Supplementary information

Up-regulation of SPS100 gene expression by an antisense RNA via a switch of mRNA isoforms with different stabilities

Daria Bunina1,#, Martin Štefl1,#, Florian Huber1,#, Anton Khmelinskii3, Matthias Meurer1, Joseph D. Barry2, Ilia Kats1, Daniel Kirrmaier1,3, Wolfgang Huber2, Michael Knop1,3,*

1 Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
2 Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
3 Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

Supplementary Figures and Legends
Supplementary Movie Legend
Supplementary Tables S1-S6
Supplementary References
Figure S1. Overview of the antisense effect on SPS100 across conditions. Raw data for the antisense effect on SPS100 in all tested conditions. Whole colony fluorescence intensities were measured (Materials and Methods).
Figure S2. Test run of different versions of the antisense reporter. (a) Three different plasmids were tested for the antisense reporter shown in Figure 3a. SPS100-BFP wt, PHO5_T, and PHO5_{T;scr} constructs were cloned along with the SPS100 5'- and 3'-intergenic regions (IGRs) into a centromeric plasmid and mCherry was inserted in antisense direction at the antisense initiation site. (b) Fluorescence intensities of the three constructs described in (a) were measured at the colony level after growth for 3 days under starvation conditions (SC, 0.1% glucose). Intensities with the PHO5_T construct were higher. Consequently, this plasmid was used as an antisense reporter.
Figure S3. Gene loop formation between the SPS100 promoter and terminator regions does not depend on antisense but on SPS100 gene expression. Chromatin extracts from the cells with the indicated SPS100 constructs were crosslinked with paraformaldehyde and digested with HaeIII enzyme (cut sites shown in red). Fragments after digestion were ligated after strong dilution to enrich for intra-fragment ligations. The cross-links were reversed and DNA was extracted. PCR primers used to detect ligations between different fragments after digestion are shown (\(\text{O}\) and \(\text{T}\), same orientation of both primers), as well as control primers lying in the same fragment after restriction (\(\text{C1}\) and \(\text{C2}\)). PCR shows expected product sizes from the interaction of restriction fragments \(\text{x}\) and \(\text{z}\) (PCR product 1) and a shifted product size (PCR product 2) which is a result of an incomplete digest at the HaeIII site between restriction fragments \(\text{x}\) and \(\text{y}\). The PCR products are specific to the interaction and are absent in the controls without HaeIII or ligase (as
opposed to the control product which is present independent on digestion or ligation).
Figure S4. Initial screen for antisense-dependent regulatory regions in the SPS100 3′-IGR. Colony fluorescences of a plasmid with SPS100-BFP followed by either PHO5T and the SPS100 3′-IGR (top) or the SPS100 3′-IGR directly (“wt”, second from top) were measured (barplots to the right). Next, selected portions were deleted from the 3′-IGR in the wt plasmids and fluorescence intensities were recorded. Coordinates of the deletions are indicated. Error bars denote standard deviations.
Figure S5. 3’-end mRNA isoforms of SPS100 determined by Northern blot. Loading controls and low contrast images of Northern blots which correspond to Figures 6b (a in supplement) and c (c in supplement). (b) Northern blots of the SPS100 strains with the probe to the SUT169.
Comparison of sense and antisense levels up- and downstream of $PHO5_T$

![Comparison of sense and antisense levels up- and downstream of $PHO5_T$.](image)

Figure S6. RT-qPCRs with amplicons both up- and downstream of the $PHO5_T/PHO5_T:scr$ insertions. Strand-specific RT-qPCRs were conducted in SPS100-sfGFP wt, $PHO5_T$, and $PHO5_T:scr$ strains with two different amplicons: the “upstream” amplicon was located within sfGFP (green bar) whereas the
“downstream” amplicon was located in the SPS100 3’-IGR downstream of the termination site of the short isoform (red bar). Reverse transcriptions were performed with the same primers that were also used for subsequent qPCR amplification runs. The antisense initiation site is shown schematically, different colours indicate the amplicon and whether sense or antisense was measured (see legends). Error bars show the standard deviation of three technical replicates.
Figure S7. RT-qPCRs of SPS100 antisense library strains with different deletions in the 3’-IGR. Strand-specific RT-qPCRs were conducted in SPS100-sfGFP wt, PHO5T, and PHO5T:scr strains with an amplicon binding in sfGFP (see Figure S6) of strains with either no deletion or deletion of the 20 nt element or the repeat as indicated in Figures 5 and 6. Black bars indicate sense, gray bars antisense levels. Error bars show the standard deviation of three technical replicates.
Figure S8. Sps100 expression levels and RT-qPCRs of SPS100 antisense library strains with and without heterologous terminators. (a) The region spanning nucleotides 207-519 of the SPS100 3'-IGR was deleted or replaced by two different bidirectional terminators (ALG9$_{term}$ and UBC6$_{term}$, see main text) in each of wt, PHO5$_T$ or PHO5$_{T:scr}$ strains. The resulting strains were grown into starvation and sfGFP intensities were measured by flow cytometry. The boxes show the first and third quartiles and the median. The grey violin plots show the distribution densities ranging from the first quartile minus 1.5 * interquartile range (IQR) to the third quartile + 1.5 * IQR. (b) Strand-specific RT-qPCRs were conducted in SPS100-sfGFP wt, PHO5$_T$, and PHO5$_{T:scr}$ strains with an amplicon binding in sfGFP (see
Figure S6) of the strains shown in (a). Black bars indicate sense, gray bars antisense levels. Error bars show the standard deviation of three technical replicates.
Figure S9. 3'-end mRNA isoforms of SPS100 determined by Northern blot in the strains without the sfGFP tag. (a) Scheme of the locus of SPS100 (no sfGFP) with the sequence motifs of Figure 5 and the three mRNA isoforms indicated. (b) Northern blots on SPS100 mRNAs with three different probes as indicated in (a). Arrows indicate long and short isoform bands. Upper panel is loading control (rRNA bands on the RNA gel stained with ethidium bromide).
Supplementary Movie Legend

Movie S1. Live monitoring of the transcription process. A GPD-22PP7-BFP-SPS100 3’-IGR strain was used for the analysis of transcriptional activity. Left: Maximum projection images which were recorded over ~ 30 min. Individual transcription events were detected and the Hidden Markov model was used for the analysis of the transcription site intensity traces (right part, intensity axis, blue lines). Resulted ON/OFF states are depicted in the right axis in green/red lines. Green and red circles and lines correspond to the transcription events in two different cells.
Supplementary Tables S1-S6

Table S1 – Yeast strains used in this study

Strain	Background	Description	Reference
Y8205	MATα	his3Δ1 ura3Δ0 met15Δ0 can1Δ::STE2pr-his5 lyp1Δ::STE3pr-LEU2	(1)
yMaM330	Y8205	insertion of Gal-inducible I-SceI cassette leu2Δ0::GAL1pr-I-SCEI-natNT2	(2)
ESM356-1	FY1676	MATα	(3)
LH175		MATα, ho:hisG, lys2 ura3 leu2 his3 trp1ΔFA (SK1 background)	(4)
yDB14	YMaM330	SPS100-sfGFP-S2 site (otherwise seamlessly tagged) in YMaM330 background	(5)
yDB16	YMaM330	As yDB14 but with sfGFP followed by PHO5_T	(5)
yDB17	YMaM330	As yDB14 but with sfGFP followed by PHO5_T,scn	(5)
yDB218	ESM356-1	ESM356-1 transformed with pDaB38	this study
yMaS221	Y8205	yDB14 transformed with pMaS135	this study
yMaS222	Y8205	yDB16 transformed with pMaS135	this study
yMaS223	Y8205	yDB17 transformed with pMaS135	this study
yMaS224	Y8205	yDB14 transformed with pMaS136	this study
yMaS225	Y8205	yDB16 transformed with pMaS136	this study
yMaS226	Y8205	yDB17 transformed with pMaS136	this study
yDB302	LH175	Δsps100::kanMX6 (SK1 background)	this study
yMaS199	Diploid	Diploid from yDB14 and yDB302	this study
		Δsps100::kanMX6/SPS100-sfGFP	
yMaS200	Diploid	Diploid from yDB16 and yDB302	this study
		Δsps100::kanMX6/SPS100-sfGFP	
yMaS201	Diploid	Diploid from yDB17 and yDB302	this study
		Δsps100::kanMX6/SPS100-sfGFP	
yMaS207	Diploid	Diploid from yDB302 and YMaM330 (neg. control for yMaS199-201)	this study
		(other control for yMaS199-201)	
yDB18	Y8205	yDB14 transformed with pDB6 (pRS413-SPS100)	this study
yDB20	Y8205	yDB16 transformed with pDB6 (pRS413-SPS100)	this study
yDB21	Y8205	yDB17 transformed with pDB6 (pRS413-SPS100)	this study
yDB51	YMaM330	CTA1-sfGFP-S2 site (otherwise seamlessly tagged)	(5)
yDB53	YMaM330	As yDB51 but with sfGFP followed by \(PHO5_T\) (5)	
yDB54	YMaM330	As yDB51 but with sfGFP followed by \(PHO5_T,scr\) (5)	
yDB59	YMaM330	\(UGA2\)-sfGFP-S2 site (otherwise seamlessly tagged) in YMaM330 background (5)	
yDB61	YMaM330	As yDB51 but with sfGFP followed by \(PHO5_T\) (5)	
yDB62	YMaM330	As yDB51 but with sfGFP followed by \(PHO5_T,scr\) (5)	
yDB55	YMaM330	\(FBP1\)-sfGFP-S2 site (otherwise seamlessly tagged) in YMaM330 background (5)	
yDB57	YMaM330	As yDB51 but with sfGFP followed by \(PHO5_T\) (5)	
yDB58	YMaM330	As yDB51 but with sfGFP followed by \(PHO5_T,scr\) (5)	
yDB92	Y8205	yDB51 (\(CTA1\)-sfGFP) tagged with PCR product of S2/S3 primers on pDB10 (Figures 4b-c): \(CTA1\)-sfGFP-\(SPS100_3'IGR\)-\(Cyc1\)term\(\text{rev}\)-\(KanMX\) this study	
yDB113	Y8205	\(CTA1\)-sfGFP-\(PHO5_T\)-\(SPS100_3'IGR\)-\(Cyc1\)term\(\text{rev}\)-\(KanMX\) this study	
yDB94	Y8205	\(CTA1\)-sfGFP-\(PHO5_T\)-\(SPS100_3'IGR\)-\(Cyc1\)term\(\text{rev}\)-\(KanMX\) this study	
yDB108	Y8205	\(FBP1\)-sfGFP-\(SPS100_3'IGR\)-\(Cyc1\)term\(\text{rev}\)-\(KanMX\) this study	
yDB96	Y8205	\(FBP1\)-sfGFP-\(PHO5_T\)-\(SPS100_3'IGR\)-\(Cyc1\)term\(\text{rev}\)-\(KanMX\) this study	
yDB97	Y8205	\(FBP1\)-sfGFP-\(PHO5_T,scr\)-\(SPS100_3'IGR\)-\(Cyc1\)term\(\text{rev}\)-\(KanMX\) this study	
yDB98	Y8205	\(UGA2\)-sfGFP-\(SPS100_3'IGR\)-\(Cyc1\)term\(\text{rev}\)-\(KanMX\) this study	
yDB100	Y8205	\(UGA2\)-sfGFP-\(PHO5_T\)-\(SPS100_3'IGR\)-\(Cyc1\)term\(\text{rev}\)-\(KanMX\) this study	
yDB101	Y8205	\(UGA2\)-sfGFP-\(PHO5_T,scr\)-\(SPS100_3'IGR\)-\(Cyc1\)term\(\text{rev}\)-\(KanMX\) this study	
yMaS107	ESM356-1	\(ura3::GPD\)prom-\(BFP\)-\(PHO5_T\)-\(SPS100_3'IGR\)- this study	
KanMx integration of pMaS82 into URA3 locus

yMaS108 ESM356-1 ura3::GPDProm-BFP-SPS100_3'IGR-KanMx

this study

yMaS109 ESM356-1 ura3::GPDProm-BFP-PHO5_Tscr-SPS100_3'IGR-KanMx

this study

yDB188 ESM356-1 ESM356-1 transformed with pDaB27

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔ31..102

(Figure S4)

this study

yDB189 ESM356-1 ESM356-1 transformed with pDaB28

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔ102..518

this study

yDB187 ESM356-1 ESM356-1 transformed with pDaB26

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔ103..206

this study

yDB186 ESM356-1 ESM356-1 transformed with pDaB25

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔ207..310

this study

yDB183 ESM356-1 ESM356-1 transformed with pDaB22

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔ414..518

this study

yDB184 ESM356-1 ESM356-1 transformed with pDaB23

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔ311..518

this study

yDB185 ESM356-1 ESM356-1 transformed with pDaB33

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔα41..518

this study

yDB204 ESM356-1 ESM356-1 transformed with pDaB33

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔ265..272

this study

yDB205 ESM356-1 ESM356-1 transformed with pDaB34

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔ207..226

this study

yDB206 ESM356-1 ESM356-1 transformed with pDaB35

pRS415-SPS100_5'IGR-SPS100-BFP-SPS100_3'IGRΔ227..246

this study

yDB207 ESM356-1 ESM356-1 transformed with pDaB36

pRS415-SPS100_5'IGR-SPS100-BFP-
Code	Strain	Constructs	Notes
yDB43	Y8205	SPS100-sfGFP-SPS100_3′IGR\textsubscript{Δ273..292}	analogous to yDB92
yDB45	Y8205	SPS100-sfGFP-PHO5\textsubscript{T}-SPS100_3′IGR	analogous to yDB92
yDB46	Y8205	SPS100-sfGFP-PHO5\textsubscript{T,scr}-SPS100_3′IGR	analogous to yDB92
yMaS248	Y8205	SPS100-sfGFP-SPS100_3′IGR\textsubscript{Δ1..102}	
		Cycl1\text{term}(rev)-KanMX	
		made as in Figure 4b, used for Figure 5	
yMaS212	Y8205	SPS100-sfGFP-SPS100-PHO5\textsubscript{T}-3′IGR\textsubscript{Δ1..102}	
		Cycl1\text{term}(rev)-KanMX	
yMaS214	Y8205	SPS100-sfGFP-SPS100-PHO5\textsubscript{T,scr}-3′IGR\textsubscript{Δ1..102}	
		Cycl1\text{term}(rev)-KanMX	
yMaS249	Y8205	SPS100-sfGFP-SPS100_3′IGR\textsubscript{Δ(AAAAAC)8}	
		Cycl1\text{term}(rev)-KanMX	
yMaS250	Y8205	SPS100-sfGFP-SPS100-PHO5\textsubscript{T}-3′IGR\textsubscript{Δ(AAAAAC)8}	
		Cycl1\text{term}(rev)-KanMX	
yMaS251	Y8205	SPS100-sfGFP-SPS100-PHO5\textsubscript{T,scr}-3′IGR\textsubscript{Δ(AAAAAC)8}	
		Cycl1\text{term}(rev)-KanMX	
yMaS220	Y8205	SPS100-sfGFP-SPS100_3′IGR\textsubscript{Δ207..310}	
		Cycl1\text{term}(rev)-KanMX	
yMaS213	Y8205	SPS100-sfGFP-SPS100-PHO5\textsubscript{T}-3′IGR\textsubscript{Δ207..310}	
		Cycl1\text{term}(rev)-KanMX	
yMaS215	Y8205	SPS100-sfGFP-SPS100-PHO5\textsubscript{T,scr}-3′IGR\textsubscript{Δ207..310}	
		Cycl1\text{term}(rev)-KanMX	
yDB224	Y8205	SPS100-sfGFP-SPS100_3′IGR\textsubscript{Δ273..292}	
		Cycl1\text{term}(rev)-KanMX	
yDB225	Y8205	SPS100-sfGFP-SPS100-PHO5\textsubscript{T}-3′IGR\textsubscript{Δ272..292}	
		Cycl1\text{term}(rev)-KanMX	
yDB226	Y8205	SPS100-sfGFP-SPS100-PHO5\textsubscript{T,scr}-3′IGR\textsubscript{Δ272..292}	
		Cycl1\text{term}(rev)-KanMX	
yMaS139	ESM356-1	ura3::GPDprom-22PP7-BFP-SPS100_3′IGR-NatNT2 + NOP1prom-PCP-3mCherry-KanMX	
yMaS140	ESM356-1	ura3::GPDprom-22PP7-BFP-PHO5\textsubscript{T}	
		SPS100_3′IGR-NatNT2 + NOP1prom-PCP-3mCherry-KanMX	
yMaS141	ESM356-1	ura3::GPDprom-22PP7-BFP-PHO5\textsubscript{T,scr}	
yDK475-1 Y8205 SPS100-PHO5-T-S2 in BY4741 background this study
yDK476-6 Y8205 SPS100-PHO5_Tscr-S2 in BY4741 background this study

Table S2 – Plasmids used in this study

Plasmid	Backbone	Description	Reference
pFA6a	E. coli	plasmid with AmpR cassette	(6)
pRS413	Centromeric	plasmid, histidine selectable	(7)
pRS415	Centromeric	plasmid, leucine selectable	(7)
pRS306K	Integrative	plasmid for URA3 site, kanMX4 resistance cassette	(8)
pMaM175	pFA6a	contains S3-sfGFP-Scelsite-S. Parad. Tyc1-ScURA3-Scelsite-sfGFPΔN-S2	(5)
pMaM175	pFA6a	Like pMaM175 but with PHO5_T following sfGFP	(5)
pMaM201	pFA6a	Like pMaM175 but with PHO5_Tscr following sfGFP	(5)
pMaM203	pFA6a	Like pMaM175 but with PHO5_Tscr following sfGFP	(5)
pDaB38	pRS415	NotI site of pRS415 contains SPS100_5'IGR-ORF-TagBFP-PHO5_T-SPS100_3'IGR	this study
		with mCherry inserted in antisense direction at position 227 of 3'IGR	
pMaS135	pRS413	Like pDaB38 but without mCherry and with histidine selectable marker	this study
pMaS136	pRS413	Like pDaB38 but with histidine selectable marker	this study
pDB6	pRS413	SPS100 ORF including 1572 bp upstream (= 5'IGR) and 519 bp downstream (=3' IGR) was amplified from genome ESM356-1 and inserted into pRS413 cut with XhoI + SpeI	this study
		Used for Figure 4a	
pMaS9	pRS415	NotI site of pRS415 contains SPS100_5'IGR-ORF-TagBFP-SPS100_3'IGR	this study
pMaS10	pRS415	Like pMaS9 but with TagBFP-PHO5_T	this study
pDB10	pFA6a	SalI site of pFA6a contains SPS100_3'IGR-CYC1Term(rev)-KanMX	this study
Table S3 – Oligonucleotides used in this study

Primer	Sequence 5’ – 3’
RT-qPCR primers:	
SPS100 sense (reverse)	CCATGTGATCACGCTTTTCATTCGGA
SPS100 antisense (reverse)	AAGAGCTATTTACTGGGGTTGTACC
SPS100 sense/antisense forward (qPCR)	GGCCAACCCCTAGTAACAACTTTG
SPS100 sense/antisense reverse (qPCR)	CACGTAGCCTTCTGGCATAG
BFP sense A (reverse)	TTCAGGGCCATGTCGTTT
BFP sense B (reverse)	CGTAGTACACAACACAATAATCATC
BFP antisense (reverse)	TTCACCGAGACGCTGTACC
BFP sense/antisense forward (qPCR)	TTCACCGAGACGCTGTACC
BFP sense/antisense reverse A (qPCR)	TTCAGGGCCATGTCGTTT
BFP sense/antisense reverse B (qPCR)	CGTAGTACACAACACAATAATCATC
3’ RACE primers:	
reverse transcription (Q_T)	CCAGTGAGCAGAGTGACGACTCGAGCTCAAGCTTTTTTTTTTTTTTTTTTTTTTTTTTVN
first amplification reverse (Q_O)	CCAGTGAGCAGAGTGACG
	Sequences
---------------------	---
second amplification reverse (Q)	GAGGACTCGAGCTCAAGC
SPS100 first amplification forward (GSP1)	TGGGTACTTGTCACCAATCC
BFP first amplification forward (GSP1)	CCTGAGGGCTTCACATGG
SPS100 second amplification forward (GSP1)	AGCGAGTTACAACAAATCTTCC
BFP second amplification forward (GSP2)	GGCTGCCTCATCTACAACG

Northern blot probes:

Name	Targeting Sense	Sequence
ProbeA	sfGFP	GTAGTGATTATCGGGTAACAAGACTGGACCATCAACAAATAG GGGT
ProbeB	SPS100 after STOP	CGTAGTACACAACACATAATCATCTTAATCGATGAATTTCGA GCTCG
ProbeC	SPS100 long isoform	GAACACTGATAATAACTGTACTGAAGACAAACATTTAGGA AGTAAC
ProbeA	ORF	GGATTGGTGACAAGTACCACCGACAAATTGCACCTTTGTGG AATACTTTGTG
Table S4 – Growth conditions

Media	Condition	Concentration	Temperature
SC	raffinose	2 % w/v	30 °C
SC	sodium chloride	0.4 M	30 °C
SC	trehalose	2 % w/v	30 °C
SC	ethanol	3 % w/v	30 °C
SC	potassium acetate	2 % w/v	30 °C
SC	glycerol	3 % w/v	30 °C
SC	glucose	0.1 % w/v	30 °C
SC	glucose	2 % w/v	30 °C
SC	glucose	2 % w/v	14 °C
SC	raffinose + galactose	2 + 2 % w/v	30 °C
SC	sucrose	2 % w/v	30 °C
SC	maltose	2 % w/v	30 °C

SC – synthetic complete.
Table S5 – Detection of sfGFP fusions by the plate colony assay

sfGFP gene	tagged	T=14°C 2% glucose	T=30°C 0.1% glucose	T=30°C 2% glucose
KAP123	5.63	5.62	4.66	
HNM1	4.28	NA	NA	
AMS1	4.31	4.08	3.27	
HXT5	13.43	20.47	23.54	
BCY1	8.12	5.05	4.95	
ELO1	7.03	2.93	NA	
PTM1	5.63	NA	3.36	
RCK2	4.55	NA	NA	
TMA7	9.61	3.98	4.47	
CHS5	3.89	NA	NA	
RPL6B	10.76	5.53	4.98	
CCS1	3.43	NA	NA	
PUB1	21.38	7.65	9.04	
SUR1	2.07	NA	NA	
CTR1	6.39	2.93	3.36	
HXT3	13.24	NA	NA	
GLC3	15.58	6.93	9.02	
HMF1	10.17	4.73	4.61	
ICL1	64.70	50.79	39.52	
KRS1	14.64	4.50	6.10	
YHR087W	47.09	19.74	41.20	
COX5B	3.08	NA	NA	
PRY1	5.29	NA	NA	
SPC1	3.70	NA	NA	
CYC1	5.30	NA	NA	
FBP1	10.74	13.74	7.20	
SUR7	5.20	3.31	3.76	
ADH6	6.26	3.49	NA	
YGP1	3.70	NA	NA	
HTZ1	5.44	3.39	3.26	
UGA2	3.21	3.04	4.94	
JEN1	11.62	19.80	4.58	
YMR178W	4.49	NA	NA	
FBA1	245.67	125.15	119.46	
LEM3	3.38	NA	NA	
GTT1	4.32	4.09	4.40	
ARA1	14.69	12.58	8.19	
NPC2	3.37	3.47	NA	
VCX1	4.71	NA	NA	
INH1	8.59	8.12	7.78	
YNL194C	3.25	9.01	5.29	
PDC1	211.42	85.75	156.83	
MRPL23	3.03	NA	NA	
Table of the 50 genes which were detected above background at 3 different growth conditions. Values correspond to the fold increase of colony fluorescence above background. NA means that the gene was not detected at this particular growth condition.

Gene	Condition 1	Condition 2	Condition 3
SVP26	3.90	NA	NA
CTA1	NA	8.75	NA
SPS100	NA	27.97	5.07
YKL187C	NA	3.63	NA
CYB2	NA	3.40	NA
YBL029C-A	NA	NA	4.22
YJR096W	NA	NA	4.42
Table S6 – Detection of sfGFP fusions by the plate colony assay

Gene	Regulation (this study)	Regulated (Huber et al., 2016)	Regulated (other studies)
SPS100	↑	n/a (not expressed)	not reported
PDC1	↑	n/a (overexposed)	not reported
FBA1	↑	n/a (overexposed)	not reported
CTA1	↑	no	not reported
AMS1	↑	↑	not reported
HXT5	↑ for 0.1% and SC, 30 °C, ↓ for 14 °C	no	not reported
HXT3	↓	no	not reported
YNL194C	↓	no	not reported
COX5B	↓	↓	not reported
SPC1	↓	↓	not reported
YHR087W	↓	↓	not reported
SUR7	↓	no	yes, but only at low levels (9)
SUR1	↓	↓	not reported
ELO1	↓	↓	not reported
UGA2	↓	no	not reported

Comparison with previous studies. The genes identified in this study to be regulated by antisense transcription were compared to our previous study where we used exponential growth conditions, and to reports in the literature. Legend: ↑ = antisense increases expression; ↓ = antisense decreases expression; n/a = was not tested for regulation; no = gene was tested for regulation but no difference was observed between PHO5T and PHO5T:scr; not reported = we could not identify other studies reporting antisense-dependent regulation of this gene.
Supplementary References

1. Tong, A.H.Y. and Boone, C. (2007) High-throughput strain construction and systematic synthetic lethal screening in Saccharomyces cerevisiae. In Stansfield, I and Stark, M.J.R. (ed), YEAST GENE ANALYSIS, SECOND EDITION, Methods in Microbiology. ELSEVIER ACADEMIC PRESS INC, 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA, Vol. 36, p. 369+.

2. Khmelinskii, A., Meurer, M., Duishoev, N., Delhomme, N. and Knop, M. (2011) Seamless gene tagging by endonuclease-driven homologous recombination. PLoS One, 6, 1–17.

3. Pereira, G., Tanaka, T.U., Nasmyth, K. and Schiebel, E. (2001) Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. EMBO J., 20, 6359–6370.

4. Riedel, C.G., Mazza, M., Maier, P., Korner, R. and Knop, M. (2005) Differential requirement for phospholipase D/Spo14 and its novel interactor Sma1 for regulation of exocytotic vesicle fusion in yeast meiosis. J. Biol. Chem., 280, 37846–37852.

5. Huber, F., Bunina, D., Gupta, I., Theer, P., Steinmetz, L.M. and Knop, M. (2016) Protein Abundance Control by Non-coding Antisense Protein Abundance Control by Non-coding Antisense Transcription. CellReports, 15, 1–12.

6. Wach, A., Brachat, A., Pohlmann, R. and Philippsen, P. (1994) New Heterologous Modules for Classical or PCR-based Gene Disruptions in Saccharomyces cerevisiae. YEAST, 10, 1793–1808.

7. Sikorski, R.S. and Hieter, P. (1989) A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19–27.

8. Taxis, C. and Knop, M. (2006) System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques, 40, 73–78.

9. Xu, Z., Wei, W., Gagneur, J., Clauer-Münster, S., Smolik, M., Huber, W. and Steinmetz, L.M. (2011) Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol., 7, 468.