Takotsubo cardiomyopathy in early term pregnancy: a rare cardiac complication of SARS-CoV-2 infection

Pranab J Bhattacharyya, Pawan K Attri, Waseem Farooqui

DESCRIPTION
A 32-year-old primigravida at a 38-week gestation was initially admitted in cardiology isolation ward on referral by her local obstetrician for inferolateral ST-segment elevation on ECG (figure 1A) which was obtained for complaints of New York Heart Association functional class II symptoms with palpitations of a 3-day duration. Except for a blood pressure of 150/100 mm Hg on presentation, the rest of her physical examination, vital signs and medical history were insignificant. She was on amlodipine for gestational hypertension. A transthoracic echocardiogram (TTE) demonstrated hypokinetic mid and akinetic apical left ventricular (LV) segments and hypercontractile basal segments with prominent apical ballooning typical of takotsubo cardiomyopathy (TTC) (figure 1B, arrows). Two-dimensional speckle tracking echocardiography revealed LV global longitudinal strain (GLS) of −13.9 and ejection fraction (EF%) of 38% (figure 1C). Blood tests showed elevated troponin I (37.00 pg/mL, normal <26.20) and N-terminal pro b-type natriuretic peptide (NT-proBNP) (1312.00 pg/mL, normal <115.00). Nasopharyngeal swab reverse transcription PCR (RT-PCR) test was positive for SARS-CoV-2 infection. Coronary angiography (CAG) was deferred due to her active COVID-19 status. She was further managed in the ward of our dedicated COVID-19 hospital where she was started on medical therapy with bisoprolol and enoxaparin (40 mg subcutaneous two times per day for 5 days) along with oral vitamins and antibiotic as per local treatment protocol for patients with COVID-19. Regular maternal and fetal monitoring continued. As oxygen saturation in room air and respiratory rate were maintained within normal limits without any clinical evidence of pneumonia or respiratory failure, she did not require management in the intensive care unit for either non-invasive or invasive mechanical ventilation at any stage during her 7-day stay in the COVID-19 ward. Additional laboratory tests showed leucocytosis (20.48×10^9/µL, normal 4.00–11.00), neutrophilia (85.8%, normal range 37–72), lymphopenia (9.2%, normal range 20–40), neutrophil–lymphocyte ratio (9, normal 1–3), raised levels of D-dimer (0.69 µg/mL, normal <0.05), lactate dehydrogenase (456 U/L, normal range 120–246), alkaline phosphatase (188 U/L, normal range 38–126) and globulin (3.5 g/dL, normal range 2.80–3.20), low levels of albumin (3.0 g/dL, normal range 3.50–5.00) and albumin/globulin ratio (0.90, normal 1.25–1.31) and normal levels of ferritin (116 ng/mL, normal range 11–306.8), total bilirubin (0.50 mg/dL, normal range 0.20–1.3), aspartate aminotransferase (37 U/L, normal 17–59) and alanine aminotransferase (28 U/L, normal range 4–50). On day 8, her RT-PCR test was negative and due to the onset of early labour, she was shifted to labour and delivery ward for necessary obstetrical management. Subsequently on the same day, she underwent an uneventful caesarean section delivery under spinal anaesthesia for fetal distress and associated cephalopelvic disproportion. Despite a diagnosis of TTC, an expedited delivery in our patient was not considered by the obstetrical unit as there was no evidence of clinical or haemodynamic worsening of maternal or fetal status. Repeat TTE on day 13 on transfer to the cardiology ward showed the normalisation of the LV regional wall motion abnormalities (RWMA) and significant improvement of GLS (−16.5) and EF% (51%) (figure 1D) further ratifying the diagnosis of TTC. Subsequent CAG on day 14 revealed non-obstructive coronary artery disease (CAD) involving the left anterior descending artery (figure 1E, arrows). She was finally discharged from the cardiology ward after full recovery on day 16 with aspirin, atorvastatin and bisoprolol.

As typified by this index case, TTC can mimic acute ST-segment elevation myocardial infarction and is considered to be a reversible form of cardiomyopathy characterised by a complete recovery of RWMA and LV function within weeks of presentation. Incidental CAD can be present in up to 10% of patients with COVID-19 and the consideration of the diagnosis of TTC is essential to avoid unnecessary treatment with antithrombotics which can be detrimental to the mother and the baby.

Figure 1 (A) Presenting ECG showing ST-segment elevation in inferolateral leads. (B) Apical ballooning on two dimensional transthoracic echocardiogram (arrows). (C) The 18-segment left ventricular Bull’s eye plot on two dimensional speckle tracking echocardiography demonstrating left ventricular dysfunction (light red colour denoting reduced global longitudinal strain value and reduced ejection fraction). (D) Normalisation of echocardiographic abnormalities within 2 weeks of presentation (almost uniformly red pattern of bull’s eye plot representing normal strain values and left ventricular ejection fraction). (E) Coronary angiography demonstrating non-obstructive coronary artery disease in left anterior descending artery (arrows).
cases. Although TTC classically affects postmenopausal women, it has been infrequently reported previously in pregnant women unrelated to SARS-CoV-2 infection. This is the first reported case of TTC in pregnancy as a manifestation of SARS-CoV-2 infection during this ongoing pandemic.

TTC can be preceded by emotional or physical stressful triggers. Coronary artery vasospasm, coronary microvascular dysfunction, LV outflow tract obstruction and catecholamine surge have all been elucidated as potential mechanisms. As TTC has also been reported with viral infections, the more intense inflammation associated with COVID-19 may contribute to its development. Deranged inflammatory markers were also a notable finding in our patient described previously. Whether the inflammatory response of SARS-CoV-2 infection and any specific markers that may portend a greater likelihood of development of TTC especially in pregnancy may be a subject matter for further study. The overall prognosis of TTC is favourable, with full recovery of LV function seen in most patients by 2 months. Pregnant women may be at greater risk for SARS-CoV-2 infection as the virus enters the cell via the ACE 2 receptor, which is upregulated in normal pregnancy.

Therefore, treating physicians dealing with the COVID-19-positive pregnant population need to remain vigilant towards this rare cardiac complication of SARS-CoV-2 infection.

Patient's perspective

I express my gratitude to the entire team of doctors and healthcare workers for providing me best possible care leading to my complete recovery.

Learning points

- The presentation of takotsubo cardiomyopathy can mimic ST-segment elevation myocardial infarction but in the absence of angiographic evidence of significant obstructive coronary artery disease.
- Typical echocardiographic finding is reversible left ventricular apical ballooning (resembling the ‘takotsubo’ or Japanese ‘octopus trap’) with systolic dysfunction.
- This condition can be triggered by high emotional stress with a preponderance in postmenopausal women.
- For the first time during this ongoing pandemic, this entity has been documented to occur as a cardiac complication of SARS-CoV-2 infection in term pregnancy.
- Appropriate conservative management leads to its complete recovery.

REFERENCES

1. Patel MR, Singh M, Gersh BJ, et al. Chapter 40 ST- Segment Elevation Myocardial Infarction. In: Fuster V, Harrington RA, Narula J, et al, eds. Hurst’s the Heart, Fourteenth Edition. New York: McGraw-Hill Education, 2017: 1017–54.
2. Brezina P, Isler CM. Takotsubo cardiomyopathy in pregnancy. Obstet Gynecol 2008;112:450–2.
3. Minhas AS, Scheel P, Garibaldi B, et al. Takotsubo syndrome in the setting of COVID-19. JACC Case Rep 2020;2:1321–5.
4. Narang K, Enninga EAJ, Gunaratne MDSK, et al. SARS-CoV-2 infection and COVID-19 during pregnancy: a multidisciplinary review. Mayo Clin Proc 2020;95:1750–65.