NAT2*6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis

Norihide Higuchi, Naoko Tahara, Katsunori Yanagihara, Kiyoyasu Fukushima, Naofumi Suyama, Yuichi Inoue, Yoshitsugu Miyazaki, Tsutomu Kobayashi, Koh-ichiro Yoshiura, Norio Niikawa, Chun-Yang Wen, Hajime Isomoto, Saburou Shikuwa, Katsuhisa Omagari, Yohei Mizuta, Shigeru Kohno, Kazuhiro Tsukamoto

METHODS: Statistical analysis revealed that the frequency of a variant haplotype, NAT2*6A, was significantly increased in TB patients with hepatotoxicity, compared with those without hepatotoxicity \[P = 0.001, \text{ odds ratio (OR) = 3.535}\]. By contrast, the frequency of a wild-type (major) haplotype, "NAT2*4", was significantly lower in TB patients with hepatotoxicity than those without hepatotoxicity \(P < 0.001, \text{ OR} = 0.265\). There was no association between NAT2-haplotypes and skin rash or eosinophilia.

CONCLUSION: The present study shows that NAT2 is one of the determinants of anti-TB drug-induced hepatotoxicity. Moreover, the haplotypes, NAT2*4 and NAT2*6A, are useful new biomarkers for predicting anti-TB drug-induced hepatotoxicity.

© 2007 WJG. All rights reserved.

Key words: Tuberculosis; Anti-tuberculosis drugs; Drug-induced hepatotoxicity; NAT2-haplotype; DNA-based diagnosis

Higuchi N, Tahara N, Yanagihara K, Fukushima K, Suyama N, Inoue Y, Miyazaki Y, Kobayashi T, Yoshiura K, Niikawa N, Wen CY, Isomoto H, Shikuwa S, Omagari K, Mizuta Y, Kohno S, Tsukamoto K. NAT2*6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis. World J Gastroenterol 2007; 13(45): 6003-6008

http://www.wjgnet.com/1007-9327/13/6003.asp

INTRODUCTION

Tuberculosis (TB) is a re-emerging infectious disease that was declared a global health problem by the World Health Organization in 1993[1]. Since there were 9 million new TB cases and approximately 2 million TB deaths in 2004, and more than 80% of all TB patients live in sub-Saharan Africa and Asia, the epidemiology and control of TB remain important public health issues[2,3]. However, the management of TB is associated with serious problems, including disease relapse in elderly patients, occurrence
in acquired immunodeficiency syndrome, development of adverse effects of anti-TB drugs, and increase in the prevalence of multidrug-resistant Mycobacterium tuberculosis. In particular, poor compliance or non-compliance with anti-TB drugs because of adverse effects, such as hepatotoxicity, skin rash, drug fever, peripheral neuritis, eosinophilia, and/or hyperuricemia, may lead to decrease in the quality-of-life of TB patients and appearance of multidrug-resistant M. tuberculosis. An important focus of previous studies was drug-induced hepatotoxicity, because it constitutes a major and severe adverse effect in the treatment of tuberculosis. Although the common risk factors for hepatotoxicity include advanced age, gender, malnutrition, complications of diseases, alcohol intake, and smoking, genetic factors also have an important impact on the likelihood of the development of drug-induced hepatotoxicity. Case-control studies with candidate genes in the affected populations have identified several possible susceptibility genes, e.g., N-acetyltransferase 2 (NAT2), cytochrome P450 2E1 (CYP2E1), glutathione S-transferase M1 (GSTM1), glutathione S-transferase T1 (GSTT1), and HLA-DQA1/DQB1.

We focused our research on NAT2 as a candidate gene associated with drug-induced hepatotoxicity because NAT2 is the main enzyme involved in isoniazid (INH) metabolism, and is expressed in the liver. Diminution or disturbance of NAT2 activity could result in the accumulation of precursors, such as hydrazine and acetylhydrazine in the liver, leading to hepatotoxicity. Furthermore, the degree of metabolism with regard to NAT2 varies among individuals, suggesting that genetic variations contribute to the metabolic activation capacity. Although studies on the association between NAT2 phenotype (slow acetylator) and anti-TB drug-induced hepatotoxicity have been reported from Taiwan, India, and Japan, no study has examined the association between hepatotoxicity and haplotypes/diplotypes that are composed of single nucleotide polymorphisms (SNPs). In the present study, we report our findings of the association between NAT2 haplotypes/diplotypes and anti-TB drug-induced adverse effects, especially hepatotoxicity, in Japanese TB patients.

MATERIALS AND METHODS

Subjects
The study subjects comprised of 100 patients with new onset of pulmonary TB treated with a INH (400 mg/d) and rifampicin (RFP, 450 mg/d)-containing regimen for six or nine months, between the years of 2003 and 2005 (Table 1). All subjects were Japanese who were recruited randomly from four general health clinics in the Nagasaki area of Japan. The study protocol was approved by the Committee for the Ethical Issue on Human Genome and Gene Analysis in Nagasaki University, and written informed consent was obtained from each patient.

The diagnosis of pulmonary TB was made on the basis of symptoms, chest radiographic infiltrates, and presence of acid-fast bacilli on sputum smear and M. tuberculosis on sputum culture. Patients with liver cirrhosis, chronic and acute hepatitis, alcoholic liver disease, and other chronic liver diseases were excluded from the study.

Diagnosis of drug-induced adverse effects
Patients with TB were classified into the following two subgroups: those with adverse effects such as hepatotoxicity, skin rash, and eosinophilia, and those without any side effects. Drug-induced hepatotoxicity was defined according to the criteria of the International Consensus Meeting, i.e., development of a two-fold or more increase in serum alanine aminotransferase (ALT) level above the upper limit of the normal range: N (≤ 42 IU/L), or a combined increase of over 2 N in serum aspartate aminotransferase (AST, N ≤ 33 IU/L) and total bilirubin (TB, N ≤ 1.5 mg/dl). The presence of > 450 cosinophils/mL was defined as eosinophilia.

Determination of NAT2 polymorphisms
Genomic DNA was extracted from peripheral blood leukocytes of each patient using the DNA Extecr WB-Rapid Kit (Wako, Osaka, Japan), according to the manufacturer's protocol. SNPs of NAT2 deposited in the SNP-database were determined with PCR-restriction fragment length polymorphism (RFLP) method as described previously. PCR was performed in a 25-μL reaction mixture containing 20 ng of genomic DNA, 20 mmol/L Tris-HCl (pH 8.4), 50 mmol/L KCl, 1.5 mmol/L MgCl2, 200 μmol/L dNTP, 0.4 μmol/L each of sense and antisense primers, and 1.5 U Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA) with a DNA thermal cycler, GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA, USA), according to the following protocol: initial denaturation at 95°C for 5 min; 35 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s; and a final extension at 72°C for 5 min. Subsequently, the PCR product was digested by restriction enzyme (TaKaRa Biomedical, Shiga, Japan) for detection of each SNP. A SNP, C282T, was detected by digestion with Fok I. Likewise, C481T, G590A, and G857A were detected by Kpn I, Taq I, or Bam HI, respectively. These fragments were subjected to electrophoresis on a 2% agarose gel, and visualized with UV transilluminator (Alpha Innotech, San Leandro, CA, USA) after ethidium bromide (Invitrogen) staining. Haplotypes were determined to be based on a combination of four SNPs (Table 2).

Statistical analysis
Data obtained are shown as mean ± standard deviation (SD). Clinico-pathological parameters were compared between TB patients with and without adverse effect, using the Mann-
Table 2 Five Haplotypes composed of four SNPs in NAT2

Haplotype	SNP			
	C282T	C481T	G590A	G857A
NAT2*4	-	-	-	-
NAT2*6A	+	-	-	+
NAT2*7B	+	-	+	-
NAT2*11	-	-	+	-
NAT2*13	+	-	-	-

Plus or minus symbols for C282T, C481T, G590A, and G857A indicate the presence or absence of SNPs.

Whitney U test, χ² test with Yates’ correction, and Fisher’s exact test. Expected allele frequencies were calculated from respective single allele frequencies according to the Hardy-Weinberg equilibrium. The observed and expected allele frequencies were compared by a χ² test using SNP Alyze 6.0 standard (Dynacom Inc., Chiba, Japan). To evaluate odds ratio (OR) with 95% confidence interval (95% CI) for the susceptibility to anti-TB drug-induced adverse effects, haplotype and diplotype frequencies were compared between TB patients with and without adverse effects, using multivariate logistic regression analysis. A P value of 0.05 or less was considered statistically significant. SPSS 14.0 (SPSS Japan Inc., Tokyo, Japan) program package was used for all statistical analyses.

RESULTS

Frequency of drug-induced adverse effects, and clinico-pathological parameters for susceptibility to the effects

Out of the 100 TB patients enrolled in the study, 50 (50%) patients had anti-TB drug-induced adverse effects, 18 hepatotoxicity, 25 skin rash, and 34 eosinophilia. There were no differences in the clinical characteristics and baseline laboratory data (before chemotherapy) between TB patients with and without adverse effects (Table 3). However, eosinophilia developed less frequently in female patients than male patients (P = 0.0186). During TB chemotherapy, patients with hepatotoxicity had 8-times higher serum levels of ALT and AST than those without hepatotoxicity (P < 0.0001). Likewise, during therapy, ALT values and eosinophil counts were significantly higher in patients with skin rash compared to those without skin rash (P = 0.0245 and P = 0.0058, respectively). Moreover, eosinophils in patients with eosinophilia were increased in number compared with those without this complication (P < 0.0001).

NAT2-haplotype susceptible to adverse effects

In the 100 TB patients examined, we identified three haplotypes composed of four SNPs (Table 4). One haplotype, “NAT2*4”, is a wild-type (major type), while the other haplotypes are variants (minor types). Distribution of SNPs and haplotypes among patients corresponded well with the Hardy-Weinberg equilibrium, implying that our samples had a homogeneous genetic background, and was consistent with previous observations[13,14,17]. However, since the frequencies of two haplotypes, NAT2*11 and NAT2*13, were very low, they were not used for further statistical analysis.

Multivariate logistic regression analyses revealed that the frequency of a variant haplotype “NAT2*6A”, which is composed of two SNPs (C282T and G590A), was significantly increased in TB patients with hepatotoxicity, compared with those without hepatotoxicity (P = 0.001, OR = 3.535, 95% CI: 1.648-7.585) (Table 4). By contrast, the frequency of the wild-type (major) haplotype, “NAT2*4”, was significantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P < 0.001, OR = 0.265). There were no significant differences in the frequency of NAT2-haplotypes between TB patients with and without skin rash or eosinophilia (Table 4).

NAT2-diplotype susceptible to adverse effects

We identified six diplotypes composed of three haplotypes (Table 5). Distributions of the diplotypes in our study population were consistent with previous observations[13,14,17]. Of a total of 18 TB patients with hepatotoxicity, 3 (16.6%) had a diplotype, “NAT2*6A*/7B”; using multivariate logistic regression analyses, the frequency was significantly higher than in patients without hepatotoxicity (2/82, 2.4%; P = 0.029, OR = 8.000, 95% CI: 1.230-52.023) (Table 5). On the other hand, the frequency of another diplotype, “NAT2*4*/4”, was significantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P = 0.032, OR = 0.272). There was no difference in the frequency of NAT2-diplotypes between TB patients with and without skin rash or eosinophilia (Table 5).

DISCUSSION

We have shown that a variant haplotype, NAT2*6A, of NAT2 is associated with susceptibility to anti-TB drug-induced hepatotoxicity, and a wild-type (major) haplotype, NAT2*4, is associated with non-susceptibility to hepatotoxicity. These findings suggest that NAT2 is one of the genetic factors responsible for predisposition to anti-TB drug-induced hepatotoxicity. However, since the number of TB patients in the present study was relatively small, it remains to be confirmed whether this association can be reproduced in a larger number of Japanese TB patients with and without hepatotoxicity as well as in other ethnic populations. Although previous reports have shown a positive association in Japanese TB patients between drug-induced hepatotoxicity and NAT2 variants with phenotypic activities of NAT2, such as rapid, intermediate, and slow acetylators[11,14,17], the present study is the first report demonstrating an association with NAT2-haplotype variation.

Three NAT2 haplotypes, NAT2*5B, NAT2*6A, and NAT2*7B, are believed to be associated with slow acetylators[24,25,30]. We did not detect NAT2*5B in our samples, probably because of its low frequency in the Japanese population as described in our previous study[30]. Since NAT2 is the main enzyme involved in the metabolism of INH and NAT2*6A is functionally related to the low activity of N-acetylation in the INH metabolic pathway[30], TB patients possessing NAT2*6A may fail to metabolize toxic substances, such as hydrazine and acetylhydrazine, generated by INH metabolism in the liver, which therefore accumulate in the body, leading to drug-induced hepatotoxicity[21,23,31,32].
A variant diplotype, \(\text{NAT2*6A/*7B} \), is associated with susceptibility to hepatotoxicity (\(P = 0.029 \)). Although another \(\text{NAT2} \)-diplotype, \(\text{NAT2*6A/*6A} \), showed a trend towards susceptibility to hepatotoxicity, the results were statistically not significant (\(P = 0.121 \)). However, if a larger number of subjects were analyzed, \(\text{NAT2*6A/*6A} \) as well as \(\text{NAT2*6A/*7B} \) may demonstrate a significant association with hepatotoxicity. Both of these diplotypes are homozygous for variant haplotypes and indicate phenotypically slow acetylators. Therefore, it is likely that some of the slow acetylators who are variant homozygotes possessing the \(\text{NAT2*6A} \)-haplotype have susceptibility to anti-TB drug-induced hepatotoxicity. In this context, the results of the present study with regard to \(\text{NAT2} \)-haplotypes/diplotypes are comparable to those of previous reports on the association between \(\text{NAT2} \) phenotypic variation and hepatotoxicity\(^{[11-17,32]} \). Conversely, a wild-type homozygote, \(\text{NAT2*4/*4} \), is associated with non-susceptibility and resistance to hepatotoxicity.

In conclusion, the haplotypes, \(\text{NAT2*4} \) and \(\text{NAT2*6A} \), are new biomarkers for predicting drug-induced hepatotoxicity, and may prove useful in achieving optimal treatment of individual TB patients.

ACKNOWLEDGMENTS

We are grateful to TB patients and physicians for participating in this study.

COMMENTS

Background

Tuberculosis (TB) is a re-emerging infectious disease and has been declared a global health problem by the WHO. Adverse effect of anti-TB drugs including...
isoniazid (INH) has become a serious problem in the management of tuberculosis. Risk factors associated with the development of adverse effects include both clinical and genetic factors. Recently, genome-wide screening and candidate gene-based association studies have been launched to identify the possible susceptibility genes sensitive to anti-TB drugs.

Research frontiers
Association studies with candidate gene-based approach in Asian and Caucasian patients have identified several possible susceptibility genes, e.g., N-acetyltransferase 2 (*NAT2*), cytochrome P450 2E1, glutathione S-transferase M1, glutathione S-transferase T1, and HLA-DQA1/DQB1.

Innovations and breakthroughs
There are several reports on the association between *NAT2* polymorphisms and adverse effects, especially hepatotoxicity, of anti-TB drugs from Japan, Taiwan, and India. However, *NAT2* polymorphisms have been analyzed as phenotypic activities of *NAT2*, such as rapid, intermediate, and slow acetylators, but not as *NAT2*-haplotypes. The present study has shown that some phenotypically slow acetylators who are variant homozygotes possessing *NAT2*6A haplotype have higher susceptibility to anti-TB drug-induced hepatotoxicity. This is the first report on the association with *NAT2*-haplotypes and hepatotoxicity in Japanese TB patients.

Applications
Our findings can be used for DNA-based diagnosis of TB patients before initiating treatment with anti-TB drugs, using *NAT2*6A as a biomarker. Since patients possessing *NAT2*6A haplotype have higher susceptibility to anti-TB drug-induced hepatotoxicity, such individuals should be treated by reducing the dose of INH from 400 to 200 mg, in order to achieve optimal results.

Terminology
NAT2 is the main enzyme in the INH metabolism, and is expressed in the liver. Single nucleotide polymorphism (SNP) is a DNA sequence variation which occurs when a single nucleotide in the genome differs in paired chromosomes of an individual. Haplotype is a combination of alleles at multiple linked loci that are transmitted together. A second interpretation is that a haplotype is a set of SNPs on a single chromatid that is statistically associated. Such information is very valuable in investigating the genetics behind common diseases. Restriction fragment length polymorphism (RFLP) is a laboratory technique designed to distinguish differing nucleotide sequences from two related contexts.

Peer review
This study is well performed and the subject matter is very interesting.

REFERENCES

1. World Health Organization. Global tuberculosis control: surveillance, planning, financing, WHO report 2006. WHO/HTM/TB/2006.362. Genova, Switzerland: World Health Organization, 2006

2. World Health Organization. Actions for life towards a world free of tuberculosis: the global plan to stop TB 2006-2015. WHO/HTM/STB/2006.35. Genova, Switzerland: World Health Organization, 2006

3. Dye C, Espinal MA, Watt CJ, Mbiaja C, Williams BG. Worldwide incidence of multidrug-resistant tuberculosis. J Infect Dis 2002; 185: 1197-1202

4. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 2003; 163: 1009-1021

5. World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis. WHO/HTM/STB/2006.361. World Health Organization, Genova, Switzerland

6. Pande JN, Singh SP, Khilnani GC, Khilnani S, Tandon RK. Risk factors for hepatotoxicity from antituberculosis drugs: a case-control study. Thorax 1996; 51: 132-136

7. Dossine M, Wilcke JT, Askgaard DS, Nybo B. Liver injury during antituberculosis treatment: an 11-year study. Tuberc Lung Dis 1996; 77: 335-340

8. Devoto FM, González C, Iannantuono R, Serra HA, González CD, Sáenz C. Risk factors for hepatotoxicity induced by antituberculosis drugs. Acta Pharmacol Ther Latamina 1997; 41: 197-202

9. Shaky R, Rao BS, Shrestha B. Incidence of hepatotoxicity due to antitubercular medicines and assessment of risk factors. Ann Pharmacother 2004; 38: 1074-1079

10. Wong WM, Wu PC, Yuen MF, Cheng CC, Yew WW, Wong PC, Tam CM, Leung CC, Lai CL. Antituberculosis drug-related liver dysfunction in chronic hepatitis B infection. Hepatology 2000; 31: 201-206

11. Ungo JR, Jones D, Ashkin D, Hollender ES, Bernstein D, Albanese AP, Pichonk AE. Antituberculosis drug-induced hepatotoxicity. The role of hepatitis C virus and the human immunodeficiency virus. Am J Respir Crit Care Med 1998; 157: 1871-1876

12. Grönhagen-Riska C, Hellstrom PE, Fröseth B. Predisposing factors in hepatitis induced by isoniazid- rifampicin treatment of tuberculosis. Ann Rev Dis 1978; 118: 461-466

13. Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S, Maekura R, Ito M, Yamamoto Y, Ogura T, Maeda K, Komuta K, Igarashi T, Azumz J. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 2000; 4: 256-261

14. Hiratsuka M, Kishikawa Y, Takekuma Y, Matsuura M, Narakara K, Inoue T, Hamdy SI, Endo N, Goto J, Mizugaki M. Genotyping of the N-acetyltansferase2 polymorphism in the prediction of adverse drug reactions to isoniazid in Japanese patients. Drug Metab Pharmacokinetics 2002; 17: 357-362

15. Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY, Chang FY, Lee SD. Polymorphism of the N-acetyltansferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002; 35: 883-889

16. Hussain Z, Kar P, Husain SA. Antituberculosis drug-induced hepatitis: risk factors, prevention and management. Indian J Exp Biol 2003; 41: 1226-1232

17. Shimizu Y, Dobashi K, Mita Y, Endou K, Moriya S, Osano K, Koike Y, Higuchi S, Yabe M, Utsugi M, Ishizuka T, Hisada T, Nakazawa T, Mori M. DNA microarray genotyping of the N-acetyltansferase 2 polymorphism using carbamidime as the linker for assessment of isoniazid hepatotoxicity. Tuberculosis (Edinb) 2006; 86: 374-381

18. Huang YS, Chern HD, Su WJ, Wu JC, Chang CH, Liang CH, Chang FY, Lee SD. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 2003; 37: 924-930

19. Roy B, Chowdhury A, Kundra S, Santra A, Dey B, Chakraborty M, Majumder PP. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. J Gastroenterol Hepatol 2001; 16: 1033-1037

20. Sharma SK, Balamurugan A, Saha PK, Pandey RM, Mehra NK. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am J Respir Crit Care Med 2002; 166: 916-919

21. Timbrell JA. Studies on the role of acetylhydrazine in isoniazid hepatotoxicity. Arch Toxicol Suppl 1979: 1-8

22. Noda A, Hsu KY, Noda H, Yamamoto Y, Kurozumi T. Is isoniazid-hepatotoxicity induced by the metabolite, hydrazine? J UOEH 1983; 5: 183-190

23. Lauterburg BH, Smith CV, Todd EL, Mitchell JR. Oxidation of hydrazine metabolites formed from isoniazid. Clin Pharmacol Ther 1985; 38: 566-571

24. Deguchi T, Mashimo M, Suzuki T. Correlation between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltansferase in human liver. J Biol Chem 1990; 265: 12757-12760

25. Bénichou C. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol 1990; 11: 272-276

26. Available from: URL: http://www.louisville.edu/medschool/pharmacology/NAT2.html

27. Machida H, Tsukamoto K, Wen CY, Narumi Y, Shikwuwa S, Isomoto H, Takeshima D, Mizuta M, Ikawa F, Murata I, Kohno S. Association of polymorphic alleles of CTLA4 with inflammatory bowel disease in the Japanese. World J
Machida H, Tsukamoto K, Wen CY, Shikuwa S, Isomoto H, Mizuta Y, Takeshima F, Murase K, Matsumoto N, Murata I, Kohno S, Wen CY. Crohn's disease in Japanese is associated with a SNP-haplotype of N-acetyltransferase 2 gene. *World J Gastroenterol* 2005; 11: 4188-4193

Cascorbi I, Drakoulis N, Brockmöller J, Maurer A, Sperling K, Roots I. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. *Am J Hum Genet* 1995; 57: 581-592

Gross M, Kruisselbrink T, Anderson K, Lang N, McGovern P, Delongchamp R, Kadlubar F. Distribution and concordance of N-acetyltransferase genotype and phenotype in an American population. *Cancer Epidemiol Biomarkers Prev* 1999; 8: 683-692

Dickinson DS, Bailey WC, Hirschowitz BI, Soong SJ, Eidus L, Hodgkin MM. Risk factors for isoniazid (INH)-induced liver dysfunction. *J Clin Gastroenterol* 1981; 3: 271-279

Yamamoto T, Suou T, Hirayama C. Elevated serum aminotransferase induced by isoniazid in relation to isoniazid acetylator phenotype. *Hepatology* 1986; 6: 295-298

S- Editor Liu Y L- Editor Anand BS E- Editor Li HY