ON UNIQUENESS OF DISTRIBUTION OF A RANDOM
VARIABLE WHOSE INDEPENDENT COPIES SPAN A
SUBSPACE IN L_p

S. ASTASHKIN, F. SUKOCHEV, AND D. ZANIN

Abstract. Let $1 \leq p < 2$ and let $L_p = L_p[0,1]$ be the classical L_p-space of all (classes of) p-integrable functions on $[0,1]$. It is known that a sequence of independent copies of a mean zero random variable $f \in L_p$ spans in L_p a subspace isomorphic to some Orlicz sequence space l_M. We present precise connections between M and f and establish conditions under which the distribution of a random variable $f \in L_p$ whose independent copies span l_M in L_p is essentially unique.

1. Introduction

It is well known that the class of all subspaces of $L_1 = L_1(0,1)$ is very rich and still does not have any reasonable description. If we consider only symmetric subspaces of L_1, that is, subspaces with a symmetric basis or isomorphs of some symmetric function spaces, then these subspaces are known to be isomorphic to averages of Orlicz spaces [6, 13]. Far more information is available on subspaces of L_1 isomorphic to Orlicz spaces. First of all, an isomorph of an Orlicz sequence space $l_M \neq l_1$ in L_1 can always be given by the span of a sequence of independent identically distributed (i.i.d) random variables. The latter fact was discovered by M.I. Kadec in 1958 [8], who proved that for arbitrary $1 \leq p < q < 2$ there exists a symmetrically distributed function $f \in L_p$ (a q-stable random variable) such that the sequence $\{f_k\}_{k=1}^{\infty}$ of independent copies of f spans in L_p a subspace isomorphic to l_q.

This direction of study was taken further by J. Bretagnolle and D. Dacunha-Castelle (see [4, 5, 6]). In particular, D. Dacunha-Castelle showed that for every given mean zero $f \in L_p = L_p(0,1)$, the sequence $\{f_k\}_{k=1}^{\infty}$ of its independent copies is equivalent in L_p to the unit vector basis of some Orlicz sequence space l_M [6, Theorem 1, p.X.8]. Moreover, J. Bretagnolle and D. Dacunha-Castelle proved that an Orlicz function space $L_M = L_M[0,1]$ can be isomorphically embedded into the space L_p if and only if M is equivalent to a p-convex and 2-concave Orlicz function on $[0,\infty)$ [5, Theorem IV.3]. Later on some of these results were independently rediscovered by M. Braverman [2, 3].

Note that the methods used in [1, 4, 5, 2, 3] depend heavily on the techniques related to the theory of random processes. In a recent paper [11], two first named co-authors suggested a different approach to study of this problem, which is based
on methods and ideas from the interpolation theory of operators. In addition, it should be pointed out that papers [11, 5, 6, 2, 3] concern only with the verification of existence of a function \(f \) such that the sequence of its independent copies is equivalent in \(L_p \) to the unit vector basis in some Orlicz sequence space and do not address the question concerning the determination of \(f \), whereas [11] is mainly focused on revealing precise connections between the Orlicz function and the distribution of corresponding random variable \(f \). Among other results, in [11], it is shown the following. Let \(1 \leq p < 2 \) and let \(M \) be a \(p \)-convex and \(2 \)-concave Orlicz function on \([0, \infty)\) such that \(M(t) \neq t^p \) for small \(t > 0 \) and the function

\[
S(u) := -2pM(u) + (p + 1)uM'(u) - u^2M''(u)
\]

is positive on \((0, \infty)\), increasing and bounded on \((0, 1)\). Then, under some technical conditions on \(M \) (see [11] Proposition 12 and Theorem 15) the unit vector basis in \(l_M \) is equivalent in \(L_p \) to the sequence \(\{f_k\}_{k=1}^{\infty} \) of independent copies of an arbitrary mean zero function \(f \in L_p \) such that its distribution function

\[
n_f(\tau) := \lambda\{u : |f(u)| > \tau\}, \quad \tau > 0
\]

(\(\lambda \) is the Lebesgue measure) is equivalent to the function \(S(1/\tau) \) for \(\tau \geq 1 \).

The present paper continues this direction of research. Our main result (Theorem 1) is a somewhat surprising fact that in the case, when an Orlicz function \(M \) is ‘far’ from the extreme functions \(t^p \) and \(t^2 \), \(1 \leq p < 2 \), the distribution of a random variable \(f \in L_p \) whose independent copies span \(l_M \) essentially is equivalent to that of the function

\[
m(t) = \frac{1}{M^{-1}(t)}, \quad t > 0.
\]

Theorem 1. Let \(1 \leq p < 2 \) and let \(M \) be a \(p \)-convex and \(2 \)-concave Orlicz function. The following conditions are equivalent:

(i) The function \(M \) is \((p + \varepsilon)\)-convex and \((2 - \varepsilon)\)-concave for some \(\varepsilon > 0 \);

(ii) If a sequence \(\{f_k\}_{k=1}^{\infty} \) of independent copies of a mean zero random variable \(f \in L_p \) is equivalent in \(L_p \) to the unit vector basis \(\{e_k\}_{k=1}^{\infty} \) in \(L_M \), then the distribution function \(n_f(\tau) \) is equivalent to that of \(m \) for large \(\tau \).

(iii) The function \(m \in L_p \) and any sequence of independent copies of a mean zero random variable \(m \) is equivalent in \(L_p \) to the unit vector basis in \(l_M \).

Observe that even in the simplest case, when \(1 \leq p < q < 2 \) and \(M(t) = t^q, t \geq 0 \), the theorem above complements the above-mentioned classical Kadec result [3], by establishing the uniqueness of the distribution of a mean zero random variable \(f \) whose independent copies span \(l_q \) in \(L_p \).

It is worth noting that the assertion of Theorem 1 is in a sense sharp. Namely, in Proposition 13 we show that there exist two random variables \(x \) and \(y \) with non-equivalent distribution for large \(\tau \) whose independent copies span in \(L_1 \) the same Orlicz space \(l_M \), where \(M \) is equivalent to the function \(t/\log(e/t) \) for small \(t > 0 \).

Note that in the special case \(p = 1 \), another attempt to describe the connection between the distribution of a random variable \(f \in L_p \) and the corresponding Orlicz function \(M \) can be found in [12]. However, the methods used in [12] have a strong combinatorial flavor and formulas obtained there seem to be less accessible. Moreover, in [12] the question of uniqueness of distribution of \(f \) is not raised at all.
The proof of Theorem 1 is presented in Section 4. Two important components of the proof are Proposition 6 and Theorem 9, which are given in Sections 2 and 3, respectively.

We propose the following conjecture.

Conjecture 2. Let $1 \leq p < 2$ and let M be a p–convex and 2–concave Orlicz function. If there is a unique (up to equivalence near 0) mean zero function f whose independent copies are equivalent in L_p to the unit vector basis in l_M, then M is $(p+\varepsilon)$–convex and $(2-\varepsilon)$–concave for some $\varepsilon > 0$.

2. Preliminaries and auxiliary results

2.1. Orlicz functions and spaces.

For the theory of Orlicz spaces we refer to [9, 11].

Let M be an Orlicz function, that is, an increasing convex function on $[0, \infty)$ such that $M(0) = 0$. To any Orlicz function M we associate the Orlicz sequence space l_M of all sequences of scalars $a = (a_n)_{n=1}^{\infty}$ such that

$$\sum_{n=1}^{\infty} M\left(\frac{|a_n|}{\rho}\right) < \infty$$

for some $\rho > 0$. When equipped with the norm

$$\|a\|_{l_M} := \inf \left\{ \rho > 0 : \sum_{n=1}^{\infty} M\left(\frac{|a_n|}{\rho}\right) \leq 1 \right\},$$

l_M is a Banach space. Clearly, if $M(t) = t^p$, $p \geq 1$, then the Orlicz space l_M is the familiar space l_p. Moreover, the sequence $\{e_n\}_{n=1}^{\infty}$ given by

$$e_n = (0, \ldots, 0, 1, 0, \ldots)$$

$n - 1$ times

is a Schauder basis in every Orlicz space l_M provided that M satisfies the Δ_2–condition at zero, i.e., there are $u_0 > 0$ and $C > 0$ such that $M(2u) \leq CM(u)$ for all $0 < u < u_0$.

Similarly, if M is an Orlicz function, then the Orlicz function space $L_M = L_M[0,1]$ consists of all measurable functions x on $[0,1]$ such that the norm

$$\|x\|_{L_M} = \inf \left\{ u > 0 : \int_0^1 M(|x(t)|/u) \, dt \leq 1 \right\}$$

is finite.

Let $1 \leq p < q < \infty$. Given an Orlicz function M, we say that M is p-convex if the map $t \mapsto M(t^{1/p})$ is convex, and is q-concave if the map $t \mapsto M(t^{1/q})$ is concave. Throughout this paper, we assume that $M(1) = 1$ and that $M : [0, \infty) \to [0, \infty)$ is a bijection.

Careful inspection of the proof of [1] Lemma 5] establishes the following two lemmas.

Lemma 3. Let $1 \leq p < \infty$. An Orlicz function $M : [0, \infty) \to [0, \infty)$ satisfying Δ_2-condition at 0 is equivalent to a p-convex Orlicz function on the segment $[0,1]$.
if and only if there exists a constant $C > 0$ such that for all $0 < s < 1$ and all $0 < t \leq 1$ we have

$$M(st) \leq C s^p M(t).$$

Lemma 4. Let $1 < q < \infty$. An Orlicz function $M : [0, \infty) \to [0, \infty)$ is equivalent to a q-concave Orlicz function on the segment $[0, 1]$ if and only if there exists a constant $C > 0$ such that for all $0 < s < 1$ and all $0 < t \leq 1$ we have

$$C^{-1} s^q M(t) \leq M(st).$$

In what follows, by f^* we will denote the non-increasing right-continuous rearrangement of a random variable f, that is,

$$f^*(s) := \inf \{ t : n_f(t) \leq s \},$$

where n_f is the distribution function of the random variable f. One says that random variables f and g are equimeasurable if $f^*(t) = g^*(t), \ 0 < t \leq 1$ (equivalently, $n_f(\tau) = n_g(\tau), \ \tau > 0$). Finally, given two positive functions (quasinorms) f and g are said to be equivalent (we write $f \sim g$) if there exists a positive finite constant C such that $C^{-1} f \leq g \leq C f$. Sometimes, we say that these functions are equivalent for large (or small) values of the argument, meaning that the preceding inequalities hold only for its specified values.

2.2. **A condition for independent copies of a mean zero f to be equivalent in L_p to the unit vector basis of l_M.** For a fixed $f \in L_1(0,1)$, every $k \in \mathbb{N}$, and $t > 0$ we set

$$\overline{f}_k(t) := \begin{cases} f(t - k + 1), t \in [k-1, k), \\ 0, \text{ otherwise.} \end{cases}$$

The following assertion is an immediate consequence of the famous Rosenthal inequality [14] (or, its more general version due to Johnson and Schechtman [7]). It establishes a connection between the behaviour in L_p of an arbitrary sequence $\{f_k\}_{k=1}^{\infty}$ of independent copies of a mean zero random variable $f \in L_p$ and that of corresponding sequence $(\overline{f}_k)_{k=1}^{\infty}$ in the Banach sum $(L_p + L_2)(0, \infty)$ of the Lebesgue spaces $L_p(0, \infty)$ and $L_2(0, \infty).

Lemma 5. Let $1 \leq p \leq 2$. For every finitely supported $a = (a_k)_{k=1}^{\infty}$ and for a mean zero random variable $f \in L_p(0, 1)$ we have

$$\left\| \sum_{k=1}^{\infty} a_k f_k \right\|_p \sim \left\| \sum_{k=1}^{\infty} a_k \overline{f}_k \right\|_{L_p + L_2}.$$

Lemma allows us to investigate sequences of independent identically distributed mean zero random variables in $L_p = L_p(0, 1)$.

Proposition 6. Let $1 \leq p \leq 2$ and let $f \in L_p$ be a mean zero random variable. Then, a sequence $\{f_k\}_{k=1}^{\infty}$ of independent copies of the random variable f is equivalent (in L_p) to the unit vector basis in l_M if and only if

$$\frac{1}{M^{-1}(t)} \sim \left(\frac{1}{t} \int_0^t f^*(s)^p \, ds \right)^{1/p} + \left(\frac{1}{t} \int_t^1 f^*(s)^2 \, ds \right)^{1/2}, \quad 0 < t \leq 1.$$

Proposition 7. Let \(m \) function \(L_2, \Delta_1 \) Since

Proof. At first, we assume that a sequence \(\{ f_k \}_{k=1}^\infty \) of independent copies of \(f \) is equivalent in \(L_p \) to the unit vector basis in \(l_M \). Then, we have

\[
\left\| \sum_{k=1}^n e_k \right\|_{l_M} \sim \left\| \sum_{k=1}^n f_k \right\|_p^M \sim \left\| \sum_{k=1}^n f_k \right\|_{L_p+L_2}.
\]

Since \(1 \leq p \leq 2 \), it follows that

\[
\|x\|_{L_p+L_2} \sim \left(\int_0^1 x^*(s)^p \, ds \right)^{1/p} + \left(\int_1^\infty x^*(s)^2 \, ds \right)^{1/2}.
\]

Therefore, from the equalities

\[
\left(\sum_{k=1}^n f_k \right)^*(s) = f^*\left(\frac{s}{n} \right), \quad s > 0,
\]

and

\[
\left\| \sum_{k=1}^n e_k \right\|_{l_M} = \inf \left\{ \rho > 0 : nM\left(\frac{1}{\rho} \right) \leq 1 \right\} = \frac{1}{M^{-1}(1/n)}, \quad n \geq 1,
\]

it follows that

\[
\frac{1}{M^{-1}(1/n)} \sim \left(\int_0^{1/n} (f^*(s))^p \, ds \right)^{1/p} + \left(\int_{1/n}^{1} (f^*(s))^2 \, ds \right)^{1/2} = \left(n \int_0^{1/n} (f^*(s))^p \, ds \right)^{1/p} + \left(n \int_{1/n}^{1} (f^*(s))^2 \, ds \right)^{1/2}, \quad n \geq 1.
\]

Let \(t \in (1/(n+1), 1/n) \) for some \(n \geq 1 \). We clearly have \(M^{-1}(1/n) \sim M^{-1}(t) \) and

\[
\left(n \int_0^{1/n} (f^*(s))^p \, ds \right)^{1/p} + \left(n \int_{1/n}^{1} (f^*(s))^2 \, ds \right)^{1/2} \sim \left(\frac{1}{t} \int_0^1 (f^*(s))^p \, ds \right)^{1/p} + \left(\frac{1}{t} \int_1^1 (f^*(s))^2 \, ds \right)^{1/2}.
\]

The assertion \(1 \) follows immediately from the equivalences above.

Conversely, by [6] Theorem 1, p.X.8 (see also [1] Theorem 9), for every given mean zero \(f \in L_p(0,1) \) the sequence \(\{ f_k \}_{k=1}^\infty \) of independent copies of \(f \) is equivalent in \(L_p \) to the unit vector basis in some Orlicz sequence space \(l_N \). Arguing in the same way as in the first part of the proof, we conclude that

\[
\frac{1}{N^{-1}(t)} \sim \left(\frac{1}{t} \int_0^t f^*(s)^p \, ds \right)^{1/p} + \left(\frac{1}{t} \int_1^1 f^*(s)^2 \, ds \right)^{1/2}, \quad t \in (0,1).
\]

Taken together with \(1 \) the equivalence above yields that the Orlicz functions \(M \) and \(N \) are equivalent on the segment \([0,1]\) and thus, \(l_N = l_M \). This completes the proof. \(\square \)

3. When does the equivalence \(1 \) hold for the function \(f = m \)?

The following proposition provides necessary and sufficient conditions for the function \(m^p \) to be equivalent to its Cesaro transform.

Proposition 7. Let \(1 \leq p < \infty \) and let \(M \) be a \(p \)-convex Orlicz function satisfying \(\Delta_2 \)-condition at 0. The following conditions are equivalent:

(i) The function \(M \) is equivalent on the segment \([0,1]\) to a \((p+\varepsilon)\)-convex Orlicz function for some \(\varepsilon > 0 \);
(ii) \[
\frac{1}{t} \int_0^t m^p(s) \, ds \leq \text{const} \cdot m^p(t), \quad t \in (0, 1).
\]

Proof. Let the function \(\varphi \) be defined by setting
\[
\varphi(t) = tm^p(t), \quad t \in (0, 1).
\]

(i) \(\rightarrow \) (ii). It suffices to show that
\[
\int_0^t \frac{\varphi(s) \, ds}{s} \leq \text{const} \cdot \varphi(t), \quad t \in (0, 1).
\]

It follows directly from the definitions that, for all \(s \in (0, 1) \),
\[
\sup_{0 < t \leq 1} \frac{\varphi(st)}{\varphi(t)} = s \cdot \sup_{0 < t \leq 1} \left(\frac{M^{-1}(t)^{p+\varepsilon}}{(M^{-1}(st))^{p+\varepsilon}} \right)^{\frac{1}{p+\varepsilon}}.
\]
Since \(M \) is \((p + \varepsilon)-\)convex, the mapping
\[
t \mapsto (M^{-1}(t))^{p+\varepsilon}, \quad t \in (0, 1],
\]
is concave. In particular, we have
\[
\frac{(M^{-1}(t))^{p+\varepsilon}}{(M^{-1}(st))^{p+\varepsilon}} \leq s^{-1}, \quad 0 < s, t \leq 1.
\]
Therefore,
\[
\sup_{t \in (0, 1)} \frac{\varphi(st)}{\varphi(t)} \leq s \cdot \frac{1}{s^{\frac{1}{p+\varepsilon}}}, \quad 0 < s \leq 1.
\]
Applying now Lemma II.1.4 from [10], we infer (2) and this completes the proof of implication (i) \(\rightarrow \) (ii).

(ii) \(\rightarrow \) (i). Since \(M \) is \(p \)-convex, it follows that
\[
\frac{M(s)}{s^p} \leq \frac{M(t)}{t^p}, \quad 0 \leq s \leq t \leq 1.
\]
Replacing \(s \) with \(M^{-1}(s) \) and \(t \) with \(M^{-1}(t) \), we infer that \(\varphi \) is increasing.

By the assumption, we have
\[
\int_0^t \frac{\varphi(s) \, ds}{s} \leq C \varphi(t), \quad t \in (0, 1),
\]
for some \(C > 0 \). Take \(s_0 < e^{-2C} \). We claim that
\[
\sup_{t \in (0, 1)} \frac{\varphi(st)}{\varphi(t)} < 1.
\]
Indeed, suppose that supremum in (3) equals 1. In particular, there exists \(t \in (0, 1) \) such that \(\varphi(st) > \varphi(t)/2 \). Since \(\varphi \) is increasing and since \(\log(s_0^{-1}) > 2C \), it follows that
\[
\int_0^t \frac{\varphi(s) \, ds}{s} \geq \int_{s_0t}^t \frac{\varphi(s) \, ds}{s} \geq \varphi(s_0t) \log\left(\frac{t}{s_0t} \right) > C \varphi(t).
\]
This contradiction proves the claim.

According to (3), we can fix \(a \in (0, 1) \) such that
\[
\varphi(s_0t) \leq a \varphi(t), \quad t \in (0, 1).
\]
Without loss of generality, we can assume \(a > s_0^{\frac{1}{p+\varepsilon}} \). Hence, there exists \(\varepsilon \in (0, 1) \) such that \(a = s_0^{\frac{1}{p+\varepsilon}} \).

For an arbitrary \(s \in (0, 1] \) there exists \(n \in \mathbb{N} \) such that \(s \in (s_0^{n+1}, s_0^n) \). Since \(\varphi \) is increasing, it follows that
\[
\varphi(st) \leq \varphi(s_0^n t) \leq s_0^{\frac{n}{p+\varepsilon}} \varphi(t), \quad t \in (0, 1).
\]
Hence, we have
\[
\varphi(st) \leq \text{const} \cdot s^{\frac{n}{p+\varepsilon}} \varphi(t), \quad s, t \in (0, 1)
\]
or, equivalently,
\[
(st)^{\frac{n}{p+\varepsilon}} \varphi(st) \leq \text{const} \cdot t^{\frac{n}{p+\varepsilon}} \varphi(t), \quad s, t \in (0, 1).
\]
Therefore, it follows from the definition of \(\varphi \) that
\[
M(st) \leq \text{const} \cdot s^{p+\varepsilon} \cdot M(t), \quad s, t \in (0, 1).
\]
The argument is completed, by referring to Lemma 3.

Now, we prove a dual result.

Proposition 8. Let \(M \) be a \(q \)-concave Orlicz function for some \(1 < q < \infty \). The following conditions are equivalent:

(i) The function \(M \) is equivalent to a \((q - \varepsilon)\)-concave Orlicz function for some \(\varepsilon > 0 \) on the segment \([0, 1]\);

(ii) \[
\frac{1}{t} \int_0^t m^q(s) \, ds \leq \text{const} \cdot m^q(t), \quad t \in (0, 1).
\]

Proof. Define the function \(\psi \) by setting
\[
\psi(t) := t m^q(t), \quad t \in (0, 1).
\]

(i) \(\Rightarrow\) (ii). It suffices to verify that
\[
\int_t^1 \frac{\psi(s) \, ds}{s} \leq \text{const} \cdot \psi(t), \quad t \in (0, 1).
\]
We have
\[
\sup_{t} \frac{\psi(st)}{\psi(t)} = s \cdot \sup \left(\frac{(M^{-1}(t))^{q-\varepsilon}}{(M^{-1}(st))^{q-\varepsilon}} \right)^{\frac{1}{q-\varepsilon}},
\]
where the supremums are taken over all \(t \in (0, 1) \) and \(s > 1 \) such that \(0 < st \leq 1 \). Since \(M \) is \((q - \varepsilon)\)-concave, it follows that the mapping
\[
t \to (M^{-1}(t))^{q-\varepsilon}, \quad t \in (0, 1),
\]
is convex. In particular, we have
\[
\frac{(M^{-1}(t))^{q-\varepsilon}}{(M^{-1}(st))^{q-\varepsilon}} \leq s^{-1}, \quad s > 1, \quad 0 < st \leq 1.
\]
Therefore,
\[
\sup_{t} \frac{\psi(st)}{\psi(t)} \leq s^{-\frac{1}{q-\varepsilon}} < 1,
\]
where again the supremum is taken over all \(t \in (0, 1) \) and \(s > 1 \) such that \(0 < st \leq 1 \).

Applying now Lemma II.1.5 in [10], we infer (5).
Indeed, suppose that supremum in (6) equals 1 for some $C > 0$, appealing to the fact that ψ is decreasing. Without loss of generality, we have $\psi(st) \leq \psi(t)/2$. Since ψ is decreasing, it follows that

$$\int_t^1 \frac{\psi(s) ds}{s} \leq C\psi(t), \quad t \in (0,1),$$

for some $C > 0$. Take $s_0 > e^{2C}$. We claim that

$$(6) \quad \sup_{t \in (0, s_0^{-1})} \frac{\psi(s_0 t)}{\psi(t)} < 1.$$

Indeed, suppose that supremum in (6) equals 1. In particular, there exists $t \in (0, s_0^{-1})$ such that $\psi(s_0 t) = \psi(t)/2$. Since ψ is decreasing, it follows that

$$\int_t^1 \frac{\psi(s) ds}{s} = \int_t^{s_0 t} \frac{\psi(s) ds}{s} = \int_{s_0 t}^t \frac{\psi(s) ds}{s} \geq \psi(s_0 t) \log\left(\frac{s_0 t}{t}\right) > C\psi(t).$$

This contradiction proves the claim.

According to (6), we can fix $b \in (0,1)$ such that

$$(7) \quad \psi(s_0 t) \leq b\psi(t), \quad t \in (0, s_0^{-1}).$$

Without loss of generality, $b > s_0^{-1}$. Hence, there exists $\varepsilon > 0$ such that $b = s_0^{-\frac{\varepsilon}{p'}}$. Let $s > 1$ and $0 < t < s^{-1}$. We can find $n \in \mathbb{N}$ such that $s \in (s_0^n, s_0^{n+1})$. Again appealing to the fact that ψ is decreasing, we have

$$\psi(st) \leq \psi(s_0^n t) \leq \psi(s_0^{-\frac{\varepsilon}{p}} \psi(t)) \leq \psi(s_0^{-\frac{\varepsilon}{p}} s^{-\frac{\varepsilon}{p}} \psi(t)).$$

It follows that

$$\psi(st) \leq \text{const} \cdot s^{-\frac{\varepsilon}{p}} \psi(t), \quad s > 1, t \in (0, s^{-1})$$

or, equivalently,

$$s^{\frac{\varepsilon}{p}} \psi(s) \leq \text{const} \cdot t^{\frac{\varepsilon}{p}} \psi(t), \quad 0 \leq t \leq s \leq 1.$$

Therefore, from the definition of ψ, we have

$$\frac{s}{M^{-1}(s)^{q-\varepsilon}} \leq \text{const} \cdot \frac{t}{M^{-1}(t)^{q-\varepsilon}}, \quad 0 \leq t \leq s \leq 1.$$

or

$$\text{const} \cdot s^{q-\varepsilon} \cdot M(t) \leq M(st), \quad \forall t, s \in (0,1].$$

Applying Lemma 4, we complete the proof.

The following theorem answers the question stated in the title of the present section.

Theorem 9. Let $1 \leq p < 2$ and let M be a p--convex and 2--concave Orlicz function. The following conditions are equivalent:

(i) Equivalence (11) holds for $f = m$.

(ii) M is $(p + \varepsilon)$--convex and $(2 - \varepsilon)$--concave for some $\varepsilon > 0$.
Proof. (ii) ⇒ (i). If M is $(p + \varepsilon)$–convex for some $\varepsilon > 0$, then it follows from Proposition [7] that
\begin{equation}
\left(\frac{1}{t} \int_{0}^{t} m^p(s) \, ds \right)^{1/p} \leq \text{const} \cdot m(t), \quad t \in (0, 1).
\end{equation}
If M is $(2 - \varepsilon)$–concave for some $\varepsilon > 0$, then Proposition [8] implies
\begin{equation}
\left(\frac{1}{t} \int_{t}^{1} m^2(s) \, ds \right)^{1/2} \leq \text{const} \cdot m(t), \quad t \in (0, 1).
\end{equation}
Observe now that the inequality
\begin{equation}
m(t) \leq \left(\frac{1}{t} \int_{0}^{t} m^p(s) \, ds \right)^{1/p}, \quad t \in (0, 1)
\end{equation}
holds trivially, due to the fact that m is decreasing. The equivalence (1) for $f = m$ follows immediately from [8], [9] and [10].

(i) ⇒ (ii). Suppose that (1) holds for $f = m$. Then, we have [8] and [9]. Applying Propositions [7] and [8] we obtain that M is $(p + \varepsilon)$–convex and $(2 - \varepsilon)$–concave for some $\varepsilon > 0$, and the proof is completed. \hfill \blacksquare

4. When does equivalence (1) hold for a unique f (up to equivalence near 0)?

This section contains the proof of Theorem [1].

Proof of Theorem [1]. The implication (ii) → (iii) is obvious and the implication (iii) → (i) follows by combining results of Proposition [8] and Theorem [9].

(i) → (ii). We begin with the following technical lemma.

Lemma 10. Let $1 \leq p < \infty$, $1 < q < \infty$ and let M be an Orlicz function.

(i) If M is $(q - \varepsilon)$–concave for some $\varepsilon > 0$, then
\[N \sup_{t > 0} \frac{m^q(Nt)}{m^q(t)} \to 0, \quad N \to \infty. \]

(ii) If M is $(p + \varepsilon)$–convex for some $\varepsilon > 0$, then
\[\frac{1}{N} \sup_{t > 0} \frac{m^p\left(\frac{t}{N}\right)}{m^p(t)} \to 0, \quad N \to \infty. \]

Proof. Proofs of (i) and (ii) are very similar. So, we prove (i) only. Since M is $(q - \varepsilon)$–concave, it follows that the mapping $t \to \frac{M(t)}{t^{q-\varepsilon}}$, $t > 0$, is decreasing. Hence, the mapping $t \to t m^{q-\varepsilon}(t) = \frac{t}{(M^{-1}(t))^{q-\varepsilon}}$, $t > 0$, is also decreasing. Therefore,
\[N^{\frac{q}{q-\varepsilon}} \sup_{t > 0} \frac{m^q(Nt)}{m^q(t)} = \left(\sup_{t > 0} \frac{N t m^{q-\varepsilon}(Nt)}{tm^{q-\varepsilon}(t)} \right)^{\frac{q}{q-\varepsilon}} \leq 1, \]
whence
\[N \sup_{t > 0} \frac{m^q(Nt)}{m^q(t)} \leq N^{-\frac{1}{q}} \to 0 \quad \text{if} \quad N \to \infty. \]

Now, let \(M \) be a \((p + \varepsilon)\)-convex and \((2 - \varepsilon)\)-concave Orlicz function and let \(f \) be a mean zero function from \(L^p \). Suppose that the sequence \(\{f_k\}_{k=1}^\infty \) of independent copies of \(f \) is equivalent to the unit vector basis \(\{e_k\}_{k=1}^\infty \) in \(l_M \). It suffices to show that the functions \(f^* \) and \(m \) are equivalent for small values of argument. For simplicity we abuse the notation assuming that \(f = f^* \).

By Proposition 6 we know that the equivalence (1) holds for \(f \), that is,
\[m(t) \sim \frac{1}{t} \int_0^t f(s) \, ds \] for some \(C > 0 \) such that
\[f(t) \leq C_1 \cdot m(t), \quad t \in (0, 1), \]
for some \(C_1 > 0 \) follows immediately from (11) and the (already used) inequality
\[f(t) \leq \left(\frac{1}{t} \int_0^t f(s)^p \, ds \right)^{1/p}, \quad t \in (0, 1). \]

Thus, we need to show that the estimate
\[m(t) \leq \text{const} \cdot f(t), \quad t \in (0, 1), \]
holds for all sufficiently small \(t \in (0, 1) \). By Propositions 7 and 8 there exists a constant \(C_0 > 0 \) such that
\[\frac{1}{t} \int_0^t m^p(s) \, ds \leq C_0^p m^p(t), \quad t \in (0, 1), \]
\[\frac{1}{t} \int_t^1 m^2(s) \, ds \leq C_0^2 m^2(t), \quad t \in (0, 1). \]

Moreover, there is a constant \(C > 0 \) such that for a given \(t \in (0, 1) \), from (11) it follows that either
\[\left(\frac{1}{t} \int_t^1 f^2(s) \, ds \right)^{1/2} \geq \frac{1}{2C} m(t), \]
or
\[\left(\frac{1}{t} \int_0^t f^p(s) \, ds \right)^{1/p} \geq \frac{1}{2C} m(t). \]

By Lemma 10 we can fix \(N \) so large that
\[\sup_{t > 0} \frac{m^2(Nt)}{m^2(t)} \leq \frac{1}{8NC^2C_1^2}, \quad \sup_{t > 0} \frac{m^p(t)}{m^p(t)} \leq \frac{N}{2p+1C_1^pC^p}. \]
Let $t \in (0, 1/N)$. Firstly, we consider the situation when (17) holds. Taking squares in this inequality and then applying (13), we obtain
\[
\frac{1}{4C^2} m^2(t) \leq \frac{1}{t} \int_t^{1} f^2(s) \, ds = \frac{1}{t} \int_{Nt}^{1} f^2(s) \, ds + \frac{1}{t} \int_t^{1} f^2(s) \, ds
\]
\[
\leq (N - 1)f^2(t) + \frac{NC_1^2}{Nt} \int_{Nt}^{1} m^2(s) \, ds.
\]
Hence, by (16), we have
\[
\frac{1}{4C^2} m^2(t) \leq (N - 1)f^2(t) + NC_1^2 C_0^2 m^2(Nt).
\]
Combining the latter estimate with the first inequality in (19), we obtain
\[
(N - 1)f^2(t) \geq (N - 1)f^2(t) \geq \frac{1}{4C^2} m^2(t) - NC_1^2 C_0^2 m^2(Nt) \geq \frac{1}{8C^2} m^2(t).
\]
If (18) holds, then
\[
\frac{1}{2pC^p} m^p(t) \leq \frac{1}{t} \int_t^{1/2} f^p(s) \, ds = \frac{1}{t} \int_0^{t/N} f^p(s) \, ds + \frac{1}{t} \int_{t/N}^{1} f^p(s) \, ds.
\]
Taking (13) and (15) into account, we obtain
\[
\frac{1}{2pC^p} m^p(t) \leq \frac{C_1^p}{t/N} \int_0^{t/N} m^p(s) \, ds + (1 - \frac{1}{N})f^p(t/N)
\]
\[
\leq \frac{1}{N} C_1^p C_0^p m^p(t/N) + (1 - \frac{1}{N})f^p(t/N).
\]
We infer from this estimate and the second inequality in (19) that
\[
(1 - \frac{1}{N})f^p(t/N) \geq \frac{1}{2pC^p} m^p(t) - \frac{1}{N} C_1^p C_0^p m^p(t/N) \geq \frac{1}{2p+1} C^p m^p(t).
\]
In either case, we have
\[
f(t/N) \geq \text{const} \cdot m(t), \quad t \in (0, \frac{1}{N}),
\]
for a universal constant. Since $m(t) \sim m(t/N)$, it follows that
\[
f(t) \geq \text{const} \cdot m(t), \quad t \in (0, \frac{1}{N^2}).
\]
The latter inequality together with (13) suffices to conclude the proof of implication (i) \rightarrow (ii).

5. Sharpness of Theorem 1

Let $\{h_k\}_{k=1}^\infty$ (respectively, $\{g_k\}_{k=1}^\infty$) be a sequence of pairwise disjoint measurable subsets of $(0, 1)$ such that $\lambda(h_k) = 2^{-k-2^k}$ (respectively, $\lambda(g_k) = 4^{-k-4^k}$), $k \geq 1$. We define functions $x, y \in L_1(0, 1)$ by setting
\[
x = \sum_{k=1}^\infty 2^k \chi_{h_k}, \quad y = \sum_{k=1}^\infty 4^k \chi_{g_k},
\]
(χ_c is the indicator function of a set c).
Lemma 11. We have
\[\int_0^1 \min\{x(s), tx^2(s)\} \, ds \sim \int_0^1 \min\{y(s), ty^2(s)\} \, ds \sim \frac{1}{\log(e/t)}, \quad 0 < t \leq 1. \]

Proof. It is clear that
\[\int_0^1 \min\{x(s), tx^2(s)\} \, ds = \sum_{2^k \geq 1/t} 2^{-k} \cdot 2^{k-2k} + t \cdot \sum_{2^k < 1/t} 2^{k+1} \cdot 2^{-k-2k}. \]

Let \(t < 1/4 \). If \(m \) is the maximal positive integer such that \(2^m < 1/t \), then
\[\int_0^1 \min\{x(s), tx^2(s)\} \, ds = \sum_{k=m+1}^\infty 2^{-k} + t \cdot \sum_{k=1}^m 2^{k-2k} = 2^{-m} + t \cdot \sum_{k=1}^m 2^{k-k}. \]
Also, we have
\[\sum_{k=1}^m 2^{k-k} \leq 2^{m-m} + (m-1) \cdot 2^{m-1-m+1} \leq 2^{m-m} + 2^{m-1} \leq 2 \cdot 2^{m-m}. \]
Therefore, we obtain
\[2^{-m} \leq \int_0^1 \min\{x(s), tx^2(s)\} \, ds \leq 2^{-m} + 2t \cdot 2^{m-m} \leq 3 \cdot 2^{-m}. \]
it follows now from the definition of the number \(m \) that
\[\frac{1}{\log_2(1/t)} \leq \int_0^1 \min\{x(s), tx^2(s)\} \, ds \leq \frac{6}{\log_2(1/t)}. \]
The similar equivalence for \(y \) follows mutatis mutandi. \(\square \)

Lemma 12. Distributions of the functions \(x \) and \(y \) are not equivalent.

Proof. Suppose that \(n_x(Ct) \leq Cn_y(t), t > 0 \). Fix \(k \) such that
\[2^{2k+1} > \log_2 C + 1 \]
and select \(t \) such that both \(t \) and \(Ct \) belong to the interval \((2^{2k+1}, 2^{2k+2})\). Then, we have
\[n_x(Ct) = n_x(2^{2k+1}) \geq 2^{-(2k+2)-2^{2k+2}} \]
and
\[n_y(t) = n_y(4^k) \leq 2 \cdot 4^{-(k+1)-k} = 2^{-2k-1-2k+3}. \]
It follows from the preceding inequalities that
\[2^{2k+2+2^{2k+2}} \geq \frac{1}{C} \cdot 2^{2k+1+2^{2k+3}} \]
or, equivalently,
\[2k + 2 + 2^{2k+2} \geq -\log_2(C) + 2k + 1 + 2^{2k+3}. \]
Clearly, the latter inequality contradicts the choice of \(k \). \(\square \)

Let \(\{x_k\}_{k=1}^\infty \) (respectively, \(\{y_k\}_{k=1}^\infty \)) be a sequence of independent copies of a mean zero random variable equimeasurable with \(x \) (respectively, \(y \)), where \(x \) and \(y \) are defined in (20). Let us show that the sequences \(\{x_k\}_{k=1}^\infty \) and \(\{y_k\}_{k=1}^\infty \) span in \(L_1 \) the same Orlicz space \(l_M \), where \(M \) is equivalent to the function \(t/\log(e/t) \) for small \(t > 0 \). Note that \(M \) does not satisfy condition (i) of Theorem 1 more
precisely, \(M \) is not \((1 + \varepsilon)\)-convex for any \(\varepsilon > 0 \). Taking into account Lemma 5, it suffices to prove the following proposition.

Proposition 13. For every finitely supported \(a = (a_k)_{k=1}^{\infty} \), we have

\[
\left\| \sum_{k=1}^{n} a_k x_k \right\|_{L_1 + L_2} \sim \left\| \sum_{k=1}^{n} a_k y_k \right\|_{L_1 + L_2} \sim \| (a_k)_{k=1}^{\infty} \|_{l_M}.
\]

Proof. Define the Orlicz function \(N \) by setting

\[
N(t) = \begin{cases}
 t^2, & t \in (0, 1) \\
 2t - 1, & t \geq 1.
\end{cases}
\]

It is easy to check that \(\| z \|_{L_1 + L_2} \sim \| z \|_{L_N} \) for every \(z \in L_1 + L_2 \), where \(L_N \) is the function Orlicz space on \([0, 1] \).

Setting

\[
M(t) = \int_0^1 N(tx(s)) \, ds, \quad t > 0,
\]

we obtain

\[
\left\| \sum_{k=1}^{\infty} a_k x_k \right\|_{L_N} \leq 1 \iff \int_0^\infty N\left(\sum_{k=1}^{\infty} |a_k| x_k(s) \right) \, ds \leq 1 \iff \sum_{k=1}^{\infty} \int_0^1 N(|a_k| x_k(s)) \, ds \leq 1 \iff \sum_{k=1}^{\infty} M(a_k) \leq 1 \iff \| a \|_{l_M} \leq 1.
\]

Therefore,

\[
\left\| \sum_{k=1}^{\infty} a_k x_k \right\|_{L_1 + L_2} \sim \| a \|_{l_M}.
\]

Since \(N(t) \sim \min\{t, t^2\} \ (t > 0) \), it follows that

\[M(t) \sim \int_0^1 \min\{tx(s), (tx(s))^2\} \, ds, \]

and from Lemma 11 it follows that

\[M(t) \sim \frac{t}{\log(e/t)}, \quad 0 < t \leq 1. \]

This proves the assertion for the sequence \(\{x_k\} \). The proof of the similar assertion for \(\{y_k\} \) is the same. \(\square \)

References

[1] Astashkin S., Sukochev F. *Orlicz sequence spaces spanned by identically distributed independent random variables in \(L_p \)-spaces*. J. Math. Anal. Appl. 413 (2014), no. 1, 1–19.

[2] Braverman M. Sh. *On some moment conditions for sums of independent random variables*, Probab. Math. Statist. 14 (1993), no. 1, 45–56.

[3] Braverman M. Sh. *Independent random variables in Lorentz spaces*, Bull. London Math. Soc. 28 (1996), no. 1, 79–87.

[4] Bretagnolle J., Dacunha-Castelle D. *Mesures aléatoires et espaces d’Orlicz*, (French) C. R. Acad. Sci. Paris Ser. A-B 264 (1967), A877–A880.
[5] Bretagnolle J., Dacunha-Castelle D. Application de l’étude de certaines formes linéaires aléatoires au plongement d’espaces de Banach dans des espaces L^p, Ann. Sci. Ecole Norm. Sup. 2(1969), no. 5, 437-480.

[6] Dacunha-Castelle D. Variables aléatoires échangeables et espaces d’Orlicz. Séminaire Maurey-Schwartz 1974–1975: Espaces L^p, applications radonifiantes et géométrie des espaces de Banach. Exp. Nos. X et XI, 21 pp. Centre Math., École Polytech., Paris, 1975.

[7] Johnson W., Schechtman G. Sums of independent random variables in rearrangement invariant function spaces, Ann. Probab. 17 (1989), 789–808.

[8] Kadec M. I. Linear dimension of the spaces L_p and l_q, Uspehi Mat. Nauk, 13:6(84) (1958), 95–98. (in Russian)

[9] Krasnoselskii M., Rutickii J. Convex Functions and Orlicz Spaces. Fizmatgiz, Moscow 1958 (in Russian); English transl.: Noordhoff, Groningen 1961.

[10] Krein S., Petunin Ju., Semenov E. Interpolation of linear operators, Nauka, Moscow, 1978 (in Russian); English translation in Translations of Math. Monographs, Vol. 54, Amer. Math. Soc., Providence, RI, 1982.

[11] Lindenstrauss J., Tzafriri L. Classical Banach Spaces II. Function spaces. Berlin-Heidelberg-New York: Springer-Verlag, 1979.

[12] Schütt C. On the embedding of 2-concave Orlicz spaces into L_1, Studia Math. 113 (1995), no. 1, 73–80.

[13] Raynaud Y., Schütt C. Some results on symmetric subspaces of L^1, Stud. Math., 89(1988), 27-35.

[14] Rosenthal H.P. On the subspaces of L_p ($p > 2$) spanned by sequences of independent random variables, Isr. J. Math. 8 (1970), 273-303.

Samara State University, Pavlova 1, Samara, 443011, Russia
E-mail address: astash@samsu.ru

School of Mathematics and Statistics, University of New South Wales, Sydney, 2052, Australia.
E-mail address: f.sukochev@unsw.edu.au

School of Mathematics and Statistics, University of New South Wales, Sydney, 2052, Australia.
E-mail address: d.zanin@unsw.edu.au