Formation of 7-carboxyheptyl radical induced by singlet oxygen in the reaction mixture of oleic acid, riboflavin and ferrous ion under the UVA irradiation

Hiroko Morii,1,2 and Hideo Iwahashi1,*

1Department of Chemistry, Wakayama Medical University, 580 Mikazura, Wakayama 641-8509, Japan
2Morinomiya College of Medical Arts and Sciences, 4-1-8 Nakamoto, Higashinari, Osaka 537-0022, Japan

(Received 2 December, 2010; Accepted 21 February, 2011; Published online 13 July, 2011)

Identification of the radicals was performed for the standard reaction mixtures, which contained 4.3 mM oleic acid, 25 μM riboflavin, 1 mM FeSO₄(NH₄)₂SO₄, 10 mM cholic acid, 40 mM phosphate buffer (pH 7.4) and 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone under the UVA irradiation (365 nm), using an electron spin resonance, an high performance liquid chromatography-electron spin resonance and an high performance liquid chromatography-electron spin resonance-mass spectrometry. The electron spin resonance and high performance liquid chromatography-electron spin resonance measurements of the standard reaction mixtures showed prominent signals (ω∥ = 1.58 mT and ω⊥ = 0.26 mT) and peaks 1 and 3 (retention times: 37.0 min and 49.0 min). Since the peak 3 was not observed for the standard reaction mixture without oleic acid, the radical of the peak 3 seems to be derived from oleic acid. Singlet oxygen seems to participate in the formation of the oleic acid-derived radicals because the peak height of the peak 3 observed in the standard reaction mixture of D₂O increased to 308 ± 72% of the control. The high performance liquid chromatography-electron spin resonance-mass spectrometry analysis showed that 7-carboxyheptyl radical forms in the standard reaction mixture.

Key Words: oleic acid, lipid, radical, HPLC-ESR-MS, UVA

O f the various oxidative stresses, UV irradiation is one of the primary factors. Chronic exposure of solar UV irradiations to mammalian skins induces a number of biological responses, including erythema, edema, sunburn cell formation, hyperplastic responses, photoaging and skin cancer development.1–3 Increasing evidences showed that free radicals may be involved in the acute sunburn reactions.14–20 Indeed, reactive oxygen species (ROS) such as hydrogen peroxide, O₂⋅−, O₂:− and nitric oxide were detected under the UV irradiation.21–23 Following UV-exposure, the ROS play a major role, in addition to DNA damage,24 in producing lipid-derived radicals and the peroxidation of membrane lipids that seem to be responsible for the destruction of the cell membrane and ultimately the cell.25–27 The UV-induced lipid peroxidation occurs either through a free radical chain reaction28–30 or alternatively through a non-radical pathway by a direct reaction with singlet oxygen (O₂).11,16,17

Since UVB (315–280 nm) radiation constitutes only 5% of the solar UV radiation that reaches the surface of the earth, skin damages are not caused entirely by the UVB. Sufficient evidences indicated that UVA (400–315 nm) radiation, which accounts for the major portion of the solar UV radiation leads to skin damages.31,32 The UVA-induced damages would be mediated by endogenous and/or exogenous photosensitizers. A particularly interesting photosensitizer is riboflavin (Rf), a member of the vitamin B₂ complex, which is a natural compound present in most living organisms.23 The Rf can potentially act as a natural endogenous photosensitizer.21,22 The usual mechanism of action of this sensitizer is rather complex. The Rf photodecomposes under aerobic UV or visible irradiation, in most of the cases with the concurrent involvement of ROS such as singlet oxygen (O₂) and superoxide anions (O₂−).13,23–26

In spite of the intensive ESR studies on the reaction of Rf with natural or external compounds under the UVA irradiation, the radical species formed in the reaction mixtures have not been identified. In order to clarify the mechanism of UVA-induced skin damages mediated by endogenous and/or exogenous photosensitizers, in this study, identification of the lipid-derived radicals was performed for the standard reaction mixture which contained 4.3 mM oleic acid, 25 μM riboflavin, 1 mM FeSO₄(NH₄)₂SO₄, 10 mM cholic acid, 40 mM phosphate buffer (pH 7.4), and 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone under the UVA irradiation (365 nm) using the ESR, the HPLC-ESR and the HPLC-ESR-MS.27 A spin trap reagent, α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) was used to trap the lipid-derived radicals.

Materials and Methods

Chemicals. α-(4-Pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) was purchased from Tokyo Kasei Kogyo, Ltd. (Tokyo, Japan). Sodium azide and Rf were purchased from Wako Pure Chemical Industries (Osaka, Japan). Superoxide dismutase (SOD) from bovine erythrocytes and catalase from bovine liver were from Sigma-Aldrich Co. (St. Louise, MO). All other chemicals used were of analytical grade.

ESR studies. The ESR experiments were carried out on a JES-FR 30 Free Radical Monitor (JEOL Ltd., Tokyo, Japan). Operating conditions of the ESR spectrometer were: power, 4 mW; modulation width, 0.1 mT; time constant, 0.3 sec. Magnetic fields were calculated by the splitting of MnO (ΔH = 8.69 mT).

HPLC-ESR chromatography. An HPLC used in the HPLC-ESR consisted of a model 7125 injector (Reodyne, Cotati, CA), a model L-7100 pump (Hitachi Ltd., Ibaragi, Japan), a semi-preparative column (300 mm long × 10 mm i.d.) packed with TSKgel ODS-120T (TOSOH Co., Tokyo, Japan) was used. Flow
The standard reaction mixtures without 1 mM FeSO$_4$ and 0.1 M 4-POBN were exposed to 7.8 J/cm2 aperture, 120 α-particle width, 0.2 mT; time constant, 1 sec. The magnetic field was 1.58 mT and $\alpha$$_N$= 0.26 mT of the 4-POBN radical adducts.

HPLC-ESR-MS chromatography. The HPLC and ESR conditions were as described in the HPLC-ESR. The operating conditions of the ESI-MS were: nebulizer, 180 °C; aperture, 120°C; N$_2$ controller pressure, 19.6 N/cm2; drift voltage, 70 V; multiplier, 2000 V; needle voltage, 4000 V; polarity, positive; resolution, 48. The mass spectra were obtained by introducing the eluent from the ESR detector into the ESI-MS system just before the peak was eluted. The flow kept at 50 μl/min while the eluent was introducing into the ESI-MS.

Standard reaction conditions. The standard reaction mixture contained 4.3 mM oleic acid, 25 μM Rf, 40 mM phosphate buffer (pH 7.4), 10 mM cholic acid, 0.1 M 4-POBN and 1 mM FeSO$_4$(NH$_4$)$_2$SO$_4$ in a quartz test tube (100 mm long × 8 mm i.d.). The standard mixture was exposed to 7.8 J/cm2 UVA light under air using a 400 W UV lamp and a LX0365 bandpass filter (365 nm) (ASAHI SPECTRA Co., Tokyo, Japan). After the UVA irradiation, the HPLC-ESR analyses were performed for the standard reaction mixtures at a modulation of 0.2 mT. Prominent peaks (peaks 1 and 3) were observed on the HPLC-ESR elution profile of the standard reaction mixture under the UVA irradiation (Fig. 1). The retention times of the peaks 1 and 3 are 37.0 and 49.0 min, respectively. The peak 3 was hardly observed for the standard reaction mixture without the UVA irradiation (or Fe$_{2+}$, or Rf, or oleic acid) (Figs. 1B–E).

Reaction in D$_2$O. After water was removed from the standard reaction mixture without 0.1 M 4-POBN and 1 mM FeSO$_4$(NH$_4$)$_2$SO$_4$ using centrifugal concentrator cc-105 (Tomy Seiko Co., Ltd., Tokyo, Japan), D$_2$O was added to the reaction mixture. The other reaction conditions were as described for the standard reaction conditions. The control reaction was performed by addition of H$_2$O instead of D$_2$O.

Results

ESR measurements of the standard reaction mixtures under the UVA irradiation. ESR spectra were measured for the standard reaction mixtures under the UVA irradiation (Fig. 1). A prominent ESR spectrum ($\alpha$$_N$= 1.58 mT and $\alpha$$_{1\beta}$= 0.26 mT) was observed in the standard reaction mixture (Fig. 1A), suggesting that free radicals form in the standard reaction mixture. The ESR spectrum was hardly observed for the standard reaction mixture without the UVA irradiation (or Fe$_{2+}$, or Rf, or oleic acid) (Figs. 1B–E).

UVA irradiation energy dependence of the ESR peak height. UVA irradiation energy dependence of the ESR peak height was observed (Fig. 2). The ESR peak height increased with increase of the irradiation energy, and reached a plateau at 2 J/cm2.

HPLC-ESR analyses of the standard reaction mixtures under the UVA irradiation. To know which radicals formed in the standard reaction mixtures of oleic acid, Rf and iron ions under the UVA irradiation, the HPLC-ESR analyses were performed for the standard reaction mixtures at a modulation of 0.2 mT. Prominent peaks (peaks 1 and 3) were observed on the HPLC-ESR elution profile of the standard reaction mixture under the UVA irradiation (Fig. 3A). The retention times of the peaks 1 and 3 are 37.0 and 49.0 min, respectively. The peak 3 was hardly observed for the standard reaction mixture without the UVA irradiation (or Fe$_{2+}$, or Rf, or oleic acid) (Figs. 3B–E). The peak 1 was not observed for the standard reaction mixture without Rf (Fig. 3D).

HPLC-ESR-MS analyses of the standard reaction mixtures under the UVA irradiation. To determine the structures of the peak 1 and peak 3 compounds observed on the HPLC-ESR elution profile of the standard reaction mixture under the UVA irradiation, the HPLC-ESR-MS analyses were performed at a modulation of...
The HPLC-ESR-MS analysis of the peak 1 compound gave ions at m/z 377 (Fig. 4A). The ions at m/z 377 correspond to the protonated molecules of Rf, [M + H]^+. ESR spectra of the peak 1 were measured (Fig. 5). Although no ESR signal was observed at a modulation of 0.1 mT (Fig. 5A), a broad ESR signal was observed at a modulation of 0.2 mT (Fig. 5B), suggesting that a relatively stable Rf radical with broad ESR signals forms in the reaction mixture.

The HPLC-ESR-MS analysis of the peak 3 compound gave ions at m/z 251 and m/z 338 (Fig. 4B). The ions at m/z 338 correspond to the protonated molecules of the 4-POBN/7-carboxyheptyl radical adducts, [M + H]^+. The fragment ions at m/z 251 correspond to the loss of (CH\textsubscript{3})\textsubscript{3}C(O)N from the protonated molecules.

Effects of some compounds on the ESR and HPLC-ESR peak heights. To know whether singlet oxygens are involved in the radical formation, the reactions were performed in D\textsubscript{2}O. The ESR peak heights which were observed for the reaction in D\textsubscript{2}O increased to 248 ± 9% of the control (Table 1). The HPLC-ESR peak height of the peak 3 which were observed for the reaction in D\textsubscript{2}O also increased to 308 ± 72% of the control.

When a singlet oxygen scavenger, azide was added to the standard reaction mixtures of oleic acid, the ESR peak height interestingly increased to 198 ± 14% (156 ± 26%) of the control under the 7.8 J/cm2 (1.95 J/cm2) UV A irradiation (Table 1). To check the pH change due to the addition of 20 mM sodium azide, the reactions were performed in the 140 mM phosphate buffer (pH 7.4). On addition of 20 mM sodium azide, the ESR peak height of the oleic acid-derived radicals also increased to 149 ± 3% of the control even in the 140 mM phosphate buffer under the 1.95 J/cm2 UVA irradiation (Table 1). On addition of 0.2 mM sodium azide, the ESR peak height also increased to 157 ± 27% of the control under the 1.95 J/cm2 UVA irradiation (Table 1). Thus, sodium azide seems to enhance the radical formation under various conditions. To investigate which radicals form in the standard reaction mixture with sodium azide, HPLC-ESR and HPLC-ESR-
MS analyses were performed (Figs. 6 and 7). The HPLC-ESR analysis detected four peaks (peaks 1–4) at the retention times of 37.6 min, 46.5 min, 49.0 min and 51.8 min. Based on the retention times, the peaks 1 and 3 correspond to Rf radicals and 4-POBN/7-carboxyheptyl radical adducts, \([M + H]^+\).

The HPLC-ESR-MS analyses of the two new peaks (peaks 2 and 4) were performed (Fig. 7). The HPLC-ESR-MS analysis of the peak 2 compound gave ions at \(m/z\) 324 (Fig. 7A). The ions at \(m/z\) 324 correspond to the protonated molecules of the 4-POBN/6-carboxyhexyl radical adducts, \([M + H]^+\). The HPLC-ESR-MS analysis of the peak 4 compound gave ions at \(m/z\) 352 (Fig. 7B).

To investigate the effect of SOD on the radical formation, the ESR measurements were performed for the standard reaction mixtures with SOD (Table 1). On addition of 300 units/ml SOD under the 1.95 J/cm\(^2\) UVA irradiation, the ESR peak height kept unchanged (Table 1).

Discussion

In the present investigation, it was shown that the 7-carboxyheptyl radical form in the standard reaction mixture under the UVA irradiation. SOD and catalase exerted little effect on the radical formation. Superoxide anions and hydrogen peroxide do not mainly participate in the formation of the oleic acid-derived radicals. When the reaction was performed in D\(_2\)O, the ESR peak height increased. Thus, singlet oxygens seem to be involved in the formation of the oleic acid-derived radicals because D\(_2\)O increases the lifetime of singlet oxygens.\(^{28}\)

A possible reaction path for the formation of the 7-carboxyheptyl radical is as follows (Fig. 8). The excited singlet state sensitizer \(^1\)(Riboflavin)*, which is produced under the UVA irradiation turns to the excited triplet state \(^3\)(Riboflavin)* through intersystem crossing. The excited triplet state \(^3\)(Riboflavin)* may reacts with triplet oxygen to form singlet oxygen (Eq. 1).\(^{25,29}\)

Table 1. Effects of some compounds on the ESR peak heights (ESR) and peak 3 peak heights (HPLC-ESR)

compounds added and irradiation energies	% control
D\(_2\)O (ESR), 7.8 J/cm\(^2\)	248 ± 9
D\(_2\)O (HPLC-ESR), 7.8 J/cm\(^2\)	308 ± 72
Azide (20 mM)(ESR), 7.8 J/cm\(^2\)	198 ± 14
Azide (20 mM)(ESR), 1.95 J/cm\(^2\)	156 ± 26
Azide (20 mM)(ESR), 1.95 J/cm\(^2\)	149 ± 3*
Azide (0.2 mM)(ESR), 1.95 J/cm\(^2\)	157 ± 27
SOD (300 units/ml)(ESR), 1.95 J/cm\(^2\)	95 ± 5.5
Catalase (1260 units/ml)(ESR), 1.95 J/cm\(^2\)	115 ± 23

Results are means ± SD of three experiments. The reactions were performed as described in Materials and Methods except for the data indicated by *.

Fig. 6. The HPLC-ESR analysis of the standard reaction mixture with 20 mM sodium azide. The reaction and HPLC-ESR conditions were as described in Materials and Methods except for the total volume and the composition of the reaction mixture. The total volume of the reaction mixture was 3.0 ml. The standard reaction mixture with 20 mM sodium azide was analyzed using the HPLC-ESR.

Fig. 7. HPLC-ESR-MS analyses of the peaks 2 and 4 observed for the standard reaction mixture with sodium azide. The reaction and HPLC-ESR-MS conditions were as described in Materials and Methods except for the total volume and the composition of the reaction mixture. The total volume of the reaction mixture was 3.0 ml. The standard reaction mixture with 20 mM sodium azide was analyzed using the HPLC-ESR-MS. (A) Peak 2. (B) Peak 4.
Fig. 8. A possible reaction path for the formation of the 7-carboxyheptyl radical (Peak 3) in the standard reaction mixture.

Fig. 9. A possible reaction path for the formation of the 6-carboxyhexyl radical (Peak 2) in the standard reaction mixture with sodium azide.
The reaction of oleic acid with the singlet oxygen results in the formation of LOOH (9-hydroperoxy-10-octadecenoic acid or 10-hydroperoxy-9-octadecenoic acid) through the singlet oxygen ene reaction (Eq. 2). The reaction of oleic acid with the singlet oxygen results in the formation of 8-hydroperoxy-9-octadecenoic acid. This reaction yields a radical intermediate LOO•[1-(6-carboxyhexyl)-2-undecenyl] radical. The β-scission of the LO• results in the generation of the 6-carboxyhexyl radical (Fig. 6, peak 2). On the other hand, the H-abstraction of oleic acid at C11 could result in the formation of heptyl radical. We could not detect the radical. Since the 4-POBN used in this experiment is a relatively polar molecule, heptyl radical which is located at the non-polar area may be difficult to be trapped by the 4-POBN. Addition of azide to the standard reaction mixture interestingly resulted in the increase of the ESR peak height and appearance of the two new peaks (peak 2 and 4) on the elution profile of the HPLC-ESR analysis. On addition of the singlet oxygen scavenger, azide, a reactive compound which can subtract hydrogen atoms from oleic acid or RF may form in the reaction mixture. The H-abstraction of oleic acid at C8 result in the formation of 8-hydroperoxy-9-octadecenoic acid. This reaction yields a radical intermediate LOO•[1-(6-carboxyhexyl)-2-undecenyl] radical. The β-scission of the LO• could result in the generation of the 6-carboxyhexyl radical (Fig. 6, peak 2). Since the 4-POBN used in this experiment is a relatively polar molecule, heptyl radical which is located at the non-polar area may be difficult to be trapped by the 4-POBN. The H-abstraction of Rf could result in the formation of Rf radical.

References
1 Mukhtar H, Elmets CA. Photocarcinogenesis: mechanisms, models and human health implications. Photochem Photobiol 1996; 63: 356–357.
2 Goihman-Yahr M. Skin aging and photoaging: An outlook. Clin Dermatol 1996; 14: 153–160.
3 Young AR. Cumulative effects of ultraviolet radiation on the skin: cancer and photoaging. Semin Dermatol 1990; 9: 25–31.
4 Taira J, Mimura K, Yoneya T, Hagi A, Murakami A, Makino K. Hydroxy radical formation by UV-irradiated epidermal cells. J Biochem 1992; 111: 693–695.
5 Jurkiewicz BA, Buettner GR. Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study. Photochem Photobiol 1994; 59: 1–4.
6 Shindo Y, Witt E, Han D, Packer L. Dose-response effects of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis. J Invest Dermatol 1994; 102: 470–475.
7 Katiyar SK, Afag F, Perez A, Mukhtar H. Green tea polyphenol (–)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 2001; 22: 287–294.
8 Pathak MA, Joshi PC. Production of active oxygen species (‘O2 and ‘O•) by psoralens and ultraviolet radiation (320–400 nm). Biochim Biophys Acta 1984; 798: 115–126.
9 Herrling T, Fuchs J, Rehberg J, Groth N. UV-induced free radicals in the skin detected by ESR spectroscopy and imaging using nitroxides. Free Radic Biol Med 2003; 35: 59–67.
10 Herrling T, Jung K, Fuchs J. Measurements of UV-generated free radicals/ reactive oxygen species (ROS) in skin. Spectrochim Acta A Mol Biomol Spectrosc 2006; 63: 840–845.
11 Haywood R, Rogge F, Lee M. Protein, lipid, and DNA radicals to measures skin UVA damage and modulation by melanin. Free Radic Biol Med 2008; 44: 990–1000.
12 Tanaka M, Ohkubo K, Fukuzumi S. DNA cleavage by UV A irradiation of NADH with dioxygen via radical chain processes. J Phys Chem A 2006; 110: 11214–11218.
13 Ananthaswamy HN, Pierceall WE. Molecular mechanisms of ultraviolet radiation carcinogenesis. Photochem Photobiol 1990; 52: 1119–1136.
14 Ogura R, Sugiyama M, Nishi J, Haramaki N. Mechanism of lipid radical formation following exposure of epidermal homogenate to ultraviolet light. J Invest Dermatol 1991; 97: 1044–1047.
15 Mazari A, Iwamoto S, Yamachi R. Ultraviolet A-induced peroxidation of phosphatidylcholine in unilamellar liposomes. Bioch Biophys Acta Bioch 2009; 73: 1212–1214.
16 Baier J, Maisch T, Regensburger J, Pöllmann C, Bäumler W. Optical detection of singlet oxygen produced by fatty acids and phospholipids under ultraviolet A irradiation. J Biochem Opt 2008; 13: 044029-1–7.
17 Xia Q, Yin JI, Cheng SH, et al. UVA photoradiation of retinyl palmitate—formation of singlet oxygen and superoxide, and their role in induction of lipid peroxidation. Toxicol Lett 2006; 163: 30–43.
18 Moon J, Dahlback A, Seltow RB. Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation. Photochem Photobiol 1999; 70: 243–247.
19 Garland CF, Garland FC, Gorman ED. Epidemiologic evidence for different roles of ultraviolet A and B radiation in melanoma mortality rates. Ann Epidemiol 2003; 13: 395–404.
20 Heelis PF. The photophysical and photochemical properties of flavins (isalloxazines). Chem Soc Rev 1982; 11: 15–39.
21 Edwards AM, Silva E. Effect of visible light on selected enzymes, vitamins and amino acids. J Photochem Photobiol B 2001; 63: 126–131.
22 Massad WA, Barbieri Y, Romero M, Garcia NA. Vitamin B-sensitive photo-oxidation of dopamine. Photochem Photobiol 2008; 84: 1201–1208.
23 Chacon JN, McLearey J, Sinclair RS. Singlet oxygen yields and radical contributions in the dye-sensitised photo-oxidation in methanol of esters of polyunsaturated fatty acids (oleic, linoleic, linolenic and arachidonic). Photochem Photobiol 1994; 57: 477–484.
24 Apuzzo A, Gianotti J, Stettler G, et al. Modelling the natural photodegradation of water contaminants: a kinetic study on the light-induced aerobic interactions between riboflavin and 4-hydroxypyridine. Photochem Photobiol A 2001; 139: 199–204.
25 Ahmad I, Fasihullah Q, Noor A, Ansari IA, Ali QN. Photolysis of riboflavin in aqueous solution: a kinetic study. Int J Pharm 2004; 280: 199–208.
26 Krishna CM, Uppuluri S, Riesz P, Zialet J S Jr, Balasubramanian D. A study of the photodynamic efficiencies of some eye lens constituents. Photochem Photobiol 1991; 54: 51–58.
27 Iwahashi H. High performance liquid chromatography/electron spin resonance/mass spectrometry analyses of lipid-derived radicals. Methods Mol Biol 2008; 477: 65–73.
28 Ameta SC, Punjabi PB, Chobisa CS, et al. Singlet molecular oxygen. Asian J Chem Rev 1990; 1: 106–124.
29 Baier J, Maisch T, Maiher M, Engel E, Landthaler M, Bäumler W. Singlet oxygen generation by UVA light exposure of endogeneous photosensitizers. Biophys J 2006; 91: 1452–1459.
30 Stephenson LM. The mechanism of the singlet oxygen ene reaction. Tetrahydrodn Lett 1980; 21: 1005–1008.