Lelong-Skoda transform for compact Kähler manifolds and self-intersection inequalities

Gabriel Vigny

February 9, 2022

Abstract

Let X be a compact Kähler manifold of dimension k and T be a positive closed current on X of bidimension (p, p) ($1 \leq p < k - 1$). We construct a continuous linear transform $L_p(T)$ of T which is a positive closed current on X of bidimension $(k - 1, k - 1)$ which has the same Lelong numbers as T. We deduce from that construction self-intersection inequalities for positive closed currents of any bidegree.

MSC: 32U25, 32U15, 14C17

Keywords: self-intersection, Lelong numbers, pluripotential

1 Introduction

Let C be a singular algebraic curve of degree d in \mathbb{P}^2. Bézout’s theorem implies that the number of intersections near all the singularities between C and a small perturbation of C using an automorphism satisfies:

$$\sum d_n(d_n - 1) \leq d^2,$$

where the d_n are the multiplicity of the singularities (we refer the reader to the survey [Dem92a] for more on that topic). Let (X, ω) be a compact Kähler manifold of dimension k. Here ω is a fixed Kähler form. We want to extend that inequality to the case where C is replaced by a variety of any bidimension. Two main difficulties appear: one cannot perturb the variety, and the self-intersection is not defined for varieties of small dimension. That is why we work on the more general case of positive closed currents on X. In the case of currents, the multiplicity of the singularities are replaced by the Lelong numbers.

Let T be a positive closed current of bidimension (p, p) in X. Let E_c ($c > 0$) denotes the set of point $z \in X$ where the Lelong number $\nu(T, z)$ of T at z is strictly larger than c. Siu’s theorem implies that E_c is an analytic subset of X (possibly empty) of dimension $\leq p$ [Siu74]. Define $b_q := \inf\{c > 0, \dim E_c \leq q\}$ and $b_{q-1} := \max_{x \in X} \nu(T, x)$. Then $0 = b_0 \leq \cdots \leq b_{q-1}$. For $c \in [b_q, b_{q-1}]$, the dimension of E_c is equal to q. So at b_q, there is a jump in the dimension for the analytic set E_c. Let $(Z_{q, n})_{n \geq 1}$ be the at most countable family of irreducible components of dimension q of the E_c for $c \in [b_q, b_{q-1}]$; note that $(Z_{q, n})_{n \geq 1}$ is finite if $b_q > 0$. Let $\nu_{q, n} := \min_{x \in Z_{q, n}} \nu(T, x) \in [b_q, b_{q-1}]$ be the generic Lelong number of T on $Z_{q, n}$. Then we obtain:

1
Theorem 1.1 Let T be a positive closed current of bidimension (p, p) on X. Then with the above notation, for $q \leq p$ we have:
\[
\sum_{n \geq 1} (\nu_{q,n} - b_p) \ldots (\nu_{q,n} - b_q) \| Z_{q,n} \| \leq C \| T \|^{p+1-q},
\]
where C is a constant which depends only on (X, ω), $\| T \|$ denotes the mass of the current T and $\| Z_{q,n} \|$ denotes the mass of the current of integration on $Z_{q,n}$.

Of course we can apply that inequality to the case where T is the current of integration on subvarieties of X. Note that $\| Z_{q,n} \|$ is equal to $q!$ times the volume of $Z_{q,n}$. We refer to [DS07a] for a recent application of such inequalities in complex dynamics. In that paper, the authors prove that the normalized pull-back by f^n of a generic hypersurface (in the Zariski sense) converges to the Green current of f for a holomorphic endomorphism f of \mathbb{P}^k.

For $p = k - 1$, the inequality was proved by Demailly using a regularization of quasi plurisubharmonic functions in [Dem92] (with $C = 1$ when $X = \mathbb{P}^k$). Méo extended the result to the case of any bidimension for X projective [Méo98]. The key point of his proof is that for a current of bidimension (p, p) in \mathbb{P}^k, he constructed a positive closed current of bidegree $(1, 1)$ having the same degree than T and the same Lelong numbers. Such currents were constructed in \mathbb{C}^k by Lelong and Skoda in [Lel68] and [Sko72]. They used a kernel in order to express the potential of the bidegree $(1, 1)$ current. Méo used a geometric approach taking advantage of the fact that the family of projective subspaces of dimension p in \mathbb{P}^k is very rich. The case of projective manifolds is then deduced from an embedding of X in some \mathbb{P}^N.

Theorem 1.1 generalizes this result to the Kähler case. For that, we use an approach inspired by [DS04a] (see also [BGS94], [GS91] and [DS04b]). Let T be a positive closed current of bidimension (p, p) on X for $1 \leq p < k - 1$. Consider the canonical projections $\pi_1, \pi_2 : X \times X \to X$ and let $\pi : \tilde{X} \times \tilde{X} \to X \times X$ be the blow-up of $X \times X$ along the diagonal Δ of $X \times X$. We modify the pull-back by π_2 of the current T by multiplying it by a suitable form Θ and then we push it forward to X by π_1. The form Θ is smooth outside Δ. It is defined as $(\pi_1(\tilde{\Omega}))^{p+1}$ where $\tilde{\Omega}$ is a Kähler form in $\tilde{X} \times \tilde{X}$. This is what we call the Lelong-Skoda transform $\mathcal{L}_p(T)$ of the current T. The Lelong-Skoda transform is a continuous linear operator which sends positive closed currents of bidimension (p, p) to positive closed currents of bidegree $(1, 1)$. The Lelong-Skoda transform is linear in the sense that it is linear on the space of currents spanned by positive closed currents. We show in Theorem 2.1 below that $\mathcal{L}_p(T)$ has the same Lelong number than T at every point. We then prove Theorem 1.1 in the same way than in [Méo98]. We will also give some properties of the Lelong-Skoda transform. Finally, we extend the results to the case of harmonic currents.

2 Lelong-Skoda transform

For $z = (z_1, \ldots, z_m) \in \mathbb{C}^m$, we use the notation $|z| := (\sum_{j} |z_j|^2)^{1/2}$. Consider a compact Kähler manifold Y of dimension m endowed with a Kähler form θ. We denote by $\mathcal{C}_p(Y)$ the cone of positive closed currents of bidimension (p, p) in Y on which we consider the usual weak topology. For $T \in \mathcal{C}_p(Y)$, let $\| T \| := \int_Y T \wedge \theta^p$ be the mass of T. Note that this mass depends only on the class of T in the Hodge cohomology.
group $H^{m-p,m-p}(Y,\mathbb{C})$. We refer the reader to the book of Voisin [Vo02] for basics on compact Kähler manifolds.

We recall some basic facts on Lelong numbers. See [Dem93] for proofs and details and also [FS95] for results on intersection theory of currents. For $a \in Y$ and $T \in C_p(Y)$, we consider a chart V around a in which the coordinates are given by x. For simplicity, assume a is given by 0 here. Then for $r > 0$, the positive measure $T(x) \wedge (dd^c \log |x|)^p$ is well defined by [Dem93] and we define the quantities:

$$\nu(T,0,r) := \int_{|x|<r} T(x) \wedge (dd^c \log |x|)^p$$

$$\nu(T,0) := \lim_{r \to 0} \int_{|x|<r} T(x) \wedge (dd^c \log |x|)^p.$$

The quantity $\nu(T,0)$ is called the Lelong number of T at 0 and does not depend on the choice of the coordinates x (so it is well defined on manifolds). It is the mass at 0 of the measure $T(x) \wedge (dd^c \log |x|)^p$. We have the equivalent definition:

$$\nu(T,0) = \lim_{r \to 0} r^{-2p} \int_{|x|<r} T \wedge \frac{1}{2} dd^c |x|^2)^p.$$

It follows that the function $S \to \nu(S,0)$ is a linear form from the vector space spanned by positive closed currents, so the Lelong number is well defined for a difference of positive closed currents.

We give now a geometrical interpretation of the Lelong number that we will use latter. Let $\iota : \tilde{Y} \to Y$ denote the blow-up of Y at a and $H := \iota^{-1}(a)$ the exceptional divisor. Then $H \simeq \mathbb{P}^{m-1}$ and we put on H the Fubini-Study form ω_{FS} normalized by $\int_{\mathbb{P}^{m-1}} \omega_{FS}^{m-1} = 1$. Let V and x be as above. Consider a sequence (T_n) of smooth positive closed currents of bidimension (p, p) in V with $T_n \to T$ in the sense of currents in V. We can obtain (T_n) using a convolution operator. Let \tilde{T} be a cluster value of the (bounded) sequence $(\iota^*(T_n))$. In bidegree $(1, 1)$, \tilde{T} is unique and does not depend on (T_n), this is not true in higher bidegree. Then we have the characterization:

Lemma 2.1 With the above notation, the Lelong number $\nu(T,0)$ is the mass of \tilde{T} on H. In particular, that mass does not depend on the choice of (T_n).

Proof. Observe that $\iota^{-1}(V) = \{(x,[u]) \in V \times \mathbb{P}^{m-1}, \ x \in [u]\}$. Write $x = (x_1, \ldots, x_m)$ and $u = [u_1 : \cdots : u_m]$. Let $j : \iota^{-1}(V) \to V \times \mathbb{P}^{m-1}$ be the canonical holomorphic injection. Pull-backs by j of positive closed smooth forms are positive closed smooth forms. Let $p : V \times \mathbb{P}^{m-1} \to \mathbb{P}^{m-1}$ be the projection on the second factor and recall that ω_{FS} is the Fubini-Study form on \mathbb{P}^{m-1}. We endow $V \times \mathbb{P}^{m-1}$ with the form $p^*(\omega_{FS})$. We consider the form $j^*(p^*(\omega_{FS}))$ on $\iota^{-1}(V)$, the restriction of $j^*(p^*(\omega_{FS}))$ to H is indeed ω_{FS} so we write for simplicity $\omega_{FS}([u])$ instead of $j^*(p^*(\omega_{FS}))(x,[u])$, and we drop the $[u]$ when there can be no confusion. In the chart of $\iota^{-1}(V)$ where $u_1 = 1$, write $u = [1 : u_2 : \cdots : u_m]$ and consider the coordinates (X_1, \ldots, X_m) given by $X_1 = x_1$, $X_2 = u_2, \ldots, X_m = u_m$ (so $X_i = x_i/x_1$ for $i > 1$) in which H is given by $(X_1 = 0)$. In these coordinates, the form ω_{FS} is:

$$\omega_{FS}([u]) = \frac{1}{2} dd^c \log(1 + |X_2|^2 + \cdots + |X_m|^2).$$
Since \(dd^c \log |x| = 0 \) for \(x \neq 0 \) and \((dd^c \log |x|)^p \) does not charge the point \(x = 0 \) for \(p < k \), we have that:

\[
\begin{align*}
\iota_\star(\omega_{FS}([u])) &= dd^c \log |x| \\
\iota_\star(\omega_{FS}([u])^p) &= (dd^c \log |x|)^p.
\end{align*}
\]

Observe that we consider the push-forward of a smooth form and not \(\iota^\star(dd^c \log |x|) \) which is the pull-back of a current; indeed to have the "good" continuity's properties one should write \(\iota^\star(dd^c \log |x|) = \omega_{FS}([u]) + |H| \). Consider a smooth psh function \(f \) that coincides with \(\log |x| \) for \(|x| > r/2 \). Then Stokes formula gives that \(\nu(T, 0, r') = \|T \wedge (dd^c f)^p\|_{B_{r'}} \) for \(r' > r/2 \) (\(B_{r'} \) is the ball of center \(0 \) and radius \(r' \)). Then \(T_n \wedge (dd^c f)^p \to T \wedge (dd^c f)^p \) in the sense of measures. In particular, for \(\varepsilon > 0 \) small enough, we have:

\[
\nu(T, 0, (1 - 2 \varepsilon)r) \leq \lim_{n \to \infty} \int_{B_{(1 - \varepsilon)r}} T_n \wedge (dd^c f)^p \leq \nu(T, 0, r).
\]

Again, Stokes formula gives that \(\int_{B_{(1 - \varepsilon)r}} T_n \wedge (dd^c f)^p = \nu(T_n, 0, (1 - \varepsilon)r) \), so:

\[
\nu(T, 0) = \lim_{r \to 0} \lim_{n \to \infty} \nu(T_n, 0, r).
\] (2)

Now, for \(T_n \) smooth the current \(\iota^\star(T_n) \) is a well defined smooth form so:

\[
\nu(T_n, 0, r) = \int_{|x| < r} T_n(x) \wedge (dd^c \log |x|)^p
\]

\[
= \int_{i^{-1}(|x| < r)} \iota^\star(T_n(x)) \wedge \omega_{FS}^p.
\]

By definition of weak convergence we have for a set of \(r \) of full measure that:

\[
\lim_{n \to \infty} \left(\int_{i^{-1}(|x| < r)} \iota^\star(T_n(x)) \wedge \omega_{FS}^p \right) \to \int_{i^{-1}(|x| < r)} \tilde{T} \wedge \omega_{FS}^p.
\]

So:

\[
\nu(T, y) = \lim_{r \to 0} \int_{i^{-1}(|x| < r)} \tilde{T} \wedge \omega_{FS}^p.
\]

The restriction to \(H \) of \(\omega_{FS}^p \) is the Fubini-Study form on \(H \) at the power \(p \). We decompose \(\tilde{T} = \tilde{T}_1 + \tilde{T}_2 \) where \(\tilde{T}_1 \) is the restriction of \(\tilde{T} \) to \(H \) and \(\tilde{T}_2 \) the restriction of \(\tilde{T} \) to \(i^{-1}(V) \setminus H \). \(\tilde{T}_2 \) can also be defined as the trivial extension of \(\iota^\star(T) \) defined outside \(H \). In other words:

\[
\nu(T, 0) = \langle \tilde{T}_1, \omega_{FS}^p \rangle,
\]

so \(\nu(T, 0) \) can be interpreted geometrically as the mass of the current \(\tilde{T} \) on the exceptional divisor. □

Let \(X \) be a compact Kähler manifold of dimension \(k \). Let \(\Delta \) denote the diagonal in \(X \times X \) and \(\pi : X \times X \to X \times X \) the blow-up of \(X \times X \) along \(\Delta \). Then \(X_\times X \) is a compact Kähler manifold by Blanchard [Blu56]. Fix a Kähler form \(\Omega \) on \(X_\times X \)

4
and define \(\Omega := \pi_* (\tilde{\Omega}) \). Then \(\Omega \) is a positive closed \((1,1)\) current smooth outside \(\Delta \) and that does not charge \(\Delta \). Observe that for \(p < k - 1 \), \(\Omega^{p+1} = \pi_* (\tilde{\Omega}^{p+1}) \) since those two positive closed currents coincide outside \(\Delta \) and cannot charge \(\Delta \) since they are of bidimension \(> k = \dim (\Delta) \). Define \(\tilde{\Delta} := \pi^{-1} (\Delta) \).

Let \(\pi_1 \) and \(\pi_2 \) denote the canonical projections from \(X \times X \) to its factors and denote \(\tilde{\pi}_i := \pi_i \circ \pi \). Then \(\pi_1, \tilde{\pi}_i \) are submersions (see \cite{DS01b}) so push-forward and pull-back by \(\pi_1 \) and \(\tilde{\pi}_i \) of positive closed currents are well defined operators which are continuous for the topology of currents. The mass of \(\Omega \wedge [\tilde{\pi}_2^{-1} (y)] \) does not depend on \(y \in X \) for cohomological reasons and is positive since \(\tilde{\Omega} \) is a Kähler form. So renormalizing \(\tilde{\Omega} \) if necessary, we can assume that this mass is equal to 1. The following result gives a description of the singularities of \(\Omega \) near \(\Delta \) and explains our choice of \(\Omega \) (see also the definition of Lelong number):

Proposition 2.2 The form \(\Omega \) admits locally a potential \(\varphi \) that is \(dd^c \varphi = \Omega \) where \(\varphi \) is a psh function such that \(\varphi (\ast) - \log \text{dist}(\ast, \Delta) \) is bounded.

The problem is local so we let \(U \) be a chart of \(X \times X \) in which we consider the coordinates \((z, w)\) such that \(\Delta \) is given by \(z = 0 \) here and \(\pi_2 (z, w) = w \). So \(\text{dist}(\ast, \Delta) \) is equivalent to \(|z| \) here. Then \(\pi^{-1} (U) = \{(z, w, [u]) \in U \times \mathbb{P}^{k-1} \mid z \in [u] \} \) and \(\tilde{\Delta} \) is given by \(\{z = 0\} \) here.

As above, consider on \(\pi^{-1} (U) \) the smooth form \(\omega_{FS} ([u]) \) then \(\tilde{\alpha} := \tilde{\Omega} - \omega_{FS} ([u]) \) is a smooth closed form of bidegree \((1,1)\) such that \(\int_{\tilde{P}_w^{-1}} \tilde{\alpha} \wedge \tilde{\Omega}^{k-2} = 0 \) (where \(\tilde{P}_w^{-1} := \{(0, w, [u]), [u] \in \mathbb{P}^{k-1}\}) \). The idea is to show that \(\tilde{\alpha} \) is exact so it can be written \(dd^c g \) for \(g \) a continuous function. We will need the following lemma:

Lemma 2.3 Any closed form \(\tilde{\alpha} \) of bidegree \((1,1)\) on \(\pi^{-1} (U) \) such that \(\int_{\tilde{P}_w^{-1}} \tilde{\alpha} \wedge \omega_{FS}^{k-2} = 0 \) for all \(w \) is in fact exact.

Proof. We can assume that \(\tilde{\alpha} \) is real. Using Poincaré’s lemma in the non-compact case, the only obstruction would be that there exists a compact oriented surface \(S \) and a smooth function \(f : S \to \pi^{-1} (U) \) such that \(\int_S f^* (\tilde{\alpha}) \neq 0 \). To simplify the notations, assume that \((0,0) \in U \). If \(i : \pi^{-1} (U) \times [0,1] \to \pi^{-1} (U) \) and \(j : \pi^{-1} (U) \to \pi^{-1} (U) \) are the maps defined by \(i(z, w : [u], t) = (tz, tw, [u]) \) and \(j(z, w : [u]) = (0,0, [u]) \), we obtain by homotopy that \(\int_S (j \circ f)^* (\tilde{\alpha}) \neq 0 \) which contradicts our hypothesis. \(\square \)

End of the proof of Proposition 2.2 Let \(p_w : \mathbb{P}^{k-1} \to \pi^{-1} (U) \) be the canonical injection. We denote by \(\tilde{\alpha}_w \) the form \(p_w^* (\tilde{\alpha}) \) on \(\mathbb{P}^{k-1} \). Observe that \(\int_{\tilde{P}_w^{-1}} \tilde{\alpha} \wedge \omega_{FS}^{k-2} = \int_{\tilde{P}_w^{-1}} \tilde{\alpha}_w \wedge \omega_{FS}^{k-2} \).

Then \(\tilde{\alpha}_w \) is a smooth exact form, hence it is \(dd^c \) exact. So there exists a real smooth function \(v_w \) such that \(dd^c v_w = \tilde{\alpha}_w \) (observe that any solution of \(dd^c v_w = \tilde{\alpha}_w \) is smooth). Since \(v_w \) can be written via a kernel with coefficients in \(L^1 \) smooth outside the diagonal of \((\mathbb{P}^{k-1})^2 \), we deduce that \(v(z, w, [u]) = v_w ([u]) \) is continuous in all variables and smooth in the \(w \) variable. A more precise analysis of the singularities of the kernel shows that its gradient has also coefficients in \(L^1 \) so \(v(z, w, [u]) \) is in \(C^1 \) (see the proof of Proposition 2.3.1 in \cite{DS07}), we believe that we can choose \(v \) smooth but we do not know how to prove it). Still the current \(dd^c v \) is represented by a continuous form (we use the integral representation of \(v \) and the fact that \(\tilde{\alpha}_w \) is smooth hence continuous in both variables). Replacing \(\tilde{\alpha} \) by \(\tilde{\Omega} - \omega_{FS} ([u]) - dd^c v \) in \(\pi^{-1} (U) \), we can assume that \(\tilde{\alpha}_w = 0 \) for all \(w \in \pi_2 (U) \).

Using the previous lemma, we can write \(\tilde{\alpha} = d\tilde{\beta} \) where \(\tilde{\beta} \) is a form in \(C^1 \). We decompose \(\tilde{\beta} \) as \(\tilde{\beta}_{1,0} + \tilde{\beta}_{0,1} \), its \((1,0)\) and \((0,1)\) components. We deduce from the
equation $\tilde{\alpha} = d\tilde{\beta}$ that $\tilde{\beta}_{0,1}$ is ∂-closed and since $\tilde{\alpha}$ is real $\tilde{\beta}_{0,1} = \bar{\beta}_{1,0}$. The form $\pi_w^*(\tilde{\beta}_{0,1})$ is ∂-closed and ∂-closed since $2\partial\tilde{\beta}_{0,1} = \tilde{\alpha}$ (we use here that $\alpha_w = 0$). So $p_w^*(\tilde{\beta}_{0,1})$ is a closed $(0,1)$-form on \mathbb{P}^{k-1}: it is equal to zero.

We work in the chart where $|u_1| > 1/2 \max_i |u_i|$ so we take $u_1 = 1$. We consider the coordinates given by (Z_1, \ldots, Z_n, w) where:

$$Z_1 = z_1, \quad Z_2 = z_2/z_1, \ldots, \quad Z_k = z_k/z_1.$$

The form $\tilde{\beta}_{0,1}$ can be written as $\sum_i \tilde{\beta}_i d\overline{Z}_i + \sum_i \tilde{\beta}_i^j dw_i$ and since $p_w^*(\tilde{\beta}_{0,1}) = 0$, we have that $\tilde{\beta}_i(0, Z_2, \ldots, Z_k, w) = 0$ for all $i \geq 2$ while the other coefficients are bounded. Since the coefficients are in C^1, we have that $|\tilde{\beta}_i| \leq C|Z_i|$ for $i \geq 2$. Let $\beta_{0,1} = \pi_*(\tilde{\beta}_{0,1})$, then in the local coordinates, it can be written:

$$\beta_{0,1} = \tilde{\beta}_1 dz_1 + \sum_{i \geq 2} \tilde{\beta}_i \frac{dz_i}{z_1} + \sum_i \tilde{\beta}_i^j dw_i.$$

We write $d(z_i/z_1) = dz_i/z_1 - z_i/z_1^2 dz_1$. Using the fact that the coefficients $\tilde{\beta}_i$ are bounded by $C|z_i|$ and $|z_i| < 2|z_1|$ we get that $\beta_{0,1}$ has coefficients in L^∞. In particular, $\beta_{0,1}$ is a well defined (0,1) current ∂-closed with L^∞-coefficients. So taking U strictly pseudoconvex, we can solve $\partial u = \beta_{0,1}$ with u a continuous function $[HL84]$ (L^∞ is enough for our purpose). Let $g := -i\pi(u - \bar{u})$ it is a real bounded function and it satisfies the following identities for $\alpha := \pi_*(\alpha)$ and $\beta := \pi_*(\beta)$:

$$dd^c g = \partial\bar{\partial}(u - \bar{u}) = \partial\beta_{0,1} + \partial\overline{\beta}_{1,0} = dd^c\alpha + dd^c\pi_*(v).$$

This implies that $\Omega = dd^c(|\log z| + g - \pi_*(v))$ and gives the proposition ($\pi_*(v)$ is only bounded). □

Let $T \in \mathcal{C}_p(X)$ with $1 \leq p < k - 1$ (there is nothing to be done for $p = k - 1$). The current $(\pi_2)^*(T) \wedge \Omega^{p+1}$ is a well defined element of $\mathcal{C}_{k-1}(\bar{X} \times X)$. It is of finite mass and coincides with $(\pi_2)^*(T) \wedge \Omega^{p+1}$ outside $\bar{\pi}^{-1}(\Delta)$. So $(\pi_2)^*(T) \wedge \Omega^{p+1}$ is well defined on $X \times X$ as the trivial extension over Δ of the above current. Consequently, the current:

$$T_{LS} := (\pi_1)_*((\pi_2)^*(T) \wedge \Omega^{p+1})$$

belongs to $\mathcal{C}_{k-1}(X)$. That gives us the following notion:

Definition 2.4 For $p < k - 1$, define the Lelong-Skoda transform \mathcal{L}_p from $\mathcal{C}_p(X)$ to $\mathcal{C}_{k-1}(X)$ by:

$$\mathcal{L}_p(T) := T_{LS}.$$

Of course, the operator \mathcal{L}_p depends on the choice of $\tilde{\omega}$.

3 Properties of the Lelong-Skoda transform

This section is devoted to prove the following result:

Theorem 3.1 The Lelong-Skoda transform \mathcal{L}_p is a continuous linear operator. In particular, there exists a constant $C > 0$ such that $\|\mathcal{L}_p(T)\| \leq C\|T\|$. Moreover, it preserves the Lelong number, i.e. $\mathcal{L}_p(T)$ and T have the same Lelong number at every point.
Since the set $C_p(X)$ is a convex cone, we should not speak of linear operator. Nevertheless, the transform \mathcal{L}_p can be extended to a linear operator on the space of currents spanned by positive closed currents. For a current S which is the difference of positive closed currents, we can write:

$$||S|| := \inf(||T'|| + ||T''||)$$

where the infimum is taken over all the decompositions $S = T' - T''$ where T' and T'' are positive closed currents. We use the following lemma to prove the continuity:

Lemma 3.2 The transform \mathcal{L}_p satisfies : $\mathcal{L}_p(T) = (\tilde{\pi}_1)_*\left(\left((\tilde{\pi}_2)^*(T) \wedge \tilde{\Omega}^{p+1}\right)\right)$.

Proof. Since $\tilde{\Omega}$ is smooth, it is sufficient to show that $(\tilde{\pi}_2)^*(T)$ does not charge $\tilde{\Delta}$. The problem is local so we let U be a chart of $X \times X$ in which we consider the coordinates (z,w) such that Δ is given by $z = 0$ and $\pi_2(z,w) = w$. Then $\pi^{-1}_1(U) = \{(z,w,[u]) \in U \times \mathbb{P}^{k-1}, \ z \in [u]\}$ and Δ is given by $z = 0$ here, so $\pi^{-1}_1(U)$ is locally a product. So $\tilde{\omega}_t^2$ of a current is just integration on fibers. We want to know if $(\tilde{\pi}_2)^*(T)$ charges $z = 0$ which is impossible by Fubini’s theorem. More precisely, let B_r denote the ball of center 0 and radius r in \mathbb{C}^k. We can reduce ourselves to the case where $\pi^{-1}_1(U)$ is of the form $\tilde{B}_{r_1} \times B_{r_2}$ where \tilde{B}_{r_1} is the blow-up of B_{r_1} at $z = 0$. Let $\omega_{\tilde{B}_{r_1}}$ and $\omega_{B_{r_2}}$ denote Kähler form on \tilde{B}_{r_1} and B_{r_2}. Then:

$$\|\tilde{\pi}_2^*(T)\|_{\tilde{B}_{r_1} \times B_{r_2}} = \left(\frac{k + p}{k}\right) \int_{\tilde{B}_{r_1}} T'(w) \wedge \omega_{\tilde{B}_{r_1}}^k \int_{B_{r_2}} \omega_{B_{r_2}}^k = \left(\frac{k + p}{k}\right) \|T\|_{\tilde{B}_{r_1}} \omega_{\tilde{B}_{r_1}}^k(\tilde{B}_{r_1}).$$

And the lemma follows from letting r goes to 0. □

The lemma implies that \mathcal{L}_p is a continuous linear operator since $\tilde{\Omega}^{p+1}$ is smooth and pull-back and push-forward by the submersions $\tilde{\pi}_1$ and $\tilde{\pi}_2$ are continuous operators on (positive closed) currents.

Proof of Theorem 3.1 We want to interpret the mass of μ at $(0,0)$ as in Lemma 2.1. For that purpose, we will pull-back some integrals on some suitable blow-ups of $X \times X$ in order to desingularize the forms Ω, $dd^c \log |x|$ and $dd^c \log |(x,y)|$.

Let $p_1 : \tilde{X} \times \tilde{X} \to X \times X$ be the blow-up of $X \times X$ at $(0,0)$. Consider the system of local coordinates (z,w) in the neighborhood $\tilde{V} \times \tilde{V}$ of $(0,0)$ in $X \times X$ given by $(z,w) := (x - y, x)$ for $(x,y) \in V \times V$. Then:

$$\tilde{V} \times \tilde{V} := p_1^{-1}(V \times V) = \{(z,w,[u : v]) \in V \times V \times \mathbb{P}^{2k-1}, \ (z,w) \in [u : v]\},$$

where $z = (z_1, \ldots, z_k)$, $w = (w_1, \ldots, w_k)$, $[u : v] = [u_1 : \cdots : u_k : v_1 : \cdots : v_k]$. In $\tilde{V} \times \tilde{V}$, there exists a smooth form that we denote by $\omega_{\tilde{F}\times\tilde{F},2k-1}$ such that $dd^c \log |(z,w)| = (p_1)_*(\omega_{\tilde{F}\times\tilde{F},2k-1})$ (that is what we mean by desingularization). But we cannot do that for $dd^c \log |w|$ nor for Ω so we need to blow-up once more.

Consider the smooth submanifold M of $\tilde{X} \times \tilde{X}$ given by $\{u = 0\} \cup \{v = 0\}$ in $\tilde{V} \times \tilde{V}$ and by $p_1^{-1}(\Delta \cup ([0] \times \tilde{X}))$ outside $\tilde{V} \times \tilde{V}$. It is the disjoint union of two submanifolds.
which are the strict transform of \((z = 0)\) and \((w = 0)\). In other words, the blow-up \(p_1\) desingularizes the analytic set \(\Delta \cup \{x = 0\}\). Let \(p_2 : \hat{X} \times X \to \hat{X} \times X\) denote the blow-up of \(\hat{X} \times \hat{X}\) along \(M\). So:

\[
\hat{V} \times V := p_2^{-1}(\hat{V} \times V) = \{(z, w, [u : v], [u'], [v']) \in (\hat{V} \times V) \times \mathbb{P}^{2k-1} \times \mathbb{P}^{k-1} \times \mathbb{P}^{k-1}, (z, w) \in [u : v], u \in [u'], v \in [v']\}.
\]

Observe that \(z \in [u']\). So we can define the holomorphic projection \(\tilde{P} : \hat{X} \times \hat{X} \to \hat{X} \times \hat{X}\) which is given in \(\hat{V} \times V\) by:

\[
\tilde{P} : (z, w, [u : v], [u'], [v']) \mapsto (z, w, [u']).
\]

The form \(P^*(\hat{\Omega})\) is a well defined positive smooth form that we will simply write \(\hat{\Omega}\).

Define finally \(\pi' : \hat{X} \times \hat{X} \to X \times X\) the blow-up of \(X \times X\) along \(\{x = 0\}\). Observe that \(w \in [v']\). So we can define the holomorphic projection \(P' : \hat{X} \times \hat{X} \to \hat{X} \times \hat{X}'\) which is given in \(\hat{V} \times V\) by:

\[
P' : (z, w, [u : v], [u'], [v']) \mapsto (z, w, [v']).
\]

Let \(\omega_{FS,k-1}\) denote the smooth form on \((\pi')^{-1}(V \times X)\) which is the pull-pack of the Fubini-Study form on \(\mathbb{P}^{k-1}\) to \((\pi')^{-1}(V \times X)\) (observe that there may not be a global mapping \(\hat{X} \times \hat{X}' \to X \times X \times \mathbb{P}^{k-1}\) so we cannot speak of \(\omega_{FS,k-1}\) on \(\hat{X} \times \hat{X}'\)). Then the form \((P')^*(\omega_{FS,k-1})\) is a well defined positive smooth form on \((p_1 \circ p_2)^{-1}(V \times X)\) that we will simply write \(\omega_{FS,k-1}\).

We define \(E := (p_1 \circ p_2)^{-1}(\{(0,0)\}) = \{(0,0), [u : v], [u'], [v']\} \in \hat{V} \times V\) the fiber of \((0,0)\) in \(\hat{X} \times \hat{X}\). Note that \(E\) can be considered as a blow-up of \(\mathbb{P}^{2k-1} \simeq p_1^{-1}(0,0)\) along two disjoint subspaces of dimension \(k - 1\). Let \(\Pi : E \to \mathbb{P}^{2k-1}\) be the canonical projection defined by:

\[
\Pi : ([u : v], [u'], [v']) \mapsto [u : v].
\]

So \(\Pi\) is just the restriction of \(p_2\) to \(E\) if we identify \(\mathbb{P}^{2k-1}\) to \(p_1^{-1}(0,0)\). Finally let \(\tilde{\pi}_i := \pi_i \circ p_1 \circ p_2\).

We will need to regularize the currents \(T\) and \(T_{L,S}\) in a neighborhood of \(0\). For that we will regularize the current \(T\) and use the continuity of the Lelong-Skoda transform. But in order to do that we have to regularize the current \(T\) in \(X\) and not only in a neighborhood of \(0\) because \(T_{L,S}\) is defined "globally". In the case where \(X = \mathbb{P}^k\), smooth positive closed forms are dense in the space of positive closed currents. It is not true in the case of Kähler manifolds. Nevertheless, in [DS04b], the authors prove the following regularization result:

Theorem 3.3 For a positive closed current \(T\), there exist smooth positive closed forms of bidegree \((k - p, k - p)\), \(T_+^p\) and \(T_-^p\) such that \(T_+^p - T_-^p\) converges weakly to the current \(T\). Moreover, \(\|T_+^p\| \leq C_X\|T\|\) where \(C_X\) is a constant independent of \(T\).
Let \((T^+_n)\) and \((T^-_n)\) be as in the theorem. Extracting if necessary, we suppose that the sequences converge to \(T^+\) and \(T^-\). By continuity of the transform, we have \(L_p(T^+_n) \to L_p(T^\pm)\). Recall that the function \(S \to \nu(S,0)\) is a linear form on positive closed currents. So proving the theorem for \(T^\pm\) gives the theorem for \(T\). In particular, it is enough to consider the case where \(T\) is the limit in the sense of currents of a sequence \((T_n)\) of smooth positive closed forms. We have \(\|T_n\| \to \|T\|\). Then we have the lemma:

Lemma 3.4 The sequences \(\|\pi_2^+(T_n)\|\) is bounded. In particular, we can extract a subsequence of \((\pi_2^+(T_n))\) that converges to a cluster value that we denote by \(\hat{T}\).

Proof. The mass \(\|\pi_2^+(T_n)\|\) depends only on the cohomology class \([T_n]\). The lemma follows since the cohomology class \([T_n]\) is controlled by the mass of \(T_n\) which is bounded with \(n\). □

The current \(\hat{T}\) is positive closed as a limit of positive closed currents. As in the case of the Lelong number, the current \(\hat{T}\) is not unique. Despite that fact, we will show that the mass of \(\hat{T}\) on the set \(E\) is independent of the choice of \((T_n)\) and \(\hat{T}\). More precisely, let \(\hat{T}_{|E}\) denote the restriction of \(\hat{T}\) at \(E\). We have the following proposition which is the key of our proof:

Proposition 3.5 The Lelong number \(\nu(T_{LS},0)\) is equal to the mass of the current \((\Pi_{|E}^{\pm}(\hat{T}_{|E}))\) on \(\Pi(E) = p^{-1}_1(0,0)\).

Lemma 3.6 Let \(S\) be a smooth positive closed form of bidimension \((p,p)\) in \(X\) then \(L_p(S)\) is a continuous positive closed form of bidegree \((1,1)\). Furthermore:

\[L_p(S) = \pi_1^*(\pi_2^+(S) \wedge \hat{\Omega}^{p+1})\]

Proof. The first part of the lemma follows from the fact that \(\Omega^{p+1}\) has coefficients in \(L^1\). The second assertion is a consequence of the fact that \(p < k - 1\) hence \(\Omega^{p+1}\) does not charge \(\Delta\). □

We leave as an exercise to the reader the fact that \(T_n\) is in fact smooth: it is a consequence of the fact that \(\pi_1^*\) and \(\pi_1\) are submersion. Nevertheless, continuity is sufficient for our purpose. We have the lemma:

Lemma 3.7 With the above notations:

\[\nu(T_{LS},0) = \lim_{r \to 0} \lim_{n \to \infty} \nu(L_p(T_n),0,r)\]

Proof. We argue as in the proof of Lemma 2.1, we use an approximation of the logarithm, Stokes formula and weak convergence. □

Since \(L_p(T_n)\) is continuous, using Lemma 3.6 we have that:

\[\nu(L_p(T_n),0,r) = \int_{B_r} \pi_1^*(\pi_2^+(T_n) \wedge \hat{\Omega}^{p+1}) \wedge (dd^c \log |x|)^{k-1}\]

We have that \((dd^c \log |x|)^{k-1} = \pi_1^*(\omega_{FS,k-1}^{k-1})\) and \(\pi_1^*((dd^c \log |x|)^{k-1}) = \omega_{FS,k-1}^{k-1}\) outside \((p_1 \circ p_2)^{-1}(x = 0)\) (that is outside \(w = 0\) in the new coordinates). Let
0 < r' < r, we have that:
\[
\int_{B_r \setminus B_{r'}} \pi_1^*(\tilde{\pi}_2^*(T_n) \wedge \tilde{\Omega}^{p+1}) \wedge (ddc \log |x|)^{k-1} = \\
\int_{\tilde{\pi}_1^{-1}(B_r \setminus B_{r'})} \pi_2^*(T_n) \wedge \tilde{\Omega}^{p+1} \wedge \omega_{FS,k}^{k-1}.
\]

So we claim that:
\[
\nu(L_p(T_n), 0, r) = \int_{\tilde{\pi}_1^{-1}(B_r)} \pi_2^*(T_n) \wedge \tilde{\Omega}^{p+1} \wedge \omega_{FS,k}^{k-1}.
\]

Indeed, the current \(\pi_1^*(\tilde{\pi}_2^*(T_n) \wedge \tilde{\Omega}^{p+1}) \wedge (ddc \log |x|)^{k-1} \) does not charge 0 and the current \(\pi_2^*(T_n) \wedge \tilde{\Omega}^{p+1} \wedge \omega_{FS,k}^{k-1} \) does not charge \(w = 0 \).

Consider the smooth form \(L \) defined by:
\[
L := \tilde{\Omega}^{p+1} \wedge \omega_{FS,k}^{k-1}.
\]

As in the proof of Lemma 2.1 letting \(n \to \infty \) in (3) we have:
\[
\int_{\tilde{\pi}_1^{-1}(B_{r'})} \hat{T} \wedge L \leq \lim_{n \to \infty} \nu(L_p(T_n), 0, r) \leq \int_{\tilde{\pi}_1^{-1}(B_{r'})} \hat{T} \wedge L.
\]

In fact we have the equality \(\int_{\tilde{\pi}_1^{-1}(B_{r'})} \hat{T} \wedge L = \lim_{n \to \infty} \nu(L_p(T_n), 0, r) \) for \(r \) generic but we only need the previous inequalities. Combining this with Lemma 3.7 we have the equality:
\[
\nu(T_{LS}, 0) = \lim_{r \to 0} \int_{\tilde{\pi}_1^{-1}(B_{r'})} \hat{T} \wedge L = \|\hat{T} \wedge L\|_{\tilde{\pi}_1^{-1}(0)}.
\]

The next lemma shows that the mass is in fact concentrated on \(E \).

Lemma 3.8 With the above notations \(\nu(T_{LS}, 0) \) is the mass of \(\hat{T} \wedge L \) on \(E \).

Proof. Let \(W \) be a small neighborhood of \(E \) in \(\overline{X \times X} \). It is sufficient to show that the current \(\hat{T} \) does not charge the set \(\tilde{\pi}_1^{-1}(0) \) \(\setminus W \). We argue as in Lemma 3.2 taking advantage of the fact that \(\pi_2^* \) of a current is given here by integration on fibers which are transverse to \(\pi_1^{-1}(0) \). Of course, in \(W \) the geometry is more complicated and there \(\pi_1 \) is not a submersion. \(\square \)

End of the proof of Proposition 3.2. On \(\Pi(E) \), the currents \(\Pi_*(L|E) \), \(\Pi_*(\tilde{\Omega}^{p+1}_{E}) \) and \(\Pi_*(\omega_{FS,k-1}^{k-1}|E) \) are well defined and have no mass on \(\Pi(M) \) because \(M \) is of dimension \(k - 1 \) and the bidimension of \(\Pi_*(\tilde{\Omega}^{p+1}_{E}) \) and \(\Pi_*(\omega_{FS,k-1}^{k-1}|E) \) is at least \(k \) and the singularities are in two disjoint subvarieties (\(\Pi_*(\tilde{\Omega}^{p+1}_{E}) \) is smooth where \(\Pi_*(\omega_{FS,k-1}^{k-1}|E) \) is singular and vice versa). Furthermore, \(\Pi_*(L|E) = \Pi_*(\tilde{\Omega}^{p+1}_{E}) \wedge \Pi_*(\omega_{FS,k-1}^{k-1}|E) \). On \(\Pi(E) \), the measure \(\Pi_*(\hat{T}_E \wedge L_E) \) is well defined as its trivial extension over \(E \) of its restriction to \(E \setminus M \). Indeed, \(\hat{T}_E \) does not charge the set \((p_2)^{-1}(M) \) (it is the same argument as in Lemma 3.2). In particular, the measure is equal to \(\Pi_*(\hat{T}_E) \wedge \Pi_*(L|E) \) and, by Lemma 3.8 its mass is equal to \(\nu(T_{LS}, 0) \).

Then the mass of the measure can be computed in cohomology since for positive closed currents in \(\mathbb{P}^{2k-1} \) the mass of a wedge product is the product of the masses.
Let F be a subspace of \mathbb{C}^{2k} and consider the orthogonal projection from \mathbb{C}^{2k} to F. It induces a meromorphic map $\sigma_F : \mathbb{P}^{2k-1} \dashrightarrow \mathbb{P}(F)$. Then for a positive closed current S of mass m on $\mathbb{P}(F)$, the pull-back $\sigma_F^*(S)$ is well defined and of mass m (see Section 1 in [Méo98]). Applying this to $\mathbb{P}(F_1) = \{v = 0\}$ and $\mathbb{P}(F_2) = \{u = 0\}$ we obtain that $\Pi_*(L_{|E}|) = \Pi_*(\tilde{\Omega}_{p+1}^{E}) \wedge \Pi_*((\omega_{FS,k-1}^{P-1})_{|E})$ is of mass 1. Indeed $\tilde{\Omega}_{p+1}^{E}$ is by definition $\tilde{\Omega}_{p+1}^{E}(0, 0, [u'])$. So

$$
\Pi_* (\tilde{\Omega}_{p+1}^{E}) = \sigma_F^*(\tilde{\Omega}_{p+1}^{E}),
$$

since the equality is true outside $\mathbb{P}(F_2)$ and both sides of the equality give no mass to $\mathbb{P}(F_2)$. Similarly:

$$
\Pi_*((\omega_{FS,k-1}^{P-1})_{|E}) = \sigma_F^*(\omega_{FS,k-1}^{P-1}).
$$

And our normalization of $\tilde{\Omega}$ implies that $\Pi_*(\tilde{\Omega}_{p+1}^{E})$ is of mass 1 so $\Pi_*(L_{|E}|)$ is of mass 1. Then $\nu(T_{LS}, 0)$ can be interpreted as the mass of $\Pi(E)$ for the current $\Pi_*(\tilde{T}_{|E})$ which is also the mass of $(p_2)_*(T)$ on $\Pi(E)$. \hfill \Box

End of the proof of Theorem 3.1. The Lelong number $\nu(T, 0)$ is the same than the Lelong number $\nu(\sigma_2(T), (0, 0))$ (more generally, the Lelong numbers of the pull-back of a current by a submersion are preserved by Proposition (2.3) in [Méo98]). This and Lemma 3.4 applied to $\tilde{T} := (p_2)_*(\tilde{T}) = \lim_n p_1^*(T_n)$ imply that $\nu(T, 0)$ is the mass of $\Pi(E)$ for the current $(p_2)_*(\tilde{T})$ (we use that $(p_2)_*(p_2)^* = \text{id}$). Proposition 3.5 implies the result. \hfill \Box

Several remarks are in order here.

Remark 3.9 The transform L_p is compatible with the cohomology, that is if T and T' are cohomolouges on $H^{p, p}(X, \mathbb{C})$ so are $L_p(T)$ and $L_p(T')$ by Lemma 5.3. Indeed, if $T = T' + dd^c \alpha$ with α of bidegree $(k - p - 1, k - p - 1)$ then since the $\tilde{\pi}_i$ are submersions and $\tilde{\Omega}$ is closed we have:

$$
L_p(T) - L_p(T') = dd^c (\tilde{\pi}_1^* (\tilde{\pi}_2^* (\alpha) \wedge \tilde{\Omega}_{p+1}^{E})).
$$

Remark 3.10 The choice $\tilde{\Omega}_{p+1}^{E}$ can be replaced by a strongly positive closed smooth form Θ on $\tilde{X} \times X$ of bidegree $(p + 1, p + 1)$ such that the mass of $\Theta \wedge [\pi_2^{-1}(y)]$ is equal to 1 for any y (this mass is a constant for cohomological reasons, so we just have to normalize it).

Remark 3.11 The same method allows us to prove that: "for any current T of bideimension (p, p) $(p < k - 1)$ and any $p < q \leq k - 1$, there exists a positive closed current T_q of bideimension (q, q) depending continuously and linearly of T which has the same Lelong number as T at every point".

4 Generalized Demailly’s inequality

Using Theorem 3.1 we follow the argument of Méo ([Méo98]) to prove Theorem 1.1. We use the notations of the introduction. Demailly proved the following regularization result:
Theorem 4.1 ([Dem92b]) Let S be a positive closed current of bidegree $(1, 1)$ on a compact Kähler manifold X. Let φ be a quasi-psh function such that $S = \alpha + \ddc \varphi$ where α is a smooth $(1, 1)$ form. Then for all $c > 0$, there exists a decreasing sequence $(\varphi_{c,l})_{l \geq 1}$ of functions converging to φ such that:

- $\varphi_{c,l}$ is smooth outside $X \setminus E_c$;
- $\ddc \varphi_{c,l} + \alpha + A \|S\| \omega \geq 0$ where A is a constant that depends only on X and ω;
- for all $x \in X$, $\nu(\varphi_{c,l}, x) = (\nu(\varphi, x) - c)_+ := \max(\nu(\varphi, x) - c, 0)$.

We apply this result for $S = T_{LS}$. The current:

$$T \wedge (\ddc \varphi_{c_{p-1},l} + \alpha + A \|S\| \omega) \wedge \cdots \wedge (\ddc \varphi_{c_q,l} + \alpha + A \|S\| \omega)$$

is well defined by the theory of intersection of currents (see [Dem93] and [FS95]) because for $c_j > b_j$, the set of points at which $\varphi_{c_j,l}$ is not bounded is contained in $E_{c_j,l}$ which is of dimension less or equal to j. Using [Dem97, Corollary (7.9) p. 194], its Lelong number at x is greater or equal than:

$$\nu(T, x)(\nu(T, x) - c_{p-1}) + \cdots (\nu(T, x) - c_q)_+.$$

Siu’s theorem ([Siu74]) implies that this current is greater than:

$$\sum_n \nu_{q,n}(\nu_{q,n} - c_{p-1}) + \cdots (\nu_{q,n} - c_q)_+ [Z_{q,n}].$$

Observe that the mass of the current $\ddc \varphi_{c,l} + \alpha + A \|S\| \omega \geq 0$ is equal to $(1 + A) \|T\|$. So taking the masses gives:

$$\sum_n \nu_{q,n}(\nu_{q,n} - c_{p-1}) + \cdots (\nu_{q,k} - c_q)_+ [Z_{q,n}] \leq C \|T\|^{p-q+1}.$$

Theorem 4.1 follows from letting the c_j go to b_j.

5 Transformation of pluriharmonic currents

We want to generalize the results of Sections 2 and 3 to the case of pluriharmonic currents. Once again we write "linear operator" on a convex cone instead of an affine operator on a convex cone which extends to a linear operator on the vector space it spans.

Theorem 5.1 The Lelong-Skoda transform \mathcal{L}_p is a well defined linear continuous operator from the cone of positive pluriharmonic currents of bideimension (p, p) ($p < k-1$) to the cone of positive pluriharmonic currents of bidimension $(1, 1)$. The transform preserves Lelong numbers.

Recall that a positive current T of bideimension (p, p) is said to be pluriharmonic if $\ddc T = 0$ in the sense of currents (see [FS95]). For such current, Skoda proved that the Lelong number is well defined (Proposition 1 in [Sko82]). More precisely, let T be a positive pluriharmonic current of bideimension (p, p) in an open set U of \mathbb{C}^k. Then,
for \(x \) in \(U \), we have that the positive measure \(T(y) \wedge (d_y d_y^* \log |x-y|)^p \) is well defined on \(U \setminus \{x\} \) since \(\log |x-y| \) is smooth here. And for \(0 < r_1 < r_2 \) we have the identity:

\[
\frac{1}{r_2^p} \int_{|x-y|<r_2} T(y) \wedge (\frac{1}{2} dd^c |y|^2)^p - \frac{1}{r_1^p} \int_{|x-y|<r_1} T(y) \wedge (\frac{1}{2} dd^c |y|^2)^p = \int_{r_1 < |x-y|<r_2} T(y) \wedge (d_y d_y^* \log |x-y|)^p. \tag{4}
\]

In particular, the non negative quantity \(\frac{1}{r^p} \int_{|x-y|<r} T(y) \wedge (\frac{1}{2} dd^c |y|^2)^p \) decreases with \(r \) to a number \(\nu(T, x) \) called the Lelong number of \(T \) at \(x \). Let \((T_n) \) be a sequence of smooth positive pluriharmonic currents converging to \(T \) in the sense of currents in a neighborhood of \(x \). Then since \(\lim_{n \to \infty} T_n(y) \wedge (\frac{1}{2} dd^c |y|^2)^p = T(y) \wedge (\frac{1}{2} dd^c |y|^2)^p \) in the sense of measures, we have for \(r \) generic that:

\[
\lim_{n \to \infty} \frac{1}{r^p} \int_{|x-y|<r} T_n(y) \wedge (\frac{1}{2} dd^c |y|^2)^p \to \frac{1}{r^p} \int_{|x-y|<r} T(y) \wedge (\frac{1}{2} dd^c |y|^2)^p.
\]

For \(T_n \) smooth, we can let \(r_1 \) goes to \(0 \) in Skoda’s formula (1) and we see that:

\[
\frac{1}{r^p} \int_{|x-y|<r} T_n(y) \wedge (\frac{1}{2} dd^c |y|^2)^p = \int_{|x-y|<r} T_n(y) \wedge (d_y d_y^* \log |x-y|)^p.
\]

Combining the last two equalities gives:

\[
\nu(T, x) = \lim_{r \to 0} \lim_{n \to \infty} \int_{|x-y|<r} T_n(y) \wedge (d_y d_y^* \log |x-y|)^p. \tag{5}
\]

In the case of pluriharmonic currents, we have the following integration by parts formula (see [Dom93]) :

Lemma 5.2 Let \(T \) be a pluriharmonic current of bidimension \((p,p) \) on \(U \subset X \) and \(f \) be a smooth form of bidegree \((p-1, p-1) \) equal to zero near \(\partial U \), then:

\[
\int_U T \wedge dd^c f = 0.
\]

Once again, the Lelong number at a point does not depend on the choice of coordinates (see [AB96]), so we can speak of Lelong numbers on a manifold. Lemma 2.1 still applies for positive pluriharmonic currents. That is: if \(\hat{X} \to X \) is the blow-up of \(X \) at \(x \) and \(\hat{T} \) is a cluster value of the sequence \(v^*(T_n) \), then the mass of \(\hat{T} \) on the exceptional divisor is equal to the Lelong number \(\nu(T, x) \) (the proof is exactly the same using formula (5)).

Now we define in the same way \(L_p(T) \) which is a well defined positive pluriharmonic current of bidegree (1, 1). Observe that the arguments of Section 3 remain valid so we can conclude in the same way.

Let us mention the points where the argument need some modifications. In [DS04b], the authors also prove Theorem 4.3 for positive pluriharmonic currents. In Lemma 4.7 we use the previous argument instead of Stokes formula: we use formula (4) applied to \(L_p(T_n) \) instead of formula (2) \((L_p(T_n) \) is continuous and not smooth but that is enough here). To prove that the measures \(T|_E \wedge L|_E \) and \(T|_E \wedge \omega_{FS,2k-1}^{k+p} \) have the same mass, observe that \(\omega_{FS,2k-1}^{k+p} \) and \(L|_E \) are cohomologous since they have the same mass.
so $\omega^{k+p}_{F,SE_{2k-1}} - L_{1E} = dd^cf$ where f is a form with coefficient in L^1. And we conclude using the previous integration by part formula.

In an open set U of \mathbb{C}^k, it is not true that the set $E_c = \{ z \in U, \nu(T, y) > c \}$ is analytic for a pluriharmonic current T. Indeed, consider in \mathbb{C}^2 the current $T = h(z_1)[z_2 = 0]$ where h is a non-constant non-negative harmonic function in \mathbb{C} and $[z_2 = 0]$ is the current of integration on $\{ z_2 = 0 \}$. In a compact manifold, any pluriharmonic function is constant. That raises the question:

Open problem (Dinh): Let T be a positive pluriharmonic current on a compact Kähler manifold (X, ω). Does Siu’s theorem still hold for T, i.e. is E_c analytic for $c > 0$?

A relative result was proved in [DL03] in the case of rectifiable currents. The previous theorem simplifies the question to the case of bidegree $(1, 1)$.

References

[AB96] L. Alessandrini and G. Bassanelli, Lelong number of positive plurisubharmonic currents, Results Math. 30 (1996), no. 3-4, 191–224.

[BGS94] J-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), no. 4, 903–1027.

[Bla56] A. Blanchard, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. 73 (1956), no. 3, 157–202.

[Dem92a] J.-P. Demailly, Courants positifs et théorie de l’intersection, Gaz. Math. 53 (1992), 131–159.

[Dem92b] J.-P. Demailly, Regularization of closed positive currents and Intersection Theory, J. Alg. Geom. 1 (1992), 361–409.

[Dem93] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Plenum Press, 1993.

[Dem97] J.-P. Demailly, Complex analytic and differential geometry, http://www-fourier.ujf-grenoble.fr/~demailly/books.html, 1997.

[DL03] T.C. Dinh and M.G. Lawrence, Polynomial hull and positive currents, Ann. Fac. Sci. Toulouse Math. 12 (2003), no. 3, 317–334.

[DS04a] T.C. Dinh and N. Sibony, Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Amer. Math. Soc. 18 (2004), no. 2, 291–312.

[DS04b] T.C. Dinh and N. Sibony, Regularization of currents and entropy, Ann. Ecole Norm. Sup. 37 (2004), 959–971.

[DS07a] T.C. Dinh and N. Sibony, Equidistribution towards the Green current for holomorphic maps, arXiv: [math.DS/0609686](http://arxiv.org/abs/math.DS/0609686) (2007).

[DS07b] T.C. Dinh and N. Sibony, Super-potentials of positive closed current, intersection theory and dynamics, arXiv: [math.CV/0703702](http://arxiv.org/abs/math.CV/0703702) (2007).
[FS95] J.-E. Fornæss and N. Sibony, *Oka’s inequality for current and applications*, Math. Ann. 301 (1995), 399–419.

[FS05] J.-E. Fornæss and N. Sibony, *Harmonic Currents of Finite Energy and Lam- inations*, GAFA 15 (2005), 962–1003.

[GS91] H. Gillet and C. Soulé, *Arithmetic intersection theory*, I.H.E.S. Publ. Math. 72 (1991), 93–174.

[HL84] G. Henkin and J. Leiterer, *Theory of functions on complex manifolds*, Birkhäuser, Verlag ed., 1984.

[LeL68] P. Lelong, *Fonctionnelles analytiques et fonctions entières (n variables)*, Presses Universitaires de Montréal, 1968.

[Méo98] M. Méo, *Inégalités d’auto-intersection pour les courants positifs fermés définis dans les variétés projectives*, Ann. Scuola Norm. Pisa 26 (1998), no. 4, 161–184.

[Siu74] Y.T. Siu, *Analyticity of sets associated to Lelong numbers and the extension of positive closed currents*, Invent. Math. 27 (1974), 53–156.

[Sko72] H. Skoda, *Sous-ensembles analytiques d’ordre fini ou infini dans \mathbb{C}^n*, Bull. de la S.M.F 100 (1972), 353–408.

[Sko82] H. Skoda, *Prolongement des courants, positifs, fermés de masse finie*, Invent. Math. 66 (1982), 361–376.

[Vois02] C. Voisin, *Hodge theory and complex algebraic geometry, I*, Cambridge Studies in Advanced Mathematics, 76 ed., Cambridge University Press, Cambridge, 2002.

Gabriel Vigny, Mathématiques - Bât. 425, UMR 8628,
Université Paris-Sud, 91405 Orsay, France.
Email: gabriel.vigny@math.u-psud.fr