SINGULARITY OF RANDOM SYMMETRIC MATRICES REVISITED

MARCELO CAMPOS, MATTHEW JENSSEN, MARCUS MICHELEN, AND JULIAN SAHASRABUDHE

ABSTRACT. Let M_n be drawn uniformly from all ± 1 symmetric $n \times n$ matrices. We show that the probability that M_n is singular is at most $\exp(-c(n \log n)^{1/2})$, which represents a natural barrier in recent approaches to this problem. In addition to improving on the best-known previous bound of Campos, Mattos, Morris and Morrison of $\exp(-cn^{1/2})$ on the singularity probability, our method is different and considerably simpler.

1. Introduction

Let A_n denote a random $n \times n$ matrix drawn uniformly from all matrices with $\{-1,1\}$ coefficients. It is an old problem, of uncertain origin\footnote{See \cite{9} for a short discussion on the history of this conjecture}, to determine the probability that A_n is singular. While a few moments of consideration reveals a natural lower bound of $(1 + o(1))n^22^{-n+1}$, which comes from the probability that two rows or columns are equal up to sign, it is widely believed that in fact

\begin{equation}
\Pr(\det A_n = 0) = (1 + o(1))n^22^{-n+1}.
\end{equation}

This singularity probability was first shown to tend to zero in 1967 by Komlós \cite{10}, who obtained the bound $\Pr(\det(A_n) = 0) = O(n^{-1/2})$. The first exponential upper bound was established by Kahn, Komlós, and Szemerédi \cite{9} in 1995 with subsequent improvements on the exponent by Tao and Vu \cite{17,18} and Bourgain, Vu and Wood \cite{1}. In 2018, Tikhomirov \cite{20} settled this conjecture up to lower order terms by showing $\Pr(\det(A_n) = 0) = (1/2 + o(1))^n$. Very recently, a closely related problem was resolved by Jain, Sah and Sawhney \cite{8}, who showed that the analogue of (1) holds when the entries of A_n are i.i.d. discrete variables of finite support that are not uniform on their support. The conjecture (1) remains open for matrices with mean-zero $\{-1,1\}$ entries.

The focus of this paper is on the analogous question for symmetric random matrices. In particular, let M_n denote a uniformly drawn matrix among all $n \times n$ symmetric matrices with entries in $\{-1,1\}$. In this setting it is also widely believed that $\Pr(\det M_n = 0) = \Theta(n^22^{-n})$ as in the asymmetric case \cite{2,3,22} although here much less is known. For instance, the fact that $\Pr(\det M_n = 0) = o(1)$, was only resolved in 2005 by Costello, Tao and Vu \cite{8}. Subsequent superpolynomial upper bounds of the form n^{-C} for all C and $\exp(-n^c)$ were proven respectively by

\footnote{The first named author is partially supported by CNPq.}
Nguyen [12] and Vershynin [21] by different techniques: Nguyen used an inverse Littlewood-Offord theorem for quadratic forms based on previous work by Nguyen and Vu [11, 13], while Vershynin used a more geometric approach pioneered by Rudelson and Vershynin [14, 15, 16].

A combinatorial approach developed by Ferber, Jain, Luh and Samotij [5] was applied by Ferber and Jain [4] in 2018 to prove that
\[P(\det M_n = 0) \leq \exp(-cn^{1/4}(\log n)^{1/2}) \]
Another combinatorial approach was taken by Campos, Mattos, Morris and Morrison [2] who achieved the bound
\[P(\det M_n = 0) \leq \exp(-cn^{1/2}) \] Their argument centers around an inverse Littlewood-Offord theorem inspired by the method of hypergraph containers.

The proofs of [2, 4, 21] all follow the same general shape: divide all potential vectors \(v\) for which we could have \(M_n v = 0\) into “structured” and “unstructured” vectors, show that the unstructured vectors do not contribute, and union bound over the structured vectors. The main difficulty (and novelty) in these proofs arises in a careful understanding of the contribution of the structured vectors.

While we have this method to thank for the recent successes on this problem, an important limitation was pointed out in [2, Section 2.2] who argued that this method could not provide any improvement to the singularity probability beyond \(\exp(-c\sqrt{n\log n})\), provided the randomness in the matrix is not “reused”. Here we show that this natural “barrier” is attainable.

Theorem 1. Let \(M_n\) be drawn uniformly from all \(n \times n\) symmetric matrices with entries in \([-1, 1]\). Then for \(c = 2^{-13}\) and \(n\) sufficiently large
\[P(\det(M_n) = 0) \leq \exp(-c\sqrt{n\log n}) \]

Indeed, our proof of Theorem 1 follows the shape of [2, 4, 21] and improves upon these results primarily by proving an improved and considerably simpler “rough” inverse Littlewood-Offord theorem. This theorem parallels Theorem 2.1 in [2].

To state this, we need a few notions. For a vector \(v \in \mathbb{Z}_p^n\) and \(\mu \in [0, 1]\), we define the random variable \(X_\mu(v) := \varepsilon_1 v_1 + \cdots + \varepsilon_n v_n\), where \(\varepsilon_i \in \{-1, 0, 1\}\) are i.i.d. and \(\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = \mu/2\). Also define \(\rho_\mu(v) = \max_x \mathbb{P}(X_\mu(v) = x)\) and let \(|v|\) denote the number of non-zero entries of \(v\). Finally for \(T \subseteq [n]\), let \(v_T := (v_i)_{i \in T}\).

We now introduce a simple concept that is key to our rough inverse Littlewood-Offord theorem. For a vector \(w = (w_1, \ldots, w_d)\) we define the *neighbourhood of \(w\) (relative to \(\mu\)) as*
\[N_\mu(w) := \{x \in \mathbb{Z}_p : \mathbb{P}(X_\mu(w) = x) > 2^{-1}\mathbb{P}(X_\mu(w) = 0)\}, \]
which is the set of places where our random walk is “likely” to terminate, relative to 0.

\[\text{We will also write } \rho_1(v) = \rho(v). \]
Theorem 2. Let $\mu \in (0, 1/4]$, $k, n \in \mathbb{N}$, p prime and $v \in \mathbb{Z}_p^n$. Set $d = \frac{2}{p} \log \rho(v)^{-1}$, suppose that $|v| \geq kd$ and $\rho(v) \geq \frac{k}{p}$. Then there exists $T \subseteq [n]$ with $|T| \leq d$ so that if we set $w = v_T$ then $v_i \in N_\mu(w)$ for all but at most kd values of $i \in [n]$ and

$$|N_\mu(w)| \leq \frac{256}{k^{1/5}} \cdot \frac{1}{\rho(v)}.$$

In addition to controlling the number of such vectors v with prescribed $\rho(v)$, Theorem 2 gives some further information on the structure of the sets that the v_i belong to, which makes for a simplified application of Theorem 2 in the proof of Theorem 1.

The proof of Theorem 2 has two parts. The first can be found in Section 4 and uses Fourier analysis in the style of Halász [6], whose influential techniques pervade the literature. The second is a novel (and simple) iterative application of a greedy algorithm. This can be found in Section 2 along with the proof of Theorem 2.

In what follows we discuss the proof of Theorem 1. In addition to illustrating the method of [4, 2] in a little more detail, we hope the reader will get some feeling for why Theorem 2 is so integral to the problem.

1.1. Discussion of proof. The event ‘M_n is singular’ can, somewhat daftly, be expressed as

$$\bigcup_{v \in \mathbb{R}_n \setminus \{0\}} \{Mv = 0\}.$$

To reduce the size of this unwieldy union, we notice that it is sufficient to consider all non-zero $v \in \mathbb{Z}^n$ and then reduce modulo p, for a prime $p \approx \exp \left(\frac{c}{2} \sqrt{n \log n} \right)$. Since the probability that Mv is zero is certainly bounded by the probability Mv is zero modulo p, it is enough for us to upper bound the probability of the event $\bigcup_{v \in \mathbb{Z}_p^n \setminus \{0\}} \{Mv = 0\}$, where all operations are taken over the field of p elements.

Having reduced our event to a union of a finite number of sets, it is tempting to greedily apply the union bound to the events $\{Mv = 0\}$, for non-zero $v \in \mathbb{Z}_p^n$. Unfortunately in our case, a small wrinkle arises with vectors for which $\rho(v) \approx 1/p$; that is, very close to the “mixing” threshold. To get around this, we again follow [4, 2] and use a lemma that allows us to safely exclude all v with $\rho(v) < cn/p$ from our union bound, at the cost of working with a slightly different event which, in practice, adds little difficulty to our task.

Lemma 3. Let $c = 1/800$, $n \in \mathbb{N}$ sufficiently large and $p \leq \exp(c \sqrt{n \log n})$ be a prime. If for all $\beta = \Theta(n/p)$ we have

$$\sum_{v: \rho(v) \geq \beta} \max_{w \in \mathbb{Z}_p^n} \mathbb{P}(Mv = w) \leq e^{-cn}$$ \hspace{1cm} (3)$$

then for $c' = 2^{-13}$

$$\mathbb{P}(\det(M_n) = 0) \leq \exp(-c' \sqrt{n \log n}).$$
This is essentially Lemma 2.1 in [2], but is implicit in the earlier work of [4] who proved this using the earlier ideas of [3]. We provide the short formal derivation of Lemma 3 from Lemma 2.1 of [2] in Section 3.

With Lemma 3 in hand, our task is now clear: we need to bound the sum on the left hand side of (3). To do this, we invoke our inverse Littlewood-Offord result (Theorem 2, in the form of Lemmas 5 and 6) and prove the following.

Theorem 4. Let \(c = 1/800 \), \(n \in \mathbb{N} \) sufficiently large and \(p \leq \exp(c\sqrt{n \log n}) \) prime. Then for \(\beta = \Theta(n/p) \) we have

\[
\sum_{w: \rho(v) \geq \beta} \max_{w \in \mathbb{Z}_p^n} \mathbb{P}(Mv = w) \leq e^{-cn}.
\]

Remark: Simultaneously to our work, Jain, Sah and Sawhney [7] obtained an upper bound on the singularity probability of the form \(\exp(-cn^{1/2}(\log n)^{1/4}) \) and a bound on the lower tail of the least singular value for symmetric random matrices with subgaussian entries.

2. **Proof of Theorem 2**

In this section we prove Theorem 2 modulo a key Fourier lemma which we postpone to Section 4.

To go further, we introduce a little notation. Let \(\mathbb{Z}_p^n \) denote the set of all vectors of finite dimension with entries in \(\mathbb{Z}_p \). For \(v = (v_1, \ldots, v_k), w = (w_1, \ldots, w_l) \in \mathbb{Z}_p^n \), let \(vw := (v_1, \ldots, v_k, w_1, \ldots, w_l) \) denote the concatenation of \(v \) and \(w \) and let \(v^k \) denote the concatenation of \(k \) copies of \(v \). For \(v \in \mathbb{Z}_p^n \) and \(T \subseteq [n] \), let \(v_T := (v_i)_{i \in T} \) and say that \(w \) is a subvector of \(v \) if \(w = v_T \) for some \(T \subseteq [n] \). We also define \(|v| \) to be the size of the support of \(v \), the number of non-zero coordinates.

Unless specified otherwise, take \(\mu = 1/4 \) for definiteness. We recall the key definition introduced in [2]. For \(w \in \mathbb{Z}_p^n \), we define the neighbourhood of \(w \) as

\[
N(w) := \{ x \in \mathbb{Z}_p : \mathbb{P}(X_\mu(w) = x) > 2^{-1}\mathbb{P}(X_\mu(w) = 0) \}.
\]

This is motivated by the fact that for \(\mu \in [0, 1/2] \), the walk \(X_\mu \) is most likely to be found at 0 (see e.g. [19] Corollary 7.12),

\[
\rho_\mu(w) = \mathbb{P}(X_\mu(w) = 0).
\]

Hence, we may think of \(N(w) \) as the set of all values of the random walk \(X_\mu(w) \), which are at least half as likely as the most likely value. We can also easily control the size of \(N(w) \). Indeed,

\[
1 \geq \sum_{x \in N(w)} \mathbb{P}(X_\mu(w) = x) > \frac{1}{2} |N(w)| \cdot \mathbb{P}(X_\mu(w) = 0) = \frac{1}{2} |N(w)| \rho_\mu(w)
\]

and so

\[
|N(w)| \leq \frac{2}{\rho_\mu(w)}.
\]
We now turn to our greedy algorithm which, given a vector \(v \in \mathbb{Z}_p^* \), returns a short subvector \(w \) of \(v \) such that each coordinate of \(v \) is contained in \(N(w) \). The following simple lemma can be interpreted as an inverse Littlewood-Offord result in its own right, and is almost as good as Theorem 2 however it only gives a bound of \(|N(w)| \leq 1/\rho_{\mu}(w) \leq 1/\rho_{\mu}(v) \), which is lacking the crucial factor of \(k^{-1/5} \). For this lemma we use the monotonicity of \(\rho_{\mu} \) [19 Corollary 7.12]: if \(w, v \in \mathbb{Z}_p^* \) where \(w \) is a subvector of \(v \), then
\[
\rho(v) \leq \rho_{\mu}(w) .
\]

Lemma 5. For \(\mu \in (0, 1/4] \) and \(n \in \mathbb{N} \), let \(v \in \mathbb{Z}_p^n \). Then there exists \(T \subseteq [n] \), such that \(v_i \in N(v_T) \) for all \(i \notin T \), \(\rho_{\mu}(v_T) \leq (1 - \mu/2)^{|T|} \) and so
\[
|T| \leq \frac{2}{\mu} \log \frac{1}{\rho_{\mu}(v)}. \tag{6}
\]

Proof. We build a sequence of sets \(T_1, \ldots, T_d \subseteq [n] \) with \(|T_i| = i \) via the following greedy process. Let \(T_1 = \{1\} \). Given \(T_t \subseteq [n] \) with \(|T_t| = t \) for \(t \geq 1 \), let \(v_{T_t} = (x_1, \ldots, x_t) \). Pick \(i \in [n]\setminus T_t \) such that
\[
\rho_{\mu}(x_1 \ldots xTv_i) \leq (1 - \mu/2)\rho_{\mu}(x_1 \ldots x_t). \tag{7}
\]

If no such \(i \) exists we terminate the process and set \(T = T_t \). Suppose this process runs for \(d \) steps producing \(T \subseteq [n] \) such that \(v_T = (x_1, \ldots, x_d) \). By the termination condition, we have that for \(i \in [n]\setminus T \)
\[
\rho_{\mu}(x_1 \ldots xTv_i) > (1 - \mu/2)\rho_{\mu}(x_1 \ldots x_t). \tag{8}
\]

Conditioning on the coefficient of \(v_i \) and using that \(\mathbb{P}(X_{\mu}(x_1 \ldots x_d) = v_i) = \mathbb{P}(X_{\mu}(x_1 \ldots x_d) = -v_i) \) by symmetry, we can rewrite the left hand side to obtain
\[
\mu\mathbb{P}(X_{\mu}(x_1 \ldots x_d) = v_i) + (1 - \mu)\rho_{\mu}(x_1 \ldots x_d) > (1 - \mu/2)\rho_{\mu}(x_1 \ldots x_d). \tag{9}
\]

Rearranging shows \(v_i \in N(v_T) \). For the bound on \(d = |T| \), observe that by (5), inequality (7) and the fact that \(\rho_{\mu}(x_1) = (1 - \mu) \) we have
\[
\rho_{\mu}(v) \leq \rho_{\mu}(x_1 \ldots x_d) \leq (1 - \mu/2)^d \leq e^{-\mu d/2}. \tag{10}
\]

The next lemma shows that we can improve Lemma 5 by applying it iteratively. This will be key to regaining this crucial \(k^{-1/5} \) in Theorem 2 and will ultimately give our \(\sqrt{\log n} \) gain in the exponent of the singularity probability. In fact, if one only wanted to prove a bound of the form \(\exp(-cn^{1/2}) \) using our method, one needs only to use Lemma 5 along with a simplified Fourier argument.
For this lemma we need the following property of \(\rho_\mu \), which can be found in [19, Corollary 7.12]. Let \(w_1, \ldots, w_k \in \mathbb{Z}_p^* \) and \(\mu \in (0,1/2) \) then

\[
\rho_\mu(w_1 \cdots w_k) \leq \max_{j \in [k]} \rho_\mu(w_j^k).
\]

Lemma 6. Let \(\mu \in (0,1/4], n \in \mathbb{N} \) and \(v \in \mathbb{Z}_p^* \). Set \(d = \frac{2}{\mu} \log \rho_\mu(v)^{-1} \) and let \(k \in \mathbb{N} \) be such that \(kd \leq n \). Then there exists \(T \subseteq S \subseteq [n] \) with \(|T| \leq d \), \(|S| \leq kd \) such that \(v_i \in N(v_T) \) for all \(i \notin S \) and \(\rho_\mu(v_S) \leq \rho_\mu(v_T^k) \).

Proof. We will define a sequence of sets \([n] = A_1 \supseteq \cdots \supseteq A_k \supseteq A_{k+1} \). Given \(v_{A_j} \), we choose \(T_j \subseteq [n] \) with \(v_{T_j} = (x_1, \ldots, x_{d(j)}) \) given by Lemma 5 applied to \(v_{A_j} \) and let

\[
A_{j+1} = A_j \setminus T_j \quad \text{and} \quad S = \bigcup_{j=1}^k T_j.
\]

By Lemma 5 we have that \(v_i \in N(v_{T_j}) \) for all \(i \in A_{j+1} \). In particular, since \(S^c \subseteq A_j \) for all \(1 \leq j \leq k+1 \), \(v_i \in N(v_{T_j}) \) for all \(i \notin S \) and \(1 \leq j \leq k \). Note also that \(|T_j| \leq d \) for all \(1 \leq j \leq k \).

Let \(T \) be the \(T_j \) for which \(\rho_\mu(v_{T_j}^k) \) is maximized. The first claim of the lemma follows from the above. For the second claim note that, by (8) we have

\[
\rho_\mu(v_S) \leq \max_{1 \leq j \leq k} \rho_\mu(v_{T_j}^k) = \rho_\mu(v_T^k).
\]

□

To conclude the proof of our Theorem 2—and to understand the strength of Lemma 6—we introduce our main Fourier ingredient, the proof of which is found in Section 4.

Lemma 7. Let \(\mu \in (0,1/4], k \in \mathbb{N} \) and \(v \in \mathbb{Z}_p^* \) such that \(|v| \neq 0 \). Then

\[
\rho_\mu(v^k) \leq 64k^{-1/5} \rho_\mu(v) + p^{-1}.
\]

Proof of Theorem 2. Let \(k, n \in \mathbb{N} \) and \(v \in \mathbb{Z}_p^* \) be as in the theorem statement. By Lemma 6 there exists \(T \subseteq S \subseteq [n] \) with \(|T| \leq d \), \(|S| \leq kd \) such that \(v_i \in N(v_T) \) for all \(i \notin S \) and \(\rho_\mu(v_S) \leq \rho_\mu(v_T^k) \). Moreover, since \(|v| \geq kd \), the support of \(v_T \) is non-zero. Applying Lemma 7 we conclude that

\[
\rho_\mu(v_S) \leq \rho_\mu(v_T^k) \leq 64k^{-1/5} \rho_\mu(v_T) + p^{-1}.
\]

By (5) and (6) we then have

\[
|N_\mu(v_T)| \leq \frac{2}{\rho_\mu(v_T)} \leq \frac{128}{k^{1/5}(\rho_\mu(v_S) - p^{-1})} \leq \frac{256}{k^{1/5} \rho_\mu(v)},
\]

where on the final bound we use that \(\rho_\mu(v) \geq \frac{2}{p} \) □
3. Proof of Theorem 1

In this section we prove Theorem 4 which, from the discussion in the introduction, implies Theorem 1. As we were a bit quick with this discussion, we take a moment to spell out the proof of this implication.

Define

\[q_n(\beta) := \max_{w \in \mathbb{Z}_p^n} \mathbb{P}(\exists v \in \mathbb{Z}_p^n \setminus \{0\} : M \cdot v = w \text{ and } \rho(v) \geq \beta) \]

and note the following lemma from [2] (their Lemma 2.1).

Lemma 8. Let \(n \in \mathbb{N} \) and \(p > 2 \) be a prime. Then for every \(\beta > 0 \)

\[
\mathbb{P}(\det(M_n) = 0) \leq n^{2n-3} \sum_{m=n-1}^{n} \left(\beta^{1/8} + \frac{q_m(\beta)}{\beta} \right).
\]

Our Lemma 3 follows easily.

Proof of Lemma 3. Pick a prime \(p = t \exp(c \sqrt{n \log n}) \) with \(c = 1/800 \) and \(t \in [1/2, 1] \). Looking to apply Lemma 8 with \(\beta = \Theta(n/p) \), we apply the union bound to \(q_n(\beta) \) and our assumption for each \(n-1 \leq m \leq 2n-3 \) to bound

\[
q_n(\beta) \leq \sum_{w : \rho(v) \geq \beta} \max_{w \in \mathbb{Z}_p^n} \mathbb{P}(Mv = w) \leq e^{-cn}.
\]

Thus, we apply Lemma 8 to obtain

\[
\mathbb{P}(\det(M_n) = 0) \leq e^{-(1+o(1))\sqrt{n \log n}/8} + e^{-cn(1+o(1))} \leq e^{-c\sqrt{n \log n}/9},
\]

for \(n \) sufficiently large. \(\square \)

With these reductions firmly in-hand, we turn to prove Theorem 4 and therefore Theorem 1.

Proof of Theorem 4. Throughout we assume that \(n \) is sufficiently large so that all inequalities in the proof hold, we let \(k = n^{1/4} \), \(d = \frac{2}{p} \log p \leq \frac{2}{p} \sqrt{n \log n} \) and define \(\mathcal{V} := \{v \in \mathbb{Z}_p^n \setminus \{0\} : \rho(\mu(v)) \geq \beta\} \).

Our task is to bound

\[Q_n(\beta) := \sum_{v \in \mathcal{V}} \max_w \mathbb{P}(M_n \cdot v = w). \tag{9} \]

We start our analysis of (9) by partitioning this sum by way of a function \(f : \mathcal{V} \to \mathcal{S} \). To define \(f \), let \(v \in \mathbb{Z}_p^n \) and apply Lemma 6 to obtain \(S, T \subseteq [n] \). We then apply Lemma 5 to \(v_S \) to obtain a further set \(T' \subseteq [n] \). We then define \(f(v) = (S, T, T', v_T, v_{T'}) \) and put \(\mathcal{S} := f(\mathcal{V}) \). We thus partition our sum (9) as

\[Q_n(\beta) = \sum_{s \in \mathcal{S}} \sum_{v \in f^{-1}(s)} \max_w \mathbb{P}(M_n \cdot v = w). \tag{10} \]
Note that if \(s = (S, T, T', w_1, w_2) \in S \), then

\[
|S| \leq kd, \quad |w_1|, |w_2| \leq d, \quad \rho_\mu(w_1) \geq \beta, \quad \rho_\mu(w_2) \leq (1 - \mu/2)|w_2| \quad \text{and} \quad w_2 \neq 0
\]

by Lemmas 5 and 6 together with (6), and note that we have the bound

\[
|S| \leq 8^n p^{2d},
\]

since there are \(8^n \) choices for \(S, T, T' \) and at most \(p^{2d} \) choices for \(w_1, w_2 \).

We now turn to bounding a given term in the sum (10), based on which piece of the partition it is in. Let \(s = (S, T, T', w_1, w_2) \in S \) and \(v \in f^{-1}(s) \). For any \(w \in \mathbb{Z}_p^n \), we bound \(\mathbb{P}(M_n \cdot v = w) \) by first revealing the rows indexed by \(S^c \) and then revealing the rows indexed by \(S \setminus T' \),

\[
\mathbb{P}(M \cdot v = w) \leq \mathbb{P}\left(M_{(S \setminus T') \times [n]} \cdot v = w_{S \setminus T'} \mid M_{S^c \times [n]} \cdot v = w_{S^c}\right) \cdot \mathbb{P}(M_{S^c \times [n]} \cdot v = w_{S^c}).
\]

Looking only on the off-diagonal blocks \((S \setminus T') \times T'\) and \(S^c \times S\) and considering the “worst case” vectors for these blocks, we have

\[
\mathbb{P}(M \cdot v = w) \leq \max_u \mathbb{P}(M_{(S \setminus T') \times T'} \cdot v_{T'} = u) \cdot \max_u \mathbb{P}(M_{S^c \times S} \cdot v_S = u).
\]

The crucial point here is that these events can be written as an intersection of independent events concerning the rows. That is

\[
\mathbb{P}(M \cdot v = w) \leq \rho(v_{T'})^{|S| - |T'|} \rho(v_{S})^{n - |S|} \leq \rho_\mu(v_{T'})^{|S| - |T'|} \rho_\mu(v_{S})^{n - |S|},
\]

where this last inequality follows from the monotonicity of \(\rho \) in the parameter \(\mu \), noted at (6).

We now bound the size of a piece of our partition \(|f^{-1}(s)|\). By (5) together with Lemmas 5 and 6, the number of choices for \(v_{S^c} \) and \(v_{S \setminus T'} \) are (respectively) at most

\[
|N(w_1)|^{n - |S|} \leq \left(\frac{2}{\rho_\mu(w_1)}\right)^{n - |S|}, \quad |N(w_2)|^{|S| - |T'|} \leq \left(\frac{2}{\rho_\mu(w_2)}\right)^{|S| - |T'|},
\]

so that

\[
|f^{-1}(s)| \leq \left(\frac{2}{\rho_\mu(w_1)}\right)^{n - |S|} \cdot \left(\frac{2}{\rho_\mu(w_2)}\right)^{|S| - |T'|}.
\]

By (13) and the fact that \(|S| \leq kd = o(n)\) (by our choice of parameters), we have

\[
\sum_{v \in f^{-1}(s)} \max_w \mathbb{P}(M_n \cdot v = w) \leq 2^n \left(\frac{\rho_\mu(w_1^k)}{\rho_\mu(w_1)}\right)^{n - |S|} \leq 2^n \left(\frac{\rho_\mu(w_1^k)}{\rho_\mu(w_1)}\right)^{24n/25}.
\]

We consider first the case where \(|w_1| \neq 0\); then we may apply Lemma 7 to obtain the bound

\[
\rho_\mu(w_1^k) \leq 64(\mu k)^{-1/5} \rho_\mu(w_1) + \frac{1}{p}.
\]
By the bound $\rho_{\mu}(w_1) \geq \beta = \Theta(n/p)$, we then have
\[
\frac{\rho_{\mu}(w_k)}{\rho_{\mu}(w_1)} \leq 64(\mu k)^{-1/5} + \Theta(n^{-1}) \leq n^{-1/24}.
\]
Combining this with (12) and (15) shows that
\[
\sum_{s \in S, v \in f^{-1}(s), |w_1| \neq 0} \max_w \mathbb{P}(M_n \cdot v = w) \leq |S| \cdot n^{-n/25} \leq 8^n p^{2d_n} n^{-n/25}
\]
(16) \leq 8^n \exp \left(\frac{4c}{\mu} n \log n - \frac{1}{25} n \log n \right) \leq e^{-n},

provided $c \leq \mu/200$. Now if $|w_1| = 0$ then there are at most
\[
|f^{-1}(s)| \leq \left(\frac{2}{\rho_{\mu}(w_2)} \right)^{|S| - |T'|}
\]
choices for v. Notice that $\rho_{\mu}(v S) \leq \rho_{\mu}(w_2)$ and so
\[
\sum_{v \in f^{-1}(s)} \max_w \mathbb{P}(M_n \cdot v = w) \leq \rho_{\mu}(w_2)^n \left(\frac{1}{\rho_{\mu}(w_2)} \right)^{|S| - |T'|} \leq \rho_{\mu}(w_2)^n / 2 \leq \left(1 - \frac{\mu}{2} \right)^{|w_2|/2},
\]
where for the final inequality we used (11). On the other hand, by (11), the number of choices for
$s = (S, T, T', w_1, w_2)$ such that $|w_1| = 0, |w_2| = t$ is at most
\[
\left(\frac{n}{k d} \right)^t \leq \exp(\sqrt{n \log n} + 3 k d \log n).
\]
Putting our bounds together, we have
\[
\sum_{s \in S, v \in f^{-1}(s), |w_1| = 0, |w_2| = t} \max_w \mathbb{P}(M_n \cdot v = w) \leq \exp(\sqrt{n \log n} + 3 k d \log n - n \mu t/4) \leq e^{-n \mu t/5}.
\]
Summing over all $t \geq 1$ (recalling that $w_2 \neq 0$) and using (16), we conclude that
\[
Q_n(\beta) = \sum_{s \in S} \sum_{v \in f^{-1}(s)} \max_w \mathbb{P}(M_n \cdot v = w) \leq e^{-\mu n/6},
\]
as desired. \[\square\]

4. Proof of Lemma 7

In this section, we pin down one final loose end, the proof of Lemma 7 which is our main Fourier lemma. For $v \in \mathbb{Z}_p^n$, and $\mu \in [0, 1]$ we note a standard Fourier expression for $\rho_{\mu}(v)$. Define
\[
f_{\mu,v}(\xi) := \prod_{i=1}^n ((1 - \mu) + \mu c_p(v_i, \xi)),
\]
where $c_p(v_i, \xi)$ is the inner product of v_i and ξ modulo p. We have that
\[
f_{\mu,v}(\xi) = \exp \left(-2\pi i \sum_{i=1}^n \mu v_i \xi i \right).
\]
where we let \(c_p(x) = \cos(2\pi x/p) \). We then have
\[
(18) \quad \rho_\mu(v) = \mathbb{E}_{\xi \in \mathbb{Z}_p} f_{\mu,v}(\xi).
\]
Clearly \(|f_{\mu,v}(\xi)| \leq 1\) and for \(\mu \leq 1/2 \) each of the terms in the product \(f_{\mu,v}(\xi) \) is non-negative. In this case it is natural to work with log \(f_{\mu,v} \). For this, we let \(|x|_T\) denote the distance from \(x \in \mathbb{R} \) to the nearest integer and note the following bounds. For \(\mu \in [0, 1/4] \) we have
\[
(19) \quad \mu|x/p|_T^2 \leq -\log \left(1 - \mu + \mu c_p(x)\right) \leq 32\mu|x/p|_T^2,
\]
which are elementary and can be found in (7.1) in [19].

For the following lemma, one of the main results of this section, we need the well-known Cauchy-Davenport inequality which tells us that for \(A, B \subseteq \mathbb{Z}_p \) we have \(|A + B| \geq \min\{|A| + |B| - 1, p\} \). Here, as usual, \(A + B := \{a + b : a \in A, b \in B\} \).

A first step towards Lemma 7 is to prove it in the case when \(\rho_\mu(v) \) is not too large.

Lemma 9. Let \(\mu \in (0, 1/4] \), \(v \in \mathbb{Z}_p^* \) and \(k \in \mathbb{N} \). Then
\[
(20) \quad \rho_\mu(v^k) \leq \left(\rho_\mu(v)^{\frac{k-1}{k}} + \frac{8}{\sqrt{\mu k}} \rho_\mu(v) \right)^k + p^{-1}.
\]
To prove this lemma, we adopt some temporary notation. Let \(F = f_{\mu,v^k} \) and \(G = f_{\mu,v} \), be as defined in (17) and note that \(G = F^{1/k} \). We note also that \(F \) is non-negative since \(\mu \leq 1/4 \). Let \(\ell := \frac{1}{8}(\mu k)^{1/2} \). For all \(\alpha \in (0, 1) \), we consider the level sets
\[
A_\alpha := \{\xi \in \mathbb{Z}_p : F(\xi) > \alpha\} \quad B_\alpha := \{\xi \in \mathbb{Z}_p : G(\xi) > \alpha\}.
\]

Claim 10. For \(\alpha \in (0, 1) \), we have \(\ell \cdot A_\alpha \subseteq B_\alpha \).

Proof. To see this, assume \(\xi_1, \ldots, \xi_\ell \in A_\alpha \) and so \(G(\xi_i) = (F(\xi_i))^{1/k} > \alpha^{1/k} \) for each \(i \in [\ell] \). Taking logs of both sides and applying (19) gives, for each \(i \in [\ell] \),
\[
(20) \quad \mu \sum_{j=1}^{n} \|\xi_j v_j\|_T^2 \leq -\log G(\xi_i) \leq k^{-1} \log \alpha^{-1}.
\]
Thus, using the triangle inequality along with (20) gives
\[
\left(\sum_{j=1}^{n} \|\xi_1 + \cdots + \xi_\ell v_j\|_T^2 \right)^{1/2} \leq \sum_{i=1}^{\ell} \left(\sum_{j=1}^{n} \|\xi_j v_j\|_T^2 \right)^{1/2} \leq \ell \left(\frac{\log \alpha^{-1}}{\mu k} \right)^{1/2}.
\]
It then follows from the upper bound in (19) that
\[
-\log G(\xi_1 + \cdots + \xi_\ell) \leq 32 \sum_{j=1}^{n} \|\xi_1 + \cdots + \xi_\ell v_j\|_T^2 \leq 32 \ell^2 \frac{\log \alpha^{-1}}{\mu k}.
\]

\(^3\)For these explicit constants, note the bounds \(a \leq -\log(1-a) \leq (3/2)a \) for \(a \in [0, 1/4] \) and \(x^2 \leq 1 - \cos(2\pi x) \leq 20x^2 \) for \(|x| \leq 1/2\).
Thus, using our choice of $\ell = \frac{1}{8}(\mu k)^{1/2}$, we have $G(\xi_1 + \cdots + \xi_{\ell}) > \alpha$, and so $\xi_1 + \cdots + \xi_{\ell} \in B_{\alpha}$. □

Proof of Lemma 9. Letting $g := \mathbb{E}_\xi G = \rho_\mu(v)$, we want to show that $\mathbb{E}_\xi F \leq \left((g^{(k-1)/k} + \frac{8}{\sqrt{\mu k}}) \right) g + p^{-1}$. We do this in two ranges. First we recall that $F^{1/k} = G$ and so

$$\mathbb{E}_\xi [F^1(F \leq g)] \leq \mathbb{E}_\xi \left[G \cdot g^{(k-1)/k} \right] = \frac{g^{2k-1}}{k}.$$

Next we treat the ξ for which $F(\xi) > g$. First note that by Markov’s inequality $|B_\alpha| < p$, for all $\alpha > g$. It follows from Claim 10 and the Cauchy-Davenport inequality that $|A_\alpha| \leq \ell - 1 |B_\alpha| + 1$ for all $\alpha > g$. Thus,

$$\mathbb{E}_\xi [F^1(F > g)] = \int_g^1 |A_t|p^{-1} dt \leq \ell^{-1} \int_g^1 |B_t|p^{-1} dt + 1/p \leq g/\ell + 1/p.$$

Putting our bounds together we have

$$\rho_\mu(v^k) \leq \left((g^{(k-1)/k} + \frac{8}{\sqrt{\mu k}}) \right) g + 1/p = \left(\rho_\mu(v)^{(k-1)/k} + \frac{8}{\sqrt{\mu k}} \right) \rho_\mu(v) + p^{-1},$$

as desired. □

To complete our proof of Lemma 7, we need the following classical result:

Lemma 11. If $v \in \mathbb{Z}_p^*$ with $v \neq 0$ then $\rho_\mu(v) = \frac{64}{\sqrt{\mu |v|}} + p^{-1}$.

Letting $d = |v|$, this lemma may be deduced by bounding $\rho_\mu(v) \leq \rho_\mu(v^d_j)$ for some j by (8), noting that $\rho_\mu(v^d_j) = \rho_\mu(1^d)$ and bounding the latter either directly or using a standard local central limit theorem. Alternatively, a stronger statement may be found in [2, Lemma 2.3].

Proof of Lemma 7. If $\rho_\mu(v) \leq (\mu k)^{-1/4}$ then Lemma 9 tells us that $\rho_\mu(v^k) \leq 64(\mu k)^{-1/5} \rho_\mu(v) + p^{-1}$, as desired. On the other hand, if $\rho_\mu(v) > (\mu k)^{-1/4}$,

$$\rho_\mu(v^k) = \frac{64}{\sqrt{\mu k |v|}} + 1/p \leq 64(\mu k)^{-1/4} \rho_\mu(v) + 1/p$$

thus completing the proof. □

References

[1] J. Bourgain, V. H. Vu, and P. M. Wood. On the singularity probability of discrete random matrices. *J. Funct. Anal.*, 258(2):559–603, 2010.

[2] M. Campos, L. Mattos, R. Morris, and N. Morrison. On the singularity of random symmetric matrices. *arXiv preprint arXiv:1904.11478*, 2019.

[3] K. P. Costello, T. Tao, and V. Vu. Random symmetric matrices are almost surely nonsingular. *Duke Math. J.*, 135(2):395–413, 2006.

[4] A. Ferber and V. Jain. Singularity of random symmetric matrices—a combinatorial approach to improved bounds. *Forum Math. Sigma*, 7:Paper No. e22, 29, 2019.
[5] A. Ferber, V. Jain, K. Luh, and W. Samotij. On the counting problem in inverse littlewood–offord theory. arXiv preprint arXiv:1904.10425, 2019.

[6] G. Halász. On the distribution of additive arithmetic functions. Acta Arithmetica, 1(27):143–152, 1975.

[7] V. Jain, A. Sah, and M. Sawhney. On the smallest singular value of symmetric random matrices. arXiv preprint arXiv:2011.02344, 2020.

[8] V. Jain, A. Sah, and M. Sawhney. Singularity of discrete random matrices ii. arXiv preprint arXiv:2010.06554, 2020.

[9] J. Kahn, J. Komlós, and E. Szemerédi. On the probability that a random ±1-matrix is singular. J. Amer. Math. Soc., 8(1):223–240, 1995.

[10] J. Komlós. On the determinant of (0, 1) matrices. Studia Sci. Math. Hungar., 2:7–21, 1967.

[11] H. Nguyen and V. Vu. Optimal inverse Littlewood-Offord theorems. Adv. Math., 226(6):5298–5319, 2011.

[12] H. H. Nguyen. Inverse Littlewood-Offord problems and the singularity of random symmetric matrices. Duke Math. J., 161(4):545–586, 2012.

[13] H. H. Nguyen and V. H. Vu. Small ball probability, inverse theorems, and applications. In Erdős centennial, volume 25 of Bolyai Soc. Math. Stud., pages 409–463. János Bolyai Math. Soc., Budapest, 2013.

[14] M. Rudelson and R. Vershynin. The Littlewood-Offord problem and invertibility of random matrices. Adv. Math., 218(2):600–633, 2008.

[15] M. Rudelson and R. Vershynin. Smallest singular value of a random rectangular matrix. Comm. Pure Appl. Math., 62(12):1707–1739, 2009.

[16] M. Rudelson and R. Vershynin. Non-asymptotic theory of random matrices: extreme singular values. In Proceedings of the International Congress of Mathematicians. Volume III, pages 1576–1602. Hindustan Book Agency, New Delhi, 2010.

[17] T. Tao and V. Vu. On random ±1 matrices: singularity and determinant. Random Structures Algorithms, 28(1):1–23, 2006.

[18] T. Tao and V. Vu. On the singularity probability of random Bernoulli matrices. J. Amer. Math. Soc., 20(3):603–628, 2007.

[19] T. Tao and V. H. Vu. Additive combinatorics, volume 105. Cambridge University Press, 2006.

[20] K. Tikhomirov. Singularity of random Bernoulli matrices. Ann. of Math. (2), 191(2):593–634, 2020.

[21] R. Vershynin. Invertibility of symmetric random matrices. Random Structures Algorithms, 44(2):135–182, 2014.

[22] V. Vu. Random discrete matrices. In Horizons of combinatorics, volume 17 of Bolyai Soc. Math. Stud., pages 257–280. Springer, Berlin, 2008.

INSTITUTO NACIONAL DE MATEMÁTICA PURA E APlicada (IMPA).

Email address: marcelo.campos@impa.br

UNIVERSITY OF BIRMINGHAM, SCHOOL OF MATHEMATICS.

Email address: m.jenssen@bham.ac.uk

UNIVERSITY OF ILLINOIS AT CHICAGO. DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE.

Email address: michelen.math@gmail.com

UNIVERSITY OF CAMBRIDGE. DEPARTMENT OF PURE MATHEMATICS AND MATHEMATICS STATISTICS (DPMMS).

Email address: jdrs2@cam.ac.uk