A new genus name for pygmy lorises, *Xanthonycticebus* gen. nov. (Mammalia, Primates)

K. Anne-Isola Nekaris¹,², Vincent Nijman¹,²

¹ Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
² Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK

http://zoobank.org/AF9D1D54-F1DA-44BD-9F57-47058914BEA7

Corresponding author: Vincent Nijman (vnijman@brookes.ac.uk)

Abstract

Lorisiformes are nocturnal primates from Africa and Asia with four genera, with two (*Arctocebus* and *Loris*), three (*Perodicticus*) and nine (*Nycticebus*) recognised species. Their cryptic lifestyle and lack of study have resulted in an underappreciation of the variation at the species and genus level. There are marked differences between the pygmy slow loris *Nycticebus pygmaeus* and the other *Nycticebus* species and, in the past, several authors have suggested that these may warrant recognition at the generic level. We here combine morphological, behavioural, karyotypical and genetic data to show that these contrasts are, indeed, significantly large and consistent. We propose *Xanthonycticebus* gen. nov. as a new genus name for the pygmy slow lorises and suggest a common name of pygmy lorises. Based on analysis of complete mitochondrial DNA sequences, we calculate the divergence of pygmy from slow lorises at 9.9–10.0%. The median date, calculated for the divergence between *Xanthonycticebus* and *Nycticebus*, is 10.5 Mya (range 4.9–21.0 Mya). *Xanthonycticebus* differs from *Nycticebus* by showing sympatry with other slow loris species, by habitually giving birth to twins, by showing seasonal body mass and whole body coat colour changes (absent in other species living at similar latitudes) and a multi-male, multi-female social system. Pygmy lorises are easily recognisable by the absence of hair on their ears and more protruding premaxilla. *Xanthonycticebus* is threatened by habitat loss and illegal trade despite legal protection across their range and all slow lorises are listed on appendix 1 of CITES. The suggested nomenclatural changes should not affect their legal status.

Key Words

conservation, cytotaxonomy, Lorisidae, Lorisiformes, primate taxonomy, Strepsirrhini

Background

Lorisiformes are a group of nocturnal primates with two genera, *Perodicticus* Bennett, 1831 (three species) and *Arctocebus* Gray, 1863 (two species) occurring in west and equatorial Africa and two, *Loris* É. Geoffroy, 1796 (two species) and *Nycticebus*, É. Geoffroy, 1812 (nine species) occurring in south, east and southeast Asia (Groves 2001; Nekaris 2013; Rowe and Meyers 2016). In west-central Africa, *Perodicticus edwardsi* Bouvier, 1979 and *Arctocebus* occur in sympatry and in eastern Indochina, *Nycticebus bengalensis* (Lacépède, 1800) and *N. pygmaeus* Bonhote, 1907 occur in sympathy. All other species have allopatric distributions.

At a major international conference on nocturnal primates in 1993, Schwartz and Beutel (1995: 189), at a time when only two species of *Nycticebus* were recognised, commented that “*N. coucang* and *N. pygmaeus* are species that are remarkable for their variability”. Since then, a considerable amount of comparative research has been conducted on the slow lorises, including morphologically (e.g. Ravosa 1998; Groves 2001; Nekaris and Jaffe 2007; Munds et al. 2013; Xie et al. 2013 7), behaviourally (e.g. Fitch-Snyder and Ehrlich 2003; Nekaris et al. 2008; Nekaris et al. 2010; Streicher et al. 2012; Ni et al. 2020; Poindexter and Nekaris 2020) and genetically (e.g. Chen et al. 2006; Perelman et al. 2011; Pozzi et al. 2015; Munds et al. 2018; Munds et al. 2021). Combined, these studies
allow us to gain a better understanding of the species and higher-level taxonomy. Recent molecular phylogenetic research has revealed the divergence between genera and between species and, from this, it is evident that one species, the pygmy slow loris *Nycticebus pygmaeus* is anomalous. In combination with karyotypical, behavioural and morphological data, this supports the conclusion that this species is best placed in its own genus.

Although under the Code (International Commission on Zoological Nomenclature 1999), Art. 13.1, we are not obliged to provide a description of a new taxon (it would suffice to provide a bibliographic reference to earlier descriptions), we feel that, in this instance, it may be opportune to give a generic diagnosis.

Order Primates Linnaeus, 1758

Suborder Strepsirhini É. Geoffroy Saint-Hilaire, 1812
Family Lorisidae Gray, 1821

Xanthonycticebus gen. nov.

http://zoobank.org/16F2DB84-82CD-44B9-B9A8-30A8BA64BD20

Diagnosis. Morphological synapomorphies to *Xanthonycticebus* include: (i) skull length consistently less than 55 mm, (ii) diastema between P2 and P3, (iii) long black ears, hairless at the tips (iv) relatively narrow interorbital distance compared to *Nycticebus* and (v) full seasonal coat colour change including almost complete loss of dorsal stripe (Fig. 1). The species is furthermore distinguished from *Xanthonycticebus* species by giving birth habitually to twins, frequent sympatry with *N. bengalensis* (sensu lato) and more rapid locomotion. Regarding multiple births, this trait occurs with varying frequency in primates. Most of the marmosets and tamarins are polyovulatory and twins are the dominant litter size in the wild and most twins are considered dizygotic (Ward et al. 2014; Wåhåb et al. 2015). Old World monkeys, apes and humans are monovulatory species and while single births are the rule, multiple births do occasionally occur in various species, typically at a rate at, or below one percent (Geissmann 1990). Around two-thirds to three-quarters of these twins are estimated to be monozygotic (Geissmann 1990). This contrasts with twinning in strepsirrhines, as here all, or practically all, are dizygotic (Pasztor and Van Horn 1979).

No other species of slow lorises are known to be sympatric, with their distribution similar to gibbons *Hylobatidae* Gray, 1870 and langurs *Presbytina* Gray, 1825, which, even though having more recent evolutionary histories, contain multiple genera (Rowe and Meyers 2016). Where nocturnal primate genera or species are sympatric, different locomotor strategies have evolved, allowing reduced competition (Charles-Dominique 1977). Additional differences, as well as those from *Loris*, are summarised in Table 1.

Eymology. The genus name *Xanthonycticebus*, masculine, refers to the species orange/ish overall colouration and their nocturnal activity pattern; Xanto, Gr., Yellowish-orange; nykt-, Gr., night; kêbos, Gr., monkey (Gainsford 2020). Currently, the most frequently used common name of this genus is pygmy slow loris, followed by the rarely used slower slow loris or intermediary slow loris. For the common English name, we suggest pygmy loris in order to differentiate the new genus from

Table 1. Summary of key similarities and differences amongst the three Asian lorisiform genera.

	Loris	Nycticebus	Xanthonycticebus	Reference
Lattitudinal range	6°N–20°N	8°S–28°N	10°N–25°N	Rasova (1998)
Altitudinal range (asl)	0–2,000 m	0–2,400 m	50–1,500 m	Nekaris (2013)
Twins	Rare but occasional	Absent	Present	Fitch-Snyder and Ehrlich (2003)
Torpor	Absent	Present, 68 volatile	Present, 200 volatile	Streicher and Reinhart (2020)
Venomous	Absent	Present, 68 volatile	Present, 200 volatile	Hagel et al. (2007)
Seasonal body mass change	Absent	Absent	Present	Streicher (2004)
Seasonal coat colour change	Absent	Dorsal stripe shorter in some species	Present, dorsal stripe change	Streicher (2004); Nekaris, unpubl. data
Species	Two	Nine	One, possibly two	Rowe and Meyers (2016)
Body size, range	120–330 g	265–2200 g	360–580 g	Nekaris (2013)
Ears	Haired, larger than in Nycticebus	Haired and small often with tufts	Ear length intermediate and naked at tips	Osman Hill (1953)
Multimale, multimale female social system	Present	Absent	Present	Poindexter and Nekaris (2020)
Gestation	160–170 d	184–197 d	184–200 d	Fitch-Snyder (2020)
Molar size	M1 larger than M2	M1 larger than M2	M1 larger than M2	Osman Hill (1953)
Karyotype and nucleolus organiser regions (NORs)	2n = 62	2n = 50; NORs on chromosome 1, 6, 9, 15 and 23	2n = 50; NORs on chromosome 6, 9 and 15	Chen et al. (1993); Goonan et al. (1995)
Third hand pad	Smallest	Intermediate or small	Largest	Osman Hill (1953); Nekaris, unpubl. data
Snout	Narrow and pointy	Broader and more rounded	Broader than Loris, but longer premaxilla than Nycticebus	Osman Hill (1953)
Interorbit	Narrowest	Widest	Intermediate	Rasova (1998)
Ocular axial and corneal diameter	AD – 14.0 mm; CD – 12.0 mm	AD – 15.7 mm; CD – 12.1 mm	AD – 15.5 mm; CD – 12.3 mm	Ross and Kirk (2007)
the two other loris genera (slow and slender lorises). We acknowledge, however, that with the recognition of \textit{N. menagensis} Munds, Nekaris and Ford 2013, from Bor - neo, with a minimum adult body mass of 265 g, the small size is no longer a unique feature of the pygmy loris. The most commonly-used name for pygmy lorises in Vietnamese is Cu li nhỏ, in Mnong, it is Tau kless, in Lao, it is Linh lom and in Chinese, it is \textit{Xiao lan hou} (Nijman and Nekaris 2016; Thach et al. 2018).

\textbf{Contents.} a single species, \textit{Xanthonycticebus pygmaeus} (Bonhote, 1907) is currently recognised and \textit{Nycticebus intermedius} Dao Van Tien, 1960 and the not formally described \textit{N. chinensis} are treated as synonyms. There is clear clinal latitudinal variation in body size and craniofacial size (smaller in the north) (Ravosa 1998). Variation in pelage colourations, coupled with a considerable amount of genetic divergence between available sequences deposited in GenBank (e.g. up to 2.0\% in \textit{cytb}; Fig. 1), largely from specimens without exact geographic locality data, may lead to the recognition of additional species in the future. Pozzi et al. (2020), based on monophyletic northern and southern populations of pygmy lorises from Laos PDR, Cambodia and Vietnam, advocate more research to confirm if these are, indeed, two species.

Mein and Ginsburg (1997) tentatively described a single third upper molar M3 (T Li 41) from Li Mae Long in Lamphum Province, Thailand dated to the early Miocene, 17–18 Mya, as \textit{?Nycticebus linglom} Mein & Ginsburg, 1997. The small size (1.29 × 1.82 mm) shows affini - ties with \textit{X. pygmaeus}, but absence of a hypocone and a metaconule on M3 on T Li 41 aligns it closer to \textit{N. bengalensis} than to \textit{X. pygmaeus} and Li Mae Long is situated west of the Mekong River, outside the current distribution range of \textit{X. pygmaeus}. We suggest to retain \textit{?Nycticebus linglom} within the genus \textit{Nycticebus}.

The holotype of \textit{X. pygmaeus} is a juvenile male collect - ed by J. Vassal on 13 November 1905 in Nha Thrang Vietnam \{12.24, 109.19\}, that is currently stored in the Natural History Museum London under registration number 1906.11.6.2. It is described in detail by Bonhote (1907).

\textbf{Divergence and molecular clock dates.} Several molecular phylogenetic studies have been conducted that included samples of \textit{X. pygmaeus} and two or more other \textit{Nycticebus} species; in all analyses, \textit{X. pygmaeus} is the first

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Characteristics of pygmy loris \textit{Xanthonycticebus pygmaeus} gen. nov. A. Photograph of wild adult male \textit{X. pygmaeus} from Mondulkiri District, Cambodia and skull from Li Chau, Vietnam (FMNH 32499), compared with \textit{Nycticebus javanicus} from Garut Regency, Indonesia and skull (RMNH14563) from South Java, Indonesia; and with \textit{Loris lydekkerianus nordicus} from Trincomalee District, Sri Lanka and skull (FMNH95029) from Jaffna District, Sri Lanka. Features distinctive to \textit{Xanthonycticebus} include yellowish-orange colour, mid-broad snout with long premaxilla, M2 larger than M1 and ears hairless at the tips; B. Neighbour-joining tree of 175 cytochrome b sequences (alignment 1,068 bp) of \textit{Nycticebus}, \textit{Xanthonycticebus} and \textit{Loris}; C. Neighbour-joining tree of complete mtDNA sequences of \textit{Nycticebus}, \textit{Xanthonycticebus} and \textit{Loris}, with \textit{Perodicticus} as outgroup, showing considerable divergence of \textit{Xanthonycticebus} from \textit{Nycticebus}. All photographs courtesy of K.A.I. Nekaris.}
\end{figure}
group to split, thus forming two distinct reciprocal monophyletic groups. Our own analysis, based on the complete mitochondrial genome sequences of *Xanthonycticebus* (*X. pygmaeus* GenBank Accession #: KX397281), two species of Loris (*L. lydekkerianus* KC757402 from India and *L. tardigradus* AB371094 from Sri Lanka), three *Nycticebus* (*N. bengalensis* KY436589 from China, *N. c. insularis* MG515246 from Malaysia and *N. coucang* AB371094 from an unknown location) with *P. edwardsi* KC757407 from Cameroon as an outgroup, likewise shows a genetic distance of 9.9–10.0% between *X. pygmaeus* and the three other *Nycticebus* species (Fig. 1).

The divergence time between *X. pygmaeus* and the other *Nycticebus* species was estimated at between 6.4 Mya and 26.4 Mya (Table 2). Pozzi et al. (2015) commented that the gap of around six million years between the divergence of *X. pygmaeus* and the radiation of the other *Nycticebus* species may lend support to the distinction of *Nycticebus* and any of the other species. Both *Nycticebus* and *Xanthonycticebus* have *n* = 30 chromosomes, but karyotypically, the former differs from the latter by having a secondary constriction in the short arm of chromosome 1 and the additional presence of nucleolus organiser regions on chromosome 1 (Stanyon et al. 1987; Chen et al. 1993).

Status. *Xanthonycticebus pygmaeus* occurs naturally in Vietnam (historically south to the vicinity of Ho Chi Minh City [10.75, 106.66]), Laos PDR (west to Phongsali [21.59, 102.25]), Cambodia (east of the Mekong River), China (historically north to Lîuchun County [23.00, 104.67]) (Nekaris 2013). The species may have established itself in Thailand, west of the Mekong River, as a result of poorly planned release efforts (Osterberg and Nekaris 2015). *Xanthonycticebus pygmaeus* has been assessed as Endangered according to IUCN Red List Criteria, with the trade for medicinal purposes and as pets and habitat loss recognised as the main threats (Starr et al. 2011; Blair et al. 2020). The species is protected in all four of its range countries, but active enforcement of these laws is far from optimal (Nekaris and Starr 2015; Thã¢ch et al. 2018; Ni et al. 2020). The species is the most common loris kept in accredited zoological association and European Association of Zoos and Aquariums breeding programmes, but birth rates are low.

The genus *Xanthonycticebus* is listed in appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), precluding all commercial international trade (Nekaris and Nijman 2007).

Type (bp)	Nycticebus species included in calculation	Split (mean, range), Mya	Reference
Mitochondrial genes			
Cytochrome b (1140)	javancus / bengalensis / coucang / menagensis	10.9 (7.6–14.5)	Pozzi et al. (2015)
Cytochrome b + cytochrome oxidase subunit 1 (536)	coucang	26.4 (13.1–39.7)	Munds et al. (2018)
Nuclear genes			
18 gene regions (9,500)	coucang	6.4 (3.5–10.1)	Horvath et al. (2008)
54 gene regions (34,927)	bengalensis / coucang	10.2 (5.4–15.1)	Perelman et al. (2011)
Melanocortin 1 receptor (729)	bengalensis / coucang	12.0	Munds et al. (2021)
Recombinant activation gene 2 intron (716)	coucang	14.5 (6.0–24.9)	Munds et al. (2018)
Mitochondrial and nuclear genes			
4 genes (cytb, col, rag2, MC1R (1983))	coucang	18.4 (10.2–26.9)	Munds et al. (2018)
In the proposal, submitted by Cambodia in 2007, which was accepted by consensus, three species names were singled out, including Nycticebus pygmaeus (with N. intermedius and N. chinensis listed as synonyms). As such, with respect to international trade, there is no doubt that Xanthonycticebus gen. nov. continues to receive the same level of protection and regulation as other slow lorises.

Acknowledgements

We thank the following museums and staff for access to specimens under their care: Colombo Natural History Museum, Field Museum of Natural History-Chicago, Naturals Leiden, Zoological Museum Amsterdam (now merged with Naturalis), Natural History Museum London and Natural History Museum Oxford. Funding was received from the Systematics Research Fund of the Linnean Society, The Royal Society and SYNTHESIS Project, financed by the European Community Research Infrastructure Action under the FP6 Structuring the European Research Area programme (NL-TAF 3491). Our long-term field projects on slow and slender lorises in Sri Lanka, Cambodia and Indonesia has been supported by People’s Trust for Endangered Species, Cleveland Zoological Society and Cleveland Metroparks Zoo and Disney Worldwide Conservation Fund. We thank Aconk Ahmad, Penelope Goodman, Zak Showell, Carly Starr and Ariana Weldon for support and three reviewers and the editor for constructive comments and suggestions for improvement.

References

Blair M, Nadler T, Ni O, Samun E, Streicher U, Nekaris KAI (2020) Nycticebus pygmaeus. The IUCN Red List of Threated Species 2020-2.RLTS.T14941A17971417. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T14941A17971417.en [Downloaded on 17 March 2021]

Bonhote JL (1907) On a collection of mammals made by Dr Vassal in Annam. Proceedings of the Zoological Society of London 1907(1): 3–11. https://doi.org/10.1111/j.1096-3642.1907.tb01797.x

Charles-Dominique P (1977) Ecology and behaviour of nocturnal pri-mates: Prosimians of Equatorial West Africa. Columbia University Press, New York.

Cai T, Cibois A, Alström P, Moyle RG, Kennedy JD, Shao S, Zhang R, Irestedt M, Ericson PG, Gelang M, Qu Y (2019) Near-complete phylogeny and taxonomic revision of the world’s babblers (Aves: Passeriformes). Molecular Phylogenetics and Evolution 130: 346–356. https://doi.org/10.1016/j.ympev.2018.10.010

Chen Z, Zhang Y, Shi L, Liu R, Wang Y (1993) Studies on the chromosomes of genus Nycticebus. Primates 34(1): 47–53. https://doi.org/10.1007/BF02381279

Chen JH, Pan D, Groves C, Wang YX, Narushima E, Fitch-Snyder H, Crow P, Thanh VN, Ryder O, Zhang HW, Fu YX, Zhang Y (2006) Molecular phylogeny of Nycticebus inferred from mitochondrial genes. International Journal of Primatology 27(4): 1187–1200. https://doi.org/10.1007/s10764-006-9032-5

Fitch-Snyder H (2020) Husbandry and reproductive management recommen-dations for captive lorises and pottos (Nycticebus, Loris and Perodicticus). In: Nekaris KAI, Burrows A (Eds) Evolution, ecology and conservation of lorises and pottos (Cambridge studies in biological and evolutionary anthropology). Cambridge University Press, Cambridge, 263–276. https://doi.org/10.1017/9781108676526.026

Fitch-Snyder H, Ehrlich A (2003) Mother-infant interactions in slow lorises (Nycticebus bengalensis) and pygmy lorises (Nycticebus pygmaeus). Folia Primatologica 74(5–6): 259–271. https://doi.org/10.1159/000073313

Gainsford P (2020) How to make sense of ancient Greek colours. Kiwi Hellenist. [Accessed on 9 April 2021] http://kiwihellenist.blogspot.com/2020/05/ancient-greek-colours.html

Geissmann T (1990) Twinning frequency in catarhine primates. Human Evolution 5(4): 387–396. https://doi.org/10.1007/BF02437252

Goonan PM, Groves CP, Smith RD (1995) Karyotype polymorphism in the slender loris (Loris tardigradus). Folia Primatologica 65(2): 100–109. https://doi.org/10.1159/000156874

Groves CP (2001) Primate Taxonomy. Smithsonian Press, Washington.

Hagay LR, Fry BG, Fitch-Snyder H (2007) Talking defensively, a dual use for the brachial gland exudates of slow and pygmy lorises. In: Gursky SL, Nekaris KAI (Eds) Primate anti-predator strategies. Springer, New York, 253–272. https://doi.org/10.1007/978-0-387-34810-0_12

Horvath JE, Weisrock DW, Embry SL, Fiorentino I, Balhoff JP, Kap-peler P, Wray GA, Willard HF, Yoder AD (2008) Development and application of a phylogenomic toolkit: Resolving the evolutionary history of Madagascar’s lemurs. Genome Research 18(3): 489–499. https://doi.org/10.1101/gr.7265208

ICZN (1999) International Code of Zoological Nomenclature. Fourth Edi-tion. The International Trust for Zoological Nomenclature, London.

Kenyon M, Streicher U, Loung H, Tran T, Tran M, Vo B, Cronin A (2014) Survival of reintroduced pygmy slow loris Nycticebus pygmaeus in South Vietnam. Endangered Species Research 25(2): 185–195. https://doi.org/10.3354/esr00607

Khudamrongsawat J, Nakchamnan K, Laithong P, Kongrit C (2018) Abnormal repetitive behaviours of confiscated slow lorises (Nycticebus spp.) in Thailand. Folia Primatologica 89(3–4): 216–223. https://doi.org/10.1159/000487432

Licona-Vera Y, Ornelas JF (2017) The conquering of North America: dated phylogenetic and biogeographic inference of migratory behavior in bee hummingbirds. BMC Evolutionary Biology 17(1): 1–17. https://doi.org/10.1186/s12862-017-0980-5

Mein P, Ginsburg L (1997) Les mammifères du gisement micocène in-férieur de Li Mae Long, Thaïlande: Systématique, biostratigraphie et paléoenvironnement. Geodiversitas 19: 783–844.

Munds RA, Nekaris KAI, Ford SM (2013) Taxonomy of the Bornean slow loris, with new species Nycticebus kayan (Primates, Lorisidae). American Journal of Primatology 75(1): 46–56. https://doi.org/10.1002/ajp.22071

Munds RA, Titus CL, Eggert LS, Blomquist GE (2018) Using a multi-genie approach to infer the complicated phylogeny and evolu-tionary history of lorises (Order Primates: Family Lorisidae). Molecular Phylogenetics and Evolution 127: 556–567. https://doi.org/10.1006/j.ympev.2018.05.025

Munds RA, Titus CL, Moreira LA, Eggert LS, Blomquist GE (2021) Examining the molecular basis of coat color in a nocturnal pri-mate family (Lorisidae). Ecology and Evolution 11(9): 4442–4459. https://doi.org/10.1002/ece3.7338

Nekaris KAI (2013) Lorisidae. In: Mittermeier RA, Rylands AB, Wil-son DE (Eds) Handbook of the Mammals of the World: 3. Primates. Lynx Edicions, Barcelona, 210–235.

zse.pensoft.net
Nekaris KAI, Jaffe S (2007) Unexpected diversity of slow lorises (Nycticebus spp.) within the Javan pet trade: Implications for slow lorises taxonomy. Contributions to Zoology (Amsterdam, Netherlands) 76(3): 187–196. https://doi.org/10.1163/1875986-07603004

Nekaris KAI, Nijman V (2007) CITES proposal highlights rarity of Asian nocturnal primates (Lorisidae, Nycticebus). Folia Primatologica 78(4): 211–214. https://doi.org/10.1159/000102316

Nekaris KAI, Starr CR (2015) Conservation and ecology of the neglected slow lorises: Priorities and prospects. Endangered Species Research 28(1): 87–95. https://doi.org/10.3354/esr00674

Nekaris KAI, Blackham GV, Nijman V (2008) Conservation implications of low encounter rates of five nocturnal primate species (Nycticebus spp.) in Asia. Biodiversity and Conservation 17(4): 733–747. https://doi.org/10.1007/s10531-007-9308-x

Nekaris KAI, Starr CR, Collins RL, Wilson A (2010) Comparative ecology of exudate feeding by lorises (Nycticebus, Loris) and pottos (Perodicticus, Arctocebus). In: Burrows A, Nash LT (Eds) The Evolution of Exudativory in Primates. Springer, New York, 155–168. https://doi.org/10.1007/978-1-4419-6661-2_3

Ni Q, He X, Wang Y, Meng X (2020) Distribution and conservation status of slow lorises in Indo-China. In: Nekaris KAI, Burrows A (Eds) Evolution, ecology and conservation of lorises and pottos (Cambridge studies in biological and evolutionary anthropology). Cambridge University Press, Cambridge, 326–338. https://doi.org/10.1017/9781108676526.032

Nijman V, Nekaris KAI (2016) Provide context when reporting on the use of protected and endangered wildlife in ethnopharmacological surveys. Journal of Ethnopharmacology 194: 577–579. https://doi.org/10.1016/j.jep.2016.10.066

Osman-Hill WC (1953) Primates: A comparative anatomy and taxonomical I-Strepsirhini. Edinburgh University Press, Edinburgh.

Osterberg P, Nekaris KAI (2015) The use of animals as photo props to attract tourists in Thailand: A case study of the slow lorises Nycticebus spp. Traffic Bulletin 27: 13–18.

Pasztor LM, Van Horn RN (1979) Twinning. In: Andrews EJ, Ward BC, Altman NH (Eds) Spontaneous Animal Models of Human Disease, Vol. I. Academic Press, New York, 227–230.

Perelman P, Johnson WE, Roos C, Seuánz HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O’Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLOS Genetics 7(3): e1001342. https://doi.org/10.1371/journal.pgen.1001342

Poindexter S, Nekaris KAI (2020) The evolution of social organisation in Lorisiformes. In: Nekaris KAI, Burrows A (Eds) Evolution, ecology and conservation of lorises and pottos (Cambridge studies in biological and evolutionary anthropology). Cambridge University Press, Cambridge, 129–137. https://doi.org/10.1017/9781108676526.012

Pozi L, Nekaris KAI, Perkin A, Bearder SK, Pimley ER, Schulze H, Streicher U, Nadler T, Kitchener A, Zheng L, Zinner D, Roos C (2015) Remarkable ancient divergences amongst neglected lorisiform primates. Zoological Journal of the Linnean Society 175(3): 661–674. https://doi.org/10.1111/zoj.12286

Pozi L, Roos C, Blair ME (2020) Molecular advances in lorisid taxonomy and phylogeny. In: Nekaris KAI, Burrows A (Eds) Evolution, ecology and conservation of lorises and pottos (Cambridge studies in biological and evolutionary anthropology). Cambridge University Press, Cambridge, 57–66. https://doi.org/10.1017/9781108676526.007

Ravosa MJ (1998) Cranial allometry and geographic variation in slow lorises (Nycticebus). American Journal of Primatology 45(3): 225–243. https://doi.org/10.1002/(SICI)1098-2359(1998)45:3<225::AID-AJP1>3.0.CO;2-Y

Ross CF, Kirk EC (2007) Evolution of eye size and shape in primates. Journal of Human Evolution 52(3): 294–313. https://doi.org/10.1016/j.jhevol.2006.09.006

Rowe N, Meyers M (2016) All the world’s primates. Pogonias Press, Charlestown, USA.

Schwartz JH, Beutel JC (1995) Species diversity in lorisids: a preliminary analysis of Arctocebus, Perodicticus and Nycticebus. In: Altman L, Doyle GA, Izard MK (Eds) Creatures of the dark. The nocturnal primates. Plenum Press, New York, 171–192. https://doi.org/10.1007/978-1-4757-2405-9_12

Species360 (2021) Zoological Information Management System (ZIMS). https://zims.species360.org

Stanyon R, Masters JC, Ronagno D (1987) The chromosomes of Nycticebus coucang (Boddart, 1785) (Primates: Prosimii). Genetica 75(2): 145–152. https://doi.org/10.1007/BF00055258

Starr C, Nekaris KAI, Streicher U, Leung LKP (2011) Field surveys of the Vulnerable pygmy slow loris Nycticebus pygmaeus using local knowledge in Mondulkiri Province, Cambodia. Oryx 45(1): 135–142. https://doi.org/10.1017/S0030603110001316

Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology 53(4): 533–553. https://doi.org/10.1080/10635150490468701

Streicher U (2004) Aspects of ecology and conservation of the pygmy loris Nycticebus pygmaeus in Vietnam. PhD thesis, Ludwig-Maxilians-Universitat Munchen, Germany.

Streicher U, Reinhardt K (2020) Thermoregulation in lorises. In: Nekaris KAI, Burrows A (Eds) Evolution, ecology and conservation of lorises and pottos (Cambridge studies in biological and evolutionary anthropology). Cambridge University Press, Cambridge, 187–192. https://doi.org/10.1017/9781108676526.018

Streicher U, Wilson A, Collins RL, Nekaris KAI (2012) Exudates and animal prey characterize slow loris (Nycticebus pygmaeus, N. coucang and N. javanicus) in captivity and after release into the wild. In: Masters J, Genin F, Crompton R (Eds) Leaping ahead: Advances in prosimian biology. Springer, New York, 165–172. https://doi.org/10.1007/978-1-4614-4511-1_19

Thach HM, Le MD, Và NB, Panariello A, Sethi G, Sterling EJ, Blair ME (2018) Slow loris trade in Vietnam: Exploring diverse knowledge and values. Folia Primatologica 89(1): 45–62. https://doi.org/10.1159/000481196

Wahab F, Drummer C, Behr R (2015) Marmosets. Current Biology 25(18): 780–782. https://doi.org/10.1016/j.cub.2015.06.042

Ward JM, Buslov AM, Vallender EJ (2014) Twinning and survivalship of captive common marmosets (Callithrix jaccus) and cotton-top tamarins (Saguinus oedipus). Journal of the American Association for Laboratory Animal Science, JAALAS 53: 7–11.

Xie ZH, Hu JY, Zhou MY, Deng DJ (2013) Characteristics of the limb in slow lorises and pygmy lorises. Chinese Journal of Anatomy 36: 405–407.

Yamanashi Y, Nemoto K, Alejandro J (2021) Social relationships among captive male pygmy slow lorises (Nycticebus pygmaeus). Is forming male same-sex pairs a feasible management strategy? American Journal of Primatology 83(2): a23233. https://doi.org/10.1002/ajp.23233

Zurano JP, Magalhães FM, Asato AE, Silva G, Bidal CJ, Mesquita DO, Costa GC (2019) Cetartiodactyla: Updating a time-calibrated phylogeny date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology 53(4): 533–553. https://doi.org/10.1080/10635150490468701