On the Incompressible Fluid Flow over the Prismatic Bodies

Khatiashvili Nino*

I. Vekua Institute of Applied Mathematics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia

*Corresponding author: ninakhata@gmail.com

Received February 10, 2022; Revised March 13, 2022; Accepted March 20, 2022

Abstract In the paper the unsteady incompressible fluid flow over the infinite and finite prismatic bodies is studied. Mathematically this problem is modeled as 3D Navier-Stokes equations (NSE) for the fluid velocity components with the appropriate initial-boundary conditions. The study of the fluid flow over the bodies with the sharp edges is the important problem of Aerodynamics and Hydrodynamics. We admit that near the sharp edges the velocity components are non-smooth. By the methods of mathematical physics the bounded novel exact solutions are obtained for the specific pressure. The profile of the velocity is plotted by means of “Maplesoft”.

Keywords: incompressible fluid flows, Navier-stokes equations, prismatic bodies

Cite This Article: Khatiashvili Nino, “On the Incompressible Fluid Flow over the Prismatic Bodies.” International Journal of Physics, vol. 10, no. 2 (2022): 93-101. doi: 10.12691/ijp-10-2-2.

1. Introduction

We study the incompressible viscous fluid flow over a prism and between two finite or infinite similar prisms. Besides, the fluid flow between two similar octahedrons is considered. This process is described by the 3D Navier-Stokes Equations (NSE) with the appropriate initial-boundary conditions. We admit that solutions can be non-smooth near sharp edges. Our goal is to obtain exact solutions of NSE in case of the specific pressure. There is no doubt how important it is to find exact solutions for the non-linear equations. Besides, they serve as tests for the numerical analysis.

Navier-Stokes equations describe a wide range of physical phenomena and were studied by numerous authors [1-22]. Many open problems are connected with NSE. The existence of smooth solutions in 3D is still the open problem [9].

NSE with the equations of heat and mass transfer plays an important role in the theory of micropolar fluids [23-36]. In some specific cases it is possible to obtain exact solutions of NSE [1-22,30-89].

Exact solutions for micropolar fluids were obtained by Crane (1970) [30]; Ahmadi, (1976) [31]; Miklavč “ic”, Wang, (2006), [32]; Hauat, Javed, Sajid, [33]; Fang, and Zhang (2009) [34]; Noor, Kechil, Hashim (2010), [35]; Khan, Qasim, Haq, Al-Mdallal (2017) [36].

Here we consider the exact solutions for incompressible viscous fluids and do not discuss the exact solutions for micropolar and Magnetohydrodynamic fluids (MHD fluids) i.e. the NSE with the Maxwell equation is not considered.
- exact vertical solutions with the Burgers vortex in \mathbb{R}^3 (Burgers 1948) are given in [39]
- exact solutions for the flow between homofocal ellipses and non-concentric circles are given in (Berker (1963), [35,44])
- Wang (1990) derived the solutions in terms of stream function for a share flow over convection cells [44,86,87]
- Polyanin (2001) has found exact solutions of incompressible NSE for the specific pressure by means of the generalized separation of variables [61]
- Tsangaris et al. (2006) derived the exact solution of the Navier-Stokes equations for the pulsating Dean flow in a channel with porous walls [81]
- Siddiqui and Iftikhar (2012) have found exact solutions for the unsteady flow of viscous fluid flow between two oscillating cylinders [73]
- Khatiashvili et al. (2013) derived exact solutions for the axi-symmetric Stokes flow over ellipsoidal bodies in the infinite channel [51,52]
- Prosviryakov (2019) obtained exact solutions of NSE in case of quadratic dependence of the velocity on two horizontal coordinates for rotating liquids [63]
- Zubarev and Prosviryakov (2019) have considered 3D unsteady incompressible fluid flow at a constant pressure and obtained polynomial and spatially localized self similar exact solutions [89]
- Sheng Yin Cheng and Falin Chen (2020) obtained exact solutions for the flow impinging obliquely on a moving flat plate [59]
- Khatiashvili (2021) has obtained non-smooth solutions for 3D fluid flow over an octahedron [53]

Here we present vortex solutions obtained in 1937 by Taylor and Green [44,77,79,80]

\[
\begin{align*}
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \Delta u, \\
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \Delta v, \\
\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \Delta w,
\end{align*}
\]

where ν is the kinematic viscosity of the fluid.

NSE is studied in the domain $D_1 = D \times [0,T]$; $0 \leq t \leq T$; $T > 0$; $(t$ is the time), where D is the infinite or finite area of \mathbb{R}^3 space with the boundary S.

In our paper NSE is studied with the specific pressure and specific initial-boundary conditions, D is \mathbb{R}^3 cut along the infinite or finite rectangular prism or the area between two similar rectangular prisms. Besides we consider the case when D is the area between two similar octahedrons.

Our goal is to obtain a new type of exact non-smooth solutions of NSE.

The results can be applied to aircrafts, submarines, underwater constructions.

2. Statement of the Problem

Let us suppose that the body force has some potential i.e. there exists the function Φ for which $F = \nabla \Phi$ and rewrite the Navier-Stokes equations (NSE) in terms of velocity components

\[
\begin{align*}
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \Delta u, \\
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \Delta v, \\
\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \Delta w,
\end{align*}
\]

where $p = p_0 - \rho \Phi$ is the dynamical pressure, p_0 is the certain constant.

We consider the system (1), (2), (3), (4) with the equation of continuity

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.
\]

The system (1), (2), (3), (4) is a basic set of equations governing the flow of an incompressible fluid. We consider this system in the area D_1 with the initial-boundary conditions

\[
\begin{align*}
u(x,y,z,0) &= u_0(x,y,z), \\
v(x,y,z,0) &= v_0(x,y,z), \\
w(x,y,z,0) &= w_0(x,y,z),
\end{align*}
\]

where $u_0(x,y,z), v_0(x,y,z), w_0(x,y,z)$ are some bounded functions.

We suppose that the pressure p has continuous derivatives of the first order except for some planes and the velocity components (u,v,w) are also non-smooth functions, i.e. we admit that if the body has sharp edges the first order derivatives of the velocity has discontinuities near these edges.

We have to solve the following problem.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{prism.png}
\caption{The prism with the axis of symmetry Oz in the Cartesian coordinates system $Oxyz$.}
\end{figure}
Problem 1. In the area \(D_1 \) to find bounded functions \((u,v,w)\) having continuous derivatives of the first order except for some planes, and satisfying the system \((1),(2),(3),(4)\) with the conditions \((5),(6)\).

3. Solutions of Problem 1. In Case of the Single Prism

Here we consider two cases

1). We suppose, \(D_1 = R^3 \setminus D_1 \) (\(D_1 \) is the infinite prism with the surface \(\alpha x + \beta y = B, B \geq 0, B \) is some given constant—Figure 1). In case of \(B = 0 \), \(D_1 \) is the axis \(0 : \{x = 0, y = 0\} \).

In 2013 we obtained a new class of solitary waves with the modulus \([54,55]\)

\[
\sin \exp(\alpha x + \beta y) = \sum_{k} R_k \exp(-\alpha_k x - \beta_k y - \gamma_k z - 2D),
\]

where \(R, \alpha, \beta, \gamma, \alpha_k, \beta_k, \gamma_k, R_k, D(D > 0); \ k = 1,2,\ldots, n; \) are some parameters, \(\exp(-5D) \) is negligible and \(\alpha^2 + \beta^2 + \gamma^2 = 4D \).

According to this in the present paper we combine the functions \(\sin \exp(\alpha x + \beta y) \) and \(\exp(\gamma z) \) in the area \([0, T] \times [0, T] \) considering the following representations

\[
u_1 = \sin x (R_1 \exp(-\alpha x - \beta y + B + \gamma t) - R_1 \exp(\gamma t)),
\]

\[
u_1 = -\sin y (R_1 \exp(-\alpha x - \beta y + B + \gamma t) - R_1 \exp(\gamma t)),
\]

\[
u_1 = R_1 \exp(-\alpha x - \beta y + B + \gamma t) - R_1 \exp(\gamma t),
\]

\(R_1, \alpha, \beta, \gamma, B \) are some real constants, \(\alpha > 0 \), \(t \) is a time \(0 \leq t \leq T \).

The functions \((7), (8), (9)\) satisfy the initial-boundary conditions

\[
u_1(x,y,0) = \sin x R_1 (\exp(-\alpha x - \beta y + B) - 1),
\]

\[
u_1(x,y,0) = -\sin y R_1 (\exp(-\alpha x - \beta y + B) - 1),
\]

\[
u_1(x,y,0) = R_1 (\exp(-\alpha x - \beta y + B) - 1),
\]

\[
u_1|_S = v_1|_S = w_1|_S = 0.
\]

If \(\gamma = 2\alpha^2 \nu \),

\[
u_0(x,y,z) = u_1(x,y,z,0),
\]

\[
u_0(x,y,z) = v_1(x,y,z,0),
\]

\[
u_0(x,y,z) = w_1(x,y,z,0)
\]

and the dynamical pressure is represented as

\[
P = p_0 + R_1 \rho \gamma (|x| + |y| + z) \exp(\gamma t) + A_1(t),
\]

\(A_1(t) \) is the continuous function of time, then the functions \(u_0, v_0, w_0 \) given by formulas \((7), (8), (9)\) are the solutions of Problem 1.

The velocity modulus will be given by the formula

\[
\nu = \sqrt{3} R_1 \exp(-\alpha x - \beta y + B + \gamma t) - \exp(\gamma t).
\]

The vortex \(\Omega(\Omega_1, \Omega_2, \Omega_3) \) in the flow will be defined by the formula \([1-22]\)

\[
\Omega_1 = \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z},
\]

\[
\Omega_2 = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x},
\]

\[
\Omega_3 = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}.
\]

According to \((7), (8), (9), (16)\) the components of the vortex in our case will be given by the formulas

\[
\Omega_1 = -\alpha R_1 \sin y \exp(-\alpha x - \beta y + B + \gamma t),
\]

\[
\Omega_2 = \alpha R_1 \sin x \exp(-\alpha x - \beta y + B + \gamma t),
\]

\[
\Omega_3 = 2 \alpha R_1 \sin y \sin x \exp(-\alpha x - \beta y + B + \gamma t).
\]

2) Now let us consider the case, when the prism \(D_1 \) moves along the axis \(0z \) vertically with the speed \(B_0(t) \), where \(B_0(t) \) is some continuous function of time. In this case if the pressure is of the form

\[
P = p_0 + R_1 \rho \gamma (|x| + |y|) \exp(\gamma t) - B_0(t) z + A_1(t),
\]

and \(\gamma = 2\alpha^2 \nu \), the solutions of the system \((1),(2),(3),(4)\) will be given by

\[
u_0 = -\sin x (R_1 \exp(-\alpha x - \beta y + B + \gamma t) - R_1 \exp(\gamma t)),
\]

\[
u_0 = -\sin y (R_1 \exp(-\alpha x - \beta y + B + \gamma t) - R_1 \exp(\gamma t)),
\]

\[
u_0 = -\sin z (R_1 \exp(-\alpha x - \beta y + B + \gamma t) - R_1 \exp(\gamma t)),
\]

\[
u_0|_S = v_0|_S = w_0|_S = 0.
\]

The functions \((17), (18), (19)\) satisfy the following initial-boundary conditions

\[
u_0(x,y,0) = \sin x R_1 (\exp(-\alpha x - \beta y + B) - 1),
\]

\[
u_0(x,y,0) = -\sin y R_1 (\exp(-\alpha x - \beta y + B) - 1),
\]

\[
u_0(x,y,0) = R_1 (\exp(-\alpha x - \beta y + B) - 1),
\]

\[
u_0|_S = v_0|_S = w_0|_S = 0.
\]

Below (Figure 2 and Figure 3) the profile of the velocity given by the formula \((15)\) is plotted for the data \(\nu = 1; \ R_1 = 1; \ B = 1; \ \alpha = 1; \ t = 0 \) and \(\nu = 1; \ R_1 = 1; \ B = 1; \ \alpha = 1; \ t = 1. \)
Figure 2. The profile of the velocity given by (15) in case of $\nu = 1; R = 1; B = 1; \alpha = 1; t = 0$

Figure 3. The profile of the velocity given by (15) in case of $\nu = 1; R = 1; B = 1; \alpha = 1; t = 1$

Remark 1. The functions (7), (8), (9) are also the solutions of NSE for the fluid flow inside the infinite prism.

Remark 2. In the author’s previous paper exact solutions for the fluid flow over the infinite prism was obtained in case of $2^2 \alpha \nu = \text{constant}$ and the pressure \[P = p_0 + R \rho \gamma (|x| + \alpha |y|) \exp(\gamma t). \] (20)

Those solutions are given by the formulas

\[u_1(x, y, z, 0) = \text{sgn } x \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) - \text{sgn } y \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) \right) \right), \]

\[v_1(x, y, z, 0) = \text{sgn } y \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) - \text{sgn } x \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) \right) \right), \]

where $w_1 = 0$.

and satisfy the initial-boundary conditions

\[u_1(x, y, z, 0) = \text{sgn } x \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) - \text{sgn } y \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) \right) \right), \]

\[v_1(x, y, z, 0) = \text{sgn } y \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) - \text{sgn } x \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) \right) \right), \]

where $w_1(x, y, z, 0) = 0$.

We note that in the paper [53] there was a misprint in the pressure representation - the pressure should be given by the formula (20).

Remark 3. Analogously, according to the previous results, we can obtain solutions of NSE in 2D for the fluid flow over the rectangle D^0_1 of xOy plane with the boundary $S^0_1 : \alpha |x| + \alpha |y| = B, B \geq 0$.

Let $D_0 = R^2 \setminus D^0_1$ be R^2 cut along the rectangle D^0_1. In D_0 we consider 2D NSE with the equation of continuity for the velocity components (u, v)

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + \nu \Delta u, \] (21)

\[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial y} + \nu \Delta v, \] (22)

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0. \] (23)

with the initial-boundary conditions

\[u(x, y, 0) = u_0(x, y), v(x, y, 0) = v_0(x, y), \] (24)

\[u(x, y, 0) = v_0(x, y), \] (25)

where $u_0(x, y), v_0(x, y)$ are some functions. It is obvious that if $\gamma = 2\alpha^2 \nu$ and the pressure is given by the formula (14), then the functions

\[u_1^0 = \text{sgn } x \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) - \text{sgn } y \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) \right) \right), \] (26)

\[v_1^0 = -\text{sgn } y \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) - \text{sgn } x \left(R_1 \exp(-\alpha |x| - \alpha |y| + B + \gamma t) \right) \right), \] (27)

are the solutions of the system (21), (22), (23) with the initial-boundary conditions

\[u_1^0(x, y, 0) = \text{sgn } x \left(R_1 \exp(-\alpha |x| - \alpha |y| + B) - 1 \right), \]

\[v_1^0(x, y, 0) = -\text{sgn } y \left(R_1 \exp(-\alpha |x| - \alpha |y| + B) - 1 \right), \]

\[u_1^0(x, y, 0) = v_1^0(x, y, 0) = 0. \]

According to (26) and (27) we can derive the stream function $\psi(x, y, t)$ by the formulas \[u = \frac{\partial \psi}{\partial y}; v = -\frac{\partial \psi}{\partial x}. \] (28)

The stream function will be given by the formula

\[\psi(x, y, t) = -\frac{R_1}{\alpha} \text{sgn } x \text{sgn } y \exp(-\alpha |x| - \alpha |y| + B + \gamma t) \]

\[-y \text{sgn } x \left(R_1 \exp(\gamma t) - x \text{sgn } y \left(R_1 \exp(\gamma t) \right) \right) \]

\[+ \text{sgn } x \text{sgn } y B_1(t), \]

where $B_1(t)$ is some function of time. Below (Figure 4 and Figure 5) the profile of the stream lines (the border of the gray area) for the stream function given by the formula (29) are constructed by means of “Maple” for the data.
\(\nu = 1; R_1 = 1; B = 1; B_1 = 5; \alpha = 1; t = 1 \).

Figure 4. The stream lines in case of \(\text{sgn } x \geq 0; \nu = 1; R_1 = 1; B_1 = 5; \alpha = 1; t = 1 \).

\(u_2(x, y, z, 0) = R_2 \text{sgn } x \sin(-\alpha |x - \alpha y| + B), \quad (33) \)

\(v_2(x, y, z, 0) = -R_2 \text{sgn } y \sin(-\alpha |x - \alpha y| + B), \quad (34) \)

\(w_2(x, y, z, 0) = R_2 \sin(-\alpha |x - \alpha y| + B), \quad (35) \)

\(u_2 |_{S_2} = v_2 |_{S_2} = w_2 |_{S_2} = 0, \quad (36) \)

where \(S_2 \) is the boundary of \(D_2, R_2 \) is some constant.

If \(\nu = -2\alpha^2 \nu \) and the dynamical pressure is represented as

\(P = A_\nu(t), \quad (37) \)

where \(A_\nu(t) \) is the continuous function of time, then the functions \(u_2, v_2, w_2 \) given by the formulas (30), (31), (32) are solutions of Problem 1.

The velocity modulus will be given by

\[|V| = \sqrt{3} R_2 |\exp(\gamma t)| \times \sin(-\alpha |x - \alpha y| + B)|. \quad (38) \]

Below (Figure 6 and Figure 7) the profile of the velocity given by the formula (38) is constructed for the data \(\nu = 1; R_1 = 1; B = 1; \alpha = 1; t = 0 \) and \(\nu = 1; R_1 = 1; B_1 = 5; \alpha = 1; t = 1 \).

Figure 5. The stream lines in case of \(\text{sgn } y < 0; \nu = 1; R_1 = 1; B_1 = 5; \alpha = 1; t = 1 \).

Figure 6. The profile of the velocity given by (38) in case of \(\nu = 1; R_1 = 1; B = 1; \alpha = 1; t = 0 \).

Figure 7. The profile of the velocity given by (38) in case of \(\nu = 1; R_1 = 1; B_1 = 5; \alpha = 1; t = 1 \).

4. Solutions of Problem 1 for the Fluid Flow Between two Infinite Similar Prisms

1). Now let us consider the fluid flow between two infinite similar rectangular prisms, i.e. in the area \(D_2 : B \leq \alpha|x| + \alpha y| \leq B + \pi, B \geq 0 \). In this case we also consider the basic set of equations (1), (2), (3), (4) with the initial-boundary conditions (5), (6).

The function \(\sin(-\alpha |x - \alpha y| + B) \) is the non-smooth solution of the Helmholtz equation [90]

\[\Delta U + 2\alpha^2 U = 0. \]

The functions

\[u_2 = R_2 \exp(\gamma t) \times \sin(-\alpha |x - \alpha y| + B), \quad (30) \]

\[v_2 = -R_2 \exp(\gamma t) \times \sin(-\alpha |x - \alpha y| + B), \quad (31) \]

\[w_2 = R_2 \exp(\gamma t) \times \sin(-\alpha |x - \alpha y| + B), \quad (32) \]

satisfy the equations (1), (2), (3), (4) and the initial-boundary conditions.
Remark 4. The functions
\begin{align*}
u_2 &= R_2 \text{sgn } x \exp(\gamma t) \times \sin(-\alpha |x|-\alpha |y| + B), \\
v_2 &= R_2 \text{sgn } y \exp(\gamma t) \times \sin(-\alpha |x|-\alpha |y| + B), \\
w_2 &= 0,
\end{align*}
\begin{align*}
u_2(x,y,z,0) &= R_2 \text{sgn } x \sin(-\alpha |x|-\alpha |y| + B), \\
v_2(x,y,z,0) &= R_2 \text{sgn } y \sin(-\alpha |x|-\alpha |y| + B), \\
w_2(x,y,z,0) &= 0,
\end{align*}

Are solutions of Problem 1. in the area \(D_2\) with the initial-boundary conditions (33), (34), (35), (36) if \(\gamma = -2\alpha^2 \nu\) and the pressure \(P\) is given by the formula (37).

Remark 5. According to the previous results we can obtain the solutions of NSE in 2D for the fluid flow between two rectangles
\[
D_2^0 : B \leq |x| + |y| \leq B + \pi, B \geq 0.
\]

The functions
\begin{align*}
u_2^0 &= R_2 \text{sgn } x \exp(\gamma t) \times \sin(-\alpha |x|-\alpha |y| + B), \quad (39) \\
v_2^0 &= R_2 \text{sgn } y \exp(\gamma t) \times \sin(-\alpha |x|-\alpha |y| + B), \quad (40)
\end{align*}
satisfy the equations (21), (22), (23) and the initial-boundary conditions
\begin{align*}
u_2^0(x,y,0) &= R_2 \text{sgn } x \sin(-\alpha |x|-\alpha |y| + B), \\
v_2^0(x,y,0) &= -R_2 \text{sgn } y \sin(-\alpha |x|-\alpha |y| + B),
\end{align*}
where \(S_2^0\) is the boundary of \(D_2^0\). If \(\gamma = -2\alpha^2 \nu\),
\[
u_0(x,y,z) = u_2^0(x,y,0), \quad v_0(x,y) = v_2^0(x,y,0),
\]
and the pressure is given by the formula \(P = A_1(t)\), then the functions (39), (40), are the solutions of Problem 1 in 2D case.

Based on the formulas (28), (39), (40) the stream function is of the form
\[
\psi(x,y,t) = \frac{R_2}{\alpha} \text{sgn } x \text{sgn } y \exp(\gamma t) \times \cos(-\alpha |x|-\alpha |y| + B) + \text{sgn } x \text{sgn } y B_1(t),
\]
where \(B_1(t)\) is some function of time.

Below Figure 8 and Figure 9 the stream lines (the border of the gray area) for the stream function given by the formula (41) are plotted for the data \(v = 1; R_2 = 1; B_1 = 0.2; \alpha = 1; t = 0\) and \(v = 1; R_2 = 1; B_1 = 1; \alpha = 1; t = 1\)

5. The Fluid Flow Between two Finite Similar Prisms and Similar Octahedrons

1) Let us consider the fluid flow between two finite similar rectangular prisms, i.e. in the area \(D_2^\ast: B_1 \leq |x| + \alpha |y| \leq B_1 + \pi; 0 \leq z \leq \pi / \beta_1\), where \(B_1 > 0\) and \(\beta_1 > 0\) are some given constants. If \(\gamma = -(2\alpha^2 + \beta^2) \nu\) and the dynamical pressure is given by the formula (28) the solutions of the system (1), (2), (3), (4) will be given by
\begin{align*}
u_3 &= R_3 \text{sgn } x \sin \beta z \exp(\gamma t) \times \sin(-\alpha |x|-\alpha |y| + B_1), \quad (42) \\
v_3 &= -R_3 \text{sgn } y \sin \beta z \exp(\gamma t) \times \sin(-\alpha |x|-\alpha |y| + B_1), \quad (43)
\end{align*}
\[
w_3 = 0, \quad (44)
\]
where
\begin{align*}
u_3(x,y,z) &= R_3 \text{sgn } x \sin \beta z \sin(-\alpha |x|-\alpha |y| + B_1), \\
v_3(x,y,z) &= -R_3 \text{sgn } y \sin \beta z \sin(-\alpha |x|-\alpha |y| + B_1),
\end{align*}
\[w_0(x, y, z) = 0, \]
\[u_3 \big|_{S_1^*} = v_3 \big|_{S_1^*} = w_3 \big|_{S_1^*} = 0, \]

\(S_1^* \) is the boundary of \(D_1^* \), \(R_3 \) is some given constant.

2) Now let us consider the fluid flow between two similar octahedrons, i.e. in the area
\(D_2^* : B_2 \leq \alpha |x| + \alpha |y| + \alpha |z| \leq B_2 + \pi, \)
where \(B_2 > 0 \) is some given constant.

If \(\gamma = -3\alpha^2 \nu \) and the dynamical pressure is given by the formula (37) the solutions of Problem 1 will be given by
\[u_4 = R_4 \text{sgn} x \exp(-\alpha x - \alpha y - \alpha z + B_2), \]
\[v_4 = -R_4 \text{sgn} y \exp(\gamma t) \times \sin(-\alpha x - \alpha y - \alpha z + B_2), \]
\[w_4 = 0, \]
where
\[u_0(x, y, z) = R_4 \text{sgn} x \sin(-\alpha x - \alpha y - \alpha z + B_2), \]
\[v_0(x, y, z) = -R_4 \text{sgn} y \sin(-\alpha x - \alpha y - \alpha z + B_2), \]
\[w_0(x, y, z) = 0, \]
\[u_4 \big|_{S_2} = v_4 \big|_{S_2} = w_4 \big|_{S_2} = 0, \]

\(S_2^* \) is the boundary of \(D_2^* \), \(R_4 \) is some given constant.

Remark 6. The exact solutions of NSE for the incompressible fluid flow over the single octahedron
\(S_{**} : \alpha |x| + \alpha |y| + \alpha |z| = B^*, B^* \geq 0, \)
was obtained by the author in [53] for the pressure which is represented by the formula (14). Those solutions are of the form
\[u = \text{sgn} x \left(R_1 \exp(-\alpha |x| - \alpha |y| - \alpha |z| + B^* + \gamma t) - R_2 \exp(\gamma t) \right), \]
\[v = -\text{sgn} y \left(R_2 \exp(-\alpha |x| - \alpha |y| - \alpha |z| + B^* + \gamma t) - R_1 \exp(\gamma t) \right), \]
\[w_1 = 0, \]
\[u_0(x, y, z, 0) = \text{sgn} x R_1 \exp(-\alpha |x| - \alpha |y| - \alpha |z| + B^*) - 1, \]
\[v_0(x, y, z, 0) = -\text{sgn} y R_2 \exp(-\alpha |x| - \alpha |y| - \alpha |z| + B^*) - 1, \]
\[w_0(x, y, z, 0) = 0; u \big|_{S_{**}} = v \big|_{S_{**}} = w \big|_{S_{**}} = 0. \]

Remark 7. Repeating octahedrons and tetrahedrons structures were constructed by Buckminster Fuller as a tensegrity structures (the strongest structures which resist cantilever stresses) [91].

6. Discussions

In this paper we do not discuss the uniqueness of the solution of Problem 1. It is still an open question.

In the future, we plan to obtain exact solutions for the incompressible fluid flows over the bodies with the more complicated configuration in \(R^2 \) and \(R^3 \).

7. Conclusion

Hence, we obtain the new type of non-smooth exact solutions of 3D NSE for the incompressible fluid flow in \(R^3 \) over the infinite rectangular prism, between two infinite rectangular prisms, between two finite rectangular prisms and between two similar octahedrons:

1. If the pressure is represented by the formula (14), then the components of the velocity of the fluid flow over the infinite prism are given by the formulas (7), (8), (9).
2. If the pressure is represented by the formula (37), then the components of the velocity of the incompressible fluid flow between two infinite similar prisms are given by the formulas (30), (31), (32) and between two similar finite prisms are given by the formulas (42), (43), (44).

Acknowledgements

I am grateful to the unknown referee and Mrs. Tsitsino Gabeskira for the useful remarks.

References

[1] Batchelor, G.K., *An Introduction to Fluid Dynamics*, Cambridge Univ. Press, Cambridge, 2000.
[2] Cermak, J.E., Cochran, L.S., “Physical modeling of the atmospheric surface layer”, *J. Wind Eng. Ind. Aerodyn.*, 41, 935-946, 1992.
[3] Chacon-Revollo, T., Lewandowski R., *Mathematical and numerical foundations of turbulence models and applications*, in: *Modeling and Simulation in Science, Engineering and Technology*, Springer, New-York, 2014.
[4] Chorin, A.J., Marsden, J.E., *A Mathematical Introduction to Fluid Mechanics*, 2-nd ed., Springer, NY, 1984.
[5] Constantini, P., Foias, C., *Navier-Stokes equations*, Chicago Lectures in Mathematics. University of Chicago Press, 1988.
[6] Kim, S., Karrila, S., *Microhydrodynamics: Principles and Selected Applications*, Dover, 2005.
[7] Kirby, B.J., *Micro and Nanoscale Fluid Mechanics in Microfluidic Devices*, Cambridge University Press, 2010.
[8] Ladyzhenskaya, O.A., *The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications*. 2nd Ed., Gordon and Breach, 1969.
[9] Ladyzhenskaya, O.A. “The Sixth Millennium Problem: Navier-Stokes Equations, Existence and Smoothness”, *Russ. Math. Surv.*, 58 (2), 251-286. 2003.
[10] Lamb Horace, *Hydrodynamics* (Sixth ed.), Dover, NY, 1945.
[11] Landay, L.D., Lifshitz, E.M., *Fluid Mechanics*, Course of Theoretical Physics. 6, Pergamon Press, 1987.
[12] Lautrup, B., *Physics of Continuous Matter*, Second Edition: Exotic and Everyday Phenomena in the Macroscopic World, Second Ed., CRC Press, 2011.
[13] Lavrentiev, M.A., Shabat, B.V., *Problems of hydrodynamics and their mathematical Models* (Russian), Nauka, Moskow, 1977.
[66] Rao, A. R., Kasiviswanathan, S. R., “On exact solutions of the unsteady Navier-Stokes equation the vortex with instantaneous curvilinear axis”, International Journal of Engineering Science. 25. 337-349. 1987.

[67] Rayleigh, Lord., “On the motion of solid bodies through viscous liquid”, Phil. Mag. 21, 697-711. 1911.

[68] Riabouchinsky, D., Mémoires sur la Mécanique des Fluides. Offerts à M. Dimitri, P. Riabouchinsky. Publications Scientifiques et Techniques du Ministère de l’Air, Paris, 1954.

[69] Rosenhead, L., “The steady two-dimensional radial flow of viscous fluid between two inclined plane walls,” Proceedings of the Royal Society of London A: Mathematical Physical and Engineering Sciences, The Royal Society, 963- 175. 1940.

[70] Rott, N., “Unsteady viscous flow in the vicinity of a stagnation point”, Q. Appl. Maths. 444-451. 1956.

[71] Sheng Yin Cheng, Falin Chen, “On the stagnation point position of the flow impinging obliquely on a moving flat plate”, J.Fluid Mech, 889. 2020.

[72] Siddiqui, A.M., M. R. Mohyuddin, M.R., Hayat, T, and Asghar, S, “Some more inverse solutions for steady flows of a second-grade fluid,” Archives of Mechanics, 55(4). 373-387. 2003.

[73] Siddiqui, A. M., Bikhari, S., “Unsteady flow of a viscous fluid between two oscillating cylinders”, Appl. Math. Inf. Sci. 6 (3). 483-489. 2012.

[74] Squire, H. B., “The round laminar jet”, The Quarterly J. of Mechanics and Applied Mathematics, 4(3). 321-329. 1951.

[75] Stokes, G. G., “On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids”, Transactions of the Cambridge Philosophical Society, 8. 287-341. 1845.

[76] Stokes, G.G., “On the steady motion of incompressible fluids”. Transactions of the Cambridge Philosophical Society: 7, Mathematical and Physical Papers, Cambridge University Press. 75-129. 1880.

[77] Taylor, G.L., “Motion of solids in fluids when the flow is not irrotational”, Proc. R. Soc. Lond. A. 93. 92-113. 1917.

[78] Taylor, G.L., “Stability of a viscous liquid containing between two rotating cylinders”, Philosophical Transactions of the Royal Society of London. Series A, 223, 605-615. 289-343.1923.

[79] Taylor, G.I., “On the decay of vortices in a viscous fluid,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 46.274, 671-674.1923.

[80] Taylor, G.I. and Green, A.E., “Mechanism of the Production of Small Eddies from Large Ones”, Proc. R. Soc. Lond. A, 158. 499-521. 1937.

[81] Tsangaris, S., Kondaxakis, D., Vlachakis, N. W., “Exact solution for flow in a porous pipe with unsteady wall suction and/or injection”, Commun. Nonlinear Sci. Numer. Simul., 12. 1181-1189. 2007.

[82] Tsien Hsue-Shen., “Symmetrical Joukowsky Airfoils in shear flow”, Quarterly of Applied Mathematics, 1: 130-48.1943.

[83] Yatseyev, V. I., “About a class of exact solutions of viscous fluid equations of motion”, Zhurnal Tekhnicheskoi Fiziki, 20 (11). 1031-1034. 1950.

[84] Yih, C.S., Wu, F., Garg, A. K., and Leibovich, S., “Conical vortices: a class of exact solutions of the Navier-Stokes equations”, Phys. Fluids, 25(12). 2147-2158. 1982.

[85] Waleed, S. K., “Classical Fundamental Unique Solution for the Incompressible Navier-Stokes Equation in RN”, J. Appl. Math. and Physics, 5(4). 30-40. 2017.

[86] Wang, C. Y., “Exact solutions of the steady-state Navier-Stokes equations”, Annual Review of Fluid Mechanics, 23. 159-177. 1991.

[87] Wang, C. Y., “Flow due to a stretching boundary with partial slip an exact solution of the Navier-Stokes equations”, Chem. Eng. Sci., 57. 3745-3747. 2002.

[88] Zeb, A., Siddiqui, A.M., Ahmed, M., “An Analysis of the Flow of a Newtonian Fluid Between Two Moving Parallel Plates”, International Scholarly Research Notices, 2013.

[89] Zubarev, N.M., Prosviryakov, E.Y., “Exact Solutions for Layered Three Dimensional Nonstationary Isobaric Flows of a Viscous Incompressible Fluid”, J. Appl.Mech. and Thechnical Physics, 60(6), 1031-1037. 2019.

[90] Khattashvili, N., Konurjishvili, O., Papakashvili, A., Shandize, R, et, al., “On Some Mathematical Models of Growth of Solid Crystals and Nanowires”, Bulletin of TICMI, 17(1). 28-48, 2013.

[91] Sieden, L.S., Buckminster Fuller’s Universe: His Life and Work. Perseus Books Group, New York, 2000.