Neonatal intermittent hypoxemia events are associated with diagnosis of bronchopulmonary dysplasia at 36 weeks postmenstrual age

Thomas M. Raffay¹, Andrew M. Dylag², Abdus Sattar³, Elie G. Abu Jawdeh⁴, Shufen Cao⁵, Benjamin M. Pax⁶, Kenneth A. Loparo⁶, Richard J. Martin¹ and Juliann M. Di Fiore¹

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a chronic lung disease and major pulmonary complication after premature birth. We have previously shown that increased intermittent hypoxemia (IH) events have been correlated to adverse outcomes and mortality in extremely premature infants. We hypothesize that early IH patterns are associated with the development of BPD.

METHODS: IH frequency, duration, and nadirs were assessed using oxygen saturation (SpO2) waveforms in a retrospective cohort of 137 extremely premature newborns (<28 weeks gestation). Daily levels of inspired oxygen and mean airway pressure exposures were also recorded.

RESULTS: Diagnosis of BPD at 36 weeks postmenstrual age was associated with increased daily IH, longer IH duration, and a higher IH nadir. Significant differences were detected through day 7 to day 26 of life. Infants who developed BPD had lower mean SpO2 despite their exposure to increased inspired oxygen and increased mean airway pressure.

CONCLUSIONS: BPD was associated with more frequent, longer, and less severe IH events in addition to increased oxygen and pressure exposure within the first 26 days of life. Early IH patterns may contribute to the development of BPD or aid in identification of neonates at high risk.

Pediatric Research (2019) 85:318–323; https://doi.org/10.1038/s41390-018-0253-z

INTRODUCTION
Bronchopulmonary dysplasia (BPD) is one of the most common serious pulmonary morbidities of prematurity. Approximately 10–15,000 US infants develop BPD annually, at a cost estimated to exceed $2.5 billion.¹,² Infants with BPD have longer initial hospitalizations¹ and frequent childhood readmissions,³ increased risk for neurodevelopmental impairments,⁴ and potentially lifelong deficits in pulmonary function.⁵ BPD has a negative impact on the quality of life among both patients and caregivers.⁶,⁷ Approximately 40% of extremely low gestational age newborns (ELGAN) cared for at tertiary academic centers will be diagnosed with BPD, defined as an oxygen requirement at 36 weeks postmenstrual age (PMA), with increased incidence amongst the most premature infants.⁸ Despite advances in neonatal care, the incidence of BPD among ELGAN survivors remains largely unchanged.⁹,¹⁰

The pathogenesis of BPD is an ongoing process of injury and recovery occurring in a developmentally immature lung beginning shortly after birth.¹⁰ Following an initial period of respiratory stability, many ELGANs experience pulmonary deterioration during the second week of life associated with a progressive increase in intermittent hypoxemia (IH) events¹¹ and greater inspired oxygen and positive pressure needs.¹² Oxygen and positive pressure exposures during the early days and weeks of postnatal life are linked with the development of BPD,¹³,¹⁴ but the temporal contribution of IH is unclear.

During the first 4 weeks of a premature infant’s life, IH increases from approximately 40 to over 100 events per day due to immature breathing patterns,¹⁵ inefficient gas exchange,¹⁶ and/or diminished oxygen stores.¹⁷ Thus IH has received increased attention in the pathogenesis of neonatal morbidity and mortality.¹⁸–²¹ IH events themselves have the potential to create a proinflammatory cascade²² and oxidative stress²³,²⁴ which have both been implicated in the causation pathway of BPD.¹¹,¹⁰ Therefore, the aim of this study was to investigate the association of IH patterns with development of BPD at 36 weeks PMA.

PATIENTS AND METHODS
Study design and population
A retrospective cohort study of preterm infants (24 0/7 weeks–27 6/7 weeks gestation) from 2005 to 2009 at the tertiary level 4 NICU at Rainbow Babies & Children’s Hospital in Cleveland, Ohio were reviewed for hospitalization data. In a sample of convenience that expanded upon a previously published cohort,¹⁸ infants in whom daily respiratory support and continuous oxygen saturation

¹Division of Neonatology, Rainbow Babies & Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; ²Division of Neonatology, Golisano Children’s Hospital, Department of Pediatrics, University of Rochester, Rochester, NY, USA; ³Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA; ⁴Division of Neonatology, Kentucky Children’s Hospital, Department of Pediatrics, University of Kentucky, Lexington, KY, USA; ⁵Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA and ⁶Department of Electrical Engineering and Computer Science & Institute for Smart, Secure and Connected Systems, Case Western Reserve University, Cleveland, OH, USA.

Correspondence: Juliann M. Di Fiore (jmd3@case.edu)

Received: 6 September 2018 Revised: 20 November 2018 Accepted: 23 November 2018
Published online: 12 December 2018
monitoring were documented during the first 4 weeks of life and who survived to 36 weeks postmenstrual age (PMA) were included. Infants with congenital malformations were excluded. As this study included previously acquired data, Rainbow Babies & Children’s Hospital Institutional Review Board approved a waiver of consent.

Data Collection
Intermittent hypoxemia (IH) events were archived using high-resolution pulse oximetry data continuously recorded from postnatal day of life 1 to 28. Oxygen saturation (SpO2) data were acquired continuously with a 2 s averaging and a 0.5 Hz sampling rate (Masimo Radical; Irving, CA). As we have previously described,18 IH was identified using customized software (Matlab, Natick, MA) and defined as a SpO2 of ≤ 80% for ≥10 s and ≤180 s duration. For each infant, the number of IH events was calculated for each day of life. Additionally, SpO2 nadir of events, IH durations, and IH frequency characteristics were analyzed. During the monitoring periods there were infrequent times when signal loss occurred due to infants not being monitored, corrupt files, and noise or motion artifact. Periods with 0% SpO2 or 0 bpm for 10 s and 180 s were considered artifact and removed from the data stream with the remaining data analyzed in 24 h sliding windows. Large areas of missing data, i.e., ≥24 h, were treated as missing cells in the statistical analysis. Hospital charts were reviewed for birth history and daily values of weight, treatment with caffeine, presence and level of respiratory support including mechanical ventilation, CPAP, nasal cannula, and supplemental oxygen were documented. Unit policy was to dose maintenance caffeine citrate at 5–10 mg/kg/day based on clinical effect, serum caffeine levels were not routinely monitored. Supplemental oxygen was recorded as the fraction of inspired oxygen (FiO2) at the end of defined 6 h periods (0:00, 6:00, 12:00, and 18:00) and the maximum level for that day, and daily cumulative exposures were calculated as previously described25 and reported as an area-under-the-curve exposure by day.32 Mean airway pressure (MAP) was recorded as the highest documented exposure of each day. In patients who were supported by a nasal cannula, effective FiO2 was estimated using the formula described in the STOP-ROP trial26 and generation of mean airway pressure by nasal cannula flow was calculated by the formula published by Wilkinson et al.27

In this study, bronchopulmonary dysplasia was diagnosed by the National Institutes of Health (NIH) physiologic definition as described by Walsh et al.28 Briefly, infants were assessed at 36 weeks PMA, those on positive pressure or receiving ≥30% oxygen were given the diagnosis of BPD, infants on <30% oxygen nasal cannula or oxygen hood underwent a step-wise reduction in supplemental oxygen down to room air and were continuously monitored for 60 min—infants with SpO2< 88% were diagnosed with BPD, those who remained ≥ 88% were labeled as “no BPD.” Severe intraventricular hemorrhage (IVH) was made by radiologic diagnosis of a Grade 3 or 4 IVH by head ultrasound during hospitalization. Sepsis was designated by culture positive bacteremia or fungemia.

Data analysis
Statistical analysis was performed on daily averages of IH frequency, duration, nadir of events, etc. computed for each subject. A two-sided t-test or Mann–Whitney U-test was used for patient characteristic comparisons between “BPD” and “no BPD” groups after testing for normalcy. In this study, BPD was defined using the NIH physiologic definition at 36 weeks PMA, but previous definitions of BPD have also used 28 days of life.2 Therefore, comparisons of time-course trajectories were restricted to before 28 days of life. Summary statistics are presented as means ± standard deviation (SD) or median (25–75% quartiles) and n (percent) for continuous and categorical variables, respectively. Longitudinal profiles of oxygen saturation waveform measures were modeled and compared between two groups of infants (BPD vs no BPD) using linear mixed models with cubic splines.16 Modeling the curvilinear trajectory of each outcome with knots at 7, 14, 21, and 26 days adequately represented the infants’ profiles with lower AIC (Akaike Information Criterion) values. Models included covariates of gestational age, birth weight, race, sex, multiple gestations, and their interactions with terms involving day.18 The linear mixed effects models included random intercepts and slopes, and were modeled using unstructured variance covariance matrices that resulted in distinct estimates of all variance and covariance parameters. Correlations among the repeated measures obtained from an infant were modeled by a first-order autoregressive structure. For better model fitting, a logarithmic or square root transformation was applied when the original data were skewed. The maximum likelihood estimation approach was used in estimating all parameters of the model. Analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC) and longitudinal graphs were created using R software version 3.5.1 (R Foundation, Vienna, Austria).

RESULTS
The study population included 137 infants, of whom 47 (34%) were diagnosed with the NIH physiologic definition of BPD at 36 weeks PMA. Population characteristics of this cohort showed that infants with BPD were of a lower average gestational age and a lower average birth weight (Table 1). There were no significant differences observed between infant groups for sex, race, severe IVH, or sepsis. As expected, infants with BPD had longer median days of exposure to supplemental oxygen (71 (66–75) vs 32 (17–53) days, p < 0.0001) and positive pressure (71 (64–75) vs 45

Table 1. Patient characteristics

	No BPD (n = 90)	BPD (n = 47)	p-value
Gestational age (weeks)*	26.6 (25.5–27.3)	25.7 (25.0–26.6)	0.002
Birth weight (g)**	878 (741–1010)	760 (620–870)	<0.001
Male sex, n (%)	41 (45.5%)	29 (61.2%)	0.073
Race (Black), n (%)	52 (57.8%)	27 (57.4%)	0.97
Caffeine therapy duration (days)*	49.3 ± 16.8	54.0 ± 17.7	0.13
Caffeine therapy initiation (days of age)*	2 (1–2)	2 (1–4)	0.17
Severe intraventricular hemorrhage, n (%)	6 (6.7%)	5 (10.6%)	0.42
Sepsis, n (%)	22 (24.4%)	11 (23.4%)	0.89

*Median (25–75%iles)
**Mean (±SD)
(32–61) days, \(p < 0.0001 \) at 36 weeks PMA. One-hundred thirty-six of the 137 study infants received caffeine therapy; day of life initiated and duration of treatment did not significantly differ between groups.

After adjusting for day of life, gestational age, birth weight, race, sex, and multiple gestations, the mean \(\text{SpO}_2 \) of BPD infants was significantly lower at the predefined curvilinear knots at 7 \((p = 0.003) \), 14 \((p = 0.008) \), 21 \((p = 0.0004) \), and 26 days of life \((p = 0.002) \) (Fig. 1a). Intermittent hypoxemia frequency increased dramatically between the first and third weeks of life in this cohort of ELGANs with a significantly higher occurrence of IH in the BPD group at curvilinear knots at 21 \((p \leq 0.01) \) and 26 days of life \((p \leq 0.01) \). Mean duration of IH events (b) was significantly increased in the BPD group at days 14, 21, and 26 \((p \leq 0.001) \). \(\text{SpO}_2 \) nadir of IH events (d) was higher at days 7 and 14 \((p \leq 0.001) \).

Among the BPD group, levels of inspired oxygen (Fig. 3a) and mean airway pressure (MAP) from both invasive and non-invasive positive pressure respiratory support (Fig. 3b) were significantly higher at the predefined curvilinear knots at 7, 14, 21, and 26 days of life (all \(p < 0.0001 \)).

DISCUSSION

Our findings demonstrate an association between temporal patterns of IH and BPD in extremely preterm infants. Within the first 26 days of life, we observed increased IH event frequency and durations, and elevated IH nadirs among ELGANs diagnosed with BPD at 36 weeks PMA. BPD was also associated with early exposure to increased supplemental oxygen and mean airway pressure. Level and duration of respiratory therapy have been well described in the injury pathways of BPD and significant differences between exposure groups are observed relatively early.\(^{13,14}\) This study has shown that temporal patterns of IH may play a role as an additional early marker for future diagnosis of BPD.

The first 4 weeks of life are characterized by a rapid and profound increase in postnatal destabilization.\(^{29}\) Previous data have shown a 3-fold increased incidence of BPD in newborns with low or decreasing supplemental oxygen and ventilator

Fig. 1 Patterns of Hypoxemia during the First Four Weeks of Life. Longitudinal daily means (±SEM) of bronchopulmonary dysplasia (BPD) group (triangles) vs No BPD group (circles). Lines indicate covariate adjusted modeling. Mean oxygen saturations (\(\text{SpO}_2 \)) (a) was significantly lower in the BPD group at days 7, 14, 21, and 26 \((p < 0.001) \). Frequency of intermittent hypoxemia (IH) events (b) was significantly increased in the BPD group at days 21 and 26 \((p \leq 0.01) \). Mean duration of IH events (c) was significantly increased in the BPD group at days 14, 21, and 26 \((p \leq 0.001) \). \(\text{SpO}_2 \) nadir of IH events (d) was higher at days 7 and 14 \((p \leq 0.001) \).
Neonatal intermittent hypoxemia events are associated with diagnosis of...

TM Raffay et al.

requirements in the first week of life that deteriorate with increased FiO2 and respiratory support in the second postnatal week. IH events among our study cohort also indicate a pattern of pulmonary deterioration in the second week, with infants that went on to develop BPD displaying marked increases in daily IH events into the third week of life. The trajectory of IH during this time period may provide additional insight on the likelihood of the diagnosis of BPD at 36 weeks PMA.

Previous studies have shown an association between IH and morbidity in neonates. For example, IH frequency and time spent in hypoxemia are increased in premature infants that develop severe retinopathy of prematurity, neurodevelopmental disabilities including risk for cerebral palsy, and death. While IH commonly occurs in infants already diagnosed with BPD, a paucity of clinical data exists regarding the association of these early neonatal IH events and BPD risk. Newborn hyperoxic animal models have shown that superimposed IH may potentiate a more severe BPD phenotype.

The specific patterns of daily IH events have also been investigated in neonatal morbidity and mortality. Specifically, IH events occurring between 1 and 20 min apart or those of a duration >1 min have been linked to retinopathy of prematurity requiring laser surgery and late death or disability. This pattern of increased IH events occurring 1–20 min apart and of a longer average duration was also relevant in our BPD outcome, as detected at postnatal day 21 and day 14, respectively. An animal model of induced IH describes a burst of superoxide during hyperoxic recovery that peaks at 5 min and returns to baseline over 20 min that may indicate a critical window of IH induced oxidative stress. There was a trend towards an increase in IH < 1 min apart at day of life 26 that was not previously seen in infants with severe ROP. Further investigations of detrimental IH patterns in experimental BPD, as well as, observational studies in high-risk infants are needed.

While the BPD cohort had increased use and levels of supplemental oxygen and positive pressure during the first month of life, they continued to have more frequent and longer duration IH events with a lower mean SpO2. We have previously reported in infants with severe ROP the nadir of IH events to be higher. Again, we observe this pattern of more frequent, longer duration, yet higher IH nadirs in infants who were diagnosed with BPD. We speculate that infants with frequent and greater duration IH due to immature breathing patterns may be clinically perceived to require elevated levels of supplemental oxygen which may successfully increase IH nadirs but also potentially contribute to the development of BPD. We were unable to account for transient increases in supplemental FiO2 at the bedside in response to an acute or sustained IH event, but speculate that a lower oxygen reserve and a tendency to desaturate may be indicative of infants with more severe lung disease who proceed on to develop BPD. As such, it is important to note that our study is unable to identify a sequence of causation. We cannot conclude what came first—early parenchymal lung disease and worse lung function predisposing infants to increased IH events and diagnosis of BPD or frequent IH events in the setting of immature lung and respiratory control leading to lung injury and diagnosis of BPD. Translational animal models would indicate that neonatal IH alone is unlikely to cause parenchymal and mechanical BPD lung changes, but IH in the setting of supplemental oxygen creates an equal or more severe BPD phenotype. Taken together, IH likely has a role in both prolonging neonatal exposures to oxygen and positive pressure in a still developing lung while also contributing to additional lung injury.

Duration and initiation of caffeine therapy was comparable between infant groups with all but one infant treated with caffeine. Caffeine is among the most effective therapies for the

Fig. 2 Stratification of events by time interval during the first 4 weeks of life. Longitudinal daily means (±SEM) of bronchopulmonary dysplasia (BPD) group (triangles) vs No BPD group (circles). Lines indicate covariate adjusted modeling. Intermittent hypoxemia (IH) events with a time interval between events of <1 min apart (a), 1–20 min apart (b), and >20 min part (c). IH events occurring between 1 and 20 min apart were significantly increased in the BPD group at days 21 and 26 (p < 0.001). Events <1 min apart or >20 min apart did not significantly differ between groups.
Neonatal intermittent hypoxemia events are associated with diagnosis of...

Our data collection did not include chest likely through stabilization of an immature respiratory drive and relatively early in premature infants requiring respiratory support; supplemental oxygen and positive pressure thereby decreasing that caffeine reduces the duration of exposure to noxious hypoxemia. This study used a 2 s averaging time to minimize SpO2 signal distortion. Anecdotally, many NICUs use a longer averaging time of 8 s which has been shown to have minimal effect on the detection of IH events >10 s as defined in this study. Current oximeters report time spent within defined saturation thresholds. However, future oximeter software upgrades, as well as, central archiving of cardiorespiratory monitoring waveforms could include more detailed analysis of IH patterns as described in this study.

In conclusion, this study demonstrates that premature infants diagnosed with BPD at 36 weeks PMA had increased frequency, duration, and less severe neonatal intermittent hypoxemia episodes during the first 26 days of postnatal life. Neonates who go on to develop BPD have lower baseline SpO2 despite increased levels of supplemental oxygen and mean airway pressure support. The future implementation of oximeter or central server reporting of detailed oximetry patterns may assist in early identification of infants at risk for BPD.

ACKNOWLEDGMENTS
The authors wish to thank Ms. Manisa Mancuso for assisting with chart recovery and data entry and Dr. Curtis Tatsuoka for statistical guidance in approaches to data modeling. T.M.R. is supported by the NIH K08 HL133459-A1. A.M.D. was supported by the NIH T32 HD060537 (PI R.J.M.), R.J.M. and J.M.D. are supported by the NIH U01 HL133643-01 (Co-PI A.M.H. and R.J.M.). A.M.D. is an awardee of the NIH Loan Repayment Program.

AUTHOR CONTRIBUTIONS
T.M.R., A.M.D. and J.M.D. contributed to the concept and design, acquisition, and interpretation of data, and drafting of the article. E.G.A. and R.J.M. contributed to the interpretation of data and revised the article for important intellectual content. A.S., S. C., B.M.P. and K.A.L. analyzed and modeled the data and critically revised the article. All authors approved the final version of the article.

ADDITIONAL INFORMATION
Competing interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES
1. Davidson, L. M. & Berkelhamer, S. K. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J. Clin. Med. 6, 1–20 (2017).
2. Maitre, N. L. et al. Prematurity, Respiratory Outcomes Program. Respiratory consequences of prematurity: evolution of a diagnosis and development of a comprehensive approach. J. Perinatol. 35, 313–321 (2015).
3. Cotten, C. M. et al. Prolonged hospital stay for extremely premature infants: risk factors, center differences, and the impact of mortality on selecting a best-performing center. J. Perinatol. 25, 650–655 (2005).
4. Ehrenkranz, R. A. et al. Validation of the national institutes of health consensus definition of bronchopulmonary dysplasia. Pediatrics 116, 1353–1360 (2005).
5. Sriram, S. et al. Cognitive development and quality of life associated with bpd in 10-year-olds born preterm. Pediatrics 141, e20172719 (2018).
6. Vollsaeter, M., Roksvand, O. D., Eide, G. E., Markestad, T. & Halvorsen, T. Lung function after preterm birth: Development from mid-childhood to adulthood. Thorax 68, 767–776 (2013).
7. McGrath-Morrow, S. A. et al. The impact of bronchopulmonary dysplasia on caregiver health related quality of life during the first 2 years of life. Pediatr. Pulmonol. 48, 579–586 (2013).
8. Stoll, B. J. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA 314, 1039–1051 (2015).
