Optimal Design of a Rain Gauge Network Models: Review Paper

Nor Sofiza Abu Salleh¹, Mohd Khairul Bazli Mohd Aziz¹ & Noraziah Adzhar¹

¹Centre for Mathematical Sciences, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia

Abstract. Improved streamflow forecasting is considered an important task for researchers and water resources managers. However, streamflow forecasting is often challenging owing to the complexity of hydrologic systems. The accuracy of streamflow forecasting mainly depends on the input data from rainfall. Hence, this is important to make the estimation of rainfall as accurate as possible result in an economical design of watershed management, water budget studies, reservoir operation, and flood forecasting and control. Most of the previous research was highlighted, an optimal rain gauge network is necessary to provide high quality rainfall estimates. The goal of this paper is to provide a concise review of several studies on the optimal design of a rain gauge network models to enhance the accuracy of streamflow forecasting. This study had two components. First, the design of an optimal rain gauge network using the kriging-based geostatistical approach based on the variance reduction framework. Second, the uses of optimization technique for minimizing the kriging variance in order to optimize rain gauge networks. Additionally, a discussion of both techniques to design an optimal rain gauge network is presented. A well designed rain gauge network is capable of providing accurate rainfall estimates with an optimal number of rain gauge network density. This paper closes with a set of recommendations for what observations and capabilities are needed in the future to advance our understanding of an optimal rain gauge network design and their location for improving the estimate of aerial rainfall.

1. Introduction
Monitoring of rainfall in time and space is considered to be a fundamental requirement in managing water resources. In many hydrological analysis and watershed management problems such as water budget studies, flood frequency analysis and sewer drainage design, availability of accurate rainfall data with an appropriate coverage in both time and space is considered a classic issue in surface water hydrology. Rainfall data can be obtained from both ground-based (rain gauge stations) and air-based (radar or satellite) instruments. Even if one uses an air-based measurement, discrete ground-based data are still required for validation and calibration purposes. Among examples in which streamflow forecasts provide significant information is through the analysis and design of hydraulic structures such as dams and bridges, management of extreme events including flood and drought, optimum operation of reservoirs for activities including irrigation water requirements, hydropower generation, domestic water supply objectives and industrial [1, 2]. Hence, this is vital to make the estimation of rainfall as accurate as possible result in achieve an economical design of watershed management, water budget studies, reservoir operation, and flood forecasting and control. Forecasting of streamflow is considered significant result in minimize the risk in a decision taken, at any given point of interest, in various water engineering applications. Hence, there is a growing need for both short-term and long-term forecasting of future streamflow in order to optimize the water resources systems in an efficient way [3]. According to [4], a reliable and improved forecasting of streamflow ensures rational regulation of river runoff, which ultimately results in the enhanced flood control and protection.
Generally, due to the complexity of hydrologic systems, the key challenge of achieving enhanced accuracy of streamflow forecasting remains. This is by no means an easy task because there is no single streamflow forecasting method that provides optimum forecast results for all types of catchments and under all circumstances [5]. Furthermore, there is always uncertainty when it comes to forecasting because it is unlikely to forecast the exact future conditions. As a result, it is necessary to develop a sustainable streamflow forecasting approach for improved estimation of future streamflow with better accuracy. The accuracy of streamflow forecasting primarily depends on the input data, especially rainfall data as it constitutes the key input in transforming rainfall into runoff [6]. Hence, rainfall is one of the most important inputs to develop streamflow forecasting models. Since streamflow is a consequence of rainfall, uncertainty associated with rainfall causes uncertainty in estimated streamflow and adversely affects the accuracy of streamflow forecasting [7–9]. The importance of using accurate rainfall data in streamflow forecasting models is to meet the challenge of enhanced streamflow forecasting. Therefore, it can be expected that the enhanced accuracy in streamflow forecasting can be achieved if catchment rainfall is estimated accurately and fed into streamflow forecasting models.

In the relation to this matter, rain gauge networks are usually installed to get direct measurements of rainfall. However, many of the water resources systems are large in spatial extent and often consist of a rain gauge network that is very sparse due to financial, logistics and geological factors. This results in considerable uncertainty in the rainfall data that are available [10]. Rainfall often shows significant spatial variations within a catchment or region [7, 11]. Therefore, the design and establishment of an optimal rain gauge network is an important task to obtain high quality rainfall estimates. An essential advantage of having such an optimal network is to achieve improved streamflow forecasting. The optimal network improves the accuracy in streamflow forecasting by providing accurate estimates of rainfall data with little or no uncertainty [8] that are used as the input to streamflow forecasting models. Rainfall is often considered independent of streamflow simulation and forecasting such as estimation of areal average rainfall over a catchment [12] or the design of rain gauge networks [8, 13–18].

However, this does not allow one to focus on the strength and weakness of an established optimal rain gauge network that really matters when rainfall data from the optimal network are fed into streamflow forecasting models. Therefore, it is logical to design an optimal rain gauge network for providing a satisfactory solution to the specific requirement of enhanced streamflow forecasting for which the network is being established. In the past, rainfall data were used in streamflow forecasting models directly from the existing rain gauge network (which may not be an optimal network) rather than using improved rainfall data from an optimally designed rain gauge network [6, 9, 19–22]. This ultimately results in the less accurate forecasting of streamflow. Thus, it can be hypothesized that the integration of rainfall input from an optimal rain gauge network with streamflow forecasting models is expected to improve the accuracy of streamflow forecasting.

Therefore, this paper is to provide a concise review of recent studies on the optimal design of a rain gauge network models to enhance the accuracy of streamflow forecasting using a geostatistical approach based on the variance reduction framework and the uses of optimization technique for minimizing the kriging variance in order to optimize rain gauge networks.
2. Optimal design of a rain gauge network models to enhance the accuracy of streamflow forecasting

A review of the existing optimal rain gauge network design approaches is vital to come up with a suitable approach for the optimal design of rain gauge network. Optimal rain gauge network can be defined as a balanced network that neither suffers from lack of rain gauge stations nor is over-saturated with redundant rain gauge stations [23, 24]. Hence, in any hydrological study, an optimal rain gauge network is often considered as crucial component. The design of hydrometric networks is a classical problem in hydrometeorology [23], which has received significant attention from the researchers for many years. Since myriad concerns are associated with hydrometric network design [25], many approaches have been developed for that purpose around the world.

Figure 1. Classification of methods for hydrometric networks design and evaluation
A number of available network design and evaluation methods can be found in [23]. These approaches can be broadly classified as statistical methods, entropy methods, optimization methods, basin physiographic characteristics and sampling strategies (as showed in Figure 1), a comprehensive review of which is presented in the work by [23]. [23] mentioned that statistical methods are the most developed. Furthermore, it is found based on the available literature that among all the statistical methods, the kriging-based geostatistical method is the most commonly used method for the design and evaluation of rain gauge networks. An important advantage of this method is that it can be implemented with the combination of other methods such as entropy method, multivariate statistical techniques, and different multi-objective optimization techniques using genetic algorithms, simulated annealing, particle swarm optimization, and artificial bee colony (ABC) in order to achieve a balanced or optimal rain gauge network. Therefore, a detailed review of kriging-based geostatistical and optimization techniques for the design of a rain gauge network is presented in this chapter.

2.1. Kriging-Based Geostatistical and Approach
Geostatistics defines the statistical study of natural phenomena, which can be generally characterized by a distribution of one or more variables in space. These variables are referred to as regionalized variables [26]. The unique feature of a regionalized variable is that it can take values according to its spatial location [27]. Geostatistics is thus based on the theory of regionalized variables, which allows modelling of the spatial variability of the variable based on the spatial dependence between neighbouring observations. The degree of spatial dependence is generally expressed by variogram (also called semivariogram) in geostatistics, which has the structural (spatial variability) information required on a regionalized variable. A variogram is a mathematical function of the distance and direction separating two locations used to quantify the spatial autocorrelation in regionalized variables [26]. The variogram has a key role in geostatistics, which was first applied and developed through kriging.

Kriging refers to a family of generalized least square regression methods in geostatistics [28, 29] that estimate values at unsampled locations using the sampled observations in a specified search neighbourhood. As it will be seen, kriging-based geostatistical method for the design of rain gauge networks depends on the correct estimation of variogram models in which the design criteria are often related to the accuracy of the spatial estimation (i.e., the kriging standard error or the kriging variance) [28]. Therefore, prior to any kriging-based geostatistical assessment, the variogram must be computed from the regionalized variable data. In most of the studies for rain gauge network design, kriging was implemented alone where only rainfall was considered as a single regionalized variable in kriging analysis. However, it is also found from the literature that the kriging-based geostatistical approach offers an advantage over other network design methods because kriging is able to complement the sparsely sampled primary variable, such as rainfall by the correlated densely sampled secondary variable, such as elevation, radar-based rainfall data etc [30, 31].

In this section, a series of studies have presented similar findings. Among those, the methods namely kriging-based geostatistical approach was used for the optimal design of a rain gauge network by researchers. They found that with an increasing of the network with additional rain gauge stations will result in achieve the desired network density and identifying the optimal location of the additional stations in the network to improve the rainfall estimation accuracy [8, 13, 14, 22, 27, 32 – 35]. With respect to this context, another study by [15, 24, 36, 37] revealed that by choosing an optimal representative subset of rain gauge from an existing dense network will result in achieve as much information as possible maintaining the desired level of accuracy. On the other hand, [16 – 18, 38 – 41] found that by prioritizing the rain gauge in the network with respect to their contribution in estimation error reduction and accuracy improvement will result in enhance the accuracy of streamflow forecasting.

It was found in most of the past studies that expansion of the existing network by adding supplementary stations has been the main underlying criterion to achieve the optimal rain gauge network. However, the location and modification of stations significantly influence the quality of the obtained hydrological variable in a network [39]. Furthermore, [23] mentioned that an existing network
may consist of redundant stations that may make small or no contribution to the network performance in providing quality data. [23] suggested that one can approach the problem either by eliminating redundant stations from the network to minimize the cost or by expanding the network with the installation of additional stations to reduce the rainfall estimation uncertainty. Therefore, optimal placement of redundant stations, as well as additional stations, must be ensured in order to achieve the optimal rain gauge network.

2.2. Optimization Technique Approach

Generally, optimization refers to the study of problems in which one seeks to minimize or maximize a real function by systematically choosing the values of real or integer variables from within an allowed set. The application of optimization in network design is to maximize information with respect to minimizing cost [23]. According to [42], the design of rain gauge networks need not essentially be based on formal schemes of optimization, such as the minimum cost of attaining data accuracy. A design can be based upon judgmental analyses to accommodate a mix of design criteria. Available literature indicates that most of the past studies used a sequential trial and error procedure to minimize the kriging variance of rain gauge networks to optimize the network [13, 32, 35].

However, a few studies used optimization techniques such as simulated annealing, genetic algorithm, particle swarm optimization and artificial bee colony (ABC) for minimizing the kriging variance in order to optimize rain gauge networks [14, 15, 27, 33, 37, 41, 43]. Several optimization techniques have been proposed in the literature since the early work of [44, 45], who demonstrated a methodology of rain gauge network design based on the minimization of the mean areal kriging variance. The adoption of optimization techniques in combination with the kriging-based geostatistical method for rainfall network sizing and augmentation was also performed by [14, 15, 27, 33, 37, 41, 43].

Optimization technique, namely simulated annealing [45] was adopted in [14] research which found that simulated annealing improves the optimal network design by minimising an objective function which includes both the accuracy of the areal mean estimation (as expressed by the kriging variance of estimation) and the economic cost of the data collection by variance reduction. [33] provided a methodology for assessing the optimal location of new rain gauge stations within an existing rain gauge network. The methodology used kriging and probabilistic techniques (simulated annealing) combined with a geographic information system (GIS). [27] have considered mono-objective criteria in simulated annealing technique assuming 1-hour rainfall intensity interpolation and erosivity factor interpolation and using one single extreme rainfall event to perform the analysis. Rainfall quantities retained in previous studies were mainly taken in a deterministic way. Effectively, a single rainfall pattern was selected for which the average kriging variance was minimized to achieve the best new rain gauge locations [14, 27, 45].

In the recent past, genetic algorithm and particle swarm optimization techniques in combination with geostatistics were also used for rain gauge network design to minimize the kriging variance for network optimization [15, 37]. They have found that the optimal number of stations of rain gauge with the estimated variance was improving the optimal network of rain gauge stations. Particle swarm optimization as an algorithm numerical optimization also improves the optimal network of rain gauge stations by variance reduction method with help of rainfall, elevation, humidity, solar radiation, temperature and wind speed data [15].

Furthermore, a study was conducted by [41] found that artificial bee colony (ABC) as an algorithm of minimization make the estimation of long term average annual rainfall more accurate and efficient in order to prioritization the rain gauge stations in the network with respect to their contribution in estimation error reduction and accuracy improvement. The result presented that as the number of rain gauges increases, the variance of residual over the study area decreases. The couple of artificial bee colony and kriging seems to be an appropriate, robust and efficient approach to identify the exponentially decaying function of the variance versus the number of rain gauge stations.
3. Conclusion and Recommendation
In conclusion, as mentioned earlier, the goal of this paper was to provide a brief review of past recent studies on the optimal design of a rain gauge network models to enhance the accuracy of streamflow forecasting. In a rain gauge network design exercise, network expansion (using additional stations) as well as network rationalization (eliminating or re-locating redundant stations) and identification of optimal locations of both additional and redundant stations are seen as a potential way to achieve the optimal rain gauge network. In other words, the additional stations that contribute to reduce kriging variance of the network can be selected. Also, the redundant stations that have little or no contribution to the network variance reduction can be either eliminated or optimally located in the high variance areas of the network. However, this study focused on kriging and optimization approach in optimal rain gauge network for enhancing streamflow forecasting which was found highly effective in improving the streamflow forecasting accuracy.

To sum up, future studies can be focused on reviewing the combination of other statistical methods such as entropy method, multivariate statistical techniques, GIS and others.

Acknowledgements
The authors would like to thank Universiti Malaysia Pahang under UMP grant RDU1703196 for the technical and research support.

References
[1] Jain A, Kumar AM 2007 Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing 7(2): 585-592. DOI: 10.1016/j.asoc.2006.03.002.
[2] Londhe S, Charhate S 2010 Comparison of data-driven modelling techniques for river flow forecasting. Hydrological Sciences Journal 55(7): 1163-1174. DOI: 10.1080/02626667.2010.512867
[3] Akhtar MK, Corzo GA, Andel SJ, Jonoski A 2009 River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow lengths and travel time information: case study of the Ganges River basin. Hydrology and Earth System Sciences 13: 1607-1618. DOI: 10.5194/hess-13-1607-2009.
[4] Ruiz JE, Cordery I, Sharma A 2007 Forecasting streamflows in Australia using the tropical Indo-Pacific thermocline as predictor. Journal of Hydrology 341(3-4): 156-164. DOI: 10.1016/j.jhydrol.2007.04.021.
[5] Shamseldin AY. 2004. Hybrid neural network modelling solutions. In RJ Abrahart, PE Kneale, LM See (Eds.) Neural Networks for Hydrological Modeling. A.A. Balkema Publishers: Leiden. pp. 61-79.
[6] Ekström M, Jones PD 2009 Impact of rainfall estimation uncertainty on streamflow estimations for catchments Wye and Tyne in the United Kingdom. International Journal of Climatology 29: 79-86. DOI: 10.1002/joc.1665
[7] Faurès JM, Goodrich DC, Woolhiser DA, Sorooshian S 1995 Impact of small-scale spatial variability on runoff modeling. Journal of Hydrology 173(1-4): 309-326. DOI: 10.1016/0022-1694(95)02704-S.
[8] Tsintikidis D, Georgakakos KP, Sperfslage JA, Smith DE, Carpenter TM 2002 Precipitation uncertainty and raingauge network design within Folsom Lake watershed. Journal of Hydrologic Engineering 7(2): 175-184. DOI: 10.1061/(ASCE)1084-0699(2002)7:2(175).
[9] Moulin L, Gaume E, Obled C 2009 Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations. Hydrology and Earth System Sciences 13: 99-114. DOI: 10.5194/hess-13-99-2009.
[10] Zealand CM, Burn DH, Simonovic SP. 1999. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology 214(1-4): 32-48. DOI: 10.1016/S0022-1694(98)00242-X.

[11] Krajewski WF, Ciach GJ, Habib E 2003 An analysis of small-scale rainfall variability in different climatic regimes. Hydrological Sciences Journal 48(2): 151-162. DOI: 10.1623/hysj.48.2.151.44694.

[12] Mishra AK 2013 Effect of rain gauge density over the accuracy of rainfall: a case study over Bangalore, India, SpringerPlus, 2: 311. DOI: 10.1186/2193-1801-2311

[13] Papamichail, DM & Metaxa, IG 1996 Geostatistical analysis of spatial variability of rainfall and optimal design of rain gauge network. Water Resour. Manage. 10(2), 107-127. DOI: 10.1007/BF00429682.

[14] Pardo-Igúzquiza, E 1998 Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. J. Hydrol. 210(1-4), 206-220. DOI: 10.1016/S0022-1694(98)00188-7.

[15] Aziz MKBM, Yusof F, Daud ZM, Yusop Z, Kasno MA 2016 Optimal design of rain gaugene network in Johor by using geostatistics and particle swarm optimization. International Journal of GEOMATE 11(25): 2422-2428.

[16] Cheng KS, Lin YC, Liou JJ 2008 Rain-gauge network evaluation and augmentation using geostatistics. Hydrological Processes 22(14): 2554-2564. DOI: 10.1002/hyp.6851.

[17] Feki H, Slimani M, Cudennec C 2017 Geostatistically based optimization of a rainfall monitoring network extension: case of the climatically heterogeneous Tunisia. Hydrology Research 48(2): 514-541; DOI: 10.2166/nh.2016.256.

[18] Shahidi M, Abedini MJ 2018 Optimal selection of number and location of rain gauge stations for areal estimation of annual rainfall using a procedure based on inverse distance weighting estimator. Paddy and Water Environment. DOI: 10.1017/s10333-018-0654-y

[19] Anctil F, Lauzon N, Andréassian V, Oudin L, Perrin C 2006 Improvement of rainfall runoff forecasts through mean areal rainfall optimization. Journal of Hydrology 328(3-4): 717-725. DOI: 10.1016/j.jhydrol.2006.01.016.

[20] Bárdossy A, Das T 2008 Influence of rainfall observation network on model calibration and application. Hydrology and Earth System Sciences 12: 77-89. DOI: 10.5194/hess-12-77-2008

[21] Xu H, Xu CY, Chen H, Zhang Z, Li L 2013 Assessing the influence of rain gauge network density and distribution on hydrological model performance in a humid region of China. Journal of Hydrology 505: 1-12. DOI: 10.1016/j.jhydrol.2013.09.004.

[22] Xu P, Wang D, Singh VP, Wang Y, Wu J, Wang L, Zou X, Liu J, Zou Y, He R 2018 A kriging and entropy-based approach to raingauge network design. Environmental Research. DOI: 10.1016/j.envres.2017.10.038

[23] Mishra AK, Coulibaly P 2009 Developments in hydrometric network design: A review. Reviews of Geophysics 47(2): RG2001. DOI: 10.1029/2007RG000243.

[24] Shaghaghian M, Abedini M 2013 Rain gauge network design using coupled geostatistical and multivariate techniques. Scientia Iranica 20(2): 259-269. DOI: 10.1016/j.sci.2012.11.014.

[25] Li C, Singh VP, Mishra AK. 2012. Entropy theory-based criterion for hydrometric network design and design: maximum information minimum redundancy. Water Resources Research 48(5): W05521. DOI: 10.1029/2011WR011251.

[26] Webster R, Oliver MA 2007 Geostatistics for Environmental Scientists (2nd Edition). John Wiley & Sons: Chichester, United Kingdom.

[27] Chebbi A, Bargaoui ZK, Cunha MDC 2011 Optimal extension of rain gauge monitoring network for rainfall intensity and erosivity index interpolation. Journal of Hydrologic Engineering 16(8): 665-676. DOI: 10.1061/(ASCE)HE.1943-5584.0000353.

[28] Isaaks HE, Srivastava RM. 1989. An Introduction to Applied Geostatistics. Oxford University Press: Ann Arbor.
[29] Goovaerts P. 1997. *Geostatistics for Natural Resources Evaluation*. Oxford University Press: New York.

[30] Goovaerts P. 2000. *Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall*. Journal of Hydrology **228**(1-2): 113-129. DOI: 10.1016/S0022-1694(00)00144-X.

[31] Feki H, Slimani M, Cudennec C. 2012. *Incorporating elevation in rainfall interpolation in Tunisia using geostatistical methods*. Hydrological Sciences Journal **57**(7): 1294-1314. DOI: 10.1080/02626667.2012.710334.

[32] Loof R, Hjorth P, Raut OB 1994 *Rainfall network design using the kriging technique: A case study of Karnali River basin, Nepal*. International Journal of Water Resources Development **10**(4): 497-513. DOI: 10.1080/07900629408722649.

[33] Barca E, Passarella G, Uricchio V 2008 *Optimal extension of the rain gauge monitoring network of the Apulian regional consortium for crop protection*. Environmental Monitoring and Assessment **145**(1): 375-386. DOI: 10.1007/s10661-007-0046-z.

[34] Adhikary, S.K., Yilmaz, A.G. & Muttill, N 2015 *Optimal design of rain gauge network in the Middle Yarra River catchment, Australia*. Hydrol. Process. **29**(11), 2582-2599. DOI: 10.1002/hyp.10389.

[35] Haggag M, Ali A, Awadallah A 2016 *Evaluation of rain gauge network in arid regions using geostatistical approach: case study in northern Oman*. Arabian Journal of Geosciences **9**(9): 552. DOI: 10.1007/s12517-016-2576-6.

[36] Singh N 1994 *Optimizing a network of rain-gauges over India to monitor summer monsoon rainfall variations*. International Journal of Climatology **14**(61-70). DOI: 551.577.3255 1.508.77:55 1.502.3(540)

[37] Adib A, Moslemzadeh M, 2016 *Optimal selection of number of rainfall gauging stations by kriging and genetic algorithm methods*. International Journal of Optimization in Civil Engineering **6**(4): 581-594.

[38] Chen YC, Wei C, Yeh HC 2008 *Rainfall network design using kriging and entropy*. Hydrological Processes **22**(3): 340-346. DOI: 10.1002/hyp.6292.

[39] Yeh HC, Chen YC, Wei C, Chen RH 2011 *Entropy and kriging approach to rainfall network design*. Paddy and Water Environment **9**(3): 343-355. DOI: 10.1007/s10333-010-0247-x.

[40] Chang CH, Wu SJ, Hsu CT, Shen JC, Lien HC 2017 *An evaluation framework for identifying the optimal raingauge network based on spatiotemporal variation in quantitative precipitation estimation*. Hydrology Research 48(1): 77-98. DOI: 10.2166/nh.2016.169.

[41] Attar M, Abedini MJ, Akbari R 2018 *Optimal prioritization of rain gauge stations for areal estimation of annual rainfall via coupling geostatistics with artificial bee colony optimization*. Journal of Spatial Science DOI: 10.1080/14498596.2018.1431970.

[42] Langbein WB. 1979. *Overview of conference on hydrologic data networks*. Water Resources Research **15**(6): 1867 –1871, DOI:10.1029/WR015i006p01867.
[43] Aziz MKBM, Yusof F, Daud ZM, Yusop Z, Kasno MA 2014 Redesigning rain gauge network in Johor using geostatistics and simulated annealing. Proceedings of 2nd International Science Postgraduate Conference (ISPC 2014) Universiti Teknologi Malaysia. pp 1-15.

[44] Bras RL, Rodriguez-Iturbe I. 1976. Network design for the estimation of areal mean of rainfall events. Water Resources Research 12(6): 1185-1195. DOI: 10.1029/WR012i006p01185.

[45] Delhomme JP 1978 Kriging in the hydrosciences. Advances in Water Resources 1(5): 251-266. DOI: 10.1016/0309-1708(78)90039-8

[46] Shamsi U, Quimpo R, Yoganarasimhan G 1988 An application of kriging to rainfall network design. Nordic Hydrology 19(3): 137-152. DOI: 10.2166/nh.1988.010.

[47] Kişi Ö. 2007. Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering 12(5): 532-539. DOI: 10.1061/(ASCE)1084-0699(2007)12:5(532).

[48] Ghahraman B, Sepaskhah AR. 2001. Autographic rain-gage network design for Iran by kriging. Iranian Journal of Science and Technology Transaction B-Engineering 25(B4): 653-660.

[49] Nour MH, Smit DW, El-Din MG. 2006. Geostatistical mapping of precipitation: implications for rain gauge network design. Water Science & Technology 53(10): 101-110. DOI: 10.2166/wst.2006.303.

[50] Putthividhya A, Tanaka K. 2013. Optimal rain gauge network design and spatial precipitation mapping based on geostatistical analysis from colocated elevation and humidity data. Chiang Mai Journal of Science 40(2): 187-197.

[51] Arnaud P, Bouvier C, Cisneros L, Dominguez R. 2002. Influence of rainfall spatial variability on flood prediction. Journal of Hydrology 260(1-4): 216-230. DOI: 10.1016/S0022-1694(01)00611-4.

[52] St-Hilaire A, Ouarda TBMJ, Lachance M, Bobée B, Gaudet J, Gignac C. 2003. Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: a case study. Hydrological Processes 17: 3561-3580. DOI: 10.1002/hyp.1350.