Effects of Static and Dynamic Strain Aging on Hydrogen Embrittlement in TWIP Steels Containing Al

Motomichi Koyama, Eiji Akiyama and Kaneaki Tsuzaki

Synopsis: Al effects on strain aging and resistance against hydrogen embrittlement were examined in Fe-18Mn-0.6C-based twinning-induced plasticity steels deformed at different strain rates. The Fe-18Mn-0.6C steel showed hydrogen-induced fracture when it had been pre-deformed at a strain rate of 1.7×10^{-6} s$^{-1}$. The hydrogen-induced fracture was suppressed by increasing strain rate and increasing Al content. From the viewpoint of material strengthening by strain aging, we found two important factors improving the resistance to the hydrogen embrittlement; (1) suppression of dynamic strain aging by increasing strain rate and Al content, and (2) suppression of static strain aging under loading by the Al addition.

Key words: hydrogen embrittlement, twinning-induced plasticity, strain aging, tensile test, high strength steel.

1. 諸言

Fe-Mn-C基Twincing-induced Plasticity（TWIP）鋼は、延性および強度を兼備することで注目されている材料であるが、水素による変形は実用上の問題になっている。水素脆化は、一般に高強度材料に見られる現象で、その中でも特に加工された材料、例えば、自動車ボディ材などの高い残留応力を有する部材で報告されている。Fe-18Mn-0.6C鋼（wt%）では0.36 wt.%の拡散性水素が侵入した場合、流動応力1010 MPaで水素誘起の粒界破壊が観察される。また、εマルテンサイト変態（FCC\RightarrowHCP）$^{(3)}$、双晶変形$^{(4)}$、ならびにひずみ時効硬化$^{(5)}$がFe-Mn-C基TWIP鋼の水素脆化を促進する。

Fe-Mn-C基TWIP鋼の耐水素脆化特性を改善するために、AI添加が有効である。例えば、Fe-18Mn-0.6C-1.5Al鋼はFe-18Mn-0.6C鋼と比較して耐水素脆化特性に優れる$^{(6)}$。耐水素脆化特性改善におけるAIの役割は種々報告されているが、未だ議論が続いている。AIは様々な現象に強く影響するので、より包括的な理解のため、詳細な水素脆化機構の解析が求められる。TWIP鋼の耐水素脆化特性改善に寄与するAIの効果として、変形応力の低下$^{(7)}$、AI$_2$O$_3$表面層の形成$^{(8)}$、双晶変形およびεマルテンサイト変態の抑制$^{(9)}$、転位密度および集合組織の発達現象の変化$^{(10)}$、静的および動的ひずみ時効の抑制$^{(11,12)}$が挙げられる。特に、AI添加によって炭素拡散の活性化エネルギーが上昇し$^{(13)}$、かつ、層状拡散エネルギーが増大する$^{(14)}$ため、静的および動的ひずみ時効はAI量が少量でも効的に抑制される。動的ひずみ時効の抑制は転位密度の低下$^{(15)}$、炭素による転位のビン止め転位の低下$^{(16)}$に起因して変形応力および加工硬化能を低下させる。}

前報$^{(7)}$において我々は、変形を加えたFe-22Mn-0.6C TWIP鋼の水素脆化感受性をエアスチャージ下での定変位保持試験によって評価した。水素誘起破壊はひずみ速度1.7 $\times 10^{-5}$ s$^{-1}$で予びずみを受けて、変位保持中に観察された。この水素誘起破壊は予ひずみ速度を上昇すると抑制された。ひずみ速度変化が影響するFe-Mn-C基のオーステナイト鋼における重要現象は動的ひずみ時効である$^{(17)}$。つまり、予ひずみ速度上昇による水素脆化感受性低減の理由は動的ひずみ時効の抑制により起因すると考えられる。AI添加も上述の通り、ひずみ時効を抑制する。それ故、上記実験と同じく定変位保持試験で評価した場合、Fe-Mn-C基TWIP鋼の耐水素脆化特性は、ひずみ時効抑制に起因するAI量依存性のみを示すと推察する。このAI依存性を調査することは、AI添加による耐水素脆化特性改善機構の一端解明につながると考える。

本研究は以下の二つの目的の下に行う。(1) 水素チャージ下での引張変位保持試験によって、AI添加型TWIP鋼の
水素脆化感受性を評価する。(2) 応力制下における静的ひずみ時効に対するAIの効果を明らかにする。実際の自動車部材やカップ試験片における遅れ破壊試験の実用化に向けた実験では、変形後の残留応力の影響で水素が侵入し、水素誘起破壊が起こる。それ故、ひずみ後における水素チャージ下定変位試験は、実際の水素脆化に近い現象を反映していると考える。本論文では、Fe-Mn-C系TWIP鋼におけるAI量、ひずみ時効、ならびに水素誘起破壊の発現の相関を水素チャージ下定変位試験により明らかにする。

2. 実験方法

2.1 試料

Fe-18Mn-0.6C-(0, 1.0, 1.5, 2.0)Al (wt.%)鋼を真空誘導溶解で作製した。Fe-18Mn-0.6C-1.5Al鋼は優れた耐水素脆化特性を有するTWIP鋼として知られる。作製した試料は60 mmから2.6 mmまで1273 Kで熱間延し、1.4 mmまで冷間加工を施した。その後、1073 Kで溶体化処理後、放電加工によって試料を切り出した。Fig.1はFe-18Mn-0.6C鋼、Fe-18Mn-0.6C-1.0Al鋼、Fe-18Mn-0.6C-1.5Al鋼、ならびにFe-18Mn-0.6C-2.0Al鋼の溶体化処理ままでの観察組織を示している。すべての鋼の初期組織はオーステナイト単相であり、結晶粒径（平均粒径）はそれぞれ3.8、4.4、4.9、4.0μmである。これら結晶粒径は焼純材端面を含めて測定された。試料は熱処理の影響を除去し、かつ水素の感受性を高めるために、0.3 mmまで研削加工によって減厚した。本研究で用いる試験片形状はつかみ部を有するゲージ部が4.0 mm × 0.3 mm × 10 mmの板状試片である。

2.2 水素脆化感受性評価

インストロン型引張試験機を用いて、変形保持過程を含む引張試験を室温で行った。説明で言及したように、実用のTWIP鋼の水素脆化では、変形後に残存応力の影響で水素が侵入し、破壊に至る。それ故、本研究の水素脆化評価では試料を69%歪形変形後11,変位保持中に水素チャージを行った。ひずみは変位を初期ゲージ長さで割ることで算出した。Fig.2 (a) はFe-18Mn-0.6C鋼における、変位保持過程を含む公称応力ひずみ曲線の一例である。この曲線にみられるセレクションは動的ひずみ時効に起因すると12,13)。ひずみ速度は1.7×10^{-3} s^{-1}とし、69%塑性ひずみで変位を保持した。最大保持時間は、引張試験機のモーターの損傷を避けるために10 hとした。水素チャージは前報10)と同様、3%NaCl+3 g/L NH4SCN電解液中、電流密度7 Am^{-2}で、変位保持開始直後に行った。対極には白金を用いた。Fig.2 (a) のように、水素誘起破壊が変位保持中に起こらなかった場合にはひずみ速度1.7×10^{-3} s^{-1}で再負荷し、水素チャージ下で破断まで変形させた。再負荷から破断までの時間をいずれの場合も10 s以内であった。

上記試験に用いた試料における水素量は昇温脱離分析

Fig. 1. Optical micrographs in the as-solution-treated condition of (a) Fe-18Mn-0.6C, (b) Fe-18Mn-0.6C-1.0Al, and (c) Fe-18Mn-0.6C-1.5Al, (d) Fe-18Mn-0.6C-2.0Al steels.

Fig. 2. An example of stress-strain response at an initial strain rate of 1.7×10^{-3} s^{-1} in the Fe-18Mn-0.6C. (a) Engineering stress-strain curve. (b) Portion of Fig.2(a) outlined by the dotted lines. (c) Engineering stress plotted against strain holding time. SSA: Static strain aging.

* 1 弾性ひずみを含めて約70%となるような変形を与えた。
（TDA）によって測定した。測定は試料破断後20分以内に開始し、室温から550 Kまで200 Kの昇温速度で行った。拡散性水素量は室温から523 Kまでに脱離した水素の累積量として決定した。拡散性水素は室温にて拡散可能な水素と定義する。拡散性水素は水素脆化を支配する制御因子であることが報告されている（a）。Fig. 3 (b) は、Fig. 2 (a) において四角で囲まれた部分の拡大図である。変位保持による応力低下および再負荷における応力増加を観察する。この変位低下は経過現象に起因し（b）, 応力増加は静的ひずみ時効に起因する（b）（i）。これら応力低下および応力増加の値は以下のように定義される。

\[\Delta \sigma_{\text{max}} = \sigma_{\text{t}} - \sigma_{\text{s}} \]
\[\Delta \sigma_{\text{min}} = \sigma_{\text{t}} - \sigma_{\text{s}} \]

ここで, \(\sigma_{\text{t}}, \sigma_{\text{s}} \) はFig. 2 (b) に示すとおりである。水素誘起破壊は変位保持中に起こる（ii）ので、公称応力一変位保持時間曲線は水素脆化挙動を応力一ひずみ曲線よりも正確に表す。Fig. 2 (c) はFig. 2 (a) および2 (b) で示された応力変化を変位保持時間に対してプロットした結果である。Fig. 2 (c) に示した例では、応力は緩和現象により徐々に低下し、水素誘起破壊は起こらずに変位保持が終了している。本研究では、水素脆化挙動を水素チャージ下で変位保持中の応力変化から議論する。水素チャージ下変位保持試験は各鋼種の各予ひずみ速度で一度ずつ行った。

2.3 応力緩和および静的ひずみ時効による応力変化的評価法

諸言で言及したように、ひずみ時効は水素脆化感受性に重要な影響を与える。加えて、応力緩和現象をも含めた。このため、水素チャージをしない変位保持過程を含む引張試験によって、各AI量のTWIP鋼における静的ひずみ時効特性を評価した。Fig. 2 (b) に示すように69%塑性ひずみでは動的ひずみ時効によるセレーションが激しくなり、応力変化とすらひずみ時効に関連するパラメタの定量的な関係が乱されるので、静的ひずみ時効特性評価では49%塑性ひずみで変位保持を行った。本鋼において、予ひずみ速度および変位保持時間は応力緩和現象と静的ひずみ時効の寄与に影響し、水素脆化感受性も変化させる（iii）。このため、静的ひずみ時効による高強度の予ひずみ速度および変位保持時間依存性についても調査した。予ひずみ速度は1.7×10^{-2}から1.7×10^{-3} s^{-1}の範囲で変化させた。49%塑性ひずみで変位保持後、予ひずみ速度とひずみ速度で破断させた。これらの実験は各鋼種の各予ひずみ速度で1度ずつ行った。

3. 結果および考察

3.1 水素脆化感受性におけるAIと予ひずみ速度の効果

Fig. 3 (a) は予ひずみ速度1.7×10^{-3} s^{-1}で69%予ひずみを加えたFe-18Mn-0.6C鋼、Fe-18Mn-0.6C-1.0Al鋼、Fe-18Mn-0.6C-1.5AI鋼およびFe-18Mn-0.6C-2.0AI鋼の水素チャージ下における公称応力一変位保持時間曲線である。同じ実験方法により得られたFe-22Mn-0.6C TWIP鋼の既報研究結果（ii）も参考データとして示す。用いたFe-22Mn-0.6C鋼は破断を至ってもマルテンサイト変態は誘起されず、Fe-22Mn-0.6C鋼よりも低い流動応力を示す（iii）。Fe-22Mn-0.6C鋼では予ひずみ速度1.7×10^{-3} s^{-1}で変位保持中に水素誘起破壊が観察されたが、本研究中で用いた全ての鋼は同予ひずみ速度で変形後に変位保持中に水素誘起破壊を示さなかった。カップ試料の破壊試験でもFe-22Mn-0.6C鋼はFe-18Mn-0.6C鋼よりも高い水素脆化感受性を示すことが知られる（iii）。Fe-18Mn-0.6C鋼は予ひずみ速度1.7×10^{-6} s^{-1}で変形されたときに、変位保持中に水素誘起破壊を示す（Fig. 3 (b)）。この水素誘起破壊が観察された条件では、変位保持開始から緩和現象により応力が徐々に低下し、8時間後に破断にいたる。Fig. 3 (a) とFig. 3 (b) の比較からわかるように、69%流動応力はひずみ速度が1.7×10^{-3} s^{-1}から

![Fig. 3](image)
ら 1.7 × 10^{-6} s^{-1} へ低下することで増大する。ひずみ速度低下にともなう流動応力の増大は動的ひずみ時効の促進に起因する

水素誘起破壊が観察される場合の主な破壊様式は、Fig.4 に示すように粒界破壊である。動的ひずみ時効が起こるとき、ひずみが局在化する (Portevin-LeChatelier band の形成)。局所的な塑性変形は加工硬化率が低い場合に試料くびれの原因となり、延性破壊を引き起こすので、水素による塑性変形の促進効果を合わせて、延性低下の原因の一つとなりうる。ひずみの局在化が延性低下の原因である時、破壊様式は完全に延性的である。しかし、本研究で観察された変形様式は粒界破壊であったので、ひずみの局在化による早期塑性不安定現象の発現、すなわち延性破壊促進による延性低下機構は、本研究の水素脆化機構から除外される。ひずみ速度 1.7 × 10^{-6} s^{-1} で変形させた場合の水素脆化現象は、Al の添加によって抑制される (Fig.3 (b))。Fe-18Mn-0.6C 鋼において Al 添加の水素脆化抑制効果はマルテンサイト変態の抑制にも起因している

Fig. 4. Fractograph of the Fe-18Mn-0.6C steel showing the intergranularly fractured part as indicated by the arrow.

Fig. 5(a). Hydrogen desorption rate curves in the fractured specimens that were used for (a) Fig.3(a) and (b) Fig.3(b).

Fig. 6. Diffusible hydrogen content estimated from Fig.5.
Fig. 7. Portions of engineering stress-strain curves at the initial strain rates of (a) 1.7×10^{-5} s$^{-1}$ and (b) 1.7×10^{-6} s$^{-1}$. (c) 69% flow stress change by decreasing strain rate from 1.7×10^{-4} to 1.7×10^{-6} s$^{-1}$.

Fig. 8. The magnitude of stress drop due to the relaxation and its Al content dependence. The values for each holding time were obtained by different tests.

Fig. 8. The magnitude of stress drop due to the relaxation and its Al content dependence. The values for each holding time were obtained by different tests.

3.2 効力緩和および静的ひずみ時効に及ぼすAlの影響

動的ひずみ時効がAl添加によって効果的に抑制されたことから、Al添加は静的ひずみ時効に影響すると考えられる。緩和現象による応力低下および静的ひずみ時効による強度上昇は水素脆化に影響する重要因子である。静的ひずみ時効は応力低下で保持することで有意に発現することが報告されており、本実験でもFig.1で確認した。本節では応力低下における緩和現象および静的ひずみ時効に及ぼすAlの効果について示す。

Fig. 8に緩和現象による応力低下のAl量依存性を示す。
Fig. 9. (a) Stress increase by the static strain aging under loading plotted against aging time. (b) Al effect on the stress increase after strain holding for 1000 and 36000 seconds.

Fig. 10. Strain rate dependence of the stress increase due to the static strain aging. The Al addition did not change the slope significantly.

Fig. 11. Relationship among external stress, critical stress for hydrogen-induced fracture, and occurrence of fracture at a constant hydrogen content. The material strength increases by static strain aging during holding at a fixed strain under loading, decreasing the critical stress for hydrogen-induced fracture.

Fe-Mn-C-Al TWIP steel: the static strain aging in Fe-Mn-C-Al TWIP steel affects the stress increase due to static strain aging. The Al addition did not change the slope significantly.
Fig. 12. A schematic for how the Al addition contributes to the hydrogen embrittlement, from the viewpoint of strain aging. The critical material strength for failure means a strength for fracture at a given condition of external stress and hydrogen content.

すず時効効が静的ずす時効を著しく一層増加する。つまり、変位保持時間とともに、外力は低下するが、材料強度が水素脆化発現に十分なだけ増加すれば破壊は起こると考える。

ここで、ずす時効強化に起因する水素脆化促進機構を提案する。まず、水素誘起破壊に至る過程について考えることにより、水素誘起破壊が発生した場合は、多量の微小き裂が破壊断面近辺に観察されることから、ずす時効強化に至る前に、すでに形成しているはずである。この脆性き裂は成長し、き裂の大さきが臨界径に達したときに、急速に進行して最終破壊が起こると考える。すなわち、水素誘起破壊の臨界応力を決定する因子は、き裂発生に影響する因子と、き裂伝播に影響する因子の二つに分類できる。ずす時効は転位への炭素偏析により転位をピン止めし、材料を硬化させる。しかし、試料全体が十分に時効された状態において、特定の領域で転位がピン止めから解放されれば、材料内のその領域は相対的に局所的な軟化を示す。き裂先端では応力集中部が存在するので、十分に動的ずす時効および静的ずす時効が進行した状態でき裂が発生すれば、き裂先端に存在する転位はピン止めから脱離することができる。したがって、ずす時効は局所的な軟化とすべり集約を通じてき裂の伝播を促進し、水素誘起破壊の臨界応力を低下させると提案する。この機構は、従来報告されているTWIP鋼の水素脆化感受性に対するAlの効果を以下のように合理的に説明する。深絞り加工されたカッパ試料でのずす時効破壊試験および本研究結果は、Alに水素脆化抑制効果があることを明示する。対照的に、水素チャージ下引張試験や水素チャージ後の引張試験でAlの効果を評価した場合には、ずす時効劣性抑制効果を示すものとの、Al添加材とAl無添加材の間で引張特性に顕著な差が観察されていない229。これは、前後のグループに属する試験（応力影響下での静的保持過程を含む試験）では、静的ずす時効が調べ、後者では静的ずす時効の効果が寄与しないためである。後者の水素チャージ下引張試験におけるき裂の伝播挙動はき裂発生後のき裂先端への水素侵入が支配すると考えられる。また、Fe-22Mn-0.6C鋼がFe-18Mn-0.6C鋼よりも高い水素脆化感受性を示す（Fig.3参照）理由もずす時効の観点から説明することができる。TWIP鋼のずす時効は、積層欠陥エネルギーやの上昇16,280または変形誘起εマルテンサイト変態の発現30によって抑制される。Fe-Mn基オーステナイト鋼の積層欠陥エネルギーのMn濃度依存性については種々議論があるが、実測結果として22%Mnを含むときオーステナイトの積層欠陥エネルギーが最も低くなる300で報告されている。また、Fe-18Mn-0.6C鋼は変形誘起εマルテンサイト変態を変形後期において示す300。つまり、Fe-22Mn-0.6C鋼とFe-18Mn-0.6C鋼よりもずす時効が起こりやすい化学組成であるため、水素脆化感受性が高いと考える。

最後に、本研究で得られた結果を、水素脆化の材料強度依存性と静的ずす時効へのAIの効果を一層考えることで理解する。Al量、静的ずす時効による強化度、水素脆化感受性の相関をFig.12に模式的に示す。AI添加は、2晶変形、動的ずす時効ならびに静的ずす時効を抑制するので、流動応力および材料強度を低下させる。Fig.12に示すように、一定の外力と水素状態での水素誘起破壊の臨界材料強度を仮定すると、臨界材料強度に至る時間はAI量の増加とともに大きくなる。AI添加による静的ずす時効の抑制は変位保持時間を長いときに重要となる。なぜなら、AI添加は変位保持時間に対する強化度の上昇率を低下させるからである。そして、静的ずす時効の効果が飽和しないから、静的ずす時効による強化度は変位保持時間の対数に対して線形に増加する。すなわち、AI添加による変位保持時間あたりの材料強化度の低下は、破壊に至るまでの時間を著しく増加させる。結果として、AI添加型TWIP鋼は優れた耐水素脆化特性を示すと考える。
4. 結論

TWIP鋼における水素脆化感受性のAI量およびひずみ速度依存性をFe-18Mn-0.6C鋼、Fe-18Mn-0.6C-1.0AI鋼、Fe-18Mn-0.6C-1.5AI鋼ならびにFe-18Mn-0.6C-2.0AI鋼を用いて、水素チャージ下定変位試験により評価した。水素脆化感受性はAI量および予ひずみ速度の増加によって低下した。また、AI添加が予ひずみ中の動的ひずみ時効および変位保持中の静的ひずみ時効を有意に抑制することを確認した。ひずみ時効の観点では、水素脆化の予ひずみ速度依存性は、動的ひずみ時効抑制による流動応力の低下が一因である。また、ひずみ時効挙動のAI量依存性は水素脆化感受性の変化傾向と対応しているので、AI添加による静的ひずみ時効および動的ひずみ時効の抑制が、AI添加型TWIP鋼の低水素脆化感受性の一因であるといえる。

謝辞

本研究で用いた試料はPOSCOから提供していただきました。また、本研究はNIMS ジュニア研究員（2009−2010）および日本学術振興会特別研究員（2011）の制度の一環として行った。この場を借りて深謝いたします。

文 献

1) L.Remy and A.Pineau: Mater. Sci. Eng., 28 (1977), 99.
2) S.Allain, J.-P.Chateau, O.Bouaziz, S.Migot and N.Guelton: Mater. Sci. Eng. A, 387-389 (2004), 158.
3) O.Kwon: Proc. of 1st Int. Conf. on High Mn steels, KIM, Seoul, (2011), CD-ROM.
4) K-G.Chin, C-Y.Kang, S.Y.Sin, S.Hong, S.Lee, H-S.Kim, K-H.Kim and N.J.Kim: Mater. Sci. Eng. A, 528 (2011), 2922.
5) M.Koyama, E.Akiyama and K.Tsuzaki: Corros. Sci., 54 (2012), 1.
6) Y.S.Chun, J.S.Kim, K.-T.Park, Y.-K.Lee and C.S.Lee: Mater. Sci. Eng. A, 533 (2012), 87.
7) J.A.Ronevich, S.K.Kim, J.G.Speer and D.K.Matlock: Scr. Mater., 60 (2012), 956.
8) Y.S.Chun, K.-T.Park and C.S.Lee: Scr. Mater., 66 (2012), 960.
9) M.Koyama, E.Akiyama, T.Sawaguchi, D.Raabe and K.Tsuzaki: Scr. Mater., 66 (2012), 459.
10) M.Koyama, E.Akiyama and K.Tsuzaki: Scr. Mater., 66 (2012), 947.
11) M.Koyama, E.Akiyama and K.Tsuzaki: Corros. Sci., 59 (2012), 277.
12) M.Koyama, E.Akiyama and K.Tsuzaki: ISIJ Int., 52 (2012), 2283.
13) J.-J.Park, K.-H.Jeong, J.-G.Jung, C.S.Lee and Y.-K.Lee: Int. J. Hydrogen Energ., 37 (2012), 9925.
14) J.Kim, S.-J.Lee and B.C.Dee Cooman: Scr. Mater., 65 (2011), 363.
15) T.Shun, C.M.Wan and J.G.Bryne: Acta Mater., 49 (1992), 3407.
16) S.-J.Lee, J.Kim, S.N, Kane and B.C.Dee Cooman: Acta Mater., 59 (2011), 6809.
17) Y.N.Dastur and W.C.Leslie: Metall. Trans. A, 12A (1981), 749.
18) K.Takai and R.Watanuki: ISIJ Int., 43 (2003), 520.
19) S.Allain, O.Bouaziz, T.Lbedkina and M.Lebyodkin: Scr. Mater., 64 (2011), 741.
20) Y.Kim, N.Kang, Y.Park, G.Kim, S.Kim and K.Kim: J. Korean Inst. Met. Mater., 46 (2008), 780.
21) J.Gutierrez-Urrutia and D.Raabe: Acta Mater., 59 (2011), 6449.
22) Y.-K.Lee and C.S.Choi: Metall. Trans. A, 30 (2000), 355.
23) J.H.Ryu, S.K.Kim, C.S.Lee, D.-W.Suh and H.K.D.H.Bhadeshia: Proc. R. Soc. A, 469 (2013), doi 10.1098/rspa.2012.0458.
24) J.P.Hirth: Metall. Mater. Trans. A, 11A (1980), 861.
25) Y.Toji, S.Takagi, K.Hasegawa and K.Seto: ISIJ Int., 52 (2012), 274.
26) H.Hagi and Y.Hayashi: Trans. Jpn. Inst. Met., 28 (1987), 375.
27) B.Hutchinson and N.Ridley: Scr. Mater., 55 (2006), 299.
28) M.Koyama, T.Sawaguchi and K.Tsuzaki: Mater. Trans., 53 (2012), 546.
29) M.Koyama, E.Akiyama and K.Tsuzaki: ISIJ Int., 53 (2013), 1089.
30) A.R.Troiano: Trans. ASM, 52 (1960), 54.
31) T.Fujita and Y.Yamada: Proc. Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, ed. by R.W.Staehle et al., NACE, Unieux-Firminy, (1973), 736.
32) K.Takai, J.Seki and Y.Homma: Tetsu-to-Hagané, 81 (1995), 1025.
33) M.Wang, E.Akiyama and K.Tsuzaki: Scr. Mater., 52 (2005), 403.
34) M.Koyama, E.Akiyama, K.Tsuzaki and D.Raabe: Acta Mater., 61 (2013), 4607.
35) M.Koyama, T.Sawaguchi and K.Tsuzaki: Philos. Mag., 92 (2012), 3051.
36) P.Y.Volosevich, V.N.Gridnev and Y.N.Petrov: Fiz. Metal. Metalloloved., 42 (1976), 372.