Salience-based Content Characterisation of Text Documents

Branimir Boguraev
Apple Research Laboratories
Apple Computer, Inc
bkb@research.apple.com

Christopher Kennedy
Department of Linguistics
University of California Santa Cruz
kennedy@ling.ucsc.edu

Abstract

Traditionally, the document summarisation task has been tackled either as a natural language processing problem, with an instantiated meaning template being rendered into coherent prose, or as a passage extraction problem, where certain fragments (typically sentences) of the source document are deemed to be highly representative of its content, and thus delivered as meaningful "approximations" of it. Balancing the conflicting requirements of depth and accuracy of a summary, on the one hand, and document and domain independence, on the other, has proven a very hard problem. This paper describes a novel approach to content characterisation of text documents. It is domain- and genre-independent, by virtue of not requiring an in-depth analysis of the full meaning. At the same time, it remains closer to the core meaning by choosing a different granularity of its representations (phrasal expressions rather than sentences or paragraphs), by exploiting a notion of discourse contiguity and coherence for the purposes of uniform coverage and context maintenance, and by utilising a strong linguistic notion of salience, as a more appropriate and representative measure of a document's "aboutness".

1 Capsule overviews

The majority of techniques for "summarisation", as applied to average-length documents, fall within two broad categories: those that rely on template instantiation and those that rely on passage extraction.

Work in the former framework traces its roots to some pioneering research by DeJong [7] and Tait [29], more recently, the DARPA-sponsored TIPSTER programme ([22])—and, in particular, the message understanding conferences (MUC e.g. [6] and [1])—have provided fertile ground for such work, by placing the emphasis of document analysis to the identification and extraction of certain core entities and facts in a document, which are "packaged" together in a template. There are shared intuitions among researchers that generation of smooth prose from this template would yield a summary of the document's core content, recent work, most notably by McKeeown and colleagues (cf. [21]), focuses on making these intuitions more concrete.

While providing a rich context for research in generation, this framework requires an analysis front end capable of instantiating a template to a suitable level of detail. Given the current state of the art in text analysis in general, and of semantic and discourse processing in particular (Sparck Jones, [27] and [28], discusses the depth of understanding required for constructing true summaries), work on template-driven, knowledge-based summarisation to date is hardly domain- or genre-independent.

The alternative framework largely escapes this constraint, by viewing the task as one of identifying certain passages (typically sentences) which, by some metric, are deemed to be the most representative of the document's content. The technique dates back at least to the 50's (Luhn, [17]), but it is relatively recently that these ideas have been filtered through research with strongly pragmatic constraints, for instance, what kinds of documents are optimally suited for being "abstracted" in such a way (e.g. Preston and Williams [23], Rau et al [25]), how to derive more representative scoring functions (e.g. for complex documents, such as multi-topic ones, Salton et al [26], or where training from professionally prepared abstracts is possible, Kupiec et al [15]), what heuristics might be developed for improving readability and coherence of "narratives" made up of discontinuous source document chunks, Pace ([22]), or with optimal presentations of such passage extracts, aimed at retaining some sense of larger and/or global context (Mahesh [16]).

The cost of avoiding the requirement for a language-aware front end is the complete lack of intelligence—or even context-awareness—at the back end: the validity, and utility, of sentence- or paragraph-sized extracts as representations for the document content is still an open question (Rau [24]), especially with the recent wave of commercial products announcing built-in "summarisation" (by extraction) features (Caruso [4]).

In this work, we take an approach which might be construed as striving for the best of both worlds. We use linguistically-intensive techniques to identify highly salient phrasal units across the entire span of the document, capable of functioning as "topic stamps". The set of topic stamps, presented in ways which both retain local and reflect global context, is what we call salience-based content characterisation, or a capsule overview, of the document.

A capsule overview is not a summary, in that it does not attempt to convey document content as a sequence of sentences. It is, however, a semi-formal (normalised) representation of the document, derived after a process

1 Also at http://www.nytimes.com/library/cyber/digitcom/012797digitcom.html
of data reduction over the original text. Indeed, by adopting finer granularity of representation (below that of sentence), we consciously trade in "readability" (or narrative coherence) for tracking of detail.

In particular, we seek to characterize a document's content in a way which is representative of the full flow of the narrative this is in contrast to passage extraction methods, which typically highlight only certain fragments (an undesirable consequence of the compromises necessary when the passages are sentence-sized).

A capsule overview is not a fully instantiated meaning template either. A primary consideration in our work is that content characterization methods apply to any document source or type. This emphasis on domain independence translates into a processing model which stops short of a fully instantiated semantic representation. Similarly, the requirement for efficient, and scalable technology necessitates operating from a shallow syntactic base, thus our procedures are designed to circumvent the need for a comprehensive parsing engine. Not having to rely upon the parsing components typically seeking to deliver in-depth, full, syntactic analyses of text, makes it possible to generate capsule summaries for a variety of documents, up to and including real data from unfamiliar domains or novel genres.

For us, a capsule overview is instead a coherently presented list of those linguistic expressions which refer to the most prominent objects mentioned in the discourse—its topic stamps—and provide further specification of the relational contexts in which they appear. The intuitions underlying our approach can be illustrated with the following news article:

PRIEST IS CHARGED WITH POPE ATTACK

A Spanish priest was charged here today with attempting to murder the Pope. Juan Fernandez Krohn, aged 32, was arrested after a man armed with a bayonet approached the Pope while he was saying prayers at Fatima on Wednesday night.

According to the police, Fernandez told the investigators today that he trained for the past six months for the assault. He was alleged to have claimed the Pope "looked funny" on hearing the priest's criticism of his handling of the church's affairs. If found guilty, the Spaniard faces a prison sentence of 15-20 years.

There are a number of reasons why the title, 'Priest Is Charged with Pope Attack,' is a highly representative abstraction of the core content of the article. It encapsulates the essence of what the story is about: there are two actors, identified by their most prominent characteristics, one of them has been attacked by the other, the perpetrator has been charged, there is an implication of malice to the act. The title brings the complete set of salient facts together, in a thoughtfully composed statement, designed to be brief yet informative. Whether a present day natural language analysis program can derive—without being primed of a domain and genre—the information required to generate such a summary is arguable. (This is assuming, of course, that generation techniques could, in their own right, do the planning and delivery of such a concise and information-packed message.) However, part of the task of delivering accurate content characterization is being able to identify the components of this abstraction (e.g., 'priest', 'pope', 'attack', 'charged with'). It is from these components that, eventually, a message template would begin to be constructed.

It is also precisely these components, viewed as phrasal units with certain discourse properties, that a capsule overview should locate and present as a characterization of the content of a text document. Our strategy is to mine a document for the most salient—and by hypothesis, the most representative—phrasal units, as well as the relational expressions they are associated with, with the goal of establishing the kind of core content specification that is captured by the title of this example.

The remainder of this paper is organized as follows. Given the importance we assign to phrasal identification, we outline in Section 2 the starting point for this work: research on terminology identification and extending this to non-technical domains. In particular, we focus on the problems that baseline terminology identification encounters when applied to open-ended range of text documents and outline a set of extensions required for adapting it to the goal of core content identification. Essentially, these boil down to formalising and implementing an operational notion of salience which can be used to impose an ordering on phrasal units according to the topical prominence of the objects they refer to, this is discussed in Section 3. Section 4 illustrates the processes involved in topic identification and construction of capsule overviews by example. We close by positioning this work within the space of summarisation techniques.

2 Phrasal identification for content characterisation

The identification and extraction of technical terminology is, arguably, one of the better understood and most robust NLP technologies within the current state of the art of phrasal analysis. What is particularly interesting for us is the fact that the linguistic properties of technical terms lead to the definition of computational procedures, capable of term identification across a wide range of technical prose, while maintaining their quality regardless of document domain and type. Since topic stamps are essentially phrasal units with certain discourse properties—they manifest a high degree of salience within contiguous discourse segments—we define the task of content characterisation as one of identifying phrasal units with lexico-syntactic properties similar to those of technical

1. A list of topic stamps is, by itself, not a coherent summary, however, by employing appropriately designed presentation metaphors—summarizing, overall, to retain contextual cues associated with topic stamps in context—our topic stamps are more contentful than just a list of (noun or verb) phrases. This paper focuses on the linguistic processes underlying the automatic identification and extraction of topic stamps and their organisation within capsule overviews. The issues of the right presentation metaphor and operational environment(s) for use of topic stamps-based capsule overview are subject of a different discussion.

2. Adapted from an example of S. Nirenburg.
terms and with discourse properties which signify their status as "most prominent". In Section 3, we show how these discourse properties are computable as a function of the grammatical distribution of the phrase. Below we discuss the potential of terminology identification for content characterisation.

2.1 Technical terminology: strengths and limitations

One of the best defined procedures for of technical terminology identification is that developed by Justeson and Katz [10], who focus on multi-word noun phrases occurring in continuous texts. A study of the linguistic properties of these constituents—preferred phrase structures, behaviour towards lexicalisation, contraction patterns, and certain discourse properties—leads to the formulation of a robust and domain-independent algorithm for term identification. Justeson and Katz's TERMS algorithm accomplishes high levels of coverage. It can be implemented within a range of underlying NLP technologies (e.g., morphologically enhanced lexical look-up [10], part-of-speech tagging [5], or syntactic parsing [20], and it has strong cross-linguistic application (see, for instance, [3]).

Most importantly for our purposes, the algorithm is particularly useful for generating a "first cut" towards a broad characterisation of the content of the document.

Conventional uses of technical terminology are most commonly identified with text indexing, computational lexicology, and machine-assisted translation. Less common is the use of technical terms as a representation of the topical content of a document. This is to a large extent an artifact of the accepted view—at least in information retrieval context—stipulating that terms of interest are the ones that distinguish documents from each other, almost by definition, these are not the terms which are representative of the "aboutness" of a document.

Still, it is clear that a program like TERMS is a good starting point for distilling representative lists. For example, [10, appendix] presents several term sets 'stochastic neural net', 'joint distribution', 'feature vector', 'covariance matrix', 'training algorithm', and so forth, accurately characterise a document as belonging to the statistical pattern classification domain, 'word sense', 'lexical knowledge', 'lexical ambiguity resolution', 'word meaning', 'semantic interpretation', 'syntactic realization', and so forth assign, equally reliably, a document to the lexical semantics domain.

Such lists are representative, unfortunately, they can easily become overwhelming. Conventionally, volume is controlled by promoting terms with higher frequencies. Thus, however, is a very weak metric for our purposes, it also does not scale well for texts which are smaller than typical instances of technical prose or scientific articles—such as news stories, press releases, or web pages. The notion of technical term needs appropriate extensions, so that it applies not just to scientific prose, but to an open-ended set of document types and genres. Below we address this issue by discussing how a basic term set can be enriched in order to convey a more refined picture of content.

2.2 Extended phrasal analysis

As noted above, without the closed nature of the technical domains and documentation, it is not clear what use can be made of term sets derived from arbitrary texts. Certainly we cannot even talk of "technical terms" in the narrower sense assumed by the TERMS algorithm. The question is whether similar phrase identification technology generates phrase sets which can be construed as broadly characteristic of the topical content of a document, in the same way in which a term set can be viewed as characteristic of the domain to which technical prose belongs. In other words, the question concerns the wider applicability of linguistic processing targeted at term identification, relation extraction, and object cross-classification. Can a set of phrases derived in this way provide a representational base which enables rapid, compact, and accurate appreciation of the information contained in an arbitrarily chosen document? Three problems arise when "vanilla" term sets are considered as the basis for a content characterisation task.

Undergeneration For a set of phrases to be truly representative of document content, it must provide an exhaustive description of the entities discussed in the document. That is, it ought to contain not just those expressions which satisfy the strict phrasal definition of "technical term", but rather every expression which mentions a participant in the events described in the text. Phrasal analysis must therefore be extended to include pronouns and reduced descriptions, in addition to the more complex nominals which correspond to true technical terms.

Overgeneration Relaxation of the canonical phrasal definition of technical term leads to information overload. When applied to a document without regard to domain or genre, a system which extracts phrases on the basis of relaxed canonical terminology constraints will typically generate a term set far larger than a single user can absorb without cognitive overhead. At the same time, the set may contain several distinct phrasal units which refer to the same discourse object. Without some means of resolving anaphoric relations, these crucial connections will be lost.

Differentiation Finally, while a list of terms may be topical for the particular source document in which they occur, other documents within the same domain are likely to yield similar, overlapping sets of terms. Unacceptably, this might result in two documents containing the same or similar terms being classified as "about the same thing", when in fact they might focus on completely different subtopics within the general domain they share.

Although we approach these problems in slightly different ways, the solutions are interconnected, and it is their interaction that is crucial to the derivation of capsule overviews from extended phrasal analyses. The exact mechanisms involved in the processing are described in more detail in Section 3, here we outline the modifications and extensions to traditional term identification technology which address the above problems.

First, undergeneration is resolved by implementing a suitable generalisation—and relaxation—of the notion of a term, so that identification and extraction of phrasal units involves a procedure essentially like TERMS [10],
but which results in an extended phrase set, containing an exhaustive listing of the objects mentioned in the text. Second, overgeneration is resolved through reduction of the extended phrase set in two ways. The extended phrase set is transformed, through the application of an anaphora resolution procedure (See Section 3 below, and Kennedy and Boguraev [13], [14]), into a set of expressions which uniquely identify the objects referred to in the text (hereafter a referent set).

However, the data reduction arising from distilling the extended phrase set down to a smaller referent set is still not enough. In order to eliminate cognitive overload for the user, the referent set must be further reduced to a small, coherent, and easily absorbed listing of just those expressions which identify the most important objects in the text. An intuitive and straightforward means of accomplishing this involves ranking the members of the referent set according to a measure of the prominence, or importance, in the text of the objects they refer to. Such a ranking not only provides the basis for identifying topic stamps, it also solves the third problem above, that of differentiation. Although two related documents may instantiate the same term sets, if the documents are concerned with different topics, then the relative importance of the terms in the two documents will differ as a function of differences in use and grammatical distribution. The underlying intuition is that term sets can be differentiated in two ways: lexically, by virtue of containing different terms, or hierarchically, by virtue of the ordering of their members. Ordered term sets, in the latter case, provide distinct characterisations of documents, even if the overall lexical make-up of the term sets is similar. Given a formalised notion of "importance", we can generate a coherent set of topic stamps from an undifferentiated referent set, while overcoming the lack of coherence inherent in unordered term sets.

The challenge, then, is to define a suitable selection procedure, operating over a larger set of phrasal units than that generated by a typical term identification algorithm (including not only all terms, but term-like phrases, as well as their variants, reduced forms, and anaphoric references), making informed choices about the degree to which each phrase is representative of the text as a whole, and presenting its output in a form which retains contextual information for each phrase. The key to normalising the content of a document to a small set of distinguished, and discriminating, phrasal units is being able to establish a containment hierarchy of phrases (which would eventually be exploited for capsule overview presentation at different levels of granularity), and being able to make refined judgments concerning the degree of relevance of each unit, within its own (local) discourse segment. In other words, we need to be able to filter a term set in such a way that those expressions which are most representative of the content of the document are selected as topic stamps. The next section describes the process of constructing exactly this type of "importance-based" ranking by building on and extending a crucial feature of the anaphora resolution procedure used to generate the reference set salience.

3 Salience-based content characterisation

Salience is a measure of the relative prominence of objects in discourse objects with high salience are the focus of attention, those with low salience are at the periphery. In an effort to resolve the problems facing a term-based approach to content characterisation, we have developed a procedure which uses a salience feature as the basis for the type of "ranking by importance" of referents discussed above, and ultimately for topic stamp identification. By determining the salience of the members of a referent set, an ordering can be imposed which, in connection with an appropriate choice of threshold value, provides the basis for a reduction of the entire term set to only those terms which identify the most prominent participants in the discourse. This reduced set of terms, in combination with relational information of the sort discussed in the previous section and folded into an appropriate presentation metaphor, may then be presented as a characterisation of a document's content. Crucially, this analysis satisfies the requirements mentioned above: it is concise, it is coherent, and it does not introduce the cognitive overload associated with a full-scale term analysis.

This strategy for scaling up the phrasal analysis provided by standard term identification technology has at its core the utilisation of a crucial feature of discourse structure: the prominence, over some segment of text, of particular referents—something that is missing from the traditional technology for "bare" terminology identification. Below we describe the core details of our technology. First, we explain more concretely what we mean by "segment of text", why segments are important, and how they are determined. Second, we present a method for determining salience which, when applied to arbitrary sets of phrasal units, generates an ordering that accurately represents the relative prominence of the objects referred to in a document. We also describe what linguistic information, available through scalable and robust identification technologies, can be leveraged to inform such a notion of salience. Finally, we give an overview of a linguistic processing environment which, while carrying out these tasks, remains open-ended with respect to the language, domain, style and genre of the texts we want to be able to handle.

3.1 Discourse segmentation

The example in Section 1 illustrates the importance of discourse segmentation. As it happens, the title in this case works as an overview of the content of the passage because the text itself is fairly short. As a text increases in length, the "completeness" of a short description as a characterisation of content deteriorates. If the intention is to use concise descriptions consisting of one or two topical phrases (topic stamps) plus modificational and relational information as the primary information-bearing units for capsule overview, then it follows that texts longer than (roughly) one to three paragraphs must be broken down into smaller units or segments.

...
The approach to segmentation we adopt implements a similarity-based algorithm along the lines of the one developed by Hearst [8], which identifies topically coherent sections of text using a lexical similarity measure. In the final presentation of results, each segment is associated with a concise, phrasal-based description of its content without loss of accuracy. The set of such descriptions, ordered according to linear sequencing of the segments in the text, may then be used as the basis for a capsule overview. The problem of content characterisation of a large text, then, is reduced to the problem of finding topic stamps for each segment in the document.

3.2 Local salience

As noted in Section 2.2, the set of expressions generated by extended phrasal analysis typically contains a number of anaphoric expressions—pronouns, reduced descriptions, etc.—which must be resolved. Our anaphora resolution algorithm is based on a procedure developed by Lappin and Leass [16], and is described in detail in Kennedy and Boguraev [13], [14], in essence, it develops an adaptation for deriving reliable interpretation from considerably shallower linguistic analysis of the input. We make the simplifying assumption that every phrase identified by extended phrasal analysis constitutes a “mention” of a participant in the discourse (see Mam and Macmullan [19] for discussion of the notion of “mention” in the context of proper names interpretation.) Coreference is represented by equivalence classes of nominals, where each equivalence class corresponds to a unique referent in the discourse. The set of such equivalence classes constitutes the referent set discussed above.

However, anaphora resolution is important not only for reducing the extended phrase set, it also plays a crucial role in the identification of topic stamps. The reason this is so is that it is based on a strict definition of the notion of salience. Roughly speaking, an antecedent for an anaphoric expression is located by first eliminating all impossible candidate antecedents, then ranking the remaining candidates according to a local salience measure, and selecting the most salient candidate as the antecedent. Local salience is a function of how a candidate satisfies a set of grammatical, syntactic, and contextual parameters. Following Lappin and Leass, we refer to these constraints as “salience factors.” Individual salience factors are associated with numerical values, as follows:

\[
\begin{align*}
\text{SENT} & \quad 100 & \text{iff the expression is in the current sentence} \\
\text{CNTX} & \quad 50 & \text{iff the expression is in the current discourse segment} \\
\text{SUBJ} & \quad 80 & \text{iff the expression is a subject} \\
\text{EXIST} & \quad 70 & \text{iff the expression is in an existential construction} \\
\text{POSS} & \quad 65 & \text{iff the expression is a possessor} \\
\text{ACC} & \quad 50 & \text{iff the expression is a direct object} \\
\text{DAT} & \quad 40 & \text{iff the expression is an indirect object} \\
\text{OBJ} & \quad 30 & \text{iff the expression is the complement of a preposition} \\
\text{HEAD} & \quad 30 & \text{iff the expression is not contained in another phrase} \\
\text{ARG} & \quad 30 & \text{iff the expression is not contained in an adjunct} \\
\end{align*}
\]

The local salience of a candidate is the sum of the values of the salience factors that are satisfied by some member of the equivalence class to which the candidate belongs (note that values may be satisfied at most once by each member of the class).

One important aspect of these numerical values is that they impose a relational structure among the salience factors, crucially, as observed by Lappin and Leass, such a structure reflects the relative ranking of the factors. Thus is justified both linguistically, as a consequence of the role played by the functional hierarchy in determining anaphoric relations (see e.g. Kasnans and Horn [12]), as well as by experimental results (see Lappin and Leass [16], Kennedy and Boguraev [13], [14] for discussion).

An important feature of local salience is that it is variable salience of a referent decreases and increases according to the frequency with which new members are added to the equivalence class to which it belongs. When an anaphoric link is established, the anaphor is added to the equivalence class to which its antecedent belongs, and the salience of the class is boosted accordingly. If a referent ceases to be mentioned in the text, however, its local salience is incrementally decreased.

3.3 Discourse salience

Consider again the news article discussed in Section 1. Intuitively, the reason why “priest” is at the focus of the title is that there are no less than eight references to the same actor in the body of the story (these are marked by italicising them in the example), moreover, these references occur in prominent syntactic positions: five are subjects of main clauses, two are subjects of embedded clauses, and one is a possessor. Similarly, the reason why “Pope” is the secondary object of the title is that he also receives multiple mentions (five), but these references tend to occur in less prominent positions: two are direct objects.

In order to generate such a broad picture of the prominence of referents across a discourse, we maintain a measure of the salience of referents both in the text as a whole, and in the discourse segments in which they occur. This is accomplished through an elaboration of the local salience computation described above, which interprets the same conditions with respect to a non-decreasing discourse salience value.

Local salience, because of its variability, provides a realistic representation of the antecedent space for an anaphor. In contrast, discourse salience reflects the distributional properties of a referent as the text story unfolds. This non-decreasing salience measure underlies a detailed representation of discourse structure which, when overlayed onto the results of discourse segmentation, gives a coherent representation of the topical prominence of particular referents in specific segments of text. Specifically, it becomes the basis for exactly the type of importance-based ranking of referents discussed in Section 2.2. Using this ordering, we define the topic stamps for a segment S to be the n highest ranked referents in S (where n is a scalable value).

*Our salience factors mirror those used by Lappin and Leass, with the exception of POSS, which is sensitive to possessive expressions, and CNTX, which is sensitive to the discourse segment in which a candidate appears.
4 Example

The operational components to content characterisation described here fall in the following categories: discourse segmentation, phrasal analysis (of nominal expressions and relations), anaphora resolution and generation of the referent set, calculation of discourse salience and ranking of referents by segment, identification of topic stamps, and enriching topic stamps with relational context(s). Some of the functionality follows directly from terminology identification, in particular, both relation identification and extended phrasal analysis are carried out by running a phrasal grammar over a stream of text tokens tagged for morphological, syntactic, and grammatical function, this is in addition to a grammar mmung for terms and, generally, referents. (Base level linguistic analysis is provided by the LINGSOFT supertagger, [11]). The later, more semantically-intensive algorithms are described in some detail in [13] and [14].

We illustrate the procedure by highlighting certain aspects of a capsule overview of a recent Forbes article ([9]). The document is of medium-to-large size (approximately four pages in print), and focuses on the strategy of Gilbert Amelio (Apple Computer's CEO) concerning a new operating system for the Macintosh. Too long to quote here in full, the following passage from the beginning of the article contains the first, second and third segments, as identified by the discourse segmentation component described in Section 3.1 (cf [8]), in the example below, segment boundaries are marked by extra vertical space.

The capsule overview was automatically generated by a fully implemented, and operational, system, which incorporates all of the processing components identified above. The relevant sections of the overview (for the three segments of the passage quoted) are as follows:

1. **Apple would sweep in take Microsoft's customers**
 - **APLLE** lost $816 million,
 - **MICROSOFT** made $2.2 billion
 - **MICROSOFT** has a market value
 - **APPLE** is in a position
 - **APPLE** needs something dramatic

2. **Today's desktop machines, he says, are ill-equipped**
 - **TOMORROW'S MACHINES** must accommodate
 - **setup your operating system**
 - **OPERATING SYSTEM** is the software

3. **Amelio brings credibility**
 - **HIS RESUMÉ INCLUDES BOTH**
 - **AMELIO IS GOING TO GET THIS NEW OPERATING SYSTEM?**
 - **radical redesign in OPERATING SYSTEMS**
 - **AMELIO IS TALKING ABOUT**

The division of this passage into segments, and the segment-based assignment of topic stamps, exemplifies a capsule overview's "tracking" of the underlying coherence of a story. The discourse segmentation component recognises shifts in topic—in this example, the shift from discussing the relation between Apple and Microsoft to some remarks on the future of desktop computing to a summary of Amelio's background and plans for Apple's operating system. Layered on top of segmentation are the topic stamps themselves, in their relational contexts, at a phrasal level of granularity.

The first segment sets up the discussion by positioning Apple opposite Microsoft in the marketplace and focusing on their major products, the operating systems. The topic stamps identified for this segment, APPLE and MICROSOFT, together with their local contexts, are both indicative of the introductory character of the opening paragraphs and highly representative of the gist of the first segment. Note that the apparent unformaliveness of some relational contexts, for example, 'Apple is in a position', does not pose a serious problem. An adjustment of the granularity—at capsule overview presentation time—reveals the larger context in which the topic stamp occurs (e.g., a sentence), which in turn inherits the high topicality ranking of its anchor "Apple is in a position where standing pat almost certainly means slow death".

For second segment of the sample, OPERATING SYSTEM and DESKTOP MACHINES have been identified as representative. The set of four phrases illustrated provides an encapsulated snapshot of the segment, which introduces Amelio's views on coming challenges for desktop machines and the general concept of an operating system. Again, even if some of these are somewhat under-specified, more detail is easily available by a change in granularity, which reveals the definitional nature of the even larger context: 'The operating system is the software that controls how your computer's parts'.

The third segment of the passage exemplified above is associated with the stamps Gilbert AMELIO and NEW OPERATING SYSTEM. The reasons, and linguistic rationale, for the selection of these particular noun phrases as topical are essentially identical to the intuition behin
'priest' and 'Pope' being the central topics of the example in Section 1. The computational justification for the choices lies in the extremely high values of salience, resulting from taking into account a number of factors—coreference between 'Amelio' and 'Gilbert Amelio', coreference between 'Amelio' and 'His', syntactic prominence of 'Amelio' (as a subject) promoting topical status higher than for instance 'Apple' (which appears in adjunct positions), high overall frequency (four, counting the anaphor, as opposed to three for 'Apple'—even if the two get the same number of text occurrences in the segment)—and boost in global salience measures, due to "priming" effects of both referents for 'Gilbert Amelio' and 'operating system' in the prior discourse of the two preceding segments. Even if we are unable to generate a single phrase summary in the form of, say, 'Amelio seeks a new operating system', the overview for the closing segment comes close, arguably, it is even better than any single phrase summary.

As the discussion of this example illustrates, a capsule overview is derived by a process which facilitates partial understanding of the text by the user. The final set of topic stamps is designed to be representative of the core of the document content. It is compact, as it is a significantly cut-down version of the full list of identified terms. It is highly informative, as the terms included in it are the most prominent ones in the document. It is representative of the whole document, as a separate topic tracking module effectively maintains a record of where and how referents occur in the entire span of the text. As the topics are, by definition, the primary content-bearing entities in a document, they offer accurate approximation of what that document is about.

5 Related and future work

Our framework clearly attempts to balance the conflicting requirements of the two primary approaches to the document summarisation task. By design, we target any text type, document genre, and domain of discourse, and thus compromise by forgoing in-depth analysis of the full meaning of the document. On the other hand, our content characterisation procedure remains closer to the core meaning than the approximations offered by traditional passage extraction algorithms, with certain sentence- or paragraph-sized passages deemed indicative of content by means of similarity scoring metrics.

By choosing a phrasal granularity of representation—rather than sentence- or paragraph-based—we can obtain a more refined view into highly relevant fragments of the source, thus also offering a finer-grained control for adjusting the level of detail in capsule overviews. Exploiting a notion of discourse contiguity and coherence for the purposes of full source coverage and continuous context maintenance ensures that the entire text of the document is uniformly represented in the overview. Finally, by utilising a strong linguistic notion of salience, the procedure can build a richer representation of the discourse objects, and exploit this for informed decisions about their prominence, importance, and ultimately topicality, salience thus becomes central to deriving a strong sense of a document's "aboutness".

At present, salience calculations are driven from contextual analysis and syntactic considerations focusing on discourse objects and their behaviour in the text. Given the power of our phrasal grammars, however, it is conceivable to extend the framework to identify, explicitly represent, and similarly rank, higher order expressions (e.g. events, or properties of objects). This may not ultimately change the appearance of a capsule overview, however, it will allow for even more informed judgements about relevance of discourse entities. More importantly, it is a necessary step towards developing more sophisticated discourse processing techniques (such as those discussed in Sparck Jones [28]), which are ultimately essential for the automatic construction of true summaries.

Currently, we analyse individual documents, unlike McKeown and Radev [21], there is no notion of calculating salience across the boundaries of more than one document—even if we were to know in advance that they are somehow related. However, we are experimenting using topic stamps as representation and navigation "labels" in a multi-document space, we thus plan to fold in awareness of document boundaries (as an extension to tracking the effects of discourse segment boundaries within a single document). Even though the approach presented here can be construed, in some sense, as a type of passage extraction, it is considerably less exposed to problems like pronouns out of context, or discontinuous sentences presented as contiguous passages (cf. Faoste [22]). This is a direct consequence of the fact that we employ anaphora resolution to construct a discourse model with explicit representation of objects, and use syntactic criteria to extract coherent phrasal units. For the same reason, topic stamps are quantifiably adequate content abstractions, see Kennedy and Boguraev [13] for evaluation of the anaphora resolution algorithm, we are also in the process of designing a user study to determine the utility, from usability point of view, of capsule overviews as defined here.

Recent work in summarisation has begun to focus closer on the utility of document fragments with granularity below that of a sentence. Thus McKeown and Radev [21] pro-actively seek, and use to great leverage, certain cue phrases which denote specific rhetorical and/or inter-document relationships. Mahesh [18] uses phrases as "sentence surrogates", in a process called sentence summarisation, his rationale is that with hypertext, a phrase can be used as a place-holder for the complete sentence, and/or is a more conveniently manipulated, compared to a sentence. Even in passage extraction work, notions of multi-word expressions have found use as one of several features driving a statistical classifier scoring sentences for inclusion in a sentence-based summary (Kupiec et al. [15]). In all of these examples, the use of a phrase is somewhat peripheral to the fundamental assumptions of the particular approach, more to the point, it is a different kind of object that the summary is composed from (a template, in the case of [21]), or that the underlying machinery is seeking to identify (sentences, in the case of [18] and [15]). In contrast, our adoption
of phrasal expressions as the atomic building blocks for capsule overviews is central to the design, it drives the entire analysis process, and is the underpinning for our discourse representation.

References

[1] Advanced Research Projects Agency Fourth Message Understanding Conference (MUC-5), Baltimore, Maryland, 1993 Software and Intelligent Systems Technology Office

[2] Advanced Research Projects Agency Tipster Text Program Phase I, Fredericksburg, Virginia, 1993

[3] D Bourgault Surface grammatical analysis for the extraction of terminological noun phrases In 14th International Conference on Computational Linguistics, Nantes, France, 1992

[4] D Caruso New software summarizes documents The New York Times, January 27, 1997

[5] I Dagan and K Church Termight identifying and translating technical terminology In Proceedings of 4th Conference on Applied NLP, Stuttgart, Germany, 1995

[6] Defense Advanced Research Projects Agency Fourth Message Understanding Conference (MUC-4), McLean, Virginia, 1992 Software and Intelligent Systems Technology Office

[7] G DeJong An overview of the FRUMP system In W Lehner and M Ringle, editors, Strategies for Natural Language Parsing, pp 149–176 Lawrence Erlbaum Associates, Hillsdale, NJ, 1982

[8] M Hearst Multi-paragraph segmentation of expository text In 32nd Annual Meeting of the Association for Computational Linguistics, Laus Crusces, NM, 1994

[9] N Hutheesing Gilbert Amelho’s grand scheme to rescue Apple Forbes Magazine, December 16, 1996

[10] J S Justeson and S M Katz Technical terminology some linguistic properties and an algorithm for identification in text Natural Language Engineering, 1(1) 9–27, 1995

[11] F Karlsson, A Voutulanen, J Heikkula, and A Antilla Constraint grammar A language-independent system for parsing free text Mouton de Gruyter, 1995

[12] E Keenan and B Comrre Noun phrase accessibility and universal grammar Linguistic Inquiry, 8 62–100, 1977

[13] C Kennedy and B Boguraev Anaphora for everyone Pronominal anaphora resolution without a parser In Proceedings of COLING-96, Copenhagen, DK, 1996

[14] C Kennedy and B Boguraev Anaphora in a wider context Tracking discourse referents In W Wahlster, editor, Proceedings of ECAL-96, Budapest, Hungary, 1996 John Wiley and Sons

[15] J Kupiec, J Pedersen, and F Chen A trainable document summarizer In Proceedings of the 18th Annual International ACM SIGIR Conference, 68–73, Seattle, Washington, 1995

[16] S Lappin and H Leass An algorithm for pronominal anaphora resolution Computational Linguistics, 20(4) 535–561, 1994

[17] H Luhn The automatic creation of literature abstracts IBM Journal of Research and Development, 2 159–165, 1959

[18] K Maheesh Hypertext summary extraction for fast document browsing In Proceedings of AAAI Spring Symposium NLP for WWW, pp 95–104, Stanford, CA, 1997

[19] I Manu and T MacMillan Identifying unknown proper names in news wire text In B Boguraev and J Pustejovsky, eds, Corpus Processing for Lexical Acquisition, pp 41–59 MIT Press, Cambridge, MA, 1996

[20] M M McCord Slot grammar a system for simpler construction of practical natural language grammars In R Studer, ed., Natural language and logic international scientific symposium, Lecture Notes in Computer Science, pp 118–145 Springer Verlag, 1990

[21] K McKeown and D Radev Generating summaries of multiple news articles In Proceedings of the 18th Annual International ACM SIGIR, pp 74–82, Seattle, Washington, 1995

[22] C D Pace Constructing literature abstracts by computer techniques and prospects Information Processing and Management, 26 171–186, 1990

[23] K Preston and S Williams Managing the information overload new automatic summarization tools are good news for the hard-pressed executive Physics in Business, 1994

[24] L Rau Conceptual information extraction and information retrieval from natural language input In Proceedings of RIAO-88, Conference on User-oriented, Content-Based, Text and Image Handling, pp 424–437, Cambridge, MA, 1988

[25] L Rau, R Brandow, and K Mitze Domain-independent summarization of news In Summarizing Text for Intelligent Communications, pp 71–75, Dagstuhl, Germany, 1994

[26] G Salton, A Singhal, C Buckley, and M Mitra Automatic text decomposition using text segments and text themes In Seventh ACM Conference on Hypertext, Washington, D C, 1996

[27] K Sparck Jones Discourse modelling for automatic text summarising Technical Report 290, University of Cambridge Computer Laboratory, 1993

[28] K Sparck Jones What might be in a summary? In Knorz, Krause, and Womser-Hacker, eds, Information Retrieval 93: Von der Modellierung zur Anwendung, pp 6–32, Universitätverlag Konstanz, 1993

[29] J Tait Automatic summarising of English texts PhD thesis, University of Cambridge Computer Laboratory, Cambridge, UK, 1983 Technical Report 47