Kinetic Studies of the Effect of pH on the Trypsin-Catalyzed Hydrolysis of N-α-benzyloxycarbonyl-L-lysine-p-nitroanilide: Mechanism of Trypsin Catalysis

J. Paul G. Malthouse*

Cite This: ACS Omega 2020, 5, 4915–4923

ABSTRACT: The pH dependence of the trypsin-catalyzed hydrolysis of N-α-benzyloxycarbonyl-L-lysine-p-nitroanilide has been studied at 25 °C. k_{cat}/K_M was maximal at alkaline pH values but decreased with decreasing pH. k_{cat}/K_M was dependent on free enzyme pKₐ values of 6.75 ± 0.09 and 4.10 ± 0.13, which were assigned to the ionization of the active site histidine-S7 and aspartate-189, respectively. Protonation of either group abolished catalytic activity. k_{cat} is shown to equal the acylation rate constant k_2 over the pH range studied. k_2 decreased on the protonation of two groups with pKₐ values of 4.81 ± 0.15 and 4.23 ± 0.19. We assign the pKₐ of 4.23 to the ionization of the aspartate-189 residue and the pKₐ of 4.81 to the oxyanion of the tetrahedral intermediate formed during acylation. We conclude that during acylation, breakdown of the catalytic tetrahedral intermediate is rate-limiting and that there is a strong interaction between the imidazolium ion of histidine-S7 and the oxyanion of the catalytic tetrahedral intermediate, which perturbs their pKₐ values. From the pH dependence of k_3, we conclude that deacylation depends on a pKₐ of 6.41 ± 0.22 and that the ionization of the carboxylate group of aspartate-189 does not have a significant effect on the rate of deacylation (k_3). A catalytic mechanism is proposed to explain the pH dependence of catalysis.

1. INTRODUCTION

Trypsin and trypsin-like serine proteases specifically catalyze the hydrolysis of peptide bonds involving the carbonyl carbon of the α-carboxylate group of the positively charged amino acid residues lysine or arginine. Trypsin is a serine protease involved in protein digestion. Due to its high specificity for positively charged amino acid residues trypsin is widely used for peptide sequencing in proteomics.1,2 Trypsin-like serine proteases are involved in a range of biological processes and diseases, e.g., the protease responsible for fibrinolyis3 and cancer progression.4,5 In this study, we utilize pH studies to investigate the catalytic mechanism of trypsin.

Catalysis by the serine proteases can be described by the minimal three-step kinetic mechanism (eq 1) below

$$E + S \overset{k_1}{\rightarrow} ES \overset{k_2}{\rightarrow} ES^+ \overset{k_3}{\rightarrow} E + P_2$$

where ES is the Michaelis complex and ES' is the acyl intermediate. K_2 is the dissociation constant of the Michaelis complex ($K_2 = k_{cat}/k_{cat} = [E][S]/[ES]$). k_2 and k_3 are the first-order rate constants for acylation and deacylation, respectively. Catalysis obeys the Michaelis–Menten equation (eq 2).

$$[P] = k_{cat}K_2/[E]_0/[S]_0 + K_M$$

where $[P]$ is the concentration of substrate (P), k_{cat} is the turnover number, and K_M is the Michaelis constant. The Michaelis parameters are complex assemblies of rate constants with $k_{cat} = k_2k_3/(k_2 + k_3)$ and $K_M = k_3/[k_{cat}]/(k_2 + k_3)$, and if $k_{cat} >> k_2$, then $K_M = k_3/[k_{cat}]/(k_2 + k_3)$. Therefore, the mechanistic significance of the pH dependence of these Michaelis parameters is often not clear. However, pioneering studies with chymotrypsin at pH 7.95 have shown that with ester substrates with good leaving groups (P₁), deacylation (k_3) is rate limiting and so

$$k_2 \gg k_3 \text{ and } k_{cat} = k_3 + K_M = K_s/k_2$$

while with amide and anilide substrates with poor leaving groups (P₁), acylation (k_2) can be rate limiting with

$$k_3 \gg k_2 \text{ and } k_{cat} = k_2 + K_M = K_s$$

Therefore, with highly reactive ester substrates, it should be possible to determine k_3 from k_{cat} values, while with less reactive amide or anilide substrates, it should be possible to determine k_2 and K_s values from k_{cat} and K_M, respectively.

At pH 2.66, the reaction of trypsin with the reactive ester substrate Z-lys-pnp was slow enough for both k_2 and k_3 to be measured and it was shown that acylation was much more rapid

Received: November 5, 2019
Accepted: February 14, 2020
Published: March 3, 2020

https://dx.doi.org/10.1021/acsomega.9b03750
ACS Omega 2020, 5, 4915–4923

© 2020 American Chemical Society
than deacylation \(\left(\frac{k_2}{k_3} = 27.6 \right) \). However, it was found that at higher pH values, the ratio \(\frac{k_2}{k_3} \) decreased and \(k_2 \) was not much greater than \(k_3 \). Therefore, it cannot be assumed that \(k_2 \) is always very much greater than \(k_3 \) with reactive ester substrates and so pH studies are essential if we are to fully understand the kinetics of catalysis at different pH values. The less reactive para-nitroanilide substrates are thought to be better models than the more reactive para-nitrophenol ester substrates for natural peptide substrates. However, a detailed kinetic analysis of the trypsin-catalyzed hydrolysis of the equivalent less reactive para-nitroanilide substrate Z-Lys-pna has not been carried out.

Therefore, in the present study a detailed study of the trypsin-catalyzed hydrolysis of the anilide substrate Z-Lys-pna has been undertaken. The effect of pH on the ratio \(\frac{k_2}{k_3} \) and on values of \(K_M \) and \(K_s \) has been quantified. Also, the effect of pH on \(k_m/K_M \) and on the rates of acylation \((k_2) \) and deacylation \((k_3) \) has been determined. From these studies, the pK_\alpha values affecting catalysis in the free enzyme as well as during acylation and deacylation have been determined. In any pH study, it is difficult to dismiss the possibility that ionizations outside the active site can also affect catalytic activity. However, in this study, there is no evidence of this and all observed ionizations are assigned to active site groups.

The mechanistic significance of these results are discussed and a catalytic mechanism is proposed, which explains the pH dependence of catalysis. The mechanistic proposals and their background are briefly summarized in the following paragraph.

Some earlier studies \(^{10-14} \) have suggested that the pK_\alpha of the catalytic histidine is decreased during acylation (pK_\alpha < 7), while more recent studies \(^{5-23} \) have suggested that the histidine pK_\alpha must be raised (pK_\alpha > 11) so that it can be an effective general base catalyst during acylation and that the pK_\alpha of the oxanyanion of

Figure 1. Determination of the catalytic parameters for the trypsin-catalyzed hydrolysis of Z-Lys-pna at different pH values. Initial rates (d[P]/dt) were fitted to eq 1 \((d[P]/dt = V_m \cdot [S_0]/(S_0 + K_M)) \). The pH, trypsin concentration, and the fitted values of \(V_m, V_m/K_M \) and \(K_M \) were: (A) pH 3.13, 83.5 μM, 0.0768 ± 0.0207 μM s\(^{-1}\), 2.22 ± 0.9 μs\(^{-1}\), 34.6 ± 10.5 mM; (B) pH 3.82, 25.6 μM, 0.388 ± 0.094 μM s\(^{-1}\), 15.8 ± 7.0 μs\(^{-1}\), 24.5 ± 9.2 mM; (C) pH 4.40, 4.68 μM, 0.444 ± 0.037 μM s\(^{-1}\), 32.3 ± 5.7 μs\(^{-1}\), 13.8 ± 2.1 mM; (D) pH 5.98, 0.39 μM, 0.344 ± 0.029 μM s\(^{-1}\), 52.8 ± 8.9 μs\(^{-1}\), 6.51 ± 0.95 mM; (E) pH 6.94, 0.427 μM, 0.202 ± 0.005 μM s\(^{-1}\), 395 ± 32 μs\(^{-1}\), 0.512 ± 0.039 mM; (F) pH 9.05, 0.379 μM, 0.182 ± 0.005 μM s\(^{-1}\), 463 ± 34 μs\(^{-1}\), 0.394 ± 0.027 mM.

ACS Omega 2020, 5, 4915−4923
https://dx.doi.org/10.1021/acsomega.9b03750
4916
the catalytic tetrahedral intermediate (THI) is lowered so that trypsin can be an effective enzyme at physiological pH values. In the present work, pK_a values of 4.8 and 4.2 were detected from the pH studies of the acylation step of catalysis (k_c in eq 1). The pK_a of 4.8 is assigned to the oxygenation of the catalytic tetrahedral intermediate formed during acylation and not to the pK_a of the catalytic histidine that is assigned a $pK_a > 11$ in ES and the tetrahedral intermediate. Aspartate-189 that binds the lower pHs (Figure 1).

2. RESULTS

2.1. Determination of the Catalytic Parameters k_{cat}, k_{cat}/K_M, and k_{cat}/K_M at Different pH Values. The Michaelis parameters k_{cat}, K_M, and k_{cat}/K_M for the trypsin-catalyzed hydrolysis of Z-Lys-pna were determined by computer-fitting the initial rate data obtained at a given pH to the hyperbolic form of the Michaelis–Menten equation ($\Delta[P]/\Delta t = V_{max}[S] / ([S] + K_M)$) using the method of Wilkinson.

Examples of the experimental data and the fitted lines are given in Figure 1. The trypsin concentrations were increased at lower pH values to compensate for the decreases in k_{cat} and k_{cat}/K_M. K_M values increased as the pH decreased; and so higher substrate concentrations were used for determining K_M values at lower pHs (Figure 1).

2.2. Effect of pH on k_{cat}/K_M for the Trypsin-Catalyzed Hydrolysis of Z-Lys-pna. k_{cat}/K_M values were determined by dividing V_{max}/K_M values by the enzyme concentration in the reaction mixture. k_{cat}/K_M values were dependent on the sequential ionization of two groups ($k_{cat}/K_M = (k_{cat}/K_M)_\text{max}/(1 + [H^+]/K_a + [H^+]^2/K_b)$): one with a pK_a of 6.75 ± 0.09 and the other pK_a is 4.10 ± 0.13 (Figure 2). The pH dependence of k_{cat}/K_M reflects ionizations in either the free enzyme or the free substrate. Previous studies with other substrates have detected similar free enzyme pK_a values of ~7 and ~4.9,25–30

2.3. Calculation of k_3 for the Trypsin-Catalyzed Hydrolysis of Z-Lys-pnp and Z-Lys-pna. The trypsin-catalyzed hydrolysis of both Z-Lys-pna and Z-Lys-pnp proceeds via a common acyl intermediate (Z-Lys-trypsin, ES' in eq 1 and structure d1 in Scheme 1). Therefore, both will have the same deacylation rate constant (k_d). Using pre-steady-state kinetics, the k_3 values for the trypsin-catalyzed hydrolysis of Z-Lys-pnp have been determined.23 Steady-state kinetics have been used to determine k_{cat} values for Z-Lys-pnp,25 $k_a = k_{cat}/(k_3 + k_d)$, and this equation can be rearranged to give the equation, $k_3 = k_{cat}/k_a = (k_3 - k_d)$. The experimental data was fitted to give the equation, $k_3 = k_{cat}/(1 + [H^+]/K_a + [H^+]^2/K_b)$, which has been used to calculate the k_3 values (line 1 in Figure 3A) for Z-Lys-pna and Z-Lys-pnp from the experimentally determined values of k_d and k_{cat} for Z-Lys-pnp.25 The experimentally determined values of k_d and k_{cat} for Z-Lys-pnp are given in Table 1. Therefore, k_{cat} values for the trypsin-catalyzed hydrolysis of Z-Lys-pna in the present work have been determined for Z-Lys-pna from pH 3.1–9.8 (Figure 3A, line 2). $k_{cat} = k_{cat}/(k_3 + k_d)$, which can be rearranged to give $k_3 = k_{cat}/k_a$. As k_3 is the same for both Z-Lys-pnp and Z-Lys-pna, we can use the fitted parameters obtained from the pH dependence of k_3 for Z-Lys-pnp to calculate the value of k_3 for Z-Lys-pna for each value of k_{cat} determined for Z-Lys-pna from pH 3.1–9.8. Therefore, as k_d and k_{cat} are known for Z-Lys-pna, k_3 values could be calculated for Z-Lys-pna. However, this calculation was not necessary to calculate k_3 because k_3 was 2–3 orders of magnitude greater than k_d (Figure 3B) and so within the experimental error (<2%) $k_{cat} = k_3$. Therefore, k_{cat} values for the trypsin-catalyzed hydrolysis of Z-Lys-pna can be assumed to equal k_3 (Figure 3A, line 2). Experimental k_{cat} data ($k_{cat} = k_3$) was fitted to the equation $k_{cat} = (k_{cat})_\text{max}/(1 + [H^+]^2/K_a + [H^+]^4/K_b)$ assuming k_3 was constant on the sequential ionization of two ionizing groups (line 2 in Figure 3A). We conclude that k_3 has a maximal value of 0.517 ± 0.014 s⁻¹ and is dependent on the sequential ionization of two ionizing groups (line 2 in Figure 3A) with pK_a values of 4.81 ± 0.15 and the 4.23 ± 0.19 (Table 1).

2.5. Effect of pH on the Ratio k_3/k_2 for the Trypsin-Catalyzed Hydrolysis of Z-Lys-pna. The fitted values of k_2 and k_3 (lines 1 and 2 in Figure 3A) were used to calculate the ratio of k_2/k_3 from pH 2.6 to 9.8 (Figure 3B). The ratio k_2/k_3 was dependent on pH having a minimal value of ~55 at pH 4.5 but reaching values of 1200 and 1080 at pH 2.6 and 9.8, respectively (Figure 3B). Therefore, for the trypsin-catalyzed hydrolysis of Z-Lys-pna, $k_3 \gg k_2$ from pH 2.6 to 9.8 and so k_2 is rate limiting for Z-Lys-pna and the expression for K_M ($K_M = K_M = k_{cat}/(k_3 + k_3)$) simplifies to $K_M = K_3$ from pH 2.6 to 9.8. Therefore, for Z-Lys-pna, K_M values are equal to K_3 values.

2.6. Determination of K_3 and its pH Dependence. Analyzing the K_M versus pH data for dependence on one pK_a (equation $K_M = K_{cat}/(1 + [H^+]^2/K_a)$ gives a minimum K_a value of 0.333 ± 0.025 mM and a maximum K_a value of 23.5 ± 1.9 mM, with a pK_a of 5.12 ± 0.17 (Figure 4A). For optimal accuracy when determining K_M using the Michaelis–Menten equation, substrate concentrations should ideally be in the range $K_M/5$ to $5 \times K_M$ to optimize accuracy. However, the maximum concentration of Z-Lys-pna was ~20 mM and so at low pHs, substrate concentrations were similar to the K_M values and therefore accurate K_M values could not be determined (Figure 4A). In contrast, the experimental data for k_{cat}/K_M (Figure 2) and k_{cat}/K_M (Figure 3) were both in good agreement with the fitted lines. This is because both k_{cat} and k_{cat}/K_M decrease rapidly and do not level off like K_M values to a fixed value. Consequently, k_{cat} and k_{cat}/K_M values cover a larger range.
of values than K_M values. The log plots of k_{cat}/K_M and k_{cat} will reflect two pK_a values, pK_{E1} and pK_{E2} for k_{cat}/K_M and pK_{E31} and pK_{E32} for k_{cat}. In contrast, a plot of K_M versus pH should give pK_a values of 4.2 and 4.8 (Table 1). However, the experimental K_M data (Figure 4A) is not good enough to resolve these two pK_a values and determine the pH-independent values of K_a.

To determine the pH-independent K_a values ($K_{a1}, K_{a2},$ and K_{a3} in Scheme 1), K_a values ($K_a = K_{aM}$) were fitted (Figure 4B) to the equation for a doubly ionizing system ($K_{a(obs)} = K_{a1}(H^+)^2 + K_{a2}(H^+)^3 + K_{a3}(H^+)^4 + K_{a4}(H^+)^5 + K_{a5}$), and this gave three pH-independent K_a values of 24 mM (K_{a1}), 32.2 mM (K_{a2}), and 0.373 mM (K_{a3}) (Scheme 1 and Table 1). The fitted values of pK_a and pK_b determined from the pH dependence of K_a had values of 4.23 and 4.82, in good agreement with the pK_a values obtained from the pH dependence of K_a (Table 1). This is expected as the pH dependence of K_a (or K_{aM}) like k_{cat} reflects ionizations within the ES complex or THI intermediate (Scheme 1). The pH dependence of $1/K_a$ like that of k_{cat}/K_M reflects ionizations in the free enzyme. Fitting the $1/K_a$ values (Figure 4C) to a doubly ionizing system gave pK_a values of 6.75 and 4.1, which, as expected, were the same as observed for the pH dependence of k_{cat}/K_M (Table 1), which also reflects ionizations in the free enzyme. The agreement of the pK_a values determined from the pH dependence of K_a and $1/K_a$ with the pK_a values obtained from the pH dependence of k_{cat} and k_{cat}/K_M respectively, confirms that this approach should allow the determination of estimates of the pH-independent K_a values K_{a1}, K_{a2} and K_{a3} that are consistent with the experimentally determined values of k_{cat} and k_{cat}/K_M used to calculate the K_a values used. This is supported by the fact that the pH-independent K_a values K_{a1}, K_{a2} and K_{a3} obtained from the pH dependence of K_a and $1/K_a$ were essentially the same (Table 1).

3. DISCUSSION

The pH dependence of k_{cat}/K_M showed that the active group was A^\ddagger in eq 2 and that it was inhibited by protonation to form AH^+ and AH_2 (eq 2)

$$\text{AH}_2 = \text{AH}^+ + \text{H}^+$$

The free enzyme pK_a values 6.75 ± 0.09 and pK_{b1} = 4.10 ± 0.13 obtained from the pH dependence of k_{cat}/K_M and $1/K_a$ (Table 1) have been attributed to the trypsin residues histidine-57 and aspartate-189, respectively (9,25–30). In both cases, it is the ionized form of these groups that are catalytically active (structure a1 in Scheme 1). Histidine-57 is part of the catalytic triad and its ionized form acts as a general base catalyst during catalysis (b1 in Scheme 1). Once it is protonated (AH+, eq 2), it can no longer act as a general base catalyst for tetrahedral intermediate formation (b1 in Scheme 1) and so catalysis is inhibited. However, if the histidine pK_a is raised in the ES complex to a value >11 (structures b1 and b2 in Scheme 1) so that it can be an effective general base catalyst for tetrahedral intermediate formation (structures b1 to c1 in Scheme 1), then this pK_a will not be observed in our pH studies from pH 3–10. Protonation of histidine-57 in the free enzyme (structures a1 to a2 in Scheme 1) is also known to decrease substrate and inhibitor binding and so this should also contribute to substrate catalysis being inhibited with a pK_a of 6.75 (31–32).

The negatively charged side chain carboxylate group of the aspartate-189 residue is located at the bottom of the S1 specificity site where it can form an ion pair with the positively charged side chains of lysine or arginine substrates. pK_a values of 7.1 and 4.55 have been obtained from the pH dependence of k_{cat} for the p-nitrophenol substrate Z-Lys-pnp with trypsin. With the neutral substrate Z-Ala-pnp, no substrate interaction with aspartate-189 is expected and so the fact that only one pK_a
value of 6.9 was obtained from the pH dependence of k_{cat}/K_M with this neutral substrate, which confirms the assignment of pK_a value of ~ 4 to aspartate-189 in the free trypsin. Likewise, the fact that pH studies of k_{cat} showed that the pK_a of ~ 4 was detected with the lysine substrate Z-Lys-pnp but not with the neutral substrate Z-Ala-pnp also confirms the assignment of pK_a of ~ 4 to aspartate-189 in the trypsin ES complex with Z-Lys-pnp. Therefore, the pK_a values of 4.1 and 4.23 obtained from the pH dependence of k_{cat}/K_M and k_1, respectively (Table 1), are consistent with the assignment of aspartate-189 to activate trypsin and has a primary role of lysine and arginine substrates binding to aspartate-189 and the positively charged side chains of lysine or arginine substrates mainly used to activate trypsin.39 Therefore, these results show that the binding energy between the carboxylate group of aspartate-189 and the positively charged side chains of lysine or arginine substrates is mainly used to activate trypsin and has a minimal effect on K_c. This explains why protonation of aspartate-189 ($pK_a, 4.1-4.2$) has such a small effect on K_c (42.4-24.0 mM, Table 1) and yet such a large effect on k_{cat}, resulting in the stoichiometric inhibition of trypsin (line 2 in Figure 3A).

With the positively charged Z-Lys-pna substrate, an additional pK_a of 4.81 was obtained from the pH dependence of the acylation rate constant k_1 (eq 1). Protonation of this group led to an 86-fold increase in K_b (eq 3). A similar 86-fold increase in K_b was observed when histidine-57 was protonated in the free enzyme with a pK_a of 6.75 (Table 1), which would appear to suggest that the pK_a of histidine-57 changes from 6.75 in the free enzyme to 4.82 in the tetrahedral intermediate adduct (pK_athi in Scheme 1) and that the 86-fold decrease in K_b is due to binding energy being used to lower the pK_a of histidine-57 from 6.75 to 4.82. It also shows that the protonation state of histidine-57 has a major role in substrate binding. An 86-fold increase in K_b below pH 7 was also observed with N-benzoxycarbonyl-L-arginine-p-toluidide and trypsin,40 but in this case, the decrease in histidine pK_a was much smaller ($pK_a, 6.38$). Larger 13-fold increases in K_b values have also been observed when histidine-57 in chymotrypsin is protonated with hydrazide substrates.41 It has been suggested

Table 1. Catalytic Parameters for the Trypsin-Catalyzed Hydrolysis of Z-Lys-pna

parameter	k_{cat}/M$^{-1}$s$^{-1}$	pK_a	pK_b	K_b	K_{cat}	K_{cat}^{ES}
k_{cat}	1390 ± 72	6.75 ± 0.09	4.10 ± 0.13	24.0	32.2	0.373
k_1 (s$^{-1}$)$^{\text{eq}}$	0.517 ± 0.014	4.23 ± 0.19	4.81 ± 0.15	24.0	32.2	0.373
k_2 (s$^{-1}$)$^{\text{eq}}$	561 ± 104	6.41 ± 0.22	6.41 ± 0.22	24.0	32.2	0.373
K_b (mM)$^{\text{eq}}$	4.23	4.82	6.75	24.0	32.2	0.373
$1/K_b$ (mM$^{-1}$)$^{\text{eq}}$	4.10	6.75	24.0	32.4	0.372	

*Errors are standard errors of the fitted parameters. $^{\text{eq}}$The K_b values used to determine pK_a, pK_b, K_{cat}, K_{cat}^{ES}, and K_{cat}^{thi} were calculated from the fitted values of k_{cat} and k_{cat}/K_{cat} (see text for details).
The solid line was calculated using the equation for k (circles) were calculated at 0.1 pH intervals by dividing the using the equation (1/\(K_s\)) values determined by fitting initial rate values to the Michaelis–Menten equation, as described in the Experimental Section. The solid line was calculated using the equation $K_{\text{obs}} = (K_a/[H^+]) + K_{\text{obs}}/(1 + [H^+]/K_a)$ and the fitted values of $K_{\text{obs}} = 23.5 \pm 1.9$ mM, $K_a = 0.333 \pm 0.025$ mM, and $pK_a = 5.12 \pm 0.17$. (B) K_a values (solid circles) were calculated at 0.1 pH intervals by dividing the fitted values for k_a (Figure 3A) by the fitted values for k_{cat}/K_{cat} (Figure 2), $k_{cat}/K_{cat} = k_a/K_a$. The solid line was calculated using the equation $K_{\text{obs}} = (K_a/[H^+]) + K_{\text{obs}}/[1 + [H^+]/K_a]$ and the fitted values $K_{\text{obs}} = 24.0$ mM, $K_a = 32.4$ mM, $K_{\text{obs}} = 0.372$ mM, $pK_a = 6.75$, $pK_b = 4.10$. that these decreases in binding were due to the positively charged histidine-57 interacting with the leaving group amine. As expected with trypsin and neutral p-nitrophenol substrates that do not have a leaving group amine, there is no increase in K_a when histidine-57 is protonated. However, with chymotrypsin, decreases in inhibitor binding at low pH have also been observed with 2-p-toluidinylaphthalene-6-sulfonate, flavin, and peptide-derived glyoxal inhibitors. This suggests that a neutral imidazol group of the histidine-57 residue is required for optimal binding of these substrates and inhibitors. There is a considerable body of evidence that shows that the serine proteases stabilize zwitterionic tetrahedral adducts that mimic the catalytic zwitterionic tetrahedral intermediate. These zwitterionic tetrahedral adducts refer to the negatively charged oxyanion of the tetrahedral intermediate and the positively charged imidazolium ion of histidine-57 and ignore all other charged groups on the enzyme. In these zwitterionic tetrahedral adducts, the pK_a of the majority of histidine-57 (analogous to pK_{THI} in Scheme 1) is raised16,18,20,22,42 and the pK_b (analogous to pK_{THII} in Scheme 1) of the majority of the oxyanion is lowered.16,18,19,22,43,44 Specific peptide-derived glyoxal inhibitors are tightly bound as neutral zwitterionic tetrahedral complexes (structure c1 in Scheme 1), which are thought to mimic the catalytic tetrahedral intermediate.22,43,45 In these zwitterionic glyoxal complexes, 1H NMR and ^{13}C NMR have been used to show that the pK_a of histidine-57 is >11 and the oxyanion pK_a is ~4.22,44 The increase in K_v values at low pH was dependent on a pK_v of ~4, and this pK_v was assigned to protonation of the oxyanion in the glyoxal-chymotrypsin tetrahedral adduct.22 Therefore, if the breakdown of the zwitterionic tetrahedral intermediate in the acylation step of the trypsin-catalyzed hydrolysis of Z-Lys-pna (species c1 in Scheme 1) is rate-limiting, then the pK_b of 4.81 (Table 1) in trypsin catalysis should be assigned to protonation of the oxyanion in the catalytic zwitterionic tetrahedral intermediate (pK_{THII} in Scheme 1). It also shows that tight binding of inhibitors and substrates is possible when histidine-57 is protonated provided the oxyanion is also present to neutralize the charge on the imidazolium ion of histidine-57 (ImH+ O−). If the oxyanion is protonated (ImH+ OH−), the charge on the protonated imidazolium ion will no longer be neutralized by the oxyanion and so the positively charged imidazolium ion of histidine-57 will inhibit binding. Therefore, K_a values will increase as the oxyanion is protonated, as observed with peptide glyoxal inhibitors that bind to chymotrypsin as zwitterionic tetrahedral adducts mimicking the catalytic tetrahedral intermediate.22 This also explains why K_a values with trypsin increase by essentially the same amount when histidine-57 is protonated (1/K_a in Table 1) in the free enzyme (a1 to a2 in Scheme 1) and also in the acylation complex (K_a in Table 1) when the oxyanion of the zwitterionic tetrahedral intermediate is protonated (structures c1 to c2 in Scheme 1).

It is generally accepted that the nucleophilicity of the hydroxyl group of serine-195 is enhanced by the imidazole group of histidine-57 acting as a general base catalyst (structure b1 in Scheme 1). It has been argued that as the pK_b of the serine hydroxyl group is ~15,15,16,22,23,25,42 then for general base catalysis by histidine to be effective (structure b1 in Scheme 1), its pK_b should raised to a similar value of ~15 on forming the enzyme substrate complex (ES in Scheme 1)15,16,22,23 and not lowered to a value <7.

Earlier studies on the pH dependence of chymotrypsin catalysis appeared to contradict these results as it appeared that
the pK_a of histidine-57 had been decreased to a value <7 within the ES complex. The reassignment of this pK_a to the oxyanion in the present work resolves this contradiction. As protonation of the oxyanion inhibits catalysis, it is essential that the oxyanion pK_a is reduced to ensure the enzyme is catalytically active at physiological pH values. This therefore explains why the serine proteases have evolved to lower the oxyanion pK_a so effectively.

When an interaction occurs between two ionizing groups, four species would be formed with four microscopic pK_a values (c_1, c_2, c_3, c_4 in Scheme 1). So, for example, if in Scheme 1 the concentrations of all species (c_1, c_2, c_3, c_4 in Scheme 1) are equal, then 50% of histidine-57 (pK_THI in Scheme 1) and 50% of the oxyanion (pK_THII in Scheme 1) will both have pK_a values of 4.8. Likewise, 50% of histidine-57 (pK_THII in Scheme 1) and 50% of the oxyanion (pK_THII in Scheme 1) will have pK_a values of >11. So this interaction could explain how histidine-57 could have microscopic pK_a values of both ~4.8 (pK_THII) and >11 (pK_THII) in the THI (Scheme 1). Likewise, the oxyanion could have microscopic pK_a values of ~4.8 (pK_THII) and >11 (pK_THII) in the THI (Scheme 1). However, the serine proteases preferentially stabilize zwitterionic tetrahedral intermediates (structure c1 in Scheme 1) and so it is expected that at least 99% of the oxyanion and the imidazolium ion of histidine-57 will have pK_a values of ~4.8 and >11, respectively.

The deacylation rate constant (k_d in eq 1) was dependent on a singly ionizing group (AH = A^-) with a pK_a of 6.4 ± 0.22, which we assign to histidine-57. Therefore, we can conclude that the ionization of aspartate-189 does not appear to have a significant effect on the pH dependence of deacylation.

3.1. Mechanism for the pH Dependence of the Trypsin-Catalyzed Hydrolysis of Z-Lys-pna

The proposed mechanism is summarized in Scheme 1. In the free enzyme (a1, a2, and a3 in Scheme 1), the imidazole group of histidine-57 has a pK_a of 6.75 and the carboxy group of aspartate-189 (Scheme 1) that binds the side chains of the lysine or arginine residues of substrates or inhibitors has a pK_a of 4.1. Binding of the substrate to form the enzyme-substrate complex (ES in Scheme 1) causes a strong interaction between the carboxy group of aspartate-102 of the catalytic triad and the imidazolium group of histidine-57 (structure c1 in Scheme 1) and so it is expected that at least 99% of the oxyanion and the imidazolium ion of histidine-57 will have pK_a values of ~4.8 and >11, respectively.

The deacylation rate constant (k_d in eq 1) was dependent on a singly ionizing group (AH = A^-) with a pK_a of 6.4 ± 0.22, which we assign to histidine-57. Therefore, we can conclude that the ionization of aspartate-189 does not appear to have a significant effect on the pH dependence of deacylation.

4. EXPERIMENTAL SECTION

4.1. Materials

Trypsin (type III, 2X crystalized, salt free from bovine pancreas) and all other reagents were obtained from Sigma-Aldrich Chemical Co., Gillingham, Dorset, U.K. Trypsin was 72% fully active by active site titration with p-nitrophenyl-p-guanidobenzoate, as described by Malthouse et al. Z-Lys-pna was synthesized as described by Mackenzie et al.

4.2. Kinetic Studies

The trypsin-catalyzed hydrolysis of Z-Lys-pna was studied at 25 °C in 3 mL volumes and 0.1 M ionic strength buffers. The buffers used were pH 3.1–4.38 (sodium formate), pH 4.40–5.49 (sodium acetate), 5.98–7.72 (potassium phosphate), 7.76–8.68 (Tris–HCl), pH 9.05 (sodium borate), and pH 9.76 (sodium carbonate). pH measurements were made either with a Radiometer combination electrode (GK 2401C) or by using a Beckman combination electrode model number 39522. Stock solutions of Z-Lys-pna were made up in 1 mM HCl (maximum solubility ~18 mM) and quantified using ε_{314} = 13 900 M\(^{-1}\)cm\(^{-1}\), as described by Mackenzie et al. Primary stock solutions of ~1 mM fully active trypsin were prepared in 1 mM HCl, and this solution was diluted in 1 mM HCl to prepare appropriate concentrations for the pH studies. A typical assay contained 1 mL of buffer (I = 0.3 M), 1.9–x mL of 1 mM HCl, and x mL of substrate in 1 mM HCl. Different substrate concentrations were obtained by adding different amounts of the stock substrate (x mL). Catalysis was initiated by adding 0.1 mL trypsin in 1 mM HCl. The concentration of trypsin was kept constant when determining the catalytic parameters at a given pH. However, fully active enzyme concentrations were increased (0.35–83.6 μM) as the pH was decreased to help compensate for the decrease in k_d and k_2/K_M as the pH decreased. The fully active trypsin concentrations used in the assays were 11–84 μM (pH 3.1–5.0), 3.7–4.4 μM (pH 4.4–5.5), and 0.35–0.39 μM (pH 6.0–9).
9.8. Initial rates of hydrolysis of Z-Lys-pna were followed by determining the amount of \(p \)-nitroaniline (\(E_{410} = 8800 \text{ M}^{-1} \cdot \text{cm}^{-1} \)) released over a 5–15 min period. It was ensured that there was always at least a 15-fold excess of the substrate over enzyme when initial rates were determined. \(k_{\text{cat}}/K_M \text{ data at pHs 3.56 and 4.38 were determined from initial rates obtained when } S_0 \ll K_M. \text{ The effect of pH on the catalytic parameters was determined by fitting experimental data to the appropriate function as described by Cleland.}^{33}

ASSOCIATED CONTENT

Accession Codes
The UniProtKB accession ID for bovine trypsin is P00760.

AUTHOR INFORMATION

Corresponding Author
J. Paul G. Malthouse — School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, Conway Institute, University College Dublin, Dublin 4, Ireland; orcid.org/0000-0002-8372-6549;
Email: J.Paul.G.Malthouse@ucd.ie

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.9b03750

Notes
The author declares no competing financial interest.

ACKNOWLEDGMENTS
The author is indebted to Dr. N.E. Mackenzie who synthesized and kindly provided the Z-Lys-pna used in these studies. This work was supported by University College Dublin and the Science and Engineering Research Council (U.K.).

ABBREVIATIONS
Z, benzyloxy carbonyl; pna, \(p \)-nitroanilide; pnp, \(p \)-nitrophenyl ester

REFERENCES

(1) Dapic, I.; Baljeu-Neuman, L.; Uwugiaren, N.; Kers, J.; Goodlett, D. R.; Corthals, G. L. Proteome analysis of tissues by mass spectrometry. *Mass Spectrom. Rev.* 2019, 38, 403–441.
(2) Yang, H.; Li, Y.; C.; Zhao, M. Z.; Wu, F. L.; Wang, X.; Xiao, W. D.; Wang, Y. H.; Zhang, J. L.; Wang, F. Q.; Xu, F.; Zeng, W. F.; Overall, C. M.; He, S. M.; Chi, H.; Xu, P. Precision De Novo Peptide Sequencing Using Mirror Proteases of Ac-LysArgNase and Trypsin for Large-scale Proteomics. *Mol. Cell. Proteomics* 2019, 18, 773–785.
(3) Jain, S.; Acharya, S. S. Inherited disorders of the fibrinolytic pathway. *Transfus. Apheresis Sci.* 2019, 58, 572–577.
(4) Pusina, S. Correlation of Serum Levels of Urokinase Activation Plasminogen (uPA) and Its Inhibitor (PAI-1) with Hormonal and Transfus. Apheresis Sci. pathway.
(5) Uritsky, N.; Shokhen, M.; Albeck, A. Stepwise Versus Concerted Mechanisms in General-Base Catalysis by Serine Proteases. *Angew. Chem., Int. Ed.* 2016, 55, 1680–1684.
(6) Wilkinson, G. N. Statistical estimations in enzyme kinetics. *Biochem. J.* 1961, 80, 324–332.
(7) Ascenzi, P.; Menegatti, E.; Bortolotti, F.; Guarneri, M.; Antonini, E. Steady-state and pre-steady-state kinetics of the trypsin-catalysed hydrolysis of alpha-CBZ-L-lysine-\(p \)-nitrophenyl ester. *Biochim. Biophys. Acta* 1981, 658, 158–164.
(8) Malthouse, J. P. G.; Scott, A. I. Cryoenzymology of trypsin. A detailed kinetic study of the trypsin-catalysed hydrolysis of \(N \)-alpha-benzyloxy carbonyl-L-lysine \(p \)-nitrophenyl ester at low temperatures. *Biochem. J.* 1983, 215, 555–563.
(9) Parker, L.; Wang, J. H. On the mechanism of action at the acylation step of the alpha-chymotrypsin-catalysed hydrolysis of anilides. *J. Biol. Chem.* 1968, 243, 3729–3734.
(10) Inagami, T.; Patchornik, A.; York, S. S. Participation of an acidic group in the chymotrypsin catalysis. *J. Biochem.* 1969, 65, 809–819.
(11) Caplow, M. Chymotrypsin catalysis. Evidence for a new intermediate. *J. Am. Chem. Soc.* 1969, 91, 3639–3645.
(12) Fersht, A. R.; Requena, Y. Mechanism of the alpha-chymotrypsin-catalysed hydrolysis of amides. pH dependence of \(k_t \) and \(K_M \). Kinetic detection of an intermediate. *J. Am. Chem. Soc.* 1971, 93, 7079–7087.
(13) Zeeberg, B.; Caswell, M.; Caplow, M. Concerning a reported change in rate-determining step in chymotrypsin catalysis. *J. Am. Chem. Soc.* 1973, 95, 2734–2735.
(14) Blow, D. M. Structure and Mechanism of Chymotrypsin. *Acc. Chem. Res.* 1976, 9, 145–152.
(15) Finucane, M. D.; Malthouse, J. P. G. A study of the stabilization of tetrahedral adducts by trypsin and delta-chymotrypsin. *Biochem. J.* 1992, 286, 889–900.
(16) Hedstrom, L. Serine Protease Mechanism and Specificity. *Chem. Rev.* 2002, 102, 4501–4523.
(17) Liang, T. C.; Abeles, R. H. Complex of \(\alpha \)-Chymotrypsin and \(N \)-Acetyl-L-leucyl-L-phenylalanyl Trifluoromethyl Ketone: Structural Studies with NMR Spectroscopy. *Biochemistry* 1987, 26, 7603–7608.
(18) Malthouse, J. P. G.; Primrose, W. U.; Mackenzie, N. E.; Scott, A. I. 13C NMR Study of the Ionizations within a Trypsin-Chloromethyl Ketone Inhibitor Complex. *Biochemistry* 1985, 24, 3478–3487.
(19) O’Connell, T. P.; Malthouse, J. P. G. Determination of the ionization state of the active-site histidine in a subtilisin-(chloromethane inhibitor) derivative by 13C-NMR. *Biochem. J.* 1996, 317, 35–40.
(20) Primrose, W. U.; Scott, A. I.; Mackenzie, N. E.; Malthouse, J. P. G. A 13C-NMR investigation of ionizations within a trypsin-inhibitor complex. Evidence that the pKa of histidine-S7 is raised by interaction with the hemiketal oxygen. *Biochem. J.* 1985, 231, 677–682.
(21) Spink, E.; Cosgrove, S.; Rogers, L.; Hewage, C.; Malthouse, J. P. G. 1H NMR studies of ionizations and hydrogen bonding in chymotrypsin-glyoxal inhibitor complexes. *J. Biol. Chem.* 2007, 282, 7852–7861.
(22) Uritsky, N.; Shokhen, M.; Albeck, A. Stepwise Versus Concerted Mechanisms in General-Base Catalysis by Serine Proteases. *Angew. Chem., Int. Ed.* 2016, 55, 1680–1684.
(23) Wilkinson, G. N. Statistical estimations in enzyme kinetics. *Biochem. J.* 1961, 80, 324–332.
(24) Antonini, E.; Ascenzi, P. The mechanism of trypsin catalysis at low pH. Proposal for a structural model. *J. Biol. Chem.* 1981, 256, 12449–12455.
(25) Kasserra, H. P.; Laidler, K. J. Mechanisms of Action of Trypsin and Chymotrypsin. *Can. J. Chem.* 1969, 47, 4031–4039.
(26) Kasserra, H. P.; Laidler, K. J. pH Effects in Trypsin Catalysis. *Can. J. Chem.* 1969, 47, 4021–4029.
(27) Spomer, W. E.; Wootton, J. F. The hydrolysis of alpha-N-benzyloxyarginine ethyl ester at low pH. *Biochemistry* 1965, 4, 1086–1091.
(28) Stewart, J. A.; Dobson, J. E. Trypsin-catalysed hydrolysis of \(N \)-benzoyl-L-arginine ethyl ester at low pH. *Biochemistry* 1965, 4, 1086–1091.
(29) Stewart, J. A.; Dobson, J. E.; Lee, H. S. Evidence for a Functional Carboxyl Group in Trypsin and Chymotrypsin. *J. Am. Chem. Soc.* 1963, 85, 1537–1538.
(31) Bruylants, G.; Wintjens, R.; Loose, Y.; Redfield, C.; Baetik, K. Protonation linked equilibria and apparent affinity constants: the thermodynamic profile of the α-chymotrypsin-proflavin interaction. *Eur. Biophys. J.* 2007, 37, 11–18.

(32) McClure, W. O.; Edelman, G. M. Fluorescent probes for conformational states of proteins. II. The binding of 2-p-toluindinyl-naphthalene-6-sulfonate to alpha-chymotrypsin. *Biochemistry* 1967, 6, 559–566.

(33) Ingami, T.; Murachi, T. The Mechanism of the Specificity of Trypsin Catalysis. 3. Activation of the Catalytic Site of Trypsin by Alkylammonium Ions in the Hydrolysis of Acetylglucine Ethyl Ester. *J. Biol. Chem.* 1964, 239, 1395–1401.

(34) Ingami, T.; York, S. S. Effect of alkylnitrides and alkylamines on trypsin catalysis. *Biochemistry* 1968, 7, 4045–4052.

(35) Bode, W.; Schwager, P. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. *J. Mol. Biol.* 1975, 98, 693–717.

(36) Chambers, J. L.; Stroud, R. M. The Accuracy of Refined Protein Structures: Comparison of Two Independently Refined Models of Bovine Trypsin. *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.* 1979, 35, 1861–1874.

(37) Krieger, M.; Kay, L. M.; Stroud, R. M. Structure and specific binding of trypsin: comparison of inhibited derivatives and a model for substrate binding. *J. Mol. Biol.* 1974, 83, 219–230.

(38) Szabo, E.; Bocskei, Z.; Naray-Szabo, G.; Graf, L. The three-dimensional structure of Asp189Ser trypsin provides evidence for an inherent structural plasticity of the protease. *Eur. J. Biochem.* 1999, 263, 20–26.

(39) Graf, L.; Jancso, A.; Szigathy, L.; Hegyi, G.; Pinter, K.; Naray Szabo, G.; Hepp, J.; Medzihradsky, K.; Rutter, W. J. Electrostatic complementarity within the substrate-binding pocket of trypsin. *Proc. Natl. Acad. Sci. U.S.A.* 1988, 85, 4961–4965.

(40) Ingami, T. A kinetic study of the trypsin catalyzed hydrolysis of a specific anilide substrate. *J. Biochem.* 1969, 66, 277–279.

(41) Lucas, E. C.; Caplow, M.; Bush, K. J. Chymotrypsin catalysis. Evidence for a new intermediate. *J. Am. Chem. Soc.* 1973, 95, 2670–2673.

(42) Shokhen, M.; Khazanov, N.; Albeck, A. The cooperative effect between active site ionized groups and water desolvation controls the alteration of acid/base catalysis in serine proteases. *ChemBioChem* 2007, 8, 1416–1421.

(43) Djurdjevic-Pahl, A.; Hewage, C.; Malthouse, J. P. G. A 13C-NMR study of the inhibition of delta-chymotrypsin by a tripeptide-glyoxal inhibitor. *Biochem. J.* 2002, 362, 339–347.

(44) O’Sullivan, D. B.; O’Connell, T. P.; Mahon, M. M.; Koenig, A.; Milne, J. J.; Fitzpatrick, T. P.; Malthouse, J. P. G. 13C-NMR Study of How the Oxyanion pKa Values of Subtilisin and Chymotrypsin Tetrahedral Adducts Are Affected by Different Amino Acid Residues. Binding in Enzymes Subsites S1, S2. *Biochemistry* 1999, 38, 6187–6194.

(45) Spink, E.; Hewage, C.; Malthouse, J. P. G. Determination of the structure of tetrahedral transition state analogues bound at the active site of chymotrypsin using 18O and 2H isotope shifts in the 13C NMR spectra of glyoxal inhibitors. *Biochemistry* 2007, 46, 12868–12874.

(46) Bruce, T. C.; Fife, T. H.; Bruno, J. J.; Brandon, N. E. Hydroxyl group catalysis. II. The reactivity of the hydroxyl group of serine. The nucleophilicity of alcohols and the ease of hydrolysis of their acetyl esters as related to their pKa. *Biochemistry* 1962, 1, 7–12.

(47) Lin, J.; Cassidy, C. S.; Frey, P. A. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin. *Biochemistry* 1998, 37, 11940–11948.

(48) Zhou, Y. Z.; Zhang, Y. K. Serine protease acylation proceeds with a subtle re-orientation of the histidine ring at the tetrahedral intermediate. *Chem. Commun.* 2011, 47, 1577–1579.

(49) Cleary, J. A.; Doherty, W.; Evans, P.; Malthouse, J. P. Hemiacetal stabilization in a chymotrypsin inhibitor complex and the reactivity of the hydroxyl group of the catalytic serine residue of chymotrypsin. *Biochim. Biophys. Acta* 2014, 1844, 1119–1127.

(50) Chase, T., Jr.; Shaw, E. p-Nitrophenyl-p’-guanidinobenzoate HCl: a new active site titrant for trypsin. *Biochem. Biophys. Res. Commun.* 1967, 29, 508–514.

(51) Mackenzie, N. E.; Malthouse, J. P. G.; Scott, A. I. Chemical synthesis and papain-catalysed hydrolysis of N-alpha-benzoxycarbonyl-L-lysine p-nitroanilide. *Biochem. J.* 1985, 226, 601–606.

(52) Long, C. N. H. *Biochemists’ Handbook*; Van Nostrand: Princeton, NJ, 1961.

(53) Cleland, W. W. Statistical analysis of enzyme kinetic data. *Methods Enzymol.* 1979, 63, 103–138.