Review Article

Medicinal Plants Used for the Treatment of Erectile Dysfunction in Ethiopia: A Systematic Review

Demoze Asmerom,1 Tesfay Haile Kalay,2 Tsgabu Yohannes Araya,1 Desilu Mahari Desta,3 Dawit Zewdu Wondafrash,4 and Gebrehiwot Gebremedhin Tafere4

1Department of Medicinal Chemistry, School of Pharmacy, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia
2Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia
3Clinical Pharmacy Unit and Research Team, School of Pharmacy, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia
4Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia

Correspondence should be addressed to Demoze Asmerom; demoze.asmerom@mu.edu.et

Received 15 October 2020; Revised 13 May 2021; Accepted 27 May 2021; Published 8 June 2021

1Introduction

Erectile dysfunction (ED) (also called impotence) is the inability to achieve or maintain an erection sufficient for satisfactory sexual performance [1]. It has remained one of the major global health issues which is usually attributed to age, diabetes mellitus, smoking, cardiovascular diseases, kidney disease, previous operations, psychological factors, and drugs [2, 3]. Previously, about 52% of ED in men was seen in the age range of 40 to 70 years [3]. However, recent studies reported that ED is becoming highly prevalent even under the age of 40 [4]. In Africa, around 71.45% of people with diabetes developed ED [5]. In Ethiopia, about 60.4% of diabetic patients were reported with varying degrees of ED and the
majority of the patients did not receive any medications [6]. More terribly, if this is not halted as early as possible, the number of ED cases globally is predicted to be 322 million by 2025 [7].

Erectile dysfunction can be managed nonpharmacologically via controlling plasma glucose levels and lipid profiles, avoiding smoking and alcohol drinking, psychological therapy, physical exercising, and external devices [8, 9]. Pharmacologically, it can be treated with different drugs including phosphodiesterase type 5 inhibitors (PDE5-Is), such as sildenafil, vardenafil, and tadalaﬁl; apomorphine; and synthetic prostaglandin E1 (alprostadil), phentolamine, and papaverine [8, 10]. Of those, PDE5-Is are the most commonly suggested and used ﬁrst-line treatment options in the world. However, the wide distribution of phosphodiesterase type 5 gene at various sites of the body led PDE5-Is to cause various adverse effects such as headache, myalgia, facial ﬂushing, heartburn, nasal congestion, and vision-related problems. Moreover, disease conditions affecting the upstream nitric oxide pathways have been found with loss of efﬁcacy [10]. Hence, it is vital to look for and ﬁnd optional agents that could solve these limitations.

Since immemorial times, plants have been used as medicines to treat a myriad of human afflications. This is because plants are a bank of bioactive compounds responsible for mitigating various disease conditions [11]. The people of Ethiopia depend heavily on medicinal plants to ease their ailments [12]. In Ethiopia, there are also more traditional healers than modern physicians [13]. Furthermore, traditional medicinal plants are considered as accessible, affordable, and acceptable in the community [14]. Around 6500 plant species are reported in the Ethiopian ﬂora; of those, approximately 12% are endemic. In those Ethiopian ﬂoras, about 1000 plant species are identiﬁed as medicinal plants. However, the majority of the plant species are not yet identiﬁed [15]. This highlights that screening of the Ethiopian plants might grant various novel structures that might be unlikely to be discovered from other sources; ultimately, they may serve as lead compounds to ﬁght various ailments including ED. Hence, documenting, compiling, and then assessing the effect of traditionally claimed plant species are worthwhile to come up with novel plant-based therapies.

2. Aim of the Study

The current study was carried out to systematically compile and document the traditional medicinal plants used for the management of ED or impotence in Ethiopia. The central thesis of this paper is therefore to encourage researchers to scientiﬁcally conﬁrm the effect of medicinal plants against the global issue of ED.

3. Methods

This review was carried out following the recommendations stated in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [16]. The search strategy ﬂow chart is presented in Figure 1.

3.1. Search Strategy. A web-based systematic research literature search strategy was conducted through various electronic databases including PubMed (Medline), Google Scholar, and grey literature to access the relevant studies. The following search terms and combinations were used to collect relevant results: erectile dysfunction, impotence, traditional medicine, medicinal plants, ethnomedicine, ethnomedicine, ethnobotany, ethnopharmacology, indigenous, folk medicine, home remedy, herbal medicine, and Ethiopia.

3.2. Study Selection

3.2.1. Inclusion Criteria. Original published articles and thesis dissertations conducted over the period from 2000 to August 2020 were only searched. The studies written in the English language were only searched. Finally, studies with Ethiopian traditional medicinal plants exclusively utilized for the treatment of ED/impotency in humans were selected.

3.2.2. Exclusion Criteria. Articles pertaining outside Ethiopia, pharmacological studies, ethnoveterinary studies, and reviewed papers were excluded. Besides, the studies failed to mention the scientiﬁc name of the plant and the plant parts used were excluded from this study.

3.3. Data Retrieval. Studies that have possessed the required information are extracted. The required information was the family name, scientiﬁc name, local name (if available), habitat, parts used, method(s) of preparation (if available), and mode of administration. In case of missed information in some studies, especially the habitat of the plants, family name, and misspelled scientiﬁc name, information was retrieved from the Global Plants Journal of Storage (JSTOR) database [17].

3.4. Data Analysis. Microsoft Excel 2016 was employed to analyze the frequency distribution of families, plant parts, routes of administration, and habits. Besides, the distribution in regions where the medicinal plants were reported was analyzed. The results were depicted in charts and tables.

4. Results and Discussion

4.1. Distribution of Medicinal Plants. The regions of Ethiopia that showed the highest ethnobotanical records were Oromia (35%) and Amhara (27%) that constituted about two-thirds (62%) of the total ethnobotanical records against ED (Figure 2). Several medicinal plants have been found in the Oromia region, according to most studies. This may be because, in addition to having a large number of traditional healers, those regions are also Ethiopia’s most populous [18]. However, studies on the prevalence of ED in different regions of Ethiopia are limited.

4.2. Diversity of Medicinal Plants. As shown in Table 1, the current review reported 70 Ethiopian plant species that have traditionally been used to treat ED. The top recorded families were Fabaceae (6 species), Asteraceae (5 species), Malvaceae (5 species), Convolvulaceae (4 species), Solanaceae (4 species), and Euphorbiaceae (3 species) (Figure 3). Alike this study, Semenya and Potgieter [19] reported that Fabaceae
and Asteraceae were among the commonly used families for ED. Ajao et al. [20] also stated that medicinal plants under Fabaceae were the top species used for the management of ED in Sub-Saharan Africa. Moreover, the root of *Eriosema kraussianum* N. E. Br., Fabaceae, displayed a promising effect for ED in experimental rat models [21]. According to a recent study in Ethiopia, plants in the Fabaceae family are the most commonly used traditional medicinal plants [18]. As a result, these studies highlight the screening of plant species belonging to the Fabaceae family that could be important candidates to bring lead compounds to be used for future optional agents.

4.3. Frequently Used Medicinal Plants. The plant species that represented the highest number of citations were *Asparagus africanus* Lam. (8 citations), *Ricinus communis* L. (6 citations), and *Carissa spinarum* L. (4 citations), as well as *Ferula communis* L., *Aloe macrocarpa* Tod., and *Tragia brevipes* Pax with three citations each. Congruent to the present study, the people of Nigeria also traditionally use the root of *Asparagus africanus* Lam. for the management of ED [75]. The usage of this plant for the treatment of ED might be due to the presence of saponins [76], because plant species with saponins as their major constituent displayed significant promotion of erection [77]. The second most cited plant species is *Ricinus communis* L. (also known as castor bean). Recent in vivo studies of *Ricinus communis* L. have confirmed that it increases serum testosterone levels and multiple majors of sexual activity, supporting the current conventional claim [78]. The third cited plant, *Carissa spinarum* L., alike the Ethiopian people, the people of South and Central Benin use its roots for the treatment of sexual weakness. As a result, scientific evaluation of these claimed species is needed in order to uncover important leads in the fight against ED.

Plant species like *Syzygium aromaticum* L., *Zingiber officinale* Roscoe, and *Gloriosa superba* L. are traditionally claimed in Ethiopia; they scientifically displayed significant

Figure 1: Study flow diagram.

Figure 2: Distribution of medicinal plants across regions of Ethiopia.
S. no.	Scientific name	Family name	Local name	Habit	PU	Method of preparation	ROA	References
1	*Acacia mellifera* Benth. Fabaceae	Kontir grar (Ha)	T Root			Taken with the root and barks of *Amaranthus cruentus*	Oral	[22, 23]
2	*Acacia senegal* (L.) Wild Fabaceae	Not mentioned	T Root			Not mentioned	Oral, topical	[24]
3	*Achyranthes aspera* L. Amaranthaceae	Dargua (Or)	H Root			Crush, mix with honey, and eat the mixture before break fast	Oral	[25]
4	*Adansonia digitata* L. Bombacaceae	Dima (Tg)	T Root			The latex is mixed with butter and use it to stain the whole part of the penis and heat it with fire for continuous days	Oral	[26]
5	*Ake macrocarpa* Tod. Aloaceae	Ret/eret (Am)	Su Latex			Smearing penis with exudate	Topical	[27–29]
6	*Aloe megalacantha* Baker Aloaceae	Kasta ansti (Tg), Sariti, Yeset qest (Am)	S Root/leaf	(i) Roots are pound into powder, mixed with meat soup and vegetable, and then taken every evening for a month (ii) Leaf powder is mixed with butter and drank for 3 days before sexual intercourse (iii) The root together with roots of *Premna schimperi* and *Olea europaea* are pound and given to the victim with one cup of “tella” (local alcohol) 2–3 hrs before sexual works	Oral	[25, 28, 31–36]		
7	*Asparagus africam* Lam. Asparagaceae	Kasta ansti (Tg), Sariti, Yeset qest (Am)	S Root/leaf			Root tip is chewed and the juice is drank with an alcoholic drink	Oral	[24]
8	*Cadaba farinosa* Forssk. Capparidaceae	Not mentioned	S Root			Crushed, powdered, mixed with water, fermented overnight, and drank	Oral	[37, 38]
9	*Calpurnia aurea* (Aiti) Benth. Fabaceae	Cakataa (Sd)	S Root/seeds			Powder paste with butter applied on the penis (glans)	Topical	[39]
10	*Capparis tomentosa* Lam. Capparidaceae	Gimer (Am)	S Root			Fruit is eaten	Oral	[36]
11	*Capsicum annuum* L. Solanaceae	Mixxamixxoa (Ko)	H Fruit					
12	*Carissa spinarum* L. Apocynaceae	Hagamsa (Or)	S Root/bark			It is crushed and pounded with the whole parts of *Trajia cinerea* and the root of *Hibiscus eriospermus* and then stirred in a local beer and drank in one cup of coffee until recovery	Oral	[25, 40–42]
13	*Carthamus lanatus* L. Asteraceae	Not mentioned	H Leaf					
14	*Catha edulis* (Vahl) Forssk. Celastraceae	Chat (Am)	S Leaf				Not mentioned	[25, 39]
15	*Caylula abyssinica* (Fresen.) Fisch. & Mey. Resedaceae	Reenci (Or)	H Root			Drinking the powdered root with water and/or using it for toothbrush daily	Oral	[32, 35]
16	*Chlorophytum lusum* R. Br Liliaceae	Munna (Sh)	H Tuber			Tuber is eaten cooked	Oral	[44]
17	*Clausena anisata* (Wild.) Benth. Rutaceae	Ulumayii (Or)	S Root			Not mentioned	Oral	[25]
18	*Convolvulus arvensis* L. Convolvulaceae	Este filastot (Am)	H Root			Crush and powder then drink with GIN (areki)	Oral	[28]
S. no.	Scientific name	Family name	Local name	Habit	PU	Method of preparation	ROA	References
-------	---------------------------------	-------------	------------	-------	----	---	-------	------------
19	*Crotalaria spinosa* Hochst. ex Benth.	Fabaceae	Chifrig (Tg)	H	Root	Crushing, mixing and eat	Oral	[26]
20	*Drymaria cordata* (L.) Schultes.	Caryophyllaceae	Saydasajal (Or)	H	Root	Cutting, with bulbs of *Zingiber officinale* and *Allium sativum* and then eating by spoon	Oral	[45]
21	*Euclea racemosa* Murr. subsp. Schimperi (A. DC.) F. White	Ebenaceae	Kullo (Tg)	S	Root	Crush, add to the chicken stew, and eat with injera (local meal) for 7 days before the meal	Oral	[26]
22	*Euphoria tirucalli* L.	Euphorbiaceae	Kenchib (Tig)	T	Latex	The fresh latex is mixed with butter and used to stain the whole part of the penis and heated for about 5 minutes for 3 days	Topical	[46]
23	*Falkia canescens* C.H. Wright	Convolvulaceae	Gura hantataa (Or)	H	Leaf	Crushed, mixed with butter, and eaten for 5 days	Oral	[47]
24	*Ferda communis* L.	Apiaceae	Dog (Am)	H	Root	Powderize the concoction then drinks with "tella"	Oral	[28, 48, 49]
25	*Ficus sur* Forssk.	Moraceae	Harbu (Or)	H	Root	Not mentioned	Oral	[25]
26	*Garcinia buchananii* Baker	Clusiaceae	Solosola (Sd)	T	Bark	The bark is peeled carefully, boiled, cooled, and drunk	Oral	[50]
27	*Gloriosa superba* L.	Colchicaceae	Yebab Mashila (Am)	T	Root	The root powder is taken with "tej" for 3 days	Oral	[51]
28	*Gomphocarpus stenophyllas* Oliv.	Apocynaceae	Chifrig (Am)	S	Root	Maceration, taken orally once daily for seven days	Oral	[52]
29	*Grewia villosa* Willd.	Tiliaceae	Not mentioned	S	Root	Not mentioned	Oral, body wash	[24]
30	*Hibiscus erospermus*	Malvaceae	Not mentioned	H	Root	It is the same method and ingredient used in *C. lanatus*	Oral	[43]
31	*Kalanche pettiana* A. Rich.	Crassulaceae	Andahula (Am)	H	Root	Milk decoction of the fresh pulverized roots and leaves	Oral	[53]
32	*Kleina abyssinica* (A. Rich.) A. Berger	Asteraceae	Abrasha (Or)	H	Rhizome	Aphrodisiac fresh rhizome is eaten a few hours before sexual performance	Oral	[54]
33	*Lobelia gibbera* Hemsl.	Lobeliaceae	Jibara (Am)	T	Root	Crush and then mix with coffee and drink	Oral	[48]
34	*Lagenaria sicerraria* (Molina) Standl.	Cucurbitaceae	Buqee/Kil (Or)	H	Root/fruit	The root and fruit are ground together and drank with the first boiled coffee	Oral	[55]
35	*Maytenus senegalensis* (Lam) Exell	Celastraceae	Koba (Am)	T	Bark	Dried stem bark powder cooked with hen meat is given orally	Oral	[56]
36	*Millettia ferruginea* (Hochst.) Bak.*	Fabaceae	Birbira (Am)	T	Root	Not mentioned	Oral	[49]
37	*Nicotiana glauca* Grah.	Solanaceae	Yeareb Kitel (Am)	H	Leaf	Chewing very small pieces of leaf and swallowed	Oral	[57]
38	*Olea europaea* L. subsp. *cuspidata* Wall. ex G. Don	Oleaceae	Ejersa (Or)	H	Root	The root together with roots of *Aloe macrocarpa* and *Premna schimperi* pounded in water and given to the victim with "tella" before bed for a few days	Oral	[32, 35]
39	*Pavonia urens* Cav.	Malvaceae	Ablalit (Am)	S	Root	Root powder is taken with "tella" orally	Oral	[58]
40	*Periploca linearifolia* Quart.-Dill. and A. Rich.	Asclepiadaceae	Tikur Areg (Am)	H	Root	Dried or fresh root is chopped and tied on the waist	Topical	[59]
S. no.	Scientific name	Family name	Local name	Habit	PU	Method of preparation	ROA	References
--------	-------------------------------------	-------------	------------	-------	----	--	--------	------------
41	Phoenix reclinata Jacq.	Arecaceae	Seniel (Am)	T	Root	Not mentioned	Oral	[49]
42	Plumbago zeyfiana L.	Plumbaginaceae	Amira (Am)	S	Leaf/root	Fresh leaf crushed and mixed with water	Oral	[60, 61]
43	Prunus Africana (Hook. f.) Kalkm.	Rosaceae	Not mentioned	T	Root	Fresh roots are crushed and soaked in water and then one cup is drunk	Oral	[62]
44	Ricinus communis L.	Euphorbiaceae	Qobbo (Or), Gallo (Am)	S	Leaf/seed	(i) Crushed leaves with coffee, tea, or milk are taken as a drink before copulation (ii) The dried seeds are pounded, mixed with a small quantity of latex from Aloe spp. and two coffee cups are drank before bedtime for two days	Oral	[63–68]
45	Rosa abyssinica Lindley	Rosaceae	Gora (Or)	S	Root	Not mentioned	Oral	[25]
46	Sansevieria ehrenbergii Schweinf. ex Baker	Dracaenaceae	Wondiekaka (Am)	H	Root	Not mentioned	Oral	[49]
47	Sansevieria erythraeae Mattei	Dracaenaceae	Algeti/cheret (Am)	H	Root	Root powder is taken with "tef" potage	Oral	[58]
48	Seddera bagshawei Rendle	Convolvulaceae	Not mentioned	S	Root	Not mentioned	Nasal	[24]
49	Seddera hirsute Dammer ex Hall. f.	Convolvulaceae	Biklatafri (Af)	S	Whole/root	(i) The fresh whole plant is pounded, mixed with sugar and goat’s milk, and drunk (ii) The root is chewed	Oral	[24, 69]
50	Sida schimperiana Hochst. ex A. Rich.	Malvaceae	Chifrig (Am)	S	Root	Roots are chewed and fluid swallowed	Oral	[70]
51	Sida tenuicarpa Vollesen	Malvaceae	Chifrig (Am)	S	Leaf	Boil leaf, mix with N. Sativa & leaf of Withania sp., A. Sativum & honey, and eat the mixture at a time of necessity	Oral	[71]
52	Sida rhombifolia L.	Malvaceae	Gorgogi (Am)	S	Root	Drink concoction with honey	Oral	[28]
53	Solanum anguivi Lam.	Solanaceae	Zerch enbey (Am)	S	Root	Roots are chewed and fluid swallowed	Oral	[70]
54	Stephania abyssinica (Quart.- Dill. & A. Rich.) Walp.	Menispermaceae	Harge-eyesus (Sh)	Cl	Root	Not mentioned	Oral	[61]
55	Syzygium aromaticum L. Merr. & Perry.	Myrtaceae	Kirunfu (Am), Qurunfudii (Or)	T	Fruit	Dried fruit is crushed, mixed with goat milk, and boiled. Then, the decoction is drank	Oral	[66]
56	Syzygium guineense (Willd.) DC. Subspafromontanum	Myrtaceae	Badessa (Or)	T	Bark	Not mentioned	Oral	[25]
57	Tamarindus indica L.	Fabaceae	Not mentioned	T	Fruit	The fruit is chopped and taken orally with tea	Oral	[72]
58	Tapinanthus globiferus (A. Richk.) Tieghem	Loranthaceae	Not mentioned	H	Leaf	Not mentioned	Oral	[24]
59	Thalictrum rhynchocarpum Dill. & A. Rich.	Ranunculaceae	Sire-bizu (Am)	H	Root	Drink concoction with honey	Oral	[28]
60	Tragia brevipes Pax.	Euphorbiaceae	Abelbalit (Am)	H	Whole	(i) It is the same method and ingredient used in C. lanatus (ii) Chew and absorb the juice	Oral	[28, 43, 48]
S. no.	Scientific name	Family name	Local name	Habit	PU	Method of preparation	ROA	References
--------	---------------------------------	-----------------	------------------	-------	----	---	------	------------
61	*Tragia uncinate* M. Gilbert	Euphorbiaceae	*Amae* (Tg)	H	Root	Roots are ground and taken orally with local soup for a week	Oral	[31]
62	*Urtica simensis* Steudel.	Urticaceae	Doobii/Saamamaa (Or)	H	Root	The root is chewed and the extract is swallowed	Oral	[73]
63	*Verbascum sinaiticum* Benth.	Scrophulariaceae	*Ye Ahya joro* (Am), *Girra Harree* (Or)	H	Root	Chopped leaf is rolled by a clean piece of cloth and tied around the male sex organ to erect it	Topical	[66]
64	*Verbena officinalis* L.	Verbenaceae	*Atuch* (Am)	H	Root	Drink concoction with honey	Oral	[28]
65	*Vernonia adonesis* Sch. Rip. ex Walp.	Asteraceae	*Pepa meta* (Gu), *Raskimir* (Am)	H	Root	Root is crushed and soaked in water (maceration) and one cup is taken	Oral	[56, 74]
66	*Vernonia amygdalina* Del.	Asteraceae	*Girawa* (Am)	S	Root	Drink the concoction with “tella”	Oral	[28]
67	*Vernonia myriantha* Hook. f.	Asteraceae	*Kotkoto* (Am)	S	Root	Drink the concoction with “tella”	Oral	[28]
68	*Withania somnifera* (L.) Dunal in DC	Solanaceae	*Giziewa* (Am)	S	Root	Drink the concoction with “tella”	Oral	[28]
69	*Zehneria scabra* (Linn. f.) Sond.	Cucurbitaceae	*Haregresa* (Am)	CI	Leaf/root	Bathe in the infusion of leaf and root for 7 days	Topical	[53]
70	*Zingiber officinale* Roscoe	Zingiberaceae	*Injihdiloae* (Ko)	H	Rhizome	Rhizomes are chewed and the exudates are swallowed	Oral	[36]

Habits—Cl: climber; H: herb; S: shrub; Su: succulent; T: tree; Language—Af: Afar; Am: Amharic; Gu: Gumuz; Ha: Hadiyigna; Ko: Koorete; Or: Oromiffa; Sd: Sidamigna; Sh: Shinasha; Tg: Tigrigna; *Endemic.
aphrodisiac effect. That is, 50% ethanolic extract of *Syzygium aromaticum* L., (oral; 100, 250, and 500 mg/kg to rats) improved libido and erection, intromission frequency, mounting behavior, and mating performance [79, 80]. Hexane extract of the flower bud of *Syzygium aromaticum* (L.) Merr. & Perry. (clove) (oral; 15 mg/kg to mice) raised delta (5) 3-beta and 17-beta-hydroxysteroid dehydrogenase (Δ5, 3 β-HSD, and 17 β-HSD) and serum levels of testosterone [81]. Aqueous extract of *Zingiber officinale* (oral; 600 mg/kg to male *Wistar* rats) was tested for its possible androgenic activity and increased testis relative weight, serum testosterone, testicular cholesterol, and epididymal α-glucosidase activity [82]. Aqueous, chloroform, and alcohol extracts of *Gloriosa superba* at the dose of 500 mg/kg body weight showed an aphrodisiac effect with an increase in sexual and orientation behavior. Its aphrodisiac effect could be due to the presence of steroids, saponins, and alkaloids [83]. Hence, these studies support the acclaimed use of these plant species as a treatment for sexual dysfunction in Ethiopia.

These days, in Ethiopia, the continuation of traditional plant remedies is highly threatened due to deforestation, overgrazing, environmental degradation, agricultural expansion, and the rise of the population [15]. This, in turn, jeopardizes the extinction of essential medicinal plants which may have stored indispensable compounds that are responsible for addressing the existing global health issues. Therefore, early detection of the pharmacological activities of the reported species against ED is strongly recommended.

4.4. Growth Forms of the Medicinal Plants

The growth forms of the reported species were herb (37%), shrub (34%), tree (22%), climber (4%), and succulent (3%) (Figure 4). This study is consistent with studies conducted by Worku [12] and Yirgu et al. [18] who reported that herbs were the most dominant plant growth forms as well as used as remedies in the Ethiopian traditional medicine. The highest use of herbaceous plants as compared to other growth forms could be due to their accessibility, the higher possibility of obtaining pharmacologically active compounds, and the sociocultural beliefs and practices of the healers in treating the ailment [84].

4.5. Plant Parts Used

The most common plant part used was root (41 species), followed by leaves (7 species), fruit (3 species), and bark (3 species) (Figure 5). Similarly, in another study, it was reported that the root was the predominant plant part used for the management of ED [85]. The people of South Africa, Limpopo province, also use roots as the most preferred medicinal plant part [19]. In contrast to this study, the people of Western Uganda use leaves as the commonest plant part for ED [86]. Irrespective of the dominancy, however, confirming the pharmacological activity of the claimed plant part is necessary, because most plant parts reside several bioactive principles.

4.6. Mode of Administration

The most common route of administration of the medicinal plants was oral (86%), followed by topical (10%), oral/topical (3%), and nasal (1%) (Figure 6). In agreement with this study, Semenya and Potgieter [19] mentioned the oral route as the dominant route for ED. The commonly reported cosolvents were “tella” (local drink)” (8 species), butter, honey (5 species), and coffee (4 species).
5. Conclusion

The present review compiles and documents for the first time seventy (70) medicinal plant species used for the management of ED in Ethiopia. Fabaceae was the dominant plant family used for the management of ED in Ethiopia. *Asparagus africanus* was the most repeatedly cited plant species against ED. Plant species like *Syzygium aromaticum* L., *Zingiber officinale* Roscoe, and *Gloriosa superba* L. are traditionally claimed in Ethiopia; they scientifically displayed significant aphrodisiac effect. This suggests the reported plant species could be a source of a new class of drugs against ED. Thus, the current findings may serve as references for the selection of plants for further pharmacological, toxicological, and phytochemical investigations in developing new plant-based drugs used for the treatment of ED.

Abbreviations

ED: Erectile dysfunction
PDE5-Is: Phosphodiesterase type 5 inhibitors

Data Availability

The datasets used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

All authors declared that they have no conflict of interest.

Authors’ Contributions

DA designed and developed the first drafted manuscript. THK and TYA screened genuinely, if there are any missed relevant articles. DZW, DMD, and GGT reviewed and edited the whole manuscript. Finally, all authors reviewed and approved the manuscript.

References

[1] F. A. Yafi, L. Jenkins, M. Albersen et al., “Erectile dysfunction,” *Nature Reviews. Disease Primers*, vol. 2, no. 1, pp. 1–20, 2016.

[2] P. Birowo, I. A. Deswanto, and N. Rasyid, “Epidemiology of erectile dysfunction: A cross-sectional web-based survey conducted in an Indonesian national referral hospital,” *F1000Research*, vol. 8, p. 817, 2019.

[3] D. F. Mobley, M. Khera, and B. Neil, “Recent advances in the treatment of erectile dysfunction,” *Postgraduate Medical Journal*, 2017, [cited 2020 Sep 21]. Available from: https://pmj.bmj.com/content/93/1105/679.abstract.

[4] H. M. T. Nguyen, A. T. Gabrielson, and W. J. G. Hellstrom, “Erectile dysfunction in young men—a review of the prevalence and risk factors,” *Sexual Medicine Reviews*, vol. 5, no. 4, pp. 508–520, 2017.

[5] W. S. Shiferaw, T. Y. Akalu, and Y. A. Aynalem, “Prevalence of erectile dysfunction in patients with diabetes mellitus and its association with body mass index and glycated hemoglobin in Africa: a systematic review and meta-analysis [Internet],” *International Journal of Endocrinology* Vol. 2020, Hindawi; 2020 [cited 2020 Sep 21]. p. e5148370. Available from: https://www.hindawi.com/journals/ije/2020/5148370/.
[6] A. D. Hurisa and G. Z. Negera, “Erectile dysfunction among diabetic patients in a tertiary hospital of Southwest Ethiopia,” _The Open Public Health Journal [Internet]_, 2020, 31 [cited 2020 Sep 21];13(1). Available from: https://benthamopen.com/ABSTRACT/TOPHJ-13-240.

[7] C. Aydin and E. Senel, “Impotence literature: Scientometric analysis of erectile dysfunction articles between 1975 and 2018,” _Andrologia_, vol. 52, no. 3, article e13520, 2020.

[8] A. F. A. Diniz, R. C. Ferreira, I. L. L. de Souza, and B. A. Silva, “Ionic Channels as Potential Therapeutic Targets for Erectile Dysfunction: A Review,” _Frontiers in Pharmacology_, vol. 11, p. 1120, 2020.

[9] R. Wassersug and E. Wibowo, “Non-pharmacological and non-surgical strategies to promote sexual recovery for men with erectile dysfunction,” _Translational Andrology and Urology_, vol. 6, Suppl 5, pp. S776–S794, 2017.

[10] S. Kim, M. C. Cho, S. Y. Cho, H. Chung, and M. R. Rajasekaran, “Novel Emerging therapies for erectile dysfunction,” _The World Journal of Men’s Health_, vol. 39, no. 1, p. 48, 2021.

[11] A. G. Atanasov, B. Waltenberger, E.-M. Pierschy-Wenzig et al., “Discovery and resupply of pharmacoologically active plant-derived natural products: a review,” _Biotechnology Advances_, vol. 33, no. 8, pp. 1582–1614, 2015.

[12] A. M. Worku, “A review on significant of traditional medicinal plants for human use in case of Ethiopia,” _International Research Journal of Biotechnology_, vol. 11, no. 2, pp. 1–2, 2020.

[13] D. Levene, D. I. Phillips, and S. Alemu, “Medical traditions and chronic disease in Ethiopia: a story of wax and gold?,” _Tropical Doctor_, vol. 46, no. 3, pp. 122–125, 2016.

[14] M. W. Beyi, “Traditional medicinal plants in Ethiopia,” _International Journal of Biology, Physics & Mathematics_, vol. 1, no. 1, pp. 80–87.

[15] Y. Yeshiwas, E. Tadele, and W. Tiruneh, “The dynamics of medicinal plants utilization practice nexus its health and economic role in Ethiopia: a review paper,” _International Journal of Biodiversity and Conservation_, vol. 11, no. 1, pp. 31–47, 2019.

[16] A. Liberati, D. G. Altman, J. Tetzlaff et al., “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration,” _PLoS Medicine_, vol. 6, no. 7, article e1000100, 2009.

[17] Global plants on JSTOR [Internet] [cited 2020 Sep 22]. Available from: https://plants.jstor.org/.

[18] A. Yirgu, K. Mohammed, and C. J. Geldenhuyse, “Useful medicinal tree species of Ethiopia: comprehensive review,” _South African Journal of Botany_, vol. 122, pp. 291–300, 2019.

[19] S. S. Semenya and M. J. Potgieter, “Ethnobotanical survey of medicinal plants used by Sapeedi traditional healers to treat erectile dysfunction in the Limpopo province, South Africa,” _Journal of Medicinal Plant Research_, vol. 7, no. 7, pp. 349–357.

[20] A. A. Ajao, N. P. Sibiya, and A. N. Motetee, “Sexual prowess from nature: a systematic review of medicinal plants used as aphrodisiacs and sexual dysfunction in Sub-Saharan Africa,” _South African Journal of Botany_, vol. 122, pp. 342–359, 2019.

[21] J. A. O. Ojewole, S. E. Drewes, and F. Khan, “ Vasodilatory and hypoglycaemic effects of two pyra-no-isoallofave extracts from _Eriosema kraussianum_, N. E. Br. [Fabaceae] rootstock in experimental rat models,” _Phytochemistry_, vol. 67, no. 6, pp. 610–617, 2006.

[22] H. Agisho, M. Osie, and T. Lambore, “Traditional medicinal plants utilization, management and threats in Hadiya Zone, Ethiopia,” _Journal of Medicinal Plants_, vol. 2, no. 2, p. 15, 2014.

[23] S. Zerabruk and G. Yirga, “Traditional knowledge of medicinal plants in Gindeberet district, Western Ethiopia,” _South African Journal of Botany_, vol. 78, pp. 165–169, 2012.

[24] T. Teklehaymanot, “An ethnobotanical survey of medicinal and edible plants of Yalo Woreda in Afar Regional State, Ethiopia,” _Journal of Ethnobiology and Ethnomedicine_, vol. 13, no. 1, p. 40, 2017.

[25] T. Regassa, “Vascular plant diversity and ethnobotanical study of medicinal and wild edible plants in Jibat, Gedo and Chilimo Forests, West Shewa Zone of Oromia Region, Ethiopia [Internet] [Thesis],” Addis Ababa University; 2016 [cited 2020 Sep 21]. Available from: http://etd.aau.edu.et/handle/123456789/9371.

[26] F. Tewelde, M. Mesfin, and S. Tsewene, “Ethnobotanical survey of traditional medicinal practices in LaelayAdi-yabo District, Northern Ethiopia,” _Int J Ophthalmol Visual Sci_, vol. 2, no. 4, p. 9, 2017.

[27] N. Amsalu, “An Ethnobotanical study of medicinal plants in Farra Wereda, South Gonder Zone of Amhara Region Ethiopia [Internet] [Thesis],” Addis Ababa University; 2010 [cited 2020 Sep 21]. Available from: http://etd.aau.edu.et/handle/123456789/7282.

[28] G. Chekole, Z. Asfaw, and E. Kelbessa, “Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, Northwest Ethiopia,” _Journal of Ethnobiology and Ethnomedicine_, vol. 11, no. 1, p. 4, 2015.

[29] A. Belayneh, S. Demissew, N. F. Bussa, and D. Bisrat, “Ethno-medicinal and bio-cultural importance of aloes from south and east of the Great Rift Valley floristic regions of Ethiopia,” _Heliyon_, vol. 6, no. 6, article e04344, 2020.

[30] A. Teklay, B. Abera, and M. Giday, “An ethnobotanical study of medicinal plants used in Kille Awulaedo District, Tigray Region of Ethiopia,” _Journal of Ethnobiology and Ethnomedicine_, vol. 9, no. 1, p. 65, 2013.

[31] S. Araya, B. Abera, and M. Giday, “Study of plants traditionally used for animal and health management in Seharti Samre District, Southern Tigray, Ethiopia,” _Ethnopharmacology and Biotechnology_, vol. 4, pp. 158–160, 2019.

[32] E. Tolas, “Use and conservation of traditional medicinal plants by indigenous people in Gimbi Woreda, Western Wellga, Ethiopia [Internet] [Thesis],” Addis Ababa University; 2007 [cited 2020 Sep 21]. Available from: ee.

[33] N. Amsalu, Y. Bezie, M. Fentahun, A. Alemayehu, and G. Amsalu, “Use and Conservation of Medicinal Plants by Indigenous People of Goazamin Wereda, An Ethnobotanical Approach, East Gojam Zone of Amhara Region, Ethiopia, 2018, [cited 2020 Sep 21]; Available from: https://www.hindawi.com/journals/ecam/2018/2973513/.

[34] T. D. Temam, “Ethnobotanical study of medicinal plants of Mirab-Badawcho District, Ethiopia,” _Journal of BioScience and Biotechnology_, vol. 5, no. 2, pp. 151–158, 2016.

[35] M. Kebebew, “Diversity, knowledge and use of medicinal plants in Abay Chomen District, Horo Guduru Wollega Zone, Oromia Region of Ethiopia,” _Journal of Medicinal Plant Research_, vol. 11, no. 31, pp. 480–500, 2017.

[36] F. Mesfin, T. Seta, and A. Assefa, “An ethnobotanical study of medicinal plants in Amaro Woreda, Ethiopia,” _Ethnobotany Research and Applications_, vol. 12, pp. 341–354, 2014.
[37] M. Abebe and M. Chemdessa, "Ethnobotanical study of traditional medicinal plants of Gololcha District, Bale Zone of Oromia Region, Ethiopia [Internet]," 2013 [cited 2020 Sep 22]. Available from: /paper/Ethnobotanical-Study-of-Traditional-Medicinal-of-of-Abebe-Chemdessa3e476588e716d29c46fa4ec56f20210428411a5.

[38] R. Regassa, "Assessment of indigenous knowledge of medicinal plant practice and mode of service delivery in Hawassa city, southern Ethiopia," Journal of Medicinal Plant Research, vol. 7, no. 9, pp. 517–535, 2013.

[39] Z. Birhanu, "Traditional use of medicinal plants by the ethnic groups of Gondar Zuria District, North-Western Ethiopia," Journal of Natural Remedies, vol. 13, p. 9, 2013.

[40] B. Abera, "Medicinal plants used in traditional medicine by Oromo people, Ghibi District, Southwest Ethiopia," Journal of Ethnobiology and Ethnomedicine, vol. 10, no. 1, p. 40, 2014.

[41] B. Sina and H. D. Degu, "Knowledge and use of wild edible plants in the Hula District of the Sidama Zone," Inter Jour of Bio-reso Stress Manag., vol. 6, no. 3, p. 352, 2015.

[42] H. Atanafu, T. Awas, S. Alemu, and S. Wube, "Ethnobotanical study of medicinal plants in selame mountain ridges, North Shoa, Ethiopia," International Journal of Biodiversity, vol. 2, 577 pages, 2018.

[43] M. Meragaw, Z. Asfaw, and M. Argaw, "The status of ethnobotanical knowledge of medicinal plants and the impacts of resettlement in Delanta, Northwestern Wello, Northern Ethiopia [Internet]," 2016 [cited 2020 Sep 22]. Available from: https://www.hindawi.com/journals/etm/2016/5060247/.

[44] D. Desissa and P. Binggeli, "Uses and conservation status of medicinal plants used by the Shinasha people in Ethiopia [Internet]," 2000 [cited 2020 Sep 22]. Available from: http://www.mikepalmer.co.uk/woodyplantecology/ethiopia/shinasha.html.

[45] F. Ayana, "Ethnobotanyoftraditional Medicinal plants in Hawa Gelan District,Kelem Wollega Zone of Oromia Region, Ethiopia [Internet] [Thesis]," Addis Ababa University; 2017 [cited 2020 Sep 22]. Available from: http://etd.aau.edu.et/handle/123456789/4735.

[46] M. Gidey, T. Beyene, M. A. Signorini, P. Bruschi, and G. Yirga, "Traditional medicinal plants used by Kunama ethnic group in northern Ethiopia," Journal of Medicinal Plant Research, vol. 9, no. 15, pp. 494–509, 2015.

[47] B. Etana, "Ethnobotanical study of traditional medicinal plants of Goma Wereda, Jima Zone of Oromia Region, Ethiopia [Internet] [Thesis]," Addis Ababa University; 2010 [cited 2020 Sep 22]. Available from: http://etd.aau.edu.et/handle/123456789/11339.

[48] G. Chekole, "Ethnobotanical study of medicinal plants used against human ailments in Gubalafto District, Northern Ethiopia," Journal of Ethnobiology and Ethnomedicine, vol. 13, no. 1, p. 55, 2017.

[49] S. W. Yohannis, Z. Asfaw, and E. Kelbessa, "Ethnobotanical study of medicinal plants used by local people in Menz Gera Midir District, North Shewa Zone, Amhara Regional State, Ethiopia," Journal of Medicinal Plant Research, vol. 12, no. 21, pp. 296–314, 2018.

[50] N. Tuasha, B. Petros, and Z. Asfaw, "Medicinal plants used by traditional healers to treat malignancies and other human ailments in Dalle District, Sidama Zone, Ethiopia," Journal of Ethnobiology and Ethnomedicine, vol. 14, no. 1, p. 15, 2018.

[51] T. Teklehaimanot, "Ethnobotanical study of knowledge and medicinal plants use by the people in Dek Island in Ethiopia," Journal of Ethnopharmacology, vol. 124, no. 1, pp. 69–78, 2009.

[52] T. J. Aragaw, D. T. Afework, and K. A. Getahun, "Assessment of knowledge, attitude, and utilization of traditional medicine among the communities of Debre Tabor Town, Amhara Regional State, North Central Ethiopia: a cross-sectional study," Evidence-Based Complementary and Alternative Medicine [Internet], 2020 [cited 2020 Sep 22];2020:e6565131. Available from: https://www.hindawi.com/journals/ecam/2020/6565131/.

[53] M. Wubetu, T. Abula, and G. Dejenu, "Ethnopharmacologic survey of medicinal plants used to treat human diseases by traditional medical practitioners in Dega Damot district, Amhara, Northwestern Ethiopia," BMC Research Notes, vol. 10, no. 1, p. 157, 2017.

[54] A. Belayneh and N. F. Bussa, "Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia," Journal of Ethnobiology and Ethnomedicine [Full Text] [Internet], 2014 [cited 2020 Sep 22]. Available from: https://ethnobiomed.biomedcentral.com/articles/10.1186/1746-4269-10-18.

[55] A. Kefalw, Z. Asfaw, and E. Kelbessa, "Ethnobotany of medicinal plants in Ada’a District, East Shewa Zone of Oromia Regional State, Ethiopia," Journal of Ethnobiology and Ethnomedicine, vol. 11, no. 1, p. 25, 2015.

[56] G. Gebeeyehu, Z. Asfaw, A. Enyew, and N. Raja, "(16) (PDF) An ethnobotanical study of traditional use of medicinal plants and their conservation status in Mecha Wereda, West Gojjam Zone of Amhara Region, Ethiopia [Internet]," 2014, [cited 2020 Sep 22]. Available from: https://www.researchgate.net/publication/337672633_AN_ETHNOBOTANICAL_STUDY_OF_TRADITIONAL_USE_OF_MEDICINAL_PLANTS_AND_THEIR_CONSERVATION_STATUS_IN_MECHA_WEREDA_WEST_GOJJAM_ZONE_OF_AMHARA_REGION_ETHIOPIA.

[57] N. Abdurhman, "Ethnobotanical study of medicinal plants used by local people in Ofa Wereda, Southern Zone of Tigray Region, Ethiopia [Internet] [Thesis]," Addis Ababa University; 2010 [cited 2020 Sep 22]. Available from: http://etd.aau.edu.et/handle/123456789/1869.

[58] T. Teklehaimanot and M. Giday, "Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia," Journal of Ethnobiology and Ethnomedicine, vol. 3, no. 1, p. 12, 2007.

[59] A. Enyew, Z. Asfaw, E. Kelbessa, and R. Nagappan, "Airiti library_ethnobotanical+study+of+traditional+medicinal+plants+in+and+around+Fiche+District,+Central+Ethiopia," 2014 [cited 2020 Sep 22]. Available from: https://www.airitilibrary.com/Publication/alDetailedMesh?docid=20410778-201407-201507280023-201507280023-154-167.

[60] S. Ayalew, A. Kebede, A. Mesfin, and G. Mulualem, "Ethnobotanical study of medicinal plants used by agro pastoralist Somali people for the management of human ailments in Jelde cluster, Dire Dawa Administration, Eastern Ethiopia," Journal of Medicinal Plant Research, vol. 11, no. 9, pp. 171–187, 2017.

[61] M. Giday, T. Teklehaimanot, A. Animit, and Y. Mekonnen, "Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in Northwest Ethiopia," Journal of Ethnopharmacology, vol. 110, no. 3, pp. 516–525, 2007.
[62] D. Beche, G. Gebeyehu, and K. Feyisa, "Indigenous utilization and management of useful plants in and around Awash National Park, Ethiopia," Journal of Plant Biology & Soil Health, vol. 3, no. 1, p. 12, 2016.

[63] M. W. Beyi, "(16) (PDF) Ethnobotanical study of traditional medicinal plants in Adami Tulu Jido Kombolcha District, Oromia, Ethiopia [Internet]," ResearchGate. 2018 [cited 2020 Sep 22]. Available from: https://www.researchgate.net/publication/331981089_ETHNOBOTANICAL_STUDY_OF_TRADITIONAL_MEDICINAL_PLANTS_IN_ADAMI_TULU_JIDO_KOMBOLOCHA_DISTRICT_OROMIA_ETHIOPIA.

[64] M. Gebrehiwot, "An ethnobotanical study of medicinal plants in Seru Wereda, Arsi Zone of Oromia Region, Ethiopia [Internet] [Thesis]," Addis Ababa University; 2010 [cited 2020 Sep 22]. Available from: http://etd.aau.edu.et/handle/123456789/6699.

[65] F. Mesfin, S. Demissew, and T. Teklehaymanot, "An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia | SpringerLink [Internet]," 2009 [cited 2009 Sep 22]. Available from: https://link.springer.com/article/10.1186/1746-4269-5-38.

[66] A. A. Lemma, "Ethnobotanical study of traditional medicinal plants in Debark District, North Gondar, Ethiopia [Internet] [Thesis]," 2017 [cited 2020 Sep 22]. Available from: http://10.1398.247:80/spu/Handle/123456789/901.

[67] B. M. Wolditsadik, "Ethnobotanical investigation of traditional medicinal plants in Dugda District, Oromia Regio, SM J Med Plant Stud., vol. 2, no. 1, pp. 1–19, 2018.

[68] G. Bekele and P. R. Reddy, "Ethnobotanical study of medicinal plants used to treat human ailments by Guji Oromo tribes in Abaya District, Borana, Oromia, Ethiopia," Universal Journal of Plant Science, vol. 3, no. 1, p. 4, 2015.

[69] T. Seifu, K. Asres, and T. Gebre-Mariam, "(16) (PDF) Ethnobotanical and ethnopharmaceutical studies on medicinal plants of Chifra District, Afar Region, North Eastern Ethiopia [Internet]," ResearchGate. 2006 [cited 2020 Sep 22]. Available from: https://www.researchgate.net/publication/259752372_Ethnobotanical_and_Thnomopharmaceutical_Studies_on_Medical_plants_of_Chifra_District_Afar_Region_North_Eastern_Ethiopia.

[70] Y. S. Birhan, S. Leshe Kitaw, Y. Abebe Alemayehu, and M. N. Minuye, "Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga District, East Gojam Zone, Amhara Region, Ethiopia," SM J Med Plant Stud., vol. 1, no. 1, pp. 1–20, 2017.

[71] B. Tsegay, E. Mazengo, and T. Beyene, "Short Communication: diversity of medicinal plants used to treat human ailments in rural Bahir Dar, Ethiopia," Asian Journal of Forestry [Internet], 2019, [cited 2020 Sep 22];3(2). Available from: https://smjouido.aij/article/view/4163.

[72] N. Mekonnen and E. Abebe, "Ethnobotanical knowledge and practices of traditional healers in Harar, Haramaya, Batu and Garamuleta, Eastern Ethiopia," Ethiopian Veterinary Journal, vol. 21, no. 2, pp. 40–61, 2017.

[73] T. Tesfaye, "Use and Management of Medicinal Plants by People of Melka Belo Woreda," Haramaya University, East Hararge, Oromia Region, Ethiopia, 2016.

[74] G. G. Mengesha, "Ethnobotanical survey of medicinal plants used in treating human and livestock health problems in Mandura Woreda of Benishangul Gumuz, Ethiopia," Adv Med Plant, vol. 4, no. 1, p. 17.

[75] A. J. Afolayan and M. T. Yakubu, "Erectile dysfunction management options in Nigeria," The Journal of Sexual Medicine., vol. 6, no. 4, pp. 1090–1102, 2009.

[76] P.-M.-A. H. Mengwana and S. S. Mashele, "Medicinal properties of selected asparagus species: a review," IntechOpen [Internet], 2019, [cited 2020 Sep 22]. Available from: https://www.intechopen.com/books/phytochemicals-in-human-health/medicinal-properties-of-selected-asparagus-species-a-review.

[77] S. A. Pratap and S. Rajender, "Potent natural aphrodisiacs for the management of erectile dysfunction and male sexual debilities," Frontiers in Bioscience (Scholar Edition), vol. 4, pp. 167–182, 2012.

[78] Evaluation of the spermatogenetic effect of the root, Google Scholar [Internet] [cited 2021 May 6]. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_ylo=2017&q=Evaluation+of+the+spermatogenetic+effect+of+the+root+of+Ricinus+communis+Linn.+in+male+Wistar+rats.&btnG=79.

[79] A. S. Tadjuddin, A. Latif, and I. A. Qasmi, "Effect of 50% ethanolic extract of Syzygium aromaticum (L) Merr. & Perry. (clove) on sexual behaviour of normal male rats," BMC Complementary and Alternative Medicine, vol. 4, no. 1, p. 17, 2004.

[80] A. S. Tadjuddin, A. Latif, and I. A. Qasmi, "Aphrodisiac activity of 50% ethanolic extracts of Myristica fragrans Hout. (nutmeg) and Syzygium aromaticum (L) Merr. & Perry. (clove) in male mice: a comparative study," BMC Complementary and Alternative Medicine, vol. 3, no. 1, p. 6, 2003.

[81] R. K. Mishra and S. K. Singh, "Safety assessment of Syzygium aromaticum_ flower bud (clove) extract with respect to testicular function in mice," Food and Chemical Toxicology, vol. 46, no. 10, pp. 3333–3338, 2008.

[82] P. Kamchoung, Y. Mbongue, D. Théophile, and H. B. Jasta, "(16) Evaluation of androgenic activity of Zingiber officinale and Pentadiplandrabrazzeana in male rats | Request PDF," 2003 [cited 2020 Sep 23]; Available from: https://www.researchgate.net/publication/19968369_Evaluation_of_androgenic_activity_of_Zingiber_officinale_and_Pentadiplandrabrazzeana_in_male_rats.

[83] S. R. Pare, V. S. Zade, and V. G. Thakare, "Evaluation of the potential aphrodisiacic activity of aqueous, chloroform and alcohol extract of Gloriosa superba in male albino rat," International Journal of Theoretical & Applied Sciences, vol. 8, no. 2, p. 39.

[84] F. B. Abebe, M. M. Asfaw, and T. T. Tolossa, "Medicinal plant species used to treat tonsillitis in Ethiopia: a systematic review," JPSS, vol. 9, no. 1, p. 34, 2020.

[85] E. N. Ipoma, C. L. Inkoto, G. N. Bongo et al., "Ethno-Botanical Survey and Ecological Study of Medicinal Plants Traditionally Used Against Erectile Dysfunction in Democratic Republic of the Congo," Bioscience and Bioengineering, vol. 4, no. 5, p. 4, 2018.

[86] M. Kamatenesi-Mugisha and H. Oryem-Origa, "Traditional herbal remedies used in the management of sexual impotence and erectile dysfunction in Western Uganda," African Health Sciences, vol. 5, no. 1, pp. 40–49, 2005.