MICROBIOLOGY

Special Topic: Infection and Immunity

Etiology, pathogenesis, antivirals and vaccines of hand, foot, and mouth disease

Xiaobo Lei¹, Sheng Cui¹, Zhendong Zhao¹,# and Jianwei Wang¹,²,#

ABSTRACT

Hand, foot, and mouth disease (HFMD), caused by enteroviruses, is a syndrome characterized by fever with vesicular eruptions mainly on the skin of the hands, feet, and oral cavity. HFMD primarily affects infants and young children. Although infection is usually self-limited, severe neurological complications in the central nervous system can present in some cases, which can lead to death. Widespread infection of HFMD across the Asia-Pacific region over the past two decades has made HFMD a major public health challenge, ranking first among the category C notifiable communicable diseases in China every year since 2008. This review summarizes our understanding of HFMD, focusing on the etiology and pathogenesis of the disease, as well as on progress toward antivirals and vaccines. The review also discusses the implications of these studies as they relate to the control and prevention of the disease.

Keywords: hand, foot and mouth disease, enterovirus, etiology, tropisms, virus–host interaction, pathogenesis, innate immunity, antivirals, vaccine

INTRODUCTION

Hand, foot, and mouth disease (HFMD) primarily affects infants and children younger than 5 years old and displays a wide range of clinical manifestations [1]. The disease is characterized by fever along with vesicular eruptions mainly on the skin of hands, feet, and the oral cavity. HFMD is generally self-limited. However, severe neurological manifestations can present in some cases, ranging from aseptic meningitis to acute flaccid paralysis and brainstem encephalitis (BE), which can be permanently disabled or fatal [2]. The BE caused by HFMD can lead to severe pulmonary edema and shock, which can induce failure of respiratory and circulatory systems [3].

HFMD was first identified in New Zealand and Canada in 1957 [4]. The disease was designated as ‘hand, foot, and mouth disease’ after a similar outbreak occurred in USA in 1959 [5]. HFMD reappeared in New Zealand, the UK, and in the USA in the 1960s [5,6]. Outbreaks of HFMD also occurred in Bulgaria in 1975 and in Hungary in 1978, and 44 and 47 deaths were recorded, respectively [7,8]. HFMD emerged in the 1970s in Japan [9], from which point on numerous outbreaks occurred in the Asia-Pacific region [2,10–16]. After the 1990s, large outbreaks that involved more than 10,000 cases all occurred in this region [2,11,16,17] (Fig. 1). The reasons underlying these outbreaks are still not fully understood.

In 2008 and 2009, large outbreaks of HFMD emerged in mainland China [2]. These outbreaks made HFMD a great public health concern in China, leading to its classification as a category C communicable disease in the Chinese National communicable disease surveillance system in 2008 [18]. From 2008 to 2014, more than 1 million HFMD cases have been reported in China each year, according to data obtained from the Chinese National Notifiable Disease Reporting System.

Great progress has been made in HFMD research over the past two decades, which has helped to pave the way toward prevention and control of HFMD. Here, we summarize the understanding of HFMD etiology and review research progress on the pathogenesis, antivirals, and vaccines of enterovirus 71 (EV71), the main causative agent of severe HFMD.
We also discuss the implications of these studies as they relate to control and prevention of the disease.

ETIOLOGY OF HFMD

HFMD is caused by EVs, which belong to the *Enterovirus* genus of the family *Picornaviridae*. The EV genus contains many well-known viruses, including polioviruses (PV), Coxsackie viruses (CV-A and -B), and ECHO viruses (E). The EV genome is a single positive-stranded RNA molecule, which encodes a 5′-untranslated region (5′-UTR), a polyprotein, and a 3′ UTR. The polyprotein consists of three regions: P1, P2, and P3, which are in turn cleaved into four viral capsid proteins (VP1–VP4) and seven non-structural proteins involved in protein processing and genome replication (2A–2C, 3A–3D) by EV’s proteases 2A and 3C [19] (Fig. 2). The viral capsid is an icosahedron, composed of VP1–VP4. VP1, VP2, and VP3 form a deep canyon that serves as the receptor-binding site at the surface of the capsid. Proteins 2A and 3C are not only essential for EV replication, but also play important roles in virus–host interactions. The protein 3D is an RNA-dependent RNA polymerase (RdRp), which lacks proofreading activity, leading to frequent mutations during EV replication. Based on the phylogenetics of VP1, the major antigenic protein of EVs, the *Enterovirus* genus is proposed to be divided into seven species, including EV-A to D and rhinovirus A–C by the International Committee on Taxonomy of Viruses [19].

Improvement of virus detection methodology and disease surveillance has led to a better understanding of the etiology of HFMD. At least 23 EV serotypes, which belong to two different EV species, have been reported to cause HFMD over the past 50 years (Table 1). Among them, EV71 and CV-A16 are the most prevalent. CV-A16, isolated in 1958, was the first identified HFMD pathogen [4], followed by EV71, which was isolated in the USA in 1969 [20]. Since then, EV71 outbreaks have occurred periodically throughout the world, including in Japan [9], Bulgaria [7], Hungary [8], Australia [21], Malaysia [22], UK [23], and Vietnam [24]. CV-A16 outbreaks also occurred in Australia, England, Singapore, and the mainland China [25]. CV-A16 infection and EV71 infection emerged alternately and these vectors have become the most relevant pathogens of HFMD worldwide to date [2,11,13,14]. In mainland China, HFMD was first reported in Shanghai in 1981 [18]. Outbreaks of CV-A16 infection were identified in Tianjin in 1983 and 1986. EV71 was first isolated in Wuhan in 1995 [18]. The outbreaks of EV71 infection occurred in Linyi, Shandong Province in 2007 and Fuyang,
Anhui Province in 2008 [26,27], initiating the EV71 pandemic in mainland China that has persisted ever since.

The fact that EV71 has been associated with a wide spectrum of acute central nervous system (CNS) syndromes, including aseptic meningitis, poliomyelitis-like paralysis, BE, and acute neurogenic pulmonary edema [28], makes it the predominant serotype in severe (80%) or fatal (93%) laboratory-confirmed cases [2,11]. CV-A16 and most other EV serotypes more intend to cause mild HFMD cases [2,17,29].

Recombination is the major force that drives EV variation [30]. CV-A16 and EV71 often circulate together and their coinfection increases the chance of intertypic recombination [31,32]. A recombinant may be responsible for the large HFMD outbreaks in mainland China [33]. Recombination also contributes to the variation of other EV serotypes [34,35].

Due to using RdRp, the variation rates of EVs are very high. One serotype can be classified into several subtypes based on the phylogeny of VP1. CV-A16 are grouped into subtypes A and B, with the latter further divided into B1a–B1c and B2a–B2c [32]. Although there is a difference in the definition of subgenogroup B1 and B2, the strains that have circulated in China belong to genogroup B [36,37]. Likewise, EV71 is classified into subtypes A, B, C, and D. Subtype A contains only the prototype strain BrCr. Subtypes B and C are each composed of distinct subgenogroups (B1–B5 and C1–C5, respectively) [38]. Subtype D is represented by a single strain which has been isolated from India [39]. The circulating strains of EV71 appear to vary with geographical location and time. For example, in Taiwan China, subgenogroups C2 and B4 were responsible for the 1998 epidemic, while B4 was for the 2002 epidemic, C4 for the 2004–05 epidemic, B5 for the 2008–09 epidemic, C4 for the 2010 epidemic, and B5 for the 2011–12 epidemic [40]. In mainland China in 1996, subgenogroup C2 appeared, followed by C3 in 1997. Since 1998, C4 has been the dominant subgenogroup [28,41,42]. The C4 subtypes underwent three major epidemiologic phases: C4b in 1998–2008, C4a-1 in 2003–09, and C4a-2 in 2007–11 [28]. The constant changing of subgenogroups makes it challenging to design universal vaccines that cover several subgenogroups.

In recent years, the switch of HFMD etiology has been suggested by the increased epidemics of serotypes other than EV71 and CV-A16, including CV-A6, CV-A10, and CV-A12 [43–48]. Disease caused by a new strain of CV-A6 has been found worldwide [49–60] (Fig. 1), causing severe HFMD in children [61] and atypical HFMD in adults [62–64]. In some areas in China, CV-A6 has replaced CV-A16 as a predominant causative agent [59,65]. The increasing trend of CV-A6 spread warrants enhanced precise etiology surveillance of HFMD.

Together, diverse EV serotypes can cause HFMD, and EV71 and CV-A16 are the most common pathogens. EV71 is the major agent causing severe cases. The switch of HFMD etiology requires a precise EV typing in the surveillance for a better HFMD control.
PATHOGENESIS OF EV71

Pathological features

Most pathological research on EVs has been focused on EV71. Studies on EV71 in HFMD patients mainly cause neurological effects by inducing inflammation in the CNS, but not in other organs. The pathological features of EV71-induced viral encephalitis in fatal cases include neuronophagia, perivascular cuffing, focal edema, and neutrophil and macrophage infiltration [66–69]. The inflammation distributes mainly to the hypothalamus, brain stem, spinal cord, and cerebellar dentate nucleus along the motor nerve pathway, indicating that the virus spreads into the CNS through the retrograde peripheral motor nerve [66,67]. Autopsy examinations in EV71 fatal cases revealed brainstem encephalomyelitis, extensive pulmonary edema, and pulmonary hemorrhages [69–71]. However, viral antigens were only detected in the brainstem and in the spinal cord but not in the lung tissue, suggesting that EV71-induced pulmonary edema is neurogenic [69,70].

Although limited, clinical observations provide clues that some inflammatory mediators, including cytokines and chemokines, play an important role in the pathogenesis of EV71-induced BE and other complications. These mediators include interleukin 6 (IL-6), IL-10, IL-13, tumor necrosis factor α (TNF-α), IL-1β, IL-8, and monocyte chemotactic protein 1 [72–75]. Of these factors, elevated IL-6 might be a prognostic parameter for clinical severity [73,74]. Significantly higher levels of IL-10 and IL-8 in the cerebrospinal fluid of the patients with encephalitis and pulmonary edema than in uninfected controls suggests that the increased inflammatory cytokines in the serum of EV71 infected patients may originate in the cerebrospinal fluid [72]. Although there are some studies providing evidence that the vascular cell adhesion molecule 1 and cyclooxygenases-2-induced activation of nuclear factor κB (NF-κB) might represent the pathway for mediating the production of inflammatory cytokines and chemokines, the detailed mechanism of the inflammatory pathogenesis induced by EV71 infection remains unclear [76,77].

As an alternative to clinical and autopsy resources, experimental murine and non-human primate models of EV71 infection have been developed to explore the pathogenesis of EV71 infection. These resources include a monkey model, neonate and adult immunodeficient mice-adapted EV71 models, and an EV71 receptor transgenic mice model [78–80]. However, some limitations exist with these models, as none accurately recapitulates all of the aspects of HFMD pathology in humans. For example, in monkey models, unlike in humans, the pathogenic process, including pulmonary edema and neuron impairment, is dependent upon infection route, only presenting after intracerebral inoculation with EV71 rather than other infection pathways [79,81]. Furthermore, in mice, adaption increases the virulence of EV71 and does not reflect the natural cell and tissue tropism [82]. Pulmonary edema has never been observed in the immunodeficient mouse model infected by the adapted EV71 strains [83–85]. The human scavenger receptor class B, member 2 (SCARB2) transgenic mice display clinical features most similar to humans, exhibiting ataxia, paralysis, and death after infection. These mice are susceptible to EV71 clinical isolates at different ages and with different inoculation routes. However, pulmonary edema symptoms are absent in this model, which limits its application in EV71 pathogenesis exploration [80]. Despite these shortcomings, our knowledge has been greatly potentiated from studies in these animal models.

Receptors and viral factors modulate cell and tissue tropism

Virus–receptor interaction is the first step of a virus life cycle, determining cell and tissue tropism and pathogenicity. Two human receptors for EV71 and CV-A16 were identified in 2009: SCARB2 [86] and P-selection glycoprotein ligand-1 (PSGL-1) [87]. In addition, annexin II and sialylated glycans have also been reported as candidate coreceptors for EV71 infection [88]. SCARB2 is localized in the lysosomal membrane and is ubiquitously expressed in many human tissues and cell types, including in neurons in the CNS. It participates in membrane transportation and the reorganization of endosomal/lysosomal compartments, and shuttles between these compartments and the plasma membrane [86,89,90]. PSGL-1 is expressed exclusively on myeloid and T lymphocytes and plays a role in the early stages of inflammation [87,89,90].

In infected organs of a viral disease, cell-to-cell spread substantially contributes to disease pathogenesis. It has been reported that different cell types use SCARB2 and PSGL-1 to mediate EV71 entry through clathrin- and caveolar-dependent endocytosis, respectively [91,92]. The differential expression of EV71 receptors on different cell types and tissues are considered the primary determinants of tissue tropism [89]. For example, EV71 patients presenting with brain stem encephalitis, autonomic nervous system dysregulation, and pulmonary edema have a high level
of proinflammatory cytokines in serum and cerebrospinal fluid. Therefore, it is speculated that the interaction of EV71 with PSGL-1 on lymphocytes may spread the virus and produce the inflammatory cytokines by trafficking to the CNS to promote brain stem encephalitis and pulmonary edema development. In contrast, it was suggested that EV71 uses the active retrograde axonal transport system to enter the CNS in an orally infected EV71 murine model [93]. Together, these findings suggest that a single receptor interacting with EV71 is not sufficient to elicit EV71 brain stem encephalitis; rather, different receptors may play different roles on different cell types and tissues at distinct stages of EV71 infection. However, several lines of evidence suggest that SCARB2 plays a dominant role in efficient EV71 infection and the development of systemic disease in humans, while other candidates may act as coreceptors or function to help invading the target cells in vivo. First, stable expression of human SCARB2 permitted replication of all tested EV71 and CV-A16 strains in non-susceptible mouse cells, while human PSGL-1 only enables some representative EV71 strains [86,87]. Second, SCARB2 is capable of viral binding, viral internalization, and viral uncoating, while PSGL-1 showed inability to induce viral uncoating, resulting in low infection efficiency in cells expressing PSGL-1 [94]. Last, SCARB2 transgenic mice are susceptible to infection by both EV71 clinical isolates and CV-A16, displaying EV71 neurotropism, neuropathology, and clinical features. PSGL-1 transgenic mice, on the other hand, can only be infected by a mouse muscle-adapted EV71 strain but not the clinical isolates [80, 84, 95, 96].

In addition to receptors of EV71, studies on different murine models have indicated that viral factors, such as viral 5′ and 3′ UTR, genetic modification on the VP1 region, and 3D polymerase, contribute to cell and tissue tropism as well as viral pathogenesis [89,97–100]. However, the detailed mechanism of how these viral factors contribute to the cell or tissue tropism remains unclear.

Evasion of host innate immune responses

During the virus life cycle, EVs use multiple factors from both viral and host for their own benefit. In response, the host develops corresponding immune responses to prevent a viral infection. Innate immunity is the first line to defense against invading pathogens, including type I interferon (IFN) production at the early stages and subsequent activation of downstream events. The type I IFNs promoter is activated by pathogen-associated molecular patterns present on the virus, which are recognized by pathogen recognition receptors (PRRs) [101]. PRRs involved in the recognition of EV71 and in mediated type I IFNs production include melanoma differentiation-associated gene 5 (MDA5), retinoic acid-inducible gene 1 (RIG-I), Toll-like receptor 3 (TLR3), and TLR7 [102,103].

Despite these robust immune responses, several lines of evidence suggest that EV71 has evolved evasion strategies to antagonize the IFN-mediated innate immune responses (Fig. 3). For example, during EV71 infection, type I IFNs are undetectable in cell-based systems and in animal model, while IFNα/β treatment increases the survival rate of mice, and neutralizing antibody to IFNα/β exacerbates EV71-induced disease [104,105]. Additionally, EV71 almost does not stimulate the expression of antiviral genes, such as IFN-stimulated genes 54 (ISG54) and ISG56 [105].

The main IFN antagonists encoded by EV71 have been identified as two viral proteases, 2A and 3C. They directly target diverse key cytosolic molecules of the type I IFN signaling pathways to block host immune responses. EV71 2A protease directly targets MDA5 and induces its cleavage, which is a common event in the infection of EV species [106]. EV71 2A protein, but not 3C, can also target the mitochondria anti-viral signaling protein (MAVS, also named as IPS-1, VISA, Cardif) and cleave it at multiple sites [107]. The resulting EV71 2A-cleaved fragments of MAVS cannot activate type I IFNs production [108]. Although the 3C of CV-B3 was reported to cleave overexpressed MAVS, cleavage by EV71 3C has not been observed [106,107]. In an alternative pathway, EV71 3C protease can inhibit RIG-I-mediated type I IFN responses by impeding the formation of a functional complex between RIG-I and MAVS [105].

A recent study showed that TLR3 signaling activation in macrophages is important for protecting older mice against EV71 infection [103]. Accordingly, our results indicated that EV71 suppresses TLR3-mediated type I IFN responses. In this process, the protease 3C interacts with TIR domain-containing adaptor inducing IFN-β (TRIF), an important adaptor protein of TLR3, and cleaves it upon the proteolytic activity of 3C [109]. As a strong antagonist of IFN, 3C also directly cleaves interferon regulatory factor 7 (IRF7), the downstream molecule of RLRs and TLR3 signaling pathways [110]. Importantly, the cleavage fragments do not limit the replication of EV71, which is consistent with their ability to inhibit IFN production. Coincident with these observations, EV71 3C blocks type I IFN synthesis in a mouse model [111]. These studies suggest that 3C, as an antagonist, may play
critical roles in evading innate immune responses under physiologic conditions.

It is thought that NF-κB signaling is also important for activating IFNs or inflammatory cytokine production in TLR and RLR signaling pathways. We have demonstrated that EV71 3C also inhibits the activation of NF-κB by cleaving the transforming growth factor-β-activated kinase 1 (TAK1) complex [112]. Furthermore, another EV71 non-structural protein, the 2C helicase, has been also demonstrated to inhibit TNF-α-mediated NF-κB activation by suppressing phosphorylation of IkB kinase β (IKKβ) during EV71 infection [113].

IFNs induce the expression of ISGs to inhibit virus replication in an autocrine and paracrine manner [114]. Accordingly, EV71 hinders the IFN-mediated activation of ISGs via interfering with the Janus activated kinase (Jak)-signal transducers and activators of transcription (STAT) signaling pathways. EV71 infection can inhibit the IFN-mediated phosphorylation of STAT1, STAT2, Jak1, and tyrosine kinase 2 through inducing cleavage of type I IFN receptor 1 (IFNAR1) by 2A protease [115]. Besides IFNAR1, EV71 3C protease can cleave IRF9 to block JAK1-STAT signaling [116].

Host factors modulate EV71 replication
EV71 genome contains a type I internal ribosome entry site (IRES) located at the 5′UTR, which requires a number of host IRES-specific transacting factors (ITAFs) to initiate viral protein translation.
It has been reported that four ITAFs, heterogeneous nuclear ribonucleoprotein K (hnRNPK), hnRNPA1, far-upstream element-binding protein 1 (FBP1), and FBP2, interact with the 5′ UTR of EV71 to mediate virus replication [117–120]. hnRNPA1 and FBP1 play positive roles in activating EV71 IRES, whereas FBP2 is a negative regulator. hnRNPK stimulates EV71 replication by interacting with the cloverleaf structure, stem-loop II of the 5′ UTR, or with the stem-loop IV of the IRES [117]. Recently, it has been reported that a serine/threonine kinase, Misschapel NIK-related kinase, is involved in IRES-mediated translation of EV71 by facilitating hnRNPA1 translocation to the cytoplasm [121]. Furthermore, EV71 impairs the processing of host pre-mRNA by cleaving the cleavage stimulation factor 64K subunit (CstF64), which is advantageous for virus replication [122].

Upon RNA virus infection, intracellular host membranes are remodeled to generate a viral RNA replication center. Many host factors, including GTPase ADP-ribosylation factor 1 (ARF1), Golgi-specific Brefeldin A resistance factor 1 (GBF1), acyl-coenzyme A-binding protein domain 3 (ACBD3), and phosphatidylinositol 4-kinase IIIβ (PI4KB), participate in this process to influence virus replication [123–126]. PI4KB can be recruited to the Golgi membranes by ARF1 or ACBD3. Interestingly, T-00127-HEV1, a synthetic inhibitor of PI4KB, can be used to inhibit EV71 replication [124]. This suggests that PI4KB may play pivotal roles in EV71 replication. Further investigation is needed to elucidate the detailed molecular mechanisms of this pathway. Additionally, the endoplasmic reticulum protein reticulon 3 is another important host factor that could affect the EV71-encoded viral proteins synthesis and viral RNA replication by interacting with the 2C protein [127].

The interaction network between EV71 and host cells has been dissected by transcriptomic or proteomic approaches, which are helpful for elucidating the pathogenesis of EV71. These results show that EV71 infection induced changes in many host processes, including in protein translation and modification, protein and ion transport, cell death, autophagy, and cell homeostasis [128–130]. These studies open the door for further highlighting the EV71 and host factor interaction and for examination of how host factors affect the EV71 life cycle.

Interactions between EV71 and cellular miRNAs have also been reported. EV71 infection can induce alteration of miRNA expression and form a unique miRNA profile [131,132]. Conversely, miRNAs can regulate EV71 replication by targeting EV71 genome or proteins [133,134].

miRNAs are also the targets for EV71 to escape innate immune responses [135,136]. For example, EV71-induced miR-146a, a negative-feedback regulator in RLRs signaling, could inhibit IL-1R-associated kinase and TNF receptor-associated factor 6 activation, and further block IFNs production.

In summary, the mechanisms responsible for HFMD pathogenesis have not been fully understood. Studies on EV71 showed that many factors, including receptor binding, viral factors, innate immune evasion, and host factors are involved. A better understanding of the virus–host interactions as well as breakthrough in animal models is needed to provide insights into the mechanisms underlying HFMD pathogenesis.

STRUCTURE-BASED DESIGN OF ANTIVIRAIALS

Given the devastating neurological effects that HFMD can have in young children, there is a pressing need to develop anti-EV agents to combat HFMD. Although there are currently no available antivirals to treat HFMD, virological studies have provided critical insights into antiviral development. The available targets for anti-EV compound design can be categorized according to the target type, ranging from the virus capsid structural proteins, the viral encoded non-structural proteins, and the UTR of genomic viral RNA to host proteins implicated in virus infection. Each target, in turn, corresponds to critical steps in virus life cycle, including virus attachment/entry/uncoating, virus protein synthesis and maturation, RNA genome replication, immune evasion, and virus assembly/morphogenesis (Fig. 4).

High-resolution structural information is one of the essential resources for antiviral drug design, optimization, and validation. The structures of viral proteins encoded by EV71 have been studied extensively. Therefore, developing inhibitors against viral proteins can be an efficient pathway to develop HFMD drugs. We here summarize the progress in understanding the role of certain viral components (mainly exemplified by EV71) in antiviral design in a structural biology view.

Viral capsid proteins

EV capsid proteins are involved in cell attachment, entry, and uncoating processes, which are among the earliest confirmed targets for antiviral drugs. High-resolution structural analysis of the mature virions
and natural empty particles indicate that the VP1 GH loop can act as an adaptor sensor for cellular receptor attachment and a critical generic mechanism for uncoating, providing novel targets for antiviral design [137]. High-resolution structures of EV71 as empty capsid and inhibitor bound virion allowed for the identification of a large cleft at each icosahedral face of the virus particle, beneath where the hydrophobic floor serves as the docking site for drugs [138,139]. The binding of the drug at the cleft ultimately rigidifies the virus capsid (discussed in detail below), hence hindering the intrinsic conformational dynamics that are essential for the interaction with cellular receptor or subsequent uncoating. Crystal structures of EV71 complexed by four different 3-(4-pyridyl)-2-imidazolidinone derivatives revealed the structure–activity correlates. With the help of quantum mechanics-enhanced ligand docking, the inhibitors were optimized, leading to the synthesis of a compound with an order of magnitude more potent antiviral activity [140]. Rossmann and colleagues crystallized EV71 virion complexed with inhibitor WIN-51711, one of the ‘WIN’ compounds referring to Sterling Winthrop, by whom the inhibitors were developed. Rossmann and colleagues found that

Figure 4. Road map for targeting key events in EV71 life cycle. Key steps in EV71 life cycle provide invaluable insights into drug design. These include virus attachment/entry/uncoating, virus protein synthesis and maturation, RNA genome replication, immune evasion, and virus assembly/morphogenesis.
WIN 51711 replaced the natural pocket factor and occupied the hydrophobic pocket on the VP1 protein. Furthermore, Win-51711 stabilized the EV71 virion and restricted the capsid dynamics that are required for genomic RNA release [139]. The determination of EV71 capsid dynamics provides the basis for capsid-binding inhibitor design and optimization. However, an obvious drawback of a capsid-targeting agent is that most (if not all) of such inhibitors rapidly induce the generation of drug-resistant progeny virus. This is due to the ‘prone-to-error’ nature of RdRp. The fact that the EV structural proteins are in general less conserved than the non-structural proteins also suggests the low genetic barrier to the resistance of capsid-binding inhibitor.

2C helicase

2C helicase is one of the most conserved EV proteins [141], but it remains one of the least characterized to date. Collectively, EV 2C helicase is implicated to possess many key functions within just ∼330 amino acids, including virus uncoating, replication, immune evasion, and morphogenesis, covering nearly every step in the virus life cycle [113,127,142–144]. The N-terminal of EV71 2C is thought to contain an amphipathic helix that can anchor the vesicle membrane, thereby recruiting the virus replication complex. EV71 2C also contains two separate RNA-binding motifs at the N- and C-terminus, which are believed to recognize the clover-leaf structure at the untranslated region of the viral RNA genome. These potential functions allow 2C helicase to be a promising target for the design of a wide spectrum inhibitor. However, the lack of high-resolution structural information for EV71 2C leaves a large knowledge gap for understanding its function on a molecular level, and has hindered inhibitor design.

Virus proteases

Virus proteases are, in general, believed to be the most promising therapeutic targets, as evidenced by the successes of protease inhibitors in treating human hepatitis C virus (HCV) and human immunodeficiency virus infections. The fact that EVs encode two proteases (2A and 3C), which is rare for its limited genomic size, indicates their important role in virus infection. Despite their shared proteolytic activity, the functions of 2A and 3C are not at all redundant. EV71 2A carries out the first cleavage of polyprotein precursor at VP1–2A junction, whereas the subsequent cleavages are taken over by 3C or its precursor 3CD, thus completing viral protein processing. Interestingly, 2A and 3C both also interfere with cellular functions. In addition to antagonizing host innate immunity responses, as discussed above, 2A can also shut down host protein synthesis by targeting eukaryotic initiation factor 4G1 (eIF4G1) to favor IRES-dependent viral protein production [145,146]. The available crystal structures for EV71 proteases show that 2A and 3C maintain the chymotrypsin-like fold and share active site geometry for hydrolysis [147,148]. The structures of 2A and 3C are highly conserved in different EV serotypes, making them ideal targets for wide spectrum inhibitors. Indeed, the human rhinovirus (HRV) inhibitor Rupintrivir, originally designed to dock the substrate-binding pocket of HRV 3C, was found to effectively inhibit EV71 replication with IC50 at nanomolar level. The structural basis for anti-EV71 activity by Rupintrivir was revealed by the crystal structure of the EV71–3C-Rupintrivir and CV-A16–3C-Rupintrivir complexes [149,150]. The structures show that Rupintrivir binds EV71 3C similarly to its binding of HRV 3C (Fig. 5). Although the HRV and EV71 3C proteases only share ∼30% sequence identity, the residues building up the substrate-binding pocket are nearly invariant. EV71 2A crystal structures were determined as apo enzyme and an octopeptide substrate bound form [151] revealed an open, shallow and flexible substrate-binding pocket, which is consistent with the low substrate specificity of 2A. EV71 proteinases play pivotal roles in replication and immune evasion and they are one of the best studied EV proteins structurally. Thus, the current knowledge about EV proteolytic enzyme can readily facilitate rational design of novel antiviral agents. For instance, a recent study showed that peptidyl aldehyde NK-1.8k which targets 3C can effectively suppress EV71 and EV68 infections [152].

RNA-dependent RNA polymerase

RdRp is no doubt an important target for antiviral development, as it is the catalytic unit for virus RNA synthesis. The crystal structures of EV71 RdRp complexed with nucleotide, nucleotide analog, and the viral peptide (Vpg) have been resolved [153,154], providing an essential framework for structure-based inhibitor design. Structural comparison with the RdRps from foot and mouth disease virus and CV-B3 shows significant similarity in overall folding, nucleotide recognition, or Vpg binding, offering evidence that inhibitors targeting other picornavirus RdRp may be also effective against EV71.
Rupintrivir binds EV71 3C active site in a similar mode as the binding to HRV 3C. The active site of EV71 3C is shown as a solvent-accessible surface. The color of the surface is coded according to amino acid conservation among enterovirus 3Cpro. Residues in red are invariant, and increasing amino acid variation is indicated by progressive fading to white, which indicates the least conserved residues. EV71 3C bound Rupintrivir (yellow) and the Rupintrivir bound to HRV 3C (white) are modeled in the active site by superimposition of the HRV and EV71 3C structures. The interaction between Rupintrivir and 3C is primarily mediated by invariant residues. The binding pockets from S2’-S1’ and S1-S4 are indicated. The deviations of conformations of bound inhibitors conformation are most pronounced at the termini close to the S1’ and S2’ pockets, where significant differences were also observed between EV71 3C and HRV 3C.

Few inhibitors target EV RdRp. One such inhibitor is ribavirin, a guanosine analog discovered in 1972. The drug has been used in anti-HCV infection therapy for decades and shows broad spectrum against RNA viruses. Ribavirin was found to be effective in reducing the fatality of EV71 infection by targeting RdRp [155]. The efficacy of Ribavirin could be attributed to its direct inhibition of polymerase activity. The subsequent incorporation of Ribavirin into the virus genome induces mutagenesis, which eventually leads to virus extinction. DTriP-22 is another RdRp inhibitor that is not a nucleoside analog. DTriP-22 is able to inhibit EV71 replication by reducing virus RNA accumulation in cells [156]. DTriP-22-resistant analysis mapped to a K163R mutation within RdRp, suggesting a direct drug-RdRp contact.

In sum, the viral proteins encoded by EV71 have been extensively studied structurally, providing accurate structural information for rational drug design. As there are no homologs present in mammals, inhibitors targeting enteroviral proteins could be a prime choice concerning the safety issue. The unprecedented success in treating HCV infection by direct-acting antivirals opens a new era for combating RNA virus infection.

VACCINE DEVELOPMENT

Protective neutralizing antibody (NAb) response is one of the most critical host defense mechanisms against viral infection [157]. Seroepidemiological data indicate that NAb against both EV71 and CV-A16 are very low in children aged >6 months to ≤1 years and gradually increase in individuals between 1- and 4-year old age [158–160]. These data suggest that infants aged 6–14 months should receive priority vaccination against EV71.

HFMD-associated EVs invade the human body through mucosal surfaces and infect neural system after viremia to cause clinical symptoms. A vaccine against the main causing agents of HFMD should be capable of inducing mucosal immune reaction to prevent virus infection at the first step and/or of eliciting a system IgG reaction afterwards to block the viremia, a crucial step for neural system infection.

The protecting role of system antibodies in EV71 vaccine development has been exemplified by inactivated vaccines. In the last two years, three inactivated EV71 vaccines have been developed for system immunization, and their safety and efficiency have been verified in phase 3 clinical trials [161–163]. These three vaccines share similar formulations and immunization protocols. Each is comprised of formalin-inactivated EV71 virions (genotype C4) from cell culture with alum adjuvant. They are administered two times within a 28-day interval via intramuscular injection. All of the three phase 3 clinical trials are multicenter, randomized, double-blind, placebo-controlled studies, and include more than 10 000 infants and children (6–72 months or 6–35 months) were recruited for the trial. These vaccines induce more than 99% seropositive rates after boosting once and protect 90–97% infants from EV71-associated HFMD in 11–14 months after two intramuscular doses of EV71 vaccines. Most adverse events were mild and the total adverse events and serious adverse rate were similar between the vaccination and the placebo group.

Although the inactivated EV71 vaccines are safe and efficacious, there are some properties that remain to be addressed. First, as anti-EV71 antibody titers decreased 6 months after vaccination in the
serum of immunized patients, the long-term protection of these vaccines should be further explored. A clinical trial showed a booster vaccination at around one year after priming EV71 immunization significantly increased the anti-EV71 antibody titers (more than 10-fold) [164]. However, it should be determined whether this booster vaccination is sufficient and/or necessary for long-term protection. Secondly, HFMD can be caused by a variety of EV serotypes. However, all of the vaccines tested by clinical trials used only the EV71 C4 subgenogroup virus, which is dominant in mainland China, as the immunogen. Although strong cross-subgenogroup immune reaction with various EV71 strains and multiple subgenogroups (B4, B5, C2, and C5) was observed, their cross-protection with other EV71 subgenogroups also needs to be further evaluated [165].

In addition, several studies showed that inactivated intramuscular EV71 vaccines cannot cross-protect against CV-A16 [161–163,165,166]. These findings are consistent with most pre-clinical data, which show the antibody cross-reaction between EV71 and CV-A16 is weak [167–169]. Similar to EV71, inactivated CV-A16 virus can induce a strong systemic immune reaction and protect animals from CV-A16-associated disease [169–171]. A bivalent vaccine including both EV71 and CV-A16 is being considered for development. Experiments in mice indicated that inactivated EV71 and CV-A16 bivalent vaccine [168,172] or virus-like particles [173] could elicit protective immune responses against both EV71 and CV-A16 attack. In these studies, the immunogenicity and protective efficiency of the bivalent vaccine was similar to that of the monovalent vaccine, indicating that it may be advantageous to develop a bivalent vaccine of EV71 and CV-A16 in the future.

All these three EV71 vaccines use the intramuscular injection route for immunization [161–163]. Typically, intramuscular injection does not induce a strong mucosal IgA immune response, which is crucial for preventing virus infection and promoting viral clearance. Therefore, a mucosal vaccination route, which would induce an IgA response may provide an ideal alternative immunization route. Multiple mouse studies indicate that oral immunization with EV71 VP1 protein can induce both systemic anti-VP1 IgG and mucosal IgA reactions. However, the systemic IgG antibody reaction was weaker with oral immunization than with subcutaneous immunization [174–178]. Oral vaccines have also been shown to protect mice from a lethal EV71 attack by adopting different virus/bacteria vector and adjuvant to improve its efficiency [175,177–179]. Furthermore, oral immunization in mice with a murine virulent EV71 strain induced a strong cross-antibody reaction with CV-A16 [175], which was not seen in the performed clinical trial of inactivated EV71 vaccine [161–163]. To stimulate strong immune responses, attenuated live virus is often used in oral immunization strategies. To this end, diverse strategies, including temperature sensitivity [180,181], mutation of the UTR region [99,182], and RNA polymerase [154], have been attempted to make safe live EV71 vaccine strains. Data from these studies show that the live-attenuated vaccine strains of EV71 can induce broad-spectrum NAb responses in animal experiments. However, the virulence of the virus is only partly attenuated [180]. Given the adverse effects of oral poliovirus vaccine, safety observations of the live vaccines should be carefully examined before its application in humans.

Yet another vaccination strategy—subunit vaccines using EV71 capsid proteins—has also been investigated by several groups. VP1 is the most widely used antigen [174–179]. However, several studies using VP2–4 as the immunogen showed cross-protection reaction against multiple subgenogroups of EV71 [183–189], suggesting that the conserved epitopes it contains may make VP2–4 a good candidate for the development of a universal vaccine against multiple EV71 subgenogroup infections.

The availability of EV71 vaccines is very important in lowering the disease burden of HFMD. However, their long-term effectiveness, cross-protection against other EV serotypes, and controlling effectiveness on the epidemic of HFMD will require further observation in the future. Therefore, new vaccine types and vaccination strategies should continue to be explored.

PERSPECTIVES

Although great progress has been made in combating HFMD, we need to gain a better understanding of the disease, its etiology, and its pathology. First, changing of HFMD etiology is a great challenge for disease control. Sustained investigation on etiology and strengthened surveillance is important for the prevention, awareness, and control of HFMD outbreaks. To this end, the roles of different EV serotypes in HFMD and the pattern of etiological switch should be further addressed. Second, the pathogenic mechanisms of HFMD-associated EVs are not fully understood, which largely hinders disease treatment and antiviral development. The pathogenesis of EVs depends both on viral and host
factors, the interactions of which have not been fully elucidated. In the future, high-throughput screenings of the host factors that are critical for virus infection and replication as well as the dissection of the viral components that affect EV virulence will help shed light on these processes. These studies stand to uncover new targets for diagnosis, prognosis, and treatment. Simultaneously, further insights into the immune response will also be pivotal to clarify the pathology of HFMD and to improve current vaccine formulations and protocols. Moving these studies forward will require the continuation of efforts to develop animal models that simulate EV infections in humans. Last, due to the complex etiology of HFMD, the cross-protective efficiency of the inactivated EV71 vaccines against multiple EV71 subgenogroups and EV serotypes warrants further evaluation. Multivalent or universal vaccines should also be explored as a strategy to provide broader protection against diverse EV strains. Together, the studies and research we discuss here hold the potential to provide a comprehensive understanding of HFMD and thus, could pave the way to the development of more strategies for the effective control, prevention, and treatment of this important disease.

ACKNOWLEDGEMENTS

We thank Drs Zichun Xiang, Hui Zhong, and Bei Wang for references collection and helpful discussions of the manuscript. We would like to also apologize to our colleagues for not having cited all papers relevant to this field because of space constraints.

FUNDING

This work was supported by grants from the National Basic Research Programs of China (973 Project, 2011CB504903), the China National Funds for Distinguished Young Scientists (8122014), the Program for Changjiang Scholars and Innovative Research Team in University (IRT13007), and Fondation Mérieux.

REFERENCES

1. Solomon, T, Lewthwaite, P and Perera, D et al. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 2010; 10: 778–80.
2. Xing, W, Liao, G and Viboud, C et al. Hand, foot, and mouth disease in China, 2008–12: an epidemiological study. Lancet Infect Dis 2014; 14: 308–18.
3. Huang, CC, Liu, CC and Chang, YC et al. Neurologic complications in children with enterovirus 71 infection. N Engl J Med 1999; 341: 936–42.
4. Robinson, CR, Doane, FW and Rhodes, AJ. Report of an outbreak of febrile illness with pharyngeal lesions and exanthem: Toronto, summer 1957; isolation of group A Coxsackie virus. Can Med Assoc J 1958; 79: 615–21.
5. Flewett, TH, Warin, RP and Clarke, SK. ‘Hand, foot, and mouth disease’ associated with Coxsackie A5 virus. J Clin Pathol 1963; 16: 53–5.
6. Duff, MF. Hand-foot-and-mouth syndrome in humans: coxsackie A10 infections in New Zealand. Br Med J 1968; 2: 661–4.
7. Chumakov, M, Voroshilova, M and Shindarov, L et al. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol 1979; 60: 329–40.
8. Nagy, G, Takátsy, S and Kukán, E et al. Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch Virol 1982; 71: 217–21.
9. Ishimaru, Y, Nakano, S and Yamaoka, K et al. Outbreaks of hand, foot, and mouth disease by enterovirus 71. High incidence of complication disorders of central nervous system. Arch Dis Child 1980; 55: 583–8.
10. Centers for Disease Control and Prevention (CDC). Deaths among children during an outbreak of hand, foot, and mouth disease—Taiwan, Republic of China, April–July 1998. MMWR Morb Mortal Wkly Rep 1998; 47: 629–32.
11. Ho, M, Chen, ER and Hsu, KH et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 1999; 341: 929–35.
12. Chan, LG, Parashar, UD and Lye, MS et al. Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia: clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin Infect Dis 2000; 31: 678–83.
13. McMinn, P, Stratov, I and Nagarajan, L et al. Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin Infect Dis 2001; 32: 236–42.
14. Chan, KP, Goh, KT and Chong, CY et al. Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerg Infect Dis 2003; 9: 76–85.
15. AbuBakar, S, Sam, IC and Yusof, M et al.Enterovirus 71 outbreak, Brunei. Emerg Infect Dis 2009; 15: 79–82.
16. Khanh, TH, Sabanathan, S and Thanh, TT et al. Enterovirus 71-associated hand, foot, and mouth disease, Southern Vietnam, 2011. Emerg Infect Dis 2012; 18: 2002–5.
17. Wu, Y, Yeo, A and Phoon, M et al. The largest outbreak of hand, foot and mouth disease in Singapore in 2008: the role of enterovirus 71 and coxsackievirus A strains. Int J Infect Dis 2010; 14: e1076–81.
18. China, HMFoPSh. Guidelines for Hand-foot-mouth disease prevention and control (2008). National Health and Family Planning Commission of the People’s Republic of China, 2008.
19. Racaniello, VR. Picornaviridae: the viruses and their replication. In David, PMH and Knipe, M (eds). Fields Virology, 6th edn. Philadelphia: Lippincott Williams & Wilkins, 2013.
20. Schmidt, NJ, Lennette, EH and Ho, HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 1974; 129: 304–9.
21. Gilbert, GL, Dickson, KE and Waters, MJ et al. Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement. Pediatr Infect Dis J 1988; 7: 484–8.
22. AbuBaker, S, Chee, HY and Al-Kobaisi, MF et al. Identification of enterovirus 71 isolates from an outbreak of hand, foot and mouth disease (HFMD) with fatal cases of encephalomyelitis in Malaysia. Virus Res 1999; 61: 1–9.
23. Bendig, JW and Fleming, DM. Epidemiological, virological, and clinical features of an epidemic of hand, foot, and mouth disease in England and Wales. Commun Dis Rep CDR Rev 1996; 6: R81–6.
24. Tu, PV, Thao, NT and Perera, D et al. Epidemiologic and virologic investigation of hand, foot, and mouth disease, southern Vietnam, 2005. Emerg Infect Dis 2007, 13: 1733–41.
25. Mao, Q, Wang, Y and Yao, X et al. Coxsackievirus A16: epidemiology, diagnosis, and vaccine. Hum Vaccin Immunother 2014; 10: 360–7.
26. Yang, F, Ren, L and Xiong, Z et al. Enterovirus 71 outbreak in the People’s Republic of China in 2008. J Clin Microbiol 2009; 47: 2351–2.
27. Zhang, Y, Zhu, Z and Yang, W et al. An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China. Virol J 2010; 7: 94.
28. McMinn, PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 2002; 26: 91–107.
29. Liu, SL, Pan, H and Liu, P et al. Comparative epidemiology and virology of fatal and nonfatal cases of hand, foot and mouth disease in mainland China from 2008 to 2014. Rev Med Virol 2015; 25: 115–28.
30. Lukashev, AN. Recombination among picornaviruses. Rev Med Virol 2010; 20: 327–37.
31. Chan, YF and AbuBaker, S. Recombinant human enterovirus 71 in hand, foot and mouth disease patients. Emerg Infect Dis 2004; 10: 1468–70.
32. Zhao, K, Han, X and Wang, G et al. Circulating coxsackievirus A16 identified as recombinant type A human enterovirus, China. Emerg Infect Dis 2011; 17: 1537–40.
33. Mao, Q, Wang, Y and Yao, X et al. Coxsackievirus A16: epidemiology, diagnosis, and vaccine. Hum Vaccin Immunother 2014; 10: 360–7.
34. Hu, YF, Yang, F and Du, J et al. Complete genome analysis of coxsackievirus A2, A4, A5, and A10 strains isolated from hand, foot, and mouth disease patients in China revealing frequent recombination of human enterovirus A. J Clin Microbiol 2011; 49: 2426–34.
35. Han, JF, Jiang, T and Fan, XL et al. Recombination of human coxsackievirus B5 in hand, foot, and mouth disease patients, China. Emerg Infect Dis 2012; 18: 351–3.
36. Zhang, Y, Wang, D and Yan, D et al. Molecular evidence of persistent epidemic and evolution of subtype B1 coxsackievirus A16-associated hand, foot, and mouth disease in China. J Clin Microbiol 2010; 48: 619–22.
37. Zong, W, He, Y and Yu, S et al. Molecular phylogeny of Coxsackievirus A16 in Shenzhen, China, from 2005 to 2009. J Clin Microbiol 2011; 49: 1659–61.
38. Tee, KK, Lam, TT and Chan, YF et al. Evolutionary genetics of human enterovirus 71: origin, population dynamics, natural selection, and seasonal periodicity of the VP1 gene. J Virol 2010; 84: 3339–50.
39. Deshpande, JM, Naidkam, SS and Francis, PC. Enterovirus 71 isolated from a case of acute flaccid paralysis in India represents a new genotype. Carr Sci 2003; 84: 1350–3.
40. Wu, WH, Kuo, TC and Lin, YT et al. Molecular epidemiology of enterovirus 71 infection in the central region of Taiwan from 2002 to 2012. PLoS One 2013; 8: e83711.
41. Li, L, He, Y and Yang, H et al. Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1998 to 2004 in Shenzhen, People’s Republic of China. J Clin Microbiol 2005; 43: 3825–9.
42. Zhang, Y, Tan, XJ and Wang, HY et al. An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China. J Clin Virol 2009; 44: 262–7.
43. Du, J, Wang, X and Hu, Y et al. Changing antibody of hand, foot and mouth disease in Linyi, China, 2009–2011. Clin Microbiol Infect 2013; 20: 047–9.
44. Yang, F, Du, J and Hu, Y et al. Enterovirus coinfection during an outbreak of hand, foot, and mouth disease in Shandong, China. Clin Infect Dis 2011; 53: 400–1.
45. Zhang, T, Du, J and Xue, Y et al. Epidemics and frequent recombination within species in outbreaks of human enterovirus B-associated hand, foot and mouth disease in Shandong China in 2010 and 2011. PLoS One 2013; 8: e67157.
46. Liu, X, Mao, N and Yu, W et al. Genetic characterization of emergent coxsackievirus A12 associated with hand, foot and mouth disease in Qingdao, China. Arch Virol 2014; 159: 2497–502.
47. Tapparel, C, Siegurt, F and Petty, TJ et al. Picornavirus and enterovirus diversity associated with human diseases. Infect Genet Evol 2013; 14: 282–93.
48. Puenpa, J, Mauleekoonphairoj, J and Linsuwanon, P et al. Prevalence and characterization of enterovirus infections among pediatric patients with hand foot mouth disease, herpangina and influenza like illness in Thailand, 2012. PLoS One 2014; 9: e88888.
49. Osterback, R, Vuorinen, T and Linna, M et al. Coxsackievirus A6 and hand, foot, and mouth disease, Finland. Emerg Infect Dis 2009; 15: 1485–8.
50. Lo, SH, Huang, YC and Huang, CG et al. Clinical and epidemiologic features of coxsackievirus A6 infection in children in norther Taiwan between 2004 and 2009. J Microbiol Immunol Infect 2011; 44: 252–7.
51. Centers for Disease Control and Prevention (CDC). Notes from the field: severe hand, foot, and mouth disease associated with coxsackievirus A6 – Alabama, Connecticut, California, and Nevada, November 2011–February 2012. MMWR Morb Mortal Wkly Rep 2012; 61: 213–4.
52. Flett, K, Youngster, I and Huang, J et al. Hand, foot, and mouth disease caused by coxsackievirus A6. Emerg Infect Dis 2012; 18: 1702–4.
53. Fujimoto, T, Iizuka, S and Enomoto, M et al. Hand, foot, and mouth disease caused by coxsackievirus A6, Japan, 2011. Emerg Infect Dis 2012; 18: 337–9.
54. Lott, JP, Liu, K and Landry, ML et al. Atypical hand-foot-and-mouth disease associated with coxsackievirus A6 infection. J Am Acad Dermatol 2013; 69: 736–41.
55. Montes, M, Artieda, J and Pinedo, LD et al. Hand, foot, and mouth disease outbreak and coxsackievirus A6, northern Spain, 2011. Emerg Infect Dis 2013; 19: 676–8.
56. Puenpa, J, Chioechansin, T and Linsuwanon, P et al. Hand, foot, and mouth disease caused by coxsackievirus A6, Thailand, 2012. Emerg Infect Dis 2013; 19: 641–3.
57. Han, JF, Xu, S and Zhang, Y et al. Hand, foot, and mouth disease outbreak caused by coxsackievirus A6, China, 2013. J Infect Dis 2014; 69: 303–5.
58. Hongyan, G, Chengjie, M and Qiaozhi, Y et al. Hand, foot and mouth disease caused by coxsackievirus A6, Beijing, 2013. Pediatr Infect Dis J 2014; 33: 1302–3.
59. Li, JL, Yuan, J and Yang, F et al. Epidemic characteristics of hand, foot, and mouth disease in southern China, 2013: coxsackievirus A6 has emerged as the predominant causative agent. J Infect 2014; 69: 299–303.
et al. EV71 induces VCAM-1 expression and foot-mouth disease. JAMA Dermatol 2013; 149: 1419–21.

63. Downing, C, Ramirez-Fort, MK and Doan, HQ et al. Coxsackievirus A6-associated hand, foot and mouth disease in adults: clinical presentation and review of the literature. J Clin Virol 2014; 60: 381–6.

64. Harris, PN, Wang, AD and Yin, M et al. Atypical hand, foot, and mouth disease: eczema coxsackium can also occur in adults. Lancet Infect Dis 2014; 14: 1043.

65. He, YO, Chen, L and Xu, WB et al. Emergence, circulation, and spatiotemporal phylogenetic analysis of coxsackievirus A6- and coxsackievirus A10-associated hand, foot, and mouth disease infections from 2008 to 2012 in Shenzhen, China. J Microbiol 2013; 51: 3560–8.

66. Wong, KT, Munisamy, B and Öng, KC et al. The distribution of inflammation and virus in human enterovirus 71 encephalomyelitis suggests possible viral spread by neural pathways. J Neuropathol Exp Neurol 2008; 67: 162–9.

67. WHO. A Guide to Clinical Management and Public Health Response for Hand, Foot and Mouth Disease (HFMD): 2011.

68. Yang, Y, Wang, H and Gong, E et al. Neuroradial virus type 71 infection from a recent epidemic in the People’s Republic of China: a histopathologic, immunohistochemical, and reverse transcription polymerase chain reaction study. Hum Pathol 2009; 40: 1288–95.

69. Sheih, WJ, Jung, SM and Hsueh, C et al. Pathologic studies of fatal cases in outbreak of hand, foot, and mouth disease, Taiwan. Emerg Infect Dis 2001; 7: 146–8.

70. Chong, CY, Chan, KP and Shah, VA et al. Hand, foot and mouth disease in Singapore: a comparison of fatal and non-fatal cases. Acta Paediatr 2003; 92: 1163–9.

71. Lum, LC, Wong, KT and Lam, SK et al. Fatal enterovirus 71 encephalomyelitis. J Pediatr 1998; 133: 795–8.

72. Wang, SM, Lei, HY and Yu, CK et al. Acute chemokine response in the blood and cerebrospinal fluid of children with enterovirus 71-associated brainstem encephalitis. J Infect Dis 2008; 198: 1002–6.

73. Zhang, Y, Liu, H and Wang, L et al. Comparative study of the cytokine/chemokine response in children with differing disease severity in enterovirus 71-induced hand, foot, and mouth disease. PLoS One 2013; 8: e67430.

74. Chen, Z, Li, R and Xie, Z et al. IL-6, IL-10 and IL-13 are associated with pathogenesis in children with Enterovirus 71 infection. Int J Clin Exp Med 2014; 7: 2718–23.

75. Han, J, Wang, Y and Gan, X et al. Serum cytokine profiles of children with human enterovirus 71-associated hand, foot, and mouth disease. J Med Virol 2014; 86: 1377–85.

76. Tung, WH, Lee, JT and Hsieh, HL et al. EV71 induces CDX-2 expression via c-Src/PGDFR/PI3K/Akt/p42/p44 MAPK/AP-1 and NF-kappaB in rat brain astrocytes. J Cell Physiol 2010; 224: 376–86.

77. Tung, WH, Sun, CC and Hsieh, HL et al. EV71 induces VACM-1 expression via PGF receptor, PI3-K/Akt, p38 MAPK, JNK, NF-kappaB in vascular smooth muscle cells. Cell Signal 2007; 19: 2127–37.

78. Khong, WX, Foo, DG and Trasti, SL et al. Sustained high levels of interleukin-6 contribute to the pathogenesis of enterovirus 71 in a neonate mouse model. J Virol 2011; 85: 3067–76.

79. Zhang, Y, Cui, W and Liu, L et al. Pathogenesis study of enterovirus 71 infection in rhesus monkeys. Lab Invest 2011; 91: 1337–50.

80. Fuji, K, Nagata, N and Sato, Y et al. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc Natl Acad Sci USA 2013; 110: 14753–8.

81. Nagata, N, Shimizu, H and Ami, Y et al. Pyramidal and extrapyramidal involvement in experimental infection of cynomolgus monkeys with enterovirus 71. J Med Virol 2002; 67: 207–16.

82. Chua, BH, Phuektes, P and Sanders, SA et al. The molecular basis of mouse adaptation by human enterovirus 71. J Gen Virol 2008; 89: 1622–32.

83. Caine, EA, Partidos, CD and Santangelo, JD et al. Adaptation of enterovirus 71 to adult interferon deficient mice. PLoS One 2013; 8: e59501.

84. Wang, YF and Yu, CK. Animal models of enterovirus 71 infection: applications and limitations. J Biomed Sci 2014; 21: 31.

85. Wang, W, Duo, J and Liu, J et al. A mouse muscle-adapted enterovirus 71 strain with increased virulence in mice. Microbes Infect 2011; 13: 862–70.

86. Yamayoshi, S, Yamashita, Y and Li, J et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 2009; 15: 798–801.

87. Nishimura, Y, Shimojima, M and Tano, Y et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 2009; 15: 794–7.

88. Yang, SL, Chou, YT and Wu, CN et al. Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol 2011; 85: 11809–20.

89. Lin, JY and Shih, SR. Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. J Biomed Sci 2014; 21: 18.

90. Nishimura, Y and Shimizu, H. Cellular receptors for human enterovirus species a. Front Microbiol 2012; 3: 105.

91. Lin, HY, Yang, YT and Yu, SL et al. Caveolar endocytosis is required for human PSLG1-mediated enterovirus 71 infection. J Virol 2013; 87: 9064–76.

92. Hussain, KM, Leong, KL and Ng, MM et al. The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71. J Biol Chem 2011; 286: 309–21.

93. Chen, CS, Yao, YC and Lin, SC et al. Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. J Virol 2007; 81: 9996–9003.

94. Yamayoshi, S, Ohka, S and Fuji, K et al. Functional comparison of SCARB2 and PSLG1 as receptors for enterovirus 71. J Virol 2013; 87: 3335–47.

95. Lin, YW, Yu, SL and Shao, HY et al. Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS One 2013; 8: e57591.

96. Liu, J, Dong, W and Quan, X et al. Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice. Arch Virol 2012; 157: 539–43.

97. Dobrikova, E, Florez, P and Bradrick, S et al. Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3’ nontranslated region. Proc Natl Acad Sci USA 2003; 100: 15125–30.

98. Cordey, S, Petty, TJ and Schibler, M et al. Identification of site-specific adaptations conferring increased neural cell tropism during human enterovirus 71 infection. PLoS Pathog 2012; 8: e1002826.

99. Kok, CC, Phuektes, P and Bek, E et al. Modification of the untranslated regions of human enterovirus 71 impair growth in a cell-specific manner. J Virol 2012; 86: 542–52.

100. Yeh, MT, Wang, SW and Yu, CK et al. A single nucleotide in stem loop II of 5’-untranslated region contributes to virulence of enterovirus 71 in mice. PLoS One 2011; 6: e27082.

101. Yan, N and Chen, ZZ. Intrinsic antiviral immunity. Nat Immunol 2012; 13: 214–22.

102. Kuo, RL, Kao, LT and Lin, SJ et al. MDA5 plays a crucial role in enterovirus 71 RNA-mediated IRF3 activation. PLoS One 2013; 8: e63431.
Downregulation of microRNA miR-526a by Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. Proc Natl Acad Sci USA 2013; 110: 5483–7.

Plevka, P., Perera, R and Cardosa, J. Crystal structure of human enterovirus 71. Science 2012, 336: 1274.

Plevka, P., Perera, R and Yap, M. Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA 2013; 110: 5483–7.

De Cock, L., Wang, X and Spyrou, J.A. More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. Nat Struct Mol Biol 2014; 21: 282–8.

Tuthill, T.J., Groppelli, E and Hogle, J.M. Poliovirus-encoded 2C polypeptide. J Virol 2005; 8: 8051–61.

Wang, B., Xi, X and Lei, Y. Enterovirus 71 binds the 2C protein of MAVS in infected cells. PLoS Pathog 2013; 9: e1003231.

Wang, B., Xi, X and Lei, Y. Enterovirus 71 protease 2Apro targets MAVS and inhibits antiviral type I interferon responses. PLoS Pathog 2013; 9: e1003131.

Wang, B., Xi, X and Lei, Y. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 2013; 9: e1003131.

Wang, B., Xi, X and Lei, Y. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 2013; 9: e1003231.

Wang, B., Xi, X and Lei, Y. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 2013; 9: e1003131.

Wang, B., Xi, X and Lei, Y. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 2013; 9: e1003131.

Wang, B., Xi, X and Lei, Y. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 2013; 9: e1003131.
Lei et al. | 283

144. Vance, LM, Moscufo, N and Chow, M et al. Poliovirus 2C region functions during encapsidation of viral RNA. J Virol 1997; 71: 8759–65.
145. Nova, I and Carrasco, L. Cleavage of eukaryotic translation initiation factor 4G by exogenously added hybrid proteins containing poliovirus 2Apro in HeLa cells: effects on gene expression. Mol Cell Biol 1999; 19: 2445–54.
146. Thompson, SR and Sarnow, P. Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology 2003; 315: 259–66.
147. Cui, S, Wang, J and Fan, T et al. Crystal structure of human enterovirus 71 3C protease. J Mol Biol 2011; 408: 449–61.
148. Thompson, SR and Sarnow, P. Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology 2003; 315: 259–66.
149. Mu, Z, Wang, B and Zhang, X et al. Crystal structure of 2A proteinase from hand, foot and mouth disease virus. J Mol Biol 2013; 425: 4530–43.
150. Wang, J, Fan, T and Yao, X et al. Crystal structures of enterovirus 71 3C protease complexed with ribonupitrin reveal the roles of catalytically important residues. J Virol 2011; 85: 10319–31.
151. Cai, Q, Yameen, M and Liu, W et al. Conformational plasticity of the 2A proteinase from enterovirus 3C. J Virol 2013; 87: 7348–56.
152. Wang, Y, Yang, B and Zhai, Y et al. A peptidyl aldehyde NK-1.8k suppresses EV71 and EV68 infection by targeting at 3Cpro. Antimicrob Agents Chemother 2015; 59: 2636–46.
153. Wu, Y, Lou, Z and Miao, Y et al. Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China. Protein Cell 2010; 1: 491–500.
154. Chen, C, Wang, Y and Shan, C et al. Crystal structure of enterovirus 71 RNA-dependent RNA polymerase complexed with its protein primer VPg: implication for a trans mechanism of VPg uridylylation. J Virol 2013; 87: 5755–68.
155. Meng, T and Kwang, J. Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice. J Virol 2014; 88: 5803–15.
156. Chen, TC, Chang, HY and Lin, PF et al. Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrob Agents Chemother 2009; 53: 2740–7.
157. Zinkernagel, RM, LaMarre, A and Ciurea, A et al. Neutralizing antiviral antibody responses. Adv Immunol 2001; 79: 1–53.
158. Ji, H, Li, L and Chen, XQ et al. Seroreactivity of human enterovirus71 and coxsackievirusA16 in Jiangsu province, China. Virol J 2012; 9: 248.
159. Rabenau, HF, Richter, M and Doerr, HW et al. Hand, foot and mouth disease: seroprevalence of Coxsackie A16 and Enterovirus 71 in Germany. Med Microbiol Immunol 2010; 199: 45–50.
160. Zhu, FC, Liang, ZL and Meng, FY et al. Retrospective study of the incidence of HFMD and seroreactivity of antibodies against EV71 and CoxA16 in prenatal women and their infants. PLoS One 2012; 7: e37208.
161. Zhu, FC, Meng, FY and Li, JX et al. Efficacy, safety, and immunology of an inactivated alum-adjuvant enterovirus 71 vaccine in children in China: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2013; 381: 2024–32.
162. Li, R, Liu, L and Mo, Z et al. An inactivated enterovirus 71 vaccine in healthy children. N Engl J Med 2014; 370: 829–37.
163. Zhu, F, Xu, W and Xia, J et al. Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China. N Engl J Med 2014; 370: 818–28.
164. Shen, YW, Jing, XL and Zheng, LL et al. A booster dose of an inactivated enterovirus 71 vaccine in Chinese children: a randomized, double-blind, placebo-controlled clinical trial. J Infect Dis 2014; 210: 1073–82.
165. Mao, Q, Cheng, T and Zhu, F et al. The cross-neutralizing activity of enterovirus 71 subgenotype C4 vaccines in healthy Chinese infants and children. Plos One 2013; 8: e79599.
166. Mao, QY, Wang, YP and Liang, ZL et al. The compatibility of inactivated-Enterovirus 71 vaccination with Coxsackievirus A16 and poliovirus immunizations in humans and animals. Hum Vacc Immunother 2015. doi:10.1080/21645515.2015.1011975.
167. Cai, Y, Ku, Z and Liu, Q et al. A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses. Vaccine 2014; 32: 2406–12.
168. Wang, J, Qi, S and Zhang, X et al. Coxsackievirus A16 infection does not interfere with the specific immune response induced by an enterovirus 71 inactivated vaccine in rhesus monkeys. Vaccine 2014; 32: 4436–42.
169. Yang, E, Cheng, C and Zhang, Y et al. Comparative study of the immunogenicity in mice and monkeys of an inactivated CA16 vaccine made from a human diploid cell line. Hum Vacc Immunother 2014; 10: 1266–73.
170. Cai, Y, Liu, Q and Huang, X et al. Active immunization with a Coxsackievirus A16 experimental inactivated vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine 2013; 31: 2215–21.
171. An, OW, Su, ZG and Pan, RW et al. The immunogenicity and protection effect of the BPL-inactivated CA16 vaccine in different animal systems. Hum Vacc Immunother 2014; 10: 629–39.
172. Sun, S, Jiang, L and Liang, Z et al. Evaluation of monovalent and bivalent vaccines against lethal Enterovirus 71 and Coxsackievirus A16 infection in newborn mice. Hum Vacc Immunother 2014; 10: 2885–95.
173. Ku, Z, Liu, Q and Ye, X et al. A virus-like particle based bivalent vaccine confers dual protection against enterovirus 71 and coxsackievirus A16 infections in mice. Vaccine 2014; 32: 4296–303.
174. Chen, HF, Chang, MH and Chiang, BL et al. Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71. Vaccine 2006; 24: 2944–51.
175. Wu, TC, Wang, YF and Lee, YP et al. Immunity to a virulent enterovirus 71 and coxsackie A16 virus protects against enterovirus 71 infection in mice. J Virol 2007; 81: 10310–5.
176. Chen, HL, Huang, JY and Chu, TW et al. Expression of VP1 protein in the milk of transgenic mice: a potential oral vaccine protects against enterovirus 71 infection. Vaccine 2008; 26: 2882–9.
177. Premanand, B, Prabakaran, M and Kiner, TK et al. Recombinant baculovirus associated with bilosomes as an oral vaccine candidate against HEV71 infection in mice. PLoS One 2013; 8: e55536.
178. Zhang, F, Hao, C and Zhang, S et al. Oral immunization with recombinant enterovirus 71 VP1 formulated with chitosan protects mice against lethal challenge. Virol J 2014; 11: 80.
179. Raha, AR, Varma, NR and Yusoff, K et al. Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol 2005; 68: 75–81.
180. Arita, M, Shimizu, H and Nagata, N et al. Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol 2005; 86: 1391–401.
181. Kung, YH, Huang, SW and Kuo, PH et al. Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 2010; 396: 1–9.
182. Arita, M, Ami, Y and Wakita, T et al. Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model. J Virol 2008; 82: 1787–97.
183. Miao, LY, Pierce, C and Gray-Johnson, J et al. Monoclonal antibodies to VP1 recognize a broad range of enteroviruses. J Clin Microbiol 2009; 47: 3108–13.

184. Liu, CC, Chou, AH and Lien, SP et al. Identification and characterization of a cross-neutralization epitope of Enterovirus 71. Vaccine 2011; 29: 4362–72.

185. Kirk, K, Poh, CL and Fecondo, J et al. Cross-reactive neutralizing antibody epitopes against Enterovirus 71 identified by an in silico approach. Vaccine 2012; 30: 7105–10.

186. Zhao, M, Bai, Y and Liu, W et al. Immunization of N terminus of enterovirus 71 VP4 elicits cross-protective antibody responses. BMC Microbiol 2013; 13: 287.

187. Kiener, TK, Jia, Q and Meng, T et al. A novel universal neutralizing monoclonal antibody against enterovirus 71 that targets the highly conserved “knob” region of VP3 protein. PLoS Negl Trop Dis 2014; 8: e2895.

188. Xu, L, He, D and Li, Z et al. Protection against lethal enterovirus 71 challenge in mice by a recombinant vaccine candidate containing a broadly cross-neutralizing epitope within the VP2 EF loop. Theranostics 2014; 4: 498–513.

189. Ye, X, Ku, Z and Liu, Q et al. Chimeric virus-like particle vaccines displaying conserved enterovirus 71 epitopes elicit protective neutralizing antibodies in mice through divergent mechanisms. J Virol 2014; 88: 72–81.