Understanding the anomalous thermal behavior of Σ3 grain boundaries in a variety of FCC metals

Ian Chesser\textsuperscript{a,∗}, Elizabeth Holm\textsuperscript{a}

\textsuperscript{a}Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue Wean Hall 3325, Pittsburgh, PA 15213

Abstract

We present a case study of the complex temperature dependence of grain boundary mobility. The same general incoherent twin boundary in different FCC metals is found to display antithermal, thermal, and mixed mobility during molecular dynamics synthetic driving force simulations. A recently developed energy metric known as the generalized interfacial fault energy (GIFE) surface is used to show that twin boundaries moving in an antithermal manner have a lower energetic barrier to motion than twin boundaries moving in a thermally activated manner. Predicting the temperature dependence of grain boundary motion with GIFE curves stands to accelerate research in grain boundary science.

Introduction

Predicting the rate at which a grain boundary moves under an applied driving force is a complex problem eminently relevant to the design of ceramic and metallic microstructures. Grain boundary mobility is defined via linearized reaction rate theory as the proportionality constant between an applied driving force and resultant grain boundary velocity \[ v = MP \] (1)

where \( P \) is an applied driving force with units of energy density or equivalently pressure, \( v \) is grain boundary velocity, and \( M \) is mobility. Grain boundary motion is often considered to have an ideal Arrhenius temperature dependence on mobility \[ M \]

\[ M = M_0 \exp \left( \frac{-E_a}{k_b T} \right) \] (2)

\( M \) is the steady state mobility, \( M_0 \) is a prefactor related to the attempt frequency of grain boundary motion, \( E_a \) is an activation energy that represents the energetic barrier to grain boundary motion, and \( k_b T \) is the thermal energy of the system. The diverse temperature dependence of grain boundary mobility in simulations and experiments imply that Eqn (2) is a vast oversimplification \[ 13 \] 3 4 5 6 7 8 9.

Molecular dynamics (MD) simulations have shown that grain boundaries frequently deviate from an ideal Arrhenius temperature dependence of mobility. Eighty-nine grain boundaries in the 388 boundary mobility survey by Olmsted et. al showed antithermal mobility over some temperature range \[ 6 \] 10. Antithermal interface motion is characterized by a decrease in interface mobility with increasing temperature. It is speculated to be important to cold fast processes such as room temperature grain growth in nanocrystalline metals, and is experimentally observed in hot slow grain growth in ceramic materials like SrTiO\textsubscript{3} \[ 8 \] 11 12. Understanding antithermally grain boundary motion is related to many other open problems in interface mobility, including stress driven grain growth and rotation at cryogenic temperatures, twinning and detwinning processes, and twin defect interactions \[ 13 \] 14 15 16 17 18.

Σ3 twin-related boundaries comprise over half of the antithermal boundaries in the Olmsted survey \[ 6 \]. Remarkably, twin boundary mobility spans several orders of magnitude in MD simulations and shows

\*Corresponding author

Email addresses: ichesser@andrew.cmu.edu (Ian Chesser), eaholm@andrew.cmu.edu (Elizabeth Holm)
antithermal, thermal, or mixed dependence on temperature as a function of boundary plane crystallography [19]. Previous MD mobility simulations have only considered twin boundary mobility in Ni. In this study, we consider the mobility of the same general twin boundary in twelve different FCC metals, testing fifteen interatomic potentials in total, four for Ni.

Methods

We examine the motion of a general Σ3 [111] 60° (1185) grain boundary. The boundary facets into segments of coherent twin (CT) and incoherent twin (ICT) boundary upon energy minimization, consistent with existing faceting models for Σ3 boundaries [20]. The grain boundary moves via the glide of the incoherent {110} facets, as shown in Figure 1(b). The grain boundary has mixed tilt and twist character, and is most simply viewed as a rotation from the CT with {111} boundary planes by 17° about a ⟨112⟩ axis.

![Figure 1: (a) Boundary plane fundamental zone with points colored by mobility type [19]. The {1185} boundary in this work is shown with a yellow star. (b) Faceted {1185} grain boundary, schematically showing the growth of the blue grain under an energy jump driving force.](image)

Twin boundary mobility is examined with the synthetic driving force (SDF) molecular dynamics method [21, 22] for twelve different embedded atom method (EAM) potentials fit by Sheng et. al [23]. The Sheng potentials were fit to a variety of elemental properties, including lattice dynamics, mechanical and thermal properties, and the energetics of competing crystal structures, defects, deformation paths, and liquid structures. Three Ni potentials are considered other than the Sheng potential, including the Foiles-Hoyt Ni potential used in prior studies of antithermal grain boundary motion, the Mishin Farkas Ni potential, and the Mendelev Ni potential [23, 24, 25, 26]. We use the following shorthand for Ni potentials in this work: Ni1 = Sheng, Ni2 = Foiles-Hoyt, Ni3 = Mendelev, Ni4 = Mishin/Farkas.

Grain boundaries are constructed in a simulation box in LAMMPS with periodic boundary conditions, and are minimized via a standard conjugate gradient minimization at 0 K [27]. All SDF simulations are run in an NPT ensemble with periodic boundary conditions along the grain boundary plane and free surface boundary conditions normal to the cut plane. Temperature is set with a Nose Hoover thermostat and pressures are maintained near zero along the grain boundary plane with a Parrinello Rahman barostat. A timestep of 2 fs is used to anneal grain boundaries for 0.4 ns before the synthetic driving force is turned on for 1 ns. The SDF method imposes a driving force for boundary motion in a bi-crystal by lowering the free energy of one grain and raising the free energy of the other, causing the low energy grain to grow at the expense of the high energy grain. Boundary position is tracked via the change in order parameter of a fixed region encompassing the shrinking grain. Velocity is computed as the slope of the position-time curve via the bootstrap resampling technique of Race et. al with a smoothing window of 5 ps and a sample window of 20 ps [28]. Finally, mobility is calculated in the linear approximation as velocity divided by the applied driving force.

For mobility results for different FCC metals, a driving force of 10 meV/atom was used. Previous simulations have found 1 meV/atom to be an optimal driving force for studying the motion of anti-thermal
twin boundaries in Ni, since mobility values at 1 meV match values calculated in the zero driving force limit from the random walk method [29]. We choose a larger driving force because of the need to generate as much motion as possible in slow moving thermal boundaries over a 1 ns time span. We compare driven motion of Ni potentials using a SDF of 1 meV/atom, consistent with previous studies. Note that system size is relevant to energy and mobility convergence because defects can interact across periodic boundaries and modify minimum energy structures and grain boundary dynamics [30, 31]. A full justification of simulation box lengths with respect to energy and mobility can be found in the work of Humberson and Holm [30, 32, 33].

Results

The mobility behavior of the same general twin boundary is found to vary with FCC metal, both across EAM potentials for different FCC metals and within EAM potentials for Ni. Figure 2a plots mobility of the $\Sigma3 [1 1 1] 60^\circ (11 8 5)$ boundary for a variety of FCC metals with different stacking fault energies. Mobility is plotted at three homologous temperatures $T_H$ for each metal for a synthetic driving force of 10 meV/atom. The colored background of Figure 2a shows the clustering of FCC metals by mobility type as a function of stacking fault energy. Ca, Sr, Au, Ag, and Cu show antithermal behavior (red) while Pb, Ce, Al, Pt, and Rh show thermal behavior (blue). Pd displays mixed behavior (purple), with the intermediate temperature corresponding to the highest mobility. Although stacking fault energy is a convenient parametrization of these metals and transitions, it is not a predictor of mobility type.

Boundary mobility also varies significantly among Ni potentials, as shown in Figure 2b. Ni4 exhibits a weakly thermal trend, while other Ni potentials show overall antithermal trends. Ni2 and Ni4, which have the same measured stacking fault energy, show different mobility type. The goal of the remainder of this work is to rationalize differences in mobility type for the same twin boundary in different FCC EAM potentials in the context of grain boundary structure and energetics.

The initial ICT facet length structure of the $\{11 8 5\}$ boundary varies with interatomic potential. Representative facet structures are shown in Figure 3 after a 0.4 ns aneal and a small amount of motion under a SDF. In Cu, a single facet is present with height $15 a_{(11 1)}$, referred to here as $h(15)$ following the convention of Hirth [34]. In Pb and Al, multiple facets are present after annealing. From left to right, Pb has a facet height distribution of $\{h(6), h(9)\}$, while Al has a facet height distribution of $\{h(3), h(9), h(3)\}$. 

Figure 2: (a) Variation in the mobility of the $\{11 8 5\}$ boundary with stacking fault energy for different Sheng potentials at three homologous temperatures $T_H$ and a synthetic driving force of 10 meV/atom. Mobility type given by colored background, with red = thermal, blue = antithermal, and purple = mixed. (b) Variation in mobility of $\{11 8 5\}$ boundary with temperature for different Ni potentials under a synthetic driving force of 1 meV/atom
The h(3) facet is the fundamental motion unit during \{118 5\} boundary motion. h(3) facets can coalesce during boundary motion, presumably to reduce corner energy at facet junctions \cite{38 39 40}. All elements that show anti-thermal motion show a single facet after annealing. Although most thermal boundaries retain multiple facets, Pb, Ce, and Ni4 have facets of height h(15) after annealing yet move in a thermal manner. Facet coalescence is a necessary but insufficient condition for anti-thermal motion in these simulations.

Since facet structure does not distinguish mobility type, we instead consider energy metrics relevant to twin related boundaries. A twinned crystal can be created by applying successive shearing operations to a perfect crystal. Starting with a perfect crystal block, a stacking fault is generated by applying a rigid translation of the upper half of the block along a \{111\} plane in the \langle 112 \rangle direction. Performing such a translation incrementally and measuring energy after each shift leads to the generation of a stacking fault energy curve. The generalized stacking fault energy surface (GSFE) includes shifts in the perpendicular in a translation of the upper half of the block along a \langle 110 \rangle direction \cite{38}. A single layer of twinned crystal can be created by starting with a stacking fault, and rigidly translating all atoms on top of the stacking fault by \(a/6(112)\). The energy surface corresponding to this procedure is known as the generalized twin fault energy surface (GTFE) \cite{39}. The GTFE is analogous in concept to the GSFE, but has a different starting configuration. GSFE and GTFE surfaces were measured for each interatomic potential (not shown) with tabulation of stable and unstable stacking and twinning fault energies. Overall, no single energy barrier from the GSFE or GTFE surface was found to cluster elements by mobility type in a way that added new information compared to classification by stacking fault energy. We therefore proceed to construct an energy metric that captures more complexity of ICT facet motion.

Translation of ICT facets during boundary motion is accomplished by correlated shuffling of atoms along triplets of \{111\} planes, or h(3) units. Each h(3) facet shows a characteristic displacement pattern as illustrated in Figure 3. Atoms in adjacent \{111\} planes are observed to shuffle along shockley partial vectors \(s(1) = a/6[2 \bar{1} 1]\) and \(s(2) = a/6[\bar{2}11]\), colored in blue and red in Figure 3. Every third plane does not undergo displacement, as shown in white. It is observed that atoms two to three layers in front of the ICT facet shuffle incrementally into the new grain orientation swept out by the ICT facet. Since h(3) facets do not shear the lattice upon motion, they can be considered disconnections of pure step character \cite{40}. Motion of collections of h(3) facets in the \{118 5\} boundary is a type of step flow motion. Step flow motion of nano-facets has been observed in other general grain boundaries \cite{11}. We proceed to relate the energetics of step flow motion of the \{118 5\} boundary to mobility type for a variety of FCC metals.
An energy metric known as the generalized interface fault energy (GIFE) surface that calculates a minimum energy path for the motion of a disconnection has recently been developed by Barrett et. al [42]. We reimplement the general method here in the context of the h(3) \{110\} ICT facet, the fundamental motion unit of the \{1185\} boundary. The GIFE technique consists of the following steps:

1. An initial and final state are created before and after the passage of a disconnection of known character. We construct a single h(3) facet in an initial and final minimized configuration separated by \(a/2(110)\). To isolate the motion of a single facet, we consider two free surface boundary conditions parallel to the CT and ICT facets and periodic boundary conditions in the \(\langle 112 \rangle\) direction (into the page in Figure 4a). We choose a system size such that the initial and final energies of the facets are the same, indicating that the effect of free surfaces are negligible.

2. A displacement map is calculated between nearest neighbors in the initial and final state. This displacement map captures relevant shuffling vectors.

3. The displacement map is incrementally applied to the initial state, with energy calculated after each increment. Like the GSFE and GTFE, relaxation is only considered normal to the interface plane. If relaxation is not restricted in this way, the system will return to the initial or final state as its preferred state.

GIFE results are shown for the motion of a h(3) facet in a variety of FCC metals in figure 4(b). The GIFE curve separates thermally activated boundaries from anti-thermal boundaries by energy barrier. The elements with thermally activated \{1185\} boundaries: Rh, Al, Pt, Ce, and Pb, have a higher energy barrier to h(3) facet motion than elements with antithermal boundaries: Au, Cu, Ag, Ca, and Sr. The GIFE barrier for the mixed-mode Pd falls between the two classes. Note that the GIFE barrier is calculated as an excess energy per area relative to the initial faceted state, which varies for different elements. The magnitude of the GIFE barriers of the antithermal elements in figure 4(b) spans 0.01 to 13 \(mJ/m^2\), while barriers for thermal elements fall in the range 24-204 \(mJ/m^2\).

GIFE curves for the four Ni potentials are shown in figure 4(c). The barrier for Ni1, classified as an antithermal boundary, is anomalously high at around 70 \(mJ/m^2\) and falls above the barriers for thermal Ce and Pb in figure 4(b). GIFE barriers are sensitive to small modifications in shuffling path which arise from changes in the initial and final minimized configuration. We demonstrate this sensitivity using the four Ni potentials as a case study. All Ni potentials are trapped in the initial and final state assumed by Ni2 such that the Ni1,Ni3, and Ni4 initial states are metastable. The GIFE barriers calculated for metastable Ni1,Ni3, and Ni4 are shown as dashed lines in figure 4(c). The GIFE barrier for Ni4 increases by around 20 \(mJ/m^2\), while the barrier for Ni1 decreases by 60 \(mJ/m^2\) to a value consistent with the antithermal elements in figure 4(b). Trapping the Ni potentials in the minimized states of Ni1, Ni3, and Ni4 lead to similar reordering effects. In three out of four cases, the thermal boundary corresponding to Ni4 has the highest energy barrier. The sensitivity of GIFE barriers to initial minimized configuration points to the need for more systematic convergence of GIFE barriers with respect to initial conditions. Like grain boundary energy, GIFE barriers should be converged with respect to microscopic degrees of freedom. Interestingly, the boundaries with lowest GIFE barrier may correspond to metastable initial states.

The same general twin boundary geometry shows remarkable variation in mobility type with EAM potential under a synthetic driving force. We have found a correspondence between GIFE energy barriers to grain boundary motion and grain boundary mobility type: antithermal boundaries have low GIFE barriers to motion relative to thermal boundaries. Out of the energy metrics considered, only the GIFE barrier was able to separate elements by mobility type class. Small changes in boundary structure can significantly affect the energy barrier given by the GIFE method, highlighting the need to develop more systematic ways to select and validate initial states. The current results reaffirm the fact that semi-empirical EAM potentials, even those fit to a wide range of defect energies, may not accurately reproduce complex kinetic phenomena like grain boundary mobility. DFT calculations of GIFE curves should be used as a way to standardize EAM potentials with respect to mobility type. The combination of DFT calculations and a broader survey of GIFE barriers for different grain boundaries stands to greatly improve our understanding of the thermal behavior of grain boundaries.
Figure 4: (a) GIFE process: a single \{110\} facet incrementally moves from an initial to final state of equivalent energy. (b) GIFE results for h(3) \{110\} ICT facet motion in a variety of FCC metals. Elements are ordered in legend from highest to lowest barrier and colored by mobility type, with red = thermal, blue = antithermal, purple = mixed. Low energy barriers correspond to antithermal motion. (c) GIFE results for Ni potentials (solid lines) and Ni potentials trapped in the minimized configuration of Ni2 (dashed). Arrows denote change in energy from the minimum energy to metastable trajectories.

Acknowledgements

This work was supported by the National Science Foundation GRFP Grant No. 1252522 and award number DMR-1710186, as well as the W.M. Keck Foundation. Thanks to Jonathan Humberson, David Srolovitz, Jian Han, Howard Sheng, Yuri Mishin, Günther Gottstein, Xiaoting Zhong, Greg Rohrer, Marc De Graef, David Laughlin, Tony Rollett, and Christopher Barrett for helpful discussions regarding the work.

References

[1] Gunter Gottstein and Lasar S Shvindlerman. *Grain boundary migration in metals: thermodynamics, kinetics, applications*. CRC press, 2009. ISBN 1420054368.

[2] M. Upmanyu, P. A. Martin, and A. D. Rollett. Effect of non-linear interface kinetics on coarsening phenomena. pages 1–4, 2007. URL http://arxiv.org/abs/0704.2118.

[3] Patrick R. Cantwell, Elizabeth A. Holm, Martin P. Harmer, and Michael J. Hoffmann. Anti-thermal behavior of materials. *Scripta Materialia*, 103:1–5, 2015. ISSN 13596462. doi: 10.1016/j.scriptamat.2015.02.011. URL http://dx.doi.org/10.1016/j.scriptamat.2015.02.011

[4] Adrian P Sutton, Robert W Balluffi, Hans Lüth, and J Murray Gibson. Interfaces in Crystalline Materials and Surfaces and Interfaces of Solid Materials. *Physics Today*, 49:88, 1996. ISSN 0031-9228.

[5] Robert W Balluffi, Sam Allen, and W Craig Carter. *Kinetics of materials*. John Wiley & Sons, 2005. ISBN 0471749303.
[6] David L. Olmsted, Elizabeth A. Holm, and Stephen M. Foiles. Survey of computed grain boundary properties in face-centered cubic metals-II: Grain boundary mobility. *Acta Materialia*, 57(13):3704–3713, 2009. ISSN 13596454. doi: 10.1016/j.actamat.2009.04.015. URL http://dx.doi.org/10.1016/j.actamat.2009.04.015

[7] Eric R Homer, Elizabeth A Holm, Stephen M Foiles, and David L Olmsted. Trends in Grain Boundary Mobility: Survey of Motion Mechanisms. *JOM*, 66(1):114–120, jan 2014. ISSN 1047-4838, 1543-1851. doi: 10.1007/s11837-013-0801-2. URL http://link.springer.com/article/10.1007\%2Fs11837-013-0801-2

[8] Felix Ulomek and Volker Mohles. Separating grain boundary migration mechanisms in molecular dynamics simulations. *Acta Materialia*, 103:424–432, 2016. ISSN 13596454. doi: 10.1016/j.actamat.2015.10.021. URL http://dx.doi.org/10.1016/j.actamat.2015.10.021

[9] C P Race, R Hadian, J von Pezold, B Grabowski, and J Neugebauer. Mechanisms and kinetics of the migration of grain boundaries containing extended defects. *Physical Review B*, 92(17):174115, jan 2015. doi: 10.1103/PhysRevB.92.174115. URL http://link.aps.org/doi/10.1103/PhysRevB.92.174115

[10] Elizabeth A. Holm, David L. Olmsted, and Stephen M. Foiles. Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni. *Scripta Materialia*, 63(9):905–908, 2010. ISSN 13596462. doi: 10.1016/j.scriptamat.2010.06.040.

[11] Patrick R. Cantwell, Ming Tang, Shen J. Dillon, Jian Luo, Gregory S. Rohrer, and Martin P. Harmer. Grain boundary complexions. *Acta Materialia*, 62(1):1–48, 2014. ISSN 13596454. doi: 10.1016/j.actamat.2013.07.037. URL http://dx.doi.org/10.1016/j.actamat.2013.07.037

[12] C. J. O’Brien and S. M. Foiles. Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion. *Journal of Materials Science*, 51(14):6607–6623, 2016. ISSN 15734803. doi: 10.1007/s10853-016-9944-1.

[13] Yang Zhang, Garritt J Tucker, and Jason R Trelewicz. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying. *Acta Materialia*, 131:39–47, 2017. ISSN 1359-6454.

[14] J Wang, N Li, O Anderoglu, X Zhang, A Misra, J Y Huang, and J P Hirth. Detwinning mechanisms for growth twins in face-centered cubic metals. *Acta Materialia*, 58(6):2262–2270, 2010. ISSN 1359-6454.

[15] N Li, J Wang, Y Q Wang, Y Serruys, Michael Nastasi, and A Misra. Incoherent twin boundary migration induced by ion irradiation in Cu. *Journal of Applied Physics*, 113(2):23508, 2013. ISSN 0021-8979.

[16] N Li, J Wang, J Y Huang, A Misra, and X Zhang. Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu. *Scripta Materialia*, 64(2):149–152, 2011. ISSN 1359-6462.

[17] J Wang, A Misra, and J P Hirth. Shear response of $\Sigma 3 \{112\}$ twin boundaries in face-centered-cubic metals. *Physical Review B*, 83(6):64106, 2011.

[18] C. Fan, Jin Li, Zhe Fan, H. Wang, and X. Zhang. In Situ Studies on the Irradiation-Induced Twin Boundary-Defect Interactions in Cu. *Metallurgical and Materials Transactions A*, 48(11):5172–5180, 2017. ISSN 1073-5623. doi: 10.1007/s11661-017-4293-5. URL http://link.springer.com/10.1007/s11661-017-4293-5

[19] Jonathan L Priedeman, David L Olmsted, and Eric R Homer. The role of crystallography and the mechanisms associated with migration of incoherent twin grain boundaries. *Acta Materialia*, 131:553–563, 2017. ISSN 1359-6454.
[20] Arash Dehghan Banadaki and Srikanth Patala. A simple faceting model for the interfacial and cleavage energies of Sigma 3 grain boundaries in the complete boundary plane orientation space. *Computational Materials Science*, 112:147–160, 2016. ISSN 09270256. doi: 10.1016/j.commatsci.2015.09.062. URL http://dx.doi.org/10.1016/j.commatsci.2015.09.062

[21] Koenraad G F Janssens, David Olmsted, Elizabeth A Holm, Stephen M Foiles, Steven J Plimpton, and Peter M Derlet. Computing the mobility of grain boundaries. *Nature Materials*, 5(2):124–127, feb 2006. ISSN 1476-1122. doi: 10.1038/nmat1559. URL http://www.nature.com/nmat/journal/v5/n2/abs/nmat1559.htmlhttp://www.nature.com/nmat/journal/v5/n2/pdf/nmat1559.pdf

[22] F. Ulomek, C. J. O’Brien, S. M. Foiles, and V. Mohles. Energy conserving orientational force for determining grain boundary mobility. *Modelling and Simulation in Materials Science and Engineering*, 23(2):0–13, 2015. ISSN 1361651X. doi: 10.1088/0965-0393/23/2/025007.

[23] H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen. Highly optimized embedded-atom-method potentials for fourteen FCC metals. *Physical Review B - Condensed Matter and Materials Physics*, 83(13):1–20, 2011. ISSN 10980121. doi: 10.1103/PhysRevB.83.134118.

[24] Stephen M Foiles and J J Hoyt. Computation of grain boundary stiffness and mobility from boundary fluctuations. *Acta Materialia*, 54(12):3351–3357, jun 2006. ISSN 1359-6454. doi: 10.1016/j.actamat.2006.03.037. URL http://www.sciencedirect.com/science/article/pii/S1359645406002333http://www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271635&_user=525223&_pi=s1359645406002333&_check=y&_origin=article&_zone=toolbar&_coverDate=31-Jul-2006&view=c&_originContentFam

[25] M. I. Mendelev, M. J. Kramer, S. G. Hao, K. M. Ho, and C. Z. Wang. Development of interatomic potentials appropriate for simulation of liquid and glass properties of nizr2 alloy. *Philosophical Magazine*, 92(35):4454–4469, 2012. ISSN 14786443. doi: 10.1080/14786454.2012.712220.

[26] Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. *Physical Review B*, 59(5):3393–3407, 1999. ISSN 0163-1829. doi: 10.1103/PhysRevB.59.3393. URL http://link.aps.org/doi/10.1103/PhysRevB.59.3393http://prb.aps.org/abstract/PRB/v59/i5/p3393http://prb.aps.org/pdf/PRB/v59/i5/p3393

[27] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. *Journal of computational physics*, 117(1):1–19, 1995. URL http://lammps.sandia.gov/

[28] C P Race. Quantifying uncertainty in molecular dynamics simulations of grain boundary migration. *Molecular Simulation*, 41(13):1069–1073, jul 2015. ISSN 0892-7022. doi: 10.1080/08927022.2014.935774. URL http://dx.doi.org/10.1080/08927022.2014.935774http://www.tandfonline.com/doi/abs/10.1080/08927022.2014.935774?&_user=525223&_account=miamiimageURL&isn=PRB10.1103/PhysRevB.89.214110http://journals.aps.org/prb/abstract/PRB/v89/i5/10.1103/PhysRevB.89.214110http://journals.aps.org/prb/abstract/PRB/v89/i5/10.1103/PhysRevB.89.214110

[29] Zachary T Trautt, Moneesh Upmanyu, and Alain Karma. Interface Mobility from Interface Random Walk. *Science*, 314(5799):632–635, nov 2006. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1131988. URL http://www.sciencemag.org/content/314/5799/632http://www.sciencemag.org/content/314/5799/632.full.pdfhttp://www.ncbi.nlm.nih.gov/pubmed/17068258.

[30] Jonathan Humberson and Elizabeth A Holm. The structure and motion of incoherent sigma 3 grain boundaries in fcc metals. *arXiv preprint arXiv:1704.03088*, 2017.

[31] C P Race, J von Pezold, and J Neugebauer. Role of the mesoscale in migration kinetics of flat grain boundaries. *Physical Review B*, 89(21):214110, oct 2014. doi: 10.1103/PhysRevB.89.214110. URL http://link.aps.org/doi/10.1103/PhysRevB.89.214110http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.214110

[32] J. D. Humberson. *The motion mechanism and thermal behavior of sigma 3 grain boundaries*. PhD thesis, Carnegie Mellon University, 2016.
[33] Jonathan Humberson and Elizabeth A. Holm. Anti-thermal mobility in the $\Sigma_3$ [111] 60 {11 8 5} grain boundary in nickel: Mechanism and computational considerations. *Scripta Materialia*, 130:1–6, 2017. ISSN 13596462. doi: 10.1016/j.scriptamat.2016.10.032.

[34] J. P. Hirth, J. Wang, and C. N. Tomé. Disconnections and other defects associated with twin interfaces. *Progress in Materials Science*, 83(July):417–471, 2016. ISSN 00796425. doi: 10.1016/j.pmatsci.2016.07.003. URL http://dx.doi.org/10.1016/j.pmatsci.2016.07.003.

[35] István Daruka and J. C. Hamilton. Atomistic and lattice model of a grain boundary defaceting phase transition. *Physical Review Letters*, 92(24):1–4, 2004. ISSN 00319007. doi: 10.1103/PhysRevLett.92.246105.

[36] Z. X. Wu, Y. W. Zhang, and D. J. Srolovitz. Grain boundary finite length faceting. *Acta Materialia*, 57(14):4278–4287, 2009. ISSN 13596454. doi: 10.1016/j.actamat.2009.05.026. URL http://dx.doi.org/10.1016/j.actamat.2009.05.026.

[37] D. L. Medlin, K. Hattar, J. A. Zimmerman, F. Abdeljawad, and S. M. Foiles. Defect character at grain boundary facet junctions: Analysis of an asymmetric $\Sigma = 5$ grain boundary in Fe. *Acta Materialia*, 124:383–396, 2017. ISSN 13596454. doi: 10.1016/j.actamat.2016.11.017.

[38] V Vítek. Intrinsic stacking faults in body-centred cubic crystals. *The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics*, 18(154):773–786, oct 1968. ISSN 0031-8086. doi: 10.1080/14786436808227500. URL https://doi.org/10.1080/14786436808227500.

[39] H. Van Swygenhoven, P. M. Derlet, and A. G. Frøseth. Stacking fault energies and slip in nanocrystalline metals. *Nature Materials*, 3(6):399–403, 2004. ISSN 14761122. doi: 10.1038/nmat1136.

[40] Jian Han, Spencer L Thomas, and David J Srolovitz. Grain-boundary kinetics: A unified approach. arXiv preprint arXiv:1803.03214, 2018.

[41] R. Hadian, B. Grabowski, M. W. Finnis, and J. Neugebauer. Migration mechanisms of a faceted grain boundary. *Phys. Rev. Materials*, 2:043601, Apr 2018. doi: 10.1103/PhysRevMaterials.2.043601. URL https://link.aps.org/doi/10.1103/PhysRevMaterials.2.043601.

[42] Christopher D. Barrett, Haitham El Kadiri, and Robert Moser. Generalized interfacial fault energies. *International Journal of Solids and Structures*, 110-111:106–112, 2017. ISSN 00207683. doi: 10.1016/j.ijsolstr.2017.01.036. URL http://dx.doi.org/10.1016/j.ijsolstr.2017.01.036.

[43] R. C. Pond and V. Vítek. Periodic Grain Boundary Structures in Aluminium. I. A Combined Experimental and Theoretical Investigation of Coincidence Grain Boundary Structure in Aluminium. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 357(1691):453–470, 1977. ISSN 1364-5021. doi: 10.1098/rspa.1977.0179. URL http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1977.0179.

[44] G Lucadamo and D L Medlin. In situ Transmission Electron Microscopy Study of Dislocation Emission At Junctions Between $\Sigma = 3$ Grain Boundaries In Gold Thin Films. 673(2001):1402–1403, 2017.