Limit Theorems for Default Contagion and Systemic Risk

Zhongyuan Cao1
Joint work with Hamed Amini2 and Agnès Sulem3

1MathRisk, Inria Paris
2Department of Risk Management and Insurance
Georgia State University
3MathRisk, Inria Paris

Junior Seminar INRIA, Sep 2021
Motivation

- Financial institutions are becoming more and more connected to each other.
- The size and diversity of the financial system are also becoming larger and larger.
- This leads to a significant systemic risk.
- **Financial default contagion:** The bankruptcies of some institutions bring loss to its neighbors, might leading new insolvency and propagating through the network.
- Even a small part of institutions' defaults can trigger a large default cascade.
Main Issues

• In many cases, the size of financial network is large.
• Heterogeneity (diversity) is high in the financial network.
• Partial informations available:
 • We do not know the structure of linkages in the network;
 • We know partial characteristics of the institutions: the total assets and liabilities, the total number of out-links and in-links...

Our concerns: Using limit theorems to

• Analyse the network structure at the end of the contagion
• Quantify the systemic risk of the network
• Try to minimize the systemic risk
Overview

Model

Limit theorems

Quantifying Systemic Risk

Targeting Interventions in Financial Networks
• **Interbank liability:** For two financial institutions $i, j \in [n]$, $\ell_{ij} \geq 0$ denotes the cash-amount that bank i owes bank j.

• A link from i to j means that there is interbank liability from i to j, i.e. $\ell_{ij} > 0$.
The **capital structure** of institution i in the network:

- **Assets**: Interbank asset $a_i = \sum_{j \in [n]} \ell_{ji}$, external assets e_i, cash h_i.
- **Liabilities**: Interbank liability $\ell_i = \sum_{j \in [n]} \ell_{ij}$.
- **Shock scenario**: a fraction of loss ϵ_i in external assets.

Capital before shock: $c_i(\epsilon) = e_i + a_i + h_i - \ell_i$.

Capital after shock: $c_i(\epsilon) = (1 - \epsilon_i)e_i + a_i + h_i - \ell_i$.
Default cascade

Shock scenario $\epsilon = (\epsilon_1, \ldots, \epsilon_n) \in [0, 1]^n$ for size n network, the set of fundamental defaults:

$$D_0(\epsilon) = \{ i \in [n] : c_i(\epsilon_i) < 0 \}.$$

Liability recovery rates matrix $R = R_{ij}$, satisfying:

$$h_i + (1 - \epsilon_i)e_i + \sum_{j=1}^{n} R_{ji} \ell_{ji} \geq \sum_{j=1}^{n} R_{ij} \ell_{ij}.$$

Default cascade: evolution of the defaulted set at k step

$$D_k = D_k(\epsilon, R) = \{ i \in [n] : c_i(\epsilon_i) < \sum_{j \in D_{k-1}} (1 - R_{ji}) \ell_{ji} \}.$$

$D_k \nearrow$, can not be larger than $[n]$. There is a final set of defaulted institutions D^*.
It is natural to model financial network as a random graph, where all institutions are nodes and they connect to others uniformly at random through directed edges.

- In-degree sequence $d_n^+ = (d_1^+, \ldots, d_n^+)$ and out-degree sequence $d_n^- = (d_1^-, \ldots, d_n^-)$.
- $\sum_{i \in [n]} d_i^+ = \sum_{i \in [n]} d_i^-$.

In the above figure, $(d_1^+, d_1^-) = (3, 3)$, $(d_2^+, d_2^-) = (3, 2)$.
- A **configuration** is a matching of all out half-edges with all in half-edges.
- The **configuration model** is the random directed multigraph which is uniformly distributed across all possible configurations.

The above figure is a configuration between four nodes with degree
$$(d_1^+, d_1^-) = (2, 3), (d_2^+, d_2^-) = (3, 1), (d_3^+, d_3^-) = (2, 2), (d_4^+, d_4^-) = (2, 3).$$
Default threshold: For a node i, the default threshold is the maximum number of defaulted neighbours that i can tolerate before becoming defaulted, provided that its counterparties default in an order that is uniformly at random.

- Similar to Amini, Cont, Minca 2016, the information regarding assets, liabilities, capital after exogenous shocks and recovery rates (distributions) could all be encoded in a single probability threshold function.
- Each node i has a random threshold $\Theta^{(n)}(i)$ with certain distribution.
- To reduce the dimensionality, consider a classification of financial institutions into a countable (finite or infinite) set of characteristics \mathcal{X}.
- For each $x \in \mathcal{X}$, it contains all observable informations for the financial institutions:
 \[x = (d_x^+, d_x^-, e_x, h_x, \ldots). \]
- Any institutions belongs to one characteristics,
 \[x_i^{(n)} = (d_i^+, d_i^-, e_i, h_i, \ldots) \in \mathcal{X}. \]
Finding the final solvent institutions

We call a link coming from a defaulted node as infected link. Using the default threshold, the default set \mathcal{D}_k can be identified by

$$\mathcal{D}_k = \left\{ i \in [n] : \sum_{j : j \to i} 1 \{ j \in \mathcal{D}_{k-1} \} \geq \Theta_i \right\},$$

The dynamics of contagion:

- We reveal the infected links one by one.
- We can set the duration between two successive reveals as we want.
Death process of balls and bins

Regard all nodes as bins and all half-edges as balls. We have the following types:

- **Bins**: D (defaulted), S (solvent).
- **Balls**: H^+ (healthy in), H^- (healthy out), I^+ (infected in), I^- (infected out).

Balls’ death and colouring:

- Initially, all I^- balls white, all $H^+ \cup I^+$ (in) balls alive, and randomly recolor a white ball red.
- From time 0 on, in balls start to die randomly.
- If there are ℓ in balls remaining, next random death for an in ball is after a exponential time with mean $1/\ell$;
- we recolor a white ball red randomly at the same moment when an in ball dies.
Death process of balls and bins

• Denote by $W_n(t)$ the number of white balls at time t.

• The contagion stops when all infected links are revealed, denote the stopping time by τ_n^\star.

• Infected links \rightarrow White balls \rightarrow Institutions \rightarrow Bins
Reveal an infected link \rightarrow An in ball’s death + Coloring a white ball

• Let $S_{x,\theta,\ell}^{(n)}(t)$ be the number of solvent institutions (bins) with type x, threshold θ and ℓ defaulted neighbors at time t.

• Let $S_n(t)$ and $D_n(t)$ be the number of solvent (defaulted) institutions et time t respectively,

\[
S_n(t) = \sum_{x \in \mathcal{X}} \sum_{\theta=1}^{d_x^+} \sum_{\ell=0}^{\theta-1} S_{x,\theta,\ell}^{(n)}(t).
\]
LLN of the default contagion

Assumptions

- The institutions in the same characteristic class have the same threshold distribution function independently. Namely, for all \(x \in \mathcal{X} \), \(\theta = 0, 1, \ldots, d^+_x \):

\[
P(\Theta_x^{(n)} = \theta) = q_x^{(n)}(\theta).
\]

- For some probability distribution functions \(\mu \) and \(q_x \) over the set of characteristics \(\mathcal{X} \) and independent of \(n \), we have \(\mu_x^{(n)} \rightarrow \mu_x \) and \(q_x^{(n)}(\theta) \rightarrow q_x(\theta) \) as \(n \rightarrow \infty \), for all \(x \in \mathcal{X} \) and \(\theta = 0, 1, \ldots, d^+_x \).

- As \(n \rightarrow \infty \), the average degree converges:

\[
\lambda^{(n)} := \sum_{x \in \mathcal{X}} d^+_x \mu_x^{(n)} = \sum_{x \in \mathcal{X}} d^-_x \mu_x^{(n)} \rightarrow \lambda := \sum_{x \in \mathcal{X}} d^+_x \mu_x \in (0, \infty).
\]
LLN of the default contagion

Theorem 1

Let \(\tau_n \leq \tau_n^* \) be a stopping time such that \(\tau_n \xrightarrow{p} t_0 \) for some \(t_0 > 0 \). Then for all \((x, \theta, \ell)\), we have (as \(n \to \infty \))

\[
\sup_{t \leq \tau_n} \left| \frac{S_{x,\theta,\ell}^{(n)}(t)}{n} - \mu_x q_x(\theta) b \left(d_x^+, 1 - e^{-t}, \ell \right) \right| \xrightarrow{p} 0,
\]

\[
\sup_{t \leq \tau_n} \left| \frac{S_n(t)}{n} - f_S(e^{-t}) \right| \xrightarrow{p} 0,
\]

\[
\sup_{t \leq \tau_n} \left| \frac{D_n(t)}{n} - f_D(e^{-t}) \right| \xrightarrow{p} 0,
\]

\[
\sup_{t \leq \tau_n} \left| \frac{W_n(t)}{n} - f_W(e^{-t}) \right| \xrightarrow{p} 0.
\]
The limit function of $S_n(t)/n$, $D_n(t)/n$ and $W_n(t)/n$ are given by:

$$f_S(e^{-t}) := \sum_{x \in \mathcal{X}} \mu_x \sum_{\theta=1}^{d_x^+} q_x(\theta) \beta(d_x^+, e^{-t}, d_x^+ - \theta + 1), \quad f_D(e^{-t}) = 1 - f_S(e^{-t}),$$

$$f_W(e^{-t}) := \lambda e^{-t} - \sum_{x \in \mathcal{X}} \mu_x d_x^- \sum_{\theta=1}^{d_x^+} q_x(\theta) \beta(d_x^+, e^{-t}, d_x^+ - \theta + 1).$$

where

$$b(d, z, \ell) := \mathbb{P}(\text{Bin}(d, z) = \ell) = \binom{d}{\ell} z^\ell (1 - z)^{d-\ell},$$

$$\beta(d, z, \ell) := \mathbb{P}(\text{Bin}(d, z) \geq \ell) = \sum_{r=\ell}^{d} \binom{d}{r} z^r (1 - z)^{d-r},$$

and Bin(d, z) denotes the binomial distribution with parameters d and z.

In fact, we obtained LLN for all quantities regarding the network structure, even for the numbers of balls of four different types H^+, H^-, I^+, I^-.

Ínria
Define further,

\[z^* := \sup \{ z \in [0, 1] : f_W(z) = 0 \}. \]

Since the white ball process \(W_n(t) \) control the stopping time of the contagion dynamics and \(f_W(e^{-t}) \) is the limit function of \(W_n(t)/n, z^* \) should be the limit of \(e^{-\tau_n^*} \).

In fact, we show that (as \(n \to \infty \)):

(i) If \(z^* = 0 \) then \(\tau_{n}^* \xrightarrow{p} \infty \).

(ii) If \(z^* \in (0, 1] \) and \(z^* \) is a stable solution, i.e. \(f_W'(z^*) > 0 \), then \(\tau_{n}^* \xrightarrow{p} -\ln z^* \).
LLN of the final structure

Theorem 2
The final fraction of defaulted institutions satisfies:

(i) If \(z^* = 0 \) then asymptotically almost all institutions default during the cascade and
\[
D_n(\tau_n^*) = n - o_p(n).
\]

(ii) If \(z^* \in (0, 1] \) and \(f'_W(z^*) > 0 \), then
\[
\frac{D_n(\tau_n^*)}{n} \xrightarrow{p} f_D(z^*).
\]

Further,
\[
\frac{S_{x,\theta,\ell}(\tau_n^*)}{n} \xrightarrow{p} \mu_x q_x(\theta) b(d_x^+, 1 - z^*, \ell).
\]
Quantifying Systemic Risk

Use some aggregation functions to measure the systemic risk:

- **Number of solvent banks**: $\Gamma_n^\#(t) := S_n(t) = n - D_n(t)$.

- **External wealth**: Let $\bar{\Gamma}_n^\odot$ denotes the total external wealth to society if there is no default in the financial system.

\[
\Gamma_n^\odot(t) := \bar{\Gamma}_n^\odot - \sum_{x \in \mathcal{X}} \bar{L}_x^\odot D_x^{(n)}(t),
\]

where we assume a bounded constant type-dependent societal loss \bar{L}_x^\odot over each defaulted institution.
• **System-wide wealth**: Let $\bar{\Gamma}_n^\diamond$ denote the total wealth in the financial system if there is no default in the system. We define the system-wide aggregation function as

$$\Gamma_n^\diamond(t) := \bar{\Gamma}_n^\diamond - \sum_{x \in \mathcal{X}} \bar{L}_x^\diamond D_x^{(n)}(t) - \sum_{x \in \mathcal{X}} \bar{L}_x^\diamond \sum_{\theta=1}^{d_x^+} \sum_{\ell=1}^{\theta-1} \ell S_{x,\theta,\ell}^{(n)}(t),$$

where we assume a bounded fixed (host institutions’ type-dependent) cost \bar{L}_x^\diamond over each defaulted links. Assume that $\bar{\Gamma}_n^\diamond / n \to \bar{\Gamma}^\diamond$ when the size of network $n \to \infty$.

The corresponding limit function should be:

$$f^\diamond(z) := \bar{\Gamma}^\diamond - \sum_{x \in \mathcal{X}} \bar{L}_x^\diamond f_{D_x}(z) - \sum_{x \in \mathcal{X}} \bar{L}_x^\diamond \sum_{\theta=1}^{d_x^+} \sum_{\ell=1}^{\theta-1} \ell s_{x,\theta,\ell}(z),$$

where $f_{D_x}(z) := \mu_x \left(1 - \sum_{\theta=1}^{d_x^+} q_x(\theta) \beta(d_x^+, e^{-t}, d_x^+ - \theta + 1)\right)$.

Ínria
Theorem 6 (LLN for systemic risk)

Let Assumptions before hold and \(\tau_n \leq \tau^*_n \) be a stopping time such that \(\tau_n \xrightarrow{p} t_0 \) for some \(t_0 > 0 \). Then, as \(n \to \infty \),

\[
\sup_{t \leq \tau_n} \left| \frac{\Gamma_n^{\diamond}(t)}{n} - f^{\diamond}(e^{-t}) \right| \xrightarrow{p} 0.
\]

Further, the final (system-wide) aggregation functions satisfy:

(i) If \(z^* = 0 \) then asymptotically almost all institutions default during the cascade and

\[
\frac{\Gamma_n^{\diamond}(\tau^*_n)}{n} \xrightarrow{p} \bar{\Gamma}^{\diamond} - \sum_{x \in \mathcal{X}} \mu_x \bar{L}^{\diamond}_x.
\]

(ii) If \(z^* \in (0, 1] \) and \(z^* \) is a stable solution, i.e. \(f'_W(z^*) > 0 \), then

\[
\frac{\Gamma_n^{\diamond}(\tau^*_n)}{n} \xrightarrow{p} f^{\diamond}(z^*).
\]
Consider a planner (lender of last resort or government) who seeks to minimize the systemic risk at the beginning of the financial contagion, after an exogenous macroeconomic shock ϵ, subject to a budget constraint.

- The planner only has information regarding the type of each institution and, consequently, the institutions’ threshold distributions.
- The planner’ decision is only based on the type of each institution.
- Intervene an infected link means save an infected link (or remove this link from the financial network).
- These interventions will be type-dependent and at random over all defaulted links leading to the same type institutions.
- Denote by $\alpha_x^{(n)}$ the planner intervention decision on the fraction of the saved links leading to any institution of type $x \in \mathcal{X}$.
- The cost to save an infected link of type x is C_x.
Let us define

\[f_{W}^{(\alpha)}(z) := \lambda z - \sum_{x \in \mathcal{X}} \mu_{x} d_{x}^{-} \sum_{\theta = 1}^{d_{x}^{+}} q_{x}(\theta) \beta(d_{x}^{+}, \alpha_{x} + (1 - \alpha_{x})z, d_{x}^{+} - \theta + 1), \]

and,

\[z_{\alpha}^{*} := \sup\{ z \in [0, 1] : f_{W}^{(\alpha)}(z) = 0 \}. \]

• Intuitively, in the intervened network, we have a different probability that a link is infected compared with the original network. Namely, in the original network, the links that come from a defaulted institution is infected with probability 1, while in the intervened one, the probability is \((1 - \alpha_{x}^{(n)})\).

• Save an infected link means that we let an in ball which should have died remain alive.

• each in ball has a probability \(\alpha_{x}^{(n)} + (1 - \alpha_{x}^{(n)})e^{-t} \) to stay alive before time \(t \).
Let Assumptions hold and $\alpha_n \to \alpha$ as $n \to \infty$. If z^*_α is a stable solution,

(i) For all $x \in X, \theta = 1, \ldots, d^+_x$ and $\ell = 0, \ldots, \theta - 1$, the final fraction of solvent institutions with type x, threshold θ and ℓ defaulted neighbors under intervention α_n converges to

$$S^{(n)}_{x,\theta,\ell}(\alpha_n) \xrightarrow{n \to \infty} S_{x,\theta,\ell}(z^*_\alpha) := \mu_x q_x(\theta) b (d^+_x, (1 - \alpha_x)(1 - z^*_\alpha), \ell).$$

(ii) The total number of defaulted institutions under intervention α_n converges to:

$$D_n(\alpha_n) \xrightarrow{n \to \infty} f_D(\alpha)(z^*_\alpha) := 1 - \sum_{x \in X} \mu_x \sum_{\theta = 1}^{d^+_x} q_x(\theta) \beta (d^+_x, \alpha_x + (1 - \alpha_x)z^*_\alpha, d^+_x - \theta + 1).$$

(iii) The system-wide wealth under the intervention decision α_n converges to

$$\Gamma_n(\alpha_n) \xrightarrow{n \to \infty} f_\gamma(\alpha)(z^*_\alpha) := \bar{\Gamma} - \sum_{x \in X} \bar{L}_x f_D(\alpha)(z^*_\alpha) - \sum_{x \in X} \sum_{\theta = 1}^{d^+_x} \sum_{\ell = 1}^{\theta - 1} \ell s^{(\alpha)}_{x,\theta,\ell}(z^*_\alpha).$$

(iv) The total cost of interventions α_n for the planner converges to

$$\Phi_n(\alpha_n) \xrightarrow{n \to \infty} \phi(z^*_\alpha) := \sum_{x \in X} \mu_x \alpha_x C_x \sum_{\ell = 1}^{d^+_x} \ell b (d^+_x, 1 - z^*_\alpha, \ell).$$
Planner optimal decision

\[
\max_{\alpha} f^{(\alpha)}_{\hat{\phi}}(z^{\star}_{\alpha}) := \bar{\Gamma}_{\hat{\phi}} - \sum_{x \in \mathcal{X}} \bar{L}^{x}_{\hat{\phi}} f^{(\alpha)}_{D}(z^{\star}_{\alpha}) - \sum_{x \in \mathcal{X}} \bar{L}^{x}_{\hat{\phi}} \sum_{\theta=1}^{D^{+}_{x}} \sum_{\ell=1}^{\theta-1} \ell s^{(\alpha)}_{x,\theta,\ell}(z^{\star}_{\alpha}),
\]

subject to \(\phi(z^{\star}_{\alpha}) := \sum_{x \in \mathcal{X}} \mu_{x} \alpha_{x} C_{x} \sum_{\ell=1}^{D^{+}_{x}} \ell b(d^{+}_{x}, 1 - z^{\star}_{\alpha}, \ell) \leq C, \)

for some budget constraint \(C > 0. \)
Thank you