Complete minors and average degree: A short proof

Noga Alon1,2 | Michael Krivelevich3 | Benny Sudakov4

1Department of Mathematics, Princeton University, Princeton, New Jersey, USA
2Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv, Israel
3School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
4Department of Mathematics, ETH, Zürich, Switzerland

Correspondence
Benny Sudakov, Department of Mathematics, ETH, Zürich, Switzerland.
Email: benjamin.sudakov@math.ethz.ch

Funding information
National Science Foundation, Grant/Award Number: DMS-1855464; United States - Israel Binational Science Foundation, Grant/Award Number: 2018267; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: 200021_196965

Abstract
We provide a short and self-contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d has a complete minor of order $\Omega(d/\sqrt{\log d})$.

Keywords
clique minors, probabilistic methods

Let $G = (V, E)$ be a graph with $|E|/|V| \geq d$. How large a complete minor are we guaranteed to find in G? This classical question, closely related to the famed Hadwiger’s conjecture, has been thoroughly studied over the last half a century. It is quite easy to see the answer is at least logarithmic in d. Mader [3] proved it is of order at least $d/\log d$. The right order of magnitude was established independently by Kostochka [1, 2] and by Thomason [4] to be $d/\sqrt{\log d}$, its tightness follows by considering random graphs. Finally, Thomason found in [5] the asymptotic value of this extremal function.

Here we provide a short and self-contained proof of the celebrated Kostochka–Thomason bound.

Theorem 1. Let $G = (V, E)$ be a graph with $|E|/|V| \geq d$, where d is a sufficiently large integer. Then G contains a minor of the complete graph on at least $d/10\sqrt{\ln d}$ vertices.

The constant $1/10$ in the above statement is inferior to the best constant $3.13...$ found by Thomason [5] (yet is better than the constants in [1, 2]); we did not make any serious attempt to
optimize it in our arguments. The main point here is to give a short proof of the tight $\Omega(d/\sqrt{\log d})$ bound for this classical extremal problem.

Throughout the proof we assume, whenever this is needed, that the parameters n and d are sufficiently large. To simplify the presentation we omit all floor and ceiling signs in several places. For a graph $G = (V, E)$, its minimum degree is denoted by $\delta(G)$, and for $v \in V$ we use $N_G(v)$ for the external neighborhood of v in G.

We need the following lemma proven by simple probabilistic arguments.

Lemma 2. Let $H = (V, E)$ be a graph on at most n vertices with $\delta(H) \geq n/6$. Let $t \leq n/\sqrt{\ln n}$, and let $A_1, ..., A_t \subseteq V$ with $|A_j| \leq ne^{-\sqrt{\ln n}/3}$ for all $1 \leq j \leq t$. Then there is a set $B \subseteq V$ of size $|B| \leq 3.1 \sqrt{\ln n}$ such that B dominates all but at most $n e^{-\sqrt{\ln n}/3}$ vertices of V, $B \setminus A_j \neq \emptyset$ for all $j = 1, ..., t$, and the induced subgraph $G[B]$ has at most six connected components.

Proof. Set $s = 3.1 \sqrt{\ln n}$ and choose s vertices of V independently at random with repetitions. Let B be the set of chosen vertices. Observe that for every vertex $v \in V$,

$$\Pr[N(v) \cap B = \emptyset] \leq \left(1 - \frac{d(v)}{n}\right)^s \leq e^{-sd(v)/n} \leq e^{-s/6}.$$

Hence the expected number of vertices not dominated by B is at most $n e^{-s/6} < ne^{-3.1 \sqrt{\ln n}/6} < ne^{-\sqrt{\ln n}/2}$, and by Markov’s inequality, it is at most $n e^{-\sqrt{\ln n}/3}$ with probability exceeding $1/2$ (with room to spare). Also, since $|V| > \delta(H) \geq n/6$, for every subset A_j,

$$\Pr[B \subseteq A_j] = \left(\frac{|A_j|}{|V|}\right)^s \leq \left(\frac{6|A_j|}{n}\right)^s \leq 6^s e^{-s\sqrt{\ln n}/3} \leq 6^s e^{-3.1 \ln n/3} < \frac{1}{n}.$$

Therefore the probability that $B \setminus A_j \neq \emptyset$ for all j is at least $1 - t/n \geq 1 - 1/\sqrt{\ln n}$.

We now argue about the number of connected components in $G[B]$. Writing $B = (v_1, ..., v_t)$, for $1 \leq i \leq s$ let x_i be the random variable counting the number of indices $1 \leq j \neq i \leq s$ for which v_j is a neighbor of v_i. Conditioning on v_i, we see that x_i is distributed as a binomial random variable with parameters $s - 1$ and $d(v_i)/|V| > 1/6$. Hence invoking the standard Chernoff-type bound on the lower tail of the binomial distribution, we derive that $\Pr[x_i < s/7] \leq e^{-\Theta(s)}$. Applying the union bound over all $1 \leq i \leq s$, we conclude that with probability $1 - o(1)$, we have $x_i \geq s/7$ for all i. Finally, observe that since $s \ll \sqrt{|V|}$, with probability $1 - o(1)$ there are no repetitions in B, and hence $d(v_i, B) = x_i \geq s/7$ for all $1 \leq i \leq s$. But then all connected components of $G[B]$ are of size exceeding $s/7$, and therefore $G[B]$ has at most six connected components.

Combining the above three estimates, the desired result follows.

Proof of Theorem 1. Let $G' = (V', E')$ be a minor of G such that $|E'| \geq d|V'|$ and $|V'| + |E'|$ is minimal. If an edge e of G' is contained in t triangles then contracting e gives a minor of G with one vertex and $t + 1$ edges less. By the minimality of G' we have $t + 1 > d$, implying $t \geq d$. Hence for every edge $e = (u, v) \in E(G')$, the vertex u is connected by an edge of G' to at least d neighbors of v. The minimality of G' also implies $|E'| = d|V'|$, hence G' has a vertex v of degree at most $2d$. Let H be the subgraph of G'
induced by $N_G(v)$. Then H has at most $2d$ vertices and minimum degree at least d. Obviously a minor of H is a minor of G as well.

We now argue that H contains a $d/3$-connected subgraph H_1 with $\delta(H_1) \geq 2d/3$. If H itself is $d/3$-connected this holds for $H_1 = H$. Otherwise, there is a partition $V(H) = A \cup B \cup S$, where $A, B \neq \emptyset$, $|S| < d/3$, and H has no edges between A and B. Assume without loss of generality $|A| \leq |B|$. Then $|A| \leq d$, and since $\delta(H) \geq d$, every vertex $v \in A$ has at least $2d/3$ neighbors in A, implying that every pair of vertices of A has at least $d/3$ common neighbors in A. Hence the induced subgraph $H_1 := H[A]$ is $d/3$-connected, has at most $2d$ vertices and satisfies $\delta(H_1) \geq 2d/3$.

Set $i = 1$ and repeat the following iteration $d/10\sqrt{\ln d}$ times. Let $H_i = (V_i, E_i) \subseteq H_1$ be the current graph, and suppose A_1, \ldots, A_{i-1} are subsets of V_i of cardinalities $|A_j| \leq 2de^{-\sqrt{\ln(2d)}/3}$ (representing the nonneighbors of the previously found branch sets B_j in V_j). We assume (and justify it later) that H_i is connected and has $\delta(H_i) > d/3$. Then the diameter of H_i is at most 14, as on any shortest path $P = (v_0, v_1, \ldots)$ in H_i the vertices at positions divisible by three have pairwise disjoint neighborhoods. Since $|V(H_i)|/\delta(H_i) < 6$, the number of such neighborhoods is at most 5, and therefore any shortest path has at most 15 vertices. Applying Lemma 2 with $H := H_i$, $n := 2d$, $t := i - 1$, and A_1, \ldots, A_{i-1} (for the initial step $i = 1$ there are no A_j's to plug into Lemma 2—which of course does not hinder its application) we get a subset B_i of cardinality $|B_i| \leq 3.1\sqrt{\ln(2d)}$ as promised by the lemma. We now turn B_i into a connected set by adding few vertices of H_i if necessary. Recall that $H_i[B_i]$ has at most six connected components. Connecting one of them by shortest paths in H_i to all others and recalling that H_i has diameter at most 14, we conclude that by appending to B_i all the vertices of these paths we make it connected by adding to it at most $13 \times 5 = 65$ vertices. Altogether we obtain a connected subset B_i of cardinality $|B_i| \leq (3.1 + o(1))\sqrt{\ln(2d)}$, dominating all but at most $2de^{-\sqrt{\ln(2d)}/3}$ vertices of V_i and having a vertex outside every A_j (these properties are preserved under vertex addition when making B_i into a connected subset)—meaning connected to every previous B_j. We now update $V_{i+1} := V_i - B_i$, $A_i := V_{i+1} - N_{H_i}(B_i)$, and $A_j := A_j \cap V_{i+1}$, $j = 1, \ldots, i - 1$, and finally increment $i := i + 1$, set $H_i := H[V_i]$, and proceed to the next iteration. The total number of vertices deleted in all iterations satisfies:

$$|\cup_i B_i| \leq \frac{d}{10\sqrt{\ln d}} \cdot (3.1 + o(1))\sqrt{\ln(2d)} < \frac{d}{3},$$

and since we started with the $d/3$-connected graph H_1 with $\delta(H_1) \geq 2d/3$, we indeed have that at each iteration the graph H_i is connected and has $\delta(H_i) > d/3$.

After having completed all $d/10\sqrt{\ln d}$ iterations, we get a family of $d/10\sqrt{\ln d}$ branch sets B_i, all connected, and with an edge of H_i between every pair of branch sets. Hence they form a complete minor of order $d/10\sqrt{\ln d}$ as promised.

ACKNOWLEDGMENTS
This research was supported as part by NSF grant DMS-1855464, USA-Israel BSF grant 2018267 and by SNSF grant 200021_196965.
ORCID
Michael Krivelevich https://orcid.org/0000-0003-2357-4982

REFERENCES
1. A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982), 37–58 (in Russian).
2. A. V. Kostochka, A lower bound for the Hadwiger number of graphs by their average degree, Combinatorica. 4 (1984), 307–316.
3. W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968), 154–168.
4. A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261–265.
5. A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B. 81 (2001), 318–338.

How to cite this article: N. Alon, M. Krivelevich and B. Sudakov, Complete minors and average degree: a short proof, J. Graph Theory. 2023;103:599–602.
https://doi.org/10.1002/jgt.22937