Abstract

In third quantization the origin of fermion families is easy to understand: the electron field, the muon field and the tau field are identical fields in precisely the same sense as three electrons are identical and indistinguishable particles of a theory of second quantization. In both cases, the permutation of these fields or particles leaves the lagrangian invariant. One can also extend the concept of family to gauge bosons. This can be obtained through the semidirect product of the gauge group with the group of permutations of \(n \) objects. In this paper we have studied the group \(E_6^4 \bowtie S_4 \). We explain why we have chosen \(E_6 \) as fundamental gauge group factor and why we start with a model with four gauge boson/fermion families to accommodate and to fit the standard model with only three fermion families. We suggest a possible symmetry breaking pattern of \(E_6^4 \bowtie S_4 \) that could explain quark, lepton and neutrino masses and mixings.

Introduction

Recent neutrino experiments [1] have shown oscillations among neutrinos of different flavor. This is due to the fact that these neutrinos have masses
and mixing angles between different generations. Differently from the quark sector, where all mixing angles are small, in neutrino oscillations some angles are large or even maximal, like in atmospheric neutrinos. Since in grand unified theories there are stringent relations due to the grand unified symmetry between the quark sector and the lepton sector, it is necessary to understand quark/lepton differences within grand unified models. For instance, in the simplest SU(5) models we find that the down quark mass matrix is the transpose of the charged lepton mass matrix. In SO(10) the up quark Yukawa matrix is equal to the Dirac matrix of the neutrinos.

Several recent works have found interesting explanations of the amazing experimental results on neutrino oscillations, extending the standard model with new discrete flavor symmetries in the lepton sector [2, 3, 4, 5, 6, 7, 8, 9]. The advantage of the discrete symmetries with respect to the continuous one, is that they can naturally explain the peculiar structure of large mixings with a relatively large hierarchy between atmospheric and solar neutrino masses. For instance, a neutrino mass matrix that is almost exactly invariant under the permutations of the two heaviest families, that is a permutation of τ neutrino with the μ neutrino, directly predicts a maximal atmospheric angle and $\theta_{13} \simeq 0$. In perfect agreement with the experimental data. In fact if P is the operator that permutes the two heaviest families and P commutes with the mass matrix, then it exists an eigenvector of P with eigenvalue -1, and this is also a mass eigenstate. If, for instance, this is the heaviest neutrino state then $\theta_{13} = 0$ and the atmospheric angle is maximal.

Here we have assumed a diagonal charged lepton mass matrix. This is not always true, and it seems to be in contradiction with the fact that left-handed leptons belong to the same SU(2) doublet (see the section on the S_3 breaking misalignment). In a recent paper [4] we have shown that including such a S_2 symmetry in a larger discrete symmetry S_3 that permutes all three families, also the solar mixing angle can be explained in a natural way. It is important to note that such a discrete symmetry directly comes from an extension of field theory, that gives an explanation of the hierarchy between the unification scale and the electroweak scale, this is the so-called third quantization [10].

The difficulty that we have mentioned above is how to embed such a S_3 symmetry in a grand unified model, being compatible with the experimental observation of a strong hierarchy between physical quark masses and small mixing angles.
Several authors are studying this problem, but some questions are still open, and in some cases a fine-tuning is required to make leptons and quark results compatible.

In this paper we make a step forward in the grand unified model building with respect a previous work [5]. In fact we give a more convincing explanation of the reason why the S_3 singlet is the lightest among the left-handed neutrinos and also why there is so large splitting between the two components of the S_3 doublet. In addition we ameliorate the study of the E_6 unified group [11, 12] embedding it in $E_6 \rtimes S_4$, and giving a symmetry breaking pattern that simultaneously explains quark and lepton masses and mixings.

At the beginning we will discuss which kind of mass operators that break the S_3 symmetry are necessary in order to explain the quark mass and mixings. To do this we will make use of a montecarlo statistical analysis of the allowed mass operators, the method and some results can be found in [3]. Secondly we will extend our analysis to the charged lepton sector, putting in evidence the difficulties due to the grand unification hypothesis and how to overcome them. Next we propose a model of unification $E_6^4 \rtimes S_4$ that is the semidirect product of the gauge group E_6^4 with the flavor group S_4 [9], and one possible breaking pattern. Note that the gauge group E_6^4 does not commute with S_4, but it is the normal subgroup of the group G obtained as the semidirect product of E_6^4 with S_4, the permutation symmetry of four families. In such a model the concept of family is extended also to gauge bosons. Each family is composed of a subset of fermions and their own gauge bosons that mediate interactions between the fermion of one family only. Namely, in our specific model, the first family contains 27 fermions (the smallest E_6 irreducible representation) and 78 gauge bosons (the vector boson of E_6). These bosons only interact with the 27 fermions of the first family, while fermions of the other families are neutral (with respect them). Similarly the 78 gauge bosons of the second family (corresponding to the second E_6 factor in E_6^4) only interacts with the fermions of the second family. In other words the S_4 symmetry group permutates the four families, thus it permutates not only the fermions of the four families but also their gauge bosons. This is another way to understand why S_4 does not commute with E_6^4, and why G is the semidirect product (and not direct) between E_6^4 and S_4. At the end we will see how this G group can be broken in order to explain in a natural way masses and mixings both of quarks and leptons.
The flavor symmetry and gauge unification

Putting together the flavor symmetry and gauge unification is not trivial. After the experimental observation of large mixing angles in neutrino oscillations a distinction between quarks, and leptons has become manifest. Small mixing angles and large mass hierarchies in the quark sector do not show any apparent symmetry. On the contrary neutrino oscillations are due to a peculiar mixing matrix with two large mixing angles, \(\sin^2(\theta_{12})\) and \(\sin^2(\theta_{23})\), from the solar and atmospheric neutrinos. \(\sin^2(\theta_{13})\) is very small and close to zero. This pattern clearly demands an explanation. As already mentioned in the introduction, an almost \(S_3\) symmetric right-handed neutrino mass matrix is diagonalized by a unitary matrix \(V_\nu\) that is very similar to that one required to explain all neutrino experiments. However there are some issues that come out when one want to apply this symmetry to the full lagrangian and in particular if one also requires grand unification.

First, if we want the matrix \(V_\nu\) to be the one describing neutrino oscillations, \textit{i.e.} \(V_{PMNS} = V_\nu\), we need both an \(S_3\) symmetric Dirac neutrino mass matrix and a diagonal mass matrix for the charged leptons. Due to the large lepton mass hierarchies this requirement is incompatible with a \(S_3\) symmetric charged lepton mass matrix. At the same time, the left-handed component of charged leptons belong to the same \(SU(2)\) electroweak doublet of left-handed neutrinos. Both fermions must satisfy the same transformation properties under the \(S_3\) symmetry. We infer that a diagonal charged lepton yukawa interaction can appear only after the \(S_3\) symmetry is fully broken. A similar argument lead to the same conclusions for quarks. In grand unified models this means that we have to go beyond the minimal scenario.

For example, in the simplest \(E_6\) grand unification both the fermion families \(27^\alpha_i\) and the scalar electroweak doublet \(\tilde{27}^\gamma\) live in the same \((27)\) irreducible representation. Only one renormalizable yukawa interaction is allowed by symmetry arguments

\[
g_{ij} 27^\alpha_i 27^\beta_j \tilde{27}^\gamma \varepsilon_{\alpha\beta\gamma}. \tag{1}\]

This yukawa gives the relation

\[
M_e = M_\mu = M_\nu = M_u \tag{2}
\]

where \(M_\nu\) is the dirac neutrino mass matrix. The relations (2) imply that if \(M_\nu\) satisfies a symmetry requirement the same must be true for the other
fermion matrices. To avoid these problematic relations we go beyond the minimal \(E_6 \) model. Namely if we choose the Higgs doublet \(H \) in the \(\mathbf{351}' \) of \(SO(10) \subset E_6 \), the yukawa interaction becomes

\[
g_{ij} 27^i \bar{27}_j \tilde{351}'_{\alpha\beta}
\]

and we get

\[
M^i_{\nu} = g_{ij} H
\]
\[
M_e = M_d = M_u = 0.
\]

Now only \(M_\nu \) appears at the tree level in the fundamental lagrangian and it must satisfy all symmetry requirements. \(M_e, M_d, M_u \) will appear after the \(S_3 \) is fully broken and are induced by radiative corrections\(^2\). Now we have seen that the choice of a particular representation for the Higgs doublet gives different mass matrices, and for instance \(M_\nu \neq M_e \).

This argument can explain why \(M_\nu \) is \(S_3 \) symmetric, while \(M_e \) is not \(S_3 \) symmetric, but if we want to go further to explain atmospheric neutrino oscillations and \(\sin^2 \theta_{13} \simeq 0 \) we have to break the \(S_3 \) symmetry in the neutrino sector (as already mentioned in the introduction). This breaking occurs in a different direction with respect to the charged lepton sector. Neutrino data suggest that \(S_3 \) is broken into a \(S_2 \), that exchanges the \(\tau \) neutrino with the \(\mu \) neutrino. On the contrary the \(\tau \) lepton is the heaviest and this suggests a breaking of \(S_3 \) that leaves the exchange symmetry between the muon and the electron. Thus we have also to understand why the direction of the breaking of \(S_3 \) shows a difference between neutrinos and charged leptons. This issue will become more clear after when we will discuss with an explicit example the origin of this difference.

Quark masses

Before discussing grand unified models we want to understand how to break \(S_3 \) in the quark sector, namely which operators we need to introduce in order to explain quark masses and mixings. If we want to extend the standard

\(^1\)In this model, the right-handed neutrino is the \(SO(10) \) singlet contained in the \(\mathbf{27} \) of \(E_6 \). See [5].

\(^2\)All standard model yukawa couplings are very small, and this is compatible with this scenario. Only the top quark has a large yukawa coupling, the reason could be due to a non perturbative correction, like those coming from the renormalization group evolution.
model in a theory of third quantization, that explains why we have replications of fermion families, then we have to assume that the three fermion families transform as a triplet with respect S_3 [10]. This triplet is a reducible representation of S_3, and more precisely it is the sum of a doublet and a singlet of S_3. This is a natural choice in the context of third quantization: second quantization is a theory that imposes that all electrons are identical particles, that is the Hamiltonian that describes the time evolution of the physical states of n electrons must be symmetric under permutations of the space coordinates of the n electron positions. The analogue of this picture in third quantization is a system of n fermion families that is described by an Hamiltonian that is symmetric under permutations S_n among these fermion families. As a consequence in a world with three families, these families must transform as a triplet of S_3. In our world this symmetry is not exact, otherwise we would observe two charged leptons degenerate in mass. To spontaneously break this symmetry S_3 we will introduce a scalar field that is a standard model singlet and a triplet with respect S_3. Also in this case the choice of a S_3 triplet instead of a doublet comes from third quantization.

We will assume that the three components of this field ϕ_i (with $i = 1, 3$) take three different vev $v_3 \gg v_2 \gg v_1$ in order to completely break the group S_3, while the Higgs responsible for the electroweak breaking is a singlet of S_3. In fact we will see that even if we choose the electroweak Higgs to be a triplet under S_3, at the electroweak scale we will have only the singlet component. It is better to require only one Higgs doublet at the electroweak scale to avoid potentially dangerous flavor changing neutral currents.

Let us start observing that operators like

$$\sum_{i,j} \left(g \bar{d}_L^i d_R^i H + g' \bar{d}_L^i d_R^j H \right)$$

(6)

that are S_3 invariant are disfavored, because they give two degenerate masses and large mixing angles. In principle one could choose $g' \gg g$ to obtain one large mass and two light states nearly degenerate, but such a hierarchy is difficult to understand in the context of a grand unified model with S_3 as a flavor group. However this possibility is not ruled out and probably deserves further investigation. We prefer to get rid of these operators, and for this we will make use of an additional $U(1)$ symmetry from the E_6 group.
When the fields ϕ^d will take a vev, the Yukawa coupling between the electroweak Higgs doublet H and the quarks can be expressed as:

$$
\sum_{i,j,k} \left(g^d_i d_L^i d_R^j H \phi^d_i + g^d_i d_L^i d_R^j H \phi^d_j + g^d_i d_L^i d_R^j H \phi^d_k + g^d_i d_L^i d_R^j H \phi^d_k \right). \quad (7)
$$

Table 1: Quantum numbers of the irrep 27

Fields	U_{down}	Y	I^w_3	Q_r	Q_t
\bar{D}_1	+8	$-\frac{1}{3}$	0	2	-2
\bar{D}_2	+8	$-\frac{1}{3}$	0	2	-2
\bar{u}^c_R	-4	$\frac{2}{3}$	0	-1	1
\bar{D}_3	+8	$-\frac{1}{3}$	0	2	-2
\bar{u}^c_R	-4	$\frac{2}{3}$	0	-1	1
\bar{u}^c_R	-4	$\frac{2}{3}$	0	-1	1
N_L	+8	$-\frac{1}{3}$	2	-2	
d_{L1}	-4	$\frac{1}{3}$	-1	1	
d_{L2}	-4	$\frac{1}{3}$	-1	1	
d_{L3}	-4	$\frac{1}{3}$	-1	1	
E_l	+8	2	-2		
u_{L1}	-4	$\frac{1}{3}$	-1	1	
u_{L2}	-4	$\frac{1}{3}$	-1	1	
u_{L3}	-4	$\frac{1}{3}$	-1	1	

The E_6 group contains two extra U(1) that commute with the standard model gauge group. They can be defined from the following embedding $E_6 \supset SO(10) \times U(1)_t \supset SU(5) \times U(1)_r \times U(1)_l$ (see Table 1). If we choose the electroweak Higgs doublet H with charges $q_r, q_t = (-3, -5)$, the Yukawa couplings in eq.(6) are forbidden. In this case the Yukawa couplings for the quark sector arise as higher mass dimension operators, and only after both the S_3 symmetry and the additional U(1) are broken (this explains why this symmetry is not observed in the quark masses). To be more specific, we can choose the triplet of S_3, ϕ^d_1, responsible for the S_3 breaking to have the following charges $(q_r, q_t) = (+5, +7)$. Such a field can be found in the 1728 of E_6. With these choices, the following operators are compatible both with S_3 and $U(1)_r \times U(1)_l$

$$
\sum_{i,j,k} \left(g^d_i d_L^i d_R^j H \phi^d_i + g^d_i d_L^i d_R^j H \phi^d_j + g^d_i d_L^i d_R^j H \phi^d_k + g^d_i d_L^i d_R^j H \phi^d_k \right). \quad (7)
$$

3 This choice is possible if the Higgs belongs to the 351' representation of E_6 or the 1404, of $E_6 \rtimes S_4$, see the appendix and [5, 11]
troweak Higgs and the quarks will appear. To go forward with the model building, we will use a statistical analysis where some preferred values for the g^d couplings have been selected. An extensive discussion of the method can be found in [3]. In particular it has been found that g^d_L is slightly smaller than g^d, while g^d_R and g^d_3 are of the same order of magnitude and very small. Furthermore it has been found $v_3 \gg v_2 \gg v_1$. The up quark mass matrix is found to be approximately diagonal. For this reason we neglect in the up quark sector terms proportional to g^u_L, g^u_R, g^u_3, and only one operator will contribute to the up quark Yukawa interactions

$$
\sum_i g^u H \phi^u_i.
$$

Table 2: g couplings in the quark sector. We define $\phi_3 = 1$ in order to set the mass scale of all g couplings. These have the dimension of the inverse of a mass.

	up	down
g^u	m_u/m_t	0.848
g^d	m_c/m_t	0.054783
g^L	1	$0.305 e^{-i 0.02}$
g^R	0	$0.002 e^{-i 0.12}$
g_3	0	$0.009 e^{i 1.82}$

The fact that g^d_3 and g^d_R are very small and of the same order of magnitude can help us in the construction of the model, since this can indirectly indicate the existence of an unbroken symmetry that forbids these operators. In fact we can extend the standard model with few additional U(1) as follows: let us choose the following group $G = (U(1)_r \times U(1)_t)^3 \rhd S_3$. Each $(U(1)_r \times U(1)_t)$ gauge symmetry factor needs two gauge bosons that belongs to the i-th family. In practice we enlarge the concept of family to the gauge bosons. Each family contains 27 fermions (the irreducible representation of E_6) plus two gauge bosons of the $(U(1)_r \times U(1)_t)$ group relative to the same family. These two gauge bosons of the i-th family interact only with the i-th fermion.
family\(^4\). These two gauge bosons transform as a triplet with respect the permutation group \(S_3\). For this reason the group \(G = (U(1)_r \times U(1)_t)^3 \triangleright S_3\) is the semidirect product and not the direct product. It is easy to see that only the operators below are compatible with \(G\)
\[
g d_L^i d_R^i H^i \phi_i. \tag{9}
\]
Note that we have added the family index \(i\) also to the electroweak doublet \(H^i\). This is a necessary choice if we want to make a \(G\) invariant lagrangian. On the contrary, the operator
\[
\sum_{i,j} g_L \bar{d}_L^i d_R^j H^i \phi_i \tag{10}
\]
is not \(G\) invariant. In fact for \(j \neq i\), the \(d_R^j\) is the only fermion field that carries non zero charges with respect the \(U(1)\) of \(j\)-th family: the operator (10) does not conserve the charge of the \(j\)-th family gauge group. This justifies \(g \gg g_L\). This hierarchy is not large, as we can see in Table 2. A hierarchy much more important is between \(g_L\) and \(g_3, g_R\). To explain such a hierarchy we can properly choose the breaking direction of \(G\). The only choice consistent with \(g_L \gg g_R, g_3\) is the breaking of \(G\) in \(G' = (U(1)_{\text{down}})^3 \triangleright S_3\), where \(U(1)_{\text{down}}\) is the linear combination of \(U(1)_r\) and \(U(1)_t\) that gives a neutral right-handed down quark. To be more precise, if we choose the generator of \(U(1)_{\text{down}}\) to be the linear combination \(Y_r - 3Y_t\) (see Table 1), then only the following operators are \(G'\) invariant
\[
g d_L^i d_R^j H^i \phi_i + g_L \bar{d}_L^i d_R^j H^i \phi_i \tag{11}
\]
In fact the fermionic field \(d_R^j\) does not carry charge with respect \(U(1)_{\text{down}}\), whatever it is \(j\). Instead the group symmetry \(G' = (U(1)_{\text{down}})^3 \triangleright S_3\) forbids the operators with couplings \(g_R\) and \(g_3\). It is at the breaking scale of \(G'\) that also these operators appear.

Charged lepton masses

Now let us try to extend the discussion to charged leptons and neutrinos. In \(E_6\), the charged leptons have the same \(U(1)\) charges of down quarks, once we

\(^4\)Next we will see that each family will contain all the 78 bosons of \(E_6\), but here we focus on just these two abelian factors \((U(1)_r \times U(1)_t)\), since the rest of gauge bosons are irrelevant for the discussion below.
exchange the left-handed components with the right-handed ones. In fact the d_L has the same charges of the lepton e_R, while d_R has the same charges of the lepton e_L (see Table 1). In principle, we could expect that the charged lepton mass matrix is similar in terms of order of magnitude to the down quark mass matrix, except for a transposition operation that exchanges left-handed components with right-handed ones. In SU(5) unified models, often it happens that the down quark matrix is exactly the transposed of the charged lepton matrix. If we apply such a transposition operation to the down quark mass matrix obtained in the model of Table 2, and we take it as the charged lepton mass matrix, we obtain that the unitary matrix that diagonalizes it is very similar to the V_{pmns} mixing matrix that fit all neutrino oscillation data. This result would be very interesting, because it would provide us with an explanation of neutrino oscillation data and their peculiarities, with no further effort. A similar matrix has been discussed in [6]. However such a scheme of exact SU(5) unification does not work. In fact lepton physical masses are different from the down quark masses at the unification scale, in particular the electron is much lighter than the down quark, and this contradicts the fact that the transposed matrix has the same eigenvalues of the original one. The minimal SU(5) with the exact unification must be discarded, but a relation between the elements of the two matrices (lepton and down quark ones) in terms only of order of magnitudes is still allowed. Namely the relations below

\begin{align*}
g^d_L & \simeq g^l_R \\
g^d_R & \simeq g^l_L \\
g^d_3 & \simeq g^l_3
\end{align*}

are compatible with the charges of the group G. If relations (12) would be exact, we would be back to the exact minimal SU(5) unification, and the electron mass would be too large5. To reconcile the electron mass with its experimental value is enough to increase g^l by a factor of two, with respect g_d (see Table 3), and this is not incompatible with the group G. The increase of g^l improves the fit of all charged lepton physical masses, but the mass matrix

5Another possibility, not explored here, is to add an abelian factor $(U(1)_{\text{hyper}})^3$ to the group G, whose generator is proportional to the usual hypercharge. Such an extended G group would contain charges that distinguish leptons and down quarks and would not give relations (12).
becomes closer to a diagonal matrix; as a consequence the oscillation angles deduced from it are no longer large enough to explain flavor oscillation in neutrino phenomenology.

Namely taking the g couplings for the charged leptons as in Table 3 and

down	lepton
$g^d = 0.848$	$g^l = 1.747$
$g^d_L = 0.305 \ e^{-0.02 \ i}$	$g^l_L = 0.0048 \ e^{-0.12 \ i}$
$g^d_R = 0.002 \ e^{-0.12 \ i}$	$g^l_R = 0.152 \ e^{-0.02 \ i}$
$g^d_3 = 0.009 \ e^{1.82 \ i}$	$g^l_3 = 0.0085 \ e^{1.82 \ i}$

Table 3: g couplings in the down quark sector and charged lepton sector. The mass scale has been set as in Table 2.

the following lagrangian

$$\sum_{i,j,k} \left(g^l e^i_L e^j_R H \phi^d_i + g^l e^i_L e^j_R H \phi^d_i + g^d_R e^i_L e^j_R H \phi^d_i + g^d_3 e^i_L e^j_R H \phi^d_i \right)$$

we get the following mixing angles

$$V_l = \begin{pmatrix} 0.991 e^{3.029 \ i} & 0.100 e^{-1.131 \ i} & 0.082 \\ 0.096 e^{-2.161 \ i} & 0.991 e^{3.035 \ i} & 0.091 \\ 0.087 e^{-0.021 \ i} & 0.087 e^{-0.025 \ i} & 0.992 \end{pmatrix}.$$ (14)

The explanation for neutrino oscillations will be given in the next section in terms of new symmetries in the neutrino sector.

Neutrino oscillations

In the previous section we have seen that extending the standard model with an additional gauge symmetry group $G = (U(1)_r \times U(1)_l)^3 > \alpha S_3$ we are able to give a realistic explanation for masses and mixings in the quark sector. This is also compatible with the physical charged lepton masses. The G group can be embedded in a larger and unified symmetry group. Furthermore it is not in contradiction with physical quark and lepton masses, differently from the minimal SU(5) predictions6.

6Minimal SU(5) exact unification is also disfavored by the standard model measurement of gauge coupling that do not exactly unify at the unification scale [13].
After the assumption of a family permutation symmetry, as derived from third quantization, we have been lead to add new abelian group factors to the gauge group in order to explain quark mass and mixings, and the right hierarchies among different mass operators.

Let us try to explain large neutrino mixings. In a previous work [4] we have shown that the S_3 symmetry and its breaking into S_2, can explain the peculiar pattern of the V_{pmns}. In fact, in that paper we started from the matrix below

$$m_{\text{maj}} = \begin{pmatrix} a + b + \varepsilon & a & a \\ a & a + b & a \\ a & a & a + b \end{pmatrix},$$

(15)

showing that it is diagonalized by the so-called tri-bimaximal matrix in the limit $a \gg \varepsilon$

$$V_\nu = \begin{pmatrix} \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{2}} \end{pmatrix}. $$

(16)

The matrix (15) is S_3 symmetric in the limit $\varepsilon \ll a, b$, while the small parameter ε breaks S_3 into S_2. From one side the matrix (15) gives a simple explanation for the mixing angles in the V_{pmns}, on the other side it does not give a clear motivation for the mass hierarchies in solar and atmospheric experiments. Additional hypothesis are needed to justify the right hierarchy. In fact the mass matrix (15) has two almost degenerate mass eigenstates, (if $\varepsilon \ll a, b$) both with mass b and one state with mass $3a + b$. Neutrino phenomenology requires that the non degenerate state, that usually is the heaviest one, does not mix with the electron neutrino, and it is maximally mixed with the tau and muon neutrino. This is not consistent with the diagonalization of the matrix (15), where the non degenerate state, with mass $3a + b$ is the S_3 singlet, thus it has a large mixing with the electron neutrino. Further effort is needed to understand the solar and atmospheric masses. We have to specify the values of b, a, ε and understand how to modify their relations with solar/atmospheric mass data. It is easy to realize that we have to take $b \ll \varepsilon \ll a$ in order to have three masses with different order of magnitudes. But this is not yet enough, because the lightest neutrino is the one with mass b, that does not mix with the electron neutrino, while it must be the heaviest in order to be compatible with the experiments. To achieve the final result, we also need to make neutrino masses proportional
to the inverse of the free parameters \(b, \varepsilon, a \). Therefore we exploit the seesaw mechanism as follows. Let us imagine that left-handed neutrino masses comes out from the usual seesaw mechanism. In this case the light neutrino mass matrix is proportional to

\[
M_L = M_{\text{dirac}} M_{\text{maj}}^{-1} M_{\text{dirac}}^t
\] (17)

where \(M_{\text{maj}} \) is the majorana mass of the right-handed neutrino while \(M_{\text{dirac}} \) is the dirac mass between the left-handed and right-handed neutrinos. In eq. (17) the majorana masses \(M_{\text{maj}} \) are typically of the order of the unification scale, while \(M_{\text{dirac}} \) is of the order of the electroweak scale. If \(M_{\text{dirac}} \) is proportional to the identity matrix, the unitary matrix that diagonalizes \(M_L \) is identical to the one that diagonalizes \(M_{\text{maj}} \), while the eigenvalues of \(M_L \) will be proportional to the inverse of the eigenvalues of \(M_{\text{maj}} \). Namely, if \(b \ll \varepsilon \ll a \), if \(M_{\text{maj}} \) is equal to eq. (15) and if

\[
M_{\text{dirac}} = mI
\] (18)

where \(I \) is the identity matrix, we get the following physical masses for the lightest neutrinos

\[
\begin{align*}
m_1 &= \frac{3m^2}{2\varepsilon} \\
m_2 &= \frac{m^2}{3a} \\
m_3 &= \frac{m^2}{b}
\end{align*}
\] (19)

while the diagonalization unitary matrix is the (16). This result is known [4], but now we want to deduce the matrices (15),(18) and the hierarchy \(a \gg \varepsilon \gg b \) from new fundamental symmetries and their spontaneous breaking. Explaining the matrix (18) is easy, since it is enough to extend the previously discussed symmetries in the quark sector (see the previous section) also to neutrinos: observing that the Higgs \(H_i \) of the \(i \)-th family has charges \((q_r, q_t) = (+3, +5)\) with respect the \(U(1) \) of the \(i \)-th family. In this case the following Yukawa interaction

\[
\sum_i g_i \bar{\nu}_L^i X^i_L H^i
\] (20)

is the only Yukawa coupling allowed by the \(G \) symmetry. In fact the fermion \(X^i_L \) is the singlet of \(SU(3) \times SU(2) \times U(1) \) with \((q_r, q_t) = (0, 4)\) with respect the additional \(U(1) \) of the \(i \)-th family (see Table 1). It is easy to check that
$g\bar{\nu}_L^i X^i_L H_i$ is S_3 invariant but for $i \neq j$ the U(1)-charges of the i-th family are not conserved. Note that the G symmetry allows for the tree level coupling (20) only for neutrinos. Quark and charged leptons (including up quarks that usually unify with neutrinos in SO(10)) need higher mass dimension operators, that is operators including a new field ϕ_i with non zero U(1) charges to make a gauge invariant term. This is an important property of the model (see [5]). This is to avoid a unification relation between the up quarks and neutrinos, that would make difficult to make consistent mass and mixings in the up quark sector with those observed in the neutrino sector7. It is not difficult to reproduce the Dirac mass matrix of eq.(18), but the matrix of eq. (15) and in particular the hierarchy $b \ll \varepsilon \ll a$, cannot be deduced in an obvious way from the model with the G symmetry that we have considered above. In fact it is not possible to deduce from the G symmetry that the majorana masses below

$$
\sum_{ij} \left(m_0 X^i_L X^j_L + m_1 X^i_L X^j_L \right)
$$

satisfy $m_0 \ll m_1$ or equivalently $b \ll a$. Unfortunately the G symmetry implies $m_0 > m_1$. We can try to enlarge the flavor symmetry G in order to understand this difference. Third quantization requires that the flavor symmetry is the permutation symmetry of all families [10]. Thus we can enlarge S_3 into S_4, but we have to introduce a fourth family. This fourth family cannot have the same quantum numbers of the first three families with respect the standard model gauge group, otherwise, we would have seen it.8 Third quantization and S_4 symmetry offer the possibility to extend the concept of family to all gauge bosons (and not only to the U(1) as we have done in the previous section), and to avoid the problem of having four chiral families at the electroweak scale. We will show in the following how to proceed. In the previous section we have only mentioned the possibility to consider a grand unified group, we are now able to give an explicit choice. Let us consider the group $E_6 \triangleright S_4$. We remind that \triangleright means the semidirect product: the action of the elements of S_4, onto the gauge group E_6 is to permute the different E_6 factors of the full group E_6. In other words the concept of family

7To avoid the unification between up quarks and neutrinos we have added two U(1) of E_6. The unique U(1) that comes from SO(10) would not be sufficient [5].

8Precision tests and direct searches seems to disfavor this possibility. Also the number of light neutrinos measured at LEP, appears to forbid this possibility.
is extended to the gauge group and the gauge bosons. In this specific case, before the spontaneous symmetry breaking, each family contains 27 fermions (the smallest irreducible representation of \(E_6 \)) and 78 gauge bosons (\(E_6 \) gauge bosons). Fermions and bosons of each family interact among them, but do not interact with fermion and bosons of a distinct family. After the spontaneous symmetry breaking of the gauge symmetry, the standard model gauge bosons are a linear combination of the gauge bosons of the first three families. This explains why only the first three families have non zero charges, with respect SU(3)×SU(2)×U(1) of the standard model. For example, if we label \(\lambda_i \) the generator of the color \(SU(3) \) of the \(i \)-th family (i.e. it acts only on the fermions of the \(i \)-th family) we have that the generator of the QCD group of the standard model, will be given by the linear combination

\[
\lambda^a = \lambda_1^a + \lambda_2^a + \lambda_3^a. \tag{22}
\]

In this case the standard model gluon \(A^a_\mu \), that is contracted to the generator \(\lambda^a \), only interacts with the first three families, the generator \(\lambda_4^a \) being missing in the combination (22). It is not difficult to imagine a spontaneous symmetry breaking pattern of the \(E_4^6 \) symmetry that gives the generators in eq. (22) as the only unbroken generators of the group SU(3). One can easily check that the group \(G \) of the previous section is a subgroup of \(E_4^6 \) \(\triangleleft S_4 \), and we understand that the group \(G \) appears at an intermediate scale, as the remaining unbroken symmetry after spontaneous breaking of the full group.

We now proceed to see what happens in the neutrino sector and why such a large unified group helps in understanding the mass hierarchy of the singlet/doublet \(S_3 \) components (\(m_0 \ll m_1 \) in eq. (21)) and the large splitting between the doublet components. Let us write the most general renormalizable lagrangian, compatible with \(E_4^6 \) \(\triangleleft S_4 \), focusing on the neutrino sector (the indices \(ij \) now run from 1 to 4)

\[
\sum_{i,j} \left(g\nu^i_L X^i_L H^i + g_1 \nu^i_R X^i_L \omega^{ij} \right). \tag{23}
\]

We have added a scalar field \(\omega^{ij} \), that is a singlet of the standard model. It takes a vev, giving a Dirac mass that mixes \(\nu_R \) and \(X_L \). The reason of this choice is the following. We have chosen a tensor with two indices \(ij \), because a field \(\alpha^i \) with only one index would introduce a diagonal mass term \(g_1 \nu^i_R X^i_L \alpha^i \). This term gives mass both to the doublet and the singlet of \(S_3 \),
mixing them. Our aim is different, we want to give mass only to the singlet, leaving the doublets massless. This hierarchy between singlets and doublets is necessary, as we have explained after the example of eq. (21). After having discarded the tensor α^i, we can consider the two indices tensor ω^{ij}: if we take it as a symmetric tensor under the exchange of the i and j indices, then this scalar field could take a vev in the direction $\omega^{ii} = v$ and we obtain a mass both for the singlet and the doublets. There is only one peculiar direction $\omega^{ij} = v$ (for any choice of i and j) that gives the hierarchy that we need, but we have no fundamental argument to justify this choice.

Instead, if we take an antisymmetric tensor ω^{ij} such that $\omega^{ij} = -\omega^{ji}$, then the scalar field ω no longer has diagonal elements ($\omega^{ii} = 0$, by definition of antisymmetric tensor) and as we will see it will give mass only to the singlets of S_3. A comment is in order here, on the choice of the scalar field ω^{ij}: third quantization predicts that if a field belongs to a family it must carry only one index i. It seems that the scalar field ω^{ij} does not satisfy this rule. However we can imagine that the scalar field ω^{ij} is not a fundamental field, but it could be a fermion condensate $\langle \omega^{ij} \rangle = \langle \eta^i \psi^j \rangle$. In this case the fundamental fields η^i and ψ^j carry only one family index as predicted by third quantization. Being an antisymmetric tensor, the scalar field ω^{ij} can induce only one renormalizable yukawa interaction, that is the one in eq. (23). It mixes ν_R with X_L, and it cannot mix fields of the same kind ($X'_L X'_L \omega^{ij} = 0$ for the antisymmetric nature of ω). We properly choose the charges of the scalar field ω^{ij} in order to make the lagrangian (23) $E_6 \times S_4$ invariant. The antisymmetric field ω^{ij} does not contains S_4 singlet and it must break it. It contains only one S_3 singlet, so it can break S_4 into S_3 as we desired. Namely, if S_4 is broken and the S_3 is unbroken the scalar field ω^{ij} can take a vev only in one direction

$$\langle \omega^{ij} \rangle = \begin{pmatrix} 0 & 0 & 0 & v \\ 0 & 0 & 0 & v \\ 0 & 0 & 0 & v \\ -v & -v & -v & 0 \end{pmatrix}_{ij} \quad . \quad \text{(24)}$$

It is easy to check that the permutation of the first three families leaves the vev (24) invariant. For completeness, we give an example of scalar potential that can give the desired vev as in eq. (24)

$$V = -\mu_1^2 \sum_i h_i^2 + \mu_2^2 \sum_{ij} |\omega_{ij}|^2 + \lambda_1 \sum_{ij} |\omega_{ij}|^4 + \lambda_2 \left(\sum_{ij} |\omega_{ij}|^2 \right)^2 \quad . \quad \text{(25)}$$
\[\lambda_3 \sum_{ijkl} \omega_{ij} \omega^{ij} \omega_{ik} \omega^{ik} - \lambda_4 \sum_{ij} |\omega_{ij}|^2 h_j^2 - \lambda_5 \sum_i h_i^4 + \lambda_6 (\sum_i h_i^2)^2. \]

Note that we have added a scalar field \(h_i \) that is a singlet under \(E_6 \), and transform as a triplet (31) under \(S_4 \). This additional field seems to be necessary if we want that the vev (24) is a minimum of the potential and if we want the breaking \(U(1)^4_{\text{down}} \succ S_4 \supset S_3 \). Putting this vev in eq. (23), we obtain the mass for some neutrino components

\[g_\nu^i X_i^L H^i + g_1 v \nu^i_R X_i^L - g_1 v \nu^4_R X_i^L + \text{h.c.} \quad (26) \]

We get two Dirac neutrinos \((\nu^4_R, X_4^L)\) and \((\nu^s_R, X_3^L)\) with mass at the breaking scale of \(S_4 \), \(g_1 v \). These two Dirac fermions are very much heavy and are composed by four weyl fermions \(\nu^4_R, X_4^L, X_3^L = X_1^L + X_2^L + X_3^L, \nu^s_R = \nu^1_R + \nu^2_R + \nu^3_R \), that transform as singlets under \(S_3 \): all doublets of \(S_3 \) remain massless. This accomplishes our task, the same configuration given in the example eq. (15-21), is achieved here: very heavy \(S_3 \) singlets compared to very light doublets. The diagonalization of the neutrino mass matrix proceeds similarly to the diagonalization of the simplified model of eq. (15): the main difference is that in the simplified model eq. (15) we only have a majorana mass for the three majorana fermions \(X_i^L \). In this model the dominant mass term mixes \(X_i^L \) and \(\nu^i_R \), and forms very heavy dirac fermions. In both cases the unitary matrix that diagonalizes the light left-handed neutrinos is given by the tri-bimaximal matrix (16). Deriving the mass eigenvalues is less trivial than the usual seesaw. First we have to give mass to the \(S_3 \) doublets that are combinations of \(X_i^L \) and \(\nu^i_R \). We introduce two scalar fields \(\xi^i \) and \(\chi^i \) (since we have enlarged the permutation group, these are quadruplets under \(S_4 \)). They break \(S_3 \) into \(S_2 \) through the vev \(\xi^1 = v_1, \xi^2 = \xi^3 = v_2, \xi^4 = v_1 \) and \(\chi^1 = v'_1, \chi^2 = \chi^3 = v'_2, \chi^4 = v'_4 \) with \(v_2 \ll v_1 \ll v \) and \(v'_2 \ll v'_1 \ll v \). The full lagrangian in the neutrino sector now becomes

\[g_\nu^i X_i^L H^i + g_1 v \sum_{i=1}^3 \nu^i_R X_i^L - g_1 v \sum_{j=1}^3 \nu^4_R X_i^L + g_2 \sum_{i=1}^4 X_i^L X_i^L \xi^i + g_3 \sum_{i=1}^4 \nu^i_R \nu^i_R \chi^i + \text{h.c.} \quad (27) \]

\[^9 \text{All these neutrinos are expected to be much heavier than the weak scale and close to the unification scale.} \]

\[^{10} \text{See the appendix B.} \]
As shown in the appendix, we obtain the following masses and mixings for the light left-handed neutrinos when also the Higgs field H takes a vev 11 $\langle H_i \rangle = (H, H, H, H^4)$

\[
\begin{align*}
m_1 & = \frac{3g^2 H^2}{2g_2 v_1 + g_2 v_2} \\
m_2 & = \frac{g^2 H^2 v_1'}{3g_1^2 v_2} \\
m_3 & = \frac{g^2 H^2}{g_2 v_2}.
\end{align*}
\]

These give the following solar and atmospheric masses in the limit 12 $v \gg v_1' \gg v_1 \gg v_2$

\[
\begin{align*}
\Delta m_{\text{atm}}^2 & = \frac{g^4 H^4}{g_2^2 v_2} \\
\Delta m_{\text{sol}}^2 & = -\frac{9g^4 H^4}{4g_2 v_1'^2}.
\end{align*}
\]

and the following mixing matrix

\[
V_\nu = \begin{pmatrix}
-\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{pmatrix}.
\]

Combining the V_l obtained in the previous section, eq. (14) and the V_ν we get the following predictions for the solar and atmospheric mixing angles

\[
\begin{align*}
\sin^2(\theta_{12}) & = 0.25 \\
\sin^2(\theta_{23}) & = 0.58 \\
\sin^2(\theta_{13}) & = 0.005.
\end{align*}
\]

These mixing angles and the hierarchy $|\Delta m_{\text{atm}}^2| \gg |\Delta m_{\text{sol}}^2|$ (see eq.(31)) are in agreement with the experimental observation, but the sign of Δm_{sol}^2 is wrong. Further study is needed to predict the correct sign.

11The component H_4 of the field is a standard model singlet and it takes a vev much larger than the electroweak scale, while all the first three components of H_i take the same vev H. This is because only the S_3 singlet component of H_i takes a vev. For an explanation, see the next section.

12This hierarchy seems in contradiction with that one observed in the charged lepton sector $m_\tau \gg m_e$, also shown in Table 2. See the next section for an explanation. We obtain a negative Δm_{sol}^2, while solar neutrino data prefer a positive number, see ref.[14] for the data analysis. Our prediction can only explain $|\Delta m_{\text{atm}}^2| \gg |\Delta m_{\text{sol}}^2|$. In order to predict the correct sign, further investigation is needed.
Let us summarize the model. We start with the group $E_6^4 \triangleright S_4$. This group is broken into $(SU(3) \times SU(2) \times U(1) \times U(1)_r \times U(1)_t)^4 \triangleright S_4$ at the intermediate scale M_X. The $(U(1)_r \times U(1)_t)^4$ factor breaks at the scale M_X' and we remain with the $(SU(3) \times SU(2) \times U(1) \times U(1)_\text{down})^4 \triangleright S_4$ symmetry. Where $U(1)\text{down}$ is the combination of $U(1)_r$ and $U(1)_t$ that leaves both the right-handed quark and the left-handed charged leptons neutral. There is another scale M_X'' below the M_X' at which the group is further broken into $SU(3) \times SU(2) \times U(1) \times S_3$. If Λ is the characteristic scale of the fundamental theory $E_6^4 \triangleright S_4$ we could expect the following hierarchies for all couplings

$g_L^d \simeq \frac{M_X'}{\Lambda^2}$, \quad $g_R^d \simeq \frac{M_X'}{\Lambda^2}$

$g_R^d \simeq \frac{M_X''}{\Lambda^2}$, \quad $g_L^d \simeq \frac{M_X''}{\Lambda^2}$

$g_R^3 \simeq \frac{M_X''}{\Lambda^2}$, \quad $g_L^3 \simeq \frac{M_X''}{\Lambda^2}$

$g_R^u \simeq \frac{M_X''}{\Lambda^2}$, \quad $g_L^u \simeq \frac{M_X''}{\Lambda^2}$

$v_2 \ll v_1 \ll M_X''$

that are in agreement with the values derived from the experimental data (see Table 2 and 3).

Neutrino and charged fermions misalignment in the S_3 symmetry breaking

In the previous sections we have discussed the S_3 spontaneous symmetry breaking and its implications to the fermion mass matrices. To each fermion type, we have associated its own scalar S_3 triplet, responsible for the S_3 breaking. We have associated the scalar field ϕ_i^u, to the up quark sector. The down quark and charged lepton mass matrices appear after the field ϕ_i^d take a vev. Finally the field ξ_i and χ_i are responsible for the S_3 breaking in the neutrino sector. We have found that differently from the charged fermions, where the hierarchy proceeds in the direction $\phi_3 \gg \phi_2 \gg \phi_1$, we need an inverted hierarchy for the scalar fields ξ_i and χ_i, namely $\xi_1 \gg \xi_2 \simeq \xi_3$. An explanation of this special feature requires a detailed analysis of the effective
The scalar potential of the full lagrangian. We have not done this study. Instead we will show a rather simple mechanism that could give the desired breaking and we postpone a more rigorous proof in a future work. Let us assume that only two scalar fields ξ_i and ϕ_i^u are responsible for the S_3 breaking and that the other fields ϕ_i^d and χ_i are not fundamental fields but just products and combinations of other fundamental fields. The full effective scalar potential is

$$V = V_1(\xi_i) + V_2(\phi_i^u) + V_3(\phi_i^u, \xi_i)$$

and it is invariant under $(U(1)_r \times U(1)_t)^4 \lhd S_4$. The charges of ξ_i and ϕ_i^u can be deduced from eq.(8,27) and Table 1. It is not difficult to show that gauge invariance implies both fields ξ_i and ϕ_i^u must appear as $2n$ powers (with n integer) in the potential (33). If all mixed terms like $\lambda \sum |\xi_i \phi_i^u|^2$ have a positive λ coefficient then the fields ξ_i and ϕ_i^u have orthogonal vev (misaligned). This is precisely what is required by the model discussed in the previous sections.

The electroweak symmetry breaking and the flavor symmetry S_3

In the previous sections we have seen that the Higgs doublet responsible for the electroweak symmetry breaking has to be chosen in the triplet reducible representation of S_3 in order to make the lagrangian (3) gauge invariant under $(U(1)_{down})^3 \lhd S_3$. At the same time we want that there is only one Higgs doublet at the electroweak scale. This is to avoid dangerous flavor changing neutral currents due to the virtual exchange of additional Higgs fields. In this section we will see that requiring just one Higgs doublet at the weak scale implies that only one component of the original triplet H^i (with $i = 1, 3$) can take a vev, and this component must be a singlet of S_3. This is true even if the breaking of S_3 occurs at a much higher scale. The reason is the following.

We can split the effective potential of the three Higgs doublets H^i as follows

$$V(H^i) = V_{S_3}(H^i) + \Delta V(H^i, \phi^i)$$

where V_{S_3} is an invariant potential under S_3 while ΔV breaks S_3 because it contains all scalar fields ϕ^i that break the S_3 symmetry. ΔV is defined in such a way that $\Delta V(H^i, \phi^i) = 0$ in the limit $\phi^i = 0$. Splitting the potential
in a S_3 symmetric part plus a S_3 not symmetric part is always possible. The Higgs mass matrix M_{kj}, (k, j are family indices) is given by

$$M_{kj} = \frac{\partial^2}{\partial H_k \partial H_j} V(H_i).$$ \hspace{1cm} (35)

If we only consider terms coming from $V_{S_3}(H^i)$, the mass matrix M_{kj} will be S_3 invariant. Thus we expect two degenerate eigenstates with mass m_D that transform as a doublet of S_3, plus one eigenstate with mass m_S that is a S_3 singlet. We remind that we require just one light electroweak Higgs. With this assumption we must have $|m_S^2| << |m_D^2|$. Furthermore only the S_3 singlet component of H^i can take a vev. In fact a possible vev of the doublet component would be proportional to m_D. But, at the same time, we know that $|m_D^2| \gg M_W^2$, and therefore the doublet cannot take a vev.

Now it is easy to understand that, since $\Delta V(H^i, \phi^i)$ is just a perturbation of the S_3 symmetric part, the minimization of the full potential $V(H_i)$ can only give a very tiny mixing between the doublet and singlet components of H^i, being13 $m_D >\phi^i$. This argument does not show in a rigorously way that the Higgs doublet must be the S_3 singlet, but show that is a realistic and reasonable hypothesis [15].

Conclusions

The experimental mass measurements in neutrino oscillations, together with masses and mixings of the rest of matter fermions, give us an almost complete picture of the less understood sector of the standard model, that is the sector of Yukawa interactions. We also know that grand unification can explain charge quantization, and can embed all fermions of each family in just one irreducible representation of SO(10). The simplest and minimal SO(10) model predicts that the up quark mass matrix is equal to the dirac neutrino matrix. Minimal SU(5) predicts that the mass matrix of charged leptons is the transposed of the down quark mass matrix. Both predictions are not in agreement with the experimental observation. An effort to go beyond the minimal unification scenario is needed. We also know, that if the fundamental lagrangian of interactions comes from the third quantization, the flavor

13m_D is expected to be not much smaller than the unification scale while ϕ^i is the breaking scale of S_3.

symmetry group is very likely to be the permutation symmetry. This symmetry group gives good predictions of neutrino oscillations. How to extend such a symmetry to the quark sector in the context of a grand unified group is the subject of this work. In particular we improve some aspects of the model studied in [4, 5] clarifying why in eq.(15) $a \gg b$. We have found that the unification group $E^4_6 \triangleright S_4$, with S_4 the flavor group and E^4_6 the gauge group, predicts at least one breaking pattern that simultaneously explain masses and mixings of quarks, leptons and neutrinos. It is important to note that the symmetry group is the semidirect product (and not the direct product) between the gauge group and the flavor group. This can descend in a natural way from third quantization and predicts why operators (or interactions) that mix different families (see the discussion after eq.(6)) are smaller than those that do not mix families. We have put in evidence that $U(1)^{4}_{\text{down}} \triangleright S_4$, that is a subgroup of $E^4_6 \triangleright S_4$, predicts the right hierarchies among the couplings of the operators needed to explain quark mass and mixings. We have found that the introduction of the scalar field ω_{ij}, antisymmetric with respect i and j is useful. Because it explains why the S_3 singlet components of X_L and ν_R are much heavier than the doublets. As a consequence we also get $\Delta M^2_{\text{atm}} \gg \Delta M^2_{\text{sol}}$. This hierarchy was assumed as a starting hypothesis in [4], now a clear motivation for this choice has been given.

Finally we know that the possibility of exact SU(5) unification in the Yukawa sector is excluded, but we have shown that partial unification, i.e. in terms of order of magnitudes is still possible. Namely, in our model it exists an intermediate scale, at which the $U(1)$ factors contained in E^4_6 are unbroken. This abelian group implies that each mass operator of the down quarks is of the same order of magnitude of its analogue in the charged lepton, taking into account that right-handed quarks are partners of left-handed charged leptons. In particular we have found that a factor two in the relative size between quarks and lepton operators is enough to obtain the electron and down quark mass ratio, and neutrino oscillations in agreement with data.

To understand these small differences in the relative size between quark/lepton operators we need a deeper analysis of the symmetry breaking pattern of $E^4_6 \triangleright S_4$.

22
Appendix A. $E_6^4 \rtimes S_4$ irreducible representations

The permutation group S_4 has 5 irreducible representations: 1_1, 1_2, 2, 3_1, 3_2. The two singlets differ because the 1_1 is invariant under the full group S_4 while 1_2 changes sign for odd permutations. Also 3_1 and 3_2 are different. 3_1 contains a $S_3 \subset S_4$ singlet, while 3_2 contains an $A_3 \subset S_4$ invariant singlet. A_3 is the group of even permutations of three objects. The full set of fermion families is contained in the smallest (non trivial) representation of $E_6^4 \rtimes S_4$. This is the 108. The product of two 108 give the following irreducible representations

$$108 \times 108 = 108 + 1404_s + 1404_a + 4374_s + 4374_a. \quad (36)$$

One can derive the following branching rules in the embedding $E_6^4 \rtimes S_4 \supset E_6^4$.

$$108 = (27, 1, 1, 1) + (1, 27, 1, 1) + (1, 1, 27, 1) + (1, 1, 1, 27)$$
$$1404_s = (351', 1, 1, 1) + (1, 351', 1, 1) + (1, 1, 351', 1) + (1, 1, 1, 351')$$
$$4374 = (27, 27, 1, 1) + (27, 1, 27, 1) + (27, 1, 1, 27) + (1, 27, 27, 1)$$
$$6912 = (1728, 1, 1, 1) + (1, 1728, 1, 1) + (1, 1, 1728, 1) + (1, 1, 1, 1728)$$
$$9720 = (2430, 1, 1, 1) + (1, 2430, 1, 1) + (1, 1, 2430, 1) + (1, 1, 1, 2430).$$

The standard model Higgs doublet H is contained in the 1404$_s$. Note that the 351' of E$_6$ contained in this representation is the symmetric product of two 27 of the E$_6$ group. The 351' contains a doublet with the same quantum numbers of the standard model Higgs. In fact the 351' of E$_6$ contains the $(1, 2, +1/2, -3, -5)$ under $SU_c(3) \times SU_L(2) \times U_Y(1) \times U_r(1) \times U_t(1)$ (see the discussion below eq.(6)) that is all quantum numbers needed for the Higgs chosen in our model. The scalar field ω_{ij} introduced in eq.(23) belongs to the 4374$_s$ of $E_6^4 \rtimes S_4$.

The six independent components of the antisymmetric tensor ω_{ij} discussed in the paper, transform as the 6$_a$, that is an irreducible representation of $(U(1)_{down})^4 \rtimes S_4$. They are embedded in the 4374$_s$. The field ϕ_i that appears in the Yukawa interactions of the down quark in eq.(7) belongs to the 6912. The fields ξ^i, χ^i giving mass to the neutrino sector belong to the 1404$_a$. Finally the 9720 contains a scalar field ϕ_i that is a standard model singlet, with the right quantum numbers needed to introduce the Yukawa interactions for the up quarks.
Appendix B. The neutrino mass matrix

The neutrino 12×12 mass matrix M_{ν} coming from (27) can be written

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & g H & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & g H & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g H & 0 & 0 & 0 & 0 & 0 \\
g H & 0 & 0 & 0 & g_2 v_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
g H & 0 & 0 & 0 & g_2 v_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & g H & 0 & 0 & g_2 v_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g H & 0 & 0 & g_2 v_2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g H & 0 & 0 & 0 & g_2 v_4 & -g_1 v & -g_1 v & -g_1 v & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -g_1 v & g_3 v'_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -g_1 v & 0 & g_3 v'_2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -g_1 v & 0 & 0 & g_3 v'_2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 v & g_1 v & g_1 v & 0 & 0 & 0 & 0 & g_3 v'_4 \\
\end{pmatrix}
\]

in the following flavor basis

\[
v = (\nu^1_L, \nu^2_L, \nu^3_L, \nu^4_L, X^1_L, X^2_L, X^3_L, X^4_L, \nu^1_R, \nu^2_R, \nu^3_R, \nu^4_R).
\]

To find the eigenvectors and the eigenvalues of the matrix M_{ν} of the three lightest neutrinos we proceed as follows. First we show that the following vector v_1 is a light eigenstate of the matrix M_{ν}

\[
v_1 = \left(\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3} - \frac{1}{\sqrt{6}}, \frac{\sqrt{2}}{3} + \frac{1}{\sqrt{6}}, 0, z, -z, x, -z, x, 0, 0, 0, 0, y \right).
\]

In fact, for very small values of m_1, x, y, z and taking into account that $v \gg v_1, v_2, v'_4$ we have that

\[
M_{\nu} v_1 = m_1 v^0_1
\]

where $v^0_1 = v_1$ when $x = y = z = 0$. Eq.(39) holds only at the first order of the perturbative expansion in terms of the unknown variables m_1, x, y, z. It is not difficult to solve the system of equations given in eq.(39). Namely, Eq.(39) gives a linear system of three equations with respect the three variables x, y, z. If we put the solution of this system for the three variables x, y, z into the eq.(39) we can also derive the eigenvalue m_1 that corresponds to the mass of the neutrino with the following components

\[
v^0_1 = \left(\sqrt{2/3}, -1/\sqrt{6}, -1/\sqrt{6}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \right)
\]
and

\[m_1 = gH \left(\sqrt{6} x - z \right) = \frac{3 g^2 H^2}{g_2 (2 v_1 + v_2)} \] \hspace{1cm} (41)

where in last step we have used that \(v \gg v_1, v_2, v'_4 \). In a similar way, one can get the remaining two light eigenstates with the corresponding eigenvalues

\[v_2^0 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, 0, 0, 0, 0, 0, 0, 0, 0 \right) \] \hspace{1cm} (42)

\[v_3^0 = \left(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, 0, 0, 0, 0, 0, 0, 0, 0 \right) \] \hspace{1cm} (43)

\[m_2 = \frac{g_3 g^2 H^2 v'_4}{3 g_1 v^2} \] \hspace{1cm} (44)

\[m_3 = \frac{g^2 H^2}{g_2 v_2}. \] \hspace{1cm} (45)

References

[1] Q.R. Ahmad et al. Phys. Rev. Lett. 89 (2002) 011301; S. Fukuda et al. Phys. Lett. B 539 (2002) 179; J.W. Hampel et al. Phys. Lett. B 447 (1999) 127; K. Eguchi et al. Phys. Rev. Lett. 90 (2003) 021802; Y. Fukuda et al. Phys. Rev. Lett. 85 (2000) 3999; Y. Fukuda et al. Phys. Rev. Lett. 81 (1998) 1562; M. Apollonio et al. Eur. Phys. J. C 27 (2003) 331; M. Apollonio et al. Phys. Lett. B 466 (1999) 415. M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6, 122 (2004).

[2] R. N. Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 639, 318 (2006); R. Jora, S. Nasri and J. Schechter, arXiv:hep-ph/0605069; R. N. Mohapatra and W. Rodejohann, arXiv:hep-ph/0608111; Y. Koide, Phys. Rev. D 73, 057901 (2006); T. Teshima, Phys. Rev. D 73, 045019 (2006); W. Grimus and L. Lavoura, JHEP 0508, 013 (2005); L. Lavoura and E. Ma, Mod. Phys. Lett. A 20, 1217 (2005); S. L. Chen, M. Frigerio and E. Ma, Phys. Rev. D 70, 073008 (2004); E. Ma, New J. Phys. 6, 104 (2004); J. Kubo, Phys. Lett. B 578, 156 (2004); J. Kubo, A. Mondragon, M. Mondragon, E. Rodriguez-Jauregui, O. Felix-Beltran and E. Peinado, J. Phys. Conf. Ser. 18, 380 (2005); P. F. Harrison and W. G. Scott, Phys. Lett. B 557, 76 (2003); Y. Koide, Phys. Rev. D 60, 077301 (1999); W. Grimus and L. Lavoura, JHEP 0508, 013 (2005);
W. Grimus and L. Lavoura, JHEP 0601, 018 (2006); N. Haba and K. Yoshioka, arXiv:hep-ph/0511108; K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 64, 2747 (1990); R. Yahalom, Phys. Rev. D 29, 536 (1984); Y. Yamanaka, H. Sugawara and S. Pakvasa, Phys. Rev. D 25, 1895 (1982); E. Derman, Phys. Rev. D 19, 317 (1979); S. Pakvasa and H. Sugawara, Phys. Lett. B 73, 61 (1978);

[3] S. Morisi, arXiv:hep-ph/0604106. F. Caravaglios, P. Roudeau and A. Stocchi, Nucl. Phys. B 633, 193 (2002)

[4] F. Caravaglios and S. Morisi, arXiv:hep-ph/0503234.

[5] F. Caravaglios and S. Morisi, arXiv:hep-ph/0510321.

[6] H. Fritzsch and Z. z. Xing, Phys. Lett. B 598, 237 (2004) M. Tanimoto, Phys. Lett. B 483, 417 (2000) H. Fritzsch and Z. z. Xing, Prog. Part. Nucl. Phys. 45, 1 (2000) H. Fritzsch and Z. z. Xing, Phys. Lett. B 440, 313 (1998) H. Fritzsch and Z. z. Xing, Phys. Rev. D 61, 073016 (2000) Z. z. Xing, Phys. Rev. D 63, 057301 (2001)

[7] G. Altarelli, F. Feruglio and Y. Lin, arXiv:hep-ph/0610165; S. F. King and M. Malinsky, arXiv:hep-ph/0610250; E. Ma, arXiv:hep-ph/0607190; E. Ma, H. Sawanaka and M. Tanimoto, Phys. Lett. B 641, 301 (2006); E. Ma, Phys. Rev. D 73, 057304 (2006); G. Altarelli and F. Feruglio, Nucl. Phys. B 720, 64 (2005); M. Hirsch, J. C. Romao, S. Skadhauge, J. W. F. Valle and A. Villanova del Moral, Phys. Rev. D 69, 093006 (2004); K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552, 207 (2003); E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001).

[8] R. N. Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 636, 114 (2006) [arXiv:hep-ph/0603020]; T. Fukuyama and H. Nishiura, hep-ph/9702253; R. N. Mohapatra and S. Nussinov, Phys. Rev. D 60, 013002 (1999); E. Ma and M. Raidal, Phys. Rev. Lett. 87, 011802 (2001); C. S. Lam, Phys. Rev. D 71, 093001 (2005); C. S. Lam, Phys. Lett. B 507, 214 (2001); F. Plentinger and W. Rodejohann, Phys. Lett. B 625, 264 (2005); R. N. Mohapatra and W. Rodejohann, Phys. Rev. D 72, 053001 (2005); K. R. S. Balaji, W. Grimus and T. Schwetz, Phys. Lett. B 508, 301 (2001); W. Grimus, S. Kaneko, L. Lavoura, H. Sawanaka and M. Tanimoto, JHEP 0601, 110 (2006); C. S. Lam,
Phys. Lett. B 507, 214 (2001); E. Ma, Phys. Rev. D 66, 117301 (2002); P. F. Harrison and W. G. Scott, Phys. Lett. B 547, 219 (2002); R. N. Mohapatra, JHEP 0410, 027 (2004); K. R. S. Balaji, W. Grimus and T. Schwetz, Phys. Lett. B 508, 301 (2001).

[9] Y. Cai and H. B. Yu, arXiv:hep-ph/0608022; E. Ma, Phys. Lett. B 632, 352 (2006); C. Hagedorn, M. Lindner and R. N. Mohapatra, arXiv:hep-ph/0602244; D. G. Lee and R. N. Mohapatra, Phys. Lett. B 329, 463 (1994); T. Brown, S. Pakvasa, H. Sugawara and Y. Yamanaka, Phys. Rev. D 30, 255 (1984); E. Derman, Phys. Rev. D 19, 317 (1979).

[10] F. Caravaglios, arXiv:hep-ph/0211183; F. Caravaglios, arXiv:hep-ph/0211129; V. A. Rubakov, Phys. Lett. B 214, 503 (1988); M. McGuigan, Phys. Rev. D 38, 3031 (1988); S. B. Giddings and A. Strominger, Nucl. Phys. B 321, 481 (1989).

[11] R. Slansky, Phys. Rept. 79, 1 (1981);

[12] S. F. King, S. Moretti and R. Nevzorov, Phys. Lett. B 634, 278 (2006); M. Frank, I. Turan and M. Sher, Phys. Rev. D 71 (2005) 113002; M. Frank, I. Turan and M. Sher, Phys. Rev. D 71 (2005) 113001; B. Stech and Z. Tavartkiladze, Phys. Rev. D 70, 035002 (2004); N. Maekawa and T. Yamashita, Prog. Theor. Phys. 110, 93 (2003); M. Bando and T. Kugo, Prog. Theor. Phys. 109, 87 (2003); M. Bando and N. Maekawa, Prog. Theor. Phys. 106, 1255 (2001); G. W. Anderson and T. Blazek, arXiv:hep-ph/0101349; N. Maekawa and T. Yamashita, Prog. Theor. Phys. 107, 1201 (2002); I. G. Koh, J. Patera and C. Rousseau, J. Math. Phys. 25, 2863 (1984).

[13] G. Altarelli, F. Feruglio and I. Masina, JHEP 0011, 040 (2000); P. Langacker and N. Polonsky, Phys. Rev. D 52, 3081 (1995); J. Bagger, K. T. Matchev and D. Pierce, Phys. Lett. B 348, 443 (1995); B. Bajc, P. Fileviez Perez and G. Senjanovic, Phys. Rev. D 66, 075005 (2002); H. Murayama and A. Pierce, Phys. Rev. D 65, 055009 (2002);

[14] G. L. Fogli, E. Lisi, A. Marrone and A. Palazzo, Prog. Part. Nucl. Phys. 57 (2006) 742.

[15] J. Kubo, H. Okada and F. Sakamaki, Phys. Rev. D 70, 036007 (2004)