In silico characterization of immunogenic epitopes presented by HLA-Cw*0401

Joo Chuan Tong¹, Zong Hong Zhang¹, J Thomas August³, Vladimir Brusic⁴, Tin Wee Tan² and Shoba Ranganathan*⁵,²

Address: ¹Institute for Infocomm Research, 21 Heng Mui Keng Terrace, 119613, Singapore, ²Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore, ³Department of Pharmacology and Molecular Sciences, John Hopkins University School of Medicine, Baltimore, MD, USA, ⁴Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA and ⁵Department of Chemistry and Biomolecular Sciences & Biotechnology Research Institute, Macquarie University, NSW 2109, Australia

Email: Joo Chuan Tong - jctong@i2r.a-star.edu.sg; Zong Hong Zhang - zhzhang@i2r.a-star.edu.sg; J Thomas August - taugust@jhmi.edu; Vladimir Brusic - Vladimir_Brusic@dfci.harvard.edu; Tin Wee Tan - tinwee@bic.nus.edu.sg; Shoba Ranganathan* - shoba.ranganathan@mq.edu.au

* Corresponding author

Abstract

Background: HLA-C locus products are poorly understood in part due to their low expression at the cell surface. Recent data indicate that these molecules serve as major restriction elements for human immunodeficiency virus type 1 (HIV-1) cytotoxic T lymphocyte (CTL) epitopes. We report here a structure-based technique for the prediction of peptides binding to Cw*0401. The models were rigorously trained, tested and validated using experimentally verified Cw*0401 binding and non-binding peptides obtained from biochemical studies. A new scoring scheme facilitates the identification of immunological hot spots within antigens, based on the sum of predicted binding energies of the top four binders within a window of 30 amino acids.

Results: High predictivity is achieved when tested on the training (r² = 0.88, s = 3.56 kJ/mol, q² = 0.84, spress = 5.18 kJ/mol) and test (A ROC = 0.93) datasets. Characterization of the predicted Cw*0401 binding sequences indicate that amino acids at key anchor positions share common physico-chemical properties which correlate well with existing experimental studies.

Conclusion: The analysis of predicted Cw*0401-binding peptides showed that anchor residues may not be restrictive and the Cw*0401 binding pockets may possibly accommodate a wide variety of peptides with common physico-chemical properties. The potential Cw*0401-specific T-cell epitope repertoires for HIV-1 p24⁴⁰⁴ and gp160⁴⁰⁴ glycoproteins are well distributed throughout both glycoproteins, with thirteen and nine immunological hot spots for HIV-1 p24⁴⁰⁴ and gp160⁴⁰⁴ glycoproteins respectively. These findings provide new insights into HLA-C peptide selectivity, indicating that pre-selection of candidate HLA-C peptides may occur at the TAP level, prior to peptide loading in the endoplasmic reticulum.
linked to a light chain, β2-microglobulin (β2m). HLA-A and -B molecules play critical roles in cell mediated immune responses by binding short antigenic peptide fragments and presenting them on the surface of antigen-presenting cells for recognition by the CD8+ cytotoxic T lymphocyte (CTL). Although several HLA-C specificities with CTL epitopes have been reported [1,2], much remains unknown with regards to their role in the immune response against viral antigens in part due to their poor expression at the cell surface [3,4]. Recent research shows that this group of molecules plays a major role in the control of human immunodeficiency virus type 1 (HIV-1) infection [5]. Improved understanding of peptide binding to this group of molecules is important in the study of HIV-1 disease progression, as well as the design of effective HIV peptide vaccines.

The HLA-C allele, Cw*0401, is of particular interest in the study of HIV-1 disease progression because it is the restriction element for HIV-1 proteins [5]. Two HIV-1 proteins (p24ag and gp160ag) are currently known to be restricted by Cw*0401 [5]. Cw*0401 is present in approximately 10% of the general population [6]. The allele is expressed intracellularly in amounts comparable with HLA-A and -B molecules, but is poorly expressed at the cell surface [7,8]. Improved understanding of peptide binding to this molecule is important for elucidating its role in HIV-1 disease progression.

Computational strategies for prediction of peptide binding to HLA-A and -B molecules are relatively advanced [9], while sequence-based predictive models for HLA-C molecules have encountered limited success due to the lack of experimental training data [10]. Two matrix-based prediction algorithms for Cw*0401 were reported [11,12], but a sequence independent approach is still lacking. To overcome these limitations, we have developed a structure-based predictive technique that integrates the strength of Monte Carlo simulations and homology modeling [13-15]. This method utilizes a probe or "base fragment" to sample different regions of the receptor binding site, followed by loop closure and refinement of the entire class I peptide. The technique has been successfully applied to analyze peptides binding to a variety of MHC class II alleles [14,15]. In this work, we now extend our analysis to peptides presented by the class I HLA-C molecule. We investigated the HIV-1 p24ag and gp160ag peptide binding repertoire of Cw*0401 and illustrate that areas with high concentration of T-cell epitopes or "immunological hot spots" are potentially well distributed throughout both HIV-1 p24ag and gp160ag. We also show that Cw*0401 can possibly bind antigenic peptides in amounts comparable to both HLA-A and -B molecules. Characterization of predicted Cw*0401 binding sequences reveal that Cw*0401 may bind a large variety of amino acids at anchor positions with common physico-chemical properties which correlate well with existing experimental studies [11].

Results and discussion

Cw*0401 predictive model

High predictivity ($\tau^2 = 0.88$, $s = 3.56$ kJ/mol, $q^2 = 0.84$, $s_{press} = 5.18$ kJ/mol) is achieved when tested on the training dataset of 6 Cw*0401 peptide sequences. The Cw*0401 predictive model outperforms the predictive models done by Rognan et al. [16] on training datasets of 5 A*0204 ($\tau^2 = 0.85$, $s_{press} = 2.40$ kJ/mol) and 37 2Kb ($\tau^2 = 0.78$, $s_{press} = 3.16$ kJ/mol) peptide sequences and is comparable with our previous DRB1*0402 ($\tau^2 = 0.90$, $s = 1.20$ kJ/mol, $q^2 = 0.82$, $s_{press} = 1.61$ kJ/mol) and DQB1*0503 ($\tau^2 = 0.95$, $s = 1.20$ kJ/mol, $q^2 = 0.75$, $s_{press} = 2.15$ kJ/mol) prediction models on a training set of 8 peptides [17]. The cross-validation coefficient q^2 and the standard error of prediction s_{press} are stable, with $q^2 = 0.84$ and $s_{press} = 5.18$ kJ/mol. This iterative regression procedure validates the internal consistency of the scoring function in the current model, rendering it suitable for predictions on the test dataset obtained from biochemical studies. The predictive performance of our model is further validated using the test dataset of 58 peptides. The external validation results indicate that our Cw*0401 predictive model is suitable for discriminating binding ligands from the background with high accuracy ($A_{ROC} = 0.93$) with sensitivity of 76% (SP = 0.95).

Characterization of Cw*0401 binding peptides

An in-depth analysis was performed to investigate the characteristics of Cw*0401 binding peptides. A panel of 2279 sequences was generated using an overlapping sliding window of size 9 across the entire p24ag [5] and gp160ag [18] glycoproteins and modeled into the binding groove of Cw*0401. From these sequences, a total of 877 binding sequences (predicted binders; SE = 76%, SP = 80%) were selected and a systematic analysis was performed to analyze the number of occurrence of individual amino acid residues and physico-chemical properties [19] at each position of Cw*0401 binding peptides.

Peptide position p2 is characterized by alanine (10%), glycine (13%), leucine (9%), serine (9%). 60% of the predicted residues at this position are hydrophobic in nature, while 93% are neutral. These properties correlate with the physico-chemical properties of existing binding motif (Tyr/Phe) at p2 [11] as well as with the observed conservation in the test data (Table 1: Phe ~ 58% and Tyr ~ 26%). The p3 position shows a strong preference for glycine (11%) and threonine (8%). Existing anchor residues at this position are aspartic acid and histidine, which accounts for 9% of the total position-specific composition in the dataset. The p4 position shares similar characteris-
tics as p3 (glycine: 9%; threonine: 8%), with additional preference for leucine (8%). Similar results were obtained at the p5 position (alanine: 8%; glycine: 9%; leucine: 8%). At p6, characteristic residues include glycine (9%) and leucine (8%). This position is favored by neutral (81%) acyclic (89%), medium/large (77%), and hydrophobic (51%) residues. The physico-chemical properties of these residues are in agreement with Val/Ile/Leu as reported in earlier studies [11] and is comparable with the conservation in the test dataset reported in Table 1 (Val – 29%, Ile – 12%, Leu and Pro – 10%). Finally, the p9 position was defined by six amino acids, including alanine (8%), glycine (10%), isoleucine (8%), leucine (8%), threonine (9%), and valine (8%). This position is primarily dominated by neutral (90%) and hydrophobic (58%) residues, and agrees with profiles of Leu/Phe as previously reported [11] and is consistent with the conservation in the test dataset reported in Table 1 (Leu and Phe – 39%,). Collectively, our data indicates that individual binding pockets may not be highly specific as previously reported [11] but can rather accommodate a wide-range of anchor residues with common physico-chemical properties. We attribute the discrepancies to two possibilities: i) the lack of extensive research on Cw*0401 peptides; and ii) natural peptides carrying these residues may be present in small amount and were thus not detected by experimental studies.

Prediction of p24gag and gp160gag immunological hot spots

The potential T-cell epitope repertoire (data not shown) and immunological hot spots (Figure 1) for HIV-1 p24gag and gp160gag are well distributed throughout both glyco-

![Figure 1](image)

Figure 1

Predicted start positions of Cw*0401-specific hotspots (sliding window size = 30) along (A) p24gag and (B) gp160gag glycoproteins. Scores are computed based on the sum of predicted binding energies of top four binders within the 30 amino acid sliding window. Predicted hotspots regions are shown in blue boxes with experimentally verified regions shown in red.
Table 1: HLA-Cw4 dataset used in this study.

No.	Category	Source	Peptide	IC₅₀ (nM)	Ref.
1	Training Set	Cw3 consensus	FAMPNFQTL	651	24
2	Training Set	Cw6 consensus	IPPPVRYL	>30000	24
3	Training Set	Cw7 consensus	KYPDVDAL	2.4	24
4	Training Set	Cw4 consensus	QYDDAVYKL	18	24
5	Training Set	Histone H3.3	RYRPGTVAL	>30000	24
6	Test Set	Unknown Cw6 natural ligand	YQFTGIKKY	>30000	24
7	Test Set	Transcription factor	SFDGIAIMM	Binder 10	
8	Test Set	Transducin-like 3	AFDPSTSSL	Binder 10	
9	Test Set	UBE3B variant 1	VFDPALNLFL	Binder 10	
10	Test Set	Block of proliferation	SYDSKLWYF	Binder 10	
11	Test Set	BM-015	SFDDNVPAK	Binder 10	
12	Test Set	KIAA0461	SMDLPVFL	Binder 10	
13	Test Set	KIAA1463	FYDERIVV	Binder 10	
14	Test Set	KIAA1921	YYDGKLYTL	Binder 10	
15	Test Set	Metalloproteinase 10	FWLPSLYL	Binder 10	
16	Test Set	Metionine-RNA synthetase 2	YYYDEKKVKL	Binder 10	
17	Test Set	Mucin-5B	TFDLSHYF	Binder 10	
18	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
19	Test Set	KCIP-1	AFDEAIAEL	Binder 10	
20	Test Set	KIAA0461	SMIDLPVFL	Binder 10	
21	Test Set	KIAA1463	FYDERIVV	Binder 10	
22	Test Set	Metalloproteinase 10	FWLPSLYL	Binder 10	
23	Test Set	Metionine-RNA synthetase 2	YYYDEKKVKL	Binder 10	
24	Test Set	Mucin-5B	TFDLSHYF	Binder 10	
25	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
26	Test Set	KIAA0461	SMIDLPVFL	Binder 10	
27	Test Set	KIAA1463	FYDERIVV	Binder 10	
28	Test Set	Metalloproteinase 10	FWLPSLYL	Binder 10	
29	Test Set	Metionine-RNA synthetase 2	YYYDEKKVKL	Binder 10	
30	Test Set	Mucin-5B	TFDLSHYF	Binder 10	
31	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
32	Test Set	KIAA0461	SMIDLPVFL	Binder 10	
33	Test Set	KIAA1463	FYDERIVV	Binder 10	
34	Test Set	Metalloproteinase 10	FWLPSLYL	Binder 10	
35	Test Set	Metionine-RNA synthetase 2	YYYDEKKVKL	Binder 10	
36	Test Set	Mucin-5B	TFDLSHYF	Binder 10	
37	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
38	Test Set	KIAA0461	SMIDLPVFL	Binder 10	
39	Test Set	KIAA1463	FYDERIVV	Binder 10	
40	Test Set	Metalloproteinase 10	FWLPSLYL	Binder 10	
41	Test Set	Metionine-RNA synthetase 2	YYYDEKKVKL	Binder 10	
42	Test Set	Mucin-5B	TFDLSHYF	Binder 10	
43	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
44	Test Set	KIAA0461	SMIDLPVFL	Binder 10	
45	Test Set	KIAA1463	FYDERIVV	Binder 10	
46	Test Set	Metalloproteinase 10	FWLPSLYL	Binder 10	
47	Test Set	Metionine-RNA synthetase 2	YYYDEKKVKL	Binder 10	
48	Test Set	Mucin-5B	TFDLSHYF	Binder 10	
49	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
50	Test Set	KIAA0461	SMIDLPVFL	Binder 10	
51	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
52	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
53	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
54	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
55	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
56	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
57	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
58	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
59	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
60	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
61	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
62	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
63	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
64	Test Set	Myosin phosphatase target subunit 1	FYDPFVYISY	Binder 10	
No.	Position	Sequence			
-----	----------	----------			
1	20–75	RLRPGGKKYKLHIIVWASRELRAFAVNPGLLETSCGRQILGQPLQGTSGEEREL			
2	89–148	YNTVATLDCVHERIEKDTKEALDKIEEEDNQSKKAQQAAADTGHSNSQVSNQYPIVQNIQGMQVHQAIS			
3	143–262	PIVQNIQGMQVMHOAISAPRTLNAWVKVEEKAFAFRAFPMFSALSEGATPDQPLNTNLMTNGGQAAMQLKETINEEAEDVRVHPVHAGAPQPMRPRGSDIAGTSTLQQEIGWMTNPNNPVPGEY			
4	311–381	QVEKNWMTETLTVQNANPDCKTILKALPAATLEEMMTACQGVGGPGHKARVLAEMASQVTNSATIMMQRG			
5	447–506	EFSEQETRANSPTRTELQVWGDNNSPSEAGADQRGTVSFNFPQVTLQWRPLVTIKIGGQ			
6	526–590	LPGWRKPKMIGGIGFIFKVRQYDIQILIECHGAIATVGVPTPYNNIRGNNTLQIQCSTLNFPI			
7	664–727	FRELNKRQTFQDVQPLGPHALGKKKSTVRVDGVAInfo5PLEDFRKYTEAFIPSINNETP			
8	708–791	DEDFRKYGFATIPSINNETPGIRYNYNPQVPKIERKHPKVASIPSSMTLITEFRQKQNPIDIVQYMDVGSLEDIEGHRKTEIE			
9	873–930	Tkalteviplteeaeelalrenrielkepvhggvydpkldjaieiqkqkqgqgqwytyqiy			
10	996–1053	TWPWEPWFTNPVPLPLVQYLVEKPEVIPGAEYTFVIDGAANTEGRKLGKAGYTVNRGBQKVRKQ			
11	1054–1157	VTTLDTNTQKETQLAJYALQRDSQLEVNVITDSQALGIIAQAPDQSEELVNOIIEGLKKEYLWAPHAGIIGGNEQVDKLIXSAQRKVLFDGIDLQADQ			
12	1157–1316	DEHEKYNWQWRAPAMSDFNLPPVAKEIAVASCDDKQLEMHGQVDCSPQGUALDCHTLEGKYLAVVHYVASGIGIEAVIPPAETGQETAYYLKLQRWPKYKTHTDNGSNFTGATVRAACWAVAIQKQEFGYPQNPQSGVQGLESNK Kelkkigiqvrgqa			
13	1308–1368	IIGQVRDQAELHKTAVQMAFHIHFKRGKGIAGYSAGERIVDIATDIIQKTEQIKQITKIQ			
14	1378–1427	RNPLWKPGAKLLWKGEAVIQQDNDIKVVPRRKAKRIIYDKGKQAGGDC			

Table 2: Predicted Cw*0401-specific immunological hotspots for p24gag.

No.	Position	Sequence
1	20–75	RLRPGGKKYKLHIIVWASRELRAFAVNPGLLETSCGRQILGQPLQGTSGEEREL
2	89–148	YNTVATLDCVHERIEKDTKEALDKIEEEDNQSKKAQQAAADTGHSNSQVSNQYPIVQNIQGMQVHQAIS
3	143–262	PIVQNIQGMQVMHOAISAPRTLNAWVKVEEKAFAFRAFPMFSALSEGATPDQPLNTNLMTNGGQAAMQLKETINEEAEDVRVHPVHAGAPQPMRPRGSDIAGTSTLQQEIGWMTNPNNPVPGEY
4	311–381	QVEKNWMTETLTVQNANPDCKTILKALPAATLEEMMTACQGVGGPGHKARVLAEMASQVTNSATIMMQRG
5	447–506	EFSEQETRANSPTRTELQVWGDNNSPSEAGADQRGTVSFNFPQVTLQWRPLVTIKIGGQ
6	526–590	LPGWRKPKMIGGIGFIFKVRQYDIQILIECHGAIATVGVPTPYNNIRGNNTLQIQCSTLNFPI
7	664–727	FRELNKRQTFQDVQPLGPHALGKKKSTVRVDGVAInfo5PLEDFRKYTEAFIPSINNETP
8	708–791	DEDFRKYGFATIPSINNETPGIRYNYNPQVPKIERKHPKVASIPSSMTLITEFRQKQNPIDIVQYMDVGSLEDIEGHRKTEIE
9	873–930	Tkalteviplteeaeelalrenrielkepvhggvydpkldjaieiqkqkqgqgqwytyqiy
10	996–1053	TWPWEPWFTNPVPLPLVQYLVEKPEVIPGAEYTFVIDGAANTEGRKLGKAGYTVNRGBQKVRKQ
11	1054–1157	VTTLDTNTQKETQLAJYALQRDSQLEVNVITDSQALGIIAQAPDQSEELVNOIIEGLKKEYLWAPHAGIIGGNEQVDKLIXSAQRKVLFDGIDLQADQ
12	1157–1316	DEHEKYNWQWRAPAMSDFNLPPVAKEIAVASCDDKQLEMHGQVDCSPQGUALDCHTLEGKYLAVVHYVASGIGIEAVIPPAETGQETAYYLKLQRWPKYKTHTDNGSNFTGATVRAACWAVAIQKQEFGYPQNPQSGVQGLESNK Kelkkigiqvrgqa
13	1308–1368	IIGQVRDQAELHKTAVQMAFHIHFKRGKGIAGYSAGERIVDIATDIIQKTEQIKQITKIQ
14	1378–1427	RNPLWKPGAKLLWKGEAVIQQDNDIKVVPRRKAKRIIYDKGKQAGGDC

Table 3: Predicted Cw*0401-specific immunological hotspots for gp160pe.

No.	Position	Sequence
1	44–89	VVKEATTTLTFCASDAKAYDTEVHNVWATHACVPTDPNPQEVVLNV
2	102–171	EOMHEDISLELWDQSLKFCVKLTIEKLCSTDLGNATNNTNNSNTNSSGEMMMEKGEKNCFNSTISIR
3	174–289	VQKEYAFFYKLDIPIODNTTSTSYLSTSCNTVSITQACPVKYSPEPPHYCAPAGFAIILKCNNKFTNGTGPCTNVSTVCANGIRPVSTQSLNLNGSQAEEYVI
4	341–504	AKWANLTIQIASKLREOFQGNNKTIIFQKQSGGDPETVTHSFNCGEFFYCNSTQLFNTSWFSTVSTEGNSINTEGDTITLPCPIKQHIMWQENQGKAMYAPPISGQRCRSSNTLLITRQDNGNNGSEIFRPGQGGMDTRMDNVRSELYKYVKVIEFGLVAPT
5	489–559	KKYVKKFIEPLGQATPKAKRRVQRKRAVGIALFGLFGLAAGSTMGARSTLTVQARQOLLGQVQQNN
6	581–639	LQARILAVERYLDQQLGGLIWGCSGKLJCTTAVPWNASWNSKLEIQWNMTWMEWDORE
7	667–721	ELDKSWALWNWFNITNWLYWYIKIFIMIVGGLVGLRIVAFVSLORSVNRVQGYSPLS
8	708–766	SIVNRVQGYSFLSFQTHLFTPRPGDPRPEGIEEEGGERDRDRSIRLYNGSLLIWDDLR
9	793–852	RGWALKYWWNNLQYWSQELKNSAVSSLNATIAVAEGTDRIEVVQGACRARIRHIPRRI
proteins. The known p24gag epitope (p24 168–175) and gp160gag epitope (gp160 375–383) were successfully predicted by our model at the threshold of -200 (SE = 76%, SP = 80%) [5,20]. At this threshold, the number of predicted hot spots for p24gag are fourteen (p24 20–75, 89–148, 143–262, 311–381, 447–506, 526–590, 664–727, 708–791, 873–930, 996–1053, 1054–1157, 1157–1316, 1308–1368, and 1378–1427), with an estimated FN = 3, FP = 3 for SE = 0.76 and SP = 0.95 (Figure 1 and Table 3). The results presented here indicate that Cw*0401 can bind antigenic peptides with specificities comparable to HLA-A and -B molecules, and any variability in antigen expression may be directly related to the loss or reduced cell surface expression of the molecule by mechanisms as yet unknown [8,21].

Conclusion
Due to the low expression of HLA-C molecules at the cell surface, their role in cell mediated immune responses remain poorly understood. Collectively, the outcome of this analysis provides insights into the binding specificities of Cw*0401. Our data strongly indicate that Cw*0401 can bind antigenic peptides in amounts comparable to both HLA-A and -B molecules, and show the existence of a potentially large number of Cw*0401-specific T-cell epitopes that are evenly distributed throughout both HIV-1 p24gag and gp160gag glycoproteins. It remains to be determined what proportion of these peptides may be expressed at the cell surface and capable of eliciting functional responses. Probably, pre-selection of candidate HLA-C peptides may occur at the TAP level, prior to peptide loading in the ER [8]. Consequently, a higher concentration of peptides is necessary for complexation with HLA-C molecules, resulting in their release from TAP. This provides a possible explanation for the reduced cell surface expression of HLA-C molecules [8].

Methods
Data
Crystallographic data
The coordinates of Cw*0401 were obtained from the Protein Databank (PDB) with PDB code 1QQD [22]. The structure was relaxed by conjugate gradient minimization, using the Internal Coordinate Mechanics (ICM) software [23].

Experimental binding data
The dataset comprises a total of 64 (57 binders and 7 non-binders) 9-mer peptides (Table 1). The available dataset is divided into training and testing datasets. Peptides with experimental IC\textsubscript{50} values were selected as training data for optimizing the empirical free energy function (refer Empirical Free Energy Function). Due to the lack of experimental data, only 9 peptides with experimental IC\textsubscript{50} values were identified, six (three binders and three non-binders) of which were used for training, while the remainder (four non-binders) were included in the test dataset as true negatives. Therefore, the training dataset contained six peptides with experimentally determined IC\textsubscript{50} values (2 high-affinity binders, 1 medium-affinity binder, and 3 non-binders) derived from biochemical studies [24], while the testing dataset comprised the remainder 58 peptides (54 binders and 4 non-binders) [10,18,21,24,25]. Experimental IC\textsubscript{50} values were classified as follows – high-affinity binders: IC\textsubscript{50} \leq 500 nM, medium-affinity binders: 500 nM < IC\textsubscript{50} \leq 1500 nM, low-affinity binders: 1500 < IC\textsubscript{50} \leq 5000 nM and non-binders: 5000 < IC\textsubscript{50}.

HIV-1 sequence data
The sequences of HIV-1 p24gag and gp160gag glycoproteins were obtained from UniProt [26]. The accession numbers for p24gag and gp160gag glycoproteins used in this study are P04585 and P03377 respectively.

Model
Peptide docking
Docking was performed according to the procedure utilized in previous similar works [13-15]: (i) pseudo-Brownian rigid body docking of peptide fragments to the ends of the binding groove, (ii) central loop closure by satisfaction of spatial constraints, and (iii) refinement of the backbone and side-chain atoms of the ligand and receptor contact regions.

Empirical free energy function
The scoring function presented herein is based on the free energy potential in ICM [23]. Computation of the binding free energy was performed according to previous similar work based on the difference between the energy of the solvated complex and the sum of the energy of the solvated receptor and that of the peptide ligand, followed by optimization using experimental IC\textsubscript{50} values [15]. This step was followed by 6-fold cross-validation for assessment of quality of the scoring function [15]. In k-fold cross-validation, k random, (approximately) equal-sized, disjoint partitions of the sample data were constructed, and all given models were trained on (k-1) partitions and tested on the excluded partition. The results were averaged after k such experiments, and thus the observed error rate may be taken as an estimate of the error rate expected upon generalization to new data. The predictive power of the models was assessed by the cross-validation coefficient q^2 and the standard error of prediction s_{prem}.
In this study, ‘immunological hot spots’ are defined as antigenic regions of up to 30 amino acids and modeled according to previous similar work based on the sum of predicted binding energies of the top four binders within a window of 30 amino acids [27]. Where available, these predicted hotspots were validated with available experimentally determined sites.

Training, testing and validation

The free energy scoring function was calibrated using 6 peptides with experimental IC_{50} values and tested on a dataset 58 peptides (54 binders and 4 non-binders) obtained from biochemical studies (Table 1). The predictive performance of our model was assessed using sensitivity (SE), specificity (SP) and receiver operating characteristic (ROC) analysis [28]. SE = TP/(TP+FN) and SP = TN/(TN+FP), indicate percentages of correctly predicted binders and non-binders, respectively. TP (true positives) represents correctly predicted experimental binders and TN (true negatives) for experimental non-binders incorrectly predicted as binders. FN (false negatives) denotes experimental binders predicted as non-binders and FP (false positives) stands for experimental non-binders predicted as binders. The accuracy of our predictions was assessed by the ROC analysis where the ROC curve is generated by plotting SE as a function of (1-SP) for a complete range of classification thresholds. The area under the ROC curve (A_{ROC}) provides a measure of overall predictive accuracy, A_{ROC} < 70% for poor, A_{ROC} > 80% for good and A_{ROC} > 90% for excellent predictions [15].

Abbreviations

CTL, cytotoxic T lymphocyte; HLA, human leukocyte antigen; MHC, major histocompatibility complex; ER, endoplasmic reticulum; HIV, human immunodeficiency virus; ROC, receiver operating characteristic; SE, sensitivity; SP, specificity; TN, true negative; TP, true positive; FN, false negative; FP, false positive

Authors' contributions

JCT carried out the computational modeling studies, participated in data analysis and drafted the manuscript. ZHZ helped in data collection and computational modeling studies. JTA, TWT, VB participated in experimental design. SR conceived the study, and participated in its design and coordination and finalized the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was partly funded by the National Institute of Allergy and Infectious Diseases, National Institute of Health, USA (Grant #5 U19 AI56541 & Contract #HHSN266200400085C).

References

1. Dill O, Kvietis F, Koch S, Ivanyi P, Hammerling GJ: Immunological function of HLA-C antigens in HLA-Cw3 transgenic mice. Proc Natl Acad Sci USA 1988, 85:5664-5668.
2. Littau RA, Oldstone MB, Takeda A, Debuck C, Wong JT, et al: An HLA-C-restricted CD8+ cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type I gag. J Virol 1991, 65:4051-4056.
3. Snary D, Barnstable CJ, Bodmer WF, Crompton MJ: Molecular structure of human histocompatibility antigens: the HLA-C series. Eur J Immunol 1977, B5:800-855.
4. McCutcheon JA, Gumperz J, Smith KD, Lutz CT, Parham P: Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA. J Exp Med 1995, 181:2085-2095.
5. Kojima BTM, Brander C, Haynes BF, Koup R, Moore JP, Walker BD, Watkinson DI: HIV Molecular Immunology 2005. Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico; 2005.
6. Bugawan TL, Kitz W, Blair A, Erlich HA: High-resolution HLA class I typing in the CEPH families: analysis of linkage disequilibrium among HLA loci. Tiss Antigens 2000, 56:392-404.
7. Neefjes JJ, Ploegh HL: Allele and locus-specific differences in cell surface expression and the association of HLA class I heavy chain with β2-microglobulin: differential effects of inhibition of glycosylation on class I subunit association. Eur J Immunol 1988, 18:801-810.
8. Neisig A, Melief CJ, Neefjes J: Reduced cell surface expression of HLA-C molecules correlates with restricted peptide binding and stable TAP interaction. J Immunol 1998, 160:171-179.
9. Brusic V, Bajic VB, Petrovsky N: Computational methods for prediction of T-cell epitopes – a framework for modelling, testing, and applications. Methods 2004, 34:436-443.
10. Buchsbaum S, Barnea E, Dassau L, Beer I, Milner E, Adman A: Large-scale analysis of HLA peptides presented by HLA-Cw4. Immunogenetics 2003, 55:172-176.
11. Ramneree H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPETHI: database for MHC ligands and peptide motifs. Immunogenetics 1999, 50:213-219.
12. Deluca DS, Khattar B, Blaszyk R: A modular concept of HLA for comprehensive peptide binding prediction. Immunogenetics 2007, 59:25-35.
13. Tong JC, Tan TW, Ranganathan S: Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Sci 2004, 13:2523-2532.
14. Tong JC, Bramson J, Kanduc D, Chow S, Sinha AA, Ranganathan S: Modeling the bound conformation of pemphigus vulgaris-associated peptides to MHC class II DR and DQ alleles. Immuno genetics 2006, 2:1.
15. Tong JC, Zhang GL, Tan TW, August JT, Brusic V, Ranganathan: Prediction of HLA-DQJ2.2 ligands: Evidence of multiple regist ers in class II binding peptides. Bioinformatics 2006, 22:1233-1238.
16. Rogan D, Laumoller SL, Holm A, Buus S, Tschinke V: Predicting binding affinities of protein ligands from three-dimensional models: Application to Peptide Binding to Class I Major Histocompatibility Proteins. J Med Chem 1999, 42:4650-4658.
17. Tong JC, Bramson J, Kanduc D, Sinha AA, Ranganathan S: Prediction of desmoglein-3 peptides reveals multiple shared T-cell epitopes in HLA DR4- and DR6-associated pemphigus vulgaris. BMC Bioinformatics 2006, 7(Suppl 5):S7.
18. Johnson RP, Trocha A, Buchanan TM, Walker BD: Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 1993, 67:438-445.
19. Sayle RA, Milner-White EJ: RASMOL: biomolecular graphics for all. Trends Biochem Sci 1995, 20:374.
20. Brander C, Gould R: Recent advances in HIV-1 CTL epitope characterization. In HIV molecular immunology database. In HIV Molecular Database Edited by: Korber B, Brander C, Haynes BF, Koup R, Moore JP, Walker BD, Watkinson DI. Los Alamos National Laboratory. Los Alamos, New Mexico; 1999:i-119.
21. Buseyne F, Stevanovic S, Ramneree H, Riviere Y: Characterization of an HIV-I p24gag epitope recognized by a CD8+ cytotoxic T-cell clone. Immunol Lett 1997, 55:145-149.
22. Fan QR, Wiley DC: Structure of Hla-Cw4, a Ligand for the Kir2D Natural Killer Cell Inhibitory Receptor. J Exp Med 1999, 190:113-124.
23. Abagyan RA, Totrov M: Ab initio folding of peptides by the optimal-bias Monte Carlo minimization procedure. J Comput Phys 1999, 151:402-421.
24. Sidney J, del Guercio MF, Southwood S, Engelhard VH, Appella E, Ramnereege HG, Falk K, Roettzschke O, Takiguchi M, Kubo RT, Grey HM, Sette A: Several HLA alleles share overlapping peptide specificities. J Immunol 1995, 154:247-259.
25. Rajagopalan S, Long EO: The direct binding of a p58 killer cell inhibitory receptor to human histocompatibility leukocyte antigen (HLA)-Cw4 exhibits peptide selectivity. J Exp Med 1997, 185:1523-1528.
26. The UniProt Consortium: The Universal Protein Resource (UniProt). Nucleic Acids Res 2007, 35:D193-D197.
27. Srinivasan KN, Zhang GL, Khan AM, August JT, Brusic V: Prediction of class I T-cell epitopes: evidence of presence of immunological hot spots inside antigens. Bioinformatics 2004, 20:i297-i302.
28. Bradley AP: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 1997, 30:1145-1159.