ASYMPTOTIC LINEAR STABILITY OF THE BENNEY-LUKE EQUATION IN 2D

TETSU MIZUMACHI AND YUSUKE SHIMABUKURO

Abstract. In this paper, we study transverse linear stability of line solitary waves to the 2-dimensional Benney-Luke equation which arises in the study of small amplitude long water waves in 3D. In the case where the surface tension is weak or negligible, we find a curve of resonant continuous eigenvalues near 0. Time evolution of these resonant continuous eigenmodes is described by a 1D damped wave equation in the transverse variable and it gives a linear approximation of the local phase shifts of modulating line solitary waves. In exponentially weighted space whose weight function increases in the direction of the motion of the line solitary wave, the other part of solutions to the linearized equation decays exponentially as $t \to \infty$.

Contents

1. Introduction 2
2. Statement of the result 4
3. Resonant modes of the linearized operator 7
 3.1. Spectral stability in the KP-II scaling regime 7
 3.2. Resonant modes 10
4. Properties of the free operator L_0 18
5. Spectral stability for small line solitary waves 25
 5.1. Spectral stability for high frequencies in y 25
 5.2. Spectral stability for low frequencies in y 28
5.3. Proof of Theorem 2.4 34
6. Proof of Theorem 2.1 34
7. Proof of Corollary 2.2 37
8. Proof of Theorem 2.3 38
Appendix A. Miscellaneous estimates of operator norms 40
Acknowledgment 43
References 43

2010 Mathematics Subject Classification. Primary 35B35, 37K45;
Secondary 35Q35.

Key words and phrases. line solitary waves, transverse linear stability.
1. Introduction

In this paper, we study transverse linear stability of line solitary waves for the Benney-Luke equation

\[\frac{\partial^2 \Phi}{\partial t^2} - \Delta \Phi + a \Delta^2 \Phi - b \Delta \frac{\partial^2 \Phi}{\partial t^2} + (\partial_t \Phi)(\Delta \Phi) + \partial_t(|\nabla \Phi|^2) = 0 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^2. \]

The Benney-Luke equation is an approximation model of small amplitude long water waves with finite depth originally derived by Benney and Luke [4] as a model for 3D water waves. Here \(\Phi = \Phi(t, x, y) \) corresponds to a velocity potential of water waves. We remark that (1.1) is an isotropic model for propagation of water waves whereas KdV, BBM and KP equations are unidirectional models. See e.g. [6, 7] for the other bidirectional models of 2D and 3D water waves.

The parameters \(a, b \) are positive and satisfy \(a - b = \hat{\tau} - 1/3 \), where \(\hat{\tau} \) is the inverse Bond number. If we think of waves propagating in one direction, slowly evolving in time and having weak transverse variation, then the Benney-Luke equation can be formally reduced to the KP-II equation if \(0 < a < b \) and to the KP-I equation if \(a > b > 0 \). More precisely, the Benney-Luke equation (1.1) is reduced to

\[2f_{\tilde{t}\tilde{x}} + (b - a)f_{\tilde{x}\tilde{x}\tilde{x}} + 3f_{\tilde{x}}f_{\tilde{x}\tilde{x}} + f_{\tilde{y}\tilde{y}} = 0 \]

in the coordinate \(\tilde{t} = \epsilon^3 t, \tilde{x} = \epsilon(x - t) \) and \(\tilde{y} = \epsilon^2 y \) by taking terms only of order \(\epsilon^5 \), where \(\Phi(t, x, y) = \epsilon f(\tilde{t}, \tilde{x}, \tilde{y}) \). See e.g. [22] for the details. In this paper, we will assume \(0 < a < b \), which corresponds to the case where the surface tension is weak or negligible.

The solution \(\Phi(t) \) of the Benney-Luke equation (1.1) formally satisfies the energy conservation law

\[E(\Phi(t), \partial_t \Phi(t)) = E(\Phi_0, \Psi_0) \quad \text{for} \quad t \in \mathbb{R}, \]

where

\[E(\Phi, \Psi) := \int_{\mathbb{R}^2} \left\{ |\nabla \Phi|^2 + a(\Delta \Phi)^2 + \Psi^2 + b|\nabla \Psi|^2 \right\} dxdy, \]

and (1.1) is globally well-posed in the energy class \((H^2(\mathbb{R}^2) \cap H^1(\mathbb{R}^2)) \times H^1(\mathbb{R}^2) \) (see [40]).

The Benney Luke equation (1.1) has a 3-parameter family of line solitary wave solutions

\[\Phi(t, x, y) = \varphi_c(x \cos \theta + y \sin \theta - ct + \gamma), \quad \pm c > 1, \quad \gamma \in \mathbb{R}, \quad \theta \in [0, 2\pi), \]

where

\[\varphi_c(x) = \frac{2(c^2 - 1)}{c \alpha_c} \tanh \left(\frac{\alpha_c}{2} x \right), \quad \alpha_c = \sqrt{c^2 - 1 - bc^2}, \]

and

\[q_c(x) := \varphi'_c(x) = \frac{c^2 - 1}{c} \operatorname{sech}^2 \left(\frac{\alpha_c x}{2} \right) \]

is a solution of

\[(bc^2 - a)q''_c - (c^2 - 1)q_c + \frac{3c^2}{2} q'_c = 0. \]

Stability of solitary waves to the 1-dimensional Benney-Luke equation are studied by [38] for the strong surface tension case \(a > b > 0 \) and by [30] for the weak surface tension case \(b > a > 0 \). If \(a > b > 0 \), then (1.1) has a stable ground state for \(c \) satisfying \(0 < c^2 < 1 \).
ASYMPTOTIC LINEAR STABILITY OF THE BENNEY-LUKE EQUATION IN 2D

See also [23] for the algebraic decay property of the ground state. In view of [12, 43], line solitary waves for the 2-dimensional Benney-Luke equation are expected to be unstable in this parameter regime. On the other hand if 0 < a < b and c := \sqrt{1 + \varepsilon^2} is close to 1 (the sonic speed), then \varphi_c(x - ct) is expected to be transversally stable because q_c(x) is similar to a KdV 1-soliton and line solitons of the KP-II equation is transversally stable (21, 27, 28).

The dispersion relation for the linearization of (1.1) around 0 is

$$\omega^2 = (\xi^2 + \eta^2) \frac{1 + a(\xi^2 + \eta^2)}{1 + b(\xi^2 + \eta^2)}$$

for a plane wave solution \Phi(t, x, y) = e^{i(x\xi + y\eta - \omega t)}. If b > a > 0, then |\nabla \omega| ≤ 1 and line solitary waves travel faster than the maximum group velocity of linear waves. Measuring the size of perturbations with an exponentially weighted norm biased in the direction of motion of a line solitary wave, we can observe that perturbations which are decoupled from the line solitary wave decay as t → ∞. In the 1-dimensional case, small solitary waves are exponentially linearly stable in the weighted space and \lambda = 0 is an isolated eigenvalue of the linearized operator (see 34). In our problem, however, the value \lambda = 0 is not an isolated eigenvalue. This is because line solitary waves do not decay in the transverse direction. Indeed, for any size of line solitary waves of (1.1), there appears a curve of continuous spectrum that goes through \lambda = 0 and locates in the stable half plane (Theorem 2.1). The curve of continuous eigenvalues has to do with perturbations that propagate toward the transverse direction along the crest of the line solitary wave (Theorem 2.3). If line solitary waves are small, the rest of the spectrum locates in a stable half plane \{\lambda \in \mathbb{C} \mid \Re \lambda ≤ -\beta < 0\} (Theorem 2.4). For the KP-II equation, the spectrum of the linearized operator around a 1-line soliton near \lambda = 0 can be obtained explicitly thanks to the integrability of the equation (see 2, 9, 28). In this paper, we will use the Lyapunov-Schmidt method to find resonant eigenmodes of the linearized operator.

To prove non-existence of unstable modes for the linearized operator around small line solitary waves, we make use of the KP-II approximation of the the linearized operator of (1.1) on long length scales and make use of the transverse linear stability of line solitons for the KP-II equation. For 1-dimensional long wave models, non-existence of unstable modes for the linearized operator around solitary waves has been proved by utilizing spectral stability of KdV solitons. See e.g. (12, 27, 24, 34, 36) and 30 for the 1-dimensional Benney-Luke equation. We expect that the KP-II approximation of the linearized operator is useful to other 2-dimensional long wave models such as KP-BBM and Boussinesq systems with no surface tension (see e.g. 10).

Now let us introduce several notations. For an operator A, we denote by \sigma(A) the spectrum and by D(A) and R(A) the domain and the range of the operator A, respectively. For Banach spaces V and W, let B(V, W) be the space of all linear continuous operators from V to W and \|T\|_{B(V, W)} = \sup_{\|x\|_V = 1} \|Tu\|_W for T \in B(V, W). We abbreviate B(V, V) as B(V). For
Various constants will be simply denoted by \(C \).

We denote the operator \(L \).

We study linear stability of (2.2) in a weighted space (2.3).

Let \(f \in \mathcal{S}(\mathbb{R}^n) \) and \(m \in \mathcal{S}'(\mathbb{R}^n) \), let

\[
(\mathcal{F}f)(\xi) = \hat{f}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-ix\xi} \, dx,
\]

\[
(\mathcal{F}^{-1}f)(x) = \hat{f}(x) = \hat{f}(-x),
\]

and \((m(D)f)(x) = (2\pi)^{-n/2}(m * f)(x)\). We denote \(\langle f, g \rangle \) by

\[
\langle f, g \rangle = \sum_{j=1}^{m} \int_{\mathbb{R}} f_j(x) \overline{g_j(x)} \, dx
\]

for \(\mathbb{C}^m \)-valued functions \(f = (f_1, \cdots, f_m) \) and \(g = (g_1, \cdots, g_m) \).

Let \(L^2_{\alpha}(\mathbb{R}^2) = L^2(\mathbb{R}^2; e^{2\alpha x} \, dx dy) \), \(L^2_{\alpha}(\mathbb{R}) = L^2(\mathbb{R}; e^{2\alpha x} \, dx) \) and let \(H^k_{\alpha}(\mathbb{R}^2) \) and \(H^k_{\alpha}(\mathbb{R}) \) be Hilbert spaces with the norms

\[
\|u\|_{H^k_{\alpha}(\mathbb{R}^2)} = \left(\|\partial_y^k u\|_{L^2_{\alpha}(\mathbb{R}^2)}^2 + \|\partial_x^k u\|_{L^2_{\alpha}(\mathbb{R}^2)}^2 + \|u\|_{L^2_{\alpha}(\mathbb{R}^2)}^2 \right)^{1/2},
\]

\[
\|u\|_{H^k_{\alpha}(\mathbb{R})} = \left(\|\partial_x^k u\|_{L^2_{\alpha}(\mathbb{R})}^2 + \|u\|_{L^2_{\alpha}(\mathbb{R})}^2 \right)^{1/2}.
\]

We use \(a \lesssim b \) and \(a = O(b) \) to mean that there exists a positive constant such that \(a \leq Cb \).

Various constants will be simply denoted by \(C \) and \(C_i \) \((i \in \mathbb{N}) \) in the course of the calculations.

We denote \((x) = \sqrt{1 + x^2} \) for \(x \in \mathbb{R} \).

2. Statement of the result

Since (1.1) is isotropic and translation invariant, we may assume \(\theta = \gamma = 0 \) in (1.1) without loss of generality. Let \(\Psi = \partial_t \Phi, A = I - a\Delta \) and \(B = I - b\Delta \). Then in the moving coordinate \(z = x - ct \), the Benney-Luke equation (1.1) can be rewritten as

\[
\begin{aligned}
\partial_t \Phi &= c \partial_z \Phi + \Psi, \\
\partial_t \Psi &= c \partial_z \Psi + B^{-1}A \Delta \Phi - B^{-1}(\Psi \Delta \Phi + 2\nabla \Psi \cdot \nabla \Phi),
\end{aligned}
\]

Let \(r_c(z) = -cq_c(z) \). Linearizing (2.1) around \((\Phi, \Psi) = (\varphi_c(z), r_c(z)) \), we have

\[
\partial_t \begin{pmatrix} \Phi \\ \Psi \end{pmatrix} = \mathcal{L} \begin{pmatrix} \Phi \\ \Psi \end{pmatrix},
\]

\[
\mathcal{L} = \mathcal{L}_0 + V, \quad \mathcal{L}_0 = \begin{pmatrix} c \partial_z & 1 \\ B^{-1}A \Delta & c \partial_z \end{pmatrix},
\]

\[
V = -B^{-1} \begin{pmatrix} 0 & 0 \\ v_{1,c} & v_{2,c} \end{pmatrix}, \quad v_{1,c} = 2r_c'(z) \partial_z + r_c(z) \Delta, \quad v_{2,c} = 2q_c(z) \partial_z + q'_c(z).
\]

We study linear stability of (2.2) in a weighted space \(X := H^1_{\alpha}(\mathbb{R}^2) \times L^2_{\alpha}(\mathbb{R}^2) \). Let \(\mathcal{L}(\eta)u(z) = e^{-\eta y_1} \mathcal{L}(e^{\eta y_1}u(z)) \) for \(\eta \in \mathbb{R} \). Note that \(V \) is independent of \(y \). For each small \(\eta \neq 0 \), the operator \(\mathcal{L}(\eta) \) has two stable eigenvalues.
Theorem 2.1. Let $0 < a < b$ and $k \in \mathbb{N}$. Fix $c > 1$ and $\alpha \in (0, \alpha_c)$. Then there exist a positive constant $\eta_0, \lambda(\eta) \in C^\infty([-\eta_0, \eta_0])$,

$$
\zeta(\cdot, \eta) \in C^\infty([-\eta_0, \eta_0]; H^k_\alpha(\mathbb{R}) \times H^{k-1}_\alpha(\mathbb{R})) \quad \text{and} \quad \zeta^*(\cdot, \eta) \in C^\infty([-\eta_0, \eta_0]; H^{-k}_\alpha(\mathbb{R}) \times H^{-k+1}_\alpha(\mathbb{R}))
$$

such that

$$
\mathcal{L}(\eta)\zeta(z, \pm \eta) = \lambda (\pm \eta) \zeta(z, \pm \eta), \quad \mathcal{L}(\eta)^* \zeta^*(z, \pm \eta) = \lambda (\mp \eta) \zeta^*(z, \pm \eta),
$$

(2.4)

$$
\lambda(\eta) = i \lambda_1 \eta - 2 \eta^2 + O(\eta^3),
$$

(2.5)

$$
\zeta(\cdot, \eta) = \zeta_1 + i \lambda_1 \eta \zeta_2 + O(\eta^2) \quad \text{in} \quad H^k_\alpha(\mathbb{R}) \times H^{k-1}_\alpha(\mathbb{R}),
$$

(2.6)

$$
\zeta^*(\cdot, \eta) = \zeta_2^* - i \lambda_1 \eta \zeta_1^* + O(\eta^2) \quad \text{in} \quad H^{-k}_\alpha(\mathbb{R}) \times H^{-k+1}_\alpha(\mathbb{R}),
$$

(2.7)

$$
\lambda(\eta) = \lambda(-\eta), \quad \zeta(z, -\eta) = \zeta(z, \eta), \quad \zeta^*(z, -\eta) = \zeta^*(z, \eta) \quad \text{for} \quad \eta \in [-\eta_0, \eta_0] \quad \text{and} \quad z \in \mathbb{R},
$$

where λ_1 and λ_2 are positive constants, $A_0 = 1 - a\partial_x^2$, $B_0 = 1 - b\partial_x^2$ and

$$
\zeta_1 = \left(\begin{array}{c} q_c \cr r_c \end{array} \right), \quad \zeta_2 = \left(\begin{array}{c} f^\infty \partial_z q_c \cr -\partial_z r_c \end{array} \right),
$$

$$
\zeta_1^* = c \left(\begin{array}{c} -B_0 \partial_z r_c - 2q_c \partial_z q_c - q_c' \int \partial_z q_c \cr B_0 f^\infty \partial_z q_c \end{array} \right), \quad \zeta_2^* = \left(\begin{array}{c} A_0 q_c' \cr -B_0 r_c \end{array} \right).
$$

Remark 2.1. We remark that $\mathcal{L}(0)$ is a linearized operator of the 1-dimensional Benney-Luke equation around $\varphi_c(z)$ and ζ_1 and ζ_2 belong to the generalized kernel of $\mathcal{L}(0)$. More precisely,

$$
\mathcal{L}(0)\zeta_1 = 0, \quad \mathcal{L}(0)\zeta_2 = \zeta_1, \quad \mathcal{L}(0)^* \zeta_1^* = \zeta_2^* \quad \text{and} \quad \mathcal{L}(0)^* \zeta_2^* = 0,
$$

$$
\ker_g(\mathcal{L}(0)) = \text{span}\{\zeta_1, \zeta_2\}, \quad \ker_g(\mathcal{L}(0)^*) = \text{span}\{\zeta_1^*, \zeta_2^*\}.
$$

The eigenvalue $\lambda = 0$ for $\mathcal{L}(0)$ splits into two stable eigenvalues $\lambda(\pm \eta)$ for $\mathcal{L}(\eta)$ with $\eta \neq 0$.

In the exponentially weighted space $L^2_\alpha(\mathbb{R})$, the value $\lambda = 0$ is an isolated eigenvalue of $\mathcal{L}(0)$ and there exists a $\beta > 0$ such that

$$
\sigma(\mathcal{L}(0)) \setminus \{0\} \subset \{\lambda \in \mathbb{C} \mid \Re \lambda \leq -\beta\}
$$

provided $c > 1$ and c is sufficiently close to 1. See Lemma 2.1, Theorem 2.3 and Appendix B in [30].

Remark 2.2. We expect that $\zeta_k(\cdot, \eta)$ and $\zeta_k^+(\cdot, \eta)$ ($k = 1, 2$) do not belong to $L^2(\mathbb{R})$ as is the same with continuous resonant modes for the KP-II equation. This is a reason why we study spectral stability of \mathcal{L} in the exponentially weighted space X.

We will prove Theorem 2.1 by using the Lyapunov Schmidt method in Section 6.

Let $\mathcal{P}(\eta_0)$ be the spectral projection onto the subspace corresponding to the continuous eigenvalues $\{\lambda(\eta)\}_{-\eta_0 \leq \eta \leq \eta_0}$ and $\mathcal{Q}(\eta_0) = I - \mathcal{P}(\eta_0)$. Let $Z = \mathcal{Q}(\eta_0)(H^1_\alpha(\mathbb{R}^2) \times L^2_\alpha(\mathbb{R}^2))$. If \mathcal{L} is spectrally stable, then $e^{t\mathcal{L}}|_Z$ is exponentially stable.

Corollary 2.2. Let $0 < a < b$, $c > 1$ and $\alpha \in (0, \alpha_c)$. Consider the operator \mathcal{L} in the space $X = H^1_\alpha(\mathbb{R}^2) \times L^2_\alpha(\mathbb{R}^2)$. Assume that there exist positive constants β and η_0 such that

(H)

$$
\sigma(\mathcal{L}|_Z) \subset \{\lambda \mid \Re \lambda \leq -\beta\},
$$

where $\mathcal{L}|_Z$ is the restriction of \mathcal{L} to Z. Then $e^{t\mathcal{L}}|_Z$ is exponentially stable.
where $\mathcal{L}|_Z$ is the restriction of the operator \mathcal{L} on Z. Then for any $\beta' < \beta$, there exists a positive constant C such that

\[(2.8) \quad \|e^{t\mathcal{L}}\mathcal{Q}(\eta_0)\|_{B(X)} \leq Ce^{-\beta't} \quad \text{for any } t \geq 0.\]

The semigroup estimate (2.8) follows from the assumption (H1) and the Geiheart-Prüss theorem [15, 37] which tells us that the boundedness of C^0-semigroup in a Hilbert space is equivalent to the uniform boundedness of the resolvent operator on the right half plane. See also [17, 18].

Time evolution of the continuous eigenmodes \(\{e^{i\lambda(y)}g(z, \eta)\}_{-\gamma_0 \leq \eta \leq \gamma_0}\) can be considered as a linear approximation of non-uniform phase shifts of modulating line solitary waves. For the KP-II equation, modulations of the local amplitude and the angle of the local phase shift of a line soliton are described by a system of Burgers’ equations (see [28, Theorems 1.4 and 1.5]).

In this paper, we find the first order asymptotics of solutions for the linearized equation (2.2) is described by a wave equation with a diffraction term and it tends to a constant multiple of the x-derivative of the line solitary wave as $t \to \infty$.

Theorem 2.3. Let $0 < a < b$, $c > 1$, a be as in Theorem 2.2 and $(\Phi_0, \Psi_0) \in H^2_a(\mathbb{R}^2) \times H^1_a(\mathbb{R}^2)$. Assume (H1). Then a solution of (2.2) with $(\Phi(0), \partial_t \Phi(0)) = (\Phi_0, \Psi_0)$ satisfies

\[
\left\| \left(\begin{array}{c} \partial_z \Phi(t, z, y) \\
\partial_t \Phi(t, z, y) \end{array} \right) \right\|_{L^2(\mathbb{R}^2) L^\infty(\mathbb{R})} = O(t^{-1/4}) \quad \text{as } t \to \infty,
\]

where $f(y) = \langle cB_0 \Psi_0 - A_0 \partial_z \Phi_0, q_c \rangle$, $H_t(y) = (4\pi \lambda_2 t)^{-1/2} e^{-y^2/4\lambda_2 t}$, $\kappa_1 = \frac{\lambda_4}{12} E(q_c, r_c)$ and $W_t(y) = (2\kappa_1)^{-1}$ for $y \in [-\lambda_1 t, \lambda_1 t]$ and $W_t(y) = 0$ otherwise.

We remark that if $f(y)$ is well localized and $\int_{\mathbb{R}} f(y) \, dy \neq 0$, then $H_t * W_t * f(y) \simeq (2\kappa_1)^{-1} \int_{\mathbb{R}} f(y) \, dy$ on any compact intervals in y as $t \to \infty$. The first order asymptotics of solutions to (2.2) suggests that the local phase shift of line solitary waves propagate mostly at constant speed toward $y = \pm \infty$.

If c is close to 1, then the assumption (H1) is valid and the spectrum of \mathcal{L} is similar to that of the linearized KP-II operator around a line soliton. To utilize the spectral property of the linearized operators of the KP-II equation around 1-line solitons, we introduce the scaled parameters and variables

\[(2.9) \quad \lambda = \epsilon^3 \Lambda, \quad \epsilon^2 = 1 + \epsilon^2, \quad \tilde{z} = \epsilon z, \quad \tilde{y} = \epsilon^2 y, \quad \xi = \epsilon \xi, \quad \eta = \epsilon^2 \eta,
\]

and translate the solitary wave profile $q_c(x)$ as

\[(2.10) \quad q_c(z) = \epsilon^2 \theta_c(z), \quad \theta_c(z) = \frac{1}{c} \text{sech}^2 \left(\frac{\hat{\alpha}_c \tilde{z}}{2} \right), \quad \hat{\alpha}_c = \frac{1}{\sqrt{bc^2 - a}}.
\]

Let

\[\hat{\alpha}_0 = (b - a)^{-1/2}, \quad \theta_0(z) = \text{sech}^2 \left(\frac{\hat{\alpha}_0}{2} \tilde{z} \right), \quad \mathcal{L}_{KP} = -\frac{1}{2} \left\{ (b - a) \partial^3_{z} - \partial_z + \partial^2_{\tilde{z}} \partial^2_{\tilde{y}} + 3 \partial_{\tilde{z}} (\theta_0') \right\}.\]
We remark that the operator \(\mathcal{L}_{KP} \) is the linearization of the KP-II equation
\[
(2.11) \quad 2\partial_t u + (b - a)\partial_x^2 u + \partial_x^{-1}\partial_x^2 u + \frac{3}{2}\partial_x(u^2) = 0
\]
around its line soliton solution \(\theta_0(x - t) \). The linearized operator \(\mathcal{L}_{KP} \) has continuous eigenvalues \(\lambda_{KP}(\eta) = \frac{i}{\sqrt{1 + \gamma_1}} \) which has to do with dynamics of modulating line solitons (see [9, 28] and Section 3.1).

In the low frequency regime, we can deduce the eigenvalue problem
\[
(2.12) \quad \mathcal{L}(\begin{pmatrix} u \\ v \end{pmatrix}) = \lambda(\begin{pmatrix} u \\ v \end{pmatrix})
\]
to \(\mathcal{L}_{KP}\partial_z u = \Lambda\partial_z u \) provided \(\epsilon \) is sufficiently small. More precisely, we have the following.

Theorem 2.4. Let \(c = \sqrt{1 + \epsilon^2}, \) \(\alpha = \hat{\alpha}\epsilon \) and \(\hat{\alpha} \in (0, \hat{\alpha}_0/2) \). Then there exist positive constants \(\epsilon_0, \eta_0, \hat{\beta} \) and a smooth function \(\lambda_0(\eta) \) such that if \(\epsilon \in (0, \epsilon_0) \), then
\[
(2.13) \quad \sigma(\mathcal{L}) \setminus \{\lambda_0(\eta) | \eta \in [-\epsilon^2\eta_0, \epsilon^2\eta_0]\} \subset \{\lambda \in \mathbb{C} | \Re \lambda \leq -\hat{\beta}\epsilon^3\},
\]
\[
(2.14) \quad \lim_{\epsilon \downarrow 0} |e^{-\lambda\eta_0} - \lambda_{KP}(\eta)| = O(\eta^3) \quad \text{for} \quad \eta \in [-\eta_0, \eta_0],
\]
\[
(2.15) \quad \|\epsilon^2 \mathcal{Q}(e^{\epsilon^2\eta_0})\|_{B(X)} \leq Ke^{-\hat{\beta}\epsilon^3 t} \quad \text{for any} \quad t \geq 0,
\]
where \(K \) is a constant that does not depend on \(t \).

3. Resonant modes of the linearized operator

In this section, we will prove the existence of resonant continuous eigenvalues of \(\mathcal{L} \) near \(\lambda = 0 \) and show that the resonant eigenvalues and resonant eigenmodes for \(\mathcal{L} \) are similar to those for the linearized KP-II operator \(\mathcal{L}_{KP} \) provided line solitary waves are small.

3.1. Spectral stability in the KP-II scaling regime

First, we recall some spectral properties of the linearized KP-II equation around 1-line solitons. Let us consider the eigenvalue problem of the linearized operator of \((2.11) \) around \(\theta_0 \). Let
\[
\mathcal{L}_{KP,0} = -\frac{1}{2} \{(b - a)\partial_z^2 - \partial_z + \partial_z^{-1}\partial_z^2\}, \quad \mathcal{L}_{KP} = \mathcal{L}_{KP,0} - \frac{3}{2}\partial_z(\theta_0),
\]
\[
\mathcal{L}_{KP}(\eta) = -\frac{1}{2}\partial_z \{(b - a)\partial_z^2 - 1 + 3\theta_0\} + \frac{\eta^2}{2}\partial_z^{-1}.
\]

Formally, we have \(\mathcal{L}_{KP}(u(z)e^{i\eta z}) = e^{i\eta z}(\mathcal{L}_{KP}(\eta)u)(z) \). The operator \(\mathcal{L}_{KP,0} \) is spectrally stable in exponentially weighted spaces.

Lemma 3.1. Let \(\hat{\alpha} \in (0, \hat{\alpha}_0) \) and \(\hat{\beta}_0 = \frac{3}{2}\{1 - (b - a)\hat{\alpha}^2\} \). Then
\[
(3.1) \quad \|(\Lambda - \mathcal{L}_{KP,0})^{-1}\|_{B(L^2_1(\mathbb{R}^2))} \leq (\Re \Lambda + \hat{\beta}_0)^{-1} \quad \text{for} \quad \Lambda \text{ satisfying} \quad \Re \Lambda > -\hat{\beta}_0.
\]
Moreover, there exists a positive constant C such that if $\Re \Lambda > -\beta_0$,

\[
\|\partial_j^l (\Lambda - L_{KP,0})^{-1}\|_{B(L^2_0(\mathbb{R}^2))} \leq C \left(\Re \Lambda + \frac{\beta_0}{2} \right)^{-1 + \frac{1}{2j}} \quad \text{for } j = 1, 2, \tag{3.2}
\]

\[
\| (\Lambda - L_{KP,0})^{-1}\|_{B(L^2_0(\mathbb{R}^2))} \leq C \left| \Lambda + \frac{\beta_0}{2} \right|^{2/3} \tag{3.3}
\]

\text{Proof. } By the Plancherel theorem,

\[
\|g\|^2_{L^2_0(\mathbb{R}^2)} = \int_{\mathbb{R}^2} e^{2\alpha x} |g(x, y)|^2 \, dx \, dy \leq \int_{\mathbb{R}^2} |\hat{g}(\xi + i\alpha, \eta)|^2 \, d\xi \, d\eta \tag{3.4}
\]

for any $g \in C_0(\mathbb{R}^2)$ and an operator $m(D) := \frac{1}{2\pi} \hat{m} * f$ is bounded on $L^2_0(\mathbb{R}^2)$ if and only if

\[
\|m(D)\|_{B(L^2_0(\mathbb{R}^2))} = \sup_{(\xi, \eta) \in \mathbb{R}^2} |m(\xi + i\alpha, \eta)| < \infty. \tag{3.5}
\]

Suppose $f \in L^2_0(\mathbb{R}^2)$ and that u is a solution of

\[
(\Lambda - L_{KP,0})u = f.
\]

Then

\[
\hat{u}(\xi, \eta) = \frac{\hat{f}(\xi, \eta)}{\Lambda - L_{KP,0}(\xi, \eta)},
\]

where $L_{KP,0}(\xi, \eta) = \frac{1}{2} \{(b - a)\xi^3 + \xi - \xi^{-1} \eta^2\}$. Since

\[
\Re L_{KP,0}(\xi + i\alpha, \eta) = -\frac{1}{2} \left\{ 3(b - a)\hat{\alpha} \xi^2 + 2\hat{\beta}_0 + \frac{\hat{\alpha} \eta^2}{\xi^2 + \hat{\alpha}^2} \right\} \geq -\beta_0,
\]

it follows from (3.5) that for $j = 0, 1, 2$ and Λ with $\Re \Lambda > -\beta_0$,

\[
\|\partial_j^l (\Lambda - L_{KP,0})^{-1}\|_{B(L^2_0(\mathbb{R}^2))} = \sup_{(\xi, \eta) \in \mathbb{R}^2} \left| \frac{\xi + i\alpha|^j}{\Lambda - L_{KP,0}(\xi + i\alpha, \eta)} \right|.
\]

Thus we have (3.1) and (3.2). Moreover, we have (3.3) because $|\Im L_{KP,0}(\xi + i\alpha, \eta)| \lesssim \{ -\Re L_{KP,0}(\xi + i\alpha, \eta) \}^{3/2}$. \hfill \Box

Let $\gamma_1 = 4\sqrt{(b - a)/3}$, $\hat{x} = \frac{\hat{\alpha}}{\gamma_1} x$ and

\[
\lambda_{KP}(\eta) = \frac{i\eta}{\sqrt{3}} \sqrt{1 + i\gamma_1 \eta},
\]

\[
g_0(x, \eta) = \frac{2(b - a)}{\gamma_1 \sqrt{1 + i\gamma_1 \eta}} \partial^2 \left(e^{-\sqrt{1 + i\gamma_1 \eta} \hat{x}} \right),
\]

\[
g^*_0(x, \eta) = \frac{i}{\eta} \partial^2 \left(e^{\sqrt{1 + i\gamma_1 \eta} \hat{x}} \right).
\]

Using Lemma 2.1 in [28] and the change of variable

\[
x \mapsto \frac{\hat{\alpha}}{2} x, \quad y \mapsto \frac{1}{\gamma_1} y, \quad \eta \mapsto \gamma_1 \eta,
\]
we have for $\eta \in \mathbb{R} \setminus \{0\}$,
\[
\mathcal{L}_{KP}(\eta)g_0(x, \pm \eta) = \lambda_{KP}(\pm \eta)g_0(x, \pm \eta),
\]
\[
\mathcal{L}_{KP}(\eta)^*g_0^*(x, \pm \eta) = \lambda_{KP}(\mp \eta)g_0^*(x, \pm \eta),
\]
\[
\int_{\mathbb{R}} g_0(x, \eta)\overline{g_0^*(x, \eta)}\,dx = 1, \quad \int_{\mathbb{R}} g_0(x, \eta)\overline{g_0^*(x, -\eta)}\,dx = 0.
\]
To resolve the singularity of $g_0(x, \eta)$ and the degeneracy of $g_0^*(x, \eta)$ at $\eta = 0$, we decompose them into their real parts and imaginary parts.

Let g_0, g_0^* be the spectral projection to resonant modes
\[
\text{Proposition 3.2.}
\]
\[
\text{For any } \eta \in (0, \tilde{\eta}_0), \quad g_0, g_0^* \text{ are bounded on } L^2_{\tilde{\alpha}}(\mathbb{R}^2) \text{ for } \tilde{\alpha} \in (0, \tilde{\alpha}_0).
\]

Let $P_{KP}(\eta)$ be the spectral projection to resonant modes
\[
\text{Proposition 3.2.}
\]
\[
\text{for } \eta \in (0, \tilde{\eta}_0), \quad (\Lambda - \mathcal{L}_{KP})^{-1}Q_{KP}(\eta) B(\mathbb{R}^2) < \infty.
\]

\[
\text{Proposition 3.2.}
\]
\[
\text{for } \eta \in (0, \tilde{\eta}_0), \quad \mathcal{L}_{KP}(\eta) \text{ is bounded on } L^2_{\tilde{\alpha}}(\mathbb{R}^2) \text{ for } \tilde{\alpha} \in (0, \tilde{\alpha}_0).
\]

Let $\mathcal{L}_{KP}(\eta)$ be the spectral projection to resonant modes
\[
\text{Proposition 3.2.}
\]
\[
\text{for } \eta \in (0, \tilde{\eta}_0), \quad \mathcal{L}_{KP}(\eta) \text{ is bounded on } L^2_{\tilde{\alpha}}(\mathbb{R}^2) \text{ for } \tilde{\alpha} \in (0, \tilde{\alpha}_0).
\]
3.2. **Resonant modes.** In this subsection, we will prove the existence of continuous resonant modes of L near $\lambda = 0$ by using the Lyapunov Schmidt method. Let

$$F(\eta) = 1 + a\eta^2 - a\partial_z^2, \quad B(\eta) = 1 + b\eta^2 - b\partial_z^2,$$

$$L_0(\eta) = \begin{pmatrix} \partial_z & \eta \\ B(\eta)^{-1}A(\eta)(\partial_z^2 - \eta^2) & 1 \end{pmatrix},$$

$$L(\eta) = L_0(\eta) + V(\eta), \quad V(\eta) = -B(\eta)^{-1} \begin{pmatrix} 0 \\ v_{1,c}(\eta) \\ v_{2,c}(\eta) \end{pmatrix},$$

$v_{1,c}(\eta) = 2r_c' \partial_z + r_c(\partial_z^2 - \eta^2)$, $v_{2,c}(\eta) = 2q_c \partial_z + q_c'$. If $e^{i\eta}(u_1(z), u_2(z))$ is a solution of (3.12), then

$$L(\eta) \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

or equivalently,

$$A(\eta)(\partial_z^2 - \eta^2) - (\lambda - c\partial_z)^2 B(\eta)\{u_1 - v_{1,c}(\eta)u_1 - v_{2,c}(\eta)(\lambda - c\partial_z)u_1\} = 0,$$

$$u_2 = (\lambda - c\partial_z)u_1.$$

We will find solutions of (3.9) in $H^1_0(\mathbb{R}) \times L^2_0(\mathbb{R})$ for small η. Using the change of variables (3.9) and (3.10) and dropping the hats in the resulting equation, we have

$$F(U, \Lambda, \epsilon, \eta) := 2L_e(\eta)U - \Lambda T_1(\epsilon, \eta)U + \epsilon^2 \Lambda^2 B_c(\eta)\partial_z^{-1}U = 0,$$

where $U(z) = \partial_z u_1(z/\epsilon)$ and

$$L_e(\eta) = -\frac{1}{2} \partial_z^2 \{ (bc^2 - a)\partial_z^2 - 1 + 3c\theta_c \} + \frac{\eta}{2} T_2(\epsilon, \eta),$$

$$T_1(\epsilon, \eta) = 2cB_c(\eta) - \epsilon^2 (2\partial_\epsilon + \theta_\epsilon' \partial_z^{-1}), \quad T_2(\epsilon, \eta) = \{ A_c(\eta) + \epsilon^2 (bc^2 - a)\partial_z^2 + c^2 \partial_\epsilon \} \partial_z^{-1},$$

$$A_c(\eta) = 1 + ac(\epsilon^2 \eta^2 - \partial_z^2), \quad B_c(\eta) = 1 + bc(\epsilon^2 \eta^2 - \partial_z^2).$$

Let $L_c(\eta)$ be an operator on $L^2(\mathbb{R})$ with $D(L_c) = H^1_0(\mathbb{R})$ for an $\alpha \in (0, \alpha_c)$ and

$$(\partial_z^{-1}f)(z) = -\int_{\epsilon}^{\infty} f(z_1) \, dz_1 \text{ for } f \in L^2_0(\mathbb{R}).$$

We remark that $F(U, \Lambda, 0, \eta) = 2\mathcal{L}_{K_P}(\eta)U - 2\Lambda U$ and the translated eigenvalue problem (3.12) is similar to the eigenvalue problem of the KP-II equation provided ϵ is sufficiently small. For small $\eta \neq 0$, (3.9) has two eigenvalues in the vicinity of 0.

First, we will find an approximate solution of (3.12). Let $U(\eta) = U_0 + \eta U_1 + \eta^2 U_2 + O(\eta^3)$, $\Lambda(\eta) = i\Lambda^0_{1,c} \eta - \Lambda^0_{2,c} \eta^2 + O(\eta^3)$ and formally equate the powers of η in (3.12). Then

$$L_c(0)U_0 = 0,$$

$$L_c(0)U_1 = i\frac{1}{2} \Lambda^0_{1,c} T_1(\epsilon, 0)U_0,$$

$$2L_c(0)U_2 = -\{ T_2(\epsilon, 0) + \Lambda^0_{2,c} T_1(\epsilon, 0) - \epsilon^2 (\Lambda^0_{1,c})^2 B_c(0)\partial_z^{-1} \} U_0 + i\Lambda^0_{1,c} T_1(\epsilon, 0)U_1.$$
Let $\theta_{1,\epsilon}(z) = \partial_z q(z, \epsilon) \theta_{e,d}(z) = d\theta_{e}(\sqrt{d}z)$ and $\tilde{\theta}_{1,\epsilon} = 2\partial_d \theta_{e,d}|_{d=1}$. By (1.14),

\begin{equation}
(3.16) \quad (bc^2 - a)\theta''_{\epsilon} - \theta_{\epsilon} + \frac{3c}{2} \theta^2_{\epsilon} = 0.
\end{equation}

It follows from [35] Proposition 2.8] that

\begin{equation}
L_{\epsilon}(0)\theta'_{\epsilon} = 0, \quad L_{\epsilon}(0)\tilde{\theta}_{1,\epsilon} = -\theta'_{\epsilon},
\end{equation}

\begin{equation}
L_{\epsilon}(0)^* \theta_{\epsilon} = 0, \quad L_{\epsilon}(0)^* \int_{-\infty}^{\infty} \tilde{\theta}_{1,\epsilon}(z_1) \, dz_1 = \theta_{\epsilon},
\end{equation}

\begin{equation}
ker(L_{\epsilon}(0)) = \text{span}\{\theta'_{\epsilon}, \tilde{\theta}_{1,\epsilon}\}, \quad ker(L_{\epsilon}(0)^*) = \text{span}\left\{\theta_{\epsilon}, \int_{-\infty}^{\infty} \tilde{\theta}_{1,\epsilon}\right\},
\end{equation}

where $ker(A)$ denotes the generalized kernel of the operator A. Differentiating (1.4) with respect to c and z, using the change of variables (2.9), (2.10) and dropping the hats in the resulting equation, we have

\begin{equation}
L_{\epsilon}(0)\theta_{1,\epsilon} = -\frac{1}{2} T_1(\epsilon, 0)\theta'_{\epsilon}, \quad L_{\epsilon}(0)^* \int_{-\infty}^{\infty} \theta_{1,\epsilon} = \frac{1}{2} \partial_z T_1(\epsilon, 0)\theta'_{\epsilon}.
\end{equation}

Combining \[3.13, \quad 3.14, \quad 3.17, \quad 3.20\] and the fact that $ker(L_{\epsilon}(0)) = \text{span}\{\theta'_{\epsilon}\}$, we have

\begin{equation}
U_0 = \theta'_{\epsilon}, \quad U_1 = -i\Lambda^0_{1,\epsilon} \theta_{1,\epsilon} + C_1 \theta'_{\epsilon}
\end{equation}

up to the constant multiplicity, where C_1 is an arbitrary constant.

Next, we will determine $\Lambda^0_{1,\epsilon}$. Multiplying (3.15) by θ_{ϵ} and substituting (3.21) into the resulting equation, we have from (3.18)

\begin{align*}
\langle T_2(\epsilon, 0)\theta''_{\epsilon} + \Lambda^0_{2,\epsilon} T_1(\epsilon, 0)\theta_{\epsilon} - c^2(\Lambda^0_{1,\epsilon})^2 B_{\epsilon}(0)\theta_{\epsilon}, \theta_{\epsilon} \rangle + i\Lambda^0_{1,\epsilon} \langle T_1(\epsilon, 0)(i\Lambda^0_{1,\epsilon} \theta_{1,\epsilon} - C_1 \theta'_{\epsilon}), \theta_{\epsilon} \rangle

= -2\langle U_2, L_{\epsilon}(0)^* \theta_{\epsilon} \rangle = 0.
\end{align*}

Since θ_{ϵ} is even and θ'_{ϵ} and $T_1(\epsilon, 0)\theta_{\epsilon}'$ are odd, we have $\langle T_1(\epsilon, 0)\theta'_{\epsilon}, \theta_{\epsilon} \rangle = \langle \theta'_{\epsilon}, \theta_{\epsilon} \rangle = 0$ and

\begin{equation}
(\Lambda^0_{1,\epsilon})^2 = \frac{f_1(\epsilon)}{f_2(\epsilon)},
\end{equation}

\begin{equation}
f_1(\epsilon) = \langle T_2(\epsilon, 0)\theta''_{\epsilon}, \theta_{\epsilon} \rangle, \quad f_2(\epsilon) = \langle T_1(\epsilon, 0)\theta_{1,\epsilon} + c^2 B_{\epsilon}(0)\theta_{\epsilon}, \theta_{\epsilon} \rangle.
\end{equation}

By (3.16) and the fact that $\langle T_1(\epsilon, 0)\theta_{1,\epsilon}' \rangle^* \theta_{\epsilon} = -T_1(\epsilon, 0)\theta_{\epsilon}' = -c^{-1} \partial_z \{\{A_{\epsilon}(0) + c^2 B_{\epsilon}(0)\}\theta_{\epsilon} $, we have

\begin{align*}
f_1(\epsilon) &= \frac{1 + 2c^2}{3} \langle \theta_{\epsilon}, \theta_{\epsilon} \rangle + \frac{c^2}{3}(4a - bc^2) \langle \theta'_{\epsilon}, \theta'_{\epsilon} \rangle, \\
f_2(\epsilon) &= \frac{1}{c} \left\{\left\{A_{\epsilon}(0) + c^2 B_{\epsilon}(0)\right\}\theta_{\epsilon}, \theta_{1,\epsilon}\right\} + c^2 \langle B_{\epsilon}(0)\theta_{\epsilon}, \theta_{\epsilon} \rangle.
\end{align*}

Since

\begin{equation}
\|\theta_{\epsilon} - \theta_0\|_{H^k(R)} + \|\theta_{1,\epsilon} - 2\theta_0 - z\theta'_{\epsilon}\|_{H^k(R)} = O(\epsilon^2)
\end{equation}

for any $k \geq 0$,

we have $\Lambda^0_{1,\epsilon} = \pm \frac{1}{\sqrt{3}} + O(\epsilon^2)$.

Now we will use the Lyapunov Schmidt method to prove existence of solutions to (3.12)

satisfying $(U(\eta), \Lambda(\eta)) \approx (\theta_{\epsilon}' - i\eta \Lambda^0_{1,\epsilon} \theta_{1,\epsilon}, i\eta \Lambda^0_{1,\epsilon})$.

Lemma 3.3. Let \(\alpha \in (0, \tilde{\alpha}_0/2) \). There exist positive constants \(\epsilon_0 \) and \(\eta_0 \) such that (3.12) has a solution \((U(\eta), \Lambda(\eta)) \) satisfying for any \(\eta \in [-\eta_0, \eta_0] \) and \(k \geq 0 \),

\[
\begin{align*}
\sup_{\epsilon \in (0, \epsilon_0)} \left\| U(\eta) - \theta_1 + \Lambda(\eta) \theta_1 \epsilon \right\|_{H^k_\alpha(\mathbb{R})} &= O(\epsilon^2), \\
\sup_{\epsilon \in (0, \epsilon_0)} \left| \Lambda(\eta) - i \Lambda^0_1 + \Lambda^0_2 \right| &= O(\epsilon^2),
\end{align*}
\]

where \(\Lambda^0_1 \) and \(\Lambda^0_2 \) are constants satisfying \(\Lambda^0_1 = \frac{1}{\sqrt{\epsilon}} + O(\epsilon^2) \) and \(\Lambda^0_2 = \frac{2}{\sqrt{\epsilon_0}} + O(\epsilon^2) \). Moreover,

\[
\begin{align*}
\widetilde{U}(\eta) = U(-\eta), \quad \Lambda(\eta) = \Lambda(-\eta) \quad &\text{for } \eta \in [-\eta_0, \eta_0], \\
\end{align*}
\]

and the mapping \([-\eta_0, \eta_0] \ni \eta \mapsto (U(\eta), \Lambda(\eta)) \in H^k_\alpha(\mathbb{R}) \times \mathbb{R} \) is smooth for any \(k \geq 0 \).

Proof. Let \(\Lambda(\eta) = i \eta \Lambda_1(\eta) \) and

\[
\begin{align*}
U(\eta) &= \theta'_k - \{ i \eta \Lambda_1(\eta) - \eta^2 \gamma(\eta) \} \theta_1 + \eta^2 \tilde{U}(\eta), \quad \tilde{U}(\eta) \perp \theta_1, \int_{-\infty}^{\infty} \theta_1(\eta_1) d\eta_1.
\end{align*}
\]

Then (3.12) is translated into

\[
\begin{align*}
2\tilde{L}_e(\eta) \tilde{U} + G_1(\gamma, \Lambda_1, \epsilon, \eta) - i \eta G_2(\gamma, \Lambda_1, \epsilon, \eta) = 0,
\end{align*}
\]

where

\[
\begin{align*}
\tilde{L}_e(\eta) &= L_e(\eta) - \frac{i}{2} \eta \Lambda_1(\eta) T_1(\epsilon, \eta) - \frac{\epsilon^2}{2} \eta^2 \Lambda_1(\eta)^2 B_e(\eta) \partial_{\gamma}^{-1}, \\
G_1(\gamma, \Lambda_1, \epsilon, \eta) &= T_2(\epsilon, \eta) \theta'_1 + 2 \eta L_e(\eta) \theta_1 - \frac{\epsilon^2}{2} \left\{ T_1(\epsilon, \eta) \theta_1 + \epsilon^2 B_e(\eta) \theta_1 \right\}, \\
G_2(\gamma, \Lambda_1, \epsilon, \eta) &= 2 b c e^4 \Lambda_1(\eta) \theta'_1 + \Lambda_1 \left\{ T_2(\epsilon, \eta) + \gamma T_1(\epsilon, \eta) \right\} \theta_1, \\
&+ \epsilon^2 \Lambda_1^2 \left\{ i + \gamma \eta \right\} B_e(\eta) \int_{-\infty}^{\infty} \theta_1(\eta_1) d\eta_1.
\end{align*}
\]

Here we use (3.21) and the fact that \(\{ T_1(\epsilon, \eta) - T_1(\epsilon, 0) \} \theta'_1 = 2 b c e^4 \eta^2 \theta'_1 \).

Let \(P_e : L^2_\alpha \to \ker \left(L_e(0) \right) \) be the spectral projection associated with \(L_e(0) \) and let \(Q_e = I - P_e(0) \). Since \(\tilde{U} \in Q_e L^2(\mathbb{R}) \), we can translate (3.28) into

\[
\begin{align*}
2\tilde{L}_e(\eta) \tilde{U} + Q_e G_1(\gamma, \Lambda_1, \epsilon, \eta) - i \eta Q_e G_2(\gamma, \Lambda_1, \epsilon, \eta) = 0,
\end{align*}
\]

(3.29) \quad (3.30) \quad (3.31)

\[
\begin{align*}
F_1(\gamma, \Lambda_1, \epsilon, \eta) := \left\langle G_1(\gamma, \Lambda_1, \epsilon, \eta) - i \eta G_2(\gamma, \Lambda_1, \epsilon, \eta) + 2 \{ \tilde{L}_e(\eta) - L_e(0) \} \tilde{U}, \theta_1 \right\rangle, \\
F_2(\gamma, \Lambda_1, \epsilon, \eta) := \left\langle G_1(\gamma, \Lambda_1, \epsilon, \eta) - i \eta G_2(\gamma, \Lambda_1, \epsilon, \eta) + 2 \{ \tilde{L}_e(\eta) - L_e(0) \} \tilde{U}, \int_{-\infty}^{\infty} \theta_1 d\eta_1 \right\rangle,
\end{align*}
\]

where \(\tilde{L}_e(\eta) = Q_e \tilde{L}_e(\eta) Q_e \). Let \(k_1 \) be a positive number such that

\[
\begin{align*}
\sup_{\epsilon \in (0, \epsilon_0), \eta \in [-\eta_0, \eta_0]} \left(\| T_1(\epsilon, \eta) \|_{B(H^2_\alpha(\mathbb{R}), L^2_\alpha(\mathbb{R}))} + \| T_2(\epsilon, \eta) \|_{B(H^2_\alpha(\mathbb{R}), L^2_\alpha(\mathbb{R}))} \right) + \| B_e(\eta) \partial_{\gamma}^{-1} \|_{B(H^2_\alpha(\mathbb{R}), L^2_\alpha(\mathbb{R}))} \leq k_1.
\end{align*}
\]
Suppose $\sup_{\eta \in [-\eta_0, \eta_0]} (|A_1(\eta)| + |\gamma(\eta)|) \leq k_2$ for a $k_2 > 0$. Since $\|Q_{\epsilon}L_{\epsilon}(0)^{-1}Q_{\epsilon}\|_{B(L^2(\mathbb{R}), \mathcal{H}^3(\mathbb{R}))}$ is uniformly bounded in $\epsilon \in (0, \epsilon_0)$ and
\[
\|\hat{L}_{\epsilon}(\eta) - Q_{\epsilon}L_{\epsilon}(0)Q_{\epsilon}\|_{B(H^2_0(\mathbb{R}), \mathcal{H}^3(\mathbb{R}))} \lesssim \eta^2 k_1(1 + k_2^2) + \eta k_1 k_2,
\]
we see that $\hat{L}_{\epsilon}(\eta)^{-1} : Q_{\epsilon}L^2_0(\mathbb{R}) \to Q_{\epsilon}H^3_0(\mathbb{R})$ is uniformly bounded in $\epsilon \in (0, \epsilon_0)$ and $\eta \in [-\eta_0, \eta_0]$ provided ϵ_0 and η_0 are sufficiently small. Thus there exists a positive constant C_1 such that
\[
\sup_{\epsilon \in (0, \epsilon_0], \eta \in [-\eta_0, \eta_0]} \|\tilde{U}(\eta)\|_{H^3_0(\mathbb{R})} \leq C_1 \{(1 + k_2)^2 + \epsilon_0^2 \eta_0^3\}.
\]
Let
\[
(3.32) \quad \hat{\gamma}_0 = \frac{f_4(\epsilon)}{f_3(\epsilon)},
\]
\[
f_3(\epsilon) = (\Lambda_{1,\epsilon}^0)^2 \left\langle T_1(\epsilon, 0)\theta_{1,\epsilon} + \epsilon^2 B_0(0)\theta_{\epsilon}, \int_{-\infty}^{z} \tilde{\theta}_{1,\epsilon}(z_1) dz_1 \right\rangle - \left\langle T_2(\epsilon, 0)\theta_{\epsilon}', \int_{-\infty}^{z} \tilde{\theta}_{1,\epsilon}(z_1) dz_1 \right\rangle,
\]
\[
f_4(\epsilon) = 2 \left\langle L_{\epsilon}(0)\theta_{1,\epsilon}, \int_{-\infty}^{z} \tilde{\theta}_{1,\epsilon}(z_1) dz_1 \right\rangle.
\]
By (3.18) and (3.23), $f_4(\epsilon) = 3\langle \theta_0, \theta_0 \rangle + O(\epsilon^2)$. Using (3.22), (3.23) and the fact that $(\Lambda_{1,\epsilon}^0)^2 = \frac{1}{\epsilon^2} + O(\epsilon^2)$ and
\[
(3.33) \quad \|\tilde{\theta}_{1,\epsilon} - 2\theta_0 - z\theta_0'\|_{H^k(\mathbb{R}) \cap \mathcal{H}^{k+1}(\mathbb{R})} = O(\epsilon^2) \quad \text{for any } k \geq 0,
\]
we have
\[
f_3(\epsilon) = \left\langle \frac{2}{3} \theta_{1,\epsilon} - \theta_{\epsilon}, \int_{-\infty}^{z} \tilde{\theta}_{1,\epsilon} \right\rangle + O(\epsilon^2) = -\frac{1}{6}\|\theta_0\|^2_{L^2(\mathbb{R})} + O(\epsilon^2).
\]
Thus we have
\[
\hat{\gamma}_0 = -\frac{1}{180} \frac{\|\theta_0(z)\|^2_{L^2(\mathbb{R})}}{\langle \theta_0, \theta_0 \rangle} + O(\epsilon^2) = -\frac{1}{3\tilde{\alpha}_0} + O(\epsilon^2).
\]
In view of (3.25) and (3.26),
\[
F_1(\tilde{U}_0, \hat{\gamma}_0, \Lambda_{1,\epsilon}^0, \epsilon, 0) = \langle G_1(\gamma, \Lambda_{1,\epsilon}^0, \epsilon, 0), \theta_{\epsilon} \rangle
\]
\[= (T_2(\epsilon, 0)\theta_{\epsilon}', \theta_{\epsilon}) - (\Lambda_{1,\epsilon}^0)^2 \langle T_1(\epsilon, 0)\theta_{1,\epsilon} + \epsilon^2 B_0(0)\theta_{\epsilon}, \theta_{\epsilon} \rangle = 0,
\]
where $\tilde{U}_0 = \tilde{U}(0)$.
\[
F_2(\tilde{U}_0, \hat{\gamma}_0, \Lambda_{1,\epsilon}^0, \epsilon, 0) = \langle G_1(\gamma_0, \Lambda_{1,\epsilon}^0, \epsilon, 0), \int_{-\infty}^{z} \tilde{\theta}_{1,\epsilon}(z_1) dz_1 \rangle = 0,
\]
Next, we compute the Fréchet derivative of \((F_1, F_2)\) at \(U_0 = (\tilde{U}_0, \gamma_0, \Lambda_0, \epsilon, 0)\). By \((3.18), (3.20), (3.23)\) and \((3.33), (3.34)\),

\[
\begin{align*}
\partial_\gamma F_1(U_0) &= 2(L_1(\epsilon)\theta_{1,\epsilon}, \theta_\epsilon) = 0, \\
\partial_{\Lambda_1} F_1(U_0) &= -2\Lambda_0(\epsilon)(T_1(\epsilon, 0)\theta_{1,\epsilon} + \epsilon^2 B_2(\epsilon)\theta_\epsilon, \theta_\epsilon) = -6\Lambda_0(\theta_0, \theta_0) + O(\epsilon^2), \\
\partial_\gamma F_2(U_0) &= 2(L_2(0)\theta_{1,\epsilon}, \int_{-\infty}^z \tilde{\theta}_1(\epsilon, \eta) d\eta) = 2(\theta_{1,\epsilon}, \theta_\epsilon) = 3(\theta_0, \theta_0) + O(\epsilon^2), \\
\partial_{\Lambda_1} F_2(U_0) &= -2\Lambda_0(\epsilon) \left< T_1(\epsilon, 0)\theta_{1,\epsilon} + \epsilon^2 B_2(\epsilon)\theta_\epsilon, \int_{-\infty}^z \tilde{\theta}_1(\epsilon, \eta) \right> = -2\Lambda_0(\theta_0)\|\theta_0\|_{L^1_\epsilon}^2 + O(\epsilon^2).
\end{align*}
\]

and \(D_{(\gamma, \Lambda_1)}(F_1, F_2)(U_0) = \left(\frac{\partial_\gamma F_1(U_0)}{\partial_{\Lambda_1} F_1(U_0)} \frac{\partial_\gamma F_2(U_0)}{\partial_{\Lambda_1} F_2(U_0)} \right)\) is invertible. Thus by the implicit function theorem, there exists a smooth curve \((\gamma_\epsilon(\eta), \Lambda_1(\eta))\) around \(\eta = 0\) satisfying

\[
\begin{align*}
\gamma_\epsilon(0) &= \gamma_0(\epsilon), \\
\Lambda_1(0) &= \Lambda_0(\epsilon), \\
\Lambda_1'(0) &= -\frac{\partial_{\Lambda_1} F_1(U_0)}{\partial_{\Lambda_1} F_1(U_0)} = i\Lambda_0(\epsilon).
\end{align*}
\]

Since

\[
G_2(\gamma_\epsilon(0), \Lambda_1(\epsilon), \epsilon, 0) = \Lambda_0(\epsilon)\{T_2(\epsilon, 0) + \gamma_\epsilon(0)T_1(\epsilon, 0)\} + O(\epsilon^2)
\]

\[
\Lambda_0(\epsilon) \left\{ -\int_{-\infty}^\infty \theta_{1,\epsilon}(z_1) d\gamma_\epsilon(\epsilon, \eta) + 2\gamma_\epsilon(0)\theta_{1,\epsilon} \right\} + O(\epsilon^2)
\]

\[
\text{in } L^2_\epsilon(\mathbb{R}),
\]

we have

\[
\partial_{\theta^0} F_1(\tilde{U}_0, \gamma_\epsilon, \Lambda_0, \epsilon, 0) = -i \left< G_2(\tilde{U}_0, \gamma_0, \Lambda_0, \epsilon, 0), \theta_\epsilon \right>,
\]

\[
= i\Lambda_0(\frac{1}{2}\|\theta_0\|_{L^1_\epsilon}^2 - 3\gamma_0(\theta_0, \theta_0)) + O(\epsilon^2)
\]

\[
= \frac{2i}{3}\Lambda_0(\|\theta_0\|_{L^1_\epsilon}^2),
\]

and \(\Lambda_2 = \frac{1}{3}\|\theta_0\|_{L^1_\epsilon}^2\|\theta_0\|_{L^2_\epsilon}^2 + O(\epsilon^2) = 2/(3\lambda) + O(\epsilon^2).\)

Letting \(\Lambda(\eta) = i\eta\Lambda_1(\eta)\) and

\[
U_\epsilon(\eta) = \theta_\epsilon - \{\Lambda_\epsilon(\eta) - \eta^2 \gamma_\epsilon(\eta)\} \theta_{1,\epsilon}
\]

\[
- \frac{\eta^2}{2} L_\epsilon(\eta)^{-1} Q_\epsilon \{ G_1(\gamma_\epsilon(\eta), \Lambda_1(\eta), \epsilon, \eta) - i\eta G_2(\gamma_\epsilon(\eta), \Lambda_1(\eta), \epsilon, \eta) \},
\]

we have \((3.21)\) and \((3.22)\) because \(L_\epsilon(\eta) = \tilde{L}_\epsilon(\eta)\) and \(F_j(\gamma, \Lambda, \eta, \epsilon) = F_j(\gamma, \Lambda, \eta, \epsilon)\) for \(j = 1, 2\). Thus we complete the proof. \(\square\)
Lemma 3.4. Let c, α_0, ϵ_0 and η_0 be as in Lemma 3.3. For any $\epsilon \in (0, \epsilon_0)$ and $\eta \in [-\epsilon^2 \eta_0, \epsilon^2 \eta_0]$, let $\lambda(\eta) = \epsilon^2 \Lambda_0(\epsilon^2 \eta)$, $u(z, \eta) = (u_1(z, \eta), u_2(z, \eta))$, $v(z, \eta) = (v_1(z, \eta), v_2(z, \eta))$ and
\[
\begin{align*}
 u_1(z, \eta) &= \partial_z^{-1} U_\epsilon(\epsilon z, \epsilon^2 \eta), \\
 u_2(z, \eta) &= -c \epsilon U_\epsilon(\epsilon z, \epsilon^2 \eta) + \lambda(\eta)(\partial_z^{-1} U_\epsilon)(\epsilon z, \epsilon^2 \eta), \\
 v_1(z, \eta) &= (\lambda(-\eta) + c \partial_z B(\eta)) \int_{-\infty}^{\epsilon z} U_\epsilon(-z_1, -\epsilon^2 \eta) \, dz_1 \\
 &\quad - (2q_c \partial_z + q_c') \int_{-\infty}^{\epsilon z} U_\epsilon(-z_1, -\epsilon^2 \eta) \, dz_1, \\
 v_2(z, \eta) &= B(\eta) \int_{-\infty}^{\epsilon z} U_\epsilon(-z_1, -\epsilon^2 \eta) \, dz_1.
\end{align*}
\]
Then
\[
\begin{align*}
 (3.35) \quad &\mathcal{L}(\eta) u(\cdot, \eta) = \lambda(\eta) u(\cdot, \eta), \quad \mathcal{L}(\eta) v(\cdot, \eta) = \lambda(-\eta) v(\cdot, \eta), \\
 (3.36) \quad &\overline{\lambda(\eta)} = \lambda(-\eta), \quad u(\cdot, \eta) = u(z, -\eta), \quad v(\cdot, \eta) = v(z, -\eta), \\
 (3.37) \quad &\langle u(x, \eta), v(x, -\eta) \rangle = 0 \quad \text{for } \eta \in [-\epsilon^2 \eta_0, \epsilon^2 \eta_0] \setminus \{0\}. \tag{3.37}
\end{align*}
\]
Moreover, for any $k \in \mathbb{N}$, the mappings $[-\epsilon^2 \eta_0, \epsilon^2 \eta_0] \ni \eta \mapsto u(\epsilon^2 \cdot, \eta) \in H^k_\alpha(\mathbb{R}) \times H^{k-1}_\alpha(\mathbb{R})$ and $[-\epsilon^2 \eta_0, \epsilon^2 \eta_0] \ni \eta \mapsto v(\epsilon^2 \cdot, \eta) \in H^k_\alpha(\mathbb{R}) \times H^{k-1}_\alpha(\mathbb{R})$ are smooth.

Proof. By (3.10), (3.11) and the definition of $U_\epsilon(\eta)$, we see that $u(z, \eta)$ is a solution of (3.3) with $\lambda = \lambda(\eta)$. The mappings $\eta \mapsto u(\epsilon^2 \cdot, \eta)$ and $v(\epsilon^2 \cdot, \eta)$ are smooth thanks to the smoothness of $U_\epsilon(\eta)$ and (3.36) follows from (3.26).

Suppose $\mathcal{L}(\eta)^* \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \lambda(-\eta) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ and $\tilde{v}_2 = B(\eta)^{-1} v_2$. Then
\[
\begin{align*}
 v_1 &= (\lambda(-\eta) + c \partial_z B(\eta)) \tilde{v}_2 + v_{2,c}(\eta)^* \tilde{v}_2, \\
 (3.38) \quad &\{ A(\eta)(\partial_z^2 - \eta^2) - (\lambda(-\eta) + c \partial_z B(\eta)) \} \tilde{v}_2 - \{ v_{1,c}(\eta)^* + (\lambda(-\eta) + c \partial_z) v_{2,c}(\eta)^* \} \tilde{v}_2 = 0. \tag{3.39}
\end{align*}
\]
Formally, we have $v_{2,c}(\eta)^* = -v_{2,c}(\eta)$ and $v_{1,c}(\eta)^* + c \partial_z v_{2,c}(\eta)^* = v_{1,c}(\eta) - c v_{2,c}(\eta) \partial_z$. Using the change of variable $z \mapsto -z$ and the fact that q_c is an even function, we see that $\tilde{v}_2(-z)$ satisfies (3.10) with $\lambda = \lambda(-\eta)$ and that
\[
\begin{align*}
 \tilde{v}_2(z, \eta) &= \int_{-\infty}^{\epsilon z} U_\epsilon(-z_1, -\epsilon^2 \eta) \, dz_1
\end{align*}
\]
is a solution of (3.3). Thus we prove $\mathcal{L}(\eta)^* v(\cdot, \eta) = \lambda(-\eta) v(\cdot, \eta)$. We have (3.37) from (3.35) since $\overline{\lambda(\eta)} \neq \lambda(\eta)$ for $\eta \in [-\epsilon^2 \eta_0, \epsilon^2 \eta_0] \setminus \{0\}$. Thus we complete the proof.

Let
\[
\begin{align*}
 g(z, \eta) &= \frac{\sqrt{3}}{2} \left(1 + i \frac{\Re(u(\cdot, \eta), v(\cdot, \eta))}{\Im(u(\cdot, \eta), v(\cdot, \eta))} \right) \begin{pmatrix} u_1(z, \eta) \\ u_2(z, \eta) \end{pmatrix}, \\
 g^*(z, \eta) &= -\frac{\alpha_0}{4} \begin{pmatrix} v_1(z, \eta) \\ v_2(z, \eta) \end{pmatrix},
\end{align*}
\]
To resolve the degeneracy of the subspace span \(\{ g(\cdot, \eta), g(\cdot, -\eta) \} \) at \(\eta = 0 \), we introduce
\[
\begin{align*}
g_1(z, \eta) &= \frac{1}{2} \{ g(z, \eta) + g(z, -\eta) \}, \\
g_2(z, \eta) &= \frac{1}{2i\kappa(\eta)} \{ g(z, \eta) - g(z, -\eta) \},
\end{align*}
\]
where \(\kappa(\eta) = \frac{1}{2}(g(\cdot, \eta), g^*(\cdot, \eta)) \). By (3.40) and (3.41), we have
\[
(g_i(\cdot, \eta), g_i^*(\cdot, \eta)) = \delta_{ij} \quad \text{for } i, j = 1, 2.
\]
The profiles of \(g_k(z, \eta) \) and \(g_k^*(z, \eta) \) for small line solitary waves are as follows.

Corollary 3.5. Let \(c, \hat{\alpha}, \epsilon_0 \) and \(\eta_0 \) be as in Lemma 3.3. For every \(k \geq 0 \), there exists a positive constant \(C \) such that for \(\eta \in [-\epsilon_2\eta_0, \epsilon_2\eta_0] \) and \(\epsilon \in (0, \epsilon_0) \),
\[
\begin{align*}
\left(1, 0 \right) \begin{pmatrix} 1 & 0 \\ 0 & \epsilon^{-1} \end{pmatrix} \begin{pmatrix} g_1(\epsilon^{-1} \cdot, \epsilon^2\eta) - \frac{\sqrt{3}}{\epsilon} \left(\theta_{c\epsilon} \right) \end{pmatrix} &\leq C(\epsilon^2 + \eta^2), \\
\left(1, 0 \right) \begin{pmatrix} 1 & 0 \\ 0 & \epsilon^{-1} \end{pmatrix} \begin{pmatrix} g_2(\epsilon^{-1} \cdot, \epsilon^2\eta) - \frac{1}{2} \left(\int_{-\infty}^{\infty} \theta_{1\epsilon} - 2\bar{\alpha}_{0\epsilon} \theta_{1\epsilon} \right) \end{pmatrix} &\leq C(\epsilon^2 + \eta^2), \\
\left(\begin{pmatrix} 1 \end{pmatrix}, 0 \right) \begin{pmatrix} \epsilon^{-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g_1^*(\epsilon^{-1} \cdot, \epsilon^2\eta) - \frac{\bar{\alpha}_0}{4\sqrt{3}} \left(\int_{-\infty}^{\infty} \theta_{1\epsilon} \right) \end{pmatrix} &\leq C(\epsilon^2 + \eta^2), \\
\left(\begin{pmatrix} 1 \end{pmatrix}, 0 \right) \begin{pmatrix} \epsilon^{-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g_2^*(\epsilon^{-1} \cdot, \epsilon^2\eta) - \frac{\bar{\alpha}_0}{4} \left(\frac{\theta_{c\epsilon}}{\epsilon} \right) \end{pmatrix} &\leq C(\epsilon^2 + \eta^2).
\end{align*}
\]

Proof. First, we expand \(\langle u(\cdot, \epsilon^2\eta), v(\cdot, \epsilon^2\eta) \rangle \) into powers of \(\eta \) up to the second order. By the definitions of \(u(z, \eta) \) and \(v(z, \eta) \),
\[
\begin{align*}
\langle u(\cdot, \epsilon^2\eta), v(\cdot, \epsilon^2\eta) \rangle &= 2\lambda(\epsilon^2\eta) \langle u_1(\cdot, \epsilon^2\eta), v_2(\cdot, \epsilon^2\eta) \rangle - 2\epsilon \langle \partial_z u_1(\cdot, \epsilon^2\eta), v_2(\cdot, \epsilon^2\eta) \rangle \nonumber \\
&= \left\langle u_1(\cdot, \epsilon^2\eta), 2\epsilon \varphi \varphi U(\epsilon, -\eta) + q(0, -z_1, -\eta) \right\rangle.
\end{align*}
\]
By (3.34) and (3.35),
\[
u_1(\epsilon^{-1} \cdot, \epsilon^2\eta) = \theta_{c\epsilon} + \left\{ i\eta \Lambda^0_{1\epsilon} - \eta^2 \left(\gamma_{c\epsilon}^0 + \Lambda^0_{2\epsilon} \right) \right\} \int_{-\infty}^{\infty} \theta_{1\epsilon} - \eta^2 \int_{-\infty}^{\infty} \widetilde{U}_0(z_1) dz_1 + O(\eta^3) \quad \text{in } H^1_{\alpha}(\mathbb{R}),
\]
and
\[
u_2(\epsilon^{-1} \cdot, \epsilon^2\eta) = B(\eta) \left[-\theta_{c\epsilon} + \left\{ i\eta \Lambda^0_{1\epsilon} + \eta^2 \left(\gamma_{c\epsilon}^0 + \Lambda^0_{2\epsilon} \right) \right\} \int_{-\infty}^{\infty} \theta_{1\epsilon} \right] \\
+ \eta^2 \int_{-\infty}^{\infty} B(0) \widetilde{U}_0(-z_1) dz_1 + O(\eta^3) \quad \text{in } H^1_{\alpha}(\mathbb{R}).
\]
Using the fact that θ_ε and $\theta_{1,\varepsilon}$ are even, we have

$$\epsilon \langle u_1(\cdot, \epsilon^2 \eta), v_2(\cdot, \epsilon^2 \eta) \rangle = -\langle B_\varepsilon(0) \theta_\varepsilon, \theta_\varepsilon \rangle - i\eta \Lambda_{1,\varepsilon}^0 \left(\int_\mathbb{R} B_\varepsilon(0) \theta_\varepsilon \right) \left(\int_\mathbb{R} \theta_{1,\varepsilon} \right) + O(\eta^2),$$

$$\langle \partial_\varepsilon u_1(\cdot, \epsilon^2 \eta), v_2(\cdot, \epsilon^2 \eta) \rangle = \{ 2i\eta \Lambda_{1,\varepsilon}^0 - 2\eta^2 (\gamma_\varepsilon^0 + \Lambda_{2,\varepsilon}^0) \} \langle B_\varepsilon(0) \theta_\varepsilon, \theta_{1,\varepsilon} \rangle$$

$$- \eta^2 \left\{ (\Lambda_{1,\varepsilon}^0)^2 \langle B_\varepsilon(0) \theta_{1,\varepsilon}, \int_{-\infty}^z \theta_{1,\varepsilon} \rangle + 2 \left(\hat{U}_0, B_\varepsilon(0) \theta_{1,\varepsilon} \right) \right\} + O(\eta^3),$$

$$\left\langle u_1(\cdot, \epsilon^2 \eta), 2\epsilon g \cdot U_\varepsilon(-\epsilon, -\eta) + g^*_\varepsilon \int_{-\infty}^z U_\varepsilon(-z_1, -\eta) \, dz_1 \right\rangle = -3i\epsilon^2 \eta \Lambda_{1,\varepsilon}^0 \langle \theta_{1,\varepsilon}^2, \theta_{1,\varepsilon} \rangle + O(\epsilon^2 \eta^2).$$

In the last line, we use (2.10). Since $\hat{U}(\eta) \perp \theta_\varepsilon$ and $\|B_\varepsilon(0) \theta_\varepsilon - \theta_\varepsilon\|_{L^2_\alpha} = O(\epsilon^2)$, we have $\langle \hat{U}_0, B_\varepsilon(0) \theta_\varepsilon \rangle = O(\epsilon^2)$. Combining the above with (3.23) and the fact that $\lambda(\epsilon^2 \eta) = \epsilon^3 \{ i\eta \Lambda_{1,\varepsilon}^0 + O(\eta^3) \}$, we have

$$\Im \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle = -2c^3 \Im \langle \partial_\varepsilon u_1(\cdot, \epsilon^2 \eta), v_2(\cdot, \epsilon^2 \eta) \rangle + O(\epsilon^2 \eta + \eta^3)$$

$$= -4\eta \Lambda_{1,\varepsilon}^0 \langle B_\varepsilon(0) \theta_\varepsilon, \theta_{1,\varepsilon} \rangle + O(\epsilon^2 \eta + \eta^3)$$

$$= \left\{ -\frac{16}{\sqrt{3} \hat{\alpha}_0} + O(\epsilon^3) \right\} \eta + O(\eta^3),$$

$$\Re \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle = -2c^3 \Re \langle \partial_\varepsilon u_1(\cdot, \epsilon^2 \eta), v_2(\cdot, \epsilon^2 \eta) \rangle + O(\epsilon^2 \eta^2)$$

$$= 2\eta^2 \left\{ (\Lambda_{1,\varepsilon}^0)^2 \langle \theta_{1,\varepsilon}, B_\varepsilon(0) \int_{-\infty}^z \theta_{1,\varepsilon} \rangle + 2(\gamma_\varepsilon^0 + \Lambda_{2,\varepsilon}^0) \langle B_\varepsilon(0) \theta_{1,\varepsilon}, \theta_{1,\varepsilon} \rangle + O(\epsilon^2 + \eta^2) \right\}$$

$$= \frac{32}{3\hat{\alpha}_0^2} \eta^2 + O(\epsilon^2 \eta^2 + \eta^4).$$

Note that $\Re \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle$ is even in η thanks to (3.30). Thus we have

$$\frac{\Re \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle}{\Im \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle} = -\frac{2\eta}{\sqrt{3} \hat{\alpha}_0} + O(\epsilon^2 \eta),$$

$$\langle g(\cdot, \epsilon^2 \eta), g^*(\cdot, \epsilon^2 \eta) \rangle = -\frac{\sqrt{3} \hat{\alpha}_0}{8} \Im \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle \left\{ 1 + \left(\frac{\Re \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle}{\Im \langle u(\cdot, \epsilon^2 \eta), v(\cdot, \epsilon^2 \eta) \rangle} \right)^2 \right\}$$

$$= 2i\eta \{ 1 + O(\epsilon^2 + \eta^2) \},$$

and (3.45)-(3.48) follow immediately from the definitions of g_k and g_k^* ($k = 1, 2$). □

Remark 3.1. In view of (3.40), we have

$$\mathcal{L}(\eta) g_1(\cdot, \eta) = \Re \lambda(\eta) g_1(\cdot, \eta) - \kappa(\eta) \Im \lambda(\eta) g_2(\cdot, \eta),$$

$$\mathcal{L}(\eta) g_2(\cdot, \eta) = \frac{\Im \lambda(\eta)}{\kappa(\eta)} g_1(\cdot, \eta) + \Re \lambda(\eta) g_2(\cdot, \eta),$$

$$\mathcal{L}(\eta)^* g_1^*(\cdot, \eta) = \Re \lambda(\eta) g_1^*(\cdot, \eta) + \frac{\Im \lambda(\eta)}{\kappa(\eta)} g_2^*(\cdot, \eta),$$

$$\mathcal{L}(\eta)^* g_2^*(\cdot, \eta) = -\kappa(\eta) \Im \lambda(\eta) g_1^*(\cdot, \eta) + \Re \lambda(\eta) g_2^*(\cdot, \eta).$$
Now we define a spectral projection to resonant modes. Let $P(\eta_0)$ be an operator defined by
\[
P(\eta_0)f(z, y) = \frac{1}{\sqrt{2\pi}} \sum_{k=1,2} \int_{-\eta_0}^{\eta_0} c_k(\eta)g_k(z, \eta)e^{i\eta y} \, d\eta,
\]
where
\[
c_k(\eta) = \int_{\mathbb{R}} (\mathcal{F}_y f)(z, \eta) \cdot g_k(z, \eta) \, dz
\]
for $f \in X$ and let $Q(\eta_0) = I - P(\eta_0)$. Using Corollary 3.5, we can prove that $P(\eta_0)$ and $Q(\eta_0)$ are spectral projections associated with \mathcal{L} in exactly the same way with [28, Lemma 3.1].

Lemma 3.6. Let $c = \sqrt{1 + \epsilon^2}$ and $\alpha \in (0, \tilde{\alpha}_0/2)$. Then there exist positive constants ϵ_0 and η_1 such that for any $\epsilon \in (0, \epsilon_0)$ and $\eta_0 \in (0, \eta_1)$,

1. $\|P(\epsilon^2 \eta_0)f\|_X \leq C\|f\|_X$ for any $f \in X$, where C is a positive constant depending only on α, ϵ, and η_0.
2. $\mathcal{L}P(\epsilon^2 \eta_0)f = P(\epsilon^2 \eta_0)\mathcal{L}f$ for any $f \in D(\mathcal{L})$.
3. $P(\epsilon^2 \eta_0)^2 = P(\epsilon^2 \eta_0)$ on X.
4. $e^{\epsilon \mathcal{L}}P(\epsilon^2 \eta_0) = P(\epsilon^2 \eta_0)e^{\epsilon \mathcal{L}}$ on X.

4. Properties of the Free Operator \mathcal{L}_0

In this section, we investigate properties of the linearized operator \mathcal{L}_0 in X. To begin with, we investigate the spectrum of \mathcal{L}_0.

Lemma 4.1. Let $\alpha_c' = \sqrt{\frac{c-1}{bc-a}}$. Suppose $0 < a < b$, $c > 1$ and $\alpha \in (0, \alpha_c')$. Then
\[
\sigma(\mathcal{L}_0(D)) \subset \left\{ \lambda \in \mathbb{C} \mid \Re \lambda < -\frac{\alpha}{2}(c-1) \right\}.
\]

By (3.5), the operator $\begin{pmatrix} m_{11}(D) & m_{12}(D) \\ m_{21}(D) & m_{22}(D) \end{pmatrix}$ is bounded on X if and only if
\[
\sum_{i,j=1,2} (1 + \xi^2 + \eta^2)^{(i-j)/2} |m_{ij}(\xi + i\alpha, \eta)| < \infty.
\]

The symbol of the operator \mathcal{L}_0 is
\[
\mathcal{L}_0(\xi, \eta) = \begin{pmatrix} ic\xi & 1 \\ -(\xi^2 + \eta^2)S(\xi, \eta)^2 & ic\xi \end{pmatrix}, \quad S(\xi, \eta) = \sqrt{\frac{1 + a(\xi^2 + \eta^2)}{1 + b(\xi^2 + \eta^2)}},
\]
and we observe $L_0(\xi, \eta)P(\xi, \eta) = \text{diag}(\lambda_+(\xi, \eta), \lambda_-(\xi, \eta))P(\xi, \eta)$, where
\[
\lambda_{\pm}(\xi, \eta) = ic\xi \pm i\mu(\xi, \eta)S(\xi, \eta), \quad \mu(\xi, \eta) = \xi \sqrt{1 + \xi^{-2}\eta^2},
\]
\[
P(\xi, \eta) = \begin{pmatrix} -i\mu(\xi, \eta)^{-1} & i\mu(\xi, \eta)^{-1} \\ S(\xi, \eta) & S(\xi, \eta) \end{pmatrix}.
\]

To investigate properties of the resolvent operator $(\lambda - \mathcal{L}_0)^{-1}$, we need the following.
Claim 4.2. Suppose \(0 < a < b\) and \(\alpha > 0\). Then
\begin{align*}
0 < \Im(\xi + ia, \eta) \leq \Im(\xi + ia, 0) = \alpha & \quad \text{for } \xi \in \mathbb{R}, \\
\xi \Re(\xi + ia, \eta) > 0, & \quad \Im(\xi + ia, \eta) > 0 \quad \text{for } \xi \neq 0.
\end{align*}

Claim 4.3. Suppose \(0 < a < b\) and \(0 < \alpha < \alpha_c\). Then
\begin{align*}
\Re S(\xi + ia, \eta) > 0 & \quad \text{for } (\xi, \eta) \in \mathbb{R}^2, \\
\xi \Im S(\xi + ia, \eta) < 0 & \quad \text{for } \xi \in \mathbb{R} \setminus \{0\} \text{ and } \eta \in \mathbb{R}, \\
\sqrt{\frac{a}{b}} < |S(\xi + ia, \eta)| < S(ia, 0) < c & \quad \text{for } (\xi, \eta) \in \mathbb{R}^2 \setminus \{(0, 0)\}, \\
|S(\xi + ia, \eta)| < 1 - \frac{b - a}{2} \frac{\xi^2 + \eta^2 - \alpha^2}{1 + b(\xi^2 + \eta^2 - \alpha^2)} & \quad \text{for } (\xi, \eta) \in \mathbb{R}^2.
\end{align*}

Claim 4.4. Suppose \(0 < a < b\), \(c > 1\) and \(\alpha \in (0, \alpha_c)\). Then for \((\xi, \eta) \in \mathbb{R}^2\),
\begin{align*}
-2\alpha c &< \Re \lambda_+(\xi + ia, \eta) \leq -\alpha c, \\
\Re \lambda_-(\xi + ia, \eta) &\leq -\alpha \left\{c - 1 + \frac{b - a}{2} \frac{\xi^2 + \eta^2 - \alpha^2}{1 + b(\xi^2 + \eta^2 - \alpha^2)} \right\}, \\
-\alpha c &\leq \Re \lambda_-(\xi + ia, \eta) \leq -\frac{\alpha}{2}(c - 1).
\end{align*}

Proof of Claim 4.2. Since
\[\mu(\xi + ia, \eta) = (\xi + ia) \sqrt{1 + \frac{\eta^2}{(\xi + ia)^2}} = \text{sgn}(\xi) \sqrt{(\xi + ia)^2 + \eta^2},\]
we have (4.3).

Since \(\Im(\xi + ia, \eta) = \sqrt{\alpha^2 - \eta^2}\) for \(\eta \in [-\alpha, \alpha]\) and \(\Im(\xi, \eta) = 0\) for \(\eta \in \mathbb{R}\) satisfying \(|\eta| > \alpha\), we have (4.3) for \(\xi = 0\). Let \(s = \eta^2\), \(\gamma_1(\xi, s) = \Re \mu(\xi + ia, \eta)\) and \(\gamma_2(\xi, s) = \Im \mu(\xi + ia, \eta)\). To prove (4.4), it suffices to show that \(\gamma_2(\xi, s)\) is monotone decreasing in \(s\) when \(\xi \neq 0\). Differentiating
\[\gamma_1^2 - \gamma_2^2 = \xi^2 - \alpha^2 + s \quad \text{and} \quad \gamma_1 \gamma_2 = \alpha \xi\]
with respect to \(s\), we have
\[\partial_s \gamma_2 = -\frac{\gamma_2}{2(\gamma_1^2 + \gamma_2^2)}.\]

Combining (4.13) with (4.14), we have \(\partial_s \gamma_2 < 0\). Thus we prove (4.4).

Proof of Claim 4.3. We observe
\[S(\xi + ia, \eta)^2 = \frac{1 + a(\xi^2 + \eta^2 - \alpha^2) + 2ia\alpha \xi}{1 + b(\xi^2 + \eta^2 - \alpha^2) + 2ib\alpha \xi}
= \frac{a}{b} + \left(1 - \frac{a}{b}\right) \frac{1}{1 - ba^2 + b(\xi^2 + \eta^2) + 2ib\alpha \xi}.\]

\[\Box\]
Since $0 < a < b$ and $1 - ba^2 > 0$ for $\alpha \in (0, \alpha_c)$, it follows from (4.14) that

\[(4.15) \quad |S(\xi + i\alpha, \eta)|^2 \geq \Re S(\xi + i\alpha, \eta)^2 > \frac{a}{b} > 0 \quad \text{for} \ (\xi, \eta) \in \mathbb{R}^2,\]

\[(4.16) \quad \xi \Im S(\xi + i\alpha, \eta)^2 < 0 \quad \text{for} \ \xi \in \mathbb{R} \setminus \{0\} \ \text{and} \ \eta \in \mathbb{R}.
\]

By (4.15), we have the first part of (4.7) and (4.5) because $\Re S(i\alpha, 0) = \sqrt{\frac{1 - a\alpha^2}{1 - ba^2}} > 0$ and $S(\xi + i\alpha, \eta)$ is continuous in $(\xi, \eta) \in \mathbb{R}^2$. Eq. (4.6) follows from (4.5) and (4.16).

We have $c > S(i\alpha, 0)$ for $\alpha \in (0, \alpha_c)$. By (4.14) and the triangle inequality,

\[(4.17) \quad |S(\xi + i\alpha, \eta)|^2 \leq \frac{a}{b} + \left(1 - \frac{a}{b}\right) \frac{1}{1 + b(\xi^2 + \eta^2 - \alpha^2)} = \frac{1 + a(\xi^2 + \eta^2 - \alpha^2)}{1 + b(\xi^2 + \eta^2 - \alpha^2)} \leq \frac{1 - a\alpha^2}{1 - ba^2} = S(i\alpha, 0)^2,
\]

and $|S(\xi + i\alpha, \eta)| = S(i\alpha, 0)$ if and only if $\xi = \eta = 0$. Thus we have the second part of (4.7). Furthermore, we have (4.8) from (4.17) since $|S| \leq (|S|^2 + 1)/2$. Thus we complete the proof.

\[\square\]

Using Claim 4.3, we will estimate the upper and lower bounds of $\lambda_{\pm}(\xi + i\alpha, \eta)$.

Proof of Claim 4.4 First, we will show

\[(4.18) \quad \Im (\mu(\xi + i\alpha, \eta)S(\xi + i\alpha, \eta)) \geq 0 \quad \text{for} \ (\xi, \eta) \in \mathbb{R}^2.
\]

We see that $\mu(\xi + i\alpha, \eta)S(\xi + i\alpha, \eta)$ is a real number if and only if $\xi = 0$ and $|\eta| \geq \alpha$ since

$$\Im \{\mu(\xi + i\alpha, \eta)S(\xi + i\alpha, \eta)\} = 2\alpha\xi \left[\frac{a}{b} + \left(1 - \frac{a}{b}\right)\frac{1}{1 + b(\xi^2 + \eta^2 - \alpha^2)}\right]$$

and

$$\mu(i\alpha, \eta)^2 \Re S(i\alpha, \eta)^2 = (\eta^2 - \alpha^2) \frac{1 - b\alpha^2 + a\eta^2}{1 - b\alpha^2 + b\eta^2}.$$

Thanks to the continuity of $\Im (\mu S)(\xi + i\alpha, \eta)$ on \mathbb{R}^2 and the fact that $\Im (\mu S)(i\alpha, 0) > 0$, we have (4.18).

By (4.18) and the definition of λ_{\pm},

$$\Re \lambda_{+}(\xi + i\alpha, \eta) \leq -\alpha c, \quad \Re \lambda_{-}(\xi + i\alpha, \eta) \geq -\alpha c.$$

Since $0 < \alpha < \alpha'_c < \alpha_c$, it follows from (4.13), (1.11), (1.16) and (4.7) that

$$\Re \lambda_{+}(\xi + i\alpha, \eta) \geq -\alpha c - \Im (\xi + i\alpha, \eta)\Re S(\xi + i\alpha, \eta)$$

$$> -2\alpha c,$$

\[(4.19) \quad \Re \lambda_{-}(\xi + i\alpha, \eta) \leq -\alpha c + \Im (\xi + i\alpha, \eta)\Re S(\xi + i\alpha, \eta).
\]
Combining (4.19) with (4.3) and (4.8), we have (4.10). Since $x/(1 + bx)$ is increasing on $[-a^2, \infty)$ and $c > S(i\alpha, 0)^2$ for $\alpha \in (0, \alpha_0')$,
\[
\Re \lambda_-(\xi + i\alpha, \eta) \leq -\alpha \left\{ c - 1 - \frac{b - a}{2} \frac{\alpha^2}{1 - ba^2} \right\} = -\alpha \left(c - \frac{1}{2} \frac{S(i\alpha)^2}{1} \right) < -\frac{c - 1}{2}.
\]
Thus we complete the proof.

Now we are in position to prove Lemma 4.1.

\textbf{Proof of Lemma 4.1.} If $\lambda \neq \lambda_\pm(\xi, \eta)$,
\[
\begin{align*}
(\lambda - \mathcal{L}_0(\xi, \eta))^{-1} &= \frac{1}{(\lambda - \lambda_+(\xi, \eta))(\lambda - \lambda_-(\xi, \eta))} \left(\frac{\lambda - i\epsilon \xi}{-(i\mu S^2(\xi, \eta))} - \frac{1}{\lambda - \lambda_-(\xi, \eta)} \right). \\
(\lambda - \mathcal{L}_0(\xi, \eta))^{-1} &= \frac{1}{\lambda - \lambda_+(\xi, \eta)} + \frac{1}{\lambda - \lambda_-(\xi, \eta)},
\end{align*}
\]
Since $2i\epsilon \xi = \lambda_+ + \lambda_-$ and $2i\mu S = \lambda_+ - \lambda_-$,
\[
\begin{align*}
\frac{2(\lambda - ci\xi)}{(\lambda - \lambda_+(\xi, \eta))(\lambda - \lambda_-(\xi, \eta))} &= \frac{1}{\lambda - \lambda_+(\xi, \eta)} + \frac{1}{\lambda - \lambda_-(\xi, \eta)}, \\
\frac{2i\mu(\xi, \eta)S(\xi, \eta)}{(\lambda - \lambda_+(\xi, \eta))(\lambda - \lambda_-(\xi, \eta))} &= \frac{1}{\lambda - \lambda_+(\xi, \eta)} - \frac{1}{\lambda - \lambda_-(\xi, \eta)}.
\end{align*}
\]
In view of (4.1), (4.7), (4.20) and (4.21), the operator $\lambda - \mathcal{L}_0$ has a bounded inverse on \mathcal{Q} if
\[
\sup_{(\xi, \eta) \in \mathbb{R}^2} |\lambda - \lambda_\pm(\xi + i\alpha, \eta)|^{-1} < \infty.
\]
Thus we have
\[
\sigma(\mathcal{L}_0(D)) = \{\lambda_\pm(\xi + i\alpha, \eta) \mid (\xi, \eta) \in \mathbb{R}^2\},
\]
and Lemma 4.1 follows immediately from (4.9), (4.11) and (4.23). \qed

To prove the boundedness of $(\lambda - \mathcal{L})^{-1}$ restricted on $\mathcal{Q}(\eta_0) \mathcal{X}$ for a small $\eta_0 > 0$, the estimate (4.11) in Claim 4.4 is insufficient. To have a better estimate on $(\lambda - \lambda_-(D))^{-1}$, we will estimate $\lambda_-(\xi, \eta)$ in the high frequency regime, the middle frequency regime and in the low frequency regime, separately. Let $\delta = \epsilon^{1/20}$, $K = \delta^{-3}$ and
\[
\begin{align*}
A_{\text{high}} &= \{ (\xi, \eta) \in \mathbb{R}^2 \mid |\xi| \geq \delta \text{ or } |\eta| \geq \delta |\xi + i\alpha| \}, \\
A_{\xi,m} &= \{ (\xi, \eta) \in \mathbb{R}^2 \mid K \epsilon \leq |\xi| \leq \delta, |\eta| \leq \delta |\xi + i\alpha| \}, \\
A_{\eta,m} &= \{ (\xi, \eta) \in \mathbb{R}^2 \mid |\xi| \leq K \epsilon, K \epsilon |\xi + i\alpha| \leq |\eta| \leq \delta |\xi + i\alpha| \}, \\
A_{\text{low}} &= \{ (\xi, \eta) \in \mathbb{R}^2 \mid |\xi| \leq K \epsilon, |\eta| \leq K \epsilon |\xi + i\alpha| \}, \\
\tilde{A}_{\text{low}} &= \{ (\xi, \eta) \in \mathbb{R}^2 \mid |\xi| \leq K (\epsilon + \alpha)^2 \}.
\end{align*}
\]
Obviously, we have $\mathbb{R}^2 = A_{\text{high}} \cup A_{\xi,m} \cup A_{\eta,m} \cup A_{\text{low}}$ and $A_{\text{low}} \subset \tilde{A}_{\text{low}}$. Suppose $c = \sqrt{1 + \epsilon^2}$ and that ϵ is a small positive number. In the low frequency regime A_{low},
\[
\begin{align*}
i\mu(D) &\sim c \phi_2 + c^3 \phi_1^{-1} \partial_y^2, \\
S(D) &\sim I + \frac{b - a}{2} \partial_x^2, \\
\lambda_-(D) &\sim c^3 \mathcal{L} K F_0(D_x, D_y), \\
\lambda_+(D) &\sim 2\epsilon \phi_2,
\end{align*}
\]
where \(\hat{\xi} = \epsilon \xi, \hat{\eta} = \epsilon^2 \eta \) and \(\mathcal{L}_{KP, 0}(D_{\hat{\xi}}, D_{\hat{\eta}}) = -\frac{1}{2}\{ (b - a) \partial_{\hat{\xi}}^2 - \partial_{\hat{\xi}} + \partial_{\hat{\eta}}^{-1} \partial_{\hat{\eta}}^2 \} \). More precisely, we have the following.

Lemma 4.5. Let \(c = \sqrt{1 + \epsilon^2}, \alpha = \epsilon \alpha \) and \(\hat{\alpha} = 1/\sqrt{bc^2 - a} \). Let \(\xi = \epsilon \xi, \eta = \epsilon^2 \eta \). Suppose \(\hat{\alpha} \in (0, \hat{\alpha}_e) \). Then there exist positive constants \(\epsilon_0 \) and \(C \) such that for \(\epsilon \in (0, \epsilon_0) \),

\[
\lambda_- (\xi + i\alpha, \eta) = \frac{i\epsilon^3}{2} (\hat{\xi} + i\hat{\alpha}) \left\{ 1 + (b - a)(\hat{\xi} + i\hat{\alpha})^2 - \frac{\hat{\eta}^2}{(\hat{\xi} + i\hat{\alpha})^2} + O(K^4 \epsilon^2) \right\}
\]

for \((\xi, \eta) \in A_{\text{low}} \),

\[
\lambda_- (\xi + i\alpha, \eta) = \frac{i\epsilon^3}{2} (\hat{\xi} + i\hat{\alpha}) \left\{ 1 + (b - a)(\hat{\xi} + i\hat{\alpha})^2 - \frac{\hat{\eta}^2}{(\hat{\xi} + i\hat{\alpha})^2} + O(K^8 \epsilon^2) \right\}
\]

for \((\xi, \eta) \in \tilde{A}_{\text{low}} \),

\[
\Re \lambda_- (\xi + i\alpha, \eta) \leq -\frac{\hat{\alpha} \epsilon^3}{4} \left\{ 1 + (b - a) \xi^2 \right\} \quad \text{for } (\xi, \eta) \in A_{\xi, m},
\]

\[
\Re \lambda_- (\xi + i\alpha, \eta) \leq -\frac{\alpha \epsilon^3}{4} \frac{\eta^2}{\xi^2 + \hat{\alpha}^2} \quad \text{for } (\xi, \eta) \in A_{\eta, m},
\]

\[
\Re \lambda_- (\xi + i\alpha, \eta) \leq -C \epsilon^2 \quad \text{for } (\xi, \eta) \in A_{\text{high}}.
\]

Proof of Lemma 4.5. If \((\xi, \eta) \in A_{\text{low}} \), then

\[
|\hat{\xi}| \leq K, \quad |\hat{\eta}|/|\hat{\xi} + i\hat{\alpha}| \leq K,
\]

\[
\mu(\xi + i\alpha, \eta) = \epsilon(\hat{\xi} + i\hat{\alpha}) \sqrt{1 + \frac{\epsilon^2 \eta^2}{(\hat{\xi} + i\hat{\alpha})^2}} = \epsilon(\hat{\xi} + i\hat{\alpha}) \left\{ 1 + \frac{\epsilon^2 \eta^2}{2 (\hat{\xi} + i\hat{\alpha})^2} + O(K^4 \epsilon^4) \right\},
\]

\[
S(\xi + i\alpha, \eta) = \sqrt{1 + \frac{(a - b) ((\xi + i\alpha)^2 + \eta^2)}{1 + b ((\xi + i\alpha)^2 + \eta^2)}} = 1 + \frac{a - b}{2} \epsilon^2 (\hat{\xi} + i\hat{\alpha})^2 + O(\epsilon^4 K^4).
\]

Combining (4.29)–(4.31) and the fact that \(c = 1 + \frac{\epsilon^2}{2} + O(\epsilon^4) \), we have (4.24). If \((\xi, \eta) \in \tilde{A}_{\text{low}} \), then \(|\hat{\xi}| \leq K \) and \(|\hat{\eta}|/|\hat{\xi} + i\hat{\alpha}| \leq K(K + \hat{\alpha})/\hat{\alpha} \) and we can prove (4.25) in exactly the same way.

Suppose \((\xi, \eta) \in A_{\xi, m} \). Then \(\xi = O(\delta), \alpha/\xi = O(K^{-1}) \) and \(\eta/\xi = O(\delta) \). By (4.10),

\[
\Re \lambda_- (\xi + i\alpha, \eta) \leq -\alpha \left\{ c - 1 + \frac{b - a}{2} \frac{\epsilon^2 + \eta^2 - \alpha^2}{1 + b (\epsilon^2 + \eta^2 - \alpha^2)} \right\} = -\alpha \left\{ \frac{\epsilon^2}{2} + O(\epsilon^4) + \frac{b - a}{2} (1 + O(\delta^2 + K^{-2})) \xi^2 \right\}.
\]

Thus we have (4.26) provided \(\epsilon_0, \delta \) and \(K^{-1} \) are sufficiently small.
Let \((\xi, \eta) \in A_{\eta,m}\). By (4.3), (4.7) and (4.19),
\[
\Re \lambda_-(\xi + i\alpha, \eta) \leq -\alpha c + \Im \mu(\xi + i\alpha, \eta) \Re S(\xi + i\alpha, \eta)
\]
\[
\leq -c \{ \alpha - \Im \mu(\xi + i\alpha, \eta) \} .
\]
(4.32)

Since
\[
\mu(\xi + i\alpha, \eta) = (\xi + i\alpha) \sqrt{1 + \frac{\eta^2}{(\xi + i\alpha)^2}} = \epsilon(\xi + i\alpha) \left\{ 1 + \frac{\epsilon^2 \eta^2}{2(\xi + i\alpha)^2} (1 + O(\delta^2)) \right\} ,
\]
\[
\Im \mu(\xi + i\alpha, \eta) = \epsilon \alpha - \frac{\epsilon^3 \alpha \eta^2}{2(\xi^2 + \alpha^2)} (1 + O(\delta^2)) .
\]
By (4.32) and the above, we have (4.27) provided \(c_0, \delta \) and \(K^{-1} \) are sufficiently small.

Finally, we will prove (4.28). Suppose \((\xi, \eta) \in A_{\text{high}} \) and \(|\xi| \geq \delta\). Then there exists a positive constant \(C_1 \) such that \(\xi^2 + \eta^2 - \alpha^2 \geq C_1 \delta^2 \) and it follows from (4.10) that
\[
\Re \lambda_-(\xi + i\alpha, \eta) \leq -c \left\{ c - 1 + \frac{b - a}{2} \frac{C_1 \delta^2}{1 + bC_1 \delta^2} \right\} \leq -c \delta^2 .
\]
(4.33)

Suppose \((\xi, \eta) \in A_{\text{high}} \) and \(|\eta||\xi + i\alpha|^{-1} \geq \delta\). By (4.3) and (4.13),
\[
\Im \mu(\xi + i\alpha, \eta) = \gamma_2(\xi, \eta) \leq \gamma_2(\xi, \delta^2|\xi + i\alpha|^2) \quad \text{if } s = \eta^2 \geq \delta^2|\xi + i\alpha|^2 .
\]
(4.34)

If \(0 \leq s \leq \delta^2|\xi + i\alpha|^2\),
\[
\gamma_1^2 + \gamma_2^2 = |(\xi + i\alpha)^2 + s| \leq (1 + \delta^2)|\xi + i\alpha|^2 ,
\]
and it follows from (4.13) that for a \(C > 0\),
\[
\gamma_2(\xi, \delta^2|\xi + i\alpha|^2) \leq \gamma_2(\xi, 0) \exp \left(-\delta^2/2(1 + \delta^2)\right) \leq \alpha - C \delta^2 .
\]
(4.35)

Substituting (4.33) and (4.34) into (4.32), we have (4.28). Thus we complete the proof. \(\Box\)

Finally, we will estimate operator norms of \((\lambda - \lambda_-(D))^{-1}\) on \(L^2(\mathbb{R}^2_\Theta)\) and its subspaces. Let \(\rho_\gamma\) and \(\hat{\rho}_\gamma\) be functions on \(\mathbb{R}\) such that \(\rho_\gamma(\eta) + \hat{\rho}_\gamma(\eta) = 1\) for \(\eta \in \mathbb{R}\) and
\[
\rho_\gamma(\eta) = \begin{cases}
1 & \text{if } |\eta| \leq K(K + \hat{\alpha})\epsilon^2 , \\
0 & \text{if } |\eta| \geq K(K + \hat{\alpha})\epsilon^2 .
\end{cases}
\]
(4.36)

Let \(\rho_z(\xi)\) be the characteristic function of \(\{\xi \in \mathbb{C} \mid |\Re \xi| \leq K \epsilon\}\), \(\hat{\rho}_z(\xi) = 1 - \rho_z(\xi)\) and
\[
Y := \rho_\gamma(D_\gamma)L^2_\alpha(\mathbb{R}^2), \quad Y_{\text{low}} := \rho_z(Dz)Y, \quad Y_{\text{high}} := \hat{\rho}_z(Dz)Y .
\]
(4.37)

We remark that \(\hat{\Lambda}_{\text{low}} = \text{supp } \rho_z(\xi)\rho_\gamma(\eta)\).
Lemma 4.6. Let c, α, and λ be as in Lemma 4.3. Let $\tilde{\beta} \in (0, \frac{\alpha}{2})$ and $\lambda \in \Omega_c := \{ \lambda \in \mathbb{C} \mid \Re \lambda \geq -\tilde{\beta}e^3 \}$. Then there exist positive constants C and ϵ_0 such that if $\epsilon \in (0, \epsilon_0)$ and $\lambda \in \Omega_c$,

\begin{align}
(4.35) \quad & \| (\lambda - \lambda_+(D))^{-1} \|_{B(L_2^\infty)} \leq C\epsilon^{-1}, \\
(4.36) \quad & \| (\lambda - \lambda_-(D))^{-1} \|_{B(L_2^\infty)} \leq C\epsilon^{-3}, \\
(4.37) \quad & \| (\lambda - \lambda_-(D))^{-1} \|_{B(Y_{\text{high}})} \leq CK^{-2}\epsilon^{-3}, \\
(4.38) \quad & \| B^{-1}\mu(D)(\lambda - \lambda_-(D))^{-1} \|_{B(Y_{\text{high}})} + \| B^{-1}\partial_z(\lambda - \lambda_-(D))^{-1} \|_{B(Y_{\text{high}})} \leq CK^{-1}\epsilon^{-2}, \\
(4.39) \quad & \| B^{-1}\mu(D)(\lambda - \lambda_-(D))^{-1} \|_{B(Y_{\text{low}})} + \| B^{-1}\partial_z(\lambda - \lambda_-(D))^{-1} \|_{B(Y_{\text{low}})} \leq C\epsilon^{-2}.
\end{align}

Proof. By (4.9) and (4.11),

\begin{align}
(4.40) \quad & \inf_{\lambda \in \Omega_c, (\xi, \eta) \in \mathbb{R}^2} |\lambda - \lambda_+(\xi + i\alpha, \eta)| \geq \inf_{\lambda \in \Omega_c, (\xi, \eta) \in \mathbb{R}^2} \Re(\lambda - \lambda_+(\xi + i\alpha, \eta)) \geq \epsilon, \\
& \quad \quad \inf_{\lambda \in \Omega_c, (\xi, \eta) \in \mathbb{R}^2} |\lambda - \lambda_-(\xi + i\alpha, \eta)| \geq \inf_{\lambda \in \Omega_c, (\xi, \eta) \in \mathbb{R}^2} \left(\Re \lambda + \frac{\alpha}{2}(c - 1) \right) \geq \epsilon^3.
\end{align}

Hence it follows from (4.50) that

\begin{align}
\| (\lambda - \lambda_+(D))^{-1} \|_{B(L_2^\infty)} = \sup_{(\xi, \eta) \in \mathbb{R}^2} \frac{1}{|\lambda - \lambda_+(\xi + i\alpha, \eta)|} \leq C\epsilon^{-1}, \\
\| (\lambda - \lambda_-(D))^{-1} \|_{B(L_2^\infty)} = \sup_{(\xi, \eta) \in \mathbb{R}^2} \frac{1}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \leq C\epsilon^{-3},
\end{align}

where C is a positive constants that does not depend on $\epsilon \in (0, \epsilon_0)$ and $\lambda \in \Omega_c$.

Next, we will show (4.37). Suppose $f \in Y_{\text{high}}$. Then $\text{supp} \tilde{f}(\xi + i\alpha, \eta) \subset \tilde{A}_{\text{low}}^c \subset A_{\xi,m} \cup A_{\eta,m} \cup A_{\text{high}}$. By Lemma 4.5,

\begin{align}
(4.41) \quad & \inf_{\lambda \in \Omega_c, (\xi, \eta) \in A_{\xi,m} \cup A_{\eta,m} \cup A_{\text{high}}} |\lambda - \lambda_-(\xi + i\alpha, \eta)| \geq K^2\epsilon^3.
\end{align}

Hence it follows from (4.50) that

\begin{align}
\| (\lambda - \lambda_-(D))^{-1}f \|_{L_2^\infty(\mathbb{R}^2)} \leq \sup_{(\xi, \eta) \notin A_{\text{low}}} \frac{1}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \left(\int_{\mathbb{R}^2} |\tilde{f}(\xi + i\alpha, \eta)|^2 \, d\xi d\eta \right)^{1/2} \\
\quad \quad \lesssim K^{-2}\epsilon^{-3} \| f \|_{L_2^\infty(\mathbb{R}^2)}.
\end{align}

Next, we will prove (4.38). By (1.25),

\begin{align}
(4.42) \quad & \sup_{\lambda \in \Omega_c, (\xi, \eta) \in A_{\text{high}}} \frac{|\xi + i\alpha| + |\mu(\xi + i\alpha, \eta)|}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \lesssim \frac{\sqrt{\xi^2 + \eta^2}}{\epsilon^2} \lesssim \frac{1}{K\epsilon^2} \quad \text{for } (\xi, \eta) \in A_{\xi,m} \text{ and } \lambda \in \Omega_c.
\end{align}

By (4.27) and the definition of $A_{\xi,m}$,

\begin{align}
(4.43) \quad & \frac{|\xi + i\alpha| + |\mu(\xi + i\alpha, \eta)|}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \lesssim \frac{\sqrt{\xi^2 + \eta^2}}{\epsilon^2} \lesssim \frac{1}{K\epsilon^2} \quad \text{for } (\xi, \eta) \in A_{\eta,m} \text{ and } \lambda \in \Omega_c.
\end{align}

By (4.42) and the fact that $|\xi + i\alpha| + |\mu(\xi + i\alpha, \eta)| \lesssim K\epsilon$ for $(\xi, \eta) \in A_{\eta,m}$,

\begin{align}
(4.44) \quad & \frac{|\xi + i\alpha| + |\mu(\xi + i\alpha, \eta)|}{|\lambda - \lambda_-(\xi + i\alpha, \eta)|} \lesssim K|\xi + i\alpha|^2\eta^{-2} \lesssim \frac{1}{K\epsilon^2} \quad \text{for } (\xi, \eta) \in A_{\eta,m} \text{ and } \lambda \in \Omega_c.
\end{align}
Combining (4.42)–(4.44) with
\begin{equation}
|B(\xi + i\alpha, \eta)| \geq 1 - b\alpha^2 > 0,
\end{equation}
we have (4.38).

Finally, we will prove (4.39). By (4.25), we have for \(\lambda \in \Omega_\epsilon\) and \((\xi, \eta) \in \tilde{A}_{low}\),
\begin{align*}
|\lambda - \lambda_-(\xi + i\alpha, \eta)| &\geq \epsilon^3 \left[-\hat{\beta} + \frac{\hat{\alpha}}{2} \left(1 - (b - a)\hat{\alpha}^2 + 3(b - a)\xi^2 + \frac{\hat{\eta}^2}{\xi^2 + \hat{\alpha}^2}\right)\right] + O(K^9\epsilon^5) \\
&\gtrsim \epsilon^3 (1 + \hat{\xi}^2).
\end{align*}

Thus we complete the proof. \(\square\)

5. Spectral stability for small line solitary waves

In this section, we will prove Theorem 2.4. For small line solitary waves, the spectrum of the linearized operator \(\mathcal{L}\) is well approximated by that of \(\mathcal{L}_{KP}\) in the low frequency regime, while the spectrum of \(\mathcal{L}\) is close to that of the free operator \(\mathcal{L}_0\) in the high-frequency regime. We will show that any spectrum of \(\mathcal{L}\) locates in the stable half plane and is bounded away from the imaginary axis except for the continuous eigenvalues \(\{\lambda_\epsilon(\eta)\}\). More precisely, we will prove
\begin{equation}
\sup_{\lambda \in \Omega_\epsilon} \|(\lambda - \mathcal{L})^{-1} Q(\epsilon^2 \eta_0)\|_{B(X)} < \infty.
\end{equation}
Since the potential part of \(\mathcal{L}\) is independent of \(y\), we can estimate the high frequency part in \(y\) and the low frequency part in \(y\), separately.

5.1. Spectral stability for high frequencies in \(y\). First, we will estimate solutions of the resolvent equation
\begin{equation}
(\lambda - \mathcal{L})u = f
\end{equation}
for \(f \in \tilde{\rho}_y(D_y)X\). In the high frequency regime in \(y\), the potential term \(V\) is relatively small compared with \(\lambda - \mathcal{L}_0\).

Lemma 5.1. Let \(c, \alpha, \hat{\alpha}\) and \(\Omega_\epsilon\) be as in Lemma 4.6. There exists a positive number \(\epsilon_0\) such that if \(\epsilon \in (0, \epsilon_0)\) and \(\lambda \in \Omega_\epsilon\), then
\[\sup_{\lambda \in \Omega_\epsilon} \|\tilde{\rho}_y(D_y)(\lambda - \mathcal{L})^{-1} \tilde{\rho}_y(D_y)\|_{B(X)} < \infty.\]
Proof of Lemma 5.1. In view of Lemma 4.1 and the second resolvent formula
(5.3) \[(\lambda - \mathcal{L})^{-1} = \{I - (\lambda - \mathcal{L}_0)^{-1}V\}^{-1}(\lambda - \mathcal{L}_0)^{-1},\]
it suffices to show that
(5.4) \[\sup_{\lambda \in \Omega_s} \|\bar{\varphi}_y(D_y)(I - (\lambda - \mathcal{L}_0)^{-1}V)^{-1}\bar{\varphi}_y(D_y)\|_{B(X)} < \infty.\]
By (4.20),
\[(\lambda - \mathcal{L}_0)^{-1}V = -(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1}B^{-1}\left(\begin{array}{cc} v_1 & v_2 \\ (\lambda - c\partial_\perp)v_1 & (\lambda - c\partial_\perp)v_2 \end{array}\right), \]
\[\text{First, we will show (5.4) admitting}
\sup_{\lambda \in \Omega_s} \|\bar{\varphi}_y(D_y)r_{11}(\lambda)\bar{\varphi}_y(D_y)\|_{B(H^1)} + \|\bar{\varphi}_y(D_y)r_{22}(\lambda)\bar{\varphi}_y(D_y)\|_{B(L^2)} = O(K^{-1}),
(5.5) \sup_{\lambda \in \Omega_s} \|\bar{\varphi}_y(D_y)r_{12}(\lambda)\bar{\varphi}_y(D_y)\|_{B(L^2, H^1)} = O(K^{-1} + \delta^{-2}),
\sup_{\lambda \in \Omega_s} \|\bar{\varphi}_y(D_y)r_{21}(\lambda)\bar{\varphi}_y(D_y)\|_{B(H^1, L^2)} = O(\delta^{-2}).
\]
Let
\[B_1(\lambda) = \begin{pmatrix} I - r_{11}(\lambda) & -r_{12}(\lambda) \\ O & I - r_{22}(\lambda) \end{pmatrix}, \]
\[B_2(\lambda) = \begin{pmatrix} I - (I - r_{11}(\lambda))^{-1}r_{12}(\lambda)(I - r_{22}(\lambda))^{-1}r_{21}(\lambda) & 0 \\ -(I - r_{22}(\lambda))^{-1}r_{12}(\lambda) & I \end{pmatrix}. \]
Then \(I - (\lambda - \mathcal{L}_0)^{-1}V = B_1(\lambda)B_2(\lambda).\) We see from (5.5) that \(I - r_{ii}(\lambda)\) (\(i = 1,2\)) have bounded inverse and that
\[\|\bar{\varphi}_y(D_y)r_{12}(\lambda)\bar{\varphi}_y(D_y)\|_{B(L^2, H^1)}\|\bar{\varphi}_y(D_y)r_{21}(\lambda)\bar{\varphi}_y(D_y)\|_{B(H^1, L^2)}
= O(K^{-1}\delta^{-2} + \epsilon\delta^{-4}) = O(\epsilon^{1/20}). \]
Thus we have
\[\sup_{\lambda \in \Omega_s} \|\bar{\varphi}_y(D_y)B_1(\lambda)^{-1}\bar{\varphi}_y(D_y)\|_{B(X)} + \|\bar{\varphi}_y(D_y)B_1(\lambda)^{-1}\bar{\varphi}_y(D_y)\|_{B(X)} < \infty, \]
and \(\bar{\varphi}_y(D_y)(I - (\lambda - \mathcal{L}_0)^{-1}V)^{-1}\bar{\varphi}_y(D_y) \in L^\infty(\Omega_c; B(X)).\)
Now we will start to show (5.5). By (4.21),
\[(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1} = \frac{i\mu(D)}{2S(D)} \left\{ (\lambda - \lambda_+(D))^{-1} - (\lambda - \lambda_-(D))^{-1} \right\}, \]
\[(\lambda - c\partial_\perp)(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1} = \frac{1}{2} \left\{ (\lambda - \lambda_+(D))^{-1} + (\lambda - \lambda_-(D))^{-1} \right\}. \]
If \(|\eta| \geq K(K + \hat{\alpha})\epsilon^2,\) then \((\xi, \eta) \in \tilde{A}_c \subseteq A_{\text{high}} \cup A_{\xi,m} \cup A_{\eta,m}.\) Since
\[v_{1,c} = cq''_c - c\Delta(q_c), \]
(5.8)
it follows from (5.6), (A.5) and Claim A.1 in Appendix A that
\[
\| \tilde{\varphi}_g(D_y)(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1}B^{-1}v_{1,c} \|_{B(H^1_\delta)} \lesssim I_1 + I_2,
\]
where
\[
I_1 = \epsilon^4 \| \tilde{\varphi}_g(D_y)(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1}B^{-1} \|_{B(L^2_\delta)} ,
\]
\[
I_2 = \epsilon^2 \sum_{\pm} \| \tilde{\varphi}_g(D_y)(\lambda - \lambda_\pm(D))^{-1}B^{-1} \mu(D) \|_{B(L^2_\delta)}.
\]

By (4.40), (4.41) and (4.45),
\[
I_1 = \epsilon^4 \sup_{(\xi, \eta) \notin \hat{A}_{low}} \frac{|B(\xi + i\alpha, \eta)|^{-1}}{|\lambda - \lambda_+(\xi + i\alpha, \eta)| |\lambda - \lambda_-(\xi + i\alpha, \eta)|} = O(K^{-2}).
\]

By (4.40), (4.42)–(4.44) and Claim A.3,
\[
I_2 \lesssim \epsilon + \epsilon^2 \sup_{(\xi, \eta) \notin \hat{A}_{low}} \frac{\mu(\xi + i\alpha, \eta)}{|B(\xi + i\alpha, \eta)|} |\lambda - \lambda_-(\xi + i\alpha, \eta)|^{-1} \lesssim K^{-1}.
\]

Thus we prove
\[
\sup_{\lambda \in \Omega_\delta} \| \tilde{\varphi}_g(D_y)r_{11}(\lambda)\tilde{\varphi}_g(D_y) \|_{B(H^1_\delta)} \lesssim I_1 + I_2 = O(K^{-1}).
\]

Next, we will estimate \(\tilde{\varphi}_g(D_y)r_{12}(\lambda)\tilde{\varphi}_g(D_y)\). Since \(v_{2,c} = 2\partial_z(q_c) - q_c'\), we have from Claim A.1
\[
\| \tilde{\varphi}_g(D_y)r_{12}(\lambda)\tilde{\varphi}_g(D_y) \|_{B(L^2_\delta, H^1_\delta)} \lesssim I_3 + I_4,
\]
where
\[
I_3 = \epsilon^2 \| \tilde{\varphi}_g(D_y)(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1}\partial_z B^{-1} \|_{B(L^2_\delta, H^1_\delta)},
\]
\[
I_4 = \epsilon^2 \| \tilde{\varphi}_g(D_y)(\lambda - \lambda_+(D))^{-1}(\lambda - \lambda_-(D))^{-1}B^{-1} \|_{B(L^2_\delta, H^1_\delta)}.
\]

By (8.5),
\[
I_3 \lesssim \sup_{(\xi, \eta) \notin \hat{A}_{low}} \frac{\epsilon^2|\xi + i\alpha|}{|\lambda - \lambda_+(\xi + i\alpha, \eta)||\lambda - \lambda_-(\xi + i\alpha, \eta)||B(\xi + i\alpha, \eta)|^{1/2}},
\]
\[
I_4 \lesssim \sup_{(\xi, \eta) \notin \hat{A}_{low}} \frac{\epsilon^3}{|\lambda - \lambda_+(\xi + i\alpha, \eta)||\lambda - \lambda_-(\xi + i\alpha, \eta)|}.
\]

It follows from (4.40) and (4.42)–(4.45) that
\[
I_3 \lesssim \sup_{(\xi, \eta) \in \hat{A}_{high}} \frac{\epsilon^2|\xi + i\alpha|}{|\lambda - \lambda_+(\xi + i\alpha, \eta)||\lambda - \lambda_-(\xi + i\alpha, \eta)||B(\xi + i\alpha, \eta)|^{1/2}} + \sup_{(\xi, \eta) \in \hat{A}_{m, m} \cup A_{n, m}} \frac{\epsilon^2|\xi + i\alpha|}{|\lambda - \lambda_+(\xi + i\alpha, \eta)||\lambda - \lambda_-(\xi + i\alpha, \eta)|} \lesssim \delta^{-2} + K^{-1} \epsilon^{-1}.
\]
By (4.40) and (4.41),
\[I_4 = O(K^{-2}\epsilon^{-1}). \]

Thus we prove
\[\sup_{\lambda \in \Omega_1} \| \tilde{p}_y(D_y) r_{12}(\lambda) \tilde{p}_y(D_y) \|_{B(L^2_\alpha)} \lesssim K^{-1}\epsilon^{-1} + \delta^{-2}. \]

Using (5.7), we can estimate \(r_{21} \) and \(r_{22} \) in exactly the same way. Thus we complete the proof. \(\square \)

5.2. Spectral stability for low frequencies in \(y \). Now we will estimate solutions of (5.2) for \(f \in \rho_y(D_y)X \) satisfying the orthogonality condition

(5.10) \[\int_{\mathbb{R}} (\mathcal{F}_y f)(x, \eta) \cdot \overline{y_k(x, \eta)} \, dx = 0 \quad \text{for} \; \eta \in [-\epsilon^2\eta_0, \epsilon^2\eta_0] \; \text{and} \; k = 1, 2. \]

Let \(\tilde{f} = (\tilde{f}_1, \tilde{f}_2) \) and \(f = (f_1, f_2) = P(D)\tilde{f} \). To begin with, We will show that (5.10) is reduced to the secular term condition that \(\tilde{f}_2 \) does not include the resonant modes of the linearized KP-II operator \(L_{KP} \) in the limit \(\epsilon \to 0 \).

Let \(E_\epsilon : L^2_{\alpha}(\mathbb{R}^2) \to L^2_{\alpha}(\mathbb{R}^2) \) be an isomorphism defined by \((E_\epsilon f)(x, y) := \epsilon^{-3/2}f(\epsilon^{-1}x, \epsilon^{-2}y) \) and let
\[Z = \{ f \in \rho_y(D_y)X \mid \mathcal{P}(\epsilon^2\eta_0)f = 0 \}, \quad \tilde{Z} = P(D)^{-1}Z, \]
\[\mathcal{Z} = \{ (\tilde{f}_1, \tilde{f}_2) \in Y \times Y \mid \mathcal{P}_{KP}(\epsilon^2\eta_0)E_\epsilon \rho_z(D_z)\tilde{f}_2 = 0 \}. \]

Note that \(P(D) : Y \times Y \to \rho_y(D_y)X \) is isomorphic for small \(\epsilon > 0 \) because \(|\mu(\xi + i\alpha, \eta)| \) is bounded away from 0 for \(\eta \in \text{supp} \rho_y \). Let \(\mathcal{P}(\eta_0) \) be the projection on \(L^2(\mathbb{R}^2; \mathbb{C}^2) \) defined by
\[\mathcal{P}(\eta_0)(\begin{pmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{pmatrix}) = \begin{pmatrix} 0 \\ \rho_z(D_z)E_{\epsilon}^{-1}\mathcal{P}_{KP}(\eta_0)E_{\epsilon}\rho_z(D_z)\tilde{u}_2 \end{pmatrix}. \]

The subspaces \(\tilde{Z} \) and \(\mathcal{Z} \) are isomorphic provided \(\epsilon \) is small.

Lemma 5.2. Let \(\eta_0 \) and \(\eta_0 \) be sufficiently small positive numbers. Then for \(\epsilon \in (0, \epsilon_0) \), there exists an operator \(\Pi : \tilde{Z} \to \mathcal{Z} \) such that
\[\| \Pi - I \|_{B(\tilde{Z}, \mathcal{Z})} + \| \Pi^{-1} - I \|_{B(\mathcal{Z}, \tilde{Z})} = O(K^{-1}). \]

Let \(\mathcal{W}_1 = H^1_{\alpha}(\mathbb{R}) \times L^2_{\alpha}(\mathbb{R}), \; \mathcal{W}_0 = L^2_{\alpha}(\mathbb{R}; \mathbb{C}^2), \; \mathcal{W}_0^* = L^2_{-\alpha}(\mathbb{R}; \mathbb{C}^2) \) and \(\mathcal{W}_* = H^{-1}_{\alpha}(\mathbb{R}) \times L^2_{-\alpha}(\mathbb{R}) \). To prove Lemma 5.2 we need the following.

Claim 5.3. Let \(\hat{\alpha} \in (0, \hat{\alpha}_0), \; \alpha = \hat{\alpha} \epsilon \) and let \(\epsilon_0 \) and \(\eta_0 \) be sufficiently small positive numbers.

If \(\epsilon \in (0, \epsilon_0) \) and \(\eta \in [-\eta_0, \eta_0] \), then
\[\left\| P(D_z, \epsilon^2\eta)^{-1} \frac{1}{2} \begin{pmatrix} \partial_z \\ -\partial_z \end{pmatrix} \begin{pmatrix} S^{-1}(D_z, \epsilon^2\eta) \\ S^{-1}(D_z, \epsilon^2\eta) \end{pmatrix} \right\|_{B(\mathcal{W}_1, \mathcal{W}_0)} = O(\epsilon^2\eta^2), \]
\[\left\| P^*(D_z, \epsilon^2\eta) \begin{pmatrix} (\partial_z^*)^{-1} \\ -((\partial_z^*)^{-1} \begin{pmatrix} S^{-1}(D_z, \epsilon^2\eta) \\ S^{-1}(D_z, \epsilon^2\eta) \end{pmatrix} \right\|_{B(\mathcal{W}_*, \mathcal{W}_0^*)} = O(\epsilon^2\eta^2), \]

where \((\partial_z^*)^{-1}f(z) = -\int_{-\infty}^{z} f(z_1) \, dz_1 \).
Proof. In view of (A.1), (A.4) and their proofs,

$$\|i\mu(D_z, e^2\eta) - \partial_z\|_{B(W_1)} + \|i\bar{\mu}(D_z, e^2\eta)^{-1} - (\partial_z^*)^{-1}\|_{B(W_1^*)} = O(\epsilon^2\eta^2).$$

Since

$$P(\xi, \eta)^{-1} = \frac{1}{2} \begin{pmatrix} i\mu(\xi, \eta) & S(\xi, \eta)^{-1} \\ -i\mu(\xi, \eta) & S(\xi, \eta)^{-1} \end{pmatrix}, \quad P^*(\xi, \eta) = \begin{pmatrix} (i\mu(\xi, \eta)^{-1} & S(\xi, \eta) \\ -i\mu(\xi, \eta)^{-1} & S(\xi, \eta) \end{pmatrix},$$

Claim 5.3 follows from (5.11). \(\square\)

Proof of Lemma 5.2. Let \(\Pi\tilde{u} = \tilde{u} - \overline{P}(\eta_0)\tilde{u}\) for \(\tilde{u} \in \tilde{Z}\). To prove Lemma 5.2 it suffices to show

$$\|P(D)\mathcal{P}(e^2\eta_0)P(D)^{-1} - \overline{P}(\eta_0)\|_Y = O(K^{-1}).$$

See e.g. [20, Chapter I, Section 4.6].

First, we will show

$$\|\mathcal{P}(\epsilon^2\eta_0)\rho_z(D_z)f\|_{L^2_0(\mathbb{R}^2)} + \|\rho_z(D_z)\mathcal{P}(e^2\eta_0)f\|_{L^2_0(\mathbb{R}^2)} \lesssim K^{-1}\|f\|_{L^2_0(\mathbb{R}^2)}.$$

Let

$$\tilde{c}_k(\eta) = \int \rho_z(D_z)\mathcal{F}_y f(z, \eta) \cdot g_k^*(z, \eta) \, dz.$$

Then

$$\mathcal{P}(e^2\eta_0)\tilde{\rho}_z(D_z)f = \frac{1}{\sqrt{2\pi}} \sum_{k=1,2} \int_{-\epsilon^2\eta_0}^{\epsilon^2\eta_0} \tilde{c}_k(\eta)g_k(z, \eta)e^{iy_0} \, d\eta.$$

Since \(\|\partial_z^{-1}\tilde{\rho}_z(D_z)\|_{B(L^2_0(\mathbb{R}))} \leq (K\epsilon)^{-1}\) and \(\sup_{\eta \in [-\epsilon^2\eta_0, \epsilon^2\eta_0]} \|\partial_z g_k^*(\cdot, \eta)\|_{L^2_{\alpha}(\mathbb{R})} = O(\epsilon)\) by Corollary 6.3,

$$|\tilde{c}_k(\eta)| = \left| \int \partial_z^{-1}\tilde{\rho}_z(D_z)(\mathcal{F}_y f)(z, \eta) \cdot \partial_z g_k^*(z, \eta) \, dz \right| \lesssim K^{-1}\|\mathcal{F}_y f(\cdot, \eta)\|_{L^2_0(\mathbb{R})}.$$

Hence it follows from the Plancherel theorem and the above that

$$\|\mathcal{P}(e^2\eta_0)\tilde{\rho}_z(D_z)f\|_{L^2_0(\mathbb{R}^2)} \lesssim \sum_{k=1,2} \|\tilde{c}_k(\eta)g_k(x, \eta)\|_{L^2_0(\mathbb{R})} \|f(\cdot)\|_{L^2(-\epsilon^2\eta_0 \leq \eta \leq \epsilon^2\eta_0)} \lesssim K^{-1}\|f\|_{L^2_0(\mathbb{R}^2)}.$$

Similarly, we have \(\|\tilde{\rho}_z(D_z)\mathcal{P}(e^2\eta_0)f\|_{L^2_0(\mathbb{R}^2)} \lesssim K^{-1}\|f\|_{L^2_0(\mathbb{R}^2)}\). Thus we prove (5.13).

Next, we will show \(\rho_z(D_z)\mathcal{P}(e^2\eta_0)\rho_z(D_z) \simeq \rho_z(D_z)E_{-1}^\perp P_{KP}(\eta_0)E_z \rho_z(D_z)\). By the fact that \(\rho_z(D_z)\) is bounded on \(L^2_0(\mathbb{R}^2)\) and \(\|f(\cdot)\|_{L^2_0(\mathbb{R}^2)} = \epsilon^{-1/2}\|f(\epsilon^{-1}\cdot)\|_{L^2_0(\mathbb{R})},\)

$$\left\|\rho_z(\epsilon D_z) \left\{ \epsilon^{-1}\mathcal{P}(\epsilon D_z, e^2\eta)^{-1}g_k(e^{-1}, e^2\eta) - \begin{pmatrix} 0 \\ \eta_0k(\cdot, \eta) \end{pmatrix} \right\} \right\|_{L^2_0(\mathbb{R})} \leq II_1 + II_2 + II_3 + II_4 = O(K^{-2}\epsilon + \eta^2),$$

where
where
\[
I_1 = e^{-3/2} \left\| P(\epsilon D_z, \epsilon^2 \eta)^{-1} \left\{ \begin{pmatrix} \partial_z & \frac{1}{2} \left(S^{-1}(D_z, \epsilon^2 \eta) \right) \end{pmatrix} \right\} \left\| g_k(\cdot, \epsilon^2 \eta) \right\|_{L^2_{\alpha}}.
\]
\[
I_2 = \frac{1}{2} e^{-3/2} \left\| \left(S^{-1}(D_z, \epsilon^2 \eta) - I \right) \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} g_k(\cdot, \epsilon^2 \eta) \right\|_{L^2_{\alpha}},
\]
\[
I_3 = e^{-1} \left\| \frac{1}{2} \left(\begin{pmatrix} \partial_z & I \end{pmatrix} g_k(\epsilon^{-1}, \epsilon^2 \eta) - \begin{pmatrix} 0 \\ g_{0,k}(\epsilon, 0) \end{pmatrix} \right) \right\|_{L^2_{\alpha}(\mathbb{R})},
\]
\[
I_4 = \| g_{0,k}(\cdot, \eta) - g_{0,k}(\cdot, 0) \|_{L^2_{\alpha}(\mathbb{R})}.
\]
Indeed, it follows from Corollary 3.5 that \(I_3 = O(\epsilon^2 + \eta^2) \) and that for \(k = 1, 2 \),
\[
\| g_k(\cdot, \epsilon^2 \eta) \|_{L^2_{\alpha}(\mathbb{R})} = O(\epsilon^{-1/2}), \quad \left\| \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} g_k(\cdot, \eta) \right\|_{L^2_{\alpha}(\mathbb{R})} = O(\epsilon^{1/2}).
\]
Combining the above with Claim 5.3 and (A.8), we have \(I_1 = O(\eta^2) \) and \(I_2 = O(K^{-2} \epsilon) \) and we have \(I_4 = O(\eta^2) \) from (3.6). We can prove
\[
\left\| \rho_z(\epsilon D_z) \left\{ P^* (\epsilon D_z, \epsilon^2 \eta) g_k^* (\epsilon^{-1}, \epsilon^2 \eta) - \begin{pmatrix} 0 \\ g_{0,k}(\epsilon, 0) \end{pmatrix} \right\} \right\|_{L^2_{\alpha}(\mathbb{R})} = O(\eta^2 + K^{-2} \epsilon)
\]
in the same way.

Since
\[
P(D_z, \eta)^{-1} P(\epsilon^2 \eta_0) f = \sum_{k=1,2} (2\pi)^{-1/2} \int_{-\epsilon^2 \eta_0}^{\epsilon^2 \eta_0} \langle \mathcal{F}_y \hat{f}(\cdot, \eta), P(D_z, \eta)^* g_k^*(\cdot, \eta) \rangle P(D_z, \eta)^{-1} g_k(x, \eta) e^{i \eta y} d\eta
\]
for \(f = P(D) \hat{f} \), we have from (5.14) and (5.15) that
\[
\left\| \rho_z(D_z) \left\{ P(D)^{-1} P(\epsilon^2 \eta_0) P(D) - \begin{pmatrix} 0 & 0 \\ 0 & \rho_z(D_z) E^{-1} P_{KP}(\eta_0) E \rho_z(D_z) \end{pmatrix} \right\} \rho_z(D_z) \right\|_{B(Y)} = O(\eta^2 + K^{-1}).
\]
Finally, we will prove that for a \(\tau_0 > 0 \),
\[
\| \rho_z(\epsilon D_z) P_{KP}(\eta_0) \|_{B(L^2_{\alpha})} + \| P_{KP}(\eta_0) \rho_z(\epsilon D_z) \|_{B(L^2_{\alpha})} = O(e^{-\tau_0 K}).
\]
Since \(\tilde{g}_0(z, \eta) := e^{\alpha z} g_0(z, \eta) \) and \(\tilde{g}_0^*(z, \eta) = e^{-\alpha z} g_0^*(z, \eta) \) are analytic on \(\{ z \in \mathbb{C} \mid |\Re z| < \alpha_0 \} \) and \(\sup_{\tau \in [-\tau_0, \tau_0]} \| \mathcal{F}_{\eta} \tilde{g}_0(z + i \tau, \eta) \|_{L^1(\mathbb{R})} + \| \mathcal{F}_{\eta} \tilde{g}_0^*(z + i \tau, \eta) \|_{L^1(\mathbb{R})} \) \(< \infty \) for any \(\tau_0 \in [0, \alpha_0) \) and \(\eta \in [-\eta_0, \eta_0] \), it follows from the Paley-Wiener theorem that there exists a \(C_{\tau_0} \) for any \(\tau_0 \in [0, \alpha) \) such that
\[
\sup_{\eta \in [-\eta_0, \eta_0]} \left(|\mathcal{F}_{\eta} \tilde{g}_0(\xi, \eta)| + |\mathcal{F}_{\eta} \tilde{g}_0^*(\xi, \eta)| \right) \leq C_{\tau_0} e^{-\tau_0 |\xi|}.
\]
By (5.17) and the definition of \(P_{KP}(\eta_0) \), we have (5.17). Combining (5.13), (5.15) and (5.17), we have (5.12). Thus we complete the proof. \(\square \)
Next, we will show that $(\lambda - \mathcal{L})^{-1}|_{Z}$ is uniformly bounded in $\lambda \in \Omega_\epsilon$.

Lemma 5.4. Let c, α and ϵ_0 be as in Lemma [5.3]. Then there exists a positive constant C such that

$$\sup_{\lambda \in \Omega_\epsilon} \|(\lambda - \mathcal{L})^{-1}f\|_X \leq C\|f\|_X \text{ for any } f \in Z.$$

Let $f \in Z$ and

$$\bar{u} = (\bar{u}_1, \bar{u}_2) := \Pi P(D)^{-1}u, \quad \bar{f} := (\bar{f}_1, \bar{f}_2) = \Pi P(D)^{-1}f.$$

Then $\bar{f} \in \mathbb{Z}$ and (5.2) is translated into

$$\begin{align*}
(\lambda - \lambda_+ (D) - a_1 - \bar{r}_{11})\bar{u}_1 - (a_2 + \bar{r}_{12})\bar{u}_2 &= \bar{f}_1, \\
(\lambda - \lambda_- (D) - a_2 - \bar{r}_{22})\bar{u}_2 - (a_1 + \bar{r}_{21})\bar{u}_1 &= \bar{f}_2,
\end{align*}$$

where

$$\begin{align*}
a_1 &= \frac{i}{2}B^{-1}S(D)^{-1}v_{1,c}\mu(D)^{-1} - \frac{1}{2}B^{-1}S(D)^{-1}v_{2,c}S(D), \\
a_2 &= -\frac{i}{2}B^{-1}S(D)^{-1}v_{1,c}\mu(D)^{-1} - \frac{1}{2}B^{-1}S(D)^{-1}v_{2,c}S(D), \\
(\bar{r}_{11} &\bar{r}_{12} \\
\bar{r}_{21} &\bar{r}_{22}) &= \left[\Pi \begin{pmatrix} \lambda_+(D) + a_1 & a_2 \\
a_1 & \lambda_-(D) + a_2 \end{pmatrix} \right]^{-1}.
\end{align*}$$

We decompose \bar{f}_2 and \bar{u}_2 into the high frequency part and the low frequency part. Let $
\bar{u}_{2,h} = \bar{\rho}_z(D)\bar{u}_2, \quad \bar{u}_{2,\ell} = \rho_z(D)\bar{u}_2, \quad \bar{f}_{2,h} = \bar{\rho}_z(D)\bar{f}_2, \quad \bar{f}_{2,\ell} = \rho_z(D)\bar{f}_2.$
Then

$$\begin{align*}
\begin{pmatrix} \lambda I - \begin{pmatrix} \lambda_+(D) & 0 \\
0 & \lambda_-(D) \end{pmatrix} - A \end{pmatrix} \begin{pmatrix} \bar{u}_1 \\
\bar{u}_{2,h} \\
\bar{u}_{2,\ell} \\
\bar{f}_{2,h} \\
\bar{f}_{2,\ell} \end{pmatrix} &= \begin{pmatrix} \bar{f}_1 \\
\bar{f}_{2,h} \end{pmatrix},
\end{align*}$$

where

$$A = \begin{pmatrix} a_1 + \bar{r}_{11} & a_2 + \bar{r}_{12} & a_2 + \bar{r}_{12} \\
\bar{\rho}_z(D)(a_1 + \bar{r}_{21}) & \bar{\rho}_z(D)(a_2 + \bar{r}_{22}) & \rho_z(D)(a_2 + \bar{r}_{22}) \\
\rho_z(D)(a_1 + \bar{r}_{21}) & \rho_z(D)(a_2 + \bar{r}_{22}) & \rho_z(D)(a_2 + \bar{r}_{22}) \end{pmatrix}.$$

To estimate $\bar{u}_{2,h}$ and $\bar{u}_{2,\ell}$, we need the following.

Lemma 5.5. Let $\hat{\alpha} \in (0, \hat{\alpha}_0/2), \alpha = \hat{\alpha}\epsilon$ and Ω_ϵ be as in Lemma [4.6]. There exists an $\epsilon_0 > 0$ such that

$$\sup_{\lambda \in \Omega_\epsilon, \epsilon \in (0,\epsilon_0)} \|a_2(\lambda - \lambda_-(D))^{-1}\rho_z(D)\|_{B(Y)} < \infty,$$

$$\|a_2(\lambda - \lambda_-(D))^{-1}\rho_z(D)\|_{B(Y)} = O(K^{-1}).$$

Lemma 5.6. Let $\hat{\alpha} \in (0, \hat{\alpha}_0/2)$ and $\alpha = \hat{\alpha}\epsilon$. Let $\hat{\beta}$ be a small positive number and Ω_ϵ be as in Lemma [4.6]. There exist constant c_0 and η_0 such that if $\epsilon \in (0,\epsilon_0)$,

$$\sup_{\lambda \in \Omega_\epsilon, \epsilon \in (0,\epsilon_0)} \|\rho_z(Dz)\{I - (a_2 + \bar{r}_{22})(\lambda - \lambda_-(D))^{-1}\}^{-1}\rho_z(D)E\epsilon^{-1}QKP(\eta_0)E\epsilon\rho_z(Dz)\|_{B(Y)} < \infty.$$
Proof of Lemma 5.5. By (A.3) and the definition of a_2,
\[
\|a_2(\lambda - \lambda_-(D))^{-1} \tilde{\rho}_z(D_z)\|_{B(Y)} \lesssim \|B^{-1} v_{1,\epsilon}(m(D))^{-1}(\lambda - \lambda_-(D))^{-1} \tilde{\rho}_z(D_z)\|_{B(Y)} + \|B^{-1} v_{2,\epsilon}(\lambda - \lambda_-(D))^{-1} \tilde{\rho}_z(D_z)\|_{B(Y)}.
\]
Since
\[
(5.23) \quad B^{-1} v_{1,\epsilon}(m(D))^{-1} = c \left\{ (q_c - B^{-1}[B, q_c])B^{-1} \mu(D) \right\} - 2cB^{-1} q_c \partial \mu(D)^{-1},
\]
it follows from Claims (A.1) and Lemma 4.6 that
\[
\|B^{-1} v_{1,\epsilon}(m(D))^{-1}(\lambda - \lambda_-(D))^{-1} \tilde{\rho}_z(D_z)\|_{B(Y)} \lesssim \epsilon^2 \|B^{-1} \mu(D)(\lambda - \lambda_-(D))^{-1}\|_{B(Y_{\text{low}})} + \epsilon^2 \|B^{-1}\partial \mu(D)(\lambda - \lambda_-(D))^{-1}\|_{B(Y_{\text{low}})} = O(K^{-1}).
\]
We can prove
\[
\|B^{-1} v_{2,\epsilon}(\lambda - \lambda_-(D))^{-1} \tilde{\rho}_z(D_z)\|_{B(Y)} \lesssim \epsilon^3 \|B^{-1} \mu(D)(\lambda - \lambda_-(D))^{-1}\|_{B(Y_{\text{low}})} + \epsilon^2 \|B^{-1}\partial \mu(D)(\lambda - \lambda_-(D))^{-1}\|_{B(Y_{\text{low}})} = O(K^{-1})
\]
in the same way. Thus we prove (5.22).

Next, we will show (5.21). As in the proof of (5.22), we have
\[
\|a_2(\lambda - \lambda_-(D))^{-1} \rho_z(D_z)\|_{B(Y)} \lesssim \|m(D)(\lambda - \lambda_-(D))^{-1}\|_{B(Y_{\text{low}})} + \epsilon^2 \|\partial m(D)(\lambda - \lambda_-(D))^{-1}\|_{B(Y_{\text{low}})} + \epsilon^3 \|m(D)(\lambda - \lambda_-(D))^{-1}\|_{B(Y_{\text{low}})}.
\]
Combining the above with Lemma 4.6, we have (5.21). Thus we complete the proof.

Proof of Lemma 5.6. To prove Lemma 5.6, we approximate $\lambda_-(D) + a_2$ by L_{KP} and apply Proposition 3.2. Let $E_{\epsilon}: L^2_{\text{low}}(\mathbb{R}^2) \rightarrow L^2_{\text{low}}(\mathbb{R}^2)$ be an isomorphism defined by $(E_{\epsilon} f)(x, y) := \epsilon^{-3/2} f(x/\epsilon, y/\epsilon^2)$, $a_{2,\epsilon} = \epsilon^{-3} E_{\epsilon} a_2 E_{\epsilon}^{-1}$ and $\lambda_{-,\epsilon}(\xi, \eta) = \epsilon^{-3} \lambda_{-,\epsilon}(\xi, \eta)$. Then
\[
\left\| \rho_z(D_z) \left\{ a_2(\lambda - \lambda_-(D))^{-1} + \frac{3}{2} E_{\epsilon} E_{\epsilon}^{-1} \partial_\theta \right\} \rho_z(D_z) \right\|_{B(Y)} \leq III_1 + III_2,
\]
where $\rho_{KP}(\xi, \eta) = \rho_{z}(\epsilon \xi, \epsilon \eta)$ and
\[
III_1 = \left\| \rho_{KP}(D) \left\{ a_{2,\epsilon} + \frac{3}{2} \partial_\theta \right\} \rho_{KP}(D) \right\|_{B(L^2_\alpha)} \| (\Lambda - \lambda_{-,\epsilon}(D))^{-1} \|_{B(L^2_\alpha)}
\]
\[
III_2 = \frac{3}{2} \| \rho_{KP}(D) \partial_\theta \right\| (\Lambda - L_{KP,0})^{-1} \| (\Lambda - \lambda_{-,\epsilon}(D))^{-1} \| \rho_{KP}(D) \|_{B(L^2_\alpha)}.
\]
By (4.36) and (A.11), we have $III_1 = O(K^5 \epsilon^2)$. By (5.5),
\[
III_2 \lesssim \sup_{(\xi, \eta) \in A_{\text{low}}} \frac{(1 + |\xi + \epsilon \theta|)|\lambda_{-,\epsilon}(\xi + \epsilon \theta, \eta) - L_{KP,0}(\xi + \epsilon \theta, \eta)|}{|\Lambda - L_{KP,0}(\xi + \epsilon \theta, \eta)||\Lambda - \lambda_{-,\epsilon}(\xi + \epsilon \theta, \eta)|}.\]
Since
\[
|\lambda_{-,\epsilon}(\xi + \epsilon \theta, \eta) - L_{KP,0}(\xi + \epsilon \theta, \eta)| = O(K^8 \epsilon^2)
\]

by \((4.25)\) and \(\sup_{\lambda \in A - 5/2, (\xi, \eta) \in \mathbb{R}^2 \times (1 + |\xi|)|\lambda - \mathcal{L}_{K, P, 0}(\xi + i\hat{\alpha}, \eta)|^{-1} < \infty\) thanks to Lemma \(3.1\) we have

\[III_2 \lesssim K^8 \varepsilon^2. \]

Thus we have

\[(5.24) \quad \left\| \rho_z(D_z) a_2 (\lambda - \lambda_-(D))^{-1} \rho_z(D_z) + \frac{3}{2} E^{-1} \partial_z \left\{ \theta_0 (\lambda - \mathcal{L}_{K, P, 0})^{-1} \right\} E \right\|_{B(Y)} = O(K^8 \varepsilon^2).\]

By Lemma \(4.6\) and Claim \(A.5\), we have

\[\|\tilde{r}_{22}(\lambda - \lambda_-(D))^{-1}\|_{Y} = O(K^5 \varepsilon^2). \]

Combining the above with Proposition \(3.2\) and \((5.24)\), we obtain Lemma \(5.6\). Thus we complete the proof. \(\square\)

Now we are in position to prove Proposition \(5.4\).

Proof of Lemma \(5.4\). By Lemma \(4.6\) Claims \(A.4\) and \(A.5\)

\[(5.25) \quad \|\tilde{u}_1\|_Y \lesssim \varepsilon^{-1} \|\tilde{f}_1\|_Y + \varepsilon (\|\tilde{u}_{2,h}\|_Y + \|\tilde{u}_{2,e}\|_Y).\]

Since

\[\|\rho_z(D_z)(\lambda - \lambda_-(D) - a_2 - \tilde{r}_{22})^{-1} \rho_z(D_z) E^{-1} Q_{K, P}(\eta_0) E \rho_z(D_z)\|_{B(Y)} = O(\varepsilon^3) \]

by Lemmas \(4.6\) and \(5.6\)

\[\|\tilde{u}_{2,e}\|_Y \lesssim \varepsilon^{-3} \|\tilde{f}_{2,e}\|_Y + K(\|\tilde{u}_{2,h}\|_Y + \|\tilde{u}_1\|_Y) \]

follows from Claims \(A.4\) and \(A.5\). Furthermore, Lemmas \(5.3\) \(5.6\) and Claim \(A.4\) imply

\[\|(a_2 + \tilde{r}_{22})\rho_z(D_z)(\lambda - \lambda_-(D) - a_2 - \tilde{r}_{22})^{-1} \rho_z(D_z) E^{-1} Q_{K, P}(\eta_0) E \rho_z(D_z)\|_{B(Y)} = O(1), \]

\[\|(a_2 + \tilde{r}_{22})\tilde{u}_{2,e}\|_Y \lesssim \|\tilde{f}_{2,e}\|_Y + K \varepsilon^3(\|\tilde{u}_1\|_Y + \|\tilde{u}_{2,h}\|_Y). \]

By Lemma \(4.6\) Claims \(A.4\) and \(A.5\)

\[\|\tilde{\rho}_z(D_z)(\lambda - \lambda_-(D) - a_2 - \tilde{r}_{22})^{-1} \tilde{\rho}_z(D_z)\|_{B(Y)} = O(K^{-2} \varepsilon^{-3}), \]

and

\[\|\tilde{u}_{2,h}\|_Y \lesssim K^{-2} \varepsilon^{-3}(\|\tilde{f}_{2,h}\|_Y + \|\tilde{f}_{2,h}\|_Y + \|\tilde{f}_{2,e}\|_Y) \]

\[\lesssim K^{-2} \varepsilon^{-3}(\|\tilde{f}_{2,h}\|_Y + \|\tilde{f}_{2,e}\|_Y) + K^{-2} \varepsilon^{-1}\|\tilde{u}_1\|_Y + K^{-1}\|\tilde{u}_{2,h}\|_Y. \]

Combining the above, we have

\[\|\tilde{u}_1\|_Y \lesssim \varepsilon^{-1} \|\tilde{f}_1\|_Y + \varepsilon^2 (K^{-1}\|\tilde{f}_{2,h}\|_Y + \|\tilde{f}_{2,e}\|_Y), \]

\[\|\tilde{u}_{2,h}\|_Y \lesssim K^{-2} \varepsilon^{-2}\|\tilde{f}_1\|_Y + K^{-2} \varepsilon^{-3}(\|\tilde{f}_{2,h}\|_Y + \|\tilde{f}_{2,e}\|_Y), \]

\[\|\tilde{u}_{2,e}\|_Y \lesssim K^{-1} \varepsilon^{-2}\|\tilde{f}_1\|_Y + \varepsilon^3 (K^{-1}\|\tilde{f}_{2,h}\|_Y + \|\tilde{f}_{2,e}\|_Y), \]

and \(\sup_{\lambda \in O} \|\Pi P(D)^{-1}(\lambda - \mathcal{L})^{-1} P(D)\Pi^{-1}\|_{B(Z)} < \infty\). Since \(\Pi P(D)^{-1} : Z \to Z\) is isomorphic, we have Lemma \(5.4\). Thus we complete the proof. \(\square\)
5.3. Proof of Theorem 2.4. Now we are in position to prove Theorem 2.4. Lemmas 3.3, 3.4, 5.1 and 5.3 imply (2.13) and (2.14). Taking \(\hat{\beta} > 0 \) smaller if necessary, we see from Gearhart-Prüss theorem that for small \(\epsilon > 0 \), there exists a \(K = K(\epsilon) \) satisfying (2.15). This completes the proof of Theorem 2.4.

6. Proof of Theorem 2.1

In this section, we will show that the eigenvalue \(\lambda = 0 \) of \(\mathcal{L}(0) \) splits into two stable eigenvalues of \(\mathcal{L}(\eta) \) for small \(\eta \neq 0 \) without assuming smallness of line solitary waves. As in Subsection 3.2, we will use Lyapunov Schmidt method.

To begin with, we expand \(\mathcal{L}(\eta) \) as \(\mathcal{L}(\eta) = \mathcal{L}(0) + \eta^2 \mathcal{L}_2(\eta) \) with

\[
\mathcal{L}_1(0) = B_0^{-1} \begin{pmatrix} 0 & 0 & 0 \\ I - A_0 - B_0^{-1} A_0 + r_c & 0 \\ v_1, c(0) & v_2, c(0) \end{pmatrix}.
\]

We easily see that \(\|\mathcal{L}_1(\eta)\|_{B(H_{\frac{1}{2}}(\mathbb{R}) \times L_2^0(\mathbb{R}))} = O(1) \) as \(\eta \to 0 \).

Using the ansatz

\[
\lambda(\eta) = i\eta \lambda(\eta), \quad \zeta(\eta) = \zeta_1 + (\lambda(\eta) + \eta^2 \gamma(\eta)) \zeta_2 + \eta^2 z(\eta),
\]

we will solve the eigenvalue problem (3.9). Suppose \(\mathcal{L}(\eta) \zeta(\eta) = \lambda \zeta(\eta) \) and \(z(\eta) \perp \zeta_1^*, \zeta_2^* \).

Then

\[
\begin{align*}
Q_0(\mathcal{L}(\eta) - i\eta \lambda(\eta)) z(\lambda_1, \gamma, \eta) + Q_0 G(\lambda_1, \gamma, \eta) &= 0, \\
F_k(\lambda_1, \gamma, \eta) := \langle G(\lambda_1, \gamma, \eta) + \eta^2 \mathcal{L}_1(\eta) z(\lambda_1, \gamma, \eta), \zeta_1^\perp \rangle &= 0 \quad \text{for } k = 1, 2, \\
G(\lambda_1, \gamma, \eta) &= \gamma (\zeta_1 - i\eta_1 \lambda_1 \zeta_2 + \eta^2 \mathcal{L}_1(\eta) \zeta_2) + \lambda_1^2 \zeta_2 + \mathcal{L}_1(\eta)(\zeta_1 + i\lambda_1 \eta \zeta_2)
\end{align*}
\]

where \(Q_0 : H_{\frac{1}{2}}^0(\mathbb{R}) \times L_2^0(\mathbb{R}) \to \perp \ker_q(\mathcal{L}(0)^*) \) is a spectral projection associated with \(\mathcal{L}(0) \).

The operator \(\mathcal{L}(0) : H_{\frac{1}{2}}^0(\mathbb{R}) \times \mathcal{H}_1^1(\mathbb{R}) \rightarrow H_{\frac{1}{2}}^1(\mathbb{R}) \times L_2^0(\mathbb{R}) \) is a Fredholm operator of index zero. In fact, we see from Claim 4.1, 4.20 and 4.21 with \(\lambda = 0 \) that \(\mathcal{L}(0) : H_{\frac{1}{2}}^0(\mathbb{R}) \times H_{\frac{1}{2}}^1(\mathbb{R}) \rightarrow H_{\frac{1}{2}}^1(\mathbb{R}) \times L_2^0(\mathbb{R}) \) has a bounded inverse and \(V(0) \) is a compact operator on \(H_{\frac{1}{2}}^1(\mathbb{R}) \times L_2^0(\mathbb{R}) \).

Note that \(\lambda_1 - (D_z, 0)^{-1} \in B(L_2^{\infty}(\mathbb{R}), H_{\frac{1}{2}}^1(\mathbb{R})) \) by (4.17) and the fact that \(\partial_{\varepsilon}^{-1} \in B(L_2^{\infty}(\mathbb{R}), H_{\frac{1}{2}}^1(\mathbb{R})) \).

Thus there exist positive constants \(C \) and \(k \) such that if \(\|\eta\|/\|\mathcal{L}_1(\eta)\|_{B(H_{\frac{1}{2}}^1(\mathbb{R}) \times L_2^0(\mathbb{R}))} < k \), then a solution \(z = z(\lambda_1, \gamma, \eta) \) of (6.1) satisfies

\[
\|z(\lambda_1, \gamma, \eta)\|_{H_{\frac{1}{2}}^2(\mathbb{R}) \times H_{\frac{1}{2}}^1(\mathbb{R})} \leq C \| G(\lambda_1, \gamma, \eta) \|_{H_{\frac{1}{2}}^1(\mathbb{R}) \times L_2^0(\mathbb{R})}.
\]

Now we choose constants \(\lambda_{1,0} \) and \(\gamma_0 \) so that

\[
\begin{align*}
F_1(\lambda_{1,0}, \gamma_0, 0) &= \gamma_0 \langle \zeta_1, \zeta_1^* \rangle + \langle \mathcal{L}_1(0) \zeta_1, \zeta_1^* \rangle + \lambda_{1,0}^2 \langle \zeta_2, \zeta_1^* \rangle = 0, \\
F_2(\lambda_{1,0}, \gamma_0, 0) &= \langle \mathcal{L}_1(0) \zeta_1, \zeta_2^* \rangle + \lambda_{1,0}^2 \langle \zeta_2, \zeta_2^* \rangle = 0.
\end{align*}
\]

By straightforward computations, we have

\[
\langle \zeta_1, \zeta_2^* \rangle = 0, \quad \langle \zeta_1, \zeta_1^* \rangle = \langle \zeta_2, \zeta_2^* \rangle = \frac{1}{2} \frac{d}{dc} E(q_c, r_c) > 0,
\]
\[\langle \zeta_2, \zeta_1^* \rangle = -\left(\frac{c}{2} \int_\mathbb{R} q_c^2 \, dz + c d \int_\mathbb{R} r_c \, dz \right) \left(\frac{d}{dc} \int_\mathbb{R} q_c \, dz \right) \]

\[= \frac{16}{3c^4} \frac{bc^4 - a (c^2 - 1) + (bc^2 - a) + 2c^4(2bc^2 - b - a)}{bc^2 - a} > 0, \]

\[\langle \mathcal{L}_1(0) \zeta_1, \zeta_1^* \rangle = -\langle A_0 q_c - B_0^{-1} A_0 q_c + q_c - bB_0^{-1} \partial_z^2 (c^2 q_c^2) - cq_c^2, cq_c \rangle \]

\[= \left\langle \left(-\frac{4}{3} A_0 + \frac{c^2}{3} B_0 + 1 - c^2 \right) q_c, cq_c \right\rangle \]

\[= -\frac{8}{15} \frac{c^2 - 1}{c} \alpha_c \{ 2c^2(b - a) + 3(bc^4 - a) \} < 0 \]

because

\[(A_0 - c^2 B_0)q_c + \frac{3}{2} c q_c^2 = 0 \]

by (1.4) and

\[\int_\mathbb{R} q_c(x)^2 \, dx = \frac{8(c^2 - 1)^2}{3\alpha_c c^2}, \int_\mathbb{R} q_c'(x)^2 \, dx = \frac{8\alpha_c (c^2 - 1)^2}{15c^2}. \]

In view of (6.3) and (6.6), we have \(\lambda_{1,0} := \sqrt{\frac{\langle \mathcal{L}_1(0) \zeta_1, \zeta_1^* \rangle}{\langle \zeta_2, \zeta_2^* \rangle}} > 0. \)

Since

\[\partial_{\lambda_1} F_1(\lambda_{1,0}, \gamma_0, 0) = 2\lambda_{1,0} \langle \zeta_2, \zeta_1^* \rangle, \quad \partial_{\gamma} F_1(\lambda_{1,0}, \gamma_0, 0) = \langle \zeta_1, \zeta_1^* \rangle \neq 0, \]

\[\partial_{\lambda_1} F_2(\lambda_{1,0}, \gamma_0, 0) = 2\lambda_{1,0} \langle \zeta_2, \zeta_2^* \rangle \neq 0, \quad \partial_{\gamma} F_2(\lambda_{1,0}, \gamma_0, 0) = \langle \zeta_1, \zeta_2^* \rangle = 0, \]

it follows from the implicit function theorem that there exists an \(\gamma_0 > 0, \lambda_1(\eta), \gamma(\eta) \in C^1([-\eta_0, \eta_0]) \) such that \(\lambda_1(0) = \lambda_{1,0}, \gamma(0) = \gamma_0 \) and \(F_k(\lambda_1(\eta), \gamma(\eta), \eta) = 0 \) for \(\eta \in [-\eta_0, \eta_0] \) and \(k = 1, 2 \). Moreover, we have

\[\lambda_1'(0) = -\frac{\partial_\eta F_2(\lambda_{1,0}, \gamma_0, 0)}{\partial_{\lambda_1} F_2(\lambda_{1,0}, \gamma_0, 0)} = i \frac{1}{2} \left(\gamma_0 - \frac{\langle \mathcal{L}_1(0) \zeta_2, \zeta_2^* \rangle}{\langle \zeta_2, \zeta_2^* \rangle} \right) = i \lambda_{2,0}, \]

and \(\lambda(\eta) = i \lambda_{1,0} \eta - \lambda_{2,0} \eta^2 + O(\eta^3). \) Thus we prove (2.4) and (2.5).

To obtain the asymptotic expansion of \(\zeta^*(\eta) \), let \(\tilde{\nu}_2(z, \eta) = \zeta(-z, -\eta) \cdot t(1, 0) \), where \(t \) denotes the inner product in \(\mathbb{C}^2 \) and

\[\zeta^*(\eta) = c \left(\frac{(\lambda(-\eta) + c \partial_\eta B(\eta)\tilde{\nu}_2(z, \eta) + v_{2,\infty}(\eta)^* \tilde{\nu}_2(z, \eta))}{B(\eta) \tilde{\nu}_2(z, \eta)} \right). \]

As in the proof of Lemma 3.4, we have \(\mathcal{L}(\eta) \zeta^*(\eta) = \lambda(-\eta) \zeta^*(\eta) \). Since

\[\lambda(-\eta) = -i\lambda_1 \eta - \lambda_2 \eta^2 + O(\eta^3), \]

\[\tilde{\nu}_2(\cdot, \eta) = q_c - i\lambda_1 \eta \int_{\eta_0}^{\eta} \partial_t q_c(z_1) \, dz_1 + O(\eta^2) \quad \text{in} \quad H^k_{\alpha} (\mathbb{R}) \quad \text{for any} \quad k \geq 0, \]

we have (2.6). We can show (2.4) in the same way as the proof of Lemmas 3.3 and 3.4.

Finally, we will prove \(\lambda_{2,0} > 0 \). By (3.4) and the definition of \(\lambda_{2,0} \),

\[\frac{d}{dc} E(q_c, r_c) \lambda_{2,0} = -\langle \mathcal{L}_1(0) \zeta_1, \zeta_1^* \rangle - \langle \mathcal{L}_1(0) \zeta_2, \zeta_2^* \rangle - \lambda_{1,0}^2 \langle \zeta_2, \zeta_2^* \rangle. \]
We have
\[\mathcal{L}_1(0) \zeta_2 = B_0^{-1} \left(A_0 \partial^2 \partial q_e + (A_0 - B_0) B_0^{-1} \partial^2 \partial q_e \right) \]
\[+ B_0^{-2} \left(3c \partial^2 (q_e \partial q_e) + \frac{3}{2} \partial^2 (q_e^2) \right) + B_0^{-1} \left(c \partial^2 \partial q_e \right). \]

Using the fact that \(q_e \) and \(\partial q_e \) are even, \(q'_e \) is odd and \(B_0^{-1} \) retains the parity of \(f \), we have
\[\langle \mathcal{L}_1(0) \zeta_2, \zeta_2 \rangle = c \langle \partial^2 \partial q_e, q_e \rangle + \frac{c^2}{3} \langle \partial^2 \partial q_e, q_e^2 \rangle = \frac{c}{3} (2c^2 + 1) \langle \partial^2 \partial q_e, q_e \rangle. \]

In the last line, we use \((A_0 - c^2 B_0)q_e + \frac{3c^2}{2} = 0\). Analogously, we have
\[\langle \mathcal{L}_1(0) \zeta_1, \zeta_1 \rangle = c \langle q_c, \partial^2 \partial q_e \rangle + \frac{c^2}{3} \langle q_c^2, \partial^2 \partial q_e \rangle = \frac{c}{3} (2c^2 + 1) \langle q_c, \partial^2 \partial q_e \rangle, \]
where \(\langle \partial^2 \partial f \rangle = - \int_{z_1}^{z_1} f(z_1) \, dz_1 \). By integration by parts,
\[\langle \partial^2 \partial q_e, q_e \rangle = - \frac{1}{4} \frac{d}{dc} \left(\int q_e \, dz \right)^2 = - \frac{1}{4} \frac{d}{dc} \frac{(c^2 - 1)(bc^2 - a)}{c^2}. \]

Combining (6.8) with (6.11), we have
\[\lambda_{2,0} \frac{d}{dc} E(q_e, r_e) = - \lambda_{1,0} \langle \zeta_2, \zeta_1 \rangle - \frac{16}{3} \frac{(1 + 2c^2)}{c^2} (bc^2 - a) \]
\[= 32 \frac{(b^2 - a)}{3d(c)} n(c), \]
where
\[d(c) = 6a^2 + (3a^2 - 9ab)c^2 + (6a^2 + 2b^2 - 2ab)c^4 + (b^2 - 19ab)c^6 + 12b^2c^8, \]
\[n(c) = 7a^2 - ba + (4a^2 - 10ba)c^2 + (3b^2 + 4a^2 - 7ab)c^4 + 6b(b - 2a)c^6 + 6b^2c^8. \]

To show that \(n(c) > 0 \) for all \(c > 1 \) and \(b > a > 0 \), we set \(\rho = c^2 \) and differentiate \(n(c) \) twice to get
\[n'(\rho) = 4a^2 - 10ab + 2(3b^2 + 4a^2 - 7ab)\rho + 18(b^2 - 2ab)\rho^2 + 24b^2\rho^3, \]
and
\[n''(\rho) = 2(3b^2 + 4a^2 - 7ab) + 36b^2\rho + 72b(b^2 - a\rho) > 0, \quad \forall \rho > 1. \]

Since \(n'(1) = 12(b - a)^2 + 36(b - a)b > 0, n'(\rho) > 0 \) for all \(\rho > 1 \). Since \(n(1) = 15(b - a)^2 > 0 \), thus, \(n(\rho) > 0 \) for all \(\rho > 1 \). In the same way, to show that \(d(\rho) > 0 \) for all \(\rho > 1 \) and \(b > a > 0 \), we set \(\rho = c^2 \) and differentiate \(d(\rho) \) to obtain
\[d'(\rho) = (3a^2 - 9ab) + 2(6a^2 + 2b^2 - 2ab)\rho + 3(b^2 - 19ab)\rho^2 + 48b^2\rho^3, \]
and
\[d''(\rho) = 12a^2 + 4b(b - a) + 6b^2\rho + b\rho(-114a + 144b\rho) > 0, \quad \forall \rho > 1. \]

Since \(d'(1) = 15(b - a)^2 + 40(b - a)b > 0, d'(\rho) > 0 \) for all \(\rho > 1 \). Since \(d(1) = 15(b - a)^2 > 0 \), thus, \(d(\rho) > 0 \) for all \(\rho > 1 \).

Since \(\frac{d}{dc} E(q_e, r_e) > 0, d(c) > 0 \) and \(n(c) > 0 \) for \(c > 1 \), we conclude from (6.12) that \(\lambda_{2,0} > 0 \). This completes the proof of Theorem 2.1.
7. Proof of Corollary 2.2

The Gearhart-Prüss theorem [15, 37] tells us the semigroup estimate (2.8) follows from uniform boundedness of \((\lambda - \mathcal{L})^{-1} Q(\eta_0)\) in a stable half plane. Let \(\Omega = \{ \lambda \mid \Re \lambda \geq -\beta' \}\). Applying [37, Corollary 4] to a Hilbert space \(Q(\eta_0)\), we have (2.8) provided \((\lambda - \mathcal{L})^{-1} Q(\eta_0)\) is uniformly bounded in \(\Omega\). Thus to prove Theorem 2.2 it suffices to show the following.

Lemma 7.1. Let \(c > 1\) and \(\alpha \in (0, \alpha_c)\). Assume (H) for \(\beta \in (0, \alpha(c - 1)/2)\) and an \(\eta_0 > 0\). Then for any \(\beta' < \beta\),

\[
\sup_{\lambda \in \Omega} \| (\lambda - \mathcal{L})^{-1} Q(\eta_0) \|_{B(X)} < \infty.
\]

Proof. By (H), the restricted resolvent \((\lambda - \mathcal{L})^{-1} Q(\eta_0)\) is uniformly bounded on any compact subset of \(\Omega\). Thus by Lemma 4.1 and (5.3), we have (7.1) provided

\[
(7.2) \quad \sup_{\lambda \in \Omega, |\lambda| \geq K_1} \| (\lambda - \mathcal{L}_0)^{-1} V \|_{B(X)} \leq \frac{1}{2}
\]

for sufficiently large \(K_1\). To prove (7.2), we apply the argument for the 1-dimensional Benney-Luke equation [30] for low frequencies in \(y\) and use the argument in [36, 1] for high frequencies in \(y\).

Let \(K_2 > 0\), \(\chi\) be the characteristic function of \([-K_2, K_2]\) and \(\tilde{\chi}(\eta) = 1 - \chi(\eta)\) for \(\eta \in \mathbb{R}\).

First, we will show that

\[
(7.3) \quad (\lambda - \mathcal{L}_0)^{-1} V \chi(D_y) = \begin{pmatrix} r_{11}(\lambda) & r_{12}(\lambda) \\ r_{21}(\lambda) & r_{22}(\lambda) \end{pmatrix} \chi(D_y) \to 0 \quad \text{uniformly as } \lambda \to \infty \text{ with } \lambda \in \Omega.
\]

By (5.6) and (5.8),

\[
r_{11}(\lambda)\chi(D_y) = \frac{ic}{2} S(D)^{-1} \{ (\lambda - \lambda_+(D))^{-1} - (\lambda - \lambda_-(D))^{-1} \} \mu(D) B^{-1} q_e \chi(D_y)
\]

\[
- c(\lambda - \lambda_+(D))^{-1} (\lambda - \lambda_-(D))^{-1} B^{-1} q_e'' \chi(D_y).
\]

By the Plancherel theorem,

\[
\| (\lambda - \mathcal{L}_\pm(D))^{-1} \chi(D_y) f \|_{L^2_\alpha(\mathbb{R}^2)} = \left\| \frac{\hat{f}(\xi + i\alpha, \eta)}{\lambda - \mathcal{L}_\pm(\xi + i\alpha, \eta)} \right\|_{L^2(\mathbb{R}^4 \setminus [-K_2, K_2])}.
\]

In view of (4.10) and (4.11), we have \(\lim_{\lambda \in \Omega, \lambda \to \infty} \| (\lambda - \mathcal{L}_\pm(D))^{-1} f \|_{L^2_\alpha(\mathbb{R}^2)} = 0\) for any \(f \in L^2_\alpha\) thanks to the dominated convergence theorem. Thus we prove \((\lambda - \mathcal{L}_\pm(D))^{-1} \to 0\) strongly as \(\lambda \to \infty\) with \(\lambda \in \Omega\). Since \(\mu(D) B^{-1} q_e \chi(D_y)\), \(B^{-1} q_e'' \chi(D_y) : H^1_\alpha \to H^1_\alpha\) are compact, we see that \(\lim_{\lambda \in \Omega, \lambda \to \infty} \| r_{11}(\lambda) \|_{B(H^1_\alpha)} = 0\) as in [30, p.265]. We can prove

\[
\lim_{\lambda \in \Omega, \lambda \to \infty} \left(\| r_{12}(\lambda) \chi(D_y) \|_{B(L^2_\alpha, H^1_\alpha)} + \| r_{21}(\lambda) \chi(D_y) \|_{B(H^2_\alpha, L^2_\alpha)} + \| r_{22}(\lambda) \chi(D_y) \|_{B(L^2_\alpha)} \right) = 0
\]

in exactly the same way.

By Lemma 4.6 and the definition of \(r_{ij}(\lambda)\),

\[
(7.4) \quad \| r_{ij}(\lambda) \tilde{\chi}(D_y) \|_{B(H^{2-i}_\alpha, H^{2-i}_\alpha)} \lesssim \| \tilde{\chi}(D_y) \mu(D) B^{-1} \|_{B(L^2_\alpha)} + \| \tilde{\chi}(D_y) B^{-1} \|_{B(L^2_\alpha)} \to 0 \quad \text{as } K_2 \to \infty.
\]

Combining (7.3) and (7.4), we have (7.2). Thus we complete the proof. \(\square\)
8. Proof of Theorem 2.3

Let
\[g(z, \eta) = \left(1 + \frac{\Re \langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle}{\Im \langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle} \right) \zeta(x, \eta), \quad g^*(x, \eta) = \zeta^*(x, \eta), \]
and define \(g_k(x, \eta) \) and \(g_k^*(x, \eta) \) \((k = 1, 2)\) by (3.42) and (3.43) as in Section 3. By (2.7), we have for \(\eta \in [-\eta_0, \eta_0] \), \(z \in \mathbb{R} \) and \(k = 1, 2 \),
\[g(z, \eta) = g(z, -\eta), \quad g^*(x, \eta) = g^*(x, -\eta), \]
\[\kappa(\eta) := \frac{1}{2} \Im \langle g(\cdot, \eta), g^*(\cdot, \eta) \rangle \text{ is odd}, \]
and \(g_k(z, \eta) \) and \(g_k^*(z, \eta) \) are real valued and even in \(\eta \). Moreover,
\[\langle g_j(\cdot, \eta), g_k^*(\cdot, \eta) \rangle = \delta_{jk} \text{ for } j, k = 1, 2. \]

By Theorem 2.1 and (6.4),
\[\langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle = \langle \zeta_1, \zeta_2^* \rangle + i \lambda_1 \eta \{ \langle \zeta_2, \zeta_2^* \rangle + \langle \zeta_1, \zeta_1^* \rangle \} + O(\eta^2) \]
\[= 2i \kappa_1 \eta + O(\eta^2), \]
and
\[\kappa(\eta) = \frac{1}{2} \Im \langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle \left\{ 1 + \left(\frac{\Re \langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle}{\Im \langle \zeta(\cdot, \eta), \zeta^*(\cdot, \eta) \rangle} \right)^2 \right\} \]
\[= \kappa_1 \eta + O(\eta^3). \]

Let \(\Phi(t) = (\Phi(t), \Psi(t)) \) be a solution of (2.2) with \(\Phi(0) = (\Phi_0, \Psi_0) \) and
\[c_k(t, \eta) = \left\langle F_y \Phi(t, \cdot, \eta), g_k^*(\cdot, \eta) \right\rangle \text{ for } \eta \in [-\eta_0, \eta_0] \text{ and } k = 1, 2. \]

Then
\[\tilde{\Phi}(t) = \frac{1}{\sqrt{2\pi}} \sum_{k=1,2} \int_{-\eta_0}^{\eta_0} c_k(t, \eta) g_k(z, y) e^{iy\eta} dy. \]

By Remark 3.1,
\[\partial_t \begin{pmatrix} c_1(t, \eta) \\ c_2(t, \eta) \end{pmatrix} = \begin{pmatrix} \langle \mathcal{L}(\eta), F_y \Phi(t, \cdot, \eta), g_1^*(\cdot, \eta) \rangle \\ \langle \mathcal{L}(\eta), F_y \Phi(t, \cdot, \eta), g_2^*(\cdot, \eta) \rangle \end{pmatrix} = \mathcal{A}(\eta) \begin{pmatrix} c_1(t, \eta) \\ c_2(t, \eta) \end{pmatrix}, \]
where
\[\mathcal{A}(\eta) = \begin{pmatrix} \Re \lambda(\eta) & \Im \lambda(\eta) \\ -\kappa(\eta) \Im \lambda(\eta) & \kappa(\eta) \Re \lambda(\eta) \end{pmatrix}. \]

Let \(e(t, \eta) = |\kappa(\eta)| c_1(t, \eta)^2 + |c_2(t, \eta)|^2 \). Then \(e(t, \eta) = e^{2t\Re \lambda(\eta)} e(0, \eta) \) and
\[\|\eta^{k+1} c_1(t, \eta)\|_{L^2(-\eta_0, \eta_0)}^2 + \|\eta^{k} c_2(t, \eta)\|_{L^2(-\eta_0, \eta_0)}^2 \]
\[\lesssim \int_{-\eta_0}^{\eta_0} \eta^{2k} e(t, \eta) d\eta \]
\[\lesssim (1 + t)^{-k} \left\{ \|\eta^{k+1} c_1(0, \eta)\|_{L^2(-\eta_0, \eta_0)}^2 + \|\eta^{k} c_2(0, \eta)\|_{L^2(-\eta_0, \eta_0)}^2 \right\} \]
\[\lesssim (1 + t)^{-k} (\|\Phi_0\|_{L^2(\mathbb{R}^2)} + \|\Psi_0\|_{L^2(\mathbb{R}^2)}). \]
Combining (8.3) and (8.4) with
\[\|A(\eta)\| = A_0(\eta) + \begin{pmatrix} O(\eta^4) & O(\eta^4) \\ O(\eta^4) & O(\eta^4) \end{pmatrix}, \quad A_0(\eta) = \begin{pmatrix} -\lambda_2 \eta^2 \\ -\lambda_1 \eta^2 \end{pmatrix}.\]

By the variation of the constants formula,
\[
\begin{pmatrix} c_1(t, \eta) \\ c_2(t, \eta) \end{pmatrix} = e^{tA_0(\eta)} \begin{pmatrix} c_1(0, \eta) \\ c_2(0, \eta) \end{pmatrix} - \int_0^t e^{(t-s)A_0(\eta)} \left((A(\eta) - A_0(\eta)) \begin{pmatrix} c_1(s, \eta) \\ c_2(s, \eta) \end{pmatrix} \right) ds,
\]
where \(e^{tA_0(\eta)} = e^{-t\lambda_2 \eta^2} \begin{pmatrix} \frac{\sin t \lambda_1 \eta}{\kappa_1 \eta} & \frac{\cos t \lambda_1 \eta}{\kappa_1 \eta} \\ -\kappa_1 \eta \sin t \lambda_1 \eta & \cos t \lambda_1 \eta \end{pmatrix}\). Using (8.2), we have for \(k = 0, 1\),
\[
\|\eta e^{-t\lambda_2 \eta^2} \begin{pmatrix} c_1(0, \eta) \\ c_2(0, \eta) \end{pmatrix}\|_{L^2(-\eta_0, \eta_0)} + \sum_{j=1, 2} \int_0^t \|\eta^{4+k-j} e^{(t-s)\lambda_2 \eta^2} c_j(s, \eta)\|_{L^2(-\eta_0, \eta_0)} ds
\]
\[
\lesssim (1 + t)^{-k/2} \|c_1(0, \eta)\|_{L^2(-\eta_0, \eta_0)} + \int_0^t (1 + t - s)^{-3/4} (1 + s)^{-(2k+1)/4} ds \|\eta^{5+k-j} \bar{c}(0, \eta)\|_{L^2(-\eta_0, \eta_0)}
\]
\[
\lesssim (1 + t)^{-k/2} (\|\Phi_0\|_{L^2_\alpha(R^2)} + \|\Psi_0\|_{L^2_\alpha(R^2)}).
\]
Since \(f(y) = \langle \Phi(0, \cdot, y), \zeta_y^* \rangle\) and \(\|g_2^*(\cdot, \eta) - \zeta_2^*\|_{L^2_{\alpha}(R)} = O(\eta^2)\), we have
\[
\|c_2(0, \eta) - \hat{f}(\eta)\| \lesssim \|F_y \Phi(0, \cdot, \eta)\|_{L^2(R)} \|g_2^*(\cdot, \eta) - \zeta_2^*\|_{L^2_{\alpha}(R)}
\]
\[
\lesssim \eta^2 \|F_y \Phi(0, \cdot, \eta)\|_{L^2_{\alpha}(R)} + \|F_y \Psi(0, \cdot, \eta)\|_{L^2_{\alpha}(R)},
\]
and
\[
\|e^{-t\lambda_2 \eta^2} \begin{pmatrix} \frac{\sin t \lambda_1 \eta}{\kappa_1 \eta} & \frac{\cos t \lambda_1 \eta}{\kappa_1 \eta} \\ -\kappa_1 \eta \sin t \lambda_1 \eta & \cos t \lambda_1 \eta \end{pmatrix} (c_2(0, \eta) - \hat{f}(\eta))\|_{L^2(-\eta_0, \eta_0)} \lesssim (1 + t)^{-1/2} (\|\Phi_0\|_{L^2_{\alpha}(R^2)} + \|\Psi_0\|_{L^2_{\alpha}(R^2)}).
\]
Combining (8.3) and (8.4) with \(g_1(\cdot, \eta) - \zeta_1\|_{L^2_{\alpha}(R)} = O(\eta^2)\), we have for \(k = 0, 1\),
\[
\|e^{-t\lambda_2 \eta^2} \begin{pmatrix} \frac{\sin t \lambda_1 \eta}{\kappa_1 \eta} & \frac{\cos t \lambda_1 \eta}{\kappa_1 \eta} \\ -\kappa_1 \eta \sin t \lambda_1 \eta & \cos t \lambda_1 \eta \end{pmatrix} (c_1(t, \eta) - \hat{f}(\eta))\|_{L^2(-\eta_0, \eta_0)} \lesssim (1 + t)^{-k/2} (\|\Phi_0\|_{L^2_{\alpha}(R^2)} + \|\Psi_0\|_{L^2_{\alpha}(R^2)}).
\]
Since \(\|f\|_{L^2} = \|f\|_{L^2} \lesssim \|\Phi_0\|_{L^2_{\alpha}(R^2)} + \|\Psi_0\|_{L^2_{\alpha}(R^2)}\),
\[
\|e^{-t\lambda_2 \eta^2} \begin{pmatrix} \frac{\sin t \lambda_1 \eta}{\kappa_1 \eta} & \frac{\cos t \lambda_1 \eta}{\kappa_1 \eta} \\ -\kappa_1 \eta \sin t \lambda_1 \eta & \cos t \lambda_1 \eta \end{pmatrix} \hat{f}(\eta)\|_{L^2([-\eta_0, \eta_0])} \lesssim e^{-t\lambda_2 \eta^2} (\|\Phi_0\|_{L^2_{\alpha}(R^2)} + \|\Psi_0\|_{L^2_{\alpha}(R^2)}).
\]
Using the Plancherel theorem, (8.2), (8.5) and (8.6), we have
\[
\|\partial_y^j P(\theta_0) \tilde{F}(t) - (H_t * W_t * f)(y) \zeta_1(z)\|_{L^\infty}
\lesssim \|\eta^j c_1(t, \eta) g_1(z, \eta) - e^{-\alpha \eta^2 t} \frac{\sin \alpha \eta z}{\kappa \eta} \tilde{f}(\eta) \zeta_1(z)\|_{L^2([-\tau_0, \tau_0]; L^2(\mathbb{R}^2 \times L_y^2(\mathbb{R}))}
+ \|\eta^j c_2(t, \eta)\|_{L^2([-\tau_0, \tau_0])} + \|\eta^j e^{-\alpha \eta^2 t} \frac{\sin \alpha \eta z}{\kappa \eta} \tilde{f}(\eta)\|_{L^2(\|\eta\| \geq \tau_0)}
\lesssim (1 + t)^{-j/2} (\|\Phi_0\|_{L^2(\mathbb{R}^2)} + \|\Psi_0\|_{L^2(\mathbb{R}^2)}).
\]
By Theorem 2.2,
\[
\|Q(\eta_0) \tilde{F}(t)\|_{H^2(\mathbb{R}^2) \times H^1_y(\mathbb{R})} \lesssim e^{-\beta t} (\|\Phi_0\|_{H^2(\mathbb{R}^2)} + \|\Psi_0\|_{H^1_y(\mathbb{R})}).
\]
Combining the above, we obtain for \(j = 0, 1,\)
\[
\left\|\operatorname{diag}(\partial_y^j, 1)\{\tilde{F}(t, z, y) - (H_t * W_t * f)(y) \zeta_1(z)\}\right\|_{L^2_y(\mathbb{R}) L^\infty_y(\mathbb{R})}
\lesssim (1 + t)^{-1/4} (\|\Psi_0\|_{H^2(\mathbb{R}^2)} + \|\Psi_0\|_{H^1_y(\mathbb{R}^2)}).
\]
This completes the proof of Theorem 2.3.

Appendix A. Miscellaneous estimates of operator norms

In this section, we collect estimates of the norm of operators.

A solitary wave profile \(q_c(x)\) is similar to KdV 1-solitons provided \(c\) is close to 1. In view of (2.10), we have the following estimates on derivatives of \(q_c\).

Claim A.1. Let \(c = \sqrt{1 + \epsilon^2}, \alpha = \hat{\alpha} c\) and \(\hat{\alpha} \in (0, \hat{\alpha}_0/2)\). There exists positive constants \(\epsilon_0\) and \(C\) such that
\[
\|\partial_x^i \partial_y^j q_c\|_{B(L^2(\mathbb{R}))} \leq C \epsilon^{2+i-2j} \text{ for } \epsilon \in (0, \epsilon_0) \text{ and } i, j \in \mathbb{Z}_{\geq 0}.
\]

Next, we collect estimates of \(\partial_x, \mu(D), S(D)\) and \(B^{-1}\).

Claim A.2. Let \(\hat{\alpha} > 0\) and \(\alpha = \hat{\alpha} c\). There exists a positive constants \(\epsilon_0\) such that if \(\epsilon \in (0, \epsilon_0),\)
\[
\begin{align*}
\|\partial_x^{-1}\|_{B(L^2)} &\leq \alpha^{-1}, \\
\|\mu(D)^{-1}\|_{B(Y)} &\leq \sqrt{2} \alpha^{-1}, \quad \|\partial_x \mu(D)^{-1}\|_{B(Y)} \leq \sqrt{2}, \\
\|\partial_x\|_{B(Y_{low})} &\leq (K + \hat{\alpha}) \epsilon, \quad \|\mu(D)^j\|_{B(Y_{low})} \leq \{2(K + \hat{\alpha}) \epsilon\}^j \text{ for } j \in \mathbb{N}, \\
\|i \partial_x \mu(D)^{-1} + I\|_{B(Y_{low})} &\leq O(K^4 \epsilon^2).
\end{align*}
\]

Proof. By (3.5),
\[
\|\partial_x^{-1}\|_{B(L^2)} = \sup_{\xi \in \mathbb{R}} \left| \frac{1}{\xi + i\alpha} \right| \leq \alpha^{-1},
\]
and
\[
\|\partial_x^2 \mu(D)^{-1}\|_{B(Y)} = \sup_{(\xi, \eta) \in \mathbb{R} \times [-K(K + \hat{\alpha})^2, K(K + \hat{\alpha})^2]} \left| \frac{\xi + i\alpha}{\mu(\xi + i\alpha, \eta)} \right|.
\]
If $\eta \in [-K^2 \epsilon^2, K^2 \epsilon^2]$ and ϵ is sufficiently small, then $\eta^2 \leq \alpha^2/2$ and
\[
|\mu(\xi + i\alpha, \eta)|^4 = (\xi^2 + \alpha^2 - \eta^2)^2 + 4\xi^2 \eta^2 \geq \frac{1}{3}(\xi^2 + \alpha^2)^2.
\]
Combining the above, we have (A.2).

Since supp $\hat{f}(\xi + i\alpha, \eta) \subset \tilde{A}_{\text{low}}$ for $f \in Y_{\text{low}}$, we have (A.3) and
\[
\|i\partial_\xi \mu(D)\|^{-1} + \|I\|_{B(Y_{\text{low}})} = \sup_{(\xi,\eta) \in \tilde{A}_{\text{low}}} \left\{ 1 + \frac{\eta^2}{(\xi + i\alpha)^2} \right\}^{-1/2} - 1 = O(K^4 \epsilon^2).
\]
Thus we complete the proof. □

Claim A.3. Let $\hat{\alpha} > 0$ and $\alpha = \hat{\alpha} \epsilon$. There exists positive constants C and ϵ_0 such that for any $\epsilon \in (0, \epsilon_0)$,
\[
\begin{align*}
&\|S(D)\|_{B(L^2)} + \|S(D)^{-1}\|_{B(L^2)} \leq C, \\
&\|\partial_\xi^j \mu(D)^{-1}\|_{B(L^2)} + \|\mu(D)^{-1}\|_{B(L^2)} \leq C \quad \text{for } j = 0, 1, 2, \\
&\|\partial_\xi^j \alpha_\epsilon\|_{B(L^2)} \leq Ce^{j+3}, \\
&\|B^{-1} - I\|_{B(Y_{\text{low}})} + \|S(D) - I\|_{B(Y_{\text{low}})} + \|S^{-1}(D) - I\|_{B(Y_{\text{low}})} \leq CK^2 \epsilon^2.
\end{align*}
\]

Proof. We can prove (A.5)–(A.7) in the same way as Lemmas 7.2 and 7.4 in [30]. Since $B(\xi + i\alpha, \eta) = 1 + b\{(\xi + i\alpha)^2 + \eta^2\} = 1 + O(K^2 \epsilon^2)$ for $(\xi, \eta) \in \tilde{A}_{\text{low}}$, we have
\[
\|B^{-1} - I\|_{Y_{\text{low}}} = \sup_{(\xi,\eta) \in \tilde{A}_{\text{low}}} |B^{-1}(\xi + i\alpha, \eta) - 1| = O(K^2 \epsilon^2).
\]
Similarly, we have $\|S(D) - I\|_{B(Y_{\text{low}})} + \|S^{-1}(D) - I\|_{B(Y_{\text{low}})} = O(K^2 \epsilon^2)$ from (1.31). □

Next, we will estimates the operator norms of a_1 and a_2.

Claim A.4. Let $\hat{\alpha} \in (0, \hat{\alpha}_0/2)$ and $c = \sqrt{1 + \epsilon^2}$. There exists an $\epsilon_0 > 0$ such that if $\epsilon \in (0, \epsilon_0)$ and $\alpha = c\hat{\alpha}$, then
\[
\begin{align*}
&\|a_i\|_{B(Y)} = O(\epsilon^2) \quad \text{for } i = 1, 2, \\
&\|a_i \rho_z(D_z)\|_{B(Y)} + \|\rho_z(D_z) a_i\|_{B(Y)} = O(K \epsilon^2) \quad \text{for } i = 1, 2, \\
&\|\rho_{KP}(D)\alpha_{2,\epsilon} + \frac{3}{2} \partial_\xi (\theta_0)\|_{B(L^2)} = O(K^5 \epsilon^2).
\end{align*}
\]

Proof. By Claims A.1, A.3 (5.9) and (5.23), we have
\[
\begin{align*}
&\|B^{-1}v_{1,\epsilon} \mu(D)^{-1}\|_{B(L^2)} + \|B^{-1}v_{2,\epsilon}\|_{B(L^2)} = O(\epsilon^2), \\
&\|B^{-1}v_{1,\epsilon} \mu(D)^{-1} \rho_z(D_z)\|_{B(Y)} + \|B^{-1}v_{2,\epsilon} \rho_z(D_z)\|_{B(L^2)} = O(K \epsilon^2), \\
&\|\rho_z(D_z)B^{-1}v_{1,\epsilon} \mu(D)^{-1}\|_{B(Y)} + \|\rho_z(D_z)B^{-1}v_{2,\epsilon}\|_{B(L^2)} = O(K \epsilon^2).
\end{align*}
\]
Combining the above with (A.3), we have (A.9) and (A.10).
Combining the above with Claim A.4, we have (A.12).

Finally, we will prove (A.11). By (A.8),
\[\| \rho_z(D_z)\{2a_2 + 3c(q_{\partial z} + 2q_n')\}\rho_z(D_z)\|_{B(Y)} \leq \| \{i v_{1,c}\mu(D)^{-1} - c(q_{\partial z} + 2q_n')\}\rho_z(D_z)\|_{B(Y)} + O\left(K^2c^2(\|\rho_z(D_z)v_{1,c}\mu(D)^{-1}\rho_z(D_z)\|_{B(Y)} + \|\rho_z(D_z)v_{2,c}\rho_z(D_z)\|_{B(Y)})\right).\]

Claims A.1 and A.2 imply
\[\| \rho_z(D_z)v_{1,c}\mu(D)^{-1}\rho_z(D_z)\|_{B(Y)} + \|\rho_z(D_z)v_{2,c}\rho_z(D_z)\|_{B(Y)} = O(K^{c^2}), \]
and
\[\| \{i v_{1,c}\mu(D)^{-1} - c(q_{\partial z} + 2q_n')\}\rho_z(D_z)\|_{B(Y)} \lesssim \|q_{\partial z}\|_{L^\infty} \|\rho_z(D_z)\|_{B(Y)} + \|q_{\partial z}\|_{L^\infty} \|\rho_z(D_z)\|_{B(Y)} + (c - 1)\|\rho_z(D_z)\|_{B(Y)} \lesssim K^5\epsilon^5. \]

In the last inequality, we use the fact that $c = 1 + O(\epsilon^2)$. Combining the above with the fact that $\|\epsilon^{-2}q_{\partial z}(\cdot,\cdot) - \theta_0\|_{C^1} = O(\epsilon^2)$, we have (A.11). Thus we complete the proof.

\[\square \]

Claim A.5.

(A.12) \[\| \bar{r}_{ij} \|_{B(Y)} \lesssim K\epsilon^3 \] for $i, j = 1, 2$.

(A.13) \[\| \bar{r}_{22} \|_{B(Y)} \lesssim K^5\epsilon^5. \]

Proof. By Lemma 5.2
\[\Pi^{-1} = \begin{pmatrix} I & O \\ \epsilon_{21} & I + \epsilon_{22} \end{pmatrix} \]
with $\|\epsilon_{2j}\|_{B(I^2_2(\mathbb{R}^2))} = O(K^{-1})$ and for $\tilde{t}(\tilde{u}_1, \tilde{u}_2) \in \tilde{Z}$ and $\tilde{t}(\tilde{u}_1, \tilde{u}_2) = \Pi(t(\tilde{u}_1, \tilde{u}_2))$, \[
\begin{pmatrix} \tilde{r}_{11} \\ \tilde{r}_{21} \\ \tilde{r}_{22} \end{pmatrix} = \begin{pmatrix} \Pi, \left(\lambda_+(D) + a_1, a_2 \\ \lambda_-(D) + a_2 \end{pmatrix} \begin{pmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{pmatrix} = \left(\rho_z(D)E^{-1}_\epsilon\mathcal{P}_K(\eta_0)E_\epsilon\rho_z(D)\tilde{u}_2 + a_2\rho_z(D)E^{-1}_\epsilon\mathcal{P}_K(\eta_0)E_\epsilon\rho_z(D)\tilde{u}_2 - \lambda_-(D) + a_2, \rho_z(D)E^{-1}_\epsilon\mathcal{P}_K(\eta_0)E_\epsilon\rho_z(D)\tilde{u}_2 - \lambda_+(D) + a_1, \rho_z(D)E^{-1}_\epsilon\mathcal{P}_K(\eta_0)E_\epsilon\rho_z(D)\tilde{u}_2 \right). \]

Combining the above with Claim A.4, we have (A.12).

Next, we will prove (A.13) by using the KP-II approximation of $\lambda_{-\epsilon}(D) + a_{2\epsilon}$ in the low frequency regime. Since
\[\tilde{r}_{22}\tilde{u}_2 = -[\lambda_-(D) + a_2, \rho_z(D)E^{-1}_\epsilon\mathcal{P}_K(\eta_0)E_\epsilon\rho_z(D)]\tilde{u}_2 \]
\[= -\epsilon^2 E^{-1}_\epsilon[\lambda_{-\epsilon}(D) + a_{2\epsilon}, \rho_z(D)E^{-1}_\epsilon\mathcal{P}_K(\eta_0)E_\epsilon\rho_z(D)]E_\epsilon\tilde{u}_2, \]
it follows from (1.23), (5.18) and (A.11),
\[\|([\lambda_{-\epsilon}(D) + a_{2\epsilon}, \rho_z(D)E^{-1}_\epsilon\mathcal{P}_K(\eta_0)E_\epsilon\rho_z(D)]g_0(k, \cdot, \eta) - L_{K^2}(\eta_0)g_0(k, \cdot, \eta)]\|_{L^2_{x_0}} \]
\[+ \|([\lambda_{-\epsilon}(D) + a_{2\epsilon}, \rho_z(D)E^{-1}_\epsilon\mathcal{P}_K(\eta_0)E_\epsilon\rho_z(D)]g_0(k, \cdot, \eta) - L_{K^2}(\eta_0)g_0(k, \cdot, \eta)]\|_{L^2_{x_0}} \]
\[= O(K^8\epsilon^2). \]
Since $\mathcal{L}_{KP} \mathcal{P}_{KP}(\eta_0) = \mathcal{P}_{KP}(\eta_0) \mathcal{L}_{KP}$, we have (A.13) from (A.14). □

Acknowledgment

This research is supported by JSPS KAKENHI Grant Number JP25400174.

References

[1] M. J. Ablowitz and C. W. Curtis, Conservation laws and non-decaying solutions for the Benney-Luke equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), 20120690, 16 pp.
[2] J. C. Alexander, R. L. Pego and R. L. Sachs, On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation, Phys. Lett. A 226 (1997), 187–192.
[3] T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. (London) Ser. A, 328 (1972), 153–183.
[4] D. J. Benney and J. C. Luke, Interactions of permanent waves of finite amplitude, J. Math. Phys., 43 (1964), 309–313.
[5] J. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. London Ser. A, 344 (1975), 363–374.
[6] J. L. Bona, T. Colin, and C. Guillopé, Propagation of long-crested water waves, Discrete Contin. Dyn. Syst. 33 (2013), 599-628.
[7] J. L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283–318.
[8] J. L. Bona, T. Colin and D. Lannes, Long wave approximations for water waves, Arch. Ration. Mech. Anal., 178 (2005), 373–410.
[9] S. P. Burtsev, Damping of soliton oscillations in media with a negative dispersion law, Sov. Phys. JETP, 61 (1985), 270–274.
[10] M. Chen, C. W. Curtis, B. Deconinck, C. W. Lee, and N. Nguyen, Spectral stability of stationary solutions of a Boussinesq system describing long waves in dispersive media, SIAM J. Appl. Dyn. Syst., 9 (2010), 999–1018.
[11] G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. II. Linear implies nonlinear stability, Nonlinearity, 15 (2002), 1343–1359.
[12] G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory, Nonlinearity, 17 (2004), 207–227.
[13] G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy, Nonlinearity, 17 (2004), 229–251.
[14] T. Gallay and G. Schneider, KP description of unidirectional long waves. The model case, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 885-898.
[15] L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385–394.
[16] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160–197.
[17] I. Herbst, The spectrum of Hilbert space semigroups. J. Operator Theory, 10 (1983), 87–94.
[18] J. S. Howland, On a theorem of Gearhart, Integral Equations Operator Theory, 7 (1984), 138–142.
[19] F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43–56.
[20] T. Kato, Perturbation theory for linear operators. Second edition, Classics in Mathematics, Springer-Verlag, Berlin.
[21] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl. 15 (1970), 539–541.
[22] P. A. Milewski and J .B. Keller, Three dimensional water waves, Studies Appl. Math., 37 (1996), 149–166.
[23] M. Mariš, Analyticity and decay properties of the solitary waves to the Benney-Luke equation, Differential Integral Equations, 14 (2001), 361–384.
[24] J. R. Miller and M. I. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation, Comm. Pure Appl. Math., 49 (1996), 399–441.
[25] A. Mielke, On the energetic stability of solitary water waves, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2337–2358.
[26] T. Mizumachi, Asymptotic stability of lattice solitons in the energy space, Comm. Math. Phys., 288 (2009), 125–144.
[27] T. Mizumachi, Asymptotic stability of N-solitary waves of the FPU lattices, Arch. Ration. Mech. Anal., 207 (2013), 393–457.
[28] T. Mizumachi, Stability of line solitons for the KP-II equation in \mathbb{R}^2, Mem. Amer. Math. Soc. 238 (2015), no. 1125.
[29] T. Mizumachi, Stability of line solitons for the KP-II equation in \mathbb{R}^2, II., Proc. Roy. Soc. Edinburgh Sect. A, to appear.
[30] T. Mizumachi, R. L. Pego and J. R. Quintero, Asymptotic stability of solitary waves in the Benney-Luke model of water waves, Differential Integral Equations 26 (2013), 253-301.
[31] T. Mizumachi and N. Tzvetkov, Stability of the line soliton of the KP-II equation under periodic transverse perturbations, Math. Ann. 352 (2012), 659-690.
[32] A. Pazy, Semigroups of linear operators and applications. Appl. Math. Sci., vol. 44, Springer–Verlag, NY, 1983.
[33] R. L. Pego and J. R. Quintero, Two-dimensional solitary waves for a Benney-Luke equation, Physica D, 132 (1999), 476–496.
[34] R. L. Pego and S.-M. Sun, Asymptotic linear stability of solitary water waves, Arch. Ration. Mech. Anal. (2016), doi:10.1007/s00205-016-1021-z.
[35] R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 164 (1994), 305–349.
[36] R. L. Pego and M. I. Weinstein, Convective linear stability of solitary waves for Boussinesq equations, Stud. Appl. Math., 99 (1997), 311-375.
[37] J. Prüss, On the spectrum of C_0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847–857.
[38] J. R. Quintero, Nonlinear stability of a one-dimensional Boussinesq equation, J. Dynam. Differential Equations, 15 (2003), 125–142.
[39] J. R. Quintero, Nonlinear stability of solitary waves for a 2-D Benney-Luke equation, Discrete Contin. Dyn. Syst., 13 (2005), 203–218.
[40] J. R. Quintero, The Cauchy problem and stability of solitary waves for a 2D Boussinesq-KdV type system, Differential Integral Equations, 24 (2011), 325–360.
[41] M. Reed and B. Simon, Methods of modern mathematical physics I Functional analysis, Academic Press Inc., New York, 2nd ed., 1980.
[42] F. Rousset and N. Tzvetkov, Transverse nonlinear instability for two-dimensional dispersive models , Ann. IHP, Analyse Non Linéaire, 26 (2009), 477–496.
[43] F. Rousset and N. Tzvetkov, Transverse nonlinear instability for some Hamiltonian PDE’s, J. Math. Pures Appl., 90 (2008), 550-590.
[44] P. Smereka, A remark on the solitary wave stability for a Boussinesq equation, in Nonlinear dispersive wave systems (Orlando, FL, 1991), World Sci. Publishing, River Edge, NJ, 1992, 255–263.
Division of Mathematical and Information Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
E-mail address: tetsum@hiroshima-u.ac.jp

Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
E-mail address: shinaby@gate.sinica.edu.tw