Brain and testis: more alike than previously thought?

Bárbara Matos¹, Stephen J. Publicover², Luis Filipe C. Castro³,⁴, Pedro J. Esteves⁵,⁶ and Margarida Fardilha¹

¹Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
²School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TJ, UK
³CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, and ⁴Department of Biology, FUP—Faculty of Sciences, University of Porto, Porto, Portugal
⁵CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, Campus Agrico de Vairão, University of Porto, 4485-661 Vairão, Portugal
⁶LFCC, 0000-0001-7697-386X; PJE, 0000-0002-6055-8298; MF, 0000-0001-7459-9173

Several strands of evidence indicate the presence of marked similarities between human brain and testis. Understanding these similarities and their implications has become a topic of interest among the scientific community. Indeed, an association of intelligence with some semen quality parameters has been reported and a relation between dysfunctions of the human brain and testis has also been evident. Numerous common molecular features are evident when these tissues are compared, which is reflected in the huge number of common proteins. At the functional level, human neurons and sperm share a number of characteristics, including the importance of the exocytotic process and the presence of similar receptors and signalling pathways. The common proteins are mainly involved in exocytosis, tissue development and neuron/brain-associated biological processes. With this analysis, we conclude that human brain and testis share several biochemical characteristics which, in addition to their involvement in the speciation process, could, at least in part, be responsible for the expression of a huge number of common proteins. Nonetheless, this is an underexplored topic, and the connection between these tissues needs to be clarified, which could help to understand the dysfunctions affecting brain and testis, as well as to develop improved therapeutic strategies.

1. Introduction

The human body is an orchestrated set of different organs that work together, contributing to the maintenance of overall health and homeostasis. The human brain is the control center of the nervous system, playing a critical coordination role. It receives signals from sensory organs and translates them into functional information to multiple physiological compartments such as muscles and glands. In addition, the brain is also responsible for speech production, memory storage, and the elaboration of thought and emotion [1,2]. The human testis is the male gonad, and is of the utmost importance for reproduction and species evolution. It has two main functions: production of gametes (sperm) and synthesis/secretion of hormones (primarily, testosterone) [3,4].

Despite these clearly dissimilar functions and the apparent structural and morphological differences between human brain and testis, in the last four decades it has become increasingly evident that these tissues share several features. The similarity was further confirmed by analysis of gene expression, with evidence that human brain and testis, among all the organs of the body, share the highest number of genes [5,6]. More recently, authors found a positive correlation between general intelligence and three key measures of semen quality:
sperm concentration, sperm count and sperm motility [7]. A possible association between male sexual dysfunction and neurological disorders was also proposed by several authors [8,9]. These findings raise some interesting questions. (i) Why do the human brain and testis share a similar gene expression profile? (ii) Have these tissues a similar cellular organization and cooperation between cell types? (iii) Are their functions related? (iv) What are the implications of the similarities between human brain and testis?

In this context, we review the similarities between human brain and testis, and between human neuron and sperm at the cellular and molecular levels. The proteomic profile of the two human tissues (brain and testis) and the two types of cells (neuron and sperm) were also compared and critically discussed.

2. Brain and testis

2.1. Cellular and molecular similarities

When human brain and testis, two apparently distinct tissues with very different functions, were compared, several similarities, spanning from molecular to cellular levels of organization, became evident. The main cellular and molecular similarities between these two organs are summarized in table 1.

Human brain and testis are both constituted by different cell types that work together to maintain the integrity and function of the tissue. Human brain is a complex and organized tissue formed mainly by neurons and support cells named glia. Neurons are the most important cells in the brain, responsible for the transmission of information. To maintain their function, glia cells are in close relation with neurons. There are four different types of glia in human brain: astrocytes, oligodendrocytes, microglia and ependymal cells, each of them essential to maintain brain function [10,11]. Likewise, testis is a well-organized tissue, composed of seminiferous tubules, in which developing germ cells and Sertoli cells are in close interaction [12]. Adjacent to the seminiferous tubules and close to the blood vessels are the Leydig cells, which produce and secrete testosterone into blood vessels [13]. The cellular organization of these two tissues is summarized in figure 1.

Astrocytes and Sertoli cells are known as the biochemical support cells of brain and testis, respectively. Beyond their important role in the metabolism of these tissues, described below, they are responsible for the physical and nutritional support of neurons and germ cells, and essential for their development and survival [14,15].

Human brain and testis are high-energy-demand tissues, executing energy-demanding processes such as cognitive functions and spermatogenesis, respectively [16]. To support these energy requirements, a metabolic cooperation between the different cell types is clear in both tissues [17,18]. In the brain, astrocytes produce lactate as a glycogen-derived product, which is transported to the neurons that use it as a preferred energy source to maintain their synaptic activity. Thus, neuronal metabolic processes are highly dependent on the activity of astrocytes [17]. Similarly, a metabolic active cooperation between developing germ cells and Sertoli cells is evident. Sertoli cells convert glucose to lactate, which is transported to and used as a central energy metabolite by developing germ cells to maintain their metabolic activity [18,19]. In addition to a similar metabolic cooperation, brain and testis both depend on selenium metabolism. A selenium-deficient diet has been associated with increased susceptibility to neurotoxicity and impaired spermatogenesis [20]. In selenium-deficient conditions, brain and testis compete for selenium utilization so that castration was associated with attenuation of neurodegeneration, mainly by increasing selenium-dependent antioxidant activity in brain [20].

Compared to other tissues, the human brain and testis are particularly susceptible to oxidative damage, due to their high energy and oxygen demand, and abundance of polyunsaturated fatty acids (PUFAs). Indeed, Kabuto et al. [21] exposed mice to bisphenol A, an oxidative stress inducer, during embryonic/fetal life and infancy, and collected several tissues, finding a particular underdevelopment of brain and testis, caused by increased oxidative injury. Furthermore, brain and testis have the lowest transcriptional levels of oxidative stress-related genes (for example, the gene that
encodes catalase), compared to other tissues [16]. To counteract their high susceptibility to oxidative stress, these two tissues have specific blood–tissue barriers, called the blood–brain and the blood–testis barrier [22,23]. An essential role of high concentrations of PUFAs in human brain and testis function and/or development has been reported [24,25]. In the brain, the most abundant PUFA is docosahexaenoic acid (DHA), which it is mainly located at the synaptic terminals of neurons, playing a central role in neurodevelopment, function and maintenance [24]. The human germ cell line has an active lipid metabolism and displays stage-specific differences in fatty acid pattern. The inverse correlation found between the percentage of abnormal sperm and the percentage of DHA suggests a role of PUFAs in sperm morphology and development [25].

In recent decades, the Leydig cells of the human testis have been recognized as members of the neuroendocrine system. The synthesis and release of a large number of biologically active substances that are typical for nerve and neuroendocrine cells has revealed that Leydig cells are neuroendocrine cells [26]. Indeed, several neuron-specific peptides and proteins, such as Substance-P [27], synaptophysin and neural cell-adhesion molecule, have been detected in human Leydig cells [28]. Some glial-cell-specific antigens—(glial fibrillary acidic protein (GFAP), galactocerebroside (GaIC), cyclic 2',3'-nucleotide-3'-phosphodiesterase (CNPase), A2B5-antigen and O4-antigen, which are considered to be marker molecules of astrocytes and oligodendrocytes—were also found in Leydig cells of human testis [26]. Besides Leydig cells, Sertoli cells also express some neuron- and glial cell-specific proteins. In fact, the three isoforms of neurofilament proteins, and GFAP, GaIC and CNPase were found in both Leydig and Sertoli cells of human testis [26,29].

Cytoskeleton motors, including myosin, kinesins and dyneins, play essential roles in the brain, namely in neuron polarization, extension, shape and neurotransmission processes [30]. Motor proteins also play key roles in the formation of mature sperm [31]. Spermatogenesis includes several mitotic and meiotic divisions, for which the role of motor proteins in spindle organization, chromosome congression, chromatid separation, among others, are clear. Also in the final step of spermatogenesis, called spermiogenesis, kinesins seems to be crucial in acrosome biogenesis, nuclear shaping, tail formation, and spermatid maturation and transcription [31]. The vital role of these cytoskeleton motor proteins in brain and testis function is evident by several neurodegenerative and reproductive diseases that arise...
from mutations or other dysfunctions of these proteins in brain and testis, respectively [32,33].

2.2. Proteomic comparison

According to the apparent cellular and molecular similarities between human brain and testis, it has become clear that these tissues have a similar gene expression pattern. In a UniGene pilot investigation carried out by Guo et al. [5], the expression data of 760 human UniGenes in 17 tissues were retrieved and compared. Unexpectedly, among the 17 tissues compared, the highest similarity in gene expression patterns was between human brain and testis with a total of 364 shared expressed UniGenes [5]. According to this study, a large-scale analysis of the expression of 33,689 genes in 15 human tissues revealed that human brain and testis shared the greatest similarity in gene expression [6]. In addition, these authors demonstrated that the similarity of gene expression between brain and testis is not exclusive to humans and may be widely present in other mammals, including rodents [6]. Several authors have demonstrated that some genes are highly or selectively expressed in brain and testis of mice (Tb-rbp, Gpr37, Hst-3/Fgf-4) and rat (Lgl1a6, Glut51, α4-b, LncI1, Nep) [34–41]. Moreover, Danielsson et al. [42] found that human brain and testis share the highest number of group-enriched genes. Although transcriptomic profiling has become a standard approach to understand the (dys)function of tissues, it is also important to evaluate how gene expression relates to the proteins that are actually being expressed. To that purpose, it is possible to use proteomics, which gives information about protein composition of a cell, tissue or organism [43].

Herein, we compared the brain and testis proteome with that of 31 other tissues, representing all major tissues in the human body (heart, skeletal muscle, adrenal gland, parathyroid gland, thyroid gland, lung, gastrointestinal tract, salivary gland, oesophagus, stomach, duodenum, small intestine, colon, bone marrow, lymph node, spleen, appendix, pancreas, kidney, liver, gallbladder, epithidymis, seminal vesicle, prostate, breast, cervix, endometrium, ovary, placenta, adipose tissue and skin), using the Human Protein Atlas (HPA) (available at www.proteinatlas.org) and the Jveen tool (available at http://jveen.toulouse.inra.fr). The HPA is a programme that aims to map all the proteins in cells, tissues and organs using the integration of various technologies (e.g. antibody-based imaging, mass spectrometry-based proteomics, systems biology). Consistent with the gene expression analysis mentioned in the previous section [5,6], the highest number of common proteins was observed between brain and testis, suggesting that human brain and testis are the most similar tissues of the human body. The common proteins between these two tissues were retrieved and, to prevent redundancy, all proteins were annotated using the UniProtKB/Swiss-Prot accession number. From the total of 14,315 and 15,687 proteins that constitute the human brain and testis proteome, respectively, 13,442 are common to both tissues (figure 2; electronic supplementary material, table S1).

From the 13,442 common proteins between human brain and testis, we decided to highlight the proteins that are highly expressed in these two tissues, when compared with other human body tissues. To do that, we cross-checked the information from HPA with GeneCards (available at https://www.genecards.org/) and identified a total of 29 proteins highly expressed in brain and testis (table 2). To better understand the similarities between human brain and testis, we decided to explore the biological processes in which these 29 proteins are involved, using UniProt which is summarized in table 2. The analysis of protein-associated biological processes revealed specific roles of some proteins in brain and testis function and/or development. Since brain plays a key role in the control of testis function, particularly by the secretion of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by the hypothalamus and pituitary, we expected more common specific proteins involved in testis function/development. Counterintuitively, 31% of the proteins are involved in brain function development, as opposed to 7% of testis function/development-related proteins.

2.3. Why do brain and testis appear to have similar proteomes?

The increasing evidence for similarity between the human brain and testis gene expression and protein composition raises the question of the importance of these findings. It has been hypothesized that the testis could participate in human speciation along with the brain and placenta, which may contribute to the expression of the same set of genes in both tissues [44]. It has been suggested that evolutionary changes in gene expression contribute to most of the phenotypic differences between species, but how these gene expression patterns might be passed down to the offspring is a misunderstood topic [6,45]. The involvement of testis, along with the brain and placenta, in speciation was first suggested by Wilda et al. [44] and the hypothalamus–pituitary–testis axis was proposed to be implicated in maintaining the similar gene expression between brain and testis [6]. Indeed, testis has been proposed as the hotspot for the appearance of new genes, which are the raw material for the evolution of species [46]. Sperm seem to be the motor of speciation. On one hand, sperm competition, that is the competitive process between sperm of different males to fertilize the same egg, is important in the formation of new species. On the other hand, sperm is also crucial to maintain the integrity of a species, by acting as a reproductive isolation barrier that precludes gene flow between species. In fact, male hybrids, characterized by the combination of two
Table 2. List of proteins highly expressed only in brain and testis, along with their UniProt ID, gene name and the main biological process(es) associated (according to UniProt). The biological processes associated with brain or testis function/development are bolded. CNS, central nervous system.

UniProt ID	gene name	protein name	biological processes
Q9H172	ABCG4	ATP-binding cassette sub-family G member 4	cellular response to leukaemia inhibitory factor; cholesterol efflux; transmembrane transport
Q96M02	C1ORF90	(E2-independent) E3 ubiquitin-conjugating enzyme FATS	protein polyubiquitination and stabilization; regulation of centriole replication
Q13536	C1ORF61	protein CREC-4 (contingent replication of cDNA 4)	positive regulation of transcription by RNA polymerase II
Q57035	C9ORF129	putative in characterized protein C9orf129	—
P08912	CHRM5	muscarinic acetylcholine receptor M5	chemical synaptic transport; dopamine transport; transmission of nerve impulse
Q12926	ELAV2	ELAV-like protein 2	mRNA splicing, via splicesome; regulation of transcription
Q49400	FAM135B	protein FAM135B	cellular lipid metabolic process
P43080	GUC1A1	guanylyl cyclase-activating protein 1	cellular response to calcium ion; signal transduction; visual perception
Q8NE53	HIPK4	homeodomain-interacting protein kinase 4	histone phosphorylation; peptidyl-serine phosphorylation; protein autophosphorylation
A6NGN9	IGLON5	IgLON family member 5	—
Q7553	MDGA2	MAM domain-containing glycosylphosphatidylinositol anchor protein 2	spinal cord motor neuron differentiation
P60323	NANO53	Nanos homolog 3	germ cell development; multicellular organism development; regulation of cell cycle; spermatogenesis
Q14594	NCAN	neurocan core protein	cell adhesion; CNS development; chondroitin sulfate biosynthetic process
Q9M83	NRIP3	nuclear receptor-interacting protein 3	—
Q9Y5K3	PCYT1B	choline-phosphate cytidylyltransferase B	spermatogenesis; phosphatidylinositol biosynthetic process
P01213	Pdyn	proenkephalin-B	chemical synaptic transmission; G protein-coupled receptor signalling pathway; neuropeptide signalling pathway
Q6Q7V4	PNNM5	paraneoplastic antigen-like protein 5	positive regulation of apoptotic process
Q8WYS4	PPM1E	protein phosphatase 1E	cellular response to drug; negative regulation of protein kinase activity
Q39E94	RX54	transcription factor RX54	positive regulation of transcription by RNA polymerase II; cilium assembly
Q6R8V	SERP	stress-associated endoplasmic reticulum protein 2	endoplasmic reticulum unfolded protein response; protein glycosylation; protein transport
Q6R8V	SH2D5	SH2 domain-containing protein 5	—
Q99693	SH3GL3	endophilin-A3	CNS development; endocytosis; positive regulation of neuron differentiation
Q87417	SH3TC2	SH3 domain and tetratricopeptide repeat-containing protein 2	peripheral nervous system myelin maintenance; regulation of intracellular protein transport
Q87417	SOLC	solute carrier family 25 member 41	—
Q99726	SLC25A41	zinc transporter 3 (ZnT-3)	regulation of sequestering zinc ion; response to zinc ion
C00570	SOX1	transcription factor SOX1	cell differentiation; CNS development; chromatin organization; forebrain neuron development; neuron differentiation
Q16650	TBR1	T-box brain protein 1	brain development; cell fate specification; regulation of axon guidance; regulation of transcription
Q95409	ZIC2	zinc finger protein ZIC 2	brain development; cell differentiation; positive regulation of transcription
Q96725	ZIC5	zinc finger protein ZIC 5	cell differentiation; CNS development
different species, seem to produce significantly fewer mature spermatozoa due to incompatibilities in the last stages of sperm development [47]. The high and specific expression of fragile X mental retardation 1 gene (Fmr1) in brain and testis suggests that speciation recruits the same set of tissue-specific genes that are active in those organs that are important for speciation [44].

More recently, 60 new protein-coding genes that originated de novo in the human lineage since its divergence from chimpanzee (human-specific genes) were identified [48]. These proteins became fixed in the human population, and the high levels found in testis are also in agreement with the role of this organ in the transmission of gene expression patterns to the offspring [48]. The highest expression levels in cerebral cortex and testis suggested that these genes may contribute to phenotypic features that are exclusive of humans, such as the improved cognitive ability. Indeed, human-specific NOTCHNL2 genes were associated with a role in cortex development and neurogenesis, and have been proposed as a driving force in the evolution of human large brains [49]. Additional evidence seems to suggest that brain and testis function-associated genes are changing unusually quickly, becoming the most divergent genes between species [50].

The similarities between the human brain and testis proteome seems to be reflected in an apparent association between the (dys)function of these tissues. Indeed, an association was observed between the degenerative process in the central nervous system and testicular degeneration, without coexisting hypophyseal lesions [51]. In addition, mutations in X-linked aristaless-related homeobox gene (Arx) were associated with the X-linked lissencephaly with abnormal genitalia (XLAG) syndrome, a disease characterized by an intricate system of plasma membrane proteins, like synaptotagmins and SNARE complex [58–61]. Neurons use exocytosis for neurite outgrowth and to release neurotransmitters from synaptic vesicles, which is essential for communication between neurons [62]. The synaptic vesicles can be compared to the acrosome of sperm, which essentially contains hydrolytic enzymes and other important fertilization factors. These enzymes are released from the sperm through a specialized form of exocytosis. This process includes membrane loss and is necessary for zona pellucida breakdown and consequent sperm–oocyte fusion [55,63]. Despite the similarities of the exocytotic process in neurons and sperm, in sperm this event only occurs once, in contrast to the continuous exocytotic activity of a neuron [55].

After the release of neurotransmitters at the synaptic gap, they interact with post-synaptic receptors (‘neuronal’

neuron	sperm
activate other cells:	activate other cells:
neurons or somatic effectors	oocyte
exocytosis of neurotransmitters in the synaptic space	acrosomal exocytosis at the oocyte surface (essential for sperm function)
synaptic vesicles	acrosome
presence of ‘neuronal’ receptors	high concentrations of PUFAs
presence of Ca2+ channels	excitable cells
Ca2+ signalling involved in regulation of key functions	common signalling pathways

3. Neuron and sperm

3.1. Cellular and molecular similarities

The morphology, genomic activity and function of human neuron and sperm are as different as any other two cells in the body [55]. Sperm is a very distinct cell, compared to other cells in the human body, mainly because it is a haploid cell and virtually devoid of transcription and translation [56]. However, beyond the similarities between brain and testis, several bodies of evidence of the similarities between human neuron and sperm, the fundamental units of these tissues, have been reported and are summarized in Table 3.

Both neuron and sperm can activate other cells, though the activation mechanisms involved are different. After the plasma membrane interaction of sperm with oocyte, the sperm activates the oocyte and triggers a signal transduction cascade that ultimately results in the conversion of the oocyte to a diploid embryo [57]. Neurons also have the capacity to activate other cells, namely other neurons or somatic effector cells, through chemical synapses or gap junctions (electrical synapses), not requiring contact between cells [57].

Human neuron and sperm seem also to share similarities in exocytic process. Exocytosis is a central process to their individual abilities to carry out their functions. Several components of the neuronal synaptic vesicle exocytotic machinery have been found in sperm, notably including an intricate system of plasma membrane proteins, like synaptotagmins and SNARE complex [58–61].
receptors) to induce or inhibit neurotransmission. Several types of ‘neuronal’ receptors, like glutamate and gamma-aminobutyric (GABA_A), glycine and nicotinic acetylcholine receptors, have been found in sperm [64–66]. Also in sperm, the ‘neuronal’ receptors play vital roles for its normal function, including in sperm acrosomal reaction, capacitation and motility [55,67]. Due to the presence of various voltage-gated ion channels and several ligand-gated receptor channels, involved in rapid membrane potential changes, neurons are considered excitable cells [68]. In sperm, diverse types of high- and low-voltage-activated channels have been reported, suggesting that sperm may, like neurons, be considered an excitable cell [69,70].

Calcium (Ca²⁺) signalling is central to the regulation of function in both neuron and sperm cells. These distinct cell types both need to generate precisely timed and localized [Ca²⁺]_i signals. It appears that this has resulted in some striking similarities in the ways in which their Ca²⁺ signalling toolkits are employed [55]. Though all cells express a Ca²⁺ signalling toolkit, the types, locations and combinations of channels and pumps can vary significantly between cell types, because they are adapted to the requirements of the cell and its activities. Both neuron and sperm Ca²⁺ signalling toolkits involve a diverse range of components (including Ca²⁺-permeable channels and Ca²⁺ pumps) in both the plasma membrane and intracellular membranes, though the diversity in sperm is low in comparison to that of neurons [67,71]. In neurons, Ca²⁺ signalling is involved in the regulation of various key functions, including transmission, processing and storage of information [72]. For instance, synaptic neurotransmitter secretion, modulation of synaptic efficacy (underlying memory formation) and excitability of the neuronal membrane (the ease with which a nerve impulse can be induced) are all dependent on or modulated by [Ca²⁺]_i [73]. In mature sperm cells, Ca²⁺ signalling is arguably at least as important as in neurons, playing central roles in the regulation of motility and capacitation (post-ejaculatory acquisition of fertilizing ability) [71]. The complex signalling pathway that leads to acrosome reaction also requires mobilization of Ca²⁺ stores within the acrosome [74]. The best-characterized Ca²⁺ channel in sperm is CatSper, which is a sperm-specific channel essential for hyperactivated motility [75,76]. The influx of extracellular Ca²⁺ is also required for acrosome reaction, though the involvement of CatSper here is unclear [69].

Several signalling pathways are common to neuron and sperm, and seem to play essential roles in both cell types. For instance, anandamide (AEA) signalling seems to modulate human sperm motility [77]. A role as a modulator of synaptic function was also described for AEA signalling pathway [78]. In addition, Wnt signalling occurs also in both cell types where it controls both sperm maturation and neuronal differentiation [79,80]. The mTOR signalling pathway was also associated with crucial events in both neuron and sperm. Indeed, mTOR signalling regulates sperm quality in older men and is important for normal neuronal growth [81,82].

3.2. Proteomic comparison

The sperm proteome was recently extracted, using the PubMed database, by Santiago et al. [83]. To avoid redundancy, from the total list of sperm proteins, we excluded duplicates and only reviewed proteins (annotated using the UniProtKB/Swiss-Prot accession number) were considered (electronic supplementary material, table S2). Based on the same criteria, the neuronal cells proteome was retrieved from HPA. To avoid redundancy, duplicates and unreviewed proteins (according to UniProt) were excluded. A list of all neuron proteins (available at 31 March 2021) were obtained (electronic supplementary material, table S2). A total of 13193 and 6653 reviewed proteins constitute the neuron and sperm proteomes, respectively. A Venn diagram analysis was conducted using the Jveen tool to recover the common proteins between these two cell types. From the total proteins, 5048 are common to both human sperm and neuron (electronic supplementary material, table S2; figure 3).

From the 5048 common proteins in human neuron and sperm, a sublist was made considering the proteins with elevated expression in neuronal cells, according to HPA (www.proteinatlas.org). This analysis results in a total of 682 common proteins. Considering these common proteins, a GO analysis (using STRING: functional protein association networks) was performed and revealed a total of 328 GO terms significantly enriched, with an FDR < 0.05 (electronic supplementary material, table S2). In table 4, we summarize some of the most important biological processes in the context of the present study, together with the number of proteins associated with the GO term and the respective FDR of the annotation.

Among the common proteins between human neurons and sperm, several GO terms related to cell/tissue development were significantly enriched, suggesting that both cells play important roles in human tissue development. Also comparing neuron and sperm proteomes, it is observed that there are many common proteins involved in brain/neuron development and function. As expected by the important role of exocytosis in both sperm and neuron function as discussed above (table 4), both neuron and sperm express a huge number of proteins involved in exocytic process. Cell signalling-associated biological processes were also highlighted in this analysis, corroborating the idea that sperm and neuron share several important signalling pathways (table 4).

4. Concluding remarks

Human brain and testis share several molecular characteristics, which are reflected in a very similar proteomic profile. Our in silico analysis revealed that, surprisingly, human brain and testis have the highest number of common proteins, compared with other human body tissues. The common proteins are mainly involved in the function and/or development of...
brain, rather than in testis-associated processes. The human neuron and sperm are very distinct cells; however, they share several molecular features, and a huge number of proteins are common to both cells, mainly those involved in exocytotic and cell signalling processes, tissue development and brain/neuron-associated processes.

The similarity between human brain and testis may be explained by a biochemical convergence and by the involvement of these two tissues in the speciation process. The high similarity of proteins between human brain and testis may have clinical relevance. Indeed, the common proteins may be associated with the simultaneously impairment of brain and testis function. The identification of these proteins, along with the analysis of their role in brain and/or testis function, could help in better understanding the pathophysiology of these conditions, as well as in the development of new therapeutic strategies for treating brain or testis diseases.

Table 4. Main biological processes associated with the common proteins between human sperm and neuron. A list of all the associated biological processes are found in electronic supplementary material, table S2.

GO term	description	count in gene set	FDR
GO:0032502	developmental process	268/5401	4.08 × 10\(^{-9}\)
GO:0048869	cellular developmental process	175/3533	2.61 × 10\(^{-5}\)
GO:2000026	regulation of multicellular organismal developmental	90/1876	2.23 × 10\(^{-2}\)
GO:0021700	developmental maturation	17/216	3.35 × 10\(^{-2}\)
GO:0048639	positive regulation of developmental growth	14/165	3.93 × 10\(^{-2}\)

GO term	**description**	**count in gene set**	**FDR**
GO:007399	nervous system development	181/2206	1.11 × 10\(^{-21}\)
GO:0022008	neuron projection development	68/616	6.03 × 10\(^{-13}\)
GO:0048666	neuron development	76/758	1.11 × 10\(^{-12}\)
GO:0061564	axon development	47/377	1.28 × 10\(^{-10}\)
GO:007417	central nervous system development	60/861	3.14 × 10\(^{-5}\)
GO:007420	brain development	47/650	1.80 × 10\(^{-4}\)
GO:0021695	cerebellar cortex development	7/49	3.63 × 10\(^{-2}\)

GO term	**description**	**count in gene set**	**FDR**
GO:0007182	neuron differentiation	86/940	1.64 × 10\(^{-12}\)
GO:0010975	regulation of neuron projection development	47/443	1.22 × 10\(^{-8}\)
GO:0007411	axon guidance	27/220	4.38 × 10\(^{-6}\)
GO:009893	axonal transport	9/43	1.50 × 10\(^{-3}\)
GO:0008038	neuron recognition	8/34	1.80 × 10\(^{-3}\)
GO:0001764	neuron migration	14/118	3.70 × 10\(^{-3}\)
GO:0007158	neuron cell–cell adhesion	5/14	7.50 × 10\(^{-3}\)
GO:0019228	neuronal action potential	6/31	2.17 × 10\(^{-2}\)
GO:0036514	dopaminergic neuron axon guidance	3/5	2.87 × 10\(^{-2}\)

GO term	**description**	**count in gene set**	**FDR**
GO:0017156	calcium ion regulated exocytosis	12/74	9.00 × 10\(^{-4}\)
GO:0016079	synaptic vesicle exocytosis	11/64	0.0011
GO:0006904	vesicle docking involved in exocytosis	6/38	0.0439

GO term	**description**	**count in gene set**	**FDR**
GO:0007267	cell–cell signalling	95/1073	4.86 × 10\(^{-13}\)
GO:0035637	multicellular organismal signalling	21/110	1.89 × 10\(^{-7}\)
GO:0023052	signalling	232/5108	1.10 × 10\(^{-4}\)
GO:0007215	glutamate receptor signalling pathway	9/43	1.50 × 10\(^{-3}\)
GO:1905114	cell surface receptor signalling pathway	30/383	1.80 × 10\(^{-3}\)
GO:1990034	calcium-mediated signalling	13/132	2.02 × 10\(^{-2}\)
GO:0035556	intracellular signal transduction	76/1528	2.17 × 10\(^{-2}\)
GO:0016055	Wnt signalling pathway	22/303	2.41 × 10\(^{-2}\)
References

1. Raichle ME. 2010 Two views of brain function. Trends Cogn. Sci. 14, 180–190. (doi:10.1016/j.tics.2010.01.008)
2. Friston KJ, Frith CD, Dolan RJ, Price CJ, Zeki S, Ashburner J, Penny W. 2004 Human brain function. Oxford, UK: Elsevier.
3. Amann RP. 1989 Structure and function of the normal tests and epididymis. J. Am. Coll. Toxicol. 8, 457–471. (doi:10.1098/rstb.1990.014532)
4. Nieschlag E, Beller HM, Nieschlag S. 2010 Physiology of testicular function. In Andrology: male reproductive health and dysfunction (eds GF Weinbaver, CM Luetsjeng, M Simon, E Nieschlag), pp. 1–69. Berlin, Germany: Springer.
5. Guo J, Zhu P, Wu C, Yu L, Zhao S, Gu X. 2003 In silico analysis indicates a similar gene expression pattern between human brain and testis. Cytogenet. Genome Res. 103, 58–62. (doi:10.1002/cgrv.100967290)
6. Guo JH, Huang Q, Studholme DJ, Wu CQ, Zhao SY. 2015 Transcriptomic analyses support the similarity of gene expression between brain and testis in human as well as mouse. Cytogenet. Genome Res. 111, 107–109. (doi:10.1002/cgrv.2006378)
7. Arden R, Gottfredson LS, Miller G, Pierce A. 2009 Intelligence and semen quality are positively correlated. Intelligence 37, 277–282. (doi:10.1016/j.intell.2008.11.001)
8. Glazer OH et al. 2017 Male factor infertility and risk of multiple sclerosis: a register-based cohort study. Mult. Scler. J. 24, 1835–1842. (doi:10.1177/1352458517740069)
9. Fode M, Krogh-Jespersen S, Brackett NL, Ohl DA, Brackett NL, Krogh-Jespersen S, Ohl DA. 2018 Multiple aspects of male germ cell development and interactions with Sertoli cells require inositol hexakisphosphate kinase-1. Sci. Rep. 8, 1–13. (doi:10.1038/s41598-018-25468-8)
10. Zhang J. 2019 Basic neural units of the brain: neurons, synapses and action potential. arXiv.
11. Raichle ME. 2010 Two views of brain function. Trends Cogn. Sci. 14, 180–190. (doi:10.1016/j.tics.2010.01.008)
12. Zhang J, Ou Y, Cheng M, Shojaei Saadi H, Liu XA, Rizzo V, Puthanveettil SV. 2012 Pathologies of axonal transport in neurodegenerative diseases. Int. J. Biol. Sci. 8, 101–109. (doi:10.7150/ijbs.15633)
13. Zhu Z, Nelson AR, Betsholtz C, Zlokovic BV. 2015 Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064–1078. (doi:10.1016/j.cell.2015.06.070)
14. Mital P, Hinton BT, Dufour JM. 2011 The blood-tests and blood-epididymis barriers are more than just tight junctions.1. Biol. Reprod. 84, 851–858. (doi:10.1093/biolre/ioq1149)
15. Crawford MA, Broadhurst CL, Ghebremeskel K, Sinclair AJ, Saugstad LF, Schmidt WF, Sinclair AJ, UGT1A6 expression in rat testis and brain. Cytogenet. Genome Res. 111, 107–109. (doi:10.1002/cgrv.2006378)
16. Ashburner JT, Penny W. 2004 Transcriptomic analyses support the similarity of gene expression between human brain and testis. Cytogenet. Genome Res. 103, 58–62. (doi:10.1002/cgrv.100967290)
17. Falkowska A, Gutowska I, Goschorska M, Nowacki P. 2018 Origin, development and regulation of human leydig cells. Horm. Res. 84, 109–119. (doi:10.1002/hr.2238424)
18. Svecikovnik K, Landneh L, Weissler I, Izzo G, Colin E, Svecikovnik I, Soder O. 2010 Origin, development and regulation of human Leydig cells. Horm. Res. Paediatr. 73, 93–101. (doi:10.1159/0001277413)
19. Kreay L, Lindsay SL, Hosseinzadeh S, Barnett SC. 2016 The multifaceted role of astrocytes in regulating myelination. Exp. Neuro. 283, 541–549. (doi:10.1016/j.expneurol.2016.03.009)
20. Dondero F, Picard M. 2000 Fatty acid composition of spermatozoa and immature germ cells. Mol. Hum. Reprod. 6, 226–231. (doi:10.1093/molehr/6.3.226)
21. Davidoff MS, Middendorff R, Köfanci E, Müller D, Jezek D, Holstein AF. 2002 Leydig cells of the human testis possess astrocyte and oligodendrocyte marker molecules. Acta Histochem. 104, 39–49. (doi:10.1076/0065-1281-00630)
22. Schulze W, Davidoff MS, Holstein AF. 1987 Are Leydig cells of neural origin? Substance P-like immunoreactivity in human testicular tissue. Acta Endocrinol (Copenh). 115, 373–377. (doi:10.1530/acta.0.1150373)
23. Davidoff MS, Schulze W, Middendorff R, Holstein AF. 1993 The Leydig cell of the human testis: a new member of the diffuse neuroendocrine system. Cell Tissue Res. 271, 429–439. (doi:10.1007/BF02913725)
24. Davidoff MS, Middendorff R, Pushch W, Müller D, Wichers S, Holstein AF. 1999 Sertoli and Leydig cells of the human testis express neurofilament triplet proteins. Histochem. Cell Biol. 111, 173–187. (doi:10.1007/s004180015047)
25. Xiao Q, Hu X, Wei Z, Tam KY. 2016 Cytoskeleton molecular motors: structures and their functions in neurons. Int. J. Biol. Sci. 12, 1083–1092. (doi:10.7150/ijbs.15633)
26. Ma D-D, Wang D-H, Yang W-X. 2017 Kinesins in spermatogenesis. Biol. Reprod. 96, 267–276. (doi:10.1095/biolreprod.116.144113)
27. Liu XA, Rizzo V, Pathanveettil SV. 2012 Pathologies of axonal transport in neurodegenerative diseases. Trans. Neurosci. 33, 355–372.
28. Zhang Y, Du Y, Cheng M, Shojaei Saadi H, Thundathil JC, van der Hoorn FA. 2012 KLC3 is involved in sperm tail midpiece formation and sperm function. Dev. Biol. 366, 101–110. (doi:10.1016/j.ydbio.2012.04.026)
29. Brands A, Münzel PA, Bock KW. 2000 In situ hybridization studies of UDP-glucuronosyltransferase UGT1A6 expression in rat testis and brain. Biochem. Pharmacol. 59, 1441–1444. (doi:10.1016/S0006-2952(00)00274-4)
30. Han J, Gu W, Hecht NB. 1995 Testis-brain RNA-binding protein, a testis-specific translational regulatory RNA-binding protein, is present in the brain and binds to the 3-untranslated regions of transported brain mRNAs1. Biol. Reprod. 53, 707–717. (doi:10.1095/biolreprod.1995.53.3.707)
31. Ibberson M, Riederer BM, Uldry M, Guhl B, Roth J, Thorens B. 2002 Immunolocalization of GLUT1 in the testis and to specific brain areas and
vasopressin-containing neurons. Endocrinology 143, 276–284. (doi:10.1210/en.143.1.8587)

37. Maeda K, Inui S, Tanaka H, Sakaguchi N. 1999 A new member of the c4-Related molecule (c4-b) that binds to the protein phosphatase 2A is expressed selectively in the brain and testes. Eur. J. Biochem. 264, 702–706. (doi:10.1046/j.1432-1327.1999.00571.x)

38. Marazziti D, Gallo A, Gollini E, Matteoni R, Tocchini-Valentini GP. 1998 Molecular cloning and chromosomal localization of the mouse Gpr37 gene encoding an orphan G-protein-coupled peptide receptor expressed in brain and testis. Genomics 53, 315–324. (doi:10.1006/geno.1998.5433)

39. Mayer H, Rauer H, Beuss J, Ziegler S, Prohaska R. 2001 Characterization of rat LANCL1, a novel member of the lantionine synthetase C-like protein family, highly expressed in testis and brain. Gene 269, 73–80. (doi:10.1016/s0378-1119(01)00463-2)

40. Tanja O, Facchinetti P, Rose C, Bonhomme MC, Gros C, Schwartz JC. 2000 Nephrilysin II: a putative novel metalloprotease and its isoforms in CNS and testis. Biochem. Biophys. Res. Commun. 271, 565–570. (doi:10.1016/s0006-291x(00)01991-4)

41. Yamamoto H, Oschia T, Takahama Y, Ishii Y, Osumi N, Sakamoto H, Terada M. 2000 Detection of spatial localization of Hst-1/fgf-4 gene expression in brain and testis from adult mice. Oncogene 19, 3803–3810. (doi:10.1038/sj.onc.1203752)

42. Danielsson A, Djurevicin D, Fagerberg L, Halstro B, Ponte F, Lindskog C, Uhlen M, Pontén F. 2014 The human testis-specific proteome defined by transcriptomics and antibody-based profiling. Mol. Hum. Reprod. 20, 476–488. (doi:10.1093/molehr/gau018)

43. Liu T-Y, Huang HH, Wheeler D, Xu Y, Wells JA, Song JS, Witta AP. 2017 Time-resolved proteomics extends ribosome profiling-based measurements of protein synthesis dynamics. Cell Syst. 4, 636–644.e9. (doi:10.1016/j.cels.2017.05.001)

44. Wilda M, Bächner D, Zeichner U, Kehrer-Sawatzki H, Liu T-Y, Huang HH, Wheeler D, Xu Y, Wells JA, Song JS, Facchinetti P, Rose C, Bonhomme MC, Gros C, Schwartz JC. 2019 A hotspot for new genes. Genome Res. 15, 1746–1758. (doi:10.1101/gr.373405)

45. Boström K, Brarı A. 1971 Testicular changes in association with malformation of the central nervous system and mental retardation. Acta Pathol. Microbiol. Scand. Pathol. 79A, 249–256. (doi:10.1111/j.1699-0463.1971.tb01816.x)

46. Kitamura K et al. 2002 Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 32, 359–369. (doi:10.1038/ng1009)

47. Dragatsis I, Levine MS, Zeitlin S. 2000 Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 26, 300–306. (doi:10.1038/sj/nrg1593)

48. Mascaro JS, Hackett PD, Rilling JK. 2013 Testicular volume is inversely correlated with nurturing-related brain activity in human fathers. Proc. Natl. Acad. Sci. USA 110, 15 746–15 751. (doi:10.1073/pnas.1305579110)

49. Meisel S. 2004 The sperm, a neuron with a tail: ‘neuronal’ receptors in mammalian sperm. Biol. Camb. Philos. Soc. 130, 48–51. (doi:10.1017/s0962048904002630)

50. Ritta MN, Calamera JC, Bas DE. 1998 Occurrence of vasopressin-containing neurons. J. Neurosci. 18, 644–653. (doi:10.1523/jneurosci.0307-02.2001)

51. Michaut M, De Blas G, Tomes CN, Yunes R, Fukuda M, Mayorga LS. 2001 Synaptotagmin VI participates in the acrosome reaction of human spermatozoa. J. Cell. Biol. 152, 521–529. (doi:10.1083/jcb.2001.0316)

52. Tomes CN, Michaut M, De BG, Visconti P, Matti U, Mayorga LS. 2002 SNARE complex assembly is required for human sperm acrosome reaction. Dev. Biol. 243, 326–338. (doi:10.1006/dbio.2002.0567)

53. Hutt DM, Cardullo RA, Balitz JM, Nygren JK. 2002 Synaptotagmin VIII is localized to the mouse sperm head and may function in acrosomal exocytosis. J. Biol. Reprod. 66, 50–56. (doi:10.1095/jb.2002.66.1.50)

54. Pierce A, Miller G, Arden R, Gottfredson LS. 2009 Voltage-operated calcium channels1. J. Biol. Reprod. 80, 1092–1098. (doi:10.1095/jb.2008.1074039)
post-transcriptional Wnt signaling. Cell 163, 1225–1236. (doi:10.1016/j.cell.2015.10.029)

80. Rosso SB, Inestrosa NC. 2013 WNT signaling in neuronal maturation and synaptogenesis. Front. Cell. Neurosci. 7, 1–11. (doi:10.3389/fncel.2013.00103)

81. Silva JV, Cabral M, Correia R, Carvalho P, Sousa M, Oliveira PF, Fardilha M. 2019 mTOR signaling pathway regulates sperm quality in older men. Cell 8, 1–13. (doi:10.3390/cells8060629)

82. Takei N, Nawa H. 2014 mTOR signaling and its roles in normal and abnormal brain development. Front. Mol. Neurosci. 7, 1–12. (doi:10.3389/fnmol.2014.00028)

83. Santiago J, Vieira Silva J, Fardilha M. 2019 First insights on the presence of the unfolded protein response in human spermatozoa. Int. J. Mol. Sci. 20, 1–16. (doi:10.3390/ijms20215518)

84. Chaerkady R, Kerr CL, Marimuthu A, Kelkar DS, Kashyap MK, Gucek M, Gearhart JD, Pandey A. 2009 Temporal analysis of neural differentiation using quantitative proteomics. J. Proteome Res. 8, 1315–1326. (doi:10.1021/pr8006667)

85. Dammer EB, Duong DM, Diner I, Gearing M, Feng Y, Lah JJ, Levey AI, Seyfried NT. 2013 Neuron enriched nuclear proteome isolated from human brain. J. Proteome Res. 12, 3193–3206. (doi:10.1021/pr400246t)

86. Djuric U, Rodrigues DC, Batruch I, Ellis J, Shannon P, Diamandis P. 2017 Spatiotemporal proteomic profiling of human cerebral development. Mol. Cell. Proteom. 16, 1558–1562. (doi:10.1074/mcp.M116.066274)

87. Drummond ES, Nayak S, Ueberheide B, Wisniewski T. 2015 Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer’s disease brain tissue. Sci. Rep. 5, 1–8. (doi:10.1038/srep15456)

88. Fathi A, Hatami M, Vakilian H, Han CL, Chen YJ, Baharvand H, Salekdeh GH. 2014 Quantitative proteomics analysis highlights the role of redox hemostasis and energy metabolism in human embryonic stem cell differentiation to neural cells. J. Proteomics 101, 1–16. (doi:10.1016/j.jprot.2014.02.002)

89. Ramachandran U, Manavalan A, Sundaramurthi H, Sze SK, Feng ZW, Hu JM, Heese K. 2012 Tianma modulates proteins with various neuro-regenerative modalities in differentiated human neuronal SH-SYSY cells. Neurochem. Int. 60, 827–836. (doi:10.1016/j.neuint.2012.03.012)

90. Villeneuve L, Tiede LM, Morsey B, Fox HS. 2013 Quantitative proteomics reveals oxygen-dependent changes in neuronal mitochondria affecting function and sensitivity to rotenone. J. Proteome Res. 12, 4599–4606. (doi:10.1021/pr400758d)

91. Xu G, Stevens SM, Kobiessy F, Brown H, McClung S, Gold MS, Borchelt DR. 2012 Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines. PLoS ONE 7, 1–13. (doi:10.1371/journal.pone.0049021)