Electronic Supplementary Information
for
Sacrificial Carbonaceous Coating over Alumina Supported Ni-MoS$_2$ Catalyst for Hydrodesulfurization

Yingrui Xu,a Pengyun Li,a Shenghua Yuan,b Baokuan Sui,b Weikun Lai,*,a Xiaodong Yi,*,a and Weiping Fanga

a National Engineering Laboratory for Green Chemical Productions of Alcohols- Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. E-mail: xdyi@xmu.edu.cn, lapiweikun@xmu.edu.cn.

b SINOPEC Dalian Research Institute of Petroleum and Petrochemical, Dalian 116045, China.
Fig. S1 XRD patterns of NiMoAl@PDA-0, NiMoAl@PDA-1 and NiMoAl@C-1 Samples.

Fig. S2 Nitrogen adsorption-desorption isotherms (a) and pore size distributions (b) of the catalysts.
Fig. S3 Typical HRTEM images of the sulfided NiMoAl-1 catalyst.

Fig. S4 C 1s spectra of NiMoAl-0, NiMoAl-1 and NiMoAl-1°.
Scheme S1 Proposed reaction network of DBT over HDS catalysts through DDS (direct desulfurization) and HYD (hydrodesulfurization) pathways. BP: biphenyl; THDBT: tetrahydrodibenzothiophene; CHB: cyclohexylbenzene; BCH: bicyclohexyl.
Catalysts	Weight Loss (%)		
	40~140 °C	140~400 °C	400~700 °C
NiMoAl-0	5.87	6.4	4.3
NiMoAl-0.5	3.60	11.1	5.5
NiMoAl-1	3.80	12.1	8.1
NiMoAl-1.5	4.64	13.8	9.6
NiMoAl@C	4.03	12.1	7.8
NiMoAl@PDA	3.37	13.2	8.0

Table S1 Weight losses at different temperature ranges of the NiMoAl-x precursors.