Head-to-head performance comparison of self-collected nasal

versus professional-collected nasopharyngeal swab for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test

Julian A.F. Klein¹, Lisa J. Krüger¹, Frank Tobian¹, Mary Gaedert¹, Federica Lainati¹,
Paul Schnitzler², Andreas K. Lindner³, Olga Nikolai³, B. Knorr⁴, A. Welker⁴,
Margaretha de Vos⁵, Jillian A. Sacks⁵, Camille Escadafal⁵, Claudia M. Denkinger¹,§ for
the study team

¹Division of Clinical Tropical Medicine, Centre of Infectious Diseases, Heidelberg University Hospital, Germany
²Department of Virology, Centre of Infectious Diseases, Heidelberg University Hospital, Germany
³Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Tropical Medicine and International Health, Berlin, Germany
⁴Local Health Authority of Heidelberg and Rhein-Neckar-Region, Germany
⁵Foundation for Innovative New Diagnostics, Geneva, Switzerland

Correspondence: Claudia M. Denkinger, Division of Clinical Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany. E-mail: claudia.denkinger@uni-heidelberg.de

Key Words: SARS-CoV-2, COVID-19, nasal sampling, antigen-detecting rapid diagnostic test, self-sampling, head-to-head comparison.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
To the Editor:

The use of antigen-detecting rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 has increased within the last months and has an important role in pandemic management. However, broader use and scale up is limited due to complex sampling methods. In 2020, the World Health Organization (WHO) recommended two lateral flow Ag-RDTs ((SD Biosensor, Inc. Gyeonggi-do, Korea, distributed by Roche, Germany, henceforth called Standard Q; and Abbott Panbio™ (Rapid Diagnostics, Jena, Germany; henceforth called PanBio)), both initially with nasopharyngeal (NP) sample collection [1,2]. Since then, independent head-to-head studies demonstrated that nasal sampling (including self-sampling) assessed against NP sampling leads to comparable performance using the SARS-CoV-2 Ag-RDT SD STANDARD Q [3-5]. For Panbio, only one study to date assessed professional nasal mid-turbinate (NMT) sampling and showed 82.1% sensitivity and 99.1% specificity in comparison to reverse transcription polymerase chain reaction (RT-PCR). However, a head-to-head comparison with NP sampling has not been performed to date [6].

We conducted a manufacturer-independent prospective study directly comparing the diagnostic accuracy of Panbio performed with a supervised, self-collected NMT swab versus a professionally collected NP swab. For the two Ag-RDT sampling techniques positive and negative percent agreements (PPA, NPA) were calculated. Sensitivity and specificity were assessed and compared against the reference standard RT-PCR.

The ethical review committee at Heidelberg University Hospital approved the study protocol (registration number S-180/2020). Enrollment and testing took place in Heidelberg (Germany) between December 15th 2020 and January 19th 2021 in a SARS-CoV-2 drive-in testing centre, led by the local health authority. We included adults with symptoms suggestive for a SARS-CoV-2 infection or a recent high-risk contact with a confirmed SARS-CoV-2 case.
After written informed consent, each participant was instructed to self-collect a NMT swab for the Ag-RDT under supervision using a non-flocked swab (Jiangsu Changfeng Medical Industry Co., Ltd., Jiangsu, China), provided by Abbott in the research use only Panbio kit for nasal swab testing. The instructions were verbal and picture-guided following the manufacturer’s instructions for use. In a second step, a health worker collected a NP swab (using IMPROSWAB®, Guangzhou Improve Medical Instruments Co., Ltd., Guangzhou, China), for RT-PCR testing in one nostril. Finally, a second NP swab for Ag-RDT testing was collected from the patient using a nylon-flocked specimen (NFS-SWAB Applicator™, Noble Biosciences Inc., Gyeonggi-do, Korea), provided with the commercial Abbott (nasopharyngeal) test kit. The PanBio was conducted on-site by trained study personnel following the manufacturer’s instruction for use for each kit [7]. Two study staff read out the Ag-RDT results, each of them blinded to the interpretation of the other.

For RT-PCR testing the Tib Molbiol® (Berlin, Germany) assay was used. Viral load (VL) values were calculated based on a calibration curve and the assay specific cycle threshold (Ct)-value [8]. Leftover samples of the NMT and NP swabs resuspended in Ag-RDT buffer were stored at -20 degrees Celsius. Samples that were identified to be false-positive in comparison to RT-PCR on one or both Ag-RDTs were retested with RT-PCR from the remnant Ag-RDT buffer.

We screened a total of 369 eligible individuals of whom 292 (79.1%) gave written consent. After exclusion of two participants (one with invalid RT-PCR result and one with lost written informed consent), 290 participants were included in the analysis (study flow detailed in Supplementary Material (B)). Our study population had an average age of 42.7 years (standard deviation (SD) 14.6), 33.8% (98/290) had comorbidities and 52.4% (152/290) were female. In total, 45.9% (133/290) were symptomatic on the day of testing with a mean duration of symptoms of 3.8 days (SD 5.4). SARS-CoV-2 infection was detected by RT-PCR.
in 15.5% (45/290) of the study population (Table 1), with eight infections being among asymptomatic participants. One invalid Ag-RDT was registered on NP samples, which was valid upon repeat.

The overall sensitivity of Panbio with NP sampling was 88.9% (40/45; 95% confidence interval (CI) 76.5% - 95.5%) and 84.4% (38/45; CI 71.2% - 92.3%) with NMT sampling.

Four infections were identified by NP Ag-RDT sampling, which were negative in NMT sampling of which two had a low VL (VL <4.9 log_{10} SARS-CoV-2 RNA copies/ml) and two were asymptomatic (Table 1). Two participants had a positive NMT result, not detected via NP Ag-RDT, of which one had a low VL (VL <4.9 log_{10} SARS-CoV-2 RNA copies/ml). Specificity was 99.2% (243/245; CI 97.1% - 99.8%) for both, NP and NMT sampling.

Considering only RT-PCR positive participants with high VL (> 7 log_{10} SARS-CoV-2 RNA copies/mL), the sensitivity of the Panbio test was 96.3% (CI 81.7% - 99.8%) for both NMT and NP sampling. Excluding nine participants with oropharyngeal sampling instead of NP (due to contraindications of NP sampling) increased sensitivity only marginally (40/44; 90.9% (CI 78.8% – 96.4%)). Detailed results by symptoms and sub-group analyses are available in the Supplement (C&D). The positive percent agreement of the Ag-RDT was 88.1% (37/42 PCR positives detected; CI 75.0% - 94.8%) including one false-positive by both NMT and NP, and one false-positive by NP only. The negative percent agreement was 98.8% (245/248; CI 96.5% - 99.6%). Inter-rater reliability for the interpretation of the Ag-RDTs was perfect with a kappa of 1.0. Participants reported NMT sampling to be better tolerated than NP sampling.

When performing RT-PCR from the remnant buffer/sample-mixture, SARS CoV-2 was identified in both NMT and NP samples from the same participant with a false-positive Ag-RDT result. This suggests the Ag-RDT result being in fact true-positive with a sampling error likely having occurred for the RT-PCR from NP sample. For two other false-positives, one
each on NMT and NP, no virus was identified in the buffer solution. Among three false-negative NMT samples one buffer was positive with low VL ($4.38 \log_{10} SARS-CoV-2$ RNA copies/ml; Supplementary Material (F), suggesting that the VL was below the limit of detection of the Ag-RDT.

Our study has several strengths. Study methods were rigorous and included standardized sampling and two independent blinded readers. The study population is representative, judging from the similar sensitivity of the Panbio test with NP sampling observed in our study in comparison to two large validation studies [9,10]. All samples for routine RT-PCR were tested via the same RT-PCR assay (Table 1). The RT-PCR on the leftover buffer solution of Ag-RDT allowed us to perform further discrepant analysis.

A limitation of the study is that it was performed in a single centre. The preselection of participants invited to come for testing was done according to national guidelines. We did not record deviations from the recommended NMT procedure, however as the sampling was done under proactive supervision, no major deviations were observed. Readers were not blinded to the sampling method while interpreting the test results, but weak positive results are rarely observed with the Panbio test, thus this limitation is unlikely to result in a difference in result interpretation. In the discrepant analysis, we did not perform RT-PCR of all Ag-RDT buffer solutions thus introducing a possible bias.

Our study suggests that supervised NMT self-sampling leads to results comparable to NP sampling for the PanBio Ag-RDT. A possible reduction in VL present in the nasal region compared to the nasopharyngeal region may be counterbalanced by the ease-of-sampling. Results of nasal sampling could potentially be further improved, if flocked swabs were used [11]. Standardized easy self-sampling methods are highly desirable, as they could increase
throughput and require fewer medical personnel, which is often a bottle neck for scaling of antigen testing.
Acknowledgements: Angelika Sandritter, Andrea Sieber, Alexander Syring, Zoe Solomon, Emilija Mitreska, Sabrina Eisenmann, Andrea Fuhs, Kholoud Assaad, Salome Steinke.

Declaration of interest statement: None declared.

Funding: The study was supported by Heidelberg University Hospital internal funds, as well as a grant of the Ministry of Science, Research and the Arts of Baden-Württemberg, Germany. Foundation of Innovative New Diagnostics (FIND) reports grants from UK Department of International Development (DFID, recently replaced by FCMO), grants from World Health Organization (WHO), grants from Unitaid, to conduct the study.

References
1. World Health Organization. Global partnership to make available 120 million affordable, quality COVID-19 rapid tests for low- and middle-income countries 2020, September 28th. Available from: http://www.who.int/news-room/detail/28-09-2020-global-partnership-to-make-available-120-million-affordable-quality-covid-19-rapid-tests-for-low--and-middle-income-countries. Date last accessed: February 24 2021
2. World Health Organization. WHO Emergency Use Assessment Coronavirus disease (COVID-19) IVDsPUBLIC REPORT, Product: Panbio COVID-19 Ag Rapid Test Device (NASAL) 2021 January. Available from: https://extranet.who.int/pqweb/key-resources/documents/who-eul-public-report-abbott-panbio-covid-19-ag-rapid-test-device-nasal-eul. Date last accessed: February 24 2021
3. Lindner AK, Nikolai O, Kausch F, et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with self-collected nasal swab versus professional-collected nasopharyngeal swab. Eur Respir J. 2021 Feb 18.
4. Lindner AK, Nikolai O, Rohardt C, et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with professional-collected nasal versus nasopharyngeal swab. Eur Respir J. 2021 Feb 11.
5. Nikolai O, Rohardt C, Tobian F, et al. Anterior nasal versus nasal mid-turbinate sampling for a SARS-CoV-2 antigen-detecting rapid test: does localisation or professional collection matter? medRxiv. 2021:2021.02.09.21251274.

6. Abdulrahman A, Mustafa F, AlAwadhi AI, et al. Comparison of SARS-COV-2 nasal antigen test to nasopharyngeal RT-PCR in mildly symptomatic patients. medRxiv. 2020:2020.11.10.20228973.

7. Abbott Global Point-of-Care. Panbio™ COVID-19 Ag Rapid Test Device 2020, . Available from: https://www.globalpointofcare.abbott/en/product-details/panbio-covid-19-ag-antigen-test.html. Date last accessed: February 24 2021

8. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020 Jan;25(3).

9. Krüger LJ, Gaeddert M, Tobian F, et al. Evaluation of the accuracy and ease-of-use of Abbott PanBio - A WHO emergency use listed, rapid, antigen-detecting point-of-care diagnostic test for SARS-CoV-2. medRxiv. 2020:2020.11.27.20239699.

10. Berger A, Ngo Nsoga MT, Perez-Rodriguez FJ, et al. Diagnostic accuracy of two commercial SARS-CoV-2 Antigen-detecting rapid tests at the point of care in community-based testing centers. medRxiv. 2020:2020.11.20.20235341.

11. Daley P, Castriciano S, Chernesky M, et al. Comparison of flocked and rayon swabs for collection of respiratory epithelial cells from uninfected volunteers and symptomatic patients. J Clin Microbiol. 2006 Jun;44(6):2265-7.
TABLE 1 Ag-RDT results with a supervised self-collected nasal mid-turbinate (NMT) swab and professional-collected nasopharyngeal (NP) swab in RT-PCR positive patients.

Ag-RDT (NMT swab) self-collected	Ag-RDT (NP swab) prof.-collected	RT-PCR (NP swab) professionell collected	Symptom duration (days)	
positive	positive	Ct-value*	Viral load (log_{10} SARS-CoV-2 RNA copies/ml)	
positive	positive	12.7	10.0	2
positive	positive	12.9	9.9	4
positive	positive	13.1	9.9	3
positive	positive	16.1	9.0	3
positive	positive	16.4	8.9	3
positive	positive	16.5	8.9	2
positive	positive	16.5	8.9	1
positive	positive	16.6	8.9	1
positive	positive	16.7	8.8	1
positive	positive	17.8	8.5	0
positive	positive	17.9	8.5	1
positive	positive	18.8	8.2	2
positive	positive	18.8	8.2	7
positive	negative	18.9	8.2	1
positive	positive	19.5	8.0	5
positive	positive	19.7	7.9	1
positive	positive	19.9	7.9	4
positive	positive	19.9	7.9	asymptomatic*
positive	positive	20.1	7.8	asymptomatic*
positive	positive	20.2	7.8	10
positive	positive	21.2	7.5	2
positive	positive	21.4	7.4	asymptomatic*
negative	positive	22.1	7.2	1
positive	positive	22.5	7.1	5
positive	positive	22.5	7.1	2
positive	positive	22.6	7.1	6
positive	positive	22.8	7.0	5
positive	positive	23.1	6.9	asymptomatic*
positive	positive	23.1	6.9	1
positive	positive	23.6	6.8	5
positive	positive	23.8	6.7	2
positive	positive	25.7	6.2	2
Positive	Positive	25.9	6.1	7
----------	----------	------	-----	---
Positive	Positive	26.0	6.1	6
Positive	Positive	26.3	6.0	asymptomatic#
Positive	Positive	26.7	5.9	1
Positive	Positive	29.7	5.6	asymptomatic#
Negative	Negative	26.7	5.9	1
Negative	Positive	27.7	5.6	2
Negative	Negative	30.6	4.7	asymptomatic#
Positive	Positive	31.2	4.5	1
Positive	Negative	31.2	4.5	1
Negative	Positive	32.7	4.1	n.a.
Negative	Positive	33.8	3.8	asymptomatic#
Negative	Negative	34.5	3.6	10

Sensitivity	Sensitivity
84.4% (38/45; CI 71.2% – 92.3%)	88.9% (40/45; CI 76.5% – 95.5%)

Positive Percent Agreement 88.1% (CI 75.0% – 94.8%)**

**Assay: TibMolBiol

**including one false-positive on NMT and NP and one on NP

on the day of testing

1 oropharyngeal swab due to contraindications of NP Sampling

Abbreviations: Ag-RDT: antigen-detecting rapid diagnostic test; NMT: nasal mid-turbinate; NP: nasopharyngeal; Ct: cycle threshold; RT-PCR: reverse transcription-polymerase chain reaction; n.a.: not available. CI: confidence interval