On Light Mapping and Certain Concepts by Using m_XN-Open Sets

Haider Jebur Ali 1*
Raad F. Hassan 2

Received 4/3/2019, Accepted 15/1/2020, Published 18/3/2020

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

The aim of this paper is to present a weak form of m-light functions by using m_XN-open set which is mN-light function, and to offer new concepts of disconnected spaces and totally disconnected spaces. The relation between them have been studied. Also, a new form of m-totally disconnected and inversely m-totally disconnected function have been defined, some examples and facts was submitted.

Key words: m_XN-disconnected space, m_XN-Hausdorff space, mN-light function, m_XN-open set, mN-totally disconnected function

Introduction:

In (2016) Abass and Ali (1) introduced the definition of m-light function, Humadi and Ali (2) presented the m^*-light function. Al Ghour and Samarah (3) defined N-open set. In this research we defined the set m_XN-open set, we submitted a new type of functions by using m_XN-open sets, it is weaker than m-light function and we named it mN-light function. In (4) Carlos Carpintero, Jackeline Pacheco, Nimitha Rajesh, Ennis Rafael Rosas and S. Saranyasri defined N-connected space, by the same manner m-disconnected, m_XN-disconnection, mN-disconnected, m_N-connected and m_XN-totally disconnected spaces have been defined, additionally, many types of functions in m-structure spaces such as mN-totally disconnected, mN^*-totally disconnected, mN^{**}-totally disconnected, inversely mN-totally disconnected function have been introduced. In (5) Enas Ridha Ali, Raad Aziz Hussain introduced the definition of N-Hausdorff, and in the same way, mN-Hausdorff has been defined. Also mNT_1-spaces and zero dimension m-spaces have been provided. The relation between these concepts has been discussed. Moreover the relation between m-homeomorphism functions (6) and the mN-light functions has been illustrated. Examples, theorems and some facts supported our study.

Main Results:

In this section, mN-totally disconnected, mN-light functions and some spaces by using m_XN-open sets have been presented.

Definition 1 (7), (8)

A subcollection m_X of the power set $P(X)$ of a non-empty set X is called a minimal structure on X if $\emptyset, X \in m_X$, the pair (X, m_X) is called m-structure space (in short m-space). Each element in m_X is said to be m_X-open set and its complement is said to be m_X-closed set.

Remark 1 (9)

Every topological space (X, \mathcal{T}) is m-space, but not conversely, because \emptyset, X belong to \mathcal{T}.

Example 1

If $X = \{n, m, f\}$ and $m_X = \{\emptyset, X, \{n\}, \{m\}\}$, we observe that m_X is not a topology, since $\{n\} \cup \{m\} = \{n, m\} \notin m_X$.

Definition 2 (10), (11)

The m_X-closure to a subset B of m-space (X, m_X) is the intersection of all closed sets \mathcal{F} in X which containing B and we denote it by $m_X-closure(B)$, by symbols $m_X-closure(B)$=$\cap \{\mathcal{F}; B \subseteq \mathcal{F}\},$ where \mathcal{F} is m_X-closed subset of X. While the m_X-interior to a subset B of m-space (X, m_X) is the union of all open sets K in X which contained in B and we denote it by m_X-Int(B), by symbols $m_X-Int(B)=\cup \{K; K \subseteq B\}$ where K is m_X-open set in X.

Definition 3

A subset B of m-space X is called m_X-N-open set if for each element $a \in B$ there exists an m_X-N-open set K in X containing a such that $K-B$ is finite, the complement of m_X-N-open set is called m_X-N-closed. The family of all m_X-N-open sets in X is symbolized as m_N.
Example 2
Any subset of a finite m-structure space \((X, m_X)\) is \(m_X\) N-open and \(m_X\) N-closed set.

Lemmal
If \(\{K_i \mid i \in I\}\) is a collection of \(m_X\) N-open subsets of \(m_X\)-space, then \(\bigcup_{i \in i} K_i\) is \(m_X\) N-open too.

Proof
Consider \(x \in \bigcup_{i \in i} K_i\), so there is an \(m_X\) N-open set \(K_j\) containing \(x\) for some \(j \in I\), so \(W_j-K_j\) is finite, where \(W_j\) is \(m_X\)-open subset of \(X\) containing \(x\), then \(W_j-\bigcup_{i \in i} K_i\) is also finite since \(W_j-\bigcup_{i \in i} K_i \subseteq W_j-K_j\), (a subset of finite set is finite), therefore \(\bigcup_{i \in i} K_i\) is \(m_X\) N-open set.

Definition 4 (1)
An \(m\)-space \(X\) is said to be \(m\)-disconnected, if there are non-empty \(m_X\)-open sets \(H\) and \(L\) in \(X\) such that \(H\bigcup L=X\) and \(H\cap L=0\), if \(X\) is \(m\)-disconnected space then it is called \(m\)-connected space.

Example 3
The discrete \(m\)-space \((Z, m_D)\), is \(m\)-disconnected space.

Definition 5
Let \((X, m_X)\) be an \(m\)-space and \(H, L\) are two non-empty \(m_X\)-open subsets of \(X\), we call \(H\bigcup L\) to be \(m_X\)-disconnection to \(X\), if \(H\bigcup L=X\) and \(H\cap L=0\). In example 3 \(Z\{-x\}\) and \(\{x\}\) where \(x \in Z\), are \(m_X\)-disconnection to \(Z\).

Definition 6
An \(m\)-space \(X\) is \(mN\)-disconnected if we can find an \(m_X\)-disconnection to it, if there is no such \(mN\)-disconnected so \(X\) is \(mN\)-connected space.

Example 4
The finite indiscrete \(m\)-space \((X, m_{ind})\) is \(mN\)-disconnected, but not \(m\)-connected.

Proposition 1
An \(m\)-space \(X\) is \(mN\)-disconnected if and only if there is a non-empty \(m_X\)-N-clopen subset \(G\) in \(X\) such that \(G\neq X\).

Proof
Suppose \(G\) is a non-empty \(m_X\)-N-clopen subset of \(X\) such that \(G\neq X\). Let \(U=G^c\), so \(U\) is a subset of \(X\) and \(U\neq 0\) (because \(G\neq X\), and \(G\bigcup U=X\), \(G\bigcap U=0\)). Also \(U\) is \(m_X\)-N-clopen because \(G\) is \(m_X\)-N-clopen, therefore \(X\) is \(mN\)-disconnected space. Conversely, if \(X\) is \(mN\)-disconnected space, so there is an \(m_X\)-disconnection \(GUU\) to \(X\), hence \(G=U^c\) which implies \(G\) is \(m_X\)-N-closed subset of \(X\), therefore \(G\) is \(m_X\)-N-clopen subset of \(X\) and \(G\neq X\) since \(U\) is non-empty subset of \(X\), and then \(G\) is a non-empty \(m_X\)-N-clopen subset of \(X\) such that \(G\neq X\).

Proposition 2
An \(m\)-space \(X\) is \(mN\)-connected space if and only if \(0\) and \(X\) are the only \(m_X\)-N-clopen set in \(X\).

Proof
If \(X\) is an \(mN\)-connected space, and \(U\) is a non-empty proper \(m_X\)-N-clopen subset of \(X\), then \(U^c\) is also \(m_X\)-N-clopen subset of \(X\), and since \(UU\bigcup U^c=X\), where \(U^c\neq 0\), therefore \(X\) is \(mN\)-disconnected space and that is a contradiction, so \(0\) and \(X\) are the only \(m_X\)-N-clopen set in \(X\). Conversely, suppose \(X\) is \(mN\)-disconnected space, so there is \(m_X\)-disconnection \(LUU\) to \(X\), but \(L\) is \(m_X\)-N-closed (since \(L=H^c\)) which is a contradiction, therefore \(X\) is \(mN\)-connected.

Definition 7
The \(m\)-space \((X, m_X)\) is called an \(mN\)-totally disconnected space. If for every pair of distinct points \(a\) and \(b\) in \(X\), there are two \(m_X\)-open sets \(N, M\) such that \(N\neq \emptyset, M\neq \emptyset, a \in N, b \in M, N \bigcup M=X\) and \(N \bigcap M=0\).

Example 5
For any distinct points \(x, y\) in the discrete \(m\)-space \((Z, m_D)\), the sets \(\{x\}\) and \(\{Z\{-x\}\}\) are \(m_X\)-open sets containing \(x\), \(y\) respectively such that \(\{x\}\bigcup (Z\{-x\})=\emptyset\) and \(\{x\}\bigcup (\{Z\{-x\}\})=Z\), so \((Z, m_D)\) is \(mN\)-totally disconnected space.

Remark 2
Let \(X\) be an \(m\)-space, then:-
1- Every \(m_X\)-open subset of \(X\) is \(m_X\)-N-open, but the converse is not true, since if \(K\) is \(m_X\)-open subset of \(X\), then for each \(x \in K\) there is an \(m_X\)-open subset \(M\) of \(X\), pick \(M=K\) then \(M\) containing \(x\) and \(M\bigcap K=0\) (finite), so \(K\) is \(m_X\)-N-open set.
2- Every \(m_X\)-closed subset of \(X\) is \(m_X\)-N-closed.

Example 6
Let \(K=\mathcal{R}\{-0\}\) be a subset of the indiscrete \(m\)-space \((R, m_{ind})\), then \(K\) is \(m_R\)-N-open set, but not \(m_X\)-open set.

Remark 3
I- Every \(mN\)-connected space is \(m\)-connected but the converse is not true, since if \((X, m_X)\) is an \(mN\)-connected space, and suppose it is \(m\)-disconnected space then there is \(m_X\)-disconnection \(NUM\) to \(X\), and then it is \(mN\)-disconnected (by Remark 2) which is a contradiction, hence \(X\) is \(m\)-connected.
II- Every \(m\)-disconnected space is \(mN\)-disconnected, but the converse is not true, since if \((X, m_X)\) is \(m\)-disconnected space, then there is \(m_X\)-disconnection \(MUN\) for \(X\), and by Remark 2 it is \(m_X\)-disconnected, therefore \(X\) is \(mN\)-disconnected space.

Example 7
The finite indiscrete \(m\)-space \((X, m_{ind})\) is \(m\)-connected and \(mN\)-disconnected space, but neither \(m\)-N-connected nor \(m\)-disconnected space.

Proposition 3
A subset \(G\) of \(m\)-space \(X\) is \(m_X\)-N-disconnected if and only if there is \(m_X\)-N-open subsets \(N\) and \(M\) of
Proposition 6

There is an m-function f from m-space X into m-space Y called an m-continuous function if and only if $f^{-1}(M)$ is m-open set in X, for every m_1-open set M in Y.

Definition 7

The m_1-continuous image of m_1-connected set in X is m_1-connected set in Y.

Proof

Let $f: X \to Y$ be an m-continuous function and T is m_1-connected set in X, and suppose that $f(T)$ is not m_1-connected, so there is an m_1-disconnection $N \cup M$ of $f(T)$, since f is m-continuous function, then $f^{-1}(N) \cup f^{-1}(M)$ are m-open sets in X, with $f^{-1}(N) \cup f^{-1}(M) = T$, so $T = f^{-1}(N) \cup f^{-1}(M)$, and $N \cap M \cap f^{-1}(T) = \emptyset$, then $f^{-1}(N)$ and $f^{-1}(M)$ are disjoint and separation of T, that is a contradict the hypothesis that T is m-connected set in X, so $f(T)$ is m_1-connected set.

Proof

If K is a subset of an m-space X, then K is m_1-open set if and only if any point in K is an m_1-interior point of it.

Proof

Consider K is an m_1-open set and $x \in K$, since K is a subset of itself, so x is an m_1-interior point.

Conversly, since K is a union of all its points which are m_1-interior point, for each x in K there is an m_1-open set W in X with $x \in W \subseteq K$, then $K = \bigcup_{x \in K} W_x$, for each $x \in X$, and by lemma 1 we get K is m_1-open set.

Proposition 6

Let K be a subset of an m-space X, then K is m_1-closed if and only if m_1-N-$d(K)\subseteq K$.
in X, such that $N \cap M = \emptyset$, and $a \in N$, $b \in M$, since $N \cap M = \emptyset$, so $b \notin N$ and $a \notin M$, hence X is mNT_2-space.

Example 11

Let $(Z, \ m_{\text{ind}})$ be the indiscrete m-space, let $x, y \in Z$ with $x \neq y$, then we can find two m_N-open sets U and V in Z such that $U=Z\{-x\}$ and $V=Z\{-y\}$ which containing x but not x, and $V=Z\{-y\}$ which containing x but not x, so $(Z, \ m_{\text{ind}})$ is mNT_1-space, but not mNT_2-space since $(Z\{-x\}) \cap (Z\{-y\}) = \emptyset$. Also $(\mathcal{R}, \ m_{\text{cof}})$ is mNT_1-space but not mNT_2-space.

Remark 6

Every mN-totally disconnected space is mN-Hausdorff space, but the converse is not true, since if X is mN-totally disconnected space then for each distinct points a, b in X, we can find two m_N-open sets N, M contained a, b respectively with $N \cap M = \emptyset$ and $N \cup M = X$, so X is mN-Hausdorff space.

Example 12

Let $(\mathcal{R}, \ m_u)$ be the usual m-space, it is mN-Hausdorff space, but not mN-totally disconnected.

Remark 7

Every m-Hausdorff space is mN-Hausdorff, but the converse is not true, since if X is m-Hausdorff space, so there are m_N-open sets N and M in X, such that $N \neq \emptyset, M \neq \emptyset, a \in N, b \in M$, by Remark 2 X is mN-Hausdorff.

Example 13

Let $X= \{1, 2, 3\}$ and $m_X= \{\emptyset, X, \{1, 2\}, \{2\}, \{3\}\}$, 1 and 2 are distinct points in X, and there exist m_N-open sets $U= \{1\}$ and $V= \{2\}$ in X containing 1, 2 respectively, and $U \cap V = \emptyset$, also 1 and 3 are distinct points in X, there exist m_N-open sets $U= \{1\}$ and $V= \{3\}$ in X containing 1, 3 respectively, and $U \cap V = \emptyset$, by the way we 2 and 3 are distinct points in X, and 1 and 3 are distinct points in X, there exist m_N-open sets $U= \{2\}$ and $V= \{3\}$ in X containing 2, 3 respectively, and $U \cap V = \emptyset$, so (X, m_N) is mNT_2-space which is not mNT_2-space since there is no two disjoint m_N-open sets containing 1, 2 respectively.

Remark 8

Every m-totally disconnected space is mN-disconnected but the converse is not true, since if X is m-totally disconnected space, then for any two points $a, b \in X$ where $a \neq b$ we can find m_N-open sets N and M in X, with $N \neq \emptyset, M \neq \emptyset, N \cap M = \emptyset$, and they containing a, b respectively such that $N \cup M = X$, so X is m-disconnected and then mN-disconnected (by remark 4)).

Example 14

Let $X= \{a, b, c\}$ and $m_X= \{\emptyset, X, \{a\}, \{b, c\}\}$, then X is mN-disconnected space and not m-totally disconnected.

Remark 9

Let $f: (X, m_X) \rightarrow (Y, m_Y)$ be an m-continuous function and K be m_N-totally disconnected subset of X, then $f(K)$ is not m_N-totally disconnected subset of Y.

Example 15

Let $I_2: (Z, m_D) \rightarrow (Z, m_{\text{cof}})$ where I_2 is the identity function, (Z, m_D) is mN-totally disconnected space, while (Z, m_{cof}) is not mN-totally disconnected.

Definition 11

The m-function $f: (X, m_X) \rightarrow (Y, m_Y)$ is called mN-totally disconnected if the image of each m_X-totally disconnected set in X is m_Y-totally disconnected in Y.

Definition 12

The m-function $f: (X, m_X) \rightarrow (Y, m_Y)$ is called mN'-totally disconnected if the image of each m_N-totally disconnected set in X is m_Y-totally disconnected in Y.

Definition 13

The m-function $f: (X, m_X) \rightarrow (Y, m_Y)$ is called mN''-totally disconnected if the image of each m_N-totally disconnected set in X is m_Y-totally disconnected in Y.

The following Example satisfying Definitions 11, 12 and 13.

Example 16

The identity m-function $I_X: (X, m_X) \rightarrow (X, m_D)$ is mN-totally disconnected function.

Definition 14

The surjective m-function $f: (X, m_X) \rightarrow (Y, m_Y)$ is called mN-light function if the inverse image of any $b \in Y$ is m_X-totally disconnected set in X.

Example 17

The identity m-function $I_{\mathcal{R}}: (\mathcal{R}, m_D) \rightarrow (\mathcal{R}, m_{\text{cof}})$ is mN-light function.

Remark 10

Every m-light function is mN-light function, but the converse is not true, since if $f: (X, m_X) \rightarrow (Y, m_Y)$ is m-light function, then $f^{-1}(b)$ is m_N-totally disconnected for any b in Y, then it is m_N-totally disconnected set in X (by Remark 2), so f is mN-light function.

Example 18

The m-function $f: (X, m_{\text{ind}}) \rightarrow (X, m_{\text{cof}})$, which defined by $f(x) = c$, for each $x \in X$, where $X = \{1, 2, 3\}$, is mN-light function but not m-light function.

Remark 11

Every m-homeomorphism function is mN-light function, but the converse is not true, since if $f: (X, m_X) \rightarrow (Y, m_Y)$ is m-homeomorphism function, then for any b in Y there is a unique a in X where $f(a) = b$ (since f is bijective), so $f^{-1}(b) = \{a\}$ which is m_X-totally disconnected, so $\{a\}$ is m_X-totally disconnected set in X.

totally disconnected (by Remark 2), and then f is mN-light.

Example 19

The function $f:(X, m_\delta) \to (Y, m_\gamma)$, where $X = \{a, b, c, d, e, f\}$ and $Y = \{g, h, i\}$ such that $f(a) = f(b) = g$, $f(c) = f(d) = h$, and $f(e) = f(f) = i$, is mN-light function but not m-homeomorphism.

Theorem 1

If $f:(X, m_\chi) \to (Y, m_\gamma)$ is mN-light function and $G \subseteq X$, so $f|_G: G \to f(G)$ is mN-light function too.

Proof

If $g \in f(G)$, so $g \in Y$ (because $f(G) \subseteq Y$), and since f is mN-light function so $f^{-1}(g)$ is $m\chi_N$-totally disconnected set in X. To prove that $f^{-1}(g) \cap G$ is $m\gamma_N$-totally disconnected set in G for any $g \in f(G)$. Let $a, b \in f^{-1}(g) \cap G$, then $a, b \in f^{-1}(g)$, since $f^{-1}(g)$ is $m\chi_N$-totally disconnected set in X, and there is an $m\gamma_N$-disconnection $N \cup M$ to $f^{-1}(g)$ with $(N \cap f^{-1}(g)) \cup (M \cap f^{-1}(g)) = f^{-1}(g)$ and $(N \cap f^{-1}(g)) \cap (M \cap f^{-1}(g)) = \emptyset$, such that N and M are $m\gamma_N$-open sets in X, and $a \in N$, $b \in M$. To show that $f^{-1}(g) \cap G$ is $m\gamma_N$-totally disconnected set in G.

Since $((G \cap f^{-1}(g)) \cap N) \cup ((G \cap f^{-1}(g)) \cap M) = (G \cap f^{-1}(g)) \cap N \cup (G \cap f^{-1}(g)) \cap M) = G \cap (f^{-1}(g) \cap N) \cup (f^{-1}(g) \cap M) = G \cap (f^{-1}(g) \cap N) \cap (f^{-1}(g) \cap M) = G \cap \emptyset = \emptyset$, such that $a \in (G \cap f^{-1}(g)) \cap N$ and $b \in (G \cap f^{-1}(g)) \cap M$, hence $(G \cap f^{-1}(g)) \cap N$ and $(G \cap f^{-1}(g)) \cap M$ are disjoint $m\gamma_N$-open sets and the union of them is equal to $f^{-1}(g) \cap G$, so $f^{-1}(g) \cap G$ is $m\gamma_N$-totally disconnected set in G, therefore $f|_G$ is mN-light function.

Definition 15

A surjective m-function $f:(X, m_\chi) \to (Y, m_\gamma)$ is called inversely mN-totally disconnected function if the inverse image of any $m\gamma_N$-totally disconnected set in Y is $m\gamma_N$-totally disconnected set in X.

Example 20

The identity m-function $i_x:(X, m_{ind}) \to (X, m_\chi)$, where X is a finite set is inversely mN-totally disconnected function.

Proposition 8

Every inversely mN-totally disconnected function is mN-light function.

Proof

Let $f:(X, m_\chi) \to (Y, m_\gamma)$ be inversely mN-totally disconnected function and $b \in Y$, since f is surjective m-function (since it is inversely mN-totally disconnected) and $f^{-1}\{b\}$ is $m\chi_N$-totally disconnected set in X, where $\{b\}$ is $m\gamma_N$-totally disconnected set in Y which implies f is mN-light function.

Proposition 9

The m-function $h:(X, m_\chi) \to (Y, m_\gamma)$, where $h \circ f$ is mN-light function if $f:(X, m_\chi) \to (Z, m_\delta)$ is inversely mN-totally disconnected function and $g:(Z, m_\delta) \to (Y, m_\gamma)$ is mN-light function.

Proof

Let $b \in Y$, so $h^{-1}(b) = (g \circ f)^{-1}(b) = f^{-1}(g^{-1}(b))$, but $g^{-1}(b)$ is mN-totally disconnected set (because g is mN-light function), and then $f^{-1}(g^{-1}(b))$ is $m\chi_N$-totally disconnected set in X (since f is inversely mN-totally disconnected function), so that $h^{-1}(b)$ is $m\chi_N$-totally disconnected set in X, which means h is mN-light function.

Proposition 10

If $g:(Z, m_\delta) \to (Y, m_\gamma)$ is bijective m-function and $f:(X, m_\chi) \to (Z, m_\delta)$ is mN-light function, then the surjective m-function $h:(X, m_\chi) \to (Y, m_\gamma)$ where $h = g \circ f$ is mN-light function.

Proof

Let $b \in Y$, then there is an element $z \in Z$ such that $g(z) = b$ (since g is bijective m-function), now $h^{-1}(b) = (g \circ f)^{-1}(b) = f^{-1}(g^{-1}(b)) = f^{-1}(g^{-1}(g(z)) = f^{-1}(z)$, but $f^{-1}(z)$ is $m\chi_N$-totally disconnected set in X (because f is mN-light function), which implies $h^{-1}(b)$ is $m\chi_N$-totally disconnected set in X, so that h is mN-light function.

Proposition 11

If $g:(Z, m_\delta) \to (Y, m_\gamma)$ is one-to-one m-function, $f:(X, m_\chi) \to (Z, m_\delta)$ is m-function and $h:(X, m_\chi) \to (Y, m_\gamma)$ is mN-light function such that $h = g \circ f$, then f is mN-light function.

Proof

Since $g(z) \in Y$, for each $z \in Z$ and $h^{-1}(g(z))$ is $m\chi_N$-totally disconnected set in X (because h is mN-light function), and since $h^{-1}(g(z)) = (g \circ f)^{-1}(g(z)) = f^{-1}(g^{-1}(g(z))) = f^{-1}(z)$, so $f^{-1}(z)$ is $m\chi_N$-totally disconnected set in X, hence f is mN-light function.

Proposition 12

If $f:(X, m_\chi) \to (Z, m_\delta)$ is mN-totally disconnected function and $h:(X, m_\chi) \to (Y, m_\gamma)$ is a surjective mN-light function such that $h = g \circ f$, then $g:(Z, m_\delta) \to (Y, m_\gamma)$ is mN-light function.

Proof

Since $h^{-1}(y)$ is $m\chi_N$-totally disconnected set in X for each $y \in Y$ (because h is mN-light function), and $f(h^{-1}(y))$ is $m\gamma_N$-totally disconnected set in Z (since f is mN-totally disconnected function), but $f(h^{-1}(y)) = f((g \circ f)^{-1}(y)) = f(f^{-1}(g^{-1}(y)) = f(h^{-1}(y))$.

375
$g^{-1}(y)$, hence $g^{-1}(y)$ is $m_{X}\omega$-totally disconnected set in Z, so that g is mN-light function.

Definition 16

The m-space (X, m_X) is called a zero dimension m-space if it has a base of $m_X\omega$-clopen sets.

Lemma 2

Every zero dimension metric space is mN-totally disconnected space.

Proof

Let X be a zero dimension metric m-space and a, b are points in X with $a \neq b$, then X is m-Hausdorff space and since it is metric m-space, then a has a neighbourhood K with $b \notin K$, then there exists a basic m_X-open set W which is also m_X-closed set in X (since X is zero dimensional m-space) and then W is m_XN-clopen set (by Remark 2 and since the complement of m_XN-open set is m_XN-closed set), where $a \in W \subseteq K$, and W^C is m_XN-clopen set in X such that $b \in W^C, X=\emptyset \cup W^C$ and $W \cap W^C=\emptyset$, so X is mN-totally disconnected space.

Proposition 13

Let X, Y be metric m-spaces and $f : (X, m_X) \rightarrow (Y, m_Y)$ be a surjective m-function where X is mN-compact space, then f is mN-light function if the inverse image for each $b \in Y$ is a zero dimension a subspace of X.

Proof

Let $b \in Y$, so $f^{-1}(b)$ is zero dimension metric m-subspace of X (since metric is hereditary property), so it is m_XN-totally disconnected subspace of X (by lemma (3-63)) and so that f is mN-light function.

New subjects and future work.

Definition 17 (12)

A subset F of m-space X is said to be m_Xg-closed if for each m_X-open set U with $F \subseteq U$, then $m_Xcl(F) \subseteq U$.

Definition 18

A subset G of m-space X is said to be m_Xg-open if $F \subseteq m_X$-Int (G) for each m_X-closed set F with $F \subseteq G$.

Definition 19

A subset A of m-space X is said to be m_X-Ng-open set if for each $x \in A$, there exists m_Xg-open set U containing x such that $U-A$ is finite. The complement of m_X-Ng-open set is m_X-Ng-closed set.

There is a relation between Definition 19 and m_X-N-open set as follows.

Remark 12

Every m_X-N-open set is m_X-Ng-open, but the converse is not true in general.

Example 21

The subset $\{x\}_{x \in R}$ in (R, m_{ind}) is m_X-Ng-open but it is neither m_X-open nor m_X-N-open set.

Question 1

Is there a relation between Definition 19 and m_X-open set? if there is a relation, is there an example to the converse?

Question 2

If we use m_X-Ng-open set instead of m_X-N-open in this research, will we get approach results? Now we will use the previously presented set to define another type of m-disconnected space, which is:

Definition 20

An m-space X is said to be m-Ng-disconnected if it is union of two disjoint m_X-Ng-open sets.

Question 3

What is the relation between m-N-disconnected and m-Ng-disconnected space?

In a same way and by using m_X-Ng-open set, new type of m-light function have been defined, which is:

Definition 21

A function f from m-space X into m-space Y is said to be m-Ng-light if for every $y \in Y$, $f^{-1}(y)$ is m-Ng-totally disconnected.

Question 4

What is the relation between mN-light and m-Ng-light function?

Remark 13

There is a definition in the topological space to Nadia Kadum Humadi (13), we can exploit it by using the definition of m_X-ω-g-open set.

Conclusions:

In this research, new spaces namely mN-disconnected, mN-totally disconnected, mN-Hausdorff, mNT_1-spaces, have been defined and mN-light and inversely mN-totally disconnected functions have been introduced.

Acknowledgements:

The authors would like to thank Mustansiriyah University (www.uomustansiriyah.edu.iq) Baghdad – Iraq for its support in the present work. We also express our gratitude to the referees for carefully reading the paper and for their valuable comments.

Conflicts of Interest: None.

References

1. Huda F A, Haider J A. On m-light mappings. Al-Mustansiriyah Journal of Science.2016; 27(3):72-75.

2. Nadia KH., Haider J A. On $m\omega$-light Functions. Al-Mustansiriyah J. Sci. 2019; 4(30): 1-12.

3. Samer Al G, Salti S. Cocompact Open Sets and Continuity. ABSTR APPL ANAL.2011; 2012:1-9.

4. Rosas ER, Carpintero C, Pacheco J, Rajeesh N, Saranyasri S. Almost nearly ω-S continuous
multifunctions. Eurasian Bull. Math. (ISSN: 2687-5632). 2017 Dec 28:24-33.
5. Enas R A, Raad A H. On Dimension Theory by Using N-open sets. Journal of Babylon University/pure and Applied Sciences.2015; 23(2):595-604.
6. Haider J A , Marwa MD. When m-lindelof sets are mx-semi closed. J. phys: conference series.2018:1-7.
7. Zakari AH. gm-continuity on generalized topology and minimal structure spaces. J. Assoc. Arab Univ. Basic Appl. 2016 Jun 1;20(1):78-83.
8. Boonpok C, Viriyapong C, Thongmoon M, Viriyapong N. On M_A^((i,j))-Continuous Functions in Biminimal Structure Spaces”. IJMMS.2013:1-4.
9. Shyamapada M. Minimal spaces with a mathematical structure. J. Assoc. Arab Univ. Basic Appl.2016; (22):98-101.
10. Takashi N,Valeriupiu P. Minimal structure, punctually m-open functions in the sense of Kuratowski and bitopological spaces. MATH COMMUN. 2007; 12(2007):247-253.
11. Ravio , Rodrigo J. Between *-Closed Sets and Iw- Closed Sets. JNRS. 2013; 2(3); 87-97.
12. Rosas E, Rajesh N, Carpintero C. Some new types of open and closed sets in minimal structures. II. Inft. Math. Forum. 2009; 4(44) 2169-2184.
13. Nadia K H, Haider J A. On ωC-Continuous Functions. IOP Conf. Series: J. Phys: Conf. Series. 2019; 1-12.

حول التطبيقات الواهنة وأنماط من الفضائيات باستخدام المجموعات المفتوحة

حيدر جبر علي
1 قسم الرياضيات، كلية العلوم، الجامعة المستنصرية، بغداد، العراق .
2 مديرية تربية الرصافة الثالثة، وزارة التربية، بغداد، العراق.

المقدمة:
قدمنا صيغة ضعيفة من الدوال m-واهنة باستخدام المجموعة mXN -المفتوحة والتي هي الدالة mXN - الواهنة، وقدمنا مفاهيم جديدة للفضاءات غير المتصلة و الفضاءات غير متصلة كليا، العلاقة بينهما قد درست كذلك عرفنا صيغة جديدة من الدوال m-grey المترابطة ودالة m-grey المترابطة كلياً. تتضمن هذه الصيغة بعض الأمثلة والحقائق.

المصطلحات المفاهيمية: الفضاء غير المتصل – mXN -، الفضاء هاوسدورف – mXN -، المجموعة المفتوحة – mXN -، الدالة الواهنة – mXN -، الفضاء غير المتصل كليا – mN -، الدالة غير المتصل كليا – mN -.