Quantisation of 2+1 gravity for genus 2

J.E.Nelson and T.Regge

Dipartimento di Fisica Teorica dell’Università - Torino -Italy
Via Pietro Giuria 1, 10125,Torino, Italy
email: nelson@to.infn.it, telefax 039-11-6707214

In [1,2] we established and discussed the algebra of observables for 2+1 gravity at both the classical and quantum level, and gave a systematic discussion of the reduction of the expected number of independent observables to $6g - 6 (g > 1)$. In this paper the algebra of observables for the case $g = 2$ is reduced to a very simple form. A Hilbert space of state vectors is defined and its representations are discussed using a deformation of the Euler-Gamma function. The deformation parameter θ depends on the cosmological and Planck’s constants.

P.A.C.S. 04.60

1. Introduction.

In a previous article [1] we presented the abstract quantum algebra for 2+1 gravity with cosmological constant Λ:

\begin{align*}
(a_{mk}, a_{jl}) &= (a_{mj}, a_{kl}) = 0 \quad (1.1) \\
(a_{jk}, a_{km}) &= \left(\frac{1}{K} - 1 \right) (a_{jm} - a_{jk} a_{km}) \quad (1.2) \\
(a_{jk}, a_{kl}) &= \left(1 - \frac{1}{K} \right) (a_{jl} - a_{kl} a_{jk}) \quad (1.3) \\
(a_{jk}, a_{lm}) &= \left(K - \frac{1}{K} \right) (a_{ji} a_{km} - a_{kl} a_{jm}) \quad (1.4)
\end{align*}
where $K = \frac{4\alpha - i\hbar}{4\alpha + i\hbar} = e^{i\theta}$, $\Lambda = -\frac{1}{3\alpha^2}$ is the cosmological constant and \hbar is Planck’s constant. In (1.1-4) m, j, l, k are 4 anticlockwise points of Fig.1. $m, j, l, k = 1 \cdots n$, and the time independent quantum operators a_{lk} correspond to the classical $\frac{n(n-1)}{2}$ gauge invariant trace elements

$$\alpha_{ij} = \alpha_{ji} = \frac{1}{2} \text{Tr} \left(S(t_it_{i+1} \cdots t_{j-1}) \right), \ S \in SL(2, R) \quad (1.5)$$

For $n = 2g + 2$ the map $S : \pi_1(\Sigma) \rightarrow SL(2, R)$ is defined by the integrated anti-De Sitter connection in the initial data Riemann surface Σ of genus g, and refers to one of the two spinor components, say the upper component, of the spinor group $SL(2, R) \otimes SL(2, R)$ of the gauge group $SO(2, 2)$ of 2+1 gravity with negative cosmological constant [2]. The algebra (1.1-4) is invariant under the quantum action of the mapping class group on traces [1], the lower component yields an independent algebra of traces b_{ij} identical to (1.1-4) but with $K \rightarrow 1/K$. Moreover $(a_{ij}, b_{kl}) = 0 \ \forall \ i, j, k, l$. Here we discuss only the upper component. The homotopy group $\pi_1(\Sigma)$ of the surface is defined by generators $t_i, \ i = 1 \cdots 2g + 2$ and presentation:

$$t_1 t_2 \cdots t_{2g+2} = 1, \ t_1 t_3 \cdots t_{2g+1} = 1, \ t_2 t_4 \cdots t_{2g+2} = 1 \quad (1.6)$$

The first relator in (1.6) implies that Σ is closed. The operators in (1.1-4) are ordered with the convention that $t(a_{ij})$ is increasing from left to right where $t(a_{ij}) = \frac{(i-1)(2n-2-i)}{2} + j - 1$.

The case of $g = 1$, the torus, has been studied extensively, both in this approach [2], and others [3,4]. In this approach the algebra (1.1-4) is isomorphic to the quantum algebra of $SU(2)_q$ when $\Lambda \neq 0$ [2]. For $\Lambda = 0$ it has been shown [5] that the metric approach to determining the complex modulus of the torus [3] is classically equivalent to the classical limit of (1.1-4) for $n = 4$. There are similar, recent results for $\Lambda \neq 0$ [6].

For $g > 1$ there are very few results apart from those of Moncrief [3] who studies the second order, metric formalism and achieves very general results. In this article the case $g = 2$ of the algebra (1.1-4) is studied in detail. In [7] we determined for $n \leq 6$, i.e. $g \leq 2$ a set of p linearly independent central elements A_{nm}, $m = 1 \cdots p$ where $n = 2p$ or $n = 2p + 1$, and analysed the trace identities which follow from the presentation (1.5) of the homotopy group $\pi_1(\Sigma)$ and a set of rank identities. These identities together generate a two-sided ideal. For generic g there are precisely $6g - 6$ independent elements which satisfy the algebra (1.1-4). The reduction from
\[
\frac{n(n-1)}{2} = (g + 1)(2g + 1) \text{ to } 6g - 6 \text{ results from the use of the above mentioned identities} [7] \text{ but is highly non unique. For } g = 2 \text{ the reduction from the original 15 elements } a_{ij} \text{ to 6 independent elements has been the subject of a long study. Here this reduction is implemented explicitly in terms of a set of 6 independent operators which satisfy a particularly simple algebra. There are many such possibilities but a convincing set is described as follows:}

We group the vertices of the hexagon into 3 sectors, see Fig. 2, the vertices labeled \(2b\) and \(2b - 1\) belonging to the sector \(b, b = 1 \cdots 3\). Accordingly we define the sector function \(s[2b] = s[2b - 1] = b\). A convenient choice for the 6 independent elements is given by 3 commuting angles \(\varphi_{-b} = -\varphi_b, \ b = \pm 1 \cdots - 3\) defined by:

\[
a_{2b-1,2b} = \frac{\cos \varphi_b}{\cos \frac{\theta}{2}} \quad b = 1 \cdots 3
\]

and commuting operators \(M_{ab}\) with the properties:

\[
M_{ab} = M_{ba} \quad a, b = \pm 1 \cdots \pm 3
\]

\[
M_{a, -a} = 1, \ M_{a, -b} M_{b, c} = M_{ac}
\]

(1.8)

The \(M_{ab}\) act as raising and lowering operators on the \(\varphi_a:\)

\[
M_{\pm a, b} \varphi_a = (\varphi_a \mp \theta) M_{\pm a, b}
\]

(1.9)

It can be checked that the 12 remaining \(a_{ik}\) are represented by:

\[
a_{kj} = \frac{1}{K + 1} K^{\frac{k+j}{2}} \sum_{n,m=\pm 1} \exp(-i(n(\tilde{k} + 1)\varphi_a + m\varphi_b)) \times
\]

\[
\times \frac{\sin \left(\frac{\theta}{4} + \frac{n\varphi_a + m\varphi_b + \varphi_c}{2}\right) \sin \left(\frac{\theta}{4} + \frac{n\varphi_a + m\varphi_b - \varphi_c}{2}\right)}{\sin(n\varphi_a) \sin(m\varphi_b)} M_{na, mb}
\]

(1.10)

where we set \(\tilde{k} = k \mod 2 + \frac{1}{2}\) and \(a = s(k), \ b = s(j), \ a, b, c \) in cyclical order. Under these conditions the \(a_{ik}\) satisfy the trace and rank identities. These identities can all be derived from:

\[
a_{12}a_{34} + K^{-2}a_{23}a_{14} - K^{-1}a_{13}a_{24} - a_{56} = 0
\]

(1.11)

by repeated commutation with the elements of the algebra (1.1-4). For example two useful identities are:
\[K^3 a_{12}a_{46} + Ka_{24}a_{16} - K(1 + K^3)a_{34}a_{45} - K^2a_{14}a_{26} + (1 - K + K^2)a_{35} = 0 \] (1.12)

\[(1 + K^3)((1 + K)a_{34}a_{56}a_{45} - Ka_{34}a_{46} - a_{56}a_{35}) + K^2a_{14}a_{25} - K^3a_{12}a_{45} - Ka_{24}a_{15} + K(1 + K^2 - K)a_{36} = 0 \]

and their images under cyclical permutations of the indices 1 \cdots 6. These identities are certainly not all independent. By heavy use of computer algebra we were able to show that (1.11-12) and their images follow from (1.7-10).

The relations (1.8-9) follows from the single sector factorisation for all \(a, b = \pm 1 \cdots \pm 3:\)

\[M_{ab} = M_a M_b = M_{ba} = M_b M_a \] (1.13)

\[M_{-a} = M_a^{-1} \] (1.14)

\[M_{\pm a} \varphi_a = (\varphi_a \mp \theta) M_{\pm a} \] (1.15)

It is clear that (1.13-15) can be formally satisfied by setting \(M_a = \exp(-\theta \frac{\partial}{\partial \varphi_a})\) and therefore \(M_{ab} = \exp(-\theta(\frac{\partial}{\partial \varphi_a} + \frac{\partial}{\partial \varphi_b}))\), in turn (1.10) becomes:

\[a_{kj} = \frac{1}{2 \cos \left(\frac{\theta}{2}\right)} \sum_{n,m=\pm 1} \sin \left(\frac{\theta}{4} + \frac{n\varphi_a + m\varphi_b + \varphi_c}{2}\right) \sin \left(\frac{\theta}{4} + \frac{n\varphi_a + m\varphi_b - \varphi_c}{2}\right) \times \sin \varphi_a \sin m\varphi_b \]

\[\times \exp \left(-i(n(k+1)\varphi_a + m(j\varphi_b + \theta(np_a + mp_b)) \right) \] (1.16)

where we have used the Baker-Hausdorff formula [8]:

\[\exp A \exp B = \exp \left(A + B + \frac{AB - BA}{2} \right) = \exp(AB - BA) \exp B \exp A \] (1.17)

valid when \(AB - BA\) is a \(C\)-number and \(M_a = \exp(-i\theta p_a)\). Note that, from (1.7) and (1.16), all of the 15 original \(a_{ij}\) are expressed in terms of the 3 angles \(\varphi_a\) and their conjugate momenta \(p_a\).
The treatment of (1.16) can be further simplified by noting that
\[a_{kj} = U_{kj}^{-1} A_{ab} U_{kj} \]
where:
\[U_{kj} = \exp \left(\frac{i(k + 1)\varphi_a^2 + \tilde{j}\varphi_b^2}{2\theta} \right) \]
(1.18)

\[A_{ab} = \frac{1}{2 \cos \left(\frac{\theta}{2} \right)} \sum_{n,m=\pm 1} \sin \left(\frac{\theta}{4} + \frac{n\varphi_a + m\varphi_b + \varphi_a}{2} \right) \sin \left(\frac{\theta}{4} + \frac{n\varphi_a + m\varphi_b - \varphi_a}{2} \right) \times \]
\[\times \exp \left(-i\theta(np_a + mp_b) \right) \]

\[A_{ab} \] is an operator which is a function of the sectors \(a, b \) only and is independent of the position of \(k, j \) within \(a, b \).

The discussion of the representations of (1.13-15) is considerably simplified by the introduction of the deformed Euler Gamma-function \(\Gamma(z, \theta) \) (see Appendix for the definition and a list of properties) which extends to the complex domain the symbol:

\[\left[n! \right] = \prod_{p=1}^{n} \frac{\sin \frac{p\theta}{2}}{\sin \frac{\theta}{2}} \]
(1.19)

In particular \(\Gamma(n + 1, \theta) = \left[n! \right] \) and \(\Gamma(z, \theta) \) is a meromorphic analytic function of \(z \) with poles at \(z = -s - \frac{2\pi r}{\theta}, \quad s, r \geq 0 \text{ and integer and zeroes at } z = s + \frac{2\pi r}{\theta}, \quad s, r \geq 1 \text{ and integer.} \)

2. Representations.

The \(a_{ij} \) expressed by (1.7) are by definition all hermitian operators. We denote by \(\phi_a \) the generic eigenvalue of the operator \(\varphi_a \) and set \(\phi = \{ \phi_1, \phi_2, \phi_3 \}, \quad z_a = \cos \phi_a, \quad z = \{ z_1, z_2, z_3 \} \) where the \(z_a \) are real and restricted to a domain \(D^3 \subset \mathbb{R}^3 \).

Let \(T \) with \(T^2 = 1 \) be the antilinear conjugacy operator \(\Psi(z) \xrightarrow{T} \Psi^*(z) \). A measure \(\sigma(z)d^3z \) with \(\sigma(z) \geq 0 \) and real turns \(H \) into a Hilbert space \(H \) with norm:

\[|\Psi|^2 = \int_{D^3} |\Psi(z)|^2 \sigma(z)d^3z \]
(2.1)

The weight function \(\sigma(z) \) can be determined from the hermiticity of the \(a_{ij} \) (1.7) as follows.
Let \(p_a = -i \frac{\partial}{\partial \phi_a}, \ a = 1, 2, 3 \) satisfying the CCR:

\[
(\varphi_a, \varphi_b) = 0, \ (\varphi_a, p_b) = i \delta_{ab}, \ (p_a, p_b) = 0, \ a, b, = 1, 2, 3 \tag{2.2}
\]

it follows by conjugation that:

\[
(\varphi_a^{\dagger}, \varphi_b^{\dagger}) = 0, \ (\varphi_a^{\dagger}, p_b^{\dagger}) = i \delta_{ab}, \ (p_a^{\dagger}, p_b^{\dagger}) = 0, \ a, b, = 1, 2, 3 \tag{2.3}
\]

but also that

\[
\varphi_a^{\dagger} = T \varphi_a T, \ a_{2a,2a-1} = T a_{2a,2a-1} T, \ a = 1, 2, 3 \tag{2.4}
\]

The hermiticity relation between \(O, O^{\dagger} \) namely \(\langle \Psi, O \Phi \rangle^* = \langle O^{\dagger} \Psi, \Phi \rangle \) implies

\[
(-i \frac{\partial}{\partial z_a})^{\dagger} = -i \sigma^{-1} \frac{\partial}{\partial z_a} \sigma. \text{ But } \frac{\partial}{\partial z_a} = -\frac{1}{\sin \phi_a} \frac{\partial}{\partial \phi_a} \text{ whereby:}
\]

\[
p_a^{\dagger} = \left(-i \frac{\partial}{\partial \phi_a} \right)^{\dagger} = \left(i \sin \phi_a \frac{\partial}{\partial z_a} \right)^{\dagger} = i \sigma^{-1} \frac{\partial}{\partial z_a} \sigma \sin \phi_a^{\dagger} = \tag{2.5}
\]

\[
= i \sigma^{-1} \frac{\partial}{\partial z_a} \sigma T \sin \phi_a T = -i T \sigma^{-1} \frac{\partial}{\partial z_a} \sigma \sin \phi_a T = -T \rho^{-1} p_a \rho T
\]

where \(\rho(\phi) = C \sin \phi_1 \sin \phi_2 \sin \phi_3 \sigma(z), \ C \) being a normalization constant, the operator \(\rho = \rho(\varphi, \varphi_2, \varphi_3) = \rho(\varphi) \) is now to be determined by extending (2.4) to all \(i, k \) as \(a_{ik} = a_{ik}^{\dagger} = T a_{ik} T \).

From (1.16-18) we obtain by conjugation:

\[
a_{kj} = \frac{1}{2 \cos \left(\frac{\theta}{2} \right)} U_{k_j}^{\dagger} \sum_{n,m=\pm 1} \exp \left(i \theta (n p_a^{\dagger} + m p_b^{\dagger}) \right) \times
\]

\[
\sin \left(\frac{\theta}{4} + \frac{n \varphi_a^{\dagger} + m \varphi_b^{\dagger} + \varphi_c^{\dagger}}{2} \right) \sin \left(\frac{\theta}{4} + \frac{n \varphi_a^{\dagger} + m \varphi_b^{\dagger} - \varphi_c^{\dagger}}{2} \right)
\]

\[
\times \frac{\sin(n \varphi_a^{\dagger} \sin m \varphi_b^{\dagger})}{U_{k_j}^{\dagger}^{-1}}
\] \tag{2.6}

We apply now [1.17] and reorder the operators in (2.6) by bringing the exponential factor to the right thus finding:

\[
a_{kj} = \frac{1}{2 \cos \left(\frac{\theta}{2} \right)} U_{k_j}^{\dagger} \sum_{n,m=\pm 1} \sin \left(\frac{5 \theta}{4} + \frac{n \varphi_a^{\dagger} + m \varphi_b^{\dagger} + \varphi_c^{\dagger}}{2} \right) \sin \left(\frac{5 \theta}{4} + \frac{n \varphi_a^{\dagger} + m \varphi_b^{\dagger} - \varphi_c^{\dagger}}{2} \right)
\]

\[
\times \exp \left(i \theta (n p_a^{\dagger} + m p_b^{\dagger}) \right) U_{k_j}^{\dagger}^{-1}
\]
and

\[a_{kj} = \frac{1}{2 \cos^2(\frac{\theta}{2})} T U_{kj}^{-1} \sum_{n,m=\pm 1} \sin(\frac{5\theta}{4} + \frac{n\varphi_a + m\varphi_b + \varphi_c}{2}) \sin(\frac{5\theta}{4} + \frac{n\varphi_a + m\varphi_b - \varphi_c}{2}) \times \]
\[\times \exp \left(i\theta (np_a + mp_b) \right) U_{kj} T \]

(2.7)

We define the maps:

\[\varphi_a, \varphi_b, \varphi_c \xrightarrow{\Delta(na, mb)} \varphi_a + n\theta, \varphi_b + m\theta, \varphi_c \]

(2.8)

where as before \(n, m \) take all values \(\pm 1 \) and \(a, b, c \) are any permutation of \(1, 2, 3 \). From \(a_{ik} = a^\dagger_{ik} = T a_{ik} T \) and by comparing (2.7) with (1.16) we find the recursion relation in the eigenvalues \(\varphi, z \):

\[\Delta(na, mb) \sigma(z_1, z_2, z_3) = \sigma(z_1, z_2, z_3) \times \]
\[\times \sin(\frac{\theta}{4} - \frac{n\varphi_a + m\varphi_b + \varphi_c}{2}) \sin(\frac{\theta}{4} - \frac{n\varphi_a + m\varphi_b - \varphi_c}{2}) \]
\[\times \sin(\frac{5\theta}{4} + \frac{n\varphi_a + m\varphi_b + \varphi_c}{2}) \sin(\frac{5\theta}{4} + \frac{n\varphi_a + m\varphi_b - \varphi_c}{2}) \]

(2.9)

A solution of (2.9) is then provided by:

\[\sigma(z_1, z_2, z_3) = P(\phi) \prod_{m_1m_2m_3=\pm 1} \Gamma \left(-\frac{1}{4} + \frac{q\pi}{\theta} + \frac{m_1\varphi_1 + m_2\varphi_2 + m_3\varphi_3}{2\theta}, 2\theta \right) \]

(2.10)

where \(q \) is arbitrary and integer and \(P(\phi) \) is invariant under (2.8), otherwise arbitrary, in (2.10) the product is carried on all independent sign choices of \(m_1, m_2, m_3 \).

By using (A.7) we see that:

\[E(\phi, \theta, q + 1) = S(\phi) E(\phi, \theta, q) \]

where:

\[S(\phi) = 2^q (2 \sin \theta)^\frac{q\pi}{\theta} \prod_{m_1, m_2, m_3=\pm 1} \sin \pi \left(-\frac{1}{4} + \frac{q\pi}{\theta} + \frac{m_1\varphi_1 + m_2\varphi_2 + m_3\varphi_3}{2\theta} \right) \]
\[E(\phi, \theta, q) = \prod_{m_1, m_2, m_3=\pm 1} \Gamma \left(-\frac{1}{4} + \frac{q\pi}{\theta} + \frac{m_1\varphi_1 + m_2\varphi_2 + m_3\varphi_3}{2\theta}, 2\theta \right) \]

(2.11)
Since \(S(\phi) \) is invariant under (2.8) it can be absorbed into \(P(\phi) \) hence the appearance of \(q \) does not signal any new arbitrariness. It is however convenient in our discussion to have a solution which depends explicitly on \(q \).

The function \(\rho(\phi) \) is periodic of period \(2\pi \) and odd in \(\phi_1, \phi_2, \phi_3 \) if we have (see (2.10) and (A.7)):

\[
\frac{\rho(\phi_1 + 2\pi, \phi_2, \phi_3)}{\rho(\phi_1, \phi_2, \phi_3)} = \frac{P(\phi_1 + 2\pi, \phi_2, \phi_3)}{P(\phi_1, \phi_2, \phi_3)} \times \prod_{m_2m_3 = \pm 1} \sin \pi \left(\frac{-1}{4} + q\frac{\pi}{\theta} + \frac{\phi_1 + m_2\phi_2 + m_3\phi_3}{2\theta} \right) = 1
\]

This be achieved by setting

\[
\theta = \frac{2q - 1}{2t + 1} 2\pi , \ t \ \text{integer} \quad (2.12)
\]

and \(P(\varphi) = 1 \).

We list here the basic properties of \(E(\phi, \theta, q) \):

1). \(E(\phi, \theta, q) \) is even in each of the \(\phi_1, \phi_2, \phi_3 \).

2). \(E(\phi, \theta, q) \) is periodic of period \(2\pi \) in each of the \(\phi_1, \phi_2, \phi_3 \).

3). \(E(\phi, \theta, q) \) is real but not necessarily positive for \(\phi_1, \phi_2, \phi_3 \) all real. It follows by analytic continuation that \(E(\phi^\dagger, \theta, q) = E(\phi, \theta, q)^\dagger \).

4). \(E(\phi, \theta, q) \) is real and positive if at least one of the \(\phi_1, \phi_2, \phi_3 \) is imaginary and the others real. This follows from the possibility of arranging (2.11) in pairs of conjugate factors.

In this case we may choose \(\sigma(z) = E(\phi, \theta, q) \). The discussion of the positivity of the function \(\sigma(z) \) for arbitrary \(z \) is rather involved. A particular solution is provided by restricting all \(z_a \) to the hyperbolic domain \(z_a > 1 \), i.e. all \(\phi_a \) pure imaginary. In this case all \(a_{kj} \) from (1.7) and (1.16) are represented by unbounded hermitian operators. This, and the inclusion of the other \(SL(2, R) \) component, will be discussed elsewhere [9].

Appendix.

Here we give the definition and a comprehensive list of properties of the deformed Euler Gamma function:
\[\Gamma(z, \theta) = \left(\frac{\theta}{2 \sin \frac{\theta}{2}} \right)^{z-1} \Gamma(z) \prod_{n=1}^{\infty} \left(\frac{\theta}{2\pi n} \right)^{2z-1} \frac{\Gamma \left(z + \frac{2\pi n}{\theta} \right)}{\Gamma \left(1 - z + \frac{2\pi n}{\theta} \right)} \] \hspace{1cm} (A.1)

\[\lim_{\theta \to 0} \Gamma(z, \theta) = \Gamma(z) \] \hspace{1cm} (A.2)

\[\Gamma(1, \theta) = 1 \] \hspace{1cm} (A.3)

\[\Gamma(z + 1, \theta) = \Gamma(z, \theta) \frac{\sin \frac{\theta z}{2}}{\sin \frac{\theta}{2}}, \Gamma(n + 1, \theta) = \left[n \right]! \text{ n integer } > 0 \] \hspace{1cm} (A.4)

\[\Gamma \left(z + \frac{2\pi}{\theta}, \theta \right) = 2 \sin(\pi z) \left(2 \sin \frac{\theta}{2} \right)^{-\frac{2\pi}{\theta}} \Gamma(z, \theta) \] \hspace{1cm} (A.5)

\[\Gamma(z, \theta) \Gamma(1 - z, \theta) = \frac{2\pi \sin \frac{\theta}{2}}{\theta \sin(\pi z)} \] \hspace{1cm} (A.6)

\[\Gamma(z, \theta) \Gamma \left(\frac{2\pi}{\theta} - z, \theta \right) = \frac{\pi}{\theta \sin \frac{\theta z}{2}} \left(2 \sin \frac{\theta}{2} \right)^{2 - \frac{2\pi}{\theta}} \] \hspace{1cm} (A.7)

\[\Gamma(z, \theta) \Gamma \left(1 + \frac{2\pi}{\theta} - z, \theta \right) = \frac{2\pi}{\theta} \left(2 \sin \frac{\theta}{2} \right)^{1 - \frac{2\pi}{\theta}} \] \hspace{1cm} (A.8)

Setting \(\theta' = \frac{4\pi^2}{\theta} \) we have the duality property:

\[\Gamma(z, \theta) = \Gamma \left(\frac{\theta z}{2\pi}, \theta' \right) \left(2 \sin \frac{\theta'}{2} \right)^{-\frac{\theta}{\theta'}} - 1 \left(2 \sin \frac{\theta}{2} \right)^{1 - z} \frac{\theta'}{2\pi} \] \hspace{1cm} (A.9)

(A.9) is meaningless in the limit \(\theta \to 0 \) and therefore the standard Euler Gamma function \(\Gamma(z) \) has no dual symmetry. From (A.9) it follows that the function \(\Gamma(z, a, b) = a\Gamma \left(\frac{bz}{2\pi a}, \frac{2\pi a}{b} \right) \left(2 \sin \frac{\pi a}{b} \right)^{bz-1} \) is symmetrical i.e \(\Gamma(z, a, b) = \Gamma(z, b, a) \). Duality exchanges (A.4) with (A.5) and (A.6) with (A.7).

References.

[1] J.E.Nelson, T.Regge, Phys.Lett. B272, (1991)213.
[2] J.E.Nelson, T.Regge, F.Zertuche: Nucl.Phys. B339, (1990)516: F. Zertuche, Ph.D.Thesis, SISSA (1990), unpublished.
[3] V. Moncrief, J. Math. Phys. 30, (1989) 2907.
[4] A. Hosoya and K. Nakao, Class. Qu. Grav. 7, (1990) 163.
[5] S. Carlip, Phys. Rev. D 42, (1990) 2647.
[6] S. Carlip and J. E. Nelson, DFTT 67/93 and UCD-93-33, submitted Phys. Lett.

B.
[7] J. E. Nelson, T. Regge, C. M. P. 155, (1993) 561.
[8] See e.g. A. O. Barut and R. Raczka, Theory of group representations and Applications, World Scientific (Singapore 1986) p. 588.
[9] J. E. Nelson and T. Regge, in preparation.
Fig. 1

Fig. 2.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/gr-qc/9311029v1