Low-energy electron point projection microscopy of suspended graphene, the ultimate ‘microscope slide’

J Y Mutus1,2,4, L Livadaru1,2, J T Robinson3, R Urban1,2, M H Salomons1,2, M Cloutier1,2 and R A Wolkow1,2

1Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta, T6G 2G7, Canada
2National Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
3Naval Research Laboratory, Washington, DC 20375, USA

E-mail: jmutus@ualberta.ca

\textit{New Journal of Physics} 13 (2011) 063011 (11pp)

Received 15 February 2011
Published 8 June 2011
Online at \url{http://www.njp.org/}
doi:10.1088/1367-2630/13/6/063011

\textbf{Abstract.} Point projection microscopy (PPM) is used to image suspended graphene by using low-energy electrons (100–205 eV). Because of the low energies used, the graphene is neither damaged nor contaminated by the electron beam for doses of the order of 10^7 electrons per nm2. The transparency of graphene is measured to be 74\%, equivalent to electron transmission through a sheet twice as thick as the covalent radius of sp2-bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to diffraction off the edge of a graphene knife edge is observed and is used to calculate a virtual source size of $4.7 \pm 0.6 \text{ Å}$ for the electron emitter. It is demonstrated that graphene can serve as both the anode and the substrate in PPM, thereby avoiding distortions due to strong field gradients around nanoscale objects. Graphene can be used to image objects suspended on the sheet using PPM and, in the future, electron holography.

4Author to whom any correspondence should be addressed.
1. Introduction

Point projection microscopy (PPM) may be the simplest implementation of electron microscopy (EM), comprising only an electron source, a nearby sample and an electron imaging screen some distance away (figure 1). Electrons from the point source pass through the sample and their initial radial distribution naturally results in a magnified image on the detector. PPM offers many advantages over conventional EM, most importantly the removal of aberration-inducing lenses, extremely low acceleration voltages of the order of 100 eV and the collection of phase information to form in-line, low-energy electron point-source (LEEPS) holograms [1–4]. Due to the low-energy beam, PPM can detect the smallest amount of contamination with a higher contrast than in conventional EM techniques. Also, the low-energy electron beam neither induces damage nor deposits carbon contamination (as seen in figure 6(a)) and, as a result, the same region can be imaged repeatedly for hours on end without any apparent change in opacity or structure, which is a significant advantage over high-energy EM, known to induce structural changes in graphene [5–8]. PPM offers many advantages in studying the structure of graphene, diagnosing the quality of samples and measuring the effective attenuation length (EAL) of single- and multi-layer graphene sheets at low energies. The principal technical challenges of PPM relate to the sample, which must be thinner than a few atomic layers (depending on the material) or must span a gap. Since strong electrostatic fields surround any sample in the latter case (as seen in figure 2), electron trajectories are greatly perturbed in their vicinity and the resulting PPM images are distorted [4, 9].

2. Why graphene?

Graphene has attracted a great deal of attention recently owing to its unique electronic and mechanical properties. Moreover, it can also serve as a nearly ideal microscope slide for EM [10–12], since it is virtually transparent to electrons [13, 14], even at low energies as demonstrated here, and is electrically conductive and mechanically robust. In addition, for the purpose of PPM, graphene can serve as both the anode and the substrate. Nanoscale objects can be deposited on graphene, providing a nearly flat grounded plane for electrons and thus avoiding distortion due to the high field gradients that form around suspended biased nanoscale objects. These distortions complicate the interpretation and holographic reconstruction of PPM images [9, 15].
Figure 1. A diagram of the PPM experimental setup. A biased, sharp metallic nanotip is brought close (100–5000 nm) to a grounded grid. Electrons field-emitted from the tip are projected through the sample, towards an electron-imaging screen (8 cm away), resulting in a magnified image on the screen.

Figure 2. Sketch of the electrostatic potentials due to a grounded nanoscale sample (left) and the same sample suspended on graphene, modelled here as a thin grounded plane (right). The sample, e.g. a carbon nanotube, is linear along the axis perpendicular to the plane of the figure and both the sample and the graphene sheet are suspended on a microhole (too large to appear in the diagram). The nanotip is shown in blue, the small as a yellow circle and graphene as a yellow horizontal line. The distance between tip apex and the graphene plane is 200 nm and the potential difference between them is 100 V. Electric fields are high near surfaces with small radius of curvature and low near flat surfaces such as graphene. In the first case, electrons emitted from the tip will have their paths distorted by the spatial inhomogeneity due to the field around the object, while the grounded plane provides a flat anode mitigating distortions.

3. Experimental details

Graphene was imaged in PPM using a custom-built apparatus. The microscope is contained in a magnetically shielded [16] ultrahigh vacuum (UHV) chamber with a base pressure.
of $<1 \times 10^{-10}$ torr. Moving the tip to the sample is critical in PPM and is accomplished using serial coarse and fine positioners. The coarse positioners were manufactured by Attocube Systems and, like the rest of the microscope, consist entirely of non-magnetic components. These positioners move the tip to within 1 mm of the sample and have a 5 mm travel range in x, y and z, with step sizes from a few to several hundreds of nanometres. Fine-positioning is done using a piezo-electric tube scanner that routinely achieves sub-nanometre accuracy. The graphene sheet spans a gap in a TEM grid just below the tip. Electrons are transmitted through the sample towards a two-stage chevron-style micro-channel plate (MCP) and then to a phosphor screen\(^5\). Images are recorded with a high-dynamic-range, 12-bit CCD camera\(^6\) using 10–30 ms exposure times. Typically, 200–400 images are captured. The images are aligned to compensate for lateral drift (a few nanometres per minute) and averaged to improve signal-to-noise ratio. This enhances the image contrast while averaging out the structure of the detector itself. This treatment causes the edges of some of the images to appear blurred. Several gross defects in the detector remain, such as the two large dark spots visible in figure 3(b).

Fields of view ranging from tens of nanometres to several millimetres are available and are useful in finding small features on relatively large samples. Different regions of the sample can be examined by translating the tip relative to the sample using our combination of coarse and fine positioners. A higher magnification is achieved by moving the tip closer to the sample.

Our apparatus enables us to use field ion microscopy (FIM) in order to employ a nitrogen-assisted etching process to shape a tip from a nearly spherical, many-atom apex to a single atom [17] before imaging. With the sample grounded, it is possible in our apparatus to apply voltages in the range -80 V to -1100 V. The voltage varies, depending on the tip–sample distance and the overall tip shape, and is applied to field-emit electrons from the tip through the sample and towards the MCP. In this paper, applied voltages varied between -100 V and -205 V. Beam currents for imaging can range from a few pA to nA, although typically tens of pA are required in order to generate a sufficient signal-to-noise ratio. The maximum dose experienced by the sample during imaging is estimated to be of the order of 10^7 electrons per nm\(^2\), with no noticeable morphological changes. The manufacture and operation of the microscope will be the subject of a forthcoming publication.

4. Sample preparation

Graphene was synthesized using low-pressure chemical vapour deposition (CVD) on copper foils [18, 19]. Briefly, 25-µm-thick Cu foils were heated to 1030 °C under flowing hydrogen ($P_{H_2} \approx 600$ mtorr). At the growth temperature, the H\(_2\) pressure was decreased (<50 mtorr) and methane was introduced ($P_{CH_4} \approx 200$ mT) for 20 min, after which the sample was quenched to room temperature. Subsequent to growth, graphene was transferred to metal-coated perforated silicon nitride membranes Cr(5 nm)/Au(45 nm)/SiN(50 nm)\(^7\) with 2 µm holes using techniques described in [18, 19].

To remove the residues and contaminants, the samples were then annealed in UHV at 300–450 °C for a duration of 45 min to 8 h. The effect on the cleanliness of graphene of different annealing temperatures and times is readily seen in PPM images (figure 5). Samples with a

\(^5\) Hamamatsu Photonics, F2223-21P.
\(^6\) PCO AG, Pixelfly.
\(^7\) Structure Probes Inc., P/N 4108PSN-BA.
Figure 3. PPM images of graphene. (a) An image of a portion of the graphene-coated silicon nitride grid. The grid is perforated by 2 µm holes on a 4 µm pitch. The majority of the holes are covered entirely with graphene (as in the top left), some are partially covered with graphene (top right) and a few are totally uncovered (bottom middle). Note the straight lines crisscrossing the image; these are thought to be grain boundaries and/or wrinkles in graphene. The lines are evidently decorated by leftover contaminants. (b) A close-up of a portion of the partially covered hole from (a). The lines are clearly visible. The uncovered portion is in the top left of the image. Note the diagonal lines and what are evidently folded back portions along the hole. Also worthy of note is the faceted nature of the edges of the hole. (c) A close-up of a portion of the area indicated by the arrow in (b). These objects are small enough so that they only partially scatter the electron beam. The interference pattern between the scattered and unscattered portions of the beam forms a hologram. (d) Many highly visible fringes appear along the edge of the graphene sheet as we zoom in further. The inset is a profile along the yellow line. Also, the interference due the diffraction around the contaminants along the lines becomes more visible. The voltage between the sample and the tip, along with the emission current, is displayed in the bottom left corner of each image.

A low level of contamination—mostly agglomerated at grain boundaries—are seen only after annealing for at least 8 h. Cleaning using UV/ozone [20] resulted in graphene sheets that are almost completely opaque to electrons at energies below 200 eV, despite the graphene remaining unchanged in Raman spectroscopy, presenting a matter for further investigation.
Figure 4. A further close-up of a portion of the partially covered hole. The graphene sheet appears to have been cleaved along a grain boundary or fold, forming an angle of 120°. Also evident is the fine structure of the contamination and the fringes visible from diffraction by contaminants. The graphene itself is rippled. To quantify the ripples, the average RDF of the graphene-covered area and of the vacuum area are plotted together. The RDF over graphene peaks around 13 nm, whereas the RDF over vacuum shows no such structure.

5. Results and discussion

The PPM images of graphene presented in this paper are also in-line holograms: part of the electron wave is scattered off the sample, and this partially scattered wave interferes with electrons that arrive at the detector unscattered [21].

When looking at clean graphene in PPM (figure 3) several features stand out: (I) disordered lines, (II) graphene texture, (III) transparency and (IV) interference fringes.

(I) Imaging reveals 30-nm-wide disordered lines crisscrossing the sample. Scanning transmission electron micrographs (STEM) of the sample (figure 6) indicate that these are composed of contaminants adhering to grain boundaries within the graphene films, similar to those seen in AFM and STEM [22]. Also, the lines and tears in the graphene sheet are at relative angles of 60° or 120°, indicating that the growth and failure within the sheets are aligned with the crystallographic directions of graphene (e.g. figure 3).

(II) A subtler feature is the texture of the graphene itself, consistent with the presence of ripples in a direction normal to the graphene sheet. With a wavelength of approximately 13 nm, this rippling is consistent with previous experimental observations of graphene [23–25] and theoretical estimates [26, 27] of the corrugation in graphene. The average radial distribution function (RDF) in the case of the dark features in this area of graphene (see figure 4) also shows the presence of a ripple-like structure, whereas for the vacuum area the RDF has no such features, as was expected. Possible causes and mechanisms of ripple formation in graphene are: (i) edge-induced stress [27, 28]; (ii) thermal fluctuations [26]; and (iii) adsorbed OH molecules or other contaminants, altering the bond length between carbon atoms [29].

(III) Consistent with earlier reports on high electron transparency, it is found here that very low energy electrons are transmitted through graphene with modest attenuation of about 25%. For purposes of developing PPM and LEEPS holography, this observation demonstrates that graphene will be useful as a ‘microscope slide’ [30–32] in supporting molecular and
Figure 5. The effects of contamination on the PPM of graphene. The intensity of the electron beam through the graphene sheet is very sensitive to the cleaning process. In each image the graphene is on the left and the vacuum region is on the right. The graphene was prepared by annealing in UHV at (a) 300 °C for 40 min, (b) 420 °C for 40 min, (c) 300 °C for 90 min and (d) above 400 °C for 8 h. The sample in (c) first underwent UV/ozone treatment.

New Journal of Physics 13 (2011) 063011 (http://www.njp.org/)

other nanoscale samples for LEEPS holography. In addition to being largely transparent, the conductive nature of graphene remedies the field distortion demonstrated in figure 2 by providing a planar equipotential surface, typically at ground potential, in the vicinity of a nanoscale sample. As a result, PPM images and holograms using graphene substrates will be rendered more amenable to direct interpretation and digital reconstruction. Graphene is expected to be transparent to electrons with energies ranging from a few keV down to a few eV [33]. As electron scattering becomes stronger with decreasing electron energy, graphene transparency decreases. Both elastic and inelastic scattering mechanisms are typically present in a sample and their effect is usually expressed as the corresponding electron mean free paths (MFP) in the material. The overall effect of electron interaction with matter is captured as an EAL, denoted by \(l_{\text{EAL}} \), which can be measured experimentally (e.g. by x-ray photoelectron spectroscopy). The values of these quantities are available in the literature and from established databases (e.g. those published by NIST [33]) in the case of many samples and electron energies.

For very thin carbon films (approaching the single-layer limit), experimental measurements are not abundant, but it is generally accepted that the EAL does not deviate significantly from about 5 Å between 100 and 200 eV [34, 35]. The intensity of the electron beam after passing...
Figure 6. STEM images of graphene. (a) A typical graphene-covered hole in the SiN membrane. The same lines seen in PPM are visible here. The contamination induced by the high-energy electron beam creates the numerous dark squares scattered around the image. No such contamination is visible in PPM. (b) A magnified image of a portion of the white square in (a). A line of discrete particles (most likely leftover Cu nanoparticles) decorate what is probably a grain boundary.

through a sheet of thickness h is given by $I(h) = I_0 \exp(-h/l_{EAL})$, where I_0 is the incident beam intensity and right angle incidence is assumed.

Assuming that this continuum-limit formula may be extrapolated to a single layer of graphene and assuming normal incidence, we calculate the transparency of single-layer graphene as given by $T = I(h)/I_0$, where h is the thickness of graphene. For electrons of energy 100 eV, assuming h to be double the covalent radius of sp2-bonded carbon (1.46 Å), we obtain a transparency of 75%, whereas assuming h to be the interlayer distance in graphite (3.35 Å) yields a transparency value of 51%.

In order to make an experimental estimate of the transparency of graphene, we need to properly account for the profile of the field-emitted beam. Assuming that the beam profile is of Gaussian form (plus a small constant), we optimized the beam parameters to maximize the uniformity of the intensity across the vacuum region and (by dividing our raw image by the optimal beam) obtained a flattened image. Using the latter image to estimate graphene transparency yields a value of 74%, very close to the above theoretical estimate using a graphene thickness that is double the covalent radius of sp2-bonded carbon.

(IV) The ultimate resolution of this technique is limited by the coherence of the electron beam, a good measure of which is expressed by the virtual source size of our electron emitter. In our case, the resolution of the microscope is roughly equal to the virtual source size of the emitter [2]. The number of Fresnel fringes at the graphene edges demonstrates the high coherence of the electron wave and is equivalent to that of a knife-edge interference experiment [36]. A maximum of 14 fringes has been found for the sample in figure 3(d), and the width of the fringe pattern, w, is related to the size of the virtual source of electrons. The images were taken at an energy of 124 eV (corresponding to an electron wavelength $\lambda = 1.1$ Å) for a source–sample distance of about 200 nm. The coherence angle of our beam can be estimated as the angular width of the interference pattern, $\gamma = 2 \tan^{-1}(w/2L)$, where
L is the source-to-detector distance. The coherence angle of our beam was estimated to be (4.3 ± 0.5) degrees. Using the van Cittert–Zernike theorem, we estimate the size of the virtual source according to [36]

$$R_{\text{eff}} = \frac{\lambda}{\pi \gamma}.$$ \hspace{1cm} (1)

For the image in figure 3(d), this yields a value of 4.7 ± 0.6 Å for the virtual source size of our nanotip, in line with other experimental measurements [37, 38]. Note that this result is based on the theoretical interpretation of the knife-edge diffraction experiment performed with an opaque edge. However, our graphene edge in figure 3(d) is not opaque, which could lead to errors in the above estimate. For a non-opaque object, some atoms away from the edge of the object also contribute to the diffracted wave, and so contribute to the observed Fresnel fringes. Because object waves from atoms away from the edge are slightly shifted from those of the edge atoms, their contribution acts to broaden the total object wave, therefore reducing the Fresnel fringe contrast. Therefore, the above estimate is in fact an upper limit of the source size. From FIM, we estimate the radius of curvature of the tip to be 5 nm. However, future work will employ tips with smaller radii and more precise characterization, which can be accomplished by performing etching and FIM at liquid-nitrogen temperatures. Using a virtual source size that is smaller than the radius of curvature of the tip is often observed in experimental studies [37].

6. Future work

The precise alignment and characterization of the geometry of our projection setup is required in order to reconstruct the holograms; this is our ongoing effort and will be presented in future work. The lack of divergent electron beams has limited electron holography in the past [39], but through careful control of the shape of the apex of the tip [17] and the geometry of the PPM setup, larger coherence angles may be achieved, allowing for increasingly accurate holographic reconstructions.

The potential use of graphene as a substrate for PPM and in-line electron holography will continue to be explored. Work is in progress to benchmark the resolution of this technique utilizing standards of well-defined size, such as single-walled carbon nanotubes and gold nanoparticles. Holographic studies of magnetic fields will also be of great interest. The fields emanating from magnetic nanoparticles and those due to various edge terminations of graphene will be of great interest. Our low-energy approach offers a greater sensitivity to field-induced phase shifts than do phase imaging techniques using high-energy electrons.

Acknowledgments

We thank P E Sheehan for facilitating this research and for his help with the preparation of this paper. The authors are grateful to B Cho for fruitful discussion and encouragement. The Microscopy group at the National Institute for Nanotechnology provided facilities for imaging the graphene sample in STEM. We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and Alberta Innovates—Technology Futures for funding this research.
References

[1] Kreuzer H J, Nakamura K, Wierzbicki A, Fink H W and Schmid H 1992 Theory of the point source electron microscope Ultramicroscopy 45 381–403
[2] Spence J C H and Cowley J M 1999 Electron holography at low energy Introduction to Electron Holography ed E Völkl, L F Allard and D C Joy (New York: Plenum)
[3] Morin P, Pitaval M and Vicario E 1996 Low energy off-axis holography in electron microscopy Phys. Rev. Lett. 76 3979–82
[4] Beyer A and Göhlhäuser A 2010 Low energy electron point source microscopy: beyond imaging J. Phys.: Condens. Matter 22 343001
[5] Girit C O et al Graphene at the edge: stability and dynamics Science 323 1705
[6] Egerton R F, Li P and Malac M 2004 Radiation damage in the TEM and SEM Micron 35 399–409
[7] Egerton R F, Wang F and Crozier P A 2006 Beam-induced damage to thin specimens in an intense electron probe Microsc. Microanal. 12 65–71
[8] Germann M, Latychevskaia T, Escher C and Fink H W 2010 Nondestructive imaging of individual biomolecules Phys. Rev. Lett. 104 95501
[9] Prigent M and Morin P 2001 Charge effect in point projection images of Ni nanowires and I collagen fibres J. Phys. D: Appl. Phys. 34 1167
[10] Lee Z, Jeon K J, Dato A, Erni R, Richardson T J, Frenklach M and Radmilovic V 2009 Direct imaging of soft–hard interfaces enabled by graphene Nano Lett. 9 3365–9
[11] Dobelle W H and Beer M 1968 Chemically cleaved graphite support films for electron microscopy J. Cell Biol. 39 733
[12] Iijima S 1977 Observation of single and clusters of atoms in bright field electron microscopy Optik 48 193–214
[13] Booth T J et al 2008 Macroscopic graphene membranes and their extraordinary stiffness Nano Lett. 8 2442–6
[14] Meyer J C, Girit C O, Crommie M F and Zettl A 2008 Imaging and dynamics of light atoms and molecules on graphene Nature 454 319–22
[15] Prigent M and Morin P 2000 Charge effect in point projection images of carbon fibres J. Microsc. 199 197–207
[16] Livadaru L, Mutus J and Wolkow R A 2008 In-line holographic electron microscopy in the presence of external magnetic fields Ultramicroscopy 108 472–80
[17] Rezeq M, Pitters J and Wolkow R 2006 Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen J. Chem. Phys. 124 204716
[18] Li X et al 2009 Large-area synthesis of high-quality and uniform graphene films on copper foils Science 324 1312–4
[19] Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Transfer of large-area graphene films for high-performance transparent conductive electrodes Nano Lett. 9 4359–63
[20] Vig J R 1985 UV/Ozone cleaning of surfaces. J. Vacuum Sci. Technol. A 3 1027–34
[21] Gabor D 1948 A new microscopic principle Nature 161 777–8
[22] Huang P Y et al 2011 Grains and grain boundaries in single-layer graphene atomic patchwork quilts Nature 469 389–92
[23] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Obergfell D, Roth S, Girit C and Zettl A 2007 On the roughness of single-and bi-layer graphene membranes Solid State Commun. 143 101–9
[24] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J and Roth S 2007 The structure of suspended graphene sheets Nature 446 60–3
[25] Bangert U, Gass M H, Bleloch A L, Nair R R and Geim A K 2009 Manifestation of ripples in free-standing graphene in lattice images obtained in an aberration-corrected scanning transmission electron microscope Phys. Status Solidi a 206 1117–22
[26] Fasolino A, Los J H and Katsnelson M I 2007 Intrinsic ripples in graphene Nat. Mater. 6 858–61

New Journal of Physics 13 (2011) 063011 (http://www.njp.org/)
[27] Shenoy V B, Reddy C D, Ramasubramaniam A and Zhang Y W 2008 Edge-stress-induced warping of graphene sheets and nanoribbons Phys. Rev. Lett. 101 245501
[28] Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Lau C N 2009 Controlled ripple texturing of suspended graphene and ultrathin graphite membranes Nat. Nanotechnol. 4 562–6
[29] Thompson-Flagg R C, Moura M J B and Marder M 2009 Rippling of graphene Europhys. Lett. 85 46002
[30] Wilson N R et al 2009 Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy ACS Nano 3 2547–56
[31] Pantelic R S, Meyer J C, Kaiser U, Baumeister W and Plitzko J M 2010 Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples J. Struct. Biol. 170 152–6
[32] Nair R R et al 2010 Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy Appl. Phys. Lett. 97 153102
[33] Jablonski A, Salvat F and Powell C J 2003 NIST Electron Elastic-Scattering Cross-Section Database—Version 3.1 National Institute of Standards and Technology, Gaithersburg MD, http://www.nist.gov/srd/nist64.htm
[34] Martin C, Arakawa E T and Callcottand J C 1985 Low energy electron attenuation length studies in thin amorphous carbon films J. Electron Spectrosc. Relat. Phenom. 35 307–17
[35] Jablonski A and Powell C J 1999 Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths J. Electron Spectrosc. Relat. Phenom. 100 137–60
[36] Spence J C H, Qian W and Silverman M P 2009 Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy J. Vac. Sci. Technol. A 12 542–7
[37] Cho B, Ichimura T, Shimizu R and Oshima C 2004 Quantitative evaluation of spatial coherence of the electron beam from low temperature field emitters Phys. Rev. Lett. 92 246103
[38] Chang C C, Kuo H S, Hwang I S and Tsong T T 2009 A fully coherent electron beam from a noble-metal covered W (111) single-atom emitter Nanotechnology 20 115401
[39] Stevens G B 2009 Resolving power of lens-less low energy electron point source microscopy J. Microsc. 235 9–24