CASE REPORT

18F-FDG PET/CT contribution to tuberculous vertebral osteomyelitis diagnosis: a case report

Katerina Manika1,*, Maria Kipourou2, Stamata Georgia3, Eleni Faniadou1, Georgios Pilianidis4, Georgios Arsos3 and Ioannis Kioumis1

1Respiratory Infections Unit, Pulmonary Department, Aristotle University of Thessaloniki, “G. Papanikolaou” Hospital, Thessaloniki, Greece, 2Pulmonary Department, 424 General Military Hospital, Thessaloniki, Greece, 3Nuclear Medicine Department, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, Thessaloniki, Greece, 4Department of Internal Medicine, “G. Papanikolaou” Hospital, Thessaloniki, Greece

*Correspondence address. Respiratory Infections Unit, Pulmonary Department, Aristotle University of Thessaloniki, “G. Papanikolaou” Hospital, Thessaloniki, Greece. Tel: +302313307858; E-mail: ktmn05@yahoo.gr

Abstract

Tuberculous vertebral osteomyelitis (TVO) is an extrapulmonary tuberculosis form characterized by difficulty and delay in diagnosis. PET/CT is a valuable, well-established tool in the diagnostic workup of cancer and fever of unknown origin, which is increasingly appreciated in the management of infectious diseases. We report a TVO case where PET/CT had a valuable contribution towards diagnosis and monitoring of treatment response, highlighting its advantages and future perspectives when dealing with infectious diseases.

INTRODUCTION

Fever of unknown origin (FUO) is a common clinical challenge demanding recruitment of additive diagnostic tools.

CASE REPORT

A 64-year-old male patient with unremarkable previous history was hospitalized for the investigation of persistent low-grade fever and malaise during the past month. Systemic inflammatory markers were elevated, but repeated blood and urine cultures were negative. The patient received different combinations of broad-spectrum antibiotics (including an antistaphylococcal regimen), without signs of clinical or laboratory improvement. No abnormal findings were detected on transesophageal echocardiography or chest and abdomen computed tomography (CT) imaging, and HIV testing was negative.

The patient was an immigrant originated from a country with TB incidence 18/100 000 and had a family history of tuberculosis (TB). He had been assessed 2 years ago, due to close household contact with an active pulmonary TB case. At that time chest X-ray was normal, and tuberculin skin test (TST) was negative.

At admission, a new TST test and an interferon-γ assay (IGRA) were both positive. Sixty minutes after intravenous injection of 268 MBq (7.2 mCi) of 18F-flurodeoxyglucose (18F-FDG), a whole-body PET/CT scan (18F-FDG PET/CT) was performed as part of the investigation for FUO which revealed diffusely elevated metabolic activity (Standardized Uptake Value, SUVmax 7.0) in T11 vertebra (Fig. 1a and c, arrows). Since no other hypermetabolic foci were detected on the whole-body imaging (Fig. 1a), the test was considered compatible with isolated vertebral osteomyelitis (VO). Interestingly enough the patient had never reported focal myoskeletal pain in the affected area and neurologic examination was normal.
As the patient denied confirmatory diagnosis by means of vertebral biopsy, empirical first-line anti-TB treatment (isoniazid, rifampicin, ethambutol and pyrazinamide) was initiated soon after the PET/CT imaging, leading to rapid decline of the fever and improvement of inflammatory markers. A follow-up 18F-FDG PET/CT with 280 MBq (7.6 mCi) of 18F-FDG which was performed after 6 months of anti-TB treatment was normal (Fig. 1d and f), thus indirectly confirming the diagnosis of TB osteomyelitis. The patient received a total of 9 months of anti-TB treatment.

DISCUSSION

18F-FDG PET/CT relies on increased glycolytic metabolism, reflected as elevated glucose uptake (quantified by SUVmax) by the inflammatory cells (especially the neutrophils and the monocyte/macrophage family) [1]. The role of 18F-FDG PET/CT is well established in cancer management and rapidly emerging in inflammation and infection (including FUO) investigation. As far as TB is concerned, some clinically significant aspects have been shown. Firstly, 18F-FDG PET/CT can reveal more extensive disease in comparison to CT alone in cases of active TB, with its incremental diagnosing value based on both revealing hilar involvement but also unexpected sites of extrapulmonary TB [2]. Furthermore, SUVmax has been shown to be a sensitive and accurate marker for noninvasive evaluation of treatment response, thereby indirectly prompting early diagnosis of resistant Mycobacterium tuberculosis strains [2, 3]. Finally, a recent study evaluating asymptomatic patients with high SUVmax lesions provided new insights in the TB latency period [4]. It is worthy to remember, however, that no discriminative SUVmax value exists able to differentiate active TB from other malignant or infectious lesions [5, 6].

In our case 18F-FDG PET/CT performed as part of the diagnostic workup for FUO, according to EANM/SNMMI guidelines [1], was suggestive of the diagnosis of isolated vertebral osteomyelitis. Although MRI is the imaging of choice in cases of suspected spine infection (proposed by both IDSA and EANM/SNMMI guidelines [1, 7]), PET/CT was recently found to have higher specificity for active spondylodiscitis diagnosis [8]. Advantages and disadvantages of both MRI and PET/CT, when investigating cases of VO or spondylodiscitis, are presented in Table 1.

Tuberculous vertebral osteomyelitis (TVO), also known as Pott’s disease, is not an uncommon extrapulmonary location of TB and is frequently associated with difficulty and delay in diagnosis [9, 10]. Late diagnosis is the main factor to determine poor prognosis for TVO [9]. Lack of specific clinical features is a main characteristic of TVO; in our case, back pain, a predominant symptom of VO and TVO, was absent, whereas fever, usually present in just half the patients diagnosed with TVO, was the only symptom. In this problematic context, 18F-FDG PET/CT was very useful both in guiding the diagnosis and assessing the response to treatment.

The 18F-FDG PET/CT presumptive diagnosis of TVO was in agreement with the microbiological, epidemiological and clinical findings suggestive of recent tuberculosis infection, namely, conversion of the TST over the past 2 years, low-grade fever, a recent positive IGRA assay and the history of recent close contact with a case of active pulmonary tuberculosis. A TST or IGRA assay is indicated as part of the diagnostic workup in cases of suspected VO, especially in patients originating from high TB incidence countries, on the basis that a negative result of either would make the diagnosis of TVO unlikely but not impossible [7]. Microbiologic confirmation is highly recommended for the diagnosis of VO, either by means of conventional blood cultures or fungal, mycobacterial and brucellar cultures following an image-guided aspiration biopsy [7]. Diagnostic yield of vertebral biopsy ranges between 42% and 76% for TVO, and the use of molecular methods is strongly encouraged in addition to conventional methods, for the detection of M. tuberculosis in the specimen [9]. Our patient did not consent to an interventional approach, and since he had already received broad-spectrum antibiotics—including antistaphylococcal regimen—without clinical improvement, the diagnosis of TVO was considered very possible. A negative follow-up 18F-FDG PET/CT after 6 months (Fig. 1d and f) provided indirect evidence of appropriate diagnosis and treatment in the case presented.
In conclusion, some distinct advantages of the \(^{18}\)F-FDG PET/CT were highlighted through the successful management of this case of TVO. Increased experience could further define the exact role of \(^{18}\)F-FDG PET/CT in the management of extrapulmonary TB.

FUNDING

No funding.

Conflict of interest statement. None to declare.

GUARANTORS

Prof. Katerina Manika and Prof. Ioannis Kioumis

REFERENCES

1. Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ et al. EANM/SNMMI guideline for \(^{18}\)F-FDG use in inflammation and infection. J Nucl Med 2013;54:647–58.
2. Martínez V, Castilla-Lievre MA, Guillet-Caruba C, Grenier G, Fior R, Desarnaud S et al. \(^{18}\)F-FDG PET/CT in tuberculosis: an early non-invasive marker of therapeutic response. Int J Tuberc Lung Dis 2012;16:1180–5.
3. Sánchez-Montalvá A, Barios M, Salvador F, Villar A, Tórtola T, Molina-Morant D et al. Usefulness of FDG PET/CT in the management of tuberculosis. PLoS One 2019;14:e0221516.
4. Geadas C, Acuna-Villaorduna C, Mercier G, Kleinman MB, Horsburgh CR Jr, Ellner JJ et al. FDG-PET/CT activity leads to the diagnosis of unsuspected TB: a retrospective study. BMC Res Notes 2018;11:464.
5. Sathekge MM, Maes A, Pottel H, Stoltz A, van de Wiele C. Dual time-point FDG PET/CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. S Afr Med J 2010;100:598–601.
6. Ankrah AO, van der Werf TS, de Vries EFJ, Dierckx RAJO, Sathekge MM, Glaudemans AWJM. PET/CT imaging of Mycobacterium tuberculosis infection. Clin Transl Imag 2016;4:131–44.
7. Berbari EF, Kanj SS, Kowalski TJ, Darouiche RO, Widmer AF, Schmitt SK et al. Infectious Diseases Society of America (IDSA) clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in Adults. Clin Infect Dis 2015, 2015;61:e26–46.
8. Kim S-J, Pak K, Kim K, Lee JS. Comparing the diagnostic accuracies of F-18 FDG PET and MRI for the detection of spondylodiscitis: a meta-analysis. Spine 2018.
9. Colmenero JD, Ruiz-Mesa JD, Sanjuan-Jimenez R, Sobrino B, Morata P. Establishing the diagnosis of tuberculous vertebral osteomyelitis. Eur Spine J 2013;22:579–86.
10. Kourbeti IS, Tsiodras S, Boumpas DT. Spinal infections: evolving concepts. Curr Opin Rheumatol 2008;20:471–9.