Energy levels of an ideal quantum ring in AA-stacked bilayer graphene

Youness Zahidi¹², Abdelhadi Belouad¹ and Ahmed Jellal¹³

¹ MATIC, FPK, Hassan 1 University, Khouribga, Morocco
² Theoretical Physics Group, Faculty of Sciences, Chouaib Doukkali University, PO Box 20, 24000 El Jadida, Morocco
³ Saudi Center for Theoretical Physics, Dhahran, Saudi Arabia

E-mail: a.jellal@ucd.ac.ma and ajellal@ictp.it

Keywords: ideal quantum ring, AA-bilayer graphene, magnetic field, energy spectrum

Abstract

We theoretically analyze the energy spectrum of a quantum ring in AA-stacked bilayer graphene with radius \( R \) for a zero width subjected to a perpendicular magnetic field \( B \). An analytical approach, using the Dirac equation, is implemented to obtain the energy spectrum by freezing out the carrier radial motion. The obtained spectrum exhibits different symmetries and for a fixed total angular momentum \( m \), it has a hyperbolic dependence of the magnetic field. In particular, the energy spectra are not invariant under the transformation \( B \rightarrow -B \). The application of a potential, on the upper and lower layer, allows us to open a gap in the energy spectrum and the application of a non zero magnetic field breaks all symmetries. We also analyze the basic features of the energy spectrum to show the main similarities and differences with respect to an ideal quantum ring in monolayer, AB-stacked bilayer graphene and a quantum ring with finite width in AB-stacked bilayer graphene.

1. Introduction

Graphene, an isolated single layer of graphite, has attracted many experimental and theoretical research activities since its isolation in 2004 [1]. This has led to the discovery of many interesting properties [2] not previously observed in ordinary two-dimensional electron gas. The high level of interest is due to both the unusual mechanical and electronic properties, as well as for their prospects of application, which may lead to their use in novel nanoelectronic devices. In addition, graphene offers the remarkable possibility of probing predictions of quantum field theory in condensed matter systems as its low-energy spectrum is described by the Dirac–Weyl Hamiltonian of massless fermions [3]. These different properties of graphene are related to the unusual electronic structure of graphene, in which the charge carriers behave as massless fermions with a gapless linear dispersion.

Graphene cannot only exist in the free state, but two or more layers can stack above each other to form what is called few layer graphene. For example, for two coupled graphene sheets, it is known as bilayer graphene. Bilayer graphene systems show interesting properties with strong dependence on stacking. In bilayer graphene, there are four atoms per unit cell, with inequivalent sites \( A_1, B_1 \) and \( A_2, B_2 \) in the first and second graphene layers, respectively. There are two dominant ways in which the two layers can be stacked. The first one is the so called AB-stacked bilayer graphene [4, 5] and the second is AA-stacked bilayer graphene [6, 7]. In the AB-stacking, the layers are arranged in such a way that the \( A_1 \) sublattice is exactly on top of the sublattice \( B_2 \). In the AA-stacking, both sublattices of one sheet \( A_1 \) and \( B_1 \) are located directly on top of the two sublattices of the other sheet \( A_2 \) and \( B_2 \).

Recently, bilayer graphene has experienced a surge as another attractive two-dimensional carbon material, and has demonstrated new unusual physical properties [8–14]. In fact, bilayer graphene is a very different material from monolayer graphene and also from graphite. The AB-stacked bilayer graphene has a gapless quadratic dispersion relation, two conduction bands and two valence bands, and each pair is separated by an interlayer coupling energy of order \( \gamma_i = 400 \text{ meV} \). However, the energy bands for AA-stacked bilayer graphene are just the double copies of single layer graphene bands shifted up and down by the interlayer coupling \( \gamma = 200 \text{ meV} \). By applying a perpendicular electric field on the upper and lower layer, the spectrum is found to display a gap, which can be tuned by varying the bias or by chemical doping of the surface [15]. This tunable gap can then be exploited for the development of bilayer graphene devices. In particular, the possibility of controlling the energy gap has
increased the likelihood of the creation of electrostatically defined quantum dots [16, 17] and quantum rings [18, 19] in bilayer graphene.

Quantum rings in graphene have also attracted some interest. They are expected to find application in microelectronics as well as in future quantum information devices. In fact, a very important class of quantum devices consists of quantum rings. They have been studied in semiconductor systems, both experimentally and theoretically [20]. Recently, quantum rings have been studied both theoretically and experimentally in monolayer graphene [21, 22]. The graphene-based quantum rings have been obtained experimentally by lithographic techniques [22]. These systems have been studied theoretically in monolayer graphene. Two different ring systems are considered: a ring with a smooth boundary and a hexagonal ring with zigzag edges [23]. For AB-stacked bilayer graphene, it was shown that it is possible to electrostatically confine quantum rings with a finite width [18].

In this work, we consider a quantum ring in AA-stacked bilayer graphene in the presence of an external magnetic field. We obtain the analytical expression of the energy spectrum by solving the Dirac equation and freezing out the carrier radial motion for a zero and non zero magnetic field. The obtained energy spectrum for an ideal quantum ring will be investigated numerically to underline the behavior of our system. We investigate the basic features of our results and compare them with those for an ideal ring in monolayer graphene and AB-stacked bilayer graphene, and also for a quantum ring with finite width in AB-stacked bilayer graphene.

The rest of the paper is organized as follows. In section 2, we present our problem by setting the Hamiltonian describing the system under consideration. Subsequently, we use the eigenvalue equation to find the analytic expressions for the energy spectrum. In section 3, we present our results and give different discussions. Section 4 provides a summary and conclusions.

2. Problem setting

We consider an AA-stacked bilayer graphene quantum ring. This system is characterized by two monolayer sheets stacked directly on top of each other. Each carbon atom of the upper layer is located above the corresponding atom of the lower layer and they are separated by an interlayer coupling energy \( \gamma \) (see figure 1).

The Hamiltonian in the vicinity of the \( K \) and \( K' \) valleys of the first Brillouin zone, with a perpendicular magnetic field, can be written as

\[
H_T = \begin{pmatrix}
\Delta + \tau U & \tau \pi & \gamma & 0 \\
\tau \pi & \Delta + \tau U & 0 & \gamma \\
\gamma & 0 & \Delta - \tau U & \tau \pi \\
0 & \gamma & \tau \pi & \Delta - \tau U
\end{pmatrix},
\]

(1)

Here \( \gamma = 200 \text{ meV} \) is the interlayer coupling term [24], \( \pi = v_F [\sigma_x \epsilon A_\pi + \sigma_y \epsilon A_y] \) with \( \pi \) being the two-dimensional momentum operator in which the symmetric gauge is used to describe the vector potential \( A, v_F = 10^6 \text{ m s}^{-1} \).
is the Fermi velocity and \( \tau = \pm 1 \) distinguishes the two \( K \) and \( K' \) valleys. \( \Delta = \frac{U_1 + U_2}{2} \) is the average potential and \( U = \frac{U_1 - U_2}{2} \) is the half potential difference. Moreover, the application of a perpendicular electric field creates a potential \( U_1 \) in the upper layer and \( U_2 \) in the lower layer [25–27]. At this level, some comments are in order. Firstly, we do not include any mass term because the applied potential across the AA-stacked bilayer is able to open an energy gap in the spectrum. Secondly, the Hamiltonian for the \( K' \) valley can be obtained from that of the \( K \) valley by the replacements \( V_y \rightarrow -V_y \) and \( \Phi = \frac{R}{2} \). For the AA-stacked bilayer graphene, the Hamiltonian (1) acts on a four component spinor \( \Psi_{A(A)} \), where \( \Psi_{A(A)} \) and \( \Psi_{B(B)} \) are the envelope functions associated with the probability amplitudes of the wave functions on the \( A(A) \) and \( B(B) \) sublattices of the upper (lower) layer. Since the total angular momentum operator \( \mathbf{J} \) commutes with \( \mathcal{H} \), then we can construct a common basis in terms of the eigenspinors in the polar coordinates such as \( \Psi(\theta, \phi) = e^{im\theta}[\Phi_1(r)e^{i\theta}, i\Phi_2(r), \Phi_3(r)e^{i\theta}, i\Phi_4(r)]^T \), where \( m \) is the angular momentum label. We use the symmetric gauge \( A = (0, \frac{2m}{\pi}, 0) \) to write the corresponding momentum operators as

\[
\pi = \psi e^{i\theta} \left[ -\frac{i\hbar}{\tau} \frac{\partial}{\tau} + \frac{i\hbar}{\theta} \right] + \frac{i\hbar}{2} R \phi \phi
\]

\[
\pi' = \psi e^{-i\theta} \left[ -\frac{i\hbar}{\tau} \frac{\partial}{\tau} - \frac{i\hbar}{\theta} \right] - \frac{i\hbar}{2} R \phi \phi
\]

Based on [26], we will study the case where the potentials satisfy the condition \( U_1 = -U_2 = U \), which gives an average potential \( \Delta = 0 \). In this situation we will present an analytical expression of the eigenstates and energy levels of an ideal quantum ring created with AA-stacked bilayer graphene. For an ideal ring with radius \( R \), the momentum of the charge carriers in the radial direction is zero. By freezing out the carrier radial motion, the four-component wave function becomes

\[
\Psi(R, \theta) = \begin{pmatrix} \Phi_{A}(R)e^{i\theta} \\ i\Phi_{B}(R) \\ \Phi_{A}(R)e^{i\theta} \\ i\Phi_{B}(R) \end{pmatrix} e^{im\theta}.
\]

By solving the Dirac equation \( \mathcal{H}\Psi(R, \theta) = E\Psi(R, \theta) \), we obtain the following system of coupled differential equations

\[
\begin{align*}
(E - \tau U)\Phi_{A}(R) - \tau\eta(m + \beta)\Phi_{B}(R) + \gamma\Phi_{A}(R) &= 0 \\
\tau\eta(m + \beta + 1)\Phi_{A}(R) - (E + \tau U)\Phi_{B}(R) - \gamma\Phi_{B}(R) &= 0 \\
\tau\eta(m + \beta + 1)\Phi_{A}(R) - (E - \tau U)\Phi_{B}(R) - \gamma\Phi_{B}(R) &= 0 \\
\gamma\Phi_{A}(R) - \tau\eta(m + \beta)\Phi_{B}(R) + (E + \tau U)\Phi_{A}(R) &= 0
\end{align*}
\]

where we have set the quantities

\[
\eta = \frac{\hbar v_F}{R}, \quad \beta = \frac{eB}{\hbar R^2}.
\]

After some straightforward algebra, we end up with the polynomial equation that determines the energy spectrum

\[
E^4 - 2E^2(\eta^2\alpha + U^2 + \gamma) + (\eta^2\alpha + U^2)^2 - 2(\eta^2\alpha - U^2)\gamma^2 + \gamma^4 = 0
\]

where the parameter \( \alpha \) is given by

\[
\alpha = (m + \beta)^2 + (m + \beta).
\]

There are four solutions for (7)

\[
E = s\sqrt{(\gamma \pm \eta\sqrt{\alpha^2 + U^2})}
\]

with \( s = \text{sign}(E) \). We notice that for \( m + \beta \leq -1 \) or \( m + \beta \geq 0 \) the four solutions are real, except for \(-1 < m + \beta < 0 \), which are complex. It is clear from (9) that the energy spectrums are equivalent for both valleys \( K \) and \( K' \). This is not the case for an Aharonov–Bohm ring in monolayer graphene [23] where the the energy spectrum depends on the valley index. However, the effect of the ring confinement and the magnetic flux allows us to lift the orbital degeneracy originating from the two valleys. Another aspect of difference with respect to the results in [23] is that in our case we have a second set of levels.
3. Results and discussions

In figure 2, we plot the energy levels of an ideal quantum ring in AA-stacked bilayer graphene as a function of the ring radius \( R \) with \(-10 \leq m \leq -1\) (green curves), \( 1 \leq m \leq 10 \) (red curves) and \( m = 0 \) (blue curves). (a) Zero magnetic field \( B = 0 \) T and \( U = 0 \) meV. (b) Zero magnetic field \( B = 0 \) T and \( U = 100 \) meV. (c) Non zero magnetic field \( B = 3 \) T and \( U = 0 \) meV. (d) Non zero magnetic field \( B = 3 \) T and \( U = 100 \) meV.

Figure 2. Energy as function of radius \( R \) for an ideal quantum ring in AA-stacked bilayer graphene with the angular quantum number \(-10 \leq m \leq -1\) (green curves), \( 1 \leq m \leq 10 \) (red curves) and \( m = 0 \) (blue curves). (a) Zero magnetic field \( B = 0 \) T and \( U = 0 \) meV. (b) Zero magnetic field \( B = 0 \) T and \( U = 100 \) meV. (c) Non zero magnetic field \( B = 3 \) T and \( U = 0 \) meV. (d) Non zero magnetic field \( B = 3 \) T and \( U = 100 \) meV.

We notice that for a zero magnetic field, the energy takes the following form

\[
E(m, \beta = 0) = s \sqrt{\gamma^2 + \eta \sqrt{m(m+1)}}^2 + U^2. \tag{10}
\]

It is important to note that for \( \gamma = 0 \), we recover the energy of monolayer graphene \[19\]. For a large ring radius \( R \), the upper set of levels converges to the interlayer hopping energy \( \gamma = 200 \) meV. However, the lower set of levels converges to \( \gamma = -200 \) meV. In addition, we notice that from (10) and for \( m = 0 \), \(-1\) the energy will be independent of the radius \( R \)

\[
E = s \sqrt{\gamma^2} + U^2 \tag{11}
\]

and therefore all branches are twofold degenerate. Furthermore, (10) exhibits interesting spectrum symmetries, such as

\[
E(m, 0) = E(-m - 1, 0) \tag{12}
\]

\[
E(0, 0) = E(-1, 0). \tag{13}
\]

The application of a potential on the upper and lower layer allows us to open a gap in the energy spectrum (figures 2(b) and (d)). As compared to the AB-stacking quantum ring results \[19\], we find that in both systems (AA- and AB-stacking), there are two sets of levels and the application of a gate potential opens a gap in the energy spectrum. However, in the case of the AB-stacking quantum ring for \( R \rightarrow 0 \) there are two states inside the gap.
Moreover, when the ring radius increases for a zero magnetic field, the gap width increases as well, which can be seen clearly in figure 2(b). Note that, in the case of a quantum ring with finite width \[18\], the results show a weak dependence on the ring radius.

Furthermore, the numerical results demonstrate that the application of a non zero magnetic field \((B = 3 \text{T})\) breaks the degeneracy of all branches. In contrast with the results obtained from the Schrödinger equation, the electron and hole energy levels are not invariant under the transformation \(B \rightarrow -B\) \[18\]. These results are similar to those obtained for an ideal quantum ring in monolayer and AB-stacked bilayer graphene \[19\], and also for a quantum ring with finite width \[18\]. Note that for the case of a ring with mass confinement in monolayer graphene \[23\], the valley degeneracy is lifted, which is similar to our result. Moreover, the effective time-reversal symmetry is broken by the confinement and the magnetic field. For a non zero magnetic field and for a large ring radius \(R\), (10) becomes

\[E(m, \beta) = s\sqrt{\left(\gamma \pm \lambda R\right)^2 + U^2}\]  \hspace{1cm} (14)

where the parameter \(\lambda = \frac{eBv_F}{2}\) is magnetic-field dependent. This can clearly explain the approximately linear dependence of the energy branches on the ring radius for large \(R\). In the case of an AB-stacking quantum ring, the two sets of levels for large \(R\) are displaced in energy by the interlayer coupling. However, for small \(R\), (14) reduces to the form

\[E(m, \beta) = \frac{\hbar v_F}{R} \sqrt{m(m + 1)}\]  \hspace{1cm} (15)

showing that the spectrum has \(1/R\) dependence. In addition, like the case of a zero magnetic field, the application of a potential opens a gap in the energy spectrum, but the gap width remains unchanged by the increasing ring radius \(R\).

In figure 3, we plot the energy levels of an ideal quantum ring as a function of the angular momentum \(m\) for three different values of the magnetic field \((B = -3 \text{T}, 0 \text{T}, 3 \text{T})\), with \(U = 100 \text{ meV}\) and \(R = 50 \text{ nm}\). We notice that, like the case of monolayer \[19\] and AB-stacked bilayer graphene \[29\], the electron energy presents a minimum for a particular value of the angular momentum \(m\). The minimum energy for \(B = -3 \text{T}\) is given by two values of \(m\): \(m = 20\) and \(m = -10\). However, the minimum energy for \(B = 0 \text{T}\) and \(B = 3 \text{T}\) are, respectively, given by \(m = 15, -16\) and \(m = 9, -21\). This can be explained by the fact that from (9), the spectra are invariant under the transformation \(B \rightarrow -B\) and \(m \rightarrow -m + 1\). Thus, the energies are related by the symmetry relation

\[E(m, B) = E(-m - 1, -B)\]  \hspace{1cm} (16)

which also exists in the case of an ideal quantum ring in monolayer graphene \[19\].

The magnetic field dependence of the energy spectrum is presented in figure 4 with the ring radius \(R = 50 \text{ nm}\) and \(U = 0 \text{ meV}\) (figure 4(a)) and \(U = 100 \text{ meV}\) (figure 4(b)). The green and red curves, respectively, show the energy for \(-10 \leq m \leq -1\) and \(1 \leq m \leq 10\). However, the blue curves show the energy for \(m = 0\). In figure 4(a), we plot the electron and hole energy levels for an ideal quantum ring in AA-stacked bilayer graphene for \(U = 0 \text{ meV}\), where (9) reduces to

\[E = s(\gamma \pm \eta \sqrt{\alpha})\]  \hspace{1cm} (17)

We can clearly show that the energy levels are straight lines and we have zero gap. Moreover, one can see that the energy spectrum shows two sets of levels. They are just the double copies of the energy spectrum corresponding
to an ideal quantum ring in monolayer graphene, one shifted up by $+\gamma$ and the other shifted down by $-\gamma$, where $\gamma = 200$ meV. We notice that the energy spectrum resembles those found in the case of monolayer graphene for an ideal quantum ring [19] and for a hexagonal ring with zigzag edges [23]. In figure 4(b), the energy has a hyperbolic dependence on the magnetic field. In addition, the application of a potential $U = 100$ meV leads to the appearance of an energy gap around the point $E = 0$. Also, these results show that the electron energy spectrum exhibits a minimum at $E = U$ and there is a symmetry between the electron and hole states. Indeed, the electron and hole energies are related by the symmetry
\[ E_e(m, B) = -E_h(-m - 1, -B) \] (18)
where the indices h and e refer, respectively, to holes and electrons. These results are not similar to those obtained for a finite width quantum ring in AB-stacked bilayer graphene [19], where the electron energy exhibits two local minima and the electron and hole states are asymmetric.

In figure 5, we plot the energy spectrum as a function of the potential $U$ with $R = 50$ nm for a zero magnetic field (left panels) and $B = 4$ T (right panels) with positive $m$ (upper panels) and negative $m$ (lower panels). For a zero magnetic field, the energy spectrum has a hyperbolic form and is twofold degenerate due to the fact that we have $E(m) = E(−m − 1)$. Note that an energy gap is opened for a non zero magnetic field. These results are similar to the case of a quantum ring in monolayer graphene where the energy gap is opened by applying a non zero magnetic field [19]. In the case of AB-stacked bilayer graphene, the results are similar to those found for a quantum ring in monolayer graphene where the gate potential has a similar effect as the mass term. The application of a non zero magnetic field breaks the degeneracy.

4. Conclusion

In summary, we have investigated a quantum ring in AA-stacked bilayer graphene by including the effect of an external magnetic field. The calculation was performed by solving the Dirac equation for a zero width ring geometry, i.e. an ideal ring. In the case of an ideal ring with radius $R$, the momentum of the carriers in the radial direction is zero, so then we have to treat the radial parts of the spinors as a constant. From the eigenvalue equation, we have obtained the energy spectrum as a function of the ring radius, the potential and the magnetic field. Our energy spectrum does not depend on the valley index, which means that both valleys are equivalent. This is not the case for the results of the Aharonov–Bohm ring considered in [23] where the orbital degeneracy originating from the two valleys can be lifted by combining the effects of the ring confinement and the magnetic field.

Our numerical results show that the energy spectrum of an ideal quantum ring presents two sets of states as a function of the ring radius $R$. The upper set corresponds to the upper layer and the lower one corresponds to the lower layer. Compared to the results of the AB-stacking quantum ring, we have noticed that there are similarities (two sets of levels and the gate potential opened a gap in the energy spectrum) and differences (when $R → 0$ there are two states inside the gap for an AB-stacking quantum ring). By increasing the ring radius for a zero magnetic field, the upper set of levels converges to the interlayer hopping energy $\gamma = 200$ meV and the lower set levels converge to $\gamma = −200$ meV. In the absence of the magnetic field, the energy levels are twofold degenerate where $E(m, 0) = E(−m − 1, 0)$. It is important to note that the application of a potential on the upper and lower layer allows us to open a gap in the energy spectrum. By increasing the ring radius $R$, the gap width increases as well. These results differ from previous studies of a graphene-based quantum ring with finite width, where the energy levels show a weak dependence on the ring radius.

Furthermore, our numerical results demonstrate that the electron and hole energy levels are not invariant under the transformation $R → −R$. These results are similar to that obtained for an ideal ring in monolayer and AB-stacked bilayer graphene and also for a quantum ring with finite width in AB-stacked bilayer graphene. However, it is not the case with the results obtained from the Schrödinger equation. We notice that the application of a non zero magnetic field breaks the degeneracy of all branches. For a small ring radius, the energy branches have a $1/R$ dependence. For a large ring radius, the branches have an approximately linear dependence on the ring radius. We have also found that the field dependence is linear for a fixed total angular momentum $m$ for $U = 0$ meV. However, for $U = 100$ meV, the energy has a hyperbolic dependence on the magnetic field and exhibits a minimum for special values of $m$. In addition, the application of a potential $U = 100$ meV leads to the appearance of an energy gap around $E = 0$.

Acknowledgments

The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by all authors.

References

[1] Novoselov K S, Geim A K, Morozov S M, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Bernal J D 1924 Phys. Eng. Sci. 106 749
[5] Charlier J C, Gonze J P and Michenaud X 1991 Phys. Rev. B 43 6
[6] Lee J K, Lee S-C, Ahn J-P, Kim S-C, Wilson J B and John P 2008 J. Chem. Phys. 129 234709
[7] de Andres P L, Ramírez R and Verga J A 2008 Phys. Rev. B 77 045403
[8] McCann E 2006 Phys. Rev. B 74 161403
[9] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[10] Pereira J M Jr, Peeters F M and Vasilopoulos P 2007 Phys. Rev. B 76 115419
[11] Zhou S Y, Gweon G-H, Fedorov A V; First P N, de Heer W A, Lee D-H, Guinea F, Neto A H C and Lanzara A 2007 Nat. Mater. 6 770
[12] Oostinga J B, Heersche H B, Liu X, Morpurgo A F and Vandervorst I M K 2008 Nat. Mater. 7 151
[13] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[14] Kumar S B and Guo J 2011 Appl. Phys. Lett. 98 222101
[15] McCann E and Fal’ko V I 2006 Phys. Rev. Lett. 96 086805
[16] Pereira J M Jr, Vasilopoulos P and Peeters F M 2007 Nano Lett. 7 946
[17] Pereira J M Jr, Vasilopoulos P, Peeters F M and Farias G A 2009 Phys. Rev. B 79 195403
[18] Zarenia M, Pereira J M Jr, Peeters F M and Farias G A 2009 Nano Lett. 9 4088
[19] Zarenia M, Pereira J M, Chaves A, Peeters F M and Farias G A 2010 Phys. Rev. B 81 045431
[20] Fuhrer A, Loscher S, Ihn T, Heinzel T, Ensslin K, Wegscheider W and Bichler M 2001 Nature 413 822
[21] Russo S, Oostinga J B, Wehenkel D, Heersche H B, Sobhani S S, Vandervorst I M K and Morpurgo A F 2008 Phys. Rev. B 77 085413
[22] Huefner M, Molitor F, Jacobsen A, Poida A, Stampfer C, Ensslin K and Ihn T 2010 New J. Phys. 12 043054
[23] Recher P, Trauzettel B, Rycerz A, Blanter Y M, Beenakker C W J and Morpurgo A F 2007 Phys. Rev. B 76 235404
[24] Tabert C J and Nicol E J 2012 Phys. Rev. B 86 075439
[25] Wang D 2011 Phys. Lett. A 375 4070
[26] Wang D and Jin G 2012 J. Appl. Phys. 112 053714
[27] Wang D and Jin G 2013 Phys. Lett. A 377 2901
[28] Belouad A, Zahidi Y and Jellal A 2016 Mater. Res. Express 3 055005
[29] da Costa D R, Zarenia M, Chaves A, Farias G A and Peeters F M 2014 Carbon 78 392