\(\eta \)-Ricci solitons on contact pseudo-metric manifolds

Eftekhar Asgharzadeh* and Morteza Faghfouri†

March 10, 2021

Abstract

In this paper, we prove that a Sasakian pseudo-metric manifold which admits an \(\eta \)-Ricci soliton is an \(\eta \)-Einstein manifold, and if the potential vector field of the \(\eta \)-Ricci soliton is not a Killing vector field then the manifold is \(D \)-homothetically fixed, and the vector field leaves the structure tensor field invariant. Next, we prove that a \(K \)-contact pseudo-metric manifold with a gradient \(\eta \)-Ricci soliton metric is \(\eta \)-Einstein. Moreover, we study contact pseudo-metric manifolds admitting an \(\eta \)-Ricci soliton with a potential vector field point wise colinear with the Reeb vector field. Finally, we study gradient \(\eta \)-Ricci solitons on \((\kappa, \mu)\)-contact pseudo-metric manifolds.

1 Introduction

A Ricci soliton is a natural generalization of an Einstein metric, which was introduced by Hamilton [17] as the fixed point of the Hamilton’s Ricci flow \(\frac{\partial}{\partial t} g = -2 \text{Ric} \). The Ricci flow is a nonlinear diffusion equation analogue of the heat equation for metrics. A Ricci soliton \((g, V, \lambda)\) on the pseudo-Riemannian manifold \((M, g)\) is defined by the following equation

\[
\mathcal{L}_V g + 2 \text{Ric} + 2\lambda g = 0,
\]

where \(\mathcal{L}_V \) is the Lie derivative along the potential vector field \(V \), and \(\lambda \) is a constant real number. The Ricci soliton is called shrinking, steady, expanding if \(\lambda < 0 \), \(\lambda = 0 \) and \(\lambda > 0 \), respectively. If \(V = Df \), where \(Df \) is the gradient of the smooth function \(f \), then the Ricci soliton is called a gradient Ricci soliton. Ricci solitons have been studied in many different contexts (see [2,3,10,11,14,16,22,23]). Also, they are interests of physicists because of their relations to string theory [1,20], and physicists refer to Ricci solitons as quasi-Einstein metrics [13].

*Email:ef.asgharzadeh@gmail.com
†Email:faghfouri@tabrizu.ac.ir
‡Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
The η–Ricci soliton notion, as a generalization of a Ricci soliton, was introduced by Cho and Kimura [9]. An η–Ricci soliton on a manifold M is a tuple (g, V, λ, μ), where g is a pseudo-Riemannian metric, V is the potential vector field, and λ, μ are constant real numbers satisfying

$$\mathcal{L}Vg + 2\text{Ric} + 2\lambda g + 2\mu \eta \otimes \eta = 0,$$

where η is a 1–form on M. Moreover, if $V = Df$, the η–Ricci soliton is called a gradient η–Ricci soliton and Eq.1 becomes

$$\text{Hess} f + \text{Ric} + \lambda g + \mu \eta \otimes \eta = 0.$$

The η–Ricci solitons have been studied in many different settings, Blaga studied η–Ricci solitons on para-Kenmotsu [4] and Lorentzian para-Sasakian manifolds [5]. Devaraja and Venkatesha studied η–Ricci solitons on para-Sasakian manifolds [23], etc.

Contact geometry is an odd-dimensional analogue of the symplectic geometry and has been studied in many different contexts (particularly) those related to physics. It has been used as a proper framework for classical thermodynamics [6,27], and as a geometrical approach to magnetic field [7]. Also, it was studied in relation with the Yang-Mills theory [19], quantum mechanics [18], gravitational waves [21], etc. Studying contact structures with pseudo-Riemannian metrics was started by Takahashi in [26], but he just studied the Sasakian case. Recently, Calvaruso and Perrone [8] have studied a contact pseudo-metric manifold in the general case. Ghafrarzadeh and second author studied nullity conditions on the contact pseudo-metric manifolds and have introduced the “(κ, μ)–contact pseudo-metric manifold” notion [15]. The relevance for the general relativity of contact pseudo-metric manifolds was studied in [12]. All of these applications have motivated us to study η–Ricci solitons in the contact pseudo-Riemannian settings.

The present paper has been organized as follows. In Section 2, we recalled the contact pseudo-metric manifold notion and proved some lemmas that are used in the next sections. In Section 3, we studied η–Ricci solitons on Sasakian pseudo-metric manifolds and showed that a Sasakian pseudo-metric manifold, which admits an η–Ricci soliton, is an η–Einstein manifold and if the potential vector field of the η–Ricci soliton is not a Killing vector field, then the manifold is \mathcal{D}–homothetically fixed, and presented an example for it. Moreover, we showed a K–contact pseudo-metric manifold which admits a gradient η–Ricci soliton is an η–Einstein manifold. Also, we studied an η–Ricci soliton that has a potential vector field colinear to the Reeb vector field on a contact pseudo-metric manifold and showed that the manifold is K–contact. In the last section, we studied gradient η–Ricci solitons on a (κ, μ)–contact pseudo-metric manifold and obtained some conditions on the curvature tensor of the manifold.
2 Preliminaries

In this section, we recall some definitions and results needed in the rest of the paper.

A \((2n + 1)\)-dimensional manifold \(M\) is called an almost contact pseudo-metric manifold, if there exists an almost contact pseudo-metric structure \((\varphi, \xi, \eta, g)\) on \(M\), where \(\varphi, \xi, \eta, g\) are a \((1, 1)\)-tensor field, a vector field, a 1-form and a compatible pseudo-Riemannian metric, respectively, which satisfy the following equations

\[
\eta(\xi) = 1, \quad \varphi^2(X) = -X + \eta(X)\xi, \quad (3)
\]

\[
g(\varphi X, \varphi Y) = g(X, Y) - \epsilon \eta(X)\eta(Y), \quad (4)
\]

where \(\epsilon = \pm 1\), and \(X, Y\) are arbitrary vector fields. Using the above equations, we have

\[
\varphi \xi = 0, \quad \eta \circ \varphi = 0, \quad (5)
\]

\[
\eta(X) = \epsilon g(\xi, X), \quad g(\varphi X, Y) = -g(X, \varphi Y)
\]

and especially \(g(\xi, \xi) = \epsilon\). Notice that the signature of the metric \(g\) is \((2p + 1, 2n - 2p)\) if \(\xi\) is a spacelike vector field \((g(\xi, \xi) > 0)\), and is \((2p, 2n - 2p + 1)\) if \(\xi\) is a timelike vector field \((g(\xi, \xi) < 0)\).

The fundamental 2-form \(\Phi\) of an almost contact pseudo-metric manifold \((M, \varphi, \xi, \eta, g)\) is defined as \(\Phi(X, Y) = g(X, \varphi Y)\), where \(X, Y \in \Gamma(M)\). If

\[
g(X, \varphi Y) = (\text{d}\eta)(X, Y),
\]

then \(\eta\) is a contact form, \((\varphi, \xi, \eta, g)\) is a contact pseudo-metric structure and \(M\) is called a contact pseudo-metric manifold.

Throughout this paper, we use \(R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X, Y]}\), where \(X, Y \in \Gamma(M)\), as the Riemannian curvature tensor definition. In a contact pseudo-metric manifold \((M, \varphi, \xi, \eta, g)\) the \((1, 1)\)-tensor field \(\ell\) and \(h\) are defined by

\[
\ell X = R(X, \xi)\xi, \quad hX = \frac{1}{2}(\ell \varphi)X.
\]

Also, notice the \(\ell\) and \(h\) are self-adjoint operators. In the contact pseudo-metric manifold \((M, \varphi, \xi, \eta, g)\), we have the following equations [8][24]

\[
\text{trace}(h) = \text{trace}(h\varphi) = 0, \quad (6)
\]

\[
\eta \circ h = 0, \quad \ell \xi = 0, \quad (7)
\]

\[
h\varphi = -\varphi h, \quad h\xi = 0, \quad (8)
\]

\[
\nabla_\xi \varphi = 0, \quad (9)
\]

\[
\nabla_X \xi = -\epsilon \varphi X - \varphi hX, \quad (10)
\]

\[
\text{Ric}(\xi, \xi) = 2n - trh^2, \quad (11)
\]

where \(X\) is an arbitrary vector field.
A contact pseudo-metric manifold \((M, \varphi, \xi, \eta, g)\) is a \(K\)−contact pseudo-metric manifold if \(\xi\) is a Killing vector field or equivalently \(h = 0\). So, we have the following equations

\[
Q\xi = 2n\epsilon\xi,
\]
\[
\nabla_X\xi = -\epsilon\varphi X,
\]
where \(Q\) is the Ricci operator of the metric \(g\) and \(X \in \Gamma(M)\).

Lemma 2.1. Let \((M, \varphi, \xi, \eta, g)\) be a \((2n + 1)\)−dimensional \(K\)−contact pseudo-metric manifold, then

\[
(\nabla_X Q)\xi = -2n\epsilon\varphi X + \epsilon Q\varphi X,
\]
\[
(\nabla_\xi Q)X = \epsilon(Q\varphi - \varphi Q)X,
\]
where \(X\) is an arbitrary vector field.

Proof. First, differentiating 12 along an arbitrary vector field \(X\) and using 13, we obtain 14. Next Lie differentiating Ric, along \(\xi\), we find

\[
(\mathcal{L}_\xi \text{Ric})(X, Y) = g((\nabla_\xi Q)X + Q(\nabla_X\xi), Y) + g(QX, \nabla_Y\xi),
\]
where \(X, Y \in \Gamma(M)\). Because \(\xi\) is a Killing vector field, so \(\mathcal{L}_\xi \text{Ric} = 0\), using this and 13 in the above equation give 15, and it completes the proof.

An almost contact pseudo-metric structure \((\varphi, \xi, \eta, g)\) is called normal if

\[
[\varphi, \varphi] + 2d\eta \otimes \xi = 0.
\]
A normal contact pseudo-metric manifold is a Sasakian pseudo-metric manifold. A Sasakian pseudo-metric manifold is a \(K\)−contact pseudo-metric manifold, satisfying

\[
(\nabla_\varphi Y) = g(X, Y)\xi - \epsilon\eta(Y)X,
\]
\[
R(X, Y)\xi = \eta(Y)X - \eta(X)Y,
\]
where \(X, Y \in \Gamma(M)\).

Lemma 2.2. Let \((M, \varphi, \xi, \eta, g)\) be a Sasakian pseudo-metric manifold then \(Q\varphi = \varphi Q\).

Proof. First, calculating the curvature tensor by 16 we have

\[
R(X, Y, \varphi Z, W) + R(X, Y, Z, \varphi W) =
\]
\[
\epsilon g(Z, \varphi Y)g(X, W) - \epsilon g(Z, \varphi X)g(Y, W)
\]
\[
- \epsilon g(X, Z)g(\varphi Y, W) + \epsilon g(Y, Z)g(\varphi X, W),
\]
where \(X, Y, Z, W \in \Gamma(M)\) and \(R(X, Y, Z, W) = g(R(X, Y, Z), W)\). Now, let \(X, Y, Z, W\) be orthogonal to \(\xi\), then using the above equation, we have

\[
R(X, Y, Z, W) = R(\varphi X, \varphi Y, \varphi Z, \varphi W),
\]
and this gives

\[
\text{Ric}(X, \varphi Y) + \text{Ric}(\varphi X, Y) = 0,
\]
where \(X, Y\) are orthogonal vector fields. Using the last equation, we obtain \(Q\varphi = \varphi Q\), completing the proof.
A contact pseudo-metric manifold \((M, \varphi, \xi, \eta, g)\) is called an \(\eta\)--Einstein manifold if the Ricci curvature is of the form \(\text{Ric} = ag + b\eta \otimes \eta\), where \(a, b\) are smooth functions on the manifold \(M\). If the manifold \(M\) is a \(K\)--contact pseudo-metric manifold with dimension greater than three, then \(a, b\) are constants.

Let \((M, \varphi, \xi, \eta, g)\) be a contact pseudo-metric manifold, for any constant real number \(t \neq 0\), is defined a contact pseudo-metric manifold \((\tilde{M}, \tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})\), where \(\tilde{\eta} = t\eta, \tilde{\xi} = \frac{1}{t}\xi\), \(\tilde{\varphi} = \varphi\) and \(\tilde{g} = tg + \epsilon(t - 1)\eta \otimes \eta\). This transition is called a \(D\)--homothetic deformation and it preserves some basic properties such as being \(K\)--contact and, in particular being Sasakian. A \(D\)--homothetic deformation of an \(\eta\)--Einstein \(K\)--contact pseudo-metric manifold with \(\text{Ric} = ag + b\eta \otimes \eta\) is an \(\eta\)--Ricci \(K\)--contact pseudo-metric manifold such that \(\tilde{\text{Ric}} = (a - 2\epsilon + 2\epsilon^2)\tilde{g} + (2n - \tilde{a})\tilde{\eta} \otimes \tilde{\eta}\), notice that when \(a = -2\epsilon\) then the Ricci tensor form is not changed. Thus, we have the following definition.

Definition 1. An \(\eta\)--Einstein \(K\)--contact pseudo-metric manifold with \(a = -2\epsilon\) is said to be \(D\)--homothetically fixed.

3 \(\eta\)--Ricci solitons on Sasakian pseudo-metric manifolds

In this section, we have studied \(\eta\)--Ricci solitons on Sasakian pseudo-metric manifolds.

Theorem 3.1. Let \((M, \varphi, \xi, \eta, g)\) be a \((2n + 1)\)-dimensional Sasakian pseudo-metric manifold. If \((g, V, \lambda, \mu)\) be an \(\eta\)--Ricci soliton on the manifold \(M\), then \(M\) is an \(\eta\)--Einstein manifold and

\[
\text{Ric} = (\frac{\mu \epsilon - \lambda}{2})g + \left(\frac{n}{2}(\epsilon + 1) + \frac{\lambda}{4}(\epsilon + 1) + \frac{(\epsilon - 3)}{4}\mu\right)\eta \otimes \eta, \tag{18}
\]

\[
r = \frac{1}{4}(\lambda - \mu + 8n^2 + (4\mu + 6)n) + \frac{1}{4}(-\lambda - \mu - 4\lambda n + 2n), \tag{19}
\]

where \(\text{Ric}\) and \(r\) are the Ricci tensor and the scalar curvature of the metric \(g\), respectively.

Proof. Using \([1]\) in the following formula \([25\text{ p. 23}]\)

\[
(\mathcal{L}_V \nabla_X g - \nabla_X \mathcal{L}_V g - \nabla_{[V, X]} g)(Y, Z) = -g((\mathcal{L}_V \nabla)(X, Y), Z) - g((\mathcal{L}_V \nabla)(X, Z), Y),
\]

where \(X, Y\) and \(Z\) are arbitrary vector fields, we find

\[
g((\mathcal{L}_V \nabla)(X, Y), Z) = (\nabla_Z (\text{Ric} + \mu\eta \otimes \eta))(X, Y)
\]

\[
-(\nabla_X (\text{Ric} + \mu\eta \otimes \eta))(Y, Z)
\]

\[
-(\nabla_Y (\text{Ric} + \mu\eta \otimes \eta))(Z, X), \quad \forall X, Y, Z \in \Gamma(M).
\]

Using lemma \([2.1]\) and lemma \([2.2]\) we obtain \(\nabla_{\xi} Q = 0\). Substituting \(\xi\) for \(Y\) in \([20]\) using the foregoing equation and lemma \([2.1]\) give

\[
(\mathcal{L}_V \nabla)(X, \xi) = (4n + 2\mu)\varphi X - 2\epsilon Q\varphi X, \quad \forall X \in \Gamma(M). \tag{21}
\]
Differentiating \([21]\) along an arbitrary vector field \(Y\) and using \([10]\) yield
\[
(\nabla_Y \nabla)(X, \xi) - \epsilon(\nabla_Y \nabla)(X, \varphi Y) = 2\mu\eta(X, Y)\xi - (4n + 2\mu)\epsilon\eta(X)Y - 2\epsilon(\nabla_Y Q)(\varphi X) + 2\eta(X)QY, \quad \forall X, Y \in \Gamma(M).
\] (22)

Using \([22]\) in the following commutative formula \([28]\)
\[
(\nabla_V R)(X, Y)Z = (\nabla_X \nabla)(Y, Z) - (\nabla_Y \nabla)(X, Z),
\] (23)
where \(X, Y, Z\) are arbitrary vector fields, we find:
\[
(\nabla_V R)(X, Y)Z = 2\epsilon(\nabla_Y Q)(\varphi X) - 2\epsilon(\nabla_X Q)(\varphi Y) + 2\eta(Y)QX - 2\eta(X)QY, \quad \forall X, Y, Z \in \Gamma(M).
\] (24)

Substituting \(\xi\) for \(Y\) in \([24]\) and using \([21]\) we obtain
\[
(\nabla_V R)(X, \xi)\xi = 4QX - 4\epsilon(2n + \mu)X + 4\mu\epsilon(X)\xi, \quad \forall X \in \Gamma(M).
\] (25)

Using \([1]\) we have
\[
(\nabla_V g)(X, \xi) + (4n + 2\lambda\epsilon + 2\mu)\eta(X) = 0, \quad \forall X \in \Gamma(M),
\]
and this equation yields
\[
\epsilon(\nabla_V \eta)(X) - g(X, \nabla_V \xi) + 2(2n + \lambda\epsilon + \mu)\eta(X) = 0,
\] (26)
\[
\eta(\nabla_V \xi) = (2n\epsilon + \mu\epsilon + \lambda),
\] (27)
where \(X\) is an arbitrary vector field. Next Lie-differentiating the formula \(R(X, \xi)\xi = X - \eta(X)\xi\) along the vector field \(V\) and using \([20]\) \([21]\) and \([17]\) we have
\[
QX = \frac{(\epsilon - 1)}{4}((\nabla_V \eta)X)\xi + (n\epsilon + \frac{\mu\epsilon - \lambda}{2})X + (n + \frac{\lambda\epsilon + (1 - 2\epsilon)\mu}{2})\eta(X)\xi,
\] (28)
where \(X \in \Gamma(M)\). Now using the foregoing equation and symmetry of the Ricci tensor, we deduce
\[
\frac{\epsilon(\epsilon - 1)}{4}(\nabla_V \eta)X\eta(Y) = \frac{\epsilon(\epsilon - 1)}{4}(\nabla_V \eta)Y\eta(X), \quad \forall X, Y \in \Gamma(X).
\]

Using the above equation and \([27]\) we find \([18]\) and in turn it yields \([19]\) completing the proof.

Theorem 3.1 imposes strong condition on the potential vector field of an \(\eta\)-Ricci soliton on a Sasakian pseudo-metric manifold. We need the following lemma to further study.
Lemma 3.2. Let \((M, \varphi, \xi, \eta, g)\) be a \((2n+1)\)-dimensional contact pseudo-metric manifold. If \(\text{Ric} = ag + b\eta \otimes \eta\), where \(a, b \in \mathbb{R}\), then
\[
\text{Ric}^i_j \text{Ric}_{ij} + \lambda r + \mu (a + b) = 0,
\]
where \(r\) is the scalar curvature of the metric \(g\).

Proof. Using \([1]\) in the following formula \([28]\)
\[
\mathcal{L}_V \Gamma^h_{ij} = \frac{1}{2} g^{ht} (\nabla_j (\mathcal{L}_V g_{it}) + \nabla_i (\mathcal{L}_V g_{jt}) - \nabla_t (\mathcal{L}_V g_{ij})),
\]
where \(\Gamma^h_{ij}\) are the Christoffel symbols of the metric \(g\), we deduce
\[
\mathcal{L}_V \Gamma^h_{ij} = \nabla_h (\text{Ric}_{ij} + \mu \eta \eta_j) - \nabla_i (\text{Ric}^h_j + \mu \eta^h \eta_j) - \nabla_j (\text{Ric}^h_i + \mu \eta^h \eta_i).
\]
Next using the above equation in the following equation \([28]\)
\[
\mathcal{L}_V R^h_{kji} = \nabla_k (\mathcal{L}_V \Gamma^h_{ij}) - \nabla_j (\mathcal{L}_V \Gamma^h_{ki}).
\]
We obtain
\[
\mathcal{L}_V R^h_{kji} = \nabla_k \nabla^h (\text{Ric}_{ij} + \mu \eta \eta_j) - \nabla_i \nabla_j (\text{Ric}^h_i + \mu \eta^h \eta_j) - \nabla_j \nabla^h (\text{Ric}^h_i + \mu \eta^h \eta_i) + \nabla_i \nabla_j (\text{Ric}^h_i + \mu \eta^h \eta_j) + \nabla_j \nabla^h (\text{Ric}^h_i + \mu \eta^h \eta_i).
\]
The foregoing equation and the lemma’s assumption yield
\[
\mathcal{L}_V \text{Ric}_{ij} = \nabla_h \nabla^h (\text{Ric}_{ij} + \mu \eta \eta_j) - \nabla_h \nabla_i (\text{Ric}^h_i + \mu \eta^h \eta_i) - \nabla_h \nabla_j (\text{Ric}^h_i + \mu \eta^h \eta_j).
\]
Eq.\([1]\) gives \(\mathcal{L}_V g^{ij} = 2 \text{Ric}^{ij} + 2 g^{ij} + 2 \mu \eta^i \eta^j\), using this, \([1]\) and the above equation we obtain \([29]\) and it completes the proof. \(\square\)

Theorem 3.3. Let \((M, \varphi, \xi, \eta, g)\) be a Sasakian pseudo-metric manifold and let \((g, V, \lambda, \mu)\) be an \(\eta\)--Ricci soliton on \(M\).

(a) If \(\xi\) is a timelike vector field then, \(V\) is a Killing vector field.

(b) If \(\xi\) is a spacelike vector field and \(V\) is not a Killing vector field, then \(M\) is \(\mathcal{D}\)--homothetically fixed and \(\mathcal{L}_V \varphi = 0\).

Proof. In the case of (a), using \([12]\) we find \(\lambda - \mu = 2n\), this, \([18]\) and \([1]\) yield \(V\) is Killing.

In the case of (b), using lemma \([5, 2]\) we obtain \((-\lambda + \mu + 2n)(\lambda + \mu + 2n) = 0\). According to the theorem’s assumption \(V\) is not a Killing vector field, so \(\lambda - \mu = 2n + 4\), using this in \([18]\) we deduce
\[
\text{Ric} = -2g + 2(n + 1)\eta \otimes \eta,
\]
so \(M\) is \(\mathcal{D}\)--homothetically fixed. Using the foregoing equation and \([20]\) we obtain
\[
(\mathcal{L}_V \nabla)(Y, Z) = 2(2n + 2 + \mu)(\eta(Z)\varphi Y + \eta(Y)\varphi Z), \quad \forall Y, Z \in \Gamma(M).
\]
Differentiating the above equation along an arbitrary vector field \(X \), using \(23 \) and contracting at \(X \), we have
\[
(\mathcal{L}_V \text{Ric})(Y, Z) = 2(2n + 2 + \mu)(2g(Y, Z) - (4n + 2)\eta(Y)\eta(Z)),
\]
where \(Y, Z \) are arbitrary vector fields.

Next using \(30 \) in \(1 \), we find
\[
(\mathcal{L}_V g)(Y, Z) = -(2n + \lambda + \mu)(g + \eta \otimes \eta)(Y, Z), \quad \forall Y, Z \in \Gamma(M).
\]

Lie-differentiating \(30 \) along the vector field \(V \) gives us
\[
(\mathcal{L}_V \eta)(Y) = 2(2 + 2n + \lambda + \mu)g(Y, \phi Y) - (2n + 1)\eta(Y)\eta, \quad \forall Z, Y \in \Gamma(M).
\]

Substituting \(\xi \) for \(Y \) in \(33 \) and \(31 \) using \(27 \) we obtain
\[
(\mathcal{L}_V \eta)(X, Y) = -2(2 + 2n + \mu)\eta(Y), \quad \forall Y \in \Gamma(M).
\]

Operating the above equation by \(d \) and noticing the fact that \(d \) commutes with Lie-derivative we deduce
\[
(\mathcal{L}_V d\eta)(X, Y) = -2(2n + \lambda + \mu)g(X, \phi Y), \quad \forall X, Y \in \Gamma(M).
\]

Example 1. Consider \(\mathbb{R}^3 \) with the standard coordinate system \((x, y, z)\). Let
\[
\xi = 2\frac{\partial}{\partial z}, \quad \eta = \frac{1}{2}(-ydx + dz), \quad \phi(x) = -\frac{\partial}{\partial y}, \quad \phi(y) = \frac{\partial}{\partial x} + y\frac{\partial}{\partial z} \quad \text{and} \quad \phi(z) = 0.
\]
If \(g = \epsilon\eta \otimes \eta + \frac{1}{2}(dx^2 + dy^2) \), then \((M, \phi, \xi, \eta, g)\) is a Sasakian pseudo-metric manifold. By direct calculation, we have \(\text{Ric} = -2\epsilon g + 4\eta \otimes \eta \). Now, let \(V \) be a vector field defined by
\[
V = ((2 - 6\epsilon + (\epsilon - 1)\lambda)\lambda + (1 - 2\epsilon)\mu)x\frac{\partial}{\partial x} + (2\epsilon - \lambda)y\frac{\partial}{\partial y} - (2 + \epsilon\lambda + \mu)z\frac{\partial}{\partial z}.
\]
If \(\xi \) be a spacelike vector field and \(\lambda - \mu = 6 \) then \((g, V, \lambda, \mu)\) is an \(\eta \)-Ricci soliton on \(M \), \(\mathcal{L}_V \phi = 0 \) and \(V \) is not a Killing vector field. But if \(\xi \) is a timelike vector field then \((g, V, \lambda, \mu)\) is an \(\eta \)-Ricci soliton on \(M \) iff \(V \) is a Killing vector field, and this condition is satisfied if \(\lambda = -2 \) and \(\mu = -4 \).

Proposition 3.4. Let \((M, \phi, \xi, \eta, g)\) be a \(K \)-contact pseudo-metric manifold. If \((g, V, \lambda, \mu)\) is a gradient \(\eta \)-Ricci soliton on \(M \) then \(M \) is an \(\eta \)-Einstein manifold and \(\text{Ric} = -\lambda g - \mu \eta \otimes \eta \), where \(-\epsilon\lambda - \mu = 2n \).

Proof. First \(2 \) gives
\[
\nabla_X Df + QX + \lambda X + \epsilon \mu \eta(X)\xi = 0, \quad \forall X \in \Gamma(M).
\]
Calculating $R(X,Y)Df$ by the above equation, we deduce

$$R(X,Y)Df = \epsilon\mu(\nabla Y \eta)X\xi + \epsilon\mu\eta(X)\nabla Y \xi + (\nabla Y Q)X - \epsilon\mu(\nabla X \eta)Y\xi - \epsilon\mu\eta(Y)\nabla X \xi - (\nabla X Q)Y, \quad \forall X,Y \in \Gamma(M).$$

(36)

Substituting ξ for Y in the last equation and using lemma [2.1, theorem 2.1] we find

$$R(X,\xi)Df = (\mu + 2n)\varphi X - \epsilon\varphi QX, \quad X \in \Gamma(M).$$

Scalar product of the above equation with ξ gives $df = (\xi(f))\eta$, operating d on this equation, we obtain $d\eta \wedge (\xi(f)) + \eta \wedge d(\xi(f)) = 0$, taking exterior product of the last equation with η and using $\eta \wedge d\eta \neq 0$, we have $\xi(f) = 0$, so f is a constant function. Next using this consequence in (35) we find $\text{Ric} = -\lambda g - \mu \eta \otimes \eta$ and this gives $-\epsilon \lambda - \mu = 2n$, completing the proof.

One may ask, what will happen if the potential vector field of an η--Ricci soliton on a contact pseudo-metric manifold $(M, \varphi, \xi, \eta, g)$ is ξ, we have answered this question in the following theorem.

Theorem 3.5. Let $(M, \varphi, \xi, \eta, g)$ be a contact pseudo-metric manifold, and let $(g, \varphi, \lambda, \mu)$ be an η--Ricci soliton on the manifold M. If V is colinear with ξ and $Q\varphi = \varphi Q$, then M is an η--Einstein K--contact pseudo-metric manifold and $\text{Ric} = -\lambda g - \mu \eta \otimes \eta$, where $-\epsilon \lambda - \mu = 2n$.

Proof. Let $V = f\xi$, where f is a non-zero smooth function on the manifold M. Using this in (11) we have

$$\epsilon X(f)\eta(Y) + \epsilon Y(f)\eta(X) - 2fg(\varphi hX, Y) + 2\text{Ric}(X, Y) + 2\lambda g(X, Y) + 2\mu\eta(X)\eta(Y) = 0,$$

(37)

for $X, Y \in \Gamma(M)$. Substituting ξ for Y in (37) we deduce

$$\epsilon Df + 2Q\xi + (\xi(f) + 2\lambda + 2\epsilon\mu)\xi = 0.$$

(38)

By assumption $Q\varphi = \varphi Q$, so $\varphi Q\xi = 0$, using this and (11) we have $Q\xi = \epsilon(2n - tr h^2)\xi$. Substituting this consequence in (38) we find

$$\epsilon Df + (2\epsilon(2n - tr h^2) + \xi(f) + 2\lambda + 2\epsilon\mu)\xi = 0.$$

(39)

Next, substituting ξ for X, Y in (37) we obtain

$$2n - tr h^2 = -\epsilon(\xi(f)) - \lambda \epsilon - \mu.$$

The above equation and (39) give $Df = \epsilon(\xi(f))\xi$, differentiating this equation along an arbitrary vector field X and using (10) we find

$$g(\nabla X(Df), Y) = X(\xi(f))\eta(Y) - \epsilon\xi(f)\{g(\epsilon\varphi X, Y) + g(\varphi hX, Y)\}, \quad \forall X, Y \in \Gamma(M).$$

Using the above equation, (5) and the known formula $g(\nabla X(Df), Y) = g(\nabla Y(Df), X)$, where $X, Y \in \Gamma(M)$, we deduce

$$X(\xi(f))\eta(Y) - Y(\xi(f))\eta(X) = -2\xi(f)d\eta(X, Y), \quad \forall X, Y \in \Gamma(M).$$

9
Considering X,Y as arbitrary orthogonal vector fields to ξ in the above equation and noticing that $d\eta \neq 0$, we deduce $X(f) = 0$, so f is a constant function on the manifold M. Using this consequence in (37) gives

$$-f\varphi h X + QX + \lambda X + \epsilon \mu \eta(X)\xi = 0, \quad \forall X \in \Gamma(M). \quad (40)$$

Substituting φX for X in the above equation, we find

$$-f\varphi h \varphi X + QX + \lambda X = 0, \quad \forall X \in \Gamma(M). \quad (41)$$

Operating φ on (40) and using $\varphi h = -h\varphi$, we have

$$f\varphi h \varphi X + QX + \lambda X = 0, \quad \forall X \in \Gamma(M). \quad (42)$$

Using the above equation, (41) and $Q\xi = (-\lambda - \mu\epsilon)\xi$, we obtain:

$$\text{Ric} = -\mu \eta \otimes \eta - \lambda g.$$

Using the above equation in (1) gives $\mathcal{L}_\xi g = 0$, so M is a K–contact pseudo-metric manifold and $-\epsilon \lambda - \mu = 2n$, completing the proof.

4 η–Ricci solitons on (κ, μ)–contact pseudo-metric manifolds

Studying nullity conditions on manifolds is one of the interesting topics in differential geometry, specially in the context of contact pseudo-metric manifolds. In [15], Ghaffarzadeh and second author introduced the notion of a (κ, μ)–contact pseudo-metric manifold. According to them a contact pseudo-metric manifold (M, φ, ξ, η) is called a (κ, μ)–contact pseudo-metric manifold if it satisfies

$$R(X, Y)\xi = \epsilon \kappa (\eta(Y)X - \eta(X)Y) + \epsilon \mu (\eta(Y)hX - \eta(X)hY), \quad (43)$$

where R is the Riemannian curvature tensor of M, κ, μ are constant real numbers, and X, Y are arbitrary vector fields. For a (κ, μ)–contact pseudo-metric manifold we have the following formulas [15]

$$h^2 = (\epsilon \kappa - 1)\varphi^2, \quad (44)$$

$$Q\xi = 2n\kappa \xi, \quad (45)$$

$$(\nabla_\xi h) = -\epsilon \mu \varphi h, \quad (46)$$

Furthermore if $\epsilon \kappa < 1$ then we have [15]

$$QX = \epsilon [2(n - 1) - n\mu]X + (2(n - 1) + \mu)hX + [2(1 - n)\epsilon + 2n\kappa + n\mu][\eta(X)\xi, \quad (47)$$

$$r = 2n(\kappa - 2\epsilon) + 2n^2\epsilon (2 - \mu), \quad (48)$$

where X and r are, an arbitrary vector field and the scalar curvature of the manifold, respectively.
Lemma 4.1. Let \((M, \varphi, \xi, \eta, g)\) be a \((\kappa, \mu)\)-contact pseudo-metric manifold, and let \(\epsilon \kappa < 1\). If \((g, V, \lambda, \tau)\) is a gradient \(\eta\)-Ricci soliton on the manifold \(M\) then
\[
\epsilon \kappa (-2 + \mu) = n \mu + \mu + \tau. \tag{49}
\]

Proof. Differentiating 45 along an arbitrary vector field \(X\) and using 10, we deduce
\[
(\nabla_X Q)\xi = Q(\epsilon \varphi + \varphi h)X - 2n \kappa (\epsilon \varphi + \varphi h)X, \quad \forall X \in \Gamma(M). \tag{50}
\]

Taking scalar product of 38 and \(\xi\), and using 50, we have
\[
g(R(X, Y)Df, \xi) = \epsilon g((Q \varphi + \varphi Q)Y, X) + g((Q \varphi h + h \varphi Q)Y, X)
+ (-4n \kappa \epsilon - 2 \tau)g(\varphi Y, X), \quad \forall X, Y \in \Gamma(M). \tag{51}
\]

Substituting \(\varphi X\) for \(X\) and \(\varphi Y\) for \(Y\) in 43 gives \(R(\varphi X, \varphi Y)\xi = 0\), using this, 3 and the above equation, we obtain
\[
\epsilon (\varphi Q + Q \varphi)X - (\varphi Q h + h \varphi Q)X + (-4n \kappa \epsilon - 2 \tau)\varphi X = 0, \tag{52}
\]
where \(X\) is an arbitrary vector field. Now, substituting \(\varphi X\) for \(X\) in 47 we have
\[
Q \varphi X = \epsilon [2 (n - 1) - n \mu] \varphi X + (2(n - 1) + \mu)h \varphi X, \quad \forall X \in \Gamma(M). \tag{53}
\]

Next, operating \(\varphi\) on 47 we obtain
\[
\varphi Q X = \epsilon [2 (n - 1) - n \mu] \varphi X + (2(n - 1) + \mu) \varphi h X, \quad \forall X \in \Gamma(M). \tag{54}
\]

Substituting \(hX\) for \(X\) in 44 using 44 and 3 give
\[
\varphi Q h X = \epsilon [2 (n - 1) - n \mu] \varphi h X - (\epsilon \kappa - 1)(2(n - 1) + \mu) \varphi X, \quad X \in \Gamma(M). \tag{55}
\]

Operating \(h\) on 53 using 44 and 3 we have
\[
h Q \varphi X = \epsilon [2 (n - 1) - n \mu] \varphi h X - (\epsilon \kappa - 1)(2(n - 1) + \mu) \varphi X, \quad X \in \Gamma(M). \tag{56}
\]

Using the last four equations in 52 and \(h \varphi = - \varphi h\) give 49 completing the proof. \(\square\)

Theorem 4.2. Let \((M, \varphi, \xi, \eta, g)\) be a \((\kappa, \mu)\)-contact pseudo-metric manifold and let \(\epsilon \kappa < 1\). If \((g, V, \lambda, \tau)\) is a gradient \(\eta\)-Ricci soliton on \(M\), then \(\mu = 0, \tau = -2 \epsilon \kappa\), or \(\text{Ric} = - \lambda g - \tau \eta \otimes \eta\) and \(\mu = 2 - 2n, \tau = 2n(-\frac{1}{n} + n - \epsilon \kappa)\).

Proof. First, substituting \(\xi\) for \(X\) in 51 using 43 and 45 we have
\[
\kappa (\xi(f))\xi = \epsilon \kappa Df - \epsilon \mu h Df = 0. \tag{51}
\]

Differentiating the above equation along vector field \(\xi\) and using 46 we have
\[
\kappa \xi(\xi(f))\xi + \epsilon \kappa (2n \kappa + \lambda + \tau \epsilon) \xi + (\epsilon \mu)^2 \varphi h Df = 0. \tag{51}
\]
Now, operating ϕ on the last equation we find $\mu^2 hDf = 0$, taking h from this and using (14) we obtain

$$\mu^2(\epsilon \kappa - 1)(-Df + \eta(Df)\xi) = 0.$$

Examining the above equation we have either, i) $\mu = 0$ or ii) $\mu \neq 0$.

In the case i), using (49) we obtain $\tau = -2\epsilon \kappa$. In the case ii), we have $Df = \eta(Df)\xi$; differentiating this along arbitrary vector field X and using (10), we have

$$g(\nabla_X Df, Y) = X(\xi(f))\eta(Y) - \xi(f)g(\phi X, Y) - \epsilon \xi(f)f(\phi hX, Y),$$

where X, Y are arbitrary vector fields. Using the above equation and $g(\nabla_X Df, Y) = g(\nabla_Y Df, X)$, we find

$$X(\xi(f))\eta(Y) - Y(\xi(f))\eta(X) + 2\xi(f)d\eta(X, Y) = 0, \quad \forall X, Y \in \Gamma(M).$$

Substituting ϕX for X and ϕY for Y, and noticing the fact that $d\eta \neq 0$, we have $\xi(f) = 0$. So f is a constant function and $\text{Ric} = -\lambda \eta - \tau \eta \otimes \eta$. Using this gives $r = (2n + 1)(-\lambda) - \epsilon \tau$, comparing the last consequence and (48) we have

$$n\mu = -2 + 2n - 2n\epsilon \kappa - \tau.$$

Now using the above equation and (49) we obtain, $\mu = 2 - 2n$ and $\tau = 2n(-\frac{1}{n} + n - \epsilon \kappa)$, completing the proof.

Corollary 1. Let (M, ϕ, ξ, η, g) be a (κ, μ)–contact pseudo-metric manifold and let $\epsilon \kappa < 1$. If $(g, V, \lambda, 0)$ is a gradient η–Ricci soliton (in fact a gradient Ricci soliton) on M, then $R(X, Y)\xi = 0$, where X, Y are arbitrary vector fields.

References

[1] M. M. Akbar and E. Woolgar, *Ricci solitons and Einstein-scalar field theory*, Classical Quantum Gravity, 26 (2009), pp. 055015, 14.

[2] C. S. Bagewadi and G. Ingalahalli, *Ricci solitons in Lorentzian α-Sasakian manifolds*, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 28 (2012), pp. 59–68.

[3] C. L. Bejan and M. Crasmareanu, *Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry*, Ann. Global Anal. Geom., 46 (2014), pp. 117–127.

[4] A. M. Blaga, *Eta-Ricci solitons on para-Kenmotsu manifolds*, Balkan J. Geom. Appl., 20 (2015), pp. 1–13.

[5] A. M. Blaga, *η-Ricci solitons on Lorentzian para-Sasakian manifolds*, Filomat, 30 (2016), pp. 489–496.
[6] A. Bravetti, C. S. Lopez-Monsalvo, and F. Nettel, Contact symmetries and Hamiltonian thermodynamics, Ann. Physics, 361 (2015), pp. 377–400.

[7] J. L. Cabrerozo, M. Fernández, and J. S. Gómez, The contact magnetic flow in 3D Sasakian manifolds, J. Phys. A, 42 (2009), pp. 195201, 10.

[8] G. Calvaruso and D. Perrone, Contact pseudo-metric manifolds, Differential Geom. Appl., 28 (2010), pp. 615–634.

[9] J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Mathematical Journal, Second Series, 61 (2009), pp. 205–212.

[10] O. Chodosh and F. T.-H. Fong, Rotational symmetry of conical Kähler-Ricci solitons, Math. Ann., 364 (2016), pp. 777–792.

[11] C. Călin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2), 33 (2010), pp. 361–368.

[12] K. Duggal, Space time manifolds and contact structures, International Journal of Mathematics and Mathematical Sciences, 13 (1990), pp. 545–553.

[13] D. Friedan, Nonlinear models in 2 + ε dimensions, Phys. Rev. Lett., 45 (1980), pp. 1057–1060.

[14] A. Futaki, H. Ono, and G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Differential Geom., 83 (2009), pp. 585–635.

[15] N. Ghaffarzadeh and M. Faghiouri, On contact pseudo-metric manifolds satisfying a nullity condition, J. Math. Anal. Appl., 497 (2021), pp. 124849, 16.

[16] A. Ghosh and R. Sharma, Sasakian metric as a Ricci soliton and related results, Journal of Geometry and Physics, 75 (2014), pp. 1–6.

[17] R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), vol. 71 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1988, pp. 237–262.

[18] G. Herczeg and A. Waldron, Contact geometry and quantum mechanics, Physics Letters B, 781 (2018), pp. 312–315.

[19] J. Källén and M. Zabzine, Twisted supersymmetric 5d yang-mills theory and contact geometry, Journal of High Energy Physics, 2012 (2012), p. 125.
[20] A. L. Kholodenko, *Towards physically motivated proofs of the Poincaré and geometrization conjectures*, J. Geom. Phys., 58 (2008), pp. 259–290.

[21] R. Low, *Stable singularities of wave-fronts in general relativity*, J. Math. Phys., 39 (1998), pp. 3332–3335.

[22] H. G. Nagaraja and C. R. Premalatha, *Ricci solitons in Kenmotsu manifolds*, J. Math. Anal., 3 (2012), pp. 18–24.

[23] D. M. Naik and V. Venkatesha, *η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds*, International Journal of Geometric Methods in Modern Physics, 16 (2019), p. 1950134.

[24] D. Perrone, *Curvature of K-contact semi-Riemannian manifolds*, Canad. Math. Bull., 57 (2014), pp. 401–412.

[25] R. Sharma, *Certain results on k-contact and (κ, μ)-contact manifolds*, Journal of Geometry, 89 (2008), pp. 138–147.

[26] T. Takahashi, *Sasakian manifold with pseudo-Riemannian metric*, Tohoku Math. J. (2), 21 (1969), pp. 271–290.

[27] A. Van der Schaft and B. Maschke, *Geometry of thermodynamic processes*, Entropy, 20 (2018), p. 925.

[28] K. Yano, *Integral formulas in Riemannian geometry*, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, 1970.