GNL3L inhibits activity of estrogen-related receptor γ by competing for coactivator binding

Hiroaki Yasumoto, Lingjun Meng*, Tao Lin*, Qubo Zhu and Robert Y. L. Tsai‡

Center for Cancer and Stem Cell Biology, Alkek Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
*These authors contributed equally to this work
‡Author for correspondence (e-mail: rtsai@ibt.tamhsc.edu)

Accepted 22 May 2006
Journal of Cell Science 120, 2532-2543 Published by The Company of Biologists 2007
doi:10.1242/jcs.009878

Summary

Guanine nucleotide binding protein-like 3 (GNL3L) is the closest homologue of a stem cell-enriched factor nucleostemin in vertebrates. They share the same yeast orthologue, Grn1p, but only GNL3L can rescue the growth-deficient phenotype in Grnl-null yeasts. To determine the unique function of GNL3L, we identified estrogen-related receptor γ (ERRγ) as a GNL3L-specific binding protein. GNL3L and ERRγ are coexpressed in the eye, kidney and muscle, and co-reside in the nucleoplasm. The interaction between GNL3L and ERRγ requires the intermediate domain of GNL3L and the AF2-domain of ERRγ. Gain-of- and loss-of-function experiments show that GNL3L can inhibit the transcriptional activities of ERR genes in a cell-based reporter system, which does not require the nucleolar localization of GNL3L. We further demonstrate that GNL3L is able to reduce the steroid receptor coactivator (SRC) binding and the SRC-mediated transcriptional coactivation of ERRγ. This work reveals a novel mechanism that negatively regulates the transcriptional function of ERRγ by GNL3L through coactivator competition.

Supplementary material available online at http://jcs.biologists.org/cgi/content/full/120/15/2532/DC1

Key words: ERR, Estrogen receptor, GNL3L, Nucleolus, Nucleostemin, SRC

Introduction

Nucleostemin and its homologues, guanine nucleotide binding protein-like 3 (GNL3L) and Ngp-1 (hereafter referred to as Ngp1), constitute a subfamily of GTP-binding proteins featured by their nucleolar distribution and a unique domain of circularly permuted GTP-binding motifs, where the G4 motif is located N-terminally to the G1, G2, and G3 motifs (Dai et al., 2002; Leipe et al., 2002). Nucleostemin is enriched in the embryonic, mesenchymal and neural stem cells, in adult testes and several types of human cancers (Baddoo et al., 2003; Kafienah et al., 2006; Tsai and McKay, 2002). It plays a role in maintaining the continuous proliferation of neural stem cells (Tsai and McKay, 2002) and in regulating the protein stability and a unique domain of GNL3L and the AF2-domain of ERRγ. Targeted deletion of nucleostemin leads to early embryonic lethality in homozygous nucleostemin-null embryos (Beekman et al., 2006; Zhu et al., 2006) and to premature senescence of heterozygous nucleostemin-null mouse embryonic fibroblast cells (Zhu et al., 2006).

Phylogenetically, nucleostemin is most closely related to GNL3L in vertebrates. They share the same yeast orthologue: Grn1p in Schizosaccharomyces pombe and Ngp1p in Saccharomyces cerevisiae. Grn1p is involved in the processing of 35S pre-ribosomal RNA (rRNA), the nuclear export of Rpl25, and the maintenance of cell growth (Du et al., 2006). Mutation of Ngp1 inhibits the export of 60S subunit from the nucleolus. Although the yeast orthologue of nucleostemin and GNL3L displays general activities in growth and ribosome biogenesis, rodent nucleostemin and GNL3L are distinctively expressed in different tissues. Furthermore, only human GNL3L, but not nucleostemin, can rescue the Grnl-deficient growth phenotype in fission yeasts (Du et al., 2006). These results suggest that nucleostemin and GNL3L have evolved specific properties in vertebrates, and become functionally diverged from each other and from Grn1p. By comparison, GNL3L retains more characteristics of Grn1p than does nucleostemin.

GNL3L bears 28% identity and 39% similarity to nucleostemin in mice. Very little is known about its function in vertebrates. To delineate the distinct activity of GNL3L, we looked for proteins that interact with GNL3L but not with nucleostemin. We first identified estrogen-related receptor γ (ERRγ) as a GNL3L-binding protein by a yeast two-hybrid screen, and confirmed this interaction by affinity-binding and coimmunoprecipitation assays. ERRγ belongs to a subfamily of the nuclear receptor superfamily. The ERR gene family consists of three members, ERRα, ERRβ, and ERRγ, that most resemble estrogen receptor α (ERα). Like ERα, the ERR proteins contain functionally separable structures that include an AF1 domain (or A/B region), a DNA-binding domain (DBD, or C region) with two zinc fingers, a hinge region (D), and a ligand-binding domain (LBD, or E/F region) with an AF2 domain at the C-terminal end. The LBD is involved in ligand binding, receptor dimerization, and coactivator binding. The AF2 domain is required for the ligand-dependent activation function. ERRα and ERRγ are found in the brain, muscle,
heart, kidney and adipose tissues (Bonnellye et al., 1997; Giguere et al., 1988; Hong et al., 1999). ERRβ is expressed in the eye, heart, kidney, cerebellum and testis (Bookout et al., 2006). The functions of the ERR family genes are implicated in many aspects of embryogenesis and tumorigenesis. Mice deficient in ERα exhibit reduced body weight and peripheral fat deposit, and are resistant to obesity induced by a high-fat diet (Luo et al., 2003). ERRβ-null mice display placenta defects, consistent with its role in the proliferation and differentiation of trophoblastic cells (Luo et al., 1997). In humans, the expression level of ERα correlates with poor prognosis in ovarian and breast cancers (Ariazi and Jordan, 2006; Suzuki et al., 2004). Conversely, ERRγ is a favorable indicator for human ovarian tumors (Sun et al., 2005). Although the ERR family genes are capable of binding the estrogen response element (ERE), they are different from ERs in that their transcriptional activity and coactivator binding do not require ligand binding (Giguere et al., 1988; Hong et al., 1999; Kallen et al., 2004), which leaves open the question of whether the activities of the ERR family genes are constitutively active or dynamically regulated. Here, we uncover a GNL3L-mediated pathway that regulates the transcriptional activity of the ERR family genes. We show that only GNL3L, but not nucleostemin or Ngp1, can interact with ERR family genes. Coexpression of GNL3L inhibits the transcriptional activities of the ERR family genes. Conversely, knocking down the endogenous expression of GNL3L increases the ERR-mediated transactivation. Furthermore, GNL3L can compete with steroid receptor coactivators (SRCs) for their ERRγ binding and block the SRC-mediated coactivation of ERRγ. Our study reveals a GNL3L-mediated mechanism that modulates the transcriptional activities of ERR proteins.

Results

GNL3L interacts with ERR family genes

To determine the unique function of GNL3L in vertebrates, we searched for proteins that interact with GNL3L but not with nucleostemin. A yeast two-hybrid approach was employed, where full-length GNL3L was fused to a GAL4 DNA binding-domain, and used to screen a mouse E17.5 brain cDNA library. From a total of 5 million clones screened, two positive clones were identified. They encoded the same in-frame partial domain, and used to screen a mouse E17.5 brain cDNA library. From a total of 5 million clones screened, two positive clones were identified. They encoded the same in-frame partial domain, and used to screen a mouse E17.5 brain cDNA library.

GNL3L mutants that lack the BC-domain (dBC) or the G-domain (dG) were co-immunoprecipitated with Ha-tagged ERRγ and one of the nucleostemin family genes tagged with an HA-epitope. Protein complexes were precipitated with anti-Ha and anti-HA antibodies, and immunodetected for the Ha-tagged or Myc-tagged proteins (Fig. 1A). We found that only GNL3L, but not nucleostemin or Ngp1, was co-purified with ERRγ by anti-Myc immunoprecipitation (Fig. 1A, row 1). Consistently, ERRγ was detected only in the GNL3L protein complex, not in the nucleostemin or Ngp1 protein complexes, precipitated by anti-HA antibody (Fig. 1A, row 3). Like GNL3L, ERRγ belongs to a family of three genes. To determine whether GNL3L interacts with only ERRγ or with multiple members of the ERR gene family, HEK293 cells were transfected with HA-tagged GNL3L and Myc-tagged ERα, ERβ, or ERRγ expression plasmids. Our results show that GNL3L and all members of the ERR gene family can be co-purified in the same protein complexes precipitated by either anti-Myc or anti-HA antibodies (Fig. 1B, rows 1 and 3). By contrast, no physical interaction between ERα (or ERβ) and nucleostemin (or Ngp1) was detected by affinity-binding assays (Fig. S1B in supplementary material). Based on these results, we conclude that only GNL3L of the nucleostemin family can form stable protein complexes with the ERR family genes.

ERRγ colocalizes with GNL3L in the nucleoplasm

To determine whether the interaction between GNL3L and ERRγ is physiologically possible, we examined the expression patterns of GNL3L, ERRβ and ERRγ by multi-tissue northern blot analyses. GNL3L was expressed most abundantly in the neural tissues, including the brain and eye, and was also detected in the muscle and kidney at low levels (Fig. 1C). Parallel blots showed that ERRβ was expressed most abundantly in the kidney, followed by the eye, testis, heart and muscle. High-level expression of ERRγ was seen in the heart and eye, followed by the brain, kidney and muscle. To decide where within the cell this interaction might occur, green fluorescent protein (GFP)-tagged GNL3L or ERRγ were expressed in U2OS cells, which express both GNL3L and ERRγ endogenously. We found that GNL3L was distributed both in the nucleolus and in the nucleoplasm, whereas ERRγ was localized exclusively in the nucleoplasm (Fig. 1D). These data show that the tissue expression pattern of GNL3L correlates better with that of ERRγ than that of ERRβ. Within the cell, ERRγ and GNL3L colocalize in the nucleoplasm. In the nucleolus, only GNL3L is found.

The intermediate domain of GNL3L interacts with the AF2 domain of ERRγ

To gain insight into the functional importance of the GNL3L-ERRγ interaction, we first identified the interacting domains of these two proteins using a panel of truncated GNL3L and ERRγ mutants (Fig. 2A,D). To define the ERRγ-binding domain in GNL3L, agarose-bound GST-ERRγ fusion protein was used to pull down the wild-type and mutant GNL3L proteins (Fig. 2B). Our results show that ERRγ can bind GNL3L mutants that lack the BC-domain (dBC) or the G-domain (dG), as well as the N166I mutant that contains an Asn166 to Isl mutation in the G4 domain, which abolishes the GTP-binding capability of GNL3L (our unpublished data). Notably, the GST-ERRγ fusion protein failed to retain mutants without the intermediate (I)-domain (dI and G3l-G, Fig. 2B), indicating that the I-domain is necessary for the ERRγ binding of GNL3L. Different GNL3L mutants displayed distinctive subcellular distribution patterns not related to their ERRγ-binding abilities. The dBC and G3l-G mutants were localized in the nucleoplasm and cytoplasm (Fig. 2C1,2), the dI and dI mutants were localized more in the nucleolus than in the nucleoplasm (Fig. 2C3,4), whereas the N166I mutant was diffusely distributed in the nucleus (Fig. 2C5). The ERRγ
protein structure consists of the AF1, DBD, LBD and AF2 domains (Fig. 2D). GST fusion proteins of the full-length ERR/H9253, the AF1-domain deletion mutant (dAF1) and the LBD deletion mutant with an intact AF2-domain (dLBD) were able to bind wild-type GNL3L. By contrast, GST fusion proteins of the AF2-domain deletion mutant (dAF2), the last 245 residues containing the LBD and AF2 domains (LBD-AF2) and a mutant deleted of the LBD and AF2 domain (AF1-DBD) were unable to retain GNL3L, demonstrating that the AF2 domain is necessary but not sufficient for the binding of ERR/H9253 to GNL3L (Fig. 2E). Based on these results, we conclude that the interaction between GNL3L and ERR/H9253 requires the I-domain of GNL3L and the AF2 domain of ERR/H9253, and is independent of the GTP binding and nucleolar localization of GNL3L.

Overexpression of a nucleolar form of GNL3L brings ERRβ and ERRγ into the nucleolus

Given that GNL3L, but not ERRγ, is localized in the nucleolus, we tested the idea whether coexpression of GNL3L can bring ERRγ into the nucleolus. Using confocal analysis, we determined the distribution of ERRγ when coexpressed with wild-type GNL3L (WT), a nucleolar form of GNL3L (NoG3l), or an I-domain mutant of GNL3L fused to an SV40 nuclear localization sequence (NLS) (nls-I). NoG3l was created by replacing the BC-domain of GNL3L with the BC-domain of nucleostemin (indicated by the grey bar in Fig. 3A) because nucleostemin has a stronger nucleolar localization capability than GNL3L and does not bind ERRγ. The I-domain mutant was fused with an SV40 NLS because it lacks endogenous NLS of its own. Affinity-binding assays confirmed that both NoG3l and nls-I mutants were capable of binding ERRγ (Fig. 3B). Whereas ERRγ by itself was distributed outside of the nucleolus (Fig. 3C1,C1), overexpression of wild-type GNL3L (Fig. 3C2,C2) and NoG3l (Fig. 3C3,C3) increased the ERRγ fluorescence signal in the nucleolar region compared with cells expressing ERRγ by itself. Notably, in cells overexpressing the NoG3l mutant, the ERRγ signal accumulated in the nucleolar region, particularly in the periphery of the nucleolus. By contrast, the nls-I mutant failed to alter the ERRγ distribution (Fig. 3C4), and distributions of wild-type GNL3L and NoG3l were unaltered by coexpression of ERRγ (Fig. 3C2 vs C5, and C3 vs C6). Overexpression of GNL3L and its mutants exerts the same effects on the distribution of ERRβ. Whereas ERRβ by itself displayed a nucleoplasmic distribution (Fig. 3D1,D1), overexpression of wild-type GNL3L (Fig. 3C2,C2') and NoG3l (Fig. 3C3,C3') increased the ERRβ fluorescence signal in the nucleolar region compared with cells expressing ERRβ by itself. Notably, in cells overexpressing the NoG3l mutant, the ERRβ signal accumulated in the nucleolar region, particularly in the periphery of the nucleolus. By contrast, the nls-I mutant failed to alter the ERRβ distribution (Fig. 3C4), and distributions of wild-type GNL3L and NoG3l were unaltered by coexpression of ERRγ (Fig. 3C2 vs C5, and C3 vs C6). Overexpression of GNL3L and its mutants exerts the same effects on the distribution of ERRβ. Whereas ERRβ by itself displayed a nucleoplasmic distribution (Fig. 3D1,D1'), both the wild-type GNL3L protein (Fig. 3D2,D2') and the NoG3l mutant (Fig. 3D3,D3') were able to increase the nucleolar intensity of ERRβ. By comparison, NoG3l had a stronger effect on bringing ERRβ into the nucleolus than wild-
GNL3L represses ERR activities

To investigate whether GNL3L can modulate the transcriptional activity of the ERR genes, an in vivo cell-based luciferase assay system was set up where CV-1 cells were co-transfected with a firefly luciferase reporter construct driven by three repeats of a consensus palindromic estrogen response element (ERE, see Materials and Methods), an ERR/H9253 expression plasmid, and a pRL-null reporter construct. The ERE-specific transcriptional activity was determined by the ratio between the Firefly and Renilla luciferase activities in the same sample, which represent ERE-driven and basal activities, respectively. This dual luciferase assay system was used to eliminate variations caused by transfection and non-specific effects on the common transcription-translational machinery. The Firefly-to-Renilla luciferase activity ratio for each experiment was expressed as the fold increase over the negative sample not transfected with ERR/H9253. Our results show that ERR/H9253 can increase the ERE-specific transcriptional activity six times higher than that of the control sample (6.0±0.5, mean±s.e.m.), and coexpression of GNL3L attenuates ERR/H9253-dependent increase by 50% (2.9±0.2) (Fig. 4A1, WT). This ERR/H9253 inhibitory effect of GNL3L requires its ERR/H9253-interacting domain, because samples that coexpress the dI mutant fail to show such a repressive activity. To determine whether this inhibition is caused by nucleolar sequestration of ERR/H9253 by GNL3L, a nucleolar form of GNL3L (NoG3l) or a nucleoplasmic mutant of GNL3L (dBC) was coexpressed with ERR/H9253. Our results demonstrate that both NoG3l and dBC can inhibit ERR/H9253-mediated transcriptional activity more than or as much as the wild-type GNL3L. To test whether this transcriptional repressive effect of GNL3L can act on other members of the ERR family, we set up the same transactivational assay for ERR/H9252 and ERR/H9251. Our data show that GNL3L reduces the transcriptional activity of ERR/H9251 from 4.7 times (±0.3) to 2.1 times (±0.1) over the control sample in an I-domain-dependent manner, and both NoG3l and dBC inhibit ERR/H9251 as much as the wild-type protein (Fig. 4B1).

Compared with ERR/H9252 and ERR/H9253, the ERR/H9251-dependent increase of ERE-driven transactivation is less (2.7±0.1). Although the wild-type GNL3L and the NoG31 mutant can reduce the ERR/H9251-mediated transcriptional activity, the dBC mutant fails to do so (Fig. 4C1). The GNL3L effect on the transcriptional activities of the ERR family genes is specific, because GNL3L does not suppress estradiol (E2)-induced ERα-mediated transactivation when using the same reporter.
assay system ($P=0.27$, Fig. 4D). Finally, we confirm that these different effects of wild-type and mutant GNL3L on the transcriptional activities of ERR genes are not caused by different expression levels of the GNL3L or ERR proteins (Fig. 4A2,B2,C2).

To confirm the inhibitory effect of GNL3L from a loss-of-function angle, a small interfering RNA (siRNA) approach was used to knock down the expression of endogenous GNL3L in HEK293 cells. The knockdown efficiency of the GNL3L-specific siRNA duplex-1 (siGNL3L-1) and duplex-2 (siGNL3L-2) was determined at the protein level in an HEK293 cell line that stably expresses HA-tagged GNL3L, and was estimated to be 83% and 84%, respectively, compared with the control siRNA knockdown sample (siNEG) (Fig. 5A). In siNEG-treated HEK293 cells, ERRγ yielded an 11-fold induction on the ERE-driven transcription. In siGNL3L-1 and siGNL3L-2-treated cells, the ERRγ-mediated transcriptional activities were significantly increased compared with the 11-
Overexpression of GNL3L brings ERR\(\gamma\) and ERR\(\gamma\) into the nucleolus. (A) To generate a nucleolar form of GNL3L (NoG3l), we replaced the N-terminal nucleolus-targeting domain of GNL3L with the corresponding region of nucleostemin (grey bar), which has a stronger nucleolar-targeting activity than GNL3L but lacks the ability to bind ERR\(\gamma\). To create a nucleoplasmic form of GNL3L (nls-I), we fused the I-domain of GNL3L to an SV40 nuclear localization signal (oval). (B) Affinity-binding assays show that both nls-I and NoG3l maintain the ability to bind ERR\(\gamma\) (Fig. 5B). Reducing the amount of GNL3L also increased the nucleolar regions (No) are indicated by the increase of green fluorescence. Compared to cells transfected with only ERR\(\gamma\)-H9253, ERR\(\gamma\)-H9252 promoter (Fig. 5C,D). By comparison, GNL3L-specific siRNA treatment had a lesser effect on ERR\(\gamma\)/H9252 transcription than on ERR\(\gamma\)/H9253-dependent transactivation. The ability to compete with SRC1 and SRC2 for ERR\(\gamma\) binding is abolished by a deletion of its ERR\(\gamma\)-interacting I-domain (Fig. 6A2,B2). Conversely, to determine whether SRC1 or SRC2 can displace GNL3L from the ERR\(\gamma\) protein complex, GST-ERR\(\gamma\) fusion proteins were used to pull down a fixed amount of GNL3L in the presence of increasing amounts of SRC1 or SRC2. Our results show that both SRC1 (Fig. 6C) and SRC2 (Fig. 6D) can reduce GNL3L bound by GST-ERR\(\gamma\) in a dose-dependent manner. These data demonstrate that binding between ERR\(\gamma\) and GNL3L, and between ERR\(\gamma\) and SRC1 or SRC2 are mutually exclusive, and suggest that blocking ERR\(\gamma\) from accessing SRC1 and SRC2 may be responsible for the inhibitory transcriptional activity of GNL3L.

Coexpression of GNL3L

increases the mobility and decreases the SRC1 component of the ERR\(\gamma\) DNA-protein complex

To determine whether GNL3L forms a high-order DNA-protein complex with ERR\(\gamma\), electrophoretic mobility shift assays (EMSA\(\gamma\)s) were conducted using a radiolabeled probe containing a canonical ERE sequence (TCAGGTCA-CTGTGACCTGA) and cell extracts expressing the indicated

\[\text{Equation}(\text{GNL3L represses ERR activities})\]

2537
proteins (Fig. 7A). Compared with the probe alone (lane 1) and vector-transfected sample (lane 2), the Myc-tagged ERR\(/H9253\)-transfected sample (lane 3) yields an ERE-ERR\(/H9253\)-specific DNA-protein complex (Fig. 7A, arrow b). The signal of this complex can be competed by excess unlabeled probes (lane 4), and supershifted by anti-Myc antibody (lane 5, arrow a). When ERR\(/H9253\) was coexpressed with GNL3L, two fast-moving DNA-protein complexes were identified (arrows d and e, lane 6), and no additional slow-moving complexes were seen. The mobility of the fast-moving complexes can be retarded by anti-Myc antibody (lane 7, arrow c), but not by anti-HA antibody (lane 8), suggesting that they contain ERR\(/H9253\) but not GNL3L. GNL3L alone fails to interact with the ERE probe (lane 9). The intensity of the fast-moving complex, complex d, was reduced when ERR\(/H9253\) was coexpressed with a GNL3L mutant lacking its ERR\(/H9253\)-binding I-domain (dI), indicating that the appearance of this fast-moving complex d depends on the interaction between GNL3L and ERR\(\gamma\).

The increased mobility of the ERR\(\gamma\) DNA-protein complex by GNL3L may be caused by cleavage of the ERR\(\gamma\) protein or by changes in the protein conformation or components of the ERR\(\gamma\) DNA-protein complex; failure of this fast-moving complex d to be supershifted by anti-HA antibody indicates that it does not contain GNL3L or the HA-epitope of GNL3L is masked in this particular protein conformation. To address these different possibilities, we retrieved the fast-moving and slow-moving protein complexes (complex d and complex b, respectively) from the EMSA gel and analyzed the protein amount and size of ERR\(/H9253\), GNL3L, SRC1, and SRC2 in these two complexes by western blottings (Fig. 7B). Anti-Myc western analysis shows that the size of the ERR\(/H9253\) protein remains the same in both complexes, excluding the possibility that the increased mobility is a result of ERR\(/H9253\) protein cleavage. Anti-HA western blotting detects no GNL3L protein in the retrieved protein complexes, consistent with the idea that GNL3L does not bind the DNA-bound ERR\(/H9253\). Notably, we are able to detect SRC1 in the slow-moving complex b but not in the fast-moving complex d, which suggests that SRC2 binding to ERR\(\gamma\) is also diminished by GNL3L coexpression.

Fig. 4. Overexpression of GNL3L inhibits transcriptional activity of ERR proteins independently of nucleolar distribution. (A1) Estrogen response element (ERE)-specific transcriptional activities were measured in CV-1 cells by the ratio between the ERE-driven firefly luciferase activity and the Renilla-null luciferase activity. ERR\(\gamma\) elicits a six-fold increase in the ERE-specific transcriptional activity. Coexpression of wild-type GNL3L (WT) leads to a 50% reduction in the ERR\(\gamma\)-mediated transcriptional activity. This decrease is reversed by a deletion of the ERR\(\gamma\)-binding I-domain of GNL3L (dI). Coexpression of either the nucleolar form (NoG3l) or the nucleoplasmic form (dBC) of GNL3L suppresses the ERR\(\gamma\) transcriptional activity more than or to the same extent as the wild-type GNL3L protein. (B1,C1) Using the same approach, we show that this inhibitory activity of GNL3L can also work on (B1) ERR\(\beta\) and (C1) ERR\(\alpha\) with the exception that the dBC mutant has little effect on the ERR\(\alpha\)-mediated transactivation. Error bars represent the standard error of the mean (± s.e.m.). **P<0.001. (A2,B2,C2) Expression levels of wild-type and mutant GNL3L proteins and ERR proteins in the experimental samples are compared in western blots side-by-side using anti-HA and anti-Myc antibodies, respectively; α-tubulin (α-Tub) was used as a loading control. (D) GNL3L fails to suppress the estradiol (E2)-induced transcriptional activity of ERR\(\alpha\) on the ERE-driven promoter in the same cell-based reporter system.
GNL3L suppresses the SRC-mediated transcriptional coactivation on ERRγ

Next, we addressed the issue whether GNL3L interferes with the function of SRC proteins as coactivators for ERRγ. In a cell-based reporter system similar to that described in Fig. 4, coexpression of ERRγ and SRC1 is able to produce an eightfold increase (8.0±0.3) in the ERE-specific transcriptional activity compared with the control sample – which is 1.7 times higher than the sample expressing only ERRγ (4.8±0.3) (Fig. 8A). When coexpressed with GNL3L, the luciferase activity is reduced by 2.5 times by siGNL3L-1 and siGNL3L-2 treatment as compared with the siNEG-treated sample. (C,D) GNL3L knockdown has the same effect on the ERRγ- and ERRγ-mediated transactivation, although their increase is less dramatic than the increase in the ERRγ-mediated transactivation. Error bars represent the standard error of the mean (± s.e.m.). **P<0.001; ***P<0.0001.

Fig. 6. GNL3L competes with SRC1 and SRC2 for ERRγ binding. Agarose-bound GST fusion proteins of ERRγ (1 μg) were used to pull down whole-cell lysates containing a fixed amount of SRC1 (A) or SRC2 (B), mixed with increasing amounts of the wild-type GNL3L (A1,B1) or the dl mutant lacking the ERRγ-interacting domain (A2,B2). Whole-cell proteins in each sample were adjusted to the same amount. In the agarose-retained portions (R), the interaction between GNL3L and ERRγ can reduce the amount of SRC1 and SRC2 bound by ERRγ in a dose-dependent manner, but the dl mutant fails to do so. Conversely, when GST-ERRγ fusion proteins were used to pull down the same amount of GNL3L in the presence of increasing amounts of SRC1 (C) or SRC2 (D), SRC1 and SRC2 were able to reduce the amount of GNL3L bound by ERRγ in a dose-dependent way as well. Proteins in the agarose-bound fraction and in the supernatant are indicated by (R) and (S), respectively.
Journal of Cell Science

not the dI mutant, can reduce the ERR activity.

Here, we show that GNL3L, but not GNL3L itself cannot bind the ERE probe (lane 9). The intensity of the fast-moving complex d is reduced by a deletion of the ERR d-domain (H9253) – which is necessary and sufficient for ERRγ binding – lacks the LxxLL motif found in most transcriptional coactivators and co-repressors that interact with the AF2-domain (Hentschke et al., 2002; Huss et al., 2002; Lee et al., 1998; Rosenfeld and Glass, 2001; Webb et al., 2000; Zhang et al., 2000). These data support the role of GNL3L as a novel regulator for the ERR gene family and argue against its role as a classical transcriptional co-repressor. It is worth noting that the absence of interaction between GNL3L and the DNA-bound ERRγ in vitro does not exclude the possibility that these two proteins still coexist in the same DNA-bound complex in the native chromatinized context, because the binding of transcription factors to the core response element in vivo is aided by a number of cofactors as well as by histone proteins involved in chromatin remodeling. Furthermore, the ability of GNL3L to compete for SRC binding and to inhibit the transcriptional function of ERRγ might depend on specific chromatin structures or involve cofactors other than SRC proteins.

GNL3L and ERR proteins are colocalized in the nucleoplasm, but only GNL3L is also found in the nucleolus. The nucleolar localization of GNL3L might have created two potential mechanisms that affect its activity in the nucleoplasm. First, GNL3L can enter or exit the nucleolus by itself. In this case, signals that promote the nucleolar accumulation of GNL3L may cause a disinhibition of the ERRγ transcriptional activities as much as wild-type GNL3L. Gain-of-function and loss-of-function studies reveal that GNL3L has the ability to suppress the transcriptional activity of ERR genes, and does not require the nucleolar localization of GNL3L to do so. We also demonstrate that GNL3L can compete with SRC1 and SRC2 for their binding to ERRγ, resulting in an increased electrophoretic mobility of the DNA-bound ERRγ complex and the inhibition of the SRC1 and SRC2 coactivator function on ERRγ. The AF2-domain binding, SRC competition and transcriptional inhibition activities suggest that GNL3L represents a new class of transcriptional co-repressor for nuclear receptors. However, GNL3L fails to form a stable complex with the DNA-bound ERRγ, and the I-domain of GNL3L – which is necessary and sufficient for ERRγ binding – lacks the LxxLL motif found in most transcriptional coactivators and co-repressors that interact with the AF2-domain (Hentschke et al., 2002; Huss et al., 2002; Lee et al., 1998; Rosenfeld and Glass, 2001; Webb et al., 2000; Zhang et al., 2000). These data support the role of GNL3L as a novel regulator for the ERR gene family and argue against its role as a classical transcriptional co-repressor. It is worth noting that the absence of interaction between GNL3L and the DNA-bound ERRγ in vitro does not exclude the possibility that these two proteins still coexist in the same DNA-bound complex in the native chromatinized context, because the binding of transcription factors to the core response element in vivo is aided by a number of cofactors as well as by histone proteins involved in chromatin remodeling. Furthermore, the ability of GNL3L to compete for SRC binding and to inhibit the transcriptional function of ERRγ might depend on specific chromatin structures or involve cofactors other than SRC proteins.

Fig. 7. Coexpression of GNL3L increases the electrophoretic mobility of the DNA-bound ERRγ protein complex and reduces its binding with SRC1 and SRC2. (A) The GNL3L effect on the binding of ERRγ to DNA was examined by EMSA using ERE-containing probes and whole-cell lysates expressing the indicated recombinant proteins. Compared with the probe alone (lane 1) and the vector-transfected control sample (lane 2), ERRγ-specific DNA-protein complex was identified in lane 3 (arrow b), competed by excess non-labeled probes (lane 4), and supershifted by anti-Myc antibody (lane 5, arrow a). Coexpression of GNL3L produces fast-moving complexes (lane 6, arrows d and e) that can be supershifted by anti-Myc antibody (lane 7, arrow c) but not by anti-HA antibody (lane 8). GNL3L itself cannot bind the ERE probe (lane 9). The intensity of the fast-moving complex d is reduced by a deletion of the ERR d-domain (H9253) (lanes 10–12). (B) The fast-moving complex d and the slow-moving complex b were retrieved from the EMSA gel, fractionated in SDS-denaturing PAGE and analyzed for their ERRγ (α-Myc), GNL3L (α-HA), SRC1, and SRC2 protein components by western blotting. Our results indicate that the increase in the electrophoretic mobility of the ERRγ-DNA complex by GNL3L coexpression is due to a loss of SRC1 binding (arrow) and diminished SRC2 binding, rather than by protein cleavage of ERRγ.

Discussion

In this manuscript, we identify a GNL3L-mediated mechanism that suppresses the transcriptional activity of ERR family genes by coactivator competition (Fig. 9). We show that ERR binding is specific to GNL3L, but not to nucleostemin or Npg1. GNL3L and ERRγ colocalize in the nucleoplasm, and their interaction requires the I-domain of GNL3L and the AF2-domain of ERRγ. Gain-of-function and loss-of-function studies reveal that GNL3L has the ability to suppress the transcriptional activity of ERR genes, and does not require the nucleolar localization of GNL3L to do so. We also demonstrate that GNL3L can compete with SRC1 and SRC2 for their binding to ERRγ, resulting in an increased electrophoretic mobility of the DNA-bound ERRγ complex and the inhibition of the SRC1 and SRC2 coactivator function on ERRγ. The AF2-domain binding, SRC competition and transcriptional inhibition activities suggest that GNL3L represents a new class of transcriptional co-repressor for nuclear receptors. However, GNL3L fails to form a stable complex with the DNA-bound ERRγ, and the I-domain of GNL3L – which is necessary and sufficient for ERRγ binding – lacks the LxxLL motif found in most transcriptional coactivators and co-repressors that interact with the AF2-domain (Hentschke et al., 2002; Huss et al., 2002; Lee et al., 1998; Rosenfeld and Glass, 2001; Webb et al., 2000; Zhang et al., 2000). These data support the role of GNL3L as a novel regulator for the ERR gene family and argue against its role as a classical transcriptional co-repressor. It is worth noting that the absence of interaction between GNL3L and the DNA-bound ERRγ in vitro does not exclude the possibility that these two proteins still coexist in the same DNA-bound complex in the native chromatinized context, because the binding of transcription factors to the core response element in vivo is aided by a number of cofactors as well as by histone proteins involved in chromatin remodeling. Furthermore, the ability of GNL3L to compete for SRC binding and to inhibit the transcriptional function of ERRγ might depend on specific chromatin structures or involve cofactors other than SRC proteins.

GNL3L and ERR proteins are colocalized in the nucleoplasm, but only GNL3L is also found in the nucleolus. The nucleolar localization of GNL3L might have created two potential mechanisms that affect its activity in the nucleoplasm. First, GNL3L can enter or exit the nucleolus by itself. In this case, signals that promote the nucleolar accumulation of GNL3L may cause a disinhibition of the ERR activities, and signals that release the nucleolus-bound GNL3L into the nucleoplasm may allow more GNL3L to bind ERR proteins. Alternatively, GNL3L may carry some ERR proteins with it when entering the nucleolus, in which case nucleolar sequestration of ERR proteins may account for some of the inhibitory activity of GNL3L. Although overexpression of a nucleolar form of GNL3L and, to a less extent, the wild-type GNL3L increase the nucleolar intensity of ERRα and ERRγ, the non-nucleolar dBC mutant is able to suppress ERRα and ERRγ activities as much as wild-type GNL3L. These results demonstrate that the suppressive effect of GNL3L on the ERR activity is not mediated by a nucleolar sequestration...
mechanism and that, under physiological conditions, the ERR-binding and transcriptional inhibition events of GNL3L take place in the nucleoplasm. Nevertheless, the fact that overexpression of NoG3l can bring ERRα and ERRβ into the nucleolus supports the notion that GNL3L can interact with these two proteins in vivo.

Unlike ERα whose activity is controlled by hormone binding, no ligand has so far been identified for ERR family genes and their transactivation works in a ligand-independent manner. This GNL3L-mediated inhibition on the activities of ERRs provides one mechanism to regulate their functions in a cell-context-dependent and dynamic way. At the transcriptional level, although the relative abundance of GNL3L matches that of ERRγ in most tissues we examined, they are distinctively different in the brain and heart. GNL3L is expressed highly in the brain but little in heart, whereas ERRγ is found at high levels in heart but not in brain. The differences between the expression levels of GNL3L and ERRγ in those organs indicate that tissues that express the same level of ERRγ may exhibit differential ERR activities depending on their GNL3L expression. In the adult brain where little ERRγ is found, GNL3L might have other regulatory functions.

Fig. 8. GNL3L suppresses SRC-mediated transcriptional coactivation of ERRγ. (A) Using the same cell-based reporter system as described in Fig. 4, we show that the ERE-specific transcriptional activity in cells coexpressing ERRγ and SRC1 (8.0±0.3) is 1.7 times higher than that of the ERRγ-expressing sample (4.8±0.3). When coexpressed with the wild-type GNL3L (WT), this ERRγ and SRC1-mediated ERE-specific transcriptional activity is reduced by 55% and 70% compared with the sample expressing both ERRγ and SRC1 in a dose-dependent manner. This inhibitory effect of GNL3L on the SRC1-mediated coactivation of ERRγ requires the I-domain of GNL3L because deletion of this domain (dI) fails to suppress the transcriptional activity of ERRγ and SRC1 (P=0.17). (B) Using the same approach, we show that GNL3L can also suppress the coactivator function of SRC2 on the ERRγ-dependent transcriptional activity in a dose-dependent (54% reduction for 100 ng of GNL3L and 71% reduction for 200 ng of GNL3L) and I-domain-dependent (P=0.58) manner. Error bars represent the stand error of mean (± s.e.m.). ***P<0.0001.

Fig. 9. GNL3L inhibits the transcriptional activities of ERR family genes by coactivator competition. Our data reveal a novel mechanism that regulates the activity of ERR family genes by the nucleolar GTP-binding protein GNL3L. GNL3L decreases the transcriptional activity of ERR proteins. This event takes place in the nucleoplasm and does not require the nucleolar localization of GNL3L. The interaction between GNL3L and ERRγ displaces coactivators such as SRC1 and SRC2 from the ERRγ complex. The SRC-depleted ERRγ protein binds DNA without GNL3L, resulting in transcriptional inhibition. In this model, the nucleolar accumulation of GNL3L does not appear to affect its ability to suppress the transcriptional function of ERR proteins (grey arrows). Protein domains of GNL3L and ERR are: B, basic domain; C1 and C2, coiled-coil domain-1 and -2; G, GTP-binding domain; I, intermediate domain; AF1 and AF2, activation function 1 and 2; DBD, DNA-binding domain; LBD, ligand-binding domain.
targets. At the post-translational level, GNL3L is partitioned between the nucleolus and the nucleoplasm by a dynamic process (L.M. and R.Y.L.T., unpublished data). Like nucleostemin (Meng et al., 2006; Tsai and McKay, 2005), the nucleolar accumulation of GNL3L is controlled by its GTP binding and a N-terminal basic domain (Rao et al., 2006) (L.M. and R.Y.L.T., unpublished data). Notably, the nucleolar residence of GNL3L is significantly shorter than that of nucleostemin (L.M. and R.Y.L.T., unpublished data). The transient resident of GNL3L in the nucleolus might explain why nucleolar compartmentalization of GNL3L does not seem to play a role in its ability to suppress the ERR transcriptional function.

In conclusion, it is known that the ERR family genes are transcriptionally active without the ligand, but it is unclear if and how their activities can be controlled in a dynamic manner. Our work unravels a GNL3L-mediated mechanism that modulates the transcriptional activity of ERR by coactivator competition. The important role of the ERR genes in embryogenesis and tumorigenesis, the differential regulation of their activities by GNL3L can provide us with new insight into these two processes in a cell-type-specific manner.

Materials and Methods
Recombinant plasmids and mutation analyses
Full-length ERR family genes were cloned from mouse brain cDNAs by reverse transcription (RT)-PCR. Deletions and point mutations of GNL3L and ERR were introduced by the stitching PCR method as described previously (Tsai and McKay, 2002; Tsai and McKay, 2005). The final PCR products were subcloned into pcDNA expression vectors and confirmed by sequencing.

Cell culture, transfection, siRNA knockdown and immunostaining
We used HEK293 cells for biochemical studies because of their high transfection efficiency and protein production, and U2OS cells for distribution analyses. Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 5% fetal bovine serum (FBS), Hyclone), penicillin (50 IU/ml), streptomycin (50 µg/ml), and glutamine (1%). Plasmid transfections were performed using a standard Ca²⁺ phosphate method for HEK293 cells or the Lipofectamine-Plus reagent (Invitrogen) for U2OS cells. Immunofluorescence studies were performed 1 day after transfection and assayed previously (Tsai and McKay, 2005). For siRNA knockdown experiments, cells were transfected with siRNA duplex (100 nM) for 24-12 hours using Oligofectamine reagent (Invitrogen). Confocal images were captured on a Zeiss LSM510 confocal microscope using a 63× plan-apochromat oil objective. Images were scanned using the multi-track program, a 512×512 frame size, 3× zoom, and <1.4 µm optical thickness. Detector gain and amplifier offset were adjusted to ensure that all signals were appropriately displayed within the linear range. Fluorescence intensities were digitally quantified in Fig. 3C’, D’, E’ using the profile display mode along the path indicated by arrow.

Dual luciferase assays
For gain-of-function experiments, CV1 cells were grown in DMEM supplemented with 5% charcoal/dextran-treated FBS. Transient transfection was performed in 24-well plates using the Lipofectamine-Plus reagent. Total DNA amount in each well was adjusted to 2 µg using the empty expression vector. Cell extracts were prepared 30 hours after transfection. HEK293 cells were used for siRNA knockdown experiments because of their high GNL3L expression levels. HEK293 cells were split and grown in DMEM supplemented with 5% charcoal/dextran-treated FBS. On the next day, transfections of siRNA duplexes were performed in 24-well plates using the Oligofectamine reagent (Invitrogen). Firefly (100 ng) and Renilla luciferase activities were measured by the Dual-Luciferase Reporter Assay System (Promega). The expression of the firefly luciferase reporter gene was driven by three repeats of a synthetic consensus palindromic estrogen response element (ERE, GGTCACTGTGAC).

EMSA and post-EMSA western blot
Electrophoretic mobility shift assays (EMSA) were carried out as described previously (Tsai and Reed, 1997; Tsai and Reed, 1998) with the following modifications. Recombinant proteins were expressed in HEK293 cells. Whole-cell lysates were extracted in buffer containing 40 mM HEPES-KOH (pH 7.9), 0.4 M KCl, 1 mM DTT, 10% glycerol, 0.1 M PMSF and complete protease inhibitor cocktail (Roche) mixed with specified amounts of probes in 20 µl binding reactions, and incubated on ice for 20 minutes. The binding-reaction mixture contained 10 nM HEPES (pH 7.9), 70 mM KCl, 2.5 mM MgCl₂, 1 µM EDTA, 1 µM diethiothreitol, 4% glycerol, 20 µg/ml salmon sperm DNA and 200 µg/ml poly-deoxyinosinic-deoxyguanylic acid. The reaction products were subjected to electrophoresis on a 4% polyacrylamide gel (29:1) in 0.5× Tris-borate-EDTA (TBE) buffer at 4°C, and detected by autoradiography. To generate EMSA probes, RT1006 primer was radiolabeled with [y-³²P]ATP in a T4 kinase reaction, annealed with excess amounts of RT1007 primer, and purified using a QIAquick nucleotide removal kit (Qiagen); RT1006, 5'-GATCTCTTTGATCAGGTCACTGTGACCTGA-3; RT1007, 5'-GATCTCTTTGATCAGGTCACTGTGACCTGA-3. To determine the protein components in the shifted complexes, fast (d) and slow (b) mobility complexes were identified by autoradiography, retrieved, and subjected to SDS-PAGE. Western analyses were performed using the mouse anti-Myc, rabbit anti-HA, anti-anti-SRC1 (abcam, ab2859, ×500), and mouse anti-SRC2 (BD Transduction Laboratories, clone 29, ×250) antibodies.

We thank Seokwoon Kim for his technical support in the beginning of this work. SRC1 and SRC2 expression plasmids were kindly provided by Jiemin Wong, and the ERR reporter construct was kindly provided by Stephen Safe. This work was supported by a grant from the National Cancer Institute (R01 CA113750-01) to R.Y.L.T.
References

Ariazi, E. A. and Jordan, V. C. (2006). Estrogen-related receptors as emerging targets in cancer and metabolic disorders. Curr. Top. Med. Chem. 6, 203-215.

Baddoo, M., Hill, K., Wilkinson, R., Gaupp, D., Hughes, C., Kopen, G. C. and Phinney, D. G. (2003). Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cell. Biochem. 89, 1235-1249.

Beekman, C., Nichane, M., De Clercq, S., Maetens, M., Floss, T., Wurst, W., Bellefroid, E. and Marine, J. C. (2006). Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development. Mol. Cell. Biol. 26, 9291-9301.

Bonnelle, E., Vanacker, J. M., Spruyt, N., Alric, S., Fournier, R., Desbiens, X. and Lauvet, D. (1997). Expression of the estrogen-related receptor 1 (ERR-1) orphan receptor during mouse development. Mech. Dev. 65, 71-85.

Bookout, A. L., Jeong, Y., Downes, M., Yu, R. T., Evans, R. M. and Mangelsdorf, D. J. (2006). Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126, 789-799.

Daigle, D. M., Rossi, L., Berghuis, A. M., Aravind, L., Koonin, E. V. and Brown, E. (2006). Nucleostemin is a GTPase with circularly permuted G-motifs and marked burst kinetics. Biochemistry 41, 11109-11117.

Du, X., Rao, M. R., Chen, X. Q., Wu, W., Mahalingam, S. and Balasundaram, D. (2006). The homologous putative GTPases Gm1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA. J. Biol. Chem. 281, 2681-2689.

Giguere, V., Yang, N., Segui, P. and Evans, R. M. (1998). Identification of a new class of steroid hormone receptors. Nature 331, 91-94.

Hentschke, M., Susens, U. and Borgmeyer, U. (2006). The homologous putative GTPases Grn1p from fission yeast and the human homologues GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA. Mol. Biol. Cell 17, 460-474.

Kallen, J., Schlaeppi, J. M., Bitsch, F., Filippuzzi, I., Schibb, A., Riou, V., Graham, A., Strauss, A., Geiser, M. and Fournier, B. (2004). Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor alpha (ERRalpha): crystal structure of ERRalpha ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1alpha. J. Biol. Chem. 279, 49330-49337.

Kallstrom, G., Hedges, J. and Johnson, A. (2003). The putative GTPases Nog1p and Lgp1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleoplasm and cytoplasm, respectively. Mol. Cell. Biol. 23, 4344-4355.

Lee, C. H., Chinpaisal, C. and Wei, L. N. (1998). Cloning and characterization of mouse RIP140, a corepressor for nuclear orphan receptor TR2. Mol. Cell. Biol. 18, 6745-6755.

Leipe, D. D., Wolf, Y. I., Koonin, E. V. and Aravind, L. (2002). Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41-72.

Luo, J., Sladek, R., Bader, J. A., Matthyssen, A., Rossant, J. and Giguere, V. (1997). Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-beta. Nature 388, 776-782.

Luo, J., Sladek, R., Carrier, J., Bader, J. A., Richard, D. and Giguere, V. (2003). Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol. Cell. Biol. 23, 7947-7956.

Meng, L., Yasumoto, H. and Tsai, R. Y. (2006). Multiple controls regulate nucleostemin partitioning between nucleolus and nucleus. J. Cell Sci. 119, 5124-5136.

Bellefroid, E. A. and Jordan, V. C. (2006). The putative GTPases Nog1p and GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA. Mol. Cell. Biol. 26, 9291-9301.

Webb, P., Anderson, C. M., Valentine, C., Nguyen, P., Marimuthu, A., West, B. L., Baxter, J. D. and Kushner, P. J. (2000). The nuclear receptor corepressor (N-CoR) contains three isoleucine motifs (I/LXXII) that serve as receptor interaction domains. Mol. Cell. Biol. 20, 9119-9128.