Tropical ecosystems are large carbon stores that are vulnerable to climate change. The sparseness of ground-based measurements has precluded verification of these ecosystems being a net annual source (+ve) or sink (−ve) of atmospheric carbon. We show that two independent satellite data sets of atmospheric carbon dioxide (CO₂), interpreted using independent models, are consistent with the land tropics being a net annual carbon emission of (median maximum minimum) 1.03 ± 1.73 and 1.60 ± 2.11 ± 1.39 petagrams (PgC) in 2015 and 2016, respectively. These pan-tropical estimates reflect unexpectedly large net emissions from tropical Africa of 1.48 ± 1.95 PgC in 2015 and 1.65 ± 2.42 ± 1.14 PgC in 2016. The largest carbon uptake is over the Congo basin, and the two loci of carbon emissions are over western Ethiopia and western tropical Africa, where there are large soil organic carbon stores and where there has been substantial land use change. These signals are present in the space-borne CO₂ record from 2009 onwards.
Tropical terrestrial ecosystems store large amounts of carbon in plants and soil, but are particularly vulnerable to changes in climate1,2. They release CO₂ via autotrophic and heterotrophic respiration and via fire, and take up CO₂ via photosynthesis. The terrestrial tropics, defined between 23.44°S and 23.44°N, include 30% of the global land surface and approximately a third of all Earth’s three billion trees3 and their stored carbon. Our knowledge of the tropical carbon budget has improved significantly over the past few decades mainly due to networks of sample plot measurements4, micro-meteorological measurements of carbon fluxes of forest ecosystems5, remote sensing of vegetation state or of land use change6, and sparsely-distributed ground-based mole fraction measurements7 of atmospheric CO₂. Despite these efforts, carbon fluxes from tropical ecosystems remain one of the largest uncertainties in the global carbon cycle9,10 and impose a similar uncertainty on our ability to predict future climate change.

We use a range of global satellite data (“Methods”) to study the carbon cycle over the tropics from 2009 to 2017 with a focus on 2015/2016 when two independent satellites were observing atmospheric CO₂. We use total column CO₂ dry air mole fraction (XCO₂) retrievals from the Japanese Greenhouse gases Observing SATellite11 (GOSAT) from mid-2009 until 2017 and from the NASA Orbiting Carbon Observatory12 (OCO-2) from late 2014 to 2017. For comparative purposes, we use an inter-calibrated network of various mole fraction data2,8 (“Methods”). We interpret these ground-based mole fraction and remotely-sensed column mole fraction data using three independent atmospheric transport models, driven by different a priori CO₂ flux estimates, and their counterpart inverse methods (“Methods”). The result is a range of geographically-resolved a posteriori CO₂ fluxes for the globe. We report our results over land as net biosphere fluxes (“Methods”), representing the net carbon flux exchange with the atmosphere from above-ground biomass and soils across subcontinental regions. To interpret these CO₂ fluxes in terms of the underlying land surface processes, we use correlative satellite data products (Methods): vegetation indices that provide information about leaf phenology13; changes in water storage14; a measure of photosynthesis15; and formaldehyde columns that provide information about the location and timing of fires16. We use dry matter (DM) burned estimates17 inferred from remotely sensed land surface properties, and analysed meteorological fields of surface temperature and precipitation from the GEOS-5 (GEOSP) model (“Methods”).

We use three inverse methods (“Methods”) representing a range of atmospheric transport models, driving meteorology, and estimation methods. We focus on the GEOS-Chem atmospheric transport model18 and discuss differences with the other models. Our primary study period is 2014–2017 when there is overlap between GOSAT and OCO-2 data, coinciding with the El Niño event19–21. The a posteriori global atmospheric growth rate of CO₂, inferred from ground-based data (“Methods”) and converted from satellite-based flux estimates, ranges from 4.5 to 6.1 PgC year⁻¹ over our study, consistent with values inferred from the CO₂ mass inferred directly from the atmospheric mole fraction data multiplied by the total mass of dry air in the atmosphere.

Our analysis of the GOSAT and OCO-2 data reveals that the land tropics are a net annual CO₂ emission of (median-maximum/minimum) 1.03±1.72/0.29 and 1.60±2.11/0.39 petagrams (PgC) in 2015 and 2016, respectively, and larger than estimates inferred from changes in above-ground biomass22–24. The range of individual model estimates can be relatively large, particularly for regions where the net carbon budget is small, but nevertheless a coarse picture of the changing carbon budget emerges from our analysis. We find a robust signal over northern tropical Africa that is responsible for the majority of the pan-tropical net carbon signal, which cannot be explained by potential measurement or model biases. The largest seasonal uptake is over the northern Congo basin, as expected, and the largest emissions are found over western Ethiopia and western tropical Africa during March and April when it is hottest and driest. Although caution should be exercised when interpreting regions smaller than 1000 km, these emission focal points are a robust feature of the GOSAT record that starts in 2009. While we do not provide a definitive explanation for this seasonal signal, we argue that a comparatively small constant CO₂ flux, e.g., from soils due to sustained land degradation25, could manifest as a seasonal net carbon source.

Results
Pan-tropical carbon flux estimates. Figures 1a and d demonstrate that the sparse ground-based measurements provide insufficient information to determine robust estimates of tropical land carbon fluxes across the three groups, even on a pan-tropical scale. Differences in atmospheric model transport, assumptions about model errors, and differences between a priori land biosphere fluxes result in sometimes-inconsistent a posteriori estimates8,10. This has hampered the ability of the wider Earth system science community to understand large-scale responses of the carbon cycle to climate. On a broad scale, we can make two observations. First, we find that using column observations of XCO₂ from GOSAT and OCO-2 results in more consistent a posteriori CO₂ flux estimates over the tropics (Fig. 1b–f), with a smaller inter-model spread of estimates26, and a better agreement on the phase of the seasonal cycle than using only in situ observations of CO₂ (Fig. 1a–d). Second, the amplitude of the seasonal cycle of a posteriori CO₂ fluxes over the northern and southern tropical lands inferred by the satellite data is generally much larger than that inferred from the in situ data (Fig. 1b–e), with the exception of LSCE that is driven by a priori fluxes from the ORCHIDEE model (“Methods”). Differences between the amplitude of the seasonal cycle inferred by GEOS-Chem using GOSAT and OCO-2 data (Fig. 1b–e) are smaller than those from different models that use the same data (Fig. 1c–f). Assumptions about data analysis therefore still play a role in the a posteriori flux estimates, but these inter-model differences are generally small compared to differences between the a posteriori and a priori flux estimates. Together, these two observations suggest that the satellite data contain substantial information about the carbon cycle. For completeness, we refer the reader to Supplementary Figs. 1–6 and Supplementary note 1 for analysis and discussion of a posteriori CO₂ fluxes from all other regions across the world.

Table 1 shows that the land tropics are a net annual carbon emission of 1.03±1.73/0.20 and 1.60±2.11/0.39 PgC in 2015 and 2016, respectively, and larger than estimates inferred from changes in above-ground biomass22–24. We find that northern tropical fluxes are 1.54±0.58/0.12 PgC in 2015 that increase in 2016 to 1.72±2.24/1.61 PgC. Southern tropical fluxes are −0.26±1.03/−0.00 PgC in 2015 and −0.18±0.80/−0.04 PgC in 2016. Even on a pan-tropical scale for 2015 and 2016, reaching a consensus on the sign of the land flux (except for GOSAT ACOS data, Table 1) and on its seasonal amplitude (1.39±2.11/−0.20 PgC) represents a significant step forward for the carbon cycle community. For our analysis we have not quantified anomalous fluxes during El Niño30,21.

Continental-scale tropical carbon flux estimates. During 2015 we find that net fluxes from tropical South America are −0.26±0.04/0.04PgC, tropical African fluxes are 1.48±1.95/−0.90 PgC, and from

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11097-w | www.nature.com/naturecommunications

NATURE COMMUNICATIONS | (2019) 10:3344 | https://doi.org/10.1038/s41467-019-11097-w | www.nature.com/naturecommunications
Fig. 1 Northern and southern tropical CO₂ fluxes. Monthly a priori and a posteriori CO₂ fluxes (expressed as PgC year⁻¹, mid-2014 to 2017) from the (a–c) Northern and (d–f) Southern tropics inferred from (a, d) in situ mole fraction measurements and from (b–c, e–f) GOSAT and OCO-2 satellite measurements of X_CO₂. Positive fluxes are from the land surface to the atmosphere. LN and LG denote X_CO₂ measurements taken using nadir and glint observing modes, respectively. The geographical regions are shown inset of each upper panel.
Carbon flux estimates for northern tropical Africa and southern tropical South America.

Tables 1 and 2 and the supporting text provide a comprehensive overview of the carbon budget for the tropical regions. The tables compare the a priori and a posteriori estimates of carbon fluxes from the GOSAT and OCO-2 missions. Figure 2 shows a comparison of the carbon fluxes with other data products, while Figure 3 presents a Hovmöller plot of the carbon fluxes over the tropics. The analysis highlights the importance of considering the spatial and temporal variability of carbon fluxes and provides insights into the factors that influence the carbon budget in these regions.

Discussion

Compared to tropical South America there is a lower baseline for precipitation, water storage, leaf phenology, and SIF over tropical North Africa (Fig. 4b), but there is a large seasonal cycle in temperature. We find a comparatively muted seasonal cycle of HCHO columns, but a much larger seasonal cycle of DM burned (Fig. 4b), which is due to predominant grassland fuel not producing sufficient energy to be directly lofted above the boundary layer where it can be observed as HCHO. For completeness, Supplementary Figs. 17–22 show similar Hovmöller plots but for all studied land regions for the GOSAT record from 2009 to 2017. Supplementary Fig. 23 shows regionally-mean values of SIF from 2009 to 2017.
Fig. 2 CO₂ fluxes from tropical South America and tropical northern Africa. Monthly a priori and a posteriori CO₂ fluxes (expressed as PgC year\(^{-1}\), mid-2014 to 2017) from a southern tropical South America and b northern tropical Africa, inferred from in situ mole fraction measurements and from GOSAT and OCO-2 satellite measurements of X\(_{CO₂}\). Positive fluxes are from the land surface to the atmosphere. LN and LG denote X\(_{CO₂}\) measurements taken from nadir and glint observing modes, respectively. The geographical regions are shown inset of each upper panel.
Water storage records that start in 2002 reveal successive years of drought over this region (from 2009 in Supplementary Fig. 19) that could have impacted photosynthesis15, land-use change22,23, burning extent, and possibly soil carbon stocks24. Fire cannot explain these emissions (Supplementary Discussion), although it even a small diffuse CO\textsubscript{2} flux from soils due to sustained land degradation25 could manifest as a seasonal net carbon source (Supplementary Discussion).

We anticipate that our findings will help re-prioritise decadal science challenges for the carbon cycle community, particularly in the context of the Paris Agreement that implicitly relies on the continued operation of natural carbon sinks. Ultimately, deeper insights into the tropical carbon cycle will only be achieved by improved integration of in situ and remote-sensed data, for the short timescales, and pan-tropical sample plot data for the longer timescales.

Methods

In situ CO\textsubscript{2} mole fraction observations. We use discrete (weekly) air samples from 105 sites and continuous (hourly) observations from 52 sites that are part of the global atmospheric surface CO\textsubscript{2} observations network. These were taken from the Observation Package (ObsPack) obspack\textsubscript{co2}_1_GLOBALVIEW_plus_v2.1_2016_09_02 data product7 for 2015, and from obspack\textsubscript{co2}_1_NRT_v3.3_2017_04_19 for 2016–20178; both datasets are produced by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL).

Satellite observations of column CO\textsubscript{2}. We use XCO\textsubscript{2} data retrieved from the Japanese Greenhouse gases Observing SATellite (GOSAT) and the NASA Orbiting Carbon Observatory-2 (OCO-2). GOSAT11 was launched in January 2009 in a sun-synchronous orbit with an equatorial crossing time of 1300. We use two independent GOSAT XCO\textsubscript{2} data products: v7.1 full-physics retrievals from the University of Leicester30 (UoL), and B7.3 of the NASA Atmospheric CO\textsubscript{2} Observations from Space (ACOS31) activity. We use 10-s averages of the bias-corrected XCO\textsubscript{2} B7.1r data product32 over land from OCO-2 that is the current version used by the OCO-2 science team33,34.

Enhanced Vegetation Index. The Enhanced Vegetation Index (EVI) is a composite property of leaf area, chlorophyll and canopy structure35. We use MOD13C2 Enhanced Vegetation Index Monthly L3 Global 0.05° CMG V00636 to get EVI information. The data are only retained with pixel reliability values masked as good data (0) or marginal data (1).

Gravity recovery and climate experiment. The Gravity Recovery and Climate Experiment (GRACE) provides information about changes in the water column37–39. Rooting depths of tropical terrestrial ecosystems will likely be sufficiently deep that we cannot establish a direct and immediate relationship between vegetation and changes in precipitation. Changes in gravity, due to changes in water column depth, provide a much stronger relationship with vegetation access to water. We use the surface mass change data based on the RL05 spherical harmonics from CSR (Center for Space Research at University of Texas, Austin), JPL (Jet Propulsion Laboratory) and GFZ (GeoforschungsZentrum Potsdam). The three different processing groups chose different parameters and solution strategies when deriving month-to-month gravity field variations from GRACE observations. We use the ensemble mean of the three data fields and multiply the data by the provided scaling grid. Data are available from http://grace.jpl.nasa.gov.

Formaldehyde columns. Formaldehyde (HCHO) columns are from the Ozone Monitoring Instrument40 (OMI) aboard the NASA Aura satellite, which was
launched in a sun-synchronous orbit in 2009. We use the NASA OMI/CH4/003 data product\(^{36}\) from the NASA Data and Information Services Center, which fits HCHO slant columns in the 328.5–356.5 nm window and accounts for competing absorbers, the Ring effect, and undersampling. HCHO is a high-yield product of hydrocarbon oxidation\(^{31,42}\). It is also emitted as a direct emission from incomplete combustion\(^{43,44}\). We use the active fire data product\(^{45}\) from the NASA Moderate Resolution Imaging Spectrometer (MODIS), derived from surface thermal IR anomalies, to isolate the pyrogenic HCHO signal.

Satellite observations of solar induced fluorescence. Satellite observations of solar induced fluorescence (SIF) are retrieved by the OMI from the GOSAT instrument\(^{46}\). SIF is a by-product of plant pigments absorbing incoming sunlight as part of photosynthesis. Of the solar radiation absorbed, ~20% is eventually dissipated as heat and typically <1% is emitted by SIF in the range 600–800 nm, peaking at 695–699 nm and 730–740 nm. GOSAT fits estimates of SIF at 755 nm\(^{47}\). We use the GOSAT SIF data product as a crude measure of photosynthetic capacity of regional ecosystems. We use a physically based retrieval scheme\(^{47}\) with a focus on the bias correction procedure. We use a two-stage method. First, we isolate GOSAT measurements over non-vegetated areas using the ESACCI Land Cover product V2.0.4\(^{48}\) at 300 m resolution. Second, we apply a bias correction as an explicit function of time to ensure that instrumental effects are accounted for the entire data range of the SIF product.

DM burned estimates. DM burned estimates are taken from the Global Fire Emission Database\(^{49}\) (GFED4). These estimates were derived by combined satellite remote sensing observation of burned area and active fire data from MODIS.

Atmospheric transport models and inverse methods. To describe the relationship between surface fluxes of CO\(_2\) and atmospheric CO\(_2\) we use three atmospheric transport models: (1) GEOS-Chem global 3-D chemistry transport model\(^{50}\), version 9.02; (2) GSFC parameterised chemistry and transport model\(^{51}\) (PCTM), and (3) Laboratoire de Météorologie Dynamique (LMDZ), version LMDZ5\(^{33}\).

We run GEOS-Chem with a horizontal resolution of 4° (latitude) x 5° (longitude), driven by the GEOS-5 meteorological analyses (GEOS-FP from 2013) from the Global Modeling and Assimilation Office (GMAO) Global Circulation Model based at NASA Goddard Space Flight Center. We run the model using 47 vertical terrain-following sigma-levels that describe the atmosphere from the surface to 0.01 hPa, of which about 30 are typically below the dynamic tropopause. We use well-established emission inventories as our a priori flux estimates: (1) weekly biomass burning emissions\(^{50}\); (2) monthly fossil fuel emissions\(^{55,56}\); (3) monthly climatological ocean fluxes\(^{58}\); and (4) three-hourly terrestrial biosphere fluxes\(^{57}\).

The GEOS-Chem model uses an ensemble Kalman Filter (EnKF) framework\(^{58,59}\) to infer CO\(_2\) fluxes from the ground-based or space-based measurements of atmospheric CO\(_2\). We use a total of 792 basis functions per month, split between 317 oceanic regions and 475 land regions. These regions are subdivisions of the 22 regions in TransCom3. We assume a 50% uncertainty for monthly land terrestrial fluxes, and 40% for monthly oceanic fluxes\(^{50}\). We assume land (ocean) a priori fluxes are correlated with a correlation length of 500 (8000) km. We assume no observation error correlations, but include an additional 1.5 ppm uncertainty to the reported observation errors to account for model transport errors. We determine the terrestrial biosphere flux by subtracting the fossil fuel and cement production emission estimate (FF). This is a common approach\(^{10,18,59}\), based on the assumption knowledge of FF flux is much better than that of the natural fluxes from the land and ocean.

The LMDZ model is run using a regular horizontal resolution of 3.75° (longitude) and 1.875° (latitude), with 39 hybrid layers in the vertical. Winds are nudged towards the 6-hourly ECMWF reanalysis\(^{60}\) with a relaxation time of three hours. Fossil fuel burning emissions from the ODIAC model\(^{54,55}\), including diurnal and day-of-week variability\(^{61}\). We also use monthly oceanic fluxes\(^{59}\), three-hourly biomass burning emissions (GFED 4.1 s until 2015 and GFAS afterwards), and climatological three-hourly biosphere-atmosphere fluxes taken as the 1989–2010 of a simulation of the ORGanizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE\(^{62}\), version 1.9.5.2).

The LMDZ CAMS inversion tool currently generates the global CO\(_2\) atmospheric inversion product of the Copernicus Atmospheric Monitoring Service\(^{63,64}\). The minimum of the Bayesian cost function of the inversion problem is found by an iterative process using the Lanczos version of the conjugate gradient algorithm\(^{65}\). The inferred fluxes are estimated at each horizontal grid point of the transport model with a temporal resolution of eight days, separately for daytime and night-time. The state vector of the inversion system is therefore made of a succession of global maps with 9290 grid points. Per month it gathers 73,700 variables (four-day-time maps and four-night-time maps). It also includes a map of the total CO\(_2\) columns at the initial time step of the inversion window in order to account for the uncertainty in the initial state of CO\(_2\). Over land, the errors of the prior biospheric-atmosphere fluxes are assumed to dominate the error budget and the covariances are constrained by an analysis of mismatches with in situ flux measurements: temporal correlations on daily mean net carbon exchange (NEE) errors decay exponentially with a length of one month but night-time errors are assumed to be uncorrelated with daytime errors; spatial correlations decay

Fig. 4 Correlative data to interpret regional X\(_{CO2}\) data. Correlative data over a southern tropical South America and b northern tropical Africa. The panels are from left to right: surface temperature (\(^T\) [K]), precipitation (mm m\(^{-2}\)). day\(^{-1}\)), water storage (cm), elevated vegetation index (unitless), HCHO columns (molec cm\(^{-2}\)) filtered for fire activity using MODIS fire counts, and dry matter (DM) burned (kg DM\(^{-1}\)).
exponentially with a length of 500 km; standard deviations are set to 0.8 times the climatological daily-varying heterotrophic respiration flux simulated by ORCHIDEE with a ceiling of 4 GtC/day. Over a full year, the total 1-sigma uncertainty for the prior land fluxes amounts to about 3.0 GtC/yr. The error statistics for the open ocean correspond to a global air-sea flux uncertainty about 0.5 GtC/yr and are defined as follows: temporal correlations decay exponentially with a length of one month; unlike land, daytime and night-time flux errors are fully correlated; spatial correlations follow an 8°-folding length of 100 km; standard deviations are set to 0.1 GtC/2°day. Land and ocean flux errors are not correlated.

PCTM is run at a horizontal resolution of 2.0° (latitude) × 2.5° (longitude) with 40 hybrid sigma levels in the vertical, driven by winds, surface pressure, and vertical mixing parameters from NASA MERRA2 reanalyses. A priori fluxes for gross primary productivity, gross respiration, wildfires and biofuel emissions are taken from CASA-GFED3 land biosphere model and Fossil fuel burning emissions from the ODIAC model, including diurnal and day-of-week variability, and air-sea CO2 fluxes from three different sources: the NASA Ocean and Biosphere Model (NOBM6), and two CO2 climatological flux products. The CSU inversion scheme uses a variational data assimilation approach. A priori CO2 fluxes are run forward through PCTM at a 2.0° × 2.5° (lat/lon) resolution, with the resulting model-measurement residuals used in a 6.7° × 6.7° version of PCTM to estimate weekly flux corrections (no day/night split); no correlations in space or time are assumed. This configuration results in 54 × 27 × 4.33 = 6300 monthly flux corrections being solved. The adjoint of PCTM, forced with the measurement mismatches, generates the gradient to the Bayesian cost function; this is used in a BFGS preconditioner (pre-conditioned with the a priori flux uncertainties) to descend to the minimum, giving the optimal fluxes.

Data availability

GOSAT V.7.1 and SIF data are available from University of Leicester. OCO-2 retrievals were produced at the Pliocene project at the Jet Propulsion Laboratory, California Institute of Technology, and obtained from the OCO-2 data archive maintained at the NASA Goddard Earth Science Data and Information Services Center. All corelative data are also freely available from NASA data repositories. The NOAA in situ data are freely available from the ESRL website (https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html).

Code availability

The community-led GEOS-Chem model of atmospheric chemistry and model is maintained centrally by Harvard University (http://acmg.seas.harvard.edu/geos/), and is available on request. The ensemble Kalman filter code is publicly available as PyKSD (https://www.nceo.ac.uk/data-tools/atmospheric-tools/). The CAMS inversion system is available on simple request from FC. For access to PCTM, please contact DB.

Received: 9 May 2019 Accepted: 17 June 2019
Published online: 13 August 2019

References

1. Lewis, S. L. et al. The 2010 Amazon Drought. Science, 331, 554 (2011).
2. Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).
3. Crowther et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
4. Mahli et al. An international network to monitor the structure, composition, and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439–450 (2002).
5. Krujill et al. The robustness of eddy correlation fluxes for Amazon rainforest conditions. Ecol. Appl. 14, 101–113 (2004).
6. Yu, Y. & Saatchi, S. Sensitivity of L-band SAR backscatter to downslope biomass of global forests. Remote Sens. 8, 522–540 (2016).
7. Cooperative Global Atmospheric Data Integration Project, Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957–2015; obspack_co2_1_GLOBALVIEWplus_v21.2016_09_02; NOAA Earth System Research Laboratory, Global Monitoring Division. https://doi.org/10.15138/G3095Z (2016).
8. Carbontracker Team, Compilation of near real time atmospheric carbon dioxide data provided by NOAA and EC; obspack_co2_1_NRT_v3.2017-04-19; NOAA Earth System Research Laboratory, Global Monitoring Division. https://doi.org/10.15138/G3095Z (2016).
9. Gurney, K. et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626–630 (2002).
10. Pelyn, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).
11. Kuze, A., Suto, H., Nakajima, M. & Hamazaki, T. Thermal and near infrared sensitivity for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring. Appl. Opt. 35, 6716–6733 (2009).
12. Eldering, A. et al. The Orbiting Carbon Observatory-2: first 18 months of science data products. Atmos. Meas. Tech. 10, 549–563 (2017).
40. Levelt, P. F. et al. The Ozone Monitoring Instrument: overview of 14 years in space. Atmos. Chem. Phys. 18, 5699–5745 (2018).
41. Palmer, P. I. et al. Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res. 108, 41803 (2003).
42. Wolé, G. M. et al. Formaldehyde production from isoprene oxidation across NOx regimes. Atmos. Chem. Phys. 16, 2597–2610 (2016).
43. Akagi, S. K. et al. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072 (2011).
44. Gonzi, S. et al. Biomass burning emission estimates inferred from satellite column measurements of HCHO: sensitivity to co-emitted aerosol and injection height. Geophys. Res. Lett. 38, L14807 (2011).
45. Le Page, Y. et al. Global fire activity patterns (1996–2006) and climatic influence: an analysis using the World Fire Atlas. Atmos. Chem. Phys. 8, 1911–1924 (2008).
46. Somkuti, P. Novel Methods for Atmospheric Carbon Dioxide Retrieval from the JAXA GOSAT and NASA OCO-2 Satellites, PhD Thesis, University of Leicester (2018).
47. Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluxes with gross primary productivity. Geophys. Res. Lett. 38, L21706 (2011).
48. ESA CCI Land Cover Product. https://www.esa-landcover-cci.org/.
49. Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).
50. Feilhauer, L. et al. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data. Atmos. Chem. Phys. 11, 2789–2803 (2011).
51. Feng, L. et al. Estimates of European uptake of CO2 inferred from GOSAT XCO2 retrievals: sensitivity to measurement bias inside and outside Europe. Atmos. Chem. Phys. 16, 1289–1306 (2016).
52. Kawo, S. R., Erickson, D. L., Jawitz, J. Z., & Zhu, Z. Global CO2 transport simulations using meteorological data from the NASA data assimilation system. J. Geophys. Res. Atmos. 109, D18312 (2004).
53. Locatelli, R., Boussquet, P., Saunois, M., Chevallier, F. & Cressot, C. Sensitivity of the recent methane budget to LMdZ sub-grid-scale physical parameterizations. Atmos. Chem. Phys. 15, 9765–9780 (2015).
54. Oda, T. & Maksyutov, S. A very high-resolution (1 km x 1 km) global fossil fuel CO2 emission inventory derived using a point database and satellite observations of nighttime lights. Atmos. Chem. Phys. 11, 543–556 (2011).
55. Oda, T., & Maksyutov, S. ODIAC Fossil Fuel CO2 Emissions Dataset (ODIAC2016), Center for Global Environmental Research, National Institute for Environmental Studies. https://doi.org/10.5755/20170411.001 (2015).
56. Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. II 56, 554–577 (2009).
57. Olsen, S. C. & Randerson, J. T. Differences between surface and column atmospheric CO2 and implications for carbon cycle research. J. Geophys. Res. Atmos. 109, D02301 (2004).
58. Feng, L., Palmer, P. I., Bösch, H. & Dance, S. Estimating surface CO2 emissions from the satellite data; PID performed the data analysis and wrote the paper, with L.F., D.B., F.C., and S.B. providing input on the interpretation of the analysis.
59. Saeki, T. & Patra, P. K. Implications of overestimated anthropogenic CO2 fluxes from the satellite data; PID performed the data analysis and wrote the paper, with L.F., D.B., F.C., and S.B. providing input on the interpretation of the analysis.
60. Acknowledgements

Additional information

Supplementary Information accompanies this paper. Peer review reports are available for this paper.

Competing interests: The authors declare no competing interests.

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: Nature Communications would like to thank anonymous reviewers for their contributions to the peer review of this work. Peer review reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2019