Hyperisampsins H–M, Cytotoxic Polycyclic Polyprenylated Acylphloroglucinols from *Hypericum sampsonii*

Hucheng Zhu1, Chunmei Chen1, Qingyi Tong1, Xintao Chen1, Jing Yang2, Junjun Liu1, Bin Sun1, Jianping Wang1, Guangmin Yao1, Zengwei Luo1, Yongbo Xue1 & Yonghui Zhang1

Six new polycyclic polyprenylated acylphloroglucinols (PPAPs), named hyperisampsins H–M (1–6), were isolated from the aerial parts of *Hypericum sampsonii*, together with five known analogs (7–11). The structures of 1–6 were established by extensive spectroscopic analyses, including HRESIMS and NMR. In addition, the absolute configurations of these new compounds were determined by electronic circular dichroism (ECD) calculations. Compounds 1 and 2 represent the first examples of PPAPs possessing a unique γ-lactone ring at C-23, while 3–6 differed from normal PPAPs with an unprecedented 1,2-dioxane ring. Compounds 1–7 were evaluated for their cytotoxic activities against a panel of human cancer cell lines *in vitro*, of which 3, 4, and 6 exhibited significant cytotoxic activities with IC₅₀ values ranging from 0.56 to 3.00 μM. Moreover, compound 3 induces leukemia cell apoptotic death, evidenced by activation of caspase-3, degradation of PARP, up-regulation of Bax, and down-regulation of Bcl-2 and Bcl-xl.

Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of secondary metabolites that usually possess bicyclo[3.3.1]nonane-2,4,9-trione, adamantyl, or homoadamantyl-like core structures and associated with various bioactivities, such as anti-tumors, anti-bacterial, and anti-HIV. Recently, studies on naturally occurring PPAPs and on the total synthesis of complex PPAPs have attracted growing interest due to their challenging structures and potential biological activities. Plants of the genus *Hypericum* are well known as rich sources of PPAPs, and a large number of PPAPs have been discovered and reported as the main components of this genus. *Hypericum sampsonii* is a traditional Chinese medicine that is used to treat backache, burns, diarrhea, and swelling. Over the past two decades, phytochemical investigations conducted by several groups have resulted in the isolation and characterization of more than 50 PPAPs with various carbon skeletons and bioactivities from this plant.

As part of our continuing efforts to discover bioactive PPAPs in the genus *Hypericum*, a series of PPAPs and other components were previously identified. In our current study, further chemical investigation of *H. sampsonii* has led to the isolation of six new PPAPs, termed hyperisampsins H–M (1–6), together with five known analogs (7–11). Compounds 1 and 2 represent the first examples of PPAPs possessing a rare γ-lactone ring at C-23, while 3–6 differed from normal PPAPs with an unprecedented 1,2-dioxane ring. Here, we report the isolation, structural elucidation, and absolute configuration determination of these new PPAPs. In addition, the cytotoxic activities of compounds 1–7 against five human cancer cell lines were evaluated, of which 3, 4, and 6 exhibited significant cytotoxic activities.

1Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. 2State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China. Correspondence and requests for materials should be addressed to Y.Z. (email: zhangyh@mails.tjmu.edu.cn) or Y.X. (email: yongboxue@mail.hust.edu.cn)

Received: 08 May 2015
Accepted: 08 September 2015
Published: 06 October 2015
with IC_{50} values ranging from 0.56 to 3.00 μM. The apoptosis-inducing potential of compound 3 and the mechanism of action were further studied by FACS and western blotting, and the results showed that it induced apoptosis in leukemia cells, mediated by activation of caspase-3, degradation of PARP, upregulation of Bax, and downregulation of Bcl-2 and Bcl-xl.

Results and Discussion

Isolation and Structure Elucidation. A 95% EtOH extract of the aerial parts of *H. sampsonii* was suspended in water and successively partitioned with petroleum ether and CHCl₃. The petroleum ether and CHCl₃ extracts were then subjected to a series of chromatographic separations, including silica gel, RP-C₁₈ (reverse-phase), Sephadex LH-20, and semipreparative HPLC to yield six new (1–6) and five known (7–11) PPAPs (Fig. 1). The structures of the known compounds were elucidated by comparing their NMR data with those reported in the literature, and they were identified as attenuatumione C (7)²⁴, sampsonione K (8)¹⁰, otogirinin D (9)²⁵, and sampsoniones M (10)¹⁰ and N (11)¹¹.

Hyperisampsin H (1), a colorless oil, had a molecular formula of C₃₅H₄₂O₆ based on ¹³C NMR data and on a quasi-molecular ion peak at m/z 581.2799 [M + Na]⁺ in HRESIMS that required 15 indices of hydrogen deficiency. The ¹H NMR (Table 1) spectrum of 1 showed resonances for a monosubstituted phenyl group (δ_H 7.43, 2H, d, J = 8.2 Hz; 7.38, 1H, t, J = 7.3 Hz; and 7.27, 2H, t, J = 7.6 Hz), two olefinic protons (δ_H 4.95, 1H, t, J = 7.2 Hz and 4.88, 1H, t, J = 7.1 Hz), an oxygenated methine (δ_H 4.72, 1H, dd, J = 10.3, 6.1 Hz), and seven methyl singlets (δ_H 1.40, 1.45, 1.48, 1.54, 1.56, 1.58, and 1.69). The ¹³C NMR and DEPT (Table 2) of 1 revealed 35 carbons, which resolved into three carbonyls, one ester carbonyl, a monosubstituted benzene ring, six olefinic carbons, four quaternary carbons (one oxygenated), two methines (one oxygenated), six methylenes, and seven methyls. These characteristic NMR data suggested that 1 was a PPAP derivative related to sampsonione K (8)¹⁰.
A side-by-side comparison of the 1H and 13C NMR data of 1 with those of 8 along with a tracing of the connectivities observed in the HMBC and 1H–1H COSY spectra (Fig. 2) revealed that both 1 and 8 have the same bicyclo[3.3.1]nonane core structure. However, compound 1 differs from 8 by the absence of two olefinic carbons and two methyl groups, which, together with the presence of an unexpected carboxyl group at $\delta_{C} \ 175.5$ on the side chain at C-23, imply that 1 is an oxidative degradation product of 8. This conclusion was supported by the 1H–1H COSY correlations of H-25/H-27 and H-22/H-23 and by the long-range HMBC interactions from H-23 to C-4, H-26 to C-23, C-24, and C-25, and from H-25 to C-23, C-27, and C-28. In addition, with 14 indices of hydrogen deficiency occupied by the tricyclic core, a phenyl group, three carbonyls, and three double bonds, the remaining index indicated the presence of an unprecedented γ-lactone ring between C-28 ($\delta_{C} \ 175.5$) and C-24 ($\delta_{C} \ 85.7$).

The relative configurations at C-1, C-5, and C-7 of the core skeleton of 1 were established through a NOESY experiment (Fig. 2) and was further confirmed by comparing its 1H and 13C NMR data (Tables 1 and 2) with those of sampsonione K (8). The NOESY correlation between Me-38 and H-6β revealed their cofacial and axial relationship. Therefore, the large coupling constant of H-6β/H-7 ($J_{6\beta/7} \ 7.3$ Hz) and the absence of coupling between H-6α and H-7 indicated that H-7 was equatorial and β oriented. These analyses were also supported by the literature, which indicated that when the isoprenyl at C-7 is in an axial position, the deviation of the chemical shifts of the two protons attached to C-6 should be in the range of 0.0–0.2 ppm, while the chemical shift of C-7 should be in the range of 45–49 ppm. With compound 1, the deviation of the chemical shifts of H-6α and H-6β ($\Delta \delta_{\alpha/\beta} \ 0.1$ ppm), along with that of C-7 ($\delta_{C} \ 47.6$), corresponded well with the above conditions, confirming that the isoprenyl at C-7 was in the axial orientation. Furthermore, the α-configuration of H-23 was determined by the NOESY

no.	1	2	3	4	5	6
6a	2.29 d (14.1)	2.34 d (14.1)	2.30 d (14.1)	2.30 d (14.2)	2.36 d (14.1)	2.31 d (14.1)
6f	2.19 dd (14.1, 7.3)	2.18 dd (14.1, 7.5)	2.16 m	2.16 m	2.22 m	2.18 m
7	1.50 m	1.51 m	1.50 m	1.48 m	1.56 m	1.51 m
12	7.43 d (8.2)	7.44 d (8.2)	7.45 d (7.4)	7.45 d (8.0)	7.51 d (7.3)	7.46 d (8.5)
13	7.27 t (7.6)	7.23 t (7.8)	7.21 t (7.8)	7.22 t (7.8)	7.27 t (7.8)	7.21 t (7.8)
14	7.38 t (7.3)	7.39 t (7.4)	7.38 t (7.4)	7.38 t (7.4)	7.44 t (7.4)	7.38 t (7.4)
15	7.27 t (7.6)	7.23 t (7.8)	7.21 t (7.8)	7.22 t (7.8)	7.27 t (7.8)	7.21 t (7.8)
16	7.43 d (8.2)	7.44 d (8.2)	7.45 d (7.4)	7.45 d (8.0)	7.51 d (7.3)	7.46 d (8.5)
17a	3.09 dd (14.2, 7.9)	3.07 dd (14.2, 7.0)	3.08 dd (13.9, 7.4)	3.08 dd (13.9, 7.4)	3.13 dd (14.2, 7.5)	3.08 dd (13.9, 7.7)
17b	2.91 m	2.97 dd (14.2, 7.6)	3.00 dd (13.9, 7.8)	3.00 dd (13.9, 7.9)	3.05 dd (14.2, 7.6)	3.01 dd (13.9, 7.7)
18	4.95 t (7.2)	4.94 t (7.0)	5.07 t (7.6)	5.07 t (7.5)	5.11 t (7.5)	5.05 t (7.7)
20	1.58 s	1.60 s	1.61 s	1.61 s	1.65 s	1.60 s
21	1.56 s	1.60 s	1.63 s	1.63 s	1.66 s	1.61 s
22a	2.88 m	2.46 dd (13.3, 11.1)	2.63 dd (13.3, 11.0)	2.64 dd (13.3, 10.8)	2.65 dd (13.3, 10.9)	2.58 dd (13.3, 11.0)
22b	1.91 dd (13.3, 6.1)	1.92 dd (13.3, 5.8)	1.86 dd (13.3, 5.8)	1.86 m	1.90 m	1.86 dd (13.3, 6.1)
23	4.72 dd (10.3, 6.1)	4.88 dd (11.1, 5.8)	4.67 dd (11.0, 5.9)	4.65 dd (10.8, 5.8)	4.78 m	4.75 m
25a	2.54 dd (13.1, 2.2)	2.14 m	1.88 m	1.88 m	1.88 m	1.81 m
25b	2.16 m	2.01 dd (13.2, 8.4)	1.81 m	1.78 m	1.72 m	1.66 m
26	1.45 s	1.47 s	1.35 s	1.37 s	1.37 s	1.31 s
27a	2.79 m	2.69 t (8.4)	1.97 m	1.87 m	1.90 m	1.96 m
27b	2.66 m	1.82 m	1.62 m	1.62 m	1.81 m	1.61 m
28	3.91 dd (10.6, 3.2)	4.27 dd (9.7, 3.2)	4.29 dd (10.8, 3.2)	3.88 dd (11.0, 3.5)		
30	1.23 s	1.27 s	1.32 s	1.23 s		
31	1.27 s	1.28 s	1.38 s	1.28 s		
32	2.16 m	2.14 m	2.16 m	2.16 m	2.22 m	2.18 m
33	4.88 t (7.1)	4.87 t (7.5)	4.87 t (7.2)	4.87 t (7.2)	4.93 t (7.2)	4.87 t (7.1)
35	1.69 s	1.69 s	1.69 s	1.66 s	1.69 s	
36	1.54 s	1.53 s	1.54 s	1.53 s	1.75 s	1.54 s
37	1.48 s	1.48 s	1.48 s	1.47 s	1.59 s	1.49 s
38	1.40 s	1.41 s	1.40 s	1.40 s	1.45 s	1.40 s

Table 1. 1H NMR Data for Compounds 1–6 in CDCl$_3$ (400 MHz, J in Hz).
correlation of H-23/H-6α, which was identical to that of \(^8 \). To determine the configuration of C-24, the rotation energy barrier of the single bond C-23/C-24 was calculated (Fig. 3a)\(^{2b} \). As the literature reported, rotational energy barrier of 20 kcal mol\(^{-1} \) was a threshold to distinguish atropisomers and non-atropisomers\(^{26} \), therefore, theoretically, the carbon-carbon bond between C-23 and C-24 could rotate to certain extent. However, the calculated Boltzmann distribution of the most stable conformation of 1 (conformation \(1a \)) could reach up to 96.09% (Fig. 3), which together with the observed NOESY correlations (Fig. 2b) of Me-26 with H-23 and H-22 and of H-23/H-25 indicated that this rotation was restricted\(^{27} \), and suggested a \(R^* \) configuration for C-24. Thus, the structure of 1 was elucidated as shown, and it represents the first example of a PPAP with a unique \(\gamma \)-lactone ring.

The molecular formula of hyperisampsin 1 (2) was identical to that of 1 as revealed by the HRESIMS spectrum (\(m/z \) 581.2798, [M + Na]\(^{+} \)). The structural elucidation of 2 was straightforward, as a comparison of its \(^1 \)H and \(^{13} \)C NMR data (Tables 1 and 2) with those of 1, suggested that 1 and 2 shared great structural similarity. Careful analysis of the 2D NMR (\(^1 \)H–\(^1 \)H COSY and HMBC) spectra of 2 suggested that the planar structure of 2 was identical to that of 1. The relative configurations at C-1, C-5, and C-7 were established to be identical to those of 1 in the same manner as described for 1. In addition, the NOESY correlation of H-23/H-6α suggested that the H-23 of 2 was also \(\alpha \)-oriented. Therefore, the only difference between 2 and 1 was the relative configuration of C-24, which was revealed by the NOESY cross-peaks (Fig. 2b) of Me-26 with H-22 and H-23 and of H-22 with H-25. The relative configuration of C-24 of 2 was thereby elucidated as \(S^* \), and compound 2 was revealed as the C-24 epimer of 1.

Hyperisampsin J (3) was isolated as a colorless oil. A molecular formula of C\(_{38}\)H\(_{50}\)O\(_7\) was elucidated by the HRESIMS spectrum (\(m/z \) 581.2798, [M + Na]\(^{+} \)). The structural elucidation of 3 was straightforward, as a comparison of its \(^1 \)H and \(^{13} \)C NMR data (Tables 1 and 2) with those of 3 suggested that the structure of 3 resembled that of \(^8 \) except for the absence of the double bond at C-28 and C-29 in 8 and the presence of two oxygenated carbons (δC 87.0 and 72.0) in 3. Careful analysis of the HMBC and \(^{1} \)H–\(^{1} \)H COSY spectra of 3 revealed that it possessed the same carbon connectivities as 8, albeit with significantly higher degrees of oxidation. Considering the chemical shifts of C-24 (δC 80.9) and C-28 (δC 87.0) in 3, along with the 14 indices of hydrogen deficiency required by its HRESIMS, it was reasonable to locate a 1,2-dioxane ring at C-23 via a peroxide linkage between C-24 and C-28\(^{13} \), which was also supported by the TLC detection colored with KI-starch (Figure S1). This deduction was further confirmed by a comparison of the \(^{13} \)C NMR chemical shift values of this fragment (sequence from C-24 to C-28) in 3 with those of the 1,2-dioxane ring reported in the literature\(^{28} \). Thus, the planar structure of 3 was elucidated.

The relative configurations of C-1, C-5, and C-7, and C-23 in 3 were established to be the same as those of 1 by careful analyses of the \(^1 \)H and \(^{13} \)C NMR spectra and the NOESY spectra (Fig. 2). Considering the distributions of 1 based on the former conformation analyses, the \(S^* \) configuration of C-24 in 3 was determined by NOESY correlations from Me-26 to H-23 and H-22 and from H-22 to H-25.

Table 2. \(^{13} \)C NMR Data for Compounds 1–6 in CDCl\(_3\) (100 MHz).

no.	1	2	3	4	5	6
1	76.9	77.2	77.2	77.7	77.1	20
2	193.8	193.7	193.8	193.9	193.8	21
3	116.0	116.2	115.8	115.8	115.8	22
4	171.4	171.5	172.2	172.2	172.6	23
5	58.4	58.4	58.2	58.2	58.2	24
6	36.9	36.4	36.5	36.7	36.6	25
7	47.6	47.6	47.7	47.7	47.7	26
8	49.2	49.4	49.3	49.2	49.2	27
9	204.9	205.1	205.3	205.8	205.4	28
10	193.3	193.2	193.4	193.4	193.4	29
11	136.5	136.9	136.9	136.9	136.9	30
12	128.1	128.0	128.1	128.1	128.1	31
13	128.1	127.9	127.9	127.9	127.9	32
14	132.1	132.1	131.9	132.0	132.0	33
15	128.1	127.9	127.9	127.9	127.9	34
16	128.1	128.0	128.1	128.1	128.1	35
17	22.4	22.3	22.4	22.4	22.3	36
18	119.0	119.2	119.6	119.5	119.4	37
19	133.4	133.2	132.6	132.6	132.9	38

SCIENTIFIC REPORTS | 5:14772 | DOI: 10.1038/srep14772
modeling depicted the 1,2-dioxane ring to be in a chair conformation containing an axially oriented methyl group (Me-26) and an equatorially oriented carbon-carbon single bond at C-24/C-23. Additionally, the NOESY (in C5D5N, Fig. 2c) correlations from H-27a to H-25b and Me-26 and from H-28 to H-25a and H-27b, together with the large coupling constant of H-28/H-27a (J = 10.6 Hz), revealed that H-28 was axial and β-oriented. Therefore, the relative configuration of 3 was established, and it appears to be the first example of PPAPs possessing an unexpected 1,2-dioxane ring.

Detailed inspection of the 1H and 13C NMR spectroscopic data (Tables 1 and 2) of compounds 4–6 indicated that their structures closely resembled that of 3. Comprehensive analyses of the HMBC, 1H–1H COSY, and HRESIMS spectra of 4–6 suggested that compound 6 has the same planar structure as that of 3, while 4 and 5 might have structures with 1,2-dioxane rings or 1,2-dioxepane rings (4a/4b and 5a/5b, Fig. 4). In the end, the complete structures of 4 and 5 were determined to be 4a and 5a by comparing the experimental 13C NMR data with those calculated for 4a, 4b, 5a, and 5b (Fig. 4). The relative configurations at C-1, C-5, C-7, and C-23 of 4–6 were identical to those of 3 as revealed by their NOESY experiments and coupling constants. Consequently, the NOESY correlations from Me-26 to H-23 and H-22 and from H-23 to H-25 in 5 suggested an R* configuration of C-24. As with 5, the relative configurations of C-24 in compounds 4 and 6 were also established by NOESY experiments. Similar to 3, the orientations of H-28 in 4–6 were all set in axial orientations, owing to the large coupling constants of H-28 (9.7–11.0 Hz). Thus, the structures of 4–6 were established and named as hyperisampsins K–M.

Comparison of the electronic circular dichroism (ECD) spectra (Fig. 5) of the closely related compounds 1–6 suggested that all of them had a strong positive Cotton effect (CE) at λmax 270 nm and two negative CEs at λmax 246 and 305 nm. To determine the absolute configurations of 1–6, the ECD spectra of two simplified models A and B (Fig. 5) were calculated using time-dependent density functional theory (TDDFT) with Gaussian 09. The ECD spectra of 1–6 were subsequently compared with the calculated ECD curves of models A (1S,5R,7S) and B (1R,5S,7R) (Fig. 5), which revealed a good agreement between the experimental curves and the calculated curve of model A (1S,5R,7S). In addition, the experimental ECD curves of 1–6 were closely similar to those of hyperatenins A and B21, suggesting the same absolute configurations of the core structures. Thus, the absolute configurations of 1–6 were determined as shown.

Cytotoxic Activities Evaluation. Compounds 1–7 were tested for their cytotoxic activities against five human tumor cell lines, including a myeloid leukemia line (HL-60 cells), a hepatocellular carcinoma

Figure 2. (a) Selected 2D NMR correlations for the core structures of 1–6; (b) Newman projections for C-24/C-23 of 1–6; (c) key NOESY correlations for the 1,2-dioxane ring of 3.
line (SMMC-7721), a lung carcinoma line (A-549), a breast cancer line (MCF-7), and a colon cancer line (SW480). Cis-platin (DDP) was used as positive control for antitumor activity (Table 3). Among the compounds tested, compounds 3, 4, and 6 exhibited the most potent cytotoxicity, with IC\(_{50}\) values ranging from 0.56 to 3.00 \(\mu M\). Compounds 5 and 7 showed moderate cytotoxic activities, with IC\(_{50}\) values over a range of 3.03–25.92 \(\mu M\).

Flow cytometry analysis of cell apoptosis. To analyze the potential cell apoptosis induced by these cytotoxic PPAPs, two acute myeloid leukemia cell lines (HL60 and NB4) were treated with compound 3 for 48 hours. As shown in Fig. 6(A,B), treated HL60 and NB4 cells underwent dramatic cellular apoptosis in a concentration-dependent manner. Compared with the control group, the 0.75 \(\mu M\) compound 3 resulted in about 64.2% and 92.0% apoptosis incidence in NB4 and HL60 cells, respectively.

Western blot analysis of apoptosis related proteins. Caspase 3 activation is responsible for the proteolytic degradation of PARP, a hallmark of cells undergoing apoptosis. Bcl-2 family also plays a central regulatory role in the mitochondrial pathway of apoptosis. The balance between Bak versus Bcl-2 and Bcl-xl is important for apoptotic induction. As shown in Fig. 6(C,D), compound 3 treatments activated the expression levels of Caspase 3 and PARP. It also up-regulated Bak, but down-regulated Bcl-2.
and Bcl-xl. In conclusion, these data suggest that compound 3-induced apoptosis was mediated by the activation of caspase-3, upregulation of Bax, downregulation of Bcl-2/Bcl-xl, and degradation of PARP.

PPAPs are a special class of phloroglucinol derivatives, which have attracted great interest from both chemistry and pharmacology communities, since the report of the first natural occurring adamantyl derivative (plukenetione A) in 1996\(^\text{30}\). Recently, many bioactive PPAPs with complex and intriguing skeletons were reported, such as hyperuralones A and B\(^\text{31}\), hypersubones A and B\(^\text{32}\), and hyperisampsins A–D\(^\text{19}\). In this study, six new PPAPs (1–6), possessing novel unique \(\gamma\)-lactone or 1,2-dioxane rings, were isolated from the aerial parts of *Hypericum sampsonii*. Compounds 3, 4, and 6 exhibited significant cytotoxic activities with IC\(_{50}\) values ranging from 0.56 to 3.00 \(\mu\)M. Moreover, we have demonstrated that compound 3 has the capacity to induce cell apoptotic death in leukemia cells, revealing, for the first

Figure 4. Calculated \(^{13}\)C NMR data for 4 and 5.

Figure 5. Calculated ECD for models (A,B) and the experimental ECD spectra of 1–6.
time, the mechanism of PPAP-mediated cytotoxicity, which may attract more attentions from synthesis chemistry and pharmacology communities. In conclusion, the novel structure of 3 combined with its significant cytotoxic activities reported in this study may greatly promote the anti-tumor studies of PPAPs, and further investigations on the mechanism and structure-function relationship for developing more excellent agent are necessary.

Methods

General experimental procedures. Optical rotations were determined with a Perkin-Elmer 341 polarimeter. UV, ECD, and FT-IR spectra were measured using a Varian Cary 50, a JASCO-810 spectrometer, and a Bruker Vertex 70, respectively. NMR spectra were recorded on a Bruker AM-400 spectrometer. UV, ECD, and FT-IR spectra were measured using a Varian Cary 50, a JASCO-810 spectrometer, and a Bruker Vertex 70, respectively. NMR spectra were recorded on a Bruker AM-400 spectrometer.

Plant material. The aerial parts of *H. sampsonii* were collected from the Da-bie Mountain areas of Hubei Province, P. R. China, in October 2011, and were identified by Professor Jianping Wang. A voucher specimen (ID 201111008) has been deposited with the Herbarium of Materia Medica, Faculty of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, China.

Extraction and isolation. The air-dried aerial parts of *H. sampsonii* (50 kg) were extracted with 95% EtOH, and the extract was partitioned with petroleum ether and CHCl₃ against water. The petroleum ether soluble extract (800 g) was separated by chromatography on a silica gel column (5 kg, 20 × 120 cm; petroleum ether to acetone, 100:0) to furnish six parts (A–F). Fraction B was further separated by Sephadex LH-20 (MeOH) and then ODS (MeOH-H₂O, 60% → 100%) to obtain six subfractions (B.1–B.7). Subfraction B.2 was further subjected to Sephadex LH-20 (MeOH) and then MPLC (ODS, MeOH to H₂O, from 40% to 100%) to obtain six additional subfractions (B.2.1–B.2.6).

Compounds	HL-60	SMMC-7721	A-549	MCF-7	SW480	BEAS-2B
1	>40.00	>40.00	>40.00	>40.00	>40.00	–
2	>40.00	>40.00	>40.00	>40.00	>40.00	–
3	0.56	0.58	0.53	0.88	2.49	1.50
4	1.67	2.15	2.13	2.73	3.00	2.71
5	3.03	11.30	11.13	11.54	13.59	15.77
6	1.42	2.28	1.89	1.66	2.90	3.04
7	15.52	18.36	15.19	5.72	20.10	17.08
DDP	1.17	6.43	9.24	15.86	13.42	11.11

Table 3. Cytotoxic Activities of 1–7 (IC₅₀ in μM). The IC₅₀ value of compound 3 against NB4 cell was 0.63 μM. *DDP (cis-platin) was used as a positive control; ‘–’ not tested.*
B.2.3 was further purified by Sephadex LH-20 (MeOH), silica gel CC, and finally by semi-preparative HPLC (CH$_3$OH-H$_2$O, 90%) to obtain compounds 4 (15 mg) and 5 (9 mg).

Hyperisampsin H ([1]). Colorless oil, [α]$_D^{20}$ + 4 (c = 0.2, CHCl$_3$); UV (CH$_3$OH) λ_{max} (log ε) = 204 (4.29), 248 (4.01), and 274 (3.90) nm; ECD (MeOH) λ_{max} (Δε) 221 (+0.7), 247 (−7.4), 267 (+18.8), 300 (−1.1) nm; IR ν_{max} = 1780, 1729, 1695, and 1627 cm$^{-1}$; for 1H NMR (400 MHz) and 13C NMR (100 MHz) data see Tables 1 and 2, respectively; HRESIMS m/z 581.2799 [M + Na]$^+$ (calculated for C$_{35}$H$_{42}$O$_6$Na, 581.2879).

Hyperisampsin I ([2]). Colorless oil, [α]$_D^{20}$ + 42 (c = 0.2, CHCl$_3$); UV (CH$_3$OH) λ_{max} (log ε) = 204 (4.35), 248 (4.08), and 275 (3.98) nm; ECD (MeOH) λ_{max} (Δε) 221 (+2.0), 245 (−6.0), 269 (+19.3), 300 (−1.2) nm; IR ν_{max} = 1780, 1728, 1696, and 1627 cm$^{-1}$; for 1H NMR (400 MHz) and 13C NMR (100 MHz) data see Tables 1 and 2, respectively; HRESIMS m/z 581.2798 [M + Na]$^+$ (calculated for C$_{35}$H$_{42}$O$_6$Na, 581.2879).

Hyperisampsin J ([3]). Colorless oil, [α]$_D^{20}$ + 21 (c = 0.3, CH$_3$OH); UV (CH$_3$OH) λ_{max} (log ε) = 205 (4.46), 247 (4.17), and 277 (4.15) nm; ECD (MeOH) λ_{max} (Δε) 221 (+0.3), 245 (−6.0), 268 (+15.3), 302 (−1.6) nm; IR ν_{max} = 3518, 1728, 1698, and 1627 cm$^{-1}$; for 1H NMR (400 MHz) and 13C NMR (100 MHz) data see Tables 1 and 2, respectively; HRESIMS m/z 641.3429 [M + Na]$^+$ (calculated for C$_{38}$H$_{50}$O$_7$Na, 641.3454).

Hyperisampsin K ([4]). Colorless oil, [α]$_D^{20}$ + 12 (c = 0.4, CHCl$_3$); UV (CH$_3$OH) λ_{max} (log ε) = 203 (4.25), 247 (4.00), and 274 (3.88) nm; ECD (MeOH) λ_{max} (Δε) 221 (+1.3), 246 (−5.0), 268 (+11.6), 307 (−1.2)

Figure 6. **Compound 3 induces apoptosis in leukemia cells.** (A) After 48 h treatment, cell apoptosis was determined by Annexin V-FITC and PI staining using flow cytometric analysis. Cells in the lower right quadrant indicate early apoptotic cells, and cells in the upper right quadrant indicate late apoptotic cells. (B) Columns, means of three different experiments; bars, SD, *P < 0.05, **P < 0.01 vs control group. (C) Western blot analysis for PARP, Bcl-2, Bcl-xl, Bak and caspase-3 levels, β-Actin was used as a loading control. (D) The relative density compared with β-Actin of each protein was detected by Image J, data are presented as the means of three experiments, bars, SD, *P < 0.05, **P < 0.01 vs control group.
nn; IR ν_{max} = 3419, 1734, and 1700 cm^{-1}; for ^1H NMR (400 MHz) and ^13C NMR (100 MHz) data see Tables 1 and 2, respectively; HRESIMS m/z 657.3380 [M + Na]^+ (calculated for C_{38}H_{49}O_{7}Na, 657.3403).

Hyperisampsin L (5). Colorless oil, [α]_{D}^{20} + 9 (c = 0.1, CH_{2}OH); UV (CH_{2}OH) λ_{max} (log ε) = 203 (4.39), 248 (4.04), and 277 (3.95) nm; ECD (MeOH) λ_{max} (Δε) 221 (+0.1), 244 (−5.9), 268 (+14.5), 307 (−1.9) nm; IR ν_{max} = 3423, 1728, 1697, and 1626 cm^{-1}; for ^1H NMR (400 MHz) and ^13C NMR (100 MHz) data see Tables 1 and 2, respectively; HRESIMS m/z 657.3383 [M + Na]^+ (calculated for C_{38}H_{50}O_{7}Na, 657.3403).

Hyperisampsin M (6). Colorless oil, [α]_{D}^{20} + 47 (c = 0.1, CHCl_{3}); UV (CH_{2}OH) λ_{max} (log ε) = 204 (4.22), 248 (3.95), and 275 (3.88) nm; ECD (MeOH) λ_{max} (Δε) 221 (+1.0), 247 (−6.3), 267 (+17.3), 300 (−0.4) nm; IR ν_{max} = 3421, 1722, 1696, and 1626 cm^{-1}; for ^1H NMR (400 MHz) and ^13C NMR (100 MHz) data see Tables 1 and 2, respectively; HRESIMS m/z 641.3374 [M + Na]^+ (calculated for C_{38}H_{49}O_{7}Na, 641.3454).

Computational details. The theoretical calculations of compound 1 and the simplified models (A and B) of compounds 1–6 were performed using Gaussian 09. Conformational analysis was initially performed using Maestro in Schrödinger 2010 conformational searching together with the OPLS_2005 molecular mechanics methods. The optimized conformation geometries and thermodynamic parameters of all conformations were provided. The OPLS_2005 conformers were optimized at the B3LYP/6–31G(d, p) level. The theoretical calculation of ECD was performed using time-dependent density functional theory (TDDFT) at the B3LYP/6–31G(d, p) level in methanol with a PCM model. The calculated ECD curve was generated using SpecDis 1.5133. R_{opt} was used in this work. The 3D structures of 4a/4b and 5a/5b, generated by Chem3D, were optimized in chloroform by using Gaussian 09 at the B3LYP/6–31G(d, p) level. Both optimized structures were then further used as the input structures for NMR calculations. For each conformation, the NMR calculation was performed using Gaussian 09 at the B3LYP/6–31G level. Finally, the relative errors between the computed and recorded ^13C NMR spectra were calculated.

Cytotoxic assay. Five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480), together with one noncancerous cell line, the Beas-2B human bronchial epithelial cell line, were used in the cytotoxic activity assay. Cytotoxic activity was measured as described in our previous report.

Flow cytometry analysis of cell apoptosis. Apoptosis analysis was carried out using an apoptosis detection kit (Keygen, Nanjing, China) according to the manufacturer’s instructions. Briefly, HL60 and NB4 cells were exposed to vehicle (DMSO < 0.01%) and compound 3 (0.5 and 0.75 μM) for 48 h, then cells were collected and washed with cold PBS, and then resuspended in 500 μL binding buffer. After that, 5 μL of Annexin-V-FITC and 10 μL of PI were added. After supravital staining, cell apoptosis was analyzed by flow cytometry (Becton Dickinson, San Jose, CA, USA).

Western blot analysis. Western blot analysis was conducted as described previously (citation). Briefly, cells were treated with DMSO and compound 3 (0.5 and 0.75 μM) for 48 h, and then lysed in a radio immune-precipitation assay buffer. Protein concentrations were determined using a BCA protein assay kit (Beyotime, Beijing, China). Samples were subjected to electrophoresis in 10% SDS-PAGE gels followed by transfer to PVDF membrane and probed with specific antibodies, including PARP, Bcl-2, Bcl-XL, Bak, Cleaved Caspase 3, and β-Actin (Cell Signaling Technology, Inc.). Blots bands were visualized using the horseradish peroxidase conjugated secondary antibodies and chemiluminescent substrate.

References
1. Ciocchina, R. & Grossman, R. B. Polycyclic polyrenylated acylphloroglucinols. Chem. Rev. 106, 3963–3986 (2006).
2. Richard, J. A., Pouwer, R. H. & Chen, D. Y. K. The chemistry of the polycyclic polyrenylated acylphloroglucinols. Angew. Chem. Int. Ed. 51, 4536–4561 (2012).
3. Singh, I. P., Sidana, J., Bharate, S. B. & Foley, W. J. Phloroglucinol compounds of natural origin: Synthetic aspects. Nat. Prod. Rep. 53, 7832–7837 (2014).
4. Hu, L. H. & Sim, K. Y. Cytotoxic polyprenylated benzoylphloroglucinol derivatives with an unusual adamantyl skeleton from Hypericum sampsonii (Guttiferae). Tetrahedron Lett. 40, 759–762 (1999).
5. Hu, L. H. & Sim, K. Y. Complex caged polyisoprenylated benzophenone derivatives, sampsoniones A and B, from Hypericum sampsonii (Guttiferae). Org. Lett. 1, 879–882 (1999).
6. Hu, L. H. & Sim, K. Y. Sampsoniones A–M, a unique family of caged polyrenylated benzoylphloroglucinol derivatives, from Hypericum sampsonii. Tetrahedron 56, 1379–1386 (2000).
Hypericum sampsonii: Acylphloroglucinols from

How to cite this article: Zhu, H. et al. The authors declare no competing financial interests.

Additional Information

Acknowledgments

Author Contributions

Additional Information

Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/