The Chemical and Genetic Characteristics of Szechuan Pepper (Zanthoxylum bungeanum and Z. armatum) Cultivars and Their Suitable Habitat

Li Xiang¹, Yue Liu¹, Caixiang Xie², Xiwen Li¹, Yadong Yu¹,³, Meng Ye³* and Shilin Chen¹*

¹ Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China, ² Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, ³ College of Forestry, Sichuan Agricultural University, Ya’an, China

Szechuan peppers, famous for their unique sensation and flavor, are widely used as a food additive and traditional herbal medicine. Zanthoxylum bungeanum and Z. armatum are both commonly recognized as Szechuan peppers, but they have different tastes and effects. The chemical components, genetic characteristics, and suitable habitat of six cultivars were analyzed in this study. The results indicated that Z. armatum contained a larger proportion of volatile oil, whereas Z. bungeanum produced a more non-volatile ether extraction. The average content of volatile oil and non-volatile ether extract of Z. armatum were 11.84 and 11.63%, respectively, and the average content of volatile oil and non-volatile ether extract of Z. bungeanum were 6.46 and 14.23%, respectively. Combined with an internal transcribed spacer 2 (ITS2) sequence characters and chemical PCA results, six cultivars were classified into their own groups, for the two species in particular. The temperature in January and July were the most significant ecological factors influencing the contents of the Z. armatum volatile oil. However, annual precipitation, temperature in January and relevant humidity had a significant positive correlation with the content of non-volatile ether extract in Z. bungeanum. Thus, the most suitable areas for producing Z. bungeanum cultivars ranged from the Hengduan Mountains to the Ta-pa Mountains, and the regions suitable for Z. armatum cultivars were found to be in the Sichuan Basin and Dalou-Wu mountains. The predicted suitable habitat could be used as a preliminary test area for Szechuan pepper cultivar production.

Keywords: Szechuan pepper, Zanthoxylum, volatile oil, non-volatile ether extract, ecological factors, suitable habitat

INTRODUCTION

Szechuan peppers and their related species have been widely used in cooking and medical treatment in traditional Asian cultures, especially in China, where they have been used for centuries. Only the dried fruit with a special aroma, described as the “toothache tree,” has edible and medicinal value (Bautista et al., 2008). However, Szechuan peppers, widely consumed as a spice, are renowned
as “magical” and one of “eight essential condiments” in the kitchen because of their exceptional aroma and flavor, with a slightly numbing effect like that from carbonated drinks. Szechuan peppers have also been applied to the treatment of pain, vomiting, diarrhea, ascariasis, and topical eczema treatment, owing to their anesthetic, stomachic, carminative and counter-irritant properties (State Pharmacopeia Committee, 2010; Brijwals et al., 2013; Singh et al., 2013). The special flavor of Szechuan peppers is mainly closely related to their chemical compounds, such as their volatile oil, alkaloids, acid amide, coumarin, lignin, fatty acid, and the small amount of triterpene and sterols that they contain. Among these components, volatile oil, alkaloids and acid amide are the main sources of fragrance and numbing effect (Xue and Pu, 2013). Furthermore, Szechuan peppers play an important role in the Conversion of Cropland to Forestland Program and in the transition of the rural industrial structure due to their ability to conserve soil and water, generate income and improve the livelihoods of local farmers (Zhang et al., 2005).

Chinese farmers have cultivated multiple cultivars of Szechuan peppers during the process, such as Yuxigong Jiao, Lingshan Zhenglujiao, Da Hongpao, and Hanyuan Huajiao, which belong to Zanthoxylum bungeanum. In recent years, Jinyangqing Huajiao and Tengjiao, which belong to Z. armatum, have also been cultivated. The pericarp color of Z. armatum cultivars is bright green and has a more unique aromatic smell; these cultivars are commonly known as “Qinghujiaojiao” (Figure 1). The pericarp color of Z. bungeanum cultivars are bright red, and they provide a more numbing sensation; these cultivars are commonly known as “Honghujiajiao” (Yu et al., 2009).

According to research, the cultivars of Szechuan peppers and their related plants are easily confused for their rich biodiversity and morphological similarity (Hou et al., 2014). However, the main chemical contents and suitable habitat are different between these cultivars. The incorrect selection of cultivars in agricultural production can cause economic loss.

This present study combined molecular and chemical techniques, Geographic Information Systems (GIS) and chemometrics analysis (Kress et al., 2005; Sucher and Carles, 2008; Shi et al., 2011; Song et al., 2012; Chen et al., 2014) (1) to assess the chemical characteristics of different Szechuan pepper cultivars, (2) to identify Szechuan pepper cultivars using combined chemical and molecular methods, and (3) to analyze the correlation between chemical contents and special ecological factors, which were then used to predict suitable habitat for Szechuan pepper cultivars.

MATERIALS AND METHODS

Determination of Volatile Oil (%) and Non-volatile Ether Extract (%) Content

A total of 47 batches (dry weight of 5000 g per batch) of six excellent cultivars of Szechuan peppers that belong to either Z. armatum or Z. bungeanum cultivated plants were collected during the mature period in 2014. The cultivars included Yuxigong Jiao (ZB1), Lingshan Zhenglujiao (ZB2), Da Hongpao (ZB3), and Hanyuan Huajiao (ZB4), which belong to Z. bungeanum, and Jinyangqing Huajiao (ZA1) and Tengjiao (ZA2), which belong to Z. armatum (Figure 1). The morphological features and cultivation practice information for six cultivars are listed in Supplementary Table S1 and on a seeding website (http://www.sclmzm.com:88/sczmz/linmuliangzhong.jhtml). The quality of the air, soil and water at all of the sample sites achieved the requirements of the Standard of Ambient Air Quality Standards (GB3095-2012), Soil Environment (GB15618-1995), and the Standards for irrigation water quality (GB 5084-2005), respectively.

Determination of Volatile Oil (%)

The volatile oil was evaluated according to the volatile oil determination method described in the Commerce Department Standard of the People’s Republic of China (SB/T 10040-92) (Commerce Department Standard of the People’s Republic of China, 1992) by a volatile oil determination device with steam distillation method. 20.00 g dried pericarp was accurately weighed in a 500 mL flask with three replications; 300 mL water and some glass beads were added, which were then connected to a volatile oil determination apparatus and a condenser pipe. Water was added from the top of the condenser pipe to a volatile oil determination apparatus over the scale until overflowing the flask. The water in flask was heated to boiling and maintained for 5 h until the volatile oil volume no longer increased. Stop heating and cooled the device in room temperature for a few minutes, open the piston of the volatile oil determination apparatus until the upper end of the oil dropped to 5 mm higher than the zero scale. After 1 h, open the piston again until the upper end of the

![Figure 1 | Six quality cultivars of Z. armatum and Z. bungeanum during the mature period. ZA1 and ZA2 belong to Z. armatum and the pericarps are bright green; ZB1-ZB4 belong to Z. bungeanum and the pericarps are bright red.](image-url)
oil dropped to the zero scale. Then read the volatile oil volume, and the content was calculated with the following formula:

\[T = \frac{V}{M} \times 100\% \]

T: content of volatile oil (%)
V: volume of volatile oil (mL)
M: mass of the sample (g)

Determination of Non-volatile Ether Extract (%)
The non-volatile ether extract was determined according to the State Standard of the People’s Republic of China for spices and condiments determination for non-volatile ether extract (GB/T 12929.12-2008) (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China, 2008). A 2.000 g sample was accurately weighed with three replications and encased with filter paper; it was then extracted by Soxhlet extraction with absolute ethyl ether for 18 h. The solvent was recovered to 1–2 mL, evaporated in a water bath and heated in an oven at 110°C for 1 h. The sample was then weighed after cooling in a dryer. The steps were repeated several times until two consecutive weights of less than 2 mg. The non-volatile ether extract content was calculated using the following formula:

\[X = (m_2 - m_1) \times \frac{100}{m_0} \times \frac{100}{100 - H} \]

X: content of non-volatile ether extract (%)
m_0: mass of the sample
m_1: mass of the receiving flask
m_2: mass of the receiving flask and non-volatile ether extract (g)
H: water content of the sample (%)

After that, the volatile oil and non-volatile ether extract contents of Szechuan peppers were analyzed with a one-way analysis of variance (ANOVA) test (SPSS 19) and a principal component analysis (PCA) (SIMCA-P, version 11.5, Umetrics, Umeå, Sweden) (Xiao et al., 2011).

Genetic Diversity Analysis
A nuclear ribosomal internal transcribed spacer 2 (ITS2) sequence possesses highly interspecific divergence and the capability to distinguish closely related taxa of medicinal plant at the species level (Chen et al., 2010). In this study, 119 specimens of Szechuan pepper cultivars and seven related species were sampled (Supplementary Table S2). One sequence of *Z. ovalifolium* var. *spinifolium* was also downloaded from the GenBank database. DNA extraction, PCR amplification and sequencing were performed as previously described (Chen et al., 2010; Xin et al., 2015). Consensus sequences and coding generation were performed using CondonCode Aligner V 3.7.1 (CodonCode Co., Centreville, MA, USA). All of the ITS2 sequences were annotated with the Hidden Markov Model (HMM) (Wolf et al., 2005; Keller et al., 2009). The sequences were aligned using Muscle, the genetic distance computed by MEGA 6.0 (Center for Evolutionary Medicine and Informatics, Tempe, Arizona, USA) based on the K2P model (Tamura et al., 2011). A phylogenetic tree constructed by employing the neighbor-joining (NJ) tree method, and bootstrap tests were conducted by applying 1000 resamples to assess the confidence in phylogenetic analysis using MEGA 6.0. Three sequences of *Toddalia asiatica* downloaded from GenBank were chosen as outgroup when the NJ tree was built.

A Correlation Analysis of Chemical Composition Contents and Ecological Factors and Suitable Habitat Prediction
A regional information system of traditional Chinese medicine (RISTCM, number 2014SR159435), a GIS-based computer program, was self-developed for the spatial prediction of traditional Chinese medicinal plants (Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 2014). Integrating national geographic, climate (1971–2000) and soil type databases in China, RISTCM was able to determine the impacts of environmental gradients and to predict the large-scale distribution of target medicinal plants (Huang et al., 2010; Wei et al., 2012; Xie et al., 2014b). RISTCM defines the native habitats of a target plant using fuzzy mathematics method based on specimen examination and extracts the ecological factors of native habitats from its databases. Combined with GPS coordinate data from the sample locations, 11 specific ecological factors that were closely related to the development of the crops in agriculture, including elevation (x1), active accumulated temperature (x2), sunshine duration (x3), mean annual temperature (x4), minimum temperature in January (x5), average temperature in January (x6), maximum temperature in July (x7), average temperature in July (x8), annual precipitation (x9), relative humidity (x10), and soil type (x11), were abstracted using RISTCM (Supplementary Table S3) (Chen et al., 2008; Yu et al., 2010; Xie et al., 2014a,b).

A correlation analysis of the main chemical compositions of the six Szechuan pepper cultivars and the corresponding ecological factors were performed using a partial least squares regression (PLSR) with VIP scores (SIMCA-P, V 11, Umetrics, Umeå, Sweden) (Seemann et al., 2010; Yang et al., 2011; Jia et al., 2012). Based on these ecological factors, the suitable habitat for *Z. bungeanum* and *Z. armatum* (cultivars) was then predicted based on ecological similarity using a grid-based spatial cluster analysis, vector-based overlaying, intersection analysis and an area calculation using RISTCM (Chefau et al., 2005; Li, 2005; Chen et al., 2008; Yu et al., 2010).

RESULTS
Analysis of Chemical Composition
A comparison of volatile oil with non-volatile ether extract contents signified that the average content of the volatile oil of *Z. armatum* was higher than that of *Z. bungeanum* but was not the same as the non-volatile ether extract of *Z. armatum* (Table 1). The average content of volatile oil and non-volatile ether extract in *Z. armatum* were 11.84 and 11.63%, respectively,
Species	Cultivars	Abbreviation	Locality	Longitude	Latitude	Average content of volatile oil/%	Average content of non-volatile ether extracted/%
Z. armatum							
Jinyangqing	Huajiao	ZA1	Ribu Village Taoping Town Jinyang County Sichuan Province China	103°15′22.372″	27°38′39.763″	7.49	9.77
Jinyangqing	Huajiao	ZA1	Lushuang Village Honglian Town Jinyang County Sichuan Province China	103°9′3.753″	27°35′13.75″	14.16	16.29
Jinyangqing	Huajiao	ZA1	Guangming Village Pailai Town Jinyang County Sichuan Province China	103°8′7.217″	27°34′44.197″	9.99	12.29
Jinyangqing	Huajiao	ZA1	Qingsong Village Jinyang County Sichuan Province China	103°8′8.287″	27°35′20.817″	12.91	11.07
Tengjiao	ZA1	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	103°15′5.026″	29°55′58.54″	10.00	10.12
Tengjiao	ZA1	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	103°14′30.762″	29°54′55.425″	15.00	11.47
Tengjiao	ZA1	ZB1	Doudan Village Beijiao Town Ya’an City Sichuan Province China	102°58′59.941″	29°59′12.439″	13.33	10.39
Z. bungeanum							
Yuexigong	Jiao	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	102°33′32.35″	28°45′20″	6.67	17.07
Yuexigong	Jiao	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	102°33′32.36″	28°45′21″	7.47	16.92
Yuexigong	Jiao	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	102°33′34.42″	28°45′25.55″	8.33	15.96
Yuexigong	Jiao	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	102°33′59.94″	28°45′40.16″	7.50	20.37
Yuexigong	Jiao	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	102°33′59.22″	28°45′45.75″	6.24	14.43
Yuexigong	Jiao	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	102°33′58.22″	28°45′44.74″	6.66	20.43
Yuexigong	Jiao	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	102°36′47.95″	28°42′38.35″	5.81	12.43
Yuexigong	Jiao	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	102°36′47.8″	28°42′37.45″	3.33	12.99
Yuexigong	Jiao	ZB1	Qingsong Village Banqiao Town Yuexi County Sichuan Province China	102°36′46.95″	28°42′35.43″	6.66	13.56
Yuexigong	Jiao	ZB1	Ebu Village Gu’er Town Yuexi County Sichuan Province China	102°41′18″	28°25′34″	5.42	14.81
Yuexigong	Jiao	ZB1	Ebu Village Gu’er Town Yuexi County Sichuan Province China	102°41′56.76″	28°25′15.32″	4.99	13.00
Yuexigong	Jiao	ZB1	Ebu Village Gu’er Town Yuexi County Sichuan Province China	102°41′26.89″	28°25′14.84″	5.00	14.61
Lingshang	Zhenglujiao	ZB2	Renyi Village Zeyuan Town Mianning County Sichuan Province China	102°4′53.202″	28°12′21.01″	5.42	11.28

(Continued)
Species	Cultivars	Abbreviation	Locality	Longitude	Latitude	Average content of volatile oil/%	Average content of non-volatile ether extract/%
Lingshang	ZB2	Huajiao	Songlin Village Mashiuiwan Town	102°10'1.56"	28°12'17.48"	9.16	14.23
			Manhuian County Sichuan Province				
Lingshang	ZB2	Hanyuan	Luba Village Tuowu Town	102°19'25.227"	28°47'48.82"	5.41	15.47
			Manhuian County Sichuan Province				
Lingshang	ZB2	Da Hongpao	Huangjiaaba Village Tuowu Town	102°18'37.257"	28°47'48.82"	8.33	12.15
			Manhuian County Sichuan Province				
Lingshang	ZB2	Xinmin Village	Dabaozi Village Caogu Town	102°14'36"	28°38'21"	6.66	16.00
			Manhuian County Sichuan Province				
Lingshang	ZB2	Zhenglujiao	Cheyang Village Caogu Town	102°15'31"	28°40'54"	7.08	11.56
			Manhuian County Sichuan Province				
Lingshang	ZB2	Zhenglujiao	Jinguang Village Jinping Town	101°51'29.706"	28°27'19.162"	4.16	11.21
			Manhuian County Sichuan Province				
Lingshang	ZB2	Zhenglujiao	Jinguang Village Jinping Town	101°51'1.866"	28°27'44.86"	7.50	16.24
			Manhuian County Sichuan Province				
Lingshang	ZB2	Zhenglujiao	Shigu Village Huilong Town	102°2'54.348"	28°10'57.063"	7.91	13.62
			Manhuian County Sichuan Province				
Lingshang	ZB2	Zhenglujiao	Shigu Village Huilong Town	102°2'18.37"	28°11'5.629"	7.50	18.55
			Manhuian County Sichuan Province				
Lingshang	ZB2	Zhenglujiao	Dayanjing Village Wuhai	102°15'38"	28°43'37"	3.75	16.77
			Manhuian County Sichuan Province				
Lingshang	ZB2	Zhenglujiao	Shigu Village Huilong Town	102°07'32.1"	28°28'47.5"	7.49	13.26
			Manhuian County Sichuan Province				
Lingshang	ZB2	Zhenglujiao	Tianba Village Tianba Luding	102°14'17.02"	29°54'2.358"	2.50	12.22
			County Sichuan Province China				
Da Hongpao	ZB3	Shuitang Village	Shuitang Village Zhenping Town	103°45'53.575"	32°13'9.126"	7.08	12.56
			Sichuan County Sichuan Province				
Da Hongpao	ZB3	Shuitang Village	Shuitang Village Zhenping Town	103°48'57"	32°13'14"	5.41	9.71
			Sichuan County Sichuan Province				
Da Hongpao	ZB3	Suoqiao Village	Suoqiao Village Yanmen Town	103°37'41.669"	31°28'52.577"	4.58	12.85
			Wenchuan County Sichuan Province				
Da Hongpao	ZB3	Xinmin Village	Xinmin Village Zhenping Town	103°52'5.77"	32°14'6.519"	5.42	10.40
			Songpan County Sichuan Province				
Da Hongpao	ZB3	Xinmin Village	Xinmin Village Zhenping Town	103°52'32.539"	32°13'44.033"	5.41	10.47
			Songpan County Sichuan Province				
Da Hongpao	ZB3	Xinmin Village	Xinmin Village Zhenping Town	103°17'1.154"	27°41'4.066"	6.25	15.98
			Songpan County Sichuan Province				
Da Hongpao	ZB3	Tianping Village	Tianping Village Taiping Town	103°40'41.77"	32°1'17.501"	5.83	10.95
			Mao County Sichuan Province China				
Hanyuan	ZB4	Huajiao	Xilin Village Qingxi Town	102°23'51.186"	29°34'59.343"	3.33	13.05

(Continued)
TABLE 1 | Continued

Species Cultivars	Abbreviation	Locality	Longitude	Latitude	Average content of volatile oil/%	Average content of non-volatile ether extract/%
Hanyuan Huajiao	ZB4	Xinni Village Qingxi Town Hanyuan County Sichuan Province China	102°37′34″	29°36′02″	13.33	14.98
Hanyuan Huajiao	ZB4	Shuangping Village Qingxi Town Hanyuan County Sichuan Province	102°36′44.682″	29°35′49.286″	6.66	9.44
Hanyuan Huajiao	ZB4	Guanhua Village Yidong Town Hanyuan County Sichuan Province China	102°26′11.65″	29°41′10.727″	6.25	15.50
Hanyuan Huajiao	ZB4	Guanhua Village Yidong Town Hanyuan County Sichuan Province China	102°26′13.792″	29°41′9.657″	7.50	18.23
Hanyuan Huajiao	ZB4	Dadi Village Liyuan Town Hanyuan County Sichuan Province China	102°24′53″	29°35′19″	10.83	20.16
Hanyuan Huajiao	ZB4	Gaoqiao Village Sanjiao Yidong Town Hanyuan County Sichuan Province China	102°24′37″	29°41′64″	10.42	14.23

and the contents in Z. bungeanum were 6.46 and 14.23%, respectively. ZA2 (12.78%) contained the most volatile oil, and ZB1 (15.55%) contained the most non-volatile ether extract. A one-way ANOVA indicated that the two species were significantly different in their content of volatile oil and non-volatile ether extract (P < 0.05), and each cultivar was also significantly different (P < 0.05).

A further PCA analysis indicated that the Z. armatum and Z. bungeanum cultivars could be clearly distinguished from each other based on the volatile oil and non-volatile ether extract contents, respectively. Two Z. armatum cultivars (ZA1 and ZA2) were located in the upper area of the PCA 3D scatter plot for volatile oil, and most of the Z. bungeanum cultivars (ZB1, ZB2, ZB3, and ZB4) were distributed in the lower part. However, Z. bungeanum cultivars were distributed in the upper quadrants of the PCA 3D scatter plot for non-volatile ether extract and two Z. armatum cultivars were located in the lower region (Figures 2A,B). These results matched the results for the volatile oil and non-volatile ether extract contents.

Genetic Diversity Analysis

The success rates for both DNA extraction and PCR amplification were 100%. The sequencing results indicated that highly-qualified bidirectional trace files were located in the ITS2 regions. The ITS2 sequence length for six Szechuan pepper cultivars and their related species ranged from 222 to 227 bp, and the average GC content was 70.29% (Supplementary Table S3). The genetic distances for the ITS2 sequence based on a Kimura 2-Parameter (K2P) model indicated that the minimum interspecific distances for all Szechuan peppers and their related species were higher than those of the maximum intraspecific distances, except in the case of Z. bungeanum (Supplementary Table S4). According to the phylogenetic tree analysis, Z. armatum and Z. bungeanum can be distinguished from each other as well as from the other seven related species based on an ITS2 barcode (Supplementary Figure S1). However, the cultivars could not be distinguished because the cultivars of each species shared same haplotype (Figure 3). Moreover, the sequences characters indicated that single nucleotide polymorphisms (SNPs) provide insight into the species discrimination: the SNPs occurred only at the species level, not in the cultivars (Figure 3, Supplementary Figure S2). For Z. armatum, three unique inserts exited at site29, site165, and site 215, whereas ZA1 had high divergence. Nevertheless, Z. bungeanum had four unique variable sites that exited at site105, site 191, site 197 and site 203 and ZB3 had high divergence. The genetic distances of ZA1 and ZB3 ranged from 0~0.0089 and 0~0.0320, respectively (Supplementary Table S5). Therefore, the genetic variation of ZA1 and ZB3 was higher than other cultivars in each species, and no genetic variation occurred in ZA2, ZB1, ZB2, and ZB4. In other words, ZA2, ZB1, ZB2, and ZB4 were pure cultivars after long-term artificial processes.

Influence of Ecological Factors on Chemical Composition and Suitable Habitat Prediction

According to the PLSR analysis, all of the ecological factors were positively correlated with the volatile oil contents of Z. armatum, except for the elevation and sunshine duration and the annual precipitation (Figure 4A). VIP scores of the minimum temperature in January (1.32), average temperature in July (1.29), maximum temperature in July (1.27), average temperature in January (1.24) were larger than 1 indicated most significant ecological factors influencing the contents of the Z. armatum volatile oil (Figure 4B). Only the relative humidity exhibited a negative correlation with the non-volatile ether extract contents of Z. armatum (Figure 4E), but the mean annual temperature (1.80), average temperature in January (1.56), and minimum temperature in January (1.17) were most significant ecological factors and the active accumulated temperature (0.43) is an unimportant ecological factor (Figure 4F).

Two ecological factors, active accumulated temperature and annual precipitation, demonstrated a positive correlation with
FIGURE 2 | PCA analysis based on the contents of volatile oil and non-volatile ether extract of six Szechuan pepper cultivars. (A) PCA analysis for volatile oil content, (B) PCA analysis for non-volatile ether extract content. ZA1 Ji Yang Qinghuajiao, ZA2 Tengjiao, ZB1 Yuexigong Jiao, ZB2 Linshan Zhenglujiao, ZB3 Da Hongpao, and ZB4 Hanyuan Huajiao.

FIGURE 3 | Variable sites and insertions/deletions for six Szechuan pepper cultivars based on ITS2 sequences. The specific variable sites and deletions are highlighted.

Based on these 10 vital ecological factors and soil types, the suitable habitat for each cultivar was predicted by RISTCM software (Figure 5). The suitable production areas for *Z. armatum* and *Z. bungeanum* rarely overlap, but the cultivars belonging to *Z. bungeanum* did overlap. The cultivars belonging to *Z. bungeanum* can theoretically survive across much of the Hengduan Mountains, Ta-pa Mountains and Qinling Mountains. ZA2, belonging to *Z. armatum*, was mainly distributed in the Sichuan Basin, and ZA1 was mainly distributed in the Dalou Mountains and Wu Mountains.

RISTCM prediction indicated that 9 provinces (including 293 cities and counties) were suitable for growing six Szechuan pepper cultivars. Furthermore, the area was as large as approximately 185,506 km² (SI 95~100%), and Sichuan Province was shown to be the largest suitable area for cultivating all six cultivars (Supplementary Table S6). For the *Z. armatum* cultivars, the Sichuan Basin and Dalou Mountains were predicted to be the primary suitable cultivation region. However, along the Ta-pa Mountains, Qinling Mountains and Hengduan Mountains, *Z. bungeanum* was more suitable for cultivation.

DISCUSSION

As important edible, medicinal, and economic plants, Szechuan peppers and their related plants are central to traditional Chinese cultures and face an increase in demand along with improvement of quality control. High-quality raw materials from Szechuan peppers that have adequate nutritional value, desirable taste and...
FIGURE 4 | Regression coefficient of ecological factors (A,C,E,G) and VIP (B,D,F,H) of volatile oil and non-volatile ether extract contents in *Z. armatum* and *Z. bungeanum* (the whiskers represent standard deviation). x_1 Elevation, x_2 Active accumulated temperature, x_3 Sunshine duration, x_4 Average annual temperature, x_5 Minimum temperature in January, x_6 Average temperature in January, x_7 Maximum temperature in July, x_8 Average temperature in July, x_9 Annual precipitation, x_{10} Relative humidity. VIP scores larger than 1 indicated the most significant ecological factors, and the scores between 1 and 0.5 indicated the significant ecological factors, and the scores lower than 0.5 indicated the unimportant ecological factors.

FIGURE 5 | Regional division of suitable production areas for Szechuan pepper cultivars in China were predicted by a self-developed and GIS-based computer program, RISTCM. (A) Regional division of suitable production areas of Szechuan pepper cultivars in China (SI 95～100%), (B) Jinyangqing Huajiao, (C) Tengjiao, (D) Yuexigong Jiao, (E) Linshang Zhenglujiao, (F) Da Hongpao, (G) Hanyuan Huajiao, (H) and suitable provinces for Szechuan pepper cultivars with a similarity index of 95～100%.
food safety are fundamental to food production (Konczak and Roule, 2011).

In previous reports, multiple volatile oil, amides and alkaloids have been demonstrated to be the most bioactive and odorous compounds of Szechuan peppers (Wang et al., 2011; Brijwal et al., 2013). Among those compounds, volatile oil is the principle source of the special flavor in Szechuan peppers and the main indicator of aroma intensity (Singh et al., 2013). Another compound that creates numbness in the mouth originates from unsaturated fatty acid amides, which are defined as a non-volatile ether extract (Jiang et al., 2008). The numb quality is strictly described as a tingling paresthesia and numbing sensation. Therefore, these two chemical compositions are the economically valuable indices for Szechuan pepper production. The Commerce Department, General Administration of Quality Supervision, Inspection and Quarantine and Standardization Administration of China also regulated the two chemical compositions as the evaluation indices for quality control (Commerce Department Standard of the People’s Republic of China, 1992; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China, 2008). According to those two national standards, the lowest volatile oil content and non-volatile ether extract content in first-class Szechuan peppers are established at 2.5 and 2.0%, respectively.

By analyzing the chemical compounds of 47 samples, we concluded that Z. armatum contains more volatile oil, and Z. bungeanum contains more non-volatile ether extract. Furthermore, ZA2 contains the most volatile oil and ZB1 contains the most non-volatile ether extract. Moreover, all of the investigated samples achieved the first-class standard or higher. ZA1 showed relatively higher content of both volatile oil and non-volatile ether extract among the six cultivars. Species and cultivars exhibited huge disparity in their content of volatile oil and non-volatile ether extract according to a one-way ANOVA.

In recent years, studies have proven that the combined chemical and molecular method generally and accurately identified and classified species, subspecies and cultivars and efficiently controlled and evaluated the quality of medicinal plants (Diahou et al., 2011; Dong et al., 2012; Ali et al., 2013; Zheng et al., 2014), crops (Caligiani et al., 2014), and food (Snyder and Worobo, 2014). In this paper, a chemical and molecular analysis was jointly used to construct a clear classification of the different types Szechuan peppers. According to the data of sequence characteristics, intra- and interspecific K2P genetic distances and an NJ algorithm, relatively large variation occurred only at the species level but not at the cultivar level. The low level of variation of nuclear ribosomal ITS2 sequences within Szechuan pepper cultivars may stem from the domestication process and the low turnover caused by the long life span of plants. The sequence characteristics also revealed that ZA1 and ZB3 exhibit more divergence than other cultivars, probably resulting from widely distributed areas with diverse environments. The long-term cultivation environment might be responsible for small genetic changes within cultivars. However, a chemical analysis indicated differences between species and cultivars. On the basis of volatile oil and non-volatile ether extract contents, the PCA results determined that the six cultivars were classified into their own groups, especially between the two focal species. Overall, Szechuan peppers exhibited detectable levels of variation in their chemical components and ITS2 sequences, which enabled the producers to protect and certify products, and provide quality inspection institutions with the ability to spot adulterants and identify fraudulent samples; this also allowed consumers to confidently purchase quality Szechuan peppers.

The PLSR analysis thoroughly illustrated the extent of influence of ecological factors on each chemical composition. For example, Z. bungeanum was dominated by the non-volatile ether extract; therefore, it created a stronger numbing sensation in the mouth. As disclosed in the PLSR results, the annual precipitation, temperature in January and relevant humidity have very significant positive correlation with the non-volatile ether extract contents of Z. bungeanum. Z. bungeanum has been reported to favor humid air and soil (Zhang et al., 2011; Sun et al., 2014). Therefore, the suitable production areas of ZB1, ZB2, ZB3, and ZB4, predicted by RISTCM, were along the Ta-pa Mountains, Qinling Mountains and Hengdian Mountains, in favorably subtropical environments having an average annual temperature of 17.1°C and 800~1400 mm of annual precipitation. The climate features in these areas are perfectly suited to growing Z. bungeanum cultivars.

In contrast to Z. bungeanum, the volatile oil and non-volatile ether extract concentrations in Z. armatum were significant positively correlated with temperature, including the mean annual temperature, minimum and average temperature in January, and maximum and average temperature in July. However, less annual precipitation and low elevation contributed to higher volatile oil content. Therefore, the suitable habitats for Z. armatum cultivars were mainly spread across the southeastern Sichuan Basin. The warm and arid climate of the Chongqing, Yunnan, and Sichuan provinces, with the mean annual temperature and annual precipitation reaching 20.5°C and 967 mm, respectively, stimulated the accumulation of volatile oil and resulted in a stronger unique flavor and less numbing sensation (Zhang et al., 2011). Furthermore, the fact that ZA1 contains more volatile oil and non-volatile ether extract may be attributed to its special distribution areas, including the Dalou Mountains and Wu Mountains (Figure 5D). The average annual temperature in its distribution areas is higher than ZA2. This factor supports the volatile oil and non-volatile ether extract accumulation.

In general, appropriate precipitation and temperature are the key factors supporting the accumulation of flavor compounds. Therefore, the difference between the quantity of two important chemical compositions separately in Z. armatum and Z. bungeanum arose from different ecologic systems. The adaptation of these species incorporated all ecological factors that are good for synthesis and the growth of chemical components, which may be the reasons why suitable cultivation regions for these cultivars in Z. bungeanum overlapped.

In this study, we have proven that the contents of volatile oil and non-volatile ether extract and ITS2 sequence were different in Z. armatum and Z. bungeanum. The ability of a combination chemical and molecular method to classify cultivars enables a
supervisory body to better guarantee food authentication and safety. The suitable production areas that were predicted based on ecological similarity between sample sites could be used as a preliminary selection process for Szechuan peppers cultivar production. Based on these results, further studies are needed for a more reliable and representative quality assessment of Szechuan pepper cultivars.

AUTHOR CONTRIBUTIONS

LX, SG, and MY conceived the study and participated in its design. LX, YL, and XL analyzed the data and drafted the manuscript. YY and CX conducted the experiments. All authors have read and approved the final manuscript.

REFERENCES

Ali, Z., Ganie, S. H., Narula, A., Sharma, M. P., and Srivastava, P. S. (2013). Intra-specific genetic diversity and chemical profiling of different accessions of *Chitrora ternatea* L. Ind. Crops Prod. 43, 768–773. doi: 10.1016/j.indcrop.2012.07.070

Bautista, D. M., Sigal, Y. M., Milstein, A. D., Garrison, J. L., Zorn, J. A., Tsuruda, P. R., et al. (2008). Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat. Neurosci. 11, 772–779. doi: 10.1038/n.12143

Brijwasi, L., Pandey, A., and Tamta, S. (2013). An overview on phytomedicinal species. J. Med. Plant Res. 7, 366–370. doi:10.5897/JMPR12.743

Calligiani, A., Coisson, J. D., Travaglia, F., Acquotti, D., Palla, G., Palla, L., et al. (2014). Application of 1H-NMR for the characterisation and authentication of “Tonda Gentile Trilobata” hazelnuts from Piedmont (Italy). Food Chem. 148, 77–85. doi: 10.1016/j.foodchem.2013.10.001

Chefouai, R. M., Hortal, J., and Lobo, J. M. (2005). Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian *Copris* species. Biol. Conserv. 122, 327–338. doi:10.1016/biocon.2004.08.005

Chen, S. L., Pang, X. H., Song, J. Y., Shi, L. C., Yao, H., Han, J. P., et al. (2014). A renaissance in herbal medicine identification: from morphology to DNA. Biotechnol. Adv. 32, 1257–1244. doi:10.1016/j.biotechadv.2014.07.004

Chen, S. L., Yao, H., Han, J. P., Liu, C., Song, J. Y., Shi, L. C., et al. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613. doi:10.1371/journal.pone.008613

Chen, S. L., Zhou, Y. Q., Xie, C. X., Zhao, R. H., Sun, C. Z., Wei, J. H., et al. (2008). Suitability evaluation of *Panax quinquefolium*’s producing area based on TCMGIS-I. Zhongguo Zhong Yao Za Zhi 33, 741–745.

Commerce Department Standard of the People’s Republic of China (1992). *Industry Standard of the People’s Republic of China—Szechuan Peppers*. Beijing: Commerce Department Standard of the People’s Republic of China.

Djabou, N., Battesti, M. J., Allali, H., Desjebert, J. M., Varesi, L., Costa, J., et al. (2011). Chemical and genetic differentiation of Corsican subspecies of *Teucrium flavum* L. Phytochemistry 72, 1390–1399. doi:10.1016/j.phytochem.2011.03.024

Dong, J. Z., Wang, S. H., Zhu, L., and Wang, Y. (2012). Analysis on the main active components of *Lycium barbarum* fruits and related environmental factors. J. Med. Plant Res. 6, 2276–2283. doi:10.5897/JMPR10.780

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China (2008). *Spices and Condiments—Determination of Non-Volatile Ether Extract GB/T 12929.12-2006*. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China.

Hou, D. Y., Song, J. Y, Yang, P., Zhou, H., and Yao, H. (2014). Application study of ITS/ITS2 barcodes in identification of *Zanthoxylum* pericarpium. Chin. Pharmacol. J. 49, 534–538. doi: 10.11699/cpj.2014.07.003

Huang, L. F., Xie, C. X., Duan, B. Z., and Chen, S. L. (2010). Research mapping the potential distribution of high artemisinin-yielding *Artemisia annua* L. (*Qinghao*) in China with a geographic information system. Chin. Med. 5:18. doi: 10.11176/1749-8546-5-18

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College (2014). *Regionalization Information System for Traditional Chinese Medicine* (RISTCM). Beijing: State Copyright Bureau of People’s Republic of China, 2014SR159435.

Jang, K. H., Chang, Y. H., Kim, D. D., Oh, K. B., Oh, U., and Shin, J. (2008). New polysaturated fatty acid amides isolated from the seeds of *Zanthoxylum piperitum*. Arch. Pharm. Res. 31, 569–572. doi:10.1007/s12272-001-1194-5

Jia, G. L., Huang, L. F., Suo, F. M., Song, J. Y, Xie, C. X, and Sun, J. (2012). Correlation between ginsenoside contents in Panax ginseng roots and ecological factors, and ecological division of ginseng plantation in China. Chin. J. Plant. Ecol. 36, 302–312. doi:10.3724/SP.J.1125.2012.00302

Keller, A., Schleicher, T., Schultz, J., Müller, T., Daneker, T., and Wolf, M. (2009). S.2-8S rRNA interaction and HMM-based ITS2 annotation. Gene 430, 50–57. doi:10.1016/j.gene.2008.10.012

Konczak, I., and Roulle, P. (2011). Nutritional properties of commercially grown native Australian fruits: Lipophilic antioxidants and minerals. Food Res. Int. 44, 2339–2344. doi:10.1016/j.foodres.2011.02.023

Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., and Janzen, D. H. (2005). *Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., and Janzen, D. H.* (2005). Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. U.S.A. 102, 8369–8374. doi:10.1073/pnas.0503123102

Liao, T. W. (2005). Clustering of time series data—a survey. Pattern Recogn. 38, 1857–1874. doi:10.1016/j.patcog.2005.01.025

State Pharmacopoeia Committee (2010). *The Pharmacopoeia of the People’s Republic of China*. Beijing: China Medical Science Press.

Seemann, A., Wallner, T., Poschlod, P., and Heilmann, J. (2010). Variation of sesquiterpene lactone contents in different Arnica montana populations: influence of ecological parameters. Planta Med. 76, 837–842. doi:10.1055/s-0029-1240797

Shi, L. C., Zhang, J., Han, J. P., Song, J. Y., Yao, H., Zhu, Y. J., et al. (2011). Testing the potential of proposed DNA barcodes for species identification of *Zingiberaceae*. J. Syst. Evol. 49, 261–266. doi:10.1111/j.1759-6831.2010.01133.x

Singh, P., Kapoor, I., Singh, P., De Heluani, C. S., De Lampasona, M. P., and Catalan, C. A. (2013). Chemistry and antioxidant properties of essential oil and oleoresins extracted from the seeds of tomer (*Zanthoxylum armatum DC*). Int. J. Food Prop. 16, 288–300. doi:10.1080/10942912.2010.553111

Snyder, A. B., and Worobo, R. W. (2014). Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. *J. Sci. Food Agric.* 94, 28–44. doi:10.1002/jfsa.6293

ACKNOWLEDGMENTS

This research was supported by the Major Scientific and Technological Special Project for “Significant New Drug Creation” (No. 2014ZX09304307) and the Special Scientific Research Fund of the Forestry Public Welfare Profession “Research into improved varieties selection and the superior-quality and high-efficiency cultivation of Szechuan peppers” (No. 201304703).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2016.00467
Song, J. Y., Shi, L. C., Li, D. Z., Sun, Y. Z., Niu, Y. Y., Chen, Z. D., et al. (2012). Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA. PLoS ONE 7:e43971. doi: 10.1371/journal.pone.0043971

Sucher, N. J., and Carles, M. C. (2008). Genome-based approaches to the authentication of medicinal plants. Plant Med. 74, 603. doi: 10.1055/s-2008-1074517

Sun, Y. L., Bian, X. J., Wei, B. L., Liu, H., and Zhang, J. Q. (2014). Analysis of eco-climate suitability of prickly ash and climatic model of yield dynamic in Gansu Linxia. Xi Nan Nong Ye Xue Bao 27, 846–852.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. doi: 10.1093/molbev/msr121

Wang, C. F., Yang, K., Zhang, H. M., Cao, J., Fang, R., Liu, Z. L., et al. (2011). Components and insecticidal activity against the maize weevils of Zanthoxylum schinifolium fruits and leaves. Molecules 16, 3077–3088. doi: 10.3390/molecules16043077

Wei, Z. H., Wang, X. M., Qiao, Q. M., Cheng, M. G., Liu, Y. L., Xie, C. X., et al. (2012). On regional division of suitable producing areas of Yu Salvia miltiorrhiza. Asian Agric. Res. 4, 130–132. Available online at: http://purl.umn.edu/143480

Wolf, M., Achtziger, M., Schultz, J., Dandekar, T., and Müller, T. (2005). Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 11, 1616–1623. doi: 10.1261/rna.2144205

Xiao, W. L., Motley, T. J., Unachukwu, U. I., Lau, C. B. S., Jiang, B., Hong, F., et al. (2011). Chemical and genetic assessment of variability in commercial Radix Astragali (Astragalus spp.) by ion trap LC-MS and nuclear ribosomal DNA barcoding sequence analyses. J. Agric. Food Chem. 59, 1548–1556. doi: 10.1021/jf1028174

Xie, C. X., Song, J. Y., Suo, F. M., Li, X. W., Li, Y., Yu, H., et al. (2014a). Natural resource monitoring of Rheum tanguticum by multilevel remote sensing. Evid. Based Complement. Alternat. Med. 2014:618902. doi: 10.1155/2014/618902

Xie, C. X., Wang, H., Huang, L. F., Li, H., and Song, J. Y. (2014b). Determination of production regions for pollution-free Chinese medicinal materials by geographic information system: Achyranthes bidentata (Niu Qi) in Tianjin as an example. Chin. Med. 9:25. doi: 10.1186/1749-8546-9-25

Xin, T. Y., Li, X. J., Yao, H., Lin, Y. L., Ma, X. C., Cheng, R. Y., et al. (2013). Survey of commercial Rhodiola products revealed species diversity and potential safety issues. Sci. Rep. 3, 8537. doi: 10.1038/srep08337

Xue, X. H., and Pu, B. (2013). Research and development situation of Zanthoxylum bungeanum flavor component and products. He Nong Xue Bao 27, 1724–1728.

Yang, S. T., Li, J. H., Zhao, Y. P., Chen, B. L., and Fu, C. X. (2011). Harpagoside variation is positively correlated with temperature in Scrophularia ningpoensis Hemsl. J. Agric. Food Chem. 59, 1612–1621. doi: 10.1021/jf104702u

Yu, H., Xie, C. X., Song, J. Y., Zhou, Y. Q., and Chen, S. L. (2010). TCMGIS-II based prediction of medicinal plant distribution for conservation planning: a case study of Rheum tanguticum. Chin. Med. 5:31. doi: 10.1186/1749-85 46-5-31

Yu, X. Q., Zheng, X. Y., Kan, J. Q., and Guo, J. (2009). Evaluation of specific quality of Zanthoxylum bungeanum Maxim and Zanthoxylum schinifolium Sieh et Zucc. Food Sci. 30, 45–48.

Zhang Q. Y., Pang, X. L., Li, D. R., and Bao, Y. H. (2011). Characteristics and distribution of common cultivars of Szechuan peppers in Sichuan. Sci. Technol. W. China 10, 43.

Zhang, X. Q., Zhao, L. H., and Yang, P. (2005). The species resource of Zanthoxylum genus and the ecological functions review of it’s planting. Xi Chang Xue Yuan Xue Bao (Nat. Sci. Ed) 19, 12–14.

Zheng, S. H., Jiang, X., Wu, L. B., Wang, Z. H., and Huang, L. F. (2014). Chemical and genetic discrimination of cistanches herba based on UPLC-QTOF/MS and DNA barcoding. PLoS ONE 9:e98061. doi: 10.1371/journal.pone.0098061

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Xiang, Liu, Xie, Li, Yu, and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.