Conjugation of ubiquitin and other Class 1 ubiquitin-like polypeptides to specific protein targets serves diverse regulatory functions in eukaryotes. The obligatory first step of conjugation requires ATP-coupled activation of the ubiquitin-like protein by members of a superfamily of evolutionarily related enzymes. Kinetic and equilibrium studies of the human ubiquitin-activating enzyme (HsUba1a) reveal that mutations within the ATP-Mg\(^{2+}\) binding site have remarkably pleiotropic effects on the catalytic phenotype of the enzyme. Mutation of Asp\(^{576}\) or Lys\(^{528}\) results in dramatically impaired binding affinities for ATP-Mg\(^{2+}\), a shift from ordered to random addition in co-substrate binding, and a significantly reduced rate of ternary complex formation that shifts the rate-limiting step to ubiquitin adenylate formation. Mutations at neither position affect the affinity of HsUbc2b binding; however, differences in \(k_{\text{cat}}\) values determined from ternary complex formation versus HsUbc2b transthiolation suggest that binding of the E2 enhances the rate of bound ubiquitin adenylate formation. These results confirm that Asp\(^{576}\) and Lys\(^{528}\) are important for ATP-Mg\(^{2+}\) binding but are essential catalytic groups for ubiquitin adenylate transition state stabilization. The latter mechanistic effect explicates the observed loss-of-function phenotype associated with mutation of residues paralogous to Asp\(^{576}\) within the activating enzymes for other ubiquitin-like proteins.

The conjugation of ubiquitin and ubiquitin-like polypeptides to specific protein targets represents a fundamental and highly conserved strategy of eukaryotic cell regulation, reviewed most recently in Refs. 1–3. Post-translational modification by these polypeptides requires formation of isopeptide bonds through distinct yet evolutionarily related enzyme pathways that share a common mechanism in which the half-reactions of activation and ligation are catalyzed by distinct enzymes (1, 4). The ubiquitin-activating enzyme (Uba1)\(^{3}\) catalyzes the first step in the conjugation of ubiquitin to protein targets and serves as the archetype for paralogous steps in the activation of other Class 1 ubiquitin-like proteins, including Sumo (5, 6), Nedd8 (7, 8), ISG15 (9), Hub1 (10), FAT10 (11, 12), and App12 (13) among others, reviewed in Refs. 14 and 15. The reaction follows a mechanism in which binding of ATP-Mg\(^{2+}\) precedes binding of ubiquitin and the subsequent formation of a tightly bound ubiquitin adenylyl intermediate (16, 17), a mixed acyl-phosphate anhydride between the carboxyl-terminal glycine of ubiquitin and AMP derived from the alpha/beta cleavage of ATP (18). Ubiquitin adenylyl is the immediate precursor for formation of a covalent Uba1-ubiquitin thiolester intermediate at a conserved active site cysteine (Cys\(^{632}\), HsUba1a numbering), which is followed by a second round of ubiquitin adenylylation to yield a Uba1 ternary complex composed of stoichiometric amounts of ubiquitin adenylyl and ubiquitin thiolester (16). The Uba1-ubiquitin thiolester is the proximal donor of activated ubiquitin in formation of E2/Ubc-ubiquitin thiolestes required in all ubiquitin conjugation reactions (16, 19).

Because these conjugation pathways are universally conserved among eukaryotes\(^{4}\) but are absent from prokaryotes and Archaea (4), the evolutionary origins of ubiquitin ligation had remained an enduring paradox. However, recent studies reveal remarkable sequence similarities between the highly conserved E1\(^{5}\) paralogs and the MoeB subunit of *Escherichia coli* molybdopterin synthase, a multimeric enzyme complex that is involved in the evolutionarily conserved molybdobennum cofactor (Moco) biosynthetic pathway found in both prokaryotes and eukaryotes (20, 21). The mechanism for molybdobennum cofactor synthesis requires the MoeB-catalyzed activation of the carboxyl terminus of the 8757-Da MoaD subunit by formation of a tightly bound MoaD adenylyl intermediate (20), a reaction mechanistically analogous to the Uba1-catalyzed activation of ubiquitin (16, 17). The 1.7-Å crystal structure of the MoeB-ATP-MoaD ternary complex of molybdopterin synthase provided early insights into the mechanism for the activation of MoaD, which shares a common B-grasp fold and a carboxyl-terminal Gly-Gly motif with ubiquitin (21). Subsequent high resolution structures for free and substrate-bound forms of the human paralogs of the AppBp1-Uba3 Nedd8-activating enzyme (22, 23) and the Sae1-Sae2 Sumo-activating enzyme (24), in addition to parallel chemistries for carboxyl group activation of their cognate polypeptide substrates, reveal a common active site fold for this E1 superfamily and suggest that MoeB and MoaD are the previously unidentified evolutionary precursors for Uba1 and ubiquitin, respectively.

The active site residues of MoeB that interact directly with ATP are highly conserved among Uba1 orthologs and E1 paralogs for Sumo, Nedd8, and ISG15 (21, 22). Extant structures for this superfamily identify an asparagine residue that either directly (24) or inferentially (21, 23) interacts with Mg\(^{2+}\) chelated to bound ATP. The importance of this residue is suggested by its absolute conservation among MoeB and E1

\(^{3}\) The abbreviations used are: Uba1, ubiquitin-activating enzyme; DTT, dithiothreitol; E1, ubiquitin carrier protein or ubiquitin-conjugating enzyme; HsUba1a, human nuclear form of ubiquitin-activating enzyme; HsUbc2b, \(b^*\) isoform of the human/rabbit ortholog of *Saccharomyces cerevisiae* Rad6/Ubc2 (also termed E2\(^{\text{Sac}}\)); GST, glutathione S-transferase; Ub, ubiquitin.

\(^{4}\) The single exception is the ubiquitin-like protein ISG15, which is found only among vertebrates and thus represents an evolutionarily recent diverged pathway apparently required for unique functions (45, 46).

\(^{5}\) We shall use E1 generically to refer to the paralogous activating enzymes for Class I ubiquitin-like proteins.
paralogs as well as the dramatic effects of point mutagenesis. Mutation of Asp130 to alanine abrogates MoeB activity in E. coli (21), whereas mutations of the paralogous Asp146 of Uba3 or Asp117 of Sae2 significantly ablate NedD8 and Sumo activation by human AppBp1-Uba3 or Sae1-Sae2 heterodimers, respectively (22, 24). However, loss-of-function mutations are rarely informative without additional studies, since the phenotype cannot be unambiguously interpreted. Thus, whereas the loss-of-function mutations that arise from nonconservative changes in Asp130 and its paralogous residues are consistent with their predicted roles in ATP-Mg\(^{2+}\) binding, collateral mechanistic and/or structural effects cannot be precluded.

To understand more completely the mechanistic contribution of the aspartate residue in the catalytic cycle of human ubiquitin-activating enzyme and its paralogs, we have introduced a series of point mutations at Asp576 of human Uba1a that corresponds to Asp130 of E. coli MoeB, Asp146 of human Uba3, and Asp117 of human Sae2. Kinetic analyses confirm a role for Asp576 in ATP-Mg\(^{2+}\) binding. However, the point mutants also exhibit pleiotropic effects on the mechanism of ubiquitin activation, including transition state stabilization and order of substrate binding, that reveal a more complex role not anticipated in earlier studies. Such insights identify Asp576 and its paralogs as critical catalytic residues in the reaction cycle of this enzyme family.

MATERIALS AND METHODS

Bovine ubiquitin, creatine phosphokinase, and yeast inorganic pyrophosphatase were purchased from Sigma. The ubiquitin was further purified to apparent homogeneity and then radiodinated by the chloroform/PPO/phosphatase were purchased from PerkinElmer Life Sciences. Recombinant human HsUbc2b and the active site mutant HsUbc2bC88A were those described previously (27).

Generation of GST-HsUba1a Point Mutants—A pGEX3X-E1 construct encoding the nuclear form of the human ubiquitin-activating enzyme (HsUba1a), generously provided by Dr. Alan L. Schwartz (Washington University School of Medicine), was used for the expression of wild type and mutant HsUba1a enzymes. The D576A, D576E, and D576N point mutants of HsUba1a were generated by the PCR overlap extension method of Ho et al. (28) using pGEX3X-E1 as a template. Point mutations were introduced using internal primers containing the desired mutation and external primers flanking the region of the gene bound by XhoI and EcoR2RI restriction sites. Following PCR amplification of the corresponding single site mutations, inserts were subcloned into the pGEM-T vector. The subcloned insert was digested with XhoI/EcoR2RI restriction enzymes, agarose gel-purified, and then ligated into a similarly restricted pGEX3X vector. Mutations were confirmed by sequencing the complete XhoI/EcoR2RI inserts on an Applied Biosystems ABI Prism 3100 DNA sequencer.

Expression and Purification of GST-HsUba1a Wild Type and Mutant Proteins—E. coli BL21 (DE3) cells were transformed with pGEX3X encoding either wild type or mutant forms of ubiquitin-activating enzyme. Single colonies harboring the appropriate vector (pGEX3X—encoding either wild type or mutant forms of ubiquitin-activating enzyme (HsUba1a), generously provided by Dr. Alan L. Schwartz (Washington University School of Medicine), was used for the expression and Purification of GST-HsUba1a Wild Type and Mutant Enzymes

Enzyme Assays—Concentrations of active wild type and mutant GST-HsUba1a enzymes were determined by the stoichiometric formation of \(^{125}\)I-ubiquitin thiolester from free radiiodinated ubiquitin (5,000 cpm/pmol) in end point assays, followed by nonreducing SDS-PAGE resolution and \(\gamma\) counting of associated \(^{125}\)I radioactivity in excised bands (16). Enzyme-bound ubiquitin \((^3\text{H})\)adenylate formation was determined using \([2,8-^3\text{H}]\text{ATP}(3.6 \times 10^4 \text{ cpm/pmol}) and measured by trichloroacetic acid-precipitable radioactivity (16). Initial rates of ATP/\(^{32}\)Pi exchange were measured at the indicated concentrations of ATP, ubiquitin, \(^{32}\)Pi, and either GST-HsUba1a or the corresponding Asp576 or Lys526 mutants (17). Initial rates of HsUbc2b-\(^{125}\)I-ubiquitin thiolester formation were measured by nonreducing SDS-PAGE in HsUba1a-catalyzed transthiolation assays at the indicated concentrations of ATP, \(^{125}\)I-ubiquitin, and recombinant HsUbc2b (27). For Asp576 mutants of GST-HsUba1a, initial rates of HsUba1a-\(^{125}\)I-ubiquitin thiolester formation were measured directly by modification of the E2 transthiolation assay (27).

RESULTS

Only Full-length GST-HsUba1a Is Active—Expression of wild type or mutant GST-HsUba1a consistently yielded a mixture of full-length protein (Mr, 136,000) and a ladder of GST-linked fusion protein fragments when detected by Coomasie staining after SDS-PAGE resolution (not shown) or by Western blot using anti-GST antibodies (Fig. 1). Although the protein expression yielded a mixture of full-length and partially degraded fusion protein, only full-length GST-HsUba1a was active in forming the corresponding \(^{125}\)I-ubiquitin thiolester (Fig. 1). The amount of GST-HsUba1a-\(^{125}\)I-ubiquitin thiolester calculated from the specific radioactivity of the labeled polypeptide agreed well with that predicted from the protein content of the full-length GST-HsUba1a fusion protein estimated by Coomasie staining and comparison with a known amount of bovine serum albumin (not shown).

Thus, a carboxyl-terminal segment of 20 kDa, representing ~170 amino acids, is essential for the activity of HsUba1a. The cleavage point for this fragment lies between the predicted carboxyl-terminal \(\beta\)-grasp domain common to all members of the E1 superfamily (22) and the thiolester active site located at Cys632. However, other studies showed that truncation of the 118-residue predicted minoacid segment between residues 888 and 940 of the intact protein. Therefore, truncation of the phenotypic region cannot be unambiguously interpreted. Thus, whereas the point mutants also exhibit pleiotropic effects on the mechanism of ubiquitin activation, including transition state stabilization and order of substrate binding, that reveal a more complex role not anticipated in earlier studies. Such insights identify Asp576 and its paralogs as critical catalytic residues in the reaction cycle of this enzyme family.

RESULTS

Only Full-length GST-HsUba1a Is Active—Expression of wild type or mutant GST-HsUba1a consistently yielded a mixture of full-length protein (Mr, 136,000) and a ladder of GST-linked fusion protein fragments when detected by Coomasie staining after SDS-PAGE resolution (not shown) or by Western blot using anti-GST antibodies (Fig. 1). Although the protein expression yielded a mixture of full-length and partially degraded fusion protein, only full-length GST-HsUba1a was active in forming the corresponding \(^{125}\)I-ubiquitin thiolester (Fig. 1). The amount of GST-HsUba1a-\(^{125}\)I-ubiquitin thiolester calculated from the specific radioactivity of the labeled polypeptide agreed well with that predicted from the protein content of the full-length GST-HsUba1a fusion protein estimated by Coomasie staining and comparison with a known amount of bovine serum albumin (not shown).

Thus, a carboxyl-terminal segment of 20 kDa, representing ~170 amino acids, is essential for the activity of HsUba1a. The cleavage point for this fragment lies between the predicted carboxyl-terminal \(\beta\)-grasp domain common to all members of the E1 superfamily (22) and the thiolester active site located at Cys632. However, other studies showed that truncation of the 118-residue predicted \(\beta\)-grasp domain from the cytoplasmic domain of MoeB and the antiparallel \(\beta\) sheet that constitute a contact face with their respective ubiquitin-like proteins. Therefore, truncation of
Asp576 mutant was determined in triplicate by trichloroacetic acid-precipitable
HsUba1a and free GST are shown to the
dene difluoride membrane and visualized by Western blotting using affinity-purified
gel under reducing conditions and then electrophoretically transferred to polyvinyli-

MAY 26, 2006•

this segment reasonably explains complete inactivation of the enzyme
by abolishing binding of the β-grasp polypeptide cosubstrate.

Parallel end point determinations of 125I-ubiquitin thiolester and
ubiquitin [3H]adenylate formation with wild type GST-HsUba1a were
conducted as described under "Materials and Methods," the results of
which are summarized in Table 1. The observed end point thiolester
versus adenylate stoichiometry of 1.1 for the wild type GST-HsUba1a
agreed well with the expected value of 1.0 reported for rabbit reticulo-
cyte and human erythrocyte ubiquitin-activating enzymes (16, 27) and,
more recently, for the human AppBp1-Uba3 heterodimer required for

Mutations of Asp576 Decreases the Rate of Ubiquitin [3H]Adenylate
Formation—Earlier studies demonstrated that the stoichiometric
formation of wild type Uba1a ternary complex is complete within the first
30 s of incubation with ATP-Mg2+ and ubiquitin at 37 °C (16, 27, 29).
Fig. 2 illustrates that ternary complex formation catalyzed by recombi-
nant wild type GST-HsUba1a is also rapid at 2 mM ATP-Mg2+ and 5 μM

This content is for the Journal of Biological Chemistry.
TABLE 2

	$K_{m,ATP}$	$K_{m,Ub}$	$K_{m,HsUba2b}$	$k_{cat,AMP-Ub}^a$	$k_{cat,trans}^b$
GST-HsUba1a (wild type)	5.5 ± 0.7	0.8 ± 0.1	111 ± 6	$>60 \pm 0.1$	3.4 ± 0.1
GST-HsUba1aD576A	208 ± 15	29 ± 6	135 ± 36	0.024 ± 0.003	0.120 ± 0.010
GST-HsUba1aD576E	22 ± 3	1.1 ± 0.3	122 ± 30	0.005 ± 0.001	0.100 ± 0.010
GST-HsUba1aD576N	29 ± 6	4.0 ± 0.5	73 ± 4	0.011 ± 0.001	0.022 ± 0.001
GST-HsUba1aS28A	119 ± 17	2.3 ± 0.6	89 ± 9	0.015 ± 0.003	0.011 ± 0.001

a Intrinsic k_{cat} for ubiquitin adenylate formation corrected for saturating ATP and 125I-ubiquitin.

b Intrinsic k_{cat} for HsUba2b transthiolester corrected for saturating ATP, 125I-ubiquitin, and HsUba2b.

FIGURE 2. Time course for GST-HsUba1aD576A-^{125}I-ubiquitin thiolester formation.

The time course for 125I-ubiquitin thiolester formation with 1.5 pmol (30 nM) of wild type GST-HsUba1a (closed circles) per datum point or an equivalent amount of full-length GST-HsUba1aD576A (closed circles), determined by Coomassie staining following SDS-PAGE as in Fig. 1, was determined at 37°C in 50 mM Tris-HCl (pH 7.5), 2 mM ATP, 10 mM MgCl$_2$, 1 mM DTT, 1 mg/ml carrier bovine serum albumin, and 5 mM unlabeled ubiquitin. Time points were quenched in 50 mM SDS sample buffer without b-mercaptoethanol and then resolved by nonreducing 7.5% SDS-PAGE and visualized by autoradiography. The absolute content of 125I-ubiquitin thiolester was quantitated by quantifying the excised bands for each time point and calculated using the specific activity of the radiolabeled polypeptide (16, 17). The line through the data for GST-HsUba1aD576A represents a theoretical first order fit for $k_0 = 0.005$ s$^{-1}$.

125I-ubiquitin when measured as the corresponding 3H-adenylate with GST-HsUba1a-^{125}I-ubiquitin thiolester (closed triangles). A parallel assay confirmed that ubiquitin $[^{3}$H]adenylate formation was stoichiometric with GST-HsUba1a-^{125}I-ubiquitin thiolester at the earliest time point (30 s) in Fig. 2 (not shown), consistent with the results of Table 1 for the wild type recombinant enzyme. In contrast, 125I-ubiquitin thiolester formation under identical conditions and with a nearly identical concentration of full-length GST-HsUba1aD576A, determined by end point 125I-ubiquitin thiolester formation as described under "Materials and Methods," was markedly slower and required 20 min to reach completion (Fig. 2, closed circles). The time course for GST-HsUba1aD576A-^{125}I-ubiquitin thiolester formation followed strictly first order kinetics over at least six half-lives, based on the linearity of appropriate semilog plots (not shown), and yielded a pseudo-first order rate constant of 0.005 s$^{-1}$. In Fig. 2, the solid line through the data for GST-HsUba1aD576A (solid circles) represents a theoretical first order fit for $k_0 = 0.005$ s$^{-1}$. The linearity of such first order plots precludes significant contributions from catalytically active degradation fragments having radically different kinetics, in agreement with conclusions drawn from the wild type stoichiometries of the recombinant enzyme preparations. Results qualitatively similar to those of Fig. 2 were obtained with the GST-HsUba1aD576E and GST-HsUba1aD576N mutants and yielded pseudo-first order rate constants of 0.003 and 0.006 s$^{-1}$, respectively (not shown). These observations demonstrate that mutation at Asp576 results in a $\sim 10^3$-fold reduction in the apparent first order rate constant for GST-HsUba1a-^{125}I-ubiquitin thiolester formation compared with the lower limit of ~ 5 s$^{-1}$ estimated previously for the intrinsic rate constant for ubiquitin $[^{3}$H]adenylate formation catalyzed by wild type enzyme (27, 31).

Mutation of Asp576 Alters the Stoichiometry of HsUba1a Ternary Complex—To determine the effect of each of the three point mutations on the stoichiometry for ternary complex formation, parallel incubations to those of Fig. 2 were conducted in the presence of 1 mM [2,8-3H]ATP-Mg$^{2+}$ and 5 mM unlabeled ubiquitin in order to determine HsUba1a-bound ubiquitin $[^{3}$H]adenylate (16). No detectable ubiquitin $[^{3}$H]adenylate intermediate was observed for any of the three mutants after 1 min at 37°C, an incubation time during which wild type enzyme forms stoichiometric ubiquitin $[^{3}$H]adenylate (16, 17, 29). However, the intermediate was marginally detectable after 5 min and reached an end point by 15 min, since no additional increase in ubiquitin $[^{3}$H]adenylate was observed at 30 min (not shown). Table 1 summarizes equilibrium end point levels of 125I-ubiquitin thiolester and ubiquitin $[^{3}$H]adenylate for full-length GST-HsUba1aD576A, GST-HsUba1aD576E, and GST-HsUba1aD576N in parallel triplicate assays following incubation for 20 min at 37°C. The amount of each mutant in the assays was normalized to that of full-length wild type GST-HsUba1a protein, as determined by Coomassie staining following SDS-PAGE resolution, so that the final 125I-ubiquitin thiolester values reflect enzyme specific activity. End point values for 125I-ubiquitin thiolester agreed reasonably well among wild type and mutant GST-HsUba1a when normalized to total full-length protein content (Table 1). Modest differences in enzyme-bound 125I-ubiquitin thiolester formation among the four recombinant proteins probably reflect slight differences in the content of active enzyme within the preparations, since the variation is comparable with the yields of active enzyme observed among independent preparations of wild type GST-HsUba1a. Therefore, mutation of Asp576 does not appear markedly to affect the end point formation of enzyme-bound 125I-ubiquitin thiolester, although the data do not absolutely rule out small effects on the stoichiometry of this intermediate.

In contrast, the end point stoichiometries for the ubiquitin $[^{3}$H]adenylate intermediate formed with each of the three mutants were only ~ 1% of their respective thiolester values (Table 1). We have previously found that mutation of specific ubiquitin residues promotes dissociation of the otherwise tightly enzyme-bound ubiquitin $[^{3}$H]adenylate and its subsequent hydrolysis by contaminating ubiquitin carboxyl-terminal hydrolases (31). In the present case, the apparent substoichiometric ubiquitin $[^{3}$H]adenylate formation did not arise by similar dissociation of the intermediate from the enzyme and cleavage by any contaminating hydrolases, since exogenous free ubiquitin $[^{3}$H]adenylate prepared by trichloroacetic acid precipitation of wild type Ub1 ternary complex (16, 18) was stable when added to the recombinant GST-HsUba1a mutant preparations (not shown). Previous kinetic studies have demonstrated that formation of enzyme-bound ubiquitin adenylate is rapid and that the subsequent transfer to form the covalent Uba1-ubiquitin thiolester is the rate-limiting step of ternary complex formation with the wild type enzyme (16, 17). This accounts for the constant 1:1 stoichiometry of thiolester/adenylate with time (16, 17). That ubiquitin $[^{3}$H]adenylate is undetectable during the first 5 min of the time course in Fig. 2 and remains at only 1% of the end point thiolester for the three
Asp
576
mutants requires that under the conditions of the assay, ubiquitin [3H]adenylate formation must be rate-limiting and that the mutations have altered the equilibrium constant for formation of this intermediate.

Effect of Asp
576
Mutants on GST-HsUba1a Thiolester Kinetics—Because mutation of Asp
576
shifts the rate-limiting step of GST-HsUba1a ternary complex formation to that of ubiquitin adenylate formation, we used a similar kinetic approach to that for wild type enzyme but instead directly monitored formation of GST-HsUba1a-125I-ubiquitin thiolester. If Asp
576
of GST-HsUba1a interacts with the chelated metal of ATP-Mg
2+-, then mutation of this residue to alanine is predicted minimally to decrease the affinity for ATP-Mg
2+- binding, reflected in an increased K
m
. Fig. 3 demonstrates that the dependence of the initial rates for 125I-ubiquitin thiolester formation to GST-HsUba1aD576A with respect to [ATP]
0
follows simple hyperbolic kinetics in the presence of 10 μM 125I-ubiquitin, as shown by the linearity of the corresponding reciprocal plot. Nonlinear regression analysis of the data yielded a K
m
 of 208 ± 15 μM for ATP-Mg
2+- that represented a 38-fold increase over that for wild type GST-HsUba1a (Table 2). The V
max
value from Fig. 3 corresponded to a k
cat
of 0.0035 ± 0.0001 s
-1
that agreed well with the first order rate constant of 0.005 s
-1
determined in Fig. 2 at saturating ATP-Mg
2+- and an identical concentration of radiiodinated ubiquitin. The increase in K
m
 for GST-HsUba1aD576A is consistent with the predicted role for Asp
576
 in binding ATP-Mg
2+- within the adenylate active site. Table 2 also summarizes K
m
values obtained for GST-HsUba1aD576E and GST-HsUba1aD576N mutants in experiments parallel to those of Fig. 3. The relatively conservative D576E mutation results in a much less dramatic 4-fold increase in K
m
 for ATP-Mg
2+- binding compared with wild type GST-HsUba1a, presumably reflecting the influence of the longer glutamate side chain. The side chain amide of asparagine is relatively efficient in substituting for the carboxyl function of Asp
576
, since the D576N point mutant yields a similar 5-fold increase in K
m
for ATP-Mg
2+- (Table 2). The apparent k
cat
values at 5 μM 125I-ubiquitin of 0.006 ± 0.001 and 0.005 ± 0.001 s
-1
derived from the respective V
max
values for the D576E and D576N mutants (not shown) were in good agreement with the corresponding first order rate constants obtained from kinetic studies similar to those of Fig. 2.

Since Asp
576
functions in ATP-Mg
2+- binding, confirmed by the results of Fig. 3 and Table 2, we did not a priori expect to observe an effect of the Asp
576
mutations on ubiquitin binding. However, mutation of Asp
576
to alanine significantly reduced the affinity of the point mutant for 125I-ubiquitin (Fig. 4B) relative to that exhibited by wild type GST-HsUba1a (Fig. 4A) and yielded a K
m
 of 29 ± 6 μM (Table 2) when measured by the initial rate of GST-HsUba1aD576A-125I-ubiquitin thiolester formation at saturating ATP (2 mM). The V
max
from Fig. 4B yielded a k
cat
of 0.024 ± 0.003 s
-1
, which must represent the intrinsic first order rate constant for 125I-ubiquitin adenylate formation (k
cat
AMP-Ub) (Table 2). In contrast, mutation of Asp
576
to asparagine increased the K
m
 for ubiquitin binding to GST-HsUba1aD576N only 5-fold (K
m
 = 4.0 ± 0.5 μM) and yielded a corresponding k
cat
AMP-Ub of 0.011 ± 0.001 s
-1
, Table 2. Although the GST-HsUba1aD576E point mutant showed no significant effect on the binding of 125I-ubiquitin when measured as K
m
, the relatively conservative point mutation exhibited the greatest effect on k
cat
AMP-Ub for ubiquitin adenylate formation (0.005 ± 0.001 s
-1
) (Table 2), suggesting that the increase in side chain length for glutamate has a substantial effect on formation of the transition state for enzyme-bound ubiquitin adenylate.

The results of Table 2 indicate that mutation of Asp
576
has a much less dramatic effect on the binding of ubiquitin within the HsUba1a adenylate active site than found for binding of ATP-Mg
2+- and that this effect is qualitatively proportional to the extent to which the mutations ablate ATP-Mg
2+- binding. In contrast, the ability of HsUba1a to catalyze ubiquitin adenylate formation is markedly sensitive to mutation at Asp
576
, implicating this residue in transition state stabilization of this step.
Effect of Asp⁷⁶ Mutants on GST-HsUba1α-catalyzed Transthiolation Kinetics—Previous studies have shown that transthiolation within the Michaelis complex comprising HsUbc2b bound to the HsUba1α ternary complex represents the rate-limiting step for HsUbc2b charging (27). The Asp⁷⁶ point mutants catalyzed significantly slower rates of HsUbc2b transthiolation, as expected for rate-limiting ubiquitin adenylate formation revealed from earlier experiments (Table 2). Initial rates of GST-HsUba1α mutant-catalyzed HsUbc2b-125I-ubiquitin thioester formation were measured at 2 mM ATP and 10 μM 125I-ubiquitin in the presence of increasing concentrations of HsUbc2b. The resulting data exhibited a hyperbolic concentration dependence with respect to [HsUbc2b], for all three point mutants based on the linearity of the corresponding reciprocal plot, representative data for which is shown for GST-HsUba1αD576E in Fig. 5. Relevant kinetic constants were calculated from the data by nonlinear hyperbolic regression analysis and are summarized in Table 2.

The three Asp⁷⁶ point mutants exhibited K_m values for HsUbc2b binding that were in good agreement with that found for wild type GST-HsUba1α (Table 2), indicating that this residue does not contribute either directly or indirectly to HsUbc2b binding. The corresponding apparent k_{cat} values for HsUbc2b transthiolation were calculated from $V_{max}/[GST-HsUba1α mutant]_o$, We anticipated that the intrinsic k_{cat} for HsUbc2b transthiolation ($k_{cat,trans}$), when corrected for saturating [ATP], and [ubiquitin] would correspond to the intrinsic $k_{cat,AMP-Ub}$ values determined for mutant-bound ubiquitin adenylate formation, since the latter represented the rate-limiting step for ternary complex formation and, therefore, the rate-limiting step for subsequent HsUbc2b-125I-ubiquitin thioester formation. However, the three mutants exhibited intrinsic $k_{cat,trans}$ values that were statistically greater than $k_{cat,AMP-Ub}$ (Table 2). In the presence of GST-HsUba1αD576A, $k_{cat,trans}$ for HsUbc2b transthiolation ($0.120 \pm 0.010 \text{ s}^{-1}$) was ~5-fold greater than the $k_{cat,AMP-Ub}$ for the corresponding ubiquitin adenylate formation. The GST-HsUba1αD576E and GST-HsUba1αD576N mutants also catalyzed greater intrinsic rates of HsUbc2b transthiolation than predicted from their corresponding values of $k_{cat,AMP-Ub}$ for ubiquitin adenylate formation (Table 2). The $k_{cat,trans}$ for the D576E mutant ($0.100 \pm 0.010 \text{ s}^{-1}$) was 20-fold greater than $k_{cat,AMP-Ub}$ ($0.005 \pm 0.001 \text{ s}^{-1}$), whereas the D576N mutant exhibited a 2-fold greater $k_{cat,trans}$ (Table 2). These differences suggest that HsUbc2b transthiolation enhances the rate of ubiquitin adenylate formation. This

2 The atypically large S.E. values for these kinetic constants reflect the problem associated with fitting a hyperbolic curve over a limited range near or below the inflection point (17).
FIGURE 6. Dependence of ubiquitin concentration on the initial rate of GST-HsUba1a-catalyzed ATP/PPi exchange. Initial velocities of ATP/32PPi exchange were determined at 37 °C in 50-µl incubations containing 50 mM Tris-HCl (pH 7.5), 2 mM ATP, 10 mM MgCl2, 0.1 mM ATP/32PPi, 1 mM DTT, the indicated concentrations of ubiquitin, and either GST-HsUba1a or Asp576 mutant (17). A, ubiquitin dependence for wild type GST-HsUba1a (3.6 µM); B, ubiquitin dependence for GST-HsUba1aDS76E (4 nM). The solid lines represent nonlinear hyperbolic regression fits.

responsible for pseudo-ordered substrate addition, providing a mechanistic insight not apparent from the extant crystal structures for this enzyme family.

Mutation of Lys528 Mimics the Kinetic Phenotype of Asp576 Alteration—The complex kinetic phenotype of the Asp576 mutants suggests that ATP-Mg2+ and ubiquitin binding are functionally coupled in the catalytic cycle of ubiquitin activation. To distinguish whether this effect specifically results from coordination of Asp576 to Mg2+ or is a more generalized effect of ATP-Mg2+ binding, we examined the consequence of mutating Lys528 to alanine. Lysine 528 is predicted to hydrogen-bond to the β-phosphoryl oxygen of ATP-Mg2+, as it does for Lys86 of bacterial MoeB, Lys103 of human Uba3, and Lys72 of human Sae2 (21, 23, 24). We find that the phenotype for Lys528 mutation is remarkably similar to that of the Asp576 mutants. The time course for GST-HsUba1aK528A-125I-ubiquitin thiolester formation was exponential, with a $k_0 = 0.005$ s$^{-1}$, similar to that observed for GST-HsUba1aDS76A (Fig. 2), and yielded a ternary complex at equilibrium having thiolester that was approximately stoichiometric with the estimated protein content but a much attenuated ubiquitin ($[^3]$H)adenylate level (Table 1).

The kinetics of GST-HsUba1aK528A-125I-ubiquitin thiolester formation were determined in parallel to those of the Asp576 point mutants, the results of which are summarized in Table 2. Mutation of Lys528 lowers the affinity for ATP-Mg2+ somewhat less than mutating Asp576 to alanine but consistent with the predicted contribution of the Lys528 hydrogen bond to the β-phosphoryl oxygen of ATP-Mg2+. The Lys528 mutation also slightly alters the affinity for ubiquitin (Table 2). Like the Asp576 mutants, GST-HsUba1aK528A exhibits a wild type affinity for HsUbC2b (Table 2). Finally, in ATP/PPi, isotope exchange assays similar to those of Fig. 6, GST-HsUba1aK528A exhibited purely hyperbolic kinetics with respect to [ubiquitin]$_0$, indicating random substrate addition (not shown). These results are consistent with the kinetic phenotypes of the Asp576 and Lys528 mutants arising by a generalized effect on ATP-Mg2+ binding.

DISCUSSION

The present studies demonstrate for the first time that alterations in the ATP-Mg2+ binding site of Ub1a exhibit a remarkably pleiotropic phenotype in the activation of ubiquitin that could not have been anticipated from the crystal structures currently available for members of the E1 superfamily. Lake et al. (21) originally proposed that Asp130 of MoeB contributed to ATP binding by interacting with the chelated Mg2+, supported by the loss-of-function phenotype in nitrate reductase overlay assays when this group was mutated to alanine. Paralogous mutation of Asp146 within the Uba3 subunit of human Nedd8-activating enzyme supported this functional role, since it abrogated 32P-labeled Nedd8 adenylation formation and subsequent thiolester formation at the active site Cys216 of Uba3 (22). Similar observations have been made following mutation of Asp117 of Sae2 within the human Sae1-Sae2 heterodimeric activating enzyme for Sumo (24). Finally, the structure for ATP-Mg2+ bound to SAE1-SA2 is consistent with coordination of the conserved aspartate with the chelated metal (24). Collectively, these results suggest a central role for this residue in the mechanism of these enzymes, presumably reconciled by its predicted contribution to ATP-Mg2+ binding. However, given the high affinity with which members of the E1 superfamily bind ATP-Mg2+ (17, 27, 29), the observed loss-of-function phenotypes for these mutations require abrogation of ATP-Mg2+ binding, which is difficult to reconcile with additional interactions between the nucleotide and its binding site. In the present paper, we quantitatively demonstrate the contribution of Asp576 of human Ub1a to the affinity of ATP-Mg2+ binding within the adenylate active site; more importantly, the data show that Asp576 is critical to downstream events in the catalytic cycle of ubiquitin activation that instead account for the loss-of-function phenotype.

Wild type human Ub1a has a marked affinity for ATP ($K_a = 5.5 \pm 0.7$ µM), corresponding to a Δ$G_{binding}$ of 7.2 kcal/mol, presumably ensuring that the rate of ubiquitin activation is independent of fluctuations in this cosubstrate (4). The affinity of human Ub1a for ATP is reduced 38-fold by mutation of Asp576 to alanine ($K_a = 208 \pm 15$ µM) (Table 2), an effect that is consistent with the proposed role of this residue in coordinating with the chelated metal of ATP-Mg2+ (21, 24) but insufficient to produce a loss-of-function phenotype at millimolar intracellular nucleotide concentrations (32). The increase in K_m for ATP binding between the wild type and DS76A mutant corresponds to a Δ$G_{binding}$ contribution of 2.1 kcal/mol for Asp576, much less than the total binding energy of the nucleotide.8 The residual binding affinity of the Asp576 point mutant requires additional contributions from other active site interactions. The Lys528 β-phosphoryl hydrogen bond inferred from crystal structures (21, 23, 24) accounts for one of these interactions, since mutation of this residue to alanine results in a K_m of 119 ± 17 mM (Table 2), representing a Δ$G_{binding}$ of 1.8 kcal/mol. By comparison, Bacillus stearothermophilus tyrosyl-tRNA synthetase catalyzes a biochemically analogous ATP-coupled carboxyl group activation during the formation of a high energy tyrosyl adenylyl intermediates.

8 Binding energy estimates calculated from the corresponding Δ$G_{binding}$ Values are not strictly additive due to entropic contributions.
ATE-Mg$^{2+}$ Binding to the Ubiquitin-activating Enzyme

ate. Lysine R2 of the enzyme hydrogen-bonds to the β-phosphoryl oxygen of ATP-Mg$^{2+}$, and mutation of this group to alanine yields a $\Delta \Delta G_{\text{binding}}$ of 1.3 kcal/mol (33). Therefore, the binding contribution of Lys228 within the HsUba1a nucleotide binding site is consistent with related active site interactions.

Much smaller effects on ATP-Mg$^{2+}$ binding affinity of ~5-fold, corresponding to $\Delta \Delta G_{\text{binding}}$ values of 0.8 or 1.0 kcal, are observed when Asp576 is mutated to either glutamate or asparagine, respectively (Table 2). The reduced binding of GST-HsUba1aD576E probably arises from steric constraints imposed by the longer side chain of glutamate in its interaction with bound ATP-Mg$^{2+}$. The $\Delta \Delta G_{\text{binding}}$ of 1.0 kcal/mol for GST-Uba1aD576N approximates a value of 1.7 kcal/mol for the difference in GTP-Mg$^{2+}$ binding within the G domain of EF-Tu following mutation of Asp80, a residue that similarly binds the Mg$^{2+}$ of the nucleotide chelate (34). That asparagine substitutes remarkably well for Asp576 with respect to ATP-Mg$^{2+}$ binding suggests that interaction of the latter with chelated Mg$^{2+}$ is not due to Coulombic contributions. Coordination of asparaginyl and glutaminyl side chains to Mg$^{2+}$ have been observed previously for wild type enzymes, such as bacterial glutathione synthetase, D-alanine, D-alanine ligase, and pyruvate phosphate dikinase, among others (35, 36).

Several lines of evidence demonstrate that mutating Asp576 alters the rate-limiting step for generating the HsUba1a ternary complex from the step for formation of the HsUba1a-ubiquitin thiolester to that of ubiquitin adenylate (Tables 1 and 2). For wild type ubiquitin-activating enzyme, generation of the ternary complex containing both HsUba1a-ubiquitin thiolester and its tightly bound ubiquitin adenylate precursor is rapid with respect to E2 transthiolation (27, 29). However, mutation of Asp576 significantly reduces the rate of ubiquitin adenylate formation and allows the time course for HsUba1a ternary complex formation to be observed directly (Fig. 2). That the effect of Asp576 mutation is at the step of ubiquitin adenylate formation and not the subsequent step of HsUba1a-ubiquitin thiolester formation is supported by the marked change in end point stoichiometry for wild type versus mutant ternary complex with the three substitutions tested (Table 1).

The kinetic assays are unable directly to resolve the intrinsic rate constant for $k_{\text{cat,AMP-Ub}}$ on the step for ubiquitin adenylate formation catalyzed by wild type Uba1 (17). However, a lower limit for wild type $k_{\text{cat,AMP-Ub}}$ of 6.0 ± 0.1 s$^{-1}$ can be estimated from the extrapolated k_{cat} for ATP/PP, isotope exchange at saturating ATP-Mg$^{2+}$ and ubiquitin (Fig. 6A), which agrees well with the lower limit of 9.6 s$^{-1}$ determined for rabbit Uba1 (17). Using the former limiting value, mutation of Asp576 to alanine results in a 250-fold decrease in $k_{\text{cat,AMP-Ub}}$ relative to wild type enzyme (Table 2). The overall effect of mutating Asp576 can be quantitatively compared by considering the catalytic specificity of HsUba1a with respect to ATP-Mg$^{2+}$ defined as $k_{\text{cat,AMP-Ub}}/k_{\text{m,ATP}}$. For wild type GST-HsUba1a, the lower limit for $k_{\text{cat,AMP-Ub}}/k_{\text{m,ATP}}$ can be estimated as 1.1 × 106 M$^{-1}$ s$^{-1}$, whereas the corresponding value for GST-HsUba1aD576A is 115 M$^{-1}$ s$^{-1}$. The consequence of the mutating Asp576 to alanine thus represents a >9600-fold decrease in the overall efficiency of ubiquitin adenylate formation, an effect that renders HsUba1a functionally inactive under all but the most sensitive assay conditions. This suggests that the loss-of-function phenotype observed for the paralogous mutation in other members of this family results from a combination of reduced affinity and compromised catalytic efficiency (21, 23, 24). Reduction in $k_{\text{cat,AMP-Ub}}$ also manifests as a significantly diminished equilibrium constant for ubiquitin adenylate formation, normally ~0.1 for wild type enzyme (17, 37), since it constitutes the numerator of this term (17), altering the end point stoichiometry for the resulting HsUba1a ternary complex (Table 1).

We could not have anticipated a priori that mutation of Asp576 or Lys228 would so dramatically lower $k_{\text{cat,AMP-Ub}}$ and the stoichiometry for the final ternary complex. Aspartate 576 is unlikely to serve an overt catalytic role as a general acid-base group, since glutamate does not effectively substitute for Asp576 with respect to the stoichiometry of the ternary complex or the magnitude of $k_{\text{cat,AMP-Ub}}$ (Tables 1 and 2). A functional ternary complex of correct stoichiometry can be reconstructed by the addition of exogenous ubiquitin adenylate to wild type Uba1 (18), even when enzyme and ubiquitin adenylate are both treated with 20 mM EDTA; therefore, we can preclude an alternative model for Asp576 in which Mg$^{2+}$ remains associated with this residue to facilitate nuclophile attack of Cys632 during subsequent Uba1-ubiquitin thiolester formation. However, because the phenotype of Lys228 mutation is similar to that observed with the three Asp576 mutants, it is likely that they all derive from a common mechanism.

Aminoacyl tRNA synthetases catalyze a carboxyl group activation that is identical in chemistry to the reaction of Uba1 and other E1 paralogs (16, 38). These enzymes catalyze a highly conserved in line nucleophilic attack of the substrate carboxyl group on the α-phosphate of ATP-Mg$^{2+}$ to form the corresponding bound aminoacyl adenylate and PP-Mg$^{2+}$ (38–40). The reaction passes through a trigonal bipyramidal pentacovalent phosphoryl transition state in which the relative positions of the oxygen and phosphorous atoms are proposed to shift little from their ground states (38, 39). Catalysis in this enzyme class arises in large part from enhanced binding and concomitant stabilization of the incipient transition state (38, 41, 42). Thus, mutation of active site groups involved in substrate binding that are also critical for binding and stabilizing the transition state invariably leads to marked reductions in k_{cat} (42, 43). As a corollary, mutation of groups not involved in initial substrate binding but that are required for transition state stabilization also shows significant k_{cat} effects (42, 43).

For HsUba1a, the significant decrease in $k_{\text{cat,AMP-Ub}}$ requires, by definition, that the effect of mutating Asp576 and Lys228 groups in the ATP-Mg$^{2+}$ binding site results in destabilization of the transition state. Thus, the data of Table 2 suggest that mutation of Asp576 destabilizes the transition state by 1.2 kcal/mol for HsUba1aD576A, 2.1 kcal/mol for HsUba1aD576E, and 1.4 kcal/mol for HsUba1aK528A (Table 2). The latter energy of destabilization agrees favorably with a value for $\Delta \Delta G^*$ of 1.7 kcal/mol for mutation of Lys82 to alanine in tyrosyl-tRNA synthetase noted earlier (33). Therefore, the common chemistries of these otherwise unrelated enzyme classes appear to manifest a conserved catalytic mechanism of transition state stabilization.

Ternary complex formation is normally too rapid to follow by the manual assays used in the present studies, necessitating our use of E2 transthiolation as a coupled reporter assay (27). Since mutation of Asp576 or Lys228 inhibits formation of bound ubiquitin adenylate, we were able to monitor subsequent HsUba1a-125I-ubiquitin thiolester formation directly (Fig. 2). Thus, V_{max} determined under these conditions and extrapolated to saturating substrate reflects the intrinsic value of $k_{\text{cat,AMP-Ub}}$ for the respective single point mutants (Table 2). Because kinetics measure only the rate-limiting reaction of a multistep pathway, in this case ubiquitin adenylate formation, we were surprised to find that $k_{\text{cat,AMP-Ub}}$ values independently determined by HsUbc2b transthiolation failed to agree with those determined directly by HsUba1a-125I-ubiquitin thiolester formation (Table 2). Observation that the dominant negative mutant HsUbc2bC88A failed to enhance $k_{\text{cat,AMP-Ub}}$ rules out

9 Since ubiquitin adenylate formation is not rate-limiting for wild type E1 ternary complex formation, it is not technically possible directly to determine $k_{\text{cat,AMP-Ub}}$. However, a lower limit can be estimated from the k_{cat} for ATP/PP, exchange, since the latter assays are measured at equilibrium (17).
models in which the E2 acts as a positive allosteric effector of bound ubiquitin adenylate formation; however, the observation requires that stimulation by HsUbcb2 requires Cys88. Earlier studies by Pickart et al. (44) demonstrated that occupancy of the nucleotide/adenylate site by either ATP-Mg2+ or ubiquitin adenylate enhanced the rate of E2 transphosphorylation by ~13-fold. Microscopic reversibility requires that occupancy of the E2 binding site must also stimulate bound ubiquitin adenylate formation. Since HsUbcb2C88A fails to stimulate ubiquitin adenylate formation, the data require that the observed difference between $k_{\text{cat,AMP-UB}}$ and $k_{\text{cat,Turn}}$ (Table 2) reflects a positive allosteric effect of bound wild type HsUbcb2 on the rate of ubiquitin adenylate formation and that this effect is observed only upon binding of wild type uncharged E2.

The inhibition pattern for the ubiquitin dependence of ATP/PPi exchange demonstrates that wild type human Uba1 exhibits pseudo-ordered substrate addition (Fig. 6A) (17). The pseudo-ordered addition mechanism results from the combined effects of differences in binding site geometry and differential relative affinities for ATP-Mg2+ versus ubiquitin as the leading substrate, requiring that wild type human Uba1 possess a greater affinity for ATP-Mg2+ as leading substrate than for ubiquitin. Mutation of Asp576 to either alanine or glutamate shifts GST-HsUbcb1 to a random addition mechanism, revealed by the hyperbolic ATP/PPi exchange kinetics with varying ubiquitin concentration (Fig. 6, B and C). The K_m values for ATP versus ubiquitin differ too little among the Asp576 mutants to allow us to propose that the change in binding order results from differential affinities (Table 2). More likely, Asp576 coordination to Mg2+ triggers subsequent ubiquitin binding, possibly by opening the channel through which the carboxyl terminus of the latter threads, as revealed from crystal structures for the adenylate binding sites of AppB1-UBa3 and Sae2-Sae3 (22–24).

The present studies demonstrate that Asp576 is a critical residue in the catalytic cycle of ubiquitin-activating enzyme for ATP-Mg2+ binding, substrate binding order, and transition state stabilization that go beyond its originally proposed role based on structural information. However, the complex kinetic phenotype arising from mutation of this group is explained fully by its contributions to substrate and transition state binding. The present data also reveal a previously unrecognized coupling between ATP-Mg2+ and ubiquitin binding as well as coupling between E2 binding and the rate of ubiquitin adenylate formation.

Acknowledgments—We are grateful to Dr. Alan L. Schwartz for kindly providing the pGEX3X-E1 expression plasmid and to Adam Harder for technical support.

REFERENCES

1. Pickart, C. M. (2001) Annu. Rev. Biochem. 70, 503–533
2. Hicke, L. (1999) Trends Cell Biol. 9, 107–112
3. Jentsch, S., and Pyrowolakis, G. (2000) Trends Cell Biol. 10, 335–342
4. Haas, A. L., and Siepmann, J. (1997) FEBS Lett. 421, 1172–1176
5. Johnson, E. S., Schwienhorst, R. J., Dohmen, R. J., and Blobel, G. (1997) EMBO J. 16, 5509–5519
6. Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N., and Yasuda, H. (1999) Biochem. Biophys. Res. Commun. 254, 693–698
7. Liakopoulos, D., Doenges, G., Matuschewski, K., and Jentsch, S. (1998) EMBO J. 17, 2208–2214
8. Osaka, F., Kawasaki, H., Aida, N., Saeki, M., Chiba, T., Kawashima, S., Tanaka, K., and Kato, S. (1998) Genes Dev. 12, 2263–2268
9. Yu, W., and Krug, R. M. (2001) EMBO J. 20, 362–371
10. Dittmar, G. A., Wilkinson, C. R., Jezdezejewski, P. T., and Finley, D. (2002) Science 295, 2442–2446
11. Liu, Y.-C., Pan, J., Zhang, C., Fan, W., Collinge, M., Bender, J. R., and Weissman, S. M. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 4313–4318
12. Raasi, S., Schmidtk, G., and Grottrup, M. (2001) J. Biol. Chem. 276, 35334–35343
13. Tanida, I., Mizushima, N., Kiyooka, M., Ohsumi, M., Ueno, T., Ohsumi, Y., and Komarni, E. (1999) Mol. Biol. Cell 10, 1367–1379
14. Larsen, C. N., and Wang, H. (2002) J. Proteome Res. 1, 411–419
15. Schwartz, D. C., and Hochstrasser, M. (2003) Trends Biochem. Sci. 28, 321–328
16. Haas, A. L., Warms, J. V., Hershko, A., and Rose, I. A. (1982) J. Biol. Chem. 257, 2543–2548
17. Haas, A. L., and Rose, I. A. (1982) J. Biol. Chem. 257, 10329–10337
18. Haas, A. L., and Rose, I. A. (1983) J. Biol. Chem. 258, 4388–4394
19. Pickart, C. M., and Rose, I. A. (1985) J. Biol. Chem. 260, 1573–1581
20. Leimkuhler, S., Wuebbers, M. M., and Rajagopalan, K. V. (2001) J. Biol. Chem. 276, 34695–34701
21. Lake, M. W., Wuebbers, M. M., Rajagopalan, K. V., and Schindelin, H. (2001) Nature 414, 325–329
22. Walden, H., Podgorski, M. S., and Schulman, B. A. (2003) Nature 422, 330–334
23. Walden, H., Podgorski, M. S., Huang, D. T., Miller, D. W., Howard, R. J., Minor, D. L., Holton, J. M., and Schulman, B. A. (2003) Mol. Cell 12, 1427–1437
24. Lois, L. M., and Lima, C. D. (2003) EMBO J. 24, 439–451
25. Baboshina, O. V., and Haas, A. L. (1996) J. Biol. Chem. 271, 2823–2831
26. Haas, A. L., and Rose, I. A. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 6845–6848
27. Siepmann, T. J., Bohnsack, R. N., Tokgöz, Z., Baboshina, O. V., and Haas, A. L. (2003) J. Biol. Chem. 278, 9448–9457
28. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Genes (Amst.) 71, 51–59
29. Bohnsack, R. N., and Haas, A. L. (2003) J. Biol. Chem. 278, 26823–26830
30. Segal, I. A. (1975) Enzyme Kinetics, Wiley-Interscience, New York
31. Burch, T. J., and Haas, A. L. (1994) Biochemistry 33, 7300–7308
32. Mitraka, B. M., and Rawlensley, H. M. (1981) Clinical Biochemical and Hematological Reference Values in Normal Experimental Animals, Masson Publishers, New York
33. Fersht, A. R., Knill-Jones, J. W., Bedouelle, H., and Winter, G. (1988) Biochemistry 27, 1581–1587
34. Bohnsack, R. N., and Haas, A. L. (2003) J. Biol. Chem. 278, 1172–1176
35. Ye, D., Wei, M., McGuire, M., Huang, K., Kapadia, G., Herzberg, O., Martin, B. M., and Dunaway-Mariano, D. (2001) J. Biol. Chem. 276, 57630–57639
36. Narasimhan, J., Potter, J. L., and Haas, A. L. (1996) J. Biol. Chem. 271, 324–330
37. Fersht, A. R. (1987) Biochemistry 26, 8031–8042
38. Schmitt, E., Moulindier, L., Fujiwara, S., Inamaka, T., Thiery, J. C., and Moras, D. (1998) EMBO J. 17, 5227–5237
39. Desouza, G., Todone, F., Brick, P., and Onesti, S. (2000) Biochemistry 39, 8418–8425
40. Fersht, A. R. (1988) Biochemistry 27, 1577–1580
41. Wells, T. N., and Fersht, A. R. (1986) Biochemistry 25, 1881–1886
42. Borgford, T. J., Gray, T. E., Brand, N. J., and Fersht, A. R. (1987) Biochemistry 26, 7246–7250
43. Pickart, C. M., Kasparek, E. M., Beal, R., and Kim, A. (1994) J. Biol. Chem. 269, 9175–9179
44. Haas, A. L., Ahrens, P., Bright, P. M., and Ankel, H. (1987) J. Biol. Chem. 262, 11315–11323
45. Loeb, K. R., and Haas, A. L. (1992) J. Biol. Chem. 267, 7806–7813