Galdi, Giovanni P.
On the problem of steady bifurcation of a falling sphere in a Navier-Stokes liquid. (English)
J. Math. Phys. 61, No. 8, 083101, 13 p. (2020).

Summary: We study steady bifurcation for the coupled system body-liquid consisting of a sphere freely falling in a Navier-Stokes liquid under the action of gravity. In particular, we show that, under the assumption that for the bifurcating solution, the translational velocity of the sphere is parallel to the gravity, bifurcation takes place, provided that 1 is a simple eigenvalue of a suitable linear operator and the transversality property holds. Moreover, we also give sufficient conditions for symmetry breaking.

©2020 American Institute of Physics

MSC:
76E30 Nonlinear effects in hydrodynamic stability
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations

Keywords:
Galilei number; spectrum; eigenvalue; symmetry breaking; transversality property

Full Text: DOI arXiv

References:
[1] Chossat, P.; Iooss, G., The Couette-Taylor Problem (1994), Springer-Verlag: Springer-Verlag, New York · Zbl 0817.76001
[2] Haragus, M.; Iooss, G., Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems (2011), Springer-Verlag London, Ltd.; EDP Sciences: Springer-Verlag London, Ltd.; EDP Sciences, London; Les Ulis · Zbl 1230.34002
[3] Zeidler, E., Nonlinear Functional Analysis and Applications (1988), Springer-Verlag: Springer-Verlag, New York
[4] Sattinger, D. H., Topics in Stability and Bifurcation Theory (1973), Springer-Verlag: Springer-Verlag, Berlin, NY · Zbl 0248.35003
[5] Farwig, R.; Neustupa, J., On the spectrum of a Stokes-type operator arising from flow around a rotating body, Manuscripta Math., 122, 419-437 (2007) · Zbl 1126.35050 · 10.1007/s00229-007-0078-2
[6] Stuart, C. A., Bifurcation from the essential spectrum, Topological Nonlinear Analysis, II, 397-443 (19951997), Birkhäuser Boston; Fracatixi: Birkhäuser Boston; Fracatixi, Boston, MA · Zbl 0888.47045
[7] Galdi, G. P.; Rabier, P. J., Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: Planar exterior domains, Topics in Nonlinear Analysis, 273-303 (1999), Birkhäuser: Birkhäuser, Basel · Zbl 0922.35122
[8] Galdi, G. P., Further properties of steady-state solutions to the Navier-Stokes problem past a three-dimensional obstacle, J. Math. Phys., 48, 6, 065207 (2007) · Zbl 1144.81345 · 10.1063/1.2425099
[9] Galdi, G. P., Steady-state Navier-Stokes problem past a rotating body: Geometric-functional properties and related questions, Topics in Mathematical Fluid Mechanics, 109-197 (2013), Springer: Springer, Heidelberg · Zbl 1301.35088
[10] Galdi, G. P.; Hishida, T.; Kikuyukoku, R. I. M. S., A time-periodic bifurcation theorem and its applications to Navier-Stokes flow past an obstacle, Mathematical Analysis of Viscous Incompressible Flow, 1-27 (2015), Kyoto University: Kyoto University, Japan
[11] Galdi, G. P., On bifurcating time-periodic flow of a Navier-Stokes liquid past a cylinder, Arch. Ration. Mech. Anal., 222, 1, 285-315 (2016) · Zbl 1352.35096 · 10.1007/s00205-016-1001-3
[12] Tani, T., Experimental investigation of the wake behind a sphere at low Galilei numbers, J. Phys. Soc. Jpn., 11, 1104-1108 (1966): · doi:10.1143/jp11.1104
[13] Nakamura, I., Steady wake behind a sphere, Phys. Fluids, 19, 5-8 (1976): · doi:10.1063/1.861328
[14] Jenny, M.; Bouchet, G.; Dušek, J., Nonvertical ascension or fall of a free sphere in a Newtonian fluid, Phys. Fluids, 15, 9-12 (2003) · Zbl 1185.76185 · 10.1063/1.1529179
[15] Jenny, M.; Dušek, J.; Bouchet, G., Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid, J. Fluid Mech., 508, 201-239 (2004) · Zbl 1065.76068 · 10.1017/s0022112004009164
[16] Giacobello, M.; Ooi, A.; Ooi, S., Wake structure of a transversely rotating sphere at moderate Galilei numbers, J. Fluid Mech.,
We use standard notation: L^q is the Lebesgue space with norm $\| \cdot \|_q$, and $W^{1,2}$ is the Sobolev space. Furthermore, $D^\infty_{k,t}$ represent homogeneous Sobolev spaces with semi-norm $\| \cdot \|_{k,t} = k \| D^\infty \cdot \|_{t}$.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.