Influence of HLA Matching on the Efficacy of Allogeneic Mesenchymal Stromal Cell Therapies for Osteoarthritis and Degenerative Disc Disease

Javier García-Sancho, MD, PhD, Ana Sánchez, MD, PhD, Aurelio Vega, MD, PhD, David C. Noriega, MD, PhD, and Mercedes Nocito, MD, PhD

Background. The necessity for more effective therapies for chronic osteoarticular diseases has led to the development of treatments based on mesenchymal stem cells (MSCs), the natural precursors of musculoskeletal tissue. Treatment with autologous MSCs yielded excellent results, with nearly 70% improvement of pain and disability in osteoarthritides and degenerative disc disease. Using allogeneic MSCs is logistically more convenient and would widen the pool of eligible patients, but potential immune rejection should be considered. In this context, MSCs are purportedly immune evasive and better tolerated than other cell types.

Methods. We used samples collected during the performance of 2 randomized clinical trials using allogeneic bone marrow MSCs for treatment of osteoarthritis (NCT01586312) and degenerative disc disease (NCT01860417). Serum samples were used to determine anti-HLA antibodies, whereas either blood or MSC samples were used for HLA typing of recipients and donors, respectively. Allogeneic functional indexes were used as indicators of clinical evolution, and the correlation between the number of donor-host HLA mismatches and the efficacy of treatment was determined.

Results. Immune response was weak and transient, with reactivity decaying during the first year. Consistently, better donor-recipient HLA matching did not enhance efficacy.

Conclusions. This lack of reactivity is presumably due to the cooperation of 2 factors, (1) downregulation of the host immune responses by the transplanted MSCs and (2) effective insulation of these cells inside the articular cavity or the intervertebral disc, respectively. Interestingly, better HLA matching did not enhance efficacy. These observations have medical relevance as they support the clinical use of allogeneic MSCs, at least as a single-dose administration. Multiple-dose applications will require further research to exclude possible sensitization.

Received 15 June 2017. Revision requested 14 July 2017. Accepted 15 July 2017.

1 Institute for Molecular Biology and Genetics (IBGM), University of Valladolid and Spanish National Council (CSIC), Valladolid, Spain.
2 Division of Traumatology, Valladolid University Clinic Hospital, Valladolid, Spain.
3 Infection and Immunology Medical Investigation Unit (IMI), Microbiology and Immunology Service, Valladolid University Clinic Hospital, Valladolid, Spain.
J.G.-S. and A.S. are members of the Board of Directors of Citospin, a spin-off the University of Valladolid that specializes in Good Manufacturing Practices (GMP)-compliant cell production. No other disclosures are reported.

Funding/Support: Financial support from the Red de Terapia Celular of the Instituto de Salud Carlos III (RD16/0011/0003) and from the Centro en Red de Medicina Regenerativa de Castilla y León are gratefully acknowledged. EU cofinanced these grants through the European Regional Development Fund. The sponsors had no role in the design and conduct of the study; the collection, management, analysis, and interpretation of the data; or the preparation, review, or approval of the article.

© 2017 The Author(s). Transplantation Direct. Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

ISSN: 2373-8731
DOI: 10.1097/TXD.0000000000000724
CT	PAT. NO.	Recipient HLA typing	Donor HLA typing	Mismatches	Anti-HLA antibodies cPRA (%) and alleles list^b	Anti-HLA antibodies 12-18 months later^c
Knee 3	A*11,24; B*18,52; DRB1*15,16;	A*03, 24; B*35, 35; DRB1*08, 12;	5			
Knee 4	A*02,23; B*15(71), 44; DRB1*11,15;	A*03, 24; B*35, 35; DRB1*08, 12;	5			
Knee 5	A*03, B14(85),44; DRB1*04,13;	A*03, 24; B*35, 35; DRB1*08, 12;	5			
Knee 7	A*29,31; B*08,45; DRB1*03(17),11;	A*03, 24; B*35, 35; DRB1*08, 12;	6	A*03, 24, 68; B*15(1,75,77), 35;		
Knee 10	A*24,69; B*18,40; DRB1*08,13;	A*11, 11; B*35, 44; DRB1*01, 07;	6			
Knee 12	A*02,24; B*37,44; DRB1*07,10;	A*11, 11; B*35, 44; DRB1*01, 07;	4			
Knee 13	A*02, B*51, B*35, 44; DRB1*04,13;	A*11, 11; B*35, 44; DRB1*01, 07;	6	A*01, 11; B*13, 15(76), 27, 37, 40(60, 61), 41, 44, 45, 47, 49, 50, 57, 67, 82; B*13,40,41,44,45,47, 49,50,76,82;		
Knee 15	A*02,26; B*38,44; DRB1*13,15;	A*11, 11; B*35, 44; DRB1*01, 07;	5			
Knee 16	A*03,24; B*18,44; DRB1*09,11;	A*11, 11; B*35, 44; DRB1*01, 07;	5			
Knee 19	A*02, B*15,51, B*35, 44; DRB1*04,13;	A*01, 03; B*44, 49; DRB1*04, 13;	4			
Knee 20	A*02,29; B*44, B*35, 44; DRB1*04,07;	A*01, 03; B*44, 49; DRB1*04, 13;	5			
Knee 25	A*01,32; B*08,14; DRB1*01,03(17);	A*01, 03; B*44, 49; DRB1*04, 13;	5			
Knee 26	A*02,11; B*18,35; DRB1*08,14;	A*01, 03; B*44, 49; DRB1*04, 13;	6			
Knee 30	A*01,24; B*08,35; DRB1*03(17),13;	A*01, 03; B*44, 49; DRB1*04, 13;	4	Not tested	Not tested	
Disc 3	A*11,29; B*18,35; DRB1*04,07;	A*02,29; B*44, B*27, 35; DRB1*13,15;	5			
Disc 5	A*24,32; B*27,35; DRB1*13,15;	A*02, B*35,51; DRB1*07,11;	5			
Disc 9	A*31,66; B*07,41; DRB1*15,16;	A*02, B*18, B*35,51; DRB1*08,15;	5			
Disc 12	A*02,68; B*35,53; DRB1*04,13;	A*02; B*35,51; DRB1*07,11;	4	Not tested	Not tested	
Disc 16	A*02,26; B*44,55; DRB1*11,14;	A*02; B*35,51; DRB1*07,11;	4	Not tested	Not tested	
Disc 17	A*02, B*44, B*35,51; DRB1*04,13;	A*02; B*35,51; DRB1*07,11;	3	Not tested	Not tested	
Disc 19	A*02,26; B*15(62), 49; DRB1*01,11;	A*03,29; B*44,55; DRB1*03(17),14;	6			
Disc 21	A*02, B*27,41; DRB1*03(17),13;	A*03,29; B*44,55; DRB1*03(17),14;	5	A23,24,25,32,B13,38,40,51,52,53,57,58,59,63,77		
Disc 24	A*03,33, B*14(64), 35; DRB1*07,15;	A*03,29; B*44,55; DRB1*03(17),14;	5			

Samples from NCT01586312 and NCT01860417 clinical trials.

SSO HLA typing was performed using Luminex technology (Immucor). HLA alleles coinciding in recipient and donor are underlined; alleles coinciding in donor and anti-HLA antibodies are in bold face.

^a Number of HLA mismatches; only A, B and DRB1 alleles were considered.

^b Anti-HLA alloantibodies were determined 1 to 6 months after intervention by single antigen bead via Luminex (Immucor). Reactivity is expressed as calculated Panel Reactive Antibodies (cPRA), as a percentage, followed by the list of alleles.

^c A second determination was performed 12 to 18 months after the intervention with 13 patients of the knee trial.

CT, clinical trial, either treatment of knee osteoarthritis (knee) or DDD (disc); PAT. NO., patient number; SSO, sequence-specific oligonucleotide.
patients; however, immune responses have not been studied in detail. Here we provide the data on HLA donor-host matching and recipient HLA sensitization results from 2 different clinical trials, and we establish a parallel to the clinical and functional outcomes.

MATERIALS AND METHODS

We used samples collected during 2 randomized clinical trials that tested the use of allogeneic bone marrow MSCs in the treatment of osteoarthritis (NCT01586312) and DDD (NCT01860417). Stored serum samples were used to determine anti-HLA antibodies, while blood samples were used for HLA typing of the hosts. Typing of the donors was performed using the retention samples collected during MSC manufacturing in both trials. The clinical results of the trials, including allogenic indices and quantitative magnetic resonance imaging, were used for analysis. The human investigations were performed with informed consent and were preceded by local institutional review board approval.

RESULTS

Data on sensitization by allogeneic MSC infusion are scarce, with less than 100 patients studied in 3 different clinical trials. In all the cases, sensitization was poor, affected to only 5% to 30% of the patients, and no associated safety events were observed. Our new results come from prolonged follow-up in 2 different clinical trials and are summarized in Table 1. Table 1 compares the allelic HLA composition of recipients and donors for 23 patients that were treated with allogeneic MSC and computes the number of mismatches (from 3 to 6 in our cohort). The titers of anti-HLA antibodies in sera 1 to 6 months after the intervention and 12 to 18 months after intervention are also tabulated.

We could detect specific anti-HLA antibodies targeted to alleles present in the donor in only 2 of the 13 patients assessed during the knee osteoarthritis trial (Table 1). In these patients (patients 7 and 13), the reactivity decreased with time. The specific HLA reactivity also decreased during the first year in one of the previous reports. In the disc trial, the serum reactivity against MSCs was even smaller, and specific antibodies were not detected in any of the 9 patients tested. One patient (patient 21) displayed antibodies against antigenic determinants that were not present in the MSC donor. Finally, of 13 control patients analyzed, only 1 was positive for HLA antibodies.

DISCUSSION

The influence of HLA mismatches on renal graft survival has been questioned recently. However, an extensive study with 189 184 patients demonstrated that every mismatch cumulatively increases the probability of rejection by a modest 13%. In our cohort, MSC treatment improved pain from 0 (P < 0.005, t test). To study the effects of HLA mismatch, we represented the relative pain improvement against the number of mismatches (Figure 1). The theoretical expectations would be that the pain improvement would decrease with the number of mismatches. In contrast, pain improvement appeared to increase with increasing MSC-host mismatch, although the mean improvement values obtained with 4, 5, and 6 mismatches were not significantly different.

In conclusion, our results indicate that real-life immune responses to allogeneic MSC treatments of knee osteoarthritis and DDD are weak. This is probably due to the cooperation of 2 factors: (i) down regulation of the immune responses by the own MSCs and (ii) effective insulation of these cells inside the articular cavity or the intervertebral disc, respectively. Consistently, it seems that HLA matching does not enhance the efficacy of the treatment. These observations have medical relevance, as they support clinical use of allogeneic cells not matching to the recipient, at least as a single-dose administration. Multiple-dose applications will require further research to exclude possible sensitizations.

ACKNOWLEDGMENTS

The authors thank Dr Antonio Orduña for help with the use of the Immunology Platform facilities of the Valladolid University Hospital and Dr. Alberto Acedo, from AC-Gen, for help with the preparation of DNA extracts. The authors thank Ms. Sandra Güemes and Ms. Virginia Gordillo for technical support.

REFERENCES

1. Orozco L, Munar A, Soler R, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95:1535–1541.
2. Orozco L, Soler R, Moreira C, et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation. 2011;92 822–828.
3. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32:252–260.
4. Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007;262:509–525.
5. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54.

6. Vega A, Martín-Ferrero MA, Del Canto F, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99:1681–1690.

7. Noriega DC, Ardura F, Hernández-Ramajo R, et al. Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: a randomized controlled trial. Transplantation. 2017;101:1945–1951.

8. Ascheim DD, Gelijns AC, Goldstein D, et al. Mesenchymal precursor cells as adjunctive therapy in recipients of contemporary left ventricular assist devices. Circulation. 2014;129:2287–2296.

9. Hare JM, DiFede DL, Rieger AC, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DOM trial. J Am Coll Cardiol. 2017;69:526–537.

10. Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308:2369–2379.

11. Ashby VB, Port FK, Wolfe RA, et al. Transplanting kidneys without points for HLA-B matching: consequences of the policy change. Am J Transplant. 2011;11:1712–1718.

12. Morales JM, Maroñ R, Andrés A, et al. Renal transplantation in the modern immunosuppressive era in Spain: four-year results from a multicenter database focus on post-transplant cardiovascular disease. Kidney Int Suppl. 2008:S94–S99.

13. Su X, Zenios SA, Chakkera H, et al. Diminishing significance of HLA matching in kidney transplantation. Am J Transplant. 2004;4:1501–1508.

14. Williams RC, Opelz G, McGarvey CJ, et al. The risk of transplant failure with HLA mismatch in first adult kidney allografts from deceased donors. Transplantation. 2016;100:1094–1102.