Sesquiterpenoid Compounds from The Stembark of Aglaia minahassae (Meliaceae)

Nunung Kurniasih1,2, Hersa Milawati1, Mohamad Fajar1, Ace Tatang Hidayat1,2, Rizky Abdullah1, Desi Harneti 1, Unang Supratman1,2*, Mohamad Nur Azmi B Mohamad Taib1,5

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
2Department of Chemistry, Faculty of Sciences and Technology, Sunan Gunung Djati Islamic State University, Bandung, Indonesia
3Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
4Central Laboratory of Universitas Padjadjaran, Jatinangor, Indonesia
5School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia

*email: unang.supratman@unpad.ac.id

Received December 15, 2017; Accepted March 21, 2018; Available online May 31, 2018

ABSTRACT

Two sesquiterpenoid compounds, 4(15)-eudesmen-1β,6α-diol (1) and spathulenol (2) have been isolated from the stembark of Aglaia minahassae belong to Meliaceae family. The chemical structures of 1 and 2 were identified on the basis of spectroscopic evidence including UV, IR, NMR 1D, NMR 2D as well as mass spectra and by comparison with those previously reported spectra data. This compounds were isolated from this plant for the first time.

Key words: Sesquiterpenoid, Aglaia minahassae, 4(15)-eudesmen-1β,6α-diol, spathulenol.

INTRODUCTION

Meliaceae plant is the important plant families that have utilization and generally grow in the tropical countries. Meliaceae plant are known for the presence of the various secondary metabolite compounds that exhibit interesting biological activity such as hypoglycemia, anticancer, anti-inflammatory, antifeedant, antitumor (Awang et al., 2012; Leong et al., 2016; Su et al., 2006) and insecticidal activity (Nugroho et al., 1999). The Aglaia genus is a plant of the tropical rain forest in the Indomalesiana region and mainly distributed in tropical countries including India, Indonesia, Malaysia and parts of the Western Pacific. Aglaia is the largest genus belong to Meliaceae family contain more than 150 species (Hidayat et al., 2017a; Hidayat et al., 2017b; Awang et al., 2012) and about 65 species grown in Indonesia (Wood et al., 1970; Heyne 1982). Aglaia species are mainly distributed in the tropical rainforest of Southeast Asia and on the Pacific islands (Leong et al., 2016; Hidayat et al., 2017b). Phytochemical studies on Aglaia species have led to the identification of main compounds such as sesquiterpenoids (Joycharat et al., 2010; Liu et al., 2014; Pan et al., 2014), diterpenoids (Cai et al., 2010; Yodsauue et al., 2012), rocaglate derivatives (Nugroho et al., 1999; Farabi et al., 2017; Hidayat et al., 2017a), lignans (Sianturi et al., 2016), dammarane-type triterpenoids (Xie et al., 2007; Zhang, et al., 2010; Harneti et al., 2012; Farabi et al., 2017), cycloartane-type triterpenoids (Awang et al., 2012) and steroids (Harneti et al., 2014; Zhang et al., 2016).

Sesquiterpenes are less volatile than terpenes, have a greater potential for stereochemical diversity and stronger odors (Waterman, 1993). They are anti-inflammatory (Jeena et al., 2013) and have bactericidal properties (Ishnava et al., 2013). Sesquiterpenes oxidize over time into sesquiterpenols. In patchouli oil, this oxidation is thought to improve the odor. One of the most anti-inflammatory sesquiterpenes, chamazulene, only has 14 carbon atoms but is usually included with sesquiterpenes. Chamazulene and Caryophyllene have strong antioxidant (Ornano et al., 2013) and antitumor activity (Feraz et al., 2013; Park, et al., 2011). Some sesquiterpenes such as α-farnesene can be effective against the bacteria that cause tooth decay (Ishnava et al 2013).

Liu et al. (2014) isolated and described four guaian sesquiterpenes and an eudesmene sesquiterpene from the twigs of Aglaia odorata var. microphyllina. Pan et al. (2010) were isolated eudesmene-type sesquiterpene from the stem bark of Aglaia foveolata obtained in
Kalimantan, Indonesia. Although sesquiterpenoids of other Aglaia species have been investigated previously, the sesquiterpenoid derivatives of A. minahassae is yet to be reported. In this communication, the isolation and structure identification of eudesmen-type and aromadendran-type sesquiterpenoids are described.

EXPERIMENTAL SECTION

General Experiment Procedure

The IR spectra were recorded on a Perkin-Elmer spectrum-100 FT-IR (Waltwam, MA, USA) in KBr. Mass spectra were obtained with a Synapt G2 mass spectrometer instrument (Waters, Milford, MA, USA). NMR spectral data were performed on a Bruker Topspin spectrometer at 500 MHz (Bruker BioSpin GmbH, Silberstreifen 4, D-76287 Rheinstetten, Germany), with CDCl₃ as a solvent, chemical shifts were given on a δ (ppm) scale and tetramethylsilane (TMS) as an internal standard. Column chromatography was conducted on silica gel 60 (Merck, Darmstadt, Germany) and octadesyl sylane (ODS, Fuji Sylisia, Japan). TLC plates were precoated with silica gel GF₂₅₄ (Merck, 0.25 mm) and detection was achieved by spraying with 10% H₂SO₄ in EtOH, followed by heating.

Plant Material

The stembark of A. minahassae were collected in Bogor Botanical Garden, Bogor, West Java Province, Indonesia in January 2016. The plant was identified by the staff of the Bogoriense Herbarium, Research Center for Biology, Indonesian Institute of Science, Bogor, Indonesia and a voucher specimen (No. BO-1294551) has been deposited at the herbarium.

Extraction and Isolation

The dried stembark of A. minahassae (1.68 kg) was extracted with methanol (12 L) at room temperature for 3 days. The methanol extract was evaporated under vacuum to yield a dark brown residue (225.1 g). This residue was dissolved in water and partitioned successively with n-hexane (10 L), ethyl acetate (10 L) and n-butanol (10 L). Evaporated of this extracts resulted of n-hexane (9.38 g), ethyl acetate (7.05 g) and n-butanol (7.63 g), respectively.

The n-hexane extract (9.38 g) was separated by vacuum liquid chromatography (VLC) on silica gel G60 using a gradient elution of n-hexane-ethyl acetate (10:0 to 0:10) then ethyl acetate-methanol (10:0 to 0:10) to give eight fractions (A-H). The D fraction (2.85 g) was separated by column chromatography on silica gel using a gradient elution of n-hexane-ethyl acetate (10:0 to 4:6) to yield twelve fractions (D1-D12). Furthermore, the D7 fraction (217.3 mg) was separated by column chromatography on silica gel eluted with methylene chloride: acetone (19:1) to give five fractions (D7.1-D7.5). The D7.2 fraction (82.0 mg) was separated by column chromatography on octadesyl silane (ODS) eluted with methanol: acetonitrile: water (11: 2: 7) to yield compound 1 (21.5 mg).

The C fraction (1.75 g) was separated by column chromatography on silica gel using a gradient elution of n-hexane-ethyl acetate (10:0 to 0:10) to obtained nine fractions (C1-C9). Subsequently, the C7 fraction (267.3 mg) was separated by column chromatography on silica gel eluted with n-hexane : chloroform : acetone (95: 5: 5) to obtained six fractions (C7.1-C7.6). The C7.3 fraction (42 mg) was separated by preparative TLC on silica gel GF₂₅₄ eluted with n-hexane: toluene: acetone (15: 4: 1) to obtained compound 2 (4.0 mg).

RESULTS AND DISCUSSION

The n-hexane extract of the stembark of A. minahassae was chromatographed over a vacuum-liquid chromatographed (VLC) column packed with silica gel 60 by gradient elution. The VLC fractions were repeatedly subjected to silica gel and ODS column chromatography as well as preparative thin layer chromatography (PTLC) on silica gel GF₂₅₄ to afford a compounds 1 and 2 (Figure 1).

Compound 1 was obtained as a white amorphous solid. The molecular formula was determined to be C₁₅H₂₆O₂ by the basis of HR-TOFMS spectrum showed [M+H]+ m/z 237.1907 (calcd. m/z 237.1855) and NMR spectral data (Table 1), thus requiring three degree of unsaturations. The IR spectra of compound 2 showed absorption peaks due to of hydroxyl group (3420 cm⁻¹), aliphatics (2970 and 2870 cm⁻¹), isolated double bond (1580 cm⁻¹) and ether group (1168 cm⁻¹).
Figure 1. Chemical Structures of Compounds 1 and 2

Figure 2. Selected 'H-'H COSY and HMBC Correlations for Compounds 1 and 2.

Figure 3. Selected NOE correlations for 1

'H-NMR spectrum showed a singlet methyl signal at δH 0.70 (3H, s, CH3-14), two doublet methyl signals δH 0.87 (3H, d, J=7.0 Hz, CH3-12) and 0.95 (3H, d, J=7.0 Hz, CH3-13) were assigned to an isopropyl group. Two oxygenated methine proton signals at δH 3.42 (1H, dd, J= 4.8, 11.6 Hz), δH 3.71 (1H, m) were also observed in the 'H-NMR spectrum. In addition, the presence of a sp2 gem-methylene proton signals were observed at δH 4.74 (1H, d, J=1.0 Hz), 5.02 (1H, d, J=1.0 Hz) and other aliphatic signals at upfield regions also were oberved in the 'H-NMR spectrum. The 13C-NMR spectrum showed fifteen carbon signals, which were classified by their chemical shifts and DEPT spectra as one tertiary methyl, two secondary methyls, two oxygenated sp3methines, one sp2 methylenes, one sp2 quaternary, four sp3 methylenes, three sp3 methines and one sp3 quaternary carbons. This functionalities accounted for one out of the total three degrees of unsaturation. The remaining of two degrees of unsaturation were consistent with eudesmen-type sesquiterpenoid skeleton (Kitajima, Suzuki, Satoh, & Watanabe, 2002).

In order to clarify the position of functional group in compound 1, 'H-'H COSY and HMBC experiments were carried out and the results were shown in Figure 2. The 'H-'H COSY spectrum of 1 showed correlations in C1-C2-C3, C5-C6-C7-C8-C9, and C11-C7, supporting the presence of eudesmen-type sesquiterpenoid skeleton in compound 1. A tertiary methyl signal at δH 0.73 was correlated to C10 (δC 41.7), C9 (δC 36.3) and C1 (δC 79.0), whereas methylene protons at δH 1.86 was correlated to C1 (δC 79.0) and C3 (δC 35.1), indicating that position of secondary hydroxy and tertiary methyl were located at C-1 and C-10, respectively. An oxygenated
proton at δH 3.71 (H-6) was mutually coupled to sp3-methylene protons at δH 1.75 (H-5) and 1.31 (H-7), whereas those sp3-methylene protons were correlated to oxygenated methine carbon at δC 67.0 (C-6), suggesting that another secondary hydroxyl group was located at C-6. A deshielded methylene protons at δH 4.74 (1H, d, J=1.0 Hz) and 5.02 (1H, d, J=1.0 Hz) are mutually coupled and were correlated to C-4 (δC 146.2), whereas methine proton at δH 1.75 (H-5) was correlated to C-4 (δC146.2), indicating that an olefinic terminal moiety was located at C-4. Two secondary methyls at δH 0.87 (3H, d, J=7.0 Hz, CH3-12) and 0.95 (3H, d, J=7.0 Hz, CH3-13), were correlated to C-11 (δC 26.0), whereas methine proton at δH 2.24 (H-11) was correlated to C-7 (δC 49.3) and C-11 (δC 26.0) indicated that an isopropyl group was located at C-7.

The relative stereochemistry of compound 1 was supported by NOESY spectrum (Figure 3) and based on coupling constant (J) of vicinal proton. NOE correlation between H-2, H-1 and H-5, supporting that 1-OH was β-configuration. NOE correlation between CH3-14 and H-6, supporting that 6-OH was α-configuration. An isopropyl moiety was determined as β-oriented based on NOE correlation between H-7 and H-5. A detailed comparison of compound 1 to those of 4(15)-eudesmen-1β,6α-diol was isolated from Caragana intermedia (Sun, Chen, Zhang, & Hu, 2004), revealed that both compounds were very similar, consequently compound 1 was identified as 4(15)-eudesmen-1β,6α-diol. That compound was isolated also from Torilis japonica (Apiaceae) (Kitajima et al., 2002), Helianthus microcephalus (Asteraceae) (Gutierrez & Herz, 1988), Ambrosia elatior (Asteraceae) (Ohmoto, Ikeda, Nomura, Shimizu, & Saito, 1987) and Croton arboreus (Euphorbiaceae) (Aguilar-Guadarrama & Rios, 2004), but 4(15)-eudesmen-1β,6α-diol (1) was isolated from A. minahassae for the first time.

Compound 2 was obtained as a colorless oil. The molecular formula was determined to be C15H24O by the basis of HR-TOFMS spectrum showed [M+H]+ m/z 220.3505 (calcd. m/z 220.3512) and NMR spectral data (Table 1), thus requiring four degrees of unsaturation. The IR spectra showed absorption peaks at 3450 cm⁻¹ (OH), 2990 and 2860 (C-H aliphatics), 1585 cm⁻¹ (C=O olefinic) and 1120 cm⁻¹ (C-O ether). The 1H-NMR spectrum of compound 2 showed the presence of three tertiary methyl signals at δH 1.02 (3H, s, CH3-12), 1.27 (3H, s, CH3-15), and 1.04 (3H, s, CH3-13), indicated the characteristics of aromadendran-type sesquiterpenoid (Phongmaykin, Kumamoto, Ishikawa, Suttisiri, Saifah, 2008). The presence of an olefinic methylene signal resonances at δH 4.65 (1H, d, J=-2.1 Hz, H-14a) and 4.67 (1H, d, J=-2.1 Hz, H-14b), was also observed in the 1H NMR spectrum.

The 13C-NMR spectrum of compound 2 in combination with DEPT experiments displayed the presence of fifteen carbon signals comprising of three tertiary methyl, one sp3 methylene, one sp3 quaternary carbon, one oxygenated sp3 quaternary carbon, four sp3 methylene, four sp3 methines, and one sp3 quaternary carbon. This functionalities accounted for one out of the total four degrees of unsaturation. The remaining of three degrees of unsaturation were consistent with tricylic aromadendran-type sesquiterpenoid (Phongmaykin, Kumamoto, Ishikawa, Suttisiri, Saifah, 2008).

The chemical structure of 1 was deduced from the 1H–1H COSY and HMBC spectra (Figure 2). 1H–1H-COSY correlations at C1-C2-C1-C3-C6-C7-C8-C9, supporting the presence of tricylic aromadendran-type sesquiterpenoid in compound 1. A sp3-methylene proton at δH 6.45 (H-14a) and 4.67 (H-14b) were correlated to C-10 (δC 153.5) and C-1 (δC 53.5), whereas methylene proton at δC 24.1 (H-9a) and 2.04 (H-9b) were correlated to C-10 (δC 153.5), indicating that olefinic moiety was located at C-10. A tertiary methyl at δH 1.27 (CH3-4) and methine proton at δH 1.30 (H-5) were correlated to oxygenated carbon at δC 81.1 (C-4), whereas methylene proton at δH 1.75 (H-3a) and 1.55 (H-3b) were correlated also to oxygenated carbon at δC 81.1 (C-4), indicating that tertiary hydroxyl group was located at C-4. A gem-dimethyl protons at δH 1.02 (CH3-12) and 1.04 (CH3-13) were correlated to quaternary carbon at δC 20.4 (C-11), whereas methine protons at δH 0.45 (H-6) and 0.70 (H-7) were correlated also to quaternary carbon at δC 20.4 (C-11), indicating that a gem-dimethyl attached at cyclopropane ring at C-11. A detailed comparison of NMR spectra of compound 2 to those of tricyclic aromadendran-type sesquiterpenoid, spatulenol (Phongmaykin, Kumamoto, Ishikawa, Suttisiri)
Saifah, 2008), revealed that both compounds were very similar, consequently compound 2 was identified as a spatulenol. The relative stereochemistry was determined as a spatulenol based on the similarity of vicinal coupling constant (\(^3J\)) values in the \(^1\)H NMR spectrum, such as \(^3J\) between H-1 and H-2 (7.0 Hz), H-5 and H-6 (9.0 Hz) as well as H-6 and H-7 (6.2 Hz) and others similarity. Consequently compound 1 was identified as a spatulenol. The compound was isolated also from Vernoniamollissima (Asteraceae) (Krebs, Rakotoarimaya, & Harbernahl, 1990) and Homalomena aromatica (Araceae) (Policegoudra et al., 2012), but was isolated from A. minahassae for the first time.

CONCLUSIONS

Eudesmaene-type sesquiterpenoid, 4(15)-eudesmen-1β,6α-diol (1) and aromadendran-type sesquiterpenoid compounds, spatulenol (2) have been isolated from the stembark of A. minahassae. Both compounds were isolated from this plant for the first time and indicated the ability of Aglaia species to produce a sesquiterpenoid compounds. The discovery of two sesquiterpene compounds from the stembark of A. minahassae also reinforces previous phytochemical studies of the occurrence of sesquiterpenoid in the Aglaia genus.

ACKNOWLEDGEMENTS

This research was financially supported by Directorate General of Higher Education, Ministry of Research, Technology and Higher Education, Indonesia (Postgraduate Grant, 2016-2018 by Unang Supratman).

REFERENCES

Aguilar-Guadarrama, A.B. & M.Y. Rios. (2004). Three new sesquiterpenes from Croton arboreous. Journal of Natural Products. 67(5), 914–917.
Awang, K., Loong, X.M., Leong, K.H., Supratman, U., Litaudon, M., Mukhtar, M.R., &Mohamad, K. (2012). Triterpenes and steroids from the leaves of Aglaia exima (Meliaceae). Fitoterapia, 83, 1391-1395.
Sesquiterpenoid Compounds from the Stembark of Aglaia

Nunung Kurniasih, et.al.

Cai, X., Wang, Y., Zhao, P., Li, Y., & Luo, X. (2010). Dolabellane diterpenoids from Aglaia odorata. Phytochemistry, 71, 1020–1024.

Farabi, K., Harneti, D., Nurlelasari., Maharani, R., Hidayat, A.C., Awang, K., Supratman, U., & Shiono, Y. (2017). New cytotoxic protolimonoids from the stem bark of Aglaia argentea (Meliaceae). Phytochemistry Letters, 21, 211–215.

Feraz, R., Cardozo, G., da Silva T., Fontes, J., Prata, A. (2013). Antitumour properties of the leaf essential oil of Xylopia frutescens. Food Chemistry, 141(1):196–200.

Gutierrez, A.B. & W. Herz. (1988). Guaianolides and Other Constituents of Helianthus microcephalus. Phytochemistry. 27(7), 2225–2228.

Harneti, D., Supriadin, A., Ulfah, M., Safari, A., Supratman, U., Awang, K., & Hayashi, H. (2014). Cytotoxic constituents from the bark of Aglaia exima (Meliaceae). Phytochemistry Letters, 8, 28–31.

Harneti, D., Tjokronegoro, R., Safari, A., Supratman, U., Loong, X.M., Mukhtar, M.R., Mohamad, K., Awang, K., & Hayashi, H. (2012). Cytotoxic triterpenoids from the bark of Aglaiaasmitthi. Phytochemistry Letters, 5, 496–499.

Heyne, K., 1982. “The Useful Indonesian Plants”, Research and Development Agency, Ministry of Forestry, Jakarta, Indonesia. 1029-1031.

Hidayat, A.T., Farabi, K., Harneti, D., Nurlelasari., Maharani, R., Mayanti, T., Supratman, U & Shiono, Y. (2017a). A Cytotoxic Rocaglate Compound from The Stembark of Aglaia argentea (Meliaceae). Molekul, 12(2), 146-152.

Hidayat, A.T., Farabi, K., Harneti, D., Maharani, R., Darwati, Nurlelasari., Mayanti, T., Arlette Suzy Setiawan, A.S., Supratman, U & Shiono, Y. (2017b). Cytotoxicity and Structure Activity Relationship of Dammarane-TypeTriterpenoids from the Bark of Aglaia elliptica against P-388 Murine Leukemia Cells, Natural Product Sciences. 23(4): 291-298.

Ishnava, K., Chauhan, J., Barad, M. (2013). Anticariogenic and phytochemical evaluation of Eucalyptus globulus. Saudi Journal of Biological Sciences. 20(1), 1-10.

Jeena, K., Liju, V., Kuttan, R. (2013). Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian Journal of Physiology Pharmacology 57(1):51-62.

Joycharat, N., Plodpai, P., Panthong, K., Yingyongnarongkul, B., & Voravuthikunchai, S.P. (2010). Terpenoid constituents and antifungal activity of Aglaia forbesii seed against phytopathogens. Canadian Journal of Chemistry, 88, 937–944.

Kitajima, J., Suzuki, N., Satoh, M & Watanabe, M.(2002). Sesquiterpenoids of Torilis japonica Fruit. Phytochemistry, 59, 811–815.

Krebs, H.C., Rakotoarimany, J.V & Harbermehl, G.G. (1990). Isolation of spatulenol and (−)-caryophyllene oxide from Vernonia mollissima don and 1H and 13C reassignment by two-dimensional NMR spectroscopy. Magnetic Resonance in Chemistry, 28, 124-128.

Leong, K.H., Looi, C.Y., Loong, X.W., Cheah, F.K., Supratman, U., Litaudon, M., Mohd Rais Mustafa, M.R., Mohd Rais Mustafa, M.R., Awang, K. (2016). Cycloart-24-ene-26-ol-3-one, a New Cycloartane Isolated from Leaves of Aglaia exima Triggers Tumour Necrosis Factor- Receptor 1-Mediated Caspase-Dependent Apoptosis in Colon Cancer Cell Line. PLOS ONE, 4, 1-17.

Liu, S., Liu, S.B., Zuo, W., Guo, Z., Mei, W., & Dai, H. (2014). New sesquiterpenoids from Aglaia odorata var. microphyllina and their cytotoxic activity. Fitoterapia, 92, 93–99.

Nugroho, B.W., Edrada, R.A., Wray, V., Witte L., Bringmann, G., Gehling, M., & Proksch, P. (1999). An insectisidal rocaglamida derivates and related compounds from Aglaia odorata (Meliaceae). Phytochemistry, 51, 367-376.

Ohmoto, T., K. Ikeda, S. Nomura, M. Shimizu & S. Saito. (1987). Studies on the Sesquiterpenes from Ambrosia elatior Linne. Chemistry Pharmaceutical Bulletin. 35(6), 2272-2279.

Ornano, L., Venditti, A., Ballero, M., Sanna, C., Quassinti, L. (2013).
Chemopreventive and antioxidant activity of the chamazulene-rich essential oil obtained from *Artemisia arborescens* L. growing on the Isle of La Maddalena, Sardinia, Italy. *Chemistry and Biodiversity* 10(8):1464-74.

Pan, L., L.B.S. Kardono, S. Riswan, H. Chai, E.J. Carcache de Blanco, C.M. Pannell, D.D. Soejarto, T.G. McCloud, D.J. Newman & A.D. Kinghorn, (2010) Isolation and characterization of minor analogues of silvestrol and other constituents from a large scale re-collection of *Aglaia foveolata*. *Journal of Natural Products*. 73(4), 1873–1878.

Park, K., Nam, D., Hun, H., Le, S., Jang, H. (2011). β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. *Cancer Letters* 312(2):178-88.

Phongmaykin, J., Kumamoto, T., Ishikawa, T., Suttisri, R., Saifah, E., (2008). A new sesquiterpene and other terpenoid constituents of *Chisocheton penduliflorus*. *Archive of Pharmacal Research*. 31, 21-27.

Policegoudra, R.S., Goswami, S., Aradhya, S.M., Chatterjee, S.M., Datta, S., Sivaswam, S.R., Chattopadhyay, R., (2012). Bioactive constituents of *Homalomena aromatica* essential oil and its antifungal activity against dermatophytes and yeasts. *Journal of Mycologie Médicale*, 22(1), 83-87.

Sianturi, J., Harneti, D., Darwati, Mayanti, T., Supratman, U., & Awang, K. (2016). A New(−)-5′,6-dimethoxyisolariciresinol-(3″,4″-dimethoxy)-3α-O-β-glucopyranoside from the bark of *Aglaieximia* (Meliaceae). *Natural Products Research*, 30, 2204-2208.

Su, B., Chai, H., Mi, Q., Riswan, S., Kardono, L.B.S., Afriastini, J. J., Santarsiero, B. D., Mesecar, A. D., Fransworth, N. R., Cordell, G. A., Swanson, S. M., & Kinghorn, D. (2006). Activity-guided isolation of cytotoxic constituents from the bark of *Aglaia cruciata* collected in Indonesia. *Bioorganic and Medicinal Chemistry*, 14, 960-972.

Sun, Z., B. Chen, S. Zhang, & C. Hu. (2004). Four New Eudesmanes from *Caragana intermedia* and Their Biological Activities. *Journal of Natural Products*. 4(15), 1975–1979.

Waterman P. (1993). *The chemistry of volatile oils*. In Hay R, Waterman P (eds.), Volatile Oil Crops: Their Biology, Biochemistry and Production. Essex, UK: Longman Scientific and Technical, 47-61.

Wood, D.L., Silverstain, R.M., & Nakajima, M. (1970). *Control of Insects Behavior by Natural Products*. Academic Press. New York.

Xie, B.J., Yang, S.P, Chen, H.D., & Yue, J.M. (2007). Triterpenoids from *Aglaia duperrreana*. *Journal of Natural Products*, 70, 1532-1535.

Yodsaoue, O., Sonprasit, J., Karalai, C., Ponglimanont, C., Tewtrakul, S., & Chantrapromma, S. (2012). Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of *Aglaia odorata*. *Phytochemistry*, 76, 83-91.

Zhang, F., Wang, J.S., Gu, Y.C., & Kong, L.Y. (2010). Triterpenoids from *Aglaia abbreviata* and their cytotoxic activities. *Journal of Natural Products*, 73, 2042-2046.

Zhang, F., Zhu, Y., Li, Q., & Cen, J. (2016). Four New Pregnane Steroids from *Aglaia abbreviata* and Their Cytotoxic Activities. *Helveta Chimica Acta*. 99, 73-77.