Clinical Significance of Cardio-Ankle Vascular Index as a Cardiovascular Risk Factor in Elderly Patients With Type 2 Diabetes Mellitus

Takashi Hitsumoto

Abstract

Background: The cardio-ankle vascular index (CA VI) is a novel physiological marker of atherosclerosis that reflects systemic arterial stiffness. The aim of this study was to clarify the clinical significance of CA VI as a risk factor for cardiovascular diseases (CVDs) in elderly patients with type 2 diabetes mellitus.

Methods: This cross-sectional study enrolled 216 elderly (≥ 65 years) outpatients with type 2 diabetes mellitus who were undergoing anti-diabetic treatment (96 males and 120 females; mean age, 75 ± 7 years (mean ± standard deviation)). Associations between CA VI and various clinical parameters were examined.

Results: CA VI was significantly higher in patients with a history of CVD than in those without a history of CVD (10.4 ± 1.4 vs. 9.5 ± 1.0, respectively, P < 0.001). There were significantly positive correlations between CA VI and various clinical parameters, such as skin autofluorescence (r = 0.47, P < 0.001), high-sensitivity cardiac troponin T levels (r = 0.39, P < 0.001), and reactive oxygen metabolite levels (r = 0.28, P < 0.001). Furthermore, multiple regression analyses revealed that these clinical parameters ((skin autofluorescence (β = 0.30, P < 0.001), high-sensitivity cardiac troponin T levels (β = 0.18, P < 0.001), reactive oxygen metabolite levels (β = 0.15, P < 0.01), and a history of CVD (β = 0.19, P < 0.001)) were independent variables when CA VI was used as a subordinate factor.

Conclusion: Findings of this study indicate that CA VI may be an important CVD risk factor in elderly patients with type 2 diabetes mellitus. Further investigations in a large number of prospective studies, including intervention therapies, are required to validate our results.

Keywords: Cardio-ankle vascular index; Cardiovascular risk factors; Skin autofluorescence; High-sensitivity cardiac troponin T; Oxidative stress; Elderly; Type 2 diabetes mellitus

Introduction

Type 2 diabetes mellitus is one of the most important risk factors for cardiovascular diseases (CVDs). The population of elderly patients with type 2 diabetes mellitus has been increasing worldwide due to extended life expectancy [1-3]. Therefore, to prevent CVD, it is important to consider a diagnostic or therapeutic strategy for elderly patients with type 2 diabetes mellitus as well as for young-to-middle-aged patients with type 2 diabetes mellitus.

Arterial dysfunction is an important factor for CVD incidence. Among physiological markers of arterial function, the cardio-ankle vascular index (CA VI) is a novel marker of atherosclerosis, which reflects arterial stiffness in the aorta, femoral, and tibial arteries [4]. This stiffness parameter has been reported to be independent of blood pressure levels during measurements. Furthermore, some clinical studies have indicated that CA VI is significantly associated with macro- and microvascular complications in patients with type 2 diabetes mellitus [5, 6].

To the best of our knowledge, there are no reports regarding the clinical significance of CA VI as a CVD risk factor in elderly patients with type 2 diabetes mellitus. Therefore, this cross-sectional study attempts to clarify the clinical significance of CA VI as a risk factor for CVD in elderly patients with type 2 diabetes mellitus.

Materials and Methods

Patients

Patients in this study were enrolled between August 2015 and July 2017. The study population comprised 216 elderly outpatients (≥ 65 years) with type 2 diabetes mellitus, who were undergoing antidiabetic treatment at the Hitsumoto Medical Clinic. The patients included 96 (44.4%) males and 120 (55.6%) females, with a mean age of 75 ± 7 years (mean ± standard deviation). All participants provided informed consents, and the local Ethics Committee approved the study protocol.

CAVI measurement

CAVI was measured using a VaSera CAVI instrument (Fuku-
Estimation of cardiovascular risk factors

Various clinical parameters, such as classic CVD risk factors, blood glucose-related parameters, kidney function, brain natriuretic peptide (BNP) levels, high-sensitivity cardiac troponin T (hs-cTnT) levels, and oxidative stress were evaluated. Obesity was identified using body mass index, calculated as the weight (kg) divided by the squared height (m²). Systemic blood and pulse pressures were simultaneously determined, with the participant in a supine position. CAVI was measured after the participants had rested for 10 min in a quiet room. The average coefficient of variation in CAVI has been shown to be less than 5%, which is small enough for clinical use and indicates that CAVI measurement has good reproducibility.

Statistical analysis

A commercially available statistical software program (Stat View-J 5.0; HULINKS, Tokyo, Japan) was used for all statistical analyses. Data in the study are expressed as mean ± standard deviation. Between-group comparisons were performed using Student’s t-test. Simple regression analysis was performed using the Spearman rank correlation, and a multi-
variate analysis was performed using multiple regression or multiple logistic regression analyses. A P-value of < 0.05 was considered statistically significant.

Results

Table 1 summarizes patient characteristics. In total, 73 (34%) patients had a history of CVD, such as coronary artery disease, cerebrovascular disease, or heart failure, upon admission. Mean CAVI level was 9.8 ± 1.2, ranging from 7.5 to 14.5. Figure 1 presents comparisons of CAVI levels between patients with CVD and those without CVD. CAVI was significantly higher in patients with CVD than in those without CVD (10.4 ± 1.4 vs. 9.5 ± 1.0, respectively, P < 0.001) even though mean age was similar between the two groups (76 ± 7 years vs. 75 ± 7 years, respectively). *P < 0.001 vs. CVD (-). CAVI: cardio-ankle vascular index; CVD: cardiovascular disease.

Figure 1. Comparisons of CAVI values between patients with and without CVD. CAVI was significantly higher in patients with CVD than in those without CVD (10.4 ± 1.4 vs. 9.5 ± 1.0, respectively, P < 0.001) even though mean age was similar between the two groups (76 ± 7 years vs. 75 ± 7 years, respectively). *P < 0.001 vs. CVD (-). CAVI: cardio-ankle vascular index; CVD: cardiovascular disease.

Discussion

Clinical studies have shown an association between CAVI and CVD including coronary artery disease [5, 13-15]. The results of this cross-sectional study also indicate that CAVI levels are higher in patients with CVD than in patients without CVD even when their mean age is similar. Furthermore, a history of CVD or coronary artery disease was identified as an independent variable for CAVI (as a subordinate factor), suggesting that CAVI is a considerable risk factor for CVD in elderly patients with type 2 diabetes mellitus.

Among glucose-related factors, only skin AF was independently associated with CAVI in our study. To the best of our knowledge, this is the first report of an independent association between skin AF and CAVI in patients with type 2 diabetes mellitus. Basic studies have reported that AGES or their receptors can induce inflammation, oxidative stress, and calcification in vascular cells, such as endothelial or smooth muscle cells [16-18]. Moreover, clinical studies have also indicated a significant association between skin AF and physiological markers of arterial function [19, 20]. In contrast, AGEs are considered to be markers expressing “hyperglycemic memory” [21], and a study regarding the association between skin AF and HbA1c levels has reported that skin AF level was significantly associated with means of the last five and 10 HbA1c values [22]. Thus, taken together, all these results suggest that long-term glucose control is necessary to maintain arterial function in patients with type 2 diabetes mellitus.

Basic science and clinical studies support a role of oxidative stress in the pathogenesis of CVD in patients with un-
derlying diabetes mellitus [23, 24]. Furthermore, there is a significant association between oxidative stress in vivo and various physiological markers of arterial function, including CAVI, in diabetic patients [25-29]. Our results also indicate that d-ROMs test (a marker of oxidative stress in vivo) is an independent factor for altered CAVI values in elderly patients with type 2 diabetes mellitus. Previous studies have reported that medications (antidiabetic, antihyperlipidemic, and antihypertension drugs) decrease oxidative stress in vivo and improve CAVI values in these patients [25, 26]. The results of this study indicate no significant correlation between the type of medication used and CAVI values; however, interventional studies are still required to examine the effectiveness of medications on oxidative stress and CAVI values in elderly patients with type 2 diabetes mellitus; we expect discoveries of new applications of antidiabetic, antihypertensive, and antihyperlipidemic drugs for the prevention of CVD.

Table 2. Relationship Between CAVI and Various Clinical Parameters

Explanatory factor	β	P value
Sex (female = 0, male = 1)	0.12	0.079
Age	0.19	< 0.001
Body mass index	0.04	0.566
Current smoker (no = 0, yes = 1)	0.11	0.105
Hypertension (no = 0, yes = 1)	0.13	0.059
Systolic blood pressure	0.30	< 0.001
Diastolic blood pressure	0.11	0.112
Dyslipidemia (no = 0, yes = 1)	0.08	0.288
Total cholesterol	-0.04	0.587
LDL-cholesterol	0.07	0.320
Triglyceride	-0.04	0.488
HDL-cholesterol	-0.10	0.139
Fasting blood glucose	0.11	0.105
HOMA-IR	0.14	< 0.05
Hemoglobin A1C	0.12	0.079
Skin autofluorescence	0.47	< 0.001
eGFR	-0.17	< 0.01
Log-BNP	0.13	< 0.05
Log-hs-cTnT	0.39	< 0.001
d-ROMs test	0.28	< 0.001
Sulfonylurea (no = 0, yes = 1)	0.03	0.501
Metformin (no = 0, yes = 1)	0.04	0.594
DPP-4 inhibitor (no = 0, yes = 1)	-0.06	0.320
Insulin (no = 0, yes = 1)	0.02	0.739
RAS inhibitor (no = 0, yes = 1)	-0.09	0.159
Statin (no = 0, yes = 1)	-0.10	0.142

CAVI: cardio-ankle vascular index; CVD: cardiovascular disease; hs-cTnT: high-sensitivity cardiac troponin T; d-ROMs: derivatives of reactive oxygen metabolites; eGFR: estimated glomerular filtration rate; β: standardized regression coefficient; R²: coefficient of determination.

Additionally, a decrease in urinary 8-hydroxydeoxyguanosine (a marker of oxidative stress in vivo) showed a significant positive correlation with the decrease in CAVI values after an intervention therapy using statins or angiotensin receptor blockers in patients with type 2 diabetes mellitus [25, 26]. The results of this study indicate no significant correlation between the type of medication used and CAVI values; however, interventional studies are still required to examine the effectiveness of medications on oxidative stress and CAVI values in elderly patients with type 2 diabetes mellitus; we expect discoveries of new applications of antidiabetic, antihypertensive, and antihyperlipidemic drugs for the prevention of CVD.

Table 3. Multiple Regression Analysis for CAVI

Explanatory factor	β	P value
Skin autofluorescence	0.30	< 0.001
CVD	0.19	< 0.001
Log-hs-cTnT	0.18	< 0.01
d-ROMs test	0.15	< 0.01
Age	0.12	< 0.05
eGFR	-0.08	0.193

R² = 0.32

CAVI: cardio-ankle vascular index; CVD: cardiovascular disease; hs-cTnT: high-sensitivity cardiac troponin T; d-ROMs: derivatives of reactive oxygen metabolites; eGFR: estimated glomerular filtration rate; β: standardized regression coefficient; R²: coefficient of determination.

It would be useful to set a target value for predicting CVD in the clinical setting. In this study, to clarify the clinical significance of CAVI measurements in elderly patients with type 2 diabetes mellitus, participants were divided into three groups on the basis of simple cut-off CAVI values and multiple logistic regression analysis was performed for detecting a correlation between CVD incidence and high hs-cTnT levels (≥ 0.014 ng/mL), which has been reported to be the cut-off level for predictive CVD incidence rate [42]. Our results indicated that patients with CAVI values of ≥ 10 or 9.1 - 9.9 exhibited a significantly higher risk of CVD and higher hs-cTnT levels than those with CAVI values of ≤ 9. This result is consistent with a report that a CAVI value of ≥ 9 is a predictor of cardiovascular events in...
patients with type 2 diabetes mellitus [5]. Mean CAVI value in this study population was 9.8, and the results of this and other studies indicate that age is an independent factor for high CAVI values in patients with type 2 diabetes mellitus [43]. However, CAVI can be decreased by medication, and increasing physical activity is an independent factor for improving CAVI values in patients with diabetes mellitus [44]. Therefore, we believe that the risk of CVD incidence in elderly patients with type 2 diabetes mellitus can be reduced through interventions, such as the use of appropriate medications or an improvement in physical activity, with target CAVI values of > 9 - 10.

Limitations

This study has several limitations. First, medical treatments for diabetes mellitus, hypertension, and/or dyslipidemia may have affected the study results. Second, a substantial number of patients without CVD did not undergo modalities, such as angiography, computed tomography, magnetic resonance imaging, and echocardiography; therefore, asymptomatic CVD may have remained undetected. Third, the HOMA-IR has limitations as a marker of insulin resistance, particularly in patients with high blood glucose levels, and this study included patients with high fasting blood glucose levels. Therefore, additional studies using another accurate insulin resistance marker, such as a glucose clamp test, are warranted to evaluate the association between insulin resistance and CAVI. Finally, the study design was single-center cross-sectional study, and the sample size was relatively small. Additional prospective studies, including evaluations of interventional therapies, are required to clarify the clinical significance of CAVI as a risk factor for CVD in elderly patients with type 2 diabetes mellitus.

Conclusions

Findings of this study indicate that CAVI is a novel marker of arterial function, which may be an important CVD risk factor in elderly patients with type 2 diabetes mellitus. Further investigations in a large number of prospective studies, including intervention therapies, will be required to validate the results of this study.

Competing Interests

Author has no competing interests.

Grant Support

None.

Financial Disclosure

None.

References

1. Narayan KM, Boyle JP, Geiss LS, Saadidine JB, Thompson TJ. Impact of recent increase in incidence on future diabetes burden: U.S., 2005-2050. Diabetes Care. 2006;29(9):2114-2116.
2. Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, Huang ES, et al. Diabetes in older adults. Diabetes Care. 2012;35(12):2650-2664.
3. Charvat H, Goto A, Goto M, Heianza Y, Arase Y, Sone H, et al. Impact of population aging on trends in diabetes prevalence: A meta-regression analysis of 160,000 Japanese adults. J Diabetes Investig. 2015;6(5):533-542.
4. Shirai K, Hiruta N, Song M, Kurosou T, Suzuki J, Tomaru T, Miyashita Y, et al. Cardio-ankle vascular index (CAVI) as a novel indicator of arterial stiffness: theory, evidence and...
perspectives. J Atheroscler Thromb. 2011;18(11):924-938.

5. Chung SL, Yang CC, Chen CC, Hsu YC, Lei MH. Coronary artery calcium score compared with cardio-ankle vascular index in the prediction of cardiovascular events in asymptomatic patients with type 2 diabetes. J Atheroscler Thromb. 2015;22(12):1255-1265.

6. Kim KJ, Lee BW, Kim HM, Shin JY, Kang ES, Cha BS, Lee EJ, et al. Associations between cardio-ankle vascular index and microvascular complications in type 2 diabetes mellitus patients. J Atheroscler Thromb. 2011;18(4):328-336.

7. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502.

8. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-419.

9. Meerwaldt R, Links TP, Graaff R, Hoogenberg K, Lefrandt JD, Baynes JW, Gans RO, et al. Increased accumulation of skin advanced glycation end-products precedes and correlates with clinical manifestation of diabetic neuropathy. Diabetologia. 2005;48(8):1637-1644.

10. Imai E, Horio M, Nitta K, Yamagata K, Iseki K, Hara S, Ura N, et al. Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. Clin Exp Nephrol. 2007;11(1):41-50.

11. Mingels A, Jacobs L, Michielsen E, Swaanenburg J, Wodzig W, van Dieijen-Visser M. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem. 2009;55(1):101-108.

12. Cesarone MR, Belcaro G, Carratelli M, Cornelli U, De Sanctis MT, Incandela L, Barsotti A, et al. A simple test to monitor oxidative stress. Clin Chem. 2009;55(1):101-108.

13. Kamamoto M, Matsumoto N, Shiga T, Kunimoto F, Saito S. Relationship between coronary artery stenosis and cardio-ankle vascular index (CAVI) in patients undergoing cardiovascular surgery. J Cardiovasc Dis Res. 2013;4(1):15-19.

14. Saji N, Kimura K, Yagita Y, Kawarai T, Shimizu H, Kita Y. Comparison of arteriosclerotic indicators in patients with ischemic stroke: ankle-brachial index, brachial-ankle pulse wave velocity and cardio-ankle vascular index. Hypertens Res. 2015;38(5):323-328.

15. Zhang C, Ohira M, Iizuka T, Mikamo H, Nakagami T, Suzuki M, Hirano K, et al. Cardio-ankle vascular index relates to left ventricular ejection fraction in patients with heart failure. A retrospective study. Int Heart J. 2013;54(4):216-221.

16. Yan SF, Ramasamy R, Schmidt AM. The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res. 2010;106(5):842-853.

17. Chang JS, Wendt T, Wu W, Kong L, Zou YS, Schmidt AM, Yan SF. Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ Res. 2008;102(8):905-913.

18. Suga T, Iso T, Shimizu T, Tanaka T, Yamagishi S, Takeuchi M, Imaizumi T, et al. Activation of receptor for advanced glycation end products induces osteogenic differentiation of vascular smooth muscle cells. J Atheroscler Thromb. 2011;18(8):670-683.

19. Coupee C, Dall CH, Svensson RB, Olsen RH, Karlson A, Praet S, Prescott E, et al. Skin autofluorescence is associated with arterial stiffness and insulin level in endurance runners and healthy controls - Effects of aging and endurance exercise. Exp Gerontol. 2017;91:9-14.

20. van Eupen MG, Schram MT, van Sloten TT, Scheijen J, Sep SJ, van der Kallen CJ, Dagnelie PC, et al. Skin Autofluorescence and Pentosidine Are Associated With Aortic Stiffening: The Maastricht Study. Hypertension. 2016;68(4):956-963.

21. Yamagishi S, Nakamura K, Imaizumi T. Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diab Res. 2005;1(1):93-106.

22. Genevieve M, Vivot A, Gonzalez C, Raffaitin C, Barber-Gateau P, Gin H, Rigalleau V. Skin autofluorescence is associated with past glycaemic control and complications in type 1 diabetes mellitus. Diabetes Metab. 2013;39(4):349-354.

23. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19(3):257-267.

24. Lippi S, B. Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complications. 2001;15(4):203-210.

25. Miyashita Y, Saiki A, Endo K, Ban N, Yamaguchi T, Kawan H, Nagayama D, et al. Effects of olmesartan, an angiotensin II receptor blocker, and amlodipine, a calcium channel blocker, on Cardio-Ankle Vascular Index (CAVI) in type 2 diabetic patients with hypertension. J Atheroscler Thromb. 2009;16(5):621-626.

26. Miyashita Y, Endo K, Saiki A, Ban N, Yamaguchi T, Kawan H, Nagayama D, et al. Effects of pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme reductase inhibitor, on cardio-ankle vascular index in type 2 diabetic patients. J Atheroscler Thromb. 2009;16(5):539-545.

27. Gomez-Marcos MA, Blazquez-Medela AM, Gamella-Pozuelo L, Recio-Rodriguez JI, Garcia-Ortiz L, Martinez-Salgado C. Serum superoxide dismutase is associated with vascular structure and function in hypertensive and diabetic patients. Oxid Med Cell Longev. 2016;2016:9124676.

28. Hitsumoto T. Clinical impact of hemorheology assessed using the microchannel array flow analyzer on renal resistive index in patients with type 2 diabetes mellitus. J Endocrinal Metab. 2017;7(5):146-152.

29. Hitsumoto T. Impact of hemorheology assessed by the microchannel method on pulsatility index of the common carotid artery in patients with type 2 diabetes mellitus. J Clin Med Res. 2017;9(7):579-585.

30. Alam MA, Chowdhury MRH, Jain P, Sagar MAT, Reza HM. DPP-4 inhibitor sitagliptin prevents inflammation and oxidative stress of heart and kidney in two kidney and
one clip (2K1C) rats. Diabetol Metab Syndr. 2015;7:107.

31. Lodovici M, Bigagli E, Tarantini F, Di Serio C, Raimondi L. Losartan reduces oxidative damage to renal DNA and conserves plasma antioxidant capacity in diabetic rats. Exp Biol Med (Maywood). 2015;240(11):1500-1504.

32. Hitsumoto T, Iizuka T, Takahashi M, Nakamura K, Shimizu K, Sato S, Sugiyama Y, et al. Losartan reduces oxidative damage to renal DNA and conserves plasma antioxidant capacity in diabetic rats. Exp Biol Med (Maywood). 2015;240(11):1500-1504.

33. Lodovici M, Bigagli E, Tarantini F, Di Serio C, Raimondi L. Losartan reduces oxidative damage to renal DNA and conserves plasma antioxidant capacity in diabetic rats. Exp Biol Med (Maywood). 2015;240(11):1500-1504.

34. Hitsumoto T, Iizuka T, Takahashi M, Nakamura K, Shimizu K, Sato S, Sugiyama Y, et al. Losartan reduces oxidative damage to renal DNA and conserves plasma antioxidant capacity in diabetic rats. Exp Biol Med (Maywood). 2015;240(11):1500-1504.