Effectiveness of Varicella Vaccination Program in Preventing Laboratory-Confirmed Cases in Children in Seoul, Korea

Young Hwa Lee,1,2 Young June Choe,1,2 Sung-il Cho,1,2 Cho Ryok Kang,1,3 Ji Hwan Bang,1,4 Myoung-don Oh,1,5 and Jong-koo Lee1,6

1Seoul Center for Infectious Disease Control, Seoul, Korea; 2Department of Epidemiology, Graduate School of Public Health, Seoul National University, Seoul, Korea; 3Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Korea; 4Division of Infectious Diseases, Seoul National University Boramae Medical Center, Seoul, Korea; 5Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; 6Department of Family Medicine, Seoul National University College of Medicine, Seoul, Korea

Received: 18 May 2016
Accepted: 2 September 2016

Address for Correspondence:
Myoung-don Oh, MD
Department of Internal Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea
E-mail: mdohmd@snu.ac.kr

Funding: This study was supported by the Division of Life and Health of the Seoul Metropolitan Government, Korea.

INTRODUCTION

Varicella is an acute contagious disease caused by the varicella-zoster virus (VZV). A live attenuated varicella vaccine was first developed in 1974 and is now used widely in many countries including the United States, Germany, China, Taiwan, and Republic of Korea (1-5). In a recent meta-analysis of global varicella vaccine effectiveness, varicella vaccine was reported to be effective in preventing varicella (6). In specific, the United States where a universal two-dose varicella vaccination program was adopted since 2006 experienced declines in the incidence of the disease, the hospitalization of infected patients, and disease outbreaks (7).

In Korea, the varicella vaccination has been recommended for children in high-risk groups since 1988. Following the introduction of universal varicella vaccination by the National Immunization Program (NIP) in 2005, one-dose varicella vaccine has been recommended for all children aged 12-15 months. Four live attenuated varicella vaccines are available; three are based on the Oka strain, and one is based on the MAV strain.

However, the incidence of varicella has yet to decline and, in fact, has been continuously rising, from 22.5 per 100,000 persons in 2006 to 73.2 in 2013 (8). The objective of this study was to evaluate the effectiveness of one-dose varicella vaccination program in Korea by performing a matched case-control on children in Seoul.

MATERIALS AND METHODS

We performed a matched case-control study on children who were younger than 12 years of age in Seoul, Korea. Relevant data were collected from the National Notifiable Disease Surveillance System (NNDSS). The NNDSS, which was established in 2001, consists of case-based national infectious disease data collected via a surveillance system; nationally notifiable diseases such as varicella must be reported by all local public health centers in the country. The varicella case data in the NNDSS include demographic and clinical details such as patient name, date of birth, gender, address, date of disease onset, laboratory confirmation, and vaccination status.
All cases were children with varicella identified in Seoul between January 2013 and December 2013. Cases were composed of confirmed and possible cases and we only use the former to avoid misclassification bias. We excluded cases born prior to universal varicella vaccination adopted in 2004 or after 2012, because varicella vaccination is recommended for children aged 12-15 months. In order to estimate the exact effectiveness of varicella vaccine, we also excluded subjects who developed varicella within 42 days after vaccination (the so-called “wild-type” varicella) and who were vaccinated twice.

We aimed at selecting controls to represent the source population from which varicella cases arose. From the same NNDSS data, mumps and scarlet fever were considered appropriate as controls for the following reasons; 1) mumps and scarlet fever are infectious diseases independent of varicella, 2) age distribution in incidence of mumps or scarlet fever is similar to that of varicella.

In recruiting age-matched controls who had suffered from mumps or scarlet fever but had no history of varicella were identified in Seoul between January 2013 and December 2013 in the same NNDSS population where cases were reported. We matched each control by date of birth to a 1-month interval centered on the birth date of each case; a single control was randomly chosen if more than one candidate seemed appropriate. Ultimately, we created a list of 1:1 individually matched controls.

The effectiveness of a vaccine was estimated as follows; we calculated vaccine effectiveness by substituting the matched overall risk (OR) for the relative risk (RR) (1-RR); this approximates the RR in a case-control study (9).

Statistical analysis

The χ² test was used to compare the groups in terms of categorical variables, and the paired t-test was used to compare them with regard to continuous variables. To estimate the effectiveness of one-dose vaccination, we performed conditional logistic regression analysis on the 1:1 matched pairs after adjusting for the effects of possible confounders such as sex and age at vaccination; we then calculated matched odds ratios with 95% confidence intervals (CIs). When calculating the effect of time since vaccination, we used conditional logistic models with dummy-coded variables (10). A two-sided P value < 0.05 was considered statistically significant. All data were analyzed with the aid of SAS software, version 9.3 (SAS Institute, Inc., Cary, NC, USA).

RESULTS

Subjects

In 2013, a total of 3,622 cases were reported. Of the 3,622, we excluded 2,807 possible varicella cases. Of the remaining 815 cases, we also excluded 278 cases; 230 had been born before June 2004, 27 had been infected within 12 months of birth, 5 had wild-type varicella, 16 had received two doses of vaccine (Fig. 1). Finally, we included 537 varicella cases in the study.

Table 1. Characteristics of children with varicella and matched controls

Characteristics	Cases (n = 537)	Controls (n = 537)	P value
Age, mon			0.967
Mean ± SD (Median range)	68.6 ± 22.7	68.5 ± 22.7	
Gender, No. (%)			0.297
Male	289 (53.8)	306 (57.0)	
Female	248 (46.2)	231 (43.0)	
MMR vaccine status, No. (%)			< 0.001
Unvaccinated	440 (81.9)	524 (97.6)	
Received MMR vaccine	97 (18.1)	13 (2.4)	
No. of varicella vaccination within 28 days of MMR vaccine	1 (0.19)	3 (0.56)	
Vaccination status, No. (%)			0.385
Unvaccinated	130 (24.2)	118 (22.0)	
Vaccinated	407 (75.8)	419 (78.0)	
Age at vaccination, mon			0.002
≤ 15	379 (93.1)	366 (87.4)	
> 15	28 (6.9)	53 (12.6)	
Type of vaccination			0.001
A	241 (59.2)	227 (54.2)	
B	53 (13.0)	42 (10.0)	
C	24 (5.9)	49 (11.7)	
D	6 (1.5)	21 (5.0)	
Unknown	83 (20.4)	80 (19.1)	

Number of who received varicella vaccine at age younger than 12 months was 5 in controls.

MMR = measles-mumps-rubella.

Fig. 1. Subject recruitment procedures for 1:1 matched case-control study.

Laboratory and epidemiologic confirmed case n = 845

Excluded cases, n = 2,807
 - Possible cases, n = 2,807

Excluded cases, n = 278
 - Born before June 2004, n = 230
 - Infected within 12 months after birth, n = 27
 - Wild-type varicella, n = 5
 - 2-dose vaccinated, n = 16

Children eligible for the study n = 537

Reported cases with varicella in Seoul, Korea, 2013 n = 3,622
Characteristics of cases and controls
The 537 cases and their individually matched controls were similar in terms of both age and gender. The proportions of vaccinated cases and controls were similar, at 407 (75.8%) and 419 (78.0%), respectively (Table 1).

Of those who were vaccinated, 379/407 (93.1%) cases and 366/419 (87.4%) controls were vaccinated before 15 months of age, as recommended by the national vaccination policy. The proportion of cases vaccinated was significantly higher than the proportion of controls vaccinated ($P < 0.002$).

More than half of all vaccinated cases (241/407; 59.2%) and 227/419 (54.2%) of the controls received vaccine A; the proportions of the other vaccines used were as follows: Unknown (20.4% of cases and 19.1% of controls) > vaccine B (13.0% and 10.0%, respectively) > vaccine C (5.9% and 11.7%, respectively) > vaccine D (1.5% and 5%, respectively). However, the proportions of the vaccines used were significantly different between the groups ($P = 0.001$). Thus, both age at vaccination and type of vaccination were entered into the conditional logistic model.

Effectiveness of varicella vaccination
According to the conditional logistic regression analysis of the data for matched pairs, the overall effectiveness of one-dose varicella vaccination was 13% (95% CI, -17.3-35.6). The unadjusted estimate of vaccine effectiveness was 11.8% (95% CI, -17.1-33.6, $P = 0.385$) (Table 2).

Conditional logistic regression analysis of vaccine effectiveness by each of the four vaccine manufacturers showed that the effectiveness of different vaccines varied (Table 3). Only vaccine C exhibited statistically significant effectiveness (88.9%; 95% CI, 52.1-97.4). The vaccine effectiveness were -5% (95% CI, -61.9-31.9) for vaccine A, -100% (95% CI, -700-50.1) for vaccine B, 71.4% (95% CI, -37.5-94.1) for vaccine D, and -16.7% (95% CI, -101-32.4) for the vaccine of an unknown manufacturer.

Overall, the effectiveness of a one-dose varicella vaccination was 75.8% (95% CI, 22.8-92.4) in the first year after vaccination. Thereafter, effectiveness decreased, falling to zero (or below) in the fourth and the sixth years. When adjusted for sex, age at vaccination and measles-mumps-rubella (MMR) vaccination within 28 days of birth, the effectiveness of varicella vaccine was not significant even in the first year after vaccination (Table 4).

DISCUSSION
The results of this study show that the overall effectiveness of one-dose varicella vaccination in preventing confirmed cases of varicella was low and insignificant (13%; 95% CI, -17.3-35.6). Specifically, the vaccine effectiveness of vaccine A, which was used in more than half of all vaccinations, was -5% (95% CI, -61.9-31.9), whereas vaccine C was highly effective (88.9%; 95% CI, 52.1-97.4). Vaccination was effective for only 1 year (the estimate of 75.8% fell to 67.1% after adjustment for confounders).

These results are consistent with those of a recent clinical case-control study assessing the effectiveness of an MAV strain-based varicella vaccine in Korea (11). The estimated effectiveness was statistically insignificant (54%; 95% CI, -0.10-2.05) and the vac-

Table 2. Overall effectiveness of varicella vaccine

Cases	Matched control	VE (95% CI)	P value	
	Vaccinated	Unvaccinated		
Vaccinated	327	80	13.0 (-17.3-35.6)	0.361
Unvaccinated	92	38		

When unadjusted for matched pairs, vaccine’s effectiveness (1-OR) was 11.8% (-17.1%-33.6%, $P = 0.385$).

VE = vaccine effectiveness, CI = confidence interval, OR = overall risk.

Table 3. Effectiveness of varicella vaccine by manufacturers

Vaccines	Vaccinated cases with unvaccinated controls	Unvaccinated cases with vaccinated controls	VE (95% CI)	P value
A	42	40	-5 (-61.9-31.9)	0.825
B	6	3	-100 (-700-50.0)	0.327
C	2	18	88.9 (52.1-97.4)	0.003
D	2	7	71.4 (37.5-94.1)	0.118
Unknown	28	24	-16.7 (-101-32.4)	0.580

VE = vaccine effectiveness, CI = confidence interval.

Table 4. Overall effectiveness of varicella vaccination by time since vaccination

Time since vaccination, yr	No. of vaccination	Unadjusted VE (95% CI)	P value	Adjusted VE* (95% CI)	P value	
	Case	Control				
1	19	31	75.8 (22.8-92.4)	0.017	67.1 (12.0-90.3)	0.075
2	39	41	60.4 (-49.2-89.5)	0.171	49.5 (96.0-87.0)	0.323
3	37	42	57.9 (-24.5-85.7)	0.118	52.1 (45.7-15.8)	0.195
4	84	80	-7.2 (-130.9-50.2)	0.859	-15.7 (-153.6-47.2)	0.716
5	83	88	8.6 (-59.5-47.6)	0.752	-10.0 (-75.2-44.1)	0.973
6	86	68	-58.3 (-184.1-11.8)	0.124	-59.8 (-188.9-11.6)	0.120
7	37	41	13.2 (-60.5-51.7)	0.636	-10.9 (-60.5-50.6)	0.700
8	22	28	26.8 (-37.2-60.9)	0.091	25.3 (-40.4-60.2)	0.366

VE = vaccine effectiveness, CI = confidence interval, MMR = measles-mumps-rubella.

*Results are adjusted for sex, MMR vaccination within 28 days, age at vaccination.
The one-dose varicella vaccination program did not clearly protect against varicella. Therefore, it is necessary to further investigate why we had reduced effectiveness of varicella vaccine in Korea.

ACKNOWLEDGMENT

We are grateful for their assistance with data acquisition to Division of Life and Health of the Seoul Metropolitan Government.

DISCLOSURE

The authors have no potential conflicts of interest to disclose.

AUTHOR CONTRIBUTION

Study conception and design: Lee YH, Cho SI, Oh MD. Supervision of whole aspects of this study: Oh MD. Data collection and analysis: Lee YH, Kang CR. Writing the manuscript: Lee YH. Critical revision of the manuscript: Choe YJ, Cho SI, Bang JH, Lee JK. Review and approval of the final version of the manuscript: all authors.

ORCID

http://orcid.org/0000-0003-4833-1178

REFERENCES

1. Kuter BJ, Weibel RE, Guess HA, Matthews H, Morton DH, Neif BJ, Provost PJ, Watson BA, Starr SE, Plotkin SA. Oka/Merck varicella vaccine in healthy children: final report of a 2-year efficacy study and 7-year follow-up studies. *Vaccine* 1991; 9: 643-7.
2. Reuss AM, Feig M, Kappelmayer L, Siedler A, Eckmanns T, Poggensee G. Varicella vaccination coverage of children under two years of age in Germany. *BMC Public Health* 2010; 10: 302.
3. Fu C, Wang M, Liang J, Xu J, Wang C, Bialek S. The effectiveness of varicella vaccine in China. *Pediatr Infect Dis J* 2010; 29: 690-3.
4. Tan HF, Chang CK, Tseng HE, Lin W. Evaluation of the national notifiable disease surveillance system in Taiwan: an example of varicella reporting. *Vaccine* 2007; 25: 2630-3.
5. Park B, Lee YK, Cho LY, Go UY, Yang JI, Ma SH, Choi BY, Lee MS, Lee JS, Choi EH, et al. Estimation of nationwide vaccination coverage and comparison of interview and telephone survey methodology for estimating vaccination status. *J Korean Med Sci* 2011; 26: 711-9.
6. Marin M, Marti M, Kamphampati A, Jeram SM, Seward JE. Global varicella vaccine effectiveness: a meta-analysis. *Pediatrics* 2016; 137: e20153741.
7. Bialek SR, Perella D, Zhang J, Mascola L, Viner K, Jackson C, Lopez AS, Watson B, Given R. Impact of a routine two-dose varicella vaccination program on varicella epidemiology. *Pediatrics* 2013; 132: e1134-40.
8. Korea Centers for Disease Control and Prevention. Disease web statistics system [Internet]. Available at http://is.cdc.go.kr/dstat/index.jsp [accessed on 14 May 2016].
9. Cornfield J. A method of estimating comparative rates from clinical data; applications to cancer of the lung, breast, and cervix. *J Natl Cancer Inst* 1951; 11: 1269-75.
10. Niccolai LM, Ogden LG, Muehlenbein CE, Dziura JD, Vázquez M, Shapiro ED. Methodological issues in design and analysis of a matched case-control study of a vaccine's effectiveness. *J Clin Epidemiol* 2007; 60: 1127-31.
11. Oh SH, Choi EH, Shin SH, Kim YK, Chang JK, Choi KM, Hur JK, Kim KH, Kim JY, Chung EH, et al. Varicella and varicella vaccination in South Korea. *Clin Vaccine Immunol* 2014; 21: 762-8.
12. Liese JG, Cohen C, Rack A, Pirzer K, Eber S, Blum M, Greenberg M, Streng A. The effectiveness of varicella vaccination in children in Germany: a case-control study. *Pediatr Infect Dis J* 2013; 32: 998-1004.
13. Vázquez M, LaRussa PS, Gershon AA, Niccolai LM, Muehlenbein CE, Steinberg SP, Shapiro ED. Effectiveness over time of varicella vaccine. *JAMA* 2004; 291: 851-5.
14. Marin M, Zhang JX, Seward JE. Near elimination of varicella deaths in the US after implementation of the vaccination program. *Pediatrics* 2011; 128: 214-20.
15. Garis D, Jumaan AO, Mascola L, Watson BM, Zhang JX, Chaves SS, Gargiullo P, Perella D, Civen R, Seward JE. Changing varicella epidemiology in active surveillance sites—United States, 1995-2005. *J Infect Dis* 2008; 197 Suppl 2: S71-5.
16. Shefer R, Segal D, Rahamani S, Dalal I, Linsart Y, Stein M, Shohat T, Somekh E. Effectiveness of the Oka/GSK attenuated varicella vaccine for the prevention of chickenpox in clinical practice in Israel. *Pediatr Infect Dis J* 2005; 24: 434-7.
17. Vázquez M, LaRussa PS, Gershon AA, Steinberg SP, Freudigman K, Shapiro ED. The effectiveness of the varicella vaccine in clinical practice. *N Engl J Med* 2001; 344: 955-60.
18. Hwang KK, Park SY, Kim SJ, Ryu YW, Kim KH. Restriction fragment length polymorphism analysis of varicella-zoster virus isolated in Korea. *J Korean Soc Virol* 1991; 21: 201-10.
19. Hwang KK, Chun BH, Park HS, Park SY, Kim KH, Moon HM. Marker test for attenuation of varicella-zoster viruses isolated in Korea. *J Korean Soc Virol* 1992; 22: 105-9.
20. Sohn YM, Park CY, Hwang KK, Woo GJ, Park SY. Safety and immunogenicity of live attenuated varicella virus vaccine (MAV/06 strain). *J Korean Pediatr Soc* 1994; 37: 1405-13.
21. Sohn YM, Yu GJ, Kim PK, Kim KY, Park CY, Kim MR, Jeung WK, Hwang KK, Woo GJ, Park SY. Immunogenicity and safety of live attenuated vaccine (MAV/06strain) on healthy children and immunocompromised children. *J Korean Pediatr Soc* 1995; 38: 771-7.
22. Kim DJ, Park HS, Lee SY, Park KS, Kim TK, Song YH, Choi J, Han JW, Song YS, Park TJ, et al. Epidemiology of varicella in Korea based on pediatrician's office practice. *J Korean Pediatr Soc* 1997; 40: 620-8.
23. Kim MR, Park JS, Kim DH, Lee HR, Park CY. A clinical and epidemiologic study on varicella in children. *Korean J Pediatr Infect Dis* 1998; 5: 88-95.
24. Choi UY, Huh DH, Kim JH, Kang JH. Seropositivity of varicella zoster virus in vaccinated Korean children and MAV vaccine group. *Hum Vaccin Immunother* Forthcoming 2016.