Nutritional epigenomics and age-related disease

Sophia D. Amenyah\(^1,2\), Mary Ward\(^2\), JJ Strain\(^2\), Helene McNulty\(^2\), Catherine F. Hughes\(^2\), Caitlin Dollin\(^1\), Colum P. Walsh\(^1\), Diane J. Lees-Murdock\(^1\).

Author Affiliations: 1Genomic Medicine Research Group (SDA, CD, CPW, DLM) and 2Nutrition Innovation Centre for Food and Health (NICHE; SDA, MW, JJS, HM and CFH), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom.

Authors’ last names: Amenyah, Ward, Strain, McNulty, Hughes, Dollin, Walsh, Lees-Murdock

Corresponding Author: Dr Diane Lees-Murdock, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, UK. BT52 1SA. Tel: +44 (0) 28 7012 3166, E-mail: dj.lees@ulster.ac.uk

Sources of Support: The research described in this review was supported in part by Northern Ireland Chest Heart & Stroke Association (NICH S206_07; DLM & MW), DSM Nutritional Products (MW, HN, JJS and CH), ESRC/BBSRC (ES/N000323/1; CPW & DLM) and Vice Chancellor’s Research Scholarship, Ulster University (SDA). SDA was the recipient of travel grants from the Nutrition Society, Biochemical Society and Genetics Society.

None of the entities providing support were involved in the design, implementation, analysis, interpretation of the data or in the production of the final review manuscript.

Short running head: Nutritional epigenomics and age-related disease

Abbreviations used: 5mC, 5-methyl cytosine; CVD, cardiovascular disease; DMP, differentially methylated position; DMR, differentially methylated region; DNMT, DNA methyltransferase; EEAA, extrinsic epigenetic age; IEAA, intrinsic epigenetic age; MTHFR,
methylene tetrahydrofolate reductase; MZ, monozygotic twins; RBC, red blood cell; RCT, randomized controlled trial; SAM, S-Adenosylmethionine; TETs, ten-eleven translocation methylcytosine dioxygenase enzymes; TSS, transcription start site; UTR, untranslated region
Abstract

Recent advances in epigenetic research have enabled the development of epigenetic clocks which have greatly enhanced our ability to investigate molecular processes that contribute to aging and age-related disease. These biomarkers, offer the potential to measure the effect of environmental exposures linked to dynamic changes in DNA methylation, including nutrients, as factors in age-related disease. They also offer a compelling insight into how imbalances in the supply of nutrients, particularly B-vitamins, or polymorphisms in regulatory enzymes involved in one-carbon metabolism, the key pathway that supplies methyl groups for epigenetic reactions, may influence epigenetic age and interindividual disease susceptibility.

Evidence from recent studies is critically reviewed, focusing on the significant contribution of the epigenetic clock to nutritional epigenomics and its impact on health outcomes and age-related disease. Further longitudinal studies and randomized nutritional interventions are required to advance the field.

Key words: Aging, B-vitamins, diet, DNA methylation, epigenetic age, epigenetic age acceleration, epigenetic clock, one-carbon metabolism
1.0 Introduction

Epigenetic regulation has been identified as a key factor in aging (1) and is linked with diet, metabolism and disease (2,3). During the last decade, novel epigenetic clock models to identify DNA methylation signatures that accurately predict chronological age, disease and mortality, have also provided a measure of epigenetic or biological age. Epigenetic clocks offer immense potential to improve our understanding of the significant current global challenge of the disparity between the lengthening of average lifespan (4) which has not been matched by similar improvements in healthspan with relatively static rates of age-related disease (5). During the last decade, the application of epigenetic clock models to data generated by epigenome-wide association studies (EWAS) studies focused on dietary intakes and nutritional intervention is helping to uncover dietary determinants of healthy aging. Maintaining optimal nutritional status will have an important contribution to improving health outcomes with respect to age-related disease and healthspan. Several dietary factors are emerging as key modifiers of biological age and epigenetic clock models are helping to unravel the complex interplay of diet and age-related disease. Folate and related B-vitamins, essential cofactors in one-carbon metabolism, the main metabolic pathway for generating methyl groups for DNA methylation (6), are emerging as factors which can modify epigenetic age. Perturbations to DNA methylation owing to imbalances in the supply of B-vitamins, or to polymorphisms or interactions between the various regulating enzymes could lead to aberrant DNA methylation and subsequently influence epigenetic age and disease susceptibility (7).

Suboptimal B-vitamin status is associated with accelerated aging of the brain, declining cognitive function and cardiovascular disease, indicating that B-vitamins may play protective roles in age-related disease (8–10). High prevalence of low dietary intakes for B-vitamins
(i.e., below the estimated average requirement, EAR), including folate (29%–35%), vitamin B6 (24%–31%) and riboflavin (31%–41%) have been reported in older adults (11). More recent estimates from older adults (n 5 290; ≥50 years) from the Irish Longitudinal Study on Ageing (TILDA) (Wave 1) and (n = 5186) from the Trinity Ulster Department of Agriculture (TUDA) study reported the prevalence of deficient or low B12 status (<185 pmol/l) as 12 % and 11.8% respectively, while the prevalence of deficient/low folate status was up to 15% (12,13).

Application of epigenetic clock models to epigenomic data from dietary interventions or longitudinal studies of dietary intake offer immense potential for elucidating how nutrition can modulate age-related disease processes and improve health outcomes. As the volume of studies investigating the effect of nutrients, in particular B-vitamins, on DNA methylation in health and disease begin to increase, understanding the essential role of these nutrients in modulating DNA methylation age and age acceleration are critical.

The aim of this literature review was to address this gap by providing a critical overview of recent studies using the epigenetic clock to predict biological age and age-related disease and the application of nutrition in modifying these parameters. Further longitudinal studies and randomized nutritional interventions are required. Additionally, challenges with methodology are highlighted and opportunities presented for researchers to consider for advancement of the field of nutritional epigenomics and age-related disease.

2.0 Literature search strategy

The literature search for this review was conducted by searching the Medline (via OvidSP) database and PubMed for articles published in English only and limited to human studies. Both medical subject headings and keywords were used in the search to identify articles with
relevant information on ageing, DNA methylation clock, diet and vitamins. This was subsequently followed by forward citation searching or ‘snowballing’ whereby relevant references were identified from key articles, followed up and repeating the process with each article used to obtain more literature.

Medical subject headlines included: exp DNA Methylation/, exp Dietary Supplements/, exp Micronutrients/, Vitamins/, Vitamin B Complex/, Food, Fortified/, genome-wide methylation.mp. or Methylation/, Aging/ or Biological Clocks/ or Epigenetic clock.mp. or DNA Methylation/. The keywords used were: (diet or nutrient or cobalamin or folate or methionine or betaine or choline or riboflavin or "vitamin b2" or "vitamin b12") or ("methylation clock" or 450K or Methyl450 or Methylation450 or beadchip or "bead chip" or 800k or epic or EWAS or genome-wide or genomewide or epigenome-wide or epigenomewide). Finally, only those articles with emphasis on vitamins, diet, micronutrients and methylation clocks were selected, and the relevant data was extracted for the review.

3.0 DNA methylation and one-carbon metabolism

3.1 DNA methylation

DNA methylation is widely regarded as the most stable epigenetic mark involved in establishing patterns of gene expression and phenotype (14). It usually involves the covalent binding of methyl groups to the 5’position of a cytosine (5C) to form 5’-methylcytosine (5mC) and occurs within CpG dinucleotide sequences (15). DNA methylation may also occur at non-CpG sites, such as CpA, CpT, and CpC; however the functions and mechanisms of such methylation and implications for gene expression are currently not fully understood (16). This review, therefore, focuses on DNA methylation at 5mC. Methylation reactions are catalyzed by a family of DNA methyltransferases (DNMTs) which transfer a methyl group...
from S-adenosylmethionine (SAM) (Figure 1). Removal of DNA methylation can occur via passive (failure to maintain methylation following replication) or active mechanisms. Active demethylation is carried out by the ten-eleven translocation methylcytosine dioxygenase enzymes (TETs) recently reviewed in (17) to produce 5mC derivatives, 5’-hydroxymethylcytosine (5hmC), 5’-formylcytosine (5fC) and 5’-carboxylcytosine (5caC). Additionally, the 5caC is then removed through the action of base excision repair enzyme thymine DNA glycosylase (TDG) (18) (Figure 1).

DNA methylation has differing functions, depending on its location within the genome. It is usually associated with transcriptional gene repression at CpG rich promoters; however, a mechanistic link between gene body methylation and active transcription is also suggested by enrichment of 5mC within gene bodies of transcribed genes (19). CpG sites dispersed throughout the genome are usually methylated (20,21), unlike CpGs lying within distinct, CG-rich CpG islands (CGIs), often found in the promoters of housekeeping genes (22), which are mostly unmethylated (20,21). In the regions immediately neighboring CpG islands, CpG shores (up to 2 kb from CGI), and CpG shelves (2-4 kb from CGI), display higher levels of methylation, with variations at these locations having a stronger impact on gene expression than the CpG island and may account for tissue-specific expression and disease variability (23,24). Additionally, methylation occurring at other genomic regions including, transcription start sites (TSS) and intergenic regions and has also been shown to influence transcription and gene expression (25,26).

DNA methylation modifications are dynamic, extensively reprogrammed in early development, (27,28) and continue to a lesser, but nonetheless important extent throughout the lifespan, owing to the influence of various environmental conditions, particularly diet, which importantly contribute to both the aging process and disease susceptibility (29).
3.2 Influence of nutrients on DNA methylation

One-carbon metabolism provides a direct link between nutrients, mainly folate and related B-vitamins, and DNA methylation (Figure 1) and therefore has become of interest to investigate in epigenetic studies. The interconnected biochemical pathways generate methyl groups for the synthesis of purines and thymidine, and biological methylation reactions including DNA, RNA and histone methylation. Folate and related B-vitamins: vitamin B-12, vitamin B-6 and the largely overlooked vitamin B-2 (riboflavin), and other nutrients including methionine, choline and betaine provide substrates and cofactors to help the efficient functioning of the system. Folate from the diet or in the synthetic form, folic acid is converted to 5-methyltetrahydrofolate (5-mTHF) and dihydrofolate (DHF) respectively and subsequently to tetrahydrofolate (THF) (30). Tetrahydrofolate is then converted to 5,10-methylenetetrahydrofolate and subsequently to 5-mTHF by methylenetetrahydrofolate reductase (MTHFR) with vitamin B-2 (riboflavin) as a cofactor. 5-mTHF is then demethylated as the 1-carbon is donated for remethylation of homocysteine to methionine by methionine synthase (MTR) with vitamin B-12 as a cofactor (31). 5,10-methylenetetrahydrofolate dehydrogenase (MTHFD1), catalyzes the conversion of tetrahydrofolate to 10-formyl, 5,10-methenyl and 5,10-methylene derivatives subsequently used as cofactors for de novo purine and pyrimidine synthesis (30,32). The choline-betaine pathway is a parallel pathway that involves a transfer of a methyl group from betaine to homocysteine, a B-6 dependent reaction, to produce dimethylglycine (DMG) and methionine.

Methionine regenerated from homocysteine serves as a precursor for S-adenosylmethionine (SAM) and is then converted to S-adenosylhomocysteine (SAH) during the methyl transfer (33). The cellular potential for DNA methylation relies upon the relative amounts of the methyl donor SAM and its reaction product SAH (34). The effects of dietary intake or supplementation with B-vitamins has been shown in a limited number of studies to increase
SAM concentrations (35,36). Supplementation with riboflavin (1.6 mg/d for 16 weeks) and folic acid (5 mg/d for 8 weeks) increased means plasma SAM levels in adults with the MTHFR 677TT genotype (35,36). It has been postulated that the higher the SAM:SAH ratio, the greater the methylation potential of the cell, although conflicting evidence suggests that DNA methylation may proceed without changes in the ratio (37,38). Further studies are required to clarify the effect of dietary molecules on SAM concentrations and DNA methylation.

Perturbations in one-carbon metabolism may occur through low intake of nutrients involved in one-carbon metabolism (7), malabsorption of nutrients via disease or cellular conditions, interactions in regulatory enzymes in one-carbon metabolism pathways as well as common polymorphisms within genes that code for enzymes important for the normal functioning of one-carbon metabolism (2,39). Apart from significant disruption to one-carbon metabolism, these perturbations may have functional implications on downstream biological processes including DNA methylation and synthesis.

3.3 Common polymorphisms in genes involved in one-carbon metabolism

Common polymorphisms in genes involved in one-carbon metabolism can influence enzyme activities, and subsequently metabolite and substrate concentrations in the pathway. The MTHFR C677T polymorphism results in reduced MTHFR enzyme activity in individuals with the 677TT genotype which encodes a thermolabile enzyme (40). Elevated plasma homocysteine indicates perturbed one-carbon metabolism in 677TT individuals, and it is plausible that altered concentrations of SAM and therefore availability of methyl donors for methylation reactions may ensue. The well-established phenotype of elevated homocysteine is widely reported in different populations. A large-scale population-based study (n = 10,601) strong associations of MTHFR c665C>T polymorphism with blood concentrations of total
plasma homocysteine and serum folate (41). The 665TT genotype was associated with a higher concentration of homocysteine and lower concentration of folate than the 665CC genotype, with the CT genotype having intermediate concentrations. Riboflavin supplementation in a randomized controlled trial of adults reduced plasma homocysteine specifically in 677TT individuals (42) indicating that riboflavin may stabilize the thermolabile enzyme and restore MTHFR activity, and thus is an very interesting nutrient for future epigenetic investigations. A recent study by our group using evidence from randomized controlled trials showed that supplementation with riboflavin resulted in decreased global and MTHFR north shore methylation in adults with the MTHFR 677TT genotype (43).

Polymorphisms can also act as strong cis-regulatory elements (cis-meQTL; cis-methylation quantitative trait loci) to regulate the methylation levels of their own gene promoter or trans-regulatory elements (trans-meQTL) regulating methylation of other genes. For example, 57 CpGs were differentially methylated depending on genotype of 6 one-carbon metabolism genes (FTHFD, MTHFD1, MTHFR, MTR, MTRR and TYMS; P < 0.5 x 10^{-5}). The MTHFR rs1801133 SNP (responsible for the C677T polymorphism) was shown to act as a trans-meQTL regulatory element in breast tissue associated with lower methylation of 5 CpGs (CLEC17A, DLX6AS, cg13811423, cg14118666, and cg181152144; average OR = 0.15; average 95% CI, 0.05–0.42) (44). The MTHFR promoter itself is also a target for trans-meQTL regulatory elements such as the DNMT3B -149C>T polymorphism. Increasing the number of T alleles at this position significantly increased MTHFR methylation with the DNMT3B -149CC genotype having significantly lower levels of MTHFR methylation than the CT genotype, which in turn had significantly lower levels of methylation than subjects with the TT genotype (45).
3.4 Role of DNA methylation and diet in aging and disease

The aging process is complex and involves numerous changes at both the molecular and cellular level, including epigenetic remodeling of the DNA methylome (46,47). DNA methylation patterns, established early in development, progressively diverge throughout the life course, with age-associated DNA methylation features identified by middle-age at a large number of CpG sites continuing to undergo changes into old age (48). Changes in DNA methylation associated with age have been observed in many cross-sectional studies; however longitudinal evidence which is not confounded by interindividual differences is more limited. In such studies, longitudinal analysis of a cohort of elderly twin pairs identified 2284 CpG sites where DNA methylation levels changed over a 10-year follow-up period (49). A 20 year study of 385 older Swedish twins also identified 1316 longitudinal age-associated methylation sites which were validated in two independent cohorts (50). While it is now well accepted that epigenetic alterations are hallmarks of ageing, understanding the causality between these epigenetic changes and the aging process has not been fully elucidated and is still an active area of investigation (51). Multiple studies have reported not only significant associations between aging and DNA methylation (52,53) but also associations between age-related diseases and epigenetic alterations. The processes that drive the changes in the aging methylome, and subsequent implications for disease and mortality risk are currently not well understood, however, several potential mechanisms have been proposed. These include effects on immunity and inflammation, while environmental factors, such as diet, stress, physical activity, socioeconomic status and smoking (52,54–56) could impact these mechanisms or act directly to age the methylome. Aging-associated immune-system impairments are mediated via changes in DNA methylation in nonagenarians. In a cross-sectional analysis of 4,173 postmenopausal females, age-related changes in immune
functioning and inflammation were also shown to contribute to increased susceptibility to a wide range of diseases (57,58).

Dietary factors, particularly B-vitamins, may modulate DNA methylation and thereby influence age-related disease. In studies investigating B-vitamins and DNA methylation in disease, Fiorito and colleagues (59) reported that DNA methylation of specific genes (TCN2, CBS, PON1, AMT) involved in one-carbon metabolism and homocysteine metabolic pathways could mediate the CVD risk conferred by low dietary intake of B-vitamins.

Furthermore, using highly robust and comprehensive microarray methods, several large epigenome-wide methylation studies (EWAS) have shown that supplementation with B-vitamins predominantly folate and vitamin B-12 or dietary intake of these nutrients modulate DNA methylation at the genome-wide level in older adults (Table 1), highlighting key targets that could be further explored in age-related nutritional epigenomics studies (60,61).

Riboflavin has not been as widely studied as other B-vitamins with only one epigenome-wide study reporting the effects of variability in dietary intake on DNA methylation. Low dietary intake of riboflavin was associated with higher methylation at one CpG (cg21230392; \(P = 5 \times 10^{-8} \)) in a study involving participants from the Melbourne Collaborative Cohort Study (MCCS) (62). Additionally, supplementation with flavanols and polyphenols may affect the activity of enzymes including DNMTs and significantly impact methylation (63). For example, (–)-epigallocatechin-3-gallate (EGCG), a key polyphenol in tea inhibits DNMT activity resulting in demethylation and reactivation of methylation-silenced genes in cancer cells. Further evidence from randomized control trials of nutrients, such as riboflavin supplementation could elucidate how individual nutrients influence the epigenome and age-related disease.
4.0 Epigenetic Clocks

4.1 Epigenetic drift versus epigenetic clock

Studies of monozygotic (MZ) twins have showed that although twins are epigenetically indistinguishable during the early years of life, older monozygotic twins exhibited remarkable differences in their epigenome, indicating that patterns of epigenetic modifications in MZ twin pairs diverge as they become older (64). Entropic decay of DNA methylation during aging is observed with twin studies also revealing that repeat sequences generally become more hypomethylated during aging (65,66) while methylation increases are noted at individual regulatory locus-specific regions (67) (Figure 2). Tissue-dependent DNA methylation variation may explain why particular organs and tissues are susceptible to different diseases (68). Many methylation changes leading to interindividual divergence occur stochastically during aging and are known as “epigenetic drift”. Specific CpG sites have been identified to undergo reproducible methylation changes across individuals with age allowing their utilization in epigenetic clock algorithms (69) which can be used to accurately predict chronological age and estimate biological age (Figure 2).

4.2 Epigenetic clocks and age acceleration

Chronological age as a predictor of disease risk and mortality is suboptimal as individuals with the same chronological age may exhibit different susceptibility to age-related diseases owing to differences in underlying biological aging processes (70). This has led to the advent of several DNA methylation-based models of biological aging known as epigenetic clocks (Table 2). Each clock is derived by a linear regression algorithm that trains against the chronological age of sample donors and selects a set of CpGs, determining the weighted contribution of each CpG in the set to produce a DNA methylation age (DNAm Age) that correlates accurately with chronological age. The first of these to have a major impact was
the Horvath clock (69) which analyses methylation at 353 CpGs and was developed using a panel of 51 different non-cancerous tissues and cell lines, leading to it being known as a pan-tissue clock. This feature has enabled accurate predictions of DNAm Age across heterogeneous tissues and cell types. Owing to the wide age range of individuals from which the samples were derived, the Horvath clock is also known as a life course clock and is applicable to analysis of epigenetic age in children and peri-natal samples (71). The Hannum methylation clock (56) was derived from analysis of whole blood in 482 individuals of either Caucasian or Hispanic ethnicity using 71 CpGs to provide superior accuracy in age determination. A recent meta-analysis of over 41,607 participants indicated that each 5-year increase in DNA methylation age, estimated using either the Horvath or Hannum clocks, was associated with an 8 to 15% increased risk of mortality (72).

When biological age (DNAm Age) exceeds chronological age, age acceleration (AgeAccel) is said to be experienced and this measure is perhaps of most interest to scientists and clinicians studying aging and disease. AgeAccel is defined as the residual from regressing DNAm Age on chronological age, where a positive value indicates that epigenetic age is greater than expected. Horvath further characterized epigenetic age acceleration as either intrinsic (IEAA) or extrinsic (EEAA) epigenetic age acceleration. IEAA is a measure of age acceleration that is independent of age-related changes in the cellular composition of blood whereas EEAA captures the age-related-functional decline of the immune system and accounts for changes in blood cell composition such as the decrease of naive CD8+ T cells and the increase in memory or exhausted CD8+ T cells (73).

To investigate biological age more extensively and discriminate morbidity and mortality more accurately among individuals of the same chronological age, recently developed clocks have been trained on age-related and disease phenotypes in combination with chronological age. Two of the most robust are the DNAm Phenotypic Age predictor (DNAm PhenoAge)
and the DNAm-based biomarker of mortality GrimAge (DNAm GrimAge) (75). The PhenoAge clock calculates phenotypic age in a two-step process. Initially, 42 clinical blood biomarkers that predict mortality in the third National Health and Nutrition Examination Survey (NHANES III) were used to derive an estimate of phenotypic age. Subsequently, refinement to select nine of these biomarkers plus chronological age were used independently of DNA methylation to predict phenotypic age. In the final model, a phenotypic age was calculated in the independent Invecchiare in Chianti (InCHIANTI) cohort and a DNA methylation proxy of phenotypic age (DNAm PhenoAge) and age acceleration (AgeAccelPheno) were derived based on a set of 513 CpGs. The Horvath and Hannum clocks are not influenced by smoking status; however, the DNAm PhenoAge clock includes this disease-related factor associated with DNA methylation changes. The PhenoAge clock was found to outperform the Horvath and Hannum epigenetic age measures with respect to a variety of aging outcomes, including all-cause mortality, cancers, healthspan, physical functioning and Alzheimer’s disease (74). The most recent of these biological clocks, DNAm GrimAge, was trained using the Framingham Heart Study (74) and tracks methylation of CpGs of blood-based protein biomarkers that are known to be associated with health such as plasminogen activation inhibitor 1 (PAI-1), and growth differentiation factor 15 (GDF15), as well as a more sensitive measure of CpGs associated with smoking through an estimate of “pack years”. Incorporation of valuable information from these loci has resulted in improvements in accuracy of age acceleration (GrimAgeAccel) which has been shown to be 18% more accurate than chronological age and 14% more accurate than previously described clocks in predictions of time to disease (42). DNA methylation age is currently one of the most accurate measures of aging and life expectancy in a range of traditional measures such as telomere length, proteomic, transcriptomic and metabolomic biomarkers in accurately estimating biological age (76).
The CpGs which are included in the clock algorithms are widely distributed across the genome and do not appear to be clustered in or near any particular genomic feature or any particular regulatory region. The methylation clocks and associated challenges have been extensively reviewed recently (77,78). It is important to note that, although these clocks are highly correlated with chronological age, they were constructed using different algorithms which may influence their prediction of disease and health outcomes; therefore careful consideration should be given to the most appropriate clock to utilize in any given study.

Epigenetic clocks are not linear across the lifespan. Many of the current epigenetic clock studies have been conducted in adults, and as a result, many show impressive accuracy across most tissues during middle age (79). In later life, however, chronological age increases at a faster rate than epigenetic age, particularly in the Horvath and Hannum clocks (80). A non-linear pattern is also observed in the clock during childhood (71) and teenage years, due to a greater rate of DNA methylation change in children than adults (81). The Horvath clock has been adjusted to include a log linear transformation for data points from younger individuals and a new clock trained on pediatric buccal swabs has increased predictive power in samples from children (82). Furthermore, as none of the clocks are well-suited to estimating gestational age, the recent development of a placenta clock can be used to closely track fetal age during development (83).

4.3 Epigenetic age, age acceleration and health outcomes

Epigenetic age and age acceleration are strongly linked to all-cause mortality, higher cancer and CVD mortality and are associated with important inflammatory biomarkers including C-reactive protein, interleukin 6 and monocyte chemotactic protein (84,85). Table 3 provides an overview of age-related conditions, DNA methylation age and age acceleration measured by the four different clocks. Although the list is not comprehensive, it is indicative of the
broad range of age-related diseases associated with altered epigenetic age. Of particular note, cardiovascular disease and related measures such as blood pressure have emerged as age-related conditions that are robustly correlated with methylation in a range of epigenetic clocks. Accelerated PhenoAge is associated with higher risk of coronary heart disease ($\beta=0.016 - 0.073$; Meta $P = 3.35E-11$) and both higher EEAA ($r = 0.07$, $P = 4E-6$) and AgeAccelPheno ($r = 0.08$, $P = 1E-6$) are associated with elevated systolic blood pressure (58,74). GrimAgeAccel also gives the most accurate predictions of time-to-coronary heart disease (HR = 1.07, $P = 6.2E-24$) and time-to-cancer (HR = 1.07, $P = 1.3E-12$) and also demonstrates a strong association with hypertension (OR = 1.04, $P = 5.1E-13$) (75).

4.4 Epigenetic Age, age acceleration and dietary factors

The influence of diet in the etiology of many age-related diseases is well established and the advent of epigenetic clocks has brought a novel approach to confirm diet as an important health factor (75). Epigenetic age, and age acceleration are linked to a variety of dietary factors such as fish, fruit and vegetable intakes indicating that a healthy diet and lifestyle could positively influence epigenetic age acceleration (Table 4). For example, a recent study highlighted that omega-3 polyunsaturated fatty acid (PUFA) supplementation and vegetable consumption appear to be associated with lower GrimAgeAccel (41); however as this association was made from an observational study, further validation from prospective clinical trials is required. Application of epigenetic clock models to epigenomic data from longitudinal studies or dietary interventions to measure biological age and age acceleration offer immense potential for elucidating how dietary interventions can modulate the aging and disease processes.

It also appears that sex and genotype may play a role in modulating epigenetic age acceleration in response to dietary factors. The epigenetic age acceleration lowering of
omega-3 PUFAs also appears to be more pronounced in males (GrimAgeAccel: \(r = -0.08, P = 0.012 \)) than in females (\(r = -0.05, P = 0.07 \)). Furthermore, epigenome-wide methylation results from the B-PROOF study, intervening with daily folic acid and vitamin B-12 supplements in a robust two year randomized controlled trial (RCT) (86), were inputted into the online DNA methylation age calculator to demonstrate that AgeAccel is reduced in women with the \(MTHFR \ 677CC \) but not the \(677TT \) genotype (87). Careful consideration of sex and genotype must therefore be undertaken in the design of epigenetic studies.

In the first and currently only study to indicate the possibility of reversal of biological age, the TRIIM trial used a cocktail of drugs comprising recombinant human growth hormone (rhGH) to prevent or reverse signs of immunosenescence in a one-year pilot trial of 51-65 year old healthy men showed a regression of epigenetic age of -2.5 years on average (70). Although the trial was small (\(n = 9 \)) and, crucially, did not include a control arm, suggestions of biological age reversal were found in all four robust methylation clocks available, and in each individual. This study was the first to indicate that potential regression of multiple aspects and biomarkers of aging, including immune function, was possible in humans (70).

While itself not a dietary factor, it is interesting to note that growth hormone, the supplement chosen in the aforementioned epigenetic age reversal trial, has been noted to perturb mRNA and protein levels of DNMT1 (88) and it has been postulated that the age-related dysfunction of growth hormone may play a role in the reduction of DNMTs in aging (78). Further roles for age-related dietary factors such as S-adenosylmethionine (SAM) and \(\alpha \)-ketoglutarate (AKG) have been suggested to alter activity of DNMTs and their counterpart TET enzymes during the aging process. The observed age-associated decline in genome-wide methylation may be exacerbated by an observed age-related decline of the essential DNMT substrate, SAM (89,90) which could result in demethylation of some clock CpGs. Indeed DNMT enzymes also decrease with age in some tissues (88,91). Furthermore, the hypermethylation
of specific loci during aging may be attributable to the decline in AKG and ensuing reductions in TET enzyme activity (78). AKG declines with age (92), reducing its availability as a cofactor for TETs in active demethylation reactions and ensuing hypermethylation of locus-specific regions (93). In support of this theory, AKG has recently been demonstrated to be a rate-limiting factor controlling DNA demethylation in aging mice (92). This remains speculative, however, because no studies to date have investigated the specific effects of these nutrients on enzyme activity or epigenetic aging.

Despite their obvious strengths, DNA methylation-based clocks are unlikely to replace existing clinical biomarkers and measurements such as blood pressure, walking speed, grip strength which are cost effective and easy to perform. The cost of measuring DNA methylation age prevents the standard adoption of this method, at least until it becomes more affordable. In fact, GrimAge is 61% more accurate than chronological age and 46% more accurate than previously reported epigenetic clocks in predicting time to coronary heart disease. However, despite this significant advancement, neither chronological nor GrimAge are entirely accurate estimators of coronary heart disease and further work is required to determine their role as predictors of cardiovascular and other disease outcomes.

5.0 Methodological aspects of studies investigating DNA methylation and diet

Despite the growing interest in the role of diet in influencing DNA methylation and age-related disease, most previous studies in humans were not designed with DNA methylation as the primary outcome, resulting in limited data to provide concrete evidence linking the diet to DNA methylation. The methodological aspects of appropriate study design for the investigation of diet and DNA methylation will be discussed further.
5.1 Study design and population

The study design utilized as well as dietary or biochemical data collected are critical when investigating the link between nutrient intake or status and DNA methylation. The majority of studies so far are observational and have provided inconsistent evidence for the role of dietary factors, especially B-vitamins, in modulating DNA methylation, perhaps owing to inconsistencies in study design and choice of assay (94). While observational studies offer the advantage of providing comprehensive data with large sample sizes and highlight associations between nutrients and DNA methylation, they are unable to provide clarity with respect to dietary causality. Randomized controlled trials represent a robust study design for establishing the effects of B-vitamins on DNA methylation; however studies of this nature are lacking. Although no study on its own can prove causality, randomization in RCTs reduces bias and provides a rigorous tool to examine cause-effect relationships between an intervention and an outcome (95). Additionally, apart from establishing the biological roles of B-vitamins in modulating DNA methylation, there is a need for RCTs to further incorporate dose-response design in order to determine the optimum doses of B-vitamins required to modulate DNA methylation. Longitudinal studies which assess methylation in individuals at several time points, and thereby reduce noise in the methylation signal owing to interindividual variation, is particularly useful in helping to elucidate the role of diet and methylation in disease. Furthermore, the majority of existing studies have employed food frequency questionnaires in estimating dietary intake, yielding only semi-quantitative data, prone to measurement errors which may not accurately reflect status, resulting in misclassification which can compromise the ability to detect statistically significant associations (96). Importantly, biochemical biomarker concentrations of status provide more reliable indicators than dietary intake to investigate the relationship between B-vitamins and DNA methylation.
Methods to examine DNA methylation have evolved over the years and have become more sophisticated. While commonly used methods including high performance liquid chromatography-ultraviolet (HPLC-UV), liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), methyl acceptance assay and pyrosequencing are still useful in analyses of DNA methylation, novel technologies such as the Infinium HumanMethylation450K BeadChip array (450K) or the Infinium MethylationEPIC BeadChip (850K) microarray provide higher resolution for analyzing DNA methylation on a genome-wide scale (97,98). Although not offering as much genome coverage as whole genome bisulfite sequencing (WGBS), the Illumina arrays analyze a significant proportion of total sites for DNA methylation at 853,307 CpG sites (EPIC/850K) and 485,764 CpG sites (450K) across the human genome. The CpG sites interrogated by the 850K array include 439,562 CpGs out of 482,421 CpGs included in the 450K microarray and an additional 413,745 new CpG sites that were not included in the 450K microarray. The EPIC array provides a highly reliable genomic platform for studying DNA methylation patterns across the genome especially in underexplored territories including enhancer sequences (99). Furthermore, in comparison to WGBS, Illumina microarrays provide good value for money in terms of desired coverage, resolution and number of samples that can be analyzed, providing large amounts of high-quality data which can be easily input into epigenetic clock algorithms.

Advantages of using these approaches include the production of large datasets which can be analyzed by streamlined analytical pipelines, providing important information on the epigenome-wide landscape. Several sophisticated computational tools and software are available for the analysis and interpretation of large EWAS datasets. The relevant concepts, computational methods and software for the analysis and interpretation of large DNA methylation data as well as statistical considerations have been thoroughly reviewed by Bock,
Teschendorff and colleagues (100,101). These statistical approaches allow for computation of epigenetic age, and are able to control for false discovery rates and adjust for cell and tissue variation, which are all major sources of confounding in DNA methylation studies. Some of the popular and widely used software for processing and analysis of bisulfite microarray data in particular include minfi (102), RnBeads (103), The Chip Analysis Methylation Pipeline (ChAMP) (104), and methylumi (105). Furthermore, other software packages such as dmrFinder (106), DMRcate (14) and IMA (107) are available for the identification of DMRs. New platforms such as CandiMeth (https://github.com/sjthursby/CandiMeth) are also making it easier for those with little bioinformatics experience to look at methylation across the genome in samples for which array data is available.

6.0 Conclusion

Nutritional epigenomics has highlighted diet as a critical factor with the potential to influence both healthspan and lifespan. Novel insights into how perturbations in one-carbon metabolism influence DNA methylation and data from epigenome-wide studies of nutrition interventions offer promising insights to understanding how diet impacts the methylome during healthy aging and disease. Epigenetic clocks provide an exciting additional insight into how preventive and treatment strategies may increase the healthspan of an aging global population. Despite the heightened research interests in nutritional epigenomics, the field is still beset with several methodological challenges, which greatly impact the quality of evidence currently available. The population under study must be extensively characterized to identify and exclude possible confounding factors. Robust study designs, which utilize randomization and measure appropriate biomarkers, are required to clarify the factors underlying epigenetic aging. Replication and validation of findings in multiple independent cohorts are essential to reduce reporting of false positive findings. Epigenetic clocks described here have sampled individuals from a wide spectrum of ages. A DNA methylation
clock which focuses on older people or those with specific diseases could help to more accurately predict age-related disease and help to identify factors which delay or prevent this progression. Improvements in estimating time to disease have been made in the latest GrimAge clock, which is significantly more predictive than chronological age in estimating time to various diseases; however much additional research is required to advance our knowledge and understanding in relation to coronary heart disease. Longitudinal studies offer the important advantage of tracking individuals over extended periods to enable the identification of factors which influence the diagnosis and treatment of disease, making these studies particularly valuable for clarifying whether observed changes in DNA methylation are a result of disease or have a causal role. A better understanding of the DNA methylome during aging will offer the opportunity to promote healthy aging and identify nutritional interventions which delay or prevent age-related disease in order to influence public health outcomes and policies.

Author disclosures: DLM, CPW, SDA, CD, CFH no conflicts of interest. MW, HN, JJS hold an international patent on the use of riboflavin in the treatment of blood pressure. Authors’ Contributions were as follows: SDA, MW and DLM wrote the article; CD!prepared visualized concepts; HM, JJS CFH and CPW carried out critical revision for important intellectual content; and all authors read and approved the final version of the manuscript. DLM had primary responsibility for the final content.
REFERENCES

1. Zhang W, Qu J, Liu G-H, Carlos Izpisua Belmonte J. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol. 2020;21(13):137–50.

2. Stover PJ, James WPT, Krook A, Garza C. Emerging concepts on the role of epigenetics in the relationships between nutrition and health. J Intern Med. 2018;284(1):37–49.

3. Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018;378(14):1323–34.

4. United Nations. World Population Ageing. 2017. Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf

5. Partridge L, Deelen J, Eline Slagboom & P. Facing up to the global challenges of ageing. Nature. 2018;561(7721):45–6.

6. Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory III JF, Mills JL, Pfeiffer,CM, Fazili Z, Zhang M, Ueland PM et al. Biomarkers of Nutrition for Development-Folate Review. J Nutr. 2015;145:1636–80.

7. Nash AJ, Mandaviya PR, Dib M-J, Uitterlinden AG, van Meurs J, Heil SG, Toby Andrew T, and AhmadiKR. Interaction between plasma homocysteine and the MTHFR c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. FASEB J. 2018;33:1–11.

8. Li Y, Huang T, Zheng Y, Muka T, Troup J, Hu FB. Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016 8;5(8):1–18.

9. Hooshmand B, Mangialasche F, Kalpouzos G, Solomon A, Kareholt I, Smith AD, Refsum H, Wang R, Mühlmann M, Ertl-Wagner B, et al. Association of Vitamin B12,
folate, and sulfur amino acids with brain magnetic resonance imaging measures in older adults a longitudinal population-based study. JAMA Psychiatry. 2016;73(6):606–13.

10. Porter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients. 2016;8(725):1–29.

11. Ter Borg S, Verlaan S, Hemsworth J, Mijnarends DM, Schols JMG, Luiking YC, and de Groot LCPGM. Systematic review and Meta-analysis: Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. Br J Nutr. 2015;113:1195–206.

12. Laird EJ, O’halloran AM, Carey D, O’connor D, Kenny RA, Molloy AM. Voluntary fortification is ineffective to maintain the vitamin B12 and folate status of older Irish adults: evidence from the Irish Longitudinal Study on Ageing (TILDA). Br J Nutr. 2018;120:111–20.

13. Moore K, Hughes CF, Hoey L, Ward M, Cunningham C, Molloy AM, Strain JJ, McCarroll K, Casey MC, Tracey F, et al. B-vitamins in relation to depression in older adults over 60 years of age: The Trinity Ulster Department of Agriculture (TUDA) cohort study. J Am Med Dir Assoc. 2019;20(5):551–7.

14. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, Clark SJ and Molloy PL. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8(6):1–16.

15. Day JJ, Kennedy AJ, Sweatt JD. DNA Methylation and Its Implications and Accessibility for Neuropsychiatric Therapeutics. Annu Rev Pharmacol Toxicol. 2015;55:591–611.

16. Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, Rajagopal N, Nery JR, Urich MA, Chenet H, al. Human body epigenome maps reveal noncanonical
DNA methylation variation. Nature. 2015;523(7559):212–6.

17. Wu X, Zhang Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat Rev Genet. 2017;18(9):517–34.

18. He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, et al. Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science. 2011;333(6047):1303–7.

19. Lister R, Pelizzola M, Dowen RH, David Hawkins R, Hon G, Tonti-Filippini J, Nery JR., Lee L, Ye Z, Ngo Q-M, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.

20. Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J, Chen X, Waterland RA, and Issae J-PJ. Genome-Wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet. 2007;3(10):2023–36.

21. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.

22. Deaton A, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.

23. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.

24. van Eijk KR, de Jong S, Boks MPM, Langeveld T, Colas F, Veldink JH, de Kovel CGF, Janson E, Strengman E, Langfelder P, et al. Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects. BMC Genomics. 2012;13(1):1–13.

25. Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the
untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 2012;69(21):3613–34.

26. Affinito O, Palumbo D, Fierro A, Cuomo M, De Riso G, Monticelli A, Miele G, Chiariotti L, and Cocozza S. Nucleotide distance influences co-methylation between nearby CpG sites. Genomics. 2020;112(1):1–7.

27. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:591–607.

28. Lees-Murdock DJ, Walsh CP. DNA methylation reprogramming in the germ line. Epigenetics. 2008;3(1):1–13.

29. Giovannucci E. Epidemiologic studies of folate and colorectal neoplasia: a Review. J Nutr. 2002;132:2350–5.

30. Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017;25(1):27–42.

31. Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: Understanding the specificity. Ann N Y Acad Sci. 2016;1363(1):91–8.

32. Stover PJ. One-carbon metabolism - genome interactions in folate-associated pathologies. J Nutr. 2009;139:2402–5.

33. Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Annu Rev Anim Biosci. 2019;7(14):1–25.

34. Berger SL, Sassone-Corsi P. Metabolic signaling to chromatin. Perspect Biol. 2016;8(11):1–24.

35. Pizzolo F, Henk BJ, Choi SW, Girelli D, Guarini P, Martinelli N, Stanzi AM, Corrocher R, Olivieri O, and Friso S. Folic acid effects on s-adenosylmethionine, s-adenosylhomocysteine and DNA methylation in patients with intermediate
hyperhomocysteinemia. J Am Coll Nutr. 2011;30(1):11–8.

36. Rooney M, Bottiglieri T, Wasek-Patterson B, McMahon A, Hughes CF, McCann A, Horigan G, Strain JJ, McNulty H, and Ward M. Impact of the MTHFR C677T polymorphism on one-carbon metabolites: evidence from a randomised trial of riboflavin supplementation. Biochimie. 2020; doi: 10.1016/j.biochi.2020.04.004

37. Fux R, Kloor D, Hermes M, Röck T, Proksch B, Grenz A, Delabar U, Bucheler R, Igel S, Morike K, et al. Effect of acute hyperhomocysteinemia on methylation potential of erythrocytes and on DNA methylation of lymphocytes in healthy male volunteers. Am J Physiol Ren Physiol. 2005;289(4):786-92.

38. Glier MB, Ngai YF, Sulistyoningrum DC, Aleliunas RE, Bottiglieri T, Devlin AM. Tissue-specific relationship of S-adenosylhomocysteine with allele-specific H19/Igf2 methylation and imprinting in mice with hyperhomocysteinemia. Epigenetics. 2013;8(1):44–53.

39. Zhong J, Karlsson O, Wang G, Li J, Guo Y, Lin X, Zemplenyi M, Sanchez-Guerra M, Trevisi L, Urch B, et al. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. Proc Natl Acad Sci. 2017;13114(10):3503–8.

40. McNulty H, Strain JJ, Hughes CF, Pentieva K, Ward M. Evidence of a role for one-carbon metabolism in blood pressure: can B vitamin intervention address the genetic risk of hypertension owing to a common folate polymorphism? Curr Dev Nutr. 2019;4(1):1–8.

41. Fredriksen A, Meyer K, Ueland PM, Vollset SE, Grotmol T, Schneede J. Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Hum Mutat. 2007;28(9):856–65.

42. McNulty H, Dowey LRC, Strain JJ, Dunne A, Ward M, Molloy AM, McAnena LB,
Hughes JP, Hannon-Fletcher M, and Scott, JM. Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C→T polymorphism. Circulation. 2006;113(1):74–80.

43. Amenyah SD, McMahon A, Ward M, Deane J, McNulty H, Hughes CF, Strain JJ, Horigan G, Purvis J, Walsh CP, et al. Riboflavin supplementation alters global and gene-specific DNA methylation in adults with the MTHFR 677 TT genotype. Biochimie. 2020; doi.org/10.1016/j.biochi.2020.04.007

44. Song M-A, Brasky T, Marian C, Weng D, Taslim C, ALlanos A, Dumitrescu RG, LiuZ, Mason JB, Spear SL et al. Genetic variation in one-carbon metabolism in relation to genome-wide DNA methylation in breast tissue from healthy women. Carcinogenesis. 2016;37(5):471–80.

45. Coppedè, Stoccoro, Tannorella, Gallo, Nicolì, Migliore. Association of polymorphisms in genes involved in one-carbon metabolism with MTHFR methylation levels. Int J Mol Sci. 2019;20(15):1–11.

46. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

47. Lund JB, Li S, Baumbach J, Svane AM, Hjelmborg J, Christiansen L, Christensen K, Redmond P, Marioni RE, Deary IJ et al. DNA methylome profiling of all-cause mortality in comparison with age-associated methylation patterns. Clin Epigenetics. 2019;11(23):1–8.

48. Kananen L, Marttila S, Nevalainen T, Jylhävä J, Mononen N, Kähönen M, Raitakari OT, Lehtimäki T and Hurme M. Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study. BMC Genomics. 2016;17(103):1–12.

49. Tan Q, Heijmans BT, Hjelmborg JB, Soerensen M, Christensen K, Christiansen L. Epigenetic drift in the aging genome: a ten-year follow-up in an elderly twin cohort.
50. Wang Y, Karlsson R, Lampa E, Zhang Q, Hedman ÅK, Almgren M, Almqvist C, McRae AF, Marioni RE, Ingelsson E, et al. Epigenetic influences on aging: a longitudinal genome-wide methylation study in old Swedish twins. Epigenetics. 2018;13(9):975–87.

51. Ashapkin V V., Kutueva LI, Vanyushin BF. Epigenetic clock: just a convenient marker or an active driver of aging? In: Reviews on Biomarker Studies in Aging and Anti-Aging Research. 2018. p. 175–205.

52. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrench MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5(8):1–13.

53. Johansson A, Enroth S, Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One. 2013;8(6):1–10.

54. Fiorito G, McCrory C, Robinson O, Carmeli C, Rosales CO, Zhang Y, Colicino E, Dugué P-A, Artaud F, McKayGJ, et al. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging. 2019;11(7):2045–59.

55. Fiorito G, Polidoro S, Dugué P-A, Kivimaki M, Ponzi E, Matullo G, Guerrera S, Assumma MB, Georgiadis P, Kyrtopoulos SA et al. Social adversity and epigenetic aging: a multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Sci Rep. 2017;7:1–12.

56. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.

57. Marttila S, Kananen L, Häyrynen S, Jylhävä J, Nevalainen T, Hervonen A, Jylhä M,
Nykter M, and Hurme M. Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression. BMC Genomics. 2015;16(179):1–17.

58. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, Ritz B, Bandinelli S, Neuhouser ML, Beasley JM et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging. 2017;9(2):419–46.

59. Fiorito G, Guarrera S, Valle C, Ricceri F, Russo A, Grioni S, Mattiello A, Di Gaetano C, Rosa F, Modica F, et al. B-vitamins intake, DNA-methylation of one carbon metabolism and homocysteine pathway genes and myocardial infarction risk: The EPICOR study. Nutr Metab Cardiovasc Dis. 2014;24(5):483–8.

60. Irwin RE, Thursby S-J, Ondičová M, Pentieva K, Mcnulty H, Richmond RC, Caffrey A, Lees-Murdock DJ, McLaughlin M, Cassidy T, et al. A randomized controlled trial of folic acid intervention in pregnancy highlights a putative methylation-regulated control element at ZFP57. Clin Epigenetics. 2019;11(31):1–16.

61. Caffrey A, Irwin RE, McNulty H, Strain JJ, Lees-Murdock DJ, McNulty BA, Ward Walsh CP, and Pentieva K. Gene-specific DNA methylation in newborns in response to folic acid supplementation during the second and third trimesters of pregnancy: epigenetic analysis from a randomized controlled trial. Am J Clin Nutr. 2018;107(4):566–75.

62. Chamberlain JA, Dugué P-A, Bassett JK, Hodge AM, Brinkman MT, Joo JE, Jung C-H, Makalic E, Schmidt DF, Hopper JL et al. Dietary intake of one-carbon metabolism nutrients and DNA methylation in peripheral blood. Am J Clin Nutr. 2018;108:1–11.

63. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, and Yang CS. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res.
2003;63(22):7563–70.

64. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, UriosteM, Benitez J, et al. Epigenetic differences arise during the lifetime of monozygotic twins. PNAS. 2005;102(30):10–5.

65. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, and Baccarelli A. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130:234–9.

66. Heyn H, Moran S, Hernando-Herraez I, Sayols S, Gomez A, Sandoval J, Monk D, Hata K, Marques-Bonet T, Wang L, et al. DNA methylation contributes to natural human variation. Genome Res. 2013;23:1363–72.

67. Madrigano J, Baccarelli A, Mittleman MA, Sparrow D, Vokonas PS, Tarantini L, and Schwartz J. Aging and epigenetics: Longitudinal changes in gene-specific DNA methylation. Epigenetics. 2012;7(1):63–70.

68. Oh G, Ebrahimi S, Wang S-C, Cortese R, Kaminsky ZA, Gottesman II, Burke JR, Plassman BL and Petronis A. Epigenetic assimilation in the aging human brain. Genome Biol. 2016;17(76):1–11.

69. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):1–19.

70. Fahy GM, Lin DTS, Brooke RT, Watson JP, Good Z, Maecker H, Leipold MD, David T. S. Lin DTS, Kobor MS and Horvath S. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019;18(6):1–12.

71. Simpkin AJ, Hemani G, Suderman M, Gaunt TR, Lyttleton O, Mcardle WL, Ring SM, Sharp GC, Tilling K, Horvath S, et al. Prenatal and early life influences on epigenetic age in children: a study of mother-offspring pairs from two cohort studies. Hum Mol Genet. 2016;25(1):191–201.
72. Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenetics. 2019;11(62):1–17.

73. Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging. 2015;7(12):1130–42.

74. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Andrea Baccarelli AA, Stewart JD, Li Y, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10(4):573–91.

75. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019;11(2):303–26.

76. Jylhävä J, Pedersen NL, Hägg S. Biological Age Predictors. EBioMedicine. 2017;21:29–36.

77. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, Christensen BC, Gladyshev VN, Heijmans BT, Horvath S, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019; 25;20(249):1–24.

78. Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol Cell. 2018; 20;71(6):882–95.

79. Marioni RE, Shah S, Mcrae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, Gibson J, Redmond P, Cox SR, Pattie A, et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol. 2015;44(4):1388–96.

80. El Khoury LY, Gorrie-Stone T, Smart M, Hughes A, Bao Y, Andrayas A, Burrage J, Hannon E, Kumari M, Mill J, et al. Systematic underestimation of the epigenetic clock
and age acceleration in older subjects. Genome Biol. 2019;20(283):1–10.

81. Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, and Warren ST. Age-associated DNA methylation in pediatric populations. Genome Res. 2012;22(4):623–32.

82. McEwen LM, O’Donnell KJ, McGill MG, Edgar RD, Jones MJ, MacIsaac JL, Lin DTS, Ramadori K, Morin A, Gladish N, et al. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. PNAS. 2019;1–7. doi: 10.1073/pnas.1820843116.

83. Lee Y, Choufani S, Weksberg R, Wilson SL, Yuan V, Burt A, Marsit C, Lu AT, Ritz B, Bohlin J, et al. Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. Aging. 2019;11(12):4238–53.

84. Irvin MR, Aslibekyan S, Do A, Zhi D, Hidalgo B, Claas SA, Srinivasasainagendra V, Horvath S, Tiwari HK, Absher DM, et al. Metabolic and inflammatory biomarkers are associated with epigenetic aging acceleration estimates in the GOLDN study. Clin Epigenetics. 2018;10(56):1–9.

85. Perna L, Zhang Y, Mons U, Holleczer B, Saum K-U, Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics. 2016;8(64):1–7.

86. Kok DEG, Dhonukshe-Rutten RA, Lute C, Heil SG, Uitterlinden AG, Van Der Velde N, van Meurs JBJ, van Schoor NM, Hooiveld GJEJ, de Groot LCPGM et al. The effects of long-term daily folic acid and vitamin B 12 supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenetics. 2015;7(121):1–14.

87. Sae-Lee C, Corsi S, Barrow TM, Kuhnle GGC, Bollati V, Mathers JC, Byun H-M. Dietary intervention modifies DNA methylation age assessed by the epigenetic clock. Mol Nutr Food Res. 2018;62:1–7.
88. Armstrong VL, Rakoczy S, Rojanathammanee L, Brown-Borg HM. Expression of DNA methyltransferases is influenced by growth hormone in the long-living Ames dwarf mouse in vivo and in vitro. J Gerontol A Biol Sci Med Sci. 2014;69(8):923–33.

89. Trolin CG, Löfberg C, Trolin G, Oreland L. Brain ATP:1-methionine S-adenosyltransferase (MAT), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH): regional distribution and age-related changes. Eur Neuropsychopharmacol. 1994;4(4):469–77.

90. Geller AM, Kotb MYS, Jernigan HM, Kredich NM. Methionine adenosyltransferase and S-adenosylmethionine in the developing rat lens. Exp Eye Res. 1988;47(2):197–204.

91. Ciccarone F, Malavolta M, Calabrese R, Guastafierro T, Bacalini MG, Reale A, Franceschi C, Capri M, Hervonen A, Hurme M, et al. Age-dependent expression of DNMT1 and DNMT3B in PBMCs from a large European population enrolled in the MARK-AGE study. Aging Cell. 2016;15:755–65.

92. Tian Q, Zhao J, Yang Q, Wang B, Deavila JM, Zhu MJ, Du M. Dietary alpha-ketoglutarate promotes beige adipogenesis and prevents obesity in middle-aged mice. Aging Cell. 2020;19(1):1–10.

93. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.

94. Amenyah SD, Hughes CF, Ward M, Rosborough S, Deane J, Thursby S-J, Walsh CP, Kok DE, Strain JJ, McNulty H, et al. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults—a systematic review and meta-analysis. Nutr Rev. 2020; doi: 10.1093/nutrit/nuz094. [Epub ahead of print] :1–20.
95. Collins R, Bowman L, Landray M, Peto R. The magic of randomization versus the myth of real-world evidence. N Engl J Med. 2020;382(7):2376–7.

96. Mandaviya PR, Stolk L, Heil SG. Homocysteine and DNA methylation: A review of animal and human literature. Mol Genet Metab. 2014;113:243–52.

97. Bock C, Halbritter F, Carmona FJ, Tierling S, Datlinger P, Assenov Y, Berdasco M, Bergmann AK, Booher K, Busato F, et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34(7):726–40.

98. Kurdyukov S, Bullock M, Ehrlich M. DNA methylation analysis: choosing the right method. Biology. 2016;5(3):1–21.

99. Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389–99.

100. Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet. 2012;13(10):705–19.

101. Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet. 2017;19:129–47.

102. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.

103. Müller F, Scherer M, Assenov Y, Lutsik P, Walter J, Lengauer T, Bock C. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol. 2019;20(55):1–12.

104. Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, Teschendorff AE. ChAMP:
updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33(24):3982–4.

105. Davis S, Bilke S. An Introduction to the methylumi package. 2019.

106. Gaspar JM, Hart RP. DMRfinder: efficiently identifying differentially methylated regions from MethylC-seq data. BMC Bioinformatics. 2017;18(528):1–8.

107. Wang D, Yan L, Hu Q, Sucheston LE, Higgins MJ, Ambroseone CB, Johnson CS, Smiraglia DJ, Liu S. IMA: an R package for high-throughput analysis of Illumina’s 450K Infinium methylation data. Bioinformatics. 2012;28(5):729–30.

108. Arpón A, Riezu-Boj JI, Milagro FI, Marti A, Razquin C, Martínez-González MA, Corella D, Estruch R, Casas R, Fito M, et al. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J Physiol Biochem. 2016;73(3):445–55.

109. Mandaviya PR, Joehanes R, Brody J, Castillo-Fernandez JE, Dekkers KF, Do AN, Graff M, Hänninen IK, Tanaka T, AL de Jonge E, et al. Association of dietary folate and vitamin B-12 intake with genome-wide DNA methylation in blood: a large-scale epigenome-wide association analysis in 5841 individuals B-vitamin intake and genome-wide DNA methylation. Am J Clin Nutr. 2019;3:1–14.

110. Perrier F, Viallon V, Ambatipudi S, Ghantous A, Cuenin C, Hernandez-Vargas H, Chajès V, Baglietto L, Matejcic M, Moreno-Macias H, et al. Association of leukocyte DNA methylation changes with dietary folate and alcohol intake in the EPIC study. Clin Epigenetics. 2019;11(57):1–13.

111. Hillary RF, Stevenson AJ, Cox SR, Mccartney DL, Harris SE, Seeboth A, Higham J, Sproul D, Taylor AM, Redmond P, et al. An epigenetic predictor of death captures multi-modal measures of brain health. Mol Psychiatry. 2019;1–11. doi.org/10.1038/s41380-019-0616-9
112. McCrory C, Fiorito G, Mcloughlin S, Polidoro S, Cheallaigh CN, Bourke N, Piia Karisola P, Alenius H, Vineis P, Layte R, et al. Epigenetic clocks and allostatic load reveal potential sex-specific drivers of biological aging. J Gerontol A Biol Sci Med Sci. 2019;73(3):1–9.

113. Vetter VM, Meyer A, Karbasiyan M, Steinhagen-Thiessen E, Hopfenmüller W, Demuth I. Epigenetic clock and relative telomere length represent largely different aspects of aging in the Berlin Aging Study II (BASE-II). J Gerontol A Biol Sci Med Sci. 2019;74(1):27–32.

114. Chen L, Dong Y, Bhagatwala J, Raed A, Huang Y, Zhu H. Effects of vitamin D3 supplementation on epigenetic aging in overweight and obese African Americans with suboptimal vitamin D status: A randomized clinical trial. J Gerontol A Biol Sci Med Sci. 2019;74(1):91–8.
Figure Legends

Figure 1: Brief Summary of One-carbon Metabolism and DNA methylation.

Abbreviations: BER, base excision repair enzymes; BHMT, betaine-homocysteine S-methyltransferase; DHF, dihydrofolate; DMG, dimethylglycine; DNMT, DNA methyltransferase; MTHFR, methylenetetrahydrofolate reductase; MTR, methionine synthase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SHMT, serine hydroxymethyltransferase; TDG, thymine DNA glycosylase; TET, ten-eleven translocation methylcytosine dioxygenase enzymes; THF, tetrahydrofolate.

Figure 2: DNA methylation patterns of monozygotic twins diverge during aging.

Despite early similarities, stochastic changes occur in the methylome of each twin, A and B during aging. Epigenetic drift results in age-related hypermethylation of CpG rich sequences such as CGI promoters, typically found in ubiquitously expressed house-keeping genes, which may be switched off as a result of aberrant age-related methylation. In contrast, highly methylated, transcriptionally repressed CpG poor promoters tend to become hypomethylated during aging, leading to aberrant gene expression. Tandem satellite repeat sequences in the telomere are also heavily methylated which may promote genome stability and inhibit recombination. Hypermethylated interspersed repeats such as LTRs, SINEs and LINEs tend to undergo generalized hypomethylation during aging. A selection of CpGs (*) undergo programed reproducible methylation changes across the population during aging and have been incorporated into epigenetic clock algorithms used to accurately predict epigenetic age. Each lollipop represents an individual CpG, arrows indicate transcription start sites, X indicates transcriptional repression. CGI, CpG island; LINE, long interspersed nuclear element; LTR, long terminal repeat; SINE, short interspersed nuclear element.
Table 1:
Dietary influence on DNA methylation using the Illumina microarray platforms

Study	Study design	Population	Sample size (n)	Dietary factor	Source of DNA	Effect
Randomized controlled trials and intervention studies						
Kok et al. 2015 (86)	RCT	B-vitamins for the Prevention of Osteoporotic Fractures (B-PROOF) study	87	Folic acid, vitamin-B12 supplementation	Buffy coat	Differential methylation at 162 positions upon FA/vB-12 supplementation (1 DMP, cg19380919 sig) in intervention compared to placebo. 6 DMRs differed significantly between intervention and placebo groups. Serum folate and vitamin B-12 significantly related to DNA methylation of 173 and 425 regions respectively.
Arpon et al. 2016 (108)	Intervention study	PREDIMED study	36	Mediterranean diet supplemented with extra virgin olive oil	Peripheral blood cells	Med Diet is associated with differential methylation of inflammation-related genes.
Cross-sectional studies						
Chamberlain et al., 2018 (62)	Cross-sectional Cohort Study (MCCS)		5186	Dietary intake of folate, riboflavin, vitamins B-6 and B-	Peripheral blood	Low intake of riboflavin associated with higher methylation at CpG cg21230392 ($P = 5E-8$).
Study	Design	Population	Sample Size	Outcome	Methylation Pattern	
-------------------------------	----------	---	-------------	---------------------------------	---	
Mandaviya et al., 2019 (109)	Cross-sectional	10 cohorts from Europe and United States	5841	Dietary intake of folate, vitamin B-12, methionine, choline, betaine	Leukocytes 6 DMPs and 73 DMRs negatively associated with folate intake. Intake of vitamin B-12 associated with 29 DMRs.	
Perrier et al., 2019 (110)	Cross-sectional	The European Prospective Investigation into Cancer & Nutrition (EPIC) study	450	Dietary intake of folate	Buffy coat Dietary intake of folate associated with differential methylation at 24 regions (FDR, $P < 0.05$).	

DMP, differentially methylated position; DMR, differentially methylated region; FDR, false discovery rate.
Table 2.

Key features of epigenetic DNA methylation clocks

DNA methylation clock	Number of CpGs	Platform used in development	Tissues used in training	Training set	Key Features
Horvath (69)	353	27K & 450K	Multiple tissues	Multiple studies, n = 7844, mean age 43 years	Predicts methylation age across the lifespan
			(n = 51)		Can be applied to children and pre-natal samples
					Provides estimates of both intrinsic and extrinsic epigenetic age
					Estimations may be biased in older adults
Hannum (56)	71	27K & 450K	Blood	Two cohorts, n = 656 (n₁ = 482; n₂ = 174), age range 19-101 years	Tailored to adult blood samples and may lead to biased estimates in children and in non-blood tissues
					Age estimations may be confounded by age-related changes in blood composition
					Provides a more accurate prediction of life expectancy than Horvath clock
PhenoAge (74)	513	27K, 450K & EPIC	Blood	2 step process: i) Phenotypic age; NHANES-III, n = 9926, age > 20 years	Biomarker relates to numerous age-related diseases and disease phenotypes

ii) Epigenetic marker of phenotypic age; InCHIANTI, n = 456, age range 21-100 years

Improved predictive power over previous Horvath & Hannum clocks
Incorporates nine age-related biochemical measures and smoking-related changes in DNA methylation
Captures organismal age and the functional state of organs and tissues
Estimations may be biased in children and in non-blood tissues

GrimAge (75)	1030	450K & EPIC	Blood	Framingham Heart Study (FHS), n = 2536 divided into: i) training set n = 1731 from 622 pedigrees, mean age 66 years	DNA methylation surrogates developed for seven plasma proteins plus smoking pack years	Currently best predictive epigenetic biomarker for lifespan and time to coronary heart disease (18% and 61%,) respectively more predictive than chronological age	
				ii) test set n = 625 from 266 pedigrees, mean age 67 years			Highlights healthy diet and educational attainment as predictors of biological age

Summary of the key features of the four current epigenetic clocks, including the number of CpGs included in algorithm, the platforms and tissues used in development and the tissues used in training. 27K, Infinium 27K BeadChip array; 450K, HumanMethylation450K BeadChip array; EPIC, Infinium MethylationEPIC BeadChip (850K) microarray.
Table 3:

Associations between epigenetic age and age-related conditions

Study design	Study design	Population	Sample size (n)	Age estimator	Source of DNA	Age-related condition	Association
Cross-sectional	Cross-sectional	17 cohorts from Europe, the United States and Australia	16,245	Horvath EAA	Blood	Obesity	Obesity (BMI ≥ 30) associated with higher EAA (β = 0.43, CI: 0.24; 0.61, P < 0.001).
Cross-sectional	Cross-sectional	17 cohorts from Europe, the United States and Australia	16,245	Hannum EAA	Blood	Obesity	Obesity (BMI ≥ 30) associated with higher EAA (β = 0.20 CI: 0.05; 0.34, P < 0.05).
Cross-sectional	Cross-sectional	17 cohorts from Europe, the United States and Australia	16,245	Levine EAA	Blood	Obesity	Obesity (BMI ≥ 30) associated with higher Levine EAA (β = 1.01 CI: 0.74; 1.28, P < 0.001).
Cross-sectional	Cross-sectional	Lothian Birth Cohort 1936	709	DNAm GrimAge	Whole blood	Cognitive performance	Higher DNAm GrimAge associated with lower cognitive ability (β = −0.18, P = 8E-6), brain vascular lesions in older age independent of early life cognitive ability.
Cross-sectional	Cross-sectional	Genetics of Lipid Lowering Drugs and diet Network (GOLDN) study	830	Horvath EAA	Blood	Inflammatory markers	EAA marginally associated with increased postprandial HDL (P = 0.05), increased postprandial total cholesterol (P = 0.06), and decreased soluble interleukin 2 receptor subunit alpha (P = 0.02).
Authors	Study Design	Study Details	n	Phenotype	Tissue	Disease	Findings
------------------	--------------	--	-------	-------------	--------	--	--
Irvin et al., 2018 (84)	Cross-sectional	Genetics of Lipid Lowering Drugs and diet Network (GOLDN) study	830	Hannum EAA	Blood	Inflammatory markers	EEAA inversely associated with fasting HDL (P = 0.02), positively associated with postprandial TG (P = 0.02), interleukin-6 (P = 0.007), C-reactive protein (P = 0.0001), and tumor necrosis factor alpha (TNFα, P = 0.0001).
Levine et al., 2018 (74)	Cross-sectional	Women’s Health Initiative Study (WHI), Framingham Heart Study (FHS), Normative Aging Study (NAS), Jackson Heart Study (JHS)	9,164	DNAm PhenoAge	Whole blood	Coronary heart disease	Higher DNAm PhenoAge associated with increased risk of coronary heart disease (β = 0.016- 0.073; P = 3.35E-11).
Levine et al., 2018 (74)	Cross-sectional	Religious Order Study (ROS), Memory and Aging Project (MAP)	700	DNAm PhenoAge	Dorsolateral prefrontal cortex postmortem samples	Alzheimer’s disease	DNAm PhenoAge positively associated with neuropathological hallmarks of Alzheimer’s disease, such as amyloid load (r = 0.094, P = 0.012), neuritic plaques (r = 0.11, P = 0.0032), and neurofibrillary tangles (r = 0.10, P = 0.0073).
Levine et al., 2018 (74)	Cross-sectional	Women’s Health Initiative (WHI) Study	4,177	DNAm PhenoAge	Whole Blood	Blood pressure	Positive association between PhenoAge and systolic BP (r = 0.08, P = 1E-6).
Lu et al., 2019	Cross-sectional	Framingham Heart Study (FHS), Women’s Health Initiative (WHI) study, the InCHIANTI cohort study,	7,375	AgeAccelGrim	Whole blood	Time-to-death/coronary heart disease/cancer	AgeAccelGrim strongly associated with time-to-death (HR = 1.10, P = 2.0E-75), time-to-coronary heart disease (HR = 1.07, P = 6.2E-24), time-to-cancer (HR = 1.07, P = 1.3E-12) and hypertension (OR = 1.04, P = 5.1E-13).
Jackson Heart Study (JHS)

Study/Authors	Study Design	Study Population	Sample Size	EAA/Measure	Covariate	Allostatic Load	Significance
McCrory et al., 2019 (112)	Cross-sectional	The Irish Longitudinal Study on Ageing (TILDA) cohort	490	Horvath EAA	Buffy coat	Allostatic load (AL)	AL not significantly associated with EAA ($\beta=0.11$, CI: -0.16, 0.38, $P > 0.05$).
McCrory et al., 2019 (112)	Cross-sectional	The Irish Longitudinal Study on Ageing (TILDA) cohort	490	Hannum EAA	Buffy coat	Allostatic load	AL not significantly associated with EAA ($\beta=0.06$, CI: -0.21, 0.33, $P < 0.05$).
McCrory et al., 2019 (112)	Cross-sectional	The Irish Longitudinal Study on Ageing (TILDA) cohort	490	Levine EAA	Buffy coat	Allostatic load	AL significantly associated with Levine EAA ($\beta=0.42$, CI: 0.24, 0.60, $P < 0.001$).
Quach et al., 2017 (58)	Cross-sectional	Women’s Health Initiative study/ InCHIANTI study	4,575	EEAA	Whole blood	Blood pressure	EEAA significantly associated with systolic BP ($r = 0.07$, $P = 4E-6$).
Vetter et al., 2019 (113)	Cross-sectional	Berlin Aging Study II	1,790	IEAA	Whole blood	Telomere length	rLTL is inversely associated with DNAm age acceleration ($\beta = -0.002$, $P = 0.007$).

Case-control studies

Study/Authors	Study Design	Study Population	Sample Size	EAA/Measure	Covariate	Allostatic Load	Significance
Horvath & Ritz, 2015	Case-control	The Parkinson's disease, Environment & Genes (PEG) study	592	EEAA	Blood	Parkinson’s disease (PD)	PD status positively associated with EEAA ($P = 0.0061$).
Horvath & Ritz, 2015 (73)	Case-control	The Parkinson's disease, Environment & Genes (PEG) study	592	Horvath Age Accel	Blood	Parkinson’s disease (PD)	PD status positively associated with Horvath age acceleration ($P = 0.06$).
Study	Type	Cohort/Population	Sample Size	Assay	Disease/Condition	Findings	
-------	---------------	----------------------------	-------------	-------	-------------------	--	
Horvath & Ritz, 2015 (73)	Case-control	The Parkinson's disease, Environment & Genes (PEG) study	592	Blood	Parkinson's disease (PD)	PD status positively associated with IEAA (P = 0.019).	
Perna et al., 2016 (85)	Case-cohort	ESTHER cohort	1,864	Whole blood AgeAccel	CVD, cancer	AgeAccel associated with CVD mortality (HR = 1.20; 95% CI: 1.02–1.42), and cancer mortality (HR = 1.20; 95% CI: 1.03–1.39).	

AL, allostatic load; BP, blood pressure; CRP, C-reactive protein; CVD, cardiovascular disease; EAA, epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration; HDL, high-density; IEAA, intrinsic epigenetic age acceleration; lipoprotein; HR, hazard ratio; PD, Parkinson’s disease; rLTL, relative leukocyte telomere length; TNFα, tumor necrosis factor alpha
Table 4:
Studies investigating dietary factors and epigenetic age or epigenetic age acceleration

Study	Study design	Population	Dietary factor	Sample size (n)	Age estimator	Source of DNA	Effect
Randomized trials and intervention studies							
Chen et al., 2019 (114)	Randomized clinical trial	Overweight/obese African Americans	Vitamin D3	51	Horvath DNAm age	Buffy coat	Supplementation with 4000 IU/day vitamin D3 associated with 1.85 years decrease in Horvath epigenetic age compared with placebo ($P = 0.046$).
Serum 25(OH)D concentrations significantly associated with decreased Horvath ΔAge ($P = 0.002$), independent of treatment.							
Sae-Lee et al., 2018 (87)	Randomized controlled trial	B-vitamins for the Prevention of Osteoporotic Fractures (B-PROOF) study	Folic acid, vitamin B12	44	Horvath Age Accel	Buffy coat	Reduced age acceleration in response to folic acid and vitamin B-12 supplementation in women with $MTHFR$ 677CC genotype ($P = 0.04$).
Study	Type	Group	Intervention	Study Population	Outcomes		
---------------------------	------------------	--------------------------------	---	------------------	--		
Sae-Lee *et al.*, 2018 (87)	Intervention	Non-obese healthy male smokers	Monomeric and oligomeric flavanol	13	Horvath Age Accel, Leukocytes, No change in age acceleration in response to monomeric and oligomeric flavanol (MOF) supplementation.		
Cross-sectional studies							
Levine *et al.*, 2018 (74)	Cross-sectional	Women’s Health Initiative (WHI) study	Carotenoids	2,267	PhenoAge Accel, Whole blood, Lower PhenoAgeAccel associated with increased mean intake of carotenoids ($r = -0.22, P = 2 \times 10^{-27}$), lycopene ($r = -0.11, P = 3 \times 10^{-3}$), alpha-carotene ($r = -0.19, P = 5 \times 10^{-20}$), beta-carotene ($r = -0.18, P = 2 \times 10^{-17}$), lutein + zeaxanthin ($r = -0.17, P = 2 \times 10^{-16}$), beta-cryptoxanthin ($r = -0.17, P = 2 \times 10^{-15}$) but positively associated with gamma-tocopherol ($r = 0.07, P = 6 \times 10^{-4}$).		
Lu *et al.*, 2019 (75)	Cross-sectional	Framingham Heart Study (FHS)	Omega-3 polyunsaturated fatty acids	2174	AgeAccelGrim, Whole blood, Omega-3 polyunsaturated fatty acids and vegetable intake associated with lower GrimAge ($r = -0.10, P = 4.6 \times 10^{-7}$, linear mixed effects $P = 1.3 \times 10^{-5}$). Effect more pronounced in males ($r=-0.08, P = 0.012$) than in females ($r = -0.05, P = 0.07$).		
Quach *et al.*, 2017 (58)	Cross-sectional	Women’s Health Initiative study/InCHIANTI study	Carotenoids	4,575	EEAA, Whole blood, Lower EEAA significantly associated with higher mean plasma carotenoid levels ($r = -0.13, P = 2 \times 10^{-9}$), alpha-carotene ($r = -0.11, P = 9 \times 10^{-8}$), beta-carotene ($r = -0.11, P = 3 \times 10^{-7}$), lutein + zeaxanthin ($r = -0.9, P = 1 \times 10^{-5}$), beta-		
Study	Design	Cohort	Tocopherol	IEAA	Analyte	Association	
-----------------------	-----------------	---	------------	--------	--------------------------	---	
Quach et al., 2017 (58)	Cross-sectional	Women’s health Initiative study/ InCHIANTI study	Tocopherol	IEAA	Whole blood	Lower IEAA associated with lower plasma gamma-tocopherol ($r = 0.08, P = 2E-4$).	
			4,575			cryptoxanthin ($r = -0.11, P = 3E-7$) and lower gamma-tocopherol ($r = 0.09, P = 9E-6$).	

EEAA, extrinsic epigenetic age, IEAA, intrinsic epigenetic age
Figure 2

Early Life

Old Age

Telomere

Twin A Twin B Twin A Twin B

CpG rich promoter

Specific
hypermethylation
or hypomethylation

CpG poor promoter

Generalised
hypomethylation

ltr

SINE

LINE

Epigenetic Clock

● methylated CpG (5mC) ○ unmethylated CpG (5C)