LETTER

Double transitions, non-Ising criticality and the critical absorbing phase in an interacting monomer–dimer model on a square lattice

Keekwon Nam1, Sangwoong Park2, Bongsoo Kim1 and Sung Jong Lee2

1 Department of Physics, Changwon National University, Changwon 641-773, Korea
2 Department of Physics, University of Suwon, Hwaseong 445-743, Korea

E-mail: kknam@changwon.ac.kr, greenian@gene.kias.re.kr, bskim@changwon.ac.kr and sjree@suwon.ac.kr

Received 18 March 2011
Accepted 1 June 2011
Published 15 June 2011

Online at stacks.iop.org/JSTAT/2011/L06001
doi:10.1088/1742-5468/2011/06/L06001

Abstract. We present a numerical study on an interacting monomer–dimer model with nearest neighbor repulsion on a square lattice, which possesses two symmetric absorbing states. The model is observed to exhibit two nearby continuous transitions: the \mathbb{Z}_2 symmetry-breaking order–disorder transition and the absorbing transition with directed percolation criticality. We find that the symmetry-breaking transition shows a non-Ising critical behavior, and that the absorbing phase becomes critical, in the sense that the critical decay of the dimer density observed at the absorbing transition persists even within the absorbing phase. Our findings call for further studies on microscopic models and the corresponding continuum description belonging to the generalized voter university class.

Keywords: coarsening processes (theory), phase transitions into absorbing states (theory)
1. Introduction

Interacting systems often exhibit phase transitions into permanently arrested, absorbing states in non-equilibrium (NEQ) steady states [1, 2]. Intensive efforts have been devoted to classifying these NEQ phase transitions into distinct universality classes, which is one of the most fundamental issues in NEQ statistical mechanics [3]. Although the guiding principles for the classification are still lacking in general, symmetry is undoubtedly one of the crucial ingredients in the classification. In the most prominent universality class known as the directed percolation (DP) class [4]–[6], systems possess either a single absorbing state or multiple ones not connected by any underlying symmetry [7, 8]. Another newly established class known as the generalized voter (GV) universality class [9, 10] encompasses a large variety of models possessing two symmetric absorbing states, including statistical models for social dynamics such as opinion spreading [11]. This universality class embraces most one-dimensional models belonging to the so-called directed Ising class, such as the NEQ kinetic Ising model [12, 13], the interacting monomer–dimer (IMD) model [14], and the voter model with spin exchange [9].

A fundamental and unique feature of the GV class is that, due to the symmetry of the absorbing states, the models in the class actually involve phase transitions of two types, namely, the Z_2 symmetry-breaking (SB) order–disorder and the active–absorbing phase transitions. In one dimension, the coincidence of these two transitions appears to be inevitable since the SB should be induced by the absorbing transition. In two dimensions, the models belonging to the GV class are shown to exhibit two types of behavior as follows. The SB order–disorder transition and the active–absorbing transition can take place simultaneously at a single critical point [15], where the defect density shows a logarithmic decay, as in the original voter model [16]. Close but separate occurrence of these two transitions is also observed [17]. Continuum field theoretic descriptions unifying these two types of behavior were formulated via appropriate Langevin equations for the local order parameter field [10, 18, 19].

We here present an extensive simulation study on the IMD model with nearest neighbor (NN) repulsion on a square lattice. We observe that the two transitions occur successively at close but clearly distinct points. Moreover, we find that the SB transition reveals a new non-Ising critical behavior, and that the absorbing transition exhibits a

doi:10.1088/1742-5468/2011/06/L06001
DP critical behavior (due to the Z_2 SB), that is, the density of active sites, $\rho(t)$, shows a power law decay in time as $\rho(t) \sim t^{-\phi}$ with $\phi \simeq 0.45$, in agreement with the corresponding DP exponent in two dimensions. Interestingly, we further find that the entire absorbing phase becomes critical in the sense that the same power law relaxation of $\rho(t)$ persists even deep in the absorbing phase. In previous works on the microscopic models belonging to the GV class, we feel that the nature of the SB transition was presumed to be of pure Ising type, and thus has not been carefully studied so far: the Binder cumulants associated with the SB transition took the values $U \simeq 0.56$ \cite{18} or $U \simeq 0.59$ \cite{17}, smaller than the universal Ising value, $U_{\text{Ising}} \simeq 0.611$ \cite{20}. In contrast, a pure Ising nature of the SB transition in the corresponding continuum Langevin description has been reported, though explicit results were not shown \cite{10}. Our findings thus call for further studies on these microscopic models belonging to the GV universality class, and on the corresponding Langevin equations. Further related discussions are given below.

2. The interacting monomer–dimer model on a square lattice

Here we consider the IMD model with NN repulsion between particles of the same type, which is an interesting variant of the original Ziff–Gulari–Barshad catalytic surface reaction model \cite{21}. A monomer (denoted by A) adsorbs on a (randomly selected) vacant site with free adsorption attempt probability P. Likewise a dimer (denoted by BB) adsorbs on two (randomly selected) NN vacant sites with free adsorption attempt probability $(1 - P)$. The parameter P is the single parameter in the present model. The adsorbed dimer is assumed to instantly dissociate into two monomers. In two dimensions, one has to carefully implement the kinetic rules respecting the constraint of NN repulsion.

(a) Monomer A adsorbs on a vacant site only if its NN sites are completely empty or have one or more B’s regardless of the presence of A. Adsorbed A then reacts with one of the NN B’s to form the ‘molecule’ (AB) which leaves the system. (b) Likewise, dimer BB adsorbs on two vacant NN sites only if their six NN sites satisfy one of the following conditions. (1) They are completely vacant. (2) They have one or more A’s in the three left-half (LH) NN sites, and at the same time have no B in the three right-half (RH) NN sites, and vice versa. (3) They have one or more A’s on both the LH and RH NN sites, regardless of the presence of B. The system thus has two symmetric absorbing states: ‘antiferromagnetic (AF)’ arrangements of vacant sites and A’s.

3. Simulation results and discussion

Simulation is performed on a square lattice with linear size L using periodic boundary conditions. Throughout the work, simulation always starts from the vacuum state. The ‘spin’ value is assigned at each site i: $\sigma_i = 1, -1, 0$ for A, a vacancy, and B, respectively. Then one can define the local ‘staggered magnetization’ at site i as $m_i = (-1)^{i_x + i_y} \sigma_i$ where $i_{x(y)}$ is the $x(y)$ coordinate of the site i. The order parameter for the SB transition is given by the staggered magnetization M_s, as the average local staggered magnetization, i.e., $M_s = \langle M_s \rangle$, where $M_s = \sum_i m_i / N$ ($N \equiv L^2$). In order to locate the SB transition point, we measure the corresponding Binder cumulant U defined as $U \equiv 1 - \langle M_4^4 \rangle / (3 \langle M_2^4 \rangle^2)$. Shown in figure 1(a) is U as a function of P for various system sizes $L = 64–256$. It takes the size-independent universal value $U(P_{SB}) = 0.592(1)$ at the transition, from
Double transitions, non-Ising criticality and the critical absorbing phase in an IMD model

J. Stat. Mech. (2011) L06001

which the critical point is determined as $P_{SB} = 0.6385(1)$. For comparison, we show U for the EQ two-dimensional Ising model in figure 1(b), which gives the universal value $U_{\text{Ising}} \simeq 0.611$ at $T_c = 2.2692$. We see that the observed value $U(P_{SB})$ for the present model is found to be smaller than the pure Ising value. We contend that this difference is a manifestation of the non-Ising nature of the SB transition. In order to investigate this point further, we measure the critical exponents of the SB transition via the finite size scaling (FSS) method and a NEQ kinetic method involving the critical coarsening.

Figure 2(a) shows a plot of M_s versus P for various system sizes. M_s is expected to obey a FSS of the form $M_s(P) = L^{-\beta/\nu}F((P - P_{SB})L^{1/\nu})$. Thus its critical value $M_s(P_{SB})$ will vanish with system size L, exhibiting a power law decay as $M_s(P_{SB}) \sim L^{-\beta/\nu}$. Shown in figure 2(b) is a double-log plot of $M_s(P_{SB})$ versus L, whose slope for $L = 128, 160, 200, 256$ gives $-\beta/\nu = -0.161(3)$ (note that the Ising slope $-\beta/\nu = -0.125$ deviates considerably from the actual slope of the data). With this measured value of $\beta/\nu = 0.161$, we find that the best scaling collapse is obtained for $\nu \simeq 1.0$, as shown in figure 3(a). In contrast, when we use the exact Ising exponents $\beta = 0.125$ and $\nu = 1$, we see that the scaling is systematically violated, as shown in figure 3(b). Thus the estimated critical exponents are given by $\beta \simeq 0.161$ and $\nu \simeq 1.0$.

We also measured the fluctuation of the order parameter $\chi = N[(\mathcal{M}_s^2) - \langle \mathcal{M}_s \rangle^2]$, which is plotted against P for different system sizes in figure 4(a). It tends to diverge with increasing L, and is expected to obey the FSS $\chi = L^{\gamma/\nu}G(L^{1/\nu}(P - P_{SB}))$. Thus, $\chi(P_{SB})$ will diverge with the system size as $\chi(P_{SB}) \sim L^{\gamma/\nu}$, which is shown in the inset of figure 4(b) with $\gamma/\nu = 1.69(2)$ (the Ising slope $\gamma/\nu = 1.75$ is shown to deviate from
Double transitions, non-Ising criticality and the critical absorbing phase in an IMD model

Figure 2. (a) The staggered magnetization $M_s(P)$ versus P for various system sizes L near the SB transition. (b) M_s versus L at the SB transition. This shows a power law decrease of $M_s(P_{SB})$ with L, as $M_s(P_{SB}) \sim L^{-\beta/\nu}$ with $\beta/\nu = 0.161(3)$. The Ising value $\beta/\nu = 0.125$ (blue line) is shown for comparison.

Figure 3. Finite size scaling results for $L^{\beta/\nu}M_s$ versus $L^{1/\nu}(P - P_{SB})$ with $\beta = 0.161$ and $\nu = 1.0$ (a), and with the Ising values $\beta = 0.125$ and $\nu = 1$ (b).

the actual slope of the data). With this measured value, figure 5(a) shows that the best scaling is again obtained for $\nu \approx 1.0$. Note again that the scaling breaks down for the Ising value $\gamma = 1.75$ and $\nu = 1$, as demonstrated in figure 5(b). Therefore, we get $\gamma = 1.69(2)$ and $\nu \approx 1.0$.
Figure 4. (a) Fluctuations of the staggered magnetization χ versus P for different system sizes L. (b) χ versus L at the SB transition. This shows a power law increase with system size L as $\chi \sim L^{\gamma/\nu}$ with $\gamma/\nu = 1.69(2)$. The Ising value $\gamma/\nu = 1.75$ (blue line) is shown for comparison.

Figure 5. Finite size scaling results for $L^{-\gamma/\nu} \chi$ versus $L^{1/\nu}(P - P_{SB})$ with $\gamma = 1.69$ and $\nu = 1.0$ (a), and with the Ising values $\gamma/\nu = 1.75$ and $\nu = 1$ (b).

To further check the non-Ising nature of the SB transition, we obtain the critical exponent η from the dynamic order parameter correlation function $C(r, t) = \langle \sum_i m_i(t)m_{i+r}(t) \rangle/N$ measured during the critical coarsening process ensuing from a quench from an initial vacuum state to the SB critical point in a large system with...
Figure 6. The staggered magnetization correlation function $C(r, t)$ versus r for different times $t = 10^2 n$ ($n = 7, 8, \ldots, 13$) measured during the critical coarsening process ($P = P_{SB}$). The steady-state part shows a critical decay $r^{-\eta}$ with $\eta = 0.31$ (see the inset). The power law decay with Ising value $\eta = 0.25$ (blue line) is shown for comparison. Inset: the power law decay of $C(r, t)$ versus r over the steady-state region for the two latest times, $t = 40960$ (diamond) and $t = 81920$ (circle). The exponent $\eta = 0.31$ is obtained from the slope measured over the distance up to $r = 10$.

$L = 2048$, which does not involve the data collapse of the FSS method. Figure 6 shows $C(r, t)$ for various times. At long times, the steady-state behavior emerges and grows in the short and intermediate length regions, exhibiting a critical decay as $C(r) \sim r^{-\eta}$ with $\eta = 0.310(3)$. Note that the Ising slope $\eta_{\text{Ising}} = 0.25$ shown in the figure deviates considerably from the actual data. We also note that the above estimates of the critical exponents are in good agreement with the known scaling relations $2\beta/\nu = \eta$ (in two dimensions) and $\gamma/\nu = 2 - \eta$ since $2\beta/\nu = 0.322(6)$ and $\gamma/\nu = 1.69(2)$.

Having confirmed the non-Ising criticality of the SB transition, we now discuss a possible underlying origin for this non-Ising behavior. Although we do not have a solid theoretical argument for the observed non-Ising behavior, the AF Ising-like domain morphology appears to provide a crucial qualitative hint as regards the non-Ising nature of the SB transition (see figure 7). In the present model, the two symmetric absorbing states correspond to the checkerboard pattern of the monomer A’s due to the NN repulsion and NEQ nature of dynamic rules. One distinct feature in the present model is the presence of the dimers. We can see that the existence of the dimers induces (via dynamic rules) longer ranged effective repulsion interactions between the monomers, creating wide vacant regions percolating through the system (see figure 7). From the viewpoint of the AF order, these vacant regions contain densely packed defects, and must also contain many B elements within them. These defects as well as B’s are expected to fluctuate divergingly in their numbers at the SB transition. Quite probably it is the existence of these defects and B elements (with their diverging fluctuations) that causes the non-Ising critical behavior of the SB transition. For example, it is rather clear that these defects and B’s can play a
crucial role such that the spatial correlation of the AF order parameter exhibits more rapid algebraic decay as compared to the pure Ising case at the SB transition, as demonstrated in figure 6.

Our preliminary results for the number fluctuation of the defects does indeed indicate that it diverges at the SB transition, and its presentation is deferred to a later publication. Here we present only the number fluctuations of the B element, i.e., $\chi_B = N[(\rho_B^2) - (\rho_B)^2]$ at the SB transition. We do indeed find that this quantity also exhibits a diverging behavior at the SB transition, though a much weaker one than that for the staggered magnetization fluctuations χ, as shown in figure 8. The finite size scaling of χ_B is given by $\chi_B = L^{\gamma_B/\nu_B} H(L^{1/\nu_B}(P - P_{SB}))$. At the SB transition, the double-log plot χ_B versus L gives the slope $\gamma_B/\nu_B = 0.212(3)$. With this value, we find that the best scaling collapse is obtained for $1/\nu_B = 0.80(5)$, as shown in figure 8. This gives $\gamma_B = 0.265(22)$ and $\nu_B = 1.25(8)$.

In the present model, the SB and the absorbing transitions are split, and the former occurs within the active phase (as shown in figure 9), and hence the full AF order is achieved only within the absorbing phase. By monitoring the relaxation of the dimer density $\rho_{BB}(t)$, the order parameter of the absorbing transition, for various P’s, as shown in figure 9, we obtain an estimate for the absorbing transition point as $P_A = 0.6495(10)$ where the dimer density $\rho_{BB}(t)$ exhibits a power law decay $\rho_{BB}(t) \sim t^{-\phi}$ with $\phi \approx 0.45$. This exponent is the same as that in the two-dimensional DP absorbing transition, which indicates that the absorbing transition occurring at P_A belongs to the
Figure 8. Lower inset: the dimer fluctuations χ_B versus P for different system sizes L. Upper inset: χ_B versus L at the SB transition. This shows a power law increase with system size L as $\chi_B \sim L^{\gamma_B/\nu_B}$ with $\gamma_B/\nu_B = 0.212(3)$. Main frame: FSS of $L^{-\gamma_B/\nu_B} \chi_B$ versus $L^{1/\nu_B} (P - P_{SB})$ with $\gamma_B = 0.265$ and $\nu_B = 1.25$.

DP universality class. This behavior is in accord with the expectation [7,8] that the critical behavior is of DP class if the Z_2 symmetry of the absorbing state is broken. Remarkably, the same critical relaxation of the dimer density is observed to persist even within the entire absorbing phase ($P > P_A$). In this sense, the absorbing phase may be considered as critical. Note that since the Z_2 symmetry is already broken for $P \geq P_A$, the system evolves toward the absorbing steady state via coarsening of the AF domains. The AF domains are absorbing and thus monomers and dimers cannot fall on them. They therefore must fall on the vacant regions which A’s and B’s are scattered within. The coarsening process is thus driven by these interface-alone fluctuations, and is expected to exhibit a dynamic scaling for the spatio-temporal correlations of the AF order parameter. We may consider the observed persistent critical decay of the dimer density even within the absorbing phase as associated with this inevitable coarsening dynamics from the initial vacuum state evolving toward the final (symmetry-broken) absorbing state at all points of the absorbing phase. In other words, if we assume that the total number of dimers is proportional to the volume of the vacant regions, then the power law decay of the dimers will ensue from the power law decay of the volume of vacant regions associated with the kinetic self-similarity of the system during the coarsening (i.e., phase ordering) process. As for the universal DP exponent value in the whole absorbing phase, we may draw an analogy to the ‘zero-temperature fixed point’ in the phase ordering of a standard Ising model quenched to a temperature below the transition temperature T_c, where the phenomenology of coarsening at any temperature below T_c can be essentially represented by the same universality of dynamic criticality.

doi:10.1088/1742-5468/2011/06/L06001
Double transitions, non-Ising criticality and the critical absorbing phase in an IMD model

Figure 9. The dimer density relaxation $\rho_{BB}(t)$ versus t for various values of P in a system with $L = 2048$. The absorbing transition point is estimated to be $P_A = 0.6495(10)$, at which $\rho_{BB}(t)$ exhibits a power law relaxation $\rho_{BB}(t) \sim t^{-\phi}$ with $\phi \approx 0.45$ (the dotted line is a line with the slope -0.45). The same power law relaxation is observed to persist within the absorbing phase.

We now discuss the continuum stochastic description for the GV universality class. In [10], the following Langevin equation for the local SB order parameter field ϕ was proposed for a unified description of the two types of behavior alluded to earlier for the models in the GV class:

$$\partial_t \phi = (a\phi - b\phi^3)(1 - \phi^2) + \nabla^2 \phi + \sigma \sqrt{1 - \phi^2} \xi$$ (3.1)

where ξ is an uncorrelated Gaussian noise with zero mean and unit variance, and a, b, and σ are constants. This equation is a modified version of the Langevin equation for the voter model [22,23] (3.1) with $a = b = 0$ so as to incorporate the splitting of the Z_2 SB transition and the absorbing transition, which was first observed in the model studied in [17]. Since the order parameter field fluctuates around $\phi = 0$ (and hence $(1 - \phi^2) \approx 1$) near the SB transition, the multiplicative factor in the noise term in (3.1) disappears, reducing (3.1) to that for model A. This argument seems to be consistent with the report of [10] that a convincing numerical solution of (3.1) reveals that the Z_2 SB transition described by (3.1) belongs to the Ising universality class, as evidenced by the FSS scaling and measurements of the Binder cumulant and time autocorrelation function for the order parameter (though these results are not shown explicitly in that paper). It is thus quite probable that the Langevin equation (3.1) cannot fully describe the non-Ising critical behavior of the SB transition observed in the present model.

Recently, Vazquez and López (VL) [18] derived a similar Langevin equation from the microscopic model of the Ising spins σ_r on a square lattice with spin-flip dynamics controlled by a flip probability which is given by a function $f(\psi)$ of the local magnetization $\psi(r,t) \equiv (\sum_Z \sigma_r)/Z$ (Z being the coordination number) with \sum_Z denoting the sum over Z neighboring spins of σ_r. This was done by mapping the master equation into...
an approximate Fokker–Planck equation, and in turn into the corresponding Langevin equation which is given by

\[\partial_t \phi = (a\phi - b\phi^3)(1 - \phi^2) + X(\phi) \nabla^2 \phi + \sqrt{Y(\phi)} \xi, \]

\[X(\phi) \equiv [a + c + (d - 2a - 3b)\phi^2], \]

\[Y(\phi) \equiv (1 - \phi^2)(c + d\phi^2) + (a - c + 2d)\phi \nabla^2 \phi \quad (3.2) \]

The corresponding spin-flip probability function is given by

\[f(\psi) = (1 + \psi)(c + a\psi + d\psi^2 - b\psi^3)/2 \] with \(a, b, c \) and \(d \) being constants. VL found through the simulation on a square lattice that the splitting of the SB and absorbing transitions is observed when the next-next-nearest neighbor \((Z = 12)\) spins are taken into account in the calculation of the local magnetization \(\psi\), and that the Binder cumulant \(U \simeq 0.56\) was obtained at the SB transition. We tend to believe that this value of \(U\), considerably smaller than the pure Ising value \(U = 0.61\), indicates that the SB transition exhibits a non-Ising critical behavior. It is interesting to see that unlike (3.1), the corresponding Langevin equation (3.2) does not seem to reduce to model A near the SB transition due to the forms of \(X(\phi)\) and \(Y(\phi)\) in (3.2). This feature could leave room for the possibility that the Langevin equation (3.2) might be able to generate a non-Ising critical behavior of the SB transition, which deserves a thorough investigation on the critical behavior of the SB transitions in both a microscopic model and the corresponding Langevin equation proposed by VL.

4. Summary

In the present work, we investigated a two-dimensional IMD model with short range repulsion, which has two symmetric absorbing states. We find that the SB and absorbing transitions take place at two nearby points, as in some models \cite{17,18} with extended interaction range belonging to the GV universality class. Interestingly, we observe numerically that the SB transition exhibits a new non-Ising critical behavior with the exponents \(\beta \simeq 0.161, \gamma \simeq 1.69, \nu \simeq 1.0, \) and \(\eta \simeq 0.31\). We also find that the absorbing transition is of the DP type, with a remarkable feature that the dimer density shows the same critical decay (with the DP exponent) over the entire absorbing phase. The non-Ising critical behavior of the SB transition is considered to be closely related to the fact that the effective extended range of repulsion between monomers mediated by dimers (via NEQ dynamic rules) creates wide vacant regions between the AF domains, which can be considered as closely packed defects from the viewpoint of the AF order. We suggested that the diverging fluctuations of these defects and dimers can lead to a non-Ising critical behavior of the AF order parameter at the SB transition. The persistent criticality in the absorbing phase can be attributed to the self-similar nature of the coarsening process (i.e., the AF domain growth) evolving toward a symmetry-broken absorbing state. Finally, we raise a possibility that a recently derived Langevin equation based on the spin-flip dynamics of a collection of Ising spins on a square lattice with a general flip probability might be able to describe similar non-Ising critical behavior of the SB transition. It would thus be valuable to carry out further analysis on those models and continuum stochastic equations showing separate transitions in the GV universality class. It would also be interesting to conduct more
detailed investigations into NEQ kinetics in both active and absorbing phases in the present model.

Acknowledgments

We thank Hyunggyu Park for valuable discussions. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST: No. 2009-0090085; SP and SJL), and by Changwon National University Grants 2009 and 2010 (BK). The computation of this work was supported by PLSI supercomputing resources of Korea Institute of Science and Technology Information (KISTI).

References

[1] Marro J and Dickman R, 1996 Non-Equilibrium Phase Transitions in Lattice Models (Cambridge: Cambridge University Press)
[2] Henkel M, Hinrichsen H and Lübeck S, 2009 Non-Equilibrium Phase Transitions vol 1 Absorbing Phase Transitions (New York: Springer)
[3] ´Odor G, 2008 Universality in Non-Equilibrium Lattice systems (Singapore: World Scientific)
[4] Grassberger P and de la Torre A, 1979 Ann. Phys., NY 122 373
[5] Hinrichsen H, 2000 Adv. Phys. 49 815
[6] Takeuchi K A, Kuroda M, Chaté H and Sano M, 2009 Phys. Rev. E 80 051116
[7] Janssen H K, 1981 Z. Phys. B 42 151
[8] Grassberger P, 1982 Z. Phys. B 47 365
[9] Dornic I, Chaté H, Chave J and Hinrichsen H, 2001 Phys. Rev. Lett. 87 045701
[10] Al Hammal O, Chaté H, Dornic I and Muñoz M A, 2005 Phys. Rev. Lett. 94 230601
[11] Castellano C, Fortunato S and Loreto V, 2009 Rev. Mod. Phys. 81 591
[12] Menyhárd N and ´Odor G, 2000 Braz. J. Phys. 30 113
[13] Nam K, Kim B and Lee S J, 2010 J. Stat. Mech. P08013
[14] Kim M H and Park H, 1994 Phys. Rev. Lett. 73 2579
[15] Hwang W, Kwon S, Park H and Park H, 1998 Phys. Rev. E 57 6438
[16] Lee M Y and Vojta T, 2011 Phys. Rev. E 83 011114
[17] Frachebourg L and Krapivsky P L, 1996 Phys. Rev. E 53 R3009
[18] Droz M, Ferreira A L and Lipowsk A, 2003 Phys. Rev. E 67 056108
[19] Vazques F and López C, 2008 Phys. Rev. E 78 061127
[20] Castellano C, Muñoz M A and Pastor-Satorras R, 2009 Phys. Rev. E 80 041129
[21] Kamieniarz G and Blote H W, 1993 J. Phys. A: Math. Gen. 26 201
[22] Ziff R M, Gulari E and Barshad Y, 1986 Phys. Rev. Lett. 56 2553
[23] Dickman R and Tytyakov A Yu, 1995 Phys. Rev. E 52 3218
[24] Muñoz M A, Grinstein G and Tu Y, 1997 Phys. Rev. E 56 5101