Biased suppression of TP homodimerization and signaling through disruption of a TM GxxxxGxxxL helical interaction motif

Alexander J. Frey,* Salam Ibrahim,* Scott Gleim,† John Hwa,† and Emer M. Smyth†,*

University of Pennsylvania Institute for Translational Medicine and Therapeutics,* Smilow Center for Translational Research, Philadelphia, PA; and Yale University School of Medicine,† Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiovascular Medicine, New Haven, CT

Abstract Thromboxane A₂ (TXA₂) contributes to cardiovascular disease (CVD) by activating platelets and vascular constriction and proliferation. Despite their preclinical efficacy, pharmacological antagonists of the TXA₂ receptor (TP), a G protein-coupled receptor, have not been clinically successful, raising interest in novel approaches to modifying TP function. We determined that disruption of a GxxxxGxxxL helical interaction motif in the human TP’s (α isoform) fifth transmembrane (TM) domain suppressed TP agonist-induced Gq signaling and TPα homodimerization, but not its cell surface expression, ligand affinity, or Gq association. Heterodimerization of TPα with the functionally opposing prostacyclin receptor (IP) shifts TPα to signal via the IP-Gs cascade contributing to prostacyclin’s restraint of TXA₂ function. Interestingly, disruption of the TPα-TM5 GxxxxGxxxL motif did not modify either IP-TPα heterodimerization or its Gs-cAMP signaling. Our study indicates that distinct regions of the TPα receptor direct its homo- and heterodimerization and that homodimerization is necessary for normal TPα-Gq activation. Targeting the TPα-TM5 GxxxxGxxxL domain may allow development of biased TPα homodimer antagonists that avoid suppression of IP-TPα heterodimer function. Such novel therapeutics may prove superior in CVD compared with nonselective suppression of all TP functions with TXA₂ biosynthesis inhibitors or TP antagonists.—Frey, A. J., S. Ibrahim, S. Gleim, J. Hwa, and E. M. Smyth. Biased suppression of TP homodimerization and signaling through disruption of a TM GxxxxGxxxL helical interaction motif. J. Lipid Res. 2013. 54: 1678–1690.

Supplementary key words G protein-coupled receptor • dimerization • transmembrane • transmembrane domain • biased antagonism • thromboxane A₂ receptor

Thromboxane A₂ (TXA₂) is generated by thromboxane synthase metabolism of prostaglandin H₂, the immediate product of cyclooxygenase (COX) action on arachidonic acid (1–3). Platelet COX-1, the only COX isozyme expressed in mature platelets, is the dominant source of TXA₂ synthesis under normal conditions (4). Other cells, including macrophages and monocytes, contribute to TXA₂ generation via both COX-1 and COX-2 with the latter isozyme being particularly relevant during inflammation (2, 5). TXA₂ acts as a local autocrine or paracrine mediator to mediate a range of physiological and pathophysiological responses that include platelet activation, vasoconstriction, and smooth muscle cell proliferation (3, 6–10). These processes are of particular relevance to cardiovascular disease (CVD) in which TXA₂ generation is markedly elevated and expression of its receptor, the TXA₂ receptor (TP), is increased (11–13). In humans, inhibition of platelet COX-1 with low-dose aspirin is widely used for prevention of heart attack and stroke (14–17), while in mouse models of atherogenesis and injury-induced vascular proliferation or remodeling, disease severity was blunted by antagonism or deletion of the TP (8, 18, 19). Interestingly, in hyperlipidemic mice the TP antagonist was more effective in reducing atherogenesis than COX inhibition (20). This may reflect antagonism of COX-independent TP ligands, such as the isoprostanes, free radical-derived metabolites of arachidonic acid that can activate the TP in vivo (21). These, and other studies, have placed significant emphasis on the TP as a therapeutic target in CVD (8, 20, 22). Despite their potential, however, pharmacological antagonists of the TP have been...

Abbreviations: BRET, bioluminescence resonance energy transfer; COX, cyclooxygenase; CVD, cardiovascular disease; GpA, glycoporphin A; GPRC, G protein-coupled receptor; HA, hemagglutinin; InosP, inositol phosphate; IP, prostacyclin receptor; mBu, milli BRET units; PGI₂, prostacyclin; rLuc, Renilla luciferase; TM, transmembrane; TP, thromboxane A₂ receptor; TP^{WT}, wild-type thromboxane A₂ receptor, TXA₂, thromboxane A₂; WT, wild type; YFP, yellow fluorescent protein.

†To whom correspondence should be addressed.

e-mail: emsmyth@mail.med.upenn.edu

Copyright © 2013 by the American Society for Biochemistry and Molecular Biology, Inc.
clinically disappointing compared with low-dose aspirin, in large part because none replicate aspirin’s irreversible inhibitory effect on platelets (22–25). Most recently, the TP receptor antagonist terutroban showed comparable, but not superior, efficacy with aspirin in preventing recurrent ischemic stroke in clinical trials (26).

The TP is a cell surface G protein-coupled receptor (GPCR) that is expressed in a wide variety of tissues and cells including platelets, smooth muscle cells, endothelial cells, lungs, kidneys, heart, thymus, and spleen (27–29). In humans, but not in other species, there are two splice variants, the TPα and TPβ, which, despite reported differences in their upstream promoter use, posttranslational modifications, interacting proteins, and agonist-induced regulation, do not display significant physiological or pathophysiological divergence (22). A number of tissues express both variants (30), although TPα is the only isoform expressed in platelets (31). Research from our group and others has defined the TP's functional and regulatory pathways (31–36). Signaling via the TP can be transduced through multiple G proteins with Gq and G12/13, which stimulate respectively the phospholipase-C pathway of inositol phosphate (InosP)/intracellular calcium elevation and RhoA, appearing most relevant its biological actions (37, 38). Agonist activation of the TP leads to its internalization and degradation, although sustained agonist activation can increase TP stability and surface expression driving TP responsiveness (32).

Across the GPCR superfamily, there is substantial evidence for receptor dimerization (39, 40) and a significant contribution therein to receptor trafficking and ligand recognition, signaling, and regulation (41–44). We reported that the TP forms dimeric or oligomeric receptor complexes (45–48). In addition to homodimerization, TPs can heterodimerize with TPβ leading to enhanced isoprostane responsiveness (47). Further, we observed equal propensity for TPα to heterodimerize with the receptor for prostacyclin (PGI2) (48). A predominantly COX-2-derived mediator, PGL3 acts via its receptor, the prostacyclin receptor (IP), to activate the Gs-adenyl cyclase signaling pathway causing vasodilation and inhibition of platelet activation (49). In mice, the restraint placed by the PGL3/IP system on TXA2-TP function limits the proliferative and platelet re-activators (45, 48). Loss of this shift in TP function in individuals concomitant with reduced Gq-InosP signaling to TP ago-
signals via the Gq-InosP cascade without altering the receptor’s cell surface expression, ligand recognition, or Gq association. TPα homodimerization was, however, significantly impaired, suggesting the normal homodimerization of the TPα is necessary for signal transduction. Strikingly, neither TPα-IP heterodimerization nor signaling of the heterodimer to Gs-cAMP in response to TP agonists was impacted by mutation of the TP-TM5 GxxxGxxxL motif indicating the specificity of this motif for TPα homodimerization. We suggest that targeting the TP-TM5 GxxxGxxxL motif may allow selective suppression of the TPα homodimer signal without altering TPα-IP heterodimer function.

METHODS

Constructs

Hemagglutinin (HA)-tagged human IP and TPα cloned into the mammalian expression vector pcDNA3 (Invitrogen, CA) were as described previously (48). QuikChange site-directed mutagenesis (Stragagene, CA) was used to replace G205 and G209 with leucines, a small-to-large replacement that disrupts helix-helix interaction (62, 64, 65). We replaced L213 with a tyrosine based on the studies on the GxxxGxxxL motif in the β2-adrenergic receptor (42). The resulting mutant was termed TPαL205,L209,Y213, HA-tagged IP, TPα, and TPαL205,L209,Y213 were fused at their C termini to either Renilla luciferase (rLuc) or yellow fluorescent protein (YFP), previously described (67). Briefly, the stop codon was removed by PCR and each stopless construct cloned into pLuc-N3(h) (Perkin Elmer, MA) and pEYF-N1 (Clontech, CA) plasmids in frame with the fusion protein start site. All sequences were verified by DNA sequencing.

Cell culture and transfection

Cell lines were from the American Type Tissue Culture Collection (Rockville, MD). HEK 293 cells were maintained as described previously (48): Meg-01 cells were grown in RPMI-1640 (Invitrogen) containing 10% fetal bovine serum and 1% penicillin-streptomycin. Transient transfections were performed using FuGENE 6 (Roche Applied Science, IN) for HEK 293 cells (2 μg total DNA), as previously described (48) or for Meg-01s (3 μg total DNA) by nucleofection using an Amaxa Nucleofector™ II and Nucleo-

Biased suppression of TP homodimer function 1679

fector™ Kit C (Lona, NJ) per the manufacturer’s instructions.
Fig. 1. A: Snake plot of the human TPα. GxxxG motifs in the N terminal, first intracellular and second extracellular domains are indicated in orange. The TM5 GxxxGxxxL motif under investigation in our study is highlighted in red. B: Homology modeling (SWISS-MODEL) of the human TPα based on a 2.8 Å crystallographic bovine rhodopsin template. Relative positions of G205, G209, and L213 are highlighted. Each appeared to face the lipid bilayer aligned on one side of TM5.
DNA levels were equalized in all transfections using empty pcDNA3 vector. Assays were performed 48 h after transfection.

Bioluminescence resonance energy transfer assay

Dimerization of rLuc and YFP fused receptors was examined by measuring bioluminescence resonance energy transfer (BRET) from a donor (rLuc-fused) receptor to an acceptor (YFP-fused) receptor following addition of substrate for rLuc (coelenterazine H; Molecular Probes, Life Technologies, NY). In BRET saturation experiments cells were transfected with a fixed amount of rLuc receptor (0.25 μg) together with increasing amounts of YFP receptor (0.125–1.75 μg). In BRET competition assays increasing amounts of HA-tagged competitor receptor were cotransfected together with a fixed ratio (1:7) of receptor-rLuc + receptor-YFP. BRET measurements were performed essentially as described previously (45). Briefly, cells were harvested (phenol red-free Hank’s Balanced Salt Solution containing 0.02% EDTA), redistributed in 96-well plates (black, clear; 100,000 cells/well) and maintained at 37°C. Total YFP (Ex485 nm, Em555 nm) was first collected using a luminescence multi-plate reader (VICTOR3, Perkin Elmer) and multiplied by 1,000. BRET units (mBu) were calculated as fold over basal. Using the same plate, donor (485 nm) and acceptor (555 nm) emissions were gathered sequentially from each well, following addition of coelenterazine H (5 μM in Ca²⁺-free phosphate-buffered saline rested for 30 min at room temperature before use). Milli BRET units (mBu) were calculated as the ratio of Em555 over Em485 nm corrected for cells expressing the rLuc receptor alone, and multiplied by 1,000.

Cell surface expression of the TP

HEK 293 and Meg-01 cells were transfected with HA-tagged wild-type TP (TP WT) or TP L205,L209,Y213. Cells were harvested into ice-cold FACS buffer (DPBS containing 1% BSA and 0.1% sodium azide). Cell suspensions were stained with anti-HA mouse IgG1 (monoclonal 16B12) conjugated to Alexa Fluor® 488 (Invitrogen, CA) for 30 min prior to washing. Median fluorescence intensity (MFI) was collected using a flow cytometer as a measure of cell surface expression.

Measurement of second messenger generation

Measurement of intracellular IP1 or cAMP was performed using the IP-One Tb kit (Cisbio Bioassays, MA) or LANCE cAMP (Cayman Chemicals, MI) together with a fixed ratio (1:7) of receptor-rLuc + receptor-YFP. Bioluminescence resonance energy transfer assay was performed essentially as described previously (45). Briefly, cells were harvested (phenol red-free Hank’s Balanced Salt Solution containing 0.02% EDTA), redistributed in 96-well plates (black, clear; 100,000 cells/well) and maintained at 37°C. Total YFP (Ex485 nm, Em555 nm) was first collected using a luminescence multi-plate reader (VICTOR3, Perkin Elmer) and multiplied by 1,000. BRET units (mBu) were calculated as the ratio of Em555 over Em485 nm corrected for cells expressing the rLuc receptor alone, and multiplied by 1,000.

Statistical analysis

Data were analyzed using GraphPad Prism software. Comparisons were made using a one-sample t-test or by ANOVA suitable post hoc multiple comparison testing as appropriate.

RESULTS

A GxxxGxxxxL motif is located in the fifth transmembrane of the TPα

Analysis of the TPα amino acid sequence revealed a GxxxGxxxxL motif in TM5, G205LSVG209LSFL213 (Fig. IA).
Additional GxxxD motifs were identified in N terminus (G$_{5}$SSLG$_{9}$), first intracellular loop (G$_{5}$1ARQG$_{55}$), and second extracellular loop (G$_{188}$AESG$_{192}$). Given that a TM GxxxD motif has been implicated in the function of at least two GPCRs (42, 66), we chose to focus further on the G$_{205}$LSVG$_{209}$LSFL$_{213}$ domain. Three-dimensional homology modeling of the TP revealed an outward-facing orientation of G$_{205}$, G$_{209}$, and L$_{213}$ (Fig. 1B) in TM5 indicating that this domain is appropriately positioned for protein-protein interaction within the membrane. To define the functional relevance of the TM5 GxxxD motif in the TP we employed site-directed mutagenesis to replace G$_{205}$ and G$_{209}$ with leucines and L$_{213}$ with a tyrosine to generate TP$_{L205,L209,Y213}$. Disruption of the TM5 GGL motif suppressed TP function and did not alter receptor surface expression.

Fig. 3. Surface expression of WT and mutant TP. A: HEK 293 cells or (B) Meg-01 cells were transfected with N-terminal HA-tagged TP$_{WT}$ or TP$_{L205,L209,Y213}$ and surface HA quantified by flow cytometry as a measure of surface receptor expression. Left panels show representative histograms taken at one sitting using identical settings; right panels show the median fluorescent intensities (mean ± SEM, n = 7). There was no significant difference in surface expression of TP$_{WT}$ versus TP$_{L205,L209,Y213}$ in either cell model.

Disruption of the TM5 GGL motif suppressed TP function and but did not alter receptor surface expression

We first measured the ability of the TP$_{WT}$ and TP$_{L205,L209,Y213}$ to transduce a signal via the phospholipase C/InosP pathway in response to the thromboxane mimetic U46619. In transiently transfected HEK 293 cells, the maximal signaling capacity of TP$_{L205,L209,Y213}$ was significantly reduced by ~25% compared with TP$_{WT}$ transfected cells, although there was no significant change in EC$_{50}$ (Fig. 2A). Depressed signaling via the TP$_{L205,L209,Y213}$ was also evident in Meg-01 cells (Fig. 2B), which are platelet-like cells that serve as a closer approximation of the TP’s normal physiological environment, with an ~50% reduction in InosP generation and a significant rightward EC$_{50}$ shift. Thus, disruption of the TM5 GxxxD motif markedly suppressed TP response to agonist.

We examined whether this loss of receptor responsiveness reflected simply reduced cell surface expression of the mutant receptor. Cell surface expression of the TP$_{WT}$ or TP$_{L205,L209,Y213}$, both tagged at their N terminus with the HA epitope tag, was examined by flow cytometry in transfected HEK 293 or Meg-01 cells. No significant difference in cell surface receptor levels, as measured by median surface HA fluorescence intensity, was apparent between TP$_{WT}$ and TP$_{L205,L209,Y213}$ transfectants in either cell type (Fig. 3). Thus, disruption of the TM5 GxxxD motif did not substantially modify receptor processing to the surface, indicating that the signaling deficit we observed...
Biased suppression of TP homodimer function

for agonist (69, 70). In displacement analyses, we detected no change in the K_i for either of the TP agonists U46619 or IBOP, arguing against dissociation of the TP L205,L209,Y213 from Gq.

Further, comparable levels of Gq coimmunoprecipitated could not be explained by quantitative changes in the receptor population on the plasma membrane.

Ligand affinity and Gq association are not modified by mutation of the TM5 GxxxGxxxL motif

We considered whether suppressed agonist-induced signal transduction in TP L205,L209,Y213 reflected a change in ligand binding leading to reduced agonist affinity. Intact HEK 293 cells expressing either TP WT or TP L205,L209,Y213 were labeled with a single concentration of 3H-SQ 29,548 and displacement examined for two TP agonists, U46619 ($K_i = 90$ nM for TP WT vs. 52 nM for TP L205,L209,Y213) and IBOP ($K_i = 1.8$ nM for TP WT vs. 2.5 nM for TP L205,L209,Y213), or by unlabeled SQ 29,548 ($K_i = 4$ nM for both TP WT and TP L205,L209,Y213) as a reference. No significant difference in displacement was evident between the WT and mutant receptors. We also examined an isoprostane, iPE$_{III}$ ($K_i = 334$ nM for TP WT vs. 403 nM for TP L205,L209,Y213), a free radical-generated metabolite of arachidonic acid that can activate the TP in vivo (21), and again saw no difference in radioligand displacement (Fig 4). Thus, disruption of the TM5 GxxxGxxxL motif did not alter the receptor ligand binding properties.

We considered also whether disruption of the TM5 GxxxGxxxL motif interferes with the association of the TPc to its effector, Gq, leading to suppressed signaling. As for other GPCRs, association of the G protein with the TP in the inactive conformation provides a high affinity state for agonist (69, 70). In displacement analyses, we detected no change in the K_i for either of the TP agonists U46619 or IBOP, arguing against dissociation of the TP L205,L209,Y213 from Gq. Further, comparable levels of Gq coimmunoprecipitated

![Fig. 4. Displacement of 3H-SQ 29,548 by various ligands. Displacement of 3H-SQ 29,458 (TP antagonist) by SQ 29,548, the TP agonists U46619 or I-BOP or the isoprostane iPE$_{III}$ in HEK 293 cells transiently transfected with TP WT (closed circles) or TP L205,L209,Y213 (open circles). Data are expressed as percent of total binding (no displacer) and are mean ± SEM (n = 3–8). No significant change in K_i values for displacement between TP WT and TP L205,L209,Y213 was seen for any TP ligands used.]

![Fig. 5. Coimmunoprecipitation of Gq with HA-TP WT or HA-TP L205,L209,Y213. Lysates from HEK 293 cells transfected with empty pcDNA3 (lane 1), HA-TP WT (lane 2), or HA-TP L205,L209,Y213 (lane 3) were subjected to immunoprecipitation with anti-HA. In lane 4 lysate is from Escherichia coli expressing an unrelated HA-tagged control (HA-GST-PI3 kinase-SH2 domain; supplied by the manufacturer). The upper blot was stained with anti-TP antibody. Molecular species corresponding to unglycosylated TP and differentially glycosylated TP are indicated. The lower blot was probed with an anti-Gq antibody. A representative experiment, which was repeated with similar results, is shown. Densitometric quantification of Gq relative to HA-TP showed no difference between TP WT and TP L205,L209,Y213 transfected cells.]

Biased suppression of TP homodimer function
with either HA-tagged TP_{WT} or HA-tagged TP_{L205,L209,Y213} in HEK 293 transfectants (Fig 5). Taken together these analyses indicate that mutation of the TM5 GxxxGxxxL motif in TP_x allows normal formation of the high affinity receptor-Gq complex at the cell surface.

Disruption of the TM5 GxxxGxxxL motif modifies TP homodimerization

We reported previously that, similar to other GPCRs, the TP physically associates to form homodimers (32, 47, 48). The molecular determinants of TP_x homodimerization have not been defined; similarly, the precise role homodimerization plays in TP_x expression and function also remains unclear. However across GPCR studies, one or more TMs have been frequently implicated in dimer formation and function (54, 55, 60). Given the outward-facing orientation of the TP-TM5 GxxxGxxxL motif, thus positioned for intermolecular protein interaction, we examined whether homodimerization was modified in the TP_{L205,L209,Y213} mutant. TP_{WT} and TP_{L205,L209,Y213} were fused at their C termini to either rLuc (energy donor) or YFP (energy acceptor) and energy transfer quantified as a measure of dimerization. In saturation experiments, expression of the donor-tagged receptor is held steady and expression...
of the acceptor-tagged receptor (which is quantified independently as fold over basal YFP emission) is gradually increased. A saturable BRET curve indicates a specific interaction of the two protomers to form a dimer while the concentration of acceptor at which the BRET signal reaches 50%, the BRET_{50}, reflects the affinity of individual promoters for each other (71) (Fig 6A–D). We determined that although TP_{L205,L209,Y213} retained the capacity to dimerize, the BRET_{50} for TP_{L205,L209,Y213} homodimerization was significantly right shifted (BRET_{50} = 1.83 ± 0.1, n = 5) compared with that of TP_{WT} homodimerization (BRET_{50} = 1.4 ± 0.08, n = 4), indicating reduced efficiency in formation of the homodimer when the TM5 GxxxGxxL motif was disrupted (Fig 6E). To confirm impaired homodimerization of the mutant receptor, BRET was measured in HEK 293 cells expressing a fixed ratio of rLuc-TP_{WT} + YFP-TP_{WT} (1:7) and competition by unfused TP_{WT} or TP_{L205,L209,Y213} examined. As expected, TP_{WT} efficiently competed for the interaction of rLuc-TP_{WT} and YFP-TP_{WT} reducing the BRET signal in a concentration-dependent manner. TP_{L211,L215}, in which the TP-IC1 GxxxG motif G_{51}ARQG_{55} was mutated, was as efficient as the TP_{WT} in competition for rLuc-TP_{WT}-YFP-TP_{WT} interaction while, in contrast, TP_{L205,L209,Y213} did not alter the BRET signal confirming its relative deficiency for dimer formation (Fig 6F). Together these data indicate the importance of TP-TM5 GxxxGxxL for efficient TPα homodimerization.

TM5 GGL domain disruption does not modify IP-TPα heterodimerization or function

The studies thus far indicate that the GxxxGxxL motif in TM5 of the TPα is important for efficient homodimerization and that its disruption suppresses receptor signaling. We have also reported the TP can interact with the IP, a Gs-cAMP coupled receptor, to form a heterodimer (45). When heterodimerized with the IP, the TP’s microdomain localization, signal transduction, and regulation is markedly altered with reduced “normal” transduction of Gq-InsP signal in response to TP agonists and a concomitant switch to signal via the Gs-cAMP pathway in an IP-like manner (46). This signaling shift likely contributes to the restraint placed on the TP via the IP and to the increased risk of CVD in individuals heterozygous for signaling-deficient IP mutants (51). We next asked whether disruption of the TP-TM5 GxxxGxxL motif modifies IP-TPα heterodimerization and what, if any, is the function contribution to the IP-TPα-Gs signaling in response to TP activation. Interestingly, disruption of the TM5 GxxxGxxL motif did not modify heterodimerization of the TP with the IP; the BRET saturation curves and BRET_{50} for IP-TP_{L205,L209,Y213} (1.24 ± 0.06, n = 6) was indistinguishable from the IP-TP_{WT} (BRET_{50} = 1.26 ± 0.06, n = 6). Concordantly, U46619-induced cAMP generation, the signature “switch” in TP signaling from the Gq pathway to the Gs pathways, was not different between IP-TP_{WT} and IP-TP_{L205,L209,Y213} in transfected HEK 293 cells or MEG-01 cells (Fig 7). Thus, while the TM5 GxxxGxxL motif was critical for efficient TPα homodimerization and Gq-signaling, this motif did not contribute to IP-TPα heterodimerization or function. These data support the concept that distinct molecular interactions drive the physical association of the TPα-TPα and IP-TPα dimers and their downstream signaling.

A TM GxxxGxxL motif is found in numerous class A GPCRs

Given that a TM GxxxGxxL motif was functionally relevant in at least two other GPCRs, the β2-adrenoreceptor and the α-factor yeast receptor (42, 66), we searched the SwissProt database (http://prosite.expasy.org/scanprosite/) for human GxxxGxxL-containing GPCRs. Sixty-nine receptors were identified of which, after removal of olfactory (24 hits), taste (2 hits), and orphan (9 hits) receptors, 22 GPCRs were identified that contain one or more TM GxxxGxxL motifs (Table 1). Interestingly, all but one of these 22 were class A GPCRs suggesting a particular prevalence of this motif among rhodopsin-like GPCRs.

DISCUSSION

Protein-protein interactions are ubiquitous to biological processes and are vital for signaling complex assembly. Compared with soluble protein regions, relatively little is known about the interaction of membrane embedded proteins within lipid bilayers, although there is substantial and increasing interest in therapeutic targeting of TM interactions (61). GPCRs are characterized by their seven transmembrane spanning regions, which are capable of intra- as well as intermolecular interactions that define tertiary and quaternary receptor structure and function. The GxxxG interaction motif, first described in homodimerization of the single TM sialoglycoprotein glycophorin A (GpA), has been identified as a dominant TM motif across diverse protein families (52, 58). In GpA, as in other transmembrane proteins, residues that neighbor the GxxxG domain appear critical and are thought to provide a three-dimensional structure within the helix creating the protein-protein interface. In one particular subclass, termed “glycine zippers,” a small residue (glycine, alanine, or serine) is located three positions before or after the GxxxG motif (59). More generally, large residues (isoleucine, valine, or leucine) are commonly found within one or two positions of the GxxxG pair (58), forming a groove (the glycines) and ridges (the large residues) arrangement. In the case of the TPα-TM5 GxxxGxxL motif we determined a similar arrangement with a groove created by S_{290}G_{290}G_{290} and a ridge created by leucines 203, 206, 210, and 213 (Fig 8). The positioning of L_{213} three residues after the GxxxG pair serves to align the GGL triplet along the same α-helix face (Figs. 1B, 8) and was observed in multiple other class A human GPCRs (Table 1) as well as α integrins (65).

To define its contribution to TPα function, we performed the following triple mutation: G_{205}→L_{205}, G_{209}→L_{209}, and L_{213}→Y_{213}. The choice of glycine-to-leucine and leucine-to-tyrosine was based on studies of other GxxxG motifs.
Together these analyses clearly indicate no major role for the TM5 GxxxGxxxL motif in processing of the TPα to form a high-affinity receptor-Gq complex at the cell surface.

Homodimerization of GPCRs appears universal across the superfamily (40, 44, 72). Given the established contribution of GxxxG motifs to helix-helix interactions, the extensive evidence that TMs are critical for GPCR homodimerization and the outward-facing orientation of the G205xxxG209xxxL213 triplet in TPα-TM5, we considered whether this motif contributes to TPα homodimer formation. We found that while saturable BRET was achieved, the BRET₅₀ for TP_{L205,L209,Y213} homodimerization was significantly right-shifted compared with TP_{WT}. Thus, while TP_{L205,L209,Y213} protomers can dimerize, they do so with a reduced affinity. Importantly, we confirmed independently that TP_{L205,L209,Y213} was unable to compete for TP_{WT}-TP_{WT} interaction, confirming the mutant’s dimerization deficiency. Thus, similar to the β2-AR (42, 57) and yeast α-factor (66, 73) receptors, a TM motif GxxxGxxxL is necessary for normal efficient TPα homodimerization. Reports vary as to the contribution of homodimerization to receptor function, with substantial evidence that homodimerization is necessary for normal surface expression of the receptor (39, 66, 74-77) and that a dimeric pair coupled to a single G protein forms the basic signaling unit (43, 78, 79). Thus, dimerization-deficient GPCRs often fail to traffic normally to the cell surface, while ER retained GPCRs cause their WT counterparts to stay in the ER in a dominant negative manner (42). Indeed, in the case of β2 adrenergic receptor disruption of the TM6 GxxxGxxxL motif right shifted the BRET₅₀ for homodimerization coincident with reduced cell surface receptor expression (42). Our data showing normal processing, cell surface expression, and G protein association of TP_{L205,L209,Y213} despite impaired dimerization suggests that for the TPα the two processes, homodimerization and cell surface expression, are independent. Alternatively, it may be that the level of TP_{L205,L209,Y213} homodimerizes sufficiently to traffic to the cell surface, but that the reduced protomer affinity significantly modifies the efficiency with which signal is transduced. Our data does not reveal how activation of Gq via TP_{L205,L209,Y213} is reduced, but one possibility is the formation of a suboptimal conformation of the TP_{L205,L209,Y213} homodimer, impacting the receptor dimer’s ability to undergo the necessary conformational shift to fully activate Gq.

We reported previously that in addition to homodimerization, the TPα forms high affinity heterodimers with the IP, which is distinct in sequence, membrane microdomain localization, regulation, and effector signaling (45-48). TP agonists signal through the IP-TPα heterodimer in an IP-like manner cAMP generation, and coincidentally suppress InosP generation (4, 48). Interestingly, in the current study, mutation of the G<sub>205xxxG_{209xxxL}213 motif did not impact either heterodimerization with the IP or TP agonist-induced cAMP generation through the heterodimer. Thus, it appears that the TPα-TM5 GxxxGxxxL motif contributes selectively to homodimerization and
that distinct receptor regions direct formation of the TPαIP heterodimer.

It has been over a decade since the GPCR dimerization was first reported. Since that time much has been learned about the molecular mechanisms of GPCR dimerization and the biological relevance for receptor function. The most well established model of GPCR dimerization holds that two receptors couple to one G protein (78, 79). In heterodimers, one promotor typically dominates the downstream signal transduced, and hence the biological outcome (79). For example, in heterodimers of the B2 receptor for the vasorelaxant bradykinin and the AT1 receptor for the vasoconstrictor angiotensin II, the latter dominates leading to enhanced AT1-Gq signaling and vasoconstriction (74, 80). It remains unclear whether ligation of one or both protomers is optimal and to what extent G protein activation is symmetrical (the agonist activates the protomer that is directly associated with the G protein) or asymmetrical (the agonist indirectly activates the G protein through the non-G protein associated protomer) (78, 81). In the case of the serotonin type 4 receptor homodimer, evidence supports asymmetrical G protein activation through one ligand binding to its protomer but activating signaling via the companion protomer (78). For the IP-TPα/H9251, we established that the IP dominates the heterodimer’s signaling through the Gs-cAMP cascade but that agonists for either protomer could activate the complex (48). Our observations that the TM5 GxxxGxxxL mutant did not support normal Gq-InsP signaling in the homodimer but was fully capable of propagating a normal cAMP response to the TPα agonist in the IP-TPα heterodimer, provides further support for the 2-receptors-1-G-protein model and for asymmetrical G protein activation through one protomer in a dimeric complex (in this case agonism of the TPα led to activation of the IP-associated Gs in the IP-TPα heterodimer).

We reported that the shift in TPα function to Gs signaling when dimerized with the IP likely contributes to the restraint placed by the PGI2-IP system and the TXA2-TP system in vivo (42, 44, 50). It is, therefore, very promising to uncover a molecular region that selectively reduces TP

![Figure 8](image_url)

Fig. 8. Modeling of the TPα-TM5 highlighting the leucines that neighbor G205 and G209 and L213. By analogy with glycophorin A, the small residues, S201, G205, and G209 align to create a groove (green), while the large residues L203, L206, L210, and L213 form an adjacent ridge (yellow).
The authors are grateful for the assistance of Ms. Jenny Bruce and Dr. Sarah Teegarden.

REFERENCES

1. Simmons, D. L., R. M. Botting, and T. Hla. 2004. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. *Pharmacol. Rev.* 56:387–437.

2. Smith, W. L., and R. Langenbach. 2001. Why there are two cyclooxygenase isozymes. *J. Clin. Invest.* 107:1491–1495.

3. Smyth, E. M., and G. A. FitzGerald. 2009. Prostaglandin mediators. In *Handbook of Cell Signaling*. Second Edition. R. A. Bradshaw and E. A. Dennis, editors. Academic Press, UK. 1219–1228.

4. Rocca, B. P., Secchiero, G., Cibattoni, F. O., Rasletti, E., Catani, L., Guidotti, E., Melloni, N., Maggiano, G., Zauli, G., and Patrone, M. 2002. Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. *Proc. Natl. Acad. Sci. USA.* 99:7634–7639.

5. McAdam, B. F., I. A. Mardini, A. Habib, A. Burke, J. A. Lawson, S. Kapoor, and G. A. FitzGerald. 2000. Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. *J. Clin. Invest.* 105:1473–1482.

6. Ding, X., and P. A. Murray. 2005. Cellular mechanisms of thromboxane A2-mediated contraction in pulmonary veins. *Am. J. Physiol. Lung Cell. Mol. Physiol.* 289:L825–L833.

7. Winn, R., J. Harlan, B. Nadir, L. Harker, and J. Hildebrandt. 1983. Thromboxane A2 mediates lung vasoconstriction but does not permeability after endothelin. *J. Clin. Invest.* 72:911–918.

8. Kobayashi, T., Y. Tahara, M. Matsumoto, M. Iguchi, H. Sano, A. Moriyama, H. Arai, H. Oda, T. Yurugi-Kobayashi, J. K. Yamashita, et al. 2004. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. *J. Clin. Invest.* 114:784–794.

9. Ishizuka, T., M. Kawakami, T. Hidaka, Y. Matsuki, M. Takamizawa, K. Suzuki, A. Kurita, and H. Nakamura. 1998. Stimulation with thromboxane A2 (TXA2) receptor agonist enhances ICAM-1, VCAM-1 or ELAM-1 expression by human vascular endothelial cells. *Clin. Exp. Immunol.* 112:464–470.

10. Nie, D., M. Lamberti, A. Zacharek, L. Li, K. Szekeres, K. Tang, Y. Chen, and K. V. Hoon. 2000. Thromboxane A2 regulation of endothelial cell migration, angiogenesis, and tumor metastasis. *Biochim. Biophys. Res. Commun.* 267:245–251.

11. Katugampola, S. D., and A. P. Davenport. 2001. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT(1) receptor antagonist losartan. *J. Pharmacol. Sci.* 95:1855–1892.

12. Durr, G. W., N. Liel, J. L. Trask, D. F. Mais, M. E. Assey, and P. V. Halushka. 1990. Increased platelet thromboxane A2/prostaglandin H2 receptors in patients with acute myocardial infarction. *Circulation*. 81:212–218.

13. FitzGerald, G. A., J. Tiggges, P. Barry, and J. A. Lawson. 1997. Markers of platelet activation and oxidant stress in atherosclerosis. *Thromb. Haemost.* 78:289–291.

14. Ridker, P. M., N. R. Cook, I. M. Lee, D. Gordon, J. M. Gaziano, J. E. Manson, C. H. Hennekens, and J. E. Buring. 2005. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. *N. Engl. J. Med.* 352:1293–1304.

15. Sammannathan, P. S., P. Ghalramani, P. R. Jackson, E. J. Wallis, and L. E. Ramsay. 2001. Aspirin for primary prevention of coronary heart disease: safety and absolute benefit related to coronary risk derived from meta-analysis of randomised trials. *Heart.* 85:265–271.

16. Antiplatelet Trialists’ Collaboration. 2002. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. *BMJ.* 324:71–86. [Erratum. 2002. *BMJ.* 324:1413.]

17. Antiplatelet Trialists’ Collaboration. 1994. Collaborative overview of randomised trials of antiplatelet therapy-I: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. *BMJ.* 308:81–106. [Erratum. 1994. *BMJ.* 308:1540.]

18. Cheng, Y., S. C. Austin, B. Rocca, B. H. Koller, T. M. Coffman, T. Grosser, J. A. Lawson, and G. A. FitzGerald. 2002. Role of prostacyclin in the cardiovascular response to thromboxane A2. *Science.* 296:539–541.

19. Rudic, R. D., D. Brinster, Y. Cheng, S. Sries, W. L. Song, S. Austin, T. M. Coffman, and G. A. FitzGerald. 2005. COX-2-derived prostacyclin modulates vascular remodeling. *Circ. Res.* 96:1240–1247.

20. Egan, K. M., M. Wang, S. Fries, M. B. Lucitt, A. M. Zukas, E. Pure, J. A. Lawson, and G. A. FitzGerald. 2005. Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with thromboxane receptor antagonism. *Circulation.* 111:334–342. [Erratum. 2005. *Circulation.* 111:2412.]

21. Audoly, L. P., B. Rocca, J. E. Fabre, B. H. Koller, D. Thomas, A. L. Loeb, T. M. Coffman, and G. A. FitzGerald. 2000. Cardiovascular responses to the isoprostanes iPF(2alpha)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. *Circulation.* 101:2833–2840.

22. Smith, S. S., D. S. Woolfe, J. I. Weiss, C. Gachet, P. B. Conley, S. G. Goodman, M. T. Roe, A. Kuliopulos, D. J. Molletnero, J. A. French, et al. 2009. G-protein-coupled receptors as signaling targets for antiplatelet therapy. Arterioscler. Thromb. Vasc. Biol. 29:449–547.

23. Vilkhu, G., L. Casani, and L. Badimon. 2007. A thromboxane A2/thromboxane H2 receptor antagonist (S18886) shows high anti-thrombotic efficacy in an experimental model of stent-induced thrombosis. *Thromb. Haemost.* 98:662–669.

24. Bal Diet Sollier, C., I. Grassard, G. Simonneau, J. F. Bergmann, M. G. Bossuer, and D. Drouet. 2009. Effect of the thromboxane prostaglandin receptor antagonist terutroban on arterial thrombogenesis after repeated administration in patients treated for the prevention of ischemic stroke. *Cerebrovasc. Dis.* 28:505–513.

25. Bossuer, M. G., P. Amarenco, A. Chamorro, M. Fisher, I. Ford, K. M. Fox, M. G. Hennerici, H. P. Mattle, P. M. Rothwell, A. de Cordoue, et al. 2011. Terutroban versus aspirin in patients with cerebral ischemic events (PERFORM): a randomised, double-blind, parallel-group trial. *Lancet.* 377:2015–2022.

26. Namba, T., Y. Sugimoto, M. Hirata, Y. Hayashi, A. Honda, A. Watabe, M. Negishi, A. Ichikawa, and S. Narumiya. 1992. Mouse thromboxane A2 receptor: cDNA cloning, expression and northern blot analysis. *Biochem. Biophys. Res. Commun.* 184:1197–1203.

27. Armstrong, R. A. 1996. Platelet prostaglandin receptors. *Pharmacol. Today.* 7:171–191.

28. Norel, X. 2007. Prostanoid receptors in the human vascular wall. *ScientificWorldJournal.* 7:1359–1374.
30. Vezza, R., A. Habib, and G. A. FitzGerald. 1999. Differential signaling by the thromboxane receptor isoforms via the novel GTP-binding protein, Gh. J. Biol. Chem. 274: 12774–12779.

31. Habib, A., R. Vezza, C. Creminon, J. Maclouf, and G. A. FitzGerald. 1997. Agonist-dependent phosphorylation in vivo of human thromboxane receptor isoforms. Minimal involvement of protein kinase C. J. Biol. Chem. 272: 7191–7200.

32. Wilson, S. J., C. C. Cavanagh, A. M. Lesher, A. J. Frey, S. E. Russell, and E. M. Smyth. 2009. Activation-dependent stabilization of the human thromboxane receptor: role of reactive oxygen species. J. Lipid Res. 50: 1047–1056.

33. Parent, J. L., P. Labrecque, M. Driss Rochdi, and J. L. Benovic. 2003. Role of the differentially spliced carboxyl terminus in thromboxane A2 receptor trafficking: identification of a distinct motif for tonic internalization. J. Biol. Chem. 278: 7079–7085.

34. Kelley, L. P., and B. T. Kinsella. 2003. The role of N-linked glycosylation in determining the surface expression, G protein interaction and effector coupling of the alpha (alpha) isoform of the human thromboxane A(2) receptor. Biochim. Biophys. Acta. 1621: 192–203.

35. Hirata, M., Y. Hayashi, F. Ushikubi, Y. Yokota, R. Kageyama, S. Nakanishi, and S. Narumiya. 1991. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature. 349: 617–620.

36. Nakahata, N. 2008. Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol. Ther. 118: 18–35.

37. Moers, A., N. Wetscherek, S. Gruner, B. Niewandt, and S. Offermanns. 2004. Unresponsiveness of platelets lacking both Galpha(q) and Galpha(q13). Implications for collagen-induced platelet activation. J. Biol. Chem. 279: 45534–45559.

38. Offermanns, S. 2006. Activation of platelet function through G proteincoupled receptors. Curr. Opin. Cell Biol. 99: 1299–1304.

39. Devi, L. A. 2001. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol. Sci. 22: 532–537.

40. Breitwieser, G. E. 2004. G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Curr. Opin. Cell Biol. 16: 17–27.

41. Panetta, R., and M. T. Greenwood. 2008. Physiological relevance of GPCR oligomerization and its impact on drug discovery. Drug Discov. Today. 13: 1059–1066.

42. Salahpour, A., S. Angers, J. F. Mercier, M. Lagace, S. Marullo, and M. Bouvier. 2004. Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J. Biol. Chem. 279: 33390–33397.

43. Blazer, L. I., and R. R. Neubig. 2009. Small molecule protein–protein interaction inhibitors as CNS therapeutic agents: current progress and future hurdles. Neuropsychopharmacology. 34: 126–141.

44. Ibrahim, S. M. Tetrushivil, A. J. Frey, S. J. Wilson, J. Sitham, J. Hwa, and E. M. Smyth. 2010. Dominant negative actions of human prostacyclin receptor variant through dimerization: implications for cardiovascular disease. Antioxiders. Thromb. Vasc. Biol. 30: 1802–1809.

45. Fink, A., N. Sal-Man, D. Gerber, and Y. Shai. 2012. Transmembrane domains interactions within the membrane milieu: Principles, advances and challenges. Biochim. Biophys. Acta. 1818: 974–983.

46. Senes, A., D. E. Engel, and W. F. DeGrado. 2004. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14: 465–479.

47. Caputo, G. A., R. I. Livinov, W. Li, J. S. Bennett, W. F. DeGrado, and H. Yin. 2008. Computationally designed peptide inhibitors of protein-protein interactions in membranes. Biochemistry. 47: 8600–8606.

48. Agnati, L. F., S. Ferre, C. Lluis, R. Franco, and K. Fuxe. 2003. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahedral receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev. 55: 509–550.

49. Ibrahim, S. M. Tetrushivil, A. J. Frey, S. J. Wilson, J. Sitham, J. Hwa, and E. M. Smyth. 2010. Dominant negative actions of human prostacyclin receptor variant through dimerization: implications for cardiovascular disease. Antioxiders. Thromb. Vasc. Biol. 30: 1802–1809.

50. Fink, A., N. Sal-Man, D. Gerber, and Y. Shai. 2012. Transmembrane domains interactions within the membrane milieu: Principles, advances and challenges. Biochim. Biophys. Acta. 1818: 974–983.

51. Ibrahim, S. M. Tetrushivil, A. J. Frey, S. J. Wilson, J. Sitham, J. Hwa, and E. M. Smyth. 2010. Dominant negative actions of human prostacyclin receptor variant through dimerization: implications for cardiovascular disease. Antioxiders. Thromb. Vasc. Biol. 30: 1802–1809.
71. James, J. R., M. I. Oliveira, A. M. Carmo, A. Iaboni, and S. J. Davis. 2006. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat. Methods. 3: 1001–1006.
72. AbdAlla, S., H. Lother, A. el Missiry, P. Sergeev, A. Langer, Y. el Faramawy, and U. Quitterer. 2009. Dominant negative AT2 receptor oligomers induce G-protein arrest and symptoms of neurodegeneration. J. Biol. Chem. 284: 6566–6574.
73. Overton, M. C., and K. J. Blumer. 2002. The extracellular N-terminal domain and transmembrane domains 1 and 2 mediate oligomerization of a yeast G protein-coupled receptor. J. Biol. Chem. 277: 41463–41472.
74. Canals, M., J. F. Lopez-Gimenez, and G. Milligan. 2009. Cell surface delivery and structural re-organization by pharmacological chaperones of an oligomerization-defective alpha(1b)-adrenergic receptor mutant demonstrates membrane targeting of GPCR oligomers. Biochem. J. 417: 161–172.
75. Gomes, I., B. A. Jordan, A. Gupta, C. Rios, N. Trapaidze, and L. A. Devi. 2001. G protein coupled receptor dimerization: implications in modulating receptor function. J. Mol. Biol. (Berl.). 79: 226–242.
76. Hague, C., M. A. Uberti, Z. Chen, R. A. Hall, and K. P. Minneman. 2004. Cell surface expression of alpha1D-adrenergic receptors is controlled by heterodimerization with alpha1B-adrenergic receptors. J. Biol. Chem. 279: 15541–15549.
77. Jordan, B. A., N. Trapaidze, I. Gomes, R. Nivarthi, and L. A. Devi. 2001. Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc. Natl. Acad. Sci. USA. 98: 343–348.
78. Pellissier, L. P., G. Barthet, F. Gaven, E. Cassier, E. Trinquet, J. P. Pin, P. Marin, A. Dumuis, J. Bockaert, J. L. Baneres, et al. 2011. G protein activation by serotonin type 4 receptor dimers: evidence that turning on two protomers is more efficient. J. Biol. Chem. 286: 9985–9997.
79. Han, Y., I. S. Moreira, E. Urizar, H. Weinstein, and J. A. Javitch. 2009. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat. Chem. Biol. 5: 688–695.
80. AbdAlla, S., H. Lother, A. M. Abdel-tawab, and U. Quitterer. 2001. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem. 276: 39721–39726.
81. Lee, S. P., B. F. O’Dowd, R. D. Rajaram, T. Nguyen, and S. R. George. 2003. D2 dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4. Biochemistry. 42: 11023–11031.