QCD sum rules and thermal properties of Charmonium in the vector channel

C. A. Domingueza,b,1, M. Loewec,2,3,*, J. C. Rojasd,2, Y. Zhangb

aCentre for Theoretical Physics and Astrophysics, University of Cape Town, Rondebosch 7700, South Africa
bDepartment of Physics, Stellenbosch University, Stellenbosch 7600, South Africa.
cFacultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile.
dDepartamento de Física, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile.

Abstract

The thermal evolution of the hadronic parameters of charmonium in the vector channel, i.e. the J/ψ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold is analyzed in the framework of thermal Hilbert moment QCD sum rules. The continuum threshold s_0, as in other hadronic channels, decreases with increasing temperature until the PQCD threshold $s_0 = 4m_Q^2$ is reached at $T \approx 1.22T_c$ (m_Q is the charm quark mass) and the J/ψ mass is essentially constant in a wide range of temperatures. The other hadronic parameters behave in a very different way from those of light-light and heavy-light quark systems. The total width grows with temperature up to $T \approx 1.04T_c$ beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant beginning to increase monotonically around $T \approx T_c$. This behavior strongly suggests that the J/ψ resonance might survive beyond the critical temperature for deconfinement, in agreement with lattice QCD results.

Keywords: Finite temperature field theory, hadron physics.

1. Introduction

We discuss here the thermal evolution of the hadronic parameters of J/ψ in the vector channel, using thermal QCD Sum Rules \cite{1}. We refer the reader to the original article \cite{2} for details. This technique has been used previously in the light-light and in the heavy-light quark sector \cite{3}- \cite{5}, with the following emerging picture: (i) For increasing temperature, hadronically stable particles develop a non-zero width, and resonances become broader, diverging at a critical temperature interpreted as the deconfinement temperature (T_c). The thermal resonance broadening was first proposed in \cite{6}. ii) Above the resonance region, the continuum threshold in hadronic spectral functions, i.e. the onset of perturbative QCD (PQCD), decreases monotonically with increasing temperature. When $T \to T_c$, hadrons disappear from the spectrum. (iii) This scenario is also supported by the behavior of hadronic couplings, or leptonic decay constants, which approach zero as $T \to T_c$. Masses, on the other hand, do not to provide information about deconfinement.

The thermal behavior of the heavy-heavy quark correlator should be different from that involving at least one light quark since: a) In the light-light and heavy-light quark sector, the PQCD contribution is dominated by the time-like spectral function (annihilation term), which is relatively unimportant in relation to the light quark condensate contribution, being the scattering PQCD spectral function highly suppressed. Instead, for heavy-heavy quark systems this term becomes increasingly important with increasing temperature while the annihilation term only contributes near threshold; b) The non-perturbative QCD sector in the operator product expansion (OPE) of light-light and heavy-light quark correlators is driven by the light quark condensate, responsible for the behavior of the continuum threshold since $s_0(T)/s_0(0) \approx \langle \bar{q}q \rangle / \langle \bar{q}q \rangle$ \cite{4-7}. The light quark condensate is the order parameter for chiral symmetry restoration. In contrast, for heavy-heavy quark correlators the leading power correction in the OPE is that of the gluon condensate, which has a very different thermal behavior. In this approach, the criti-
cal temperature for deconfinement is a phenomenological parameter which does not need to coincide with e.g. the critical temperature obtained in lattice QCD [8]. In fact, results from QCD sum rules lead to values of \(T_c \) somewhat lower than those from lattice QCD. In order to compare with other approaches, we express our results in terms of the ratio \(T/T_c \).

We find for charmonium in the vector channel that the continuum threshold, \(s_0(T) \), decreases with increasing \(T \), being driven by the gluon condensate and the PQCD spectral function in the space-like region, until it reaches the PQCD threshold \(s_0 = 4 m_Q^2 \) at \(T \approx 1.22 T_c \) (\(m_Q \) is the charm quark mass). Below this value of \(s_0 \) the sum rules cease to be valid. The \(J/\psi \) mass remains basically constant as in the light-light or heavy-light systems. We have, however, a very different thermal evolution of the width and the coupling. Both are almost independent of \(T \) up to \(T \approx 0.8 T_c \), where the width begins to increase substantially, but then above \(T \approx 1.04 T_c \) it starts to decrease sharply, and the coupling increases also sharply. This suggests the survival of the \(J/\psi \) resonance above the deconfinement temperature.

The PQCD spectral function in the space-like region plays here a very important role. Non-relativistic approaches to charmonium at finite temperature would normally miss this contribution. In fact, the complex energy plane in the non-relativistic case would only have one cut along the positive real axis, which would correspond to the time-like (annihilation) region of PQCD. The space-like contribution \(\langle \omega^2 - Q^2 \rangle \leq 0 \) in the form of a cut in the energy plane centered at the origin for \(-|q| \leq \omega \leq |q| \), would not be present in the non-relativistic case.

2. Hilbert Moment QCD Sum Rules

We consider the correlator of the heavy-heavy quark vector current at finite temperature

\[
P_{\mu
u}(q^2, T) = \langle g_{\mu
u} q^2 - q_{\mu} q_{\nu} \rangle \Pi(q^2, T)
\]

\[
= i \int d^4x \ e^{iqx} \theta(x_0) \langle [V_{\mu}(x), V_{\nu}^+(0)] \rangle > > , \quad (1)
\]

where \(V_{\mu}(x) = : \bar{Q}(x) \gamma_{\mu} Q(x) : \) and \(Q(x) \) is the heavy (charm) quark field. The matrix element above is understood to be the Gibbs average in the quark-gluon basis. The imaginary part of the vector correlator in PQCD at finite temperature involves two pieces, one in the time-like region \((q^2 \geq 4m_Q^2) \), \(\text{Im} \Pi_{\mu\nu}(q^2, T) \), which survives at \(T=0 \), and one in the space-like region \((q^2 \leq 0) \), \(\text{Im} \Pi_{\mu\nu}(q^2, T) \), which vanishes at \(T=0 \). To leading order in PQCD we find

\[
\frac{1}{\pi} \text{Im} \Pi_{\mu\nu}(q^2, T) = \frac{3}{16\pi^2} \int_{-T}^{\infty} dx \left(1 - x^2 \right)
\]

\[
\left[1 - n_F \left(\frac{|q| x + \omega}{2T} \right) - n_F \left(\frac{|q| x - \omega}{2T} \right) \right] , \quad (2)
\]

where \(\omega^2 = 1 - 4m_Q^2/q^2 \), \(m_Q \) is the heavy quark mass, \(q^2 = \omega^2 - q^2 \geq 4m_Q^2 \), and \(n_F(z) = (1 + e^{-z})^{-1} \) is the Fermi thermal function. In the rest frame of the thermal bath, \(|q| \to 0 \), the above result reduces to

\[
\frac{1}{\pi} \text{Im} \Pi_{\mu\nu}(\omega, T) = \frac{3}{8\pi^2} \frac{1}{m_Q^2} \left[1 - 2n_F(\omega/2T) \right] \times \theta(\omega - 2m_Q) . \quad (3)
\]

The quark mass is assumed independent of \(T \), a good approximation for \(T < 200 \text{ MeV} \) [9]. Only the leading order in the strong coupling will be considered here.

The PQCD piece in the space-like region demands a careful analysis. In the complex energy plane, and in the space-like region, the correlator \(\Pi(q^2) \), Eq.(1), has a cut centered at the origin and extending between \(\omega = -|q| \) and \(\omega = |q| \). In the rest frame this cut produces a delta function \(\delta(\omega^2) \) in the imaginary part of \(\Pi(q^2) \). The result is

\[
\frac{1}{\pi} \text{Im} \Pi_{\mu\nu}(\omega, T) = \frac{1}{2\pi} m_Q^2 \delta(\omega^2) \times
\]

\[
\left[n_F \left(\frac{m_Q}{T} \right) \right] + \frac{2T^2}{m_Q^2} \int_{-m_Q(T)}^{m_Q(T)} y n_F(y) dy . \quad (4)
\]

The corresponding hadronic representation is parametrized in terms of the ground state resonance, the \(J/\psi \), followed by a continuum given by PQCD after a threshold \(s_0 > M_J^2 \). In the zero width approximation, the hadronic spectral function is

\[
\frac{1}{\pi} \text{Im} \Pi(s, T)_{\text{HAD}} = \frac{1}{\pi} \text{Im} \Pi(s, T)_{\text{RES}} \theta(s_0 - s) + \frac{1}{\pi} \text{Im} \Pi(s, T)_{\text{PQCD}} \theta(s - s_0)
\]

\[
= 2 f_J^2(T) \delta(s - M_J^2(T)) + \frac{1}{\pi} \text{Im} \Pi(s, T)_{\text{HAD}} \theta(s - s_0) , \quad (5)
\]

where \(s \equiv q^2 = \omega^2 - q^2 \). The leptonic decay constant is defined as \(< 0|V_{\mu}(0)|V(k) >= \sqrt{2} M_J f_J \epsilon_{\mu} \).

When considering a finite (total) width the following replacement will be understood

\[
\pi \delta(s - M_J^2(T)) \to \frac{M_J V_J(T) \Gamma_J(T)}{(s - M_J^2(T))^2 + M_J^2(T) \Gamma_J^2(T)} , \quad (6)
\]
The hadronic scattering term, due to current scattering off D-mesons, is negligible [2]. The correlation function \(\Pi(Q^2, T) \), Eq.(1), satisfies a once subtracted dispersion relation. To eliminate the subtraction one can use Hilbert moments, i.e.

\[
\varphi_N(Q^2, T) \equiv \frac{(-1)^N}{(N)!} \left(\frac{d}{dQ^2} \right)^N \Pi(Q^2, T)
\]

\[
= \frac{1}{\pi} \int_0^\infty \frac{ds}{(s + Q^2)^{N+1}} \text{Im} \Pi(s, T),
\]

where \(N = 1, 2, \ldots \), and \(Q^2 \geq 0 \) is an external four-momentum squared, to be considered as a free parameter. Using Cauchy's theorem in the complex s-plane, the Hilbert moments become Finite Energy QCD sum rules (FESR), i.e.

\[
\varphi_N(Q^2, T)|_{\text{RES}} = \varphi_N(Q^2, T)|_{\text{QCD}},
\]

where

\[
\varphi_N(Q^2, T)|_{\text{RES}} \equiv \frac{1}{\pi} \int_0^{\alpha(T)} \frac{ds}{(s + Q^2)^{N+1}} \text{Im} \Pi(s, T)|_{\text{RES}},
\]

\[
\varphi_N(Q^2, T)|_{\text{QCD}} \equiv \frac{1}{\pi} \int_0^{\alpha(T)} \frac{ds}{(s + Q^2)^{N+1}} \text{Im} \Pi(s, T)|_{\text{RES}} + \frac{1}{\pi} \int_0^{\infty} \frac{ds}{(s + Q^2)^{N+1}} \text{Im} \Pi(s, T) + \varphi_N(Q^2, T)|_{NP},
\]

and \(\text{Im} \Pi(s, T)|_{\text{RES}} \) is given by the first term in Eq.(5) modified in finite-width according to Eq.(6), and the PQCD spectral functions are given by Eqs.(3) and (4).

The dimension d=4 non perturbative term in the OPE is well known in the literature, see [2] for details. The dependence on \(N \) is quite cumbersome and it is proportional to the gluon condensate \(\langle \frac{\alpha_s}{\pi} G^2 \rangle \). At low temperatures, this condensate has been calculated in chiral perturbation theory [10]. In this framework the condensate remains essentially constant up \(T \sim T_c = 100 \text{ MeV} \), after which it decreases sharply. In order to go beyond the low temperature regime of chiral perturbation theory, lattice QCD provides the right tool. A good approximation [11] is given by the expression

\[
\langle \frac{\alpha_s}{\pi} G^2 \rangle = \langle \frac{\alpha_s}{\pi} G^2 \rangle \left[\theta(T^* - T) + \frac{1 - \frac{T}{T^*}}{1 - \frac{T}{T_c}} \theta(T - T^*) \right]
\]

where \(T^* \approx 150 \text{ MeV} \) is the breakpoint temperature where the condensate begins to decrease appreciably, and \(T_c = 250 \text{ MeV} \) is the temperature at which \(\langle \frac{\alpha_s}{\pi} G^2 \rangle |_{T_c} = 0 \).

Returning to the \(Q^2 \) dependence of the Hilbert moments, Eq.(7), we shall fix \(Q^2 \) and \(s_0(0) \) from the experimental values of the mass, the coupling, and the width at \(T=0 \). At finite temperature there are non-diagonal (Lorentz non-invariant) condensates that might contribute to the OPE. Non-gluonic operators are highly suppressed [5], [12] so that they can be safely ignored. We have considered also a gluonic twist-two term in the OPE introduced in [13], and computed on the lattice in [14]. Its impact is small,(2-6)\%, and plays no appreciable role in the results.

3. Results

We begin by determining \(s_0 \) and \(Q^2 \) at \(T=0 \) from the moments, Eq.(8), and using as input the experimental values \[15 \] \(M_V = 3.097 \text{ GeV}, f_V = 196 \text{ MeV}, \) and \(T_V = 93.2 \text{ keV} \), as well as \(m_Q = 1.3 \text{ GeV} \), and \[16 \] \(\langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \rangle \approx 5 \times 10^{-3} \text{GeV}^4 \). In the zero-width approximation one finds from Eq.(9) that

\[
\frac{\varphi_1(Q^2)|_{\text{RES}}}{\varphi_2(Q^2)|_{\text{RES}}} = \frac{\varphi_1(Q^2)|_{\text{QCD}}}{\varphi_2(Q^2)|_{\text{QCD}}}. \tag{12}
\]

Given the extremely small total width of the \(J/\psi \) it turns out that the above relation also holds with extreme accuracy in finite width. Using Eq.(8) this leads to

\[
\frac{\varphi_1(Q^2)|_{\text{QCD}}}{\varphi_2(Q^2)|_{\text{QCD}}} = \frac{\varphi_1(Q^2)|_{\text{QCD}}}{\varphi_2(Q^2)|_{\text{QCD}}}, \tag{13}
\]

which depends only on the two unknowns \(s_0 \) and \(Q^2 \), and provides the first equation to determine this pair of parameters. The second equation can be e.g. Eq.(8) with \(N = 1 \). In this way we find that \(s_0 = 11.64 \text{ GeV}^2 \), and \(Q^2 = 10 \text{ GeV}^2 \) reproduce the experimental values of the mass, coupling, and width of \(J/\psi \) within less than 1\%. This whole set of hadronic parameters will then be used to normalize the corresponding parameters at finite temperature. In this way, see [2] for details, we were able to find the thermal evolution of \(s_0 \), the \(J/\psi \) mass, its width and its coupling. We show here only the behavior of the width and the coupling (Figs. 1 and 2) since these are the most important results of this analysis.

Both the width and the coupling can only be determined up to \(T_f \approx 1.1 T_c \), beyond which \(s_0(T) < M_V^2(T) \) and the FESR integrals have no longer a support. The temperature behavior of the width and the coupling shown in Figs. 1 and 2 strongly suggests the survival
of the J/ψ above the critical temperature for deconfinement. This conclusion agrees with results from lattice QCD [8], but disagrees with non-relativistic determinations. As pointed out earlier, the reason for this disagreement might very well be the absence of the central cut (QCD scattering term) in the energy plane in non-relativistic frameworks.

Figure 1: The ratio $\Gamma_V(T)/\Gamma_V(0)$ as a function of T/T_c.

Figure 2: The ratio $f_V(T)/f_V(0)$ as a function of T/T_c.

References

[1] A.I. Bochkarev and M.E. Shaposnikov, Nucl. Phys. B 286 (1986) 220.
[2] C.A. Dominguez, M. Loewe, J.C. Rojas and Y. Zhang, Phys. Rev. D 81 (2010) 014007.
[3] R.J. Furnstahl, T. Hatsuda and S.H. Lee, Phys. Rev. D 42 (1990) 1744; C. Adamo and I. Zahed, Phys. Rev. D 45 (1992) 4312; T. Hatsuda, Y. Koike and S.-H. Lee, Phys. Rev. D 47 (1993) 1225; *ibid.* Nucl. Phys. B 394 (1993) 221; Y. Koike, Phys. Rev. D 48 (1993) 2313.
[4] C.A. Dominguez and M. Loewe, Z. Phys. C (Particles & Fields) 51 (1991) 69; *ibid.* 58 (1993) 273; Phys. Lett. B 481 (2000) 295.
[5] C.A. Dominguez, M. Loewe and J.C. Rojas, J. High Energy Phys. 0708 (2007) 040; E.V. Veliev and G. Kaya, *arXiv:0902.5413*.
[6] C.A. Dominguez and M. Loewe, Z. Phys. C (Particles & Fields) 49 (1991) 423.
[7] C.A. Dominguez, M. Loewe and J.S. Rozowsky, Phys. Lett. B 335 (1994) 506; C.A. Dominguez, M.S. Fetea and M. Loewe, Phys. Lett. B 387 (1996) 151; *ibid.* B 406 (1997) 148; C.A. Dominguez, M. Loewe and C. van Gend, Phys. Lett. B 429 (1998) 64; *ibid.* B 460 (1999) 442.
[8] For recent results see e.g. H. Ohno *et al.*, *arXiv:08103066* and references therein.
[9] T. Altherr and D. Seibert, Phys. Rev. C 49 (1994) 1684.
[10] P. Gerber and H. Leutwyler, Nucl. Phys. B 321 (1989) 387.
[11] G. Boyd and D.E. Miller, *arXiv:hep-ph/9608482* (unpublished); D.E. Miller, *arXiv:hep-ph/0008031* (unpublished).
[12] V.L. Eletsky, Phys. Lett. B 352 (1995) 440.
[13] F. Klingl, S. Kim, S.H. Lee, P. Morath, and W. Weise, Phys. Rev. Lett. 82, 3396 (1999).
[14] K. Morita and S.H. Lee, Phys. Rev. Lett. 100 (2008) 022301; *arXiv:0711.3998*.
[15] Particle Data Group, C. Amsler *et al.*, Phys. Lett. B 667, 1 (2008).
[16] R.A. Bertlmann, *et al.*, Z. Phys. C (Particles & Fields) 39 (1988) 231; C.A. Dominguez and J. Sola, Z. Phys. C (Particles & Fields) 40 (1988) 63; C.A. Dominguez and K. Schilcher, J. High Energy Phys. 01 (2007) 093.