Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A novel spherical fuzzy AHP-VIKOR methodology to determine serving petrol station selection during COVID-19 lockdown: A pilot study for İstanbul

Ertugrul Ayyildiz a,*, Alev Taskin b

a Department of Industrial Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
b Department of Industrial Engineering, Yildiz Technical University, 34349, Istanbul, Turkey

ARTICLE INFO
Keywords: COVID-19
Lockdown
Spherical fuzzy sets
Petrol station
AHP
VIKOR

ABSTRACT
COVID-19 pandemic has affected the entire world. During the Covid-19 pandemic, which is tried to be prevented by all countries of the world, regulations have been made to reduce the effect of the virus in sectors such as banking, tourism, and especially transportation. Social isolation is one of the most critical factors for people who have or are at risk of contracting COVID-19 disease. Many countries have developed different solutions to ensure social isolation. By applying lockdown for specific periods, preventing the movement of people will reduce the rate of transmission. However, some private and public institutions that have to serve during the lockdown period should be carefully determined. In this study, we aim to determine the petrol stations to serve during the COVID-19 lockdown, and this problem is handled as a multi-criteria decision-making problem. We extend the spherical fuzzy VlseKriterijumska Optimizacija IKompromisno Resenje (SF-VIKOR) method with the spherical fuzzy Analytic Hierarchy Process (SF-AHP). To show its applicability in complex decision-making problems, Istanbul is selected to perform a case study; thirteen petrol stations are evaluated as potential serving petrol station alternatives during the lockdown. Then, the novel SF-AHP integrated SF-VIKOR methodology is structured; the problem is solved with this methodology, and the best alternative is determined to serve in lockdown. Accessibility of the petrol station and Measures taken by station managers are determined to be essential for the effectiveness of the lockdown process. The neighborhood population and the station’s proximity to hospitals are also critical inner factors to fight the pandemic. To test the methodology, Spherical Fuzzy the Weighted Aggregated Sum-Product Assessment (SF-WASPAS) is utilized. Public or private organizations can use the proposed methodology to improve their strategies and operations to prevent the spreading of COVID-19.

1. Introduction

In December 2019, the pneumonia epidemic, first seen in Wuhan city of China, due to the newly defined SARS-CoV-2 factor, is defined as Coronavirus disease 2019 (COVID-19) [1]. The epidemic spreads rapidly, and on January 26, 2020, the existence of the virus was confirmed on all continents except Antarctica [2]. The first COVID-19 case in Turkey was detected on March 11, 2020. On the same date, the World Health Organization (WHO) announced this epidemic as a pandemic [3]. According to the reports published by WHO, there are more than seven million confirmed cases and more than four hundred thousand deaths in earlier June 2020 [4]. Studies for the treatment of such a large epidemic affecting 217 countries in the world are still ongoing.

COVID-19 is transmitted from person to person very quickly by droplet [5–7]. COVID-19 can be transmitted by the secretions of infected people caused by coughing and sneezing when they contact a healthy person’s hands [8]. Also, COVID-19 is smeared from contaminated dry surfaces through hands, nose, eyes, or mouth mucous membranes [9]. For this reason, methods such as social isolation, use of personal protective equipment (mask, gloves, etc.), and protection of social distance (at least 1 m) have become very important in preventing contamination [10]. When the measures taken for the rearrangement of human movements in public life areas are examined, it is seen that compulsory changes and innovations have to be made in the cities. The increased population density in cities, close contact among people, high mobility,
public transportation, and common spaces are the factors that cause the spread of infection rapidly. In this context, countries have started to apply different methods to prevent the COVID-19 pandemic.

The People’s Republic of China, where the outbreak first appeared, took strict lockdown and social isolation measures from the beginning and a low mortality rate occurred [11]. The pandemic spread very rapidly in Italy due to the delay in taking restrictive and protective measures. Besides, it is understood that the pandemic is spread with insufficient equipment and experienced the process more difficult [12]. Similar situations are observed in Spain and France, with high mortality rates [13]. Sweden, the Netherlands, and the United Kingdom have tried the Herd Immunity method to fight against COVID-19 [14–16]. They gave up this method and started taking measures to suppress the pandemic after the severe situations due to the loss of control in Italy and Spain [17]. Some measures such as lockdown for risky population, closure of public places of rest and recreation to public access, not being allowed to sit in restaurants, regulation on the working hours of the markets and the number of customers shopping in the markets, etc. are taken within the scope of the fight against the pandemic in Turkey, in the first stage [18]. Later, some lockdowns are implemented to prevent the pandemic, and the first lockdown was on April 10, 2020 [19].

However, some private and public institutions have to continue their operations during the lockdown. Some of these are public and private health institutions, state agencies, and organizations required to maintain mandatory public services, strategic facilities in the energy sector, and food and cleaning materials production facilities. The transportation of employees and managers of these institutions is important to provide these services properly and operate the institutions effectively. Public transport or private vehicles can be used for transportation. The fuel needs of public transit and private vehicles can only be provided by authorized petrol stations. In this context, the determination of the petrol stations to serve during lockdown is essential. Multiple factors should be taken into account when determining which stations to serve during the lockdown. In addition, the factors related to the spread of the outbreak must be taken into consideration while meeting the need for fuel. So the process of deciding on which station(s) to serve during lockdown should involve both quantitative and qualitative criteria. This is a classical type of decision-making problem. The decision-making problems usually include more than one criteria are called multi-criteria decision-making problems. To the best of our knowledge, there is no comprehensive study in the literature about the petrol station selection problem considering the pandemic conditions.

Upchurch et al. focus on the petrol station site selection problem. A capacitated location model is presented with some constraints related to vehicles’ numbers [20]. Lim and Kuby present an algorithm-based solution methodology to select the most appropriate site for a petrol station that sells alternative fuels [21]. Sun et al. present a location model of a petrol station for network expansion strategy. Set covering methodology is used with a greedy algorithm to determine the size and location of a new petrol station considering existing petrol stations [22]. Aslani and Alesheikh present a GIS-based solution for the location selection of petrol stations, especially small stations. They define the criteria and weighted criteria with fuzzy Analytical Hierarchy Process (AHP) methodology, and then GIS is used to determine the best alternative [23]. MirHassani and Ebrazi develop a set covering mathematical model to solve the location selection problem of petrol stations, especially small stations. They define the criteria and weighted criteria with fuzzy Analytical Hierarchy Process (AHP) methodology, and then GIS is used to determine the best alternative [23]. MirHassani and Ebrazi develop a set covering mathematical model to solve the location selection problem of petrol stations, especially small stations. They define the criteria and weighted criteria with fuzzy Analytical Hierarchy Process (AHP) methodology, and then GIS is used to determine the best alternative [23].

A heuristic algorithm is used to solve this mathematical model [25]. Khabro and Memon search the most appropriate land with Geographic Information System (GIS) for building petrol station [26]. Ayylidz and Gumus define the petrol station location selection criteria and propose a fuzzy multi-criteria decision-making approach. The alternatives are evaluated considering a real case study [27].

As seen from the literature review, location selection of petrol stations is one of the topics handled in the academic literature. But, there is a very limited number of studies examining this problem as a multi-criteria decision-making problem. Also, to the best of our knowledge, there is no study for determining which petrol station(s) to serve during the lockdown, considering the pandemic conditions. Therefore, a comprehensive set of criteria is defined, and these criteria are weighted in this study. This study presents the most comprehensive criteria structure to determine which petrol station(s) to serve during lockdown. For which all the factors are included in terms of pandemic conditions. Further, this problem is solved in the spherical fuzzy environment to represent uncertainties and fuzziness in the decision-making process for the first time in the literature. To cope with this complex decision-making problem, spherical fuzzy VlseKriterijumska Optimizacija Ikompromisno Resenje (VIKOR) is extended with AHP under a spherical fuzzy environment, and the Spherical Fuzzy AHP (SF-AHP) integrated spherical fuzzy VIKOR (SF-VIKOR) methodology is presented to the literature as a novel decision-making methodology.

Thanks to the proposed AHP and VIKOR combination under a spherical fuzzy environment, more detailed and comprehensive criteria set can be included in the evaluation process to make more accurate decisions in complex decision-making problems. These criteria can be grouped in a hierarchical structure and weighted more systematically. Thus, the opinions of decision-makers about the criteria can be integrated into the process more effectively. By using systematically weighted criteria in the VIKOR method, alternatives can be evaluated in more detail. In addition, with the proposed combination, the same experts can be consulted for criteria weighting and alternative evaluation, as well as different experts for criteria weighting and different experts for alternative evaluation.

In spherical fuzzy sets (SFS), decision-makers define a membership function on a spherical surface. Thus, by generalizing other fuzzy set extensions, they can independently assign the parameters of the membership function to a larger domain [1]. SFS give decision-makers more freedom, and less information distortion is lead [2]. Intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PFS), have some limitations that make these sets insufficient to handle uncertainty in information and capture the complete information. Namely, there is no function to represent the degree of hesitancy by decision-makers [3]. Recently, the SFS are introduced to literature address this. SFS provide an effective way to determine ambiguity in information more impressively and represent decision-makers’ opinion better than the existing fuzzy sets [4]. SFS allow decision-makers to assign their hesitancy in the decision environment independently [1]. In this way, SFS enables the decision-making process to be more equivalent to human judgment, namely intelligent, so that SFS provide higher accuracy of determination of weight and evaluation of alternatives in the complex decision-making problems [5]. SFS can be considered as the integration of neutrosophic sets and PFS [6]. Decision-makers express their degree of hesitancy like membership degree and non-membership degree in SFS [7]. Thus, SFS collect the advantages of other fuzzy sets in a unique theory [1]. SFS eliminate some disadvantages of neutrosophic sets and PFS.

AHP is one of the most used multi-criteria decision-making methodologies used to prioritize the criteria [28]. Researchers used AHP because of its utilization of a simple hierarchical structure to handle complex decision-making problems [29]. Ease of use is one of the advantages of using AHP. It provides the opportunity to evaluate qualitative and quantitative criteria together by including the priorities of the decision-maker in the decision-making problems. A decision problem can accommodate the subjective and objective thought in the decision process. AHP makes the decision-making process formal and systematic and ensures that the right decisions are made. AHP method is an approach of MCDM, which analyzes the problem displayed in different levels of hierarchy [30]. It has a structure that simplifies complex problems [27]. AHP allows the decision-maker to measure the degree of consistency of their judgments. It is suitable for use in group decisions. The method uses the pairwise comparison of criteria. These comparisons allow decision-makers to determine the importance weight.
of criteria [31]. AHP enables decision-makers to make the right decision in complicated, complex, unorganized multi-criteria decision-making problems [32]. Determining the importance of criteria before solving the decision-making problem yields more reliable rankings of alternatives that reflect decision-makers’ preferences more accurately [33]. For these reasons, we utilize AHP to determine the weights of criteria under a spherical fuzzy environment.

The VIKOR methodology focuses on ranking alternatives and selecting the best from a set of these alternatives. To determine the best option, many conflicting and non-commensurable criteria can be included [34]. The VIKOR methodology proposes an aggregating function that combines all considered criteria with their relative importance and a balance between the total satisfaction and individual regrets [35]. Aggregating function in VIKOR considers the distance from ideal solution [36]. VIKOR enables the compromise solutions to resolve conflict [37]. Compromise means a mutual concession here [38]. This method helps decision-makers determine a compromise solution for the decision-making problem to reach a more accurate final decision [39]. For these reasons, SF-VIKOR is utilized to evaluate alternative stations to serve during the lockdown in this study.

In this study, the hierarchical criteria structure is constructed to define the criteria to determine the petrol station(s) to serve during the lockdown. Due to pandemic conditions, remote interviews with the expert group are conducted to take their opinions about criteria and alternatives. Then, the proposed methodology, which consists of SF-AHP and SF-VIKOR, is structured. The weights of each main and sub-criteria and specified alternative locations’ evaluations are determined by the proposed hybrid decision-making methodology. The proposed methodology is applied to the Tuzla district of Istanbul to show its results and applicability.

This study is organized as follows: SFS are explained in Section 2. Related studies about SFS for multi-criteria decision-making are summarized in Section 3. The proposed novel methodology is presented in Section 4. Section 5 gives the real case study and sensitivity analysis of the proposed methodology. Comparative analysis is explained in Section 6. Finally, the results and future directions are given in the last section.

2. Spherical fuzzy sets

Fuzzy logic was first introduced to the literature by Zadeh [39]. The theory is suitable for subjective judgment and qualitative assessment in the evaluation processes of decision-making problems. The logic focuses on the rationality of uncertainty due to ambiguity. The linguistic approach is an effective method to solve uncertainty in information [40]. The multi-criteria decision-making problems may include more than one linguistic criteria. Different fuzzy sets can be used to define these linguistic criteria. IFS [41], PFS [42], type-2 fuzzy sets [43], hesitant fuzzy sets [44], and neutrosophic sets (NS) [45] are the most used sets in the literature [27].

The degree of membership of an element to the set is defined with μ_A and the degree of non-membership to the set is defined with $1-\mu_A$ in traditional fuzzy sets proposed by Zadeh. Therefore, the sum of the degrees of membership and non-membership equals 1. However, this situation is insufficient to explain the uncertainty situation in some problems encountered. So, Atanassov proposed the intuitionistic fuzzy set theory, which is the generalized version of the fuzzy set theory. While Zadeh’s Fuzzy Set theory includes only the degree of membership defined in the $[0,1]$ range, Atanassov added a non-membership degree to define the degree of membership in the IFS. Both the degree of membership and non-membership take value in the $[0,1]$ range. Unlike the traditional fuzzy sets, the sum of the degree of membership and non-membership does not have to be 1 in IFS. Atanassov has defined a third parameter called the degree of hesitancy to complete this sum to 1.

Definition 1. Let X be a fixed set. An intuitionistic fuzzy number is shown as I in Eq. (2.1):$
\tilde{I} \equiv \{ x, \tilde{\mu}(\mu^I(x), \nu^I(x)) : x \in X \}
$ (2.1)

where X is a fixed set in the function. $\mu^I(x) : X \rightarrow [0,1]$ and $\nu^I(x) : X \rightarrow [0,1]$ define the degree of membership and degree of non-membership of the element $x \in X$ to \tilde{I} respectively.

$$0 \leq \mu(x) + \nu(x) \leq 1; x \in X
$$ (2.2)

The indeterminacy’s degree is calculated by Eq. (2.3):

$$\pi(x) = 1 - \mu(x) - \nu(x)$$ (2.3)

SFS were proposed by Yager [42] derived from IFS, which was originally proposed by Atanassov [41]. Unlike the IFS, the sum of membership and non-membership degrees can exceed 1, but the sum of their squares cannot be in PFS [46,47] as explained in Definition 2.

Definition 2. Let X be a fixed set. A Pythagorean fuzzy number is shown as \tilde{P} [46,47]:

$$\tilde{P} \equiv \{ x, \mu_p(x), \nu_p(x) : x \in X \}
$$ (2.4)

where the function $\mu_p(x) : X \rightarrow [0,1]$ describes the degree of membership and $\nu_p(x) : X \rightarrow [0,1]$ describes the degree of non-membership of the element $x \in X$ to P respectively and for every $x \in X$, it holds:

$$0 \leq \mu_p(x)^2 + \nu_p(x)^2 \leq 1$$ (2.5)

The indeterminacy ratio is obtained as in the following:

$$\pi_p(x) = \sqrt{1 - \mu_p(x)^2 - \nu_p(x)^2}$$ (2.6)

SFS can also be used to handle ambiguity and fuzziness in linguistic expressions. SFS are defined with three dimensions like the IFS, PFS, and neutrosophic sets. But, functions are defined on a spherical surface to generalize fuzzy sets in SFS. So membership function can be assigned in a larger domain. Thus SFS provide more freedom to decision markers. In SFS sum and squared sum of membership, non-membership and inde terminacy ratio can be between 0 and 1, and all of them are defined in $[0,1]$ independently as explained in Definition 3 [48].

Definition 3. Let X be a fixed set. A spherical fuzzy number is shown as S:

$$\tilde{S} \equiv \{ x, \tilde{\mu}(\mu^S(x), \nu^S(x), \pi^S(x)) : x \in X \}
$$ (2.7)

$\mu^S(x) : X \rightarrow [0,1], \nu^S(x) : X \rightarrow [0,1]$ and $\pi^S(x) : X \rightarrow [0,1]$ define the membership function, non-membership function, and hesitancy function of the element $x \in X$ to \tilde{S}, respectively.

$$0 \leq \mu^S(x)^2 + \nu^S(x)^2 + \pi^S(x)^2 \leq 1; x \in U
$$ (2.8)

3. Literature review

SFS are a new approach for multi-criteria decision-making process under a spherical fuzzy environment [48]. In SFS, functions are defined on a spherical surface to generalize fuzzy sets. So membership functions can be assigned in a larger domain [48]. SFS can be used to deal with the linguistic variables in the decision-making process. SFS are drawn the attention of many researchers and are later applied to many application areas. In this section, the multi-criteria decision-making literature related to the SFS is reviewed. Some remarkable studies based on SFS are given in Table 1.

Detailed summaries of the papers placed in Table 1 are as follows: K. Gundogdu and Kahraman present a novel SFs based VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methodology for
Some remarkable multi-criteria decision-making studies based on SFS.

Table 1

Author(s)	Year	Method	Subject	Type
K.Gundogdu and Kahraman	2019	VIKOR	Warehouse site selection	Article
K.Gundogdu and Kahraman	2019	WASPAS	Robot selection	Article
K.Gundogdu and Kahraman	2019	TOPSIS	Supplier selection	Article
Zeng et al.	2019	TOPSIS	Heavy rainfall assessment	Article
K.Gundogdu and Kahraman	2019	TOPSIS	3D printer selection	Article
Barukab et al.	2019	TOPSIS	Robot selection	Article
Rong et al.	2019	TODIM	Illustrative example	Conference
K.Gundogdu and Kahraman	2020	CODAS	Warehouse site selection	Conference
Liu et al.	2020	TODIM	Shared bicycle evaluation	Article
Hakan and Kahraman	2020	FMEA	Car seats design	Book Chapter
K.Gundogdu and Kahraman	2020	VIKOR	Waste disposal site selection	Conference
K.Gundogdu	2020	MULTIMOORA	Personnel selection	Article
Bolturk	2020	TOPSIS	Technology selection	Conference
K.Gundogdu and Kahraman	2020	AHP	Robot selection	Conference
Kahraman et al.	2020	QFD	Product development	Book Chapter
K.Gundogdu and Kahraman	2020	AHP	Renewable energy site selection	Article
Balin	2020	TOPSIS	Device selection	Article
Mathew et al.	2020	AHP-TOPSIS	Manufacturing system selection	Article
Ashraf and Abdullah	2020	TOPSIS-GRASA	Emergency measure evaluation	Article
Aydyiliz and Taskin Gumar	2020	AHP-WASPAS	Petrol station site selection	Article
Aydogu and Gul	2020	WASPAS	Illustrative example	Article
Kahraman et al.	2020	TOPSIS	Hospital site selection	Conference
Sharaf and Khalil	2020	TODIM	Safety equipment supplier selection	Article
Oztay et al.	2020	AHP	Pricing model	Article
Akram et al.	2021	VIKOR	Illustrative example	Article
Gul and Ak	2021	FMEA-TOPSIS	Failure analysis	Article
K.Gundogdu	2021	AHP	Hospital performance assessment	Book Chapter
	2021	TOPSIS		Article

Table 1 (continued)

Author(s)	Year	Method	Subject	Type
Gul and Yucecan	2021	TOPSIS	Electric vehicle charging site selection	Book Chapter
K.Gundogdu and Kahraman	2021	CODAS	Livability index assessment	Book Chapter
Karasan et al.	2021	AHP-TOPSIS	Vehicle technology evaluation	Conference
Jaller and Otay	2021	PROMETHEE	Geothermal energy system evaluation	Book Chapter
Sharaf	2021	VIKOR	Illustrative example	Book Chapter
Oztay and Atik	2021	AHP-WASPAS	Oil station site selection	Conference
Bolturk and K.Gundogdu	2021	WASPAS	Manufacturing challenges prioritization	Book Chapter
Aydin and K.Gundogdu	2021	MULTIMOORA	Industry 4.0 performance evaluation	Book Chapter
Demir and Turan	2021	AHP	Crisis management	Article
Unal and Temur	2021	AHP	Sustainable supplier selection	Conference
Unal and Temur	2021	AHP	Waste management system selection	Conference
Erdogan et al.	2021	DEMATEL-ANP-VIKOR	Vehicle driving system evaluation	Article
Liu et al.	2021	TODIM-PROMETHEE	Health and safety risk assessment	Article
Nguyen et al.	2021	AHP	COVID-19 intervention strategy evaluation	Article
Dogan	2021	AHP	Process mining technology selection	Article
Singer and Sahin	2021	AHP	Laminate flooring selection	Article
Menekse and Akdag	2022	ARAS	Seismic vulnerability assessment	Conference
Menekse and Akdag	2022	AHP-ELECTRE	Information technology analysis	Conference
Kahraman et al.	2022	CRITIC	Governance analysis	Conference
Kahraman et al.	2022	EXPROM	Waste water treatment technology analysis	Conference
Oztaysi et al.	2022	REGIME	Waste disposal site selection	Conference

warehouse location selection problem. Four different alternatives are evaluated using four different criteria via this methodology [49]. K. Gundogdu and Kahraman propose the WASPAS methodology for a spherical fuzzy environment. The industrial robot selection problem is handled as a case study. Four different criteria are used for selecting the best robot among five robots [50]. The supplier selection problem is focused on the study of K.Gundogdu and Kahraman. Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) methodology is extended to spherical fuzzy TOPSIS methodology for evaluating four different alternatives with respect to four criteria [48]. Zeng et al. develop a multi-criteria decision-making model to include different points of view for the covering-based spherical fuzzy rough environment. The assessment of heavy rainfall in Pakistan is performed using the TOPSIS methodology [51]. K.Gundogdu and Kahraman employ interval-valued spherical fuzzy TOPSIS methodology for 3D printer selection problems [52]. Barukab et al. identify four criteria to evaluate five robots via Spherical Fuzzy TOPSIS methodology [53]. Combinative Distance-Based ASsessment (CODAS) methodology is extended with SFs
to handle warehouse site selection problems [55]. Liu et al. evaluate the shared bicycles’ index system via an extended spherical fuzzy TODIM (an acronym in Portuguese of Interactive and Multicriteria Decision-making) methodology [56]. Haktanir and Kahraman perform a literature review on fuzzy Failure mode and effects analysis (FMEA) and present a spherical fuzzy FMEA method for car seat design problem [57]. K.Gundogdu and Kahraman present a spherical fuzzy VIKOR methodology to waste management. The best site for a waste disposal facility is determined among five alternatives [58]. K.Gundogdu uses Multi-Objective Optimization by a Ratio Analysis plus the Full Multiplicative Form (MULTIMOORA) with SFS for personnel selection problem [59]. Bolturk uses TOPSIS methodology with spherical fuzzy numbers for the technology selection of automated storage and retrieval systems [60]. K.Gundogdu and Kahraman develop SF-AHP methodology for robot selection problem [61]. Kahraman et al. focus on the product development process. Quality function deployment (QFD) methodology is extended with SFS to handle this problem [62]. K.Gundogdu and Kahraman use spherical fuzzy AHP methodology for the site selection problem of the renewable energy facility. Neutrosophic AHP is performed to make a comparative analysis [63]. Balin employs spherical fuzzy TOPSIS methodology to evaluate stabilizing system alternatives for naval ships [64]. Ashraf and Abdullah utilize grey relational analysis (GRA) and TOPSIS to handle the uncertainties in emergency decision support modeling for COVID-19 [66]. Karasan et al. introduce spherical fuzzy CODAS methodology to determine livability indices for suburban places [75]. Sharaf propose spherical fuzzy preference ranking organization method of enrichment evaluation (PROMETHEE) methodology and solve two illustrative examples to show applicability of methodology [77]. Erdogan et al. combine Decision-making Trial and Evaluation Laboratory (DEMATEL), Analytical Network Process (ANP), and VIKOR to evaluate alternative autonomous vehicle driving systems in terms of comprehensive set of risk criteria [85]. Menekse and Akdag develop spherical fuzzy extension of Additive Ratio ASsessment (ARAS) and perform seismic vulnerability assessment for university building [90]. Menekse and Akdag focus on information technology governance evaluation problem, and determine weight of criteria by SF-AHP, then evaluate alternatives by spherical fuzzyELimination Et Choice Translating REality (ELECTRE) [91]. Kahraman et al. propose CRiteria Importance Through Intercriteria Correlation (CRITIC) under spherical fuzzy environment to determine importance of criteria for supplier selection [92]. Spherical fuzzy version of EXtension of the PROMethee (EXPROM) is introduced to literature by Kahraman et al. to handle with wastewater treatment technology selection problem [93]. Oztaysi et al. propose novel spherical fuzzy REGIME to determine best site for waste disposal facility [94].

When detailed analyzes are applied about all these studies reviewed here, Figs. 1–3 are obtained, as presented below. Fig. 1 shows the types of studies reviewed.

When focused on Fig. 1, it is seen that the studies reviewed in this paper based on SFS are mostly published in international journals as articles with a rate of 51%. 31% of the studies are presented in conferences and published in proceeding books. Lastly, 18% of the studies are published as book chapters.

The usage of SFS in multi-criteria decision-making methodologies is newly introduced to the literature. The first related paper was published in 2019. The yearly distribution of the papers reviewed can be seen in Fig. 2.

According to Fig. 2, it can be said that the number of papers is increasing yearly. In 2019, just seven papers were reviewed, then seventeen papers were reviewed in this study that published in 2020. Twenty multi-criteria decision-making papers based on SFS published in 2021 are reviewed. Lastly, five papers are published in 2022. Different methodologies are used to solve decision-making problems. The methodologies used in reviewed papers can be seen in Fig. 3.

According to Table 1 and Fig. 3, eighteen different multi-criteria decision-making methodologies are employed in the reviewed forty-nine studies. Ten of these studies use hybrid methodologies to handle decision-making problems. AHP and TOPSIS are the most used methodology with fifteen and thirteen times, respectively. Then WASPAS, VIKOR, and TODIM are used six, five, and four times. Four different methodologies are used more than one time, and nine methodologies are used only one time. However, this is the first paper in which both AHP and VIKOR approaches are used together, according to Table 1. This makes the paper prominent in terms of methodology among the papers in the relevant literature.

According to a detailed multi-criteria decision-making literature review based on SFS applications, there is no study that combines VIKOR and AHP under an interval-valued spherical fuzzy environment. So, this study proposes a novel approach involving SF-AHP integrated SF-VIKOR, which is developed for the first time to deal with complex decision-making problems. Besides, using a fuzzy multi-criteria decision-making approach for the first time for determining the serving station during a pandemic is one of the first innovations made in this paper. Therefore, the study contains novelties in terms of both the method adopted and the field of application.
4. The proposed methodology

The proposed fuzzy multi-criteria decision-making methodology that consists of SF-AHP integrated SF-VIKOR includes two main stages. In the first stage, the weights of each criteria level are determined by SF-AHP. Subsequently, SF-VIKOR is employed to rank alternatives using these weights. The proposed integrated methodology is given in Fig. 4, and it is detailed theoretically in the following steps.

4.1. Preliminaries of spherical fuzzy sets

Basic operations of spherical fuzzy numbers are shown as follows [63].

Definition 4. The addition of two spherical fuzzy numbers \(\tilde{a} = S(\mu_a, v_a, \pi_a) \) and \(\tilde{b} = S(\mu_b, v_b, \pi_b) \) is:

\[
\tilde{a} \oplus \tilde{b} = \tilde{S}\left(\mu_a + \mu_b, v_a + v_b, \pi_a + \pi_b\right)
\]

(2.9)

Definition 5. The multiplication on two Spherical fuzzy numbers \(\tilde{a} = S(\mu_a, v_a, \pi_a) \) and \(\tilde{b} = S(\mu_b, v_b, \pi_b) \) is:

\[
\tilde{a} \otimes \tilde{b} = \tilde{S}\left(\mu_a \mu_b, v_a v_b, \pi_a \pi_b\right)
\]

(2.10)

Definition 6. Multiplication by a positive scalar \(\lambda > 0 \):

\[
\lambda \tilde{a} = \tilde{S}\left(\mu_a \lambda, v_a \lambda, \pi_a \lambda\right)
\]

(2.11)

Definition 7. The positive power \(\lambda > 0 \) of \(\tilde{a} \) is given:

\[
\lambda \tilde{a} = \tilde{S}\left(\left(\mu_a \right)^\lambda, \left(\mu_a \right)^\lambda, \left(\mu_a \right)^\lambda\right)
\]

(2.12)
\[\alpha = S \left(\mu_a, \sqrt{1 - (1 - \mu_a)^2}, \sqrt{1 - v_a^2} - (1 - v_a - \pi_a^2) \right) \] (2.13)

Definition 8. Score value of \(\tilde{\alpha} \) is calculated with Eq. (2.14).

\[\text{Score}(\tilde{a}_i) = (2\mu_a - \pi_a^2)^2 - (v_a - \pi_a)^2 \] (2.14)

Definition 9. Euclidian distance between two Spherical fuzzy numbers \(\tilde{a} = (\mu_a, v_a, \pi_a) \) and \(\tilde{b} = (\mu_b, v_b, \pi_b) \) is determined:

\[\rho(\tilde{a}, \tilde{b}) = \sqrt{((\mu_a - \mu_b)^2 + (v_a - v_b)^2 + (\pi_a - \pi_b)^2)} \] (2.15)

\[\tilde{a}_i = S \left(\sqrt{1 - \frac{\pi_i^2}{n}}, \frac{\pi_i}{n}, 1 \right) \] (2.16)

where \(\tilde{a}_{ij} = (\mu_{ij}, v_{ij}, \pi_{ij}) \) represents the pairwise comparison between \(i \) and \(j \).

Step 3 Score indices (SI) are calculated for each comparison \((\tilde{a}_{ij}) \).

\[\text{SI} = \sqrt{\frac{100}{n} \left[(\mu_{ij} - \pi_{ij}^2) + (v_{ij} - \pi_{ij})^2 \right]} \] (for AMI, VHI, HI, SMI) (2.17)

\[\text{SI} = \frac{1}{\sqrt{\frac{100}{n} \left[(\mu_{ij} - \pi_{ij}^2) + (v_{ij} - \pi_{ij})^2 \right]}} \] (for ALI, VLI, LI, SLI, EI) (2.18)

Step 4 The pairwise comparison matrix is tested for consistency. Firstly, the consistency index (CI) of the matrix is calculated. \(\lambda_{\text{max}} \) is the largest eigenvalue of the pairwise comparison matrix, and \(n \) represents the number of criteria.

\[\text{CI} = \frac{\lambda_{\text{max}} - n}{n - 1} \] (2.19)

Then, the consistency ratio (CR) proposed by Saaty [95] is calculated.

\[\text{CR} = \frac{\text{CI}}{\text{RI}} \] (2.20)

Random index (RI) depends on matrix order (n). RI is determined via the table [95]. The consistency ratio should be less than 0.1.

Step 5 The fuzzy weight for each criterion \((w_i) \) is calculated via a spherical weighted arithmetical mean.

\[w_i = \frac{S_i}{\sum_{i=1}^{n} S_i} \] (2.23)

Step 6 Fuzzy numbers are defuzzified to determine the weight of each criterion.

\[S_i = \sqrt{\frac{100}{n} \left[(3\mu_{ij} - \pi_{ij}^2) - (\frac{v_{ij}}{2} - \pi_{ij})^2 \right]} \] (2.22)

Step 7 The weights of criteria are normalized to determine the final weights.

\[w_i = \frac{S_i}{\sum_{i=1}^{n} S_i} \] (2.23)

Step 8 All the above steps are repeated for each sub-criteria, and multiply local weights of the sub-criteria with the weight of related main criteria.

4.3. Spherical fuzzy VIKOR

Step 1 The decision matrix is established to evaluate alternatives according to criteria using linguistic terms (see Table 2 [48]) are used to define opinions. Let \(X_{ij} \) is the spherical fuzzy evaluation values of alternative \(i \) with respect to criterion \(j \).

Step 2 The Positive (\(\bar{X} \)) and Negative Ideal (\(\bar{X}_1 \)) solutions are determined for each criterion based on the score values. Score value of \(\bar{X}_i \) is calculated with Eq. (2.24).

\[\text{Score}(\bar{X}_i) = (3\mu_{ij} - \pi_{ij}^2) - (\frac{v_{ij}}{2} - \pi_{ij})^2 \] (2.24)

For the positive ideal solution:

Firstly, Eq. (2.24) is used to determine the score value of alternative \(i \) for criterion \(j \), then the maximum scores in the decision matrix are determined as the positive ideal solution. The corresponding spherical fuzzy numbers are determined based on the maximum scores as in Eq.

Table 2 Linguistic terms and spherical fuzzy scales of linguistic terms.

Linguistic Variables	Spherical Fuzzy Numbers	Score Index (SI)		
Absolutely low important - AMI	0.1	0.9	0	1/9
Very low important - VLI	0.2	0.8	0.1	1/7
Low important - LI	0.3	0.7	0.2	1/5
Slightly low important - SLI	0.4	0.6	0.3	1/3
Equal important - EI	0.5	0.5	0.4	1
Slightly high important - SHI	0.6	0.4	0.3	3
High important - HI	0.7	0.3	0.2	5
Very high important - VHI	0.8	0.2	0.1	7
Absolutely more important - AMI	0.9	0.1	0	9
(2.25) and Eq. (2.26).

\[\tilde{X}^* = \left\{ C_i, \max_i \ < \text{Score}(X_i) \ > \ |i = 1, 2, m \right\} \]

(2.25)

\[\tilde{X}^- = \left\{ C_i, \min_i \ < \text{Score}(X_i) \ > \ |i = 1, 2, m \right\} \]

(2.27)

\[\tilde{X}^- = \left\{ C_i, (\mu_i^1, v_i^1, \sigma_i^1), C_j, (\mu_j^2, v_j^2, \sigma_j^2) \ldots C_m, (\mu_m^v, v_m^v, \sigma_m^v) \right\} \]

(2.26)

where \(m \) represents the number of alternatives.

For the negative ideal solution:

Eq. (2.24) is used to determine the score value of alternative \(i \) for criterion \(j \), then the minimum scores in the decision matrix are determined as the negative ideal solution. The corresponding spherical fuzzy numbers are determined based on the negative scores as in Eq. (2.27) and Eq. (2.28).

\[\tilde{X}^- = \left\{ C_i, \min_i \ < \text{Score}(X_i) \ > \ |i = 1, 2, m \right\} \]

(2.27)

\[\tilde{X}^- = \left\{ C_i, (\mu_i^1, v_i^1, \sigma_i^1), C_j, (\mu_j^2, v_j^2, \sigma_j^2) \ldots C_m, (\mu_m^v, v_m^v, \sigma_m^v) \right\} \]

(2.28)

Step 3 \(S_i \) and \(R_i \) are calculated using Eq. (2.29) and Eq. (2.30) using criteria weights determined by spherical fuzzy AHP, respectively.

\[S_i = \sum_{j=1}^{n} w_j \left(\frac{D(\tilde{X}_d, \tilde{X}_j)}{D(\tilde{X}_d, \tilde{X})} \right) \]

(2.29)

\[R_i = \max_j \left(\frac{D(\tilde{X}_d, \tilde{X}_j)}{D(\tilde{X}_d, \tilde{X})} \right) \]

(2.30)

where \(D \) represents the Euclidian distance as explained in Definition 9.

Step 4 \(Q_i \) is computed for each alternative:

\[Q_i = 1 - \left(\frac{S_i - S^*}{S^* - S^*} \right) + (1 - \nu) \left(\frac{R_i - R^*}{R^* - R^*} \right) \]

(2.31)

where \(S^* = \min_i S_i, S = \max_i S_i \) and \(R^* = \min R_i, R = \max R_i \), \(\nu \) and \((1 - \nu) \) represent the weight of strategy of maximum group utility and individual regret, respectively.

Step 5 Rankings of alternatives are determined by the values of \(S_i \), \(R_i \) and \(Q_i \) in ascending order.

Step 6 A compromise solution for the given set of criteria, the alternative (\(a' \)), which is ranked the best by the measure the minimum \(Q_i \) is proposed if the following two conditions are satisfied [96]:

C1: ‘Acceptable advantage’: \(Q(a') - Q(a) \geq D(Q) \) where (\(a' \)) is the second alternative in the ranking list by \(Q_i \) and \(D(Q) = 1 / (m - 1); \)

C2: ‘Acceptable stability in decision-making’: Alternative (\(a' \)) has to be best ranked by \(S \) or/and \(R \).

If one of the conditions are not satisfied, then a set of compromise solutions is proposed (San Cristobal, 2011):

- If C2 is not satisfied, Alternative (\(a' \)) and Alternative (\(a'' \));
- If C1 is not satisfied, Alternative (\(a' \)), Alternative (\(a'' \)) ... Alternative (\(Z \)) is determined by the relation \(Q(Z) - Q(a') < D(Q) \) for maximum \(Z \).

5. The numerical application for Istanbul

For this problem, thirteen candidate petrol stations in the Tuzla district of Istanbul are evaluated as a case study. As a serving petrol station selection problem during a lockdown, the problem of selecting one of the 13 alternative stations is addressed. Istanbul is located in the connection of Asia and Europe. The city, where more than 15 million people live, plays a key role in the economy of Turkey. Sixty percent of confirmed COVID-19 cases in Turkey are seen in Istanbul during the COVID-19 pandemic [97]. Also, more than fifty health institutions in the region treat many COVID-19 infected patients [98]. In this context, the services of public and private institutions in the region should continue during the lockdown. Therefore determining which fuel stations to serve during lockdown becomes more important.

5.1. The criteria determination

In the first stage of the proposed methodology, the main and sub-criteria are defined in order to determine the petrol stations to serve during a lockdown. A two-level hierarchical structure is constructed considering the criteria and their sub-criteria. Twenty-one different sub-criteria are taken into consideration to make a comprehensive analysis. These criteria are determined by literature review and consulting with anonymous experts. The criteria considered in this study are given in Fig. 5 in the hierarchical structure.

In order to make a comprehensive evaluation, all factors that may affect the decision-making process are tried to be included in the study. For this purpose, twenty-one different factors are determined as sub-criteria for this problem and classified under the titles of five different main criteria as Accessibility, Facility Area, Products, Measures, and Population.

As a result of the opinions received from the petrol station managers and the interviews with the academicians, the Accessibility of the petrol station which serves during lockdown is determined to be important for the effectiveness of the process. It is important to save time during transportation to the petrol station. In this context, the petrol station should be close to the state agencies that are open on lockdown. Petrol stations should be close to the industrial area, where factories that the basic needs of people are produced are located in terms of employee transportation. The fuel needs of ambulances that bring patients to health facilities, which have great importance in the pandemic process, should be met quickly in order to use them more effectively. Also, in terms of providing more effective transportation to medical staff, the petroleum station should be located close to the health institutions. During the lockdown period, people often go to their homes or businesses using the main roads. So the petrol station which serves during lockdown must be close to highways. Finally, it is desirable that the petrol station which serves during lockdown should be close to the city center, where people have to work during the quarantine process.

The Facility Area is important both for enabling social distance and meeting demands. Thus, it considers the available physical area of the station. The station should have a service area as large as possible to serve the customers. The high vehicle capacity determines the number of vehicles that can be served at the same time. The high number of employees is also important for operating the process more effectively. Auxiliary services cover lubrication, automatic car washing, spare parts supply, market, cold/hot food and beverage service, WC, etc. [27].

The third main criterion is Products. It covers product-related factors as product range, product capacity, price of products, and brand of products. Product range means the product range of the petrol station which serves during lockdown is determined to be important for the effectiveness of the process. It is important to save time during transportation to the petrol station. In this context, the petrol station should be close to the state agencies that are open on lockdown. Petrol stations should be close to the industrial area, where factories that the basic needs of people are produced are located in terms of employee transportation. The fuel needs of ambulances that bring patients to health facilities, which have great importance in the pandemic process, should be met quickly in order to use them more effectively. Also, in terms of providing more effective transportation to medical staff, the petroleum station should be located close to the health institutions. During the lockdown period, people often go to their homes or businesses using the main roads. So the petrol station which serves during lockdown must be close to highways. Finally, it is desirable that the petrol station which serves during lockdown should be close to the city center, where people have to work during the quarantine process.

The Facility Area is important both for enabling social distance and meeting demands. Thus, it considers the available physical area of the station. The station should have a service area as large as possible to serve the customers. The high vehicle capacity determines the number of vehicles that can be served at the same time. The high number of employees is also important for operating the process more effectively. Auxiliary services cover lubrication, automatic car washing, spare parts supply, market, cold/hot food and beverage service, WC, etc. [27].
virus in the facility. Besides, customers prefer to pay with contactless payment methods during the pandemic.

The last main criterion in this study is Population. It means the population density in the region where the petrol station is located. It includes total, infected, and risky populations. Risky population refers to people who have a chronic disease and are elder.

5.2. The weight calculation

Firstly, an expert group is created to take opinions about criteria weights and alternative evaluation of petrol stations. The expert group consists of five experts, including three academicians and two managers. Academicians from different departments of universities and one manager from the public company, and one manager from the private company are consulted to take their opinions about a handled problem. All academicians have expertise in public health and related topics. The managers work on transportation operations for their institutions. Remote interviews are conducted with the expert group to get their ideas because of pandemic conditions. Experts are first asked to evaluate the main and sub-criteria using linguistic terms given in Table 2.

The aggregated pairwise comparisons of the five main criteria are evaluated by the expert group via linguistic terms as given in Table 3. The pairwise comparison matrix is tested for consistency. For this purpose, the calculations given in Step 4 are conducted, and the matrix is determined to be consistent. Then, the SF-AHP is performed to determine the weights of the main criteria. The weights of the main criteria of Accessibility, Facility Area, Products, Measures, and Population are calculated as 0.24, 0.17, 0.15, 0.24, and 0.20, respectively. Two main criteria with the highest weights are determined as Accessibility and Measures, with 0.24. The Population is also an important main criterion.
time. Moreover, the ideal solutions are given in Table 11. The threshold value (ν) is determined as 0.5 to combine the S, R, and Q values were calculated for each station and their rankings are determined with this way as given in Table 12.

Alternative 7 is determined as the best option according to Q scores. Alternative 7 satisfies the C2 condition (Acceptable stability in decision-making). In other words, it is determined that the most important factor when choosing a petrol station to serve during lockdown is the number of people living close to the station. Besides, “Proximity to Hospital”, “Vehicle Capacity”, and “Risky Population in Neighborhood” are the factors that should be evaluated as a priority when choosing a station. The least important criterion is found to be “Brand”. That is, the brand of gasoline and other products appear to be the factor that should be taken into consideration at the end of the list while determining the petrol station in the case of the lockdown.

5.3. Evaluation of alternatives

After the criteria weights are calculated, the alternatives are evaluated according to the predetermined criteria. In determining alternatives, the districts in Istanbul are searched to apply the proposed methodology for the problem to show its applicability. At this point, Tuzla, a district of Istanbul, stands out with its proximity to the state and private sectors as it is a transportation hub. Therefore, the proposed fuzzy methodology is applied to select which station to serve in lockdown among alternative stations in Tuzla. In the application discussed here, the candidate stations are shown in Fig. 6 to serve during the lockdown.

The same experts are employed to ask their opinions about the alternatives considering the criteria determined before by using the linguistic terms in Table 2. Table 10 is created through the remote interviews, and the following evaluations are obtained.

After receiving criterion-alternative evaluations from experts the best and the worst values for each criterion were determined as given in Table 11. Therefore the ideal solutions are determined. S, R and Q were calculated using the weights obtained from SF-AHP and the ideal solutions are given in Table 11. The threshold value (ν) is determined as 0.5 to combine the S and the R [49]. S, R and Q values were calculated for each station and their rankings are determined with this way as given in Table 12.

Alternative 7 is determined as the best option according to Q scores.

When Table 9 is analyzed, it is seen that the most important criterion with a weight of 0.20. The Facility Area and Products have lower weights than other main criteria. Product has the least importance weight among all main criteria with 0.15.

Then, the pairwise comparison matrices of the sub-criteria are constructed for each main criterion. Tables 4–8 give the sub-criteria pairwise comparison matrices for the Accessibility, Facility Area, Product, Measures, and Population, respectively.

After all, matrices are determined as consistent, and the weight calculation process is repeated to determine the local weights of each sub-criterion. The local weights of each sub-criterion are multiplied with their related main criterion weight to find the final weight of the related sub-criterion. So, the final criteria weights are determined as given in Table 9.

When Table 9 is analyzed, it is seen that the most important criterion with a weight of 0.20. The Facility Area and Products have lower weights than other main criteria. Product has the least importance weight among all main criteria with 0.15.

Then, the pairwise comparison matrices of the sub-criteria are constructed for each main criterion. Tables 4–8 give the sub-criteria pairwise comparison matrices for the Accessibility, Facility Area, Product, Measures, and Population, respectively.

After all, matrices are determined as consistent, and the weight calculation process is repeated to determine the local weights of each sub-criterion. The local weights of each sub-criterion are multiplied with their related main criterion weight to find the final weight of the related sub-criterion. So, the final criteria weights are determined as given in Table 9.

When Table 9 is analyzed, it is seen that the most important criterion with a weight of 0.20. The Facility Area and Products have lower weights than other main criteria. Product has the least importance weight among all main criteria with 0.15.

Then, the pairwise comparison matrices of the sub-criteria are constructed for each main criterion. Tables 4–8 give the sub-criteria pairwise comparison matrices for the Accessibility, Facility Area, Product, Measures, and Population, respectively.

After all, matrices are determined as consistent, and the weight calculation process is repeated to determine the local weights of each sub-criterion. The local weights of each sub-criterion are multiplied with their related main criterion weight to find the final weight of the related sub-criterion. So, the final criteria weights are determined as given in Table 9.

When Table 9 is analyzed, it is seen that the most important criterion with a weight of 0.20. The Facility Area and Products have lower weights than other main criteria. Product has the least importance weight among all main criteria with 0.15.

Then, the pairwise comparison matrices of the sub-criteria are constructed for each main criterion. Tables 4–8 give the sub-criteria pairwise comparison matrices for the Accessibility, Facility Area, Product, Measures, and Population, respectively.

After all, matrices are determined as consistent, and the weight calculation process is repeated to determine the local weights of each sub-criterion. The local weights of each sub-criterion are multiplied with their related main criterion weight to find the final weight of the related sub-criterion. So, the final criteria weights are determined as given in Table 9.

When Table 9 is analyzed, it is seen that the most important criterion with a weight of 0.20. The Facility Area and Products have lower weights than other main criteria. Product has the least importance weight among all main criteria with 0.15.

Then, the pairwise comparison matrices of the sub-criteria are constructed for each main criterion. Tables 4–8 give the sub-criteria pairwise comparison matrices for the Accessibility, Facility Area, Product, Measures, and Population, respectively.

After all, matrices are determined as consistent, and the weight calculation process is repeated to determine the local weights of each sub-criterion. The local weights of each sub-criterion are multiplied with their related main criterion weight to find the final weight of the related sub-criterion. So, the final criteria weights are determined as given in Table 9.
making) because it is determined as the best alternative for both

Table 10
Criterion-alternatives evaluations with linguistic scale.

Alternative	C11	C12	C13	C14	C15	C21	C22	C23	C24	C25	C26
Alternative 1	EI	SMI	AMI	VHI	SMI	LI	SMI	EI	LI	SMI	EI
Alternative 2	SLI	HI	VHI	VHI	LI	HI	VHI	LI	HI	VHI	LI
Alternative 3	SMI	EI	AMI	VHI	SMI	SLI	SLI	SMI	SLI	SMI	SLI
Alternative 4	HI	ALI	ELI	VHI	AMI	LI	EI	SMI	LI	EI	SMI
Alternative 5	VHI	ELI	SMI	SLI	EI	VHI	SMI	SLI	EI	VHI	SMI
Alternative 6	SMI	SLI	ELI	HI	SMI	LI	SMI	EI	VHI	SLI	VHI
Alternative 7	AMI	SMI	HI	HI	SMI	HI	SMI	EI	SMI	SLI	SMI
Alternative 8	VHI	ALI	SMI	SLI	HI	VHI	SMI	SLI	HI	VHI	SMI
Alternative 9	SMI	HI	SLI	VHI	LI	VHI	SMI	HI	EI	SMI	HI
Alternative 10	SMI	HI	SLI	VHI	LI	VHI	SMI	HI	EI	SMI	HI
Alternative 11	SMI	HI	SLI	VHI	LI	VHI	SMI	HI	EI	SMI	HI
Alternative 12	VHI	HI	VHI	SMI	VHI	VHI	SMI	VHI	VHI	SMI	VHI
Alternative 13	ALI	AMI	ALI	VHI	SMI						
Alternative 14	SMI	HI	SLI	SMI							
Alternative 15	SMI	HI	SLI	SMI							
Alternative 16	SMI	HI	SLI	SMI							
Alternative 17	SMI	HI	SLI	SMI							
Alternative 18	SMI	HI	SLI	SMI							
Alternative 19	SMI	HI	SLI	SMI							
Alternative 20	SMI	HI	SLI	SMI							
Alternative 21	SMI	HI	SLI	SMI							
Alternative 22	SMI	HI	SLI	SMI							

Table 11
The positive and negative solutions.

C11	C12	C13	C14	C15	C21	C22	C23	C24	C25
X̄-	0.2	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1
X̄	0.1	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.2
X̄+	0.0	0.2	0.2	0.0	0.2	0.0	0.2	0.0	0.2
X̄	0.0	0.2	0.2	0.0	0.2	0.0	0.2	0.0	0.2
C26	C27	C28	C29	C30	C31	C32	C33	C34	C35
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
X̄-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
X̄	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
X̄+	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
X̄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 12
The values of St, Rk, and Qi and rankings based on St, Rk, and Qi for each alternative.

Alternative	St	Rank	Rk	Rank	Qi	Rank
Alternative 1	0.382	7	0.055	6	0.401	8
Alternative 2	0.438	11	0.065	6	0.490	9
Alternative 3	0.429	10	0.045	4	0.356	7
Alternative 4	0.338	4	0.030	0.175	2	
Alternative 5	0.375	6	0.045	4	0.271	4
Alternative 6	0.586	13	0.055	6	0.722	12
Alternative 7	0.383	3	0.037	0.110	1	
Alternative 8	0.358	5	0.037	0.142	3	
Alternative 9	0.322	2	0.055	6	0.308	5
Alternative 10	0.416	9	0.066	10	0.583	11
Alternative 11	0.501	12	0.079	13	0.865	13
Alternative 12	0.407	8	0.066	10	0.569	10
Alternative 13	0.268	1	0.066	10	0.350	6

In this subsection, a sensitivity analysis is performed to show the applicability and reliability of the proposed hybrid decision-making methodology due to the changes in parameters. The analysis is performed by the change in threshold value (v). The value is increased by 0.1 for each step, which changes from 0.1 to 0.9. The robustness of the decision is shown in this way. The final rankings of all alternatives ac-
accordng to different threshold values are given in Fig. 7.

The effect of threshold values on the order of the alternatives is measured by sensitivity analysis. The reason for this is that each alternative has different values for both the weighted sum model and the weighted product model. As can be seen from Fig. 7, Alternative 7, which is the best alternative in the current situation, takes first place in all scenarios except 0.8 and 0.9, too. This means that the alternative, which is currently in the first place, is a good option the most cases to serve during lockdown for 0.9. The reason for this may be that Alternative 8 has a relatively bad value for R_{i} (the weighted maximum regret). As the threshold value increases, the effect of the R_{i} increases. Alternative 4 is also a good option for all scenarios. As the threshold value increases, Alternative 13 achieves better rankings. This means Alternative 13 has a better result for the S_{i} (the weighted total regret).

6. Comparative analysis

A comparative analysis is conducted to further validate the robustness and effectiveness of the proposed methodology to evaluate alternatives. SF-WASPAS methodology is employed to test the effectiveness of SF-VIKOR. The criteria weights determined by SF-AHP are used to evaluate alternatives for this purpose. The steps of SF-WASPAS are given below [27]:

Step 1 Weighted sum model (\tilde{Q}_i^1) is calculated for each alternative.

$$\tilde{Q}_i^1 = \sum_{j=1}^{n} \tilde{x}_{ij} w_j$$

(5.1)

$$\tilde{x}_{ij} = S \left(\sqrt{1 - \left(1 - \mu_{x_{ij}} \right)^{v_{x_{ij}}} \pi_{x_{ij}}^{\lambda} - \left(1 - \mu_{x_{ij}}\right)^{\pi_{x_{ij}}} \pi_{x_{ij}}^{\lambda}} \right)$$

(5.2)

$$\tilde{x}_{ij} \odot \tilde{x}_{ij} = S \left(\sqrt{1 - \left(1 - \mu_{x_{ij}} \right)^{v_{x_{ij}}} \pi_{x_{ij}}^{\lambda} - \left(1 - \mu_{x_{ij}}\right)^{\pi_{x_{ij}}} \pi_{x_{ij}}^{\lambda}} \right)$$

(5.3)

Step 2 Weighted product model (\tilde{Q}_i^2) is calculated for each alternative.

$$\tilde{Q}_i^2 = \prod_{j=1}^{n} \tilde{x}_{ij}$$

(5.4)

$$\tilde{x}_{ij} = S \left(\mu_{x_{ij}} \sqrt{1 - \left(1 - v_{x_{ij}} \right)^{v_{x_{ij}}} \left(1 - v_{x_{ij}}\right)^{\pi_{x_{ij}}} \left(1 - v_{x_{ij}}\right)^{\pi_{x_{ij}}} \pi_{x_{ij}}} \right)$$

(5.5)

$$\tilde{x}_{ij} \odot \tilde{x}_{ij} = S \left(\mu_{x_{ij}} \sqrt{1 - \left(1 - v_{x_{ij}} \right)^{v_{x_{ij}}} \left(1 - v_{x_{ij}}\right)^{\pi_{x_{ij}}} \left(1 - v_{x_{ij}}\right)^{\pi_{x_{ij}}} \pi_{x_{ij}}} \right)$$

(5.6)

Step 3 The threshold value (λ_{i}) is determined to combine \tilde{Q}_i^1 and \tilde{Q}_i^2.

$$\tilde{Q}_i = S \left(\left(1 - \mu_{x_{ij}} \right)^{1-\lambda_{i}} v_{x_{ij}} \left(1 - \mu_{x_{ij}} \right)^{\pi_{x_{ij}}} \pi_{x_{ij}} \right)$$

(5.7)

$$\tilde{Q}_i = S \left(\left(1 - \mu_{x_{ij}} \right)^{1-\lambda_{i}} v_{x_{ij}} \left(1 - \mu_{x_{ij}} \right)^{\pi_{x_{ij}}} \pi_{x_{ij}} \right)$$

(5.8)

Table 13

Weighted Sum Model (\tilde{Q}_i^1)	Weighted Product Model (\tilde{Q}_i^2)					
μ_{i}	v_{i}	π_{i}	μ_{i}	v_{i}	π_{i}	
Alternative 1	0.44	0.65	0.22	0.37	0.71	0.23
Alternative 2	0.42	0.67	0.21	0.34	0.75	0.20
Alternative 3	0.44	0.65	0.23	0.38	0.71	0.24
Alternative 4	0.48	0.62	0.21	0.38	0.72	0.21
Alternative 5	0.44	0.65	0.23	0.39	0.70	0.24
Alternative 6	0.32	0.76	0.23	0.27	0.79	0.20
Alternative 7	0.47	0.62	0.24	0.44	0.65	0.25
Alternative 8	0.45	0.63	0.25	0.43	0.65	0.26
Alternative 9	0.47	0.63	0.20	0.40	0.69	0.22
Alternative 10	0.40	0.69	0.22	0.31	0.77	0.19
Alternative 11	0.41	0.70	0.17	0.27	0.81	0.16
Alternative 12	0.43	0.67	0.19	0.32	0.77	0.17
Alternative 13	0.50	0.60	0.17	0.36	0.75	0.16
Comparative analysis shows that a very robust decision for the determining station is obtained from SF-VIKOR, as shown in Fig. 8. Although the methodology changed, the ranking of thirteen alternatives is not changing too much. According to the results of comparative analysis, it can be that the proposed integrated methodology is consistent with the other decision-making methodology. The SF-WASPAS method considers both the weighted sum model and weighted product model, namely two distance-based models, to make a decision whilst the SF-VIKOR methodology takes into account local dominance and overall advantage. Deriving the compromise solutions that aim to minimize individual regret and maximize the group utility is another advantage of the SF-VIKOR methodology compared with the SF-WASPAS methodology. As for the SF-WASPAS, it does not consider both the distances from the ideal solutions and their relative importance. Meanwhile, the compromise solution derived thanks to the SF-VIKOR method is the generally closest solution to the positive ideal solution; however, the solution enabled by the SF-WASPAS is not always the closest to the positive ideal solution.

As a result, the SF-VIKOR methodology not only provides a solution closer to the ideal but also provides a balance between the minimum individual regret for the “opponent” and maximum group utility of the “majority”. In summary, the SF-VIKOR provides more valid and feasible results than other methods. Likewise, SF-VIKOR methodology is easier to apply decision-making problems, and it has less complexity. Therefore it provides a faster decision in complex decision-making problems.

7. Conclusion

The COVID-19 pandemic, which spread almost all over the world in a very short time with the effect of increasing human mobility with the increase in international trade and interaction, has progressed much faster than other epidemics experienced by human beings. It is not expected for countries to be fully prepared for a pandemic that spreads so rapidly and threatens human life. Therefore, the fight of countries against the pandemic depends on their existing infrastructure and the structure of their populations. For this reason, countries have sometimes implemented lockdowns. In order to provide basic needs during these lockdown times, some institutions need to continue their operations. In this context, determining which of the petrol stations, which are important stakeholders for transportation, will remain open during a lockdown times, some institutions need to continue their operations. In this context, determining which of the petrol stations, which are important stakeholders for transportation, will remain open during a lockdown has become a problem to be solved for city planners.

In this paper, the determination of the petrol stations to serve during the COVID-19 lockdown is taken into account and handled as a multi-criteria decision-making problem. Literature review and opinions from experts are used to identify the main and sub-criteria. Then, an expert

Table 14

Ranking	Alternative	Spherical Fuzzy Score	Final Score
1	Alternative 7	0.610 0.400 0.302	0.662
2	Alternative 8	0.595 0.412 0.317	0.597
3	Alternative 9	0.584 0.435 0.262	0.507
4	Alternative 4	0.584 0.444 0.264	0.492
5	Alternative 13	0.589 0.450 0.207	0.471
6	Alternative 5	0.561 0.453 0.298	0.424
7	Alternative 3	0.556 0.461 0.296	0.397
8	Alternative 1	0.556 0.463 0.285	0.390
9	Alternative 2	0.524 0.501 0.264	0.242
10	Alternative 12	0.519 0.514 0.233	0.196
11	Alternative 10	0.490 0.536 0.270	0.126
12	Alternative 11	0.481 0.561 0.219	0.044
13	Alternative 6	0.414 0.601 0.289	–0.047
group that includes both academicians from different departments of universities and managers from public and private sectors is created to take opinions about criteria weights and alternative evaluation of petrol stations. Istanbul is selected to perform a case study; thirteen petrol stations are evaluated as alternatives. Then, the SF-AHP integrated SF-VIKOR methodology is structured; the problem is solved by this methodology, and the best alternative is determined to serve during a lockdown. A sensitivity analysis is performed to explore and analyze the proposed methodology results. Finally, the results are compared with SF-WASPAS.

This study considers five main criteria as Accessibility, Facility Area, Products, Measures, and Population. According to the results, managers and city planners should pay special attention to Accessibility and Measures. The accessibility of the petrol station is important in the context of meeting basic needs during the lockdown process. In this way, the time spent on the road will decrease, and the probability of people getting infected by contacting fewer people will decrease. Petrol stations, which are located close to areas where people are concentrated even during lockdown times, are effective in meeting demands. In addition, in these periods when ambulances work intensively, it is a necessity to determine the service stations close to the hospitals for effective management of the process. Ensuring the transportation of personnel working in hospitals, public and private institutions serving during the lockdown to their workplaces has also gained importance during the pandemic process.

In terms of Measures, by placing warning and informative posters and brochures at the stations, it is necessary for the customers to service and meet their needs by contacting minimum people. In addition, by using more modern payment methods, such as contactless payment, the use of cash, which people come into contact with frequently and which is likely to be contaminated, should be minimized. This study also suggests the capacity of stations should be increased, and the number of employees should be decreased.

The contributions of the paper to the literature and application can be specified as follows: (1) The factors that play a key role in petrol station selection problem during the COVID-19 pandemic are determined and classified; (2) The most important factors for the determination of the petrol stations to serve during lockdown are determined in the fuzzy environment; (3) A real case application in is performed to show the reliability and applicability of the proposed hybrid decision-making methodology; (4) Thirteen different stations are evaluated according to the criteria determined, and the best one is selected to serve; (5) It is aimed that, the proposed hybrid decision-making methodology can be used as a guide by public or private organizations to improve their operations to prevent spreading of COVID-19 by reducing the travel, especially their facilities and in nearby settlements.

Nevertheless, this study carries certain limitations. First, the finding may be subject to a limited number of evaluation criteria with a hierarchical structure. One future study could extend the evaluation criteria with different aspects (i.e., financial, social) and inner factors of them. Second, consulted expert group in the application a potential limitation of the study. Reaching and consulting experts' opinions were challenging because of the pandemic. Expert opinions were taken through remote interviews instead of face-to-face interviews. Therefore the number of consulted experts can be increased. Third, the study is conducted in Istanbul, Turkey, which may not be generalized to other countries. The study can be modified and improved for other countries. This paper shows that multi-criteria decision-making applicable for determining petrol stations to serve in lockdown, in part due to the numerous conflicting decision criteria present and the ability of multi-criteria decision-making methodologies to cope with the multidimensionality of the problem. However, frequently, different multi-criteria decision-making methods can yield different results when used to the same complex decision-making problem. Therefore, we examined the application of one of the widely applied methodologies, namely WASPAS, for the handled problem. The results show that the best alternative is valid for comparative analysis. As a future direction, Different multicriteria decision-making methods or heuristics can be included and evaluated to identify similarities and differences in the different methods and the obtained results, and also consider their applicability in the handled problem. Integrated multi-criteria decision-making methodologies can improve the precision of determining petrol stations to serve in lockdown. Finally, different optimization and decision-making methods can be utilized to achieve different purposes, such as sorting, ranking, clustering, classification, along with determining the best alternative and the importance levels of criteria.

Author statement
Ertuğrul Ayyıldız: Data correction, Writing- Original draft preparation, Methodology, Software, Data Collection, Application. Alev Taşkıın: Supervision, Validation, Writing- Reviewing and Editing.

References
[1] Li Q, et al. Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia. N Engl J Med Mar. 2020;382(13):1199–207. https://doi.org/10.1056/NEJMoa2001316.
[2] WHO. Coronavirus disease (COVID-19) situation report - 6, https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200116-sitrep-6-2020ncov.pdf?sfvrsn=beaeec_4. [Accessed 13 June 2020].
[3] Yalçın M, Kocak E, Kacar M. The role of exercise as a treatment and preventive strategy during COVID-19 pandemic. Anadolu Klin Tip Bilim Derg May 2020;25 (Supplement 1):238–45. https://doi.org/10.21673/anatolbd.731902.
[4] WHO. WHO coronavirus disease (COVID-19) dashboard (accessed June 13, 2020), https://COVID19.who.int/.
[5] Wang D, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in wuhan, china. JAMA. J Am Med Assoc Mar. 2020;323(11):1061–9. https://doi.org/10.1001/jama.2020.1585.
[6] Chang D, et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside wuhan, China. 11. In: JAMA - journal of the American medical association, 323. American Medical Association; 2020. p. 1092–3. https://doi.org/10.1001/jama.2020.1623, March 17.
[7] Carlos WG, Dela Cruz CS, Cao B, Pasnick J, Samul S. Novel wuhan (2019-nCoV) coronavirus. Am J Respir Crit Care Med Feb. 2020;201(4):97–8. https://doi.org/10.1164/rccm.2014P7149PT.
[8] Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. J. In: International journal of antimicrobial agents, 55. Elsevier B.V.; 2020. https://doi.org/10.1016/j.ijantimicag.2020.105594. Mar. 01.
[9] İpek Sağlıoğlu Uzman. Denegi. COVID-19 pandemisinde meslek hastalığı tanıkilavaca - yeni koronavirüs hastalığı. https://korona.hasuder.org.tr/COVID-19-pandemisinde-meslek-hastaligi-tani-kilikavaca/. [Accessed 13 June 2020].
[10] Chen H, Xu W, Paris C, Reesen A, Li X. Social distance and SARS memory: impact on the public awareness of 2019 novel coronavirus (COVID-19) outbreak. Mar. 2020, https://doi.org/10.1101/2020.03.11.20033688. medRxiv, p. 2020.
[11] Chen W, et al. Early containment strategies and core prevention and control of novel coronavirus pneumonia in China. Zhonghua Yixue Yixue Zazhi May 2020;54(3):239–44. https://doi.org/10.3766/cma.j.csn.0253-9624.2020.03.003.
[12] Remuzzi A, Remuzzi G. COVID-19 and Italy: what next?. 10231. In: The lancet, May 2020;25:228–37. https://doi.org/10.1164/rccm.2014P7.
[13] Ateç O, Çavdar S, Tokaç AZ. First 100 Days of the COVID-19 pandemic: an evaluation of preventive measures taken by countries. Anadolu Klin Tip Bilim Derg May 2020;25:228–37. https://doi.org/10.21673/anatolbd.732345. SPECIAL ISSUE 1.
[14] Cohen J, Kupferschmidt K. Countries test tactics in war against COVID-19. Science Mar. 2020;367(6484):1287–8. https://doi.org/10.1126/science.367.6484.1287, 80.
[15] Kayı I, Sakarya S. Policy analysis of suppression and mitigation strategies in the management of an outbreak through the example of COVID-19 pandemic. Infect Dis Clin Microbiol 2020;2(1):30–41. https://doi.org/10.36519/idcm.2020.0009.
[16] Kwon KO, Lai F, Wei WI, Wong SY, Tang JWT. Herd immunity – estimating the level required to halt the COVID-19 epidemics in affected countries. 6. In: Journal of infection, 80. W.B. Saunders Ltd; Jun. 01, 2020. e32–3. https://doi.org/10.1016/j.jinf.2020.03.027.
[17] Guardian The. Documents contradict UK government stance on COVID-19 herd immunity. World media | The Guardian; 2020 [accessed June 16, 2020], https://www.theguardian.com/world/2020/apr/12/documents-contradict-uk-government-stance-on-covid-19-herd-immunity.
[18] Il, Vâtîlgine Koronavirussi Tebîleri Konulu Ek Genelge Gonderdii. https://www.izciyler.gov.tr/81-il-vatliligne-koronavirus-tebilleri-konulu-ek-genelge-gonderdi; Jun. 13, 2020.
Singer H, Dogan O. Process mining technology selection with spherical fuzzy AHP and Liu R, Zhu Y-J, Chen Y, Liu H-C. Occupational health and safety risk assessment. Erdoğan AM, Temur GT. A framework for selection of the best food waste Unal Y, Temur GT. Using spherical fuzzy AHP based approach for prioritization of Buyuk AM, Temur GT. A framework for selection of the best food waste management alternative by a spherical fuzzy AHP based approach, 1197. AISC; 2021. Aydın S, Kutlu Gündoğdu. An integrated spherical fuzzy AHP multi-criteria method for Demir E, Turan H. An integrated spherical fuzzy AHP multi-criteria method for COVID-19 crisis management in regarding lean six sigma. Int J Lean Six Sigma 2021;12(4):859–85. https://doi.org/10.1108/IJLSS-11-2020-0183. Unal Y, Temur GT. Using spherical fuzzy AHP based approach for prioritization of criteria affecting sustainable supplier selection, 1197. AISC; 2021. Buyuk AM, Temur GT. A framework for selection of the best food waste management evaluation of autonomous vehicle driving systems for risk assessment based on three-dimensional uncertain linguistic variables. Appl Soft Comput 2021;113. https://doi.org/10.1016/j. asoc.2021.107934. Liu R, Zhu Y-J, Chen Y, Liu H-C. Occupational health and safety risk assessment using an integrated TODIM-PROMETHEE model under linguistic spherical fuzzy environment. Int J Intell Syst 2021;36(11):6814–36. https://doi.org/10.1002/int.22570. Nguyen P-H, Tsiyi J-F, Dang T-T, Lin M-H, Pham H-A, Nguyen K-A. A hybrid spherical fuzzy MCDM approach to prioritize governmental intervention strategies against the COVID-19 pandemic: a case study from Vietnam. Mathematics 2021;9(20). https://doi.org/10.3390/math92020262. Dogan O. Process mining technology selection with spherical fuzzy AHP and sensitivity analysis. Expert Syst Appl 2021;178. https://doi.org/10.1016/j. eswa.2021.114999. Singer H, Orazphan S. Prioritization of laminate flooring selection criteria from experts’ perspectives: a spherical fuzzy AHP-based model. Architect Eng Des Manag 2021. https://doi.org/10.1080/17452007.2021.1956421.