Supplementary Materials for

Extreme weather events and the politics of climate change attribution

Zuhad Hai and Rebecca L. Perlman

Corresponding author: Rebecca L. Perlman, rlperlma@princeton.edu

Sci. Adv. 8, eabo2190 (2022)
DOI: 10.1126/sciadv.abo2190

This PDF file includes:

Sections S1 to S6
Figs. S1 to S11
Tables S1 to S52
References
Appendix S1: Survey questionnaires

S1.1 First wave
2020 was the worst year on record for wildfires in the Western United States. In Oregon, wildfires burned more than one million acres and killed 11 people, while in California, wildfires consumed several million acres and killed over 30 people. The 2020 wildfires also prompted mass evacuations. Thousands of residents across the West Coast have now lost their homes to the fires, and many of these individuals are still struggling to rebuild.

The following text is based on a real statement made during the wildfires by a politician in one of the impacted states. Please read the politician's statement carefully. After you have read it, we will ask for your opinions.

We are no stranger to wildfires in our great state, but the wildfires this year have been particularly severe[, partially as a result of climate change]. We need to work together to fight these fires now, support our communities in the aftermath, and later work to prevent future devastation[from climate change]. In meeting the immediate challenge of the fires that are already burning, we are enormously grateful to the federal firefighters who are risking their lives to save life and property, and to the disaster response officials who are working day and night to assist families who have lost everything. But, we can do more.

After reading the statement by the politician, how confident are you that the politician:

	Extremely confident	Somewhat confident	Not confident at all
will work to prevent future wildfires	○	○	○
has a good understanding of wildfires and their causes	○	○	○
will be an effective advocate for federal disaster relief	○	○	○
Based on the politician's statement, how sympathetic or unsympathetic did the politician seem towards those impacted?

- Extremely sympathetic
- Somewhat sympathetic
- Neither sympathetic nor unsympathetic
- Somewhat unsympathetic
- Extremely unsympathetic

The government is considering imposing an energy tax to protect against future wildfires and other natural disasters. This tax is projected to increase the average American household's energy bill by 10-20%. How likely would you be to support this new tax?

- Extremely likely
- Somewhat likely
- Neither likely nor unlikely
- Somewhat unlikely
- Extremely unlikely

Please rank the following actors based on who you believe should bear the most responsibility to fund efforts to prevent future wildfires. Rank as 1 the actor that you think should bear the most responsibility and as 3 the actor you think should bear the least responsibility.

1. Local/state government
2. The federal government
3. The international community
Have you ever lost a home or been forced to evacuate due to wildfires?

- Yes
- No

Do you know someone who has lost a home or been forced to evacuate due to wildfires?

- Yes
- No
- Not sure
You just answered several questions about a natural disaster. What type of natural disaster was it?

- Earthquake
- Hurricane
- Flood
- Wildfire
- Draught

Recently, you may have noticed that climate change has been getting some attention in the news. Climate change refers to the idea that the world’s average temperature has been increasing over the past 150 years, may be increasing more in the future, and that the world’s climate may change as a result. **How confident are you in governments' ability to prevent the worst consequences of climate change?**

- Extremely confident
- Somewhat confident
- Not confident at all
- I don't believe climate change is happening
How often do you discuss climate change with your friends and family?

- At least once a week
- At least once a month
- Several times a year
- Once a year or less often
- Never

How often do you hear or read about climate change in the media?

- At least once a week
- At least once a month
- Several times a year
- Once a year or less often
- Never

End of Block: Climate Views

Start of Block: Closing

Did you experience any problems while completing this survey?

__

Thank you for your time. Do you have any additional comments about the survey?

__
Generally speaking, do you think of yourself as a ...

- Republican
- Democrat
- Independent
- Another party, please specify
- No preference

Would you call yourself a ...

- Strong Republican
- Not very strong Republican

Would you call yourself a ...

- Strong Democrat
- Not very strong Democrat
Do you think of yourself as closer to the ...

- Republican Party
- Democratic Party
- Neither party

End of Block: Politics

Start of Block: Demographics

Finally, we would like to ask a few questions about your background

What is your gender?

- Male
- Female
- Other, please specify __
What racial or ethnic group best describes you?

- White
- Black or African American
- Hispanic or Latino
- Native American
- Asian or Asian American
- Middle Eastern
- Mixed Race
- Some other race, please specify

What is the highest level of school you have completed?

- Did not graduate from high school
- High school graduate
- Some college, but no degree (yet)
- 2-year college degree
- 4-year college degree
- Postgraduate degree (MA, MBA, MD, JD, PhD, etc)

In what state do you currently reside?

▼ Alabama ... US territory not listed
Thinking back to the year prior to the pandemic (2019), what was your family's annual income?

- Less than $10,000
- $10,000 - $14,999
- $15,000 - $19,999
- $20,000 - $24,999
- $25,000 - $29,999
- $30,000 - $39,999
- $40,000 - $49,999
- $50,000 - $59,999
- $60,000 - $69,999
- $70,000 - $79,999
- $80,000 - $89,999
- $90,000 - $99,999
- $100,000 - $119,999
- $120,000 - $149,999
- $150,000 or more

End of Block: Demographics
S1.2 Second wave
2020 was the worst year on record for wildfires in the Western United States. In Oregon, wildfires burned more than one million acres and killed 11 people, while in California, wildfires consumed several million acres and killed over 30 people. The 2020 wildfires also prompted mass evacuations. Thousands of residents across the West Coast have now lost their homes to the fires, and many of these individuals are still struggling to rebuild.

The following text is based on a real statement made during the wildfires by a [Republican/Democratic] politician in one of the impacted states. Please read the politician's statement carefully. After you have read it, we will ask for your opinions.

We are no stranger to wildfires in our great state, but the wildfires this year have been particularly severe[, partially as a result of climate change]. We need to work together to fight these fires now, support our communities in the aftermath, and later work to prevent future devastation[from climate change]. In meeting the immediate challenge of the fires that are already burning, we are enormously grateful to the federal firefighters who are risking their lives to save life and property, and to the disaster response officials who are risking their lives to save life and property, and to the disaster response officials who are working day and night to assist families who have lost everything. But, we can do more.

After reading the statement by the politician, how confident are you that the politician:

	Extremely confident	Somewhat confident	Not confident at all
will work to prevent future wildfires	○	○	○
has a good understanding of wildfires and their causes	○	○	○
will be an effective advocate for federal disaster relief	○	○	○
Based on the politician’s statement, how sympathetic or unsympathetic did the politician seem towards those impacted?

- Extremely sympathetic
- Somewhat sympathetic
- Neither sympathetic nor unsympathetic
- Somewhat unsympathetic
- Extremely unsympathetic

The government is considering imposing an energy tax to protect against future wildfires and other natural disasters. This tax is projected to increase the average American household’s energy bill by 10-20%. How likely would you be to support this new tax?

- Extremely likely
- Somewhat likely
- Neither likely nor unlikely
- Somewhat unlikely
- Extremely unlikely

Thinking about the next decade, do you think wildfires will be more or less common in the United States than during the past decade?

- More common
- Neither more nor less common
- Less common
Please rank the following actors based on **who you believe should bear the most responsibility to fund efforts to prevent future wildfires**. Rank as 1 the actor that you think should bear the most responsibility and as 3 the actor you think should bear the least responsibility.

- [] Local/state government
- [] The federal government
- [] The international community

Have you ever lost a home or been forced to evacuate due to wildfires?

- [] Yes
- [] No

Do you know someone who has lost a home or been forced to evacuate due to wildfires?

- [] Yes
- [] No
- [] Not sure
You just answered several questions about a natural disaster. What type of natural disaster was it?

- Earthquake
- Hurricane
- Flood
- Wildfire
- Drought

We previously asked if you would support a tax to protect against wildfires and other natural disasters. Imagine that, instead, the government was considering a tax to reduce the emissions that cause climate change. This alternative tax would similarly increase the average American household's energy bill by 10-20%. How likely would you be to support such a tax?

- Extremely likely
- Somewhat likely
- Neither likely nor unlikely
- Somewhat unlikely
- Extremely unlikely
There are numerous steps you can take in your daily life to help reduce the emissions that cause climate change. How likely would you be to take the following actions?

Action	Extremely likely	Somewhat likely	Neither likely nor unlikely	Somewhat unlikely	Extremely unlikely
Use public transport or bike to work	○	○	○	○	○
Reduce home energy use	○	○	○	○	○
Take fewer flights	○	○	○	○	○
Buy carbon offsets	○	○	○	○	○
Consider purchasing an electric vehicle	○	○	○	○	○

End of Block: climate preferences

Start of Block: Climate Views

Recently, you may have noticed that climate change has been getting some attention in the news. Climate change refers to the idea that the world’s average temperature has been increasing over the past 150 years, may be increasing more in the future, and that the world’s climate may change as a result. How confident are you in governments' ability to prevent the worst consequences of climate change?

○ Extremely confident

○ Somewhat confident

○ Not confident at all

○ I don't believe climate change is happening
How often do you discuss climate change with your friends and family?

- At least once a week
- At least once a month
- Several times a year
- Once a year or less often
- Never

How often do you hear or read about climate change in the media?

- At least once a week
- At least once a month
- Several times a year
- Once a year or less often
- Never

End of Block: Climate Views

Start of Block: Closing

Did you experience any problems while completing this survey?

__

Thank you for your time. Do you have any additional comments about the survey?

__
After you have finished typing comments, click the button below to complete the survey and submit your answers.

End of Block: Closing
Appendix S2: Additional details on survey design

When designing a survey experiment, there is inevitably a tension between providing more or less detail. Though recent work suggests that the tradeoffs here are less stark than previous scholars have feared (39), here we briefly provide some additional information on the reasoning behind certain design choices in this regard. First, regarding details of the politician making the statement about wildfires, though the second wave specified the politician’s political party, in neither wave did we attempt to name an individual, nor did we specify the specific office that the politician held. On the first decision, not to name an individual, this was done because real politicians frequently elicit strong reactions from voters, meaning that any effect would be difficult to disentangle from the individual. Likewise, we worried that if we noted, for example, that the speaker was a governor or senator, because the wildfires of 2020 only occurred in a handful of states, some respondents might automatically assume the speaker to be a specific person, such as Gavin Newsom or Dianne Feinstein, thereby introducing similar concerns to those involved in naming the person. Although the lack of specificity theoretically left the door open on whether the speaker was a national politician or more local one, this should not materially change respondents’ interpretation of the politician’s comments. After all, both members of the U.S. Congress and state legislatures, much like governors and mayors, have obligations to their local constituents in the wake of disasters. Likewise, even if national politicians have more direct influence over U.S. climate policy, state politicians can and often have taken the lead in climate initiatives, initiatives which have then influenced national policies (40). Moreover, to the extent that climate change increases the future severity of wildfires, a reasonable respondent might conclude that either a national or local politician who mentions climate change will be better at anticipating and appropriately preparing for these events down the road. For all of these reasons, one could imagine similar reasons that both local and national politicians might want to acknowledge or avoid acknowledging climate change in the wake of a disaster.

One other design decision that is important to discuss was the decision to leave open
in the politician’s statement the proposed policy action. As noted in the paper, this was partially done to reflect how statements of real politicians look. Yet an even more important reason for this decision was that we view respondents’ assumptions around how politicians will address extreme weather events, dependent on their beliefs about those events’ source, as part of the treatment. If a politician believes fires are being exacerbated by climate change, a reasonable response might not only include pressure for state or federal efforts on climate change, but it might also suggest this problem is likely to get worse in the future, meaning more should be spent on fire preparedness. If the politician doesn’t mention climate change, they not only are perhaps less likely to invest in solving climate change, but a respondent might also reasonably conclude they are less likely to anticipate that fires will become more severe in the future, meaning they might under-invest. The implications of these assumptions (negative or positive) for how politicians are perceived are a central part of what we want to test. Furthermore, if we were to have the politician state intended political actions, we would either have to make those actions the same across treatment and control or we would have to vary them. The first option would be unrealistic and/or attenuate the treatment, since likely actions should vary depending on whether the speaker thinks climate change is the culprit. The second option would undermine the clean execution of the survey design.

Appendix S3: Press release data

S3.1 Scraping congressional press releases

We used ProPublica’s Congressional Press Release database to construct our dataset on extreme weather-related press releases. The database provides a comprehensive set of links to press releases by members of Congress but does not itself provide the text of the press releases. To obtain the text, we first queried the links and then scraped the text of all available congressional press releases from 2009 to 2020 for all members of Congress (41). We then subset this collection to press releases that dealt specifically with extreme weather-related events, as indicated by their title. We did this by searching the title for the presence
of the terms storm, flood, extreme weather, weather event, heat wave, hurricane, tornado, fire, wildfire, or natural disaster. Press releases for which we could not find the text online were removed (Unfortunately, a substantial percentage (35%) of press releases issued are no longer on the internet, and therefore their content is not able to be scraped. We assume that the missingness of press releases is systematically unrelated to whether or not they linked extreme weather to climate change). This process yielded 4,885 press releases that dealt with extreme weather related events.

We next captured the presence of climate change related terms in the body of these press releases as a measure of climate change attribution. We coded a press release as mentioning climate change if it contained any of the following two-word phrases: warming planet, climate crisis, climate change, climatic change, global warming, or climate emergency.

Below are three fairly typical examples of press releases that explicitly mention climate change (we have added italics for emphasis). As can be seen, climate change references come in different forms and serve different purposes. While these references are often adapted to the topic of the press release, they are usually not highly detailed, a feature we tried to mirror in our survey.

In this first press release, we see the reference to climate change is used to emphasize the need for more disaster preparedness, while also signaling the speaker’s understanding of the scope of the problem:

Feinstein Announces $2.5 Billion For California Flood Control Projects:

“Senator Dianne Feinstein (D-Calif.) today announced that California is receiving $2.5 billion dollars for construction of seven of the highest priority flood control projects and two flood control studies. The construction projects are expected to be completed in three to five years. “California communities face significant risk of flooding, which will only grow as climate change leads to sea level rise and ever more unpredictable storms. It’s essential that we upgrade the state’s flood control infrastructure and these $2.5 billion in federal funds will provide significant progress toward that goal,” said Senator Feinstein. As ranking
member of the energy and water appropriations subcommittee, Feinstein secured $4.5 billion for flood control projects in a recent bill to fund disaster relief and preparedness, with more than half of funds awarded to California projects.”

In the second press release, we see the reference to climate change is a bit more oblique. Though there is an implication here that climate change is related to sea level rise and the recent storm, we also see a shying away from directly and unambiguously linking the two:

** Warner, Kaine, Taylor Announce Nearly $4.6 Million In Hurricane Matthew Disaster Relief:**

“Today, U.S. senators Mark R. Warner and Tim Kaine and U.S. representative Scott Taylor announced that the city of Virginia Beach will receive $4,588,677 from the Federal Emergency Management Agency (FEMA) to alleviate the financial burden of debris removal following Hurricane Matthew. Hurricane Matthew brought torrential rain and winds to Hampton roads in October 2016, flooding about 1,400 properties across the region. “Hurricane Matthew dealt a blow to Virginia Beach, and we are grateful that FEMA will help alleviate the cost of debris removal for the local community,” Warner, Kaine and Taylor said. “we’re proud to announce today’s disaster relief funding, and we will work together to address the threats of sea level rise, climate change, and increasingly powerful storms that impact Hampton roads.” Today’s funding is authorized under section 407 of the Robert t. Stafford act.”

Finally, in this last press release, the climate change reference is used as a weapon to signal that the opposing party is out of touch with science (and reality):

Rep. Doggett Reaction to Republican Refusal to Postpone Thursdays Tax Vote Despite Evacuation of Over One Million for Hurricane Florence: “U.S. Congressman Lloyd Doggett (D-TX), a senior member of the House Ways & Means Committee, offered the below comment on the Republican refusal to postpone the tax vote as Hurricane Florence approaches: “while we
knew they didn’t believe in climate change, now House Republicans apparently don’t even believe in hurricanes. Is questioning gravity next? No natural disaster is big enough to slow republicans from another human-made disaster—borrowing hundreds of billions more to lock in tax breaks for the wealthiest few.”

S3.2 Press releases broken down by disaster

To offer a better sense of which types of extreme weather events lead to climate attribution, we also broke down the press releases by the type of disaster mentioned in the title. This is useful in the sense that it is possible that politicians are far more likely to attribute certain extreme weather events than others to climate change, and if those types of extreme weather events make up only a small portion of press releases, we might be understating the increase in attribution. Figure S1 shows that climate attribution remains rare across all different types of extreme weather events, though wildfires, hurricanes, and tornadoes seem to engender a higher likelihood of climate change attribution than the remaining categories. One potential exception to the low level of attribution was during the height of the 2020 wildfire season, during which around 29% of wildfire-related press releases mentioned climate change, an increase that may partially reflect the fact that many of the impacted states and regions lean strongly Democratic.
Figure S1: Climate Change Attribution by Type of Extreme Weather

Notes: This figure includes Democrats, Republicans and Independents. We exclude heatwaves from the plot since there were too few heatwave related press releases in our data.

Appendix S4: Study summary statistics and demographics

S4.1 Summary statistics for demographics

Table S1 presents summary statistics for respondent demographic variables that we use in our main results. Both survey waves are included, and we can see that the two samples are very similar in their demographic composition. Note that in both samples, a small
percentage of respondents do not report their household income and/or their proximity to wildfires, as these are optional questions. Throughout all analyses, we code as Republican respondents who identify as ‘Strong Republican’, ‘Not very strong Republican’, ‘Leaning Republican’, or ‘Independent Republican’. Democrats are defined analogously. Independents are respondents who identify as ‘Independent’ or as ‘Neither leaning Democrat nor Republican’.

Table S1: Summary Statistics for Demographics Variables

Variable	First Wave		Second Wave		
		NotNA Mean	Sd	NotNA Mean	Sd
Republican	3103	0.365	0.482	6071	0.338
Democrat	3103	0.479	0.5	6071	0.418
Independent	3103	0.156	0.363	6071	0.244
Female	3103	0.511	0.5	6071	0.504
White	3103	0.718	0.45	6071	0.73
Attended College	3103	0.701	0.458	6071	0.671
Lost Home Due to Wildfires	3100	0.074	0.262	6063	0.087
Know Someone Who Lost Home Due	3102	0.242	0.429	6066	0.287
Household Income	2935	5808			
... Less than $14,999	413	14.1%	1155	19.9%	
... $15,000 to $19,999	171	5.8%	367	6.3%	
... $20,000 to $24,999	194	6.6%	403	6.9%	
... $25,000 to $29,999	177	6%	345	5.9%	
... $30,000 to $34,999	167	5.7%	347	6%	
... $35,000 to $39,999	164	5.6%	280	4.8%	
... $40,000 to $44,999	126	4.3%	248	4.3%	
... $45,000 to $49,999	140	4.8%	266	4.6%	
... $50,000 to $54,999	184	6.3%	302	5.2%	
... $55,000 to $59,999	86	2.9%	182	3.1%	
... $60,000 to $64,999	95	3.2%	150	2.6%	
... $65,000 to $69,999	89	3%	127	2.2%	
... $70,000 to $74,999	94	3.2%	163	2.8%	
... $75,000 to $79,999	100	3.4%	178	3.1%	
... $80,000 to $84,999	63	2.1%	105	1.8%	
... $85,000 to $89,999	57	1.9%	83	1.4%	
... $90,000 to $94,999	37	1.3%	82	1.4%	
... $95,000 to $99,999	60	2%	120	2.1%	
... $100,000 to $124,999	168	5.7%	323	5.6%	
... $125,000 to $149,999	142	4.8%	205	3.3%	
... $150,000 to $174,999	78	2.7%	142	2.4%	
... $175,000 to $199,999	37	1.3%	76	1.3%	
... $200,000 to $249,999	44	1.5%	75	1.3%	
... $250,000 and above	49	1.7%	84	1.4%	

S4.2 Summary statistics for outcome variables in second wave

Table S2 presents the summary statistics for our outcome variables by major party for respondents in the control condition for the second wave. This gives us a sense of the baseline
(pre-treatment) differences between respondents for the second wave, as Table 1 in the main body of the paper does for the first wave. As before, we can see that on average, Democrats are more likely to express confidence in the politician’s understanding of wildfires, their ability to prevent future wildfires, and that they will be an effective advocate for federal disaster relief. Similarly, they are more likely to see the politician as sympathetic towards the victims of the wildfires, and to express support for the energy tax.

Table S2: Summary Statistics for Outcome Variables in the Control Condition in Second Wave

variable	Democrat N	Democrat Mean	Democrat SD	Republican N	Republican Mean	Republican SD
How confident are you that the politician:						
(0 = “Not Confident At All”, 2 = “Extremely Confident”)						
has a good understanding of wildfires and their causes?	1304	1.199	0.682	1027	1.043	0.728
will work to prevent future wildfires?	1304	1.256	0.656	1027	1.094	0.705
will be an effective advocate for federal disaster relief?	1304	1.300	0.637	1027	1.152	0.687
How sympathetic or unsympathetic did the politician seem towards those impacted?						
(0 = “Extremely Unsympathetic”, 4 = “Extremely Sympathetic”)	1304	3.087	0.873	1027	2.956	0.941
How likely would you be to support the new tax?						
(0 = “Extremely Unlikely”, 4 = “Extremely Likely”)	1304	2.288	1.212	1027	1.346	1.320

Appendix S5: First wave additional results and robustness of results

S5.1 Results about levels of government responsible

One alternative explanation for our results about support for a tax is that the treatment makes respondents more likely to think of wildfires as an international, rather than a national, local, or state issue. In other words, priming on climate change could elicit a free-riding effect, whereby respondents feel less individual responsibility for helping future victims. To assess this possibility, both versions of our survey asked respondents to rank which actors they thought should bear the most responsibility to fund efforts to prevent future wildfires: local/state government, the federal government, or the international community. If the treatment caused respondents to view the international community as substantially more
responsible, this could help explain respondents’ decreased willingness to support a tax as well.

Figure S2 presents the estimated treatment effect on respondents’ rankings of levels of government by their responsibility to fund efforts to prevent future wildfires, for our original survey. Perhaps surprisingly, here we see Democrats and Republicans uniformly respond to treatment by allocating responsibility away from the local and state government, and toward the Federal government. At the same time, respondents do not appear to be consistently allocating responsibility towards the international community, and given that these results do not replicate to the second wave (as shown in Supplementary Materials Section S6.4.2), we are wary about drawing strong conclusions about this question. At most we can say that we fail to find evidence that our results are driven by respondents allocating responsibility for wildfire prevention and relief to the international community, and it generally seems unlikely that reduced support for the wildfire tax is driven by a free-riding effect.
S5.2 Main results with ordered logit

This section presents the treatment effects of the survey experiment from the first wave, estimated using ordered logit instead of OLS. The coefficients here can be interpreted as estimated changes in the log-odds of a respondent selecting a higher value of the dependent variable. As we can see, from the figures below, all coefficients and confidence intervals are in the same direction and order of magnitude as in our OLS analysis, leaving our substantive conclusions robust to our choice of estimation strategy.
Figure S3: Ordered Logit: Treatment Effect on Confidence in Politician

Notes: This figure presents the effect of our treatment on the full sample and by subgroups of party identification. Each coefficient represents the estimated change in the log-odds of the respondent choosing a higher level of the dependent variable. The dependent variables for each panel are listed above the panel. All three variables are on a three-point scale ranging from 0 (“Not confident at all”) to 2 (“Extremely confident”). All regressions control for respondent gender, income, race and level of education.
Figure S4: Ordered Logit: Treatment Effect on Perception of Politician’s Sympathy
Notes: This figure presents the effect of our treatment on the full sample and by subgroups of party identification. Each coefficient represents the estimated change in the log-odds of the respondent choosing a higher level of the dependent variable. The dependent variable is the respondents’ perception of how sympathetic the politician seemed towards the victims of the wildfires. So a value of 0 denotes ‘extremely unsympathetic’, while a value of 4 denotes ‘extremely sympathetic’. All regressions control for respondent gender, income, race and level of education.

Figure S5: Ordered Logit: Treatment Effect on Support for Energy Tax
Notes: This figure presents the effect of our treatment on the full sample and by subgroups of party identification. Each coefficient represents the estimated change in the log-odds of the respondent choosing a higher level of the dependent variable. The dependent variable is the respondents’ likelihood of supporting the tax. So a value of 4 denotes ‘extremely likely’, while a value of 0 denotes ‘extremely unlikely’. All regressions control for respondent gender, income, race and level of education.

S5.3 Main results - tabular

This section presents the main regression results in the body of the paper from the first wave, in tabular format with more details such as the sample size. Here treat denotes the
treatment variable of interest, while \textit{female, white,} and \textit{college} are dummy variables for respondent gender, race, and whether respondents have attended or completed college or higher level of education. Regressions also include fixed effects for income level, which is a 24-level variable capturing annual household income from $15,000 or less to $250,000 or more in increments of $5,000.

The first column of each table presents the results pooling respondents of all party identifications. Columns 2-4 estimate the same regression for subsets of respondents identifying as Republicans, Democrats or Independents, respectively.

Table S3: Effect of Treatment on Confidence That Politician Understands Wildfires

Dependent variable:	Pooled	Republicans	Democrats	Independents
treat	-0.001	-0.133***	0.062*	0.094
	(0.026)	(0.044)	(0.036)	(0.069)
female	0.063**	0.130***	-0.043	0.143**
	(0.026)	(0.045)	(0.036)	(0.069)
white	-0.147***	-0.214***	-0.031	-0.119
	(0.030)	(0.070)	(0.038)	(0.074)
college	-0.112***	-0.206***	-0.077*	-0.034
	(0.031)	(0.052)	(0.042)	(0.074)

Observations	2,935	1,078	1,411	446
Adjusted R²	0.011	0.041	-0.002	-0.009
Residual Std. Error	0.706 (df = 2907)	0.714 (df = 1050)	0.661 (df = 1383)	0.700 (df = 418)

\textit{Note:} \ *p<0.1; \ **p<0.05; \ ***p<0.01

Regressions also include fixed effects for income level.
Table S4: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires

	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	−0.028	−0.121***	0.042	−0.024
	(0.025)	(0.043)	(0.035)	(0.066)
female	0.076***	0.145***	−0.020	0.134**
	(0.026)	(0.044)	(0.035)	(0.066)
white	−0.089***	−0.152**	−0.008	−0.010
	(0.029)	(0.068)	(0.037)	(0.071)
college	−0.055*	−0.056	−0.047	−0.087
	(0.030)	(0.051)	(0.041)	(0.071)

Observations 2,935 1,078 1,411 446
R² 0.014 0.047 0.016 0.077
Adjusted R² 0.005 0.022 −0.004 0.018
Residual Std. Error 0.685 (df = 2907) 0.698 (df = 1050) 0.647 (df = 1383) 0.671 (df = 418)

Note: *p<0.1; **p<0.05; ***p<0.01
Regressions also include fixed effects for income level

Table S5: Effect of Treatment on Confidence That Politician Will be an Effective Advocate

	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	−0.005	−0.056	0.041	−0.025
	(0.024)	(0.040)	(0.033)	(0.064)
female	0.080***	0.077*	0.036	0.155**
	(0.024)	(0.040)	(0.033)	(0.064)
white	−0.080***	−0.202***	0.005	0.062
	(0.028)	(0.063)	(0.035)	(0.068)
college	−0.005	−0.078*	0.041	0.006
	(0.028)	(0.047)	(0.039)	(0.068)

Observations 2,935 1,078 1,411 446
R² 0.014 0.046 0.028 0.056
Adjusted R² 0.005 0.022 0.009 −0.005
Residual Std. Error 0.646 (df = 2907) 0.644 (df = 1050) 0.614 (df = 1383) 0.642 (df = 418)

Note: *p<0.1; **p<0.05; ***p<0.01
Regressions also include fixed effects for income level
Table S6: Effect of Treatment on Politician’s Level of Sympathy

	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	-0.079**	-0.178***	-0.004	-0.072
	(0.034)	(0.058)	(0.046)	(0.093)
female	0.130***	0.179***	0.055	0.159*
	(0.034)	(0.059)	(0.046)	(0.094)
white	-0.043	-0.079	0.077	-0.005
	(0.039)	(0.092)	(0.049)	(0.100)
college	-0.004	-0.066	0.050	-0.084
	(0.040)	(0.068)	(0.054)	(0.100)
Observations	2,935	1,078	1,411	446
R²	0.019	0.045	0.032	0.057
Adjusted R²	0.009	0.021	0.013	-0.004
Residual Std. Error	0.918 (df = 2907)	0.942 (df = 1050)	0.848 (df = 1383)	0.949 (df = 418)

Note: *p<0.1; **p<0.05; ***p<0.01

Table S7: Effect of Treatment on Support for Tax

	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	-0.085*	-0.211***	-0.053	-0.009
	(0.049)	(0.078)	(0.066)	(0.116)
female	0.085*	0.120	-0.110*	0.351***
	(0.049)	(0.078)	(0.066)	(0.117)
white	-0.453***	-0.475***	-0.107	-0.370***
	(0.056)	(0.122)	(0.070)	(0.125)
college	-0.114**	-0.181**	-0.029	-0.215*
	(0.057)	(0.091)	(0.078)	(0.125)
Observations	2,930	1,076	1,408	446
R²	0.040	0.078	0.027	0.110
Adjusted R²	0.031	0.055	0.008	0.053
Residual Std. Error	1.308 (df = 2902)	1.254 (df = 1048)	1.218 (df = 1380)	1.184 (df = 418)

Note: *p<0.1; **p<0.05; ***p<0.01

S5.4 Main results without controls

This section presents our main regression results from the first wave without any control variables added. This is equivalent to a simple difference in means between the treatment
and control group. Since the treatment is randomly assigned and the sample size is large, adding control variables should not change the estimated treatment effects but can add precision. The tables below, however, show that even without control variables, we do not lose precision in any of our estimated treatment effects to the extent of making them lose their levels of significance. The magnitudes and directions of all our main results are also preserved when removing controls.

Table S8: Effect of Treatment on Confidence That Politician Understands Wildfires, excluding controls

Dependent variable: has a good understanding of wildfires and their causes?				
Pooled	(1)	(2)	(3)	(4)
treat	−0.003	−0.140**	0.051	0.124*
	(0.026)	(0.043)	(0.034)	(0.064)
Constant	1.161***	1.061***	1.297***	0.973***
	(0.018)	(0.029)	(0.025)	(0.045)

Observations 3,103 1,133 1,487 483
R^2 0.00001 0.009 0.002 0.008
Adjusted R^2 −0.0003 0.008 0.001 0.006
Residual Std. Error 0.711 (df = 3101) 0.726 (df = 1131) 0.661 (df = 1485) 0.701 (df = 481)

Note: *p<0.1; **p<0.05; ***p<0.01
Regressions include no controls or fixed effects

Table S9: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires, excluding controls

Dependent variable: will work to prevent future wildfires?				
Pooled	(1)	(2)	(3)	(4)
treat	−0.022	−0.125***	0.036	0.030
	(0.025)	(0.042)	(0.033)	(0.062)
Constant	1.182***	1.111***	1.293***	1.004***
	(0.017)	(0.028)	(0.024)	(0.045)

Observations 3,103 1,133 1,487 483
R^2 0.0003 0.008 0.001 0.0005
Adjusted R^2 −0.0001 0.007 0.0001 −0.002
Residual Std. Error 0.685 (df = 3101) 0.701 (df = 1131) 0.642 (df = 1485) 0.682 (df = 481)

Note: *p<0.1; **p<0.05; ***p<0.01
Regressions include no controls or fixed effects
Table S10: Effect of Treatment on Confidence That Politician Will be an Effective Advocate, excluding controls

Dependent variable: will be an effective advocate for federal disaster relief?	Pooled	Republicans	Democrats	Independents
treat	(1)	(2)	(3)	(4)
	-0.001	-0.053	0.036	-0.001
	(0.023)	(0.039)	(0.032)	(0.058)
Constant	1.221^{***}	1.126^{***}	1.342^{***}	1.071^{***}
	(0.016)	(0.027)	(0.023)	(0.042)
Observations	3,103	1,133	1,487	483
R2	0.00000	0.002	0.001	0.00000
Adjusted R2	-0.0003	0.001	0.0002	-0.002
Residual Std. Error	0.648 (df = 3101)	0.649 (df = 1131)	0.620 (df = 1485)	0.641 (df = 481)

Note: $^*p<0.1; ^{**}p<0.05; ^{***}p<0.01$
Regressions include no controls or fixed effects

Table S11: Effect of Treatment on Politician’s Level of Sympathy, excluding controls

Dependent variable: How sympathetic did the politician seem?	Pooled	Republicans	Democrats	Independents
treat	(1)	(2)	(3)	(4)
	-0.079^{**}	-0.189^{***}	-0.017	-0.014
	(0.033)	(0.057)	(0.044)	(0.087)
Constant	3.042^{***}	2.974^{***}	3.188^{***}	2.742^{***}
	(0.022)	(0.037)	(0.031)	(0.062)
Observations	3,103	1,133	1,487	483
R2	0.002	0.010	0.0001	0.0001
Adjusted R2	0.002	0.009	-0.001	-0.002
Residual Std. Error	0.923 (df = 3101)	0.948 (df = 1131)	0.853 (df = 1485)	0.956 (df = 481)

Note: $^*p<0.1; ^{**}p<0.05; ^{***}p<0.01$
Regressions include no controls or fixed effects
Table S12: Effect of Treatment on Support for Tax, excluding controls

	Pooled (1)	Republicans (2)	Democrats (3)	Independents (4)
treat	−0.083∗	−0.200***	−0.055	0.014
	(0.047)	(0.076)	(0.063)	(0.109)
Constant	1.894***	1.433***	2.347***	1.618***
	(0.033)	(0.054)	(0.045)	(0.079)
Observations	3,097	1,131	1,483	483
R²	0.001	0.006	0.001	0.00003
Adjusted R²	0.001	0.005	−0.0002	−0.002
Residual Std. Error	1.321 (df = 3095)	1.283 (df = 1129)	1.217 (df = 1481)	1.200 (df = 481)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Regressions include no controls or fixed effects

S5.5 Main results for subset with exposure to wildfires

This section presents our main results but only for the subset of respondents in the first wave who reported either having lost their home due to wildfires or who know someone who has. Since our sample size here is small (N=754), we do not have enough statistical power to estimate the same treatment effects as we have in our main results. Nevertheless, we report the results here for completeness.

As the second columns of each of the tables below show, Republican respondents still react negatively to the politician and to the tax, although our coefficients are considerably nosier than in the full sample. While we are unable to draw strong conclusions here, we do find suggestive evidence that being personally exposed to wildfires does not seem to eliminate the backlash effect.
Table S13: Effect of Treatment on Confidence That Politician Understands Wildfires, for Wildfire Exposed Respondents

Dependent variable: has a good understanding of wildfires and their causes?	Pooled	Republicans	Democrats	Independents
treat	-0.066	-0.164	-0.037	0.142
	(0.053)	(0.108)	(0.065)	(0.157)
female	-0.030	-0.024	-0.088	0.216
	(0.054)	(0.108)	(0.066)	(0.161)
white	-0.144**	-0.224	-0.053	0.060
	(0.058)	(0.137)	(0.070)	(0.159)
college	-0.231***	-0.374***	-0.150*	-0.162
	(0.065)	(0.133)	(0.081)	(0.172)

Observations	754	234	404	116
R²	0.055	0.145	0.077	0.193
Adjusted R²	0.020	0.033	0.011	-0.019
Residual Std. Error	0.720 (df = 726)	0.773 (df = 206)	0.634 (df = 376)	0.754 (df = 91)

Note: "p<0.1; **p<0.05; ***p<0.01

Regressions also include fixed effects for income level

Table S14: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires, for Wildfire Exposed Respondents

Dependent variable: will work to prevent future wildfires?	Pooled	Republicans	Democrats	Independents
treat	-0.022	-0.078	0.026	0.015
	(0.050)	(0.108)	(0.062)	(0.139)
female	-0.015	0.005	-0.045	0.007
	(0.051)	(0.108)	(0.063)	(0.142)
white	0.002	-0.107	0.085	0.198
	(0.055)	(0.137)	(0.066)	(0.141)
college	-0.180***	-0.214	-0.116	-0.239
	(0.061)	(0.133)	(0.076)	(0.152)

Observations	754	234	404	116
R²	0.053	0.076	0.103	0.224
Adjusted R²	0.018	-0.045	0.038	0.020
Residual Std. Error	0.677 (df = 726)	0.773 (df = 206)	0.600 (df = 376)	0.667 (df = 91)

Note: "p<0.1; **p<0.05; ***p<0.01

Regressions also include fixed effects for income level
Table S15: Effect of Treatment on Confidence That Politician Will be an Effective Advocate, for Wildfire Exposed Respondents

Dependent variable:	Pooled	Republicans	Democrats	Independents
will be an effective advocate for federal disaster relief?	(1)	(2)	(3)	(4)
treat	-0.002	-0.048	0.095	-0.046
	(0.049)	(0.093)	(0.063)	(0.143)
female	0.016	-0.059	0.025	0.157
	(0.050)	(0.092)	(0.063)	(0.147)
white	-0.061	-0.229^{*}	0.028	0.129
	(0.054)	(0.117)	(0.067)	(0.145)
college	-0.118^{*}	-0.228^{**}	-0.027	-0.157
	(0.060)	(0.114)	(0.077)	(0.157)

Observations	754	234	404	116
R²	0.031	0.152	0.091	0.209
Adjusted R²	-0.005	0.041	0.026	0.001
Residual Std. Error	0.664 (df = 726)	0.661 (df = 206)	0.607 (df = 376)	0.687 (df = 91)

Note: $^{*}p<0.1; ^{**}p<0.05; ^{** *}p<0.01$
Regressions also include fixed effects for income level

Table S16: Effect of Treatment on Politician’s Level of Sympathy, for Wildfire Exposed Respondents

Dependent variable:	Pooled	Republicans	Democrats	Independents
How sympathetic or unsympathetic did the politician seem towards those impacted?	(1)	(2)	(3)	(4)
treat	-0.094	-0.254^{**}	0.024	0.004
	(0.064)	(0.128)	(0.080)	(0.195)
female	-0.052	-0.038	-0.064	0.053
	(0.065)	(0.128)	(0.081)	(0.201)
white	0.019	-0.086	0.123	0.178
	(0.070)	(0.162)	(0.086)	(0.199)
college	-0.068	0.043	-0.040	-0.146
	(0.078)	(0.157)	(0.099)	(0.214)

Observations	754	234	404	116
R²	0.034	0.114	0.086	0.153
Adjusted R²	-0.002	-0.002	0.020	-0.071
Residual Std. Error	0.862 (df = 726)	0.915 (df = 206)	0.775 (df = 376)	0.939 (df = 91)

Note: $^{*}p<0.1; ^{**}p<0.05; ^{** *}p<0.01$
Regressions also include fixed effects for income level
Table S17: Effect of Treatment on Support for Tax, for Wildfire Exposed Respondents

Dependent variable:	How likely would you be to support this new tax?							
	Pooled	Republicans	Democrats	Independents				
treat	−0.078	−0.228	0.017	0.266	(0.099)	(0.190)	(0.120)	(0.270)
female	−0.161	−0.124	−0.208*	0.066	(0.101)	(0.190)	(0.121)	(0.277)
white	−0.354***	−0.639***	−0.003	0.003	(0.109)	(0.241)	(0.128)	(0.275)
college	−0.432***	−0.448*	−0.339**	−0.524*	(0.122)	(0.233)	(0.148)	(0.296)
Observations	752	233	403	116				
R²	0.062	0.168	0.105	0.215				
Adjusted R²	0.027	0.059	0.040	0.008				
Residual Std. Error	1.337 (df = 724)	1.359 (df = 205)	1.158 (df = 375)	1.299 (df = 91)				

Note: *p<0.1; **p<0.05; ***p<0.01

Regressions also include fixed effects for income level

S5.6 Main results, controlling for exposure to wildfires

This section presents our main results from the first wave with an added dummy control variable for whether the respondent reported either having lost their home due to wildfires or who know someone who has. This variable appears as “exposure” in the regression results below. While our treatment is randomly assigned, controlling for wildfire exposure can add further precision to our estimates.

As the tables below show, controlling for exposure to wildfires does not change the estimated effects of the treatment, nor does it change our conclusions about the effect of climate attribution.
Table S18: Effect of Treatment on Confidence That Politician Understands Wildfires, Controlling for Wildfire Exposure

Dependent variable:	has a good understanding of wildfires and their causes?
	Pooled Republicans Democrats Independents
	(1) (2) (3) (4)
treat	−0.005 (0.026) −0.135*** (0.044) 0.059* (0.035) 0.101 (0.068)
exposure	0.153*** (0.030) 0.037 (0.055) 0.166*** (0.039) 0.224*** (0.079)
female	0.065** (0.026) 0.130*** (0.045) −0.034 (0.036) 0.119* (0.069)
white	−0.129*** (0.030) −0.205*** (0.071) −0.021 (0.038) −0.090 (0.074)
college	−0.122*** (0.031) −0.209*** (0.052) −0.088** (0.042) −0.048 (0.073)
Observations	2,931 1,077 1,408 446
R²	0.029 0.066 0.030 0.071
Adjusted R²	0.019 0.041 0.011 0.008
Residual Std. Error	0.703 (df = 2902) 0.715 (df = 1048) 0.657 (df = 1379) 0.694 (df = 417)

Note: *p<0.1; **p<0.05; ***p<0.01
Regressions also include fixed effects for income level

Table S19: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires, Controlling for Wildfire Exposure

Dependent variable:	will work to prevent future wildfires?
	Pooled Republicans Democrats Independents
	(1) (2) (3) (4)
treat	−0.030 (0.025) −0.124*** (0.043) 0.039 (0.035) −0.016 (0.065)
exposure	0.132*** (0.029) 0.044 (0.053) 0.119*** (0.039) 0.246*** (0.075)
female	0.078*** (0.026) 0.145*** (0.044) −0.012 (0.035) 0.107 (0.066)
white	−0.075** (0.029) −0.142** (0.069) −0.002 (0.037) 0.022 (0.071)
college	−0.063** (0.030) −0.059 (0.051) −0.055 (0.041) −0.102 (0.070)
Observations	2,931 1,077 1,408 446
R²	0.021 0.048 0.022 0.100
Adjusted R²	0.011 0.022 0.002 0.040
Residual Std. Error	0.683 (df = 2902) 0.698 (df = 1048) 0.645 (df = 1379) 0.663 (df = 417)

Note: *p<0.1; **p<0.05; ***p<0.01
Regressions also include fixed effects for income level
Table S20: Effect of Treatment on Confidence That Politician Will be an Effective Advocate, Controlling for Wildfire Exposure

	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	−0.008	−0.058	0.038	−0.018
	(0.024)	(0.040)	(0.033)	(0.062)
exposure	0.133***	0.035	0.129***	0.227***
	(0.028)	(0.049)	(0.037)	(0.072)
female	0.082***	0.077*	0.045	0.131**
	(0.024)	(0.040)	(0.033)	(0.063)
white	−0.064**	−0.194***	0.014	0.091
	(0.028)	(0.064)	(0.035)	(0.068)
college	−0.013	−0.080*	0.031	−0.007
	(0.028)	(0.047)	(0.039)	(0.067)

Observations: 2,931 1,077 1,408 446
R²: 0.021 0.047 0.036 0.078
Adjusted R²: 0.012 0.021 0.017 0.016
Residual Std. Error: 0.644 (df = 2902) 0.644 (df = 1048) 0.611 (df = 1379) 0.635 (df = 417)

Note:
*p<0.1; **p<0.05; ***p<0.01
Regressions also include fixed effects for income level

Table S21: Effect of Treatment on Politician’s Level of Sympathy, Controlling for Wildfire Exposure

	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	−0.080**	−0.184***	−0.001	−0.063
	(0.034)	(0.059)	(0.045)	(0.092)
exposure	0.171***	0.095	0.150***	0.294***
	(0.039)	(0.072)	(0.051)	(0.107)
female	0.130***	0.176***	0.059	0.127
	(0.034)	(0.059)	(0.046)	(0.094)
white	−0.027	−0.055	0.078	0.033
	(0.039)	(0.093)	(0.049)	(0.101)
college	−0.011	−0.075	0.048	−0.102
	(0.040)	(0.068)	(0.054)	(0.100)

Observations: 2,931 1,077 1,408 446
R²: 0.025 0.047 0.039 0.074
Adjusted R²: 0.016 0.022 0.019 0.012
Residual Std. Error: 0.914 (df = 2902) 0.941 (df = 1048) 0.844 (df = 1379) 0.942 (df = 417)

Note:
*p<0.1; **p<0.05; ***p<0.01
Regressions also include fixed effects for income level
Table S22: Effect of Treatment on Support for Tax, Controlling for Wildfire Exposure

	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	-0.090*	-0.223***	-0.054	-0.002
	(0.048)	(0.078)	(0.065)	(0.116)
exposure	0.423***	0.304***	0.425***	0.242*
	(0.056)	(0.095)	(0.072)	(0.134)
female	0.087*	0.118	-0.093	0.325***
	(0.049)	(0.078)	(0.066)	(0.118)
white	-0.406***	-0.405***	-0.083	-0.348***
	(0.056)	(0.124)	(0.070)	(0.126)
college	-0.131**	-0.196**	-0.042	-0.230*
	(0.056)	(0.091)	(0.077)	(0.125)

Observations | 2,926 | 1,075 | 1,405 | 446 |
R² | 0.059 | 0.087 | 0.051 | 0.117 |
Adjusted R² | 0.050 | 0.063 | 0.032 | 0.058 |
Residual Std. Error | 1.295 (df = 2897) | 1.249 (df = 1046) | 1.204 (df = 1376) | 1.181 (df = 417) |

* p<0.1; ** p<0.05; *** p<0.01

Note: Regressions also include fixed effects for income level

S5.7 Main results, for subset who believe climate change is happening

This section presents our main results but only for the subset of respondents (in the first wave) who reported that they believed climate change was occurring. Since the vast majority of our respondents (84% of Republicans, 99% of Democrats, 92% of Independents) professed believing in climate change, we do not expect these subgroup effects to be substantively different than our results with the full sample.

Indeed, as column 2 of the following tables show, we continue to find a consistent negative and statistically significant backlash effect among Republican respondents who believe climate change is happening. This suggests that our main results are not being driven by respondents who deny that climate change is happening.
Table S23: Effect of Treatment on Confidence That Politician Understands Wildfires, For Subset Who Believe Climate Change is Happening

Dependent variable: has a good understanding of wildfires and their causes?	Pooled	Republicans	Democrats	Independents
treat	0.009	-0.134***	0.070**	0.114
(0.027)	(0.047)	(0.035)	(0.069)	
female	0.044	0.105**	-0.039	0.128*
(0.027)	(0.048)	(0.036)	(0.071)	
white	-0.113***	-0.150**	-0.025	-0.109
(0.030)	(0.070)	(0.038)	(0.074)	
college	-0.114***	-0.237***	-0.085**	0.020
(0.031)	(0.056)	(0.042)	(0.075)	
Num.Obs.	2717	910	1395	412
R2	0.016	0.070	0.019	0.057
R2 Adj.	0.006	0.041	0.000	-0.009

Regressions also include fixed effects for income level

* p < 0.1, ** p < 0.05, *** p < 0.01

Table S24: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires, For Subset Who Believe Climate Change is Happening

Dependent variable: will work to prevent future wildfires?	Pooled	Republicans	Democrats	Independents
treat	-0.012	-0.118**	0.052	0.002
(0.026)	(0.046)	(0.035)	(0.067)	
female	0.053**	0.102**	-0.016	0.124*
(0.026)	(0.046)	(0.035)	(0.068)	
white	-0.055*	-0.085	-0.003	0.015
(0.029)	(0.071)	(0.037)	(0.073)	
college	-0.062**	-0.096*	-0.056	-0.033
(0.030)	(0.054)	(0.041)	(0.076)	
Num.Obs.	2717	910	1395	412
R2	0.012	0.048	0.017	0.084
R2 Adj.	0.002	0.019	-0.002	0.020

Regressions also include fixed effects for income level

* p < 0.1, ** p < 0.05, *** p < 0.01
Table S25: Effect of Treatment on Confidence That Politician Will be an Effective Advocate, For Subset Who Believe Climate Change is Happening

Dependent variable:	(1)	(2)	(3)	(4)
will be an effective advocate for federal disaster relief?				
treat	−0.003	−0.074*	0.046	−0.006
	(0.024)	(0.042)	(0.033)	(0.066)
female	0.055**	0.016	0.038	0.144**
	(0.025)	(0.042)	(0.033)	(0.066)
white	−0.052*	−0.166**	0.012	0.067
	(0.028)	(0.066)	(0.035)	(0.070)
college	−0.007	−0.102**	0.031	0.057
	(0.028)	(0.049)	(0.040)	(0.069)

Num.Obs. 2717 910 1395 412
R2 0.010 0.049 0.029 0.068
R2 Adj. 0.000 0.020 0.010 0.002

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S26: Effect of Treatment on Politician’s Level of Sympathy, For Subset Who Believe Climate Change is Happening

Dependent variable:	(1)	(2)	(3)	(4)
How sympathetic did the politician seem?				
treat	−0.068**	−0.175***	0.001	−0.066
	(0.034)	(0.061)	(0.046)	(0.096)
female	0.094***	0.108*	0.050	0.156
	(0.035)	(0.061)	(0.046)	(0.095)
white	−0.004	−0.026	0.089*	0.003
	(0.039)	(0.096)	(0.049)	(0.100)
college	−0.002	−0.095	0.039	−0.008
	(0.040)	(0.068)	(0.055)	(0.102)

Num.Obs. 2717 910 1395 412
R2 0.016 0.043 0.033 0.054
R2 Adj. 0.006 0.014 0.014 −0.013

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01
Table S27: Effect of Treatment on Support for Tax, For Subset Who Believe Climate Change is Happening

| Dependent variable: How likely would you be to support this new tax? |
|-------------------------|-----------------|-------------------|-------------------|-------------------|
| | Pooled | Republicans | Democrats | Independents |
| | (1) | (2) | (3) | (4) |
| treat | -0.073 | -0.195** | -0.045 | 0.020 |
| | (0.050) | (0.085) | (0.066) | (0.122) |
| female | 0.038 | 0.068 | -0.105 | 0.319** |
| | (0.050) | (0.085) | (0.067) | (0.121) |
| white | -0.410*** | -0.481*** | -0.105 | -0.425*** |
| | (0.055) | (0.130) | (0.070) | (0.131) |
| college | -0.102* | -0.169* | -0.045 | -0.141 |
| | (0.059) | (0.102) | (0.080) | (0.130) |
| Num.Obs. | 2712 | 908 | 1392 | 412 |
| R2 | 0.033 | 0.075 | 0.026 | 0.103 |
| R2 Adj. | 0.024 | 0.047 | 0.007 | 0.040 |

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01

S5.8 Main results, for subset with high engagement in climate change news

This section presents our main results but only for the subset of respondents (in the first wave) who reported that they read about climate change or discussed it with their family at-least once a month. A majority of respondents (75%) in the first wave reported having done so, so we expect the results for this subset to be qualitatively similar to our main results.

Indeed, as column 2 of the following tables show, we find a qualitatively similar, and in all cases a stronger backlash effect among Republicans who report being engaged in climate change news. Though we lack the statistical power to definitively say that these effects are stronger than our main results, we can rule out the backlash effect being driven solely by respondents not knowledgeable about climate change.
Table S28: Effect of Treatment on Confidence That Politician Understands Wildfires, among High Engagement Respondents

Dependent variable: has a good understanding of wildfires and their causes?	Pooled	Republicans	Democrats	Independents
treat	−0.002	−0.168***	0.071*	0.031
(0.031)	(0.055)	(0.040)	(0.086)	
female	0.058*	0.072	−0.032	0.205**
(0.031)	(0.055)	(0.041)	(0.087)	
white	−0.159***	−0.212**	−0.036	−0.087
(0.035)	(0.078)	(0.044)	(0.097)	
college	−0.143***	−0.273***	−0.092*	−0.031
(0.036)	(0.068)	(0.048)	(0.090)	

Num.Obs. 2209 771 1141 297
R2 0.030 0.077 0.022 0.082
R2 Adj. 0.018 0.043 −0.001 −0.007

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S29: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires, among High Engagement Respondents

Dependent variable: will work to prevent future wildfires?	Pooled	Republicans	Democrats	Independents
treat	−0.037	−0.172***	0.035	−0.061
(0.029)	(0.052)	(0.039)	(0.080)	
female	0.075**	0.116**	−0.028	0.232***
(0.030)	(0.053)	(0.039)	(0.081)	
white	−0.093***	−0.161*	−0.009	0.038
(0.034)	(0.080)	(0.042)	(0.094)	
college	−0.074**	−0.073	−0.078*	−0.058
(0.036)	(0.066)	(0.046)	(0.092)	

Num.Obs. 2209 771 1141 297
R2 0.025 0.055 0.030 0.135
R2 Adj. 0.013 0.021 0.007 0.051

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01
Table S30: Effect of Treatment on Confidence That Politician Will be an Effective Advocate, among High Engagement Respondents

Dependent variable:	Republican	Democrats	Independents	
Pooled	(1)	(2)	(3)	(4)
treat	-0.015	-0.096**	0.041	-0.077
	(0.027)	(0.048)	(0.036)	(0.078)
female	0.076***	0.053	0.026	0.186**
	(0.028)	(0.049)	(0.036)	(0.075)
white	-0.068**	-0.196**	0.022	0.085
	(0.032)	(0.076)	(0.039)	(0.085)
college	-0.012	-0.134**	0.043	0.065
	(0.034)	(0.060)	(0.046)	(0.080)

Num.Obs. | 2209 | 771 | 1141 | 297 |
R2 | 0.022 | 0.058 | 0.038 | 0.097 |
R2 Adj. | 0.010 | 0.024 | 0.015 | 0.011 |

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S31: Effect of Treatment on Politician’s Level of Sympathy, among High Engagement Respondents

Dependent variable:	Republican	Democrats	Independents	
Pooled	(1)	(2)	(3)	(4)
treat	-0.090**	-0.246***	-0.007	-0.046
	(0.038)	(0.068)	(0.050)	(0.121)
female	0.147***	0.200***	0.057	0.217*
	(0.038)	(0.068)	(0.050)	(0.114)
white	-0.026	-0.105	0.094*	0.071
	(0.044)	(0.102)	(0.055)	(0.126)
college	-0.013	-0.103	0.034	-0.015
	(0.046)	(0.080)	(0.061)	(0.126)

Num.Obs. | 2209 | 771 | 1141 | 297 |
R2 | 0.026 | 0.067 | 0.038 | 0.057 |
R2 Adj. | 0.014 | 0.033 | 0.015 | -0.034 |

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01
Table S32: Effect of Treatment on Support for Tax, among High Engagement Respondents

Dependent variable:	How likely would you be to support this new tax?			
	Pooled	Republicans	Democrats	Independents
treat	−0.090	−0.250***	−0.061	−0.087
	(0.058)	(0.094)	(0.073)	(0.157)
female	0.103*	0.149	−0.095	0.349**
	(0.058)	(0.093)	(0.074)	(0.157)
white	−0.466***	−0.636***	−0.063	−0.346**
	(0.066)	(0.155)	(0.080)	(0.172)
college	−0.089	−0.193*	−0.050	0.003
	(0.070)	(0.118)	(0.091)	(0.164)
Num.Obs.	2204	769	1138	297
R2	0.048	0.107	0.032	0.119
R2 Adj.	0.036	0.075	0.008	0.034

Regressions also include fixed effects for income level

* p < 0.1, ** p < 0.05, *** p < 0.01

S5.9 Main results, with population weights

This section presents our main results from the first wave with population weights added into the regressions. We obtained data on the distribution of demographic variables in the US population from the US Census Bureau (42). We also obtained estimates of the distribution of party affiliation amongst US voters from the Pew Research Center (43).

Compared to the US population, our sample under-represents independent voters (15.6% of sample, 34% of US voters) and over-represents Democrats (47.9% of sample, 33% of US voters) and college educated people (70% of sample, 43% of US voters). Relative to party affiliation and education, our sample better approximated the US population on race (71.8% of sample is white versus 62% of US population) and gender (51.1% of sample is female versus 51% of US population). Since party affiliation and college education are the most unbalanced in our sample, we construct weights by these two variables.

As the tables below show, none of our conclusions are affected by including population weights in the estimation. From column 2 of the following tables, we continue to observe a consistent negative backlash effect among Republican respondents. Even after accounting for the under-representation of Independent voters and the over-representation of Democrats and college educated voters in our sample, our pooled regressions continue to fail to find countervailing effects among non-Republicans that would provide increased overall support.
for the politician and/or tax among these other groups.

Table S33: Effect of Treatment on Confidence That Politician Understands Wildfires, with Weights for Party and Education

Dependent variable:	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	0.027	−0.110***	0.056	0.107
	(0.033)	(0.057)	(0.040)	(0.069)
female	0.073***	0.117***	−0.025	0.104
	(0.033)	(0.056)	(0.040)	(0.070)
white	−0.119***	−0.207***	−0.044	−0.101
	(0.038)	(0.077)	(0.043)	(0.077)
college	−0.097***	−0.196***	−0.076**	−0.034
	(0.034)	(0.054)	(0.043)	(0.072)
Num.Obs.	2935	1078	1411	446
R2	0.019	0.077	0.017	0.054
R2 Adj.	0.010	0.053	−0.002	−0.007

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S34: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires, with Weights for Party and Education

Dependent variable:	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	−0.016	−0.127***	0.048	−0.002
	(0.032)	(0.054)	(0.038)	(0.070)
female	0.078***	0.120***	−0.021	0.117*
	(0.032)	(0.054)	(0.039)	(0.071)
white	−0.056**	−0.188***	0.000	0.014
	(0.037)	(0.074)	(0.040)	(0.078)
college	−0.055**	−0.031	−0.040	−0.078
	(0.034)	(0.052)	(0.041)	(0.073)
Num.Obs.	2935	1078	1411	446
R2	0.019	0.071	0.018	0.080
R2 Adj.	0.010	0.047	−0.002	0.020

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01
Table S35: Effect of Treatment on Confidence That Politician Will be an Effective Advocate, with Weights for Party and Education

	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	-0.008	-0.042	0.052	-0.035
	(0.030)	(0.050)	(0.037)	(0.065)
female	0.085***	0.067*	0.016	0.163***
	(0.030)	(0.051)	(0.038)	(0.065)
white	-0.014	-0.228***	0.028	0.089
	(0.036)	(0.072)	(0.040)	(0.074)
college	-0.004	-0.043	0.042	0.014
	(0.032)	(0.048)	(0.040)	(0.066)
Num.Obs.	2935	1078	1411	446
R2	0.013	0.075	0.029	0.056
R2 Adj.	0.004	0.052	0.010	-0.005

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S36: Effect of Treatment on Politician’s Level of Sympathy, with Weights for Party and Education

	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)
treat	-0.052	-0.104*	-0.025	-0.024
	(0.044)	(0.069)	(0.052)	(0.099)
female	0.116***	0.117**	0.057	0.141
	(0.044)	(0.069)	(0.053)	(0.097)
white	0.013	-0.026	0.112**	0.005
	(0.050)	(0.114)	(0.057)	(0.106)
college	-0.033	-0.063	0.056	-0.073
	(0.045)	(0.064)	(0.054)	(0.099)
Num.Obs.	2935	1078	1411	446
R2	0.019	0.044	0.030	0.049
R2 Adj.	0.010	0.019	0.011	-0.013

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01
Table S37: Effect of Treatment on Support for Tax, with Weights for Party and Education

Dependent variable: How likely would you be to support this new tax?	Pooled	Republicans	Democrats	Independents
(1)	(2)	(3)	(4)	
treat	−0.078	−0.321***	0.012	−0.035
female	0.145***	−0.001	−0.047	0.409***
white	−0.445***	−0.576***	−0.171**	−0.336***
college	−0.102**	−0.143*	−0.035	−0.204*
Num.Obs.	2930	1076	1408	446
R2	0.050	0.129	0.029	0.122
R2 Adj.	0.041	0.106	0.010	0.065

Regressions also include fixed effects for income level

* p < 0.1, ** p < 0.05, *** p < 0.01

Appendix S6: Second wave additional results and robustness of results

We launched a second wave of the survey experiment in October 2021 in order to rule out alternative explanations for our findings and ask some additional questions. The new version of the experiment was nearly identical, except now we randomized whether the politician was identified as a Democrat or a Republican.

S6.1 Main results - tabular

This section presents the main regression results in the body of the paper from the second wave in tabular format with more details such as the sample size. Here *treat* denotes the treatment variable of interest, while *female*, *white*, and *college* are dummy variables for respondent gender, race, and whether they have attended or completed college or higher level of education. Regressions also include fixed effects for income level, which is a 24-level variable capturing annual household income from $15,000 or less to $250,000 or more in increments of $5,000.

Columns 1 and 5 of each table present the results pooling respondents of all party identifications. Columns 2-4 and 6-8 estimate the same regression for the subsets of respondents.
identifying as Republicans, Democrats or Independents, respectively.

Table S38: Effect of Treatment on Confidence That Politician Understands Wildfires in Second Wave

Dependent variable:
Confidence that politician has a good understanding of wildfires and their causes?

	Pooled	Republicans	Democrats	Independents	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
treat	0.010	−0.177***	0.166***	0.014	−0.017	−0.129**	0.104***	−0.027
	(0.026)	(0.045)	(0.039)	(0.053)	(0.026)	(0.048)	(0.036)	(0.054)
female	0.068***	0.113**	0.003	0.067	0.094***	0.130***	0.014	0.155***
	(0.026)	(0.046)	(0.039)	(0.053)	(0.027)	(0.049)	(0.037)	(0.054)
white	−0.085**	0.012	−0.097**	−0.085	−0.142***	−0.047	−0.031	−0.216***
	(0.030)	(0.070)	(0.042)	(0.056)	(0.030)	(0.069)	(0.040)	(0.058)
college	−0.058**	−0.134***	−0.032	−0.055	0.033	−0.036	0.057	−0.029
	(0.030)	(0.052)	(0.047)	(0.058)	(0.029)	(0.054)	(0.043)	(0.057)

Num.Obs. 2904 991 1207 706 2904 992 1226 686
R2 0.018 0.068 0.040 0.038 0.034 0.067 0.026 0.068
R2 Adj. 0.009 0.042 0.018 0.000 0.025 0.041 0.004 0.030

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S39: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires in Second Wave

Dependent variable:
Confidence that politician will work to prevent future wildfires?

	Pooled	Republicans	Democrats	Independents	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
treat	−0.034	−0.123***	0.029	−0.003	−0.060***	−0.162***	0.031	−0.062
	(0.026)	(0.045)	(0.038)	(0.053)	(0.026)	(0.045)	(0.036)	(0.054)
female	0.068***	0.147***	0.011	0.042	0.078***	0.119***	0.020	0.087
	(0.026)	(0.046)	(0.039)	(0.054)	(0.027)	(0.047)	(0.037)	(0.056)
white	−0.061**	0.027	−0.111***	−0.055	−0.047	−0.013	0.120***	−0.135**
	(0.030)	(0.071)	(0.043)	(0.056)	(0.030)	(0.065)	(0.040)	(0.061)
college	−0.045	−0.061	−0.020	−0.080	0.012	−0.026	0.017	−0.057
	(0.029)	(0.051)	(0.046)	(0.057)	(0.029)	(0.052)	(0.042)	(0.057)

Num.Obs. 2904 991 1207 706 2904 992 1226 686
R2 0.017 0.055 0.029 0.043 0.022 0.057 0.028 0.043
R2 Adj. 0.007 0.028 0.007 0.005 0.012 0.030 0.006 0.003

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01
Table S40: Effect of Treatment on Confidence That Politician Will be an Effective Advocate in Second Wave

	Republican Politician	Democratic Politician						
	Pooled	Republicans	Democrats	Independents	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
treat	−0.028	−0.069	0.009	−0.019	−0.046*	−0.123***	0.041	−0.041
	(0.025)	(0.044)	(0.037)	(0.052)	(0.025)	(0.045)	(0.035)	(0.052)
female	0.056**	0.098**	−0.012	0.084	0.051**	0.101**	−0.034	0.091*
	(0.025)	(0.045)	(0.039)	(0.053)	(0.025)	(0.045)	(0.036)	(0.052)
white	−0.002	0.020	−0.042	0.046	−0.007	0.011	0.106***	−0.043
	(0.029)	(0.074)	(0.041)	(0.056)	(0.029)	(0.064)	(0.039)	(0.057)
college	0.008	−0.053	0.043	−0.019	0.064**	0.006	0.093**	−0.019
	(0.028)	(0.049)	(0.045)	(0.056)	(0.028)	(0.050)	(0.042)	(0.056)

Num.Obs. 2904 991 1207 706 2904 992 1226 686
R2 0.007 0.038 0.013 0.032 0.017 0.047 0.031 0.043
R2 Adj. −0.003 0.011 −0.009 −0.007 0.008 0.020 0.009 0.004

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S41: Effect of Treatment on Politician’s Level of Sympathy in Second Wave

	Republican Politician	Democratic Politician						
	Pooled	Republicans	Democrats	Independents	Pooled	Republicans	Democrats	Independents
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
treat	−0.024	−0.126**	0.033	0.036	−0.139***	−0.292***	0.016	−0.114
	(0.035)	(0.063)	(0.050)	(0.072)	(0.036)	(0.067)	(0.049)	(0.074)
female	0.091***	0.131**	0.021	0.132*	0.093**	0.194***	0.015	0.002
	(0.035)	(0.062)	(0.052)	(0.073)	(0.037)	(0.069)	(0.050)	(0.077)
white	−0.006	0.109	−0.025	−0.056	0.000	0.052	0.172***	−0.102
	(0.040)	(0.102)	(0.055)	(0.077)	(0.041)	(0.096)	(0.054)	(0.082)
college	0.041	0.018	0.040	0.017	0.071*	0.052	0.035	0.012
	(0.040)	(0.071)	(0.063)	(0.079)	(0.042)	(0.078)	(0.059)	(0.080)

Num.Obs. 2904 991 1207 706 2904 992 1226 686
R2 0.012 0.035 0.017 0.042 0.013 0.053 0.028 0.057
R2 Adj. 0.003 0.008 −0.005 0.004 0.004 0.026 0.006 0.018

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01
Table S42: Effect of Treatment on Support for Tax in Second Wave

Dependent variable:

How likely would you be to support this new tax?

	Republican Politician	Democratic Politician		
	Pooled Republicans	Democrats	Independents	
	(1)	(2)	(3)	(4)
treat	0.028	-0.191**	0.160**	0.072
	(0.049)	(0.080)	(0.069)	(0.095)
female	0.065	0.339***	-0.277***	0.076
	(0.049)	(0.082)	(0.071)	(0.095)
white	-0.315***	-0.276**	-0.076	-0.233**
	(0.055)	(0.139)	(0.077)	(0.099)
college	-0.009	-0.239***	0.171**	-0.229**
	(0.054)	(0.092)	(0.085)	(0.098)
Num.Obs.	2904	991	1207	706
R2	0.024	0.086	0.046	0.041
R2 Adj.	0.015	0.061	0.024	0.003

Regressions also include fixed effects for income level

* p < 0.1, ** p < 0.05, *** p < 0.01

S6.2 Main results without controls

This section presents our main regression results from the second wave without any control variables added. This is equivalent to a simple difference in means between the treatment and control group. Since the treatment is randomly assigned and the sample size is large, adding control variables should not change the estimated treatment effects, but it can add precision. The tables below, however, show that even without control variables, we do not lose precision in any of our estimated treatment effects to the extent of making them lose their levels of significance. The magnitudes and directions of all our main results are also preserved when removing controls. This accords with our no-control treatment effects from the first wave.
Table S43: Effect of Treatment on Confidence That Politician Understands Wildfires, excluding controls in Second Wave

Dependent variable:	Republican Politician	Democratic Politician						
	Pooled (1)	Republics (2)	Democrats (3)	Independents (4)	Pooled (5)	Republics (6)	Democrats (7)	Independents (8)
(Intercept)	1.085***	1.106***	1.114***	1.006***	1.132***	0.975***	1.270***	1.076***
	(0.018)	(0.031)	(0.028)	(0.037)	(0.018)	(0.033)	(0.025)	(0.036)
treat	0.012	−0.175***	0.166***	0.018	−0.021	−0.119**	0.106***	−0.055
	(0.026)	(0.045)	(0.038)	(0.051)	(0.026)	(0.048)	(0.035)	(0.051)

Num.Obs. 3024 1027 1249 748 3047 1028 1286 733
R2 0.000 0.015 0.015 0.000 0.000 0.006 0.007 0.002
R2 Adj. 0.000 0.014 0.014 −0.001 0.000 0.005 0.006 0.000

Regressions also include no controls or fixed effects
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S44: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires, excluding controls in Second Wave

Dependent variable:	Republican Politician	Democratic Politician						
	Pooled (1)	Republics (2)	Democrats (3)	Independents (4)	Pooled (5)	Republics (6)	Democrats (7)	Independents (8)
(Intercept)	1.142***	1.164***	1.165***	1.069***	1.181***	1.024***	1.339***	1.104***
	(0.018)	(0.031)	(0.027)	(0.038)	(0.017)	(0.031)	(0.024)	(0.037)
treat	−0.033	−0.127***	0.038	−0.018	−0.072***	−0.172***	0.034	−0.065
	(0.025)	(0.044)	(0.037)	(0.052)	(0.025)	(0.045)	(0.035)	(0.052)

Num.Obs. 3024 1027 1249 748 3047 1028 1286 733
R2 0.001 0.008 0.001 0.000 0.003 0.014 0.001 0.002
R2 Adj. 0.000 0.007 0.000 −0.001 0.002 0.013 0.000 0.001

Regressions also include no controls or fixed effects
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S45: Effect of Treatment on Confidence That Politician Will be an Effective Advocate, excluding controls in Second Wave

Dependent variable:	Republican Politician	Democratic Politician						
	Pooled (1)	Republics (2)	Democrats (3)	Independents (4)	Pooled (5)	Republics (6)	Democrats (7)	Independents (8)
(Intercept)	1.189***	1.213***	1.241***	1.064***	1.208***	1.099***	1.355***	1.093***
	(0.018)	(0.030)	(0.026)	(0.037)	(0.017)	(0.031)	(0.024)	(0.036)
treat	−0.025	−0.077*	0.012	−0.007	−0.044*	−0.117***	0.040	−0.040
	(0.024)	(0.042)	(0.037)	(0.050)	(0.025)	(0.044)	(0.034)	(0.049)

Num.Obs. 3024 1027 1249 748 3047 1028 1286 733
R2 0.000 0.003 0.000 0.000 0.001 0.007 0.001 0.001
R2 Adj. 0.000 0.002 −0.001 −0.001 0.001 0.006 0.000 0.000

Regressions also include no controls or fixed effects
* p < 0.1, ** p < 0.05, *** p < 0.01
Table S46: Effect of Treatment on Politician’s Level of Sympathy, excluding controls in Second Wave

Dependent variable: How sympathetic or unsympathetic did the politician seem towards those impacted?
Republican Politician
Pooled Republicans
(1)
(Intercept)
(0.024)
treat
(0.034)

Num.Obs. 3024 1027 1249 748 3047 1028 1286 733
R2 0.000 0.004 0.000 0.000 0.005 0.020 0.000 0.004
R2 Adj. 0.000 0.003 0.000 −0.001 0.004 0.019 −0.001 0.002

Regressions also include no controls or fixed effects
*p < 0.1, ** p < 0.05, *** p < 0.01

Table S47: Effect of Treatment on Support for Tax, excluding controls in Second Wave

Dependent variable: How likely would you be to support this new tax?
Republican Politician
Pooled Republicans
(1)
(Intercept)
(0.034)
treat
(0.048)

Num.Obs. 3024 1027 1249 748 3047 1028 1286 733
R2 0.000 0.005 0.005 0.001 0.001 0.003 0.000 0.000
R2 Adj. 0.000 0.004 0.005 0.000 0.000 0.002 −0.001 −0.001

Regressions also include no controls or fixed effects
*p < 0.1, ** p < 0.05, *** p < 0.01

S6.3 Main results for subset with exposure to wildfires

This section presents our main results but only for the subset of respondents (in the second wave) who reported either having lost their home due to wildfires or who know someone who has. Since our sample size here is relatively small (N=1,852), we do not have the same statistical power to estimate the same treatment effects as we have in our main results. Nevertheless, we report the results here for completeness.

As columns 2 and 6 of each of the tables below show, Republican respondents still react negatively to the politician, with results from the body of the paper largely preserved. For the tax question, the coefficients are considerably noisier, though the direction of the effect
remains negative. These results continue to suggest, therefore, that being personally exposed to wildfires does not eliminate the backlash effect.

Table S48: Effect of Treatment on Confidence That Politician Understands Wildfires, for Wildfire Exposed Respondents in Second Wave

	Republican Politician	Democratic Politician
	Pooled (1) Republicans (2) Democrats (3) Independents (4)	Pooled (5) Republicans (6) Democrats (7) Independents (8)
treat	-0.029 -0.254*** 0.117 0.002	-0.047 -0.199** 0.081 -0.071
	(0.048) (0.087) (0.071) (0.104)	(0.047) (0.095) (0.062) (0.110)
female	0.072 0.151* -0.012 0.126	0.070 0.085 0.064 0.110
	(0.050) (0.089) (0.075) (0.113)	(0.049) (0.102) (0.064) (0.107)
white	-0.102* -0.199 0.090 -0.033	-0.104* 0.014 -0.104 -0.172
	(0.056) (0.126) (0.080) (0.115)	(0.053) (0.116) (0.071) (0.120)
college	0.028 -0.088 0.073 -0.036	0.050 -0.023 0.073 0.092
	(0.058) (0.111) (0.093) (0.120)	(0.054) (0.108) (0.075) (0.116)
Num.Obs.	869 282 382 205	898 283 428 187
R2	0.046 0.141 0.083 0.100	0.055 0.105 0.095 0.132
R2 Adj.	0.015 0.053 0.013 -0.026	0.025 0.010 0.034 -0.015

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01

Table S49: Effect of Treatment on Confidence That Politician Will Work to Prevent Future Wildfires, for Wildfire Exposed Respondents in Second Wave

	Republican Politician	Democratic Politician
	Pooled (1) Republicans (2) Democrats (3) Independents (4)	Pooled (5) Republicans (6) Democrats (7) Independents (8)
treat	-0.094** -0.201** -0.032 -0.089	-0.052 -0.167* 0.077 -0.079
	(0.048) (0.087) (0.071) (0.110)	(0.046) (0.090) (0.059) (0.107)
female	0.039 0.061 -0.073 0.161	0.046 0.059 0.089 -0.017
	(0.050) (0.093) (0.078) (0.116)	(0.048) (0.093) (0.063) (0.106)
white	-0.058 -0.114 -0.132* 0.058	-0.019 0.047 0.045 -0.099
	(0.056) (0.119) (0.083) (0.115)	(0.052) (0.102) (0.069) (0.119)
college	-0.089 -0.108 -0.025 -0.148	0.001 -0.044 0.010 -0.016
	(0.058) (0.108) (0.097) (0.119)	(0.054) (0.103) (0.074) (0.113)
Num.Obs.	869 282 382 205	898 283 428 187
R2	0.037 0.104 0.069 0.144	0.045 0.140 0.063 0.131
R2 Adj.	0.006 0.013 -0.002 0.024	0.016 0.049 0.000 -0.016

Regressions also include fixed effects for income level
* p < 0.1, ** p < 0.05, *** p < 0.01
Table S50: Effect of Treatment on Confidence That Politician Will be an Effective Advocate, for Wildfire Exposed Respondents in Second Wave

Dependent variable:	Republican Politician	Democratic Politician						
	Pooled	Republicans	Democrats	Independents	Pooled	Republicans	Democrats	Independents
treat	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	(−0.015)	(−0.078)	0.015	0.077	(−0.041)	(−0.110)	0.041	(−0.039)
female	(0.046)	(0.084)	(0.069)	(0.106)	(0.044)	(0.085)	(0.059)	(0.106)
white	0.043	0.100	(−0.098)	0.111	0.055	0.158*	0.000	0.090
college	(0.054)	(0.133)	(0.073)	(0.113)	(0.051)	(0.101)	(0.070)	(0.109)
(0.057)	(0.102)	(0.093)	(0.123)	(0.053)	(0.096)	(0.075)	(0.119)	
Num.Obs.	869	282	382	205	898	283	428	187
R2	0.016	0.101	0.042	0.099	0.034	0.118	0.059	0.167
R2 Adj.	−0.015	0.010	−0.032	−0.026	0.004	0.024	−0.004	0.026

Regressions also include fixed effects for income level

* p < 0.1, ** p < 0.05, *** p < 0.01

Table S51: Effect of Treatment on Politician’s Level of Sympathy, for Wildfire Exposed Respondents in Second Wave

Dependent variable:	Republican Politician	Democratic Politician						
	Pooled	Republicans	Democrats	Independents	Pooled	Republicans	Democrats	Independents
treat	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	(−0.011)	(−0.189)	0.041	0.112	(−0.084)	(−0.388)***	0.055	0.093
female	(0.063)	(0.111)	(0.091)	(0.151)	(0.064)	(0.130)	(0.084)	(0.158)
white	0.097	0.064	0.079	0.157	0.097	0.273***	0.083	−0.120
college	(0.066)	(0.116)	(0.100)	(0.152)	(0.065)	(0.137)	(0.083)	(0.139)
(0.072)	(0.135)	(0.103)	(0.155)	(0.073)	(0.155)	(0.095)	(0.163)	(0.163)
College	0.009	−0.162	0.033	0.116	0.082	0.017	0.024	0.270*
(0.075)	(0.128)	(0.118)	(0.163)	(0.077)	(0.151)	(0.112)	(0.148)	
Num.Obs.	869	282	382	205	898	283	428	187
R2	0.042	0.094	0.077	0.126	0.040	0.131	0.063	0.171
R2 Adj.	0.012	0.002	0.007	0.004	0.011	0.039	0.000	0.031

Regressions also include fixed effects for income level

* p < 0.1, ** p < 0.05, *** p < 0.01
Table S52: Effect of Treatment on Support for Tax, for Wildfire Exposed Respondents in Second Wave

Dependent variable: How likely would you be to support this new tax?
Pooled Republicans

(1)
treat
female
white
college
Num.Obs.
R2
R2 Adj.

Regressions also include fixed effects for income level.
* p < 0.1, ** p < 0.05, *** p < 0.01

S6.4 Additional results from second wave

S6.4.1 New results about climate action

This section contains results from the second wave questions regarding respondents’ willingness to engage in climate change mitigation efforts. As mentioned in the main text, the first question asked about how likely the respondent would be to support a tax to reduce the emissions that contribute to climate change, with responses ranging from “Extremely unlikely” (scored 0) to “Extremely likely” (scored 4). For the question on what individual climate actions respondents were willing to take, respondents were asked how likely they were to take each action. Each response was then assigned a number ranging from 0 (“Extremely unlikely” to take action) to 4 (“Extremely likely” to take action). We then added each respondent’s numerical value for each question to obtain a 20-point score.

The results from these questions are displayed in Figures S6 and S7. Models displayed rely on a simple OLS regression, with identical controls to those used throughout the body of the paper. As can be seen, the findings offer little support for the theory that linking natural disasters to climate change has a robust effect on support for climate action. Whereas treated Democrats are a little bit more likely to support a climate tax when the politician is a...
Republican (p-value = 0.049), this effect does not hold when the politician is a Democrat, and there is generally no strong evidence that respondents intend to increase their individual pro-climate behavior. Importantly, we do not take this to mean that climate change attribution provides no benefit, since one interpretation of this result is that Democrats’ prior exposure to attribution via the media and Democratic politicians has limited the strength of the treatment. However, our finding does suggest that even when it comes to climate action, attribution by politicians is not a clear win.

Figure S6: Treatment Effect on Support for Climate Tax
Notes: This figure presents the effect of the climate attribution treatment by the party identification of the politician. Each panel presents the treatment effect on the full sample and by subgroups of respondent party identification. The dependent variable is the respondents’ likelihood of supporting the climate tax. So a value of 4 denotes ‘extremely likely’, while a value of 0 denotes ‘extremely unlikely’. All regressions use OLS and control for respondent gender, income, race and level of education.
Figure S7: **Treatment Effect on Carbon Footprint Score**

Notes: This figure presents the effect of the climate attribution treatment by the party identification of the politician. Each panel presents the treatment effect on the full sample and by subgroups of respondent party identification. The dependent variable is a respondent’s score on a range of actions to reduce their carbon footprint. For each of five actions, we assigned responses a number ranging from 0 ("Extremely unlikely" to take action) to 4 ("Extremely likely" to take action). We then added each respondents numerical value for each question to obtain a 20-point score. All regressions use OLS and control for respondent gender, income, race and level of education.

S6.4.2 Replicating results about level of government

Figures S8, S9, and S10, present the estimated effect of treatment on the level of government responsible, this time from the second wave (specifying the politician’s party identification). The estimation is otherwise the same as in Figure S2. As mentioned in Supplementary Materials Section S5.1, these results do not replicate the same effect of treatment as in our first wave. While respondents who read a vignette by a Democrat were less likely to allocate responsibility to local/state government, these effects are noisy and statistically indistinguishable from zero at conventional levels of significance.

Importantly, these results fail to provide evidence that our main results are driven by treated respondents thinking of wildfires as a more international issue. In fact, results from the second wave show that treated respondents who were told the politician’s party, do not reallocate responsibility towards any level of government.
Figure S8: Treatment Effect on Level of Government Held Responsible - Local
Notes: This figure presents the effect of our treatment on the full sample and by subgroups of party identification. The dependent variable for each panel is the inverse rank given to the respective level of government as bearing the most responsibility to fund efforts to prevent wildfires. So a value of 3 denotes the highest ranked, while a value of 1 denotes the lowest ranked level of government. All regressions use OLS and control for respondent gender, income, race and level of education.

Figure S9: Treatment Effect on Level of Government Held Responsible - Federal
Notes: This figure presents the effect of our treatment on the full sample and by subgroups of party identification. The dependent variable for each panel is the inverse rank given to the respective level of government as bearing the most responsibility to fund efforts to prevent wildfires. So a value of 3 denotes the highest ranked, while a value of 1 denotes the lowest ranked level of government. All regressions use OLS and control for respondent gender, income, race and level of education.
Figure S10: **Treatment Effect on Level of Government Held Responsible - International**
Notes: This figure presents the effect of our treatment on the full sample and by subgroups of party identification. The dependent variable for each panel is the inverse rank given to the respective level of government as bearing the most responsibility to fund efforts to prevent wildfires. So a value of 3 denotes the highest ranked, while a value of 1 denotes the lowest ranked level of government. All regressions use OLS and control for respondent gender, income, race and level of education.

S6.4.3 **Results about wildfire frequency, by politician’s party**

Figure S11 presents the results shown in the body of the paper in Figure 8. In the paper we pooled the politician’s party for ease of interpretation, but here we split the results by the party identification of the politician. As the two panels show, the results do not meaningfully differ by whether the politician was presented as a Democrat or Republican.

Figure S11: **Treatment Effect on Beliefs about Wildfire Frequency**
Notes: This figure presents the effect of the treatment on the full sample and by subgroups of respondent party identification, split by the party identification of the politician. The dependent variable is the respondents’ belief about how frequent wildfires will become in the next 10 years. The values range from 0 (“Less common”) to 1 (“Neither more nor less common”) to 2 (“More common”). All regressions use OLS and control for respondent gender, income, race and level of education.
REFERENCES AND NOTES

1. IPCC, “Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty” (Technical Report Intergovernmental Panel on Climate Change, 2018).

2. J. T. Abatzoglou, A. P. Williams, Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. U.S.A. 113, 11770–11775 (2016).

3. S. M. Gardiner, A perfect moral storm: Climate change, intergenerational ethics and the problem of moral corruption. Environ. Value. 15, 397–413 (2006).

4. S. D. Brody, S. Zahran, A. Vedlitz, H. Grover, Examining the relationship between physical vulnerability and public perceptions of global climate change in the United States. Environ. Behav. 40, 72–95 (2008).

5. K. Levin, B. Cashore, S. Bernstein, G. Auld, Overcoming the tragedy of super wicked problems: Constraining our future selves to ameliorate global climate change. Policy. Sci. 45, 123–152 (2012).

6. D. Sprinz, T. Vaahutoranta, The interest-based explanation of international environmental policy. Int. Organ. 48, 77–105 (1994).

7. R. McGuirk, “Australian PM’s leadership criticized during wildfire crisis,” AP News, 8 January 2020.

8. G. Newsom, “California Secures Presidential Major Disaster Declaration to Support Wildfire Response and Recovery Efforts,” Office of the Governor Gavin Newsom, 24 August 2021.

9. S. E. Kim, J. Urpelainen, The polarization of American environmental policy: A regression discontinuity analysis of Senate and House votes, 1971–2013. Rev. Policy Res. 34, 456–484 (2017).

10. S. E. Kim, J. Urpelainen, Environmental public opinion in U.S. states, 1973–2012. Environ. Polit. 27, 89–114 (2018).
11. J. Zhou, Boomerangs versus javelins: How polarization constrains communication on climate change. *Environ. Polit.* **25**, 788–811 (2016).

12. P. S. Hart, E. C. Nisbet, Boomerang effects in science communication: How motivated reasoning and identity cues amplify opinion polarization about climate mitigation policies. *J. Commun. Res.* **39**, 701–723 (2012).

13. P. S. Hart, L. Feldman, Would it be better to not talk about climate change? The impact of climate change and air pollution frames on support for regulating power plant emissions. *J. Environ. Psychol.* **60**, 1–8 (2018).

14. D. J. Davidson, A. Fisher, G. Blue, Missed opportunities: The absence of climate change in media coverage of forest fire events in Alberta. *Clim. Change* **153**, 165–179 (2019).

15. M. Lahsen, G. de Azevedo Couto, I. Lorenzoni, When climate change is not blamed: The politics of disaster attribution in international perspective. *Clim. Change* **158**, 213–233 (2020).

16. P. J. Egan, M. Mullin, Climate change: U.S. public opinion. *Annu. Rev. Polit. Sci.* **20**, 209–227 (2017).

17. F. G. Gaikwad Nikhar, D. Tingley, *Creating Climate Coalitions: Mass Preferences for Compensating Vulnerability in the World’s Two Largest Democracies* (American Political Science Review, Forthcoming, 2022); www.cambridge.org/core/journals/american-political-science-review/article/creating-climate-coalitions-mass-preferencesfor-compensating-vulnerability-in-the-worlds-two-largest-democracies/77D49DA72F822938891228EE516DF578.

18. D. Tingley, M. Tomz, International commitments and domestic opinion: The effect of the Paris Agreement on public support for policies to address climate change. *Environ. Polit.* **29**, 1135–1156 (2020).

19. P. Naveau, A. Hannart, A. Ribes, Statistical methods for extreme event attribution in climate science. *Annu. Rev. Stat. Appl.* **7**, 89–110 (2020).
20. S. C. Herring, M. P. Hoerling, J. P. Kossin, T. C. Peterson, P. A. Stott, Explaining extreme events of 2014 from a climate perspective. *B. Am. Meteorol. Soc.* **96**, S1–S172 (2015).

21. P. Bergquist, C. Warshaw, Does global warming increase public concern about climate change? *J. Theor. Polit.* **81**, 686–691 (2019).

22. J. Brooks, D. Oxley, A. Vedlitz, S. Zahran, C. Lindsey, Abnormal daily temperature and concern about climate change across the United States. *Rev. Policy Res.* **31**, 199–217 (2014).

23. C. Demski, S. Capstick, N. Pidgeon, R. G. Sposato, A. Spence, Experience of extreme weather affects climate change mitigation and adaptation responses. *Clim. Change* **140**, 149–164 (2017).

24. T. Deryugina, How do people update? The effects of local weather fluctuations on beliefs about global warming. *Clim. Change* **118**, 397–416 (2013).

25. L. Whitmarsh, Are flood victims more concerned about climate change than other people? The role of direct experience in risk perception and behavioural response. *J. Risk Res.* **11**, 351–374 (2008).

26. C. Hazlett, M. Mildenberger, Wildfire exposure increases pro-environment voting within democratic but not republican areas. *Am. Polit. Sci. Rev.* **114**, 1359–1365 (2020).

27. M. Gabel, K. Scheve, Estimating the effect of elite communications on public opinion using instrumental variables. *Am. J. Polit. Sci.* **51**, 1013–1028 (2007).

28. C. Kendall, T. Nannicini, F. Trebbi, How do voters respond to information? Evidence from a randomized campaign. *Am. Econ. Rev.* **105**, 322–353 (2015).

29. G. E. Marcus, Emotions in politics. *Annu. Rev. Polit. Sci.* **3**, 221–250 (2000).

30. J. Grimmer, A Bayesian hierarchical topic model for political texts: Measuring expressed agendas in Senate press releases. *Polit. Anal.* **18**, 1–35 (2010).

31. J. Grimmer, S. Messing, S. J. Westwood, How words and money cultivate a personal vote: The effect of legislator credit claiming on constituent credit allocation. *Am. Polit. Sci. Rev.* **106**, 703–719 (2012).
32. A. P. Williams, J. T. Abatzoglou, A. Gershunov, J. Guzman-Morales, D. A. Bishop, J. K. Balch, D. P. Lettenmaier, Observed impacts of anthropogenic climate change on wildfire in California. *Earth’s Future* **7**, 892–910 (2019).

33. M. Goss, D. L. Swain, J. T. Abatzoglou, A. Sarhadi, C. A. Kolden, A. P. Williams, N. S. Diffenbaugh, Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. *Environ. Res. Lett.* **15**, 094016 (2020).

34. Z. Kunda, The case for motivated reasoning. *Psychol. Bull.* **108**, 480–498 (1990).

35. C. S. Taber, M. Lodge, Motivated skepticism in the evaluation of political beliefs. *Am. J. Polit. Sci.* **50**, 755–769 (2006).

36. J. G. Bullock, A. S. Gerber, S. J. Hill, G. Huber, Partisan bias in factual beliefs about politics. *Q. J. Polit. Sci.* **10**, 519–578 (2015).

37. M. C. McGrath, Economic behavior and the partisan perceptual screen. *Q. J. Polit. Sci.* **11**, 363–383 (2016).

38. L. W. Miratrix, J. S. Sekhon, A. G. Theodoridis, L. F. Campos, Worth weighting? How to think about and use weights in survey experiments. *Polit. Anal.* **26**, 275–291 (2018).

39. R. Brutger, J. D. Kertzer, J. Renshon, D. Tingley, C. M. Weiss, Abstraction and Detail in Experimental Design (American Journal of Political Science, Forthcoming, 2020); https://onlinelibrary.wiley.com/doi/abs/10.1111/ajps.12710.

40. D. Vogel, Trading up and governing across: Transnational governance and environmental protection. *J. Eur. Public Policy* **4**, 556–571 (1997).

41. ProPublica, *ProPublica Congress API* (ProPublica Inc., 2021).

42. U.S. Census Bureau, *American Community Survey*, 2020.

43. Pew Research Center, *Party Identification Among Registered Voters 1994–2019 (Detailed Tables)*, 2019.