IFN-I Mediates Lupus Nephritis From the Beginning to Renal Fibrosis

Xuewei Ding¹,², Yi Ren¹,²,³ and Xiaojie He¹,²*

¹ Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China, ² Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China, ³ Pediatric Internal Medicine Department, Haikou Maternal and Child Health Hospital, Haikou, China

Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) and a major risk factor for morbidity and mortality. The abundant cell-free nucleic (DNA/RNA) in SLE patients, especially dsDNA, is a key substance in the pathogenesis of SLE and LN. The deposition of DNA/RNA-immune complexes (DNA/RNA-ICs) in the glomerulus causes a series of inflammatory reactions that lead to resident renal cell disturbance and eventually renal fibrosis. Cell-free DNA/RNA is the most effective inducer of type I interferons (IFN-I). Resident renal cells (rather than infiltrating immune cells) are the main source of IFN-I in the kidney. IFN-I in turn damages resident renal cells. Not only are resident renal cells victims, but also participants in this immunity war. However, the mechanism for generation of IFN-I in resident renal cells and the pathological mechanism of IFN-I promoting renal fibrosis have not been fully elucidated. This paper reviews the latest epidemiology of LN and its development process, discusses the mechanism for generation of IFN-I in resident renal cells and the role of IFN-I in the pathogenesis of LN, and may open a new perspective for the treatment of LN.

Keywords: fibrosis, IFN-I, lupus nephritis, nucleic acid sensors, pathogenesis, renal resident cells

INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease in which immune complexes (ICs) form and deposit in many organs. The kidney is one of the main target organs. Lupus nephritis (LN) is present in at least 30% to 60% of SLE patients, and almost all patients have pathologic renal involvement. The incidence of SLE and LN varies widely between regions of the world and between ethnic groups (1). Although SLE is more prevalent in women than men across all age groups and populations, several studies have shown that men with lupus more get LN than women with lupus and patients with LN are younger, mostly of African, Asian, and Hispanic race/ethnicity (2–5). LN has a mortality rate six times higher than that of the general population (6). LN is a major risk factor for SLE mortality, with 10% of patients with LN developing the end-stage renal disease (ESRD) (1, 7). Compared with SLE patients without LN, LN patients had a higher standard mortality rate (6-6.8 versus 2.4) and earlier time of death (6, 8–10). In recent years, early diagnosis, standardized treatment, and new immunosuppressants such as mycophenolate mofetil, anti-CD20 monoclonal antibody, belimumab, and other drugs have significantly improved LN prognosis. However, the 5-year mortality rate in patients with severe refractory LN remains high (1, 3, 11, 12). Therefore,
elucidating its pathogenesis can provide a theoretical basis for the screening of effective therapeutic targets for LN.

IFN-I is a central factor in the occurrence and development of SLE. Recent studies suggest that IFN-I may play a role at the level of terminal organs in SLE, especially LN. IFN-I is a response to the activation of most immune cells. At present, studies on the relationship between IFN-I and LN mainly focus on immune cells in serum and kidney. Resident renal cells also have immune functions and are involved in the immune war. Previous literature has shown that resident renal cells (rather than infiltrating immune cells) are the major source of IFN-I in the kidney and that IFN-I can cause renal injury. However, there are few studies on the production of IFN-I in the kidney and the damage of IFN-I to resident renal cells. This paper reviews the relationship between IFN-I and LN resident renal cells and explores the related pathways of IFN-I promoting the pathogenesis of LN.

PATHOGENESIS OF LN

IC Deposition

Nucleic acid exposure, the production of nephrogenic pathogenic antibodies and the formation of ICs are the key links leading to LN. Three mechanisms have been proposed for ICs formation or deposition on the glomerulus, and they include (1) the deposition of preformed circulating immune complexes (CICs) in the kidney, (2) the formation of in-situ ICs in the glomerulus, and (3) binding of anti-dsDNA antibodies to cross-reactive antigens present either on the surface of resident renal cells or in the extracellular environment (13–17).

Circulating autoantigens and antibodies form CICs, which are deposited in the kidney. Due to improper clearance of necrotic, apoptotic cells and/or abnormal increase in cell death in SLE patients, undegraded nucleosomes (complexes of DNA and histone-containing pairs of histone peptides) are released into the bloodstream, increasing circulating autoantigens and antibodies to cross-reactive antigens present either on the surface of resident renal cells or in the extracellular environment (13–17).

Circulating autoantigens and antibodies form CICs, which are deposited in the kidney. Due to improper clearance of necrotic, apoptotic cells and/or abnormal increase in cell death in SLE patients, undegraded nucleosomes (complexes of DNA and histone-containing pairs of histone peptides) are released into the bloodstream, increasing circulating autoantigens and antibodies, which form CICs. They evade recognition by the immune system and are deposited in the kidney.

ICs can also be formed in situ. Electron-dense structures (EDS) associated with glomerular basement membrane (GBM) and the mesangial matrix constitute the main target for in situ-bound antibodies in both murine and human lupus nephritis. Nucleosomes and chromatin fragments accumulate due to the loss of intrarenal and extrarenal deoxyribonuclease 1 (Dnase-1) activity. Then nucleosomes and chromatin fragments readily stimulate TLR9 in infiltrating macrophages and dendritic cells, triggering the secretion of local MMPs (18, 19). MMPs degrades the membrane barrier, allowing nucleosomes and chromatin fragments to bind to GBM (20, 21). Exposure to glomerular chromatin in situ induces anti-chromatin (anti-dsDNA and anti-nucleosome) antibodies to become nephrogenic and pathogenic, secondary to the formation of in-situ ICs (13, 14, 17). Anti-dsDNA antibodies bind to renal mesangial cells (RMCs) through cross-reacting with the cell surface annexin II (22), α-actinin (23, 24), and ribosomal P protein (25). Anti-dsDNA antibodies bind to glomerular endothelial cells (GECs) through cross-reacting with membrane proteins with M.W. of 30–35, 44, 68, 110, and 180 kDa (26). Anti-dsDNA antibodies bind to renal tubular epithelial cells (TECs) through cross-reacting with A and D SmRNP polypeptides (27). The polyreactivity of anti-dsDNA antibodies may be related to structural/conformational similarity or molecular simulation (28). Upon binding to the cell surface, anti-dsDNA antibodies migrate to the cytoplasm and/or nucleus, promoting cell growth and proliferation, or in turn inducing apoptosis (29). Recent studies have reported that the RG2 extract from intestinal symbiotic bacterium R. gnarus cross-reacts with anti-dsDNA antibodies to trigger or exacerbate the immune pathogenesis of LN (30, 31).

Depending on the type, duration, and severity of LN, ICs can be found in the subendothelial, subepithelial, mesangial, and tubulointerstitial regions (Figure 1). The distribution, quantity, and proinflammatory properties of ICs in renal parenchyma determine complement activation, inflammation, cell proliferation, and the severity of glomerular and tubulointerstitial injuries (3, 5, 32, 33).

Glomerular Loss

ICs are mainly deposited in the glomerulus. The main mediator of IC-induced glomerular injury is the complement system, especially the formation of the C5b-9 membrane attack complex. C5b-9 is inserted into the glomerular membrane in extremely low amounts, transforming normal cells into inflammatory effector cells (34). Immunostimulatory glomerular cells produce large amounts of pro-inflammatory cytokines (35, 36), accelerating cell damage/aging, which may be one of the mechanisms of glomerular injury in LN (37).

The initial IC-mediated glomerular injury varies with the location of the IC deposition. IC subendothelial deposition leads to the accumulation of proinflammatory cells, causing proliferative disease and glomerular crescent (38). The GEC and the GEC surface layer (also known as the glyocalyx) are the first points of contact with the components of the circulating immune system. T cells are recruited to the glomerulus via the direct binding of their CD44 to the hyaluronic acid (HA) component of GEC glyocalyx (39). ICs alter cell morphology, up-regulate active caspase-3’ expression, inhibit angiogenesis, and increase NO production in GECs (40). Autophagy is a conserved metabolism that plays a protective role in many cell types and diseases. ICs inhibit the autophagy activity of GECs through Akt/mTOR-dependent pathway (41). LN antibodies promote increased secretion of endothelin-1 by GECs, leading to disruption of tight intercellular junctions (42). IC subepithelial deposition leads to podocytes damage and varying degrees of proteinuria. Podocyte injury is characterized by the foot process effacement (FPE), loss of podocyte-specific markers and cell detachment (43). Podocytes also contribute to glomerular crescent formation. Dedifferentiated podocytes migrate to cellular crescents. Podocyte injury ultimately leads to the activation and proliferation of parietal epithelial cells.
PECs) through the JAK/STAT pathway, the production of HB-EGF and IL-6, and/or absence of (C-X-C motif) ligand (CXCL) 12, jointly contributing to glomerular crescent formation (43). LN IgG stimulates cellular cytoskeletal rearrangement and decreases vascular endothelial growth factor (VEGF) levels in podocytes (42). IC mesangial deposition leads to RMC proliferation and mesangial matrix increase. The inflammatory environment of LN induces RMCs to produce pro-inflammatory cytokines, which recruit leukocytes (44); promotes RMCs to express higher levels of matrix proteins and regulate matrix degradation enzymes, which lead to mesangial matrix deposition (44, 45); regulate the cell cycle and promote RMC proliferation (46).

Podocytes, GECs, and RMCs in the glomerulus interact with and support each other. Podocytes produce VEGF needed for GECs survival (47, 48); GECs produce platelet-derived growth factor (PDGF) needed for RMCs survival; RMCs isolate the potential transforming growth factor-β (TGF-β), thereby protecting GECs from apoptosis (49). Progressive injury to one cell type can eventually lead to damage of the other cell types. The activation, dedifferentiation, or proliferation of glomerular cells leads to the loss of structural integrity of the glomerular cluster and ultimately to glomerular death.

Tubulointerstitial Fibrosis
Renal tubulointerstitium blood supply is provided by glomerular runoff. Glomerular loss affects tubulointerstitial survival. Changes resulting from loss of tubular interstitial viability, such as tubular atrophy, fibrosis, and interstitial infiltration. Injury of renal tubular epithelial cells (TECs) is an important cause of renal fibrosis (50, 51). The severity and frequency of
downstream TGF-β antibodies induce TECs secretion of soluble factors form a vicious circle.

Injured or hypoxic TECs secrete hypoxia-inducing factor-1 (HIF-1α) and subsequent VEGF to promote endothelial cells (ECs) survival and proliferation, increasing perivascular capillary density (62, 63). However, excessive production of VEGF promotes the formation of leaky and dysfunctional vessels, thus resulting in a hypoxic and highly oxidative environment (64). Besides, VEGF can be used as a pro-inflammatory factor to aggravate fibrosis response (64). Hypoxia has been shown to promote EMT as an important microenvironmental factor (65–68). Increased matrix strength also aggravates tubular hypoxia and the progression of EMT. The above factors form a vicious circle.

Renal Microvascular Lesions

Renal microvascular lesions are common in LN and are increasingly being recognized as a marker of LN. Five pathological types of LN renal microvascular lesions have been proposed and they are vascular immune complex deposits (ICD), arteriosclerosis (AS), thrombotic microangiopathy (TMA), non-inflammatory necrotizing vasculopathy (NNV), and true renal vasculitis (TRV) (69). Up to one-third of LN patients have two or more vascular lesions at the same time. Although each lesion type may exhibit its unique factors, there are some common mechanisms among different vascular lesions. Damaged TECs induce loss of pericytes leading to thinning of capillaries (50, 57, 58, 62–64). The activation and dysfunction of vascular ECs, as well as immune system dysfunction, are key mechanisms of LN renal microvascular lesions, especially IC-induced vascular inflammation and anti-phospholipid antibody (APL)-related thrombotic events (69). The binding of autoantibodies to vascular ECs and the deposition of CICs on the microvessels lead to changes in the connections between ECs, thus activating complement, increasing the expression of adhesion molecules, inflammatory cytokines and chemokines, and increasing the permeability of ECs. The activation and dysfunction of ECs further recruit monocytes through adhesion molecules and chemokines, which induces platelet aggregation, resulting in procoagulant activity and microthrombosis (70, 71). APL-induced thrombotic events are the important mechanism of renal LN TMA (72). Patients with TMA had the worst renal outcomes (73). Renal microvascular lesions adversely affect long-term renal outcomes and may determine the selection of treatment strategies (73, 74) (Figure 2).

THE MECHANISMS FOR GENERATION OF IFN-I IN THE KIDNEY

Clinical studies have found that LN patients overexpress IFN-I, and IFN-I activity is closely related to inflammation of LN (75–77). Experimental animal studies have shown that exposure to IFN-I in NZB/W mice or C57BL/6 mice accelerates glomerulonephritis, glomerular crescent, and renal tubular interstitial nephritis (78–80); reducing the biological activity of IFN-I in NZB/W mice alleviated renal pathology and improved survival rate (81). Although a study has shown that Toll-like receptor 7 (TLR7) -mediated LN is independent of IFN-I signaling, it is not enough to mask the ultimate role of IFN-I in nephritis acceleration (82). IFN-I includes IFN-α and IFN-β, which play a biological role by binding to type I interferon receptor (IFNAR).

The Mechanisms for Generation of IFN-I

Cell-free nucleic acid (DNA/RNA) is the most effective inducer of IFN-I. They are recognized by intracellular nucleic acid sensors, which activate the signaling pathway that produces IFN-I (Figure 3). DNA sensors include the endosome TLR9, DNA-dependent activator of IFN-regulatory factors (DAI), interferon-inducible protein 16 (IFI16), and cyclic GMP-AMP (cGAMP) synthase (cGAS). RNA sensors include TLR3, TLR7, TLR8, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5). TLR7/8 binding with ssRNA and TLR9 binding with CpG DNA activates downstream signaling pathways— adaptor protein MyD88 and transcription factors such as IRAKs, TRAF6 and IRF7, then leading to secretion of IFN-α (83, 84).TLR3 binding with dsRNA induces IFN-β mainly through the TRIF-TRK1-IRF3 signaling pathway. cGAS (85, 86), DAI (87), IFI16 (88) recognize dsDNA and then activate the
stimulator of interferon genes (STING)- TANK-binding kinase 1 (TBK1)-IRF3 signaling pathway to regulate transcription of IFN-β and IFN-induced genes. RIG-I and MDA5 recognize dsRNA and undergo conformational changes to induce mitochondrial antiviral signaling (MAVS), then activate IRF3/7 by TRAF6/3, resulting in the production of IFN-I (89).

SLE patients are rich in chromatin or cell-free nucleic acids, especially dsDNA, due to defective clearance of apoptotic cells and necrotic cells and increased neutrophil extracellular traps (NETs). These cell-free DNA/RNA acids activate above signaling pathways through intracellular DNA/RNA sensors to trigger the production of IFN-I (90). Studies have shown that there are

FIGURE 2 | Pathogenesis of LN. CIC, circulating immune complex; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; ESRD, end-stage renal disease; GEC, glomerular endothelial cell; HIF-1α, hypoxia-inducing factor-1α; IC, immune complex; LN, lupus nephritis; RMC, renal mesangial cell; TEC, renal tubular epithelial cell; VEGF, vascular endothelial growth factor.
several SLE-related susceptibility gene loci in the above signaling pathways, and their gene variants contribute to the production of IFN-I and the progression of LN (Table 1).

The Main Producers of IFN-I in the Kidney

The IFN-I system in SLE is in a long-term activation state. All nucleated cell types can produce IFN-I during pathogenic infection. Under the background of SLE, immune cells are abnormally activated. For example, plasmacytoid dendritic cells (pDCs) massively produce IFN-α (103); neutrophils secrete IFN-I in the early stages of the disease (104). Early T1 B cells in SLE produce IFN-I, especially IFN-β (105). A previous study has shown that renal resident cells (rather than infiltrating immune cells) were the main source of IFN-I in the kidney (80). Besides the circulating cell-free nucleic acid and the nucleic acid component of CICs, renal immunostimulatory nucleic acids are an important source of pathogenic nucleic acid. Large chromatin fragments in the kidney are exposed due to selective down-regulation of Dnase1 activity in the kidney (16, 106, 107). Lupus nephrogenic autoantibodies enter renal cells, damaging cell structure, enhancing DNA cleavage, and inducing cell death (29, 108). Another potential source of renal immunostimulatory nucleic acids is NETs released by neutrophils in the glomerulus and renal tubule, which are not fully degraded and are made of DNA, histones, and neutrophil proteins (109–111). NETs activate the cGAS-STING pathway or the TLR9 pathway to produce IFN-I (111, 112). The IFN-I subtype secreted by renal resident cells and DNA/RNA receptors’ expression in renal resident cells varied (Table 2).

Podocyte

DNA/RNA-ICs induce IFN-β production in podocytes. Podocytes treated with TLR3 ligand—polyIC—expressed IFN-I. And podocytes express TLR1-6 and TLR9 (113). Masum MA et al. found that TLR9 is overexpressed in podocytes in mice with autoimmune glomerulonephritis (AGN), which is associated with glomerular podocyte injury (114). However, Machida H et al. found that TLR9 was expressed only in podocytes from active LN patients and disappeared during remission (115). cGAS and IFI16 are the main DNA sensors in podocytes and trigger the expression of IFN-β by activating the cGAS/IFI16-STING pathway, thereby promoting the progression of LN in SLE patients (116). Besides, Kimura J et al. analyzed BXSB/MPJ-YAa lupus model mice and found that the expression of TLR8 and its downstream cytokines was significantly increased in lupus mice, and TLR8 was localized in podocytes (117).

RMC

DNA/RNA-ICs induce IFN-β production in RMCs. In the context of SLE, RMCs express TLR1-4 and TLR6, especially highly express TLR3 (118). TLR3 belongs to the nucleic acid-specific TLR subgroup that activates the IFN-β production by recognizing dsRNA (119). However, RMCs do not express other members of the TLR subgroup—TLR7-9 (118, 119). Besides, LN...
patients’ RMCs show high levels of MDA5 expression (120). dsRNA induces RMCs to release IFN-α/β by MDA5 (rather than RIG-I); IFN-α/β can activate RMCs in an autocrine-paracrine loop (121). Although RMCs do not express TLR9 (118, 119), DNA-ICs also induce RMCs activation. Qing X et al. found that IgG anti-dsDNA antibodies up-regulate RMCs pro-inflammatory genes in MRL/LPR mice (122). Allam R et al. found that viral dsDNA stimulated RMCs to produce IFN-β and IFN-induced genes which are independent of DAI (123).

GEC

DNA/RNA-ICs induce IFN-β production in GECs. GECs express TLR1-6 (124). dsRNA activates TLR3 and induces GECs to express IFN-β (125, 126). Liu Q et al. found that dsRNA induced GECs expression of RIG-I and MDA5 through the TLR3/IFN-β signaling pathway (127). At the same time, dsRNA activates GECs through RIG-I to secrete IFN-α/β, while IFN-α/β cannot activate GECs in an autocrine-paracrine loop (128). GECs lacks a unique DNA-specific TLR—TLR9 (124). However, Hagele H et al. stimulated GECs with viral dsDNA and found that viral dsDNA entered GECs through endocytosis and then activated GECs to produce IFN-α/β in a TLR-independent manner (129). IFN-β can induce DAI expression and IRF3 phosphorylation, but IFN-β cannot activate GECs in an autocrine-paracrine loop (129).

Others

Resident renal cells also include TECs, renal interstitial fibroblasts, and peritubular capillary endothelial cells (PTC ECs). Castellano G et al. found that TECs were the main producer of IFN-α (130). Recent studies have found that TECs express RIG-I, an intracellular pattern-recognition receptor that participates in the production of IFN-β by recognizing RNA (131). It is unknown whether renal interstitial fibroblasts produce IFN-I and their intracellular DNA/RNA receptor expression. The TLR9 expression level was significantly increased in PTC ECs in lupus-prone AGN model mice and was associated with peritubular capillary and renal tubular interstitial injury (132).

THE DAMAGE EFFECTS OF IFN-I IN LN

Renal resident cells are the main source of IFN-I in the kidney (80). Renal resident cell-induced IFN-I, in turn, promotes the inflammatory state of glomerular cells, leading to renal fibrosis, scarring and renal loss (80). The damage of IFN-I is manifested in three aspects: (1) IFN-I induces the production of nuclear antigen and autoantibodies, promoting the formation of ICs; (2) IFN-I recruits leukocytes to promote proliferative lesions; (3) IFN-I acts on resident renal cells, leading to cell activation, injury, apoptosis, and progression to renal fibrosis (Figure 4).

TABLE 1 | Genetic variants in the DNA/RNA-IFN signaling pathway that contributes to the progression of LN.

Locus	Genetic variants	References
TLR	TLR9 (rs352140)	(91)
	TLR7 (rs385389)	(92)
	TLR5 (rs3741468)	(91)
	TLR3 (rs3775291, rs3775294)	(93)
RIG-I/MDA5	VISA (rs17857295, rs2326369)	(94)
IFR	IFP5 (rs72511)	(95)
	ITGAM (rs1143678, rs1143679, rs1143683)	(96)
NF-κB	TNI1P1 (rs7708392, rs4958881)	(96)
	MIR-146a (rs2431697)	(97)
STAT	STAT4 (rs7682894)	(100)

TABLE 2 | Distribution and expression of DNA/RNA sensors in renal resident cells.

Renal resident cells	RMCs	GECs	Podocytes	TECs	fibroblasts	PTC ECs	
DNA sensors	TLR9	N	N	Y	U	U	
	DAI	Y	Y	U	U	U	
	cGAS	U	U	Y	U	U	
RNA sensors	TLR3	Y	Y	Y	U	U	
	TLR7	N	N	N	U	U	
	TLR8	N	N	Y	U	U	
	RIG-I/MDA5	Y	Y	Y	U	U	U

Y means “yes”; N means “no”; U means “unknown”. GEC, glomerular endothelial cell; PTC EC, peritubular capillary endothelial cell; RMC, renal mesangial cell; TEC, renal tubular epithelial cell.
IFN-I Promotes the Formation of Nuclear Antigens and Autoantibodies
IFN-I promotes the formation of nuclear antigens. IFN-I can induce B cell activating factor (BAFF) expression and mobilization (133, 134). BAFF promotes the activation of T cells (135) and the production of NETs (136). Overactivity of SLE T cells leads to mitochondrial hyperpolarization, which ultimately leads to increased production of reactive oxygen species.
species (ROS) (137). ROS can modify cellular components and metabolites, giving them immunogenicity (138). ROS contributes to the formation of NETs (112). NETs trigger a concerted activation of TLR9 and B-cell receptor (BCR) leading to autoantibodies production in lupus (139). Follicular helper T cells (TFHs) (140, 141), CXCR5-CXCR3+PD1hiCID4+T helper cells (142), and peripheral helper T cells (TPHs) (143) promote B cells differentiation and antibody production in different ways.

IFN-I promotes the formation of autoantibodies. BAFF is a key factor in the maturation, survival and function of SLE pathogenic B cells (144, 145), which are responsible for the production of autoantibodies. IFN-I not only directly mobilized BAFF (133, 134) but also indirectly regulated the BAFF pathway by promoting the production of macrophage inhibitory factor (MIF) (146–148). BAFF also promotes the activation of B cells by IFN (149). Besides, SLE-related autoantibodies and ICs can induce the strong release of NETs (150), increasing nucleic acid exposure.

Then increased nuclear antigens and autoantibodies induced by IFN-I enhance the chance of IC formation and triggers LN.

IFN-I Promotes Leukocyte Infiltration

IFN-I strongly induces chemokine CXCL9/10/11, then recruiting leukocytes into the inflammatory site through the CXCR3A-Gi-Pi3K-MAPK signaling pathway (151, 152). Several studies have found that renal IFN-I induced leukocytes to the kidney in LN patients. Increased leukocyte recruitment might be an operative mechanism that IFN-I drives immune-mediated nephritis (80). Triantafyllopoulou A et al. induced IFN-β overexpression in NZB/W mice using TLR3 ligand poly (I: C) and found that IFN-β induced macrophagic infiltration in renal tissue (78). Yoshikawa M et al. found that IFN-β down-regulates CXCR5 expression in B cells and IFN-γ upregulates CXCR3 expression in B cells, which induces B cell infiltration in renal tissue of LN patients (153). Besides, IFN-I regulates these immune cells. Kishimoto D et al. found that IFN-I inhibited the anti-inflammatory properties of M2-like macrophages in the glomerulus by up-regulating Bach1 and down-regulating ho-1 expression, thus promoting glomerular inflammation (154).

IFN-I Promotes Renal Tissue Injury

IFN-I Promotes Glomerular Sclerosis

Podocyte

Impair to podocyte structure is one of the early symptoms of glomerular injury and is a characteristic of LN (155–157). Podocytes are highly differentiated epithelial cells that are fixed on the basement membrane through the extension of the foot process and interact with the surrounding podocytes to form a slit diaphragm and eventually a filtration barrier. The slit diaphragm is a unique cellular connection formed by podocin-specific proteins such as nephrin and podocin, which interact with the actin cytoskeleton (158). The actin cytoskeleton is the main structure of podocytes. Disorders of actin cytoskeleton play a major role in FPE and mitotic catastrophe, leading to podocytes detachment and proteinuria (159–161).

Podocyte cells are induced to produce IFN-β, which in turn stimulates podocyte B7-1 expression and actin remodeling (162). IFN-β specifically promotes podocyte detachment or death by inducing mitotic catastrophe in podocytes. IFN-α prevents podocyte repair by causing cell-cycle arrest and inhibiting proliferation and migration of PECs. And both of the above IFNs suppress renal progenitor differentiation into mature podocytes, which conducive to focal scar formation but not to glomerular repair (163). dsDNA induces podocytes to secret IFN-β. IFN-β expression activates IFNAR. IFNAR-associated JAK1 and TYK2 kinases then phosphorylate STAT1, which promotes transcription of apolipoprotein L1 (APOL1). And activated STAT1 up-regulates IFI16, which triggers a positive feedback mechanism promoting APOL1’s expression (116). Overexpression of APOL1 in podocytes is highly toxic. The APOL1 allele G1 and G2 are risk factors for LN and end-stage renal disease associated with lupus nephritis (LN-ESRD) in African Americans (164, 165). The observed injury of glomerular podocytes in LN suggests that the increase of APOL1 risk variant in podocytes of SLE patients may promote the faster progression of LN and LN-ESRD (155–157). Recent studies have shown that IFN-α is also associated with damage to podocyte structure and function. IFN-α has a significant effect on the filtration barrier function of podocytes. At the same time, IFN-α attenuates the mTORC1 signal and induces podocyte autophagy. However, increased autophagy ameliorates IFN-α-induced podocyte injury (166). This seems to show a protective negative feedback regulation.

GEC

GECs are also the component of the glomerular filtration barrier. Previous studies have shown that IFN-I, especially IFN-α, mediated endothelial dysfunction and caused the EC apoptosis (167), which increases GECs permeability and results in a loss of glomerular filtration barrier function.

RMC

RMCs are the key factor in LN glomerular fibrosis in LN. They play an important role in homeostasis by maintaining glomerular structure, producing and maintaining mesangial matrix, regulating filtration surface area and phagocytizing apoptotic cells or ICs (49). In response to ICs deposition and cytokine-induced injury, RMCs promote glomerular fibrosis through hypertrophy and proliferation (168). PDGF-B is a proliferation/migration-inducing growth factor that induces RMC proliferation in glomerulonephritis (169). TGF-β1 activates the downstream Smads signaling pathway by autocrine/paracrine, inducing the production of PDGF-B. The IFN-β autocrine/paracrine loop activates Smad7 which inhibits Smad3/4 activation and prevents induction of PDGF-B (170). However, studies have shown that IFN-α/β stimulation increases TGF-β1 expression (44, 78), which may enhance the expression of PDGF-B and promote the proliferation of RMCs. Moreover, CXCL10 induced by IFN-I not only recruit leukocytes but also aggravates RMC proliferation by activating ERK signaling pathway (171).

In addition to overproliferation, RMCs are one of the major stromal generating cells, secreting mesangial matrix components, such as type I collagen (COL I), type III collagen (COL III), and fibronectin (FN). TGF-β1/Smads signaling pathway plays a major
role in the excess extracellular matrix (ECM) (172, 173). First, the TGF-β1/Smad signaling pathway up-regulated matrix protein synthesis, including COL I and COL III. Second, the TGF-β1/Smad signaling pathway inhibits matrix degradation. The addition of TGF-β1 to normal glomerulus significantly reduced the activity of plasminogen activator (PA) and increased the synthesis of plasminogen activator inhibitor 1 (PAI-1) (174). TGF-β1 regulates the expression of MMP-9 (44); the main function of MMPs is to degrade ECM components, so it seems that TGF-β1 enhances matrix degradation. However, a large number of studies have shown that the levels of MMPs and tissue inhibitors of metalloproteinases (TIMPs) in serum, urine and glomerulus of LN patients are increased, accompanied by the deposition of mesangial matrix (78, 175–179). Overexpressed MMPs interact with TIMPs, changing matrix composition to promote mesangial matrix expansion (178). IFN-α/β induces high expression of MMP-9 and TIMP-1 in the kidney (78). Besides, TGF-β1 alters the expression of mesangial α1β1 and α5β1 integrins and their ligands (such as laminin, collagen, and FN), promoting matrix adhesion (180).

IFN-I can indirectly induce TGF-β1 expression in RMCs. In addition to CXCL10, IFN-I induced RMCs expression of monocyte chemotaxis proteins 1 (MCP-1/CCL2) and IL6. Increased MCP-1 levels stimulate the formation of TGF-β1 in renal resident cells (181) and induce Col IV mRNA expression, collagen deposition, and FN expression (182). The role of IL-6 in renal fibrosis remains controversial. Previous studies have shown that IL-6 does not play an important role in the development of renal fibrosis (183). Recent studies have shown that overexpression of IL-6 and its receptor reduces the abundance of FN and Col IV in RMCs (184); IL-6 trans signal transduction may be involved in the occurrence and development of renal fibrosis (185). This is consistent with the theory that IL-6 signaling is mediated through two main pathways. The anti-inflammatory activity of IL-6 is mediated through classical signaling pathways, whereas the pro-inflammatory property is mediated through trans-signaling pathways (186). Moreover, IFN-I autocrine/paracrine loops largely induce RMCs death (121). On the whole, IFN-I shows a significant damaging effect on RMCs (187, 188).

IFN-I Promotes Renal Interstitial Fibrosis

Renal interstitial fibrosis is the result of the chronic inflammatory process. During chronic inflammation, different cell components and complex signaling networks interact to lead to the development of renal myofibroblasts, which lead to excessive accumulation of ECM, a major and common feature of different chronic kidney diseases. The possible origin of myofibroblasts from renal epithelial/endothelial cells, fibroblasts, or pericytes remains a subject of debate (189–195). LeBlue VS et al. showed that proliferative myofibroblasts account for 50%, derived from resident fibroblasts; non-proliferative myofibroblasts derive through differentiation from bone marrow (35%), the endothelial-to-mesenchymal transition (EndMT) program (10%) and the epithelial-to-mesenchymal transition (EMT) program (5%) (193). TGF-β1 still plays a central role in many fibrotic factors (196). First, TGF-β1 promotes the proliferation of fibroblasts. fibroblast growth factor 2 (FGF-2) is a powerful mitogen of fibroblasts, promoting the autocrine growth of fibroblasts (197). TGF-β1, PDGF-B and FGF-2 jointly promote the proliferation of fibroblasts (197–199). Second, TGF-β1 promotes the transformation of other cells into myofibroblasts. TGF-β1 induces the functional transformation of TECs and GECs into myofibroblasts, which are responsible for ECM deposition (193, 200–204). MMP-9 is involved in EndMT and EMT through Notch signaling up-regulation, and its activation is located downstream of TGF-β1 (205, 206). FGF-2 also plays an important role in EMT (207–209). TGF-β1 is also involved in fibroblast-myofibroblast transformation through TGFR1 phosphorylation and subsequent Smad2/3 pathway mediating α-SMA transcription and myofibroblast differentiation (210). TGF-β1 and PDGF transform fibroblasts into myofibroblasts (211, 212), which together with fibroblasts produce ECM (213, 214). In addition to the TGF-β1 signaling pathway, the PDGF signaling induces pericytes proliferation and differentiation into myofibroblasts (64, 215–218). Moreover, TGF-β1 regulates PA, PAI-1, MMP-9, and integrin to inhibit matrix degradation and promote ECM accumulation and interstitial fibrosis (44, 174, 178, 180).

TGF-β1 is mainly produced by TECs. Whether IFN-I induces TECs to secrete TGF-β1 remains to be seen. IFN-α induces barrier instability and apoptosis of TECs (219–222), which may activate TECs. In the recent single-cell RNA sequencing studies of renal biopsies from LN patients, the expression of IFN-I response genes in TECs from LN patients was significantly higher than those of healthy control subjects (222) and correlates with clinical scores and with the response to treatment (223). Activated TECs secrete a series of pro-inflammatory mediators and absorb more circulating monocytes into the renal tubulointerstitium; infiltrated monocytes become activated macrophages (224). IFN-I also recruited macrophages to infiltrate (78). Activated macrophages secrete PDGF, TGF-β1, MMP and TIMP, which are involved in the regulation of tissue fibrosis (224). Similarly, IFN-I can enhance the process of renal interstitial fibrosis through MCP-1/CC12 and IL-6 (181, 184, 185).

IFN-I Promotes Renal Microvascular Lesions

The imbalance between vascular endothelial injury and repair is a key event in vascular lesions. IFN-I breaks this balance (225). Endothelial progenitor cells (EPCs) are the main repair mechanism. IFN-I induces CXCL9/10/11 expression. CXCL9/10/11 activates chemokine-receptor-3B (CXCR3B)-Gs-adenylyl cyclase (AC)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathways, directly promoting ECs and EPCs dysfunction (225). It also up-regulates the function of other pro-EC dysfunction factors (IL-18 (226), BAFF (133, 134, 227)) and down-regulates the function of pro-angiogenic molecules (IL-1β and VEGF (167)), which indirectly leads to EPC dysfunction.

IFN-I promotes vascular imperfection by affecting pericytes. IFN-I regulates TGF-β1 and PDGF expression (44, 78, 170). TGF-β1 and PDGF signaling pathways induce pericytes to proliferate and differentiate into myofibroblasts (64, 215–218). Pericytes are attached to the surface of capillary wall and share a developmental origin with fibroblasts. Normal pericytes stabilize...
the walls of blood vessels and maintain vessel tranquility and integrity. Activated pericytes are shed from the vascular wall and transformed into myofibroblasts (195, 228–232). Loss of pericytes leads to the formation of fragile capillaries and unstable, pathological blood vessels, ultimately resulting in renal vascular thinning (233). The loss of capillaries around renal tubules is closely related to renal fibrosis.

CONCLUSION

Cell-free DNA/RNA accumulation is the initial step of lupus and LN. Cell-free DNA/RNA and the nucleic acid components of ICs trigger the DNA/RNA sensors in renal resident cells, thus activating the signaling pathway for IFN-I production. IFN-I in turn induces nucleic acid exposure and the formation of autoantibodies. IFN-I acts on renal resident cells and is involved in the whole process of renal injury, especially the activation of the TGF-β1/Smads signaling pathway. Also, IFN-I recruits leukocytes into renal tissues through the CXCL9/10/11-β2/3 integrin/CD11b receptors, attracting them to promote the release of chemokines that recruit leukocytes into renal tissues through the CXCL9/10/11-CXCR3A-Gi-PI3K-MAPK signaling pathway, enhancing renal fibrosis response. Moreover, IFN-I promotes renal microvascular lesions, further damaging renal function. IFN-I is found in almost every link of the pathogenesis of LN. Therefore, IFN-I plays an important role in the pathogenesis of LN. Targeting IFN-I systems in the kidney has potential therapeutic effects on the premature emergence of LN in SLE patients. It also suggests that the immune function of renal resident cells is greater than that of the renal immune cells in LN and renal resident cells are the dominant player and acceptor in the occurrence and development of LN. The study on renal resident cells will further deepen the understanding of LN and contribute to the targeted therapy of LN in the future.

AUTHOR CONTRIBUTIONS

XD and YR did the literature search and drafted the article. XH gave insight. XH revised the article. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by National Natural Science Foundation of China (No. 61562021 and No. 81560275, No. 81960885, No. 81260139, No. 81060073, No. 30560161), Hainan Major Science and Technology Projects (ZDKJ2039010), Hainan Association for academic excellence Youth Science and Technology Innovation Program (201515), Hainan special projects of Social Development (ZDYZF2018103 and 2015SF39).

ACKNOWLEDGMENTS

The authors thanked Xiayang Chen for reviewing and revising this paper.

REFERENCES

1. Almaani S, Meara A, Roxin BH. Update on Lupus Nephritis. Clin J Am Soc Nephrol (2017) 12:825–35. doi: 10.2215/CJN.05780616
2. Hanly JG, O’Keefe AG, So L, Urowitz MB, Romero-Díaz J, Gordon C, et al. The Frequency and Outcome of Lupus Nephritis: Results From an International Incidence Cohort Study. Rheumatol (Oxford) (2016) 55:252–62. doi: 10.1093/rheumatology/kev311
3. Parikh SV, Almaani S, Brolsky S, Roxin BH. Update on Lupus Nephritis: Core Curriculum 2020. Am J Kidney Dis (2020) 76:265–81. doi: 10.1016/j.ajkd.2019.10.017
4. Maningding E, D’Ellera M, Trupin L, Murphy LB, Yazdany J. Racial and Ethnic Differences in the Prevalence and Time to Onset of Manifestations of Systemic Lupus Erythematosus: the California Lupus Surveillance Project. Arthritis Care Res (Hoboken) (2020) 72:622–9. doi: 10.1002/acr.23887
5. Pinheiro S, Dias RF, Fabiano R, Araujo SA, Silva A. Pediatric Lupus Nephritis. J Bras Nefrol (2019) 41:252–65. doi: 10.1590/2175-8239-jbn-2018-0097
6. Yap DY, Tang CS, Ma MK, Lam MF, Chan TM. Survival Analysis and Causes of Mortality in Patients With Lupus Nephritis. Nephrol Dial Transplant (2012) 27:3248–54. doi: 10.1093/ndt/gfs073
7. Tektonidou MG, Dasgupta A, Ward MM. Risk of End-Stage Renal Disease in Patients With Lupus Nephritis. 1971–2015: Asymptomatic Review and Bayesian Meta-Analysis. Arthritis Rheumatol (2016) 68:1432–41. doi: 10.1002/art.39594
8. Faurschou M, Dryer L, Kamper AL, Starkin H, Jacobsen S. Long-Term Mortality and Renal Outcome in a Cohort of 100 Patients With Lupus Nephritis. Arthritis Care Res (Hoboken) (2010) 62:873–80. doi: 10.1002/acr.20116
9. Lerang K, Gilboe IM, Steinar TD, Gran JT. Mortality and Years of Potential Life Loss in Systemic Lupus Erythematosus: A Population-Based Cohort Study. Lupus (2014) 23:1546–52. doi: 10.1177/0961203314551083
10. Bernatsky S, Boivin JF, Joseph L, Manzi S, Ginzler E, Gladman DD, et al. Mortality in Systemic Lupus Erythematosus. Arthritis Rheum (2006) 54:2520–7. doi: 10.1002/art.21955
11. Furie R, Roxin BH, Houssiau F, Malvar A, Teng Y, Contreras G, et al. Two-Year, Randomized, Controlled Trial of Belimumab in Lupus Nephritis. N Engl J Med (2020) 383:1117–28. doi: 10.1056/NEJMoa2001180
12. Zhang H, Zhou M, Han X, Yang Y, Yu X. Mycophenolate Mofetil in the Treatment of Chinese Patients With Lupus Nephritis: APRISMA-Compliant Meta-Analysis. Med (Baltimore) (2020) 99:e2112. doi: 10.1097/MID.0000000000002112
13. Yung S, Chan TM. Autoantibodies and Resident Renal Cells in the Pathogenesis of Lupus Nephritis: Getting to Know the Unknown. Clin Dev Immunol (2012) 2012:139365. doi: 10.1155/2012/139365
14. Lech M, Anders HJ. The Pathogenesis of Lupus Nephritis. J Am Soc Nephrol (2013) 24:1357–66. doi: 10.1681/ASN.2013100126
15. Mortensen ES, Rekvig OP. Nephritogenic Potential of Anti-DNA Antibodies Against Necrotic Nucleosomes. J Am Soc Nephrol (2009) 20:696–704. doi: 10.1681/ASN.2008010112
16. Fisemsen M, Mortensen ES, Rekvig OP. Nucleosome Deficiencies Promote End-Stage Lupus Nephritis But Not Nephritogenicautoimmunity in (NZB × NZW) F1 Mice. Immunol Cell Biol (2011) 89:90–9. doi: 10.1038/icc.2010.75
17. Yung S, Chan TM. Anti-DsDNA Antibodies and Resident Renal Cells - Their Putative Roles Inpathogenesis of Renal Lesions in Lupus Nephritis. Clin Immunol (2017) 185:40–50. doi: 10.1016/j.clim.2016.09.002
18. Lim EJ, Lee SH, Lee JG, Kim JR, Yun SS, Baek SH, et al. Toll-Like Receptor 9 Dependent Activation of MAPK and NF-KB is Required for the Cpgodn-Induced Matrix Metalloproteinase-9 Expression. Exp Mol Med (2007) 39:239–45. doi: 10.1038/emm.2007.27
19. Merrell MA, Ilvesamo JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E, et al. Toll-Like Receptor 9 Agonists Promote Cellular Inflammation by Increasing...
Matrix metalloproteinase Activity. *Mol Cancer Res* (2006) 4:437–47. doi: 10.1158/1541-7786.MCR-06-0007

20. Overall CM. Molecular Determinants of Metalloproteinase Substrate Specificity: Matrix metalloproteinase Substrate Binding Domains, Modules, and Exosites. *Mol Biotechnol* (2002) 22:51–86. doi: 10.1385/MB:22:1:51

21. Overall CM, Butler GS. Protease Yoga: Extreme Flexibility of a Matrix Metalloproteinase. *Structure* (2007) 15:1159–61. doi: 10.1016/j.str.2007.10.001

22. Yong S, Cheung KF, Zhang Q, Chan TM. Anti-DsDNA Antibodies Bind to Mesangial Annexin II in Lupus Nephritis. *J Am Soc Nephrol* (2010) 21:1912–27. doi: 10.1681/ASN.2009080805

23. Zhao Z, Deocharan B, Scherer PE, Ozellius LJ, Putterman C. Differential Binding of Cross-Reactive Anti-DNA Antibodies to Mesangial Cells: Therole of Alpha-Antin. *J Immunol* (2006) 176:7704–14. doi: 10.4049/jimmunol.176.12.7704

24. Deocharan B, Qing X, Lichauco J, Putterman C. Alpha-Antin is a Cross-Reactive Renal Target for Pathogenic Anti-DNA Antibodies. *J Immunol* (2002) 168:3072–8. doi: 10.4049/jimmunol.168.6.3072

25. Sun KH, Liu WT, Tsai CY, Tang SJ, Han SY, HU CL. Anti-DsDNA Antibodies Cross-React With Ribosomal P Proteins Expressed on the Surface of Glomerular Mesangial Cells to Exert a Cytostatic Effect. *Immunology* (1995) 85:262–9.

26. Chan TM, Cheng IK. Identification of Endothelial Cell Membrane Proteins That Bind Anti-DNA Antibodies from Patients With Systemic Lupus Erythematosus by Direct or Indirect Mechanisms. *J Autoimmun* (1997) 10:433–9. doi: 10.1006/jaut.1997.9998

27. Koren E, Koscec M, Wolfson-Reichlin M, Ebling FM, Tao B, Hahn BH, et al. Murine and Human Antibodies to Native DNA That Cross-React With the a and D Strppropolypettes Cause Direct Injury of Cultured Kidney Cells. *J Immunol* (1995) 154:4857–64.

28. Waldman M, Madaio MP. Pathogenic Autoantibodies in Lupus Nephritis. *Lupus* (2005) 14:19. doi: 10.1096/jn.2003.030550a

29. Tang S, Lui SL, Lai KN. Pathogenesis of Lupus Nephritis: an Update. *Nephrol (Carlton)* (2005) 10:174–9. doi: 10.1111/j.1440-1797.2005.00392.x

30. Kim JW, Kwok SK, Choe JY, Park SH. Recent Advances in Our Understanding of the Pathology of Renal Tubular Injury. *Kidney Int* (2010) 18:166–75. doi: 10.1016/j.kint.2008.10.003

31. Joure-Chiche N, Fakhouri F, Dou L, Bellien J, Buruty S, Frimat M, et al. Endothelium Structure and Function in Kidney Health and Disease. *Nat Rev Nephrol* (2015) 15:87–108. doi: 10.1038/nrn8151-019-0027-x

32. Long DA, Norman JT, Fine LG. Restoring the Renal Microvasculature to Treat Chronic Kidney Disease. *Nat Rev Nephrol* (2012) 8:244–50. doi: 10.1038/nrneph.2011.219

33. Abboud HE. Mesangial Cell Biology. *Exp Cell Res* (2012) 318:979–85. doi: 10.1016/j.yexcr.2012.02.025

34. Liu BC, Tang TT, Ly LL, Lan HY. Renal Tubule Injury: a Driving Force Toward Chronic Kidney Disease. *Kidney Int* (2018) 93:568–79. doi: 10.1016/j.kint.2017.09.033

35. Qi R, Yang C. Renal Tubular Epithelial Cells: the Neglected Mediator of Tubulointerstitial Fibrosis After Injury. *Cell Death Dis* (2018) 9:1126. doi: 10.1038/s41419-018-1157-x

36. Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M, et al. Severity and Frequency of Proximal Tubule Injury Determines Renal Prognosis. *J Am Soc Nephrol* (2016) 27:2393–406. doi: 10.1681/ASN.2015060727

37. Ferenbach DA, Bonventre JV. Mechanisms of Maladaptive Repair After AKI Leading to Accelerated Kidney Ageing Anddd. *Nat Rev Nephrol* (2015) 11:264–76. doi: 10.1038/nrneph.2015.3

38. Bonventre JV. Primary Proximal Tubule Injury Leads to Epithelial Cell Cycle Arrest, Fibrosis, Vascular Rarefaction, and Glomerulosclerosis. *Kidney Int Suppl* (2011) (20143:49–44. doi: 10.1038/kisup.2014.8

39. Yang L, Humphreys BD, Bonventre JV. Pathophysiology of Acute Kidney Injury to Chronic Kidney Disease: Maladaptriverrepair. *Contrib Nephrol* (2011) 174:49–55. doi: 10.1159/000329385

40. Andrade L, Rodrigues CE, Gomes SA, Noronha IL. Acute Kidney Injury as a Predictor of Mortality in Sepsis. *Exp Pathol* (2014) 4:50. doi: 10.1016/j.expert.2014.08.004

41. Gewin LS. Renal Fibrosis: Primacy of the Proximal Tubule. *Matrix Biol* (2018) 68:69–248. doi: 10.1016/j.matbio.2018.02.006

42. Lovisa S, Lebleu VS, Tampe B, Sugimoto H, Vadnagaara K, Carstens JL, et al. Epithelial-to-Mesenchymal Transition Induces Cell Cycle Arrest and Parenchymal Fibrosis in Renal Fibrosis. *Nat Med* (2015) 21:998–1009. doi: 10.1038/nm.3902

43. Satoskar AA, Brodsky SV, Nadasy G, Bott C, Rovin B, Hebert L, et al. Discrepancies in Glomerular and Tubulointerstitial/Vascular Immune Complex Iggsbaceous in Lupus Nephritis. *Lupus* (2011) 20:1396–403. doi: 10.1177/0961203311416533

44. Yang S, Tsang RC, Sun Y, Leung JK, Chan TM. Effect of Human Anti-DNA Antibodies on Proximal Renal Tubular Epithelial Cell cytokine Expression: Endothelial Glycocalyx In Lupus Nephritis. *JCI Insight* (2020) 5:131252. doi: 10.1172/jci.insight.131252

45. Wang L, Law H. Immune Complexes Impaired Glomerular Endothelial Cell Functions in Lupus Nephritis. *Int J Mol Sci* (2019) 20:5281. doi: 10.3390/ijms20215281

46. Wang L, Law H. Immune Complexes Suppressed Autophagy in Glomerular Endothelial Cells. *Cell Immunol* (2018) 328:1–8. doi: 10.1016/j.cellimm.2018.02.013

47. Yuan M, Tan Y, Wang Y, Wang SX, Yu F, Zhao MH. The Associations of Endothelial and Podocyte Injury in Prolierative Lupus nephritis: From Observational Analysis to In Vitro Study. *Lupus* (2019) 28:347–58. doi: 10.1177/0961203319828509

48. Sakhi H, Moktefi A, Bouachii K, Audard V, Henique C, Remy P, et al. Podocyte Injury in Lupus Nephritis. *J Clin Med* (2019) 8:1340. doi: 10.3390/jcm8091340

49. Wright RD, Dimou P, Norrsey SJ, Beresford MW. Mesangial Cells are Key Contributors to the Fibrotic Damage Seen in the Lupus Nephritis Glomerulus. *J Inflammation (Lond)* (2019) 16:22. doi: 10.1186/s12951-019-0027-x
Implications on Tubulointerstitial Inflammation in Lupus nephritis. *J Am Soc Nephrol* (2005) 16:3281–94. doi: 10.1681/ASN.2004110917

61. Yung S, Ng CY, Ho SK, Cheung KF, Chan KW, Zhang Q, et al. Anti-DsDNA Antibody Induces Soluble Fibronectin Secretion by Proximal Renal Tubulointerstitial Cells and Downstream Increase of TGF-β1 and Collagen Synthesis. *J Autoimmun* (2015) 58:111–22. doi: 10.1016/j.jaut.2015.01.008

62. Rodrigues-Romo R, Benitez K, Barrera-Chimal J, Pérez-Villalva R, Gómez A, Aguilar-León D, et al. AT1 Receptor Antagonism Before Ischemia Prevents the Transition of Acute Kidney Injury to Chronic Kidney Disease. *Kidney Int* (2016) 89:363–73. doi: 10.1038/ki.2015.320

63. Chen Y, Jiang S, Zou J, Zhong Y, Ding X. Silencing HIF-1α Enhances the Anti-Inflammatory Implications on Tubulointerstitial Inflammation and Fibrosis Via Pi3k/Akt Signal. *Fibrosis* (2016) 8:27/M and Renal Fibrosis. *Fibrosis* (2015) 2016:08.025

64. Gewin L, Zent R, Pozzi A. Progression of Chronic Kidney Disease: Too Much Cellular Talk Causes Damage. *Kidney Int* (2017) 91:552–60. doi: 10.1016/j.kint.2016.08.025

65. Zhang L, Liu L, Bai M, Liu M, Wei L, Yang Z, et al. Hypoxia-Induced HE4 in Tubular Epithelial Cells Promotes Extracellular Matrix Accumulation and Renal Fibrosis Via NF-xB. *FASEB J* (2020) 34:2554–67. doi: 10.1096/fj.201901950R

66. Liu M, Liu L, Bai M, Zhang L, Ma F, Yang X, et al. Hypoxia-Induced Activation of Twist–MIR–214/E-Cadherin Axis Promotes Renal Tubulointerstitial Cell Mesenchymal Transition and Renal Fibrosis. *Biosci Rep* (2018) 49:2324–30. doi: 10.1042/bsr2017.12.130

67. Du R, Xia L, Ning X, Liu L, Sun W, Huang C, et al. Hypoxia-Induced Bmi1 Promotes Renal Tubular Epithelial Cell-Mesenchymal Transition and Renal Fibrosis Via Pi3k/Akt Signal. *Mol Biol Cell* (2014) 25:2650–9. doi: 10.1091/mbc.e14-01-0044

68. Liu T, Liu L, Liu M, Du R, Dang Y, Bai M, et al. Microrna-493 Targets STMN-1 and Promotes Hypoxia-Induced Epithelial Cell Cytoclearest in G (2)/M and Renal Fibrosis. *FASEB J* (2019) 33:1565–77. doi: 10.1096/fj.201713558R

69. Ding Y, Tan Y, Qu Z, Yu F. Renal Microvascular Lesions in Lupus Nephritis. *Ren Fail* (2020) 42:19–29. doi: 10.1080/0886022X.2019.1702057

70. Prechel J, Cizrik J. The Endothelial Depression Hypothesis for Lupus Pathogenesis: the Dual Role of Clqas a Mediator of Clearance and Regulator of Endothelial Permeability. *F1000Res* (2015) 4:24. doi: 10.12688/f1000research.6075.1

71. Athetolúta L, Rojas M, Vásquez GM, Castaño D. Endothelial Alterations in Systemic Lupus Erythematosus and Rheumatoid Arthritis-Potential Effect of Monocyte Interaction. *Mediators Inflammation* (2017) 2017:9680729. doi: 10.1155/2017/9680729

72. Peñin M. Epidemiology of the Antiphospholipid Antibody Syndrome. *J Autoimmun* (2000) 15:145–51. doi: 10.1006/jaut.2000.0409

73. Wu LH, Yu F, Tan Y, Qi Z, Chen MH, Wang SX, et al. Inclusion of Renal Vascular Lesions in the 2003 ISN/RPS System for Classifying Lupusnephritis Improves Renal Outcome Predictions. *Kidney Int* (2013) 83:715–23. doi: 10.1038/ki.2012.409

74. Barber C, Herzenberg A, Aghdassi E, Su J, Lou W, Qian G, et al. Evaluation of Clinical Outcomes and Renal Vascular Pathology Among Patients Withlupus. *Clin J Am Soc Nephrol* (2012) 7:757–64. doi: 10.2215/CJN.02870311

75. Dall’Era MC, Cardarelli PM, Preston BT, Witte A, Davis JJ. Type I Interferon Correlates With Serological and Clinical Manifestations of SLE. *Ann Rheum Dis* (2005) 64:1692–7. doi: 10.1136/ard.2004.033753

76. Oke V, Gunnarsdóttir I, Dorschner J, Ektälä J, Zickert A, Niewold TB, et al. High Levels of Circulating Interferons Type I, Type II and Type III Associate With Distinct Clinical Features of Active Systemic Lupus Erythematosus. *Arthritis Res Ther* (2019) 21:107. doi: 10.1186/s13075-019-1878-y

77. Newling M, Flechter RH, Sritharan L, Hoepel W, van Burgsteden IA, Hak AE, et al. Dysregulated Fcγ Receptor Ia-Induced Cytokine Production in Dendritic Cells Lupus Nephritis Patients. *Clin Exp Immunol* (2020) 199:39–49. doi: 10.1111/cei.13371

78. Triantafyllopoulos A, Franzeck CW, Seshan SV, Perino G, Kalliolias GD, Ramanujam M, et al. Proliferative Lesions and Metalloproteinase Activity in Murine Lupus Nephritismediated by Type I Interferons and Macrophages. *Proc Natl Acad Sci USA* (2010) 107:3012–7. doi: 10.1073/pnas.0914902107
Ding et al. IFN-I Promotes LN
175. Wang G, Wu L, Su H, Feng X, Shi M, Jin L, et al. Association of Urinary Matrix Metalloproteinase 7 With Incident Renal Flare in Lupusnephritis. *Arthritis Rheumatol* (2020) 73:265–75. doi: 10.1002/art.41506

176. Lee JM, Kronbichler A, Park SJ, Kim SH, Han KH, Kang HG, et al. Association Between Serum Matrix Metalloproteinase- (MMP-) 3 Levels and Systemic Lupus Erythematosus: a Meta-Analysis. *Dis Markers* (2019) 2019:979673.5 doi: 10.1155/2019/9796735

177. Gheita TA, Abdel RD, Kenawy SA, Gheita HA. Clinical Significance of Matrix Metalloproteinase-3 in Systemic Lupus Erythematosus patients: a Potential Biomarker for Disease Activity and Damage. *Acta Reumatol Port* (2015) 40:145–9.

178. Tveita AA, Rekvig OP, Zykova SN. Increased Glomerular Matrix Metalloproteinase Activity in Murine Lupus Nephritis. *Kidney Int* (2008) 74:1510–8. doi: 10.1038/2008.308

179. Adamidis KN, Kopaka ME, Petraki C, Charitaki E, Apostolou T, Paccosi S, Musilli C, Mangano G, Guglielmotti A, Parenti A. The Monocyte and the Pathway Involved. *Physiol Renal Physiol* (2011) 66:526–8. doi: 10.1371/journal.pone.0052415

180. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The Pro- and Anti-Interferon Pathway on Renal Mesangial Cells. *Arthritis Rheumatol* (2019) 73:265–75. doi: 10.1002/art.41506

181. Ding et al. IFN-I Promotes LN Matrix Metalloproteinase Activity in Murine Lupus Nephritis. *Immunopharmacol Immunotoxicol* (2016) 38:39–49. doi: 10.3109/08923973.2015.1127382

182. Frutz F, Zeisberg M, Hemmerlein B, Battler S, Himmel K, Becker V, et al. Basic Fibroblast Growth Factor Expression is Increased in Human Renal Fibrogenesis and may Mediate Autocrine Fibroblast Proliferation. *Kidney Int* (2001) 57:1521–38. doi: 10.1046/j.1523-1755.2000.00997.x

183. Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, et al. TGF-Beta 1 Induces Proliferation in Human Renal Fibroblasts Via Induction of Basicfibroblast Growth Factor (FGF-2). *Kidney Int* (2001) 59:579–92. doi: 10.1046/j.1523-1755.2001.059002579.x

184. Sommer M, Eisemann U, Gerth J, Stein G. Interleukin 4 Co-Stimulates the PDGF-BB- and BFGF-Mediated Proliferation Ofmesangial Cells and Myofibroblasts. *Nephron* (2002) 92:868–80, 880–882. doi: 10.1139/000065451

185. Kalluri R, Neilson EG. Epithelial-Mesenchymal Transition and its Implications for Fibrosis. *J Clin Invest* (2003) 112:1776–84. doi: 10.1172/JCI200320530

186. Zeisberg M, Maeshima Y, Mosterman B, Kalluri R. Renal Fibrosis. Extracellular Matrix Microenvironment Regulates Migratory Behavior of Activated Tubular Epithelial Cells. *Am J Pathol* (2002) 160:2011–8. doi: 10.1016/S0002-9440(10)61150-9

187. Yang J, Liu Y. Dissection of Key Events in Tubular Epithelial to Myofibroblast Transition and Itsimplications in Renal Interstitial Fibrosis. *Am J Pathol* (2001) 159:1465–75. doi: 10.1016/S0002-9440(10)62533-3

188. Gwon MG, An HJ, Kim JY, Kim WH, Gu H, Kim HJ, et al. Anti-Fibrotic Effects of Synthetic TGF-B1 and Smad Oligodeoxynucleotide on Kidney Fibrosis In Vivo and In Vitro Through Inhibition of Both Epithelial-mesenchymal and Endothelial-Mesenchymal Transitions. *FASEB J* (2020) 34:333–49. doi: 10.1096/fj.201901307RR

189. Li J, Xu Q, Bertram JF. Endothelial-Myofibroblast Transition Contributes to the Early Development Ofdiabetic Renal Interstitial Fibrosis in Streptozotocin-Induced Diabetic Mice. *Am J Pathol* (2009) 175:1380–8. doi: 10.2353/ajpath.2009.090096

190. Tan TK, Zheng G, Hsu TT, Wang Y, Lee VW, Tian X, et al. Macrophage Matrix Metalloproteinase-9 Mediates Epithelial-Mesenchymal Transition In vitro in Murine Renal Tubular Cells. *Am J Pathol* (2010) 176:1256–70. doi: 10.2353/ajpath.2010.090188

191. Zhao Y, Qiao X, Wang L, Tan TK, Zhao H, Zhang Y, et al. Matrix Metalloproteinase 9 Induces Endothelial-Mesenchymal Transition Via Notchactivation in Human Kidney Glomerular Endothelial Cells. *BMC Cell Biol* (2016) 17:21. doi: 10.1186/s12866-016-0160-0

192. Du F, Li S, Wang T, Zhang HY, Li DT, Du ZX, et al. Implication of Bcl-2-Associated Athanogene 3 in Fibroblast Growth Factor-2-Mediatedepithelial-Mesenchymal Transition in Renal Epithelial Cells. Exp Biol Med (Maywood) (2015) 240:566–75. doi: 10.1177/1535370514558023

193. Masola V, Gambaro G, Tibaldi E, Brunati AM, Gastaldello A, D’Angelo A, et al. Heparin and Syndecan-1 Interplay Orchestrates Fibroblast Growth Factor-2-InducedEpithelial-Mesenchymal Transition in Renal Tubular Cells. *J Biol Chem* (2017) 282:1478–88. doi: 10.1074/jbc.M117.729586

194. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Müller GA, et al. Role of Basic Fibroblast Growth Factor-2 in Epithelial-Mesenchymal Transformation. *Kidney Int* (2001) 61:1714–28. doi: 10.1046/j.1523-1755.2002.00333.x

195. Lawson JS, Syme HM, Wheeler-Jones C, Elliott J. Characterisation of Feline Renal Cortical Fibroblast Cultures and Theirtranscriptional Response to Transforming Growth Factor B1. *BMC Vet Res* (2018) 14:76. doi: 10.1186/ s12917-018-1387-2

196. Vernon MA, Mylonas KJ, Hughes J. Macrophages and Renal Fibrosis. *Semin Nephrol* (2010) 30:302–17. doi: 10.1016/j.seneph.2010.03.004
212. Nikolic-Paterson DJ, Atkins RC. The Role of Macrophages in Glomerulonephritis. *Nephrol Dial Transplant* (2001) 16 Suppl 5:S–7. doi: 10.1093/ndt/16.suppl.5

213. Nakatsuji S, Yamate J, Sakuma S. Macrophages, Myofibroblasts, and Extracellular Matrix Accumulation in Interstitial Fibrosis of Chronic Progressive Nephropathy in Aged Rats. *Vet Pathol* (1998) 35:352–60. doi: 10.1177/03009858983500504

214. Lechner J, Krall M, Netzer A, Radmayr C, Ryan MP, Pfaller W. Effects of Interferon Alpha2b Increases Paracellular Permeability of Renal Proximal Tubularar-PK1 Cells Via a Mitogen Activated Protein Kinase Signaling Pathway. *Ren Fail* (2001) 23:573–88. doi: 10.1081/JDI-100104739

215. Lechner J, Kral M, Netzer A, Radmayr C, Ryan MP, Pfafier W. Effects of Interferon Alpha-2b on Barrier Function and Functional Complexes of Renalproximal Tubularar-PK1 Cells. *Kidney Int* (1999) 55:2178–91. doi: 10.1046/j.1523-1755.1999.00487.x

216. Lechner J, Malloth N, Soppi T, Beer B, Jennings P, Pfafier W. IFN-Alpha Induces Barrier Destabilization and Apoptosis in Renal Proximal Tubularepithelium. *Am J Physiol Cell Physiol* (2008) 294:C153–60. doi: 10.1152/ajpcell.00120.2007

217. Der E, Suryawanshi H, Morozov P, Kustagi M, Goilav B, Ranabothu S, et al. Tubular Cell and Keratinocyte Single-Cell Transcriptional Applied to Lupus Nephritisreveal Type 1 IFN and Fibrosis Relevant Pathways. *Nat Immunol* (2019) 20:915–27. doi: 10.1038/s41590-019-0386-1

218. Der E, Ranabothu S, Suryawanshi H, Akat KM, Clancy R, Morozov P, et al. Single Cell RNA Sequencing to Dissect the Molecular Heterogeneity in Lupusnephritis. *JCI Insight* (2017) 2:93009. doi: 10.1172/jci.insight.93009

219. Hao W, Rovin BH, Friedman A. Mathematical Model of Renal Interstitial Fibrosis. *Proc Natl Acad Sci USA* (2014) 111:4193–8. doi: 10.1073/pnas.131970127

220. Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis Ofsystemic Lupus Erythematosus. *Front Immunol* (2020) 11:581385. doi: 10.3389/fimmu.2020.581385

221. Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MF. Inflammamsose Activation of IL-18 Results in Endothelial Progenitor Cell Dysfunction in Systemic Lupus Erythematosus. *J Immunol* (2011) 187:6143–56. doi: 10.4049/jimmunol.1101284

222. Spinelli FR, Barbati C, Cecarelli F, Morello F, Colasante T, Vomero M, et al. B Lymphocyte Stimulator Modulates Number and Function of Endothelial Progenitor Cells in Systemic Lupus Erythematosus. *Arthritis Res Ther* (2019) 21:245. doi: 10.1186/s13075-019-0155-7

223. Lin SL, Kisseleva T, Brenner DA, Dufield JS. Pericytes and Perivascular Fibroblasts are the Primary Source of Collagen-Producingcells in Obstructive Fibrosis of the Kidney. *Am J Pathol* (2008) 173:1617–27. doi: 10.2353/ajpath.2008.080433

224. Mack M, Yanagita M. Origin of Myofibroblasts and Cellular Events Triggering Fibrosis. *Kidney Int* (2015) 87:297–307. doi: 10.1038/krin.2014.287

225. Gomez IG, Roach AM, Nakagawa N, Amatucci A, Johnson BG, Dunn K, et al. TWEAK-Fn14 Signaling Activates Myofibroblasts to Drive Progression of Fibrotickidney Disease. *J Am Soc Nephrol* (2016) 27:3639–52. doi: 10.1681/ASN.2015111227

226. Bijkkerk R, de Bruin RG, van Solingen C, van Gils JM, Duijs JM, van der Veer MJ. In *Kidney Int* (2011) 80:1170. doi: 10.1038/ki.2011.208

227. Wang N, Deng Y, Liu A, Shen N, Wang W, Du X, et al. Transforming Growth Factor β-1 Stimulates Profibrotic Epithelial Signaling Toactivate Pericyte-Myofibroblast Transition in Obstructive Kidney Fibrosis. *Am J Pathol* (2013) 182:118–31. doi: 10.1016/j.ajpath.2012.09.009

228. Wang N, Deng Y, Liu A, Shen N, Wang W, Du X, et al. Novel Mechanism of the Pericyte-Myofibroblast Transition in Renal Interstitialfibrosis: Core Fucosylation Regulation. *Sci Rep* (2017) 7:16914. doi: 10.1038/s41598-017-17193-5

229. Stefanska A, Kenyon C, Christian HC, Buckley C, Shaw I, Mullins JJ, et al. Human Kidney Pericytes Produce Renin. *Kidney Int* (2016) 90:1251–61. doi: 10.1016/j.kint.2016.07.035

230. Dufield JS, Lusher M, Thannickal VJ, Wynn TA. Host Responses in Tissue Repair and Fibrosis. *Ann Rev Pathol* (2013) 8:241–76. doi: 10.1146/annurev-pathol-020712-163930

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ding, Ren and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Abbreviation	Description
AC	adenylyl cyclase
AGN	autoimmune glomerulonephritis
APOL1	apolipoprotein L1
APL	anti-phospholipid antibody
BAFF	B cell activating factor
BCR	B-cell receptor
cAMP	cyclic adenosine monophosphate
cGAS	cyclic GMP-AMP (cGAMP) synthase
CIC	circulating immune complex
COL I	type I collagen
COL III	type III collagen
CTGF	connective tissue growth factor
CXCL	(C-X-C motif) ligand
CXCR3B	chemokine-receptor-3B
DAI	DNA-dependent activator of IFN-regulatory factors
Dnase-1	deoxyribonuclease 1
EC	endothelial cell
ECM	extracellular matrix
EDS	electron-dense structures
ESRD	end-stage renal disease
EMT	epithelial-to-mesenchymal transition
EndMT	endothelial-to-mesenchymal transition
EPC	endothelial progenitor cell
FGF-2	fibroblast growth factor 2
FN	fibronectin
FPE	foot process effacement
GBM	glomerular basement membrane
GEC	glomerular endothelial cell
HA	hyaluronic acid
HIF-1α	hypoxia-inducing factor-1α
IC	immune complex
ICD	vascular immune complex deposits
IFI16	interferon-inducible protein 16
IFNAR	type I interferon receptor
IFN-1	type I interferons
ISG	IFN-stimulated gene
LN	lupus nephritis
LN-ESRD	end-stage renal disease associated with lupus nephritis
MAMS	mitochondrial antiviral signaling
MCP-1	monocyte chemotaxis proteins 1
MDAS	melanoma differentiation-associated protein 5
MIF	macrophage inhibitory factor
MMP	matrix metalloproteinases
NET	neutrophil extracellular trap
NNV	non-inflammatory necrotizing vasculopathy
PA	plasminogen activator
PAI-1	plasminogen activator inhibitor 1
pDC	plasmacytoid dendritic cell
PDGF	platelet-derived growth factor
PEC	parietal epithelial cell
PKA	protein kinase A
PTC EC	peritubular capillary endothelial cell
RIG-I	retinoic acid-inducible gene 1
RMC	renal mesangial cell
ROS	reactive oxygen species
SLE	systemic lupus erythematosus
STING	stimulator of interferon genes
TBK1	TANK-binding kinase 1
TEC	renal tubular epithelial cell
TFH	follicular helper T cell
TGFB-1	transforming growth factor-β1

(Continued)