In Silico Analysis of Glutaminase from Different Species of Escherichia and Bacillus

Cambyz Irajie1, MD; Milad Mohkam2–3, PhD; Navid Nezafat4, PhD; Saeed Hosseinzadeh1, PhD; Mahmood Aminlari4, PhD; Younes Ghasemi2–3,5, PhD, PharmD

1Department of Public Health and Food Hygiene, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 3Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; 4Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; 5Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

Correspondence: Younes Ghasemi, PhD, PharmD; Department of Pharmaceutical Biotechnology, School of Pharmacy, P.O. Box: 71468-64685, Shiraz, Iran Tel/Fax: +98 71 32426729 Email: ghasemiy@sums.ac.ir Received: 02 August 2015 Revised: 13 September 2015 Accepted: 20 September 2015

Abstract

Background: Glutaminase (EC 3.5.1.2) catalyzes the hydrolytic degradation of L-glutamine to L-glutamic acid and has been introduced for cancer therapy in recent years. The present study was an in silico analysis of glutaminase to further elucidate its structure and physicochemical properties.

Methods: Forty glutaminase protein sequences from different species of Escherichia and Bacillus obtained from the UniProt Protein Database were characterized for homology search, physiochemical properties, phylogenetic tree construction, motif, superfamilly search, and multiple sequence alignment.

Results: The sequence level homology was obtained among different groups of glutaminase enzymes, which belonged to superfamilly serine-dependent β-lactamases and penicillin-binding proteins. The phylogenetic tree constructed indicated 2 main clusters for the glutaminases. The distribution of common β-lactamase motifs was also observed; however, various non-common motifs were also observed.

Conclusion: Our results showed that the existence of a conserved motif with a signature amino-acid sequence of β-lactamases could be considered for the genetic engineering of glutaminases in view of their potential application in cancer therapy. Nonetheless, further research is needed to improve the stability of glutaminases and decrease their immunogenicity in both medical and food industrial applications.

Please cite this article as: Irajie C, Mohkam M, Nezafat N, Hosseinzadeh S, Aminlari M, Ghasemi Y. In Silico Analysis of Glutaminase from Different Species of Escherichia and Bacillus. Iran J Med Sci 2016;41(5):406-414.

Keywords ● Escherichia ● Bacillus ● Glutaminase ● Computer simulation

Introduction

Glutaminase or glutamine amidohydrolase (EC 3.5.1.2) catalyzes the hydrolytic deamination of L-glutamine, leading to the generation of L-glutamate and ammonium.1,2 In recent years, glutaminase has attracted much attention given its proposed applications in both food and pharmaceuticals industries. Glutaminase has been recognized in bacteria, fungi, yeasts, and mammals.2,3 It plays an essential role in nitrogen metabolism, involving glutaminolysis. While mitochondrial glutaminase is elevated in some tumor types and is frequently upregulated in MYC-transformed cells,5 it is thought to be a potential chemotherapeutic target.6 Moreover, Achromobacter glutaminase exerted antileukemic influences in patients with acute myeloid leukemia or acute lymphoblastic leukemia in a preliminary clinical trial.7 Glutaminase–asparaginase obtained from Pseudomonas 7A...
showed considerable antitumor activity in some studied mice, particularly when applied together with glutamine antimitabolites. Glutaminase has provided hope as an encouraging therapeutic agent for the healing of diseases caused by retroviruses. It has also attracted significant attention from the pharmaceutical industry on the strength of its potential applications as an anticancer agent. In this regard, there are 2 genes for the glutaminase available in *Escherichia coli*, namely *yneH* (308 aa) and *ybaS* (310 aa). The *ybaS* gene encodes an enzyme that is only active in acidic pH but not in physiological pH. On the other hand, the *yneH* gene has optimum activity in physiological pH and is suitable for cancer therapy purposes.

Alongside its demonstrated potential as an antileukemic agent, glutaminase is generally regarded as a key enzyme in controlling the taste of fermented foods such as soy sauce, especially in Asian countries. Most of the essential flavor components of fermented condiments are amino acids generated by the enzymatic hydrolysis of proteins contained in raw food materials; and among them, L-glutamic acid is a broadly recognized flavor-enhancing amino acid. Moreover, L-glutamate (monosodium glutamate) is a prominent umami taste factor. Hence, the deamination of glutamine is an important route in the food industry with the aim of enhancing the umami taste. For instance, the distinctive taste of fermented soy sauce is ascribed chiefly to glutamic acid (concentrations of 0.7 to 0.8% per total nitrogen). The activity of glutaminase, accountable for the fabrication of glutamic acid, renders it a chief supplement for the period of soy-sauce fermentation. Efforts to enhance the glutamate content of soy sauce by means of salt renders it a chief supplement for the period of fermentation.

In the context of increased practical applications for glutaminase, we performed an *in silico* analysis of 40 glutaminase protein sequences from *Escherichia* and *Bacillus* spp. To our knowledge, this is the first research to analyze glutaminase protein sequences using bioinformatics approaches. Drawing upon a variety of bioinformatics tools, we sought to characterize glutaminase protein sequences in terms of biochemical traits, multiple sequence alignment (MSA), homology search, motif, phylogenetic tree construction, and superfamilies allocation.

Materials and Methods

The amino-acid sequences of glutaminase from various *Escherichia* and *Bacillus* spp. were obtained from the UniProt Protein Database and the Expert Protein Analysis System (ExPASy) proteomics server. Physiochemical data were provided through ProtParam via the ExPASy server (the proteomics server of the Swiss Institute of Bioinformatics). The Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA) format of the sequences was utilized for subsequent analyses. Various tools in the proteomics server (ProtParam, ClustalW, Compute pI/Mw, Protein Calculator, and ProtScale) were implemented to calculate/deduce different physiochemical features of the glutaminases from the protein sequences. The molecular weights (kDa) of the various glutaminases were computed by adding the mean isotopic mass of the amino acid in the enzyme and deducting the mean isotopic mass of 1 water molecule. The pI of the enzyme was computed using the pKa value of the amino acid according to Bjellqvist et al. (1993). The atomic compositions of the glutaminases were obtained using ProtParam, available at ExPASy. The aliphatic index values of the various glutaminase protein sequences were determined using ProtParam (ExPASy). The grand average of hydropathicity (GRAVY) and the instability index were estimated using the Kyte and Doolittle methods, respectively. CLC Sequence Viewer 7 was used for dendrogram construction via the neighbor-joining method (NJ). For domain search, Pfam (http://sanger.ac.uk/software/Pfam/search.html) and InterPro (http://www.ebi.ac.uk/interpro) were used. Motif analysis was done using MEME (http://meme.sdsc.edu/meme/meme.html) and MOTIF search (http://www.genome.jp/tools/motif). The protein conserved motifs deduced by MEME were subjected to biological functional analysis using protein BLAST, and the motifs were studied using InterProScan to find the best possible match based on the highest similarity score. Forty glutaminase protein sequences with accession numbers showing different species of *Escherichia* and *Bacillus* are listed in table 1.

Results

Forty glutaminase protein sequences from different species of *Escherichia* and *Bacillus*...
S. no	Accession number	Source organisms	Molecularweight	Theoretical pI	Total number of negatively charged residues (Asp+Glu)	Total number of positively charged residues (Arg+Lys)	Instability index	Aliphatic index	Grand average of hydropathicity (GRAVY)
1	P0A69W0	E. coli (strain K12)	308	5.98	33515.5	29	25	98.80	0.133
2	P0A69W2	E. coli O157:H7	308	5.98	33515.5	29	25	98.80	0.133
3	P0A69W1	E. coli O6:H1	308	5.98	33515.5	29	25	98.80	0.133
4	B7N4I1	E. coli O7:H2	308	5.98	33515.5	29	25	98.80	0.133
5	D0351S3	E. coli O6:H1	308	5.98	33515.5	29	25	98.80	0.133
6	B7N4I0	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
7	D0351S1	E. coli O4:H2	308	5.98	33515.5	29	25	98.80	0.133
8	B7N4I3	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
9	B7N4I2	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
10	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
11	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
12	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
13	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
14	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
15	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
16	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
17	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
18	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
19	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
20	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
21	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
22	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
23	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
24	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
25	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
26	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
27	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
28	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133
29	B7L7M4	E. coli O2:H1	308	5.98	33515.5	29	25	98.80	0.133

Note: (Contd...)
In silico analysis of glutaminase retrieved from the UniProt Protein Database were characterized for homology search, MSA, biochemical features, phylogenetic tree construction, superfamily, and motif search using a variety of bioinformatics tools. The biochemical features for these glutaminases are listed in table 1. The total number of amino-acid residues was 308 for the *Escherichia* spp. and 310 for the *Bacillus* spp., with variable molecular weights. The pI value ranged from 4.85 to 8.31. The variability was also observed among these glutaminases in terms of other physiochemical parameters such as positively charged amino-acid residues, negatively charged residues (Asp and Glu), and hydropathicity (GRAVY) (table 1). The sequence-based analysis of the aliphatic index among these glutaminases in the *Escherichia* spp. revealed homogeneity with a range of ~98 with the exception of *E. hermannii*, which had a value of 104.87. As for the *Bacillus* spp., a variety of aliphatic indices were observed, from 87.18 to 96.28. The MSA and homology search of these 40 glutaminase protein sequences disclosed a stretch of conserved regions (figure 1). However, a few highly conserved amino acids were also observed among many of the sequences (figure 1). The phylogenetic tree constructed based on the glutaminase protein sequences using the NJ method revealed 2 major clusters for the *Escherichia* and *Bacillus* spp., denoting the sequence-level similarity of the glutaminase protein sequences (figure 2). Several *Escherichia* species-specific clusters for glutaminase, namely *E. fergusonii*, *E. albertii*, *E. hermannii*, and *E. vulneris*, were also observed (figure 2). A similar profile was achieved from the phylogenetic tree constructed using the unweighted pair group method with arithmetic mean (UPGMA) and the minimum-evolution method (data not shown). These glutaminases were identified as belonging to superfamily serine-dependent β-lactamases and penicillin-binding proteins. The motif analysis of the glutaminases from the *Escherichia* and *Bacillus* spp. revealed the existence of more than 40 absolutely conserved residues including the predicted β-lactamase motif 1, a catalytic diad Ser-X-X-Lys. Moreover, motif 3 (Lys/Arg-Ser/Thr-Gly) was identifiable in the glutaminases (Lys259-Ser260-Gly261), while only motif 2 (Ser-Asp-Asn) of class A β-lactamase motif 2 (figure 1).

No.	Accession number	Source organisms	Number of amino acids	Molecular weight	Theoretical pI	Total number of negatively charged residues (Asp+Glu)	Total number of positively charged residues (Arg+Lys)	Instability index	Aliphatic index	Grand average of hydropathicity (GRAVY)
30	A0A090V5E8	*E. vulneris* NBRC 102420	308	33760.6	5.85	32	26	52.44	95.03	0.020
31	B1ELZ3	*E. albertii* (strain TW07627)	308	33489.6	6.07	28	24	41.24	97.86	0.169
32	O07637	*B. subtilis* (strain 168)	309	34012.3	5.78	36	33	23.17	94.01	0.026
33	A8FCU0	*P. pumilus* (strain SAFR-032)	309	33600.8	5.90	35	32	33.86	87.18	-0.011
34	A7Z4A6	*A. amylolycaeaciens* subspecies *Plantarum*	309	33989.2	5.65	38	33	34.97	87.73	-0.046
35	G4NWR9	*B. subtilis* subsp. spizizenii	309	34001.4	5.77	36	33	26.55	94.66	0.016
36	D4FW74	*B. subtilis* subsp. natto	309	34040.4	6.03	36	34	24.04	94.01	0.022
37	R9TT78	*B. licheniformis* 9945A	309	33601.7	5.03	39	29	17.37	92.49	0.047
38	A0A060LN5	*B. lehensis* G1	309	33947.8	4.85	42	28	28.24	91.91	-0.079
39	I3E8E0	*B. methanolicus* MGA3	309	33751.4	8.31	32	35	29.15	96.28	0.088
Multiple sequence alignment of glutaminase protein sequences shows maximum homology from amino-acid residues 60–120. The represented accession numbers of the bacteria and their complete details are provided in Table 1.

In addition to the conserved β-lactamase sequences, varied motifs were also obtained. The MotD (flagellar motor protein) motifs (LETILRQVRPLIGKVADYIPALATVEGSRLGAICTVDQQLFQAGDAPERFSIQSISKV) along with WisP family C-Terminal Region (RGLSGVSDIAYDVTVARSEFEHSARNAIAWLMKSFGNFHHDVTTLQNYFHYC) were observed among the Escherichia spp., but not in the Bacillus spp. However, various motifs were observed in the Bacillus spp., including aminoacyl-tRNA ligase (QEPTGDFNSIKLETVPSSKLPMLNMAGALVTSILRGTVEKRLYLLSIRRTLNT) motif in B. subtilis spp. (strain 168, spizizenii and natto) and TENA motif (IRILTFQELAGNSNYASQEVAKSEFESS)
FLNRSCLCY) in *B. methanolicus*, which may help to secret proteases such as glutaminase into the extracellular environment.

Discussion

Glutaminase (EC 3.5.1.2) catalyzes the hydrolytic deamination of L-glutamine to L-glutamic acid and has a vital task in cellular nitrogen metabolism. In mammals, both kidney and liver types of glutaminase are present. However, it is widely distributed in almost all organisms, including bacteria. In this regard, *Escherichia* and *Bacillus* spp. attract a great deal of attention due to their potential in medical and industrial applications. Nowadays, many bioinformatics tools are harnessed in different biological fields such as protein engineering and vaccinology to lower the costs and improve the accuracy of experimental investigations.19-21

In this research, we performed an *in silico* study of glutaminases from 2 bacteria, namely *Escherichia* and *Bacillus* spp. The biochemical traits for these glutaminase enzymes are depicted in table 1. The sequence-based analysis of the aliphatic index among these...
glutaminases in the *Escherichia* spp. revealed homology with a range of ~98 with the exception of *E. hermannii*, which had a value of 104.87. As for the *Bacillus* spp., a variety of aliphatic indices were observed, from 87.18 to 96.28. The aliphatic index of a protein sequence is an extent of the relative volume occupied by aliphatic side chain of valine, alanine, isoleucine, and leucine amino acids. An increase in the aliphatic index is considered to represent an elevation in the thermostability of globular proteins. The glutaminases of *Escherichia* and *Bacillus* spp. appear to be thermostable given the high value of their aliphatic index. The instability index is considered for the measurement of the *in vivo* half-life of a protein. It has been reported that proteins that possess an *in vivo* half-life >16 hours have an instability index <40, while those that possess an *in vivo* half-life <5 hours display an instability index >40. The computed instability index of the glutaminases from the *Escherichia* spp. was found to be half-life = <5 hours, with the exception of *E. fergusonii* (half-life >16 h). In contrast, all the *Bacillus* spp. represented an instability index <40, which showed a half-life >16 hours and indicated that they were good candidates for medical and industrial applications.

The MSA and homology search divulge several homologies. The presence of conserved small sequence patches with important roles in the authentication of protein and helix-coil transition has been previously stated. Structural and sequence homology methods principally represent the global similarities between the compared glutaminases. However, in general terms, the molecular role of a glutaminase is confined to its known active site, which may include in an interaction with the peptide linkage of proteins. Keeping the core structural constituent of the active site is necessary for maintaining the functional activity of the enzyme. Therefore, protein comparisons that focus on structural similarities in a global sequence may fail to spot proteins with conserved active sites but divergent structures and sequences. The conserved region observed between these glutaminases could be utilized for designing degenerate primers for polymerase chain reaction (PCR)-based amplification and cloning of reputed glutaminase genes from the diverse species of *Escherichia* and *Bacillus*.

Our sequence analysis of the glutaminases using the SUPERFAMILY tool on the ExPASy server revealed that they belonged to superfamily serine-dependent β-lactamases and penicillin-binding proteins. Poorly characterized glutaminases belong to the huge cluster of serine penicillin-binding proteins and β-lactamases, which have a shared evolutionary origin and apportion the protein fold, catalytic mechanism, and structural motifs. This huge set of enzymes comprises DD-peptidases, glutaminases, 3 classes of well-characterized serine β-lactamases (A, C, and D), and transpeptidases. β-Lactamase (EC 3.5.2.6) catalyzes the hydrolysis of an amide bond (N–CO) in the β-lactam ring of the antibiotics of the penicillin/cephalosporin family contributing to the most common mechanism of bacterial resistance to β-lactam antibiotics, while penicillin-binding proteins encompass transpeptidase, carboxypeptidase, and transglycosylase activities and have a part in the biosynthesis of the bacterial cell wall. The representatives of all DD-peptidase and β-lactamase families have been described together biochemically and structurally, and the molecular mechanisms of the catalytic activity have been recognized. Motif analysis represents 2 major β-lactamase motifs, including class C β-lactamases. Class C β-lactamases include a conserved Tyr residue (Tyr150 in AmpC from *Enterobacter cloacae*) in place of Ser in motif 2, which also has no apparent counterpart in glutaminase sequences. Consequently, motif analysis denotes that glutaminases keep motifs 1 and 3 of β-lactamases but vary in motif 2. These sequences could be exploited for the expression and diversity analysis of glutaminase enzymes and confer valuable data for a better understanding of the structure and function of glutaminase. To that end, further research is required to assess the immunogenicity and thermal tolerance of glutaminase and improve its stability in different environmental conditions.

Conclusion

Our *in silico* evaluation of glutaminase protein sequences from diverse species of *Escherichia* and *Bacillus* clearly disclosed a sequence level similarity which could be helpful in cloning putative genes using degenerate primers designed from the conserved sequences. The phylogenetic clustering, conserved motif sequences, and discrepancy between the biochemical traits of the different glutaminases in this study could be deemed critical information for investigating new glutaminases and comparing them with other types of β-lactamases for the further classification and application of diverse β-lactamases. The operational characterization of amino-acid residues in the conserved domains of glutaminases is needed to identify their role.
in enzyme catalysis. Overall, this in silico analysis can be considered significant for the genetic engineering of glutaminases in light of their application in food and pharmaceutical industries as well as cancer therapy.

Acknowledgement

This work was supported by a grant from the Research Council of Shiraz University of Medical Sciences, Shiraz, Iran.

Conflict of Interest: None declared.

References

1. Ito K, Matsushima K, Koyama Y. Gene cloning, purification, and characterization of a novel peptidoglutaminase-asparaginase from Aspergillus sojae. Appl Environ Microbiol. 2012;78:5182-8. doi: 10.1128/AEM.00765-12. PubMed PMID: 22610430; PubMed Central PMCID: PMC3416432.

2. Dutta S, Ghosh S, Pramanik S. L-asparaginase and L-glutaminase from Aspergillus fumigatus WL002: Production and some physicochemical properties. Appl Biochem Microbiol. 2015;51:425-31. doi: 10.1134/S0003683815040067.

3. de la Rosa V, Campos-Sandoval JA, Martin-Rufian M, Cardona C, Mates JM, Segura JA, et al. A novel glutaminase isoform in mammalian tissues. Neurochem Int. 2009;55:76-84. doi: 10.1016/j.neuint.2009.02.021. PubMed PMID: 19428810.

4. Dura MA, Flores M, Toldra F. Purification and characterisation of a glutaminase from Debaryomyces spp. Int J Food Microbiol. 2002;76:117-26. doi: 10.1016/S0168-1605(02)00024-7. PubMed PMID: 12038568.

5. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762-5. doi: 10.1038/nature07823. PubMed PMID: 19219026; PubMed Central PMCID: PMC2729443.

6. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18:207-19. doi: 10.1016/j.ccr.2010.08.009. PubMed PMID: 20832749; PubMed Central PMCID: PMC3078749.

7. Unissa R, Sudhakar M, Reddy ASK, Sravanthi KN. A Review on Biochemical and Therapeutic Aspects of Glutaminase. Int J Pharm Sci Res. 2014;5:4617.

8. Iyep S, Singhal RS. Production of glutaminase (E.C.3.2.1.5) from Zygosaccharomyces rouxii: statistical optimization using response surface methodology. Bioreour Technol. 2008;99:4300-7. doi: 10.1016/j.biortech.2007.08.076. PubMed PMID: 17951056.

9. Kumar DS, Sobha K. L-Asparaginase from microbes: a comprehensive review. Adv Biore. 2012;3:137-57.

10. Yoshimune K, Shirakihara Y, Shiratori A, Wakayama M, Chantawannakul P, Moriguchi M. Crystal structure of a major fragment of the salt-tolerant glutaminase from Micrococcus luteus K-3. Biochem Biophys Res Commun. 2006;346:1118-24. doi: 10.1016/j.bbrc.2006.04.188. PubMed PMID: 16793004.

11. Ghoshoon MB, Raee MJ. An optimized medium for screening of L-asparaginase production by Escherichia coli. Am J Biochem Biotechnol. 2008;4:422-4.

12. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105-32. doi: 10.1016/0022-2836(82)90515-0. PubMed PMID: 7106955.

13. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31:3784-8. doi: 10.1093/nar/gkg563. PubMed PMID: 12824418; PubMed Central PMCID: PMC168970.

14. Slabinski L, Jaroszewski L, Rychlewski L, Wilson IA, Lesley SA, Godzik A. XtalPred: a web server for prediction of protein crystallizability. Bioinformatics. 2007;23:3403-5. doi: 10.1093/bioinformatics/btm477. PubMed PMID: 17921170.

15. Gholami A, Shahin S, Mohkam M, Nezafat N, Ghasemi Y. Cloning, characterization and bioinformatics analysis of novel cytosine deaminase from Escherichia coli AGH09. Int J Pept Res Ther. 2015;21:365-74. doi: 10.1007/s10989-015-9465-9.

16. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596-9. doi: 10.1093/molbev/msm092. PubMed PMID: 17488738.

17. Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001;313:903-19. doi:
10.1006/jmbi.2001.5080. PubMed PMID: 11697912.

18. D’Costa VM, King CE, Kahan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477:457-61. doi: 10.1038/nature10388. PubMed PMID: 21881561.

19. Farhadi T, Nezafat N, Ghasemi Y, Karimi Z, Hemmati S, Erfani N. Designing of complex multi-epitope peptide vaccine based on omps of Klebsiella pneumoniae: an in silico approach. Int J Pept Res Ther. 2015;21:325-41. doi: 10.1007/s10989-015-9461-0.

20. Nezafat N, Ghasemi Y, Javadi G, Khoshnoud MJ, Omidinia E. A novel multi-epitope peptide vaccine against cancer: an in silico approach. J Theor Biol. 2014;349:121-34. doi: 10.1016/j.jtbi.2014.01.018. PubMed PMID: 24512916.

21. Ghasemi Y, Dabbagh F, Rasoul-Amini S, Borhani Haghighi A, Morowvat MH. The possible role of HSPs on Behcet's disease: a bioinformatic approach. Comput Biol Med. 2012;42:1079-85. doi: 10.1016/j.combiomed.2012.08.009. PubMed PMID: 23036375.

22. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82:373-428. doi: 10.1152/physrev.00027.2001. PubMed PMID: 11917093.

23. Rawlings ND, Morton FR, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res. 2006;34:D270-2. doi: 10.1093/nar/gkj089. PubMed PMID: 16381862; PubMed Central PMCID: PMC1347452.

24. Rawlings ND. Identification and prioritization of novel uncharacterized peptidases for biochemical characterization. Database (Oxford). 2013;2013:bat022. doi: 10.1093/database/bat022. PubMed PMID: 23584835; PubMed Central PMCID: PMC3625958.

25. Whisstock JC, Lesk AM. Prediction of protein function from protein sequence and structure. Q Rev Biophys. 2003;36:307-40. doi: 10.1017/S0033583503003901. PubMed PMID: 15029827.

26. Powers R, Copeland JC, Germer K, Mercier KA, Ramanathan V, Revesz P. Comparison of protein active site structures for functional annotation of proteins and drug design. Proteins. 2006;65:124-35. doi: 10.1002/prot.21092. PubMed PMID: 16862592.

27. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008;32:234-58. doi: 10.1111/j.1574-6976.2008.00105.x. PubMed PMID: 18268856.

28. Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev. 2005;105:395-424. doi: 10.1021/cr030102i. PubMed PMID: 15700950.

29. Wilke MS, Lovering AL, Strynadka NC. Beta-lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol. 2005;8:525-33. doi: 10.1016/j.mib.2005.08.016. PubMed PMID: 16129657.

30. Minasov G, Wang X, Shoichet BK. An ultrahigh resolution structure of TEM-1 beta-lactamase suggests a role for Glu166 as the general base inacylation. J Am Chem Soc. 2002;124:5333-40. PubMed PMID: 11996574.

31. Gordon E, Mouz N, Duee E, Dideberg O. The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J Mol Biol. 2000;299:477-85. doi: 10.1006/jmbi.2000.3740. PubMed PMID: 10860753.

32. Paetzel M, Danel F, de Castro L, Mosimann SC, Page MG, Strynadka NC. Crystal structure of the class D beta-lactamase OXA-10. Nat Struct Biol. 2000;7:918-25. doi: 10.1038/79688. PubMed PMID: 11017203.

33. Ibuka AS, Ishii Y, Galleni M, Ishiguro M, Yamaguchi K, Frere JM, et al. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Biochemistry. 2003;42:10634-43. doi: 10.1021/bi0342822. PubMed PMID: 12962487.