Base Temperature Comparisons for Leafing Date, Pistillate Flower Receptivity, and Pollen Shedding in Persian Walnut

Geza Bujdoso · Asghar Soelimani · Benjamin Illes · Darab Hassani

Received: 27 September 2020 / Accepted: 30 July 2022 / Published online: 13 September 2022
© The Author(s) 2022

Abstract

Leafing dates and the male and female bloom periods in Persian walnut (Juglans regia L.) vary with cultivars and years. Changes in phenological phases and the process of passing through the phenological stages could be explained by the growing degree days (GDD) if the minimum base temperature (Tb) were determined. In this study, the long-term phenological data of some walnut cultivars derived and/or grown in Hungary and Iran were used to determine the Tb values for leafing date (LD), pistillate flower receptivity start (PRS), pistillate flower receptivity end (PRE), and start and end of the pollen shedding period (PSS and PSE, respectively). The GDD were calculated (with 0.1 °C precision) for the LD and PSS with respect to the earliest cultivar as well as for PRS compared to LD and PRE. Furthermore, the GDD were reckoned for PSE based on PRS and PSS of the same cultivar in each year. The analysis of the data revealed that for the LD, PRS, and PRE, the Tb 5.5 with the highest correlation was shown to be the most appropriate. For the PSS and PSE, the best correlation was observed at Tb 0 in both countries. The strongest coefficients were observed (0.72 for Iranian and 0.8 for Hungarian conditions) between GDD with Tb of 5.5 °C for PRS and LD. The less correlation was observed between LD and PSS (0.5 for Iranian and 0.57 for Hungarian conditions). The correlation coefficients between GDD and leafing date were the same (0.52) in both countries. Cultivars involved in the trial required more GDD in Iran than in Hungary.

Keywords Cultivars · Hungary · Iran · Juglans regia L · Phenology

Introduction

Fruit production faces major challenges to ensure annual production levels. Although site conditions seem to be more or less stable, temperature and precipitation show great variability, which are likely the initiating factor of annual effects on phenological phases (Hereford et al. 2006; Zaitchik et al. 2007). The warming trend of climate change greatly affects the phenology of cultivated plants. Perennial fruit tree species and their phenological phases are the best markers of the effects of climate change, due to their longevity (Blanke and Kunz 2014; Menzel et al. 2006).

Temperature has a crucial role in bud development during the dormant stages to budburst (Hänninen 2016). For chilling there are some models to calculate the leafing time for many woody tree species, including nut tree species (Luedeling et al. 2009a; 2009b). However, for modeling of the flowering period, no model is yet known (Dennis 2003; Luedeling et al. 2009c).

Temperature is the main factor for raising the speed of phenology, as higher temperatures lead to early switching to the next ontogenetic stage (Badeck et al. 2004). Strong correlations were found between the budbreak dates and the mean air temperature in several studies (Bergant et al. 2001; Chmielewski et al. 2004; Chmielewski and Rötzer 2001; Črepinšek et al. 2006; Menzel 2003; Menzel et al. 2006). In other research (Črepinšek et al. 2009; Kramer et al. 2000; Menzel et al. 2006), it was reported that spring phenophases could be advanced by 2 to 4.6 days per each
Table 1 Base temperatures (Tb) of some phenological stages for fruit tree species

Fruit tree species/cultivar	Tb for sprouting (°C)	Tb of start of flowering\(a\) (°C)	GDD from the dormant period until bud swell	References
Some peach cultivars	8	10	–	Souza et al. (2011)
‘Tropic Beauty’ peach	2.2	–	90.1 ± 20.6	Rafael and Biasi (2016)
‘Eragil’ peach	6.3	–	105.9 ± 19.5	Rafael and Biasi (2016)
‘Sunblaze’ nectarine	8	10	–	Souza et al. (2011)
‘Niagara Rosada’ grape	10	10	–	Ribeiro et al. (2009)
‘Cabernet Sauvignon’ grape	10	10	170.0 ± 41.0	Moura et al. (2009)
‘Cabernet Sauvignon’ grape	4.3	–	443.8 ± 12.7	Ribeiro et al. (2009)
‘BRS Vitoria’ seedless table grape	10	10	–	Borges et al. (2017)
‘Chardonnay’ grape	2.1	–	447.7 ± 7.0	Rafael and Biasi (2016)
‘Hayward’ kiwifruit	10	10	–	Kerr et al. (1981; Salinger and Kenny 1995)
‘Hayward’ kiwifruit	8.2	–	315.5 ± 9.9	Rafael and Biasi (2016)
‘Golden King’ kiwifruit	4.3	–	283.0 ± 19.9	Rafael and Biasi (2016)
‘Gulf Blaze’ plum	2.2	–	131.9 ± 12.6	Rafael and Biasi (2016)
‘Letícia’ plum	6.2	–	137.2 ± 27.4	Rafael and Biasi (2016)
‘Smith’ pear	4.4	–	58.7 ± 17.1	Rafael and Biasi (2016)
‘Packhams’ pear	8.2	–	72.3 ± 8.6	Rafael and Biasi (2016)

\(GDD\) growing degree days
\(a\)From the swollen bud to the open flower

Celsius degree of heat accumulation in the month before onset.

Previous studies in pome fruits, stone fruits, and berries showed that the minimum base temperature varied not only by fruit tree species but also by cultivars among species. Studies for determining the base temperatures for growth, sprouting, or leafing of peach and nectarine showed that, for *Prunus persica* sprouting, the base temperature (Tb) varied from 2.2 °C in ‘Tropic Beauty’ to 8 °C in ‘Sunblaze’ nectarine cultivar (Rafael and Biasi 2016; Souza et al. 2011). Table 1 contains data for the Tb of phenological stages for several fruit tree species.

In walnut, the leafing of ‘Franquette’ showed a correlation with the April mean temperature value \((r = −0.84)\), which meant that the high air mean temperature would be followed by earlier budbreak. The correlation showed a slight increase from January until April (Črepinšek et al. 2009). In another study (Hassankhah et al. 2017), the same results between air mean temperature and growing degree hour demands of terminal buds and catkins were obtained. In hazelnut (Taghavi et al. 2017), strong correlations between some phenological stages of terminal leaf buds, catkins, female flower buds, and daily mean temperatures were observed. An increase of mean temperature from January until April of about 0.9 °C correlated with 7 days of advance in budbreak of ‘Franquette’ and 3 days in Geisenheim selection G-139 (Črepinšek et al. 2009). Similar results were found in apple, sweet cherry, pear, and locust trees (Bergant et al. 2001; Chmielewski and Rötzer 2001; Walkovszky 1998).

As the base temperature has a key role in predicting the phenological phases of walnut cultivars, the study was conducted to determine the Tb for leafing date (LD), period of pistillate flower receptivity (start of pistillate flower receptivity PRS; end of pistillate flower receptivity PRE), and the start (PSS) and end (PSE) of the pollen shedding period.

Material and Methods

Description of the Cultivars

Two cultivars from the National Agricultural Research and Innovation Centre breeding program were involved in this trial. The early-leafing ‘Milotai 10,’ selected from the local population, is the most cultivated in Hungary and in other countries such as Slovakia, Georgia, and Bulgaria due to its excellent fruit characteristics (large fruit size, light shell and kernel colour, smooth shell surface, excellent flavor, good kernel rate) (Bujdosó et al. 2010). The other variety, derived from the breeding program of the Research Institute, is the novel-bred, late-leafing ‘Milotai kései,’ from a cross of ‘Milotai 10’ and ‘Pedro.’ This variety also has large fruit size and excellent fruit characteristics (Bujdosó et al. 2010).
Table 2 Meteorological parameters during 2010–2019 in Hungary and Iran

Parameter	Hungary (°C)	Iran (°C)
Average annual temperature	11.5	15.8
Average temperature of growing seasona	16.7	21.5
Average monthly temperature		
January	–0.2	2.6
February	1.6	5.0
March	6.5	10.4
April	12.3°	15.4
May	16.4	20.6
Average minimum temperature		
January	–3.6	–9.1
February	–2.7	–7.4
March	0.5	–2.8
April	4.7	1.4
May	9.5	7.5
Average maximum temperature		
January	3.5	14.0
February	6.1	16.3
March	13.8	22.4
April	20.3	28.3
May	24.1	33.4

*March to September

2010). The U.S.-bred ‘Chandler’ was included in the trial as well. In Iran, ‘Jamal,’ an early-leafing cultivar released by the Temperate Fruits Research Center of the Horticultural Sciences Research Institute,1 with a terminal bearing habit, large nut size, and excellent nut and kernel characteristics (Hassani et al. 2012, 2020a, b), together with the French late-leafing pollinator cultivar ‘Ronde de Montignac’ (RDM) and the U.S. cultivar ‘Chandler’ were used in the trial.

Description of the Fruit Site Conditions

The selected trees were planted in 1994 in Karaj, Iran (35° 51’ 21.3768” N and 50° 57’ 42.3000” E.), and in 1990 in Elvira major, Hungary (47° 29’ 52.4868” N and 19° 2’ 24.8496” E). All observed trees were grafted on *Juglans regia* L. seedling rootstocks. The experimental orchards were established with three or four grafted trees per plot of the cultivars in a 10 m × 10 m and 7 m × 7 m planting distance, respectively. Meteorological parameters are indicated in Table 2.

Collected Phenological Data

All the phenological stages were recorded as indicated in the CTIFL scheme (Internet 1 2016, Internet 2 2012). The corresponding stages, when the data were collected, were the leafing-time stage, Cf; the start of pistillate flower receptivity, the Ff2 stage; the end of pistillate flower receptivity, the Ff3 stage; the start of pollen shedding, the Em stage; and the end of pollen shedding, the Hm stage. Thus, the start and end of the pollen shedding period were recorded when the catkins started to shed the pollen up to the time they dried and dropped off from the trees. The start and end of the pistillate receptivity period were considered to be when the stigmas in the earliest pistillate flowers became receptive up to the time the last flowers passed though the receptive stages and turned brown. The data were recorded in 2–3-day intervals, usually in the morning. The data were collected in Hungary from 2010 to 2019 and in Iran from 2006 to 2008 and from 2011 to 2019. The average calendar day of the phenological data was put into the model with its related growing degree days (GDD) from 0 to 9 °C at 0.1 °C intervals to find the best correlation.

To estimate the leafing-out time and/or blossom or other phenological phases of the grown plant species, GDD are best to use because there is a linear and direct proportional relationship between the temperature above the threshold and the rate of development of different plant organs (Gallagher 1979; Baker et al. 1986; Sayed 1995). In accordance with several research studies, the early spring stages showed strong correlation with the temperature data, but the yield estimation was challenging due to some errors in the model (Stinner et al. 1974; Ritchie and NeSmith 1991). Therefore, the GDD are an added value to the variety description (McMaster and Smika 1988). Some new methods have been developed to decrease the errors in the models (Haggard et al. 2010; Kawakita et al. 2020; Zhou and Wang 2018).

Results and Discussion

The average leafing date, start and end of pollen shedding, and the start and end of the pistillate receptivity period for walnut cultivars in different years are shown in Table 3. Table 4 shows the phenological data used for the varieties.

The highest coefficient between leafing date and shoot growth was at a base temperature of 5.5 °C (GDD₅₅) in both countries. The coefficient of determination was a bit stronger in Iran (r² = 0.53) than in Hungary (r² = 0.52) (Figs. 1 and 2).

On GDD₅₅ ‘Milotai kései’ needed 99.3 °C more heat accumulation than early-leafing ‘Milotai 10.’ For ‘Chandler’ in Hungarian conditions, the heat accumulation was 59.1 °C, while in Iran, it required 92.1 °C more heat ac-
Table 3: Average of leafing date (month/day), start of pollen shedding, start of pistillate receptivity, end of pollen shedding, and end of pistillate receptivity in different years in Hungary and Iran (± standard deviation)

Country	Year	Leafing date	Start of pollen shedding	Start of pistillate receptivity	End of pollen shedding	End of pistillate receptivity
Hungary	2010	4/22 ± 1.30	4/28 ± 1.42	5/3 ± 1.40	5/3 ± 1.32	5/9 ± 1.55
	2011	4/19 ± 1.61	4/26 ± 1.16	4/25 ± 1.41	5/7 ± 1.04	5/5 ± 1.12
	2012	4/19 ± 1.91	4/29 ± 0.83	4/23 ± 1.23	5/10 ± 1.15	5/11 ± 1.30
	2013	4/23 ± 0.92	4/26 ± 1.40	4/23 ± 1.23	5/3 ± 1.07	5/1 ± 0.88
	2014	4/9 ± 1.58	4/19 ± 1.28	4/18 ± 2.04	5/5 ± 0.00	4/30 ± 1.68
	2015	4/26 ± 1.26	4/29 ± 0.44	5/2 ± 1.83	5/12 ± 0.62	5/12 ± 1.64
	2016	4/14 ± 1.49	4/27 ± 1.42	4/28 ± 1.87	5/4 ± 1.31	5/5 ± 1.91
	2017	4/15 ± 1.96	4/25 ± 1.76	5/3 ± 2.41	5/5 ± 1.24	5/13 ± 2.12
	2018	4/17 ± 1.33	4/24 ± 1.08	4/25 ± 1.43	4/29 ± 0.92	5/1 ± 1.40
	2019	4/18 ± 1.55	4/24 ± 0.44	4/27 ± 2.16	5/4 ± 0.62	5/5 ± 1.65
Hungary	total	4/18 ± 0.51	4/26 ± 0.41	4/28 ± 0.57	5/5 ± 0.39	5/6 ± 0.52
Iran	2006	4/11 ± 1.76	4/14 ± 1.82	4/21 ± 1.44	4/23 ± 1.90	4/29 ± 1.50
	2007	4/17 ± 1.53	4/22 ± 1.75	4/28 ± 1.11	4/30 ± 1.81	5/4 ± 1.18
	2008	4/4 ± 1.55	4/4 ± 1.55	4/12 ± 1.93	4/11 ± 1.66	4/20 ± 2.00
	2011	4/12 ± 1.50	–	–	–	–
	2012	4/17 ± 1.69	4/19 –	–	–	–
	2013	4/5 ± 2.18	4/3 ± 1.97	4/13 ± 1.88	4/8 ± 2.10	4/20 ± 1.92
	2014	4/12 ± 2.22	4/17 –	4/25 ± 1.57	4/24 –	5/4 ± 1.85
	2015	4/5 ± 1.62	4/14 ± 1.88	4/17 ± 1.32	4/19 ± 1.89	4/26 ± 1.13
	2016	4/4 ± 2.42	4/14 ± 2.23	4/18 ± 2.20	4/20 ± 2.32	4/25 ± 2.19
	2017	4/11 ± 1.58	4/20 ± 1.90	4/22 ± 1.45	4/29 ± 1.95	4/29 ± 1.38
	2018	3/29 ± 2.04	4/9 ± 2.29	4/17 ± 2.07	4/18 ± 2.28	4/25 ± 2.10
	2019	4/14 ± 1.93	4/23 ± 2.02	4/27 ± 1.53	5/1 ± 2.00	5/4 ± 1.52
Iran	total	4/9 ± 0.54	4/14 ± 0.63	4/20 ± 0.56	4/21 ± 0.65	4/27 ± 0.56
Grand total		4/13 ± 0.40	4/20 ± 0.42	4/24 ± 0.42	4/28 ± 0.44	5/2 ± 0.40

Table 4: Average of leafing date (month/day), start and end of pollen shedding, and start and end of pistillate receptivity period in different cultivars in Hungary and Iran (± standard deviation)

Country	Cultivar	Leafing date	Pollen shedding start	Pollen shedding end	Pistillate receptivity start	Pistillate receptivity end
Hungary	‘ChandlerH’	4/19 ± 0.79	4/22 ± 0.68	4/29 ± 0.82	5/7 ± 0.78	
	‘Milotai 10’	4/11 ± 0.80	4/27 ± 0.73	5/19 ± 0.90	4/29 ± 0.73	
	‘Milotai kései’	4/24 ± 0.63	4/27 ± 0.56	5/5 ± 0.56	5/13 ± 0.80	
Hungary	total	4/18 ± 0.51	4/26 ± 0.41	4/28 ± 0.57	5/6 ± 0.52	
Iran	‘ChandlerI’	4/9 ± 0.70	4/13 ± 0.73	4/20 ± 0.73	4/22 ± 0.71	
	‘Jamal’	3/30 ± 0.82	4/4 ± 0.92	4/11 ± 0.97	4/10 ± 0.98	
	‘RDM’	4/20 ± 0.68	4/27 ± 0.96	5/5 ± 0.98	4/26 ± 0.68	
Iran	total	4/9 ± 0.54	4/14 ± 0.63	4/21 ± 0.65	4/20 ± 0.56	
Grand total		4/13 ± 0.40	4/20 ± 0.42	4/24 ± 0.44	5/2 ± 0.40	

The variety ‘Jamal’ needed less GDD for pollen shedding initiation; therefore, its value is the base. ‘Chandler’ in Hungary needed the 23.9 °C GDD on Tb0 to start its pollen shedding. ‘Milotai kései’ needed 98.3 °C more GDD, and catkins of ‘Milotai 10’ required the most GDD on Tb0 (101.6 °C). In Iran the varieties had to accumulate more heat to start their pollen shedding. ‘Chandler’ grown in Iranian cumulation than the early-leafing ‘Jamal,’ and the cultivar ‘RDM’ required 207.2 °C (Table 5). Table 5 indicates the GDD data needed to accumulate starting pistillate receptivity from the earliest leafing varieties of each country.

The start of pollen shedding had the highest correlation with base temperature of 0 °C in both countries (Fig. 3). In Hungary, $r^2 = 0.57$, while in Iran $r^2 = 0.51$ at the base temperature of 0 °C (Fig. 4).
Fig. 1 Coefficient of determination for leafing date as independent variable and growing degree days (GDD) as dependent variable

![Graph showing R² for leafing date as independent variable and GDD as dependent variable.](image)

Fig. 2 Scatter plot and regression between accumulated growing degree days (GDD) (5.5°C) and leafing date in Iran (a) and Hungary (b)

![Scatter plots showing GDD and leafing date relationship in Iran and Hungary.](image)

Table 5 Average growing degree days (GDD) for leafing date, pistillate receptivity start, and pistillate receptivity end in Hungary and Iran

Country	Cultivar	GDD for leafing with respect to earliest cultivar	GDD for pistillate receptivity start with respect to leafing	GDD for pistillate receptivity end with respect to pistillate start
Hungary	‘Chandler’	59.1 ± 1.48	92.6 ± 2.55	107.6 ± 1.97
	‘Milotai 10’	0.0 ± 0.00	68.4 ± 1.90	99.5 ± 1.53
	‘Milotai kései’	99.3 ± 1.20	123.0 ± 2.49	92.2 ± 1.69
Hungary total		52.8 ± 1.21	94.7 ± 1.40	99.8 ± 1.01
Iran	‘Chandler’	92.1 ± 1.71	130.6 ± 2.51	102.2 ± 1.96
	‘Jamal’	0.0 ± 0.00	95.5 ± 2.78	82.3 ± 1.81
	‘RDM’	207.2 ± 2.74	78.8 ± 2.54	90.1 ± 2.26
Iran total		99.8 ± 1.83	101.6 ± 1.53	92.3 ± 1.16
Grand total		78.4 ± 1.16	98.5 ± 1.04	96.2 ± 0.77
Fig. 3 Coefficient of determination for start of pollen shedding as independent variable and growing degree days (GDD) with different base temperatures as dependent variable.

Fig. 4 Scatter plot and regression between accumulated growing degree days (GDD) (0 °C) for pollen shedding in Iran (a) and Hungary (b).

climatic conditions had to collect 133.5 °C, and ‘RDM’ had to accumulate 354.5 °C to start this phenological stage.

To complete the pollen shedding stage, the Hungarian-grown varieties needed less GDD than those varieties grown in Iranian conditions. Values are depicted in Table 6.

The start of pistillate receptivity had the best correlation with base temperature of 5.5 °C in both countries (Fig. 5). The coefficient of determination for the start of pistillate receptivity on base temperature of 5.5 °C was $r^2 = 0.82$ and $r^2 = 0.70$ for Hungary and Iran, respectively (Fig. 6).

This study confirms the findings of other researchers (Baker et al., 1986; Gallagher 1979; Sayed 1995; Stinner et al. 1974) that changes in the phenological stages are the best markers for the fruit species for forecasting their behaviour with the increasing outside air temperature; however, there are differences in the base temperature values among the species, cultivars, and phenological states (Borges et al. 2017; Kerr et al. 1981; Rafael and Biasi 2016; Ribeiro et al. 2009; Salinger and Kenny 1995; Souza et al. 2011; Taghavi et al. 2017). The strongest correlation of the observed phenological data was always on the same threshold values in both countries; in the case of leafing, the best correlation was at T_{b5}. This value is higher than the amount predicted for grape cultivars ‘Chardonnay’ ($T_{b} = 2.1$ °C) and ‘Cabernet Sauvignon’ ($T_{b} = 4.3$ °C), kiwifruit ‘Golden King’ ($T_{b} = 4.3$ °C), plum ‘Gulf Blaze’ ($T_{b} = 2.2$ °C), pear ‘Smith’ ($T_{b} = 4.4$ °C), peach ‘Tropic beauty’ ($T_{b} = 2$ °C) (Rafael and Biasi 2016), and hazelnut cultivars ($T_{b} = 2$ °C) (Taghavi et al. 2017). The kiwifruit cultivar ‘Hayward’ ($T_{b} = 10$ °C, Kerr et al. 1981; Salinger and Kenny 1995; $T_{b} = 8.2$ °C, Rafael and Biasi 2016), the pear cultivar ‘Packham’s’ ($T_{b} = 8.2$ °C, Rafael and Biasi 2016), the plum cultivar ‘Letícia’ ($T_{b} = 6.2$ °C, Rafael and Biasi 2016), the grape cultivars ‘BRS Victo-
Table 6 Growing degree days (GDD) for pollen shedding start with respect to earliest cultivar and pollen shedding end with respect to pollen shedding start in Hungary and Iran

Country	Cultivar	GDD for pollen shedding start with respect to earliest cultivar	GDD of pollen shedding end with respect to pollen shedding start
Hungary	‘Chandler’	23.9 ± 2.46	169.2 ± 2.46
	‘Milotai 10’	101.6 ± 2.40	162.4 ± 2.40
	‘Milotai kései’	98.3 ± 2.22	140.8 ± 2.22
	Hung Mg total	0 ± 1.36	157.4 ± 1.36
Iran	‘Chandler’	133.5 ± 1.68	129.6 ± 1.52
	‘Jamal’	0 ± –	117.5 ± 2.15
	‘RDM’	354.5 ± 2.04	171.1 ± 2.04
Iran Mg total	–	155.3 ± 1.23	137.6 ± 1.18
Grand total	0	112.1 ± 0.93	147.8 ± 0.92

Fig. 5 Coefficient of determination for growing degree days (GDD) from start of pistillate receptivity to leafing date as dependent variable and pistillate start date as independent variable

Fig. 6 Scatter plot and regression between accumulated growing degree days (GDD) (base temperature of 5.5°C) of period between pistillate receptivity and leafing date in Iran (a) and Hungary (b)
ria’ (Tb=10°C, Borges et al. 2017) and ‘Niagara Rosada’ (Tb=8°C, Ribeiro et al. 2009), as well as the nectarine ‘Sunblaze’ (Tb=8°C, Souza et al. 2011), were found to require higher base temperature values than the Persian walnut cultivars involved in our study. The value of 5.5°C as the base temperature for leafing confirms the report of Dreyer and Maugé (1986) that development of the terminal buds on ‘Pedro’ and ‘Franquette’ in French climate conditions was most rapid at less than 12°C. Other researchers (Crepinšek et al. 2009; Hidalgo-Galvez et al. 2018) reported negative coefficients for correlation between the daily mean temperature (without a threshold level) and days needed to reach the required phenological stage.

In this trial there were positive correlation coefficients (0.52 for both countries) when correlations between the heat accumulation and the calendar days were examined. This indicates that the more heat accumulation a cultivar can collect during a day above a threshold level, the less time is needed for reaching the phenological stage.

Pollen shedding showed the strongest correlation with Tb, and pistillate opening had the highest coefficient value on Tb5.5. Both Tb values are lower than those observed for other fruit species except for hazelnut cultivars, which had 2°C as the base temperature (Taghavi et al. 2017).

The walnut cultivars from both countries need less heat accumulation than some wine grape and kiwifruit cultivars (Rafael and Biasi 2016). The walnut cultivars grown in Hungarian climatic conditions needed 20% to 30% less GDD demand for leafing than those under the Iranian conditions. The highest GDD demand was for the late-leaving ‘RDM’ (207°C) walnut cultivar grown in Iran. During the pistillate receptivity, the investigated cultivars required similar heat accumulation in both countries (Table 4), while for pollen shedding the cultivars grown in Hungarian climatic conditions needed less GDD than the cultivars planted in Iran (Table 5).

The walnut cultivars in this trial required more GDD for pollen shedding than for the pistillate period. Pollen shedding of early-flowering forestry species (e.g., Betula, Quercus) had a long period during years with cold spring weather (García-Mozo et al. 2006; Hidalgo-Galvez et al. 2018).

Conclusions

The Persian walnut cultivars investigated needed the same threshold temperature in Hungary and Iran to leaf out (Tb5.5, r² = 0.52) and blossom the male (Tb0, r² = 0.5 in Iran, r² = 0.57 in Hungary) and female flowers (Tb5.5, r² = 0.80 in Iran, r² = 0.72 in Hungary). Although the threshold levels were similar for the cultivars derived from the Hungarian and Iranian assortments, they needed different heat accumulation to reach the phenological stages. The Iranian cultivars needed more heat accumulation to initiate leafing and start the pistillate opening and pollen shedding periods. For leafing, the walnut cultivars grown in Hungary needed lower Tb values (grand total: 52.8°C) than cultivars cultivated in Iran (grand total: 78.4°C). Selected cultivars grown in Iran needed less heat accumulation for starting the pistillate opening period (grand total: 98.5°C) than for starting the pollen shedding period (grand total: 112.2°C). This is in contrast to the cultivars grown in Hungary, where the pistillate opening period needed less heat accumulation (grand total: 74.6°C) than for pollen shedding (grand total: 94.7°C). By using GDD, phenological stages during spring can be forecasted.

Acknowledgements

The research was done in the framework of “Walnut breeding in order to release new late leaflowering and lateral bearing cultivar(s)” Hungarian–Iranian project supported by the Center for Progress and Development of Iran, Presidency of I. R. Iran and National Research, Development and Innovation Office of Hungary (project No. 123311).

Funding

The research was done in the framework of “Walnut breeding in order to release new late leaflowering and lateral bearing cultivar(s),” a Hungarian–Iranian project supported by the Center for Progress and Development of Iran, Presidency of I. R. Iran and National Research, Development and Innovation Office of Hungary (project no. 123311).

Funding

Open access funding provided by Hungarian University of Agriculture and Life Sciences.

Conflict of interest

G. Bujdoso, A. Soelimani, B. Illes, and D. Hassani declare that they have no competing interests.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309.https://doi.org/10.1111/j.1469-8137.2004.01059.x

Baker J, Pinter P Jr, Reginao R, Kanemasu E (1986) Effects of temperature on leaf appearance in spring and winter wheat cultivars. 1. Agron J 78:605–613.https://doi.org/10.2134/ajronj1986.00021962007800040010x

Bergant K, Crepinšek Z, Kajfež-Bogataj L (2001) Flowering prediction of pear tree (Pyrus communis L.), apple tree (Malus domestica Borkh) and plum tree (Prunus domestica L.)-similarities and
difficulties. Research reports, Biotechnical Faculty University of Ljubljana, vol 77. https://doi.org/10.1007/s00484-006-0043-x

Blanke A, Kunz M (2014) Effects of climate change on fruit tree physiology-based on 55 years of meteorological and phenological data at Klein-Altendorf. Acta Hortic 1130:49–54. https://doi.org/10.17660/ActaHortic.2016.1130.7

Borges WFS, Koyama R, Silva GB, Shahab M, de Souz RT, Roberto SR (2017) Phenological characterization and thermal demand of 'BRS Vitoria' seedless grape grown in subtropical area. Agron Sci Biotechnol 3:25–25. https://doi.org/10.3390/horticculture6010003

Bujdosó G, Tóth-Markus M, Daood H, Adányi N, Szentiványi P (2010) Fruit quality and composition of Hungarian bred walnut cultivars. Acta Aliment Hung 39:35–47. https://doi.org/10.1556/AAlim.39.2010.1.4

Chmielewski F-M, Rötzter T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

Chmielewski F-M, Müller A, Bruns E (2004) Problems in standardizing methods for evaluating the chilling requirements on budbreak and flowering date. Int J Hortic Sci Tech 15:44-49. https://doi.org/10.1007/s004840000066

Dennis F (2003) Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 38:347–350. https://doi.org/10.21273/HORTSCI.38.3.347

Drzyzga E, Haupt J, Mertens F (1986) Variabilitè du niveau de dormance des bourgeons vegetatifs suivant les types de rameau d’une couronne de noyer (Juglans regia L.); comparaison des cultivars Franquette et Pedro. Agronomie 6:427–435

Gallagher J (1979) Field studies of cereal leaf growth: I. Initiation and expansion in relation to temperature and ontogeny. J Exp Bot 30:625–636

García-Mozo H, Galán C, Jato V, Belmonte J, De La Guardia CD, Fernández D, Gutiérrez M, Aira MJ, Roure JM, Ruiz L (2006) Quercus pollen season dynamics in the Iberian Peninsula: Response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209

Haggard G, Weindorf D, Cacovean H, Rusu T, Lofton J (2010) Analysis of growing degree days in the Transylvanian plain, Romania. Studia Universitatis Babes-Bolyai, Geographia

Hänninen H (2016) Boreal and temperate trees in a changing climate. Springer, Dordrecht

Hassani D, Atefi J, Haghjooyan R, Dastjerdi R, Keshavarzi M, Mahmoudi R, Soleimani A, Rahmanian A, Nematzadeh F, Malmir A (2012) Jamal, a new Persian walnut cultivar for moderate-cold areas of Iran. Seed Plant Improv J. https://doi.org/10.21273/ActaHortic.2016.1130.7

Hassankhah A, Vahdati K, Rahemi M, Hassani D, Sarikhani Khorami S (2017) Persian walnut phenology: Effect of chilling and heat requirements on budbreak and flowering date. Int J Hortic Sci Techn 4:259–271. https://doi.org/10.22059/jhst.2018.260944.249

Hereford R, Webb R, Longpré C (2006) Precipitation history and ecosystem response to multidecadal precipitation variability in the Mojave Desert region, 1893–2001. J Arid Environ 67:13–34

Hidalgo-Galvez M, García-Mozo H, Oteros J, Mestre A, Botey R, Galán C (2018) Phenological behaviour of early spring flowering trees in Spain in response to recent climate changes. Theor Appl Climatol 132:263–273. https://doi.org/10.1007/s00704-017-2089-6

Internet 1 (2016) Bulletin de Santé de Végétal. http://www.fredom-limousin.fr/wp-content/uploads/2016/04/BVS_NOIX_SO_2_VF.pdf (Created 19 Apr 2016). Accessed 5 May 2020

Internet 2 Noix Correze-Quercy-Perigord. Bulletin No. 6. http://www.fredom-limousin.fr/wp-content/uploads/2012/05/BVS_NOIX_SO_6_16mai2012.pdf (Created 16 May 2012). Accessed 19 Apr 2020

Kawakita S, Ishikawa N, Takahashi H, Okuno R, Takahashi T (2020) Winter wheat phenological development model with a vernalization function using sigmoidal and exponential functions. J Agric Meteorol 76:81–98. https://doi.org/10.2480/agrmet.D-19-00042

Kerry J, Bussell W, Hurndard S, Sale P, Todd J, Wilton J, Wood R (1981) Matching horticultural crops and the climates of the lower North Island. DSIR Plant Physiology Division technical report

Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75. https://doi.org/10.1007/s004840000066

Luedeling E, Blanke M, Gebauer J (2009a) Auswirkungen des Klimawandels auf die Verfügbarkeit von Kältewirkung (Chilling) für Obstgänger in Deutschland. Erwerbs-Obstbau 51:81–94. https://doi.org/10.1007/s10341-009-0085-4

Luedeling E, Zhang M, Girvetz EH (2009b) Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2009. PLoS One 4:6166. https://doi.org/10.1371/journal. pone.0006166

Luedeling E, Zhang M, McGranahan G, Leslie C (2009c) Validation of winter chill models using historic records of walnut phenology. Agric For Meteorol 149:1854–1864. https://doi.org/10.1016/ j.agrformet.2009.06.013

McMaster GS, Smika DE (1988) Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric For Meteorol 43:1–18

Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Change 57:243–263. https://doi.org/10.1023/A:1022880418362

Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x

Moura MSB, Brandao EO, Soares JM, Donoso CDS, Silva TG, Sousa LS (2009) Exigência Térmica e Caracterização Fenológica da Videira Cabernet Sauvignon no Vale São Francisco, Brasil. [Thermal demand and phenological characterization for Cabernet sauvignon grape on the Sao Francisco Valley, Brazil] 8th International Symposium on Grapevine Physiology and Biotechnology, Adelaide, Australia, Book of Abstracts. 211 p. https://core.ac.uk/download/pdf/45485322.pdf. Accessed 20 Apr 2020

Rafael A, Biasi LA (2016) Base temperature as a function of genotypes and variety in 'BRS Vitoria'seedless grape grown in subtropical area. Agron Sci Technol 10:8204-20. https://doi.org/10.3390/horticulturae6010003

Ribeiro DP, Corsato CE, Lemos JP, Scarpace Filho JA (2009) Desenvolvimento e exigência térmica da videira ‘Niagara rosada’, cultivada no Norte de Minas Gerais. Rev Bras Frutic 31:890–985. https://doi.org/10.1590/S0100-29452009000300036

Springer, Dordrecht
Ritchie J, NeSmith D (1991) Temperature and crop development. Model Plant Soil Syst. https://doi.org/10.2134/agromonogr31.c2
Salinger M, Kenny G (1995) Climate and kiwifruit cv. 'Hayward'. Regions in New Zealand suited for production. N Z J Crop Hortic Sci 23:173–184
Sayed O (1995) Effects of temperature on growth, morphology, and photosynthesis in wheat. Biol Plant 37:49
Souza APD, Leonel S, Silva ACD (2011) Basal temperature and thermal sum in phenological phases of nectarine and peach cultivars. Pesq Agropec Bras 46:1588–1596. https://doi.org/10.1590/S0100-204X201101001200002
Stinner R, Gutierrez A, Butler G (1974) An algorithm for temperature-dependent growth rate simulation I 2. Can Entomol 106:519–524
Taghavi T, Dale A, Saxena P, Galic D, Rahemi A, Kelly J, Suarez E (2017) Flowering of hazelnut cultivars and how it relates to temperature in southern Ontario. Acta Hortic 1226:131–136. https://doi.org/10.17660/ActaHortic.2018.1226.18
Walkovszky A (1998) Changes in phenology of the locust tree (Robinia pseudoacacia L.) in Hungary. Int J Biometeorol 41:155–160
Zaitchik BF, Evans JP, Smith RB (2007) Regional impact of an elevated heat source: The Zagros Plateau of Iran. J Climate 20:4133–4146. https://doi.org/10.1175/JCLI4248.1
Zhou G, Wang Q (2018) A new nonlinear method for calculating growing degree days. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-28392-z