Observation of $\Xi(1620)^0$ and evidence for $\Xi(1690)^0$ in $\Xi^+ \to \pi^+\pi^+\pi^-$ decays

M. Sumihama,1,72 I. Adachi,19,15 J. K. Ahn,39 H. Aihara87 S. Al Said,81,37 D. M. Asner,3 H. Atmacan,77 T. Aushev,54 R. Ayad,81 V. Babu,82 I. Badhrees,81,36 S. Bahinipati,23 A. M. Bakich,80 V. Bansal,67 C. Beleno,14 M. Berger,78 V. Bhardwaj,22 B. Bhuyan,24 T. Bilka,5 J. Biswal,34 G. Bonvicini,91 A. Bozek,62 M. Bracko,48,34 T. E. Browder,18 D. Červenkov,7 V. Chekedian,49 A. Chen,39 B. G. Cheon,17 K. Chilikin,44 K. Choi,38 S.-K. Choi,16 Y. Choi,79 S. Choudhury,25 D. Cinabro,91 S. Cunliffe,8 T. Czank,85 N. Dash,32 S. Di Carlo,42 Z. Doležal,5 T. V. Dong,19,15 Z. Drásl,5 S. Eidelman,4,65 D. Efianov,4,65 J. E. Fast,67 B. G. Fulsom,67 R. Garg,68 V. Gaur,90 N. Gabyshev,4,65 A. Garmash,4,65 M. Gelb,35 A. Giri,25 P. Goldenzweig,35 E. Guide,32 J. Haba,19,15 K. Hayasaka,64 H. Hayashii,58 S. Hirose,55 W.-S. Hou,61 K. Inami,55 G. Inguglia,8 A. Ishikawa,85 R. Itoh,19,15 M. Iwasaki,66 Y. Iwasaki,19 W. W. Jacobs,19,15 H. B. Jeon,41 S. Jia,2 Y. Jin,87 K. K. Joo,6 T. Julius,50 A. B. Kaliyar,26 K. H. Kang,41 G. Karyan,8 Y. Kato,56 C. Kiesling,49 D. Y. Kim,76 J. B. Kim,39 K. T. Kim,39 S. H. Kim,17 K. Kinoshita,7 P. Kodyš,5 S. Korpar,48,34 D. Kotchetkov,19,15 P. Križan,45,34 R. Kroeger,51 P. Krokovny,4,65 R. Kumar,71 A. Kuzmin,4,65 Y.-J. Kwon,93 J. S. Lange,12 I. S. Lee,17 S. C. Lee,41 L. K. Li,28 Y. B. Li,69 L. Li Gioi,49 J. Libby,26 D. Liventsev,90,19 M. Lubej,34 T. Luo,11 M. Masuda,86 T. Matsuda,52 D. Matvienko,4,65,44 M. Merola,31,57 K. Miyabayashi,58 H. Miyata,64 R. Mizuk,44,53,54 G. B. Mohanty,82 H. K. Moon,39 T. Mori,55 R. Mussa,32 E. Nakano,66 T. Nakano,72 M. Nakae,19,15 T. Nanut,34 K. J. Nath,24 Z. Natkaniec,62 M. Niyama,40 N. K. Nisar,70 S. Nishida,19,15 H. Ono,63,64 P. Pakhlov,44,53 G. Pakhlova,44,53 B. Pal,3 S. Pardi,31 H. Park,41 S. Paul,44 T. K. Pedlar,47 R. Pestotnik,34 L. E. Pilinen,90 V. Popov,44,53 M. Ritter,46 G. Russo,31 D. Sahoo,82 S. Sandilya,7 L. Santelj,19 T. Sanuki,85 V. Savinov,70 O. Schneider,43 G. Schnell,1,21 C. Schwanda,29 Y. Seino,64 K. Senyo,92 M. E. Sevior,90 V. Shebalin,4,65 C. P. Shen,2 T.-A. Shibata,88 J.-G. Shiu,61 B. Shwartz,4,65 F. Simon,49,83 A. Sokolov,30 E. Solovieva,44,54 M. Starie,34 J. F. Strube,67 T. Sumiyoshi,89 M. Takizawa,75,20,73 U. Tamponi,32 K. Tanida,33 N. Taniguchi,19 F. Tenchini,50 M. Uchiha,88 T. Ugo,44,54 S. Uno,19,15 P. Urquijo,50 S. E. Vahsen,48 C. Van Hulse,1 G. Varner,18 V. Vorobyev,4,65 A. Vossen,9 B. Wang,7 C. H. Wang,60 M.-Z. Wang,61 P. Wang,28 X. L. Wang,11 M. Watanabe,64 S. Watanuki,44,53 E. Widmann,78 E. Won,39 H. Ye,8 J. Yelton,40 C. Z. Yuan,28 Y. Yusa,64 S. Zakharov,44,54 Z. P. Zhang,74 V. Zhilich,4,65 V. Zhukova,44,53 and V. Zhulanov,4,65

(The Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3Brookhaven National Laboratory, Upton, New York 11973
4Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6Chonnam National University, Kwangju 660-701
7University of Cincinnati, Cincinnati, Ohio 45221
8Deutsches Elektronen-Synchrotron, 22607 Hamburg
9Duke University, Durham, North Carolina 27708
10University of Florida, Gainesville, Florida 32611
11Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
12Justus-Liebig-Universität Gießen, 35392 Gießen
13Gifu University, Gifu 501-1193
14H. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
15SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
16Gyeongsang National University, Chinju 660-701
17Hanyang University, Seoul 133-791
18University of Hawaii, Honolulu, Hawaii 96822
19High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
20J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
21IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
22Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
23Indian Institute of Technology Bhuvneshwar, Satya Nagar 751007
24Indian Institute of Technology Guwahati, Assam 781039
25Indian Institute of Technology Hyderabad, Telangana 502285
26 Indian Institute of Technology Madras, Chennai 600036
27 Indiana University, Bloomington, Indiana 47408
28 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
29 Institute of High Energy Physics, Vienna 1050
30 Institute for High Energy Physics, Protvino 142281
31 INFN - Sezione di Napoli, 80126 Napoli
32 INFN - Sezione di Torino, 10125 Torino
33 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
34 J. Stefan Institute, 1000 Ljubljana
35 Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
36 King Abdullah City for Science and Technology, Riyadh 11442
37 Department of Physics, Faculty of Science, King Abdullah University, Jeddah 21589
38 Korea Institute of Science and Technology Information, Daejeon 305-806
39 Korea University, Seoul 136-713
40 Kyoto University, Kyoto 606-8502
41 Kyungpook National University, Daegu 702-701
42 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay
43 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
44 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
45 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
46 Ludwig Maximilians University, 80539 Munich
47 Luther College, Decorah, Iowa 52101
48 University of Maribor, 2000 Maribor
49 Max-Planck-Institut für Physik, 80805 München
50 School of Physics, University of Melbourne, Victoria 3010
51 University of Mississippi, University, Mississippi 38677
52 University of Miyazaki, Miyazaki 889-2192
53 Moscow Physical Engineering Institute, Moscow 115409
54 Moscow Institute of Physics and Technology, Moscow Region 141700
55 Graduate School of Science, Nagoya University, Nagoya 464-8602
56 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
57 Università di Napoli Federico II, 80055 Napoli
58 Nara Women’s University, Nara 630-8506
59 National Central University, Chung-li 32054
60 National United University, Miaoli 36003
61 Department of Physics, National Taiwan University, Taipei 10617
62 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
63 Nippon Dental University, Niigata 951-8580
64 Niigata University, Niigata 950-2181
65 Novosibirsk State University, Novosibirsk 630090
66 Osaka City University, Osaka 558-8585
67 Pacific Northwest National Laboratory, Richland, Washington 99352
68 Panjab University, Chandigarh 160014
69 Peking University, Beijing 100871
70 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
71 Punjab Agricultural University, Ludhiana 141004
72 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
73 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
74 University of Science and Technology of China, Hefei 230026
75 Showa Pharmaceutical University, Tokyo 194-8543
76 Soongsil University, Seoul 156-743
77 University of South Carolina, Columbia, South Carolina 29208
78 Stefan Meyer Institute for Subatomic Physics, Vienna 1090
79 Sungkyunkwan University, Suwon 440-746
80 School of Physics, University of Sydney, New South Wales 2006
81 Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
82 Tata Institute of Fundamental Research, Mumbai 400005
83 Excellence Cluster Universe, Technische Universität München, 85748 Garching
84 Department of Physics, Technische Universität München, 85748 Garching
85 Department of Physics, Tohoku University, Sendai 980-8578
86 Earthquake Research Institute, University of Tokyo, Tokyo 113-0032
87 Department of Physics, University of Tokyo, Tokyo 113-0033
88 Tokyo Institute of Technology, Tokyo 152-8550
We report the first observation of the doubly-strange baryon Ξ(1620)\(^0\) in its decay to Ξ\(^-\)π\(^+\)\π\(^+\) decays based on a 980 fb\(^{-1}\) data sample collected with the Belle detector at the KEKB asymmetric-energy \(e^+e^-\) collider. The mass and width are measured to be 1610.4 ± 6.0 (stat) +5.9 \(-3.5\) (syst) MeV/c\(^2\) and 59.9 ± 4.8 (stat) +3.0 \(-3.0\) (syst) MeV, respectively. We obtain 4.0σ evidence of the Ξ(1690)\(^0\) with the same data sample. These results shed light on the structure of hyperon resonances with strangeness \(S = -2\).

PACS numbers: 13.66.Bc, 14.20.Jn.

The constituent quark model has been very successful in describing the ground state of the flavor SU(3) octet and decuplet baryons \([\bar{1}, \bar{5}]\). However, some observed excited states do not agree well with the theoretical prediction. It is thus important to study such unusual states, both to probe the limitation of the quark chromodynamics (QCD) description of the structure of the ground state of the flavor SU(3) and to spot unrevealed aspects of the quantum chromodynamics (QCD) description of the structure of hadron resonances. Intriguingly, the Ξ resonances with strangeness \(S = -2\) may provide important information on the latter aspect.

The quantum numbers of several nucleons and \(S = -1\) hyperon resonances have been measured. Recently, there has been significant progress in the experimental study of charmed baryons by the Belle, BaBar, and LHCb collaborations. In contrast, only a small number of Ξ states have been measured \([1]\). Neither the first radial excitation with the spin-parity of \(J^P = \frac{1}{2}^+\) nor a first orbital excitation with \(J^P = \frac{1}{2}^-\) has been identified. Determination of the mass of the first excited state is a vital test of our understanding of the structure of Ξ resonances. One candidate for the first excited state is the Ξ(1690), which has a three-star rating on a four-star scale \([1]\). Another candidate is the Ξ(1620), with a one-star rating \([1]\). If the \(\frac{1}{2}^-\) state is found, it will be the doubly-strange analogue to the Λ(1405) state, which has been postulated as a candidate meson-baryon molecular state or a pentaquark \([1]\).

Experimental evidence for the Ξ(1620) \(\rightarrow \Xi \pi\) decay was reported in \(K^-p\) interactions in the 1970’s \([5, 6]\). The mass and width measurements are consistent but have large statistical uncertainties. The most recent experiment, in 1981, has not seen this resonance \([5]\). There is a lingering theoretical controversy about the interpretation of the Ξ(1620) and Ξ(1690) states \([5, 10]\), extending from their assignment in the quark model to their existence. This would be addressed with new high-quality experimental results for the first excited state with \(S = -2\).

The hadronic decays of charmed baryons governed by the \(e \rightarrow s\) quark transition are a good laboratory to probe hyperon resonances.

In this Letter, we study the decay \(\Xi^+_c \rightarrow \Xi^{0} \pi^+, \Xi^0 \rightarrow \Xi^- \pi^+\) based on a data sample collected with the Belle detector at the KEKB asymmetric-energy \(e^+e^-\) collider \([17]\). The charge conjugate mode is included throughout this Letter. The sample corresponds to an integrated luminosity of 980 fb\(^{-1}\). The major part of the data was taken at the Υ(4S) resonance; in addition, smaller integrated luminosity samples were collected off resonance and at the Υ(1S), Υ(2S), Υ(3S), and Υ(5S). We use a Monte Carlo simulation (MC) sample to characterize the mass resolution, detector acceptance, and invariant mass distribution in the available phase space. The MC samples are generated with EVTGEN \([18]\), and the detector response is simulated with GEANT3 \([19]\).

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals; all these components are located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. The detector is described in detail elsewhere \([20]\). Two inner detector configurations were used. A 2.0 cm radius beampipe and a 3-layer SVD was used for the first sample of 156 fb\(^{-1}\), while a 1.5 cm radius beampipe, a 4-layer SVD and a small-cell inner CDC were used to record the remaining 824 fb\(^{-1}\) \([21]\).

We reconstruct the \(\Xi^+_c\) via the \(\Xi^+_c \rightarrow \Xi^- \pi^+ \pi^+, \Xi^- \rightarrow \Lambda \pi\), \(\Lambda \rightarrow p \pi^-\) decay channel. Final-state charged particles, \(p\) and \(\pi^\pm\), are identified using the information from the tracking (SVD, CDC) and charged-hadron identification (CDC, ACC, TOF) systems combined into likelihood ratios \(L(i : j) = L_i/(L_i + L_j)\), where \(i, j \in \{p, K, \pi\}\). The \(\pi^\pm\) particles are selected by requiring the likelihood ratios \(L(\pi : K) > 0.6\); this has about 90% efficiency. The likelihood ratios \(L(p : \pi) > 0.6\) and \(L(p : K) > 0.6\) are required for proton candidates from the Λ. The Λ particles are reconstructed from \(p\pi^-\) pairs with about 98% efficiency. The three-momentum of the Λ is combined with that of a \(\pi^-\) track to reconstruct the helix trajectory of the Ξ\(^-\) candidate; this helix is extrapo-
lated back toward the IP. A vertex fit is applied to the \(\Xi^- \rightarrow \Lambda \pi^- \) decay and the \(\chi^2 \) is required to be less than 50. We retain \(\Xi^- \) candidates whose mass is within \(\pm 3.0 \text{ MeV}/c^2 \) of the nominal \(\Xi^- \) mass. Then, we combine the \(\Xi^- \) with two \(\pi^+ \) candidates, where the pion with the lower (higher) momentum is labeled \(\pi^+_1 \) (\(\pi^+_2 \)).

The closest distance between the \(\pi^+ \) track and the nominal \(e^+e^- \) interaction point must satisfy \(|dz| < 1.3 \text{ cm} \) along the beam direction, and \(|dr| < 0.16 \) (0.13) cm in the transverse plane for \(\pi^+_1 \) (\(\pi^+_2 \)) for both \(\pi^+_1 \) and \(\pi^+_2 \). A vertex fit is applied to the \(\Xi^+ \rightarrow \Xi^- \pi^+ \pi^+ \) decay. The \(\chi^2 \) is required to be less than 50. To purify the \(\Xi^+_1 \) samples, the scaled momentum \(x_p = p_{CM}/\sqrt{1/2 - m(\Xi^+_1)^2} \) is required to exceed 0.5, where \(p_{CM} \) is the momentum of \(\Xi^+_1 \) in the \(e^+e^- \) center-of-mass system, \(s \) is the squared total center-of-mass energy, and \(m(\Xi^+_1) \) is the \(\Xi^+_1 \) nominal mass. We retain \(\Xi^+_2 \) candidates that satisfy \(|M(\Xi^- \pi^- \pi^+) - m(\Xi^+_2)| < 12.7 \text{ MeV}/c^2 \). The region 30.0 \text{ MeV}/c^2 < \(|M(\Xi^- \pi^- \pi^+) - m(\Xi^+_2)| < 55.4 \text{ MeV}/c^2 \) defines the sideband for estimation of the combinatorial background.

The \(M(\Xi^- \pi^+_1) \) and \(M(\Xi^- \pi^+_2) \) distributions of the final sample are shown in Fig. 1(a). Peaks corresponding to \(\Xi(1530)^0 \), \(\Xi(1620)^0 \), and \(\Xi(1690)^0 \) are observed in the \(M(\Xi^- \pi^+_1) \) distribution. A reflection due to \(\Xi(1530)^0 \) decays is seen around 2.2 \text{ GeV}/c^2 in \(M(\Xi^- \pi^+_1) \). The hatched histograms are the distributions of the \(\Xi^+_1 \) sideband events, where only the \(\Xi(1530)^0 \) is observed. The Dalitz plot of \(M^2(\Xi^- \pi^+_1) \) vs. \(M^2(\Xi^- \pi^+_2) \) is shown in Fig. 1(b). The cluster of events due to the \(\Xi(1530)^0 \) is observed in the \(\Xi(1620)^0 \) and \(\Xi(1690)^0 \) signals. There are currently no known particles with a mass in the range of 2.1 - 2.3 \text{ GeV}/c^2 that would decay into \(\Xi \pi \). Such massive particles would decay predominantly into three-particle final state such as \(\Xi \pi \pi \). The peaks around 1.60 and 1.69 \text{ GeV}/c^2 in \(M(\Xi^- \pi^+_1) \) are interpreted as the \(\Xi(1620)^0 \) and \(\Xi(1690)^0 \) resonances. We see an unknown structure in the range 1.8 - 2.1 \text{ GeV}/c^2 in \(M(\Xi^- \pi^+) \). These events are expected to be due to resonances such as \(\Xi(1820)^0 \), \(\Xi(1950)^0 \), and \(\Xi(2030)^0 \).

The correction of the event-reconstruction efficiency is applied to the mass spectrum. To calculate this efficiency, we generate MC events for the non-resonant three-body decay \(\Xi^+_1 \rightarrow \Xi^- \pi^+ \pi^+ \) with a uniform distribution in phase space. The efficiency is the number of events surviving the selections divided by the total number of generated events, and is measured as a function of \(M(\Xi^- \pi^+_1) \); the resulting efficiency is from 0.082 to 0.097 and shows a nearly flat distribution in \(M(\Xi^- \pi^+_1) \). The mass distribution is divided by this efficiency and is normalized by the total number of events.

We perform a binned maximum-likelihood fit to the efficiency-corrected \(M(\Xi^- \pi^+_1) \) distribution. The fit is applied for the data samples in the signal region and the sideband region simultaneously. The fitting range is restricted to \((1.46, 1.76) \text{ GeV}/c^2 \) to avoid inclusion of the unknown structure between 1.8 and 2.1 \text{ GeV}/c^2. The fitting function for the mass spectrum in the signal region includes resonances due to the \(\Xi(1530)^0 \), \(\Xi(1620)^0 \), and \(\Xi(1690)^0 \), a non-resonant contribution, and the combinatorial background. The fitting function for the mass spectrum in the sideband region includes the \(\Xi(1530)^0 \) signal and the combinatorial background. The shape of the fitting function for the combinatorial backgrounds is common for the mass spectra in the signal region and the sideband region, and is made by a function with a threshold: \(u^a \exp(u b) + c u \), where \(u = 1 - [(2 - M)/(2 - d)]^2 \) and \(M = M(\Xi^- \pi^+_1) \); \(a, b, c, \) and \(d \) are free parameters. We assume an S-wave non-resonant contribution, and generate the distribution from the MC simulation of \(\Xi^+_1 \rightarrow \Xi^- \pi^+ \pi^+ \) decays with a uniform distribution in phase space. The \(\Xi(1620)^0 \) signal is modeled with the S-wave relativistic Breit-Wigner function. The interference between \(\Xi(1620)^0 \) and the S-wave non-resonant process is taken into account, and these are coherently added. The \(\Xi(1530)^0 \) and \(\Xi(1690)^0 \) signals are modeled with P- and S-wave relativistic Breit-Wigner functions convolved with a fixed Gaussian resolution function of width 1.38 \text{ MeV}/c^2 and 2.04 \text{ MeV}/c^2, respectively, as determined from the MC simulation. The width and mass of \(\Xi(1530)^0 \) and \(\Xi(1690)^0 \) particles are floated in the fit. The mass and width of the \(\Xi(1690)^0 \) are fixed in the fit to the values (1686 \text{ MeV}/c^2 and 10 \text{ MeV}, respectively) measured by the WA89 Collaboration. Figure 1(a) shows the \(\Xi^- \pi^+_1 \) mass spectrum with the fitting result. The \(\chi^2/\text{ndf} \) (where \(\text{ndf} \) is the number of degrees of freedom) is 66/86. For the \(\Xi(1690)^0 \) resonance, the fit is repeated by fixing the yield to zero; the resulting difference in log-likelihood with respect the nominal fit and the change of the number of degrees of freedom are used to obtain the signal significance. The statistical significance of the \(\Xi(1690)^0 \) is 4.5\(\sigma \). To check the stability of

![FIG. 1: (a) The \(\Xi^- \pi^+_1 \) (solid) and \(\Xi^- \pi^+_1 \) (dashed) invariant mass distributions in the \(\Xi^+_1 \) signal region, as well as the corresponding distributions (hatched) in \(\Xi^+_1 \) sideband region. (b) The Dalitz distribution for \(\Xi^+_1 \rightarrow \Xi^- \pi^+ \pi^+ \). (color online)"

\[M(\Xi^- \pi^+_1) \]
the significance of the $\Xi(1690)^0$, various fit conditions are tried. When the P-wave-only relativistic Breit-Wigner with fixed mass and width is used as the fitting function, the significance is 4.0σ. When the S-wave-only relativistic Breit-Wigner with the floated mass and width is used, the significance is 4.6σ. We take the minimum value of 4.0σ as the significance including the systematic uncertainty. The measured mass and width of $\Xi(1530)^0$ are 1533.4 ± 0.35 MeV/c² and 11.2 ± 1.5 MeV, respectively. The measured mass and width of $\Xi(1620)^0$ are 1610.4 ± 6.0 MeV/c² and 60.0 ± 4.8 MeV, respectively. The mass resolution (σ) at 1600 MeV/c² is 1.6 MeV/c² as determined from the MC simulation. The width of the $\Xi(1620)^0$ is 59.9 MeV after incorporating this mass resolution.

We itemize the systematic uncertainties on the mass and width of the $\Xi(1620)^0$ resonance in Table I. The mass scale and width are checked by comparing the reconstructed mass of the $\Xi(1530)^0$ in the $\Xi^-\pi^+$ channel with the nominal mass. The differences of the mass and width are −1.5 MeV/c² and −2.7 MeV, respectively. We then generate and simulate $\Xi^+_c \rightarrow \Xi^0\pi^+$, $\Xi^+ \rightarrow \Xi^-\pi^+$ events and analyze these events by the same program as for the real data; the mass scale is checked by comparing the reconstructed mass of Ξ^+ with the generated mass. Here, the difference of the mass is −0.2 MeV/c² and the difference of the width is less than the statistical error. The systematic uncertainty due to the mass shape of the $\Xi(1620)^0$ is obtained by applying the fit with the P-wave relativistic Breit-Wigner function instead of the S-wave function. The systematic error due to the mass shape of the $\Xi(1690)^0$ is obtained by applying the fit with the P-wave relativistic Breit-Wigner function instead of the S-wave function, with floated mass and width. The nominal bin width of the mass spectrum is 3.0 MeV/c². We determine its systematic uncertainty by changing the bin size from 2.5 to 3.5 MeV/c² and refitting.

All of the above sources are uncorrelated, so the total systematic uncertainty is calculated by summing them in quadrature.

We refit the data using a function that excludes the interference between $\Xi(1620)^0$ and the S-wave non-resonant process. Figure 2(b) shows the $\Xi^-\pi^+$ mass spectrum with this hypothesis. The χ^2/ndf is 80/87, which is worse than for the nominal fit. Here, the measured mass and width of the $\Xi(1620)^0$ are 1601.2 ± 1.5 MeV/c² and 63.6 ± 8.7 MeV, respectively.

For the first time, the $\Xi(1620)^0$ particle is observed in its decay to $\Xi^-\pi^+$ via $\Xi^+_c \rightarrow \Xi^-\pi^+\pi^+$ decays. The number of $\Xi(1620)^0$ events is two orders of magnitude larger than in previous experiments. The measured mass and width of the $\Xi(1620)^0$ are consistent with the results of previous measurements within the large uncertainties of the latter and are much more precise. The width of the $\Xi(1620)^0$ is somewhat larger than that of the other Ξ^+ particles [1].

The constituent quark models have predicted the first excited states of Ξ around 1800 MeV/c² [2]; therefore, it is difficult to explain the structure of the $\Xi(1620)^0$ and $\Xi(1690)^0$ in this context. Instead, it implies that these states are candidates of a new class of exotic hadrons. We observe in the low-mass region two states with a mass difference of about 80 MeV/c²: the $\Xi(1620)^0$ is strongly coupled to $\Xi\pi$ and the $\Xi(1690)^0$ to ΣK. The situation is similar to the two poles of the $\Lambda(1405)$ [3] and suggests the possibility of two poles in the $S = -2$ sector. Studying these states may explain the riddle about the $\Lambda(1405)$; consequently, the interplay between the $S = -1$ and $S = -2$ states can help resolve this longstanding problem of hadron physics.

The $\Xi(1620)^0$ and $\Xi(1690)^0$ particles are found in the decay of Ξ^+_c while their signals are not seen in the sideband events of Fig 2(a). These results offer a clue for

Source	Mass (MeV/c²)	Width (MeV)
Mass scale	−1.5	−2.7
Mass shape of $\Xi(1620)$	+4.5	+1.8
Mass shape of $\Xi(1690)$	+2.3	+1.7
Bin size	±3.1	±1.3
Total	±3.5	±1.2
understanding the quark structure of these exotic states. The result indicates that the hadronic decays of charmed baryons via charm-to-strange quark transitions are potentially a promising system for further studies of strange baryons [16].

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Science Fund under Grant No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 11435013, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. 18PJ1401000; the Excellence Cluster Uni- verse, and the VolkswagenStiftung; the Department of Forschungsgemeinschaft, the Carl Zeiss Foundation, the Deutsche and Sports of the Czech Republic under Contract No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. 11575017, No. 11675166, No. 11705209; National Research Foundation of Korea Grants No. 2015H1A2A1033649, No. 2016R1D1A1B01010135, No. 2016K1A3A7A9005 603, No. 2016R1D1A1B02012900, No. 2018R1A2B3003 643, No. 2018R1A6A1A06024970, No. 2018R1D1 A1B07047294; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Grant of the Russian Feder-

[1] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98 030001 (2018).
[2] K. T. Chao, N. Isgur, and G. Karl, Phys. Rev. D 23 155 (1981).
[3] S. Capstick and N. Isgur, Phys. Rev. D 34 2809 (1986).
[4] T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. 67 55 (2012).
[5] E. Briefel et al., Phys. Rev. D 16 2706 (1977).
[6] A. de Belfeone et al., Nuovo Cimento 28 289 (1975).
[7] R. T. Ross et al., Phys. Lett. B 38 177 (1972).
[8] J. K. Hassall et al., Nucl. Phys. B 189 397 (1981).
[9] U. Loring, B. Ch. Mentsch, and H. R. Petry, Eur. Phys. J. A10 447 (2001).
[10] A. Ramos, E. Oset, and C. Bennhold, Phys. Rev. Lett. 25 252001 (2002).
[11] C. Garcia–Recio, M. F. M. Lutz, and J. Nieves, Phys. Lett. B 582 49 (2004).
[12] Y. Oh, Phys. Rev. D 75 074002 (2007).
[13] M. Pervin and W. Roberts, Phys. Rev. C 77 025202 (2008).
[14] L.Y. Xiao and X.H. Zhong, Phys. Rev. D 87 094002 (2013).
[15] R. N. Faustov and V. O. Gralkin, Phys. Rev. D 92 054005 (2015).
[16] K. Miyahara, Phys. Rev. C 95 035212 (2017).
[17] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res. Sect. A 499 , 1 (2003), and other papers included in this Volume; T.Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.
[18] D. J. Lange, Nucl. Instrum. Methods A462 152 (2001).
[19] R. Brun, et al., Report No. CERN DD/EE/84-1 (1984).
[20] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A A479, 117 (2002); also see detector section in J.Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
[21] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instrum. Methods Phys. Res. Sect. A A560, 1 (2006).
[22] M. I. Adamovich et al. (WA89 Collaboration), Eur. Phys. J. C5 621 (1998).