Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Remdesivir in Solid Organ Recipients for COVID-19 Pneumonia

Dorottya Fesu, Aniko Bohacs, Edit Hidvegi, Zsombor Matics, Lorinc Polivka, Peter Horvath, Ibolya Czaller, Zoltan Sutto, Noemi Eszes, Krisztina Vincze, and Veronika Muller*

Department of Pulmonology, Semmelweis University, Faculty of Medicine, Budapest, Hungary

ABSTRACT

Solid organ transplant (SOT) recipients represent a vulnerable patient population and are of high risk for airborne viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Treatment of COVID-19 is still challenging, as no proven therapeutic regimen is available for immunocompromised patients. Our aim was to evaluate the efficacy and safety of remdesivir (RDV) therapy in infected hospitalized SOT patients. All transplanted recipients (N = 25; lung: 19; kidney: 3; liver: 2; heart: 1) who needed hospital care were reviewed in the time period between September 2020 and May 2021 out of the 945 patients treated at the Department. Control matched patients receiving RDV (all in need of supplementary oxygen) and standard of care (SOC) were included as controls. Among the 25 SOT patients (female: male = 11:14; average age = 53.2 ± 12.7 years), 15 received RDV medication (RDV-TX), and in 10 cases SOC treatment was used (SOC-TX). Significantly worse clinical score was noted in RDV patients compared with RDV-TX; however, transfer to a higher intensity care unit as well as 60-day survival of RDV-TX patients were significantly worse. All SOT fatalities within 60 days of follow-up were lung transplant recipients (6 out of 19 lung transplant patients). No adverse events were noted related to RDV therapy. In SOT patients, especially lung transplant recipients, with severe COVID-19 needing supplementary oxygen, RDV treatment was safe; however, outcome was significantly worse as compared with nontransplanted individuals with initially worse clinical parameters.

SOLID organ transplant (SOT) patients represent a vulnerable patient population for airborne viral infections, including the new coronavirus disease 2019 (COVID-19). As recipients receive high doses of immunosuppressive medications, they might be at a high risk of severe illness from COVID-19 and increased mortality [1]. On the other hand, immunosuppressants may mask or delay cytokine storm and influence patient management, balancing the patients’ survival toward the values observed in nontransplanted patients [2–4]. Studies have reported conflicting data on whether SOT recipients have higher risk of more severe illness or increased mortality, compared with non-SOT recipients [2–5]. Furthermore, we have limited knowledge of the safety and efficacy of targeted therapies for COVID-19 in the SOT recipients [6].

Remdesivir (RDV) is a direct-acting antiviral agent, a nucleotide analog pro-drug, used in the treatment for patients with severe COVID-19. The Adaptive Covid-19 Treatment Trial has confirmed superiority to placebo in shortening time to recovery in hospitalized adults in need of supplementary oxygen therapy [7]. Another study suggests that RDV has no significant effect on mortality; however, it reduces the risk of mechanical ventilation and serious complications, and improves the recovery percentage as well [8]. Few data are available about efficacy and safety of RDV in the treatment of severe COVID-19 in SOT patients [4,6].

MATERIALS AND METHODS

Patients admitted to the COVID Units of the Department of Pulmonology Semmelweis University between September 2020 and May 2021 were evaluated (N = 945). During this period all SOT patients were analyzed, including 19 lung transplant and 6 other organ SOT patients. Anthropometric data, time since transplant and indications for SEVERAL BACKGROUNDS

*Address correspondence to Veronika Müller, MD, PhD, DSC, Semmelweis University, Department of Pulmonology, 1083 Budapest, Hungary, Tőmő u. 25-29. E-mail: muller.veronika@med.semmelweis-univ.hu
transplant, length of hospital stay and 60-days survival, comorbidities (Charlson comorbidity score), National Early Warning Score (determines the degree of the illness of the patient), outcomes/discharge destinations, and additional therapy (oxygen supplementary and immunosuppressive treatment) were analyzed. Patients were divided according RDV treatment (RDV-TX) and standard of care only treatment (SOC-TX), and case control patients without grafts were included (RDV and SOC, respectively). Case-control analyzing was made according to sex, age, and admission day at hospital. Statistical analysis was made by Student t test and χ² test, and \(P < .05 \) was considered statistically significant.

RESULTS

Patient characteristics are summarized in Table 1. No differences in age and sex distribution were noted. RDV patients presented with significantly worse baseline National Early Warning Score as compared with RDV-TX. All patients treated with RDV needed supplementary oxygen due to lung involvement. Only one SOC-TX patient was treated shortly with oxygen who had deteriorated so quickly that intensive care transfer preceded the start of planned RDV treatment. Hospital length of stay was significantly longer in RDV-TX as compared with RDV patients. Survival assessed at 60-days was significantly worse in RDV-TX patients, and all recipients who died (n = 6) were lung transplant patients. None of the RDV or RDV-TX patients had therapy-related adverse events.

DISCUSSION

Our data indicate that RDV is safe in SOT recipients; however, severe COVID-19 cases in need of supplementary oxygen show high mortality despite antiviral treatment. Previous studies have reported differences in mortality rate, which varies from 2.5% to 37.0% among SOT patients, and mostly the data indicates a not significant difference between the SOT and normal/control population [2-4,6,9]. At the beginning of the pandemic, limited information was available about outcomes in SOT recipients treated with more recent therapies such as RDV, dexamethasone, and convalescent plasma [6]. Treatment mostly included conditional recommendations and exemptions for use by regulatory bodies including the European Medical Agency or Hungarian National Institution of Pharmacy and Nutrition [10].

Treatment options should be chosen carefully in the SOT patient population. Data are conflicting whether immunosuppressants influence the outcome or severity of COVID-19 [2]. Although the dose reduction of immunosuppressive drugs

Table 1. Patient Characteristics and Outcome
All Patients
N
Age (y)
Sex n (%)
Time since transplant (y)
Indications for transplant n (%)
Length of hospital stay (d)
Baseline NEWS
Outcomes n (%)

COPD, chronic obstructive pulmonary disease; ICU, intensive care unit; NEWS, National Early Warning Score; RDV, remdesivir; SOC, standard of care; TX, transplanted patient.

*\(P < .05 \) vs RDV.

† \(P < .05 \) vs SOC.

‡ \(P < .05 \) vs SOC-TX.
might increase the risk of transplant rejection, it is recommended and widely practiced in transplant recipients during COVID-19 infection [2,3,9]. In all of our SOT patients mycophenolate was temporarily ceased; however, there is no evidence-based protocol or consensus about the exact details on immunosuppression therapy, but it is mostly agreed that continuing a decreased dose of immunosuppressants may provide protection against a severe inflammatory phase [6].

CONCLUSIONS

Lung transplant patients had a high 60-day mortality, confirming these SOT patients are even more vulnerable to COVID-19 pneumonia as compared with other graft recipients. RDV therapy was safe in all SOT patients, and further therapeutic protocols are needed to protect grafts and patients from SARS-CoV2-induced severe organ damage and COVID-19 death.

REFERENCES

[1] Buehrle DJ, Sutton RR, McCann EL, Lucas AE. A review of treatment and prevention of coronavirus disease 2019 among solid organ transplant recipients. Viruses 2021;13:1–19.

[2] Andersen KM, Mehta HB, Palamuttam N, Ford D, Garibaldi BT, Auwaerter PG, et al. Association between chronic use of immunosuppressive drugs and clinical outcomes from coronavirus disease 2019 (COVID-19) hospitalization: a retrospective cohort study in a large US health system. Clin Infect Dis 2021;2019:1–7.

[3] Chaudhry ZS, Williams JD, Yahia A, Fadel R, Parraga Acosta T, Prashar R, et al. Clinical characteristics and outcomes of COVID-19 in solid organ transplant recipients: a cohort study. Am J Transplant 2020;20:3051–60.

[4] Avery RK, Chiang TPY, Marr KA, Brennan DC, Sait AS, Garibaldi BT, et al. Inpatient COVID-19 outcomes in solid organ transplant recipients compared to non-solid organ transplant patients: a retrospective cohort. Am J Transplant 2021;21:2498–508.

[5] Myers CN, Scott JH, Criner GJ, Cordova FC, Mamary AJ, Marchetti N, et al. COVID-19 in lung transplant recipients. Transpl Infect Dis 2020;22:e13364.

[6] Avery RK. COVID-19 therapeutics for solid organ transplant recipients; 6 months into the pandemic: where are we now? Transplantation 2021;105:56–60.

[7] Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of covid-19 — final report. N Engl J Med 2020;383:1813–26.

[8] Kaka AS, MacDonald R, Greer N, Vela K, Duan-Porter W, Obley A, et al. Major update: remdesivir for adults with covid-19: a living systematic review and meta-analysis for the American college of physicians practice points. Ann Intern Med 2021;174:663–72.

[9] Miarons M, Larroza-García M, García-García S, Los-Arcos I, Moreso F, Berastegui C, et al. COVID-19 in solid organ transplantation: a matched retrospective cohort study and evaluation of immunosuppression management. Transplantation 2021;105:138–50.

[10] European Medicines Agency: Veklury; https://www.ema.europa.eu/en/medicines/human/EPAR/veklury#authorisation-details-section; [accessed: 14.11.2022].