Superballistic boundary conductance and hydrodynamic transport in microstructures

O. E. Raichev
Institute of Semiconductor Physics, NAS of Ukraine, Prospekt Nauki 41, 03028 Kyiv, Ukraine

(Dated: February 15, 2022)

It is shown that the ideal boundary between a perfectly conducting electrode and electron liquid state acts as a contact whose conductance per unit area is higher than the fundamental Sharvin conductance by a numerical coefficient 2α, where α is slightly smaller than unity and depends on the dimensionality of the system. If the boundary has a finite curvature, an additional correction to the boundary conductance appears, which is parametrically small as a product of the curvature by the electron-electron mean free path length. The relation of the normal current density to the voltage between the electrode and electron liquid represents itself a hydrodynamic boundary condition for current-penetrable boundary. Calculations of the conductance and potential distribution in microstructures by means of numerical solution of the Boltzmann equation show that the concept of boundary conductance works very good when the hydrodynamic transport regime is reached. The superballistic transport, when the device conductance is higher than the Sharvin conductance, can be realized in Corbino disk devices not only in the hydrodynamic regime, although requires that the electron-electron scattering must be stronger than the momentum-relaxing scattering. The theoretical results for Corbino disks are consistent with recent experimental findings.

I. INTRODUCTION

In the last years, there is a large progress in the studies of the hydrodynamic transport regime for electron gas in solid state conductors, when electron motion resembles the dynamics of viscous fluids [3]-[10]. This regime takes place under condition that the mean free path length with respect to momentum-conserving electron-electron (ee) scattering, l_{ee}, is much smaller than the other characteristic lengths of the system, namely the transport mean free path length l_T describing momentum-relaxing (electron-impurity and electron-phonon) scattering and the lengths relevant to the conductor geometry. Since l_{ee} rapidly decreases with temperature, $l_{ee} \propto T^{-2}$, the hydrodynamic regime can be reached by increasing electron temperature in high-mobility two-dimensional (2D) electron gas, where l_T is minimized. Among numerous fascinating manifestations of the hydrodynamic behavior, it has been found [21, 21, 39, 39, 40] that the conductance of microcontacts in the hydrodynamic regime can be higher than the conductance in the ballistic transport regime. This property, often called as superballistic transport, has been experimentally verified in narrow 2D constrictions (point contacts) with widths of the order of one micron, based on graphene [21] and GaAs heterostructures [39]. Recently, the signatures of superballistic behavior have been also detected in high-quality graphene Corbino disks of several micron size [41].

The fundamental upper bound of the ballistic conductance is given by the Sharvin conductance equal to the conductance quantum $e^2/2\pi\hbar$ multiplied by the number of quantum channels able to carry the electrons through the contact (open channels). In the case of classical transport, this number is large and proportional to the area of the contact. The ideal ballistic Sharvin contact can be viewed as a hole in a thin non-penetrable wall separating two regions where electron gas stays in quasi-equilibrium characterized by different electrochemical potentials U_1 and U_0 [41]. A similar setup is realized in a point contact representing a smooth constriction between two regions, so the hole is identified with the narrowest place of this constriction. The Sharvin contact can be also created by placing a thin conducting layer, where electrons move ballistically, between two perfectly conducting electrodes, also called below as leads, as shown in Fig. 1 (a). It is assumed that the boundaries between the leads and the layer are ideal so that electrons pass them without backscattering. All such systems are characterized by the Sharvin conductance $G_S = I/U$, where I is the total current passing through the contact and $U = U_1 - U_0$ is the applied voltage. In the case of sharp contact boundaries (Fig. 1), it is also convenient to introduce the normal current density j_n and the Sharvin conductance per unit square of the contact area (for 2D case, per unit length), $G_S = j_n/U$. This conductance depends on the electron energy spectrum, electron density n, and temperature T.

The theoretical explanation of the superballistic transport in constrictions [20, 21, 39] is based on the fact that in the hydrodynamic regime the motion of electrons is collective and differs from the individual electron motion in the ballistic (Knudsen) regime. The Landauer interpretation of the contact conductance in the form given above is no longer valid for such hydrodynamic flow, though the concept of quantum channels still remains [39]. The number of these channels varies along the constriction, dropping down to the number of open channels in the narrowest place. In the process of motion, electron-electron scattering transfers carriers from the terminated channels, in which the ballistic electrons would scatter back, to the open channels, thereby helping them to pass the contact. To summarize, though the number of open channels remains the same, the electrons in the hydrodynamic regime use these channels more often than in the ballistic regime, so the conductance increases. The theory [20, 39] predicts that the conductance increases over the Sharvin one by a factor proportional to the con-
on dimensionality as well as on the model of electron-electron collision integral. Thus, the contact between the lead and the electron system in the hydrodynamic state is superballistic. However, in contrast to the constriction described above, such a contact cannot provide arbitrary large conductance. Section III contains calculations of the conductance and potential profile for the devices of highly symmetric geometries shown in Fig. 1 (c,d) for different transport regimes. In particular, it is shown that the Corbino disk devices can demonstrate the superballistic conductance caused by strong electron-electron interaction, and not only in the hydrodynamic regime. Concluding remarks are given in Sec. IV.

II. BOUNDARY CONDUCTANCE

Since the interface between the perfectly conducting electrode and the hydrodynamic electron state spreads over the Knudsen layer width, which is much smaller than any other hydrodynamic length parameter of the system, it is sufficient to consider a homogeneous flat contact boundary and a constant normal current density \(j_n \), as shown in Fig. 2 (b). The current density is constant according to the continuity equation \(\nabla \cdot \mathbf{j} = 0 \). A tangential current density can also be present in the system, but it is not relevant for calculations of the boundary conductance because the tangential current does not affect the normal current and potential distribution on the scale of the Knudsen layer width estimated as \(l_c \). This statement remains true even in the presence of a magnetic field parallel to the boundary if this field is sufficiently weak so the cyclotron radius is much larger than \(l_c \).

The Knudsen layer exists because the distribution of electron momenta at the boundary is affected by injection of the electrons from the lead and, therefore, is different from the one in the hydrodynamic state. Thus, some space is needed to accommodate this distribution to the hydrodynamic form, which is achieved owing to electron-electron interaction. Description of the transport within the Knudsen layer requires solution of the Boltzmann kinetic equation for the distribution function of electrons in the system, \(f_p(r) \), where \(p \) is the electron momentum and \(r \) is the coordinate. The energy spectrum of electrons, \(\varepsilon = \varepsilon_p \), is assumed to be isotropic. In the linear transport regime, it is convenient to present the distribution function as

\[
f_p(r) = f_e + \delta f_p(r) = f_e - [g_p(r) - e\Phi(r)] \partial_\varepsilon f,
\]

where \(f_e \) is the equilibrium Fermi-Dirac distribution, \(\partial_\varepsilon f = \partial f_e / \partial \varepsilon \) and \(\Phi(r) \) is the electrostatic potential that is equal to zero in equilibrium. The function \(g_p(r) \) describes the non-equilibrium response. In particular, the current density is

\[
j(r) = e \int d\varepsilon D_\varepsilon \nabla_p g_p(r)(-\partial_\varepsilon f),
\]
where D_e is the density of states and v_{p} is the group velocity. The overline symbol denotes averaging over the angles of momentum. The non-equilibrium part of the chemical potential, $V(r)$, is determined by the isotropic part of g_{p}, denoted below as \overline{g}:

$$eV(r) = \langle \overline{g_{p}}(r) \rangle = \langle \overline{g}(r) \rangle. \quad (4)$$

Here and below, the average of an arbitrary function F over energy is defined as

$$\langle F \rangle \equiv \int dz D_{z} v_{z} p_{z} (-\partial_{z} f) F_{z}/nd,$$

in view of the identity $nd = \int dz D_{z} v_{z} p_{z} (-\partial_{z} f)$, where v and p are the absolute values of the group velocity and momentum, and d is the dimensionality of the system.

Equation (4) is consistent with the definition $V(r) = \delta \mu(r)/e + \Phi(r)$, where $\delta \mu(r)$ is the non-equilibrium part of the chemical potential. In the hydrodynamic regime, when $\delta V_{\beta}(r) = -\delta \mu(r) \partial_{z} f$, $\overline{g}(r)$ is energy-independent and $\overline{g}(r) = eV(r)$. For degenerate electron gas, the average over energy fixes the energy variable at the Fermi energy, $e = e_F$, so $eV(r)$ is equal to $\overline{g}(r)$ taken at the Fermi energy.

The function $g_{p}(r)$ can be expanded in series of angular harmonics as

$$g_{p} = \overline{g} + g_{a} c_{\alpha} + Q_{\alpha \beta} (c_{\alpha} b_{\beta} - \delta_{\alpha \beta}/d) + \ldots, \quad (5)$$

where α and β are the Cartesian coordinate indices (the repeated indices, by convention, imply summation over them), and $\mathbf{e} = \mathbf{p}/p$ is the unit vector along the momentum. The vector $g_{\alpha} = \partial_{\alpha} \overline{g_{p}}$ and the tensor $Q_{\alpha \beta}$ depend on energy and coordinate. They are related to the drift velocity $u_{\alpha} = j_{\alpha}/en$ and to the momentum flux density tensor $\Pi_{\alpha \beta}$ as $u_{\alpha} = \langle g_{\alpha} p \rangle$ and $\Pi_{\alpha \beta} = 2n\langle Q_{\alpha \beta} \rangle/(d+2)$. In the hydrodynamic regime, $g_{\alpha} = pu_{\alpha}$ and $Q_{\alpha \beta} = -pu_{\beta} / 2 (\nabla_{\beta} u_{\alpha} + \nabla_{\alpha} u_{\beta})$, where τ is the relaxation time of the second angular harmonic of the distribution function, while the higher-order terms, denoted in Eq. (5) by the dots, should be neglected. The quantity $-\Pi_{\alpha \beta}$ describes the viscous stress tensor, $-\Pi_{\alpha \beta} = \eta (\nabla_{\beta} u_{\alpha} + \nabla_{\alpha} u_{\beta})$, where $\eta = n (pv_{p})/(d+2)$ is the dynamic viscosity.

Below, the axis normal to the boundary is chosen as Oy and the boundary is placed at $y = 0$, Fig. 1 (b). The electrons moving to the right and to the left are described by the distribution functions $f_{p}^{+} = f_{p}|_{p_{y}>0}$ and $f_{p}^{-} = f_{p}|_{p_{y}<0}$, respectively, defined in the momentum half-space $p_{y} = p \sin \varphi > 0$. The functions g_{p}^{\pm} are introduced in a similar way. The boundary condition at the left side, $y = 0$, is written as

$$g_{p}^{+} \big|_{y=0} = eU_{1}, \quad (6)$$

which corresponds to representation of f_{p}^{+} as an isotropic Fermi-Dirac distribution characterized by the quasi-Fermi level of the left electrode. This is a particular case of the in-flow boundary condition applied to current-penetrable boundaries in kinetic theory [42, 43], and its form is justified by the basic assumptions that the electron density and conductivity in the electrode are much larger than those in the electron system at $y > 0$, and that the electrons pass the boundary without backscattering. The boundary condition at the right side, $y \gg l_{c}$, is derived from the known form of the distribution function, Eq. (5), taken in the hydrodynamic transport regime. Since the drift velocity is constant, the viscous stress at $y \gg l_{c}$ is zero, so that $g_{p} = eV + p_{y} u_{y}$ and the boundary condition is

$$g_{p}^{-} \big|_{y>l_{c}} = eV - (p/en)j_{n} \sin \varphi, \quad (7)$$

since $u_{y} = j_{n}/en$ and $p_{y} = \pm p \sin \varphi$ for $\varphi \in [0, \pi]$ in g_{p}^{\pm}. The normal current density j_{n} is constant everywhere. According to Eq. (3), j_{n} at $y = 0$ is written as

$$j_{n} = e \int dz D_{z} v_{z} (-\partial_{z} f) \left[(g_{p}^{+}(0) - g_{p}^{-}(0)) \sin \varphi + \right. \quad (8)$$

where g_{p} is expressed in terms of g_{p}^{\pm} and $[[...]]_{+}$ denotes angular averaging limited by the half-space or half-plane where $p_{y} > 0$. For three-dimensional (3D) systems, $[[...]]_{+} = \int d\varphi d\chi d\theta d\varphi (eV sin \varphi \int_{0}^{\pi/2} d\theta \cos \theta \int_{0}^{\pi} d\chi ...)$, where $d\Omega$ is the differential of the solid angle and χ is the angle of the tangential component of momentum in the boundary plane (xz). For 2D systems, $[[...]]_{+} = (2\pi)^{-1} \int_{0}^{\pi} d\varphi \ldots$ Assuming that the form of g_{p}^{+} given by Eq. (7) remains valid all the way to the boundary $y = 0$, which corresponds to the approximation that the left-moving electrons are not scattered in the Knudsen layer, one obtains $g_{p}^{+}(0) - g_{p}^{-}(0) = e/(U_{1} - V) + (p/en)j_{n} \sin \varphi$. By applying Eq. (8) and noticing that the Sharvin conductance per unit area is

$$G_{S} = e^{2} \int dz D_{z} v_{z} (-\partial_{z} f) \sin \varphi +, \quad (9)$$

one can find that the potential term in the expression for $g_{p}^{+}(0) - g_{p}^{-}(0)$ produces the Sharvin current density $G_{S} \Delta U$, where $\Delta U = U_{1} - V$, while the term proportional to j_{n} is equal to $j_{n}/2$. Thus, one obtains Eq. (1) with

$$G/G_{S} = 2, \quad (10)$$

so the boundary conductance G is exactly twice larger than the Sharvin conductance. The derivation of Eq. (10) shows that the superballistic effect occurs because the boundary condition for the left-moving electrons includes the term proportional to the current density j_{n}. Without this term, one would obtain the usual Sharvin conductance $G = G_{S}$. Physically, the presence of the current modifies the distribution function in the half-space $y > 0$, in contrast to the perfectly conducting region at $y < 0$, where such a modification is negligibly small. This increases electron transmission, because the backward, proportional to f_{p}^{-}, component of the current decreases,
so the difference \(g^+_{\text{ee}} - g^-_{\text{ee}} \) gains a positive contribution proportional to \(j_n \).

The result of Eq. (10) is approximate, because it is obtained under the assumption that the left-moving electrons are not scattered in the Knudsen layer. Thus, Eq. (10) gives the upper bound of the conductance \(G \) in Eq. (1). To obtain a more precise result, one should solve the kinetic equation with boundary conditions Eqs. (6) and (7). The kinetic equation in the linear transport regime is transformed to an equation for \(g_p \):

\[
\mathbf{v}_p \cdot \nabla g_p(x) = J_p(x),
\]

where the linearized collision integral is represented as \((-\partial_x f)J_p(x)\). The electrostatic potential \(\Phi \) does not appear explicitly in Eq. (11) because it is already included to the isotropic part of \(g_p(x) \) according to Eq. (2). The collision-integral term \(J_p \) is written as a sum of momentum-relaxing (MR) and momentum-conserving electron-electron parts, \(J_p = J^{\text{MR}}_p + J^{\text{ee}}_p \). To specify them, the elastic relaxation-time approximation is used:

\[
J^{\text{MR}}_p = -\frac{g_p - \overline{\Phi}}{\tau_{\text{tr}}},
\]

and

\[
J^{\text{ee}}_p = -\frac{g_p - \overline{\Phi} - g_{\text{ee}}}{\tau_{\text{ee}}},
\]

where \(\tau_{\text{tr}} \) is the transport time and \(\tau_{\text{ee}} \) is the electron-electron scattering time. The corresponding lengths are introduced as \(l_{\text{tr}} = v\tau_{\text{tr}} \) and \(l_{\text{ee}} = v\tau_{\text{ee}} \). The single-time approximation Eq. (13) for electron-electron collision integral is often used in theoretical calculations since it satisfies the principal properties of particle and momentum conservation, \(J_p = 0 \) and \(J^{\text{ee}}_p = 0 \), and provides the easiest way to solve the kinetic equation.

For the problem under the consideration [Fig. 1 (b)], Eq. (11) takes the form

\[
\sin \varphi \nabla_y + l^{-1}g_\varphi(y) = \overline{\Phi}(y)/l + g_\varphi(y)/\varepsilon,
\]

where \(g_p(x) \) is written as \(g_\varphi(y) \), \(\varphi = d\Phi \) is \(y \)-independent and proportional to the normal current density, and \(l^{-1} = \frac{1}{l_{\text{tr}}} + \frac{1}{l_{\text{ee}}} \). Note that \(l_{\text{ee}} \), \(l_{\text{tr}} \), and \(g_\varphi \) depend on electron energy \(\varepsilon \). The solution of Eq. (14) satisfying the boundary conditions Eqs. (6) and (7) can be written through the integrals of \(\overline{\Phi}(y) \). Below, the zero point of \(V(y) \) is chosen at \(y \gg l \). Since the hydrodynamic transport in the bulk is considered, the momentum-relaxing scattering in the Knudsen layer is neglected, \(l_{\text{tr}}^{-1} = 0 \) and \(l = l_{\text{ee}} \). Owing to the elastic approximation for the collision integral, the angular averaging of Eq. (14) leads to the continuity equation \(\nabla_y g_\varphi = 0 \), which means that \(g_\varphi \) is a constant. Thus, \(g_\varphi \) is equal to its value at \(y = 0 \) standing in the boundary condition Eq. (7). \(g_\varphi = \rho j_{\text{ne}}/en \). With the use of identities \(\overline{\Phi}(y) = (|g^+_\varphi + g^-_\varphi|) \), and \(g_\varphi = d(|g^+_\varphi - g^-_\varphi|)\), the problem is finally reduced to an integral equation for \(\overline{\Phi}(y) \):

\[
\overline{\Phi}(\tilde{y}) = e\Delta U S(\tilde{y}) + \int_{\tilde{y}}^{\infty} dy' K(\tilde{y}, \tilde{y}') \overline{\Phi}(\tilde{y}'),
\]

where \(\tilde{y} = y/l \) and \(\tilde{y}' = y'/l \) are the dimensionless coordinates,

\[
S(\tilde{y}) = \zeta_0(\tilde{y}) - \zeta_1(\tilde{y})/\zeta_2(\tilde{y}),
\]

\[
K(\tilde{y}, \tilde{y}') = K_0(\tilde{y}, \tilde{y}') - \frac{\zeta_1(\tilde{y})}{\zeta_2(\tilde{y})}K_1(\tilde{y}, \tilde{y}'),
\]

\[
K_0(\tilde{y}, \tilde{y}') = e^{-|\tilde{y} - \tilde{y}'|/\sin \varphi \sin \varphi},
\]

\[
K_1(\tilde{y}, \tilde{y}') = \text{sgn}(\tilde{y} - \tilde{y}') e^{-|\tilde{y} - \tilde{y}'|/\sin \varphi \sin \varphi},
\]

and

\[
\zeta_k(\tilde{y}) = \frac{\sin^k \varphi e^{-|\tilde{y}|/\sin \varphi \sin \varphi}}{\sin \varphi \sin \varphi}.
\]

Numerical solution of Eq. (15) allows one to find the function \(\overline{\Phi}(\tilde{y}) \) determining the potential distribution \(V(y) \) and the current density \(j_n \). The latter is given by Eq. (1), where, in contrast to Eq. (10), the conductance is smaller than \(2G_S \):

\[
\frac{G}{G_S} = 2\alpha, \quad \alpha = 1 - \frac{1}{\zeta(0)} \left\langle \left\langle \int_{\tilde{y}}^{\infty} dy' \zeta_0(\tilde{y}) \overline{\Phi}(\tilde{y}) e^{\Delta U} \right\rangle \right\rangle. \quad (20)
\]

In this equation, \(\langle \langle \ldots \rangle \rangle \equiv (p^{-1} \ldots)/y^{-1} \) denotes the modified averaging over energy.

Since Eq. (14) contains only one length parameter \(l = l_{\text{ee}} \), the dimensionless ratio \(\overline{\Phi}(\tilde{y})/e\Delta U \) is a numerical function of the dimensionless coordinate \(\tilde{y} \). This property is directly seen from Eq. (15). The function \(\overline{\Phi}(\tilde{y}) \) depends

FIG. 2: (Color online) Distribution of electrochemical potential in the Knudsen layer for the systems of different dimensionalities. The drop of the potential across the Knudsen layer and the boundary conductance are indicated.
on energy because of the energy dependence of the relaxation length \(l \). However, the integral standing in Eq. (20) is an energy-independent numerical constant that is not affected by the averaging over energy. Therefore, the coefficient \(\alpha \) describing the lowering of the ratio \(\mathcal{G}/\mathcal{G}_0 \) below its upper bound of 2 is independent of temperature, electron energy spectrum, and electron-electron scattering rate. The calculation gives \(\alpha \approx 0.96 \) and \(\alpha \approx 0.94 \) for 2D and 3D cases, respectively. The reduction of the boundary conductance caused by electron collisions in the Knudsen layer appears to be relatively small, and the conductance remains superballistic.

For degenerate electron gas, when the electrochemical potential \(V(y) \) is equal to \(\overline{\sigma}(y)/e \) at the Fermi energy \(\varepsilon_F \), and \(l \) is fixed by its value at \(\varepsilon_F \), the profile of \(V(y) \) is shown in Fig. 2. The plots for 2D and 3D cases are similar and demonstrate that the main decrease of the potential occurs already at \(y < l \). The total potential drop at the contact, \(\Delta U \), from the hydrodynamic point of view, can be described in terms of the pressure jump under injection of liquid between two different reservoirs. It includes a sharp jump of the electrochemical potential at the boundary and a smooth decrease within the Knudsen layer. The sharp jump is a consequence of chemical potential drop caused by the ballistic transfer of electrons between different media, whereas the smooth decrease appears because of the scattering of electrons within the Knudsen layer. The electrostatic potential \(\Phi(y) \), which is related to the non-equilibrium density \(\delta n \) according to Poisson’s equation, does not show a sharp jump, although it follows the electrochemical potential profile within the spatial scale of the screening length. The magnitude of the smooth part of the potential drop is relatively small. The normalized magnitude, \(V(0)/\Delta U \), similar as \(\alpha \), depends only on the dimensionality.

The universality of the ratio \(\mathcal{G}/\mathcal{G}_0 \) described above is a consequence of the chosen model of the electron-electron collision integral, Eq. (13). A more careful consideration, even within the elastic approximation, suggests that this model is oversimplified because it describes the relaxation of all angular harmonics of electron distribution by a single time, \(\tau_e \). In particular, it has been shown [4, 5] and later emphasized [34, 35] that, due to the kinematic constraints, the main contribution to the electron-electron collision integral at low temperatures comes from the head-on collisions that cause relaxation of the momentum-symmetric part of the electron distribution while leaving the antisymmetric part intact. As a result, the symmetric, \(f_p^s = (f_p + f_{-p})/2 \), and antisymmetric, \(f_p^a = (f_p - f_{-p})/2 \), parts of electron distribution are expected to relax with different times, \(\tau_s \) and \(\tau_a \), respectively, and \(\tau_a \) should be considerably larger than \(\tau_s \) if \(T \) is much smaller than the Fermi energy \(\varepsilon_F \). The simplest way to account this difference is to introduce the elastic two-time model [4],

\[
J_{p}^{ce} = -\frac{g^e_{p} - \overline{\sigma}}{\tau_s} - \frac{g^e_{p} - g^e_{a} \alpha_{ca}}{\tau_a},
\]

that generalizes Eq. (13). This model can be applied as well to the problem of boundary conductance. Then, instead of Eq. (14), one has two equations

\[
\sin \varphi \nabla_y g_{p}^{e}(y) + g_{p}^{e}(y)/l_s = \overline{\sigma}(y)/l_s, \\
\sin \varphi \nabla_y g_{a}^{e}(y) + g_{a}^{e}(y)/l_a = g_{y} \sin \varphi/l_{a},
\]

where \(l_s = v \tau_s \), \(l_a = v \tau_a \), and \(l_{a,1}^{-1} = 0 \) is already implied. It is sufficient to define the functions \(g_{p}^{e}(y) \) and \(g_{a}^{e}(y) \) in the region \(p_y > 0 \), where \(\sin \varphi \) is positive. Then, according to the symmetry of the problem, \(g_{p}^{e}(y) = g_{a}^{e}(y) \pm g_{y}^{e}(y) \). Solution of Eq. (22) with the boundary conditions Eqs. (6) and (7) leads to an integral equation of the same form as Eq. (15), where the dimensionless coordinates are now defined as \(y' = y/l_s \) and \(y'' = y'/l_a \). The term \(S \) in this equation is modified as

\[
S(y) = \frac{2}{\beta + 1} \left[\varsigma_0(y) - \varsigma_2(y) \right],
\]

with \(\beta = \sqrt{l_a/l_s} = \sqrt{\tau_a/\tau_s} \) and

\[
\varsigma_k(y) = \left[\sin^k \varphi e^{-y'/\beta \sin \varphi} \right]_+. \]

The modified kernel \(K \) is given by Eq. (17) with

\[
K_0(y, y') = \beta^{-1} \left[e^{-(y-y')/\beta \sin \varphi} \right]_+, \\
K_1(y, y') = \beta^{-1} \left[e^{-(y-y')/\beta \sin \varphi} \right]_+, \\
K_2(y, y') = \beta^{-1} \left[e^{-(y-y')/\beta \sin \varphi} \right]_+,
\]

\[
K_0(y, y') = \beta^{-1} \left[e^{-(y-y')/\beta \sin \varphi} \right]_+, \\
K_1(y, y') = \beta^{-1} \left[e^{-(y-y')/\beta \sin \varphi} \right]_+, \\
K_2(y, y') = \beta^{-1} \left[e^{-(y-y')/\beta \sin \varphi} \right]_+.
\]
and with $\zeta_\ell(\tilde{y})$ of Eq. (24). Finally, Eq. (20) is modified by multiplying the integral term by β^{-1} and using there $\zeta_\ell(\tilde{y})$ of Eq. (24). If $l_a = l_s = l (\beta = 1)$, the problem is reduced to the one described by Eqs. (15)-(20). The presence of the energy-dependent factor β in the modified equations makes the energy averaging in the modified Eq. (20) essential, in contrast to the initial Eq. (20). However, if energy dependence of β is neglected, the boundary conductance \mathcal{G} again does not depend on temperature, energy spectrum, and scattering time τ_s, although the dependence of \mathcal{G} on β remains. The results of numerical calculations of the potential distribution for degenerate 2D electron gas is shown in Fig. 3, along with the dependence of the conductance on l_a/l_s. Increasing the ratio l_a/l_s brings the conductance closer to its upper bound, which is expectable since the total relaxation rate $\tau_s^{-1} + \tau_\alpha^{-1}$ decreases. However, this also increases the width of the Knudsen layer. The transport properties of the hydrodynamic state beyond the Knudsen layer are governed only by the length l_s entering the expression for dynamic viscosity, $\eta = n_0(l_s)/(d + 2)$. Indeed, the viscosity is determined by the relaxation time of the second angular harmonic of the distribution function, and this harmonic belongs to the symmetric set including all even harmonics. Thus, in contrast to the boundary conductance, the hydrodynamic transport in the bulk is not sensitive to whether the collision integral is given by Eq. (5). Calculating $Q_{\alpha\beta}$ after Eq. (5), one obtains, instead of Eq. (7),

$$g_p = eV - (p/e)n_0 \sin \varphi - C(p \nu \tau/e)j_n \cos 2\varphi. \quad (26)$$

where φ denotes the angle of momentum with respect to the tangent to the boundary, which is reduced to the angle φ of the previous consideration if the curvature goes to zero. Applying Eq. (26) in Eq. (8), one gets

$$\frac{\mathcal{G}}{\mathcal{G}_S} = \frac{2}{1 + (4/3\pi)C(\nu \tau)}, \quad (27)$$

which generalizes Eq. (10) to the case of 2D systems with curved contact boundaries. The convex boundary decreases the conductance, while the concave boundary increases it. Within the simplest model of the collision integral given by Eqs. (12) and (13), the length $\nu \tau$ is identified with $l \approx l_s$, whereas in the modified model of Eq. (21) $\nu \tau = l_s$. At low temperatures, when the electron gas is degenerate, this length can be expressed through the viscosity according to $C(\nu \tau) = \pi n/eF_p$, where F_p is the Fermi momentum. The correction due to the curvature is parametrically small, because the product $|C|l$ must be small in the hydrodynamic transport regime. Nevertheless, this correction may become more important than the small numerical correction proportional to the difference $1 - \alpha$. To take into account both these corrections, one may use the following expression:

$$\frac{\mathcal{G}}{\mathcal{G}_S} = \frac{2}{\alpha^{-1} + (4/3\pi)C(\nu \tau)}. \quad (28)$$

When applying Eq. (28), one should neglect the terms containing double smallness $\propto (1 - \alpha)C(\nu \tau)$, since such terms are beyond the accuracy of the approximation.

III. TRANSPORT IN MICROSTRUCTURES

The results of the previous section can be applied for calculation of the conductance of various microstructures with contacts. In this section, the simplest examples of two-terminal devices are considered, where the electron transport can be described as well by solving the Boltzmann kinetic equation in a straightforward way. The kinetic equation approach makes it possible to study different transport regimes and transitions between them, and to link such results to those following from the above theory. The consideration below is limited to 2D systems, and the electron-electron collision integral is described by Eq. (13). The case of degenerate electron gas is studied, so the characteristic lengths l_s and l_{tr} appearing in the theory correspond to $\varepsilon = \varepsilon_F$ and have the direct meaning of the mean free path lengths.

Consider first the system of flat geometry shown in Fig. 1 (c). Although it is implied that the device has a finite width W along Ox, the presence of the side walls is not essential as it is assumed that electrons are specularly reflected from these walls. In this case, the
The formal substitution \(j_y = j_y \) remains valid for arbitrary zero momentum-relaxing scattering, generally at the right side presented in the form of the boundary condition at \(y = 0 \) given by Eq. (6). Accordingly, at the right side \(y = L \), the boundary condition is \(g_y \bigg|_{y=L} = eU_0 \). If the point of zero electrochemical potential is chosen in the middle of the device, \(y = L/2 \), and the total applied voltage is defined as \(U = U_1 - U_0 \), the whole set of the boundary conditions is written as

\[
g_y^+(0) = eU/2, \quad g_y^-(L) = -eU/2. \tag{30}
\]

The solution of the Cauchy problem defined by Eq. (14) and the boundary conditions of Eq. (30) is facilitated by the observation that \(g_y(y) \) can be represented in the form \(g_y(y) = h_y(y) - (y - L/2)g_y(L) \), where \(h_y(y) \) satisfies Eq. (14) with \(l_c = l \), i.e., with zero momentum-relaxing scattering, \(l_{tr} \to \infty \). Accordingly, the boundary conditions for \(h_y \) are modified by the formal substitution \(eU \to eU - g_y L/l_{tr} \) so that

\[
I = GU = G^*(U - g_y L/e l_{tr}),
\]

where \(G^* \) is the effective conductance for the problem with zero momentum-relaxing scattering rate \(1/l_{tr} \), and enhanced momentum-conserving scattering rate, \(1/l_c \to 1/l_c + 1/l_{tr} \equiv 1/l \).

Since \(g_y = (2/\pi)eU/G_S = (2/\pi)(G/G_S)eU \), the total resistance \(R = 1/G \) is given by Eq. (29), where \(\alpha \) is replaced by \(G^*/G_S \). The problem of finding \(G^* \) is described by Eq. (14) with \(l_c = l \) and boundary conditions Eq. (30). It is reduced to solution of an integral equation similar to Eq. (15), see Appendix A. The ratio \(G^*/G_S \) depends on a single parameter, the Knudsen number \(K \), defined here as \(K \equiv l/L \). In the ballistic limit, \(K \to \infty \), \(G^* = G_S \). In the hydrodynamic limit, \(K \to 0 \), \(G^*/G_S = \alpha \approx 0.96 \).

In summary, the resistance of the system in Fig. 1 (c) in the general case is given by

\[
R = R^* + 2 \frac{G_S^{-1} L}{\pi l_{tr}}. \tag{31}
\]

where \(R^* \equiv 1/G^* \) is determined from Eqs. (A3)-(A7). In the hydrodynamic transport regime, when \(l_c \ll l_{tr} \) and \(l_c \ll L \), the effective resistance \(R^* \) is described as a sum of two boundary resistances and is equal to \((\alpha G_S)^{-1} \), so Eq. (31) is reduced to Eq. (29). The ratio \(G^*/G_S \) changes from 0.96 to 1 as the length \(l \) increases. The dependence of this ratio on the Knudsen number is shown in Fig. 4, which also demonstrates the potential profiles for different \(K \) in the absence of momentum-relaxing scattering. In the hydrodynamic regime, \(K \ll 1 \), half of the total potential drops near each boundary, while in the bulk the potential is constant. When \(K \) increases above 1, the potential profile approaches a linear one, and the potential drop caused by the momentum-conserving scattering decreases.

Consider now the 2D Corbino disk system, Fig. 1 (d), where the conducting layer is placed between the circular device behaves like an infinitely wide one, and its conductance in the ballistic limit is equal to the Sharvin conductance. The current flows along \(G_U \) and the current density \(j_y = j_y \) does not depend on coordinates, whereas the electrochemical potential depends only on \(y \). In the hydrodynamic regime, specular reflection is equivalent to the no-stress boundary condition, \(\nabla_j j_y = 0 \) at the side walls, which is satisfied automatically because the current density is constant. As there are no current density gradients, the linearized Navier-Stokes equation describing the current in the bulk of the system is reduced merely to the ohmic relation between the current density and the gradient of electrochemical potential in the bulk: \(j_y = -\sigma_0 \nabla_y V(y) \), where \(\sigma_0 \) is the Drude conductivity. Thus, \(\nabla_y V(y) \) is constant, and the total resistance of the system is determined as a resistance in series, formed by the sum of two equal boundary resistances, \(R_0 = R_1 = (2\alpha G_S)^{-1} \), and the bulk ohmic resistance. The latter is limited by momentum-relaxing scattering and is equal to \(R_{bulk} = \sigma_0^{-1}L/W \), where \(L \) is the distance between the contacts. In 2D systems with degenerate electron gas, \(\sigma_0 = e^2 n_{tr}/h k_F \), \(G_S = G e^2 k_F^2 W/2\pi^2 h \), and \(n = g k_F^2/4\pi \), where \(k_F \) is the Fermi wave number and \(g \) is the degeneracy factor of electron states (e.g., \(g = 2 \) in GaAs and \(g = 4 \) in graphene). Then \(R_{bulk} = G_S^{-1}2L/\pi l_{tr} \), and the total resistance of the device is

\[
R = G_S^{-1} \left[\frac{1}{\alpha} + \frac{2}{\pi} \frac{L}{l_{tr}} \right]. \tag{29}
\]

where \(\alpha \approx 0.96 \) according to the results of the previous section. Since \(\alpha < 1 \), such a device can never be superballistic, even if the momentum-relaxing scattering is absent. Thus, the momentum-conserving scattering alone increases the resistance of the system shown in Fig. 1 (c), making it larger than the Sharvin resistance \(G_S^{-1} \).

The expression for the resistance in the form similar to Eq. (29) remains valid for arbitrary \(l_e, l_{tr} \), and \(L \). This general case can be investigated by solving the kinetic equation. The non-equilibrium part of the distribution function is again governed by Eq. (14), with the boundary condition at \(y = 0 \) given by Eq. (6). Accordingly, at the right side \(y = L \), the boundary condition is \(g_y \big|_{y=L} = eU_0 \). If the point of zero electrochemical potential is chosen in the middle of the device, \(y = L/2 \), and the total applied voltage is defined as \(U = U_1 - U_0 \), the whole set of the boundary conditions is written as

\[
g_y^+(0) = eU/2, \quad g_y^-(L) = -eU/2. \tag{30}
\]
contact boundaries with radii R_1 (inner) and R_0 (outer). In the absence of magnetic field, only the radial flow with current density j is present, and all macroscopic quantities depend on the radial coordinate r. The continuity equation $\nabla \cdot j = 0$ assumes the form

$$\nabla_r j(r) + j(r)/r = 0,$$

so that $j(r) = I/2\pi r$, where I is the total current. This property leads to disappearance of the viscous force, which means that the term proportional to the viscosity does not enter the Navier-Stokes equation [32], similar as in the case of the device with flat boundaries studied above. However, due to finite curvature of the boundaries, the current generates the viscous stress not only in the Knudsen layers, but also in the bulk of the system. The absence of the viscous term reduces the Navier-Stokes equation to the ohmic relation $V(r) = -\sigma_0 \nabla_r V(r)$ leading to the well known logarithmic dependence of the electrochemical potential in the bulk: $V(r) = V(R_0) - I \ln(r/R_0)/2\pi \sigma_0$, so the bulk resistance is $R_{\text{bulk}} = \ln((R_0/R_1)/2\pi \sigma_0)$. The resistances of the outer and inner boundaries are $R_0 = (2\pi R_0 G)^{-1}$ and $R_1 = (2\pi R_1 G)^{-1}$, because the contact widths are equal to circumference of the boundaries. The curvatures of these boundaries are $-1/R_0$ and $1/R_1$. Thus, according to Eq. (28) with $\langle \nu \rangle = l$, the sum of the resistances is

$$R^* = R_0 + R_1 = G_S^{-1} \left[\frac{b + 1}{2\alpha} + \frac{2(b^2 - 1)}{3\beta} K \right],$$

where $b \equiv R_0/R_1$. The Knudsen number is defined here as $K \equiv l/R_0$. The ballistic conductance of the Corbino disk device is equal to the Sharvin conductance [10]

$$G_S = 2\pi R_1 G_S = g e^2 k_F R_1 / \pi h,$$

which is proportional to the circumference of the inner contact as the ballistic electron flow is limited by the smallest circumference. One can also derive Eq. (34) from the kinetic equation in the ballistic limit (see Appendix B). By adding the resistances in series, one obtains the total resistance of the device in the hydrodynamic transport regime:

$$R = R^* + \frac{2}{\pi} G_S^{-1} R_1 \ln b / l_{tr}.$$

In contrast to the device with flat boundaries, the Corbino disk device can be superballistic, i.e., R can be smaller than the Sharvin resistance G_S^{-1}. The contribution to R^* due to boundary curvatures, given by the second term in the right-hand side of Eq. (33), coincides with the resistance calculated in Ref. [32] up to a numerical coefficient 2/3. Note, however, that the authors of Ref. [32] considered a problem when this contribution was the main one, while in the present theory it represents a small correction to the total resistance. If the momentum-relaxing scattering is absent, the total resistance is equal to the sum of the boundary contact resistances, $R = R^*$, and the potential in the bulk of the device is constant, $V(r) = V_{\text{bulk}}$ [32]. Since $V_{\text{bulk}} = R_0 I$,

$$V_{\text{bulk}} / U = \frac{1 - 4K/3\pi}{(b + 1)(1 + 4K(b - 1)/3\pi)}.$$

In the hydrodynamic limit, $K \to 0$, Eqs. (33) and (36) assume the simple forms $R^* = G_S^{-1}(b + 1)/2\alpha$ and $V_{\text{bulk}}/U = 1/(b + 1)$. The inequality $K \ll 1$ is the necessary condition for the validity of hydrodynamic description of the transport. The sufficient conditions are $l \ll \min\{R_1, R_0 - R_1\}$ and $l_e \ll l_{tr}$.

Equation (35) with properly redefined R^* remains valid in the case of arbitrary l_e, l_{tr}, R_0, and R_1. To prove this statement, one needs to consider the kinetic equation. In the Corbino geometry, the function $g_{\varphi}(r)$ can be written as $g_{\varphi}(r)$, where φ now denotes the angle of momentum with respect to the tangent to the inner boundary. The angle φ has the same meaning as before if the radial direction is identified with the Oy axis. Equation (11) for $g_{\varphi}(r)$ assumes the form

$$\sin \varphi \nabla_r g_{\varphi}(r) + \frac{1}{r} \cos \varphi \frac{\partial g_{\varphi}(r)}{\partial \varphi} + \frac{g_{\varphi}(r)}{l_{tr}} = \frac{\mathcal{G}(r)}{l} + \frac{A \sin \varphi}{l_e r},$$

where the radial (the only nonzero) component of the vector \mathbf{g} is written as A/r, since it is proportional to the current density. The constant A is expressed as $A = I / \pi e D_F v_F$, where D_F and v_F are the density of states and group velocity at the Fermi level. Similar as above, it is convenient to decompose $g_{\varphi}(r)$ into $g_{\varphi}^+ = g_{\varphi}$ and $g_{\varphi}^- = g_{2\pi - \varphi}$ defined in the angular interval $\varphi \in [0, \pi]$ and describing the particles moving from the center and towards the center, respectively. Then, the in-flow boundary conditions for $g_{\varphi}(r)$ are

$$g_{\varphi}^+(R_1) = eU,$$

where the point of zero potential is chosen at the outer electrode. The Boltzmann kinetic equation with boundary conditions of Eq. (38) has been used in the analysis of experimental data for the Corbino disk with $R_0/R_1 = 4.5$ in Ref. [10]. The function $g_{\varphi}(r)$ is representable in the form $g_{\varphi}(r) = h_{\varphi}(r) - A \ln(r/R_0)/l_{tr}$, where $h_{\varphi}(r)$ satisfies Eq. (37) with $l_e = l$. Accordingly, the boundary conditions for h_{φ} are modified by the substitution $eU \to eU - A \ln b/l_{tr}$. This leads to Eq. (35), where the effective resistance R^* is now found by solving the problem described by Eqs. (37) and (38) with $l_e = l$, which is formally equivalent to the transport problem with zero momentum-relaxing scattering rate and enhanced momentum-conserving scattering rate, $1/l_e \to 1/l_e + 1/l_{tr} \equiv 1/l_0$ [40]. This problem is solved by the method of characteristics as described in Appendix B.

The potential profiles for Corbino disks with different b, calculated at $K = 0.1$ in the absence of momentum-relaxing scattering, when $R = R^*$, are shown in Fig.
5. They demonstrate almost flat electrochemical potentials in the middle regions and rapid change of the potentials in the Knudsen layers of width $\sim l$ near the boundaries. The magnitudes of the flat parts of the potentials decrease with increasing b and are in good agreement with those given by Eq. (36). If $R_0 - R_1 \ll R_0$, the behavior of the potential in Corbino devices approaches to that shown in Fig. 4, since the curvature effect becomes no longer important. To account for the momentum-relaxing scattering, one should add the contribution $I \ln(R_0/r)/2\pi \alpha_0 = IG_S^{-1} (2R_1/\pi l_e) \ln(R_0/r)$ to the potential profile. The results presented are consistent with the data obtained by experimental imaging of the potential distribution in the Corbino device 40.

The dependence of the conductance on the ratio R_0/R_1 is shown in Fig. 6. In the absence of momentum-relaxing scattering, when $R = R^*$, the numerical result at $K = 0.1$ is in good agreement with the approximate result given by Eq. (33). The deviation in the region of large R_0/R_1 occurs because the curvature-induced correction is no longer small, $l/R_1 = bK \sim 1$, and Eq. (33) loses its validity. Thin dashed lines in Fig. 6 show the results of more crude approximations that neglect either the effect of scattering in the Knudsen layer ($\alpha = 1$) or the curvature effect ($C = 0$ in Eq. (28) or, equivalently, $K = 0$ in Eq. (33)). In general, the conductance is the highest when the momentum-conserving scattering is strong and the momentum-relaxing scattering is weak. The superballistic conductance $G > G_S$ does not require the hydrodynamic transport regime and can be observed even at $l_e > R_0$ if the momentum-relaxing scattering is weak enough. To obtain a considerable superballistic effect, it is preferable to use the devices with $R_0/R_1 > 2$.

The important question about the existence of superballistic conductance depending on the parameters of the problem is addressed in more detail in Fig. 7. It shows the lines separating the regimes $G > G_S$ and $G < G_S$ in the parameter space. These lines are nearly straight if R_1 is not too close to R_0. Otherwise, when $b - 1$ is comparable to $1 - \alpha$, the shape of the border lines is essentially

![Image](image_url)
different from linear at small l_s/R_0. Regardless of the value of R_0/R_1, the superballistic conductance requires $l_{tr} > l_s$, that is the rate of electron-electron scattering must be higher than the rate of momentum-relaxing one. In the hydrodynamic limit, $l_s/R_0 \to 0$, the superballistic conductance requires $l_{tr}/R_0 > (2/\pi) \ln b / [b - (b + 1)/2\alpha]$ and exists at $b > 1/(2\alpha - 1)$. For finite l_s, however, the superballistic conductance may exist even at $b < 1/(2\alpha - 1)$, although in this case the conductance only slightly exceeds G_0. The characteristic lengths l_{tr} and l_s are varied by the temperature T. For a degenerate fermion gas,

$$l_s \simeq \gamma v_F \hbar e_F/T^2,$$

where γ can be approximated by a numerical constant of order unity. On the other hand, $l_{tr} \sim 1/T$ if the main mechanism of momentum-changing scattering is the interaction of electrons with acoustic phonons and T exceeds Bloch-Grüneisen temperature. Therefore, by changing the temperature one moves in the parameter space along the square root line $l_{tr} \sim \sqrt{T}$, which may intersect the border lines shown in Fig. 7 in two points. This means that the superballistic conductance is expected to exist in a temperature interval corresponding to the interval between these points. In the presence of a considerable electron-electron scattering, the resistance should have a minimum as a function of T that correlates with Eq. (39) and depends on the system size, like in the Gurzhi effect [1]. Such a behavior was recently observed [40] in graphene Corbino disks. Using the device dimensions $R_0 = 9$ μm and $R_1 = 2$ μm, density $n = 4.5 \times 10^{11}$ cm$^{-2}$, graphene Fermi velocity $v_F = 10^6$ cm/s, and the temperature dependence $l_{tr}[\text{μm}] = (0.016 + 0.00157[T[\text{K}]]^{-1}$ extracted from the experimental data [40], one may plot the dependence of l_{tr} on l_s. This dependence, obtained with $\gamma = 1$ in Eq. (39), is also shown in Fig. 7. According to the calculations, the superballistic transport should be observed in the temperature interval between 31 K and 93 K with the minimum of the resistance near 60 K, which is consistent with the experimental results of Ref. [40].

IV. SUMMARY

In this work, the classical transport properties of electron systems contacted to perfectly conducting electrodes (leads) have been studied. If the electron gas in the bulk is in the hydrodynamic transport regime, there exists a thin Knudsen layer separating the lead from the hydrodynamic electron state [Fig. 1 (b)]. The interface between the lead and this state can be characterized by the conductance per unit contact area, G, which is intrinsically superballistic: $G = 2\alpha G_S$, where G_S is the Sharvin conductance per unit area and α is a numerical constant slightly smaller than unity. Remarkably, within the elastic relaxation-time approximation for electron-electron collision integral, which is often applied in theoretical description of electron transport, α depends only on the dimensionality of the system and is approximately equal to 0.96 for 2D systems and 0.94 for 3D systems. Application of the modified double-time approximation for electron-electron collision integral [4], which takes into account the difference in relaxation times for even and odd angular harmonics of the distribution function, brings α closer to unity (Fig. 3). The correction to G due to finite curvature of the contact boundary also has been found. It is shown that G decreases for the convex boundary and increases for the concave boundary.

Based on these results, the conductance of highly symmetric 2D microstructures [Fig. 1 (c,d)], where the current is always normal to the contact boundaries, has been described. The important example of this kind is the Corbino disk device, whose conductance G can exceed the Sharvin conductance G_S owing to the superballistic contact property of the device boundaries. The conductance of Corbino disks has been calculated as well by means of numerical solution of the Boltzmann kinetic equation, which describes different transport regimes and transitions between them, depending on the characteristic lengths of the problem. In the hydrodynamic transport regime, when the Knudsen number K is small, the calculated conductance and the electrochemical potential in the bulk are in good agreement with the simple analytical formulas obtained from the consideration of a single contact boundary (Figs. 5 and 6). The kinetic equation approach shows that the superballistic conductance of Corbino disks does not require the hydrodynamic transport regime, although the domination of electron-electron scattering over the momentum-relaxing scattering is a necessary requirement. The map in the parameter space, indicating the regions with superballistic conductance $G > G_S$, has been presented (Fig. 7). By considering the dependence of electron-electron and momentum-relaxing mean free path lengths on temperature, it is concluded that the superballistic conductance in Corbino disks can be observed within a certain interval of temperatures, described in agreement with experimental results [40].

The calculation of the conductance standing in Eq. (1) is important by itself, without regard to the specific problem of superballistic transport. Indeed, Eq. (1) relates the normal current density to the voltage of the contact and should be considered as a hydrodynamic boundary condition for the normal current density at the current-penetrable boundary. On the other hand, the tangential current density j_{\parallel} is related to its normal derivative at the boundary by Maxwell’s boundary condition, $j_{\parallel} = l_s \nabla_{\perp} m$, which is usually applied to the hard-wall boundaries, where the normal current is zero. The tangential current density at the current-penetrable boundaries can be as well described by Maxwell’s boundary condition derived in the fully diffuse limit, which corresponds to the slip lengths $l_s = 0.582 l_{tr}$ and $l_s = 0.637 l_{tr}$, which are the experimental results of Ref. [40]. By combining Maxwell’s boundary conditions with Eq. (1), one obtains a full set of hydrodynamic boundary conditions, describing both tangential and normal current
for both hard-wall and current-penetrable boundaries. These boundary conditions, together with the Navier-Stokes equation, form a Cauchy problem for determination of the current density and potential distribution in various microstructures in the hydrodynamic transport regime, which is important for applications, in particular, for development of viscous electronics.

Appendix A

The solution of Eq. (14) with \(l_e = l \) and boundary conditions Eq. (30) is

\[
g^+_{\varphi}(y) = g_y(1 - e^{-y/L \sin \varphi}) \sin \varphi + \frac{eU}{2} e^{-y/L \sin \varphi} + \int_0^y \frac{dy'}{l \sin \varphi} e^{(y-y')/l \sin \varphi} \mathcal{F}(y'), \\
g^-_{\varphi}(y) = -g_y(1 - e^{(y-L)/l \sin \varphi}) \sin \varphi - \frac{eU}{2} e^{(y-L)/l \sin \varphi} + \int_y^L \frac{dy'}{l \sin \varphi} e^{(y'-y)/l \sin \varphi} \mathcal{F}(y').
\]

(A1)

(A2)

With \(\mathcal{F}(y) = \frac{(g^+_{\varphi} + g^-_{\varphi})}{2} = (2\pi)^{-1} \int_0^{\pi} d\varphi [g^+_{\varphi}(y) + g^-_{\varphi}(y)] \) and \(g_y = 2[(g^+_{\varphi} - g^-_{\varphi}) \sin \varphi]_+ = \pi^{-1} \int_0^{\pi} d\varphi [g^+_{\varphi}(y) - g^-_{\varphi}(y)] \sin \varphi \), one gets an integral equation for \(\mathcal{F}(y) \). Since \(\mathcal{F}(y) = eV(y) \), this equation is written as an equation for the electrochemical potential:

\[
V(\bar{y}) = \frac{U}{2} S(\bar{y}) + \int_0^{L/l} d\bar{y} \mathcal{K}(\bar{y}, \bar{y}') V(\bar{y}'),
\]

where the dimensionless coordinates \(\bar{y} = y/l \) and \(\bar{y}' = y'/l \) are used. In Eq. (A3),

\[
S(\bar{y}) = \zeta^-_0(\bar{y}) - \zeta^+_1(\bar{y}) \zeta^+_2(\bar{y}),
\]

(A4)

\[
\mathcal{K}(\bar{y}, \bar{y}') = K_0(\bar{y}, \bar{y}') - \zeta^-_1(\bar{y}) \zeta^-_2(\bar{y}) K_1(\bar{y}, \bar{y}'),
\]

(A5)

\[
K_0 \text{ and } K_1 \text{ are given by Eq. (18), and}
\]

\[
\zeta^+_k(\bar{y}) = \left[\text{sgn}(\varphi)(e^{-\bar{y}/\sin \varphi} \pm e^{(\bar{y}-L/l)/\sin \varphi}) \right]_+.
\]

(A6)

Once \(V(\bar{y}) \) is found, the ratio \(G^*/G_S \) is found from the expression

\[
G^*/G_S = \frac{\pi \zeta^+_1(0)}{4 \zeta^+_2(0)} \left[1 - \frac{2 \zeta^+_1(0)}{\zeta^+_2(0)} \int_0^{L/l} d\bar{y} \zeta_0(\bar{y}) V(\bar{y})/U \right].
\]

(A7)

where \(\zeta_0 \) is given by Eq. (19). In the ballistic limit, \(l/L \to \infty \), \(G^* = G_S \). In the hydrodynamic limit, \(l/L \to 0 \), one has \(\zeta^+_k = \zeta_k \), \(S = S \), \(K = K \), and Eq. (A3) becomes identical to Eq. (15) with \(\Delta U = U/2 \), reflecting the property that half of the total potential drops near each boundary. Since \(\zeta_1(0) = 1/\pi \) and \(\zeta_2(0) = 1/4 \), Eq. (A7) is reduced to \(G^*/G_S = \alpha \), where \(\alpha \) is given by Eq. (20).

Appendix B

The solution of Eq. (37) with \(l_e = l \) and boundary conditions Eq. (38) is

\[
g^+_{\varphi}(\rho) = eU \theta(|\rho_1| - |\rho|) e^{\psi_w(\rho_1) - \psi_w(\rho)} + \theta(|\rho| - \rho_1) + \int_{\max\{\rho_1, |\rho|\}}^{\rho_0} d\rho' e^{-\psi_w(\rho_1) - \psi_w(\rho')} \frac{\rho' \mathcal{F}(\rho')}{|\rho'|} \Delta U \left(\frac{A}{\rho'} \right),
\]

\[
+ \int_{\max\{\rho_1, |\rho|\}}^{\rho} d\rho' e^{-\psi_w(\rho_1) + \psi_w(\rho')} \frac{\rho' \mathcal{F}(\rho')}{|\rho'|} \Delta U \left(\frac{A}{\rho'} \right), \quad (B1)
\]

\[
g^-_{\varphi}(\rho) = \int_{\rho_1}^{\rho} d\rho' e^{\psi_w(\rho) - \psi_w(\rho')} \frac{\rho' \mathcal{F}(\rho')}{|\rho'|} \Delta U \left(\frac{A}{\rho'} \right),
\]

(B2)

where the dimensionless quantities are introduced according to \(\rho = r/l \), \(\rho' = r'/l \), \(\rho_0 = R_0/l \), \(\rho_1 = R_1/l \), \(w = \rho \cos \varphi \), and \(\psi_w(\rho) = \sqrt{\rho^2 - w^2} \). The latter is related to \(\varphi \) as \(\psi_w(\rho) = \rho \sin \varphi \). The solution satisfies the necessary requirements \(g^+_{\varphi}(\rho) = g^+_0(\rho) \) and \(g^{-}_{\varphi}(\rho) = g^-_{\varphi}(\rho) \) expressing periodicity of \(g_{\varphi}(\rho) \) and its continuity at \(\varphi = \pi \). Applying \(\mathcal{F}(\rho) = eV(\rho) = (2\pi)^{-1} \int_0^{\pi} d\varphi [g^+_0(\rho) + g^-_{\varphi}(\rho)] \) and \(A/r = \pi^{-1} \int_0^{\pi} d\varphi [g^+_0(\rho) - g^-_{\varphi}(\rho)] \sin \varphi \), one obtains the integral equation

\[
V(\rho) = U \mathcal{L}(\rho) + \int_{\rho_1}^{\rho_0} d\rho' \mathcal{Q}(\rho, \rho') V(\rho'),
\]

(B3)

The functions entering Eq. (B3) are

\[
\mathcal{L}(\rho) = \mathcal{L}_0(\rho) + \mathcal{L}_1(\rho) Z(\rho)/[1 - Z(\rho)],
\]

(B4)

\[
\mathcal{Q}(\rho, \rho') = \mathcal{Q}_0(\rho, \rho') + \mathcal{Q}_1(\rho, \rho') Z(\rho)/[1 - Z(\rho)],
\]

(B5)

\[
\mathcal{L}_0(\rho) = \frac{1}{\pi} \int_0^{\rho_0} \frac{\rho \psi_w(\rho')}{\psi_w(\rho)} d\rho',
\]

(B6)

\[
\mathcal{L}_1(\rho) = \frac{2}{\pi} \int_0^{\rho_1} \rho \psi_w(\rho') d\rho',
\]

(B7)

\[
\mathcal{Q}_0(\rho, \rho') = \frac{1}{\pi} \int_0^{\rho_0} \frac{\rho \psi_w(\rho')}{\psi_w(\rho)} e^{-|\psi_w(\rho) - \psi_w(\rho')|} d\rho',
\]

\[
+ \frac{1}{\pi} \int_{\rho_1}^{\rho_0} \rho \psi_w(\rho') e^{-|\psi_w(\rho) - \psi_w(\rho')|} d\rho',
\]

(B8)

\[
\mathcal{Q}_1(\rho, \rho') = \frac{2}{\pi} \int_0^{\rho_0} \frac{\rho \psi_w(\rho')}{\psi_w(\rho)} e^{-|\psi_w(\rho) - \psi_w(\rho')|} d\rho',
\]

\[
+ 2 \int_{\rho_1}^{\rho_0} \rho \psi_w(\rho') e^{-|\psi_w(\rho) - \psi_w(\rho')|} d\rho',
\]

(B9)

\[
Z(\rho) = \frac{1}{\pi} \int_{\rho_1}^{\rho_0} \frac{d\rho'}{\rho'} \left[\int_0^{\rho} \frac{\rho \psi_w(\rho')}{\psi_w(\rho)} e^{-|\psi_w(\rho) - \psi_w(\rho')|} d\rho' \right],
\]

(B10)
and
\[Z_1(\rho) = \frac{2}{\pi} \int_{\rho_1}^{\rho_m} \frac{d\rho'}{\rho'} \left[\int_0^{\rho_m} dw e^{-\left| \psi_{\omega}(\rho) - \psi_{\omega}(\rho') \right|} - \int_{\rho_1}^{\rho} dw e^{-\left| \psi_{\omega}(\rho) - \psi_{\omega}(\rho') \right|} \right], \quad (B11) \]
where \(\rho_m = \min(\rho, \rho') \). The conductance \(G^* = 1/R^* \) is determined by the solution of Eq. (B3) as follows:
\[\frac{G^*}{G_S} = \frac{1 - \left(\pi/\rho_1 \right) \int_{\rho_1}^{\rho_m} dp \rho L_0(\rho) V(\rho)/U}{1 - \int_{\rho_1}^{\rho_m} d\rho L_1(\rho)/\rho}. \quad (B12) \]

The conductance depends on the ratios \(R_0/l \) and \(R_1/l \). In the ballistic limit, when \(R_0/l \rightarrow 0 \), the integral terms in Eq. (B12) go to zero as well and \(G^* = G_S \), while Eq. (B3) is reduced to \(V(\rho) = U L_0(\rho) \) describing the potential distribution \(V(r) = (U/\pi) \arcsin(R_1/r) \).

In the hydrodynamic limit, when \(l/R_1 \rightarrow 0, l/(R_0 - R_1) \rightarrow 0 \), the relations \(G^*/G_S = 2b\alpha/(b+1) \) and \(V(r) = V_{bulk} = U/(b+1) \) are restored.

[1] R. N. Gurzhi, Minimum of resistance in impurity free conductors, Sov. Phys. JETP 17, 521 (1963).
[2] A. O. Govorov and J. J. Heremans, Hydrodynamic Effects in Interacting Fermi Electron Jests, Phys. Rev. Lett. 92, 026803 (2004).
[3] M. J. M. de Jong and L. W. Molenkamp, Hydrodynamic electron flow in high-mobility wires, Phys. Rev. B 51, 13389 (1995).
[4] R. N. Gurzhi, A. N. Kalinenko, and A. I. Kopeliovich, Electron-Electron Collisions and a New Hydrodynamic Effect in Two-Dimensional Electron Gas, Phys. Rev. Lett. 74, 3872 (1995).
[5] R. N. Gurzhi, A. N. Kalinenko, and A. I. Kopeliovich, The theory of kinetic effects in two-dimensional degenerate gas of collisions electrons, Low Temp. Phys. 23, 44 (1997).
[6] M. Müller, J. Schmalian, and L. Fritz, Graphene: A nearly perfect fluid, Phys. Rev. Lett. 103, 025301 (2009).
[7] R. Bistritzer and A. H. MacDonald, Hydrodynamic theory of transport in doped graphene, Phys. Rev. B 80, 085109 (2009).
[8] A. V. Andrei, S. A. Kivelson, and B. Spivak, Hydrodynamic Description of Transport in Strongly Correlated Electron Systems, Phys. Rev. Lett. 106, 256804 (2011).
[9] B. N. Narozhny, I. V. Gornyi, M. Titov, M. Schütt, and A. D. Mirlin, Hydrodynamics in graphene: Linear-response transport, Phys. Rev. B 91, 035414 (2015).
[10] I. Torre, A. Tomadin, A. K. Geim, and M. Polini, Nonlocal transport and the hydrodynamic shear viscosity in graphene, Phys. Rev. B 92, 165433 (2015).
[11] D. A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G. H. Auton, E. Keshanava, K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim, and M. Polini, Negative local resistance caused by viscous electron backflow in graphene, Science 351, 1055 (2016).
[12] P. S. Alekseev, Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons, Phys. Rev. Lett. 117, 166601 (2016).
[13] A. Lucas, J. Crossno, K. C. Fong, P. Kim, and S. Sachdev, Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene, Phys. Rev. B 93, 075426 (2016).
[14] A. Principi, G. Vignale, M. Carrega, and M. Polini, Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet, Phys. Rev. B 93, 125410 (2016).
[15] F. M. D. Pellegrino, I. Torre, A. K. Geim, and M. Polini, Electron hydrodynamics dilemma: Whirlpools or no whirlpools, Phys. Rev. B 94, 155414 (2016).
[16] T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore, Hydrodynamic Electron Flow and Hall Viscosity, Phys. Rev. Lett. 118, 226601 (2017).
[17] F. M. D. Pellegrino, I. Torre, and M. Polini, Nonlocal transport and the Hall viscosity of two-dimensional hydrodynamic electron liquids, Phys. Rev. B 96, 195401 (2017).
[18] G. Falkovich and L. Levitov, Linking Spatial Distributions of Potential and Current in Viscous Electronics, Phys. Rev. Lett. 119, 066601 (2017).
[19] A. Levchenko, H.-Y. Xie, and A. V. Andreev, Viscous magnetoresistance of correlated electron liquids, Phys. Rev. B 95, 121301(R) (2017).
[20] H. Guo, E. Isevan, G. Falkovich, and L. S. Levitov, Higher-than-ballistic conduction of viscous electron flows, Proceedings of the National Academy of Sciences 114, 3068 (2017).
[21] R. Krishna Kumar, D. A. Bandurin, F. M. D. Pellegrino, Y. Cao, A. Principi, H. Guo, G. H. Auton, M. Ben Shalom, L. A. Ponomarenko, G. Falkovich, K. Watanabe, T. Taniguchi, I. V. Grigorieva, L. S. Levitov, M. Polini, and A. K. Geim, Superballistic flow of viscous electron fluid through graphene constrictions, Nature Physics 13, 1182 (2017).
[22] A. Lucas, Stokes paradox in electronic Fermi liquids, Phys. Rev. B 95, 115425 (2017).
[23] A. Lucas and S. A. Hartnoll, Kinetic theory of transport for inhomogeneous electron fluids, Phys. Rev. B 97, 045105 (2018).
[24] A. Lucas and K. C. Fong, Hydrodynamics of electrons in graphene, J. Phys.: Condens. Matter 30, 053001 (2018).
[25] G. M. Gusev, A. D. Levin, E. V. Levinson, and A. K. Bakarov, Viscous electron flow in mesoscopic two-dimensional electron gas, AIP Adv. 8, 025318 (2018).
[26] G. M. Gusev, A. D. Levin, E. V. Levinson, and A. K. Bakarov, Viscous transport and Hall viscosity in a two-dimensional electron system, Phys. Rev. B 98, 161303(R) (2018).
[27] A. D. Levin, G. M. Gusev, E. V. Levinson, Z. D. Kvon, and A. K. Bakarov, Vorticity-induced negative nonlocal resistance in a viscous two-dimensional electron system, Phys. Rev. B 97, 245308 (2018).
P. S. Alekseev and M. A. Semina, Ballistic flow of two-dimensional interacting electrons, Phys. Rev. B 98, 165412 (2018).

M. Chandra, G. Kataria, D. Sahdev, and R. Sundararaman, Hydrodynamic and ballistic AC transport in two-dimensional Fermi liquids, Phys. Rev. B 99, 165409 (2019).

J. A. Sulpizio, L. Ella, A. Rozen, J. Birkbeck, D. J. Perello, D. Dutta, M. Ben-Shalom, T. Taniguchi, K. Watanabe, T. Holder, R. Queiroz, A. Principi, A. Stern, T. Scaffidi, A. K. Geim, and S. Ilani, Visualizing Poiseuille flow of hydrodynamic electrons, Nature 576, 75 (2019).

T. Holder, R. Queiroz, T. Scaffidi, N. Silberstein, A. Rozen, J. A. Sulpizio, L. Ella, S. Ilani, and A. Stern, Ballistic and hydrodynamic magnetotransport in narrow channels, Phys. Rev. B 100, 245305 (2019).

M. Shavit, A. Shytov, and G. Falkovich, Freely Flowing Currents and Electric Field Expulsion in Viscous Electronics, Phys. Rev. Lett. 123, 026801 (2019).

T. Holder, R. Queiroz, and A. Stern, Unified Description of the Classical Hall Viscosity, Phys. Rev. Lett. 123, 106801 (2019).

O. E. Raichev, Linking boundary conditions for kinetic and hydrodynamic description of fermion gas, Phys. Rev. B 105, L041301 (2022).

H. H. Jensen, H. Smith, P. Wolfle, K. Nagai and T. M. Bisgaard, Boundary Effects in Fluid Flow. Application to Quantum Liquids, J. Low Temp. Phys. 41, 473 (1980).

E. I. Kiselev and J. Schmalian, Boundary conditions of viscous electron flow, Phys. Rev. B 99, 035430 (2019).