Uniqueness in the Kashiwara-Vergne conjecture

A. Alekseev and E. Petracci

Abstract. We prove that a universal symmetric solution of the Kashiwara-Vergne conjecture is unique up to order one. In the Appendix by the second author, this result is used to show that solutions of the Kashiwara-Vergne conjecture for quadratic Lie algebras existing in the literature are not universal.

Keywords. Campbell-Hausdorff series, free Lie algebras, differential of the exponential map, Bernoulli numbers.

1. Introduction

Let G be a Lie group over $\mathbb{K} = \mathbb{R}$ (or $\mathbb{K} = \mathbb{C}$), and \mathfrak{g} its Lie algebra. There exists an open neighbourhood \mathfrak{g}_0 of the origin $0 \in \mathfrak{g}_0 \subseteq \mathfrak{g}$ such that the restriction to \mathfrak{g}_0 of the exponential map $\exp : \mathfrak{g} \to G$ is an analytic diffeomorphism. We denote by $\ln : \exp(\mathfrak{g}_0) \to \mathfrak{g}_0$ the inverse map and by

$$\varphi_1(t) := \frac{t}{e^t - 1} = 1 - \frac{1}{2} t + o(t)$$

the generating series of Bernoulli numbers. It is convenient to have a separate notation for the function $\psi(t) := -(\varphi_1(t) - 1)/2$.

In [4], Kashiwara and Vergne put forward the following conjecture on the properties of the Campbell-Hausdorff series:

Kashiwara-Vergne conjecture. There exists a pair of \mathfrak{g}-valued analytic functions A and B defined on an open subset $U \subset \mathfrak{g} \times \mathfrak{g}$ containing $(0,0)$, such that $A(0,0) = B(0,0) = 0$, and for any $(X,Y) \in U$ one has

$$\ln(\exp(Y)\exp(X)) - X - Y = (id - e^{-\text{ad}X})A(X,Y) + (e^{\text{ad}Y} - id)B(X,Y), \quad (1)$$

$$\text{tr} \ (\text{ad}X \circ \delta_1 A(X,Y) + \text{ad}Y \circ \delta_2 B(X,Y)) = \text{tr} (\psi(\text{ad}X) + \psi(\text{ad}Y) - \psi(\text{ad} \ln (\exp(X)\exp(Y)))) , \quad (2)$$

where $\delta_1 A(X,Y), \delta_2 B(X,Y) \in \text{End}(\mathfrak{g})$ are defined as follows,

$$\delta_1 A(X,Y) : Z \mapsto \left. \frac{d}{dt} A(X + tZ,Y) \right|_{t=0}, \quad \delta_2 B(X,Y) : Z \mapsto \left. \frac{d}{dt} A(X,Y + tZ) \right|_{t=0}.$$

Sometimes this statement is referred to as the ‘combinatorial Kashiwara-Vergne conjecture’ (see e.g. [5]). This conjecture was established for solvable Lie
algebras in [4] and for quadratic Lie algebras in [6]. Recently, the general case was settled in [2] based on the earlier work [5].

We denote by $\mathbb{K}[t]$ and $\mathbb{K}[t]$ the ring of formal power series and the ring of polynomials, respectively. We call a solution of the Kashiwara-Vergne conjecture universal if A and B are given by series in Lie polynomials of the variables X and Y:

$$A(X,Y) = \rho X + \beta(\text{ad}X)(Y) + o(Y)$$

$$B(X,Y) = \alpha X + \gamma(\text{ad}X)(Y) + o(Y)$$

with $\beta(t), \gamma(t) \in \mathbb{K}[[t]], \alpha, \rho \in \mathbb{K}$, and both $o(Y)$ are of type

$$o(Y) \in \sum_{k \geq 2} \sum_{j_1, \ldots, j_k \geq 0} j_k < j_k \mathbb{K}\text{ad}_{(\text{ad}X)^{j_1}Y} \circ \cdots \circ \text{ad}_{(\text{ad}X)^{j_{k-1}}Y} \circ (\text{ad}X)^{j_k}(Y).$$

If (A, B) is a universal solution, the coefficients of the Taylor expansions of A and B are the same for all Lie algebras over \mathbb{K}.

The set of solutions of the Kashiwara-Vergne conjecture carries a natural $\mathbb{Z}/2\mathbb{Z}$-action,

$$(A(X,Y), B(X,Y)) \mapsto (B(-Y,-X), A(-Y,-X)).$$

A solution is called symmetric if it is stable with respect to this action. Averaging of any solution produces a symmetric solution. Hence, without loss of generality we can restrict our attention to symmetric solutions.

It is well-known (see e.g. [5]) that α, ρ and $\beta(t)$ are uniquely determined by the Kashiwara-Vergne equations and by the symmetry condition. In this note we prove the uniqueness statement for the function $\gamma(t)$. Thus, the symmetric universal solution of the Kashiwara-Vergne conjecture is unique up to order one in Y.

In the Appendix by the second author, this result is applied to show that solutions of the Kashiwara-Vergne conjecture for quadratic Lie algebras obtained in [6] and [1] are not universal.

2. Preliminaries

In this Section, we collect some elementary properties of Lie algebras.

Remark 2.1. (Free Lie algebras with two generators). We denote by $L_\mathbb{K}(x,y)$ the free Lie \mathbb{K}-algebra with generators x and y. In this section we use the Hall basis H of $L_\mathbb{K}(x,y)$ defined in [3] (Definition 2, page 27).

H consists of Lie words with the following order relation: $x, y \in H$ and $x < y$; if the number of Lie brackets in $a \in H$ is smaller than the number of Lie brackets in $b \in H$ then $a < b$; and we omit the description of the order relation for a and b of equal length. The basis H is built inductively starting with $x, y, [x, y]$, and one adds the elements of the form $[a, [b, c]]$ such that $a, b, c, [b, c] \in H$, $b \leq a \leq [b, c]$, and $b < c$.

Proof. It is sufficient to show that

\[\forall n \geq 0 \quad (\text{ad}x)^n(y) \in H. \]

In fact, the cases \(n = 0 \) and \(n = 1 \) are trivial, and for \(n \geq 1 \) we use \((\text{ad}x)^{n+1}(y) = [x, [x, (\text{ad}x)^n(y)]] \). Furthermore,

\[\forall n \geq 1 \quad \{(\text{ad}x)^j(y), (\text{ad}x)^{n-j}(y), 0 \leq j < n - j, j \leq n - 1\} \subset H. \quad (3) \]

Here it is sufficient to observe that \((\text{ad}x)^n(y) = [x, (\text{ad}x)^{n-1}(y)] \).

Proposition 2.2. Let \(\xi(t) \in \mathbb{K}[t] \). The following statements are equivalent:

i) for any Lie \(\mathbb{K} \)-algebra \(g \) we have \(\xi(\text{ad}X)(Y) = 0 \) \(\forall X,Y \in g \);

ii) \(\xi(t) = 0 \).

Proof. It is sufficient to show that i) implies ii). Let \(n \in \mathbb{N} \). By rescaling \(X \mapsto tX \) and applying \(\frac{d^n}{dt^n}|_{t=0} \) we get \(\xi_n(\text{ad}X)^n(Y) = 0 \). Choosing \(g = L_\mathbb{K}(x, y) \), \(X = x \) and \(Y = y \) we get \(\xi_n = 0 \).

The following will be a very useful notation.

Definition 2.3. Let \(W, X, Y \in g \). For any pair \(i, j \in \mathbb{N} \), we set

\[(t^i u^j : [W, X])_Y := [(\text{ad}Y)^i(W), (\text{ad}Y)^j(X)]. \]

This notation is extended by linearity to any formal power series \(\xi(t, u) \in \mathbb{K}[t, u] \). Then \((\xi(t, u) : [W, X])_Y \in g[[g]] \) is a formal power series with coefficients in \(g \).

Remark 2.4.

i) \((t^i u^j : [W, X])_Y = -(u^i t^j : [X, W])_Y \).

ii) Jacobi’s identity gives \((t + u : [W, X])_Y = (\text{ad}Y)([W, X]) \).

Proposition 2.5. Let \(\xi(u) = -\xi(-u) \) be a series in \(\mathbb{K}[[u]] \). The following statements are equivalent:

i) for any Lie \(\mathbb{K} \)-algebra \(g \) we have \((\xi(u) : [X, X])_Y = 0 \) \(\forall X,Y \in g \);

ii) \(\xi(u) = 0 \).

Proof. Recall that \((\xi(u) : [X, X])_Y = [X, \xi(\text{ad}Y)(X)] \). Similar to the proof of Proposition 2.2 it is sufficient to show that in the free Lie algebra \(L_\mathbb{K}(X, Y) \) we have \([X, (\text{ad}Y)^{2i+1}X] \neq 0 \) for any \(i \in \mathbb{N} \). Indeed, if we rename \(X = y, Y = x \), the elements \([y, (\text{ad}x)^{2i+1}y] \) belong to the basis \(H \) and, hence, are non-vanishing.

Every formal power series \(\xi(t, u) \in \mathbb{K}[[t, u]] \) can be split into the sum of its symmetric and skew-symmetric parts:

\[\xi(t, u) = \xi(t, u)_{\text{skew}} + \xi(t, u)_{\text{sym}} = \frac{\xi(t, u) - \xi(u, t)}{2} + \frac{\xi(t, u) + \xi(u, t)}{2}. \]

Proposition 2.6. Let \(\xi(t, u) \in \mathbb{K}[[t, u]] \). The following statements are equivalent:

i) for any Lie \(\mathbb{K} \)-algebra \(g \) we have \((\xi(t, u) : [X, X])_Y = 0 \) \(\forall X,Y \in g \);

ii) \(\xi(t, u) = \xi(u, t) \).
Proof. By skew-symmetry of the Lie bracket, \((\xi(t, u)_{\text{sym}} : [X, X])_Y = 0\) for any \(\xi\), and \((\xi(t, u) : [X, X])_Y = (\xi(t, u)_{\text{skew}} : [X, X])_Y\).

Let \(\xi(t, u)\) be a formal power series with vanishing symmetric part. Then, it can be written as
\[
\xi(t, u) = \frac{1}{2} \sum_{n=0}^{\infty} \sum_{0 \leq j < n-j} \xi_{n,j}(t^j u^{n-j} - u^j t^{n-j}).
\]
Suppose that
\[
(\xi(t, u) : [X, X])_Y \equiv \sum_{n=0}^{\infty} \sum_{0 \leq j < n-j} \xi_{n,j}((\text{ad}Y)^j X, (\text{ad}Y)^{n-j} X) = 0
\]
for every Lie \(\mathbb{K}\)-algebra \(g\) and every \(X, Y \in g\). By rescaling \(X \mapsto tX\) and then applying the \(n\)-th derivative in \(t\) we get
\[
\forall n \geq 1 \sum_{0 \leq j < n-j} \xi_{n,j}((\text{ad}Y)^j X, (\text{ad}Y)^{n-j} X) = 0.
\]
Then we choose \(g = L_\mathbb{K}(x, y)\), \(X = y\) and \(X = y\). Since all Lie words in the sum are linearly independent (recall property (\(n\))) this implies \(\xi_{n,j} = 0\) for all \(n, j\) and \(\xi(t, u) = 0\).

Lemma 2.7. In the Lie algebra \(L_\mathbb{K}(x, y)\) we have
\[
\forall n \in \mathbb{N}, \quad (u^{2n+1} : [y, y])_x \notin \text{span}_\mathbb{K}\{(((t + u)t^l u^m : [y, y])_y)_x | l, m \in \mathbb{N}\}.
\]

Proof. We want to show that \((u^{2n+1} : [y, y])_x \notin \text{span}_\mathbb{K}\{(((t + u)t^l u^{2n-l} : [y, y])_y)_x | 0 \leq l \leq 2n\}\). If \(n = 0\) this statement is obvious. Let \(n \geq 1\), and suppose that we can some find coefficients \(c_j \in \mathbb{K}\) such that
\[
(u^{2n+1} : [y, y])_x = \sum_{j=0}^{2n} c_j((t + u)u^{2n-j} t^j : [y, y])_x.
\]
Let \(\xi(t, u) := u^{2n+1} - \sum_{j=0}^{2n} c_j(t + u)u^{2n-j} t^j\), then identity (2) can be written as
\((\xi(t, u) : [y, y])_x = 0\). The universal property of a free Lie algebra allows to apply Proposition 2.6 so \(\xi(t, u) = \xi(u, t)\). This means that \(u^{2n+1} - t^{2n+1} = 0\) modulo \((t + u)\), and this is a contradiction.

Remark 2.8. Here we explain that Propositions 2.2, 2.5, and 2.6 still apply if we restrict to finite-dimensional Lie algebras.

In their proofs, at some point we choose \(g\) equal to the free Lie algebra \(L_\mathbb{K}(x, y)\). Let \(N \geq 2\). We introduce \(g_N := L_\mathbb{K}(x, y)/I_N\), where \(I_N\) is an ideal of \(L_\mathbb{K}(x, y)\) such that \(g_N\) is an \(N\)-nilpotent Lie algebra. In particular \(g_N\) is a finite-dimensional Lie algebra with basis \(H/I_N\). To modify the proofs it is sufficient to replace \(L_\mathbb{K}(x, y)\) with \(g_N\), for a good choice of \(N\): \(n \leq N - 1\) in Proposition 2.2, \(2i + 2 \leq N - 1\) in Proposition 2.5, and \(n \leq N - 2\) in Proposition 2.6.

In the previous theorems we do not use Lie groups. We end this section by computing some derivatives of the exponential map of a Lie group \(G\) with Lie algebra \(g\).

Let \(g \in G\). We use the notation \(R_g : G \to G\) for the right translation. In the following lemma we denote by \(1_G\) the group unit of \(G\).
Lemma 2.9. Let $X, Y \in \mathfrak{g}$, then
\begin{enumerate} \item \[d(\ln \circ R_{\exp(X)})(1_G) = \varphi_1(\text{ad}X),\]
\item \[\frac{d}{ds} \ln(\exp(sY)\exp(X)) = \varphi_1(\text{ad}_{\ln(\exp(sY)\exp(X))}(Y)),\]
\item \[\frac{d^2}{ds^2}|_{s=0} \ln(\exp(sY)\exp(X)) = \left(\frac{\varphi_1(t+u) - \varphi_1(u)}{t}\right) \varphi_1(t) : [Y, Y]\] \end{enumerate}

Proof. i) The formula of this differential is a consequence of the well-known formula for the differential of the exponential map:
\begin{equation}
d(\exp)_X = (dL_{\exp(X)})_{1_G} \circ \varphi_1(-\text{ad}X)^{-1}.
\end{equation}
ii) Using part i) and $R_{\exp(X)} R_{\exp(-X)} = id$ we get
\[\frac{d}{ds} \ln \circ R_{\exp(X)}(\exp(sY)) \equiv d(\ln \circ R_{\exp(X)})_{\exp(sY)} \frac{d}{ds}(\exp(sY)) = \varphi_1(\text{ad}_{\ln(\exp(sY)\exp(X))}) \circ (dR_{\exp(-sY)})_{\exp(sY)} \frac{d}{ds}(\exp(sY)).\]
Formula (5) gives $\frac{d}{ds}(\exp(sY)) = d(L_{\exp(sY)})_{1_G}(Y)$, so
\[d(R_{\exp(-sY)})_{\exp(sY)} \frac{d}{ds}(\exp(sY)) = e^{s \text{ad}Y}(Y) = Y.\]
iii) Using ii), i) and a direct calculation we get
\begin{align*}
\frac{d^2}{ds^2}|_{s=0} \ln \circ R_{\exp(X)}(\exp(sY)) &= \left(\varphi_1(\beta(t) - \varphi_1(u)) : \left[\frac{d}{ds}|_{s=0} \ln \circ R_{\exp(X)}(\exp(sY)), Y\right]\right)_X \\
&= \left(\varphi_1(t + u) - \varphi_1(u) : \left[\varphi_1(\text{ad}X)(Y), Y\right]\right)_X.
\end{align*}

3. The Campbell-Hausdorff series

In this section we only make use of Equation (1), and we derive formulas for $\beta(t)$, $\gamma(t)_{\text{odd}}$, and $A_2(X, Y) := \frac{d^2}{ds^2}|_{s=0} A(X, sY)$.

Theorem 3.1. A universal solution of the Kashiwara-Vergne conjecture has
\[\beta(t) = \beta_\alpha(t) \equiv \varphi_1(-t) \left(\frac{\varphi_1(t) - 1}{t} + \alpha\right).\]

Proof. In (1) we rescale Y by tY and we compute the derivative in $t = 0$:
\[d(\ln \circ R_{\exp(X)})(1_G) = (id - e^{-\text{ad}X}) \circ \beta(\text{ad}X)(Y) - \alpha(\text{ad}X)(Y).\]
Using Lemma 2.9 part i) and $(id - e^{-\text{ad}X}) \equiv \varphi_1(-\text{ad}X)^{-1} \circ \text{ad}X$, we get
\[\varphi_1(-\text{ad}X) \circ (\varphi_1(\text{ad}X) - id + \alpha \text{ad}X)(Y) = \text{ad}X \circ \beta(\text{ad}X)(Y).\]
As this identity has to be verified for any \mathbb{K}-Lie algebra \mathfrak{g} and for any $X, Y \in \mathfrak{g}$, Proposition 2.2 implies $\varphi_1(-t)(\varphi_1(t) - 1 + \alpha t) = t \beta(t).$
The following theorem uses the notation

\[A_2(X,Y) = (\pi(t,u) : [Y,Y])_X, \]

where the formal power series \(\pi(t,u) \in \mathbb{K}[[t,u]] \) is skew-symmetric (i.e. \(\pi(t,u) = \pi(t,u)_{skew} \)).

Theorem 3.2. A universal solution of the Kashiwara-Vergne conjecture has

i) \(\gamma(t)_{odd} = \gamma_{\alpha}(t)_{odd} := \frac{\alpha}{2} t + \frac{1}{2} \left(\frac{\varphi_1(t)-1}{t} \varphi_1(-t) \right)_{odd}, \)

ii) \(\pi(t,u) = \pi_{\gamma}(t,u) := -\varphi_1(t) + \frac{\varphi_1(t) + \varphi_1(t+u)}{t+u} \varphi_1(t+u)_{skew}. \)

Proof. By rescaling \(Y \mapsto sY \) and then applying the second derivative in \(s \) to Equation (1) we obtain,

\[\frac{d^2}{ds^2}|_{s=0} \ln(e^sY) e^sX) = (id-e^{adX})A_2(X,Y)+(-\alpha u + 2\gamma(u) : [Y,Y])_X. \] (6)

Here we have used that

\[\frac{d^2}{ds^2}|_{s=0}(e^{adY})s - id)B(X,sY) = \alpha(adY)^2(X) + 2adY \circ \gamma(adX)(Y) = (-\alpha u + 2\gamma(u) : [Y,Y])_X. \]

Let \(s(t,u) := \frac{\varphi_1(t+u)-\varphi_1(u)}{t} \varphi_1(t) + \alpha u - 2\gamma(u). \) The comparison of part iii) of Lemma 2.9 with Equation (6) gives

\[(s(t,u) : [Y,Y])_X = (1-e^{adX})A_2(X,Y) \equiv ((1-e^{t+u})\pi(t,u) : [Y,Y])_X \]

for any \(X,Y \in \mathfrak{g} \) and any Lie \(\mathbb{K} \)-algebra \(\mathfrak{g} \).

Let \(g(t,u) := s(t,u) - (1-e^{t+u})\pi(t,u). \) Proposition 2.6 gives \(g(t,u)_{skew} = 0 \), in particular

\[s(t,u)_{skew} = (1-e^{t+u})\pi(t,u). \]

Putting \(t+u = 0 \) we get statement i). To get statement ii) it is sufficient to remark that \((1-e^{t+u}) = -\varphi_1(t+u)^{-1}(t+u). \) \(\square \)

4. The equation with traces

In this section we derive formulas for \(\rho \) and \(\gamma(t). \) We begin with a technical remark.

Remark 4.1. Let \(\lambda, \mu \in \mathbb{K} \setminus \{0\} \) be two distinct numbers, and \(\mathfrak{g}_{\lambda,\mu} = \mathbb{K}a \oplus \mathbb{K}b \oplus \mathbb{K}c \) be the 3-dimensional Lie algebra with Lie brackets \([a,b] = 0, [a,c] = \lambda c, [b,c] = \mu c. \)

It is easy to see that \([\text{ad}a, \text{ad}b] = 0\), and as a consequence \(\text{ad} \ln(exp(a)exp(b)) = \text{ad}a + \text{ad}b \). Moreover, for any \(\xi(t,u) \in \mathbb{K}[[t,u]] \) one has

\[\text{tr}(\xi(\text{ad}a, \text{ad}b)) = \xi(\lambda, \mu) + 2\xi(0,0). \]
Theorem 4.2. A universal solution of the Kashiwara-Vergne conjecture has
\[\rho = 0, \]
\[\gamma(t) = \gamma_a(t) := \beta_a(t) - \beta_a(0) + \psi'(0) - \psi'(t). \]

Proof. Let \(\epsilon \in \mathbb{K} \), we have \((\text{ad}\, Y \epsilon) \circ \delta_2 B(X, Y \epsilon) = \text{ad} \circ \gamma(\text{ad} X) \epsilon + o(\epsilon)\) and
\[\delta_1 A(X, Y \epsilon) = \rho \text{ id} - \sum_{n \geq 1} \beta_n \sum_{j=0}^{n-1} (\text{ad} X)^j \circ \text{ad} ((\text{ad} X)^{n-1-j} Y) \epsilon + o(\epsilon). \]

Let \(g \) be the Lie algebra in Remark 4.1, \(X = a \), and \(Y = b \). We get
\[\text{tr}(\text{ad} b \circ \delta_2 B(a, b \epsilon)) \epsilon = \text{tr}(\text{ad} b \circ \gamma(\text{ad} a) \epsilon + o(\epsilon)), \]
\[\text{tr}(\text{ad} a \circ \delta_1 A(a, b \epsilon)) = \text{tr}(\rho \text{ ad} a - \sum_{n \geq 1} \epsilon \beta_n (\text{ad} a)^n \circ \text{ad} b + o(\epsilon)), \]
\[\text{tr}(\psi(\text{ad} a) + \psi(\epsilon \text{ ad} b) - \psi(\text{ad} a + \epsilon \text{ ad} b)) = \]
\[= \text{tr}(-\epsilon(\psi'(\text{ad} a) - \psi'(0)\text{ ad} a) \circ \text{ad} b + o(\epsilon)). \]

In particular Equation (2) gives
\[\text{tr}(\rho \text{ ad} a) = 0, \]
\[\text{tr}\left(\left(\gamma(\text{ad} a) - \beta(\text{ad} a) + \beta(0) + \psi'(\text{ad} a) - \psi'(0)\right) \circ \text{ad} b\right) = 0. \]

Rescaling \(a, b \) and using the properties of \(g_{\lambda, \mu} \) we get
\[\rho = 0, \]
\[\gamma(t) - \beta(t) + \beta(0) + \psi'(t) - \psi'(0) = 0. \]

Remark 4.3. If one replaces \(\psi \) by a series \(f = f_0 + f_1 t + \cdots \in \mathbb{K}[[t]] \) one gets another conjecture that one can call an \(f \)-Kashiwara-Vergne conjecture. Then,

i) Theorem 4.2 is modified by replacing \(\psi \) by \(f \) and adding \(f_0 = 0 \) in the conclusion.

ii) Theorems 3.1, 3.2 and part i) imply \(f(t)_{\text{even}} = \psi(t)_{\text{even}} \), otherwise a universal solution of the \(f \)-Kashiwara-Vergne conjecture does not exist.

iii) If a universal solution of the \(f \)-Kashiwara-Vergne conjecture has \(A(X, Y) = B(-Y, -X) \) then one can show that \(f(t)_{\text{odd}} = f_1 t \) (we stress that \(\psi(t)_{\text{odd}} = \psi'(0) t \)). To get an easy proof one can use the Lie algebra of Remark 4.1.

A Comparison with quadratic solutions (by E. Petracci)

In the previous sections we did not determine the value of the constant \(\alpha \). Imposing the symmetry condition we obtain \(\beta_{\alpha}(\text{ad} X) Y + o(Y) = -\alpha Y - \gamma(-\text{ad} Y) X + o(X) \), so \(\alpha - \frac{1}{2} =: \beta_{\alpha}(0) = -\alpha \). Hence a universal symmetric solution has \(\alpha = \frac{1}{4} \).
Vergne and Alekseev-Meinrenken both considered a quadratic Lie algebra and obtained symmetric solutions. It is natural to ask whether these solutions are universal. In fact, quadratic Lie algebras have the special property \(\text{tr}((\text{ad}X)^{2n} \circ \text{ad}Y) = 0 \) for any \(n \in \mathbb{N} \) and any couple of vectors \(X, Y \), which simplifies the equation with traces \([2]\).

We have seen that a universal symmetric solution of the Kashiwara-Vergne conjecture has

\[
B(X, Y) = \frac{1}{4} X + \left(\beta_{1/4}(\text{ad}X) - \psi'(\text{ad}X) + \frac{1}{2} \text{id} \right)(Y) + o(Y),
\]

\[
A(X, Y) = \beta_{1/4}(\text{ad}X)(Y) + \frac{1}{2} (\pi \gamma_{1/4}(t, u) : [Y, Y]) x + o(Y^2)
\]

with \(\beta_\alpha(t) \) given in Theorem 3.1 and \(\pi \gamma_{1/4}(t, u) \) given in Theorem 3.2.

Remark A1. (Vergne’s solution for quadratic Lie algebras)

We denote by \(B_V(X, Y) \) the \(B \) found by M. Vergne in \([6]\). Following her paper we find \(B_V(X, Y) = \frac{1}{4} X + \gamma_V(\text{ad}X)(Y) + o(Y) \). Let

\[
R(t) := \frac{e^t - e^{-t} - 2t}{t^2},
\]

after a bit long calculation we see that the series \(\gamma_V(t) \) is given by

\[
t \gamma'_V(t) + 2 \gamma_V(t) = \frac{1}{8} t - \frac{1}{2} t \varphi_1(-t) R(t) \varphi_1'(t) = \frac{1}{8} t + \frac{1}{12} t^2 + \frac{1}{72} t^3 - \frac{1}{360} t^4 + o(t^4).
\]

This differential equation gives \(\gamma_V(t)_{\text{odd}} = \gamma_{1/4}(t)_{\text{odd}} \). A universal solution has

\[
t \gamma'_{1/4}(t) + 2 \gamma_{1/4}(t) = \frac{1}{8} t + \frac{1}{12} t^2 + \frac{1}{72} t^3 - \frac{1}{480} t^4 + o(t^4).
\]

In particular the symmetric solution found by M. Vergne for a quadratic Lie algebra is not universal.

Remark A2. (Alekseev-Meinrenken’s solution for quadratic Lie algebras)

Let \(B_{AM}(X, Y) = \alpha_{AM} + \gamma_{AM}(\text{ad}X)(Y) + o(Y) \) the \(B \) found by Alekseev and Meinrenken, \(\beta_{AM}(t) \) their series \(\beta(t) \), etc.

Following their paper \([11]\) and the paper \([6]\) of M. Vergne, after some efforts we find the following formulas. Let \(g(t) = \frac{1}{2} R(t) \), and \(\Pi(t) \) be the formal power series such that

\[
t \Pi'(t) + 2 \Pi(t) = \frac{1}{2} \varphi_1(t)^{-1} - g(t) \varphi_1(-t)(1 - \varphi_1(t)).
\]

Then

\[
\beta_{AM}(t) = \Pi(t) - \frac{1}{4} \left(g(t) \varphi_1(-t) - \frac{1}{2} \varphi_1(t)^{-1} \right) t - \frac{1}{2} \varphi_1(t)^{-1} + g(t) \varphi_1(-t)(1 - \varphi_1(t)),
\]

\[
\rho_{AM} = 0,
\]

\[
\gamma_{AM}(-t) + \gamma_{V}(t) = \varphi_1(-t) g(t) t \left(\beta_{AM}(-t) - \frac{1}{4} \varphi_1(t) - \varphi_1'(t) \right) + \frac{1}{2} \varphi_1(t)^{-1} t \beta_{AM}(-t) - \frac{1}{8} t,
\]

\[
\alpha_{AM} = \frac{1}{4}.
\]
Using Maple we get $\beta_{AM}(t) = 2 \beta_1(t)$, $\gamma_{AM}(t)_{odd} = \gamma_V(t)_{odd}$, and

$$t\gamma'_{AM}(t) + 2\gamma_{AM}(t) = \frac{1}{8} t + \frac{1}{12} t^2 + \frac{1}{72} t^3 - \frac{1}{720} t^4 + o(t^4).$$

In particular the symmetric solution of Alekseev and Meinrenken is not universal, and it is different from the solution of Vergne.

References

[1] Alekseev, A., and E. Meinrenken, *Poisson geometry and the Kashiwara-Vergne conjecture*, C. R. Acad. Sci., Paris, Ser. I 335 (2002), 723–728.

[2] Alekseev, A., and E. Meinrenken, *On the Kashiwara-Vergne conjecture*, Preprint [math.QA/0506499](http://arxiv.org/abs/math.QA/0506499).

[3] Bourbaki, N., “Eléments de mathématiques, groupes et algèbres de Lie, chapitres 2 et 3”, Hermann, 1972.

[4] Kashiwara, M., and M. Vergne, *The Campbell-Hausdorff Formula and Invariant Hyperfunctions*, Inventiones math. 47 (1978), 249-272.

[5] Torossian, C., *Sur la conjecture combinatoire de Kashiwara-Vergne*, J. Lie Theory 12 (2002), no. 2, 597–616.

[6] Vergne, M., *Le centre de l’algèbre enveloppante et la formule de Campbell-Hausdorff*, C. R. Acad. Sci., Paris, Ser. I Math. 329 (1999), 767–772.