Low temperature properties of ZrTr$_2$Zn$_{20}$ ($Tr =$ transition metal) with a pyrochlore lattice

S Hasegawa1, K Morihiro2, N Kase1, T Nakano1 and N Takeda2

1Graduate School of Science and Technology, Niigata University, Niigata 950-2102, Japan
2Department of Materials Science and Technology, Niigata University, Niigata 950-2102, Japan

E-mail: f15b032b@mail.cc.niigata-u.ac.jp

Abstract. Single crystals of ZrTr$_2$Zn$_{20}$ ($Tr =$ Mn, Co, Ru) with a cubic CeCr$_2$Al$_{20}$-type structure (space group Fd-3m) were grown by a Zn-flux method. Electrical resistivity $\rho(T)$ of ZrTr$_2$Zn$_{20}$ shows typical metallic behavior with the residual resistivity ratio (RRR) of 1.1 (Mn), 8.4 (Co) and 10 (Ru). Magnetic susceptibility $\chi(T)$ of ZrRu$_2$Zn$_{20}$ shows large diamagnetism. $\chi(T)$ of ZrTr$_2$Zn$_{20}$ ($Tr =$ Mn, Co) clearly shows Curie-Weiss behavior, indicating that Mn/Co spins are really active as local magnetic moments or that a large spin fluctuation exists. $\chi(T)$ of ZrMn$_2$Zn$_{20}$ increases ferromagnetically at around 20 K. Because the anti-ferromagnetic correlation with active localized spins exists in ZrCo$_2$Zn$_{20}$, geometrical frustration of the pyrochlore lattice of Co is expected. However, specific heat $C(T)$ of ZrCo$_2$Zn$_{20}$ shows no upturn at low temperatures and Sommerfeld coefficient γ is evaluated to be 24.8 mJ/(mol K2). We consider that the localized Co spins are insufficient to cause anomaly originated from the geometrical frustration, or the Co spins exist in a disordered arrangement of excess Co.

1. Introduction

Heavy-fermion behavior is one of the central issues in the strongly correlated systems. In this system, 4/5f electron plays an important role to form heavy-fermion state ascribed to competition between Kondo effect and RKKY interaction. However, heavy-fermion behavior without 4/5f-electron has been discovered in the pyrochlore compound LiV$_2$O$_4$ [1], where the heavy-fermion behavior is considered to be ascribed to the geometrical frustration on the pyrochlore lattice.

YMn$_2$Zn$_{20-x}$In$_x$ is an itinerant-electron antiferromagnet with magnetic Mn atoms forming a pyrochlore lattice made of corner-sharing tetrahedra [2]. This compound is also known to show heavy-fermion behavior. Specific heat $C(T)$ at low temperatures increases below 2 K and reaches 280 mJ/(mol K2), suggesting a significant large mass enhancement. However, YMn$_2$Zn$_{20-x}$In$_x$ has a possibility that disorder from excess Mn mask intrinsic behavior [2]. Thus, at this stage, it is highly desirable to find a pure single crystal of MTr$_2$Zn$_{20}$ comprising Tr ($Tr =$ transition metal) pyrochlore lattice without excess magnetic elements.

We focus on Zr-based compounds ZrTr$_2$Zn$_{20}$, which can be synthesized without In substitution, and we report the physical properties of the single crystals of ZrTr$_2$Zn$_{20}$ ($Tr =$ Mn, Co, Ru).
2. Experimental details
Single crystals of Zr-Tr$_2$Zn$_{20}$ (Tr = Mn, Co, Ru) were grown by a Zn-flux method. Zr chips, Mn, Co, and Ru powder, Zn grains were mixed in a molar ratio of 1:2:80. Each mixture sealed in silica tubes were heated on 1000$^\circ$C for 24h, and then cooled down to 500$^\circ$C at a rate of 5$^\circ$C/h in an electrical furnace. Zn-flux was eliminated by a centrifugation and the remaining one removed by acetic acid (0.1 %). The typical size of the single crystals is about 1 ~ 5 mm as shown in inset of Figure 1. The crystal structure was examined by the powder X-ray diffraction (XRD) technique with Cu-K$_\alpha$ radiation and a graphite monochromator (RAD-2X, Rigaku). The intensity data were collected over a 2θ range of 10-90$^\circ$ with a step width of 0.01$^\circ$ and a counting rate of 4$^\circ$/minutes. Magnetic susceptibility $\chi(T)$ measurements were performed by a magnetic properties measurements system (MPMS, Quantum Design). Electrical resistivity $\rho(T)$ was measured by an ac-four-probe method in a 3He cryostat (Heliox VL, Oxford) down to 0.3 K. Specific heat $C(T)$ measurements were performed down to 0.3 K in the 3He cryostat using a standard adiabatic heat-pulse method.

3. Experimental results
3.1. Chemical composition and lattice constants
Figure 1 shows the XRD patterns of Zr-Tr$_2$Zn$_{20}$ (Tr = Mn, Co, Ru). Remaining Zn-flux is detected in the XRD patterns of ZrRu$_2$Zn$_{20}$. All peaks except for the Zn peaks can be indexed with a cubic unit cell with a space group Fd-3m. The lattice constants obtained from all indexes are 1.4033(2) (Mn), 1.3913(1) (Co) and 1.4038(1) nm (Ru). These values are in a good agreement with those of the previous report [3].

![Figure 1. XRD patterns of Zr-Tr$_2$Zn$_{20}$ (Tr = Mn, Co, Ru) single crystal. Inset shows image of a single crystal of ZrRu$_2$Zn$_{20}$.](image-url)
3.2. Magnetic properties

Figure 2 (a) represents T-dependence of χ_0 subtracted magnetic susceptibility $\chi(T) - \chi_0$ of ZrMn$_2$Zn$_{20}$, where χ_0 is a T-independent term of 1.82×10^{-3} emu/mol, and Figure 2 (b) shows $\chi(T)$ of ZrTr$_2$Zn$_{20}$ ($Tr = Co, Ru$) in a magnetic field of 0.1 T down to 2 K. $\chi(T)$ of ZrTr$_2$Zn$_{20}$ ($Tr = Mn, Co$) clearly shows Curie-Weiss behavior at high temperatures. This result indicates that Mn/Co spins are really active as local magnetic moments or that a large spin fluctuation exists. $\chi(T)$ of ZrMn$_2$Zn$_{20}$ ferromagnetically increase at $T_C \sim 20$ K. From $\chi' (T)$ in a temperature range of 100-300 K, Curie-Weiss fits give an effective moment of $\mu_{eff} = 0.68 \mu_B$/Mn and Curie temperature $\theta_C = 33$ K for ZrMn$_2$Zn$_{20}$, $\mu_{eff} = 1.1 \mu_B$/Co and Weiss temperature $\theta_w = -96$ K for ZrCo$_2$Zn$_{20}$. The estimated μ_{eff} values are relatively smaller than that expected when each Mn/Co atom carries an $S = 1/2$ localized spin ($\mu_{eff} = 1.73 \mu_B$/Tr), and are comparable to that of paramagnetic compounds RFe$_2$Zn$_{20}$ ($R = Y, Lu$) [4]. Because localized spin exists ferromagnetically, geometrical frustration of the pyrochlore lattice of Mn cannot be expected in ZrMn$_2$Zn$_{20}$. On the other hand, ZrCo$_2$Zn$_{20}$ has a possibility of heavy-fermion behavior originated from geometrical frustration, because the anti-ferromagnetic correlation with active localized spin exists. $\chi(T)$ of ZrRu$_2$Zn$_{20}$ shows diamagnetism from room temperature. The diamagnetism is relatively large. Such a large diamagnetism is also seen in AV_2Al_20 ($A = Y, La$) [5].

![Figure 2](image)

Figure 2. (a) Magnetic susceptibility $\chi(T)$ and inverse susceptibility $\chi^{-1}(T)$ subtracted a temperature-independent term χ_0 of ZrMn$_2$Zn$_{20}$ in a magnetic field of 0.1 T. (b) $\chi(T)$ and $\chi^{-1}(T)$ of ZrCo$_2$Zn$_{20}$ and $\chi(T)$ of ZrRu$_2$Zn$_{20}$ in a magnetic field of 0.1 T. The dotted line on each χ^{-1} data represents a Curie-Weiss fit.

3.3. Specific heat

Figure 3 shows T-dependence of specific heat $C(T)$ divided by T of ZrTr$_2$Zn$_{20}$ ($Tr = Mn, Co, Ru$) down to 0.3 K. $C(T)/T$ can be fitted as $C/T = \gamma + \beta T^2$; γ is Sommerfeld coefficient and β is lattice specific coefficient. The fittings give $\gamma = 29.6$ and $\beta = 2.90$ (Mn), 24.8 and 1.32 (Co), 13.6 mJ/(mol K2) and 1.53 mJ/(mol K4) (Ru). From the simple Debye model of the phonon contribution with the relationship $\Theta_D = (12\pi^2 nR/5\beta)^{1/3}$, gas constant $R = 8.314$ J/(mol K) and $n = 23$ for ZrTr$_2$Zn$_{20}$, Debye temperatures Θ_D are evaluated to be 249 (Mn), 324 (Co) and 308 K (Ru), respectively. In the heavy fermion compounds originated from geometrical frustration, $C(T)/T$ shows upturn at low temperatures and reaches 207 mJ/(mol K2) in YMn$_2$Zn$_{20}$, γ is comparable to that of the normal and paramagnetic compounds in 1-2-20 system [5], heavy-fermion behavior is not observed in ZrCo$_2$Zn$_{20}$. The reason why upturn or large γ is not
seen in ZrCo$_2$Zn$_{20}$ is not clear. One of the reasons is that the localized Co spins are insufficient to cause anomaly originated from the geometrical frustration. In the case of YMn$_2$(Zn$_{1-x}$In$_x$)$_{20}$, μ_{eff} is estimated to be 2.4 μ_B/Mn, which is comparable to that expected when each Mn atom carries an $S = 1$ localized spin [2]. The estimated localized spin of ZrCo$_2$Zn$_{20}$ (1.1 μ_B/Co) seems to be small to lead to anomaly originated from geometrical frustration. Another reason is that the localized Co spin is not located in the pyrochlore lattice, but exists in a disordered arrangement of excess Co in the compound. It is necessary to determine whether excess Co exists or not by means of detailed crystal structure analysis.

Figure 3. Temperature dependence of specific heat divided by temperature $C(T)/T$ of ZrTr$_2$Zn$_{20}$ (Tr = Mn, Co, Ru). The dotted lines represent the fitting result (see text).

3.4. Electrical resistivity

Figure 4 shows T-dependence of electrical resistivity $\rho(T)$ of ZrTr$_2$Zn$_{20}$ (Tr = Mn, Co, Ru) down to 0.29 K. $\rho(T)$ of ZrTr$_2$Zn$_{20}$ shows normal metallic behavior, although ρ_0 of ZrMn$_2$Zn$_{20}$ is relatively large. Residual resistivity ratios (RRR) are estimated to be 1.1 (Mn), 8.4 (Co) and 10 (Ru) respectively. The RRR of ZrMn$_2$Zn$_{20}$ is smaller than those of ZrTr$_2$Zn$_{20}$ (Tr = Co, Ru). In $\rho(T)$ of ZrMn$_2$Zn$_{20}$, anomaly ascribed to ferromagnetic transition is not observed. The $\rho(T)$ of ZrMn$_2$Zn$_{20}$ is quite similar to that of YMn$_2$Zn$_{20-x}$In$_x$ ($x = 3.44$), which is disordered by substitution of In and excess Mn. Large ρ_0 of ZrMn$_2$Zn$_{20}$ seems to be originated from disorder due to excess Mn [4].

Figure 4. Temperature dependence of electrical resistivity $\rho(T)$ of ZrTr$_2$Zn$_{20}$ (Tr = Mn, Co, Ru).
4. Conclusion

We succeeded in synthesizing single crystals of ZrTr$_2$Zn$_{20}$ (Tr = Mn, Co, Ru). ZrMn$_2$Zn$_{20}$ shows ferromagnetic transition at $T_C \sim 20$ K. $\rho(T)$ of ZrMn$_2$Zn$_{20}$ is metallic, but RRR is small and ρ_0 is large despite single crystal. This result indicates that excess Mn exists. Upturn in $C(T)/T$ at low temperatures is not observed above 0.3 K in ZrTr$_2$Zn$_{20}$ (Tr = Mn, Co, Ru). Magnetic susceptibility $\chi(T)$ of ZrRu$_2$Zn$_{20}$ shows large diamagnetism, which is very similar to that of AV$_2$Al$_{20}$ (A = Y, La). $\chi(T)$ of ZrTr$_2$Zn$_{20}$ (Tr = Mn, Co) clearly shows Curie-Weiss behavior. The results indicate that Mn/Co spins are really active as local magnetic moments or that a large spin fluctuation exists. $\chi(T)$ of ZrMn$_2$Zn$_{20}$ ferromagnetically increase at around 20 K. On the other hand, geometrical frustration of the pyrochlore lattice with Co can be expected in ZrCo$_2$Zn$_{20}$, because the anti-ferromagnetic correlation with active localized spins exists. However, $C(T)/T$ of ZrCo$_2$Zn$_{20}$ shows normal metallic behavior. We consider that the localized Co spins are insufficient to cause anomaly originated from the geometrical frustration, or the Co spins exist in a disordered arrangement of excess Co.

Acknowledgments

This work was partially supported by the Grant-in-Aid for Young Scientist (B) (No. 26800183) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, the Sasakawa Scientific Research Grant (26-207) from the Japan Science Society, and the Uchida Energy Science Promotion Foundation (26-1-22).

References

[1] Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajewski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Umemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729
[2] Okamoto Y, Simizu T, Yamamura J, Kiuchi Y and Hiroi Z 2010 J. Phys. Soc. Jpn. 79 093712
[3] Gross N, Nasch T and Jeitschko W 2001 J. Solid State Chem. 161 288
[4] Jia S, Ni N, Bud’ko S L and Canfield P C 2009 Phys. Rev. B 80 104403
[5] Onosaka A, Okamoto Y, Yamaura J, Hirose T and Hiroi Z 2012 J. Phys. Soc. Jpn. 81 123702