Сравнительное исследование оптимального и интерполяционного методов восстановления стационарного непрерывного сигнала по дискретным значениям

А.И. Максимов¹, В.В. Сергеев¹,²

¹Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе 34А, Самара, Россия, 443086
²Институт систем обработки изображений РАН - филиал ФНИЦ «Кристаллография и фotonика» РАН, Молодогвардейская 151, Самара, Россия, 443001

Аннотация. В статье рассматривается классическая задача восстановления непрерывного сигнала по его искаженным дискретным значениям. Целью исследования является сравнение двух возможных методов ее решения – интерполяционного и оптимального. Производится вывод выражения для среднеквадратической ошибки восстановления стационарного непрерывного сигнала по его дискретным значениям. Реконструкция сигнала осуществляется при помощи оптимального восстанавливающего фильтра для непрерывно-дискретной модели наблюдения. Представлены результаты сравнения среднеквадратических ошибок процедур оптимального восстановления и интерполяции при одинаковых параметрах входного сигнала, аддитивного шума и динамических искажений.

1. Введение
Задача восстановления непрерывного сигнала по его дискретным значениям – распространенная задача обработки сигналов. Получить оценку непрерывного сигнала по дискретным значениям можно несколькими способами. Наиболее простое решение – выбрать интерполирующую функцию [1 - 3] и с ее помощью проинтерполировать непрерывный сигнал. Альтернативный способ решения [1, 4 - 6] – построить оптимальный восстанавливающий фильтр, минимизирующий среднеквадратическую ошибку. Цель данной статьи – выяснить, насколько оптимальный способ восстановления стационарного непрерывного сигнала превосходит интерполационный. Если среднеквадратическая ошибка оптимального метода восстановления не многим меньше ошибки интерполяционного метода, то использование оптимального восстановления на практике нецелесообразно, поскольку данный метод вычислительно более сложный, чем интерполяция, и требует информации о характере искажений, которым подвергается сигнал.
Статья выстроена следующим образом. Вначале выводятся выражения для среднеквадратической ошибки восстановления оптимального метода для общего случая и для случая непрерывно-дискретной линейной модели наблюдения. В следующем разделе представлен вывод выражения для среднеквадратической ошибки восстановления интерполационным методом. После приведен раздел, посвященный экспериментальным
исследованиям описанных методов. В нем приведены параметры исходного сигнала, искающей системы и аддитивного шума, при которых проводилось исследование, а также его результаты.

2. Оптимальное восстановление стационарного непрерывного сигнала

2.1. Общий случай

Для простоты изложения в данной статье используются одномерные сигналы, однако полученные результаты могут быть распространены на случай больших размерностей. Пусть $y(n)$ — наблюдаемый дискретный сигнал, независимо от модели наблюдения. Задача восстановления заключается в получении $\hat{x}_{opt}(t)$ оценки исходного сигнала $x(t)$.

Для начала введем непрерывные координаты через дискретные:

$$ t = nT + \tau, \quad 0 \leq \tau < T, $$

где t — вещественная переменная времени, заданная на всем протяжении числовой прямой, n — целочисленный аргумент дискретной последовательности, заданный на всем протяжении числовой прямой, T — период дискретизации непрерывного сигнала.

Восстановленный при помощи линейной системы, инвариантной к сдвигу, сигнал для фиксированного момента времени в этом случае будет выглядеть следующим образом:

$$ \hat{x}_{opt}(nT + \tau) = \sum_{k=-\infty}^{\infty} g_{\tau}(k) y(n-k), $$

где $g_{\tau}(k)$ — импульсная характеристика восстанавливающего фильтра в точке τ.

При оптимальном восстановлении должно выполняться условие минимизации среднеквадратической ошибки (СКО) оптимального восстановления $e_{\tau,opt}^2$ в точке τ:

$$ e_{\tau,opt}^2 = M \left[\left(\hat{x}_{opt}(nT + \tau) - x(nT + \tau) \right)^2 \right] \to \min. $$

Продифференцируем приведенное выше выражение. В результате дифференцирования получена свертка последовательностей, являющаяся одной из вариаций уравнения Винера-Хопфа [1]:

$$ \sum_{k=-\infty}^{\infty} g_{\tau}(k) B_{\tau}(m-k) = B_{\tau}^{(n)}(-\theta - \tau) \bigg|_{\theta = mT}, \quad \forall m, $$

где $B_{\tau}(m)$ — автокорреляционная функция сигнала наблюдаемого сигнала $y(n)$, $B_{\tau}^{(n)}(t)$ — непрерывная взаимная корреляционная функция исходного и наблюдаемого сигналов.

Выполним переход к спектральному представлению сигналов с размерными частотами:

$$ \Phi_{\tau}(e^{i\Omega T}) G_{\tau}(e^{i\Omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \Phi_{\tau}^{(n)}(-\Omega - \frac{2\pi}{T} k) e^{i(\Omega + \frac{2\pi}{T} k) T} $$

где $\Phi_{\tau}^{(n)}$ — взаимный энергетический спектр исходного и наблюдаемого сигналов, $G_{\tau}(\Omega)$ — частотная характеристика оптимального восстанавливавшего фильтра, $\Phi_{\tau}(e^{i\Omega T})$ — энергетический спектр наблюдаемого сигнала.

Выразим из выражения (5) передаточную функцию оптимального фильтра:

$$ G_{\tau}(e^{i\Omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \Phi_{\tau}^{(n)}(-\Omega - \frac{2\pi}{T} k) e^{i(\Omega + \frac{2\pi}{T} k) T} \Phi_{\tau}(e^{i\Omega T}). $$

Вернемся к выражению для ошибки восстановления в точке (3). С учетом выражений (4) и (6) и переходом к спектральному представлению оно будет выглядеть следующим образом:

V Международная конференция и молодежная школа «Информационные технологии и нанотехнологии» (ИТНТ-2019)
При помощи выражения для энергетического спектра ошибки восстановления (7) можно посчитать само значение ошибки восстановления в точке:

$$
\varepsilon_{\text{opt}}^2 = \frac{T}{2\pi} \int_{-\pi}^{\pi} \Phi_{e_{\text{opt}}} (e^{j\Omega T}) d\Omega .
$$

Выражение для среднеквадратической ошибки для любой точки ε^2 следующее:

$$
\varepsilon_{\text{opt}}^2 = \frac{1}{T} \int_0^T \varepsilon^2 d\tau .
$$

2.2. Дискретно-непрерывная модель наблюдения

Конкретизируем полученные выражения для случая непрерывно-дискретной модели наблюдения. Данная модель наблюдения подразумевает, что исходный сигнал подвергается искажениям в непрерывной области, после чего дискретизируется по времени. В итоге для наблюдения доступны только отсчеты искаженного дискретного сигнала. При этом искажающая система считается инвариантной к сдвигу линейной системой (ЛИС).

С учетом вышесказанного, наблюдаемый сигнал можно записать в следующем виде:

$$
y(n) = \int_{-\infty}^{\infty} h_n(\tau) x_n(nT - \tau) d\tau + v(n) ,
$$

где $h_n(\tau)$ – импульсная характеристика искажающей системы, $x_n(\tau)$ – исходный непрерывный сигнал, $v(n)$ – аддитивный некоррелированный с сигналом шум.

Для данной модели наблюдения в работе [6] нами уже были получены выражения для взаимной корреляционной функции исходного и наблюдаемого сигналов и автокорреляционной функции наблюдаемого сигнала:

$$
\Phi_{xy}(\Omega) = H_n(\Omega) \Phi_{x_n}(\Omega),
$$

где $H_n(\Omega)$ – частотная характеристика искажающей ЛИС-системы, $\Phi_{e_{\text{opt}}} (e^{j\Omega T})$ – энергетический спектр аддитивного шума.

С учетом выражений (17) и (18) энергетический спектр среднеквадратической ошибки оптимального восстановления будет выглядеть следующим образом:

$$
\Phi_{e_{\text{opt}}}^2 (e^{j\Omega T}) = \Phi_{x_n} (e^{j\Omega T}) \left[\sum_{k=\infty}^{\infty} \left| H_n \left(\Omega + \frac{2\pi}{T} k \right) \right|^2 \Phi_{x_n} \left(\Omega + \frac{2\pi}{T} k \right) e^{-i\left(\Omega + \frac{2\pi}{T} k \right) nT} \right]^2.
$$
3. Интерполяция стационарного непрерывного сигнала по дискретным отсчетам

Рассмотрим интерполяционный метод восстановления непрерывного сигнала по дискретным значениям. При использовании данного метода не учитывается характер искажений, которым подвергался сигнал.

Вернемся на непрерывную шкалу времени, задав искаженный сигнал в форме «решетки» дельта-функций:

\[y_n(t) = \sum_{n=-\infty}^{\infty} y(n)\delta(t-nT), \] \hspace{1cm} (14)

где \(y_n(t) \) – наблюдаемый сигнал, заданный на непрерывной шкале времени, \(\delta(t) \) – дельта-функция.

Оценим исходного сигнала \(\hat{x}_{ip}(t) \) в данном случае будет формироваться при пропускании наблюдаемого искаженного сигнала через интерполирующую ЛИС-систему без какой-либо компенсации искажений.

\[\hat{x}_{ip}(t) = \int_{-\infty}^{\infty} f(\tau)y(t-\tau)d\tau, \] \hspace{1cm} (15)

где \(f(\tau) \) – импульсная характеристика интерполирующей системы.

Спектр ошибки интерполяции \(E_{ip}(\Omega) \) в этом случае будет выглядеть следующим образом:

\[E_{ip}(\Omega) = \hat{X}_{ip}(\Omega) - X(\Omega). \] \hspace{1cm} (16)

Распишем выражение (16) более подробно:

\[E_{ip}(\Omega) = \left[\frac{1}{T}F(\Omega) - 1 \right]X(\Omega) + \frac{1}{T}F(\Omega) \sum_{k=-\infty}^{\infty} H \left(\Omega + \frac{2\pi}{T}k \right) X \left(\Omega + \frac{2\pi}{T}k \right) + F(\Omega)V(e^{i\Omega T}), \] \hspace{1cm} (17)

где \(Y(\Omega) \) – спектр наблюдаемого сигнала, заданного на непрерывной шкале времени, \(X(\Omega) \) – спектр исходного непрерывного сигнала, \(V(e^{i\Omega T}) \) – спектр аддитивного некоррелированного с сигналом шума, \(\hat{X}_{ip}(\Omega) \) – спектр интерполированного сигнала, \(F(\Omega) \) – частотная характеристика интерполирующей системы.

Перейдем от выражения (17) к энергетическим спектрам:

\[\Phi_{e_{ip}}(\Omega) = \frac{1}{T}F(\Omega) - 1 \left| \Phi_x(\Omega) \right|^2 + \frac{1}{T} \left| F(\Omega) \right|^2 \sum_{k=-\infty}^{\infty} \left| H \left(\Omega + \frac{2\pi}{T}k \right) \right|^2 \left| \Phi_x \left(\Omega + \frac{2\pi}{T}k \right) \right|^2 + F(\Omega) \left| V(e^{i\Omega T}) \right|^2 \Phi_x(e^{i\Omega T}). \] \hspace{1cm} (18)

Значение ошибки интерполяции можно получить следующим образом:

\[e_{ip}^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_{e_{ip}}(\Omega) d\Omega \] \hspace{1cm} (19)

4. Экспериментальное исследование оптимального и интерполяционного методов восстановления

Для описанных методов восстановления – оптимального и интерполяционного – было проведено экспериментальное исследование, целью которого было установить, будет ли СКО оптимального метода существенно ниже интерполяционного. В ходе исследования были получены значения СКО для обоих способов восстановления непрерывного сигнала по
дискретным отсчетам при одинаковых параметрах сигнала, искажающей системы и аддитивного шума. Результаты получены для нескольких значений дисперсии шума исходного сигнала, его коэффициента корреляции и дисперсии шума искажающей ЛИС-системы.

В качестве исходного непрерывного сигнала был взят биэкспоненциально коррелированный. Его энергетический спектр можно записать в следующем виде:

\[
\Phi_{x_n}(\Omega) = \frac{2\beta \sigma_v^2}{\beta^2 + \Omega^2},
\]

(20)

где \(\beta\) – коэффициент корреляции,

В качестве импульсной характеристики искажающей системы была взята функция Гаусса, которая традиционной моделью искажающей ЛИС-системы для реальных оптических систем. Импульсная и частотная характеристики использованной искажающей системы представлены ниже:

\[
h_n(t) = \frac{1}{\sqrt{2\pi \sigma_h}} e^{-\frac{t^2}{2\sigma_h^2}},
\]

(21)

\[
H_1(\Omega) = re^{\frac{\sigma_h^2 \Omega^2}{2}},
\]

(22)

где \(\sigma_h^2\) – дисперсия искажающей системы.

Также для экспериментального исследования использовался аддитивный белый шум:

\[
\Phi_v(e^{\Omega T}) = \sigma_v^2
\]

(23)

где \(\sigma_v^2\) – дисперсия шума.

Для экспериментальных исследований был выбран линейный метод интерполяции.

\[
F(\Omega) = T \cdot \left(\frac{\sin(\Omega T)}{\Omega T}\right)^2
\]

(24)

Результаты проведенного экспериментального исследования представлены на рисунках 1-4.

Рисунок 1. Зависимость СКО восстановления от отношения сигнал/шум при \(\sigma_h^2=0,5\) и \(\beta=0,9\).

Рисунок 2. Зависимость СКО восстановления от отношения сигнал/шум при \(\sigma_h^2=2\) и \(\beta=0,7\).

Как видно из приведенных зависимостей, при исследованных типах сигнала, искажающей системы и аддитивного шума оптимальный метод восстановления дает в 1,1 – 1,63 раз меньше СКО, чем интерполационный метод. Это позволяет заключить, что применение оптимального метода восстановления существенно эффективнее, чем использование интерполяции, и оправдывает его вычислительную сложность и необходимость оценки параметров искажений, которым подвергался сигнал.
Рисунок 3. Зависимость отношения СКО интерполяционного метода к СКО оптимального метода от дисперсии исходного сигнала при $\beta=0,8$.

Рисунок 4. Зависимость отношения СКО интерполяционного метода к СКО оптимального метода от дисперсии исходного сигнала при $\beta=0,95$.

5. Заключение
В статье произведен вывод выражений для среднеквадратической ошибки восстановления непрерывного стационарного сигнала по его дискретным значениям с использованием двух методов – интерполяционного и оптимального.

Было проведено экспериментальное исследование, при котором были получены значения среднеквадратической ошибки для обоих исследуемых методов. Для исследования был взять биэкспонентиально коррелированный сигнал, который подвергался искажению в непрерывной области. В качестве импульсной характеристики искажающей системы была взята функция Гаусса, в качестве аддитивного шума – белый. В ходе экспериментального исследования выяснено, что оптимальный метод восстановления дает в 1,1–1,63 раз меньше СКО, чем интерполяционный метод при выбранных параметрах сигнала, шума и динамических искажений.

6. Литература
[1] Soifer, V. Computer Image Processing. Part II: Methods and algorithms // VDM Verlag. – 2009. – 584 p.
[2] Vasighi, S.V. Advanced Digital Signal Processing and Noise Reduction / S.V. Vasighi // John Wiley & Sons, 2000. – 473 p.
[3] Elbi, M. Optimal Signal Reconstruction Based on the Fourier Decomposition Method / M. Elbi, A. Kizilkaya //10th International Conference on Electrical and Electronics Engineering, ELECO-2017. – 2018. – Р.453-458.
[4] Кузина, Н.А. Слепая компенсация радиальной дисторсии на одиночном изображении с использованием быстрого преобразования Хафа/ И.А. Кузина, С.А. Гладилин, Д.П. Николаев// Компьютерная оптика. – 2016. – Т. 40, № 3. – С. 395-403. DOI: 10.18287/2412-6179-2016-40-3-395-403.
[5] Сергеев, В.В. Сравнение оптимальных восстанавливающих фильтров для дискретной и непрерывно-дискретной линейных моделей наблюдения / В.В. Сергеев, А.И. Максимов // Сборник трудов ИТНТ. – Самара: Новая техника, 2018. – С. 691-699.

Благодарности
Настоящая работа была выполнена в рамках госзадания ФАНО России № 0026-2018-0106 и при поддержке грантов РФФИ № 18-01-00667, № 16-29-09494.
A comparative study of the optimal and interpolation methods for restoration a stationary continuous signal from discrete values

A.I. Maksimov¹, V.V. Sergeyev¹,²

¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086
²Image Processing Systems Institute of RAS - Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardejskaya street 151, Samara, Russia, 443001

Abstract. In this paper, the classical problem of restoring a continuous signal by its distorted discrete values is addressed. The study aims to compare two possible methods for its solution – interpolation restoration and optimal restoration. The expression for the root-mean-square error of the restoration of a stationary continuous signal from its discrete values is derived. The signal is reconstructed by means of an optimal restoration filter for the continuous-discrete observation model. The results of a comparison of the root-mean-square errors of the optimal restoration and interpolation procedures with the same parameters of the input signal, additive noise and dynamic distortion are presented.