SARS-CoV-2 and mosquitoes: an extreme challenge

Yan-Jang S. Huang
Biosecurity Research Institute and Department of Diagnostic Medicine and Pathobiology, Kansas State University
https://orcid.org/0000-0002-9687-9341

Dana L. Vanlandingham
Biosecurity Research Institute and Department of Diagnostic Medicine and Pathobiology, Kansas State University

Ashley N. Bilyeu
Biosecurity Research Institute and Department of Diagnostic Medicine and Pathobiology, Kansas State University

Haelea M. Sharp
Biosecurity Research Institute and Department of Diagnostic Medicine and Pathobiology, Kansas State University

Susan M. Hettenbach
Biosecurity Research Institute, Kansas State University

Stephen Higgs (✉ shiggs@bri.ksu.edu)
Biosecurity Research Institute and Department of Diagnostic Medicine and Pathobiology, Kansas State University

Research Article

Keywords: SARS-CoV-2, susceptibility, mosquitoes

DOI: https://doi.org/10.21203/rs.3.rs-32261/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The research addresses public speculation that SARS-CoV-2 might be transmitted by mosquitoes. The World Health Organization has stated “To date there has been no information nor evidence to suggest that the new coronavirus could be transmitted by mosquitoes”. Here we provide the first experimental data to the capacity of SARS-CoV-2 to infect and be transmitted by mosquitoes. Using three species of mosquitoes from both genera involved in transmission of most arboviruses that infect humans we demonstrate that SARS-CoV-2 virus is unable to replicate in mosquitoes and therefore cannot be transmitted to people.

Introduction

The question has been asked as to whether or not SARS-CoV–2, the causative agent of COVID–19, can infect and be transmitted by mosquitoes. The WHO has definitively stated that mosquitoes cannot transmit the virus\(^3\), and in interviews, various experts have unanimously and definitively also dispelled the suggestion that SARS-CoV–2 could be transmitted by mosquitoes. The presumption may be based on various observations and facts extrapolated from other coronaviruses. For example, neither the closely related SARS-CoV nor MERS produce the level of virus in the blood that for typical arthropod-borne viruses such as dengue and yellow fever viruses, would be regarded as high enough to infect mosquitoes. Recent studies with infected humans and non-human primates infected with SARS-CoV–2, found no detectable virus in peripheral blood\(^4,5\). Lack of viremia is also suggested by the fact that neither SARS-CoV nor MERS infections have resulted from blood transfusions or organ transplantations. Despite the lack of detectable viremia, experiments to determine the potential role of mosquitoes in SARS-CoV–2 transmission, are necessary because previous experiments have demonstrated that mosquitoes may become infected with viruses even when exposed to levels of infectious virus that are below the level of detection\(^6–8\).

To be a biological vector of viruses, mosquitoes must take up sufficient virus to infect midgut epithelial cells, and the virus must then disseminate to infect other organs in the hemocoel, notably the salivary glands. Overcoming the midgut infection and escape barriers is essential for a virus to be transmissible by mosquitoes. If these barriers are bypassed by direct inoculation of virus into the hemocoel, then even non-susceptible mosquitoes can be infected. Inoculation can accomplish short-term infection of insects that could never be naturally infected because they do not feed on blood. These include not only non-hematophagous mosquitoes such as *Toxorhynchites* spp, but also male mosquitoes and even beetles and butterflies\(^9,10\).

Like the over 500 viruses that are transmitted by arthropods\(^11\), with the exception of African swine fever virus, coronaviruses have an RNA genome. In spite of the recovery of coronavirus or coronavirus-like agents from various arthropods\(^12,13\), no virus in the family has been isolated from mosquitoes. To date, only one report related to epidemic coronaviruses and mosquitoes has been published\(^14\). This study evaluated the potential use of mosquitoes for surveillance, included feeding of MERS virus to *Anopheles*
gambiae mosquitoes. Residual viral RNA, probably in the remains of the bloodmeal in the midgut, was detected up to 1 day post-feeding. Similarly, positive PCR detection was observed for Bacillus anthracis, Trypanosoma brucei gambiensis, and Zika virus, none of which infect or are transmitted by An. gambiae. Levels of detected RNA were equal to or below the input level, indicating a lack of replication.

Results And Discussion

In this study, the susceptibility of three mosquito species, Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus, were determined through the intrathoracic inoculation with SARS-CoV-2. Infectious viruses could only be recovered from mosquitoes collected within two hours of inoculation. Quantities of infectious viruses corresponded to the amount of inocula, producing infectious titers at approximately 1.5 logTCID$_{50}$/ml and suggesting the lack of replication after injection. Waning of infectious titers was rapid and led to the lack of infectious viruses isolated from the majority of mosquitoes obtained between one and fourteen days post challenge suggests that mosquitoes in the Aedes and Culex genera are refractory to SARS-CoV-2 and unlikely to contribute to viral maintenance and transmission in nature (Table 1.).

Table 1. Recovery rates of SARS-CoV-2 in mosquitoes receiving intrathoracic injection.

Species	Inoculum	0*	1	3	7	10	14
Ae. aegypti	Mock**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	SARS-CoV-2	83.3%	0.0%	0.0%	0.0%	0.0%	0.0%
Ae. albopictus	Mock**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	SARS-CoV-2	83.3%	0.0%	7.1%	0.0%	0.0%	0.0%
Cx. quinquefasciatus	Mock**	0.0%	0.0%	N/A	0.0%	N/A	0.0%
	SARS-CoV-2	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%

* Mosquitoes obtained at day 0 post infection were collected within two hours from the time of intrathoracic injection.
** All mock control groups of mosquitoes received Leibovitz’s L-15 media.

Methods

Virus: SARS-CoV-2 virus WA1/2020 strain was obtained from BEI Resources (Catalog # NR-52281). Virus was propagated in Vero76 cells at the approximate multiplicity of infection of 0.01. Infectious titers of viral stocks used for intrathoracic injection were approximately 5.5 logTCID$_{50}$/ml.

Mosquitoes: The colonized Aedes aegypti strain Rex D, Higgs white eye was originally obtained from Puerto Rico15, Ae. albopictus generation F11 originated from New Jersey, and Culex quinquefasciatus F43 were from Florida16,17. All mosquitoes were reared as previously described and have proven to be susceptible to several arboviruses.
Viral challenge of mosquitoes: For intrathoracic inoculation, mosquitoes were cold-anaesthetized on ice, transferred to a secure glove box, and then inoculated with approximately 0.5µl of viral stock. It was anticipated that each mosquito received approximately 2.0 logTCID\textsubscript{50}/ml of infectious viruses. L-15 medium was inoculated as a negative control. The results were compiled from two experiments using \textit{Ae. aegypti} and \textit{Ae. albopictus} and one single experiment using for \textit{Cx. quinquefasciatus}. Experimentally challenged mosquitoes were maintained and sampled under conditions as previously described18.

Declarations

Data Availability Statement: The data that support the finding of this study are available in the table of this manuscript.

Acknowledgements (optional). This work was performed in the ACL-3 insectary at Kansas State University's Biosecurity Research Institute.

Author contributions. S.H., D.L.V. and Y.S.H conceived the study. Y.S.H., A.B., H.M.S., and S.H. executed the experimental plans. D.L.V. provided financial support and reviewed the manuscript. S.M.H prepared approvals for the research, coordinated experiments, and prepared manuscript.

Competing interests. The authors declare no competing interests. The funder has not role in the design and execution of experimental plans or the interpretation of data.

Materials & Correspondence. Author requests should be directed to Stephen Higgs, shiggs@bri.ksu.edu.

References

1 Rosen, L. The use of Toxorhynchites mosquitoes to detect and propagate dengue and other arboviruses. \textit{Am J Trop Med Hyg} \textbf{30}, 177-183, doi:10.4269/ajtmh.1981.30.177 (1981).

2 Rosen, L. & Gubler, D. The use of mosquitoes to detect and propagate dengue viruses. \textit{Am J Trop Med Hyg} \textbf{23}, 1153-1160, doi:10.4269/ajtmh.1974.23.1153 (1974).

3 World Health Organization. \textit{Coronavirus disease (COVID-19) advice for the public: Myth busters}, <https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters> (2020).

4 Chandrashekar, A. \textit{et al.} SARS-CoV-2 infection protects against rechallenge in rhesus macaques. \textit{Science}, doi:10.1126/science.abc4776 (2020).

5 Huang, C. \textit{et al.} Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. \textit{Lancet} \textbf{395}, 497-506, doi:10.1016/S0140-6736(20)30183-5 (2020).
6 Higgs, S., Schneider, B. S., Vanlandingham, D. L., Klingler, K. A. & Gould, E. A. Nonviremic transmission of West Nile virus. *Proc Natl Acad Sci U S A* **102**, 8871-8874, doi:10.1073/pnas.0503835102 (2005).

7 McGee, C. E., Schneider, B. S., Girard, Y. A., Vanlandingham, D. L. & Higgs, S. Nonviremic transmission of West Nile virus: Evaluation of the effects of space, time, and mosquito species. *American Journal of Tropical Medicine and Hygiene* **76**, 424-430, doi:DOI 10.4269/ajtmh.2007.76.424 (2007).

8 Reisen, W. K., Fang, Y. & Martinez, V. Is nonviremic transmission of West Nile virus by Culex mosquitoes (Diptera: Culicidae) nonviremic? *J Med Entomol* **44**, 299-302, doi:10.1603/0022-2585(2007)44[299:intown]2.0.co;2 (2007).

9 Peloquin, J. J., Thomas, T. A., Higgs, S. Pink bollworm larvae infection with a double subgenomic Sindbis (dsSIN) virus to express genes of interest. *Journal of Cotton Science* **5**, 114-120 (2001).

10 Lewis, D. L. *et al.* Ectopic gene expression and homeotic transformations in arthropods using recombinant Sindbis viruses. *Curr Biol* **9**, 1279-1287, doi:10.1016/s0960-9822(00)80049-4 (1999).

11 Centers for Disease Control and Prevention. (ed Centers for Disease Control and Prevention) (Center for Disease Control and Prevention, Atlanta, GA, 1985).

12 Traavik, T., Mehl, R. & Kjeldsberg, E. "Runde" viurs, a coronavirus-like agent associated with seabirds and ticks. *Arch Virol* **55**, 25-38, doi:10.1007/BF01314476 (1977).

13 Calibeo-Hayes, D. *et al.* Mechanical transmission of turkey coronavirus by domestic houseflies (Musca domestica Linnaeaus). *Avian Dis* **47**, 149-153, doi:10.1637/0005-2086(2003)047[0149:MTOTCB]2.0.CO;2 (2003).

14 Fauver, J. R. *et al.* The Use of Xenosurveilance to Detect Human Bacteria, Parasites, and Viruses in Mosquito Bloodmeals. *Am J Trop Med Hyg* **97**, 324-329, doi:10.4269/ajtmh.17-0063 (2017).

15 Wendell, M. D., Wilson, T. G., Higgs, S. & Black, W. C. Chemical and gamma-ray mutagenesis of the white gene in Aedes aegypti. *Insect Mol Biol* **9**, 119-125, doi:10.1046/j.1365-2583.2000.00166.x (2000).

16 Park, S. L., Huang, Y. S., Higgs, S. & Vanlandingham, D. L. Application of a Nonpaper Based Matrix to Preserve Chikungunya Virus Infectivity at Ambient Temperature. *Vector Borne Zoonotic Dis* **18**, 278-281, doi:10.1089/vbz.2017.2212 (2018).

17 Huang, Y. J. *et al.* Culex Species Mosquitoes and Zika Virus. *Vector Borne Zoonotic Dis* **16**, 673-676, doi:10.1089/vbz.2016.2058 (2016).

18 Higgs, S. *et al.* Growth characteristics of ChimeriVax-Den vaccine viruses in Aedes aegypti and Aedes albopictus from Thailand. *Am J Trop Med Hyg* **75**, 986-993 (2006).