Transradial versus transfemoral access for cardiac catheterization: a nationwide pilot study of training preferences and expertise in The United States

Khalid Changal1*,†, Mubbasher Ameer Syed1†, Ealla Atari2, Salik Nazir1, Sameer Saleem3, Sajjad Gul4, F. N. U. Salman5, Asad Inayat6 and Ehab Eltahawy7*

Abstract

Background: The objective was to assess current training preferences, expertise, and comfort with transfemoral access (TFA) and transradial access (TRA) amongst cardiovascular training fellows and teaching faculty in the United States. As TRA continues to dominate the field of interventional cardiology, there is a concern that trainees may become less proficient with the femoral approach.

Methods: A detailed questionnaire was sent out to academic General Cardiovascular and Interventional Cardiology training programs in the United States. Responses were sought from fellows-in-training and faculty regarding preferences and practice of TFA and TRA. Answers were analyzed for significant differences between trainees and trainers.

Results: A total of 125 respondents (75 fellows-in-training and 50 faculty) completed and returned the survey. The average grade of comfort for TFA, on a scale of 0 to 10 (10 being most comfortable), was reported to be 6 by fellows-in-training and 10 by teaching faculty (p < 0.001). TRA was the first preference in 95% of the fellows-in-training compared to 69% of teaching faculty (p 0.001). While 62% of fellows believed that they would receive the same level of training as their trainers by the time they graduate, only 35% of their trainers believed so (p 0.004).

Conclusion: The shift from TFA to radial first has resulted in significant concern among cardiovascular fellows-in-training and the faculty regarding training in TFA. Cardiovascular training programs must be cognizant of this issue and should devise methods to assure optimal training of fellows in gaining TFA and managing femoral access-related complications.

Keywords: Radial access, Femoral access, Campeau radial paradox, Radial first

Background

Coronary angiography and percutaneous coronary intervention [PCI] are cornerstones in the management of coronary artery disease. Traditionally, PCI was performed primarily via transfemoral access [TFA] due to large arterial size allowing for easier cannulation of the artery, manipulation of catheters, simultaneous placement of mechanical support devices, and shorter door-to-balloon times in the setting of ST elevation myocardial
infarctions. Successful transradial angiography was first reported in 1989 by Canadian cardiologist Lucien Campeau [1, 2]. Shortly thereafter, Kiemeneij et al. compared femoral, radial, and brachial access sites in the ACCESS study and found that transradial access (TRA) was associated with the lowest percentage of complications compared to the femoral or brachial routes (0%, 2%, 2.3% respectively) [3, 4]. Over the last 30 years, multiple observational and randomized studies comparing TFA and TRA have reported lower rates of bleeding and vascular complications with TRA [1, 5–14]. The decreased access site bleeding was shown to lower mortality in multiple subsets of patients undergoing PCI via TRA [1, 9–11, 15–26]. Furthermore, TRA was shown to reduce time to ambulation, improve patient comfort, and decrease overall costs and length of hospital stay [10, 16, 27–38].

Based on these and multiple other advantages shown with TRA, it has become the default access site for PCI in Europe, Asia, and the United States [16, 17, 19, 20, 39–41]. In the last decade, there has been an unprecedented initiative to move away from TFA and favor the “Radial first” approach. The adoption of TRA as the primary mode of access has raised concerns regarding proficiency with TFA, potentially jeopardizing outcomes when TFA is needed [19, 42–46]. This phenomenon has been termed the “Campeau Radial Paradox” [42]. Regardless of whether a paradoxical decline in outcomes with TFA truly exists, inadequate experience with transfemoral access and management of related complications remain legitimate concerns for trainers and trainees.

The purpose of this study was to assess the current training preferences, expertise, and practice with TFA and TRA amongst cardiovascular training fellows and teaching faculty in the academic cardiovascular, interventional, and advanced interventional training programs in United States.

Methods

An online questionnaire to compare preferences, apprehensions, and practice for the two access options was designed. The questions addressed the clinical/academic settings, geographic location of practice, number of procedures performed, and number of questions about the volume and practice of TRA and TFA. Two independent reviewers audited this questionnaire to ensure there were no leading questions and all relevant aspects pertinent to access related decision making were covered. The questionnaire was emailed to 239 academic General Cardiovascular and 160 Interventional Cardiology training programs in the United States that were listed on FREIDA [Fellowship and Residency Electronic Interactive Database] (Fig. 1).

The initial email was followed by two reminder emails 30 days apart, allowing a total time of 90 days to maximize responses. The answers were analyzed for significant differences between training fellows and teaching faculty using SPSS Version 20. Group differences were compared using the Pearson χ² or Fisher’s exact test for categorical variables, or the Student t test or the Mann–Whitney U test for continuous variables. P-values of 0.05 or less were considered statistically significant.

Results

125 cardiovascular physicians (75 fellows and 50 faculty) completed and returned the survey. The response rate as a proportion of email addresses invited to participate in the survey was 34%. Table 1 summarizes the sample of respondents in terms of their training site, geographical location (Fig. 2) and their procedural exposure. The respondents were evenly distributed from all geographical locations in the USA.

The average grade of comfort for TFA, on a scale of 0 to 10 (10 being most comfortable), was reported to be 6 by trainees and 10 by teaching faculty (p < 0.001). The average proportion of daily transfemoral access was reported to be 34% by trainees and 35% by teaching faculty, the remainder being transradial (p 0.58). Operators who had managed more than 20 femoral complications in the previous one year were 3% among trainees versus 8% among trainers (p 0.26). While 24% of teaching faculty were comfortable enough with TFA that ultrasound guidance for it was not utilized, only 2% of fellows-in-training felt the same (p < 0.001). TRA was the first preference in 95% of the fellows-in-training compared to 69% of teaching faculty (p 0.001). These findings are summarized in Table 2. Various possible reasons were investigated for chosen preference and respondents could choose more than one determinant for their respective choices. The results from that query are summarized in Table 2.

When asked about the expected level of expertise in the future, 62% of fellows believed that they would receive the same level of training as their trainers by the time they graduate, only 35% of their trainers shared their optimism (p 0.004). A lower proportion of the trainees [11%] were overly concerned about the lack of TFA training compared to 37% of their trainers (p 0.002). 51% of the fellows were fully satisfied with the TFA training they were currently receiving compared to only 28% of the training faculty.
Discussion

With a global trend towards TRA, the proficiency and comfort of operators and trainees with TFA has come into question. Although TRA is now the preferred method of access for diagnostic and therapeutic procedures, there are still specific patient populations and clinical situations that require TFA [19, 22, 47]. However, with unusually high rates of access site complications being observed in patients undergoing femoral PCI by default radial operators [32, 32, 32], many are questioning if evidence of the loss of transfemoral competency has begun to show [42, 48, 49]. These apprehensions are subjectively shown by our survey in which trainees reported a lower level of comfort [6/10] with TFA, compared to TRA [9/10] and 95% of the trainees chose TRA as their default access. The commonest reasons cited by trainees for radial preference were, in order;—patient satisfaction, low complication profile, ease of closure and the training center’s “radial first” policy.

In the midst of a dramatic shift from TFA to TRA, operator experience undoubtedly becomes a major determinant of outcomes [50, 51]. Based on our results, while daily use of TFA was quite comparable between trainees and trainers [34% vs. 35%], trainees reported a much lower exposure to the management of TFA related complications. We also queried the preference for ultrasound guidance for both radial and femoral access amongst respondents. Ultrasound guided TFA has been shown to reduce access site complications, and more than 98% of trainees reported they would use ultrasound for TFA. With less than 50% of trainers using ultrasound for femoral access and 24% “never” using ultrasound, there is a concern about the quality of teaching trainees are experiencing. This is in line with the findings by Damluji et al. [52] that found similar results in femoral operators overall. This suggests that there is a systemic problem with femoral training that needs to be addressed so that safe vascular access at any site can be taught.

The phenomenon of “Campeau Radial Paradox” was central to our survey. This term was coined by Azzalini et al. in 2015 after conducting a retrospective analysis of two historical cohorts of patients undergoing PCI.

![Distribution of respondents, their access preferences and perception of current training in transfemoral access](Image)
at the Montreal Heart Institute during the periods of 1996–1998 and 2006–2008 [1, 42]. They concluded that while TRA has reduced vascular complication rates at an individual level, it has led to increased rates at a population level driven primarily by TFA-related complications. This was later challenged by Hulme et al. in a large retrospective analysis of the British Cardiovascular Intervention Society (BCIS), showing that there were no significant differences in 30-day mortality or complication rates between centers, regardless of femoral proportion per center [1, 19]. Respondents were asked regarding their belief in the proposed “Campeau paradox”; 62% of trainees and as many as 67% of trainers believe that the increased and abrupt adoption of TRA has resulted in a paradoxical spike in complications at the population level due to declining TFA expertise.

Our study sheds light on the interplay between increasingly stronger recommendations for TRA and the possible resultant decline in the quality of TFA training. While the European Society of Cardiology guidelines [2015] recommend radial over femoral approach [58], the American Heart Association guidelines [2015] did not recommend one access site over the other [57]. However, in 2018 a radial-first approach was strongly recommended by the AHA [55]. Faced with this increasing emphasis on TRA as the preferred choice, the apprehensions of fellows and faculty regarding lower exposure to TFA remained largely undocumented prior to this analysis. Of the trainers responding to our survey, 37.5% were “very concerned” and 31% were “somewhat concerned” about the declining exposure of trainees to TFA and related complications. Moreover, 65% of the trainers believed their trainees will not achieve the same level of expertise in TFA as their predecessors.

TRA remains a much-needed tool in the arsenal of invasive and interventional cardiologists. A 2018 Cochrane database review of 28 RCTs found there was a significantly higher incidence of cross-over with transradial approach compared to TFA [56]. Thus TRA may be a preferred route of access but a sufficiently high skill level in TFA needs to be maintained in current and future training fellows. TFA remains relevant due to the evolving need for large bore access. When asked about the future of TFA, most of our respondents [77% trainees and 81% trainers] believed that while TFA frequency will decline, it will continue to remain relevant as a major access point.

A major argument in favor of TRA has come from trials including RIVAL, MATRIX and RIFLE-STEACS revealing lower risk of bleeding and mortality in TRA compared to TFA [10, 11, 15]. However, the more recent SAFARI-STEMI trial did not show significant difference in 30-day mortality or bleeding complications in TRA or TFA in primary PCI [5]. This suggests that adequately trained operators can attain similar results with TRA or TFA for PCI.

We believe that access preference should take root in an understanding of the purpose of each approach and when each should be favored [57]. To optimize practice in acquiring femoral access, educational programs for trainees should ensure incorporation of formal teaching, workshops, and simulators geared toward the femoral approach [58]. Adequate training should also be provided in the use of fluoroscopy, ultrasound guidance and vascular closure devices, most of which have been reported to increase safety, comfort and convenience with TFA [59–63]. As recommended by the American Heart Association, femoral access skills can be maintained through peripheral vascular, structural cardiac, or ventricular assist device insertion procedure [27]. We believe that the apprehensions regarding the quality of TFA training expressed by trainers across the country mandate a structured approach towards ensuring adequate education in femoral access for all trainees.

Our study had a few limitations. Survey-based designs are vulnerable to biases, but since our aim was to gauge subjective parameters, we believe it was the appropriate investigative modality in absence of a better alternative. Another limitation is the small sample size. Despite

Variable	Total % (n)	Trainee % (n)	Trainer % (n)	P value
Number of Respondents	100 (125)	60 (75)	40 (50)	
Training Site Category				
University Hospital	72 (90)	70.6 (53)	74 (37)	0.68
Community hospital	12 (15)	10.6 (8)	14 (7)	0.57
University affiliated	16 (20)	18.6 (14)	12 (6)	0.32
Region in USA				
New England	11.9 (14)	13.4 (9)	10 (5)	0.57
Middle Atlantic	9.4 (11)	16.4 (11)	0 (0)	0.002
East north central	25.6 (30)	28.3 (19)	22 (11)	0.44
West North central	4.2 (5)	4.4 (3)	4 (2)	1.0
South Atlantic	14.5 (17)	13.4 (9)	16 (8)	0.69
East South Central	5.1 (6)	5.9 (4)	4 (2)	1.0
West south central	6.8 (8)	8.9 (6)	4 (2)	0.46
Mountain	1.7 (2)	1.5 (1)	2 (1)	1.0
Pacific	11.1 (13)	7.4 (5)	16 (8)	0.15

Procedures Performed				
Coronary Angiography/PCI	98.2 (114)	98.5 (66)	98 (48)	0.82
Peripheral interventions	47.4 (55)	43.2 (29)	53 (26)	0.29
Coronary CTO	47.3 (54)	44.7 (30)	51.0 (24)	0.51
Structural interventions	29.3 (34)	23.9 (16)	36.7 (18)	0.13
having a smaller sample, our results suggesting increased use and familiarity of transradial access are similar to a larger recent survey studying radial access practices (449 US interventional cardiologists) [64]. This study recognized the heterogeneity in practices for transradial access. Whether our results can be extrapolated to the majority of US PCI centers cannot be fully determined at this time.

Conclusion

The shift from TFA to radial first has resulted in significant concern among cardiovascular fellows in training and the faculty regarding training in TFA. Cardiovascular training programs must be cognizant of this issue and should devise methods to assure optimal training of fellows in gaining TFA and managing femoral access-related complications. Routine use of ultrasound for TFA must be encouraged. A larger study with objective parameters is required to assess if outcomes in patients undergoing TFA currently and in the near future are similar or have changed compared to when TFA was being used more commonly.

Abbreviations

TRA: Trans Radial Access; TFA: Trans Femoral Access; CV: Cardiovascular; PCI: Percutaneous Coronary Intervention; SPSS: Statistical Package for Social Sciences; US: United States; RCT: Randomized Controlled Trial; ESC: European Society of Cardiology; AHA: American Heart Association; ACC: American College of Cardiology.

Acknowledgements

We acknowledge the contribution of the participants in this survey. We also acknowledge the work of Ms. Angela McCune, Program coordinator University of Toledo Cardiovascular Medicine, for helping with the coordination of the survey used in this study.

Authors’ contributions

MAS: Concept, designing the survey, coordinating the survey, Data collection, Manuscript writing, Final review. KC: Coordinating the survey, Data collection, Manuscript writing and Editing, Final review. EA: Coordinating the survey, Data collection, Manuscript writing and Editing, Final review. SN: Data collection, Manuscript writing and Editing, Final review. SS: Data collection, Manuscript writing and Editing, Final review. SG: Data collection, Manuscript writing and Editing, Final review. FS: Data collection, Manuscript writing and Editing. AI: Concept, designing the survey, coordinating the survey, Data collection, Critical review of Manuscript, Final review. All authors read and approved the manuscript.

Funding

None.

Availability of data and materials

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.
Table 2 Transfemoral Vs. Transradial access practices in Fellows-in-Training and teaching faculty

Variable	Total % (n)	Trainee % (n)	Trainer % (n)	P value
Use of ultrasound for gaining TRA				
US TRA every case	14 (15)	18 (11)	8 (4)	0.16
US only if initial assessment hints difficulty	43 (47)	44 (27)	41 (20)	0.72
US if pulse guided access fails once or twice	34 (37)	31 (19)	37 (18)	0.54
Never	10 (11)	6.5 (4)	14 (7)	0.18
Use of ultrasound for gaining TFA				
US TFA every case	50 (55)	56 (34)	43 (21)	0.18
If initial assessment hints difficult access	22 (24)	26 (16)	16 (8)	0.2
If pulse guided access fails once or twice	16 (18)	16 (10)	16 (8)	0.9
Never	12 (13)	2 (1)	24 (12)	<0.001
Percentage of TFAs on an average day in the catheterization lab				
Average TFA per day (Mean percent)	34.4	34	35	0.58
Grade of expertise and comfort with access [Scale of 1–10; 10 being expert]				
Self-graded expertise and comfort for TRA	8	7	9	<0.001
Self-graded expertise and comfort for TFA	7.8	6	10	<0.001
Witnessed and managed TFA-related complications in preceding 12 months				
Less than 5	38 (42)	33 (20)	45 (22)	0.19
5–10	43 (47)	46 (28)	39 (19)	0.45
11–15	11 (12)	13 (8)	8 (4)	0.41
16–20	3 (3)	5 (3)	0 (0)	0.25
More than 20	5 (6)	3 (2)	8 (4)	0.26
Preferred Access				
TFA first	16 (18)	5 (3)	31 (15)	0.001
TRA first	84 (92)	95 (58)	69 (34)	0.001
Reason for preference of access				
Associated risk factor profile of access	72 (79)	75 (46)	67 (33)	0.35
Seen/done/taught more	49 (54)	62 (38)	33 (16)	0.002
Ability to maneuver	20 (22)	9 (5)	35 (17)	0.001
Preservation of radial conduits	3 (4)	0 (0)	8 (4)	0.04
Ability to upsize to larger bore	13 (14)	3 (2)	24 (12)	0.001
Ease of closure	64 (70)	69 (42)	57 (28)	0.20
Patient satisfaction	75 (83)	85 (52)	63 (31)	0.008
Training center*radial first*policy	40 (44)	51 (31)	26 (13)	0.01
High exposure to radial arterial lines	12 (13)	20 (12)	2 (1)	0.006
Low exposure to femoral arterial lines	12 (13)	21 (13)	0 (0)	0.001
Future of TFA				
Will remain just as frequent & viable	17 (19)	18 (11)	16 (8)	0.81
Will be entirely replaced	3 (3)	3 (2)	2 (1)	1.0
Frequency will reduce but will remain viable for certain cases	80 (88)	79 (48)	82 (40)	0.70
Do you believe you [they] will get the same level/expertise of TFA training as your predecessors by the time you [they] graduate?				
Yes	50 (55)	62 (38)	35 (17)	0.004
Are you concerned about the quality/quantity of TFA training?				
Yes very	23 (25)	11 (7)	37 (18)	0.002
Yes somewhat	34 (37)	36 (22)	31 (15)	0.54
Not concerned; satisfied	41 (45)	51 (31)	28 (14)	0.02
No, exposure is declining but TFA will soon be irrelevant	1.8 (2)	1.6 (1)	2 (1)	1.0
Validity of the proposed “Campeau Radial Paradox”				
Believe the paradox is Valid	63 (69)	61 (37)	65 (32)	0.62
Declarations

Ethics approval and consent to participate

Institution review board of the University of Toledo Health Sciences determined that Ethics approval was not needed as no patient data was collected.

Consent to publish

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Cardiovascular Medicine, University of Toledo, Toledo, OH, USA. 2 College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA. 3 Department of Cardiovascular Medicine, University of Kentucky, Bowling Green, USA. 4 Internal Medicine, St. Francis Medical Center, University of Illinois at Peoria, Peoria, USA. 5 Internal Medicine, Mercy St. Vincent Medical Center, Toledo, OH, USA. 6 Department of Medicine, Kythera Teaching Hospital, Peshawar, Pakistan. 7 Professor and Program Director of Cardiovascular Medicine and Interventional Cardiology, University of Toledo, 3000 Arlington Ave, MS 1118, Toledo 43614, OH, USA.

Received: 22 July 2020 Accepted: 17 May 2021

Published online: 21 May 2021

References

1. Le May MR, Wells GA. Unveiling the radial paradox. Circ Cardiovasc Interv. 2017;10(2):e004865.
2. Campeau L. Percutaneous radial artery approach for coronary angiography. Cathet Cardiovasc Diagn. 1989;16(1):3–7.
3. Bianchi R, D’Acquierno L, Crisci M, et al. From femoral to radial approach in coronary intervention: review of the literature and 6 years single-center experience. Angiology. 2016;68(4):281–7.
4. Kiemeney F, Laarmann GJ, Odekerken DE, et al. A randomized comparison of percutaneous transluminal coronary angioplasty by the radial, brachial and femoral approaches: the access study. J Am Coll Cardiol. 1997;29(6):1269–75.
5. Berntz I, Horak D, Stasek J, et al. ST-segment elevation myocardial infarction treated by radial or femoral approach in a multicenter randomized clinical trial: the STEMIRA/RADIAL trial. J Am Coll Cardiol. 2014;63(10):964–72.
6. Rao SV, Cohen MG, Kandzari DE, et al. The transradial approach to percutaneous coronary intervention: historical perspective, current concepts, and future directions. J Am Coll Cardiol. 2010;55(20):2187–95.
7. Feldman DN, Swaminathan RV, Kaltenbach LA, et al. Adoption of radial access and comparison of outcomes to femoral access in percutaneous coronary intervention: an updated report from the national cardiovascular data registry (2007–2012). Circulation. 2013;127(23):2295–306.
8. Jolly SS, Amlani S, Hamon M, et al. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009;157(1):132–40.
9. Chase AJ, Fretz EB, Warburton WP, et al. Association of the arterial access site at angioplasty with transfusion and mortality: the M.O.R.T.A.L study (mortality benefit of reduced transfusion after percutaneous coronary intervention via the arm or leg). Heart (Br Cardiac Soc). 2008;94(8):1019–25.
10. Romagnoli E, Biondi-Zoccai G, Scabasbi A, et al. Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFFL-STEACS (radial versus femoral randomized investigation in ST-elevation acute coronary syndrome) study. J Am Coll Cardiol. 2012;60(24):2481–9.
11. Valgimigli M, Gagnor A, Calabro R, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. The Lancet. 2015;385(9986):2465–76.
12. Hildick-Smith DJR, Lowe MD, Walsh JT, et al. Coronary angiography from the radial artery: experience, complications and limitations. Int J Cardiol. 1998;64(3):231–9.
13. Valgimigli M, Saa F, Guastaroba P, et al. Transradial versus transfemoral intervention for acute myocardial infarction: a propensity score-adjusted and matched analysis from the REAL (Registro regionale AngiopLas- tie dell’Emilia-Romagna) multicenter registry. JACC Cardiovasc Interv. 2012;5(1):23–35.
14. Rao SV, Hess CN, Barham B, et al. A registry-based randomized trial comparing radial and femoral approaches in women undergoing percutaneous coronary intervention: the SAFE-PCI for Women (Study of Access Site for Enhancement of PCI for Women) trial. JACC Cardiovasc Interv. 2014;7(8):857–67.
15. Jolly SS, Yusuf S, Cairns J, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet (London, England). 2013;377(9775):1409–20.
16. Ratib K, Mamas MA, Anderson SG, et al. Access site practice and procedural outcomes in relation to clinical presentation in 439,947 patients undergoing percutaneous coronary intervention in the United Kingdom. JACC Cardiovasc Interv. 2015;8(1, Part A):20–9.
17. Rao SV, Ou FS, Wang FY, et al. Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention. A report from the National Cardiovascular Data Registry. JACC Cardiovasc Interv. 2008;1(4):379–86.
18. Montalescot G, Óngen Z, Guindy R, et al. Predictors of outcome in patients undergoing PCI. Results of the RIVIERA study. Int J Cardiol. 2008;129(3):379–87.
19. Hulme W, Sperrin M, Kontopantelis E, et al. Increased radial access is not associated with worse femoral outcomes for percutaneous coronary intervention in the United Kingdom. Circ Cardiovasc Interv. 2017;10(2):e004279.
20. Mamas MA, Anderson SG, Carr M, et al. Baseline bleeding risk and arterial access site practice in relation to procedural outcomes after percutaneous coronary intervention. J Am Coll Cardiol. 2014;64(15):1554–64.
21. Kwok CS, Kontopantelis E, Kunadian V, et al. Effect of access site, gender, and indication on clinical outcomes after percutaneous coronary intervention: insights from the British Cardiovascular Intervention Society (BCIS). Am Heart J. 2015;170(1):164–72.
22. Mamas MA, Anderson SG, Ratib K, et al. Arterial access site utilization in cardiogenic shock in the United Kingdom: is radial access feasible? Am Heart J. 2014;167(6):900–908.e901.
23. Baklanov DV, Kaltenbach LA, Marco SP, et al. The prevalence and outcomes of transradial percutaneous coronary intervention for ST-segment elevation myocardial infarction: analysis from the National Cardiovascular Data Registry (2007 to 2011). J Am Coll Cardiol. 2013;62(4):420–6.
24. Mamas MA, Ratib K, Routledge H, et al. Influence of arterial access site selection on outcomes in primary percutaneous coronary intervention: are the results of randomized trials achievable in clinical practice? JACC Cardiovasc Interv. 2013;6(7):698–706.
25. Mamas MA, Ratib K, Routledge H, et al. Influence of access site selection on PCI-related adverse events in patients with STEMI meta-analysis of randomised controlled trials. Heart (Br Cardiac Soc). 2012;98(4):303–11.
26. Dandekar VK, Vidovich MI, Shroff AR. Complications of transradial catheterization. Cardiovasc Revasc Med. 2012;13(1):39–50.
27. Mason PJ, Shah B, Tamsis-Holland JE, et al. An update on radial artery access and best practices for transradial coronary angiography and intervention in acute coronary syndrome: a scientific statement from the American Heart Association. Circ Cardiovasc Interv. 2018;11(9):e000035.
28. Gan L, Lib O, Liuc R, Zhao Y, Quic J, Liao Y. Effectiveness and feasibility of transradial approaches for primary percutaneous coronary intervention in patients with acute myocardial infarction. J Nanjing Med Univ. 2009;23(4):270–4.
29. Chodor P, Krupa H, Kurek T, et al. RADIal versus femoral approach for percutaneous coronary interventions in patients with Acute Myocardial Infarction (RADIAMI): a prospective, randomized, single-center clinical trial. Cardiol J. 2009;16(4):332–40.
30. Chodor P, Kurek T, Kowalczuk A, et al. Radial vs femoral approach with StarClose clip placement for primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. RADIAMI II: a prospective, randomised, single centre trial. Kardiol Pol. 2011;69(8):763–71.
31. Safley DM, Amin AP, House JA, et al. Comparison of costs between transradial and transfemoral percutaneous coronary intervention: a cohort analysis from the Premier research database. Am Heart J. 2013;165(3):303–309.e302.

32. Cooper CJ, El-Shiiek RA, Cohen DJ, et al. Effect of transradial access on quality of life and cost of cardiac catheterization: a randomized comparison. Am Heart J. 1999;138(3):430–6.

33. Hess CN, Krucoff MW, Sheng S, et al. Comparison of quality-of-life measures after radial versus femoral arterial access for cardiac catheterization in women: results of the Study of Access Site for Enhancement of Percutaneous Coronary Intervention for Women quality-of-life substudy. Am Heart J. 2015;170(2):371–9.

34. Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting Without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):326–31.

35. Van Leeuwen MA, van der Heijden DJ, Hermie J, et al. The long-term effect of transradial coronary catheterisation on upper limb function. EuroIntervention. 2017;12(14):1766–72.

36. Rinfit S, Kennedy WA, Lachaine J, et al. Economic Impact of same-day home discharge after uncomplicated transradial percutaneous coronary intervention: Hazards-only Abciximab regimen. JACC Cardiovasc Interv. 2010;3(10):1011–9.

37. Mitchell MD, Hong JA, Lee BY, et al. Systematic review and cost-benefit analysis of radial artery access for coronary angiography and intervention. Circ Cardiovasc Qual Outcomes. 2012;5(4):454–62.

38. PURSUIT Investigators. Inhibition of platelet glycoprotein lib/lla with epifibatide in patients with acute coronary syndromes. N Engl J Med. 1998;339(7):436–43.

39. Bertrand OF, Rao SV, Pancholy S, et al. Transradial approach for coronary angiography and interventions: results of the first international transradial practice survey. JACC Cardiovasc Interv. 2010;3(10):1022–31.

40. Mamas MA, Nolan J, Belder MAD, et al. Changes in arterial access site and association with mortality in the United Kingdom. Circulation. 2016;133(7):1653–67.

41. Ludman P. BCS audit returns: adult interventional procedures Jan 2010 to Dec 2010. Paper presented at: British Cardiovascular Intervention Society Autumn Meeting 2011.

42. Azzalini L, Tosin K, Chabot-Blanchet M, et al. The benefits conferred by radial access for cardiac catheterization are offset by a paradoxical increase in the rate of vascular access site complications with femoral access: the Campeau radial paradox. JACC Cardiovasc Interv. 2015;8(14):1854–64.

43. Le May MR, Singh K, Wells GA. Efficacy of radial versus femoral access in the acute coronary syndrome: is it the operator or the operation that matters? JACC Cardiovasc Interv. 2015;8(11):1405–9.

44. Brierie D, Yong A. Radial versus femoral access for cardiac catheterisation. Lancet (London, England). 2011;386(10011):2393–4.

45. Dowling C, Rao S, Kerr N, Muller D. Radial versus femoral access for cardiac catheterisation. Lancet (London, England). 2015;386(10011):2392.

46. Shah R, Gardner JD. Radial versus femoral access for cardiac catheterisation. Lancet (London, England). 2015;386(10011):2392–3.

47. LoTS, Nolan J, Fountzopoulos E, et al. Radial artery anomaly and its influence on transradial coronary procedural outcome. Heart (British Cardiac Society). 2009;95(5):410–5.

48. Rafie IM, Uddin MM, Ossei-Gerning N, et al. Patients undergoing PCI from the femoral route by default radial operators are at high risk of vascular access-site complications. EuroIntervention. 2014;9(10):1189–94.

49. Bradley SM, Rao SV, Curtis JP, et al. Change in hospital-level use of transradial percutaneous coronary intervention and perioperative outcomes: insights from the national cardiovascular data registry. Circ Cardiovasc Qual Outcomes. 2014;7(4):550–9.

50. Laffel GL, Barnett AI, Finkelstein S, Kaye MP. The relation between experience and outcome in heart transplantation. N Engl J Med. 1992;327(7):1220–5.

51. Sanchez PL, Harrell LC, Salas RE, Palacios IF. Learning curve of the lineou technique of percutaneous mitral balloon valvuloplasty. Am J Cardiol. 2001;88(6):662–7.

52. Damluji AA, Nelson DW, Valgimigli M, Windcker S, Byrne RA, Cohen F, Patel T, Brilakis ES, Banerjee S, Mayol J, Cantor WJ. Transfemoral approach for coronary angiography and intervention: a collaboration of international cardiovascular societies. JACC Cardiovasc Interv. 2017;10(22):2269–79.

53. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Juelensen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windcker S, ESC Scientific Document Group. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the Management of Acute Coronary Syndromes in Patients Presenting Without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267–315. https://doi.org/10.1093/eurheartj/ehv320.

54. Endorsed by the Latin American Society of Interventional Cardiology, PCI WRITING COMMITTEE, Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollemann SB, Hot SC, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Ting HH; STEMI WRITING COMMITTEE, O’Gara PT, Kushner FG, Ascheim DD, Brindis RG, Casey DE Jr, Chung MK, de Lemos JA, Diercks DB, Fang JG, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Kristin Newby L, Ornato JP, Ou N, Radford MJ, Tambis-Holland JE, Tommaso CL, Tracy CM, Joseph Woo Y, Zhao DX, ACC/AHA TASK FORCE MEMBERS, Halperin JL, Levine GN, Anderson JL, Ali Ali-Khabat SM, Birnkrant KK, Bootburt S, Bridis RG, Cirraoje JA, Curtis LH, Fleisher LA, Gentile F, Gidding S, Hlatky MA, Ikonomidis J, Joglar J, Kovacs RJ, Magnus Ohman E, Pressler SJ, Sellke FW, Shen WK, Wijesundara DN. 2015 ACC/AHA/SCI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA/AATS/PCNA/SCAI/STS guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv. 2016;87(6):1001–19. https://doi.org/10.1002/ccd.26325.

55. Mason PJ, Shah B, Tamis-Holland JE, Bird JA, Cohen MG, Saffirstein J, Drachman DE, Vala JA, Rhodes D, Gilchrist IC, American Heart Association Interventional Cardiology Care Committee of the Council on Cardiovascular, Council on Cardiovascular and Stroke Nursing, Council on Peripheral Vascular Disease, and Council on Genomic and Precision Medicine. An Update on Radial Artery Access and Best Practices for Transradial Coronary Angiography and Intervention in Acute Coronary Syndrome: a scientific statement from the American Heart Association. Circ Cardiovasc Qual Outcomes. 2018;11(9):e000035. https://doi.org/10.1161/HCQO.0000000000000035.

56. Kolkailah AA, Alreshq RS, Muhammed AM, et al. Transradial versus transfemoral approach for diagnostic coronary angiography and percutaneous coronary intervention in people with coronary artery disease. Cochrane Database Syst Rev. 2018;4(4):CD012318. https://doi.org/10.1002/14651858.CD012318.pub2.

57. McKeown LA. Campeau paradox: is femoral proficiency lost when radial access thrives? November 24, 2015; https://www.tctmd.com/news/campeau-paradox-femoral-proficiency-lost-when-radial-access-thrives.

58. Mamas MA, Fraser DGW, Ratib K, et al. Minimising radial injury: prevention is better than cure: EuroIntervention. 2014;10(7):824–32.

59. Sato AH, Roberts JS, Abu-Fadel MS, et al. Real-time ultrasound guidance facilitates transradial access: RAUST (radial artery access with ultrasound trial). JACC Cardiovasc Interv. 2015;8(2):283–91.

60. Farooq V, Goedhart D, Ludman P, et al. Relationship between femoral vascular closure devices and short-term mortality from 271,845 percutaneous coronary intervention procedures performed in the United Kingdom between 2006 and 2011. Circ Cardiovasc Interv. 2016;9(6):e003560.

61. Cilingiroglu M, Feldman T, Salinger MH, et al. Fluoroscopically-guided micropuncture femoral artery access for large-caliber sheath insertion. J Invasive Cardiol. 2011;23(4):157–61.

62. Gedikoglu M, Oguzkurt L, Gurl S, et al. Comparison of ultrasound guidance with the traditional palpation and fluoroscopy method for the common femoral artery puncture. Catheter Cardiovasc Interv. 2013;82(7):1187–92.

63. Kerre S, Kustermans L, Vandendriessche T, et al. Cost-effectiveness of contemporary vascular closure devices for the prevention of vascular access complications. }

Page 8 of 9Changal
complications after percutaneous coronary interventions in an all-comers PCI population. EuroIntervention. 2014;10(2):191–7.

64. Shroff AR, Fernandez C, Vidovich M, Rao SV, Cowley M, Bertrand OF, Patel TM, Pancholy SB. Contemporary transradial access practices: results of the second international survey. Catheter Cardiovasc Interv. 2019;93(7):1276–1287. https://doi.org/10.1002/ccd.27989. Epub 2018 Nov 19. Erratum in: Catheter Cardiovasc Interv. 2019;94(3):507.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.