Earth Orientation and Temporal Variations of the Gravity Field
G. Bourda

To cite this version:
G. Bourda. Earth Orientation and Temporal Variations of the Gravity Field. SF2A-2004: Semaine de l’Astrophysique Francaise, Jun 2004, Paris, France. p. 3. hal-00120009

HAL Id: hal-00120009
https://hal.science/hal-00120009
Submitted on 28 Nov 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EARTH ORIENTATION AND TEMPORAL VARIATIONS OF
THE GRAVITY FIELD

Bourda, G.¹

Abstract. The determination of the Earth gravity field from space geode-
tic techniques now allows us to obtain the temporal variations of the low
degree coefficients of the geopotential, combining the orbitography of sev-
eral satellites (e.g. Lageos1, Lageos2, Starlette). These temporal variations
of the Earth gravity field can be related to the Earth Orientation Parame-
ters (EOP) through the inertia tensor. This paper shows these relations and
discusses how such geodetic data can contribute to the understanding of the
variations in EOP.

1 Introduction

The Earth Orientation is generally considered as (i) Earth rotation axis movements
in space (precession-nutation), (ii) Earth rotation axis movements in the Earth
(polar motion), or (iii) Earth rotation speed variations (excess in the length of the
day). These movements come from Earth inside masses distributions.

The Earth gravity field can give us information about this distribution of
masses because nowadays we can determine the variations of the Earth gravity
field by space geodetic techniques.

Hence, there is a link between the variations of the Earth gravity field and
the variations of the Earth Orientation Parameters. And the high accuracy now
reached in the VLBI (Very Long Baseline Interferometry) Earth Orientation Para-
ometers (EOP) determination requires looking further at the various geophysical
contributions to variations in EOP. So we investigate here if this variable gravity
field can be valuable for the improving the modelisation of the Earth rotation.

2 Theory

2.1 Link between Earth Orientation and Inertia

The fundamental equations for the rotation of the Earth in an inertial frame are
Euler’s dynamical equations, based on the conservation of the angular momentum

1 Observatoire de Paris, SYRTE/UMR 8630-CNRS,
61 avenue de l’Observatoire, 75014 Paris, France, email: bourda@syrte.obspm.fr
© EDP Sciences 2004
\(\ddot{H} \) of the Earth under an external torque \(\vec{L} \) (Lambeck 1980):

\[
\dot{H} = \vec{L} \tag{2.1}
\]

For a non-rigid Earth, these equations in a rotating frame become:

\[
\frac{d}{dt} \left[I(t) \vec{\omega} + \vec{h}(t) \right] + \vec{\omega} \wedge \left[I(t) \vec{\omega} + \vec{h}(t) \right] = \vec{L} \tag{2.2}
\]

where the inertia tensor \(I \) is time dependent, as well as the relative angular momentum \(\vec{h} \), and \(\vec{\omega} \) is the Earth instantaneous rotation vector which direction is the one of the rotation axis and which norm is the rotation speed. It depends on the Earth Orientation Parameters (EOP). The Inertia Tensor, which is symmetric, can be written as:

\[
I = \begin{bmatrix}
I_{11} & I_{12} & I_{13} \\
I_{12} & I_{22} & I_{23} \\
I_{13} & I_{23} & I_{33}
\end{bmatrix} = \begin{bmatrix}
A + c_{11} & c_{12} & c_{13} \\
c_{12} & B + c_{22} & c_{23} \\
c_{13} & c_{23} & C + c_{33}
\end{bmatrix} \tag{2.3}
\]

with \((A, B, C)\) the constant part and \(c_{ij}\) \((i = 1, 2, 3)\) the variable part of the Inertia Tensor.

2.2 Link between Inertia and Earth Gravity Field

The Earth gravity field of the Earth derived from the external gravitational potential \(U \) which is expressed in a spherical harmonic expansion as (Lambeck 1980):

\[
U(r, \phi, \lambda) = \frac{GM}{r} \left[1 + \sum_{n=2}^{\infty} \sum_{m=0}^{n} \left(\frac{R_e}{r} \right)^n (C_{nm} \cos(m\lambda) + S_{nm} \sin(m\lambda)) P_{nm}(\sin \phi) \right] \tag{2.4}
\]

where \(r\) is the geocentric distance, \(\phi\) the latitude and \(\lambda\) the longitude of the point at which \(U\) is determined. \(G\) is the gravitational constant, \(M\) and \(R_e\) are the mass and the equatorial radius of the Earth, respectively. \(C_{nm}\) and \(S_{nm}\) are the Stokes coefficients of degree \(n\) and order \(m\), and \(P_{nm}(\sin \phi)\) are the Legendre polynomials. Hence the second-degree Stokes coefficients can be directly related to the Inertia tensor components (Lambeck, 1988):

\[
C_{20} = -\frac{I_{33} - \frac{1}{2}(I_{11} + I_{22})}{M R_e^2} \\
C_{21} = -\frac{I_{13}}{M R_e^2} \\
C_{22} = \frac{I_{22} - I_{11}}{4 M R_e^2} \\
S_{21} = -\frac{I_{23}}{M R_e^2} \\
S_{22} = -\frac{I_{12}}{2 M R_e^2} \tag{2.5}
\]

3 Practical links

We just have shown that the Earth rotation (with \(\vec{\omega}\) and the EOP) could be related to the Earth gravity field (with the degree 2 Stokes coefficients). Then, we investigate now how we can link each EOP with these coefficients.
3.1 Earth Rotation speed

The excess in the length of the day \(\Delta(LOD) \) (with respect to a mean LOD) can be related to (i) the third component \(c_{33} \) of the variable part of the Inertia tensor and (ii) the third component \(h_3 \) of the relative angular momentum of the Earth, ignoring the external torques:

\[
\frac{\Delta(LOD)}{LOD_{\text{mean}}} = \frac{c_{33}}{C} + \frac{h_3}{C \Omega}
\]

(3.1)

Moreover, with the help of Eq. (2.5), we can write:

\[
c_{33}(t) = \frac{1}{3} \Delta Tr(I) - \frac{2}{3} M R_e^2 \Delta C_{20}(t)
\]

(3.2)

where \(\Delta Tr(I) \) is the variation in time of the sum of the diagonal elements of the Inertia tensor. We can consider that it is equal to zero (Rochester & Smylie 1974). Then, we can obtain:

\[
\frac{\Delta(LOD)}{LOD_{\text{mean}}} = -0.7 \frac{2}{3} C_m M R_e^2 \Delta C_{20} + \frac{h_3}{C_m \Omega}
\]

(3.3)

where the coefficient 0.7 accounts for the loading effects and \(C_m \) is the third moment of inertia of the Earth’s mantle (Barnes et al. 1983). Then we have compared the \(\Delta(LOD) \) obtained with Eq. (3.3) and the \(\Delta C_{20} \) data in Fig. 2 with the one usually used but corrected from zonal tides, atmospheric wind effects (\(h_3 \)) and long terms (see Fig. 1).

![Fig. 1. Excess in the length of the day: various components of this \(\Delta(LOD) \) are removed.](image1)

![Fig. 2. Excess in the length of the day obtained with \(\Delta C_{20} \) data and compared with the classical one corrected from other effects.](image2)

3.2 Precession-Nutation

The study of the Earth precession nutation angles variations influenced by the temporal variations of the \(C_{20} \) coefficients of the geopotential is developed in the
article of Bourda & Capitaine (2004). It is based on the works of Williams (1994) and Capitaine et al. (2003) which considered secular terms for the C_{20} variations, whereas we consider also annual and semi-annual ones.

3.3 Polar Motion

The polar motion $p = x_p - i y_p$, where x_p and y_p are the components of the rotation axis in space can be theoretically related to the degree 2 and order 1 coefficients of the Earth gravity field:

$$p + i \frac{\dot{p}}{\sigma_r} = \frac{1}{\Omega (C - A)} (\Omega c + h) = \frac{1}{\Omega (C - A)} (-M R_e^2 \Omega (\Delta C_{21} + i \Delta S_{21}) + h) \quad (3.4)$$

where $c = c_{13} + i c_{23}$ is related to ΔC_{21} and ΔS_{21} with Eq. (2.5), and $h = h_1 + i h_3$.

4 Conclusions

The part of the length of the day obtained with the ΔC_{20} data corresponds to gravitational terms. Then we have compared $\Delta (LOD)$ corrected from the movements terms (as atmospheric ones), the zonal tides and the decadal terms (from magnetic effects in the core-mantle boundary). But the residual term has an amplitude of the order of 50 μs, whereas the better precision on these LOD data is of the order of 10 μs.

The effect of the variable gravity field on the polar motion can be investigated now, using Eq. (3.4).

Finally, we find a 18.6-yr periodical effect on the precession angle development in longitude with a sinus term of about 105 μas (Bourda & Capitaine 2004).

In the future, the static gravity field and its temporal variations coming from the GRACE satellite will be very useful for these kind of studies, because they are very precise.

References

Barnes, R. T. H., Hide, R., White, A. A., & Wilson, C. A. 1983, Proc. R. Soc. Lond., A 387, 31

Bourda, G., & Capitaine, N. 2004, A&A, in press

Capitaine, N., Wallace, P. T., & Chapront, J. 2003, A&A, 412, 567

Lambeck, K. 1980, The Earth’s variable rotation (Cambridge: Cambridge Univ. Press)

Lambeck, K. 1988, Geophysical Geodesy: The Slow Deformations of the Earth (Oxford: Oxford Science Publications)

Rochester, M. G., & Smylie, D. E. 1974, J. Geophys. Res., 79, 4948

Williams, J. G. 1994, Astron. J., 108(2), 711