LETTER TO THE EDITOR

Development and validation of a novel online calculator for estimating survival benefit of adjuvant transcatheter arterial chemoembolization in patients undergoing surgery for hepatocellular carcinoma

Lei Liang1,2, Chao Li3, Ming-Da Wang3, Hong Wang4, Ya-Hao Zhou5, Yong-Yi Zeng6, Wan-Guang Zhang7, Ting-Hao Chen8, Nan-Ya Wang9, Jie Li1, Yao-Ming Zhang11, Yu Wang12, Wei-Min Gu13, Hao Xing3, Yong-Kang Diao1,2, Wan Yee Lau3,14, Cheng-Wu Zhang1,2, Timothy M. Pawlik15, Feng Shen3, Dong-Sheng Huang2,16 and Tian Yang1,2,3*

Abstract

Background and aims: Although adjuvant transcatheter arterial chemoembolization (TACE) for resected hepatocellular carcinoma (HCC) may improve survival for some patients, identifying which patients can benefit remains challenging. The present study aimed to construct a survival prediction calculator for individualized estimating the net survival benefit of adjuvant TACE for patients with resected HCC.

Methods: From a multicenter database, consecutive patients undergoing curative resection for HCC were enrolled and divided into the developing and validation cohorts. Using the independent survival predictors in the developing cohort, two nomogram models were constructed for patients with and without adjuvant TACE, respectively, which predictive performance was validated internally and externally by measuring concordance index (C-index) and calibration. The difference between two estimates of the prediction models was the expected survival benefit of adjuvant TACE.

Results: A total of 2514 patients met the inclusion criteria for the study. The nomogram prediction models for patients with and without adjuvant TACE were, respectively, built by incorporating the same eight independent survival predictors, including portal hypertension, Child–Pugh score, alpha-fetoprotein level, tumor size and number, macrovascular and microvascular invasion, and resection margin. These two prediction models demonstrated good calibration and discrimination, with all the C-indexes of greater than 0.75 in the developing and validation cohorts. A browser-based calculator was generated for individualized estimating the net survival benefit of adjuvant TACE.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
To the editor,

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide [1]. Surgical resection represents a common approach to treat HCC and provides the possibility of cure [2]. Long-term prognosis after HCC resection is, however, still poor due to the high incidence of recurrence [3–5]. Transcatheter arterial chemoembolization (TACE) has been used in the postoperative setting as a means to decrease risk of recurrence and improve survival [6–8]. Whereas, in clinical practice, controversy persists relative to the role of adjuvant TACE for resected HCC [9–11]. The reasons for these disparate results are undoubtedly multifactorial, yet may relate to patient selection. Specifically, only certain high-risk patients with resected HCC may benefit from adjuvant TACE [12]. The objective of the current study was to construct a decision aid using a large multicenter database to predict which patient with resected HCC had a survival benefit from adjuvant TACE. In addition, we sought to estimate the magnitude of the survival benefit for given individual patients. A web-based decision tool was provided for clinicians and patients to aid in the decision-making process regarding adjuvant TACE after HCC resection. Patients and methods for this study are described in detail in Additional file 1.

Overall survival
All 2514 patients with HCC underwent curative liver resection were included (Additional file 2: Figure S1). Among them, 1755 and 759 patients were randomly segregated to the development and validation cohort, respectively (Table 1). Compared with patients who did not receive adjuvant TACE, patients who had adjuvant TACE had a longer survival in both the development and validation cohorts (all $P<0.001$) (Additional file 3: Table S1 and Additional file 5: Table S2).

Independent predictors of survival
Univariable and multivariable Cox regression analyses of the development cohort demonstrated that independent predictors associated with overall survival after HCC resection among patients treated with and without adjuvant TACE included portal hypertension, Child–Pugh grade, preoperative AFP level, tumor size, tumor number, macrovascular invasion, microvascular invasion, and resection margin (all $P<0.05$). (Additional file 4: Table S1 and Additional file 5: Table S2).

Development of the prediction models
Two different nomogram models that integrated independent factors associated with overall survival were constructed to predict outcomes among patients who did and did not receive adjuvant TACE (Fig. 1a, b). To estimate the net survival benefit from adjuvant TACE, these two nomograms were compared and the difference between the two estimates was the expected net survival benefit from the addition of adjuvant TACE.

Validation of the prediction models
Bootstrapping with 400 resamples in the development cohort demonstrated good predictive performance, with the C-indexes of 0.791 (95% CI 0.742–0.840) and 0.810 (95% CI 0.779–0.841) for patients with and without adjuvant TACE, respectively. Accordingly, the C-indices were 0.756 (95% CI 0.678–0.834) and 0.765 (95% CI 0.720–0.810) in the validation cohort. There was also good calibration curve to predict 3- and 5-year survival probabilities among patients treated with and without adjuvant TACE, respectively (all $P>0.05$) (Fig. 1c, d).

Construction of the online calculator
Based on the formula of the nomogram prediction models, an Internet browser-based software tool was constructed to predict the net survival benefit of adjuvant TACE for an individual patient, including the expected net survival time, and the increased 3- and 5-year survival probabilities (Fig. 1e). The corresponding score and the formula to calculate survival probability were provided (Additional file 6: Table S3). The online calculator is available for free use at: http://asapcalculate.top/Cal5_en.html. After the user inputs all the requested information relative to the prognostic factors, the predicted survival improvement associated with the addition of adjuvant TACE, including the expected survival time and the 3- and 5-year survival probabilities, is generated and displayed.

In summary, a survival prediction model that incorporated eight independent variables associated with survival was constructed to derive an individualized estimate of the net survival benefit of adding adjuvant TACE to a patient’s post-resection HCC treatment.

Conclusions: Based on large-scale real-world data, an easy-to-use online calculator can be adopted as a decision aid to predict which patients with resected HCC can benefit from adjuvant TACE.

Keywords: Hepatocellular carcinoma, Hepatectomy, Transcatheter arterial chemoembolization, Adjuvant therapy, Survival
Table 1 Baseline characteristics of patients with and without adjuvant TACE in the developing and validation cohorts

Variables	The developing cohort (N = 1755)	The validation cohort (N = 759)		
	With adjuvant TACE (n = 533)	Without adjuvant TACE (n = 1222)	With adjuvant TACE (n = 224)	Without adjuvant TACE (n = 535)
Preoperative variables				
Male sex	476 (89.3)	1080 (88.4)	198 (88.4)	468 (87.5)
Age > 65 years	89 (16.7)	260 (21.3)	29 (12.9)	115 (21.5)
Co-morbid illness	111 (20.9)	228 (18.7)	72 (32.1)	160 (29.9)
PS, 1–2/0	161/372 (30.2/69.8)	345/877 (28.2/71.8)	35/189 (15.7/84.3)	82/453 (15.3/84.7)
ASA score > 2	56 (10.5)	182 (14.9)	19 (8.5)	81 (15.1)
Etiology of liver disease, HBV/HCV/HBV+HCV/other	446/26/15/46 (83.7/4.9/2.8/6.6)	1010/73/27/112 (82.7/6.0/2.2/9.2)	193/9/4/18 (86.2/4.0/1.8/8.0)	446/32/9/48 (83.4/6.0/1.7/9.0)
Cirrhosis	391 (73.4)	958 (78.4)	157 (70.1)	421 (78.7)
Portal hypertension	115 (21.6)	329 (26.9)	37 (16.5)	129 (24.1)
Child–Pugh grade, A/B	489/44 (91.7/8.3)	1075/147 (88.0)	207/17 (92.4/7.6)	467/68 (87.3/12.7)
Preoperative ALT level > 40 U/L	277 (52.0)	683 (55.9)	111 (49.6)	289 (54.0)
Preoperative AFP level > 400 ug/L	284 (53.3)	703 (57.5)	141 (62.9)	314 (58.7)
Maximum tumor size, ≥ 10.0/5.0–9.9/< 5.0 cm	128/212/193 (42.0/39.8/36.2)	204/443/575 (67.3/36.3/47.1)	45/96/83 (20.1/42.9/37.1)	77/200/258 (44.3/37.4/48.2)
Tumor number, ≥ 3/2/1	91/82/360 (17.1/15.4/67.5)	159/121/942 (13.0/9.9/77.1)	33/35/156 (14.7/15.6/69.6)	70/50/415 (13.1/9.3/77.6)
Macrovascular invasion	67 (12.6)	104 (8.5)	35 (15.6)	50 (9.3)
Intraoperative variables				
Intraoperative blood loss > 600 mL	117 (22.0)	263 (21.5)	42 (18.8)	104 (19.4)
Operation time > 180 min	145 (27.2)	307 (25.1)	45 (20.1)	132 (24.7)
Anatomical resection				
Major hepatectomy	157 (29.5)	318 (26.0)	56 (25.0)	132 (24.7)
Macrovascular invasion	306 (57.4)	619 (50.7)	134 (59.8)	270 (50.5)
Poor tumor differentiation	397 (74.5)	918 (75.1)	175 (78.1)	415 (77.6)
Incomplete tumor encapsulation	334 (62.7)	785 (64.2)	155 (69.2)	344 (64.3)
Resection margin < 1 cm	179 (33.6)	386 (31.6)	76 (33.9)	162 (30.3)

AFP alpha-fetoprotein, ALT alanine aminotransferase, ASA American Society of Anesthesiologists, AST aspartate transaminase, HBV hepatitis B virus, HCV hepatitis C virus, PS performance status, TACE transcatheter arterial chemoembolization

(See figure on next page.)

Fig. 1 Nomograms to calculate the expected survival time, and 3- and 5-year survival probabilities for a patients who attempt to undergo adjuvant TACE and b patients who attempt not to undergo adjuvant TACE. Thus, the difference of the expected values between the two estimates is the expected net survival benefit of adjuvant TACE. Calibration plots of the models for predicting 3-year and 5-year survival for patients with and without adjuvant TACE c in the developing cohort and d in the validation cohort, respectively. e Screenshots of the web-based calculator for individualized estimates of the expected net survival benefit of adjuvant TACE for patients with resected hepatocellular carcinoma. Website: http://www.asapcalculate.top/Caf5_en.html. For example, suppose there is a male patient without portal hypertension (Child–Pugh A) who have undergone curative resection for a single HCC tumor (tumor size: 8.0 cm, without macrovascular invasion but with microvascular invasion). His preoperative AFP level was 718 ug/L (≥ 400 ug/L), and the tumor resection margin was 0.8 cm (< 1 cm). After putting these data into these specific parameters, we can get the expected net survival time benefit of adjuvant TACE was 9.0 months, and the net survival benefits of 3-year and 5-year survival rates are 11.7% and 9.3%, respectively.
The nomograms and online calculator had good predictive accuracy, and discrimination was validated. The calculator may help provide an estimate of the net survival benefit associated with adjuvant TACE for an individual patient following HCC resection. This tool may assist clinicians and patients in quantifying the
benefit of adjuvant TACE after HCC resection and inform real-word discussions on this topic.

Abbreviations

HCC: Hepatocellular carcinoma; TACE: Transcatheter arterial chemoembolization; RCT: Randomized controlled trial; CT: Computed tomography; MRI: Magnetic resonance imaging; PS: Performance status; ECOG: Eastern cooperative oncology group; ASA: American society of anesthesiologists; HBV: Hepatitis B virus; HCV: hepatitis C virus; ALT: Alanine aminotransferase; AST: Aspartate transaminase; AFP: Alpha-fetoprotein; C-index: Concordance index; CI: Confidence interval; HR: Hazard ratio.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13045-021-01180-5.

References

1. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–62.
2. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014;63(5):844–55.
3. Vibert E, Schwartz M, Olthoff KM. Advances in resection and transplantation for hepatocellular carcinoma. J Hepatol. 2020;72(2):262–76.
4. Tabrizian P, Jibara G, Shrager B, Schwartz M, Roayaie S. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg. 2015;261(5):947–55.
5. Xu XF, Xing H, Han J, Li ZL, Lau WW, Zhou YH, et al. Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: a multicenter study from China. JAMA Surg. 2019;154(3):209–17.

Authors' contributions

LL, CL, M-DW, and HW contributed equally to this work. Dr TY and D-SH had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: LL, WYL, FS, D-SH, TY. Drafting of the manuscript: LL, CL, TY. Critical revision of the manuscript for important intellectual content: TMP, WYL, FS, D-SH, TY. Statistical analysis: C-WZ, FS, TY. Study supervision: FS, D-SH, TY. Thanks Xiao-Li Yin (Department of Hepatobiliary Surgery, Meizhou People’s Hospital, Guangdong, China) and Lan-Qing Yao (Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital) for providing technical or material support. All authors read and approved the final manuscript.

Funding

Funding for the study was provided by the National Natural Science Foundation of China (Nos. 81672699 and 81972726, Dr Yang). Role of the Funder/Sponsor: The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was conducted in accordance with the Declaration of Helsinki and the Ethical Guidelines for Clinical Studies of all participating hospitals.

Informed consent

The study protocol was approved by the Institutional Review Board of all participating hospitals, and informed consent from the patients was waived.

Competing interests

All authors declare that they have no conflict of interest.

Author details

1. Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, No. 158, Shangtang Road, Hangzhou 310014, Zhejiang, China.
2. Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China.
3. Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China.
4. Department of General Surgery, Liuyang People’s Hospital, Hunan, China.
5. Department of Hepatobiliary Surgery, Puer People’s Hospital, Yunnan, China.
6. Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fujian, China.
7. Department of Hepatic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
8. Department of General Surgery, Ziyang First People’s Hospital, Sichuan, China.
9. The Cancer Center, the First Hospital of Jilin University, Jilin, China.
10. Department of Hepatobiliary Surgery, Fuyang People’s Hospital, Anhui, China.
11. The Second Department of Hepatobiliary Surgery, Meizhou People’s Hospital, Guangdong, China.
12. Department of Hepatobiliary Surgery, Chongqing University Cancer Hospital, Chongqing, China.
13. The First Department of General Surgery, The Fourth Hospital of Harbin, Heilongjiang, China.
14. Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
15. Department of Surgery, Ohio State University, Wexner Medical Center, Columbus, OH, USA.
16. School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Received: 19 September 2021 Accepted: 27 September 2021

Publicized online: 12 October 2021
6. Liang L, Li C, Diao YK, Jia HD, Xing H, Pawlik TM, et al. Survival benefits from adjuvant transcatheter arterial chemoembolization in patients undergoing liver resection for hepatocellular carcinoma: a systematic review and meta-analysis. Ther Adv Gastroenterol. 2020;13:1756284820977693.

7. Peng BG, He Q, Li JP, Zhou F. Adjuvant transcatheter arterial chemoembolization improves efficacy of hepatectomy for patients with hepatocellular carcinoma and portal vein tumor thrombus. Am J Surg. 2009;198(3):313–8.

8. Sun JJ, Wang K, Zhang CZ, Guo WX, Shi J, Cong WM, et al. Postoperative adjuvant transcatheter arterial chemoembolization after R0 hepatectomy improves outcomes of patients who have hepatocellular carcinoma with microvascular invasion. Ann Surg Oncol. 2016;23(4):1344–51.

9. Schwartz JD, Schwartz M, Mandeli J, Sung M. Neoadjuvant and adjuvant therapy for resectable hepatocellular carcinoma: review of the randomised clinical trials. Lancet Oncol. 2002;3(10):593–603.

10. Zhou WP, Lai EC, Li AJ, Fu SY, Zhou JP, Pan ZY, et al. A prospective, randomized, controlled trial of preoperative transarterial chemoembolization for resectable large hepatocellular carcinoma. Ann Surg. 2009;249(2):195–202.

11. Wang Z, Ren Z, Chen Y, Hu J, Yang G, Yu L, et al. Adjuvant transarterial chemoembolization for HBV-related hepatocellular carcinoma after resection: a randomized controlled study. Clin Cancer Res Off J Am Assoc Cancer Res. 2018;24(9):2074–81.

12. Wang L, Ke Q, Lin N, Zeng Y, Liu J. Does postoperative adjuvant transarterial chemoembolization benefit for all patients with hepatocellular carcinoma combined with microvascular invasion: a meta-analysis. Scand J Gastroenterol. 2019;54(5):528–37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.