Original Article

The Importance of Targeted Next-Generation Sequencing Usage in Cytogenetically Normal Myeloid Malignancies

Emine Ikbal Atli, Hakan Gurkan, Engin Atli, Hakki Onur Kirkizlar, Sinem Yalcintepe, Selma Demir, Ufuk Demirci, Damla Eker, Cisem Mail, Rasime Kalkan, and Ahmet Muzaffer Demir.

1 Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey.
2 Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey.
3 Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, Cyprus.

Competing interests: The authors declare no conflict of Interest.

Abstract. Advanced diagnostic methods give an advantage for the identification of abnormalities in myeloid malignancies. Various researchers have shown the potential importance of genetic tests before the disease's onset and in remission. Large testing panels prevent false-negative results in myeloid malignancies. However, the critical question is how the results of conventional cytogenetic and molecular cytogenetic techniques can be merged with NGS technologies. In this paper, we drew an algorithm for the evaluation of myeloid malignancies. To evaluate genetic abnormalities, we performed cytogenetics, molecular cytogenetics, and NGS testing in myeloid malignancies. In this study, we analyzed 100 patients admitted to the Medical Genetics Laboratory with different myeloid malignancies. We highlighted the possible diagnostic algorithm for cytogenetically normal cases. We applied NGS 141 gene panel for cytogenetically normal patients, and we detected two or more pathogenic variations in 61 out of 100 patients (61%). NGS's pathogenic variation detection rate varies in disease groups: they were present in 85% of A.M.L. and 23% of M.D.S. Here, we identified 24 novel variations out of total pathogenic variations in myeloid malignancies. A total of 18 novel variations were identified in A.M.L., and 6 novel variations were identified in M.D.S. Despite long turnaround times, conventional techniques are still a golden standard for myeloid malignancies but sometimes cryptic gene fusions or complex abnormalities cannot be easily identified by conventional techniques. In these conditions, advanced technologies like NGS are highly recommended.

Keywords: Hematologic malignancies; NGS; Karyotype; FISH.

Citation: Atli E.I., Gurkan H., Atli E., Kirkizlar H.O., Yalcintepe S., Demir S., Demirci U., Eker D., Mail C., Kalkan R., Demir A.M. The importance of targeted next-generation sequencing usage in cytogenetically normal myeloid malignancies. Mediterr J Hematol Infect Dis 2021, 13(1): e2021013, DOI: http://dx.doi.org/10.4084/MJHID.2021.013

Published: January 1, 2021 Received: October 1, 2020 Accepted: December 13, 2020

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correspondence to: Emine Ikbal Atli, Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Balkan Campus, Highway D100, Turkey. Tel.: 0(284) 235-76-41/2330 Postal code: 22030. E-mail: emine.ikbal@gmail.com

Introduction. Myeloid malignancies originate from hematopoietic progenitor cells and are characterized by defective differentiation of myeloid progenitor cells. Advanced molecular detection techniques have changed the diagnostic algorithm of cancer. Increased next-generation sequencing (NGS) usage can help change the scope, timing, and suitability of genetic testing in hematologic malignancies. Despite the advances in NGS technology and the rising number of study findings that support the diagnostic and prognostic usage of mutational profiling in myeloproliferative neoplasms (M.P.N.), the clinical decision-making role is still not
fully utilized. Diagnostics algorithms of acute myeloid leukemia (A.M.L.), myelodysplastic syndromes (M.D.S.), and myeloproliferative neoplasms (M.P.N.) have evolved in recent years. Due to NGS technology advances, various myeloid NGS panels are commercially available and generally analyze 25–50 genes classified into several functional categories including the splicing machinery, epigenetic modifiers, and transcription factors signaling molecules and chromatin modifiers. The increased knowledge of genetic abnormalities has led to a reclassification of Acute Myeloid Leukaemia (A.M.L.). The World Health Organization and European LeukemiaNet added new subgroups of diseases, and molecular genetic abnormalities have also been added in diagnostic criteria. An increased number of mutational, epigenetic, and expression studies will help identify the novel markers in myeloid malignancies.

National Comprehensive Cancer Network (NCCN) has added mutations in FLT3, NPM1, CEBPA, and K.I.T. genes to evaluate risk, moreover, the ELN guidelines suggest to add TP53, RUNX1, and ASXL1 mutations in the evaluation of risk. According to some studies, SF3B1, IDH1, and IDH2 should also be included. NGS based myeloid gene panels will help for the identification of multiple recurrent somatic mutations in many A.M.L. patients, and additional molecular genetic mutations can be detected in most cases, even within defined A.M.L. entities. In myelodysplastic syndrome (M.D.S.), NGS allows detecting molecular mutations in approximately 90% of patients. As a result, NGS data should be interpreted in the context of other laboratory findings, including cyt morphology, histopathology, immune-phenotyping, conventional molecular genetics, cytogenetics, and clinical diagnostic parameters. In this study, we analyzed 100 patients.

Materials and Methods.

Patient samples. The present study included 100 patients (52 were male, and 38 were female) from December 2017 to August 2020. Written informed consent was obtained from all cases. If patients are under 18 (5 children (≤15 years)), a consent form was signed by a parent and/or legal guardian. The study was approved by the Ethics Committee of our university and conducted following the ethical principles established in the Declaration of Helsinki. The median age of cases was 54 years, ranging from 1 to 90 years, and there were five children (≤15years) in 100 adults. The distribution of patients was shown in Table 2. Our cohort consists of 100 patients diagnosed with A.M.L. (61) and M.D.S. (39). D.N.A. was isolated from bone marrow (QiAamp D.N.A. Blood Mini Kit (bone marrow = 100) (Qiagen, Germany) and peripheral blood (MagNA Pure system Roche Diagnostics). D.N.A. was quantified using a Qubit fluorometer (Thermo Fisher Scientific). The patients who have normal karyotype and fluorescence in situ hybridization (FISH) report were enrolled in this study. Patients enrolled in this study were newly diagnosed. Therefore the treatment protocols were not determined yet.

Next-generation sequencing. For evaluating myeloid neoplasm specific 141 genes, the Human Myeloid Neoplasms QIAseq Targeted D.N.A. Panel (Qiagen, Germany) was used. This panel covers exon/intron boundaries shown in Figure 1 and covered genes as listed in Table 1. MiSeq sequencing-by synthesis

| Table 1. The list of covered genes and related diseases in NGS panel. |
|-------------------|------------------|
| **Disease** | **Genes covered** |
| Acute myeloid leukaemia (AML) | ANKRD26, ASXL1, ATM, BCOR, BCR1, BRC3, BRAF, C17orf97, CALR, CARD11, CBLC, CNDK2A, CEBPA, CHEK2, CREBBP, CSF1R, CSF3R, CTCF, DAXX, DDX41, DNMD, DMT1, ELANCE, EP300, FLT2, FLT3, GATA1, GATA2, HRNPK, IDH1, IDH2, IKZF1, IL1R, JAK1, JAK3, KDM6A, KDR, KIT(CD17), KMT2A, KMT2C, KRAS, LRRRC4, MAP2K1, MPL, MSH6, MYC, NBN, NOTCH1, NPM1, NRAS, NSD1, NTRK3, OR13H1, ORSBI2, P2RY2, PCDHB1, PDGFRα, PHF6, PRAME2, PRPF8, PTEN, PTPN11, RAD21, RUNX1 (AML1), SF1, SF3A1, SMARCBI, SMCA1 (SMC1L1), SMCD, SRP72, SRSF2, STAG2, STXBP2, U2AF1, U2AF2, WT1 |
| Myelodysplastic syndromes (MDS) | ATRX, CALR, CNDK2A, CEBPA, CSF1R, CSF3R, EP300, ETN1K1, GNAS, HRAS, KDM6A, KMT2A, KMT2C, RAD21, RBL1, SETBP1, SF1, SF3A1, SMCD, SRSF2, STAG2, U2AF1, U2AF2, XOPI, ZRSR2 |
| Myeloid malignancies | CB2L, CBLB, DMT3A, EED, ETV6, EZH2, PRP4B5B, SUZ12, TET2, TP53 |
| Myeloproliferative neoplasm (MPN) | ABL1, ASXL1, CALR, CSF1R, JAK2, JAK3, KAT6A (MYST3), KRAS, MPL, NF1, NRAS, RBL1, SETBP1, SF3B1, SI2B3, SRSF2, STAG2 |
| Myelofibrosis (MF) | CALR, CHEK2, IDH1, IDH2, CSF1R, SRSF2 |
| Other myeloid neoplasms | Braf, CNDK2A, CEBPA, FBXW7, HRAS, IKZF3, KLHC5C8B, KMT2C, MSH6, NTRK3, PTEN, SRSF2, TPMT |
| Other myeloid neoplasms genes | BRCA1, BRCA2, BRNIP3, CUX1, FAM47A, FAS, KCNK13, MYD88, PML, PRF1, SAXO2, STAT3, TERC, TNFRSF13B |

www.mjhid.org Mediterr J Hematol Infect Dis 2021; 13; e2021013
Table 2. WHO classification of our cohort and results of genetic analysis.

WHO classification	n	Detected pathogenic variant	Detected likely pathogenic variant	Detected VOUS	FISH	Karyotype
Acute myeloid leukemia (AML)	61	52	18	25	N	N
Myelodysplastic syndrome (MDS)	39	9	6	14	N	N
Total	100	61	24	39	N	N

Figure 1. Mechanism of unique molecular indices (U.M.I.s).

benchtop sequencer was used for sequencing of amplified targets according to the manufacturer's protocol for paired-end sequencing (Illumina, San Diego, CA, U.S.A.). Data analysis and quality assessment for calling of single-nucleotide variants and analysis of short insertions and deletions were evaluated using Ingenuity Variant Analysis (I.V.A.) program. Amplicons were noted as a dropout and excluded from analysis if the coverage at any analyzed position in any of the two paired-end sequences (minimal coverage) was 100x, with allele frequency >5% were included for subsequent investigation. Libraries covering the target genes were prepared according to the QIAseq Targeted D.N.A. Panel protocol (Qiagen, Hilden, Germany). Following the target enrichment process, libraries were sequenced on the MiSeq System and NextSeq 550 System (Illumina, San Diego, CA, U.S.A.). O.C.I. analysis (Qiagen, Hilden, Germany) was used for Quality control and Variant Call Format file generation. Variant analysis has been performed in Ingenuity software (Qiagen, Hilden, Germany). Variants were interpreted according to the American College of Medical Genetics, and Genomics 2015 (ACMG-2015) recommended standards. The candidate variants were annotated by ANNOVAR with SIFT, PolyPhen-2, MutationTaster, and the Exome Aggregation Consortium (ExAC) and other databases. Known hotspot or clinically actionable variants detected below these thresholds were verified using orthogonal methods such as Sanger sequencing.

Cytogenetic Assessment.
Karyotyping: Marrow Max and Chang media were used for cultures of bone marrow and peripheral blood specimens in a CO₂ incubator. After 24, 48, or 72 h of incubation, cultures were harvested. Colcemid was used to arrest metaphase cells, and chromosome slides were stained using G banding protocol. International System for Human Cytogenetic Nomenclature (ISCN 2016) was used for reporting, and 25 metaphases were analyzed in each culture. The best metaphases were chosen for karyotype analysis, and the total chromosome count was usually determined in 25 cells.

Fluorescence in situ hybridization (FISH): FISH was applied according to the manufacturer's
recommendations. A total of 200 interphase cells were analyzed for each sample, and images were captured/stored by using the Applied Imaging/Cytovision system. Final results were reported by using the cutoff established in the laboratory for each of the tested probes. Specific gene panels for FISH was applied for each malignancy. FISH panels for each of the malignancies are listed below.

FISH Panel for AML: 5q-, -5 (5p15, 5q31, 5q33), 7q-, -7 (Cen 7, 7q22, 7q31), Trisomy 8 (Cen 8), MLL (11q23), 20q- (20q12,20qter), RUNX1/RUNX1T1 (ETO/AML1) t(8;21), PML/RARA t(15;17), CBFB inv(16), t(16;16)

FISH Panel for MDS: 5q-, -5 (5p15, 5q31, 5q33), 7q-, -7 (Cen 7, 7q22, 7q31), Trisomy 8 (Cen 8), MLL (11q23), 20q- (20q12, 20qter)

Results. Characteristics of the patients are summarized in Table 2. Among these patients, 52 were male, and 38 were female. The median age was 54 years, ranging from 1 to 90 years, and there were 100 adults and five children (≤15 years).

Results of cytogenetic and molecular cytogenetic analysis. Cytogenetic and molecular cytogenetic analyses were performed on all of the patients. Cytogenetics and molecular cytogenetic evaluations were reported as standard in all of the cases.

Results of next-generation sequencing. Next-generation sequencing of hotspot regions of 141 genes has been performed in 100 bone marrow samples referred from the Department of Hematology. Variables with a depth of coverage > 100x and an allele frequency of > 5% were included in this study. Known hot spots or variants identified below the threshold that may require clinical intervention were confirmed using the Sanger sequencing. Variables of unknown significance were excluded from the clinical benefit analysis. Variants were classified as pathogenic and possible pathogenic according to the gene and clinical effects. Two or more pathogenic variations were identified in 61 out of 100 patients (61%). A list of the variants is presented in Table 3. A total of 24 novel pathogenic or likely pathogenic variations have been described. In A.M.L., novel pathogenic and likely pathogenic variations were identified in EP300, STAG2, CUX1, U2AF1, RUNX1, GNAS, CHEK2, CREBBP, and PHF6 genes. In M.D.S., novel pathogenic and likely pathogenic variations were identified in SRSF2, ASXL1, A.T.M., RUNX1, and TET2 genes (Table 3).

The distribution of frequent mutations in AML includes, TET2, TP53, FLT3 and IDH2 genes. A total 7 different variants of TET2 (TET2; c.2746C>T, c.2656C>T, c.945delC, c.3543_3544delCT, c.4478delA, c.1184delC, c.1184delC) were detected in 6 different AML patients and 6 different variants of TP53 (TP53; c.537T>A, c.596G>A, c.503A>G, c.460G>A, c.467G>C, c.844C>G) were detected in 5 different AML patients. Additionally, pathogenic FLT3 variants identified in 3 AML patients, including: c.1770_1793dupCTACGTTGATTTACAGAGAATATG A, c.2503G>T, c.1837+1G>A, c.2678C>T. The other common pathogenic variants identified in IDH2 gene in AML, including; c.419G>A, c.419G>A and c.419G>A.

The common pathogenic variants in MDS was SRSF2 and identified in two different cases, includes: c.284C>T and c.284_307del. More than one pathogenic variants identified in 2 different cases (Case1: BCOR c.2428C>T, BRCA2 c.4446_4451dupAACAGA, U2AF1 c.101C>T and case 2: SRSF2:c.284_307del and IDH1:c.395G>A).

These results show us that clonality could be observed in the lowest percentages. The literature recommends that to determine clonally, up to 5% allelic fraction should be evaluated. NGS's pathogenic variation detection rate varies in disease groups: in A.M.L. was 85% (52 out of 61) and M.D.S. was 23% (9 out of 39). Likely pathogenic variation detection rate and VOUS detection rate of NGS have been listed in Table 2, and the mutation list of disease groups has been shown in Table 3.

Table 3. The list of identified mutations and their distributions of diseases. Novel mutations have been shown in table as a red labeled. Green color demonstrates the VOUS, pink color demonstrates the likely pathogenic mutations and red color demonstrates the pathogenic mutations.

Mutation List	Disorders		
TET2 NM_001127208.2(TET2):c.2746C>T	AML		
TET2 NM_001127208.2(TET2):c.2656C>T	AML		
TET2 NM_001127208.2(TET2):c.945delC	AML		
TET2 NM_001127208.2(TET2):c.3543_3544delCT	AML		
TET2 NM_001127208.2(TET2):c.4478delA	AML Novel		
TET2 NM_001127208.2(TET2):c.4182+1G>A	AML Novel		
TET 2 NM_001127208.2(TET2):c.1184delC	AML Novel		
TP53 NM_000546.5(TP53):c.537T>A	AML		
TP53 NM_000546.5(TP53):c.596G>A	AML		
Gene	Reference	Mutation	Disease
----------	-----------	---------------------------	---------
TP53	NM_000546.5 (TP53): c.503A>G	AML	
	NM_000546.5 (TP53): c.460G>A		
	NM_000546.5 (TP53): c.467G>C		
	NM_000546.5 (TP53): c.844C>G		
FLT3	NM_004119.2 (FLT3): c.1770_1793dupCTACGTTGATTTTCAGAGATGA	AML	
FLT3	NM_004119.2 (FLT3): c.1784_1804dupGAGAATATGAAATGATCTCA	AML	
FLT3	NM_004119.2 (FLT3): c.2678C>T	AML	
ASXL1	NM_015338.5 (ASXL1): c.2122C>T	AML	
	NM_015338.5 (ASXL1): c.2128delG	AML	
ASXL1	NM_015338.5 (ASXL1): c.1926_1927insG	AML	
ASXL1	NM_015338.5 (ASXL1): c.2122C>T	AML	
IDH2	NM_002168.3 (IDH2): c.515G>A	AML	
	NM_002168.3 (IDH2): c.419G>A x3	AML	
	NM_005896.3 (IDH1): c.394C>T x3	AML	
DNMT3A	NM_022552.4 (DNMT3A): c.2644C>T	AML	
DNMT3A	NM_022552.4 (DNMT3A): c.2645G>A	AML	
RUNX1	NM_001754.4 (RUNX1): c.502G>T	AML	
RUNX1	NM_001754.4 (RUNX1): c.400G>C	AML	
MPL	NM_005373.2 (MPL): c.1544G>T	AML	
MPL	NM_005373.2 (MPL): c.1771T>G	AML	
	NM_024426.5 (WT1): c.1153_1157dupCGGTC	AML	
	NM_00105877.2 (PHF6): c.110dupA	AML	
	NM_002834.4 (PTPN11): c.227A>G	AML	
	NM_000051.3 (ATM): c.7328G>A	AML	
	NM_004972.3 (JAK2): c.1849G>T	AML	
BCORL1	NM_017617.5 (BCORL1): c.2916T>A	AML	
NF1	NM_002673.3 (NF1): c.4537C>T	AML	
NOTCH1	NM_017617.5 (NOTCH1): c.4721T>C	AML	
	NM_003016.4 (SRSF2): c.284C>T	AML	
GATA2	NM_032638.4 (GATA2): c.1076T>C	AML	
	NM_001429.3 (EP300): c.6627_6638delCCAGTTCCAGCA	AML	
STAG2	NM_00128418.1 (STAG2): c.733C>T	AML	
CBL	NM_005188.3 (CBL): c.1192C>T	AML	
CUX1	NM_181552.4 (CUX1): c.976C>T	AML	
U2AF1	NM_006758.2 (U2AF1): c.470A>G	AML	
SETBP1	NM_015559.2 (SETBP1): c.2602G>A	AML	
SF3B1	NM_012433.3 (SF3B1): c.2098A>G	AML	
NPM1	NM_002520.6 (NPM1): c.859_860insTCTG x2	AML	
	NM_002520.6 (NPM1): c.860_863dupTCTG	AML	
RUNX1	NM_001754.4 (RUNX1): c.423_424insAAGGAG	AML	
RUNX1	NM_001754.4 (RUNX1): c.482T>C	AML	
Gene	NM(GenBank)	Mutation Description	Disease
--------------	-------------	-------------------------------------	---------
STAG2	NM_001282418.1	c.3243_3244insATTT	AML
ASXL1	NM_015338.5	(ASXL1):c.2056A>T	AML
ETV6	NM_001987.4	(ETV6):c.163+1G>T	AML
FBXW7	NM_003363.2	(FBXW7):c.1393C>T	AML
GNAS	NM_080425.2	c.1376C>G	AML_Novel
DNMT3A	NM_022552.4	(DNMT3A):c.2645G>A	AML
CHEK2	NM_007194.4	(CHEK2): c.480A>G	AML
CREBBP	NM_004380.2	(CREBBP): c.5213_5216dupATGC	AML_Novel
CEBPA	NM_004364.4	(CEBPA):c.779_783delACCCCinsG	AML
BCORL1	NM_021946.4	(BCORL1):c.2916T>A	AML
PHF6	NM_00105877.2	(PHF6):c.309C>A	AML_Novel
IDH1	NM_005896.3	(IDH1) :c.394C>T	AML
ATM	NM_000051.3	(ATM):c.5723C>T	AML
NPM1	NM_002520.6	(NPM1):c.733G>C	AML
DNMT3A	NM_022552.4	(DNMT3A):c.2114T>C	AML
NPM1	NM_002520.6	(NPM1):c.863_864insCCTG	AML
EP300	NM_001429.3	(EP300):c.7238T>A	AML
ATM	NM_000051.3	(ATM):c.7237A>G	AML
NPM1	NM_002520.6	(NPM1):c.863_864insCCTG	AML
DNMT3A	NM_022552.4	(DNMT3A):c.976delC	AML
DNAH9	NM_001372.3	(DNAH9): c.1254-2A>G	AML
AKAP13	NM_006738.5	(AKAP13): c.7265G>A	AML
NF1	NM_001042492.2	(NF1):c.1921A>G	AML
PRPF40B	NM_001031698.2	(PRPF40B):c.1103C>T	AML
PMS2	NM_000535.6	(PMS2): c.2321A>T	AML
ADA	NM_000022.3	(ADA):c.179A>G	AML
MPL	NM_005373.2	(MPL):c.121T>C	AML
CALR	NM_004343.3	(CALR):c.682C>T	AML
KAT6A	NM_006766.4	(KAT6A):c.4108G>T	AML
ASXL2	NM_018263.6	(ASXL2):c.833T>A	AML
NF1	NM_001042492.2	(NF1):c.1921A>G	AML
PRPF40B	NM_001031698.2	(PRPF40B):c.1103C>T	AML
PMS2	NM_000535.6	(PMS2): c.2321A>T	AML
ADA	NM_000022.3	(ADA):c.179A>G	AML
MPL	NM_005373.2	(MPL):c.121T>C	AML
SETD2	NM_014159.6	(SETD2):c.6685G>A	AML
SMC1A	NM_006306.3	(SMC1A):c.2152G>A	AML
WT1	NM_024426.5	(WT1): c.470A>G	AML
SRSF2	NM_003016.4	(SRSF2):c.284_307del	MDS_Novel
SRSF2	NM_003016.4	(SRSF2):c.284C>T x2	MDS
SF3B1	NM_012433.3	(SF3B1):c.1866G>T	MDS
SF3B1	NM_012433.3	(SF3B1):c.2098A>G	MDS
TET2	NM_015559.2	(TET2):c.2602G>A	MDS
ASXL1	NM_015338.5	(ASXL1):c.2128delG	MDS_Novel
ATM	NM_000051.3	(ATM):c.7466C>T	MDS_Novel
BRCA2	NM_000059.3	(BRCA2):c.4446 4451dupAACAGA	MDS
RUNX1	NM_001754.4	(RUNX1):c.482T>C	MDS_Novel
Discussion. Genetic and epigenetic alterations play an important role in leukemogenesis.\(^\text{22}\) Several techniques have been used to identify genetic alterations in hematologic malignancies, including FISH, cytogenetics, NGS, RT-PCR (real time-PCR).\(^\text{23}\) Advances in next-generation sequencing (NGS) technology help transform gene sequencing into a considerably faster and less expensive test, making it more practical in clinical practice. The validation of NGS panels is critical, and generally, a two-step approach is recommended for validation. The first one is related to the optimization and analysis of relevant errors during the testing, and the second step is related to the establishment of thresholds of the depth of coverage and V.A.F. (low variant allele frequency of variations) for each type of identified variant.\(^\text{24}\)

In recent years, NGS has been used to identify T-cell clonality, recurrent cytogenetic translocations, and identification of the Philadelphia chromosome in Acute Lymphoblastic Leukaemia.\(^\text{2}\) In addition to these conditions, in lymphoproliferative diseases, NGS has also been used to identify clonal I.G.H. and TCR rearrangements in M.R.D. (Minimal Residual Disease).\(^\text{21}\) NGS technology can be used to identify mutant or clonal D.N.A. in several circulating tumor cells. It is also essential for clinical trials based substantially on next-generation sequencing (NGS) parallel it with the increasing number of molecular markers.\(^\text{25}\)

An increased number of studies in this field will discover new mutations and update the WHO classification for myeloid malignancies. Moreover, those studies will help develop novel targeted therapeutic agents and novel therapeutic targets.\(^\text{26}\) Discovering new mutations in myeloid neoplasms enables us to understand the variable prognosis and pathogenesis of these diseases. The use of cytogenetic-based techniques allows identifying "gross" chromosomal abnormalities such as translocations, amplifications, and deletions.\(^\text{22}\) However, the technique's limitation is based on the abnormality size because genes can change in various ways (mutations, methylation, etc.) that may be critical for the onset and/or progression of malignant hemopathies. The major advancement in NGS is identifying the molecular basis of leukemia because now we can classify malignant hemopathies at a molecular level that is more informative than the cytological classification.\(^\text{27}\)

Delic and colleagues analyzed a 28-gene testing panel in different hematologic malignancies (myeloproliferative neoplasms, essential thrombocythaemia, primary myelofibrosis, polycythaemia vera). Different mutations were identified in splicing related genes (SF3B1, SRSF2, and U2AF1), chromatin modification genes (ASXL1 and EZH2), and methylation related genes (DNMT3A, IDH1, IDH2, and TET2).\(^\text{28}\) Maes et al. analyzed 155 newly diagnosed myeloid neoplasm patients and identified mutation in 81% of the cases.\(^\text{29}\) They highlighted the importance of targeted NGS testing in myeloid neoplasms' routine diagnostic approach and demonstrates that NGS helps improve diagnosis, subclassification, and prognosis of cases.\(^\text{29}\)

Our study analyzed 100 myeloid malignancies and identified variations in 61% of cases, and the mutation frequency was similar to the literature. The critical patient inclusion criterium of the study was the cytogenetically normal report because we aim to show the importance of further testing in cytogenetically normal cases during the evaluation of prognosis of disease and treatment design. Another interesting point of our study was identifying 24 novel pathogenic and likely pathogenic variations in myeloid malignancies.

Northrup and colleagues applied a targeted NGS panel to a total of 178 patients diagnosed with myeloid neoplasms. They identified gene variants in 53% of patients, and they conclude that NGS was a more sensitive test than conventional cytogenetics, so they
suggested that NGS should become a part of the routine workup of patients.30 Kawata and colleagues used cytogenetics and NGS for the evaluation of 134 MDS cases.31 According to Kawata's work, abnormal NGS was identified in 44 cases (32.8%). They highlighted together with NGS; the cytogenetic evaluation also provided more frequent diagnostic information in M.D.S. cases.31 Studies suggested that NGS can help identify over 80% of recurrent mutations in M.D.S. cases.3,5 In our study, NGS's variation detection rate was 61% in myeloid malignancies, and the detection rate for NGS in M.D.S. was lower (23%) than what has been described in other studies,3,31,32 because of a limited number of cases and our inclusion criteria. The patients who have abnormal cytogenetic reports were excluded from our study. Because of this reason, our mutation frequency was lower than the previous studies. Abnormal cytogenetics were closely correlated with the accumulation of mutations in the transcription factors; cell cycle checkpoints related genes were associated with normal and abnormal karyotypes.33 Therefore, the differences in variation rates reported in this study were related to our patient selection criteria, which we enrolled in cases with average karyotype results. Our present results suggest that NGS could be the right choice for cases without any cytogenetic alteration, but this approach would require validation in more extensive studies.

Yu and colleagues analyzed 43 genes in 93 de novo M.D.S. and 325 non-M3 A.M.L. patients by NGS and conventional cytogenetics. In 60.1% of cases carries a complex karyotype, and mutation frequency was detected as 85.8% in A.M.L. cases.33 In our study, the detection rate for NGS in A.M.L. was 85%, which was similar to Yu's study, which confirms the importance of NGS testing as a diagnostic tool.

Vantyghem and colleagues conducted a study to show the real-life setting of chronic myeloid malignancies by NGS testing in a total of 177 chronic myeloid malignancies patients.34 They concluded that NGS's daily practice helps for the final diagnosis of 83% of the patients.34 Reinig et al. applied a 42-gene panel in 109 cases of myelodysplastic syndrome (M.D.S., n: 38), chronic myelomonocytic leukemia (CML, n: 14), myeloproliferative neoplasm (M.P.N., n: 24), and M.D.S. and/or M.P.N. transformed to acute myeloid leukemia (A.M.L., n: 33).35 A pathogenic mutation was identified in 74% of cases of M.D.S., 100% of CMLs, and 96% of M.P.N.s cases.35 Levy and colleagues used a cohort of 380 patients and performed clinical validation of a gene panel within 50.5% of diagnostic yield. They concluded that targeted NGS testing should be an alternative to targeted molecular testing in patients with suspected hematologic malignancies.36 Yun et al. used NGS analysis for evaluation of 157 patients (MDS [n = 95]; secondary-AML (sAML) [n = 52]; CML [n = 10]) and they highlighted the clinical importance of NGS during treatment planning of cases.37 In making the comparison with our cases, we must make some considerations. We focused on cases with normal cytogenetic and FISH results, which is a critical inclusion criterion of patients. All of the cytogenetically abnormal cases have been excluded from the study. We sequenced 141 genes in a cohort consisting of 100 patients diagnosed with A.M.L. (61 cases) and M.D.S. (39 cases). We identified two or more pathogenic variations in 61% of patients. Previous studies aimed to improve NGS usage in all cases without prior analysis. This study chose the patients who had normal cytogenetic and FISH results to show the possible false-negative results depending on the cytogenetic evaluation. Our results also confirm this hypothesis, showing that those who had normal cytogenetic evaluation should need further testing by using NGS. We suggested NGS in routine clinical testing for myeloid malignancies, which are cytogenetically reported as normal. Here, we identified variations in different genes related to epigenetic modifications, R.N.A. modifications, transcription factors, D.N.A. repair, and cohesin complex. We identified novel variations in EP300, STAG2, CUX1, U2AF1, RUNXI, GNAS, CHEK2, CREBBP, PHF6, SRSF2, ASXL1, A.T.M., RUNXI, and TET2 genes which were not previously described in the literature.

This procedure will help prevent false-negative results and apply correct treatment strategies and give prognostic information. Our suggested algorithm was shown in figure 2, which shows that only cytogenetic analysis is not sufficient to evaluate diseases.
simultaneous cytogenetic analysis needs to have a complete picture of the genomic profile. Therefore, after clinical and diagnostic evaluation, it may be advantageous to perform cytogenetic analysis for patients whose NGS results show significant clonal evolution. This procedure has financial consequences, the requirement of well-trained technical staff, problems during the bioinformatics analysis of NGS testing. However, despite all of these conditions, the collected clinical and molecular information should be led to develop targeted therapeutics in this field.

References:

1. Visconte V., O Nakashima, M., Rogers, H.; Mutations in Splicing Factor Genes in Myeloid Malignancies: Significance and Impact on Clinical Features. Cancers (Basel) 2019 Nov 22;11(12). pii: E1844. https://doi.org/10.3390/cancers11121844
PMid:31766086 PMCid:PMC6966670
2. Palumbo, G.A. et al.; The Role of New Technologies in Myeloproliferative Neoplasms. Front. Oncol. 2019 Apr 26;9:321. https://doi.org/10.3389/fonc.2019.00321
PMid:31106152 PMCid:PMC6498877
3. Bacher, U.; et al. Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood Cancer J. 2018 Nov 12;8(11):113. https://doi.org/10.1038/s41508-018-0148-6
PMid:30420667 PMCid:PMC6232163
4. Shumilov, E. et al.; Current status and trends in the diagnostics of A.M.L. and M.D.S. Review article. Blood Rev. 2018. https://doi.org/10.1016/j.blre.2018.04.008
PMid:29728319
5. Barbui, T. et al.; The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 8, 2018. https://doi.org/10.1038/s41508-018-0054-y
PMid:29426921 PMCid:PMC5807384
6. Cazzola, M., Della Porta, M.G. & Malavasi, L.; The genetic basis of myelodysplasia and its clinical relevance. Blood 2013,122, 4021-4034. https://doi.org/10.1182/blood-2013-09-381665
PMid:24316165 PMCid:PMC3862275
7. Papaemmanuil, E. et al.; Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 2016, 374, 2209-2221.
8. Papaemmanuil, E. et al.; Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013,122, 3616-3627.
9. Abel, H.J., Duncavage, E.J.; Detection of structural D.N.A. variation from next generation sequencing data: a review of informatics approaches, Cancer Genetics, 206,432- 440, 2013, ISSN 2210-7762, https://doi.org/10.1016/j.cancergen.2013.11.002
10. Duncavage, E.J. & Tandon, B.; The utility of next-generation sequencing in diagnosis and monitoring of acute myeloid leukemia and myelodysplastic syndromes. Int. J. Lab. Hematol. 37(Suppl 1), 115-121 (2015). https://doi.org/10.1111/ijlh.12361
PMid:25976969
11. Arber, D. A. et al.; The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127, 2391-2405 (2016). https://doi.org/10.1182/blood-2016-03-643544
PMid:27069254
12. Dohner, H. et al.; Diagnosis and management of A.M.L. in adults: 2017 ELM recommendations from an international expert panel. Blood 129,424-447(2017) https://doi.org/10.1182/blood-2016-08-733196
PMid:27895058 PMCid:PMC5291965
13. Patel, U., Luthra, R., Medeiros, L.J., Patel, K.P.; Diagnostic, Prognostic, and Predictive Utility of Recurrent Somatic Mutations in Myeloid Neoplasms. Clin Lymphoma Myeloma Leuk. 2017 Jul;17S:S62-S74. https://doi.org/10.1016/j.clml.2017.02.015
PMid:28760304
14. Cancer Genome Atlas Research. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059-2074 (2013). https://doi.org/10.1056/NEJMoa1301689
PMid:23634996 PMCid:PMC3767041
15. Duncavage, E.J., Abel, H.J., Szankasi, P., Kelley, T. W., & Pfeifer, J. D. (2012). Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 25(6), 795-804. https://doi.org/10.1038/modpathol.2012.29
PMid:22425908
16. Yoshida, K. et al.; Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478: 64-69(2011)
17. Bacher, U., Kohlimann, A. & Haferlach, T.; Mutation profiling in patients with M.D.S.; ready for every-day use in the clinic? Best. Pract. Res. Clin. Haematol. 28,32-42 (2015) https://doi.org/10.1016/j.beha.2014.11.005
PMid:25659728
18. A Sample to Insight®NGS solution for myeloid neoplasms: Redefined amplicon sequencing for low variant detection and interpretation (Application Note: PROM-12533- 001(2018)
PMid:24688753 PMCid:PMC3942999
19. De Brackeleer, E., Douet-Guilbert, N., & De Brackeleer,M.; Genetic diagnosis in malignant hemopathies: from cytogenetics to next-generation sequencing, Expert Review of Molecular Diagnostics, 2014, 14,2, 127-129, https://doi.org/10.1586/14737159.2014.872563
PMid:24437978
20. Mitelman, F., Johannsson, B., Mortens, F, editors. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. 2013. Available from: http://cgap.nci.nih.gov/Chromosomes/Mitelman
21. Kim, H., Yun, J.W., Lee, S.T., Kim, H.J., Kim, S.H., Kim, J.W.; Korean Society for Genetic Diagnostics Clinical Guidelines Committee. Korean Society for Genetic Diagnostics Guidelines for Validation of Next-Generation Sequencing-Based Somatic Variant Detection in Hematologic Malignancies. Ann Lab Med. 2019 Nov;39(6):515-523. https://doi.org/10.3343/alm.2019.39.6.515
PMid:31240878 PMCid:PMC6660343
22. Avila, M., Bernstam, M.; Next-Generation Sequencing for the General Cancer Patient. Clin Adv Hematol Oncol. 2019,17(8):447-454.
23. National Comprehensive Cancer Network. Myeloproliferative neoplasms (Version 2.2018). Available from: https://www.nccn.org/proprofessionals/physician_gls/pdf/mpn.pdf. Accessed September 7, 2017.
24. Kuo, F.C., Steensma, D.P., Dal Cin, P.; Conventional cytogenetics for myeloid neoplasms in the era of next generation sequencing. AmHematol. 2017;92:227229. https://doi.org/10.1002/ajh.24642
PMid:28053497
25. Delic, S., Rose, D., Kern, W., Nadarajah, N., Haferlach, C., Haferlach, T., Meggendorfer, M.; Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythemia, primary myelofibrosis and polycythemia vera. Br J Haematol. 2016 Nov;175(3):419-426 https://doi.org/10.1111/bjh.14269
PMid:27447873
26. Maes, B., Willenme, J., Broekmans, A., Smets, R., Cruys, B., Put, N., Madoe, V., Janssen, M., Soepenberg, O., Bries, G., Vrelust, I., Achten, R., Van Pelt, K., Buvé, K., Theunissen, K., Peeters, V., & Froyen, G. Targeted next-generation sequencing using a multigene panel in myeloid neoplasms: Implementation in clinical diagnostics. Int J Lab Hematol. 2017;39(6):604-612.
30. Northrup, V., Maybank, A., Carson, N., Rahmeh, T.; The Value of Next-Generation Sequencing in the Screening and Evaluation of Hematologic Neoplasms in Clinical Practice. Am J Clin Pathol. 2020;153(5):639-645. https://doi.org/10.1093/ajcp/qaz203
PMid:31875888

31. Kawata, E., Lazo - Langner, A., Xenocostas, A., Hsia, C.C., Howson - Jan, K., Dootare, U., Saini, L., Yang, P., Broadbent, R., Levy, M., Howlett, C., Stuart, A., Kerkhof, J., Santos, S., Lin, H., Sadikovic, B. and Chin - Yee, I. (2020), Clinical value of next - generation sequencing compared to cytogenetics in patients with suspected myelodysplastic syndrome. Br J Haematol. https://doi.org/10.1111/bjh.16891
PMid:32588428

32. Haferlach, T., Nagata, Y., Grossmann, V., Okuno, Y., Bacher, U., Nagae, G., et al.; Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241-7. https://doi.org/10.1038/leu.2013.336
PMid:24220272 PMcid:PMC3918868

33. Yu, J., Li, Y., Li, T., Li, Y., Xie, X., Jiang, Z. (2020). Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Experimental hematology & oncology, 9, 2. https://doi.org/10.1186/s40164-019-0158-5
PMid:31921515 PMcid:PMC6945703

34. Vantyghem, S., Peterlin, P., Thépot, S., Ménard, A., Dubruille, V., Debord, C., Guillaume, T., Garnier, A., Le Bourgeois, A., Willeme, S., Godon, C., Theisen, O., Eveillard, M., Delaunay, J., Maisonneuve, H., Morineau, N., Villemagne, B., Vigouroux, S., Subiger, F., Lestang, E., … Le Bris, Y. (2020). Diagnosis and prognosis are comforted by integrated assessment of next-generation sequencing in chronic myeloid malignancies. A real-life study. Haematologica, haematol.2019.242677. Advance online publication. https://doi.org/10.3324/haematol.2019.242677
PMid:32241844

35. Reinig, E., Yang, F., Traer, E., Arora, R., Brown, S., Rattray, R., Brazil, R., Fan, G., Press, R., & Dunlap, J. (2016). Targeted Next-Generation Sequencing in Myelodysplastic Syndrome and Chronic Myelomonocytic Leukemia Aids Diagnosis in Challenging Cases and Identifies Frequent Spliceosome Mutations in Transformed Acute Myeloid Leukemia. American journal of clinical pathology, 145(4), 497-506. https://doi.org/10.1093/ajcp/aqw016
PMid:27124934

36. Levy, M.A., Santos, S., Kerkhof, J., et al.; Implementation of an NGS-based sequencing and gene fusion panel for clinical screening of patients with suspected hematologic malignancies. Eur J Haematol. 2019;103(3):178-189. doi:10.1111/ejh.13272. https://doi.org/10.1111/ejh.13272
PMid:31177553

37. Yun, S., Geyer, S. M., Komrokji, R. S., Al Ali, N. H., Song, J., Hussaini, M., Sweet, K. L., Lancet, J. E., List, A. F., Padron, E., & Sallman, D. A. (2020). Prognostic significance of serial molecular annotation in myelodysplastic syndromes (M.D.S.) and secondary acute myeloid leukemia (sAML). Leukemia, https://doi.org/10.1038/s41375-020-0997-4
PMid:32728186