A COMPARATIVE STUDY ON OUTCOME OF ILEAL PERFORATION AFTER PRIMARY PERFORATION CLOSURE AND RESECTION AND ILEOSTOMY AT VMMC & SAFDARJUNG HOSPITAL, NEW DELHI

General Surgery

Dr. Ramesh Kumar Verma
M.B.B.S., M.S. (Gen. Surg.), Senior Resident, Department of General Surgery, VMMC & Safdarjung Hospital, New Delhi.

Dr. Mohammad Nafees Ahamad*
M.B.B.S., M.S. (Gen. Surg.), Senior Resident, Department of General Surgery, VMMC & Safdarjung Hospital, New Delhi. *Corresponding Author

Dr. Nishith Sudhir Mandal
M.B.B.S., M.S. (Gen. Surg.), Associate Professor, Department of General Surgery, VMMC & Safdarjung Hospital, New Delhi.

Dr. Snigdha Kamini
Post Graduate Student, Department of General Surgery, VMMC & Safdarjung Hospital, New Delhi.

Dr. Debarshi Jana
Young Scientist (DST), Institute of Post-Graduate Medical Education and Research, A.J.C. Bose Road, Kolkata, West Bengal, India-700020.

ABSTRACT

Background: Ileal perforations are a common occurrence in our hospital setup with a majority of cases having an etiology of typhoid. The presentation and management of ileal perforation with special reference to typhoid, nonspecific and traumatic perforations and the outcomes in these patients and the factors affecting prognosis are important. Aims and objectives of the study were to study the management of Ileal perforation. To compare the outcome of two different types of treatment for ileal perforation i.e. Primary Closure (vs) Resection and Ileostomy.

Methods: This is a randomized comparative observational study conducted in Surgery Department of VMMC & Safdarjung Hospital, New Delhi between October 2019 to July 2020. A Minimum of 28 patients was included in the study. Diagnosis was made on the basis of the X-ray erect abdomen, ultrasound abdomen, Widal test and intra-operative findings.

Results: The common age groups affected was 41-50 years age group (5 patients) and 61-70 years age groups (5 patients). The least affected were 1-10 years age group (one patient). The incidence in males was slightly greater than females. Male to female ratio was 2:1. Typhoid perforation is the most common case of ileal perforation followed by non-specific perforation. Post-operative complications are more in the primary closure group with 32.14% (9 patients) which is lower when compared to ileostomy group 17.85% (5 patients). Complications of primary closure were wound infection (2 patients), burst abdomen (3 patients), faecal fistula (1 patient), respiratory complications (3 patients). Complications in ileostomy group were wound infection (4 patients) and respiratory complications (one patient).

Conclusions: Mortality was more in primary closure group with 21.42% (6 patients) and mortality was less in ileostomy group with 7.14% (2 patients). This study proposes that ileostomy may be given priority over other surgical options in moribund patients.

KEYWORDS

Ileal perforation, Ileostomy, Resection, Typhoid perforation

INTRODUCTION

Ileal perforation is a common problem seen in tropical countries. Ileal perforation is due to many causes, the most common being Enteric fever, Tuberculosis. Trauma continues to be the most frequent reason for high morbidity and mortality. Despite the availability of modern diagnostic facilities and advances in treatment regimens, this condition is still associated with a high mortality and unavoidable morbidity in tropical countries like India. Preoperative resuscitation, antibiotic therapy and total parental nutrition reduced mortality from 26.5% to 10%. The various surgical options are drainage of peritoneal cavity done in moribund patients during resuscitation and preparation for surgery, simple closure are done by freshening of the edges and closure. Talwar et al recommended primary closure and limited surgery, wedge resection and closure in which a wedge of ileal tissue is resected around the perforation and the defect is closed transversely in two layers resection- anastomosis done by excision of the affected segment and anastomosis has been recommended by some authors, ileotransverse colostomy is a simple closure, wedge resection or a resection anastomosis may be combined with a side-to-side ileotransverse colostomy, ileostomy is recommended by some authors. Exteriorization of suture line, which prevents contamination of peritoneal cavity in case of leak. If fistulae form they invariably heal on conservative management. Good peritoneal lavage and placement of drains to remove pus was recommended. Two-layer closure was recommended to decrease the risk of leakage.

A midline or Para median incision was commonly used. Talwar et al recommended Rutherford Morrison incision in the presence of a confirmed preoperative diagnosis of perforation. If there is fulminant sepsis in the abdominal cavity due to the formation of faecal fistula or any other cause laparostomy might be done. Laparostomy is defined as a laparotomy without reapproximation and suture closure of abdominal fascia and skin. The abdominal cavity is left open. It helps drainage of pus and prevents deleterious rise of intra-abdominal pressure. The wound can be closed after control of sepsis. The disadvantages are that the exposed intestine might perforate and formation of an incisinal hernia. It may be combined with continuous postoperative peritoneal lavage. Various complications of ileostomy include stoma necrosis, bowel obstruction, mucocutaneous separation, stoma stenosis, stoma prolapse, para-stomal hernia, peri-ileostomy fistulas, peri-ileostomy skin problems. The present study was conducted in order to contribute the improvement in knowledge of this ileal perforation in its treatment and management because primary repair holds higher rate of complication when compared to resection and ileostomy. Hence this study was done to compare results of two different procedures used for management of ileal perforation i.e. primary repair (vs) resection and ileostomy.

AIMS AND OBJECTIVES

Aims and objectives of the study were to study the management of Ileal perforation. To compare the outcome of two different types of treatment for Ileal perforation i.e. Primary Closure (vs) Resection and Ileostomy.

METHODS

Patients

This is a randomized comparative observational study conducted in Surgery Department of VMMC & Safdarjung Hospital, New Delhi between October 2019 to July 2020. A Minimum of 28 patients was included in the study.

Inclusion Criteria

All cases irrespective of their age or sex presenting to surgical emergency with acute abdomen, proven to be a case of ileal perforation (due to any cause), on basis of operative finding only were included in the study.
In this study highest number of patients (23) was presented with single perforation, two perforations were observed in four patients and four perforations were seen in only one patient, more number of patients were having perforations, observed at 21 to 40cm from ileocaecal junction, followed by 0 to 20cm in 10 patients and lastly 41 to 60cm from ileocaecal junction in 6 patients.

Size of perforation
Size of perforation in 14 patients ranges from 0.6cm to 1cm, in ten patients size of perforation ranges up to 0.5cm and in four patients size of perforation is more than 1cm.

Surgical procedures
In total twenty-eight numbers of patients, fourteen patients had undergone primary closure and remaining fourteen patients underwent ileostomy.

Post-operative complications
As for wound infection was concerned two (2) were in primary closure group and four (4) were in ileostomy group. Of burst abdomen three (3) were in primary closure group and none were in ileostomy group. One patient had faecal fistula in primary closure group and none were in ileostomy group. Three (3) patients of primary closure had respiratory complications and one was in ileostomy group. Five patients of primary closure did not have any postoperative complications whereas nine patients of ileostomy group were without complications (Table 3).

Table 3: Postoperative Complications In Both Primary Closure Patients And Ileostomy Patients.

| Post-operative Complications | Primary closure (n=14) | % | Ileostomy group (n=14) | % |
|------------------------------|-----------------------|---|-----------------------|---|
| Wound infection              | 2                     | 14.28 | 4                     | 14.28 |
| Burst Abdomen                | 3                     | 21.42 | 0                     | 0   |
| Faecal Fistula               | 1                     | 7.14  | 0                     | 0   |
| Respiratory Complications    | 3                     | 21.42 | 1                     | 7.14 |
| Stoma Complications          | 0                     | 0     | 0                     | 0   |

Chi square = 6.81, P-value = 0.1

Mortality
In this study of twenty-eight patients total mortality was in 8 patients (28.57%) of which six belonged to primary closure and two were from ileostomy.

Intraoperative Procedures
The intraoperative procedure of Ileostomy for multiple perforation is shown in the figures below.

Figure 1: Primary perforation closure
Figure 2: Multiple ileal perforations
Figure 3: Ileostomy done for a patient
Figure 4: Chest X-ray and abdomen erect x-ray showing gas under right diaphragm
DISCUSSION

In this study group twenty-eight cases of ileal perforations due to different causes were operated. In those cases, typhoid intestinal perforation represented 53.5%. Onset of symptoms and time of perforation are commonly in the second and third decade as evidenced by other studies. The commonest cause of ileal perforation in this series was typhoid fever accounting for 53.5% of cases. The other causes of ileal perforation in this study are 25% nonspecific, 17.8% traumatic, 3.5% TB. Typhoid fever accounted for 56.6% of cases of ileal perforation in the series by Karmakar.

When the etiology of the perforation was not identified it was termed non-specific perforation. Non-specific perforation was the second commonest cause in this study accounting for 25% of cases. Five patients of non-specific perforation had fever prior to onset of abdominal symptoms (Table 1). Non-specific perforations were the commonest cause of small bowel perforation in the series by Dixon and Bhelerao.

Trauma accounted for 17.8% of cases of ileal perforation in this series. 8.25% of ileal perforations published by Karmakar were due to trauma. The rising rate of road traffic accidents and civil violence has contributed to this increased incidence of traumatic perforations. Tuberculosis accounted for 3.5% of cases of ileal perforations in the present study. Talwar et al., have found 19% of non-traumatic small bowel perforations due to intestinal TB. Most patients presented with features suggestive of peritonitis. Patients of both typhoid and nonspecific perforations had similar presentation with respect to abdominal symptoms and signs. Patients with typhoid perforation had fever, abdominal pain and vomiting. Examination revealed tenderness, guarding, distension and intraperitoneal free fluid. Eggleston reported that most patients had fever, malaise and sudden increase in abdominal pain in typhoid perforation.

There was a male preponderance with the male: female ratio in this study being 2.5:1. Total number of patients in this study are twenty-eight, of which twenty patients (71.4%) are males and female patients are eight (28.5%) in number. In agreement with other studies, ileal perforation in the present study was more common in males than in females. The exact reason for this male preponderance is not known although it is possible that men have an increased risk of exposure to typhoid fever resulting from spending longer time and consuming more food outdoors that may lead to more frequent contact with the causative bacteria.

X-ray erect abdomen with both domes of diaphragm is a useful investigation to detect hollow viscus perforation. In our study free gas was seen under the diaphragm in 71.4% of perforations (Figure 4). In favor of this study, Pneumoperitoneum has been reported in 52% to 82% in studies done by Achampong and Vaidyanathan. The value of the radiological investigation has been compared with other writers and with current radiological techniques; 80-90% of cases are correctly diagnosed. Findings from our study demonstrated free gas under the diaphragm on abdominal and chest radiographs in more than seventy percent of cases which is consistent with other studies. A plain abdominal or chest radiograph with free air under the diaphragm is a fairly frequent but variable finding significant hollow viscus perforation, but its absence does not exclude the diagnosis. Abdominal ultrasonography has also been found to be superior to plain radiographs in the diagnosis of free intra-peritoneal air as confirmed by the present study.

Widal test was positive in 53.5% cases of this study. Widal was retrospectively positive in 93% of patients in the series by Ret et al. and in 46.1% of patients by Santillana. It was reported positive in 75.5% of cases by Jarrett and in 73% by Vaidyanathan. Four-fold increase in titre is considered more significant. In this study most, patients of confirmed typhoid were treated with ciprofloxacin and metronidazole. The rest had a third-generation cephalosporin (cefotaxime) and metronidazole.

One of the many factors affecting the surgical outcome in patients with intestinal perforation is time interval between duration of illness and surgical intervention (perforation-surgery interval). Early surgery can minimize the complications while delayed surgery leads to severe peritonitis and septic shock. In the present study surgery of patients were operated more than 24 hours after the onset of illness. Similar observation was reported by other studies done in developing countries.

In the management of typhoid perforation some authors advocated conservative management. Presently there is no such controversy in the treatment of typhoid perforation with the current recommendation being surgical management. The various methods in use are local drains, simple closure, closure with omental patch, wedge resection, resection and anastomosis, ileo-transverse anastomosis and ileostomy. In the present study, patients with multiple perforations had significantly high mortality rates compared to those with single perforations (Figure 2). Beniwal et al found that the number of perforation had effect on surgical outcome. Adesunkanmi et al reported high incidence of residual abscess in patients with single perforation.

In this study patients underwent primary perforation closure and ileostomy. Patients with multiple perforations underwent resection and ileostomy. The overall complication rate for all patients in this series was 50% (Table 3). In this study the common complications are wound infection, burst abdomen, faecal fistula and respiratory complications. Wound infection is the commonest complication in this study (Table 2, 3), with a complication rate of 21.4% in six patients, Burst abdomen rates about 1 0.7%, faecal fistula rates about 3.5% and respiratory complications about 14.2%. Santillana in his series reported a rate of 71.9% in 96 patients.

The mortality rate of 23.1% in the present study is comparable to the rates reported from tropical countries such as 22.0% from Nigeria where chloramphenicol is still the drug of first choice. These figures are much higher than the rates reported from other tropical countries such as 6.8% from Nepal, and 10.5% from India in another study.

A high mortality rate of 39.0% was also reported in Nigeria. Exceptionally low mortality rates of 1.5-2% have been reported from some parts of the developed world, where socioeconomic infrastructures are well developed. The reasons for the high mortality are multifactorial. In this study high mortality rate was attributed to delayed presentation, inadequate antibiotic treatment prior to admission, multiple perforations, severe peritoneal contamination and presence of postoperative complications.

In this series the outcome of best results in terms of mortality, morbidity and post-operative complications were found to be in patients with ileostomy. The primary closure of perforation was associated with an overall 32% complication rate whereas only 17% in ileostomy group. Ileostomy proved to be the most successful procedure in this study in terms of overall mortality and morbidity, this is supported by Bhanisali et al study, Kalid et al study, Meh et al. There is, however a consensus that late presentation, delay in operation, multiple perforations, degree of peritoneal contamination of peritoneum and old age determine mortality and morbidity associated with this problem.

CONCLUSION

Post-operative complications and mortality is compared in between primary closure group and ileostomy group. Early surgery and adequate resuscitation are the important factors in the management of patients with ileal perforation. This study proposes that ileostomy may be given priority over other surgical options especially in those moribund patients who present late in the course of their illness, have more than one perforation with massive faecal contamination of the abdominal cavity. Primary closure of perforation is a preferred technique in clinically stable patients with a single perforation with minimal soiling of the abdominal cavity.

REFERENCES

1. Ameh EA, Dogo PM, Attah MM, Nmanu PT. Comparison of three operations for typhoid perforation. Br J Surg. 1997;84(1):555-8.
2. Achampong EQ. Tuberculosis of the small bowel. World Surg. 1985;9(6):867-96.
3. Bitar R, Tarpley J. Intestinal perforation in typhoid fever: a historical and state-of-the-art review. Rev Infect Dis. 1985;7(2):257-73.
4. Chalya PL, Mahbub JB, Koy M, Kataraihya JB, Jaka H, Mshana SE, et al. Typhoid intestinal perforations at a University teaching hospital in Northwestern Tanzania: A surgical experience of 104 cases in a resource-limited setting. World J Emerg Surg.
5. Eggleston FC, Santoshi B. Typhoid perforation: choice of operation. Br J Surg. 1981;68(5):341-2.
6. Kaul BK. Operative management of typhoid perforation in children. Int Surg. 1975;60(8):407-10.
7. Lizzaralde EA. Typhoid perforation of ileum in children. J Pediatr Surg. 1981;16(6):1012-6.
8. Mital S, Singh H, Munghate A, Singh G, Garg A, Sharma J. A comparative study between the outcome of primary repair versus loop ileostomy in ileal perforation. Surg Res Pract. 2014 Mar 27;2014.
9. Santillana M. Surgical complications of typhoid fever: enteric perforation. World J Surg. 1991;15(2):170-5.
10. Singh S, Singh K, Grover AS, Kumar P, Singh G, Gupta DK. Two-layer closure of typhoid ileal perforations: a prospective study of 46 cases. Br J Surg. 1995;82(9):1253.
11. Sethur G, Sudheer D. Study of prognostic factors and outcomes in ileal perforations. J Evid Based Med Healthc. 2016;3(9):4911-7.
12. Talwar S, Laddha BL, Jain S, Prasad P. Choice of incision in surgical management of small bowel perforations in enteric fever. Trop Gastroenterol. 1997;18(2):78-9.