Elimination Theory in Codimension Two

Alicia Dickenstein and Bernd Sturmfels

Abstract

New formulas are given for Chow forms, discriminants and resultants arising from (not necessarily normal) toric varieties of codimension 2. The Newton polygon of the discriminant is determined exactly.

1 Introduction

Sparse elimination theory concerns the study of Chow forms and discriminants associated with toric varieties, that is, subvarieties of projective space which are parametrized by monomials \(^4\), \(^9\). This theory has its origin in the work of Gel’fand, Kapranov and Zelevinsky on multivariate hypergeometric functions \(^3\). The singularities of these functions occur on the projectively dual hypersurfaces to the torus orbit closures on the given toric variety \(X\). The singular locus of the hypergeometric system is described by the full discriminant of \(X\), which is a natural specialization of the Chow form.

Classical hypergeometric functions in one variable arise when \(X\) is a toric hypersurface, defined by one homogeneous binomial equation \(x_1^{b_1} \cdots x_r^{b_r} = x_{r+1}^{b_{r+1}} \cdots x_n^{b_n}\). The Chow form of this hypersurface \(X\) is just its defining polynomial. The discriminant of \(X\) equals, up to an integer factor, \(^4\), \(\S\)9.1,\]

\[
D_X = b_{r+1}^{b_{r+1}} \cdots b_n^{b_n} \cdot x_1^{b_1} \cdots x_r^{b_r} - (-1)^{\deg(X)} b_1^{b_1} \cdots b_r^{b_r} \cdot x_{r+1}^{b_{r+1}} \cdots x_n^{b_n} \quad (1.1)
\]

and the full discriminant equals \(D_X\) times \(\prod_{i=1}^n x_i^{\deg(X)-b_i}\). It is the purpose of this article to generalize these formulas to toric varieties of codimension 2. Our motivations for this study include hypergeometric functions \(^1\), Horn systems in two variables \(^8\), and their applications to theoretical physics \(^5\).
We introduce our objects of study by means of an example. Let X be the toric 6-fold in projective 8-space given parametrically by the cubic monomials

$$
(a:b: \cdots : i) = (u_1 u_0^2 : u_2 u_0^2 : u_3 u_0^2 : u_1 x^2 : u_2 y^2 : u_3 z^2 : u_4 yz : u_4 xz : u_4 x y).
$$

The prime ideal of the toric variety X is generated by the 2×2-minors of

$$
\begin{pmatrix}
 a & b & c \\
 d g^2 & e h^2 & f i^2
\end{pmatrix}
$$

Thus X is arithmetically Cohen-Macaulay and has degree 13. The Chow form of X is gotten by eliminating the variable t from the 2×2-minors of

$$
\begin{pmatrix}
 a_0 + t a_1 & b_0 + t b_1 & c_0 + t c_1 \\
 (d_0 + t d_1)(g_0 + t g_1)^2 & (e_0 + t e_1)(h_0 + t h_1)^2 & (f_0 + t f_1)(i_0 + t i_1)^2
\end{pmatrix}
$$

The Chow form is an irreducible polynomial of degree 26 in the 18 variables $a_0, a_1, b_0, b_1, \ldots, i_0, i_1$ having exactly 57,726 terms. It equals the determinant

$$
\begin{pmatrix}
 123 & 124 & 125 & 126 \\
 134 & 135 + 234 & 136 + 235 & 236 \\
 135 & 136 + 145 + 235 & 146 + 236 + 245 & 246 \\
 136 & 146 + 236 & 156 + 246 & 256
\end{pmatrix}
$$

where ijk is the 3×3-minor with row indices i, j and k of the 6×3-matrix

$$
\begin{pmatrix}
 a_0 & b_0 & c_0 \\
 a_1 & b_1 & c_1 \\
 d_0 g_0^2 & e_0 h_0^2 & f_0 i_0^2 \\
 d_1 g_1^2 & e_1 h_1^2 & f_1 i_1^2 \\
 d_0 g_0 g_1 + 2 d_0 g_0^2 & e_0 h_0 h_1 + 2 e_0 h_0 h_1 & f_0 i_0^2 + 2 f_0 i_0 i_1 \\
 d_0 g_0 g_1 + 2 d_1 g_1^2 & e_0 h_0 h_1 + 2 e_1 h_0 h_1 & f_0 i_0^2 + 2 f_0 i_0 i_1 \\
 d_0 g_0 g_1 + 2 d_1 g_1^2 & e_0 h_0 h_1 + 2 e_1 h_0 h_1 & f_0 i_0^2 + 2 f_0 i_0 i_1
\end{pmatrix}
$$

Note that the Chow form can also be written as a polynomial of degree 13 in the brackets $[ab] = a_0 b_1 - a_1 b_0$, $[ac] = a_0 c_1 - a_1 c_0$, \ldots, $[hi] = h_0 i_1 - h_1 i_0$. We obtain the full discriminant of X from the Chow form by substituting

$$
\begin{pmatrix}
 a_0 & a_1 \\
 b_0 & b_1 \\
 \vdots & \vdots \\
 i_0 & i_1
\end{pmatrix} \mapsto \operatorname{diag}(a, b, c, d, e, f, g, h, i) \cdot B, \quad (1.6)
$$
where B is the 9×2-matrix with row vectors $(1, 0), (0, 1), (-1, -1), (-1, 0), (0, -1), (1, 1), (-2, 0), (0, -2), (2, 2)$. The result of this substitution is the dual full discriminant \tilde{E}_X. It has exactly twelve terms and factors as follows:

$$\tilde{E}_X = 2^{14} \cdot (aeh^2 - bdg^2) \cdot (afi^2 - cdg^2) \cdot (bfi^2 - ceh^2) \cdot \tilde{D}_X,$$

where the last factor \tilde{D}_X is the irreducible polynomial

$$a^2 e^2 f^2 h^4 i^4 + b^2 d^2 f^2 g^4 i^4 + c^2 d^2 e^2 g^4 h^4$$
$$-2abdef^2 g^2 h^2 i^4 - 2acdef^2 g^2 h^4 i^2 - 2bcefd^2 g^2 h^2 i^2$$

Replacing each variable in \tilde{D}_X by its reciprocal, that is, $a \mapsto 1/a, b \mapsto 1/b, \ldots$ and clearing denominators, we get the discriminant D_X, an irreducible polynomial of degree 10 which defines the hypersurface projectively dual to X.

In this paper we establish exact formulas for the Chow form (Theorems 2.1 and 2.7), the full discriminant (Proposition 3.2), and the discriminant (Theorem 4.2) associated with an arbitrary toric variety X of codimension 2 in a projective space. A combinatorial construction is given for the secondary polygon (Theorem 3.4) and the Newton polygon of the discriminant (Theorem 4.3). This construction shows that the dual variety X^\vee is a hypersurface if and only if the secondary polygon is not centrally symmetric (Corollary 4.5). In Section 5 we study mixed resultants, that is, we apply our theory to codimension 2 toric varieties which arise from the Cayley trick [4, §3.2.D].

The toric 6-fold X in our example does arise from the Cayley trick. This can be seen from the defining parametrization $(u_1u_0^2 : \cdots : u_4xy)$. Hence the discriminant D_X is actually a resultant. Indeed, if we eliminate x, y, z from

$$a + d \cdot x^2 = b + e \cdot y^2 = c + f \cdot z^2 = g \cdot yz + h \cdot xz + i \cdot xy = 0 \quad (1.8)$$

then the result is precisely the six-term discriminant D_X described above.

2 The Chow form

Let $B = (b_{il})$ be an $n \times 2$-integer matrix of rank 2 with both column sums equal to zero. The lattice ideal I_B is the ideal in $k[x_1, \ldots, x_n], k$ a field of characteristic zero, generated by the binomials $x^u_+ - x^u_-$ where $u = u_+ - u_-$ runs over the two-dimensional lattice $L_B \subset \mathbb{Z}^n$ spanned by the columns of B. The minimal generators and the higher syzygies of I_B are described explicitly.
The ideal I_B is homogeneous with respect to the usual \mathbb{Z}-grading and hence defines a subscheme X_B of projective space \mathbb{P}^{n-1}. The lattice ideal I_B is prime if and only if \mathbb{Z}^n/L_B is a free abelian group, or equivalently, if and only if the rows of B generate the two-dimensional lattice \mathbb{Z}^2.

In this section we compute the Chow form and the Chow polygon of the projective scheme X_B. The degree of X_B, denoted $d_B = \deg(X_B)$, is the number of intersection points with a generic 2-plane in \mathbb{P}^{n-1}. Let $Y = (y_{i\ell})$ be an $n \times 2$-matrix of indeterminates. It represents a generic parametric line $(y_{11} + ty_{12}, \ldots, y_{n1} + ty_{n2})$ in \mathbb{P}^{n-1}. Following [4, §3.2.B], the Chow form \tilde{C}_B of the homogeneous lattice ideal I_B is the unique (up to sign) irreducible homogeneous polynomial in $\mathbb{Z}[y_{i\ell}]$ which vanishes if and only if the corresponding line in \mathbb{P}^{n-1} meets X_B. The degree of \tilde{C}_B equals $2 \cdot d_B$.

Classical invariant theory (cf. [4, Proposition 3.1.6]) tells us that the Chow form \tilde{C}_B can be written (non-uniquely) as a polynomial of degree d_B in the (dual) Plücker coordinates of a generic line, which we write as brackets

$$[i \; j] := y_{i1}y_{j2} - y_{i2}y_{j1} \quad \text{for} \quad 1 \leq i < j \leq n.$$

We further introduce a non-negative integer ν_{ij} for any $1 \leq i < j \leq n$ as follows: if the i-th row vector and the j-th row vector of $B = (b_{i\ell})$ have the same sign in one of the two coordinates then set $\nu_{ij} = 0$; otherwise we set

$$\nu_{ij} := \min \{|b_{i1}b_{j2}|, |b_{i2}b_{j1}|\}. \quad (2.1)$$

Thus, $\nu_{ij} = 0$ unless b_i and b_j lie in the interior of opposite quadrants. Let $H_\ell(t) = \prod_{i : b_{i\ell} > 0} (y_{i1} + ty_{i2})^{b_{i\ell}} - \prod_{i : b_{i\ell} < 0} (y_{i1} + ty_{i2})^{-b_{i\ell}}, \; \ell = 1, 2. \quad (2.2)$

We regard H_1 and H_2 as polynomials in a single variable t with coefficients in $\mathbb{Z}[y_{i\ell}, i = 1, \ldots, n, \ell = 1, 2]$. Let β_ℓ denote the sum of the positive entries in the ℓ-th column of B, for $\ell = 1, 2$. Clearly, $\deg(h_\ell) = \beta_\ell, \ell = 1, 2$.

Theorem 2.1. The Chow form of the codimension 2 lattice ideal I_B equals

$$\tilde{C}_B = \frac{\text{Res}_t(H_1, H_2)}{\prod_{1 \leq r < s \leq n} [r \; s]^{\nu_{rs}},}$$

where Res_t denotes the Sylvester resultant of two univariate polynomials.
Proof. The binomials $\prod_{b_{ij} > 0} x_i^{b_{ij}} - \prod_{b_{ij} < 0} x_i^{-b_{ij}}$, $j = 1, 2$, defined by the two columns of B determine a complete intersection Y_B of degree $\beta_1 \beta_2$ in \mathbb{P}^{n-1} which coincides with X_B over $(k^*)^{n-1}$. The irreducible decomposition of Y_B consists of the components of X_B—of which there is only one if \mathbb{Z}^n/L_B is free abelian—together with subschemes supported on coordinate flats $x_r = x_s = 0$, whose Chow forms are the bracket monomials $[r s]$. The theorem will be proved if we show that the cycle $\{x_r = x_s = 0\}$ occurs with multiplicity ν_{rs} in the complete intersection.

Suppose first that $\nu_{rs} = 0$. We may assume that $b_{r1}, b_{s1} \geq 0$. Then, $\{x_r = x_s = 0\}$ is not contained in Y_B, and thus occurs with multiplicity 0. Suppose now that $\nu_{rs} > 0$. We may assume that $b_{r1}, b_{r2} > 0$ and $b_{s1}, b_{s2} < 0$. Then, $\{x_r = x_s = 0\}$ is contained in Y_B, and after localizing and changing variable names, we are lead to the following situation: let $a, b, c, d \in \mathbb{Z}_{>0}$, $ad > bc$ and $\alpha, \beta \neq 0$ in an extension field K of k, and consider the univariate resultant

$$r := \text{Res}_t ((x_0 + x_1 t)^a - \alpha (y_0 + y_1 t)^b, (x_0 + x_1 t)^c - \beta (y_0 + y_1 t)^d).$$

We want to show that $x_0 y_1 - y_0 x_1$ appears with exponent bc as a factor of r.

Indeed, when $x_1, y_1 \neq 0$, the condition $x_0 y_1 - y_0 x_1 = 0$ holds if and only if there exists t such that $x_0 + x_1 t = y_0 + y_1 t = 0$, and so $x_0 y_1 - y_0 x_1$ occurs in r with exponent μ equal to the intersection multiplicity at the origin of the artinian ideal $I = \langle x^a - \alpha y^b, x^c - \beta y^d \rangle$ in $K[x, y]$. We claim $\mu = bc$.

The given equations are a Gröbner basis with leading terms x^a and βy^d, for the term order defined by weight $(x) = b + d$ and weight $(y) = a + c$. Hence $\dim_K K[x, y]/I = ad$, that is, there are ad roots in the affine plane counting multiplicity. Of those, $ad - bc$ lie in the torus, i.e., have both coordinates non-zero. No root of I has precisely one zero coordinate. Therefore the multiplicity of I at the origin is the difference $\mu = ad - (ad - bc) = bc$.

Corollary 2.2. The degree of a homogeneous lattice ideal I_B of codimension two can be computed from the defining $n \times 2$-matrix B by the following formula

$$\deg(X_B) = \beta_1 \beta_2 - \sum_{1 \leq r < s \leq n} \nu_{rs}.$$
We assume that the row vectors b_1, b_2, \ldots, b_m of the matrix B are ordered counterclockwise in cyclic order, and that $b_{m+1}, \ldots, b_n = 0$. It may happen that b_{i+1} is a positive multiple of b_i. Let P_B denote the unique (up to translation) lattice polygon whose boundary consists of the directed edges b_1, b_2, \ldots, b_m. For each vector $b_i = (b_{i1}, b_{i2})$, the linear functional

$$u = (u_1, u_2) \mapsto \det(b_i, u) = b_{i1}u_2 - b_{i2}u_1$$

attains its minimum value over P_B at the edge parallel to b_i for $i = 1, \ldots, m$ and is zero for $i = m+1, \ldots, n$. Let μ_i denote the maximum value of the linear functional $u \mapsto \det(b_i, u)$ as u ranges over the polygon P_B. For $i = 1, \ldots, m$, this maximum is attained at a unique vertex of P_B unless $b_j = b_\lambda b_i$ for some j and $\lambda < 0$. For every lattice point v in P_B, the quantity

$$v^{(i)} := \mu_i - \det(b_i, v)$$

(2.3)

is a non-negative integer, invariant under translation of P_B. The vector $(v^{(1)}, v^{(2)}, \ldots, v^{(n)})$ expresses the point v in P_B in intrinsic coordinates.

Theorem 2.3. The Chow polygon CP_B of a codimension 2 lattice ideal I_B is the image of the polygon P_B under the affine isomorphism $v \mapsto (v^{(1)}, \ldots, v^{(n)})$.

The proof of this theorem will be given in the next section, after Gale duality and duality of Plücker coordinates have been introduced. See Theorem 3.4 for the same theorem in dual formulation. Theorems 2.3 and 3.4 will then derived from the constructions in Sections 7.1.D and 8.3.B of [1].

Example 2.4. For the example in the Introduction we take $b_1 = (1, 0), b_2 = (1, 1), b_3 = (2, 2), b_4 = (0, 1), b_5 = (-1, 0), b_6 = (-2, 0), b_7 = (-1, -1), b_8 = (0, -1), b_9 = (0, -2)$ and P_B the hexagon with vertices $(0, 0), (1, 0), (4, 3), (4, 4), (1, 4), (0, 3)$. The edges of P_B are labeled by the variables as follows: $a, \{f, i\}, b, \{d, g\}, c, \{e, h\}$, and we have $\mu = (4, 3, 6, 0, 0, 0, 1, 4, 8)$. The twelve points on the boundary of P_B correspond to the twelve monomials in the expansion of \tilde{E}_X. For instance, the vertex $v = (0, 0)$ has intrinsic coordinates $(v^{(1)}, \ldots, v^{(9)}) = (4, 3, 6, 0, 0, 0, 1, 4, 8)$ and corresponds to $a^4ce^4f^3h^8i^6$.

For any $v \in P_B$, the coordinate sum $\sum_{i=1}^n v^{(i)}$ coincides with $\sum_{i=1}^n \mu_i$, and this equals the degree of the Chow form C_B as a polynomial in the y_{it}. From this we get an alternative formula for the degree of our lattice ideal.

Corollary 2.5. The degree of the variety X_B equals $d_B = \frac{1}{2} \sum_{i=1}^n \mu_i$.
Counting lattice points in the polygon P_B gives an upper bound for the number of monomials appearing in the full discriminant D_X (see §3 below):

Remark 2.6. The number of lattice points in the polygon P_B equals

$$1 + \frac{1}{2} \left(\sum_{i=1}^{n} \gcd(b_{i1}, b_{i2}) + \sum_{1 \leq i < j \leq n} (b_{i2}b_{j1} - b_{i1}b_{j2}) \right)$$

Proof. This is a reformulation of Pick’s formula which states that the area of a lattice polygon equals the number of lattice points in that polygon minus half the number of lattice points in its boundary, minus one. \qed

If the lattice ideal I_B is a complete intersection then the denominator in Theorem 2.1 is 1 and we get a determinantal formula for the Chow form, namely, \tilde{C}_B equals the univariate resultant in the numerator, which can be computed as the determinant of a Sylvester or Bézoutian matrix.

It would be desirable to have a division-free determinantal formulas for the Chow form \tilde{C}_B of any codimension 2 lattice ideal. At this time we know such formulas only for special classes of matrices B. We present a formula for a class which includes the example in the Introduction. Recall from §4 that the lattice ideal I_B is Cohen-Macaulay if and only if I_B is generated by the 2×2-minors of a 2×3-matrix of monomials in x_1, \ldots, x_n:

$$\begin{pmatrix} m_1 & m_2 & m_3 \\ m_4 & m_5 & m_6 \end{pmatrix}.$$

Let d_i denote the total degree of the monomial m_i. In order for the lattice ideal I_B to be homogeneous it is necessary and sufficient that

$$d_1 + d_5 = d_2 + d_4 \quad \text{and} \quad d_1 + d_6 = d_3 + d_4.$$

For the following discussion we make an even more restrictive assumption:

$$d_1 = d_2 = d_3 \geq d_4 = d_5 = d_6. \quad (2.4)$$

We introduce four new indeterminates s, t, u, v. Let $m_i[t]$ denote the image of the monomial m_i under the substitution $x_i \mapsto y_{i1} + y_{i2}t$ for $i = 1, 2, \ldots, n$. We define the Bézout polynomial to be the following expression:

$$\frac{1}{(s-u)(t-v)} \cdot \det \begin{pmatrix} m_1[t] + m_4[t] \cdot s & m_1[t] + m_4[t] \cdot u & m_1[v] + m_4[v] \cdot u \\ m_2[t] + m_5[t] \cdot s & m_2[t] + m_5[t] \cdot u & m_2[v] + m_5[v] \cdot u \\ m_3[t] + m_6[t] \cdot s & m_3[t] + m_6[t] \cdot u & m_3[v] + m_6[v] \cdot u \end{pmatrix}.$$

7
Set $\delta := d_1 + d_4$. The Bézout polynomial can be written uniquely in the form

$$(1, v, v^2, \ldots, v^{d_1-1}, u, uv, uv^2, \ldots, uv^{d_4-1}) \cdot B \cdot \begin{pmatrix}
1 \\
t \\
\vdots \\
t^{d_4-1}
\end{pmatrix},$$

where $B = B(y_{ij})$ is a certain $\delta \times \delta$-matrix with entries in $k[y_{11}, y_{12}, \ldots, y_{n2}]$.

Theorem 2.7. If I_B is a Cohen-Macaulay lattice ideal of codimension 2 satisfying (2.4) then its Chow form \tilde{C}_B equals the determinant of $B(y_{ij})$.

Proof. Consider the rational normal scroll of type (d_1, d_4), a toric surface of degree δ in a projective space of dimension $\delta + 1$. Its Chow form has an exact determinantal formula in terms of a Bézout matrix. A nice proof of this fact follows from recent results of Eisenbud and Schreyer [2], since the rational normal scroll is given by the 2×2-minors of a matrix of variables. This Chow form is the unmixed, sparse resultant for three polynomials with support \[\{1, t, t^2, \ldots, t^{d_1}, s, st, st^2, \ldots, st^{d_4}\}. \]

The three polynomials $m_i[t] + m_{i+3}[t] \cdot s$ have exactly this support. Our formula is gotten by specializing the Bézout matrix for the scroll. \qed

Example 2.8. The ideal in (1.2) satisfies the hypotheses of Theorem 2.7, with $\delta = 4$. The matrix (1.4) is precisely the matrix $B(y_{ij})$ in this case. \qed

3 The full discriminant

There are two different ways of presenting a toric variety of codimension two: by an $n \times 2$-matrix B as in [1], or by an $(n - 2) \times n$-matrix A as in [4, §5.1]. The two matrices are *Gale dual*, which means that the image of B equals the kernel of A. Up to this point in the paper, we have only used the B-representation. We now make a switch and introduce the A-representation.

Let $A = (a_1, \ldots, a_n)$ be an $(n - 2) \times n$-integer matrix of rank $n - 2$, and suppose there exists a vector $w \in \mathbb{Q}^{n-2}$ such that $w \cdot a_i = 1$ for $i = 1, 2, \ldots, n$. We can choose an integral $n \times 2$ matrix B whose columns are a \mathbb{Z}-basis of $\ker_{\mathbb{Z}}(A)$. The matrix B has rank 2 and $A \cdot B = 0$. It is unique modulo right
multiplication by $GL(2, \mathbb{Z})$. Let $I_A = I_B$ denote the corresponding toric ideal in $k[x_1, \ldots, x_n]$ and $X = X_A = X_B$ the corresponding toric variety in \mathbb{P}^{n-1}.

Here it is important to note that not all integer matrices B arise as the Gale dual of some matrix A as above. For this it is necessary and sufficient that $\mathbb{Z}^n / \text{im}_{\mathbb{Z}}(B)$ is torsion-free, or equivalently, that the ideal I_B is prime.

The A-discriminant D_A is an irreducible polynomial in $\mathbb{Z}[x_1, \ldots, x_n]$ which vanishes under a specialization if the corresponding Laurent polynomial

$$f = \sum_{i=1}^n x_i \cdot t_1^{a_{i1}} t_2^{a_{i2}} \cdots t_{n-2}^{a_{in-2}}$$

where $x_1, \ldots, x_n \in \mathbb{C}^*$ has a multiple root (t_1, \ldots, t_{n-2}) in $(\mathbb{C}^*)^{n-2}$. Equivalently, the hypersurface $\{D_A = 0\}$ is projectively dual to the toric variety X, when the dual variety X^\vee is a hypersurface, and $D_A = 1$ otherwise; see [4, §1.1 and §9.1].

In the next section we give a formula for the A-discriminant D_A and its degree. In this section, we study a larger polynomial E_A which contains D_A as a factor. It is called the *principal A-determinant* in [4] but we prefer the term *full discriminant*. Actually, our full discriminant agrees with expression (1.1) in [4, 10.1.A], but there is a slight inaccuracy in [4, Theorem 10.1.2] since E_A does not generally have content 1. An extra integer factor is needed. This integer factor would be 2^{14} for the example (1.7) in the Introduction.

Before stating the definition of E_A, we first review the duality between primal and dual Plücker coordinates, and see how it ties in with Gale duality. For $1 \leq i < j \leq n$, let $B(i, j)$ the submatrix of B consisting of the i-th and j-th rows, and let $A(i, j)$ denote the submatrix of A gotten by omitting the i-th and j-th columns. Here signs are adjusted so that $\det A(i, j) = \det B(i, j)$, up to a global constant. In Section 2 we used an $n \times 2$ matrix $Y = (y_{i\ell})$ of indeterminates. The *primal Plücker coordinates* of our line are the $(n-2) \times (n-2)$-subdeterminants $\langle i j \rangle = \det Z\langle i j \rangle$ (with the sign adjusted as usual).

The dual Chow form \tilde{C}_B is a polynomial of degree d_B in the brackets (3.1). Replacing $[i j] \mapsto \langle i j \rangle$ in \tilde{C}_B gives a homogeneous polynomial of degree $(n-2)d_B$ in the variables z_{ij}. It is denoted C_A and called the *primal Chow form*. Note that C_A coincides with the A-resultant defined in [4, §8.2.A].
Definition 3.1. The full discriminant E_A is the image of the primal Chow form C_A under the specialization $z_{ij} \mapsto a_{ij} x_j$ for $i = 1, \ldots, n - 2, j = 1, \ldots, n$.

We next show how to compute the full discriminant directly from the dual Chow form \tilde{C}_B and hence from the formulas in Theorems 2.1 and 2.7.

Proposition 3.2. The full discriminant E_A and the dual Chow form $\tilde{C}_B(y_{i\ell})$ are related by the following formula:

$$E_A(x_1, \ldots, x_n) = (x_1 \ldots x_n)^{d_B} \cdot \tilde{C}_B(b_{i\ell}/x_i, i = 1, \ldots, n, \ell = 1, 2). \quad (3.2)$$

The exponent d_B is the degree of the toric variety X and hence coincides with the normalized volume of the $(n-3)$-dimensional polytope $\operatorname{conv}(A)$. Gale dual formulas for this volume are given in Corollaries 2.2 and 2.5.

Proof. The specialization $z_{ij} \mapsto a_{ij} x_j$ in Definition 3.1 is equivalent to

$$\langle r s \rangle \mapsto \det A(r, s) \prod_{k \neq r,s} x_k \quad \text{for } 1 \leq r < s \leq n \quad (3.3)$$

at the level of primal Plücker coordinates. The dual Chow form \tilde{C}_B is a \mathbb{Z}-linear combination of bracket terms $\prod[r s]$ of degree d_B. If we substitute $b_{i\ell}/x_i$ for $y_{i\ell}$ in the expansion of such a bracket term $\prod[r s]$ then we get

$$\prod[r s] \quad \mapsto \quad \prod (\det B(r, s)/(x_r x_s)) = \prod (\det A(r, s)/(x_r x_s)) = (x_1 \ldots x_n)^{-d_B} \cdot \prod (\det A(r, s) \prod_{k \neq r,s} x_k) \quad \leftrightarrow \quad (x_1 \ldots x_n)^{-d_B} \cdot \prod \langle r s \rangle$$

Hence the specialized dual Chow form on right hand side of (3.2) equals the specialization of the primal Chow form C_A under (3.3), as desired. \qed

It is known from [4, Theorem 10.1.2] that the full discriminant E_A is a product of irreducible factors $D_{A'}$ where A' ranges over facial discriminants. In particular, each monomial x_i corresponding to a vertex a_i of $\operatorname{conv}(A)$ appears to some positive power in the factorization of E_A. It is curious to note that the monomial factors disappear when we pass to dual coordinates.

We define the dual full discriminant by specializing the dual Chow form:

$$\tilde{E}_B(x_1, \ldots, x_n) = \tilde{C}_B(b_{i\ell} \cdot x_i, i = 1, \ldots, n, \ell = 1, 2). \quad (3.4)$$

Proposition 3.2 is equivalent to the reciprocity formula:

$$\tilde{E}_B(x_1, \ldots, x_n) = (x_1 \ldots x_n)^{d_B} \cdot E_A(1/x_1, \ldots, 1/x_n). \quad (3.5)$$
Lemma 3.3. The dual full discriminant \tilde{E}_B has no monomial factors.

Proof. Suppose that the variable x_i divides \tilde{E}_B. Then every bracket monomial appearing in the dual Chow form \tilde{C}_B contains the letter i. Equivalently, every bracket monomial in the primal Chow form C_A contains a bracket $\langle r \ s \rangle$ with $r = i$ or $s = i$. In view of \[4, Theorem 8.3.3\], this means that every regular triangulation of A contains a simplex for which a_i is not a vertex. But this is false, since a_i lies in every maximal simplex of the reverse lexicographic triangulation of A, for x_i smallest; see \[10, Proposition 8.6\].

The secondary polygon $\Sigma(A)$ of the configuration A coincides with the Newton polygon of the full discriminant E_A, by \[4, Theorem 10.1.4\]. It is a 2-dimensional convex polytope lying in \mathbb{R}^n. Let P_B be the polygon considered in Section 2. For $v \in P_B$, let $(v^{(1)}, \ldots, v^{(n)})$ be the vector defined in (2.3).

Theorem 3.4. The secondary polytope $\Sigma(A)$ is the image of the polygon P_B under the affine isomorphism which sends v to $(d_B - v^{(1)}, \ldots, d_B - v^{(n)})$.

Proof. It suffices to prove this theorem for the case when all b_i are non-zero. Indeed, if $b_{m+1} = \cdots = b_n = 0$ then \[4, Theorem 10.1.2\] implies that $E_A(x_1, \ldots, x_n) = (x_{m+1} \cdots x_n)^{d_B} \cdot E_A'(x_1, \ldots, x_m)$, where A' is a Gale dual of the configuration (b_1, \ldots, b_m). Our assertion for $\Sigma(A')$ implies that for $\Sigma(A)$. We hence assume that $b_i \neq 0$ for all $i = 1, \ldots, n$.

Each vertex $w = (w_1, \ldots, w_n)$ of $\Sigma(A)$ corresponds uniquely to the Gale dual of a regular triangulation Δ_w, and hence to a pair of adjacent linearly independent vectors b_k, b_{k+1} (indices are understood modulo n; recall that $\sum_i b_i = 0$). By \[4, Definition 7.1.6\], the i-th coordinate of w equals the sum of the normalized volumes of those simplices in Δ_w which contain the point a_i. By Gale duality, $w_i = \sum_{r,s} |\det(b_r, b_s)|$ where the sum is over all indices $r \neq i, s \neq i$ such that b_k and b_{k+1} lie in the cone spanned by b_r and b_s. Let v_w be the vertex of P_B between the edges parallel to b_k and b_{k+1}. We claim that $v_w \in \mathbb{Z}^2$ is mapped to $w \in \mathbb{Z}^n$ under the affine isomorphism given above.

We note that the maximum μ_i of the values $\det(b_i, v)$ is attained at the vertex $v \in P_B$ between the edges parallel to two independent vectors b_t, b_{t+1} such that $\det(b_t, b_k) \geq 0$ and $\det(b_t, b_{k+1}) < 0$ (indices modulo n). What we are claiming is the identity $w_i = d_B - \det(b_i, v) + \det(b_i, v_w)$.

Let C_k denote the set of index pairs (r, s) such that b_k and b_{k+1} lie in the cone spanned by b_r and b_s. The set C_k is Gale dual to our regular
triangle, and, hence \(d_B = \text{vol}(\text{conv}(A)) \) equals \(\sum_{(r,s) \in C_k} |\text{det}(b_r, b_s)| \). If we start drawing \(P_B \) from the origin, then, \(v = \sum_{j=1}^{\ell} b_j \) and \(v_w = \sum_{j=1}^{k} b_j \). Our assertion takes the following form:

\[
\sum_{(r,s) \in C_k, r \neq i, s \neq i} |\text{det}(b_r, b_s)| = \sum_{(r,s) \in C_k} |\text{det}(b_r, b_s)| - \sum_{j=1}^{\ell} \text{det}(b_i, b_j) + \sum_{j=1}^{k} \text{det}(b_i, b_j).
\]

After erasing equal terms on both sides, the following remains to be proved:

\[
\sum_{j=1}^{\ell} \text{det}(b_i, b_j) - \sum_{j=1}^{k} \text{det}(b_i, b_j) = \sum_{j:(i,j) \in C_k} |\text{det}(b_i, b_j)|.
\]

The proof is straightforward by a case distinction involving the relative positions of the vectors \(b_i, b_k, b_{k+1} \) and \(b_\ell \) in the plane.

Proof of Theorem 2.3: If \(b_1, \ldots, b_n \) span the lattice \(\mathbb{Z}^2 \) then we find a corresponding matrix \(A \), and Theorem 2.3 follows directly from Theorem 3.4 and the reciprocity formula (3.5). Otherwise, the scheme \(X_B \) is the equidimensional union of \(r > 1 \) torus translates of a fixed toric variety \(X_{B'} \). Following [1, §4.1.A], the Chow form \(\tilde{C}_B \) factors into \(r \) irreducible polynomials, each of which is a torus translate of the irreducible Chow form \(\tilde{C}_{B'} \). Therefore the Chow polygon \(CP_B \) equals \(r \cdot CP_{B'} \). The configuration \(B' \) is \(GL(\mathbb{R}^2) \)-equivalent to \(B \), and it does possess a Gale dual \(A' \). Our assertion holds for \(CP_{B'} \) and it follows for \(CP_B \) by scaling.

Let us now take a look at what happens to the formula in Theorem 2.1 under the specialization \(y_i \ell \mapsto b_\ell x_i \) in (3.4). A line through the origin in \(\mathbb{R}^2 \) is said to be relevant if it contains two vectors \(b_r, b_s \) in opposite directions. So, if the rows of \(B \) are in general position, then there are no relevant lines. The example in the introduction has three relevant lines.

Consider the specializations of the two polynomials \(H_\ell(t) \) in (2.2):

\[
h_\ell(t) := \prod_{i:b_i \ell > 0} (b_{i1} + b_{i2}t)^{b_{i\ell}} x_i^{b_{i\ell}} - \prod_{i:b_i \ell < 0} (b_{i1} + b_{i2}t)^{-b_{i\ell}} x_i^{-b_{i\ell}}, \quad \ell = 1, 2.
\]

(3.6)

Remark 3.5. The polynomials \(h_1, h_2 \) have a common factor if and only if there exist a relevant line which is not a coordinate axis.
The presence of two vectors b_r, b_s in opposite directions in the interior of two quadrants then causes the resultant $\text{Res}_t(h_1, h_2)$ to vanish. Also, $\det(B(r, s)) = 0$, while $\nu_{rs} \neq 0$. When there are two opposite vectors on a coordinate axis, both numbers are zero and $\det(B(r, s))^{\nu_{rs}} = 1$. We deduce:

Proposition 3.6. Assume there are no relevant lines for the configuration B except for the coordinate axes. Then the dual full discriminant equals

$$\tilde{E}_B = \frac{\text{Res}_t(h_1, h_2)}{\prod_{1 \leq r < s \leq n} \det(B(r, s))^{\nu_{rs}} \prod_{1 \leq r < s \leq n} (x_r \cdot x_s)^{\nu_{rs}}}.$$

In the next section we will show how to use Theorem 2.1 to compute discriminants even if the hypothesis of the above proposition is not satisfied.

4 The A-discriminant

Let $A \in \mathbb{Z}^{(n-2) \times n}$ and $B \in \mathbb{Z}^{n \times 2}$ be Gale dual matrices as before, and let X be the corresponding toric variety of codimension 2 in \mathbb{P}^{n-1}. The A-discriminant D_A is the defining irreducible polynomial of the dual variety X^\vee, unless $\text{codim}(X^\vee) > 1$ in which case $D_A = 1$. Gel’fand, Kapranov and Zelevinsky [4, Theorem 10.1.2] proved that D_A appears with exponent one in the factorization of the full discriminant E_A. In this section we compute D_A and all other factors of E_A in terms of the row vectors $b_i \in \mathbb{R}^2$ of B.

Throughout this section we shall assume that $b_i \neq 0$ for $i = 1, \ldots, n$. This means that X is not a cone over a coordinate point, or that X^\vee does not lie in a coordinate hyperplane. All results in Section 4 require this hypothesis.

Each relevant line in the plane is identified with one of the two primitive vectors $v \in \mathbb{Z}^2$ on that line. We abbreviate $b_i(v) := \det(b_i, v)$. With each such line v, we associate a codimension one discriminant as in (1.1).

$$D_v := \prod_{j: b_j(v) < 0} (b_j(v))^{-b_j(v)} \prod_{i: b_i(v) > 0} x_i^b_i + \prod_{i: b_i(v) > 0} \prod_{j: b_j(v) < 0} x_j^{-b_j(v)}.$$

Let b_{i1}, \ldots, b_{is} be all the row vectors of B which lie on the relevant line v. There is a unique integer vector $(\lambda_1, \ldots, \lambda_s)$ such that $b_{ij} = \lambda_j \cdot v$ for $j = 1, \ldots, s$. We direct the primitive vector $v \in \mathbb{Z}^2$ so that the coordinate sum $\alpha_v := \lambda_1 + \cdots + \lambda_s$ is nonnegative, and we define $\delta_v := \sum\{-\lambda_i : \lambda_i < 0\}$. Using this notation, Remark 3.5 can now be refined as follows:
Remark 4.1. If \(v = (v_1, v_2) \) is a relevant line for \(B \) then \(v_1 + v_2t \) appears with exponent \(\delta_v \cdot v_i \) in the factorization of the polynomial \(h_i(t) \) in (3.6).

Denote by \(p_1(t), p_2(t) \) the respective remaining factors, that is,
\[
h_\ell(t) = p_\ell(t) \cdot \prod_{v \text{ relevant}} (v_1 + v_2t)^{\delta_v \cdot v_i} \quad \ell = 1, 2.
\]

Now the resultant \(r_B := \text{Res}_t(p_1, p_2) \) is a non-zero polynomial in \(x_1, \ldots, x_n \). It is customary to call \(r_B \) the residual resultant of \(h_1 \) and \(h_2 \). We shall prove the following formulas for the full discriminant and the \(A \)-discriminant.

Theorem 4.2. There exist monomials \(x^u, x^{u'} \) and integers \(v, v' \) such that
\[
D_A(x_1, \ldots, x_n) = \left(\frac{1}{v} \right) \cdot x^u \cdot r_B(1/x_1, \ldots, 1/x_n) \quad \text{and}
\]
\[
E_A(x_1, \ldots, x_n) = v' \cdot x^{u'} \cdot D_A(x_1, \ldots, x_n) \cdot \prod_{v \text{ relevant}} D_v(x_1, \ldots, x_n)^{\delta_v}.
\]

Proof. We shall first prove the following claim about the full discriminant:
\[
r_B(1/x_1, \ldots, 1/x_n) \cdot \prod_{v \text{ relevant}} D_v(x_1, \ldots, x_n)^{\delta_v} \text{ divides } E_A(x_1, \ldots, x_n)
\]
in the Laurent polynomial ring \(k[x_1, \ldots, x_n, x_1^{-1}, \ldots, x_n^{-1}] \).

Fix any relevant line \(v \). Choose an isomorphism in \(SL_2(\mathbb{Z}) \) which maps \(v \) to \((0, 1)\), and apply this isomorphism to the rows of \(B \). Also reorder the rows of \(B \) so that the multiples of \(v \) come first. After this transformation, the first column of \(B \) has the entries \(0, \ldots, 0, b_{s+1}^{(v)}, b_{s+2}^{(v)}, \ldots, b_n^{(v)} \).

For \(\ell = 1, 2 \) and \(i = 1, \ldots, s \) only, substitute \(y_{i\ell} = b_{i\ell}/x_i \) into the Chow form \(C_B \). Let \(\bar{H}_\ell \) be the polynomials resulting from \(H_\ell \) in (2.2) under the same substitution. Then \(\bar{H}_1 = H_1 \), but \(\bar{H}_2 \) is divisible by \(t^{\delta_v} \), and this is the highest possible power of \(t \) with this property (cf. Remark 4.1). Theorem 2.1 implies that the specialized Chow form factors, and one of its factors is
\[
\text{Res}_t(H_1, t^{\delta_v}) = (H_1(0))^{\delta_v} \quad (4.3)
\]
For all subsequent specializations, the Chow form factors accordingly. When we substitute \(y_{i\ell} = b_{i\ell}/x_i \) for \(i = s + 1, \ldots, n, \ell = 1, 2 \), into \(H_1(0) \) then we get the binomial \(D_v \) in (1.1). Clearly, the residual resultant \(r_B \) divides the full discriminant \(\bar{E}_B \). The above claim follows from this. Moreover, our argument shows that \(D_v^{\delta_v} \) is the highest power of \(D_v \) which divides \(E_A \).
Consider now the factorization formula given by Gel’fand, Kapranov and Zelevinsky in [4, Theorem 10.1.2]. Under Gale duality, the proper faces of the polytope \(\text{conv}(A) \) which are not simplices correspond to relevant lines \(v \), and their face discriminants are precisely the binomials \(D_v \). In other words, the full discriminant \(E_A \) equals the \(A \)-discriminant \(D_A \) times the product of the expressions \(D_v^{\delta_v} \) where \(v \) ranges over all relevant lines. We conclude from our claim that \(r_B(1/x_1, \ldots, 1/x_n) \) divides \(D_A(x_1, \ldots, x_n) \) in the Laurent polynomial ring. Since \(D_A \) is irreducible, both of our assertions follow.

We next compute the Newton polygon of the \(A \)-discriminant. Define

\[
b_v := \alpha_v \cdot v = b_{i_1} + \cdots + b_{i_s}
\]

for any relevant line \(v \). It may happen that \(b_v = 0 \). We take all non-zero vectors \(b_v \) and all vectors \(b_i \) which do not lie in relevant lines, and we order them counterclockwise in cyclic order. Let \(Q_B \) denote the unique (up to translation) lattice polygon whose boundary consists of these directed edges. For any \(i = 1, \ldots, n \) and any lattice point \(v \) in \(Q_B \), we define

\[
\nu_i := \min\{ \det(b_i, u), u \in Q_B \} \quad \text{and} \quad \overline{\nu}^{(i)} := \det(b_i, v) - \nu_i. \quad (4.4)
\]

Hence, \(\overline{\nu}^{(i)} \in \mathbb{Z}_{\geq 0} \) is the normalized lattice distance from \(v \) to the boundary of \(Q_B \), in the direction orthogonal to \(b_i \).

Theorem 4.3. The Newton polygon \(N(D_A) \) of the \(A \)-discriminant \(D_A \) is the image of the polygon \(Q_B \) under the affine isomorphism \(v \mapsto (\nu^{(1)}, \ldots, \nu^{(n)}) \).

Proof. Suppose first that there are no relevant lines. Then, \(Q_B = P_B \), and the secondary polygon \(\Sigma(A) \) and the Newton polygon \(N(D_A) \) are equal up to translation. More precisely, \(\Sigma(A) = N(D_A) + \alpha \) where \(\alpha_i \) is the exponent of \(x_i \) as a factor of \(E_A \). Using [4, Theorem 10.1.2] and Gale duality, we find

\[
\alpha_i = d_B - \sum_{j: \det(b_i, b_j) > 0} \det(b_i, b_j).
\]

In light of Theorem 3.4, it suffices to show that

\[
d_B - \mu_i + \det(b_i, v) = \alpha_i + \det(b_i, v) - \nu_i \quad \text{for all} \quad v \in Q_B, \quad i = 1, \ldots, n.
\]

After cancelling terms common to both sides, what remains to be shown is

\[
\sum_{j: \det(b_i, b_j) > 0} \det(b_i, b_j) = \mu_i - \nu_i.
\]
This identity holds because both sides are equal to the normalized lattice width of the polygon $Q_B = P_B$ in the direction orthogonal to b_i.

We next assume that relevant lines exist. Then ν_i generally differs from $\nu_i' := \min\{\det(b_i, u), u \in P_B\}$. The secondary polytope $\Sigma(A)$ equals $N(D_A) + \alpha$ plus the Minkowski sum of the Newton segments of the binomials \((4.1)\) where v runs over all relevant lines. Hence, up to lattice translation,

$$P_B = Q_B + \sum_{v \text{ relevant}} \text{conv}\{0, v\}. \quad (4.5)$$

The minimum value of the linear functional $\det(b_i, \ast)$ over the line segment convex hull $\text{conv}\{0, v\}$ is $\det(b_i, v)$, when this value is negative and zero otherwise. Therefore \((4.3)\) translates into the identity

$$\nu_i' = \nu_i + \sum_{v \text{ relevant}} \delta_v \cdot \min\{0, \det(b_i, v)\} \quad \text{for } i = 1, \ldots, n.$$

The argument for the case of no relevant lines now completes the proof. \(\Box\)

We deduce the following formula for the degree of the A-discriminant:

Corollary 4.4.

$$\text{degree}(D_A) = - \sum_{i=1}^{n} \nu_i$$

We can also extract the following characterization from Theorem 4.3.

Corollary 4.5. The A-discriminant D_A is equal to 1 if and only if the polygon P_B is centrally symmetric.

Proof. The condition $D_A = 1$ is equivalent to Q_B being a point. This happens if and only if all vectors b_i lie in a relevant line, and $\alpha_v = 0$ for each relevant line v. This last condition is equivalent to P_B being centrally symmetric. \(\square\)

The following variant to the formula of Theorem 4.2 works well in practice for computing the A-discriminant D_A. In the affine plane with coordinates (w_1, w_2), consider the following parametrically presented rational curve:

$$w_\ell = \prod_{i=1}^{n} (b_{i1} + b_{i2} \ell)^{b_{i\ell}}, \quad \ell = 1, 2. \quad (4.6)$$
This is the Horn uniformization in [1, §9.3.C]. Let $\Delta(w_1, w_2)$ be the irreducible polynomial defining this curve. This is a dehomogenization of the A-discriminant, by Theorem 4.2 or by [1, Theorem 9.3.3. (a)]. More precisely,
\[
D_A(x_1, \ldots, x_n) = (\text{a monomial}) \cdot \Delta(\prod_{i=1}^{n} x_i^{b_{i1}}, \prod_{i=1}^{n} x_i^{b_{i2}}). \quad (4.7)
\]
The common factors in the numerator and denominator of (4.6) are precisely the relevant lines which are not a coordinate axis. In other words, cancelling common factors in (4.6) is equivalent to replacing $h_i(t)$ by $p_i(t)$ in (4.2).

We can get a description of the Newton polygon $N(\Delta)$ of $\Delta(w_1, w_2)$ by “dehomogenizing” the result in Theorem 4.3 as follows. Let $b_{\perp}^i := (b_{i2}, -b_{i1})$ and note that $-\det(b_i, v)$ equals the inner product $\langle b_{\perp}^i, v \rangle$.

Corollary 4.6. Let $B_{\perp} = \{b_{\perp}^1, \ldots, b_{\perp}^n\}$ and consider the polygon $Q_{B_{\perp}}$ translated so that it lies in the first quadrant and its boundary intersects both coordinate axes. Then $N(\Delta) = Q_{B_{\perp}}$.

This result has been obtained independently by Sadykov [8], under the hypothesis that there are no relevant lines outside the coordinate axes.

Example 4.7. We consider the toric 3-fold of degree 43 in \mathbb{P}^5 which appears as Example 5.10 in [4]. It is defined by the 6×2 integer matrix B with row vectors $(2, 3), (-1, 4), (-5, 1), (3, -1), (2, -3), (3, -2)$. The lattice ideal I_B has seven minimal generators. There are no relevant lines. The polygon $P_B = Q_B$ is a hexagon. Using Remark 2.6 we find that Q_B contains 40 lattice points. They correspond to the 40 terms in the A-discriminant D_A. The 6 vertices of P_B correspond to the various leading terms in D_A. Using (4.7) in any computer algebra system we easily compute:

\[
D_A = - (7)^7 (17)^{17} (19)^{19} x_1^{16} x_4^{11} x_5^{23} x_6^{22}
- (2)^{34} (3)^{15} (5)^{15} (13)^{13} x_1^{20} x_2^{36} x_3^{11} x_6^5
+ (2)^{10} (5)^{15} (11)^{11} (17)^{17} x_1^{23} x_2^{19} x_5^{13} x_6^{17}
+ (2)^{64} (7)^{14} (13)^{13} x_3^{19} x_4^{28} x_5^{16} x_6^9
+ (3)^{21} (7)^7 (11)^{11} (13)^{13} x_2^{16} x_3^{26} x_4^{25} x_5^{5}
- (2)^{10} (5)^{15} (11)^{11} (17)^{17} x_1^{9} x_2^{29} x_3^{21} x_4^{13}
+ \text{interior terms}.
\]

We invite the reader to draw Q_B and verify Theorem 4.3 for this example. \[\square\]
5 Resultants having Newton triangles

Mixed resultants form a subclass among all discriminants, by the Cayley trick of elimination theory [4, §9.1.A]. This subclass is important for the theory of hypergeometric functions: conjecturally, it consists of the denominators of rational hypergeometric functions [1, Conjecture 1.4]. In this section we examine the Cayley construction and mixed resultants in codimension 2.

The Gale dual of a Cayley configuration A is a $(2r + 3) \times 2$-matrix

$$B = \begin{pmatrix} b_1, b_2, \ldots, b_r, c_1, c_2, -b_1, \ldots, -b_r, -c_1 - c_2 \end{pmatrix}^T,$$

where the rows of the submatrix $\tilde{B} := (b_1, b_2, \ldots, b_r, c_1, c_2)^T$ span \mathbb{Z}^2. We assume that all b_i are non-zero and $\det(c_1, c_2) \neq 0$. By Corollary 4.5, $D_A \neq 1$.

Fix an $r \times (r+2)$-matrix Gale dual to \tilde{B} whose left $r \times r$-minor is diagonal:

$$\tilde{A} = \begin{pmatrix} \gamma_1 & \alpha_1 & \beta_1 \\ \vdots & \vdots & \vdots \\ \gamma_r & \alpha_r & \beta_r \end{pmatrix}$$

where $\gamma_i \in \mathbb{Z}_{>0}$ and $(\alpha_i, \beta_i) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$.

This matrix lifts to a $(2r + 1) \times (2r + 3)$-matrix Gale dual to B as follows:

$$A = \begin{pmatrix} \tilde{A} & 0 \\ I_{r+1} e_{r+1} & I_{r+1} \end{pmatrix},$$

where I_{r+1} is the unit matrix of size $r + 1$ and $e_{r+1} = (0, 0, \ldots, 0, 1)^T$. The columns of A index the coefficients in a sparse system of $r + 1$ equations:

$$f_0 = z_1 \cdot t_1^{\alpha_1} \cdots t_r^{\alpha_r} + z_2 \cdot t_1^{\beta_1} \cdots t_r^{\beta_r} + z_3$$

$$f_i = x_i \cdot t_i^{\gamma_i} + y_i \quad \text{for } i = 1, \ldots, r.$$ (5.1)

This system consists of r binomials and one Laurent trinomial, as in (1.8). The sparse resultant $\text{Res}(f_0, f_1, \ldots, f_r)$ is the unique (up to sign) irreducible polynomial in $x_1, \ldots, x_r, y_1, \ldots, y_r, z_1, z_2, z_3$ which vanishes when the system has a common root (t_1, \ldots, t_r) in the r-torus. From [4, Prop. 9.1.7] we get:

Remark 5.1. The A-discriminant D_A equals the sparse resultant of f_0, \ldots, f_r.

We now apply the product formula for resultants [4], which amounts to evaluating f_0 at the common zeros of f_1, \ldots, f_r. The number of zeroes equals

$$\Gamma := \gamma_1 \gamma_2 \cdots \gamma_r = |\det(c_1, c_2)|.$$

Let η_i denote a primitive γ_i-th root of unity. The product formula implies:
Proposition 5.2. Up to a Laurent monomial factor, the \(A \)-discriminant is

\[
D_A = \text{monomial} \cdot \prod_{i_1=1}^{\gamma_1} \cdots \prod_{i_r=1}^{\gamma_r} f_0(\eta_1^{i_1} z_1, \eta_2^{i_2} z_2, \ldots, \eta_r^{i_r} z_r)
\]

where \(z_i = \left(-\frac{y_i}{x_i} \right)^{1/\gamma_i} \) for \(i = 1, \ldots, r \).

Since \(f_0 \) is a trinomial, this formula gives an upper bound of \(\left(\frac{\Gamma+2}{2} \right) \) for the number of terms appearing in the expansion of \(D_A = \text{Res}(f_0, \ldots, f_r) \). This bound is quadratic in \(\Gamma \). In truth, this number grows linearly in \(\Gamma \).

Theorem 5.3. The number of terms appearing in \(D_A \) is at most \(\frac{5}{4} \cdot \Gamma + \frac{7}{4} \).

This bound is tight if the vectors \(c_1 \) and \(c_2 \) span the lattice \(\mathbb{Z}^2 \). In this case, \(\Gamma = \det(c_1, c_2) = 1 \) and the resultant \(D_A \) has three terms. It is also tight for the example in the Introduction, where \(\Gamma = 4 \) and \(D_A \) has six terms.

Proof. According to Theorem 4.3, the Newton polygon of the discriminant \(D_A \) is essentially the lattice triangle \(Q_B = \text{conv}\{0, c_1, c_2\} \). The number of terms in \(D_A \) is at most the number of lattice points in \(Q_B \). Using Pick’s formula as in Remark 2.6, we find that the number \(\#(Q_B \cap \mathbb{Z}^2) \) equals

\[
1 + \frac{1}{2} \left(|\det(c_1, c_2)| + \gcd(c_{11}, c_{12}) + \gcd(c_{21}, c_{22}) + \gcd(c_{11}+c_{21}, c_{12}+c_{22}) \right).
\]

Using the inequality \(a + b \leq ab + 1 \), we find that the sum of any two of the three last summands is bounded above by \(\Gamma + 1 = |\det(c_1, c_2)| + 1 \). Therefore,

\[
\#(Q_B \cap \mathbb{Z}^2) \leq 1 + \frac{1}{2} \cdot \left(\Gamma + \frac{3}{2} \cdot (\Gamma + 1) \right).
\]

This is the desired inequality.

Acknowledgements: We are grateful to Eduardo Cattani for helpful discussions and to Laura Matusevich and Thorsten Theobald for comments on an earlier draft. Alicia Dickenstein was supported by UBACYT TX94, ANPCyT Grant 03-6568 and CONICET, Argentina. Bernd Sturmfels was supported by NSF Grant DMS-9970254 and the Miller Institute at UC Berkeley.
References

[1] E. Cattani, A. Dickenstein, and B. Sturmfels, Rational hypergeometric functions, to appear in *Compositio Mathematica*.

[2] D. Eisenbud and F. Schreyer: Chow forms and resultants via exterior algebra, in preparation.

[3] I. M. Gel’fand, A. Zelevinsky, and M. Kapranov: Hypergeometric functions and toric varieties, *Funct. Anal. Appl.* 23 (1989) 94–106.

[4] I. M. Gel’fand, M. Kapranov, and A. Zelevinsky: * Discriminants, Resultants and Multidimensional Determinants*, Birkhäuser, Boston, 1994.

[5] D. Morrison and M.R. Plesser: Summing the instantons, quantum cohomology and mirror symmetry in toric varieties, *Nuclear Physics B* 440 (1995) 279–354.

[6] P. Pedersen and B. Sturmfels: Product formulas for resultants and Chow forms, *Mathematische Zeitschrift* 214 (1993) 377–396.

[7] I. Peeva and B. Sturmfels: Syzygies of codimension 2 lattice ideals, *Mathematische Zeitschrift* 229 (1998) 163–194.

[8] T. M. Sadykov: The Hadamard product of hypergeometric series, Preprint, http://www.matematik.su.se/reports/2001/.

[9] B. Sturmfels: Sparse elimination theory, in “*Computational Algebraic Geometry and Commutative Algebra*” [D. Eisenbud and L. Robbiano, eds.], Cambridge University Press, 1993, pp. 264–298.

[10] B. Sturmfels: *Gröbner Bases and Convex Polytopes*, American Mathematical Society, 1995.

Alicia Dickenstein
alidick@dm.uba.ar
Dto. de Matemática, FCEyN, Universidad de Buenos Aires (1428) Buenos Aires, Argentina

Bernd Sturmfels
bernd@math.berkeley.edu
Dept. of Mathematics, University of California Berkeley, CA 94720, USA