Recurrent computations for visual pattern completion

Hanlin Tang,a,b,1 Martin Schrimpf,b,c,d,1 William Lotter,a,b,5,1 Charlotte Moerman,b, Ana Paredesb, Josue Ortega Carob, Walter Hardestyb, David Cox, and Gabriel Kreimanb,2

aProgram in Biophysics, Harvard University, Boston, MA 02115; bChildren’s Hospital, Harvard Medical School, Boston, MA 02115; cProgram in Software Engineering, Institut für Informatik, Universität Augsburg, 86159 Augsburg, Germany; dProgram in Software Engineering, Institut für Informatik, Ludwig-Maximilians-Universität München, 80538 München, Germany; eProgram in Software Engineering, Fakultät für Informatik, Technische Universität München, 85748 Garching, Germany; and fMolecular and Cellular Biology, Harvard University, Cambridge, MA 02138

Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved July 20, 2018 (received for review November 10, 2017)

Making inferences from partial information constitutes a critical aspect of cognition. During visual perception, pattern completion enables recognition of poorly visible or occluded objects. We combined psychophysics, physiology, and computational models to test the hypothesis that pattern completion is implemented by recurrent computations and present three pieces of evidence that are consistent with this hypothesis. First, subjects robustly recognized objects even when they were rendered <15% visible, but recognition was largely impaired when processing was interrupted by backward masking. Second, invasive physiological responses along the human ventral cortex exhibited visually selective responses to partially visible objects that were delayed compared with whole objects, suggesting the need for additional computations. These physiological delays were correlated with the effects of backward masking. Third, state-of-the-art feed-forward computational architectures were not robust to partial visibility. However, recognition performance was recovered when the model was augmented with attractor-based recurrent connectivity. The recurrent model was able to predict which images of heavily occluded objects were easier or harder for humans to recognize, could capture the effect of introducing a backward mask on recognition behavior, and was consistent with the physiological delays along the human ventral visual stream. These results provide a strong argument for the role of recurrent computations in making visual inferences from partial information.

Results

Human ventral visual stream. These results provide a strong argument in favor of the hypothesis that pattern completion is implemented by recurrent computations and present three pieces of evidence that are consistent with this hypothesis. First, subjects robustly recognized objects even when they were rendered <15% visible, but recognition was largely impaired when processing was interrupted by backward masking. Second, invasive physiological responses along the human ventral cortex exhibited visually selective responses to partially visible objects that were delayed compared with whole objects, suggesting the need for additional computations. These physiological delays were correlated with the effects of backward masking. Third, state-of-the-art feed-forward computational architectures were not robust to partial visibility. However, recognition performance was recovered when the model was augmented with attractor-based recurrent connectivity. The recurrent model was able to predict which images of heavily occluded objects were easier or harder for humans to recognize, could capture the effect of introducing a backward mask on recognition behavior, and was consistent with the physiological delays along the human ventral visual stream. These results provide a strong argument for the role of recurrent computations in making visual inferences from partial information.

Significance

The ability to complete patterns and interpret partial information is a central property of intelligence. Deep convolutional network architectures have proved successful in labeling whole objects in images and capturing the initial 150 ms of processing along the ventral visual cortex. This study shows that human object recognition abilities remain robust when only small amounts of information are available due to heavy occlusion, but the performance of bottom-up computational models is impaired under limited visibility. The results provide combined behavioral, neurophysiological, and modeling insights showing how recurrent computations may help the brain solve the fundamental challenge of pattern completion.

Author contributions: H.T., M.S., W.L., C.M., D.C., and G.K. designed research; H.T., M.S., W.L., C.M., A.P., J.O.C., W.H., and G.K. performed research; H.T., M.S., W.L., C.M., and G.K. analyzed data; and H.T., M.S., W.L., and G.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: All data and code (including image databases, behavioral measurements, physiological measurements, and computational algorithms) have been deposited on GitHub and is available at https://github.com/kreimanlab/occlusion-classification.

1H.T., M.S., and W.L. contributed equally to this work.

2To whom correspondence should be addressed. Email: gabriel.kreiman@ch.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719397115/-/DCSupplemental.

Published online August 13, 2018.
By subjects had not seen any of the specific images in this experiment before, they had had extensive experience with fully visible and occluded versions of other images of animals, faces, fruits, chairs, and vehicles. We conducted a separate experiment with novel shapes (Fig. 1E and SI Appendix, Fig. S8A) to assess whether robustness to limited visibility (Fig. 1F, H, and J) extended to unfamiliar objects. Visual categorization of such novel objects was also robust to limited visibility (Fig. 1J and SI Appendix, Fig. S8B).

Backward Masking Disrupts Recognition of Partially Visible Objects. Behavioral (18), physiological (19, 20), and computational studies (3, 4, 10) suggest that recognition of whole isolated objects can be described by rapid, largely feed-forward, mechanisms. Several investigators have used backward masking to force visual recognition to operate in a fast regime with minimal influences from recurrent signals (21): When an image is rapidly followed by a spatially overlapping mask, the high-contrast noise mask interrupts any additional, presumably recurrent, processing of the original image (22–24). We asked whether this fast, essentially feed-forward, recognition regime imposed by backward masking is sufficient for robust recognition of partially visible objects by randomly interleaving trials with a mask (Fig. 1B).

Performance for whole images was affected by the mask only for the shortest SOA values (compare Fig. 1F versus G at 100% visibility; P < 0.01, two-tailed t test). When partial objects were followed by a backward mask, performance was severely impaired (compare Fig. 1F versus G). A two-way ANOVA on performance with SOA and masking as factors revealed a significant interaction (P < 0.005). The behavioral consequences of shortening SOA were significantly stronger in the presence of backward masking (compare solid versus dashed lines in Fig. 1H). Additionally, backward masking disrupted performance across a wide range of visibility levels for SOAs that were ≤100 ms (Fig. 1G and H). Similar effects of backward masking were observed when using occluded objects (Fig. 1E; P < 0.001, two-tailed t test) as when using novel objects (Fig. U and SI Appendix, Fig. S8C and D; P < 0.0001, two-way ANOVA). In sum, interrupting processing via backward masking led to a large reduction in the ability for recognition of partially visible objects, occluded images, and partially visible novel objects across a wide range of SOA values and visibility levels.

Images More Susceptible to Backward Masking Elicited Longer Neural Delays Along Human Ventral Visual Cortex. In a recent study, we recorded invasive physiological signals throughout the ventral visual stream in human patients with epilepsy while they performed an experimental task similar to the one depicted in Fig. 2A (13). This experiment included 25 objects presented for 150 ms without any masking, with random bubble positions in each trial. For whole objects, neural signals along the ventral visual stream showed rapid selective responses to different categories, as shown for an example electrode in the left fusiform gyrus in Fig. 2A and B. When presenting partially visible objects, the neural signals remained visually selective (Fig. 2C and D). The visually selective signals elicited by the partial objects were significantly delayed with respect to the responses to whole objects (compare the neural latency, defined here as the single-trial time of peak responses, in Fig. 2C and D with the time of peak response before 200 ms in Fig. 2A and B). Because the visible features varied from trial to trial, different renderings of the same object elicited a wide distribution in the neural latencies (Fig. 2C and D). For example, the peak voltage occurred at 206 ms after stimulus onset in response to the first image in Fig. 2C and at 248 ms in response to the last image in Fig. 2C.

Heterogeneity across different renderings of the same object was also evident in the range of effects of backward masking at the behavioral level in the experiment in Fig. 1 G and H. We hypothesized that those images that elicited longer neural delays would also be more susceptible to backward masking. To test this hypothesis, we selected two electrodes in the neurophysiological study showing strong visually selective signals (Methods; one of these sites is shown in Fig. 2A–D). We considered 650 images of partially visible objects corresponding to the 25 objects from the

![Fig. 1.](image-url) Backward masking disrupts recognition of partially visible objects. (A and B) Forced-choice categorization task (n = 21 subjects). After 500 ms of fixation, stimuli were presented for variable exposure times (SOA from 25 to 150 ms), followed by a gray screen (A) or a noise mask (B) for 500 ms. Stimuli were presented unaltered (Whole; C, Left and D, Left), rendered partially visible (Partial; C, Right), or rendered occluded (D, Right; SI Appendix, Fig. S1). (E) Experimental variation with novel objects (SI Appendix, Fig. S8). Behavioral performance is shown as a function of visibility for the unmasked (F) and masked (G) trials. Colors denote different SOAs. Error bars denote SEM. The horizontal dashed line indicates chance level (20%). Bin size = 2.5%. Note the discontinuity in the x axis to report performance at 100% visibility. (H) Average recognition performance as a function of SOA for partial objects (same data replotted from F and G, excluding 100% visibility). Performance was significantly degraded by masking (solid gray line) compared with the unmasked trials (dotted gray line) (P < 0.001, χ² test; df = 4). (I) Performance versus SOA for the occluded stimuli in D (note: chance = 25% here) (SI Appendix, Fig. S1). (J) Performance versus SOA for the novel object stimuli in E.

*raned from 25 to 150 ms in randomly ordered trials. Stimuli consisted of 325 objects belonging to five categories: animals, chairs, faces, fruits, and vehicles. The parts revealed for each object were chosen randomly. There were 40 images per object, ranging from 25 to 150 ms in randomly ordered trials. Stimuli were presented unaltered (Whole; C, Left and D, Left), rendered partially visible (Partial; C, Right), or rendered occluded (D, Right; SI Appendix, Fig. S1). (E) Experimental variation with novel objects (SI Appendix, Fig. S8). Behavioral performance is shown as a function of visibility for the unmasked (F) and masked (G) trials. Colors denote different SOAs. Error bars denote SEM. The horizontal dashed line indicates chance level (20%). Bin size = 2.5%. Note the discontinuity in the x axis to report performance at 100% visibility. (H) Average recognition performance as a function of SOA for partial objects (same data replotted from F and G, excluding 100% visibility). Performance was significantly degraded by masking (solid gray line) compared with the unmasked trials (dotted gray line) (P < 0.001, χ² test; df = 4). (I) Performance versus SOA for the occluded stimuli in D (note: chance = 25% here) (SI Appendix, Fig. S1). (J) Performance versus SOA for the novel object stimuli in E.
Fig. 2. Behavioral effect of masking correlated with the neural response latency on an image-by-image basis. (A) Intracranial field potential (IFP) responses from an electrode in the left fusiform gyrus averaged across five categories of whole objects while a subject was performing the task described in Fig. 1 (no masking, 150-ms presentation time). This electrode showed a stronger response to faces (green). The gray rectangle indicates the stimulus presentation time (150 ms). The shaded area indicates SEM (details are provided in ref. 13). (B) IFP responses for one of the whole objects for the electrode in A showing single-trial responses (gray, n = 9) and average response (green). The latency of the peak response is marked on the x axis. (C) Single-trial responses (n = 1) to four partial images of the same object in B. (D) New stimulus set for psychophysics experiments was constructed from the images in 650 trials from two electrodes in the physiology experiments. A raster of the neural responses for the example electrode in A, one trial per line, from partial image trials selected for psychophysics is shown. These trials elicited strong physiological responses with a wide distribution of response latencies (sorted by the neural latency). The color indicates the voltage (color scale on bottom). (Right, Inset) Zoomed-in view of the responses to the 82 trials in the preferred category. (E) We measured the effect of backward masking at various SOAs for each of the same partial exemplar images used in the physiology experiment (n = 33 subjects) and computed an MI for each image (Methods). The larger the MI for a given image, the stronger was the effect of masking. (F) Correlation between the effect of backward masking (y axis, MI as defined in E) and the neural response latency (x axis, as defined in B and C). Each dot is a single partial object from the preferred category for electrode 1 (blue) or 2 (gray). Error bars for the MI are based on half-split reliability (SI Appendix, Fig. S2), and the neural latency values are based on single trials. There was a significant correlation (Pearson r = 0.37; P = 0.004, linear regression, permutation test); cc, correlation coefficient.

neurophysiology experiment. Using the same images (i.e., the exact same features revealed for each object), we conducted a separate psychophysics experiment to evaluate the effect of backward masking on each individual image (n = 33 subjects). This experiment allowed us to construct a curve of behavioral performance, as a function of SOA during backward masking, for each of the selected images from the neurophysiology experiment (Fig. 2E). To quantify the effect of backward masking for each individual image, we defined a masking index (MI), 1 – AUC, where AUC is the normalized area under the curve in the performance versus SOA plot (gray area in Fig. 2E). Larger MI values correspond to larger effects of backward masking: the MI ranges from 0 (no effect of backward masking) to 0.8 (backward masking leads to chance performance). For example, in Fig. 2C, the first image was less affected by backward masking than the last image, particularly at short SOA values (MI values of 3% and 20%, respectively).

For those images from the preferred category for each of the two electrodes, the MI showed a weak but significant correlation with the neural response latency, even after accounting for image difficulty and recording site differences (Fig. 2F; Pearson r = 0.37; P = 0.004, permutation test; Methods). This effect was stimulus selective: The MI was not correlated with the neural response latency for images from the nonpreferred categories (P = 0.33, permutation test). The neural latencies are noisy measures based on single trials (Methods and Fig. 2C), the physiology and behavioral experiments were conducted in different subjects, and there was variability across subjects in the MI (Fig. 2F and SI Appendix, Fig. S2). However, despite all of these sources of noise, images that led to longer neural response latencies were associated with a stronger effect of interrupting computations via backward masking.

Standard Feed-Forward Models Are Not Robust to Occlusion. We next investigated the potential computational mechanisms responsible for the behavioral and physiological observations in Figs. 1 and 2. We began by considering state-of-the-art implementations of purely feed-forward computational models of visual recognition. These computational models are characterized by hierarchical, feed-forward processing with progressive increases in the size of receptive fields, degree of selectivity, and tolerance to object transformations (e.g., refs. 2–4). Such models have been successfully used to describe rapid recognition of whole objects at the behavioral level (e.g., ref. 4) and neuronal firing rates in area V4 and the inferior temporal cortex in macaque monkeys (e.g., ref. 10). Additionally, these deep convolutional network architectures achieve high performance in computer vision competitions evaluating object recognition capabilities (e.g., ref. 7).

We evaluated the performance of these feed-forward models in recognition of partially visible objects using the same 325 objects (13,000 trials) in Fig. 1. As a representative of this family of models, we considered AlexNet (6), an eight-layer convolutional neural network trained via back-propagation on ImageNet, a large corpus of natural images (9). We used as features either activity in the last fully connected layer before readout (fc7; 4,096 units) or activity in the last retinotopic layer (pool5; 9,216 units). To measure the effect of low-level differences between categories (e.g., contrast, object area), we also considered raw pixels as baseline performance (256 × 256 = 65,536 features).

We sought to measure the robustness of these networks to partial object visibility in the same way that tolerance to other transformations such as size and position changes is evaluated [i.e., by training a decision boundary on one condition such as specific size, viewpoint, or whole objects and testing on the other conditions such as other sizes, viewpoints, or occlusion (e.g., refs. 2, 4)]. It is not fair to compare models trained with occluded objects versus models trained exclusively with whole objects; therefore, we do not include occluded objects in the training set. Furthermore, the results in Fig. 1J and SI Appendix, Fig. S8 show that humans can perform completion for novel objects without any prior training with occluded versions of those objects. We trained a support vector machine (SVM) classifier (linear kernel) on the features of whole objects and tested object categorization performance on the representation of images of partial objects. Importantly, all of the models were trained exclusively with whole objects, and performance was evaluated in images with partially visible objects. Cross-validation was performed over objects: Objects used to train the decision boundary did not appear as partial objects in the test set. The performance of raw pixels was essentially at chance level (Fig. 3J). In contrast, the other models performed well above chance (P < 10^-10, two-sided r test; also SI Appendix, Fig. S4). While feed-forward models performed well above chance, there was a significant gap with respect to human performance at all visibility levels below 40% (P < 0.001, χ² test; Fig. 3J). These results are consistent with those reported in other simulations with occluded objects and similar networks (25). The decrease in performance of feed-forward models compared with humans depends strongly on the stimuli and on the amount of information available: Bottom-up models were comparable to humans at full visibility (26) (SI Appendix, Fig. S3).

The decline in performance with low visibility was not specific to the set of images used in this study: AlexNet pool5 and fc7 also performed below human levels when considering novel objects (SI Appendix, Fig. S9A). The decline in performance with low visibility was not specific to using pixels or the AlexNet pool5 or fc7 layer.
All of the feed-forward models that we tested led to the same conclusions, including different layers of VGG16, VGG19 (7), InceptionV3 (8), and ResNet50 (Appendix, Fig. S4). Among these models, the VGG16 architecture provided slightly better recognition performance in the low-visibility regime.

The models shown in Fig. 3A and B were trained to optimize object classification performance in the ImageNet 2012 dataset (9) without any specific training for the set of objects used in our study, except for the SVM classifier. To assess whether fine-tuning the model’s weights could alleviate the challenges with limited visibility, we fine-trained AlexNet via back-propagation using the 325 whole objects and then retested this fine-tuned model on its whole object category center for AlexNet pool5 (B) and AlexNet fc7 (C). Each dot represents a partial object, with responses recorded from either electrode 1 (blue dots) or electrode 2 (gray dots). The correlation coefficients (cc) and P values from the permutation test are shown for each subplot.

Fig. 3. Standard feed-forward models were not robust to occlusion. (A) Performance of feed-forward computational models (colors) compared with humans (black) (also SI Appendix, Figs. S4, S5, and S9A). We used the feature representation of a subset of whole objects to train an SVM classifier and evaluated the model’s performance on the feature representation of partial objects (Methods). These objects were used to train the classifier did not appear as partial objects in the test set. Human performance is shown here (150-ms SOA) for the same set of images. Error bars denote SEM (fivefold cross-validation). The single-trial neural latency for each image (Fig. 2B) was correlated with the distance of each partial object to its whole object category center for AlexNet pool5 (8) and AlexNet fc7 (C). Each dot represents a partial object, with responses recorded from either electrode 1 (blue dots) or electrode 2 (gray dots). The correlation coefficients (cc) and P values from the permutation test are shown for each subplot.

Discussion

The behavioral, neural, and modeling results presented above suggest a need for additional computational steps beyond those present in feed-forward architectures to build a robust representation for partially visible objects. Several computational ideas, originating from models proposed by Hopfield (27), have shown that attractor networks can perform pattern completion. In the Hopfield network, units are connected in an all-to-all fashion with weights defining fixed attractor points dictated by the whole objects to be represented. Images that are pushed farther away by limited visibility would require more processing time to converge to the appropriate attractor, consistent with the behavioral and physiological observations. As a proof of principle, we augmented the feed-forward models discussed in the previous section with recurrent connections to generate a robust representation through an attractor-like mechanism (Fig. 4A), with one attractor for each whole object. We used the AlexNet architecture with fixed feed-forward weights from pretraining on ImageNet (as in Fig. 3) and added recurrent connections to the fc7 layer. Recurrent connectivity is ubiquitous throughout all visual neocortical areas in biological systems. The motivation to include recurrent connectivity only in the fc7 layer was to examine first a simple and possibly minimal extension to the existing architectures (Discussion).

We denote the activity of the fc7 layer at time t as the 4,096-dimensional feature vector h. At each time step, h was determined by a combination of the activity from the previous time step h_{t-1} and the constant input from the previous layer x: h_{t} = f(W_{h}h_{t-1} + x), where f introduces a nonlinearity (Methods). The input from the previous layer, fc6, was kept constant and identical to that in the feed-forward model. W_{h} is a weight matrix that incorporates the temporal evolution of the fc7 layer. We considered a Hopfield recurrent neural network (RNNh) without introducing any free parameters that depended on the partial objects, where W_{h} was a symmetrical weight matrix dictated by the fc7 representation of the whole objects, using the implementation of Li et al. (28). The initial state of the network was given by the activity in the previous layer, h_{0} = W_{h} - fc6, followed by binarization. The state of the network evolved over time according to h_{t} = satlns(W_{h}h_{t-1}), where satlns is a saturating nonlinearity (Methods). We verified that the whole objects constituted an attractor point in the network by ensuring that their representation did not change over time when used as inputs to the model. We next evaluated the responses of RNN_{h} to all of the images containing partial objects. The model was run until convergence (i.e., until none of the feature signs changed between consecutive time steps). Based on the final time point, we evaluated the performance in recognizing partially visible objects. The RNN_{h} model demonstrated a significant improvement over the AlexNet fc7 layer (Fig. 4B; 57 ± 0.4%; P < 0.001, χ² test).

The dynamic trajectory of the representation of whole and partial objects in the fc7 layer of the RNN_{h} model is visualized in Fig. 4C. Before any recurrent computations have taken place at t = 0 (Fig. 4C, Left), the representations of partial objects were clustered together (closed circles in Fig. 4C) and separated from the clusters of whole objects in each category (open circles in Fig. 4C). As time progressed, the cluster of partial objects was pulled apart and moved toward their respective categories. For example, at
parallel between human performance across different SOAs and the toward the human half. Over time, the recurrent model repeated the response patterns between half of the subject pool and the other half. Regressions were computed separately for each category, followed by averaging the correlation coefficients across categories. Error bars denote SD across categories. (Fig. 4F).

In addition to the average performance reported in Fig. 4 B and D, we directly compared performance at the object-by-object level between humans and the RNNb model (SI Appendix, Fig. S6). There were notable differences across categories [e.g., humans were much better than the model in detecting faces (green circles in SI Appendix, Fig. S6)]. For this reason, we first compared models and humans at the object-by-object level within each category and then averaged the results across categories. Over time, the RNNb behaved more like humans at the object-by-object level (Fig. 4E). For each time step in the model, we computed the average correct rate on partial objects for each object, from each of the five categories, and correlated this vector with the pattern of human performance (SI Appendix, Fig. S6). The upper bound (dashed line in Fig. 4E) represents human–human similarity, defined as the correlation in the response patterns between half of the subject pool and the other half. Over time, the recurrent model–human correlation increased toward the human–human upper bound. Additionally, there was a parallel between human performance across different SOAs and the model performance across varying recurrent time steps (SI Appendix, Fig. S12).

Backward Masking Impaired RNN Model Performance. We reasoned that the backward mask introduced in the experiment discussed in Fig. 1 B, G, and H impaired performance by interrupting processing, and we set out to investigate whether we could reproduce this effect in the RNNb model. We computed the responses of the AlexNet model to the mask and fed the feat features for the mask to the RNNb model after a certain number of time steps. Switching the mask on at earlier time points was meant to mimic shorter SOAs in the psychophysical experiments. We read out performance based on the ventral visual stream activity combining the partial object and the mask at different time points (Fig. 4F). Presenting the mask reduced performance from 58 ± 2% (SOA = 256 time steps) to 37 ± 2% (SOA = two time steps). Although we cannot directly compare SOAs in milliseconds with time steps in the model, these results are qualitatively consistent with the behavioral effects of backward masking (Fig. 1H; a side-by-side comparison of the physiological, behavioral, and computational dynamics is shown in SI Appendix, Fig. S10).

Discussion

It is routinely necessary to recognize objects that are partially visible due to occlusion and poor illumination. The visual system is capable of making inferences even when only 10–20% of the object is visible (Fig. 1F), and even for novel objects (Fig. 1I). We investigated the mechanisms underlying such robust recognition of partially visible objects (referred to as pattern completion) at the behavioral, physiological, and computational levels. Backward masking impaired recognition of briefly presented partial images (25 ms ≤ SOA ≤ 100 ms) (Fig. 1 G–J). The strength of the disruptive effect of backward masking was correlated with the neural delay times from invasive recordings along the ventral visual stream (Fig. 13) (Fig. 2). State-of-the-art bottom-up computational architectures trained on whole objects failed to achieve robustness in recognition of partially visible objects (Fig. 3A and SI Appendix, Figs. S4 and S5). The introduction of proof-of-principle recurrent connections (Fig. 4D) led to significant improvement in recognition of partially visible objects at the average level (Fig. 4B and SI Appendix, Figs. S7 and S9B) and also in explaining which images were easier or harder for humans at the object-by-object level (Fig. 4E and SI Appendix, Figs. S6 and S12). The RNNb model had no free parameters that depended on the partial objects: All of the weights were determined by the whole objects. The increase in performance involved recurrent computations evolving over time that were interrupted by the introduction of a mask (Fig. 4F).

Recognition of partially visible objects requires longer reaction times (11, 15) and delayed neural representation with respect to that of whole objects (12, 13). These delays suggest the need for additional computations to interpret partially visible images. Interrupting those additional computations by a mask impairs recognition (Fig. 1 G–J). Backward masking disproportionately affects recurrent computations (22–24). Accordingly, we conjectured that the disruptive effect of backward masking during pattern completion could be ascribed to the impairment of such recurrent computations. The rapid and selective signals along the ventral visual stream that enable recognition of whole objects within ~150 ms have been interpreted to reflect largely bottom-up processing.
Physiological delays of ~50 ms during recognition of partial objects (12, 13) provide ample time for recurrent connections to exert their effects during pattern completion. These delays could involve recruitment of lateral connections (16) and top-down signals from higher visual areas (30).

Humans are constantly exposed to partially visible objects. While subjects had not previously seen the specific experiment images, they had had experience with occluded animals, chairs, faces, fruits, and vehicles. To evaluate whether category-specific experience with occluded objects is required for pattern completion, we conducted an experiment with completely novel objects (Fig. 1 B and SI Appendix, Figs. S8 and S9). Subjects robustly categorized novel objects under low visibility even when they had never seen those heavily occluded objects or similar ones before.

The three-invariant property of man-made objects was illustrated by unfolding time (17) into layers is only applicable when we know a priori the fixed number of computational steps, whereas recurrent architectures allow an arbitrary and dynamically flexible number of computations. The RNN dynamics involve temporal evolution of the features (Fig. 4 C–F), bringing the representation of partial objects closer to that of whole objects. These computational dynamics, map onto the temporal lags observed at the behavioral and physiological levels. The RNN model's performance and correlation with humans saturates at around 10–20 time steps (Fig. 4 C–F); a combination of feedforward and recurrent components is consistent with the physiological responses to heavily occluded objects arising at around 200 ms (Fig. 2D). The RNN model uses discrete time steps, but a more realistic implementation should be based on spikes and continuous dynamics. A continuous time implementation of recurrent interactions shows that information can be added rapidly, particularly under noisy input conditions, and consistently with the empirically observed delays of ~50–100 ms in Figs. 1 and 2 (29). Furthermore, these dynamics are interrupted by the presentation of a backward mask in close temporal proximity to the image (Figs. 1 G–F and 4F and SI Appendix, Fig. S10).

Multiple other cues can aid recognition of partially visible objects, including relative positions, segmentation, movement, illumination, and stereopsis. Additionally, during learning, children often encounter partially visible objects that they can continuously explore from different angles. It will be interesting to integrate these additional sources of information and to understand how they contribute to pattern completion. The convergence of behavioral, physiological, and theoretical evidence presented here provides insight into the human visual recognition neural circuitry and a biologically constrained hypothesis to understand the role of recurrent computations during pattern completion.

Methods

An expanded version is presented in SI Appendix.

Psychophysics.

A total of 106 volunteers (62 female, aged 18–34 y) participated in the behavioral experiments. We performed an experiment with partially visible objects rendered through bubbles (Fig. 1) and three variations with occluded objects (Fig. 1 and SI Appendix, Fig. S1), novel objects (Fig. 1 and SI Appendix, Fig. S9), and static speech (31). All subjects participated in the neurophysiological experiment (13) (Fig. 2). All subjects gave informed consent and the studies were approved by the Institutional Review Board at Children's Hospital, Harvard Medical School.

Neurophysiology Experiments.

The neurophysiological intracranial field potential data in Figs. 2 and 3 were taken from a study by Tang et al. (13). The neural latency for each image was defined as the time of the peak response in the intracranial field potential and was calculated in single trials (e.g., Fig. 2C).

Computational Models.

We tested state-of-the-art feed-forward vision models, focusing on AlexNet (6) (Fig. 3; other models are shown in SI Appendix and SI Appendix, Fig. S4), with weights pretrained on ImageNet (6, 9). As a proof of principle, we proposed an RNN model by adding all-to-all recurrent connections to the top feature layer of AlexNet (Fig. 4A). The RNN model was defined using only information about the whole objects by setting the recurrent weights based on a Hopfield attractor network (27), as implemented in MATLAB's newhop function (28).

ACKNOWLEDGMENTS.

We thank Carlos Ponce, Alan Yuille, Siamak Sorosohayi, and Gyu Ben-Yosef for useful discussions and comments. This work was supported by a fellowship from the FITweltweit Programme of the German Academic Exchange Service (to M.S.), National Science Foundation Science and Technology Center Award CCF-1231211 (to G.K.), and NIH Award RO1EY026025 (to G.K.).

1. Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577-621.
2. DiCarlo JJ, Cox DD (2007) Untangling invariant object recognition. Trends Cogn Sci 11:333-341.
3. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019-1025.
4. Serre T, et al. (2007) A quantitative theory of immediate visual recognition. Prog Brain Res 165:33-56.
5. Connor CE, Brincat SL, Pasupathy A (2007) Transformation of shape information in the ventral pathway. Curr Opin Neurobiol 17:140-147.
6. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet Classification with Deep Convolutional Neural Networks (NIPS, Montreal).
7. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.
8. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for image recognition. arXiv:1512.00567v3.
9. Rusakovsky O, et al. (2014) ImageNet large scale visual recognition challenge. arXiv:1409.0575.
10. Yamins DL, et al. (2014) Performance-optimized hierarchical models predict neural responses in higher visual cortex. J Neurosci 34:8570-8584.
11. Murray RF, Sekuler AB, Bennett PJ (2001) Time course of amodal completion revealed by a shape discrimination task. Psychon Bull Rev 8:713-720.
12. Kosai Y, El-Shamyeh Y, Fyall AM, Pasupathy A (2014) The role of visual area V4 in the discrimination of partially occluded shapes. J Neurosci 34:8570-8584.
13. Tang H, et al. (2014) Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron 83:736-748.
14. Johnson JS, Olshausen BA (2005) The recognition of partially visible natural objects in the presence and absence of their occluders. Vision Res 45:3262-3276.
15. Brown JM, Koch C (2000) Influences of occlusion, color, and luminance on the perception of fragmented objects. Percept Mot Skills 90:1033-1044.
16. Gilbert CD, Li W (2013) Top-down influences on visual processing. Nat Rev Neurosci 14:350-363.