SOFTWARE

Bioalerts: a python library for the derivation of structural alerts from bioactivity and toxicity data sets

Isidro Cortes-Ciriano*

Abstract

Background: Assessing compound toxicity at early stages of the drug discovery process is a crucial task to dismiss drug candidates likely to fail in clinical trials. Screening drug candidates against structural alerts, i.e. chemical fragments associated to a toxicological response prior or after being metabolized (bioactivation), has proved a valuable approach for this task. During the last decades, diverse algorithms have been proposed for the automatic derivation of structural alerts from categorical toxicity data sets.

Results and conclusions: Here, the python library bioalerts is presented, which comprises functionalities for the automatic derivation of structural alerts from categorical (dichotomous), e.g. toxic/non-toxic, and continuous bioactivity data sets, e.g. Ki or pIC50 values. The library bioalerts relies on the RDKit implementation of the circular Morgan fingerprint algorithm to compute chemical substructures, which are derived by considering radial atom neighbourhoods of increasing bond radius. In addition to the derivation of structural alerts, bioalerts provides functionalities for the calculation of unhashed (keyed) Morgan fingerprints, which can be used in predictive bioactivity modelling with the advantage of allowing for a chemically meaningful deconvolution of the chemical space. Finally, bioalerts provides functionalities for the easy visualization of the derived structural alerts.

Keywords: Structural alerts, Circular fingerprints, Morgan fingerprints, Toxicology, Bioactivity

Background

The early assessment of compound toxicity is crucial in drug discovery to dismiss drug candidates displaying undesirable safety profiles. This reduces the risk of investing time and resources on compounds likely to fail at clinical trials. Computational toxicology aims at predicting in silico the health and environmental risks associated to compound exposure or intake. The main benefits of these approaches are the potential reduction of the usage of animal models and their low cost in comparison to in vitro and in vivo methods.

The derivation of structural alerts, i.e. chemical fragments associated to a toxicological response prior or after being metabolized (bioactivation), is an area of intense development in toxicology. A plethora of studies in the last decades have proved the suitability of screening drug candidates against structural alerts known to be implicated in compound toxicity [1–4]. In silico approaches to catalogue, rationalize and identify structural alerts are generally divided into two groups. The first category comprises knowledge-based expert systems [5–8]. These methods gather and annotate structural alerts derived through human experience or from the scientific literature. These data can be used to define sets of rules for the evaluation of compound toxicity. Nonetheless, further expanding knowledge-based expert systems, i.e. adding more structural alerts by toxicology experts or from curation of scientific literature, is an arduous and cost-inefficient task. In addition, the need for human subjective intervention might lead to divergent perceptions about the toxicity of particular structural alerts.

The second category is composed of data-driven systems [9]. In this case, machine learning and data
mining techniques are applied to large toxicity data sets to identify structural alerts in an automatic and unbiased fashion. This second class of methods differ with respect to knowledge-based expert systems in that (1) they are fast, exhaustive, deterministic, and automatic, and (2) there is no need for human intervention for the derivation of the structural alerts, although it might be required for their interpretation. Diverse notions underlie the data-driven algorithms reported in the literature, such as maximum common substructure (MCS) calculation [10], emerging pattern mining [9, 11], or clique-based techniques [12]. The functionalities of these methods have been exposed and compared on categorical toxicity data sets, such as mutagenicity or carcinogenicity. However, the notion of identifying chemical fragments that enrich for a biological endpoint, be it toxicity or in vitro enzyme inhibition, can be extended to data sets reporting continuous compound activity values.

Here, the python library *bioalerts* is presented, which comprises functionalities for the automatic derivation of structural alerts from categorical (dichotomous), e.g. toxic/non-toxic, and continuous bioactivity data sets, e.g. K_i or pIC$_{50}$ values. The workflow proposed by Ahlberg et al. [13] is followed for the derivation of structural alerts from categorical data—with the exception that to generate compound substructures circular Morgan fingerprints are used instead of a signature descriptor [14, 15]—whereas the pipeline published by Cortes-Ciriano et al. [16] is followed when using continuous bioactivity data. Ahlberg and coworkers showed that their pipeline leads to comparable results to both manual derivation of structural alerts and a clique-based method, namely PAFI [17]. However, the computational efficiency of their method was proved to be significantly higher; in fact, training and prediction times were reduced by up to three orders of magnitude in comparison to PAFI [13]. The library *bioalerts* relies on the RDKit implementation of the circular Morgan fingerprint algorithm to compute chemical substructures, which are derived by considering radial atom neighbourhoods of increasing bond radius. Morgan fingerprints were chosen given the high retrieval rates obtained with them in comparative bond radius. Morgan fingerprints were chosen given the high retrieval rates obtained with them in comparative bond radius. Morgan fingerprints encode chemical structures by considering radial atom neighbourhoods [24]. For their computation, each substructure in a molecule, with a maximal user-defined bond radius, is assigned an unambiguous integer identifier. These identifiers can be mapped into an unhashed or hashed array. For the hashed array, the position in the array where the substructures are mapped is given by the modulo of the division of the substructure identifier by the fingerprint size. In the case of unhashed (keyed) fingerprints, each bit in the fingerprint is associated to only one substructure. Thus, the notion of identifying chemical fragments that enrich for a biological endpoint, be it toxicity or in vitro enzyme inhibition, can be extended to data sets reporting continuous compound activity values. The library *bioalerts* is implemented in python. It is mainly based on the RDKit implementation of circular Morgan fingerprints, licensed under a 3-clause BSD license [20], and depends on the following python modules: numpy, operator, os, pandas, scipy, and sys [21–23]. The library is divided in three modules, namely: (1) LoadMolecules, (2) Alerts, and (3) FPCalculator. These modules allow to read molecule files, compute hashed and unhashed Morgan fingerprints in binary and count format, and to derive structural alerts from continuous and categorical bioactivity data sets. The implementation of the three modules is serial. Their functionalities are presented in the following subsections.

Reading molecule files

Molecule files can be read with the method *ReadMolecules()* from the class *bioalerts.LoadMolecules.LoadMolecules()*.

Implementation

The library *bioalerts* is implemented in python. It is mainly based on the RDKit implementation of circular Morgan fingerprints, licensed under a 3-clause BSD license [20], and depends on the following python modules: numpy, operator, os, pandas, scipy, and sys [21–23]. The library is divided in three modules, namely: (1) LoadMolecules, (2) Alerts, and (3) FPCalculator. These modules allow to read molecule files, compute hashed and unhashed Morgan fingerprints in binary and count format, and to derive structural alerts from continuous and categorical bioactivity data sets. The implementation of the three modules is serial. Their functionalities are presented in the following subsections.

Computation of Morgan fingerprints

Morgan fingerprints encode chemical structures by considering atom neighbourhoods [24]. For their computation, each substructure in a molecule, with a maximal user-defined bond radius, is assigned an unambiguous integer identifier. These identifiers can be mapped into an unhashed or hashed array. For the hashed array, the position in the array where the substructures are mapped is given by the modulo of the division of the substructure identifier by the fingerprint size. In the case of unhashed (keyed) fingerprints, each bit in the fingerprint is associated to only one substructure. Thus, the length of the unhashed fingerprints is equal to the number of distinct substructures present in the molecule set. Morgan fingerprints can be generated as binary, recording the presence or absence of each substructure, or count format, recording the number of occurrences of each substructure in a given compound.

The methods *calculatehashed_fps()* and *calculateunhashed_fps()* from the class *bioalerts.FPCalculator*.

The methods *calculatehashed_fps()* and *calculateunhashed_fps()* from the class *bioalerts.FPCalculator*. The workflow proposed by Ahlberg et al. [13] is followed for the derivation of structural alerts from categorical data—with the exception that to identify structural alerts in an automatic and unbiased fashion. This second class of methods differ with respect to knowledge-based expert systems in that (1) they are fast, exhaustive, deterministic, and automatic, and (2) there is no need for human intervention for the derivation of the structural alerts, although it might be required for their interpretation. Diverse notions underlie the data-driven algorithms reported in the literature, such as maximum common substructure (MCS) calculation [10], emerging pattern mining [9, 11], or clique-based techniques [12]. The functionalities of these methods have been exposed and compared on categorical toxicity data sets, such as mutagenicity or carcinogenicity. However, the notion of identifying chemical fragments that enrich for a biological endpoint, be it toxicity or in vitro enzyme inhibition, can be extended to data sets reporting continuous compound activity values.

Here, the python library *bioalerts* is presented, which comprises functionalities for the automatic derivation of structural alerts from categorical (dichotomous), e.g. toxic/non-toxic, and continuous bioactivity data sets, e.g. K_i or pIC$_{50}$ values. The workflow proposed by Ahlberg et al. [13] is followed for the derivation of structural alerts from categorical data—with the exception that to generate compound substructures circular Morgan fingerprints are used instead of a signature descriptor [14, 15]—whereas the pipeline published by Cortes-Ciriano et al. [16] is followed when using continuous bioactivity data. Ahlberg and coworkers showed that their pipeline leads to comparable results to both manual derivation of structural alerts and a clique-based method, namely PAFI [17]. However, the computational efficiency of their method was proved to be significantly higher; in fact, training and prediction times were reduced by up to three orders of magnitude in comparison to PAFI [13]. The library *bioalerts* relies on the RDKit implementation of circular Morgan fingerprint algorithm to compute chemical substructures, which are derived by considering radial atom neighbourhoods of increasing bond radius. Morgan fingerprints were chosen given the high retrieval rates obtained with them in comparative bond radius. Morgan fingerprints encode chemical structures by considering radial atom neighbourhoods [24]. For their computation, each substructure in a molecule, with a maximal user-defined bond radius, is assigned an unambiguous integer identifier. These identifiers can be mapped into an unhashed or hashed array. For the hashed array, the position in the array where the substructures are mapped is given by the modulo of the division of the substructure identifier by the fingerprint size. In the case of unhashed (keyed) fingerprints, each bit in the fingerprint is associated to only one substructure. Thus, the length of the unhashed fingerprints is equal to the number of distinct substructures present in the molecule set. Morgan fingerprints can be generated as binary, recording the presence or absence of each substructure, or count format, recording the number of occurrences of each substructure in a given compound.

The methods *calculatehashed_fps()* and *calculateunhashed_fps()* from the class *bioalerts.FPCalculator*.

The methods *calculatehashed_fps()* and *calculateunhashed_fps()* from the class *bioalerts.FPCalculator*. The workflow proposed by Ahlberg et al. [13] is followed for the derivation of structural alerts from categorical data—with the exception that to identify structural alerts in an automatic and unbiased fashion. This second class of methods differ with respect to knowledge-based expert systems in that (1) they are fast, exhaustive, deterministic, and automatic, and (2) there is no need for human intervention for the derivation of the structural alerts, although it might be required for their interpretation. Diverse notions underlie the data-driven algorithms reported in the literature, such as maximum common substructure (MCS) calculation [10], emerging pattern mining [9, 11], or clique-based techniques [12]. The functionalities of these methods have been exposed and compared on categorical toxicity data sets, such as mutagenicity or carcinogenicity. However, the notion of identifying chemical fragments that enrich for a biological endpoint, be it toxicity or in vitro enzyme inhibition, can be extended to data sets reporting continuous compound activity values.

Here, the python library *bioalerts* is presented, which comprises functionalities for the automatic derivation of structural alerts from categorical (dichotomous), e.g. toxic/non-toxic, and continuous bioactivity data sets, e.g. K_i or pIC$_{50}$ values. The workflow proposed by Ahlberg et al. [13] is followed for the derivation of structural alerts from categorical data—with the exception that to generate compound substructures circular Morgan fingerprints are used instead of a signature descriptor [14, 15]—whereas the pipeline published by Cortes-Ciriano et al. [16] is followed when using continuous bioactivity data. Ahlberg and coworkers showed that their pipeline leads to comparable results to both manual derivation of structural alerts and a clique-based method, namely PAFI [17]. However, the computational efficiency of their method was proved to be significantly higher; in fact, training and prediction times were reduced by up to three orders of magnitude in comparison to PAFI [13]. The library *bioalerts* relies on the RDKit implementation of circular Morgan fingerprint algorithm to compute chemical substructures, which are derived by considering radial atom neighbourhoods of increasing bond radius. Morgan fingerprints were chosen given the high retrieval rates obtained with them in comparative virtual screening studies [18, 19]. Thus, they appear to efficiently account for chemical aspects related to bioactivity. In addition to the derivation of structural alerts, *bioalerts* provides functionalities for the calculation of unhashed (keyed) Morgan fingerprints, which can be used in predictive bioactivity modelling with the advantage of allowing for a chemically meaningful deconvolution of the chemical space [16]. Finally, *bioalerts* provides functionalities for the easy visualization of the derived structural alerts.
CalculateFPs() permit the computation of hashed and unhashed Morgan fingerprints in both count and binary format, respectively. Both methods rely on the RDKit function rdkit.Chem.AllChem.GetMorganFingerprintAsBitVect(). Since the positions of the substructures in the unhashed fingerprints depend on the training set, the method calculate_unhashed_fps() allows the computation of unhashed fingerprints for new compounds using a basis defined by the substructures present in a training set. This basis is defined by the keys of the substructure dictionary calculated for the molecules from the training set. Images of the substructures highlighted within the molecules where they appear can be saved to individual Portable Document Format (PDF) files. To allow further interpretation of the unhashed fingerprints, the execution of the method calculate_unhashed_fps() generates a dictionary, namely CalculateFPs.substructures_smiles, with the substructure integer identifiers as keys, and their structure in SMILES format as values. The usage of the class CalculateFPs() and its methods is illustrated in the tutorial and documentation provided in the Supplementary Information (Additional files 1 and 2).

Derivation of structural alerts from categorical bioactivity data sets

The derivation of structural alerts from dichotomous bioactivity data follows the work by Ahlberg et al. [13]. The probability for a substructure to be a structural alert is derived from the probability density function of the binomial distribution (Eq. 1). The question to be answered here is (Fig. 1a): which is the probability of having observed by chance \(m_{S_{\text{act}}} \) active compounds (or more) with a given substructure \(S_1 \), given that the substructure is present in \(n_s \) compounds in a training set of \(n \) compounds where \(m \) are active (Fig. 1a)?

A high probability (i.e. P value) indicates that it is likely to obtain by chance \(m_{S_{act}} \) active compounds with substructure \(S_1 \) from the binomial distribution defined by the training data, and thus, substructure \(S_1 \) is not likely to be correlated to compound activity.

By contrast, a low P value indicates that it is not likely to have observed by chance \(m_{S_{act}} \) active compounds with substructure \(S_1 \) from the underlying binomial distribution defined by the training data. Thus, the presence of substructure \(S_1 \) is significantly associated to compound activity.

The P values are calculated from:

\[
P_{value} = \sum_{i=m_{S_{act}}}^{n_s} \frac{n_s!}{i!(n_s-i)!} \left(\frac{m}{n} \right)^i \left(1 - \frac{m}{n} \right)^{n_s-i}
\]

where \(n \) is the total number of compounds in the training set, \(m \) the number of active compounds, \(n_s \) the number of compounds with a given substructure \(S_1 \), and \(m_{S_{act}} \) the total number of compounds that are active and present substructure \(S_1 \).

![Fig. 1 Illustration of the pipelines proposed for the derivation of structural alerts using categorical (a) and continuous (b) data](image-url)
A training set is used to derive a substructure dictionary. This dictionary serves to calculate the P value for the substructures present in the molecules from a test or external set with the method `calculate_p_values()` from the class `bioalerts Alerts()`. This method calculates the substructures for the external molecules and their associated P value. The method `calculate_p_values()` requires three parameters to be defined, namely: (1) `threshold_nb_substructures`: the threshold for the number of substructures (default value equal to 5) [13], (2) `threshold_pvalue`: P value threshold (default value equal to 0.05), and (3) `threshold_frequency`: substructure frequency threshold. The threshold for the number of substructures, `threshold_nb_substructures`, indicates the minimum number of compounds in the training set with a given substructure (n_s) required to proceed to the calculation of the P value for that substructure. For instance, if the threshold is set to 5 [13], and only 4 compounds from the training set present a given substructure S_1, the algorithm will not calculate the P value for S_1. On the other hand, the P value threshold, `threshold_pvalue`, indicates the level of significance (α) to consider a given substructure as structural alert. Finally, the substructure frequency threshold, `threshold_frequency`, corresponds to the ratio $m_{S, act}/n_s$. Therefore, if there are too few active molecules with a given substructure S_1 with respect to the total number of molecules with that substructure, the P value for S_1 will not be computed.

Overall, the structure of the algorithm is as follows:

- Take as input a series of molecules (i.e. training set) and derive a dictionary of substructures (reference set). Only the substructures with a bond radius within the set of bond radii specified by the user will be considered.
- For each molecule from an external (or test) set, do:
 - For each set of substructures rooted at a given heavy atom, S_{substr}, do:
 1. Among the substructures in this set that have not been processed yet, select the substructure S of smallest radius
 2. If substructure S is in the reference substructure set derived from the training set, continue
 3. If the number of compounds with substructure S in the training set is higher than the value of the argument `threshold_nb_substructures`, continue
 4. If the ratio $m_{S, act}/n_s$ is higher than the value of the argument `threshold_frequency`, continue
 5. Compute P value for substructure S
 6. If the P value is below the P value threshold, `threshold_pvalue`, label substructure S as significant. In this case, substructure S will not be considered even if it appears in other molecules from the external molecule set yet not processed. In addition, substructures comprising substructure S (i.e. substructures of higher bond radius rooted at the same heavy atom present in S_{substr}, but not yet processed) will not be considered in future iterations.

To control the familywise error rate the Bonferroni correction can be applied to the computed P values by setting the argument `Bonferroni` of the method `calculate_p_values()` to True (default). The Bonferroni correction consists of multiplying the P values by the total number of substructures for which P values were computed. Alternatively, the significance level can be divided by the number of computed P values. In that case, the significance level would be compared to the computed P values without transforming them.

Derivation of structural alerts from continuous bioactivity data sets

The module `calculate_p_values()` from the class `bioalerts Alerts.CalculatePvaluesContinuous()` permits the derivation of structural alerts from data sets reporting continuous compound activity values, e.g. pIC_{50}. To identify which substructures from a test molecule significantly contribute to bioactivity on the biomolecular system under study, two bioactivity distributions are defined (Fig. 1b), namely: (1) distribution A, comprising the bioactivity values for those compounds from the training set presenting a given substructure, and (2) distribution B, comprising the bioactivity values for those compounds not presenting that substructure in the same training set. The normality of these distributions is assessed with the Shapiro–Wilk test ($\alpha = 0.05$). If both A and B are normally distributed, a two-tailed t test for independent samples is applied to statistically evaluate the difference between these two distributions. By contrast, if A and B do not follow a normal distribution, the Kolmogorov–Smirnov test is used instead. If the difference between A and B is significant, the considered substructure is assumed to have an influence on bioactivity. The sign of the difference between the mean value of A and B indicates whether the presence of that substructure increases or decreases compound activity on the studied biological system.

The method `calculate_p_values()` requires two parameters. The first one, `threshold_nb_substructures`, indicates the minimum number of compounds in the training set presenting a given substructure that is required to compute the significance (P value) for that substructure. The second one, `threshold_ratio`, refers to the ratio between
the number of compounds from the training set with a substructure and the size of the training set. If this ratio is below the value set for the parameter threshold_ratio the algorithm will not further consider that substructure.

Overall, the structure of the algorithm is as follows:

- Take as input a series of molecules (i.e. training set) and derive a dictionary of substructures (reference set). Only the substructures with a bond radius within the set of bond radii specified by the user will be considered.
- For each substructure, S, in the molecules from an external (or test) set, do:
 - If substructure S is in the reference substructure set derived from the training set and has not been previously processed, continue.
 - If the number of compounds with substructure S in the training set is higher than the value of the argument threshold_nb_substructures, continue.
 - If the ratio between the number of compounds with substructure S from the training set and the total number of distinct compounds from the training set is higher than the value set for the argument threshold_ratio, continue.
 - Compute P value for substructure S using the Student’s t test or the Kolmogorov Smirnov test.

The substructures identified with the algorithm along with additional information, e.g. the associated P values and the bioactivity difference between distributions A and B (effect size), are saved to a pandas data frame [22], which can be further saved to a .xlsx file for further processing and visualization (Additional files 1 and 2). As in the previous case, the Bonferroni correction can be applied to the computed P values if the argument Bonferroni of the method calculate_p_values() is set to True (default).

Discussion and conclusion
An open source implementation of two methodologies for the automatic derivation of structural alerts from bioactivity data sets is presented. Additionally, the library bioalerts permits the computation of unhashed (keyed) Morgan fingerprints. The performance of unhashed and hashed Morgan fingerprints has been shown to be comparable on continuous bioactivity data sets [16] (Additional file 2). Nonetheless, building predictive models with unhashed fingerprints enables the deconvolution of the models in a chemically meaningful way [16, 25, 26], thus increasing model interpretability. The functionalities of bioalerts are illustrated in a tutorial (Additional file 2) using three diverse bioactivity data sets, namely: (1) Ames mutagenicity data for 1752 compounds [27], (2) pIC50 values for 2311 compounds on human cyclooxygenase (COX) 2 [16], and (3) blood–brain barrier (BBB) data for 157 organic compounds [28].

Although the method for the derivation of structural alerts from continuous bioactivity data has been recently validated on a human cyclooxygenases data set [16], it is of paramount importance to bear in mind the following limitations. This method treats the effect of individual substructures on compound activity as independent events. However, it was shown by Klekota et al. [29] that the contribution to biological activity of some substructures depends on the presence of others. Similarly, it is important to note a second scenario where none of the methods would be suited. We can envision a data set where all active compounds present a given substructure S₁ not implicated in the studied biological response, and substructure S₂ enriching for activity, whereas all inactive compounds in that data set do not present neither S₁ nor S₂. The presented approaches would identify both substructures S₁ and S₂ as implicated in bioactivity, whereas only S₂ actually is. Given that in practice the last situation might not be common when modelling large data sets, it is advisable to use large and chemically diverse training sets.

Finally, another important consideration when deriving structural alerts from continuous bioactivity data is the effect size required to privilege or dismiss compounds presenting a given substructure. The effect size corresponds to the difference between the two distributions from which the statistical test, e.g. t test, is calculated. For instance, (1) distribution A comprising the bioactivities for all compounds in a data set harboring a given substructure, and (2) distribution B comprising the bioactivities for the remaining compounds. In some cases, depending on the sample sizes, a highly significant P value might be obtained for a small size effect, e.g. a tenth of a pIC₅₀ unit. From a medicinal chemistry standpoint that difference might be negligible [30]. Therefore, it is paramount to pay especial attention to the effect size in addition to the P values.

Overall, bioalerts constitutes an open source python library for the derivation of structural alerts from categorical and continuous data sets using two methodologies that have been previously validated. In addition, bioalerts functionalities include the computation of unhashed Morgan fingerprints, which can be further used in e.g. predictive bioactivity modelling, clustering or similarity searching.

Availability and requirements
Project name: bioalerts
Project home page: Source code is available at http://github.com/isidroc/bioalerts. Users of bioalerts are
encouraged to visit this site for future versions and improvements.

Operating system(s): Platform independent
Programming language: Python
License: GNU GPL version 3
Any restrictions to use by non-academics: none.

Additional files

Additional file 1. Bioalerts library and documentation. The file bioalerts.zip expands to a folder containing the library scripts and documentation. The folder build contains an HyperText Markup Language (HTML) tree which documents the library bioalerts using reStructuredText (rst) as markdownt language and processed with sphinx (www.http://sphinx-doc.org/). The documentation can be browsed by opening the file index.html file in any HTML browser. The documentation of the python library RDKit can be accessed at www.rdkit.org.

Additional file 2. Bioalerts Tutorial (tutorial.zip). The tutorial is provided in three file formats: (i) file bioalerts_tutorial.html, which can be browsed in any HTML browser, (ii) file bioalerts_tutorial, and (iii) file bioalerts_tutorial.ipynb, which can be opened with python notebook. This tutorial illustrates the functionalities of bioalerts on three real world data sets available at http://github.com/isidroc/bioalerts.

Acknowledgements
ICC thanks the Paris-Pasteur International PhD Programme and Institut Pasteur for funding.

Competing interests
The authors declare that they have no competing interests.

Received: 13 October 2015 Accepted: 22 February 2016
Published online: 04 March 2016

References
1. Enoch SJ, Ellison CM, Schultz TW, Cronin MT (2011) A review of the electro‑phi reaction chemistry involved in covalent protein binding relevant to toxicity. Crit Rev Toxicol 41(9):783–802
2. Enoch S, Madden J, Cronin M (2008) Identification of mechanisms of toxic action for skin sensitisation using a smarts pattern based approach. SAR QSAR Environ Res 19(5–6):555–578
3. Ashby J, Tannent RW (1988) Chemical structure, salmonella mutagenicity, and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the nci/ntp. Mutat Res Genet Toxicol 204(1):117–15
4. Bailey AB, Chanderbhan R, Collazo-Braier N, Cheeseman M, Twaroski ML (2000) The use of structure-activity relationship analysis in the food contact notification program. Regul. Toxicol Pharmacol 42(2):225–235
5. Ridings J, Barratt M, Cary R, Earnshaw C, Eggington C, Ellis M, Judson P, Langowski J, Marchant C, Payne M, Watson W, Yih T (1996) Computer prediction of possible toxic action from chemical structure: an update on the derek system. Toxicology 106(1–3):267–279
6. Benigni R, Bossa C (2008) Structure alerts for carcinogenicity, and the salmonella assay system: a novel insight through the chemical relational databases technology. Mutat Res Rev Mutat 659(3):248–261
7. Benigni R, Bossa C (2011) Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem Rev 111(4):2507–2536
8. Klopman G, Frierson MR, Rosenkranz HS (1990) The structural basis of the mutagenicity of chemicals in salmonella typhimurium: the gene-tox data base. Mutat Res Fund Mol Mech Mutagen 228(1):1–50
9. Metivier JP, Lepailleur A, Buzmakov A, Poozevara G, Cremilleux B, Kuznetsov SO, Goff JL, Napoli A, Bureau R, Cuissard B (2015) Discovering structural alerts for mutagenicity using stable emerging molecular patterns. J Chem Inf Model 55(5):925–940
10. Nicolau CA, Tamura SY, Kelley BP, Bassett SI, Nutt RF (2002) Analysis of large screening data sets via adaptively grown phylogenetic-like trees. J Chem Inf Comput Sci 42(5):1069–1079
11. Auer J, Bajorath J (2006) Emerging chemical patterns: a new methodology for molecular classification and compound selection. J Chem Inf Model 46(6):2502–2514
12. Deshpande M, Kuramochi M, Wale N, Karypis G (2005) Frequent substructure-based approaches for classifying chemical compounds. IEEE Trans Knowl Data Eng 17(8):1036–1050
13. Ahlberg E, Carlsson L, Boyer S (2014) Computational derivation of structural alerts from large toxicology data sets. J Chem Inf Model 54(10):2945–2952
14. Faulon JL, Visco DP, Pophale RS (2003) The signature molecular descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. J Chem Inf Comput Sci 43(3):707–720
15. Faulon JL, Churchwell CJ, Visco DP (2003) The signature molecular descriptar. 2. Enumerating molecules from their extended valence sequences. J Chem Inf Comput Sci 43(3):721–734
16. Cortes-Ciriano I, Murrell DS, van Westen G, Bender A, Malliavin T (2014) Ensemble modeling of cyclooxygenase inhibitors. J Cheminf 7:1
17. Kuramochi M, Karypis G (2004) An efficient algorithm for discovering frequent subgraphs. IEEE Trans Knowl Data Eng 16(9):1038–1051
18. Bender A, Jenkins JL, Scheiber J, Sukuru SC, Glick M, Davies JW (2009) How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 49(1):108–119
19. Koutsoukas A, Paricharak S, Galloway WRD, Spring DR, Izerman AP, Glen RC, Marcus D, Bender A (2013) How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space. J Chem Inf Model 54(1):230–242
20. Toscio P, Sniff N, Landrum G (2014) Bringing the MMFF force field to the RDKit: implementation and validation. J Cheminf 6(1):37
21. Walt Svd, Colbert SC, Varoquaux G (2011) The NumPy array: A structure for efficient numerical computation. Comput Sci Eng 13(2):22–30
22. McKinney W (2010) Data structures for statistical computing in python. In: van der Walt S, Millman J (eds) Proceedings of the 9th Python in science conference, pp 51–56
23. Jones EJ, Oliphant T, Peterson P (2001) SciPy: open source scientific tools for Python (2001). http://www.scipy.org/
24. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754
25. An QU, Mendez Lucio O, Cortes-Ciriano I, van Westen G, Malliavin T, Bender A (2014) Bioactivity modelling of inhibitors for serine proteases using proteochemometric approaches. Intech Biol 6:1023–1033
26. Cortes Ciriano I, An QU, Subramanian V, Lenselink EB, Mendez Lucio O, Izerman AP, Wohlfahrt G, Pruss P, Malliavin T, van Westen G, Bender A (2015) Polypharmacology modelling using proteochemometrics: recent developments and future prospects. Med Chem Comm 6:24–50
27. Young S, Gombar VK, Emptage MR, Cariello NF, Lambert C (2002) Matrix decomposition and analysis of Ames mutagenicity data. Chemometr Intell Lab 60(1–2):5–11 (Fourth International Conference on Environ metrics and Chemometrics held in Las Vegas, NV, USA, 18-20 September 2000)
28. Zhang L, Zhu H, Oprea T, Golbraikh A, Trophsa A (2008) Qsar modeling of the blood–brain barrier permeability for diverse organic compounds. Pharm Res 25(8):1902–1914
29. Kle Kota J, Roth FP (2008) Chemical substructures that enrich for biological activity. Bioinformatics 24(21):2518–2525
30. Kramer C, Fuchs JE, Whitebread S, Gedeck P, Liedt KR (2014) Matched molecular pair analysis: significance and the impact of experimental uncertainty. J Med Chem 57(8):3786–3802