Evidence for WW/WZ vector boson scattering in the decay channel \(\ell \ qq \) produced in association with two jets in proton-proton collisions at \(\sqrt{s} = 13 \) TeV

The CMS Collaboration

Abstract

Evidence is reported for electroweak (EW) vector boson scattering in the decay channel \(\ell \ qq \) of two weak vector bosons WV (\(V = W \) or \(Z \)), produced in association with two parton jets. The search uses a data set of proton-proton collisions at 13 TeV collected with the CMS detector during 2016–2018 with an integrated luminosity of 138 fb \(^{-1} \). Events are selected requiring one lepton (electron or muon), moderate missing transverse momentum, two jets with a large pseudorapidity separation and a large dijet invariant mass, and a signature consistent with the hadronic decay of a W/Z boson. The cross section is computed in a fiducial phase space defined at parton level requiring all parton transverse momenta \(p_T > 10 \) GeV and at least one pair of outgoing partons with invariant mass \(m_{qq} > 100 \) GeV. The measured and expected EW WV production cross sections are 1.90\(_{\pm 0.53}^{+0.53} \) pb and 2.23\(_{\pm 0.11}^{+0.08} \) (scale) \(\pm 0.05\) (PDF) pb, respectively, where PDF is the parton distribution function. The observed EW signal strength is \(\mu_{EW} = 0.85 \pm 0.12 \) (stat) \(\pm 0.19 \) (syst), corresponding to a signal significance of 4.4 standard deviations with 5.1 expected. This is the first evidence of vector boson scattering in the \(\ell \ qq \) decay channel at LHC. The simultaneous measurement of the EW and quantum chromodynamics associated diboson production agrees with the standard model prediction.

Submitted to Physics Letters B

©2021 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

*See Appendix A for the list of collaboration members
1 Introduction

The discovery of the Higgs boson [1–3] completed the observation of the particle content of the standard model (SM) of fundamental interactions, but the investigation of its scalar and Yukawa sectors is still in its infancy with respect to the vast scientific program foreseen with the data that is being delivered by the Large Hadron Collider (LHC) at CERN.

Vector boson scattering (VBS) plays a special role, since the violation of its unitarity coming from direct interaction between vector bosons is prevented by counterbalancing diagrams involving the Higgs boson [4]. This precise cancellation of divergent effects is an important aspect of the SM, and one of the main motivations to study the VBS processes.

In fact, the VBS measurements could provide an additional confirmation of the electroweak (EW) symmetry breaking, as well as a powerful tool to test effects beyond the SM that can perturb the delicate equilibrium present in the total cross section calculation. The VBS production of vector boson pairs is rare at the LHC, since it is a purely EW process of order 6 of the neutral weak current coupling α^6_{EW}, and it has a large background contamination. Only in recent years the data set collected by the LHC experiments has become large enough to permit a measurement in fully leptonic final states [5–10]. At the same time, the theory community showed a renewed interest in the vector boson scattering [11], both in terms of the SM measurements and searches for beyond SM effects. Therefore, it is compelling to study all the VBS final states accessible at the LHC in addition to the fully leptonic ones.

In this letter, we address the case where one of the vector bosons decays into quarks, whereas the other one, a W boson, decays into a lepton ℓ (electron or a muon), and a neutrino. Fig. 1 shows examples of the Feynman diagrams describing some processes contributing to this final state.

Figure 1: Examples of Feynman diagrams contributing to the analyzed final state: purely EW VBS process contributions (upper left diagram), s-channel Higgs boson contribution (upper right diagram), and nonresonant diboson production (lower diagram).
Both the ATLAS [12] and CMS [13] Collaborations have already studied the VBS WV process, where V stands for a W or Z boson, in final states in which one boson decays leptonically, and the other boson decays hadronically, with a small fraction of the data obtained by the end of 2018. The CMS analysis [14] was focused on a search for anomalous EW WV production and put stringent limits on effective field theory operators, whereas the ATLAS paper [15] reached a SM signal significance of 2.7 standard deviations including also the \(\ell qq \) and \(q\bar{q} \) decay channels. This paper reports the first evidence for the SM VBS process in the decay channel \(\ell qq \) analyzing the full LHC data set of integrated luminosity 138 fb\(^{-1}\) collected by the CMS Collaboration in the years 2016–2018.

2 Signal and background simulation

The signal is characterized by the presence of a single isolated electron or muon, a moderate amount of missing transverse momentum \(p_T^{\text{miss}} \), and either three or four jets. One pair of jets is required to have a large invariant mass and large pseudorapidity (\(\Delta \eta \)) separation, the typical signature of VBS-like events, whereas the remaining jets are the result of a vector boson decay. If the boson has a high enough momentum in the laboratory reference frame, its decay products can be collected in a single jet, whereas at lower momentum the decay is resolved into two separate jets.

The main sources of background contamination originate from the production of a single W boson accompanied by jets (called W+jets in the following), and \(t\bar{t} \) pairs, where one of the W bosons produced by the top quark decays hadronically. Although simulated samples for these backgrounds are available, an approach based on control samples from data is applied to improve the description of these backgrounds in the signal region. The W+jets contribution from Monte Carlo (MC) is corrected differentially by exploiting the events in a dedicated control region, which is described in more detail in Section 5. The top quark background shape is taken from MC, but its normalization is measured from data in the dedicated control region.

The following background processes are modeled using MC event generators: nonresonant QCD-associated diboson production (QCD-WV); \(t\bar{t} \) and single top quark production (in \(s, t \) channel and \(tW \)); Drell–Yan (DY) lepton pair production; V boson production in association with a photon (W\(g \) and Z\(g \)); single vector boson EW production in the vector boson fusion channel (VBF-V); and triboson production (VVV).

Most of the processes are simulated at next-to-leading order (NLO) in the strong coupling \(\alpha_s \) using \textsc{powheg} v2 [16–20], \textsc{madgraph5amc@nlo} v2.4.2 [21, 22], or \textsc{mcfm} v7.0 [23–26]. The \(W+jets \), QCD-VV, VBF-V, and W events are generated with \textsc{madgraph5amc@nlo} v2.4.2 at leading order (LO) accuracy in perturbative quantum chromodynamics (QCD). The \(t\bar{t} \) component of the top quark background and the DY events are also weighted using generator level information to improve the agreement of the simulated transverse momentum (\(p_T \)) distributions of the \(t\bar{t} \) and DY systems [27–29] to data.

The signal, namely the VBS W(\(\ell \))V(\(jj \)) process (the parentheses give the decay modes), is simulated with \textsc{madgraph5amc@nlo} v2.6.5 at leading order: the intermediate-state vector boson pair is produced by implementing the narrow width approximation and then decayed by \textsc{madspin} [30] to partially account for finite-width effects and spin correlations. The contribution from the VBS Z(\(\ell\ell \))V(\(jj \)) production, where one of the leptons falls beyond the acceptance of the analysis, is considered as a background. The W decay into \(\ell \) is considered part of the signal, and W decays into all leptonic final states are generated. However, the analysis has
been tuned to look for only electron and muon final states.

Apart from VBF-V, all MC samples for the parton showering, hadronization, and the simulation of the underlying event are provided by PYTHIA 8.226 (8.230) [20, 31]. The NNPDF 3.0 NLO [32] (NNPDF 3.1 NNLO [33]) parton distribution functions (PDFs) are used for simulating all 2016 (2017 and 2018) samples. The modeling of the underlying event is generated using the CUETP8M1 [34, 35] (CP5 [36]) tune for simulated samples corresponding to the 2016 (2017 and 2018) data.

The dipole recoil scheme is used in the parton shower PYTHIA simulation for the VBS signal MC sample to improve the description of the additional jet emissions in the VBS topology [37–39]. The HERWIG 7.0 [40, 41] program is used for VBF-V background for the same reason.

The interference between the EW and QCD diagrams for the $W^\pm W^\pm$, $W^\pm W^\mp$, and WZ processes, generated with MADGRAPH5_aMC@NLO including the contributions of order $a_s^5 EM$, is less than 3% of the signal in the phase space region of interest of the analysis and is neglected.

For all processes, the detector response is simulated using a detailed description of the CMS detector, based on the GEANT4 package [42]. Additional interactions in the same or adjacent bunch crossings (pileup) based on minimum bias events simulated with PYTHIA are overlaid onto each event, with the number of interactions drawn from a distribution that is similar to the one observed in data. The average number of such interactions per event is ≈ 23 and ≈ 32 for the 2016 data and 2017-2018 data, respectively.

3 The CMS detector

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [13].

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are measured in gaseous detectors embedded in the steel flux-return yoke outside the solenoid. The particle-flow algorithm [43] reconstructs and identifies each individual particle in an event, with an optimized combination of information from the various elements of the CMS detector. The energy of photons is obtained from the ECAL measurement. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as measured by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The energy of muons is obtained from the curvature of the corresponding track. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

Events of interest are selected using a two-tiered trigger system. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of up to 100 kHz within a fixed latency of about 4 μs [44]. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage [45].

4 Event reconstruction, selection and categorization

Events are selected for further analysis by triggers for isolated single leptons with p_T thresholds of 27, 32, 35 GeV for electrons and of 24, 24, 27 GeV for muons, respectively for the 2016, 2017, 2018 data-taking periods. The final leptons are required to have an offline reconstructed p_T of at least 35 GeV (30 GeV) for electron (muon) candidates, and a pseudorapidity of $| \eta | < 2.5$ (2.4) for electrons (muons).

For each event, hadronic jets are clustered from reconstructed particles using the infrared- and collinear-safe anti-k_T algorithm [46, 47] with a distance parameter of 0.4 (0.8), labeled in the following as AK4 (AK8) jets. Additional proton-proton interactions within the same or nearby bunch crossings (pileup) can contribute additional tracks and calorimetric energy depositions to the jet momentum. To mitigate this effect, charged particles identified as originating from pileup vertexes are discarded and an offset correction is applied to correct for remaining contributions.

In an event, AK4 and AK8 jets are considered in the analysis if they have a $p_T > 30$ GeV and $| \eta | < 4.7$ or $p_T > 200$ GeV and $| \eta | < 2.4$, respectively. The pileup-per-particle identification algorithm (PUPPI) [48, 49] is applied to AK8 jet constituents to remove pileup tracks at the reconstructed particle level. Moreover, a grooming algorithm, known as “soft drop” (SD)[50-52], is applied to the constituents of AK8 jets reclustered using the Cambridge–Aachen algorithm [53,54]. The SD algorithm, which has as an angular exponent $\beta = 0$, soft cutoff threshold $z_{cut} < 0.1$, and characteristic radius $R_0 = 0.8$ [52], removes soft, wide-angle radiation from the large radius jet, improving the modeling of the jet mass observable. The parameters of the SD algorithm are calibrated in a top quark-antiquark sample enriched in hadronically decaying W bosons [55]. The AK8 jets are identified as hadronic decays of Lorentz-boosted W/Z bosons using the ratio between 2- and 1-subjettiness [56] variables denoted as $t_{21} = t_2/t_1 < 0.45$ and a groomed AK8 jet mass between 40 and 250 GeV.

The analysis targets the VBS production of pairs of vector bosons, WV, in association with two jets originating from the scattered incoming partons, called tag jets. In the chosen signal process, the W boson decays leptonically and the second boson decays hadronically. Candidate events are required to contain exactly one tightly identified and isolated lepton [57,58] associated with the W boson leptonic decay. Events containing a second loosely identified lepton with $p_T > 10$ GeV are vetoed. Finally, we require a missing transverse momentum $p_T^{miss} > 30$ GeV in the event. The missing transverse momentum vector p_T^{miss} is computed as the negative vector sum of the transverse momenta of all the particle candidates in an event [59]. The PUPPI algorithm is also applied to reduce the pileup dependence of the p_T^{miss} observable. The p_T^{miss} vector is computed from the particle-flow candidates weighted by their probability to originate from the primary interaction vertex [59].

Two main categories are defined depending on the reconstruction regime of the hadronically decaying vector boson. An event is assigned to a boosted category if it contains only one AK8 jet, with $p_T > 200$ GeV and $| \eta | < 2.4$, that passes the selection criteria as a hadronically decaying vector boson V_{had}, together with at least two AK4 jets. Otherwise, if no AK8 jet V boson candidate is found and instead at least four AK4 jets are reconstructed with $p_T > 30$ GeV, the event is assigned to a resolved category. In both resolved and boosted categories, the two AK4 jets with the largest invariant mass are identified as the VBS tag jets. In the resolved category, out of the remaining jets after the VBS tag jet selection, the two jets with invariant
mass closest to 85 GeV (the average between the W and Z boson masses) are chosen as the decay product of V_{had}.

The fraction of VBS events in the sample is enhanced requiring a large invariant mass $m_V^{\text{VBS}} > 500$ GeV and large pseudorapidity interval $D_{hVBS}^jj > 2.5$ for the tag jets. The leading VBS tag jet is required to have $p_T > 50$ GeV and the transverse mass of the leptonically decaying W is required to be $m_W^T < 185$ GeV, defined as

$$m_W^T = \sqrt{2 p_T(\ell) p_T^{\text{miss}} [1 - \cos(p_T(\ell), p_T^{\text{miss}}))}, \quad (1)$$

where $p_T(\ell)$ is the p_T of the lepton and $(p_T(\ell), p_T^{\text{miss}})$ is the azimuthal distance between the lepton and the p_T^{miss}.

After these selections, the signal and control regions for the main backgrounds, the top quark and W+jets ones, are defined in both the resolved and boosted regions in a similar manner.

The signal region consists of events where: (i) no b jet candidates are found according to the loose working point of the DeepCSV tagger [60], a machine-learning b-tagging algorithm with a b-tagging efficiency $\geq 85\%$ and mistag probability $\leq 20\%$, and (ii) the hadronically decaying vector boson invariant mass m_V is between 65 − 105 (70 − 115) GeV for the resolved (boosted) category, which is consistent with an on-shell W or Z decaying hadronically. Events falling in the same m_V interval as the signal but containing at least one b jet are classified in the top quark control region. Finally, if no b jets exist and m_V is not within the W or Z resonance range, $m_V \notin (65, 105)$ GeV or $m_V \notin (70, 115)$ GeV for the resolved and boosted cases, events are classified as part of the W+jets control region. All of the signal and control regions are split according to the flavor of the selected lepton (electron or muon).

5 Background estimation

The largest background contribution is the W+jets process, followed by the top quark and the QCD multijet backgrounds. The contamination from the single vector boson EW production in the VBF channel (VBF-V) is negligible in the resolved category, but more important in the boosted one.

The W+jets contribution is corrected using control samples in data. It is experimentally observed that the transverse momentum of the leptonically decaying W boson ($p_T^{W,j}$), measured using the lepton momentum and the p_T^{miss}, and the tag jets p_T are poorly described by simulation in the multijet phase space region used in this analysis. To correct this important background in a differential way, the W+jets MC sample is split into several components according to $p_T^{W,j}$ (both categories) and trailing VBS tag jet p_T (only in the resolved category), and their normalizations are left unconstrained and uncorrelated in the final fit. The W+jets control region is used in the fit to normalize the W+jets components, hence it is split with respect to $p_T^{W,j}$ (and trailing VBS tag jet p_T in the resolved category) with the same binning as in the MC sample.

The closure test for this correction is performed by dividing the W+jets control region into two subregions, defined by two intervals of m_V closer to (i.e., [50, 65] \cup [105, 150] GeV) or farther (i.e., [40, 50] \cup [150, + ∞] GeV) from the V resonance where the signal region is located. Correction factors are derived for each W+jets component in the two subregions and are in agreement with each other. Therefore, including the W+jets control region in the final fit to extract the
The top quark background contribution is determined from MC simulation except for its normalization, which is measured in the top quark enriched control region in the final fit to the data.

The QCD multijet background, which may enter the signal region with nonprompt leptons, is estimated from data by measuring the probability for a loosely defined reconstructed lepton originating from a jet to be misidentified as a tightly reconstructed lepton in a phase space region outside the analysis region. The QCD-enriched region is defined by the presence of at least one lepton with the same p_T requirement as for the rest of the analysis, $p_T^{\text{miss}} < 20\text{ GeV}$, $m_W < 20\text{ GeV}$, at least one AK4 jet in the event with $R = \sqrt{ (\Delta \eta)^2 + (\Delta \phi)^2 } > 1$ from the lepton. The contribution from EW processes with a real lepton is subtracted from this QCD enriched phase space region by means of W+jets and DY MC events.

The contributions from minor backgrounds, e.g., DY, VBF-V, VVV, V_g processes, are estimated from MC simulation.

6 Signal extraction

Because of the large background and complex signal topology, the most significant features to separate signal and backgrounds are condensed in a single discriminator built with a deep neural network (DNN). Two different discriminators are optimized for the resolved and boosted categories since the event topology and the kinematics change significantly between the two. The DNN implementation consists of a fully connected neural network with four layers with 64 (32) nodes for the resolved (boosted) topology, trained with stochastic gradient descent implemented via the “Adam” optimizer \cite{61}. The models are trained minimizing the binary cross-entropy \cite{62,63} loss until full convergence. All the backgrounds are included as a single class in the optimization, weighted by their relative importance. Overfitting is carefully avoided by the use of regularization techniques, such as Dropout and L2 weights decay \cite{63}. A technique called SHAP (SHapley Additive exPlanations) \cite{64,65}, developed in the field of explainable machine learning, is applied to cross-check the dependence of the DNN model on the input variables and to rank their importance. Among the most important ones, as identified by SHAP and matching the physics expectation, are the m_{VBS}^{VBS} variable, the Zeppenfeld variable \cite{66} of the lepton, and the quark/gluon discriminator variable of the leading V_{had} jet. The postfit distribution of the m_{VBS}^{VBS} variable is shown in Fig. 2. Table 1 shows the complete list of input variables used for the resolved and boosted topologies, along with their ranking from the SHAP algorithm. The Zeppenfeld variable of a particle X is defined as:

$$Z_X = \frac{X - \bar{\mu}_{\text{VBS}}^{\text{VBS}}}{\sigma_{\text{VBS}}} \cdot$$

(2)

where $\bar{\mu}_{\text{VBS}}$ is the mean pseudorapidity of the VBS tag jets.

The centrality \cite{8,67} variable is defined as $C_{\text{VW}} = \min(-\gamma, +\gamma)$, with $\gamma = \max(V_{\text{had}}^{\text{VBS}} - \max(h_{\text{VBS}}^{\text{VBS}}, h_{\text{W}}^{\text{VBS}}))$ and $\gamma = \min(V_{\text{had}}^{\text{VBS}}) - \min(V_{\text{had}}^{\text{VBS}}, h_{\text{W}}^{\text{VBS}})$. The W value is determined assuming the W boson mass from the lepton and p_T^{miss} kinematics.

Fig. 3 shows the normalized distributions of the DNN discriminator for signal and backgrounds in the resolved and boosted signal regions. Fig. 4 shows control plots for the DNN in the top
Table 1: Variables used as input to the DNN for the resolved and boosted models. They are ranked by their contributions to the signal discrimination power of the DNN model using the SHAP [64,65] technique and their rank is shown in the table for the resolved and boosted categories models.

Variable	Resolved	Boosted	SHAP ranking	
Lepton pseudorapidity	✓	✓	13	12
Lepton transverse momentum	✓	✓	16	10
Zeppenfeld variable for the lepton	✓	✓	2	2
Number of jets with $p_T > 30$ GeV	✓	✓	7	3
Leading VBS tag jet p_T	-	✓	-	11
Trailing VBS tag jet p_T	✓	✓	7	6
Pseudorapidity interval $\Delta \eta^{VBS}$ between tag jets	✓	✓	4	4
Quark/gluon discriminator of leading VBS tag jet	✓	✓	9	7
Azimuthal angle distance between VBS tag jets	✓	-	-	10
Invariant mass of the VBS tag jets pair	✓	✓	1	1
p_T of the leading V$_{had}$ jet	✓	✓	-	14
p_T of the trailing V$_{had}$ jet	✓	✓	-	12
Pseudorapidity difference between V$_{had}$ jets	✓	-	-	8
Quark/gluon discriminator of the leading V$_{had}$ jet	✓	-	-	3
Quark/gluon discriminator of the trailing V$_{had}$ jet	✓	-	-	5
p_T of the AK8 V_{had} jet candidate	-	✓	-	8
Invariant mass of V_{had}	✓	✓	11	5
Zeppenfeld variable for V_{had}	-	✓	-	9
Centrality	✓	✓	15	13

Figure 2: Postfit distributions of the m_{VBS}^{jj} observable in the resolved (left) and boosted (right) signal regions. Vertical bars on data points show the statistical error, whereas the gray band is the post-fit uncertainty on MC with all systematic uncertainties included.

Quark and W+jets control regions both for the resolved and boosted categories. The predictions and the data agree within the uncertainties in both cases, after the background estimation based on control samples in data, as described in the previous section, is applied.
The target of this analysis is the extraction of the WV VBS production signal strength and the corresponding significance, obtained through a modified frequentist approach based on the ratio of the experimental likelihood profiled along with the measurement nuisance parameters over the global likelihood maximum [68]. The likelihood function is built on a signal model taken from simulation and corrected for all residual data/MC disagreements in particle reconstruction, selection efficiency, and on background models that are built based on estimates from control samples in data or corrected for data-to-simulation disagreements, as needed. The DNN distributions are fitted in the signal phase space regions, combining the two different light lepton flavors, whereas the yields in the control regions are used only to normalize the W+Jets and top quark backgrounds.

7 Systematic uncertainties

In the signal extraction fit, each uncertainty is represented by a nuisance parameter that changes the shapes of the distributions for the signal and background processes or scales their total normalization. Different sources of uncertainty are treated as completely uncorrelated in the fit, whereas each uncertainty effect is treated as correlated or uncorrelated between different channels and processes depending on the cases.

The integrated luminosities of the 2016, 2017, and 2018 data-taking periods are individually known with uncertainties in the 1.2–2.5% range [69,71], whereas the total Run II (2016–2018) integrated luminosity has an uncertainty of 1.6%. The improvement in precision reflects the (uncorrelated) time evolution of some systematic effects.

Discrepancies in the lepton reconstruction and identification efficiencies between data and MC simulation are compensated by applying correction factors to all samples as functions of the lepton p_T and η. Their impact on the signal region is less than 1% for both electrons and muons. The trigger efficiency uncertainty is also smaller than 1%. The electron and muon momentum scale uncertainties are computed by varying the lepton momenta within their ±1σ uncertainty, and the resulting uncertainty in the signal yield is less than 1%. Similarly, jet energy scale and resolution uncertainties are evaluated by shifting the p_T value of the jets, and thus directly affecting the reconstructed jet multiplicity and p_T^{miss} measurement [72]; several independent sources are considered and partially correlated among different data sets, resulting in up to 4%
Figure 4: The DNN discriminator distribution for the resolved (left) and boosted (right) phase space region in the top quark (upper plots) and W+Jets (lower plots) control regions. Vertical bars on data points show the statistical error, whereas the gray band is the post-fit uncertainty on MC with all systematic uncertainties included.

uncertainty in the signal strength.

The b-tagging data/MC corrections are associated with different uncertainty sources and correlated among all processes. Since these uncertainties migrate events between the signal region and top quark control region, they have a large effect, 5%, on the signal and background. Uncertainty in the p_T^{miss} estimation due to unclustered energy is also included and calculated by varying the momenta of particles that are not identified with either a jet or a lepton; its effect is negligible. Finally, the uncertainty in the pileup modeling is applied to all the relevant MC samples by varying the minimum bias cross section used to generate the pileup distribution by $\pm 1\sigma$ and estimated to be less than 1%.

The most important theoretical uncertainty is related to the choice of the renormalization and factorization scales in the MC simulation of events. The uncertainty in the signal and back-
ground yields is computed by taking the largest variation given by changing such scales up and down independently by a factor of two with respect to their nominal value, ignoring the extreme case where they are shifted in opposite directions [74, 75]. The theoretical scale uncertainty is uncorrelated for each background and signal process. Only shape effects are included by varying the scales for W+jets and top quark backgrounds, since their normalization is directly measured from data in the fit. Both the shape and normalization effects are included for the other backgrounds. For the signal, only the shape effect of the theoretical scales uncertainty is considered while measuring the signal cross section and significance, whereas the normalization effect is included for the signal strength determination. Inclusively, the theoretical scale uncertainty for the EW-only WV signal is 5%, and for the QCD-associated diboson production is 25%. The overall impact on the EW-only signal strength determination from the choice of renormalization and factorization scales is 11%.

The uncertainty in the modeling of the parton shower is also included, by using the weights corresponding to variations of α^ISR and α^FSR computed by the parton shower programs, and uncorrelated for each process: the impact on the signal strength determination is 4%. The PDF and related strong coupling α_S uncertainties are evaluated using the eigenvalues of the PDF set following the NNPDF prescription [76]. These uncertainties, as well as the one from the modeling of the underlying event, are included for all the processes apart from top quark and W+jets backgrounds, and they have a negligible impact on the signal measurement.

| Table 2: Breakdown of the uncertainties in the EW WV VBS signal strength measurement. |
|---|----------|
| Uncertainty source | EW |
| Statistical | 0.12 |
| Limited sample size | 0.10 |
| Normalization of backgrounds | 0.08 |
| Experimental | |
| b-tagging | 0.05 |
| Jet energy scale and resolution | 0.04 |
| Integrated luminosity | 0.01 |
| Lepton identification | 0.01 |
| Boosted V boson identification | 0.01 |
| Total | 0.06 |
| Theory | |
| Signal modeling | 0.09 |
| Background modeling | 0.08 |
| Total | 0.12 |
| Total | 0.22 |

8 Results

Three separate maximum likelihood fits are performed: the measurement of the purely EW signal strength m_{EW} keeping the QCD WV production contribution fixed to the SM prediction $m_{\text{QCD}} = 1$; the measurement of the signal strength considering as signal the EW and QCD WV processes together; a two-dimensional simultaneous measurement of the signal strengths m_{EW} and m_{QCD}. Figure 5 shows the post-fit DNN distribution for the resolved (left) and the boosted (right) signal phase space in the EW-only fit. The background-subtracted plot, where the evidence for the signal is clearly visible, is also shown.
Figure 5: Results for the EW-signal-only fit, keeping the QCD WV contribution fixed to the SM prediction. Upper plots: post-fit DNN discriminator distributions for the resolved (left) and the boosted (right) signal regions. The signal contribution is plotted both stacked on top of the background processes and also overlaid to show the signal postfit distribution. The expected yield is the sum of signal and background. Lower plots: background-subtracted DNN discriminator distribution for the resolved (left) and the boosted (right) categories. Post-fit background yields in each bin are subtracted from data and compared with the signal post-fit distribution, plotted as a red line. Vertical bars on data points show the statistical error, whereas the gray band is the post-fit uncertainty on MC with all systematic uncertainties included.

A fiducial phase space region is defined at parton level requiring all partons to have $p_T > 10\text{ GeV}$ and at least one pair of outgoing partons with invariant mass $m_{q\bar{q}} > 100\text{ GeV}$. The SM prediction for the EW WV production cross section in this fiducial region is $2.23^{+0.08}_{-0.11}$ (scale) \pm 0.05 (PDF) pb. The measured EW WV production cross section is $1.90^{+0.53}_{-0.46}$ pb, corresponding to an observed EW-only signal strength of:

$$
\mu_{EW} = \frac{\sigma_{obs}}{\sigma_{SM}} = 0.85 \pm 0.12 \text{ (stat)}^{+0.19}_{-0.17} \text{ (syst)} = 0.85^{+0.23}_{-0.21},
$$

(3)
where σ_{obs} and σ_{SM} are the observed and predicted cross sections, respectively, with an expectation of $1.00^{+0.24}_{-0.22}$. The observed significance for the SM EW WV signal is 4.4 standard deviations with 5.1 expected.

Considering instead the signal as the overall EW and QCD-associated diboson production, the measured and expected cross sections are $16.4^{+3.8}_{-2.9}\,\text{pb}$ and $16.9^{+2.9}_{-2.1}\,(\text{scale})\pm 0.5\,(\text{PDF})$, respectively, extracted in the same fiducial phase space region as the EW-only one. The overall signal strength $\mu = \sigma_{\text{obs}}/\sigma_{\text{SM}}$, with an expectation of $1.00^{+0.21}_{-0.20}$, is measured as:

$$\mu_{\text{EW+QCD}} = 0.97 \pm 0.06\,(\text{stat})^{+0.19}_{-0.21}\,(\text{syst}) = 0.97^{+0.20}_{-0.22},$$

(4)

The fit is also performed leaving as free independent parameters the signal strengths of the EW and QCD-associated WV production components (μ_{EW} and μ_{QCD}). The result of the 2D fit is shown in Fig. 6 where the expected and observed minima are presented, together with the 68 and 95% confidence level (CL) contours built from the likelihood function. The measured signal strengths are in agreement with the SM predictions within the 68% CL.

![Figure 6](image)

Figure 6: Simultaneous EW and QCD WV production fit: the expected and observed 68 and 95% CL contours on the signal strengths. The best fit result is compatible with the SM prediction within the 68% CL area.

9 Summary

The first evidence for the electroweak (EW) production of a WV ($V = W$ or Z) pair plus two jets in the $\ell\nuqq$ decay channel is reported. Events are separated into two categories: either the hadronically decaying W or Z boson is reconstructed as one large-radius jet, or it is identified as a pair of jets with dijet mass close to the boson mass. Multivariate machine learning discriminators are optimized to separate the signal from the background in each category and their outputs are exploited in the statistical analysis. The large background from single W boson production accompanied by jets is estimated from control samples in the data to reduce the impact of Monte Carlo mismodeling in this multijet phase space region.

Three separate maximum likelihood fits are performed: (i) the measurement of the purely EW signal strength μ_{EW} keeping the quantum chromodynamics (QCD) WV contribution fixed to
the SM prediction $Q_{\text{CD}} = 1$; (ii) the measurement of the signal strength considering as signal the EW and QCD WV processes together; and (iii) a two-dimensional simultaneous measurement of the signal strengths m_{EW} and m_{QCD}.

A fiducial phase space region is defined at parton level requiring all partons to have $p_T > 10 \text{ GeV}$ and at least one pair of outgoing partons with invariant mass $m_{qq} > 100 \text{ GeV}$. The SM prediction for the EW WV production cross section in this fiducial region is $2.23^{+0.08}_{-0.11} \text{ (scale)} \pm 0.05 \text{ (PDF)} \text{ pb}$, where PDF is the uncertainty coming from the parton distribution function. The measured EW WV production cross section is $1.90^{+0.46}_{-0.55} \text{ pb}$, corresponding to an observed EW-only signal strength of:

$$m_{\text{EW}} = \frac{s_{\text{obs}}}{s_{\text{SM}}} = 0.85 \pm 0.12 \text{ (stat)} \pm 0.19 \text{ (syst)} = 0.85^{+0.23}_{-0.21} \text{ at } 1.00^{+0.24}_{-0.22} \text{ expected, where } s_{\text{obs}} \text{ and } s_{\text{SM}} \text{ are the observed and predicted cross section, respectively. The observed significance for the SM EW WV signal is } 4.4 \text{ standard deviations with } 5.1 \text{ expected.}$$

When we consider the signal as the total EW and QCD-associated diboson yield, the measured and expected cross sections, extracted in the same fiducial phase space region as the EW-only one, are $16.4^{+3.5}_{-2.8} \text{ pb}$ and $16.9^{+2.9}_{-2.1} \text{ (scale)} \pm 0.5 \text{ (PDF)}$, respectively. The overall signal strength $m_{\text{EW}+\text{QCD}}$ is measured as: $0.97 \pm 0.06 \text{ (stat)}^{+0.19}_{-0.21} \text{ (syst)} = 0.97^{+0.26}_{-0.22}$ with an expectation of $1.00^{+0.21}_{-0.20}$. Finally, a simultaneous two-dimensional fit of the EW and QCD WV production components is performed.

Overall, both the WV EW-only measurement and the simultaneous EW and QCD WV measurements are in agreement with the SM predictions within the 68% confidence level.

Tabulated results are provided in the HEPData record for this analysis [77].

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPEI, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINECO (Spain); MSIP and NRF (Repubic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MCIN/AE and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie prog ram ram and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the
Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 - GRK2497; the Lendület (“Momentum”) Prog ram and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKp, the NKFIÁ research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, projects no. 14.W03.31.0026 and no. FSWW-2020-0008, and the Russian Foundation for Basic Research, project No.19-42-703014 (Russia); MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, *Phys. Lett. B* **716** (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

[2] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, *Phys. Lett. B* **716** (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[3] CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at \sqrt{s} = 7 and 8 TeV”, *JHEP* **06** (2013) 081, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.

[4] B. W. Lee, C. Quigg, and H. B. Thacker, “Weak interactions at very high energies: the role of the Higgs boson mass”, *Phys. Rev. D* **16** (1977) 1519, doi:10.1103/PhysRevD.16.1519.

[5] CMS Collaboration, “Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *Phys. Rev. Lett.* **120** (2018) 081801, doi:10.1103/PhysRevLett.120.081801, arXiv:1709.05822.

[6] ATLAS Collaboration, “Observation of electroweak production of a same-sign W boson pair in association with two jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS
References

[1] CMS Collaboration, “Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at \(\sqrt{s} = 13 \) TeV”, *Phys. Lett. B* **795** (2019) 281,
\[\text{doi:10.1016/j.physletb.2019.05.042} \text{, arXiv:1901.04060} \]

[2] CMS Collaboration, “Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV”, *Phys. Lett. B* **798** (2019) 134985,
\[\text{doi:10.1016/j.physletb.2019.134985} \text{, arXiv:1905.07445} \]

[3] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO vector-boson production matched with shower in POWHEG”, *JHEP* **07** (2008) 060,
\[\text{doi:10.1088/1126-6708/2007/07/060} \text{, arXiv:0805.4802} \]

[4] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO vector-boson production matched with shower in POWHEG”, *JHEP* **07** (2008) 060,
\[\text{doi:10.1088/1126-6708/2007/07/060} \text{, arXiv:0805.4802} \]
[20] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, *JHEP* **06** (2010) 043, [doi:10.1007/JHEP06(2010)043](https://doi.org/10.1007/JHEP06(2010)043) [arXiv:1002.2581](https://arxiv.org/abs/1002.2581).

[21] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* **07** (2014) 079, [doi:10.1007/JHEP07(2014)079](https://doi.org/10.1007/JHEP07(2014)079) [arXiv:1405.0301](https://arxiv.org/abs/1405.0301).

[22] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, *Eur. Phys. J. C* **53** (2008) 473, [doi:10.1140/epjc/s10052-007-0490-5](https://doi.org/10.1140/epjc/s10052-007-0490-5) [arXiv:0706.2569](https://arxiv.org/abs/0706.2569).

[23] J. Campbell and T. Neumann, “Precision phenomenology with MCFM”, *JHEP* **12** (2019) 034, [doi:10.1007/JHEP12(2019)034](https://doi.org/10.1007/JHEP12(2019)034) [arXiv:1909.09117](https://arxiv.org/abs/1909.09117).

[24] J. M. Campbell, R. K. Ellis, and W. T. Giele, “A multi-threaded version of MCFM”, *Eur. Phys. J. C* **75** (2015) 246, [doi:10.1140/epjc/s10052-015-3461-2](https://doi.org/10.1140/epjc/s10052-015-3461-2) [arXiv:1503.06182](https://arxiv.org/abs/1503.06182).

[25] J. M. Campbell, R. K. Ellis, and C. Williams, “Vector boson pair production at the LHC”, *JHEP* **07** (2011) 018, [doi:10.1007/JHEP07(2011)018](https://doi.org/10.1007/JHEP07(2011)018) [arXiv:1105.0020](https://arxiv.org/abs/1105.0020).

[26] J. M. Campell and R. K. Ellis, “An update on vector boson pair production at hadron colliders”, *Phys. Rev. D* **60** (1999) 113006, [doi:10.1103/PhysRevD.60.113006](https://doi.org/10.1103/PhysRevD.60.113006) [arXiv:hep-ph/9905386](https://arxiv.org/abs/hep-ph/9905386).

[27] M. Czakon et al., “Top-pair production at the LHC through NNLO QCD and NLO EW”, *JHEP* **10** (2017) 186, [doi:10.1007/JHEP10(2017)186](https://doi.org/10.1007/JHEP10(2017)186) [arXiv:1705.04105](https://arxiv.org/abs/1705.04105).

[28] CMS Collaboration, “Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV”, *Phys. Rev. D* **95** (2017) 092001, [doi:10.1103/PhysRevD.95.092001](https://doi.org/10.1103/PhysRevD.95.092001) [arXiv:1610.04191](https://arxiv.org/abs/1610.04191).

[29] CMS Collaboration, “Measurements of differential Z boson production cross sections in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **12** (2019) 061, [doi:10.1007/JHEP12(2019)061](https://doi.org/10.1007/JHEP12(2019)061) [arXiv:1909.04133](https://arxiv.org/abs/1909.04133).

[30] P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk, “Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations”, *JHEP* **03** (2013) 015, [doi:10.1007/JHEP03(2013)015](https://doi.org/10.1007/JHEP03(2013)015) [arXiv:1212.3460](https://arxiv.org/abs/1212.3460).

[31] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* **191** (2015) 159, [doi:10.1016/j.cpc.2015.01.024](https://doi.org/10.1016/j.cpc.2015.01.024) [arXiv:1410.3012](https://arxiv.org/abs/1410.3012).

[32] NNPDF Collaboration, “Parton distributions for the LHC Run II”, *JHEP* **04** (2015) 040, [doi:10.1007/JHEP04(2015)040](https://doi.org/10.1007/JHEP04(2015)040) [arXiv:1410.8849](https://arxiv.org/abs/1410.8849).

[33] NNPDF Collaboration, “Parton distributions from high-precision collider data”, *Eur. Phys. J. C* **77** (2017) 663, [doi:10.1140/epjc/s10052-017-5199-5](https://doi.org/10.1140/epjc/s10052-017-5199-5) [arXiv:1706.00428](https://arxiv.org/abs/1706.00428).

[34] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, *Eur. Phys. J. C* **74** (2014) 3024, [doi:10.1140/epjc/s10052-014-3024-y](https://doi.org/10.1140/epjc/s10052-014-3024-y) [arXiv:1404.5630](https://arxiv.org/abs/1404.5630).
[35] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815

[36] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, *Eur. Phys. J. C* 80 (2020) 4, doi:10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179

[37] R. Covarelli, M. Pellen, and M. Zaro, “Vector-boson scattering at the LHC: unraveling the electroweak sector”, *Int. J. Mod. Phys. A* 36 (2021) 2130009, doi:10.1142/S0217751X2130009X, arXiv:2102.10991

[38] A. Ballestrero et al., “Precise predictions for same-sign W-boson scattering at the LHC”, *Eur. Phys. J. C* 78 (2018) 671, doi:10.1140/epjc/s10052-018-6136-y, arXiv:1803.07943

[39] B. Jäger et al., “Parton-shower effects in Higgs production via vector-boson fusion”, *Eur. Phys. J. C* 80 (2020) 756, doi:10.1140/epjc/s10052-020-8326-7, arXiv:2003.12435

[40] M. Bähr et al., “Herwig++ physics and manual”, *Eur. Phys. J. C* 58 (2008) 639, doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883

[41] J. Bellm et al., “Herwig 7.0/Herwig++ 3.0 release note”, *Eur. Phys. J. C* 76 (2016) 196, doi:10.1140/epjc/s10052-016-4018-8, arXiv:1512.01178

[42] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[43] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, *JINST* 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965

[44] CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JINST* 15 (2020) P10017, doi:10.1088/1748-0221/15/10/P10017, arXiv:2006.10165

[45] CMS Collaboration, “The CMS trigger system”, *JINST* 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366

[46] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, *JHEP* 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189

[47] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, *Eur. Phys. J. C* 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097

[48] CMS Collaboration, “Pileup mitigation at CMS in 13 TeV data”, *JINST* 15 (2020) P09018, doi:10.1088/1748-0221/15/09/P09018, arXiv:2003.00503

[49] D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup per particle identification”, *JHEP* 10 (2014) 059, doi:10.1007/JHEP10(2014)059, arXiv:1407.6013

[50] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, “Towards an understanding of jet substructure”, *JHEP* 09 (2013) 029, doi:10.1007/JHEP09(2013)029, arXiv:1307.0007
[51] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam, “Jet substructure as a new Higgs search channel at the LHC”, *Phys. Rev. Lett.* **100** (2008) 242001, doi:10.1103/PhysRevLett.100.242001, arXiv:0802.2470

[52] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, “Soft drop”, *JHEP* **05** (2014) 146, doi:10.1007/JHEP05(2014)146, arXiv:1402.2657

[53] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber, “Better jet clustering algorithms”, *JHEP* **08** (1997) 001, doi:10.1088/1126-6708/1997/08/001, arXiv:hep-ph/9707323.

[54] M. Wobisch and T. Wengler, “Hadronization corrections to jet cross-sections in deep inelastic scattering”, in *Proceedings of the Workshop on Monte Carlo Generators for HERA Physics, Hamburg, Germany*, p. 270. 1998. arXiv:hep-ph/9907280

[55] CMS Collaboration, “Identification techniques for highly boosted W bosons that decay into hadrons”, *JHEP* **12** (2014) 017, doi:10.1007/JHEP12(2014)017, arXiv:1410.4227

[56] J. Thaler and K. Van Tilburg, “Identifying boosted objects with N-subjettiness”, *JHEP* **03** (2011) 015, doi:10.1007/JHEP03(2011)015, arXiv:1011.2268

[57] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS Detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *JINST* **10** (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701

[58] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV”, *JINST* **7** (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071

[59] CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at $\sqrt{s} = 13$ TeV using the CMS detector”, *JINST* **14** (2019) P07004, doi:10.1088/1748-0221/14/07/P07004, arXiv:1903.06078

[60] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, *JINST* **13** (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, in *3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*. 2015. arXiv:1412.6980

[62] D. R. Cox, “The regression analysis of binary sequences”, *J R Stat Soc Series B* **20** (1958) 215, doi:10.1111/j.2517-6161.1958.tb00292.x

[63] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning”. MIT Press, 2016. http://www.deeplearningbook.org

[64] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions”, in *Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17*, p. 4768. Curran Associates Inc., Red Hook, NY, USA, 2017. arXiv:1705.07874

[65] L. S. Shapley, “A value for n-person games”, *Contributions to the Theory of Games* **2.28** (1953) 303, doi:10.1515/978140081970-018
[66] D. L. Rainwater, R. Szalapski, and D. Zeppenfeld, “Probing color singlet exchange in $Z +$ two jet events at the CERN LHC”, *Phys. Rev. D* **54** (1996) 6680, doi:10.1103/PhysRevD.54.6680, arXiv:hep-ph/9605444.

[67] ATLAS Collaboration, “Measurement of $W^\pm W^\pm$ vector-boson scattering and limits on anomalous quartic gauge couplings with the ATLAS detector”, *Phys. Rev. D* **96** (2017) 012007, doi:10.1103/PhysRevD.96.012007, arXiv:1611.02428.

[68] ATLAS and CMS Collaborations, LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, CERN, 2011.

[69] CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at $\sqrt{s} = 13$ TeV in 2015 and 2016 at CMS”, *Eur. Phys. J. C* **81** (2021), no. 9, 800, doi:10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.

[70] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13$ TeV”, technical report, CERN, Geneva, 2018.

[71] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at $\sqrt{s} = 13$ TeV”, technical report, CERN, Geneva, 2019.

[72] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, *JINST* **12** (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[73] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 13$ TeV”, *JHEP* **07** (2018) 161, doi:10.1007/JHEP07(2018)161, arXiv:1802.02613.

[74] M. Cacciari et al., “The $t\bar{t}$ cross-section at 1.8 TeV and 1.96 TeV: a study of the systematics due to parton densities and scale dependence”, *JHEP* **04** (2004) 068, doi:10.1088/1126-6708/2004/04/068, arXiv:hep-ph/0303085.

[75] S. Catani, D. de Florian, M. Grazzini, and P. Nason, “Soft gluon resummation for Higgs boson production at hadron colliders”, *JHEP* **07** (2003) 028, doi:10.1088/1126-6708/2003/07/028, arXiv:hep-ph/0306211.

[76] J. Rojo, “PDF4LHC recommendations for Run II”, *PoS* **DIS2016** (2016) 018, doi:10.22323/1.265.0018, arXiv:1606.08243.

[77] “HEPData record for this measurement”, 2021. doi:10.17182/hepdata.115141.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria
W. Adam, J.W. Andrejkovic, T. Bergauer, S. Chatterjee, K. Damanakis, M. Dragicevic, A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec, P. Paulitsch, F.M. Pitters, J. Schieck, R. Schöfbeck, D. Schwarz, S. Tempel, W. Waltenberger, C.-E. Wulz

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, T. Janssen, T. Kello, A. Lelek, H. Rejeb Sfar, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, J. D’Hondt, M. Delcourt, H. El Faham, S. Lowette, S. Moortgat, A. Morton, D. Müller, A.R. Sahasransu, S. Tavernier, W. Van Doninck

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, L. Favart, A. Grebenyuk, A.K. Kals, K. Lee, M. Mahdavikhorrami, I. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, M. Vanden Bemden, C. Vander Veld, P. Vanlaer

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, J. Knolle, L. Lambrecht, G. Mestdach, M. Niedziela, C. Roskas, A. Samalan, K. Skovpært, M. Tytgat, B. Vermassen, L. Wezenbeek

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Benecke, A. Bethani, G. Bruno, F. Bury, C. Caput, P. David, C. Delaere, I.S. Donertas, A. Giannamico, K. Jaffel, Sa. Jain, V. Lemaître, K. Monda, J. Prisciandaro, A. Taliercio, M. Teklishyn, T.T. Tran, P. Vischia, S. Wertz

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensel, A. Moraes, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, M. Alves Gallo Pereira, M. Barroso Ferreira Filho, H. Brandão Malbouisson, W. Carvalho, J. Chinellato, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, C. Mora Herrera, M. K. Mota Amario, L. Mundim, H. Nogima, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista (a), Universidade Federal do ABC (b), São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadiiska, P. Iaydjiy, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
T. Cheng, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, G. Bauer, C. Dozen, Z. Hu, J. Martins, Y. Wang, K. Yi

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Cher, F. Iemmi, A. Kapoor, D. Leggat, H. Liao, Z.-A. Liu, V. Milosevic, F. Monti, R. Sharma, J. Tao, J. Thomas-Wilsker, J. Wang, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. An, Y. Ban, C. Chen, A. Levin, Q. Li, X. Lyu, Y. Mao, S.J. Qian, D. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
M. Lu, Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, H. Okawa, Y. Zhang

Zhejiang University, Hangzhou, China, Zhejiang, China
Z. Lin, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigeljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
A. Attikis, K. Christoforou, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, J. Mouse, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrín

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egypt
tian Network of High Energy Physics, Cairo, Egypt
H. Abdalla14, E. Salama15,16

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M.A. Mahmoud17, Y. Mohammed18

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik19, R.K. Dewanjee, K. Ehahta, M. Kadastik, S. Nandan, C. Nielsen, J. Pata, M. Raidal20, L. Tani, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola21, L. Forthomme, H. Kirschenmann22, K. Osterberg, M. Voutilainen23

Helsinki Institute of Physics, Helsinki, Finland
S. Bhathuar, E. Brucker, F. Garcia, J. Havukainen, M.S. Kim, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Lindén, M. Lotti, L. Martikainen, M. Myllymäki, J. Ott, H. Siiökonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrow, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferré, S. Ganjour, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro17, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
S. Ahuja, F. Beaudette24, M. Bonanomi, A. Buchot Perraguin, P. Busson, A. Cappati, C. Charlot, O. Davignon, B. Diab, G. Falmagne, S. Ghosh, R. Granier de Cassagnac, A. Hakimi, I. Kucheri, J. Motta, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, U. Sarkar, J.B. Sauvan, Y. Sirois, A. Tarabini, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram18, J. Andrea, D. Apparu, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, D. Darej, J.-C. Fontaine18, U. Goerlach, C. Grimaud, A.-C. Le Bihan, E. Nibigire, P. Van Hove

Institut de Physique des 2 Infinis de Lyon (IP21), Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanor, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascor, M. Gouzevitch, B. Ille, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, S. Perries, K. Shchablo, V. Sordin, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
I. Lomidze, T. Torishavile19, Z. Tsamalaidze13

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
V. Botta, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, N. Röwert, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Dodonova, D. Eliseev, M. Erdmann, P. Fackelee, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, F. Ivone, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnyakov
Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi, E. Khazaie, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi

University College Dublin, Dublin, Ireland
M. Grunwald

INFN Sezione di Bari a, Bari, Italy, Università di Bari b, Bari, Italy, Politecnico di Bari c, Bari, Italy
M. Abbrescia a, R. Aly a,b, C. Aruta a,b, A. Colaleo a, D. Creanza a,d, N. De Filippis a,c, M. De Palma a,b, A. Di Florio a,b, A. Di Pilato a,b, W. Elmetenawee a,d, L. Fiore a, A. Gelmi a,h, M. Gul a, G. Iaselli a,c, M. Inc a,e, S. Lezki a, G. Maggi a,c, M. Maggi a, I. Margjeka a,b, V. Mastrapasqua a,b, S. My a,b, S. Nuzzo a,e, A. Pellecchia a,b, A. Pompili a,b, G. Pugliese a,c, D. Ramos a, A. Raniert a, G. Selvaggi a,d, L. Silvestris a, F.M. Simone a,z, U. Sözbilir a, R. Venditti a, P. Verwilligen a

INFN Sezione di Bologna a, Bologna, Italy, Università di Bologna b, Bologna, Italy
G. Abbiendi a, C. Battilana a, D. Bonacorsi a, L. Borgonovi a, L. Brigliadori a, R. Campanini a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, M. Cuffiani a,d, G.M. Dallavalle a, T. Diotallevi a,b, F. Fabbri a, A. Fanfani a,d, P. Giacomelli a, L. Giommi a, C. Grandi a, L. Guiducci a,b, S. Lo Meo a, L. Lunerit a,b, S. Marcellini a, G. Masetti a, F.L. Navarra a,b, A. Perrotta a, F. Primavera a,b, A.M. Rossi a,b, T. Rovelli a,b, G.P. Siroli a,b

INFN Sezione di Catania a, Catania, Italy, Università di Catania b, Catania, Italy
S. Albergo a,b,5, S. Costa a,b,4, A. Di Mattia a, R. Potenza a,b, A. Tricomi a,b,4, C. Tuve a,b

INFN Sezione di Firenze a, Firenze, Italy, Università di Firenze b, Firenze, Italy
G. Barbagli a, A. Cassesse a, R. Ceccarelli a,b, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, G. Latino a,b, P. Lenzi a,b, M. Lizzo a,b, M. Meschini a, S. Paolelli a, R. Seidita a,b, G. Sguazzoni a, L. Viliani a

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi a, S. Bianchi a, D. Piccolo a

INFN Sezione di Genova a, Genova, Italy, Università di Genova b, Genova, Italy
M. Bozzo a,b, F. Ferro a, R. Mulargia a,b, E. Robutti a, S. Tosi a,b

INFN Sezione di Milano-Bicocca a, Milano, Italy, Università di Milano-Bicocca b, Milano, Italy
A. Benaglia a, G. Boldrini a, F. Brivio a,b, F. Cetorelli a,b, F. De Guio a,b, M.E. Dinardo a,d, P. Dini a, S. Gennai a, A. Ghessi a,b, P. Govoni a,b, L. Guzzeti a,b, M.T. Lucchini a,d, M. Malberti a, S. Malvezzi a, A. Massironi a, D. Menasce a, L. Moroni a, M. Paganoni a,b, D. Pedrini a, B.S. Pinolini, S. Ragazzi a,b, N. Redaelli a, T. Tabarelli de Fatis a,b, D. Valsecchi a,b, D. Zuolo a,b

INFN Sezione di Napoli a, Napoli, Italy, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempo a, F. Carnevali a,b, N. Cavall a,b, A. De Iorio a,b, F. Fabozzi a,d, A.O.M. Iorio a,b, L. Lista a,b,4, S. Meola a,b,4, P. Paolucci a,b,4, B. Rossi a, C. Sciacca a,b

a INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy
c Università della Basilicata, Potenza, Italy
d Università G. Marconi, Roma, Italy
INFN Sezione di Padova a, Padova, Italy, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzi a, N. Bacchetta b, D. Bisello a, D. P. Bortignon a, A. Bragagnolo a, R. Carlin a, P. Checchia a, T. Dorigo a, U. Dosselli a, F. Gasparini a, U. Gasparini a, G. Grosso a, S.Y. Hoh a, L. Layer a, E. Lusiani a, M. Margoni a, A.T. Meneguzzo a, J. Pazzini a, P. Ronchese a, R. Rossin a, F. Simonetto a, G. Strong a, M. Tosi a, H. Yara a, M. Zanetti a, P. Zotto a, A. Zucchetta a, G. Zumerle a, L. Soffi

INFN Sezione di Pavia a, Pavia, Italy, Università di Pavia b, Pavia, Italy
C. Aime a, A. Braghieri a, S. Calzaferri a, D. Fiorina b, P. Montagna a, S.P. Ratti a, V. Re a, C. Riccardi a, P. Salvini a, I. Vai a, P. Vitulo a

INFN Sezione di Perugia a, Perugia, Italy, Università di Perugia b, Perugia, Italy
P. Asenov a, G.M. Bileti a, D. Ciangottini a, L. Fanò a, M. Magherini b, G. Mantovani a, V. Mariani a, M. Menichelli a, F. Moscatelli a, A. Piccinelli a, M. Presilla a, A. Rossi a, A. Santocchia a, D. Spiga a, T. Tedeschi a, b

INFN Sezione di Pisa a, Pisa, Italy, Università di Pisa b, Pisa, Italy, Scuola Normale Superiore di Pisa c, Pisa, Italy, Università di Siena d, Siena, Italy
P. Azzurri a, G. Bagliesi a, V. Bertacchi a, L. Bianchini a, T. Boccali a, E. Bossini a, R. Castaldi a, M.A. Ciocci a, V. D’Amante a, D. R. Dell’Orso a, M.R. Di Domenico a, S. Donato a, A. Giassi a, F. Ligabue a, E. Manca a, G. Mandolini a, D. Matos Figueiredo a, A. Messineo a, F. Palla a, S. Paroliva a, G. Ramirez-Sanchez a, A. Rizzi a, A. Rolandi a, S. Roy Chowdhury a, A. Scribano a, N. Shafiei a, P. Spagnolo a, R. Tenchini a, G. Tonelli a, N. Turini a, A. Venturi a, P.G. Verdini a

INFN Sezione di Roma a, Rome, Italy, Sapienza Università di Roma b, Rome, Italy
P. Barria a, M. Campana a, F. Cavallari a, D. Del Re a, E. Di Marco a, M. Diemoz a, E. Longo a, P. Meridiani a, G. Organtini a, F. Pandofo a, R. Paramatti a, C. Quaranta a, S. Rahatlou a, C. Rovelli a, F. Santanastasio a, L. Soffi a, R. Tramontano a

INFN Sezione di Torino a, Torino, Italy, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapane a, R. Arcidiacono a, S. Argiro a, M. Arneodo a, N. Bartosik a, R. Bellan a, A. Bellora a, J. Berenguer Antequera a, C. Biino a, N. Cartiglia a, S. Cometti a, M. Costa a, R. Covarelli a, N. Demaria a, B. Kiani a, F. Legger a, C. Mariotti a, S. Maselli a, E. Migliore a, E. Monteil a, M. Monteno a, M.M. Obertino a, G. Ortona a, L. Pacher a, N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a, M. Ruspa a, K. Shchelina a, F. Siviero a, V. Sola a, A. Solano a, D. Soldi a, A. Staiano a, M. Tornago a, D. Trocino a, A. Vagnerini a

INFN Sezione di Trieste a, Trieste, Italy, Università di Trieste b, Trieste, Italy
S. Belforte a, V. Candelise a, M. Casarsa a, F. Cossutti a, A. Da Rold a, G. Della Ricca a, G. Sorrentino a, F. Vazzoler a

Kyungpook National University, Daegu, Korea
S. Dogra a, C. Huh a, B. Kim a, D.H. Kim c, G.N. Kim c, J. Kim a, J. Lee a, S.W. Lee a, C.S. Moon a, Y.D. Oh a, S.I. Pak a, B.C. Radburn-Smith a, S. Sekmer a, Y.C. Yang

Chonnam National University, Institute for Unverse and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea, Seoul, Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, S. Lee, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea
W. Jang, D.Y. Kang, Y. Kang, S. Kim, B. Ko, J.S.H. Lee, Y. Lee, J.A. Merlin, I.C. Park, Y. Roh, M.S. Ryu, D. Song, I.J. Watson, S. Yang

Yonsei University, Department of Physics, Seoul, Korea
S. Ha, H.D. Yoo

Sungkyunkwan University, Suwon, Korea
M. Choi, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait, Dasman, Kuwait
T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia
K. Dreimanis, V. Veckalns

Vilnius University, Vilnius, Lithuania
M. Ambrozas, A. Carvalho Antunes De Oliveira, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, M. León Coello, J.A. Murillo Quijada, A. Sehrawat, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sánchez Hernández

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic
University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Blu, B. Boimska, M. Górska, M. Kazana, M. Szlepet, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollai, N. Leonardo, T. Niknejad, M. Pisano, J. Seixas, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, D. Budkouski, I. Golutvin, I. Gorbunov, V. Karjavine, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, M. Savina, D. Seitova, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, B.S. Yuldashev, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, D. Kirpichnikov, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyukhvskaya, A. Nikitenko, V. Popov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
M. Chadeeva, A. Oskin, P. Parygin, E. Popova, D. Selivanova, E. Zhemchugov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Gribushin, V. Klyukhir
O. Kodolova, I. Lokhtin, S. Obraztsov, M.Perfilov, V. Savrin, A. Snigirev
Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, A. Kozyrev, I. Ovtin, O. Radchenko, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, D. Elumakhov, V. Kachanov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borshch, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Collín, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. González Lopez, S. Goy Lopez, J.M. Hernandez, M.I. José, J. León Holgado, D. Moran, Á. Navarro Tobar, C. Perez Dengra, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, L. Urda Gómez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erico, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezor, C. Ramón Álvarez, V. Rodríguez Bouza, A. Soto Rodríguez, A. Trapote, N. Trevisani, C. Vico Villalba

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, J.I. Cabrillo, A. Calderor, J. Duarte Campderros, M. Fernandez, C. Fernandez Madrazo, P.J. Fernandez Manteca, A. Garcia Alonso, G. Gomez, C. Martínez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, P. Matorras Cuevas, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimenc, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
M.K. Jayananda, B. Kailasapathy, D.U.J. Sonnadara, D.D.C. Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, J. Alimena, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, D. Barney, J. Bendavid, M. Bianco, A. Bocci, T. Camporesi, M. Capeans Garrido.
E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
S. Cerci, I. Hos, B. Kaynak, S. Ozkorucuklu, H. Sert, D. Sunar Cerci, C. Zorbilmez

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
D. Anthony, E. Bhal, S. Bologna, J.J. Brooke, A. Bundock, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, S. Seif El Nasr-Storey, V.J. Smith, N. Stylianou, K. Walkingshaw Pass, R. White

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, C. Cooke, K.V. Ellis, K. Harder, S. Harper, M.-L. Holmberg, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, S. Fayer, G. Fedin, G. Hall, M.H. Hassanshahi, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, D.G. Monk, J. Nash, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, A. Tapper, K. Uchida, T. Virdee, M. Vojinovic, N. Wardle, S.N. Webb, D. Winterbottom

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, Texas, USA
S. Abdullin, A. Brinkerhoff, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, B. McMaster, N. Pastika, M. Saunders, S. Sawant, C. Sutantawibul, J. Wilson

Department of Physics - Northern Illinois University, Dekalb, Illinois, USA
M. Eads, R. Singh

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, Alabama, USA
A. Buccilli, S.I. Cooper, D. Di Croce, S.V. Gleyzer, C. Henderson, C.U. Perez, P. Rumerio, C. West

Boston University, Boston, Massachusetts, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, E. Fontanesi, D. Gastler, S. May, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, A. Tsatsos, S. Yuan,
D. Zou

Brown University, Providence, Rhode Island, USA
G. Benelli, B. Burkle, X. Coubez, D. Cutts, M. Hadley, U. Heintz, J.M. Hogan, T. KWON, G. Landsberg, K.T. Lau, D. Li, M. Lukasik, J. Lu, M. Narain, N. Pervan, S. Sagir, F. Simpson, E. Usai, W.Y. Wong, X. Yan, D. Yu, W. Zhang

University of California, Davis, Davis, California, USA
J. Bonilla, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, P.T. Cox, R. Erbacher, G. Haza, F. Jensen, O. Kukral, R. Lander, M. Mulhearr, D. Pellett, B. Regnery, D. Taylor, Y. Yao, F. Zhang

University of California, Los Angeles, California, USA
M. Bachti, R. Cousins, A. Datta, D. Hamilton, J. Hauser, M. Ignatenko, M.A. Iqbal, T. Lam, W.A. Nash, S. Regnard, D. Saltzberg, B. Stone, V. Valuev

University of California, Riverside, Riverside, California, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, M. Gordon, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, California, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, D. Diaz, J. Duarte, R. Gerosa, L. Giannini, J. Ghi, R. Kansal, V. Krutelyov, R. Lee, J. Letts, M. Masciovecchio, F. Mohkhtar, M. Pieri, B.V. Sathia Narayanan, V. Sharma, M. Tadel, A. Vartak, F. Würthwein, Y. Xiang, A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, California, USA
N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, M. Kilpatrick, J. Kim, B. Marsh, H. Mei, M. Oshiro, M. Quinnan, J. Richman, U. Sarica, F. Setti, J. Sheplock, P. Siddireddy, D. Stuart, S. Wang

California Institute of Technology, Pasadena, California, USA
A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newmark, T.Q. Nguyen, M. Spiropulu, J.R. Vlimant, C. Wang, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
J. Alison, B. An, M.B. Andrews, P. Bryant, T. Ferguson, A. Harilal, C. Liu, T. Mudholkar, M. Paulini, A. Sanchez, W. Terrill

University of Colorado Boulder, Boulder, Colorado, USA
J.P. Cumalaf, W.T. Ford, A. Hassani, E. MacDonald, R. Patel, A. Perloff, C. Savard, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, New York, USA
J. Alexander, S. Bright-Thonney, X. Chen, Y. Cheng, D.J. Cranshaw, S. Hogan, J. Monroy, J.R. Patterson, D. Quach, J. Reichert, M. Reid, A. Ryd, W. Sur, J. Thom, P. Wittich, R. Zou

Fermi National Accelerator Laboratory, Batavia, Illinois, USA
M. Albrow, M. Alyari, G. Apollinari, A. Apresyary, A. Apyan, S. Banerjee, L.A.T. Bauerdick, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chiebana, K.F. Di Petrillo, V.D. Elvira, Y. Feng, J. Freeman, Z. Gece, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, R. Heller, T.C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi,
S. Yang, L. Zhang, Y. Zhang

University of Rochester, Rochester, New York, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, O. Karacheban, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, Tennessee, USA
H. Acharya, A.G. Delannoy, S. Fiorendi, S. Spanier

Texas A&M University, College Station, Texas, USA
O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luc, S. Malhotra, R. Mueller, D. Overton, D. Rathjen, A. Safonov

Texas Tech University, Lubbock, Texas, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, Tennessee, USA
E. Appelt, S. Greene, A. Gurrola, W. Johns, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovskas

University of Virginia, Charlottesville, Virginia, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovsky, A. Li, C. Neu, C.E. Perez Lara, B. Tannenwald, S. White, E. Wolfe

Wayne State University, Detroit, Michigan, USA
N. Poudyal

University of Wisconsin - Madison, Madison, WI, Wisconsin, USA
K. Black, T. Bose, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, F. Fiengo, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, D. Pinna, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-Reichert, W. Vetens

†: Deceased
1: Also at TU Wien, Wien, Austria
2: Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at The University of the State of Amazonas, Manaus, Brazil
7: Also at University of Chinese Academy of Sciences, Beijing, China
8: Also at Department of Physics, Tsinghua University, Beijing, China
9: Also at UFMS, Nova Andradina, Brazil
10: Also at Nanjing Normal University Department of Physics, Nanjing, China
11: Also at The University of Iowa, Iowa City, Iowa, USA
12: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
13: Also at Joint Institute for Nuclear Research, Dubna, Russia
14: Also at Cairo University, Cairo, Egypt
15: Also at British University in Egypt, Cairo, Egypt
16: Now at Ain Shams University, Cairo, Egypt
17: Also at Purdue University, West Lafayette, Indiana, USA
18: Also at Université de Haute Alsace, Mulhouse, France
19: Also at Tbilisi State University, Tbilisi, Georgia
20: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
21: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
22: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
23: Also at University of Hamburg, Hamburg, Germany
24: Also at Isfahan University of Technology, Isfahan, Iran
25: Also at Brandenburg University of Technology, Cottbus, Germany
26: Also at Forschungszentrum Jülich, Juelich, Germany
27: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
28: Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
29: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
30: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
31: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
32: Also at Wigner Research Centre for Physics, Budapest, Hungary
33: Also at IIT Bhubaneswar, Bhubaneswar, India
34: Also at Institute of Physics, Bhubaneswar, India
35: Also at Punjab Agricultural University, Ludhiana, India
36: Also at Shoolini University, Solan, India
37: Also at University of Hyderabad, Hyderabad, India
38: Also at University of Visva-Bharati, Santiniketan, India
39: Also at Indian Institute of Technology (IIT), Mumbai, India
40: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
41: Also at Sharif University of Technology, Tehran, Iran
42: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
43: Now at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
44: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
45: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
46: Also at Scuola Superiore Meridionale, Università di Napoli Federico II, Napoli, Italy
47: Also at Università di Napoli ‘Federico II’, Napoli, Italy
48: Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy
49: Also at Riga Technical University, Riga, Latvia
50: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
51: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
52: Also at Institute for Nuclear Research, Moscow, Russia
53: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
54: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
55: Also at St. Petersburg Polytechnic University, St. Petersburg, Russia
56: Also at University of Florida, Gainesville, Florida, USA
57: Also at Imperial College, London, United Kingdom
58: Also at P.N. Lebedev Physical Institute, Moscow, Russia
59: Also at California Institute of Technology, Pasadena, California, USA
60: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
61: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
62: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
63: Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
64: Also at National and Kapodistrian University of Athens, Athens, Greece
65: Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
66: Also at Universität Zürich, Zurich, Switzerland
67: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
68: Also at Laboratoire d’Annecy-le-Vieux des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
69: Also at Şırnak University, Sirnak, Turkey
70: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
71: Also at Konya Technical University, Konya, Turkey
72: Also at Piri Reis University, Istanbul, Turkey
73: Also at Adiyaman University, Adiyaman, Turkey
74: Also at Ozyegin University, Istanbul, Turkey
75: Also at Necmettin Erbakan University, Konya, Turkey
76: Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
77: Also at Marmara University, Istanbul, Turkey
78: Also at Milli Savunma University, Istanbul, Turkey
79: Also at Kafkas University, Kars, Turkey
80: Also at Istanbul Bilgi University, Istanbul, Turkey
81: Also at Hacettepe University, Ankara, Turkey
82: Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
83: Also at Vrije Universiteit Brussel, Brussel, Belgium
84: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
85: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
86: Also at IPPP Durham University, Durham, United Kingdom
87: Also at Monash University, Faculty of Science, Clayton, Australia
88: Also at Università di Torino, Torino, Italy
89: Also at Bethel University, St. Paul, Minneapolis, USA
90: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
91: Also at Bingol University, Bingol, Turkey
92: Also at Georgian Technical University, Tbilisi, Georgia
93: Also at Sinop University, Sinop, Turkey
94: Also at Erciyes University, Kayseri, Turkey
95: Also at Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
96: Also at Texas A&M University at Qatar, Doha, Qatar
97: Also at Kyungpook National University, Daegu, Korea