Research Article

Expression Profiles of Long Noncoding RNA and mRNA in Epicardial Adipose Tissue in Patients with Heart Failure

Meili Zheng, Lei Zhao, and Xinchun Yang

Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China

Correspondence should be addressed to Xinchun Yang; haiyang_beauty@163.com

Received 29 April 2019; Accepted 27 June 2019; Published 4 July 2019

Academic Editor: Gelin Xu

Copyright © 2019 Meili Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The expression profile of long noncoding RNA (lncRNA) in human epicardial adipose tissue (EAT) has not been widely studied. In the present study, we performed RNA sequencing to analyze the expression profiles of lncRNA and mRNA in EAT in coronary artery disease (CAD) patients with and without heart failure (HF). Our results showed RNA sequencing disclosed 35673 mRNA and 11087 lncRNA corresponding to 15554 genes in EAT in total, while 30 differentially expressed lncRNAs (17 upregulated and 13 downregulated) and 278 differently expressed mRNAs (129 upregulated and 149 downregulated) were discriminated between CAD patients with and without HF (P<0.05; fold change>2); lncRNA ENST00000610659 drew specific attention for it was the top upregulated lncRNA with highest fold change and corresponded to UNC93B1 gene, which was proved to be related to HF and encoded UNC93B1 protein regulating toll-like receptor signaling, and both of them significantly increased in HF patients in qRT-PCR validation; the top significant upregulated enriched GO terms and KEGG pathway analysis were regulation of lymphocyte activation (GO:0051249) and T cell receptor signaling pathway (hsa04660), respectively. The current findings support the fact that EAT lncRNAs are involved in the inflammatory response leading to the development of HF.

1. Introduction

Recent studies have reported on long noncoding RNA (lncRNA) expression profiling in various human tissues [1]; however, expression profile of lncRNA in human epicardial adipose tissue (EAT) has yet to be described in detail. It is known that a large proportion of the mammalian genome is transcribed as lncRNA, which resides within or between coding genes. In addition, many lncRNAs have been shown to be functional and involved in specific physiological and pathological processes, through transcriptional or posttranscriptional regulatory mechanisms [2, 3]. To date, however, lncRNAs have never been included in analyses of the human EAT transcriptome. EAT is a key cardiometabolic factor, where, by releasing various inflammatory factors [4], EAT can modulate cardiac function and correlate with heart failure (HF) [5, 6], independently of metabolic status or the presence of coronary artery disease (CAD).

In the present study, we sought to supplement EAT lncRNA and mRNA expression profiles to provide a more complete picture of the myocardial transcriptional landscape in heart failure and also provide possible biomarkers for HF.

2. Materials and Methods

2.1. Study Participants. EAT samples were taken from 10 CAD patients who underwent coronary artery bypass graft surgery, in the Department of Heart Center, Beijing Chao-yang Hospital of Capital Medical University. Subjects were divided into two groups: HF group (n=5) and non-HF group (n=5). HF group included patients with Brain Natriuretic Peptide (BNP)>500ng/L and abnormal echocardiography finding (left ventricular end diastolic diameter [LVEDD]>50mm in female and >55mm in male and left ventricular ejection fraction [LVEF]<50%); non-HF group included patients with BNP<100 ng/L and normal views in echocardiography. The protocol was approved by the Ethics Committee of Beijing Chao-yang Hospital affiliated with Capital Medical University and written informed consent was obtained from participants before the study.
2.2. RNA Sequencing Procedure. Total RNA was extracted from the EAT and quantified using a NanoDrop ND-1000 instrument. 1-2μg total RNA was used to prepare the sequencing library in the following steps: (1) Total RNA is enriched by oligo (dT) magnetic beads (rRNA removed). (2) Using KAPA Stranded RNA-Seq Library Prep Kit (Illumina), RNA-seq library preparation incorporates dUTP into the second cDNA strand and makes the RNA-seq library strand-specific. (3) After completing, libraries were qualified with Agilent 2100 Bioanalyzer and quantified by absolute quantification method. (4) Sequence the libraries on the Illumina HiSeq 4000 instrument (we followed the methods of Wang et al. 2019 [7]).

2.3. Quantitative RT-PCR. qRT-PCR was used to measure selected IncRNA ENST00000610659 and UNC93B1 mRNA. Total RNA samples were extracted from the EAT samples using TRIzol (Invitrogen, Carlsbad, CA). The relative expression levels of mRNA and IncRNA were quantified using Viia 7 Real-Time PCR System (Applied Biosystems, Foster City, USA) according to standard methods. IncRNA ENST00000610659: the forward primer was 5’ CCGTCT-CAACAAGACGGTTC 3’, the reverse primer was 5’ AAG- GCTCCACTCCGCACAAA 3’; UNC93B1 mRNA: the forward primer was 5’ GCTCACCTACGGCGTCTACC 3’, the reverse primer was 5’ CGCTAGTGTCGTTCGTGTTGC 3’.

2.4. Statistical Analysis. R package was used to calculate the FPKM value and differential expression for gene and transcript level and perform hierarchical clustering, GO enrichment, pathway analysis, scatter plots, and volcano plots with the differentially expressed genes. Descriptive statistics for each variable were determined. Continuous variables were expressed as the mean ± SD and compared using unpaired Student’s t-test, and categorical variables were expressed as percentages and numbers and were compared using the chi-squared test. Significant GO enrichment and pathways were selected by Fisher’s exact test, and p<0.05.

3. Results

3.1. Characteristics of Participants. The present study comprised 10 CAD patients (5 with HF and 5 without). The main clinical characteristics of the two groups are summarized in Table 1. There were no significant differences in subject characteristics between the two groups; they were well balanced with regard to main clinical and laboratory characteristics. The CAD patients with HF had higher BNP level and LVEDD and lower LVEF.

3.2. RNA Sequencing Data. Using RNA sequencing, we detected 46760 transcripts (including 35673 protein-coding and 11087 non-protein-coding with linear structure and length>200bp) corresponding to 15554 genes in EAT in total. The top 30 highly expressed protein-coding and non-protein-coding transcripts are summarized in Table 2. Scatter plot (Figure 1) was performed to group IncRNA and mRNA and display the levels of IncRNA and mRNA in CAD patients with and without HF according to their expression levels among samples, and the results indicated that the IncRNA and mRNA expression profiles in CAD patients with HF were distinctly different from those in CAD patients without HF. 85 IncRNA and 866 mRNA whose levels changed significantly (p<0.05) were identified, including 45 upregulated and 40 downregulated IncRNA, as well as 404 upregulated and 462 downregulated mRNA.

Using a 2-fold expression difference as a cutoff, a total of 30 differentially expressed IncRNAs (17 upregulated and 13 downregulated) (Figure 2, Table 3) and 278 differentially expressed mRNAs (129 upregulated and 149 downregulated)
Table 2: The 30 highly expressed protein-coding and non-protein-coding transcripts in EAT in CAD patients.

Track ID	Gene Name	Transcript Type	Length(bp)	Protein
ENST00000165086.8	NPIPB4	Processed transcript	464	No
ENST00000173785.4	KLF6	Processed transcript	925	No
ENST00000214893.9	ERMP1	Processed transcript	4974	No
ENST00000216463.8	TIMM9	Processed transcript	1075	No
ENST00000216520.6	ERH	Processed transcript	668	No
ENST00000217890.10	ARSD	Processed transcript	2160	No
ENST00000230914.4	MRPS30	Processed transcript	4331	No
ENST00000233699.8	POLE4	Processed transcript	602	No
ENST00000237177.10	CASP8AP2	Processed transcript	6719	No
ENST00000244070.7	PPP4R1L	Processed transcript	1474	No
ENST00000253320.8	TXLNGY	Retained intron	7299	No
ENST00000254409.9	CLUHP3	Processed transcript	1812	No
ENST00000254299.8	GCH1	Processed transcript	2901	No
ENST00000256692.5	PLEKHA8P1	Processed transcript	1839	No
ENST00000263511.8	CROC5P3	Processed transcript	5368	No
ENST00000264785.11	WDR1	Processed transcript	549	No
ENST00000265450.5	TSPAN14	Processed transcript	2588	No
ENST00000265870.7	SLC25A16	Processed transcript	2295	No
ENST00000267868.9	GTF2A2	Processed transcript	518	No
ENST00000266651.1	ANP32A	Processed transcript	1084	No
ENST00000273411.2	RPL9P5	Processed transcript	449	No
ENST00000274820.7	RPL13P5	Processed transcript	349	No
ENST00000276906.10	EBP	Processed transcript	904	No
ENST00000282943.9	ADGRA3	Processed transcript	3534	No
ENST00000286777.6	RWDD2B	Processed transcript	1625	No
ENST00000294661.8	C1orf52	Processed transcript	3391	No
ENST00000295549.8	LINC01116	lincRNA	1407	No
ENST00000295748.7	AZI2	Processed transcript	3127	No
ENST00000296031.4	CXCL2	Processed transcript	577	No
ENST00000296325.9	LRPA1	Processed transcript	1078	No
ENST00000361682.4	MT-CO1	Protein coding	1542	513aa
ENST00000362079.2	MT-CO3	Protein coding	784	261aa
ENST00000363139.0	MT-N1D	Protein coding	956	318aa
ENST00000363188.2	MT-N4D	Protein coding	1378	459aa
ENST00000364733.3	MT-N2D	Protein coding	1042	347aa
ENST0000036789.2	MT-CYB	Protein coding	1141	380aa
ENST0000036779.1	MT-CO2	Protein coding	684	227aa
ENST00000368511.1	MT-ATP8	Protein coding	207	68aa
ENST0000033825.11	FTL	Protein coding	871	175aa
ENST0000036335.1	MT-N4L	Protein coding	297	98aa
ENST0000036556.7	MT-N5	Protein coding	1812	603aa
ENST0000036272.7	MT-N3	Protein coding	346	115aa
ENST0000036899.2	MT-ATP6	Protein coding	681	226aa
ENST00000320868.9	HBA1	Protein coding	577	142aa
ENST00000335232.6	EEF1A1	Protein coding	1923	462aa
ENST00000327726.10	CFD	Protein coding	1201	253aa
ENST00000320745.4	JUNB	Protein coding	1830	347aa
ENST00000339384.4	EGR1	Protein coding	3137	543aa
ENST00000356524.9	SAA1	Protein coding	518	122aa
ENST00000633942.1	PLIN4	Protein coding	6484	1372aa
ENST00000367029.5	G0S2	Protein coding	876	103aa
Table 2: Continued.

TrackID	GeneName	TranscriptType	Length(bp)	Protein
ENST00000309311.7	EEF2	Protein coding	3158	858aa
ENST000000251595.11	HBA2	Protein coding	576	142aa
ENST00000335295.4	HBB	Protein coding	628	147aa
ENST00000256104.4	FABP4	Protein coding	941	132aa
ENST00000451311.7	TMSB4X	Protein coding	622	44aa
ENST000000233143.6	TMSB10	Protein coding	461	44aa
ENST000000330871.3	SOCS3	Protein coding	2734	225aa
ENST00000336615.9	PNPLA2	Protein coding	2416	504aa
ENST00000300055.10	PLIN1	Protein coding	2916	522aa

Note: EAT, epicardial adipose tissue; CAD, coronary artery disease; Track ID, The transcript name in Ensembl database; Gene Name, The corresponding gene name of transcript; Transcript Type, the biotype of transcript; Protein, the residue number of protein.

Figure 1: The scatter plot of the differential expressed (p<0.05) lncRNA (a) and mRNA (b) in patients with heart failure (HF) and without heart failure (non-HF) (red or green represented upregulated or downregulated genes, respectively); 85 lncRNA and 866 mRNA were identified, including 45 upregulated and 40 downregulated lncRNA, as well as 404 upregulated and 462 downregulated mRNA.

![scatter plot of differential expressed lncRNA and mRNA](image)

3.3. GO and KEGG Pathway Analysis of Differentially Expressed mRNAs. The Gene Ontology (GO) project (Figure 4) provided a controlled vocabulary to describe gene and gene product attributes in any organism. The ontology covered three domains: Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). For upregulated genes, the top enriched GO terms in three domains were regulation of lymphocyte activation (GO:0051249) in BP, T cell receptor complex (GO:0042101) in CC, and phosphotyrosine residue binding (GO:0001784) in MF; for downregulated genes, those were oxidation reduction process (GO:0055114) in BP,
Figure 2: The hierarchical clustering and volcano plot of the substantially differential expressed (P<0.05; fold change>2) lncRNA ((a1) and (a2)) and mRNA ((b1) and (b2)) in patients with and without heart failure (red or green represented upregulated or downregulated genes, respectively); 30 lncRNA and 278 mRNA were identified, including 17 upregulated and 13 downregulated lncRNA, as well as 129 upregulated and 149 downregulated mRNA.
Figure 3: qRT-PCR analysis of expression of lncRNA ENST00000610659 (left) and UNC93B1 mRNA (right) in patients with heart failure (HF) and without heart failure (non-HF) (n=5 in each group), **p<0.05.

Table 3: Differentially expressed lncRNA in EAT in CAD patients with HF compared with CAD patients without HF.

IncRNA	Type	Regulation	Gene Name	Fold Change	P Value
ENST00000610659	exon sense-overlapping	Up	UNC93B1	4.778	0.0118
ENST00000379935	natural antisense	Up	RBL2	3.711	0.0347
ENST00000603935	exon sense-overlapping	Up	ZSWIM8	3.329	0.0039
ENST00000439904	exon sense-overlapping	Up	SLCO2A1	2.955	0.0179
ENST000006222120	intergenic	Up	LINC00963	2.952	0.0000
ENST00000514805	exon sense-overlapping	Up	TRIM52	2.901	0.0294
ENST00000492356	exon sense-overlapping	Up	RPS2D1	2.869	0.0461
ENST00000394225	exon sense-overlapping	Up	NDUFCL1	2.840	0.0331
ENST00000548989	exon sense-overlapping	Up	CRIP2	2.247	0.0248
ENST00000465589	exon sense-overlapping	Up	OBSL1	2.229	0.0067
ENST00000398078	exon sense-overlapping	Up	PDXK	2.111	0.0157
ENST00000476113	exon sense-overlapping	Up	TCEA2	2.111	0.0223
ENST00000421064	natural antisense	Up	AP000347.2	2.099	0.0220
ENST00000470322	exon sense-overlapping	Up	ACTRIA	2.083	0.0304
ENST00000587762	intergenic	Up	AC020916.1	2.054	0.0443
ENST00000512955	exon sense-overlapping	Up	AMOTL2	2.052	0.0164
ENST00000508948	exon sense-overlapping	Up	ARRDCC3	2.012	0.0289
ENST00000543826	exon sense-overlapping	Down	ADGRD1	0.161	0.0021
ENST00000467318	exon sense-overlapping	Down	DDX56	0.243	0.0126
ENST00000556961	exon sense-overlapping	Down	FBLN5	0.251	0.0033
ENST00000505923	exon sense-overlapping	Down	WDFY3	0.283	0.0221
ENST00000578571	exon sense-overlapping	Down	PTPRM	0.305	0.0360
ENST00000427261	intergenic	Down	RP11-640M9.2	0.331	0.0051
ENST0000039685	exon sense-overlapping	Down	TMTC1	0.370	0.0256
ENST00000439351	exon sense-overlapping	Down	TACC2	0.391	0.0341
ENST00000480603	exon sense-overlapping	Down	PPIA	0.414	0.0048
ENST00000345896	exon sense-overlapping	Down	CERS2	0.453	0.0391
ENST00000498053	exon sense-overlapping	Down	LRRFIP1	0.475	0.0350
ENST00000467178	exon sense-overlapping	Down	CIZ1	0.486	0.0448
ENST00000468975	exon sense-overlapping	Down	ARFGAP1	0.495	0.0128

Note: EAT, epicardial adipose tissue; CAD, coronary artery disease; HF, heart failure; lncRNA, The lncRNA name in Ensembl database; Type, the type of lncRNA; Regulation, the regulation expression of lncRNA; Gene Name, The corresponding gene name of lncRNA.
Figure 4: Enriched GO terms analysis for differentially expressed mRNAs. Top 10 significantly upregulated GO terms—Biological Process (a) and Molecular Function (c); all significantly upregulated GO terms—Cellular Component (b); top 10 significantly downregulated GO terms—Biological Process (d) and Molecular Function (f); all significantly downregulated GO terms—Cellular Component (e).
extracellular space (GO:0005615) in CC, and oxidoreductase activity (GO:0016491) in MF, respectively.

Pathway analysis (Figure 5) showed that, when comparing to controls, 17 pathways were significantly upregulated while 4 pathways were significantly downregulated. The top 3 significantly upregulated pathways were T cell receptor signaling pathway (hsa04660), primary immunodeficiency (hsa05340), and endometrial cancer (hsa05213). Meanwhile, the significantly downregulated pathways were drug metabolism cytochrome P450 (hsa00982), tyrosine metabolism (hsa00350), complement and coagulation cascades (hsa04610), and Jak-STAT signaling pathway (hsa04630).

4. Discussion

In the present study, we assessed the expression profiles of EAT IncRNA and mRNA in CAD patients with and without HF. The results showed a total of 35673 mRNA and 11087 IncRNA corresponding to 15554 genes in EAT were detected, and using a 2-fold expression difference as a cutoff, a total
of 30 differentially expressed lncRNAs (17 upregulated and 13 downregulated) and 278 differentially expressed mRNAs (129 upregulated and 149 downregulated) were discriminated between CAD patients with and without HF.

The differentially expressed lncRNAs corresponded to genes associated with inflammatory response or other factors which are involved in HF. UNC93B1, the top upregulated gene lncRNA corresponded to, encodes UNC93B1 protein that is involved in innate and adaptive immune response by regulating toll-like receptor signaling [8, 9] and is proved to be related to left ventricular diastolic function, heart failure morbidity, and mortality [10]. RBL2 is related to TGF-beta signaling [11]. LINC00963 encodes lncRNA963 playing an important role in chronic renal failure, which is closely associated with chronic diseases such as congestive heart failure [12]. TRIM52 encodes TRIM52 protein that positively regulates the nuclear factor-kappa B signaling pathway [13]. RPS21 (also known as HLDF) encodes HLDF protein that is involved in the mechanisms of blood pressure regulation [14]. AMOTL2 is required for migration and proliferation of endothelial cells during angiogenesis [15]. FBLN5 protein expression significantly decreases in human aneurysmatic aortas and may mediate cell-extracellular matrix interactions and elastic fibre assembly by inflammation [16]. TMTC1 is associated with the risk of incident HF [17]. LRRFIP1 is associated with adiposity and inflammation [18], and LRRFIP1 protein may regulate platelet function [19].

EAT refers to the fat depot that exists on the surface of the myocardium and is contained entirely beneath the pericardium, which generates various inflammatory factors [20, 21]. Factors released from EAT have vasocrine and paracrine effects on the myocardium contributing to modulating properties on cardiac function [4, 22]. As our study showed, lncRNA can also be released from EAT and may be involved in HF; top upregulated lncRNA in HF corresponded to genes associated with inflammatory response and top upregulated enriched GO terms and KEGG pathway of mRNA were also about inflammatory cells activity.

The present study showed the expression profiles of EAT lncRNA and mRNA in CAD patients and also characterized specific EAT lncRNA expression in HF. The EAT lncRNA may be important effector molecules for cardiovascular disease. Through the paracrine and vasocrine transmission, the EAT lncRNA may diffuse across the interstitial fluid or blood into the myocardium to be involved in the development of HF. Our data supplement lncRNA expression profiles in the EAT for lncRNA identifying in heart tissues and also provide possible biomarkers for HF, and further studies are needed to prove it.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Meili Zheng and Lei Zhao analyzed the results and wrote the paper; Xinchun Yang designed the study. Meili Zheng and Lei Zhao contributed equally to this work.

Acknowledgments

This research was supported by Natural Science Foundation of China (NO. 81800304).

References

[1] M. K. Iyer, Y. S. Niknafs, R. Malik et al., “The landscape of long noncoding RNAs in the human transcriptome,” Nature Genetics, vol. 47, no. 3, pp. 199–208, 2015.

[2] T. Hung, Y. Wang, M. F. Lin et al., “Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters,” Nature Genetics, vol. 43, no. 7, pp. 621–629, 2011.

[3] K. C. Wang and H. Y. Chang, “Molecular mechanisms of long noncoding RNAs,” Molecular Cell, vol. 43, no. 6, pp. 904–914, 2011.

[4] S. Cherian, G. D. Lopaschuk, and E. Carvalho, “Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease,” American Journal of Physiology-Endocrinology and Metabolism, vol. 303, no. 8, pp. E937–E949, 2012.

[5] R. Fontes-Carvalho, M. Fontes-Oliveira, F. Sampaio et al., “Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction,” American Journal of Cardiology, vol. 114, no. 11, pp. 1663–1669, 2014.

[6] T. P. Fitzgibbons and M. P. Czech, “Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations,” Journal of the American Heart Association, vol. 3, no. 2, Article ID e000582, pp. 1–15, 2014.

[7] Y. Wang, L. Xie, E. Tian et al., “Oncostatin M inhibits differentiation of rat stem Leydig cells in vivo and in vitro,” Journal of Cellular and Molecular Medicine, vol. 23, no. 1, pp. 426–438, 2019.

[8] J. Pohar, N. Pirher, M. Benčina, M. Manček-Keber, and R. Jerala, “The role of UNC93B1 protein in surface localization of TLR3 receptor and in cell priming to nucleic acid agonists,” The Journal of Biological Chemistry, vol. 288, no. 1, pp. 442–454, 2013.

[9] B. L. Lee and G. M. Barton, “Trafficking of endosomal Toll-like receptors,” Trends in Cell Biology, vol. 24, no. 6, pp. 360–369, 2014.

[10] J. Ārnālīv, J. Sundström, L. Lind et al., “hUNC-93B1, a novel gene mainly expressed in the heart, is related to left ventricular diastolic function, heart failure morbidity and mortality in elderly men,” European Journal of Heart Failure, vol. 7, no. 6, pp. 958–965, 2005.

[11] J. Shi, Y. Zhuang, X. K. Liu, Y. X. Zhang, and Y. Zhang, “TGF-beta induced RBL2 expression in renal cancer cells by down-regulating miR-93,” Clinical & Translational Oncology, vol. 16, no. 11, pp. 986–992, 2014.

[12] W. Chen, L. Zhang, Z. Zhou et al., “Effects of long non-coding RNA LINC00963 on renal interstitial fibrosis and oxidative stress of rats with chronic renal failure via the foxo signaling
pathway,” *Cellular Physiology and Biochemistry*, vol. 46, no. 2, pp. 815–828, 2018.

[13] W. Fan, T. Liu, X. Li et al., “TRIM52: A nuclear TRIM protein that positively regulates the nuclear factor-kappa B signaling pathway,” *Molecular Immunology*, vol. 82, pp. 114–122, 2017.

[14] E. I. Elisratova, M. A. Gruden, and V. V. Sherstnev, “Involvement of HLDF protein and Anti-HLDF antibodies in the mechanisms of blood pressure regulation in healthy individuals and patients with stable hypertension and hypertensive crisis,” *Bulletin of Experimental Biology and Medicine*, vol. 153, no. 5, pp. 664–666, 2012.

[15] Y. Wang, Z. Li, P. Xu et al., “Angiomotin-like2 gene (amotl2) is required for migration and proliferation of endothelial cells during angiogenesis,” *The Journal of Biological Chemistry*, vol. 286, no. 47, pp. 41095–41104, 2011.

[16] M. Orriols, S. Varona, I. Martí-Pàmies et al., “Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics,” *Cardiovascular Research*, vol. 110, no. 3, pp. 431–442, 2016.

[17] N. L. Smith, J. F. Felix, A. C. Morrison et al., “Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium,” *Circulation: Cardiovascular Genetics*, vol. 3, no. 3, pp. 256–266, 2010.

[18] M. Plourde, M. Vohl, C. Bellis et al., “A variant in the LRRFIP1 gene is associated with adiposity and inflammation,” *Obesity*, vol. 21, no. 1, pp. 185–192, 2013.

[19] A. H. Goodall, P. Burns, I. Salles et al., “Transcription profiling in human platelets reveals LRRFIP1 as a novel protein regulating platelet function,” *Blood*, vol. 116, no. 22, pp. 4646–4656, 2010.

[20] B. Gaborit, C. Sengenes, P. Ancel, A. Jacquier, and A. Dutour, “Role of epicardial adipose tissue in health and disease: a matter of fat?” *Comprehensive Physiology*, vol. 7, no. 3, pp. 1051–1082, 2017.

[21] T. Mazurek, L. Zhang, A. Zalewski et al., “Human epicardial adipose tissue is a source of inflammatory mediators,” *Circulation*, vol. 108, no. 20, pp. 2460–2466, 2003.

[22] V. B. Patel, J. Mori, B. A. McLean et al., “ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity,” *Diabetes*, vol. 65, no. 1, pp. 85–95, 2016.