Rényi entropy and Tsallis entropy associated with positive linear operators

Ioan Raşa*

Subjclass: 41A36, 94A17, 33C45
Keywords: Rényi entropy, Tsallis entropy, positive linear operators, Legendre polynomials.

Abstract
This article is a continuation of my paper [arxiv: 1409.1015 v2]. Rényi and Tsallis entropies are associated to positive linear operators and properties of some functions related to these entropies are investigated.

1 Introduction
This paper is a continuation of [9]. In that article we considered discrete positive linear operators of the form

\[Lf(x) = \sum_k f(x_k) a_k(x), \quad a_k(x) \geq 0, \quad \sum_k a_k(x) = 1 \]

for \(x \) in some interval \(I \subset \mathbb{R} \). In investigating the degree of non-multiplicativity of \(L \) an important role was played by the function \(S(x) = \sum_k a_k^2(x) \); see [1].

On the other hand, for each fixed \(x \in I \) the numbers \((a_k(x))_k \) form a probability distribution. In this context \(-\log S(x) \) is a Rényi entropy [10] and \(1 - S(x) \) is a Tsallis entropy [11]. So the properties of the function \(S(x) \) are relevant also in the study of these entropies.

Some properties of \(S(x) \) were investigated in [5]-[9]. In Section 2 we continue to study such properties in the case of discrete operators. Section 3 is devoted to some multivariate operators; see also [1]. In the last section we consider integral operators of the form \(Lf(x) = \int_I K(x, t)f(t)dt \) with \(K(x, t) \geq 0, \int_I K(x, t)dt = 1, x \in I \). Recall that in this case the associated Rényi entropy is defined by \(-\log \int_I K^2(x, t)dt \), and the Tsallis entropy by \(1 - \int_I K^2(x, t)dt \).

*Department of Mathematics, Technical University of Cluj-Napoca, Memorandumului Street 28, 400114 Cluj-Napoca, Romania, ioan.rasa@math.utcluj.ro
2 A conjecture from [9] and some of its consequences

We shall use the notation from [9]. In particular, we consider the function $S_{n,c}$ defined on the interval I_c. Conjecture 7.1 in [9] reads as follows:

\[(C) \text{ log } S_{n,c} \text{ is a convex function.}\]

Let us examine some consequences of this conjecture. With $X := x(1 + cx)$ and $X' = 1 + 2cx$, (3.10) in [9] can be written as

\[XX'\frac{S''_{n,c}(x)}{S_{n,c}(x)} + (4(n + c)X + 1)\frac{S'_{n,c}(x)}{S_{n,c}(x)} + 2nX' \leq 0. \tag{2.1}\]

\[(C) \text{ is equivalent to } S''_{n,c}S_{n,c} \geq (S'_{n,c})^2, \text{ and due to (2.1) both of them are equivalent to}\]

\[XX'\left(\frac{S'_{n,c}}{S_{n,c}}\right)^2 + (4(n + c)X + 1)\frac{S'_{n,c}}{S_{n,c}} + 2nX' \leq 0.\]

This leads immediately to

Theorem 2.1 Conjecture (C) is equivalent to

\[\text{(C') } \frac{S'_{n,c}(x)}{S_{n,c}(x)} \text{ is between } z_1(x) \text{ and } z_2(x),\]

where

\[z_1(x) = \frac{-\sqrt{(1 + 4cX)^2 + (4nX)^2} - (1 + 4cX) - 4nX}{2XX'},\]

\[z_2(x) = \frac{\sqrt{(1 + 4cX)^2 + (4nX)^2} - (1 + 4cX) - 4nX}{2XX'}.\]

Let us consider the case $c = 0$. Then the function $K_n(x) := S_{n,0}(x)$ is defined for $x \in [0, +\infty)$. In [9 (6.4)] it was proved that

\[K_n(x) \leq \frac{1}{\sqrt{4nx + 1}}, \quad x \geq 0. \tag{2.2}\]

Recall also that I_0 is the modified Bessel function of first kind of order zero, and (see [9 (3.7)])

\[I_0(x) = e^xK_n\left(\frac{x}{2n}\right), \quad x \geq 0. \tag{2.3}\]

Combining (2.2) and (2.3) we get

\[I_0(x) \leq \frac{\exp x}{\sqrt{2x + 1}}, \quad x \geq 0. \tag{2.4}\]
Corollary 2.2 Under the hypothesis that \(\log S_{n,0} \) is convex, we have

\[
\frac{-\sqrt{1 + (4nt)^2} - 1 - 4nt}{2t} \leq \frac{K'_n(t)}{K_n(t)} \leq \frac{1}{2t}, \quad t > 0, \quad (2.5)
\]

\[
K^2_n(x) \leq \frac{2 \exp \left(\frac{\sqrt{1 + (4nx)^2} - 1 - 4nx}{\sqrt{1 + (4nx)^2} + 1} \right)}{x \geq 0}, \quad (2.6)
\]

\[
P'_0(x) \leq \frac{2 \exp \left(\frac{\sqrt{1 + 4x^2} - 1}{\sqrt{1 + 4x^2} + 1} \right)}{x \geq 0}, \quad (2.7)
\]

Proof. (2.5) is a direct consequence of Theorem 2.1. (2.6) can be obtained from the second inequality in (2.5) by integrating with respect to \(t \) between 0 and \(x \). (2.7) follows from (2.6) and (2.3).

In order to compare (2.2) with (2.6), and (2.4) with (2.7), it is easy to check that

\[
\frac{2 \exp \left(\frac{\sqrt{1 + (4nx)^2} - 1 - 4nx}{\sqrt{1 + (4nx)^2} + 1} \right)}{x \geq 0}, \quad (2.8)
\]

This yields

\[
\frac{F'_n(x)}{F_n(x)} = \frac{F'_n(t)}{F_n(t)} - \frac{n}{\sqrt{t^2 - 1}} \frac{dt}{dx}.
\]

and consequently

\[
\frac{F'_n(t)}{F_n(t)} = -\frac{n}{\sqrt{t^2 - 1}} \frac{1}{4X} \frac{F'_n(x)}{F_n(x)}, \quad (2.9)
\]

Corollary 2.3 Under the hypothesis that \(\log S_{n,-1} \) is convex, we have

\[
\frac{F'_n(x)}{F_n(x)} \leq \frac{\sqrt{(1 - 4X)^2 + (4nX)^2} - (1 - 4X) - 4nX}{2XX'}, \quad x \in \left[0, \frac{1}{2} \right), \quad (2.10)
\]

\[
\frac{P'_n(t)}{P_n(t)} \leq \frac{\sqrt{4n^2(t^2 - 1)} + (t - \sqrt{t^2 - 1})^2 - (t - \sqrt{t^2 - 1})}{2(t^2 - 1)}, \quad t > 1. \quad (2.11)
\]
Proof. (2.10) is a consequence of Theorem 2.1. (2.11) follows from (2.10) and (2.9).

The following inequality was proved in [8, (1.2)]:
\[
\frac{n(n+1)}{2t + (n-1)\sqrt{t^2-1}} \leq \frac{P_n'(t)}{P_n(t)}, \quad t \geq 1.
\]
(2.12)

Using it and (2.9), we get
\[
-\frac{2nX'}{1 + (n-3)X} \leq \frac{F_n'(x)}{F_n(x)}, \quad x \in \left[0, \frac{1}{2}\right].
\]
(2.13)

Other lower and upper bounds for \(\frac{P_n'(t)}{P_n(t)}\) can be found in [8]. In particular, from [8, Theorems 2 and 3] we have
\[
\frac{P_n'(t)}{P_n(t)} \leq \frac{2n^2}{t + (2n - 1)\sqrt{t^2 - 1}}, \quad t \geq 1,
\]
(2.14)
and
\[
\frac{P_n'(t)}{P_n(t)} \leq \frac{n^2(2n+1)}{(n+1)t + (2n^2 - 1)\sqrt{t^2 - 1}}, \quad t \geq 1.
\]
(2.15)

(2.11) and (2.14) can be compared and we get
\[
\sqrt[4]{4n^2(t^2 - 1) + (t - \sqrt{t^2 - 1})^2 - (t - \sqrt{t^2 - 1})^2} \leq \frac{2n^2}{t + (2n - 1)\sqrt{t^2 - 1}}, \quad t > 1.
\]

The inequality
\[
\sqrt[4]{4n^2(t^2 - 1) + (t - \sqrt{t^2 - 1})^2 - (t - \sqrt{t^2 - 1})^2} \leq \frac{n^2(2n+1)}{(n+1)t + (2n^2 - 1)\sqrt{t^2 - 1}}, \quad t > 1,
\]
is equivalent to
\[
\frac{t}{t + \sqrt{t^2 - 1}} \geq \frac{3n + 2}{4n + 3}.
\]

This last inequality is true for \(t\) approaching 1, and false for \(t\) approaching \(+\infty\).

Let us remark that (2.16) yields by integration
\[
P_n(t) \leq (t + \sqrt{t^2 - 1})^{\frac{n(2n-1)}{2n^2 - n - 2}} \left(t + \frac{2n^2 - 1}{n + 1} \sqrt{t^2 - 1} \right)^{-\frac{n(n+1)}{2n^2 - n - 2}}, \quad t \geq 1.
\]
(2.16)

This inequality is stronger than
\[
P_n(t) \leq (t + \sqrt{t^2 - 1})^{\frac{n(2n-1)}{2n(n-1)}} \left(t + (2n - 1)\sqrt{t^2 - 1} \right)^{-\frac{n}{2n-1}}, \quad t \geq 1, n \geq 2.
\]
(2.17)
which can be obtained from (2.14).

We conclude this section with a remark concerning the function \(A_{n,c} := S'_{n,c} \).

By using \([9, (3.10)]\), or (2.1), we deduce easily that \(A_{n,c} \) satisfies the Riccati equation

\[
x(1 + cx)(1 + 2cx)(A'_{n,c} + A^2_{n,c}) + (4(n + c)x(1 + cx) + 1)A_{n,c} + 2n(1 + 2cx) = 0.
\]

3 Multivariate operators

First, consider the classical Bernstein operators on the canonical simplex of \(\mathbb{R}^2 \).

The sum of the squared fundamental Bernstein polynomials is in this case

\[
R_n(x, y) := \sum_{i+j \leq n} \left(\frac{n!}{i!j!(n-i-j)!} \right)^2 x^i y^j (1-x)^{2(n-i-j)}
\]

\[
= \sum_{j=0}^n \sum_{i=0}^{n-j} \left(\frac{n!}{i!j!(n-i-j)!} \right)^2 \left(\frac{n-j}{i} \right)^2 x^i y^j (1-x)^{2(n-i-j)},
\]

for \(x \geq 0, \ y \geq 0, \ x + y \leq 1 \); see \([2, (6.3.6)]\), \([3, Sect. 3.1.2]\).

Let \(y \in [0, 1) \) be fixed. Then for \(x \in [0, 1 - y] \) we have

\[
R_n(x, y) = \sum_{j=0}^n \left(\frac{n!}{i!j!(n-i-j)!} \right)^2 \left(\frac{n-j}{i} \right)^2 x^i y^j (1-x)^{2(n-i-j-i)}.
\]

For each \(j \in \{0, 1, \ldots, n\} \),

\[
\sum_{i=0}^{n-j} \left(\frac{n-j}{i} \right)^2 \left(\frac{x}{1-y} \right)^{2i} \left(1 - \frac{x}{1-y} \right)^{2(n-j-i)} = F_{n-j} \left(\frac{x}{1-y} \right),
\]

where \(F_{n-j} = S_{n-j-1} \). It is known (see \([3, 6, 8, 9]\)) that \(F_{n-j} \) is convex on \([0, 1]\). It follows that for each fixed \(y \in [0, 1] \), the function \(R_n(\cdot, y) \) is convex on \([0, 1 - y]\). In other words, \(R_n \) is convex on each segment parallel to \(Ox \).

Similarly we see that \(R_n \) is convex on each segment parallel to a side of the canonical triangle of \(\mathbb{R}^2 \). This means that \(R_n \) is axially-convex; concerning this terminology see \([2, p. 407]\), \([3, Sect. 3.5]\).

Now consider the classical Bernstein operators on the square \([0, 1]^2\): see \([2, (6.3.101)]\), \([3, Sect. 3.1.5]\). The sum of the squared fundamental Bernstein polynomials is in this case

\[
Q_n(x, y) = \sum_{i=0}^n \sum_{j=0}^n \left(\frac{n!}{i!j!(n-i-j)!} \right)^2 x^i y^j (1-x)^{2n-2i-y} (1-y)^{2n-2j} = F_n(x)F_n(y).
\]

It is easy to verify that the following three statements are equivalent:

i) \(\log F_n \) is convex on \([0, 1]\);

ii) \(Q_n \) is convex on \([0, 1]^2\);

iii) \(\log Q_n \) is convex on \([0, 1]^2\).
4 \hspace{1em} \textbf{Entropy and variance. Integral operators}

Let I be an interval and L a positive linear operator on a space of functions defined on I, containing the functions $e_i(x) = x^i$, $i = 0, 1, 2$. Suppose that $Le_0 = e_0$.

The \textit{variance} associated with L is the function

$$V(x) := Le_2(x) - (Le_1(x))^2, \quad x \in I.$$

If L is a discrete operator of the form $Lf(x) = \sum_k a_k f(x_k)$, let $S(x) := \sum_k a_k^2(x)$. If L is an integral operator of the form $Lf(x) = \int_I K(x, t)f(t)dt$, let $S(x) := \int_I K^2(x, t)dt$, $x \in I$.

In both cases the Rényi entropy associated with L is $-\log S(x)$, and the Tsallis entropy is $1 - S(x)$, $x \in I$.

\textbf{Example 4.1}

Let $L_{n,c}f(x) = \sum_{j=0}^{\infty} f\left(\frac{x}{n}\right) p_{n,j}^c(x)$, see [9, Sect. 2]. Then $S(x) = S_{n,c}(x)$ and $V(x) = V_{n,c}(x) = \frac{x^{1+cx}}{1+cx}$. According to [9, (3.5), (3.8)],

$$S_{n,c}(x) = \frac{1}{\pi} \int_0^\pi \left(1 + 4ncV_{n,c}(x)\sin^2\frac{\varphi}{2}\right)^{-n/c} d\varphi, \quad c \neq 0, \quad (4.1)$$

$$S_{n,0}(x) = \frac{1}{\pi} \int_0^\pi \exp\left(-4n^2V_{n,0}(x)\sin^2\frac{\varphi}{2}\right) d\varphi. \quad (4.2)$$

\textbf{Example 4.2}

For the Kantorovich operators [2, p. 333] we have $S_n(x) = (n + 1)F_n(x)$ and $V_n(x) = (n + 1)^{-2}(nx(1-x) + \frac{1}{12})$.

\textbf{Example 4.3}

Consider the Gauss-Weierstrass operators [2 p. 310], [4 p. 114]:

$$W_rf(x) = \int_R (4\pi r)^{-1/2} \exp\left(-\frac{(t-x)^2}{4r}\right)f(t)dt, \quad r > 0.$$

Then $V_r(x) = 2r$ and $S_r(x) = (8\pi r)^{-1/2}, x \in R$.

Generally speaking, for a convolution operator

$$Lf(x) = \int_R \varphi(x-t)f(t)dt$$

we have $V(x) = \int_R s^2\varphi(s)ds - \left(\int_R s\varphi(s)ds\right)^2$

and $S(x) = \int_R \varphi^2(s)ds$, so that V and S are constant functions.

\textbf{Example 4.4}
For the Post-Widder operators [1 p. 114],

\[V_n(x) = \frac{x^2}{n} \quad \text{and} \quad S_n(x) = \left(\frac{2n - 2}{n - 1}\right)^{2^{1-2n} \frac{n}{x}}, \quad x > 0. \]

Example 4.5

Consider the Durrmeyer operators [2 p. 335].

In this case

\[V_n(x) = \frac{n + 1}{(n + 2)^2(n + 3)}(2nx(1 - x) + 1), \]

\[S_n(x) = \sum_{k=0}^{2n} c_{n,k} \left(\frac{2n}{k}\right)x^k(1 - x)^{2n-k}, \]

where

\[c_{n,k} := \frac{(n + 1)^2}{2n + 1} \left(\frac{2n}{k}\right)^{-2} \sum_{j=0}^{k} \left(\frac{n}{j}\right)^{2} \left(\frac{n}{k-j}\right)^{2}, \quad k = 0, 1, ..., 2n, \]

where, as usual, \(\binom{n}{m} = 0 \) if \(m > n \).

It is easy to see that \(c_{n,2n-k} = c_{n,k}, k = 0, 1, ..., 2n \).

Conjecture 4.6 The sequence \((c_{n,k})_{k=0,1,...,2n} \) is convex and, consequently, the function \(S_n \) is convex on \([0, 1]\).

Example 4.7

For the genuine Bernstein-Durrmeyer operators, defined by

\[U_n f(x) = f(0)b_{n,0}(x) + f(1)b_{n,n}(x) + (n - 1) \sum_{k=1}^{n-1} b_{n,k}(x) \int_0^1 b_{n-2,k-1}(t)f(t)dt, \]

with \(b_{n,k}(x) = \binom{n}{k}x^k(1 - x)^{n-k} \), we have

\[V_n(x) = \frac{2x(1 - x)}{n + 1} \]

and

\[S_n(x) = (1 - x)^{2n} + x^{2n} + \frac{(n-1)^2}{2n-3} \sum_{k,j=1}^{n-1} \binom{n-2}{k-1} \binom{n-2}{j-1} \binom{n}{k} \binom{n}{j} \binom{2n-4}{k+j-2}^{-1} x^{k+j}(1 - x)^{2n-k-j}. \]

Remark 4.8 In Examples 4.1-4.4, and also in Example 4.5 under Conjecture 4.6, the functions \(V(x) \), \(1 - S(x) \) and \(-\log S(x) \) are all increasing or all decreasing on suitable subintervals of \(I \). In other words, the variance, the Tsallis entropy and the Rényi entropy are synchronous functions.
Acknowledgement

The author is grateful to Dr. Gabriela Raluca Mocanu for inspiring discussions.

References

[1] A. Acu and M.-D. Rusu, New results concerning Chebyshev-Grüss-type inequalities via discrete oscillations, Appl. Math. Comput. 243 (2014), 585-593.

[2] F. Altomare and M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter, Berlin-New York, 1994.

[3] F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Raşa, Markov Operators, Positive Semigroups and Approximation Processes, de Gruyter Studies in Mathematics, vol. 61, Walter de Gruyter, Berlin, 2014.

[4] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987.

[5] I. Gavrea and M. Ivan, On a conjecture concerning the sum of the squared Bernstein polynomials, Appl. Math. Comput. 241 (2014), 70-74.

[6] H. Gonska, I. Raşa and M.-D. Rusu, Chebyshev-Grüss-type inequalities via discrete oscillations, Bul. Acad. Stiinte Repub. Mold. Mat. no. 1 (74) (2014), 63-89. arxiv 1401.7908 [math.CA].

[7] T. Neuschel, Unpublished manuscript, Univ. of Trier, 2pp., 2012.

[8] G. Nikolov, Inequalities for ultraspherical polynomials. Proof of a conjecture of I. Raşa, J. Math. Anal. Appl. 418 (2014), 852-860.

[9] I. Raşa, Special functions associated with positive linear operators, arxiv: 1409.1015v2 [math.CA].

[10] A. Rényi, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Statist. Prob., Vol. 1, Univ. of California Press 1961, 547-561.

[11] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988), 479-487.