Designing and Implementing a Novel Graduate Program to Develop Transdisciplinary Leaders in Urban Sustainability

Megan M. Wallen
Wayne State University

Ingrid Guerra-Lopez
Wayne State University, ingrid.guerra-lopez@wayne.edu

Louay Meroueh
Wayne State University, lmeroueh@med.wayne.edu

Rayman Mohamed
Wayne State University, rayman.mohamed@wayne.edu

Andrea Sankar
Wayne State University, asankar@wayne.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wayne.edu/biosci_frp

Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, Other Engineering Commons, and the Urban Studies and Planning Commons

Recommended Citation
Wallen, Megan M., Ingrid Guerra-Lopez, Louay Meroueh, Rayman Mohamed, Andrea Sankar, Pradeep Sopory, Ryan Watkins, and Donna R. Kashian. 2022. “Designing and Implementing a Novel Graduate Program to Develop Transdisciplinary Leaders in Urban Sustainability.” Ecosphere 13(1): e3901.
https://doi.org/10.1002/ecs2.3901

This Article is brought to you for free and open access by the Biological Sciences at DigitalCommons@WayneState. It has been accepted for inclusion in Biological Sciences Faculty Research Publications by an authorized administrator of DigitalCommons@WayneState.
Designing and implementing a novel graduate program to develop transdisciplinary leaders in urban sustainability

Megan M. Wallen1 | Ingrid Guerra-Lopez2 | Louay Meroueh1 | Rayman Mohamed3 | Andrea Sankar4 | Pradeep Sopory5 | Ryan Watkins6 | Donna R. Kashian1

1Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
2Learning Design and Technology, College of Education, Wayne State University, Detroit, Michigan, USA
3Department of Urban Studies and Planning, Wayne State University, Detroit, Michigan, USA
4Department of Anthropology, Wayne State University, Detroit, Michigan, USA
5Department of Communication, Wayne State University, Detroit, Michigan, USA
6Graduate School of Education, George Washington University, Washington, District of Columbia, USA

Correspondence
Donna R. Kashian
Email: dkashian@wayne.edu

Funding information
National Science Foundation, Grant/Award Number: 1735038

Handling Editor: Laurel Hartley

Abstract
Urban settings, where >50% of the world’s population resides, are increasingly faced with environmental challenges that threaten their sustainability. Aging infrastructure, water and air pollution, and increasing recognition of environmental injustices highlight the need for professionals to employ complex scientific reasoning across disciplines where they can effectively address the multifaceted issues of urban sustainability. Here we present an innovative model for preparing the next generation of public, private, and academic leaders to address complex problems in urban sustainability. Specifically, we outline the design and implementation of an integrated, adaptable graduate training program, with the goals of science leadership, curriculum relevancy, community impact, broader applicability, establishing a career development pathway in science, technology, engineering, and mathematics (STEM) programs, and program sustainability. This program addresses human-ecosystem challenges using a transdisciplinary approach to produce scientific products in partnership with local communities, businesses, industries, scientists, and policy makers, while providing a mechanism to understand and overcome contemporary societal and ecological challenges. Students receive rigorous training in their home disciplines, coupled with training across disciplinary lines and developmental experiences, to prepare them to communicate, collaborate, and innovate in a variety of contexts. Training success is evaluated across measurable competency domains including problem definition, research methods, communication, collaboration, and problem-solving. After 3 years the program expanded relationships across fields and professions, successfully established 18 internship opportunities with community partners, created a new dual-title PhD program open to students in five academic departments, and facilitated the coproduction of knowledge with external partners. This model bridges the gaps between research, education, and application, providing an integrated, rigorous graduate training program that fosters...
INTRODUCTION

Urbanization places immense demands on natural capital and ecosystem services (Gómez-Baggethun & Barton, 2013). Although these demands are acutely placed on urban areas, they cast a wider influence on the natural environment both because of the interconnectedness of the environment and global flows of capital and trade (Donaghy, 2012). Given the local and global downstream impacts, plus the increasing rate of urbanization (United Nations, 2019), there is an urgency to address the sustainability of urban ecosystems and ensure their persistence for future generations. Urban sustainability is a growing field dedicated to improving cities for long-term environmental, economic, and social well-being. The complex links among natural, engineered, production, and socioeconomic systems are poorly understood at the urban scale (Bettencourt & West, 2010), and the science of communicating these links to policy makers and the public requires constant refinement because of their intricate, technical, and quickly evolving nature. Urban ecological systems require the integration of the natural and social sciences and environmental engineering to restore and maintain ecosystem services in human-dominated landscapes (Miller, 2013; Raymond et al., 2013). Druschke and McGreavy (2016) highlight that ecologist can benefit from training in science communication and interdisciplinary collaborations to support social-ecological research and sustainability sciences.

The complexity of challenges in this field necessitates a transdisciplinary approach that enables a variety of disciplines and stakeholders to collaborate on addressing the many interconnected issues (Lang et al., 2012; Norström et al., 2020), with sometimes conflicting objectives. Translational ecology is one approach that can provide a framework for collaboration among scientists and decision-makers to address pressing socio-ecological challenges (Enquist et al., 2017).

However, in traditional science and educational models situated within disciplinary silos, there are limitations to the successful transfer of scientific findings into action (van Kerkhoff & Lebel, 2006), a situation known as the “knowing–doing gap” (Pfeffer & Sutton, 1999), which has been identified in a variety of environmental science-related fields such as landscape ecology (Montgomery et al., 2018), restoration ecology (Reyers et al., 2010), and ecosystem management (Matzek et al., 2014).

Alternative models of knowledge transfer involve integration and active engagement among key stakeholders (van Kerkhoff & Lebel, 2006), where sharing of knowledge between researchers and nonscientists is an ongoing process using adaptive management approaches. Collaboration among ecologists and other professionals, in addition to an integrated understanding of urban ecological systems, is essential for sustainable management of urban environments (Lang et al., 2012; Norström et al., 2020).

The emerging field of team science, or research involving collaboration among multiple disciplines and integration of research goals, provides a framework to navigate complex interactions and facilitate integration (Bennett & Gadlin, 2012; Read et al., 2016). The distinction between interdisciplinarity, which “analyzes, synthesizes, and harmonizes” links among disciplines, and transdisciplinarity, which integrates the knowledge and “transcends traditional boundaries” (Choi & Pak, 2006) is important for translational research. Transdisciplinary collaborations thereby involve varied stakeholders who focus on solving complex societal problems, and developing new knowledge, theories, and frameworks that transcend the contributions of unique or integrated disciplinary knowledge (Klein, 2018). Training and experience along the inter- to transdisciplinary continuum begins during formative education and extends through advanced academic training and into ongoing professional development.

Complex environmental and ecological problems, including those posed within the context of urban sustainability, are not easily delineated onto the disciplines found in universities, and no single academic discipline can train students to address environmental challenges alone. Furthermore, most science, technology, engineering, and mathematics (STEM) graduate programs, higher education, interdisciplinary research, science, technology, engineering, and mathematics, transdisciplinary research, urban ecological systems, urban sustainability
students, including ecologists, do not end up in careers at academic institutions (Schwartz et al., 2017). Many are employed by government agencies, nongovernmental organizations, and private corporations and consultancies. As a result, the need for interdisciplinary investigation and training of environmental issues has grown (Kinzig, 2001; Lubschenco, 1998; Welch-Devine et al., 2014).

While disciplinary silos still prevail in graduate education, the inherent pedagogical advantages of interdisciplinary efforts in graduate training are widely recognized (Bosque-Pérez et al., 2016; Fam et al., 2018; Frodeman et al., 2010), with ecology-focused programs becoming more common (e.g., Bosque-Pérez et al., 2016; Francis et al., 2008, 2018; Read et al., 2016; Record et al., 2016). Examples include the National Science Foundation (NSF) 2011–2016 Strategic Plan (National Science Foundation, 2011) and the National Institutes of Health (NIH) Clinical and Translational Science Programs (National Center for Advancing Translational Science, 2018). Support for this kind of integrated, problem-based training is even stronger in Europe (Taylor, 2011). Even so, interdisciplinary efforts can be stymied by obstacles at administrative levels and institutional and professional barriers to implementation (Fam et al., 2020; Klein, 2010). Major barriers include recognized and accepted criteria to assess professional achievement and advancement (Klein & Falk-Krzesinski, 2017), institutional funding for teaching and graduate student support, and academic employment opportunities. Somewhat less intractable barriers include credit for joint- or coteaching, support and staffing for synthesizing courses, the allocation of recognition and “credit” for external funding, and joint dissertation chapters and publications (Klein & Falk-Krzesinski, 2017).

Sustainability in postindustrial cities, often referred to as Rust Belt cities, is complicated by structural inequalities that exacerbate racial disparities, leaving people of color (POC) exposed to higher levels of pollution (Zwickl et al., 2014) or inadequate or compromised infrastructure (Bullard, 1999). Indeed, exposure to pollution in Rust Belt cities has followed a trend of placing new hazardous facilities in predominantly POC neighborhoods (Mohai & Saha, 2015; Pastor et al., 2001) and leaving pollution behind in these neighborhoods as manufacturing left for the suburbs (Taylor, 2014). The effects of such compromised urban infrastructure on POC were recently seen during the Flint, Michigan water crisis (Butler et al., 2016; Greenberg, 2016), and are evident in larger cities such as Detroit, Michigan, where POC experience a lack of the basic services required for health and welfare (Mohamed, 2018). Though Rust Belt is a phrase initially used to describe postindustrial cities in the Midwest United States, the term has expanded globally to describe cities with similar “smokestack” histories, such as Oberhausen, Germany, along the Ruhr Valley (Hospers, 2004).

Considering the institutional barriers listed earlier, emergent workforce needs in transdisciplinary competence, and the urgency for solutions to urban sustainability problems, we sought to develop a program that addresses those gaps in academic graduate training. Wayne State University (WSU) is located in downtown Detroit, an aging Rust Belt city undergoing a profound revitalization. As an urban research institution, many of our students are actively engaged with the community. This makes us uniquely poised to develop an innovative program to advance transdisciplinary graduate training and address some of our city’s pressing issues, with broad applicability to other urban centers.

Named Transformative Research in Urban Sustainability Training (T-RUST), our overarching objective was to develop the structures needed to support transitions along the disciplinary—transdisciplinary continuum for students, faculty, and community partners. Our six goals were to (1) educate graduate students to make important contributions to urban environmental system research, policy making, and transdisciplinary problem solving (Science Leadership); (2) develop a curriculum for our science leaders to meet the needs of the labor market in urban sustainability (Curriculum Relevancy); (3) effectively address local urban sustainability problems through an interdisciplinary lens (Community Impact); (4) generate knowledge that has applicability in other urban settings (Broader Applicability); (5) recruit students from underrepresented groups (STEM Career Development Pathway); and (6) develop a self-sustaining program that thrives beyond the life of the grant funding period (Program Sustainability). Here we describe the steps we took to design and implement the program, the challenges we encountered, and lessons learned after 3 years of successful implementation, with the hope that this model built from foundation laid in translational ecology can be used and adapted by other institutions looking to advance graduate training and produce transdisciplinary leaders.

PROGRAM DESIGN

Program structure

T-RUST is an NSF Research Traineeship (NRT) program, which is a 5-year program “designed to encourage the development and implementation of bold, new, and potentially transformative models for STEM graduate education training” (NSF, 2019). The NRT program encourages innovative, evidence-based programs designed to meet the
challenges of a changing workforce and research needs.
T-RUST was designed along these lines and specifically to
prepare its graduates to lead public and private partner-
ships addressing complex environmental issues of urban
centers.

The initial development of this program began
through the construction of a research proposal culti-
vated by faculty at WSU. The core program leadership
team consisted of one Principle Investigator (PI), four
co-PIs, four senior personnel, and an external evaluator
representing eight disciplines split evenly between
STEM, social sciences, and the humanities. The majority
of the faculty leadership team had previously
established collaborative relationships and a history of
collaborative publishing and teaching, developing cam-
pus wide initiatives, and interdisciplinary seminar
series, which helped build a strong foundation for the
program.

The leadership team identified the six goals of the
T-RUST program (listed earlier) and designed a novel
logic model with various training components to achieve
these goals (Figure 1). Each training component mapped
to a specific goal, and was guided by a well-developed
assessment component led by an expert in performance
improvement and an external program evaluator.

A common assumption is that if a group of
researchers from different disciplines is formed, it will
automatically result in research that crosses disciplinary
boundaries. However, literature suggests that for trans-
disciplinary projects to be successful, the researchers
need to master and successfully apply specific competen-
cies such as collaboration, facilitation, and role clarifica-
tion, in addition to requisite knowledge outside of their
primary field (Brown, 2014; Committee on Facilitating
Interdisciplinary Research and Committee on Science,
Engineering, and Public Policy, 2005). Therefore, the
design of this innovative program centered on a compe-
tency model for multidiscipline urban sustainability grad-
uate training (Box 1), composed of five domains further
subdivided into 19 competencies, and was based on a
review of the literature and input from the program lead-
ership team. The competency model was further refined
and validated during the initial implementation stage to
reflect workforce demand and input from an External
Advisory Board (EAB) of 32 diverse community stake-
holders. The research and transdisciplinary problem solving. Trainees led inter-
disciplinary team-based research, with mentorship from
diverse faculty role models and the EAB. The research
projects were centered on several key themes related to
urban sustainability (Table 1) and were required to result
in at least one publication per team that reflected the
transdisciplinary collaboration aspects of the research
project (see Appendix S1: Table S1).

Additional program components related to the leader-
ship goal include leading project and grant proposals and
delivering both academic and community presentations.
Leadership training was also developed through academic
and community-building seminars, workshops, and video
documentary creation to provide trainees with opportuni-
ties in skilled communication. Specifically, filmmaking
opens the door to multimedia verbal and nonverbal com-
munication, increasingly important in the digital age, and
engages our trainees in disseminating their research to
both technical and nontechnical audiences.

Another novel component of the T-RUST program
was a requirement for PhD trainees to develop a one-
two-credit graduate-level capstone seminar course in
their senior year. Trainees could collaborate and coteach
the capstone under the guidance of program faculty. A
capstone course demonstrates the interconnected nature of
the different research tracks within the context of
urban sustainability. The courses are made available to
fellow trainees and the wider body of graduate and
undergraduate students, and facilitate transfer of knowl-
dge to STEM scholars.

Curriculum relevancy

The goal of T-RUST curriculum was to be relevant to
trainees from varied disciplines with diverse academic
interests while at the same time meeting the needs of the

Science leadership

Under the first goal, T-RUST has provided training for
graduate trainees to make important contributions to
urban environmental system research, policy making,
and transdisciplinary problem solving. Trainees led inter-
disciplinary team-based research, with mentorship from
diverse faculty role models and the EAB. The research
projects were centered on several key themes related to
urban sustainability (Table 1) and were required to result
in at least one publication per team that reflected the
transdisciplinary collaboration aspects of the research
project (see Appendix S1: Table S1).

Additional program components related to the leader-
ship goal include leading project and grant proposals and
delivering both academic and community presentations.
Leadership training was also developed through academic
and community-building seminars, workshops, and video
documentary creation to provide trainees with opportuni-
ties in skilled communication. Specifically, filmmaking
opens the door to multimedia verbal and nonverbal com-
munication, increasingly important in the digital age, and
engages our trainees in disseminating their research to
both technical and nontechnical audiences.

Another novel component of the T-RUST program
was a requirement for PhD trainees to develop a one-
two-credit graduate-level capstone seminar course in
their senior year. Trainees could collaborate and coteach
the capstone under the guidance of program faculty. A
capstone course demonstrates the interconnected nature of
the different research tracks within the context of
urban sustainability. The courses are made available to
fellow trainees and the wider body of graduate and
undergraduate students, and facilitate transfer of knowl-
dge to STEM scholars.

Curriculum relevancy

The goal of T-RUST curriculum was to be relevant to
trainees from varied disciplines with diverse academic
interests while at the same time meeting the needs of the
labor market in urban sustainability. The curriculum was aligned to the interdisciplinary competency model (Box 1) and designed to provide training to meet the evolving demands of a well-prepared workforce in urban sustainability by situating many learning activities in community engagement and internship opportunities (Appendix S1: Tables S1 and S2). The curriculum was designed using a societal demand framework (Guerra-López & Hutchinson, 2017), which aligns the curriculum to competencies prioritized by the labor market through a needs assessment process. This approach reduces bias in the selection of courses and topics and anchored the curriculum in core competency areas necessary for addressing urban sustainability needs and priorities, which was expected to maximize the readiness of program graduates for employment.

A key component of curriculum development was the creation of a dual-title PhD in urban sustainability (e.g., PhD in Biological Sciences-Urban Sustainability) framework, which provided an innovative mechanism for existing doctoral programs across the university to integrate a second content area into all program milestones, such as coursework, the candidacy examination, and dissertation project. The dual-title degree program also served as a mechanism to engage trainees fully in the program beyond their 1 or 2 years of NSF funding, as well as a recruitment tool to attract students to WSU.

Community impact

As an urban institution, WSU’s mission communicates the importance of T-RUST delivering positive impact to the local community. We integrated community service requirements with class roles and program expectations so that trainees would be connected with local community organizations, cultural values, and the role of local activism. Also crucial was training in adequate communication of scientific knowledge, and the integration of values associated with scientific training into neighborhoods, local schools, and local government. Trainees were expected to participate in 20 h of community service or outreach events per year, such as lecturing at a local K-12 school, participating in citizen science, or leading...
hands-on stewardship or learning activities. Such community service activities were expected to contribute to trainee development and training, have positive impacts on the community, and reach multiple audiences, including prospective trainees from traditionally underrepresented groups. The goal was to help trainees develop communication skills as they engage with community groups and citizens, while broadening their ability to understand multiple vantage points in complex sustainability issues.

Broader applicability

To facilitate applicability to other regions and partners, T-RUST incorporated numerous opportunities for knowledge-sharing among and between trainees, community members, researchers, policy makers, and the public. Our goal to expand our impact to other urban centers was established through new and existing collaborations with the University of Windsor and the University of Puerto Rico-Mayagüez (UPRM). Windsor is a Canadian urban center located across the Detroit River from Detroit and WSU and shares similar sustainability challenges. We also facilitated trainee presentations at local, national, and global conferences, publications, video documentaries, student exchanges with other institutions, and community presentations.

Establishing a STEM career development pathway

Underrepresentation of various marginalized groups in STEM fields remains an ongoing problem, and greater inclusivity in recruitment is one way to increase

BOX 1 Interdisciplinary urban sustainability competency model

Domain 1: Problem definition
1. Demonstrate critical thinking about an environmental problem
1.2 Demonstrate understanding of urban sustainability in various climates
1.3 Conceptualize urban environmental problems using an environmental system framework

Domain 2: Research methods
2.1 Pose important interdisciplinary research questions
2.2 Select appropriate research designs that are responsive to interdisciplinary research problems and questions
2.3 Develop data collection instrumentation that aligns to interdisciplinary research design and demands
2.4 Implement interdisciplinary research protocols
2.5 Use analytical methods responsive to interdisciplinary research demands
2.6 Ensure ethical conduct of interdisciplinary research

Domain 3: Communication
3.1 Effectively communicate research findings and implications
3.2 Use appropriate communication approaches, methods, and means for communicating across areas of expertise to a variety of different audiences
3.3 Effectively communicate the evolving need for interdisciplinary research to sustainably respond to societal demands

Domain 4: Problem-solving
4.1 Apply appropriate analytical problem-solving techniques responsive to interdisciplinary demands
4.2 Apply relevant research findings from a variety of disciplines to solve urban sustainability problems
4.3 Identify viable solutions to interdisciplinary problems based on clearly defined requirements

Domain 5: Collaboration
5.1 Actively collaborate with interdisciplinary teams
5.2 Demonstrate understanding of relevant current issues and concepts in other fields
5.3 Apply methods for engaging affected communities
5.4 Empower governmental and community leaders with information to shape public policy, organize, advocate, educate, and redevelop with a focus on issues
representation (Shadding et al., 2016). However, commitment to studying STEM fields is not developed entirely during undergraduate education, but rather over the course of an educational lifetime, and often through a nonlinear career path (Metcalf, 2016). Students from underrepresented populations often come from underfunded and underresourced institutions, making pursuit of STEM studies challenging. We aimed to support the “pathway” (Gibbs & Marsteller, 2016) by working with students from every stage in their educational careers (K-12 and beyond) by leveraging WSU resources, working with existing advocacy groups on campus and in Detroit, and engaging students from Puerto Rico through pre-existing relationships with UPRM. Trainees played an important role in pathway-building through their volunteering and community engagement efforts, which were facilitated in part by providing opportunities through our connections. Further, a focus on inclusive language in recruitment materials and online program promotion strategies (e.g., social media campaigns, posts on disciplinary listservs) aimed to garner program interest from underrepresented students in STEM outside of the direct relationships fostered by program participants.

Program sustainability

To develop a self-sustaining program that thrives beyond the life of the NSF funding period, trainees and faculty actively sought external funding to support transdisciplinary collaborations. Trainees were required to prepare at least one proposal to an external funding agency, which provided experience in grant writing and potential financial support for their studies beyond the training period. Additionally, the suite of dual-title PhD degrees (referenced earlier) served to formalize the program requirements and integrate the training with existing institutional structure.

MONITORING AND EVALUATION

Monitoring and evaluation were essential components of program planning and implementation, generating ongoing formative feedback that helped the team continually improve the program. A robust monitoring and evaluation system was developed to ensure strong program alignment and began during program design by establishing a shared understanding of the program’s goals and defining core activities as means to achieve those goals (Guerra-López, 2012; Guerra-López & Elo Hicks, 2015). The leadership team followed this process of alignment during the design (i.e., proposal) stage to ensure that each of the envisioned core activities had a clear and direct relationship to at least one programmatic goal (Figure 1). Additionally, key trainee outputs were also identified and mapped to core program goals. For example, the number of publications was intended to serve as an indicator of goals 1, 3, and 4, while the videos were aligned to goals 1, 3, and 5.

The core program activities and trainee outputs provided an integrated framework for identifying measurable indicators that allowed the program leadership team to monitor how well each of the core program components and activities were supporting the program goals. The program leadership team worked with the evaluator during the program design stage to develop a set of measurable indicators for each program goal to track progress and support implementation and program management (Appendix S1: Table S1). A sample of measured outputs from the first 3 years of implementation is highlighted in Table 2. The

TABLE 1 Urban sustainability research tracks
Research theme
Urban ecological systems
Urban redevelopment and the blue economy
Sustainable urban water infrastructure
monitoring and evaluation of program activities and results have been vital components of effective, evidenced-based program implementation and management.

During the first few months of the program launch, the team reviewed the monitoring and evaluation plan to ensure its relevance and make necessary modifications to support implementation. The team also agreed on most data collection methods, tools, and procedures. Development of data collection tools, such as an online trainee activity tracker, included input from the program faculty, who collaborated to ensure alignment to key program indicators (e.g., number of transdisciplinary publications, type of professional development activities).

Additionally, the competency model was used as the foundation for curriculum planning during the program design stage and courses were selected and mapped to each of the 19 competencies (Appendix S1: Table S2). The relevancy of the courses and skills was evaluated every year through several mechanisms, including an internal Curriculum Development Committee and an EAB review (later described under Implementation).

Evaluation and other feedback collection tools also reflected the program competencies to ensure that mastery of these competencies was being reinforced across foundational and applied learning activities. For example, postinternship tools included a section to allow both the internship supervisors and the trainee intern to elaborate on which specific set of competencies was developed during the internship experience and in what ways. This exemplifies how monitoring and evaluation have been used to support program planning, implementation, and adaptation (ongoing improvements).

IMPLEMENTATION

Program administration

During the first year, faculty participation grew as additional supportive faculty joined the program. By the end of the third year, T-RUST faculty represented 11 disciplines, distributed among 5 schools (College of Liberal Arts and Sciences, College of Engineering, College of Fine, Performing, and Communication Arts, College of Education, and the School of Medicine), 11 departments (Anthropology, Biology, Civil Engineering, Communication, Economics, Geology, Learning Design and Technology, Pharmaceutical Sciences, Pharmacology, Physiology, and Urban Studies and Planning), and the University of Puerto Rico.

At the onset of the program, the core leadership team formed committees to lead various aspects of the program. Each committee consisted of four faculty members with one serving as the committee chair. Committees included the (1) Graduate Admissions Committee that reviewed and made decisions on trainee admission and assessed trainee progression; (2) Research Innovation Committee that helped identify transdisciplinary research opportunities following recommendations put forth by the EAB; (3) Curriculum Development Committee that worked with the EAB to assess the curriculum, and helped develop the dual-title degree program; (4) Student Professional Development Committee that worked to identify internships, organize the research exchange program, and find opportunities for exposure to nonacademic careers and grant writing; and (5) Recruitment Committee that was responsible (in part) for recruiting trainees from
Training structure

Both doctoral and master’s students were recruited into the program on an annual basis (5–8 per year) and remained in the program throughout their graduate studies. There were a limited number of fellowships available each year through the NSF grant that included a stipend and tuition waiver. Fellowships were awarded to top recruits on a merit basis for the first or second year in the program. Upon acceptance, all first-year trainees were required to enroll in the flagship course (BIO 7310; Appendix S1: Table S2) during their first semester, which introduced them to the field of urban sustainability and the range of disciplines relevant to its study. This course was cotaught by the faculty team from their individual disciplinary perspectives of urban sustainability, with guest lectures from the EAB. The core curriculum (Appendix S1: Table S2) comprised courses from all participating academic disciplines, including existing courses that were taught as is or modified as needed. Modifications to existing courses included adjusting topics, readings, and assignments to (1) have a local Detroit focus; (2) be relevant to urban sustainability issues; and (3) appeal to and accommodate trainees from multiple disciplines. To make the modifications, course instructors consulted with T-RUST faculty and within their departments, and when applicable, their department’s curriculum committee.

Each year, first-year trainees were encouraged to form relationships both within and outside of their courses, through organized program social gatherings and sustainability-related events, and collaborate on course projects. This set the foundation for developing interdisciplinary teams by the end of the first semester, when trainees met with their T-RUST faculty advisors to propose their research ideas. Trainees were divided into teams (3–6 trainees) and were formed to be as multidisciplinary as possible, including combinations of the applied sciences, social sciences, humanities, and engineering. Trainee research projects were conducted throughout the tenure of their graduate studies and were partially supported by trainee-led collaborative grants totaling approximately $58k in the first 3 years of the program. By the end of the third year, 27 trainees participated in T-RUST, including 18 PhD, 5 master of urban planning (MUP) and 4 MS, with 2 MUP trainees graduating in the third program year.

New professional development opportunities were created by the T-RUST faculty, program manager, and other WSU partners including workshops, seminar series, and a new conference on campus (see Institutional Impact section). Workshops included topics such as Lessons in Interdisciplinary Writing, Effective Oral Presentations, and Creating Video Documentaries. Existing campus seminars (e.g., Water@Wayne) were leveraged to provide leadership opportunities for trainees who invited speakers of their choice, served as their campus host, and planned their schedule.

Community and practitioner engagement

Both formal and informal partnerships with colleagues in varied disciplines and institutions were important for student training and integration within the community and professional fields. T-RUST has been able to leverage these relationships to exchange ideas, share lessons learned from applying urban sustainability, and further the development of skills for the faculty and students within and outside of WSU with a focus on underrepresented groups.

The core leadership team also formed and engaged the EAB early in implementation. The EAB was initially formed based on local connections and preexisting relationships with experts in varied aspects of urban sustainability, as described earlier. In addition, EAB members who could help provide access to sites, data, resources, and internship opportunities for trainees were identified. EAB members served as important mentors to the trainees, with the vision that these interactions will extend beyond the duration of the trainees’ graduate studies. We initially invited 34 professionals to the EAB, and over time new members have been invited based on the relevance of their work and expertise to enhance trainee training through diverse perspectives. Biannual meetings served to update the EAB on program success and trainee research, and provide a forum for idea exchange, bridging the gap between academic research goals and specific needs of the community.

A full-time program manager position was created to run the day-to-day implementation of T-RUST and to develop and identify new activities to accomplish program goals. These tasks included administering all trainee training logistics (e.g., individual development plans, coursework and degree requirements, research project development), identifying internship, community service, funding, and professional development opportunities, tracking program progress and outputs (Appendix S1: Table S1), maintaining online presence (website and social media), facilitating community partnerships, coordinating faculty responsibilities, and communicating program activities to the EAB and broader community. A highly competent program manager was essential to the continued success of T-RUST.
beyond WSU. Partnerships with the University of Windsor and UPRM were planned elements, and both WSU and our partner universities have benefited from a number of exchanges (Table 2).

Community members and urban sustainability practitioners were consulted for both programmatic and substantive input. From a programmatic perspective, the EAB evaluated the curriculum, specifically on strengthening the links between the coursework and the transdisciplinary demands of effectively addressing urban sustainability problems. A survey was conducted annually to receive input on course syllabi, including new courses that were added to the curriculum. Critically, EAB members hosted trainee internships, which were often customized to target urban sustainability competencies (Box 1). Many EAB members also gave seminars and guest lectures on campus, through seminar series and a conference that T-RUST cohosted with various campus partners, from which several new collaborations developed.

From a research perspective, EAB members provided feedback to trainees who were given the opportunity to present their work at the biannual EAB meetings, which infused professional and local knowledge to their projects. We have taken steps toward the transdisciplinary goal of knowledge coproduction in involving the EAB and other community members at early stages in the research.

Additionally, trainees demonstrated strong enthusiasm and initiative in seeking out opportunities for local outreach and community service. Activities have included hosting girls in STEM from a local public school, citizen science surveys with Friends of the Rouge River, involvement in local conferences, and trainee-led presentations to community groups. One organization in particular, ReRoot Pontiac (founded by a trainee), works to transform blighted land into environmental learning opportunities for kids. Many trainees have been involved in this project, and one group collaborated to expand the mission (ReRoot Detroit) and bring the work to our own backyard. This is just one example of trainee-driven community impact involving transdisciplinary collaboration.

Institutional impact

T-RUST has facilitated new structures and connections within WSU. The dual-title PhD in urban sustainability was approved and adopted by five academic departments across four schools (Anthropology, Biology, Civil Engineering, Communication, and Pharmaceutical Sciences) and has been provisionally approved by two academic departments across two schools (Economics and Pharmacology). Minor adjustments were made to the T-RUST requirements to accommodate departmental requirements and ensure no time was added to degree completion. As mentioned elsewhere, new courses and curriculum have been adopted by WSU, which has far-reaching impacts beyond the T-RUST program as these courses are available to the wider student body. T-RUST also cohosted a new annual conference on campus with two campus centers and the Office of the Vice President for Research, and other collaborations stemming from T-RUST may result in a new NIH Superfund Center.

Through T-RUST, WSU has set aside a designated space for transdisciplinary collaboration equipped with computers and furniture. The space is now used by several campus interdisciplinary groups, including Healthy Urban Waters and the Detroit Biodiversity Network, whose mission is to engage trainees in hands on projects that support and improve the sustainability of urban ecosystems on campus and in surrounding Detroit communities.

Starting in the second year, meetings were held with WSU’s Corporate and Foundation Relations office and directors of Philanthropy and Alumni Relations to identify sources of external financial support and strategize program communications in an effort to maximize readership, recruitment, and engagement with T-RUST. Annual meetings were held with the WSU Provost; discussions were underway regarding faculty cluster hires that would support the thematic vision of T-RUST, which also aligns with the WSU Mission. However, the COVID-19 pandemic stalled these discussions for now as university resources are redirected to address more pressing research and needs.

We launched our STEM recruitment process by creating communication channels to existing advocacy groups on campus that work directly with underrepresented groups to promote academic success and community building. Building a relationship with our campus Federal TRIO (U.S. Department of Education, n.d.) and reBUILD (Building Infrastructure Leading to Diversity) offices allowed us to direct resources toward establishing a STEM career development pathway-building at different educational levels. Under the TRIO umbrella, our relationship with the McNair Scholars program gave us the opportunity to offer extracurricular STEM opportunities to underrepresented undergraduate students with an interest in graduate studies. Similarly, we maintained relationships with other on-campus organizations such as the Tribal Learning Community and the Center for Latinx American Studies, and the communication channels built with these programs yielded opportunities to target the local K-12 segment (Table 2). Additionally, we secured funding for one trainee through our relationship with the Initiative for Maximizing Student Diversity office. Our social media and communication strategies for recruitment supported these efforts, drawing in 28%
of all applicants, and 40% of our applicants from underrepresented populations.

We developed the website and recruitment materials to emphasize our commitment to diversity and reflect the diversity of our trainees (Table 2) and of the broader WSU community. Social media was used extensively to have a broader reach to showcase T-RUST and advertise enrollment periods. We leveraged our relationship with UPRM for recruiting and developed materials using feedback on culturally relevant language to describe professional development opportunities. This is an ongoing process as we continue to learn how to support the black, indigenous, and POC community in graduate education.

LESSONS LEARNED

The advantage of an adaptive design is that it allowed the leadership team to regularly assess program outcomes, document what was working, and proactively adjust activities, explore opportunities, or seek out new partnerships.

After 3 years of implementation and training four student teams, we found that significant interdisciplinary guidance was needed to support trainees as they developed a coherent group project and to prevent them from falling into the multidisciplinary trap (i.e., each trainee “staying in their lane”). The faculty-led workshops helped trainees break down this barrier and learn how the perspectives of outside disciplines can inform a broader understanding of their own respective disciplines. Trainees also sought out mentoring from faculty outside of their own discipline, which has proved extremely valuable.

Regular opportunities for informal social interaction among trainees and faculty helped foster a stronger sense of community in the program (e.g., lunchtime workshops, bowling, canoe trip, holiday party, city baseball game). These events also enabled better vertical integration of the program, creating opportunities for interaction among each team and faculty. A complaint among several trainee teams was ineffective or irregular communication among team members. This is a general challenge with teamwork, and is compounded by the traditional PhD mindset of independent work. Social events helped with relationship building which gave trainees a better sense of accountability in their group projects, though this is an area of ongoing improvement.

It was valuable to recognize that some external partnerships may not pan out and that we needed to be ready to take advantage of emerging opportunities. For the T-RUST program, an emerging opportunity has happened in part due to the hiring of a new faculty member at a regional university. The alignment of their interests with the goals for the program has created new opportunities to broaden the impacts of T-RUST through faculty and trainee collaborations. An anticipated partnership from our proposal with an East Coast partner did not develop as hoped. From this experience, we learned that in addition to informal relationships with partners, it is important to formalize the roles, relationships, and action steps. Without these formalities it is easy for partnerships to fade as personnel shift and other issues become priorities.

KEY CHALLENGES

An ongoing challenge with interdisciplinary work was that trainees were limited by their disciplinary perspectives in addressing urban sustainability problems. The training we provided aimed to fill this gap, in part by creating interdisciplinary research teams where trainees must collaborate and work through their research problems using the expertise and perspectives of their team members as well as their own. Collaborative projects typically started off as brainstorming sessions within trainee teams, which identified an urban sustainability problem to address from the perspective of each of the team member’s unique disciplines (e.g., ecology, engineering, economics). Faculty helped to guide and refocus the team as needed, often resulting in an iterative process until the students came to an agreed-upon novel research question. Although the faculty on this project have collaborated over the years on numerous interdisciplinary projects, we are continually seeking better resources to guide the transdisciplinary process, and hope to develop guidelines or a facilitated process for trainee project development.

Team projects were complicated by the disparate graduate school timelines for master’s and PhD students. Since most of our trainees are PhDs, we have addressed this issue by guiding master’s trainees to complete a smaller sub-project within the context of the larger project during the 1–2 years they are in the program. Further, a joint publication or thesis/dissertation chapter is hampered by plagiarism policies and institutional restrictions on coauthorships and data sharing. We are exploring options to amend these policies to accommodate the evolution of research and team science.

Institutionally, widespread buy-in from a large number of faculty and administrators is critical to sustain a transdisciplinary initiative such as T-RUST. Some disciplinary requirements may need to be adjusted to accommodate a transdisciplinary training, which may be met with some resistance. For example, in some disciplines there is a very strict sequences of courses that students must take. In cases
like these, we remained flexible and worked with the faculty and graduate chair to come up with a solution to provide a transdisciplinary program while keeping the student on track in their home discipline. As one example, a trainee did not take the required first year course for T-RUST until the second year of the program.

Universities are some of the oldest institutions we have created and often resist significant change (Caruth & Caruth, 2013). The change advocated by transdisciplinary programs challenges enduring disciplinary structures that serve to organize university training and research (da Rocha et al., 2020). Faculty advance their own careers by meeting and exceeding disciplinary benchmarks, including implicit and explicit rules defining what makes a “good” ecologist, chemist, anthropologist, engineer, economist, and so on, which exist for every discipline. While academics may challenge these boundaries, they are first expected to demonstrate their expertise in adhering to them. We found that some faculty still retreated to their respective departments, which reflects the institutional forces that incentivize disciplinary behavior. Departments remain the economically and politically dominant unit in faculty members’ lives at universities, despite the intellectual promises that interdepartmental work holds. This entrenched and enduring support for disciplines creates serious challenges for advancing transdisciplinary training and teaching (Fam et al., 2020). Slowly, however, models are being developed and adopted for interdisciplinary recognition and achievement (Klein, 2010; Klein & Falk-Krzesinski, 2017).

CONCLUSION

The earth faces many complex ecological challenges that extend from “pristine” regions into our urban centers that would benefit from trained professionals and academics, through a translational ecology lens in which students have experiences and training to work with stakeholders, and decision-makers to address research that incorporates sociological, ecological, and political context of environmental problems. Since its launch, the T-RUST graduate training program has successfully provided interdisciplinary professional development training for graduate students to address complex environmental issues with a focus on urban sustainability. Through this we have created an urban sustainability network that links together students, faculty, community organizations, government partners, and the broader public. This network utilizes T-RUST as a hub for connecting people to projects, bringing together diverse interdisciplinary scientific communities to work in collaboration with regional partners to make substantial impacts—creating engaging and applied learning experiences for students. Given the preliminary success of the program, our transdisciplinary approach to preparing transdisciplinary urban sustainability leaders shows great promise as a framework for reconceptualizing how urban sustainability academic programs can become an integral part of community-driven efforts.

ACKNOWLEDGMENTS

The authors thank Andrew Newman who provided comments on this manuscript, and Carol Miller, Allen Goodman, David Pitts, and Yongli Zhang who helped guide the initial development of the T-RUST program. The program is supported by the National Science Foundation under Grant No. 1735038.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

No data were collected for this study.

ORCID

Megan M. Wallen https://orcid.org/0000-0002-7140-2993

Ingrid Guerra-Lopez https://orcid.org/0000-0001-5210-6526

Donna R. Kashian https://orcid.org/0000-0002-4287-9338

REFERENCES

Bennett, L.M., and H. Gadlin. 2012. “Collaboration and Team Science: From Theory to Practice.” *Journal of Investigative Medicine* 60(5): 768–75.

Bettencourt, L., and G. West. 2010. “A Unified Theory of Urban Living.” *Nature* 467(7318): 912–3.

Bosque-Pérez, N.A., P.Z. Klos, J.E. Force, L.P. Waits, K. Cleary, P. Rhoades, S.M. Galbraith, et al. 2016. “A Pedagogical Model for Team-Based, Problem Focused Interdisciplinary Doctoral Education.” *Bioscience* 66: 477–88.

Brown, L.D. 2014. “Towards Defining Interprofessional Competencies for Global Health Education: Drawing on Educational Frameworks and the Experience of the UW-Madison Global Health Institute.” *The Journal of Law, Medicine & Ethics* 42(2_suppl): 32–7.

Bullard, R.D. 1999. “Building Just, Safe, and Healthy Communities.” *Tulane Environmental Law Journal* 12(2): 373–404.

Butler, L.J., M.K. Scammell, and E.B. Benson. 2016. “The Flint, Michigan, Water Crisis: A Case Study in Regulatory Failure and Environmental Injustice.” *Environmental Justice* 9(4): 93–7.

Caruth, G.D., and D.L. Caruth. 2013. “Understanding Resistance to Change: A Challenge for Universities.” *Turkish Online Journal of Distance Education* 14(2): 12–21.
National Science Foundation. https://www.nsf.gov/pubs/2019/nsf19522/nsf19522.htm.
Norström, A.V., C. Cvitanovic, M.F. Löf, S. West, C. Wyborn, P. Balvanera, A.T. Bednarek, et al. 2020. “Principles for Knowledge Co-Production in Sustainability Research.” Nature Sustainability 3(3): 182–90.
Pastor, M., J. Sadd, and J. Hipp. 2001. “Which Came First? Toxic Facilities, Minority Move-in, and Environmental Justice.” Journal of Urban Affairs 23(1): 1–21.
Pfeffer, J., and R.I. Sutton. 1999. “Knowing “What” to Do Is Not Enough: Turning Knowledge into Action.” California Management Review 42(1): 83–108.
Raymond, C.M., G.G. Singh, K. Benessaiah, J.R. Bernhardt, J. Levine, H. Nelson, N.J. Turner, B. Norton, J. Tam, and K.M. Chan. 2013. “Ecosystem Services and beyond: Using Multiple Metaphors to Understand Human–Environment Relationships.” Bioscience 63(7): 536–46.
Read, E.K., M. O’Rourke, G.S. Hong, P.C. Hanson, L.A. Winslow, S. Crowley, C.A. Brewer, and K.C. Weathers. 2016. “Building the Team for Team Science.” Ecosphere 7(3): e01291.
Record, S., P.F. Ferguson, E. Benveniste, R.A. Graves, V.W. Pfeiffer, M. Romolini, C.E. Yorke, and B. Beardmore. 2016. “Graduate Students Navigating Social-Ecological Research: Insights from the Long-Term Ecological Research Network.” Ecology and Society 21(1): 7.
Reyers, B., D.J. Roux, R.M. Cowling, A.E. Ginsburg, J.L. Nel, and P.O. Farrell. 2010. “Conservation Planning as a Transdisciplinary Process.” Conservation Biology 24(4): 957–65.
da Rocha, P.L.B., R. Pardini, B.F. Viana, and C.N. El-Hani. 2020. “Fostering Inter- and Transdisciplinarity in Discipline-Oriented Universities to Improve Sustainability Science and Practice.” Sustainability Science 15: 717–28.
Schwartz, M.W., J.K. Hiers, F.W. Davis, G.M. Garfin, S.T. Jackson, A.J. Terando, C.A. Woodhouse, T.L. Morelli, M.A. Williamson, and M.W. Brunson. 2017. “Developing a Translational Ecology Workforce.” Frontiers in Ecology and the Environment 15(10): 587–96.
Shadding, C.R., D. Whittington, L.E. Wallace, W.S. Wandu, and R.K. Wilson. 2016. “Cost-Effective Recruitment Strategies that Attract Underrepresented Minority Undergraduates Who Persist to STEM Doctorates.” SAGE Open 6(3): 1–15. https://doi.org/10.1177/2158244016657143.
Taylor, M. 2011. “Reform the PhD System or Close it Down.” Nature 472: 261.
Taylor, D. 2014. Toxic Communities: Environmental Racism, Industrial Pollution, and Residential Mobility. New York, NY: NYU Press.
U.S. Department of Education. n.d. “Federal TRIO Programs Home Page”. https://www2.ed.gov/about/offices/list/ope/trio/index.html.
United Nations, Department of Economic and Social Affairs, Population Division. 2019. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations.
Welch-Devine, M., D. Hardy, J.P. Brosius, and N. Heynen. 2014. “A Pedagogical Model for Integrative Training in Conservation and Sustainability.” Ecology and Society 19(2): 10.
Zwickl, K., M. Ash, and J.K. Boyce. 2014. “Regional Variation in Environmental Inequality. An Analysis of Industrial Air Toxics Exposure Disparities by Income, Race and Ethnicity in US Cities.” Ecological Economics 107: 494–509.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Wallen, Megan M., Ingrid Guerra-Lopez, Louay Meroueh, Rayman Mohamed, Andrea Sankar, Pradeep Sopory, Ryan Watkins, and Donna R. Kashian. 2022. “Designing and Implementing a Novel Graduate Program to Develop Transdisciplinary Leaders in Urban Sustainability.” Ecosphere 13(1): e3901. https://doi.org/10.1002/ecs2.3901