Tychonoff spaces and a ring theoretic order on $C(X)$

W.D. Burgess and R. Raphael

Abstract. The reduced ring order (rr-order) is a natural partial order on a reduced ring R given by $r \leq_{rr} s$ if $r^2 = rs$. It can be studied algebraically or topologically in rings of the form $C(X)$. The focus here is on those reduced rings in which each pair of elements has an infimum in the rr-order, and what this implies for X. A space X is called rr-good if $C(X)$ has this property. Surprisingly both locally connected and basically disconnected spaces share this property. The rr-good property is studied under various topological conditions including its behaviour under Cartesian products. The product of two rr-good spaces can fail to be rr-good (e.g., $\beta R \times \beta R$), however, the product of a P-space and an rr-good weakly Lindelöf space is always rr-good. P-spaces, F-spaces and U-spaces play a role, as do Glicksberg’s theorem and work by Comfort, Hindman and Negrepontis.

Introduction. In a reduced ring, a ring with no non-zero nilpotent elements, such as $C(X)$, there is a partial order that generalizes the natural partial order on a boolean ring. The order relation is defined as $r \leq_{rr} s$ if $r^2 = rs$. The study of this order, here called the rr-order for the reduced ring order, goes back at least to 1958 in [S]. Since then it has been studied at various times (see [Ch] and [B], for example), but most recently in [BR1] and [BR2]. In these papers some of the most interesting examples and results are about rings of the form $C(X)$.

It is rare for a pair of elements in a reduced ring R to have a supremum in the rr-order and the most natural generalization of the boolean ring case is where the ring has, for every pair of elements $r, s \in R$, an infimum in the rr-order, noted $r \land_{rr} s$, i.e., when R is a lower semi-lattice in the order. Such rings are called rr-good. A space X is called rr-good if the ring $C(X)$ is rr-good. The theme of this paper is the study of spaces that are rr-good and those that are not.

In the sequel, all topological spaces will be assumed to be Tychonoff spaces.

Not all spaces are rr-good but those that are form a surprisingly diverse family that includes locally connected spaces and those that are basically disconnected. To find a topological characterization of rr-good spaces would seem an unrealistic task but much can be said about them. There are connected spaces that are not

2010 Mathematics Subject Classification. 54F65 06F25 13F99.

Key words and phrases. reduced ring order, locally connected, basically disconnected, semi-lattice.

The authors thank the referee for helpful observations as well as for suggestions about the presentation.

DOI 10.1016/j.topol.2020.107250.
rr-good (see Theorem 2.9 below) and even connected, compact metric spaces that are not rr-good ([BR1] Theorem 3.5(2)).

The paper is divided into five sections. The first gives some basic results and examples. The second deals with when a product of two spaces is rr-good. If \(X \times Y \) is rr-good it is easy to see that \(X \) and \(Y \) are also rr-good. The converse, false in general, turns out to be a rich subject.

If the real line \(\mathbb{R} \) is partitioned into two complementary dense subspaces, neither can be rr-good. The third section shows that \(\mathbb{R}^2 \) is quite different. Complementary dense subspaces of the plane are found, one of which is rr-good.

Section 4 examines basically disconnected and \(U \)-spaces with an emphasis on separation properties and their consequences for \(C(X) \).

Section 5 looks at a sufficient condition, called the B-property (for boundary property), for a space to be rr-good. Basically disconnected spaces that are not discrete do not have the B-property. Here it is shown how to find connected rr-good spaces without the B-property.

1. The definition of rr-good spaces: basic properties and examples.

To recall: a ring \(C(X) \) is partially ordered by the relation \(f \preceq_{rr} g \) if \(f^2 = fg \). When \(h \preceq_{rr} f \) and \(h \preceq_{rr} g \) this is abbreviated to \(h \preceq_{rr} f, g \). The following facts are obvious but are basic tools underlying many of the results used below.

Lemma 1.1. In a ring \(C(X) \),
(1) if \(f \preceq_{rr} g \) then \(f \) and \(g \) coincide on \(cl(coz f) \);

(2) if \(h \preceq_{rr} f, g \) then \(coz h \subseteq z(f - g) \cap coz f \).

It is clear that a free union of rr-good spaces is rr-good since a product of rr-good rings is rr-good. The following proposition quotes results that show how rr-good spaces can be found from a given rr-good space.

Proposition 1.2. (1) ([BR1] Proposition 3.10) A cozero set in an rr-good space is rr-good.

(2) ([BR1] Proposition 3.9) The ring \(C(X) \) is rr-good if and only if \(C^*(X) \) is rr-good, i.e., a space \(X \) is rr-good if and only if \(\beta X \) is rr-good.

The two main classes of examples of rr-good spaces are summarized here.

Examples 1.3. (1) [BR1] Theorem 3.5(1) If \(X \) is a locally connected space then \(X \) is rr-good.

(2) [NR] before Ex. 3.2] If \(X \) is basically disconnected then \(X \) is rr-good.

The second case will be expanded upon in Section 4.

It is not true that a quotient space of an rr-good space has to be rr-good.

Example 1.4. The space \(\beta\mathbb{N} \) is rr-good but its quotient space \(\mathbb{N} \cup \{\infty\} \) (the one-point compactification) is not.

Proof. The space \(\mathbb{N} \cup \{\infty\} \) is not rr-good by [BR1] Proposition 3.6, or see Lemma 3.1 below. \(\square \)

Sometimes quotients behave well.

Proposition 1.5. (1) If \(X \) is a locally connected space, all its quotient spaces are rr-good. (2) In particular, if \(X \) is a locally connected pseudocompact space then all its continuous images are rr-good.
Proof. (1) All the quotients spaces of a locally connected space are locally connected. (2) This is by [W] page 223. □

The long line is an example of part (2) of the proposition.

Note also that every space, rr-good or not, can be embedded in a direct product of copies of a closed interval, a compact, locally connected (rr-good) space.

This section closes with a pair of illustrative examples.

The space \(\Lambda = \beta \mathbb{R} \setminus (\beta \mathbb{N} \setminus \mathbb{N}) \) of [GJ, 6P] is pseudocompact and rr-good because \(\beta \Lambda = \beta \mathbb{R} \) is rr-good, but it is known not to be locally connected [W] pp 221,222. This space will appear again in Example 2.11 and at the end of Section 2.

On the other hand the pseudocompact Tychonoff plank \(T \) is not rr-good. If it were, \(\beta T \) would also be rr-good. However, \(\beta T \) has a clopen subset which is homeomorphic to the one-point compactification of \(\mathbb{N} \), a space which is not rr-good, showing \(\beta T \) is not rr-good by Proposition 1.2(1).

2. Product spaces and the rr-order.

In this section the question of rr-good product spaces will be examined. It will be easy to see that if a product is rr-good, so are its factors. The converse, false in general, will take up much of the section.

Proposition 2.1. Suppose \(Y \) is a retract of an rr-good space \(X \). Then, \(Y \) is rr-good.

Proof. Let \(\phi \) and \(\psi \) be continuous functions \(X \xrightarrow{\phi} Y \xrightarrow{\psi} X \) with \(\psi \circ \phi = 1_X \) and \(f, g \in C(X) \). It is easy to see that if \(h = f \psi \land_{rr} g \psi \) then \(h \circ \phi = f \land_{rr} g \). □

Corollary 2.2. If \(X \) and \(Y \) are spaces such that \(X \times Y \) is rr-good, then \(X \) and \(Y \) are rr-good.

As already mentioned, the converse is false but there are some cases where there are positive results.

Proposition 2.3. (1) If \(\{X_\alpha\}_{\alpha \in \Lambda} \) are locally connected spaces all but finitely many of which are connected then \(\prod_{\alpha \in \Lambda} X_\alpha \) is rr-good.

(2) If \(\{X_1, \ldots, X_n\} \) is a finite set of P-spaces then \(\prod_{i=1}^n X_i \) is rr-good.

Proof. (1) These products are locally connected and, hence, rr-good. (2) A finite product of P-space is a P-spaces and, hence, rr-good. □

As examples, all euclidean spaces are rr-good. Other types of rr-good products will be found at the end of this section.

The following will show that if a space \(X \) has enough clopen sets and is rr-good, then it is basically disconnected. This will play a role later in this section and again in Section 4.

Proposition 2.4. Let \(X \) be a space which has a clopen \(\pi \)-base. If \(X \) is rr-good then \(X \) is basically disconnected.

Proof. For \(f \in C(X) \) it will be shown that \(\text{cl}(\text{coz} f) \) is clopen. Since \(X \) is rr-good, \(h = 1 \land_{rr} (1 - f) \) exists. Because \(h \leq_{rr} 1 \), \(h \) is an idempotent and \(\text{coz} h = D \) is clopen. Moreover, \(h = h^2 = h(1 - f) \) implies that \(hf = 0 \). When \(E \subseteq x(f) \) is clopen, let the idempotent \(e \) have cozero set \(E \). It follows that \(e \leq_{rr} 1, (1 - f) \) and, from this, \(e \leq_{rr} h \), giving \(E \subseteq D \). Hence, \(D \) is the unique largest clopen set in \(z(f) \).
If \(\text{cl} \left(\text{coz} f \right) \neq X \setminus D \) then, because of the clopen \(\pi \)-base, there would be a non-empty clopen set in \((X \setminus D) \setminus \text{cl} \left(\text{coz} f \right)\). This would contradict the fact that \(D \) is the maximal clopen set in \(z(f) \).

A first step in finding examples is to recall two results of Negrepontis.

Proposition 2.5. (1) [\(\mathbb{N} \)] Theorem 7.3 For any \(P \)-space \(X \) there exists an extremally disconnected space \(Y \) for which \(X \times Y \) is not an \(F \)-space. (2) [\(\mathbb{N} \)] Theorem 6.3 The product of a \(P \)-space and a compact basically disconnected space is basically disconnected.

Corollary 2.6. (1) If \(X \) is a \(P \)-space and \(Y \) is extremally disconnected such that \(X \times Y \) is not an \(F \)-space, then \(X \times Y \) is not \(\text{rr} \)-good. (2) If \(X \) is a \(P \)-space and \(Y \) is compact and basically disconnected, then \(X \times Y \) is \(\text{rr} \)-good.

Proof. (1) If \(X \times Y \) were \(\text{rr} \)-good, Proposition 2.4 would say that it is basically disconnected and, hence, an \(F \)-space. (2) Proposition 2.5 (2) gives the result. \(\square \)

The case where neither space is a \(P \)-space can also be dealt with as follows.

Theorem 2.7. Let \(X \) and \(Y \) be spaces such that each has a clopen \(\pi \)-base and are not \(P \)-spaces. The space \(X \times Y \) is not \(\text{rr} \)-good.

Proof. Every non-empty open set in \(X \times Y \) contains a non-empty clopen. If \(X \times Y \) were \(\text{rr} \)-good it would be basically disconnected by Proposition 2.1, hence an \(F \)-space, so one of \(X \) and \(Y \) would be a \(P \)-space by [\(\text{Cu} \], Theorem p. 51] or by [\(\text{GJ} \], 14Q.1] \(\square \)

Theorem 2.7 yields families of examples.

Examples 2.8. If \(X \) and \(Y \) are basically disconnected but not \(P \)-spaces, then \(X \) and \(Y \) are \(\text{rr} \)-good but \(X \times Y \) is not \(\text{rr} \)-good. As an illustration, \(\beta \mathbb{N} \times \beta \mathbb{N} \) is not \(\text{rr} \)-good.

Another example of a product of \(\text{rr} \)-good spaces that is not \(\text{rr} \)-good is found in the next result. It is of a quite different sort than in Examples 2.8, indeed, the factors are connected. The functions needed in the proof are best presented by a description of their graphs.

Theorem 2.9. The space \(\beta \mathbb{R} \times \beta \mathbb{R} \) is not \(\text{rr} \)-good.

Proof. Consider a band of width 2 centred on the diagonal \(D = \{(x,x) \mid x \in \mathbb{R}\} \) in \(\mathbb{R} \times \mathbb{R} \), bounded by two lines parallel to \(D \), \(L_1 \) above and \(L_2 \) below. Functions \(f, g \in C(\mathbb{R} \times \mathbb{R}) \) will be defined.

1. In the region above and including line \(L_1 \), \(f(x,y) = 3 \) and \(g(x,y) = 2 \).
2. In the region below and including \(L_2 \), \(f(x,y) = g(x,y) = 0 \).
3. Let \(L_3 \) be the line parallel to \(D \), midway between \(D \) and \(L_1 \). On any line \(M \) perpendicular to \(D \), let \(f \) go linearly from 3 to 0 as \((x,y) \) goes from \(L_1 \) to \(L_3 \). Similarly, \(g \) will go linearly from 2 to 0 on \(M \).
4. Everywhere below \(L_3 \) both \(f \) and \(g \) will be 0 except where indicated below.
5. For each \(n \in \mathbb{N} \) consider a disk \(\Delta_n \) of radius 1/4 around \((n,n)\). The functions \(f \) and \(g \) will coincide on \(\Delta_n \) and their graphs there will be a regular cone of height 1 and centre \((n,n)\).
There are several claims to be proved.

Claim 1: Both \(f \) and \(g \) extend to \(\beta R \times \beta R \).

As is customary in \(R \times R \), the first factor is the horizontal axis and the second the vertical one.

It must be shown that the oscillation condition of [W] Theorem, page 200 is satisfied so that \(f \) and \(g \) can be extended to \(\beta R \times \beta R \).

It is readily seen that the functions \(f \) and \(g \) are uniformly continuous because of the repeated patterns along the diagonal. This means that for every \(\varepsilon > 0 \) there is \(\delta > 0 \) such that \(|f(x, y) - f(u, v)| < \varepsilon \) if \(\| (x, y), (u, v) \| < \delta \). Now fix \((x_0, y_0) \), set \(\zeta = (1/\sqrt{\delta}) \delta \) and consider the vertical lines through \(x_0 + n\zeta \) and horizontal lines through \(y_0 + n\zeta \), with \(m, n \in \mathbb{Z} \). Set \(U_1 = \bigcup_{m \in \mathbb{Z}} (x_0 + m\zeta, x_0 + (m + 1)\zeta) \), a union of intervals along the horizontal axis; and \(V_1 = \bigcup_{n \in \mathbb{Z}} (y_0 + n\zeta, y_0 + (n + 1)\zeta) \), a union of intervals along the vertical axis.

Similarly, construct \(U_2 \) and \(V_2 \) using \(\{ x_0 + (1/2 + m)\zeta \} \) and \(\{ y_0 + (1/2 + n)\zeta \} \), \(m, n \in \mathbb{Z} \). Then the open sets \(U_1 \times V_1 \) and \(U_2 \times V_2 \) cover \(R \times R \) and make a grid satisfying the oscillation conditions. Since this can be done for all \(\varepsilon > 0 \), \(f \) and \(g \) can be extended to elements of \(C(\beta R \times \beta R) \), say \(F \) and \(G \), respectively.

Claim 2: If \(H = F \cap \beta R \) and \(G \) then for \(n, m \in \mathbb{N} \), \(n \neq m \), \(H, n, m \) = 0. In the case where \(n > m \), this holds because both \(f \) and \(g \) vanish at \((n, m) \). In the case where \(n < m \), this holds because \(f \) and \(g \) do not agree at \((n, m) \) (Lemma [2.12]).

Claim 3: For \(n \in \mathbb{N} \) let \(h_n \in C(R \times R) \) be the function whose graph is the cone defined for \((n, n) \). The function \(h_n \) extends to \(\beta R \times \beta R \) because of the same grid as used for \(f \) and \(g \). Let \(H_n \) denote its extension to \(\beta R \times \beta R \). Observe that \(H_n \leq_{rr} F, G \) since \(h_n \leq_{rr} f, g \) on the dense subset \(R \times R \).

Claim 4: It follows from Claim 3 that \(H(n, n) = 1 \) for all \(n \in \mathbb{N} \) since \(H_n(n, n) = 1 \) and \(H_n \leq_{rr} H \). This means that \(H \), restricted to \(\mathbb{N} \times \mathbb{N} \), is the Kronecker delta function, which is shown in [W] p. 196] not to extend to \(\beta \mathbb{N} \times \beta \mathbb{N} \). This is a contradiction.

Corollary 2.10. For any \(m, n \geq 1 \), \(\beta(\mathbb{R}^m) \times \beta(\mathbb{R}^n) \) is not rr-good.

Proof. The space \(R \) is a retract of \(\mathbb{R}^m \) and, hence, \(\beta R \) is a retract of \(\beta(\mathbb{R}^m) \) and, similarly, \(\beta R \) is retract of \(\beta(\mathbb{R}^n) \). From this, \(\beta R \times \beta R \) is a retract of \(\beta(\mathbb{R}^m) \times \beta(\mathbb{R}^n) \). The result follows from Theorem [2.9] and Proposition [2.11].

It would be interesting to know if \(R \times \beta R \) is rr-good or not. The methods used above do not apply to this space.

For spaces \(X \) and \(Y \) it is possible for \(\beta(X \times Y) \) to be homeomorphic to \(\beta X \times \beta Y \), where the homeomorphism does not fix \(X \times Y \) (see [W] 8.18) for such an example. In the case of a homeomorphism, all the spaces \(X \times Y, \beta(X \times Y) \) and \(\beta X \times \beta Y \) are simultaneously rr-good or none of them is. The latter possibility is illustrated in the next example.

Example 2.11. There is a connected non-compact rr-good pseudocompact space whose product with itself is pseudocompact but not rr-good.

Proof. The example is the space \(\Lambda = \beta R \setminus (\beta \mathbb{N} \setminus \mathbb{N}) \) mentioned at the end of Section 1. It is rr-good but \(\beta \Lambda \times \beta \Lambda = \beta R \times \beta R \) is not rr-good. On the other hand, \(\Lambda \times \Lambda \) is pseudocompact by [W] Proposition, p. 203]. Hence, Glicksberg’s theorem applies showing that \(\beta(\Lambda \times \Lambda) = \beta \Lambda \times \beta \Lambda \). This is not rr-good and therefore \(\Lambda \times \Lambda \) is not rr-good either.
This section ends with some \textit{rr}-good products. Unlike previous examples, the ones to be presented here need not be locally connected or basically disconnected. A simple lemma, whose proof follows by direct point-wise calculations, will be useful.

\textbf{Lemma 2.12.} Let Y be an \textit{rr}-good space and X any space. Suppose $f, g \in C(X \times Y)$. For each $x \in X$, let $f_x, g_x \in C(Y)$ be given by $f_x(y) = f(x, y)$ and $g_x(y) = g(x, y)$. Set $h_x = f_x \land g_x$ and let h be defined by $h(x, y) = h_x(y)$, for all x, y. If h is continuous on $X \times Y$ then $h = f \land g$.

Recall that a space X is \textit{weakly Lindelöf} if for any open cover $\{U_a\}_{a \in A}$, there is a countable subfamily $\{U_{a_n}\}_{n \in \mathbb{N}}$ with $\bigcup_{n \in \mathbb{N}} U_{a_n}$ dense in X. In the following, a result of Comfort, Hindman and Negrepontis (\textbf{CHN}) will be crucial.

\textbf{Theorem 2.13.} Let X be an arbitrary P-space and Y an \textit{rr}-good weakly Lindelöf space. The space $X \times Y$ is \textit{rr}-good.

\textbf{Proof.} Fix $f, g \in C(X \times Y)$. By \textbf{CHN} Lemma 3.2, each point in $X \times Y$ lies in an open set of the form $U \times V$, U open in X, V open in Y, such that for $x, x' \in U$ and all $y \in V$, $f_x(y) = f_{x'}(y)$ (the notation is as in the lemma). There are such open sets for g as well and, by taking intersections, it may be assumed that these open sets work for both functions. Moreover, since X is a P-space, it may also be assumed that U is clopen. An open set $U \times V$ where U is clopen and the \textbf{CHN} properties hold for both f and g will be here called a \textit{tile}.

Fix $p \in X$. For each $y \in Y$ there is a tile $U \times V$ with $(p, y) \in U \times V$. Hence, the set of tiles $\{U \times V \}_{(p, y) \in Y}$, with $p \in U_{\beta}$, is such that $\bigcup_{\beta \in B} V_\beta = Y$. By the weakly Lindelöf property, there is a countable subset $\{V_\alpha\}_{\alpha \in \mathbb{N}}$ whose union, V_p, is dense in Y. Put $A_p = \bigcap_{n \in \mathbb{N}} U_{\alpha_n}$. Since X is a P-space, A_p is clopen. For all $x \in A_p$, $f_x = f_p$ are equal on the dense open set V_p. Hence, $f_x = f_p$ on Y. Similarly, $g_x = g_p$ on Y. Put $h_p = f_p \land g_p$ and notice that $h_p = f_x \land g_x$, for all $x \in A_p$.

Now consider $p, p' \in X$. If $A_p \cap A_{p'} \neq \emptyset$, then $h_p = h_{p'}$. Indeed, for $x \in A_p \cap A_{p'}$, $f_x = f_p = f_p'$ and $g_x = g_p = g_{p'}$. Define $h(x, y) = h_p(y)$ whenever $x \in A_p$. This is well-defined and continuous on all the elements of the open cover of $\{A_p \times Y\}_{p \in X}$. Hence, $h = f \land g$ by Lemma 2.12. \hfill \Box

There are many examples of \textit{rr}-good Lindelöf spaces Y which can be used in Proposition 2.13 for example \mathbb{R}. For any non-discrete P-space X, $X \times \mathbb{R}$ is \textit{rr}-good but neither locally connected nor basically disconnected. An example where the \textit{rr}-good space Y is weakly Lindelöf but not Lindelöf is Λ, described at the end of Section 1. Another is found in \textbf{LR} Example 2, p. 237.

3. A partition of \mathbb{R}^2 into two dense subspaces, one \textit{rr}-good: this is impossible in \mathbb{R}.

The first thing to note is that if the real line $\mathbb{R} = A \cup B$, with $A \cap B = \emptyset$ and A and B both dense, then neither A nor B is \textit{rr}-good. This is a consequence of the following.

\textbf{Lemma 3.1.} \textbf{BR1} Proposition 3.6] Suppose, in a space X, there is a sequence $\{D_n\}_{n \in \mathbb{N}}$ of pairwise disjoint clopen sets such that $U = \bigcup_{n \in \mathbb{N}} D_n$ is not closed and there is $x \in \text{Fr} U$ (the boundary or frontier) such that every neighbourhood of x meets all but finitely many of the D_n. Then, X is not \textit{rr}-good.

To use the lemma in the case of A and B in \mathbb{R}, it suffices to take a convergent increasing sequence $\{a_n\}_{n \in \mathbb{N}}$ in, say, A and intersperse it with a sequence from B.

Subsets of \mathbb{R}^2 will now be constructed to show a quite different situation in the plane.

Definition 3.2. A line $y = mx + b$ in \mathbb{R}^2 is called **matched** if $m, b \in \mathbb{Q}$ and $m \neq 0$. The graph of such a line is denoted $L_{m,b}$.

Lemma 3.3. Consider a matched line $L_{m,b}$ in \mathbb{R}^2 given by $y = mx + b$, where $m \neq 0$ and $m, b \in \mathbb{Q}$. Then if $(p, q) \in L_{m,b}$, both $p, q \in \mathbb{Q}$ or both are irrational.

Proof. If $x \in \mathbb{Q}$ then $y = mx + b \in \mathbb{Q}$. If $x \notin \mathbb{Q}$ then $y = mx + b \in \mathbb{Q}$ would imply $mx \in \mathbb{Q}$, but $m \in \mathbb{Q}$ and $x \notin \mathbb{Q}$, which is impossible. □

It is also useful to note that if (a, b) and (c, d) are such that $a, b, c, d \in \mathbb{Q}$, $a \neq c$, then the line joining these points is a matched line.

Theorem 3.4. Consider the following two subsets of \mathbb{R}^2:

$$B = \bigcup_{m,b \in \mathbb{Q}, m \neq 0} L_{m,b} \text{ and } A = \mathbb{R}^2 \setminus B.$$

Then,

(1) B is dense in \mathbb{R}^2, locally connected and, hence, rr-good.

(2) A is dense in \mathbb{R}^2 and has a basis of clopen sets. It is not rr-good.

Proof. (1) Since any open set in \mathbb{R}^2 contains points where both coordinates are rational, B is dense in \mathbb{R}^2. Notice that B also contains points (a, b) where both a and b are irrational, but not all such points.

Consider a point (a, b) in B and an open disk C with centre (a, b). Suppose that U and V are open sets of \mathbb{R}^2 such that $U \cup V \supseteq C \cap B$, $U \cap V \cap C \cap B = \emptyset$, $U \cap C \cap B \neq \emptyset$ and $V \cap C \cap B \neq \emptyset$. In other words assume that there is a partition of $C \cap B$. Choose points $(p, q) \in U \cap C \cap B$ and $(u, v) \in V \cap C \cap B$, $p, q, u, v \in \mathbb{Q}$, $u \neq p$. The line segment joining these two points will lie in $C \cap B$ but this line segment is connected in \mathbb{R}^2, which is impossible. Hence, B is locally connected and, hence, rr-good by [BR1] Theorem 3.5(1)]. (It can be seen that B is even arcwise connected.)

(2) The set A contains all points (a, b) where one coordinate is rational and the other irrational, as well as some points where both coordinates are irrational. This shows that A is dense in \mathbb{R}^2. Moreover, for any $(a, b) \in A$ and any open disk C with centre (a, b) there is a quadrilateral inside C containing (a, b) bounded by matched lines. The interior of such a quadrilateral, intersected with A, is a clopen set in A.

Since A has a basis of clopen sets and has convergent sequences, it is not rr-good by Lemma 3.1. □

There are similar constructions in \mathbb{R}^n, $n > 2$.

4. Some separation properties and $C(X)$.

Two sorts of reduced rings will make an appearance in this section. The definitions are recalled here and, in the case of $C(X)$, the corresponding topological notions will follow.

Definition 4.1. (1) A ring R is called *weakly Baer* or wB if, for each $r \in R$, $\text{ann } r$ is generated by an idempotent $e = e^2$. (2) A ring R is called *almost weakly Baer* or awB if, for each $r \in R$, $\text{ann } r$ is generated by a set of idempotents.
In the literature the names “pp-ring” and “almost pp-ring” are also used for wB and awB rings, respectively.

The first thing to note is the following.

Lemma 4.2. [BRI] Theorem 2.6| An awB ring is rr-good if and only if it is wB.

Not all awB rings are wB.

Example 4.3. [NR] Example 3.2| The ring $C(\beta N \setminus N)$ is awB but not wB.

Even though awB rings need not be rr-good, a topological description of them nicely parallels that for wB rings of the form $C(X)$, and is given here.

The equivalence of the first two statements in the following is mentioned in [NR] but is also proved here.

Proposition 4.4. The following three statements about a space X are equivalent. (1) X is basically disconnected; (2) $C(X)$ is a wB ring; and (3) if U is a cozero set and V an open set with $U \cap V = \emptyset$ then U and V can be separated by a clopen set.

Proof. (1) \Rightarrow (2): Consider $f \in C(X)$ and let $D = X \setminus (\text{cl}(\text{coz } f))$, a clopen set, and $e = e^2 \in C(X)$ such that $\text{coz } e = D$. For any $g \in \text{ann } f$, $ge = g$ and $fe = 0$. Hence, $\text{ann } f = eC(X)$. (2) \Rightarrow (3): Let $U = \text{coz } f$ and V be open with $U \cap V = \emptyset$. Since $\text{ann } f = eC(X)$ for some $e = e^2$, the clopen set $D = \text{coz } e$ is such that $\text{coz } f = U \subseteq X \setminus D$. For every $g \in C(X)$ with $\text{coz } g \subseteq V$, $fg = 0$ implying that $\text{coz } g \subseteq D$. Thus, the clopen set D separates U and V. (3) \Rightarrow (1): If $U = \text{coz } f$, put $V = \text{int}(X \setminus U)$. There is a clopen set D with $\text{coz } f \subseteq D$ and $V \subseteq X \setminus D$. It follows that $\text{cl } U = D$. □

The equivalence of (1) and (2) in the next result was obtained in [AE] Theorem 2.4], but the proof here is more direct. U-spaces were introduced in [GH]; they are spaces X such that, for each $f \in C(X)$, there is a unit $u \in C(X)$ with $f = |f|u$.

Proposition 4.5. The following statements for a space X are equivalent. (1) X is a U-space; (2) $C(X)$ is an awB ring; and (3) if U and V are cozero sets with $U \cap V = \emptyset$ then U and V can be separated by a clopen set.

Proof. (1) \Rightarrow (2): Let $0 \neq f, g \in C(X)$ with $fg = 0$. Replace f by $k = -|f|$ and g by $l = |g|$; the cozero sets do not change. There is a unit u such that $k + l = |k + l|u = (-k + l)u$. Hence, for $x \in \text{coz } k$, $u(x) = -1$ and for $x \in \text{coz } l$, $u(x) = 1$. Since u is a unit, there is a clopen set D such that for $x \in D$, $u(x) > 0$ and for $x \notin D$, $u(x) < 0$. From this, $\text{coz } k = \text{coz } f \subseteq X \setminus D$ and $\text{coz } l = \text{coz } g \subseteq D$. Put $e = e^2$ with $\text{coz } e = D$. Then, $fe = 0$ and $g = eg$, showing that ann f is generated by idempotents.

(2) \Rightarrow (3): Let $U = \text{coz } f$ and $V = \text{coz } g$ be such that $U \cap V = \emptyset$. The product $fg = 0$. Since $C(X)$ is awB there are $e_i = e_i^2$ and $l_i \in C(X)$, $i = 1, \ldots, k$, with each e_i such that $fe_i = 0$ and $g = \sum_{i=1}^{k} e_i l_i$. Since $D = \bigcup_{i=1}^{k} \text{coz } e_i$ is clopen, there is $e = e^2$ with $\text{coz } e = D$. From this, $fe = 0$ and $g = ge$. The clopen set $\text{coz } e$ separates U and V.

(3) \Rightarrow (1): It must be shown that for any $f \in C(X)$ there is a unit u with $f = |f|u$. If f does not change sign in $\text{coz } f$, the unit can be ± 1. Otherwise, let
5. A sufficient but not a necessary condition for rr-good.

We begin by recalling the definition of the B-property from [BRI] Definition 3.3. It is a sufficient condition for a space to be rr-good ([BRI] Corollary 3.4]). It is implied by local connectedness. However, it is known not to be a necessary condition; a topic expanded upon here.

Definition 5.1. In a space X let $\{U_\alpha\}_{\alpha \in A}$ be any family of non-empty cozero sets in X with the following property: for $\alpha \neq \beta$ in A, $(\operatorname{Fr} U_\alpha) \cap U_\beta = \emptyset$. The space X is said to satisfy the B-property (for boundary property) if the following holds for each such family of cozero sets. Let $z \in \operatorname{Fr} (\bigcup_{\alpha \in A} U_\alpha)$. For every neighbourhood N of z there is $\beta \in A$ such that $N \cap \operatorname{Fr} U_\beta \neq \emptyset$.

The motivation for this definition is as follows: Suppose in $C(X)$ that, for $f, g \in C(X)$, there are non-zero rr-lower bounds $\{h_\alpha\}_{\alpha \in A}$ for f and g. Then, by Lemma 1.1, the set $\{\operatorname{coz} h_\alpha\}_{\alpha \in A}$ satisfies the demands of Definition 5.1.

The purpose here is to find connected rr-good spaces without the B-property. Before doing that, the next proposition shows that, at the other extreme, it is easy to find basically disconnected spaces without the B-property.

Proposition 5.2. If X is a space that has the B-property then each union of clopen sets is clopen. If, in addition, X has a clopen π-base, it is discrete.

Proof. Any set $\{U_\alpha\}_{\alpha \in A}$ of clopen sets satisfies the conditions of Definition 5.1. Set $U = \bigcup_{\alpha \in A} U_\alpha$. If $x \in \operatorname{Fr} U$, any neighbourhood of x would meet $\operatorname{Fr} U_\alpha$, for some α. However, $\operatorname{Fr} U_\alpha = \emptyset$ and, hence, $\operatorname{Fr} U = \emptyset$. For the second part, any open V in X has a union of clopen sets dense in it. From the first part, V is clopen. □

Any basically disconnected space X which is not discrete is rr-good and does not have the B-property.

The next proposition is the key tool for the construction of connected examples.

Proposition 5.3. Let X be a space which is not compact. Let $\{U_\alpha\}_{\alpha \in A}$ be an infinite family of pairwise disjoint non-empty cozero sets of X. For $\alpha \in A$, let f_α be such that $f_\alpha \in C(X)$ such that $\operatorname{coz} f_\alpha = U_\alpha$, for all $x \in X$, $0 \leq f_\alpha(x) \leq 1$ and for some $k_\alpha \in U_\alpha$, $f_\alpha(k_\alpha) = 1$. Assume that these data also satisfy the following properties:

(i) for $\alpha \neq \beta$, $(\operatorname{Fr} X U_\beta) \cap U_\alpha = \emptyset$,
(ii) $K_\alpha = \operatorname{cl} X U_\alpha$ is compact for all $\alpha \in A$,
(iii) the function f defined by $f(x) = f_\alpha(x)$ for $x \in U_\alpha$ and $f(x) = 0$ if $x \notin U = \bigcup_{\alpha \in A} U_\alpha$ is continuous on X,
(iv) $K = f^{-1}(\{1\})$ is not compact in X.

Then, βX does not have the B-property.

Proof. The condition (ii) says that K_α is compact and so it and $X^* = \beta X \setminus X$ are completely separated. There is $u_\alpha \in C(\beta X)$ such that $u_\alpha|_{K_\alpha}$ is constantly 1 and $u_\alpha|_{X^*}$ is constantly 0. Now f_α can be extended to $\beta f_\alpha \in C(\beta X)$. The product
\[u_{\alpha} \cdot \beta f_{\alpha} \text{ coincides with } f_{\alpha} \text{ on } U_{\alpha} \text{ and is 0 elsewhere. This shows that } U_{\alpha} \text{ is a cozero set in } \beta X. \text{ Moreover, } Fr_{X} U_{\alpha} = Fr_{\beta X} U_{\alpha} \text{ because } K_{\alpha} \text{ is compact and, hence, also closed in } \beta X. \]

It follows that \(\{ U_{\alpha} \} \) is a family of cozero sets in \(\beta X \) which satisfies the condition to test for the B-property.

Since \(K \) is closed and not compact in \(X \), \(P = (cl_{\beta X} K) \cap X^* \neq \emptyset \). Now, extend \(f \) to \(\beta f \).

It follows that \((coz \beta f) \cap X = U \) but also \(P \subseteq coz \beta f \), since for \(p \in P, \beta f(p) = 1 \). Notice that any \(p \in P \) is in \(Fr_{\beta X} U \) since any neighbourhood \(N \) of \(p \) with \(N \subseteq coz \beta f \) will meet \(X \) and thus \(N \cap X \subseteq U \). However, any such \(N \) will not meet any \(Fr_{X} U_{\alpha} = Fr_{\beta X} U_{\alpha} \), contradicting the B-property. \(\Box \)

Corollary 5.4. Suppose that \(X \) satisfies the conditions of Proposition 5.3 and that \(X \) is \(rr \)-good. Then, \(\beta X \) is \(rr \)-good and does not have the B-property. Moreover, \(\beta X \) is not locally connected.

Proof. Since \(X \) is \(rr \)-good, so is \(\beta X \). Then Proposition 5.3 says that \(\beta X \) does not have the B-property. If \(\beta X \) were locally connected, it would have the B-property. \(\Box \)

Example 5.5. The connected space \(\beta \mathbb{R} \) is \(rr \)-good and does not have the B-property.

Proof. The space \(\mathbb{R} \) is \(rr \)-good. The cozero sets needed in the proposition can be taken to be the intervals \(\{(n, n + 1)\}_{n \in \mathbb{Z}} \) and, hence, Corollary 5.4 applies. \(\Box \)

Similarly, for any euclidean space \(\mathbb{R}^n \), \(\beta \mathbb{R}^n \) is a connected \(rr \)-good space which does not have the B-property.

References

[AE] H. Al-Ezeh, *Exchange PF-rings and almost PP-rings*, Internat. J. Math. Sci. **12** (1989), 725–728.

[B] W.D. Burgess, *Abian’s order relation on \(C(X) \)*, Kyungpook Math. J. **15** (1975), 99–104.

[BR1] W.D. Burgess and R. Raphael, *The reduced ring order and lower semi-lattices*, Contemp. Math. **179** (2018), 89–106.

[BR2] W.D. Burgess and R. Raphael, *The reduced ring order and lower semi-lattices II*, under review, 2020.

[Ch] M. Chacron, *Direct products of division rings and a paper of Abian*, Proc. Amer. Math. Soc. **29** (1971), 259–262.

[CHN] W.W. Comfort, N. Hindman and S. Negrepontis, *\(F^* \)-spaces and their product with \(P \)-spaces*, Pacific J. Math. **28** (1969), 489–502.

[Cu] P.C. Curtis Jr, *A note concerning certain product spaces*, Arch. Math. **11** (1960), 50–52.

[GH] L. Gillman and M. Henriksen, *Rings of continuous functions in which every finitely generated ideal is principal*, Trans. Amer. Math. Soc. **82** (1956) 366–391.

[GJ] L. Gillman and M. Jerison, *Rings of Continuous Functions*. Graduate Texts in Mathematics **43**, Springer, 1976.

[LR] R. Levy and M.D. Rice, *Normal \(P \)-spaces and the \(G_{\delta} \)-topology*, Colloq. Math. **44** (1981), 227–240.

[N] S. Negrepontis, *On the product of \(F \)-spaces*, Trans. Amer. Math. Soc. **136** (1969), 339–346.

[NR] S.B. Niefield and K.I. Rosenthal, *Sheaves of integral domains on Stone spaces*, J. Pure Appl. Algebra **47** (1987), 173–179.

[S] I. Sussman, *A generalization of boolean rings*, Math. Ann. **136** (1958), 326–338.

[W] R.C. Walker, *The Stone-Cech Compactification*. Springer Verlag, Ergebnisse der Mathematik **83**, 1974.
Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada, K1N 6N5
E-mail address: wburgess@uottawa.ca

Department of Mathematics and Statistics, Concordia University, Montréal, Canada, H4B 1R6
E-mail address: r.raphael@concordia.ca