Abstract

The formation and evaporation of two dimensional black holes are discussed. It is shown that if the radiation in minimal scalars has positive energy, there must be a global event horizon or a naked singularity. The former would imply loss of quantum coherence while the latter would lead to an even worse breakdown of predictability. CPT invariance would suggest that there ought to be past horizons as well. A way in which this could happen with wormholes is described.

S.W.Hawking@amtp.cam.ac.uk, J.D.Hayward@amtp.cam.ac.uk
1. Introduction

The discovery that black holes emit radiation \[1\] suggests that they will evaporate and eventually disappear. In this process it seems that information and quantum coherence will be lost and the evolution from initial to final situation will be described not by an S matrix acting on states but by a super scattering operator $\$ acting on density matrices [2]. This proposal of a non unitary evolution evoked howls of protest when it was first put forward and three possible ways of maintaining the purity of quantum states were put forward:

1. The apparent horizon eventually disappears and allows the information that went into the hole to return.
2. The back reaction to the emission of radiation introduces subtle correlations between the different modes. These allow the information to come out continuously as the black hole evaporates.
3. The black hole does not evaporate completely but leaves some small remnant that still contains the information.

The first possibility, that the information comes out at the end of the evaporation, has the difficulty that energy is required to carry the information remaining in the black hole. However, there is very little rest mass energy left in the final stages of the evaporation. The information can therefore be released only very slowly, and one has a long lived remnant, like in possibility three.

The second possibility, that the information comes out continuously during the evaporation, has problems with causality. The particles falling into the hole would carry their information far beyond the horizon before the curvature would become strong enough for quantum gravitational effects to be important. Yet the information is supposed to appear outside the apparent horizon. If one could send information faster than light like that, one could also send information back in time, with all the difficulties that would cause.

The third possibility, black hole remnants, has problems with CPT if black holes could form but never disappear completely. Consider a certain amount of energy placed in a box with reflecting walls[3]. The energy can be distributed in a large number of microscopic configurations, but one of two situations will correspond to the great majority: either just thermal radiation, or thermal radiation in equilibrium with a black hole at the same temperature. Which possibility has more phase space depends on the energy and the volume of the box.

Suppose the energy is sufficiently low and the volume sufficiently large that just thermal radiation, with no black hole, corresponded to more states. Then for most of the time there would be no black hole in the box. However, occasionally a black hole would
form by thermal fluctuations, and then evaporate again. By CPT one would expect this process to be time symmetric. That is, if you took a film, it would look the same running forwards and backwards. But this is impossible if black holes can form from nothing but leave remnants when they evaporate. One can not even restore CPT, and get a sensible picture, by supposing there’s a separate species of white holes that would have existed from the beginning of time. The number of white holes would always be going down, and the number of black hole remnants would be going up, so one could never have a statistical equilibrium in the box. We shall have more to say about CPT later. It is difficult to see how information and quantum coherence could be preserved in gravitational collapse. However, because General Relativity is non renormalizable, it is not clear what will happen in the final stages of black hole evaporation. Thus the question of whether quantum coherence is lost is still open. For this reason there has recently been interest in two dimensional theories of quantum gravity which show an analogue of black hole radiation and which have the great advantage of being renormalizable.

The first two dimensional theory that could describe the formation and evaporation of black holes was put forward by Callan, Giddings, Harvey and Strominger (CGHS) [4]. It contained a metric g and a dilaton ϕ coupled to N minimal scalar fields f_i. In the classical theory a black hole can be created by sending a wave of one of the scalar fields. Quantum theory on this classical black hole background then predicts the black hole will radiate at a steady rate indefinitely. CGHS hoped that the inclusion of the back reaction would cause the field configuration that initially resembled a black hole to disappear without a singularity or a global event horizon. Thus they hoped there would be no loss of information and hence no loss of quantum coherence.

However, the most straightforward inclusion of the back reaction in the semi classical equations did not realize this hope. There was necessarily a singularity where the dilaton had a certain critical value [5][6]. This singularity could either become naked, that is, visible from future null infinity at late retarded times [7][8][9] or it could be a thunder-bolt that cut off future null infinity at a finite retarded time [10][11]. In either case part of the information about the initial quantum state would be lost on the singularity, which would be space like for at least part of its length, so one might expect loss of quantum coherence. The back reaction used in these calculations is based on the obvious and unambiguous measure for the path integral over the minimal scalars and the ghosts but it is not so clear what measure to use for the dilaton and the conformal factor. In the large N limit this ambiguity in the measure shouldn’t matter but the main hope of would-be defenders of quantum purity was that the large quantum fluctuations when the dilaton was near its critical value would cause the large N approximation to break down and that
higher order quantum corrections might prevent the occurrence of singularities and preserve quantum coherence. However, in this paper it will be shown that if the emission in scalar has positive energy, then there must be either naked singularities or event horizons or both. This argument depends only on the known measure for the minimal scalars, and is independent of any corrections to the equations of motion that may arise from the measure on the dilaton and conformal factor or from higher order quantum effects.

2. The conservation equations

The argument is based on the fact that the conservation equations and the trace anomaly of the scalar fields determine their energy momentum tensor up to constants of integration which can be fixed by boundary conditions. In the conformal gauge in which the metric is

$$ds^2 = -e^{2\rho} dx_+ dx_-$$ \hspace{1cm} (1)

the energy momentum tensor of each of the minimal scalars is

$$T_{\pm} = -\frac{1}{12} \left(\left(\frac{\partial \rho}{\partial x_\pm} \right)^2 - \frac{\partial^2 \rho}{\partial x_\pm^2} + t_{\pm}(x_\pm) \right)$$ \hspace{1cm} (2)

$$T_{+} = -\frac{1}{12} \partial_+ \partial_- \rho$$ \hspace{1cm} (3)

where $t_{\pm}(x_\pm)$ are constants of integration.

Consider a situation in which the spacetime is flat, so that the conformal factor is of the form $\rho = \log F(x_-) + \log G(x_+)$ and the energy momentum is zero before some null geodesic γ. This would be the case if the initial state was the linear dilaton solution. On the null geodesic γ one can change the coordinate x_- to $\int^{x_-} F^2 dx'_-\,$ so that $\rho = 0$ on γ. The range of x_- will be $(-\infty, \infty)$. From the assumption that the energy momentum tensor is zero initially, it then follows that $t_-(x_-) = 0$ for all x_-.

Suppose now that a wave with positive energy is sent in from the asymptotic region of weak coupling at an advanced time x_+ later than γ and creates some black hole like object which radiates energy in the N minimal scalar fields. By equation (2), the outgoing energy flux in the minimal scalar fields will be

$$\mathcal{E} = \frac{N}{12} \left(\frac{\partial^2 \rho}{\partial x_-^2} - \left(\frac{\partial \rho}{\partial x_-} \right)^2 \right)$$ \hspace{1cm} (4)

Let λ be an ingoing null geodesic at late advanced time. If the outgoing energy flux crossing λ is non negative,

$$\frac{\partial^2 \rho}{\partial x_-^2} \geq \left(\frac{\partial \rho}{\partial x_-} \right)^2$$ \hspace{1cm} (5)
To integrate (5) along λ, one needs to know the initial value of $\partial \rho / \partial x_\pm$. Let μ be an outgoing null geodesic from a point p on γ to a point q on λ. We shall choose μ to lie in the asymptotic region, that is, at early retarded times. One can choose the x_\pm coordinate along μ so that $\rho = 0$ on μ. This fixes the coordinates up to a Poincaré transformation. With this choice of coordinates,

$$\frac{\partial \rho}{\partial x_-}|_q = \frac{1}{8} \int_p^q R \, dx_+$$

(6)

One would expect the curvature R on μ to be positive and exponentially decreasing if the Bondi mass measured at infinity,

$$M \propto e^{-2\phi} R|_{x_- \to -\infty}$$

(7)
on μ is positive. Thus, if one takes the null geodesic μ to be sufficiently far out in the asymptotic region, the integral (6) will be positive.

Suppose now that the outgoing energy flux T_{++} is strictly positive on some interval of λ around a point r to the future of q. Then it follows from (5) and (6) that to the future of r on μ

$$\rho \geq \log(c - b) - \log(c - x_-)$$

(8)

where b is the value of x_- at r and c is some finite quantity greater than b. From (8) it follows that ρ will diverge at some point s on μ where $x_- = a \leq c$. The point s may or not be singular in the sense of the curvature R being unbounded but it will necessarily be at an infinite affine parameter distance along λ. It will however be at a finite retarded time x_- (Fig 1). This means that the original hope of CGHS, that the black hole would evaporate without global horizons or singularities, can not be realized in any two dimensional quantum theory in which the energy emission is positive.

Let λ be the portion of λ up to s. Then $J^-(\lambda)$, the past of λ, will not include the whole of the null geodesic, γ, in the initially flat region. It is this kind behavior that gives rise to thermal radiation. Let $\tilde{h}(x_-)$ be a wave packet that is zero for $x_- > a$ and is purely positive frequency with respect to the affine parameter on the late time null geodesic λ. Then $\tilde{h}(x_-)$ is not purely positive frequency with respect to the affine parameter on γ (which is proportional to $x_-)$ because it is zero in a semi infinite range. Instead, there will be some wave packet $\hat{h}(x_-)$ which is zero for $x_- < a$ and which is such that $\tilde{h} + \hat{h}$ is purely positive frequency on γ. This will mean that the initial vacuum state in each of the minimal scalar fields f_i will appear to contain pairs of particles, one in the \tilde{h} mode, and the other in the \hat{h} mode. The \tilde{h} mode will appear to contain a particle on the null geodesic λ. But the \hat{h} will not cross λ, so an observer in the asymptotic region.
will not see this particle. This would mean that the quantum state would appear to be a mixed state, described by a density matrix obtained by tracing out over the modes for $x_- > a$. Thus there will be loss of quantum coherence.

In the above, we have implicitly assumed that every outgoing null geodesic that intersects $\tilde{\lambda}$, also intersects γ. This allows us to deduce that the constant of integration $t_-(x_-) = 0$ on each outgoing null geodesic. However, if there was a singularity that was naked in the sense that it was visible from $\tilde{\lambda}$, it wouldn’t follow that on $\tilde{\lambda}$

$$\frac{\partial^2 \rho}{\partial x_-^2} \geq \left(\frac{\partial \rho}{\partial x_-} \right)^2$$

Thus the requirement that the radiated energy is positive implies either that there is an horizon and associated loss of quantum coherence, or there is a naked singularity. In our opinion, this would be much worse.

The discussion so far has been in terms of a semi classical metric. However it should also apply to each individual metric in a path integral over all metrics and dilaton field because our conclusions depend only on the asymptotic form of the metric in the far future and past. Thus we would expect loss of quantum coherence, or naked singularities, or both, in the full quantum theory.

3. Conformal Treatment of Infinity

In the previous discussion, the null geodesic γ was at early advanced time, the null geodesic λ was at late advanced time, and the null geodesic μ that connected them was at early retarded time. To make the arguments about the positive mass and energy of the emitted radiation, one wants to take the limit that these three null geodesics are at infinitely early or late advanced or retarded times. A precise and elegant way of doing this is to use the concept of conformal infinity that was introduced by Penrose in the four dimensional case. One takes the spacetime manifold and metric $M, g_{\mu\nu}$ to be conformal to a manifold with boundary and conformal metric $\tilde{M}, \tilde{g}_{\mu\nu}$ where

$$g_{\mu\nu} = \Omega^{-2} \tilde{g}_{\mu\nu}$$

$$\Omega = 0 \quad \text{on } \partial \tilde{M}$$

The curvature scalars of the two metrics are related by

$$R = \Omega^2 \tilde{R} + 2\Omega \Box \Omega - 2(\nabla \Omega)^2$$

(9)

where the covariant derivatives are with respect to the conformal metric $\tilde{g}_{\mu\nu}$. The physical curvature R will go rapidly to zero in the weak coupling region. It then follows from (9)
that the boundary $\partial \tilde{M}$ will be null where $\nabla_\mu \Omega \neq 0$. The boundary in the weak coupling region can be divided into future and past weak null infinities \mathcal{I}_w^\pm. They will be joined by the point I^0 representing spatial infinity. The conformal factor Ω will not be smooth at I^0. One can not say anything in general about the part of the $\partial \tilde{M}$ that lies in the strong coupling region because one does not know how R will behave there. However, in the case that spacetime is flat before some ingoing null geodesic γ, one will have a past strong null infinity \mathcal{I}_s^-, but one can not assume that there is necessarily a future strong null infinity.

One can take the conformal metric $\tilde{g}_{\mu\nu}$ to be flat. Then one can take \tilde{M} to be the region in two dimensional Minkowski space bounded by three null geodesics \mathcal{I}_s^-, \mathcal{I}_s^- and \mathcal{I}_s^+ (Fig 2). One does not know the form of the boundary on the fourth side, but this does not matter for the problem under consideration.

The quantity $\tilde{\rho} = -\log \Omega$ will differ by a solution of the wave equation from the ρ used in the previous section since it will obey different boundary conditions: $\tilde{\rho} = \infty$ on $\partial \tilde{M}$ while $\rho = 0$ on γ and λ. In order to identify the coordinate independent part of ρ and $\tilde{\rho}$ we shall introduce a field Z with the coupling

\[\Box Z = -\nu R \]
\[\Box \tilde{Z} = -\nu \Omega^{-2} R \]

We shall assume that the physical curvature goes to zero fast enough that $\Omega^{-2} R$ is bounded on \mathcal{I}_s^+ and \mathcal{I}_w^+. One can then solve the wave equation (3) on the conformal spacetime $(\tilde{M}, \tilde{g}_{\mu\nu})$ with the boundary conditions that $Z = 0$ on \mathcal{I}_s^- and \mathcal{I}_w^-. The field Z on M obtained in this way will correspond to $2 \nu \rho$ where ρ is the conformal factor in the previous section in the limit that the null geodesic μ is taken to infinity.

The energy momentum tensor of the Z

\[T_{\mu\nu} = \frac{1}{2} (\nabla_\mu Z \nabla_\nu Z - \frac{1}{2} g_{\mu\nu} (\nabla Z)^2) + \nu (\nabla_\mu \nabla_\nu Z - g_{\mu\nu} \Box Z) \]

will correspond to the energy momentum of the radiation in the N minimal scalar fields if $\nu^2 = N/24$. Thus the energy out flow across \mathcal{I}_w^+ is

\[\mathcal{E} = T_{\mu\nu} n^\mu n^\nu = \frac{1}{2} (\nabla_\mu Z n^\mu)^2 + \nu \nabla_\mu \nabla_\nu Z n^\mu n^\nu \]

\[= \frac{1}{2} \left(\frac{dZ}{dt} \right)^2 + \nu \left(\frac{d^2 Z}{dt^2} - q \frac{dZ}{dt} \right) \]

where $n^\mu = dx^\mu/dt$ is the tangent vector to \mathcal{I}_w^+, t is a parameter along \mathcal{I}_w^+ and $n^\nu \nabla_\nu n^\mu = q n^\mu$.

7
Define a metric $\hat{g}_{\mu \nu} = \exp(-Z \nu^{-1}) g_{\mu \nu}$. This metric is flat and corresponds to the flat background metric in section 2 in the limit that the null geodesic μ is taken to infinitely early retarded times. Let t be an affine parameter with respect to the metric \hat{g} on ingoing null geodesics. Because \hat{g} is flat, one can choose t to be constant on each outgoing null geodesic.

Near I_s^-, $Z = 0$ and the range of t will be $(-\infty, \infty)$. At later advanced times, $Z \neq 0$ and

$$q = \nu^{-1}\frac{dZ}{dt}$$

Thus the energy flux across I^+_w is

$$\mathcal{E} = -\frac{1}{2} \left(\frac{dZ}{dt} \right)^2 + \nu \frac{d^2Z}{dt^2} \quad (16)$$

If one replaces Z with $2\nu \rho$, (16) becomes the same as (4). If the mass measured on I^-_w is positive, $R \geq 0$ near I^-_w. If $\nu > 0$, this implies $Z \geq 0$ and $\frac{dZ}{dt} \geq 0$ near I^-_w.

The argument is now similar to that in section 2. If \mathcal{E} is non-negative on I^+_w and is strictly positive on some interval, then by (16), Z will diverge at a point s on I^+_w at a finite value of the parameter t. But the range of t on I^-_s is infinite. Thus there will be a part of I^-_s which is not in the past of s which is the future end point of I^+_w because it is at infinite distance in the natural affine parameter. In other words, the spacetime has a global event horizon.

Again there is the alternative of a naked singularity. In claiming that the energy momentum tensor of the Z is equal to the radiation in the N minimal scalars, we have implicitly assumed that the radiation is uniquely determined by the conservation equations, the trace anomaly and the boundary conditions at infinity. This will not be the case if there’s a singularity visible from I^+_w. So again the requirement that the radiation has positive energy implies there is either an event horizon or a singularity. The arguments about loss of quantum coherence are then the same as in section 2.
4. Conclusions

It is possible that two dimensional black holes are not a good model for the four dimensional case. The fact that the field equations of the CGHS model with back reaction become singular at a critical value of the dilaton field, suggests that this may be the case. However, if two dimensional models are any guide to the real world, our results indicate that any Lorentzian description of black hole evaporation must have horizons, or naked singularities, or both. Of the two possibilities, naked singularities, would seem the worse. Unless one has some boundary condition at a naked singularity, one can not predict what will happen. There is no obvious candidate for such a boundary condition: the boundary conditions that have been proposed seem rather ad hoc.

By contrast, in a Euclidean treatment, there is a natural boundary condition, namely the no boundary condition, which says that there are no singularities and no boundaries in the Euclidean domain, other than asymptotically flat space. This boundary condition of no boundaries should mean that is asymptotic Green functions are defined by a path integral over all fields and Euclidean metrics that are asymptotically flat. These Green functions can then be used to calculate how ingoing particles evolve to outgoing particles, maybe with loss of quantum coherence. It is not obvious that this process will have a Lorentzian description, but if it does, our results suggest that it will contain horizons. By CPT symmetry, one might expect that there would be past horizons as well as future horizons. It is bad enough to lose quantum coherence, but to lose CPT symmetry as well seems like carelessness. This leads to a picture in which particles would fall into a hole that was already existing in the vacuum. The hole would grow in size and mass and then evaporate down to a hole like those in the vacuum. One might claim that the information about the particles that fell in was not lost, that it was still contained in the residual black hole. But if this residual hole was indistinguishable from holes in the vacuum, the information is effectively lost, and the outgoing radiation will be in a mixed state.

This picture is similar to that of scattering off an extreme magnetically charged black hole: the hole grows in mass and then evaporates back to the original zero temperature black hole. One can see that the information is contained in the residual black hole, but that is just words. The amount of information that can be fed in is infinite, and there is no way the information can be recovered. Moreover, as the radiation is emitted in a weak field region, there is no reason to distrust the semi classical calculations that indicate that it is in a mixed state. It is this effective loss of quantum coherence that is the physically important result, rather than any semantics about whether the information can be thought of as being contained in some remnant.

The only difference between the picture being suggested here, and the magnetically
charged case, is that one would have to imagine that the ground state with zero mass and conserved charge also contained objects with zero temperature future and past horizons. But this is just what there is in the Lorentzian section of a Euclidean wormhole[12]. Consider the Euclidean metric

\[ds^2 = \left(1 + \frac{a^2}{x^2} \right)^2 dx^2 \]

This corresponds to two asymptotically Euclidean regions connected by a wormhole or throat of size \(a \). However, the Lorentzian section obtain by \(x^4 \to ix^4 \) looks rather different. Its Penrose diagram is shown in figure 3. It has an outer null infinity \(\mathcal{I}_o \) like flat Minkowski space but now the light cone of the origin has also been sent to infinity to become an inner null infinity \(\mathcal{I}_i \). The two null infinities intersect in two two spheres \(I^+ \) and \(I^- \). This is the four dimensional analogue of the Penrose diagram for the linear dilaton solution, which also has two infinities. This supports the idea that there is a close connection between wormholes and the formation and evaporation of black holes. Particles and information falling into black holes pass into another universe, and particles from that universe enter ours in the form of black hole radiation. Further developments of this idea will be published elsewhere.

This work was supported in part by the U.S. Dept. of Energy under contract no. DE-AC03-81-ER40050. Part of this work was done while SWH was a Sherman Fairchild Distinguished Scholar at Caltech.
References

1. Hawking, S.W., Particle Creation by Black Holes, Comm. Math. Phys. 43 (1975), 199.
2. Hawking, S.W., Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D14 (1976), 2460.
3. Hawking, S.W., Black Holes and Thermodynamics, Phys. Rev. D13 (1976), 191.
4. Callan, C.G., Giddings, S.B., Harvey, J.A., Strominger, A. Evanescent Black Holes, Phys. Rev. D45 (1992), R1005.
5. Russo, J.G., Susskind, L., Thorlacius, L., Black Hole Evaporation in 1+1 Dimensions, Phys. Lett. B292 (1992), 13.
6. Banks, T., Dabholkar, A., Douglas, M.R., O'Loughlin, M., Are Horned Particles the Climax Of Hawking Evaporation?, Phys. Rev. D45 (1992) 3607.
7. Bilal, A., Callan, C.G., Liouville Models of Black Hole Evaporation, PUPT-1320, May 1992.
8. Russo, J.G., Susskind, L., Thorlacius, L. The Endpoint of Hawking Evaporation, Phys. Rev. D (1992) 3444.
9. De Alwis, S.P., Quantum Black Holes in Two Dimensions, Phys. Rev. D46 (1992) 5429.
10. Hawking, S.W. and Stewart, J.M., Naked and Thunderbolt Singularities in Black Hole Evaporation, to appear in Nucl. Phys. B.
11. Lowe, D., Semi-classical Approach to Black Hole Evaporation, Phys. Rev. D47 (1993), 2446.
12. Hawking, S.W., Wormholes in Spacetime, Phys. Rev. D37 (1987), 904.