Antimicrobial activity of some sulfonamide derivatives on clinical isolates of Staphylococcus aureus

Yeliz Genç¹, Reşit Özkanca*¹ and Yunus Bekdemir²

Address: ¹Department of Biology, Faculty of Science and Arts, Ondokuz Mayıs University, Kurupelit, 55139, Samsun, Turkey and ²Department of Chemistry, Faculty of Science and Arts, Ondokuz Mayıs University, Kurupelit, 55139, Samsun, Turkey

Email: Yeliz Genç - bioyeliz@yahoo.com; Reşit Özkanca* - resitozk@omu.edu.tr; Yunus Bekdemir - bekdemir@omu.edu.tr

* Corresponding author

Abstract

Background: Staphylococcus aureus is a non-motile, gram positive, non-sporforming, facultative anaerobic microorganism. It is one of the important bacteria as a potential pathogen specifically for nosocomial infections. The sulfonamide derivative medicines are preferred to cure infection caused by S. aureus due to methicillin resistance.

Methods: Antimicrobial activity of four sulfonamide derivatives have been investigated against 50 clinical isolates of S. aureus and tested by using MIC and disc diffusion methods. 50 clinical isolate which collected from specimens of patients who are given medical treatment in Ondokuz Mayıs University Medical School Hospital. A control strain of S. aureus ATCC 29213 was also tested.

Results: The strongest inhibition was observed in the cases of I [N-(2-hydroxy-4-nitro-phenyl)-4-methyl-benzensulfonamid], and II [N-(2-hydroxy-5-nitro-phenyl)-4-methyl-benzensulfonamid] against S. aureus. Compound I [N-(2-hydroxy-4-nitro-phenyl)-4-methyl-benzensulfonamid] showed higher effect on 21 S. aureus MRSA isolates than oxacillin antibiotic. Introducing an electron withdrawing on the ring increased the antimicrobial activity remarkably.

Conclusion: This study may help to suggest an alternative possible leading compound for development of new antimicrobial agents against MRSA and MSSA resistant S. aureus. It was also shown here that that clinical isolates of 50 S. aureus have various resistance patterns against to four sulfonamide derivatives. It may also be emphasized here that in vitro antimicrobial susceptibility testing results for S. aureus need standardization with further studies and it should also have a correlation with in vivo therapeutic response experiments.

Background

Staphylococcus aureus is one of the most significant human pathogens responsible for nosocomial and community acquired infections. It can cause a range of infectious disease from mild conditions, such as soft tissue infections, to severe life-threatening debilitation, such as endocarditis [1]. Despite the recent staphylococci infections, they are persisting as an important hospital and community pathogen [2]. Methicillin resistance has become a major concern to the medical community due to the fact that they have an extraordinary ability to adapt rapidly to antibiotic stress [3]. Among hospital isolates the frequency of methi-
cillin resistant *S. aureus* (MRSA) is very high [4]. There is need to have new chemicals for treatment of staphylococci infections.

The sulfonamides have, for many years, being widely studied for their chemotherapeutic activity. Their important role as antibacterial, antimalarial and antileprotic agents is well recognized [5,6]. Recently, certain sulfonamides have been reported as showing interesting the antibacterial properties of sulfonamides have been extensively studied by Quantitative Structure-activity Relationship & Molecular Modeling (QSAR) method. [7]. Antimicrobial therapy for infections with *S. aureus* often includes sulfonamides which are use to cure nosocomial infections [1]. Sulfonamides are still an alternative option in order to cure methicillin resistant *S. aureus* (MRSA) staphylococci infections. Although the sulfonamide therapy has been reduced, owing to development of more effective antimicrobial agents and to the gradual increase in the resistance of bacterial species, clinical treatment with sulfonamides has undergone a revival by the combination sulfonmethoxazole and trimethoprim.

Considering this background, the objective of this study some sulfonamides derivatives were tested in terms of antimicrobial activity with the purpose of revealing possible leading compounds for development of new antimicrobial agents against methicillin resistant *S. aureus* (MRSA) and methicillin sensitive *S. aureus* MSSA.

Methods

Preparation of the sulfonamides

General procedure for preparation of the sulfonamides is as follows [8]. For a typical run; 0.06 mol substituted aniline was dissolved in 30 ml benzene. 0.06 mol p-toluenesulfonfonyl chloride in 20 ml benzene was added into the solution. 0.06 mol dry pyridine was added into 20 ml benzene slowly and it was refluxed for 4 h, so the solvent was removed and a solid was obtained. The solid was dissolved in 10% (w/v) NaOH solution and extracted with CHCl₃. Aqueous solution was acidified with HCl to obtain raw sulfonamide. Recrystallization of ethanol-water mixture from raw sulfonamide resulted in corresponding sulfonamide in pure form [9]. Some physical and spectral data of the synthesized sulfonamides were summarized below:

N-(2-Hydroxy-5-nitro-phenyl)-4-methyl-benzenesulfonamide (II) m.p. 208–209°C. ¹H NMR (acetone-d₆), δ (ppm) 2.32 (s,3H), 3.60 (broa,d1H,-NH), 6.97 (d,1H), 7.31 (d,2H), 7.75 (d,2H), 7.87 (dd,1H), 8.33 (d,1H), 8.55 (broa,d1H,-OH); IR (KBr) 3407 (OH), 3280 (NH), 3085 (Ar-H), 2930, 1596, 1523 (NO₂ asym.), 1454, (SO₂ asym.), 1342 (NO₂ sym.), 1164 (SO₂ sym.) cm⁻¹ [4].

N-(5-Chloro-2-hydroxy-phenyl)-4-methyl-benzenesulfonamide (III) m.p. 189–190°C. ¹H NMR (acetone-d₆), δ (ppm) 2.35 (s,3H), 3.55 (broa,d1H,-NH), 6.79 (d,1H), 6.92 (dd,1H), 7.31 (d,2H), 7.36 (d,1H), 7.71 (d,2H), 8.62 (broa,d1H,-OH); IR (KBr) 3450 (OH), 3259 (NH), 3080, 2930, 1602, 1504, 1440, 1384, 1319 (SO₂ asym.), 1216, 1170 (SO₂ sym.) cm⁻¹ [3].

N-(2-Hydroxy-5-methyl-phenyl)-4-methyl-benzenesulfonamide (IV) m.p. 142–143°C. ¹H NMR (acetone-d₆), δ (ppm) 2.14 (s,3H), 2.33 (s,3H), 3.47 (broa,d1H,-NH), 6.67 (d,1H), 6.74 (dd,1H), 7.13 (s,1H), 7.27 (d,2H), 7.67 (d,2H), 8.46 (broa,d1H,-OH); IR (KBr) 3370 (OH), 3247 (NH), 3039, 2917, 1596, 1517, 1446, 1390, 1321 (SO₂ asym.), 1290, 1245, 1187, 1162, 1112 (SO₂ sym.) cm⁻¹ [3].

Bacterial strains and inoculums preparation

As a preliminary screening for antimicrobial activity of 4 sulfonamides were tested against 30 meticillin resistant (MRSA) and 20 susceptible (MSSA) clinical isolates of *Staphylococcus aureus* provided by Ondokuz Mayis University, Medical School Department of Microbiology and Infectious disease. MRSA isolates were determined by oxacillin test. The commonly used method in routine laboratory practice for the detection of methicillin resistance is oxacillin disc diffusion. All the clinical isolates were isolated from patients in the hospital. Each *Staphylococcus aureus* isolates were cultured in nutrient broth before the antimicrobial activity test performed. Each isolate was checked for its purity and several colonies were emulsified into 50 ml nutrient broth (LabM). The inoculated flasks were incubated at 37°C for 18 h on a rotary shaker at 150 rpm (GFL 3032). Reference strain of *Staphylococcus aureus* ATCC 29213 was used as control strain reference strain in order to monitor the antimicrobial disc susceptibility test [10].

Antimicrobial activity Screening

Antimicrobial studies were performed according to agar disc diffusion method [11]. To obtain more significant information as to the antibacterial potency of sulfonamides derivatives compound I, II, III, and IV against *Staphylococcus aureus*, subcultures were carried out and minimal bactericidal concentration were determined. The following test conditions were applied; all the compounds were dissolved in dimethylsulfoxid (DMSO,
Results and discussion
Methicillin-resistant staphylococci are resistant to all other penicillin, carbapenems, cepham and beta-lactam, beta-lactam inhibitor combinations [11]. Consequently these antibiotics should not be used for treating of methicillin-resistant staphylococci infections. Moreover, recently several studies have shown that the methicillin-resistant staphylococci have started to gain resistance to some other widely used antibiotics (quinolone, macrolide group antibiotics, amino glycosides, tetracycline, trimetoprim, sulphamethoxazole or sulphisoxazole have been using for the treatment of E. coli urinary infection as a single antibiotic [1].

In this study, the in vitro antibacterial activity properties of the compounds tested on clinical isolates of 30 MRSA and 20 MSSA S. aureus by using new sulfonamide derivative compounds namely N-(2-Hydroxy-4-nitro-phenyl)-4-methyl-benzenesulfonamide(I), N-(2-Hydroxy-5-nitro-phenyl)-4-methyl-benzenesulfonamide, N-(5-Chloro-2-hydroxy-phenyl)-4-methyl-benzenesulfonamide(III), N-(2-Hydroxy-5-methyl-phenyl)-4-methyl-benzenesulfonamide(IV). Some of the sulfonamides were found to be effective on S. aureus among the others. The strongest inhibition was detected by the effect of (N-(2-Hydroxy-4-nitro-phenyl)-4-metil-benzenesulfonamide) (I). The similar results were obtained in previous studies against Nocardia species by the treatment of the same sulfonamide compound (Isik and Özdemir-Koçak, article in press in Microb. Res.)

First of all, we tried to find out (Minimal Inhibitory Concentrations) MIC values of sulfonamides derivatives against S. aureus isolates. The rate of MIC values showed alterations from 32 to 512 µg for 50 isolates. All data are given in Table 1 indicated that MIC values was not the same for all isolates i.e. showed variations in terms of resistance. It was given in the literature that treatment of some infections 300 µg sulfafurazol and sulfsoxazol ST are applied to patients [10]. After determining the minimum and maximum MIC values, suitable concentration was selected for all isolates in order to proper comparison. It means, MIC values given in table 1 showed that sulfonamide derivatives I and II given here area potential antibacterial substances. It was also reported that I, and II numbered substances showed strong antibacterial activity against Staphylococcus aureus ATCC 43300 and some other gram positive bacteria [17]. Here tested compounds I, II, and III showed antibacterial activity against reference strain S. aureus ATCC 29213 and their concentration were 32, 64 and 128 µg respectively. Compound I was found as a strongest antibacterial agent against S. aureus

Table 1: MIC values of sulfonamides derivatives I, II, and III against total 50 S. aureus clinical isolates (data given as percentage).

MICs (µg)	Compound I	Compound II	Compound III
32 µg	3 (6)	0 (0)	0 (0)
64 µg	14 (28)	6 (12)	0 (0)
128 µg	19 (38)	39 (78)	18 (36)
256 µg	12 (24)	5 (10)	22 (44)
512 µg	2 (4)	0 (0)	10 (20)

Compound IV showed very low activity therefore it was not taken in consideration.
and a mould inhibition of N-H group which is enhanced by p-NO2 more effective against the bacteria possibly due to increases. As can be seen in table 2 the compound I is hydrophobic, and in this way the ionization negative charge on the nitrogen through intramolecular hydrogen bonding, and in this way the ionization according to the sulfonamide group which showed an inhibition according to the sulfonamide group which showed an inhibition against S. aureus strains given in Table 1.

Secondly, antimicrobial activity of compounds was tested according to disc diffusion method on the base of MIC values. 500 µg concentrations were chosen as a suitable concentration which showed an effect to all S. aureus isolates. All data related to inhibition zones against S. aureus were given in Table 2. As regard to results the strongest inhibition was observed in case of compound I. In general, the ratio of inhibition caused by Compound I, II and III were 84%, 50% and 36% respectively (Table 3).

Early and recent researchers have suggested that sulfonamides are useful for the treatment of some staphylococci infections, especially against urinary infections [1]. In this study, some sulfonamides derivatives were tested in terms of antimicrobial activity with the purpose of revealing possible leading compounds for the development of new antimicrobial agents. Outcome of the study showed that sulfonamide derivatives I and II have proved to be effective enough, which is comparable with previous studies [17]. It was reported that, sulfonamide I and II showed the highest inhibitory effect on gram positive bacteria i.e. S. aureus, N. asteroides, N. farcinia and B. subtilis. On the contrary, they did not lead to significant inhibitory effect on gram negative bacteria and also yeast and mould namely E. coli, P. aeruginosa, E. cloaceae, a yeast C. albicans and a mould A. niger [17].

Many attempts have been made to relate the antibacterial behavior of sulfonamides with molecular structure [6]. It was shown here that antimicrobial activities of the sulfonamides were increased when introducing electron withdrawing groups into the benzene ring of the compounds (Table 2). The compound I has NO2 group in para position according to the sulfonamide group which showed the strongest effect on the S. aureus. Ionization is important factor on antimicrobial effect of sulfonamides due to increasing solubility. The behaviors of o-substituted acids are often anomalous [18]. Their strength is sometimes found to be much greater than expected due to direct interaction between the adjacent groups. For example, o-hydroxybenzoic acid is 10 times stronger than p-hydroxybenzoic acid. In the case of the sulfonamides, possibly the OH group in the ortho position stabilize the developing negative charge on the nitrogen through intramolecular hydrogen bonding, and in this way the ionization increases. As can be seen in table 2 the compound I is more effective against the bacteria possibly due to increasing ionization of N-H group which is enhanced by p-NO2 group. OH group in ortho position is also supports ionization by involving intramolecular hydrogen bonding.

Introducing NO2 group to meta position (compound II) reduces antimicrobial activity in general this is because of lesser effect of this position on N-H group. Chlorine substituted sulfonamide III has a weaker antimicrobial activity than NO2 substituted ones due to less electron withdrawing ability of the chlorine. This is also supported by the results obtained by compound IV which has CH3 group in meta position. Methyl group donates electron to the benzene ring therefore reduces the ionization dramatically of the compound. The correlation of antimicrobial activity with chemical facts of the current study are also in line with biological activity results [19].

Antimicrobial activities of the sulfonamides depend on substituent and their position in the benzene ring. While electron releasing group decreases, electron withdrawing groups enhanced the activity of the sulfonamides against S. aureus isolates. Although sulfonamide-based therapy is generally effective, optimal treatment could be guided by antimicrobial susceptibility testing of isolates. Moreover, experimental data show that compound I may also be considered as a broad spectral effective sulfonamide at 128 µg (78% in total isolates) against MRSA and MSSA S. aureus isolates. Although 30 out of 50 S. aureus isolates showed resistance to oxacillin antibiotic, 21 of them were susceptible mainly to compound I and II.

Conclusion
Sulfonamides are still an alternative option in order to cure MRSA staphylococci infections. However, increasing resistance against sulfonamides is a serious problem recently that has been taken attention. Therefore, there is need to have new chemicals for treatment of staphylococci and other bacterial infections. Outcome of the study has two noteworthy features. This study may help to suggest an alternative possible leading compound for development of new antimicrobial agents against MRSA and MSSA resistant S. aureus. It was also shown here that that clinical isolates of 50 S. aureus have various resistance patterns against to four sulfonamide derivatives. It may also be emphasized here that in vitro antimicrobial susceptibility testing results for S. aureus species need standardization with further studies and it should also have a correlation with in vivo therapeutic response experiments

Abbreviations
MRSA: methicillin resistant S. aureus; MSSA: methicillin susceptible S. aureus; SXT: trimetoprim sulphamethoxazole; DMSO: dimethylsulfoxid

Competing interests
The authors declare that they have no competing interests.
Table 2: Measured inhibition zone in diameter (mm) of sulfonamide derivatives (I-IV) (500 μg) against clinical isolates of Staphylococcus aureus.

S. aureus Isolation Number	Compound II	Compound II	Compound III	Compound IV	OX (mm)	SXT (mm)
SAY01 (MRSA)	20	14	5	0	0	24
SAY02 (MRSA)	22	15	11	0	0	25,5
SAY03 (MRSA)	26	17	10	0	0	28,5
SAY04 (MSSA)	19	17	13	0	13,5	28,5
SAY05 (MSSA)	23	18	16	0	13,5	28
SAY06 (MRSA)	23	18	10	0	8	26
SAY07 (MRSA)	25	18	19	8	0	25
SAY08 (MRSA)	26	19	13	0	0	26
SAY09 (MRSA)	19	16	10	0	0	24
SAY10 (MRSA)	25	17	11	7	0	23
SAY11 (MRSA)	25	13	11	9	0	27
SAY12 (MRSA)	29	19	11	9	0	25,5
SAY13 (MRSA)	13	14	10	9	0	25
SAY14 (MRSA)	23	17	15	8	0	25
SAY15 (MRSA)	21	14	14	0	0	26,5
SAY16 (MRSA)	25	18	13	0	0	27
SAY17 (MSSA)	21	18	15	0	21	28,5
SAY18 (MRSA)	25	16	13	0	0	23,5
SAY19 (MSSA)	21	16	16	0	18,5	27
SAY20 (MSSA)	26	15	15	0	0	25
SAY21 (MSSA)	19	14	13	0	17,5	30,5
SAY22 (MSSA)	23	14	15	0	0	27
SAY23 (MSSA)	20	16	13	9	20,5	28
SAY24 (MSSA)	14	15	14	0	17,5	30
SAY25 (MSSA)	12	20	10	0	26	31
S. aureus ATCC 29213	26	17	12	10	20	31
SAY26 (MSSA)	28	25	15	0	23	32,5
SAY27 (MSSA)	19	11	14	9	18	28
SAY28 (MSSA)	28	19	11	8	0	26,5
SAY29 (MSSA)	18	17	10	10	0	26,5
SAY30 (MSSA)	20	13	12	0	0	23,5
SAY31 (MSSA)	26	20	14	0	0	26
SAY32 (MSSA)	21	15	14	10	19	26,5
SAY33 (MSSA)	18	12	14	11	19	28
SAY34 (MSSA)	16	18	10	10	0	23,5
SAY35 (MSSA)	20	22	14	0	17	30
SAY36 (MSSA)	25	16	16	9	20,5	30
SAY37 (MRSA)	13	15	11	8	0	22
SAY38 (MRSA)	27	17	10	0	0	25
SAY39 (MRSA)	15	14	10	0	0	25,5
SAY40 (MSSA)	18	16	11	0	18	25,5
SAY41 (MSSA)	27	19	10	11	13	25,5
SAY42 (MSSA)	18	17	14	8	22,5	30
SAY43 (MRSA)	21	11	14	9	0	28
SAY44 (MRSA)	21	16	11	0	0	27,5
SAY45 (MSSA)	17	18	11	0	18,5	30
SAY46 (MSSA)	14	11	12	0	14,5	21,5
SAY47 (MRSA)	22	13	12	8	0	26,5
SAY48 (MRSA)	14	18	11	0	0	25,5
SAY49 (MRSA)	18	17	12	0	27	
SAY50 (MSSA)	21	22	12	0	20	31
S. aureus ATCC 29213	26	17	12	10	20	31

MRSA (methicillin-resistance S. aureus), MSSA (Methicillin Susceptible S. aureus), OX (Oxacillin), SXT (trimetoprim-sulphamethoxazole)
Table 3: Susceptibility percentage and median zone diameter (mm) of *Staphylococcus aureus* isolates against sulfonamide derivatives and some antimicrobials determined by disc diffusion method.

Name	Concentration (µg)	Inhibition zone diameter (mm)	Zone diameter (mm)	Tested S. aureus clinical isolates						
	R	I	S	Range	Median	R	I	S		
Oxacillin	1	µg	£10	11–12	£13	0–23	11.5	30(60)	0	20(40)
Trimetoprim (SXT)	25	µg	£10	11–15	£16	21.5–32.5	27	0	0	50(100)
Compound I	500	µg	£12	13–16	£17	12–28	20	1(2)	7(14)	42(84)
Compound II	500	µg	£12	13–16	£17	11–25	18	3(6)	22(44)	25(50)
Compound III	500	µg	£12	13–16	£17	11–19	15	13(26)	19(38)	18(36)
Compound IV	500	µg	£12	13–16	≥17	0–11	5.5	50(100)	0	0

*Zone of inhibition diameter (mm) by disc diffusion method susceptibility testing interpretative guidelines based on NCCLS 2003.

*Number of parentheses indicate the total number of clinical S. aureus isolates tested.

*S = susceptible; I = intermediate; R = resistant

Trimetoprim-sulphamethoxazole (SXT) is being taken as a positive control for approxiam comparison compounds data

Authors' contributions

All authors have read and approved the final manuscript. RO participated in the analysis of the data and coordinated and drafted the manuscript. YG carried out the antimicrobial activity tests and the data analysis. YB participated the production of sulfonamide derivatives and approving the final manuscript.

References

1. Aktoparlik UK, Kadanali A, Çelebi S: Slime factor positivity in coagulase negative staphylococci isolated from nasal samples of hemodialysis patients. Int J Clin Pract 2004, 58:1112-1114.
2. Cengiz A: *Staphylococcus, Temel Mikrobiyoloji*. Edited by: Ustaçelebi Ş, Gunes Kitapevi, Ankara; 1999:339-347.
3. Livermore DM: *M.Antibiotic resistance in staphylococci*. Int J Antimicrob Agents 2000, 16:3-10.
4. Akçam FZ, Karaslan D, Doğan M, Yaylı G: *Microbiological surveillance in the intensive care unit; a tertiary hospital experience*. Med Sci Monit 2006, 12(2):CR81-CR85.
5. Benedetti PG: *Advances in drug research*. Volume 16. Edited by: Testa B. Academic Press, London and New York; 1987:227-279.
6. Mengelers MJ, Hourge PE, Janssen LH, Van Miert AS: *Structure-activity relationship between antibacterial activities and physicochemical properties of sulfonamides*. J Vet Pharmacol Therap 1997, 20:276-282.
7. Zani F, Viceli P: *Antimicrobial activity of some 1,2-Benzisothiazoles having a Benzensulfonamide Moiety*. Arch Pharm Pharm Med Chem 1999, 331:219-223.
8. Vogel A: *Aromatic compounds (Chapter 6)*. In Vogel’s textbook of practical organic chemistry 5th edition. Edited by: Furniss SB, Hamsford JA, Smith GWP, Tatchell RA. Logman Scientific & Technical, New York; 1989:824-1085.
9. Čelik S: *Acid catalysed hydrolysis of some sulfamate esters*. In MSc thesis Kurupelit-Samsun, Turkey: Department of Chemistry, Ondokuz Mayis University, Science Enstute; 1999.
10. NCCLS, *Susceptibility testing of mycobacteria, nocardiae and other aerobic actinomycetes; approved standard*. NCCLS document M24-A, NCCLS Wayne, PA 2003.
11. Clinical and Laboratory Standards Institute: *Performance standards for antimicrobial susceptibility testing; Sixteen Interna-tional supplements*. CLSI document M100-S6. Vol 26-3; M7-A7, Vol.26-2; M2-A9, Vol. 26-1. Wayne PA, USA 2006.
12. Drezeningo J, Petras P: *Characteristics of coagulase-negative staphylococci isolated from hemocultures*. Epidemol Mikrobiol Imunol 2000, 49(2):S1-S5.
13. Huang SY, Tang RB, Chen ST, Chung RL: *Coagulase-negative staphylococcal bacteremia in critically ill children: risk factors and antimicrobial susceptibility*. J Microbial Immunol Infect 2003, 36:51-56.
14. Jain A, Agarwal J, Bansal S: *Prevalence of methicillin-resistant, coagulase-negative staphylococci in neonatal intensive care units; finding from a tertiary care hospital in India*. J. Med Microbiol 2004, 53:941-944.
15. Knauer A, Fladerer P, Strempfl C, Krause R, Wenisch C: *Effect of hospitalization and antimicrobial therapy on antimicrobial resistance of colonizing *Staphylococcus epidermidis*. Wien Klin Wochenschr 2004, 116(14):489-494.
16. Mayhall CG: *Hospital epidemiology and infection control*. 3rd edition. Lippincott Willam and Wilkins philadelphia; 2004:495-510.
17. Bekdemir Y, Kutuk H, Ozkanca R, Mara FZ, Darcan C, Celik S, Isik K: *Substituent effects on antimicrobial activities of some sul fonamides*. The 15th International symposium on quantitative structure-activity relationships&molecular modeling. Istanbul 2004: EuroQAR 2004 proceeding 2004:174-175.
18. Skyes P: *The strengths of acids and bases, Mechanism in organic chemistry*. 6th edition. Logman Scientific and Technical, Essex; 1990:53-76.
19. Sharma P, Sharma S, Rane N: *Synthesis and in vitro antimicrobial activities of 2-hydroxy-6-methyl-7-(arylarnino)-1,7-dihydroy- urin-8-ones*. Bioorg Med Chem 2004, 12:3135-3139.

BioMed central