The extended oloid and its inscribed quadrics

Uwe Bäsel and Hans Dirnböck

Abstract

The oloid is the convex hull of two circles with equal radius in perpendicular planes so that the center of each circle lies on the other circle. It is part of a developable surface which we call extended oloid. We determine the tangential system of all inscribed quadrics Q_λ of the extended oloid O where λ is the system parameter. From this result we conclude parameter equations of the touching curve C_λ between O and Q_λ, the edge of regression R of O, and the asymptotes of R. Properties of the curves C_λ are investigated, including the case that $\lambda \to \pm \infty$. The self-polar tetrahedron of the tangential system Q_λ is obtained. The common generating lines of O and any ruled surface Q_λ are determined. Furthermore, we derive the curves which are the images of C_λ and R when O is developed onto the plane.

Mathematics Subject Classification: 51N05, 53A05

Keywords: oloid, extended oloid, developable, tangential system of quadrics, touching curve, edge of regression, self-polar tetrahedron, ruled surface

1 Introduction

The oloid was discovered by Paul Schatz in 1929. It is the convex hull of two circles with equal radius r in perpendicular planes so that the center of each circle lies on the other circle. The oloid has the remarkable properties that it develops its entire surface while rolling, and its surface area is equal to $4\pi r^2$. The surface of the oloid is part of a developable surface. [2], [5]

In the following this developable surface is called extended oloid. According to [2] pp. 105-106], with $r = 1$ the circles can be defined by

\[
 k_A := \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + (y + \frac{1}{2})^2 = 1 \land z = 0 \right\},
\]

\[
 k_B := \left\{ (x, y, z) \in \mathbb{R}^3 \mid (y - \frac{1}{2})^2 + z^2 = 1 \land x = 0 \right\}.
\]

In this case we denote the extended oloid by O (see Fig. [1]).

Now we introduce homogeneous coordinates x_0, x_1, x_2, x_3 with

\[x = \frac{x_1}{x_0}, \quad y = \frac{x_2}{x_0}, \quad z = \frac{x_3}{x_0}. \]
Then the real projective space is given by
\[
P_3(\mathbb{R}) = \left\{ [x_0, x_1, x_2, x_3] \mid (x_0, x_1, x_2, x_3) \in \mathbb{R}^4 \setminus \{0\} \right\},
\]
where \([x_0, x_1, x_2, x_3] = [y_0, y_1, y_2, y_3]\) if there exist a \(\mu \in \mathbb{R} \setminus \{0\}\) such that \(x_j = \mu y_j\) for \(j = 1, 2, 3\). Should it prove necessary, complex coordinates will be used instead of the real ones. For the description of the corresponding projective circles \(K_A\) and \(K_B\) to \(k_A\) and \(k_B\), respectively, we write
\[
K_A := \left\{ [x_0, x_1, x_2, x_3] \in P_3(\mathbb{R}) \mid \varphi_A(x_0, x_1, x_2, x_3) = 0 \land x_3 = 0 \right\},
\]
\[
K_B := \left\{ [x_0, x_1, x_2, x_3] \in P_3(\mathbb{R}) \mid \varphi_B(x_0, x_1, x_2, x_3) = 0 \land x_1 = 0 \right\}
\]
with
\[
\varphi_A(x_0, x_1, x_2, x_3) = 3x_0^2 - 4x_0x_2 - 4x_1^2 - 4x_2^2,
\]
\[
\varphi_B(x_0, x_1, x_2, x_3) = 3x_0^2 + 4x_0x_2 - 4x_1^2 - 4x_2^2.
\]

2 Inscribed quadrics

Lemma 1. The dual figures to \(K_A\) and \(K_B\) are
\[
\hat{K}_A = \left\{ [u_0, u_1, u_2, u_3] \in P_3(\mathbb{R}) \mid 4u_0^2 - 4u_0u_2 - 4u_1^2 - 3u_2^2 = 0 \right\}
\]
and
\[
\hat{K}_B = \left\{ [u_0, u_1, u_2, u_3] \in P_3(\mathbb{R}) \mid 4u_0^2 + 4u_0u_2 - 3u_2^2 - 4u_3^2 = 0 \right\}.
\]
respectively, where \(u_0, u_1, u_2, u_3 \) are homogeneous plane-coordinates. \(\hat{K}_A \) and \(\hat{K}_B \) are elliptic cylinders. Their respective non homogeneous equations are

\[
\frac{u^2}{\left(2\sqrt{3}\right)^2} + \frac{(v + \frac{2}{3})^2}{(\frac{4}{3})^2} = 1 \land -\infty < w < \infty ,
\]

and

\[
-\infty < u < \infty \land \frac{(v - \frac{2}{3})^2}{(\frac{4}{3})^2} + \frac{w^2}{\left(2\sqrt{3}\right)^2} = 1 .
\]

Proof. Following [3, pp. 41-42], [4, pp. 160, 164-165], we determine \(\hat{K}_A \).

With \(\mu u_i = \frac{\partial \varphi_A}{\partial x_i}, \ i \in \{0, 1, 2, 3\} \),

we get

\[
\mu u_0 = 6x_0 - 4x_2, \ \mu u_1 = -8x_1, \ \mu u_2 = -4x_0 - 8x_2, \ \mu u_3 = 0 .
\]

Solving this system of linear equations for \(x_0, x_1, x_2 \) delivers

\[
x_0 = \mu \left(\frac{1}{8} u_0 - \frac{1}{16} u_2\right), \ x_1 = \mu \left(-\frac{1}{8} u_1\right), \ x_2 = \mu \left(-\frac{1}{16} u_0 - \frac{3}{32} u_2\right) .
\]

So we get

\[
0 = u_0 x_0 + u_1 x_1 + u_2 x_2 + u_3 x_3 = \frac{1}{32} \mu \left(4u_0^2 - 4u_0 u_2 - 4u_1^2 - 3u_2^2\right) ;
\]

hence

\[
\hat{K}_A := \{[u_0, u_1, u_2, u_3] \in \mathbb{P}_3(\mathbb{R}) \mid 4u_0^2 - 4u_0 u_2 - 4u_1^2 - 3u_2^2 = 0\} .
\]

Analogously, one finds \(\hat{K}_B \) from \(K_B \). With \(u_0 = 0, u_1 = u, u_2 = v, u_3 = w \),

the non homogeneous polynomials for \(\hat{K}_A \) and \(\hat{K}_B \) follow immediately. \(\square \)

Remark 1. The equations \(4u_0^2 - 4u_0 u_2 - 4u_1^2 - 3u_2^2 = 0 \) and \(4u_0^2 + 4u_0 u_2 - 3u_2^2 - 4u_3^2 = 0 \) of \(\hat{K}_A \) and \(\hat{K}_B \), respectively, were already given in [2] p. 115.

Theorem 1. The inscribed quadrics of the extended oloid \(O \) are given by

\[
Q_\lambda = \{(x, y, z) \in \mathbb{R}^3 \mid f_\lambda(x, y, z) = 0\}
\]

with

\[
f_\lambda(x, y, z) = \frac{x^2}{1-\lambda} + \frac{(y - \lambda + \frac{1}{2})^2}{1-\lambda + \lambda^2} + \frac{z^2}{\lambda} - 1 .
\]
Proof. For abbreviation we put

\[F_0(\bar{u}) := 4u_0^2 - 4u_0u_2 - 4u_1^2 - 3u_2^2, \quad F_1(\bar{u}) := 4u_0^2 + 4u_0u_2 - 3u_2^2 - 4u_3^2 \]

with \(\bar{u} := [u_0, u_1, u_2, u_3] \). Then

\[\tilde{F}_\lambda := \{ \bar{u} \in \mathbb{P}_3(\mathbb{R}) \mid F_\lambda(\bar{u}) = 0 \} \]

with

\[F_\lambda(\bar{u}) := (1 - \lambda) F_0(\bar{u}) + \lambda F_1(\bar{u}) \]

defines a tangential system of quadrics in plane-coordinates (cp. [6, p. 253]). Now we shall determine the point-coordinate representation \(F_\lambda \) of \(\tilde{F}_\lambda \). Due to duality (see [4, p. 163]) we have

\[\sigma x_j = \frac{\partial F_\lambda(\bar{u})}{\partial u_j} = (1 - \lambda) \frac{\partial F_0(\bar{u})}{\partial u_j} + \lambda \frac{\partial F_1(\bar{u})}{\partial u_j}, \quad j = 0, 1, 2, 3. \]

The calculation of the partial derivatives yields

\[\sigma x_0 = (1 - \lambda)(8u_0 - 4u_2) + \lambda(8u_0 + 4u_2) = 8u_0 + 4(2\lambda - 1)u_2, \]

\[\sigma x_1 = -8(1 - \lambda)u_1, \]

\[\sigma x_2 = (1 - \lambda)(-4u_0 - 6u_2) + \lambda(4u_0 - 6u_2) = 4(2\lambda - 1)u_1 - 6u_2, \]

\[\sigma x_3 = -8\lambda u_3. \]

Solving this system of linear equations for \(u_0, \ldots, u_3 \) delivers

\[u_0 = \frac{3x_0 - 2(1 - 2\lambda)x_2}{32(1 - \lambda + \lambda^2)}, \quad u_1 = -\frac{x_1}{8(1 - \lambda)}, \]

\[u_2 = -\frac{(1 - 2\lambda)x_0 + 2x_2}{16(1 - \lambda + \lambda^2)}, \quad u_3 = -\frac{x_3}{8\lambda}. \]

So we find

\[0 = \sum_{i=0}^{3} x_i u_i = -\frac{\sigma}{32} \left(\frac{4x_1^2}{1 - \lambda} + \frac{4(x_1^2 + (1 - 2\lambda)x_0 x_2)}{1 - \lambda + \lambda^2} - 3x_0^2 + \frac{4x_3^2}{\lambda} \right) \]

\[= -\frac{\sigma}{8} \left(\frac{x_1^2}{1 - \lambda} + \frac{(x_2 + (\frac{1}{2} - \lambda)x_0)^2}{1 - \lambda + \lambda^2} + \frac{x_3^2}{\lambda} - x_0^2 \right), \]

and therefore

\[F_\lambda = \{ [x_0, x_1, x_2, x_3] \in \mathbb{P}_3(\mathbb{R}) \mid \tilde{f}_\lambda(x_0, x_1, x_2, x_3) = 0 \} \]

with

\[\tilde{f}_\lambda(x_0, x_1, x_2, x_3) = \frac{x_1^2}{1 - \lambda} + \frac{(x_2 + (\frac{1}{2} - \lambda)x_0)^2}{1 - \lambda + \lambda^2} + \frac{x_3^2}{\lambda} - x_0^2. \quad (1) \]
Finally, we write the representation of F_{λ} in non homogeneous coordinates x, y, z with $x_0 = 1, x_1 = x, x_2 = y, x_3 = z$ as

$$Q_{\lambda} = \{(x, y, z) \in \mathbb{R}^3 \mid f_{\lambda}(x, y, z) = 0\},$$

where

$$f_{\lambda}(x, y, z) = \frac{x^2}{1 - \lambda} + \frac{(y - \lambda + \frac{1}{2})^2}{1 - \lambda + \lambda^2} + \frac{z^2}{\lambda} - 1.$$

Now we classify the quadrics Q_{λ} with real parameter λ in Euclidean space. We start with the case that λ tends to $\pm \infty$. One finds

$$\lim_{\lambda \to \pm \infty} f_{\lambda}(x, y, z) = 0.$$

So we consider $\lambda \cdot f_{\lambda}$ instead of f_{λ} and find

$$\lim_{\lambda \to \pm \infty} \lambda \cdot \frac{x^2}{1 - \lambda} = \lim_{\lambda \to \pm \infty} \frac{x^2}{\lambda} - 1 = -x^2, \quad \lim_{\lambda \to \pm \infty} \lambda \cdot \frac{z^2}{\lambda} = z^2,$$

$$\lim_{\lambda \to \pm \infty} \lambda \cdot \left(\frac{(y - \lambda + \frac{1}{2})^2}{1 - \lambda + \lambda^2} - 1\right) = \lim_{\lambda \to \pm \infty} \frac{\lambda(y^2 + y - \frac{3}{4}) - 2\lambda^2y}{1 - \lambda + \lambda^2}$$

$$= \lim_{\lambda \to \pm \infty} \frac{1}{\lambda} \cdot \frac{(y^2 + y - \frac{3}{4}) - 2y}{1 - \frac{1}{\lambda} + 1} = -2y;$$

hence

$$\lim_{\lambda \to \pm \infty} \lambda f_{\lambda}(x, y, z) = -x^2 + z^2 - 2y.$$

In order to abbreviate notation we put $a^2 := |1 - \lambda|, b^2 := 1 - \lambda + \lambda^2 > 0$ for every $\lambda \in \mathbb{R}, c^2 := |\lambda|$. So we have the quadrics Q_{λ} in the following table:

λ	$x^2 - z^2 + 2y = 0$	Hyperbolic paraboloid
$\mathbb{R} \ni \lambda < 0$	$\frac{x^2}{a^2} + \frac{(y - \lambda + \frac{1}{2})^2}{b^2} - \frac{z^2}{c^2} = 1$	Hyperboloid of one sheet
$\lambda = 0$	$x^2 + (y + \frac{1}{2})^2 = 1 \land z = 0$	Circle k_A
$0 < \lambda < 1$	$\frac{x^2}{a^2} + \frac{(y - \lambda + \frac{1}{2})^2}{b^2} + \frac{z^2}{c^2} = 1$	Ellipsoid
$\lambda = 1$	$\frac{(y - \frac{1}{2})^2}{b^2} + \frac{z^2}{c^2} - \frac{x^2}{a^2} = 1$	Circle k_B
$\mathbb{R} \ni \lambda > 1$	$\frac{(y - \lambda + \frac{1}{2})^2}{b^2} + \frac{z^2}{c^2} - \frac{x^2}{a^2} = 1$	Hyperboloid of one sheet
$\lambda = \infty$	$x^2 - z^2 + 2y = 0$	Hyperbolic paraboloid
A point of the circle k_A is given by

$$A = (\alpha_1(t), \alpha_2(t), \alpha_3(t))$$

with

$$\alpha_1(t) = \sin t, \quad \alpha_2(t) = -\frac{1}{2} - \cos t, \quad \alpha_3(t) = 0.$$

There are two points B_1, B_2 of the circle k_B which have common generating lines AB_1 and AB_2, respectively, with A:

$$B_1 = (\beta_1(t), \beta_2(t), \beta_3(t)) \quad B_2 = (\beta_1(t), \beta_2(t), -\beta_3(t)),$$

where

$$\beta_1(t) = 0, \quad \beta_2(t) = \frac{1}{2} - \frac{\cos t}{1 + \cos t}, \quad \beta_3(t) = \frac{\sqrt{1 + 2 \cos t}}{1 + \cos t}$$

(see [2, pp. 106-107]). Hence, for fixed $t \in [-2\pi/3, 2\pi/3]$, parametric functions of a line AB_1 are

$$\omega_i(m, t) := (1 - m)\alpha_i(t) + m\beta_i(t), \quad m \in \mathbb{R}, \quad i = 1, 2, 3.$$

One finds

$$\omega_1(m, t) = (1 - m)\sin t,$$

$$\omega_2(m, t) = \frac{2(m - 1)\cos^2 t + (2m - 3)\cos t + 2m - 1}{2(1 + \cos t)},$$

$$\omega_3(m, t) = \frac{m \sqrt{1 + 2 \cos t}}{1 + \cos t}. \quad \Box (2)$$

It follows that

1) $x = \omega_1(m, t), \quad y = \omega_2(m, t), \quad z = \omega_3(m, t),$

2) $x = \omega_1(m, t), \quad y = \omega_2(m, t), \quad z = -\omega_3(m, t),$

are the parametric equations of all generating lines of O, hence a parametrisation of O. The restriction of the parameter m to the interval $[0, 1]$ yields the oloid in the narrow sense as the convex hull of k_A and k_B.

In the following, we need the intervals

$$I_1 := \left[-\frac{2\pi}{3}, \frac{2\pi}{3}\right], \quad I_2 := \left(\frac{2\pi}{3}, 2\pi\right), \quad \Box (3)$$

and the planes

$$\mathcal{X} := \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\}, \quad \mathcal{Y} := \{(x, y, z) \in \mathbb{R}^3 \mid y = 0\},$$

$$\mathcal{Z} := \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}.$$
Corollary 1. For fixed value of $\lambda \in \mathbb{R}$, a parametrization of the touching curve C_λ between O and Q_λ is given by

$$\gamma(\lambda, \cdot) : I_1 \cup I_2 \rightarrow \mathbb{R}^3, \quad t \mapsto \gamma(\lambda, t) = \begin{cases} \gamma_1(\lambda, t) & \text{if } t \in I_1, \\ \gamma_2(\lambda, t) & \text{if } t \in I_2, \end{cases}$$

with

$$\gamma_1(\lambda, t) = (\kappa_1(\lambda, t), \kappa_2(\lambda, t), \kappa_3(\lambda, t)),$$

$$\gamma_2(\lambda, t) = \left(\kappa_1(\lambda, \frac{4\pi}{3} - t), \kappa_2(\lambda, \frac{4\pi}{3} - t), -\kappa_3(\lambda, \frac{4\pi}{3} - t) \right),$$

where

$$\kappa_1(\lambda, t) = \frac{(1 - \lambda) \sin t}{1 + \lambda \cos t}, \quad \kappa_2(\lambda, t) = \frac{2\lambda - 1 + (\lambda - 2) \cos t}{2(1 + \lambda \cos t)},$$

$$\kappa_3(\lambda, t) = \frac{\lambda \sqrt{1 + 2 \cos t}}{1 + \lambda \cos t}.$$

Proof. For fixed value of t the generating line

$$L_t := \{ (x, y, z) \in \mathbb{R}^3 \mid x = \omega_1(m, t), y = \omega_2(m, t), z = \omega_3(m, t); m \in \mathbb{R} \}$$

of O is tangent to Q_λ for one value \tilde{m} of m. As double solution of the equation

$$f_\lambda(\omega_1(m, t), \omega_2(m, t), \omega_3(m, t)) = 0$$

one finds

$$\tilde{m} = \psi(\lambda, t) := \frac{\lambda(1 + \cos t)}{1 + \lambda \cos t}.$$

It follows that

$$\omega_1(\psi(\lambda, t), t) = \frac{(1 - \lambda) \sin t}{1 + \lambda \cos t}, \quad \omega_2(\psi(\lambda, t), t) = \frac{2\lambda - 1 + (\lambda - 2) \cos t}{2(1 + \lambda \cos t)},$$

$$\omega_3(\psi(\lambda, t), t) = \frac{\lambda \sqrt{1 + 2 \cos t}}{1 + \lambda \cos t}.$$

We put $\kappa_j(\lambda, t) := \omega_j(\psi(\lambda, t), t), j = 1, 2, 3$. This yields

$$\gamma_1(\lambda, t) := (\kappa_1(\lambda, t), \kappa_2(\lambda, t), \kappa_3(\lambda, t))$$

as contact point of L_t and Q_λ for all lines L_t with $t \in I_1$. Due to the symmetry of O with respect to the plane Z, we have

$$\gamma_2(\lambda, t) := (\kappa_1(\lambda, \frac{4\pi}{3} - t), \kappa_2(\lambda, \frac{4\pi}{3} - t), -\kappa_3(\lambda, \frac{4\pi}{3} - t))$$

if $t \in I_2$. Obviously,

$$\gamma_2(\lambda, 2\pi/3) = \gamma_1(\lambda, 2\pi/3) \quad \text{and} \quad \gamma_2(\lambda, 2\pi) = \gamma_1(\lambda, -2\pi/3)$$

for every $\lambda \in \mathbb{R}$. □
Examples with inscribed quadric and touching curves are shown in Fig. 2 and Fig. [3]

Remark 2. In the special case \(\lambda = 1/2 \) one gets the equations

\[
x = \frac{\sin t}{2 + \cos t}; \quad y = -\frac{3 \cos t}{2(2 + \cos t)}; \quad z = \pm \frac{\sqrt{1 + 2 \cos t}}{2 + \cos t}
\]

of the inscribed ellipsoid in [2, p. 115, Eq. (27)].

3 Properties of the touching curves \(\mathcal{C}_\lambda \)

Since \(f_\lambda(-x, y, z) = f_\lambda(x, y, z) \) and \(f_\lambda(x, y, -z) = f_\lambda(x, y, z) \), every quadric \(Q_\lambda \) is symmetric with respect to \(X \) and \(Z \). The extended oloid \(O \) is symmetric with respect to these planes, too. It follows that all touching curves \(\mathcal{C}_\lambda \) are symmetric with respect to \(X \) and \(Z \). We denote by \(X_1, X_2 \) the intersection points of \(\mathcal{C}_\lambda \) and \(X \), and by \(Z_1, Z_2 \) those of \(\mathcal{C}_\lambda \) and \(Z \), and find

\[
X_1 = X_1(\lambda) = \gamma(\lambda, 0) = \left(0, -\frac{3(1-\lambda)}{2(1+\lambda)}, \frac{\sqrt{3}\lambda}{1+\lambda} \right),
\]

\[
Z_1 = Z_1(\lambda) = \gamma(\lambda, \frac{2\pi}{3}) = \left(\frac{\sqrt{3}(1-\lambda)}{2-\lambda}, \frac{3\lambda}{2(2-\lambda)}, 0 \right),
\]

\[
X_2 = X_2(\lambda) = \gamma(\lambda, \frac{4\pi}{3}) = \left(0, -\frac{3(1-\lambda)}{2(1+\lambda)}, -\frac{\sqrt{3}\lambda}{1+\lambda} \right),
\]

\[
Z_2 = Z_2(\lambda) = \gamma(\lambda, 2\pi) = \left(-\frac{\sqrt{3}(1-\lambda)}{2-\lambda}, \frac{3\lambda}{2(2-\lambda)}, 0 \right).
\]

One easily finds the parametrization \(\mathcal{T}_\lambda \) for the tangent of \(\mathcal{C}_\lambda \) in the point \(\gamma(\lambda, t) \):

\[
\mathcal{T}_\lambda(t) = \begin{cases}
(0, \tau_1(\lambda, t, \mu), \tau_2(\lambda, t, \mu)) : \mu \in \mathbb{R} & \text{if } t \in I_1, \\
(0, \tau_1(\lambda, \frac{4\pi}{3}-t, \mu), \tau_2(\lambda, \frac{4\pi}{3}-t, \mu)) : \mu \in \mathbb{R} & \text{if } t \in I_2,
\end{cases}
\]

with

\[
\tau_j(\lambda, t, \mu) = \kappa_j(\lambda, t) + \mu \dot{\kappa}_j(\lambda, t), \quad \dot{\kappa}_j = \frac{d\kappa_j(\lambda, t)}{dt}, \quad j = 1, 2, 3,
\]

where

\[
\dot{\kappa}_1(\lambda, t) = \frac{(1-\lambda)(1-\cos t)}{1+\lambda(1+\cos t)^2}, \quad \dot{\kappa}_2(\lambda, t) = \frac{(1-\lambda+\lambda^2)\sin t}{1+\lambda(1+\cos t)^2},
\]

\[
\dot{\kappa}_3(\lambda, t) = \frac{\lambda[\lambda(1+\cos t)-1]\sin t}{(1+\lambda(1+\cos t)^2)^2}. \sqrt{1+2\cos t}.
\]
Fig. 2: Touching curves C_{λ}, $\lambda = 0, 0.1, 0.2, \ldots, 0.9, 1$, and ellipsoid $Q_{0.3}$ in the box $-1.5 \leq x, y, z \leq 1.5$; $C_{0.3}$ with dashed line.

Fig. 3: Extended oloid O (left) and hyperboloid Q_4 (right) with touching curve C_4 (solid lines) and common generating lines $G_j(4)$, $j = 1, 2, 3, 4$, (dashed) in the box $-4 \leq x, y, z \leq 4$.

9
We consider the function $1 + \lambda \cos t$ in the denominator of $\kappa_1, \kappa_2, \kappa_3$. It vanishes in the interval I_1 for $t = \pm \arccos(-1/\lambda)$ if $\lambda \in \mathbb{R} \setminus (-1, 2)$. (For $\lambda = -1$, we have $t = 0$; and for $\lambda = 2$, $t = \pm 2\pi/3$.) $1 + \lambda \cos t$ has no zeros in I_1 if $\lambda \in (-1, 2)$. Therefore, $\kappa_1, \kappa_2, \kappa_3$ are continuous functions if $\lambda \in (-1, 2)$; they are not continuous if $\lambda \in \mathbb{R} \setminus (-1, 2)$. So we have to distinguish the following cases:

Case 1: $-1 < \lambda < 2$ Since $\kappa_1, \kappa_2, \kappa_3$ are continuous functions, and
\[
\gamma_2(\lambda, 2\pi/3) = \frac{1}{Z_1(\lambda)} = \frac{1}{\gamma_1(\lambda, 2\pi/3)}, \quad \gamma_2(\lambda, 2\pi) = \frac{1}{Z_2(\lambda)} = \frac{1}{\gamma_1(\lambda, -2\pi/3)},
\]
the curve C_λ is closed (see Fig. [2]). As an example with $\lambda \notin [0, 1]$, Fig. [7] shows two projections of $C_{-0.87}$. The projection of $C_{-0.87}$ onto the plane \mathcal{X} (thick line in the diagram on the left of Fig. [7]) is part of the left branch of the hyperbola with center point $y = 29831/49938 \approx 0.597$, $z = 0$.

Case 2: $\lambda \in \mathbb{R} \setminus [-1, 2]$ The parametrization $\gamma(\lambda, t)$ of C_λ has poles for
\[
t_1 = -\arccos \left(-\frac{1}{\lambda} \right), \quad t_2 = \arccos \left(-\frac{1}{\lambda} \right),
\]
\[
t_3 = \frac{4\pi}{3} - \arccos \left(-\frac{1}{\lambda} \right), \quad t_4 = \frac{4\pi}{3} + \arccos \left(-\frac{1}{\lambda} \right).
\]
Therefore, it consists of four branches. We calculate the asymptotes of C_λ in the poles. For $t \in I_1$ the tangent $T_\lambda(t)$ intersects \mathcal{X} in the point with the coordinates
\[
y = \kappa_2(\lambda, t) - \frac{\dot{k}_2(\lambda, t)}{\dot{k}_1(\lambda, t)} \kappa_1(\lambda, t) = \frac{\lambda - 2 + (2\lambda - 1) \cos t}{2(\lambda + \cos t)},
\]
\[
z = \kappa_3(\lambda, t) - \frac{\dot{k}_3(\lambda, t)}{\dot{k}_1(\lambda, t)} \kappa_1(\lambda, t) = \frac{\lambda(1 + \cos t + \cos^2 t)}{(\lambda + \cos t)\sqrt{1 + 2 \cos^2 t}},
\]
and \mathcal{Z} in
\[
x = \kappa_1(\lambda, t) - \frac{\dot{k}_1(\lambda, t)}{\dot{k}_3(\lambda, t)} \kappa_3(\lambda, t) = \frac{(\lambda - 1)(1 + \cos t + \cos^2 t)}{[\lambda(1 + \cos t) - 1] \sin t},
\]
\[
y = \kappa_2(\lambda, t) - \frac{\dot{k}_2(\lambda, t)}{\dot{k}_3(\lambda, t)} \kappa_3(\lambda, t) = -\frac{1 + \lambda + (2 - \lambda) \cos t}{2[\lambda(1 + \cos t) - 1]}.
\]
For $t = t_1$ one finds that the asymptote $T_\lambda(t_1)$ intersects \mathcal{Z} in the point
\[
(x_1, y_1, z_1) = \left(1 - \lambda + \lambda^2, \frac{2 - 2\lambda - \lambda^2}{2\lambda(\lambda - 2)}, 0 \right),
\]
and \mathcal{X} in
\[
(\tilde{x}_1, \tilde{y}_1, \tilde{z}_1) = \left(0, \frac{1 - 4\lambda + \lambda^2}{2(\lambda^2 - 1)}, \frac{1 - \lambda + \lambda^2}{\lambda^2 - 1} \sqrt{\frac{\lambda}{\lambda - 2}} \right).
\]
Hence, a parametrization $A_1(\lambda)$ of the asymptote $T_\lambda(t_1)$ is

$$A_1(\lambda) = \{(x, y, z) \in \mathbb{R}^3 \mid x = \tilde{t}_1(\lambda, \nu), y = \tilde{t}_2(\lambda, \nu), z = \tilde{t}_3(\lambda, \nu) ; \nu \in \mathbb{R}\}$$

with

$$\tilde{t}_1(\lambda, \nu) := x_1 + \nu (\bar{x}_1 - x_1) = \frac{1 - \lambda + \lambda^2}{2 + \lambda - \lambda^2} \sqrt{1 - \frac{1}{\lambda^2}} (1 - \nu),$$

$$\tilde{t}_2(\lambda, \nu) := y_1 + \nu (\bar{y}_1 - y_1) = \frac{2 - 2\lambda - \lambda^2}{2\lambda(\lambda - 2)} + \nu \left(1 - \frac{1}{\lambda} + \lambda^2\right)^2,$$

$$\tilde{t}_3(\lambda, \nu) := z_1 + \nu (\bar{z}_1 - z_1) = \frac{1 - \lambda + \lambda^2}{\lambda^2 - 1} \sqrt{\frac{\lambda}{\lambda - 2}}.$$

In order to abbreviate notation we write

$$A_1(\lambda) = \{(\tilde{t}_1(\lambda, \nu), \tilde{t}_2(\lambda, \nu), \tilde{t}_3(\lambda, \nu)) \mid \nu \in \mathbb{R}\}.$$

The remaining asymptotes are

$$t = t_2 : \quad A_2(\lambda) = \{(-\tilde{t}_1(\lambda, \nu), \tilde{t}_2(\lambda, \nu), \tilde{t}_3(\lambda, \nu)) \mid \nu \in \mathbb{R}\},$$

$$t = t_3 : \quad A_3(\lambda) = \{(-\tilde{t}_1(\lambda, \nu), \tilde{t}_2(\lambda, \nu), -\tilde{t}_3(\lambda, \nu)) \mid \nu \in \mathbb{R}\},$$

$$t = t_4 : \quad A_4(\lambda) = \{(\tilde{t}_1(\lambda, \nu), \tilde{t}_2(\lambda, \nu), -\tilde{t}_3(\lambda, \nu)) \mid \nu \in \mathbb{R}\}.$$

As an example, Fig. 5 shows two projections of the touching curve $C_{-1,4}$.

The projection onto the plane \mathcal{X} (thick line) is part of a hyperbola with center point $y = 71/238 \approx 0.298$, $z = 0$.

Case 3: $\lambda = \pm \infty$ For $\gamma^*(t) := \lim_{\lambda \to \pm \infty} \gamma(\lambda, t)$ one easily finds

$$\gamma^* : I_1 \cup I_2 \to \mathbb{R}^3, \quad t \mapsto \gamma^*(t) = \left\{ \begin{array}{ll}
\gamma_1^*(t) & \text{if } t \in I_1, \\
\gamma_2^*(t) & \text{if } t \in I_2,
\end{array} \right.$$

with

$$\gamma_1^*(t) = (\kappa_1^*(t), \kappa_2^*(t), \kappa_3^*(t)),$$

$$\gamma_2^*(t) = \left(\kappa_1^*\left(\frac{4t}{3} - t\right), \kappa_2^*\left(\frac{4t}{3} - t\right), -\kappa_3^*\left(\frac{4t}{3} - t\right)\right),$$

where

$$\kappa_1^*(t) = \lim_{\lambda \to \pm \infty} \kappa_1(\lambda, t) = -\tan t,$$

$$\kappa_2^*(t) = \lim_{\lambda \to \pm \infty} \kappa_2(\lambda, t) = \frac{1}{2} + \frac{1}{\cos t},$$

$$\kappa_3^*(t) = \lim_{\lambda \to \pm \infty} \kappa_3(\lambda, t) = \sqrt{1 + 2 \cos t} \cos t.$$
The parametrization $\gamma^*(t)$ of $C_{\pm\infty}$ has poles for

$$t_1 = -\frac{\pi}{2}, \quad t_2 = \frac{\pi}{2}, \quad t_3 = 4\pi - \frac{5\pi}{6}, \quad t_4 = \frac{4\pi}{3} + \frac{\pi}{2} = \frac{11\pi}{6},$$

and therefore, $C_{\pm\infty}$ consists of four branches (see Fig. 4). For the asymptotes of $C_{\pm\infty}$ we find

$$\lim_{\lambda \to \pm\infty} A_1(\lambda) = \{(\nu - 1, \nu - 1/2, \nu) \mid \nu \in \mathbb{R}\},$$

$$\lim_{\lambda \to \pm\infty} A_2(\lambda) = \{(1 - \nu, \nu - 1/2, \nu) \mid \nu \in \mathbb{R}\},$$

$$\lim_{\lambda \to \pm\infty} A_3(\lambda) = \{(1 - \nu, \nu - 1/2, -\nu) \mid \nu \in \mathbb{R}\},$$

$$\lim_{\lambda \to \pm\infty} A_4(\lambda) = \{(\nu - 1, \nu - 1/2, -\nu) \mid \nu \in \mathbb{R}\},$$

and from (4) for the intersection points,

$$\lim_{\lambda \to \pm\infty} X_1(\lambda) = \left(0, \frac{3}{2}, \sqrt{3}\right), \quad \lim_{\lambda \to \pm\infty} Z_1(\lambda) = \left(\sqrt{3}, -\frac{3}{2}, 0\right),$$

$$\lim_{\lambda \to \pm\infty} X_2(\lambda) = \left(0, \frac{3}{2}, -\sqrt{3}\right), \quad \lim_{\lambda \to \pm\infty} Z_2(\lambda) = \left(-\sqrt{3}, -\frac{3}{2}, 0\right).$$

From the parametrization $\gamma^*(t)$ of $C_{\pm\infty}$ we have

$$x^2 = \tan^2 t = \frac{1 - \cos^2 t}{\cos^2 t}, \quad y = \frac{1}{2} + \frac{1}{\cos t}, \quad z^2 = \frac{1 + 2 \cos t}{\cos^2 t}.$$

By eliminating $\cos t$ we find the following algebraic equations of the projections of $C_{\pm\infty}$ onto the planes X, Y, Z:

projection onto X: \((y + \frac{1}{2})^2 - z^2 = 1 \), \hspace{1cm} (7)

Y: \((x^2 - z^2)^2 - 2(x^2 + z^2) = 3 \), \hspace{1cm} (8)

Z: \((y - \frac{1}{2})^2 - x^2 = 1 \). \hspace{1cm} (9)

Formulas (7) and (9) are the equations of hyperbolas with center points $x = 0$, $y = 1/2$, $z = 0$, and $x = 0$, $y = -1/2$, respectively. The actual projections of $C_{\pm\infty}$ onto X and Z (plotted with thick lines) are part of the respective hyperbola.

Case 4: $\lambda \in \{-1, 2\}$ C_λ consists of two branches. For $\lambda = -1$, from (4) it follows that

$$\lim_{\varepsilon \to 0} X_1(-1 - \varepsilon) = (0, \infty, \infty), \quad \lim_{\varepsilon \to 0} X_1(-1 + \varepsilon) = (0, -\infty, -\infty),$$

$$\lim_{\varepsilon \to 0} X_2(-1 - \varepsilon) = (0, \infty, -\infty), \quad \lim_{\varepsilon \to 0} X_2(-1 + \varepsilon) = (0, -\infty, \infty),$$

$$Z_1(-1) = \left(\frac{2}{\sqrt{3}}, -\frac{1}{2}, 0\right), \quad Z_2(-1) = \left(-\frac{2}{\sqrt{3}}, -\frac{1}{2}, 0\right).$$
Fig. 4: Projections of $C_{\pm\infty}$ and its asymptotes $A_k(\pm\infty)$, $k = 1, 2, 3, 4$, onto the planes X, Y, and Z; $-5 \leq x, y, z \leq 5$

Fig. 5: Projections of $C_{-1,4}$ and its asymptotes $A_k(4)$, $k = 1, 2, 3, 4$, onto the planes X and Y; $-12 \leq x, y, z \leq 12$
Fig. 6: Projections of \(C_{-1} \) onto the planes \(X, Y, \) and \(Z; \)
\[-12 \leq x, y, z \leq 12\]

Fig. 7: Projections of \(C_{-0.87} \) onto the planes \(X, Y; \) \(-12 \leq x, y, z \leq 12\)
and for $\lambda = 2$,
\[
X_1(2) = \left(0, \frac{1}{2}, \frac{2}{\sqrt{3}}\right), \quad X_2(2) = \left(0, \frac{1}{2}, -\frac{2}{\sqrt{3}}\right),
\]
\[
\lim_{\varepsilon \to 0} Z_1(2 - \varepsilon) = (-\infty, \infty, 0), \quad \lim_{\varepsilon \to 0} Z_1(2 + \varepsilon) = (\infty, -\infty, 0),
\]
\[
\lim_{\varepsilon \to 0} Z_2(2 - \varepsilon) = (\infty, \infty, 0), \quad \lim_{\varepsilon \to 0} Z_2(2 + \varepsilon) = (-\infty, -\infty, 0).
\]

Projections of C_{-1} are shown in Fig. 6. The projection onto the plane X is the left branch (thick line) of the hyperbola with the algebraic equation
\[
\left(y - \frac{1}{2}\right)^2 - 3z^2 = 1.
\]

The equations of its asymptotes are $z = \pm(y - 1/2)/\sqrt{3}$. The projection of C_{-1} onto Y has the algebraic equation
\[
3x^4 + 8x^2 - 64z^2 = 16.
\]

The projection onto Z is part of the parabola with equation $x = -3y^2/8$.

4 The edge of regression

In the following we denote by R the edge of regression of the developable surface O (see [7, pp. 119-125], and Fig. 7, Fig. 8).

Theorem 2. For $t \in I_1$, parametric equations of R are given by
\[
x = g_1(t) = \frac{\sin t - \tan t}{3}, \quad y = g_2(t) = \frac{2 + 3\cos t - 3\cos^2 t - 2\cos^3 t}{6(1 + \cos t)\cos t},
\]
\[
z = g_3(t) = \pm \frac{(1 + 2\cos t)^{3/2}}{3(1 + \cos t)\cos t}.
\]

Proof. R is the solution of the system of equations
\[
\begin{align*}
&f_{\lambda}(x, y, z) = 0, \quad f'_{\lambda}(x, y, z) := \frac{\partial}{\partial \lambda} f_{\lambda}(x, y, z) = 0, \\
&f''_{\lambda}(x, y, z) := \frac{\partial^2}{\partial \lambda^2} f_{\lambda}(x, y, z) = 0
\end{align*}
\]

with variable λ, see [11, pp. 523-524]. Since the touching curve C_λ is the intersection curve of the quadric Q_λ and the quadric defined by $f'_{\lambda}(x, y, z) = 0$, the parametric functions $\kappa_1, \kappa_2, \kappa_3$ of C_λ are not only solutions of
\[
f_{\lambda}(\kappa_1(\lambda, t), \kappa_2(\lambda, t), \kappa_3(\lambda, t)) = 0
\]
but also of
\[f'_\lambda(\kappa_1(\lambda, t), \kappa_2(\lambda, t), \kappa_3(\lambda, t)) = 0 . \]
Furthermore, one finds
\[f''_\lambda(x, y, z) = \frac{x^2}{(1 - \lambda)^3} + \frac{3y^2(\lambda - 1)\lambda - y(2 - 3\lambda - 3\lambda^2 + 2\lambda^3)}{(1 - \lambda + \lambda^2)^3} + \frac{z^2}{\lambda^3} - \frac{9(\lambda - 1)\lambda}{(1 - \lambda + \lambda^2)^3} . \]
Solving the equation
\[f''_\lambda(\kappa_1(\lambda, t), \kappa_2(\lambda, t), \kappa_3(\lambda, t)) = 0 \]
for \(\lambda \) yields
\[\lambda = \phi(t) := \frac{1 + 2 \cos t}{(2 + \cos t) \cos t} . \]
It follows that \(g_j(t) := \kappa_j(\phi(t), t), j = 1, 2, 3, \) and
\[x = g_1(t), \quad y = g_2(t), \quad z = g_3(t) . \]
Due to the symmetry of \(O \) with respect to the plane \(Z \), we also have
\[x = g_1(t), \quad y = g_2(t), \quad z = -g_3(t) . \]

Corollary 2. With the system parameter \(\lambda \), the edge of regression is given by
\[\mathcal{R} = \{ r_1(\lambda), r_2(\lambda), r_3(\lambda) \mid \lambda \in \mathbb{R} \setminus [0, 1] \} \]
\[\cup \{ -r_1(\lambda), r_2(\lambda), r_3(\lambda) \mid \lambda \in \mathbb{R} \setminus [0, 1] \} \]
\[\cup \{ -r_1(\lambda), r_2(\lambda), -r_3(\lambda) \mid \lambda \in \mathbb{R} \setminus [0, 1] \} \]
\[\cup \{ r_1(\lambda), r_2(\lambda), -r_3(\lambda) \mid \lambda \in \mathbb{R} \setminus [0, 1] \} , \]
where
\[r_1(\lambda) = \frac{\sqrt{(\lambda - 1)^2 - 2 + 2\rho(\lambda)}}{\lambda[2 - \lambda + \rho(\lambda)]} , \quad r_2(\lambda) = \frac{\lambda^2 + 2\lambda - 2 + (\lambda - 2)\rho(\lambda)}{2\lambda[2 - \lambda + \rho(\lambda)]} , \]
\[r_3(\lambda) = \frac{\text{sgn}(\lambda) \sqrt{\lambda[2 - \lambda + 2\rho(\lambda)]}}{2 - \lambda + \rho(\lambda)} , \quad \rho(\lambda) = \text{sgn}(\lambda) \sqrt{1 - \lambda + \lambda^2} . \]

Proof. We consider the function
\[\phi : I_1 \to \mathbb{R} , \quad t \mapsto \phi(t) = \frac{1 + 2 \cos t}{(2 + \cos t) \cos t} , \]
used in the proof of Theorem 2. We denote by \(\phi_1 \) the restriction of \(\phi \) to the interval \((-2\pi/3, 0)\), and by \(\phi_2 \) the restriction of \(\phi \) to \((0, 2\pi/3)\). One easily finds the respective inverse functions
\[\phi_1^{-1}(\lambda) = -\arccos \frac{1 - \lambda + \rho(\lambda)}{\lambda} , \quad \phi_2^{-1}(\lambda) = \arccos \frac{1 - \lambda + \rho(\lambda)}{\lambda} . \]
with $\rho(\lambda) := \text{sgn}(\lambda) \sqrt{1 - \lambda + \lambda^2}$ and $\lambda \in \mathbb{R} \setminus [0, 1]$, hence

$$r_1(\lambda) := \kappa_1(\lambda, \phi_1^{-1}(\lambda)) = \frac{\sqrt{(\lambda - 1)^2 [2 - \lambda + 2\rho(\lambda)]}}{\lambda [2 - \lambda + \rho(\lambda)]},$$

$$r_2(\lambda) := \kappa_2(\lambda, \phi_2^{-1}(\lambda)) = \frac{\lambda^2 + 2\lambda - 2 + (\lambda - 2) \rho(\lambda)}{2\lambda [2 - \lambda + \rho(\lambda)]},$$

$$r_3(\lambda) := \kappa_3(\lambda, \phi_3^{-1}(\lambda)) = \frac{\text{sgn}(\lambda) \sqrt{\lambda} [2 - \lambda + 2\rho(\lambda)]}{2 - \lambda + \rho(\lambda)},$$

and

$$\kappa_1(\lambda, \phi_2^{-1}(\lambda)) = -r_1(\lambda), \quad \kappa_2(\lambda, \phi_2^{-1}(\lambda)) = r_2(\lambda), \quad \kappa_3(\lambda, \phi_2^{-1}(\lambda)) = r_3(\lambda).$$

It follows that

$$x = \pm r_1(\lambda), \quad y = r_2(\lambda), \quad z = r_3(\lambda),$$

and, due to the symmetry of \mathcal{O} with respect to the plane \mathcal{Z}, also

$$x = \pm r_1(\lambda), \quad y = r_2(\lambda), \quad z = -r_3(\lambda).$$

Every generating line of a developable surface is a tangent to its edge of regression. Obviously, $t = -\pi/2$ and $t = \pi/2$ are poles of the functions g_1, g_2, g_3 in Theorem 2. One easily finds

$$\omega_1(m, -\frac{\pi}{2}) = m - 1, \quad \omega_2(m, -\frac{\pi}{2}) = m - \frac{1}{2}, \quad \omega_3(m, -\frac{\pi}{2}) = m,$$

$$\omega_1(m, \frac{\pi}{2}) = 1 - m, \quad \omega_2(m, \frac{\pi}{2}) = m - \frac{1}{2}, \quad \omega_3(m, \frac{\pi}{2}) = m.$$

Hence, using abbreviated notation, the four asymptotes to \mathcal{R} are

$$\tilde{\mathcal{A}}_1 = \{(m - 1, m - 1/2, m) \mid m \in \mathbb{R}\},$$

$$\tilde{\mathcal{A}}_2 = \{(1 - m, m - 1/2, m) \mid m \in \mathbb{R}\},$$

$$\tilde{\mathcal{A}}_3 = \{(1 - m, m - 1/2, -m) \mid m \in \mathbb{R}\},$$

$$\tilde{\mathcal{A}}_4 = \{(m - 1, m - 1/2, -m) \mid m \in \mathbb{R}\}.$$ (10)

If the intersection point of the asymptotes j and k exists, we denote it by S_{jk} and find:

$$S_{12} = (0, \frac{1}{2}, 1), \quad S_{23} = (1, -\frac{1}{2}, 0), \quad S_{34} = (0, \frac{1}{2}, -1), \quad S_{41} = (-1, -\frac{1}{2}, 0).$$

Note that $S_{12}, S_{34} \in k_B$, and $S_{23}, S_{41} \in k_A.$
Comparing Eqs. (6) and (10) we find:

Theorem 3. For \(\lambda \in \mathbb{R} \setminus [-1, 2] \) and \(k \in \{1, 2, 3, 4\} \), the asymptote \(A_k(\lambda) \) of \(C_\lambda \) tends to the asymptote \(\tilde{A}_k \) of \(\mathcal{R} \) if \(\lambda \to \pm \infty \).

\(C_0 \) and \(C_1 \) are double circular arcs of \(Q_0 = k_A \) and \(Q_1 = k_B \), respectively, with \(C_0, C_1 \subset \mathcal{O} \) (see Fig. 2). \(\mathcal{R} \) has cusps in the four endpoints of the double curves \(C_0, C_1 \) (see [5, p. 206]). \(C_0 \) has the endpoints

\[
\begin{align*}
&\left(\sin \left(-\frac{2\pi}{3} \right) , -\frac{1}{2} - \cos \left(-\frac{2\pi}{3} \right) , 0 \right) = \left(-\frac{\sqrt{3}}{2} , 0 , 0 \right), \\
&\left(\sin \left(\frac{2\pi}{3} \right) , -\frac{1}{2} - \cos \left(\frac{2\pi}{3} \right) , 0 \right) = \left(\frac{\sqrt{3}}{2} , 0 , 0 \right).
\end{align*}
\]

Due to the symmetry of \(\mathcal{O} \), the endpoints of \(C_1 \) are \((0, 0, -\sqrt{3}/2), (0, 0, \sqrt{3}/2)\).

5 The self-polar tetrahedron

Theorem 4. The faces of the common self-polar tetrahedron \(\mathcal{P} \) of the inscribed quadrics \(Q_\lambda \) are formed by the planes

\[
\begin{align*}
\mathcal{X}_1 &= \left\{(x_0, x_1, x_2, x_3) \in \mathbb{P}_3(\mathbb{C}) \mid x_1 = 0\right\}, \\
\mathcal{X}_3 &= \left\{(x_0, x_1, x_2, x_3) \in \mathbb{P}_3(\mathbb{C}) \mid x_3 = 0\right\}, \\
\mathcal{I}_1 &= \left\{(x_0, x_1, x_2, x_3) \in \mathbb{P}_3(\mathbb{C}) \mid x_2 = \frac{\sqrt{3}}{2} i x_0\right\},
\end{align*}
\]
\[\mathcal{I}_2 = \left\{ (x_0, x_1, x_2, x_3) \in \mathbb{F}_3(\mathbb{C}) \mid x_2 = -\frac{\sqrt{3}}{2} x_0 \right\}. \]

The vertices of \(\mathcal{P} \) are the ideal points \(X_\infty = [0, 1, 0, 0] \) and \(Z_\infty = [0, 0, 0, 1] \) of the \(x \)-axis and the \(z \)-axis, respectively, and the points

\[P = \left[1, 0, \frac{\sqrt{3}}{2} i, 0 \right], \quad Q = \left[1, 0, -\frac{\sqrt{3}}{2} i, 0 \right]. \]

Proof. In a tangential system of quadrics there are four which degenerate to conics, and their planes are the faces of the common self-polar tetrahedron \([5, \text{pp. 205}], [6, \text{p. 254}] \). \(Q_0 \) degenerates to a conic if one of the denominators in \(\tilde{f}_\lambda(x_0, x_1, x_2, x_3) \), see (1), vanishes.

For \(\lambda = 0 \) it follows that \(x_2^2 = 0 \), and therefore the plane \(X_3 \) delivers the first face of the tetrahedron \(\mathcal{P} \). For \(\lambda = 1 \) we have \(x_1^2 = 0 \), and hence \(X_1 \) is the second face of \(\mathcal{P} \). The two remaining faces follow from the equation \(1 - \lambda + \lambda^2 = 0 \). Its solutions are

\[\lambda_1 = \frac{1}{2} + \frac{\sqrt{3}}{2} i \quad \text{and} \quad \lambda_2 = \frac{1}{2} - \frac{\sqrt{3}}{2} i. \]

So we have

\[\left(x_2 + \left(\frac{1}{2} - \lambda_1 \right) x_0 \right)^2 = \left(x_2 - \frac{\sqrt{3}}{2} i x_0 \right)^2 = 0, \]
\[\left(x_2 + \left(\frac{1}{2} - \lambda_2 \right) x_0 \right)^2 = \left(x_2 + \frac{\sqrt{3}}{2} i x_0 \right)^2 = 0; \]

hence the planes \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) are the third and fourth face of \(\mathcal{P} \). The vertices of \(\mathcal{P} \) are the intersection points of the respective planes:

\[X_1 \cap X_3 \cap \mathcal{I}_1 = P, \quad X_1 \cap X_3 \cap \mathcal{I}_2 = Q, \]
\[X_3 \cap \mathcal{I}_1 \cap \mathcal{I}_2 = X_\infty, \quad X_1 \cap \mathcal{I}_1 \cap \mathcal{I}_2 = Z_\infty. \]

The degenerate quadrics \(Q_0 \) and \(Q_1 \) are the circles \(k_A \) and \(k_B \), respectively. For the degenerate quadrics \(Q_{\lambda_1}, Q_{\lambda_2} \) we find the equations

\[f_{\lambda_1}(x, y, z) = \frac{x^2}{\left(\frac{1}{2} - \frac{\sqrt{3}}{2} i \right)^2} + \frac{z^2}{\left(\frac{1}{2} + \frac{\sqrt{3}}{2} i \right)^2} - 1 = 0, \]
\[f_{\lambda_2}(x, y, z) = \frac{x^2}{\left(\frac{1}{2} + \frac{\sqrt{3}}{2} i \right)^2} + \frac{z^2}{\left(\frac{1}{2} - \frac{\sqrt{3}}{2} i \right)^2} - 1 = 0. \]
Theorem 5. \(Q \) and \(Q_{\lambda_2} \) can be considered as ellipses with complex lengths
\[
\frac{1}{2} + \frac{\sqrt{3}}{2}i \quad \text{and} \quad \frac{1}{2} - \frac{\sqrt{3}}{2}i
\]
of their semi-axes, and respective center points
\[
\left(0, \frac{\sqrt{3}}{2}i, 0\right) \quad \text{and} \quad \left(0, -\frac{\sqrt{3}}{2}i, 0\right).
\]
Note that these center points are the vertices \(P \) and \(Q \) of \(\mathcal{P} \) in non homogeneous coordinates.

6 Common generating lines of \(Q_\lambda \) and \(\mathcal{O} \)

Only two of the conic sections \(Q_0, Q_1, Q_{\lambda_1}, Q_{\lambda_2} \) are real. Therefore (see [5, p. 206]), the quadrics \(Q_\lambda \) are divided into two sets; one of these sets consists of ruled surfaces, each having four common generating lines with the developable surface \(\mathcal{O} \). Clearly, these ruled surfaces are the one-sheeted hyperboloids \(Q_\lambda, \lambda \in \mathbb{R} \setminus [0, 1] \), and the hyperbolic paraboloid \(Q_{\pm \infty} \).

Theorem 5. (i) For fixed value of \(\lambda \in \mathbb{R} \setminus [0, 1] \), the four common generating hyperboloids \(Q_\lambda \) and the extended oloid \(\mathcal{O} \) are

\[
\mathcal{G}_1(\lambda) = \{(\bar{\omega}_1(m, \lambda), \bar{\omega}_2(m, \lambda), \bar{\omega}_3(m, \lambda)) \mid m \in \mathbb{R}\},
\]
\[
\mathcal{G}_2(\lambda) = \{(-\bar{\omega}_1(m, \lambda), \bar{\omega}_2(m, \lambda), \bar{\omega}_3(m, \lambda)) \mid m \in \mathbb{R}\},
\]
\[
\mathcal{G}_3(\lambda) = \{(-\bar{\omega}_1(m, \lambda), -\bar{\omega}_2(m, \lambda), -\bar{\omega}_3(m, \lambda)) \mid m \in \mathbb{R}\},
\]
\[
\mathcal{G}_4(\lambda) = \{(\bar{\omega}_1(m, \lambda), -\bar{\omega}_2(m, \lambda), -\bar{\omega}_3(m, \lambda)) \mid m \in \mathbb{R}\},
\]

with
\[
\bar{\omega}_1(m, \lambda) = (1 - m) \frac{\sqrt{(\lambda - 1)(2 - \lambda + 2\rho(\lambda))}}{-|\lambda|},
\]
\[
\bar{\omega}_2(m, \lambda) = (1 - m) \frac{\lambda - 2 - 2\rho(\lambda)}{2\lambda} + m \frac{2\lambda - 1 - \rho(\lambda)}{2(1 + \rho(\lambda))},
\]
\[
\bar{\omega}_3(m, \lambda) = m \frac{\text{sgn}(\lambda) \sqrt{\lambda(2 - \lambda + 2\rho(\lambda))}}{1 + \rho(\lambda)},
\]

where \(\rho(\lambda) = \text{sgn}(\lambda) \sqrt{1 - \lambda + \lambda^2} \).

(ii) \(\mathcal{G}_1(\lambda), \mathcal{G}_2(\lambda), \mathcal{G}_3(\lambda), \mathcal{G}_4(\lambda) \) are the tangents to \(\mathcal{R} \), and to \(\mathcal{C}_\lambda \), in the respective points

\[
P_1(\lambda) = (r_1(\lambda), r_2(\lambda), r_3(\lambda)), \quad P_2(\lambda) = (-r_1(\lambda), r_2(\lambda), r_3(\lambda)),
\]
\[
P_3(\lambda) = (-r_1(\lambda), r_2(\lambda), -r_3(\lambda)), \quad P_4(\lambda) = (r_1(\lambda), r_2(\lambda), -r_3(\lambda))
\]
with \(r_j(\lambda), j = 1, 2, 3, \) according to Corollary 2.
Proof. (i) As already known, the parametric equations of the generating lines of O are

\[x = \omega_1(m, t) = (1 - m) \sin t, \]
\[y = \omega_2(m, t) = (1 - m) \left(-\frac{1}{2} - \cos t \right) + m \left(\frac{1}{2} - \frac{\cos t}{1 + \cos t} \right), \]
\[z = \pm \omega_3(m, t) = \frac{m \sqrt{1 + 2 \cos t}}{1 + \cos t}. \]

Substituting $x = \omega_1(m, t)$, $y = \omega_2(m, t)$, $z = \omega_3(m, t)$ in $f_\lambda(x, y, z) = 0$, and solving this equation for t, we find

\[t = \pm \tilde{t}(\lambda) \quad \text{with} \quad \tilde{t}(\lambda) = \arccos \frac{1 - \lambda \pm \sqrt{1 - \lambda + \lambda^2}}{\lambda}. \]

Since we are only interested in real solutions, we can write

\[\tilde{t}(\lambda) = \arccos \frac{1 - \lambda + \rho(\lambda)}{\lambda} \quad (11) \]

with the function ρ from Corollary 2. It follows that

\[\omega_1(m, \pm \tilde{t}(\lambda)) = \pm (1 - m) \frac{\sqrt{(\lambda - 1)(2 - \lambda + 2\rho(\lambda))}}{|\lambda|}, \]
\[\omega_2(m, \pm \tilde{t}(\lambda)) = (1 - m) \frac{\lambda - 2 - 2\rho(\lambda)}{2\lambda} + m \frac{2\lambda - 1 - \rho(\lambda)}{2(1 + \rho(\lambda))}, \]
\[\omega_3(m, \pm \tilde{t}(\lambda)) = m \frac{\sgn(\lambda) \sqrt{\lambda(2 - \lambda + 2\rho(\lambda))}}{1 + \rho(\lambda)}. \]

We put $\bar{\omega}_j(m, \lambda) := \omega_j(m, -\tilde{t}(\lambda))$, $j = 1, 2, 3$. This yields $G_1(\lambda)$ and $G_2(\lambda)$. Due to the symmetry of Q_λ and O with respect to the plane Z, the lines $G_3(\lambda)$ and $G_4(\lambda)$ follow.

(ii) The tangent

\[T_\lambda(t) = \{(\tau_1(\lambda, t, \mu), \tau_2(\lambda, t, \mu), \tau_3(\lambda, t, \mu)) \mid \mu \in \mathbb{R}\}, \quad t \in I_1, \]

to C_λ, see (5), is a generating line of Q_λ for all values of t that are solutions of

\[f_\lambda(\tau_1(\lambda, t, \mu), \tau_2(\lambda, t, \mu), \tau_3(\lambda, t, \mu)) = 0. \]

One finds $t = \pm \tilde{t}(\lambda)$ with $\tilde{t}(\lambda)$ from (11). At first we consider only $t = -\tilde{t}(\lambda)$. Calculation shows that

\[\kappa_j(\lambda, -\tilde{t}(\lambda)) = r_j(\lambda), \quad j = 1, 2, 3. \]

Hence, the tangent $T^{(1)}(\lambda) := T_\lambda(-\tilde{t}(\lambda))$ touches C_λ in the point $P_1(\lambda) = (r_1(\lambda), r_2(\lambda), r_3(\lambda)) \in \mathcal{R}$. According to [11] p. 489], $T^{(1)}(\lambda)$ is equal to the
tangent to \(R \) in this point. The common generating lines are tangents to the edge of regression [5, p. 206]. Thus one finds
\[
\tilde{\omega}_j(\hat{m}(\lambda), \lambda) = r_j(\lambda), \quad j = 1, 2, 3,
\]
for
\[
\hat{m}(\lambda) := \frac{1 + \rho(\lambda)}{2 - \lambda + \rho(\lambda)}.
\]
It follows that \(T^{(1)}(\lambda) = G_1(\lambda) \). Due to symmetry with respect to the planes \(X \) and \(Z \), with \(\tilde{\tau}_j(\lambda, \mu) := \tau_j(\lambda, -\tilde{\ell}(\lambda), \mu) \) we also have
\[
T^{(2)}(\lambda) := \{(\tilde{\tau}_1(\lambda, \mu), \tilde{\tau}_2(\lambda, \mu), \tilde{\tau}_3(\lambda, \mu)) \mid \mu \in \mathbb{R} \} = G_2(\lambda),
\]
\[
T^{(3)}(\lambda) := \{(-\tilde{\tau}_1(\lambda, \mu), \tilde{\tau}_2(\lambda, \mu), -\tilde{\tau}_3(\lambda, \mu)) \mid \mu \in \mathbb{R} \} = G_3(\lambda),
\]
\[
T^{(4)}(\lambda) := \{(\tilde{\tau}_1(\lambda, \mu), -\tilde{\tau}_2(\lambda, \mu), -\tilde{\tau}_3(\lambda, \mu)) \mid \mu \in \mathbb{R} \} = G_4(\lambda).
\]
As an example, Fig. 3 shows the common generating lines \(G_1(4), G_2(4), G_3(4), G_4(4) \) of \(Q_{\pm\infty} \) and \(O \).

Corollary 3. The four common generating lines of the hyperbolic paraboloid \(Q_{\pm\infty} \) and the extended oloid \(O \) are equal to the common asymptotes of the edge of regression \(R \) and the touching curve \(C_{\pm\infty} \).

Proof. From Theorem 5 one finds
\[
\lim_{\lambda \to \pm\infty} \tilde{\omega}_1(m, \lambda) = m - 1, \quad \lim_{\lambda \to \pm\infty} \tilde{\omega}_2(m, \lambda) = m - \frac{1}{2}, \quad \lim_{\lambda \to \pm\infty} \tilde{\omega}_3(m, \lambda) = m,
\]
thus
\[
G_1(\pm\infty) = \{(m - 1, m - 1/2, m) \mid m \in \mathbb{R} \},
\]
\[
G_2(\pm\infty) = \{(1 - m, m - 1/2, m) \mid m \in \mathbb{R} \},
\]
\[
G_3(\pm\infty) = \{(1 - m, m - 1/2, -m) \mid m \in \mathbb{R} \},
\]
\[
G_4(\pm\infty) = \{(m - 1, m - 1/2, -m) \mid m \in \mathbb{R} \}.
\]
Now, the result follows from Theorem 5 with Eqs. (10). \(\square \)

7 The development of \(O \)

Now we consider the development of the extended oloid \(O \) onto its tangent plane \(E \). For this, we define a cartesian \(\xi, \eta \)-coordinate system in \(E \) as follows: Let \(E \) touch \(O \) along the generating line
\[
L_0 = \{\omega_1(m, 0), \omega_2(m, 0), -\omega_3(m, 0) \mid m \in \mathbb{R} \}
\]
(see [2] and the proof of Corollary 1). Then \(L_0 \) is the \(\eta \)-axis, and the line perpendicular to \(L_0 \) in the point \(m = 0 \) is the \(\xi \)-axis.
Any curve $C \subset O$ is developed onto a plane curve $C^* \subset E$. A parametrization of C^* with the arc length t of the double circular arc C_0 as parameter can be obtained from the vector transformation in \cite{2} p. 114, Theorem 4. In the following for abbreviation we put $c = \cos t$, $s = \sin t$. $\lfloor \cdot \rfloor$ denotes the integer part of \cdot.

Theorem 6. The development of the touching curve C_λ onto E is the curve

$$C_\lambda^* = \{ (\kappa_1^*(\lambda, t), \kappa_2^*(\lambda, t)) \mid t \in \mathbb{R} \}$$

with parametrization

$$\kappa_1^*(\lambda, t) = \mathrm{sgn}(t) \cdot \left(\frac{3|t|}{4\pi} + \frac{1}{2} \right) \cdot \frac{4\pi}{3\sqrt{3}} + \mathrm{sgn}(h(t)) \cdot \tilde{\kappa}_1(\lambda, h(t)),$$

$$\kappa_2^*(\lambda, t) = \tilde{\kappa}_2(\lambda, h(t)),$$

where

$$\tilde{\kappa}_1(\lambda, t) = \frac{2\sqrt{3}}{9} \left(\arccos \frac{\sqrt{2}c}{\sqrt{1+c}} + \frac{1 - 2\lambda}{(1+\lambda)c} \sqrt{2(1+2c)} \right),$$

$$\tilde{\kappa}_2(\lambda, t) = \frac{\sqrt{3}}{9} \left(\ln \frac{2}{1+c} + \frac{4 + 7\lambda + (11\lambda - 4)c}{1 + \lambda c} \right),$$

$$h(t) = t - \mathrm{sgn}(t) \cdot \left(\frac{3|t|}{4\pi} + \frac{1}{2} \right) \cdot \frac{4\pi}{3}.$$

Proof. Substituting $x = \kappa_1(\lambda, t)$, $y = \kappa_2(\lambda, t)$, $z = -\kappa_3(\lambda, t)$, see Corollary \[3\] in the vector transformation \cite{2} p. 114, Theorem 4], a straight-forward calculation delivers

$$\xi = \tilde{\kappa}_1(\lambda, t) = \frac{2\sqrt{3}}{9} \left(\arccos \frac{\sqrt{2}c}{\sqrt{1+c}} + \frac{1 - 2\lambda}{(1+\lambda)c} \sqrt{2(1+2c)} \right),$$

$$\eta = \tilde{\kappa}_2(\lambda, t) = \frac{\sqrt{3}}{9} \left(\ln \frac{2}{1+c} + \frac{4 + 7\lambda + (11\lambda - 4)c}{1 + \lambda c} \right).$$

$\tilde{\kappa}_2(\lambda, t)$ is valid for $t \in I_1$ (see \[3\]). The periodic continuation of $\tilde{\kappa}_2(\lambda, t)$ yields $\kappa_2^*(\lambda, t)$, valid for $t \in \mathbb{R}$.

$\tilde{\kappa}_1(\lambda, t)$ is valid only for $t \in [0, 2\pi/3]$. The restriction of $\kappa_1^*(\lambda, t)$ to $t \in I_1$ must be an odd function. Replacing $\sin t$ by $|\sin t|$ in $\tilde{\kappa}_1(\lambda, t)$, we get the even function $\hat{\kappa}_1(\lambda, t), t \in I_1$. Now, $\kappa_1^*(\lambda, t) := \mathrm{sgn}(t) \cdot \hat{\kappa}_1(\lambda, t)$ is the required restriction of $\kappa_1^*(\lambda, t)$. We get

$$\kappa_1^*(\lambda, 2\pi/3) - \kappa_1^*(\lambda, -2\pi/3) = \frac{4\pi}{3\sqrt{3}},$$

23
and therefore, using the step function
\[\text{sgn}(t) \cdot \left[\frac{3|t|}{4\pi} + \frac{1}{2} \right] \cdot \frac{4\pi}{3\sqrt{3}}, \]
we have found \(\kappa_1^*(\lambda, t) \), valid for \(t \in \mathbb{R} \). □

For \(\lambda = 0 \) we have
\[
\tilde{\kappa}_1(0, t) = \frac{2\sqrt{3}}{9} \left(\arccos \frac{\sqrt{2}c}{\sqrt{1 + c}} + \frac{|s| \sqrt{2(1 + 2c)}}{\sqrt{1 + c}} \right),
\]
\[
\tilde{\kappa}_2(0, t) = \frac{\sqrt{3}}{9} \left(\ln \frac{2}{1 + c} + 4(1 - c) \right).
\]

The following manipulation of the second term in the brackets of \(\tilde{\kappa}_1(0, t) \),
\[
\frac{|\sin t| \sqrt{2(1 + 2 \cos t)}}{\sqrt{1 + \cos t}} = 2 \left\{ \frac{1}{2} \right\} \frac{\sqrt{2} \cos^2 \frac{t}{2}}{\sqrt{2(1 + \cos t)}} = \sqrt{2} \left(\frac{\sin \frac{t}{2}}{2} \sqrt{2(1 + 2 \cos t)} \right) = \sqrt{2(1 + 2 \cos t)}(1 - \cos t),
\]
shows that we have obtained the result of [2] p. 108, Theorem 2. For \(\lambda = 1 \) we get
\[
\tilde{\kappa}_1(1, t) = \frac{2\sqrt{3}}{9} \left(\arccos \frac{\sqrt{2}c}{\sqrt{1 + c}} - \frac{|s| \sqrt{2(1 + 2c)}}{(1 + c)^{3/2}} \right),
\]
\[
\tilde{\kappa}_2(1, t) = \frac{\sqrt{3}}{9} \left(\ln \frac{2}{1 + c} + \frac{11 + 7c}{1 + c} \right).
\]
This is the result of [2] p. 112, Theorem 3. For \(\lambda = 1/2 \) we have
\[
\tilde{\kappa}_1(1/2, t) = \frac{2\sqrt{3}}{9} \arccos \frac{\sqrt{2}c}{\sqrt{1 + c}},
\]
\[
\tilde{\kappa}_2(1/2, t) = \frac{\sqrt{3}}{9} \left(\ln \frac{2}{1 + c} + \frac{3(5 + c)}{2 + c} \right),
\]
which is the result of [2] p. 115. Examples with \(\lambda \in [0, 1] \) are shown in Fig. 9. For \(\lambda \to \pm \infty \) (see Fig. 11 and Fig. 13) one easily finds
\[
\lim_{\lambda \to \pm \infty} \tilde{\kappa}_1(\lambda, t) = \frac{2\sqrt{3}}{9} \left(\arccos \frac{\sqrt{2}c}{\sqrt{1 + c}} - \frac{2|s| \sqrt{2(1 + 2c)}}{c \sqrt{1 + c}} \right),
\]
\[
\lim_{\lambda \to \pm \infty} \tilde{\kappa}_2(\lambda, t) = \frac{\sqrt{3}}{9} \left(\ln \frac{2}{\sqrt{1 + c}} + \frac{7 + 11c}{c} \right).
\]
As further examples, the curves $C_{0.5}^*$ and $C_{1.5}^*$ are shown in Fig. 10 and Fig. 12.

After substituting

$$x = g_1(t) = \frac{\sin t - \tan t}{3}, \quad y = g_2(t) = \frac{2 + 3 \cos t - 3 \cos^2 t - 2 \cos^3 t}{6(1 + \cos t) \cos t},$$

$$z = g_3(t) = -\frac{(1 + 2 \cos t)^{3/2}}{3(1 + \cos t) \cos t}$$

(see Theorem 2 in the vector transformation [2] p. 114, Theorem 4], analogous steps as in the proof of Theorem 6 result in the development R^* of the edge of regression R. We state the result in the following theorem.

Theorem 7. The development of R onto E is the curve

$$R^* = \{(g_1^*(t), g_2^*(t)) \mid t \in \mathbb{R}\}$$

with parametrization

$$g_1^*(t) = \text{sgn}(t) \cdot \left[\frac{3|t|}{4\pi} + \frac{1}{2}\right] \cdot \frac{4\pi}{3\sqrt{3}} + \text{sgn}(h(t)) \cdot \tilde{g}_1(h(t)),$$

$$g_2^*(t) = \tilde{g}_2(h(t)),$$

where

$$\tilde{g}_1(t) = \frac{2\sqrt{3}}{9} \left(\arccos \frac{\sqrt{2} c}{\sqrt{1 + c}} - \frac{(2 + 2c - c^2) \sqrt{2(1 + 2c)} |s|}{3c (1 + c)^{3/2}}\right),$$

$$\tilde{g}_2(t) = \frac{\sqrt{3}}{9} \left(\ln \frac{2}{1 + c} + \frac{7 + 33c + 18c^2 - 4c^3}{3c (1 + c)}\right).$$

R^* is shown in the Figures 10, 11, 13.
Fig. 10: $C^*_{-0.5}$ (thick, dashed), $C^*_{1.5}$ (thick), R^* (thin), C^*_0, C^*_1; $0 \leq t \leq 2\pi/3$

Fig. 11: $C^*_{\pm\infty}$ (thick), R^* (thin), C^*_0 and C^*_1 (dashed); $0 \leq t \leq 2\pi/3$
Fig. 12: $\mathcal{C}_{-0.5}^*$ (thick, dashed), $\mathcal{C}_{1.5}^*$ (thick), \mathcal{C}_0^* and \mathcal{C}_1^* (thin, dashed)

Fig. 13: $\mathcal{C}_{\pm\infty}^*$ (thick), \mathcal{R}^* (thin), \mathcal{C}_0^* and \mathcal{C}_1^* (dashed)
References

[1] E. Czuber: Vorlesungen über Differential- und Integralrechnung, B. G. Teubner, Leipzig 1912.

[2] H. Dirnböck, H. Stachel: The Development of the Oloid, JGG 1, No. 2 (1997), 105-118.

[3] K. Fladt, A. Baur: Analytische Geometrie spezieller Flächen und Raumkurven, Friedr. Vieweg & Sohn, Braunschweig 1975.

[4] K. Kommerell: Vorlesungen über analytische Geometrie des Raumes, Koehler & Amelang, Leipzig 1953.

[5] K. Rohn, E. Papperitz: Lehrbuch der darstellenden Geometrie, Bd. 3, 3. Aufl., Veit & Comp., Leipzig 1906.

[6] D. M. Y. Sommerville: Analytical Geometry of Three Dimensions, Cambridge University Press, Cambridge 1939.

[7] K. Strubecker: Differentialgeometrie I, Sammlung Göschens Bd. 1113/1113 a, Walter de Gruyter & Co., Berlin 1955.

[8] http://de.wikipedia.org/wiki/Oloid, 12.02.2015;
 http://en.wikipedia.org/wiki/Oloid, 12.02.2015

Uwe Bäsel
HTWK Leipzig, Fakultät
Maschinenbau und Energietechnik,
Karl-Liebknecht-Straße 134,
04277 Leipzig, Germany
uwe.baesel@htwk-leipzig.de

Hans Dirnböck
Nussberg 22
9062 Moosburg, Austria