Some upper bounds for the signless Laplacian spectral radius of digraphs *

Weige Xi and Ligong Wang†
Department of Applied Mathematics, School of Science,
Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R.China
E-mail: xiyanxwg@163.com, lgwangmath@163.com

Abstract

Let \(G = (V(G), E(G)) \) be a digraph without loops and multiarcs, where \(V(G) = \{v_1, v_2, \ldots, v_n\} \) and \(E(G) \) are the vertex set and the arc set of \(G \), respectively. Let \(d^+_i \) be the outdegree of the vertex \(v_i \). Let \(A(G) \) be the adjacency matrix of \(G \) and \(D(G) = \text{diag}(d^+_1, d^+_2, \ldots, d^+_n) \) be the diagonal matrix with outdegrees of the vertices of \(G \). Then we call \(Q(G) = D(G) + A(G) \) the signless Laplacian matrix of \(G \). The spectral radius of \(Q(G) \) is called the signless Laplacian spectral radius of \(G \), denoted by \(q(G) \). In this paper, some upper bounds for \(q(G) \) are obtained. Furthermore, some upper bounds on \(q(G) \) involving outdegrees and the average 2-outdegrees of the vertices of \(G \) are also derived.

Key Words: Digraph, Signless Laplacian spectral radius, Upper bounds.

AMS Subject Classification (2000): 05C50 15A18

1 Introduction

Let \(G = (V(G), E(G)) \) be a digraph without loops and multiarcs, where \(V(G) = \{v_1, v_2, \ldots, v_n\} \) and \(E(G) \) are the vertex set and the arc set of \(G \), respectively. If \((v_i, v_j)\) be an arc of \(G \), then \(v_i \) is called the initial vertex of this arc and \(v_j \) is called the terminal vertex of this arc. For any vertex \(v_i \) of \(G \), we denote \(N^+_i = N^+_{v_i}(G) = \{v_j : (v_i, v_j) \in E(G)\} \) and \(N^-_i = N^-_{v_i}(G) = \{v_j : (v_j, v_i) \in E(G)\} \) the set of out-neighbors and in-neighbors of \(v_i \), respectively. Let \(d^+_i = |N^+_i| \) denote the outdegree of the vertex \(v_i \) and \(d^-_i = |N^-_i| \) denote

*Supported by the National Natural Science Foundation of China (No.11171273).
†Corresponding author.
the indegree of the vertex v_i in the digraph G. The maximum vertex outdegree is denoted by Δ^+, and the minimum outdegree by δ^+. If $\delta^+ = \Delta^+$, then G is a regular digraph. Let $t_i^+ = \sum_{v_j \in N_i^+} d_j^+$ be the 2-outdegree of the vertex v_i, $m_i^+ = \frac{t_i^+}{d_i^+}$ the average 2-outdegree of the vertex v_i. A digraph is strongly connected if for every pair of vertices $v_i, v_j \in V(G)$, there exists a directed path from v_i to v_j and a directed path from v_j to v_i. In this paper, we consider finite digraphs without loops and multiarcs, which have at least one arc.

For a digraph G, let $A(G) = (a_{ij})$ denote the adjacency matrix of G, where $a_{ij} = 1$ if $(v_i, v_j) \in E(G)$ and $a_{ij} = 0$ otherwise. Let $D(G) = \text{diag}(d_1^+, d_2^+, \ldots, d_n^+)$ be the diagonal matrix with outdegrees of the vertices of G and $Q(G) = D(G) + A(G)$ the signless Laplacian matrix of G. However, the signless Laplacian matrix of an undirected graph D can be treated as the signless Laplacian matrix of the digraph G', where G' is obtained from D by replace each edge with pair of oppositely directed arcs joining the same pair of vertices. Therefore, the research of the signless Laplacian matrix of a digraph has more universal significance than undirected graph.

The eigenvalues of $Q(G)$ are called the signless Laplacian eigenvalues of G, denoted by q_1, q_2, \ldots, q_n. In general $Q(G)$ are not symmetric and so its eigenvalues can be complex numbers. We usually assume that $|q_1| \geq |q_2| \geq \ldots \geq |q_n|$. The signless Laplacian spectral radius of G is denoted and defined as $q(G) = |q_1|$, i.e., the largest absolute value of the signless Laplacian eigenvalues of G. Since $Q(G)$ is a nonnegative matrix, it follows from Perron Frobenius Theorem that $q(G) = q_1$ is a real number.

For the Laplacian spectral radius and signless Laplacian spectral radius of an undirected graph are well treated in the literature, see $[12, 13, 14, 16]$ and $[3, 4, 6, 7, 8, 14]$, respectively. Recently, there are some papers that give some lower or upper bounds for the spectral radius of a digraph, see $[2, 5, 15]$. Now we consider the signless Laplacian spectral radius of a digraph G. For application it is crucial to be able to computer or at least estimate $q(G)$ for a given digraph.

In 2014, Hong and You in $[9]$ obtained the following bounds for signless Laplacian spectral radius of a digraph.

$$q(G) \leq \max\{d_i^+ + d_j^+ : (v_i, v_j) \in E(G)\}. \quad (1)$$

$$q(G) \leq \max\{d_i^+ + m_i^+ : v_i \in V(G)\}. \quad (2)$$

$$q(G) \leq \max\left\{ \frac{d_i^+ + d_j^+ + \sqrt{(d_i^+ - d_j^+)^2 + 4m_i^+m_j^+}}{2} : (v_i, v_j) \in E(G) \right\}. \quad (3)$$

$$q(G) \leq \max\left\{ d_i^+ + \sum_{v_j : (v_j, v_i) \in E(G)} d_j^+ : v_i \in V(G) \right\}. \quad (4)$$

In 2013, S.B. Bozkurt and D. Bozkurt in $[1]$ obtained the following bounds for signless Laplacian spectral radius of a digraph.

In 2014, Hong and You in $[9]$ gave a sharp bound for the signless Laplacian spectral radius of a digraph:

$$q(G) \leq \min_{1 \leq i \leq n} \left\{ \frac{d_1^+ + 2d_i^+ - 1 + \sqrt{(2d_i^+ - d_1^+ + 1)^2 + 8 \sum_{k=1}^{i-1} (d_k^+ - d_i^+)}}{2} \right\}. \quad (5)$$
Remark 1.1. Note that G is a strongly connected digraph for bounds (1), (3), (4), respectively.

In this paper, we study on the signless Laplacian spectral radius of a digraph G. We obtain some upper bounds for $q(G)$, and we also show that some upper bounds on $q(G)$ involving outdegrees and the average 2-outdegrees of the vertices of G can be obtained from our bounds.

2 Preliminaries Lemmas

In this section, we give the following lemmas which will be used in the following study.

Lemma 2.1. ([10]) Let $M = (m_{ij})$ be an $n \times n$ nonnegative matrix with spectral radius $\rho(M)$, i.e., the largest eigenvalues of M, and let $R_i = R_i(M)$ be the i-th row sum of M, i.e., $R_i(M) = \sum_{j=1}^{n} m_{ij} \ (1 \leq i \leq n)$. Then

$$\min\{R_i(M) : 1 \leq i \leq n\} \leq \rho(M) \leq \max\{R_i(M) : 1 \leq i \leq n\}. \tag{6}$$

Moreover, if M is irreducible, then any equality holds in (6) if and only if $R_1 = R_2 = \ldots = R_n$.

Lemma 2.2. ([10]) Let M be an irreducible nonnegative matrix. Then $\rho(M)$ is an eigenvalue of M and there is a positive vector X such that $MX = \rho(M)X$.

Lemma 2.3. ([11]) Let $A = (a_{ij}) \in \mathbb{C}^{n \times n}$, $r_i = \sum_{j \neq i} |a_{ij}|$ for each $i = 1, 2, \ldots, n$, $S_{ij} = \{z \in \mathbb{C} : |z - a_{ii}| \cdot |z - a_{jj}| \leq r_iri_j\}$ for all $i \neq j$. Also let $E(A) = \{(i, j) : a_{ij} \neq 0, 1 \leq i \neq j \leq n\}$. If A is irreducible, then all eigenvalues of A are contained in the following region

$$\Omega(A) = \bigcup_{(i, j) \in E(A)} S_{ij}. \tag{7}$$

Furthermore, a boundary point λ of (7) can be an eigenvalue of A only if λ locates on the boundary of each oval region S_{ij} for $e_{ij} \in E(A)$.

3 Some upper bounds for the signless Laplacian spectral radius of digraphs

In this section, we present some upper bounds for the signless Laplacian spectral radius $q(G)$ of a digraph G and also show that some bounds involving outdegrees, the average 2-outdegrees, the maximum outdegree and the minimum outdegree of the vertices of G with n vertices and m arcs can be obtained from our bounds.
Theorem 3.1. Let G be a strongly connected digraph with $n \geq 3$ vertices, m arcs, the maximum vertex outdegree Δ^+ and the minimum outdegree δ^+. Then

$$q(G) \leq \max\{\Delta^+ + \delta^+ - 1 + \frac{m - \delta^+(n-1)}{\Delta^+}, \delta^+ + 1 + \frac{m - \delta^+(n-1)}{2}\}. \quad (8)$$

Moreover, if $G(\neq C_n)$ is a regular digraph or $G \cong K_{1,n-1}$, where $K_{1,n-1}$ denotes the digraph on n vertices which replace each edge in star graph $K_{1,n-1}$ with the pair of oppositely directed arcs, then the equality holds in (8).

Proof. From (8), we know that $q(G) \leq \max\{d^+_i + m^+_i : v_i \in V(G)\}$. So we only need to prove that $\max\{d^+_i + m^+_i : v_i \in V(G)\} \leq \max\{\Delta^+ + \delta^+ - 1 + \frac{m - \delta^+(n-1)}{\Delta^+}, \delta^+ + 1 + \frac{m - \delta^+(n-1)}{2}\}$.

Suppose $\max\{d^+_i + m^+_i : v_i \in V(G)\}$ occurs at vertex u. Two cases arise $d^+_u = 1$, or $2 \leq d^+_u \leq \Delta^+$.

Case 1. $d^+_u = 1$. Suppose that $N^+_u = \{w\}$. Since $m^+_w = d^+_w \leq \Delta^+$, thus $d^+_u + m^+_w \leq 1 + \Delta^+$. Since $\sum_{v_i \in V(G)} d^+_i = m$, let $d^+_j = \Delta^+$, then $\sum_{i \neq j} d^+_i = m - \Delta^+ \geq (n-1)\delta^+$, so $m - (n-1)\delta^+ \geq \Delta^+$. Therefore $\delta^+ - 1 + \frac{m - \delta^+(n-1)}{\Delta^+} \geq \delta^+ - 1 + \frac{\Delta^+}{\Delta^+} = \delta^+ \geq 1$. Thus $d^+_u + m^+_w \leq 1 + \Delta^+ \leq \Delta^+ + \delta^+ - 1 + \frac{m - \delta^+(n-1)}{\Delta^+}$, the result follows.

Case 2. $2 \leq d^+_u \leq \Delta^+$. Note that $m - (n-1)\delta^+ \geq d^+_u \geq 2$, and

$$m = \sum_{v : (u,v) \in E(G)} d^+_v + \sum_{v : (u,v) \notin E(G)} d^+_v \geq \sum_{v : (u,v) \in E(G)} d^+_v + d^+_u + (n - d^+_u - 1)\delta^+,$$

thus

$$\sum_{v : (u,v) \in E(G)} d^+_v \leq m - d^+_u - (n - d^+_u - 1)\delta^+$$

$$= m - (n-1)\delta^+ + (\delta^+ - 1)d^+_u$$

$$m^+_u = \frac{\sum_{v : (u,v) \in E(G)} d^+_v}{d^+_u} \leq \frac{m - (n-1)\delta^+}{d^+_u} + \delta^+ - 1.$$ (8)

This follows that $m^+_u + d^+_u \leq d^+_u + \frac{m - (n-1)\delta^+}{d^+_u} + \delta^+ - 1$. Let $f(x) = x + \frac{m - (n-1)\delta^+}{x} + \delta^+ - 1$, where $x \in [2, \Delta^+]$. It is easy to see that $f'(x) = 1 - \frac{m - (n-1)\delta^+}{x^2}$. Let $a = m - (n-1)\delta^+$, then \sqrt{a} is the unique positive root of $f'(x) = 0$. We consider the next three Subcases.

Subcase 1. $\sqrt{a} < 2$. When $x \in [2, \Delta^+]$, since $f'(x) > 0$, then $f(x) \leq f(\Delta^+)$. $f(x) \leq f(\Delta^+)$.

Subcase 2. $2 \leq \sqrt{a} \leq \Delta^+$. Then $f'(x) < 0$ for $x \in [2, \sqrt{a}]$, and $f'(x) \geq 0$, for $x \in [\sqrt{a}, \Delta^+]$. Thus, $f(x) \leq \max\{f(2), f(\Delta^+)\}$.

Subcase 3. $\Delta^+ < \sqrt{a}$. When $x \in [2, \Delta^+]$, since $f'(x) < 0$, then $f(x) \leq f(2)$.

Recall that $2 \leq d^+_u \leq \Delta^+$, thus

$$m^+_u + d^+_u \leq \max\{f(2), f(\Delta^+)\}.$$
If $G(\neq C_n)$ is a regular digraph, then $d^+_i + m^+_i = 2d^+_i = 2\Delta^+$ for all $v_i \in V(G)$. We can get $q(G) = 2\Delta^+$. Since $G(\neq C_n)$ is a strongly connected digraph, then we may assume that $\Delta^+ \geq 2$, this implies that $\delta^+ + 1 + \frac{m - \delta^+ (n-1)}{2} = \Delta^+ + 1 + \frac{\Delta^+}{2} \leq 2\Delta^+ = \Delta^+ + \delta^+ - 1 + \frac{m - \delta^+ (n-1)}{2\Delta^+}$. So $\max\{\Delta^+ + \delta^+ - 1 + \frac{m - \delta^+ (n-1)}{2\Delta^+}, \delta^+ + 1 + \frac{m - \delta^+ (n-1)}{2}\} = 2\Delta^+$. Thus, the equality also holds. By combining the above discussion, the result follows. \hfill \Box

Corollary 3.2. Let G be a strongly connected digraph with $n \geq 3$ vertices, m arcs, the maximum outdegree Δ^+ and the minimum outdegree δ^+. If $\Delta^+ \geq \frac{m - \delta^+ (n-1)}{2}$ and $\delta^+ = 1$, then

$$q(G) \leq \Delta^+ + 2. \tag{9}$$

Proof. Because $\Delta^+ + \delta^+ - 1 + \frac{m - \delta^+ (n-1)}{2} \leq \Delta^+ + 2$, $\delta^+ + 1 + \frac{m - \delta^+ (n-1)}{2} \leq \Delta^+ + 2$, therefore by Theorem 3.1 we have $q(G) \leq \Delta^+ + 2$. \hfill \Box

Let $G^*(m, n, \frac{m - \delta^+ (n-1)}{2}, 1)$ be a class of strongly connected digraphs with $\Delta^+ \geq \frac{m - \delta^+ (n-1)}{2}$, $\delta^+ = 1$, and there exists a vertex $v_0 \in V(G)$ such that $d_{v_0} = \Delta^+$ and there exists a vertex $v_k \in N^+_{v_0}$, $d^+_v \geq 2$.

Remark 3.3. For $G \in G^*(m, n, \frac{m - \delta^+ (n-1)}{2}, 1)$, we have $\Delta^+ + 2 \leq \max\{d^+_i + d^+_j : (v_i, v_j) \in E(G)\}$, thus the upper bound (9) is better than the upper bound (11) for the class of digraphs $G \in G^*(m, n, \frac{m - \delta^+ (n-1)}{2}, 1)$. But for general digraphs, the upper bound (11) is incomparable with the upper bound (1).

Example 3.4. Let G be the digraph of order 4, as shown in Figure 1. Since it has 9 arcs, and the maximum outdegree $\Delta^+ = 3 = \frac{9 - (4-1)}{2}$, the minimum outdegree $\delta^+ = 1$, and there exists a vertex $v_4 \in N^+_{v_4}$, $d^+_v = 3 > 2$, therefore $G = G^*(9, 4, 3, 1)$.

![Figure 1: Graph $G^*(9, 4, 3, 1)$](image-url)
Lemma 2.3, there at least exists \((G)\). Moreover if \((10)\) holds in \(G\), it is easy to see that \(P\) is irreducible and nonnegative. Now the \((i, j)\)-th element of \(P = D^{-\frac{1}{2}}Q(G)D^\frac{1}{2}\) is

\[
p_{ij} = \begin{cases}
 d_i^+ & \text{if } i = j, \\
 \frac{\sqrt{d_j^+}}{\sqrt{d_i^+}} & \text{if } (v_i, v_j) \in E(G), \\
 0 & \text{otherwise.}
\end{cases}
\]

Let \(R_i(P)\) be the \(i\)-th row sum of \(P\) and \(R_i'(P) = R_i - d_i^+\). Then by Cauchy-Schwarz inequality, we have

\[
R_i'(P)^2 = \left(\sum_{v_j: (v_i, v_j) \in E(G)} \frac{\sqrt{d_j^+}}{\sqrt{d_i^+}} \right)^2 \leq \sum_{v_j: (v_i, v_j) \in E(G)} 1^2 \sum_{v_j: (v_i, v_j) \in E(G)} \frac{d_j^+}{d_i^+} = \sum_{v_j: (v_i, v_j) \in E(G)} d_j^+ = d_i^+ m_i^+.
\]

Since \(P\) is irreducible and nonnegative, \(\rho(P)\) denotes the spectral radius of \(P\). Then by Lemma 2.3, there at least exists \((v_i, v_j) \in E(G)\) such that \(\rho(P)\) is contained in the following oval region

\[
|\rho(P) - d_i^+| |\rho(P) - d_j^+| \leq R_i'(P) R_i(P) \leq \sqrt{d_i^+ m_i^+} \sqrt{d_j^+ m_j^+}.
\]

Obviously, \(\rho(P) = q(G) > \max\{d_i^+ : v_i \in E(G)\}\), and \((\rho(P) - d_i^+) (\rho(P) - d_j^+) \leq |\rho(P) - d_i^+| |\rho(P) - d_j^+|\). Therefore, solving the above inequality we obtain

\[
q(G) \leq \frac{d_i^+ + d_j^+ + \sqrt{(d_i^+ - d_j^+)^2 + 4 d_i^+ m_i^+ d_j^+ m_j^+}}{2}.
\]

Table 1: Values of the upper bounds for example 1.

| \(G^*(9, 4, 3, 1)\) | 4.7321 | 6 | 5 |

Theorem 3.5. Let \(G\) be a strongly connected digraph with vertex set \(V(G) = \{v_1, v_2, \ldots, v_n\}\) and arc set \(E(G)\). Then

\[
q(G) \leq \frac{d_i^+ + d_j^+ + \sqrt{(d_i^+ - d_j^+)^2 + 4 d_i^+ m_i^+ d_j^+ m_j^+}}{2} : (v_i, v_j) \in E(G) \}. \quad (10)
\]

Moreover if \(G\) is a regular digraph or a bipartite semiregular digraph, then the equality holds in \((10)\).

Proof. From the definition of \(D = D(G)\) we get \(D^\frac{1}{2} = \text{diag} (\sqrt{d_i^+} : v_i \in V(G))\), and consider the similar matrix \(P = D^{-\frac{1}{2}}Q(G)D^\frac{1}{2}\). Since \(G\) is a strongly connected digraph, it is easy to see that \(P\) is irreducible and nonnegative. Now the \((i, j)\)-th element of \(P = D^{-\frac{1}{2}}Q(G)D^\frac{1}{2}\) is

\[
p_{ij} = \begin{cases}
 d_i^+ & \text{if } i = j, \\
 \frac{\sqrt{d_j^+}}{\sqrt{d_i^+}} & \text{if } (v_i, v_j) \in E(G), \\
 0 & \text{otherwise.}
\end{cases}
\]

Let \(R_i(P)\) be the \(i\)-th row sum of \(P\) and \(R_i'(P) = R_i - d_i^+\). Then by Cauchy-Schwarz inequality, we have

\[
R_i'(P)^2 = \left(\sum_{v_j: (v_i, v_j) \in E(G)} \frac{\sqrt{d_j^+}}{\sqrt{d_i^+}} \right)^2 \leq \sum_{v_j: (v_i, v_j) \in E(G)} 1^2 \sum_{v_j: (v_i, v_j) \in E(G)} \frac{d_j^+}{d_i^+} = \sum_{v_j: (v_i, v_j) \in E(G)} d_j^+ = d_i^+ m_i^+.
\]

Since \(P\) is irreducible and nonnegative, \(\rho(P)\) denotes the spectral radius of \(P\). Then by Lemma 2.3, there at least exists \((v_i, v_j) \in E(G)\) such that \(\rho(P)\) is contained in the following oval region

\[
|\rho(P) - d_i^+| |\rho(P) - d_j^+| \leq R_i'(P) R_i(P) \leq \sqrt{d_i^+ m_i^+} \sqrt{d_j^+ m_j^+}.
\]

Obviously, \(\rho(P) = q(G) > \max\{d_i^+ : v_i \in E(G)\}\), and \((\rho(P) - d_i^+) (\rho(P) - d_j^+) \leq |\rho(P) - d_i^+| |\rho(P) - d_j^+|\). Therefore, solving the above inequality we obtain

\[
q(G) \leq \frac{d_i^+ + d_j^+ + \sqrt{(d_i^+ - d_j^+)^2 + 4 d_i^+ m_i^+ d_j^+ m_j^+}}{2}.
\]
Then for $1 \leq i \leq n$

$$q(G)x_i = d_i^+x_i + \sum_{v_k : (v_i, v_k) \in E(G)} x_k = \sum_{v_k : (v_i, v_k) \in E(G)} (x_i + x_k).$$

By (12), we have

$$q(G)(x_i + x_j) = \sum_{v_k : (v_i, v_k) \in E(G)} (x_i + x_k) + \sum_{v_k : (v_j, v_k) \in E(G)} (x_j + x_k).$$
For convenience we use \(f(i, j) \) denote \(f(v_i, v_j) \). Set \(g(i, j) = \frac{x_i + x_j}{f(i, j)} \). If \((v_i, v_j) \in E(G) \), then

\[
q(G)f(i, j)g(i, j) = \sum_{v_k: (v_i, v_k) \in E(G)} f(i, k)g(i, k) + \sum_{v_k: (v_j, v_k) \in E(G)} f(j, k)g(j, k).
\]

By (13), we get

\[
|q(G)f(i, j)g(i, j)| = q(G)f(i, j)|g(i, j)| \leq \sum_{v_k: (v_i, v_k) \in E(G)} f(i, k)|g(i, k)| + \sum_{v_k: (v_j, v_k) \in E(G)} f(j, k)|g(j, k)|.
\]

Now choose \(i_1, j_1 \) such that \((v_i, v_j) \in E(G) \) and \(|g(i_1, j_1)| = \max\{|g(i, j)| : (v_i, v_j) \in E(G)\} \). If \(g((i_1, j_1)) = 0 \), then \(|g(i, j)| = 0 \) for all arcs \((v_i, v_j) \in E(G) \), i.e., \(x_i + x_j = 0 \) for all arcs \((v_i, v_j) \in E(G) \). By (12), we have \(q(G) = 0 \) which is impossible, since \(G \) has at least one arc. So \(|g(i_1, j_1)| > 0 \). Then

\[
q(G)f(i_1, j_1)|g(i_1, j_1)| \leq \sum_{v_k: (v_i, v_k) \in E(G)} f(i_1, k)|g(i_1, k)| + \sum_{v_k: (v_j, v_k) \in E(G)} f(j_1, k)|g(j_1, k)|.
\]

Therefore, we obtain

\[
q(G) \leq \sum_{v_k: (v_i, v_k) \in E(G)} \frac{f(i_1, k)}{f(i_1, j_1)}|g(i_1, k)| + \sum_{v_k: (v_j, v_k) \in E(G)} \frac{f(j_1, k)}{f(i_1, j_1)}|g(j_1, k)|
\]

i.e.,

\[
q(G) \leq \sum_{v_k: (v_i, v_k) \in E(G)} \frac{f(i_1, k)}{f(i_1, j_1)} + \sum_{v_k: (v_j, v_k) \in E(G)} \frac{f(j_1, k)}{f(i_1, j_1)}, \text{ where } (v_i, v_j) \in E(G).
\]

This proves the desired result.

Corollary 3.7. Let \(G = (V(G), E(G)) \) be a digraph. Then

\[
q(G) \leq \max \left\{ d_i^+ \sqrt{m_i^+ \over d_i^+} + d_j^+ \sqrt{m_j^+ \over d_j^+} : (v_i, v_j) \in E(G) \right\}.
\]

Proof. Setting \(f(v_i, v_j) = \sqrt{d_i^+ d_j^+} \) in (11), by Cauchy-Schwarz inequality,

\[
\sum_{v_k: (v_i, v_k) \in E(G)} f(v_i, v_k) = \sum_{v_k: (v_i, v_k) \in E(G)} \sqrt{d_i^+ d_k^+} = \sum_{v_k: (v_i, v_k) \in E(G)} \left(\sqrt{d_i^+} \sqrt{d_k^+} \right)
\]

\(8 \)
\[
\sum_{v_k : (v_i, v_k) \in E(G)} d_k^+ \sum_{v_k : (v_i, v_k) \in E(G)} d_k^+ = \sqrt{d_i^+} \sum_{v_k : (v_i, v_k) \in E(G)} d_k^+ = d_i^+ \sqrt{d_i^+ m_i^+}.
\]

By (11), we get
\[
q(G) \leq \max \left\{ \frac{\sum_{v_k : (v_i, v_k) \in E(G)} f(v_i, v_k) + \sum_{v_k : (v_i, v_k) \in E(G)} f(v_j, v_k)}{f(v_i, v_j)} : (v_i, v_j) \in E(G) \right\}
\]
\[
\leq \max \left\{ \frac{d_i^+ \sqrt{d_i^+ m_i^+} + d_j^+ \sqrt{d_j^+ m_j^+}}{\sqrt{d_i^+ d_j^+}} : (v_i, v_j) \in E(G) \right\}
\]
\[
= \max \left\{ d_i^+ \sqrt{\frac{m_i^+}{d_j^+}} + d_j^+ \sqrt{\frac{m_j^+}{d_i^+}} : (v_i, v_j) \in E(G) \right\}.
\]

\begin{proof}
Setting \(f(v_i, v_j) = d_i^+ + d_j^+ \) in (11), since
\[
\sum_{v_k : (v_i, v_k) \in E(G)} f(v_i, v_k) = \sum_{v_k : (v_i, v_k) \in E(G)} (d_i^+ + d_k^+) = d_i^+ (d_i^+ + m_i^+) \text{, so we get the desired result.}
\end{proof}

\textbf{Corollary 3.8.} Let \(G = (V(G), E(G)) \) be a digraph. Then
\[
q(G) \leq \max \left\{ \frac{d_i^+ (d_i^+ + m_i^+) + d_j^+ (d_j^+ + m_j^+)}{d_i^+ + d_j^+} : (v_i, v_j) \in E(G) \right\}. \tag{15}
\]

\begin{proof}
Setting \(f(v_i, v_j) = d_i^+ + d_j^+ \) in (11), since
\[
\sum_{v_k : (v_i, v_k) \in E(G)} f(v_i, v_k) = \sum_{v_k : (v_i, v_k) \in E(G)} (d_i^+ + d_k^+) = d_i^+ (d_i^+ + m_i^+) \text{, so we get the desired result.}
\end{proof}

\textbf{Corollary 3.9.} Let \(G = (V(G), E(G)) \) be a digraph. Then
\[
q(G) \leq \max \left\{ \frac{d_i^+ \sqrt{d_i^+ m_i^+} + d_j^+ \sqrt{d_j^+ m_j^+}}{\sqrt{d_i^+ d_j^+}} : (v_i, v_j) \in E(G) \right\}. \tag{16}
\]

\begin{proof}
Setting \(f(v_i, v_j) = \sqrt{d_i^+} + \sqrt{d_j^+} \) in (11), since
\[
\sum_{v_k : (v_i, v_k) \in E(G)} f(v_i, v_k) = \sum_{v_k : (v_i, v_k) \in E(G)} (1 \cdot \sqrt{d_i^+} + \sqrt{d_k^+}) \leq \sqrt{d_i^+} \sum_{v_k : (v_i, v_k) \in E(G)} (d_i^+ + d_k^+)
\]
\[
= \sqrt{d_i^+} (d_i^+ + d_i^+ m_i^+) = d_i^+ \sqrt{d_i^+ m_i^+} \text{ by Cauchy-Schwarz inequality.}
\]
Thus by (11) we get the desired result.
\end{proof}

\textbf{Corollary 3.10.} Let \(G = (V(G), E(G)) \) be a digraph. Then
\[
q(G) \leq \max \left\{ \frac{d_i^+ (\sqrt{d_i^+} + \sqrt{m_i^+}) + d_j^+ (\sqrt{d_j^+} + \sqrt{m_j^+})}{\sqrt{d_i^+} + \sqrt{d_j^+}} : (v_i, v_j) \in E(G) \right\}. \tag{17}
\]

9
Proof. Setting \(f(v_i, v_j) = \sqrt{d_i^+} + \sqrt{d_j^+} \) in (11), since
\[
\sum_{v_k : (v_i, v_k) \in E(G)} f(v_i, v_k) = \sum_{v_k : (v_i, v_k) \in E(G)} (\sqrt{d_i^+} + \sqrt{d_k^+}) \leq d_i^+ \cdot \sqrt{d_k^+} + \sum_{v_k : (v_i, v_k) \in E(G)} d_k^+ = d_i^+ \cdot (\sqrt{d_i^+} + \sqrt{m_i^+})
\]
by Cauchy-Schwarz inequality. By (11) the result follows. \(\square \)

Notice that (16) and (17) can be viewed as adding square roots to (15) at different places.

4 Example

Let \(G_1, G_2 \) be the digraphs of order 4,6, respectively, as shown in Figure 2.

![Figure 2](image)

Table 2: Values of the various bounds for example 1.

\(q(G) \)	(1)	(2)	(3)	(4)	(5)	(8)	(10)	(14)	(15)	(16)	(17)
\(G_1 \)	3.0000	4.0000	3.5000	3.3028	3.4142	3.5616					
	3.5000	3.5651	3.4495	3.3333	3.6029	3.5731					
\(G_2 \)	4.1984	5.0000	4.6667	4.6016	5.0000	4.7321					
	5.0000	4.7913	4.5644	4.6000	4.7956	4.7866					

Remark 4.1. Obviously, from Table 1, the bound (3) is the best in all known upper bounds for \(G_1 \), and the bound (14) is the best for \(G_2 \). Finally bound (15) is the second-best bounds for \(G_1 \) and \(G_2 \). In general, these bounds are incomparable.

References

[1] S.B. Bozkurt, D. Bozkurt, On the signless Laplacian spectral radius of digraphs, Ars Combinatoria, 108, (2013) 193–200

[2] R. Brualdi, Spectra of digraphs, Linear Algebra Appl. 432 (2013) 193–200
[3] Y.Q. Chen, L.G. Wang, Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph, Linear Algebra Appl. 433 (2010) 908–913

[4] S.Y. Cui, C.X. Tian, J.J. Guo, A sharp upper bound on the signless Laplacian spectral radius of graphs, Linear Algebra Appl. 439 (2013) 2442–2447

[5] A.D. Güngör, K.C. Das, Improved upper and lower bounds for the spectral radius of digraphs, Appl. Math. Comput. 216 (2010) 791–799

[6] A.D. Güngör, K.C. Das, A.S. Çevik, Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph, Appl. Math. Comput. 219 (2013) 5025–5032

[7] P. Hansen, C. Lucas, Bounds and conjectures for the signless Laplacian index of graphs, Linear Algebra Appl. 432 (2010) 3319–3336

[8] B. He, Y.L. Jin, X.D. Zhang, Sharp bounds for the signless Laplacian spectral radius in term of clique number, Linear Algebra Appl. 438 (2013) 3851–3861

[9] W.X. Hong, L.H. You, Spectral radius and signless Laplacian spectral radius of strongly connected digraphs, Linear Algebra Appl. 457 (2014) 93–113

[10] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, (1985)

[11] L.L. Li, A simplified Brauer’s theorem on matrix eigenvalues, Appl. Math. J. Chin. Uni. Ser. B. 14(3) (1999) 259–264

[12] T.F. Wang, Several sharp upper bounds for the largest Laplacian eigenvalue of a graph, Science in China Series A: Mathematics, 50(12) (2007) 1755–1764

[13] T.F. Wang, J. Yang, B. Li, Improved upper bounds for the Laplacian spectral radius of graph, Electron. J. Comb. 18 (2011) #P35

[14] F.Y. Wei, M.H. Liu, A sharp upper bound on the Laplacian and Quasi-Laplacian spectral radius of a graph, Fuzzy Engineering and Operations Research, 147 (2012) 525–531

[15] G.H. Xu, C.Q. Xu, Sharp bounds for the spectral radius of digraphs, Linear Algebra Appl. 430 (2009) 1607–1612

[16] D.M. Zhu, On upper bounds for Laplacian graph eigenvalues, Linear Algebra Appl. 432 (2010) 2764–2772