Electron microscopy investigations of changes in morphology and conductivity of LiFePO\textsubscript{4}/C electrodes - DTU Orbit (03/11/2018)

Electron microscopy investigations of changes in morphology and conductivity of LiFePO\textsubscript{4}/C electrodes

In this work we study the structural degradation of a laboratory Li-ion battery LiFePO\textsubscript{4}/Carbon Black (LFP/CB) cathode by various electron microscopy techniques including low kV Focused Ion Beam (FIB)/Scanning Electron Microscopy (SEM) 3D tomography. Several changes are observed in FIB/SEM images of fresh and degraded cathodes, including cracks in the LFP particles, secondary disconnected particles, and agglomeration of CB. Low voltage (1 kV) SEM images show that the CB agglomerates have a different brightness than the fresh CB, due to charging effects. This suggests that the electronic conductivity of the CB agglomerates is low compared to that of the fresh CB particles. HRTEM analysis shows that fresh CB particles are quasi crystalline, whereas the LFP/CB interface in the degraded electrode shows amorphous carbon surrounding the LFP particles. The presence of the amorphous carbon is known to impede the electronic conductivity and thereby decreasing percolation in the cathode and reducing the electrode capacity.

General information

State: Published
Organisations: Department of Energy Conversion and Storage, Applied Electrochemistry, Imaging and Structural Analysis, Atomic scale modelling and materials, Northwestern University
Contributors: Scipioni, R., Jørgensen, P. S., Ngo, D., Simonsen, S. B., Liu, Z., Yakal-Kremski, K. J., Wang, H., Hjelm, J., Norby, P., Barnett, S. A., Jensen, S. H.
Number of pages: 11
Pages: 259-269
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of Power Sources
Volume: 307
ISSN (Print): 0378-7753
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 7 SJR 2.202 SNIP 1.536
Web of Science (2017): Impact factor 6.945
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 6.22 SJR 1.944 SNIP 1.5
Web of Science (2016): Impact factor 6.395
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 6.34 SJR 1.9 SNIP 1.667
Web of Science (2015): Impact factor 6.333
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 6.3 SJR 1.964 SNIP 2.042
Web of Science (2014): Impact factor 6.217
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.63 SJR 1.975 SNIP 2.137
Web of Science (2013): Impact factor 5.211
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.04 SJR 2.282 SNIP 2.006
Web of Science (2012): Impact factor 4.675
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Keywords: Degradation mechanism, Focused ion beam scanning electron microscopy, Loss in electron percolation, Low accelerating voltage, Three-dimensional analysis of LiFePO4/Carbon electrode

Electron versions:

Electron_microscopy_investigations.pdf

DOIs:

10.1016/j.jpowsour.2015.12.119

Source: FindIt

Source-ID: 2290239275

Research output: Research - peer-review ; Journal article – Annual report year: 2016