A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection

Martin J. Page, BSc (Hons)1 Etheresia Pretorius, PhD1

1 Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa

Semin Thromb Hemost 2020;46:302–319.

Abstract

Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.

Keywords
► platelets
► virus
► bacteria
► thrombocytopenia
► immune response

Infections, both bacterial and viral, are associated with a profound immune response to the infecting pathogen. Platelets are important contributors to the multifaceted response to infection, where they have the ability to modulate various immune cells. Platelets engage the immune system through direct cell-to-cell interaction and through the release of various soluble mediators.1–5 Furthermore, platelets participate in the interaction between pathogens and host defense.6–12 In the absence of platelets, bacteremia, tissue damage, and mortality are greatly enhanced.13–15 Similarly, thrombocytopenia is associated with a dysregulated host response and worse outcomes in sepsis patients.16,17 Platelets are also active participants in the host response to viruses, and have been shown to be protective in viral infections.18–20

Platelets possess receptors that allow them to survey for danger signals from pathogens (pathogen-associated molecular patterns; PAMPs) and cell damage (damage-associated molecular patterns; DAMPs), and trigger hemostatic and
inflammatory responses against bacterial and viral infections.3,21,22 During infection, the platelet is activated, mobilized, and actively participates in the resultant hemostatic and inflammatory responses. These signaling processes involve many feedback loops that self-amplify initial activation,23 and platelets can manifest dysfunction even in cases where no bacteremia is present.10 These processes are irreversible and undoubtedly lead to consumption of the platelet. Activation of platelets leads to their consumption into aggregates with other platelets, leukocytes, and the endothelium.24 Platelets with bound antibody are targets of phagocytes, and platelets with a bacterial or viral load are sequestered and also cleared from the circulation. Further, pathogenic compounds induce apoptosis and cytotoxic effects in platelets.25 In this sense, activated platelets and platelets interacting with pathogens have shortened survival spans and experience increased destruction. The outcome for the patient will be a decrease in normal circulating platelets, and if this manifests widely enough it can be measured as thrombocytopenia.3,25

Other mechanisms of platelet decline in infection exist and include the formation of autoantibodies against platelet surface proteins, which leads to clearance of immunoglobulin G (IgG)-coated platelets by the reticuloendothelial system,26,27 as well as by impaired platelet production in the bone marrow,3,6 among others.6 However, a general view of platelet destruction is the simple characteristic that their involvement in thrombotic, hemostatic, immune, and host defense responses is irreversible. Even if platelets are positive contributors to the host response against invading pathogens, they can become dysfunctional, especially in the context of an excessive and unbalanced systemic inflammatory response.16,28 Indeed, the dysfunctional state of thrombocytopenia is commonly associated with sepsis and infections.3,29–31

The focus of the current review is platelets and their role in infection. We will examine the interaction of platelets, their receptors, and secretory product with bacteria and viruses, and discuss how this may contribute to platelet dysfunction and ultimately lead to thrombocytopenia. \textit{– Fig. 1} provides the rationale of this review and \textit{– Table 1} lists the abbreviations used in this article.

Platelet and the Immune Response to Infections

A common feature of many infections, both viral and bacterial, is a systemic inflammatory response that involves a dysregulated proinflammatory biomarker presence in the circulation.3,5,32 These biomarkers may include cytokines (e.g., interleukins [ILs], tumor necrosis factor [TNF]-α, and interferons) but also molecules originating from bacteria and viruses themselves (e.g., proteases, ribonucleic acid [RNA], and membrane components like lipopolysaccharide [LPS], lipoteichoic acid [LTA], and viral glycoproteins). The presence of such circulating biomarkers has profound agonistic effects on platelets.

Platelets contribute to the thromboinflammatory response through the plethora of membrane and cytosolic molecules that they express and release, which possess hemostatic, immunomodulatory, and inflammatory activity.1–4 Platelets possess receptors that enable pathogen sensing, and which allow platelets to regulate leukocytes and other cells at the site of infection. During platelet activation, degranulation leads to the release of abundant proinflammatory mediators, which contribute to numerous signaling events.1–5 Platelets also adhere and aggregate to other platelets and to endothelial cells, leukocytes, and erythrocytes.5,9,24 This response is also characteristic during bacterial and viral infections, and can be induced by pathogens directly.33 This section describes the role of platelets in the immune response. See \textit{– Fig. 2} for a general overview of platelet receptors and secretory products.

Platelet–Endothelium Interactions: Endowing a Proinflammatory Phenotype

Endothelial activation markers are raised during infection, and are associated with a thrombotic state.34 During activation, platelets can bind to the endothelium.24 This especially occurs upon endothelial damage due to trauma or microbial colonization,35 as well as in viral infections.36 Platelets become activated during the adhesion process, and the inflammatory and mitogenic substances that are released alter the chemotactic, adhesive, and proteolytic properties of endothelial cells.37 Platelet adhesion therefore endows the endothelium with a proinflammatory phenotype.24 Moreover, platelets that are bound to the endothelium can form a bridging connection with circulating leukocytes.24 Overall, these mechanisms amplify and facilitate leukocyte recruitment and enhance inflammation. \textit{– Fig. 3} provides an overview of the contact between platelets and cells at the vascular wall to emphasize the involvement of platelets in multiple interactions at the vessel wall.

Platelet–Leukocyte Interactions: Promoting Immune Cell Effector Functions against Pathogens

Interactions between platelets and leukocytes are important for the regulation of the immune response and for the clearance of infectious agents. By binding and activating leukocytes, platelets promote their effector functions. Coordination of
Table 1 List of abbreviations

Abbreviation	Full term	Synonyms
αIbβ3	Glycoprotein Ib/IIa	GPIb/IIa
αMβ2	Macrophage-1 antigen	CD11b/CD18, CR3: Mac-1
cAMP	Cyclic adenosine monophosphate	
CAR receptor	Coxackievirus and adenovirus receptor	
(s)CD40L	Soluble CD40 ligand	CD154
cGMP	Cyclic guanosine monophosphate	
CR2	Complement receptor 2	CD21, C3dR
CR3	Complement receptor 3	αMβ2, CD11b/CD18, Mac-1
CR4	Complement receptor 4	αβ2, CD11c/CD18
DAMP	Damage-associated molecular pattern	
DNA	Deoxyribonucleic acid	
Eap	Extracellular adherence protein	
Efβ	Extracellular fibrinogen binding protein	
FcyRIIa	Low affinity immunoglobulin gamma Fc region receptor II-a	CD32
GPIb	Glycoprotein Ib	CD42
GPVI	Glycoprotein VI	
HIV	Human immunodeficiency virus	
HLA-DR	Human leukocyte antigen—DR isotype	
HRgpA	Recombinant gingipain R1 protease (high molecular mass form)	
Ig	Immunoglobulin	
IL	Interleukin	
LCMV	Lymphocytic choriomeningitis virus	
LPS	Lipopolysaccharide	
LTA	Lipoteichoic acid	
MyD88	Myeloid differentiation primary response 88	
NET	Neutrophil extracellular trap	
P-selectin		CD62P, C5a, TAC, PADGEM
PAF	Platelet-activating factor	
PAMP	Pathogen-associated molecular pattern	
PAR	Protease-activated receptor	
PF4	Platelet factor 4	CXCL4
PKG	cGMP-dependent protein kinase	
PSGL-1	P-selectin glycoprotein ligand-1	CD162
RANTES	Regulated on activation, normal T-cell expressed and secreted	CCL5
RgpB	Recombinant gingipain R2 protease	
RNA	Ribonucleic acid	
ROS	Reactive oxygen species	
SSL	Staphylococcal superantigen-like	
TLR	Toll-like receptor	
TNF	Tumor necrosis factor	
TREM-1(L)	Triggering receptor expressed on myeloid cells 1 (ligand)	CD354
immune cells by platelets ensures a rapid and targeted host defense response. In a dynamic cross-talk, leukocytes can also release factors that modulate platelet function.

Platelets adhere to phagocytes and deliver signals that enhance the killing of internalized pathogens. Platelets are able to mount neutrophil responses where they enhance neutrophil phagocytosis in a process involving toll-like receptor (TLR) 2 and P-selectin/P-selectin glycoprotein ligand (PSGL)-1. This was demonstrated for both Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Platelets can augment the respiratory burst in neutrophils in response to osonized Escherichia coli and Staphylococcus aureus. Platelet–neutrophil complexes have more activated adhesion molecules, greater phagocytic ability, and greater toxic oxygen metabolites than noncomplexed neutrophils. Activated platelets can also induce superoxide anion release by monocytes and neutrophils through P-selectin. Soluble CD40 ligand (CD40L) further interacts with CD40 and αMβ2 on neutrophils to induce the adhesive functions of neutrophils as well as cause CD40-dependent reactive oxygen species (ROS) generation.

Additionally, the triggering receptor expressed on myeloid cells (TREM)-1 ligand is expressed on platelets and has been shown to induce neutrophil activation, and platelets enhance the neutrophil respiratory burst and release of IL-8 in a TREM-1-specific manner in the presence of LPS. The TREM-1 receptor is an important receptor in the innate immune response as well as in severe sepsis where it amplifies the immune response to microbial products. TREM-1 has also been shown to contribute to neutrophil activation in viral infections.

Furthermore, platelets induce the release of neutrophil extracellular traps (NETs), deoxyribonucleic acid (DNA) covered with various antimicrobial nuclear and granule-derived molecules that ensnare and kill pathogens, in response to bacterial (septic) stimuli. This NET response has been documented in E. coli gram-negative sepsis and S. aureus gram-positive sepsis. Platelets have further been shown to interact with neutrophils following viral challenge, leading to the release of NETs. NETs also deliver antiviral factors such as myeloperoxidase and α-defensins, and capture viruses and promote their elimination. Fig. 4 provides an overview of the interactions between platelets and immune cells to emphasize the involvement of platelets in the immune response.

Platelet Involvement in Adaptive Immunity: Ensuring an Optimal Adaptive Response

Further to the innate immune response, platelets are also important for an optimal adaptive immune response. The periodontopathogens A. actinomycetemcomitans and P. gingivalis have been shown to induce expression of CD40L on human platelets via TLR2 and TLR4. Platelets can modulate B and T cell responses to microbial pathogens through CD40L, and are able to induce isotype switching by B cells and augment CD8+ T cell function. CD40L on platelets enable T cell priming and augment CD8+ T cell responses against bacterial pathogens by enhancing maturation signals to dendritic cells and lowering the threshold for cell activation. Platelets have further been shown to interact with neutrophils following viral challenge, leading to the release of NETs. NETs also deliver antiviral factors such as myeloperoxidase and α-defensins, and capture viruses and promote their elimination. Platelets can further shuttle blood-borne gram-positive bacteria to splenic CD8α+ dendritic cells after the bacterium becomes associated to platelets via glycoprotein (GP)-Ib and

Fig. 2 General platelet structure. Platelets express various receptors that allow them to detect danger signals and engage other cells. Platelets are activated by various agonists that interact with surface receptors. Platelets are also replete with secretory granules that store bioactive molecules, which are released into the circulation or translocate to the surface upon platelet activation. These characteristics allow platelets to communicate and modulate the functions of other cells, and trigger hemostatic, inflammatory, and host defense responses against infections (created with https://biorender.com/). ADP, adenosine diphosphate; CAR, coxsackievirus and adenovirus receptor; CCR/CXCR, chemokine receptor; CLEC, C-type lectin-like receptor; CR, complement receptor; DC-SIGN, dendritic cell-specific ICAM-grabbing nonintegrin; FcyRIIa, low-affinity immunoglobulin gamma Fc region receptor II-a; gC1Qr, receptor for the globular heads of C1q; JAM, junction adhesion molecule; MCP, monocyte chemoattractant protein; MHC, major histocompatibility complex; MIP, macrophage inflammatory protein; PAR, platelet-activating factor receptor; PAR, protease-activated receptor; PDGF, platelet-derived growth factor; PF, platelet factor; RANTES, regulated on activation, normal T-cell expressed and secreted; TGF, transforming growth factor; TLR, toll-like receptor; TNSF14, tumor necrosis factor superfamily member 14; TREM, triggering receptor expressed on myeloid cells; vWF, von Willebrand factor.
Platelet interactions at the vascular wall. Platelet activation and adhesion to the vascular wall is facilitated by various receptor interactions with endothelial cells. An inflamed vessel wall will adopt a prothrombotic phenotype and release platelet binding and stimulating agents. The adhesion of platelets activates endothelial cells, and together with potent inflammatory mediators released by platelets induces the expression of integrins, adhesion molecules, and other receptors on the endothelial surface, as well as causes the endothelium to secrete chemokines and other mediators. Platelets similarly bind and activate leukocytes, contributing to leukocyte recruitment to the endothelium. In turn, leukocytes are activated and are able to adhere to the inflamed vessel, with platelets also serving as bridging connections between the endothelium and circulating leukocytes. (Adapted from van Gils et al.)

ADP, adenosine diphosphate; GM-CSF, granulocyte-macrophage colony-stimulating factor; ICAM, intercellular adhesion molecule; IL, interleukin; JAM, junction adhesion molecule; MCP, monocyte chemoattractant protein; MMP, matrix metalloproteinase; MTP1-MMP, membrane type-1 MMP; PF, platelet factor; PSGL, P-selectin glycoprotein ligand-1; RANTES, regulated on activation, normal T-cell expressed and secreted; ROS, reactive oxygen species; TNSF14(R), tumor necrosis factor superfamily member 14 (receptor); tPA, tissue plasminogen activator; TREM, triggering receptor expressed on myeloid cells; uPA, urokinase-type plasminogen activator; uPAR, urokinase receptor; VCAM, vascular cell adhesion protein; vWF, von Willebrand factor.
complement C3 to balance bacterial clearance with immune induction. Activated platelets also form aggregates with CD16+ inflammatory monocytes and human leukocyte antigen (HLA)-DR+ CD38+ memory T cells in human immunodeficiency virus (HIV) infection.

Platelet-Derived Microparticles: Further Driving the Inflammatory Response
Activated platelets produce microparticles during bacterial63,64 and viral infection65,66 that contain both soluble (e.g., regulated on activation, normal T cell expressed and secreted [RANTES]) and surface mediators (e.g., P-selectin, GPIb, and αIIbβ3), which can exit the vasculature and enter tissues where they are able to activate leukocytes to further drive the inflammatory response.67,68 For example, platelet microparticles enhance the expression of cell adhesion molecules such as leukocyte αMβ2 for monocyte adhesion,69 and can mediate leukocyte activation70 and leukocyte–leukocyte interactions.71 Microparticles promote platelet interaction with the endothelium by acting as a substrate for further platelet binding.72 Further, microparticles can deliver platelet-derived CD40L signals54,73 and activate dendritic cells.74 Platelet microparticles also promote endothelial activation by secreting IL-1β75 and can deliver RANTES to the endothelium for monocyte recruitment.76 Lastly, these microparticles can cause complement activation.77
Platelet Interactions with Bacteria

Platelets are active role players in antimicrobial defense, and exhibit complex interactions with bacteria and viruses due to the variety of platelet receptors involved in pathogen recognition. Platelets are able to recognize, bind, and internalize pathogens to sequester and neutralize the pathogen. This section describes the interactions of platelets with bacteria, which are summarized in – Fig. 5.

Platelet Receptors in Bacterial Pathogen Sensing

It has long been known that bacteria can cause platelet aggregation and degranulation.78,79 A diverse range of platelet receptors can mediate interactions with bacteria, including αIIbβ3, low-affinity immunoglobulin gamma Fc region receptor II-a (FcγRIIa), GPIb, complement receptors (CRs), and TLRs,80,81 either directly or indirectly through bridging molecules.11,12,81 Alternatively, products shed by bacteria82 may cause a platelet response independently of direct
Platelet Dysfunction and Depletion in Infection

Table 2 Platelet receptors that mediate bacterial adhesion and platelet activation

Bacteria	Bacterial component	Platelet receptors/host factors	References
Borreliia burgdorferi	αIIbβ3		182
Chlamydia pneumoniae	αIIbβ3		183
Helicobacter pylori	IgG-FcγRIIa, GPIb, vWF		184
Porphyromonas gingivalis	Hgp44	GPIb, IgG-FcγRIIa	185
Streptococcus agalactiae	FbsA	αIIb3, fibrinogen, fibronecrt, IgG-FcγRIIa, complement gC1qR, thrombospondin, vWF	186
Staphylococcus aureus	CifA, CifB, FnBPA, SdrE, SpA, IsdB	αIIb3, fibrinogen, fibronecrt, IgG-FcγRIIa, complement gC1qR, thrombospondin, vWF	84,187–201
Staphylococcus epidermidis	SdrG	αIIb3, fibrinogen, IgG-FCγRIIa	202
Streptococcus gordonii	Pada, SspA/SspB, GspB/Hsa	αIIb3, GPIb, IgG-FcγRIIa	84,203–206
Staphylococcus lugdunensis	Fbl	Fibrinogen	207
Streptococcus mitis	PblA, PblB, lysin	αIIb3, fibrinogen, membrane ganglioside GD3	208,209
Streptococcus oralis	Fbl	Fibrinogen	208,209
Streptococcus pneumoniae	Pav, PspC/Hic	GPIb, IgG-FcγRIIa	84,210
Streptococcus pyogenes	M protein	αIIb3, fibrinogen, IgG-FcγRIIa, thrombospondin, PAF receptor	84,211–213
Streptococcus sanguis	SrpA	αIIb3, fibrinogen, IgG-FcγRIIa, GPIb	84,215–217

Abbreviations: Cif, clumping factor; FnBPA, fibronectin-binding protein A; IsdB, iron-regulated surface determinant B; Pada, platelet adherence protein A; PavB, pneumococcal adherence and virulence factor B; PspC, pneumococcal surface protein C; Sdr, serine-aspartate repeat protein; SpA, staphylococcal protein A; SrpA, serine-rich protein A; Ssp, stringent starvation protein; vWF, von Willebrand factor.

bacterial attachment to the platelet.10 Ultimately, engagement of receptors by bacteria and their products leads to common and species-specific intracellular signaling events in platelets.83

Table 2 summarizes platelet receptors that mediate binding of bacteria to cause platelet activation and aggregation. A key mechanism for bacterial adhesion to platelets, which is described for various bacteria, involves αIIbβ3 integrin activation, the FcγRIIa receptor, and IgG,84 where platelet factor (PF)-4 may potentiate further binding of additional bacteria by forming an immunocomplex with bacteria that bind through FcγRIIa.85

Platelets also express C–C motif and C–X–C motif chemokine receptors such as CCR1, CCR2, CCR4, and CXCR4,86 which can detect all four classes of chemokines (C, CC, CXC, and CX3C). These receptors allow platelets to recognize and prioritize chemotactic signals and result in rapid vectoring of platelets to sites of infection.9 They are also involved in stimulating platelet adhesion, aggregation, and secretion.87 Additionally, platelet activation leads to activation of the complement system,88,89 and platelets also express various complement receptors after activation such as CR2, CR3, CR4, C3aR, C5aR, C1rC1s, and gC1qR.3 These may therefore serve as potential receptors for bacteria coated with complement factors, and lead to platelet aggregation.11 Furthermore, an important class of receptors for pathogen sensing are TLRs, and platelets express numerous TLRs to detect the molecular features of microbes.21,90–92 Platelets express, among others, functional TLR4,93 as well as the accessory component for LPS signaling, including CD14, MD2, and myeloid differentiation primary response (MyD)-88.94

Bacterial Products Affect Platelet Functions

Platelets are able to respond to many bacterial products, and these products modulate platelet function.25 LPS can stimulate platelet secretion of dense and α-granules through TLR4/MyD88 and cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) signaling pathways.94 This potentiates secretion-dependent integrin activation and platelet aggregation. Further to this, platelets recognize and discriminate between various isoforms of bacterial LPS and secrete different cytokine profiles against these danger signals.95,96 LPS also induces sCD40L release from platelets,97 as well as ROS generation.98 Some sources of LPS can activate TLR2,99–101 and this has also been implicated in LPS-induced cGMP elevation and platelet activation.94 However, LPS is described as not always generating conventional platelet activation (e.g., typical P-selectin release from α-granules).25 Bacterial structures from gram-positive bacteria such as lipopeptides, peptidoglycan, and LTA are TLR2 ligands, and also trigger platelet activation.102 TLR activation in platelets induces a thromboxinflammatory response, including platelet aggregation, formation of platelet–leukocyte complexes, and ROS generation103 as well as the elaboration of acute-phase reactants like TNF-α.91 However, studies have shown mixed effects of TLR2 agonists and LTA on platelet aggregation.104,105

Platelets can migrate toward the chemotactic signal of bacterial N-formyl peptide by their receptors for this peptide.106 The gingipain proteases HRgpA and RgpB from *P. gingivalis* activate platelet protease-activated receptor (PAR)-1 and PAR4, leading to platelet aggregation.107,108 S. aureus α-toxin also causes platelet activation and leads to
enhanced prothrombinase activity on the platelet surface.109,110 Staphylococcal superantigen-like (SSL)-5 from \textit{S. aureus} additionally induces platelet activation via platelet receptors GPVI and GP Ib,111,112 whereas the Panton–Valentine leukocidin toxin leads to platelet activation via neutrophil secretion products from damaged neutrophils.113 Another class of exotoxins from \textit{S. aureus}, extracellular adherence protein (Eap) and extracellular fibrinogen-binding protein (Efb) fibrinogen-binding proteins, also interacts with platelets. On the one hand, Eap enhances \textit{αIIbβ3} integrin activation, granule secretion, and aggregation,114 whereas Efb inhibits platelet activation and aggregation115,116 and has powerful antiplatelet actions.117 \textit{Staphylococcus aureus} enterotoxin B similarly inhibits platelet aggregation.118 LTA from \textit{S. aureus} has also been reported to inhibit platelet activation through platelet-activating factor (PAF) receptor and raised cyclic adenosine monophosphate (cAMP),119 as well as to inhibit platelet aggregation,120–122 but may support platelet adhesion to \textit{Staphylococcus epidermidis}.123 Additional products released by \textit{S. aureus} also have opposing functions on platelet aggregation. While staphylothrombin mediates fibrin formation that supports aggregation,124 staphylokinase prevents aggregation by degrading fibrinogen.125

Bacterial toxins can also cause platelet destruction. For example, \textit{α}-toxin from \textit{S. aureus} and \textit{α}-hemolysin from \textit{E. coli}126 as well as peptidoglycan from \textit{S. aureus}127 can induce platelet apoptosis. Indeed, these pore-toxins stimulate disturbances in the platelet membrane and can be cytotoxic.3,128 \textit{Escherichia coli} Shiga toxin causes downregulation of platelet CD47 expression, which leads to enhanced platelet activation and phagocytosis of platelets by macrophages.129 Toxins such as pneumolysin from \textit{Streptococcus pneumoniae}130 and \textit{α}-toxin from \textit{S. aureus}131 can cause platelet lysis, whereas streptolysin O from \textit{Streptococcus pyogenes}132 and phospholipase C from \textit{Clostridium perfringens}133 induce the formation of platelet–leukocyte complexes.

Platelets Mediate Antimicrobial Attack

A further function of platelets in bacterial infection is mediating antimicrobial attack. Platelets mediate some of their antimicrobial actions through the secretion of antimicrobial proteins from their \textit{α}-granules.8,35 Moreover, platelets rapidly form clusters around bacteria that have been captured by Kupffer cells in the liver sinusoids (specialized macrophages in the liver), encasing the bacterium and facilitating its destruction.13 Further, sCD40L causes increased generation and release of reactive oxygen (e.g., superoxide) and nitrogen (e.g., nitric oxide) species by platelets, which assists in pathogen destruction.134,135

Platelets are able to bind and phagocytose bacteria through engulfing endosome-like vacuoles that are formed by membrane endocytosis and become the site of \textit{α}-granule release for the granular proteins to access the pathogen.136,137 A mechanism of internalizing bacteria via the open canalarial system has also been proposed138 (compare with Boukour and Cramer139). Nonetheless, the platelet FcγRIIa receptor can bind IgG complexes and allows platelets to clear these complexes from the circulation.140 Internalization of IgG-coated particles results in platelet activation and the release of RANTES and sCD40L.141 Platelets opsonized by IgG can be destroyed by Fc-mediated platelet phagocytosis, contributing to the clearance of IgG-containing complexes from the circulation.142,143 More broadly, activated platelets expose phosphatidylserine, and neutrophils have been shown to phagocytose activated platelets in a clearance program involving phosphatidylserine and P-selectin.144–146

Platelet Interactions with Viruses

Viruses have been observed to interact directly with platelets. Various viruses have been identified adsorbed to or inside platelets, including influenza virus,147,148 HIV,136,149,150 hepatitis C,151–153 and herpes simplex virus154 as well as others such as vaccinia virus155 and dengue virus.156–158 However, the interactions between viruses and platelets are less well characterized compared with those of gram-positive bacteria. This section describes the interaction of platelets with viruses, which are summarized in – Fig. 6.

Platelet Receptors in Viral Pathogen Sensing

Several platelet receptors have been identified to mediate binding to viral particles6,7,30,159 and are summarized in – Table 3. Similarly to bacteria, IgG is important for the adhesion of viral particles to platelets, where IgG-coated particles can interact with the FcγRIIa receptor151,160–162 to be internalized into the platelet.140 However, other antibody-dependent mechanisms that enhance viral binding to platelets are also described.156 and platelets can further bind viruses in a receptor-independent manner.163 For example, although the coxsackievirus and adenovirus receptor (CAR) is expressed on platelets, coxsackie B virus interaction with platelets has also been described independently of CAR and can result in P-selectin and phosphatidylserine exposure.163 More broadly, \textit{β3} integrins are important platelet-adhesion receptors, and these receptors appear to facilitate viral adhesion to platelets.163,164 Even though various receptors that are expressed on platelets have been implicated in viral adhesion and cell entry, the direct effect of this interaction on the platelet has not always been described.

Platelets can also detect viruses through TLRs. Platelet TLR2 can bind cytomegalovirus, which triggers platelet activation, degranulation, and the formation of platelet–leukocyte aggregates.165 TLR7 recognizes the classical viral PAMP, single-stranded RNA.82 Platelets express functional TLR7, and activation via TLR7 leads to expression of CD40L and P-selectin, and P-selectin supports the adhesion of virally activated platelets to neutrophils.22,166 Moreover, platelet TLR7 mediates complement C3 release from platelets, which in turn leads to platelet–neutrophil aggregation and NET release by neutrophils.167 Encephalomyocarditis virus has been shown to interact with platelet TLR7.166 Platelet TLR9 recognizes unmethylated CpG islands found in bacterial and viral DNA, which also leads to P-selectin surface expression.92,168
Viral Products Affect Platelet Functions

Viruses secrete various products that modulate platelet function. The secreted HIV Tat protein directly interacts with platelets in a process requiring the platelet receptors CCR3 and β3 integrin as well as calcium influx. This leads to platelet activation and CD40L expression as well as microparticle formation. Indeed, platelet activation persists even in virologically suppressed HIV infection. Viral enzymes such as neuraminidase can cause desialylation of platelet surface receptors, and desialylation might promote platelet clearance in the liver.

Platelets Mediate Antiviral Attack

The secretory products of platelets can also exert virucidal effects, including the inactivation of adenovirus, poliovirus and vaccinia virus, and HIV suppression. Moreover, platelets exhibit phagocytic behavior toward viruses such as HIV and can form engulfing vacuoles that lead to granular components being secreted on the virus particle, as described for bacteria. Indeed, intact HIV-1 particles enclosed in endocytic vesicles have been found in the open canalicular system. Recently, it has been proposed that platelets may also potentially phagocytose influenza virus. Platelets may then

Fig. 6 Platelet interactions with viruses. Various platelet receptors can mediate binding to viral particles; however, the direct effect of this binding on platelets is less well described than for bacteria. Pattern recognition receptors recognize classical viral signals, and viral products also modulate platelet function. Platelets mediate viral attack by secreting virucidal proteins and by engulfing viral particles, as well as by interacting with immune cells and enhancing the immune response. Overall, platelets may be activated and aggregate, but also face apoptosis. Virus–platelet aggregates and platelets with a viral load are targeted by leukocytes, and platelets are ultimately cleared from the circulation.
actions. Recursive stimulation of activation receptors and platelets, activating and forcing them to exert their effector microbial and viral threat. Here, platelets have a key role in clearing platelets with a viral load. Moreover, viruses can cause the expression of P-selectin and phosphatidylserine exposure on platelets, and these components promote interactions with leukocytes as well as lead to phagocytosis of the platelet. Interaction between platelets and viruses can also lead to sequestration to the reticuloendothelial system of the liver, where virus–platelet aggregates can be taken up by Kupffer cells and degraded. Spleen macrophages also assist in clearing platelets with a viral load.

Conclusion

Platelets are among the first cells to accumulate at sites of infection and inflammation, and can be considered as first responders to invading pathogens. Here, platelets have a key role in sensing and effecting the first wave of responses to microbial and viral threat. This is achieved by the inflammatory activity of platelets but also through direct antibacterial and antiviral actions that facilitate the clearance of pathogens from the circulation. Platelets are therefore represented at the interface of hemostasis, inflammation, and antimicrobial host defense. Their position at the crossroads of these processes emphasizes their role as signaling entities in infection and inflammation.

Various stimuli that are relevant to infection impinge on platelets, activating and forcing them to exert their effector actions. Recursive stimulation of activation receptors and successive activation of bystander platelets intensify the host-defense functions of platelets even at threshold stoichiometric ratios of platelets to pathogens. Platelets face inappropriate activation and immunological destruction, and are inevitably consumed by their participation in host defense. An inflammatory milieu can thereby drive platelet dysfunction. In this review, we emphasize that platelet dysfunction can arise as a general consequence of an exaggerated systemic (immune) response to infection. Increased platelet consumption and removal can lead to thrombocytopenia, which is frequently observed during infection. Overall, it has been suggested that internalization of viral particles by platelets may function to clear viruses from the circulation. Various stimuli that are relevant to infection impinge on platelets, activating and forcing them to exert their effector actions. Recursive stimulation of activation receptors and successive activation of bystander platelets intensify the host-defense functions of platelets even at threshold stoichiometric ratios of platelets to pathogens. Platelets face inappropriate activation and immunological destruction, and are inevitably consumed by their participation in host defense. An inflammatory milieu can thereby drive platelet dysfunction. In this review, we emphasize that platelet dysfunction can arise as a general consequence of an exaggerated systemic (immune) response to infection. Increased platelet consumption and removal can lead to thrombocytopenia, which is frequently observed during infection.

Virus	Viral component	Platelet receptors/host factors	Effect on platelet	References
Adenoviruses	Penton base (RGD ligand site)	Fibrinogen, laminin, vitronectin and vWF, αIIβ3, αvβ3, CAR receptor	Platelet activation, platelet–leukocyte aggregate formation	30,218–221
Dengue virus		DC-SIGN	Platelet activation, platelet apoptosis	178,222,223
Ebola virus		DC-SIGN		224
Enterovirus echovirus	VP1 capsid protein (RGD ligand site)	αvβ3		225
9 strain Barty		CR2	Platelet activation	226
Epstein–Barr virus		αIIβ3, αvβ3		227
Hantaviruses		GPV1		228
Hepatitis C virus	Mannose-type carbohydrates	CXCR4, DC-SIGN, CLEC2		174,229,230
HIV		αvβ3		231
Herpes simplex virus-1		αvβ3		232
Human parvovirus-1	VP1 capsid protein (RGD ligand site)	αvβ3		233
Lassa virus		DC-SIGN, Axl, Tyro3		234,235
Rotavirus	Spike protein VP4 (DGE ligand site)	α2β1		

Abbreviations: CLEC2, C-type lectin-like receptor 2; DC-SIGN, dendritic cell-specific ICAM-grabbing nonintegrin; DGE, Asp-Gly-Glu tripeptide; HIV, human immunodeficiency virus; RGD, Arg-Gly-Asp tripeptide; VP, viral (capsid) protein; vWF, von Willebrand factor.
effectively in a therapeutic context. Following from the diverse functions of platelets in infections, platelets are also placed at an interface between health and disease. Platelets are acutely affected by the surrounding environment. This, together with other characteristics of platelets such as their fast turnover, might position platelets as relevant signaling entities with clinical potential in disease tracking and targeting to evaluate or manage the course of infections. Although platelets are perhaps a lesser-known participant in the host-defense system, their large-scale depletion may cause significant health issues. Managing a generic depletion of platelets during the presence of infection should possibly be a more actively pursued clinical goal. The key points encapsulating the main ideas of this review are presented in Table 4.

![Diagram showing immune actions, antibacterial actions, and antiviral actions leading to platelet depletion.](https://biorender.com/) (Adapted from Yeaman.9) DAMP, damage-associated molecular pattern; NET, neutrophil extracellular trap; PAMP, pathogen-associated molecular pattern.

Table 4 Key points

- Platelets are versatile cells positioned at the interface of hemostasis, inflammation, and antimicrobial host defense, and their immune, antibacterial, and antiviral actions establish them as active participants in infection.
- By nature of their normal functioning, platelets are invariably and irreversibly expended in the processes to which they contribute.
- During infection, an onslaught of inflammatory and pathogen-derived stimuli can evoke and challenge platelets, leading to inappropriate activation, immunological destruction, and sequestration.
- In the context of a dysregulated host response to infection, platelets can experience overwhelming activation and, consequently, consumption, and this represents a generic large-scale mechanism for platelet depletion in infection.
Author Contribution Statement
M.P.: wrote paper, prepared figures; E.P.: wrote parts of the paper, study leader, and corresponding author. Both authors edited and reviewed the manuscript.

Conflicts of Interest
The authors have no competing interests to declare. Mr. Page is supported by the Skye Foundation and the Harry Crossley Foundation. Dr. Pretorius reports grants from the Medical Research Council of South Africa.

Acknowledgments
We thank the Medical Research Council of South Africa (Self-Initiated Research Program) for supporting our research. The funders had no role in the design and preparation of the manuscript or decision to publish.

References
1. Semple JW, Freedman J. Platelets and innate immunity. Cell Mol Life Sci 2010;67(04):499–511
2. Semple JW, Italiano JE Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011;11(04):264–274
3. Speth C, Löffler J, Krappmann S, Lass-Flörl C, Rambach G. Platelets as immune cells in infectious diseases. Future Microbiol 2013;8(11):1431–1451
4. Weyrich AS, Zimmerman GA. Platelets: signaling cells in the immune continuum. Trends Immunol 2004,25(09):489–495
5. Jenne CN, Kubes P. Platelets in inflammation and infection. Platelets 2015;26(04):286–292
6. Assinger A. Platelets and infection - an emerging role of platelets in viral infection. Front Immunol 2014;5:649
7. Hottz ED, Bozza FA, Bozza PT. Platelets in immune response to virus and immunopathology of viral infections. Front Med (Lausanne) 2018:5:121
8. Yeaman MR. Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010;67(04):525–544
9. Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 2014;12(06):426–437
10. Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 2006;4(06):445–457
11. Hamzeh-Cognasse H, Damen P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol 2015:5:82
12. Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 2011;9(06):1079–1087
13. Wong CHY, Jenne CN, Petri B, Chrobok NL, Kubes P. Nuclearization of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol 2013;14(08):785–792
14. Sullam PM, Frank U, Yeaman MR, Täuber MC, Bayer AS, Chambers HF. Effect of thrombocytopoiesis on the early course of streptococcal endocarditis. J Infect Dis 1993;168(04):910–914
15. Zhang X, Liu Y, Gao Y, et al. Inhibiting platelets aggregation could aggravate the acute infection caused by Staphylococcus aureus. Platelets 2011;22(03):228–236
16. Claushuis TAM, van Vught LA, Scicluna BP, et al; Molecular Diagnosis and Risk Stratification of Sepsis Consortium. Thrombocytopoiesis is associated with a dysregulated host response in critically ill sepsis patients. Blood 2016;127(24):3062–3072
17. Dewitte A, Lepreux S, Villeneuve J, et al. Blood platelets and sepsis pathophysiology: a new therapeutic prospect in critically ill patients? Ann Intensive Care 2017;7(01):115
18. Iamacone M, Sitia G, Isogawa M, et al. Platelets prevent IFN-α/β-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A 2008;105(02):629–634
19. Loria GD, Romagnoli PA, Moseley NB, Rucavado A, Altman JD. Platelets support a protective immune response to LCMV by preventing splenic necrosis. Blood 2013;121(06):940–950
20. Solomon Tsegaye T, Gniß K, Rahe-Meyer N, et al. Platelet activation suppresses HIV-1 infection of T cells. Retrovirology 2013:10:48
21. D’Atri LP, Schattner M. Platelet toll-like receptors in thrombinflammation. Front Biosci 2017;22:1867–1883
22. Jenne CN. Platelets: crossroads of immunity and hemostasis. Blood 2014;124(05):671–672
23. Li Z, Delaney MK, O’Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 2010;30(12):2341–2349
24. van Gils JM, Zwaginga JJ, Jordijk PJL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 2009;85(02):195–204
25. Shannon O. Platelet interaction with bacterial toxins and secreted products. Platelets 2015;26(04):302–308
26. Zhang W, Nardi MA, Borkowski W, Li Z, Karpatkin S. Role of molecular mimicry of hepatitis C virus protein with platelet GPIIIa in hepatitis C-related immunologic thrombocytopenia. Blood 2009;113(17):4086–4093
27. Aref S, Slee T, El Menshawy N, et al. Antiplatelet antibodies contribute to thrombocytopoiesis associated with chronic hepatitis C virus infection. Hematology 2009;14(05):277–281
28. Olumuyiwa-Akeredolu OJ, Page MJ, Soma P, Pretorius E. Platelets: emerging facilitators of cellular cross-talk in rheumatoid arthritis. Nat Rev Rheumatol 2019;15(04):237–248
29. Franchini M, Veneri D, Lippi G. Thrombocytopoiesis and infections. Expert Rev Hematol 2017;10(01):99–106
30. Flaujac C, Boukour S, Cramer-Bordé E. Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 2010;67(04):545–556
31. Larkin CM, Santos-Martinéz M-J, Ryan T, Radomski MW. Sepsis-associated thrombocytopoiesis. Thromb Res 2016:141:11–16
32. Tosi MF. Innate immune responses to infection. J Allergy Clin Immunol 2005;116(02):241–249, quiz 250
33. McNicol A, Agpalza A, Jackson EC, Hamzeh-Cognasse H, Garraud O, Cognasse F. Streptococcus gansuensis-induced cytokine release from platelets. J Thromb Haemost 2011;9(10):2038–2049
34. Page AV, Liles WC. Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence 2013;4(06):507–516
35. Yeaman MR. The role of platelets in antimicrobial host defense. Clin Infect Dis 1997;25(05):951–968, quiz 969–970
36. Sugiyama MG, Gamage A, Ziya R, et al. Influenza virus infection induces platelet-endothelial adhesion which contributes to lung injury. J Virol 2015;90(04):1812–1823
37. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005;115(12):3378–3384
38. Assinger A, Laky M, Schattner M, et al. Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2. J Thromb Haemost 2011;9(04):799–809
39. Miedzbrodzki J, Panz T, Plonka PM, et al. Platelets augment respiratory burst in neutrophils activated by selected species of gram-positive or gram-negative bacteria. Folia Histochem Cyto- biol 2008;46(03):383–388
40. Peters MJ, Dixon G, Kotowicz KT, Hatch DJ, Heydeman RS, Klein NJ. Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils primed for adhesion, phagocytosis and intracellular killing. Br J Haematol 1999;106(02):391–399
41. Nagata K, Tsuji T, Todoroki N, et al. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). J Immunol 1993;151(06):3267–3273
Keane C, Tilley D, Cunningham A, et al. Invasive Streptococcus pneumoniae trigger platelet activation via Toll-like receptor 2. J Thromb Haemost 2010;8(12):2757–2765

Blair P, Rex S, Vitseva O, et al. Stimulation of Toll-like receptor 2 in human platelets induces a thrombin-inflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009;104(03):346–354

Kähvegren H, Skoglund C, Heldhåf C, Lern M, Grenégård M, Bengtsson T. Toll-like receptor 2 stimulation of platelets is mediated by purinergic P2X1-dependent Ca2+ mobilisation, cyclooxygenase and purinergic P2Y1 and P2Y12 receptor activation. Thromb Haemost 2010;103(02):398–407

Ward JR, Bingle L, Judge HM, et al. Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thromb Haemost 2005;94(04):831–838

Czapiga M, Gao JL, Kirk A, Lekstrom-Himes J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp Hematol 2005;33(01):73–84

Lourbakos A, Yuan YP, Jenkins AL, et al. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 2001;97(12):3790–3797

Pham K, Feik D, Hammond BF, Rams TE, Whitaker EJ. Aggregation of human platelets by gingipain-R from Porphyromonas gingivalis cells and membrane vesicles. Platelets 2002;13(01):21–30

Bhakdi S, Muhly M, Mannhardt U, et al. Staphylococcal alpha toxin promotes blood coagulation via attack on human platelets. J Exp Med 1988;168(02):527–542

Arvand M, Bhakdi S, Dahlbäck B, Preisser KT. Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the prothrombincase complex. J Biol Chem 1990;265(24):14377–14381

Hu H, Armstrong PCJ, Khalil E, et al. GPVI and GPIbα mediate staphylococcal superantigen-like protein 5 (SSLS) induced platelet activation and direct toward glycans as potential inhibitors. PLoS One 2011;6(04):e19190

de Haas CJC, Weerters C, Vughs MM, de Groot PG, Van Strijp JA, Lisman T. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibα and αIIbβ3. J Thromb Haemost 2009;7(11):1867–1874

Niemann S, Bertling A, Brodde MF, et al. Panton-Valentine leukocidin associated with S. aureus ostomyelitis activates platelets via neutrophil secretion products. Sci Rep 2018;8(01):2185

Bertling A, Niemann S, Hussain M, et al. Staphylococcal extracellular adherence protein induces platelet activation by stimulation of thiol isomerases. Arterioscler Thromb Vasc Biol 2012;32(08):1979–1990

Palma M, Shannon O, Quezada HC, Berg A, Flock JL. Extracellular fibrinogen-binding protein, EfB, from Staphylococcus aureus blocks platelet aggregation due to its binding to the alpha-chain. J Biol Chem 2001;276(34):31691–31697

Shannon O, Flock JL. Extracellular fibrinogen binding protein, EfB, from Staphylococcus aureus binds to platelets and inhibits platelet aggregation. Thromb Haemost 2004;91(04):779–789

Shannon O, Uekötter A, Flock JL. Extracellular fibrinogen binding protein, EfB, from Staphylococcus aureus acts as an antiplatelet agent in vivo. Thromb Haemost 2005;93(05):927–931

Waller AK, Sage T, Kumar C, Carr T, Gibbins JM, Clarke SR. Staphylococcus aureus lipoteichoic acid inhibits platelet activation and thrombus formation via the PaF receptor. J Infect Dis 2013;208(12):2046–2057

Beachey EH, Chiang TM, Ofek I, Kang AH. Interaction of lipoteichoic acid of group A streptococci with human platelets. Infect Immun 1977;16(02):649–654

Wu BQ, Zhi MJ, Liu H, Huang J, Zhou YQ, Zhang TT. Inhibitory effects of lipoteichoic acid from Staphylococcus aureus on platelet function and platelet-monocyte aggregation. Inflamm Res 2011;60(08):775–782
Platelet Dysfunction and Depletion in Infection

Page, Pretorius

122 Sheu JR, Lee CR, Lin CH, et al. Mechanisms involved in the antiplatelet activity of Staphylococcus aureus lipoteichoic acid in human platelets. Thromb Haemost 2000;83(05):777–784

123 Chugh TD, Burns GJ, Shuhaiber HJ, Bahr GM. Adherence of Staphylococcus epidermidis to fibrin-platelet clot in vitro mediated by lipoteichoic acid. Infect Immun 1990;58(02):315–319

124 Vanassche T, Kauw A, Verhaegen J, et al. Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation. Thromb Haemost 2012;107(06):1107–1121

125 Suehiro A, Oura Y, Ueda M, Kakishita E. Inhibitory effect of staphylokinase on platelet aggregation. Thromb Haemost 1993;70(05):834–837

126 Kraemer BF, Campbell RA, Schwertz H, et al. Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets. Blood 2012;120(25):5014–5020

127 Towhid ST, Nega M, Schmidt EM, et al. Stimulation of platelet apoptosis by peptidoglycan from Staphylococcus aureus 113. Apoptosis 2012;17(09):998–1008

128 Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev 1991;55(04):733–751

129 Guo Y-L, Liu D-Q, Bian Z, Zhang CY, Zen K. Down-regulation of platelet surface CD47 expression in Escherichia coli O157:H7 infection-induced thrombocytopenia. PLoS One 2009;4(09):e7131

130 Johnson MK, Boese-Marrazzo D, Pierce WA Jr. Effects of pneumolysin on human polymorphonuclear leukocytes and platelets. Infect Immun 1981;34(01):171–176

131 Bayer AS, Ramos MD, Menzies BE, Yeaman MR, Shen AJ, Cheung AL. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbical proteins. Infect Immun 1997;65(11):4652–4660

132 Bryant AE, Bayer CR, Chen RY, Guth PH, Wallace RJ, Stevens DL. Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. J Infect Dis 2005;192(06):1014–1022

133 Bryant AE, Chen RY, Nagata Y, et al. Clostridial gas gangrene. II. Phospholipase C-induced activation of platelet gpllbIIa mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene. J Infect Dis 2000;182(03):808–815

134 Khan SY, Kelher MR, Heal JM, et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils and inhibits platelet aggregation in preclinical coronary injury. J Infect Dis 2005;192(03):269–276

135 Bryant AE, Chen RY, Nagata Y, et al. Clostridial gas gangrene. II. Phospholipase C-induced activation of platelet gpllbIIa mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene. J Infect Dis 2000;182(03):808–815

136 Chakrabarti S, Varghese S, Vitseva O, Tanriverdi K, Freedman JE. Platelets and erythrocyte-platelet interactions: neutrophils and the phagocytic clearance of activated platelets. Curr Opin Hematol 2010;17(01):3–8

137 Chakrabarti S, Varghese S, Vitseva O, Tanriverdi K, Freedman JE. Internalization of IgG-coated targets results in activation and sequestration of soluble CD40 ligand and RANTES by human platelets. Clin Vaccine Immunol 2011;18(02):210–216

138 White JG. Platelets are co-receptors, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets 2005;16(02):121–131

139 Boukour S, Cramer EM. Platelet interaction with bacteria. Platelets 2005;16(3–4):215–217

140 Worth RG, Chien CD, Chien P, Reilly MP, McKenzie SE, Schreiber AD. Platelet FcgammaRIIA binds and internalizes IgG-containing complexes. Exp Hematol 2006;34(11):1490–1495

141 Antczak AJ, Vietk JA, Singh N, Worth RG. Internalization of IgG-coated targets results in activation and secretion of soluble CD40 ligand and RANTES by human platelets. Clin Vaccine Immunol 2011;18(02):210–216

142 Semple JW, Aslam R, Kim M, Speck ER, Freedman J. Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG-opsonized platelets. Blood 2007;109(11):4803–4805

143 Huang Z-Y, Chien P, Indik ZK, Schreiber AD. Human platelet FcγRIIA and phagocytes in immune-complex clearance. Mol Immunol 2011;48(04):691–696

144 Maugeri N, Rovere-Querini P, Evangelista V, et al. Neutrophils phagocytose activated platelets in vivo: a phosphatidyserine, P-selectin, and β2 integrin-dependent cell clearance program. Blood 2009;113(21):5254–5265

145 Manfredi AA, Rovere-Querini P, Maugeri N. Dangerous connections: neutrophils and the phagocytic clearance of activated platelets. Curr Opin Hematol 2010;17(01):3–8

146 Maugeri N, Cattaneo M, Rovere-Querini P, Manfredi AA. Platelet clearance by circulating leukocytes: a rare event or a determinant of the “immune continuum”? Platelets 2014;25(03):224–225

147 Terada H, Baldini M, Ebbe S, Madoff MA. Interaction of influenza virus with blood platelets. Blood 1966;28(02):213–228

148 Danon D, Jerushalmy Z, De Vries A. Incorporation of influenza virus in human blood platelets in vitro. Electron microscopical observation. Virology 1959;9(04):719–722

149 Zucker-Franklin D, Seremetis S, Zheng ZY. Internalization of human immunodeficiency virus type 1 and other retroviruses by megakaryocytes and platelets. Blood 1990;75(10):1920–1923

150 Beck Z, Jagodzinski LL, Eller MA, et al. Platelets and erythrocyte-bound platelets bind infectious HIV-1 in plasma of chronically infected patients. PLoS One 2013;8(11):e81002

151 Hamaa S, Li C, Allain J-P. The dynamics of hepatitis C virus binding to platelets and 2 mononuclear cell lines. Blood 2001;98(08):2293–2300

152 Pugliese A, Gennero L, Cutufa M, et al. HCV infective virions can be carried by human platelets. Cell Biochem Funct 2004;22(06):353–358

153 de Almeida AJ, Campos-de-Magalhães M, Brandão-Mello CE, et al. Detection of hepatitis C virus in platelets: evaluating its relationship to antiviral therapy outcome. Hepatogastroenterology 2009;56(90):429–436

154 Forghani B, Schmidt NJ. Association of herpes simplex virus with platelets of experimentally infected mice. Arch Virol 1983;76(03):269–274

155 Bik T, Sarov I, Livne A. Interaction between vaccinia virus and human blood platelets. Blood 1982;59(03):482–487

156 Wang S, He R, Patarapatikul J, Innis BL, Anderson R. Antibody-enhanced binding of dengue-2 virus to human platelets. Virology 1995;213(01):254–257

157 Ghosh K, Gangodkar S, Jain P, et al. Imaging the interaction between dengue virus and human blood platelets using atomic force and electron microscopy. J Electron Microsc (Tokyo) 2008;57(03):113–118

158 Neisakaran S, Gibbons RV, Songprakhon P, et al. Detection of dengue virus in platelets isolated from dengue patients. Southeast Asian J Trop Med Public Health 2009;40(02):253–262

159 Alonso AL, Cox D. Platelet interactions with viruses and parasites. Platelets 2015;26(04):317–323

160 Boillard E, Paré G, Rousseau M, et al. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood 2014;123(18):2854–2863

161 Moi ML, Lim CK, Takasaki T, Kurane I. Involvement of the Fc receptor type IIA cytoplasmic domain in antibody-dependent enhancement of dengue virus infection. J Gen Virol 2010;91(Pt 1):103–111

162 Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, et al. Immature dengue virus: a veiled pathogen? PLoS Pathog 2010;6(01):e1000718

Seminars in Thrombosis & Hemostasis Vol. 46 No. 3/2020
Platelet Dysfunction and Depletion in Infection

Negrotto S, Jaquenod de Giusti C, Rivadenearya L, et al. Platelets interact with cross-reactive viruses B and have a critical role in the pathogenesis of virus-induced myocarditis. J Thromb Haemost 2015;13(02):271–282

Maclow ER, Gavriloyskaya I. Cellular receptors and hantavirus pathogenesis. Curr Top Microbiol Immunol 2001;256:91–115

Assinger A, Kral JB, Yaw IC, et al. Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol 2014;34(04):801–809

Koupenova M, Vitseva O, MacKay CR, et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014;124(05):791–802

Koupenova M, Corkrey HA, Vitseva O, et al. The role of platelets in mediating a response to human influenza infection. Nat Commun 2019;10(01):1780

Thon JN, Peters CG, Machlus KR, et al. T granules in human platelets function in TLR9 organization and signaling. J Cell Biol 2012;198(04):561–574

Mesquita EC, Hottz ED, Amancio RT, et al. Persistent platelet activation and apoptosis in virologically suppressed HIV-infected individuals. Sci Rep 2018;8(01):14999

Li J, van der Wal DE, Zhu G, et al. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun 2015;6:7737

Sørensen AL, Rumjantaeva V, Nayeb-Hashemi S, Vigneron C. The virucidal effect of platelet concentrates: preliminary study and first conclusions. Platelets 2002;13(04):219–222

Chabert A, Hamzeh-Cognasse H, Pozzetto B, et al. Human platelets and their capacity of binding viruses: meaning and challenges. BMC Immunol 2015;16:26

Boukour S, Massé JM, Bénit L, Dubart-Kupperschmitt A, Cramer Chabert A, Hamzeh-Cognasse H, Pozzetto B, et al. Human platelets bind von Willebrand factor and interact with GPIb to mediate a response to human influenza infection. Nat Commun 2019;10(01):1780

Thon JN, Peters CG, Machlus KR, et al. T granules in human platelets function in TLR9 organization and signaling. J Cell Biol 2012;198(04):561–574

Mesquita EC, Hottz ED, Amancio RT, et al. Persistent platelet activation and apoptosis in virologically suppressed HIV-infected individuals. Sci Rep 2018;8(01):14999

Li J, van der Wal DE, Zhu G, et al. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun 2015;6:7737

Sørensen AL, Rumjantaeva V, Nayeb-Hashemi S, Vigneron C. The virucidal effect of platelet concentrates: preliminary study and first conclusions. Platelets 2002;13(04):219–222

Chabert A, Hamzeh-Cognasse H, Pozzetto B, et al. Human platelets and their capacity of binding viruses: meaning and challenges. BMC Immunol 2015;16:26

Boukour S, Massé JM, Bénit L, Dubart-Kupperschmitt A, Cramer EM. Lentivirus degradation and DC-SIGN expression by human platelets and megakaryocytes. J Thromb Haemost 2006;4(02):426–435

Jansen G, Low H, van den Brand J, van Riel D, van der Vries E. Uptake of influenza virus by platelets occurs via phagocytosis. Blood 2017;130(Suppl 1):4834

Jansen AJ, Low HZ, van den Brand J, van Riel D, Osterhaus A, van der Vries E. Platelets can phagocytose influenza virus which may contribute to the occurrence of thrombocytopenia during influenza infection. Blood 2016;128(22):1358

Kullaya VI, de Mast Q, van den Ven A, et al. Platelets modulate innate immune response against human respiratory syncytial virus in vitro. Viral Immunol 2017;30(08):576–581

Alonso MT, Lacuesta TL, Dimamo EM, et al. Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections. J Infect Dis 2012;205(08):1321–1329

Stone D, Liu Y, Shahakhetmot D, Li ZY, Ni S, Lieber A. Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J Virol 2007;81(09):4866–4871

Trier DA, Gank KD, Kupferwasser D, et al. Platelet antistaphylococcal responses occur through P2X1 and P2Y12 receptor-induced activation and kinocidin release. Infect Immun 2008;76(12):5706–5713

White JG. Why human platelets fail to kill bacteria. Platelets 2006;17(03):191–200

Coburn J, Leong JM, Erban JK. Integrin alpha IIb beta 3 mediates binding of the Lyme disease agent Borrelia burgdorferi to human platelets. Proc Natl Acad Sci U S A 1993;90(15):7059–7063

Kalvegren H, Majeed M, Bengtsson T. Chlamydia pneumoniae binds to platelets and triggers P-selectin expression and aggregation: a causal role in cardiovascular disease? Arterioscler Thromb Vasc Biol 2003;23(09):1677–1683

Byrne MF, Kerrigan SW, Corcoran PA, et al. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology 2003;124(07):1846–1854

Naito M, Sakai E, Shi Y, et al. Polypyrromonas gingivalis-induced platelet aggregation in plasma depends on Hgp44 adhesion but not Rgp proteinase. Mol Microbiol 2006;59(01):152–167

Pietrocola G, Schubert A, Visai L, et al. FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet aggregation. Blood 2005;105(03):1052–1059

Kerrigan SW, Clarke N, Loughman A, Meade G, Foster TJ, Cox D. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arterioscler Thromb Vasc Biol 2008;28(02):335–340

Loughman A, Fitzgerald JR, Brennan MP, et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 2005;57(03):804–818

Majlakovic H, Loughman A, Brennan M, Cox D, Foster TJ. Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 2007;75(07):3335–3343

Fitzgerald JR, Loughman A, Keane F, et al. Fibrinectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibrinectin bridges to integrin GPIb/IIa and IgG binding to the FcgammaRIIa receptor. Mol Microbiol 2006;59(01):212–230

O’Brien L, Kerrigan SW, Kav G, et al. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol Microbiol 2002;44(04):1033–1044

Herrmann M, Suchard SJ, Boxer LA, Waldvogel FA, Lew PD. Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun 1991;59(01):279–288

Herrmann M, Lai QJ, Albrecht RM, Mosher DF, Proctor RA. Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis 1993;167(02):312–322

Bayer AS, Sullam PM, Ramos M, Li C, Cheung AL, Yeaman MR. Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein Ib/IIa fibrinogen-binding domains. Infect Immun 1995;63(09):3634–3641

Hawiger J, Steckley S, Hammond D, et al. Staphylococci-induced human platelet injury mediated by protein A and immunoglobulin G Fc fragment receptor. J Clin Invest 1979;64(04):931–937

Ngyen T, Ghebrehiwet B, Pearschke EIB. Staphylococcus aureus recognizes platelet in CTeqB/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun 2000;68(04):2061–2068

Zapotoczna M, Jevnikar Z, Majlakovic H, Kos J, Foster TJ. Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence to and internalization by non-phagocytic human cells. Cell Microbiol 2013;15(06):1026–1041

Majlakovic H, Zapotoczna M, Geoghegan JA, Kerrigan SW, Speziale P, Foster TJ. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIb/IIa receptor on platelets. Microbiology 2010;156(Pt 3):920–928

O’Seaghdha M, van Schooten CJ, Kerrigan SW, et al. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBs J 2006;273(21):4831–4841
Platelet Dysfunction and Depletion in Infection

Hartleib J, Köhler N, Dickinson RB, et al. Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood 2000;96(06):2415–2156

Sjöbring U, Ringdahl U, Ruggeri ZM. Induction of platelet thrombi by bacteria and antibodies. Blood 2002;100(13):4470–4477

Brennan MP, Loughman A, Devocelle M, et al. Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation. J Thromb Haemost 2009;7(08):1364–1372

Petersen HJ, Keane C, Jenkins JF, et al. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun 2010;78(01):413–422

Keane C, Petersen H, Reynolds K, et al. Mechanism of outside-in signaling to platelets via GPIb. Br J Haematol 2005;129(01):101–109

Svensson L, Baumgarten M, Mörgelin M, Shannon O. Platelet Binsker U, Kohler TP, Krauel K, et al. Serotype 3 pneumococci on platelet membranes via glycoprotein Ibα. Mol Microbiol 2005;58(02):380–390

Kerrigan SW, Jakubovics NS, Keane C, et al. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibα. Acta Haematol 2010;121(1):43–50

Mitchell J, Sullam PM. Streptococcus mitis phage-encoded adhesion genes mediate activation of human platelets by the colonizing bacterium, Streptococcus gordonii. Arterioscler Thromb Vasc Biol 2010;30(12):2408–2415

Takamatsu D, Bensing BA, Cheng H, et al. Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibα. Mol Biol 2005;58(02):380–390

Kerrigan SW, Jakubovics NS, Keane C, et al. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun 2007;75(12):5740–5747

Mitchell J, Tristan A, Foster TJ. Characterization of the fibrinogen-binding protein Fbl of Staphylococcus lugdunensis. Microbiology 2004;150(11):3831–3841

Seo HS, Xiong YQ, Mitchell J, Seepersaud R, Bayer AS, Sullam PM. Bacteriophage lysin mediates the binding of streptococcal mitis to human platelets through interaction with fibrinogen. PLoS Pathog 2010;6(08):e1001047

Mitchell J, Sullam PM. Streptococcus mitis phage-encoded adhesion genes mediate attachment to alphaz-8-linked sialic acid residues on platelet membrane gangliosides. Infect Immun 2009;77(08):3485–3490

 Tilley DO, Arman M, Smolenski A, et al. Glycoprotein Ibα and FcyRIIa play key roles in platelet activation by the colonizing bacterium, Streptococcus oralis. J Thromb Haemost 2013;11(05):941–950

Anderson R, Feldman C. Review manuscript: mechanisms of platelet activation by the pneumococcus and the role of platelets in community-acquired pneumonia. J Infect 2017;75(06):473–485

 Binsker U, Kohler TP, Krauel K, Kohler S, Schwertz H, Hammerschmidt S. Pneumococcal adhesins PapB and PspC are important for the interplay with human thrombospondin-1. J Biol Chem 2015;290(23):14542–14555

 Binsker U, Kohler TP, Krauel K, et al. Serotype 3 pneumococci sequester platelet-derived human thrombospondin-1 via the adhesin and immune evasion protein protein Hic. J Biol Chem 2017;292(14):5770–5783

 Svensson L, Baumgarten M, Mörgelin M, Shannon O. Platelet activation by Streptococcus pyogenes leads to entrainment in platelet aggregates, from which bacteria subsequently escape. Infect Immun 2014;82(10):4307–4314

 Ford I, Douglas CW, Cox D, Rees DG, Heath J, Preston FE. The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. Br J Haematol 1997;97(04):737–746

 Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas C, A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GP Ibα. Br J Haematol 2005;129(01):101–109

 Kerrigan SW, Douglas I, Wray A, et al. A role for glycoprotein Ibα in Streptococcus sanguis-induced platelet aggregation. Blood 2002;100(02):509–516

 Zhang Y, Bergelson JM. Adenovirus receptors. J Virol 2005;79(19):12125–12131

 Eggerman TL, Mondoro TH, Lozier JN, Vostal JG. Adenoviral vectors do not induce, inhibit, or potentiate human platelet aggregation. Hum Gene Ther 2002;13(01):125–128

 Jin YY, Yu XN, Qu ZY, et al. Adenovirus type 3 induces platelet activation in vitro. Mol Med Rep 2014;9(01):370–374

 Othman M, Labelle A, Mazzetti I, Elbatarny HS, Lillicrap D. Adenovirus-induced thrombocytopenia: the role of the von Willebrand factor and P-selectin in mediating accelerated platelet clearance. Blood 2007;109(07):2832–2839

 Simon AY, Sutherland MR, Prydz E, EL Geng virus binding and replication by platelets. Blood 2015;126(03):378–385

 Hottz ED, Oliveira MF, Nunes PC, et al. Dengue virus induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost 2013;11(05):951–962

 Alvarez CP, Lasala F, Carrillo J, Muñiz O, Corbi AL, Delgado R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 2002;76(13):6841–6844

 Nelsen-Salz B, Eggers HJ, Zimmermann H. Integrin αvβ3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. J Gen Virol 1999;80(09):2311–2313

 Dunce D, Charriaut-Marlangue C, Barel M, Benveniste J, Frade R. Activation of human platelets through gp140, the C3d/EBV receptor (CR2). Eur J Immunol 1987;17(04):515–520

 Gavriloškaya IN, Gorbonuova EE, Mackow ER. Pathogenic hantaviruses directly adhere the adhesions of quiescent platelets to infected endothelial cells. J Virol 2010;84(09):4832–4839

 Zahn A, Jennings N, Ouwehand WH, Allan JP. Hepatitis C virus interacts with human platelet glycoprotein VI. J Gen Virol 2006; 87(08):2243–2251

 Kowalska MA, Ratajczak J, Hoxie J, et al. Megakaryocyte precursors, megakaryocytes and platelets express the HIV co-receptor CXCR4 on their surface: determination of response to stromal-derived factor-1 by megakaryocytes and platelets. Br J Haematol 1999;104(02):220–229

 Chaipan C, Soilleux EJ, Simpson P, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006;80(18):8951–8960

 Gianni T, Leon I, Chesnokova LS, Hutt-Fletcher LM, Campadelli-Fiume G. αvβ3-integrin is a major sensor and activator of innate immunity to herpes simplex virus-1. Proc Natl Acad Sci U S A 2012;109(48):19792–19797

 Triantafillou K, Triantafillou M, Takada Y, Fernandez N. Human parvovirus B19 utilizes integrins αvβ3 and αvβ1 as receptors. J Virol 2000;74(13):5856–5862

 Shimojima M, Ströher U, Ebihara H, Feldmann H, Kawaoka Y. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J Virol 2012;86(04):2067–2078

 Coulson BS, Londrigan SL, Lee DJ. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in viral entry into cells. Proc Natl Acad Sci U S A 1997;94(10):5389–5394

 Fleming FE, Graham KL, Takada Y, Coulson BS. Determinants of the specificity of rotavirus interactions with the αvβ2 and αvβ1 integrins. J Biol Chem 2011;286(08):6165–6174