Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Editorial

Introduction

Infectious diseases remain one of the leading causes of death and disability worldwide. Despite remarkable advances in vaccine development over the last century, the ease of world travel and increased global interdependence have added complexity to the fight against these diseases. With the aim of providing a forum to discuss the challenges facing vaccine development, Fraunhofer USA Center for Molecular Biotechnology, in cooperation with the International Alliance for Biological Standardization, organize an annual conference “New Technologies, New Vaccines”, dating back to 2006. This conference addresses new substrates and methodologies for the production and assessment of vaccines, and new approaches to overcome hurdles in vaccine research and development. The manuscripts collected in this special issue reflect advances in the field of vaccinology that were presented at the eleventh conference in this series, held at the Hotel du Pont Conference Center in Wilmington, Delaware from March 20th to 23rd, 2016. The conference attracted over 120 attendees working on various aspects of vaccine development and regulation, including representatives from governmental research laboratories, regulatory agencies, academia and the pharmaceutical and biotechnology industries. Topics addressed included emerging and re-emerging infectious diseases, mosaic transmitted infectious diseases, antibody vaccines, systems biology approaches to vaccines, lead candidate identification,

\textit{miRNA} biomarkers for VERO-cell tumorigenicity in a new African green monkey kidney cell line. As can be seen from the manuscripts compiled in this special issue, the conference proved an excellent venue for presenting new work on vaccine development. The relatively small size of the conference, and attendance by a wide range of vaccine developers and regulatory personnel, make it an excellent setting for productive discussions on all aspects of vaccinology. Further meetings in this series are anticipated.

\textbf{References}

[1] Maslow J. Vaccine development for emerging virulent infectious diseases. Vaccine 2017;35(41):5437–43.
[2] Poland G. Immunoglobulin GM and KM genes and measles vaccine-induced humoral immunity. Vaccine 2017;35(41):5444–7.
[3] Seth L. Development of a self-assembling protein nanoparticle vaccine targeting \textit{plasmodium falciparum} circumsporozoite protein delivered in three army liposome formulation adjuvants. Vaccine 2017;35(41):5448–54.
[4] Puligedda RD. Characterization of human monoclonal antibodies that neutralize multiple poliovirus serotypes. Vaccine 2017;35(41):5455–62.
[5] Jones MR. Stability and pre-formulation development of a plant-produced anthrax vaccine candidate. Vaccine 2017;35(41):5463–70.

[6] Toprani VM. Development of a candidate stabilizing formulation for bulk storage of a Double Mutant Heat Labile Toxin (dmLT) protein based adjuvant. Vaccine 2017;35(41):5471–80.

[7] Peden K. Development of a micro-neutralization assay for ebolaviruses using a replication-competent vesicular stomatitis hybrid virus and a quantitative PCR readout. Vaccine 2017;35(41):5481–6.

[8] Dauner A. The in vitro MIMIC® platform reflects age-associated changes in immunological responses after influenza vaccination. Vaccine 2017;35(41):5487–94.

[9] Trausch JJ. Replacing antibodies with modified DNA aptamers in vaccine potency assays. Vaccine 2017;35(41):5495–502.

Stephen J. Streatfield *
Jerzy Karczewski
Vidadi Yusibov
Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
* Corresponding author.
E-mail address: Stephen.Streatfield@fhcmb.org (S.J. Streatfield)

Available online 18 August 2017