Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Views on News

COVAX-19® Vaccine: Completely blocks virus transmission to non-immune individuals

Vivek P. Chavda a,∗, Lalitkumar K. Vora b, Disha R. Vihol c

a Department of Pharmaceutics and Pharmaceutical Technology, I M College of Pharmacy, Ahmedabad - 380009, Gujarat, India
b School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, BT9 7BL, UK
c Pharmacy Section, L.M. College of Pharmacy, Ahmedabad - 380058, Gujarat, India

ARTICLE INFO

Keywords:
COVAX-19® Vaccine
SARS-CoV-2
Pandemic
Advax™
SpikoGen® etc

ABSTRACT

Various vaccine platforms are geared against COVID-19 vaccine development to produce immunogens in cells. To design a recombinant protein-based COVID-19 vaccine, Vaxine pty Ltd used computer models of the spike protein and its human receptor, ACE2, to identify how the virus infects human cells. Based on this, the COVAX-19® vaccine is synthesized. It does reduce not only COVID-19 disease but also blocks virus shedding and transmission. Researchers are optimistic that this vaccine candidate could be clinically available soon with sufficient vaccine efficacy with a considerable amount of reduction in vaccination-related side effects.

1. Background

Currently, the world is dealing with the SARS-CoV-2 pandemic, and the vaccine is the prominent option to fight against it. Around 119 vaccine candidates are under development, and 15 vaccines are approved for COVID-19. There is increasing demand for newer safe and efficacious candidates as the currently practiced vaccines are proved to be ineffective against the new variants of the viral strain dominated in the different parts of the world. There are a total of 20 vaccine candidates approved for emergency use while 131 vaccine candidates are under development with 383 ongoing clinical trials.

2. COVAX-19® Vaccine

Because of EUA (Emergency Use Authorization), long term safety and efficacy data of vaccines are not available, and there are potentials risk of outbreak (Table 1). Apart from that, the vaccines available currently are not on par with the treatment against rapidly mutating covid virus. Additionally, the immunization provided by them is not more than a year. The vaccines cannot stop the disease transmission, leading to widespread health, social, and economic disruption (Li et al., 2020). To overcome these problems, Professor Nikolai Petrovsky of Flinders University and Research Director at Vaxine Pty Ltd of Adelaide, South Australia, developed a novel synthetic vaccine called COVAX-19®. It consists of a harmless insect cell-based recombinant spike protein of SARS-CoV-2 in combination with Vaxine’s proprietary non-inflammatory Advax™, a polysaccharide adjuvant derived from delta inulin. The immunity against SARS-CoV-2 is because of the generation of neutralizing antibodies and T cells that prevent the virus from attaching to the human angiotensin-converting enzyme 2 (ACE2) receptor in the respiratory epithelium (Fig. 1) (Vaxine Pty Ltd 2020).

Further, the use of an anti-inflammatory adjuvant, Advax™ (GMP-grade delta-inulin), is believed to cut down vaccine administration problems like high fevers, fatigue, and muscle aches which are commonly observed in the currently approved vaccine (Petrovsky, 2020). The team identified and confirmed the role of SARS-CoV-2’s spike protein with the help of Etaluma Luma Scope LS620 provided by AXT Pty Ltd (Chai, 2021). For determining the targets, the team utilized oracle cloud-based supercomputing and artificial intelligence (AI) to develop COVAX-19® in only five weeks, which usually takes around 15 years.

Along with their target for COVAX-19®, they also found out around 80 possible targets against SARS-CoV-2 and made it available to the world for research (Piplani et al., 2020). For carrying out product and process development, clinical trial programs, and commercial scale-up for the Australian and Asian markets, the company signed a memorandum of understanding with highly experienced GMP manufacturing firm Medytox biopharma of South Korea (Vaxine and Medytox partner on Covid-19 vaccine development 2020). Furthermore, APC, an Irish pharmaceutical research firm that designs, develops, and distributes patented engineering platform technologies to minimize time, cost, and risk in developing medications, collaborated with Vaxine to expedite the development and marketing of COVAX-19® (Taylor, 2021).

COVAX-19® moved to Phase I clinical trial after obtaining long-lasting protection with superior safety and tolerability results from pre-

∗ Corresponding author at: Department of Pharmaceutics and Pharmaceutical Technology, I.M. College of Pharmacy, Navrangpura, Ahmedabad (Gujarat)-380009.
E-mail address: Vivek7chavda@gmail.com (V.P. Chavda).

https://doi.org/10.1016/j.ccmp.2021.100004
Received 22 May 2021; Received in revised form 18 June 2021; Accepted 21 June 2021
2772-3712/© 2021 Published by Elsevier B.V. on behalf of Zhejiang Chinese Medical University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
clinical studies on mice, ferret, and monkey that are conducted in collaboration with the University of Georgia, U.S (Petrovsky, 2020). The Phase I trial was also undertaken independently by the PARC clinical trial team, a University of Adelaide-based research group at the Royal Adelaide Hospital, including 40 healthy participants aged between 18 and 65 years (NCT04453852). The participants were randomized on a 3:1 ratio to receive two intramuscular doses three weeks apart of either active vaccine at a dose of 25 μg spike protein plus 15 mg AdvaxTM and 0.15mg GpG55.2 (30 participants) or saline placebo (10 participants) (Vaccine Pty Ltd 2020). Phase II trial is going on in Iran at Espinas Palace Hotel, Tehran, with the enrolment of 400 participants (18 and 65 years) to evaluate the immunogenicity and safety (IRCT201503030213SN23), which is a two-armed double-blinded placebo-controlled study. The results are not yet declared in the detailed form, but the team has ensured that the vaccine is very safe and tolerable, along with no transmission of Covid-19 between the individuals. They are also suggesting that COVAX-19® will provide effective herd immunity. According to the company’s recent news, COVAX-19® vaccine will enter into phases II and III clinical trials with a cooperation agreement with Iran. And if these studies are successful, the vaccine will roll out in Iran under the brand name “SpikoGen®” by the CinnaGen Company (Spikogen®, 2021). As compared to the other emergency-approved vaccine candidates against SARS-COV-2 infection, the COVAX-19® leads to lesser vaccine administration-related side effects due to the anti-inflammatory
Adjuvant present in the vaccine formulation. The anti-inflammatory adjuvant and synthetic viral spike protein elements in the vaccine formulation also indicate this vaccine candidate's better safety margin and tolerability. Further, Nikolai Petrovsky expects the vaccine to be effective on new mutant strains of South Africa (Beta Variant), Brazil (Gamma Variant), and India (Delta Variant), with immunity lasting for at least two years.

Ethical Approval

Not applicable.

Data Availability

Nil.

Funding

Nil.

ORCID section

Vivek P. Chavda: https://orcid.org/0000-0002-7701-8597.

CRediT authorship contribution statement

Vivek P Chavda has prepared the backbone of the manuscript, wrote the original draft of the manuscript with Disha Vihol. Lalitkumar K Vora and Vivek P Chavda refined the draft, and all authors approved the submitted version. The figure is created with BioRender.com

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Nil.

Supplementary material

Nil.

References

Al Kaabi, N., Zhang, Y., Xia, S., Yang, Y., Al Qahiani, M.M., Abdulrazzaq, N., Al Nussair, M., Hassany, M., Jawad, J.S., Abdalla, J., Hussein, S.E., Al Mazrouei, S.K., Al Karam, M., Li, X., Yang, X., Wang, W., Lai, B., Chen, W., Huang, S., Wang, Q., Yang, T., Liu, Y., Ma, R., Hussain, Z.M., Khan, T., Saiifuddin Fatihuddin, M., You, W., Xie, Z., Zhao, Y., Jiang, Z., Zhao, G., Zhang, Y., Mahmoud, S., ETantawy, I., Xiao, P., Kohny, A., Zahir, W.A., Wang, H., Duan, K., Pan, A., Yang, X., 2021. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. JAMA doi:10.1001/jama.2021.8565.

Batyrov, Arazmat, 2021. Kazakhstan Launches Production of First Homegrown Vaccine ‘QazVac,’ (n.d.) April 25. https://caspiannews.com/news-detail/kazakhstan-launches-production-of-first-homegrown-vaccine-qazvac-2021-4-25-0/ (accessed June 18, 2021).

Chai, Cameron S., 2021. AXT Assists Vaxine in the Search for a COVID-19 Vaccine. Etradewire. https://etradewire.com/news/axt-assists-vaxine-in-the-search-for-covid-19-vaccine. (accessed May 22, 2021).

Dobrovidova, O., 2021. Latest Russian vaccine comes with a big dose of mystery. Science 372, 116-117. doi:10.1126/science.372.6538.116.

B. Han, Y. Song, C. Li, W. Yang, Q. Ma, Z. Jiang, M. Li, X. Lian, W. Jiao, L. Wang, Q. Shu, Z. Wu, Y. Zhao, Q. Li, Q. Gao, Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial, Lancet Infect. Dis. (2021). doi:10.1016/S1473-3099(21)00319-4.

Li, Y., Tenchov, R., Smoot, J., Liu, C., Watkins, S., Zhou, Q., 2021. A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Cent. Sci. 7, S12-S33. doi:10.1021/acscentsci.1c00720.

Logunov, D.V., Dolzhikova, I.V, Shchelbyakov, D.V, Tukhvatulin, A.I., Zhumkova, O.V, Zhuravleva, A.S., Kovyryshina, A.V, Lubenets, N.L., Grossova, D.M., Erokhov, A.S., Botikov, A.G., Izaeva, F.M., Popova, O., Ozharovskaya, T.A., Emagambetov, I.B., Favorskaya, I.A, Zenkin, D.I., Voronina, D.V, Shcherbinin, D.N., Semikhin, A.S., Simakova, V.V, Tokarskaya, E.A., Egorova, D.A., Shmarov, M.M., Nikitenko, N.A., Gushchin, V.A., Smolyarchuk, E.A., Zyryanok, S.K., Borisievich, S.V, Naroditsky, B.S., Ginsburg, A.L., 2021. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet (London, England) 397, 671-681. doi:10.1016/S0140-6736(21)00234-8.
Mir, Russiy, 2021. Developer: Kovivac Is Effective Against All Covid-19 Mutations https://russkiymir.ru/en/news/207084/ (accessed June 16, 2021).

Modernatm’s vaccine update, (2021) January 25th, 2021. static-files/17770488-5990-457b-a9f9-7f2454ba28a (accessed June 18, 2021).

Mohammad S Razai, A.M., Osama, Tannime, 2021. Covid-19 vaccine adverse events: balancing monitoring with confidence in vaccines. BMJ Opin.

Petrovsky, Nikolai, 2020. Vaxine and University of Georgia Completes First Stage of COVID-19 Ferret Challenge Studies, Einsidepress https://vaxine.net/vaxine-and-university-of-georgia-complete-first-stage-of-covid-19-ferret-challenge-studies/ (accessed May 22, 2021).

Piplani, S., Singh, P., Petrovsky, N., Winkler, D.A., 2020. Computational screening of repurposed drugs and natural products against SARS-Cov-2 main protease (Mpro) as potential COVID-19 therapies http://arxiv.org/abs/2009.00744 (accessed May 22, 2021).

Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Pérez Marc, G., Moreira, E.D., Zerbini, C., Bailey, R., Swanson, K.A., Roychoudhury, S., Koury, K., Li, P., Kalina, W.V, Cooper, D., Frenck, R.W., Hammitt, L.L., Türeci, Ö., Nell, H., Schaefer, A., Únal, S., Trensman, D.B., Mather, S., Dormitzer, P.R., Sahin, U., Jansen, K.U., Gruber, W.C., 2020. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl. J. Med. 383, 2603–2615. doi:10.1056/NEJMoa2034577.

Shimabukuro, et al., 2021. Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Moderna COVID-19 Vaccine - United States. December 21, 2020- January 10. MMWR. Morb. Mortal. Wkly. Rep. 70, 125–129. doi:10.15585/mmwr.mm7004e1.

Shimabukuro, T.T., Cole, M., Su, J.R., 2021. Reports of Anaphylaxis after Receipt of mRNA COVID-19 Vaccines in the US-December 14, 2020-January 18, 2021. JAMA - J. Am. Med. Assoc. 325, 1101–1102. doi:10.1001/jama.2021.1967.

Spikogen® A Joint, 2021. Venture Between Vaxine and Cinnagen https://vaxine.net/spikogen-a-joint-venture-between-vaxine-and-cinnagen/.

Taylor, Charlie, 2021. Pharma research firm APC partners to develop Covid-19 vaccine https://www.irishtimes.com/business/health-pharma/pharma-research-firm-apc-partners-to-develop-covid-19-vaccine.14275430 (accessed May 22, 2021).

Thiagarajan, K., 2021. What do we know about India’s Covaxin vaccine? BMJ 373, n997. doi:10.1136/bmj.n997.

Vaxine and Medytox partner on Covid-19 vaccine development, 2020. Pharm. Technol. https://www.pharmaceutical-technology.com/news/vaxine-medytox-covid-19-vaccine/ (accessed May 22, 2021).

Vaxine Pty Ltd, 2020. Phase 1 Clinical trials on Monovalent Recombinant COVID19 Vaccine (COVAX19). ClinicalTrials.gov Identifier: NCT04453852 https://clinicaltrials.gov/ct2/show/NCT04453852 (accessed May 22, 2021).

Viswanath, PILLA, 2021. Rare clot incidents linked to J&J, AstraZeneca COVID-19 vaccines bring adenovirus vector platform under scanner. Money Control https://www.moneycontrol.com/news/business/companies/rare-clot-incidents-linked-to-ji-astrazeneca-covid-19-vaccines-bring-adenovirus-vector-platform-under-scanner-6774801.html.

Yang, S., Li, Y., Dai, L., Wang, J., He, P., Li, C., Fang, X., Wang, C., Zhao, X., Huang, E., Wu, C., Zhong, Z., Wang, P., Duan, X., Tian, S., Wu, L., Liu, Y., Luo, Y., Chen, Z., Li, F., Li, J., Yu, X., Ren, H., Liu, L., Meng, S., Yan, J., Hu, Z., Gao, L., Gao, G.F., 2021. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect. Dis. doi:10.1016/S1473-3099(21)00127-4.

Y. Zhang, G. Zeng, H. Pan, C. Li, Y. Hu, K. Chu, W. Han, Z. Chen, R. Tang, W. Yin, X. Chen, Y. Hu, X. Liu, C. Jiang, J. Li, M. Yang, Y. Song, X. Wang, Q. Gao, F. Zhu, Safety, tolerability, and immunogenicity of an inactivated SARSCoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial, Lancet Infect. Dis. 21 (2021) 181–192. doi:10.1016/S1473-3099(20)30843-4.