Supplemental Material

Health and Climate Impacts of Scaling Adoption of Liquefied Petroleum Gas (LPG) for Clean Household Cooking in Cameroon: A Modeling Study

Chris Kypridemos, Elisa Puzzolo, Borgar Aamaas, Lirije Hyseni, Matthew Shupler, Kristin Aunan, and Daniel Pope

Table of Contents

Table S1. Mid-year population size estimates that were used in health and climate modeling. Years 2011 to 2030 are from the National Statistics Institute of Cameroon (INS 2011, GLPGP 2016). For the subsequent years, after 2030 and up to 2100, we used the United Nations population projections (UN DESA 2017) and calibrated them to the National Institute of Statistics of Cameroon projections.

Table S2. Modeled mean and standard deviation from the log-normal distributions with the best fit to the LPG Adoption in Cameroon Evaluation (LACE) exposure data for women (cooks) and children (<5).

Table S3. Cameroon disease burden data from the Global Burden of Disease 2016 database for years 1990 to 2016. Available from: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2016-permalink/ba8cb190a7df0d9999935fee909e5fa1. Numbers are rates per 100,000 population rounded to the first decimal digit. We used these data to fit the disease burden forecast models. DALY denotes disability-adjusted life years; YLL denotes years of life lost.

Table S4. The emission factors applied to climate modeling.

Table S5. Global warming potential (GWP) and global temperature change potential (GTP) values and the emission metric parameterization used (time horizons in years given in brackets). These values are unitless and indicate how strong emissions are relative to CO2. We have followed the parameterization used in IPCC (2014), the chapter of Myhre et al.(2013), with the exception of the upward revision of CH4 due to newer research (Etminan et al., 2016) finding stronger radiative forcing due to processes previously not accounted for. Here, we cite the original source.
Figure S1. Mortality rate of acute lower respiratory infection (ALRI) in children under the age of five in Cameroon. Mortality rates between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). Mortality rates after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S2. Disability-adjusted life-years (DALYs) lost from acute lower respiratory infection (ALRI) in children under the age of five in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S3. Age-standardised mortality rate (ASMR) of chronic obstructive pulmonary disease (COPD) in Cameroon. ASMR between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). ASMR after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S4. Disability-adjusted life-years (DALYs) lost from chronic obstructive pulmonary disease (COPD) in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S5. Age-standardised mortality rate (ASMR) of lung cancer in Cameroon. ASMR between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). ASMR after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S6. Disability-adjusted life-years (DALYs) lost from lung cancer in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S7. Age-standardised mortality rate (ASMR) of ischemic heart disease in Cameroon. ASMR between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). ASMR after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S8. Disability-adjusted life-years (DALYs) lost from ischemic heart disease in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S9. Age-standardised mortality rate (ASMR) of cerebrovascular disease in Cameroon. ASMR between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). ASMR after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.
Figure S10. Disability-adjusted life-years (DALYs) lost from cerebrovascular disease in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

References
Table S1. Mid-year population size estimates that were used in health and climate modeling. Years 2011 to 2030 are from the National Statistics Institute of Cameroon (INS 2011, GLPGP 2016). For the subsequent years, after 2030 and up to 2100, we used the United Nations population projections (UN DESA 2017) and calibrated them to the National Institute of Statistics of Cameroon projections.

Year	Mid-year total population size	Mid-year population under 5 (assuming 16.6% of the total population size)	Households (assuming a mean household size of 5)
2011	19900000	3301794	3980000
2012	20400000	3384753	4080000
2013	20900000	3467713	4180000
2014	21400000	3550673	4280000
2015	21917602	3635553	4383520
2016	22459738	3726504	4491948
2017	23001874	3816454	460375
2018	23544010	3906405	4708802
2019	24086146	3996356	4817229
2020	24628282	4086307	4925656
2021	25219361	4184378	5043872
2022	25810440	4282450	5162088
2023	26401518	4380521	5280304
2024	26992597	4478592	5398519
2025	27583676	4576664	5516735
2026	28245684	4686504	5649137
2027	28907692	4796344	5781538
2028	29569701	4906184	5913940
2029	30231709	5016023	6046342
2030	30893717	5125863	6178743
2031	31593613	5241990	6318723
2032	32293509	5358116	6458702
2033	32993406	5474242	6598681
2034	33693302	5590368	6738660
2035	34393198	5706495	6878640
2036	35067526	5818379	7013505
2037	35741854	5930263	7148371
2038	36416182	6042147	7283236
2039	37090511	6154031	7418102
2040	37764839	6265915	7552968
2041	38499250	6387768	7699850
2042	39233661	6509621	7846732
2043	39968072	6631474	7993614
2044	40702483	6753327	8140497
2045	41436894	6875180	8287379
2046	42204056	7002467	8440811
2047	42971217	7129754	8594243
2048	43738379	7257040	8747676
2049	44505540	7384327	8901108
2050	45272702	7511614	9054540
2051	46059303	7642127	9211861
Year	Mid-year total population size	Mid-year population under 5 (assuming 16.6% of the total population size)	Households (assuming a mean household size of 5)
------	--------------------------------	--	---
2052	46845904	7772639	9369181
2053	47632506	7903151	9526501
2054	48419107	8033664	9683821
2055	49205709	8164176	9841142
2056	49999928	8295952	9999986
2057	50794148	8427729	10158830
2058	51588367	8559505	10317673
2059	52382587	8691281	10476517
2060	53176806	8823058	10635361
2061	53970791	8954795	10794158
2062	54764775	9086532	10952955
2063	55558759	9218269	11111752
2064	56352744	9350007	11270549
2065	57146728	9481744	11429346
2066	57934076	9612380	11586815
2067	58721423	9743016	11744285
2068	59508771	9873653	11901754
2069	60296119	10004289	12059224
2070	61083467	10134925	12216693
2071	61854003	10262772	12370801
2072	62624538	10390618	12524908
2073	63395074	10518465	12679015
2074	64165610	10646312	12833122
2075	64936146	10774159	12987229
2076	65680477	10897658	13136095
2077	66424809	11021157	13284962
2078	67169140	11144656	13433828
2079	67913472	11268154	13582694
2080	68657803	11391653	13731561
2081	69366180	11509187	13873236
2082	70074556	11626720	14014911
2083	70782933	11744253	14156587
2084	71491309	11861787	14298262
2085	72199686	11979320	14439937
2086	72861986	12089208	14572397
2087	73524287	12199097	14704857
2088	74186587	12308985	14837317
2089	74848888	12418874	14969778
2090	75511188	12528762	15102238
2091	76120269	12629820	15224054
2092	76729350	12730879	15345870
2093	77338431	12831937	15467686
2094	77947511	12932995	15589502
2095	78556592	13034053	15711318
2096	79108733	13125664	15821747
Year	Mid-year total population size	Mid-year population under 5 (assuming 16.6% of the total population size)	Households (assuming a mean household size of 5)
------	-------------------------------	---	---
2097	79660873	13217275	15932175
2098	80213014	13308886	16042603
2099	80765155	13400497	16153031
2100	81317296	13492107	16263459

Notes: Mid-year population projection from 2015 to 2030, were only reported in 5-year intervals, and we used linear interpolation to estimate population sizes in-between the reported years.

We calibrated the UN projections (2031 onwards) by calculating the ratio between the two projections for the common years (2017-2030). We then projected the ratio assuming logarithmic growth and multiplied it with the median UN population projection. This produced a more conservative population projection than the median population projection from the UN, with better alignment to the official population projections from the National Statistics Institute of Cameroon.

For the number of children under the age of five, we used the estimate for the proportion of children under the age of five in 2005 which was approximately 16.6% of the population (INS 2011) and we assumed this proportion remained constant over time.

For the mean household size, we used the mean household size in Cameroon in 2011 which is five (INS and ICF International 2012) and we assumed that this also remained constant over time.
Table S2. Modeled mean and standard deviation from the log-normal distributions with the best fit to the LPG Adoption in Cameroon Evaluation (LACE) exposure data for women (cooks) and children (<5).

Group	Stove type	Mean PM$_{2.5}$ exposure (μg/m3)	Standard deviation (μg/m3)
Cooks	Traditional	94.2	108.2
Cooks	LPG	18.5	17.7
Children	Traditional	41.4	47.7
Children	LPG	18.9	38

Notes: We used the children's exposure, as shown in the table only in the ‘dynamic approach.’ For the ‘comparative risk approach’ we used a fixed ratio of 0.82 for children's exposure, compared to cooks.

LACE studies included 48-hr monitoring of 102 women, 56 children (< 5 years of age) from peri-urban and rural households in South-West Cameroon exclusively using wood fuel and 67 women and 60 children primarily using LPG fuel. (Pope et al. 2018a, Pope et al. 2018b)

We used maximum likelihood estimation to fit a log-normal distribution to the LACE observed exposures by stove type.
Table S3. Cameroon disease burden data from the Global Burden of Disease 2016 database for years 1990 to 2016. Available from: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2016-permalink/ba8cb190a7fd0d999999555c99999995ceed909e5fa1. Numbers are rates per 100,000 population rounded to the first decimal digit. We used these data to fit the disease burden forecast models. DALY denotes disability-adjusted life years; YLL denotes years of life lost.

Year	Cause	Age	DALYs	Deaths	YLLs
1990	Cerebrovascular disease	Age-standardized	2188.2	118.3	2073.4
1991	Cerebrovascular disease	Age-standardized	2179.3	117.5	2065.1
1992	Cerebrovascular disease	Age-standardized	2182.8	117.3	2069.1
1993	Cerebrovascular disease	Age-standardized	2193.3	117.3	2080.1
1994	Cerebrovascular disease	Age-standardized	2188.6	116.8	2075.5
1995	Cerebrovascular disease	Age-standardized	2179.2	116.0	2066.0
1996	Cerebrovascular disease	Age-standardized	2174.4	115.2	2061.3
1997	Cerebrovascular disease	Age-standardized	2222.5	117.1	2109.2
1998	Cerebrovascular disease	Age-standardized	2249.9	118.0	2136.3
1999	Cerebrovascular disease	Age-standardized	2302.9	120.5	2188.8
2000	Cerebrovascular disease	Age-standardized	2388.5	124.4	2273.8
2001	Cerebrovascular disease	Age-standardized	2376.6	123.8	2262.2
2002	Cerebrovascular disease	Age-standardized	2376.5	123.7	2261.6
2003	Cerebrovascular disease	Age-standardized	2366.3	123.2	2250.8
2004	Cerebrovascular disease	Age-standardized	2371.7	123.5	2255.6
2005	Cerebrovascular disease	Age-standardized	2393.3	124.4	2276.3
2006	Cerebrovascular disease	Age-standardized	2361.9	122.8	2244.8
2007	Cerebrovascular disease	Age-standardized	2349.6	122.2	2233.1
2008	Cerebrovascular disease	Age-standardized	2315.2	120.5	2198.7
2009	Cerebrovascular disease	Age-standardized	2281.1	118.9	2164.3
2010	Cerebrovascular disease	Age-standardized	2269.2	118.4	2151.9
2011	Cerebrovascular disease	Age-standardized	2265.2	118.4	2148.7
2012	Cerebrovascular disease	Age-standardized	2250.9	117.8	2134.5
2013	Cerebrovascular disease	Age-standardized	2236.7	117.3	2120.6
2014	Cerebrovascular disease	Age-standardized	2212.0	116.3	2096.4
2015	Cerebrovascular disease	Age-standardized	2185.2	115.2	2069.8
2016	Cerebrovascular disease	Age-standardized	2161.9	114.1	2045.9
1990	Chronic obstructive pulmonary disease	Age-standardized	1038.7	52.0	862.5
1991	Chronic obstructive pulmonary disease	Age-standardized	1017.3	50.9	844.1
1992	Chronic obstructive pulmonary disease	Age-standardized	998.5	49.9	827.9
1993	Chronic obstructive pulmonary disease	Age-standardized	983.3	49.1	817.0
1994	Chronic obstructive pulmonary disease	Age-standardized	954.9	47.5	789.6
1995	Chronic obstructive pulmonary disease	Age-standardized	923.4	45.8	759.8
1996	Chronic obstructive pulmonary disease	Age-standardized	892.4	44.0	730.3
1997	Chronic obstructive pulmonary disease	Age-standardized	878.0	43.0	716.6
Year	Cause	Age	DALYs	Deaths	YLLs
------	--------------------------------------	------------	-------	--------	-------
1998	Chronic obstructive pulmonary disease	Age-standardized	862.1	42.1	701.9
1999	Chronic obstructive pulmonary disease	Age-standardized	867.4	42.4	708.6
2000	Chronic obstructive pulmonary disease	Age-standardized	881.9	43.1	723.7
2001	Chronic obstructive pulmonary disease	Age-standardized	876.5	42.9	718.8
2002	Chronic obstructive pulmonary disease	Age-standardized	873.2	42.8	715.6
2003	Chronic obstructive pulmonary disease	Age-standardized	868.4	42.6	710.8
2004	Chronic obstructive pulmonary disease	Age-standardized	866.6	42.6	709.7
2005	Chronic obstructive pulmonary disease	Age-standardized	870.0	42.8	712.6
2006	Chronic obstructive pulmonary disease	Age-standardized	863.0	42.5	707.1
2007	Chronic obstructive pulmonary disease	Age-standardized	859.6	42.4	704.9
2008	Chronic obstructive pulmonary disease	Age-standardized	852.3	42.1	698.8
2009	Chronic obstructive pulmonary disease	Age-standardized	842.9	41.7	690.1
2010	Chronic obstructive pulmonary disease	Age-standardized	839.6	41.6	687.3
2011	Chronic obstructive pulmonary disease	Age-standardized	838.4	41.6	686.8
2012	Chronic obstructive pulmonary disease	Age-standardized	833.1	41.4	682.1
2013	Chronic obstructive pulmonary disease	Age-standardized	828.7	41.2	677.6
2014	Chronic obstructive pulmonary disease	Age-standardized	820.8	40.8	670.0
2015	Chronic obstructive pulmonary disease	Age-standardized	812.2	40.4	661.8
2016	Chronic obstructive pulmonary disease	Age-standardized	805.2	40.0	654.5
1990	Ischemic heart disease	Age-standardized	1716.8	110.9	1650.1
1991	Ischemic heart disease	Age-standardized	1750.9	112.6	1684.7
1992	Ischemic heart disease	Age-standardized	1800.6	115.1	1734.2
1993	Ischemic heart disease	Age-standardized	1862.4	118.1	1796.0
1994	Ischemic heart disease	Age-standardized	1911.0	120.8	1844.6
1995	Ischemic heart disease	Age-standardized	1965.1	123.6	1898.8
1996	Ischemic heart disease	Age-standardized	2055.3	127.9	1988.5
1997	Ischemic heart disease	Age-standardized	2192.1	134.5	2124.5
1998	Ischemic heart disease	Age-standardized	2313.9	140.2	2245.6
1999	Ischemic heart disease	Age-standardized	2405.3	144.6	2336.4
2000	Ischemic heart disease	Age-standardized	2531.2	150.5	2461.5
2001	Ischemic heart disease	Age-standardized	2548.1	151.2	2478.4
2002	Ischemic heart disease	Age-standardized	2572.1	152.4	2501.9
2003	Ischemic heart disease	Age-standardized	2590.7	153.2	2520.7
2004	Ischemic heart disease	Age-standardized	2619.8	154.4	2549.2
2005	Ischemic heart disease	Age-standardized	2663.2	156.3	2592.2
2006	Ischemic heart disease	Age-standardized	2631.0	154.9	2560.2
2007	Ischemic heart disease	Age-standardized	2617.7	154.3	2547.1
2008	Ischemic heart disease	Age-standardized	2575.7	152.4	2505.5
2009	Ischemic heart disease	Age-standardized	2529.2	150.3	2459.2
Year	Cause	Age	DALYs	Deaths	YLLs
------	--	-------------	----------	--------	----------
2010	Ischemic heart disease	Age-standardized	2506.4	149.4	2436.0
2011	Ischemic heart disease	Age-standardized	2495.9	149.3	2426.1
2012	Ischemic heart disease	Age-standardized	2471.7	148.2	2401.7
2013	Ischemic heart disease	Age-standardized	2451.7	147.3	2381.5
2014	Ischemic heart disease	Age-standardized	2421.7	145.9	2351.5
2015	Ischemic heart disease	Age-standardized	2391.5	144.6	2321.4
2016	Ischemic heart disease	Age-standardized	2364.5	143.4	2293.8
1990	Lower respiratory infections	Under 5	35490.6	414.5	35473.2
1991	Lower respiratory infections	Under 5	35335.8	413.0	35346.4
1992	Lower respiratory infections	Under 5	35372.3	413.4	35378.5
1993	Lower respiratory infections	Under 5	35704.7	417.3	35714.3
1994	Lower respiratory infections	Under 5	35872.3	419.2	35879.5
1995	Lower respiratory infections	Under 5	35885.1	419.0	35865.7
1996	Lower respiratory infections	Under 5	36049.2	421.3	36059.7
1997	Lower respiratory infections	Under 5	35935.3	419.9	35940.6
1998	Lower respiratory infections	Under 5	35288.6	412.2	35287.8
1999	Lower respiratory infections	Under 5	34408.1	402.0	34423.8
2000	Lower respiratory infections	Under 5	34072.3	397.7	34053.3
2001	Lower respiratory infections	Under 5	32771.8	382.7	32777.8
2002	Lower respiratory infections	Under 5	32814.8	383.2	32814.2
2003	Lower respiratory infections	Under 5	31152.7	363.7	31150.9
2004	Lower respiratory infections	Under 5	29279.5	341.9	29291.4
2005	Lower respiratory infections	Under 5	28515.8	332.7	28498.8
2006	Lower respiratory infections	Under 5	28548.3	333.1	28532.0
2007	Lower respiratory infections	Under 5	28148.4	328.8	28161.5
2008	Lower respiratory infections	Under 5	28444.6	332.1	28447.8
2009	Lower respiratory infections	Under 5	28744.9	335.6	28742.6
2010	Lower respiratory infections	Under 5	28638.7	334.3	28625.1
2011	Lower respiratory infections	Under 5	27831.3	325.1	27836.3
2012	Lower respiratory infections	Under 5	26774.5	312.7	26779.0
2013	Lower respiratory infections	Under 5	25104.3	293.2	25108.4
2014	Lower respiratory infections	Under 5	24027.3	280.5	24028.0
2015	Lower respiratory infections	Under 5	22638.7	264.4	22643.7
2016	Lower respiratory infections	Under 5	21902.6	255.5	21888.9
1990	Tracheal, bronchus, and lung cancer	Age-standardized	248.7	11.6	246.8
1991	Tracheal, bronchus, and lung cancer	Age-standardized	249.4	11.6	247.5
1992	Tracheal, bronchus, and lung cancer	Age-standardized	251.2	11.7	249.3
1993	Tracheal, bronchus, and lung cancer	Age-standardized	253.7	11.7	251.9
1994	Tracheal, bronchus, and lung cancer	Age-standardized	252.6	11.7	250.8
Year	Cause	Age	DALYs	Deaths	YLLs
------	------------------------------	----------------------------	-------	--------	-------
1995	Tracheal, bronchus, and lung cancer	Age-standardized	252.0	11.7	250.1
1996	Tracheal, bronchus, and lung cancer	Age-standardized	254.7	11.8	252.9
1997	Tracheal, bronchus, and lung cancer	Age-standardized	259.0	12.0	257.2
1998	Tracheal, bronchus, and lung cancer	Age-standardized	262.2	12.1	260.4
1999	Tracheal, bronchus, and lung cancer	Age-standardized	265.9	12.3	264.0
2000	Tracheal, bronchus, and lung cancer	Age-standardized	272.5	12.6	270.5
2001	Tracheal, bronchus, and lung cancer	Age-standardized	273.0	12.7	271.1
2002	Tracheal, bronchus, and lung cancer	Age-standardized	273.7	12.8	271.7
2003	Tracheal, bronchus, and lung cancer	Age-standardized	274.7	12.9	272.7
2004	Tracheal, bronchus, and lung cancer	Age-standardized	276.2	13.0	274.1
2005	Tracheal, bronchus, and lung cancer	Age-standardized	278.7	13.1	276.5
2006	Tracheal, bronchus, and lung cancer	Age-standardized	278.9	13.2	276.8
2007	Tracheal, bronchus, and lung cancer	Age-standardized	279.9	13.2	277.9
2008	Tracheal, bronchus, and lung cancer	Age-standardized	278.8	13.2	276.8
2009	Tracheal, bronchus, and lung cancer	Age-standardized	277.0	13.2	275.0
2010	Tracheal, bronchus, and lung cancer	Age-standardized	276.1	13.2	274.0
2011	Tracheal, bronchus, and lung cancer	Age-standardized	278.0	13.3	276.0
2012	Tracheal, bronchus, and lung cancer	Age-standardized	278.4	13.3	276.4
2013	Tracheal, bronchus, and lung cancer	Age-standardized	279.2	13.4	277.2
2014	Tracheal, bronchus, and lung cancer	Age-standardized	279.5	13.4	277.5
2015	Tracheal, bronchus, and lung cancer	Age-standardized	279.9	13.5	277.9
2016	Tracheal, bronchus, and lung cancer	Age-standardized	280.7	13.5	278.6
Table S4. The emission factors applied to climate modeling.

Emission factors (g/kg fuel)	CO₂	CO	CH₄	VOC	OC	BC	SO₂	NOₓ
Wood	418	35	4.8	3.2	4	1.5	0.01	1.57
LPG	841	6.4	0	14.1	0.1	0.2	0	3.26
Charcoal (direct emissions)	1113	205.7	46.5	63.5	8	2.3	0.01	0.853
Charcoal (emissions from production)	2488	314	44.5	9.9	4	1.2	0.005	3.0

Note: For wood, we have used emission factors for traditional stove burning wood unvented (i.e. stove without chimney), for LPG an LPG metal stove unvented, and for charcoal a charcoal stove unvented, all from Grieshop et al. (2011) for all species except NOx. We supplemented NOx emission factors with values from Zhang et al. (2000) with a metal stove without flue from India with brushwood and fuelwood for fuelwood and charcoal and LPG traditional stove without flue for LPG. Emissions of VOC are based on estimates of non-methane hydrocarbon (NMHC) in Grieshop et al. (2011) We also include emissions from charcoal production. We apply emissions factors that are the average of Sparrevik et al. (2015). Emissions of CO2 are in units of C.
Table S5. Global warming potential (GWP) and global temperature change potential (GTP) values and the emission metric parameterization used (time horizons in years given in brackets). These values are unitless and indicate how strong emissions are relative to CO₂. We have followed the parameterization used in IPCC (2014), the chapter of Myhre et al.(2013), with the exception of the upward revision of CH₄ due to newer research (Etminan et al., 2016) finding stronger radiative forcing due to processes previously not accounted for. Here, we cite the original source.

	GTP(20)	GTP(100)	GWP(20)	GWP(100)	Parameterization from
BC	700	91	2400	660	Myhre et al. (2013), based on Bond et al. (2013)
OC	-71	-9.1	-240	-66	Fuglestvedt et al. (2010)
SO₂	-41	-5.3	-140	-38	Fuglestvedt et al. (2010)
NOₓ	-220	-5.2	120	-11	Wild et al. (2001), value for the Tropics
CO	3.7	0.27	5.9	1.9	Derwent et al. (2001)
VOC	7.4	0.61	14	4.3	Collins et al. (2002), see Table 3 in Fuglestvedt et al. (2010)
CH₄	77	4.9	96	32	Myhre et al.(2013), but increased by 14% based on Etminan et al. (2016)
CO₂	1	1	1	1	Myhre et al. (2013)

Note: The most common emission metric is GWP(100). CO₂ has, by definition, value of 1. Values higher than 1 indicate a stronger climate impact per unit emission than for CO₂. Negative values translate to cooling.
Figure S1. Mortality rate of acute lower respiratory infection (ALRI) in children under the age of five in Cameroon. Mortality rates between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). Mortality rates after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S2. Disability-adjusted life-years (DALYs) lost from acute lower respiratory infection (ALRI) in children under the age of five in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.
Figure S3. Age-standardised mortality rate (ASMR) of chronic obstructive pulmonary disease (COPD) in Cameroon. ASMR between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). ASMR after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S4. Disability-adjusted life-years (DALYs) lost from chronic obstructive pulmonary disease (COPD) in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.
Figure S5. Age-standardised mortality rate (ASMR) of lung cancer in Cameroon. ASMR between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). ASMR after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S6. Disability-adjusted life-years (DALYs) lost from lung cancer in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.
Figure S7. Age-standardised mortality rate (ASMR) of ischemic heart disease in Cameroon. ASMR between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). ASMR after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S8. Disability-adjusted life-years (DALYs) lost from ischemic heart disease in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.
Figure S9. Age-standardised mortality rate (ASMR) of cerebrovascular disease in Cameroon. ASMR between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). ASMR after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.

Figure S10. Disability-adjusted life-years (DALYs) lost from cerebrovascular disease in Cameroon. DALYs between 1990 and 2016 are from the Global Burden of Disease 2016 database (IHME 2018). DALYs after 2016 are exponential smoothing projection of the 1990-2016 time series. The shaded area depicts 95% prediction intervals.
References

Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment: black carbon in the climate system. J Geophys Res Atmospheres 118:5380–5552; doi:10/f5cnz6.

Collins WJ, Derwent RG, Johnson CE, Stevenson DS. 2002. The Oxidation of Organic Compounds in the Troposphere and their Global Warming Potentials. Clim Change 52:453–479; doi:10/dg87dh.

Derwent RG, Collins WJ, Johnson CE, Stevenson DS. 2001. Transient Behaviour of Tropospheric Ozone Precursors in a Global 3-D CTM and Their Indirect Greenhouse Effects. Clim Change 49:463–487; doi:10/czsz98.

Etminan M, Myhre G, Highwood EJ, Shine KP. 2016. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing: Greenhouse Gas Radiative Forcing. Geophys Res Lett 43:12,614-12,623; doi:10/gdkwbj.

Fuglestvedt JS, Shine KP, Berntsen T, Cook J, Lee DS, Stenke A, et al. 2010. Transport impacts on atmosphere and climate: Metrics. Atmos Environ 44:4648–4677; doi:10/cbxznn.

GLPGP (The Global LPG Partnership). 2016. The LPG Master Plan of Cameroon, presented at the LPG Ad Hoc committee of the 31st of August 2016, at MINEE, in Yaoundé (MINEE, Trans.). New York: The Global LPG Partnership.

Grieshop AP, Marshall JD, Kandlikar M. 2011. Health and climate benefits of cookstove replacement options. Energy Policy 39:7530–7542; doi:10/bc5z4v.

IHME (Institute for Health Metrics and Evaluation). 2018. GBD Results Tool | GHDx. http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2016-permalink/e28aedb4b41e6825743e29c438a97467 [accessed 31 May 2018].

INS. 2011. Annuaire Statistique du Cameroun 2011. http://www.stat.cm/downloads/annuaire/2012/Annuaire-2012-complet.pdf [accessed 16 September 2018].

INS (Institut National de la Statistique), ICF International. 2012. Enquête Démographique et de Santé et à Indicateurs Multiples du Cameroun 2011. Calverton, Maryland, USA. https://dhsprogram.com/pubs/pdf/fr260/fr260.pdf [accessed 31 May 2018]. IPCC (Intergovernmental Panel on Climate Change), ed. 2014. Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press:Cambridge. 659–740.

Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, et al. 2013. Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (D. Jacob, A.R. Ravishankara, and Keith Shine, eds). Cambridge University Press:Cambridge. 82.

Pope D, Bruce N, Higginson J, Hyseni L, Ronzi S, Stanistreet D, et al. 2018a. Assessment of Traditional and LPG stove use on household air pollution and personal exposures in South West Cameroon. Abstract Book. ISEE, Ottawa.

Pope D, Bruce N, Higginson J, Hyseni L, Ronzi S, Stanistreet D, et al. 2018b. Household Determinants of Liquified Petroleum Gas (LPG) as a Cooking Fuel in South West Cameroon. Ecohealth 15:729–743; doi:10/gfrd4g.

Sparrevik M, Adam C, Martinsen V, Jubaedah, Cornelissen G. 2015. Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass Bioenergy 72:65–73; doi:10/f3n6nb.
UN (United Nations), Department of Economic and Social Affairs, Population Division. 2017. Probabilistic Population Projections based on the World Population Prospects: The 2017 Revision. Population Division, DESA. Available: http://esa.un.org/unpd/wpp/ [accessed 3 June 2018].

Wild O, Prather MJ, Akimoto H. 2001. Indirect long-term global radiative cooling from NO_x emissions. Geophys Res Lett 28:1719–1722; doi:10/cnpmw4.

Zhang J, Smith KR, Ma Y, Ye S, Jiang F, Qi W, et al. 2000. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmos Environ 34:4537–4549; doi:10/fvfdg.