A general framework for identifying oligogenic combinations of rare variants in complex disorders

Vijay Kumar Pounraja1,2 and Santhosh Girirajan1,2,3

1. Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
2. Bioinformatics and Genomics Graduate Program, The Huck Institute of the Life Sciences, University Park, PA 16802
3. Department of Anthropology, Pennsylvania State University, University Park, PA 16802

Correspondence:
Santhosh Girirajan
205A Life Sciences Building
Pennsylvania State University
University Park, PA 16802
E-mail: sxg47@psu.edu
Table of Contents

Page	Section	
23	Supplemental Material	4
24	Definitions	4
25	A primer to the apriori algorithm	5
26	Combinatorial complexity	5
27	List of parameters to constrain search and prune search space	5
28	Using the apriori algorithm	7
29	Case/control enrichment analysis	7
30	Comorbidity analysis	7
31	Supplemental Figures	9
32	Supplemental Figure S1: Technical workflow of RareComb	9
33	Supplemental Figure S2: Summary of significant gene pairs and triplets identified from the SPARK cohort	10
34	Supplemental Figure S3: The range of p-values and Cohen’s d for mutated gene pairs in a representative set of probands from the SPARK cohort	11
35	Supplemental Figure S4: Comparison of IQ scores of individuals carrying mutations in either of the constituent genes (SSC Cohort) with those carrying mutations in both genes of significant gene pairs	12
36	Supplemental Figure S5: Rare variant pairs contributing to intellectual disability (ID), obtained using a conservative approach	13
37	Supplemental Figure S6: Rare variant pairs contributing to intellectual disability (ID), obtained by analyzing male and female probands together	14
38	Supplemental Figure S7: Comparison of IQ scores of carriers of mutations in significant gene triplets compared with the simulated distribution	15
39	Supplemental Figure S8: Analysis of parental inheritance patterns	16
40	Supplemental Figure S9: Analysis of parental inheritance pattern of significant gene pairs associated with autism from the SPARK cohort	17
41	Supplemental Figure S10: Comparison of p-values between 52 (obtained using all SPARK variants) and 148 significant gene pairs (obtained using variants observed in both SPARK & SSC cohorts)	18
42	Supplemental Figure S11: GO term enrichment analysis for genes within significant pairs and triplets	19
43	Supplemental Figure S12: Distribution of the expected number of phenotypes shared between two genes within HPO	20
44	Supplemental Figure S13: Generalizable nature of RareComb illustrated using specific examples for pairs and triplets	21
45	Supplemental Figure S14: A primer to the apriori algorithm and association rule mining	22
Supplemental Material

Definitions

- **Combination**: Multiple genomic entities considered together. Combinations with two entities constitute a pair, three entities constitute a triplet, and so on. For example, genes A, B and C can form four combinations: three pairs AB, AC and BC, and one triplet ABC.

- **Size/length of a combination**: Number of genomic entities under consideration. Pairs are of length 2 and triplets are of length 3.

- **Events**: Genomic events such as a structural variant or loss-of-function (LoF) or missense mutation observed within a single genomic unit such as a gene. Occurrence of an event is denoted as \{Gene A = 1\}.

- **Non-events**: Absence of genomic events within a given genomic unit, denoted as \{Gene B = 0\}.

- **Simultaneous events**: When events are observed in all constituent entities of a combination. Simultaneous occurrence of mutations in gene A and gene B are denoted as \{Gene A=1 & Gene B=1\}.

- **Simultaneous non-events**: When no events are observed in all constituent entities of a combination, denoted as \{Gene A=0 & Gene B=0\}.

- **Non-simultaneous events**: Events occur in at least one but not all constituent entities of a combination, denoted as \{Gene A=1 & Gene B=0\}, \{Gene A=0 & Gene B=1 & Gene C=1\}, etc.
A primer to the apriori algorithm

Combinatorial complexity

Current approaches for analysis of rare variants in complex disease deal with data sparsity by comparing aggregate enrichment of a specific variant (such as a CNV) or collective burden of variants between cases and controls. Analysis of combinations of rare events is challenging because substantially larger sample sizes are required to observe such events. For example, two independent rare variants ‘rv1’ and ‘rv2’ with a minor allele frequency of 5% (1 in 20 individuals) can be expected to be observed together only in 1/400 individuals. In fact, for every ‘n’ samples required to observe a rare variant at a given allele frequency in a cohort, it takes at least n^2 samples to observe two rare variants of similar allele frequencies together. Both n and n^2 increase exponentially with decreases in allele frequency thresholds. Even when large cohorts are available, an efficient algorithm is required to overcome the combinatorial explosion and efficiently calculate the frequency of simultaneously occurring rare events from sparse datasets.

List of parameters to constrain search and prune search space

The apriori algorithm is a breadth-first search algorithm that has become synonymous with two data mining techniques, ‘association rule learning’ and ‘frequent itemset mining’. It is used to either automatically identify interesting associations between two or more variables called ‘rules’, of the format ‘{Gene A=1, Gene B=1} => {Phenotype=Severe}’, or simply list frequently occurring set of items called ‘itemsets’, of the format {Gene A=1, Gene B=1, Gene C=1}, that meet a minimum frequency threshold (support) supplied to constrain the algorithm. Rules have two sides, the ‘antecedent’ on the left and the ‘consequent’ on the right, connected by the directionality of their association. The number of items in a rule is its length. The algorithm can report one or more items in the antecedent, but its consequent can only be a single item. Frequent itemsets are simply list of items without any relationship or directionality among them. The algorithm reports the itemsets along with their absolute frequencies. For example, the rule {Gene A=1, Gene B=1} => {Phenotype=Severe} has a length of 3, where {Gene A=1, Gene B=1} is the antecedent and {Phenotype=Severe} is the consequent. Similarly, {Gene A=1, Gene B=1, Gene C=1, Gene D=1} is an itemset of length 4.

Searching for patterns involving more than two items is computationally challenging due to the resulting combinatorial explosion. For example, to identify rules of length 4 using just 100 items, as many as 4 million possibilities (100C4) must be considered, which sharply increases to 75 million if the length is increased to 5 (100C5). The apriori algorithm addresses this challenge by constraining the search space using three important parameters that control the length, support/frequency, and confidence of the final set of rules in the output (Supp. Figure 12).

Confidence is only applicable to rules, whereas the other two metrics are applicable to both rules and frequent itemsets. The algorithm systematically prunes the search space by using a subset of rules/itemsets of smaller lengths that meet the user-provided criteria for the three parameters to
expand the search to rules/itemsets of larger lengths. This approach allows it to perform computationally efficient searches.

The three parameters used to constrain the algorithm are as follows:

1) **Length of the rule/itemset**: The length of the rule/itemset is the primary determinant of the search space due to its combinatorial relationship with the number of input items. While an upper limit for length is often supplied to the algorithm, a lower limit can also be specified if necessary.

2) **Support for the rule/itemset**: Support indicates the frequency in which the constituent items of an itemset or a rule appear together within a set of observations. If 20 out of 100 individuals carry the variants A and B together, then the support for the itemset \{A=1, B=1\} is 0.20. If all 20 individuals are associated with a ‘severe’ phenotype, then the support for the rule \{A=1, B=1\} \implies \{severe\} is also 0.2. Each observation containing these three items serves as additional evidence supporting the existence of an association between the antecedent and the consequent. Providing a threshold for ‘support’ (lower limit) limits the search to only those itemsets and rules in which the constituent items appear together at least as frequently as the threshold.

3) **Confidence of the rule**: Confidence indicates the probability of observing the consequent when the antecedent is observed. For example, let’s assume the antecedent \{A=1, B=1\} is observed in 25 out of 100 individuals (support for the antecedent = 0.25), and the antecedent \{A=1, B=1\} is observed together with the consequent \{severe phenotype\} in 20 of those instances (i.e., support for the rule \{A=1, B=1\} \implies \{severe phenotype\} is 0.20). Here, 80% of all individuals carrying variants A and B together have a severe phenotype, meaning that confidence = [support for the rule/support for the antecedent] = 0.2/0.25 = 80%. Since rules with high confidence could be predictive of the outcome, a lower limit for this parameter is often provided to the algorithm.

It should be noted that the confidence metric reported for a rule does not take the frequency of the consequent within the cohort into account. For example, if there are three times as many cases as controls in a cohort (for a binary outcome), a genotype combination that occurs three times as frequently in cases than controls would have a confidence of 75%. i.e., 3/4th of all co-occurring genotypic events is associated with one of the two possible outcomes. While 75% confidence might suggest that a genotype combination is predictive of the outcome, it was achieved simply due to the relatively higher frequency of one of the two binary outcomes in the cohort. A fourth useful parameter named ‘Lift’ takes this limitation into consideration and adjusts the confidence by controlling for the frequency of the consequent, where Lift = [Confidence/Frequency of the consequent]. So, the lift for an antecedent ‘A’ and the consequent ‘C’ is \[P(A\cap C)/P(A)\] or simply \[P(A\cap C)/P(A)* P(C)\]. Basic axioms of probability dictate that if A and C are independent, P(A\cap C) would be the same as P(A)*P(C), making lift a measure of the extent of dependence between the antecedent and the consequent. Conversely, if the lift
score is 1, the antecedent and consequent are independent of each other. Therefore, the lift score is directly proportional to the dependence between the antecedent and the consequent. After incorporating the frequency of the consequent in the prior example, the lift score becomes 1. The lift score can hence be used to identify truly dependent events among all high confidence rules. Unlike length, support, and confidence, thresholds for lift cannot be supplied to constrain the apriori algorithm prior to invoking it, but can instead be used post-hoc to identify high quality rules.

Using the apriori algorithm
The ability of the apriori algorithm to generate results in two formats, ‘frequent itemsets’ and ‘rules’, provides flexibility to leverage it in multiple ways. These two formats allow genotypes to be either analyzed independently or together with the phenotypes. ‘Frequent itemsets’ is the best fit for counting the frequency of simultaneous events involving only the genotypes. For analyses involving both genotypes and phenotypes, where any meaningful combination must involve at least a single phenotype, ‘rules’ are the best fit since the algorithm can be constrained to include only the phenotypes as the consequent item in the rule. We use both formats for counting the frequency of simultaneous events along with the general principles of statistical inference in two specific ways: one involving just the genotypes for case/control comparisons, and the other involving both genotypes and phenotypes for assessing comorbidities.

Case/control enrichment analysis
RareComb can be used to identify genotype combinations that exhibit differential enrichment of simultaneous events between two groups. As genotypes are analyzed exclusively in this approach, ‘frequent itemsets’ are generated using the apriori algorithm. The minimum frequency of simultaneous events (support threshold) in cases is provided as the initial constraint to the algorithm, while being agnostic to the absolute frequency in controls. Once all genotype combinations in which the frequency of simultaneous events is at least as high as the support threshold in cases are identified, the p-values from the binomial test quantifying the magnitude of enrichment relative to the expectation under the assumption of independence are calculated. For the subset of combinations with higher-than-expected frequency of simultaneous events in cases, the corresponding p-values in the control group are calculated. The combinations in which simultaneous events occur more frequently than expected in both cases and controls are discarded, since they signify potentially dependent genomic events (due to factors such as linkage disequilibrium). Finally, combinations that are statistically significant in cases after adjusting the p-values for multiple testing while remaining non-significant in controls are considered to impact disease/phenotype.

Comorbidity analysis
Understanding the genetic basis of comorbid phenotypes associated with complex diseases is challenging due to two main reasons. First, when multiple phenotypes are considered, even in a
large cohort, the number of individuals with a specific combination of phenotypes is very small. For every ‘n’ binary phenotype, 2^n configurations of comorbidities are possible, and it is challenging to find adequate samples representing each configuration in complex disease cohorts. Second, even if the sample size is large enough to have adequate individuals for each configuration, current methods are not able to effectively explain or predict associations with combinations of phenotypes. In many analyses, either a new outcome variable is created based on the composite configuration of the phenotypes, or one is derived based on how the comorbid phenotypes cluster among themselves within the cohort. We extend our method to overcome existing limitations to provide explanations for multiple phenotypes considered together as individual units. While retaining granular phenotypes reduces the size of samples available within each configuration, the rarity of such phenotypic configurations can be turned into an advantage by screening for genotypes that are observed together more frequently than expected within such rare phenotype configurations. Our framework can be used to measure the likelihood of observing a set of phenotypes and genotypes together as frequently as they are observed within the cohort using the frequencies of individual items. For example, let’s assume that 7 individuals in a cohort of size 2,000 are diagnosed with three phenotypes ‘p1’, ‘p2’ and ‘p3’ simultaneously, and 5 of them carry deleterious mutations simultaneously in genes ‘g1’ and ‘g2’. Let’s also assume that phenotypes p1, p2 and p3 and genotypes ‘g1’ and ‘g2’ are each observed independently in exactly 20 individuals within the cohort (1% of the cohort). One of the axioms of probability dictates that if these five events are independent, the probability of observing them all together in an individual is $(0.01)^5$, making the odds of observing the combination ‘p1’, ‘p2’, ‘p3’, ‘g1’, ‘g2’ in 5 individuals by chance alone extremely unlikely. The method applies this reasoning to identify combinations of phenotypes that occur together with combinations of genotypes more frequently than expected by chance alone. Such a method can be challenging due to the exorbitant number of combinations to be evaluated ($100C_5 \approx 75$ million; $100C_5 \approx 255$ billion), but we address this challenge using the apriori algorithm to search for combinations that occur at least as frequently as the support threshold provided to constrain the algorithm.

The method analyzes the entire cohort and generates combinations that meet the input criterion for ‘support’ provided to the apriori algorithm. For this approach, the apriori algorithm is made to generate ‘rules’ with two specific constraints. First, only phenotypes are eligible to be the consequent item. Second, both genotypes and phenotypes are eligible to appear in the list of items in the antecedent portion of the rules. These constraints both limit the search space and ensure that any combination reported by the algorithm includes at least a single phenotype. Once the combinations that meet all input criteria for the apriori algorithm are obtained, the p-values from the binomial tests are calculated by comparing the expected frequency with the observed frequency of these qualifying combinations. The combinations that remain significant after multiple testing correction are identified as genotypes that contribute towards the comorbid phenotypes.
Supplemental Figures

Technical workflow of RareComb to analyze for pairs of genes

Case 1	G1	G2	G3
	1	0	0
Case 2	0	0	0
Case 3	0	1	1
Case 4	0	0	0
Case 5	1	1	0
Control 1	0	1	0
Control 2	0	0	1
Control 3	1	0	0
Control 4	0	0	0
Control 5	1	1	0

Step 1 | Split cases from controls

Step 2 | Calculate the frequency of individual events in each group

Step 3 | Run the apriori algorithm independently on each group to generate frequent itemsets for simultaneous events.

Step 4 | Obtain \(P(X \cap Y) \)

Step 5 | Run binomial tests

Step 6 | Adjust for multiple tests & compare p-values

Step 7 | Identify combinations with complementary p-value trend

Supplemental Figure S1: Technical workflow of RareComb

RareComb uses an input Boolean matrix consisting of variant information and binary phenotypic outcome for case-control analysis. It then applies the apriori algorithm independently to cases and controls to obtain the frequencies of simultaneously occurring events that meet the selection thresholds for length (pairs, triplets, etc.) and frequency. Binomial tests are applied to each eligible
combination independently within cases and controls. Gene combinations are considered significant (after multiple-testing correction), when mutations are observed simultaneously in their constituent genes more frequently than expected under the assumption of independence among them, in cases but not in controls.

Supplemental Figure S2: Summary of significant gene pairs and triplets identified from the SPARK cohort. Higher frequencies of simultaneous mutations are observed for pairs than for triplets (‘Case Counts’/‘Control Counts’ panels along the X-axis), since simultaneous events tend to occur less frequently for combinations of larger sizes than smaller sizes. Notably, most significant triplets were observed in five cases, whereas significant pairs were observed in five or more number of cases. Effect sizes (Cohen’s d) quantify the differences in absolute frequency of combinations in cases versus controls. Since we used a statistical power cut-off >90% to identify 570 significant triplets, effect size and power are not comparable between pairs and triplets.
Supplemental Figure S3: The range of p-values and Cohen’s d for mutated gene pairs in a representative set of probands from the SPARK cohort. This figure illustrates that an individual can carry more than one combination of mutated genes significantly associated with the same phenotype, with each combination showing different enrichment (from binomial tests) and effect sizes (Cohen’s d). Data from eight representative probands, each carrying multiple significant pairs of mutated genes, are shown here. The X-axis corresponds to probands, and the Y-axis shows p-values from binomial tests in cases and effect sizes measured using Cohen’s d.
Supplemental Figure S4: Comparison of IQ scores of individuals carrying mutations in either of the constituent genes (SSC Cohort) with those carrying mutations in both genes of significant gene pairs. Distributions of IQ scores from individuals carrying mutations in either of the two genes from select five mutated gene pairs are shown. The blue line indicates the mean of the distribution of IQ scores, and the red line indicates the mean IQ of individuals carrying mutations in both genes. We find that carriers of both mutations tend to have lower IQ scores on average compared to the average IQ of carriers of either of the two mutations.
Supplemental Figure S5: Rare variant pairs contributing to intellectual disability (ID), obtained using a conservative approach that considers all combinations that meet the frequency threshold in cases for multiple-testing correction. (A) An outline of the approach used to identify and validate mutated gene pairs and enriched in probands with ID is shown. We tested whether the 115 mutated gene pairs identified as significant in one cohort (SPARK) are also associated with severe phenotypes in an independent cohort (SSC). To test this, we obtained the mean IQ score of individuals from the SSC cohort carrying significant combinations identified from the SPARK cohort. Empirical p-values were then calculated based on the deviation of the mean IQ from the distribution of mean IQ scores obtained from 10,000 random draws in the simulation. (B) The mean IQ of individuals with mutated gene pairs in the SSC cohort was significantly lower (empirical p-value=0) when compared to the distribution of mean IQ scores obtained from the simulation.
Supplemental Figure S6: Rare variant pairs contributing to intellectual disability (ID), obtained by analyzing male and female probands together. (A) An outline of the approach used to identify and validate mutated gene pairs and enriched in probands with ID is shown. We tested whether the 199 mutated gene pairs identified as significant in one cohort (SPARK) are also associated with severe phenotypes in an independent cohort (SSC). To test this, we obtained the mean IQ score of individuals from the SSC cohort carrying significant combinations identified from the SPARK cohort. Empirical p-values were then calculated based on the deviation of the mean IQ from the distribution of mean IQ scores obtained from 10,000 random draws in the simulation. (B) The mean IQ of individuals with mutated gene pairs in the SSC cohort was significantly lower (empirical p-value=0) when compared to the distribution of mean IQ scores obtained from the simulation.
Supplemental Figure S7: Comparison of IQ scores of carriers of mutations in significant gene triplets compared with the simulated distribution. The mean IQ score of individuals carrying significant gene triplets in the SSC cohort (73.25) is significantly lower (empirical p-value = 0.0013) when compared to the distribution of mean IQ scores (82.4) obtained from the simulation (see Figure 2A).
A - Parental inheritance analysis workflow

SPARK Cohort
- 148 significant gene pairs
 - Identify variants in each gene within gene pairs
- 142 distinct probands & 926 instances
 - (Genes < Variants; Probands < Sig.Pairs)
 - Identify parental origin for each variant combination within each gene pair
 - 967 instances
 - Remove instances with conflicts (i.e., both parents carry one or both variants)
 - 887 instances
 - Calculate proportions for each inheritance category

Category	Proportion	Proportion 1	Proportion 2	Proportion 1k
1) Both Denovo	221/887 = 25%	aa1/x = a1%	aa2/y = a2%	aa1k/z = a1k%
2) Denovo + Maternal	244/887 = 28%	bb1/x = b1%	bb2/y = b2%	bb1k/z = b1k%
3) Denovo + Paternal	17/887 = 2%	cc1/x = c1%	cc2/y = c2%	cc1k/z = c1k%
4) Maternal + Paternal	108/887 = 12%	dd1/x = d1%	dd2/y = d2%	dd1k/z = d1k%
5) Both Maternal	226/887 = 25%	ee1/x = e1%	ee2/y = e2%	ee1k/z = e1k%
6) Both Paternal	71/887 = 8%	ff1/x = f1%	ff2/y = f2%	ff1k/z = f1k%

Simulation
- SPARK Cohort
 - 381,345 variants in 6,189 probands
 - Generate all possible variant pairs
 - 13.75 million pairs
 - 1000 draws of 926 random variant pairs

Comparisons
- Both Denovo: 25%
- Both Paternal: 8%

B - Sibling inheritance analysis workflow

SPARK Cohort
- 148 significant gene pairs
 - Select probands with sibling & identify variants in each gene within gene pairs
- 147 distinct variant pairs & 219 instances
 - Identify carrier status of corresponding siblings for each instance
 - 219 instances with carrier status in siblings
 - Calculate proportions for each inheritance category

Category	Proportion	Proportion 1	Proportion 2
1) Neither variants found	64/219 = 29.2%	aa1/x = a1%	aa2/y = a2%
2) One variant found	102/219 = 46.6%	bb1/x = b1%	bb2/y = b2%
3) Both variants found	53/219 = 24.2%	cc1/x = c1%	cc2/y = c2%

Simulation
- SPARK Cohort
 - Selected variants from 2,651 probands with a sibling
 - Generate all possible variant pairs
 - 4.9 million pairs
 - 1000 draws of 147 random variant pairs

Comparisons
- 29.2%
- 24.2%

Supplemental Figure S8: Analysis of parental inheritance patterns. (A) Outline of the steps involved in identifying the parental inheritance pattern of significant gene pairs and comparing them with distributions obtained from simulations. (B) Outline of the steps involved in identifying the carrier status of significant gene pairs in siblings and comparing them to distributions obtained from simulations.
Supplemental Figure S9: Analysis of parental inheritance pattern of significant gene pairs associated with autism from the SPARK cohort. Histograms show the fraction of all instances of mutated genes in a combination that belong to each of the six possible inheritance patterns compared to simulated distributions. Significant pairs were obtained by applying RareComb to SPARK data from probands as cases compared to parents as controls. For each simulation, the inheritance status of random pairs of mutated genes from the cohort were identified, and the fraction of those instances belonging to one of the six categories was calculated. Comparing the observed fractions with the mean of simulated fractions show statistically significant enrichment for instances when both variants are de novo or when one variant is de novo and the other transmitted from the mother.
Supplemental Figure S10: Comparison of p-values between 52 (obtained using all SPARK variants) and 148 significant gene pairs (obtained using variants observed in both SPARK & SSC cohorts). The shift in the distribution of p-values between the two analyses reflects the fact that combinations with more significant p-values could be observed when the method is applied to a larger set of genes compared to analysis using a smaller gene set. The larger the sample space of genes, the higher the likelihood of finding highly significant combinations.
Gene Ontology (GO) terms enriched for the constituent genes of significant pairs and triplets associated with intellectual disability

GO Term	Fold Enrichment
catechol-containing compound biosynthetic process	
catecholamine biosynthetic process	
axon regeneration	
neuron projection regeneration	
phenol-containing compound biosynthetic process	
cellular biogenic amine biosynthetic process	
amine biosynthetic process	
catechol-containing compound metabolic process	
catecholamine metabolic process	
regulation of acute inflammatory response	
response to axon injury	
cell recognition	
cellular amino acid metabolic process	
axon development	
detection of chemical stimulus involved in sensory perception of smell	
detection of stimulus involved in sensory perception	
neuron differentiation	
generation of neurons	
neurogenesis	
nervous system process	
cell differentiation	
multicellular organismal process	
leukotriene transport	
actin filament depolymerization	
xenobiotic catabolic process	
sarcomere organization	
cardiac myofibril assembly	
vitamin D metabolic process	
myofibril assembly	
striated muscle cell development	
detection of mechanical stimulus involved in sensory perception of sound	
negative regulation of amyloid–beta formation	
negative regulation of amyloid precursor protein catabolic process	
positive regulation of amyloid leukocyte cytokine production involved in immune response	
drug metabolic process	
positive regulation of blood coagulation	
positive regulation of hemostasis	
positive regulation of coagulation	
calcium–dependent cell–cell adhesion via plasma membrane cell adhesion molecules	
xenobiotic transport	
cellular component assembly involved in morphogenesis	
glycosaminoglycan catabolic process	
neuron maturation	
Schwann cell differentiation	
aminoglycan catabolic process	
actomyosin structure organization	
fat–soluble vitamin metabolic process	
muscle cell development	
regulation of extrinsic apoptotic signaling pathway in absence of ligand	
collagen fibril organization	

Supplemental Figure S11: GO term enrichment analysis for genes within significant pairs and triplets. Fold enrichment of GO terms identified as statistically significant using the...
binomial test are listed. Seven of the nine enriched GO terms shared between the genes from significant pairs and triplets were associated with nervous system development and function. For example, several neurotransmitter-related terms showed as high as 40-fold enrichment for genes from the significant pairs.

Supplemental Figure S12: Distribution of the expected number of phenotypes shared between two genes within HPO. Barplot represents the number of phenotypes shared by each of the ~10 million gene pairs formed by 4,484 genes from HPO. We found that 60.9% of the pairs shared either no phenotype (29.31%) or a single phenotype (31.54%) with each other. These proportions serve as expected baselines for the binomial tests to compare and identify the significance of the number of phenotypes shared between the significant gene pairs identified by RareComb.
Supplemental Figure S13: Generalizable nature of RareComb illustrated using specific examples for pairs and triplets. The principles of probability theory were used to derive the probability of co-occurring events expected under the assumption of independence for the constituent events. This principle was used to calculate significance of mutated gene pairs, and triplets, and can be extended to identify other higher-order combinations.
Supplemental Figure S14: A primer to the apriori algorithm and association rule mining.

A Diagram showing the search progression of the apriori algorithm. The apriori algorithm implemented in the R package ‘arules’ takes Boolean input data and searches for the frequency of simultaneous events efficiently by continually pruning the search space during each step of its progression, allowing it to enumerate the frequencies of combinations in a reasonable amount of time. **B** A typical application of the apriori algorithm is for association rule mining to identify
interesting relationships among highly frequent events. Parameters such as length, support and confidence are used to both constrain the algorithm and to prioritize significant associations.

Power analysis for the binomial test

Supplemental Figure S15: Power analysis of binomial tests to compare expected versus observed frequencies of co-occurring events. The panels along the X-axis show the minimum number of samples required for binomial tests to meet statistical powers of 80, 90 and 95% respectively, while the panels along the Y-axis show the sample size requirements at 1% and 5% statistical significance thresholds. Values along the X-axis represent the expected frequency of co-occurring events (0.1%, 0.2% and 0.3%) in cases, and line colors correspond to three specific frequencies (0.5%, 1% and 2%) in which co-occurring events are observed in cases. The results demonstrate that higher sample sizes are needed when comparisons must be sensitive enough to detect minor differences between expected and observed frequencies of co-occurring events, whereas relatively smaller sample sizes may be sufficient to achieve higher statistical power when such (i.e., exp. vs obs.) frequency differences are larger. Similarly, as expected, larger sample sizes are warranted for binomial tests to achieve high statistical power and to meet more stringent statistical significance thresholds.
Supplemental Figure S16: Power analysis for 2-sample 2-proportion test to compare the frequencies of co-occurring events in cases and controls. The panels along the X-axis show three specific frequencies of co-occurring events (0, 3, and 5) observed in 1,000 controls samples, while the panels along the Y-axis show the sample size requirements at 1% and 5% statistical significance thresholds. Values along the X-axis represent the statistical power achieved, and Y-axis denotes the sample size needed to achieve the corresponding power. Each line color represents four specific frequencies of simultaneous events (5, 10, 15 and 20 out of 1,000 samples) in cases. For example, to establish statistical difference between a co-occurring event that occurs 10/1,000 times in cases (green) and 3/1,000 times in controls (middle panel along the X-axis), it would take 19,174 samples to achieve a statistical power of 80% at 5% significance threshold (bottom panel along the Y-axis). The colors missing in some of the panels show that the sample size requirements are higher for such configurations to fit into this graph.
Supplemental Figure S17: Power analysis for 2-sample 2-proportion test for different sample sizes of case and control groups. The panels along the X and Y axes represent different sample sizes for cases and controls respectively. The values along the x-axis represent the frequency of co-occurring variants in cases and the color of lines correspond to the frequency of co-occurring variants in controls. For a given sample size for cases, the statistical power achieved increases with the increase in the number of control samples (along the y-axis panels). For example, if a particular combination is only observed 5 times in 500 samples in both cases and controls, statistical power available to establish difference in proportions is just 1%, but the power increases to 64% when the combination is observed 5 times in 5,000 controls.
Supplemental Figure S18: Performance of RareComb. Time taken by the pipeline to identify significant pairs and triplets using input files of various width and length is shown. The panels along the Y-axis represent the time taken to generate pairs versus triplets, and the Y-axis represent the time taken, in minutes, by RareComb to generate results. The values along the X-axis indicate the number of genes in the input file, and the line colors represent the sample size within the input files. As expected, an increase in the number of predictors is accompanied by the increase in the time taken by the method to generate pairs and triplets. Similarly, for pairs, the time taken increases with the increase in sample size. However, due to stochasticity in the input data and the complex relationship between the size of data under analysis and the minimum frequency threshold provided to the apriori algorithm, the method generated triplets faster with 50,000 samples compared to 10,000 samples. Notably, the method can generate results for pairs within 15 minutes and for triplets within three hours.
Supplemental Tables

Supplemental Table S1 (Excel File): List of 148 gene pairs identified by RareComb as significant when using variants common between SPARK and SSC cohorts to compare 1,215 probands diagnosed with intellectual disability (ID) with 4,974 probands without ID.

Supplemental Table S2 (Excel File): Enrichment for specific variant types within 148 significant gene pairs in probands with Intellectual Disability (ID). Only missense, stop-loss, and stop-gain mutations were part of all analyses.

Supplemental Table S3 (Excel File): List of 90 gene pairs with at least a single carrier in the SSC cohort along with the IQ of carriers of mutations in either vs. both genes of each gene pair. The p-values are from the one-sample Wilcoxon test.

Supplemental Table S4 (Excel File): List of 115 gene pairs identified by RareComb as significant using a conservative approach that considers all combinations that meet the frequency threshold in cases for multiple-testing correction, when comparing 1,215 probands diagnosed with intellectual disability (ID) with 4,974 probands without ID.

Supplemental Table S5 (Excel File): List of 199 gene pairs identified by RareComb as significant when considering both male and female probands, to compare 1,590 probands diagnosed with intellectual disability (ID) with 6,127 probands without ID, using variants common between SPARK and SSC cohorts.

Supplemental Table S6 (Excel File): List of 570 high quality gene triplets (statistical power at 5% > 90) identified by RareComb as significant when using variants common between SPARK and SSC cohorts to compare 1,215 probands diagnosed with intellectual disability (ID) with 4,974 probands without ID.

Supplemental Table S7 (Excel File): List of 110 gene pairs identified by RareComb as significant when comparing 7,596 Autism probands with 11,740 unaffected parents.

Supplemental Table S8 (Excel File): List of 52 gene pairs identified by RareComb as significant when using ALL SPARK variants to compare 1,215 probands diagnosed with intellectual disability (ID) and 4,974 probands without ID.

Supplemental Table S9 (Excel File): List of 230 high quality gene triplets (statistical power at 1% > 90) identified by RareComb as significant when using ALL SPARK variants to compare 1,215 probands diagnosed with intellectual disability (ID) with 4,974 probands without ID.

Supplemental Table S10 (Excel File): List of 19 gene pairs identified by RareComb as significant when using ALL SPARK variants from FEMALE probands to compare 375 probands diagnosed with intellectual disability (ID) and 1,528 probands without ID.
Supplemental Table S11 (Excel File): Enrichment and depletion of HPO phenotypes for the 95 genes forming 52 significant gene pairs when analyzing ALL variants from the SPARK cohort for the intellectual disability (ID) phenotype.

Supplemental Table S12 (Excel File): Summary of the number and fraction of gene pairs among all the possible pairs of genes within HPO database.

Supplemental Table S13 (Excel File): List of combinations with four constituent elements identified as significant by RareComb when assessing comorbid phenotypes.

Supplemental Table S14 (Excel File): List of combinations with five constituent elements identified as significant by RareComb when assessing comorbid phenotypes.