NORM INEQUALITIES FOR ACCRETIVE-DISSIPATIVE BLOCK MATRICES

FADI ALRIMAWI, MOHAMMAD AL-KHYLEH, AND FUAD A. ABUSHAHEEN

Abstract. Let $T = [T_{ij}] \in \mathbb{M}_{mn}(\mathbb{C})$ be accretive-dissipative, where $T_{ij} \in \mathbb{M}_n(\mathbb{C})$ for $i, j = 1, 2, \ldots, m$. Let f be a function that is convex and increasing on $[0, \infty)$ where $f(0) = 0$. Then

$$
\left\| f \left(\sum_{i<j} |T_{ij}|^2 \right) + f \left(\sum_{i<j} |T^*_{ji}|^2 \right) \right\| \leq \left\| f \left(\frac{m^2 - m}{2} |T|^2 \right) \right\|.
$$

Also, if f is concave and increasing on $[0, \infty)$ where $f(0) = 0$, then

$$
\left\| f \left(\sum_{i<j} |T_{ij}|^2 \right) + f \left(\sum_{i<j} |T^*_{ji}|^2 \right) \right\| \leq \left\| f \left(\frac{m^2 - m}{2} |T|^2 \right) \right\|.
$$

1. Introduction

Let $\mathbb{M}_n(\mathbb{C})$ be the algebra of all $n \times n$ complex matrices. A matrix $T \in \mathbb{M}_{mn}(\mathbb{C})$ can be partitioned as an $m \times m$ block matrix ($m \in \{2, 3, 4, \ldots\}$)

$$
T = \begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1m} \\
T_{21} & T_{22} & \cdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
T_{m1} & T_{m2} & \cdots & T_{mm}
\end{bmatrix},
$$

where $T_{ij} \in \mathbb{M}_n(\mathbb{C})$ for $i, j = 1, 2, \ldots, m$.

A matrix $T \in \mathbb{M}_{mn}(\mathbb{C})$ with Cartesian decomposition $T = \text{Re} T + i \text{Im} T$ is said to be accretive-dissipative if both $\text{Re} T$ and $\text{Im} T$ are positive semidefinite. We will represent $\text{Re} T$ and $\text{Im} T$ in our work as

$$
\text{Re} T = \hat{A} = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1m} \\
A^*_{12} & A_{22} & \cdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
A^*_{1m} & \cdots & A_{mm}
\end{bmatrix} \quad \text{and} \quad \text{Im} T = \hat{B} = \begin{bmatrix}
B_{11} & B_{12} & \cdots & B_{1m} \\
B^*_{12} & B_{22} & \cdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
B^*_{1m} & \cdots & B_{mm}
\end{bmatrix},
$$

2020 Mathematics Subject Classification. 15A18; 15A60; 47A30; 47B15.
Keywords. Accretive-dissipative matrix; convex function; concave function; inequality; singular value; unitarily invariant norm.

201
where \(A_{ij}, B_{ij} \in \mathbb{M}_n(\mathbb{C}) \) for \(i, j = 1, 2, \ldots, m \).

A principal submatrix of a square matrix \(A \) is the matrix obtained by deleting any \(j \) rows and the corresponding \(j \) columns.

On \(\mathbb{M}_n(\mathbb{C}) \), a norm \(\| \cdot \| \) satisfying the invariance property that \(\| UAV \| = \| A \| \) for every \(A, U, V \in \mathbb{M}_n(\mathbb{C}) \) where \(U, V \) are unitary is said to be unitarily invariant.

For \(A \in \mathbb{M}_n(\mathbb{C}) \) and \(B \in \mathbb{M}_{mn}(\mathbb{C}) \), the inequality \(\| A \| \leq \| B \| \) means that

\[
\| A \oplus 0 \oplus \cdots \oplus 0 \| \leq \| B \|,
\]

where the direct sum \(A \oplus 0 \oplus \cdots \oplus 0 \) is the matrix in \(\mathbb{M}_{mn}(\mathbb{C}) \) defined by

\[
A \oplus 0 \oplus \cdots \oplus 0 = \begin{bmatrix}
A & 0 & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 0
\end{bmatrix}.
\]

The Ky Fan \(k \)–norms \(\| \cdot \|_{(k)} \) \((k = 1, \ldots, n) \) are the norms defined on \(\mathbb{M}_n(\mathbb{C}) \) by \(\| T \|_{(k)} = \sum_{j=1}^{k} s_j(T), k = 1, \ldots, n \), where \(s_1(T) \geq \cdots \geq s_n(T) \) are the eigenvalues of the matrix \(|T| = (T^*T)^{1/2} \) arranged in decreasing order. The Ky Fan dominance principle asserts that, for every unitarily invariant norm, we have

\[
\| A \| \leq \| B \| \iff \| A \|_{(k)} \leq \| B \|_{(k)} \text{ for } k = 1, \ldots, n. \quad (1.2)
\]

Let \(\zeta \) be the class of all functions \(f \) that are increasing and nonnegative on \([0, \infty) \) and satisfies the condition: If \(x = (x_1, x_2, \ldots, x_n) \) and \(y = (y_1, y_2, \ldots, y_n) \) are two decreasing sequences of nonnegative real numbers such that \(\prod_{j=1}^{k} x_j \leq \prod_{j=1}^{k} y_j \) for \(k = 1, 2, \ldots, n \), then

\[
\prod_{j=1}^{k} f(x_j) \leq \prod_{j=1}^{k} f(y_j) \text{ for } k = 1, 2, \ldots, n.
\]

A nonnegative function \(f \) defined on \([0, \infty) \) is called submultiplicative if \(f(mn) \leq f(m)f(n) \) whenever \(m, n \in [0, \infty) \).

In [6], [12], [15], and [16], a norm inequalities that compare \(T \) with its diagonal blocks have been given.

In [8], it has been shown that for an accretive-dissipative \(2 \times 2 \) block matrix \(T = \begin{bmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{bmatrix} \in \mathbb{M}_{2n}(\mathbb{C}) \), we have

\[
\left\| f\left(|T_{12}|^2\right) + f\left(|T_{21}|^2\right) \right\| \leq \left\| f\left(|T|^2\right) \right\| \quad (1.3)
\]

\[
\left\| f\left(|T_{12}|^2\right) + f\left(|T_{21}|^2\right) \right\| \leq 4 \left\| f\left(|T|^2/4\right) \right\| \quad (1.4)
\]

\[
\left\| f\left(|T_{12}|^2\right) + f\left(|T_{21}|^2\right) \right\| \leq \|f^p(2|T_{11}|)|^{1/p}\|f^q(2|T_{22}|)|^{1/q} \quad (1.5)
\]

and

\[
\left\| f\left(|T_{12}|^2\right) + f\left(|T_{21}|^2\right) \right\| \leq 4 \|f^p(|T_{11}|)|^{1/p}\|f^q(|T_{22}|)|^{1/q}, \quad (1.6)
\]

where in the inequality (1.3) \(f \) is a function convex and increasing on \([0, \infty)\) with \(f(0) = 0 \), in the inequality (1.4) \(f \) is a function concave and increasing on \([0, \infty)\) with \(f(0) = 0 \), in the inequality (1.5) \(f \in \zeta \) is submultiplicative convex function with \(f(0) = 0 \) and \(p, q \in (0, \infty) \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), and in the inequality (1.6) \(f \in \zeta \) is submultiplicative concave function with \(f(0) = 0 \) and \(p, q \in (0, \infty) \) with \(\frac{1}{p} + \frac{1}{q} = 1 \).
In this paper, some norm inequalities concerning with accretive-dissipative block matrices in $\mathbb{M}_{mn}(\mathbb{C})$ ($m \in \{2, 3, 4, \ldots\}$) are given. In Section 2, some unitarily invariant norm inequalities that compare the accretive-dissipative matrix T to its off-diagonal blocks, where T is partitioned as in (1.1) are derived. In Section 3, a unitarily invariant norm inequalities for functions $f \in \zeta$ are presented. In Section 4, some results for a 2×2 accretive-dissipative block matrices are given.

2. SOME UNITARILY INVARIANT NORM INEQUALITIES

In this section, we give some unitarily invariant norm inequalities that compare the accretive-dissipative matrix T to its off-diagonal blocks, where T is partitioned as in (1.1). To start our work, we will use the following lemma (see [13]).

Lemma 2.1. Let $A = \begin{bmatrix} X & B \\ B^* & Y \end{bmatrix} \in \mathbb{M}_{2n}(\mathbb{C})$ be positive semidefinite. Then
\[2s_j(B) \leq s_j(A) \]
for $j = 1, 2, \ldots, n$.

The following lemma can be shown easily depending on the inequality (1.2).

Lemma 2.2. Let $X, Y \in \mathbb{M}_n(\mathbb{C})$ be positive semidefinite, and let f be a function that is increasing and nonnegative on $[0, \infty)$. If $s_j(X) \leq s_j(Y)$ for $j = 1, 2, \ldots, n$, then
\[||f(X)|| \leq ||f(Y)||. \]

The following lemma, which is essentially due to Fan and Hoffman [5], can be concluded from Lemma 3.2 in [12] or Proposition III.5.1 in [2, p. 73].

Lemma 2.3. Let $T \in \mathbb{M}_n(\mathbb{C})$ be accretive-dissipative. Then
\[s_j(\text{Re} T) \leq s_j(T) \text{ and } s_j(\text{Im} T) \leq s_j(T) \]
for $j = 1, 2, \ldots, n$.

Also, we need the following lemma (see [10, p. 149]) which is essential in our work.

Lemma 2.4. Let $X \in \mathbb{M}_n(\mathbb{C})$ and let Y be a principal submatrix. Then
\[s_j(Y) \leq s_j(X) \]
for $j = 1, 2, \ldots, n$.

In the following lemma, part (a) is an extension of Theorem 2.3 in [1] for n-tuples of operators (see also [9, Theorem 1]), a stronger version of part (b) of the lemma can be obtained by invoking an argument similar to that used in the proof of Proposition 4.1 in [14]. For various Jensen type matrix inequalities, we refer to [3] and references therein. Part (c) can be found in [11] and we can find part (d) in [4]. Henceforth, we assume that every function is continuous.

Lemma 2.5. Let $A_1, \ldots, A_n \in \mathbb{M}_n(\mathbb{C})$ be positive and let $\alpha_1, \ldots, \alpha_n$ be positive real numbers such that $\sum_{j=1}^n \alpha_j = 1$. Then
\[
(a) \quad \left\| f \left(\sum_{j=1}^n \alpha_j A_j \right) \right\| \leq \left\| \sum_{j=1}^n \alpha_j f(A_j) \right\| \quad \text{for every function } f \text{ that is convex and nonnegative on } [0, \infty),
\]
\[
(b) \quad \left\| \sum_{j=1}^n \alpha_j f(A_j) \right\| \leq \left\| f \left(\sum_{j=1}^n \alpha_j A_j \right) \right\| \quad \text{for every function } f \text{ that is concave and nonnegative on } [0, \infty).
\]
Theorem 2.6. or [7, pp. 47, 82] are essential in the proof of Lemma 2.5.

Note that the Fan (dominance and maximum) principles (see, e.g., [2, pp. 24, 93] or [7, pp. 47, 82]) are essential in the proof of Lemma 2.5.

Our first main result in this section is the following theorem.

Theorem 2.6. Let $T \in \mathbb{M}_{mn}(\mathbb{C})$ be a partitioned accretive-dissipative matrix as given in (1.1), and let f be a function that is convex and increasing on $[0, \infty)$ where $f(0) = 0$. Then

\[
\left\| f \left(\sum_{i<j} |T_{ij}|^2 \right) + f \left(\sum_{i<j} |T_{ji}|^2 \right) \right\| \leq f \left(\frac{m^2 - m}{2} |T|^2 \right). \tag{2.1}
\]

Proof. Let $C_{ij} = \begin{bmatrix} T_{ii} & T_{ij} \\ T_{ji} & T_{jj} \end{bmatrix} \in \mathbb{M}_{2n}(\mathbb{C})$, then C_{ij} is a principal submatrix of T, it follows that C_{ij} is accretive-dissipative with Cartesian decomposition $C_{ij} = \begin{bmatrix} A_{ij} & A_{ij} \\ A_{ij} & A_{jj} \end{bmatrix} + i \begin{bmatrix} B_{ii} & B_{ij} \\ B_{ij} & B_{jj} \end{bmatrix}$. Using Lemma 2.1 and Lemma 2.2, we get that

\[
\left\| f \left((2m^2 - 2m) |A_{ij}|^2 \right) \right\| \leq f \left(\frac{m^2 - m}{2} (\text{Re} \ C_{ij})^2 \right) \tag{2.2}
\]

and

\[
\left\| f \left((2m^2 - 2m) |B_{ij}|^2 \right) \right\| \leq f \left(\frac{m^2 - m}{2} (\text{Im} \ C_{ij})^2 \right). \tag{2.3}
\]

Also, using Lemmas 2.2 and 2.3, we have

\[
\left\| f \left(\frac{m^2 - m}{2} (\text{Re} \ C_{ij})^2 \right) \right\| \leq f \left(\frac{m^2 - m}{2} |C_{ij}|^2 \right) \tag{2.4}
\]

and

\[
\left\| f \left(\frac{m^2 - m}{2} (\text{Im} \ C_{ij})^2 \right) \right\| \leq f \left(\frac{m^2 - m}{2} |C_{ij}|^2 \right). \tag{2.5}
\]

Now,

\[
\left\| f \left(\sum_{i<j} |T_{ij}|^2 \right) + f \left(\sum_{i<j} |T_{ji}|^2 \right) \right\|
\]

\[
\leq \left\| f \left(\sum_{i<j} \left(|T_{ij}|^2 + |T_{ji}|^2 \right) \right) \right\| \quad \text{(by Lemma 2.5(c))}
\]

\[
= \left\| f \left(\sum_{i<j} \left(|A_{ij} + iB_{ij}|^2 + |A_{ij} - iB_{ij}|^2 \right) \right) \right\|
\]

\[
= \left\| f \left(2 \sum_{i<j} \left(|A_{ij}|^2 + |B_{ij}|^2 \right) \right) \right\|
\]
Since C_{ij} is a principal submatrix of T, it can be inferred from Lemmas 2.4 and 2.2 that
\[\left\| f \left(\sum_{i<j} |C_{ij}|^2 \right) \right\| \leq \left\| f \left(\frac{m^2 - m}{2} |C_{ij}|^2 \right) \right\|. \quad (2.7) \]
Now, the result follows from the inequalities (2.6) and (2.7).

Note that the inequality (1.3) follows by taking $m = 2$ in the inequality (2.1). So, the inequality (2.1) gives a generalization to the inequality (1.3).

Applications of Theorem 2.6 will be given in the following corollaries.

Corollary 2.7. Let $T \in \mathbb{M}_{mn}(\mathbb{C})$ be a partitioned accretive-dissipative matrix as given in (1.1), and let f be a function that is convex and increasing on $[0, \infty)$ where $f(0) = 0$. For all $p \geq 2$, we have
\[\left\| f \left(\left(\sum_{i<j} |T_{ij}|^2 \right)^{p/2} \right) \right\| + f \left(\left(\sum_{i<j} |T_{ji}|^2 \right)^{p/2} \right) \right\| \leq \left\| f \left(\frac{m^2 - m}{2} |T|^2 \right)^{p/2} \right\|. \quad (2.8) \]
In particular, when $m = 2$, we have
\[\left\| f (|T_{12}|^p) + f (|T_{21}|^p) \right\| \leq \left\| f (|T|^p) \right\|. \]

Proof. The inequality (2.8) follows by applying the inequality (2.1) to the convex function $f(p/2)$.
Corollary 2.8. Let $T \in \mathbb{M}_{mn}(\mathbb{C})$ be a partitioned accretive-dissipative matrix as given in (1.1). Then

$$\left\| e \left(\sum_{i \leq j} |T_{ij}|^2 \right) + e \left(\sum_{i \leq j} |T_{ji}|^2 \right) - 2I_n \right\| \leq \left\| e \left(\frac{m^2 - m}{2} |T|^2 \right) - I_{mn} \right\| .$$

Proof. The proof follows by applying the inequality (2.1) to the function $f(t) = e^t - 1$ which is a convex function that is increasing on $[0, \infty)$ with $f(0) = 0$. \square

Corollary 2.9. Let $T \in \mathbb{M}_{mn}(\mathbb{C})$ be a partitioned accretive-dissipative matrix as given in (1.1). Then

$$\left\| e \left(\sum_{i \leq j} |T_{ij}|^2 \right) + e \left(\sum_{i \leq j} |T_{ji}|^2 \right) \right\| \leq \left\| e \left(\frac{m^2 - m}{2} |T|^2 \right) + I_{mn} \right\| . \tag{2.9}$$

Proof. Applying Corollary 2.8 to the Ky Fan k–norms, we have

$$\left\| e \left(\sum_{i \leq j} |T_{ij}|^2 \right) + e \left(\sum_{i \leq j} |T_{ji}|^2 \right) - 2I_n \right\| \oplus 0 \oplus ... \oplus 0 \leq \left\| e \left(\frac{m^2 - m}{2} |T|^2 \right) - I_{mn} \right\|_{(k)}$$

for $k = 1, ..., mn$. Thus, for $k = 1, ..., n$, we have

$$\left\| e \left(\sum_{i \leq j} |T_{ij}|^2 \right) + e \left(\sum_{i \leq j} |T_{ji}|^2 \right) \right\| \oplus 0 \oplus ... \oplus 0 \leq -2k$$

$$= \left\| e \left(\sum_{i \leq j} |T_{ij}|^2 \right) + e \left(\sum_{i \leq j} |T_{ji}|^2 \right) - 2I_n \right\| \oplus 0 \oplus ... \oplus 0 \right\|_{(k)} \leq \left\| e \left(\frac{m^2 - m}{2} |T|^2 \right) - I_{mn} \right\|_{(k)}$$

and for $k = n + 1, ..., mn$, we have

$$\left\| e \left(\sum_{i \leq j} |T_{ij}|^2 \right) + e \left(\sum_{i \leq j} |T_{ji}|^2 \right) \right\| \oplus 0 \oplus ... \oplus 0 \leq -2k$$

$$\leq \left\| e \left(\sum_{i \leq j} |T_{ij}|^2 \right) + e \left(\sum_{i \leq j} |T_{ji}|^2 \right) \right\| \oplus 0 \oplus ... \oplus 0 \right\|_{(k)} \leq -2n$$

$$= \left\| e \left(\sum_{i \leq j} |T_{ij}|^2 \right) + e \left(\sum_{i \leq j} |T_{ji}|^2 \right) - 2I_n \right\| \oplus 0 \oplus ... \oplus 0 \right\|_{(k)} \leq \left\| e \left(\frac{m^2 - m}{2} |T|^2 \right) - I_{mn} \right\|_{(k)}$$

$$= \left\| e \left(\frac{m^2 - m}{2} |T|^2 \right) \right\|_{(k)} - k. \tag{2.11}$$
From the inequalities (2.10) and (2.11), we have
\[
\left\| \left(e^{\frac{1}{2} \sum_{i<j} |T_{ij}|^2} + e^{\frac{1}{2} \sum_{i<j} |T_{ji}|^2} \right) \oplus 0 \oplus \cdots \oplus 0 \right\|_{(k)} \\
\leq \left\| e^{\frac{1}{2} \sum_{i<j} |T_{ij}|^2} \right\|_{(k)} + k \\
= \left\| e^{\frac{1}{2} \sum_{i<j} |T_{ij}|^2} + I_{mn} \right\|_{(k)}
\]
for \(k = 1, \ldots, mn \). Now, the inequality (2.9) follows from the inequality (2.12) and the Ky Fan dominance principle.

Our second main result in this section can be stated as follows.

Theorem 2.10. Let \(T \in \mathbb{M}_{mn}(\mathbb{C}) \) be a partitioned accretive-dissipative matrix as given in (1.1), and let \(f \) be a function that is concave and increasing on \([0, \infty)\) where \(f(0) = 0 \). Then
\[
\left\| f \left(\sum_{i<j} |T_{ij}|^2 \right) + f \left(\sum_{i<j} |T_{ji}|^2 \right) \right\| \leq (2m^2 - 2m) \left\| f \left(\frac{|T|^2}{4} \right) \right\|.
\]

Proof. Let \(C_{ij} = \begin{bmatrix} T_{ii} & T_{ij} \\ T_{ji} & T_{jj} \end{bmatrix} \in \mathbb{M}_{2n}(\mathbb{C}) \), then \(C_{ij} \) is a principal submatrix of \(T \), it follows that \(C_{ij} \) is accretive-dissipative with Cartesian decomposition \(C_{ij} = \begin{bmatrix} A_{ii} & A_{ij} \\ A_{ij}^* & A_{jj} \end{bmatrix} + i \begin{bmatrix} B_{ii} & B_{ij} \\ B_{ij}^* & B_{jj} \end{bmatrix} \). Using Lemma 2.1 and Lemma 2.2, we get that
\[
\left\| f \left(|A_{ij}|^2 \right) \right\| \leq \left\| f \left(\frac{(\text{Re } C_{ij})^2}{4} \right) \right\|
\]
and
\[
\left\| f \left(|B_{ij}|^2 \right) \right\| \leq \left\| f \left(\frac{(\text{Im } C_{ij})^2}{4} \right) \right\|.
\]
And by Lemma 2.2 and Lemma 2.3, we have
\[
\left\| f \left(\frac{\text{Re } C_{ij}}{4} \right) \right\| \leq \left\| f \left(\frac{|C_{ij}|^2}{4} \right) \right\|
\]
and
\[
\left\| f \left(\frac{\text{Im } C_{ij}}{4} \right) \right\| \leq \left\| f \left(\frac{|C_{ij}|^2}{4} \right) \right\|.
\]
Now,
\[
\left\| f \left(\sum_{i<j} |T_{ij}|^2 \right) + f \left(\sum_{i<j} |T_{ji}|^2 \right) \right\| \\
= \left\| f \left(\sum_{i<j} |A_{ij} + iB_{ij}|^2 \right) + f \left(\sum_{i<j} |A_{ij} - iB_{ij}|^2 \right) \right\|
\]
Corollary 2.11. Let $T \in M_{mn}(\mathbb{C})$ be a partitioned accretive-dissipative matrix as given in (1.1) and let f be a function that is concave and increasing on $[0, \infty)$ where $f(0) = 0$. For all $0 < p \leq 2$, we have

$$
\left\| f \left(\left(\sum_{i<j} |T_{ij}|^2 \right)^{p/2} \right) + f \left(\left(\sum_{i<j} |T_{ji}|^2 \right)^{p/2} \right) \right\| \leq (2m^2 - 2m) \left\| f \left(\frac{T^2}{4} \right) \right\|.
$$

(2.20)

In particular, when $m = 2$, we have

$$
\left\| f \left(|T_{12}|^p \right) + f \left(|T_{21}|^p \right) \right\| \leq 4 \left\| f \left(\frac{T^p}{2^p} \right) \right\|.
$$

Proof. The inequality (2.20) follows by applying the inequality (2.13) to the concave function $f(p^{p/2})$.

\[\square \]
Corollary 2.12. Let $T \in \mathbb{M}_{mn}(\mathbb{C})$ be a partitioned accretive-dissipative matrix as given in (1.1). Then
\[
\left\| \log \left(\left(\sum_{i<j} |T_{ij}|^2 \right)^{1/2} + I_n \right) + \log \left(\left(\sum_{i<j} |T_{ji}|^2 \right)^{1/2} + I_n \right) \right\| \\
\leq (2m^2 - 2m) \| \log (|T| + 2I_{mn}) - (\log 2) I_{mn} \|.
\]

Proof. The proof follows by taking $p = 1$ and applying the inequality (2.20) to the function $f(t) = \log(t + 1)$ which is a concave and increasing function on $[0, \infty)$ and satisfies that $f(0) = 0$. \hfill \Box

The following corollary can be obtained by applying Theorems 2.6 and 2.10 to the function $f(t) = t^{p/2}$.

Corollary 2.13. Let $T \in \mathbb{M}_{mn}(\mathbb{C})$ be a partitioned accretive-dissipative matrix as given in (1.1). Then
\[
\left\| \left(\sum_{i<j} |T_{ij}|^2 \right)^{p/2} + \left(\sum_{i<j} |T_{ji}|^2 \right)^{p/2} \right\| \leq \left(\frac{m^2 - m}{2} \right)^{p/2} |||T|||^{p/2} \quad \text{for all } p \geq 2
\]
and
\[
\left\| \left(\sum_{i<j} |T_{ij}|^2 \right)^{p/2} + \left(\sum_{i<j} |T_{ji}|^2 \right)^{p/2} \right\| \leq \frac{m^2 - m}{2^{p-1}} |||T|||^{p} \quad \text{for all } 0 < p \leq 2.
\]

3. Unitarily Invariant Norm Inequalities Involving a Special Class of Functions

In this section, we give unitarily invariant norm inequalities including functions belongs to the class ζ.

We start this section with the following lemma (see [8]).

Lemma 3.1. Let $A = \begin{bmatrix} X & B \\ B^* & Y \end{bmatrix} \in \mathbb{M}_{n^2}(\mathbb{C})$ be positive semidefinite, and let $f \in \zeta$ be submultiplicative function. If p and q are positive real numbers with $\frac{1}{p} + \frac{1}{q} = 1$, then
\[
\left\| f(|B|^2) \right\| \leq |||f^p(X)|||^{1/p} |||f^q(Y)|||^{1/q}.
\]

Our first result in this section is the following theorem.

Theorem 3.2. Let $T \in \mathbb{M}_{mn}(\mathbb{C})$ be a partitioned accretive-dissipative matrix as given in (1.1), and let $f \in \zeta$ be a function that is convex and submultiplicative and satisfies that $f(0) = 0$. If $p, q > 0$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$, then
\[
\left\| f \left(\sum_{i<j} |T_{ij}|^2 \right) + f \left(\sum_{i<j} |T_{ji}|^2 \right) \right\| \leq 2\left(\frac{m^2}{m^2 - m} \right) \left(\left\| f^p \left(\sqrt{2m^2 - 2m} |T_{ii}| \right) \right\|^{1/p} \left\| f^q \left(\sqrt{2m^2 - 2m} |T_{jj}| \right) \right\|^{1/q} \right). (3.2)
\]
Proof. Since $[A_{ij}]$ and $[B_{ij}]$ are positive semidefinite matrices, and by Lemma 3.1, we have

$$
\|f \left((2m^2 - 2m) |A_{ij}|^2 \right) \| \leq \|f^p \left(\sqrt{2m^2 - 2mA_{ii}} \right) \|^{1/p} \|f^q \left(\sqrt{2m^2 - 2mA_{jj}} \right) \|^{1/q} \tag{3.3}
$$

and

$$
\|f \left((2m^2 - 2m) |B_{ij}|^2 \right) \| \leq \|f^p \left(\sqrt{2m^2 - 2mB_{ii}} \right) \|^{1/p} \|f^q \left(\sqrt{2m^2 - 2mB_{jj}} \right) \|^{1/q} \tag{3.4}
$$

Now,

$$
\left\| \sum_{i<j} |T_{ij}|^2 \right\| + \left\| \sum_{i<j} |T_{ji}|^2 \right\| \leq \left\| \sum_{i<j} \left(|T_{ij}|^2 + |T_{ji}|^2 \right) \right\| \quad \text{(by Lemma 2.5(c))}
$$

$$
= \left\| \sum_{i<j} \left(|A_{ij} + iB_{ij}|^2 + |A_{ij} - iB_{ij}|^2 \right) \right\|
$$

$$
= \left\| \sum_{i<j} \left(2 \sum_{i<j} \left(|A_{ij}|^2 + |B_{ij}|^2 \right) \right) \right\|
$$

$$
\leq \frac{1}{2} \left\| \sum_{i<j} \left(4 \sum_{i<j} \left(|A_{ij}|^2 \right) \right) \right\| + \left\| \sum_{i<j} \left(4 \sum_{i<j} \left(|B_{ij}|^2 \right) \right) \right\| \quad \text{(by Lemma 2.5(a))}
$$

$$
\leq \frac{1}{2m^2 - m} \left(\left\| \sum_{i<j} \left((2m^2 - 2m) |A_{ij}|^2 \right) \right\| + \left\| \sum_{i<j} \left((2m^2 - 2m) |B_{ij}|^2 \right) \right\| \right) \quad \text{(by Lemma 2.5(a))}
$$

$$
\leq \frac{1}{m^2 - m} \sum_{i<j} \left(\|f \left((2m^2 - 2m) |A_{ij}|^2 \right) \| + \|f \left((2m^2 - 2m) |B_{ij}|^2 \right) \| \right)
$$

$$
\leq \frac{1}{m^2 - m} \sum_{i<j} \left(\|f^p \left(\sqrt{2m^2 - 2mA_{ii}} \right) \|^{1/p} \|f^q \left(\sqrt{2m^2 - 2mA_{jj}} \right) \|^{1/q} + \right)
$$

$$
\left(\|f^p \left(\sqrt{2m^2 - 2mB_{ii}} \right) \|^{1/p} \|f^q \left(\sqrt{2m^2 - 2mB_{jj}} \right) \|^{1/q} \right)
$$

(by the inequalities (3.3) and (3.4))

$$
\leq \frac{1}{m^2 - m} \sum_{i<j} \left(\left(\|f^p \left(\sqrt{2m^2 - 2mA_{ii}} \right) \| + \|f^p \left(\sqrt{2m^2 - 2mB_{ii}} \right) \| \right)^{1/p} \times \right)
$$

(by Hölder’s inequality)
Theorem 3.3. The inequality (3.2) gives a generalization to the inequality (1.5). Now, the result follows from the inequalities (3.5)-(3.9).

Since the matrices T_{ii} are accretive-dissipative for $i = 1, \ldots, m$, it follows from Lemmas 2.2 and 2.3 that

\[
\left\| f^p \left(\sqrt{2m^2 - 2mRe T_{ii}} \right) \right\| \leq \left\| f^p \left(\sqrt{2m^2 - 2m|T_{ii}|} \right) \right\| \tag{3.6}
\]

\[
\left\| f^p \left(\sqrt{2m^2 - 2mIm T_{ii}} \right) \right\| \leq \left\| f^p \left(\sqrt{2m^2 - 2m|T_{ii}|} \right) \right\| \tag{3.7}
\]

\[
\left\| f^q \left(\sqrt{2m^2 - 2mRe T_{ii}} \right) \right\| \leq \left\| f^q \left(\sqrt{2m^2 - 2m|T_{ii}|} \right) \right\| \tag{3.8}
\]

and

\[
\left\| f^q \left(\sqrt{2m^2 - 2mIm T_{ii}} \right) \right\| \leq \left\| f^q \left(\sqrt{2m^2 - 2m|T_{ii}|} \right) \right\| \tag{3.9}
\]

Now, the result follows from the inequalities (3.5)-(3.9).

Note that the inequality (1.5) follows by taking $m = 2$ in the inequality (3.2). So, the inequality (3.2) gives a generalization to the inequality (1.5).

Theorem 3.3. Let $T \in \mathbb{M}_{m \times m}(\mathbb{C})$ be a partitioned accretive-dissipative matrix as given in (1.1), and let $f \in \zeta$ be a function that is concave and submultiplicative and satisfying that $f(0) = 0$. If $p, q > 0$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$, then

\[
\left\| f \left(\sum_{i<j} |T_{ij}|^2 \right) + f \left(\sum_{i<j} |T_{ji}|^2 \right) \right\| \leq 4 \sum_{i<j} \left(\left\| f^p \left(|T_{ii}| \right) \right\|^{1/p} \left\| f^q \left(|T_{jj}| \right) \right\|^{1/q} \right).
\]

Proof.

\[
\left\| f \left(\sum_{i<j} |T_{ij}|^2 \right) + f \left(\sum_{i<j} |T_{ji}|^2 \right) \right\|
\]

\[
= \left\| f \left(\sum_{i<j} |A_{ij} + iB_{ij}|^2 \right) + f \left(\sum_{i<j} |A_{ij} - iB_{ij}|^2 \right) \right\|
\]

\[
\leq 2 \left\| f \left(\frac{\sum_{i<j} \left(|A_{ij} + iB_{ij}|^2 + |A_{ij} - iB_{ij}|^2 \right)}{2} \right) \right\| \tag{by Lemma 2.5(b)}
\]

\[
= 2 \left\| f \left(\sum_{i<j} \left(|A_{ij}|^2 + |B_{ij}|^2 \right) \right) \right\|
\]

\[
\leq 2 \sum_{i<j} \left\| f \left(|A_{ij}|^2 + |B_{ij}|^2 \right) \right\| \tag{by Lemma 2.5(d)}
\]

\[
\leq 2 \sum_{i<j} \left\| f \left(|A_{ij}|^2 + |B_{ij}|^2 \right) \right\| \tag{by Lemma 2.5(d)}
\]

\[
\leq 2 \sum_{i<j} \left\| f \left(|A_{ij}|^2 \right) + f \left(|B_{ij}|^2 \right) \right\| \tag{by Lemma 2.5(d)}
\]
\[\leq 2 \sum_{i<j} \left(\| f(A_{ij})^2 \| + \| f(|B_{ij}|^2) \| \right) \]
\[\leq 2 \sum_{i<j} \left(\| f^p(A_{ii}) \|^{1/p} \| f^q(A_{jj}) \|^{1/q} + \| f^p(B_{ii}) \|^{1/p} \| f^q(B_{jj}) \|^{1/q} \right) \]
(by Lemma 3.1)
\[\leq 2 \sum_{i<j} \left(\| f^p(A_{ii}) \| \| f^q(A_{jj}) \| \right)^{1/p} \left(\| f^q(B_{ii}) \| \| f^q(B_{jj}) \| \right)^{1/q} \]
(by Hölder’s inequality)
\[\leq 2 \sum_{i\neq j} \left(\| f^p(T_{ii}) \| \| f^q(T_{jj}) \| \right)^{1/p} \left(\| f^q(T_{jj}) \| \| f^q(T_{jj}) \| \right)^{1/q} \]
(by Lemmas 2.2 and 2.3)
\[\leq 4 \sum_{i<j} \left(\| f^p(|T_{ii}|) \| \| f^q(|T_{jj}|) \| \right)^{1/q} . \]

\[\Box \]

Note that the inequality (1.6) follows by taking \(m = 2 \) in the inequality (3.10). So, the inequality (3.10) gives a generalization to the inequality (1.6).

4. Some results for 2 × 2 block matrices

In this section, our results consider the case when \(T \) partitioned as in (1.1) with \(m = 2 \). Our first result in this section is the following theorem.

Theorem 4.1. Let \(T \in \mathbb{M}_{2n}(\mathbb{C}) \) be a partitioned accretive-dissipative matrix as given in (1.1), and let \(f \) be a function that is increasing on \([0, \infty)\) with \(f(0) = 0 \) such that \(f(\sqrt{t}) \) is convex. Then
\[\| f(|T_{12}| + |T_{21}^*|) + f(||T_{12}| - |T_{21}^*||) \| \leq \| f\left(\sqrt{2} |T|\right)\| . \]

Proof. Let \(g(t) = f(\sqrt{t}), t \in [0, \infty) \). Then \(g \) is an increasing convex function on \([0, \infty)\).

Since \(T = A+iB \) with \(A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^* & A_{22} \end{bmatrix} \) and \(B = \begin{bmatrix} B_{11} & B_{12} \\ B_{12}^* & B_{22} \end{bmatrix} \) are positive semidefinite, it follows from Lemma 2.1 and Lemma 2.2 that
\[\| g\left(8 |A_{12}|^2\right)\| \leq \| g\left(2 (Re T)^2\right)\| \text{ and } \| g\left(8 |B_{12}|^2\right)\| \leq \| g\left(2 (Im T)^2\right)\| . \]

Also, using Lemmas 2.2 and 2.3, we have
\[\| g\left(2 (Re T)^2\right)\| \leq \| g\left(2 |T|^2\right)\| \text{ and } \| g\left(2 (Im T)^2\right)\| \leq \| g\left(2 |T|^2\right)\| . \]

Now,
\[\| f(|T_{12}| + |T_{21}^*|) + f(||T_{12}| - |T_{21}^*||) \|
\[= \| g\left(\left(|T_{12}| + |T_{21}^*|\right)^2\right) + g\left(||T_{12}| - |T_{21}^*||^2\right)\|
\[\leq \| g\left(\left(|T_{12}| + |T_{21}^*|\right)^2 + ||T_{12}| - |T_{21}^*||^2\right)\| \] (by Lemma 2.5(c))
\[= \| g\left(2 |T_{12}|^2 + 2 |T_{21}^*|^2\right)\|
\[= \| g\left(4 |A_{12}|^2 + 4 |B_{12}|^2\right)\|
\[\leq \frac{1}{2} \| g\left(8 |A_{12}|^2\right) + g\left(8 |B_{12}|^2\right)\| \] (by Lemma 2.5(a))
\[\leq \frac{1}{2} \left\| g \left(8 |A_{12}|^2 \right) \right\| + \frac{1}{2} \left\| g \left(8 |B_{12}|^2 \right) \right\| \]
\[\leq \frac{1}{2} \left\| g \left(2 (\text{Re} \, T)^2 \right) \right\| + \frac{1}{2} \left\| g \left(2 (\text{Im} \, T)^2 \right) \right\| \quad \text{(by the inequalities (4.2))} \]
\[\leq \left\| g \left(2 |T|^2 \right) \right\| \quad \text{(by the inequalities (4.3))} \]
\[= \left\| f \left(\sqrt{2} |T| \right) \right\|. \]

The following example asserts that the convexity of the function \(f(\sqrt{t}) \) given in Theorem 4.1 is essential and cannot be replaced by \(f(t) \) to be convex.

Example 4.2. Consider \(T = A + iB = \begin{bmatrix} 1 + i & 2i \\ 0 & 1 + i \end{bmatrix} \). Then \(A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \) are positive semidefinite matrices. Take \(f(t) = t \), then for the spectral norm \(\left\| \cdot \right\| \), the right hand side of the inequality (4.1) equals 4 and the left hand side of the inequality (4.1) equals \(\sqrt{8 + 4\sqrt{3}} \), but \(4 \not\leq \sqrt{8 + 4\sqrt{3}} \).

The following corollary gives an application on Theorem 4.1.

Corollary 4.3. Let \(T \in \mathbb{M}_{2n}(\mathbb{C}) \) be a partitioned accretive-dissipative matrix as given in (1.1). Then
\[\left\| \left(||T_{12}| + |T_{21}^*| \right) + ||T_{12} - |T_{21}^*| \right\| \leq 2^{p/2} \left\| \left| T \right|^p \right\| \quad \text{for all } p \geq 2. \]

Proof. The proof follows by applying the inequality (4.1) to the function \(f(t) = t^p, p \geq 2. \)

Our second result in this section is given in the following theorem.

Theorem 4.4. Let \(T \in \mathbb{M}_{2n}(\mathbb{C}) \) be a partitioned accretive-dissipative matrix as given in (1.1), and let \(f \) be a function that is increasing on \([0, \infty)\) with \(f(0) = 0 \) such that \(f(\sqrt{t}) \) is concave. Then
\[\left\| f \left(||T_{12}| + |T_{21}^*| \right) + f \left(||T_{12} - |T_{21}^*| \right) \right\| \leq 4 \left\| f \left(\left| T \right|^2 \right) \right\|. \quad (4.4) \]

Proof. Let \(g(t) = f(\sqrt{t}), t \in [0, \infty) \). Then \(g \) is a concave and increasing function on \([0, \infty)\).

Since \(T = A + iB \) with \(A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^* & A_{22} \end{bmatrix} \) and \(B = \begin{bmatrix} B_{11} & B_{12} \\ B_{12}^* & B_{22} \end{bmatrix} \) are positive semidefinite, using Lemma 2.1 and Lemma 2.2, we get that
\[\left\| g \left(2 |A_{12}|^2 \right) \right\| \leq \left\| g \left(\frac{\text{Re} \, T)^2}{2} \right) \right\| \quad \text{and} \quad \left\| g \left(2 |B_{12}|^2 \right) \right\| \leq \left\| g \left(\frac{\text{Im} \, T)^2}{2} \right) \right\|. \quad (4.5) \]

Also, using Lemmas 2.2 and 2.3, we have
\[\left\| g \left(\frac{\text{Re} \, T^2}{2} \right) \right\| \leq \left\| g \left(\frac{|T|^2}{2} \right) \right\| \quad \text{and} \quad \left\| g \left(\frac{\text{Im} \, T^2}{2} \right) \right\| \leq \left\| g \left(\frac{|T|^2}{2} \right) \right\|. \quad (4.6) \]

Now,
\[\left\| f \left(||T_{12}| + |T_{21}^*| \right) + f \left(||T_{12} - |T_{21}^*| \right) \right\| \]
\[= \left\| g \left((||T_{12}| + |T_{21}^*|)^2 \right) + g \left(||T_{12} - |T_{21}^*| \right)^2) \right\|. \]
\[\begin{align*}
\leq & 2 \left\| g \left(\frac{(|T_{12}| + |T_{21}|)^2 + |T_{12}| - |T_{21}|)}{2} \right) \right\| \quad \text{(by Lemma 2.5(b))} \\
= & 2 \left\| g \left(|T_{12}|^2 + |T_{21}|^2 \right) \right\| \\
= & 2 \left\| g \left(2 |A_{12}|^2 + 2 |B_{12}|^2 \right) \right\| \\
\leq & 2 \left(\left\| g \left(2 |A_{12}|^2 \right) \right\| + \left\| g \left(2 |B_{12}|^2 \right) \right\| \right) \\
\leq & 2 \left(\left\| g \left(\left(\frac{\text{Re} T}{2} \right)^2 \right) \right\| + \left\| g \left(\left(\frac{\text{Im} T}{2} \right)^2 \right) \right\| \right) \quad \text{(by the inequalities (4.5))} \\
\leq & 4 \left\| g \left(\frac{|T|^2}{2} \right) \right\| \quad \text{(by the inequalities (4.6))} \\
= & 4 \left\| f \left(\frac{|T|}{\sqrt{2}} \right) \right\|.
\end{align*} \]

We conclude this paper by the following corollary.

Corollary 4.5. Let \(T \in \mathbb{M}_{2n}(\mathbb{C}) \) be partitioned accretive-dissipative matrix as given in (1.1). Then
\[
\| (|T_{12}| + |T_{21}|)^p + |T_{12}| - |T_{21}| \|^p \leq 2^{2-p/2} \| |T|^p \| \quad \text{for all } 0 < p \leq 2.
\]

Proof. The proof follows by applying the inequality (4.4) to the function \(f(t) = t^p, 0 < p \leq 2 \). \(\square \)

References

[1] J. Aujla, F. Silva, *Weak majorization inequalities and convex functions*, Linear Algebra Appl. 369 (2003), 217–233.
[2] R. Bhatia, *Matrix Analysis*, Springer-Verlag, New York, 1997.
[3] J.-C. Bourin, E.-Y. Lee, *Unitary orbits of Hermitian operators with convex or concave functions*, Bull. London Math. Soc. 44 (2012), 1085–1102.
[4] J.-C. Bourin, M. Uchiyama, *A matrix subadditivity inequality for \(f(A + B) \) and \(f(A) + f(B) \)*, Linear Algebra Appl. 423 (2007), 512–518.
[5] Ky Fan, A.J. Hoffman, *Some metric inequalities in the space of matrices*, Proc. Amer. Math. Soc. 6 (1955), 111–116.
[6] X. Fu, Y. Liu, *Frobenius inequality for partitioned matrices with numerical ranges in a sector*, Linear Multilinear Algebra 64 (2017), 105–109.
[7] I.C. Gohberg and M.G. Krein, *Introduction to the Theory of Linear Nonselfadjoint Operators*, vol. 18, AMS, Providence, RI, Transl. Math. Monographs, 1969.
[8] I.H. Gummus, O. Hirzallah, F. Kittaneh, *Norm inequalities involving accretive-dissipative 2 × 2 block matrices*, Linear Algebra Appl. 528 (2017), 76–93.
[9] O. Hirzallah, F. Kittaneh, *Norm inequalities for weighted power means of operators*, Linear Algebra Appl. 314 (2000), 181–193.
[10] R.A. Horn and C.R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, 1991.
[11] T. Kosem, *Inequalities between \(f(A + B) \) and \(f(A) + f(B) \)*, Linear Algebra Appl. 418 (2006), 153–160.
[12] M. Lin, D. Zhou, *Norm inequalities for accretive-dissipative matrix matrices*, J. Math. Anal. Appl. 407 (2013), 130–142.
[13] Y. Tao, *More results on singular value inequalities of matrices*, Linear Algebra Appl. 416 (2006), 724–749.
[14] M. Uchiyama, *Subadditivity of eigenvalue sums*, Proc. Amer. Math. Soc. 134 (2006), 1405–1412.
[15] P. Zhang, *A further extension of Frobenius’ theorem*, Linear Multilinear Algebra 63 (2015), 2511–2517.
[16] Y. Zhang, *Unitarily invariant norm inequalities for accretive-dissipative operators*, J. Math. Anal. Appl. 412 (2014), 561–569.
Department of Basic Sciences, Al-Ahliyyah Amman University, Amman, Jordan

Fadi Alrimawi: f.rimawi@ammanu.edu.jo

Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan

Mohammad Al-Khlyleh: m.khlyleh@bau.edu.jo

Basic Science Department, Middle East University, Amman, Jordan

Fuad A. Abushaheen: Fshaheen@meu.edu.jo

Received 15.07.2020; Revised 29.07.2020