Localization of the Sites Along Nucleosome DNA Which Interact with NH$_2$-terminal Histone Regions*

(Received for publication, February 23, 1977, and in revised form, May 25, 1977)

JAMES P. WHITLOCK, JR. AND ROBERT T. SIMPSON

From the Developmental Biochemistry Section, Laboratory of Nutrition and Endocrinology, National Institute of Arthritis, Metabolism and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20014

Trypsin digestion of HeLa nucleosomes produces the same series of discrete histone breakdown products observed previously by others during digestion of chromatin, thus, trypsin excises the NH$_2$-terminal ends of the histones from the chromatin core particle. The resulting nucleoprotein complex sediments at 9 S, has an increased molecular ellipticity at 280 nm, and has DNase I-susceptible sites at 10 nucleotide intervals. Nucleosomes containing a 32P label at the 5'-DNA termini were digested sequentially with trypsin and DNase I. Following trypsin digestion, the segments of nucleosome DNA 20 to 35 and 60 to 80 nucleotides from the 5' end became more susceptible to DNase I, suggesting that these segments interact with the trypsin-sensitive regions of the histones. The results indicate that the NH$_2$ ends of the histones interact with the segments of nucleosome DNA which are 20 to 35 and 60 to 80 nucleotides from the 5'-DNA termini. However, the details of nucleosome structure are not well understood; more complete knowledge of the protein-DNA interactions within the chromatin subunit is necessary in order to fully understand the mechanisms leading both to the packing of DNA within the nucleus and to the regulation of the expression of genetic information. For example, there may be only subtle differences between nucleosomes containing transcribed DNA sequences and those containing sequences which are repressed (11-13).

Therefore, we have developed methods for preparing homogeneous populations of intact nucleosomes (14) and for studying nucleosome structure in more detail than was previously possible (15-18). Here, we have examined the contribution to nucleosome structure of the trypsin-sensitive NH$_2$-terminal ends of the histones. The results indicate that the NH$_2$ ends of the histones interact with the segments of nucleosome DNA which are 20 to 35 and 60 to 80 nucleotides from the 5'-DNA termini. However, the NH$_2$ ends do not, by themselves, determine the distribution of DNase I-susceptible sites at 10-nucleotide intervals along nucleosome DNA, and they are not required for the maintenance of the nucleoprotein complex in a nucleosome-like conformation.

MATERIALS AND METHODS

Cell culture, preparation of nucleosomes, labeling of nucleosome DNA with 32P, digestion with DNase I, analysis of DNA and protein, and measurement of radioactivity were as previously described (14, 15, 19-21).

Sedimentation velocity was determined in the Beckman model E ultracentrifuge at 48,000 rpm and 20°C in 0.1 M NaCl, 10 mM Tris/Cl, pH 8, using the automatic photoelectric scanner system. Circular dichroism measurements were made in the same buffer, as previously described (22).

Trypsin-digested nucleosomes were hydrolyzed for 20 h in 6 N HCl at 110°C. Amino acid analysis was performed using conventional automated equipment. Amino acids were detected fluorometrically as o-phthaldehyde condensation products (23).

Trypsin, treated with L-1-tyrosilamido-2-phenethyl chloromethyl ketone, was from Worthington Biochemical Corp. Digestions were at 20°C in 5 mM Tris/Cl, pH 8, at a trypsin concentration of 5 pg/ml and a nucleosome concentration of 10 A_{260} units/ml. Digestions were terminated by the addition of a 20 fold (w/w) excess of lima bean trypsin inhibitor (Worthington Biochemical Corp.; preliminary experiments indicated that this amount of trypsin inhibitor was required to halt the reaction rapidly. Zero time controls received trypsin inhibitor prior to exposure to trypsin. In all experiments, the extent of proteolysis was monitored by discontinuous sodium dodecyl sulfate polyacrylamide gel electrophoresis of nucleosomal proteins, as previously described (14). Under the conditions described, no detectable intact histones remained after 128 min of digestion. Trypsin was stored as a stock solution (1 mg/ml) at 4°C in 1 M HCl; lima bean trypsin inhibitor was stored as a stock solution (5 mg/ml) at 4°C in 5 mM Tris/Cl, pH 8. Both solutions were stable for months.

RESULTS

Effect of Trypsin on Nucleosome Histones and DNA - Digestion of HeLa nucleosomes with trypsin results in the gradual disappearance of intact histones, accompanied by the simultaneous appearance of several discrete smaller products. The kinetics of digestion (not shown) indicates that the histones within the nucleosome are not all equally sensitive to the protease; H3 is degraded most rapidly, followed by H2A, H4, and finally H2B. Similar observations have been made previously (24-26). Fig. 1 shows that trypsin digestion of HeLa nucleosomes generates a characteristic population of cleavage fragments in a pattern which is virtually identical with those previously described (24, 26, 27). Analysis of such fragments by others has suggested that trypsin digestion results primar-
Histones und Nucleosome Structure

FIG. 1. Proteins in native and trypsin-digested nucleosomes. Nucleosomes were digested for 0 min (left slot) or 128 min (right slot) and the reaction stopped with trypsin inhibitor. The digest was made 1% in sodium dodecyl sulfate and 1% in β-mercaptoethanol and was electrophoresed in a discontinuous 18% polyacrylamide gel. Migration was from top to bottom. The positions of migration of the four smaller histones are indicated.

ily in the removal of 20 to 30 amino acid residues from the NH₂ end of each histone (24).

We have isolated the trypsin-resistant nucleoprotein complex by gel filtration, using nucleosomes prepared from cells labeled in vivo with [3H]lysine and [3H]arginine. Fig. 2 shows that during gel filtration approximately half of the radioactivity in the digest passes through the column unretarded. This fraction contains all the input material absorbing at 260 nm and the proteins in this first peak have an electrophoretic pattern identical with that shown in Fig. 1. The protein/DNA ratio of these nucleoprotein complexes is 0.7 to 0.8 g/g, and they have an amino acid composition which is consistent with the idea that trypsin excises the NH₂-terminal histone regions (Table I). Thus, these results, taken together, indicate that the organization of HeLa nucleoprotein, as measured by its digestion with trypsin, is indistinguishable from that of other tissues. Further, it seems that trypsin digestion of HeLa nucleosomes removes the lysine- and arginine-rich NH₂ ends of the histones, as first shown for chromatin by Weintraub and Van Lente (24).

Trypsin contains no detectable endonuclease or exonuclease contamination, as measured both by polyacrylamide gel electrophoresis of DNA purified from trypsin-digested nucleosomes and by measurement of acid-soluble radioactivity generated during trypsin digestion of nucleosomes labeled in vivo with [3H]thymidine (data not shown).

Physical Properties of Trypsin-Digested Nucleosomes—Both native and trypsin-digested nucleosomes sediment as homogeneous boundaries during analytical ultracentrifugation. The Sₑₑₑₑ of native nucleosomes is 10.7 S; that of the trypsin-digested particles is 9.0 S. No material sedimented with the velocity of protein-free DNA.

The results of analytic ultracentrifugation implied that trypsin digestion does not release DNA from the nucleosome. This was confirmed by analyzing the trypsin-digested nucleoprotein complex by polyacrylamide gel electrophoresis. Fig. 3 shows that, as digestion proceeds, the mobility of the remain-

FIG. 2. Gel filtration of trypsin-digested nucleosomes. Nucleosomes labeled in vivo with [3H]lysine and [3H]arginine were digested with trypsin for 128 min and the reaction stopped with trypsin inhibitor. The mixture was made 10 mM in MgCl₂ and layered over a column (1 × 5 cm) of Bio-Gel P-150 equilibrated with 10 mM MgCl₂, 5 mM Tris/Cl, pH 8. Fractions were eluted with the above buffer and analyzed for radioactivity by liquid scintillation counting in Aquasol (New England Nuclear Corp.).

Amino acid*	Theoretical%	Measured%
Aspartic acid + asparagine	6.6	6.1
Threonine	6.6	4.9
Serine	4.8	4.0
Glutamic acid + glutamine	10.3	10.1
Glycine	7.1	16.2
Alanine	10.9	9.7
Cysteine	0.6	0
Valine	8.0	7.7
Methionine	1.4	1.4
Isoleucine	7.1	6.0
Leucine	10.0	10.3
Tyrosine	3.4	2.9
Phenylalanine	2.3	2.5
Histidine	2.6	0.9
Lysine	8.8	8.8
Arginine	9.4	9.1

* Proline is not detected in this system.
% The following assumptions were made: (a) HeLa histones have the identical amino acid composition as calf thymus histones; (b) the composition of the histones was as described in Ref. 28; (c) trypsin treatment resulted in the removal of the NH₂-terminal amino acids as follows: H2A, 1-42; H2B, 1-94; H3, 1-27; H4, 1-23.
Histones and Nucleosome Structure

Fig. 3 (left). Polyacrylamide gel electrophoresis of trypsin-digested nucleosomes. Nucleosomes were digested for increasing times with trypsin; the reaction was stopped with trypsin inhibitor, made 0.1 x in electrophoresis buffer, and electrophoresed in a 5% polyacrylamide gel using the Tris/borate/EDTA buffer system (20). Migration was from top to bottom. Digestion times, in minutes, were: A, 0; B, 1; C, 2; D, 4; E, 8; F, 16; G, 32; H, 64; I, 128. Each slot contained 5 μg of DNA in the nucleoprotein complex. Slot J contained 5 μg of purified nucleosome DNA. The gel was stained with ethidium bromide and photographed using ultraviolet transillumination.

Fig. 4 (right). Circular dichroism of trypsin-digested nucleosomes. Circular dichroism spectra of native (---) and trypsin-digested (-----) nucleosomes was measured in both 10 mM Tris/Cl, pH 8, and 0.1 M NaCl, 10 mM Tris/Cl, pH 8 with identical results. The DNA spectrum (----) was obtained after the addition of solid sodium dodecyl sulfate to a final concentration of 1%.

Fig. 5. DNase I digestion of native (○) and trypsin-digested (●) nucleosomes. 32P-labeled nucleosomes were digested with trypsin for 128 min. The reaction was stopped with trypsin inhibitor, made 10 mM in MgCl₂, and digested for the indicated times with DNase I (100 units/ml at 37°C). Trichloroacetic acid-precipitable material was collected on glass fiber filters and measured by liquid scintillation counting.

Fig. 6. Stained gel (left) and autoradiogram (right) of single-stranded DNA fragments generated during DNase I digestion of trypsin-digested nucleosomes. Nucleosomes were digested with trypsin for 128 min. The reaction was stopped with trypsin inhibitor, made 10 mM in MgCl₂ and digested with DNase I (100 units/ml, 37°C). Digestion times (in minutes) were: A, 0; B, 1; C, 2; D, 4; E, 8; F, 16.

solution after trypsin digestion. The results also reveal that trypsin digestion produces no increase in the heterogeneity of the nucleosome population (as measured by the breadth of bands on the gel), confirming the analysis of boundaries in the ultracentrifuge.

Fig. 4 shows that the molecular ellipticity at 280 nm of trypsin-digested nucleosomes is about twice that of native particles, but is still less than half that of protein-free DNA. These results suggest that at least some of the DNA in trypsin-digested nucleosomes has assumed a conformation more like that of protein-free DNA. We attempted to determine whether this increase in molecular ellipticity reflects an overall change in DNA conformation or whether certain regions of nucleosome DNA undergo a greater change than other regions; for example, following trypsin digestion, those DNA segments which interact in the native particle with the trypsin-sensitive regions of the nucleosomal histones might undergo a greater

Thus, less than 1% of nucleosome DNA has been released into
Our previous observations indicated that the intact nucleosome exhibits a conformational change than the DNA segments which interact with the trypsin-resistant histone regions. We used our technique for mapping DNase I susceptible sites along nucleosome DNA to ask whether certain segments of nucleosome DNA undergo greater changes than other segments, following removal of the NH$_2$ ends of the histones with trypsin.

Susceptibility of Trypsin-digested Nucleosomes to DNase I — Our previous observations indicated that the intact nucleosome contains a DNase I susceptible site at each 10-nucleotide interval and that these sites vary in their relative susceptibilities to the nuclease. The experiments involve phosphorylating the 5' ends of nucleosome DNA using polynucleotide kinase and [γ-32P]ATP; these labeled particles are then digested with DNase I, and the DNA is purified and analyzed by polyacrylamide gel electrophoresis and autoradiography. The distribution of bands on the autoradiogram reflects the distance from the 5' ends at which cleavage occurred; the intensity of a given band reflects the relative susceptibility of that site to nucleolytic cleavage (15).

These same methods were used to determine whether the removal of the trypsin-sensitive histone regions affects the susceptibility of various sites along nucleosome DNA to DNase I. Thus, nucleosomes containing a 5'-terminal 32P label were digested with trypsin; the remaining nucleoprotein complex was then digested with DNase I and the DNA was analyzed by electrophoresis and autoradiography. Trypsin apparently contains some phosphatase contamination, since 20 to 25% of the 32P label is rendered acid-soluble during trypsin digestion, although the DNA itself is neither nicked nor shortened.

Fig. 5 shows that the DNA in trypsin-treated nucleosomes is more rapidly degraded by DNase I than the DNA in native particles. This finding is consistent with the circular dichroism measurements, which suggested that trypsin digestion allows at least some regions of nucleosome DNA to assume a conformation more similar to that of protein-free DNA.

Fig. 6 shows both the stained polyacrylamide gel and the autoradiogram of the DNA fragments generated during DNase I digestion of trypsin-treated nucleosomes. The results show that, even after the removal of the trypsin-sensitive regions of the histones, DNase I still cleaves nucleosome DNA at 10-nucleotide intervals, just as in intact particles. This finding indicates that the trypsin-sensitive NH$_2$ ends of the histones are not required for the maintenance of the DNA in a nucleosome-like conformation, having a DNase I susceptible site each 10 nucleotides. Thus, the trypsin-resistant histone regions must also play an important role in determining the general conformation of nucleosome DNA.

Fig. 7 indicates that, for a given extent of DNase I digestion (as measured by acid solubility), the average DNA fragment size is smaller for trypsin-digested nucleosomes than for native particles. This could be due either to (a) an overall increase in nuclease susceptibility for the entire nucleosome, or (b) an increase in the nuclease susceptibility of particular sites along the nucleosome. Examination of the autoradiogram (Fig. 8) indicates that the relative increase in susceptibility is not the same for all sites. For example, the sites 60 and 70 nucleotides from the 5' termini in intact nucleosomes, these sites are relatively resistant to cleavage by DNase I, as compared to the susceptibility of the site 50 nucleotides from the 5' termini. However, in trypsin-treated nucleosomes, the susceptibility of the sites 60 and 70 nucleotides from the 5' termini are almost equal in susceptibility to the site at 50 nucleotides. Thus, the sites at 60 and 70 nucleotides have undergone a relatively large increase in nuclease susceptibility. In contrast, consider the site 40 nucleotides from the 5' termini. In both native and trypsin-treated particles the susceptibility of this site remains relatively unchanged, compared to the site at 50 nucleotides. Thus, even if the entire nucleosome is more nuclease-susceptible following trypsin digestion, the relative increase in nuclease susceptibility is not the same for all sites. In particular, the sites 60 to 80 nucleotides from the 5' termini show the greatest relative increase in nuclease susceptibility; in addition, the nuclease susceptibility of the region 20 to 35 nucleotides is also apparently increased. These observations suggest that, in the intact nucleosome, some of the trypsin-sensitive NH$_2$ ends of the histones interact with, and decrease the nuclease susceptibility of, these segments of nucleosome DNA. Scans for only a single extent of digestion are shown, since the relative size of each peak on the autoradiogram (except that at 140 nucleotides) remains approximately the same during digestion by DNase I. The relatively rapid rate of nucleolytic cleavage at sites near the middle of nucleosome DNA in trypsin-digested nucleosomes makes it difficult to analyze the nuclease susceptibility of sites farther than 100 nucleotides from the 5'-DNA termini. On the basis of symmetry and our previous results in intact nucleosomes (15), we think it likely that the region 105 to 120 nucleotides from the 5'-DNA termini also becomes more nuclease-susceptible following trypsin digestion.

DISCUSSION

A detailed understanding of nucleosome structure is relevant to several fundamental problems. One involves the nature of the protein-DNA interactions required both for the
initial packing of the DNA into a nucleoprotein complex and for the subsequent maintenance of this complex as an ordered structure. A second involves the subtle alterations in this basic structure which may lead to the specific expression of genetic information.

The results of these experiments indicate that the complete removal of the tryptase-sensitive NH₂ ends of the histones leads to a change in the conformation of at least some of the DNA within the nucleosome (its increased molecular ellipticity and increased nuclease susceptibility) and yet does not destroy its basic structure which may lead to the specific expression of genetic information.

For the subsequent maintenance of this complex as an ordered initial packing of the DNA into a nucleoprotein complex and the presence of 6 S (14). This suggests that the decrease in the sedimentation coefficient of tryptase-digested nucleosomes is primarily related to a loss of mass, rather than to any substantial change in overall conformation. This implies that the NH₂ ends of the histones are not required to maintain the nucleosome in its native compact shape. Thus, if the nucleosome is composed of two "half-nucleosomes" (10), the NH₂ ends of the histones do not serve to bind the two halves together.

These experiments also show that the decrease in the interaction between nucleosome DNA and the NH₂ ends of the histones is accompanied by an increase in the interaction between the DNA and a different protein (in this case, a nuclease). This suggests the possibility that more subtle alterations in the interactions between nucleosome DNA and the NH₂ ends of the histones, such as those which might result from histone modification (28-33), might also increase the relative accessibility of certain sites along DNA to other proteins, such as RNA polymerase, hormone-receptor complexes, or other regulatory macromolecules. Such decreases in the strength of interactions between DNA and the NH₂ ends of the histones might also play a role in the increased DNase I susceptibility of the transcribed regions of the genome (12, 13).

Acknowledgments – We are indebted to Ms. Linda Probst for photographic assistance and thank Dr. Robert W. Hartley for performing the amino acid analysis.

REFERENCES

1. Olins, A. L., and Olins, D. E. (1974) Science 183, 309-322
2. Oudet, P., Gross-Bellard, M., and Champon, P. (1975) Cell 4, 281-300
3. Kornberg, R. D. (1974) Science 184, 659-671
4. Van Holde, K. E., Sahasrabuddhe, C. G., and Shaw, B. (1974) Nucleic Acids Res. 1, 1579-1586
5. Daldwin, J. P., Dolese, P. G., Bradbury, M., and Ibel, K. (1975) Nature 253, 245-249
6. Hyde, J. E., and Walker, I. O. (1975) Nucleic Acids Res. 2, 405-407
7. Li, H. J. (1975) Nucleic Acids Res. 2, 1275-1289
8. Varshavsky, A. J., and Georgiev, G. P. (1975) Mol. Biol. Rep. 2, 255-256
9. Pardon, J. F., Worcester, D. L., Welte, J. C., Tatchall, K., Van Holde, K. E., and Richards, B. (1976) Nucleic Acids Res. 2, 2163-2176
10. Weintraub, H., Welce, A., and Alberts, B. (1976) Cell 9, 409-417
11. Lacy, E., and Axel, R. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 3575-3582
12. Weintraub, H., and Groudine, M. (1976) Science 193, 848-856
13. Garel, A., and Axel, R. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3966-3970
14. Whitlock, J. P., Jr., and Simpson, R. T. (1976) Nucleic Acids Res. 3, 2255-2266
15. Simpson, R. T., and Whitlock, J. P., Jr. (1976) Cell 9, 341-353
16. Bustin, M., and Bustin, M. (1976) Biochemistry 15, 4306-4312
17. Simpson, R. T. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 4400-4404
18. Whitlock, J. P., Jr., Rushizky, G., and Simpson, R. T. (1977) J. Biol. Chem. 252, 3003-3006
19. Maniatis, T., Jeffrey, A., and van de Sande, H. (1975) Biochemistry 14, 3787-3794
20. Peacock, A. C., and Dintman, C. W. (1967) Biochemistry 6, 1818-1827
21. LeSturgeo, W. M., and Rusch, H. P. (1973) Arch. Biochem. Biophys. 154, 144-158
22. Simpson, R. T., and Sober, H. A. (1970) Biochemistry 9, 3103-3109
23. Benson, J. R., and Hare, P. E. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 619-622
24. Weintraub, H., and Van Lente, F. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 4249-4253
25. Marks, D. B., and Keller, B. J. (1976) Arch. Biochem. Biophys. 175, 598-605
26. Sollner-Webb, B., Camerini-Otero, R. D., and Felsenfeld, G. (1976) Cell 9, 179-193
27. Weintraub, H., Palter, K., and Van Lente, F. (1975) Cell 6, 85-110
28. Allfrey, V. G. (1971) in Histones and Nucleohistones (Phillips, D., ed) pp. 241-294, Plenum Press, New York
29. Hinrichs, L. S. (1972) The Structure and Biological Function of Histones, pp. 79-92, Chemical Rubber Co. Press, Cleveland, O.
30. Louie, A. J., Candido, E. P. M., and Dixon, G. H. (1974) Cold Spring Harbor Symp. Quant. Biol. 38, 803-819
31. Tobey, R. A., Gark, L. R., Hildebrand, C. E., Ratliff, R. L., and Walters, R. A. (1974) in Control of Proliferation in Animal Cells (Clarkson, B., and Baserga, R., eds) pp. 665-679, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
32. Ruiz-Carrillo, A., Wangh, L. J., and Allfrey, V. G. (1975) Science 190, 117-128
33. Marushige, K. (1975) Proc. Natl. Acad. Sci. U. S. A. 73, 3937-3941
Localization of the sites along nucleosome DNA which interact with NH2-terminal histone regions.
J P Whitlock, Jr and R T Simpson

J. Biol. Chem. 1977, 252:6516-6520.

Access the most updated version of this article at http://www.jbc.org/content/252/18/6516

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/252/18/6516.full.html#ref-list-1