When Aggregation-Induced Emission Meets Protein Aggregates

Sicheng Tang1,3, Songtao Ye1,3, Xin Zhang*1,2

1Department of Chemistry, 2Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States, 3These two authors contribute equally to this work, *Correspondence should be addressed to Xin Zhang (xuz31@psu.edu).

Protein misfolding and aggregation have been associated with a number of human diseases. As a multistep process (Fig. 1a), protein unfolding yields misfolded intermediates as either monomers or oligomers, which evolve into insoluble aggregates as amorphous aggregates or amyloid-\(\beta\) fibrils. Detection of protein aggregates is of high interest as it could generate unprecedented insights into biogenesis, regulation and pathology of protein aggregation. Previous efforts using fluorescence detection has generated various fluorophores with different fluorescence turn-on mechanism and wide spectrum coverage. However, the \(\pi\)-rich conjugated system of these traditional fluorophores often suffers from aggregation caused quenching (ACQ). Based on the tetraphenylethene (TPE) scaffold, aggregation induced emission (AIE) fluorophores was introduced by Tang and coworkers to avoid the ACQ feature as AIE fluorophores (AIEgens) exhibit strong fluorescence when aggregate due to restricted intramolecular motion (RIM) \cite{1}. In recent years, AIEgens have been developed to detect protein unfolding, oligomerization and aggregation. These results also potentiate AIEgens as powerful means to modulate this important biological process for the benefit of human health.

It is generally recognized that protein aggregation is initiated with a partial unfolding of the folded proteins. Therefore, studies on dynamics of the unfolding process is vital for the early...
detection of protein aggregation. To this end, an unfolding-induced fluorescence quenching is achieved by a water soluble TPE-based AIEgen to visualize the unfolding events of human serum albumins (HSAs) in the presence of guanidine hydrochloride (GdnHCl) [2]. The fluorescence is activated in folded HSA when such fluorophore is docked onto the interdomain hydrophobic regions. The unfolding process, however, frees these water-soluble AIE fluorophores into the aqueous solvent and quenches fluorescence in a stepwise manner. This work settled the controversial studies of the unfolding process of HSA by revealing a three-steps conformational change as formation of unfolded coils, molten globule intermediates and the final domain separation. Conversely, unfolding-induced fluorescence activation is also used to report on protein unfolding and proteostasis stress using TPE maleimide (TPE-MI, Fig. 1b) [3]. TPE-MI remain non-emissive either in solution or aggregate state and could only be activated by two criteria: (1) the removal of the quenching effect by conjugating MI to thiol and (2) restricted intramolecular rotation (RIR) of TPE. When intracellular proteins unfold, exposed free cystines and hydrophobic cores collectively activate the fluorescence of TPE-MI. Because of the unique behavior of TPE-MI, it bypasses the false positive signal from accessible thiols on folded protein surface and non-protein thiols such as glutathione, offering a unique opportunity to report on protein unfolding in live cells.

Recent studies have revealed that toxic misfolded protein oligomers could undermine the cellular proteostasis network and further evolve into protein aggregates, in particular, amyloid fibrils. In this regard, a biocompatible AIEgen, 1,2-Bis[4-(3-sulfonatopropoxy)phenyl]-1,2-diphenylethene salt (BSPOTPE), is developed to report insulin amyloidogenesis [4]. BSPOTPE exhibits significant fluorescence activation that correlates with insulin nucleation, elongation, and equilibrium phases, thereby enabling the detection of misfolded oligomers and the
evaluation of amyloidogenesis kinetics. More interestingly, BSPOTPE is found to be a potent \textit{in-situ} kinetic stabilizer that inhibits insulin amyloid cascade with a dose-dependent manner. Furthermore, AIE probe TPE-TPP, is developed to distinguish the misfolded oligomers of \(\alpha\)-synuclein, without affecting its fibrillation (Fig. 1b) [5]. Distinct from commonly used Thioflavin-T (ThT), which only detect mature fibrils, TPE-TPP exhibits a significant fluorescence enhancement and a shorter lag phase when monitoring \(\alpha\)-synuclein fibrillation (Fig. 1c). This quick fluorescence activation indicates that TPE-TPP is able to detect the intermediate misfolded oligomers during the process of fibrillation. In addition to BSPOTPE and TPE-TPP, several aggregation-detecting AIEgens have been developed to extend the spectral coverage of the probes [6] as well as the variety of proteins [7].
Figure 1. Detecting protein aggregation using AIEgens. (a) The multi-step process of protein aggregation. (b) Examples of TPE-based AIEgens to detect protein aggregation. TPE-MI: tetraphenylethene maleimide. BSPOTPE: 1,2-Bis[4-(3-sulfonatopropoxy)phenyl]-1,2-diphenylethene salt. TPE-TPP: bis(triphenylphosphonium) tetraphenylethene. (c) α-synuclein aggregation monitored by TPE-TPP. (d) Structure of AggFluor probes. (e) Converting ACQ probes to AIEgens. (f) Ratiometric imaging of protein aggregation using NTPAN-MI. (d) was modified with permission from Wolstenholme et al. [8]; (f) was modified with permission from Owyong et al. [10].

Besides the most commonly used TPE scaffold, novel AIEgens have also been reported to detect protein aggregation. The chromophore of green fluorescent protein, 4-
hydroxybenzylidene-imidazolinone (HBI), has been modulated to detect and differentiate misfolded oligomers and protein aggregation by sensing the local viscosity changes [8]. These fluorophores, named AggFluor, comprise a series of AIEgens that exhibit a broad coverage of sensitivity towards local viscosity (Fig. 1d). Combined with the notable self-labeling protein tagging technologies, AggFluors can enable multi-color imaging capacity which is suitable to address complex cellular events including regulation of protein aggregation and membraneless organelles. Strategies have also been proposed to convert existing ACQ probes to AIEgens through introduction of bulky ethyl group to prevent π-π stacking [9]. Further functionalization results in extended wavelength to near infrared region for compound QM-FN-SO$_3$ (Fig. 1e), thus enabling the high-fidelity fluorogenic detection of amyloid-β in living mice. Finally, a novel class of push-pull fluorophores (NTPAN-MI) that exhibit strong solvatochromism are reported by changing one phenyl ring of TPE-maleimide with an electron-withdrawing cyano group (Fig. 1f) [10]. Enabled by these newly designed molecules, they revealed the intracellular unfolded protein load and mapped the intracellular polarity profile when cells are under stress (Fig. 1f). The outcome from this work suggests a more hydrophilic local environment in the nucleus under various stresses, which relates to multiple nucleus function during stress response.

As a powerful molecular toolbox to study protein aggregation, the broad chemical space of AIEgens potentiates exciting applications via the development of novel chemical scaffolds and structures. For instance, imaging protein aggregation in living organisms or tissue samples can be achieved if the spectral coverage of AIEgens is systematically tuned to the range of near-infrared (NIR-I and NIR-II) in order to minimize background signal and maximize tissue penetration. Beyond imaging as a potential diagnostic application, the bright future of AIEgens lies in their capacity to serve as imaging-guided theranostic agents. Photodynamic therapy (PDT)
based on photosensitizers under light irradiation can go through intersystem crossing to triplet state, followed by the generation of $^{1}\text{O}_2$ for efficient ablation of unhealthy cells. AIEgens outperform traditional photosensitizers by avoiding ACQ, which would significantly reduce $^{1}\text{O}_2$ generation in aggregate state. The efficiency of intersystem crossing can be further improved by reducing energy gap between singlet and triplet state. Photothermal therapy (PTT) is another efficient way for AIEgens to ablate unhealthy cells affected by protein aggregation. The energy dissipation of AIEgens can be adjusted to the form of heat by adding bulky alkyl chains to decrease intermolecular interaction. The promoted non-radiative decay process would be able to conduct PTT with high photothermal conversion efficiency and strong photoacoustic signal. Given the rapid development in this field, AIEgens bear the premise to potentially treat diseases that are rooted in protein aggregation.

FUNDING

We thank support from the Burroughs Welcome Fund Career Award at the Scientific Interface 1013904 (X.Z.), Sloan Research Fellowship FG-2018-10958 (X.Z.), PEW Biomedical Scholars Program 00033066 (X.Z.), and National Institute of Health R35 GM133484 (X.Z.).

Conflict of Interest Statement. None declared.
References:

1. Hong Y, Lam JWY and Tang BZ. *Chem Soc Rev* 2011; **40**: 5361-88.
2. Hong Y, Feng C and Yu Y *et al.* *Anal Chem* 2010; **82**: 7035-43.
3. Chen MZ, Moily NS and Bridgford JL *et al.* *Nature Comm* 2017; **8**: 474.
4. Hong Y, Meng L and Chen S *et al.* *J Am Chem Soc* 2012; **134**: 1680-9.
5. Leung CWT, Guo F and Hong Y *et al.* *Chem Comm* 2015; **51**: 1866-9.
6. Yang Y, Li S and Zhang Q *et al.* *J Mater Chem B* 2019; **7**: 2434-41.
7. Ding S, Yao B and Schobben L *et al.* *Molecules* 2019; **25**: 32
8. Wolstenholme CH, Hu H and Ye S *et al.* *J Am Chem Soc* 2020; **142**:17515-23.
9. Fu W, Yan CX and Guo ZQ *et al.* *J Am Chem Soc* 2019; **141**: 3171-7.
10. Owyong TC, Subedi P and Deng J *et al.* *Angew Chem Int Ed* 2020; **59**: 10129-35.