PronouncUR: An Urdu Pronunciation Lexicon Generator
Haris Bin Zia¹, Agha Ali Raza¹, Awais Athar²

¹Information Technology University, 6th Floor, Arfa Software Technology Park, Ferozepur Road, Lahore, Pakistan
²EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
{haris.zia, agha.ali.raza}@itu.edu.pk
awais@ebi.ac.uk

Abstract
State-of-the-art speech recognition systems rely heavily on three basic components: an acoustic model, a pronunciation lexicon and a language model. To build these components, a researcher needs linguistic as well as technical expertise, which is a barrier in low-resource domains. Techniques to construct these three components without having expert domain knowledge are in great demand. Urdu, despite having millions of speakers all over the world, is a low-resource language in terms of standard publically available linguistic resources. In this paper, we present a grapheme-to-phoneme conversion tool for Urdu that generates a pronunciation lexicon in a form suitable for use with speech recognition systems from a list of Urdu words. The tool predicts the pronunciation of words using a LSTM-based model trained on a handcrafted expert lexicon of around 39,000 words and shows an accuracy of 64% upon internal evaluation.

Keywords: Pronunciation Lexicon, Pronunciation Modeling, Lexicon Learning, Speech Recognition, Urdu

1. Introduction
Automatic Speech Recognition (ASR) for resource scarce languages has been an active research area in the past few years (Sherwani, 2009; Qiao, 2010; Chan, 2012). Modern speech recognition systems usually require three resources: transcribed speech for acoustic modeling, a large text data for language modeling and a pronunciation lexicon that maps words to sub-word units known as phonemes. Pronunciation lexicon acts as a link connecting language model with the acoustic model.

While it is comparatively easy to gather transcribed speech waveforms and large text datasets, developing a pronunciation dictionary is quite expensive and requires tremendous amount of manual effort and linguistic expertise. Therefore, development of a pronunciation lexicon is the bottleneck when building ASR systems for low-resource languages. Techniques to reduce the need of expert knowledge in design and development of pronunciation lexicons are in great demand.

We are interested in developing a pronunciation lexicon generation tool for Urdu which is an Indo-Aryan language spoken widely with over 100 million speakers¹. Urdu is official language of Pakistan. Its writing system is Segmental and more specifically Abjad i.e. only consonants are marked while vowels (diacritics) are optional. Urdu follows Arabic script written from right to left. A sentence written in Urdu along with its English translation is given below:

اردو پاکستان کی قومی زبان ہے۔
Urdu is the national language of Pakistan.

Automatic Speech Recognition (ASR) research for Urdu exhibits number of challenges which are discussed in detail in subsequent sections. Despite being spoken by millions of speakers all over the world, Urdu is low-resource in terms of standard publically available linguistic resources.

To our best knowledge, our Urdu pronunciation lexicon generation tool is the first tool of its kind that makes it easier for researchers to work on Urdu speech recognition systems without prior linguistic knowledge.

The remainder of the paper is structured as follows. Section 2 reviews similar kind of work for different world languages. We then present Urdu orthography and Urdu phonetic inventory in Section 3. Section 4 briefly discusses challenges in Urdu pronunciation modeling. We present our tool in Section 5 and conclude in Section 6.

2. Literature Review
There exists a range of research focusing on lexical resources or tools available for different world languages for pronunciation modeling in speech recognition tasks.

- CMUdict³ (Carnegie Mellon pronunciation dictionary) is an open-source pronunciation dictionary for North American English that contains over 134,000 words and their pronunciations (Weide, 1998). There is also a lexicon generation tool³ available that uses CMUdict.
- Tan et al. (2009) proposed a rule based grapheme-to-phoneme tool generating a pronunciation dictionary for Malay language. Their trained ASR on read speech corpus, using tool generated pronunciation dictionary achieved a word error rate (WER) of 16.5%.
- A Bengali pronunciation dictionary⁴ was developed under Google Internationalization Project⁵ (Gutkin et al., 2016). The dictionary contains around 65,000 words that were manually transcribed into their phonemic representation by a team of five linguists.

¹ https://www.ethnologue.com/language/urd
² https://github.com/cmushpinx/cmudict
³ http://www.speech.cs.cmu.edu/tools/lextool.html
⁴ https://github.com/googlei18n/language-resources/blob/master/bn/data/lexicon.tsv
⁵ https://developers.google.com/international/
Pronunciation lexicons were developed for Amharic, Swahili and Wolof languages under LFFA Project\(^6\) and were made available publically\(^7\) (Gauthier et al., 2016).

Mandarin Chinese Phonetic Segmentation and Tone is a publically\(^8\) available corpus of 7,849 Mandarin Chinese utterance and their phonetic segmentation. The corpus can be used for pronunciation modeling of Mandarin Chinese.

Arabic Speech Recognition Pronunciation Dictionary is a publically\(^9\) available pronunciation dictionary for Modern Standard Arabic (MSA) that contains 526,000 words and two million pronunciations.

Masmoudi et al. (2014) presented Tunisian Arabic Phonetic Dictionary based on a set of phonetic rules and manually tagged lexicon of exceptions (for words that do not follow phonetic rules).

Egyptian Colloquial Arabic Lexicon is a publically\(^10\) available pronunciation dictionary of Egyptian Colloquial Arabic (ECA), it contains 51,202 words and their pronunciation.

The Georgetown dictionary of Iraqi-Arabic is a modern, up-to-date, publically\(^11\) available dialectal Arabic language resource that can be used for pronunciation modeling of Iraqi-Arabic. It contains 17,500 Iraqi-Arabic entries along with their IPA pronunciations.

Bonaventura et al. (1998) presented a letter-to-phone conversion system for Spanish that can be used to supply phonetic transcriptions to speech recognizer.

Mendonça et al. (2014) proposed a hybrid approach based on manual transcription rules and machine learning algorithms to build a machine readable pronunciation dictionary for Brazilian Portuguese. The dictionary as well as algorithms used to build pronunciation dictionary were made publically\(^12\) available.

Pronunciation dictionaries developed under GlobalPhone Project (Schultz, 2014) are also available for research and commercial purposes in 20 different languages - German, French, Russian, Korean, Turkish, Chinese and Thai to name a few.

3. Urdu Language

3.1 Orthography

Urdu is written in Arabic script in a cursive format (Nastaliq style) from right to left using an extended Arabic character set. The character set includes 37 basic and 6 secondary letters, 7 diacritics, punctuation marks and special symbols (Hussain & Afzal, 2001; Afzal & Hussain, 2001; Hussain, 2004) (see Appendix A).

3.2 Phonetics

Urdu has a very rich phonetic inventory\(^13\), combination of Urdu letters and diacritics realizes 44 consonants (28 non-aspirated & 16 aspirated), 7 long vowels, 7 nasalized long vowels, 3 half long vowels, 3 short vowels and 3 nasalized short vowels (Saleem et al., 2002; Hussain, 2007; Hussain, 2004). Since speech recognition systems require the representation of sounds using some phonemic notation such as IPA\(^14\) or SAMPA\(^15\) etc., we have used CISAMPA (Case Insensitive Speech Assessment Methods Phonetic Alphabet) proposed by Raza et al. (2010) to represent Urdu phonemes (see Appendix B).

4. Challenges in Urdu Pronunciation Modeling

Pronunciation modeling for Urdu exhibits a number of challenges:

Dialects: Due to large user base and variety of speakers, there are variations in dialect leading to large variations in pronunciation and phonetics.

Script: In Urdu, diacritics serve to inform reader of the short vowels accompanying each written consonant, but commonly used Urdu script generally does not contain diacritics. Speakers can distinguish the words through context and experience but some constructions may still be ambiguous, for instance, the word س َ can mean either ‘this’ (اِس) or ‘that’ (آس), their respective IPA representation being /s/ or /s/ respectively.

Morphology: Urdu is a morphologically rich language, combinations of affixes and stems results into large vocabulary of words.

Dual Behavior: Three Urdu characters show dual behavior i.e. both consonantal and vocalic, based on their position of occurrence (Hussain, 2004).

5. PronouncUR

We have developed PronouncUR, an Urdu grapheme-to-phoneme tool based on a model (c.f. Section 5.2) that can generate a pronunciation lexicon in a form suitable for use with speech recognition systems from a list of Urdu words. PronouncUR is freely available online\(^16\).

5.1 Lexicon

To train our model we have developed a lexicon of approximately 46K words. Lexicon has been tagged by trained transcription experts, carefully considering the letter-to-sound rules for Urdu proposed by Hussain (2004).

\(^6\) http://alffa.imag.fr/

\(^7\) https://github.com/besaciert/ALFFA_PUBLIC

\(^8\) https://catalog.ldc.upenn.edu/LDC2015S05

\(^9\) https://catalog.ldc.upenn.edu/LDC2017L01

\(^10\) https://catalog.ldc.upenn.edu/LDC99L22

\(^11\) http://press.georgetown.edu/book/languages/georgetown-dictionary-iraqi-arabic

\(^12\) https://github.com/gustavoauama/aeiouado_g2p

\(^13\) http://www.cle.org.pk/Downloads/ling_resources/phoneticinventory/UrduPhoneticInventory.pdf

\(^14\) https://www.internationalphoneticassociation.org/

\(^15\) http://www.phon.ucl.ac.uk/home/sampa/

\(^16\) http://lextool.csalt.itu.edu.pk
The format of the training lexicon is very straightforward. Each line consists of one word form and its pronunciation. Word forms and their pronunciations are separated by tab. A small portion of the training lexicon is given in Table 1.

#	Phoneme	Frequency	#	Phoneme	Frequency
1	A	30947	29	D_A	4323
2	A_A	27170	30	D_D	4323
3	R	18386	31	D_D	4092
4	N	15139	32	D_D	10522
5	I	13920	33	D_D	13920
6	I	13683	34	D_D	13920
7	L	10909	35	D_D	10909
8	M	10538	36	D_D	10538
9	S	10522	37	D_D	10538
10	T_D	10075	38	D_D	10075
11	K	8470	39	D_D	10075
12	A_Y	7562	40	D_D	8470
13	B	7147	41	D_D	7562
14	U	6540	42	D_D	7147
15	T	6024	43	D_D	6540
16	D_D	5913	44	D_D	6024
17	Z	4940	45	D_D	5913
18	H	4771	46	D_D	4940
19	O_O	4766	47	D_D	4771
20	P	4742	48	D_D	4766
21	V	4144	49	D_D	4742
22	O_O_N	4128	50	D_D	4144
23	J	3963	51	D_D	4128
24	U_U	3581	52	D_D	3963
25	A_E	3440	53	D_D	3581
26	S_H	3423	54	D_D	3440
27	D_Z	3331	55	D_D	3423
28	G	3275	56	D_D	3331
29	F	3233	57	D_D	3275
30	D	2762	58	D_D	3233
31	T_S	2491	59	D_D	2762

Table 2: Frequency Distribution of Phonemes in Training Lexicon

5.2 G2P Model

The grapheme-to-phoneme (G2P) is the task of translating input sequence of graphemes (letters) to output sequence of phonemes.

Graphemes	ب	ا	ن
Phonemes	<s>	ب	ا

Table 3: An example of grapheme-to-phoneme translation

Figure 1 shows a sample of the model where the encoder LSTM is on the left of dotted line while decoder on the right. The encoder reads a time-reversed sequence “<s> ن ﷲ ب” and produces the last hidden layer activation to initialize the decoder. The decoder reads “<eos> B A N” as the past phoneme prediction sequence and uses “B A N” as the output sequence to generate. <s> denotes input sequence beginning while <eos> and <eos> denotes output sequence beginning and ending respectively.

5.3 Performance Evaluation

We split our handcrafted lexicon in 85% training set, 5% validation and 10% test set. Intrinsic evaluation on unseen test set our G2P model achieved word error rate (WER) of 36%. The same G2P model trained on CMUdict has WER of 28.61% (Yao et al., 2015). The low word error rate of CMUdict can be attributed to its large size. Another reason for our comparatively higher WER may be that only about 11% of the words in our corpus have diacritics. As a result, a good performance would require overcoming the problem of automatic diacritization which gets harder while processing a list of isolated words without any context.

6. Conclusion and Future Work

We presented an online pronunciation lexicon generation tool for Urdu that can be used to generate pronunciation lexicon to be used with speech recognition systems. Experimental results showed that pronunciation lexicon generated through lexicon tool behaves as good as handcrafted expert lexicon in speech recognition tasks.

As a future direction, we will look into the ways to decrease the WER of lexicon tool e.g. increase diacritic coverage in training lexicon, increase size of training.

13 https://github.com/cmusphinx/g2p-seq2seq
lexicon, add support for nasalized short vowels and increase the coverage of rarely occurring phonemes.

7. Acknowledgements

We would like to thank Atique-ur-Rehman for providing us with cloud hosting and Murtaza Azam Khan for his help with frontend.

8. Bibliographical References

Afzal, M., & Hussain, S. (2001). Urdu computing standards: development of Urdu Zabta Takhti (UZT) 1.01. In Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings. IEEE International (pp. 216–222). IEEE.

Bonaventura, P., Giuliani, F., Garrido, J. M., & Ortin, I. (1998, August). Grapheme-to-phoneme transcription rules for Spanish, with application to automatic speech recognition and synthesis. In Proceedings of the Workshop on Partially Automated Techniques for Transcribing Naturally Occurring Continuous Speech (pp. 33–39). Association for Computational Linguistics.

Chan, H. Y., & Rosenfeld, R. (2012, March). Discriminative pronunciation learning for speech recognition for resource scarce languages. In Proceedings of the 2nd ACM Symposium on Computing for Development (p. 12). ACM.

Gutkin, A., Ha, L., Jansche, M., Pipatsrisawat, K., & Sproat, R. (2016, May). TTS for Low Resource Languages: A Bangla Synthesizer. In LREC.

Gauthier, E., Besacier, L., Voisin, S., Melese, M., & Elingui, U. P. (2016, May). Collecting resources in sub-saharan african languages for automatic speech recognition: a case study of wolof. In 10th Language Resources and Evaluation Conference (LREC 2016).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.

Hussain, S., & Afzal, M. (2001). Urdu computing standards: Urdu zabta takhti (uzt) 1.01. In Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings. IEEE International (pp. 223–228). IEEE.

Hussain, S. (2004, August). Letter-to-sound conversion for Urdu text-to-speech system. In Proceedings of the workshop on computational approaches to Arabic script-based languages (pp. 74–79). Association for Computational Linguistics.

Hussain, S. (2007). Phonetic correlates of lexical stress in Urdu (Doctoral dissertation, UMI Ann Arbor).

Masmoudi, A., Khmekhem, M. E., Esteve, Y., Belguith, L. H., & Habash, N. (2014, May). A Corpus and Phonetic Dictionary for Tunisian Arabic Speech Recognition. In LREC (pp. 306-310).

Mendonça, G., & Aluisio, S. (2014). Using a hybrid approach to build a pronunciation dictionary for Brazilian Portuguese. In Fifteenth Annual Conference of the International Speech Communication Association.

Qiao, F., Sherwani, J., & Rosenfeld, R. (2010, December). Small-vocabulary speech recognition for resource-scarce languages. In Proceedings of the First ACM Symposium on Computing for Development (p. 3). ACM.

Raza, A. A., Hussain, S., Sarfraz, H., Ullah, I., & Sarfraz, Z. (2009, August). Design and development of phonetically rich Urdu speech corpus. In Speech Database and Assessments, 2009 Oriental COCOSDA International Conference on (pp. 38-43). IEEE.

Raza, A. A., Hussain, S., Sarfraz, H., Ullah, I., & Sarfraz, Z. (2010). An ASR system for spontaneous Urdu speech. The Proc. of Oriental COCOSDA, 24–25.

Saleem, A. M., Kabir, H. A. S. A. N., Riaz, M. K., Rafique, M. M., Khalid, N. A. U. M. A. N., & Shahid, S. R. (2002). Urdu consonantal and vocalic sounds. CRULP Annual Student Report.

Sherwani, J. (2009). Speech interfaces for information access by low literate users (Doctoral dissertation, Carnegie Mellon University).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).

Schultz, T., & Schlippe, T. (2014, May). GlobalPhone: Pronunciation Dictionaries in 20 Languages. In LREC (pp. 337-341).

Tan, T. P., & Ranaivo-Malançon, B. (2009). Malay grapheme to phoneme tool for automatic speech recognition. In Proc. Workshop of Malaysia and Indonesia Language Engineering (MALINDO) 2009.

Weide, R. L. (1998). The CMU pronouncing dictionary. URL: http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

Yao, K., & Zweig, G. (2015). Sequence-to-sequence neural net models for grapheme-to-phoneme conversion. arXiv preprint arXiv:1506.00196.

9. Language Resource References

Ali, Ahmed. Arabic Speech Recognition Pronunciation Dictionary LDC2017L01. Web Download. Philadelphia: Linguistic Data Consortium, 2017.

Kilany, Hanaa, et al. Egyptian Colloquial Arabic Lexicon LDC99L2. Web Download. Philadelphia: Linguistic Data Consortium, 1997.

Yuan, Jiabong, Neville Ryan, and Mark Liberman. Mandarin Chinese Phonetic Segmentation and Tone LDC2015S05. Web Download. Philadelphia: Linguistic Data Consortium, 2015.

Appendix A

ح	ج	ب	پ
ح	د	ذ	ز
ر	ص	ض	ط
ئ	ئ	ن	ن

Table A1: Basic Urdu Letters

ا	ئ	ت	ث
ئ	ئ	ر	ئ
ئ	ئ	ن	ن

Table A2: Secondary Urdu Letters

| ئ | ئ | ئ | ئ |

Table A3: Urdu Diacritics
Appendix B

Sr. No.	Urdu Letter	IPA	CISAMPA
1	پ	p	P
2	پھ	pʰ	P_H
3	ب	b	B
4	بھ	bʰ	B_H
5	م	m	M
6	مھ	mʰ	M_H
7	ت،ط	t̪	T_D
8	تھ	t̪ʰ	T_D_H
9	د	d̪	D_D
10	دھ	d̪ʰ	D_D_H
11	ت	t	T
12	تھ	tʰ	T_H
13	د	d	D
14	دھ	dʰ	D_H
15	ن	n	N
16	نھ	nʰ	N_H
17	ک	k	K
18	کھ	kʰ	K_H
19	گ	g	G
20	گھ	gʰ	G_H
21	نک،نکھ،نگ،نگھ	ŋ	N_G
22	ق	q	Q
23	ع	ʔ	Y
24	ف	f	F
25	و	v	V
26	س	s	S
27	لازم،لازم	z	Z
28	ش	ʃ	S_H
29	ز	ʒ	Z_Z
30	خ	x	X
31	غ	ɣ	G_G
32	جھ	dʒ	D_Z
33	ل	l	L
34	لھ	lʰ	L_H
35	ر	r	R
36	رھ	rʰ	R_H
37	ز	ʒ	Z_R
38	زھ	ʒʰ	Z_R_H
39	ی	j	J
40	یھ	jʰ	J_H
41	چ	tʃ	T_S
42	چھ	tʃʰ	T_S_H
43	گ	dʒ	D_Z
44	گھ	dʒʰ	D_Z_H

Vowels				
45	ں	u:	U_U	
46	ں	o:	O_O	
47	اں	ə:	O	
48	ا	a:	A_A	
49	ی	i:	I_I	
50	ے	e:	A_Y	
51	ںے	æ:	A_E	
52	ں ۓ	ū:	U_U_N	
53	ںو	ū:	O_O_N	
54	ں ۓ	ə:	O_N	
55	آئی	ə:	A_A_N	
56	ں	i:	I_I_N	
57	ے	e:	A_Y_N	
58	ں	æ:	A_E_N	

Table B1: Urdu Letters with IPA and CISAMPA