Abstract. We analyze the so-called ppz algorithm for \((d, k)\)-CSP problems for general values of \(d\) (number of values a variable can take) and \(k\) (number of literals per constraint). To analyze its success probability, we prove a correlation inequality for submodular functions.

1 Introduction

Consider the following extremely simple randomized algorithm for \(k\)-SAT: Pick a variable uniformly at random and call it \(x\). If the formula \(F\) contains the unit clause \((x)\), set \(x\) to 1. If it contains \((\bar{x})\), set it to 0. If it contains neither, set \(x\) uniformly at random (and if it contains both unit clauses, give up). This algorithm has been proposed and analyzed by Paturi, Pudlák, and Zane [4] and is called ppz.

The idea behind analyzing its success probability can be illustrated nicely if we assume, for the moment, that \(F\) has a unique satisfying assignment \(\alpha\) setting all variables to 1. Switching a variable it from 1 to 0 makes the formula unsatisfied. Therefore, there is a clause \(C_x = (x \lor \bar{y}_1 \lor \cdots \lor \bar{y}_{k-1})\). With probability \(1/k\), the algorithm picks and sets \(y_1, \ldots, y_{k-1}\) before picking \(x\). Supposed they \(y_j\) have been set correctly (i.e., to 1), the clause \(C_x\) is now reduced to \((x)\), and therefore \(x\) is also set correctly. Intuitively, this shows that on average, the algorithm has to guess \((1 - 1/k)n\) variables correctly and can infer the correct values of the remaining \(n/k\) variables. This increases the success probability of the algorithm from \(2^{-n}\) (simple stupid guessing) to \(2^{-n(1 - 1/k)}\).

In this paper we generalize the sketched algorithm to general constraint satisfaction problems, short CSPs. These are a generalization of boolean satisfiability to problems involving more than two truth values. A set of \(n\) variables \(x_1, \ldots, x_n\) is given, each of which can take a value from \([d] := \{1, \ldots, d\}\). Each assignment to the \(n\) variables can be represented as an element of \([d]^n\). A literal is an expression of the form \((x_i \neq c)\) for some \(c \in [d]\). A CSP formula consists of a conjunction (AND) of constraints, where a constraint is a disjunction (OR) of literals. We speak of \((d, k)\)-CSP formula if each constraint consists of at most
Finally, \((d, k)\)-CSP is the problem of deciding whether a given \((d, k)\)-CSP formula has a satisfying assignment. Note that \((2, k)\)-CSP is the same as \(k\)-SAT. Also \((d, k)\)-CSP is well-known to be NP-complete, unless \(d = 1, k = 1\), or \(d = k = 2\). We can manipulate a CSP formula \(F\) by permanently substituting a value \(c\) for a variable \(x\). This means we remove all satisfied constraints, i.e., those containing a literal \((x \neq c')\) for some \(c' \neq c\), and from the remaining constraints remove the literal \((x \neq c)\), if present. We denote the resulting formula by \(F[x \mapsto c]\).

It is obvious how to generalize the algorithm to \((d, k)\)-CSP problems. Again we process the variables in a random order. When picking \(x\), we collect all unit constraints of the form \((x \neq c)\) and call the value \(c\) forbidden. Values in \([d]\) which are not forbidden are called allowed, and we set \(x\) to a value that we choose uniformly at random from all allowed values. How can one analyze the success probability? Let us demonstrate this for \(d = k = 3\). Suppose \(F\) has exactly one satisfying assignment \(\alpha = (1, \ldots, 1)\). Since changing the value of a variable \(x\) from 1 to 2 or to 3 makes \(F\) unsatisfied, we find critical constraints

\[
(x \neq 2 \lor y \neq 1 \lor z \neq 1) \\
(x \neq 3 \lor u \neq 1 \lor v \neq 1)
\]

If all variables \(y, z, u, v\) are picked before \(x\), then there is only one allowed value for \(x\) left, namely 1, and with probability 1, the algorithm picks the correct values. If \(y, z\) come before \(x\), but at least one of \(u\) or \(v\) come after \(x\), then it is possible that the values 1 and 3 are allowed, and the algorithm picks the correct value with probability \(1/2\). In theory, we could list all possible cases and compute their probability. But here comes the difficulty: The probability of all variables \(y, z, u, v\) being picked before \(x\) depends on whether these variables are distinct! Maybe \(y = u\), or \(z = v\). For general \(d\) and \(k\), we get \(d - 1\) critical constraints

\[
C_2 := (x \neq 2 \lor y_1^{(2)} \neq 1 \lor \cdots \lor y_{k-1}^{(2)} \neq 1) \\
C_3 := (x \neq 3 \lor y_1^{(3)} \neq 1 \lor \cdots \lor y_{k-1}^{(3)} \neq 1) \\
\vdots \\
C_d := (x \neq d \lor y_1^{(d)} \neq 1 \lor \cdots \lor y_{k-1}^{(d)} \neq 1).
\]

We are interested in the distribution of the number of allowed values for \(x\). However, the above constraints can intersect in complicated ways, since we have no guarantee that the variables \(y_j^{(c)}\) are distinct. Our main technical contribution is a sort of correlation lemma showing that in the worst case, the \(y_j^{(c)}\) are indeed distinct, and therefore we can focus on that case, which we are able to analyze.

Previous Work

Feder and Motwani [1] were the first to generalize the ppz-algorithm to CSP problems. In their paper, they consider \((d, 2)\)-CSP problem, i.e., each variable can take on \(d\) values, and every constraint has at most two literals. In this case, the clauses \(C_2, \ldots, C_d\) cannot form complex patterns. Feder and Motwani
show that the worst case happens if (i) the variables $y_1^{(2)}, \ldots, y_1^{(d)}$ are pairwise distinct and (ii) the CSP formula has a unique satisfying assignment. However, their proofs do not directly generalize to higher values of k.

Recently, Li, Li, Liu, and Xu [2] analyzed ppz for general CSP problems (i.e., $d, k \geq 3$). Their analysis is overly pessimistic, though, since they distinguish only the following two cases, for each variable x: When ppz processes x, then either (i) all d values are allowed, or (ii) at least one value is forbidden. In case (ii), ppz chooses one value randomly from at most $d - 1$ values. Since case (ii) happens with some reasonable probability, this gives a better success probability than the trivial d^{-n}. However, the authors ignore the case that two, three, or more values are forbidden and lump it together with case (ii). Therefore, their analysis does not capture the full power of ppz.

Our Contribution

Our contribution is to show that “everything works as expected”, i.e., that in the worst case all variables $y_j^{(c)}$ in (1) are distinct and the formula has a unique satisfying assignment. For this case, we can compute (or at least, bound from below) the success probability of the algorithm.

Theorem 1.1. For $d, k \geq 1$, define

$$G(d, k) := \sum_{j=0}^{d-1} \log_2(1 + j) \left(\binom{d-1}{j} \int_0^1 (1 - r^{k-1})^j (r^{k-1})^{d-1-j} \, dr \right).$$

Then there is a randomized algorithm running in polynomial time which, given a (d, k)-CSP formula over n variables, returns a satisfying assignment with probability at least $2^{-nG(d, k)}$.

The algorithm we analyze in this paper is not novel. It is a straightforward generalization of the ppz algorithm to CSP problems with more than two truth values. However, its analysis is significantly more difficult than for $d = 2$ (and also more difficult than for large d and $k = 2$, the case Feder and Motwani [1] investigated).

Comparison

We compare the success probability of Schöning’s random walk algorithm with that of ppz. For ppz, we state the bound given by Li, Li, Liu, and Xu [2] and by this paper. All bounds are approximate and ignore polynomial factors.

(d, k)	Schöning [5]	Li, Li, Liu, and Xu [2]	this paper
$(2, 3)$	1.334^{-n}	1.588^{-n}	1.588^{-n}
$(3, 3)$	2^{-n}	2.62^{-n}	2.077^{-n}
$(5, 4)$	3.75^{-n}	4.73	3.672^{-n}
$(6, 4)$	4.5^{-n}	5.73^{-n}	4.33^{-n}
For small values of d, in particular for the boolean case $d = 2$, Schöning’s random walk algorithm is much faster than ppz, but ppz overtakes Schöning already for moderately large values of d and thus is, to our knowledge, the currently fastest algorithm for (d, k)-CSP.

2 The Algorithm

The algorithm itself is simple. It processes the variables x_1, \ldots, x_n according to some random permutation π. When the algorithm processes the variable x, it collects all unit constraints of the form $(x \neq c)$ and calls c forbidden. A truth value c that is not forbidden is called allowed. If the formula is satisfiable when the algorithm processes x, there is obviously at least one allowed value. The algorithm chooses uniformly at random an allowed value c and sets x to c, reducing the formula. Then it proceeds to the next variable. For technical reasons, we think of the permutation π as part of the input to the algorithm, and sampling π uniformly at random from all $n!$ permutations before calling the algorithm. The algorithm is described formally in Algorithm 1. To analyze the success probability of the algorithm, we can assume that F is satisfiable, i.e. the set $\text{sat}(F)$ of satisfying assignments is nonempty. This is because if F is unsatisfiable, the algorithm always correctly returns failure. For a fixed satisfying assignment, we will bound the probability

$$\Pr[\text{ppz}(F, \pi) \text{ returns } \alpha]$$

(2)
where the probability is over the choice of π and over the randomness used by \texttt{ppz}. The overall success probability is given by

$$\Pr[\text{\textsc{ppz}}(F, \pi) \text{ is successful}] = \sum_{\alpha \in \text{\textsc{sat}}_\ell(F)} \Pr[\text{\textsc{ppz}}(F, \pi) \text{ returns } \alpha].$$

(3)

In the next section, we will bound (2) from below. The bound depends on the level of isolatedness of α: If α has many satisfying neighbors, its probability to be returned by \texttt{ppz} decreases. However, the existence of many satisfying assignments will in turn increase the sum in (3). In the end, it turns out that the worst case happens if F has a unique satisfying assignment. Observe that for the \texttt{ppz}-algorithm in the boolean case [4], the unique satisfiable case is also the worst case, whereas for the improved version \texttt{ppsz} [3], it is not, or at least not known to be.

3 Analyzing the Success Probability

3.1 Preliminaries

In this section, fix a satisfying assignment α. For simplicity, assume that $\alpha = (1, \ldots, 1)$, i.e. it sets every variable to 1. What is the probability that \texttt{ppz} returns α? For a permutation π and a variable x, let β be the partial truth assignment obtained by restricting α to the variables that come before x in π, and define

$$S(x, \pi, \alpha) := \{c \in [d] \mid (x \neq c) \notin F[\beta]\}.$$

In words, we process the variables according to π and set them according to α, but stop before processing x. We check which truth values are not forbidden for x by a unit constraint, and collect these truth values in the set $S(x, \pi, \alpha)$. Let us give an example:

Example. Let $d = 3, k = 2$, and $\alpha = (1, \ldots, 1)$. We consider

$$F = (x \neq 2 \lor y \neq 1) \land (x \neq 3 \land z \neq 1).$$

For $\pi = (x, y, z)$, no value is forbidden when processing x, thus $S(x, \pi, \alpha) = \{1, 2, 3\}$. For $\pi' = (y, x, z)$, then we consider the partial assignment that sets y to 1, obtaining

$$F[y \rightarrow 1] = (x \neq 2) \land (x \neq 3 \lor z \neq 1),$$

and $S(x, \pi', \alpha) = \{1, 3\}$. Last, for $\pi'' = (y, z, x)$, then we set y and z to 1, obtaining

$$F[y \rightarrow 1, z \rightarrow 1] = (x \neq 2) \land (x \neq 3),$$

thus $S(x, \pi'', \alpha) = \{1\}. \quad \square$

Observe that $S(x, \pi, \alpha)$ is non-empty, since $\alpha(x) \in S(x, \pi, \alpha)$, i.e. the value α assigns to x is always allowed. What has to happen in order for the algorithm
to return α? In every step of ppz, the value \(b \) selected in Line \(\Box \) for variable \(x \) must be \(\alpha(x) \). Assume now that this was the case in each of the first \(i \) steps of the algorithm, i.e., the variables \(x_{\pi(1)}, \ldots, x_{\pi(i)} \) have been set to their respective values under \(\alpha \). Let \(x = x_{\pi(i+1)} \) be the variable processed in step \(i + 1 \). The set \(S(x, \pi, \alpha) \) coincides with the set \(S(x, \pi) \) of the algorithm, and therefore \(x \) is set to \(\alpha(x) \) with probability \(1/|S(x, \pi, \alpha)| \). Since this holds in every step of the algorithm, we conclude that for a fixed permutation \(\pi \),

\[
\Pr[\text{ppz}(F, \pi) \text{ returns } \alpha] = \prod_{x \in V} \frac{1}{|S(x, \pi, \alpha)|}.
\]

For \(\pi \) being chosen uniformly at random, we obtain

\[
\Pr[\text{ppz}(F, \pi) \text{ returns } \alpha] = \mathbb{E}_\pi \left[\prod_{x \in V} \frac{1}{|S(x, \pi, \alpha)|} \right].
\]

The expectation of a product is an uncomfortable term if the factors are not independent. The usual trick in this context is to apply Jensen’s inequality, hoping that we do not lose too much.

Lemma 3.1 (Jensen’s Inequality). Let \(X \) be a random variable and \(f : \mathbb{R} \rightarrow \mathbb{R} \) a convex function. Then \(\mathbb{E}[f(X)] \geq f(\mathbb{E}[X]) \), provided both expectations exist.

We apply Jensen’s inequality with the convex function being \(f : x \mapsto 2 - x \) and the random variable being \(X = \sum_{x \in V} \log_2 |S(x, \pi, \alpha)| \). With this notation, \(f(X) = \prod_{x \in V} \frac{1}{|S(x, \pi, \alpha)|} \), the expectation of which we want to bound from below.

\[
\mathbb{E} \left[\prod_{x \in V} \frac{1}{|S(x, \pi, \alpha)|} \right] = \mathbb{E} \left[2^{-\sum_{x \in V} \log_2 |S(x, \pi, \alpha)|} \right] \\
\geq 2^{\mathbb{E}[\sum_{x \in V} \log_2 |S(x, \pi, \alpha)|]} \\
= 2^{-\sum_{x \in V} \mathbb{E}[\log_2 |S(x, \pi, \alpha)|]} \quad (4).
\]

Proposition 3.2. \(\Pr[\text{ppz}(F, \pi) \text{ returns } \alpha] \geq 2^{-\sum_{x \in V} \mathbb{E}[\log_2 |S(x, \pi, \alpha)|]} \).

Example: The boolean case. In the boolean case, the set \(S(x, \pi, \alpha) \) is either \(\{1\} \) or \(\{0, 1\} \), and thus the logarithm is either 0 or 1. Therefore, the term \(\mathbb{E}[\log_2 |S(x, \pi, \alpha)|] \) is the probability that the value of \(x \) is not determined by a unit clause, and thus has to be guessed.

So far the calculations are exactly as in the boolean ppz. This will not stay that way for long. In the boolean case, there are only two cases: Either the value of \(x \) is determined by a unit clause (in which we call \(x \) **forced**), or it is not. For \(d \geq 3 \), there are more cases: The set of potential values for \(x \) can be the full range \([d]\), it can be just the singleton \(\{1\} \), but it can also be anything in between, and even if the algorithm cannot determine the value of \(x \) by looking at unit clauses, it will still be happy if at least, say, \(d/2 \) values are forbidden by unit clauses.
3.2 Analysing $E[\log_2 |S(x, \pi, \alpha)|]$

In this section we prove an upper bound on $E[\log_2 |S(x, \pi, \alpha)|]$. We assume without loss of generality that $\alpha = (1, \ldots, 1)$. There are d truth assignments $\alpha_1, \ldots, \alpha_d$ agreeing with α on the variables $V \setminus \{x\}$: For a value $c \in [d]$ we define $\alpha_c := \alpha[x \mapsto c]$, i.e., we change the value of assignment to x to c, but keep all other variables fixed. Clearly, $\alpha_1 = \alpha$. The number of assignments among $\alpha_1, \ldots, \alpha_d$ that satisfy F is called the looseness of α at x, denoted by

$$\ell(\alpha, x).$$

Since $\alpha_1 = \alpha$ satisfies F, the looseness of α at x is at least 1, and since there are d possible values for x, the looseness is at most d. Thus $1 \leq \ell(\alpha, x) \leq d$. If α is the unique satisfying assignment, then $\ell(\alpha, x) = 1$ for every x. Note that α being unique is sufficient, but not necessary: Suppose $\alpha = (1, \ldots, 1)$ and $\alpha' = (2, 2, 1, 1, \ldots, 1)$ are the only two satisfying assignments. Then $\ell(\alpha, x) = \ell(\alpha', x) = 1$ for every variable x.

Why are we considering the looseness ℓ of α at x? Suppose without loss of generality that the assignments $\alpha_1, \ldots, \alpha_\ell$ satisfy F, whereas $\alpha_{\ell+1}, \ldots, \alpha_d$ do not. The set $S(x, \pi, \alpha)$ is a random object depending on π, but one thing is sure:

$$\text{for all } c = 1, \ldots, \ell(\alpha, x) : c \in S(x, \pi, \alpha).$$

For $\ell(\alpha, x) < c \leq d$, what is the probability that $c \in S(x, \pi, \alpha)$? Since α_c does not satisfy F, there must be a constraint in F that is satisfied by α but not by α_c. Since α and α_c disagree on x only, that constraint must be of the following form:

$$(x \neq c \lor y_2 \neq 1 \lor y_3 \neq 1 \lor \cdots \lor y_k \neq 1). \tag{5}$$

For some $k - 1$ variables y_2, \ldots, y_k. We do not rule out constraints with fewer than $k - 1$ literals, but we capture this by not insisting on the y_j in (5) being distinct. In any case, if the variables y_2, \ldots, y_k come before x in the permutation π, then $c \notin S(x, \pi, \alpha)$: This is because after setting to 1 the variables that come before x, the constraint in (5) has been reduced to $(x \neq c)$. Note that y_2, \ldots, y_k coming before x is sufficient for $c \notin S(x, \pi, \alpha)$, but not necessary, since there could be multiple constraints of the form (5). With probability at least $1/k$, all variables y_2, \ldots, y_k come before x, and we conclude:

Proposition 3.3. If α_c does not satisfy F, then $\Pr[c \in S(x, \pi, \alpha)] \leq 1 - 1/k$.

This proposition is nice, but not yet useful on its own. We can use it to finish the analysis of the running time, however we will end up with a suboptimal estimate.

3.3 A suboptimal analysis of ppz

The function $t \mapsto \log_2(t)$ is concave. We apply Jensen’s inequality to conclude that

$$E[\log_2 |S(x, \pi, \alpha)|] \leq \log_2 \left(E[|S(x, \pi, \alpha)|] \right) = \log_2 \left(\sum_{c=1}^{n} \Pr[c \in S(x, \pi, \alpha)] \right) \tag{6}$$
We apply what we have learned above: For \(c = 1, \ldots, \ell(\alpha, x) \), it always holds that \(c \in S(x, \pi, \alpha) \), and for \(c = \ell(\alpha, x) + 1, \ldots, d \), we have computed that \(\Pr[c \in S(x, \pi, \alpha)] \leq 1 - 1/k \). Therefore,

\[
\mathbb{E}[\log_2 |S(x, \pi, \alpha)|] \leq \log_2 \left(\ell(\alpha, x) + (d - \ell(\alpha, x)) \left(1 - \frac{1}{k} \right) \right).
\]

The unique case. If \(\alpha \) is the unique satisfying assignment, then \(\ell(\alpha, x) = 1 \) for every variable \(x \) in our CSP formula \(F \), and the above term becomes

\[
\log_2 \left(1 + \frac{(d - 1)(k - 1)}{k} \right) = \log_2 \left(\frac{d(k - 1) + 1}{k} \right).
\]

We plug this into the bound of Proposition 3.2:

\[
\Pr[\text{ppz returns } \alpha] \geq 2^n \sum_{x \in V} \mathbb{E}[\log_2 |S(x, \pi, \alpha)|] \\
\geq 2^{-n} \log_2 \left(\frac{d(k - 1) + 1}{k} \right)^n.
\]

The success probability of Schöning’s algorithm for \((d, k)\)-CSP problems is \(\left(\frac{d(k - 1) + 1}{k} \right)^n \), and we see that even for the unique case, our analysis of \text{ppz} does not yield anything better than Schöning. Discouraged by this failure, we do not continue this suboptimal analysis for the non-unique case.

3.4 Detour: Jensen’s Inequality Here, There, and Everywhere

The main culprit behind the poor performance of our analysis is Jensen’s inequality in (6). To improve our analysis, we refrain from applying Jensen’s inequality there and instead try to analyze the term \(\mathbb{E}[\log_2 |S(x, \pi, \alpha)|] \) directly. However, recall that we have used Jensen’s inequality before, in (4). Is it safe to apply it there? How can we tell when applying it makes sense and when it definitely does not? To discuss this issue, we restate the two applications of Jensen’s inequality:

\[
\mathbb{E} \left[2^{-\sum_{x \in V} \log_2 |S(x, \pi, \alpha)|} \right] \geq 2^\mathbb{E}[-\sum_{x \in V} \log_2 |S(x, \pi, \alpha)|] \tag{7}
\]

\[
\mathbb{E}[\log_2 |S(x, \pi, \alpha)|] \leq \log_2 (\mathbb{E}[|S(x, \pi, \alpha)|]) \tag{8}
\]

Formally, Jensen’s inequality states that for a random variable \(X \) and a convex function \(f \), it holds that

\[
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X]),
\]

and by multiplying (9) by \(-1\) one obtains a similar inequality for concave functions. As a rule of thumb, Jensen’s inequality is pretty tight if \(X \) is very concentrated around its expectation: In the most extreme case, \(X \) is a constant, and (9)
holds with equality. On the other extreme, suppose X is a random variable taking on values $-m$ and m, each with probability $1/2$, and let $f : t \mapsto t^2$, which is a convex function. The left-hand side of (9) evaluates to $E[f(X)] = E[X^2] = m^2$, whereas the right-hand side evaluates to $f(E[X]) = f(0) = 0$, and Jensen’s inequality is very loose indeed. What random variables are we dealing with in (7) and (8)? These are

$$X := \sum_{x \in V} \log_2 |S(x, \pi, \alpha)| \quad \text{and} \quad Y := |S(x, \pi, \alpha)|,$$

and the corresponding functions are $f : t \mapsto 2^{-t}$, which is convex, and $g : t \mapsto \log_2 t$, which is concave. In both cases, the underlying probability space is the set of all permutations of V, endowed with the uniform distribution. We see that Y is not concentrated at all: Suppose x comes first in π: If our CSP formula F contains no unit constraints, then $|S(x, \pi, \alpha)| = d$, i.e., no truth value is forbidden by a unit constraints. On the other hand, if x comes last in π, then $|S(x, \pi, \alpha)| = \ell(\alpha, x)$. Either case happens with probability $1/n$, which is not very small. Thus, the random variable $|S(x, \pi, \alpha)|$ does not seem to be very concentrated.

Contrary to Y, the random variable X can be very concentrated, in fact for certain CSP formulas it can be a constant: Suppose $d = 2$, i.e., the boolean case. Here X simply counts the number of non-forced variables. Consider the 2-CNF formula

$$\land_{i=1}^{n/2} (x_i \lor y_i) \land (x_i \lor \bar{y}_i) \land (\bar{x}_i \lor y_i). \quad (10)$$

This formula has n variables, and $\alpha = (1, \ldots, 1)$ is the unique satisfying assignment. Observe that if x_i comes before y_i in π, then $S(x_i, \pi, \alpha) = \{0, 1\}$ and $S(y_i, \pi, \alpha) = \{1\}$. If y_i comes before x_i, then $S(x_i, \pi, \alpha) = \{1\}$ and $S(y_i, \pi, \alpha) = \{0, 1\}$. Hence $X \equiv n/2$ is a constant. Readers who balk at the idea of supplying a 2-CNF formula as an example for an exponential-time algorithm may try to generalize (10) for values of $k \geq 3$.

3.5 A Better Analysis

After this interlude on Jensen’s inequality, let us try to bound $E[\log_2 |S(x, \pi, \alpha)|]$ directly. In this context, x is some variable, α is a satisfying assignment, for simplicity $\alpha = (1, \ldots, 1)$, and π is a permutation of the variables sampled uniformly at random. Again think of the d truth assignments $\alpha_1, \ldots, \alpha_d$ obtained by setting $\alpha_c := \alpha[x \mapsto c]$ for $c = 1, \ldots, d$. Among them, $\ell := \ell(\alpha, x)$ satisfy the formula F. We assume without loss of generality that those are $\alpha_1, \ldots, \alpha_\ell$. Thus, for each $\ell < c \leq d$, there is a constraint C_c satisfied by α but not by α_c. Let us write
down these constraints:

\[C_{\ell + 1} := (x \neq \ell + 1 \lor y_1^{(\ell + 1)} \neq 1 \lor \cdots \lor y_{k-1}^{(\ell + 1)} \neq 1) \]
\[C_{\ell + 2} := (x \neq \ell + 2 \lor y_1^{(\ell + 2)} \neq 1 \lor \cdots \lor y_{k-1}^{(\ell + 2)} \neq 1) \]
\[\ldots \]
\[C_d := (x \neq d \lor y_1^{(d)} \neq 1 \lor \cdots \lor y_{k-1}^{(d)} \neq 1) \]

(11)

We define binary random variables \(Y_j^{(c)} \) for \(1 \leq j \leq k - 1 \) and \(\ell + 1 \leq c \leq d \) as follows:

\[Y_j^{(c)} := \begin{cases}
1 & \text{if } y_j^{(c)} \text{ comes after } x \text{ in the permutation } \pi, \\
0 & \text{otherwise.}
\end{cases} \]

We define \(Y^{(c)} := Y_1^{(c)} \lor \cdots \lor Y_{k-1}^{(c)} \). For convenience we also introduce random variables \(Y^{(1)}, \ldots, Y^{(\ell)} \) that are constant 1. Finally, we define \(Y := \sum_{c=1}^{d} Y^{(c)} \).

Observe that \(Y_j^{(c)} = 0 \) if and only if all variables \(y_1^{(c)}, \ldots, y_{k-1}^{(c)} \) come before \(x \) in the permutation, in which case \(c \notin S(x, \pi, \alpha) \). Therefore,

\[|S(x, \pi, \alpha)| \leq Y \]

(12)

The variables \(Y^{(1)}, \ldots, Y^{(\ell)} \) are constant 1, whereas each of the \(Y^{(\ell + 1)}, \ldots, Y^{(d)} \) is 0 with probability at least \(1/k \). Since \(1 \leq \ell \leq d \), the random variable \(Y \) can take values from 1 to \(d \). We want to bound

\[E[\log_2 |S(x, \alpha, \pi)|] \leq E[\log_2(Y)] = E \left[\log_2 \left(\ell + \sum_{c=\ell+1}^{d} Y^{(c)} \right) \right]. \]

(13)

For this, we must bound the probability \(\Pr[Y = j] \) for \(j = 1, \ldots, d \). This is difficult, since the \(Y^{(c)} \) are not independent: For example, conditioning on \(x \) coming very early in \(\pi \) increases the expectation of each \(Y^{(c)} \), and conditioning on \(x \) coming late decreases it. We use a standard trick, also used by Paturi, Pudlák, Saks and Zane [3] to overcome these dependencies: Instead of viewing \(\pi \) as a permutation of \(V \), we think of it as a function \(V \to [0, 1] \) where for each \(x \in V \), its value \(\pi(x) \) is chosen uniformly at random from \([0, 1] \). With probability 1, all values \(\pi(x) \) are distinct and therefore give rise to a permutation. The trick is that for \(x, y, \) and \(z \) being three distinct variables, the events “\(y \) comes before \(x \)” and “\(z \) comes before \(x \)” are independent when conditioning on \(\pi(x) = r \):

\[\Pr[\pi(y) < \pi(x) \mid \pi(x) = r] = r \]
\[\Pr[\pi(z) < \pi(x) \mid \pi(x) = r] = r \]
\[\Pr[\pi(x) < \pi(x) \text{ and } \pi(z) < \pi(x) \mid \pi(x) = r] = r^2 \]
Compare this to the unconditional probabilities:

\[
\begin{align*}
\Pr[\pi(y) < \pi(x)] &= \frac{1}{2} \\
\Pr[\pi(z) < \pi(x) \mid \pi(x) = r] &= \frac{1}{2} \\
\Pr[\pi(x) < \pi(x) \text{ and } \pi(z) < \pi(x) \mid \pi(x) = r] &= \frac{1}{3}
\end{align*}
\]

We want to compute \(E[Y^{(c)} \mid \pi(x) = r]\). We know that \(E[Y^{(c)} \mid \pi(x) = r] = 1 - r\), since \(Y^{(c)}\) is 1 if and only if the boolean variable \(y^{(c)}\) comes after \(x\). Since we are dealing with constraints of size at most \(k\), there are, for each \(\ell + 1 \leq c \leq d\), at most \(k - 1\) distinct variables \(y^{(c)}_{1}, \ldots, y^{(c)}_{k-1}\), and the probability that all come before \(x\), conditioned on \(\pi(x) = r\), is at least \(r^{k-1}\). Therefore

\[E[Y^{(c)}] \leq 1 - r^{k-1}.\]

Still, a variable \(y^{(c)}_{j}\) might occur in several constraints among \(C_{\ell+1}, \ldots, C_{d}\), and therefore the \(Y^{(c)}\) are not independent. The main technical tool of our analysis is a lemma stating that the worst case is achieved exactly if they in fact are independent, i.e., if all variables \(y^{(c)}_{j}\) for \(c = \ell + 1, \ldots, d\) and \(k = 1, \ldots, k-1\) are distinct.

Lemma 3.4 (Independence is Worst Case). Let \(r, k, \ell\) and \(Y^{(c)}\) be defined as above. Let \(Z^{(\ell+1)}, \ldots, Z^{(d)}\) be independent binary random variables with \(E[Z_{i}] = 1 - r^{k-1}\). Then

\[
E \left[\log_{2} \left(\ell + \sum_{c=\ell+1}^{d} Y^{(c)} \right) \mid \pi(x) = r \right] \leq E \left[\log_{2} \left(\ell + \sum_{c=\ell+1}^{d} Z^{(c)} \right) \right].
\]

Before we prove the lemma in the next section, we first finish the analysis of the algorithm. We apply a somewhat peculiar estimate: Let \(a \geq 1\) and \(b \geq 0\) be integers. Then \(\log_{2}(a + b) \leq \log_{2}(a \cdot (b + 1)) = \log_{2}(a) + \log_{2}(b + 1)\). Applying this with \(a := \ell\) and \(b := \sum_{c=\ell+1}^{d} Z^{(c)}\) and combining it with the lemma and with \((13)\), we obtain

\[E[\log_{2} |S(x, \alpha, \pi)| \mid \pi(x) = r] \leq \log_{2}(\ell) + E \left[\log_{2} \left(1 + \sum_{c=\ell+1}^{d} Z^{(c)} \right) \right]. \quad (14)\]

This estimate looks wasteful, but consider the case where \(F\) has a unique satisfying assignment \(\alpha\): There, \(\ell(\alpha, x) = 1\) for every variable \(x\), and \((13)\) holds with equality. In addition to \(Z^{(\ell+1)}, \ldots, Z^{(d)}\), we introduce \(\ell - 1\) new independent binary random variables \(Z^{(2)}, \ldots, Z^{(\ell)}\), each with expectation \(1 - r^{k-1}\), and define

\[g(d, k, r) := E \left[\log_{2} \left(1 + \sum_{c=2}^{d} Z^{(c)} \right) \right].\]
The only difference between the expectation in (14) and here is that here, we sum over \(c = 2, \ldots, d \), whereas in (14) we sum only over \(c = \ell + 1, \ldots, d \). We get the following version of (14):

\[
E[\log_2 |S(x, \alpha, \pi)| \mid \pi(x) = r] \leq \log_2(\ell) + g(d, k, r) .
\] (15)

We want to get rid of the condition \(\pi(x) = r \). This is done by integrating (15) for \(r \) from 0 to 1.

\[
E[\log_2 |S(x, \alpha, \pi)|] \leq \log_2(\ell) + \int_0^1 g(d, k, r)dr =: \log_2(\ell) + G(d, k) .
\] (16)

This \(G(d, k) \) is indeed the same \(G(d, k) \) as in Theorem 1.1, and below we will do a detailed calculation showing this.

Lemma 3.5 (Lemma 1 in Feder, Motwani [1]). Let \(F \) be a satisfiable CSP formula over variable set \(V \). Then

\[
\sum_{\alpha \in \text{sat}_V(F)} \prod_{x \in V} \frac{1}{\ell(\alpha, x)} \geq 1 .
\] (17)

This lemma is a quantitative version of the intuitive statement that if a set \(S \subseteq [d]^n \) is small, then there must be rather isolated points in \(S \). We now put everything together:

\[
\Pr[\text{ppsz}(F, \pi) \text{ is successful}] = \sum_{\alpha \in \text{sat}_V(F)} \Pr[\text{ppsz}(F, \pi) \text{ returns } \alpha] \geq \sum_{\alpha \in \text{sat}_V(F)} 2^{-\sum_{x \in V} E[\log_2 |S(x, \alpha, \pi)|]} ,
\]

where the inequality follows from (4). Together with (16), we see that

\[
\sum_{\alpha \in \text{sat}_V(F)} 2^{-\sum_{x \in V} E[\log_2 |S(x, \alpha, \pi)|]} \geq \sum_{\alpha \in \text{sat}_V(F)} 2^{-\sum_{x \in V} (\log_2(\ell(\alpha, x)) + G(d, k))}
= 2^{-nG(d, k)} \sum_{\alpha \in \text{sat}_V(F)} 2^{-\sum_{x \in V} \log_2(\ell(\alpha, x))}
= 2^{-nG(d, k)} \sum_{\alpha \in \text{sat}_V(F)} \prod_{x \in V} \frac{1}{\ell(\alpha, x)}
\geq 2^{-nG(d, k)} ,
\]

where the last inequality follows from Lemma 3.5. To prove Theorem 1.1 we evaluate the term \(G(d, k) \). Recall that \(G(d, k) = \int_0^1 g(d, k, r)dr \), where \(g(d, k, r) = E \left[\log_2 \left(1 + \sum_{c=2}^d Z^{(c)} \right) \right] \), and \(Z^{(2)}, \ldots, Z^{(d)} \) are independent binary variables with expectation \(1 - r^{k-1} \) each. For \(0 \leq j \leq d - 1 \), it holds that

\[
\Pr \left[\sum_{c=2}^d Z^{(c)} = j \right] = \binom{d - 1}{j} (1 - r^{k-1})^j (r^{k-1})^{d - 1 - j} .
\] (18)
By the definition of expectation, it holds that
\[g(d, k, r) = \sum_{j=0}^{d-1} \log_2(1 + j) \Pr \left[\sum_{c=2}^{d} Z(c) = j \right]. \]

Combining this with (18) and integrating over \(r \) from 0 to 1 yields the expressions Theorem 1.1. This finishes the proof.

4 A Correlation Inequality

The goal of this section is to prove Lemma 3.4. We will prove a more general statement.

Definition 4.1. A function \(f : \{0, 1\}^n \to \mathbb{R} \) is called monotonically increasing, or simply monotone, if for all \(x, y \in \{0, 1\}^n \) it holds that
\[x \leq y \Rightarrow f(x) \leq f(y), \] (19)
where \(x \leq y \) is understood pointwise, i.e., \(x_i \leq y_i \) for all \(1 \leq i \leq n \).

For example, the functions \(\land \) and \(\lor \), seen as functions from \(\{0, 1\}^n \) to \(\mathbb{R} \), are monotone, whereas the parity function \(\oplus \) is not.

Definition 4.2. A function \(f : \{0, 1\}^n \to \mathbb{R} \) is called submodular if for all \(x, y \in \{0, 1\} \), it holds that
\[f(x) + f(y) \geq f(x \land y) + f(x \lor z), \] (20)
where \(\lor \) and \(\land \) are understood pointwise, i.e. \((x_1, \ldots, x_n) \lor (y_1, \ldots, y_n) = (x_1 \lor y_1, \ldots, x_n \lor y_n) \).

Example. The OR-function \(f : (x_1, \ldots, x_n) \mapsto x_1 \lor \cdots \lor x_n \) is monotone and submodular: It is pretty clear that it is monotone, so let us try to show sub-modularity. There are two cases: First, suppose at least one of \(x \) and \(y \) is \(0 \), say \(y = 0 \). Then the left-hand side of (20) evaluates to \(f(x) \), and the right-hand side to \(f(0) + f(x) = f(x) \). If neither \(x = 0 \) nor \(y = 0 \), then the left-hand side is 2, and the right-hand side is obviously at most 2.

Example. The AND-function \(g : (x_1, \ldots, x_n) \mapsto x_1 \land \cdots \land x_n \) is monotone, but not submodular. It is clearly monotone, so let us show that it is not submodular. Consider \(n = 2 \). Set \(x = (0, 1) \) and \(y = (1, 0) \). Then \(f(x) + f(y) = 0 \), but \(f(x \land y) + f(x \lor y) = f(0, 0) + f(1, 1) = 1 \).

We define the notion of glued restrictions of functions. Let \(A, B \) be two arbitrary sets, and let \(f : A^n \to B \) be a function. We define a new function \(f' \) by
"gluing together" two input coordinates of \(f \). Formally, for \(1 \leq i \leq j \leq n \), we define the function \(f': (a_1, \ldots, a_n) \mapsto f(a_1, \ldots, a_{j-1}, a_i, a_{j+1}, \ldots, a_n) \).

The function \(f' \) can be viewed as a restriction of \(f \) to inputs \((a_1, \ldots, a_n) \) for which \(a_i = a_j \). Thus, \(f' \) can be seen as a function \(A^{n-1} \rightarrow B \). We prefer, however, to define it as a function \(A^n \rightarrow B \) that simply ignores the \(j \)-th coordinate of its input. We say \(f' \) is obtained from \(f \) by a gluing step.

A function \(g: A^n \rightarrow B \) is a glued restriction of \(f \) if it can be obtained from \(f \) by a sequence of gluing steps. See Figure 1 for an intuition.

Consider a function \(f: \{0,1\}^n \rightarrow \mathbb{R} \) and think of feeding \(f \) with random input bits. Formally, let \(X_1, \ldots, X_n \) be independent binary random variables, each with expectation \(p \). We are interested in the term \(\mathbb{E}[f(X_1, \ldots, X_n)] \). In a second scenario, we introduce dependencies between the \(X_i \) by gluing some of them together: For example, instead of choosing \(X_1, \ldots, X_n \) independently, we use the same bit for \(X_1, X_2, \) and \(X_n \), thus computing \(\mathbb{E}[f(X_1, X_1, X_3, X_4, \ldots, X_{n-1}, X_1)] \) instead of \(\mathbb{E}[f(X_1, \ldots, X_n)] \). With the terminology introduced above, we want to compare \(\mathbb{E}[f(X_1, \ldots, X_n)] \) to \(\mathbb{E}[g(X_1, \ldots, X_n)] \), where \(g \) is a glued restriction of \(f \). For general functions \(f \), we cannot say anything about how \(\mathbb{E}[f(X_1, \ldots, X_n)] \) compares to \(\mathbb{E}[g(X_1, \ldots, X_n)] \). However, if \(f \) is submodular, we can.

To get an intuition, consider the boolean lattice \(\{0,1\}^n \) with 0 at the bottom and 1 at the top. In that lattice, \(x \land y \) is below \(x \) and \(y \), and \(x \lor y \) is above them. Thus, in some sense, the points \(x \) and \(y \) lie between \(x \land y \) and \(x \lor y \). See Figure 2 for an illustration. On the left-hand side of (20), we evaluate \(f \) at points that lie more to the middle of the lattice, whereas on the right-hand side we evaluate \(f \) at points that lie more to the bottom or top of it. The random vector \((X_1, \ldots, X_n) \) tends to lie around the \(pn \)-th level of the lattice, whereas \((X_1, X_1, X_3, X_4, \ldots, X_{n-1}, X_1) \) is less concentrated and more often visits the...
extremes of the lattice. In the light of [20], we expect that biasing points towards the extremes will decrease $E[f]$. The following lemma formalizes this intuition.

Lemma 4.3. Let $f : \{0, 1\}^n \to \mathbb{R}$ be a submodular function and g be a glued restriction of it. Let X_1, \ldots, X_n be independent binary random variables, each with expectation p. Then $E[f(X_1, \ldots, X_n)] \geq E[g(X_1, \ldots, X_n)]$.

Proof. It is easy to see that applying a gluing step to a submodular function results in a submodular function: After all, a gluing step simply means restricting the function to a subset of its domain. Therefore, it suffices to prove the lemma for a function g that has been obtained from f by a single gluing step. Without loss of generality, we can assume that X_{n-1} and X_n have been glued together. We have to show that

$$E[f(X_1, \ldots, X_n)] \geq E[f(X_1, \ldots, X_{n-1}, X_{n-1})].$$

It suffices to show this inequality for every fixed $(n-2)$-tuple of values for (X_1, \ldots, X_{n-2}). Formally, for $b_1, \ldots, b_{n-2} \in \{0, 1\}$, let

$$g : (x, y) \mapsto f(b_1, \ldots, b_{n-2}, x, y).$$

The function g is also submodular. Let X, Y be two independent binary random variables, each with expectation p. We have to show that $E[g(X, Y)] \geq E[g(X, X)]$. This is not difficult:

$$E[g(X, Y)] = (1-p)^2 \cdot g(0,0) + p(1-p) \cdot g(1,0) +$$

$$(1-p)p \cdot g(0,1) + p^2 \cdot g(1,1)$$

$$= (1-p)^2 \cdot g(0,0) + p(1-p) \cdot (g(1,0) + g(0,1)) + p^2 \cdot g(1,1)$$

$$\geq (1-p)^2 \cdot g(0,0) + p(1-p) \cdot (g(0,0) + g(1,1)) + p^2 \cdot g(1,1)$$

$$= ((1-p)^2 + p(1-p)) \cdot g(0,0) + (p(1-p) + p^2) \cdot g(1,1)$$

$$= (1-p) \cdot g(0,0) + p \cdot g(1,1) = E[g(X, X)],$$

![Fig. 2. The boolean lattice with four points x, y, $x \land y$ and $x \lor y$.](image)
where the inequality comes from the submodularity of \(g \).

Lemma 4.4. Let \(I \subseteq \mathbb{R} \) be an interval, and let \(f : \{0,1\}^n \to I \) be monotone and submodular, and \(h : I \to \mathbb{R} \) be non-decreasing and concave. Then \(h \circ f : \{0,1\}^n \to \mathbb{R} \) is also monotone and submodular.

Proof. It is clear that \(h \circ f \), being the composition of two monotone functions, is again monotone. To show submodularity, consider \(x, y \in \{0,1\}^n \). Without loss of generality, \(f(x) \leq f(y) \). Using monotonicity, we see that
\[
f(x \wedge y) \leq f(x) \leq f(y) \leq f(x \vee y).
\]

Claim. If \(s \leq t \) are in \(I \), and \(a \geq b \geq 0 \) are such that \(s - a \in I \) and \(t + b \in I \), then \(h(s) + h(t) \geq h(s - a) + h(t + b) \).

See Figure 3 for an illustration. To prove the claim, compare the line from \((s, h(s))\) to \((t, h(t))\) to the line from \((s - a, h(s - a))\) to \((t + b, h(t + b))\). The midpoints of those lines have the coordinates
\[
\left(\frac{s + t}{2}, \frac{h(s) + h(t)}{2} \right) \quad \text{and} \quad \left(\frac{s - a + t + b}{2}, \frac{h(s - a) + h(t + b)}{2} \right),
\]
respectively. Since \(a \geq b \), the first midpoint lies to the right of the second midpoint. Since both lines have positive slope (by monotonicity of \(h \)) and the first line lies above the second, we conclude that also the first midpoint lies above the second. Therefore \(h(s - a) + h(t + b)/2 \leq (h(s) + h(t))/2 \), as claimed.

We apply the above claim with \(s = f(x), t = f(y), a = f(x) - f(x \wedge y) \) and \(b = f(x \vee y) - f(y) \). Note that \(s, t, s - a, t + b \in I \) and \(a, b \geq 0 \). To apply the claim we need that \(a \geq b \), i.e.,
\[
f(x) - f(x \wedge y) \geq f(x \vee y) - f(y),
\]
Fig. 3. A monotone concave function \(f \) and two line segments.
which follows from submodularity. The claim implies that \(h(s) + h(t) \geq h(s - a) + h(t + b) \), which with these particular values of \(s, t, a, \) and \(b \) yields \(h(f(x)) + h(f(y)) \geq h(f(x \land y)) + h(f(x \lor y)) \).

Proof (Proof of Lemma 3.4). We define \((d - \ell)(k - 1)\) random variables \(Z_j^{(c)} \) for \(1 \leq j \leq k - 1 \) and \(\ell < c \leq d \). These random variables are all independent and each has expectation 1 – \(r \). We define the function \(f : \{0, 1\}^{(d - \ell)(k - 1)} \) by

\[
f(x_1^{(\ell+1)}, \ldots, x_k^{(d)}) = \log_2 \left(\ell + \sum_{c=\ell+1}^{d} \text{OR}(x_1^{(c)} \lor \cdots \lor x_k^{(c)}) \right).
\]

This function is clearly monotone. We claim that it is submodular: The OR-function is submodular, and it is easy to check that a sum of submodular functions is again submodular. Finally, the function \(t \mapsto \log_2(\ell + t) \) is concave. We apply Lemma 4.4 with the interval \(I = [0, \infty) \), the submodular function \(\sum_{c=\ell+1}^{d} \text{OR}(x_1^{(c)} \lor \cdots \lor x_k^{(c)}) \), which has domain \(I \), and the concave function \(t \mapsto \log_2(\ell + t) \). Thus \(f \) is submodular and monotone. To prove Lemma 3.4, we have to show that

\[
E \left[\log_2 \left(\ell + \sum_{c=\ell+1}^{d} Y^{(c)} \right) \mid \pi(x) = r \right] \leq E \left[\log_2 \left(\ell + \sum_{c=\ell+1}^{d} Z^{(c)} \right) \right],
\]

where the \(Z^{(c)} \) are independent binary random variables with expectation 1 – \(r^{k-1} \) and \(Y^{(c)} := \text{OR}(Y_1^{(c)}, \ldots, Y_{k-1}^{(c)}) \), with

\[
y_j^{(c)} := \begin{cases} 1 & \text{if } y_j^{(c)} \text{ comes after } x \text{ in the permutation } \pi, \\ 0 & \text{otherwise}. \end{cases}
\]

The left-hand side of (22) thus reads as

\[
E[f(Y_1^{(\ell+1)}, \ldots, Y_{k-1}^{(d)} \mid \pi(x) = r]
\]

for \(f \) as defined in (21). Since the \(Z^{(c)} \) are independent binary random variables with expectation 1 – \(r^{k-1} \), their distribution is identical to the distribution of \(\text{OR}(Z_1^{(c)}, \ldots, Z_{k-1}^{(c)}) \), and the right-hand side of (22) is equal to

\[
E[f(Z_1^{(\ell+1)}, \ldots, Z_{k-1}^{(d)}).
\]

We have to show that

\[
E[f(Y_1^{(\ell+1)}, \ldots, Y_{k-1}^{(d)} \mid \pi(x) = r] \leq E[f(Z_1^{(\ell+1)}, \ldots, Z_{k-1}^{(d)})]
\]

Conditioned on \(\pi(x) = r \), the distribution of each \(Y_j^{(c)} \) is identical to that of \(Z_j^{(c)} \), but some \(Y_j^{(c)} \) are “glued together”, since the underlying variables \(y_j^{(c)} \) of our CSP formula need not be distinct. We can, however, assemble the \(Y_j^{(c)} \) into groups
according to their underlying variables $y_j^{(c)}$ such that (i) random variables from the same group have the same underlying $y_j^{(c)}$ and thus are identical, (ii) random variables from different groups are independent. Thus, $f(Y_1^{(\ell+1)}, \ldots, Y_{k-1}^{(d)})$ is a glued restriction of $f(Z_1^{(\ell+1)}, \ldots, Z_{k-1}^{(d)})$ or rather can be coupled with a glued restriction thereof, and thus by Lemma 4.3, the expectation of the former is at most the expectation of the latter. Therefore (23) holds. \hfill \Box

References

1. T. Feder and R. Motwani. Worst-case time bounds for coloring and satisfiability problems. *J. Algorithms*, 45(2):192–201, 2002.
2. L. Li, X. Li, T. Liu, and K. Xu. From k-SAT to k-CSP: Two generalized algorithms. *CoRR*, abs/0801.3147, 2008.
3. R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k-SAT. *J. ACM*, 52(3):337–364, 2005.
4. R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. *Chicago J. Theoret. Comput. Sci.*, pages Article 11, 19 pp. (electronic), 1999.
5. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In *FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of Computer Science*, page 410, Washington, DC, USA, 1999. IEEE Computer Society.