Hgt1p, a High Affinity Glutathione Transporter from the Yeast Saccharomyces cerevisiae*

Received for publication, January 13, 2000, and in revised form, February 1, 2000

Andrée Bourbouloux‡‡, Puja Shahi¶¶, Abhijit Chakladar§§, Serge Delrot††, and Anand K. Bachhawat¶¶‡‡

From the ‡‡ESA CNRS 6161, Laboratoire de Physiologie et Biochimie Végétales, University of Poitiers, UFR Sciences, 40 Avenue du Recteur Pineau, 86022 Poitiers Cédex, France and the ¶¶Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036, India

A high affinity glutathione transporter has been identified, cloned, and characterized from the yeast Saccharomyces cerevisiae. This transporter, Hgt1p, represents the first high affinity glutathione transporter to be described from any system so far. The strategy for the identification involved investigating candidate glutathione transporters from the yeast genome sequence project followed by genetic and physiological investigations. This approach revealed HGT1 (open reading frame YJL212c) as encoding a high affinity glutathione transporter. Yeast strains deleted in HGT1 did not show any detectable plasma membrane glutathione transport, and hgt1Δ disruptants were non-viable in a glutathione biosynthetic mutant (gsh1Δ) background. The glutathione repressible transport activity observed in wild type cells was also absent in the hgt1Δ strains. The transporter was cloned and kinetic studies indicated that Hgt1p had a high affinity for glutathione (Km = 54 μM) and was not sensitive to competition by amino acids, dipeptides, or other tripeptides. Significant inhibition was observed, however, with oxidized glutathione and glutathione conjugates. The transporter reveals a novel class of transporters that has homologues in other yeasts and plants but with no apparent homologues in either Escherichia coli or in higher eukaryotes other than plants.

Glutathione is the most abundant non-protein thiol compound present in almost all prokaryotic and eukaryotic cells. It plays numerous roles including control of redox potential, protection against oxidative stress, detoxification of endogenous and exogenously derived toxins, protein folding, storage, and transport of organic sulfur (1, 2). In humans, several diseases and exogenously derived toxins, protein folding, storage, and transport of organic sulfur (1, 2). In humans, several diseases and exogenous milieu (8). In addition to endogenous biosynthesis, glutathione may also be taken up from the extracellular environment. Biochemical evidence for specific transporters mediating glutathione uptake has been obtained in bacteria (9), yeasts (10), plants (11), and mammalian cells (12). Despite these various reports describing glutathione transport into the cell and into the different organelles, and the importance of this process in maintaining glutathione homeostasis, no gene encoding a glutathione transporter has been cloned so far from any organism. The initial report of the cloning of the rat sinusoidal (13) and canalicular glutathione hepatic transporters (14) now appears to be artifactual as the nucleotide sequences of these genes are almost identical to Escherichia coli open reading frames, and the results could not be reproduced in other laboratories (15, 16). The mammalian multidrug resistance associated protein (MRP1) and its yeast homologue, YCF1, which belong to the ABC transporter family are able to transport glutathione out of the cytoplasm. However, they do so with very low affinity, having a Km for glutathione in the range of about 15 mM (17, 18), and their primary function is really in the efflux of glutathione conjugates.

In the present report we describe, for the first time, the identification, cloning, and characterization of a high affinity plasma membrane transporter mediating glutathione uptake in the yeast Saccharomyces cerevisiae. This identification reveals a novel family of transport proteins that have homologues in other yeasts and plants, but no homologues as yet discovered in either prokaryotes or other higher eukaryotes.

EXPERIMENTAL PROCEDURES

Chemicals and Reagents—All chemicals used were of analytical reagent grade. Media components were either purchased from Hi Media (India), from Sigma or from Difco. Bacteriological agar used in France was from Biokar Diagnostics, Beauvais (France). Vent DNA polymerase was from New England Biolabs while Taq Polymerase was from Promega. Oligonucleotides were purchased from Ransom Hill Biosciences and Gemini Biotech. Radioactivity was from NEN Life Science Products.

Yeast Strains and Growth—The list of yeast strains used in this study is shown in Table I. Yeasts were routinely maintained on YPD medium. The minimal medium contained YNB, glucose, and ammonium sulfate supplemented with the required amino acids and bases. Glutathione was added wherever necessary at concentrations of 250 μM. Sulfur-limited medium was made by substituting ammonium sulfate with ammonium chloride. Sporulation plates were prepared as described by Kaiser et al. (19).

Yeast DNA Isolation and Yeast Transformation—Yeast chromosomal DNA was isolated by the glass bead lysis method and yeast transformations were carried out using the lithium acetate method (19).

This paper is available on line at http://www.jbc.org

* This work was supported by the Department of Science and Technology, Government of India, the Council of Scientific and Industrial Research (India), and the Center National de la Recherche Scientifique (France). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1754 solely to indicate this fact.

§ Contributed equally to the results of this article.

¶¶ Junior Research Fellow of the Council of Scientific and Industrial Research, India.

** Present address: MGH Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129.

‡‡ To whom correspondence should be addressed. Tel.: 91-172-690908; Fax: 91-172-690585 or 91-172-690632; E-mail: abachhawat@excite.com.
Cloning of HGT1—HGT1 was cloned by PCR. The following primers were used for amplifying HGT1 from chromosomal DNA of a wild type strain (YPH499); YJL-Bam, 5'-CCGCGAATTCTAGTATCCACCATCATTATCATAACC-3' and YJL-Eco, 5'-CAGGAGCTTGAGTGGATCCCATCATTATCATAACC-3'. The 2.4-kilobase PCR product obtained was digested with EcoRI and BamHI and cloned into a single copy, URA3-based yeast expression vector downstream of the TEF promoter (20).

Tetrad Analysis—To check the viability of gsh1Δ and ght1Δ double deletants, a diploid heterozygous for both markers was constructed by crossing ABC689 (gsh1Δ::LEU2) with ABC822 (ght1Δ::LEU2). The diploid was sporulated on minimal sporulation plates (19) and tetrads were dissected. The spores were dropped on either YPD or YPD supplemented with excess glutathione (1 mM). After initial patching on YPD plates, spores were replica plated on SD minus uracile, minus GSH, and minus tryptophane plates.

Disruptions in BY 4741 were then constructed using a GSH1::LEU2 plasmid (24). Disruptions were carried out sequentially. Disruptions in GSH1 were constructed in an BYP 499 background. The double and triple disruptions were carried out sequentially. Disruptions in GSH1 were constructed using a GSH1::LEU2 plasmid (24).

Transport Experiments—Cells were grown on minimal liquid medium YNB complemented with ammonium sulfate and 2% glucose. When several strains differing in auxotrophy were compared, the substrates required by the most deleted yeast were added to the growth medium of all strains. Cells were incubated at 28 °C for growth for 12 h, rotary shaken at 200 rpm. The cells were harvested at A600 0.6, washed twice with the same volume of cold water. The filter was dried at 40°C for 1 h, and kept on ice.

A High Affinity Glutathione Transporter

Protein content was measured by the method of Lowry et al. (26) using bovine serum albumin as a control.

RESULTS

The Yeast Plasma Membrane Peptide Transporter, Ptr2p, Is Unable to Transport Glutathione—S. cerevisiae has been reported to have a single peptide transporter, Ptr2p, that can transport dipeptides and tripeptides (27). Due to the wide substrate specificity reported for this transporter, the possibility that Ptr2p might be the transporter for the tripeptide glu-
Glutathione was initially examined. Yeast strains defective in glutathione biosynthesis (gsh1Δ) depend on exogenous glutathione for growth (28, 29). Should Pdr2p be the transporter mediating glutathione uptake, then ptr2Δgsh1Δ spores would not be viable. Tetrad dissections of diploids heterozygous for ptr2Δ and gshΔ1 were carried out. However, among the several tetrads that were dissected, all 4 spores were viable and several ptr2Δ gshΔ1 spores were isolated that did not appear to have any visible growth defect. This suggested that even if Pdr2p mediated glutathione transport, it was not the sole transporter. Potential glutathione transport activity of Pdr2p was determined by comparing glutathione uptake in a wild type and ptr2Δ strains. The data clearly indicate that Pdr2p does not mediate GSH transport (data not shown).

HGT1 Encodes a Yeast Plasma Membrane Glutathione Transporter—Studies with the yeast Candida albicans earlier have revealed a new peptide transporter family that was able to transport tetra- and pentapeptides (30). The gene OPT1 has homologues in Schizosaccharomyces pombe (isp4Δ) and S. cerevisiae (open reading frame YJL212c and YPR194c). Disruption of YPR194c in S. cerevisiae did not cause any difference in sensitivity to toxic oligopeptides. Overexpression revealed a very mild phenotype. However, no phenotype was found after either disruption or overexpression of YJL212c (31). A possible role of these proteins in glutathione transport was tested. Strains disrupted in both YJL212c and YPR194c genes were constructed. When the double disrupted strains were examined for transport activity, virtually no GSH transport could be observed (Fig. 1). Examination of the transport capacity of single disruptants showed a total lack of transport in the yj1212Δ strain, whereas the ypr194Δ strain took up GSH at the same rate as the wild type (Fig. 1). The transport activity of the triple disruptant of yj1212Δ ypr194Δ ptr2Δ was comparable to the transport activity of yj1212Δ single disruptants (Fig. 1). Altogether, the data strongly suggest that the protein encoded by YJL212c (from now on referred to as HGT1, high affinity glutathione transporter 1) is probably the glutathione transporter in the plasma membrane of these cells. To further confirm the function of HGT1, the transport activity of hgt1Δ disruptants complemented by the HGT1 gene was studied. The HGT1 gene was cloned and expressed in a single copy expression vector downstream of the TEF promoter. Transformation of the hgt1Δ disruptants with this construct restored GSH transport (data not shown), which definitively established that Hgt1p is a glutathione transporter. The deduced amino acid sequence indicates that HGT1 gene encodes a 799-amino acid polypeptide with a predicted molecular mass of 91627 Da and a pI of 9.00. Analysis of the hydropathy profile (32) suggests the presence of 12–14 putative transmembrane domains (31), which is typical for many transporter proteins. The N and C termini are hydrophilic, and the N terminus is particularly long, with a stretch of about 100 amino acids (Fig. 2).

Functional Characterization of Hgt1p—Transport activity of HGT1 was further characterized with the wild type as well as with the hgt1ΔTEF-HGT1 strain. pH dependence studies indicated that the initial rate of GSH uptake into the wild type and hgt1ΔTEF-HGT1 strain was maximal between pH 5.0 and 5.5 (data not shown). Further studies were run at pH 5.5. Hardly any transport activity was detected at 4 °C, indicating that uptake was an active process (Fig. 3). The transport of GSH was also significantly inhibited by the protonophore CCCP (Fig. 3), suggesting that transport activity depended on the transmembrane pH gradient. Kinetic studies yielded a K_m of 53.9 ± 5.5 μM (mean of four measurements) and a V_{max} of 10.0 ± 0.6 nmol of GSH·mg protein$^{-1}$·min$^{-1}$ (Fig. 4). Substrate specificity was studied by measuring uptake of labeled GSH in the presence of a 100-fold excess of various unlabeled potential competitors. A 100-fold excess of unlabeled GSH was used as a control to compare the different potential competitors. Amino acids like L-Pro, Gly, and L-Glu had little effect on GSH transport (Fig. 3). In addition, the hgt1Δ strain was able to transport L-Pro at rates similar to the wild type strain (data not shown), which suggests that amino acid transport is not the primary function of Hgt1p. Marginal inhibition was observed with both L- and D-Cys, as well as with glutamine. Various di- or tripeptides such as Gly-Gly, Gly-Gly-Gly, and Gly-Glu as well as the dipeptides γ-Glu-Cys and Cys-Glu were poor inhibitors (Fig. 3). In contrast, oxidized glutathione (GSSG) and the glutathione conjugate GS-NEU were almost as inhibitory as GSH itself. Because the synthesis of the GS-NEU conjugate requires the use of small amounts of DTT to neutralize excess NEM, additional controls were run to test the effects of DTT on the uptake of GSH in the presence and absence of GS-NEU. These controls showed that DTT does not affect the results, and therefore that GS-NEU does indeed inhibit GSH uptake (Fig. 3). That glutathione S-conjugates may be transported by Hgt1p was further checked by uptake studies with labeled GS-NEU (Fig. 5). Labeled GS-NEU could indeed be taken up by the hgt1ΔTEF-HGT1 strain, but not by the hgt1Δ mutant, which clearly shows that Hgt1p transports both GSH as well as GS conjugates.

Hgt1p Is the Primary Glutathione Transporter in the Plasma Membrane of S. cerevisiae—Although virtually no GSH transport was observed in strains disrupted solely in HGT1, the gene has been predicted to belong to an oligopeptide permease transporter family (31). The presence of other glutathione transporters that would be induced under some conditions, therefore, could not be ruled out. This possibility was also suggested by an earlier report characterizing glutathione transport in S. cerevisiae, which concerned strains defective in sulfur metabolism (10). This report indicated the existence of two saturable glutathione uptake systems with K_m values of 0.45 μM and 2 mM, respectively. The low affinity system was due to the activity of a constitutive transporter, and the high affinity system corresponded to a sulfur repressible transporter. The high affinity transport activity was inducible and maximally induced by the absence of sulfur in the medium. The transport activity of the wild type and of hgt1Δ strains cultivated in the presence or absence of sulfur, as well as in the presence or absence of glutathione was studied. The data (Fig. 6) clearly indicated...
that the absence of glutathione was a strong inducer (or derepressor) of GSH transport activity in the wild type strain, whereas sulfur deficiency per se had no effect. The specific repression of the transport activity by glutathione argues strongly for Hgt1p being primarily a glutathione transporter.

The possible existence of other glutathione transporters was also examined by a genetic approach. A diploid heterozygous for hgt1Δ and gsh1Δ was constructed. The hgt1Δ/HGT1 gsh1Δ/GSH1 diploid was sporulated and dissected. Among 15 analyzed tetrads, one was 4-spore, 8 were 3-spore, and 6 were 2-spore. The presence of a wild type or of a disrupted HGT1 gene was confirmed by PCR. All the gsh1Δ spores were subsequently analyzed to see if any of the gsh1Δ spores carried the hgt1Δ disrupted gene. This analysis was done by PCR since both gsh1Δ and the hgt1Δ deletions were marked by the LEU2 marker. All the gsh1Δ spores were analyzed and none of the gsh1Δ spores were found to carry the hgt1Δ disrupted gene. Furthermore, the missing spores in the 2-spore and 3-spore tetrad corresponded to the gsh1Δ hgt1Δ double deletes. No spore appeared even after prolonged incubation of the plates. Tetrad dissections were also carried out by dropping the spores on media containing higher (1 mM) concentrations of glutathione to determine if there may still be a low affinity transporter. Again, no gsh1Δ hgt1Δ spore could be isolated under these conditions. The non-viability of the gsh1Δ hgt1Δ spores further confirmed that the HGT1 gene encoded the primary glutathione transporter in the plasma membrane of this yeast. Yeast strains bearing a deletion in the MET15 (MET17) gene are unable to utilize inorganic sources of sulfur for growth but can use organic sulfur sources such as methionine, cysteine, and glutathione (10, 33). We therefore constructed a met15Δ hgt1Δ double deletion and examined its growth on different sources of organic sulfur. These strains could grow on methionine as a source of organic sulfur but were specifically unable to utilize glutathione as a source of organic sulfur (Fig. 7). The results
from two independent experiments.

TEF-HGT1 (Δ) strains were incubated in 0.1 mM [3H]GS-NEM for 12 h, and the initial rate of GSH uptake was then calculated by ammonium chloride; GSH uptake was also measured in hgt1Δ, TEF-HGT1 (Δ) yeasts from a 0.1 mM solution. Each point is the mean ± S.E. of four samples.

Fig. 5. Hgt1p-mediated uptake of [3H]glutathione-N-ethylmaleimide conjugate (GS-NEM). hgt1Δ (○), hgt1Δ, TEF (□), and hgt1Δ, TEF-HGT1 (■) strains were incubated in 0.1 mM [3H]GS-NEM for various times. To ensure the total elimination of GSH in the GS-NEM solution, NEM was added in excess before conjugation and afterward neutralized with DTT (final concentration of 5 μM). Competitive inhibition of GS-NEM uptake was carried out with added GSH at a final concentration of 1 mM (△). For comparison, GSH uptake was also measured in hgt1Δ, TEF-HGT1 (●) yeasts from a 0.1 mM solution. Each point is the mean ± S.E. of four samples.

Fig. 6. Inductibility of GSH uptake. Various yeasts (hgt1Δ, hgt1Δ, TEF, hgt1Δ, TEF-HGT1; wild type YPH499) were grown either in minimum medium YNB supplemented with amino acids/bases (+ sulfur), or in sulfur-limited medium (minimum medium YNB supplemented with amino acids/bases where ammonium sulfate was replaced by ammonium chloride; − sulfur) for 12 h. Each set was separately grown in its respective medium supplemented (+ 250 μM GSH) or not (− GSH) for about 12 h till A600nm = 0.6. GSH uptake time course was run as described earlier. The initial rate of GSH uptake was then calculated from the time course data. Results are the mean ± S.E. of 8 samples from two independent experiments.

are in agreement with the function of Hgt1p being described as a glutathione transporter, and are also in agreement with Hgt1p being the primary glutathione transporter in the plasma membrane of this yeast.

Homologues of Hgt1p in Other Organisms—Data base searches for Hgt1p homologues in other organisms using different BLAST/BLAST-PSI programs (34, 35) yielded several homologues in yeasts and plants. The proteins displayed between 38 and 51% identity and between 57 and 68% similarity over the entire stretch to Hgt1p. The genome of the yeast C. albicans contains a single homologue identified so far, Opt1p, while three homologues were found in S. pombe (Isp4p and accession numbers AL023590.1 and Z99164.1) (Fig. 8). The Isp4p and Opt1p proteins have been putatively identified as oligopeptide permeases in these yeasts (31), but in the light of our findings and the close homology to Hgt1p, it is possible that their primary function may be as glutathione transporters. The genome of S. cerevisiae also contains an homologue to Hgt1p (Ypr194cp). Although the function of Ypr194cp is unclear, studies with strains carrying a deletion in YPR194c did not contribute in any way to plasma membrane glutathione transport (Fig. 1). One possibility is that it might be localized to a different organelle. Several homologues were also found in plants (Arabidopsis thaliana) and ESTs in cotton and in Neurospora crassa. Surprisingly, no homologue was found in either E. coli or any other prokaryote or in any other multicellular eukaryotes other than plants. A BLAST search using different domains of this protein also failed to pick up any homologue in systems apart from plants and yeasts.

DISCUSSION

The present paper describes the cloning and characterization of Hgt1p, a high affinity plasma membrane glutathione transporter from the yeast S. cerevisiae. Hgt1p is the first high affinity glutathione transporter described from any system so far. The strategy employed involved the identification of candidate glutathione transporters from the yeast genome sequence, followed by a combination of genetic and physiological (growth properties, uptake studies) approaches. Evidence that HGT1 encodes a glutathione transporter was obtained by loss of GSH transport activity upon gene disruption, and by restoration of transport activity by complementation of a hgt1Δ mutant with a plasmid bearing the HGT1 gene. Several lines of evidence suggest that glutathione uptake is the primary function of the protein encoded by HGT1. The HGT1 product mediates a specific uptake of GSH, GSSG, and GS-NEM. Neither an excess of L-amino acids nor various di- and tripeptides affects this uptake to any significant extent, and the hgt1Δ strain takes up amino acids such as proline at a normal rate. Derepression of GSH transport activity by glutathione deficiency is a further indication that Hgt1p is primarily a glutathione transporter and not a nonspecific oligopeptide permease as it was thought previously (31). Although Hgt1p clearly functions at the plasma membrane, the possibility that it might also be localized to a different membrane has not been examined.

The 40% inhibition by CCCP was similar to the CCCP inhibition levels seen in proton-coupled glutathione transport observed in plant protoplasts (11). Inhibition by CCCP is never complete in proton-coupled systems, because there is a residual passive electrical component of the proton-motive force, even if the pH gradient would be completely collapsed.

Hgt1p represents a novel class of transporter proteins. Sequence analysis revealed virtually no homology of the Hgt1p
with the glutathione-conjugate pumps, YCF1 or MRP, that are able to mediate transport of glutathione with low affinity (17, 18). Hgt1p also appeared to be distinct from the yeast peptide transporters, Ptr2p, as well as other amino acid, dicarboxylic acid, and tricarboxylic transporters. Our attempts to identify other secondary plasma membrane glutathione transporters in *S. cerevisiae* were unsuccessful. The *hgt1Δ* strain did not display any detectable glutathione uptake activity, and transport activity in this strain could not be induced by deficiency of glutathione or other sulfur compounds. Furthermore, double mutants in *hgt1Δ* and *gsh1Δ* were non-viable and could not be rescued even in the presence of high glutathione concentrations. Ptr2p which displays a wide substrate specificity to number of di- and tripeptides was also completely unable to mediate uptake of external glutathione. Even if a second glutathione transporter exists, its contribution to glutathione uptake must, for these reasons, be considered very minimal.

The *S. cerevisiae* genome contains a close homologue of Hgt1p, Ypr194cp, but disruption of this gene did not affect glutathione uptake to any discernable extent. In addition, the lethality of the *hgt1Δ gsh1Δ* spores and the inability of *hgt1Δ met15Δ* spores to grow on glutathione further suggest that Ypr194cp makes no significant contribution to plasma membrane glutathione uptake. Overexpression of Ypr194cp, but not Hgt1p, results in mild toxicity of certain tetra- and pentapeptides (31). Therefore, either YPR194c indeed encodes an oligopeptide transporter protein that is very closely related to HGT1, or, more likely, it encodes a glutathione transporter localized into a different organelle.

The *S. pombe* *Isp4p* gene is a close homologue of Hgt1p (38% identity and 57% similarity over the entire stretch). This gene was initially identified as a gene induced during sporulation (37) and its product displays oligopeptide transport activity for tetra- and pentapeptides (31).

FIG. 8. Multiple sequence alignment of the different yeast and plant homologues of Hgt1p. The alignment indicates the more conserved regions and the amino acid residues that display complete identity among all 10 proteins of the family. The alignment was carried out using Clustal W with default parameters (39). A.th-1, accession number AAC35527; A.th-2, accession number AC000132; A.th-3, accession number S45495; A.th-4, accession number, z97341; A.th-5, accession number Al03062; *S. pombe*, accession number Al023590.1; *S.pombe* accession number Z99164.1.
norhabditis elegans for which the complete genome sequence is now available. However, extensive studies have been carried out on glutathione transport in mammalian liver cells, where glutathione plays a particularly important role. In these cells, the transporters have a much lower affinity for glutathione ($K_m = 0.3 \text{ mM}$; Ref. 8) than that measured for Hgt1p. However, other studies with human small intestinal epithelial cells (12) have indicated the presence of high affinity glutathione transporters ($K_m = 90 \mu \text{M}$), an affinity comparable to that of Hgt1p. Therefore, high affinity glutathione transporters for glutathione also probably exist in mammalian systems, but they have yet to be identified. It is also possible that there may be a second class of glutathione transporters in these systems. If indeed glutathione uptake is mediated by different proteins in plants and animals, then the plant protein, easily accessible from the free space, and absent in animals would be a good target for herbicides not toxic to animals. The description of HGT1 and the existence of several yeast and plant homologues should greatly facilitate the cloning, analysis, and our understanding of these transporters.

Acknowledgment—We thank Dr. J. M. Berjault (University of Poitiers) for help in mass spectrometry analysis.

REFERENCES

1. Meister, A., and Anderson, M. E. (1983) Annu. Rev. Biochem. 52, 711–760
2. May, M. J., Vernoux, T., Leaver, T., Van Montagu, M., and Inze, D. (1998) J. Exp. Bot. 49, 649–667
3. Smith, C. V., Jones, D. P., Guenther, T. M., Lash, L. H., and Lauterburg, B. H. (1996) Toxicol. Pharmacol. 140, 1–12
4. Herzenberg, L. A., De Rosa, S. C., Dubs, J. G., Roederer, M., Anderson, M. T., Ela, S. W., Berdowski, S. C., and Herzenberg, L. A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 1967–1972
5. Hwang, C., Sinskey, A. J., and Lodish, H. F. (1992) Science 257, 1496–1502
6. Banhegyi, G., Losini, L., Psakas, F., Rossi, R., Fulco, E. D., Brown, L., Miles, C., di Simplicio, P., Mandl, J., and Benedetti, A. (1999) J. Biol. Chem. 274, 12213–12216
7. Garcia-Ruiz, C., Morales, A., Colle, A., Rodes, J., Yi, J. R., Kaplowitz, N., and Fernandez-Checa, J. C. (1995) J. Biol. Chem. 270, 15946–15949
8. Ballatori, N., and Dutczak, W. J. (1994) J. Biol. Chem. 269, 19731–19737
9. Sherrill, C., and Falhey, R. C. (1998) J. Bacteriol. 180, 1454–1459
10. Miyake, T., Hazu, T., Yoshida, S., Kanayama, M., Tomochika, K., Shinoda, S., and Ono, B. (1998) Bioosci. Biotech. Biochem. 62, 1858–1864
11. Jamai, A., Tommasini, R., Martinova, E., and Delrot, S. (1996) Plant Physiol. 111, 1145–1152
12. Iacovoni, T., Ravelli, F., Marrani, P., Magaldi, T., Bruni, P., and Vincenzini, M. T. (1997) Biochem. Biophys. Acta 1330, 274–283
13. Yi, J-R., Lu, S., Fernandez-Checa, J., and Kaplowitz, N. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1495–1499
14. Lu, S.-C., Sun, W.-M., Yi, J., Okahtens, M., Szn, G., and Kaplowitz, N. (1996) J. Clin. Invest. 97, 1488–1496
15. Lee, T. K., Li, L., and Ballatori, N. (1997) Yale J. Biol. Med. 70, 287–300
16. Li, L., Lee, T. K., and Ballatori, N. (1997) Yale J. Biol. Med. 70, 301–310
17. Rappa, G., Loria, A., Flavel, B. A., and Santorelli, A. C. (1997) Cancer Res. 57, 5237–5237
18. Rebbeor, J. F., Connolly, G. C., Dumont, M. E., and Ballatori, N. (1998) J. Biol. Chem. 273, 33439–33454
19. Kaiser, C., Michaelis, S., and Mitchell, A. (1994) Methods in Yeast Genetics: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY
20. Mumberg, D., Muller, R., and Funk, M. (1995) Gene (Amst.) 156, 119–122
21. Baufin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Collin, C. (1993) Nucleic Acids Res. 21, 3329–3330
22. Brachmann, C. B., Davies, A., Cost, G. C., Caputo, E., Li, J., Hieter, P., and Boeke, J. (1998) Yeast 14, 115–132
23. Wach, A., Brachat, A., Pohlmann, R., and Philipp, P. (1994) Yeast 10, 1793–1803
24. Liskowsky, T. (1993)Curr. Gen. 23, 408–413
25. Martinova, E., Grill, E., Tommasini, R., Kreuz, K., and Amrhein, N. (1993) Nature 364, 247–249
26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193, 265–276
27. Perry, J. R., Basrai, M. A., Steiner, H.-Y., Naider, F., Becker, J. M. (1998) Mol. Microbiol. 14, 104–115
28. Chaudhuri, B., Ingavale, S., and Bachhawat, A. K. (1997) Genetics 145, 75–83
29. Wu, A. L., and Moye-Rowley, W. S. (1994) Mol. Cell. Biol. 14, 5832–5839
30. Lubkowitz, M. A., Hauser, L., Breslav, M., Naider, F., and Becker, J. M. (1997) Microbiology 143, 385–396
31. Lubkowitz, M. A., Barnes, D., Breslav, M., Burchfield, A., Naider, F., and Becker, J. M. (1998) Mol. Microbiol. 28, 729–741
32. Kyte, J., and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105–132
33. Thomas, D., Barrey, R., Henry, D., and Surdin-Kerjan, Y. (1992) J. Gen. Microbiol. 138, 2021–2028
34. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) J. Mol. Biol. 215, 403–410
35. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, Z., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Nucleic Acids Res. 25, 3389–3402
36. Delettre, in proof
37. Sato, S., Suzuki, H., Widyastuti, U., Hotta, Y., and Tabata, S. (1994)Curr. Genet. 26, 31–37
38. Ohtake, Y., Satou, A., and Yabuuchi, S. (1990) Agric. Biol. Chem. 54, 3145–3150
39. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673–4680
Hgt1p, a High Affinity Glutathione Transporter from the Yeast *Saccharomyces cerevisiae*

Andrée Bourbouloux, Puja Shahi, Abhijit Chakladar, Serge Delrot and Anand K. Bachhawat

J. Biol. Chem. 2000, 275:13259-13265.
doi: 10.1074/jbc.275.18.13259

Access the most updated version of this article at http://www.jbc.org/content/275/18/13259

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 37 references, 14 of which can be accessed free at http://www.jbc.org/content/275/18/13259.full.html#ref-list-1