Forward Jet Production in DIS

N. Vlasov

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

DPG – Tagung 28th March 2006

OUTLINE:

- QCD Dynamics at Low x
- MC Modes and QCD Calculations
- ZEUS Detector and FPC Component
- Inclusive Forward Jet Measurement with ZEUS data 98-2000
- Conclusions
QCD Dynamics at Low x

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) is expected to break down at low x and Q^2 region

BFKL (Balitsky-Fadin-Kuraev-Lipatov) can be applicable at low x

CCFM (Ciafaloni-Catani-Fiorani-Marchesini) describes an evolution in both Q^2 and x and approaches BFKL at low x and DGLAP at high Q^2; angular ordering
MC Models and QCD Calculations

• **DISENT**: Fixed order QCD partonic cross section, on mass shell ME + DGLAP

• **LEPTO**: LO ME+PS , (DGLAP)
 - Strong ordering in k_T

• **ARIADNE**: LO, an implementation of Color Dipole Model (CDM)
 - Independently radiating dipoles formed by quarks and emitted gluons
 - Random walk in k_T like in BFKL

• **CASCADE**: LO off mass shell ME + parton shower based on k_T factorized CCFM evolution model
 - Angular ordering in parton emission
 - Unintegrated gluon densities fits *J2003 set 1* (with new treatment of soft region) and *J2003 set 2* (fit form includes non singular terms)
Inclusive Event Selection

Jet carries a large fraction of longitudinal momentum of proton in order to maximise phase space for BFKL evolution.

DGLAP type of evolution is suppressed, leaving no room for strong ordering in transverse momenta.

CCFM incorporates both types of evolution.

Forward jet selection:
- inclusive k_T -algorithm; mode 3212 in Breit frame; CAL and FPC cells; position of CAL cells corrected with imbalance
- Forward jet cut
 - $E_{jet} > 33$ GeV ($x_{jet} > 33/920$)
- BFKL-cut
 - $0.5 < E_{T, jet}/Q^2 < 2$
 - $E_{T, jet} > 5$ GeV
 - safe for the jet algorithm used
- $2 < \eta_{jet} < 4.3$, forward region

DIS event selection:
- $0.04 < y < 0.7$
- $20 < Q^2 < 100$ GeV2
- $0.0004 < x < 0.005$
Di-Jets Plus Forward Jet Selection

- In addition to the forward jet, at least two more jets are found. Out of these, the two with the highest transverse momenta are chosen.

- For the ‘2+forward jet’ sample the $E_{T,\text{jet}}$ is required: $E_{T,\text{jet}} > 5$ GeV for all 3 jets; in this case evolution with strong k_t-ordering is not favoured.

- The other cuts on the forward jet are kept the same as specified before, except that no $0.5 < \frac{E_{T,\text{jet}}^2}{Q^2} < 2$ cut applied.

- The two additional jets are required to lie in pseudorapidity:
 \[\eta_{\text{jet}1} < \eta_{\text{jet}1} < \eta_{fwd-jet} \]
 \[-1.5 < \eta_{\text{jet}1}, \eta_{\text{jet}2} < 4.3 \]

The cross sections are measured for all ‘2+forward jet’ events and versus $\Delta \eta_2$ in two intervals of $\Delta \eta_1$:

- $\Delta \eta_1 < 1$, favours small invariant masses of the di-jet system and thereby small values of x_g - phase space for evolution in x (BFKL)
- $\Delta \eta_1 > 1$
Forward Jet Measurement with Forward Plug Calorimeter (FPC)

- Forward Plug Calorimeter in the 20 x 20 cm² beam hole of FCAL for 98-2000
- Lead-scintillator sandwich with 60 EMC and 16 HAC cells
- Extend calorimeter acceptance by about 1 unit in pseudorapidity to $\eta \leq 5$
Forward Jets with $\eta^{\text{JET}} > 2.5$

- Only EMC cells are drawn
- Reconstructed jet position is shifted into direction of jet energy deposit in FCAL
- Cell size in FCAL and FPC is different
- Large difference in P_T for cells in 1st and 2nd rings seems to make a shift into a lower reconstructed η^{JET} values
- An access of reconstructed jets around the range $2.8 < \eta^{\text{rec}} < 3.4$ was cleared with a “Fiducial” cut
Differential Cross Sections

- Systematic errors generally small except the bins where corrections with ARIADNE and LEPTO differ

- Systematic checks including CAL energy variations +/- 3% and FPC energy scale variations +/- 10% in simulations drawn separately

- CDM (ARIADNE) gives a good description of data except of very forward η

- CASCADE set1 closer to data as set2. However both CASCADE sets do not reproduce shapes of cross sections
Comparison with DISENT

- Average hadronisation correction obtained with LEPTO and ARIADNE MC
- Proton pdf CTEQ5
- NLO predictions lower than data by a factor of ~ 2
- Theory has too large uncertainty
CDM (ARIADNE) higher by a factor of ~2 then measured differential di-jets plus forward cross-sections.

CASCADE set2 closer to data as set1 (!)
Conclusions

- Parton dynamics at low-x has been studied in forward jet production in DIS by ZEUS

- CDM (ARIADNE) gives a good description of data in all measured inclusive forward jet cross sections except of very forward η range

- LO CCFM-based CASCADE does not describe shapes of inclusive forward jet cross sections

- NLO calculations below data

- CASCADE set2 model favors measured di-jets plus forward jet cross sections; CDM and CASCADE set1 do not
Forward Jets with $\eta^{\text{JET}} > 2.5$

Clear access of reconstructed jets around the range:

$$2.8 < \eta_{\text{rec}} < 3.4$$
"Fiducial" cut out of problematic jets in the range:

\[2.8 < \eta_{\text{rec}} < 3.4, \quad \phi \in (0., 0.4), (1., 2.2), (2.7, 3.6), (4.2, 5.3), (5.7, 6.3) \text{ rad}\]