Extremal trees for Maximum Sombor index with given degree sequence

F. Movahedi

November 14, 2022

Abstract

Let $G = (V, E)$ be a simple graph with vertex set V and edge set E. The Sombor index of the graph G is a degree-based topological index, defined as

$$SO(G) = \sum_{uv \in E} \sqrt{d(u)^2 + d(v)^2},$$

in which $d(x)$ is the degree of the vertex $x \in V$ for $x = u, v$.

In this paper, we characterize the extremal trees with a given degree sequence that maximizes the Sombor index.

Keywords: Sombor index, tree, degree sequence.

AMS Subj. Class.: 05C35, 05C90.

1 Introduction

In [1], Gutman defined a new vertex degree-based topological index, named the Sombor index, and defined for a graph G as follows

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d(u)^2 + d(v)^2},$$

where $d(u)$ and $d(v)$ denote the degree of vertices u and v in G, respectively.

Other versions of the Sombor index are induced and studied in [1–5]. Guman [1] showed that the Sombor index is minimized by the path and maximized by the star among general trees of the same size. In [6] the extremal values of the Sombor index of trees and unicyclic graphs with a given maximum degree are obtained. Deng et al. [7] obtained a sharp upper bound for the Sombor index and the reduced Sombor

*Corresponding author E-mail: f.movahedi@gu.ac.ir
index among all molecular trees with fixed numbers of vertices, and characterized those molecular trees achieving the extremal value. In [8] characterized the extremal graphs with respect to the Sombor index among all the trees of the same order with a given diameter. Réti et al. [9] characterized graphs with the maximum Sombor index in the classes of all connected unicyclic, bicyclic, tricyclic, tetracyclic, and pentacyclic graphs of a given order. In this paper, we focus on the following natural extremal problem of Sombor index.

Problem 1. Find extremal trees of Sombor indices with a given degree sequence and characterize all extremal trees which attain the extremal values.

Let $T = (V, E)$ be a simple and undirected tree with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and the edge set $E(G) = \{e_1, \ldots, e_m\}$. The set $N_T(u) = \{v \in V | uv \in E\}$ is called the neighborhood of vertex $u \in V$ in tree T. The number of edges incident to vertex u in G is denoted $d(u) = d_u$. A leaf is a vertex with degree 1 in tree T. The minimum degree and the maximum degree of T are denoted by δ and Δ, respectively. The distance between vertices u and v is the minimum number of edges between u and v and is denoted by $d(u, v)$. The degree sequence of the tree is the sequence of the degrees of non-leaf vertices arranged in non-increasing order. Therefore, we consider (d_1, d_2, \ldots, d_k) as a degree sequence of the tree T where $d_1 \geq d_2 \geq \cdots \geq d_k \geq 2$. A tree is called a maximum optimal tree if it maximizes the Sombor index among all trees with a given degree sequence.

In this paper, we investigate the extremal trees which attain the maximum Sombor index among all trees with given degree sequences.

2 Preliminaries

In this section, We prove Some lemmas that are used in the next main results.

Lemma 2.1 For function $g(x, y) = \sqrt{x^2 + y^2}$, if $x \leq y$ then $g(x, 1) \leq g(y, 1)$.

Proof. If $x \leq y$, then $x^2 + 1 \leq y^2 + 1$ and consequently, $\sqrt{x^2 + 1} \leq \sqrt{y^2 + 1}$. Therefore, $g(x, 1) \leq g(y, 1)$. \qed

Lemma 2.2 Let $f(x) = \sqrt{x^2 + a^2} - \sqrt{y^2 + b^2}$ with $a, b, x \geq 1$. Then $f(x)$ is an increasing function for every $a \leq b$ and a decreasing function for every $a > b$.

Proof. We have that $f'(x) = \frac{x}{\sqrt{x^2 + a^2}} - \frac{x}{\sqrt{x^2 + b^2}}$.

We consider function $\hat{f}(y) = \frac{x}{\sqrt{x^2+y^2}}$ where $y \geq 1$. The derivative of function $\hat{f}(y)$ is $\hat{f}'(y) = \frac{-xy}{(x^2+y^2)^{3/2}} < 0$. Therefore, $\hat{f}(y)$ is a decreasing function for every $y \geq 1$. Hence, if $a \leq b$, $\frac{x}{\sqrt{x^2+y^2}} = \hat{f}(a) \geq \hat{f}(b) = \frac{x}{\sqrt{x^2+y^2}}$. Consequently, $f'(x) > 0$ and the function $f(x)$ is an increasing function for $a \leq b$. Similarly, if $a > b$, then $f(x)$ is a decreasing function for every $x \geq 1$. \hfill \Box

Lemma 2.3 Let $g(x, y) = \sqrt{x^2 + y^2}$ with $y \geq 2$. Then $f(x, y)$ is an increasing function for every $x \geq 1$.

Proof. We have $f'(x, y) = \frac{x}{\sqrt{x^2+y^2}}$. Since $x \geq 1$, $f'(x, y) > 0$ and function $f(x, y)$ is an increasing function for every $x \geq 1$. \hfill \Box

3 Extremal trees with the maximum Sombor index

In this section, we characterize the extremal trees with maximum Sombor index among the trees with given degree sequence. We propose a technique to construct these trees. To do this, we first state some properties of a maximum optimal tree.

Theorem 3.1 Let T be a maximum optimal tree with a path $v_0v_1v_2\cdots v_kv_{k+1}$ in T, where v_0 and v_{k+1} are leaves. For $i \leq \frac{t+1}{2}$ and $i+1 \leq j \leq k-i+1$

(i) if i is odd, then $d(v_i) \geq d(v_{k-i+1}) \geq d(v_j)$,

(ii) if i is even, then $d(v_i) \leq d(v_{k-i+1}) \leq d(v_j)$.

Proof. Let T be a maximum optimal tree with the degree sequence D. We prove the result by induction on i. For $i = 1$, we show that $d(v_1) \geq d(v_k) \geq d(v_j)$ where $2 \leq j \leq k$. We suppose for contradiction that $d(v_1) < d(v_j)$ for some $2 \leq j \leq k$. We consider a new tree T' obtained from T by changing edges v_0v_1 and v_jv_{j+1} to edges v_0v_j and v_1v_{j+1} such that no other edges are changed. Note that T and T' have the same degree sequence. Therefore, using Lemmas 2.1, 2.3 and since $d(v_{j+1}) > 1$, we have

\[
SO(T') - SO(T) = \sqrt{d(v_0)^2 + d(v_j)^2} + \sqrt{d(v_1)^2 + d(v_{j+1})^2} \\
\quad - \left(\sqrt{d(v_0)^2 + d(v_j)^2} - \sqrt{d(v_1)^2 + d(v_{j+1})^2} \right) \\
\quad \quad = \left(\sqrt{d(v_j)^2 + 1} - \sqrt{d(v_1)^2 + 1} \right) \\
\quad \quad + \left(\sqrt{d(v_1)^2 + d(v_{j+1})^2} - \sqrt{d(v_j)^2 + d(v_{j+1})^2} \right) \\
\quad \quad = f(1) - f(d(v_{j+1})) > 0,
\]
which is a contradiction with the maximum optimality T. Thus, $d(v_1) \geq d(v_j)$ for every $2 \leq j \leq k$. Similarly, we can get $d(v_1) \geq d(v_k)$ and $d(v_k) \geq d(v_j)$. Therefore, we have $d(v_1) \geq d(v_k) \geq d(v_j)$ where $2 \leq j \leq k$. So, we suppose that the result holds for smaller values of i.

If $i \geq 2$ is even, then $i - 1$ is odd and by the induction hypothesis, $d(v_{i-1}) \geq d(v_{k-i+1}) \geq d(v_j)$ for $i + 1 \leq j \leq k - i + 1$. We suppose for contradiction that $d(v_i) > d(v_j)$ for some $i + 1 \leq j \leq k - i + 1$. We consider a new tree T'' obtained from T by changing edges $v_{i-1}v_i$ and v_jv_{j+1} to edges $v_{i-1}v_j$ and v_jv_{j+1} with the degree sequence D. Also, in tree T'', other edges are the same edges in tree T.

By the induction hypothesis, $d(v_{i-1}) \geq d(v_{j+1})$. Therefore, by applying Lemma 2.2, we have

$$SO(T'') - SO(T) = \sqrt{d(v_{i-1})^2 + d(v_j)^2} + \sqrt{d(v_i)^2 + d(v_{j+1})^2} - \left(\sqrt{d(v_{i-1})^2 + d(v_i)^2} - \sqrt{d(v_j)^2 + d(v_{j+1})^2}\right) = \left(\sqrt{d(v_j)^2 + d(v_{j+1})^2} - \sqrt{d(v_{i-1})^2 + d(v_i)^2}\right) + \left(\sqrt{d(v_{j+1})^2 + d(v_{j+1})^2} - \sqrt{d(v_j)^2 + d(v_i)^2}\right) = f(d(v_{i-1}) - f(d(v_{j+1})) > 0.$$

This contradiction with the maximum optimality of T. Therefore, $d(v_i) \leq d(v_j)$ for $i + 1 \leq j \leq k - i + 1$. Similarly, we have $d(v_i) \leq d(v_{k-i+1})$ and $d(v_{k-i+1}) \leq d(v_j)$. Consequently, for i even, $d(v_i) \leq d(v_{k-i+1}) \leq d(v_j)$ where $i + 1 \leq j \leq k - i + 1$. For odd $i > 2$, with similarity technique, we can get $d(v_i) \geq d(v_{k-i+1}) \geq d(v_j)$ for $i + 1 \leq j \leq k - i + 1$.

Suppose that L_i denotes the set of vertices adjacent to the closest leaf at a distance i. Thus, L_0 and L_1 denote the set of leaves and the set of vertices that are adjacent to the leaves. Let $d^m = \min\{d(u) : u \in L_1\}$ and L^m_1 be the set of leaves whose adjacent vertices have degree d^m in T. We suppose that L^m_1 denote the set of leaves v such that $v \notin L^m_1$.

We construct a new tree T'_i from tree T and tree T_i rooted at v_i by identifying the root v_i with a vertex $v \in L^m_1$.

Theorem 3.2 Let T'_1 and T'_2 are obtained from T by identifying the root v_i of T_i with $u' \in L^m_1$ and $v' \in L^m_1$, respectively. Then, $SO(T'_1) \geq SO(T'_2)$.

Proof. We suppose that u and v are adjacent to u' and v', respectively. Using Theorem 3.1 $d(u) \leq d(v)$. Therefore, we have
In this example, we propose a maximum optimal tree with given degree sequence D.

\[
SO(T'_1) - SO(T'_2) = \sqrt{(d(v_i) + 1)^2 + d(u)^2} + \sqrt{d(u)^2 + 1} \\
- \left(\sqrt{(d(v_i) + 1)^2 + d(v)^2} - \sqrt{d(v)^2 + 1} \right) \\
= \left(\sqrt{(d(v_i) + 1)^2 + d(u)^2} - \sqrt{(d(v_i) + 1)^2 + d(v)^2} \right) \\
+ \left(\sqrt{d(v)^2 + 1} - \sqrt{d(u)^2 + 1} \right) \\
= f(1) - f(d(v_i) + 1) > 0.
\]

Therefore, $SO(T'_1) \geq SO(T'_2)$.

We use a similar technique in [10]. for constructing tree T with a fixed degree sequence D such that T is the maximum optimal tree among the trees with degree sequence D. We propose the following algorithms to construct such trees.

Algorithm 1. (Construction of subtrees)

1. Given the degree sequence of the non-leaf vertices as $D = (d_1, d_2, \ldots, d_m)$ in descending order.

2. If $d_m \geq m - 1$, then using Theorem 3.1, the vertices with degrees $d_1, d_2, \ldots, d_{m-1}$ are in L_1. Tree T produces by rooted at u with d_m children whose their degrees are $d_1, d_2, \ldots, d_{m-1}$ and $d_m - m + 1$ leaves adjacent to u.

3. If $d_m \leq m - 2$, then we produce subtree T_1 by rooted at u_1 with $d_m - 1$ children with degrees $d_1, d_2, \ldots, d_{m-1}$ such that $u_1 \in L_2$ and the children of u_1 are in L_1. Subtree T_2 is constructed by rooted at u_2 with $d_{m-1} - 1$ children whose degrees are $d_{d_m}, d_{d_m+1}, \ldots, d_{(d_m-1)+(d_{m-1})}$. Then do the same to get subtrees T_3, T_4, \ldots until T_k satisfies the condition of step (2). In this case, we have $d(v_k) = d_{m-k+1}$.

Algorithm 2. (Merge of subtrees)

1. Set $T = T_i$ and $i = k$. We produce a new tree T'_{i-1} from T and T_{i-1} rooted at v_{i-1} by identifying the root v_{i-1} with a vertex $v \in L_1^n$. Using Theorem 3.2 tree T'_{i-1} is a maximum optimal tree among trees with the same degree sequence.

2. Consider $i = k - 1, k - 2, \ldots, 1$ and $T = T_i$. Tree T'_{i-1} from T and T_{i-1} by the same method of step (1). We construct trees $T'_{k-2}, T'_{k-3}, \ldots, T'_{1}$.

3. $T = T'_1$ is the maximum optimal tree with given degree sequence $D = (d_1, d_2, \ldots, d_m)$.

Example 3.3 In this example, we propose a maximum optimal tree with given degree sequence $D = (5, 5, 5, 4, 3, 3, 2, 2)$. Using step (3) of Algorithm 1, we have subset T_1
Figure 1: Construction of subtrees using Algorithm 1

Figure 2: Merge of subtrees using Algorithm 2

Figure 3: A maximum optimal tree T with degree sequence $(5, 5, 5, 4, 3, 3, 2, 2)$.

T_1 T_2 T_3 T'_2 $T'_1 = T$
with 1 child whose has degree 5. For new degree sequence $D_1 = (5, 5, 4, 3, 3, 2)$, we construct tree T_2 and have new degree sequence $D = (5, 4, 3, 3)$ (Figure 1). It is easily seen that D_2 satisfies the condition of step (2).

Using Algorithm 2, we attach subtrees T_2 to T_3 for constructing T'_2 (Figure 2) and T_2 to T'_2 for constructing the maximum optimal tree $T'_1 = T$ (Figure 3).

Acknowledgements The author would like to thank Professor Ivan Gutman for his useful comments and suggestions.

References

[1] I. Gutman, Geometric approach to degree-based topological indices: Sombo indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.

[2] V. R. Kulli, I. Gutman, Computation of Sombo indices of certain networks, SSRG Int. J. Appl. Chem., 8 (2021), 1-5.

[3] N. N. Swamy, T. Manohar, B. Sooryanarayana, I. Gutman, Reverse Sombo index, Bull. Int. Math. Virtual Inst., 12(2)(2022), 267-272.

[4] M. R. Oboudi, On graphs with integer Sombo index. J. Appl. Math. Comput. (2022), https://doi.org/10.1007/s12190-022-01778-z

[5] T. Doslic, T. Reti, A. Ali, On the structure of graphs with integer Sombo indices, Discrete Math. Lett. 7 (2021), 1-4.

[6] T. Zhou, Z. Lin, L. Miao, The Sombo index of trees and unicyclic graphs with given maximum degree, arXiv preprint arXiv:2103.07947 (2021).

[7] Deng, H, Tang, Z, Wu, R. Molecular trees with extremal values of Sombo indices. Int J Quantum Chem. 2021; 121:e26622. https://doi.org/10.1002/qua.26622.

[8] Li, S., Wang, Z., Zhang, M. On the extremal Sombo index of trees with a given diameter, Applied Mathematics and Computation, 416, 2022, 126731.

[9] T. Réti, T. Doslíc, A. Ali, On the Sombo index of graphs, Contrib. Math. 3 (2021) 11-18.

[10] Wang, H. Extremal trees with given degree sequence for the Randić index, Discrete Mathematics 308 (2008) 3407-3411.