Flight-Propulsion Integration Dynamic Analysis and Adaptive Control of The Hypersonic Vehicle at Wide-range Mach Numbers

Jiaxin Li1,2, Danwei Li3, Guoqiang Wu1,2 and Kai Liu1,2
1 Laboratory of Advanced Technology for Aerospace Vehicles, Dalian University of Technology, Dalian, 116024, China.
2 Department of Aeronautics and Astronautics, Dalian University of Technology, Dalian, 116024, China.
3 Shenyang Aircraft Design&Research Institute, Shenyang, 110000, China

Corresponding author: Danwei Li (e-mail: dwli10000@163.com).

This work was partially supported by the National Natural Science Foundation of China under grants NSFC U214120072 and Chinese Aeronautical Establishment, Aviation Science Foundation under grants ASF 2019ZC063001.

ABSTRACT There are serious among various components of the hypersonic vehicle at wide-range Mach numbers, and the coupling among aerodynamic shape, propulsion system, structure, and control system is remarkable. For excellent performance, its components and functions are highly integrated, which brings serious challenges to traditional design examples, methods, and tools. To solve the integrated control problem of flight-propulsion coupling, a controller based on pole assignment is designed in this paper, and the control parameters can be adjusted according to real-time aerodynamic data. The parametric model of hypersonic vehicle at wide-range Mach numbers with coupling characteristics is established and the flight data under various working conditions are obtained. The flight dynamical model is established with a coupling relationship between the airframe and engine. Combined with the characteristic parameters of the aircraft attitude control closed-loop system, the control gain is designed based on expected poles and adjusted in real-time. The comparative simulations are carried out, and the results show that the control gain adjustment strategy based on aerodynamic parameter identification can improve the attitude angle command tracking quality and the robustness of the system.

INDEX TERMS hypersonic vehicle, wide-range Mach numbers, aerodynamic parameter identification, coupling control, control gain adjustment strategy

I. INTRODUCTION

The hypersonic vehicle at wide-range Mach numbers refers to an aircraft whose flying Mach number is greater than 5, using a scramjet engine and its combined power, capable of maneuvering in the adjacent space at a height of 20-100km from sea level and relying on a rare atmosphere to perform missions such as strikes, investigations, carrying and confrontation [1-4]. With characteristics of high flight speed, rapid response, wide speed range, large lift-drag ratio, and big specific impulse, it shows remarkable advantages compared with conventional aircraft and has important military and civil value.

The scramjet engine has the characteristics of multi-variable, non-linear, and time-varying which takes the difficulty to its control system. The coupling and mutual influence of aerodynamic force, engine working state of the hypersonic vehicle at wide-range Mach numbers are mainly expressed in that the flight attitude affects the thrust by the air mass flow rate of the inlet [5-7]. Meanwhile, thrust affects hypersonic vehicle attitude in two aspects. First, due to the special structure of the combined power engine, the thrust center can’t be set at the centroid position of aircraft, which brings about an eccentric moment. Second, the high-speed expansion airflow from the nozzle acts on the asymmetric outer nozzle, resulting in an additional moment. Therefore, the coordinated control of attitude, speed, and thrust is particularly important [8-10]. Because of the particularity of the wide-range velocity vehicle, the conventional strategy usually used for the control system is not suitable for the application [11]. During the flight of an aircraft in a large altitude and speed range, the aerodynamic and thrust coefficients will change nonlinearly, which also brings challenges to flight control.
FIGURE 1. Hypersonic vehicle

The National Aeronautics and Space Administration (NASA) developed the “Learn-to-fly” (L2F) algorithm, in the Transforming Aviation Concept Program (TACP), with the purpose to update the development model of aircraft. The traditional aircraft development process includes wind tunnel tests, aero-fluid dynamics calculations (CFD), simulation development, control law design, and the final flight test sequence, and iterates continuously [12-14]. Inevitably, during the flight test, the aerodynamic model needs to be continuously updated. Whenever the aerodynamic model needs to be updated, the development process will be iterated once. L2F combines real-time nonlinear aerodynamic modeling with autonomous control law design. The advantages of L2F include the use of aerodynamic models based on real-time identification of flight data in the control law design. Therefore, there is no need to modify the Reynolds number, blockage, boundary layer turbulence, etc [15-17]. The control system design is developed based on the actual flight dynamics response rather than the simulation results. As L2F technology matures, new aircraft designs may not require the ground test [18-20]. The three pillars of L2F theory are the hot spots of research in recent years: 1) real-time nonlinear aerodynamic modeling; 2) “learning” control law design method; 3) guidance algorithm. In the L2F research, the flight test aerodynamic modeling method is combined with the real-time guidance and learning control law design method on the aircraft and applied in flight. These technologies enable the aircraft to learn how to fly [21-22].

Many scholars besides NASA have also made thorough research on the control of the hypersonic vehicle at wide-range Mach numbers. In Refs. [23-24], several original contributions were made by X. W. and Q. Qi, who developed a fuzzy optimal tactic which deals with the tracking control problem of the hypersonic vehicle subject to unknown dynamics. Recently, they made an effort to apply a simplified finite-time fuzzy neural controller with prescribed performance to waverider aircraft which could guarantee satisfied real-time performance with low-complex structure. X. Bu presented a funnel non-affine controller applying neural approximation for prescribed tracking of air-breathing hypersonic vehicles. The desired transient performance and steady-state performance are ensured for both tracking errors [25].

Trajectory Linearization Control (TLC) is a nonlinear control method based on differential-algebraic spectrum theory, which has been applied to the design of X-33’s ascent attitude control system in NASA’s advanced guidance and control project. It is an advanced control method for hypersonic vehicle control at present [26]. TLC and PID will be performed as comparative groups, reflecting the control effect of the adaptive integration method based on the desired pole assignment.

In this paper, the real-time aerodynamic and thrust data of aircraft are obtained based on the parametric model of the hypersonic vehicle at wide-range Mach numbers. A comprehensive control algorithm based on pole assignment is adopted. On the premise of knowing the real-time aerodynamic parameters of the aircraft, combined with the concept of learning flight, it is hoped that the interaction in flight dynamics, aerodynamics, thermodynamics, frequency and dynamics of the control system of the hypersonic vehicle at wide-range Mach numbers can be handled with a low-complex control structure, which is expected to improve the control quality.

The contributions of this paper mainly include the following four points:

The parametric model of hypersonic vehicle at wide-range Mach numbers is constructed and the flight data under various working conditions are calculated.

The adaptive controller design based on the expected pole assignment is completed.

According to the aerodynamic real-time identification results, the state feedback matrix is designed.

The comparative simulation is completed, and the algorithm to solve the aerodynamic/thrust coupling problem is verified.

This paper is structured as follows: In section 2, the mathematical model and the essential method of aerodynamic and propulsion characteristics analysis of the hypersonic vehicle at wide-range Mach numbers are expounded. The dynamic analysis of the hypersonic vehicle at wide-range Mach numbers is carried out in section 3. Section 4 describes the control scheme based on pole assignment and the adaptive control gain compensation method. Section 5 gives the simulation comparison results and section 6 gives discussion.

II. THE HYPersonic VEHICLE AT WIDE-RANGE MACH NUMBERS MODELE

A. AERODYNAMIC AND PROPULSION CHARACTERISTICS ANALYSIS

Parametric models of aircraft need to be established before aerodynamic and thrust analysis [27-31]. In aerodynamic estimation, the panel method is adopted, and its basic idea is to divide the surface of the hypersonic vehicle at wide-range Mach numbers into several small areas and replace them with
a parallelogram or triangle. The aerodynamic forces and moments on the panels are calculated, and the total aerodynamic forces and moments are obtained by adding the calculated results. Identifying a panel need to determine the centroid coordinates, direction, and area. The quadrilateral panel is used for specific explanations.

The coordinates of the four vertices of the quadrilateral panel are \(Q_i, Q_j, Q_y, Q_z \), and the normal vector outside the panel is calculated by:

\[
\mathbf{n} = \frac{T_1 \times T_2}{|T_1 \times T_2|} \tag{1}
\]

Where \(T_1, T_2 \) are the vector obtained by subtracting the coordinates of two groups of non-adjacent points.

The panel plane can be determined by the normal vector of the panel and the center of the panel. The four vertices are projected to the panel plane, and the points projected on the panel plane are called "corners". The coordinates of the four corners are:

\[
\begin{align*}
P'_i &= P_i + d_i \mathbf{n} \\
d_i &= \mathbf{n}(\vec{P} - P_i)
\end{align*} \tag{2}
\]

Where \(\vec{P} \) is the median coordinate of 4 nodes. The coordinate system is established based on the panel, the origin is in the center of the panel, and the three axial directions are: \(i_p = T_1/|T_1|, j_p = n \times n, k_p = n \). The transformation from computational coordinate system to panel coordinate system:

\[
R_{ip} = [i_p, j_p, k_p] \tag{3}
\]

The coordinates of the four corners in the panel coordinate system are as follows:

\[
\vec{P}'_i = R_{ip}(P'_i - P_i) \tag{4}
\]

The coordinates of that centroid of the panel in the panel coordinate system are as follows:

\[
\begin{align*}
\vec{P}_s &= \frac{1}{3} \left[\vec{P}_{x_1} + \vec{P}_{x_2} + \vec{P}_{y_1} + \vec{P}_{y_2} \right] \\
\vec{P}_y &= -\frac{1}{3} \vec{P}_{x_2} \\
\vec{P}_z &= 0
\end{align*} \tag{5}
\]

The coordinate of that centroid of the panel in the calculated coordinate system is as follow:

\[
P_{cg} = \vec{P} + S \begin{bmatrix} \vec{P}_x \\ \vec{P}_y \\ \vec{P}_z \end{bmatrix} \tag{6}
\]

The area of the panel is:

\[
S = \left(\vec{P}_{x_1} \times \vec{P}_{y_1} \right) \left(\vec{P}_{x_2} \times \vec{P}_{y_2} \right) / 2 \tag{7}
\]

According to the engineering estimation method, the pressure on the ith plane is obtained:

\[
P_i = C_{\gamma_p} q_{\gamma_p} + P_{\infty} \tag{8}
\]

\(P_{\infty} \) is local static pressure and \(q_{\gamma_p} \) is local dynamic pressure.

The total aerodynamic force and aerodynamic moment on the aircraft can be obtained by adding the aerodynamic force and aerodynamic moment vectors on all panels.

\[
\begin{align*}
F_{a,x} &= -\sum P_{n,i} S_{pan,i} \\
F_{a,y} &= -\sum P_{n,i} S_{pan,i} \\
F_{a,z} &= -\sum P_{n,i} S_{pan,i} \\
M_{a,x} &= \sum P_{(d_{n,i}n_x - d_{n,i}n_y)} S_{pan,i} \\
M_{a,y} &= \sum P_{(d_{n,i}n_y - d_{n,i}n_z)} S_{pan,i} \\
M_{a,z} &= \sum P_{(d_{n,i}n_z - d_{n,i}n_x)} S_{pan,i}
\end{align*} \tag{9}
\]

In which, \(d_i = d_{ij} + d_{ji} + d_{jk} \) is the distance vector from the centroid of the panel to the centroid of aircraft, and \(n_x, n_y, n_z \) are the components of \(n \) on \(i, j, k \).

\[
\begin{align*}
F_{a,x} &= -F_{a,x} \frac{1}{q_{\gamma_p}} S_{ref} \\
F_{a,y} &= -F_{a,y} \frac{1}{q_{\gamma_p}} S_{ref} \\
F_{a,z} &= -F_{a,z} \frac{1}{q_{\gamma_p}} S_{ref} \\
C_{m,ax} &= -M_{a,x} \frac{1}{q_{\gamma_p} S_{ref} L_{ref}} \\
C_{m,ay} &= -M_{a,y} \frac{1}{q_{\gamma_p} S_{ref} L_{ref}} \\
C_{m,az} &= -M_{a,z} \frac{1}{q_{\gamma_p} S_{ref} L_{ref}} \tag{10}
\end{align*}
\]

The panel effect of airfoils is shown in Figure 2. Each small panel is represented by a small arrow pointing to its normal vector. The red part is the leading or trailing edge of the elevator, which can deflect with the input angle.

FIGURE 2. Panels generation effect

The pressure and pressure coefficient of each small panel are calculated by using the Modified Newton method (Formula 13-14) and the Prandtl-Meyer method (Formula 15), and the total aerodynamic force and aerodynamic moment under this working condition can be obtained by adding the vectors of each panel. Where \(\gamma_p \) is the specific
heat ratio of fuel and τ is the impact angle of airflow [32-34].

$$C_p = K \sin^2 \tau$$ \hspace{1cm} (13)

$$K = \frac{2}{\gamma Ma^2} \left[\left(\frac{\gamma + 1}{4 \gamma Ma^2 - 2(\gamma - 1)} \right)^{\gamma - 1} \left(1 - \gamma + 2\gamma Ma^2 \right) \right]^{-1}$$ \hspace{1cm} (14)

$$C_p = \begin{cases} \frac{(\gamma + 1)^2}{8} \left(Ma - 6.5 \right)^2 & \text{if } Ma > Ma_2 \\ \frac{1}{2} \left(1 + \frac{4}{(\gamma + 1)Ma} \right) & \text{if } Ma_1 < Ma < Ma_2 \\ 0 & \text{if } Ma < Ma_1 \end{cases}$$ \hspace{1cm} (15)

In thrust estimation, scramjet is divided into the inlet, isolator, combustion chamber, and nozzle.

In the inlet part, shock wave, expansion wave, and their intersection theory are used to describe the flow parameters. All of the shock waves and expansion waves in the flow region produced by the turning of the inlet surface and the intersection of shock waves and expansion waves are calculated. These waves divide the two-dimensional area into several small areas. The internal airflow parameters in each small area remain constant, which are determined by the shock waves or expansion waves in front. If there is a detached shock wave or the calculated wave surface is more than a certain number, the average airflow parameters here will be calculated instead. The airflow parameters from here to the isolation section can be determined according to the frictional variable cross-section pipe flow formula (formula 16). The algorithm flow is shown in Figure 3.

![Algorithm flow](image)

FIGURE 3. The flow calculation process of quasi-two-dimensional inlet

The quasi-one-dimensional model is adopted to calculate the airflow parameters in the isolation section and combustion chamber, and the airflow friction, fuel injection, length change of pre-combustion shock wave train, reaction rate are out of consideration. The basic conservation equations of airflow in the isolation section and combustion chamber are obtained, and the equations need to combine experimental or empirical formulas to get solved. Finally, the airflow parameter distribution law in the isolation section and combustion chamber is [35-36]:

$$\frac{dMa}{dx} = \frac{Ma\psi_{th}}{1 - Ma^2} \left(-\frac{1}{S_{th}} \frac{dS_{th}}{dx} + \gamma_s Ma^2 \frac{2C_f}{d_{th}} \right)$$

$$\frac{dP}{dx} = \frac{P\gamma_s Ma^2}{1 - Ma^2} \left(\frac{1}{S_{th}} \frac{dS_{th}}{dx} - \frac{1 + (\gamma_s - 1)Ma^2}{2} \frac{4C_f}{d_{th}} \right)$$

$$\frac{dT}{dx} = \frac{(1 - \gamma_s)TMa^2}{1 - Ma^2} \left(\frac{1}{S_{th}} \frac{dS_{th}}{dx} + \gamma_s Ma^2 \frac{2C_f}{d_{th}} \right)$$

Where: S_{th} is the cross-sectional area of the airflow channel and d_{th} is the hydraulic diameter, $\psi_{th} = 1 + Ma^2(\gamma_s - 1)/2$.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
3 can be determined by

\[
\begin{align*}
V &= \frac{1}{S_h} \frac{dS_h}{dx} + \frac{1}{2T_f} \frac{dT_f}{dx} + \frac{1}{\gamma Ma^2} \left(\frac{dh}{dx} + \gamma Ma^2 \frac{dn}{dx} + \gamma Ma^2 \cdot 2C_f \right) \\
dP &= \frac{P \cdot Ma^3}{1 - Ma^2} \left[\frac{1}{S_h} \frac{dS_h}{dx} - \frac{\gamma}{\gamma - 1} T Ma \frac{dMa}{dx} \right] \\
dT &= \frac{1}{\psi_s} \frac{d\psi_s}{dx} + \frac{2 \psi_s (1 - \epsilon) + \epsilon dh}{S_h} \frac{dh}{dx}
\end{align*}
\]

In which: \(S_h \), \(dS_h/\, dx \) and \(dh/\, dx \) can be determined by the engine combustion chamber geometry; \(m_{ad} \) and \(dm_{ad}/\, dx \) are respectively the fuel mass flow rate and the fuel mass flow rate change rate added into the combustion chamber, \(\epsilon_{th} \) is the ratio of the fuel injection speed on the engine shaft of the aircraft to the main airflow speed, and can be determined according to the fuel injection.

The plume method is adopted at the nozzle reflecting the coupling of flight and propulsion [37-38]. The plume model is based on the equal air pressure above and below the shear layer (see Fig 3).

\(h_{k+1} = h_k + \frac{s_u}{\tan(\tau)} + s_u \tan(\beta_k) \)
\(A_k = h_{k+1}/h_k \)
\(f(M_k) = 1 + \frac{1}{2} (\gamma - 1) M_k^2 \)
\(f(M_{k+1})^{\gamma+1}/M_{k+1}^\gamma = A_k \cdot f(M_{k+1})^{\gamma+1}/M_{k+1}^\gamma \)

(20a)
(20b)
(20c)
(20d)

\[\dot{x} = V \cos \theta \cos \psi_v \]
\[\dot{y} = V \sin \theta \cos \psi_v \]
\[\dot{z} = -V \cos \theta \sin \psi_v \]
\[\dot{\theta} = \omega_x \sin \gamma + \omega_z \cos \gamma \]
\[\dot{\psi} = \left(\omega_x \cos \gamma - \omega_z \sin \gamma \right) \cos \theta \]
\[\dot{\dot{\psi}} = \omega_x \cos \gamma - \omega_z \sin \gamma \]
\[\dot{\omega}_x = \left(I_{xx} M_z + I_{xz} M_y \right) \left(I_{xx} I_{yy} - I_{xy}^2 \right) \]
\[\dot{\omega}_y = \left(I_{xy} M_z + I_{xz} M_x \right) \left(I_{xx} I_{yy} - I_{xy}^2 \right) \]
\[\dot{\omega}_z = M_z / I_{zz} \]

\[P_k = P_{k+1} \left[\frac{f(M_{k+1})}{f(M_k)} \right]^{\gamma-1} \]
\[P_k = \tilde{P} V^2 \sin^2 (\beta_k - \delta) + \tilde{P}_e \]
\[\tilde{P}_e - P_k = 0 \]

\(\tilde{P}_e \) is the fluid pressure under the shear layer. \(\tilde{P}_{ve} \) is the fluid velocity under the shear layer.

B. DYNAMIC MODEL OF THE HYPERSONIC VEHICLE AT WIDE-RANGE MACH NUMBERS

The force of the hypersonic vehicle is divided into three categories: one: vertical downward gravity, two: thrust in the direction of the body axis, three: aerodynamic force. The aerodynamics force is decomposed into a lift perpendicular to the speed, and the resistance is opposite to the speed direction. Combined with Newton's law, the following equations can be obtained. The system of equations describes the relationship between the force of the hypersonic vehicle at wide-range Mach numbers and the displacement of the longitudinal channel and flight attitude. The control is based on this system of equations.

\[\dot{x} = V \cos \theta \cos \psi_v \]
\[\dot{y} = V \sin \theta \cos \psi_v \]
\[\dot{z} = -V \cos \theta \sin \psi_v \]
\[\dot{\theta} = \omega_x \sin \gamma + \omega_z \cos \gamma \]
\[\dot{\psi} = \left(\omega_x \cos \gamma - \omega_z \sin \gamma \right) \cos \theta \]
\[\dot{\dot{\psi}} = \omega_x \cos \gamma - \omega_z \sin \gamma \]
\[\dot{\omega}_x = \left(I_{xx} M_z + I_{xz} M_y \right) \left(I_{xx} I_{yy} - I_{xy}^2 \right) \]
\[\dot{\omega}_y = \left(I_{xy} M_z + I_{xz} M_x \right) \left(I_{xx} I_{yy} - I_{xy}^2 \right) \]
\[\dot{\omega}_z = M_z / I_{zz} \]
Where α is the angle of attack; θ is the pitch angular, β is the angle of sideslip, γ_y is the velocity inclination angle, ψ is the yawing angle, ψ_y is the velocity declination; ω is the angular rate; L, T, D are lift force, thrust, and drag; M is pitch moments; I is pitch moments of inertial; V, m, g, θ are velocity, vehicle mass, gravity acceleration, the flight path angle; M is the moment, in which longitudinal moment is divided into aerodynamic pitch moment M_A and thrust pitch moment M_T;

III. DYNAMIC CHARACTERISTIC ANALYSIS

A. DYNAMIC CHARACTERISTIC VERIFICATION OF PARAMETRIC MODE

Validating the effectiveness of the developed model is an essential step to ensure the developed model is reliable. In this part, the trim capacity of lift to gravity and thrust to drag is put to the proof. The trim elevator deflection at each angle of attack is also a key concern. The thrust eccentricity, the additional moment generated by the internal flow on the afterbody flow field and the balancing of the external aerodynamic moment are taken into consideration. The static stability analysis under the equilibrium characteristic points is carried out, and the corresponding static stability coefficients and maneuverability at different angles of attack are solved respectively. It is proved that the model is reliable and can be applied to control.
Form Figs. 5(a–e), we can conclude that:

1) the drag reaches the minimum near the angle of attack of 0 degrees, and the fuel equivalence ratio has no prominent influence on the drag. The thrust increases with the increase of angle of attack or fuel equivalence ratio, which shows that the developed model has trim capability in a large angle of attack range.

2) The lift can be balanced with the maximum gravity near the angle of attack of three degrees.

3) The trim ability of the elevator decreases with the increase of Mach number, but the pitching moment can be trimmed within a reasonable angle of attack.

4) The developed model between Ma4-6 is statically unstable, and the maximum static instability is near 3 degrees angle of attack.

5) The elevator efficiency of the developed model is within a reasonable range.

B. FLIGHT MECHANICS ANALYSIS

Undisturbed motion is space unsteady flight, and the missile motion equation is linearized with small disturbance:

\[
\begin{align*}
 \frac{d\Delta V}{dt} &= \left(\frac{p^v - X^v}{m} \right) \Delta V + \left(\frac{p^a - P^a - X^a}{m} \right) \Delta \alpha + \left(\frac{p^e - X^e}{m} \right) \Delta \phi \\
 \frac{d\Delta \alpha}{dt} &= \left(\frac{p^v \alpha + Y^v}{mV} \right) \Delta V + \left(\frac{p^a \alpha + P + Y^a}{mV} \right) \Delta \alpha + \left(\frac{p^e \alpha + Y^e}{mV} \right) \Delta \phi \\
 \frac{d\Delta \phi}{dt} &= \frac{g \sin \theta}{V} \Delta \theta + \frac{Y^e}{mV} \Delta \phi + \frac{F_{e0}}{m} \\
 \frac{d\Delta \omega}{dt} &= \left(\frac{M^e_{\alpha}}{J_{\alpha}} + \frac{M^e_{\phi}}{J_{\phi}} \right) \Delta \alpha + \left(\frac{M^e_{\omega}}{J_{\omega}} \right) \Delta \omega \\
 \frac{d\Delta \omega}{dt} &= \phi^e \Delta V + \phi^a \Delta \alpha + \phi^e \Delta \phi + \phi^e \\
 \frac{d\Delta \phi}{dt} &= \phi^e
\end{align*}
\]

(26)

To make the above formula easy to write, the simplified symbol of the equation coefficient is introduced.

SYMBOL OF DYNAMIC COEFFICIENT AND ITS EXPRESSION
1
a_{11} = \frac{p^v - X^v}{m}
a_{12} = 0
a_{13} = -g \cos \theta
a_{14} = \frac{p^a - P^a - X^a}{m}
a_{15} = \frac{X^\delta}{m}
a_{16} = \frac{p^e - X^e}{m}
a_{17} = 0

a_{24} can represent the static stability of aircraft. If \(a_{24} < 0 \), the aircraft is statically stable, otherwise it is statically unstable.
unstable. \(a_{25} \) can represent the maneuverability of the aircraft, that is, the moment change that can be produced when the elevator deflects by one unit.

The free disturbance motion of the hypersonic vehicle at wide-range Mach numbers is analyzed, and the free disturbance motion equation is obtained by \(\Delta \delta_z = 0, \Delta \theta = 0, F_{\delta z} = F_{\delta \theta} = M_{\delta z} = 0 \) in Equation 27.

\[
d\Delta V/dt = -a_{11} \Delta V - a_{13} \Delta \theta - a_{14} \Delta \alpha - a_{16} \Delta \phi = 0
\]
\[
-a_{33} \Delta V + d^2 \Delta \theta/dt - a_{22} d\Delta \theta/dt - a_{24} \Delta \alpha - a_{26} \Delta \phi = 0
\]
\[
-a_{43} \Delta V - a_{44} \Delta \theta + d\Delta \theta/dt - a_{42} \Delta \alpha - a_{46} \Delta \phi = 0
\]
\[
d\Delta \phi/dt = -a_{43} \Delta V - a_{46} \Delta \alpha = 0
\]
\[
-\Delta \theta + \Delta \alpha + \Delta \phi = 0
\]

The following special solutions \(\Delta V = Ae^{\omega t} \), \(\Delta \theta = Be^{\omega t} \), \(\Delta \alpha = Ce^{\omega t} \), \(\Delta \phi = Ee^{\omega t} \) in the form of exponential functions of the equations are:

\[
d\Delta V/dt = A\omega e^{\omega t}, \quad d\Delta \theta/dt = B\omega e^{\omega t},
\]
\[
\frac{d^2 \Delta \theta/dt}{dt^2} = C\omega e^{\omega t}, \quad \frac{d\Delta \alpha/dt}{dt} = D\omega e^{\omega t}, \quad \frac{d\Delta \phi/dt}{dt} = \lambda Ee^{\omega t}.
\]

After eliminating the common term, the dynamic stability of aircraft can be judged by solving the characteristic equation.

Ignore the velocity changes in a long period. The transfer function matrix in a short period is given.

\[
G(s) = C \begin{bmatrix} s(s-a_{22}) & 0 & -a_{24} & -a_{26} \\ 0 & s-a_{33} & -a_{34} & -a_{36} \\ 0 & 0 & s-a_{44} & s \\ -1 & 1 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} a_{25} \\ 0 \\ 0 \\ a_{47} \end{bmatrix} \tag{28}
\]

Where \(C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \).

IV. ADAPTIVE CONTROL BASED ON POLE ASSIGNMENT

According to the longitudinal short-period disturbance motion \(\Delta V = \Delta V \approx 0 \), from the time domain point of view, the state vector \([\omega_z \quad \alpha \quad \varphi \quad I_{\varphi}^T] \) is adopted: the standard expression form of the longitudinal disturbance motion state space is:

\[
\begin{bmatrix} \dot{\omega}_z \\ \dot{\alpha} \\ \dot{I}_{\varphi} \\ \dot{\varphi} \end{bmatrix} = \begin{bmatrix} \omega_z \\ \alpha \\ I_{\varphi} \\ \varphi \end{bmatrix} + \begin{bmatrix} a_{25} & 0 \\ -a_{34} & a_{45} \\ 0 & 0 \\ 0 & a_{47} \end{bmatrix} \begin{bmatrix} \delta_z \\ \phi \\ \theta \\ \psi \end{bmatrix} + \begin{bmatrix} M_{\delta z} \\ -F_{\delta z} \\ -\omega_{\delta z} \\ -\phi_{\delta z} \end{bmatrix} \tag{29}
\]

The system after adding control signals is:

\[
\Delta \dot{x} = (A + BK) \Delta x
\] (30)

If the value of \(K \) is appropriate, \(A + BK \) can form a matrix to make the system asymptotically stable, and if \(x(0) \neq 0 \), \(\lim x(t) = 0 \).

The eigenvalue of \(A + BK \) is the pole of the regulator. If the pole of the regulator is located in the left half-plane of the \(s \) coordinate system, \(\lim \Delta x(t) = 0 \).

The problem of arranging the closed-loop poles to the desired position is called the pole arrangement. What should be noted is it's possible to modify any pole arrangement of the system only if the given system is entirely controllable.

There are four algorithms commonly used in pole placement of MIMO high-order systems. 1) Turn the multi-input system into a single-input system; 2) Convert the state space expression into the Laenbergher controllable canonical form, and then the state feedback gain \(K \) can be solved; 3) Solve the \(T \) matrix of the Sylvester equation, if the \(T \) matrix is nonsingular, the \(K \) is obtained. 4) The state feedback gain \(K \) is obtained by the linear-quadratic optimal control method.

Comparing the four algorithms, the disadvantage of the first algorithm is that the single-input system generated by multi-input systemization is not unique, and the elements of the feedback gain matrix \(k \) calculated by this algorithm are often too large. The disadvantage of the second algorithm is that the calculation of the transformation matrix which can control the canonical form is tedious. The third algorithm cannot guarantee that the \(T \) matrix is nonsingular. The fourth algorithm is subjective in the balance between error and energy consumption, that is, the setting of the \(Q \) matrix and the \(R \) matrix.

In this paper, the state feedback matrix is obtained by taking the expected poles, and the logic of the control matrix is:

\[
\Delta U = \begin{bmatrix} k_{11} \Delta \alpha_1 + k_{12} \Delta \alpha + k_{13} \Delta \phi + k_{14} \Delta I_{\varphi} \\ k_{21} \Delta \omega_z + k_{22} \Delta \alpha + k_{23} \Delta \phi + k_{24} \Delta I_{\varphi} \end{bmatrix}
\] (31)

It can be seen that in the process of calculating elevator deflection components \(\Delta \delta_z \), \(k_{11} \Delta \omega_z \) and \(k_{14} \Delta \alpha \) are differential terms and proportional terms; \(k_{13} \Delta \phi \) is flight-propulsion coupling term, and the fuel equivalence ratio error integral in \(k_{14} \Delta I_{\varphi} \) has nothing to do with elevator adjustment, so \(k_{14} = 0 \).

Similarly, in the process of solving the command component \(\Delta \phi \) of fuel equivalence ratio, \(k_{23} \Delta \phi \) and

Where: \(A_z = \begin{bmatrix} a_{22} & a_{24} & 0 & a_{26} \\ 1 & a_{34} & -a_{36} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & a_{45} & 0 & 0 \end{bmatrix} \)
$k_{24}\Delta \phi$ are proportional terms and integral terms, $k_{22}\Delta \alpha$ is a coupling term, and $k_{23}\Delta \omega_z$ is an irrelevant term.

The fourth-order system is divided into a third-order system and a first-order system according to the logic of controlling attitude by elevator and controlling thrust by fuel equivalence ratio. The third-order system corresponds to the angle of attack control and has two dominant poles and one non-dominant pole. The dynamic index of the system step response is mainly determined by two dominant poles.

The damping ratio and natural frequency are calculated according to the performance index of the second-order system, and the dominant pole is selected using the formula (32). The relationship between adjustment time and overshoot and damping ratio and natural frequency is shown in formula (33):

$$s_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1} \tag{32}$$

$$\xi = \frac{\ln(1/\sigma)}{\sqrt{\pi^2 + \left(\ln \frac{1}{\sigma}\right)^2}} \tag{33}$$

Where ξ is called the damping ratio of the system; and ω_n, the undamped natural frequency. It is customary for the third pole to take a value more than 5 times the real part of the dominant pole. Considering the physical meaning of the state feedback matrix and the requirements of the system dynamic index, the position of the expected pole can be selected:

$$j_1 = \lambda_1 + bi \quad j_2 = \lambda_1 - bi \quad j_3 = \lambda_2 \quad \lambda_1, \lambda_2, \lambda_3 < 0$$

The physical meaning of each element in matrix K is interpreted in detail. It is unreasonable to simply use the mathematical method to solve the matrix K because only four expected poles are used to establish the equation, while there are eight unknown elements, which leads to the non-unique solution of the matrix. The initial K matrix is a suitable value solved by combining the physical meaning of each element of the K matrix with engineering methods and $\text{Re}[(\lambda(A+BK))]<0$ can be guaranteed at this time. Under the influence of uncertainty in flight, some elements of matrix A may get changed, the corresponding elements of matrix K change as compensation, thus ensuring that the value of each element of $A+BK$ remains unchanged. $\text{Re}[(\lambda(A+BK))]<0$ can be always held in this method. The iterative process is as Figure 6.

V. SIMULATION RESULTS

Select typical working conditions, and according to the transfer function calculated by formula 28, and the open-loop transfer function Bode diagram curves are given in Figure 5:
Based on the above dynamic model and controller, the simulation is carried out. The dynamic parameters of the aircraft are shown in Table II:

TABLE II
THE ONTOLOGICAL PARAMETERS OF THE HYPERSONIC VEHICLE AT WIDE-RANGE MACH NUMBERS

Variable	Description	Value
c	Characteristic Length	6.938m
S	Reference area	60.32m²
I_y	Pitching moment of inertia	400701Nm
m	Mass	19000kg

According to the previous section, the desired pole is selected as:

$$j_1 = -6.308 + 4.312i$$
$$j_2 = -6.308 - 4.312i$$
$$j_3 = -3.406$$
$$j_4 = -24$$

According to the formula (32-33), it is expected that the angle of attack setting time corresponding to this set of poles will be about 3.2 seconds, and the maximum overshoot will be about 20%.

Under the desired poles selected above and in combination with the requirements of the system dynamic response index, the tuning state feedback matrix is solved as:

$$K = \begin{bmatrix} 8 & 40 & 0.1 & 0 \\ 0 & -0.2 & -1.5 & -0.5 \end{bmatrix}$$

The flight process of the aircraft is set at an altitude of 25,000 meters and a speed of Mach 6. The initial angle of attack is 0 degrees and adjusted to 1 degree. The initial fuel equivalence ratio is 0, which is adjusted to 0.85 and simulated in the interval of 0 to 10 seconds. The simulation results include the dynamic response process under normal conditions, dynamic response process of the elevator after adding 20% uncertainty, and dynamic response process of controller adaptive compensation while adding 20% uncertainty to the elevator. PID and trajectory linearization control (TLC) are simulated as comparative methods. The simulation results are shown in figure 8:
FIGURE 8. Adaptive gain adjustment control simulation curve of WIDE-RANGE VELOCITY VEHICLE. (a) The angle of attack control curve; (b) Elevator control curve; (c) Angular rate curve; (d) Trajectory inclination angle curve; (e) Pitch angle control curve.

TABLE III

Variable	PID	TLC	Adaptive control based on pole assignment
Maximum overshot for angle of attack (%)	43.4%	27.1%	20.2%
Setting time for angle of attack (s)	3.36	4.56	3.16
Maximum peak value of angular rate (deg/s)	2.286	2.795	2.696
Maximum peak value of pitch angle (deg)	2.341	2.696	1.959

VI. DISCUSSIONS AND CONCLUSIONS

From Figure 7, due to the increase of the order of transfer function, the Bode diagram of the hypersonic vehicle at wide-range Mach numbers control system is more complex with the coupling of flight and propulsion. The amplitude of high-frequency band in (a) and (d) is small, which shows that the impact from an executive body to the controlled objects (i.e., from the elevator to the angle of attack and from the fuel equivalence ratio command to the fuel equivalence ratio) has a strong ability to suppress noise. However, the high-frequency amplitude of the coupling control process as shown in (b) and (c) is large, which shows that they have a weak ability to suppress high-frequency noise. On the contrary, their low-frequency amplitude is higher, which shows that their steady-state is more accurate.

From Figure 8(a-b), the maximum overshoot of the PID control system for the angle of attack is 43.4%, and the setting time is 3.36 seconds. Differ from PID, which linearizes the nonlinear system in only one working condition, LTC linearization in many different working conditions can reduce the overshoot of maximum angular velocity and angle of attack, which shows that it has certain advantages compared with PID. The maximum overshoot reduced to 27.1%, the setting time reach 2.89 seconds by
LTC. Adaptive control based on desired pole assignment can adjust the controller according to the variation of the real-time flight parameter, which decrease the overshoot of angle of attack to 20.2%. The setting time is 3.16 seconds, which meets the requirements of the desired pole for the dynamic response index of the system. Results of simulation show that the adaptive controller can obviously improve the control quality of the system with uncertainties. From (c-e), although the adjustment time of the three cases is the same, it can be seen that the adaptive control can reduce the maximum peak value of the curve. It can be seen from c and d that the response curve of adaptive control is closer to the steady-state value as a whole.

In this paper, an adaptive controller based on pole assignment is adopted to suppress the disturbance caused by uncertainty in flight. Compared with the widely used methods such as trajectory linearization, the adaptive controller based on pole assignment can adjust the control parameters according to the real-time flight data identification, thus achieving a better integrated-control effect.

The hypersonic vehicle at wide-range Mach numbers model is built mainly according to the parametric method. On this basis, the detailed aerodynamic data and thrust data of the aircraft under various working conditions are calculated according to the panel method and the others, which can show a large proportion of the uncertainties and time variability in the large flight envelope. The flight-propulsion coupling characteristics of the hypersonic vehicle at wide-range Mach numbers are described by using the state-space equation and transfer function. On the basis of the simplified state-space equation, this paper gives an integrated control strategy for the hypersonic vehicle at wide-range Mach numbers by using the pole assignment method. Real-time identification based on flight data adjusts the controller parameters to compensate for the uncertain disturbance in flight while keeping the desired pole unchanged. The simulation results show that the pole assignment method can be used in the integrated control of the hypersonic vehicle at wide-range Mach numbers, and the influence of uncertain disturbance on the system during flight can be compensated by using the identification method. It shows that the adaptive controller based on the pole assignment is an effective in dealing with the coupling effect of flight and propulsion of the hypersonic vehicle at wide-range Mach numbers and the uncertainty in large flight envelope with low-complexity control framework.

Further research includes the following points:

1. In this paper, the control of fuel equivalence ratio is simplified, and the dynamic process related to flight attitude is ignored. In the future, the dynamic process of fuel equivalence ratio can be analyzed and studied in more detail according to the parametric model.

2. In terms of application objects, parametric models can be used for dynamic analysis of various aircraft. The adaptive control method based on pole assignment can be applied to the coupling control of MIMO systems in different fields.

3. Empirical coupling control values are adopted in setting control coupling items, and identification of coupling can be added in the future to adjust coupling item parameters in real-time.

REFERENCES

[1] Jie L., Ning-wei W., Jian W., et al. “Optimizing combustion performance in a solid rocket scramjet engine”. Aerospace Science and Technology, vol. 99, pp. 105560.1-105560.8, April 2020. doi: 10.1016/j.ast.2019.105560

[2] Li Shi-bin “Design and Optimization of Aerodynamic Configuration for the Novel-concept Vehicle with the Wide-range Mach Numbers”. Journal of Propulsion Technology, vol.30, no.6) pp. 735-739 . 2009. doi: 10.3321/j.issn:1001-4055.2009.06.019

[3] W. Jian-li and Y. Yun-feng, “Robust Longitudinal Flight Controller Design for the Air-breathing Hypersonic Vehicle,” 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop, 2008, pp. 494-497, doi: 10.1109/KAMW.2008.4810532. https://arc.iaia.org/pdf/10.2514/6.2005-6256

[4] Zhang, D., Tang, S., Zhu, Q.J., & Wang, R.G. Analysis of dynamic characteristics of the rigid body/elastic body coupling of air-breathing hypersonic vehicles. Aerospace Science and Technology, 48, 328-341. DOI: 10.1016/j.ast.2015.11.027

[5] D. Zhang and S. Tang. "The Propulsion/Flight Dynamics Coupling Analysis for Air-breathing Hypersonic Vehicle,” 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012, pp. 53-57, doi: 10.1109/IHMSC.2012.19.

[6] M. Mirimirani, M. Kuipers, J. Levin and A. D. Clark, “Flight dynamic characteristics of a scramjet-powered generic hypersonic vehicle,” 2009 American Control Conference, 2009, pp. 2525-2532, doi: 10.1109/ACC.2009.5160500.

[7] Bolender, M. A., and Doman, D. B., “Nonlinear Longitudinal Dynamical Model of an Air-Breathing Hypersonic Vehicle,” Journal of Spacecraft and Rockets, Vol. 44, No. 2, 2007, pp. 374–387. doi:10.2514/1.23370

[8] Brown, M., Mudford, N. R., Neely, A. J., et al “Robust Optimization of Two-Dimensional Scramjet Inlets,” AIAA Paper 2006-8140, 2006

[9] Bolender, M. A., and Doman, D. B., “Nonlinear Longitudinal Dynamical Model of an Air-Breathing Hypersonic Vehicle,” Journal of Spacecraft and Rockets, Vol. 44, No. 2, 2007, pp. 374–387. doi:10.2514/1.23370.

[10] Riddick, Stephen E. “An overview of NASA’s learn-to-fly technology development”. AIAA Scitech 2020 Forum, 2020, 1(F), doi: 10.2514/6.2020-0760

[11] Brandon, J.M. and Morelli, E.A. “Real-Time Global Nonlinear Aerodynamic Modeling from Flight Data,” AIAA-2014-2554, AIAA Atmospheric Flight Mechanics Conference, Atlanta, GA, June 2014.

[12] L. Liu, S. Dong, Y. Wang and L. Ou, “Clearance of flight control law based on structural singular value theory,” in IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 3, pp. 2138-2147, July 2015, doi: 10.1109/TAES.2015.130822.
[13] Cui Naigang, Li Hao, Lu Baogang, and Wei Changzhu. “Integrated technology of guidance and control for reusable aircraft.” In 2017 Symposium on Space Electromechanical and Space Optics, pp. 55-61.

[14] Riddick, Stephen E. Busan, Ronald C. Cox, David E. et al. “Learn to fly test setup and concept of operations”. 2018 Atmospheric Flight Mechanics Conference, 2018, doi: 10.2514/6.2018-3308

[15] Morelli, Eugene A. “Autonomous real-time global aerodynamic modeling in the frequency domain”. AIAA Scitech 2020 Forum, 2020, 1(F), doi: 10.2514/6.2020-0761

[16] A. Mekkyy and O. R. Gonzalez, “LQ control for the NASA learn-to-fly free-to-roll project,” 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), 2016, pp. 173-178, doi: 10.1109/NAECON.2016.7856794.

[17] Grauer, Jared A. “A learn-to-fly approach for adaptively tuning flight control systems”. 2018 Atmospheric Flight Mechanics Conference, 2018, doi: 10.2514/6.2018-3312

[18] J. Li, L. Zhuang, J. Song, C. Dong and K. Guo, “An aerodynamic model identification method suitable for low-quality flight data,” 2020 3rd International Conference on Unmanned Systems (ICUS), 2020, pp. 381-388, doi: 10.1109/ICUS50048.2020.9274990.

[19] J. Cui, J. Shi, Y. Li, S. Dong, X. Cui and T. Huang, ”Application of the variable weight combination model in aero-generator life prediction,” 2011 Chinese Control and Decision Conference (CCDC), 2011, pp. 2970-2973, doi: 10.1109/CCDC.2011.5968761.

[20] A. Khalid, K. Zeb and A. Haider, “Conventional PID, Adaptive PID, and Sliding Mode Controllers Design for Aircraft Pitch Control,” 2019 International Conference on Engineering and Emerging Technologies (ICEET), 2019, pp. 1-6, doi: 10.1109/ICEET.2019.8711871.

[21] D. We, H. Xiong and J. Fu, “Aircraft Autopilot Pitch Control Based on Fuzzy Active Disturbance Rejection Control,” 2015 International Conference on Industrial Informatics Computing Technology, Intelligent Technology, Intelligent Information Integration, 2015, pp. 144-147, doi: 10.1109/ICIIICI.2015.119.

[22] Snyder, Steven. Bacon, Barton. Morelli, Eugene A. et al. “Online control design for learn-to-fly”. 2018 Atmospheric Flight Mechanics Conference, pp.1-27, 2018, doi: 10.2514/6.2018-3311

[23] Bu, X. W. . and Q. Qi. “Fuzzy optimal tracking control of hypersonic flight vehicles via single-network adaptive critic design.” IEEE Transactions on Fuzzy Systems 2020,2020(2020):1-9, DOI:10.1109/TFUZZ.2020.3036706

[24] Bu, X. W. , Q. Qi , and B. Jiang , “A Simplified Finite-time Fuzzy Neural Controller with Prescribed Performance Applied to Waverider Aircraft.” IEEE Transactions on Fuzzy Systems PP.99(2021) DOI: 10.1109/TFUZZ.2021.3089031.

[25] Bu, X. , “Air-breathing Hypersonic Vehciles Funnel Control Using Neural Approximation of Non-affine Dynamics.” IEEE/ASME Transactions on Mechatronics PP.5(2018):1-1. DOI: 10.1109/TMECH.2018.2869002

[26] H. Zhang, Y. Yu, H. Wang and Y. Liu, “Reduced-order Linear Extended State Observer Based Trajectory Linearization Control for Hypersonic Reentry Vehicle under High Maneuver Flight with Multiple Disturbances.” 2018 IEEE CSAA Guidance, Navigation and Control Conference (GNCC), 2018, pp. 1-6, doi: 10.1109/GNCC42960.2018.9018888.

[27] HD Shen, YB Liu, LU Yuping, DB Xiao, BY Chen. “A parametric model for control integrated design of hypersonic vehicles”. Scientia Sinica Technologica 46(10):1024-1038. doi:10.1360/NS2016-00073.

[28] Shen H, Liu Y, Chen B, et al. Control-relevant modeling and performance limitation analysis for flexible air-breathing hypersonic vehicles[J]. Aerospace Science and Technology, 2018, 76: 340-349. DOI: 10.1016/j.ast.2018.02.016

[29] Shen H, Cao R, Liu Y, et al. Control-oriented low-speed dynamic modeling and trade-off analysis of air-breathing aerospace vehicles[J]. Journal of Zhejiang University-SCIENCE A, 2019, 20(12): 893-907. DOI: 10.1631/jzus.A1900366

[30] Ebrahimi Fizik Amir; Lakzian Esmal; Hashemian Ali. “Numerical investigation of wet inflow in steam turbine cascades using NURBS-based mesh generation method”. International Communications in Heat and Mass Transfer vol. 118, 2020, pp 104812-, doi: 10.1016/j.icheatmasstransfer.2020.104812.

[31] Jinchao Dang,Tingting Xie,Hui Shao,Haixia Song. “Research on Adaptive NURBS Interpolation Algorithm for 3D Engraving of Manipulators”. Proceedings of 2020 International Conference on Control, Robotics and Intelligent System (CCHRIS 2020). doi: 10.26914/c.cnkihy.2020.045869

[32] J. M. Vogel, A. G. Kelkar, G. Inger, C. Whitmer, A. Sidlinter and A. Rodriguez, “Control-relevant modeling of hypersonic vehicles,” 2009 American Control Conference, 2009, pp. 2519-2524, doi: 10.1109/ACC.2009.5160682.

[33] J. Liu, Y. Hong and Z. Xiong, “Simulation analysis of hypersonic vehicle flight control based on back-stepping and dynamic inversion,” Proceedings of the 33rd Chinese Control Conference, 2014, pp. 6358-6363, doi: 10.1109/ChiCC.2014.6896035.

[34] Y. Li, B. Chen, Y. Liu and H. Shen, “Performance analysis of hypersonic vehicle based on aerodynamic derivatives,” 2017 36th Chinese Control Conference (CCC), 2017, pp. 10370-10375, doi: 10.23919/ChiCC.2017.8029006.

[35] A Kelkar , J Vogel , G Inger , C Whitmer , C Ford. “Modeling and Analysis Framework for Early Stage Trade-off Studies for Scramjet-Powered Hypersonic Vehicles” International Space Planes and Hypersonic Systems and Technologies Conference, 2012 doi: 10.2514/6.2009-7325

[36] Yu Yong. “Theoretical Analysis, Experimental Study Of Scramjet Combustor Operation Process”. National University of Defense Technology, 2004 doi: 10.7666/d.789476

[37] JDickeson, S Sridharan, A Rodriguez “Impact of Plume Modeling on the Design and Control for a Class of Air-Breathing Hypersonic Vehicles”. Aiaa Guidance, Navigation, & Control Conference, 2016, doi: 10.2514/6.2011-6229

[38] B. Han, H. Jiu, S. Pang and J. Li, “Hydrothermal plume simulation for autonomous hydrothermal vent discovery,” 2012 Oceans - Yeosu, 2012, pp. 1-7, doi: 10.1109/OCEANS-Yeosu.2012.6263527.
FIRST A. Jiaxin LI was born in Pingdingshan, Henan, China in 1998. He received the B.S. in Automation from the North China University of Water Resources and Electric Power in 2020. He is currently pursuing the M.S. degree in aerospace science and technology with the Dalian University of Technology. He has been a Research Assistant with the Laboratory of Advanced Technology for Aerospace Vehicles. His research interest includes Hypersonic Vehicle guidance and control and parametric model of Hypersonic Vehicle.

SECOND B. Danwei Li received the B.S. and M.S. degree in aircraft design from Harbin Institute of Technology from 2003 to 2009. From 2009 to 2010, he worked in the Structural Department of Shenyang Aircraft Design&Research Institute. From 2010 to 2014, he worked in the Flight Control Department of Shenyang Aircraft Design&Research Institute. Since 2014, he has been worked in Aerospace team of Shenyang Aircraft&Research Design Institute.

THIRD C. Guoqiang Wu received B.S. in Business Administration in 2001, M.S. in solid mechanics in 2004, and Ph.D. degree in aircraft design in 2009 from Harbin Institute of Technology. From 2009 to 2013, he was a lecture at the School of Aeronautics and Astronautics, Dalian University of Technology. Since 2013, he has been an Assistant Professor. His research interests include Aircraft system simulation and flight guidance and control.

FOURTH D. Kai Liu received the B.S. degree in Information and Computing Science from Jilin University, China, 2007. And He received the Ph.D. from Harbin Institute of Technology, China, 2013. He entered the 301 Research Institute of China Aerospace Third Research Institute as an aircraft guidance and control engineer. Since 2017, he has been an associate professor at Dalian University of Technology. His research interests include flight guidance and control.