As the worldwide population ages, there is an expectation for an increasing incidence of distal radius fracture (DRF) in adults.1,2 Surgical management of DRF is increasing; however, most cases are conservatively managed with casting.2,3 Conservatively managed DRF cases have higher rates of malunion than those in surgically managed cases.4–6 Recent evidence demonstrates a trend in improvement of outcomes after surgical management of DRF.7 Because of the prevalence of these injuries, patients may present with a repeat distal radius fracture on the same wrist through the site of a malunion. We clinically refer to this as an acute on chronic distal radius fracture. In this setting, the restoration of acceptable alignment can be challenging. There is little guidance in the literature for the management of these fractures. We report our experience with acute on chronic distal radius fractures. The secondary fracture plane was used to correct the prior deformity, and the construct was fixed with a fixed angle volar locking plate.

Purpose: Distal radius fractures are the most common fractures in adults. Because of the prevalence of these injuries, patients may present with a repeat distal radius fracture on the same wrist through the site of a malunion. We clinically refer to this as an acute on chronic distal radius fracture. In this setting, the restoration of acceptable alignment can be challenging. There is little guidance in the literature for the management of these fractures. We report our experience with acute on chronic distal radius fractures. The secondary fracture plane was used to correct the prior deformity, and the construct was fixed with a fixed angle volar locking plate.

Methods: Records of patients with malunion of the distal radius who experienced an acute fracture of the ipsilateral distal radius were reviewed. Inclusion required treatment with open reduction internal fixation using a distal fragment first technique and a volar locking plate through the extended flexor carpi radialis approach. Clinical outcomes and complications were collected.

Results: Across 13 patients, the mean follow-up term was 13 months (range, 6–40 months). Radiographic union was noted in all patients. The mean visual analog scale score for pain was 1.8, and the mean Quick Disabilities of the Arm, Shoulder, and Hand score was 21.9. There were no recorded complications.

Conclusion: Our results and described technique provide reproducible guidance for the management of acute on chronic distal radius fractures. These cases can be managed using the secondary fracture plane, a distal fragment first technique, and a volar locking plate to correct the preexisting deformity.

Type of study/level of evidence: Therapeutic IV.
Our objective was to report results for fixation of acute on chronic DRFs, in which the secondary fracture plane was used to correct the deformity.

Materials and Methods

A retrospective chart review from 2010 to 2020 (institutional review board approval #1-1533379-1) was performed for patients with malunion of the distal radius who experienced an acute fracture of the ipsilateral distal radius. All DRFs were collected using a Current Procedural Terminology code search. Then, the operative notes were reviewed to determine which patients met the inclusion criteria. The inclusion criteria required a follow-up of 6 months and recording of clinical outcomes, including wrist flexion/extension, forearm pronosupination, a Quick Disabilities of the Arm, Shoulder, and Hand (QuickDASH) score, and a visual analog scale for pain is presented as the score at rest.

Surgical technique

The extended FCR approach provides adequate exposure of the volar distal radius, which facilitates fracture fixation. The incision is 8–10 cm long and is placed directly over the FCR tendon. The incision extends distally to the distal pole of the trapezial ridge and crosses the wrist flexion creases in a zigzag manner to prevent hypertrophic scar formation. As initially described by Orbay et al., the watershed line and transitional fibrous zone are identified across the prominent volar rim of the lunate fossa. The anatomy may often be distorted in these cases. The watershed line can be identified with respect to the origin of the radiocarpal ligaments. The transitional fibrous zone is incised along the watershed line and continued proximally along the radial edge of the pronator quadratus insertion. In cases of malunion, the dorsal periosteum is typically hypertrophic and contracted, which may impede the reduction. Pronating the proximal fragment allows dorsal exposure of the secondary fracture plane and excision of the contracted periosteum. The brachioradialis may be lengthened to prevent deforming forces on the radial styloid. If there are soft tissue contractures, they can be released from the extensor surface of the radius. The distal fragment first technique begins by fixing a VLP to the distal fragment. The plate is then brought down and fixed to the radial shaft. Thus, the plate provides a mechanical advantage to counteract the tension from the contracted tissues consequential to the preexisting deformity. This technique can facilitate the restoration of height and volar tilt. In certain cases, a distal radioulnar joint (DRUJ) capsular release may be required because of a shortened, contracted capsule, which can result from a malunion with a malaligned DRUJ. This procedure has been previously described as a treatment for the functional detriment that may arise because of a shortened DRUJ capsule.

Postoperative rehabilitation consisted of immobilization with a short arm orthosis for 1 week, with immediate finger motion and forearm rotation. After the first postoperative visit, light hand use for daily activities was encouraged, and reasonable weight-lifting restrictions were allowed. These restrictions were removed when radiographic union was achieved, typically occurring at 4–10 weeks after surgery. Those who failed to regain full-finger range of motion by the first postoperative visit or forearm rotation by the first month were referred to physical therapy.
Results

A total of 13 cases met the inclusion criteria, with a mean patient age of 69.5 years (range, 44–82 years) across 10 (77%) women and 3 (23%) men (Table 1). The mean follow-up term was 13 months (range, 6–40 months). Radiographic union was noted in all patients. Preoperative tilt ranged from 20° to 40° dorsal, and radial height ranged from 3 to 15 mm ulnar positive. Postoperative tilt ranged from 0° to 10° volar, and the radial height ranged from 3 mm ulnar positive to 2 mm ulnar negative.

Compared with the contralateral side, the flexion-extension arc was 83%, and pronation supination was 92%. The mean visual analog scale score for pain was 1.8, and the mean Quick Disabilities of the Arm, Shoulder, and Hand score was 21.9. There were no recorded complications.

Two cases required an ulnar shortening osteotomy. This procedure was indicated in cases in which an appropriate longitudinal radioulnar relationship was not attainable after distal radius reduction and fixation. One patient required an autologous bone graft from the proximal ulna to correct a bone deficit after anatomic restoration (Figs. 1, 2).

Discussion

Although historically infrequent, acute on chronic DRFs may become more common because the worldwide population is aging. These cases are problematic because of the preexisting deformity that complicates anatomic reduction. The surgeon can use the established techniques of primary DRF fixation to achieve satisfactory outcomes.

Our results demonstrate satisfactory outcomes in patients with preexisting deformities who sustained an acute fracture on preexisting distal radius malunion. Prior work has demonstrated that functional outcomes are associated with the restoration of native anatomy. Correction of the preexisting deformity can be problematic; thus exacting technique is necessary. We attribute the current results to the successful correction of the acute and preexisting deformity, utilizing the following steps. Firstly is the extended...
FCR approach, which provides the requisite visualization to evaluate each component of the distal radius. Adequate exposure is an integral component of surgical management, especially in the presence of preexisting deformity. We used the secondary fracture plane to access the primary fracture that had malunited. Secondly is the use of a VLP to facilitate reduction against the impedance of contracted soft tissues. By using the distal fragment first technique, the plate provides a mechanical advantage to obtain reduction. Thirdly is the understanding that additional procedures, such as a DRUJ capsular release or ulnar osteotomy, may be required to restore the anatomy. Lastly is the use of a rigid fixation construct, which allows immediate postoperative motion. The benefits of immediate postoperative motion after VLP fixation have been thoroughly elucidated.15–17 These advantages may be even more pronounced in patients with distal radius malunion given the functional detriment that has been described in these cases.18

Malunion can lead to wrist instability because of disruption of the native bony relationship.19 This instability can extend to the midcarpal bones and ultimately lead to limitations in wrist function or progress to arthritis. A prior malunion does not preclude surgical management of the acute fracture. Although distal radius malunion can be managed nonsurgically, a subsequent DRF presents an opportunity to restore anatomical alignment. Our results demonstrate that correcting both the acute and preexisting deformities can lead to satisfactory clinical results.

We acknowledge the limitations associated with small sample reports and retrospective study designs. The addition of preoperative values of the outcome metrics may improve the conclusivity of the findings. Further, a conservative treatment group for comparative analysis would provide a more complete evaluation of the reported treatment method. Given the relative infrequency of this clinical scenario, a sample of 13 cases provides the surgeon with proven and reproducible guidance for the management of an acute DRF that occurs on an ipsilateral distal radius malunion.

Acknowledgments

The authors thank Amy Heifner for her contributions to the editorial process and Scott Kotick for his continued support.

References

1. United Nations Department of Economic and Social Affairs. World Population Ageing 2019: Highlights. https://www.un.org/en/development/desa/

2. Corsino CB, Reeves RA, Sieg RN. Distal radius fractures. In: StatPearls [Internet]. StatPearls Publishing; 2021.

3. Rundgren J, Bojan A, Mellstrand Navarro C, Enconson A. Epidemiology, classification, treatment and mortality of distal radius fractures in adults: an observational study of 23,394 fractures from the national Swedish fracture register. BMC Musculoskelet Disord. 2020;21(1):88.

4. Amadio PC, Botte MJ. Treatment of malunion of the distal radius. Hand Clin. 1987;3(4):541–561.

5. Clement ND, Duckworth AD, Court-Brown CM, McQueen MM. Distal radial fractures in the superelderly: does malunion affect functional outcome? JBJS Open. 2014;2(2):189803.

6. Uzoigwe C, Johnson N. Wrist function in malunion: is the distal radius designed to maintain function in the face of fracture? Ann R Coll Surg Engl. 2016;98(7):442–445.

7. Ochen Y, Peek J, van der Velde D, et al. Operative vs nonoperative treatment of distal radius fractures in adults: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(4):e203497.

8. Orbay JL. The treatment of unstable distal radius fractures with volar fixation. Hand Surg. 2000;5(2):103–112.

9. Orbay JL, Fernandez DL. Volar fixation for dorsally displaced fractures of the distal radius: a preliminary report. J Hand Surg Am. 2002;27(2):205–215.

10. Orbay JL, Gray R, Vernon LL, Sandilands SM, Martin AR, Vignolo SM. The EFCR approach and the radial septum-understanding the anatomy and improving volar exposure for distal radius fractures: imagine what you could do with an extra inch. Tech Hand Up Extrem Surg. 2016;20(4):155–160.

11. Orbay J. Volar plate fixation of distal radius fractures. Hand Clin. 2005;21(3):347–354.

12. Kleinman WB. DRUJ contracture release. Tech Hand Up Extrem Surg. 1999;3(1):13–22.

13. Stirling P, Malhas A, Rymaszewski LA, Paton M, McEanach JE, Jenkins PJ. The changing epidemiology of radial head replacement over a 22-year period in Scotland. Ann R Coll Surg Engl. 2021;103(8):612–614.

14. Mulders MAM, Detering R, Rikli DA, Rosenwasser MP, Goslings JC, Schep NWL. Association between radiological and patient-reported outcome in adults with a displaced distal radius fracture: a systematic review and meta-analysis. J Hand Surg Am. 2018;43(8):710–719.e5.

15. Quadlbauer S, Pesce C, Jurkowitzch J, et al. Immediate mobilization of distal radius fractures stabilized by volar locking plate results in a better short-term outcome than a five week immobilization: a prospective randomized trial. J Hand Surg Am. 2014;39(1):69–86.

16. Lee JK, Yoon BH, Kim B, et al. Is early mobilization after volar locking plate fixation in distal radius fractures really beneficial? A meta-analysis of prospective randomized studies. J Hand Ther. Published online December 28, 2021 https://doi.org/10.1016/j.jht.2021.10.003.

17. Gutiérrez-Espinoza H, Araya-Quintanilla F, Olguín-Huerta C, Gutiérrez-Monclus R, Jorguera-Aguirre R, Mathoulin C. Effectiveness of early versus delayed motion in patients with distal radius fracture treated with volar locking plate: a systematic review and meta-analysis. Hand Surg Rehabil. 2021;40(1):8–16.

18. Graham TJ. Surgical correction of malunited fractures of the distal radius. J Am Acad Orthop Surg. 1997;5(5):270–281.

19. De Smet L, Verhaegen F, Degreve I. Carpal malalignment in malunion of the distal radius and the effect of corrective osteotomy. J Wrist Surg. 2014;3(3):166–170.