Ikaeria serusiauxii, a new Caloplaca-like lichen from Macaronesia and mainland Portugal, with a lichen checklist for Porto Santo

Harrie J. M. Sipman1 & André Aptroot2,3

Abstract. The new species Ikaeria serusiauxii (Teloschistaceae, lichenized Ascomycetes) is described from the Madeira Archipelago, Canary Islands and continental Portugal. It is a crustose lichen on twigs and branches of trees and shrubs in xerophytic maritime vegetation. Superficially it is similar to Caloplaca cerina and C. haematites, from which it differs by the often black apothecium margin, very thick spore septa, black pycnidium ostioles, and the presence of the pigment Cinereorufa-green instead of Sedifolia-grey. ITS sequences suggest Ikaeria aurantiellina (syn. Caloplaca aegatica) as the closest relative. Added is a preliminary lichen checklist for Porto Santo (Madeira Archipelago, Macaronesia).

Key words: Taxonomy, lichens, diversity, island biology

Introduction

The Madeira Archipelago, one of the island groups of Macaronesia, is situated in the Atlantic Ocean some 500 km off the shore of NW Africa. Politically it belongs to Portugal. Like the Canary Islands, it has a dry warm climate except where higher mountains cause increased precipitation. During a visit to Porto Santo, the second largest island of the Madeira Archipelago, for a lichen mapping project (Sparrius et al. 2017), an unusual Caloplaca-like, epiphytic lichen showed up frequently on shrubs and trees, which somewhat resembled C. cerina or C. haematites. Morphological and macromolecular analyses showed it to be an undescribed species, which is treated below. Further results of this expedition are presented at https://archive.bgbm.org/sipman/Zschackia/PortoSanto/genuslist.htm, and a preliminary checklist for Porto Santo is presented below (Table 1).

Material and methods

Specimens were studied with a stereomicroscope and a compound microscope in tap-water mounts. ITS sequences were generated by Alvalab (Spain). The sequences were analysed using https://www.ebi.ac.uk/Tools/msa/muscle/ with standard settings and http://iqtree.cibiv.univie.ac.at/ (Trifinopoulos et al. 2016) with standard settings and sequence type = DNA (accessed 18 June 2019). Branch support values were obtained with ultrafast bootstrap (Hoang et al. 2018) implemented in IQ-TREE (Nguyen et al. 2015).

Vouchers are deposited in B, BR, M, MADJ and herb. van den Boom.

Results and discussion

For complete documentation of the new species, ITS sequences were generated. These gave a preliminary view of the affinities of the new species. A BLAST search in Genbank in 2017 gave the surprising result that the closest relatives were in the genus Lecidea. A repeated BLAST search in 2019 suggested an affinity with the genus Ikaeria, which was published meanwhile by Kondratyuk et al. (2017). It comprises the single species Ikaeria aurantiellina, based on samples from Tenerife, Canary Islands. The genus was found to belong to the subfamily Teloschistoideae as sister to the genus Yoshimuria, and not to the Caloplacoideae or Xanthoroiideae where most crustose ‘Caloplaca’ species in Europe and the Mediterranean belong.

Following these suggestions, a comparison of the new species with putative relatives was made. ITS sequences, mostly downloaded from Genbank, were aligned with Megalospora, Brigantiaea and Letrouititia as outgroups, with Caloplaca cerina and C. haematites...
Figure 1. Phylogenetic tree from ITS sequences, with UFBootstrap values, of Ikaeria serusiauxii and selected Teloschistaceae. I. serusiauxii appears not closely related to Caloplaca cerina or C. haematites (blue) and falls outside the most frequent subfamilies in Macaronesia and Europe, i.e. Caloplacoideae (green clade) and Xanthorioideae (brown clade). Its closest relative is I. aurantiellina (black), which is included in Teloschistoideae (blue clade) in multilocus trees. Terminal bootstrap values omitted.
as potential relatives, with the genus *Ikaeria*, and with selected representatives of the three main groups of *Teloschistaceae*, the subfamilies *Xanthorioideae*, *Caloplacoideae* and *Teloschistoideae* (Arup et al. 2013). The resulting tree (Fig. 1) shows that the new species is clearly distinct from *C. cerina* and *C. haematites*, and that it has *Ikaeria aurantiellina* as the closest relative. Therefore the new species is included in the genus *Ikaeria*.

From Porto Santo, where the new species was recognized first, few lichen species have been reported so far. Krog & Østhagen (1980) and Krog (1990) reported *Ramalina* species, and Haugan (1992) a species of *Anzia*. These authors discovered remarkable lichen endemism on the island. Short lists of additional species were published by Follmann (1990), Carvalho et al. (2008) and Sparrius et al. (2017). Some recent monographers included material from the island, in particular Timdal (1992) on *Toninia*. The presented checklist (Table 1) is based mainly on the more easily recognizable lichen species observed during our mapping fieldwork. An attempt was made to study some groups in more detail, but the example of *Ikaeria serusiauxii* showed that a full evaluation requires more effort than we can invest currently. Therefore we are using the opportunity to publish all data collected so far in a checklist, including information on whether TLC was done, and we release all newly generated ITS sequences, including for groups for which no conclusive taxonomy is settled yet.

Ikaeria serusiauxii Sipman, sp. nov. (Figs 2–3)

Mycobank MB 833026

Diagnosis: similar to *Caloplaca cerina* in its anthraquinone-free thallus and apothecia with orange discs and often grey margin, but differing in having black pycnidium ostioles, thick ascospore septa, and the presence of the pigment *Cineoreufa-green* instead of *Sedifolia-grey*.

Type: Portugal, Madeira Islands, Porto Santo: E part, lower slopes N of Pico do Facho; ~350 m; 33°05.2′N, 16°19.3′W; epiphytes on fallen *Pinus* trees on slope; 2 March 2016; H. Sipman 62971 (B 60 0200928 – holotype; MADJ – isotype).

ITS sequence: MN586960; LSU: MN586916; SSU: MN586910.

Description. Thallus continuous, ~1–3 cm wide, grey, in shade with a greenish or slightly brownish tinge, not pruinose, smooth and slightly glossy, ~0.05 mm thick, not sorediate or blastidiate, flat or slightly warty with low warts 0.1–0.2 mm wide; prothallus black, visible along the thallus margins and on abraded spots; cortex 10–20 μm thick, prosoplectenchymatous, composed of periclinal hyphae; algal layer ~30–50 μm thick, discontinuous; medulla absent. Apothecia zeorine, abundant,
~0.5–0.8 mm in diam., when wider mostly subdivided into a few marginate discs forming a convex group, sessile, non-pruinose; disc flat to slightly convex, orange; margin of variable color ranging from completely black to greenish grey, more commonly intermediate, greenish grey with black spots in marginal crenulations, raised above the disc when young, somewhat reduced in old apothecia; true exciple and hypothecium prosoplectenchymatous, ~10–30 μm thick; thalline exciple ~100 μm thick; cortical layer ~50 μm thick below, thinner laterally, composed of dense, branching, anticlinal hyphae; algal layer ~50 μm, interrupted, with Trebouxia-like algae ~6–10 μm in diam.; epihymenium orange, granular; hymenium 50–60 μm thick, hyaline; paraphyses simple for most of their length, ~2 μm wide, apically slightly swollen to ~3 μm and dichotomously branched a few times; ascospores polarilocular, ellipsoid, ~12–16 × 6–8 μm; septum 8–12 μm wide; ratio of septum width to spore length 0.6–0.75. Pycnidia scattered, rather sparse, immersed with ±raised black ostiole; conidia bacilliform, ~3.5 × 0.8 μm.

Chemistry. Not tested by TLC; the black parts of the apothecia, the pycnidium ostiole and the prothallus contain dark olive-green pigment in the outer locules of the cortex, in K turning more greenish but persistent (Cinereorufa-green); the epithecium turning violet in K, releasing clouds of fine violet crystals (indet. anthraquinones); thallus and apothecium margin lack anthraquinones (K–).

Etymology. Named after Emmanuel Sérusiaux, our esteemed companion on expeditions in Papua New Guinea, who contributed significantly to the exploration of the lichen diversity of Macaronesia.

Distribution and ecology. The species is known from Macaronesia (Madeira Archipelago and Canary Islands) and from mainland Portugal (Algarve, Estremadura). Here it is found on twigs and branches of trees and shrubs in open, rather xerophytic vegetation, e.g. on Euphorbia piscatoria, but also on introduced Cupressus and Pinus. On Porto Santo it is fairly common at 350–400 m a.s.l. From the Madeira Island, so far two records are available, from 500–575 m a.s.l. The localities in mainland Portugal are close to the seashore.

Notes. Caloplaca cerina is the most likely species to be confused with Ikaeria serusiauxii, as it shares an anthraquinone-free, pale thallus, anthraquinone-free apothecium margins and yellow to orange-colored discs (Sou et al. 2011). However, I. serusiauxii differs clearly from C. cerina s.l. by the black pycnidium ostioles, the presence of the pigment Cinereorufa-green, and the thick ascospore septa 8–12 μm wide instead of 5–8 μm (Fletcher & Laundon 2009). Another rather similar species in the Mediterranean, Caloplaca haematites, has, like C. cerina, an anthraquinone-free thallus, anthraquinone-free apothecium margins and often orange-coloured discs, but in full light the thallus is very dark, almost black, due to a different, grey, K+ violet pigment (Sedifolia-grey), and the discs are reddish; only in shade are the thallus greenish grey and the discs orange. Thus, I. serusiauxii is clearly distinct in full light by the thallus- and apothecium color, and by the presence of Cinereorufa-green, while...
Table 1. Preliminary checklist of 221 lichenized fungi known from Porto Santo. Added are habitat (sax = on rock; ter = on soil; cor = corticolous), herbaria where vouchers are available, availability of TLC results, ITS sequences stored in Genbank, and references to published reports. Pictures of many species as well as some provisionally identified ones can be found on the website https://archive.bgbm.org/sipman/Zschackia/PortoSanto/genuslist.htm

Taxon	Habitat	Voucher	TLC	ITS sequences	Publications
Acroruspora laticola J. Steiner	sax	B, M	–	MN586918	Sipman & Aptroot (2019)
Acroruspora veronensis A. Massal.	sax	B, M	–	MN586919	Sipman & Aptroot (2019)
Acrocradia salwewyi (Leight. ex Nyl.) A. L. Sm.	sax	M	–	Sipman & Aptroot (2019)	
Agonimia tristicha (Ny1.) Zahlbr.	cor	M	–	Sipman & Aptroot (2019)	
Alyxia ochrocheila (Ny1.) Ertz & Tehler	sax	M	–	Sipman & Aptroot (2019)	
Alyxia varia (Pers.) Ertz & Tehler	cor	B, M	–	Sipman & Aptroot (2019)	
Amandinea pelidina (Ach.) Fryday & L. Arcadia	sax	B	–	Sipman & Aptroot (2019)	
Amandinea sp.	sax	B	–	MN586920, MN586921	Sipman & Aptroot (2019)
Anzia centrifuga Haugan	sax	B, BR, M	–	Haugan (1992), Sparrius et al. (2017)	
Arthonia punctecaria (Turner ex Sm.) Ertz & Diederich	sax	M	–	Sipman & Aptroot (2019)	
Aspicillicula portosantana Sipman & Zakeri	sax	B, BR, M	yes	MN586922, MN586923, MN586924	Sipman & Aptroot (2019)
Bacidia laurocerasi (Delise ex Duby) Zahlbr.	cor	M	–	Sipman & Aptroot (2019)	
Bacidina arnoldiana (Körb.) Ertz & Tehler	sax	M	–	Sipman & Aptroot (2019)	
Bacidia flavovirescens (Wulfen) Dalla Torre & Sarnth.	cor	B	–	Sipman & Aptroot (2019)	
Bacidia neotaurica Vondrak, Khodos., Arup & Sachting	sax	M	–	Sipman & Aptroot (2019)	
Candelariella vitellina (Taylor) Mudd	sax	B, M	–	Sipman & Aptroot (2019)	
Candelaria mediterranea Giralt	cor	B	–	Sipman & Aptroot (2019)	
Candelaria sp.	sax	B	–	MN58696, MN58693, MN586947, MN586948	Sipman & Aptroot (2019)
Candelariella vitellina (Hoffm.) Müll. Arg.	sax	B, BR, M	–	Follmann (1990) as B. lactea	
Catillaria atomarioides (Müll. Arg.) H. Kilias	sax	M	–	Sipman & Aptroot (2019)	
Catillaria chalybeia (Borrer) A. Massal.	sax	B, M	–	Sipman & Aptroot (2019)	
Catillaria mediterranea Hafellner	Lichenicilous	–	–	Sipman & Aptroot (2019) on Ramalina crispatula, lower part of lobes	
Catillaria minuta (Schae.) Lettau	sax	M	–	Sipman & Aptroot (2019)	
Chaeothece furfuracea (L.) Tibell	cor	M	–	Sipman & Aptroot (2019)	
Chrysothrix candelaris (L.) J. R. Laundon	sax, ter, cor	M	–	Sipman & Aptroot (2019)	
Circinaria contorta (Hoffm.) A. Nordin, Savič & Tibell	sax	B, M	–	Sipman & Aptroot (2019)	
Cladonia halmis (With.) J. R. Laundon	ter	B, M	–	Sipman & Aptroot (2019)	
Cladonia macilenta Hoffm.	ter	M	–	Sipman & Aptroot (2019)	
Cladonia microphylla Alti & Aptroot	ter	B, M	yes	MN586949	Sipman & Aptroot (2019)
Cladonia peziziformis (With.) J. R. Laundon	ter	B, M	yes	Sipman & Aptroot (2019)	
Cladonia ramulosa (With.) J. R. Laundon	ter	M	–	Sipman & Aptroot (2019)	
Cladonia rangformis Hoffm.	ter	B, M	yes	Sipman & Aptroot (2019)	
Cladonia streptocladia Abbayes	ter	B, M	–	MN586950	Sipman & Aptroot (2019)
Clausenda metziari (Körb.)	sax	M	–	Meyer (2002), Clausenda & Clausenda ex D. Hawkes.	
Clavascidium lacinulatum (Ach.) M. Prieto	ter	BR, M	–	Sipman & Aptroot (2019)	
Clostomum griffithii (Sm.) Coppins	sax, cor	B, BR, M	–	Sipman & Aptroot (2019)	
Coccocarpia erythroxyl (Spreng.) Swinscow & Krog	sax	M	–	Sipman & Aptroot (2019)	
Coenogonium luteum (Dicks.) Kalb & Lücking	cor	M	–	Sipman & Aptroot (2019)	
Taxon	Habitat	Voucher	TLC	ITS sequences	Publications
---------------------------------------	---------	---------	-------	---------------------------------	---------------------------------------
Collema ryssoleum (Tuck.) Schneid.	sax	B, M	–	–	Sipman & Aptroot (2019)
Collemopsidium caesium (Nyl.) Copps & Aptroot	sax	M	–	–	Sipman & Aptroot (2019)
Cresponia prennesia (Ach.) Egea & Torrente	cor	B, M	–	–	Sipman & Aptroot (2019)
Crodia aurata (Ach.) Link	cor	B, M	–	–	Sipman & Aptroot (2019)
Dimelaena radiata (Tuck.) Hale & W. L. Curb.	cor	B	yes	–	Sipman & Aptroot (2019)
Diplodia canescens (Dick.) A. Massal.	sax	B, BR, M	–	–	Sipman & Aptroot (2019)
Diplodia subcanescens (Werner) Hafellner & Poelt	sax	B, BR, M	–	–	Follmann (1990)
Diploschistes actinostomus (Ach.) Zahlbr.	sax	B, M	–	–	MN586951, MN586952, MN586953
Dirina cf. ceratoniae (Ach.) Fr.	cor	–	–	–	Sipman & Aptroot (2019)
Dirina insulana (Tav.) Tehler	cor	–	–	–	Sipman & Aptroot (2019)
Dirina paradoxa subsp. africana (Tehler)	cor	–	–	–	Sipman & Aptroot (2019)
Dirinaria aphrodisia (Fée) D. D. Awasthi	sax	B	–	–	MN586954
Enchylium tenax (Sw.) Gray	ter	BR, M	–	–	Sipman & Aptroot (2019)
Endocarpon pusillum Hedw.	ter	B	–	–	Sipman & Aptroot (2019)
Endohyalina ericina (Nyl.) Giralt, van den Boom & Elix	cor	B, M	–	–	MN586955
Enterographa hutchinsiae (Leight.) A. Massal.	sax	B	–	–	Sipman & Aptroot (2019)
Epiphloea terrena (Nyl.) Trevis.	ter	B, M	–	–	Sipman & Aptroot (2019)
Flavoplaca cf. maritima (B. de Lesd.) Arup, Frödén & Søchting	sax	B	–	–	MN586941, MN586939, MN586940, MN586936, MN586942, MN586943, MN586944, MN586945
Fulgensia desertorum (Tomin) Poelt	ter	–	–	–	Sipman & Aptroot (2019)
Fulvophyton sorediatum (Sparrius, P. James & M. A. Allen) Tehler & van den Boom	sax	B	–	MN586954	Sipman & Aptroot (2019)
Gyalecta schisticola Werner	sax, ter	B, M	–	–	Sipman & Aptroot (2019)
Heppia conchiloba Werner	ter	M	–	–	Sipman & Aptroot (2019)
Heteroderma leucomelos (L.) Poelt	sax, ter	BR, M	yes	–	Carvalho et al. (2008)
Hyperphyscia adglutinata (Flörke)	cor	BR	–	–	Sipman & Aptroot (2019)
Ikaeria serusiauxii Sipman	cor	B	–	MN586958, MN586959, MN586960	Sipman & Aptroot (2019)
Ikaeria aurantiellina (Harm.) S. Y. Kondr., Upreti & Hur (syn. Caloplaca aegatica Giral, Nims & Poelt)	cor	B	–	MN586957, MN586956	Sipman & Aptroot (2019)
Lecania cuprea (A. Massal.) Van den Boom & Coppins	sax	M	–	–	Sipman & Aptroot (2019)
Lecania nigra van den Boom & Ertz	sax	B	–	–	Sipman & Aptroot (2019)
Lecania sylvestris (Arnold) Arnold	sax	M	–	–	Sipman & Aptroot (2019)
Lecania turicensis (Hepp.) Müll. Arg.	sax	BR, M	–	–	Sipman & Aptroot (2019)
Lecanographa dialeuca (Cromb.) Egea & Torrente	sax	B, BR, M	–	–	Sipman & Aptroot (2019)
Lecanora campesiris (Schauer.) Hue	sax	M	yes	MN586965	Sipman & Aptroot (2019)
Lecanora confusa Alm.	cor	B, M	–	–	Follmann (1990)
Lecanora gongaleoides Nyl.	sax	M	yes	–	Sipman & Aptroot (2019)
Lecanora cf. hybocarpa (Tuck.) Brodo	cor	B, M	yes	MN586968, MN586969, MN586970	Sipman & Aptroot (2019)
Lecanora cf. oreinoides (Körb.) Hertel & Rambold	sax	B	yes	MN586966, MN586967	Sipman & Aptroot (2019)
Lecanora cf. praepectorata Nyl.	sax	B, M	yes	MN586972, MN586971, MN586973	Sipman & Aptroot (2019)
Lecanora sulphurella Hepp	sax	B, BR, M	–	–	Follmann (1990)
Lecanora sp. 1	sax	B	yes	MN586961, MN586962	Sipman & Aptroot (2019)
Taxon	Habitat	Voucher	TLC	ITS sequences	Publications
-------	---------	---------	-----	---------------	--------------
Lecanora sp. 2	sax	B	yes	MN586974	Sipman & Aptroot (2019)
Lecanora sp. 3	sax	B, M	yes	MN586963, MN586964	Sipman & Aptroot (2019)
Lecidea sarcognoides Körb.	sax	B, BR, M	–	–	Sipman & Aptroot (2019)
Lecidella cf. elaeochromoides (Nyl.) Knoph & Hertel	sax	B	–	MN586975, MN586976	Sipman & Aptroot (2019)
Lecidella cf. meiococcus (Nyl.) Leuckert & Hertel	sax	B	–	MN586979	Sipman & Aptroot (2019)
Lecidella scabra (Taylor) Hertel & Leuckert	sax	B, BR, M	yes	–	Sipman & Aptroot (2019)
Lecidella cf. meiococcus (Nyl.) Leuckert & Hertel	sax	B	–	MN586975, MN586976	Sipman & Aptroot (2019)
Lecidella cf. meiococcus (Nyl.) Leuckert & Hertel	sax	B	–	MN586979	Sipman & Aptroot (2019)
Lecidella sp.	sax	B	–	MN586975, MN586976	Sipman & Aptroot (2019)
Lecidella sp.	sax	B	–	MN586979	Sipman & Aptroot (2019)
Lepraria maderensis Kukwa & Flakus	sax	B	yes	–	Sipman & Aptroot (2019)
Lepraria maderensis Kukwa & Flakus	sax	B	yes	–	Sipman & Aptroot (2019)
Leptogium teretiusculum (Flörke ex Wallr.) Arnold	sax	B, BR, M	–	–	Sipman & Aptroot (2019)
Lobaria macaronesica C. Cornejo & Scheid.	sax	B, M	–	–	Carvalho et al. (2008) as L. pulmonaria
Lobothallia recedens (Taylor) A. Nordin, Savić & Tibell	sax	B	–	MN586980	Sipman & Aptroot (2019)
Mycogonium sparsellum Nyl.	cor	B, M	yes	–	Sipman & Aptroot (2019)
Myriolecis crenulata (Ach.) Śliwa, Zhao Xin & Lumbsch	cor	B, M	yes	–	Sipman & Aptroot (2019)
Myriolecis dispersa (Pers.) Śliwa, Zhao Xin & Lumbsch	cor	B, M	yes	–	Sipman & Aptroot (2019)
Myriolecis hagenii (Ach.) Śliwa, Zhao Xin & Lumbsch	cor	B, M	yes	–	Sipman & Aptroot (2019)
Nephroma foliolatum P. James & F. J. White	sax, ter	B	yes	–	Sipman & Aptroot (2019)
Nephroma laevigatum Ach.	ter	B	yes	–	Sipman & Aptroot (2019)
Normandina pulchella (Borrer) Nyl.	sax, cor	B, M	–	–	Sipman & Aptroot (2019)
Ochrolechia incarnata (Leight.) Kukwa, Schmitt & Ertz	sax on	B	–	MN586981	Kukwa et al. (2018)
Opegrapha demutata Nyl.	cor	M	–	–	Sipman & Aptroot (2019)
Opegrapha tumulenta Nyl.	cor	M	–	–	Sipman & Aptroot (2019)
Opegrapha vulgata (Ach.) Ach.	cor	B, BR, M	–	–	Sipman & Aptroot (2019)
Orcaria insperata (Nyl.) Kalb & Giralt	cor	B, BR, M	–	–	Sipman & Aptroot (2019)
Parmotrema perlatum (Huds.) M. Choisy	cor	B, M	–	–	Sipman & Aptroot (2019)
Parmotrema reticulatum (Taylor) M. Choisy	cor	B, BR, M	–	–	Sipman & Aptroot (2019)
Parmotrema tinctorum (Despr. ex Nyl.) Hale	cor	B, BR, M	–	–	Sipman & Aptroot (2019)
Pectenia atlantica (Degel.) P. M. Jørg., L. Lindblom, Wedin & S. Ekman	cor	B, BR, M	–	–	Sipman & Aptroot (2019)
Peltula bolanderi (Tuck.) Wettmore	cor	B, M	–	–	Sipman & Aptroot (2019)
Peltula euploca (Ach.) Poelt	cor	B, BR, M	–	–	Sipman & Aptroot (2019)
Peltula obscurans (Nyl.) Geyln.	cor	B, M	–	–	Sipman & Aptroot (2019)
Peltula omphaliza (Nyl.) Wettmore	cor	B, M	–	–	Sipman & Aptroot (2019)
Pertusaria aleianta Nyl.	cor	B, M	–	–	Follmann (1990) as Pertusaria heterochroa (Müll. Arg.) Ertz
Taxon	Habitat	Voucher	TLC	ITS sequences	Publications
-------	---------	---------	-----	---------------	--------------
Physcia adscendens (Fr.) H. Olivier	cor	B	–	–	Sipman & Aptroot (2019)
Physcia erumpens Moberg	sax	B, M	–	–	Sipman & Aptroot (2019)
Placidium boccaanum (Sér. Vit.) Breuss	sax	BR, M	–	–	Sipman & Aptroot (2019)
Placidium squamulosum (Ach.) Breuss	ter	BR, M	–	–	Sipman & Aptroot (2019)
Placynthiella dasaea (Stirt.) Tønsberg	cor	M	–	–	Sipman & Aptroot (2019)
Placynthium nigrum (Huds.) Gray	sax	M	–	–	Sipman & Aptroot (2019)
Polysporina cyclocarpa (Anzi) Vězda	sax, ter	M	–	–	Sipman & Aptroot (2019)
Polysporina simplex (Taylor) Vězda	sax	B	–	–	Sipman & Aptroot (2019)
Porina curnowii A. L. Sm.	sax	B, M	–	–	Sipman & Aptroot (2019)
Porina leptospora (Nyl.) A. L. Sm.	cor	B	–	–	Sipman & Aptroot (2019)
Porpidia albocoerulescens (Wulfen) Hertel & Knoph	sax	M	–	–	Sipman & Aptroot (2019)
Porpidia crustulata (Ach.) Hertel & Knoph	sax	M	–	–	Sipman & Aptroot (2019)
Protoparmelia montagnei (Fr.) Sancho	sax	B, M	–	MN586983, MN586982	Sipman & Aptroot (2019)
Protoparmeliopsis muralis (Schreb.) M. Choisy	sax	B	–	–	Sipman & Aptroot (2019)
Psora decipiens (Hedw.) Hoffm.	cor	B	yes	–	Follmann (1990) as R. subwebbiana, Sparrius et al. (2017)
Psorotichia murorum A. Massal.	sax	M	yes	–	Sipman & Aptroot (2019)
Pyrenula chlorospila (Nyl.) Arnold	sax	BR	–	–	Sipman & Aptroot (2019)
Pyrrhospora quernea (Dicks.) Körb.	cor	B, M	yes	–	Sipman & Aptroot (2019)
Pyxine sorediata (Ach.) Mont.	sax	B, M	–	–	Sipman & Aptroot (2019)
Pyxine subcinerea Stirt.	sax	M	–	–	Sipman & Aptroot (2019)
Ramalina canariensis J. Steiner	cor	B	yes	–	Sipman & Aptroot (2019)
Ramalina crispatula Despr. ex Nyl.	sax	B, M	yes	MN586989	Sipman & Aptroot (2019)
Ramalina decipiens Mont.	sax	B, M	yes	MN586991, MN586990, MN586992, MN586994	Sipman & Aptroot (2019)
Ramalina eosa Krog	sax	M	yes	MN586995, MN586996, MN586997	Sipman & Aptroot (2019)
Ramalina fastigiata (Pers.) Ach.	cor	B, M	yes	MN586998, MN586999	Sipman & Aptroot (2019)
Ramalina huei Harm.	cor	B, M	yes	MN587000, MN587001	Sipman & Aptroot (2019)
Ramalina jamesii Krog	sax	B, M	yes	MN587002, MN587003	Sipman & Aptroot (2019)
Ramalina lacera (With.) J. R. Laundon	cor	B, M	yes	–	Follmann (1990) as R. duriaci, Sipman & Aptroot (2019)
Ramalina maderensis Motyka	sax	B, M	yes	MN587004, MN587005, MN587006	Sipman & Aptroot (2019)
Ramalina cf. maderensis (divaricatic acid)	sax	B	yes	MN586988, MN586984, MN586985, MN586986, MN586987	Sipman & Aptroot (2019)
Ramalina mollis Krog	cor	B, M	yes	–	Sipman & Aptroot (2019)
Ramalina nematodes (Nyl.) Krog & Østh.	sax, cor	B, BR, M	yes	MN587007, MN587008	Krog & Østhagen (1980), Follmann (1990), Sparrius et al. (2017)
Ramalina portusantana Krog	sax	M	–	–	Krog (1990), Sipman & Aptroot (2019)
Ramalina pusilla Le Prévost	cor	B, M	–	–	Sipman & Aptroot (2019)
Ramalina requienii (De Not.) Jatta	sax, cor	B, M	yes	MN587009, MN587010, MN587011, MN587012, MN587013, MN587014, MN587015, MN587016	Carvalho et al. (2008) as R. polymorpha, Sparrius et al. (2017)
Ramalina subpusilla (Nyl.) Zahlbr.	cor	B, M	yes	MN587017, MN587018, MN587019	Sipman & Aptroot (2019)
Ramalina timdaliana Krog	sax	M	–	–	Krog (1990), Sparrius et al. (2017)
Ramalina tingitana Salzm.	sax, cor	B, M	yes	MN587025, MN587020, MN587021, MN587022, MN587023, MN587024	Follmann (1990) also as R. bourgeana; Krog & Østhagen (1980), Sparrius et al. (2017)
Taxon	Habitat	Voucher	TLC	ITS sequences	Publications
-----------------------------------	---------	---------	-----	---------------	--------------------------------
Rhizocarpon lusitanicum (Nyl.) Arnold	sax, M	–	–	–	Sipman & Aptroot (2019)
Rhizomarina saxifraga (Kürschner)	sax, M	–	–	–	Sipman & Aptroot (2019)
Rinodina anomala (Zahlbr.) H. Mayrhofer & Giralt	cor, BR, M	–	MN587026, MN587027	Sipman & Aptroot (2019)	
Rinodina cf. anomala	cor, B	–	MN587028	Sipman & Aptroot (2019)	
Rinodina beccariana Bagl.	sax, M	–	–	–	Sipman & Aptroot (2019)
Rinodina beccariana var. lavicola (J. Steiner) Matzer & H. Mayrhofer	sax, B, M	–	–	–	Sipman & Aptroot (2019)
Rinodina cana (Arnold) Arnold	sax, BR, M	–	–	–	Sipman & Aptroot (2019)
Rinodina canariensis Matzer, H. Mayrhofer & P. Clerc	sax, BR, M	–	–	–	Sipman & Aptroot (2019)
Rinodina exigua (Ach.) Gray	cor, M	–	–	–	Sipman & Aptroot (2019)
Rinodina immersa (Körb.) J. Steiner	sax, M	–	–	–	Sipman & Aptroot (2019)
Rinodina intermedia Bagl.	ter, B	–	–	–	Sipman & Aptroot (2019)
Rinodina oleae Bagl.	sax, M	–	–	–	Sipman & Aptroot (2019)
Rinodina oxydata (A. Massal.) A. Massal.	sax, B	–	–	–	Sipman & Aptroot (2019)
Roccella allorgei Abbeyes	cor, B	yes	–	–	Sipman & Aptroot (2019)
Roccella elisabethae Tehler	sax, ter	–	–	–	Sipman & Aptroot (2019)
Roccella fuciformis (L.) DC.	sax, B, BR, M	–	–	–	Sipman & Aptroot (2019)
Roccella phycopsis (J. Steiner) Follmann	sax, B, BR, M	–	–	–	Sipman & Aptroot (2019)
Roccella tinctoria DC.	sax, B, M	–	–	–	Sipman & Aptroot (2019)
Roccellago circumscripta (Leight.) Ertz & Tehler	sax, M	–	–	–	Sipman & Aptroot (2019)
Rufoplaca arenaria (Pers.) Arup, Sochting & Frödén	sax, ter, B, BR	–	MN587030	–	Sparrius et al. (2017)
Rusavskia resedaei (Poelt & Tav.) S. Y. Kondr. & Kärnefelt	sax, B, BR, M	–	–	–	Sipman & Aptroot (2019)
Schismatomma albovittatum (Nyl.) Zahlbr.	cor, B	–	–	–	Sipman & Aptroot (2019)
Schismatomma graphidosides (Leight.) Zahlbr.	cor, B, M	–	–	–	Sipman & Aptroot (2019)
Scoliciosporum umbrinum (Ach.) Gray	sax, B, M	–	–	–	Sipman & Aptroot (2019)
Scytinium aragonii (Otálora) Otálora, P. M. Jørg. & Wedin	ter, M	–	–	–	Sipman & Aptroot (2019)
Solenoporina vinturienis A. Massal.	sax, ter, B, BR, M	–	–	–	Sipman & Aptroot (2019)
Sphinctrina tubiformis A. Massal.	sax, ter, B, BR, M	–	–	–	Sipman & Aptroot (2019)
Sphinctrina turbinata (Pers.) De Not.	cor, BR	–	–	–	Sipman & Aptroot (2019)
Squamarina cartilaginea (With.) P. James	sax, ter, B, BR, M	–	–	–	Sipman & Aptroot (2019)
Synecia myrticola (Fée) Lehner	sax, cor, B, BR, M	–	MN587031, MN587032	–	Sipman & Aptroot (2019)
Tephronema ulterior var. planeata (J. Steiner) Hafellner & Hierze	sax, B, M	yes	MN587033, MN587034	Sipman & Aptroot (2019)	
Thelotremata alabralbum (Dufour) Flagey	–	–	–	–	Timdal (1992) as Toniina
Thelotremata massatum (Tuck.) Kistennich, Timdal, Bendiksky & S.Ekman	–	–	–	–	Timdal (1992) as Toniina
Thelotremata toepfferi Stein	ter, photo	–	–	–	Sipman & Aptroot (2019)
Thelenella muscorum (Th. Fr.) Vain.	ter, M	–	–	–	Sipman & Aptroot (2019)
Thelomma mammosum (Hepp) A. Massal.	sax, B, M	yes	–	–	Sipman & Aptroot (2019)
Thelopsis isica Sitzenb.	sax, BR, M	–	–	–	Sipman & Aptroot (2019)
Thelotrema laricisylvae Lücking & Breuss	cor, B, BR, M	–	–	–	Sipman & Aptroot (2019)
Toninia plumbea (Anzi) Hafellner & Timdal	sax, ter, B, BR, M	–	–	–	Timdal (1992) as Toniina
Tonicia hirsuta (Hedw.) Timdal	sax, ter, B, BR, M	–	–	–	Timdal (1992) as Toniina
Tonicia mesosticta (Nyl.) Timdal	sax, ter, B, BR, M	–	–	–	Timdal (1992) as Toniina
Trapelia coarctata (Turner) M. Choisy	ter, M	–	–	–	Sipman & Aptroot (2019)
I. aurantiellina somewhat shorter ascospores in species are anatomically indistinguishable except for the ever, a closer look shows that the apothecia of the two by the ‘biatorine’ apothecia (Giralt et al. 1992). How-
spore length 0.5–0.67), and can be distinguished easily as thick as spore length. Unfortunately, no ITS sequence turn black, and its spores have shorter septa about half the black pycnidia, but that species is saxicolous, its discs because it shares
I. serusiauxii tozona recognition of the shade forms relies on the black pycnid-ium ostioles and thick septa. The tropical species

Table 1

Taxon	Habitat	Voucher	TLC	ITS sequences	Publications
Trachelopis granulosa (Hoffm.) Lumbsch	cor	M	–	–	Sipman & Aptroot (2019)
Trachelopis wallrothii (Flörke ex Spreng.) Hertel & Goth. Schneid.	ter	B, M	–	–	Sipman & Aptroot (2019)
Usnea rubicunda Stirt.	cor	B	yes	–	Sipman & Aptroot (2019)
Usnea subscabrosa Nyl. ex Motyka	cor	B, M	yes	–	Sipman & Aptroot (2019)
Varicellaria velata (Turner) I. Schmitt & Lumbsch	sax, cor	B	yes	–	Sipman & Aptroot (2019)
Variospora flavescens (Huds.) Arup, Frödén & Soechting	sax, BR, M	–	MN587035	–	Sipman & Aptroot (2019)
Verrucaria macrostoma Dufour ex DC.	sax	M	–	–	Sipman & Aptroot (2019)
Verrucaria muralis Ach.	sax	M	–	–	Sipman & Aptroot (2019)
Verrucaria murina Leight.	sax	M	–	–	Sipman & Aptroot (2019)
Verrucaria nigrescens Pers.	sax	B, M	yes	–	Sipman & Aptroot (2019)
Xanthoparmelia pulloides (Essl.) O. Blanco, A. Crespo, Elix, D. Hawksw. & Lumbsch	sax, B, M	yes	–	Sipman & Aptroot (2019)	
Xanthoparmelia tinctina (Maheu & A. Gillet) Hale Xanthoparmelia versuculifera (Nyl.) O. Blanco, A. Crespo, Elix, D. Hawksw. & Lumbsch	sax, B, M	yes	–	Sipman & Aptroot (2019)	

recognition of the shade forms relies on the black pycnidium ostioles and thick septa. The tropical species C. leptozona may be closer to I. serusiauxii because it shares the black pycnidia, but that species is saxicolous, its discs turn black, and its spores have shorter septa about half as thick as spore length. Unfortunately, no ITS sequence of this species was available in Genbank.

The only other Ikaeria species, I. aurantiellina, shares the black pycnidia and thick spore septa (spores 12–14 × 7–8 μm, septa ~6–8 μm thick, ratio of septum width/ spore length 0.5–0.67), and can be distinguished easily by the ‘biatorine’ apothecia (Giralt et al. 1992). However, a closer look shows that the apothecia of the two species are anatomically indistinguishable except for the somewhat shorter ascospores in I. aurantiellina. Exter-
nally there is a difference in apothecium margin color. In I. aurantiellina the margin is deep yellow to orange, slightly paler at the disc, reflecting the constant presence of anthraquinones. This gives it a biatorine appearance, but anatomically the margin contains numerous algae. In I. serusiauxii the margin is greenish grey, with more or less black pigment, and it lacks anthraquinones. This gives the apothecia a lecanorine appearance, especially when the black pigment is scarce.

The synonymy of I. aurantiellina (as Caloplaca aurantiellina) with C. aegatica was first suggested by Boom & Etayo (2006), who admitted that the original description of C. aurantiellina is fairly different. Apparently they did not study any type material, so the synonymy may need revision.

Kondratyuk et al. (2017) mentioned two genera closely related to Ikaeria or having a similar basal root: Yoshimuria and Fominiella. The first genus is included in Figure 1, where it shows up in the Caloplacoideae. Thus it seems unrelated to our new Ikaeria species. The second contains two species: F. skii and F. tenerifensis. The ITS sequence of F. skii shows an affinity with the genus Athallia, as Kondratyuk et al. (2017) admit. In ourFigure 1 the species is positioned accordingly and shows no close relation with Ikaeria. For the second species, F. tenerifensis, no ITS sequence is available. The description and illustration of F. tenerifensis suggest that it differs from I. serusiauxii by the absence of black pigment in the prothallus, apothecium margins and pycnidium ostioles, and by the shorter ascospore septa, about half of spore length. The illustration presented in Kondratyuk et al. (2018, p. 179, Fig. 20) also suggests a different species.

Specimens examined (Ikaeria serusiauxii). PORTUGAL. Madeira Islands, Porto Santo: E part, SW side of Pico Juliana, saddle with Pico do Facho; 350 m; 33°5.3′N, 16°19.4′W; Pinus and Cupressus plantations on abandoned fields with stone walls (113). On twigs, with Clidostomum griffithii, Rinodina pruinella, Ikaeria aurantiellina; 2 March 2016; H. Sipman 62957 (B 60 0200914). id., E part, Pico do Castelo, summit area; ~400 m; 33°4.8′N, 16°20.0′W; on Cupressus on S side towards parking place; 28 Feb. 2016; H. Sipman 62798 (MADJ). ITS: MN586958; LSU: MN586913; SSU: MN586907; id., E part, Pico do Castelo, summit area; ~400 m; 33°4.8′N, 16°20.0′W; epiphytic on S-slope; 28 Feb. 2016; H. Sipman 62802 (B 60 0200759). ITS: MN586959; LSU: MN586914; SSU: MN586908; id., E part, SW side of Pico Juliana, saddle with Pico do Facho; 350 m; 33°5.3′N, 16°19.4′W; Pinus and Cupressus plantations on abandoned fields with stone walls (113), on twigs, with Clidostomum griffithii, Rinodina pruinella; 2 March 2016; mixed in H. Sipman 62957 (B 60 0200914). LSU: MN586915; SSU: MN586909; Madeira: along road near Portela; 575 m; 32°44.8′N, 16°49.6′W; on Cedrus tree; 15 Apr. 2001; F. Schumm 13606 (B 60 0171731). id., Südsüdöstlich von Portela; 500 m; epiphytisch an Malus sp., trocken-warmer Standort; 5 Oct. 1993, Kirschbaum). Algarve: W of Lagos, road Vale de Boi to Barão de San Miquel, 25 m; 37°05.9′N, 8°48.0′W; on Ficus in orchard with Ficus and Prunus dulcis; 21 July 1993, P. van den Boom 214565 (herb. van den Boom). id., 14 km WSW of Lagos, along road to Salema, 50 m; 37°04.4′N, 16°49.6′W; on Ceratonia on SE slope with Ficus, Prunus dulcis and Ceratonia; 23 July 1993, P. van den Boom 14674 (herb. van den Boom), Estremadura: 25 km W of Setubal, area of Aldeia do Méco, 50 m; on Ficus carica in meadow near camping; 12 Aug. 1987, P. van den Boom
6607 (herb. van den Boom). SPAIN. Canary Islands, Fuerteventura: 7.5 km SSW of Pájara, SW of Fayagua, Degollada del Viento, near viewpoint, 420 m; 28°17.4′N, 14°09.2′W; on Lecanora on slope with volcanic outcrops and shrubs; 3 March 2001, P. & B. van den Boom 26124 (herb. van den Boom). El Hierro: W of Sabinosa, along HI-500 road, W of Montaña del Escobar, 260 m; 27°45.20′N, 018°08.50′W; on Juniperos on W slope, on field with volcanic outcrops, shrubs and some dead old Juniperus turbinata ssp. canariensis trees; 27 March 2009, P. & B. van den Boom 42177 (herb. van den Boom).

Specimens examined (Ikaeria aurantiellina). PORTUGAL. Madeira Islands, Porto Santo: E part, SW side of Pico Juliana, saddle with Pico do Facho; 350 m; 33°5′3′′N, 16°19′4′′W; Pinus and Cupressus plantations on abandoned fields with stone walls (113), on twigs, with Clistostomum griffithii, Rinodina pruinella, Ikaeria serusiauxii; 2 March 2016; mixed in H. Sipman 62957 (B 60 0200914). ITS: MN86956; LSU: MN86911; SSU: MN86905. id., E part, lower slopes N of Pico do Facho; ~350 m; 33°05′2′′N, 16°19′3′′W: epiphytes on fallen Pinus trees on slope; 2 March 2016; H. Sipman 62969a (B 60 0200983). ITS: MN86957; LSU: MN86912; SSU: MN86906.

Acknowledgements

The participants in the fieldwork on Porto Santo, Laurens B. Sparrius, Israel Pérez-Vargas, Paula Matos, Alice Gerlach and Maike Vervoort, are gratefully acknowledged for pleasant and effective cooperation. Sergio Perez-Ortega (Madrid, Spain) kindly arranged the permits. Access to the study area and permission to collect lichen specimens was granted by Parque Natural da Madeira (permit no. 1/PNM/2016). Pieter van den Boom (Son, The Netherlands) kindly provided additional specimens from his valuable herbarium and gave useful suggestions about identification. Arsen Gasparyan (Yerevan, Armenia) kindly helped with the DNA studies. Jan Vondrák (Průhonice, Czech Republic) gave valuable suggestions for improvement of the manuscript.

References

Arup, U., Saechting, U. & Frödén, P. 2013. A new taxonomy of the family Teloschistaceae. Nordic Journal of Botany 31: 016–083.

Carvalho, P., Figueira, R. & Jones, M. P. 2008. Os líquenes e fungos lixênicos (Fungi) dos arquipélagos da Madeira e Selvagens In: Borges, P. A. V., Abreu, C., Aguilar, A. M. F., Carvalho, P., Fontinha, S., Jardim, R., Melo, I., Oliveira, P., Sequeira, M. M., Sérgio, C., Serrano, A. R. M., Sim-Sim, M. & Vieira, P., Listagem dos fungos, florais e fauna terrestres dos arquipélagos da Madeira e Selvagens. I. Chorologisch-Vereinbarungen. Bulletin de la Société Botanique de France 127: 137–184.

Carvalho, P., Figueira, R. & Jones, M. P. 2008. Os líquenes e fungos lixênicos (Fungi) dos arquipélagos da Madeira e Selvagens In: Borges, P. A. V., Abreu, C., Aguilar, A. M. F., Carvalho, P., Fontinha, S., Jardim, R., Melo, I., Oliveira, P., Sequeira, M. M., Sérgio, C., Serrano, A. R. M., Sim-Sim, M. & Vieira, P., Listagem dos fungos, florais e fauna terrestres dos arquipélagos da Madeira e Selvagens. I. Chorologisch-Vereinbarungen. Bulletin de la Société Botanique de France 127: 137–184.

References

Fletcher, A. & Laundon, J. R. 2009. Caloploca. In: Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W. & Wolskey, P. A. (eds), The lichens of Great Britain and Ireland, pp. 245–273. The British Lichen Society, Department of Botany, The Natural History Museum, London.

Follmann, G. 1990. Zur Kenntnis der Flechtenflora und Flechtenvegetation von Madeira und den umliegenden Inseln. I. Chorologisch-soziologischer Abriss. Courier Forschungsinstitut Senckenberg 129: 91–102.

Giralt, M., Nimis, P. L. & Poelt, J. 1992. Studien über den Formenkreis von Caloploca flavorubescens in Europa. Cryptogamie, Bryologie, Lichénologie 13: 261–273.

Haugan, R. 1992. Anzia centrifuga, a new lichen species from Porto Santo, Madeira. Mycotaxon 44: 45–50.

Hoang, D. T., Chernomor, O., Haeseler, A. von, Minh, B. Q. & Vinh, L. S. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522.

Kondratyuk, S. Y., Lokös, L., Upreti, D. K., Nayaka, S., Mishra, G. K., Ravera, S., Jeong, M.-H., Jang, S.-H., Park, J. S. & Hur, J.-S. 2017. New monophyletic branches of the Teloschistaceae (lichen-forming ascomycota) proved by three gene phylogeny. Acta Botanica Hungarica 59: 71–136.

Kondratyuk, S. Y., Lokös, L., Balda, J. P., Farkas, E., Upreti, D. K., Thell, A., Woo, J.-J., Oh, S.-O. & Hur, J.-S. 2018. New and noteworthy lichen-forming and lichenicolous fungi. Acta Botanica Hungarica 60: 115–184.

Krog, H. 1990. New Ramalina species from Porto Santo, Madeira. The Lichenologist 22: 241–247.

Krog, H. & Østhausen, H. 1980. Two new Ramalina species from Porto Santo, the Madeira Islands. Norwegian Journal of Botany 27: 185–188.

Kukwa, M., Schmitt, I. & Ertz, D. 2018. Ochrolechia incarnata comb. nov. (Lecanoromycetes, Ascomycota), a distinct species of the O. parella group from Europe and Macaronesia. – Phytotaxa 371(2): 119–126.

Meyer, B. 2002. Die Flechtengattung Clauzaudia. Sendtnera 8: 85–154.

Nguyen, L.-T., Schmidt, H. A., Haeseler, A. von, & B. Q. Minh, B. Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32: 268–274.

Pitard, J. & Harmand, J. 1911. Contribution à l’étude des lichens des îles Canaries. Bulletin de la Société Botanique de France 58, Mém. 22: 1–72.

Séroux, E., van den Boom, P. & Ertz, D. 2010. A two-gene phylogeny shows the lichen genus Niebla (Lecanorales) is endemic to the New World and does not occur in Macaronesia nor in the Mediterranean basin. Fungal Biology 114: 528–537.

Sipman, H. & Aptroot, A. 2019. Pictures of PORTO SANTO lichens and lichenicolous fungi. https://archive.bgfh.org/sipman/Zschacka/PontoSanto/genuslist.htm [14 Aug. 2019]

Šoun, J., Vondrák, J., Sechting, U., Hrouzek, P., Khodosovtsev, A. & Arup, U. 2011. Taxonomy and phylogeny of the Caloploca cerina group in Europe. The Lichenologist 43: 113–135.

Sparrius, L. B., Aptroot, A., Sipman, H. J. M., Pérez-Vargas, I., Matos, P., Gerlach, A. & Vervoort, M. 2017. Estimating the population size of the endemic lichens Anzia centrifuga (Parmelaceae) and Ramalina species (Ramalinaceae) on Porto Santo (Madeira Archipelago). The Bryologist 120: 293–301.

Teher, A., Dahlkild, A., Eldenас, P. & Feige, G. B. 2004. The phylogeny and taxonomy of Macaronesian, European and Mediterranean Roccella (Roccellaceae, Arthoniales). Symbolae Botanicae Upsalienses 34: 405–428.

Teher, A., Irestedt, M. & Arup, U. 2011. Taxonomy and phylogeny of the Caloploca cerina group in Europe. The Lichenologist 43: 113–135.