Case Study of the Proof of Cooks theorem
- Interpretation of $A(w)$

Yu LI

MIS, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80090 Amiens, France

Abstract

Cooks theorem is commonly expressed such as any polynomial time-verifiable problem can be reduced to the SAT problem. The proof of Cooks theorem consists in constructing a propositional formula $A(w)$ to simulate a computation of TM, and such $A(w)$ is claimed to be CNF to represent a polynomial time-verifiable problem w. In this paper, we investigate $A(w)$ through a very simple example and show that, $A(w)$ has just an appearance of CNF, but not a true logical form. This case study suggests that there exists the begging the question in Cooks theorem.

1 Introduction

Cooks theorem \cite{1} is now expressed as any polynomial time-verifiable problem can be reduced to the SAT (SATisfiability) problem. The proof of Cooks theorem consists in simulating a computation of TM (Turing Machine) by constructing a propositional formula $A(w)$ that is claimed to be CNF (Conjunctive Normal Form) to represent the polynomial time-verifiable problem \cite{1}.

In this paper we investigate whether this $A(w)$ is a true logical form to represent a problem through a very simple example.

2 Example

2.1 Polynomial time-verifiable problem and Turing Machine

A polynomial time-verifiable problem refers to a problem w for which there exists a Turing Machine M to verify a certificate u in polynomial time, that is, check whether u is a solution to w.

Let us study a very simple polynomial time-verifiable problem:

Given a propositional formula $w = \neg x$ for which there exists a Turing Machine M to verify whether a truth value u of x is a solution to w.

Email address: yu.li@u-picardie.fr (Yu LI).
The transition function of M can be represented as follows:

q_0 0 \rightarrow 1 N q_1
q_0 1 \rightarrow 0 N q_1
q_1 1 \rightarrow 1 R q_Y
q_1 0 \rightarrow 0 R q_N

where N means that the tape head does not move, and R means that the tape head moves to right; q_Y refers to the state where M stops and indicates that u is a solution to w, and q_N refers to the state where M stops and indicates that u is not a solution to w.

2.2 Computation of Turing Machine

A computation of M consists of a sequence of configurations: $C(1), C(2), \ldots, C(T)$, where $T = Q(|w|)$ and $Q(n)$ is a polynomial function. A configuration $C(t)$ represents the situation of M at time t where M is in a state, with some symbols on its tape, with its head scanning a square, and the next configuration is determined by the transition function of M.

Fig.1 and Fig. 2 illustrate two computations of M on inputs : $x = 0$ and $x = 1$.

![Fig. 1: The computation on input $x = 0$.](image)

3 Form of $A(w)$

According to the proof of *Cook's theorem* [1][2], the formula $A(w)$ is built by simulating a computation of M, such as $A(w) = B \land C \land D \land E \land F \land G \land H \land I$. $A(w)$ is claimed to represent a problem w.

We construct $A(w)$ for the above example.
Fig. 2: The computation on input $x = 1$.

3.1 Basic elements

The machine M possesses:

- 4 states: $\{q_0, q_1, q_2 = q_Y, q_3 = q_N\}$, where q_0 is the initial state, and q_2, q_3 are two final states.

- 3 symbols: $\{\sigma_1 = b, \sigma_2 = 0, \sigma_3 = 1\}$, where σ_1 is the blank symbol.

- 2 square numbers: $\{s = 1, s = 2\}$.

- 4 rules.

- n is the input size, $n = 2$; $p(n)$ is a polynomial function of n, and $p(2) = 3$.

- 3 times ($t = 1, t = 2, t = 3$) et 2 steps to verify a certificat u of w, where $t = 1$ corresponds to the time for the initial state of the machine.

3.2 Proposition symbols

Three types of proposition symbols to represent a configuration of M:

- $P_{s,t}^i$ for $1 \leq i \leq 3$, $1 \leq s \leq 2$, $1 \leq t \leq 3$. $P_{s,t}^i$ is true iff at step t the square number s contains the symbol σ_i.

- Q_t^i for $1 \leq i \leq 4$, $1 \leq t \leq 3$. Q_t^i is true iff at step t the machine is in state q_i.

- $S_{s,t}$ for $1 \leq s \leq 2$, $1 \leq t \leq 3$ is true iff at step t the tape head scans square number s.

3
3.3 Propositions

1. $E = E_1 \land E_2 \land E_3$, where E_t represents the truth values of $P_{s,t}^i, Q_t^i$ and $S_{s,t}$ at time t:
 - $E_1 = Q_1^i \land S_{1,1} \land P_{1,1}^2 \land P_{1,2}^2 (x = 0(\sigma_2)); E_1 = Q_1^0 \land S_{1,1} \land P_{1,1}^3 \land P_{1,2}^3 (x = 1(\sigma_3))$
 - E_2 and E_2 are determined by the transition function of M

2. $B = B_1 \land B_2 \land B_3$, where B_t asserts that at time t one and only one square is scanned:
 - $B_1 = (S_{1,1} \lor S_{2,1}) \land (\neg S_{1,1} \lor \neg S_{2,1})$
 - $B_2 = (S_{1,2} \lor S_{2,2}) \land (\neg S_{1,2} \lor \neg S_{2,2})$
 - $B_3 = (S_{1,3} \lor S_{2,3}) \land (\neg S_{1,3} \lor \neg S_{2,3})$

3. $C = C_1 \land C_2 \land C_3$, where C_t asserts that at time t there is one and only one symbol at each square. C_t is the conjunction of all the $C_{t,i}$.
 - $C_1 = C_{1,1} \land C_{2,1}$:
 - $C_{1,1} = (P_{1,1}^1 \lor P_{1,1}^2 \lor P_{1,1}^3) \land (\neg P_{1,1}^1 \lor \neg P_{1,1}^2) \land (\neg P_{1,1}^1 \lor \neg P_{1,1}^3) \land (\neg P_{1,1}^2 \lor \neg P_{1,1}^3)$
 - $C_{2,1} = (P_{2,1}^1 \lor P_{2,1}^2 \lor P_{2,1}^3) \land (\neg P_{2,1}^1 \lor \neg P_{2,1}^2) \land (\neg P_{2,1}^1 \lor \neg P_{2,1}^3) \land (\neg P_{2,1}^2 \lor \neg P_{2,1}^3)$
 - $C_2 = C_{1,2} \land C_{2,2}$:
 - $C_{1,2} = (P_{1,2}^1 \lor P_{1,2}^2 \lor P_{1,2}^3) \land (\neg P_{1,2}^1 \lor \neg P_{1,2}^2) \land (\neg P_{1,2}^1 \lor \neg P_{1,2}^3) \land (\neg P_{1,2}^2 \lor \neg P_{1,2}^3)$
 - $C_{2,2} = (P_{2,2}^1 \lor P_{2,2}^2 \lor P_{2,2}^3) \land (\neg P_{2,2}^1 \lor \neg P_{2,2}^2) \land (\neg P_{2,2}^1 \lor \neg P_{2,2}^3) \land (\neg P_{2,2}^2 \lor \neg P_{2,2}^3)$
 - $C_3 = C_{1,3} \land C_{2,3}$:
 - $C_{1,3} = (P_{1,3}^1 \lor P_{1,3}^2 \lor P_{1,3}^3) \land (\neg P_{1,3}^1 \lor \neg P_{1,3}^2) \land (\neg P_{1,3}^1 \lor \neg P_{1,3}^3) \land (\neg P_{1,3}^2 \lor \neg P_{1,3}^3)$
 - $C_{2,3} = (P_{2,3}^1 \lor P_{2,3}^2 \lor P_{2,3}^3) \land (\neg P_{2,3}^1 \lor \neg P_{2,3}^2) \land (\neg P_{2,3}^1 \lor \neg P_{2,3}^3) \land (\neg P_{2,3}^2 \lor \neg P_{2,3}^3)$

4. $D = D_1 \land D_2 \land D_3$, where D_t asserts that at time t the machine is in one and only one state.
 - $D_1 = (Q_1^0 \lor Q_1^1 \lor Q_1^2) \land (\neg Q_1^0 \lor \neg Q_1^1) \land (\neg Q_1^0 \lor \neg Q_1^2) \land (\neg Q_1^1 \lor \neg Q_1^2) \land (\neg Q_1^1 \lor \neg Q_1^0) \land (\neg Q_1^2 \lor \neg Q_1^0) \land (\neg Q_1^2 \lor \neg Q_1^1)$
 - $D_2 = (Q_2^0 \lor Q_2^1 \lor Q_2^2) \land (\neg Q_2^0 \lor \neg Q_2^1) \land (\neg Q_2^0 \lor \neg Q_2^2) \land (\neg Q_2^1 \lor \neg Q_2^2) \land (\neg Q_2^1 \lor \neg Q_2^0) \land (\neg Q_2^2 \lor \neg Q_2^0) \land (\neg Q_2^2 \lor \neg Q_2^1)$
 - $D_3 = (Q_3^0 \lor Q_3^1 \lor Q_3^2) \land (\neg Q_3^0 \lor \neg Q_3^1) \land (\neg Q_3^0 \lor \neg Q_3^2) \land (\neg Q_3^1 \lor \neg Q_3^2) \land (\neg Q_3^1 \lor \neg Q_3^0) \land (\neg Q_3^2 \lor \neg Q_3^0) \land (\neg Q_3^2 \lor \neg Q_3^1)$
5. F, G, and H assert that for each time t the values of the $P_{s,t}^i$, Q_t^i, and $S_{s,t}$ are updated properly.

$F = F_1 \land F_2$, where F_t is the conjunction over all i and j of $F_{i,j}^t$, where $F_{i,j}^t$ asserts that at time t the machine is in state q_i scanning symbol σ_j, then at time $t+1 \sigma_j$ is changed into σ_l, where σ_l is the symbol given by the transition function for M.

$F_1 = F_{0,2}^1 \land F_{0,3}^1$

- $F_{0,2}^1 = (\neg Q_1^0 \lor \neg S_{1,1} \lor \neg P_{1,1}^2 \lor P_{1,2}^2)$, with the rule $(q_0, 0 \rightarrow 1, N, q_1)$
- $F_{0,3}^1 = (\neg Q_1^0 \lor \neg S_{1,1} \lor \neg P_{1,1}^3 \lor P_{1,2}^3)$, with the rule $(q_0, 1 \rightarrow 0, N, q_1)$

$F_2 = F_{1,2}^2 \land F_{1,3}^2$

- $F_{1,2}^2 = (\neg Q_2^1 \lor \neg S_{1,2} \lor \neg P_{1,2}^2 \lor P_{2,2}^2)$, with the rule $(q_1, 0 \rightarrow 0, R, q_N)$
- $F_{1,3}^2 = (\neg Q_2^1 \lor \neg S_{1,2} \lor \neg P_{1,2}^3 \lor P_{2,3}^3)$, with the rule $(q_1, 1 \rightarrow 1, R, q_N)$

$G = G_1 \land G_2$, where G_t is the conjunction over all i and j of $G_{i,j}^t$, where $G_{i,j}^t$ asserts that at time t the machine is in state q_i scanning symbol σ_j, then at time $t+1$ the machine is in state q_k, where q_k is the state given by the transition function for M.

$G_1 = G_{0,2}^1 \land G_{0,3}^1$

- $G_{0,2}^1 = (\neg Q_0^1 \lor \neg S_{1,1} \lor \neg P_{1,1}^2 \lor Q_1^1)$, with the rule $(q_0, 0 \rightarrow 1, N, q_1)$
- $G_{0,3}^1 = (\neg Q_0^1 \lor \neg S_{1,1} \lor \neg P_{1,1}^3 \lor Q_1^1)$, with the rule $(q_0, 1 \rightarrow 0, N, q_1)$

$G_2 = G_{1,2}^2 \land G_{1,3}^2$

- $G_{1,2}^2 = (\neg Q_2^1 \lor \neg S_{1,2} \lor \neg P_{1,2}^2 \lor Q_2^3)$, with the rule $(q_1, 0 \rightarrow 0, R, q_N)$
- $G_{1,3}^2 = (\neg Q_2^1 \lor \neg S_{1,2} \lor \neg P_{1,2}^3 \lor Q_2^3)$, with the rule $(q_1, 1 \rightarrow 1, R, q_N)$

$H = H_1 \land H_2$, where H_t is the conjunction over all i and j of $H_{i,j}^t$, where $H_{i,j}^t$ asserts that at time t the machine is in state q_i scanning symbol σ_j, then at time $t+1$ the tape head moves according to the transition function for M.

$H_1 = H_{0,2}^1 \land H_{0,3}^1$

- $H_{0,2}^1 = (\neg Q_0^1 \lor \neg S_{1,1} \lor \neg P_{1,1}^2 \lor S_{1,2})$, with the rule $(q_0, 0 \rightarrow 1, N, q_1)$
- $H_{0,3}^1 = (\neg Q_0^1 \lor \neg S_{1,1} \lor \neg P_{1,1}^3 \lor S_{1,2})$, with the rule $(q_0, 1 \rightarrow 0, N, q_1)$

$H_2 = H_{1,2}^2 \land H_{1,3}^2$

- $H_{1,2}^2 = (\neg Q_2^1 \lor \neg S_{1,2} \lor \neg P_{1,2}^2 \lor S_{2,3})$, with the rule $(q_1, 0 \rightarrow 0, R, q_N)$
- $H_{1,3}^2 = (\neg Q_2^1 \lor \neg S_{1,2} \lor \neg P_{1,2}^3 \lor S_{2,3})$, with the rule $(q_1, 1 \rightarrow 1, R, q_N)$

$6. I = (Q_3^2 \lor Q_3^3) \land (Q_3^2 \lor Q_3^3) \land (Q_3^2 \lor Q_3^3)$, asserts that the machine reaches the state q_y or q_N at time 3.

Finally, $A(w) = B \land C \land D \land E \land F \land G \land H \land I$.

5
4 Conjunctive form of \(A(w) \)

We develop \(A(w) \) as a computation of \(M \) for \(x = 0 \) as input (see Fig. 1) in order to clarify the real sense of \(A(w) \).

Let us define the configuration and the transition of configurations of \(M \):
- \(C(t) \): the truth values of \(P_{s,t}^i, Q_t^i, S_{s,t} \) and their constraints.
- \(C(t) \to C(t + 1) \): \(C(t) \) is changed to \(C(t + 1) \) according to the transition function of \(M \).

1. At \(t = 1 \), \(C(1) = E_1 \land B_1 \land C_1 \land D_1 \):

\[
\begin{array}{c}
\text{t}=1 \\
\hline
1 & 2 \\
\hline
\hline & \cdots & 0 & b & \cdots \\
\hline & q_0
\end{array}
\]

- \(E_1 = Q_1^0 \land S_{1,1} \land P_{1,1}^2 \land P_{2,1}^1 \), representing the initial configuration where \(M \) is in \(q_0 \), the tape head scans the square of number 1, and a string \(0b \) is on the tape.
- \(B_1 = (S_{1,1} \lor S_{2,1}) \land (\neg S_{1,1} \lor \neg S_{2,1}) \).
- \(C_1 = C_{1,1} \land C_{2,1} \):
 - \(C_{1,1} = (P_{1,1}^1 \lor P_{1,1}^2 \lor P_{1,1}^3) \land (\neg P_{1,1}^1 \lor \neg P_{1,1}^2) \land (\neg P_{1,1}^1 \lor \neg P_{1,1}^3) \land (\neg P_{1,1}^2 \lor P_{1,1}^3) \land (\neg P_{1,1}^2 \lor \neg P_{1,1}^3) \)
 - \(C_{2,1} = (P_{2,1}^1 \lor P_{2,1}^2 \lor P_{2,1}^3) \land (\neg P_{2,1}^1 \lor \neg P_{2,1}^2) \land (\neg P_{2,1}^1 \lor \neg P_{2,1}^3) \land (\neg P_{2,1}^2 \lor P_{2,1}^3) \land (\neg P_{2,1}^2 \lor \neg P_{2,1}^3) \)
- \(D_1 = (Q_1^0 \lor Q_1^1 \lor Q_1^2 \lor Q_1^3) \land (\neg Q_1^0 \lor Q_1^1) \land (\neg Q_1^0 \lor \neg Q_1^2) \land (\neg Q_1^0 \lor \neg Q_1^3) \land (\neg Q_1^1 \lor \neg Q_1^2) \land (\neg Q_1^1 \lor \neg Q_1^3) \land (\neg Q_1^2 \lor \neg Q_1^3) \land (\neg Q_1^3 \lor \neg Q_1^3) \)

2. At \(t = 2 \), \(C(2) = E_2 \land B_2 \land C_2 \land D_2 \) is obtained from \(C(1) \land (C(1) \to C(2)) \).

\[
\begin{array}{c}
\text{t}=2 \\
\hline
1 & 2 \\
\hline
\hline & \cdots & 1 & b & \cdots \\
\hline & q_1
\end{array}
\]

\(C(1) \to C(2) \) is represented by \(F, G \) and \(H \) at \(t = 1 \):
- \(F_{0,2} = (\neg Q_1^0 \lor \neg S_{1,1} \lor \neg P_{1,1}^2 \lor P_{1,2}^3) \), with the rule \((q_0, 0 \to 1, N, q_1) \)
- \(G_{0,2} = (\neg Q_1^0 \lor \neg S_{1,1} \lor \neg P_{1,1}^2 \lor Q_1^2) \), with the rule \((q_0, 0 \to 1, N, q_1) \)
- \(H_{0,2} = (\neg Q_1^0 \lor \neg S_{1,1} \lor \neg P_{1,1}^2 \lor S_{1,2}) \), with the rule \((q_0, 0 \to 1, N, q_1) \)
• $E_2 = Q^1_2 \land S_{1,1} \land P^{3}_{1,2} \land P^1_{2,2}$, with $Q^1_2 = 1$, $S_{1,1} = 1$, $P^{3}_{1,2} = 1$, $P^1_{2,2} = 1$, and other proposition symbols concerning $t = 2$ are assigned with 0.

• $B_2 = (S_{1,2} \lor S_{2,2}) \land (\neg S_{1,2} \lor \neg S_{2,2})$

• $C_2 = C_{1,2} \land C_{2,2}$:

 $$- C_{1,2} = (P^1_{1,2} \lor P^2_{1,2} \lor P^3_{1,2}) \land (\neg P^1_{1,2} \lor \neg P^2_{1,2}) \land (\neg P^1_{1,2} \lor \neg P^3_{1,2}) \land (\neg P^2_{1,2} \lor \neg P^3_{1,2})$$

 $$- C_{2,2} = (P^1_{2,2} \lor P^2_{2,2} \lor P^3_{2,2}) \land (\neg P^1_{2,2} \lor \neg P^2_{2,2}) \land (\neg P^1_{2,2} \lor \neg P^3_{2,2}) \land (\neg P^2_{2,2} \lor \neg P^3_{2,2})$$

• $D_2 = (Q^0_1 \lor Q^1_1 \lor Q^2_1 \lor Q^3_1) \land (\neg Q^0_2 \lor \neg Q^1_2) \land (\neg Q^0_2 \lor \neg Q^2_2) \land (\neg Q^0_1 \lor \neg Q^2_2) \land (\neg Q^0_2 \lor \neg Q^3_1) \land (\neg Q^0_1 \lor \neg Q^3_1)$

3. At $t = 3$, $C(3) = E_3 \land B_3 \land C_3 \land D_3$ is obtained from $C(2) \land (C(2) \rightarrow C(3))$.

\[
\begin{array}{c|c|c|c}
 t=3 & 1 & 2 & b \\
\hline
 q_y & & &
\end{array}
\]

$C(2) \rightarrow C(3)$ is represented by F, G and H at $t = 2$:

$F^2_{1,3} = (\neg Q^1_1 \lor \neg S_{1,2} \lor \neg P^3_{1,2} \lor P^3_{1,3})$, with the rule $(q_1, 1 \rightarrow 1, R, q_y)$

$G^2_{1,3} = (\neg Q^1_2 \lor \neg S_{2,1} \lor \neg P^3_{1,3} \lor Q^3_{2,1})$, with the rule $(q_1, 1 \rightarrow 1, R, q_y)$

$H^2_{1,3} = (\neg Q^1_2 \lor \neg S_{1,2} \lor \neg P^3_{1,3} \lor S_{2,3})$, with the rule $(q_1, 1 \rightarrow 1, R, q_y)$

• $E_3 = Q^2_3 \land S_{2,3} \land P^{3}_{1,3} \land P^1_{2,3}$, with $Q^2_3 = 1$, $S_{2,3} = 1$, $P^{3}_{1,3} = 1$, $P^1_{2,3} = 1$, and other proposition symbols concerning $t = 3$ are assigned with 0.

• $B_3 = (S_{1,3} \lor S_{2,3}) \land (\neg S_{1,3} \lor \neg S_{2,3})$

• $C_3 = C_{1,3} \land C_{2,3}$:

 $$- C_{1,3} = (P^1_{1,3} \lor P^2_{1,3} \lor P^3_{1,3}) \land (\neg P^1_{1,3} \lor \neg P^2_{1,3}) \land (\neg P^1_{1,3} \lor \neg P^3_{1,3}) \land (\neg P^2_{1,3} \lor \neg P^3_{1,3})$$

 $$- C_{2,3} = (P^1_{2,3} \lor P^2_{2,3} \lor P^3_{2,3}) \land (\neg P^1_{2,3} \lor \neg P^2_{2,3}) \land (\neg P^1_{2,3} \lor \neg P^3_{2,3}) \land (\neg P^2_{2,3} \lor \neg P^3_{2,3})$$

• $D_3 = (Q^0_3 \lor Q^1_3 \lor Q^2_3 \lor Q^3_3) \land (\neg Q^0_3 \lor \neg Q^1_3) \land (\neg Q^0_3 \lor \neg Q^2_3) \land (\neg Q^0_3 \lor \neg Q^3_3) \land (\neg Q^1_3 \lor \neg Q^3_3) \land (\neg Q^2_3 \lor \neg Q^3_3)$

Therefore, the computation of M for $x = 0$ as input can be represented as:

$C(1) \land (C(1) \rightarrow C(2)) \land (C(2) \rightarrow C(3))$

$= (E_1 \land B_1 \land C_1 \land D_1) \land (E_2 \land B_2 \land C_2 \land D_2) \land (E_3 \land B_3 \land C_3 \land D_3)$

$= E \land B \land C \land D$

$= A(w)$

It can be seen that $A(w)$ is just the conjunction of all configurations of M to simulate a concrete computation of M for verifying a certificate u of w. Given an input u ($x = 0$ or $x = 1$ in this example), whether M accepts it or not, $A(w)$ is always true. Obviously, $A(w)$ has just an appearance of conjunctive form, but not a true logical form.
5 Conclusion

In fact, a true CNF formula is implied in the transition function of M corresponding to F, G, H as well as $C(t) \rightarrow C(t + 1)$, however the transition function of M is based on the expressible logical structure of a problem.

Therefore, it is not that any polynomial time-verifiable problem can be reduced to the SAT problem, but any polynomial time-verifiable problem itself asserts that such problem is representable by a CNF formula. In other words, there exists the begging the question in Cooks theorem.

Acknowledgements

Thanks to Mr Chumin LI for his suggestion to use this simple example to study $A(w)$.

References

[1] Stephen Cook, The complexity of theorem proving procedures. Proceedings of the Third Annual ACM Symposium on Theory of Computing. p151-158 (1971)
[2] Garey Michael R., David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and company (1979)