INDEFINITE HALMOS, EGERVARY AND SZ.-NAGY DILATIONS

K. Mahesh Krishna

1Affiliation not available

September 28, 2022
Abstract: Let \(M \) be an indefinite inner product module over a \(*\)-ring of characteristic 2. We show that every self-adjoint operator on \(M \) admits Halmos, Egervary and Sz.-Nagy dilations.

Keywords: Dilation, Indefinite inner product space, Module.

Mathematics Subject Classification (2020): 47A20, 16D10, 46C20.

1. Introduction

In 1950, Halmos [22] made a deep insight into structure theory of operators on Hilbert space by exhibiting any contraction as a part of a unitary. In 1953, Sz.-Nagy [39] showed that Halmos result can be extended to powers of contractions using a unitary operator. In 1963, T. Ando [5] showed that there is a version of Sz.-Nagy dilation for commuting contractions. Combined with spectral theory and theory of (several) complex variables, today, dilation theory of contractions is a rapidly evolving area of research and for a comprehensive look, we refer [1, 4–7, 9–16, 19–21, 27, 28, 31–37, 40–43]. Started in 1970’s, dilations of contractions acting on Lebesgue spaces and Banach spaces followed Hilbert space developments [2, 3, 17, 18, 24, 30, 38].

In 2021, by identifying essential mechanisms of dilation theory, Bhat, De and Rakshit [8] obtained surprising results in the set theory context and vector spaces. In 2022, further study in the context of vector spaces was carried by Krishna and Johnson [26]. We note that another vector space variant is also studied by Han, Larson, Liu and Liu [23]. Recently Krishna introduced the notion of magic contractions and derived Sz.-Nagy dilation for \(p \)-adic Hilbert spaces and modules [25].

In this paper, we derive indefinite inner product module versions of Halmos dilation (Theorem 2.2), Egervary N-dilation (Theorem 2.3), Sz.-Nagy dilation (Theorem 2.4). Our article is highly motivated from the paper of Halmos [22], Egervary [16], Schaffer [36], Sz.-Nagy [39], Bhat, De and Rakshit [8], Krishna and Johnson [26] and Krishna [25].

2. Indefinite Halmos, Egervary and Sz.-Nagy Dilations

We are going to use the following notions. A ring \(R \) with an automorphism \(*\) which is either identity or of order 2 is called as an \(*\)-ring. Throughout the paper we assume that characteristic of ring is 2.

Definition 2.1. [22] Let \(V \) be a module over \(R \). We say that \(V \) is an indefinite inner product module (we write IIPM) if there is a map (called as indefinite inner product) \(\langle \cdot, \cdot \rangle : V \times V \to R \) satisfying following.

(i) If \(x \in V \) is such that \(\langle x, y \rangle = 0 \) for all \(y \in V \), then \(x = 0 \).

(ii) \(\langle x, y \rangle = \langle y, x \rangle^* \) for all \(x, y \in V \).

(iii) \(\langle ax + y, z \rangle = a \langle x, z \rangle + \langle y, z \rangle \) for all \(a \in R \), for all \(x, y, z \in V \).
Let \(\mathcal{V} \) be a IIPM and \(T : \mathcal{V} \to \mathcal{V} \) be a morphism. We say that \(T \) is adjointable if there is a morphism, denoted by \(T^* : \mathcal{V} \to \mathcal{V} \) such that \(\langle Tx, y \rangle = \langle x, T^*y \rangle, \forall x, y \in \mathcal{V} \). Note that (i) in Definition 2.1 says that adjoint, if exists, is unique. An adjointable morphism \(U \) is said to be a unitary if \(UU^* = U^*U = I_{\mathcal{V}} \), the identity operator on \(\mathcal{V} \). An adjointable morphism \(P \) is said to be projection if \(P^2 = P^* = P \). An adjointable morphism \(T \) is said to be an isometry if \(T^*T = I_{\mathcal{V}} \). An adjointable morphism \(T \) is said to be self-adjoint if \(T^* = T \). We denote the identity operator on \(\mathcal{V} \) by \(I_{\mathcal{V}} \).

Our first result is the indefinite Halmos dilation.

Theorem 2.2. (Indefinite Halmos dilation) Let \(\mathcal{V} \) be a IIPM over a *-ring of characteristic 2 and \(T : \mathcal{V} \to \mathcal{V} \) be a self-adjoint morphism. Then the morphism

\[
U := \begin{pmatrix}
T & 0 & 0 & \cdots & 0 & 0 & I_{\mathcal{V}} + T \\
I_{\mathcal{V}} + T & 0 & 0 & \cdots & 0 & 0 & T \\
0 & I_{\mathcal{V}} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & I_{\mathcal{V}} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & I_{\mathcal{V}} & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & I_{\mathcal{V}} & 0 \\
\end{pmatrix}_{(N+1) \times (N+1)}
\]

is unitary on \(\oplus_{k=1}^{N+1} \mathcal{V} \). In other words,

\[
T = P_{\mathcal{V}}U|_{\mathcal{V}}, \quad T^* = P_{\mathcal{V}}U^*|_{\mathcal{V}},
\]

where \(P_{\mathcal{V}} : \oplus_{k=1}^{N+1} \mathcal{V} \ni (x_{k})_{k=1}^{N+1} \mapsto x_1 \in \mathcal{V} \).

Proof. A direct calculation says that

\[
V := \begin{pmatrix}
T & 0 & 0 & \cdots & 0 & 0 & I_{\mathcal{V}} + T \\
I_{\mathcal{V}} + T & 0 & 0 & \cdots & 0 & 0 & T \\
0 & I_{\mathcal{V}} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & I_{\mathcal{V}} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & I_{\mathcal{V}} & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & I_{\mathcal{V}} & 0 \\
\end{pmatrix}_{(N+1) \times (N+1)}
\]

is the inverse and adjoint of \(U \).

\[\square\]

Our second result is the indefinite Egervary N-dilation.

Theorem 2.3. (Indefinite Egervary N-dilation) Let \(\mathcal{V} \) be a IIPM over a *-ring of characteristic 2 and \(T : \mathcal{V} \to \mathcal{V} \) be a self-adjoint morphism. Let \(N \) be a natural number. Then the morphism

\[
U := \begin{pmatrix}
T & 0 & 0 & \cdots & 0 & 0 & I_{\mathcal{V}} + T \\
I_{\mathcal{V}} + T & 0 & 0 & \cdots & 0 & 0 & T \\
0 & I_{\mathcal{V}} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & I_{\mathcal{V}} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & I_{\mathcal{V}} & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & I_{\mathcal{V}} & 0 \\
\end{pmatrix}_{(N+1) \times (N+1)}
\]

is unitary on \(\oplus_{k=1}^{N+1} \mathcal{V} \) and

\[
T^k = P_{\mathcal{V}}U^k|_{\mathcal{V}}, \quad \forall k = 1, \ldots, N, \quad (T^*)^k = P_{\mathcal{V}}(U^*)^k|_{\mathcal{V}}, \quad \forall k = 1, \ldots, N,
\]

where \(P_{\mathcal{V}} : \oplus_{k=1}^{N+1} \mathcal{V} \ni (x_{k})_{k=1}^{N+1} \mapsto x_1 \in \mathcal{V} \).
Proof. A direct calculation of power of U gives Equation (1). To complete the proof, now we need show that U is unitary. Define

$$V := \begin{pmatrix}
T & I_V + T & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & I_V & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & I_V & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & I_V \\
I_V + T & T & 0 & \cdots & 0 & 0 & 0 \\
\end{pmatrix}_{(N+1) \times (N+1)}.$$

Then $UV = VU = I_{\oplus_{k=1}^{N+1} V}$ and $U^* = V$.

Note that the Equation (1) holds only up to N and not for $N + 1$ and higher natural numbers. In the following theorem, given a IIPM V, $\oplus_{n=-\infty}^\infty V$ is the IIPM defined by $\oplus_{n=-\infty}^\infty V := \{\{x_n\}_{n=-\infty}^\infty, x_n \in V, \forall n \in \mathbb{Z}, x_n \neq 0 \text{ only for finitely many } n's\}$ equipped with inner product

$$\langle \{x_n\}_{n=-\infty}^\infty, \{y_n\}_{n=-\infty}^\infty \rangle := \sum_{n=-\infty}^\infty \langle x_n, y_n \rangle, \ \forall \{x_n\}_{n=-\infty}^\infty, \{y_n\}_{n=-\infty}^\infty \in \oplus_{n=-\infty}^\infty V.$$

Our third result is the indefinite Sz.-Nagy dilation.

Theorem 2.4. (Indefinite Sz.-Nagy dilation) Let V be a IIPM over a *-ring of characteristic 2 and $T : V \to V$ be a self-adjoint morphism. Let $U := (u_{n,m})_{-\infty \leq n,m \leq \infty}$ be the morphism defined on $\oplus_{n=-\infty}^\infty V$ given by the infinite matrix defined as follows:

$$u_{0,0} := T, \ u_{0,1} := I_V + T, \ u_{-1,0} := I_V + T, \ u_{-1,1} := T,$$

$$u_{n,n+1} := I_V, \ \forall n \in \mathbb{Z}, n \neq 0,1, \ u_{n,m} := 0 \text{ otherwise},$$

i.e.,

$$U = \begin{pmatrix}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\cdots & I_V & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & I_V & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & I_V + T & T & 0 & \cdots \\
\cdots & 0 & 0 & 0 & I_V + T & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & I_V & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}_{\infty \times \infty}$$

where T is in the $(0,0)$ position (which is boxed), is unitary on $\oplus_{n=-\infty}^\infty V$ and

$$(T^n = P_V U^n|_V, \ \forall n \in \mathbb{N}, \ (T^*)^n = P_V (U^*)^n|_V, \ \forall n \in \mathbb{N},$$

where $P_V : \oplus_{n=-\infty}^\infty V \ni \langle x_n \rangle_{n=-\infty}^\infty \mapsto x_0 \in V.$

3
Proof. We get Equation (2) by calculation of powers of U. The matrix $V := (v_{n,m})_{-\infty \leq n,m \leq \infty}$ defined by

\begin{equation}
\begin{aligned}
v_{0,0} &:= T, \quad v_{0,-1} := I_V + T, \quad v_{1,0} := I_V + T, \quad v_{1,-1} := T, \\
v_{n,n-1} &:= I_V, \quad \forall n \in \mathbb{Z}, n \neq 0, 1, \quad v_{n,m} := 0 \quad \text{otherwise},
\end{aligned}
\end{equation}

i.e.,

$$V = \begin{pmatrix}
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & I_V & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & I_V & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & I_V + T & T & 0 & \cdots \\
\cdots & 0 & 0 & T & I_V + T & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & I_V & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}_{\infty \times \infty}
$$

where T is in the $(0,0)$ position (which is boxed), satisfies $UV = VU = I_{\oplus_{n=-\infty}^{\infty} V}$ and $U^* = V$. □

We note that explicit sequential form of U is

$$U(x_n)_{n=-\infty}^{\infty} = (\ldots, x_{-2}, x_{-1}, (I_V + T)x_0 + Tx_1, Tx_0 + (I_V + T)x_1, x_2, x_3, \ldots)$$

where $Tx_0 + (I_V + T)x_1$ is in the 0 position (which is boxed) and U^* is

$$U^*(x_n)_{n=-\infty}^{\infty} = (\ldots, x_{-3}, x_{-2}, (I_V + T)x_{-1} + Tx_0, Tx_{-1} + (I_V + T)x_0, x_1, \ldots),$$

where $(I_V + T)x_{-1} + Tx_0$ is in the 0 position (which is boxed). We next wish to derive indefinite isometric Sz.-Nagy dilation.

Theorem 2.5. (Indefinite isometric Sz.-Nagy dilation) Let \mathcal{V} be a II-PM over a *-ring of characteristic 2 and $T : \mathcal{V} \to \mathcal{V}$ be a self-adjoint morphism. Let $U := (u_{n,m})_{0 \leq n,m \leq \infty}$ be the morphism defined on $\oplus_{n=0}^{\infty} \mathcal{V}$ given by the infinite matrix defined as follows:

\begin{equation}
\begin{aligned}
u_{0,0} &:= T, \quad u_{2,1} := I_V + T, \quad u_{n+1,n} := I_V, \quad \forall n \geq 2, \quad u_{n,m} := 0 \quad \text{otherwise},
\end{aligned}
\end{equation}

i.e.,

$$U = \begin{pmatrix}
T & 0 & 0 & 0 & 0 & 0 & \cdots \\
I_V + T & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & I_V & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & I_V & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & I_V & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}_{\infty \times \infty}
$$

where T is in the $(0,0)$ position (which is boxed), is isometry on $\oplus_{n=0}^{\infty} \mathcal{V}$ and

\begin{equation}
T^n = P_{\mathcal{V}} U^n|_{\mathcal{V}}, \quad \forall n \in \mathbb{N}, \quad (T^*)^n = P_{\mathcal{V}} (U^*)^n|_{\mathcal{V}}, \quad \forall n \in \mathbb{N},
\end{equation}

where $P_{\mathcal{V}} : \oplus_{n=0}^{\infty} \mathcal{V} \ni (x_n)_{n=0}^{\infty} \mapsto x_0 \in \mathcal{V}$.
Proof. It suffices to note the adjoint of U is

$$
U^* = \begin{pmatrix}
T & I_V + T & 0 & 0 & 0 & \cdots \\
0 & 0 & I_V & 0 & 0 & \cdots \\
0 & 0 & 0 & I_V & 0 & \cdots \\
0 & 0 & 0 & 0 & I_V & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}_{\infty \times \infty}
$$

where T is in the $(0,0)$ position (which is boxed). \qed

We now formulate following problems.

Problem 2.6.

(i) **Whether there is an indefinite Ando dilation?** If yes, whether one can dilate commuting three, four, ... commuting self-adjoint morphisms to commuting unitaries?

(ii) **Whether there is (a kind of) uniqueness of indefinite Halmos dilation?**

(iii) **Whether there is a indefinite intertwining-lifting theorem (commutant lifting theorem)?**

References

[1] Jim Agler and John E. McCarthy. *Pick interpolation and Hilbert function spaces*, volume 44 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

[2] M. A. Akcoglu and L. Sucheston. Dilations of positive contractions on L_p spaces. *Canad. Math. Bull.*, 20(3):285–292, 1977.

[3] Mustafa A. Akcoglu and P. Ekkehard Kopp. Construction of dilations of positive L_p-contractions. *Math. Z.*, 155(2):119–127, 1977.

[4] C. Ambroziea and V. Muller. Commutative dilation theory. In *Operator Theory*, pages 1–29. Springer, 2015.

[5] T. Andô. On a pair of commutative contractions. *Acta Sci. Math. (Szeged)*, 24:88–90, 1963.

[6] William Arveson. Dilation theory yesterday and today. In *A glimpse at Hilbert space operators*, volume 207 of *Oper. Theory Adv. Appl.*, pages 99–123. Birkhäuser Verlag, Basel, 2010.

[7] Hari Bercovici. *Operator theory and arithmetic in H^∞*, volume 26 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 1988.

[8] B. V. Rajarama Bhat, Sandipan De, and Narayan Rakshit. A caricature of dilation theory. *Adv. Oper. Theory*, 6(4):Paper No. 63, 20, 2021.

[9] B. V. Rajarama Bhat and Mithun Mukherjee. Two states. *Houston J. Math.*, 47(1):63–95, 2021.

[10] Tirthankar Bhattacharyya. Dilation of contractive tuples: a survey. In *Surveys in analysis and operator theory (Canberra, 2001)*, volume 40 of *Proc. Centre Math. Appl. Austral. Nat. Univ.*, pages 89–126. Austral. Nat. Univ., Canberra, 2002.

[11] Man-Duen Choi and Kenneth R. Davidson. A 3×3 dilation counterexample. *Bull. Lond. Math. Soc.*, 45(3):511–519, 2013.

[12] M. J. Crabb and A. M. Davie. von Neumann’s inequality for Hilbert space operators. *Bull. London Math. Soc.*, 7:49–50, 1975.

[13] R. G. Douglas. Structure theory for operators. *I. J. Reine Angew. Math.*, 232:180–193, 1968.

[14] S. W. Drury. Remarks on von Neumann’s inequality. In *Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981)*, volume 995 of *Lecture Notes in Math.*, pages 14–32. Springer, Berlin, 1983.

[15] E. Durszt and B. Sz-Nagy. Remark to a paper: “Models for noncommuting operators” [J. Funct. Anal. 48 (1982), no. 1, 1–11] by A. E. Frazho. *J. Functional Analysis*, 52(1):146–147, 1983.
[16] E. Egerváry. On the contractive linear transformations of n-dimensional vector space. *Acta Sci. Math. (Szeged)*, 15:178–182, 1954.

[17] Stephan Fackler and Jochen Gluck. A toolkit for constructing dilations on Banach spaces. *Proc. Lond. Math. Soc. (3)*, 118(2):416–440, 2019.

[18] Gero Fendler. On dilations and transference for continuous one-parameter semigroups of positive contractions on L^p-spaces. *Ann. Univ. Sarav. Ser. Math.*, 9(1):iv+97, 1998.

[19] C. Foias, A. E. Frazho, I. Gohberg, and M. A. Kaashoek. *Metric constrained interpolation, commutant lifting and systems*, volume 100 of *Operator Theory: Advances and Applications*. Birkhäuser Verlag, Basel, 1998.

[20] Ciprian Foias and Arthur E. Frazho. *The commutant lifting approach to interpolation problems*, volume 44 of *Operator Theory: Advances and Applications*. Birkhäuser Verlag, Basel, 1990.

[21] Arthur E. Frazho. Models for noncommuting operators. *J. Functional Analysis*, 48(1):1–11, 1982.

[22] Paul R. Halmos. Normal dilations and extensions of operators. *Summa Brasil. Math.*, 2:125–134, 1950.

[23] Deguang Han, David R. Larson, Bei Liu, and Rui Liu. Structural properties of homomorphism dilation systems. *Chin. Ann. Math. Ser. B*, 41(4):585–600, 2020.

[24] Martin Kern, Rainer Nagel, and Gunther Palm. Dilations of positive operators: construction and ergodic theory. *Math. Z.*, 156(3):265–277, 1977.

[25] K. Mahesh Krishna. *p*-adic magic contractions, *p*-adic von Neumann inequality and *p*-adic Sz.-Nagy dilation. *arXiv:2209.12012v1 [math.NT]* 24 September, 2022.

[26] K. Mahesh Krishna and P. Sam Johnson. Dilations of linear maps on vector spaces. *Oper. Matrices*, 16(2):465–477, 2022.

[27] Eliash Levy and Orr Moshe Shalit. Dilation theory in finite dimensions: the possible, the impossible and the unknown. *Rocky Mountain J. Math.*, 44(1):203–221, 2014.

[28] John E. McCarthy and Orr Moshe Shalit. Unitary N-dilations for tuples of commuting matrices. *Proc. Amer. Math. Soc.*, 141(2):563–571, 2013.

[29] John Milnor and Dale Husemoller. *Symmetric bilinear forms*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73. Springer-Verlag, New York-Heidelberg, 1973.

[30] N. Th. Varopoulos. On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory. *J. Functional Analysis*, 16:83–100, 1974.