A temporally and spatially local spike-based backpropagation algorithm to enable training in hardware

Anmol Biswas, Vivek Saraswat and Udayan Ganguly
Electrical Engineering Dept., Indian Institute of Technology, Bombay, India

* Author to whom any correspondence should be addressed.
E-mail: 194076019@iitb.ac.in

Keywords: spiking neural networks, neuromorphic engineering, softmax cross-entropy

Abstract

Spiking neural networks (SNNs) have emerged as a hardware efficient architecture for classification tasks. The challenge of spike-based encoding has been the lack of a universal training mechanism performed entirely using spikes. There have been several attempts to adopt the powerful backpropagation (BP) technique used in non-spiking artificial neural networks (ANNs): (1) SNNs can be trained by externally computed numerical gradients. (2) A major advancement towards native spike-based learning has been the use of approximate BP using spike-time dependent plasticity with phased forward/backward passes. However, the transfer of information between such phases for gradient and weight update calculation necessitates external memory and computational access. This is a challenge for standard neuromorphic hardware implementations. In this paper, we propose a stochastic SNN based back-prop (SSNN-BP) algorithm that utilizes a composite neuron to simultaneously compute the forward pass activations and backward pass gradients explicitly with spikes. Although signed gradient values are a challenge for spike-based representation, we tackle this by splitting the gradient signal into positive and negative streams. The composite neuron encodes information in the form of stochastic spike-trains and converts BP weight updates into temporally and spatially local spike coincidence updates compatible with hardware-friendly resistive processing units. Furthermore, we characterize the quantization effect of discrete spike-based weight update to show that our method approaches BP ANN baseline with sufficiently long spike-trains. Finally, we show that the well-performing softmax cross-entropy loss function can be implemented through inhibitory lateral connections enforcing a winner take all rule. Our SNN with a two-layer network shows excellent generalization through comparable performance to ANNs with equivalent architecture and regularization parameters on static image datasets like MNIST, Fashion-MNIST, Extended MNIST, and temporally encoded image datasets like Neuromorphic MNIST datasets. Thus, SSNN-BP enables BP compatible with purely spike-based neuromorphic hardware.

1. Introduction

Spiking neural networks (SNNs) have received long-standing interest due to their biological plausibility, efficiency as a result of the discrete nature of information propagation in such networks, and theoretical computation power [1]. Additionally, recent developments of the event-driven neuromorphic hardware [2, 3] have led to a rise in interest in realizing large-scale SNNs. SNNs implemented on such hardware are highly power-efficient compared to current neural networks which require graphics processor units (GPUs) to perform the matrix operations during learning and inference. Gradient backpropagation (BP) [4] is the basic algorithm that reliably tunes the weights and biases of non-spiking artificial neural networks (ANNs) and is responsible for neural networks becoming the foremost approach to solving pattern recognition and classification tasks. However, it is not straightforward to implement BP in spiking networks because spiking networks perform computations through discrete spike events that are essentially non-differentiable. Several approaches have been proposed to address this fundamental problem.
Figure 1. A comparison of the proposed algorithm with existing approaches towards learning in spiking networks. Blue represents purely spike-based processing while Yellow/Orange represents numerical processing external to the spike-based architecture. Previous work relies on generating numerical values for activations, gradients, and updates in a non-spiking manner using external computation. We propose a continuous time learning algorithm where all operations in backpropagation are performed with spiking neurons.

One of the earliest approaches to attempt learning in spiking networks was SpikeProp [5], which minimized the distance between a single target and output spike by formulating the time-to-first-spike as a function of the input to the neuron. This approach was later extended to multiple spike outputs in [6, 7]. However, time-to-first-spike approaches have fallen out of favor as they have been unable to compete with the performance of more recent approaches due to the weak dependence of the time to first spike on the input spike-train compared to the dependence of the rate of spiking on the same input. This holds even for the latest in time to first spike algorithms, such as S4NN [8].

An alternative and highly successful approach involves adapting trained ANNs to spiking networks [9–11] where the ANN is trained separately and then the network weights are transferred to the SNN. The obvious drawback of such an approach however is that it rules out the possibility of online (or on-device) learning entirely and the training task does not benefit from the power-efficient encoding that SNNs have to offer.

Finally, the third broad approach is to adapt the BP algorithm itself to rate-coded spiking networks. This can be done in a number of ways at various levels of complexity. In GD4SNN [12] and SLAYER [13], the instant of spiking is approximated as a continuous-time event whereas HM2-BP [14–16] utilize exact post-synaptic potentials (PSPs), to externally compute the BP gradients with high accuracy. long short-term memory spiking neural networks (LSNN) [17], spike train-level recurrent SNN Backprop (ST-RSBP) [18], e-prop [19] and online spatio-temporal learning (OSTL) [20] utilizes BP through time with PSPs or pseudo-derivatives to train recurrent SNNs. These methods show state-of-the-art performance in classification problems using SNNs. However, one aspect common to all of these approaches is that the gradient signals need to be numerically calculated, as shown in figure 1, externally to the spiking network. This limits the plausible implementation of these learning algorithms in event-driven hardware because the computations involved cannot be simply translated to counting and/or timing spiking events.

In contrast, BP-spike-time dependent plasticity (STDP) [21] and error-modulated spike-timing-dependent plasticity (EMSTDP) [22] enables spike-time dependent weight update. However, they are phased, serial algorithms where the backward pass is performed after the forward pass is completed and the forward pass spike trains have to be stored externally. For BP-STDP, during the backward pass, the forward pass spike train is used to implicitly compute the loss gradient at each spike as a signed analog value externally as opposed to within the network. The weight updates occur for each pre-neuron, and post-neuron spike through ‘approximate’ STDP/Anti-STDP rules where the instantaneous gradient is used. Similarly, EMSTDP uses specialized units called trace counters to enable weight updates and several pre-trained convolutional layers. Thus in these approaches, separate forward and backward passes are used where information must be stored and transferred between the forward and backward pass phases externally. This process makes learning temporally non-local and requires significant external memory and computation.

Thus, it is an unsolved challenge to enable temporally local updates for a robust supervised algorithm using only conventional SNN elements without requiring external memory or numerical computation. This
requires all the computation to be done using only neurons and synapses in concurrent forward & backward passes.

In this paper, we propose a fully spike-based algorithm to compute all BP gradient spiking signals for training SNNs and a temporally local weight updates scheme for in-memory on-chip learning inspired by resistive processing units (RPUs) [23]. First, our algorithm computes both forward-pass spikes and BP gradient spikes concurrently with the incremental updates which eliminates additional memory requirements. We maintain mathematical equivalence of the spike-domain learning algorithm with training in conventional non-spiking ANNs by noting that the spiking frequency of an integrate and fire (IF) neuron resembles rectified linear unit (ReLU) like [24] characteristics (linear after a threshold). Second, although compartmentalized neurons for forward and backward passes have been reported earlier (SpikeGrad) [25], we enable positive and negative weight updates with unsigned spikes by splitting the gradient compartment into separate positive and negative spiking streams. Third, we propose lateral inhibitory connections in the output layer to implement a winner-take-all (WTA) rule [26] in order to approximate the softmax cross-entropy loss function [27]. Fourth, we adapt our algorithm to use the RPU concept to compute weight update in a temporally and spatially local manner which eliminates the need for external computation of weight updates.

Figure 1 illustrates the difference between existing approaches for spike-based training and the proposed algorithm and figure 2 visualizes the simultaneous computation. We call our method stochastic SNN-backprop (SSNN-BP) as it requires stochastic encoding of the input and target spikes for the proposed update algorithm (RPU-inspired temporally local updates) to work. Finally, we show the equivalence of RPU-inspired temporally local updates to a quantized rate-based updates approach. The latter is faster to implement in software and helps us quickly predict the performance of the proposed RPU updates algorithm for different data sets i.e. MNIST, Extended MNIST, and Fashion MNIST to demonstrate generalization. The rate-based updates approach also helps us estimate the number of simulation steps (T_s) required to achieve a target level of performance for the proposed temporally local RPU-inspired updates based on the precision (quantization levels) of the weight updates.

2. Proposed method—SSNN-BP

2.1. Composite spiking neurons
We propose a composite spiking neuron that can simultaneously compute both the feedforward spikes and the backpropagated gradient spikes with positive and negative streams as the fundamental unit of our network. Further, we introduce an approximation of the softmax cross-entropy loss implemented using...
inhibitory lateral connections to enforce WTA in the output layer. For stable learning and regularization in our experiments, we also adopt the He weight initialization scheme [28] and dropout [29] respectively.

We use a Spike Response kernel method [14] to perform efficient GPU-compatible simulations of our spiking network. In this method, the incoming spike trains at any neuron are convolved with a spike response kernel, which converts weighted discrete delta-function spikes into their corresponding PSPs and accumulates their values over time. This convolution operation, then, computes the membrane potential of the neuron across the simulation time in one shot and is followed by a thresholding operation to generate the spike train from the computed membrane potential. Due to the one-shot computation of neuron membrane potential in the kernel method, the thresholding operation is slightly different from the standard issue spike-and-reset method of simulations that compute the membrane potentials at every time step in sequence. Since the membrane potentials are pre-computed without resetting, we have to instead, increment the threshold after every spike is issued. In doing this, we are making use of the fact that for a spiking threshold of θ, spikes should be issued at the time instances when the pre-computed membrane potential (computed without any spike-issue resetting) crosses θ, 2θ, 3θ and so on.

Additionally, since the membrane potential of any neuron is computed in one shot from known input spikes to that neuron and the thresholding and spike-generation operation occur separately, this method cannot directly implement lateral connections, which are required in our final layer. To solve this problem, we have used an iterative approach where at any given iteration, we use the available spikes of the same layer from the previous iteration to compute new membrane potentials, and therefore new spike trains for the current iteration. Eventually, this method generates stable spike patterns after a few iterations.

The composite neuron comprises of three compartments: feedforward spikes $s^f_x(t)$, and backward gradient spikes $s^\delta_{\delta+}(t)$, and $s^\delta_{\delta-}(t)$. The subscript x refers to forward pass quantities, while the subscript δ refers to backward pass quantities. We use IF neurons similar to the ones described in BP-STDP [21] for our network. The forward pass of our network for all layers except the last layer (N) is described by the following equations:

$$s^\delta_x(t+1) = f_\theta(W^f \times (\epsilon_x \ast s^\delta_x(t)))$$ (1)

$$\epsilon_x(t) = H(t)(1 - e^{-t/\tau_x}).$$ (2)

In equations (1) and (2), $s^f_x(t)$ represents the spike-train i.e. time-series of the binary spikes in the forward pass direction of the network for the layer l, W^f is the weight matrix connecting layer l to layer $l+1$, $\epsilon_x(t)$ is the Spike Response kernel, $H(\cdot)$ represents the standard Heaviside function, \ast represents convolution in time and f_θ is the threshold function. While generating the spike trains through the f_θ operation, the starting threshold for firing is set to $V_{inh} = \theta$, and an output spike is issued when the membrane potential ($W^f \times (\epsilon_x \ast s^f_x(t))$) exceeds V_{inh}. After every spike, the threshold is incremented by θ, i.e. $V_{inh} \rightarrow V_{inh} + \theta$.

The output layer (layer N) includes lateral inhibition to implement a WTA scheme in order to approximate the softmax activation function. For this, we adopt an iterative approach (since lateral connections cannot be exactly modeled in a spike response kernel implementation):

$$s^N_x(t)_0 = f_\theta(W^{N-1} \times (\epsilon_x \ast s^{N-1}_x)(t))$$ (3)

$$s^N_x(t)_{k+1} = f_\theta(W^{N-1} \times (\epsilon_x \ast s^{N-1}_x)(t) - W_{inh} \times (\epsilon_x \ast s^N_{k+1})(t)).$$ (4)

We iterate over k to converge to a $s^N_x(t)$. All diagonal elements in inhibitory weights W_{inh} are set to 0 to prevent self-inhibition. W_{inh} are fixed and not learnt.

For inference, we identify the neuron in the output layer with the maximum spiking activity, i.e. argmax($\sum(s^N_x(t))$) which means the classification output is assigned to the output layer neuron that issues the most spikes. This completes the description of the neurons for computing the feedforward spikes.

We have a set of parallel networks that compute the BP gradient spikes. Two such BP neuron compartments ($s^\delta_{\delta+}(t)$, and $s^\delta_{\delta-}(t)$) are required for each feedforward neuron compartment ($s^f_x(t)$) because typically the backpropagated gradient can be either positive or negative while having only positive values is sufficient for feedforward neurons as shown by the success of ReLUs [24, 30]. We intend to represent all signals using unsigned binary values only. The BP step for any hidden layer can be described by the following set of equations:

$$s^\delta_{\delta+}(t) = \left(\sum_l s^f_x(t) > 0 \right) \otimes f_\theta \left(W^{IT} \times (\epsilon_\delta \ast s^{\delta+}_x(t)) - W^{IT} \times (\epsilon_\delta \ast s^{\delta-}_x(t)) \right).$$ (5)
are computed as:

\[s_\delta^l(t) = \left(\sum_i s^i(t) > 0 \right) \otimes f_0 \left(W^T \times (\epsilon_\delta \ast s_{\delta+}^{l+1})(t) - W^T \times (\epsilon_\delta \ast s_{\delta-}^{l+1})(t) \right). \]

These BP equations are derived by exploiting the similarity between rate-coded IF spiking neurons and ReLUs [24]. In equations (5) and (6), \(\otimes \) represents element-wise multiplication over the time steps of the spike train and \(\epsilon_\delta(t) = H(t)(1 - e^{-t/\tau_\delta}) \) is the Spike Response kernel for the gradient neuron compartments. The term \(\sum_i s^i(t) > 0 \) estimates the gradient of the forward spikes inspired by the step function gradient of the ReLU activation function. The comparison \(\sum_i s^i(t) > 0 \) flips to 1 for the corresponding neuron in layer \(l \) as soon as the first spike is issued by that neuron and maintains that value for the rest of the simulation for a given input sample. This arrangement of one feedforward and two BP compartments is given the name Composite Spiking Neuron because it is a complete unit that computes all the signals required for learning. The operation of the composite neuron unit is visualized in figure 4(a). The gradient signals at the output layer \(N \) are computed as:

\[s_\delta^N(t) = f_0((\epsilon_\delta \ast s^\text{label})^N(t) - (\epsilon_\delta \ast s^N)(t)) \]

\[s_\delta^N(t) = f_0((\epsilon_\delta \ast s^N)(t) - (\epsilon_\delta \ast s^\text{label})(t)). \]

Equations (7) and (8) are inspired from the common form of the gradient when loss is computed either as mean-squared error or as softmax cross-entropy between \(s^N(t) \) and \(s^\text{label}(t) \), where \(s^\text{label}(t) \) is the target output spike train.

The input layer spikes \(s^i(t) \) and the target spikes \(s^\text{label}(t) \) are encoded as stochastic Poisson spike trains of length \(T_i \) with average rates derived from input and label values of the dataset (say pixel intensity value for images) as shown in figure 3.

2.2. RPU-inspired temporally local weight updates

We propose a spatially and temporally local weight update rule inspired by RPU which uses spike coincidence of independent spiking signals for incremental updates. For the method to work, we also need the initial spike trains on both the forward pass and BP directions to be stochastic and independent of each other as shown in figure 3.

In order to calculate the weight updates for \(W^l \), we need the outer product of the activity represented by the signals \(s^i(t) \) and \(s_{\delta-}^{l+1}(t) - s_{\delta+}^{l+1}(t) \). Since we are using independent and stochastic inputs and target spikes for the network, it is possible to implement weight updates as temporally local incremental values. For stochastic and independent spike trains, the coincidence (or ‘AND’) of spikes effectively generates a signal proportional to the product [31]. This is a core feature of RPU-based updates. Further, for binary signals, ‘AND’ is equivalent to a multiplication operation, hence the incremental updates for \(ij \)th weight can be written as:

\[\Delta W^l_{ij}(.)(t) = \eta/T_i \times (s_{\delta-}^{l+1}(t) \times s_i^j(t)) \]

\[\text{Figure 3.} \text{ Network architecture and training. Forward pass compartments are shown in blue and gradient compartments are shown in red. Inputs and labels are converted to Poisson random spike trains and fed to the spiking network from opposite ends. The forward pass activations and the backpropagation gradients are computed by the respective compartments of the spiking network.} \]
Figure 4. (a) Spike-based forward and backward passes and weight updates. The net gradient $s_k(t)$ is computed as $(s_{k+1}(t) - s_{k-1}(t))$. (b) The rate-based update rule, where spike rates of $s_{k+1}(t)$ and $s_{k-1}(t)$ are computed first before multiplication. (c) Temporally local weight update rule where the products of the spike rates of $s_{k+1}(t)$ with $s_{j+1}(t)$ and $s_{j-1}(t)$ are computed by counting coinciding spikes (AND function).

$$\Delta W_{ij} = \eta / T_s \times (s_{k+1}(t) \times s_{j+1}(t))$$

where η is the learning rate and T_s is the number of simulation steps per sample. The implementation of incremental updates based on coincidence is another core feature of RPU-based updates. The weights are implemented as an analog accumulative memory with non-linear programming threshold that undergoes an
incremental Program/Erase only for overlapping spikes (coincidence) and ignores non-overlapping spikes [23]. Further, the updates can happen concurrently with the forward and backward spikes computations. The overall weight update applied after \(T_s \) time steps can be written as:

\[
\Delta W^{l}_{ij} = \frac{\eta}{T_s} \times \sum_t \left((s_{\delta_l}^{l+1}(t) - s_{\delta_l}^{l}(t)) \times \delta_{x_l}(t) \right).
\]

As shown in figure 4(c), the weight updates computed by this temporally local method have a precision of \(1/T_s \), as a result, the updates, and consequently the performance suffers from a quantization issue. As \(T_s \) increases, the accuracy is expected to increase. However, it is important to note that the proposed RPU-inspired temporally local update method is aimed at hardware implementations. It is highly inefficient to simulate this stochastic spike coincidence-based update behavior in software especially for high-performing large values of \(T_s \). Hence, we propose a strategy to predict the performance of RPU-inspired updates using a quantized rate-based update method as explained next.

2.2.1. Quantized rate-based weight updates

The updates to the weight matrix can also be computed as the outer product of \(\sum_{t} \delta_{x_l}(t) / T_s \) and \(\sum_{t} (s_{\delta_l}^{l+1}(t) - s_{\delta_l}^{l}(t)) / T_s \) in line with BP [3]:

\[
\Delta W^{l} = \eta \times \left(\sum_{t} (s_{\delta_l}^{l+1}(t) - s_{\delta_l}^{l}(t)) / T_s \right) \times \left(\sum_{t} \delta_{x_l}(t) / T_s \right)^T.
\]

Equation (12) computes the weight update as a product of the rates of two spiking neurons as visualized in figure 4(b). As shown in figure 4(b), the weight updates computed by this method with \(T_s \) simulation steps have a precision of \(1/T_s \). Clearly, this update method is not temporally local or purely spike-based (need to calculate average rates), neither is it concurrent with the passes (need to wait for passes to finish to calculate rates and updates). We are introducing this rate-based update method for its capability to predict the performance of the temporally local and concurrent RPU-inspired updates while retaining an efficient software implementation.

Rate-based updates allow us to have a high level of precision in the weight updates with a relatively small value of \(T_s \) (taken to be 50 for our baseline simulations, precision becomes 1/2500). In order to estimate the performance for the RPU-inspired method using \(T_s \) steps (say 100), we requantize the baseline rate-based updates from high-precision \((1/2500)\) to a low-precision \((1/100)\). In section 3.2, we show that simply quantizing the rate-based weight updates gives us a good way to predict the performance of the RPU-inspired temporally local updates. This enables us to find the number of steps needed by the RPU-inspired updates to achieve a given target accuracy.

2.3. Parameters

The parameters used for the simulations are provided in table 1. The choice of \(\tau \) (neuron time constant) in our algorithm is dictated by the form of encoding that we use. Since we are working with rate-based encoding, we require the neurons in the network to respond to incoming spike rates, while also spiking at a reasonable rate. To achieve this balance, a moderate time constant is used for the forward pass, as it allows the neuron to average incoming spike rates for a reasonable number of timesteps while also not being too slow to raise its membrane potential in response to incoming spikes. A much smaller value is used for the backward pass to increase the number of gradient spikes as very few label spikes are provided as input for the backward pass. The choice of \(\tau \) for an arbitrary input spike-train will depend on the spiking statistics of the data and needs to be empirically determined considering the trade-offs explained above. Finally, we would like to clarify that \(\tau \) has not been optimized in this work. We have simply used what we believe to be reasonable values to represent spike rate information in the time frames considered for simulation.

The values of \(\tau_x \) and \(\tau_{\delta} \) are set to \(T_s/10 \) and \(T_s/100 \) respectively, the value of \(\theta \) is maintained across simulations and the learning rate \(\eta \) corresponding to best learning performance is used. It is found that progressively lower values of \(\eta \) are required for \textit{RPU-inspired temporally local} simulations with higher number of simulation steps \((T_s) \). We use batch size of 50 for all of our training simulations.

Simulation type	\(\tau_x \)	\(\tau_{\delta} \)	\(\theta \)	\(\eta \)
Rate-based, \(T_s = 50 \)	5	0.5	5	0.06
RPU-inspired temporally local, \(T_s = 100 \)	10	1	5	0.04
RPU-inspired temporally local, \(T_s = 200 \)	20	2	5	0.01
RPU-inspired temporally local, \(T_s = 300 \)	30	3	5	0.005
3. Results

We test our network and supervised learning algorithm on the classification benchmark dataset—MNIST [32]. The equivalence of WTA due to lateral inhibition in the output layer with soft-max cross-entropy loss is demonstrated. The results are compared against the state of the art in the different approaches to learning in SNNS and ANN baseline performance. We characterize the performance of the temporally local RPU-inspired weight updates for different \(T_s \), concentrating on the MNIST dataset. We demonstrate the equivalence of the rate-quantized updates to RPU-inspired updates and find the optimal number of time steps needed for target accuracy. Finally, we extend our comparison to more complex benchmark datasets—Fashion-MNIST [33] and EMNIST [34] and show generalizing capability comparable to the state of the art in SNN learning and the ANN baseline as well as the improvements from implementing dropout [29] and approximate softmax cross-entropy [27] loss function in our spike-based learning algorithm. Code: https://github.com/SNNalgo/SSNN-BP.

3.1. Softmax cross-entropy loss approximation

The softmax cross-entropy loss is an important contributing factor to improving the performance of neural networks in solving difficult classification tasks [27]. Owing to the properties of the softmax cross-entropy loss function, simply replicating a softmax-like function under a spiking paradigm is sufficient to implement learning with softmax cross-entropy as the loss. However, softmax is a dynamic function that is dependent, not only on the input activation in question but also on all the other activations in the same layer. The most visible effect of the softmax function is the exaggeration of small differences between activations, where the largest activation value is enhanced and everything else is strongly suppressed by comparison. This behavior is qualitatively replicated by the WTA networks with inhibitory lateral connections in the output layer [26]. Figure 5 compares the aggregate distribution of our WTA outputs with the corresponding softmax outputs on the same raw spiking output (without inhibitory lateral connections) over the MNIST [32] test set. After normalizing and sorting all outputs by value, the aggregate effect that the softmax function has on the distribution of output layer spiking activity is found to be very similar to the effect of WTA implemented by lateral inhibitory connections.

3.2. Predicting performance of temporally local updates with quantization

As shown in figures 4(b) and (c), there is a big discrepancy in the precision of the weight updates computed by the rate-based method and the temporally local method. In view of this knowledge, we train an SNN with temporally local weight updates across a range of simulation steps, \((T_s \in \{100, 200, 300\}) \) and with appropriately quantized baseline rate-based updates \((T_s = 50) \) using 30000 training samples of the MNIST dataset for 50 epochs. We find in our experiments, as shown in figures 6 and 7, that simply quantizing the rate-based weight updates with the appropriate number of levels can provide a reliable prediction of the learning performance of the proposed RPU-inspired temporally local weight updates for varying simulation steps \((T_s) \). Furthermore, we find that the performances of the quantized rate-based weight updates and temporally local weight updates converge with increasing \(T_s \) and increasing number of training epochs. In figure 7, we extrapolate to find that \(T_s = 1000 \) would be sufficient for the temporally local weight updates to match the performance of the baseline rate-based weight updates. In figure 8, we extend the training of the SNN with quantized rate-based weight update simulations, both in terms of training data \((50000 \text{ training samples}) \) and epochs \((200 \text{ epochs}) \) and find that the performance difference seen in the shorter and smaller training \((50 \text{ epochs}) \) for low number of simulation steps, i.e. \(T_s = 300 \) (figures 6 and 7) could disappear (become same as \(T_s = 1000 \)) in the long run \((200 \text{ epochs}) \). After establishing this equivalence, we can now continue to use rate-based update simulations to efficiently predict the performance of the RPU-inspired updates for a large variety of datasets.

3.3. Performance on different datasets

3.3.1. MNIST

We test the performance of the SNN and the training algorithm on the MNIST [32] handwritten numeric digit classification dataset. The dataset consists of 60000 training samples and 10000 test samples. Each sample is a 28 \(\times \) 28 grayscale image. The input layer receives randomly generated Poisson spike trains with spike-rate set to the pixel value normalized to \([0, 1]\) and the output layer receives target Poisson spike trains. The neuron corresponding to the correct class receives a target spike train with a spike-rate of 0.5 while the other output layer neurons do not receive any spikes. Training the network with moderate levels of dropout \((0.2 \text{ in the first layer and 0.3 in the second layer}) \) gives test classification performance of up to 98.65%. The performance of our baseline simulations with rate-based weight updates is comparable to the state-of-the-art
Figure 5. Comparison of the effects of softmax and WTA on the distribution of raw spiking output. Output neuron ids are sorted in descending order of response. While the raw spiking output is not so selective, WTA amplifies the nonlinearity ensuring that the primary neuron spikes uniquely while other neurons are muted. This behavior approximates the softmax function. Inset: Inhibitory lateral connections implementing WTA in output layer.

Figure 6. Comparison of learning performance with RPU-inspired temporally local weight updates and quantized baseline rate-based weight updates. Black dashed line is the full-precision rate-based baseline.

in SNNs [9, 14] as well as the ANN baseline with an equivalent architecture. Table 2 contains detailed comparisons (state of the art results in SNN training, and our approach are in bold for comparison).

3.3.2. Generalization to FMNIST, EMNIST
To showcase the generalizing property of our method, we test it on two additional datasets, Fashion MNIST and Extended MNIST which are harder classification problems than MNIST despite having identical input dimensions.

Extended MNIST (EMNIST) extends MNIST by adding lower and uppercase alphabets. We test our algorithm on the Balanced EMNIST dataset [34] which comprises of 131000 labeled grayscale image samples belonging to one of 47 classes. We use 120000 samples for training and test on 10000 samples from the remaining. The input encoding is identical to the one described for MNIST.

Fashion MNIST [33] is another dataset where 28 × 28 grayscale images of clothing items have to be classified into ten classes, comprising of 60000 training and 10000 test samples. The input encoding described for MNIST is used.
A Biswas et al

Figure 7. Trend of learning performance of quantized baseline rate-based weight updates predicting the learning performance of RPU-inspired temporally local weight updates.

Figure 8. Larger and longer simulations of training with quantized baseline rate-based weight updates.

The detailed performance comparisons are provided in table 3. Our algorithm performs better on the EMNIST and Fashion MNIST dataset compared to state of the art in SNN learning [14, 18] and approaches ANN level of performance on both datasets.

Table 3 clearly demonstrates the improvement in performance achieved by dropout regularization as well as the approximate softmax cross-entropy loss function. Adding dropout improves the test classification accuracy on the EMNIST dataset from 81.3% to 84.5% and it is further improved to 85.8% by introducing the approximate softmax cross-entropy loss.

3.3.3. Naturally spiking input dataset—Neuromorphic-MNIST
Neuromorphic-MNIST [35] is a neuromorphic dataset where MNIST images are recorded by an address event representation (AER) sensor programmed with fixed motions to generate spiking representations of the images. For our simulations, we use the standard ToFrame preprocessing of the Tonic Python library [36] to convert the raw AER data of the N-MNIST samples into usable spike-trains. For any given N-MNIST
Table 2. Comparison of the features and performance of learning algorithms on MNIST dataset.

Model	Network	Loss and regularizer	Gradient computation	STDPS-like weight updates	Fully SNN Compatible Learning	MNIST test-set accuracy (%)
BP-STDTP [21]	3 layer H1 = 500, H2 = 150	MSE	Discrete spikes are used to perform gradient computation and weight update for each spike but using external (non-SNN) mathematical processing	Yes	No	97.2
Diehl et al [9]	3 layer H1 = 1200, H2 = 1200	MSE	Weights are transferred from trained ANN	No	No	98.64
HM2-BP [14]	2 layer H1 = 800	MSE	Numerical gradient computation performed on continuous valued post-synaptic potentials (PSPs)	No	No	98.84
Lee et al [15]	3 layer H1 = 300, H2 = 300	MSE and weight regularization	Numerical gradient computation performed on continuous valued post-synaptic potentials (PSPs)	No	No	98.77
S4NN [8]	2 layer H1 = 400	MSE	Time to first spike used for numerical gradient computation	No	No	97.4
Baseline ANN	2 layer H1 = 1280	Softmax-CE and dropout	High precision conventional backprop.	No	No	98.67
This work	2 layer H1 = 1280	Softmax-CE and dropout	Discrete spikes are used in IF neurons to implement all elements of backprop. for learning	Yes	Yes	98.65 +/− 0.04

Table 3. Generalization of SSNN-BP to EMNIST and FMNIST datasets.

Model	Network	Loss and regularizer	EMNIST test-set accuracy (%)	FMNIST test-set accuracy (%)
HM2-BP [14]	2 layer H1 = 800	MSE	85.41	88.99
ST-RSBP [18]	3 layer H1 = 400, H2 = 400, recurrent spiking network	MSE	—	90.13
Baseline ANN	2 layer H1 = 1280	Softmax-CE and dropout	86 +/− 0.06	90.8 +/− 0.1
This work	2 layer H1 = 1280	MSE	81.26 +/− 0.04	—
This work	2 layer H1 = 1280	MSE and dropout	84.48 +/− 0.04	—
This work	2 layer H1 = 1280	Softmax-CE and dropout	85.76 +/− 0.15	90.5 +/− 0.2

AER spike, the preprocessing code first performs basic outlier detection by considering the number of spikes issued by neighboring neurons within a fixed time window and if it crosses a threshold, then the microsecond-level AER spike is extended into a millisecond-level frame pixel. This software-level preprocessing is functionally equivalent to pulse extender circuits, such as the ones described in [37] that are normally used to interface with AER sensors. Through this process, the approximately 300 ms (300000 μs)
long N-MNIST AER samples are converted into clocked N-MNIST samples, each containing approximately 300 frames of spikes for further processing. This is also unavoidable for practical simulations as it is both infeasible to perform SNN simulations with 300,000 timesteps (as would be necessary to maintain the AER timing precision) as well as unnecessary as the raw AER data is very sparse.

Since there is a temporal aspect to the data in N-MNIST, we use a fixed and randomly connected spiking reservoir \[38, 39\] to perform a basic level of temporal processing before the resultant spikerates of the reservoir neurons are encoded by Poisson random spike-trains and input to a two-layer SNN that is trained for the classification task by our algorithm as shown in figure 9.

In our algorithm, the spiking rates of the reservoir neurons are recoded as Poisson spike trains. Recoding of the original reservoir neuron spike-trains into rate-based Poisson spike-trains needs to be done during the training phase to ensure that we generate stochastic spike-train inputs for the learning algorithm. For inference, we can directly use the reservoir spike trains as input without having to recode them as Poisson spike trains.

In our simulations, we have computed the spike rate calculation after the reservoir layer in two different ways:

Ideal computation: By counting the total number of spikes issued by each reservoir neuron and normalizing it by the number of simulation steps used for the Reservoir simulation \(\sum_{s} x_{\text{Reservoir}}(t) / T_s\).

Realistic computation: By convolving the reservoir spike-trains with an exponential kernel and using a leaky integrator to estimate the instantaneous spike-rate—which is used to generate the random Poisson spike trains.

The second method of recoding reservoir neuron spike rates into Poisson spike trains outlined above would not require much overhead. It can be accomplished simply by using an additional layer of synapses (to implement the convolution with an exponential kernel) connecting each reservoir neuron to a stochastic spiking neuron, \[40\] as shown in figure 10.

Table 4 contains the comparisons of the performance of our method with the state-of-the-art in SNN learning. The equations and parameters for the Reservoir simulation are replicated from the basic 1000-neuron Reservoir Model described in \[41\].

3.4. Compatibility with neuromorphic hardware

The supervised training of neural networks using BP of errors is a data-intensive task. There has been a significant thrust to transfer these operations in/near-memory and on-chip for latency and power efficient forward and backward propagation \[43\]. Large neuromorphic cores of thousands of fast communicating neurons and energy efficient address event representation between hundreds of such cores have been demonstrated in digital and analog mixed mode hybrid design in hardware \[44\]. Chips like Neurogrid \[43\], TrueNorth \[2\], SpiNNaker \[45\], and Loihi \[3\] have made the realization of very large-scale neural networks possible, bringing down the time and energy complexity of network dynamics by several orders (3–4) of magnitude compared to conventional Processor and GPU simulations \[44, 46\].

The present trend in the neuromorphic very large scale integration (VLSI) is to increase in scale while maintaining the simplicity of individual units. Most implementations make use of simple leaky, IF neurons with methods to stochastically generate and propagate information only using spikes. These implementations also offer simple learning rules based on spike timings (STDP). The hardware acceleration benefits are not limited to just forward and backward propagation. Weight gradient calculation and weight update is another field where the role of hardware-enabled efficiency is extremely critical. As described earlier, the proposal of RPU enables simultaneous calculation of gradients and write-back in large crossbar arrays of analog memories holding network weights. Since RPU depends on the generation of stochastic and pulsed representation of activations and errors, they are naturally well-suited for SNNs: spikes easily replace

Figure 9. Setup for Neuromorphic-MNIST classification. A fixed spiking reservoir is used to perform a basic level of temporal processing on the input and is then classified using a two-layer SNN trained with our method.
Figure 10. (a) Setup for recoding reservoir neuron spike rates into Poisson spike trains using stochastic neurons. (b) An example of the working of this setup—showing the spike rate of a regular spiking neuron being encoded as a Poisson random spike train.

Table 4. Generalization of SSNN-BP to N-MNIST dataset.

Model	Network	Loss and Regularizer	N-MNIST test-set accuracy (%)
HM2-BP [14]	2 layer H1 = 800	MSE	98.84
DECOLLE [42]	Convolutional neural network with 3 (7 × 7) Conv-Pool layers followed by a fully connected layer		
	MSE and dropout		99 * (Results on a subset of the data with 20,000 training samples and 1000 test samples)
This work	1000-neuron reservoir + 2 layer SNN, H1 = 1280	softmax-CE and dropout	98.26 +/- 0.02

the stochastic pulses needed for weight update calculation to achieve the same effect when combined with spike coincidence-based learning rules.

However, due to the nature of RPU-based stochastic multiplication, this type of training algorithm is mainly relevant for clocked spiking systems where voltage pulses can align in time for predictable periods of time (i.e. a clock cycle). This is the case because we are using an RPU-based approach which requires pulse co-incidence to update the weights and is a common assumption for RPU-capable memories proposed as synapses, including analog memories [23, 31, 47–49]. As such, pulse-extender circuits, such as ones described in works such as [37, 50, 51] would be required to interface data from asynchronous AER sensors with our RPU-based SNN learning system.
Several device-level implementations of stochastic neurons using resistive memories like phase change memories \cite{35}, bulk switching \(Pr_{1-x}Ca_xMnO_3\) resistive random access memory (PCMO RRAMs) \cite{36} and nanomagnets \cite{37} have been proposed. Similarly, analog memories for synapses like charge trap flash \cite{38} and dynamic random access memory (DRAM)-like capacitors \cite{39} with analog charge storage have shown the feasibility of RPU. Thus algorithms tailored to a generic description of an SNN and all computations done in spikes are readily transferable and scalable on neuromorphic hardware.

4. Conclusion

In this paper, we introduce a fully spike-based learning architecture for SNNs (SSNN-BP) that performs all computations using spiking neurons and performs weight updates using stochastic encoding to implement a spike coincidence mechanism, proposed for an in-memory on-chip learning implementation. The algorithm is spatially and temporally local, employs concurrent passes and incremental updates and does not require any external memory or numerical computation. We further show that its performance tends towards that of the rate-based version of the learning algorithm, for large \(T_s = 300\), which performs on par with the state of the art in SNN learning algorithms on a number of benchmark classification tasks and approaches ANN level of performance. Furthermore, we show the performance improvement arising from introducing dropout regularization as well as adding lateral inhibitory connections in the output layer to approximate the softmax cross-entropy loss function.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Anmol Biswas @ https://orcid.org/0000-0002-2363-5864
Vivek Saraswat @ https://orcid.org/0000-0001-9191-1632

References

\[1\] Maass W 1997 Networks of spiking neurons: the third generation of neural network models Neural Netw. \textbf{10} 1659–71
\[2\] Merolla P A et al 2014 A million spiking-neuron integrated circuit with a scalable communication network and interface Science \textbf{345} 668–73
\[3\] Davies M et al 2018 Loihi: a neuromorphic manycore processor with on-chip learning IEEE Micro \textbf{38} 82–99
\[4\] Rumelhart D E, Hinton G E and Williams R J 1986 Learning representations by back-propagating errors Nature \textbf{323} 533–6
\[5\] Bohte S M, Kok J N and La Poutre H 2002 Error-backpropagation in temporally encoded networks of spiking neurons Neurocomputing \textbf{48} 17–37
\[6\] Boosj Ò and tat Nguyen H 2005 A gradient descent rule for spiking neurons emitting multiple spikes Inf. Process. Lett. \textbf{95} 552–8
\[7\] Ghosh-Dastidar S and Adeli H 2009 A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection Neural Netw. \textbf{22} 1419–31
\[8\] Kheradpisheh S R and Masquelier T 2020 Temporal backpropagation for spiking neural networks with one spike per neuron Int. J. Neural Syst. \textbf{30} 2050027
\[9\] Diehl P U, Neil D, Binas J, Cook M, Liu S-C and Pfeiffer M 2015 Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing 2015 Int. Joint Conf. on Neural Networks (IJCNN) (IEEE) pp 1–8
\[10\] O’Connor P, Neil D, Liu S-C, Delbruck T and Pfeiffer M 2013 Real-time classification and sensor fusion with a spiking deep belief network Front. Neurorsci. \textbf{7} 178
\[11\] Hunsberger E and Eliazsñt C 2015 Spiking deep networks with LIF neurons (arXiv:1510.08829)
\[12\] Huh D and Sejnowski T J 2018 Gradient descent for spiking neural networks (arXiv:1706.04698)
\[13\] Shrestha S B and Orchard G 2018 Slayer: spike layer error reassignment in time (arXiv:1810.08646)
\[14\] Jin Y, Zhang W and Li P 2018 Hybrid macro/micro level backpropagation for training deep spiking neural networks (arXiv:1805.07866)
\[15\] Lee J H, Delbruck T and Pfeiffer M 2016 Training deep spiking neural networks using backpropagation Front. Neurorsci. \textbf{10} 508
\[16\] Lee C, Sarvar S S, Panda P, Srinivasan G and Roy K 2020 Enabling spike-based backpropagation for training deep neural network architectures Front. Neurorsci. \textbf{14} 119
\[17\] Bellec G, Salaj D, Subramoney A, Legenstein R and Maass W 2018 Long short-term memory and learning-to-learn in networks of spiking neurons (arXiv:1803.09574)
\[18\] Zhang W and Li P 2019 Spike-train level backpropagation for training deep recurrent spiking neural networks Adv. Neural Inf. Process. Syst. Conf. 32
\[19\] Bellec G, Scherr F, Subramoney A, Hajek E, Salaj D, Legenstein R and Maass W 2020 A solution to the learning dilemma for recurrent networks of spiking neurons Nat. Commun. \textbf{11} 3625
\[20\] Woźniak S, Pantazi A, Bohningt Ò and Eleftheriou E 2020 Deep learning incorporating biologically inspired neural dynamics and in-memory computing Nat. Mach. Intell. \textbf{2} 325–36
\[21\] Tavanaei A and Maida A 2019 BP-STDP: approximating backpropagation using spike timing dependent plasticity Neurocomputing \textbf{330} 39–47
\[22\] Shrestha A, Fang H, Rider D P, Mei Z and Qiu Q 2021 In-hardware learning of multilayer spiking neural networks on a neuromorphic processor 2021 58th ACM/IEEE Design Automation Conf. (DAC) (IEEE) pp 367–72
[23] Bhatt V, Shrivastava S, Chavan T and Ganguly U 2020 Software-level accuracy using stochastic computing with charge-trap-flash based weight matrix 2020 Int. Joint Conf. on Neural Networks (IJCNN) (IEEE) pp 1–8
[24] Nair V and Hinton G E 2010 Rectified linear units improve restricted Boltzmann machines Proc. 27th Int. Conf. on Machine Learning (ICML-10) pp 807–14
[25] Thiele J C, Richler O and Dupret A 2019 SpikeGrad: an ANN-equivalent computation model for implementing backpropagation with spikes (arXiv:1906.00851)
[26] Gupta A and Long I N 2009 Hebbian learning with winner take all for spiking neural networks 2009 Int. Joint Conf. on Neural Networks (IEEE) pp 1054–60
[27] Golik P, Doetsch P and Ney H 2013 Cross-entropy vs. squared error training: a theoretical and experimental comparison Interspeech vol 13 pp 1756–60
[28] He K, Zhang X, Ren S and Sun J 2015 Delving deep into rectifiers: surpassing human-level performance on ImageNet classification Proc. IEEE Int. Conf. on Computer Vision pp 1026–34
[29] Baldi P and Sadowski P J 2013 Understanding dropout Advances in Neural Information Processing Systems vol 26 pp 2814–22
[30] Krizhevsky A, Sutskever I and Hinton G E 2012 ImageNet classification with deep convolutional neural networks Advances in Neural Information Processing Systems vol 25 pp 1097–105
[31] Gokmen T and Vlasov Y 2016 Acceleration of deep neural network training with resistive cross-point devices: design considerations Front. Neurosci. 10 333
[32] LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Gradient-based learning applied to document recognition Proc. IEEE 86 2278–324
[33] Xiao H, Rasul K and Vollgraf R 2017 Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (arXiv:1708.0774)