QUASI–INVARIANT CONVERGENCE FOR DOUBLE SEQUENCE

ALAUDDIN DAFADAR* AND D. K. GANGULY

Abstract. In this paper we introduce the concept of quasi-invariant convergence and quasi-invariant statistical convergence of double sequence in a normed space and we shall present a characterization of a bounded sequence to be quasi-invariant convergent.

Mathematics subject classification (2010): 40B05, 40A05.
Keywords and phrases: Invariant mean, Banach limit, invariant limit, quasi invariant convergent, quasi invariant statistical convergent.

REFERENCES

[1] BISWA RANJAN DATTA AND ABSOS ALI SHAIKH, Generalized almost statistical convergence, Real Anal. Exchange, 45, 2 (2020), 439–452.
[2] C. CAKEN, B. ALTAY, M. MURSALEEN, The σ-convergent and σ-core of double sequences, Applied Mathematics Letter, 19, (2006), 1122–1128.
[3] D. K. GANGULY AND ALAUDDIN DAFADAR, On quasi statistical convergence of double sequence, Gen. Math. Notes, 32, 2 (February 2006), 42–53.
[4] D. K. GANGULY, B. BISWAS AND ALAUDDIN DAFADAR, Some properties of a function connecting to exponent of convergence for double sequences, Journal of Classical Analysis, 10, 2 (November 2017), 109–117.
[5] D. K. GANGULY AND A. DAFADAR, On strong matrix summable double sequence space with respect to modulus and statistical convergence, J. Cal. Math. Soc., 12, 1 (2016), 9–20.
[6] E. SAVAŞ, Some Sequence Space and Statistical Convergence, Int. J. Math. and Math. Sci., 29, 5 (2002), 303–306.
[7] E. SAVAŞ, F. NURRY, On σ-statistical convergence and lacunary σ-statistical convergence, Math. Slovaca, 43, 3 (1993), 309–315.
[8] E. SAVAŞ, Some sequence space involving invariant means, Indian J. Pure Appl. Math., 31, (1989), 1–8.
[9] E. SAVAŞ, Quasi-invariant convergent in normed space, Annals of the University of Craiova, Mathematics and computer science series, 41, 1 (2014), 1–5.
[10] F. NURRY, E.SAVAŞ, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math., 10, (1994), 267–294.
[11] H. FAST, Sur la convergence, Colloq. Math., 2, (1951), 241–244.
[12] I. J. SCHOPENBERG, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, (1959), 361–375.
[13] M. BASARIR (ELAZIG), On the strong almost convergence of double sequence, Periodica Mathematica Hungarica, 30, 2 (1995), 99–105.
[14] M. MURSALEEN AND O. H. H. EDELY, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293, (2004), 532–540.
[15] M. MURSALEEN AND OSAMA H. H. EDELY, On the invariant mean and statistical convergence, Appl. Math. Letters, 22, (2009), 1700–1704.
[16] M. MURSALEEN et.al., Generalized statistical convergence and statistical core of double sequences, Acta Mathematica Sinica, 26, (November 2010), 2131–2144.
[17] N. SUBRAMANIAN AND AYHAN ESI, On triple sequence of Bernstine operator of weighted rough I^*_h-convergence, Journal of Classical Analysis, 13, 1 (November 2018), 45–62.
[18] R. A. RAIMI, *Invariant means and invariant matrix method of summability*, Duke Math. J., **30**, (1963), 81–94.

[19] T. SALAT, *On statistically convergent sequences of real numbers*, Math. Slovaca, **30**, (1980), 139–150.