Single-cell transcriptomic analysis of vascular endothelial cells in zebrafish embryos

Suman Gurung1,3, Nicole K. Restrepo3, Brendan Chestnut1, Laurita Klimkaite1 & Saulius Sumanas1,2,3*

Vascular endothelial cells exhibit substantial phenotypic and transcriptional heterogeneity which is established during early embryogenesis. However, the molecular mechanisms involved in establishing endothelial cell diversity are still not well understood. Zebrafish has emerged as an advantageous model to study vascular development. Despite its importance, the single-cell transcriptomic profile of vascular endothelial cells during zebrafish development is still missing. To address this, we applied single-cell RNA-sequencing (scRNA-seq) of vascular endothelial cells isolated from zebrafish embryos at the 24 hpf stage. Six distinct clusters or subclusters related to vascular endothelial cells were identified which include arterial, two venous, cranial, endocardial and endothelial progenitor cell subtypes. Furthermore, we validated our findings by characterizing novel markers for arterial, venous, and endocardial cells. We experimentally confirmed the presence of two transcriptionally different venous cell subtypes, demonstrating heterogeneity among venous endothelial cells at this early developmental stage. This dataset will be a valuable resource for future functional characterization of vascular endothelial cells and interrogation of molecular mechanisms involved in the establishment of their heterogeneity and cell-fate decisions.

Vascular endothelial cells in different vascular beds exhibit considerable heterogeneity. This endothelial cell diversity is established during early embryogenesis when vascular endothelial cells are specified from mesodermal progenitors and differentiate into arterial, venous, capillary, lymphatic, endocardial, hemogenic and other subtypes of endothelial cells. Despite advances in our understanding of mechanisms that govern vascular development, the extent of vascular heterogeneity and molecular mechanisms involved in its establishment are still poorly understood.

Because it is technically challenging to study embryonic vascular development in mammalian embryos, the zebrafish has emerged as an advantageous model to study early vascular development. Transparent zebrafish embryos develop externally and allow researchers to study spatiotemporal events in vivo and in real time. Furthermore, the signaling pathways and transcriptional programs that regulate early vascular development are highly conserved between zebrafish and other vertebrates.

The advent of large-scale single cell RNA-sequencing (scRNA-Seq) in recent years has enabled robust access to the transcriptomic profile of single cells. Detailed analysis of scRNA-Seq data has revealed similarities and differences between different cell types and allowed researchers to carry out analysis of complexity and heterogeneity existing in the biological systems. Numerous studies involving single-cell studies in health and disease have identified new endothelial cell subtypes and functions. Several scRNA-Seq studies using zebrafish embryos have revealed cellular heterogeneity and developmental trajectory during tissue and organ development in zebrafish. In addition, a single cell transcriptomic atlas of day one to five zebrafish embryos has been generated recently. However, the transcriptional profile of zebrafish vascular endothelial cells, which might provide insights into vascular endothelial cell heterogeneity and cell fate decision process during zebrafish development, is still missing.

Kinase insert domain receptor like (Kdrl), also termed as flk1, is strongly expressed in developing endothelial precursors and differentiated vascular endothelial cells in zebrafish embryos. We have previously generated Tg(kdrl:mCherry) transgenic line which faithfully recapitulates endothelial kdr expression in zebrafish embryos. Efz2/Etsrp, an ETS transcription factor, is one of the earliest markers of vascular progenitor cells in multiple...
vertebrates including zebrafish.

Here, we performed scRNA-seq using a combination of Tg(kdrl:mCherry) and etv2^{GFP/Lox} UAS:GFP reporter lines to generate transcriptomic profile of vascular endothelial cells isolated from zebrafish embryos at 24 hpf (hours post fertilization) stage, when blood circulation is first initiated. We identified transcriptional profile of 6 different subtypes of vascular endothelial cells, which include vascular progenitor, arterial, two different venous, endocardial, and mixed arteriovenous subtypes. We validated our findings by characterizing novel markers for arterial, venous, and endocardial cells. We experimentally confirmed the presence of two transcriptionally different venous cell subtypes, demonstrating unexpected heterogeneity among venous endothelial cells at this early developmental stage. This data provides a valuable resource for future functional characterization of vascular endothelial cells and interrogation of molecular mechanisms involved in the establishment of their heterogeneity.

Results

To obtain a single-cell transcriptional profile of vascular endothelial cells, we crossed the previously established Tg(kdrl:mCherry) and etv2^{GFP/Lox}; UAS:GFP lines. GFP and mCherry positive embryos were collected at 24 hpf. Because the etv2^{GFP/Lox}; UAS:GFP line labels vascular endothelial and some other cell types, such as blood, we decided to collect two different cell populations to help with subsequent annotation and characterization. Thus, GFP + mCherry + and GFP + mCherry- cell populations were isolated by FACS (fluorescent activated cell sorting) and subjected to single-cell RNA-seq analysis using the Chromium Controller (10x Genomics) followed by the next-generation sequencing (Fig. 1A). After filtering, transcriptomes of 3275 and 5543 cells were obtained from GFP + mCherry + and GFP + mCherry- cell populations, respectively. Transcriptomes from both cell populations were pooled for further analysis. Unbiased graph-based clustering was performed using the Partek flow analysis package, and 17 distinct clusters were identified and visualized using Uniform Manifold Approximation and Projection (UMAP) approach (Fig. 1B,C). We then assigned cell identities to these clusters based on previously known marker genes which were significantly enriched in each cluster and showed specific gene expression patterns (Fig. 1B–F, Fig. S1 and Tables S1, S2). This revealed major cellular subtypes including five vascular endothelial, three red blood cell (RBC), sclerotome, two neural, macrophage, endothelial progenitor cell (EPC), epidermis, neutrophil, and myocytes. Vascular endothelial cells were mostly GFP + mCherry +, while RBC and macrophage clusters were largely GFP + mCherry- (Fig. 1E). This is consistent with known etv2 reporter expression in both endothelial and blood cells, while kdr:GFP expression is largely restricted to vascular endothelial cells.

Five distinct clusters related to vascular endothelial cells including vascular progenitor, arterial, two different venous, and mixed arteriovenous subtypes were obtained, underscoring the heterogeneity of vascular endothelial cells. We discuss these clusters in greater detail below.

Identification of an arterial cluster. Top marker genes for cluster #1 included dll4, dxc, and flt1, which are known to be expressed in the arterial cells. Many other known arterial markers, including vegfc, aip1.1 and hey2, were also enriched in cluster #1. We also showed increased expression of unknown or previously uncharacterized genes. We hypothesized that many of these genes would be also expressed in arterial cells. Indeed, in situ hybridization (ISH) analysis of two selected previously uncharacterized genes, esml and notchl, demonstrated their expression in the dorsal aorta and intersegmental vessels (ISV) (Fig. 2G,H and Table S1). esml expression appeared enriched in the sprouting ISVs and was reduced in non-sprouting segments of the DA, suggesting further heterogeneity within the arterial population. In an attempt to gain insights into the biological processes represented by enriched genes in cluster #1, we performed Gene ontology (GO) and Pathway enrichment analysis. Top GO biological processes represented by gene set in cluster #1 included dorsal aorta morphogenesis, aorta morphogenesis, and dorsal aorta development (Fig. 2F and Table S3). Furthermore, pathway analysis revealed enrichment of Hedgehog signaling pathway, known to play an important role in arterial development, including the regulation of size of the dorsal aorta (Table S4). Other enriched pathways included histamine H1 receptor signaling pathway, which is known to regulate arterial vasodilation, as well as P13 kinase, integrin signaling and EGF receptor signaling pathways (Table S4), which have been implicated in several steps of vascular development including angiogenesis, vasculogenesis, and arterial development.

Identification of two subtypes of venous cells. Top marker genes for cluster #2 included livelb and sele, both known to be enriched in venous cells, and stab1, mrc1a, and stab2, were also enriched in cluster #2. We also showed increased expression of unknown or previously uncharacterized expression pattern, such as sidkey-28n18.9 (Fig. 3B,D,E and Table S1). We hypothesized that many of these uncharacterized genes would also be expressed in venous cells. We selected two previously uncharacterized genes, bcl6b and sidkey-28n18.9, and analyzed their expression by ISH. Consistent with our hypothesis, we observed expression of bcl6b and sidkey-28n18.9 in the posterior cardinal vein (PCV) (Fig. 3G,H). Top GO biological processes included endothelial tube morphogenesis, blood vessel lumenization and morphogenesis of an endothelium as well as P13 signaling and lymphangiogenesis (Fig. 3F and Table S3). Highly represented pathways included PI3 kinase, Insulin/IGF, Integrin and Ras signaling pathways (Table S4). PI3 kinase pathway has been previously implicated in arterial-venous specification, while Insulin/IGF pathway has established roles in angiogenesis. Other top pathways such as Integrin signalling have been shown to play a crucial role in vasculogenesis, while
Figure 1. The scRNA-seq analysis of etv2^{CI2Gyt}; UAS:GFP; kdrl:mCherry embryos at the 24 hpf stage. (A) Schematics of the experimental design for scRNA-seq. (B) UMAP plot of 10,818 cells with 17 distinct clusters. Classifications were based on previously known marker genes which were significantly enriched in each cluster. RBC, red blood cells; VE, vascular endothelial; EPC, endothelial progenitor cells. (C) UMAP plot showing the distribution of GFP+ mCherry+ and GFP + mCherry- cells. (D) A heatmap showing expression of top marker genes in different clusters. Enlarged heatmap and gene list is shown in Fig. S1. (E) Fraction of GFP+ mCherry+ and GFP + mCherry- cells within each cluster. (F) A dot plot showing the expression of selected marker genes in different clusters.
Figure 2. Arterial cluster #1. (A,B) UMAP feature plots showing expression of selected arterial top markers dll4 and flt1. (C,D) Violin plots showing expression of dll4 and flt1 in different cell populations. (E) List of top 20 marker genes differentially expressed in arterial cluster. (F) List of top 20 pathways enriched in arterial cluster. (G,H) In situ hybridization analysis at 24 hpf for selected marker genes esm1 and notchl. Note the expression of esm1 and notchl in the dorsal aorta (arrowhead) as well as the intersegmental vessels (arrow). Scale bars: 100 μm.
Figure 3. Venous-1 cluster #2. (A,B) UMAP feature plots showing expression of selected top markers for cluster #2, lyve1b and sidkey-28n18.9. (C,D) Violin plots showing expression of lyve1b and sidkey-28n18.9 in different cell populations. (E) List of top 20 marker genes differentially expressed in Venous-1 cluster. (F) List of top 20 pathways enriched in Venous-1 cluster. (G,H) In situ hybridization analysis at 24 hpf for previously uncharacterized genes bcl6b and sidkey-28n18.9. Note the expression of bcl6b and sidkey-28n18.9 in the posterior cardinal vein (arrowheads). Scale bars: 100 μm.
Ras signaling pathway has also been implicated to regulate arterial-venous specification in zebrafish.\(^3^{38}\) In addition, VEGF, FGF and Notch signaling pathways, which have established roles in vascular development and arteriovenous differentiation, were also among top pathways identified by the gene list in cluster #2\(^3^{39,40}\) (Table S4).

Interestingly, we also identified a second cluster, cluster #7, which showed enriched expression of known venous marker genes. Top marker genes for cluster #7 included glula, known to be enriched in venous cells\(^6\) (Fig. 4A,C,E and Table S1). Other known venous markers, including mre1a, stab2 and dab2, were also enriched in cluster #7\(^3^{36,42}\) (Fig. 4E and Table S1). In addition to the known venous markers, top marker genes from this cluster also included many previously uncharacterized/unknown genes, such as cx30.3 and otc (Fig. 4B,D,E and Table S1). We performed ISH to confirm if these genes were expressed in venous cells in zebrafish. Indeed, both cx30.3 and otc demonstrated expression in the PCV and the caudal vein (Fig. 4G,H). cx30.3 expression was enriched in the caudal vein, and only weak expression in the PCV was apparent. In addition, cx30.3 showed strong expression in the cranial and trunk neural crest cells, while otc showed strong expression in the lens. Highly represented GO biological processes for cluster #7 included terms such as apical protein localization, endothelial tube morphogenesis, blood vessel lumenization, and morphogenesis of an endothelium (Fig. 4F and Table S3). Enriched pathways included Insulin/IGF, Hypoxia-induced factor (HIF), PI3 kinase, and Hedgehog signaling pathways (Table S4), which have been all implicated in several stages of vascular development, including angiogenesis\(^37,47\), arteriovenous specification\(^48\), and establishing vascular integrity\(^44\).

We next asked if there was a significant biological difference between the two separate venous clusters and if they represented two distinct subsets of venous cells. To examine this, we performed fluorescent in situ hybridization for selected top markers of the two venous clusters, lyve1b (cluster #2) and glula (cluster #7), using Tg(kdr\(\times\)GFP) embryos at 24 hpf stage. There was a significant overlap between lyve1b and glula expression within the PCV in the trunk region. Intriguingly, the caudal vein (CV) displayed glula expression, while lyve1b expression was nearly absent (Fig. 4I–K). In contrast, a subset of endothelial cells within the PCV displayed strong lyve1b expression and showed very little glula expression (Fig. 4I–K), suggesting heterogeneity in the venous cell population. These results suggest that cluster #7 is enriched in the caudal vein cells. Ifc, a previously characterized marker for caudal endothelial cells\(^45\), was preferentially enriched in the cluster #7 (Table S1), supporting its annotation as the caudal vein.

We have previously reported transcriptomic profiles of arterial and venous endothelial cells identified by scRNA-seq analysis of zebrafish trunks at 30 hpf\(^46\). A substantial overlap was observed between 24 and 30 hpf datasets in both arterial and venous marker expression (Table S5). While there was only a single venous specific cluster identified at 30 hpf, its top marker genes were shared between 24 hpf Venous-1 and Venous-2 clusters, reflecting a substantial overlap between the two venous clusters and suggesting that many arterial and venous markers identified at 24 hpf continue their specific expression through later stages.

Identification of vascular endothelial cluster co-expressing both arterial and venous markers. Top marker genes for cluster #6 included cldn5b, known to be enriched in arterial vascular endothelial cells\(^6\) (Fig. 5A,C). In addition, known venous markers dab2 and lyve1b as well as pan-endothelial marker kdr\(l\) were also enriched in cluster #6\(^61,37\) (Fig. 5B,D,E and Table S1). Other top markers for cluster #6 included rab11b, cox4i2, fancl, and krt18 (krt18 had the lowest p value). Expression of these markers either has not been previously characterized or they are known to be expressed in many different cell types, including the vascular endothelium (Table S1). To identify which cells in a zebrafish embryo co-express arterial and venous markers, we performed fluorescent in situ for the arterial marker cldn5b and the venous marker dab2 in Tg(kdr\(\times\)GFP) embryos. Intriguingly, cldn5b and dab2 showed co-expression within a subset of cranial vasculature including venous primordial hindbrain channels (PHBCs) and mid cerebral vein (MCEV) at 24 and 30 hpf (Fig. 6A–F). In contrast, consistent with previous studies, expression was restricted to the DA and PCV, respectively, in the trunk vasculature and did not overlap\(^48\) (Fig. 6G–I). Other cluster #6 markers cox4i2 and krt18 also showed expression in PHBCs and MCEV (Fig. 6J,K). These results suggest that cluster #6 corresponds to a subset of cranial vasculature, which shows a distinct molecular identity from other types of vascular endothelial cells.

Highly represented GO biological processes for cluster #6 included vascular endothelial growth factor receptor, Arp2/3 complex-mediated actin nucleation, regulation of vascular permeability and endothelium development (Fig. 5F and Table S3). Enriched pathways included histamine H2 receptor signaling pathway, implicated in vasodilation in brain capillaries\(^49\), cytoskeletal regulation by Rho GTPase, implicated in vascular integrity and tubulogenesis\(^50,51\), and angiotensin II-stimulated signaling through G proteins and beta-arrestin, known to regulate vasoconstriction and blood pressure\(^52\) (Table S4).
Identification of endothelial progenitor cells (EPC). Top marker genes for cluster #14 included \textit{npas4l} and \textit{lmo2}, known to be enriched in endothelial progenitor cells\cite{33,53} (Fig. 7A,C and Table S1). Other known EPC markers, including \textit{tal1/scl} and \textit{etv2}, were also enriched in cluster #14\cite{15,54} (Fig. 7B,D,E and Table S1). Highly represented GO biological processes included actin filament-based transport, endothelial cell migration, vasculogenesis, non-canonical Wnt signaling pathway, endothelial cell differentiation, and artery development (Fig. 7F and Table S3). Interestingly, GO biological processes pertaining to lymph vessel development were also enriched. Enriched pathways included PDGF, integrin, TGF-beta and Wnt signaling pathways (Table S4). PDGF signal-
The Notch pathway has been shown to induce proliferation, migration, and angiogenesis of EPCs. Integrin signaling has been shown to be a major regulator of EPC mobilization, homing, invasion and differentiation. TGF-beta and Wnt signaling pathways have been implicated in differentiation and specification of EPCs.

To identify developmental relationship between all 5 vascular endothelial clusters, we performed developmental trajectory analysis using Monocle 3 (Fig. 7G). The trajectory analysis suggested that EPC cells transition into 3 distinct branches: an arterial and 2 venous. The two venous branches merged again, perhaps reflecting a significant overlap between the two cell populations. Venous-1 population transitioned into VE-other, which, as our results suggest, corresponds to a subset of cranial vasculature. Some VE-other cells were positioned in the vicinity of arterial population, reflecting mixed arteriovenous identity of VE-other cluster.

Figure 6. Vascular endothelial (VE)-other cluster #6 corresponds to cells in cranial vasculature. (A–F) Two color fluorescent ISH analysis for the expression of cldn5b and dab2 at the 24 hpf and 30 hpf stages. Note that cldn5b and dab2 are co-expressed in the PHBC (white arrows) and MCeV (yellow arrows) at the 24 hpf and 30 hpf stages. (G–I) Two color fluorescent ISH analysis for the expression of arterial cldn5b and venous dab2 in the trunk region of 24 hpf embryos. Note that cldn5b and dab2 have distinct non-overlapping expression in the DA (arrows) and PCV (arrowheads) respectively. (J,K) Fluorescent ISH analysis for the expression of krt18 and cox4i2 in the head region of 30 hpf embryos. Both markers are expressed in the PHBC (white arrows) and MCeV (yellow arrows). PHBC primordial hindbrain channels, MCeV mid cerebral vein, DA dorsal aorta, PCV posterior cardinal vein. Scale bars: 100 μm.
Marker genes with known endothelial specific expression pattern include pan-endothelial development. Marker genes such as *fn1a* and *fn1b* are enriched in this cluster (Table S6). Heart-specific expression has been reported for many other genes in this cluster including *id2b*, *tbx20*, *sppc3*, *ect1*, and *smad6*, although it was not investigated whether this expression was endocardial or myocardial. We previously reported the transcriptome of an endocardial cluster identified during scRNA-seq analysis of *etv2*^{52,53}; UAS:GFP embryos at the 20-somite stage (19 hpf)⁵⁴. There was a significant overlap of marker genes, such as *fn1a*, *gata5*, *id2b*, *wnt11r*, *bmp16* and *bambib* between the two endocardial clusters (Table S7). A recent study reported the zebrafish endocardial transcriptome at the 15-somite stage⁶⁶. There was an extensive overlap between our endocardial dataset and the one reported by Capon et al. (Table S7), further validating endocardial identity of the *nfatc1* + *gata5*+ cell cluster. As an additional confirmation, we analyzed expression of 3 selected markers *wnt11r*, *bmp16* and *bambib* in the heart at 24 hpf (Fig. 8E–G). To gain further insights into the signature of the endocardial cells relative to endothelial cells, we used Monocle 3 to analyze the position of endocardial cells in the trajectory plot. Majority of the endocardial *gata5* + *nfatc1*+ cells clustered within or next to the arterial cluster. However, a few endocardial cells were also present within the venous cluster (Figure S2), suggesting a unique signature and heterogeneity between endocardial and arterial cells at 24 hpf. Altogether, we have identified the transcriptomic signature of zebrafish endocardial cells and validated new zebrafish endocardium markers.

Discussion

In this study we used scRNA-seq analysis to identify transcriptomic signatures of vascular endothelial cells in zebrafish embryos at 24 hpf, at the onset of blood circulation. Our profiling of 10,818 cells identified 6 different subtypes of vascular endothelial cells which included vascular progenitor, arterial, two different venous, endocardial, and cranial endothelial subtypes. Importantly, we have validated new markers for arterial, two different venous, and endocardial populations.

Intriguingly, two different venous populations were identified during scRNA-seq analysis. The PCV is known to harbor a heterogenous cell population including progenitors of lymphatic and subintestinal vasculature^{58–79}. Many markers including *lyve1b* overlap between venous and lymphatic cells during development⁷⁹ making it difficult to distinguish between the two lineages. *Prox1a* and *Prox1b* are considered to be the definitive markers of lymphatic lineage^{80–82}. Both markers were similarly enriched in the venous-1 (cluster #2, log, values 2.85 and 3.96, respectively) and venous-2 (cluster #7, log, values 2.97 and 3.46, respectively, Table S1) clusters. Therefore, it is unlikely that either of the clusters corresponds to lymphatic progenitors. Only a small number of cells were positive for either *prox1a* or *prox1b*, and they did not cluster together, preventing us from identifying lymphatic transcriptome at this developmental stage. While subintestinal progenitors also originate from the PCV starting at 28 hpf^{58–78}, it is unclear if these cells have a unique transcriptional profile^{58–78}. Our data suggest that the venous-2 population is enriched in markers for the caudal vein. The caudal vein is known to have a unique transcriptional profile^{48,68} and also serves as the niche for hematopoietic stem cells⁶⁸. Therefore, transcriptional characterization of caudal vein endothelium will help to understand pathways involved in its development.

An identity of cluster #6 (VE-other) is the most nebulous. Many top marker genes for this cluster are poorly characterized. Marker genes with known endothelial specific expression pattern include pan-endothelial *kdrl*, arterial *cdln5b* and venous specific *lyve1b* and *dab2* (Table S1). Although the spatial and temporal origin of arteries and veins has been well established, the precise timing when arterial and venous-fated precursor cells differentiate into distinct arterial and venous vessels has been controversial^{37–49}. We have previously shown co-expression of venous and arterial genes in many arterial progenitors at the 20-somite stage in the trunk region of zebrafish embryos. However, at later stages of development (24 hpf) the expression of venous and arterial markers becomes restricted to veins and arteries, respectively⁴⁸, in the trunk vasculature. In contrast, we show here that arterial and venous genes are co-expressed in a subset of cranial vasculature including PHBC and MGeV at 24 hpf.
Figure 8. Endocardial subcluster. (A) Endocardial cells were identified based on the expression of markers genes gata5 and nfatc1 (log2 > 0). (B,C) UMAP feature plots showing expression of gata5 and nfatc1. (D) List of top 30 genes differentially expressed in the endocardial subcluster. (E-G) In situ hybridization analysis at 24 hpf for selected endocardial enriched genes wnt11r, bambib and bmp16. Note the expression of wnt11r, bambib and bmp16 within the heart tube (arrowhead). Ventral view of deyolked and flat-mounted embryos, anterior is to the left. Scale bars: 100 μm.
The development of new applications and methodologies in vascular biology is crucial for understanding the complex and dynamic processes that occur during embryonic development. We expect that this will be a useful resource for many researchers in cardiovascular development.

Endocardial cells share many similarities with vascular endothelial cells. However, they are also known to harbor a unique transcriptomic signature as evident by the expression of nfatc1. Differences in the transcriptomes between endocardial and other types of vascular endothelial cells have not been well characterized during embryonic development, and only a limited number of endocardial-specific markers are currently known in any vertebrate model system. We have previously reported a transcriptional signature of zebrafish endocardial progenitors identified during scRNA-seq analysis of etv2 reporter embryos at the 20-somite stage (19 hpf).

In addition, a recent study performed RNA-seq using an endocardial specific reporter line to describe the endocardial transcriptome at the 15-somite stage. Here we performed subclustering based on the established markers gata5 and nfactc1 to define the endocardial transcriptome at 24 hpf. A significant overlap between the endocardial marker genes at 15-somite, 20-somite and 24 hpf stages was observed which confirms the endocardial identity of gata5 + nfactc1 + cells. Multiple genes in this subcluster have been previously reported to show heart-specific expression, although most studies did not distinguish between the endocardial and myocardial expression. We further validated and demonstrated cardiac expression for 3 previously uncharacterized genes from this subcluster. Identification of the endocardial signature will be a useful resource for many investigators involved in cardiovascular research.

In summary, we identified transcriptional signatures of vascular endothelial cells during zebrafish development and described six different subtypes of endothelial-related cells at 24 hpf, when blood circulation is first initiated. This is one of the first reported scRNA- seq datasets of vascular endothelial cells during zebrafish development. We expect that this will be a useful resource for many researchers in cardiovascular development and will promote investigation of molecular mechanisms involved in the establishment of vascular heterogeneity.

Materials and methods

Zebrafish lines and maintenance. All studies were performed following standard guidelines and protocols approved by the University of South Florida and Cincinnati Children’s Hospital Medical Center Institutional Animal Care and Use Committee. Embryos were raised at 28.5 °C in embryo medium and staged by hours post fertilization (hpf)1. Zebrafish lines used in the study are as follows: wild-type AB, wild-type EKK, Tg(kdrl:GFP)8992, Tg(kdrl:mCherry)14 and Tg(etv22320G, UAS:GFP)18.

Embryo dissociation and single-cell RNA-seq. Tg(kdrl:mCherry) fish were crossed to etv2202G, UAS:GFP line. Embryos double positive for both mCherry and GFP fluorescence were selected at 24 hpf. Embryos were dechorionated and immediately transferred to a 1.5 ml Eppendorf tube placed on ice for the generation of single-cell suspension. Whole embryos were then dissociated into a single-cell suspension by cold protease tissue dissociation protocol. Cells expressing GFP only and both GFP and mCherry were sorted using a BD/FACSAria II flow cytometer cell sorter. A suspension of ~10,000 single cells was loaded onto the 10XGenomics Single Cell 3' (V3 chemistry) chip at the CCHMC Gene Expression Core. 12 cDNA amplification cycles were used to generate cDNA. Samples were sequenced on an Illumina NovaSeq 6000 instrument (Illumina, San Diego, CA) running an S2 flow cell with parameters as follows: Read1, 28 cycles; Index Read1: 8 cycles; Read 2: 91 cycles at the CCHMC DNA Sequencing core. The raw Fastq files obtained from the sequencing core were then mapped to the Danio rerio genome (version zv11) to generate single-cell feature counts using Cell Ranger version 3.0.2. Counts were performed on fastq data from each of the populations individually. Filtered matrix files were then imported into Partek Flow analysis Suite. Cells were filtered on total read per cell (477–61,000), expressed genes per cell (96–5456) and mitochondrial counts (0–10%) which resulted in 10,818 cells. The gene count CPM (counts per million) values were normalized by adding 1.0 and calculating log2 values. GFP + and GFP + mCherry + samples were combined, and an unbiased graph-based clustering was performed. Finally, UMAP plots, violin plots, scatter plots, a dot plot, and a heatmap were obtained and exported from Partek. Endocardial cluster was identified based on the expression of marker genes gata5 and nfactc1 (log2 volcano plot).
References

1. Marcelo, K. L., Goldie, L. C. & Hirschi, K. K. Regulation of endothelial cell differentiation and specification. *Circ. Res.* 112, 1272–1287. https://doi.org/10.1161/CIRCRESAHA.113.300556 (2013).

2. Matsuoka, R. I. & Stainer, D. Y. R. Recent insights into vascular development from studies in zebrafish. *Curr. Opin. Hematol.* 25, 204–211. https://doi.org/10.1097/MOH.0000000000000420 (2018).

3. Deng, Q., Ramskold, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. *Science* 343, 193–196. https://doi.org/10.1126/science.1245316 (2014).

4. Iatini, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. *Science* 343, 776–779. https://doi.org/10.1126/science.1247651 (2014).

5. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. *Cell* 180, 764–779. https://doi.org/10.1016/j.cell.2020.01.015 (2020).

6. Jakab, M. & Augustin, H. G. Understanding angiodiversity: Insights from single cell biology. *Development* https://doi.org/10.1242/dev.146621 (2020).

7. Chavkin, N. W. & Hirschi, K. K. Single cell analysis in vascular biology. *Front. Cardiovasc. Med.* 7, 42. https://doi.org/10.3389/fcmv.2020.00042 (2020).

8. Paik, D. T. et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. *Circulation* 142, 1848–1862. https://doi.org/10.1161/CIRCULATIONAHA.119.041433 (2020).

9. Augustin, H. G. & Koh, G. Y. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. *Sci. Adv.* https://doi.org/10.1126/sciadv.aaz2379 (2017).

10. Koch, P. S., Lee, K. H., Goerdt, S. & Augustin, H. G. Angiodiversity and organotypic functions of sinusoidal endothelial cells. *Angiogenesis* 24, 289–310. https://doi.org/10.1007/s10456-021-09780-y (2021).

11. Jiang, M. M. et al. Characterization of the zebrafish cell landscape at single-cell resolution. *Front. Cell Dev. Biol.* https://doi.org/10.3389/fcell.2021.743421 (2021).

12. Farmsworth, D. R., Saunders, L. M. & Miller, A. C. A single-cell transcriptome atlas for zebrafish development. *Dev. Biol.* 459, 100–108. https://doi.org/10.1016/j.ydbio.2019.11.008 (2020).

13. Liao, W. et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. *Development* 124, 381–389 (1997).

14. Proulx, K., Lu, A. & Sumanas, S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. *Dev. Biol.* 348, 34–46. https://doi.org/10.1016/j.ydbio.2010.08.036 (2010).

15. Sumanas, S. & Lin, S. Ets1-related protein is a key regulator of vasculogenesis in zebrafish. *PLoS Biol.* 4, 60–69. https://doi.org/10.1371/journal.pbio.0040010 (2006).

16. Sumanas, S. et al. Interplay among Etsp4/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation. *Blood* 111, 4500–4510. https://doi.org/10.1182/blood-2007-09-110569 (2008).

17. Lee, D. et al. ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. *Cell Stem Cell* 2, 497–507. https://doi.org/10.1016/j.stem.2008.03.008 (2008).

18. Chestnut, B. & Sumanas, S. Zebrafish etv2 knock-in line labels vascular endothelial and blood progenitor cells. *Dev. Dyn.* 249, 245–261. https://doi.org/10.1002/dvdy.130 (2020).

19. Leslie, J. D. et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. *Development* 134, 839–844. https://doi.org/10.1242/dev.003244 (2007).

20. Lawson, N. D. et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. *Development* 128, 3675–3683 (2001).

21. Zygmun, T. et al. Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. *Dev. Cell* 21, 301–314. https://doi.org/10.1016/j.devcel.2011.06.033 (2011).

22. Covassin, L. D., Villefranc, J. A., Kacergis, M. C., Weinstein, B. M. & Lawson, N. D. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. *Proc. Natl. Acad. Sci. USA* 103, 6554–6559. https://doi.org/10.1073/pnas.050686103 (2006).

23. Rehn, K., Wong, K. S., Balcunas, D. & Sumanas, S. Zebrafish enhancer trap line recapitulates embryonic aquaporin 1a expression pattern in vascular endothelial cells. *Int. J. Dev. Biol.* 55, 613–618. https://doi.org/10.3836/ijdb.19349p (2011).

24. Lawson, N. D., Vogel, A. M. & Weinstein, B. M. sonic hedgehog and vascular endothelial growth factor act upstream of the notch pathway during arterial-venous differentiation. *Dev. Biol.* 237, 127–136. https://doi.org/10.1016/S0012-1606(02)00198-3 (2002).

25. Moran, C. M., Salanga, M. C. & Krieg, P. A. Hedgehog signaling regulates size of the dorsal aorta and density of the pleura during avian vascular development. *Dev. Dyn.* 240, 1354–1364. https://doi.org/10.1002/dvdy.22660 (2011).

26. Carrier, G. O., White, R. E. & Kirby, M. L. Histamine-induced relaxation of rat aorta: Importance of H-1 receptor and vascular endothelium. *Blood Vessels* 21, 180–183 (1984).

27. Kobalika, P. & Graupera, M. Revisiting P13-kinase signalling in angiogenesis. *Vasc. Biol.* 1, H125–H134. https://doi.org/10.1530/ VB-19-0025 (2019).

28. Somanath, P. R., Malinin, N. L. & Byzova, T. V. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. *Angiogenesis* 12, 177–185. https://doi.org/10.1007/s10456-009-9141-9 (2009).

29. Schreier, B. et al. Endothelial epidermal growth factor receptor is of minor importance for vascular and renal function and obesity-induced dysfunction in mice. *Sci. Rep.* 11, 15. https://doi.org/10.1038/s41598-021-86567-3 (2021).
70. Walsh, E. C. & Stainier, D. Y. R. UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670–1673. https://doi.org/10.1126/science.293.5535.1670 (2001).
71. Vermot, J. et al. Reversing blood flow acts through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol. 7, e1000246. https://doi.org/10.1371/journal.pbio.1000246 (2009).
72. Walton, R. Z. et al. Fogl is required for cardiac looping in zebrafish. Dev. Biol. 289, 482–493. https://doi.org/10.1016/j.ydbio.2005.10.040 (2006).
73. Ikle, J. M. et al. Nkx2.5 regulates endothelin converting enzyme-1 during pharyngeal arch patterning. Genesis 55, doi: https://doi.org/10.1002/dvg.23021 (2017).
74. de Pater, E. et al. Bmp signaling exerts opposite effects on cardiac differentiation. Circ. Res. 110, 578–U179. https://doi.org/10.1161/CircRes.aha.111.261172 (2012).
75. Thisse, B. & Thisse, C. Fast Release Clones: A High Throughput Expression Analysis. ZFIN Direct Data Submission (2004).
76. Her, G. et al. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development. Development 142, 4266–4278. https://doi.org/10.1242/dev.129247 (2015).
77. Koenig, A. L. et al. Vegf signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Dev. Biol. 411, 115–127. https://doi.org/10.1016/j.ydbio.2016.01.002 (2016).
78. Nicenboim, J. et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522, 56–U100. https://doi.org/10.1038/nature14425 (2015).
79. Okuda, K. S. et al. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 139, 2381–2391. https://doi.org/10.1242/dev.077770 (2012).
80. Hogan, B. M. et al. cbcl is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41, 396–398. https://doi.org/10.1038/ng.321 (2009).
81. Lim, A. H. et al. Motoneurons are essential for vascular pathfinding. Development 138, 3847–3857. https://doi.org/10.1242/dev.068403 (2011).
82. Yaniv, K. et al. Live imaging of lymphatic development in the zebrafish. Nat. Med. 12, 711–716. https://doi.org/10.1038/nmm1427 (2006).
83. Del Gacio, L., Pistocchi, A. & Ghiardini, A. proxl1b activity is essential in zebrafish lymphangiogenesis. PLoS ONE 5, E13170. https://doi.org/10.1371/journal.pone.0013170 (2010).
84. Kashwada, T. et al. beta-catenin-dependent transcription is central to Bmp-mediated formation of venous vessels. Development 142, 497–509. https://doi.org/10.1242/dev.115576 (2015).
85. Wille, D. M. et al. Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat. Cell Biol. 13, 686–U138. https://doi.org/10.1038/ncb2332 (2011).
86. Tampion, O. J. et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160, 241–252. https://doi.org/10.1016/j.cell.2014.12.032 (2015).
87. Kohli, V. et al. Distinct Notch signaling outputs pattern the developing arterial system. Development 141, 1544–1552. https://doi.org/10.1242/dev.099986 (2014).
88. Zhong, T. P. et al. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220. https://doi.org/10.1038/35102599 (2001).
89. Castillo-Robles, J., Ramirez, L., Spaink, H. P. & Lomeli, H. smarce1 mutants have a defective endocardium and an increased expression of cardiac transcription factors in zebrafish. Sci. Rep. https://doi.org/10.1038/s41598-018-33746-8 (2018).
90. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the Zebrafish. Dev. Biol. 191, 261–308 (1997).
91. Jin, S. W. et al. beta-catenin-dependent transcription is central to Bmp-mediated formation of venous vessels. Development 142, 497–509. https://doi.org/10.1242/dev.115576 (2015).
92. Porto, A. S. & Potter, S. S. Dissociation of tissues for single-cell analysis. Methods Mol. Biol. 1926, 55–62. https://doi.org/10.1007/978-1-4939-9021-4_5 (2019).
93. Igel, A. Analysis of protein and gene expression. Method Cell Biol. 58, 63–85 (1999).
94. Choe, H. M. T. et al. Third-generation in situ hybridization chain reaction: Multiplexed, quantitative, sensitive, versatile, robust. Development https://doi.org/10.1242/dev.165753 (2018).
95. du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).

Acknowledgements

This research was supported by postdoctoral fellowship from the American Heart Association to Suman Gurung (1P01HL153005) and an award from the National Institutes of Health (R01HL153005) to Saulius Sumanas. We thank Shawn Smith and Kelly Rangel from CCHMC Gene expression core for assistance in processing samples for scRNA-seq. We would also like to thank PACS core at CCHMC for their assistance with the project.

Author contributions

S.G. performed most experiments in the study and wrote the manuscript. N.K.R, B.C. and L.K. contributed to in situ experiments. S.S. conceived and supervised the project and edited the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-17127-w.

Correspondence and requests for materials should be addressed to S.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
