ON THE RADIAL EXTENT OF THE DWARF IRREGULAR GALAXY IC10

N. Sanna1,2, G. Bono3,3, P. B. Stetson4, I. Ferraro3, M. Monelli5, M. Nonino6, P. G. Prada Moroni7,8, R. Bresolin9, R. Buonanno1,10, F. Caputo3, M. Cignoni1,11,12, S. Degl’Innocenti7,8, G. Iannicola7, N. Matsunaga13, A. Pietrinferni14, M. Romaniello15, J. Storm16, and A. R. Walker17

1 University of Virginia, 530 McCormick Road 22903 Charlottesville, VA, USA; ns2as@virginia.edu
2 University Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy
3 INAF–OAR, via Frascati 33, Monte Porzio Catone, Rome, Italy
4 DAO–HIA, NRC, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
5 IAC, Calle Via Lactea, E38200 La Laguna, Tenerife, Spain
6 INAF–OAT, via G.B. Tiepolo 11, 40131 Trieste, Italy
7 University Pisa, Largo B. Pontecorvo 2, 56127 Pisa, Italy
8 INFN, Sez. Pisa, via E. Fermi 2, 56127 Pisa, Italy
9 Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
10 ASI–Science Data Center, ASDC c/o ESRIN, via G. Galilei, 00044 Frascati, Italy
11 Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, 40127 Bologna, Italy
12 INAF–OAB, via Ranzani 1, 40127 Bologna, Italy
13 Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan
14 INAF–OACTe, via M. Muggini, 64100 Teramo, Italy
15 ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen, Germany
16 AIP, An der Sternwarte 16, D-14482 Potsdam, Germany
17 NOAO–CTIO, Casilla 603, La Serena, Chile

Received 2010 July 31; accepted 2010 September 20; published 2010 October 6

ABSTRACT

We present new deep and accurate space (Advanced Camera for Surveys–Wide Field Planetary Camera 2 on board the Hubble Space Telescope) and ground-based (Suprime-Cam at Subaru Telescope, Mega-Cam at Canada–France–Hawaii Telescope) photometric and astrometric data for the Local Group dwarf irregular IC10. We confirm the significant decrease of the young stellar population when moving from the center toward the outermost regions. We find that the tidal radius of IC10 is significantly larger than previous estimates of \(r_t \lesssim 10' \). By using the \(I, V – I \) color–magnitude diagram based on the Suprime-Cam data, we detect sizable samples of red giant (RG) stars up to radial distances of 18′–23′ from the galactic center. The ratio between observed star counts (Mega-Cam data) across the tip of the RG branch and star counts predicted by Galactic models indicates a star count excess at least at a \(3 \sigma \) level up to 34′–42′ from the center. This finding supports the hypothesis that the huge H I cloud covering \(\approx 30 \) of IC10 has a huge envelope of cold gas. By using the Hubble Space Telescope and ground-based (Suprime-Cam at Subaru Telescope, Mega-Cam at Canada–France–Hawaii Telescope) photometric and astrometric data for the Local Group dwarf irregular IC10. We confirm the significant decrease of the young stellar population when moving from the center toward the outermost regions. We find that the tidal radius of IC10 is significantly larger than previous estimates of \(r_t \lesssim 10' \). By using the \(I, V – I \) color–magnitude diagram based on the Suprime-Cam data, we detect sizable samples of red giant (RG) stars up to radial distances of 18′–23′ from the galactic center. The ratio between observed star counts (Mega-Cam data) across the tip of the RG branch and star counts predicted by Galactic models indicates a star count excess at least at a \(3 \sigma \) level up to 34′–42′ from the center. This finding supports the hypothesis that the huge H I cloud covering \(\approx 30 \) of IC10 has a huge envelope of cold gas.

Keywords: galaxies: dwarf – galaxies: individual (IC10) – galaxies: stellar content – Local Group – stars: evolution

Online-only material: color figures

1. INTRODUCTION

Photometric investigations of the stellar populations in Local Group (LG) dwarf galaxies provide firm constraints on cosmological parameters and the unique opportunity to investigate galaxy formation models (Mateo 1998; Tolstoy et al. 2009; Wyse 2010). In this context, dwarf irregulars (dIs) play a key role, since we still lack firm empirical and theoretical constraints concerning their evolution and the possible transition into dwarf spheroidal galaxies (Bekki 2008; Woo et al. 2008; Kormendy et al. 2009). Although the number of dwarf galaxies known in the LG is rapidly growing in the last few years, current statistics indicate that the dIs are at least one quarter of LG galaxies (McConnachie et al. 2008; Sanna et al. 2009).

Among the dIs of the LG, IC10 is an interesting system, since it underwent strong star formation activity during the last half billion years and is considered the only LG analog of starburst galaxies. Even though IC10 has been the subject of several investigations ranging from the radio (Wilcots & Miller 1998) to the near-infrared (NIR; Vacca et al. 2007), to the UV (Hunter 2001; Richer et al. 2001), and to the X-ray (Wang et al. 2005), its structural parameters and in particular its radial extent are poorly defined. Massey & Armandroff (1995) found that the major axis of IC10 is \(\sim 7' \). A similar diameter (\(\sim 6' \)) was found by Jarrett et al. (2003) using the isophotal radii from Two Micron All Sky Survey NIR images. More recently, Tikhonov & Galazutdinova (2009), using both ground-based and space images, suggested that the extent of the thick disk along the minor axis is \(\sim 10.5' \). It has also been suggested by Demers et al. (2004), using asymptotic giant branch and red giant branch (RGB) stars, that IC10 should have a halo of \(\sim 30' \) diameter. On the other hand, radio measurements by Huchtmeier (1979, hereinafter H79) indicated that IC10 has a huge envelope of

\[\text{L244} \]
neutral hydrogen extending over more than 1 deg2 (62' × 80') across the sky.

We are also facing a significant uncertainty in the total mass of IC10. By using H i regions, H79 found $M_{\text{tot}} \sim 1.8 \times 10^9 M_\odot$, assuming a distance of 1 Mpc and a Holmberg diameter of $\sim 10^\prime$. Also, Shostak & Skillman (1989, hereinafter SS89), using high-resolution maps of H i regions, measured an inclination of 45$^\circ$ and a maximum in the rotation curve of 30 km s$^{-1}$ (42 km s$^{-1}$ deprojected) and the same Holmberg diameter (deprojected angular diameter $\sim15'$), from which they found $M_{\text{tot}} \sim 1 \times 10^9 M_\odot$. More recently, van den Bergh (2000), following H79, but assuming a smaller distance (660 kpc; Sakai et al. 1999), found $M_{\text{tot}} \sim 6 \times 10^8 M_\odot$.

2. PHOTOMETRIC DATA

The Hubble Space Telescope (HST) data were collected with the Advanced Camera for Surveys (ACSs, pointings α and β) and with the Wide Field Planetary Camera 2 (WFPC2, pointings γ, δ). Data from pointings α, β, and γ were already presented (Sanna et al. 2008, 2009). Pointing δ includes 24 F555W-band and 24 F814W-band images of 500 s each. This pointing is located $\sim 3'$ NE of the galaxy center; it is outside the disk identified by Jarrett et al. (2003; see the red ellipse in Figure 1) and inside the thick disk identified by Tikhonov & Galazutdinova (2009). The ground-based data were collected with the prime focus camera (Suprime-Cam, pointing ϵ) on the Subaru telescope and with Mega-Cam on the Canada–France–Hawaii Telescope (CFHT, pointing ζ). Pointing ϵ (see Figure 1) is located across the galaxy center and includes both shallow (3V, 3R, 3I, 3 × 60 s per band) and deep (12V, 12 × 480 s; 13R, 13 × 360 s; 23I, 23 × 240 s) images. The pointing ζ (see Figure 1) is also located across the galaxy center and includes 3g- (3 × 700 s) and 3i-band (3 × 400 s) images.

Photometry on individual images was performed with DAOPHOT IV/ALLSTAR (Stetson 1987). The 786 ground-based images were simultaneously reduced with ALLFRAME (Stetson 1994); the same applies to the 392 space images. We ended up with a catalog including $\sim 1,200,000$ stars with at least one measurement in two different bands. The ground-based data were transformed into the Johnson–Kron–Cousins system using the standard stars provided by Landolt (1983, 1992) to calibrate local standards. The typical accuracy is 0.04 for I and 0.05 mag for the V band. Some external chips of the MegaCam include a limited number of local standards and they were not included in the final calibrated catalog. To provide a homogeneous photometric catalog the ACS and the WFPC2 were transformed into the V, I Johnson–Kron–Cousins system using prescriptions by Sirianni et al. (2005). The typical accuracy is of a few hundredths of magnitude in both V and I. The conclusions of this investigation are not affected by the precision of the absolute zero points.

3. RESULTS AND DISCUSSION

The ground-based data cover a sky area of $\sim 1^\circ \times 1^\circ$, while the high angular resolution of HST images allowed us to perform accurate photometry in the innermost crowded regions. We selected eight different regions, the region “C” is located across the galaxy center and includes data of pointings α(ACS@HST) and γ (WFPC2@HST), while the region “W” is located $\sim 3'$ from the center and includes the data of the pointing δ (WFPC2@HST). Regions “S1,” “S2,” “S3,” and “S4” cover the corners of the Suprime-Cam data (pointing ϵ) and are located at $\sim 18'$ from the galaxy center, while regions “M1” and “M2” are two regions of the Mega-Cam data (pointing ζ) located at $\sim 30'$ from the galaxy center in the SW and NE directions, respectively. Figure 2 shows the I, V – I color–magnitude diagrams (CMDs) of the selected regions. Data plotted in this figure show several interesting features.

1. The photometry based on HST data is deep and very accurate, and indeed the CMDs (regions “C” and “W”) reach limiting magnitudes of $I \sim 25.5–26$ and $V \sim 26.5–27$ mag. The same outcome applies to the Subaru data, and indeed the CMDs reach limiting magnitudes of $I \sim 25$ and $V \sim 26$ mag. The CMDs based on CFHT data are shallower with limiting magnitudes $I \sim 22.5$ and $V \sim 24.5$ mag.

2. Young main-sequence (MS) stars ($18 \leq I \leq 25.5$, $1 \leq V–I \leq 1.5$ mag) show a strong radial gradient. Their number decreases rapidly when moving from the center to the outermost galaxy regions. A handful of them are visible in region “W,” while the blue objects of region “S” might be field galaxies.

3. The different apparent colors of RGB stars when moving from the center to the outermost regions further support the occurrence of differential reddening. We estimated the reddening of region “W” using the same approach adopted in Sanna et al. (2008). The ridgeline of the RGB in this field was adopted to estimate the reddening in the regions covered by Subaru data. The ridge of the contaminating blue field stars located in region “S4” was used to estimate the reddening in the regions covered by CFHT data. We found that the reddening is higher along the semimajor axis ($E(B–V) = 0.78 \pm 0.10$ mag) and attains an almost constant value ($E(B–V) = 0.63 \pm 0.10$ mag) in the regions covered by the Subaru data external to the HST data. In the regions covered by the CFHT data external
Figure 2. The CMDs for eight regions located at different radial distances (see labeled values and Figure 1). Blue young, main-sequence stars decrease quite rapidly when moving from the center to the outermost regions. The old RGB stars are ubiquitous in the Subaru data. The reddening also changes when moving across the different regions (see labeled values). The green line shows an α-enhanced isochrone of 13 Gyr, at fixed chemical composition ([M/H] = −0.66 dex, Y = 0.25) from the BaSTI database. The blue arrows display the location of contaminating field stars, while the red lines plotted in panels “W” and “S4” display the ridgeline used to determine the reddening.

(A color version of this figure is available in the online journal.)

5. The CMDs based on CFHT data show the same field contamination as the Subaru data and probably a small overdensity of stars in the region across the tip of the RGB (TRGB, 21 ≲ I ≲ 22, 2 ≲ V−I ≲ 3.5 mag).

The above results indicate that the radial extent of IC10 has been significantly underestimated, and indeed according to the Subaru data the diameter is at least of the order of 36–46′ and probably larger than 1° according to the CFHT data.

To further constrain the radial extent of IC10, we decided to compare the observed star counts with star counts of foreground field stars predicted by Milky Way (MW) models. This approach presents several advantages when compared with the method based on the statistical subtraction of an external control field. (1) It is not affected by reddening differences between the galactic and the control field. (2) It is not affected by completeness problems of the control field, thus saving telescope time. (3) The real radial extent of these stellar systems is not known in advance. Therefore, the control fields might still be located inside their halo. The main drawback is that MW models need to be validated using deep and accurate star counts covering broad sky regions (Reyle et al. 2009, and references therein).

However, the ground-based and space data sets are characterized by different limiting magnitudes. To provide a robust...
We focused our attention on Mega-Cam data. We have chosen the above limiting magnitudes to apply conservative corrections. The bottom left panels display the comparison with the Pisa MW model. There is evidence of IC10 stars across the TRGB region (I = 21.66 ± 0.25 mag) in both the “S4” (left, 1.59 ± 0.13) and the “M2” (right, 1.38 ± 0.12) field. The star count excess is at 3σ level. The above evidence further supports the occurrence of IC10 stars in the region covered by the Mega-Cam data, since in the “S4” region we clearly identified IC10 RG stars. The bottom right panels of Figure 3 display the comparison between observations and the Padova MW model. There is once again a clear evidence of a star excess across the TRGB region in both the “S4” (left, 1.74 ± 0.14) and the “M2” (right, 1.53 ± 0.14) field (~4σ level). The two Galactic models were constructed assuming similar input parameters. The difference in the star count ratios between the two models is due to the different evolution inputs and to the normalization of the star counts in the solar neighborhood.

The above findings indicate that the radial distribution of IC10 old- and intermediate-age stellar populations agrees quite well with the size of the huge hydrogen cloud detected by Huchtmeier (1979) and by Cohen (1979) and cover more than 1 deg2 across the galaxy (r = 34′−42′). This means that the stellar halo and the hydrogen cloud have, within the errors, similar radial extents and resolve this peculiar feature of IC10 (Tikhonov & Galazutdinova 2009). Moreover, this evidence further supports the hypothesis that the hydrogen cloud is associated with the galaxy (stellar mass loss, pristine gas; Huchtmeier 1979; Cohen 1979; Wilcots & Miller 1998).

To estimate the total luminosity, we need to select candidate IC10 stars. To describe the procedure, Figure 4 shows the I, V − I CMDs of the stars located inside a circle of 13′ diameter across the galaxy center. The top panels display the photometry of space data (pointings α, β, γ, and δ), while the bottom ones show ground data (pointing ε, Suprime-Cam). The difference between ε1 and ε2 is in the mean reddening (see Figure 4). For the stars located in the overlapping regions, we use the HST photometry. The candidate IC10 stars were selected using different boxes in the aforementioned CMDs. The green box includes young MS stars (V − I ≲ 1.5 mag), the cyan box the intermediate-age stars (V − I ≲ 3, 17.5 mag ≳ I ≲ 21.5 mag), while the pink box includes old- and intermediate-age RG stars (3 ≲ V − I ≲ 6, I ≲ 22 mag). The position of the boxes in the four CMDs was shifted according to the local reddening (see Figure 1). The limiting magnitude of the boxes is I = 23.0 according to the completeness experiment.

Figure 3. Top: simulated CMDs for the field stars adopting a reddening of E(B − V) = 0.63 ± 0.10 mag in a field of view of 1′ × 1′, according to the Pisa (left) and to the Padova (right) MW model. Only a small fraction of the total number of stars is plotted. Bottom (left): star count ratios between the stars located in the “S4” and in the “M2” region with the Pisa MW model. There is evidence of IC10 stars at the position of the TRGB, i.e., I = 21.66 ± 0.25 mag (see the vertical arrows). Bottom (right): same as the left, but the ratio is between observations and the Padova MW model.

The bottom panels of Figure 3 show the ratio between the number of observed stars and the number of candidate field stars predicted by the quoted MW models. Star counts were smoothed using a Gaussian kernel at fixed σ. We also estimated the number of unresolved background galaxies, with reddened I-band magnitudes and V − I colors typical of the TRGB stars, using empirical galaxy counts (Fukugita et al. 1995; Benitez 2000; Capak et al. 2004; Ferguson et al. 2004) and it was subtracted to the number of observed stars. To avoid spurious fluctuations caused by the limited sky area covered by observations, theory and observations were normalized in the bright end (17.9 mag ≲ I ≲ 18.4 mag). The bottom left panels display the comparison with the Pisa MW model. There is evidence of IC10 stars across the TRGB region (I = 21.66 ± 0.25 mag) in both the “S4” (left, 1.59 ± 0.13) and the “M2” (right, 1.38 ± 0.12) field. The star count excess is at 3σ level. The above evidence further supports the occurrence of IC10 stars in the region covered by the Mega-Cam data, since in the “S4” region we clearly identified IC10 RG stars. The bottom right panels of Figure 3 display the comparison between observations and the Padova MW model. There is once again a clear evidence of a star excess across the TRGB region in both the “S4” (left, 1.74 ± 0.14) and the “M2” (right, 1.53 ± 0.14) field (~4σ level). The two Galactic models were constructed assuming similar input parameters. The difference in the star count ratios between the two models is due to the different evolution inputs and to the normalization of the star counts in the solar neighborhood.

The above findings indicate that the radial distribution of IC10 old- and intermediate-age stellar populations agrees quite well with the size of the huge hydrogen cloud detected by Huchtmeier (1979) and by Cohen (1979) and cover more than 1 deg2 across the galaxy (r = 34′−42′). This means that the stellar halo and the hydrogen cloud have, within the errors, similar radial extents and resolve this peculiar feature of IC10 (Tikhonov & Galazutdinova 2009). Moreover, this evidence further supports the hypothesis that the hydrogen cloud is associated with the galaxy (stellar mass loss, pristine gas; Huchtmeier 1979; Cohen 1979; Wilcots & Miller 1998).

To estimate the total luminosity, we need to select candidate IC10 stars. To describe the procedure, Figure 4 shows the I, V − I CMDs of the stars located inside a circle of 13′ diameter across the galaxy center. The top panels display the photometry of space data (pointings α, β, γ, and δ), while the bottom ones show ground data (pointing ε, Suprime-Cam). The difference between ε1 and ε2 is in the mean reddening (see Figure 4). For the stars located in the overlapping regions, we use the HST photometry. The candidate IC10 stars were selected using different boxes in the aforementioned CMDs. The green box includes young MS stars (V − I ≲ 1.5 mag), the cyan box the intermediate-age stars (V − I ≲ 3, 17.5 mag ≳ I ≲ 21.5 mag), while the pink box includes old- and intermediate-age RG stars (3 ≲ V − I ≲ 6, I ≲ 22 mag). The position of the boxes in the four CMDs was shifted according to the local reddening (see Figure 1). The limiting magnitude of the boxes is I = 23.0 according to the completeness experiment.

Galactic model input parameters: Kroupa initial mass function not corrected for binaries; double exponential thin disk (h (height) = 250 pc, h$_g$(scale length) = 3000 pc, constant star formation rate (SFR) for t ≲ 7 Gyr, Z_mean metallicity) = 0.02; exponential thick disk (h (height) = 1000 pc, h$_g$ = 5500 pc, constant SFR for 5 Gyr ≲ t ≲ 12 Gyr, Z = 0.006; oblate halo with r$^{1/4}$ (h$_g$ = 2800 pc, h$_{semiaxis ratio}$ = 0.6, constant SFR for 11 Gyr ≲ t ≲ 13 Gyr, Z = 0.0002).
The blue arrow marks the position of candidate field stars (left). The dashed and dance isochrones (Pietrinferni et al. 2004) at fixed metallicity pointing changed according to the local reddening. Bottom: ground-based data of the pink one the old- and intermediate-age RGs. The position of the boxes was box includes young MS stars, the cyan box the intermediate-age stars, and the boxes mark the CMD regions adopted to select candidate IC10 stars. The green (A color version of this figure is available in the online journal.)

Figure 4. CMDs in $I, V - I$ bands for the stars located within 6.5 across the galaxy center. Top: space data of the pointings $\alpha, \beta,$ and γ (left, $E(B - V) = 0.78 \pm 0.06$ mag) and δ (right, $E(B - V) = 0.63 \pm 0.09$ mag). The colored boxes mark the CMD regions adopted to select candidate IC10 stars. The green box includes young MS stars, the cyan box the intermediate-age stars, and the pink one the old- and intermediate-age RGs. The position of the boxes was changed according to the local reddening. Bottom: ground-based data of the pointing ϵ ($E(B - V) = 0.78 \pm 0.10$; $E(B - V) = 0.63 \pm 0.10$ mag). The blue arrow marks the position of candidate field stars (left). The dashed and the dash-dotted lines (right) display two young, scaled solar isochrones ($t = 6$ and 200 Myr), while the solid line an old α-enhanced isochrone ($t = 13$ Gyr). Young and old isochrones were constructed at fixed total metallicity ([M/H] = −0.66 dex). (A color version of this figure is available in the online journal.)

The dashed and the dash-dotted lines plotted in the bottom right panel of Figure 4 show two young scaled solar abundance isochrones (Pietrinferni et al. 2004) at fixed metallicity ([M/H] = −0.66 dex) and ages of $t = 6$ and 200 Myr, while the solid red line shows the old α-enhanced isochrone with the same total metallicity and an age of $t = 13$ Gyr. These isochrones validate the position of the boxes we adopted to pinpoint the different subpopulations of IC10. The same approach was adopted to select candidate IC10 stars located between the blue circle of Figure 1 and the outermost regions of the ϵ pointing ($r \lesssim 23\arcmin$). On the basis of these data and of the recent IC10 distance based on the TRGB (830 kpc; Sanna et al. 2008), we estimated a total V-band luminosity of $L_V \sim 9.13 \times 10^7 L_\odot$ and a total magnitude of $M_V = -15.11$ mag. This estimate agrees within a factor of 2 with similar estimates available in the literature ($L_V \sim 1.6 \times 10^7 L_\odot$, Mateo 1998; $M_V = -16.0$ mag, Richer et al. 2001). The current estimate is a lower limit, since we are not including the stars located in the outermost regions covered by our photometry (pointing ξ). However, the estimates available in the literature only cover the innermost galactic regions. The difference is mainly due to the fact that the current photometry allows us a robust identification of field stars ($1 \lesssim V - I \lesssim 2$, $15\,\text{mag} \lesssim I \lesssim 22\,\text{mag}$, see the blue arrow in the bottom left panel of Figure 4). If they are even partially included, these objects introduce a systematic bias in the estimate of the total luminosity. The different assumptions concerning the adopted distance and reddening variation also help to explain the above difference.

To estimate the mass-to-light (M/L) ratio of IC10, we restricted ourself to the galactic regions where rotational velocity measurements are available (see the blue circle with a diameter of $13\arcmin$ in Figure 1). The luminosity inside this area is $L_V \sim 5.88 \times 10^7 L_\odot$ ($M_V = -14.63$ mag). By using the quoted true distance and diameter together with the rotation velocity based on H I regions (SS89) we found, following Huchtmeier & Richter (1988) and Casertano & Shostak (1980), a total mass of $M_{\text{tot}} \sim 6.2 \times 10^7 M_\odot$ that agrees quite well with similar estimates available in the literature (Huchtmeier 1979; van den Bergh 2000; Woo et al. 2008). Eventually, we found $M/L \sim 10 M_\odot/L_\odot$. Although this estimate is hampered by several empirical limitations, it is at least one order of magnitude larger than the value recently provided by Woo et al. (2008). The quoted authors use two independent methods to estimate the M/L ratios of LG dwarf galaxies: colors and inferred star formation history. They found that the median M/L ratio of dls based on the latter approach is slightly smaller than on the former one (0.7 versus 0.8, see their Table 2). However, the difference needs to be investigated in more detail, particularly in view of the severe limitations affecting the estimates of the rotational velocity and of the total luminosity over the entire body of the galaxy.

We are facing empirical evidence that dls seem to show smaller M/L ratios when compared with dwarf ellipticals (see Figure 1 and Table 2 in Woo et al. 2008). The new data will allow us to constrain whether this evidence might be affected by observational biases. Moreover, they can shed new lights on the prediction that dwarf galaxies might have tidal radii significantly larger than empirical estimates (Hayashi et al. 2003; Kazantzidis et al. 2004).

It is a real pleasure to thank the referee, Dr. I. Chilingarian, for his constructive suggestions.

REFERENCES

Bekki, K. 2008, MNRAS, 388, 10
Benitez, N. 2000, ApJ, 536, 571
Capak, P., et al. 2004, AJ, 127, 180
Casertano, S. P. R., & Shostak, G. S. 1980, A&A, 81, 371
Castellani, V., Cignoni, M., Degl’Innocenti, S., Petroni, S., & Prada Moroni, P. G. 2002, MNRAS, 334, 69
Cignoni, M., Degl’Innocenti, S., Prada Moroni, P. G., & Shore, S. N. 2006, A&A, 459, 783
Cohen, R. J. 1979, MNRAS, 187, 839
Demers, S., Battinelli, P., & Letarte, B. 2004, A&A, 424, 125
Ferguson, H. C., et al. 2004, ApJ, 600, L107
Fukugita, M., Shimasaku, K., & Ichikawa, T. 1995, PASP, 107, 945
Girardi, L., Groenewegen, M. A. T., Hatziminaoglou, E., & da Costa, L. 2005, A&A, 436, 895
Hayashi, E., Navarro, J. F., Taylor, J. E., Stadel, J., & Quinn, T. 2003, ApJ, 584, 541
Huchtmeier, W. K., & Richter, O. -G. 1988, A&A, 203, 237
Huchtmeier, W. K., & Richter, O. -G. 1988, A&A, 203, 237
Hunter, D. A. 2001, ApJ, 559, 225
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S. E., & Huchra, J. P. 2003, AJ, 125, 525
Kazantzidis, S., Mayer, L., Mastropietro, C., Diemand, J., Stadel, J., & Moore, B. 2004, ApJ, 608, 663
Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS, 182, 216
Landolt, A. U. 1992, AJ, 104, 340
Landolt, A. U. 1992, AJ, 104, 340
Massey, P., & Armandroff, T. E. 1995, AJ, 109, 2470
Mateo, M. 1998, ARA&A, 36, 435
McConnachie, A. W., et al. 2008, ApJ, 688, 1009
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJ, 612, 168
Petrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2006, ApJ, 642, 797
Reyle, C., Marshall, D. J., Robin, A. C., & Schultheis, M. 2009, A&A, 495, 819
Richer, M. G., et al. 2001, A&A, 370, 34
Sakai, S., Madore, B. F., & Freedman, W. L. 1999, ApJ, 511, 671
Sanna, N., et al. 2008, ApJ, 688, L69
Sanna, N., et al. 2009, ApJ, 699, L84
Tikhonov, N. A., & Galazutdinova, O. A. 2009, Astron. Lett., 35, 748
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371
Vacca, W. D., Sheehy, C. D., & Graham, J. R. 2007, ApJ, 662, 272
van den Bergh, S. 2000, The Galaxies of the Local Group (Cambridge Astrophysical Series, Vol. 35; Cambridge: Cambridge Univ. Press)
Wang, Q. D., Whitaker, K. E., & Williams, R. 2005, MNRAS, 362, 1065
Wilcots, E. M., & Miller, B. W. 1998, AJ, 116, 2363
Woo, J., Courteau, S., & Dekel, A. 2008, MNRAS, 390, 1453
Wyse, R. F. G. 2010, AN, 331, 526

Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371