Symbiotic Adversarial Learning for Attribute-based Person Search

Yu-Tong Cao*, Jingya Wang*, and Dacheng Tao

UBTECH Sydney AI Centre, The University of Sydney

*Equal contribution
Problem – Attribute-based person search

Query attribute descriptions
- Teenager
- Backpack
- Pants
- Short bottom wear
- Short top wear
- Long hair
- Female
- Top white
- Bottom blue

Gallery images

Ranked retrieval results

Images source: Market-1501 dataset.
Differences with zero-shot learning

1. No class prototypes for unseen classes
2. Large intra-class variations and inter-class similarities

Attribute-based person search (Market-1501)	Zero-shot learning (AWA2)
Category: 0	Category: Siamese cat
• No bag	• Brown
• Long hair	• Black
• Female	• Small
...	...
Category: 1	Category: tiger
• Handbag	• Orange
• Long hair	• Black
• Female	• Big
...	...
Category: 2	Category: Lion
• No bag	• Brown
• Short hair	• Yellow
• Male	• Big
...	...
~508 training categories	~40 training categories
~26 images per category	~609 images per class

Inter-class similarity

Intra-class variation

- Teenager
- Short top
- Bottom black
- Black
- White
- Big
Motivation – Symbiosis

- A close and long-term biological interaction
- Mutualistic symbiosis relationship

Image source: https://icanhas.cheezburger.com/tag/Symbiosis
Method – Symbiotic Adversarial Learning

(a) Embed
(b) Embed + adversarial
(c) SAL

- Embed: Semantic space
- Embed + adversarial: Visual space
- SAL: Common space

: Real features : Synthetic features : Common space features : Semantic space : Visual space : Common space
Method – Symbiotic Adversarial Learning

- **Semantic space** f_{a}
- **Visual space** f_{v}

Attributes a_{i}
- Teenager
- Crossbody bag
- Pants
- Female
- Top white
- Bottom black

Data flow for paired images and attributes
- **Synthesis adversarial learning**
- **Alignment adversarial learning**

Loss function

\[
L_{\text{cat}} = - \sum_{i=1}^{N} \log(p_{\text{cat}}(x_{i}, y_{i}))
\]

\[
L_{\text{att}} = - \sum_{i=1}^{N} \sum_{j=1}^{m} (a_{(i,j)} \log(p_{\text{att}}^{(j)}(x_{i})) + (1 - a_{(i,j)}) \log(1 - p_{\text{att}}^{(j)}(x_{i})))
\]

\[
L_{\text{embed}} = L_{\text{cat}} + L_{\text{att}}.
\]
Method – Symbiotic Adversarial Learning

Three types of inputs to discriminator D_1:
1. The fake input pairs (\tilde{f}_a, f_v), where $\tilde{f}_a = G_a(f_v)$.
2. The fake input pairs (f_a, \tilde{f}_v), where $\tilde{f}_v = G_v(f_a)$.
3. The real input pairs (f_a, f_v).

$$L_{\text{gan1}}(G_A, G_V, D_1) = \mathbb{E}_{(f_a, f_v) \sim p(f_a, f_v)}[\log(D_1(f_a, f_v))]$$
$$+ \frac{1}{2} \mathbb{E}_{f_a \sim p(f_a)}[\log(1 - D_1(f_a, \tilde{f}_v))]$$
$$+ \frac{1}{2} \mathbb{E}_{f_v \sim p(f_v)}[\log(1 - D_1(\tilde{f}_a, f_v))]$$

$$L_{\text{cyc}}(G_A, G_V) = \mathbb{E}_{f_a \sim p(f_a)}[||G_A(G_V(f_a), z)) - f_a||_2]$$
$$L_{\text{consis}}(G_A, G_V) = \mathbb{E}_{f_v \sim p(f_v)}[||E_A(\tilde{f}_a) - E_V(f_v)||_2] + \mathbb{E}_{f_a \sim p(f_a)}[||E_V(\tilde{f}_v) - E_A(f_a)||_2]$$
$$+ \mathbb{E}_{(f_a, f_v) \sim p(f_a, f_v)}[||E_A(\tilde{f}_a) - E_A(f_a)||_2] + \mathbb{E}_{(f_a, f_v) \sim p(f_a, f_v)}[||E_V(\tilde{f}_v) - E_V(f_v)||_2]$$
Method – Symbiotic Adversarial Learning

\[
\begin{align*}
L_{\text{gan}_2}(G_C, D_2) &= \mathbb{E}_{f_v \sim p(f_v)}[\log D_2(E_V(f_v))] \\
&+ \mathbb{E}_{f_a \sim p(f_a)}[\log(1 - D_2(E_A(f_a)))] \\
L_{\text{aug}_1}(G_C, D_2) &= \mathbb{E}_{f_a \sim p(f_a)}[\log D_2(E_V(\tilde{f}_v))] \\
&+ \mathbb{E}_{f_v \sim p(f_v)}[\log(1 - D_2(E_A(\tilde{f}_a)))] \\
L_{\text{aug}_2}(E_A, E_V) &= L_{\text{embed}}(\tilde{f}_a) + L_{\text{embed}}(\tilde{f}_v). \\
L_{\text{aug}} &= L_{\text{aug}_1} + L_{\text{aug}_2}. \\
L_{\text{align-adv}} &= L_{\text{gan}_2} + L_{\text{aug}}.
\end{align*}
\]
Method – Symbiotic Adversarial Learning

Attributes a_i
- Teenager
- Crossbody bag
- Pants
- Female
- Top white
- Bottom black

Sampled Attributes a^{unseen}
- Teenager
- Backpack
- Pants
- Female
- Top red
- Bottom black

Data flow for paired images and attributes

Data flow for synthetic unseen data

Synthesis adversarial learning

Alignment adversarial learning
Table 1. Attribute-based person search performance evaluation. Best results are shown in **bold**. The second-best results are underlined.

Metric (%)	Market-1501 Attributes	PETA							
Model	Reference	mAP	rank1	rank5	rank10	mAP	rank1	rank5	rank10
DeepCCA [1]	ICML’13	17.5	30.0	50.7	58.1	11.5	14.4	20.8	26.3
DeepMAR [23]	ACPR’15	8.9	13.1	24.9	32.9	12.7	17.8	25.6	31.1
DeepCCAIE [50]	ICML’15	9.7	8.1	24.0	34.6	14.5	14.2	22.1	30.0
2WayNet [8]	CVPR’17	7.8	11.3	24.4	31.5	15.4	23.7	38.5	41.9
CMCE [24]	ICCV’17	22.8	35.0	51.0	56.5	26.2	31.7	39.2	48.4
ReViSE [41]	ICCV’17	17.7	24.2	45.2	57.6	31.1	30.5	57.0	61.5
MMCC [9]	ECCV’18	22.2	34.9	58.7	70.2	33.9	33.5	57.0	69.0
AAI PR [53]	IJCAI’18	20.7	40.3	49.2	58.6	27.9	39.0	53.6	62.2
AIHM [7]	ICCV’19	24.3	43.3	56.7	64.5	-	-	-	-
SAL (Ours)	**ICCV’19**	**29.8**	**49.0**	**68.6**	**77.5**	**41.2**	**47.0**	**66.5**	**74.0**
Ablation studies

Table 2. Component analysis of SAL on PETA dataset.

Metric (%)	mAP	rank1	rank5	rank10
Embed	31.3	34.0	57.0	64.5
Embed + adv	35.0	37.5	60.5	66.5
Embed + symb-adv	40.6	44.0	64.0	70.5
Embed + symb-adv + unseen(SAL)	41.2	47.0	66.5	74.0

Table 3. Effect of interactions between two GANs on PETA dataset.

Metric (%)	mAP	rank1	rank5	rank10
SAL - L_{aug}	35.4	38.0	60.0	69.0
SAL - L_{consis}	35.2	39.5	56.5	66.0
SAL (Full interaction)	41.2	47.0	66.5	74.0

Table 4. Comparing stage-wise training vs. symbiotic training scheme.

Metric (%)	mAP	rank1	rank5	rank10
SAL w/ stage-wise training	35.0	41.0	58.0	65.0
SAL w/ symbiotic training	41.2	47.0	66.5	74.0
Visualized retrieval results

The green/red border represents correct/wrong selections respectively.
Thank you!

Code at:

https://github.com/ycao5602/SAL