell J, West SM. A Unified Theory of Matter Genesis: Asymmetric Freeze-In. 2010;
[12] Blennow M, Fernandez-Martinez E, Zaldívar B. Freeze-in through portals. JCAP. 2014;1401:003.
[13] Cheung C, Elor G, Hall LJ, Kumar P. Origins of Hidden Sector Dark Matter I: Cosmology. JHEP. 2011;03:042.
[14] Cheung C, Elor G, Hall LJ, Kumar P. Origins of Hidden Sector Dark Matter II: Collider Physics. JHEP. 2011;03:085.
[15] Cheung C, Elor G, Hall L. Gravitino Freeze-In. Phys Rev. 2011;D84:115021.
[16] Khlopov M. Fundamentals of Cosmic Particle Physics. Cambridge, UK: Cambridge International Science Publishing; 2012.
[17] Bhupal Dev PS, Mazumdar A, Qutub S. Constraining Non-thermal and Thermal properties of Dark Matter. Frontin Phys. 2014;2:26.
[18] Heikinheimo M, Tenkanen T, Tuominen K. WIMP miracle of the second kind. Phys Rev. 2017;D96(2):023001.
[19] Bernal N, Heikinheimo M, Tenkanen T, Tuominen K, Vaskonen V. The Dawn of FIMP Dark Matter: A Review of Models and Constraints. Int J Mod Phys. 2017;A32(27):1730023.
[20] Doroshkevich AG, Khlopov MY. Formation of structure in a universe with unstable neutrinos. Monthly Notices of the Royal Astronomical Society. 1984;211(2):277–282.
[21] Giudice GF, Rattazzi R. Theories with gauge mediated supersymmetry breaking. Phys Rept. 1999;322:419–499.
[22] Sirunyan AM, et al. Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at √s = 13 TeV. 2017;
[23] Sirunyan AM, et al. Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at √s = 13 TeV. 2017;
[24] Search for electroweak production of supersymmetric particles in the two and three lepton final state at √s = 13 TeV with the ATLAS detector. Geneva: CERN; 2017. ATLAS-CONF-2017-039. Available from: https://cds.cern.ch/record/2267406.
[25] Summary plots from the ATLAS Supersymmetry physics group; Available from: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/index.html#ATLAS_SUSY_EWSummary.
[26] Moroi T, Murayama H, Yamaguchi M. Cosmological constraints on the light stable gravitino. Phys Lett. 1993;B303:289–294.
[27] Dimopoulos S, Giudice GF, Pomarol A. Dark matter in theories of gauge mediated supersymmetry breaking. Phys Lett. 1996;B389:37–42.
[28] Choi K, Hwang K, Kim HB, Lee T. Cosmological gravitino production in gauge mediated supersymmetry breaking models. Phys Lett. 1999;B467:211–217.
[29] Hamaguchi K, Kitano R, Takahashi F. Non-thermal Gravitino Dark Matter in Gauge Mediation. JHEP. 2009;09:127.
[30] Fukushima H, Kitano R, Takahashi F. Cosmologically viable gauge mediation. JHEP. 2013;02:140.
[31] Fukushima H, Kitano R. Gravitino thermal production revisited and a new cosmological scenario of gauge mediation. JHEP. 2014;01:081.
[32] Dalianis I. Gravitino dark matter production at finite temperature. JHEP. 2013;11:162.
[33] Feng JL, Smith BT, Takayama F. Goldilocks Supersymmetry: Simultaneous Solution to Dark Matter and Flavor Problems of Supersymmetry. Phys Rev Lett. 2008;100:021302.
[34] Murayama H, Nomura Y, Poland D. More visible effects of the hidden sector. Phys Rev. 2008;D77:015005.
[35] Craig NJ, Green DR. Sequestering the Gravitino: Neutralino Dark Matter in Gauge Mediation.
[36] Addazi A, Kilopov M. Way-out to the gravitino problem in intersecting D-brane Pati?Salam models. Mod Phys Lett. 2016;A31(19):1650111.

[37] Co RT, Harigaya K. Gravitino Production Suppressed by Dynamics of Goldstino. JHEP. 2017;10:207.

[38] Shih D. Pseudomoduli Dark Matter. JHEP. 2009;09:046.

[39] Intriligator KA, Seiberg N, Shih D. Dynamical SUSY breaking in meta-stable vacua. JHEP. 2006;04:021.

[40] Intriligator KA, Seiberg N, Shih D. Supersymmetry breaking, R-symmetry breaking and metastable vacua. JHEP. 2007;07:017.

[41] Haba N, Maru N. A Simple Model of Direct Gauge Mediation of Metastable Supersymmetry Breaking. Phys Rev. 2007;D76:115019.

[42] Volkov DV, Akulov VP. Is the Neutrino a Goldstone Particle? Phys Lett. 1973;46B:109–110.

[43] Elahi F, Kolda C, Unwin J. UltraViolet Freeze-in. JHEP. 2015;03:048.

[44] Chamseddine AH, Arnowitt RL, Nath P. Locally Supersymmetric Grand Unification. Phys Rev Lett. 1982;49:970.

[45] Barbieri R, Ferrara S, Savoy CA. Gauge Models with Spontaneously Broken Local Supersymmetry. Phys Lett. 1982;119B:343.

[46] Feng JL, Rajaraman A, Takayama F. SuperWIMP dark matter signals from the early universe. Phys Rev. 2003;D68:063504.

[47] Essig R, Mardon J, Volansky T. Direct Detection of Sub-GeV Dark Matter. Phys Rev. 2012;D85:076007.

[48] Essig R, Manalaysay A, Mardon J, Sorensen P, Volansky T. First Direct Detection Limits on sub-GeV Dark Matter from XENON10. Phys Rev Lett. 2012;109:021301.

[49] Lee SK, Lisanti M, Mishra-Sharma S, Safdi BR. Modulation Effects in Dark Matter-Electron Scattering Experiments. Phys Rev. 2015;D92(8):083517.

[50] Essig R, Fernandez-Serra M, Mardon J, Soto A, Volansky T, Yu TT. Direct Detection of sub-GeV Dark Matter with Semiconductor Targets. JHEP. 2016;05:046.

[51] Izaguirre E, Krnjaic G, Schuster P, Toro N. Analyzing the Discovery Potential for Light Dark Matter. Phys Rev Lett. 2015;115(25):251301.

[52] Green D, Rajendran S. The Cosmology of Sub-MeV Dark Matter. JHEP. 2017;10:013.

[53] Biermann PL, Kusenko A. Relic keV sterile neutrinos and reionization. Phys Rev Lett. 2006;96:091301.

[54] de Vega HJ, Sanchez NG. Model independent analysis of dark matter points to a particle mass at the keV scale. Mon Not Roy Astron Soc. 2010:404:885.

[55] de Vega HJ, Moreno O, de Guerra EM, Medrano MR, Sanchez NG. Role of sterile neutrino warm dark matter in rhenium and tritium beta decays. Nucl Phys. 2013;B866:177–195.

[56] Moreno O, Moya de Guerra E, Medrano MR. Warm dark matter sterile neutrinos in electron capture and beta decay spectra. Adv High Energy Phys. 2016;2016:6318102.

[57] Drewes M, et al. A White Paper on keV Sterile Neutrino Dark Matter. JCAP. 2017;1701(01):025.