Management of Excreta and Parasitic Infestation of Ground and Children from 2 to 10 years in Ngiri-Ngiri Health Area

Masamba, L.N.1, Kiyombo, M.K.2, Mutonkole, S.P.3 and Konde, N.N.2
1 Communitary Ealth Section, Institut Supérieur des Techniques Médicales (ISTM/Kinshasa), Box 774 Kinshasa XI
2 Ecole de Santé Publique, Département d'Hygiène et Salubrité de l'Environnement, Faculty of Médecine, University of Kinshasa.
3 Department of Environmental Sciences, Faculty of Sciences, University of Kinshasa, Box 190 Kinshasa XI

*Corresponding author: Mutonkole, S.P., E-mail: patrick.mutanokole@gmail.com
Received: March 29, 2016, Accepted: June 25, 2016, Published: June 25, 2016.

ABSTRACT:
Population growth and increasing request of the consumer goods in urban centers represent certainly one of the causes at the base of the increase in the amount of waste. This is even more noticeable in Kinshasa, with its densely populated conurbations. This study aims to enhance the link (associations) between household excreta management mode and soil and children from 2 to 10 years infestation. An analytical cross-sectional survey of 360 households was conducted in Kinshasa in order to determine helminth infections prevalence among targeted children and land plots. Willis floatation method and Ritchie enrichment were respectively used for soil and stool analysis. Chi-square test was used to detect a relationship or association with 0.05 significance level. Among surveyed households, 55.8% use latrines with effluents, including 34.5% evacuate their effluents either by cesspools or by using one or more hole (s) open (s) in plot and 29.9% by ditches. In addition, parasitic infestation prevalence of children from 2 to 10 years and land plots of Ngiri-Ngiri health zone is 61.2% and 44.8%, respectively. This land use is associated with poor management of household excreta, and is an important risk factor for infestation.

Keyword: excreta, parasitic infestation, Children from 2 to 10 years, soil, Ngiri-Ngiri

INTRODUCTION
The demographic explosion recorded over the last decades in Kinshasa resulted in a growing demand for consumer goods, which has led to increased production of solid, liquid and gaseous wastes. The permanent presence of these unrecognized resources in the urban environment constitutes a threat, causing several diseases [1]. Thus, resulting in the decrease in life expectancy of human population. Interest in waste management is evident and is observing in several researches, but also by the proliferation of international meetings of reflection revolving mainly around the environment and safety. Stockholm 1972, Kyoto 1977, Nairobi 1991, Rio de Janeiro 1992 and Johannesburg 2002 summits can be considered as those used engine about the awakening global consciousness on environmental issues [2].

Through various efforts around the world, it appears that the sanitation level is especially improving in developed countries. The case of some European countries that minimize spread risk of diseases that typically generate the excreta through the drain, transportation and disposal of sludge can be evoked [3]. France, one of the important countries of Europe, has 180,000 kilometers of pipeline as wastewater collection network. This device can now be connected to 79.4% of the French population drain. In parallel, a part of there or 19.3%, however, has an independent drainage system and the rest 2.2% is neither connected nor equipped standalone installer [4]. By cons in developing countries, with a population of about 2.9 billion listed, only 20% are served by collection network and have septic tanks while 80% of people remain unserved. This induces the prevalence of infectious diseases such as diarrheal and parasitic diseases, especially in young children [5, 6].

One of the major concerns of African countries and more broadly the international community remains the problem of waste management. The solid and liquid wastes of various origins thrown haphazardly into the environment, cause enormous problems of hygiene and sanitation for people [5]. Moreover in the absence of adequate latrines and adequate waste management system in poor cities and high population density, it is observed the phenomenon of uncontrolled defecation which multiply the gene sources and other infectious diseases [7]. Mutonkole et al. [8] evoke, for example, use of urban streams by Kinshasa population as receptacles of various waste types, including excreta. Because of such phenomenon, Perrine [9] observed a high prevalence of faecal-oral transmission diseases in Haiti and Mauritania.

However, Van Depite [10] and WHO [11] consider the *Ascaris lumbricoides* as, by far, the intestinal nematode parasitizing the most people (1 billion), of which 20,000 die each year, mostly in developing countries. Address environmental hazards and risks, it proves that children present more vulnerability than adults, not only because their bodies are not fully developed, but also because they are in a dynamic process of growth and development. Their vulnerability exposes them to ingest the eggs of such parasites when in contact with contaminated land or food by human excreta [12]. In Malaysia, for example, Al-Mekhlafi [13] observed over 61.9 % of children infected with *Ascaris* eggs and 98.2% by whipworms from households to contaminated soil.

For the Democratic Republic of Congo (DRC), the situation is not encouraging with only 46 % of population using hygienic toilets of whom 61% are in Kinshasa [14]. The Arab pit is the most common type of latrine in the country with a low level of
maintenance, which would increase the risk of spillover and scattering feces during intense rainfall [15]. Thus, the degraded state of global environment such as the Ngiri-Ngiri health area challenges our questioning in this: The socio-economic and demographic household level of Ngiri-Ngiri health zone allows it to face the challenge of managing excreta? The infestation of ground and children by *Ascaris* eggs, is it associated with excreta management mode in households? Does the ground infestation contribute to the high rate of parasitoses infestation to children from 2 to 10 years? These questions summarize the purpose of this study that consists to highlight the relationship between the excreta management mode at the household level and infestation of soil and children from 2 to 10 years in Ngiri-Ngiri health area.

MATERIAL AND METHODS

Study area

Ngiri-Ngiri township current emanation, this health zone is one of the 35 health zones included in Kinshasa. It has an area of 3.5 km² and a population density of 37,571 inhabitants per km² [16]. It is built on a periodically flood plain according to the average annual rainfall.

A study, both analytic cross sectional and simultaneous of household characteristics on the excreta management mode and soil and children from 2 to 10 years infestation was conducted between June and July 2008 in Ngiri-Ngiri health area.

Sampling unit and Statistical Analysis

Was considered in the study any household with at least one child from 2 to 10 years, which was selected by simple random sampling, also representative [17], for harvesting and stool examination. A composite soil sample [18] was also conducted for parasites detection in the laboratory according to Willis flotation method by enrichment, whereas the analysis of stool samples by the direct method and that of Ritchie, based on stool concentration [19]. In addition, 5 blocks per health area and 9 households per street were selected by using a sampling with probability proportional to the size. Data obtained by direct interview or structured interview were subdivided into slices ages of 2 to 4 years (unschoolchildren) and 5 to 10 years (schoolchildren). Only household head or his spouse, sometimes the child's guardian was asked for the interview.

In this study, apart from general informations about the household, the following variables were collected: selected child(s) age, schooling of children 2-10 years, parental education level, parental income, possession of latrines, type of latrine, drain mode of excreta and sewage, different types of parasites. Samples were kept according to [13].

Data obtained previously underwent pretreatment of elaborating an input mask on the data Epi 3.0. software followed by descriptive statistics on certain quantitative variables like size of households, number of people per plot, number of households per plot.

For risk factors identification for soil plots infestation and children 2 to 10 years in households, Independence Chi-square Test (5% threshold) was performed. About risk factors expressed in the form of dichotomic qualitative variables, the measurement their association force with the ground parasitic and children from 2 to 10 years infestation was made by the calculation of the odds ratio to the threshold of 5%.

RESULTS

Distribution of surveyed households by health area has hovered around 10% (data not shown) for each area. An average of 4 ± 2.5 households per housing unit was raised and, in the extreme case, a parcel could reach up to 18 ± 2.5 households. Moreover, the average number of people and children from 2 to 10 years saved per household were 7.65 ± 4.2 and 2.23 ± 1.5, respectively (see Table 1).

Characteristics	Mean	Median	Mode	St-deviation	Min	Max	Total
Number of household/plot	4.08	4.00	4	2,506	1	18	366
Number of person/plot	21.55	19.00	20	12,025	1	72	366
Number of person/household	7.65	7.00	6	4,219	2	40	363
Number of children from 2 to 10/household	2.23	2.00	1	1,599	0	20	363

In addition, most householders were male of whom a householder on two (49.5%) was not owner, and 69.7% are married or common-law. Thirty-five percent of Ngiri-Ngiri health zone householders have completed high school, 22.4% had an honours diploma, while their spouses (34.9%) have not completed their high school education. It shown from this study that 29.5% of householders had civil servant status in public administration and exercised another activity to buckle the month. Their wives, however, had no occupation (47.8%) or exercised petty trade (30.6%). The small trade (35.8%) is by far the principal source of household incomes followed by the contribution (28.1%) drawn from the wages of household head. Overall, 241 of 366 households, meaning 66%, are located in unpaved ground plots.

The age distribution showed a higher proportion of girls (51.4%) compared to boys (48.6%), with approximately 52.7% of children with age ranging from 5 to 10 years, and the remnant under 5 years old. The children rate attending school is higher (79.3%) among children aged 5 to 10 than among 2 to 5 years (51.1%).

Monitoring load is exerted firstly by moms (25.4%) follow-up by dads (11.5%) who, to 95.1%, wash their children hands as prerequisite before taking any meal. The majority of households (96.4%) have latrines which 72.8% are equipped with septic tanks, 14.7% are Arab pit type, but without cover. Hygiene of latrines is very significant, more than 61% of feces uncovered, 33.9% have soaked paper feces and 55.8% have latrines overflowing with effluent. As children shedding mode, potties are used by 98.3% of those under 5 years, while for the age groups of 5 to 10 years, 54.4% use potties and other access to the bathroom (see Table 2).

Effluent management methods are dominated by the evacuation in an absorbing well and in an open hole in the plot, at rates of 34.5% for both. For households reported owning septic tanks, it turns out that the dump is made directly to the gutter when it rains (45.5%) or in a hole in the plot (31.5%). Moreover, children...
excreta are removed from the potty in the toilet. Nevertheless, soil plots are infected with parasites at a rate of 45% while the intestinal parasitic infection was most common (61.2%) to the children. Identification of parasites in soil samples of the plots revealed a dominance of Ascaris eggs followed by that whipworm with 51.2% and 32.9%, respectively (Table 3). In addition, other parasites were also observed. This is the case, for example, of Trichomonas sp. (10%) and some yeasts and nematode (5%). The analysis of the children's feces revealed the presence of Ascaris eggs, whipworm, yeast or Trichomonas int. at 60.7, 16.5 and 11.2% rates, respectively.

Table 2: Children excretion places by age groups

Places of excretion	Children 5 years less	Children from 5-10	Total			
	Frequency	%	Frequency	%	Frequency	%
Toilets	3	1.7	105	54.4	108	29.5
Potty	170	98.3	88	45.6	258	70.5
Total	173	100	193	100	366	100

Table 3: Parasites found in soil and feces of children 2 to 10 years

Parasites found	Frequencies	%	Soil	Feces	Soil	Feces
Ascaris eggs	84	0.36	136	0.5	51.2	0.7
Trichocéphale eggs	54	0.27	37	0.1	32.9	0.5
Anguillules Grubs	5	0.0	-	0.0	3.0	-
Trichomonas sp.	10	0.1	-	0.0	6.1	-
Ascaris and Trichocéphale eggs	11	0.0	24	0.0	6.7	0.1
Entamoeba histolytica Cysts	-	0.0	2	0.0	-	0.0
Other (yeast or trichomonas int.)	-	0.0	25	0.0	-	0.1
Total	164	0.7	224	0.1	100.0	0.0

(-) symbols mean lack of data

Infestation rates were generally high in all 8 studied health areas. The surface of Libération health area is that which has the greatest proportion of infested children (74%; \(\chi^2 = 8.733; P=0.272\)). However, the age bracket from 5 to 10 years is obviously the group more infested with 61.7% of parasitized children (\(\chi^2=0.36; P=0.850; OR=0.960\) to 95% CI 0.630-1.463). Schoolchildren showed highest rates of infestation (62.6%) (\(\chi^2=0.599; OR=1.119\) to 95% CI 0.735-1.705). In addition, a strong prevalence is observed with children (133) lived in household where latrines evacuation was carried out either towards an absorbing well (70.6%) or in a drain (67.8%), or in a hole open in the piece (66.2%) (\(\chi^2=4.507; P=0.01\)). Nevertheless, it exists a relationship between effluent evacuation location and soil infestation (\(\chi^2=10.458; P=0.01\)). Most of households which empty their septic pits in a drain after or during a rain or in a hole dug in the piece have presented children infestation rates ranging between 59.0 and 63.0% (\(\chi^2=1.241; P=0.743\) (table 4).

In addition, the ground and children infestation is independent of their defecation place (OR=1.276 to 95% CI 0.813-2.003; \(\chi^2=1.127; P=0.288\)). On the other hand, there is a strong relationship between children infestation and that of the ground (\(P=0.000\)). It however comes out from this study that ground infestation is 4.653 times higher than that of the children (OR=4.655 to 95% CI 2.904-7.455; \(\chi^2=43.648; P=0.000\)) (see table 5).

Table 4: Evacuation location of latrine effluent and soil and children infestation

Evacuation location of effluent	Soil infestation	Children infestation	Total
Lost wells in the plot	34 (50%)	48 (70.6%)	68 (100%)
Channel/gutter	37 (62.7%)	40 (67.8%)	59 (100%)
Running water	0 (0%)	0 (0%)	2 (100%)
Open hole in the plot	25 (36.8%)	45 (66.2%)	68 (100%)
Total	96 (48.2%)	133 (67.5%)	64 (32.5%)

Table 5: soil and child selected Infestation

Soil infestation	Child infestation	Total
Yes	131 (79.9%)	164 (100%)
No	93 (46.0%)	202 (100%)
Total	224 (61.2%)	366 (100%)

Table 6: Analysis of the children's feces and local and children infestation
DISCUSSION

According to WHO [20], public health deterioration is started when previous requirements of domestic waste are not satisfied. The situation is more worsened when population educational level is low, returning the latter incompetent to impact positively the country development, even on the behavior as regards of the health [21].

The mean size of observed households in this study is in agreement with what found [22] on the Kinshasa sanitation situation. By cons, the actual average (7.65) is largely higher than the national average (5.4), according to [21]. On the other hand, the number of children by household was larger (2.23) than that (1.3) found by Kiyombo et al. [21]. This testifies the elevated rate in light increase in this town zone, just like of the town suit. However, the values found in this study fit in the range of the national average values recorded in [14].

The dominating influence of parental guarding on the children health was each time positive, but declined when guarding was entrusted to a third person. Thus, WHO [23] regards health or children care as a paramount concern of the responsible parents. Out an adequate assumption of family health responsibility, and that of the children is conditioned by a minimum income, likely to satisfy the primary education needs. In Ngiri-Ngiri health area, households’ income comes in majority from the small trade and also from the wages of the householder which proves to be insufficient to buckle the month. According to BEAU [24] report, the public office is the principal employer in Kinshasa. However, Kiyombo et al. [22] located the households’ income between 1000 and 5000 FC, that is to say 1 to 5 $ US, which corresponds almost to the data of this study. However, it is advisable to mention the fragile character of these households because of the low income, which strongly contributes to categorize them in 3 groups, compared to the occupation status in the piece, with the tenants occupying the first rank. Butshima [15] investigation revealed in addition that Kinshasa was placed at the tail of the Congolese cities classification of which proportion householder was weakest. Kiyombo et al. [22] also observed similar results in their study on the Kinshasa medical situation.

With a quite appreciable proportion of the households having latrines with septic tank, however the occupants’ medical situation is hardly satisfactory because of the quite high number of households using rudimentary toilets. This spreading to use rudimentary toilets, with the number of which there is the Arab pit without lid, constitutes a royal way of ground and underground sheet contamination, that is to say a process which is non hygienic and hardly makes it possible sufficiently to separate the excreta from the ambient conditions [25]. The results of this study however differed from those evoked in the above-mentioned report.

The distance between housing with latrines (±15 m) could constitute a factor supporting the ground and children infestation especially when it is considered that distance between housing and latrines, coupled with characteristic low income of households in Ngiri-Ngiri health zone, could represent a limit with the alteration work of the adequate hygienic installations [26]. In addition, the latrines' draining mode would influence significantly germs proliferation because only a-fifth of households resort to the services of trucks draining and the remainders pour the excreta in the gutter or a hole dug in the piece. Consequently, low level and/or lack of precaution in the excreta evacuation and other effluents of latrines would contribute to degrade public health, according to WHO [27] report. However, it should be announced that the results of this study are superior with those found in Kinshasa sanitation investigation [22].

Lumbricoides and *Trichocephales* eggs in majority were observed on ground samples because of mainly excreta bad management. This excreta bad management would explain fast and wide parasites dissemination on the whole household soil [28]. Results much more alarming were found in a similar study in Madagascar where the prevalence of ground infestation reached 93% for *Ascaris lumbricoides* and 55% for *Trichirus trichura* [29]. In addition, Al-Mekhlafi and Smith et al. [13, 30] found, for their part, that the transmission of helminths eggs by the ground constituted a problem of public health in Malaysia in the children from 2 to 15 years of age, and in Mindanao, Philippines, in students of secondary school [31]. Almost the same age bracket (2 to 12 years) underwent the most intense infection by *Ascaris* in Honduras at the time of a study on the prevalence and the infection intensity of *Ascaris lumbricoides* on 240 samples of feces, brought back Smith et al. [30].

In a total way, *Ascaris* prevalence increases in the world, mainly in the tropical and subtropical area (Southern-east Asia, Western and Central Africa, as in China) where it could exceed 39 % in certain cases [32]. The estimate reveals that more than one billion and half of people are infested and that approximately 2 million are in risk to be infested. In addition, Crompton [33] and Amato et al. [34] consider that the tendency to the increase in these areas is supported by heat and the high percentages of atmospheric humidity, favorable to the propagation and the development of *Ascaris* and other parasites. However, Lanoix et Roy [35] shows that the delay with the installation of measurements allowing a correct evacuation of excreta and the adaptation of hygiene rules lead to serious vexations to the health level by contamination of soiled hands and untreated rejections. In conclusion, it comes out from this study that the high number of households per piece (±5), with a precarious monthly income (small trade, income of the state civil servant householder), an overdrawn school education (only one-fourth of the university graduates), contribute to increase the level of ground and children from 2 to 10 years infestation. In addition, excreta and effluents bad management is quoted as at the base of the infestation prevalence of ground and children and is regarded as a factor of significant risk. That induces a strong proliferation of pathogenic agents, in fact *Ascaris* and *Trichocephales*. To cure this situation is equivalent redefining the overall policy of urban development and that of the national program of cleansing, rehabilitating and justifying the brigade of hygiene for a population effective framing by an education of mass, particularly centered on the management of households excreta, and finally, facilitating the granting of the appropriations intended to finance the construction of medical with septic tank in favor of the stripped households.

REFERENCES

1. E. Ngikam, E. Tanawa, 2006. Les villes d’Afrique face à leurs déchets. Université de Technologie de Belfort-Montbéliard, Belford, 288p.
2. C. Garnier, 2008. www.fne.asso.fr, consulted on Tuesday 20/03, 2008
3. CEE, 1993. L’environnement en Europe et en Amérique du Nord, Statistiques commentées de 1992 ; Normes et études statistiques, Nations Unies, New York, 368p.
4. J.J. Guibbert, 1996. Vers un changement significatif et durable dans les villes du tiers monde, Actes des 2èmes
journées scientifiques du « réseau droit de l’environnement » de l’aupef-uref à l’université Cheikh Anta Diop Dakar, Sénégal, 29-31 Octobre, p25.
5. S.B., Fatouma, 2004. Technologies de l’assainissement, traitement et évacuation de déchets écologiques, éd. Crepa, Burkina Faso.
6. S. Cairncross, C. Hunt, S. Boisson, K. Bostoen, V. Curtis, I.C. Fung, W.P. Schmidt, 2010. Water, sanitation and hygiene for the prevention of diarrhea, International Journal of Epidemiology 39: 193–205.
7. M. Duncara, 1994. Low cost of urban sanitation, éd. Wiley et sons, Paris.
8. S.P. Mutonkole, M.J. Tshitenge, N.L. Masamba, 2015. Benthic Macroinvertebrates as Indicators of Water Quality: A Case-study of Urban Funa Stream (in Kinshasa, Democratic Republic of Congo), Open Journal of Water Pollution and Treatment 2 (1): 2374-6531.
9. D. Perrine, 2002. Pole développement social urbain, éd, Flammarion, Paris, 256p.
10. Van Depite, 1984. Helminthologie médicale, 3ème éd. révisée Paris, 835p.
11. OMS, 1997. Médicament utilisés en parasitologie, 2ème éd., Genève.
12. OMS, 2000. Les maladies dont souffrent les enfants, 2ème éd., Genève.
13. M.S. Al-Mekhlafi, 2006. Prevalence and distribution of soil-transmitted helminthiase orang Asli children living in peripheral Malaysia, Med public health 40-47.
14. UNICEF, 2001. Enquête nationale sur la situation des enfants et des femmes (MICS2), RDC, vol 2, Kinshasa.
15. M. Butshia, 1998. La problématique de l’évacuation des excréta humains et son impact sur l’environnement, Medelingen, Kinshasa, pp269-271.
16. N.T. Lelo, 2008. Kinshasa, ville et environnement, Harmattan, Paris, p281.
17. K. Jayaraman, 1999. Manuel de statistique pour la recherche forestière. CE-FAO, 242p.
18. N. Sokpon, 1995. Recherches écologiques sur la forêt dense semi-décidue de Pobé au sud-est du Bénin : groupements végétaux, structure, régénération naturelle et chute de la litière. Thèse ULB, Bruxelles, 365p.
19. OMS, 1982. Manuel de techniques de base pour le laboratoire médical, Genève, pp111-126.
20. OMS, 1989. L’amélioration des conditions d’hygiène de l’environnement dans les habitats, Genève.
21. Ministère du Plan et Macro International. 2008. Enquête Démographique et de Santé, République Démocratique du Congo 2007. Calverton, Maryland, U.S.A : Ministère du Plan et Macro International.
22. M. Kiyombo, H. Kalambay, N. Konde, K. Pindi, L. Diwete, 2005. Rapport de l’analyse sur la situation sanitaire de la ville de Kinshasa, RDC.
23. OMS, 1996. La voie de la santé pour un monde durable, Genève.
24. Le journal du Fonctionnaire, 2014. En avant pour la reforme, une nouvelle stratégie de modernisation de l’administration publique. Ministère de la Fonction Publique, DRC, p68.
25. PNUD-RDC, 2015. Inégalités politiques, socio-économiques et éditionation de la Nation/Etat en République démocratique du Congo, Copyright © PNUD – RD Congo 2015, p286.
26. J.N. Lanoix, M.L. Roy, 1976. Technicien sanitaire en situation précaire, 1ère éd., OMS, Genève.
27. OMS, 2006. Comportements courants qui favorisent la transmission des helminthes, Genève, 1996
28. K. Ziegelbauer, B. Speich, D. Mäusezahl, R. Bos, J. Keiser, J. Utzinger, 2012 : Effect of Sanitation on Soil-Transmitted Helminth Infection: Systematic Review and Meta-Analysis. PLoS Med 9 (1): e1001162. doi:10.1371/journal.pmed.
29. L.K. Kightlinger, J.R. Seed, M.B. Kightlinger, 1998. Ascaris lumbricoides intensity in relation to environmental, socioeconomic, and behavioral determinants of exposure to infection in children from southeast Madagascar, p480-484.
30. H.M. Smith, R.G. Dekaminsky, S. Niwas, R.J. Soto, P.E. Jolly, 2001. Prevalence and intensity of Ascaris lumbricoides and Trichuris trichuira and associated sociodemographic, Honduran, Rio de janeiro 96, p303-314.
31. J.B. Sumagaysay, F.M. Emverda, 2011. Eosinophilia and Incidence of Soil-Transmitted Helminthic Infections of Secondary Students of an Indigenous School. Asian Journal of Health, Ethno Medical Section 1 (1): 172-184.
32. N.R. De Silva, S. Brooker, P.J. Hotez, A. Monstresor, D. Engels, L. Savioli, 2003. Soil-transmitted helminth infections: updating the global picture. Trends in Parasitology 19:547–551.
33. D.W. Crompton, 1999. How much human helminthiasis is there in the world? J Parasitol 85(3):397-403.
34. G. D’Amato, S.T. Holgate, R. Pawankar, D.K. Ledford, L. Cecchi, M. Al-Ahmad, F. Al-Enezi, S. Al-Muhsen, I. Anstogegui, C.E. Baena-Cagnani, D.J. Baker, H. Bayram, K.C. Bergmann, L.P. Boulet, J.T.M. Buters, M. D’Amato, S. Dorsano, J. Douwes, S.E. Finlay, D. Garrassi, M. Gómez, T. Hahtela, R. Halwani, Y. Hassani, B. Malboub, G. Marks, P. Michelozzi, M. Montagni, C. Nunes, J.J.W. Oh, T.A. Popov, J. Portnoy, E. Ridolo, N. Rosário, M Rottem, M. Sánchez-Borges, E. Sibanda, J.J. Sienra-Monge, C. Vitale, I. Annesi-Maesano, 2015. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization, World Allergy Organ J. 8(1): 25.
35. J.N. Lanoix et Roy M.L., 1994. Technicien sanitaire en situation précaire, 2ème éd., OMS Genève.

Citation: Mutonkole, S.P. et al. (2016). Management of Excreta and Parasitic Infestation of Ground and Children from 2 to 10 years in Ngiri-Ngiri Health Area. J. of Advancement in Medical and Life Sciences. V4I3. DOI: 10.15297/JALS.V4I3.01

Copyright: © 2016 Mutonkole, S.P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.