Morphological, molecular and MALDI-TOF MS identification of ticks and tick-associated pathogens in Vietnam

Ly Na Huynh¹,²,³, Adama Zan Diarra¹,², Quang Luan Pham³, Nhiem Le-Viet⁴, Jean-Michel Berenger¹,², Van Hoang Ho³, Xuan Quang Nguyen³, Philippe Parola¹,²*¹

¹ Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, ² IHU-Méditerranée Infection, Marseille, France, ³ Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam, ⁴ School of Medicine and Pharmacy, The University of Da Nang (UD), Da Nang, Vietnam

* philippe.parola@univ-amu.fr

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising and reliable tool for arthropod identification, including the identification of alcohol-preserved ticks based on extracted leg protein spectra. In this study, the legs of 361 ticks collected in Vietnam, including 251 Rhipicephalus sanguineus s.l, 99 Rhipicephalus (Boophilus) microplus, two Amblyomma varanensis, seven Dermacentor auratus, one Dermacentor compactus, and one Amblyomma sp. were submitted for MALDI-TOF MS analyses. Spectral analysis showed intra-species reproducibility and inter-species specificity and the spectra of 329 (91%) specimens were of excellent quality. The blind test of 310 spectra remaining after updating the database with 19 spectra revealed that all were correctly identified with log score values (LSV) ranging from 1.7 to 2.396 with a mean of 1.982 ± 0.142 and a median of 1.971. The DNA of several microorganisms including Anaplasma platys, Anaplasma phagocytophilum, Anaplasma marginale, Ehrlichia ruscica, Babesia vogeli, Theileria sinensis, and Theileria orientalis was detected in 25 ticks. Co-infection by A. phagocytophilum and T. sinensis was found in one Rh. (B) microplus.

Author summary

Ticks are one of the important vectors and reservoirs of multiple pathogens infecting humans and animals such as bacteria, protozoans, viruses, and helminths. Nevertheless, studies on ticks and tick-borne infections remain limited in Vietnam. That said, serological and molecular evidence of tick infections in animals and humans have been reported on several occasions in Vietnam and Southeast Asia in recent decades. The identification of ticks and tick-associated diseases has an important role to play in epidemiological investigation and in assessing the risks of disease transmission to humans and animals. Recently, MALDI-TOF MS has been used as an innovative tool for the rapid and accurate identification of alcohol-preserved ticks based on proteins from extracted legs. This procedure represents a time-cost saving and does not require expert knowledge. This goal of
this study was to assess the efficiency and reliability of MALDI-TOF MS for the identification of alcohol-preserved ticks collected in Vietnam and to determine the presence of their relative pathogens. Our study revealed 97% correspondence between morphological and MALDI-TOF MS identification. The detected microorganisms that were confirmed by sequencing belonged to the Anaplasmataceae and Piroplasmida families. These findings suggested that ticks and tick-associated pathogens are likely to pose challenges to public and veterinary health in Vietnam.

Introduction

Ticks have been incriminated as the second most important vectors of human and animal infectious pathogens in the world after mosquitoes [1] and are able to transmit a wide range of pathogens, including bacteria, protozoans, viruses, and helminths [2]. In Southeast Asia (SEA), there are 104 known tick species, representing 12 genera, which is approximately 12% of all recognised and classified species [3]. Among them, *Rhipicephalus sanguineus* sensu lato (s.l.) are the most common ticks that parasitise dogs in SEA. These ticks are the ectoparasite vectors of bacterial and protozoal pathogens that can be transmitted to animals [4] and humans [5]. *Rhipicephalus* (*Boophilus*) *microplus* is an important vector of livestock pathogens [6]. *Amblyomma* (formerly *Aponomma*) *varanensis*, *Dermacentor auratus*, and *Dermacentor compactus* may act as vectors of infectious agents (e.g. *Rickettsia* spp., *Anaplasma* spp., *Ehrlichia* spp., *Borrelia* spp., *Babesia* spp. and *Theileria* spp.) to humans, and to domestic and wild animals in Malaysia, Laos, Thailand, and Vietnam [7–10].

In Vietnam, the agricultural sector makes up one-third of the developing nation’s economy [11], and livestock represents the second biggest contribution to household incomes after crop growing [12]. Despite the perceived food and economic benefits of livestock production, the country is potentially faced with challenges such as the emergence and re-emergence of zoonotic diseases, which can cause huge losses [13, 14]. One such example is the risk of infectious diseases spreading through the large number of dogs that are illegally imported into Vietnam from neighbouring countries for food consumption without any veterinary controls [15, 16]. In 2014, an outbreak of oriental theileriosis, which causes abortion and death, in imported cattle from Australia to Vietnam was associated with *Theileria orientalis* [17]. The serological detection of both *Babesia bovis* and *Babesia bigemina* parasite species transmitted by ticks has also been reported in cattle imported from Thailand [18].

Limited data is available on ticks and tick-associated pathogens in Vietnam. Nevertheless, 48 species of nine tick genera have been reported by Kolonin [19] and recently two new species of ticks of the genus *Dermacentor* (*Dermacentor limboiati* and *Dermacentor filippovae*) have been described by Apanaskevich [9, 20]. Also in Vietnam, some tick-borne microorganisms have been reported in ticks and animals [19, 21–23], more precisely in *Hepatozoon canis*, *Ehrlichia canis*, and *Babesia vogeli* ticks [24].

In recent years, several studies have focused on acarology in Vietnam [4, 10, 25]. The correct identification of ticks is a crucial step in distinguishing tick vectors from non-vectors. The lack of reference data and standard taxonomic keys specific to Vietnamese tick species makes the morphological identification of Vietnamese ticks difficult or almost impossible. The morphological identification of tick species therefore remains a challenge for Vietnamese researchers [19]. Molecular tools have been used to overcome the limitations of morphological identification [26]. However, there are several drawbacks to these tools, which are time-consuming, expensive, and require primer-specific targeting [27–29].
Recently, the MALDI-TOF MS method has been proposed as an alternative and innovative tool to overcome the limitations of the above two methods in arthropod identification [30]. Since then, studies in several laboratories have demonstrated that MALDI-TOF MS is a remarkably robust tool for identifying many species of arthropod vectors and non-vectors [30]. The aim of this study was to identify tick species collected from domestic and wild animals in Vietnam and their associated pathogens using morphological, MALDI-TOF MS and molecular tools.

Materials and methods

Ethics statement

Ethical approval was obtained from the Institute of Malariology, Parasitology, and Entomology, Quy Nhon (IMPE-QN) on behalf of the Vietnamese Ministry of Health (approval no: 401/VSR-CT-2010, 333/CT-VSR-2018). Permission was obtained from the communal authorities for wild animals that were not listed in the Red Data Book of Vietnam, and agreement was obtained from the owners of cows, goats, and dogs.

Tick collection and morphological identification

Ticks were collected in four provinces: Quynh Luu (19°13’ N; 105°60’ E) District, Nghe An Province; Nam Giang (15°65’ N; 107°50’ E) District, Quang Nam Province; Van Canh (13°37’ N; 108°59’ E) District, Binh Dinh Province; and Khanh Vinh (12°16’ N; 108°53’ E) District, Khanh Hoa Province in Vietnam in September 2010, between April and September 2018. The map of Vietnam showing the collection sites was made with QGIS version 3.10 and the Vietnamese layers were downloaded from DIVA-GIS at the following link: https://www.diva-gis.org/datadown (Fig 1A). All engorged and non-engorged ticks were collected from the skin of domestic animals (cows, goats, and dogs) and wild animals (pangolins, wild pigs) using forceps. Ticks from wild animals were collected in a collaborative manner by rangers and trained care personnel from the Wildlife Rescue, Conservation and Development Center. Ticks were morphologically identified first at species level using dichotomous keys [9, 31] by an entomological team from the Institute of Malariology, Parasitology and Entomology, Quy Nhon.

Fig 1. Map of Vietnam showing tick collection sites realised with QGIS version 3.10, the layers have been uploaded to the DIVA-GIS website: https://www.diva-gis.org/datadown (A); Morphologically, the 70% alcohol tick-preserved species were collected in Vietnam over a period of 10 years: Amblyomma varanensis [♀: a, b]; Amblyomma sp. [♀: c, d]; Dermacentor auratus [♂: e, f]; Dermacentor compactus [♂: g, h]; and approximately 2 years: Rhipicephalus (B) microplus [♀: i, k]; Rhipicephalus sanguineus s.l [♂: l, m] (B).

https://doi.org/10.1371/journal.pntd.0009813.g001
Vietnam (IMPE-QN). Ticks from the same host were counted and placed in the same tube containing 70% v/v alcohol, before being sent to the Institut Hospitalo-Universitaire (IHU) Méditerranée Infection in Marseille, France for MALDI-TOF MS and molecular analysis. In Marseille, the morphological identification of ticks was verified by two specialists in morphological identification of ticks using a magnifying glass (Zeiss Axio Zoom.V16, Zeiss, Marly le Roi, France) and dichotomous keys. Morphological identification was carried out only if all discriminating characters had been observed.

Tick dissection and sample preparation
Ticks were individually removed from the alcohol and were rinsed and dissected with a sterile surgical blade, as previously described [32]. The four legs of each tick and the half part without legs were submitted for MALDI-TOF MS and molecular biology analysis, respectively. The remaining parts with legs were frozen and stored as samples for any further research.

DNA extraction and molecular identification of ticks
DNA from each half-tick or legs (for ticks from which we did not obtain sequences with half-tick DNA) was individually extracted using an EZ1 DNA tissue kit (Qiagen), according to the manufacturer’s recommendations, as previously described [33]. DNA was monitored with Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, USA) and either immediately used or stored at -20˚C until use.

DNA from ticks was submitted to standard PCR in an automated DNA thermal cycle to amplify a 465-base pair (bp) fragment of the mitochondrial 16S DNA gene, as described previously [34]. The 12S tick gene, amplifying about 405-bp of the mitochondrial DNA fragment, was used for all specimens for which we did not have a sequence with the 16S gene. DNA from *R. sanguineus* s.l., reared in our laboratory, was used as a positive control. Purified PCR products were sequenced as previously described [34]. The obtained sequences were assembled and analysed using the ChromasPro software (version 1.7.7) (Technelysium Pty. Ltd., Tewantin, Australia), and were then blasted against the reference sequences available in GenBank (http://blast.ncbi.nlm.nih.gov/).

MALDI-TOF MS analysis

Sample preparation. The four legs of each tick were first put into an Eppendorf tube and dried overnight at 37˚C and then put into an Eppendorf tube with 40 μL of high-performance liquid chromatography (HPLC) grade water and incubated overnight at 37˚C. The legs were then crushed in a mix of 20 μL of 70% (v/v) formic acid (Sigma) and 20 μL of 50% (v/v) acetonitrile (Fluka, Buchs, Switzerland), with glass beads (Sigma, Lyon, France), as described previously [35]. The crushed legs were centrifuged and 1 μL of the supernatant of each sample was deposited in quadruplicate onto a MALDI-TOF MS steel plate (Bruker Daltonics, Wissembourg, France). After drying at room temperature, 1μL of matrix solution composed of a saturated solution of α-cyano-4-hydroxycynamic acid (Sigma, Lyon, France), 50% acetonitrile (v/v), 2. 5% trifluoroacetic acid (v/v) (Aldrich, Dorset, United Kingdom), and high performance liquid chromatography (HPLC) grade water was added [36]. The target plate was air-dried one more at room temperature before being introduced into the Microflex LT MALDI-TOF Mass Spectrometer (Bruker Daltonics, Germany) for analysis. The quality of the matrix, sample loading, and performance of the MALDI-TOF MS device were controlled using the legs of a *Rh. sanguineus* s.l. reared in our laboratory as a positive control.

MALDI-TOF MS parameters, spectral analysis and reference database creation. The spectral profiles obtained from the tick legs were visualised using a Microflex LT MALDI-TOF
mass spectrometer with FlexControl software (version 3.3, Bruker Daltonics). The setting parameters of the MALDI-TOF MS apparatus were identical to those previously used [32].

The FlexAnalysis v.3.3 software was used to evaluate spectral quality (smoothing, baseline subtraction, peak intensities). MS spectra reproducibility was assessed by comparing the average spectral profiles (MSP, main spectrum profile) obtained from the four spots of each tick leg, according to species, using MALDI-Biotyper v3.0 software (Bruker Daltonics) [37]. MS spectra reproducibility and specificity were assessed based on a principal component analysis (PCA) and cluster analysis (MSP dendrogram). PCA was performed using ClinProTools v2.2 with the manufacturer’s default settings. Cluster analysis was performed based on a comparison of the MSP given by MALDI-Biotyper v3.0 software with clustering according to protein mass profile (i.e., their mass signals and intensities) [37].

Based on the morphological identification, eight and seven reference spectra of *Rh. sanguineus* and *Rh. (B) microplus*, respectively, were added to our MALDI-TOF MS database. However, two, one, and one spectra of *D. auratus*, *Am. varanensis*, *D. compactus*, respectively, which were only identified morphologically by three tick identification specialists, were also added to our MALDI-TOF MS database. To create a database, reference spectra (MSP, Main Spectrum Profile) were created by combining the results of spectra from specimens of each species using the automated function of the MALDI-Biotyper v3.0 software (Bruker Daltonics). MSPs were created based on an unbiased algorithm using peak position, intensity, and frequency data [38]. Four tick species that could not be identified by molecular biology were temporarily added into the MS reference database to identify the remaining specimens from the same species.

Blind test for tick identification. A blind test was performed with the remaining tick specimens not included in our MALDI-TOF MS database after the database had been upgraded with 19 MS spectra from specimens of the five tick species to determine their identification. The reliability of tick species identification was estimated using the log score values (LSVs) obtained from the MALDI-Biotyper software, which ranged from 0 to 3. These LSVs correspond to the degree of similarity between the MS reference spectra in the database and those submitted to blind tests. An LSV was obtained for each spectrum of the samples tested. According to one previous study [37], an LSV of at least 1.8 should be obtained to be considered reliable for species identification.

Detection of microorganisms. Quantitative PCR (qPCR) was performed for screening microorganisms using specific primers and probes targeting Anaplasmataceae, Piroplasmida, *Borrelia* spp., *Bartonella* spp., *Coxiella burnetii*, and *Rickettsia* spp. PCR reactions were performed according to the manufacturer’s instructions, using a CFX96 Touch detection system (Bio-Rad). qPCR amplification was performed using the thermal profile described previously [39]. The DNA of *Rickettsia montanensis*, *Bartonella elizabethae*, *Anaplasma phagocytophilum*, *Coxiella burnetii*, *Borrelia crocidurae*, and *Babesia vogeli* were used as a positive control and DNA from *Rh. sanguineus* s.l from our laboratory, which were free of bacteria, were used as negative controls. The samples were considered to be positive when the cycle threshold (Ct) was strictly less than 36 [40].

All samples that were positive following qPCR were subjected to standard PCR and sequencing to identify the microorganism species. For the *Rickettsia* sp. positive sample, we first used a primer targeting a 630-bp fragment of the *OmpA* gene [35] and then another targeting a 401-bp fragment of the *gltA* gene [33]. Samples which were Anaplasmataceae positive following qPCR were subjected to amplifying and sequencing of a 520-bp fragment of the 23S rRNA gene [33]. Samples which were Piroplasmidae positive following qPCR were subjected to amplifying and sequencing of a 969-bp fragment of the 18S rRNA [41]. Samples which were *Borrelia* sp. positive following qPCR was subjected to amplifying and sequencing of a 344-bp
fragment of the \textit{flaB} gene \cite{42}. The primers and probes used in this study are listed in Table 1. The obtained sequences were assembled and analysed using the ChromasPro software (version 1.7.7) (Technelysium Pty. Ltd., Tewantin, Australia), and were then blasted against the reference sequences available in GenBank (\url{http://blast.ncbi.nlm.nih.gov/}). The method used for phylogenetic tree analysis was the neighbour-joining (NJ) method with 1,000 replicates. DNA sequences were aligned using MEGA software version 7.0 (\url{https://www.megasoftware.net/}). The various statistical analyses were performed using R software version 3.4 (R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria) and ggplot packages were used to perform the graphics.

Results

Tick collection and morphological identification

A total of 1,120 ticks including 334 (30\%) engorged ticks were collected in four provinces of Vietnam: Nghe An, Quang Nam, Binh Dinh, and Khanh Hoa. Morphologically, ticks were identified as belonging to six species (Fig 1A), including 935 (83.5\%) \textit{R. sanguineus} s.l. collected from dogs, 174 (15.5\%) \textit{R. (B) microplus} from cows and goats, seven (0.6\%) \textit{D. auratus}
from pangolins, two (0.2%) *Am. varanensis* from wild pigs, and one (0.1%) *D. compactus* and one (0.1%) *Amblyomma* sp. from a pangolin (Table 2). *Rhipicephalus sanguineus* s.l. and *Rh. (B) microplus* were collected between April and September 2018. The other ticks were collected in September 2010. The different specimens that could not be identified by molecular biology are shown in the pictures in Fig 1B that we took using a magnifying glass (Zeiss Axio Zoom, V16, Zeiss, Marly le Roi, France).

Molecular identification of ticks
To confirm our morphological identification, 25 tick specimens were submitted to molecular analysis using the 16S rDNA gene, including eight specimens of *Rh. sanguineus* s.l., seven *Rh. (B) microplus*, seven *D. auratus*, one *Am. varanensis*, one *D. compactus* and one *Amblyomma* sp. from a pangolin (Table 2).

![Fig 2. Comparison of MALDI-TOF MS spectra from the legs of six tick species collected in Vietnam. The MS spectra revealed intra-species reproducibility and inter-species specificity (A); The MS spectra were compared by Principal Component Analysis (B); a.u., arbitrary units; m/z, mass-to-charge ratio.](https://doi.org/10.1371/journal.pntd.0009813.g002)
sp. Sequences were obtained only for the specimens of *Rh. sanguineus* s.l. and *Rh. (B) microplus*. BLAST analysis indicated that obtained sequences from *Rh. sanguineus* s.l. were 99.75 to 100% identical to the corresponding sequences of *Rh. sanguineus* s.l. (Genbank: MG651947, MG793434, KX632154) and those obtained from *Rh. (B) microplus* were 100% identical to the corresponding sequences of *Rh. (B) microplus* (Genbank: MN880401, MT462222, EU918187). Unfortunately, for the specimens morphologically identified as *D. auratus*, *Am. varanensis*, *Amblyomma* sp., and *D. compactus*, we were unable to amplify any DNA from the half-tick or legs of these tick species with PCR targeting part of the two genes (16S and 12S rDNA), despite the fact that the nanodrop had indicated that the amount of DNA contained in these samples was 7.8 to 19.4 ng/μl.

MS reference spectra analysis

The legs of 361 specimens, including 251 morphologically identified as *Rh. sanguineus* s.l., 99 *Rh. (B) microplus*, seven *D. auratus*, two *Am. varanensis*, one *Amblyomma* sp., and one *D. compactus* were randomly selected and subjected to MALDI-TOF MS analysis. Visualisation of MS spectra from all specimens using FlexAnalysis v.3.3 software showed that 91% (329) of specimens had excellent quality spectra (peak intensity > 3,000 a.u., no background noise and baseline subtraction correct) (Figs 2A and S1 and Table 2). The MS spectra of different specimens showed intra-species reproducibility and inter-species specificity, as confirmed by PCA (Figs 2B and 3B) and dendrogram (Fig 3A) analysis. PCA and dendrogram analysis showed that all specimens of the same species were grouped together or were on the same branches. Additionally, at the genus level, all specimens from the same genus were also gathered in the same part of dendrogram (Fig 3A).

MALDI-TOF MS tick identification by blind test

The 310 MS remaining spectra of excellent quality, including 233 *Rh. sanguineus* s.l, 71 *Rh. (B) microplus*, five *D. auratus* and one *Amblyomma* sp., were queried against our reference spectra database upgraded with eight *Rh. sanguineus* s.l. and seven *Rh. (B) microplus* which were morphologically and molecularly identified, and two *D. auratus*, one *Am. varanensis* and one *D. compactus* identified only morphologically. The spectra of the ticks introduced in the

![Fig 3. Comparison of MALDI-TOF MS spectra from the legs of six alcohol-preserved tick species collected in Vietnam and stored for different periods of time. The dendrogram was built using between one and eight representative MS spectra from six distinct tick species (A). The MS spectra of different specimens showed intra-species reproducibility and inter-species specificity as confirmed by PCA (B).](https://doi.org/10.1371/journal.pntd.0009813.g003)
MALDI-TOF MS database have been deposited on the website of the University Hospital Institute (UHI) under the following DOI: https://doi.org/10.35088/rbqp-g648. The blind test revealed that 100% (233) of Rh. sanguineus s.l. specimens were correctly identified as Rh. sanguineus s.l. with LSVs ranging from 1.7–2.351 with a mean of 1.976 ± 0.137, 100% (71) of Rh. (B) microplus identified with LSVs ranging from 1.705–2.346 with a mean of 1.989 ± 0.148 and 100% (five) D. auratus with LSVs of 1.949–2.396 with a mean of 2.164 ± 0.149 (Table 2). The tick identified morphologically as Amblyomma sp. was identified by MALDI-TOF MS as Am. varanensis (LSV = 1.857) (Table 2). All our specimens were identified with LSVs ranging from 1.7–2.396 with a mean of 1.982 ± 0.142 and a median of 1.971, and 97% (301) had LSVs > 1.8, which is considered the threshold for identification (Fig 3B). No blind test was performed for D. compactus because of the low number of specimens.

Detection of microorganisms in ticks

A total of 361 ticks, including 260 (72%) non-engorged and 101 (28%) engorged ticks, were examined for the DNA of six microorganisms using qPCR. Thirty-nine (10.8%) were positive for at least one of the microorganisms, including Anaplasmataceae, Rickettsia spp, Borrelia spp. and Piroplasmida (Table 3). Notably, two Rh. (B) microplus specimens were co-infected with both Anaplasmataceae and Piroplasmida. No samples were positive for C. burnetii or Bartonella spp.

DNA from bacteria of the Anaplasmataceae family were detected in 18/361 (5%) of ticks by qPCR. The DNA of bacteria belonging to the Anaplasmataceae family was found in 13 (72%) Rh. (B) microplus and five (28%) Rh. sanguineus s.l. We successfully obtained seven (40%) sequences all from Rh. (B) microplus by standard PCR and sequencing using the 23S Anaplasmataceae gene amplifying a 520-bp fragment of rRNA (Table 3). A BLAST analysis showed that four of the sequences obtained were 100% identical to the corresponding sequence of *Anaplasma marginale* (Genbank: CP023731), one of sequences obtained was 100% identical to the corresponding sequence of *Ehrlichia rustica* (Genbank: KT364330), one was 99.13% identical to the corresponding sequence of *Anaplasma phagocytophilum* (Genbank: CP015376) and one was 100% identical to the corresponding sequence of *Anaplasma platys* (Genbank: CP046391).

DNA of Piroplasmida was detected in 19/361 (5.3%) of ticks by qPCR using the 5.8S rRNA gene. Of these, ten (53%) were found in Rh. sanguineus s.l. and nine (47%) were found in Rh. sanguineus s.l. (Table 3). Theileria sinensis was detected in 96/361 (26%) of ticks by qPCR using the D3 gene, while Babesia vogeli was detected in 2.5% (9/361) of ticks by qPCR using the 18S ribosomal RNA gene. The total prevalence of microorganisms detected in ticks was 140/361 (39%) (Table 3).
We successfully obtained 18 (95%) sequences by standard PCR and sequencing using the 18S rRNA gene amplifying a 969-bp fragment of rRNA. The BLAST analysis of nine sequences obtained from *Rh. sanguineus* s.l. revealed that they were between 99.75% and 100% identical to the corresponding sequence of *Babesia vogeli* (GenBank: MN067709), six sequences obtained from *Rh. (B.) microplus* were between 99.82% and 100% identical to the corresponding sequences of *Theileria sinensis* (GenBank: KF559355, MT271911, AB000270) and three sequences obtained from *Rh. (B.) microplus* were between 99.88 and 100% identical to the corresponding sequences of *Theileria orientalis* (GenBank: MG599099) (Table 3).

Rickettsia and *Borrelia* sp. were detected by qPCR in one tick of *Amblyomma* sp. and one of *Rh. sanguineus* s.l., respectively. However, all the standard PCR procedures for the identification of *Rickettsia* and *Borrelia* species failed. Of the 25 ticks for which we obtained sequences of microorganisms, 16 (64%) came from engorged ticks and one tick (4%) was co-infected with *A. phagocytophilum* and *T. sinensis*. The species of microorganism, the species of tick and the state of engorgement of the ticks in which the microorganisms were detected are listed in S1 Table.

Two phylogenetic trees of Anaplasmataceae and Piroplasmida were built from the 23S rRNA and 18S rRNA genes sequences of our amplicons, respectively. These phylogenetic trees showed that the microorganisms detected in this study are close to their homologues available in GenBank (Fig 4A and 4B).

Discussion

The correct identification of tick species and associated pathogens can contribute to improving vector control efforts adapted to the surveillance and prevention of outbreaks of tick-borne diseases. In this study, our ticks were identified using traditional methods (morphological) and then confirmed by molecular methods and MALDI-TOF MS, and the associated pathogens were researched using molecular tools. In this study, we combined these three tools to identify ticks and to search for microorganisms associated with these ticks collected in Vietnam.

In this study, the morphological identification of ticks collected in Vietnam revealed six species, including *Rh. sanguineus* s.l., *Rh. (B.) microplus*, *Am. varanensis*, *Amblyomma* sp., *D.
auratus and D. compactus. All these species had already been reported in Vietnam [3, 19, 25] and neighbouring countries including Laos, Malaysia, Cambodia, and Thailand [3, 23, 43]. Among the Rh. sanguineus s.l. were the species most commonly found on dogs in Vietnam. This tick species is the most widely distributed worldwide and is known to be a vector of several pathogens such as Anaplasma, Rickettsia, Ehrlichia, and Babesia spp. [44, 45]. Rhipicephalus (Boophilus) microplus was collected from both cows and goats and is responsible for the transmission of livestock pathogens [6, 24]. There have been several reports of tick-borne livestock pathogens such as Anaplasma spp., Ehrlichia ruminantium, Babesia bigemina, Babesia bovis, and Theileria spp. [46–48]. However, this tick rarely bites humans [22]. Other tick species were collected from wild animals (pangolins and pigs). Several species of ticks of the genus Amblyomma have been collected from almost all species of pangolins [49, 50] and are vectors of Rickettsia spp. [51]. Recently, several studies reported Amblyomma javanense detected from pangolins in Singapore [52] and China [53], and Amblyomma compressum ticks on pangolins from Congo [54]. Our study is the first to observe Am. varanensis, Amblyomma sp. on pangolins from Vietnam. Dermacentor auratus, D. compactus are widely distributed across Sri Lanka, Bangladesh, India, and SEA including Vietnam [55, 56], and are well known vectors of Rickettsia, Coxiella burnetii, Borrelia, and Anaplasma spp. [57, 58].

Molecular techniques were used to confirm our morphological identification of tick species by amplifying a portion sequence of a 465-bp fragment 16S rRNA gene. The choice of the 16S rRNA gene was based on previous studies that reported that this gene was a reliable tool for tick identification [29, 59]. Interrogating the GenBank database with 16S rDNA sequences from Rh. sanguineus s.l. and Rh. (B) microplus showed similarity with the reference sequences available in Genbank for these species that were stored in 70% alcohol for approximately two years. Conversely, we were unable to obtain sequences for all specimens that had been preserved for more than 10 years in alcohol (i.e., Am. varanensis, Amblyomma sp., D. auratus, and D. compactus) with the 16S and 12S rDNA genes. This might be due to the fact that the alcohol was not completely eliminated during extraction [60] and/or to the fact that these ticks contained blood from their host, which includes several factors that can inhibit the PCR reaction, as already reported [61].

In this study, MALDI-TOF MS was used to identify ticks collected in Vietnam from domestic and wild animals. Among the spectra of tick legs that were subjected to MS analysis, the correct identification rates (LSVs > 1.8) were 97%, almost identical to the identification rate reported in other studies [32, 33, 62]. Interestingly, specimens that were not able to be identified by molecular biology were identified by MALDI-TOF MS. This confirms that the tool is reliable and accurate for the identification of ticks. Despite these numerous advantages, this technique is limited by the high cost of the device, although it can be used for clinical microbiology and mycology in addition to entomology, with no additional cost. Maintenance may be another limitation but this can be compensated for by the low cost of reagents once the device is acquired [30]. Secondly, the development of protocols, the choice of the arthropod compartment to be used, the spectra for the creation of the database and, finally, the methods and time of conservation of the arthropods can influence the performance of MALDI-TOF MS [30, 37, 63].

In this study, 10.8% of the ticks were positive for at least one of the microorganisms by qPCR, of which 16/25 (64%) of the ticks carrying DNA of microorganisms by sequencing were engorged ticks. The detection of microorganisms in engorged ticks doesn’t have the same epidemiological meaning as when detected in a questing or non-engorged attached tick. Such ticks may potentially have fed on hosts with bacteraemia, thus biasing the estimate of the actual rate of tick infestation.

The microorganisms detected in this study and confirmed by sequencing belong to the Anaplasmataceae family (A. phagocytophilum, A. marginale, A. platys, and E. rustica), which
are known aetiologies of zoonotic diseases [8, 13, 64, 65]. The Piroplasmida family (B. vogeli, T. sinensis, and T. orientalis) was mainly known as the potential zoonotic pathogens [66].

Anaplasma marginale is responsible for bovine anaplasmosis and is an intracellular bacterium transmitted by tick species mainly belonging to the Rhipicephalus and Dermacentor genera [67]. The DNA and specific antibodies against A. marginale were previously reported in the blood of cattle and cows from Vietnam [23, 24]. This study is the first report of A. marginale in Rh. (B) microplus and Rh. sanguineus s.l ticks collected in Vietnam. However, A. marginale had previously been reported in cattle and cattle Rh. (B) microplus ticks in China [68], the Philippines [69] which is a neighbouring country to Vietnam, in cattle and cattle ticks in Malaysia [70], and many African countries [71].

Anaplasma platys, the aetiological agent of infectious canine cyclic thrombocytopenia and which can be transmitted by Rh. sanguineus s.l., A. platys has been recorded in China [48], Colombia [72], and detected on various ectoparasites such as Rh. (B) microplus [48] and Hyalomma dromedarii [73]. Anaplasma platys is one of the most significant tick-borne zoonotic pathogens [24, 74] and several cases of human infections have been described in Venezuela [75], Chicago [76], and South Africa [77]. Anaplasma platys has already been detected from blood specimens of cattle and dogs in Vietnam [24], but it was the first discovery in Rh. sanguineus s.l. ticks from Vietnam in our study. It had been previously detected in Rh. sanguineus s.l. in SEA [25], including in the Philippines [78], Thailand, and Malaysia [79, 80].

The pathogen A. phagocytophilum is the causative agent of human granulocytic anaplasmosis (HGA) and tick-borne fever in ruminants [81]. It is rarely found in Rh. (B) microplus and is known to be transmitted by the Ixodes tick genus [82]. Of the detected tick-borne diseases, A. phagocytophilum is the most important bacterium due to its wide distribution across Europe, Asia, and North America [83, 84], with several reports of human infections [85, 86]. This is the first study reporting the detection of A. phagocytophilum in Rh. (B) microplus ticks using the molecular method in Vietnam. It has also been described in the same tick species in China [87] and Malaysia [70].

We found Candidatus Ehrlichia rustica in the Ehrlichia chaffeensis group, the agent of human monocytic ehrlichiosis [88]. Canine ehrlichiosis was first recorded in a serological study in US military dogs serving in the Vietnam war [89]. The vectors of this pathogen are Rhipicephalus, Amblyomma, Dermacentor spp. [90]. Another study from 2003 reported that Ehrlichia spp., which gathered with E. chaffeensis, was also discovered in other species, such as Haemaphysalis hystricis from wild pigs in Vietnam [22], and Ixodes sinensis in China [91].

Babesia vogeli, the agent of canine babesiosis in North and South America, is transmitted by Rh. sanguineus s.l. and is the less pathogenic species. It is a protozoan found mainly in tropical or subtropical areas of northern, eastern and southern Africa, Asia, and northern and central Australia [92]. In SEA, B. vogeli has been described in Malaysia [93] and in the Philippines [94]. The molecular evidence of B. vogeli in Rh. sanguineus s.l. collected from dogs has been reported in Vietnam [4] and in ticks collected from East and Southeast Asia [25]. The DNA of B. vogeli was detected in this study in Rh. sanguineus s.l. ticks, confirming the presence of the protozoan in Vietnam.

Theileria sinensis, the causative agent of bovine theileriosis, causes economic losses and threats to the cattle industry. Theileria sinensis is primarily distributed throughout Asia (including China, the Korean Peninsula, Japan, and Malaysia [95–97]. It was identified in Haemaphysalis qinghaiensis ticks collected from cattle and yaks in China [98]. Theileria spp. were then detected in Haemaphysalis longicornis, Hyalomma (i.e., Hy. detritum, Hy. dromedarii, Hy. a. anatolicum, Hy.a asiaticum, Hy. rufipes), and Rhipicephalus sp. [99, 100]. Besides ticks, Theileria spp. were also detected in sheep, goat, and ruminant blood samples [101]. This is the first report of T. sinensis DNA in Rh. (B) microplus in Vietnam.
Similarly, *Theileria orientalis*, the causative agent of oriental theileriosis, is an economically significant protozoan which infects cattle [95]. *Theileria orientalis* is widely distributed in countries such as Japan [102], China [103], Indonesia [104], Australia [105], and New Zealand [95]. The *Theileria orientalis* species has been identified in Vietnam from blood samples from cattle, water buffalo, sheep, goats and *Rh. (B) microplus* ticks collected from these hosts [46]. Here, we showed the presence of 3% *T. orientalis* in *Rh. (B) microplus* collected from cows. Although *Rh. (B) microplus* is not recorded as a vector of *T. orientalis*, none of the common vectors *Amblyomma*, *Dermacentor*, and *Haemaphysalis* spp. [106] were detected in our work. *Rickettsia* spp. and *Borrelia* spp. detected by qPCR in this study were not amplified and sequenced to confirm their species. As previously reported, this could be caused by the higher sensitivity of qPCR than standard PCR [107].

Co-infections in ticks usually occur after a blood meal from a host co-infected with different microorganisms. In this study, we reported for the first time the co-infection by *A. phagocytophilum* and *T. sinensis* in *Rh. (B) microplus* ticks. The coinfection rate of 0.3% (1/361) in this study is lower those that have been reported in the Côte d’Ivoire [71], and in Mali [33].

Conclusion

Our work indicates that MALDI-TOF MS is a useful and reliable tool for the identification of alcohol-preserved tick species which have undergone different storage periods collected in Vietnam. Our database demonstrates, for the first time, the prevalence of *A. platys*, *A. phagocytophilum*, *A. marginale*, *E. rustica*, and *T. sinensis* pathogens in ticks collected in Vietnam. Our finding should prompt further investigation to evaluate the potential risks of ticks and tick-associated pathogens in Vietnam. Furthermore, it shows that MALDI-TOF MS may be used as an alternative tool for identifying ticks infected or uninfected by pathogens in future studies.

Supporting information

S1 Fig. Flow diagram of tick specimens which were included and analysed using MALDI-TOF MS and molecular tools. (TIF)

S1 Table. The number of microorganisms were detected in engorged/non-engorged ticks. *: Tick was co-infections by two microorganisms. (DOCX)

Acknowledgments

We are sincerely grateful to the staff of the Entomological Department of the Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam, especially to the staff in the experimental entomology group, for their support with specimen collection and transportation. We would also thank the insectarium team of the Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France, for their assistance and the provision of the MALDI-TOF MS and molecular biology materials.

Author Contributions

Conceptualization: Ly Na Huynh, Nhiem Le-Viet, Philippe Parola.

Data curation: Ly Na Huynh, Adama Zan Diarra, Philippe Parola.

Formal analysis: Ly Na Huynh, Adama Zan Diarra, Philippe Parola.
Funding acquisition: Philippe Parola.
Investigation: Ly Na Huynh, Quang Luan Pham, Nhiem Le-Viet, Van Hoang Ho.
Methodology: Ly Na Huynh, Adama Zan Diarra, Xuan Quang Nguyen, Philippe Parola.
Project administration: Xuan Quang Nguyen, Philippe Parola.
Resources: Ly Na Huynh, Adama Zan Diarra, Jean-Michel Berenger, Philippe Parola.
Software: Ly Na Huynh, Adama Zan Diarra.
Supervision: Adama Zan Diarra, Philippe Parola.
Validation: Ly Na Huynh, Adama Zan Diarra, Jean-Michel Berenger, Philippe Parola.
Visualization: Ly Na Huynh, Adama Zan Diarra, Philippe Parola.
Writing – original draft: Ly Na Huynh, Philippe Parola.
Writing – review & editing: Ly Na Huynh, Adama Zan Diarra, Quang Luan Pham, Nhiem Le-Viet, Jean-Michel Berenger, Van Hoang Ho, Xuan Quang Nguyen, Philippe Parola.
14. Kwaghe A, Teru V, Ndahi M, Usman J, Abubakar A, Iwar V. Veterinary Services as a Panacea for Agricultural Development and Increase in Nigeria’s Gross Domestic Product (GDP): A Review. *International Journal of Life Sciences.* 2015; 4(2): 134–46.

15. Chin S. Thriving dog meat trade [The ASEAN Post. [cited 21 Mar 2021]. Available from: https://aseanpost.com/article/thriving-dog-meat-trade.

16. Ngo TC, Nguyen DT, Tran HH, Morla K, Nguyen TH, Ehara M, et al. Imported Dogs as Possible Vectors of Vibrio Cholerae O1 Causing Cholera Outbreaks in Northern Vietnam. *The Open Infectious Diseases Journal.* 2011; 5: 127–34. https://doi.org/10.2174/1874279301105010127

17. Gebrekidan H, Nelson LG, Smith RB, Gasser, Jabbar A. An outbreak of oriental theileriosis in dairy cattle imported from Vietnam to Australia. *Parasitology.* 2017; 144(6): 738–46. https://doi.org/10.1017/S0031182016002328 PMID: 27938442

18. Sivakumar T, Dinh TBL, Phung TL, Keiske S, Ikuo I, Naoaki Y, et al. Serological and molecular surveys of Babesia bovis and Babesia bigemina among native cattle and tick imported from Thailand in Hue, Vietnam. *J Vet Med Sci.* 2018; 80(2): 333–6. https://doi.org/10.1292/jvms.17-0549 PMID: 29249730

19. Kolonin GV. Review of the Ixodid tick fauna (Acari: Ixodidae) of Vietnam. *J Med Entomol.* 1995; 32(3): 276–82. https://doi.org/10.1093/jmedent/32.3.276 PMID: 7616517

20. Apanaskevich DA, Apanaskevich MA. Description of a New Dermacentor (Acari: Ixodidae) Species from Thailand and Vietnam. *J Med Entomol.* 2015b; 52(5): 806–12. https://doi.org/10.1093/jme/jtv067 PMID: 26336207

21. Petney TN, Keirans JE. Ticks of the genera Boophilus, Dermacentor, Nosomma and Rhipicephalus (Acari: Ixodidae) in South-east Asia. *Tropical Biomedicine.* 1996a; 13: 73–84. [cited 30 Mar 2021]. Available from: https://www.sciencedirect.com/document/?id=e77f8566-9946-4217-8764-0dc7e1c850dd.

22. Parola P, Comet JP, Sanogo YO, Raoult D, Telford SR III, Wongsrichanalai C, et al. Detection of *Ehrlichia* spp., *Anaplasma* spp., *Rickettsia* spp., and other eubacteria in ticks from the Thai-Myanmar border and Vietnam. *J Clin Microbiol.* 2003; 41(4):1600–08. https://doi.org/10.1128/jcm.41.4.1600–1608.2003

23. Geurden T, Somers R, Thanh NTG, Dorny P, Giao HK, Vercruysse J, et al. Parasitic infections in dairy cattle around Hanoi, northern Vietnam. *Vet Parasitol.* 2008; 153(3–4): 384–88. https://doi.org/10.1016/j.vetpar.2008.01.031 PMID: 18328629

24. Chien NTH, Nguyen TL, Bui KL, Nguyen VT, Le TH. *Anaplasma* marginale and *A. platys* Characterized from Dairy and Indigenous Cattle and Dogs in Northern Vietnam. *Korean J Parasitol.* 2019; 57(1): 43–47. https://doi.org/10.5347/kjp.2019.57.1.43 PMID: 30840799

25. Nguyen VL, Colella V, Greco G, Hadi UK, Venturina V, Tong KBY, et al. Molecular detection of pathogens in ticks and fleas collected from companion dogs and cats in East and Southeast Asia. *Parasit Vectors.* 2020; 13(1): 420. https://doi.org/10.1186/s12263-008-0106-1 PMID: 32799914

26. Medianikov O and Fenollar F. Looking in ticks for human bacterial pathogens. *Microb Pathog.* 2014; 77: 142–8. https://doi.org/10.1016/j.micpath.2014.09.008 PMID: 25229617

27. Lauri A, Mariani PO. Potentials and limitations of molecular diagnostic methods in food safety. *Genes Nutr.* 2009; 4(1): 1–12. https://doi.org/10.1007/s12263-008-0106-1 PMID: 19067016

28. Favrot C. Polymerase chain reaction: advantages and drawbacks. *The Zurich Open Repository and Archive, University of Zurich.* 2015. [cited 18 Dec 2015]. Available from: https://doi.org/10.5167/uzh-116536

29. Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors. *Future Microbiol.* 2016; 11(4): 549–66. https://doi.org/10.2217/fmb.16.5 PMID: 27070074

30. Sevestre J, Diarra AZ, Laroche M, Almeras L, Parola P. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an emerging tool for studying the vectors of human infectious diseases. *Future Microbiol.* 2021; 16: 323–40. https://doi.org/10.2217/fmb-2020-0145 PMID: 33733821

31. Berry CM. Resolution of the taxonomic status of Rhipicephalus (Boophilus) microplus. Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow. 2017; 268.

32. Boyer PH, Almeras L, Plantard O, McCoy K, Jaulhac B, Boulanger N, et al. Identification of closely related *Ixodes* species by protein profiling with MALDI-TOF mass spectrometry. *PLoS One.* 2019; 14(10): e0223735. https://doi.org/10.1371/journal.pone.0223735 PMID: 31622384

33. Diarra AZ, Almeras L, Laroche M, Doumbo O, Raoult D, Parola P, et al. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. *PLoS Negl Trop Dis.* 2017; 11(7). e0005762. https://doi.org/10.1371/journal.pntd.0005762 PMID: 28742123
34. Kumsa B, Laroche M, Almeras L, Mediannikov O, Raoult D, Parola P. Morphological, molecular, and MALDI-TOF mass spectrometry identification of ixodid tick species collected in Oromia, Ethiopia. *Parasitol. Res.* 2016; 115(11): 4199–210. https://doi.org/10.1007/s00436-016-5197-9 PMID: 27469536

35. Bouchekikhchouk M, Laroche M, Aouadi A, Benakhla A, Raoult D, Parola P, et al. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. *Comp Immunol Microbiol Infect Dis.* 2018; 57: 39–49. https://doi.org/10.1016/j.cimid.2018.05.002 PMID: 30017077

36. Yssouf A, Socolovschi C, Flandrops C, Sokhna CS, Raoult D, Parola P, et al. Matrix-Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry: An Emerging Tool for the Rapid Identification of Mosquito Vectors. *PLoS One.* 2013; 8(8). https://doi.org/10.1371/journal.pone.0072380 PMID: 23877292

37. Nebbak A, Willcox AC, Bitam I, Raoult D, Parola P, Almers L Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. *Proteomics.* 2016; 16(24): 3148–60. https://doi.org/10.1002/pmic.201600287 PMID: 27862981

38. Yssouf A, Parola P, Lindström A, Berenger JM, Raoult D, Almers L, et al. Identification of European mosquito species by MALDI-TOF MS. *Parasitol. Res.* 2014; 113(6): 2375–78. https://doi.org/10.1007/s00436-014-3876-y PMID: 24737388

39. Dahmana H, Amanzougaghene N, Davoust B, Chik M, Fenollar F, Mediannikov O, et al. Great diversity of Piromplasmodia in Equidae in Africa and Europe, including potential new species. *Vet Parasitol Reg Stud Reports.* 2019; 18: 100332. https://doi.org/10.1016/j.vetpar.2019.100332 PMID: 31796173

40. Lafri I, Hamzazoue BE, Bitam I, Karakellah M, Raoult D, Parola P, et al. Detection of relapsing fever *Borrelia* spp., *Bartonella* spp. and Anaplasmataceae bacteria in argasid ticks in Algeria. *PLoS Negl Trop Dis.* 2017; 11(11): e0006064. https://doi.org/10.1371/journal.pntd.0006064 PMID: 29415396

41. Dahmani M, Loudahi A, Mediannikov O, Fenollar F, Raoult D, Davoust B. Molecular detection of Anaplasmatales plasys and *Ehrlichia canis* in dogs from Kabylie, Algeria. *Ticks Tick Borne Dis.* 2015; 6(2): 198–203. https://doi.org/10.1016/j.ttbdis.2014.12.002 PMID: 25933443

42. Vial L, Diatta G, Tall A, Rogier C, Renaud F, Trape JF, et al. Incidence of tick-borne relapsing fever in west Africa: longitudinal study. *Lancet.* 2006; 368(9529): 37–43. https://doi.org/10.1016/S0140-6736(06)68968-X PMID: 16815378

43. Vongphayloth K, Hertz JC, Lakeomany K, Robbins RG, Sutherland IW, Brey PT, et al. The Genus *Desmanthus* (Acari: Ixodidae) in Laos: A Review and Update of Species Records. *J Med Entomol.* 2018; 55(4): 1047–50. https://doi.org/10.1536/jme.2018.05.002 PMID: 30017077

44. Khatri-Chhetri R, Wang HC, Chen CC, Khatri-Chhetri N, Wu HY, Pei KJC, et al. Surveillance of ticks and associated pathogens in free-ranging Formosan pangolins (Manis pentadactyla pentadactyla). *Ticks Tick Borne Dis.* 2016; 7(6): 1238–44. https://doi.org/10.1016/j.ttbdis.2016.07.007 PMID: 27426438

45. Guo WP, Zhang B, Wang YH, Xu G, Wang X, Ni X, et al. Molecular identification and characterization of *Anaplasmatales* capra and *Anaplasmatales* plasys-like in Rhipicephalus microplus in Ankang, Northwest China. *BMC Infect Dis.* 2019; 19(1): 434. https://doi.org/10.1186/s12879-019-4075-3 PMID: 3101084

46. Guo WP, Zhang B, Wang YH, Xu G, Wang X, Ni X, et al. Molecular identification and characterization of *Anaplasmatales* capra and *Anaplasmatales* plasys-like in Rhipicephalus microplus in Ankang, Northwest China. *BMC Infect Dis.* 2019; 19(1): 434. https://doi.org/10.1186/s12879-019-4075-3 PMID: 3101084

47. Hassan M, Sulaiman MH, Lian CJ. The prevalence and intensity of *Amblyomma javanense* infestation on Malayan pangolins (Manis javanica Desmarest) from Peninsular Malaysia. *Acta Trop.* 2013; 126(2): 142–5. https://doi.org/10.1016/j.actatropica.2013.02.001 PMID: 23416121

48. Khatri-Chhetri R, Wang HC, Chen CC, Khatri-Chhetri N, Wu HY, Pei KJC, et al. Surveillance of ticks and associated pathogens in free-ranging Formosan pangolins (Manis pentadactyla pentadactyla). *Ticks Tick Borne Dis.* 2016; 7(6): 1238–44. https://doi.org/10.1016/j.ttbdis.2016.07.007 PMID: 27426438

49. Qiu Y, Kidera N, Hayashi M, Fujishima K, Tamura H. Rickettsia spp. and *Ehrlichia* spp. in *Amblyomma* ticks parasitizing wild amphibious sea krails and yellow-margined box turtles in Okinawa, Japan. *Ticks Tick Borne Dis.* 2021; 12(2): 101636. https://doi.org/10.1016/j.ttbdis.2020.101636 PMID: 33360921
52. Kwak ML, Hsu CD, Douay G, Ahmad AA. The first authenticated record of the pangolin tick, Amblyomma javanense (Acari: Ixodidae) in Singapore, with notes on its biology and conservation. *Exp Appl Acarol.* 2018; 76(4): 551–7. https://doi.org/10.1007/s10493-018-0310-7 PMID: 30298232

53. Jabin G, Dewan Y, Khatri H, Singh SK, Chandra K, Thakur M. Identifying the tick Amblyomma javanense (Acari: Ixodidae) from Chinese pangolin: generating species barcode, phylogenetic status and its implication in wildlife forensics. *Exp Appl Acarol.* 2019; 78(3): 461–7. https://doi.org/10.1007/s10493-019-03933-1 PMID: 31168752

54. Medianiukov O, Davoust B, Socolovschi C, Tshilolo L, Raoult D, Parola P. Spotted fever group rickettsiae in ticks and fleas from the Democratic Republic of the Congo. *Ticks Tick Borne Dis.* 2012; 3(5–6): 371–3. https://doi.org/10.1016/j.ttbdis.2012.10.015 PMID: 23137572

55. Hoogstraal G, Wassef HY. Dermacentor (Indocentor) auratus (Acari: Ixodoidea: Ixodidae): hosts, distribution, and medical importance in tropical Asia. *J Med Entomol.* 1985; 22(2): 170–7. https://doi.org/10.1093/jmedent/22.2.170 PMID: 3838555

56. Chen Z, Yang X, Bu F, Yang X, Yang X, Liu J. Ticks (Acari: Ixodoidea: Argasidae, Ixodidae) of China. *Exp Appl Acarol.* 2010; 51(4): 393–404. https://doi.org/10.1007/s10493-010-9335-2 PMID: 20101443

57. Sumrandee C, Baimai V, Trinachartvanit W, Anchantarig A. Molecular detection of Rickettsia, Anaplasma, Coxiella and Francisella bacteria in ticks collected from Artiodactyla in Thailand. *Ticks Tick Borne Dis.* 2016; 7(5): 678–89. https://doi.org/10.1016/j.ttbdis.2016.02.015 PMID: 26934997

58. Nooroon P, Trinachartvanit W, Baimai V, Anchantarig A. Phylogenetic studies of bacteria (Rickettsia, Coxiella, and Anaplasma) in Amblyomma and Dermacentor ticks in Thailand and their co-infection. *Ticks Tick Borne Dis.* 2018; 9(4): 963–71. https://doi.org/10.1016/j.ttbdis.2018.03.027 PMID: 29610046

59. Dantas-Torres F, Latrofa MS, Annoscia G, Giannelli A, Parisi A, Otranto D. Morphological and genetic diversity of Rhipicephalus sanguineus sensu lato from the New and Old Worlds. *Parasit Vectors.* 2013; 6: 213. https://doi.org/10.1186/1756-3305-6-213 PMID: 23880226

60. Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors—occurrence, properties and removal. *J Appl Microbiol.* 2012; 113(5): 1014–26. https://doi.org/10.1111/j.1365-2672.2012.05384.x PMID: 22747964

61. Rodriguez Gonzalez I, Fraga J, Noda AA, Duarte Y, Echevarria E, Fernandez C, et al. An Alternative and Rapid Method for the Extraction of Nucleic Acids from Ixodid Ticks by Potassium Acetate Procedure. *Braz Arch Biol Technol.* 2014; 57: 542–7. https://doi.org/10.1590/S1982-88372014000100011

62. Tran NHB, Nguyen HH. Tinh hinh nhiem ngoai ky sinh trung tren cho tai thanh pho Can Tho. *Can Tho Junior of Science.* 2014; 2: 68–73.

63. Nebbak A, Hamzaoui BE, Berenger JM, Raoult D, Alamars L, Parola P, et al. Comparative analysis of storage conditions and homogenization methods for tick and flea species for identification by MALDI-TOF MS. *Med Vet Entomol.* 2017; 31(4): 438–48. https://doi.org/10.1111/mve.12250 PMID: 28722283

64. Dumier JS, Barbet AF, Bekker CP, Ray SC, Rikihisa Y, Ruangngirwa FR, et al. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophil. *Int J Syst Evol Microbiol.* 2001; 51(Pt 6): 2145–65. https://doi.org/10.1099/00277713-51-6-2145 PMID: 11760958

65. Heppner DG, Wongsrichanalai C, Walsh DS, Eamsila C, Hanson B, Paxton H, et al. Human ehrlichiosis in Thailand. *Lancet.* 1997; 350(9080): 785–6. https://doi.org/10.1016/S0140-6736(05)62571-8 PMID: 9238007

66. Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. *Infect Genet Evol.* 2012; 12(8): 778–809. https://doi.org/10.1016/j.meegid.2012.07.004 PMID: 22871652

67. Battilani M, Balboni DAS A, Dondi F. Genetic diversity and molecular epidemiology of Anaplasma. *Infect Genet Evol.* 2017; 49: 195–211. https://doi.org/10.1016/j.meegid.2017.01.021 PMID: 28122249

68. Wen B, Jian R, Zhang Y, Chen R. Simultaneous detection of Anaplasma marginale and new Ehrlichia species closely related to Ehrlichia chaffeensis by sequence analyses of 16S ribosomal DNA in Boophilus microplus ticks from Tibet. *J Clin Microbiol.* 2002; 40(9): 3286–90. https://doi.org/10.1128/JCM.40.9.3286-3290.2002 PMID: 12202567

69. Ybáñez AP, Sivakumar T, Ybañez RHD, Matsumoto K, Yokoyama N, Inokuma H, et al. First molecular characterization of Anaplasma marginale in cattle and Rhipicephalus (Boophilus) microplus ticks in Cebu, Philippines. *J Vet Med Sci.* 2013; 75(1): 27–36. https://doi.org/10.1292/jvms.12-0268 PMID: 22878542
70. Tay ST, Koh FX, Kho KL, Ong BL. Molecular survey and sequence analysis of Anaplasma spp. in cattle and ticks in a Malaysian farm. *Trop Biomed*. 2014; 31(4): 769–76. PMID: 25776603

71. Ehounoud CB, Yao KP, Dahmani M, Raoult D, Fenollar F, Mediannikov O, et al. Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d’Ivoire. *PLoS Negl Trop Dis*. 2016; 10(1): e0004367. https://doi.org/10.1371/journal.pntd.0004367 PMID: 26771308

72. Pesapane R, Foley J, Thomas R, Castro LR. Molecular detection and characterization of Anaplasma platys and Ehrlichia canis in dogs from northern Colombia. * Vet Microbiol*. 2019; 233: 184–9. https://doi.org/10.1016/j.vetmic.2019.05.002 PMID: 31176406

73. Selmi R, Ben Said M, Dhibi M, Ben Yahia H, Messadi L. Improving specific detection and updating phylogenetic data related to Anaplasma platys-like strains infecting camels (Camelus dromedarius) and their ticks. *Ticks Tick Borne Dis*. 2019; 10(6): 101260. https://doi.org/10.1016/j.ttbdis.2019.07.004 PMID: 31327774

74. Wei W, Li J, Wang YW, Cui XM, Li LF, Yuan TT, et al. Molecular evidence of Ehrlichia canis and Anaplasma platys-Like Infection in Goats, Beijing, China. *Vector Borne Zoonotic Dis*. 2020; 20(10): 755–62. https://doi.org/10.1089/vbz.2019.2597 PMID: 32679008

75. Arraga-Alvarado CM, Qurolo BA, Parra OC, Berrueta MA, Hegarty BC, and Breitschwerdt EB. Molecular Evidence of Anaplasma platys Infection in Two Women from Venezuela. * The American Journal of Tropical Medicine and Hygiene*. 2014; 91(6): 1161–65. https://doi.org/10.4269/ajtmh.14-0372 PMID: 25266347

76. Breitschwerdt EB, Hegarty BC, Qurolo BA, Maggi RG, Blanton LS, Bouyer DH, et al. Intravascular persistence of Anaplasma platys, Ehrlichia chaffeensis, and Ehrlichia ewingii DNA in the blood of a dog and two family members. *Parasites Vectors*. 2014; 7(1): 298. https://doi.org/10.1186/1756-3305-7-298 PMID: 24984562

77. Maggi RG, Mascarelli PE, Havenga LN, Naidoo V, Breitschwerdt EB. Co-infection with Anaplasma platys, Bartonella henselae and Candidatus Mycoplasma haemotarvum in a veterinarian. *Parasit Vectors*. 2013; 6: 103. https://doi.org/10.1186/1756-3305-6-103 PMID: 23987235

78. Ybanez A. First report on Anaplasma platys infection in a dog in the Philippines. *Israel Journal of Veterinary Medicine*. 2013; 7: 227–231.

79. Low VL, Prakash BK, Lim YAL, Vinnie-Siow WY, Sofian-Azirun M, AbuBakar S, et al. Detection of Anaplasmataceae agents and co-infection with other tick-borne protozoa in dogs and Rhipicephalus sanguineus sensu lato ticks. *Exp Appl Acarol*. 2018; 75(4): 429–35. https://doi.org/10.1007/s10493-018-0290-9 PMID: 30073430

80. Piratae S, Senawong P, Chalermchat P, Harnarsa W, Sae-chue B. Molecular evidence of Ehrlichia canis and Anaplasma platys and the association of infections with hematological responses in naturally infected dogs in Kalasin, Thailand. * Vet World*. 2019; 12(1): 131–5. https://doi.org/10.14202/vetworld.2019.131-135 PMID: 30986566

81. Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. *Front Cell Infect Microbiol*. 2013; 3(1). https://doi.org/10.3389/fcimb.2013.00031 PMID: 23885337

82. Ekner A, Dudek K, Sajkowska Z, Majláthová V, Majláth I, Tryjanowski P. Anaplasmataceae and Borrelia burgdorferi sensu lato in the sand lizard Lacerta agilis and co-infection of these bacteria in hosted Ixodes ricinus ticks. *Parasit Vectors*. 2011; 4: 182. https://doi.org/10.1186/1756-3305-4-182 PMID: 21933412

83. Silaghi C, Santos AS, Gomes J, Oteo JA, Fuente JDL, Dumler JS, et al. Guidelines for the Direct Detection of Anaplasma spp. in Diagnosis and Epidemiological Studies. *Vector Borne Zoonotic Dis*. 2017; 17(1): 12–22. https://doi.org/10.1089/vbz.2016.1960 PMID: 28055579

84. Mukhacheva TA, Shaikhovala DR, Kovalev SY. Asian isolates of Anaplasma phagocytophilum: Multiplex sequence typing. *Ticks Tick Borne Dis*. 2019; 10(4): 775–80. https://doi.org/10.1016/j.ttbdis.2019.03.011 PMID: 30904539

85. Dumler JS, Choi KS, Garcia-Garcia JC, Garyu JW, Grab DJ, Bakken JS, et al. Human Granulocytic Anaplasmosis and Anaplasma phagocytophilum. *Emerg Infect Dis*. 2005; 11(12): 1828–34. https://doi.org/10.3201/eid1112.050898 PMID: 16485466

86. Jin H, Wei F, Liu Q, Qian J. Epidemiology and control of human granulocytic anaplasmosis: a systematic review. *Vector Borne Zoonotic Dis*. 2012; 12(4): 269–74. https://doi.org/10.1089/vbz.2011.0753 PMID: 22217177

87. Zhang L, Liu H, Xu B, Fan D, Li G, Jin Y, et al. Anaplasma phagocytophilum infection in domestic animals in ten provinces/cities of China. *Am J Trop Med Hyg*. 2012; 87(1): 185–9. https://doi.org/10.4269/ajtmh.2012.12-0005 PMID: 22764312
88. Bar V, Golovljova I. Anaplasma, Ehrlichia, and 'Candidatus Neoehrlichia' bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. *Infect Genet Evol*. 2011; 11(8): 1842–61. https://doi.org/10.1016/j.meegid.2011.09.019 PMID: 21983560

89. Kelch WJ. The canine ehrlichiosis (tropical canine pancytopenia) epizootic in Vietnam and its implications for the veterinary care of military working dogs. *Mil Med*. 1984; 149(6): 327–31. PMID: 6429572

90. Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. *Front Biostat*. 2008; 13: 6938–46. May 2008, https://doi.org/10.2743/3200 PMID: 18508706

91. Sun J, Liu Q, Lu L, Li G, Liu J, Lin H, et al. Coinfection with four genera of bacteria (Borrelia, Bartonella, Anaplasma, and Ehrlichia) in Haemaphysalis longicornis and ixodes sinensis ticks from China. *Vector Borne Zoonotic Dis*. 2008; 8(6): 791–5. https://doi.org/10.1089/vbz.2008.0005 PMID: 18637722

92. Beugnet F, Moreau Y. Babesiosis. *Rev Sci Tech*. 2015; 34(2): 627–39. https://doi.org/10.20506/rst.34.2.2385 PMID: 26601462

93. Prakash BK, Low VL, Vinnie-Siow WY, Morvarid AR, AbuBakar S, Sofian-Azirun M, et al. Detection of Babesia spp. in Dogs and Their Ticks From Peninsular Malaysia: Emphasis on Babesia gibsoni and Babesia vogeli Infections in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae). *J Med Entomol*. 2018; 55(5): 1337–40. https://doi.org/10.1093/jme/jty072 PMID: 29762747

94. Ybabéz AP, Ybabéz RHD, Talie MG, Liu M, Moumouni PFA, Xuan X. First report on Babesia vogeli infection in dogs in the Philippines. *Parasitol Int*. 2017; 66(1): 813–5. https://doi.org/10.1016/j.parint. 2016.10.001 PMID: 27713098

95. Watts JG, Playford MC, Hickey KL. Theileria orientalis: A review. *New Zealand veterinary journal*. 2015; 64(1): 1–21. https://doi.org/10.1080/00480169.2015.1014436 cited [18 Apr 2021]. Available from: https://www.researchgate.net/publication/279664314. PMID: 26440501

96. Fujisaki K, Ito Y, Kamio T, Kitaoka S. The presence of Theileria sergenti in Haemaphysalis longicornis overwintering in pasture in Japan. *Ann Trop Med Parasitol*. 1985; 79(5): 519–24. https://doi.org/10.1080/00434983.1985.11811557 PMID: 3936424

97. Kho KL, Amarajothi ADG, Koh FX, Panchadharam C, Hassan Nizam QN, Tay ST, “The first molecular survey of theileriosis in Malaysian cattle, sheep and goats. *Vet Parasitol Reg Stud Reports*. 2017; 10: 149–53. https://doi.org/10.1016/j.vprsr.2017.09.003 PMID: 31014589

98. Bai Q, Liu G, Yin H, Liu D, Ren J, Li X, et al. Theileria sinensis sp nov: a new species of Bovine Theileria-classical taxonomic studies. *Acta Veterinaria et Zootecnica Sinica*. 2002a; 33(2): 73–7.

99. Tian Z, Du J, Yang J, Liu G, Yin H, et al. A PCR-RFLP Assay targeting RPS8 gene for the discrimination between bovine Babesia and Theileria species in China. *Parasit Vectors*. 2015; 8. https:// doi.org/10.1186/s13071-015-1085-x PMID: 26382041

100. Li Y, Li X, Liu J, Liu G, Luo J, Yin H, et al. First Report of Theileria Infection of Bovine Camel (Camelus bactrianus) in Xinjiang, China. *Acta Parasitol*. 2019; 64(4): 923–6. https://doi.org/10.2478/a11686-019-00086-0 PMID: 31165983

101. Yin H, Luo J, Guan G, Lu C, Yuan Z, Guo S, et al. Transmission of an unidentified Theileria species to small ruminants by Haemaphysalis qinghaiensis ticks collected in the field. *Parasitol Res*. 2002; 88 (13): S25–27. https://doi.org/10.1007/s00436-001-0565-4 PMID: 12050160

102. Kim JY, Naoaki Y, Sanjay K, Sachiko S, Kozo F, Chihiro S, et al. Molecular epidemiological survey of benign Theileria parasites of cattle in Japan: detection of a new type of major piroplasmin surface protein gene. *J Vet Med Sci*. 2004; 66(3):251–6. https://doi.org/10.1292/jvms.66.251 PMID: 15107552

103. Liu Å, Guan G, Liu Z, Gao J, Ma M, Niu Q, et al. Detecting and differentiating Theileria sergenti and Theileria sinensis in cattle and yaks by PCR based on major piroplasmin protein sequence (MPSP). *Exp Parasitol*. 2010; 126(4): 476–81. https://doi.org/10.1016/j.exppara.2010.05.024 PMID: 20685208

104. Govaerts M, Verhaert P, Jongejan F, Goddeeris BM. Characterisation of the 33kDa piroplasm surface antigen of Theileria orientalis/sergenti/buffeli isolates from West Java, Indonesia. *Vet Parasitol*. 2002; 104(2): 103–17. https://doi.org/10.1016/s0304-4017(01)00621-5 PMID: 11809330

105. Izzo MM, Poe I, Horadagoda N, De Vos AJ, and House JK. Haemolytic anaemia in cattle in NSW associated with Theileria infections. *Aust Vet J*. 2010; 88(1–2): 45–51. https://doi.org/10.1111/j.1751-0813.2009.00540.x PMID: 20148827

106. Sugimoto C, Fujisaki K. Non-Transforming Theileria Parasites of Ruminants. Springer US. 2002; 3: 93–106.

107. Kidd L, Maggi R, Diniz PVPV, Hegarty B, Tucker M, Breitschwerdt E. Evaluation of conventional and real-time PCR assays for detection and differentiation of Spotted Fever Group Rickettsia in dog blood. *Vet Microbiol*. 2008; 129(3–4): 294–303. https://doi.org/10.1016/j.vetmic.2007.11.035 PMID: 18226476
108. Djiba ML Mediannikov O, Mbengue M, Fenollar F, Raoult D, Ndiaye M, et al. Survey of Anaplasma-
cae bacteria in sheep from Senegal. *Trop Anim Health Prod*. 2013; 45(7): 1557–61. https://doi.org/
10.1007/s11250-013-0399-y PMID: 23553260

109. Rolain JM, Stuhl L, Maurin M, Raoult D. Evaluation of antibiotic susceptibilities of three rickettsial spe-
cies including Rickettsia felis by a quantitative PCR DNA assay. *Antimicrob Agents Chemother*. 2002;
46(9): 2747–51. https://doi.org/10.1128/AAC.46.9.2747-2751.2002 PMID: 12183224

110. Mura Aet al. Molecular detection of spotted fever group rickettsiae in ticks from Ethiopia and Chad.
Trans R Soc Trop Med Hyg. 2008; 102(9): 945–9. https://doi.org/10.1016/j.trstmh.2008.03.015 PMID:
18440576

111. Mediannikov O, Trape JF, Diatta G, Parola P, Fournier PE, Raoult D. Rickettsia africae, Western
Africa. *Emerg Infect Dis*. 2010; 16(3): 571–3. https://doi.org/10.3201/eid1603.090346 PMID:
20202453

112. Rolain JM, Franc M, Davoust B, Raoult D. Molecular Detection of Bartonella quintana, B. koehlerae,
B. henselae, B. claridgeiae, Rickettsia felis, and Wolbachia pipientis in Cat Fleas, France. *Emerg
Infect Dis*. 2003; 9(3): 339–42. https://doi.org/10.3201/eid0903.020278 PMID: 12643829

113. Rolain JM, Raoult D. Molecular detection of Coxiella burnetii in blood and sera during Q fever. *QJM*.
2005; 98(8): 615–7. https://doi.org/10.1093/qjmed/hci099 PMID: 16027172