DISCOVERY OF AN IONIZED Fe K EDGE IN THE z = 3.91 BROAD ABSORPTION LINE
QUASAR APM 08279+5255 WITH XMM-NEWTON

G. HASINGER, 1 N. SCHARTEL, 2 AND S. KOMOSSA 1
Received 2002 May 22; accepted 2002 June 5; published 2002 June 18

ABSTRACT

Recent XMM-Newton observations of the high-redshift, lensed, broad absorption line (BAL) quasi-stellar object APM 08279+5255, one of the most luminous objects in the universe, allowed the detection of a high column density absorber (N_H ≈ 10^{23} cm^{-2}) in the form of a K-shell absorption edge of significantly ionized iron (Fe xv–Fe xviii) and corresponding ionized lower energy absorption. Our findings confirm a basic prediction of phenomenological geometry models for the BAL outflow and can constrain the size of the absorbing region. The Fe/O abundance of the absorbing material is significantly higher than solar (Fe/O = 2–5), giving interesting constraints on the gas enrichment history in the early universe.

Subject headings: quasars: absorption lines — quasars: individual (APM 08279+5255) — X-rays: galaxies

1. INTRODUCTION

Broad absorption line (BAL) quasi-stellar objects (QSOs) are a key to understanding the geometry and physical state of the medium in the immediate vicinity of accreting supermassive black holes. A new unified model (Elvis 2000) indicates that a significant fraction of the matter accreted into the region of the compact object is flowing out again. On either side of the accretion disk it should form a funnel-shaped shell, in which the outflowing gas is ionized and accelerated to velocities of 0.05c–0.1c by the powerful radiation force of the central object. If the observer’s inclination is favorable, this flow intercepts the line of sight with a large column density and produces the blueshifted UV absorption line features observed in about 10% of all QSOs. However, the UV/optical spectra sample only a minor fraction of the total column density of the flow, which is predicted to be highly ionized so that it mainly absorbs X-rays.

APM 08279+5255 is an exceptionally luminous BAL QSO at redshift z = 3.91 (Irwin et al. 1998), coincident with an IRAS Faint Source Catalog object, and was also detected at 850 μm with the Submillimeter Common-User Bolometric Array, implying an apparent far-infrared luminosity of greater than 5 × 10^{11} L_⊙ (Lewis et al. 1998). The object is strongly lensed (Ledoux et al. 1998; Ibata et al. 1999; Egami et al. 2000), with a magnification factor of 50–100, but even taking this magnification factor into account, the object is still among the most luminous in the universe. The low-resolution discovery spectrum of APM 08279+5255 showed a broad absorption trough (BAL) on the blue side of Lyα. An excellent high-resolution optical spectrum was obtained with the High Resolution Echelle Spectrometer at the Keck Telescope (Ellison, Lewis, & Pettini 1999), and a detailed study of the physical conditions in the BAL flow of the QSO (Srianand & Petitjean 2000) came to the conclusion that the corresponding gas stream, outflowing with velocities of up to 12,000 km s^{-1}, is heavily structured and highly ionized.

In this Letter we report X-ray observations of APM 08279+5255 with XMM-Newton obtained in 2001 October and 2002 April, where we detected an ionized Fe K edge in the continuum of the QSO, which is very likely related to the UV BAL flow.

In § 2 we present the X-ray observations and analysis. In § 3 we discuss the results. Throughout this Letter we use a Hubble constant of 50 km s^{-1} Mpc^{-1} and a deceleration parameter of q_0 = 0.5.

2. X-RAY OBSERVATIONS AND ANALYSIS

The first X-ray observation of APM 08279+5255 was taken on 2000 October 11 with the Chandra observatory (Gallagher et al. 2002). XMM-Newton observed APM 08279+5255 for 15 ks on 2001 October 30 in good background conditions. The European Photon Imaging Camera (EPIC) spectrum revealed a tantalizing absorption feature around 1.5 keV, close to the energy expected from highly redshifted iron, associated with either the object itself or intervening material. Unfortunately, the statistical quality of the data did not allow more quantitative analysis. A proposal for Director’s Discretionary Time for a significantly longer observation (100 ks) was accepted by the XMM-Newton project scientist and executed on 2002 April 28–29. Table 1 gives details for the XMM-Newton and Chandra observations.

The XMM-Newton data were analyzed using the latest version of the standard analysis software SAS 5.0. The EPIC-pn CCD detector detected the source with an average count rate of ~0.19 and ~0.15 counts s^{-1}, in the XMM1 and XMM2 observations, respectively. Within each of the observations there is no significant time variability detected. Figure 1 shows the normalized pn CCD counts spectrum of the source from the 100 ks XMM2 observation. The source is clearly detected out to 12 keV (almost 60 keV in the rest frame of the QSO!). Using XSPEC version 11.1.0, we fitted the combined pn CCD and MOS-CCD spectra and in all fits included a neutral absorption with the Galactic N_H value fixed to 4 × 10^{20} cm^{-2}. Following Gallagher et al. (2002), we first assumed a simple power-law spectrum with an intrinsic cold gas absorber in the rest frame of the QSO (z = 3.91). The two XMM-Newton (EPIC-pn+MOS) and one Chandra (ACIS-I) data set can be fitted with the same model, and apart from a ~20% flux decrease between the first and the last observation, the spectral fit parameters are consistent between the three data sets. The best-fit values for all three data sets are given in Table 2.

The spectral fit residuals of the 100 ks XMM2 observation, however, show systematic deviations across the whole spectral range (Fig. 1). The fit is statistically unacceptable (reduced χ^2 = 1.45 for 126 degrees of freedom); the most significant
deviation is an edgelike feature around 1.55 keV, corresponding to roughly 7.7 keV in the rest frame of the object. There is no evidence for an emission line associated with the K edge: the upper limit for the equivalent width of a narrow emission line in the rest-frame energy range 6.4–6.9 keV is about 110 eV, much lower than those found, e.g., from ionized reflection disk models. We therefore interpret the observed spectral feature as an absorption edge due to ionized iron in the BAL flow of APM 08279 +5255. Indeed, if we include an additional absorption edge in the spectral model, we obtain a highly significant improvement of the fit ($\Delta\chi^2 = -87$ for two additional parameters) for the XMM2 data set with an energy of $E_{\text{edge}} = 7.7 \pm 0.1$ keV and an optical depth of $\tau = 0.46 \pm 0.07$. An improved fit is also obtained for the XMM1 observation, with independently determined edge parameters consistent with the XMM2 data set. The Chandra spectrum (CXO1), which is of lower signal-to-noise ratio, does not require an edge, but if it is included, the energy and depth are fully consistent with the XMM values (see Table 2).

Figure 2 shows confidence contours for the edge energy versus the optical depth derived from the XMM2 data in comparison with the K-edge energy expected for different ionization species of Fe. The best-fit parameters are compatible with Fe xvii, with a range from Fe xv to Fe xviii, indicating significant ionization of iron. Assuming the absorption cross section of the Fe xvii K edge ($2.7 \times 10^{-20} \text{ cm}^2$), computed using the analytical fits of Verner & Yakovlev (1995), we can determine the column density of ionized Fe to $N_{\text{Fe}} \approx 1.7 \times 10^{21} \text{ cm}^{-2}$, relatively independent of the ionization state of iron.

Assuming solar abundances, this would correspond to an effective hydrogen column density of $N_{\text{H}} \approx 6 \times 10^{20} \text{ cm}^{-2}$, a factor of about 7 larger than the hydrogen column density derived by fitting a cold, neutral absorber to the low-energy cutoff of the spectrum.

The fit of a neutral absorber in conjunction with a highly ionized Fe K edge is, however, physically not meaningful. If Fe is partly ionized, most of the lighter elements will also be ionized and therefore will absorb the X-ray continuum less strongly. Indeed, the detailed treatment of the high-resolution UV/optical spectrum of this source indicates a total neutral hydrogen column density not much larger than several times 10^{10} cm^{-2} (Srianand & Petitjean 2000). However, edges of hydrogen- and helium-like ions of lower Z elements (O, Ne, Mg, Si, and S) as well as the Fe L edge will absorb lower energy photons and can mimic a cold gas absorber (Schartel et al. 1997; Komossa 1999). To estimate their effect, we have scaled the column density for these elements to the measured N_{Fe}, assuming solar abundance ratios. Including these edges into the model spectrum produces significantly more low-energy absorption than observed in the data. Indeed, reducing the K-edge depth of lower Z elements by a factor of 5, while leaving the depth of the Fe L edge at the predicted depth of 8.7, gives a very good approximation to the lower energy absorption observed in APM 08279 +5255. This indicates a high overabundance of iron with respect to lower Z elements.

A more quantitative treatment has to include the photoionization of the BAL flow and the balance between different ionization states of the elements. Therefore, we fitted a power-law model, folded through the Galactic N_{H} and an ionized absorber (model “absori” contained in XSPEC; Done et al. 1992). We obtain an excellent fit to the XMM2 data with a reduced χ^2 of 1.09. Figure 3 shows confidence intervals for the interesting parameters in the “absori” fit. The equivalent hydrogen column density is in the range $N_{\text{H}} = (1.0 \pm 0.2) \times 10^{21} \text{ cm}^{-2}$, somewhat higher than the neutral hydrogen column densities in Table 1, but an iron overabundance of Fe/Fe = 2–5 is required to take care of the observed Fe K edge in relation to the lower energy absorption by O, Ne, and Mg K edges and the Fe L edge. There is a correlation between these two parameters in the sense that the total Fe column density can be determined to $N_{\text{Fe}} \approx 1.5 \times 10^{19} \text{ cm}^{-2}$, rather independent from the Fe overabundance and consistent with the value obtained by just fitting an edge (see above).

For a more detailed study, we have constructed grids of photoionization models using the code CLOUDY (Ferland 1993), varying the gas column density N_{Fe} and the ionization parameter U until we obtain an Fe K ionization level and optical depth consistent with the observed edge (see below). U is defined as $U = Q/(4\pi r^2 n_{\text{H}}c)$, where Q is the rate of ionizing photons above the Lyman limit. As input continuum we chose a mean active galactic nucleus continuum spectrum, consisting of piecewise power laws from the radio to the gamma-ray region with, in particular, $\alpha_{\text{UV,X}} = -1.4$ in the extreme UV and an observed $\Gamma_X = -2.0$. The results of this analysis are discussed in § 3.1.

TABLE 1

Observation	Start Date (UT)	End Date (UT)	Filter	Exposure (s)	Instrument
CXO1	2000 Oct 11 (16:13)	2000 Oct 11 (19:24)	...	9137	ACIS-I
XMM1	2001 Oct 30 (02:50)	2001 Oct 30 (07:35)	Medium	16523	EPIC
XMM2	2002 Apr 28 (17:07)	2002 Apr 29 (21:36)	Medium	102274	EPIC

Fig. 1. X-ray spectrum of APM 08279 +5255 taken with the XMM-Newton pn CCD camera, fit with a simple power-law model absorbed by neutral gas in our own Galaxy as well as associated with the source. This fit is statistically not acceptable; residuals are shown below the curve.

3. DISCUSSION

For the first time, we have reported the detection of a highly ionized iron edge in the spectrum of a high-redshift BAL QSO.
This indicates a very high column density ionized absorber in the line of sight. Compared to the warm absorbers typically observed in Seyfert galaxies, which are dominated by O viii–O vi edges of optical depth around unity (see Komossa 1999 and references therein), where strong Fe K edges have not been seen so far, the column density of ionized Fe is considerably higher here and the absorption is very likely associated with the highly ionized BAL flow observed in the UV spectrum of the source.

For the QSO 3C 351 it has been shown that the associated absorption lines observed in the UV spectrum are most likely produced by the same highly ionized material that is also responsible for the moderate X-ray warm absorber (Mathur et al. 1994). In case of BAL systems, however, interpretation is complicated by the uncertainties in optical depth measurements of the lines: the broad, saturated UV absorption lines from different atomic species do not allow an unambiguous column density determination (e.g., Hamann 1998).

3.1. Implications for X-Ray Broad Absorption Line Models

Murray & Chiang (1995) constructed a model in which the BALs arise in an accretion disk wind driven by line pressure. They predicted that objects with very broad C iv absorption (>5000 km s\(^{-1}\)) should also show Fe absorption edges in the X-ray regime. This is similar to what we now observe.

The high column density inferred for the X-ray absorber in APM 08279+5255 is also consistent with predictions of the unified model by Elvis (2000). In that model, the UV BALs occur when the line of sight to the central object grazes along the funnel-shaped shell of ionized matter thought to constitute the BAL outflow. Using NGC 5548 as a reference object in constructing his new unified model, Elvis (2000) predicted a column density of a few times \(10^{23}\) cm\(^{-2}\) for an NGC 5548–like object viewed along the funnel. We find \(~10^{22}\) cm\(^{-2}\) for APM 08279+5255.

The ionization state of the warm absorber is characterized by the ionization parameter \(U\). The number rate of ionizing photons, \(Q\), was estimated from our piecewise power-law spectrum with \(\alpha_{\text{UV,X}} = -1.4\) in the EUV and \(\Gamma_x\) as observed, normalized to the observed X-ray flux. Then we find \(Q = 1.2 \times 10^{51} k^{-1}\) s\(^{-1}\), \(k\) being the lensing magnification factor. Given the best estimate of the ionization parameter (log \(U = 0.4\)) and assuming a density of the absorber of log \(n = 9.5\)—this is similar to the value suggested by Elvis (2000) to ensure pressure equilibrium with the broad emission line region clouds—we expect a lower limit on the location of the absorber of \(r \approx 2 \times 10^{17} k^{-1/2}\) cm. A more detailed discussion of the ionized gas properties and consequences for BAL models will be given in a forthcoming paper (G. Hasinger et al. 2002, in preparation).

3.2. Relation of X-Ray and UV Absorbers and Metal Abundances

Comparison with UV data immediately implies that the X-ray absorber must be dust free or else the UV continuum would be heavily extincted. The high degree of ionization of

![Figure 2](image1.png)

Fig. 2.—Confidence contours of the edge energy vs. the optical depth of the edge. Contours are given for 1, 2, and 3 \(\sigma\) deviations from the best fit. Dashed vertical lines refer to the Fe K edges for the specified ionic species.

![Figure 3](image2.png)

Fig. 3.—Confidence contours of hydrogen column density \(N_H\) vs. iron abundance Fe/O in an ionized absorber ("absori") fit.
the X-ray absorber is consistent with the UV spectrum, which shows strong high-ionization BAL lines, including O \textsc{vi}, but relatively weak neutral H absorption.

The UV absorption line data show that the BAL flow is highly structured with saturated absorption bands and thus, contrary to the X-ray absorption edge, cannot determine the total column density in the flow. Based on our best-fit CLOUDY model, we expect to see UV absorption in, e.g., H \textsc{i}, C \textsc{iv}, N \textsc{v}, O \textsc{vi}, and Ne \textsc{viii}, with column densities on the order of $N_{H_1} \approx 4 \times 10^{16}$ cm$^{-2}$, $N_{C_{iv}} \approx 10^{16}$ cm$^{-2}$, $N_{N_{v}} \approx 7 \times 10^{17}$ cm$^{-2}$, $N_{O_{vii}} \approx 6 \times 10^{17}$ cm$^{-2}$, and $N_{Ne_{viii}} \approx 7 \times 10^{17}$ cm$^{-2}$. The higher metal column densities compared to H \textsc{i} can be traced back to the high degree of ionization of the absorber and therefore do not necessarily indicate chemical overabundances. For a detailed comparison with the UV data, simultaneous multiwavelength observations are required.

No diagnostically valuable strong Fe lines are present in the UV spectra of BALs. Thus, iron abundance determinations for BALs are still scarce. Fe K-edge X-ray observations therefore nicely supplement UV measurements of other metal species and allow tests of different scenarios for the origin of the BAL gas.

We find an overabundance of iron of 2–5 times the solar abundance (see Fig. 3). Owing to the fact that the measured X-ray absorption is produced mainly by O, Ne, Mg, Si, and Fe, this iron overabundance is actually an estimate of Fe/O. The outflowing material must therefore have already been processed in a starburst environment. Detailed chemical evolutionary scenarios of the emission-line gas in QSOs (Hamann & Ferland 1993) predict the iron enrichment that depends mostly on the lifetime of supernova Type Ia precursors, leading to an expected delay of ~1 Gyr until Fe/O reaches solar values. Fe measurements in high-z objects, like APM 08279+5255, therefore (1) are of profound relevance for understanding the early star formation history of the universe and (2) provide important constraints on cosmological models. Assuming an Fe abundance of APM 08279+5255 of at least solar, we can place severe constraints on some of the enrichment models of Hamann & Ferland (1993; their Fig. 1). Furthermore, at the redshift of $z \approx 4$ the age of the universe is a little less than 1 Gyr (for $q_0 = 0.5$), which compares to the timescale of ~1 Gyr necessary to enrich Fe/O up to the solar value. Given that we find strong indications of a supersolar Fe/O abundance, we are beginning to constrain cosmological models, favoring those that predict larger galaxy ages at a given z.

In the near future, Fe abundance measurements of larger samples of high-z QSOs may provide another valuable path to measure cosmological parameters (Hamann & Ferland 1993).

This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the US (NASA). We thank the project scientist, Fred Jansen, for granting Director’s Discretionary Time for the long observation presented here and the Science Operation Center in Villafranca for carrying out the observations efficiently. In Germany, the XMM-Newton project is supported by the Bundesministerium für Bildung und Forschung/Deutsches Zentrum für Luft und Raumfahrt, the Max-Planck Society, and the Heidenhain-Stiftung. We thank Sarah Gallagher for making available to us the Chandra spectrum of APM 08279+5255 and Gary Ferland for providing CLOUDY. We acknowledge helpful discussions with H. Böhringer, C. Done, P. Petitjean, T. Boller, W. Brinkmann, D. Porquet, and Weimin Yuan. We thank the referee, Martin Elvis, for very helpful comments.

REFERENCES

Done, C., Mulchaey, J. S., Mushotzky, R. F., & Arnaud, K. A. 1992, ApJ, 395, 275

egani, E., Neugebauer, G., Soifer, B. T., Matthews, K., Ressler, M., Becklin, E. E., Murphy, T. W., Jr., & Dale, D. A. 2000, ApJ, 535, 561
Ellison, S. L., Lewis, G. F., & Pettini, M. 1999, PASP, 111, 946
Elvis, M. 2000, ApJ, 545, 63
Ferland, G. J. 1993, Hazy, a Brief Introduction to CLOUDY (Lexington: Univ. Kentucky Dept. Phys. Astron Int. Rep.)
Gallagher, S. C., Brandt, W. N., Chartas, G., & Garmire, G. P. 2002, ApJ, 567, 37
Hamann, F. 1998, ApJ, 500, 798
Hamann, F., & Ferland, G. J. 1993, ApJ, 418, 11
Ibata, R. A., Lewis, G. F., Irwin, M. J., Lehar, J., & Totten, E. J. 1999, ApJ, 524, L95
Irwin, M. J., Ibata, R. A., Lewis, G. F., & Totten, E. J. 1998, ApJ, 505, 529
Komossa, S. 1999, in ASCA/ROSAT Workshop on AGN and the X-Ray Background, ed. T. Takahashi & H. Inoue (ISAS Rep. 149; Tokyo: ISAS), 149
Ledoux, C., Theodore, B., Petitjean, P., Bremer, M. N., Lewis, G. F., Ibata, R. A., Irwin, M. J., & Totten, E. J. 1998, A&A, 339, L77
Lewis, G. F., Chapman, S. C., Ibata, R. A., Irwin, M. J., & Totten, E. J. 1998, ApJ, 505, L1
Mathur, S., Wilkes, B., Elvis, M., & Fiore F. 1994, ApJ, 434, 493
Murray, N., & Chiang, J. 1995, ApJ, 454, L105
Schartel, N., Komossa, S., Brinkmann, W., Fink, H. H., Trümper, J., & Wamsteker, W. 1997, A&A, 320, 421
Srianand, R., & Petitjean, P. 2000, A&A, 357, 414
Verner, D. A., & Yakovlev, D. G. 1995, A&AS, 109, 125