Supplementary data for:

Quantification of dissipation and deformation in ambient atomic force microscopy

Sergio Santos1,v, Karim R. Gadelrab2,v, Victor Barcons2, Marco Stefancich1, Matteo Chiesa1

1Laboratory of Energy and Nanosciences, Masdar Institute of Science and Technology, Abu Dhabi, UAE

2Departament de Disseny i Programació de Sistemes Electrònics, UPC - Universitat Politècnica de Catalunya Av. Bases, 61, 08242 Manresa, Spain

v Equally contributing authors

The equation of motion to be solved via numerical integration is

\[
\begin{aligned}
 m \frac{d^2 z}{dt^2} + \frac{m \omega^2}{Q} \frac{dz}{dt} + k z &= F_{ts} + F_0 \cos \omega t \\
\end{aligned}
\]

(S1)

where \(k\) is the spring constant, \(Q\) is the Q factor due to dissipation with the medium, \(\omega=\omega_0\) are the drive and natural angular frequency of oscillation respectively, \(m=k/\omega^2\), \(F_{ts}\) is the instantaneous (net) tip-sample interaction, \(z\) is the instantaneous position of the tip relative to the cantilever and \(F_0\) is the drive force. For \(F_{ts}\) the tip-surface interaction (Fig. 2) we write[1, 2]

\[
F_s = -\frac{H_s R}{6d_s^2} \quad d>d_{\text{off}} \quad \text{(tip retraction)} \quad \text{and} \quad d>d_{\text{on}} \quad \text{(tip approach)}
\]

(S2)
\[F_{AD}(d) = \frac{F_{Doff} - F_{Don}}{d_{off} - d_{on}} + F_{Don} \quad \text{d}_{off} > d > d_{on} \text{ (tip retraction)} \]

(S3)

where

\[F_{Don} = -\frac{R_{tip}}{6a_0^2} \left[\frac{H_w - H}{d_{off} - a_0} (d_{off} - a_0) + H \right] \]

(S4)

and

\[F_{Doff} = -C_{off} \frac{R H_w}{6a_0^2} \quad C_{off} \geq 0 \]

(S5)

\[F_{AD} = -\frac{H^* R}{6a_0^2} \quad a_0 < d < d_{on} \]

(S6)

where

\[H^* = \frac{H_w - H}{d_{off} - a_0} (d_{off} - a_0) + H \]

(S7)

\[F_{AD} = -\frac{HR}{6a_0^2} = -4aR \chi \quad d \leq a_0 \]

(S8)

where \(d \) is the instantaneous tip-sample's surface distance, \(F_a \) is the attractive and conservative long range force, \(F_{AD} \) is the adhesion force, \(d_{off} \) is the distance at which the capillary force ruptures, \(d_{on} \) is the distance at which the capillary force breaks, \(H \) is the Hamaker constant for the tip and the sample, \(H_w \) is the Hamaker constant corresponding to the hydrated tip-hydrated
surface interaction, d_w is an effective distance of interaction that takes into account the fact that in the presence of adsorbed water films the tip and the surface as $d_w = d - 2h$ where h is the height of the water films on the tip and sample's surfaces [1-3], a_0 is an intermolecular distance that implies that matter interpenetration cannot occur, γ is the surface energy and C_{off} which is defined next.

The interpretation of (S3-S8) is that that when the water layers overlap as a consequence of capillary neck formation, the force is relatively constant for a distance $a_0 < d < d_{on}$ but significantly decays with separation at the larger distances $d_{on} < d < d_{off}$[1-3]. The decay in the adhesion force is controlled by C_{off} where $C_{off} = 0.3$ has been used here throughout. When the capillary neck is formed the capillary force is also added[2, 4]

\[
F_{cap}(d) = -\frac{2 \pi \gamma_w R_{tip}}{1 + \frac{\pi d^3}{V_{men}}}
\]
provided capillary on and $d > a_0$ \hspace{1cm} (S9)

where γ_w is the surface energy of water. Also, $H_w = 24\pi(a_0)^2\gamma_w$ and $H = 24\pi(a_0)^2\gamma$[5].

The distance d_{on} has been taken to be $d_{on} = 3h[2]$. Additionally d_{off} can be calculated numerically by solving the Laplace-Young equation to give[6, 7]

\[
d_{off} \approx V_{men}^{1/3} - \frac{1}{5R}V_{men}^{2/3}
\]
\hspace{1cm} (S10)
where V_{men} is the volume of the meniscus or the volume of water forming the water bridge. V_{men} is calculated using geometrical considerations[7]

$$V_{men} = 4 \pi R h^2 + \frac{4}{3} \pi h^3$$ \hspace{1cm} (S11)

From the above expressions, it is clear that for $d_{on}<d<d_{off}$ there is hysteresis due to capillarity. Thus energy is dissipated (green are in Fig. 2). The conservative short range repulsive force is written as[8, 9]

$$F_{DMT} = a \phi^{\frac{3}{2}} \hspace{1cm} d \leq a_0$$ \hspace{1cm} (S12)

where

$$a = \frac{4}{3} E^* \sqrt{R}$$ \hspace{1cm} (S13)

and where E^* is the effective elastic modulus of the contacting bodies (tip E_t and sample E_s). The dissipation in during sample deformation, i.e. $d<a_0$, is modeled by (3) and (4).

In the numerical simulations in the main text $k=40$N/m, $Q=500$, $\omega=2\pi f_0$ ($f_0=300$ kHz), $E_t=170$ GPa (Young modulus of the tip), $E_s=1$ GPa, $a_0=0.165$ nm, $R=7$ nm, $\gamma=7$ mJ, $\gamma_w=10$ mJ, $F_{AD} \approx 1$ nN (net), $\alpha=0.5$ and $\eta=500$ Pa·s. The equation of motion has been solved numerically with the use of a Runge Kutta algorithm and implemented in both C and Matlab[10]. Both implementations were equivalent while C was more than an order of magnitude faster.
[1] S. Santos et al., Journal of Applied Physics 110 (2011).
[2] V. Barcons et al., Journal of Physical Chemistry C 16 (2012).
[3] S. Santos et al., Nanotechnology 22 (2011).
[4] V. V. Yaminsky, Colloids and Surfaces A 159 (1999).
[5] J. Israelachvili, Intermolecular & Surface Forces (Academic Press, 1991), 2 edn.
[6] C. D. Willett et al., Langmuir 16 (2000).
[7] L. Zitzler, S. Herminghaus, and F. Mugele, Physical Review B 66 (2002).
[8] B. V. Derjaguin, V. Muller, and Y. Toporov, Journal of Colloid and Interface Science 53 (1975).
[9] R. Garcia, and A. San Paulo, Physical Review B 60 (1999).
[10] T. M. MATLAB R2008a and SIMULINK, Inc., Natick, Massachusetts, US.