Research Article

Magnetic Resonance Image Compilation Was Used in Conjunction with Prostate PI-RADS v2.1 Score Has Diagnostic Relevance for Benign and Malignant Prostate Lesions

Wenjuan Xu,1,2 HaiYan Cao,3 Fang Du,2 Ling He,2 FangLian Jiang,2 and ChunHong Hu1

1Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
2Department of Radiology, Medical Image Center, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province 225001, China
3Department of Ultrasound, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School (the First People, S Hospital of Yancheng), Yancheng, Jiangsu Province 224001, China

Correspondence should be addressed to ChunHong Hu; sdhuchunhong@sina.com

Received 25 June 2022; Revised 22 July 2022; Accepted 27 July 2022; Published 29 August 2022

Academic Editor: Muhammad Asghar

Copyright © 2022 Wenjuan Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To assess the diagnostic usefulness of magic in conjunction with PI-RADS v2.1 for prostate cancer malignant foci.

Methods. A total of 202 lesions (97 transitional zone lesions and 105 peripheral zone lesions) from 198 people were investigated retrospectively using traditional MRI and magic images. Each lesion has a unique pathological consequence. Lesions T1, T2, and PD values were employed as magic observation markers. The locations of the lesions were aggregated, and the paired t-test and receiver operating characteristic curve (ROC) were employed to find the indices with statistical significance in separating benign from malignant prostatic nodules (+1 point) and (−1 point) respectively. Draw a ROC curve and compare it to the PI-RADS v2.1 score using the magic positive and negative indices as well as the PI-RADS v2.1 score. By comparing the ROC curves scored separately, the diagnostic efficiency of the two scoring approaches for benign and malignant prostate lesions was investigated.

Results. T2 value has the highest diagnostic efficiency among the magic observation indices. T2 value of 77 ms for transitional zone lesions and T2 value of 89 ms for peripheral zone lesions are positive indices, whereas T2 value >77 ms and T2 value >89 ms are negative indexes. PI-RADS v2.1 combines one score and magic. In the transitional zone, the sensitivity, specificity, positive predictive value, and negative predictive value of the two scoring methods were 57.52, 87.70, 76.70, and 74.6 percent, and 82.50, 73.68, 95.5, and 74.7 percent, respectively, and the AUC values were 0.735 and 0.846, respectively (P = 0.004); in the peripheral zone, the AUC values were 86.15 percent, 68.42 percent, 82.4.

Conclusions. Magic T2 value is a favorable sign for diagnosing benign and malignant prostate cancers when used in conjunction with PI-RADS v2.1. The end product exceeds PI-RADS v2.1 on its own, which is more useful in identifying benign and malignant prostate lesions, decreasing unnecessary puncture and alleviating patient pain.

1. Introduction

Prostate cancer (PCA) is the world’s second most frequent male cancer and the fourth major cause of cancer mortality in males [1, 2]. Early detection and appropriate staging seem to be particularly critical for PCA therapy and prognosis [3]. Digital rectal examination, traditional transrectal ultrasound (TRUS)-guided biopsy, PSA testing, and magnetic resonance imaging are now used to diagnose prostate disease (MRI). MRI, with its excellent soft tissue contrast capacity and non-invasive nature, has been extensively employed in the identification, localization, and staging of benign and malignant prostate tumors [2]. The first and second editions of the prostate imaging reporting and data system (PIRADS) were
introduced, respectively, at the 2012 annual European Uro-
genital Radiology meeting, the 2014 American College of
Radiology, and the European Society of Urogenital Radiol-
ogy joint AdMeTech foundation, to standardize MRI image
acquisition, image interpretation, and report writing, as well
as to improve diagnostic accuracy and reduce unnecessary
punctures for benign and malignant prostate. In 2019, this
data system was upgraded to PI-RADS v2.0 Version 1 of
the PI-RADS data system application streamlines reporting
and scanning definitions, as well as surgeon and patient
interpretation of findings. Previous clinical investigations
have also shown that the PI-RADS score system correlates
better with clinical diagnoses [4].

These quantitative approaches, such as apparent diffusion
coefficient (ADC), diffusion kurtosis imaging (DKI),
diffusion tensor imaging (DTI), and intravoxel incoherent
motion (IVIM), have been increasingly employed for MRI
detection of prostate disorders in recent years [5, 6]. Magic
(magnetic resonance image preparation), also known as syn-
thetic MRI, has recently developed a new MRI quantitative
sequence, one-stop relaxation quantitative MRI, by optimizing
the multi delay versus multi echo technique with saturation
pulses alternating with signal acquisition and additionally
incorporating estimation and correction for radiofrequency
field inhomogeneities. The relaxation periods and proton den-
sity were quantified using a multisaturation recovery multi-
echo paired fast spin echo readout. Its benefit is its capacity to
give absolute quantitative maps of T1, T2, and PD maps in a
single scan, giving objective quantitative data for illness diag-
nosis. The purpose of this research was to look into the cutoff
values of magic technology in distinguishing benign from
malignant prostate disorders, as well as the combination of
magic-related quantitative factors with prostate PI-RADS
v2.1 score value for the correction of benign and malignant
prostate lesions.

2. Materials and Methods

2.1. Study Subjects. Patients with routine pathology findings
who had prostate puncture or surgery in our institution
between October 2020 and December 2021 had their MR
imaging data evaluated retrospectively. Inclusion criteria
are as follows: (1) no medication or surgical therapy prior
to prostate MRI examination; (2) no needle biopsy per-
formed prior to the prostate MRI test; and (3) all patients
receiving the magic examination. Exclusion criteria are as
follows: (1) no pathological findings after magnetic reso-
nance examination and a time interval of more than 3
months between biopsy and MRI examination; (2) lesions
in the context of diffuse type lesions of the prostate; (3) pro-
state lesions ≤5 mm; (4) insufficient data on MRI imaging;
and (5) magnetic resonance images of poor quality with sig-
nificant image artifacts. This study included 198 patients,
202 lesions, 97 of which were transitional band lesions and
105 of which were peripheral band lesions, with the most
common complaints being PSA elevation or/and urinary fre-
quency, dysuria, urinary retention, hematuria, and other
symptoms; radical prostatectomy was performed in 129
patients (58 lesions in the peripheral band and 71 lesions
in the transitional band). The medical ethics review board
of Yangzhou University’s Affiliated Hospital authorized this
research, and all patients provided written informed permis-
sion. The age range was 29-87 years old, with a mean age of
(68.48 ±0.69)

2.2. MRI Scanning Techniques. The scanner utilized was a
GE- architect 3.0 T MRI scanner with 16 channel coils (ante-
rior array, AA) and a 40 channel coil (posterior array).
Before the examination, the patient’s urine was correctly
preserved, and the scan body position comprised axial, cor-
onal, and sagittal, with the axial direction perpendicular to
the long axis of the prostate. T1WI and T2WI scans with
rapid spin echo sequences, small field high-resolution
T2WI and DWI scans, DCE scans (DCE scans were not fre-
cently conducted), and magic scans were among the
sequences used. Axial parameters for T1WI sequences were
entered: repetition time (TR) =620 ms, echo time (echo time,
TE) =15 ms, slice thickness/inter-slice spacing 3.0 mm/0 mm,
scan field 200×200 mm, matrix (matrix) 320×320, number of
excitations (nex) 2 times, and image duration 2 min 35 s. On
T1WI sequences, the following parameters were used: TR
=620 ms, TE= 15 ms, slice thickness/inter-slice distance
3.0 mm/0 mm, scan field 340×340 mm, matrix 320×320,
nex 2 times, and picture duration 2 minutes 28 seconds.
On T2WI sequences, the axial parameters were TR =3500
ms, TE =100 ms, slice thickness/inter-slice distance 3.0 mm/
0 mm, scan field 200×200 mm, matrix 320×320, nex 2.5
times, and picture duration 2 minutes 28 seconds. On
T2WI sequences, the coronal parameters were TR =3700
ms, TE =106 ms, slice thickness/inter-slice distance 3.0 mm/
0 mm, scan field 340×340 mm, matrix 320×320, nex 2.5
times, and image duration 2 minutes 14 seconds. On
T2WI sequences, the sagittal parameters were TR =4100
ms, TE =140 ms, slice thickness /inter-slice distance = 3.0
mm / 0 mm, scan field = 280×280 mm, matrix 320×320,
nex 2 times,and picture acquisition duration 2 minutes 6
seconds. On DWI sequences, the axial parameters were
TR=3600 ms,TE=86 ms, slice thickness / inter-slice distance
3.0 mm / 1.0 mm, scan field 280×140 mm, matrix 120× 60,
nex 2 times, picture duration 2 minutes 6 seconds.On
MAGIC sequences, the axial parameters were TR=4300 ms,TE= 20 / 108ms, slice thickness/ inter-slice spacing
3.0mm/0.5mm, scan field of view 300×300 mm, matrix
320×256, nex 1 time,picture time 4 minutes 23 seconds.On
DCE sequencesTR= 5 ms, TE = 2 ms, slice thickness / inter-
slice distance 6.0 mm / 0 mm, scan field = 288×245 mm,
matrix 224×192, no nex, picture collection time 5min 6 s,
total scan duration 30 periods. The time resolution is 10
seconds. tr = 4100 MS, TE = 140 ms, slice thickness/inter-slice
distance = 3.0 mm/0 mm, scan field = 280 280 mm, Gad-
openetate dimeglumine (GD DTPA) was given intravenously
by the elbow using a two barrel high-pressure syringe at an
injection rate of 2–3 ml/s and a bolus of 0.1 mmol/kg in
20 ml tubes.

2.3. Pathological Examination and Zonation. Rectal ultraso-
nography was used to identify the perineal route after MRI
in 198 patients, and the puncture was performed by an
experienced chief physician who preoperatively analyzed the patient’s MRI data and coordinated with the imaging physician to determine the targeted puncture. Ultrasonography-magnetic resonance fusion navigation biopsy (TRUS-MRI FB) and ultrasound-guided systematic biopsy (TRUS-SB) “10 needles” combined prostate puncture method TRUS and guided the piercing of the MRI-targeted targets. TRUS-MRI fusion navigation puncture (TRUS-MRI FB) and ultrasound-guided system puncture (TRUS-SB) prostate puncture method TRUS guided the piercing of the MRI-targeted targets. Each chosen target received 2-4 needles; conventional puncture used 10 needles, one for each of the prostate’s peripheral bands, notably the anterior, lateral, central, paramedian, and transitional bands (Figure 1). In this research, histopathological samples of radical prostatectomy were chosen as the ultimate pathological reference for individuals who had simultaneous radical prostatectomy and biopsy.

2.4. Image Processing and PI-RADS v2.1 Scoring Criteria. The scanned images were sent to a diagnostic workstation, and the enrolled cases were co-analyzed in a double blinded manner by two physicians with more than 5 and 10 years of experience in MRI diagnosis and analyzed according to find PI-RADS v2.1 standard scoring, with consensus achieved when scoring was discordant [7, 8]. The peripheral zone of the prostate (PZ) is dominated by DWI (ADC) scores, such as: DWI (ADC) of 3 points, T2WI is arbitrary, DCE is negative, and the total score remains unchanged, remaining 3 points; DCE was positive with a total score of 3+1, which was 4 points. T2WI scores dominated the transitional zone (TZ), for example: T2WI of 2 points, if DWI (ADC) ≤ 3 points, total score unaltered, if DWI (ADC) ≥ 4 points, and total score 3 points; T2WI of 3 points, DWI (ADC) ≤ 4 points, total score unaltered, if DWI (ADC) of 5 points, total score 4 points, and negative or positive DCE in the mobility band score had no effect on the overall score. Finally, use the PI-RADS v2.1 score to determine the probability of PCA: 1 point = very unlikely to exist; 2 points = unlikely to be present; 3 points = dubious existence; 4 points = probable presence; and 5 points = highly likely to be present. In our research, the biggest diameter of the lesion was at the PZ according to the PZ score, and the largest diameter was at the TZ according to the TZ score of the migrating band, when the lesion was substantial and included either the PZ or the TZ. Two radiologists (with over 5 and 10 years of experience in MRI diagnostic work-up, respectively) manually drew the area of interest (ROI) based on T2WI and DWI images based on the pathological findings. For each enrolled case, GE aw4 was used to create a ready view in the system. First, the prostate tissue was mirror segmented, and two levels displaying the most typical clarity of prostate cancer were chosen to avoid necrosis, cystic change, hemorrhage areas, and so on, and the dedicated magic postprocessing software on the GE- architect device was used to acquire T1 value, T2 value, and PD value of the focal area of the prostate (Figure 2).

2.5. Statistical Methods. Results were analyzed using SPSS21.0 statistical software, and measurement data were represented as mean standard deviation (x ± s). The inter-group comparison of counting data was done using paired t-test to establish the differential indicators of the magic approach in discriminating benign and malignant prostate cancers, and P < 0.05 was judged statistically significant. If there was more than one statistically significant indication, the differential indicators were scored again (1 point for the positive indicator and −1 point for the negative indicator). Using the MedCalc 19.2 statistical program, the differential index of the final inclusion score was derived by calculating the receiver operating characteristic curve (ROC) and comparing the area under the curve with pathological results as status factors (AUC). PI-RADS v2.1 was plotted separately with pathological findings as the status variable scoring, the Z-test was used to compare the difference between the AUCs, and the MAGIC combined PI-RADS v2.1 ROC curve of the score was used to determine its optimal diagnostic cut-off value, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) in the diagnosis of benign and malignant lesions of the prostate.

3. Results

3.1. Pathological Findings. In the peripheral band region, all 202 lesions from 197 individuals displayed unambiguous conventional pathology findings, including 40 (38.1%) benign and 65 (61.9%) malignant lesions. The benign nodules had a maximum diameter of 5-24 mm and a mean diameter of 11.8-64.77%; the malignant nodules had a maximum diameter of 5-27 mm and a mean diameter of (13.1-95.19%). In the group of peripheral benign and malignant lesions, the transitional zone was home to 57 (58.78%) benign lesions and 40 (41.2%) malignant lesions. The benign nodules had a maximum diameter of 7-38 mm and a mean diameter of 13.93 ± 6.17 mm; the malignant nodules had a maximum diameter of 3-30 mm and a mean diameter of 15.82 ± 6.87 mm.

3.2. PI-RADS v2.1 Ratio of Benign to Malignant Lesion Composition in Different Scores. The prostatic lesions included in this investigation had PI-RADS values of 2, 3, 4, and 5. The percentage of malignant foci with shifted bands in PI-RADS 2-5 scores was 0.25%, 76%, 75.22%, and 83.33%; the percentage of peripheral band malignant foci in PI-RADS 2-5 scores was 0%.31.03%, 74.51%, and 94.74% (see Table 1).

3.2.1. Differences in Quantitative Parameters of Benign and Malignant Lesions of the Prostate. Table 2 shows the T1, T2, and PD values in benign and malignant prostate tumors. T1, T2, and PD values were lower in transitional and peripheral PCA lesions than in noncancerous regions. T1 and T2 values of PCA lesions in the transitional zone were lower than those of benign hyperplasia (P = 0.03, 0.001), and PD values of PCA lesions were not significantly different from those of benign hyperplasia (P = 0.209); T2 value was significantly different (P < 0.001) between peripheral band PCA and non cancerous tissue, while T1 and PD values were not significantly different (P = 018, 0.25).
3.2.2. Diagnostic Efficacy of Different Quantitative Parameters in Differentiating Benign and Malignant Foci of Prostate. Figure 3 depicts the findings of ROC analysis of the quantitative parameters T1, T2, and PD values of the migrating and peripheral bands in distinguishing benign from malignant tumors. The AUC of T2 value was significantly higher than that of T1 and Pd (P = 0.0063 and 0.0023, respectively) for discriminating PCA from benign hyperplasia in the region of the migrating band, and the AUC of T1 value was slightly higher than that of PD value without statistical significance (P = 0.3683). For PCA and noncancerous tissue discriminating peripheral band regions, the AUC of T2 value was still significantly higher than that of T1 and Pd (the AUC values of T2 value in the migrating band and peripheral band sections in this research were 0.819 and 0.813, respectively).

3.3. PI-RADS v2.1 Scoring and T2 Values Combined PI-RADS v2.1 Diagnostic Efficacy for Benign and Malignant Lesions of the Prostate. T2 values in this research demonstrated good diagnostic effectiveness in the identification of benign and malignant prostate disorders, with cutoffs of 77 ms for T2 values in the transitional zone and 89 ms for T2 values in the peripheral zone. The sensitivity, specificity, PPV, and NPV of the two scoring methods, PI-RADS V2.1 scoring and T2 value, combined with PI-RADS V2.1 scoring in the diagnosis of benign and malignant diseases of the prostate transitional zone were 57.52, 87.70, 76.70, and 74.6 percent and 82.50, 73.68, 95.5, and 74.7 percent, respectively, and the AUC values were 0.735 and 0.846, respectively (see Table 3). The sensitivity, specificity, PPV, and NP are shown in Table 4. The combination of PI-RADS v2.1 scores and quantitative parametric T2 value demonstrated a higher diagnostic value for benign and malignant prostate lesions, regardless of whether they were migration band or peripheral band lesions (migration band z = 2.878, P = 0.0040; peripheral band z = 2.103, P = 0.0355), as shown in Figure 4.

4. Discussion

PI-RADS, a standardized reporting system for magnetic resonance diagnostic of prostate imaging, was released in 2012 by the European Society of Urological Radiology (ESUR). The American College of Radiology, the European Society of Genitourinary Radiology, and the AdMeTech Foundation scoring standards released PI-RADS v2.0 in September 2015, with improved diagnostic expertise and scanning methodology. Previous study has demonstrated that the PI-RADS v2.0 scoring system is useful for diagnosing prostate cancer and increases the positive rate of prostate puncture [9]. The most current prostate magnetic resonance scoring version PI-RADS v2.1, proposed in 2019 by European Urology, is more granular and selective, decreasing PI-RADS v2.0. The existence of confusing scoring standards, as well as a lack of definition of scoring zones, improves the diagnostic consistency and accuracy of prostate cancer [10]. Nonetheless, owing to the absence of a specific value of objective quantitative parameters, the interobserver agreement might still have some impact due to the expertise level of various readers, often resulting to larger false-positive findings and limiting the detection rate of PCA [11].
Figure 2: Migrated magic images with prostate cancer. (a) is the T2WI, (b) is the T1 value, (c) is the T2 value, (d) is the PD value, (e) is the small field T2W fat pressing axial, (f) is the diffusion-weighted image with b value 2000, and (g) is the pathological result of prostate cancer.

Table 1: PI-RADS scores and the ratio of benign to malignant composition of prostate lesions on MP MRI.

PI-RADS score	Transitional zone	Peripheral zone	Malignant rate					
	Benign	Malignant		Benign	Malignant			
2	1	0	1	0%	6	0%		
3	49	17	66	25.76%	20	9	29	31.03%
4	5	13	18	72.22%	13	38	51	74.51%
5	2	10	12	83.33%	1	18	19	94.74%
Magic (magnetic resonance image preparation), also known as synthetic MRI, is a ground-breaking one-stop relaxation quantitative MR method capable of detecting T1, T2, and PD values in a single scan. Originally, Magic was intended for use in imaging the central nervous system [12] and then gradually expanded into other systems, primarily on organs with less respiratory activity. There has been little study on its application to prostate illness; however, Cui Yadong et al. investigated the use of quantitative parameters

Tumor character	Transition zone	Periphery zone				
	T1 (ms)	T2 (ms)	PD (pu)	T1 (ms)	T2 (ms)	PD (pu)
Benign proliferation/noncancerous tissue	1561.72 ± 326.08	99.98 ± 13.51	71.80 ± 7.77	2003.27 ± 480.33	132.63 ± 39.50	76.73 ± 8.74
Prostatic	1228.92 ± 302.30	80.04 ± 11.63	67.53 ± 8.33	1310.13 ± 237.64	86.03 ± 14.16	68.87 ± 6.78
\(t \)	3.037	5.859	-1.386	2.412	5.787	2.280
\(p \)	0.03	<0.001	0.209	0.018	<0.001	0.025

Figure 3: ROC curves showing the diagnostic efficacy of T1, T2, and PD values in the migration band and peripheral band areas for differentiating benign and malignant lesions of prostate.

Table 2: Results of different quantitative parameters for benign and malignant lesions of prostate.

Scoring method	Susceptibility (%)	Specificity (%)	PPV (%)	NPV (%)	AUC	95% CI
PI-RADS v2.1	57.52	87.70	76.7	74.6	0.735	0.636–0.820
PI-RADS v2.1 + T2	82.5	73.68	95.5	74.7	0.846	0.759–0.911

Table 3: Comparison of the two scoring methods for the diagnosis of benign and malignant transitional zone lesions.

Scoring method	Susceptibility (%)	Specificity (%)	PPV (%)	NPV (%)	AUC	95% CI
PI-RADS v2.1	86.15	68.42	82.4	74.3	0.816	0.728–0.886
PI-RADS v2.1 + T2	70.8	92.1	93.9	64.8	0.890	0.813–0.943

Table 4: Comparison of the diagnostic values of the two scoring methods for benign and malignant peripheral band lesions peripheral.

Magic (magnetic resonance image preparation), also known as synthetic MRI, is a ground-breaking one-stop relaxation quantitative MR method capable of detecting T1, T2, and PD values in a single scan. Originally, Magic was intended for use in imaging the central nervous system [12] and then gradually expanded into other systems, primarily on organs with less respiratory activity. It was originally intended for use in imaging the central nervous system and gradually expanded into other systems, primarily in organs with less respiratory activity. There has been little study on its application to prostate illness; however, Cui Yadong et al. investigated the use of quantitative parameters...
produced from synthetic MR imaging technology for the
detection of prostate cancer [13]. However, since the impor-
tance of quantitative parameters T1, T2, and PD values in
the diagnosis of prostate disease is not widely accepted, this
approach was not included in its scoring system. In this
study, we looked for the most meaningful quantitative
parameter values for the diagnosis of prostate cancer by
interpreting and statistically analyzing different quantitative
parameters (T1, T2, and PD values) between prostate cancer
and noncancerous areas, and we determined the possible
positive and negative indicators for the diagnosis of prostate
cancer, counting +1 point for the positive indicator and −1
point for the negative indicator, and we went on to investi-
gate further. Also, talk about if its diagnostic accuracy has
increased.

The nodules in this study were all PI-RADS scores 2-5,
and the percentage of peripheral band prostate cancer in
PI-RADS 2-5 points was 0.31, 74.51, and 94.74 percent,
and the percentage of transitional band malignant lesions
in PI-RADS 2-5 points was 0.25, 75.22, and 83.33 percent,
which was similar to PI-RADS v2.1 score guideline’s accom-
panying risk of malignancy was fulfilled. The individuals in
this investigation with PI-RADS 2-points lesions all exhibited
elevated blood prostate-specific antigen levels (> 10 ng/ml)
(PSA). We scored 202 lesions by PI-RADS scoring and gen-
erated ROC curves for the quantitative parameters T1, T2,
and PD values, respectively, and determined that the quantita-
tive parameter values with the most diagnostic efficacy for
prostate cancer were T2 value, shifted band diagnostic value
was 77 ms, and peripheral band diagnostic value was 89 ms,
which was generally consistent with measurements in previ-
ous studies [13, 14].

In this work, we looked at 202 lesions to determine the
utility of the magic quantitative parameter maps T1, T2,
and PD values in distinguishing PCA lesions from other
benign tumors. The T2 values of the lesions were highly sig-
nificantly different between benign and malignant lesions
(\(P = 0.001\)), the T1 values were statistically different between
benign and malignant lesions (\(P = 0.03\) for the shifted band
and \(P = 0.018\) for the peripheral band), and the PD values,
although the differences between benign and malignant
lesions were not statistically significant for the shifted band
(\(P = 0.209\)). The majority of prior investigations focused on
peripheral band prostate cancer and discovered that PCA
lesions had considerably lower T2 values than normal PZ
[15–17]. The present study’s results are consistent with pre-
vious studies in that T2 levels are critical in di-
fferentiating PCA from non-neoplastic PZ lesions in peripheral bands.
Some studies found no statistically significant difference in
T2 values between PCA lesions with misplaced bands and
hyperplastic prostatic nodules (BPH) [18]. However, one
investigation found that transitional PCA lesions had lower
T2 values than nontumor TZ lesions [19]. The current
research also discovered that T2 values in the transitional
band of PCA lesions were considerably lower than those in
non-cancerous tissue.

We also discovered that T2 values of transitional band
and peripheral band lesions were substantially more efficient
than T1 and PD values in distinguishing benign and cancer-
ous prostate. T1 value exhibited slightly greater diagnostic
effectiveness than PD value for prostate cancer lesions with
a transitional band, but there was no statistical significance
between them (\(P = 0.3683\)); for peripheral band lesions, T1
value had almost the same diagnostic efficiency as PD value.
In this investigation, the AUC of the T2 value in distinguishing peripheral band PCA lesions from non-tumor PZ lesions was 0.813, which was comparable to the findings of a previous study [20]. The AUC of T2 value was 0.819 for the discriminating of PCA lesions and benign hyperplasia in the transitional zone, and the diagnostic effectiveness was greater than that of T1 and PD values, and the findings of earlier investigations (AUC 0.840) were nearly comparable [21]. Because T2 value has been recognized as a quantitative marker reflecting free water in tissues, in prostate cancer patients, the normal free water inside the loose interstitium between the ducts and acini is replaced by densely packed malignant epithelial cells, the free water in the extracellular space is significantly reduced, and thus the T2 value is significantly reduced [22]. Despite being an intrinsic property quantitative parameter of the tissue itself, T1 and PD values were shown to be less effective than T2 value in the research and hence were not deemed positive indications.

In this study, we discovered that T2 value combined with PI-RADS v2.1 score was more valuable than PI-RADS v2.1 alone in the diagnosis of prostate cancer, with AUC values of 0.735 and 0.846 for the shifted band and 0.816 and 0.890 for the peripheral band, which were significantly different (P = 0.0355), and the 95 percent confidence intervals of the shifted band versus peripheral band, which were significantly different (P = 0.0355), and when compared to the PI-RADS v2.1 score, T2 value coupled with PI-RADS v2.1 score not only showed higher diagnostic efficacy in the diagnosis of benign and malignant prostate, but also had more trustworthy diagnostic results [23]. The current study’s findings show that the main improvements in the T2 value combined with the PI-RADS v2.1 score over the PI-RADS v2.1 score in the diagnosis of benign and malignant prostate transitional zone lesions are diagnostic sensitivity and positive predictive value; the main improvements in the diagnosis of benign and malignant prostate peripheral zone lesions were specificity and positive predictive value, demonstrating that the combined score can effectively detect lesions. As a result, the authors propose that lesions with shifting band T2 value >77 ms and peripheral band T2 value >89 ms may be followed up on without needless prostate ultrasound-guided puncture to alleviate patient suffering. Shifting band T2 value >77 ms, peripheral band T2 value >89 ms, or more lesions imply the necessity for prostate ultrasound-guided targeted puncture to increase the diagnostic yield of puncture. The current research contains significant flaws. First and foremost, this is a retrospective research with the potential for bias in patient selection, which requires multicenter or prospective trials to confirm. Second, some of the pathology results in this research were from prostate needle biopsies, which raise the chance of prostate cancer being overlooked. The current research is novel in that it is now vital to combine PI-RADS v2.1 for T2 value in prostate illness, which has received little attention.

5. Conclusion

In conclusion, PI-RADS v2.1 score, when paired with the magic quantitative parameters, demonstrated great diagnostic effectiveness for the detection of prostate cancer using T2 value mixed with PI-RADS v2.1.

Data Availability

All of the data in this article is actually available.

Conflicts of Interest

All the researchers claim no conflicts of interests.

Authors’ Contributions

WenJuan Xu and HaiYan Cao contributed equally to this work and should be considered co-first authors.

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: a Cancer Journal for Clinicians, vol. 68, pp. 394–424, 2018.

[2] X. Gong, K. Wu, S. Hao et al., “A comparative study on the diagnostic value of MRI dynamic enhancement in prostate cancer reporting and data systems 1.0 and 2.0,” Chinese Journal of Medical Computer Imaging, vol. 25, no. 2, 2019.

[3] B. Turkbey, A. B. Rosenkrantz, M. A. Haider et al., “Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2,” European Urology, vol. 76, no. 3, pp. 340–351, 2019.

[4] S. Y. Park, D. C. Jung, Y. T. Oh et al., “Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers,” Radiology, vol. 280, no. 1, pp. 108–116, 2016.

[5] X. Wang, N. Tu, T. Qin, F. Xing, P. Wang, and G. Wu, “Diffusion kurtosis imaging combined with dwi at 3-t mri for detection and assessment of aggressiveness of prostate cancer,” AJR. American Journal of Roentgenology, vol. 211, no. 4, pp. 797–804, 2018.

[6] A. Pavilla, G. Gamborota, A. Arrigo, M. Mejdoubi, R. Duvauferrer, and H. Saint-Jalmes, “Diffusional kurtosis imaging (DKI) incorporation into an intravoxel incoherent motion (IVIM) MR model to measure cerebral hyperperfusion induced by hyperventilation challenge in healthy subjects,” Magna, vol. 30, no. 6, pp. 545–554, 2017.

[7] C. Liu, S. L. Liu, Z. X. Wang et al., “Using the prostate imaging reporting and data system version 2 (PI-RDS v2) to detect prostate cancer can prevent unnecessary biopsies and invasive treatment,” Asian Journal of Andrology, vol. 20, no. 5, pp. 459–464, 2018.

[8] J. Byun, K. J. Park, M. H. Kim, and J. K. Kim, “Direct comparison of pi-rads version 2 and 2.1 in transition zone lesions for detection of prostate cancer: preliminary experience,” Journal of Magnetic Resonance Imaging, vol. 52, no. 2, pp. 577–586, 2020.

[9] T. T. Stolk, I. J. de Jong, T. C. Kwee et al., “False positives in PI-RADS (V2) 3,4, and 5 lesions: relationship with reader experience and zonal location,” Abdominal Radiology, vol. 44, no. 3, pp. 1044–1051, 2019.

[10] F. V. Mertan, M. D. Greer, J. H. Shih et al., “Prospective evaluation of the imaging reporting and data version 2 for prostate cancer,” AJR. American Journal of Roentgenology, vol. 211, no. 4, pp. 797–804, 2018.
cancer detection," *The Journal of Urology*, vol. 196, no. 3, pp. 690–696, 2016.

[11] C. Tamura, H. Shinmoto, S. Soga et al., "Diffusion kurtosis imaging study of cancer: preliminary findings," *Journal of Magnetic Resonance Imaging*, vol. 40, no. 3, pp. 723–729, 2014.

[12] I. Blystad, J. B. M. Warntjes, O. Smedby, A. M. Landtblom, P. Lundberg, and E. M. Larsson, "Synthetic MRI of the brain in a clinical setting," *Acta Radiologica*, vol. 53, no. 10, pp. 1158–1163, 2012.

[13] Y. Cui, S. Han, M. Liu et al., "Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI," *Magnetic Resonance Imaging*, vol. 52, no. 2, pp. 552–564, 2020.

[14] M. Engstrom, J. B. Warntjes, A. Tisell, A. M. Landtblom, and P. Lundberg, "Multi-parametric representation of voxel-based quantitative magnetic resonance imaging," *PLoS One*, vol. 9, no. 11, article e111688, 2014.

[15] P. Gibbs, G. P. Liney, M. D. Pickles, B. Zelhof, G. Rodrigues, and L. W. Turnbull, "Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla," *Investigative Radiology*, vol. 44, no. 9, pp. 572–576, 2009.

[16] W. Liu, B. Turkbey, J. Sénégas et al., "Accelerated T2 mapping for characterization of prostate cancer," *Magnetic Resonance in Medicine*, vol. 65, no. 5, pp. 1400–1406, 2011.

[17] D. L. Langer, T. H. van der Kwast, A. J. Evans et al., "Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans),v(e), and corresponding histologic features," *Radiology*, vol. 255, pp. 485–494, 2010.

[18] P. Gibbs, D. J. Tozer, G. P. Liney, and L. W. Turnbull, "Comparison of quantitative T2 mapping and diffusion-weighted imaging in the normal and pathologic prostate," *Magnetic Resonance in Medicine*, vol. 46, no. 6, pp. 1054–1058, 2001.

[19] S. Sabouri, L. Fazli, S. D. Chang et al., "MR measurement of luminal water in prostate gland: quantitative correlation between MRI and histology," *Journal of Magnetic Resonance Imaging*, vol. 46, no. 3, pp. 861–869, 2017.

[20] S. Sabouri, S. D. Chang, R. Savdie et al., "Luminal water imaging: a new MR imaging T2 mapping technique for prostate cancer diagnosis," *Radiology*, vol. 284, pp. 451–459, 2017.

[21] J. Mai, M. Abubrig, T. Lehmann et al., "T2 mapping in prostate cancer," *Investigative Radiology*, vol. 54, pp. 146–152, 2019.

[22] D. G. Mitchell, D. L. Burk Jr., S. Vinitski, and M. D. Rifkin, "The biophysical basis of tissue contrast in extracranial MR imaging," *American Journal of Roentgenology*, vol. 149, no. 4, pp. 831–837, 1987.

[23] P. J. van Houdt, H. K. Agarwal, L. D. van Buuren et al., "Performance of a fast and high-resolution multi-echo spin-echo sequence for prostate T2 mapping across multiple systems," *Magnetic Resonance in Medicine*, vol. 79, pp. 1586–1594, 2018.