Nalidixic acid resistance predicting reduced ciprofloxacin susceptibility of *Salmonella enterica* serovar Typhi

Shyamapada Mandal\(^1\), Manisha DebMandal\(^2\), Nishith Kumar Pal\(^1\)

\(^1\) Department of Microbiology, Bacteriology and Serology Unit, Calcutta School of Tropical Medicine, C. R. Avenue, Kolkata–700 073, India
\(^2\) Department of Physiology and Biophysics, KPC Medical College and Hospital, Jadavpur, Kolkata–700 032, India

1. Introduction

Enteric fever due to the infection of multidrug-resistant (MDR) *Salmonella enterica* serovar Typhi (S. Typhi) showing resistance to chloramphenicol, co-trimoxazole and ampicillin has posed a serious therapeutic challenge in many developing counties including India. Fluoroquinolones, including ciprofloxacin (Cp), were found effective against the infection of MDR S. Typhi, which were detected sensitive to Cp following the NCCLS (National Committee for Clinical Laboratory Standards) breakpoints \(^1\). However, there was an emergence of S. Typhi isolates causing Cp treatment failure of typhoid fever \(^2\). These isolates comparatively had higher minimal inhibitory concentrations (MIC) of Cp, though they were found susceptible to Cp by conventional disc diffusion testing and recommended MIC breakpoints \(^3-5\). Thus, several workers have observed clinical failure to Cp therapy due to infection with nalidixic acid (Nx)–resistant S. Typhi, and many workers considered Nx susceptibility test as a surrogate marker for decreased susceptibility to Cp in S. Typhi \(^6,7\).

Based on the fact of enteric fever treatment failures due to the infection of S. Typhi, showing in vitro susceptibility to Cp following the NCCLS guidelines, several authors suggested Nx screening test in order to detect Cp resistance of S. Typhi isolates \(^8\). It has been recommended that the S. Typhi isolates should be tested for Nx–resistance in order to avoid reporting false susceptibility to fluoroquinolones. In the present study, the relevance of using the resistance to Nx as a marker for decreased Cp susceptibility in S. Typhi isolates was evaluated by comparing the MICs of Cp and that of Nx, and MICs of Cp and ZDI obtained around 30–80 μg Nx disc. In our collection of S. Typhi isolates, Nx susceptibility testing proved both sensitive and specific in screening isolates with decreased Cp susceptibility.

2. Materials and Methods

2.1. *Salmonella Typhi* strains

A total of 421 S. Typhi isolates from blood samples of suspected enteric fever patients undergoing treatment...
at the Calcutta School of Tropical Medicine, Kolkata (India) were used in the present study; the control strain used was *Escherichia coli* ATCC 25922.

2.2. Scattergram analysis

The isolates were tested against nalidixic acid (Nx) and ciprofloxacin (Cp) using 30−μg disc and 5−μg disc, respectively, in order to determine the zone diameter of inhibition (ZDI) around the discs for all the isolates. Minimum inhibitory concentration (MIC) values of Nx and Cp for all the isolates were determined by agar dilution method using antibiotic concentrations, Nx (0.25 to 512 μg/mL) and Cp (0.005 to 2 μg/mL). The ZDIs obtained around the 30−μg Cp disc were compared with the ZDIs from around the 5−μg Cp disc, as well as with the Cp MICs for the isolates by scattergram analysis. The detail of the methods are mentioned elsewhere [9], following Clinical and Laboratory Standards Institute (CLSI, formerly called the National Committee for Clinical Laboratory Standards; NCCLS) criteria [10].

2.3. Determination of specificity and sensitivity

The specificity and sensitivity, in determining the reduced susceptibility to Cp, of Nx resistance by disc testing and MIC value determination were calculated using formulae:

\[
\text{% sensitivity} = \frac{\text{true resistant}}{\text{true resistant} + \text{false sensitive}} \times 100, \quad \text{and} \quad \text{% specificity} = \frac{\text{true sensitive}}{\text{false resistant} + \text{true sensitive}} \times 100 \quad [11].
\]

2.4. Statistical analysis

The association between Nx−resistance and decreased Cp susceptibility was analyzed statistically following t-test, in order to compare the difference between mean MIC values of Cp and Nx for Nx−resistant (by disc diffusion) S. Typhi isolates. A *P*−value of ≤ 0.001 was considered significant.

3. Results

The MIC histogram of Cp for S. Typhi isolates (n=421) showed three patterns of distribution with a range of 0.0075−1.25 μg/mL for Cp (Figure 1). The isolates were divided into three populations based on susceptibility according to the NCCLS recommendations: with the Cp MICs ranging from 0.075 μg/mL to 1.25 μg/mL for the Nx−resistant population, from 0.05 μg/mL to 0.075 μg/mL for isolates showing intermediate susceptibility to Nx, and from 0.0075 μg/mL to 0.075 μg/mL for Nx−sensitive population.

There was an association between increased Cp MICs and Nx resistance based upon ZDI obtained around 30−μg Nx disc for the isolates. Of the 157 isolates classified as Nx−resistant S. Typhi according to the NCCLS recommendation (ZDI≤13 mm), there were 125 with Cp MICs in between 0.1 μg/mL and 1.25 μg/mL, thus showing reduced susceptibility to Cp; the remaining 32 isolates had Cp MICs 0.025−0.075 μg/mL. The MIC range of Cp for 253 Nx−sensitive S. Typhi was 0.0075−0.075 μg/mL, indicated sensitivity of the isolates to Cp. Eleven S. Typhi isolates, which showed intermediate susceptibility to Nx (ZDI 16 mm), had Cp MICs 0.025−0.075 μg/mL.

Table 1. Mean MICs (μg/mL) of Nx and Cp for Nx−resistant and Nx−sensitive S. Typhi isolates

Agents	S. Typhi isolates	
	Nx−resistant	Nx−sensitive
Nalidixic acid (Nx)	112.5 ± 78.58* (32−256)	6.18 ± 4.14 (0.5−16)
Ciprofloxacin (Cp)	0.63 ± 0.38* (0.075−1.25)	0.033 ± 0.02 (0.0075−0.075)

*P < 0.001 compared to Nx−sensitive S. Typhi isolates. Values are mean ± S E. Figures in the parentheses are the MIC ranges.

![Figure 1. Ciprofloxacin (Cp) minimum inhibitory concentration (MIC) histogram for 421 S. Typhi isolates. Cp MICs are plotted on the x-axis, and the numbers of isolates are plotted on the y-axis. Columns of different colours indicate the patterns of nalidixic acid (Nx) susceptibility for the isolates.](image)

There was a correlation between MICs of Cp and that of Nx for the S. Typhi isolates with simultaneous presence of Nx−resistance and decreased Cp susceptibility. All 125 S. Typhi isolates for which the Cp MICs were 0.1 μg/mL, were resistant to Nx (MICs 32-256 μg/mL). The 12 Nx−resistant isolates showed Cp MICs 0.075 μg/mL. Out of 12 isolates, which were intermediately susceptible to Nx (MIC 24 μg/mL), 5 showed Cp MIC of 0.05 μg/mL, and 7 of 0.075 μg/mL. All 233 sensitive isolates (Nx MIC ≤16 μg/mL) showed Cp MICs of ≤ 0.075 μg/mL.

The mean MICs of Nx and Cp for the isolates are shown in the Table 1. The differences in the MIC of Cp for the two study groups (Nx−resistant and Nx−sensitive) were statistically significant (*P < 0.001*) supporting the association between Nx−resistance and decreased Cp susceptibility.

4. Discussion

Emergence of Nx resistant S. Typhi and reports of infection with S. Typhi strains with increased resistance to Cp from typhoid–endemic areas have generated concern that strains resistant to Cp may become more prevalent [12], Capoor et al. [13] reported from New Delhi (India) Nx resistant S. Typhi isolates, of which 98.9 % had decreased susceptibility (MIC ≥ 0.125−1 μg/mL) to Cp. Lynch et al. [14] reported from...
the United States the Nx resistant S Typhi isolates, among which 97 % had decreased susceptibility to Cp (MIC > 0.12 μg/mL). Threlfall et al. [15] reported that strains resistant at 0.125 μg/mL but susceptible at 1 μg/mL are regarded as exhibiting low-level resistance or decreased susceptibility to this antimicrobial, whereas those resistant at 1 μg/mL are regarded as showing high-level resistance. In an agar dilution breakpoint method, as has been discussed by elsewhere [9], the levels of Cp incorporated into the media are 0.125 μg/mL and 1 μg/mL. According to this method, strains resistant at 0.125 μg/mL but susceptible at 1 μg/mL are regarded as exhibiting low-level resistance or decreased susceptibility to this antimicrobial, whereas those resistant at 1 μg/mL are regarded as showing high-level resistance.

It has been suggested that among S. Typhi isolates resistance to Nx may be an indicator of decreased susceptibility to Cp [6,7]. The Salmonella enterica serotype Paratyphi A also showed reduced susceptibility to Cp (MIC 0.75 μg/mL) and was resistant to Nx [16]. Based on the MICs of Cp and ZDI around 30–1 μg/g Nc disc for 421 isolates tested in our study, screening for Nx resistance (ZDI < 13 mm) led to the detection of 125 isolates for which the Cp MICs were >0.1 μg/mL. When this MIC (≥ 0.1 μg/mL) was used as a breakpoint of decreased Cp susceptibility in this study, the sensitivity of Nx disc was 100 %, and the specificity was 89.20 % based on the fact that 32 of the 296 isolates having Cp MICs 0.0075–0.075 μg/mL (≤ 0.075 μg/mL) also had Nx ZDI < 13 mm. When MICs of Nx were compared with MICs of Cp for 421 isolates, screening for Nx resistance led to the detection of all 125 isolates with decreased Cp susceptibility (MIC ≥ 0.1 μg/mL). In addition, 12 of the 296 isolates having Cp MICs ≤ 0.075 μg/mL were also included into this category. Therefore, sensitivity of the approach was 100 %, and specificity was 95.95 %, and there was a correlation between resistance to Nx and reduced susceptibility to Cp (P= value of ≤ 0.001).

Nx resistance determined by the disc diffusion method may be an indication of decreased susceptibility to Cp [6,7]; in addition, we recorded a correlation between resistance to Nx (MIC, ≥ 32 μg/mL) and reduced susceptibility to Cp (MIC ≥ 0.1 μg/mL). This enables physicians to make informed decisions regarding appropriate class, dosage, and duration of antibiotic therapy for patients infected with S. Typhi showing reduced susceptibility to Cp. Although this older antibacterial is rarely used for treatment, resistance to Nx can be a marker for decreased susceptibility to Cp, because the use of CLSI breakpoints of resistance to Cp in S. Typhi at ≥ 4 μg/mL has been suggested to obscure the true occurrence of resistance.

Conflict of interest statement

We declare that we have no conflict of interest.

References

[1] National Committee for Clinical Laboratory Standards; Performance Standards for antimicrobial disc susceptibility tests, 7th ed. Approved standards M2-A6. Wayne Pa: National Committee for Clinical Laboratory Standards; 2000.
[2] Kadhiravan T, Wig N, Kapil A, Kabra SK, Renuka K, Misra A. Clinical outcomes in typhoid fever: adverse impact of infection with nalidixic acid–resistant Salmonella Typhi. BMC Infectious Diseases 2005; 5: 37. doi:10.1186/1471-2334-5-37
[3] Renuka K, Sood S, Das BK, Kapil A. High–level ciprofloxacin resistance in Salmonella enterica serotype Typhi in India. J Med Microbiol 2005; 54: 999–1000.
[4] Parry CM. The treatment of multidrug-resistant and nalidixic acid–resistant typhoid fever in Viet Nam. Trans R Soc Trop Med Hyg 2004; 98: 413–422.
[5] Rahman M, Siddique AK, Shoma S, Rashid H, Salam MA, Ahmed Q S et al. Emergence of multidrug–resistant Salmonella enterica serotype Typhi with decreased ciprofloxacin susceptibility in Bangladesh. Epidemiol Infect 2006; 134: 433–438.
[6] Asma SM, Haq JA, Rahman M. Nalidixic acid–resistant Salmonella enterica serovar Typhi with decreased susceptibility to ciprofloxacin caused treatment failure: a report from Bangladesh. Jpn J Infect Dis 2003; 56: 32–33.
[7] Kapil AR, Das B. Nalidixic acid susceptibility test to screen ciprofloxacin resistance in Salmonella Typhi. Ind J Med Res 2002; 115: 49–54.
[8] Ray P, Sharma J, Marak RSK, Garg RK. Predictive efficacy of nalidixic acid resistance as a marker of fluoroquinolone resistance in Salmonella enterica var Typhi. Indian J Med Res 2006; 124: 105–108.
[9] Mandal S. Antibiotic resistance of Salmonella Typhi in Kolkata (1991–2001) and in vitro experiments on effect of combined chemotherapy. Thesis: Jadavpur University, Kolkata, India. 2005; 1–191.
[10] Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility tests. Fifteenth Informational Supplrement. CLSI document M02S–S15. Clinical and Laboratory Standards Institute, 2005, Wayne, PA.
[11] Gopalakrishnan V, Sekhar W Y, Soo E H, Vinsent R A, Devi S. Multidrug resistant salmonellae: molecular analysis of strains with decreased susceptibility and resistant to ciprofloxacin in India from 2001–2003. Brazilian J Infect Dis 2007; 11: 423–425.
[12] Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non–Typhi salmonellae. Clin Infect Dis. 2003; 37: 75–81.
[13] Capoor MR, Nair D, Aggarwal P, Mathys V, Dehem M, Bifani PJ. Salmonella enterica Serovar Typhi: Molecular Analysis of Strains with Decreased Susceptibility and Resistant to Ciprofloxacin in India from 2001–2003. Braz J Infect Dis 2007; 11: 423–425.
[14] Lynch MF, Blanton EM, Bulens S, Polyak C, Vojdani J, Medalla F. Typhoid Fever in the United States, 1999–2006. JAMA 2009; 302: 859–65.
[15] Threlfall EJ, Skinner JA, Ward LR. Detection of decreased in vitro susceptibility to ciprofloxacin in Salmonella enterica serotypes Typhi and paratyphi A. J Antimicrob Chemother 2001; 48: 740–741.
[16] Dimitrov T, Udo EE, Alhakasmi O, Kilani AA, Shehab EMR. Ciprofloxacin treatment failure in a case of typhoid fever caused by Salmonella enterica serotype Paratyphi A with reduced susceptibility to ciprofloxacin. J Med Microbiol 2007; 56: 277–279.