Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution

Kayla E. Kroning¹,² | Wenjing Wang¹,²

¹Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
²Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA

Correspondence
Kayla E. Kroning and Wenjing Wang, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
Email: kaylakro@umich.edu; wenjwang@umich.edu

Graphical Abstract

G-protein-coupled receptor (GPCR) agonist sensors utilise downstream GPCR signalling events, such as GPCR conformational changes and protein binding, to give a measurable sensor readout.
Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution

Kayla E. Kroning1,2 | Wenjing Wang1,2

1Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
2Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA

Abstract

G-protein-coupled receptors (GPCRs) are the most abundant receptor type in the human body and are responsible for regulating many physiological processes, such as sensation, cognition, muscle contraction and metabolism. Further, GPCRs are widely expressed in the brain where their agonists make up a large number of neurotransmitters and neuromodulators. Due to the importance of GPCRs in human physiology, genetically encoded sensors have been engineered to detect GPCR agonists at cellular resolution in vivo. These sensors can be placed into two main categories: those that offer real-time information on the signalling dynamics of GPCR agonists and those that integrate the GPCR agonist signal into a permanent, quantifiable mark that can be used to detect GPCR agonist localisation in a large brain area. In this review, we discuss the various designs of real-time and integrator sensors, their advantages and limitations, and some in vivo applications. We also discuss the potential of using real-time and integrator sensors together to identify neuronal circuits affected by endogenous GPCR agonists and perform detailed characterisations of the spatiotemporal dynamics of GPCR agonist release in those circuits. By using these sensors together, the overall knowledge of GPCR-mediated signalling can be expanded.

KEYWORDS

genetically encoded sensor, GPCR, neuromodulation, neurotransmission

1 | INTRODUCTION

1.1 | Importance of GPCR signalling

GPCRs are the largest family of membrane receptors in the human body.2 Once activated by external stimuli including small molecule neurotransmitters, peptides, lipids, ions and light, the GPCR undergoes a conformational change, which allows G-protein and/or β-arrestin binding.6–8 G-protein binding catalyses the activation of a downstream signalling cascade, where, depending on the G-protein subtype, can cause a change in the intracellular concentration of second messengers, such as cAMP, IP₃,
Ca2+ and diacylglycerol, while \(\beta\)-arrestin binding can cause internalisation of the GPCR9,10 (Figure 1).

GPCR signalling malfunction is involved in a large number of diseases, such as heart disease,11 depression,12 dementia,13 Alzheimer’s disease,13 Parkinson’s disease13 and Huntington’s disease.13 Approximately 35% of drugs approved by the U.S. Food and Drug Administration (FDA) target GPCRs.14 Additionally, many neuromodulators and neurotransmitters are GPCR agonists, such as glutamate, \(\gamma\)-aminobutyric acid (GABA), acetylcholine, serotonin, dopamine and various neuromodulating peptides. GPCRs, therefore, play critical roles in modulating the activity of the nervous system. GPCR activity is mainly regulated by the spatiotemporally regulated release of endogenous agonists. Therefore, there is particular interest in studying the spatiotemporal dynamics of endogenous GPCR agonists to understand how the precise timing and spatial localisation of GPCR activation affects the downstream signalling cascade and overall biological response.

1.2 Overview of genetically encoded sensors for detecting endogenous GPCR agonists

To gain information about the spatiotemporal dynamics of GPCR activation in biological models, a variety of genetically encoded sensors have been engineered to detect GPCR agonists. Bioanalytical methods, such as microdialysis15 and fast scanning cyclic voltammetry,16–19 have been useful for GPCR agonist detection; however, genetically encoded GPCR sensors provide unique advantages. Genetic encoding offers cell-type specificity when imaging in the animal brain and can image at cellular or even subcellular resolution. Genetically encoded GPCR sensors, therefore, can be used to determine the precise localisation and release dynamics of GPCR agonist release.

Genetically encoded sensor designs are mainly based on the agonist-induced conformational change of the third intracellular loop, G-protein or \(\beta\)-arrestin binding, or the change of concentration of second messengers (Figure 1). The readout of these sensors can be the activation of a fluorescent protein, an enzymatic reaction, or the transcription of a reporter gene.

Genetically encoded GPCR sensors can be divided into two main categories: those that offer real-time information about GPCR agonist-induced activation and those that integrate the GPCR agonist signal, leaving a permanent quantifiable signal over a large region of the brain (Figure 2). Real-time sensors offer important information about the signalling dynamics of GPCRs and integrators can permanently mark neurons exposed to GPCR agonists for further analysis. In this review, we will discuss the recent advancement of genetically encoded real-time sensors and integrators for detecting GPCR agonists. We will also discuss how these two categories of sensors can be used together to provide detailed information about the
spatiotemporal release of GPCR agonists in a whole brain at cellular resolution.

2 | Genetically encoded real-time sensors

A variety of genetically encoded real-time sensors for detecting GPCR agonists have been recently developed using five major strategies: (1) intra- or intermolecular resonance energy transfers; (2) circularly permuted green fluorescent protein (cpGFP) insertion into periplasmic binding proteins; (3) cpGFP inserted into the third intracellular loop of a GPCR; (4) translocation assays; and (5) detection of second messengers following GPCR activation. Real-time sensors are beneficial for studying the signalling kinetics of neurotransmitters and neuromodulators; therefore, these sensors benefit from having fast on and off rates. In this review, we will focus on the various designs of real-time sensors, but we will not discuss in detail the kinetics of real-time sensors. Readers can see reference 20 for time constant values of many of the sensors discussed here.

2.1 | FRET- and BRET-based sensors

Fluorescence resonance energy transfer (FRET)-based GPCR agonist sensors use a donor and acceptor fluorescent protein, where the donor’s emission spectrum overlaps with the acceptor’s excitation spectrum. FRET efficiency is inversely proportional to r^6 where r is the distance between the donor and acceptor fluorophore. Therefore, FRET efficiency can be highly sensitive to GPCR activation-dependent conformational change. The FRET fluorescent protein pairs can either be placed on different locations on the same GPCR (intramolecular FRET) or one protein can be fused to the GPCR and the other can be fused to a protein interactor, such as a G-protein mimic or β-arrestin (intermolecular FRET). Bioluminescence resonance energy transfer (BRET) is similar to FRET, except that a bioluminescent protein to the BRET acceptor, such as Venus, and fusing the donor’s emission spectrum with the acceptor’s excitation spectrum. BRET-based GPCR sensors have been used to detect GPCR activation at subcellular resolution in cell cultures to observe activation at the plasma membrane, Golgi apparatus and endosomes.23

G-protein-based BRET sensors have been developed for several GPCRs, including the $\beta 2$-adrenergic receptor ($\beta2$AR), $\alpha 2$-adrenergic receptor ($\alpha2$AR), vasopressin 2 receptor ($V2R$), sensor neuron-specific receptor and thromboxane A2 receptor. In these sensors, a BRET acceptor, GFP10, was fused to G-proteins and a BRET donor, RLuc, was fused to the GPCR (Table 1). These sensors can monitor agonist-induced desensitisation in real time.24

Conformation-specific nanobodies engineered to bind to active GPCRs have been used as α-mimics and are advantageous in their easy expression in cell culture and high affinities for active GPCRs. These nanobodies have been used in BRET-based sensors, where one BRET pair is attached to the nanobody and the other is attached to the corresponding GPCR to give an increase in BRET signal upon GPCR activation (Figure 3B). Alternatively, a nanobody that binds to the inactive GPCR, such as Nb6 for the kappa opioid receptor (KOR), can see a decrease in BRET signal upon GPCR activation.25 Although this tool has not been used in any in vivo applications, it was able to observe the different conformational states of KOR induced by different ligands.25 A disadvantage of nanobody-based BRET sensors is that only a few GPCRs have conformation-specific nanobody binders. These nanobody–GPCR pairs include Nb39 and Nb6 for opioid receptors (ORs),26,27 Nb80 for $\beta2$AR,28 Nb.AT110 for angiotensin receptors29 and Nb9-8 for the M2-muscarinic receptors30 to name a few.

For GPCRs without conformation-specific nanobodies, miniG proteins can be used as G-protein mimics. MiniG proteins are derived from the α subunit of the G-protein complex, but with the membrane anchor and γ binding surface removed, thereby allowing easier protein expression than the wild-type α-protein.31 MiniG-based BRET sensors have been developed by fusing the miniG protein to the BRET acceptor, such as Venus, and fusing the

2.1.1 | BRET and FRET sensors based on G-protein binding and activation

To detect G-protein activation, a bioluminescent protein, such as Renilla luciferase (RLuc) or the smaller luciferase enzyme, Nano Luciferase (NLuc),22 fused to a GPCR can act as the BRET donor and a fluorescent protein, such as Venus or yellow fluorescent protein (YFP), fused to a α-protein or a α-mimic can act as the BRET acceptor. When the GPCR is activated by its agonist, the α-protein/mimic binds to the intracellular portion of the GPCR, thereby bringing the two BRET pairs into proximity where energy transfer can take place (Figure 3A,B). BRET-based GPCR sensors have been used to detect GPCR activation at subcellular resolution in cell cultures to observe activation at the plasma membrane, Golgi apparatus and endosomes.23

A variety of genetically encoded real-time sensors for

To detect G-protein activation, a bioluminescent protein, such as Renilla luciferase (RLuc) or the smaller luciferase enzyme, Nano Luciferase (NLuc).22 fused to a GPCR can act as the BRET donor and a fluorescent protein, such as Venus or yellow fluorescent protein (YFP), fused to a α-protein or a α-mimic can act as the BRET acceptor. When the GPCR is activated by its agonist, the α-protein/mimic binds to the intracellular portion of the GPCR, thereby bringing the two BRET pairs into proximity where energy transfer can take place (Figure 3A,B). BRET-based GPCR sensors have been used to detect GPCR activation at subcellular resolution in cell cultures to observe activation at the plasma membrane, Golgi apparatus and endosomes.23

A variety of genetically encoded real-time sensors for...
Sensor type	NT/NM detection	SNR	Affinity for ligand (EC50/IC50/Kd)	Model	References
FRET based	Acetylcholine	100%	600 nM carbachol	CHO, HEK	36,43
	Epinephrine/norepinephrine	32%	12 nM–17 μM	HEK, CHO, PC12	37,38,42–44,57,58,60,62,63
	Bradykinin	60%	NA	HEK	45,61
	Adenosine	16%	NA	HEK	44
	Histamine	20%	~1 μM	HeLa, MEF	33
	Lysoosphatidic acid	40%	NA	HeLa	54
	Parathyroid hormone	20%	16 nM	HEK	57
	Adenine and uridine nucleotides	4%	NA	HEK	59
	Glycine (GlyFS)	~20%	20 μM	HEK, brain tissue	64
	Glutamate (FLIPE)	27%	0.6 μM–1 mM	PC12, neuron culture	65
BRET based	Epinephrine/norepinephrine	300%	9.1 pM–120 nM isoproterenol	HEK, HeLa, neuron culture and mice	23,24,32,35,39–41,46,53–56
	Acetylcholine	450%	0.77 μM carbachol ~1 μM acetylcholine	HEK	23,32,35,39,40,56
	Angiotensin II	130%	1–4.2 nM	HEK	35,50,54–56
	Chemokine ligands 19 and 21	130%	NA	HEK	56
	Chemokine ligands 3, 4, 3-like 1	~18%	NA	HEK	39,55
	C-X-C motif chemokine 12	~38%	NA	HEK	39
	Calcitonin gene-related peptide	~20%	NA	HEK	39
	Prostaglandin E2	~55%	NA	HEK	39
	Vasoactive intestinal peptide	~25%	NA	HEK	39
	Secretin	~17%	NA	HEK	39
	Glucagon-like peptide-1 and glucagon	120%	NA	HEK	56
	Platelet-activating factor	3.6%	NA	HEK	55
	Serotonin	130%	NA	HEK	56
	Endogenous opioids	2.5%	0.09 nM salvinorin A 5.9–580 nM DAMGO	HEK	25,39–41,55
	Endocannabinoids	NA	49–65 nM WIN 55,212-2	HEK	41
	Neurotensin	NA	34–390 pM	HEK	41
	Adenosine	NA	~0.5 μM	HEK	23
	Thyrotropin-releasing hormone	NA	8.8 nM	HEK, COS-1	47,48
	Oxytocin	NA	NA	COS-7	49
	Vasopressin	130%	3 nM AVP	HEK and mice	24,39,50–52,55,56
	Parathyroid hormone	6.8%	10 nM	HEK	54
	Dopamine	NA	~0.1 μM	HEK	23,39,40
	Thromboxane	50%	9.6 nM U46619	HEK	24,35
	Sensory neuron-specific receptor	NA	NA	HEK	24
	Endothelin-1	NA	~1 nM	HEK	23
	Bradykinin	NA	NA	HEK	40
	Melanocortin	NA	NA	HEK	50

(Continues)
TABLE 1 (Continued)

Sensor type	NT/NM detection	SNR	Affinity for ligand (EC50/IC50/Kd)	Model	References
SnFRs	Glutamate	~25	0.6–600 μM	HEK, neuron culture, *Caenorhabditis elegans*, zebrafish, mice, ferrets	66–69
	GABA	~1.7	30–110 μM	HEK, neuron culture, mice and zebrafish	70
	Acetylcholine	14	0.4–35 μM	HEK, neuron culture, *C. elegans*, fly, zebrafish, mouse	71,73
	Serotonin	17	390 μM	HEK, neuron culture, mice	72
GRAB	Dopamine	3.4	4–130 nM	HEK, neuron culture, fly, zebrafish, mice	77,89
	Epinephrine/norepinephrine	2.3	83–930 nM	HEK, neuron culture, zebrafish, mice	81
	Serotonin	2.8	14 nM	HEK, neuron culture, flies, mice	79
	Endocannabinoids	9.5	9 μM 2-AG (0.8 μM AEA)	HEK, neuron culture, mice	83
	Adenosine	~2.0	60 nM–3.6 μM	HEK, neuron culture, mice	84,85
	Acetylcholine	2.8	0.7 μM	HEK, neuron culture, flies, mice	86,87
Lights	Dopamine	9.3	4.1 nM–1.6 μM	HEK, neuron culture, mice, rats	76,90
	Dynorphin	0.6	NA	HEK, mice	76,78
	Serotonin	0.8	26 nM	HEK, neuron culture, mice	80
	Epinephrine/norepinephrine	2.1	760 nM	HEK, neuron culture, mice	76,82

Abbreviations: ~ Estimated values, because raw values were not available in the publication. All values were rounded to 1–2 significant digits. For all signal-to-noise ratios (SNR), the highest values were taken from the publications referenced. For the EC50/Kd values, a range of values were recorded from the publications referenced. EC50/Kd values for different versions of a sensor are included in the range. For those tested in multiple cell types, the SNR and EC50/Kd range are chosen for the cell type that gave the best SNR and lowest EC50/Kd. For fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) sensors, the agonist-induced percent change in BRET/FRET efficiency were recorded as either the agonist-induced change of fluorescence over the original fluorescence or the signal in the presence of agonist over the background signal without agonist. The SNR of the intermolecular BRET sensors were not recorded in the table because the majority of these sensors were reported to have '0' BRET without agonist, making it impossible to calculate a percent change. BRET, bioluminescence resonance energy transfer; CHO, Chinese hamster ovary cells; FRET, fluorescence resonance energy transfer; GRAB, G-protein-coupled receptor (GPCR) activation-based; HEK, human embryonic kidney cells; MEF, mouse embryonic fibroblast; NT/NM, neurotransmitter/neuromodulator; SnFR, sensing fluorescent reporter; SNR, signal-to-noise ratio.

Donor, such as Rluc or NLuc, to the GPCR (Figure 3B).

In the presence of agonist, miniG can bind to the GPCR and cause an increase in BRET signal. MiniG-based BRET sensors are very versatile, having been designed for several Gα-protein types: Gαi/o, Gαs, Gα12/13 and Gαq/11. Consequently, miniG protein-based BRET sensors can be used for a wide variety of GPCRs in cell culture; however, to our knowledge, miniG protein-based BRET sensors have not been used in vivo.

Fusion of the GPCR to the BRET pair involves genetically altering the GPCR; consequently, these types of sensors cannot detect endogenous GPCR activation. Alternatively, BERKY is a BRET-based GPCR agonist sensor that does not alter the endogenous GPCR and can, therefore, detect endogenous GPCR agonists (Figure 3C). BERKY is a single protein chain where the BRET donor, NLuc, is bound to a membrane anchoring sequence and the acceptor, YFP, is bound to a synthetic peptide called KB-1753. The donor and acceptor BRET pairs are separated by an ER/K α-helix linker. Once the Gα-protein is activated, KB-1753 interacts with the guanosine triphosphate-bound Gα-protein, bringing YFP to the membrane and...
increasing BRET. BERKY sensors have also been developed for Gαq, Gα13, Gβγ and Rho to probe the activation of endogenous GPCRs. Additionally, BRET and FRET pairs inserted into the Gαβγ heterotrimer have also proven useful in measuring endogenous GPCR activation. The proximity of the Gα and Gβγ subunits changes based on the activation state of the GPCR, thereby changing the energy transfer efficiency and indicating GPCR activation (Figure 3D). Finally, NanoBRET was engineered by fusing Nluc to GRK3ct, a GPCR kinase, and Venus to Gβγ to observe G-protein activation. While the above two types of BRET sensors can monitor GPCR activation without direct fusion to the GPCR, they can result in false positives since the sensor activation is dependent on general GPCR activity and not the specific activity of the GPCR of interest. Consequently, control studies without the expression of the GPCR of interest is needed to ensure the sensor activation observed is due to the GPCR of interest.

The advantage of G-protein binding and activation-based BRET sensors is that these sensors have been illustrated for a wide variety of G-protein subtypes (Gαi, Gαo, Gαs, Gαq11, Gα12 and Gα13), enabling the detection of a large number of GPCR agonists. A disadvantage of BRET sensors is that they have poor sensitivity for some G-protein subtypes. However, a higher sensitivity can be achieved by systematic optimisation of the insertion points for the BRET pairs. This systematic optimisation was performed in the BRET biosensors TRUPATH, where...
14 BRET-based GPCR sensors were developed. Still, individual optimisation for each BRET biosensor is strenuous, making it desirable to have a more universal sensor design platform.

In a similar design to the BRET sensors, FRET sensors have been developed with the fluorescent proteins cyan fluorescent protein (CFP) and YFP, where one FRET pair is attached to the GPCR and the other is attached to the G-protein or G-protein mimic. The activation of the GPCR causes YFP to come in proximity to CFP and energy transfer can occur (Figure 3B). This sensor type has been developed for the α2AR,42,43 the muscarinic-M4 receptor,43 the A2A-adenosine receptor44 and the β1-adrenergic receptor44 (Table 1). Enhanced CFP (ECFP) and enhanced green fluorescent protein (EGFP) were used as FRET pairs for the bradykinin receptor type 2.45 FRET has faster kinetics than BRET; however, FRET’s need for excitation of the donor fluorescent proteins could lead to cell damage or photobleaching. BRET’s use of a chemical substrate, therefore, can be less destructive for the cell.

2.1.2 BRET and FRET sensors based on GPCR–β-arrestin interaction

BRET sensors have been designed based on the intermolecular interaction between β-arrestin and the active GPCR’s C-terminus. Rluc as the BRET donor has been fused to the C-terminus of a GPCR and YFP as the BRET acceptor has been fused to β-arrestin2 to detect the activation of β2AR.46 the thyrotropin releasing hormone receptor47,48 and the oxytocin receptor49 (Figure 3E). Additionally, RLuc and GFP from Renilla reniformis have been attached to a GPCR and the transmembrane domain, respectively, where β-arrestin-induced internalisation causes a change in energy transfer efficiency.50 This sensor type has been designed for the angiotensin II receptor type 1, melanocortin type 4 receptor, and the V2R and can be used to interrogate receptor activation as well as GPCR recycling events.50 The GFP and RLuc BRET pair fused to V2R and β-arrestin, respectively, was also used to interrogate how palmitoylation of the V2R carboxyl tail affects β-arrestin recruitment.51

A BRET sensor with improved efficiency was designed, in which the V2R is fused to hRLuc/RLuc8 and β-arrestin2 is fused to a modified form of GFP, called 2GFP.52 Cells expressing the above BRET sensor were transplanted into a mouse kidney and a transparent plastic window was fitted into the skin and body wall adjacent to the kidney. The window enables BRET to be measured in deep tissues.52 The same BRET pair was used to design a BRET-based GPCR sensor by fusing β2AR to Rluc and β-arrestin2 to 2GFP.53 Due to poor light penetration in deep tissues, sufficient BRET signal was only achieved in the testes of mice and not in other tissues.53 In future work, a red-shifted BRET pair can improve BRET detection in deep tissues.

BRET sensors have also been developed to detect the specific conformational change found in β-arrestin upon recruitment to the GPCR. To design this sensor, RLuc and YFP have been attached to either terminus of β-arrestin,54,55 as well as NLuc and a red-shifted fluorescent protein56 (Figure 3F). Different from the above intermolecular BRET sensors, these BRET sensors detect the intramolecular BRET efficiency change due to arrestin’s conformational change. Compared to intermolecular BRET and FRET, intramolecular BRET and FRET have a smaller change in the distance between the BRET/FRET pairs and, therefore, a lower signal dynamic range. However, these intramolecular β-arrestin-based BRET sensors can observe the different types of active conformations that β-arrestin adopts and have been used for a variety of GPCRs, such as the angiotensin 1 receptor, vasopressin receptors 1 and 2, β1 and β2-adrenergic receptors, muscarinic 1 receptor, chemokine receptor 5, delta opioid receptor (DOR), serotonin receptor, platelet-activating factor receptor, chemokine receptor type 7 and the glucagon-like peptide-1 receptor.54–56

Similar to the G-protein-based FRET design, CFP and YFP have been used as FRET pairs. One FRET pair is attached to the GPCR and the other is attached to β-arrestin 1 or 2 (Figure 3E). These sensors have been applied in cell cultures to determine the time it takes β-arrestin2 to be recruited to the parathyroid hormone 1 receptor57 and β2AR.58 They have also been applied to determine the differential recruitment of β-arrestin1 and 2 to P2Y2R.59

Compared to the G-protein-based sensors, β-arrestin-based BRET and FRET real-time sensors can generate a stable on-signal, because the GPCR–β-arrestin interaction occurs on the order of minutes to tens of minutes, while the GPCR–G-protein interaction is much more transient, on the order of seconds. Consequently, β-arrestin-based BRET and FRET real-time sensors are also limited by their off kinetics. Additionally, not all GPCRs strongly recruit β-arrestin. Therefore, G-protein- and β-arrestin-based BRET and FRET sensors should be chosen depending on their different applications.

2.1.3 BRET and FRET sensors based on the conformational changes in the GPCR

G-protein-based BRET sensors require knowledge of the specific G-protein type that binds to the GPCR which is not always known. β-Arrestin-based BRET sensors need to use GPCRs that couple strongly to β-arrestin which, as stated previously, is not true for all GPCRs. To address these limitations in sensor designs, BRET and FRET sensors have
been developed that utilise the conformational change of the GPCR upon activation rather than utilising the intermolecular interactions of the G-proteins and β-arrestin with the GPCR. Theoretically, these types of sensors should be more universal given that all GPCRs undergo a conformational change upon activation. CFP can be inserted into the third intracellular loop of the GPCR where the major conformational change takes place upon GPCR activation, and YFP can be fused to the C-terminus of the GPCR, or the other way around (Figure 3G). This strategy has been used for the parathyroid hormone receptor 1 and α2AAR to observe the different conformational changes of GPCRs induced by different types of ligands. These sensors have been developed for other types of GPCRs as well (Table 1). These intramolecular sensors based on the conformational changes in the GPCR have a lower signal dynamic range than the intermolecular BRET and FRET sensors.

2.1.4 | BRET and FRET for detecting the conformational change of binding proteins

Although the majority of FRET/BRET sensors for GPCR agonists involve GPCRs or G-proteins in their design, the glycine FRET sensor (GlyFS) and the glutamate sensor (FLIPE) use soluble protein domains that can bind to glycine and glutamate in their sensor designs. In GlyFS, two FRET pairs, ECFP and Venus, were both attached to a rationally designed soluble glycine binding protein. Glycine binding to the sensor reduces the FRET between the two fluorescent proteins (Figure 4A). GlyFS was used in acute hippocampal slices to reveal changes of extracellular glycine concentrations during development, enrichment of glycine outside of the synapse, and the increase of extracellular glycine from neuroplasticity. The glutamate sensor, FLIPE, has a similar design to GlyFS, where ECFP and Venus were inserted into a soluble glutamate binding protein, ybeJ. FLIPE was used to show that glutamate uptake in the cytosol of PC12 cells has a minimal effect on overall cytosolic glutamate levels.
2.2 Single-colour fluorescent sensors based on cpGFP insertion into periplasmic binding proteins

Fluorescent sensors for several neuromodulators and neurotransmitters have been engineered using periplasmic binding proteins, receptors found in bacteria that undergo a conformational change in the presence of a variety of small molecules. Specifically, these are Venus-fly trap-like proteins that close in the presence of their binding ligand. cpGFP was inserted into periplasmic binding proteins to create a series of neurotransmitter and neuromodulator sensors, named sensing fluorescent reporters (SnFRs). For the SnFR design, ligand binding causes a conformational change in the periplasmic binding proteins which causes a change in the fluorophore environment of cpGFP, resulting in a fluorescence change (Figure 4B). SnFRs have been developed to detect several GPCR ligands, including glutamate, GABA, acetylcholine and serotonin, with SNR from 1 to 25 (Table 1). The glutamate version of SnFR, called iGluSnFR, has been used to detect glutamate in Caenorhabditis elegans, zebrafish, mice and ferrets. The original iGluSnFR used circular permuted enhanced GFP (cpEGFP) but new versions have since been developed with circularly permuted superfolder GFP (SF-iGluSnFR) which has higher expression level and fluorescent signals. Additionally, different coloured variants and variants with a variety of affinities for glutamate have been developed. More recently, iGluSnFR3 was developed through directed evolution and has a higher SNR, dynamic range, expression and photostability than SF-iGluSnFR. Finally, faster versions of iGluSnFR have been developed to resolve individual glutamate release events in rat hippocampal slices. The SnFR engineering technique has also been used to engineer a sensor for an important inhibitory neurotransmitter, GABA. iGABA-SnFR has been used in vivo to track the concentration of GABA in the mitochondria in zebrafish models and track the GABA signalling dynamics during interictal spikes and seizures in mice. Recently, iACHSnFR was developed to detect acetylcholine release in mice, zebrafish, flies and C. elegans.

Naturally occurring periplasmic binding proteins do not exist for the majority of neurotransmitters and neuromodulators, limiting the generalizability of the SnFR design; however, engineering of the binding pocket of existing periplasmic binding proteins could lead to the development of new sensors. Using machine learning, researchers re-engineered the binding pocket of iACH-SnFR’s periplasmic binding protein to bind to serotonin, generating iSeroSnFR. iSeroSnFR was used to detect serotonin release in mice during different behavioural assays, such as fear conditioning, social interaction and sleep/wake transitions. Further, site-saturated mutagenesis of a periplasmic binding protein was performed to select for a variant that can bind specifically to nicotinic acetylcholine receptor agonists, thereby creating iNic-SnFR. iNicSnFR was used to determine the rate at which different nicotinic receptor agonists leave the endoplasmic reticulum. The iNicSnFR was subsequently mutated using site-saturated mutagenesis and rational design to select for variants that specifically bind to S-methadone and not cholinergic ligands; this sensor is called iSmethadoneSnFR.

To further illustrate the versatility of the SnFR design platform, a new set of SnFRs were developed recently for a series of smoking-cessation drugs: dianicline, cytisine, 10-fluorocytisine and 9-bromo-10-ethylcytisine. These sensors are called iDrugSnFRs and have been used to determine the differing rates of membrane crossing of smoking-cessation drugs, a property that affects the drug’s pharmokinetics.

The application of the SnFR sensors has been demonstrated in a variety of model organisms to interrogate the neurobiology underlying various neurotransmitter and neuromodulator-mediated signalling events. The wide applicability of SnFRs for in vivo experiments illustrates the usefulness and robustness of the sensor design.

2.3 Single-colour fluorescent sensors based on cpGFP insertion into the third intracellular loop of GPCRs

GPCR activation-based (GRAB) and light sensors were developed by inserting cpGFP into the third intracellular loop of a GPCR. Upon agonist binding, the third intracellular loop undergoes a conformational change that changes the fluorophore environment of cpGFP, resulting in a fluorescence change (Figure 5). These sensors have been developed to detect dopamine, endogenous opioid peptides, serotonin, noradrenaline, endocannabinoids, adenosine and acetylcholine with most SNRs ranging between 2 and 10 (Table 1). For some versions of these sensors, portions of the third intracellular loop have been truncated to allow a larger fluorescence change. Different linkers connecting cpGFP to the third intracellular loop have also been screened to change the sensitivity and SNR of the sensors. Both rational design and site-saturated mutagenesis have been used to engineer these sensors and improve their SNR and overall brightness. In addition, red-shifted versions have been developed for both GRAB and light sensors to allow for multiplexed imaging of different neurotransmitters and neuromodulators at a single time. For a more
FIGURE 5 Circularly permuted green fluorescent protein (cpGFP) inserted into the third intracellular loop of a G-protein-coupled receptor (GPCR). Upon agonist-induced GPCR activation, the third intracellular loop of the GPCR undergoes a conformational change, changing the fluorophore environment of cpGFP and resulting in a fluorescence change.

comprehensive overview of the engineering used to design the GRAB/light sensors, see reference.88

GRAB sensors have been used in a variety of in vivo models, including flies, zebrafish and mice.77 Light sensors have been illustrated in vivo in mice and rats.76 These sensors were used in animal models to reveal important information about neurotransmitter and neuromodulator-mediated neurobiology. To highlight a few applications, the GRABAdo sensor was used to study sleep homeostasis and found that adenosine is at high concentration during rapid eye movement (REM) sleep, but low outside of the REM sleep cycle.84 Using GRABAdo, researchers also found that the activation of glutamatergic neurons resulted in an increase of adenosine. Further, dLight helped researchers find that heroin activates dopaminergic neurons located in the medial area of the VTA,91 dopamine is involved in relapse and alcohol-seeking behaviours,92 and that the pattern of morphine exposure affects dopamine release in the nucleus accumbens.93 GRABDA was used to show that alcohol, but not fat, significantly increased dopamine in the nucleus accumbens and that fat, but not alcohol, increased dopamine in the dorsal striatum.94

2.4 Translocation assays

Rather than genetically altering the GPCR, translocation assays can be performed to indicate GPCR activation. When a GPCR is activated, GPCR-interacting proteins can translocate from the cytoplasm to the cell membrane or from the membrane to the cytoplasm. Consequently, these interacting proteins, such as β-arrestin,95–97 protein kinase C95 and G-proteins/mimics98,99 have been tagged with fluorescent proteins and their agonist-induced translocation has been detected with high-magnification imaging. Total internal reflection fluorescence microscopy has also been used to analyse the fluorescence ~100 nm from the cell surface, allowing measurements of fluorescence on the membrane only.98 A major limitation of translocation assays is their low SNR.

2.5 Detection of second messengers

The activation of a GPCR can increase or decrease the concentration of second messengers, such as cAMP, IP3, Ca2+ and diacylglycerol. Consequently, sensors that can detect the concentration of second messengers can be used to detect GPCR activation by an agonist. These sensors can be generalizable to many GPCRs, because the activation of most GPCRs will cause a change in the concentration of at least one of the second messengers previously mentioned. However, second messaging events can also be caused by non GPCR-mediated signalling, potentially giving false positive signals. It is, therefore, better to use GPCR agonist sensors that detect more upstream signals, such as conformational changes in the GPCR or β-arrestin/G-protein binding, when available.

One of the most widely used second messenger sensors, GCaMP, was first developed in 2001 to detect intracellular calcium changes in living cells.100 GCaMP involves the fusion of a calcium-dependent protein binding pair, MI3 and calmodulin, to either terminus of cpGFP. In the presence of calcium, these proteins bind, changing the fluorophore environment of cpGFP and resulting in a fluorescence change (Figure 6A). After 20 years of dedicated work in sensor optimisation, improved versions of GCaMP have been published that have better SNR, heightened brightness, faster kinetics and heightened calcium sensitivity than the original version.101–104 GCaMP has been used in a variety of model organisms in vivo, such as C. elegans,102,104 flies,101–104 mice101–104 and zebrafish.101,102 Further, GCaMP has been used in vivo to detect calcium spiking in axons, illustrating its subcellular resolution.105 The impact of GCaMP on the field of neuroscience cannot be understated. Because this review focuses on neuromodulators and not calcium sensors, a more extensive review of GCaMP and its different optimised versions, as well as other genetically encoded calcium sensors, can be found in references.106,107

A FRET sensor used to detect cAMP, called CAMYEL, was developed by inserting a protein that interacts with cAMP, EPAC, in between two BRET pairs, YFP and RLuc.108 Upon the binding of cAMP to CAMYEL, there is a quantifiable decrease in BRET signal (Figure 6B). This tool was used to discover that sphingosine 1-phosphate can increase the amount of intracellular cAMP that is stimulated by isoproterenol and prostaglandin E2.108 In addition to CAMYEL, many other FRET sensors for cAMP
FIGURE 6 Sensors that detect secondary messengers. (A) Calcium-sensing proteins, calmodulin and M13, are attached to either terminus of circularly permuted green fluorescent protein (cpGFP). In the presence of calcium, calmodulin and M13 interact, resulting in a change in the fluorophore environment of cpGFP and a fluorescence increase. (B) Schematic of CAMYEL. Bioluminescence resonance energy transfer (BRET) pairs RLuc and yellow fluorescent protein (YFP) are tethered to EPAC. cAMP binding causes a conformational change in EPAC, where the energy transfer efficiency is decreased. (C) EPAC was attached to either terminus of cpGFP. cAMP-induced EPAC conformational change results in a change in cpGFP fluorescence. (D) PKCγ, which only binds to diacylglycerol (DAG), is tethered to either terminus of cpGFP. DAG induces a conformational change in cpGFP fluorescence.

detection have been developed and are summarised in reference.109 EPAC was also inserted into cpGFP, where cAMP binding to cpGFP causes a change in cpGFP fluorescence intensity110 (Figure 6C).

A fluorescent sensor for diacylglycerol was developed by fusing cpGFP to an isoform of protein kinase II that only responds to diacylglycerol111 (Figure 6D). This diacylglycerol sensor was, then, improved by replacing cpGFP with the brighter mNeonGreen fluorescent protein.110 Additionally, FRET was used to develop a sensor for protein kinase A activity, an important protein in downstream GPCR signal transduction.112

3 GPCR agonist integration sensors

Integration-based GPCR agonist sensors integrate the GPCR agonist signal into a permanent and measurable readout for further analysis post mortem. Integration sensors have complementary strengths to real-time sensors by enabling the examination of the localisation of GPCR agonists across a large area of interest or the whole brain to interrogate a GPCR’s effect on neuronal circuitry globally. Additionally, through permanent neuronal labelling, integrators allow further interrogation of the neuronal circuits of interest. Integration-based GPCR agonist sensors have been engineered for a wide variety of GPCRs and can be divided into three main categories based on their signal output: (1) transcriptional activation; (2) cpGFP fluorophore formation; and (3) split protein complementation sensors.

3.1 Transcriptional activation-based GPCR agonist integration sensors

A transcriptional activation-based GPCR sensor uses unique transcription factors and promoters that are orthogonal with the cellular system to activate a reporter gene upon agonist binding. The reporter genes commonly code for fluorescent proteins, so that activation of the sensors by GPCR agonists will fluorescently label the cells. Transcription-based GPCR sensors were first developed in 2008, in which the C-terminus of the V2R was fused to the tTA transcription factor via the N1a tobacco etch virus (TEV) protease cleavage site (TEVcs), and β-arrestin2 was fused to TEV protease113 (Figure 7A). In the presence of the V2R agonist, the β-arrestin2 fused to TEV protease will bind to the C-terminus of V2R, bringing the protease in proximity to TEVcs for cleavage to take place, releasing tTA. No longer tethered to the membrane, tTA can then translocate to the nucleus and activate a tTA-dependent reporter gene. This sensor design, called Tango, was developed for 89 other GPCRs, illustrating the robustness of the technique.113 It is important to note, however, that the V2R’s C-terminal tail needs to be added to the other GPCRs to enhance β-arrestin2 recruitment and consequently increase the SNR. Here, we define SNR of integrators as the signal over background ratio.

To apply Tango to the majority of the druggable GPCRs within the human genome, PRESTO-Tango was developed.114 PRESTO-Tango uses a ‘modular design strategy’ to efficiently design Tango-based GPCR sensors for over 300 GPCRs. The researchers, then, demonstrated
these 300+ Tango-based sensors can be used to test compounds against nearly the entire druggable human GPCR genome. They tested two compounds against 133 GPCR-Tango targets and showed that one compound, lysergic acid diethylamide, has activities against GPCRs that were not previously known. Additionally, they screened 91 GPCR-Tango targets against FDA-approved drugs and found that the diabetes drug, nateglinide, has activity against MRGPRX4, a receptor thought to be involved in pain and itch.

The PRESTO-Tango system represents one of the most widely applied high-throughput screening platforms for GPCR ligands. However, its application in detecting GPCR ligands has so far been limited to cell cultures. In the PRESTO-Tango system, the TEV protease has basal cleavage activity that could accumulate over time in animal models, reducing the SNR. Additionally, Tango activation requires hours of GPCR agonist incubation due to the low catalytic efficiency of the TEV protease. To overcome these limitations, a light-activated
Tango was developed in 2017 called inducible Tango (iTango).115

Because integrators can start accumulating background signal immediately after the sensor is expressed, iTango2’s use of a light gating reduces the overall background of the system and allows signal to accumulate only in the light window. Additionally, light can be used as a temporal gating to record signalling events during a specific behaviour. The iTango2 design differs from Tango in two main ways (Figure 7B). First, the TEV protease is split into two halves, where one is tethered to β-arrestin2 and the other is attached to the C-terminus of the GPCR. Second, an engineered lightsensing protein based on *Avena sativa* phototropin1 light-oxygen-voltage 2 domains (AsLOV2) is added to cage the TEVs in the dark state. In light, the Jα helix of the AsLOV2 protein undergoes a conformational change, uncaging the TEVs to be accessible to the TEV protease. Agonist activation recruits β-arrestin2, bringing split TEV protease half TEV-C to the GPCR-TEV-N fusion protein, and allowing the split TEV protease to reconstitute. Therefore, only in the presence of both light and agonist activation will the split TEV protease be reconstituted and can cleave the light-uncaged TEVs, releasing iTA. iTango2 showed a SNR 20-fold higher than the original Tango system.115 iTango2 has been developed for DRD2,115 cannabinoid receptor type 1 115 serotonin receptor 1A,115 neuropeptide Y receptor type 1115 and the oxytocin receptor116 (Table 2). Additionally, iTango2 has been used to label dopamine-sensitive neuronal populations during reward-based learning in mice115 and was used to detect the change of CCR5 activity after learning in mice117.

Similar to iTango2, SPARK is a light-controlled, transcription-based GPCR agonist sensor that utilises TEV protease cleavage to release a unique transcription factor that is tethered to the GPCR and can activate reporter gene expression118–120 (Figure 7C). SPARK differs from iTango2 in two main ways. First, it does not use split TEV protease and instead uses a C-terminal truncated TEV protease that has low affinity for the TEVs. This allows protease cleavage only to occur when the TEV protease is brought to proximity to the TEVs. Second, the TEVs is caged by an evolved version of the AsLOV2 domain (eLOV). eLOV was evolved using directed evolution and was shown to have a 10x better light-to-dark signal ratio than the original AsLOV2.121 In the initial testing of the SPARK design for detecting GPCR agonists, β2AR was fused to the eLOV domain-caged TEVs and a GAL4 transcription factor and β-arrestin was fused to the truncated TEV protease. To illustrate the generalizability of SPARK in GPCR agonist detection, SPARK was tested with eight different GPCRs. Six of these GPCRs had robust light- and ligand-dependent gene activation with five having ligand-dependent SNR above 15118 (Table 2).

One main advantage of the transcriptional system is the versatility of the signal output. To illustrate this, researchers used β2AR-SPARK to drive luciferase expression, illustrating how SPARK can be used for high-throughput screening assays that need an easily quantifiable readout.118 SPARK and iTango were compared using the β2AR versions of both tools and transfection in HEK293T cells. SPARK was found to have a 16.4-fold higher ligand-dependent SNR118 and a higher sensitivity than iTango2.118

Recently, SPARK2 was developed using an evolved TEV protease, uTEV1Δ, with improved catalytic efficiency.122 SPARK’s activation efficiency is limited to the number of cleavage events performed by the TEV protease. Due to the relatively slow catalytic rate of the TEV protease, SPARK requires 10–15 min of light and agonist stimulation to see a sufficient signal, limiting its application in situations where the GPCR agonist-induced protein–protein interaction (PPI) occurs on the order of seconds to a few minutes. SPARK2 uses uTEV1Δ which has a faster cleavage rate than the original TEV protease, and consequently only 1 min of light and agonist stimulation is needed to see a robust signal for β2AR-SPARK2.122

3.2 cpGFP fluorophore formation-based GPCR agonist integration sensors

SPARK and TANGO are multi-component systems, where the SNR is highly protein expression level-dependent and multiple viruses need to be delivered in animal model studies. Single protein chain-based integration systems could overcome some of the limitations of the multi-component systems for interrogating GPCR signalling in a whole brain at cellular resolution. Recently, cpGFP-based sensors with a fluorophore formation-based mechanism have been developed to detect opioids for the mu opioid receptor (MOR), KOR, and delta opioid receptor (DOR)123 (Table 2). Named SPOTIT1, these tools take advantage of the ability of Nb39 to both bind to the active MOR and inhibit cpGFP fluorophore formation, thereby providing a sufficient protein switch for opioid detection. As shown in Figure 7D, in the absence of opioids, Nb39 remains bound to cpGFP and cpGFP fluorophore formation is inhibited. In the presence of opioids, Nb39 dissociates from cpGFP to bind to the active OR. This allows the cpGFP fluorophore to form and, therefore, a subsequent fluorescence increase. SPOTIT1 showed a SNR up to 12.5 in HEK293T cell culture and was shown to be effective in detecting a variety of opioid agonists, such as peptide agonists, synthetic agonists and partial agonists. SPOTIT1 was also shown to be functional in neuronal cell culture, illustrating its potential applicability in animal models. However, SPOTIT1 had
Sensor type	NT/NM detection	SNR	EC50	Model	References
TANGO	Has been developed for over 300 GPCRs	1.3–180	NA	HEK, neuron culture, mouse	113,114
iTANGO	Dopamine	8.9	~50 nM	HEK, neuron culture, mice	115,117
	Cannabinoid	~3.6	NA	Neuron culture	115
	Serotonin	~4.5	NA	Neuron culture	115
	Neuropeptide Y	~6.3	NA	Neuron culture	115
	Oxytocin	6.6	~2.5 μM	HEK, neuron culture, mice	116
SPARK	Epinephrine/norepinephrine	24	52 nM iso	HEK	118,122
	Motilin	18	NA	HEK	118
	Dopamine	19	NA	HEK	118
	Bombesin	37	NA	HEK	118
	Vasopressin	4.2	NA	HEK	118
	Angiotensin II	1.4	NA	HEK	118
SPOTIT	Opioid peptides	MOR: 13, KOR: 38, DOR: 2.7	15 nM fentanyl 0.77 μM salvinorin A	HEK and neuron culture	123–125
Trio	Epinephrine/norepinephrine	NA	NA	HEK	127
	Neurokinin	NA	NA	HEK	127
	Opioid peptides	NA	NA	HEK	127

Note: ~Estimated values, because raw values were not available in the publication. All values were rounded to 1–2 significant digits. For all signal-to-noise ratio (SNR), the highest values were taken from the publications referenced. For the EC50/Kd values, a range of values were recorded from the publications referenced. EC50/Kd values for different versions of a sensor are included in the range. For those tested in multiple cell types, the SNR and EC50/Kd range are chosen for the cell type that gave the best SNR and lowest EC50/Kd. For the integrator sensors, the SNR was calculated as the signal in the presence of agonist over the background signal without agonist. For the light-gated integrators, the agonist-dependent SNR in the presence of light was recorded.

Abbreviations: DOR, delta opioid receptor; GPCRs, G-protein-coupled receptors; HEK, human embryonic kidney cells; KOR, kappa opioid receptor; MOR, mu opioid receptor; NT/NM, neurotransmitter/neuromodulator; SNR, signal-to-noise ratio.

reduced brightness in neuronal cell culture. To improve the brightness of the SPOTIT sensors, SPOTIT2 was developed by adding four amino acids to the N-terminus of cpGFP to better encapsulate the fluorophore and increase its quantum yield. In HEK293T cell culture, SPOTIT2 is 11× brighter than SPOTIT1 and 2.7× brighter in neuronal culture. Our lab recently tested SPOTIT2 in mice and a significant difference in signal was detected between the morphine- and saline-treated mice (unpublished data), illustrating SPOTIT2’s potential applications in animal models.

As an integration reporter, SPOTIT accumulates opioid signal over time until reaching a saturation point. Similarly, the background signal, which arises from the basal activity of the ORs, could also accumulate over time. To minimise the background signal accumulation, a chemical-gated version of SPOTIT, called SPOTon, was designed. In the SPOTon sensor design, SPOTIT is split into two components which are fused to a heterodimerising PPI pair, FK506 binding protein (FKBP) and FKBP-rapamycin binding domain (FRB); the OR was fused to FRB and cpGFP-Nb39 was fused to FKBP. In the presence of the small molecule rapamycin, FKBP and FRB heterodimerise, bringing cpGFP-Nb39 to the OR and creating a functional opioid sensor. Then, the opioid-activated OR can recruit Nb39, allowing the cpGFP fluorophore to form. This sensor had a comparable opioid-dependent SNR as the SPOTIT sensors and strong rapamycin-dependence. Due to rapamycin’s low blood–brain barrier (BBB) penetrability, the engineering of a chemical-gated SPOTon that is activated with a BBB penetrable molecule would be needed for animal studies. Further, even though SPOTIT has only been demonstrated to detect OR agonists, the SPOTIT design could potentially be extended to other GPCR agonists by using other conformational specific binding nanobodies.

3.3 Split fluorescent protein complementation

Termed bimolecular fluorescence complementation (BiFC), split fluorescent protein components have low fluorescence when the split fluorescent protein halves are apart, due to the inability of the fluorophore to form, and a high fluorescence when the components re-associate.
Split fluorescent protein can be designed to be proximity dependent by tuning the binding affinity of the split components, such that the complementation of the components only occurs when they are brought into proximity. These proximity-dependent split fluorescent protein can then be fused to PPI pairs to detect PPIs (Figure 7F).

Split GFP has been used extensively in BiFC assays to detect GPCR agonists. GFP has a 11-stranded \(\beta \)-barrel structure and, due to its very stable structure, can be split in a variety of positions. Tripartite GFP, where GFP is split at \(\beta \)-strand 10 and 11 to give three fragments: \(\beta10, \beta11 \) and \(\beta1-9 \), has better SNR than a bipartite system due to reduced reassociation of the split fragments in the absence of PPI.\(^{126}\) Tripartite GFP was used to detect GPCR activation by fusing \(\beta11 \) to the C-terminus of a GPCR, \(\beta10 \) to \(\beta \)-arrestin, and expressing \(\beta1-9 \).\(^{127}\) Agonist-induced GPCR activation recruits \(\beta \)-arrestin to the GPCR’s C-terminus, allowing all three split fragments to re-associate and fluorophore formation to occur (Figure 7F). This assay, named Trio, was generated for the protease-activated receptor 1, \(\beta2AR \), neurokinin receptor and MOR (Table 2). However, similar to Tango and SPARK, this system is limited to GPCRs that recruit \(\beta \)-arrestin and is a multiple component system.

4 | SUMMARY

Tables 1 and 2 list various real-time sensors and integration sensors for a range of GPCR agonists discussed in this review. When choosing which existing sensor to use, one must consider both the SNR and affinity of the agonist for the sensor. Higher SNRs are generally preferred to provide a more robust and sensitive application in animal models. Sensors with a range of affinities for the agonist need to be evaluated in the specific animal model used for testing to determine which sensor can detect agonist concentrations with the highest dynamic range. While some sensors have been validated in animal models, many sensors have only been tested in cell cultures. For the latter, careful evaluations in animal models are needed before the sensors can be applied to study endogenous agonist release. In some cases, further engineering of the sensor SNR or affinity for ligand might be needed to achieve robust application in animal models.

Generally, real-time sensors have lower SNRs than integration sensors, partially due to the mechanism of the sensor design and also their transient detection, while integration sensors can accumulate signals over time to provide an end point readout. However, real-time sensors can record the agonist-induced fluctuation of signal from the same cells; therefore, even a low percentage of signal change could potentially be detected if the background of the system is low. Integration sensors require higher SNRs than real-time sensors, because their agonist-induced signal changes are not compared within the same cell but, instead, between different animals treated under different conditions. Typically, a minimum SNR of 5 or higher is required for integration reporters. Additionally, due to the protein level-dependence for integration sensors, single-component integration reporters are less variable and more advantageous than multi-component integration reporters.

Due to their complementary strengths and limitations, both real-time and integration sensors are useful for studying endogenous GPCR agonist release and their effects on neuromodulation and other physiological processes. Genetically encoded real-time sensors of GPCR agonists are useful for interrogating the spatiotemporal dynamics of GPCR signalling. However, real-time imaging does not allow further interrogation of the cell population of interest. Cellular resolution integrators are useful for mapping GPCR agonist release in a large area, being able to interrogate whole-brain neural circuitry and label neurons exposed to the agonists for further interrogation. Integration sensors can be used first for unbiased search of the neuronal circuits affected by endogenous GPCR agonists across the brain. Real-time sensors can then be used to perform detailed characterisations of the spatiotemporal dynamics of endogenous GPCR agonist release in those circuits. The combined use of these sensors, therefore, can help expand our overall knowledge of GPCR-mediated neuronal signalling.

ACKNOWLEDGEMENTS
This work is supported by the University of Michigan. Wenjing Wang is supported by NIH R01DA05320001A1 and DP2MH132939. Kayla E. Kroning is supported by NIH F31MH12915001.

CONFLICT OF INTEREST
The authors declare they have no conflicts of interest.

ORCID
Kayla E. Kroning © https://orcid.org/0000-0001-8488-3485

REFERENCES
1. Pan H-L Wu Z-Z, Zhou H-Y, et al. Modulation of pain transmission by G-protein-coupled receptors. Pharmacol Ther. 2008;117:141-161.
2. Leung C, Wong Y. Role of G protein-coupled receptors in the regulation of structural plasticity and cognitive function. Molecules. 2017;22:1239.
3. Billington CK, Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res. 2003;4:2.
4. Tzameli I. GPCRs—pivotal players in metabolism. Trends Endocrinol Metab. 2016;27:597-599.
5. Gacasan SB, Baker DL, Parrill AL. G protein-coupled receptors: the evolution of structural insight. AIMS Biophys. 2017;4:491-527.
6. Hamm HE. How activated receptors couple to G proteins. PNAS. 2001;98:4819-4821.
7. Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Receptor–arrestin interactions: the GPCR perspective. Biomolecules. 2021;11:218.
8. Wacker D, Stevens RC, Roth BL. How ligands illuminate GPCR molecular pharmacology. Cell. 2017;170:414-427.
9. Newton AC, Bootman MD, Scott JD. Second messengers. Cold Spring Harb Perspect Biol. 2016;8:a005926.
10. Tian X, Kang DS, Benovic JL. ğ-Arrestins and G protein-coupled receptor trafficking. Handb Exp Pharmacol. 2014;219:173-186.
11. Wang J, Gareri C, Rockman HA. G-protein-coupled receptors in heart disease. Cire Res. 2018;123:716-735.
12. Szafran K Faron-Górecka A, Kolasa M, et al. Potential role of G protein-coupled receptor (GPCR) heterodimerization in neuropsychiatric disorders: a focus on depression. Pharmacol Rep. 2013;65:1498-1505.
13. Huang Y, Todd N, Thathiah A. The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol. 2017;32:96-110.
14. Sriram K, Insel PA. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol. 2018;93:251-258.
15. Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci. 2009;47:Unit7.1.
16. Calhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA. Characterization of a multiple-scan-rate voltammetric waveform for real-time detection of met-enkephalin. ACS Chem Neurosci. 2019;10:2022-2032.
17. Danksoski EC, Wightman RM. Monitoring serotonin signaling on a subsecond time scale. Front Integr Neurosci. 2013;7:44.
18. Venton BJ, Cao Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst. 2020;145:1158-1168.
19. Nicolai EN Trevathan JK, Ross EK, et al. Detection of norepinephrine in whole blood via fast scan cyclic voltammetry. In: Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 2017:111-116.
20. Wang H, Jing M, Li Y. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr Opin Neurobiol. 2018;50:171-178.
21. Zhou Y, Meng J, Xu C, Liu J. Multiple GPCR functional assays based on resonance energy transfer sensors. Front Cell Dev Biol. 2021;9:611443.
22. Hall MF, Unch J, Binkowski BF, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol. 2012;7:1848-1857.
23. Wan Q, Okashah N, Inoue A, et al. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J Biol Chem. 2018;293:7466-7473.
24. Galés C, Rebois RV, Hogue M, et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods. 2005;2:177-184.
25. Che T, English J, Krumm BE, et al. Nanobody-enabled monitoring of kappa opioid receptor states. Nat Commun. 2020;11:1145.
26. Che T, Majumdar S, Zaidi SA, et al. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell. 2018;172:55-67.e15.
27. Huang W, Manglik A, Venkataraman AJ, et al. Structural insights into μ-opioid receptor activation. Nature. 2015;524:315-321.
28. Rasmussen SFG, Choi H-J, Fung JJ, et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature. 2011;469:175-180.
29. Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC. Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell. 2019;176:479-490.e12.
30. Kruse AC, Ring AM, Manglik A, et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature. 2013;504:101-106.
31. Nehmea R, Carpenter B, Singhal A, et al. Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS One. 2017;12:1-26.
32. Maziarz M, Park J-C, Leyme A, et al. Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. Cell. 2020;182:770-785.e16.
33. Adjobo-Hermans MJ, Goedhart J, van Weeren L, et al. Real-time visualization of heterotrimeric G protein Gq activation in living cells. BMC Biol. 2011;9:32.
34. Mastop M, Reinhard NR, Zuconelli CR, et al. A FRET-based biosensor for measuring Gα13 activation in single cells. PLoS One. 2018;13:e0193705.
35. Saulière A, Bellot M, Paris H, et al. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat Chem Biol. 2012;8:622-630.
36. Azpiazu I, Gautam N. A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell. J Biol Chem. 2004;279:27709-27718.
37. Bünemann M, Frank M, Lohse MJ. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci U S A. 2003;100:16077-16082.
38. Frank M, Thümer L, Lohse MJ, Bünemann MG. Protein activation without subunit dissociation depends on a Gαi-specific region. J Biol Chem. 2005;280:24584-24590.
39. Galés C, Van Durn JJ, Schaak S, et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol. 2006;13:778-786.
40. Masuho I, Osrovskaya O, Kramer GM, Jones CD, Xie K, Martemyanov KA. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci Signal. 2015;8:ra123.
41. Olsen RHI, DiBerto JF, English JG, et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat Chem Biol. 2020;16:841-849.
42. Hein P, Frank M, Hoffmann C, Lohse MJ, Bünemann M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 2005;24:4106-4114.
43. Nobles M, Benians A, Tinker A. Heterotrimeric G proteins pre-couple with G protein-coupled receptors in living cells. Proc Natl Acad Sci U S A. 2005;102:18706-18711.
44. Hein P, Rochais F, Hoffmann C, et al. GS activation is time-limiting in initiating receptor-mediated signaling. *J Biol Chem.* 2006;281:33345-33351.

45. Philip F, Sengupta P, Scarlata S. Signaling through a G protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model. *J Biol Chem.* 2007;282:19203-19216.

46. Angers S, Salahpour A, Joly E, et al. Detection of β-2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). *Proc Natl Acad Sci U S A.* 2000;97:3684-3689.

47. Kroeger KM, Hanyaloglu AC, Sebeer RM, Miles LEC, Eidne KA. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. *J Biol Chem.* 2001;276:12736-12743.

48. Hanyaloglu AC, Sebeer RM, Kohout TA, Lefkowitz RJ, Eidne KA. Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes: differential regulation of β-arrestins I and 2. *J Biol Chem.* 2002;277:50422-50430.

49. Hasbi A, Devost D, Laporte SA, Zingg HH. Real-time detection of interactions between the human oxytocin receptor and G protein-coupled receptor kinase-2. *Mol Endocrinol.* 2004;18:1277-1286.

50. Namkung Y, Le Gouill C, Lukashova V, et al. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. *Nat Commun.* 2016;7:12178.

51. Charest PG, Bouvier M. Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances β-arrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. *J Biol Chem.* 2003;278:41541-41551.

52. Huang Q, Acha V, Yow R, Schneider E, Sardar DK, Hornsby PJ. Bioluminescence measurements in mice using a skin window. *J Biomed Opt.* 2007;12:054012.

53. Audet M, Lagacé M, Silversides DW, Bouvier M. Protein-protein interactions monitored in cells from transgenic mice using bioluminescence resonance energy transfer. *FASEB J.* 2010;24:2829-2838.

54. Shukla AK, Violin JD, Whalen EJ, Gesty-Palmer D, Shenoy SK, Lefkowitz RJ. Distinct conformational changes in β-arrestin report biased agonism at seven-transmembrane receptors. *Proc Natl Acad Sci U S A.* 2008;105:9988-9993.

55. Charest PG, Terrillon S, Bouvier M. Monitoring agonist-promoted conformational changes of β-arrestin in living cells by intramolecular BRET. *EMBO Rep.* 2005;6:334-340.

56. Oishi A, Dam J, Jockers R. β-Arrestin-2 BRET biosensors detect different β-arrestin-2 conformations in interaction with GPCRs. *ACS Sens.* 2020;5:57-64.

57. Vilardaga JP, Bünemann M, Krasell C, Castro M, Lohse MJ. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. *Nat Biotechnol.* 2003;21:807-812.

58. Krasel C, Bünemann M, Lorenz K, Lohse MJ. B-Arrestin binding to the B2-adrenergic receptor requires both receptor phosphorylation and receptor activation. *J Biol Chem.* 2005;280:9528-9535.

59. Hoffmann C, Ziegler N, Reiner S, Krasell C, Lohse MJ. Agonist-selective, receptor-specific interaction of human P2Y receptors with β-arrestin-1 and -2. *J Biol Chem.* 2008;283:30933-30941.

60. Vilardaga JP, Steinmeyer R, Harms GS, Lohse MJ. Molecular basis of inverse agonism in a G protein-coupled receptor. *Nat Chem Biol.* 2005;1:25-28.

61. Chachisvilis M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. *Proc Natl Acad Sci U S A.* 2006;103:15463-15468.

62. Rochais F, Vilardaga J-P, Nikolaev VO, Bünemann M, Lohse MJ, Engelhardt S. Real-time optical recording of β1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. *J Clin Invest.* 2007;117:229-235.

63. Reiner S, Ambrosio M, Hoffmann C, Lohse MJ. Differential signaling of the endogenous agonists at the β2-adrenergic receptor. *J Biol Chem.* 2010;285:36188-36198.

64. Zhang WH, Herde MK, Mitchell JA, et al. Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. *Nat Chem Biol.* 2018;14:861-869.

65. Okamoto S, Looger LL, Miechova KD, Reimer RJ, Smith SJ, Frommer WB. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. *PNAS.* 2010;102:8714-8719.

66. Marvin JS, Borghuis BG, Tian L, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. *Nat Methods.* 2013;10:162-170.

67. Marvin JS, Scholl B, Wilson DE, et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. *Nat Methods.* 2018;15:936-939.

68. Aggarwal A, Liu R, Chen Y, et al. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission. *bioRxiv.* 2022. https://doi.org/10.1101/2022.02.13.480251

69. Helassa N, Düüst C, Coates C, et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. *Proc Natl Acad Sci U S A.* 2018;115:5594-5599.

70. Marvin JS, Shimoda Y, Magloire V, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. *Nat Methods.* 2019;16:763-770.

71. Borden PM, Zhang P, Shivange AV, et al. A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies. *bioRxiv.* 2020. https://doi.org/10.1101/2020.02.07.939504

72. Unger EK, Keller JP, Altermatt M, et al. Directed evolution of a selective and sensitive serotonin sensor via machine learning. *Cell.* 2020;183:1986-2002.e26.

73. Shivange AV, Borden PM, Muthusamy AK, et al. Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. *J Gen Physiol.* 2018;151:738-757.

74. Muthusamy AK, Kim CH, Virgil SC, et al. Three mutations convert the selectivity of a protein sensor from nicotinic agonists to M-subtype for use in cells, organelles, and biofluids. *J Am Chem Soc.* 2022;144:8480-8486.

75. Nichols AL, Blumenfeld Z, Fan C, et al. Fluorescence activation mechanism and imaging of drug permeation with new sensors for smoking-cessation ligands. *Elife.* 2022;11:e74648.

76. Patriarchi T, Cho JR, Merten K, et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. *Science.* 2018;360:eaa4422.

77. Sun F, Zeng J, Jing M, et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. *Cell.* 2018;174:481-496.e19.
78. Abraham AD, Casello SM, Schattauer SS, et al. Release of endogenous dynorphin opioids in the prefrontal cortex disrupts cognition. *Neuropsychopharmacology*. 2021;46:2330-2339.

79. Wan J, Peng W, Li X, et al. A genetically encoded sensor for measuring serotonin dynamics. *Nat Neurosci*. 2021;24:746-752.

80. Dong C, Ly C, Dunlap LE, et al. Psychedelic-inspired drug discovery using an engineered biosensor. *Cell*. 2021;184:2779-2792.e18.

81. Feng J, Zhang C, Lischinsky JE, et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. *Neuron*. 2019;102:745-761.e8.

82. Oe Y, Wang X, Patriarchi T, et al. Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. *Nat Commun*. 2020;11:471.

83. Dong A, He K, Dudok B, et al. A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. *Nat Biotechnol*. 2022;40:787-798.

84. Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. *Science*. 2020;369:eabb0556.

85. Wu Z, Cui Y, Wang H, et al. A GRAB sensor reveals activity-dependent non-vesicular somatodendritic adenosine release. *bioRxiv*. 2020. https://doi.org/10.1101/2020.05.04.075564

86. Jing M, Li Y, Zeng J, et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. *Nat Methods*. 2020;17:1139-1146.

87. Lin D, Li Y. Pushing the frontiers: tools for monitoring dopaminergic activity in vivo. *Nat Methods*. 2020;17:1156-1166.

88. Lohr C, Beiersdorfer A, Fischer T, et al. Using genetically encoded calcium indicators to study astrocyte physiology: a field guide. *Front Cell Neurosci*. 2022;23:257-274.

89. Sun F, Zhou J, Dai B, et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. *Nat Methods*. 2020;17:1156-1166.

90. Patriarchi T, Mohebi A, Sun J, et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. *Nat Methods*. 2020;17:1147-1155.

91. Corre J, van Zessen R, Loueiro M, et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. *Elife*. 2018;7:e35458.

92. Liu Y, Jean-Richard-Dit-Bressel P, Yau JO-Y, et al. The mesolimbic dopamine activity signatures of relapse to alcohol-seeking. *J Neurosci*. 2020;40:6409-6427.

93. Lefevre EM, Pisansky MT, Toddes C, et al. Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. *Neuropsychopharmacology*. 2020;45:1781-1792.

94. Ahladeff AL, Goldstein N, Park O, Klima ML, Vargas A, Belley JN. Natural and drug rewards engage distinct pathways that converge on coordinated hypothalamic and reward circuits. *Neuron*. 2019;103:891-908.e6.

95. Lecat S, Matthes HW, Pepperkok R, Simpson JC, Galzi JL. A fluorescent live imaging screening assay based on transplantation criteria identifies novel cytoplasmic proteins implicated in G protein-coupled receptor signaling pathways. *Mol Cell Proteomics*. 2015;14:1385-1399.

96. Barak LS, Ferguson SSG, Zhang J, Caron MG. A β-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. *J Biol Chem*. 1997;272:27497-27500.

97. Zhang J, Barak LS, Anborgh PH, Laporte SA, Caron MG, Ferguson SS. Cellular trafficking of G protein-coupled receptor/β-arrestin endocytic complexes. *J Biol Chem*. 1999;274:10999-11006.

98. Stoeber M, Jullié D, Lobingier BT, et al. A genetically encoded biosensor reveals location bias of opioid drug action. *Neuron*. 2018;98:963-976.e5.

99. O’Neill PR, Karunarathne WKA, Kalyanaraman V, Silvius JR, Gautama N. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes. *Proc Natl Acad Sci U S A*. 2012;109:E3568-E3577.

100. Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. *Nat Biotechnol.* 2001;19:137-141.

101. Chen TW, Wardill TJ, Sun YH, et al. Ultrasensitive fluorescent sensors for imaging neuronal activity. *Nature*. 2013;499:295-300.

102. Akerboom J, Chen TW, Wardill TJ, et al. Optimization of a GCaMP calcium indicator for neural activity imaging. *J Neurosci*. 2012;32:13819-13840.

103. Dana H, Sun Yi, Mohar B, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. *Nat Methods*. 2019;16:649-657.

104. Tian L, Hires SA, Mao T, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. *Nat Methods*. 2009;6:875-881.

105. Broussard GJ, Liang Y, Fridman M, et al. In vivo measurement of afferent activity with axon-specific calcium imaging. *Nat Neurosci*. 2018;21:1272-1280.

106. Oh J, Lee C, Kaang B-K. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. *Korean J Physiol Pharmacol*. 2019;23:237.

107. Lohr C, Beiersdorfer A, Fischer T, et al. Using genetically encoded calcium indicators to study astrocyte physiology: a field guide. *Front Cell Neurosci*. 2021;15:690147.

108. Jiang L, Collins J, Davis R, et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. *J Biol Chem*. 2007;282:10576-10584.

109. Massengill CI, Day-Cooney J, Mao T, Zhong H. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. *J Neurosci Methods*. 2021;362:e109298.

110. Tewson PH, Martinka S, Shaner NC, Hughes TE, Quinn AM. New DAG and cAMP sensors optimized for live-cell assays in automated laboratories. *J Biomol Screen*. 2016;21:298-305.

111. Tewson PH, Quinn AM, Hughes TE. A multiplexed fluorescent assay for independent second-messenger systems: decoding GPCR activation in living cells. *J Biomol Screen*. 2012;18:797-806.

112. Ross BL, Tenner B, Markwardt ML, et al. Single-color, ratiometric biosensors for detecting signaling activities in live cells. *Elife*. 2018;7:e35458.

113. Barnea G, Strapps W, Herrada G, et al. The genetic design of signaling cascades to record receptor activation. *Proc Natl Acad Sci U S A*. 2008;105:64-69.

114. Kroeze WK, Sassano MF, Huang Xi-P, et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. *Nat Struct Mol Biol*. 2015;22:362-369.
115. Lee D, Creed M, Jung K, et al. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. *Nat Methods.* 2017;14:495-503.

116. Mignocchi N, Krüssel S, Jung K, Lee D, Kwon H-B. Development of a genetically-encoded oxytocin sensor. *bioRxiv.* 2020. https://doi.org/10.1101/2020.07.14.202598

117. Shen Y, Zhou M, Cai D, et al. CCR5 closes the temporal window for memory linking. *Nature.* 2022;606:146-152.

118. Kim MW, Wang W, Sanchez MI, Coukos R, von Zastrow M, Ting AY. Time-gated detection of protein–protein interactions with transcriptional readout. *Elife.* 2017;6:e30233.

119. Kroning KE, Wang W. Temporally gated molecular tools for tracking protein–protein interactions in live cells. *Methods Enzymol.* 2020;640:205-223.

120. Geng L, Kroning KE, Wang W. SPARK: a transcriptional assay for recording protein–protein interactions in a defined time window. *Curr Protoc.* 2021;1:e190.

121. Wang W, Wildes CP, Pattarabanjird T, et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. *Nat Biotechnol.* 2017;35:864-871.

122. Sanchez MI, Ting AY. Directed evolution improves the catalytic efficiency of TEV protease. *Nat Methods.* 2020;17:167-174.

123. Kroning KE, Wang W. Designing a single protein-chain reporter for opioid detection at cellular resolution. *Angew Chem Int Ed.* 2021;60:13358-13365.

124. Kroning KE, Li M, Petrescu DI, Wang W. A genetically encoded sensor with improved fluorescence intensity for opioid detection at cellular resolution. *Chem Commun.* 2021;57:10560-10563.

125. Kroning KE, Li M, Shen J, Fiel H, Nassar M, Wang W. A modular fluorescent sensor motif used to detect opioids, protein–protein interactions, and protease activity. *ACS Chem Biol.* 2022;17:2212-2220.

126. Cabantous S, Nguyen HB, Pedelacq J-D, et al. A new protein–protein interaction sensor based on tripartite split-GFP association. *Sci Rep.* 2013;3:1-9.

127. Zhang Q, Zheng YW, Coughlin SR, Shu X. A rapid fluorogenic GPCR-β-arrestin interaction assay. *Protein Sci.* 2018;27:874-879.

How to cite this article: Kroning KE, Wang W. Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution. *Clin Transl Med.* 2022;12:e1124. https://doi.org/10.1002/ctm2.1124