Masahiro Mizoguchi1; 1Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

INTRODUCTION: There exist controversies on recurrence and aggressiveness after use of first-line bevacizumab (BEV) which has been approved in Japan and will be beneficial. Therefore, we analyzed the clinical impact of BEV approval by investigating the overall clinical course and glioblastoma (GBM) relapse pattern.

METHODS: We included 100 patients with IDH-wildtype GBM between September 2006 and February 2018 from our institution. They were subdivided into pre-BEV (n=51) and post-BEV (n=49) groups. Overall, progression-free, deterioration-free, and post-progression survivals (OS, PFS, DFS, and PPS, respectively) were compared. We analyzed the relapse pattern of 72 patients, whose radiographic progresses were confirmed.

RESULTS: Significant improvements in DFS (median DFS in the pre-BEV era was 8.5 and 13.8 months, P=0.0046), and PFS (7.5 and 9.9 months, P=0.0155) after BEV approval were observed. These survival prolongations were strongly correlated (r=0.91, P<0.0001). Non-enhancing tumor emerged as a novel recurrence pattern in the post-BEV era (five of 33; 15.2%). Changes in relapse pattern did not significantly impact OS, PFS, and DFS. No significant difference in PPS between pre-BEV and post-BEV era was observed (6.7 and 5.5 months, P=0.2319). The rate of early (within 6 months) focal recurrence was significantly lower (P=0.0155) in the post-BEV era (four of 33; 12.1%) than in the pre-BEV era (18 of 39; 46.2%). A significant decrease in early focal recurrence after BEV approval was observed exclusively in patients with unresectable tumors (P=0.0110). Treatment era was the only parameter significantly correlated with decreased early focal recurrence rate (P=0.0021, univariate analysis; P=0.0144, multivariate analysis).

CONCLUSIONS: We found that, first-line BEV in Japan for unresectable tumors has a dramatic impact on the prevention of early progression and clinical deterioration of GBM without accelerating the clinical course after recurrence.

ACT-03
CLINICAL OUTCOME AND RADIOLOGICAL FINDINGS OF PATIENTS WITH RECURRENT GliOSBLASTomas TREATED BY BEvacizumAB
Hajime Handa1, Ichiyo Shibahara1, Takakazu Muragaki2, 1Department of Neurosurgery, Kitasato University School of Medicine, Japan

OBJECT: Seven years have passed since the approval of bevacizumab (BEV) in Japan. We retrospectively reviewed the clinical outcome and radiological findings of patients with recurrent glioblastomas (GBM) treated by BEV.

METHOD: We reviewed 116 patients, including 27 cases of newly diagnosed GB and 89 cases of recurrent GB, treated by BEV during the study period between 2013 June and 2019 September. Cumulatively, 116 patients received 1672 cycles of BEV. Among those, we focused on 74 patients with newly diagnosed GB treated by BEV at recurrence to examine clinical characteristics, outcome, and radiological findings of T2-circumscribed or double-circumscribed. Result: The study cohort comprised median age of 66 years (range 10 to 81), median KPS of 60% (range, 20 to 100), median cycles of administration 11(1 to 39), median period of treatment 172 days (0 to 1413), median post-BEV survival 266 days, and overall survival 693 days. Patients without progressive disease at 6 months post-BEV MRI (n = 23) presented favorable post-BEV survival of 713 days than those with progressive disease (n = 8) (P=0.0003). The radiological findings varied by patients, tumor lesions, and sequential imaging; thus, it was difficult to correlate with survival. Our data implied that the circumscribed lesion was accompanied by no enhancement at T1 but hyperperfused at arterial spin labeling imaging, indicating that blood-brain barriers were intact and vasculization is activated.

CONCLUSION: Although our cohort included patients with relatively high age, some had prolonged post-BEV survival. T2-circumscribed or double-circumscribed was not useful to predict the survival; however, MRI at 6 months post-BEV can be an indicator for two years of post-BEV survival.

ACT-05
PRESENT AND FUTURE OF PRECISION-BASED MEDICINE USING CANcer GENOME PANELS
Manabu Natsumeda1, Yu Kanemara2, Jotaro Ono1, Shoji Saito1, Yoshitomo Tanaka1, Masayuki Oka1, Tetuya Hisazumi1, Makoto Oishi1, Yukihiro Fuji1; 1Department of Neurosurgery, Brain Research Institute, Niigata University

BACKGROUND: Two cancer genome panels were approved for use in Japan in 2019, and their application in brain tumors are awaited. We have used CANCERPLEX and FoundationOne CDx (F1) panels for the realization of precision-based medicine in brain tumors. Patients and METHODS: From August 2017 to present, we have applied cancer genome panels in 11 times to tumors in 9 patients. We assessed patient data including age, sex, pathology, reason for using the panel, and therapeutic results. Results: Among age of 4 to 69 years (mean 45.2 years), and 5 men and 4 women were studied. Pathological diagnosis was epithelioid glioblastoma (GBM), giant cell GBM, anaplastic ependymoma, anaplastic meningioma, anaplastic large cell lymphoma, meningioma, gliosarcoma, chordoid plexus carcinoma and pineoblastoma. CANCERPLEX was performed 7 times and F1 panel 4 times and the reasons included confirmation specific gene mutations such as BRAF V600E and TP53, young (pediatric) age and patient request. In one patient, by analyzing primary and recurrent insuscitotic hits involved in malignant transformation, Actionable targets were found in 4 (44%) of cases, and action was taken in only 1 epithelioid GBM patient with BRAF V600E mutation, albeit with dramatic response (Kanamaru et al., Acta Neuropathol Commun, 2019). All tumors were microsatellite stable. CONCLUSIONS: We are able to understand tumor biology in rare brain tumors using 2 genome panels. We need to increase the percentage of patients actually treated. I will also like to touch briefly on how use genome panels for translational research on brain tumors.

ACT-07
CLINICAL TRIALS OF 11C-METHIONINE PET FOR BRAIN TUMORS
Shigeru Yamaguchi1, Toshihara Shiga1, Kenji Hirata2, Shunsuke Terasaki2, Hiroaki Kobayashi1, Eku Shimosegawa1, Naoya Kagawa1, Ryuichi Hirayama1, Manabu Kinoshita1, Haruhiko Kijima3, Masahiro Fujii1, Masahiro Ichikawa1, Noboru Oriuchi4, Yoji Kuge5, Nagara Tamaki6; 1Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan

BACKGROUND: Although 11C-Methionine (MET) PET has widely used, 11C-MET tracer has not been approved in Japan. We conducted multi-center prospective clinical trials using MET for drug approval in diagnosis of brain tumors[Methods] Two trials using 11C-MET PET were performed in Hokkaido University, Osaka University and Fukushima Medical University: 1) Diagnostic accuracy in differentiating tumor recurrence from radiation injury after radiotherapy in brain tumors, 2) The diagnostic efficacy in newly-diagnosed glomas. 1) The patients with suspected brain tumor recurrence underwent MET and/or FDG PET. MET uptake was examined in 32 recurrence cases were 100% and 50%, respectively. Sensitivities and specificities of MET and/or FDG uptake, respectively and will be finished next year. Therefore, we examined the feasibility and design of novel clinical trial for patients with grade 2/3 glioma.

ACT-17
PROTOCOL DESIGN OF A MATRIX-TYPE OF NOVEL CLINICAL TRIAL FOR LOWER-GRaDE GLIOMAS
Yoshitaka Murakami1, Masayuki Nitta1,1, Taichi Sato1,2, Shunsuke Tsuchizuki1,2, Atsuhiko Fuku1, Sokio Ikura1, Takashi Maruyama1, Takashi Komori1,1, Takakazu Kawamata2,1 Faculty of Advanced Technology, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University

INTRODUCTION: Differentiation between glioma grade 2 and 3 was performed based on histological findings. The current grade is an important prognostic factor due to its widespread use, economic efficiency, and data accumulation, but analog elements remain and the genetic marker is unknown. The concept of Lower-grade glioma including G2/3 is spreading. On the other hand, WHO grade is the criteria of clinical trials, and evidence is established for G2 with low risk and high risk, G3 alone or with G4. In Japan, JOCG 1303 and 1016 have been implemented for high-risk G2 and G3, respectively and will be finished next year. Therefore, we examined the feasibility and design of novel clinical trial for patients with grade 2/3 glioma.