Genus Plesiommata Provancher (Hemiptera: Cicadellidae) in Argentina: first detailed description of the female genitalia and comparisons with its neotropical congener

Barbara Defea,* Susana Liria Paradell and Ana Marino de Remes Lenicov

División Entomología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires 1900, Argentina.

Abstract Plesiommata Provancher is a sharpshooter genus with six species described, three present in the Neotropics. The morphology of the female genitalia of this genus is still poorly known. In this contribution, the female genitalia of P. mollicella (Fowler) and P. corniculata Young are described and illustrated for the first time. The vector species P. corniculata Young is recorded as new for Argentina. A key to Neotropical species including new female genital characters is presented along with updated information as new distribution records, host plant records and phytosanitary importance.

Key words Cicadellinae, female genitalia, morphology, sharpshooters.

INTRODUCTION

Cicadellinae are a very large and diverse subfamily that contains over 2313 species placed in 329 genera (McKamey 2009). Distributed worldwide, cicadellines feed on the xylem of a wide variety of vascular plants, and most species are polyphagous. The ecology and host associations of few cicadelline species, mainly those of economic importance, have been studied thoroughly. Sharpshooters, as they are commonly named, are an economically important group because they contain the main vectors of the pathogen Xylella fastidiosa (Bacteria: Xanthomonadaceae), the causal agent of many important plant diseases around the world including Citrus Variegated Chlorosis (CVC) and Pierce’s disease (PD) among others (Nielson 1968; Redak et al. 2004). The taxonomy of sharpshooters is based mostly on characters of the male genitalia; however, several studies showed that female terminalia could contribute to the taxonomy of the group (Mejdalani 1998; Leal et al. 2009; Mejdalani & Silva 2010; Meng & Yang 2012; Carvalho & Mejdalani 2014).

According to Young (1968), Cicadellinae is divided into two tribes, the New World Proconini and the cosmopolitan Cicadellini. Included in the latter is the genus Plesiommata Provancher that occurs from Canada and eastern and central USA to Argentina. So far, six species have been described with only three present in the Neotropics: P. corniculata Young, P. mollicella (Fowler) and P. zanolae Cavichioli (Young 1977; Cavichioli 1999). All described species of Plesiommata can be distinguished from other Cicadellini by (1) forewing hyaline to pale translucent, with inner two anteapical cells open basally; (2) abdomen of males with conspicuous basal apodemes; and (3) aedeagus with a pair of slender processes arising basiventrally and extending dorsally over the shaft (Young 1977). Plesiommata mollicella was described by Fowler (1900) based on material from Mexico. Young (1977), in his revision of the tribe Cicadellini, included illustrations of the external parts of the male genitalia. In that contribution, the new species P. corniculata was described, and a key to all species presented. More recently, P. zanolae was described by Cavichioli (1999) based on specimens from Mato Grosso, Brazil.

Biological information on Plesiommata species is scarce and outdated. Host plant associations are known for few species with most records on herbaceous plants in pastures, cereal crops and weedy vegetation of citrus groves (Redak et al. 2004). So far, the genus includes a confirmed vector of the bacterium X. fastidiosa, P. corniculata (Krügner et al. 2000), that is frequently found in citrus orchards in Brazil (Marucci et al. 2002; Yamamoto et al. 2002; de Molina et al. 2010).

Considering the phytosanitary importance of these species and that several species may coexist in the same environment and be difficult to distinguish, in this study, the female genitalia of P. mollicella and P. corniculata are described and illustrated. A key to the Neotropical species, including female genital characters, is presented. New distributional and host plant records are added along with updated epidemiology information.

MATERIAL AND METHODS

Type and nontype material housed in the following collections were examined: North Carolina State University at Raleigh (NCSU), Colección Entomología, Museo de Ciencias Naturales de La Plata (MLP) and Colección Entomología, Instituto Fundación Miguel Lillo (IFML). In addition, several specimens were collected in Bella Vista, Corrientes, Argentina (28°30′32.08″S 59°02′35.22″O) on grassy weeds of citrus groves using a manual sweep net. Specimens from field collections were preserved in 70% EtOH for morphological studies. Males and females were dissected using a stereoscopic microscope.
following the techniques proposed by Oman (1949) and Mejdalani (1998), respectively. Identification followed Young (1977) and terminology Nielson (1965), with the exception of the third valvulae, which are treated herein as the gonoplacs as proposed by Mejdalani (1998). Photographs of female structures were taken with a digital camera attached to a Zeiss microscope, and digital images were assembled using COMBINE ZM open software (Haddley 2011). The key to Neotropical species was adapted from that of Young (1977). Specimens studied are deposited in the Colección Entomología Museo de Ciencias Naturales de La Plata (MLP) and Colección Entomología, Instituto Fundación Miguel Lillo (IFML). Abbreviations used in this paper are as follows: AP = articulation point, DE = denticles, TO = tooth, VID = ventral interlocking device.

TAXONOMY

Key to neotropical species of Plesiommata

The characteristics of *P. zanolae* were taken from Cavichioli (1999). This species keys to couplet ‘2’ in Young’s (1977) key as follows:

1. Crown of head with a median black spot behind apex ... 2
 Crown of head with an apical black spot but no median spot behind it .. 3

2. Aedeagal shaft in lateral view with a dorsal expansion at midlength; valvula I of ovipositor with VID long, distinct on basal half of shaft, dorsal margin of valvula II bearing discontiguous and protuberant teeth, each tooth with posterior margin declivous bearing minuscule denticles ... *P. mollicella* (Fowler) (Fig. 2)
 Aedeagal shaft in lateral view abruptly expanded at apex, without a dorsal expansion at midlength; valvula I of ovipositor with VID short, distinct on basal third of shaft, dorsal margin of valvula II bearing contiguous, non-protuberant teeth, each tooth with posterior margin concave bearing larger denticles .. *P. corniculata* Young (Fig. 1)

3. Specimens with a narrow median dark-brown stripe on pronotum, scutellum and anal margin of forewings *P. zanolae* Cavichioli. See Cavichioli (1999: 1014).
 Specimens without such a stripe Nearctic species. See Young (1977: 600).

Plesiommata corniculata Young 1977

(Fig. 1)

Plesiommata corniculata Young 1977: 601

Material examined

Holotype

Male: Rio ‘Caraguata’\Mato Grosso\Brazil\March 1953\(F. Plaumann) (NCS).

Other material

ARGENTINA: 1 male, 1 female, Concordia Entre Ríos\XII-19-1941\Birabén-Bezzi (MLP); 1 male, Federación Entre Ríos\XII-03-1941\Birabén-Bezzi (MLP); 2 males, El Rabón Santa Fe \XI-27-1939\Birabén-Bezzi (MLP); 4 males, 1 female, Santa Inés Misiones\XII-13-1941\Birabén-Bezzi (MLP); 3 males, 5 females, Montecaseros\Corrientes\II-11-1987 con luz\Pánigua (MLP); 1 male, Mercedes Corrientes\XII-16-1941 \Birabén-Bezzi (MLP); 1 male, 1 female, Bella Vista Corrientes\III-10-2015\B. Defea (MLP); 1 male, 1 female, Bella Vista Corrientes\V-12-2015\B. Defea (MLP).

Female genitalia

Sternite VII (Fig. 1b) short, basal width 2× median length. Posterior margin transverse, sometimes with short median tip, lateral margins convergent posteriorly and rounded laterally. Internal sternite VIII membranous, not forming sclerites. Pygofer (Fig. 1c), in lateral view, suboval with posterior margin short and narrowly rounded; with several robust macrosetae on apical half extending anteriorly along ventral margin and many macrosetae clustered on dorsal surface. Valvifers I (Fig. 1d), in lateral view, subrectangular with anterodorsal margin scarcely more sclerotized. Valvulae I of ovipositor (Fig. 1f), in lateral view, blade-shaped, basal end directed upward with anterior edge rounded. Dorsal sculptured area extending along apical 4/5 of shaft, formed mostly by scale-like processes not imbricated, arranged in oblique lines. Ventral sculptured area less developed, covering median 1/3 of shaft, formed mostly by horizontal spaced processes except subapical surface covered by scale-like processes. Ventral interlocking device distinct on basal third of shaft. Apex acute (Fig. 1g). Valvifers II (Fig. 1e), in lateral view, slender subrectangular shaped, with a median rounded area less sclerotized next to robust microsetae clustered near articulation point; posterior margin concave and more sclerotized. Valvulae II (Fig. 1h), in lateral view, broad beyond basal curvature, with dorsal margin of shaft almost straight and bearing approximately 16 contiguous teeth, each tooth (Fig. 1i, j) subtriangular with posterior margin concave and longer than anterior margin, bearing numerous subtriangular denticles. Preapical prominence absent; apical area distinctive with margins sharpened and denticulate, apex rounded (Fig. 1k); ducts reaching teeth and apex. Gonoplacs (Fig. 1l), in lateral view, with basal half narrow and apical half distinctly expanded; apex rounded.

Geographical distribution

Bolivia, Brazil, Colombia, Costa Rica, Grenada, British Guiana (Guyana), Dutch Guiana (Surinam), Mexico, Panama, Paraguay, Trinidad and Venezuela (Young 1977). New country and provincial records: Argentina: Corrientes, Entre Ríos, Misiones and Santa Fe.

Host plants

‘Sweet potato’, ‘avocado’, ‘grasses’ (Young 1977), *Citrus sinensis* ‘sweet orange’ (Marucci et al. 2002; Yamamoto et al.)
Phytosanitary importance

Vector of *X. fastidiosa* in Brazil (Krügner et al. 2000).

Plesiommata mollicella (Fowler 1900)

(Fig. 2)

Plesiommata mollicella (Fowler 1900: 289)
Plesiommata mollicella (Fowler), Christensen 1942: 337

The complete synonym list of *P. mollicella* is available on Takiya’s website (Takiya 2015).

Material examined

ARGENTINA: 7 females, Villa Guillermina Santa FéII-1946 | Willink-Hayward | Det. D. A. Young (IFML); 1 male, Vera Santa Fé24-XI-1939 | Birabén-Bezzi (MLP); 1 male, Reconquista Santa Fé26-XI-1939 | Birabén-Bezzi (MLP); 1 female, Tirol Chaco7-XII-1939 | P. Denier (MLP); 1 female, Resistencia Chaco20-III-1939 | P. Denier (MLP); 1 male, Concordia Entre Ríos15-XI-2011 | J. P. Bouvet | s/arándanos (MLP); 5 females, 5 males Bella Vista CorrientesVI-2014 | B. Defea (MLP).

Female genitalia

Sternite VII (Fig. 2b) short, basal width 2× median length. Posterior margin transverse, lateral margins convergent posteriorly...
and rounded laterally. Internal sternite VIII membranous, not forming sclerites. Pygofer (Fig. 2c), in lateral view, suboval with posterior margin short and narrowly rounded; with several robust macrosetae on apical half extending anteriorly along ventral margin and few spaced macrosetae on dorsal surface. Valvifers I (Fig. 2d), in lateral view, subrectangular, with anterodorsal margin more sclerotized and declivous. Valvulae I of ovipositor (Fig. 2f), in lateral view, blade-shaped, basal end straight and anterior edge truncated. Dorsal sculptured area extending along shaft from ramus to apex; formed mostly by scale-like processes not imbricated, arranged in oblique lines. Ventral sculptured area less developed, covering median 1/3 of shaft, formed mostly by horizontal spaced processes except subapical surface covered by scale-like processes. Ventral interlocking device distinct on basal half of shaft. Apex acute (Fig. 2g). Valvifers II (Fig. 2e), in lateral view, wide and subrectangular shaped, with a median rounded area less sclerotized next to robust microsetae clustered near articulation point; posterior margin rectilinear and strongly sclerotized. Valvulae II (Fig. 1h), in lateral view, broad beyond basal curvature, with dorsal margin of shaft regularly convex bearing approximately 24 non-contiguous and protuberant teeth (Figs. 2i,j), each tooth subtriangular with posterior margin declivous and longer than anterior margin, bearing numerous subtriangular denticles. Preapical prominence absent; apical area broad with margins denticulate; apex rounded (Fig. 2k); ducts reaching teeth and apex. Gonoplacs, in lateral view, with basal half narrow and apical half distinctly expanded; apex rounded (as Fig. 1l).

Geographical distribution

Mexico, Belize, Guatemala, Costa Rica, Panama, Colombia, Venezuela, French Guiana, Ecuador, Bolivia, Paraguay, Brazil and Argentina (Young 1977), Nicaragua (Maes & Godoy 1993). Argentina: Buenos Aires, Cordoba, Salta, Tucuman (Paradell 1995), Misiones (Remes Lenicov et al. 1999) and Entre Rios (Paradell et al. 2001); New provincial records: Chaco and Santa Fe.

Host plants

Zea mays ‘corn’, *Triticum aestivum* ‘wheat’, *Avena sativa* ‘oat’ and associated weeds (Paradell 1995), *Sorghum vulgare* (Pers.)
Phyto... importance
Positive for X. fastidiosa in Entre Ríos province, Argentina (Dellapé 2013).

DISCUSSION

Plesiommata zanolae can be reliably separated from P. corniculata and P. mollicella by the colour pattern and aedeagal morphology. It is easily recognised by the following: (1) presence of a dark brownish narrow stripe along the pronotum, scutellum and anal margins of the tegmina; and (2) aedeagial shaft subcyllindrical with two dorsal expansions that end near the acute apex (Cavichioli 1999:1014). Externally, P. corniculata is most similar to P. mollicella in having almost the same colour pattern (Figs 1a and 2a). These species can coexist in the same environment and can be distinguished by the aedeagal and ovipositor morphology. Plesiommata corniculata presents a short VID in valvula I (Fig. 1f) and contiguous non-protuberant teeth in valvula II (Fig. 1i), each tooth bearing numerous small denticles (Fig. 1j). Plesiommata mollicella is characterised by having a long VID, distinctive on the basal half of valvula I (Fig. 2f) and by the presence of discontinuous and protuberant teeth on the dorsal margin of valvula II (Fig. 2i), each tooth bearing numerous tiny denticles (Fig. 2j). Likewise, slight differences can be observed on the remaining female genital structures (sternite VII, pygofer, valvifers I and II) (Figs 1b-e and 2b-e).

ACKNOWLEDGMENTS
This research was supported in part by Grant 11 N/723 of UNLP, Argentina. Financial support to B. Defea and AM M. Remes Lenicov was provided by Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and to S. Paradell by Comisión de Investigaciones Científicas (CIC). We thank the reviewers for their helpful comments and suggestions.

REFERENCES

Carvalho RA & Mejdalani G. 2014. Remarkable morphological features of taxonomic interest in the female genitalia of five Erythrogonia species (Hemiptera: Cicadomorpha: Cicadellidae). Zootaxa 3872, 275–290.

Cavichioli RR. 1999. Plesiommata zanolae sp.n. (Hemiptera, Auchenorrhyncha, Cicadellidae) do Mato Grosso, Brasil. Revista Brasileira de Zoologia 16, 1013–1015.

© 2016 Australian Entomological Society
Paradell S, Virla E & Toledo A. 2001. Leafhoppers species richness and abundance on corn crops in Argentina (Insecta-Hemiptera-Cicadellidae). *Boletín de Sanidad Vegetal – Plagas* **27**, 465–474.

Paradell SL, Maciá A & Asborno M. 2014. Diversity of leafhoppers (Hemiptera: Cicadellidae) in experimental rice lots and associated weeds in Buenos Aires province, Argentina. *Studies on Neotropical Fauna and Environment* **49**, 213–221.

Redak RA, Purcell AH, Lopes JRS, Blua MJ, Mizell RF & Andersen PC. 2004. The biology of xylem fluid feeding insect vectors of *Xylella fastidiosa* and their relation to disease epidemiology. *Annual Review of Entomology* **49**, 243–270.

Remes Lenicov AM, Paradell S, de Coll O & Agostini J. 1999. Cicadelinos asociados a citrus afectados por Clorosis Variegada (CVC) en la República Argentina (Insecta-Homoptera-Cicadellidae). *Revista de la Sociedad Entomológica Argentina* **58**, 211–225.

de Remes Lenicov AMM, Paradell S & Catalano MI. 2006. “Hemípteros auquenorrincos perjudiciales al cultivo de sorgo en la Argentina”. (Insecta-Hemiptera). *Revista de Investigación Agropecuaria, INTA* **35**, 3–20.

Takiya DM. 2015. Sharpshooter (Cicadellinae) database search. [Accessed 28 December 2015.] Available from URL: http://takiya.speciesfile.org/search.asp?key=Proconia&lng=En.

Toledo JM, Vera R, Lascano C & Lenné JL. 1989. Andropogon gayanus Kunth. In: *Un Pasto Para los Suelos Ácidos del Trópico* (ed Centro Internacional de Agricultura Tropical), pp. 406. CIAT, Cali, Colombia.

Yamamoto PT, Roberto SR, Dalla Pria Júnior W, Felippe MR & De Freitas EP. 2002. Espécies e flutuação populacional de cigarrinha sem viveiro de citros, no município de Mogi-Guaçu-SP. *Revista Brasileira de Fruticultura, Jaboticabal – SP* **24**, 389–394.

Young DA. 1968. Taxonomic study of the Cicadellinae (Homoptera, Cicadellidae). Part I, Proconini. *United States National Museum Technical Bulletin* **261**, 287.

Young DA. 1977. Taxonomic study of the Cicadellinae (Homoptera: Cicadellidae). Part II. New World Cicadellini and the genus *Cicadella*. *Technical Bulletin of the North Carolina Agricultural Experiment Station* **239**, 1135.

Accepted for publication 12 April 2016.