Groups in which each subgroup is commensurable with a normal subgroup.

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:
Original Citation:
Groups in which each subgroup is commensurable with a normal
subgroup / Carlo, Casolo; Ulderico,
Dardano; Silvana, Rinauro. - In: JOURNAL OF ALGEBRA. - ISSN
0021-8693. - STAMPA. - 496:(2018), pp. 48-60. [10.1016/j.jalgebra.2017.11.016]

| Availability: |
| This version is available at: 2158/1109988 since: 2018-02-06T12:19:06Z |

| Published version: |
| DOI: 10.1016/j.jalgebra.2017.11.016 |

| Terms of use: |
| Open Access |
| La pubblicazione è resa disponibile sotto le norme e i termini|
| della licenza di deposito, secondo quanto stabilito dalla |
| Policy per l'accesso aperto dell'Università degli Studi di |
| Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf) |

| Publisher copyright claim: |

(Article begins on next page)
Groups in which each subgroup is commensurable with a normal subgroup

to the memory of Jim Wiegold

Carlo Casolo, Ulderico Dardano, Silvana Rinauro

Abstract

A group G is a cn-group if for each subgroup H of G there exists a normal subgroup N of G such that the index $|HN : (H \cap N)|$ is finite. The class of cn-groups contains properly both the well-known classes of core-finite groups and of finite-by-abelian groups. In the present paper it is shown that a cn-group whose periodic images are locally finite is finite-by-abelian-by-finite. Then such groups are described into some details by considering automorphisms of abelian groups. Finally, it is shown that if G is a locally graded group with the property that the above index is bounded independently of H, then G is finite-by-abelian-by-finite. ¹

1 Introduction

In a celebrated paper, B.H. Neumann [9] showed that for a group G the property that each subgroup H has finite index in a normal subgroup of G (i.e. $|H^G : H|$ is finite) is equivalent to the fact that G has finite derived subgroup (G is finite-by-abelian).

The class of groups with a dual property was considered in [1]. A group G is said a cf-group (core-finite) if each subgroup H contains a normal subgroup of G with finite index in H (i.e. $|H : H_G|$ is finite). As Tarski groups are CF, a complete classification of cf-groups seems to be much difficult. However, in [1] and [11] it has been proved that a cf-group G whose periodic quotients are locally finite is abelian-by-finite and there exists an integer n such that $|H : H_G| \leq n$ for all $H \leq G$ (say that G is BCF, boundedly CF).

¹Key words and phrases: locally finite, core-finite, subnormal, inert, cf-group.

2010 Mathematics Subject Classification: Primary 20F24, Secondary 20F18, 20F50, 20E15
Moreover a locally graded BCF-group is abelian-by-finite. Furthermore, an easy example of a metabelian (and even hypercentral) group which is CF but not BCF is given. It seems to be a still open question whether every locally graded CF-group is abelian-by-finite. Recall that a group is said abelian-by-finite if has an abelian subgroup with finite index and that a group is locally finite (locally graded, resp.) if each finitely generated subgroup is finite (has a proper subgroup with finite index, resp.).

With the aim of considering the above two classes in a common framework, recall that two subgroups H and K of a group G are said commensurable if and only if $H \cap K$ has finite index in both H and K. This is an equivalence relation and will be denoted by \sim. Clearly, if $H \sim K$, then $(H \cap L) \sim (K \cap L)$ and $HM \sim KM$ for each $L \leq G$ and $M \lhd G$.

In the present paper we consider the class of CN-groups, that is groups in which each subgroup is commensurable to a normal subgroup. Into details, for a subgroup H of a group G define $\delta_G(H)$ to be the minimum index $|HN : (H \cap N)|$ with $N \lhd G$. Then G is a CN-group if and only if $\delta_G(H)$ is finite for all $H \leq G$. Clearly both finite-by-abelian and CF groups are CN. Moreover, the class of CN-groups is both subgroup and quotient closed.

Note that if a subgroup H of a group G is commensurable with a normal subgroup N, then $S := (H \cap N)_N$ has finite index in H. Thus the class of CN-groups is contained in the class of SbyF-groups, that is, groups in which each subgroup H is subnormal-by-finite; that is to say that H contains a subnormal subgroup S of G such that the index $|H : S|$ is finite. It is known that locally finite SbyF-groups are (locally nilpotent)-by-finite (see [3]) and nilpotent-by-Chernikov (see [6]).

Recall also that from results in [4] it follows that for an abelian-by-finite group properties CN and CF are equivalent. However, for each prime p there is a nilpotent p-group with property CN which is neither finite-by-abelian nor abelian-by-finite, see Proposition 2.2 below.

Our main result is the following.

Theorem A Let G be a CN-group such that every periodic image of G is locally finite. Then G is finite-by-abelian-by-finite.

Here by finite-by-abelian-by-finite group we mean a group which has a subgroup which has finite index and is finite-by-abelian. The proof of Theorem A will be completed at the end of Sect. 5. Before, in Sect. 3, we study the action of a CN-group on its abelian sections, see Theorem 3.2 and Corollary 3.3. Then in Sect. 4 we consider also BCN-groups, that is, groups
for which there is $n \in \mathbb{N}$ such that $\delta_G(H) \leq n$ for all $H \leq G$. We will show the following theorem.

Theorem B Let G be a finite-by-abelian-by-finite group.

i) if G is cn, then the FC-center of G has finite index and is finite-by-abelian;

ii) G is cn if and only if it is finite-by-CF.

iii) G is bcn if and only if it is finite-by-bcf.

It follows that if the group G is periodic and finite-by-abelian-by-finite, then G is bcn if and only if it is cn. Then we consider non-periodic finite-by-abelian-by-finite bcf- and bcn-groups by Proposition 4.4.

The more restrictive property bcn reveals fruitful when we consider the wider class of locally graded groups.

Corollary A locally graded bcn-group is finite-by-abelian-by-finite.

Our notation is mostly standard and we refer to [10].

2 Preliminaries

We point out a sufficient condition for a group to be cn (or even bcn).

Proposition 2.1 Let G be a group with a normal series $G_0 \leq G_1 \leq G$, where G_0 and G/G_1 have finite order m and n resp. If $H \leq G$, then H is commensurable with $H_1 := (H \cap G_1)G_0 \leq G_1$ and $\delta_G(H) \leq mn \cdot \delta_{G/G_0}(H_1/G_0)$.

In particular, if each subgroup of G_1/G_0 is commensurable with a normal subgroup of G/G_0, then G is a cn-group.

Now we give examples of non trivial cn-groups.

Proposition 2.2 For each prime p there is a nilpotent p-group with property bcn, which is not abelian-by-finite nor finite-by-abelian.

Proof. Consider a sequence P_n of isomorphic groups with order p^4 defined by $P_n := \langle x_n, y_n \mid x_n^{p^3} = y_n^p = 1, x_n^{p^2} = x_n^{1+p^2} \rangle = \langle x_n \rangle \times \langle y_n \rangle$ where clearly $P'_n = \langle x_n^{p^2} \rangle$ has order p. Let $P := \bigcup_{n \in \mathbb{N}} P_n$ and consider the automorphism γ of P such that $x_n^\gamma = x_n^{1+p}$ and $y_n^\gamma = y_n$, for each $n \in \mathbb{N}$. Clearly, γ has order p^2, acts as the automorphism $x \mapsto x^{1+p}$ on P/P' (which has exponent p^2) and acts trivially on P' (which is elementary abelian). Finally let $N := \langle x_0^{p^2} x_n^{p^2} \mid n \in \mathbb{N} \rangle$. Then N is a subgroup of P' with index p. Thus the p-group
\(G := (P \rtimes \langle \gamma \rangle)/N \) is a bcn-group by Proposition 2.1 applied to the series \(P'/N \leq P/N \leq G \).

We have that \(G' \) is infinite, since for each \(n \) we have \(x_n^{p^n} = [x_n, \gamma] \in [P_n, \gamma] > P_n' \). Moreover, we have that \(gN \in Z(P/N) \) if and only if \(\forall i \ [g, P_i] \leq N \), and \(N \cap P_i = 1 \). Thus \(Z(P/N) = Z(P)/N \) where \(Z(P) = Dr_n (x_n^{p^n}) \) has infinite index in \(P \).

If, by contradiction, \(G \) is abelian-by-finite, then there is an abelian normal subgroup \(A/N \) of \(P/N \) with finite index. Then for some \(m \in \mathbb{N} \) we have \(P = AF \), where \(F = Dr_{n<m} P_n \) is a finite normal subgroup of \(P \). Therefore \(P/N \) is center-by-finite, a contradiction. \(\square \)

3 Automorphisms of abelian groups

As in [4], for the action of a group \(\Gamma \) on a group \(A \), we consider the following properties:

- **P)** \(\forall H \leq A \ H = H^\Gamma; \)
- **AP)** \(\forall H \leq A \ |H/H^\Gamma| < \infty; \)
- **BP)** \(\forall H \leq A \ |H^\Gamma/H| < \infty; \)
- **CP)** \(\forall H \leq A \ \exists K = K^\Gamma \leq A \ such \ that \ H \sim K, \ (H, K \ are \ commensurable) \).

When \(P \) holds, one says that \(\Gamma \) acts on \(A \) by means of **power automorphisms** or that \(A \) is **\(\Gamma \)-hamiltonian** ([10],[1]). Recall that if \(\gamma \) is a power automorphism of an abelian \(p \)-group \(A \), then there exists a \(p \)-adic integer \(\alpha \) such that \(a^\gamma = a^\alpha \) for all \(a \in A \) (see [10] for details). Here \(a^\alpha \) stands for \(a^n \), where \(n \in \mathbb{N} \) is congruent to \(\alpha \) modulo the order of \(a \). On the other hand, a power automorphism of a non-periodic abelian group is either the identity or the inversion map.

Obviously both **AP** and **BP** imply **CP**. Moreover, **these three properties are equivalent**, provided \(A \) is abelian and \(\Gamma \) is finitely generated, while they are **in fact different in the general case even when \(A \) and \(\Gamma \) are elementary abelian \(p \)-groups** (see [4]). On the other hand, the properties **AP** and **BP** have previously characterized in [5] and [2] resp., as we are going to recall. To shorten statements we define a further property:

- **\(\hat{P} \)** \(\Gamma \) **has P on the factors of a \(\Gamma \)-series** \(1 \leq V \leq D \leq A \) where
 - i) \(V \) is free abelian with finite rank,
 - ii) \(D/V \) is divisible periodic with finite total rank,
 - iii) \(A/D \) is periodic and has finite \(p \)-exponent for each prime \(p \in \pi(D/V) \).
Theorem 3.1 [5],[2] Let Γ be a group acting on an abelian group A. Then:

a) Γ has AP on A if and only if there is a Γ-subgroup A_1 such that A/A_1 is finite and Γ has either P or $\tilde{\text{P}}$ on A_1.

b) Γ has BP on A if and only if there is a Γ-subgroup A_0 such that A_0 is finite and Γ has either P or $\tilde{\text{P}}$ on A/A_0.

By next statement we give a characterisation of the property CP along the same lines.

Theorem 3.2 Let Γ be a group acting on an abelian group A. Then:

c) Γ has CP on A if and only if there are Γ-subgroups $A_0 \leq A_1 \leq A$ such that A_0 and A/A_1 are finite and Γ has either P or $\tilde{\text{P}}$ on A_1/A_0.

The proof of Theorem 3.2 is at the end of this section. Here we deduce a corollary.

Corollary 3.3 For a group Γ acting on an abelian group A, the following are equivalent:

a) Γ has AP on A/A_0 for a finite Γ-subgroup A_0 of A,

b) Γ has BP on a finite index Γ-subgroup A_1 of A,

c) Γ has CP on A.

Let us recall some basic facts from [4] where inertial automorphisms of abelian groups have been introduced. These are automorphisms γ of a group G such that $H^\gamma \sim H$ for all $H \leq G$. Clearly, if Γ has CP on G and $\gamma \in \Gamma$, then γ is inertial.

Proposition 3.4 Let Γ be group acting on a locally nilpotent periodic group A. Then Γ has AP, BP, CP resp. on A if and only if Γ has AP, BP, CP resp. on finitely many primary components of A and P on all the other ones.

Lemma 3.5 Let Γ be a group acting on an abelian group A. If Γ has CP, then:

i) Γ has P on the maximum periodic divisible subgroup of A.

ii) if A is torsion-free, then each $\gamma \in \Gamma$ acts by conjugation on A by either the identity or the inversion map.

Now we prove some lemmas. In the first one we do not require that the group A is abelian.
Lemma 3.6 Let Γ be a group acting on a group A. If Γ has cp, then Γ has BP on the subgroup $X := \{ a \in A \mid \langle a \rangle^\Gamma \text{ is finite} \}$ of A.

Proof. For any $H \leq X$ there is K such that $H \sim K = K^\Gamma \leq A$. Then there is finite subgroup $F \leq X$ such that $H \leq KF$. Thus $H^\Gamma \leq KF^\Gamma$ and $|H^\Gamma : H| \leq |F^\Gamma| \cdot |HK : H|$ is finite. \(\square\)

Lemma 3.7 Let Γ be a group acting on a p-group A which is the direct product of cyclic groups. If Γ has cp, then the following subgroup has finite index in A:

$$X := \{ a \in A \mid \langle a \rangle^\Gamma \text{ is finite} \}$$

Proof. Assume by contradiction that A/X is infinite.

Let us see that, by elementary facts, there is a sequence (a_n) of elements of A such that
1) $\langle a_n | n \in \mathbb{N} \rangle = \text{Dr}_{n \in \mathbb{N}} \langle a_n \rangle$,
2) $A_I/A_I \cap X$ is infinite, for each infinite subset I of \mathbb{N}, where $A_I := \langle a_i | i \in I \rangle$.

In fact, if A/X has finite rank, it has a Prüfer subgroup Q/X. Let Y be a countable subgroup such that $Q = YX$. By Kulikov Theorem (see [10]) Y is the direct product of cyclic groups, so that we may choose elements $a_n \in Y$ such that $\langle a_n | n \in \mathbb{N} \rangle = \text{Dr}_{n \in \mathbb{N}} \langle a_n \rangle \leq Y$ and $|a_nX| < |a_{n+1}X|$. The claim holds. Similarly, if A/X has infinite rank, we may consider its socle S/X and consider a countable subgroup Y such that $S = YX$. Then we may choose elements $a_n \in Y$ which are independent mod X and generate their direct product as in (1).

We claim now that there are sequences of infinite subsets I_n, J_n of \mathbb{N} and Γ-subgroups $K_n \leq A$ such that for each $n \in \mathbb{N}$:
3) $I_n \cap J_n = \emptyset$ and $I_{n+1} \subseteq J_n$
4) $K_n \sim A_{I_n}$
5) $(K_1 \ldots K_i) \cap (A_{I_1} \ldots A_{I_i}) \leq (A_{I_1} \ldots A_{I_i})$, $\forall i \leq n$.

Proceed by induction on n. Choose an infinite subset I_1 of \mathbb{N} such that $J_1 := \mathbb{N} \setminus I_1$ is infinite. By cp-property there exists $K_1 = K_{I_1}^\Gamma$ commensurable with A_{I_1}.

Suppose we have defined I_j, J_j, K_j for $1 \leq j \leq n$ such that 3-5 holds. Since $(K_1 \ldots K_n) \sim (A_{I_1} \ldots A_{I_n})$, there is $m \in \mathbb{N}$ such that
6) $(K_1K_2 \ldots K_n) \cap A_N \leq (A_{I_1}A_{I_2} \ldots A_{I_n}) \langle a_1, \ldots, a_m \rangle$.

Let I_{n+1} and J_{n+1} be disjoint infinite subsets of $J_n \setminus \{1, \ldots, m\}$. By cp-property there exists $K_{n+1} = K_{I_{n+1}}^\Gamma$ commensurable with $A_{I_{n+1}}$. By the choice
of I_{n+1} it follows that

7) \((K_1 \ldots K_i) \cap (A_{I_1} \ldots A_{I_{n+1}}) \leq (K_1 \ldots K_i) \cap (A_{I_1} \ldots A_{I_n}) \quad \forall i \leq n\)

and so (5) holds for $n+1$, as wished. The claim is proved.

Note that by (2) and (5) it follows that $A_{I_n}/A_{I_n} \cap X$ is infinite for each $n \in \mathbb{N}$ and that also the following property holds

8) \((K_1 K_2 \ldots K_n) \cap \bar{A} \leq (A_{I_1} A_{I_2} \ldots A_{I_n}) \quad \forall n, \text{ where } \bar{A} := \text{Dr}_{n \in \mathbb{N}} A_{I_n}.

Now for each $n \in \mathbb{N}$, choose an element $b_n \in (A_{I_n} \cap K_n) \setminus X$. Then we have $B := \langle b_n \mid n \in \mathbb{N} \rangle = \text{Dr}_n \langle b_n \rangle$, where $\langle b_n \rangle^\Gamma$ is infinite and $\langle b_n \rangle^\Gamma \leq K_n \sim A_{I_n}$, so that

9) \(\langle b_n \rangle^\Gamma \cap A_{I_n} \) is infinite for each n.

Since there exists $B_0 = B_0^\Gamma \sim B$, we may take
- $B_* := (B_0 \cap B)^\Gamma = (B_* \cap B)^\Gamma \leq B^\Gamma$ where $B_* \sim B$.

Now $B_*/(B_* \cap B)$ and $B/(B_* \cap B)$ are both finite and there is $n \in \mathbb{N}$ such that if $B_n := \langle b_1, \ldots, b_n \rangle$ we have
- $(B_* \cap B)^\Gamma = B_* \leq (B_* \cap B)B_n^\Gamma$ and
- $B = (B_* \cap B)B_n$.

Since $b_n \in K_n$ for each n, we have $B_n \leq \bar{K}_n := K_1 K_2 \ldots K_n$ and
- $B^\Gamma = (B_* \cap B)^\Gamma B_n^\Gamma \leq (B_* \cap B)B_n^\Gamma \leq (B_* \cap B)\bar{K}_n \leq B\bar{K}_n$, so that
- $B^\Gamma \cap \bar{A} \leq B\bar{K}_n \cap A = B(\bar{K}_n \cap A) \leq BA_{I_1} A_{I_2} \ldots A_{I_n}$ by (8) above.

Thus
- $\langle b_{n+1} \rangle^\Gamma \cap A_{I_{n+1}} \leq B^\Gamma \cap A_{I_{n+1}} \leq (BA_{I_1} A_{I_2} \ldots A_{I_n}) \cap A_{I_{n+1}} = \langle b_{n+1} \rangle$ is finite, a contradiction with (9). \qed

Lemma 3.8 Let Γ be a group acting on an abelian periodic reduced group A. If Γ has cp, then there are Γ-subgroups $A_0 \leq A_1 \leq A$ such that A_0 and A/A_1 are finite and Γ has p on A_1/A_0.

Proof. By Proposition 3.4 it is enough to consider the case when A is a p-group. If A is the direct product of cyclic groups, by Lemma 3.7 we have that $A_1 := \{a \in A \mid \langle a \rangle^\Gamma \text{ is finite} \}$ has finite index in A. Further, by Lemma 3.6, Γ has bp on A_1. Then the statement follows from Theorem 3.1.

Let A be any reduced p-group and B_* be a basic subgroup of A. Then there is $B = B^\Gamma \sim B_*$. Since A/B_* is divisible, then the divisible radical of A/B has finite index. Thus we may assume that A/B is divisible. By Kulikov Theorem (see [10]), also B is a direct product of cyclic groups, therefore by the above there are Γ-subgroups $B_0 \leq B_1 \leq B$ such that B_0 and B/B_1 are
finite and \(\Gamma \) has \(p \) on \(B_1/B_0 \). We may assume \(B_0 = 1 \). Also, since \(A/B_1 \) is finite-by divisible, it is divisible-by-finite and we may assume it is divisible.

Let \(\gamma \in \Gamma \) and \(\alpha \) be a \(p \)-adic integer such that \(x^{\gamma} = x^\alpha \) for all \(x \in B_1 \). Consider the endomorphism \(\gamma - \alpha \) of \(A \) and note that \(B_1 \leq \ker(\gamma - \alpha) \). Thus \(A/\ker(\gamma - \alpha) \cong \text{im}(\gamma - \alpha) \) is both divisible and reduced, hence trivial. It follows \(\gamma = \alpha \) on the whole \(A \).

Proof of Theorem 3.2 For the sufficiency of the condition note that for any subgroup \(H \leq A \) we have \(H \sim H \cap A_1 \) and the latter is in turn commensurable with a \(\Gamma \)-subgroup since \(\Gamma \) has BP on \(A_1 \) by Theorem 3.1.

Concerning necessity, we first prove the statement when \(A \) is periodic. Let \(A = D \times R_1 \), where \(D \) is divisible and \(R_1 \) is reduced. Then there is a \(R = R^1 \sim R_1 \). Thus \(DR \) and \(D \cap R \) are \(\Gamma \)-subgroups of \(A \) with finite index and order resp. Then we can assume \(A = D \times R \). Let \(X := \{ a \in A \mid \langle a \rangle^\Gamma \) is finite\}. Clearly \(D \leq X \), as \(\Gamma \) has \(p \) on \(D \) by Lemma 3.5. On the other hand, \(X \cap R \) has finite index in \(R \) by Lemma 3.8. It follows \(A/X \) is finite and by Lemma 3.6 and Theorem 3.1 the statement holds.

In the non-periodic case, note that if \(V_0 \) is a maximal free subgroup of \(A \) (hence \(A/V_0 \) is periodic), then there is \(V_1 = V_1^\Gamma \sim V_0 \). Let \(n := |V_1/(V_0 \cap V_1)| \). Thus by applying Lemma 3.5 we have - there is a free abelian \(\Gamma \)-subgroup \(V := V_1^n \) such that \(A/V \) is periodic and each \(\gamma \in \Gamma \) acts on \(V \) by either the identity or the inversion map.

Suppose that \(V \) has finite rank. Consider now the action of \(\Gamma \) on the periodic group \(A/V \) and apply the above. Then there is a series \(V \leq A_0 \leq A_1 \leq A \) such that \(A_0/V \) and \(A/A_1 \) are finite and \(\Gamma \) has either \(p \) or \(\bar{p} \) on \(A_1/A_0 \). Since \(A_0 \) has finite torsion subgroup \(T \) we can factor out \(T \) and assume \(A_0 = V \). Then \(\Gamma \) has either \(p \) or \(\bar{p} \) on \(A_1 \) as straightforward verification shows.

Suppose finally that \(V \) has infinite rank. Let \(V_2 \leq V \) be such that \(V/V_2 \) is divisible periodic and its \(p \)-component has infinite rank for each prime \(p \). We may assume \(V := V_2 \). By the above case when \(A \) is periodic, there is a \(\Gamma \)-series \(V \leq A_0 \leq A_1 \leq A \) such that \(A_0/V \) and \(A/A_1 \) are finite and \(\Gamma \) has \(p \) on \(A_1/A_0 \). We may factor out the torsion subgroup of \(A_0 \), as it is finite, and assume \(A_0 = V \).

Again let \(V_2 \leq V \) be such that \(V/V_2 \) is divisible periodic and its \(p \)-component has infinite rank for each prime \(p \). Let \(\gamma \in \Gamma \) and \(\alpha_p \) be a \(p \)-adic integer such that \(x^{\gamma} = x^{\alpha_p} \) for all \(x \) in the \(p \)-component of \(A_1/V \). Let \(\epsilon = \pm 1 \) be such that \(x^{\gamma} = x^\epsilon \) for all \(x \in V \). By Lemma 3.5, \(\gamma \) has \(p \) on
the maximum divisible subgroup D_p/V_2 of the p-component of A_1/V_2. Thus $\alpha_p = \epsilon$ on D_p/V_2. Therefore $x^\gamma = x^\epsilon$ for all $x \in V$ and for all $x \in A_1/V_1$. We claim that $a^{\gamma} = a^\epsilon$ for each $a \in A_1$. To see this, for any $a \in A_1$ consider $n \in \mathbb{N}$ such that $a^n \in V$. Then there is $v \in V$ such that $a^{\gamma} = (a^n)^\epsilon = (a^\epsilon v)^n = a^{n^\epsilon}v^n$. Thus $v^n = 1$. Therefore, as V is torsion-free, we have $v = 1$, as wished. □

4 Abelian-by-finite CN-groups and Theorem B

Locally finite cf-groups are known to be abelian-by-finite and bcf (see [1]).

Proposition 4.1 Let G be an abelian-by-finite group.

i) if G is CN, then G is CF;

ii) if G is BCN, then G is BCF.

Proof. Let A be a normal abelian subgroup with finite index r. Then each $H \leq A$ has at most r conjugates in G. If $\delta_G(H) \leq n < \infty$ then for each $g \in G$ we have $|H : (H \cap H^g)| \leq 2\delta_G(H) \leq 2n$ hence $|H/H_G| \leq (2n)^r$. More generally, if H is any subgroup of G, then $|H/H_G| \leq r(2n)^r$. □

We state now a key fact about non-periodic CN-grups.

Lemma 4.2 Let G be a CN-group and $A = A(G)$ its subgroup generated by all infinite cyclic normal subgroups. Then G/A is periodic, A is abelian and each $g \in G$ acts on A by either the identity or the inversion map, hence $|G/C_G(A)| \leq 2$.

Proof. For any $x \in G$ there is $N \vartriangleleft G$ which is commensurable with $\langle x \rangle$. Then $n := |N : (N \cap \langle x \rangle)|$ is finite. Thus $N^n \leq \langle x \rangle$ where $N^n \vartriangleleft G$. Hence G/A is periodic.

It is clear that A is abelian. Let $g \in G$. If $\langle a \rangle \lhd G$ and a has infinite order, then there is $\epsilon_a = \pm 1$ such that $a^g = a^{\epsilon_a}$. On the other hand, by Lemma 3.5, there is $\epsilon = \pm 1$ such that for each $a \in A$ there is a periodic element $t_a \in A$ such that $a^g = a^{t_a}$. It follows $a^{t_a^{-\epsilon}} = t$. Therefore $\epsilon_a = \epsilon$ is independent of a, as wished. □

Lemma 4.3 Let G be an FC-group. If G is a CN-group then G is finite-by-abelian.
Proof. Let H be any subgroup of G. We shall prove that $|H^G : H|$ is finite. Consider $A = A(G)$ as in Lemma 4.2. Then $H \cap A \triangleleft G$ and $H/A \cap H$ is periodic. Hence we may assume H is periodic, that is, H contained in the torsion subgroup of the fc-group G. Our claim follows then from Lemma 3.6. □

Proof of Theorem B Let G be a cn-group and $G_0 \leq G_1 \leq G$ be a normal series such that G_1/G_0 is abelian and both G_0 and G/G_1 are finite. Then G has cp on G_1/G_0. By Corollary 3.3, the group G has bp on a subgroup $A_1/G_0 \leq G_1/G_0$ with finite index in G_1/G_0. Thus A_1/G_0 is contained in the fc-centre of G/G_0. Hence A_1 is contained in the fc-centre of F of G. So that G/F is finite. On the other hand, from Lemma 4.3 it follows that F' is finite.

Finally, (ii) and (iii) follow from Proposition 2.1 and Proposition 4.1. □

Let us characterize bcf-groups among abelian-by-finite cf-groups.

Proposition 4.4 Let G be a non-periodic group with an abelian normal subgroup A with finite index. Then the following are equivalent:

i) G is a bcf-group;

ii) G is a cf-group and there is $B \leq A$ such that B has finite exponent, $B \triangleleft G$ and each $g \in G$ acts by conjugation on A/B by either the identity or the inversion map.

Proof. Let T be the torsion subgroup of A. By Lemma 3.5, each $g \in G$ acts on A/T as the automorphism $x \mapsto x^{\epsilon_g}$ where $\epsilon_g = \pm 1$. Then the equivalence of (i) and (ii) holds with $B := \langle A^g_{\epsilon_g} \mid g \in G \rangle$, by Theorem 3 of [4]. □

5 Proof of Theorem A

Our first statement in this section is a reduction to nilpotent groups.

Lemma 5.1 A soluble p-group G with the property cn is nilpotent-by-finite.

Proof. By Theorem 3.2, one may refine the derived series of G to a finite G-series S such that G has p on each infinite factor of S. Recall that a p-group of power automorphisms of an abelian p-group is finite (see [10]). Then the stability group $S \leq G$ of the series S, that is, the intersection of
the centralizers in G of the factors of the series, has finite index in G. On the other hand, by a theorem of Ph.Hall, S is nilpotent.

We recall now an elementary property of nilpotent groups.

\textbf{Lemma 5.2} \textit{Let G be a nilpotent group with class c. If G' has finite exponent e, then $G/Z(G)$ has finite exponent dividing e^c.}

\textbf{Proof.} Argue by induction on c, the statement being clear for $c = 1$. Assume $c > 1$ and that G/Z has exponent dividing e^{c-1}, where $Z/\gamma_c(G) := Z(G/\gamma_c(G))$. Then for all $g, x \in G$ we have $[g^{e^{c-1}}, x] \in \gamma_c(G) \leq G' \cap Z(G)$. Therefore $1 = [g^{e^{c-1}}, x]^e = [g^e, x]$, and $g^e \in Z(G)$, as claimed.

Next lemma follows easily from Lemma 6 in [8].

\textbf{Lemma 5.3} \textit{Let G be a nilpotent p-group and N a normal subgroup such that G/N is an infinite elementary abelian group. If H and U are finite subgroup of G such that $H \cap U = 1$, there exists a subgroup V of G such that $U \leq V$, $H \cap V = 1$ and $V/N \cap V$ is infinite.}

We deduce a technical lemma which is a tool for our purpose.

\textbf{Lemma 5.4} \textit{Let G be a nilpotent p-group and N be a normal subgroup such that G/N is an infinite elementary abelian group. If N contains the FC-center of G and G' is abelian with finite exponent, then there are subgroups H, U of G such that $H \cap U = 1$, with injective maps $n \mapsto h_n \in H$ and $(i, n) \mapsto u_{i,n} \in [G, h_i^{-1}h_n] \cap U$, where $i, n \in \mathbb{N}, i < n$.}

\textbf{Proof.} Let us show that for each $n \in \mathbb{N}$ there is an $(n + 1)$-uple $v_n := (h_n, u_{0,n}, u_{1,n}, \ldots, u_{n-1,n})$ of elements of G such that:

1. $\{h_1, \ldots, h_n\}$ is linearly independent modulo N;
2. $u_{i,n} \in [G, h_i^{-1}h_n]$ \ \forall $i \in \{0, \ldots, n - 1\}$;
3. $\{u_{j,h} \mid 0 \leq j < k \leq n\}$ is \mathbb{Z}-independent in G';
4. $H_n \cap U_n = 1$, where $H_n := \langle h_1, \ldots, h_n \rangle$ and $U_n := \langle u_{j,h} \mid 0 \leq j < k \leq n \rangle$.

11
Then the statement is true for $H := \bigcup_{n \in \mathbb{N}} H_n$ and $U := \bigcup_{n \in \mathbb{N}} U_n$.

Let $h_0 := 1$ and choose $h_1 \in G \setminus N$. Since $N \geq F$, the \mathbb{F}_2-center of G, we have that γ_1 has an infinite numbers of conjugates in G, hence $[G, h_1]$ is infinite and residually finite. Thus we may choose $u_{0,1} \in [G, h_1]$ such that $\langle u_{0,1} \rangle \cap \langle h_1 \rangle = 1$.

Assume then that we have defined v_i for $i \leq n$, that is, we have elements $h_0, \ldots, h_n, u_{j,k}$, with $0 \leq j < k \leq n$ such that conditions 1-4 hold. To define an adequate v_{n+1}, note that by Lemma 5.3 we have that there exists $V_n \leq G$ such that $H_n \leq V_n$, $U_n \cap V_n = 1$ and V_nN/N is infinite. Then choose $i)$ $h_{n+1} \in V_n \setminus NU_nH_n$.

Note that $h_{n+1} \not\in FH_n \leq NH_n$, so that $\{h_1, \ldots, h_{n+1}\}$ is independent mod F. In particular $\forall i \in \{0, \ldots, n\}$, $h_i^{-1}h_{n+1} \not\in F$, hence also $[G, h_i^{-1}h_{n+1}]$ is infinite.

Since G' is residually finite, we may recursively choose $u_{0,n+1}, \ldots, u_{n,n+1}$ such that $\forall i \in \{0, \ldots, n\}$

$$i) \quad u_{n+1} \in [G, h_i^{-1}h_n]$$

$$iii) \quad \langle u_{i,n+1} \rangle \cap U_n\langle u_{h_{n+1}} \mid 0 < h < i \rangle H_{n+1} = 1$$

Then properties 1-3 hold for v_{n+1}. Finally suppose there are $h \in H_n$, $u \in U_n$, $s, t_0, \ldots, t_n \in \mathbb{Z}$ such that

$$iii) \quad a = hh_{n+1}^s = uu_{0,n+1}^{t_0} \cdots u_{n,n+1}^{t_n} \in H_{n_1} \cap U_{n+1}.$$

Then from (iii) it follows $u_{0,n+1}^{t_n} = \ldots = u_{0,n+1}^{t_1} = 1$. Hence $a = hh_{n+1}^s = u \in V_n \cap U_n = 1$ and 4 holds.

\begin{lemma}
Let G be a nilpotent p-group. If G is CN, then G' has finite exponent.
\end{lemma}

\begin{proof}
If, by contradiction, G' has infinite exponent, then the same happens to the abelian group $G'/\gamma_3(G)$ and there is N such that $G' \geq N \geq \gamma_3(G)$ and G'/N is a Prüfer group. We may assume $N = 1$, that is, G' itself is a Prüfer group and $G' \leq Z(G)$. Let us show that for any $H \leq G$ we have $|H^G : H| < \infty$, hence G' is finite, a contradiction. In fact we have that, by CN-property there is $K < G$ such that $K \sim H$. Thus H has finite index in HK and we can also assume $H = HK$, that is, H/H_G is finite. Thus, we can assume $H_G = 1$ and $H \cap G' = 1$, that is, H is finite with order p^n and HG' is an abelian Chernikov group. It follows that H is contained in the n-th socle S of $HG' < G$, where S is finite and normal in G, as wished.
\end{proof}

\begin{lemma}
Let G be a nilpotent p-group. If G is CN, then G is finite-by-abelian-by-finite.
\end{lemma}

12
Proof. Assume, by contradiction, G is a counterexample. Then both G' and $G/Z(G)$ are infinite. However, they have finite exponent by Lemmas 5.5 and 5.2. Moreover, even the fc-center F of G has infinite index by Lemma 4.3. On the other hand, G/F has finite exponent, since $F \geq Z(G)$.

Then $N := FGpG'$ has infinite index in G, otherwise the abelian group G/FG' has finite rank and finite exponent, hence it is finite. This implies that the nilpotent group G/F is finite, a contradiction.

If G' is abelian we are in a condition to apply Lemma 5.4 and get infinite elements and subgroups $h_n \in H$, $u_{i,n} \in U$ as in that statement. By cn-property there is K such that $H \sim K \trianglelefteq G$. So that the set $\{h_n(H \cap K) / n \in \mathbb{N}\}$ is finite. Hence there is $i \in \mathbb{N}$ and an infinite set $I \subseteq \mathbb{N}$ such that for each $n \in I$ we have $h_i^{-1}h_n \in H \cap K$ and $u_{i,n} \in U \cap [G, H \cap K] \leq U \cap K$. Therefore $U \cap K$ is infinite, in contradiction with $U \cap K \sim U \cap H = 1$.

For the general case, proceed by induction on the nilpotency class $c > 1$ of G and assume that the statement is true for $G/Z(G)$ and even that this is finite-by-abelian. Then there is a subgroup $L \leq G$ such that G/L is abelian and $L/Z(G)$ is finite. Thus L' is finite and, by the above, G/L' is finite-by-abelian-by-finite, a contradiction. □

Proof of Theorem A. Recall from the Introduction that all subgroups of G are subnormal-by-finite. Thus, by above quoted results in [6] and [3] resp., we may assume that G is locally nilpotent and soluble.

Assume first G is periodic. Then, by Lemma 3.4, only finitely many primary components are non-abelian. Thus we may assume G is a p-group and apply Lemma 5.1 and Lemma 5.6. It follows that G is finite-by-abelian-by-finite.

To treat the general case, consider $A = A(G)$ as in Lemma 4.2. We may assume A is central in G. Let V be a torsion-free subgroup of A such that A/V is periodic. Then G/V is locally finite and we may apply the above. Thus there is a series $V \leq F \leq G_1 \leq G$ such that G acts trivially on V, G_1/G_0 is abelian, while G_0/V and G/G_1 are finite. Then we can assume $G = G_1$ and note that the stabilizer S of the series has now finite index. Since S is nilpotent (by Ph.Hall Theorem) we can assume that $G = S$ is nilpotent. If T is the torsion subgroup of G, then VT/T is contained in the center of G/T. Since all factor of the upper central series of G/T are torsion-free we have G/T is abelian. Thus $G' \leq T \cap G_0$ is finite. □

Proof of Corollary. If the statement is false, by Theorem A we may assume there is a counterexample G periodic and not locally finite. Also we may
assume G is finitely generated and infinite. Let R be the locally finite radical of G. By Theorem A again, R is finite-by-abelian-by-finite. By Theorem B(i), there is a finite subgroup $G_0 \triangleleft G$ such that R/G_0 is abelian-by-finite. We may assume $G_0 = 1$, so that R is abelian-by-finite.

We claim that $\bar{G} := G/R$ has finite exponent at most $(n + 1)!$ where n is such that $n \geq \delta_G(H)$ for each $H \leq G$. In fact, for each $x \in \bar{G}$, there is $\bar{N} \triangleleft \bar{G}$ such that $|\bar{N} : (\bar{N} \cap \langle x \rangle)| \leq n$. Thus $\bar{N}^{n!} \leq \langle x \rangle$ and $\bar{N}^{n!} \triangleleft G$. Hence $\bar{N}^{n!} = 1$ and $x^{n!} = 1$.

By the positive answer (for all exponents) to the Restricted Burnside Problem, there is a positive integer k such that every finite image of \bar{G} has order at most k. Since \bar{G} is finitely generated, this means that the finite residual \bar{K} of \bar{G} has finite index and is finitely generated as well. Since also \bar{G} is locally graded (see [7]), we have $\bar{K} = 1$ and \bar{G} is finite. Therefore G is abelian-by-finite, a contradiction. \square

References

[1] J. T. Buckley, J.C. Lennox, B. H. Neumann, H. Smith, J. Wiegold, Groups with all subgroups normal-by-finite. J. Austral. Math. Soc. Ser. A 59 (1995), no. 3, 384-398.

[2] C. Casolo, Groups with finite conjugacy classes of subnormal subgroups, Rend. Sem. Mat. Univ. Padova 81 (1989), 107-149.

[3] C. Casolo, Groups in which all subgroups are subnormal-by-finite, Advances in Group Theory and Applications 1 (2016), 3345 DOI: 10.4399/97888548908173

[4] U. Dardano, S. Rinauro, Inertial automorphisms of an abelian group, Rend. Sem. Mat. Univ. Padova 127 (2012), 213-233. doi:10.4171/RSMUP/127-11

[5] S. Franciosi, F. de Giovanni, M.L. Newell, Groups whose subnormal subgroups are normal-by-finite, Comm. Alg. 23(14) (1995), 5483-5497.

[6] H. Heineken, Groups with neighbourhood conditions for certain lattices. Note di Matematica, 1 (1996), 131143.

[7] P. Longobardi, M. Maj, H. Smith. A note on locally graded groups. Rend. Sem. Mat. Univ. Padova, 94 (1995), 275-277.

[8] W. Möhres, Torsionsgruppen, deren Untergruppen alle subnormal sind. Geom. Dedicata, 31 (1989), 237244.
[9] B. H. Neumann, Groups with finite classes of conjugate subgroups, *Math. Z.* **63** (1955), 76-96.

[10] D.J.S. Robinson, *A course in the theory of groups*, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996.

[11] H. Smith, J. Wiegold, Locally graded groups with all subgroups normal-by-finite, *J. Austral. Math. Soc. Ser. A* **60** (1996), no. 2, 222-227.

Carlo Casolo, Dipartimento di Matematica U. Dini, Università di Firenze, Viale Morgagni 67A, I-50134 Firenze, Italy. email: casolo@math.unifi.it

Ulderico Dardano, Dipartimento di Matematica e Applicazioni “R.Caccioppoli”, Università di Napoli “Federico II”, Via Cintia - Monte S. Angelo, I-80126 Napoli, Italy. email: dardano@unina.it

Silvana Rinauro, Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Via dell’Ateneo Lucano 10 - Contrada Macchia Romana, I-85100 Potenza, Italy. email: silvana.rinauro@unibas.it