The generation of neural network dynamics relies on the interactions between the intrinsic and synaptic properties of their neural components. Moreover, neuromodulators allow networks to change these properties and adjust their activity to specific challenges. Endogenous continuous ("tonic") neuromodulation can regulate and sometimes be indispensable for networks to produce basal activity. This seems to be the case for the inspiratory rhythm generator located in the preBötzinger complex (preBötC). This neural network is necessary and sufficient for generating inspiratory rhythms. The preBötC produces normal respiratory activity (eupnea) as well as sighs under normoxic conditions, and it generates gasping under hypoxic conditions after a reconfiguration process. The reconfiguration leading to gasping generation involves changes of synaptic and intrinsic properties that can be mediated by several neuromodulators. Over the past years, it has been shown that endogenous continuous neuromodulation of the preBötC may involve the continuous action of amines and peptides on extrasynaptic receptors. I will summarize the findings supporting the role of endogenous continuous neuromodulation in the generation and regulation of different inspiratory rhythms, exploring the possibility that these neuromodulatory actions involve extrasynaptic receptors along with evidence of glial modulation of preBötC activity.

Keywords: endogenous neuromodulation, glia, network activity, pacemaker neurons, reconfiguration, extrasynaptic
Adenosine is an inhibitory neuromodulator of the preBötC (Hülsmann et al., 2000; Ptak et al., 2009).

CONTINUOUS ("TONIC") NEUROMODULATION OF THE preBötC

The actions of endogenous neuromodulators on the inspiratory rhythm generator, including amines and peptides, were recently reviewed (Ballanyi, 2004; Peña and García, 2006; Doi and Ramírez, 2008; Peña, 2009). Therefore, I will focus on the evidence of endogenous continuous neuromodulations of the preBötC. In the CNS, several neuromodulators can be continuously released and act both at synaptic and extrasynaptic levels to regulate network function (Vizi et al., 2010). Extrasynaptic transmission was originally discovered for several monoamines that regulate the release of other neuromodulators and neurotransmitters despite the lack of synaptic contact between the two terminals (Vizi et al., 2010). In fact, the majority of monoaminergic and peptidergic neurons fail to make synaptical contacts and instead, they act on extrasynaptic receptors (Descarries and Mechawar, 2000; Vizi et al., 2010).

Such neuromodulators are preferentially, but not exclusively, accumulated in large, dense-core vesicles, and they require a strong depolarization or high frequency stimulation to be released (Torrealba and Carrasco, 2004; De-Migue1 and Trueba, 2005; Vizi et al., 2010). The fact that several neuromodulators, such as serotonin and adenosine, have been detected in the extracellular space of the preBötC by means of microdialysis (Richter et al., 1999), which detects neurotransmitters and neuromodulators that escaped the synaptic cleft (Peña and Tápia, 1999, 2000), suggests that they can reach extrasynaptic receptors and continuously modulate the preBötC. The extracellular concentration of these neuromodulators changes depending on the state of the network (i.e., hypoxia; Richter et al., 1999; Hehre et al., 2008) indicating that such continuous modulation adjusts the preBötC activity to fit particular demands. Next, I will present a catalog of neuromodulators that maintain a continuous neuromodulation of the preBötC, and discuss the possible involvement of extrasynaptic receptors or glial cells in this modulation. It is important to consider that respiratory rhythmogenesis is studied in a variety of experimental conditions ranging from behaving animals to preBötC islands (Ramírez-Jarquin et al., 2012). Thus, in most cases, the pharmacological manipulations could affect different respiratory circuits besides the preBötC (Zavala-Tecuapetla et al., 2008; Ramírez-Jarquin et al., 2012).

ADENOSINE

Adenosine is an inhibitory neuromodulator of the preBötC (Schmidt et al., 1995; Herlenius and Lagercrantz, 1999; Wilken et al., 2000; Huxtable et al., 2009) that can be directly released from neurons and glia or that can be extracellularly produced by the degradation of released ATP (Martin et al., 2007; Cunha, 2008; Zwickert et al., 2011). Ambient adenosine can exert its effects by diffusing far away from the release sites (Cunha, 2008; Vizi et al., 2010). An adenosinergic continuous modulation of the preBötC of mice has been evidenced by blocking adenosine-receptors with the non-selective, adenosine-receptor antagonist aminophylline (Wilken et al., 2000), which increases the frequency and amplitude of inspiratory rhythm in slices. This effect is similar to blocking the type 1 (A1) adenosine-receptor in rats with the specific antagonist DPCPX (Huxtable et al., 2009) These increases have also been observed in the brainstem-spinal cord preparation (also called the "en bloc") of rats (Herlenius and Lagercrantz, 1999) and in cats in vivo (Schmidt et al., 1995), where levels of adenosine increase in hypoxia (Richter et al., 1999), contributing to the respiratory depression observed during this condition. In fact, blocking A1-receptors attenuates hypoxia-induced breathing in the en bloc of rats (Kawai et al., 1995). Thus, it has been suggested that adenosine antagonists can be useful for the treatment of several respiratory dysfunctions (Mathew, 2011).

ATP

ATP excites the preBötC in vitro in rats (Huxtable et al., 2009; Zwickert et al., 2011) through the activation of P2Y-receptors (Lorier et al., 2007; Huxtable et al., 2009). Interestingly, blockade of endogenous activation of P2-receptors with suramin reduces inspiratory frequency in the slice preparation, while Cu^{2+}, an allosteric modulator of purinergic receptors, produced the opposite effect (Lorier et al., 2007, 2008). ATP is released during hypoxia, and blocking its tonic action on P2-receptors increases the hypoxia-induced slowing of the respiratory rhythm, suggesting that ATP is involved in maintaining respiration in hypoxia in rats (Gourine et al., 2005). Interestingly, the excitatory effect of exogenous ATP on the preBötC is precluded when glial cells are inhibited (Huxtable et al., 2009).

ACETYLCHOLINE

Acetylcholine (ACh) is another neuromodulator that tonically regulates preBötC activity in rats and mice (Shao and Feldman, 2009). Application of the acetylcholinesterase inhibitor physostigmine increases the frequency of rhythmic respiratory activity in the slice preparation involving the type-3-muscarinic and α4β2-nicotinic receptors in rats and mice, respectively (Shao and Feldman, 2005; Shao et al., 2008). Similarly, blockade of muscarinic-receptors with atropine reduces the amplitude and frequency of the respiratory rhythm in the en bloc from mice (Coddou et al., 2009). In the lamprey en bloc, physostigmine increases the respiratory frequency, while the nicotinic antagonists D-tubocurarine or bungarotoxin reduces it (Mutolo et al., 2011).

NORADRENALINE

Pre-Bötzinger complex activity is modulated by endogenous noradrenaline released from the A5, A6, A1C1, and A2C2 nuclei in rats and mice (Hilaire et al., 2004; Viemari, 2008). This continuous modulation involves activation of α-2-adrenoreceptors, since its blockade with yohimbine, piperoxane, or phentolamine decreases respiratory frequency in the en bloc in rats and mice (Errchidi et al., 1990; Zanella et al., 1990; Fujii and Arata, 2010) and abolishes gasping generation in slices from mice (Viemari et al., 2011). Accordingly, decreasing the extracellular noradrenaline concentration with pargyline, desipramine, or tyroside increases the frequency of the rhythm, while methyltyrosine, an inhibitor of noradrenaline biosynthesis, increases the en bloc respiratory frequency in rats and mice (Errchidi et al., 1990; Zanella et al., 2006). There is some evidence of a continuous modulation of the preBötC by histamine and dopamine. Thus, the histamine-type-1-receptor antagonist, pyrilamine, reduces the en bloc respiratory
SEROTONIN
The preBötC is modulated by 5-hydroxytryptamine (5-HT), which produces an excitatory effect mediated by 5-HT2-receptors and an inhibitory effect mediated by 5-HT1-receptors (Schwarzacher et al., 2002). The main source of 5-HT is the raphe nuclei (Richerson, 2004), whose projections can or cannot make synaptic contacts with their targets throughout the brain (Kosofsky and Molliver, 1987). In the preBötC, increasing the extracellular concentration of 5-HT with 5-HT-uptake inhibitors leads to an increase of respiratory activity in the en bloc from rats (Di Pasquale et al., 1994). In contrast, blocking 5-HT-receptors with the non-specific antagonist methysergide abolishes rhythmodogenesis in the en bloc and in slices from rats (Di Pasquale et al., 1994; Ptak et al., 2009). In these preparations, excitation of raphe neurons increases the frequency of the respiratory rhythm mediated by the activation of 5-HT2-receptors (Al-Zubaidy et al., 1996; Ptak et al., 2009). Accordingly, blocking either 5-HT2B-receptors (Günter et al., 2006), 5-HT2C-receptors (Ptak et al., 2009), or 5-HT2A receptors (Peña and Ramírez, 2002; Ptak et al., 2009) reduces the respiratory rhythm frequency and its regularity in slices from rats and mice. Such findings have been corroborated for 5-HT2A- and 5-HT2C-receptors in situ in rats (Ptak et al., 2009). Interestingly, low micromolar concentrations of 5-HT induce bursting activity in non-bursting preBötC neurons (Ptak et al., 2009), while blockade of 5-HT2A receptors abolishes the intrinsic bursting of the \textit{In}d\textit{dent}-dependent (hypoxia-resistant) pacemaker neurons (Peña and Ramírez, 2002; Tryba et al., 2006). Consequently, blockade of 5-HT2A receptors inhibits gasping generation in slices from mice (Tryba et al., 2006) and \textit{in situ} in rats (Bale and Solomon, 2010). These findings may have clinical relevance, since it has been hypothesized that a deficiency of the medullary 5-HT network is a potential cause of SIDS (Kinney et al., 2001).

PEPTIDES
Several neuropeptides may exert a continuous regulation of the preBötC. Neuropeptides are typical non-synaptic transmitters, which are released extrasynaptically (Torrealba and Carrasco, 2004; Wotjak et al., 2008). Blocking the endogenous activation of the opioid-receptors with naloxone increases the respiratory output in cats (Lawson et al., 1979) and reduces hypoxia-induced respiratory depression in rats (Schlenker and Inamdar, 1995). In mice, blocking endogenous activation of somatostatin-receptors increases the respiratory rhythm frequency and reduces its regularity, both in slices and \textit{in vivo} (Ramírez-Jarquín et al., 2012). Moreover, blockade of somatostatin-receptors, specifically subtype 2, prevents the reconfiguration of the preBötC during hypoxia \textit{in vitro} and reduces gasping generation and autoreexcitation \textit{in vivo} (Ramírez-Jarquín et al., 2012). In contrast, substance-P maintains an excitatory continuous modulation on the preBötC in rats and mice (Ptak et al., 2009; Doi and Ramírez, 2010). Blockade of the substance-P receptor (NK1) with SR 140333 or spantide inhibits rhythmodogenesis \textit{in vitro} and \textit{in situ} in mice and rats, respectively (Telgkamp et al., 2002; Ptak et al., 2009). Interestingly, in mice, inhibition of respiratory activity with NK1 antagonists has no significant respiratory effect when the levels of 5-HT or noradrenaline are increased by stimulating the raphe nucleus or locus coeruleus, respectively (Doi and Ramírez, 2010), indicating that the action of substance-P might be influenced by the neuropeudulatory state of the network (Doi and Ramírez, 2010).

POSSIBLE REGULATION OF THE preBötC BY GABA AND GLUTAMATE ACTING ON EXTRASYNAPTIC RECEPTORS
Glutamatergic and GABAergic neurons were thought to release their transmitters exclusively at synapses, where they mediate the classical “fast synaptic transmission” (Vizi et al., 2010). However, it has been shown that ambient GABA and glutamate can also tonically activate high-affinity, extrasynaptic receptors, suggesting their spillover from synaptic boutons, mediating a slower synaptic transmission (Semyanov et al., 2004; Farrant and Nusser, 2005; Aghajanian, 2009). Extrasynaptic GABA\textsubscript{A} inhibition can modulate the generation of hippocampal fast rhythms (Scanziani, 2000; Towers et al., 2004; Mann and Mody, 2010; Papatheodoropoulos and Koniaris, 2011), and it is likely that such modulation also occurs in the preBötC, where increasing the extracellular concentration of GABA, by inhibiting its uptake with nipeptocic acid, decreases the respiratory frequency (Ren and Greer, 2006). The presence of delta-subunit-containing-GABA\textsubscript{A}-receptors, which are mainly extrasynaptic (Nusser et al., 1998; Adkins et al., 2001; Brown et al., 2002) suggests a tonic GABAergic control of the preBötC. For instance, the application of the GABA\textsubscript{A}-receptor agonist THIP, which preferentially activates extrasynaptic GABA\textsubscript{A}-receptors containing delta-subunits (Nusser et al., 1998; Adkins et al., 2001; Brown et al., 2002), hyperpolarizes respiratory neurons and reduces the frequency of the respiratory rhythm (Shao and Feldman, 1997). Neurosteroids, which also target delta-containing, extrasynaptic GABA\textsubscript{A}-receptors (Stell et al., 2003; Beletti and Lambert, 2005; Scimemi et al., 2006), modulate GABA\textsubscript{A}-receptor-mediated hyperpolarization of respiratory neurons and the inhibition of rhythmodogenesis in slices (Ren and Greer, 2006).

Ambient glutamate can also activate extrasynaptic, NR2B-subunit-containing, NMDA-receptors and modulate neural network activity (Lambe and Aghajanian, 2006, 2007; Aghajanian, 2009). It is likely that extrasynaptic, NMDA-receptor-mediated excitation is also present in the preBötC, where inhibition of glutamate uptake with dihydrokainate increases rhythmodogenesis (Greer et al., 1991; Funk et al., 1993). Dihydrokainate can also restore rhythmodogenesis in substance-P-depleted slices, in which capsaicin abolishes rhythm generation (Morgado-Valle and Feldman, 2004). Similarly, releasing NMDA-receptors from their Mg2+-blockade restores rhythmodogenesis in slices where the rhythm is abolished by AMPA-receptor blockade (Morgado-Valle and Feldman, 2007). This evidence supports the notion that a tone of extracellular glutamate can participate in rhythmodogenesis. Furthermore, the presence of the NR2B-receptor has been extensively documented in the preBötC (Watanabe et al., 1994; Paarmann et al., 2000, 2005; Liu and Wong-Riley, 2010).
GLIAL MODULATION OF THE preBötC

Glial cells are integral functional elements of neural networks, since it is argued that they can respond to and regulate neuronal activity (Araque and Navarrete, 2010). The respiratory network is not an exception (Gourine et al., 2010). Glial cells can sense preBötC activity, and a portion of them display a phase-locked rhythmic activity (Schnell et al., 2011). Moreover, glial cells are essential for rhythrogenesis, since both fluoroacetate, which selectively blocks the glial Krebs cycle, and methionine-sulfoxide, which blocks glutamine synthetase (Hülsmann et al., 2000; Young et al., 2005; Huxtable et al., 2010), inhibit rhythmic respiratory burst activity in slices. In these conditions, addition of isocitrate or glutamine restores the rhythmic network activity (Hülsmann et al., 2000). Accordingly, methionine-sulfoxide-treated pups displayed a reduced breathing frequency and a reduced responsiveness to hypercapnia (Young et al., 2005). Moreover, glial cells are required not only for maintaining rhythm generation but also for the response of the preBötC to neuromodulators or to metabolic demands (Gourine et al., 2010). For instance, fluoroacetate and methionine-sulfoxide reduce preBötC responsiveness to ATP (Huxtable et al., 2010), and preBötC glial cells can respond to preBötC neuromodulators including 5-HT and substance-P (Härtl et al., 2009).

I conclude that continuous neuromodulation exerts a powerful influence on the preBötC; to the extent that, in some cases, it is necessary for rhythm generation. Continuous neuromodulation tunes the excitability of the preBötC to respond to different demands and also determines the weight of specific neuronal types or specific synaptic interactions in the generation of network dynamics. This property could allow the preBötC to adopt an infinite number of conformations based on the same circuit (neural units and connections). Moreover, the evidence that one neuromodulator is determined by tonic control exerted by other neuromodulators, supports the notion that the intrinsic and synaptic properties of the preBötC are not fixed, but can change in a state-dependent manner. The levels of modulation in the preBötC would determine the availability of neural properties (intrinsic, synaptic, or both) that can participate in network dynamics or are susceptible to subsequent neuromodulation.

ACKNOWLEDGMENTS

I would like to thank Dorothy Pless for reviewing the English version of this paper. I also thank José Rodolfo Fernandez and Arturo Franco for technical assistance. The research in my group is sponsored by grants (to F P-O) from DGAPA IB200212, CONACyT 151261, 181323 and from the Alzheimer’s Association N1RG-11-205443.

REFERENCES

Adkins, C. E., Pillai, G. V., Kerby, J., Bonnert, T. P., Haldon, M., García-Merlos, J., Gonzalez, R., M., Gonzalez, J. E., Oades, K., Whiting, P. J., and Simpson, P. B. (2001). Alpha4beta3delta GABAA receptors characterized by fluorescence resonance energy transfer-derived measurements of membrane potential. J. Biol. Chem. 276, 38934–38939.

Aghajanian, G. K. (2009), Modeling “psychois” in vitro by inducing disorder-regulated neuronal network activity in cortical brain slices. Psychopharmacology (Berl). 206, 575–585.

Al-Zubaidy, Z. A., Erickson, R. L., and Aghajanian, G. K. (2009). Modeling “psychois” in vitro by inducing disorder-regulated neuronal network activity in cortical brain slices. Psychopharmacology (Berl). 206, 575–585.

Al-Tahsali, Z. A., Erickson, R. L., and Greer, J. J. (1996). Serotonergic and noradrenergic effects on respiratory neural discharge in the medullary slice preparation of neonatal rats. Pflugers Arch. 431, 942–949.

Araque, A., and Navarrete, M. (2010). Glial cells in neuronal network function. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2375–2385.

Armstrong, G. A., López-Guerrero, J. J., Dawson-Scully, C., Peña, F., and Robertson, R. M. (2010). Inhibition of protein kinase G activity protects neonatal mouse respiratory network from hyperthermic and hypoxic stress. Brain Res. 1311, 64–72.

Ballanyi, K. (2004). Neuromodulation of the perinatal respiratory network. Curr. Neuropharmacol. 2, 221–243.

Bellini, D., and Lambert, J. J. (2005). Neurosteroids, endogenous regulators of the GABA receptor. Nat. Rev. Neurosci. 7, 565–575.

Brown, N., Kerby, J., Bonnert, T. P., Whiting, P. J., and Wafford, K. A. (2002). Pharmacological characterization of a novel celf of neuron and Wullrod expressing human alpha 4beta 3delta GABAA receptors. Br. J. Pharmacol. 136, 965–974.

Goudou, C., Bravo, E., and Eugenin, J. (2009). Alterations in cholinergic sensitivity of respiratory neurons induced by pre-natal nicotine, a mechanism for respiratory dys-function in neonatal mice. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 2527–2535.

Cana, R. A. (2008). Different cellular sources and different roles of adenosine, A1 receptor-mediated inhibition through astrocyte-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity. Neurechem. Int. 52, 65–72.

Del Negro, C. A., Morgado-Valle, C., Hayes, J. A., Mackay, D. D., Pace, R. W., Cowder, E. A., and Feldman, J. L. (2005). Sodium and calcium current-mediated pacemaker neurons and rhythmogenesis. J. Neurosci. 25, 446–453.

De-Miguel, F. F., and Trueta, C. (2005). Synaptic and extrasynaptic secretion of serotonin. Cell. Mol. Neurobiol. 25, 297–312.

Descarries, L., and Mechawar, N. (2000). Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog. Brain Res. 125, 27–47.

Di Pasquale, E., Monteau, R., and Hilaire, G. (1994). Endogenous seroton modulates the fetal respiratory rhythm, an in vitro study in the rat. Brain Res. Dev. Brain Res. 80, 222–232.

Doi, A., and Ramírez, J. M. (2008). Neuromodulation and the orchestration of the respiratory rhythm. Respir. Physiol. Neurobiol. 164, 96–104.

Dori, A., and Ramírez, J. M. (2010). State-dependent interactions between excitaotery neuromodulators in the neonatal control of breathing. J. Neurosci. 30, 8251–8262.

Dutschmann, M., Bischoff, A. M., Büsselberg, D., and Richter, D. W. (2003). Histaminergic modulation of the intact respiratory network of adult mice. Pflugers Arch. 445, 570–576.

Errichi, S., Hilaire, G., and Monteau, R. (1990). Permanent release of adenosine A1 receptors modulates respiratory frequency in the newborn rat, an in vitro study. J. Physiol. (Lond.) 429, 497–510.

Farrant, M., and Nusser, Z. (2005). Variations on an inhibitory theme, phasic and tonic activation of GABA A) receptors. Nat. Rev. Neurosci. 6, 215–229.

Feldman, J. L., and Del Negro, C. A. (2006). Looking for inspiration, new perspectives on respiratory rhythm. Nat. Rev. Neurosci. 7, 232–242.

Fellwell, J. E., Zhang, C., and Gillis, A. M. (2007). Influence of adenosine A1 receptor blockade and vagotomy on the gasping and heart rate response to hypoxia in rats during early post-natal maturation. J. Appl. Physiol. 103, 1234–1241.

Fujii, M., and Arata, A. (2010). Adrenaline modulates on the respiratory network development. Adv. Exp. Med. Biol. 669, 25–28.

Funk, G. D., Smith, J. C., and Feldman, J. L. (1993). Generation and transmission of respiratory oscillations in medullary slices, role of excitatory amino acids. J. Neurophysiol. 70, 1497–1515.

Gourine, A. V., Kasyom, V., Marina, N., Tang, F., Figuereido, M. E., Lane, S., Toschemacher, A. G., Spyer, K. M., Deisseroth, K., and Kasparov, S. (2010). Astrocytes control breathing through pH-dependent release of ATP. Science 329, 571–575.

Greer, J. J. (1996). Serotonergic and noradrenergic sensitivity of respiratory neurones induced by pre-natal nicotine, a mechanism for respiratory dys-function in neonatal mice. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 2527–2535.

Hilaire, G. (1994). Endogenous seroton modulates the fetal respiratory rhythm, an in vitro study in the rat. Brain Res. Dev. Brain Res. 80, 222–232.

Huxtable, R. J., and Robertson, R. M. (2010). Inhibi- tion of protein kinase G activity protects neonatal mouse respiratory network from hyperthermic and hypoxic stress. Brain Res. 1311, 64–72.

Härtl et al., 2009).
Greer, J. J., Smith, J. C., and Feldman, I. L. (1991). Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat. *J. Physiol. (Lond.)* 437, 727–749.

Hülsman, S., Oku, Y., Zhang, W., and Herlenius, E., and Lagercrantz, H. (2009). Astrocytic calciumpenkorreregulation activates neuronal respiratory activity in vitro. *Neurobiol. Dis.* 36, 761–774.

Lalley, P. M. (2005). D1-dopamine receptor blockade slows respiratory rhythm and enhances opioid-mediated depression. *Respir. Physiol. Neurobiol.* 145, 13–22.

Lalley, P. M. (2004). Dopamine1 receptor agonists reverse opioid respiratory network depression, increase CO2 reactivity. *Respir. Physiol. Neurobiol.* 139, 247–262.

Lalley, P. M. (2003). Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal mice. *Neurosci. Lett.* 348, 159–172.

Greer, J. J., Smith, J. C., and Feldman, I. L. (2002). Neuronal network activity in the ventral respiratory group of neonatal mice. *Glia* 57, 815–827.

Greer, J. J., and Funk, G. D. (2009). ATP sensitivity of preBötzinger complex neurons in neonatal rat in vitro. *Neuropharmacology* 58, 228–247.

Lalley, P. M. (2003). GM1 ganglioside reduces glutamate-induced increase in inspissation frequency in the pre-Bötzinger complex neurons of neonatal rat. *J. Physiol. (Lond.)* 555, 783–792.

Morgan-D’Almeida, R. C., and Feldman, I. L. (2004). Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal mice. *Neurosci. Lett.* 36, 1218–1228.

Peña, F. (2007). Contribution of pacemaker neurons to respiratory rhythms generation in vitro. *Adv. Exp. Med. Biol.* 665, 114–118.

Peña, F. (2009). Neuronal network properties underlying the generation of gasping. *Clin. Exp. Pharmacol. Physiol.* 36, 1218–1228.

Peña, F., and Agüelita, M. A. (2007). Effects of rhizoxin, and flufenamic acid on eupnea, and gasping of neonatal mice in vivo. *Neurosci. Lett.* 415, 288–293.

Peña, F., and García, O. (2006). Breath generation and potential pharmacotherapeutic approaches to central respiratory disorders. *Curr. Med. Chem.* 13, 2681–2693.

Greer, J. J., and Funk, G. D. (2008). ATP sensitivity of preBötzinger complex neurons in neonatal rat in vitro. *Neuropharmacology* 58, 1429–1446.

Mann, E. O., and Mody, I. (2010). Control of hippocampal gamma oscillation frequency by tonic inhibition and excitation of interneurons. *Neurosci.* 13, 205–212.

Marder, E., and Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. *Annu. Rev. Physiol.* 69, 291–316.

Martin, E. D., Fernández, M., Perea, G., Pascual, G., Hayden, P. G., Araque, A., and Céza, V. (2007). Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. *Glia* 55, 36–45.

Mathew, O. P. (2011). Apnea of prematurity, pathogenesis, and management strategies. *J. Perinatol.* 31, 302–310.

Morgado-Valle, C., and Feldman, J. L. (2004). Depletion of substance P and glutamate by capsaicin blocks respiratory rhythm in neonatal rat in vitro. *J. Physiol. (Lond.)* 555, 783–792.

Morgado-Valle, C., and Feldman, J. L. (2007). NMDA receptors in pre-Bötzinger complex neurons can drive respiratory rhythm independently of AMPA receptors. *J. Physiol. (Lond.)* 582, 359–368.

Mutoolo, D., Cinelli, E., Bongianni, F., and Pantaleo, T. (2011). Identification of a cholinergic modulatory and rhythmogenic mechanism within the lamprey respiratory network. *J. Neurosci.* 31, 13323–13332.

Nusser, Z., Sieghart, W., and Somogyi, P. (1998). Segregation of different GABA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. *J. Neurosci.* 18, 1693–1703.

Peña, F., and Ramirez, J. M. (2002). Endogenous activation of serotonin2A receptors is required for rhythmogenesis in vitro. *J. Neurosci.* 22, 11055–11064.

Peña, F., and Ramírez, J. M. (2004). Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. *J. Neurosci.* 24, 7549–7556.

Peña, F., and Ramírez, J. M. (2005). Hypoxia-induced changes in neuronal network properties. *Mol. Neurobiol.* 32, 251–283.

Peña, F., and Tapia, R. (1999). Relationships among seizures, extracellular amino acid changes, and neurodegeneration induced by 4-aminopyridine in rat hippocampal and cerebellar granule cells. *J. Neurosci.* 19, 45–56.

Papazoglou, S., and Koniaris, E. (2011). α2GABAA receptors regulate hippocampal sharp wave-ripple activity in vitro. *Neuropharmacology* 60, 662–673.

Peña, F. (2008). Contribution of pacemaker neurons to respiratory rhythms generation in vitro. *Adv. Exp. Med. Biol.* 665, 114–118.

Papazoglou, S., and Koniaris, E. (2011). α2GABAA receptors regulate hippocampal sharp wave-ripple activity in vitro. *Neuropharmacology* 60, 662–673.

Peña, F. (2008). Contribution of pacemaker neurons to respiratory rhythms generation in vitro. *Adv. Exp. Med. Biol.* 665, 114–118.

Peña, F. (2009). Neuronal network properties underlying the generation of gasping. *Clin. Exp. Pharmacol. Physiol.* 36, 1218–1228.

Peña, F., and Agüelita, M. A. (2007). Effects of rhizoxin, and flufenamic acid on eupnea, and gasping of neonatal mice in vivo. *Neurosci. Lett.* 415, 288–293.

Peña, F., and García, O. (2006). Breath generation and potential pharmacotherapeutic approaches to central respiratory disorders. *Curr. Med. Chem.* 13, 2681–2693.

Peña, F., Meza-Andrade, R., Páez-Zayas, V., and González-Martin, M. C. (2008). Gasping generation in developing Swiss-Webster mice in vitro and in vivo. *Neurochem. Res.* 33, 1492–1500.

Peña, F., Parkis, M. A., Tryba, A. K., and Ramirez, J. M. (2004). Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia, and hypoxia. *Neuron* 43, 105–117.

Peña, F., and Ramírez, J. M. (2002). Endogenous activation of serotonin2A receptors is required for rhythmogenesis in vitro. *J. Neurosci.* 22, 11055–11064.

Peña, F., and Ramírez, J. M. (2004). Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. *J. Neurosci.* 24, 7549–7556.

Peña, F., and Ramírez, J. M. (2005). Hypoxia-induced changes in neuronal network properties. *Mol. Neurobiol.* 32, 251–283.
Tonic modulation of the pre-Bötzinger complex

Schnell, C., Fresemann, J., and Schmidt, C., Bellingham, M. C., and Scanziani, M. (2000). GABA spillover modulation of respiratory motoneurons and interneurons in brainstem slices of perinatal rats. *Neuroscience* 115, 1247–1259.

Schwarz, S. W., Rüb, U., and Deller, T. (2011). Neuroanatomical characteristics of the human pre-Bötzinger complex and its involvement in neurodegenerative brain diseases. *Brain* 134, 24–35.

Scimemi, A., Andersson, A., Heeroma, J. H., Strandberg, J., Rydenhag, B., McEvoy, A. W., Thom, M., Austrén, F., and Walker, M. C. (2006). Tonic GABAA receptor-mediated currents in human brain. *Eur. J. Neurosci.* 21, 1157–1160.

Semyanov, A., Walker, M. C., Kullmann, D. M., and Silver, R. A. (2004). Tonically active GABA A receptors, modulating gain and maintaining the tone. *Trends Neurosci.* 27, 262–269.

Shao, X. M., and Feldman, J. L. (1997). Rhythmodogenesis and synaptic inhibition of respiratory neurons in pre-Bötzinger complex, differential roles of glycinergic and GABergic neural transmission. *J. Neurophysiol.* 77, 1853–1860.

Shao, X. M., and Feldman, J. L. (2005). Cholinergic neurotransmission in the preBötzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm. *Neuroscience* 130, 1069–1081.

Shao, X. M., and Feldman, J. L. (2009). Central cholinergic regulation of respiration, nicotinic receptors. *Acta Pharmacol. Sin.* 30, 761–770.

Shao, X. M., Tian, W., Xiu, J., Puskar, N., Forster, H. V., and Whittington, M. A. (2004). Alpha 5 subunit-containing GABAA receptors affect the dynamic range of mouse hippocampal kainate-induced gamma frequency oscillations in vitro. *J. Physiol. (Lond.)* 559, 721–728.

Tryba, A. K., Peña, F., and Ramirez, J. M. (2006). Gasping activity in vitro, a rhythm dependent on 5-HT2A receptors. *J. Physiol.* 573, 543–546.

Paciocchi, G. B. (2004). Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. *Nat. Rev. Neurosci.* 5, 449–461.

Lichter, D. W., Schmidt-Garcon, P., Pierrehu, O., Bischoff, A. M., and Lally, P. M. (1999). Neuronal behavior and structure of the hypoxic respiratory response in anesthetized cats. *J. Physiol. (Lond.)* 514, 567–578.

Scanziani, M. (2000). GABA spillover activates postsynaptic GABA B receptors to control rhythmic hippocampal activity. *Neuron* 25, 673–681.

Schlenker, E. H., and Inamdar, S. R. (1995). Effects of naloxone on oxygen consumption and ventilation in awake golden Syrian hamsters. *Physiol. Behav.* 57, 655–658.

Schmidt, C., Bellingham, M. C., and Richter, D. W. (1995). Adenosine modulation of respiratory neurons and the responses in the anesthetized cat. *J. Physiol. (Lond.)* 483, 769–781.

Schneid, C., Fresemann, J., and Hulsmann, S. (2011). Determinants of functional coupling between astrocytes and respira-

tory neurons in the pre-Bötzinger complex. *PLoS ONE* 6, e26309. doi:10.1371/journal.pone.0026309

Schwarz, S. W., Pestean, A., Günther, S., and Ballowy, K. (2002). Serotonergic modulation of respiratory motoneurons and interneurons in brainstem slices of perinatal rats. *Neuroscience* 115, 1247–1259.

Shao, X. M., and Feldman, J. L. (2008). Activation of alpha 2 noradrenergic receptors in the pre-Bötzinger complex and its involvement in neuromodulatory brainstem diseases. *Brain* 134, 24–35.