Enzymatic Surface Erosion of High Tensile Strength Polycarbonates Based on Natural Phenols

Sven Sommerfeld
Rutgers University

Zheng Zhang
Rutgers University

Marius Costache
University of Pennsylvania

Sebastián Vega
Rowan University

Joachim Kohn
Rutgers University

Follow this and additional works at: https://rdw.rowan.edu/engineering_facpub

Part of the *Biochemistry Commons*, and the *Organic Chemistry Commons*

Let us know how access to this document benefits you - share your thoughts on our feedback form.

Recommended Citation
Sommerfeld, S.D., Zhang, A., Costache, M.C., Vega, S.L., & Kohn, J. (2014). *Enzymatic Surface Erosion of High Tensile Strength Polycarbonates Based on Natural Phenols*. *Biomacromolecules* 15, 830-836.

This Article is brought to you for free and open access by the Henry M. Rowan College of Engineering at Rowan Digital Works. It has been accepted for inclusion in Henry M. Rowan College of Engineering Faculty Scholarship by an authorized administrator of Rowan Digital Works. For more information, please contact brush@rowan.edu.
Enzymatic Surface Erosion of High Tensile Strength Polycarbonates Based on Natural Phenols

Sven D. Sommerfeld, Daniel Zheng Zhang, Marius C. Costache, Sebastian L. Vega, and Joachim Kohn

ABSTRACT: Surface erosion has been recognized as a valuable design tool for resorbable biomaterials within the context of drug delivery devices, surface coatings, and when precise control of strength retention is critical. Here we report on high tensile strength, aromatic–aliphatic polycarbonates based on natural phenols, tyrosol (Ty) and homovanillyl alcohol (Hva), that exhibit enzymatic surface erosion by lipase. The Young’s moduli of the polymers for dry and fully hydrated samples are 1.0 to 1.2 GPa and 0.8 to 1.2 GPa, respectively. Typical characteristics of enzymatic surface erosion were confirmed for poly(tyrosol carbonate) films with concomitant mass-loss and thickness-loss at linear rates of 0.14 ± 0.01 mg cm⁻² d⁻¹ and 3.0 ± 0.8 μm d⁻¹, respectively. The molecular weight and the mechanical properties of the residual films remained constant. Changing the ratio of Ty and Hva provided control over the glass transition temperature (Tg) and the enzymatic surface erosion: increasing the Hva content in the polymers resulted in higher Tg and lower enzymatic erosion rate. Polymers with more than 50 mol % Hva were stable at 37 °C in enzyme solution. Analysis on thin films using quartz crystal microbalance with dissipation (QCM-D) demonstrated that the onset temperature of the enzymatic erosion was approximately 20 °C lower than the wet Tg for all tested polymers. This new finding demonstrates that relatively high tensile strength polycarbonates can undergo enzymatic surface erosion. Moreover, it also sheds light on the connection between Tg and enzymatic degradation and explains why few of the high strength polymers follow an enzyme-mediated degradation pathway.

INTRODUCTION

Surface eroding polymers as compared to bulk eroding polymers have distinct advantages for the design of resorbable medical implants. Typically, during bulk erosion a decrease in molecular weight of the polymer occurs before any mass-loss is observed. This leads to unfavorable changes in polymer characteristics such as diminishing mechanical strength and lack of control over long-term drug release. By contrast, surface erosion leads to mass-loss with only negligible molecular weight decrease throughout the bulk of the polymer. Surface erosion is advantageous in applications requiring a controlled retention of mechanical properties during degradation and in drug delivery applications where the rate of drug release can be controlled by the erosion of surface layers of the polymeric matrix. However, hydrolytic surface erosion is only observed when the rate of polymer degradation is faster than the rate of water penetration into the bulk of the polymer. Hence, for small medical implants, hydrolytic surface erosion is limited to extremely fast degrading polymers such as some polyanhydrides and some poly(ortho esters). In the clinic, a surface eroding device (Gliadel) made from polyanhydrides is used to release a chemotherapeutic agent in the brain over 2–3 weeks. Most degradable polymers used in the design of medical and drug release devices are materials such as polyesters that invariably undergo bulk erosion. Interestingly, Pitt et al. reported that poly(trimethylene carbonate) (PTMC), an aliphatic polycarbonate, showed surface erosion behavior in vivo, while the hydrolytic degradation was slow in vitro. It was later demonstrated that PTMC underwent enzymatic degradation by hydrolytic enzymes in vitro, mimicking surface erosion characteristics found in vivo. Hence, hydrolytic enzymes are likely to play a significant role in the degradation of PTMC. Further, the involvement of reactive oxygen species in the erosion of aliphatic polycarbonates was recently suggested by Amsden et al., similar to previous findings by Anderson et al. in poly(carbonate urethane). Recent studies have evaluated the suitability of devices from surface eroding, aliphatic polycarbonates for antibiotic delivery, and implantation in a soft tissue environment for vascular and cardiac tissue engineering. Since the material properties of these aliphatic polycarbonates are characterized as flexible and rubbery (Tg lower than 37 °C), it was previously postulated that...
enzymatic surface erosion requires a flexible polymer backbone that can comply with the enzyme’s active site. Therefore, it is accepted that aromatic polycarbonates and most other currently available biodegradable polymers with Young’s moduli in the GPa range are not susceptible to enzymatic surface erosion, even though amorphous poly(lactic acid) is degradable by Protease K. Likewise, a wide range of tyrosine-derived polycarbonates were extensively studied by Kohn et al., but were not found to degrade by enzyme-mediated processes. Heretofore, few efforts have been made to discover new polymers of high strength that undergo enzymatic surface erosion.

In this contribution, we report on the preparation and characterization of a series of aromatic–aliphatic polycarbonates based on tyrosol and homovanillyl alcohol. Both monomers are readily available from natural resources such as olive oil mill waste waters and products of fermentation processes. Tyrosol and hydroxytyrosol are assessed as GRAS (generally recognized as safe) substances by the FDA. Homovanillyl alcohol is a metabolite of hydroxytyrosol and has been credited with benign biological activities. The structures of the monomers contain both a phenol and an alcohol group: After polycondensation, polymers with both aromatic and aliphatic carbonate functionalities were obtained. Remarkably, we found enzymatic surface erosion behavior resembling the degradation of soft, aliphatic polycarbonates, while the mechanical properties were strong, similar to aromatic polycarbonates. QCM-D analysis on thin films demonstrated the connection between \(T_g \) and enzymatic surface erosion; this finding explains why amorphous poly(lactic acid) and the polycarbonates based on tyrosol and homovanillyl alcohol with \(T_g \) below 60 °C can undergo surface erosion, while most of the other high tensile strength polymers with significantly higher \(T_g \) cannot.

EXPERIMENTAL SECTION

Materials

All chemicals used were reagent grade or better. Tyrosol (Ty), homovanillyl alcohol (Hva), bis(trichloromethyl) carbonate (triphosgene), dichloromethane, 2-propanol, hexane, deuterrated dimethyl sulfoxide (\(d_6\)-DMSO), tetrahydrofuran (THF), trifluoroacetic acid (TFA), phosphate buffered saline (PBS) and lipase from Thermomyces lanuginosus (EC3.1.1.3, minimum 100 units g\(^{-1}\)) were obtained from Sigma-Aldrich (St. Louis, MO). Pyridine, hexane and N,N-dimethylformamide (DMF) were obtained from Fisher Scientific (Pittsburgh, PA).

Polymer Synthesis and Characterization

CAUTION: Triphosgene used in the following procedure is a hazardous material. Triphosgene can release deadly phosgene, a gas that can be lethal before it can be recognized by its smell. All procedures using triphosgene need to be performed in a closed fume hood and under supervision of an experienced and well-trained operator. A monitor and alarm system for phosgene used in the following procedure is a hazardous material. Phosgene has a characteristic odor, a drop of water was applied to the polymer-coated surface and the static contact angle was determined using a goniometer (Rame-Hart, Succasunna, NJ) with at least five independent measurements per composition.

Degradation Experiments

Polymer discs with a diameter of 6 mm and thickness of approximately 250 μm were immersed in 3 mL of lipase solution from Thermomyces lanuginosus as a model enzyme with an activity of 5 kU/ml. For control experiments, specimens were immersed in PBS. All solutions contained 0.02% (w/w) of sodium azide to prevent bacterial growth. The incubation temperature was 37 °C and the solutions were replaced twice per week. Samples in triplicate were removed at respective time points and rinsed with deionized water and 70% (v/v) ethanol. The mass and thickness of the samples were measured after drying in vacuo for 72 h at ambient temperature.

Scanning Electron Microscopy (SEM)

Dried specimens subjected to degradation media or PBS control were sputter coated (SCD 004, Leica Microsystems, Liechtenstein) with gold/palladium, and then the morphology of the specimens was studied by SEM (1830i, Amray, USA, Voltage = 20 kV).

Quartz Crystal Microbalance with Dissipation (QCM-D)

In a Q-Sense E4 (Q-sense, Glen Burnie, MD), the surfaces of sensor crystals coated with polymer thin films were equilibrated with PBS buffer at 24 μL min\(^{-1}\). A temperature program was executed between 20 to 49 °C with lipase (or PBS control) preadsorbed at 20 °C. The interval time between temperature steps was 30 min while the
frequency was recorded for overtones $n = 3, 5, 7, 9$. The frequency change (Δf) and the dissipation change were recorded over time. The change of mass per area was obtained using the Sauerbrey equation with $\Delta m = -CAf^2$ ($C = 17.7$ ng cm^{-2} Hz^{-1}) with negligible dissipation changes during erosion. The rate of mass-loss for each temperature step was obtained by linear regression after equilibration.

Attachment and Proliferation of Human Mesenchymal Stem Cells (hMSCs) on Polymer Films. Bone marrow derived hMSCs of passage numbers between 2 and 5 (Texas A&M University, College Station, TX) were cultured in MSC basal medium supplemented with SingleQuot’s (Lonza, Walkersville, MD). Compression-molded discs (approximate thickness $= 250 \mu\text{m}$) of (co)polymers from Ty and Hva were cut to fit wells of a 48-well tissue culture polystyrene (TCPS) plate (Corning, Corning, NY). Cells were seeded at a density of 5×10^9 cells cm$^{-2}$. The hMSCs were cultured at $37 ^\circ\text{C}$ in an incubator supplemented with 5% (v/v) of CO$_2$. Cell viability and proliferation were evaluated at time points of 4 h, 4 days, and 7 days. For qualitative fluorescence microscopy imaging, cells were fixed with 4% (w/v) paraformaldehyde for 10 min and then permeabilized with 0.1% (w/v) Triton X-100 for 3 min. Staining was conducted using Alexa Fluor 488 paraformaldehyde for 10 min and then permeabilized with 0.1% (w/v) Triton X-100 for 3 min. Staining was conducted using Alexa Fluor 488 phalloidin for 20 min and Hoechst for 5 min. For quantification of viability, the cell culture medium containing 10% vol. of AlamarBlue reagent (Invitrogen, Carlsbad, CA) was added to wells of live cells after a buffer rinse. The fluorescence of the supernatant was measured after 4 h of incubation ($\lambda_{ex} = 560 \text{ nm}$, $\lambda_{em} = 590 \text{ nm}$). Total cell count on fixed with 4% (w/v) paraformaldehyde for 10 min and then permeabilized with 0.1% (w/v) Triton X-100 for 3 min. Staining was conducted using Alexa Fluor 488 paraformaldehyde for 10 min and then permeabilized with 0.1% (w/v) Triton X-100 for 3 min. Staining was conducted using Alexa Fluor 488 phalloidin for 20 min and Hoechst for 5 min. For quantification of viability, the cell culture medium containing 10% vol. of AlamarBlue reagent (Invitrogen, Carlsbad, CA) was added to wells of live cells after a buffer rinse. The fluorescence of the supernatant was measured after 4 h of incubation ($\lambda_{ex} = 560 \text{ nm}$, $\lambda_{em} = 590 \text{ nm}$). Total cell count on polymer substrates was calculated for each time point by comparing fluorescence readouts against a standard curve of known cell numbers. Three independent experiments were carried out ($n = 3$) with three replicates for each condition.

RESULTS AND DISCUSSION

Synthesis and Chemical Structure. A series of polycarbonates from tyrosol (Ty) and homovanillyl alcohol (Hva) (Figure 1A–C) was prepared by condensation polymerization using triphosgene with Ty content of 100, 90, 75, 50, and $0 \text{ mol}\%$ in the feed. The polymer composition respective to Ty and Hva was confirmed using ^1H NMR spectroscopy (Figure S1: ^1H NMR spectra, Supporting Information). As illustrated in Figure 1 D, the backbone structure featured sequence isomers with diaryl (head-to-head, h/h), dialkyl (tail-to-tail, t/t) and aryl alkyl (head-to-tail, h/t) carbonates (Table 1: ^1H NMR annotations). Chemical shifts of protons in head-to-head, tail-to-tail isomers (aromatic: a1 and b1, aliphatic: d1 and e1) can be distinguished from those in head-to-tail isomers at corresponding positions (aromatic: a2 and b2, aliphatic d2 and e2) for Ty and Hva. Additional protons exclusive to Hva units are annotated accordingly (aromatic: c1 and c2, methoxy: f1 and f2). The ratios of h/h:t/t shifted from 1:1:1.3 in poly(tyrosol carbonate) to 1:1:2.8 in poly(Hva carbonate) (Table S1: integral ratios in ^1H NMR, Supporting Information). We expected dramatic effects of the compositional changes from Ty to Hva and the backbone structure on the properties of these aromatic–aliphatic polycarbonates.

Physical Properties. The physical properties in the series of polycarbonates from Ty and Hva are listed in Table 2. All polymers were of high molecular weight with M_n values ranging from 117 to 227×10^3 g mol$^{-1}$. In the dry state, the T_g increased with the content of Hva in the composition from

Table 1. Chemical Shift Assignment from ^1H-NMR Spectra
proton

a1 (aryl, Ty)
a1 (aryl, Hva)
b1 (aryl)
c1 (aryl, Hva)
d1 (alkyl)
e1 (alkyl)
f1 (methoxy, Hva)

$s =$ singlet, $m =$ multiplet.

Table 2. Physical Properties of Polycarbonates from Ty and Hva

(co)polymer composition	$M_n (10^3 \text{g/mol})$	M_n/M_m	glass transition T_g $[°\text{C}]$	static water contact angle $[°]$ a	
Ty/Hva[mol %]			dry	wet	
100/0	174	1.49	60	50	80 ± 2
90/10	227	1.46	63	54	81 ± 1
75/25	212	1.42	65	57	82 ± 2
50/50	183	1.45	69	60	80 ± 2
0/100	117	1.52	74	63	80 ± 2

aMean ± standard deviation (SD), $n = 5$
60 to 74 °C in accordance with the Fox equation. This T_g increase may be explained by reduced polymer chain flexibility due to the methoxyl substituent of Hva. As reported elsewhere, additional steric barriers to chain rotations raised T_g in polystyrenes and polymethacrylates. In the wet state, the T_g of preconditioned polycarbonates from Ty and Hva was reduced by approximately 10 °C for all compositions; the equilibrium water uptake of the polymer specimens throughout the series was less than 1% (w/w), thus explaining the moderate reduction of the T_g upon hydration. Under physiological conditions all polymers were in the glassy, amorphous state. The polymer surfaces throughout the series were characterized as moderately hydrophobic with water contact angles around 81°.

To evaluate the applicability of the polycarbonates from Ty and Hva in the fabrication of biodegradable load-bearing devices, the tensile moduli as well as stress and strain at the yield point were determined by tensile testing (see Table 3 and Figure S2, Supporting Information). Changing the ratio of Ty and Hva provided control over the glass transition temperature (T_g) and H_v.device, the tensile moduli as well as stress and strain at the yield point were determined by tensile testing (see Table 3 and Figure S2, Supporting Information). Changing the ratio of Ty and Hva provided control over the glass transition temperature (T_g) and H_v.

Table 3. Mechanical properties of polycarbonates from Ty and Hva (mean ± SD, $n = 4$)

Copolymer composition Ty/Hva [mol %]	Modulus [GPa]	Yield Stress [MPa]	Yield Strain		
	Dry	Wet	Dry	Wet	
100/0	1.1 ± 0.2	0.8 ± 0.2	38 ± 2	27 ± 2	6%
90/10	1.0 ± 0.1	1.0 ± 0.1	42 ± 5	27 ± 1	6%
75/25	1.0 ± 0.1	0.9 ± 0.1	42 ± 2	32 ± 1	6%
50/50	1.2 ± 0.1	0.9 ± 0.1	57 ± 3	34 ± 2	8%
0/100	1.2 ± 0.2	1.2 ± 0.2	54 ± 2	43 ± 2	7%

aTested at room temperature (RT) without preconditioning; bPreconditioned for 24 h and tested in PBS at 37 °C; cSD < 1%.

For poly(tyrosol carbonate) a rate of mass-loss of 0.14 ± 0.01 mg cm$^{-2}$ d$^{-1}$ was demonstrated. At this rate, only about half of the mass was retained at a 6-week time point. The last structurally intact specimens were retrieved after 9 weeks with a relative mass-loss of around 80%. The lipase dependent erosion was slower for compositions with 90 and 75 mol % Ty showing rates of 0.07 ± 0.01 mg cm$^{-2}$ d$^{-1}$ and 0.03 ± 0.01 mg cm$^{-2}$ d$^{-1}$, respectively. However, the mass-loss of compositions with lower than 50 mol % Ty was too slow to be quantified accurately. Poly(homovanillyl carbonate) was stable in lipase solution at 37 °C. In accordance with the mass-loss results, concomitant thickness-loss was observed for poly(tyrosol carbonate) specimens at a rate of 3.0 ± 0.8 μm d$^{-1}$ (Figure 2B).
Likewise, the thickness of specimens containing 90 and 75 mol % Ty decreased over time as well, while no change was observed for compositions with 50 mol % Ty and poly(homovanillyl carbonate). No surface erosion was observed for any composition incubated in PBS, while the long-term stability of poly(tyrosol carbonate) was evaluated for a period of 1 year showing no significant changes in molecular weight.

A unique morphology of partially eroded poly(tyrosol carbonate) specimens was revealed in SEM images: while the untreated poly(tyrosol carbonate) specimens showed a smooth surface (Figure 3A), pits and cavities were seen on surfaces when incubated in lipase solution after rinsing with 70% (v/v) ethanol and drying (Figure 3B–E). Over time, pits evolved into regular patterned cavities. The surfaces of specimens progressively eroded by lipase while control specimens incubated in PBS maintained a smooth surface (Figure 3F).

The mechanical properties of poly(tyrosol carbonate), the fastest eroding composition, were evaluated over time in lipase solution and PBS as a control. In both conditions, the modulus, \(\sigma_{\text{yield}} \) and \(\varepsilon_{\text{yield}} \) values were retained for a period of at least 18 weeks, as shown in Table 4.

When engineering surface eroding devices, however, it has to be considered that due to changes in the specimen’s dimensions the force required to deform the specimens will decrease with time. Nevertheless, the change is predictable, and may be adjusted for by setting the design parameters. In comparison, for bulk-degrading devices, mechanical properties decline in a less controllable manner. For example, poly(DL-lactic acid) specimens are weakened by the possible formation of hollow structures in the bulk with only the retention of an outer shell.33

Glass Transition Temperature and Onset of Enzymatic Erosion. We studied the temperature dependence of enzymatic erosion on thin films of the polycarbonates from Ty and Hva using QCM-D. At the beginning of the experiments, lipase was adsorbed showing comparable adsorption isotherms (Figure S3, Supporting Information) for all compositions with frequency changes (\(\Delta f \)) of \(-22 \text{ Hz} \) and \(-26 \text{ Hz} \) (mass adsorption of 290 to 460 ng cm\(^{-2}\)) at 20 °C. At this temperature all thin films were stable against enzymatic degradation. Next, the experiment was continued with stepwise temperature increases in a range between 20 and 49 °C as shown in the QCM-D frequency traces of Figure 4A. At specific, polymer composition-dependent onset temperatures (\(T_{\text{onset}} \)), a transition in the frequency traces upon raising the temperature was demonstrated for all the samples, indicating that enzymatic surface erosion started once the temperature of the specimen reached a value that was 20 °C below the wet \(T_g \) of fully hydrated samples (see Table S). We can therefore define an onset temperature for enzymatic surface erosion which can be expected around \(T_{\text{onset}} = T_{g(wet)} - 20 \text{ °C} \), where \(T_{g(wet)} \) stands for the glass transition temperature of fully hydrated samples. At each temperature step, a new baseline was recorded after a rapid equilibration of temperature. Once \(T_{\text{onset}} \) was reached, frequency increased dramatically even after temperature equilibration, indicating erosion of the polymer films. In control experiments without lipase, no frequency changes beyond baseline equilibration were observed throughout the temperature range.

The rates of mass-loss per unit area derived from the frequency traces are plotted against temperature in Figure 4B. We observed an onset of mass-loss for all compositions. For example, poly(tyrosol carbonate), the polymer with the lowest \(T_g \) in

| Table 4. Mechanical Properties of Poly(tyrosol carbonate) during Erosion (Mean ± SD, \(n = 4 \)) \(^a \) |
|-----------------|-----------------|-----------------|
| **time** | **modulus [GPa]** | **yield stress [Mpa]** | **yield strain** | **mass-loss** |
| | **lipase** | **PBS control** | **lipase** | **PBS control** | **lipase** | **PBS control** |
| 24 h | 0.9 ± 0.1 | 0.8 ± 0.2 | 25 ± 2 | 27 ± 2 | 4% | 5% |
| 1 week | 0.8 ± 0.1 | 0.8 ± 0.1 | 21 ± 2 | 24 ± 5 | 4% | 6% |
| 4 weeks | 0.8 ± 0.1 | 0.9 ± 0.3 | 26 ± 1 | 22 ± 6 | 6% | 5% |
| 18 weeks | 0.9 ± 0.1 | 0.8 ± 0.1 | 22 ± 1 | 27 ± 1 | 4% | 6% |

\(^a\)Specimens were tested while immersed in PBS at 37 °C. \(^b\)SD < 1%. \(^c\)Mass loss recorded based on 400 μm thick, rectangular shaped specimens. \(^d\)Identical to the values shown in Table 3 for preconditioned specimens and included here again for ease of comparison.
As expected, the rates of erosion increase upon heating, further decreasing the methoxyaryl groups present in Hva.

Below 100 nm) of polystyrene as a model system for polymer degradation.

Enzyme-mediated degradation of synthetic, degradable polymers is predominantly reported for flexible and rubbery polymers and not for stiff and glassy materials. In this sense, polymer chain flexibility appears to be an important determining factor. It is noteworthy that previous studies suggested increased flexibility of polymer chains in confinement as compared to the bulk: A depression of the bulk Tg value by approximately 20 °C was observed in ultrathin films (thickness below 100 nm) of polystyrene as a model system for confinement. We suggest that the polymer chain flexibility at the surface may be increased toward a more rubbery-like behavior compared to a glassy bulk. Similarly, the hydrated surface of glassy polymers, such as polycarbonates from Ty and Hva (100, 90, and 50 mol % Ty) were evaluated as substrates for attachment and proliferation of human mesenchymal stem cells (hMSCs) relative to tissue-culture polystyrene (TCPS). Bone marrow-derived hMSCs were selected for these studies in view of the potential biomedical applications of these high-strength materials in orthopedics. In comparison, all compositions supported cell attachment and proliferation equally with no statistical differences found (Figure 5). After 4 days, hMSCs exhibited spread morphologies on all substrates as observed by confocal microscopy (Figure S5, Supporting Information). Confluence was reached after 7 days in culture on all substrates with cell densities of approximately 6 X 10⁶ cells cm⁻².

Table 5. Temperature-Dependent Erosion Properties from QCM-D and Macroscopic Films

(co)polymer composition	QCM-D Tg [°C]	Δ(Tg/onset) - Tg(onset) [°C]	QCM-D rate of mass-loss at 37 °C [mg cm⁻² d⁻¹]	macroscopic rate of mass-loss at 37 °C [mg cm⁻² d⁻¹]
Ty/Hva [mol %]				
100/0	29	21	0.20 ± 0.02	0.14 ± 0.01
90/10	33	21	0.12 ± 0.01	0.07 ± 0.01
75/25	34	20	0.03 ± 0.01	0.03 ± 0.01
50/50	37	20	-	-
0/100	43	20	-	-

Figure 4. (A) QCM-D temperature dependent frequency plots of thin films from compositions of Ty/Hva (mol %) 100/0, 90/10, 75/25, 50/50, and 0/100 with preadsorbed lipase (see also Table 5), and PBS control for 75/25. (B) QCM-D lipase dependent rates of mass-loss dependent on temperature.

Figure 5. Cell viability of hMSCs on polycarbonate substrates of Ty/Hva (mol %) 100/0, 90/10, 50/50 after 4 h, 4 days, and 7 days. Cell density was determined by AlamarBlue assay relative to standards on TCPS (mean ± SE, n = 3).

CONCLUSIONS

While the phenomenon of enzymatic surface erosion has been linked to polymer chain flexibility before, it has not been recognized that a rather simple correlation with a polymer’s glass transition temperature can explain why some polymers undergo enzymatic surface erosion while others seem to be unaffected by enzymes. Our results demonstrate that the ability of enzymes to erode a polymer surface is not merely an intrinsic property of the polymer. Instead, it seems that the susceptibility of a polymer to undergo enzymatic surface erosion is determined by the experimental conditions and that a simple correlation (T onset = T g(wet) - 20 °C) may allow one to predict aromatic polycarbonates such as poly(DTE carbonate) with a Tg of 90 °C to have a glass transition out of a biologically relevant temperature range and do not exhibit enzymatic erosion under physiological conditions.

Cell Viability and Proliferation. Three polycarbonates from Ty and Hva (100, 90, and 50 mol % Ty) were evaluated as substrates for attachment and proliferation of human mesenchymal stem cells (hMSCs). Bone marrow-derived hMSCs were selected for these studies in view of the potential biomedical applications of these high-strength materials in orthopedics. In comparison, all compositions supported cell attachment and proliferation equally with no statistical differences found (Figure 5). After 4 days, hMSCs exhibited spread morphologies on all substrates as observed by confocal microscopy (Figure S5, Supporting Information). Confluence was reached after 7 days in culture on all substrates with cell densities of approximately 6 X 10⁶ cells cm⁻².

dx.doi.org/10.1021/bm4016539 | Biomacromolecules 2014, 15, 830–836
if a given polycarbonate will undergo surface erosion under physiological conditions. This new understanding of enzymatic surface erosion can now be used to design innovative polymers that will exhibit enzymatic surface erosion at specific experimental conditions. This is exemplified by the system of new aromatic–aliphatic polycarbonates from the natural phenols tyrosol and homovanillyl alcohol. For selected compositions among these polymers, the hydrated surface layer of the polymer at physiological conditions (37 °C) is flexible enough to allow for enzymatic degradation, while the bulk still maintains the mechanical strength of a glassy material. In future studies, we will explore whether similar correlations can be established for other types of biomedically important polymers such as polyesters and polyamides.

ASSOCIATED CONTENT

S Supporting Information
Supplementary data include 500 MHz 1H NMR spectra, stress–strain curves, SEM images showing surface morphology, figures showing relative M_w retention, QCM lipase adsorption isotherms, and epifluorescence microscopy images of relevant specimens. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*Mailing address: The New Jersey Center for Biomaterials, 145 Bevier Rd. Piscataway, NJ 08854, USA. E-mail address: kohn@rutgers.edu; Tel: +1 732 445 3888; Fax: +1 732 445 5006.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by Award Number P41EB001046 from the National Institute of Biomedical Imaging and Bioengineering and discretionary funds from the New Jersey Center for Biomaterials at Rutgers University. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Biomedical Imaging and Bioengineering or the National Institutes of Health. The authors thank Yangmin Chen for help with degradation studies. Ms. Carole Kantor and Dr. Lauren Macri are acknowledged for assistance editing the manuscript.

REFERENCES

(1) Tamada, J. A.; Langer, R. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 522.
(2) Göpferich, A. Biomaterials 1996, 17, 103.
(3) von Burkerstodra, F.; Schedl, L.; Göpferich, A. Biomaterials 2002, 23, 4221.
(4) Heller, J. J. Controlled Release 1985, 2, 167.
(5) Brem, H.; Tamargo, R. J.; Olivi, A.; Pinn, M.; Weingart, J. D.; Wharam, M.; Epstein, J. I. J. Neurosurg. 1994, 80, 283.
(6) Albertsson, A. C., Ed. Degradable Aliphatic Polyesters; Advances in Polymer Science Series; Springer: New York, 2002.
(7) Zhu, K.; Hendren, R. W.; Jensen, K.; Pitt, C. G. Macromolecules 1991, 24, 1736.
(8) Zhang, Z.; Kuijer, R.; Bulstra, S. K.; Grijpma, D. W.; Feijen, J. Biomaterials 2006, 27, 1741.
(9) Chapanian, R.; Tse, M. Y.; Pang, S. C.; Amsden, B. G. Biomaterials 2009, 30, 295.
(10) Cornacchione, L. A.; Qi, B.; Bianco, J.; Zhou, Z.; Amsden, B. G. Biomacromolecules 2012, 13, 3099.
(11) Christenson, E. M.; Anderson, J. M.; Hiltner, A. J. Biomed. Mater. Res., Part A 2004, 70, 245.
(12) Kluin, O. S.; van der Mei, H. C.; Busscher, H. J.; Neut, D. Biomaterials 2009, 30, 4738.
(13) Dargaville, B. L.; Vaquette, C.; Peng, H.; Rasoul, F.; Chau, Y. Q.; Cooper-White, J. I.; Campbell, J. H.; Whittaker, A. K. Biomacromolecules 2011, 12, 3856.
(14) Bat, E.; Harmesen, M. C.; Plantinga, J. A.; van Luyk, M. J.; Feijen, J.; Grijpma, D. W. J. Controlled Release 2010, 148, e74.
(15) Song, Y.; Kamphuis, M. M.; Zhang, Z.; Sterk, L. M.; Vermees, I.; Poot, A. A.; Feijen, J.; Grijpma, D. W. Acta Biomater. 2010, 6, 1269.
(16) Pitt, C. G.; Hendren, R. W.; Schindler, A.; Woodward, S. C. J. Controlled Release 1984, 1, 3.
(17) Williams, D. F. Eng. Med. 1981, 10, 5.
(18) Yamashita, K.; Kikkawa, Y.; Kurokawa, K.; Doi, Y. Biomacromolecules 2005, 6, 850.
(19) Tangpasuthadol, V.; Pendharkar, S. M.; Kohn, J. Biomaterials 2000, 21, 2371.
(20) Tangpasuthadol, V.; Pendharkar, S. M.; Peterson, R. C.; Kohn, J. Biomaterials 2000, 21, 2379.
(21) Ertel, S. I.; Kohn, J. J. Biomed. Mater. Res. 1994, 28, 919.
(22) Loscos, N.; Hernandez-Orte, P.; Cacho, J.; Ferreira, V. J. Agric. Food Chem. 2007, 55, 6674.
(23) Jerman Klen, T.; Mozetić Vodopic, B. J. Agric. Food Chem. 2011, 59, 12725.
(24) Gris, E. F.; Mattivi, F.; Ferreira, E. A.; Vrhovsek, U.; Filho, D. W.; Pedrosa, R. C.; Bordignon-Luiz, M. T. J. Agric. Food Chem. 2011, 59, 7954.
(25) Eckert, H.; Forster, B. Angew. Chem., Int. Ed. Engl. 1987, 26, 894.
(26) Uzunoglu, S.; Karaca, B.; Atmaca, H.; Kisim, A.; Sezgin, C.; Karabulut, B.; Uslu, R. Toxicol. Mech. Methods 2010, 20, 482.
(27) Sauerbrey, G. Z. Phys. 1959, 155, 206.
(28) Yu, C.; Kohn, J. Biomaterials 1999, 20, 253.
(29) Pego, A. P.; Grijpma, D. W.; Feijen, J. Polymer 2003, 44, 6495.
(30) Gritzi, I.; Garreau, H.; Li, S.; Vert, M. Biomacromolecules 1998, 16, 305.
(31) Mark, J. E. Physical Properties of Polymer Handbook; Springer: New York, 2007.
(32) Bedoui, F.; Widjaja, L. K.; Luk, A.; Bolikal, D.; Murthy, N. S.; Kohn, J. Soft Matter 2012, 8, 2230.
(33) Gris, E. F.; Mattivi, F.; Ferreira, E. A.; Vrhovsek, U.; Filho, D. W.; Pedrosa, R. C.; Bordignon-Luiz, M. T. J. Agric. Food Chem. 2011, 59, 7954.
(34) Albertsson, A. C., Ed. Degradable Aliphatic Polyesters; Advances in Polymer Science Series; Springer: New York, 2002.
(35) Edmondson, R. A.; Jones, R. A. L.; Cory, R. A. Europhys. Lett. 1994, 27, 59.
(36) Elliston, C. J.; Torkelson, J. M. Nat. Mater. 2003, 2, 695.