Non-clustered protocadherin

Soo-Young Kim,1,† Shin Yasuda,2 Hidekazu Tanaka,3 Kanato Yamagata2,* and Hyun Kim1,*

1Department of Anatomy and Division of Brain Korea; Korea University College of Medicine; Anam-Dong, Seoul, South Korea; 2Department of Neuropharmacology; Tokyo Metropolitan Institute for Neuroscience; Fuchu, Tokyo Japan; 3Department of Pharmacology; Osaka University Medical School; Suita, Osaka Japan

*Correspondence to: Kanato Yamagata and Hyun Kim; Email: yamagata-kn@igakuen.or.jp and kimhyun@korea.ac.kr

Submitted: 08/23/10; Accepted: 12/03/10
DOI: 10.4161/cam.5.2.14374

Introduction

Cadherin is a calcium-dependent adhesion protein that constitutes a large family of cell adhesion molecules. Cadherins have been identified by the presence of extracellular cadherin repeats of about 110 amino acid residues, and can be classified into several subfamilies based on shared properties and sequence similarity (Fig. 1): the classical cadherins, desmosomal cadherins and protocadherins (PCDHs).3,4 The PCDH family can be divided largely into two groups, based on their genomic structure: clustered PCDHs and non-clustered PCDHs.3,5 The term “PCDH,” however, sometimes includes Fats and seven-pass transmembrane cadherins (Flamingo/CELSER) in the broad sense.6-9 Here, the term “PCDH” is used in a restricted sense, including only clustered and non-clustered PCDHs. PCDHs are expressed predominantly in the nervous system,10,11 and constitute the largest subgroup (about 80 members) of the cadherin superfamily.12,13

In this review, we will focus on recent findings of non-clustered PCDHs, and attempt to provide further insights into the molecular mechanisms and disease-relationship of non-clustered PCDH members on which the findings have been accumulated over the past few years.

Classification and Genomic Structures of Non-Clustered PCDHs

Clustered PCDHs (PCDHα, β and γ family) are encoded as a large cluster in the genome,4,14-16 while non-clustered PCDH genes are scattered in the genome.13 Non-clustered PCDHs which have so far been found are summarized in Table 1. Most non-clustered PCDHs typically have six or seven cadherin repeats, while PCDH15, PCDH16 and MUCDHL has 11, 27 and 4 cadherin repeats, respectively. Human non-clustered PCDH genes are often located at three chromosomal loci: 4q28-31, 5q31-33 and 13q21. A striking difference in the genomic organization of classical cadherin genes and PCDH genes is the presence of unusually large exons in PCDH genes.9 The ectodomain of each member of the PCDH gene is encoded by a single large exon (Fig. 2A and B), while the classical cadherin extracellular domain is encoded by multiple exons (Fig. 2C).12 Typically, this
PCDH large exon encodes the entire extracellular portion as well as the transmembrane domain and a short cytoplasmic part, thus giving rise to a complete PCDH molecule. If additional exons for an extension of the cytoplasmic domain are absent, the corresponding PCDH would be a single-exon gene such as the β family of the clustered PCDHs (Fig. 2A and B). Large exons are also found in Fat and Flamingo cadherins, thus sometimes being classified into PCDH subgroup; however, these exons encode only some parts of the extracellular domains. On the other hand, there are a few exceptions in non-clustered PCDH members: The extracellular domains of PCDH12 and PCDH20 are classified into the β family, which is clustered in a small genome locus. Non-clustered PCDHs are scattered in several genome loci.

Each classical cadherin tends to be expressed at the highest levels in various types of tissue during development: E-cadherin in epithelia, N-cadherin in neural tissue and muscle, R-cadherin in forebrain and bone, and P-cadherin in the basal layer of epidermis. However, PCDHs appear to be expressed mainly in the central nervous system (CNS). Expression patterns of non-clustered PCDHs in the CNS system have been studied well at protein and/or mRNA levels, although some non-clustered PCDHs such as PCDH1 and PCDH19 are expressed in non-neuronal tissue. Expression of PCDH10/OL-PC protein is most extensively studied. PCDH10 protein is expressed in certain local circuits of functional systems such as the olfactory system, nigrostriatal projection, olivocerebellar projection and visual system. These results are consistent with the finding that PCDH10-deficient mice have defects in axon pathfindings of striatal neurons and thalamocortical projections. PCDH19 protein is expressed in certain local circuits of functional systems such as the olfactory system, nigrostriatal projection, olivocerebellar projection and visual system.

Each classical cadherin tends to be expressed at the highest levels in various types of tissue during development: E-cadherin in epithelia, N-cadherin in neural tissue and muscle, R-cadherin in forebrain and bone, and P-cadherin in the basal layer of epidermis. However, PCDHs appear to be expressed mainly in the central nervous system (CNS). Expression patterns of non-clustered PCDHs in the CNS system have been studied well at protein and/or mRNA levels, although some non-clustered PCDHs such as PCDH1 and PCDH19 are expressed in non-neuronal tissue. Expression of PCDH10/OL-PC protein is most extensively studied. PCDH10 protein is expressed in certain local circuits of functional systems such as the olfactory system, nigrostriatal projection, olivocerebellar projection and visual system. These results are consistent with the finding that PCDH10-deficient mice have defects in axon pathfindings of striatal neurons and thalamocortical projections. PCDH19 protein is expressed in certain local circuits of functional systems such as the olfactory system, nigrostriatal projection, olivocerebellar projection and visual system.

Spatial and Temporal Expression of Non-Clustered PCDHs in the CNS

PCDH large exon encodes the entire extracellular portion as well as the transmembrane domain and a short cytoplasmic part, thus giving rise to a complete PCDH molecule. If additional exons for an extension of the cytoplasmic domain are absent, the corresponding PCDH would be a single-exon gene such as the β family of the clustered PCDHs and γ family, which is clustered in a small genome locus. Non-clustered PCDHs are scattered in several genome loci.

Each classical cadherin tends to be expressed at the highest levels in various types of tissue during development: E-cadherin in epithelia, N-cadherin in neural tissue and muscle, R-cadherin in forebrain and bone, and P-cadherin in the basal layer of epidermis. However, PCDHs appear to be expressed mainly in the central nervous system (CNS). Expression patterns of non-clustered PCDHs in the CNS system have been studied well at protein and/or mRNA levels, although some non-clustered PCDHs such as PCDH1 and PCDH19 are expressed in non-neuronal tissue. Expression of PCDH10/OL-PC protein is most extensively studied. PCDH10 protein is expressed in certain local circuits of functional systems such as the olfactory system, nigrostriatal projection, olivocerebellar projection and visual system. These results are consistent with the finding that PCDH10-deficient mice have defects in axon pathfindings of striatal neurons and thalamocortical projections. PCDH19 protein is expressed in certain local circuits of functional systems such as the olfactory system, nigrostriatal projection, olivocerebellar projection and visual system.

Studies on mRNA expressions have been carried out more systemically. Some non-clustered PCDHs show the region-specificity in the basal ganglia with gradients (PCDH8, PCDH9, PCDH10, PCDH17 and PCDH19) and/or the matrix/striosome-based expression patterns (PCDH1, PCDH8, PCDH9,
the septotemporal axis of adult hippocampus. Furthermore, most of non-clustered PCDH is constitutively expressed in the CNS; however, PCDH8/arcadlin is inducible, and PCDH19 and PCDH20 are reducible in the hippocampus and cerebral cortex by elevated activity, such as epileptic seizure. These diverse

Table 1. Features of non-clustered protocadherin family

Gene symbol	Name	Other designation	# EC	# Known isoform	Locus (human)	Related diseases
PCDH1	Protocadherin 1	Cadherin-like protein 1, protocadherin 42 (PCDH42, pc42), Axial protocadherin (AXPC)	7	2	Sq31.3	Asthma⁸³
PCDH7	BH-protocadherin	Protocadherin7, BHPCDH, BH-pc, Neural fold protocadherin (NFPC)	7	4	4p15	Non-small-cell lung cancer⁴⁴
PCDH8	Protocadherin 8	Arcadlin, Paraxial protocadherin (PAPC)	6	2	13q21.1	Cocaine abuse⁴⁵/tumor suppressor (breast cancer⁴⁶/mantle cell lymphoma⁴⁶)
PCDH9	Protocadherin 9	Cadherin superfamily protin VR4-11	7	3	13q21.32	Autism spectrum disorder²⁵/auditory neuropathy²⁶/tumor suppressor (glioblastoma²⁷)
PCDH10	Protocadherin 10	OL-protocadherin (OL-PCDH, OLpcad)	6	2	4p28.3	Autism²⁶/tumor suppressor (gastric,⁷³ cervical,⁷⁷ and other cancers⁷²,⁷⁷,⁷⁷,⁷⁷)
PCDH11	Protocadherin 11X-linked	Protocadherin11X (PCDH11X), protocadherinX (PCDHX), protocadherin-5	6	8	Xq21.3	Late-onset Alzheimer’s disease⁵⁷,⁵⁸
PCDH12	Protocadherin 12	Vascular endothelial cadherin 2 (VE-cadherin-2, VEcad2), vascular cadherin2, protocadherin 14	6	1	5q31	
PCDH15	Protocadherin-related 15	Usher syndrome 1F (USH1F), deafness autosomal recessive 23 (DFNB23)	11	12	10p21.1	Usher syndrome⁶⁵-⁶⁶,⁶⁷/hyperlipidemia⁶⁹
PCDH16	Dachsous 1 (Drosophila)	Dachsous-like, fibroblast cadherin 1, fibroblast cadherin FIB1, protocadherin 16 (PCDH16), CDH25, FIB1	27	1	11p15.4	Schizophrenia⁶⁴/tumor suppressor (esophageal carcinoma⁶⁴)
PCDH17	Protocadherin 17	Protocadherin68 (PCDH68, PCH68)	6	1	13q21.1	
PCDH18	Protocadherin 18	Protocadherin 68-like protein (PCDH68L)	6	1	4q31	Female-limited epilepsy and mental retardation⁶⁸,⁶⁹/Dravet syndrome⁶¹
PCDH19	Protocadherin 19	Epilepsy female-restricted with mental retardation (EFMR)	6	2	Xq13.3	Retinal dystrophy⁶⁷,⁷⁰
PCDH20	Protocadherin 20	Protocadherin 13 (PCDH13)	6	1	13q21	Huntington disease⁶⁵/non-small-cell lung cancer²⁵
PCDH21	Protocadherin 21	MT-protocadherin, photoreceptor cadherin (PRCAD), cadherin-related family member1 (CDHR1)	6	1	10q23.1	Retinal dystrophy⁶⁷,⁷⁰
MUCDHL	Mucin and cadherin-like protein	µ-protocadherin (MUCDHL), MUCDHL, MUCPCD	4	3	11p15.5	

The number of extracellular cadherin repeats is predicted by SMART program. Non-clustered protocadherins typically have six or seven cadherin repeats, and the ectodomain is encoded by a single large exon. However, the cadherin domains of PCDH11, PCDH15, PCDH16, MUCDHL are encoded by multiple exons. δ1-PCDHs are indicated with red background, δ2-PCDHs are indicated with yellow and ε-PCDHs are indicated with green. The numbers of isoforms and related diseases have been updated on July 25, 2010. The largest numbers of isoforms are present in human, rat and mouse species, based on the information of GeneID at Pubmed. Only those of PCDH7 and PCDH11X are based on the submitted sequences (PCDH7a, AY69613; PCDH7b, AY690614; PCDH7c, AY690615; PCDH7c1, AY690616) and a published paper.⁹²
and circuit-correlated expression patterns of non-clustered PCDHs in the CNS suggest that non-clustered PCDHs play roles in the wiring of neural circuit formation and maintenance through their adhesive and regulatory mechanism.

Molecular Function of Non-Clustered PCDHs

Adhesive properties play important roles in morphogenesis during the developmental to adult stage. The formation of germ layers and tissues, cell rearrangement and migration, cell sorting, neurite outgrowth, axon pathfinding and synaptic formation in neurons depend on the cell adhesion ability. The function of classical cadherin is mediated by strong cell-cell adhesion through homophilic interactions, whereas the PCDHs appear to have more varied physiological functions as a mediator of cell-cell adhesion or a regulator of other molecules. Recently, the molecular functions of non-clustered PCDHs have been clarified. We next discuss the role of non-clustered PCDHs as a mediator of cell-cell adhesion and/or a regulator of other molecules.

Mediator of cell-cell adhesion. Adhesion properties and cytoplasmic partners of non-clustered PCDHs are still poorly understood. Most of the cadherin superfamily proteins show calcium-dependent homophilic adhesion activities. Although several non-clustered PCDHs (PCDH1, PCDH7, PCDH8, PCDH10, PCDH18 and PCDH19) exhibit homophilic binding activity, some of these (PCDH8, PCDH10 and PCDH19) show only weak binding activity. Nevertheless, the cell-cell adhesion is strengthened when the cytoplasmic tail of PCDH1/axial protocadherin (AXPC) or PCDH8/paraxial protocadherin (PAPC) is removed or the cytoplasmic tail of PCDH19 is replaced with that of E-cadherin, suggesting that the extracellular domain of non-clustered PCDHs is able to form cell-cell adhesive interactions, and that the cytoplasmic domain may not efficiently stabilize those interactions to facilitate adhesion or may regulate negatively their extracellular adhesions.

PCDH1/AXPC, PCDH7/neural fold protocadherin (NFPC) and PCDH8/PAPC exhibited substantial adhesive activity in vivo. A Xenopus PCDH1-homolog AXPC and a PCDH8/arcadlin ortholog PAPC are complementarily expressed in paraxial mesoderm, and mediate cell sorting and cell movements during embryonic gastrulation. In addition, PCDH7/NFPC has been shown to regulate differentiation of the embryonic ectoderm, neural tube formation, cell morphology, and axonal elongation in retinal ganglion cells. As for the mechanism for strong adhesive activity of PCDH7, its interacting protein may be involved. Template-activating factor1 (TAF1) interacts with the cytoplasmic region of PCDH7, and may regulate the adhesive activity of PCDH7 (Fig. 5A). Thus, the homophilic interaction of some PCDHs may mediate cell-cell adhesion as classical cadherins.

On the other hand, heterophilic cell adhesion activity has been reported between PCDH10/4 (one of clustered PCDHs) and β1-integrin in an in vitro cell aggregation assay with HEK293T cells. Integrins recognize the RGD motif that is essential for integrin-dependent cell adhesion. This RGD motif is found in fibronectin, vitronectin, fibrinogen, von Willebrand factor and many other large glycoproteins. Interestingly, this RGD motif has also been seen in the extracellular domain (EC1 or EC2) of certain non-clustered PCDHs (PCDH17, PCDH19 and MUCDHL) (Fig. 4). This suggests a possibility that non-clustered PCDHs may also have heterophilic adhesion activity, acting as membrane-associated ligands or receptors for integrins. In addition, PAPC, a putative mammalian PCDH8/arcadlin homolog, participates in early cell sorting by regulating the adhesive activity of a classical C-cadherin. This suggests that PCDH8/PAPC may have heterophilic interaction with classical cadherins. PCDH8/arcadlin shows also a lateral (cis) interaction with N-cadherin in the same plane of plasma membrane, and regulates the endocytosis of N-cadherin. Recently, the heterophilic interaction between PCDH15 and classical cadherin (cadherin 23) has been reported. Thus, PCDHs may mediate homophilic, heterophilic or both cell adhesions in vivo.

Regulator of various “effector” molecules. Recently, non-clustered PCDHs have been clarified as a regulator of other molecules. PCDHs lack a β-catenin binding cytoplasmic site present in classical cadherins. The cytoplasmic domains of non-clustered PCDHs are different from each other, and their homology ranges from low to moderate. Therefore, non-clustered PCDHs could act as a regulator via interaction with a variety of intracellular binding partners.

δ-PCDHs have conserved cytoplasmic motifs (CM1, CM2, CM3 and CM4), whose binding molecules remain largely elusive; Only CM3 region is known to interact with PP1α. PCDH7 (NFPC) has four isoforms (7a, 7b, 7c and 7c1), and PCDH7c and 7c1 have CM1, CM2 and CM3 motifs (Fig. 5A). PCDH7c1 is an α-amino acid-deleted 7c from the region between CM2 and CM3. All PCDH7 isoforms interact with template-activating factor1 (TAF1). PCDH11Y has three isoforms (11Ya, 11Yb and 11Yc), and only PCDH11Yc has CM1, CM2 and CM3 motifs (Fig. 5B). All isoforms of PCDH11Y bind to β-catenin, and this interaction may regulate Wnt signaling and tumorgenesis.
Finally, each PCDH has several isoforms that are differentiated from their cytoplasmic domains. This suggests that PCDH isoforms could play diverse roles as intracellular signaling regulators.

In summary, weak homophilic or heterophilic interaction and diverse intracellular sequences of non-clustered PCDHs suggest that they may function as a regulator of cell-cell adhesive, and/or intracellular effect molecules rather than only physical glues between cells.

Non-Clustered PCDHs and Disease

Abnormalities in non-clustered PCDHs may be responsible for the pathogenesis of several neurological disorders and carcinogenesis. Especially, the relationship between δ-PCDHs and cognitive dysfunction has been well investigated, and as described...
below, some epsilon PCDHs are related to sensory impairment. Also, the emergence or silencing of non-clustered PCDHs on chromosome 13q21 influences oncogenesis.

Delta PCDH and cognitive dysfunction. Several lines of evidence indicate that the dysfunction of non-clustered PCDHs is associated with some cognitive dysfunction. For instance, the homozygous deletion within a protocadherin cluster (between PCDH10 and PCDH18 loci on 4q28.3) proximal to PCDH10 has been shown to be associated significantly with the pathophysiology of cognitive impairment such as autism, and recurrent and overlapping copy number variations, including PCDH9 loci, have been identified in autism patients. Another delta protocadherin PCDH17 is involved in the pathogenesis of schizophrenia.

On the other hand, a genome-wide association study showed that SNP on Xq21.3 in PCDH11X is associated strongly with late-onset Alzheimer’s disease susceptibility, although recent studies show non-statistical association between PCDH11X polymorphisms and late-onset Alzheimer’s disease susceptibility. Nonsense mutation of PCDH19 has been found in seven families of mental retardation limited to females, characterized by seizure onset in infancy or early childhood and cognitive dysfunction. Furthermore, the dysfunction of PCDH19 causes Dravet syndrome-like epileptic encephalopathy, which is marked by seizures, developmental and language delays, behavioral disturbances and cognitive regression. The fact that some PCDHs regulate synaptic function and morphology leads us to speculate that delta PCDHs are important for normal function of neural circuitry as well as wiring development of neural circuitry, and the disruption of delta PCDH may cause abnormal neural circuitry and subsequent cognitive impairment.

Epsilon PCDH and retinal pigmentation. Usher syndrome type 1F (USH1F) is characterized by a loss of vision due to retinitis pigmentosa (RP), a genetic disease with progressive dysfunction and degeneration of the rod and cone photoreceptors, and bilateral sensorineural deafness. PCDH15 is expressed in inner ear hair cell stereocilia and retinal photoreceptors, and may play a pivotal role in the morphogenesis and cohesion of stereocilia bundles and retinal photoreceptor cell maintenance or function. The mutation, splicing abnormality, frame-shift, nonsense or large deletions of PCDH15 gene have been shown to cause USH1F, indicating that the dysfunction of PCDH15 plays a pathogenetic role in the RP and hearing loss associated with USH1F. Moreover, null mutations in PCDH21, which is known as a photoreceptor-specific gene, cause the RP. These results suggest that the abnormality of epsilon PCDHs might disrupt photoreceptors and induce visual dysfunction.

Non-clustered PCDHs on chromosome 13q21 as tumor suppressors. Recently, some delta PCDHs (PCDH8, PCDH9, PCDH10, PCDH17 and PCDH20) have been reported as candidate tumor suppressor genes. The expressions of PCDH8 in breast and hematologic cancers, PCDH9 in glioblastoma, PCDH10 in gastric, colorectal, nasopharyngeal, esophageal, breast, cervical, lung, hepatocellular, testicular and hematologic cancers, PCDH17 in esophageal squamous cell carcinoma and PCDH20 in non-small-cell lung cancers are reduced or silenced through gene inactivation such as promoter hypermethylation and/or somatic mutation, and re-expression of PCDH8, or PCDH10, suppresses tumor cell proliferation and inhibits cell migration. Notably, PCDH8, PCDH9, PCDH17...
and PCDH20 genes are located around 13q21.1 and closely positioned within 16 megabases. These results suggest that PCDHs on chromosome 13q21 (Table 1) might be broadly involved in tumor suppression in a variety of tumors. Also, PCDHs on chromosome 13q21 might be regulated by common genetic or epigenetic factors and further involved in a variety of cellular and brain function together.

Conclusions

At present, non-clustered PCDHs are considered to play critical roles in brain development, including normal brain function and oncogenesis. Although the involvements of non-clustered PCDHs in the pathogenesis of some neural diseases and tumor are relatively well established, the endeavors to understand the molecular functions of non-clustered PCDH are still in its infancy and more detailed functional analyses are required at cellular and molecular levels in the future studies.

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation grant (2009K001284 to H.K.) funded by the Korean government, KAKENHI (20591426 to S.Y.; 19590247 to H.T.; 20650052 to K.Y.) and a grant from the Naito Foundation (to K.Y.). A part of this work was technically supported by the core facility service of 21C Frontier Brain Research Center.

Note

Supplemental materials can be found at: www.landesbioscience.com/journals/celladhesion/article/14374
delta-Protocadherins: a gene family expressed differentially across the developing mouse brain. Exp Exp Patterns 2006; 6:893-9.

Redes C, Heyder J, Kholouek T, Staes K, Van Roy F. Expression of protocadherin-1 (Pcdh1) during mouse development. Cytogenet Cell Genet 1996:585.

Aske E, Kimura R, Suzuki ST, Hirano S. Distribution of OL-protocadherin protein in correlation with specific neural compartments and local circuits in the postnatal mouse brain. Neuroscience 2003; 117:593-614.

Hirano S, Yan Q, Suzuki ST. Expression of a novel protocadherin, OL-protocadherin, in a subset of functional systems of the developing mouse brain. J Neurosci 1999; 19:1005-1009.

Uemura M, Nakao S, Suzuki ST, Takeichi M, Hirano S. OL-protocadherin is essential for growth of striatal axons and thalamocortical projections. Nat Neurosci 2007; 10:1151-9.

Takai K, Kubota M, Shiono K, Tokusou H, Suzuki ST. Adhesion properties and retinofoval expression of chicken protocadherin-19. Brain Res 2010; 1344:13-24.

Kanai H, Abe K, Mizuguchi A, Takakura K, Chiaka O, Takeichi M. Cadherin regulates dendritic spine morphology. Neurosci 2002; 135:577-89.

Okamura K, Tanaka H, Yagita Y, Saeki Y, Taguchi A, Hiraoka Y, et al. Cadherin activity is required for activity-induced spine remodelling. J Cell Biol 2005; 167:961-72.

Nakao S, Platek A, Hirano S, Takeichi M. Contact-dependent promotion of cell migration by the OL-protocadherin-Nap1 interaction. J Cell Biol 2008; 182:395-410.

Gonsher EA. Turning neurons into a nervous system. Development 2008; 135:2290-6.

Homayouni R, Rice DS, Carran T. Disables-1 interacts with a novel developmentally regulated protocadherin. Biochem Biophys Res Commun 2001; 289:539-47.

Borrell V, Pajadas I, Simo S, Durा D, Solé M, Cooper EA, et al. Reelin and mDab1 regulate the development of hippocampal connections. Mol Cell Neurosci 2007; 36:158-73.

Morow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS, et al. Identifying autism loci and genes by tracing shared ancestry. Science 2007; 321:218-23.

Marshall CR, Nkrin A, Vincent JB, Lionel AC, Feuk L, Skag J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82:477-88.

Dean B, Kerkaousk D, Scarf E, Thomas EA. Gene expression profiling in Budorixn’s area 46 from subjects with schizophrenia. Aust N Z J Psychiatry 2007; 41:508-20.

Carrasquillo MM, Zos F, Pankratz VS, Wilcox SL, Ma L, Walker LP, et al. Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer’s disease. Nat Genet 2009; 41:192-8.

Beecham GW, Naj AC, Gilbert JR, Haines JL, Buxbaum JD, Pericak-Vance MA. PCDH11X variation is not associated with late-onset Alzheimer disease susceptibility. Psychiatr Genet 2010; 20(6):321-4.

Dibhem LS, Tarpey PS, Hynes K, Bayly MA, Schefler EE, Smith R, et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 2008; 40:776-81.

Hynes K, Tarpey P, Dibhem LS, Bayly MA, Berkovic SF, Smith R, et al. Epilepsy and mental retardation linked to females with PCDH19 mutations can present de novo or in single generation families. J Med Genet 2008; 45:211-6.

Depienne C, Bouteiller D, Kerin B, Cheuret E, Poirier D, Buxbaum, et al. Epilepsy and mental retardation linked to females with PCDH19 mutations can presents Dravet syndrome but mainly affects females. PLoS Genet 2009; 5(10):1000381.

Schwarz RJ, Berlin CI, Hejtmancik JF, Kreis BJ, Kimberling WJ, Lewis RA, et al. Clinical diagnosis of the Usher syndromes. Usher Syndrome Consortium. Am J Med Genet 1994; 50:32-8.

Ahmed ZM, Riazuddin S, Aye S, Ali RA, Venselaar H, Anwar S, et al. Gene structure and mutant alleles of PCDH15: non-synonymous deafness DFNB23 and type 1 Usher syndrome. Hum Genet 2008; 124:215-23.
64. Alagramam KN, Yuan H, Kuehn MH, Murcia CL, Wayne S, Srisailpathy CR, et al. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type IF. Hum Mol Genet 2001; 10:1709-18.

65. Ben-Yosef T, Ness SL, Mados AE, Bar-Lev A, Wolfman JH, Ahmed ZM, et al. A mutation of PCDH15 among Ashkenazi Jews with the type 1 Usher syndrome. N Engl J Med 2003; 348:1664-70.

66. Doucette L, Merner ND, Cooke S, Ives E, Galutra D, Walsh V, et al. Profound, preclinical nonsyndromic deafness maps to chromosome 10q21 and is caused by a novel missense mutation in the Usher syndrome type IF gene PCDH15. Eur J Hum Genet 2009; 17:554-64.

67. Rattner A, Smallwood PM, Williams J, Cooke C, Svanenkov A, Lyubarsky A, et al. A photoreceptor-specific cadherin is essential for the structural integrity of the outer segment and for photoreceptor survival. Neuron 2001; 32:775-86.

68. Rattner A, Chen J, Nathans J. Proteolytic shedding of the extracellular domain of photoreceptor cadherin. Implications for outer segment assembly. J Biol Chem 2004; 279:4202-10.

69. Henderson RH, Li Z, Abd El Aziz MM, Mackay DS, Eljinini MA, Zeidan M, et al. Bielotic mutation of protocadherin-21 (PCDH21) causes retinal degeneration in humans. Mol Vis 2010; 16:20-46.

70. Yi JT, Kozuki S, Nagase S, Li CM, Su T, Wang X, et al. PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer. Oncogene 2008; 27:4657-65.

71. Leschkenko VV, Kuo PY, Shalnovich R, Yang DT, Gellen T, Perrich A, et al. Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood 2009; 116:1025-34.

72. de Tayrac M, Etcheverry A, Aubry M, Säkkä J, Hamblat A, Quillin V, et al. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. Genes Chromosomes Cancer 2009; 48:55-68.

73. Yu B, Yang H, Zhang C, Wu Q, Shao Y, Zhang J, et al. High-resolution melting analysis of PCDH10 methylation levels in gastric, colorectal and pancreatic cancers. Neoplasma 2010; 57:247-52.

74. Yu J, Cheng YY, Tao Q, Cheung KE, Lam CN, Geng H, et al. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 2009; 136:640-51.

75. Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tiao SW, et al. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 2006; 25:1070-80.

76. Miyamoto K, Fukutomi T, Akashi-Tanaka S, Hasegawa T, Asahara T, Sugimura T, et al. Identification of 20 genes aberrantly methylated in human breast cancers. Int J Cancer 2005; 116:407-14.

77. Wang KH, Liu HW, Lin SR, Ding DC, Chu TY. Field methylation silencing of the protocadherin 10 gene in cervical carcinogenesis as a potential specific diagnostic test from cervical scrapings. Cancer Sci 2009; 100:2175-80.

78. Narayanan G, Sceotto L, Neelakantan V, Kontoros SH, Wong AH, Loke SL, et al. Protocadherin PCDH10 involved in tumor progression, is a frequent and early target of promoter hypermethylation in cervical cancer. Genes Chromosomes Cancer 2009; 48:983-92.

79. Cheung HH, Lee TL, Davia AJ, Taf D, Rennet OM, Chan WY. Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. Br J Cancer 2010; 102:419-27.

80. Ying J, Gao Z, Li H, Srivastava G, Murray PG, Goh HK, et al. Frequent epigenetic silencing of protocadherin 10 by methylation in multiple haematologic malignancies. Br J Haematol 2007; 136:829-32.

81. Haruki S, Imoto I, Kozuki K, Matsui T, Kawachi H, Komatsu S, et al. Frequent silencing of protocadherin 17, a candidate tumour suppressor for esophageal squamous cell carcinoma. Carcinogenesis 2010; 31:1027-36.

82. Imoto I, Isumi H, Yokoi S, Hosoda H, Shibata T, Hosoda T, et al. Frequent silencing of the candidate tumor suppressor PCDH12 by epigenetic mechanism in non-small-cell lung cancers. Cancer Res 2006; 66:4617-26.

83. Koppelman GH, Meyers DA, Howard TD, Zheng SL, Hawkins GA, Ampleford EJ, et al. Identification of PCDH1 as a novel susceptibility gene for biotinidase hyperresponsiveness. Am J Respir Crit Care Med 2009; 180:929-35.

84. Huang YT, Heisz RS, Chiriac LR, Lin X, Szakay V, Zienolddiny S, et al. Genome-wide analysis of survival in early-stage non-small-cell lung cancer. J Clin Oncol 2009; 27:2660-7.

85. Mash DC, Ferrer-Mullen J, Ad N, Qin Y, Buck A, Pablo J. Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS One 2007; 2:1187.

86. Leschkenko VV, Kuo PI, Shalnovich R, Yang DT, Gellen T, Perrich A, et al. Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood 2009; 116:1025-34.

87. Grati FR, Lesperance MM, De Toffol S, Chimenti S, Selicicr A, Emery S, et al. Pure monosomy and pure trisomy of 1q21.2-31.1 consequent to a familial insertional translocation: exclusion of PCDH6 as the responsible gene for autosomal dominant auditory neuropathy (AUNA1). Am J Med Genet A 2009; 149:906-13.

88. Terry S, Queires L, Gil-Diez-de-Medina S, Chen MW, de la Taille A, Allory Y, et al. Protocadherin-PC promotes androgen-independent prostate cancer cell growth. Prostate 2006; 66:1100-13.

89. Ahmed ZM, Riazuddin S, Ahmad J, Bernstein SL, Guo Y, Sahar MF, et al. PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 2003; 12:3215-23.

90. Huertas-Vazquez A, Plassier CL, Geng R, Haas BE, Lee J, Greenenbrook MM, et al. A nonsyonymous SNP within PCDH15 is associated with lipid traits in familial combined hyperlipidemia. Hum Genet 2010; 127:83-9.

91. Becanovic K, Pouladi MA, Lim RS, Kuhn A, Pavlidis P, Luthi-Carter R, et al. Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Hum Mol Genet 2010; 19:1458-52.

92. Kung A, Jae-Won H, Dae-Soo K, Hong-Seok H, Yun-Ji K, Ji-Rang T, et al. Quillietive analysis of alternative transcripts of human PCDH11X/Y genes. Am J Med Genet B Neuropsychiatr Genet 2010; 153:736-44.

93. You B, Cheng YY, Tao Q, Cheung KE, Lam CN, Geng H, et al. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 2009; 136:640-51.