Pressure-temperature phase diagram of EuRbFe$_4$As$_4$ superconductor

Li Xiang,1,2 Sergey L. Bud’ko,1,2 Jin-Ke Bao,3 Duck Young Chung,3 Mercouri G. Kanatzidis,3 and Paul C. Canfield1,2

1Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
3Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Dated: February 26, 2019)

The pressure dependencies of the magnetic and superconducting transitions, as well as that of the superconducting upper critical field are reported for single crystalline EuRbFe$_4$As$_4$. Resistance measurements were performed under hydrostatic pressures up to 6.21 GPa and in magnetic fields up to 9 T. Zero-field-cool magnetization measurements were performed under hydrostatic pressures up to 1.24 GPa under 20 mT applied field. Superconducting transition temperature, T_c, up to 6.21 GPa and magnetic transition temperature, T_M, up to 1.24 GPa were obtained and a pressure-temperature phase diagram was constructed. Our results show that T_c is monotonically suppressed upon increasing pressure. T_M is linearly increased up to 1.24 GPa. For the studied pressure range, no signs of the crossing of T_M and T_c lines are observed. The normalized slope of the superconducting upper critical field is gradually suppressed with increasing pressure, which may be due to the continuous change of Fermi-velocity v_F with pressure.

I. INTRODUCTION

New members of the Fe-based superconductors (FeSC) family, AeFe$_4$As$_4$ ($Ae=$Ca, Sr; $A=K, Rb, Cs$), the so-called 1144-compounds were discovered by Iyo et al in 20167. Different from a homogeneous, random substitution, as in $(Ae_{0.5}A_{0.5})$Fe$_2$As$_2$ where Ae/A share the same crystallographic site and retains the parent-compound symmetry $I4/mmm$, these new members crystallize into structural type $P4/mmm$ where Ae and A have their own unique crystallographic sites and form alternating layers along the c axis1,2. Since discovery, the 1144-compounds have received significant attention because these stoichiometric compounds offer new, clean platforms for the study of, among other things, the relation between superconductivity and possible long-range magnetic order in the FeSC. Moreover, a new type of magnetic order, spin-vortex-crystal-order, has been realized in Ae- and Ni-substituted CaFe$_4$As$_4$, which was argued to be strongly related to its structure3.

Among the new 1144 compounds, the Eu(Rb, Cs)Fe$_4$As$_4$ compounds have been studied intensively due to the possible coexistence of superconductivity and ferromagnetism2,11,12. Polycrystalline Eu(Rb, Cs)Fe$_4$As$_4$ compounds were first discovered in 2016 and were shown to be superconductors with $T_c \approx 35$ K and a magnetic transition temperature $T_M \approx 15$ K2. Different from the undoped EuFe$_2$As$_2$ where Eu$^{2+}$ orders antiferromagnetically9,11, the magnetic transition in RbEuFe$_4$As$_4$ is suggested to be ferromagnetic which is associated with the ordering of the Eu$^{2+}$ moments perpendicular to the crystallographic c axis11,12. Though the exact magnetic structure of EuRbFe$_4$As$_4$ has not been established so far, the possible coexistence of superconductivity and ferromagnetism makes EuRbFe$_4$As$_4$ one of the systems where the relation between these states may be studied12,24.

Two substitution studies on polycrystalline EuRbFe$_4$As$_4$ were published. On one hand, Ni-substitution on the Fe-site suppresses T_c whereas T_M is almost unchanged25. On the other hand, substitution of non-magnetic Ca on the Eu-site suppresses T_M while T_c is almost unchanged26. Both of these results suggest that superconductivity and ferromagnetism are almost independent of each other in this system. An optical investigation on single crystalline EuRbFe$_4$As$_4$ suggests weak interaction between superconductivity and ferromagnetism and that superconductivity is affected by the in-plane ferromagnetism mainly at domain boundaries7.

Pressure, as another commonly used tuning parameter, is considered less perturbing than substitution because it does not introduce chemical disorder into the system. A high pressure study up to ~ 30 GPa on polycrystalline Eu(Rb, Cs)Fe$_4$As$_4$ shows that for both compositions, upon increasing pressure, T_c is suppressed while T_M is enhanced and they cross near 7 GPa25. In addition, half-collapsed-tetragonal (hcT) phase transition, similar to the one observed in the CaKFe$_4$As$_4$ series28,29, is suggested to take place at ~ 10 GPa for EuRbFe$_4$As$_4$ and ~ 12 GPa for EuCsFe$_4$As$_4$, respectively27, which is roughly consistent with theoretical calculations30. In this high-pressure study, signatures of transitions are broad and zero resistance was never achieved below T_c due, most likely, to the use of polycrystalline samples.

In this work, we present a pressure study on single crystalline EuRbFe$_4$As$_4$ up to 6.21 GPa. From resistance measurements up to 6.21 GPa and magnetization measurements up to 1.24 GPa, T_c and T_M are tracked and presented in a pressure-temperature ($p-T$) phase diagram. Our results show that T_c is monotonically suppressed and T_M is linearly increased. Further superconducting upper critical field analysis indicates no qualitative change of Fermi surface within the studied pressure range.
II. EXPERIMENTAL DETAILS

High-quality single crystals of EuRbFe$_4$As$_4$ with sharp superconducting transitions at ambient pressure (see Figs. 1 (c) (d) and Fig. 5 (b) below) were grown as described in Ref. 5. The ab-in-plane ac resistance measurements under pressure were performed in a Quantum Design Physical Property Measurement System (PPMS) using a 1 mA excitation with frequency of 17 Hz, on cooling rate of 0.25 K/min. A standard, linear four-contact configuration was used. Contacts were made by soldering 25 µm Pt wires to the samples using a Sn:Pb-60:40 alloy. The magnetic field was applied along the c axis. A modified Bridgman Anvil Cell (mBAC)31 was used to apply pressure up to 6.21 GPa. Pressure values at low temperature were inferred from the $T_c(p)$ of lead32. Hydrostatic conditions were achieved by using a 1:1 mixture of iso-pentane:n-pentane as the pressure medium for the mBAC, which solidifies at \sim 6.5 GPa at room temperature33. Low-field (20 mT) dc magnetization measurements under pressure were performed in a Quantum Design Magnetic Property Measurement System (MPMS-3) SQUID magnetometer. A commercially-available HDM Be-Cu piston-cylinder pressure cell34 was used to apply pressures up to 1.24 GPa. Daphne oil 7373 was used as a pressure medium, which solidifies at 2.2 GPa at room temperature35, ensuring hydrostatic conditions. Superconducting Sn was used as a low-temperature pressure gauge36. Two samples, #1 and #2, were used for separate resistivity runs in the mBAC whereas the sample used for the magnetization data was sample #3.

III. RESULTS AND DISCUSSIONS

Figures 1 (a) and (b) present the pressure dependence of the temperature-dependent resistance for EuRbFe$_4$As$_4$. Two samples, sample #1 and sample #2, were measured in the mBAC for pressures up to 4.69 GPa or 6.21 GPa. For both samples, resistance decreases upon increasing pressure. At ambient pressure for T \sim 35 K, a superconducting transition was observed and zero resistance was achieved for both samples. Below T_c, no features associated with the magnetic transition T_M are observed in the $R(T)$ curves down to 1.8 K. Figs. 1 (c) and (d) show blowups of the low-temperature resistance. For both samples, the superconducting transition at ambient pressure is very sharp, demonstrating good homogeneity of the single crystals. As shown in the figures, upon increasing pressure, T_c monotonically decreases in the studied pressure range. A gradually broadening of the superconducting transition was also observed in both samples. Similar behavior has been observed in many other superconductors that are measured in the mBAC cell and is likely due to the pressure inhomogeneity when high loads are applied.

To better visualize the pressure evolution of resistance,
we present in Fig. 2 the pressure dependent resistance \(R(p) \) at fixed temperatures. As shown in the figure, different from the CaKFe\(_4\)As\(_4\) series\(^{28,29}\), resistance of EuRbFe\(_4\)As\(_4\) at various temperatures shows a smooth decrease as a function of pressure without any obvious anomalies. This implies the absence of structural transition up to 6.21 GPa, which is consistent with the results in Ref. 27 and predictions in Ref. 30 where the hcT phase transition is suggested to take place at \(\sim 10 \) GPa. The total suppression of resistance at 40 K under pressure, \(\sim 55\% \) up to 4 GPa and \(\sim 65\% \) up to 6.21 GPa, is rather large compared with the CaKFe\(_4\)As\(_4\) series, where the suppression at 40 K is 30\% - 40\% up to 4 GPa, i.e., before hcT happens\(^{28,29}\). Another indication that a potential hcT phase transition has not been reached is the fact that the superconducting transitions shown in Figs. 1 and 3 remain robust over our pressure range. Both CaKFe\(_4\)As\(_4\) series\(^{28,29}\) as well as Co-substituted CaFe\(_2\)As\(_2\)\(^{37,38}\) show loss of bulk superconductivity at the collapsed-tetragonal or lowest hcT transitions.

Temperature dependent resistance under magnetic fields up to 9 T applied along the c-axis was studied and the results are presented in Fig. 3 for selected pressures for sample \#2. As shown in the figure, below \(T_c \), no features associated with the magnetic transition \(T_M \) are observed and zero resistance persists down to 1.8 K with fields up to 9 T under all pressures. For temperatures above the superconducting transition, a decrease of resistance under applied magnetic field is observed. The upper superconducting critical field, \(H_{c2} \), can be obtained from Fig. 3 using the offset criteria defined in Figs. 1-3. The temperature dependence of \(H_{c2} \) at various pressures for sample \#1 and sample \#2 is presented in Fig. 4. For both samples, \(H_{c2} \) is systematically suppressed by increasing pressure. \(H_{c2} \) is linear in temperature except for magnetic fields below 2 T, the bending of \(H_{c2}(T) \) curves are more obvious at higher pressures. The curvature at low fields has been observed in other FeSC\(^{29,39–42}\) and can be explained by the multi-bands nature of superconductivity\(^{43}\), which is likely the case of EuRbFe\(_4\)As\(_4\)\(^7\).

To study the evolution of the magnetic transition with pressure, we present, in Fig. 5, the dependence of the zero-field-cool magnetization \(M(T) \) data. During the measurements, pressure was increased up to 1.24 GPa.

![FIG. 3. Temperature dependence of resistance under magnetic field up to 9 T for selective pressures for sample \#2. Criteria for \(T_{offset} \) under magnetic fields are indicated by arrows. Current was applied in-plane and magnetic field was applied along \(c \) axis.](image)

![FIG. 4. Temperature dependence of the upper superconducting critical field, \(H_{c2}(T) \), under selected pressures for (a) sample \#1 and (b) sample \#2.](image)
under 20 mT applied magnetic field. As shown in Fig. 5 (a), the superconducting transition of EuRbFe$_4$As$_4$ is recognized as onset of diamagnetism at $T \sim 35$ K. Another kink-like anomaly is observed at $T \sim 16$ K. We associated this anomaly with the magnetic transition T_M. Pressure values at low temperature were inferred from the superconducting transition of Sn which also shown up in the data set at $T \sim 3.7$ K, i.e., way below T_c and T_M of EuRbFe$_4$As$_4$ (as indicated inside the pink circle in the figure). Fig. 5 (b) shows the blowup of the superconducting transition region of EuRbFe$_4$As$_4$, demonstrating that T_c is suppressed as pressure is increased. To determine the magnetic transition temperature T_M, temperature derivative of the magnetization, dM/dT, was calculated and presented in Fig. 5 (c). The temperature derivative was taken as T_M, as indicated in the figure. It is clearly seen that T_M is increased upon increasing pressure.

We summarize the T_c and T_M values inferred from both resistance and magnetization measurements in the pressure-temperature ($p-T$) phase diagram shown in Fig. 6 (a). To be consistent, T_c^{offset} determined from resistance measurements (Fig. 1 (c)) and T_{M}^{onset} determined from magnetization measurements (Fig. 5 (b)) were used and they match with each very well. As shown in Fig. 6 (a), T_c of EuRbFe$_4$As$_4$ is monotonically suppressed upon increasing pressure up to 6.21 GPa. Starting with $T_c = 36.6$ K at ambient pressure, T_c is suppressed to 23.5 K at 6.21 GPa. In terms of magnetic transition T_M, it is linearly increased from 16.2 K at ambient pressure to 18.2 K at 1.24 GPa, with the rate of $dT_M/dp = 1.64$ K/GPa. To better understand the su-
perconducting properties of EuRbFe$_4$As$_4$, we further analyze the superconducting upper critical field\cite{29,41,42,44}. Generally speaking, the slope of the upper critical field normalized by T_c is related to the Fermi velocity and superconducting gap of the system\cite{13}. In the clean limit, for a single-band,

$$-(1/T_c)(d\mu_oH_{c2}/dT)|_{T_c} \propto 1/v_F^2,$$

where v_F is the Fermi velocity. Even though the superconductivity in EuRbFe$_4$As$_4$ compounds is likely to be multiband, Eq. 1 can give qualitative insight into changes induced by pressure. As shown in Fig. 6 (b), the normalized slope of the upper critical field $-(1/T_c)(d\mu_oH_{c2}/dT)|_{T_c}$ (the slope $d\mu_oH_{c2}/dT$ is obtained by linearly fitting the data above 2 T in Fig. 4) is gradually suppressed by a factor of ~ 2.5 upon increasing pressure up to 6.21 GPa. No features in the normalized slope that could be associated with band structure change or Lifshitz transition, like the cases in many other Fe-based superconductors\cite{29,41,42,44}, are observed over the studied pressure range. Furthermore, the $R(p)$ curve at 40 K (Fig. 2 (b)), a temperature that is close to T_c but still above T_c and T_M, implies that resistivity is suppressed by a factor of ~ 2.7 as well. In a simple argument\cite{13},

$$\rho \propto 1/(g_{\epsilon_F}\tau v_F^2)$$

where g_{ϵ_F} is density of states at the Fermi level and τ is the scattering time of these Fermi electrons. Eq. 1 and 2, combined together, suggest that the decrease of both resistivity and $-(1/T_c)(d\mu_oH_{c2}/dT)|_{T_c}$ with pressure can be explained by pressure induced increase of the Fermi velocity.

Data from this study, on single crystalline samples, and from the study on polycrystalline samples in Ref. 27 are plotted together and presented in the combined $p-T$ phase diagram in Fig. 7. As shown in the figure, T_c from this study (determined by the onset of the transition via resistance measurement or onset of diamagnetism) matches very well with the T_c determined by the onset of diamagnetism in Ref. 27. T_M data also match with each other over the studied pressure range.

The extrapolation of our $T_M(p)$ line in Fig. 6(a) as well as the data in Fig. 7 suggest that $T_c(p)$ and $T_M(p)$ should cross near 6 GPa. On one hand, the suppression of T_c with pressure gets stronger when pressure is increased, which might be related to the fact that $T_c(p)$ and $T_M(p)$ are getting closer at higher pressures. On the other hand, neither our pressure dependent T_c nor $-(1/T_c)(d\mu_oH_{c2}/dT)|_{T_c}$ data show any clear signature potentially associated with $T_c(p)$ and $T_M(p)$ crossing. Either they cross at a pressure higher than 6.21 GPa or their crossing does not have qualitative effect on $T_c(p)$ or $H_{c2}(T,p)$.

![FIG. 7. Pressure-temperature phase diagram of EuRbFe$_4$As$_4$ up to \sim 30 GPa, including data from Ref. 27 (open symbols). Open circles correspond to the onset of the superconducting transition measured via resistivity or magnetic susceptibility. Open triangles correspond to the magnetic transition determined from magnetic susceptibility or feature in $d\rho/dT$.](image)

IV. CONCLUSION

In conclusion, the resistance and magnetization of single crystalline EuRbFe$_4$As$_4$ has been studied under pressure. In-plane resistance measurements under pressure up to 6.21 GPa reveal that superconducting transition T_c is monotonically suppressed. Magnetization measurements under pressure up to 1.24 GPa reveal that magnetic transition T_M is linearly increased. No indications of half-collapsed-tetragonal phase transition is observed up to 6.21 GPa. Further upper critical field analysis shows that the normalized slope, $-(1/T_c)(d\mu_oH_{c2}/dT)|_{T_c}$, is continuously suppressed upon increasing pressure up to 6.21 GPa, which is likely due to the continuous change of the Fermi velocity with pressure. Our results suggest that the magnetism of Eu sub-lattice does not have significant influence on the superconducting behavior of FeAs layer in EuRbFe$_4$As$_4$.

ACKNOWLEDGMENTS

We would like to thank U. Welp and V. G. Kogan for some preliminary results and useful discussions. This work is supported by the US DOE, Basic Energy Sciences, Materials Science and Engineering Division under contract No. DE-AC02-07CH11358. L. X. was supported, in part, by the W. M. Keck Foundation. The synthesis and crystal growth were performed at Argonne National Laboratory which is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357.
U. S. Kaluarachchi, V. Taufour, A. E. Böhmer, M. A. Tanatar, S. L. Bud’ko, V. G. Kogan, R. Prozorov, and P. C. Canfield, Phys. Rev. B 93, 064503 (2016).

L. Xiang, U. S. Kaluarachchi, A. E. Böhmer, V. Taufour, M. A. Tanatar, R. Prozorov, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 96, 024511 (2017).

V. G. Kogan and R. Prozorov, Rep. Prog. Phys. 75, 114502 (2012).

V. Taufour, N. Foroozani, M. A. Tanatar, J. Lim, U. Kaluarachchi, S. K. Kim, Y. Liu, T. A. Lograsso, V. G. Kogan, R. Prozorov, S. L. Bud’ko, J. S. Schilling, and P. C. Canfield, Phys. Rev. B 89, 220509 (2014).

S. Kasap, Principles of Electronic Materials and Devices, 3rd ed. (McGraw-Hill, Inc., New York, NY, USA, 2006).