Enhanced Sulfamerazine Removal via Adsorption–Photocatalysis Using Bi$_2$O$_3$–TiO$_2$/PAC Ternary Nanoparticles

Xiaoxuan Zhuang, Xing Li, Yanling Yang, Nan Wang, Yi Shang, Zhiwei Zhou *, Jiaqi Li and Huiping Wang

Supplementary Materials

Figure S1. Plot of q-t for the adsorption of SMZ onto Bi$_2$O$_3$-TiO$_2$/PAC composites.

Figure S2. Adsorption isotherm of SMZ adsorption on Bi$_2$O$_3$-TiO$_2$/PAC with different calcination temperature.
Figure S3. Photocatalytic efficiencies, Bi$_2$O$_3$-TiO$_2$/PAC with different calcination temperature.

Figure S4. Photocatalytic efficiencies of Bi$_2$O$_3$-TiO$_2$/PAC with different calcination temperature.
Figure S5. Bi$_2$O$_3$-TiO$_2$/PAC(10%-700°C) microstructure image. FE-SEM image (a), SEM-EDS spectra (b), HRTEM micrograph (c) and the lattice parameters for composite (d).
Figure S6. TOC removal in the photodegradation of SMZ by Bi$_2$O$_3$-TiO$_2$/PAC(10%-700°C).
Table S1. Preparation method of Bi2O3-TiO2/PAC composites.

Process	Steps	Time (h)
Sol	(1) Sol (A): 10 mL of titanium butoxide slowly poured into 5 mL of acetic acid, and then it was poured into 40 mL of anhydrous ethanol. Sol (B): Bi(NO3)3·5H2O (1.113g, 1.391g or 1.669g) was dissolved into 80 mL of deionized water. Sol (C): Sol (B) was dripped into Sol (A).	2
Impregnation	(2) 0.5 g PAC was added into Sol (C) while mixing by a magnetic mixer at 350 rmp.	5
Hydrothermal	(3) Resulting sol was transferred into a Teflon container inside a stainless-steel autoclave reactor for hydrothermal treatment and then ground to powder.	12
Two-stage calcination	(4) First-stage calcination was calcinated in a tubular furnace under 300 °C temperature in air atmosphere. Second stage calcination condition was calcinated in a tubular furnace under temperature of 500 °C, 600 °C or 700 °C in N2 atmosphere.	2, 3
Table S2. Adsorption kinetic and isotherm models used for data analysis.

Types	Models	Equations	Parameters
Kinetics	Pseudo first-order [30]	\[\log(q_e - q_t) = \log q_e - \frac{K_1}{2.303}t \]	\(K_1 \): pseudo first-order rate constant
	Pseudo second-order [31]	\[\frac{t}{q_t} - \frac{t}{q_e} = \frac{1}{K_2q_e} \]	\(K_2 \): pseudo second-order rate constant
	Intra-particle diffusion [32]	\[q_t = K_d t^{0.5} + C \]	\(K_d \): intra-particle diffusion rate constant
	Boyd’s external diffusion [33]	\[q_t = q_{\infty}(1 - e^{-Rt}) \]	\(R \): rate coefficient; \(q_{\infty} \): equilibrium adsorption capacity at infinite time
	Weber and Morris [34]	\[q_t = k_w t^{1/2} \]	\(k_w \): intraparticle diffusion coefficient
	Langmuir kinetic [35]	\[\frac{dq_t}{dt} = k_a C_e (q_e - q_t) - k_d q_t \]	\(k_a \): adsorption rate constant; \(k_d \): desorption rate constant
	Langmuir [36]	\[q_e = \frac{q_m K_L C_e}{1 + K_L C_e} \]	\(K_L \): Langmuir isotherm constant; \(q_m \): maximum adsorption capacity
	Freundlich [37]	\[q_e = K_F C_e^{1/n} \]	\(K_F \): Freundlich isotherm constant; \(1/n \): absorption capacity

Table S3. Main water quality of surface water.

Parameter	Tonghui River	Lianshi Lake
Temperature (°C)	18.5 ± 2.5	18.5 ± 2.5
pH	7.46 ± 0.3	7.11 ± 0.3
Turbidity (NTU)	2.86 ± 0.52	1.73 ± 0.41
DOC (mg L⁻¹)	2.406 ± 0.195	2.244 ± 0.104
UV254 (cm⁻¹)	0.109 ± 0.005	0.085 ± 0.007

Table S4. Adsorption kinetic parameters of Bi₂O₃-TiO₂/PAC composites with different calcination temperatures.

Composites	pseudo first-order	pseudo second-order	Intra-particle diffusion						
	\(k_1 \) (h⁻¹)	\(q_{\infty} \) (mg g⁻¹)	\(R^2 \)	\(k_2 \) (mg g⁻¹ h⁻¹)	\(q_e \) (mg g⁻¹)	\(R^2 \)	\(K_d \) (mg g⁻¹ h⁻¹)	\(C \)	\(R^2 \)
Bi₂O₃-TiO₂/PAC (10%-500 °C)	0.058	1.449	0.897	0.038	5.171	0.996	0.462	1.364	0.728
Bi₂O₃-TiO₂/PAC (10%-600 °C)	0.065	1.586	0.911	0.023	4.829	0.991	0.450	0.832	0.809
Table S5. Chemical formulas and main fragments (m/z) of intermediate products.

ID	Chemical Formula	m/z	Proposed Structure
A	C₁₀H₁₀N₄O₄S	214.9	![Structure A](image1)
B	C₁₁H₁₃N₄O₃S⁺	264.8	![Structure B](image2)
C	C₁₁H₁₀N₄O₄S	276.8	![Structure C](image3)
D	C₇H₉N₃O₂S	200.9	![Structure D](image4)
E	C₁₁H₁₂N₄	200.9	![Structure E](image5)