A Membrane Transporter Determines the Spectrum of Activity of a Potent DNA-Targeted Hybrid Anticancer Agent

Xiyuan Yao, Noah Watkins, Heather Brown-Harding, Ulrich Bierbach

Submitted date: 04/06/2020 • Posted date: 05/06/2020
Licence: CC BY-NC-ND 4.0

Citation information: Yao, Xiyuan; Watkins, Noah; Brown-Harding, Heather; Bierbach, Ulrich (2020): A Membrane Transporter Determines the Spectrum of Activity of a Potent DNA-Targeted Hybrid Anticancer Agent. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12430067.v1

Cytotoxic drugs that are mechanistically distinct from current chemotherapies are attractive components of personalized combination regimens for combating aggressive forms of cancer. To gain insight into the cellular mechanism of a highly potent platinum–acridine hybrid agent, we performed a correlation analysis of NCI-60 compound screening results and gene expression profiles. We discovered a plasma membrane transporter, human multidrug and toxin extrusion protein 1 (hMATE1, SLC47A1), as the dominant pan-cancer predictor for cancer cell chemosensitivity to the hybrid agent. We have validated the role of hMATE1 using transporter inhibition, gene knockdown, and chemical sensitization assays. The results suggest that hMATE1 may have applications as a molecular marker to identify and target tumors that are likely to respond to platinum–acridines. Furthermore, enhancement of hMATE1 expression by epigenetic drugs emerges as a potential co-treatment strategy to sensitize tumor tissue to platinum–acridines and other anticancer drugs transported by hMATE1.
A Membrane Transporter Determines the Spectrum of Activity of a Potent DNA-Targeted Hybrid Anticancer Agent

Xiyuan Yao,† Noah H. Watkins,‡ Heather Brown-Harding,‡ and Ulrich Bierbach*,†,⁋

† Department of Chemistry, Wake Forest University, Wake Downtown, 455 Vine St., Winston-Salem, NC 27101, USA
‡ Department of Biology, Wake Forest University, Wake Downtown, 455 Vine St., Winston-Salem, NC 27101, USA
⁋ Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA

* bierbau@wfu.edu
ABSTRACT: Cytotoxic drugs that are mechanistically distinct from current chemotherapies are attractive components of personalized combination regimens for combatting aggressive forms of cancer. To gain insight into the cellular mechanism of a potent platinum–acridine anticancer agent (compound 1), a correlation analysis of NCI-60 compound screening results and gene expression profiles was performed. A plasma membrane transporter, the solute carrier (SLC) human multidrug and toxin extrusion protein 1 (hMATE1, SLC47A1), emerged as the dominant predictor for cancer cell chemosensitivity to low-nanomolar concentrations of the hybrid agent (Pearson correlation analysis, $p < 10^{-5}$) across a wide range of tissues of origin. The crucial role of hMATE1 was validated in an in vitro model of lung adenocarcinoma (A549), which expresses high levels of the membrane transporter. This was achieved with transporter inhibition assays and transient knockdown of the SLC47A1 gene, in conjunction with quantification of intracellular accumulation of compound 1 and cell viability screening. HCT-116 colon cancer cells, in which hMATE1 is epigenetically repressed, can be sensitized to compound 1 by priming the cells with the polycomb repressive complex 2 (PRC2)-targeted drugs EPZ-6438 (tazemetostat) and EED226. The results suggest that hMATE1 may have applications as a pan-cancer molecular marker to identify and target tumors that are likely to respond to platinum–acridines. Furthermore, enhancement of hMATE1 expression by epigenetic drugs may be a potential co-treatment strategy to efficiently deliver platinum–acridines and other clinical anticancer drugs transported by hMATE1 to tumor tissue.

KEYWORDS: drug discovery, gene expression, membrane transport, platinum–acridines, SLC47A1
INTRODUCTION

Since the FDA approval of cisplatin (Figure 1a), chemically unique approaches have been pursued to improve the efficacy and safety of platinum-based chemotherapy. The design of several of the newer-generation nonclassical metallodrugs is based on the premise that tumor resistance can be overcome at the DNA level as a consequence of the agents’ unique DNA binding modes and DNA damage response (DDR) patterns. This reasoning has redefined the landscape of platinum anticancer drug discovery and resulted in promising new clinical and preclinical candidates. One type of compound in preclinical development are platinum–acridine agents, represented by compound 1 (Figure 1b), the most potent derivative identified in this class of cytotoxics. Platinum–acridines bind to DNA by a mechanism that involves intercalation and platination of nucleobase nitrogen, causing a more severe form of DNA damage than the cross-links observed for cisplatin. On a per-adduct basis, the hybrid agents are more potent inhibitors of DNA synthesis than cisplatin, which induce replication fork arrest and a high level of DNA double-strand breaks requiring specialized DNA repair modules, and are more efficient transcription inhibitors. These mechanisms most likely contribute to the high cytotoxicity of platinum–acridines, particularly in non-small-cell lung cancer (NSCLC), where the hybrid agents show up to 1000-fold higher activity than cisplatin. Collectively, the results from mechanistic studies in cell-free systems, human cancer cells, and chemical genomic fitness profiling in S. Cerevisiae are consistent with nuclear DNA as the principal target of these agents.

Platinum–acridines show a dramatically higher activity than cisplatin in NSCLC, even though the hybrid adducts are repaired more rapidly than the classical cross-links in these notoriously DNA repair-proficient cells. These findings call into question whether the damage at the genome level and cellular response platinum–acridines cause alone overcome chemoresistance in NSCLC. In this article, we report the results of a study that combined activity screening and gene expression correlation analysis, as well as functional target validation performed on compound 1. We not only demonstrate a complete lack of similarity of the compound’s antitumor profile with that of the classical platinum drugs, but also
discovered a membrane transporter, human multidrug and toxin extrusion protein, hMATE1 (SLC47A1), as the single most predictive marker of chemosensitivity to platinum–acridines and demonstrate its potential utility as a target for personalized cancer treatment.

EXPERIMENTAL SECTION

Compound Screening. Compound 1 was tested by the NCI Developmental Therapeutics Program in a panel of 59 cancer cell lines in a one-dose screen at 10 μM test compound and in five-dose screens over a concentration range of 10⁻⁴ to 10⁻⁸ M. Five-dose screens were performed in duplicate. Reported GI₅₀ values and the chemosensitivity profiles (mean graph) are means of the two experiments. All correlation analyses were based on GI₅₀ assay endpoints.¹⁰

Correlation and Gene Set Overlap Analysis. Comparative analysis of NCI-60 activity profiles based on GI₅₀ end points was performed with the COMPARE analysis tools¹¹ (dtp.cancer.gov/private-compare) versions 20190306 and 20190828. Both the Standard Agents and Marketed Drugs databases were searched using GI₅₀ values as the endpoint and the following parameters: min. Pearson correlation coefficient, \(R = 0.00 \); min. number of common cell lines in seed and target vector, 55 or 56; min. standard deviation for seed and target vector, 0.05; number of results, 2000. Correlations between GI₅₀ values and gene expression patterns based on transcript levels (z-scores) from 5 different microarray platforms were analyzed in a similar manner for a total of 58 cell lines with a minimum correlation of \(R = ± 0.30 \) (for \(N = 58, R = ± 0.259 \) is statistically significant at \(p < 0.05 \)). The CellMiner tool¹²,¹³ was used to compare the gene expression, DNA copy number alteration, and DNA methylation status for SLC47A1 across NCI-60 cell lines (database version 2.2, https://discover.nci.nih.gov.cellminer; human genome version HG19, number of genes: 25683). Correlation analysis of SLC47A1 transcript levels (average log2 intensities) and DNA methylation (scores 0–1 for completely unmethylated to completely methylated gene promoters) was done with CellMinerCDB (version 1.1; discover.nci.nih.gov/cellminercdb), which implements the GDSC (Sanger Institute) cell line set and databases.¹² Correlations between ad-hoc
defined gene sets and the MSigDB gene sets encompassing a total of 38055 genes were calculated using hypergeometric distribution analysis with a false discovery rate q-value < 0.05 (gsea-msigdb.org).14

Drugs, Reagents, siRNA, and Antibodies. Compound 1 was synthesized according to a published procedure (analytical purity > 97% for NCI-60 and all cell-based assays). All biological assays were performed with appropriately (serially) diluted 10 mM stock solutions of compound 1 in dimethylformamide (DMF). DMF controls were included in all experiments to confirm that the solvent had no effect on cell viability and other assay parameters. The epigenetic drugs, EED226 (HY-101117), tazemetostat (EPZ-6438) (HY-13803), valproic acid (HY-10585) and decitabine (HY-A0004) were purchased from MedChemExpress (Monmouth Junction, NJ, USA). Pyrimethamine (46706), phenazine methosulfate (PMS, P9625), and bovine serum albumin solution (BSA, A8412) were purchased from Sigma Aldrich (St. Louis, MO, USA). MTS reagent was purchased from Promega (G1112) (Madison, WI, USA). RIPA buffer (89901), protease inhibitor mix (87785), and BCA Protein Assay Kit (23227) were purchased from Thermo Fisher (Waltham, MA, USA). Lipofectamine transfection reagent, RNAiMAX, was purchased from Invitrogen (13778100) (Carlsbad, CA, USA). Opti-Mem reduced serum media was purchased from Gibco (31985062) (Gaithersburg, MD, USA). The hMATE1 (SLC47A1)-specific pre-designed siRNA and scrambled RNA controls were purchased from Thermo Fisher (Life Sciences Solutions, Carlsbad, CA, USA): Silencer siRNA, ID: 140539; sense: 5’-CCGAGACAUCAUUAACUGtt-3’, antisense: 5’-CAGAUUAAUGAUGUCUCGgtc-3’; Silencer Select siRNA1, ID: s30533; sense: 5’-CAAACUUGAUUUCCAGUAtt-3’, antisense: 5’-UACUGGGAAUAAGUUGcc-3’; Silencer Select siRNA2, ID: s30534; sense: 5’-GAUCGUAACUGAUUGCCAtt-3’, antisense: 5’-UAGCAACUGAGAUCtgc-3’; Scrambled siRNA control: Silencer Negative Control #3 siRNA (AM4615); (V) Silencer Select Negative Control #1 siRNA (4390843). Antibodies were purchased from the following suppliers and used at the indicated dilutions: anti-MATE1 (SLC47A1) antibody (Abcam, ab104016, immunoblotting, 1:1,000); anti-GAPDH antibody (Bethyl, A300-639A-M, immunoblotting, 1:1,000); goat-anti-rabbit IgG-HRP secondary
antibody (Thermo Fisher, G-21234, immunoblotting, 1:10,000); anti-hMATE1 (SLC47A1) antibody (Thermo Fisher, PA5-25272, immunofluorescence, 1:300); goat-anti-rabbit IgG Alexa Fluor-635 secondary antibody (Invitrogen, A-31576, immunofluorescence, 1:400).

LC-MS Analysis. The chemical compatibility of pyrimethamine and compound 1 was tested in PBS-buffered solution at 37 °C for 72 hours. Prior to LC-MS analysis, buffer salts were removed using Pierce C18 spin columns (Thermo Fisher, Cat. No. 89870) and samples were redissolved in HPLC grade solvent. LC-MS profiles were analyzed on a Bruker Amazon-SL LC-MS system equipped with an electrospray source using an Agilent ZORBAX SB-C18 analytical column (5 mm, 4.6 × 150 mm, PN 883975-902). Pyrimethamine did not undergo undesired ligand substitution chemistry with compound 1 (data not shown).

General Cell Culture Maintenance. The human cell lines, A549 (lung adenocarcinoma, doubling time 21 h) and HCT-116 (colorectal carcinoma, doubling time 17 hours) were obtained from the American Type Culture Collection (ATCC) (Manassas, VA, USA). A549 cells were cultured in DMEM/F12K media (Thermo Fisher, 11330-032) supplemented with 10% FBS (Thermo Fisher, A3160601) and 10% penstrep (Thermo Fisher, 15070-063), unless stated otherwise. HCT-116 cells were cultured in RPMI 1640 (Gibco, A10491-01) with the same additives as above. Cells were incubated at a constant temperature at 37 °C in a humidified atmosphere containing 5% CO₂ and subcultured every 2–3 days to maintain cells in logarithmic growth. All experiments used cells with passage numbers of less than 20. Cells were tested periodically for mycoplasma infections using Hoechst 33258 DNA staining.

Uptake of Compound 1 Studied by Confocal Fluorescence Microscopy. Images were collected on an LSM 880 Confocal Microscope (Carl Zeiss Microscopy) using a 63×/1.4 NA Plan-Apochromatic objective. To allow comparative fluorescence intensity analysis, excitation power, pinhole settings, PMT gain, and offset values across and within imaging sessions for each respective channel were not changed. Zen software 2.5 (blue edition, Carl Zeiss Microscopy GmbH, 2018) was used for image
processing. Panels were assembled and annotated without any additional enhancements of images, unless explicitly stated, in Adobe Photoshop CC, version 2017.1.1.

For transporter inhibition assays, cells were seeded into 35-mm poly-D-lysine-coated glass bottom dishes (MatTek Corporation, Ashland, MA, USA) at a density of 10^5 cells/mL in 2 mL of medium per dish. Cells were allowed to attached overnight prior to pre-treatment with 10 μM pyrimethamine or vehicle for 20 minutes and subsequent treatment with 10 μM compound 1 for 4 hours. Medium was removed and dishes were washed 3 times with 1 mL of pre-warmed PBS buffer. Cells were then fixed with 4% formaldehyde in PBS (Thermo Fisher) for 15 minutes at room temperature and washed an additional 3 times with PBS before imaging. The fluorescence of acridine was excited with a 405 nm (15 mW) laser at 4.4% and collected between 405-481 nm. The intensity of acridine-related fluorescence in treated cells was estimated by drawing a region of interest (ROI) around each cell, with the bright-field images assisting in identifying the cell perimeter. Signal intensities are averages from all pixels in the ROI minus the background fluorescence. A total of more than 100 individual cells across 4 views of 2 independent experiments were analyzed in this fashion. Automated quantification of fluorescence intensities was also performed using CellProfiler 3.0 with similar results (data not shown).

For RNAi knockdown of hMATE1 (SLC47A1) in imaging assays, A549 cells were harvested from T-75 cell culture flasks and seeded on a 6-well plate at a density of 150,000 cells per well. Silencer Select siRNA1, Silencer Select siRNA2, and scrambled siRNA (Silencer Select Negative Control #1) were thoroughly mixed with RNAiMAX in Opti-Mem media according to manufacturer’s protocol and added to each well. Cells transfected at a final siRNA concentration of 20 nM for 48 hours at 37 °C were detached with trypsin and subcultured at a 1:2 ratio into 35 mm MatTek plates and allowed to attach overnight. Cell culture medium was replaced and supplemented with 10 μM compound 1, and dishes were incubated for 4 hours at 37 °C. Cells were fixed with 4% formaldehyde, permeabilized with 0.5% Triton X-100, washed with PBS, incubated with 7.5% BSA) for 30 minutes at room temperature, and incubated with appropriately diluted primary antibody in 1% BSA for 1 hour at room temperature.
the cells were washed with PBS, they were incubated with the secondary antibody (Goat-anti-Rabbit IgG Alexa Fluor-635), diluted in 1% BSA (1:400 anti-rabbit) for 1 hour at 37 °C. After three PBS washes, samples were imaged immediately or stored in PBS at 4 °C for further testing.

For sensitization assays, HCT-116 cells were harvested from T-75 flasks, seeded on a 24-well plate with glass-like polymer bottom (P24-1.5P, Cellvis, Sunnyvale, CA) with 25,000 cells per well, and allowed to attached overnight. Single drugs or drug combinations were tested in this assay at final concentrations of 2.5 μM EED226, 2.5 μM EPZ-6438, 500 μM valproic acid, and 10 μM decitabine (see assay layout 1, AL1, in the SI). Cells were incubated at 37 °C for 72 hours. Each well was replaced with fresh medium supplemented with 10 μM compound 1, and incubation was continued for 4 additional hours. Each well was washed with 3 times with warm PBS, before cells were fixed with 0.5 mL of 4% formaldehyde at room temperature for 15 minutes. After 3 PBS washes, plates were immediately imaged or stored at 4 °C until analyzed. Subsequent incubations of HCT-116 cells at escalating doses of EED226 and EPZ-6438 were performed analogously (see AL2 in the SI). Representative conditions that were screened for expression levels of hMATE1 were determined by immunofluorescence with anti-hMATE1 antibody as described in RNAi knockdown experiments.

Uptake of Compound 1 Studied by ICP-MS. Protocols for the quantification of intracellular platinum–acridines by ICP-MS have been described previously. Briefly, cells collected from the transporter inhibition and hMATE1 knockdown assays (see below) were pelleted and homogenized by microwave-assisted digestion (ETHOS UP Milestone, Sorisole, Italy) in a mixture of dilute, trace-metal grade HCl and HNO₃. Standard curves appropriate for quantification of platinum in specified uptake assays were generated using concentrations of 0 ppt, 20 ppt, 50 ppt, 100 ppt, 200 ppt, and 500 ppt of a diluted Pt standard (High-Purity Standards, Charleston, SC, USA). An 8800 Triple Quadrupole ICP-MS spectrometer (Agilent, Tokyo, Japan) equipped with a SPS 4 automatic sampler, a Scott-type double pass spray chamber operated at 2°C, and a Micromist concentric nebulizer was used for analysis. Helium gas
(≥99.999% purity, Airgas, Colfax, NC, USA) was used in the collision/reaction cell to minimize potential spectral interferences while monitoring the isotope 195Pt.

For transporter inhibition assays, 700,000 A549 cells in 2.5 mL of F12K media (ATCC 30-2004), supplemented with 10% FBS, and 10% penstrep, and 10% L-glutamine (Thermo Fisher, 25030-081), were seeded into T-25 flasks and allowed to attach overnight. Cells pre-treated with 100 nM pyrimethamine for 25 minutes and untreated cells were then dosed with 100 nM compound 1 for 3 hours. After treatment, medium was aspirated, and cells were washed 3 times with fresh media. Trypsin was added to detach cells, and 3 mL of fresh media were added to each flask to collect the cell suspensions, which were pelleted by centrifugation at 250 × g for 3 minutes. After the supernatant was aspirated, pellets were washed with 3 mL of PBS solution twice and centrifuged again at 250 × g for 3 minutes. Pellets were stored at -80 °C until analyzed by ICP-MS. The assay was performed in triplicate for each treatment group.

For uptake studies after hMATE1 (SLC47A1) knockdown, A549 cells were reverse-transfected with Silencer Select siRNA1 or Silencer Select Negative Control #1 scrambled RNA for 48 hours using the RNAiMAX system in Opti-Mem media. Media was replaced with fresh antibiotics-free DMEM/F12K medium and incubation was continued for an additional 24 hours. Cells were then incubated with 100 nM compound 1 at 37 °C for 4 hours, and cell pellets were prepared as described above. The assay was performed in triplicate for each treatment group. Microwave digestions and ICP-MS analysis for Pt were performed as described above.

Cell Proliferation Assays. The cytotoxicity studies were carried out on nonpyrogenic polystyrene 96-well cell culture plates (Corning Inc., Corning, NY, USA) according to a standard protocol using the colorimetric Celltiter 96 AQueous Non-Radioactive Cell Proliferation Assay (Promega, Madison, WI, USA). Relative cell viability was determined from the viability of treated and untreated (control) cells. IC$_{50}$ values were calculated from sigmoidal curve fits of log[compound 1] vs.
response in GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA). For the number of replicates and level of significance in each assay, see figure captions in the Results section and information in specific sections below.

In pyrimethamine competition assays, A549 cells were seeded at a density of 5000 cells per well and allowed to attach for 24 hours. Cells were then pre-treated with 10 or 100 nM pyrimethamine for 20 minutes and subsequently incubated with 100 nM compound 1 or DMF-containing media (control) for 72 hours. No-treatment controls were also included. Assays were run in duplicate with 6 replicates per plate. Cell viability was assessed as described above.

Cell viability in RNAi knockdown assays was assessed by transfecting A549 cells on 96-well plates using a reverse transfection protocol. Briefly, Silencer siRNA, scrambled RNA (Silencer Negative Control #3 siRNA), and lipofectamine (RNAiMAX) were diluted with Opti-Mem prior to mixing in each well to generate a final siRNA concentration of 10 nM. Mixtures were incubated for 20 minutes at room temperature. Cells were then seeded into new wells in DMEM/F12 medium without antibiotics at a density of 5000 cells/well, incubated in the presence of transfection reagent for 24 hours at 37 °C in 5% CO₂, and finally treated with compound 1 at fixed concentrations of 100 nM or 1 μM (or DMF-containing media in control groups) for an additional 24 or 48 hours. Cell viability after 48 and 72 hours was assessed as described above.

In HCT-116 sensitization experiments, cells were seeded at a density of 1100 cells/well in 100 μL of media and allowed to attach overnight. Medium in each well was replaced with fresh medium containing a combination of EED226 and EPZ-6438 to generate final concentrations of 2.5 and 5 μM of each drug. Medium supplemented with epigenetic drugs was replaced every 24 hours and finally removed after 72 hours to begin treatment with compound 1 at concentrations of 1 μM and 10 μM for an additional 72 hours. Cell viability after 72 hours was assessed as described above.
Immunoblotting. Cells were lysed in RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) according to the manufacturer’s protocol. RIPA buffer was supplemented with protease inhibitors. Plated cells were washed twice with ice-cold PBS buffer and then lysed with cold RIPA buffer for 30 min on ice with occasional swirling. Lysed cells were collected with a cell scraper and transferred into a 15 mL microcentrifuge tube. Cell lysates were then sonicated using a Branson Digital Sonifier 450 (settings: 10% pulse, 1 second on/1 second off, for 20 seconds) and centrifuged at 14,000 × g for 15 minutes at 4 °C. Total protein concentrations were quantified using a BCA Protein Assay Kit.

Protein samples were denatured by incubation in a sample buffer (Thermo Fisher, 39001) supplemented with DTT (50 mM) at 46 °C for 30 min. Equal amounts of total protein were loaded per lane and separated by SDS-polyacrylamide electrophoresis in 4-15% Mini-PROTEAN TGX Precast Protein Gels (Bio-rad, 456-1083) in Tris-glycine SDS buffer (Fisher, BP13414) (30 min at 50 V and 30 min at 120 V). The proteins were wet-transferred to nitrocellulose membranes (Advansta, San Jose, CA, USA, L-08002-010) (2 hours at 100 V) (transfer buffer: 25 mM Tris-base, 190 mM glycine, 20% methanol. adjusted to pH 8.3). Membranes were then (i) blocked in TBST buffer (20 mM Tris, 150 mM NaCl and 0.05% Tween 20, adjusted to pH 7.6, 5% non-fat milk) at room temperature for 1 hour, (ii) incubated with primary anti-MATE1 antibody or GAPDH antibody in TBST buffer (2% non-fat milk) at 4 °C overnight, (iii) washed 4 times for 5 minutes with TBST buffer and incubated with goat-anti-rabbit IgG-HRP secondary antibody in TBST buffer (2% non-fat milk) at room temperature for 1 hour, (iv) washed with TBST 4 times for 5 minutes, and (v) finally incubated with SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo, 34580) at room temperature for 5 minutes. The protein bands were visualized alongside pre-stained protein ladder (PageRuler, Thermo Fisher) using an Amersham Imager 600 (GE Healthcare). Band intensities were integrated using Image J (version 1.52a, National Institutes of Health, Bethesda, MD).
To generate sufficient quantities of cell-free extract for Western blot analysis accompanying knockdown experiments, A549 cells were seeded at a density of 150,000 cells per well on 6-well plates, and transfections were performed with an optimized siRNA concentration of 2.5 nM. Likewise, to quantify hMATE1 (SLC47A1) in epigenetic sensitization assays, 100,000 HCT-116 cells were seeded into 60-mm dishes and treated with a 2.5 μM or 5 μM mixture of EPZ-6438 and EED226. Cell lysates were generated in both cases as described above.

RESULTS

Compound 1 Shows High Potency and a Unique Activity Profile Among DNA-Targeted Anticancer Agents. We took advantage of the 60-cell line screen maintained by the Developmental Therapeutics Program of the US National Cancer Institute (NCI-60) in combination with the COMPARE analysis tools11 to study the biological activity of compound 1 and to assess if mechanistic similarities exist with clinically relevant oncology drugs. Compound 1 was screened twice in a library of 59 cell lines from nine different tissues of origin. The 10 cell lines most sensitive to compound 1 (50% growth inhibition endpoint: logGI\textsubscript{50} < -7.75, which corresponds to GI\textsubscript{50} < 18 nM) were NCI-H460, NCI-H226, NCI-H522, and A549 (all NSCLC), SF-295 (glioblastoma), SN12C (renal cell carcinoma), SK-MEL-5 and UACC-62 (both melanoma), DU-145 (prostate), and T-47D (triple-negative breast cancer), representing cancer models from six different tissues of origin and of varying oncogene and tumor suppressor status (Table S1). In six of these cell lines (incl. 3 NSCLC), compound 1 resulted in 50% growth inhibition at single-digit nanomolar concentrations (logGI\textsubscript{50} < -8) (Table S1). Compound 1 showed approximately two orders of magnitude higher activity across the entire spectrum of cell lines than cisplatin, which results in an average growth inhibition similar to that achieved by doxorubicin and topotecan, two oncology drugs also acting through DNA damage-mediated mechanisms (Figure 1b). While the two topoisomerase poisons kill cancer cells at similar inhibitory concentrations as compound 1, they do not show the cell line-specific cytotoxic enhancement of our hybrid agent, which is most notable
in NSCLC. Of the four agents in comparison, compound 1 shows the widest range of activity from low-nanomolar to micromolar GI$_{50}$ values with a more than 2000-fold difference between the most sensitive and the most resistant cell lines (ΔlogGI$_{50}$ > 3.3, Figure S1).

We then used the COMPARE algorithm in conjunction with Pearson correlation analysis17 to search the NCI database for test compounds that resulted in NCI-60 activity patterns similar to that of compound 1. The results demonstrate that the mechanism of compound 1 is unique among DNA-targeted cytotoxic drugs and other classes of cancer chemotherapeutics ($R < 0.5$) (Table 1). Of the approved oncology drugs tested in NCI-60, transcription inhibitors and topoisomerase poisons revealed the highest similarity with compound 1. Importantly, cisplatin and oxaliplatin were among the drugs that showed the lowest level of correlation. These results suggest that our hybrid molecule and the traditional platinum-based drugs may not share any relevant mechanistic features except their proven ability to form adducts with nuclear DNA. This raises the question as to whether the unique activity profile of compound 1 might be associated with specific molecular targets or gene expression patterns in cancer cells.
Figure 1. Platinum–acridine agent 1 shows a unique activity profile that correlates with hMATE1 (SLC47A1) expression levels in NCI-60 cell lines. a) Structures of cisplatin and hybrid agent 1. b) Comparative summary of NCI-60 screening results for cisplatin (CDDP), doxorubicin (DOX), topotecan (TOP), and compound 1 based on average growth inhibition (GI_{50} end point, average of 2 assays) for 59 cell lines of different tissues of origin. Asterisks indicate that compound 1 showed cell growth inhibition at log(GI_{50}) < −8 in one or multiple cell lines. A comparison of cell line-specific activity can be found in Figure S1. c) Growth inhibition by compound 1 and SLC47A1 expression are highly correlated in NCI-60 (mean centered profiles). Left panel: relative sensitivity and resistance to compound 1 at 50% growth inhibition (GI_{50}). Right panel: relative transcript intensities (z-scores) for SLC47A1 (z-scores for the cell line MDA-MB-468 were not available). Cell lines are color-coded by tissue of origin. d) Correlation of SLC47A1 expression with chemosensitivity in NCI-60 (Pearson correlation analysis) for positively correlated SLC transporters. A summary of all significantly correlated SLC genes and their (putative) mechanisms of action can be found in Table S3.
Table 1. COMPARE Analysis of Chemosensitivity Profiles for Compound 1 and Selected Anticancer Drugs

test compound	DNA damage	mechanism	Pearson’s R
Compound 1	Pt–ICa hybrid	Inhibitor of DNA synthesis and transcription	1
Mitomycin C	Alk, XL	Inhibitor of rRNA synthesis	0.499*
Doxorubicin	IC	Topo II poison, oxidative stress	0.449
Topotecan	IC	Topo I poison	0.344
Actinomycin D	IC	Transcription inhibitor	0.286
Bleomycin	SC	O_2-dependent DNA double-strand breaks	0.221*
Erlotinib	N/A	Protein kinase inhibitor	0.187
Gemcitabine	N/A	Inhibitor of DNA synthesis	0.18
Rapamycin	N/A	Inhibitor of mTOR growth signaling	0.123
Paclitaxel (Taxol)	N/A	Microtubule-targeted mitotic inhibitor	0.123*
Cisplatin	Pt, XL	Transcription inhibitor	0.116
Vinblastine	N/A	Microtubule-targeted mitotic inhibitor	0.099*
Oxaliplatin	Pt, XL	Inhibitor of replication and transcription, non-DNA damage mediated mechanisms	0.015

*aAbbreviations: Pt, platinating agent; XL, cross-linker; IC, intercalator; Alk, alkylating agent. SC, strand cutter. Asterisks indicate drugs for which no five-dose NCI-60 data were available in the concentration range $−8 < \log[drug] < −4$ (used for screening compound 1). In these cases, correlations were based on analysis of alternative concentration ranges for test compounds.

The Chemosensitivity of Cancer Cells, Regardless of Tissue of Origin, to Compound 1 is Highly Positively Correlated with hMATE1 (SLC47A1) Expression. To gain insight into the factors driving the unique activity profile of compound 1, a comparative analysis of cell growth inhibition data
and global gene expression in NCI-60 cell lines was performed, based on gene transcript (mRNA) levels determined on multiple microarray platforms, which are available as part of the COMPARE tools.18,19 COMPARE analysis yielded 806 unique genes correlated positively, and 849 genes correlated negatively ($p < 0.05$) with the growth inhibition of compound 1 (GI$_{50}$ endpoint) across the entire range of cell lines (Table S2). The by far strongest positive correlation ($R = 0.69, p < 10^{-5}$) was observed with the gene $SLC47A1$, which encodes a member of the solute carrier (SLC) family of proteins: human multidrug and toxin extrusion protein 1, hMATE1. hMATE1, a 13-helix transmembrane protein,20 shows high expression levels in normal liver and renal tissue (Figure S2), where it serves as a proton-coupled antiporter.21 Its primary function is the ATP-independent efflux of organic cations across apical membranes into the bile and urine, which renders hMATE1 an essential modulator of drug response, drug toxicity, and drug–drug interactions.22 Aberrantly high expression of hMATE1 is also observed in cancerous tissues (Figure S2).

The above analysis is consistent with a mechanism by which MATE promotes the uptake of compound 1 into cancer cells rather than acting as an efflux pump, which would cause a more resistant phenotype and would have resulted in a negative correlation. A comparison of the NCI-60 screening results for compound 1 with the $SLC47A1$ expression profile (Figure 1c) supports the findings of the COMPARE analysis and illustrates the extent to which the transport protein dominates chemosensitivity. With a few exceptions, cell lines showing high levels of $SLC47A1$ transcript are generally exquisitely sensitive to compound 1, while the opposite is true for cell lines expressing low levels (Figure 1c). Compound 1 performs poorly relative to other DNA-targeted drugs (e. g., doxorubicin and topotecan, Figure S1) across all leukemia cell lines, which invariably show low $SLC47A1$ expression. In cell lines representing solid tumors, considerable cell line-dependent variability exists. For instance, in the two prostate cancer cell lines tested, PC-3 (GI$_{50} \approx 5$ μM, low $SLC47A1$ expression) and DU-145 (GI$_{50} < 10$ nM, high $SLC47A1$ expression), compound 1 shows a more than 500-fold difference in growth inhibition, which is not observed for any other oncology drug in NCI-60. Likewise, the renal carcinoma cell line,
SN12C, which shows the highest level of SLC47A1 expression of all NCI-60 cell lines, most likely due to a gene copy number amplification\(^2\) (Figure S3), was also the most sensitive to compound 1.

SLC47A1 is not the only solute carrier gene whose expression showed a positive correlation with growth inhibition in NCI-60, but only SLC47A1 correlated at such a high level (\(p < 10^{-5}\) vs. \(p < 0.01\) for all other SLC genes; see Figure 1d and Table S3), suggesting a specific and dominant role of this transporter in the mechanism of compound 1. When calculating overlaps between the > 800 genes that were positively correlated with the activity of compound 1 and gene ontology (GO) gene sets deposited in the Molecular Signatures Database (MSigDB\(^1\)), GO terms such as plasma membrane function and components, and intracellular transport ranked highest (Table S4). This is in stark contrast to doxorubicin and topotecan, which showed the greatest overlap with GO sets annotated chromatin, DNA damage recognition and repair, and chromosome organization (data not shown), as would be expected for a genotoxic agent.\(^9\) These observations underpin the notion that, contrary to our expectation, the chemosensitivity of cancer cells to compound 1 is not controlled at the genome level, but by the transportome.

Pyrimethamine, a Selective hMATE1 Inhibitor, Effectively Blocks Cellular Accumulation of Compound 1 and Quenches Its Cytotoxicity in A549 Cells. To validate hMATE1 protein as a mediator of chemosensitivity, we first performed a transporter inhibition assay in A549 human lung adenocarcinoma cells. A549 expresses high levels of hMATE1 (SLC47A1) (The Human Genome Database; see Figure S2), which we confirmed by Western blot analysis (Figure S4). Unsurprisingly, the cell line proved to be highly sensitive to compound 1 in the NCI-60 screen (GI\(_{50}\) < 10 nM) and in previous colorimetric cell proliferation assays (IC\(_{50}\) = 3.9 nM).\(^4\) In this assay, prior to treatment with compound 1, cultured A549 cells were pre-treated with the antimalarial drug pyrimethamine (PM, Figure 2a), a potent and selective inhibitor of hMATE1 (reported \(K_i\) values: 77–93 nM\(^2\)). Since the assay required co-incubation of compound 1 and PM, we first confirmed that no undesired reactivity exists between the two agents (Supporting Information). When A549 cells were pre-treated with PM, followed
by a 4-hour exposure to compound 1, confocal microscopy images showed a reduction of intracellular acridine fluorescence by 60% relative to cells not treated with PM (Figure 2b,c). These results suggest that hMATE1-mediated transport across the plasma membrane is directly involved in the cellular uptake of compound 1. Because the microscopy experiments were performed at relatively high concentrations of platinum–acridine and PM (10 µM), contributions from non-specific transport by other membrane proteins cannot be ruled out under these conditions. To overcome this drawback, we took advantage of the parts-per-trillion-level limit of detection of inductively coupled plasma mass spectrometry (ICP-MS) and also quantified uptake of compound 1 from cellular platinum levels under therapeutically more relevant conditions. When cells were pre-incubated with 100 nM PM to avoid non-specific inhibition of other organic cation transporters and subsequently treated with 100 nM compound 1, corresponding to the compound’s IC₉₀ value in A549, a decrease of uptake by 85% was observed (Figure 2d). Together, these findings corroborate that compound 1 is selectively transported across the plasma membrane by hMATE1.

To determine if blocking hMATE1 by PM had an effect on the cytotoxicity of compound 1 in A549 cells, we performed a colorimetric cell proliferation assay (Figure 2e). Exposure to 100 nM compound 1 for 72 hours causes severe cell death with less than 10% of the cells surviving treatment. When A549 cells were pre-treated with PM at concentrations that did not compromise cell viability, a pronounced cytoprotective effect was observed. PM at a concentration of 10 nM was able to significantly (p < 0.01) increase the population of viable cells to 20%, while 100 nM inhibitor resulted in 90% survival (p < 0.0001) of cells treated with compound 1. The level of protection achieved at the latter concentration of PM correlates well with the reduced (85%) platinum levels determined by ICP-MS (Figure 2d), providing additional support for the notion that hMATE1-mediated transport is the key to compound 1’s high potency.
Figure 2. Pyrimethamine (PM) protects A549 lung adenocarcinoma cells from the cytotoxic effects of compound 1 by blocking its cellular uptake. a) PM, a high-affinity, selective inhibitor of hMATE1. b) Confocal fluorescence microscopy images of A549 cells treated for 4 hours with 10 μM compound 1 with or without PM. Scale bars: 20 μm. Acridine fluorescence in the blue channel is displayed in cyan. c) Mean fluorescence intensities in the acridine channel (arbitrary units) of > 100 selected A549 cells (treated according to the conditions in panel b) determined in 6 images from 2 independent experiments; P < 0.0001, mean ± S.D., two-tailed t-test with unequal variance. d) Accumulation of compound 1 (100 nM, 4 hours) in A549 cells in the absence and presence of PM (100 nM) determined by inductively coupled mass spectrometry, ICP-MS; P < 0.01, data are the mean of three independent experiments ± S.E.M, two-tailed t-test. e) Cytoprotective effect of PM-mediated inhibition of uptake of compound 1 into A549 cells monitored by a cell proliferation assay. The results were significant at p < 0.01 and p <
0.0001, respectively. Data are the mean of two experiments performed in sextuplicate ($n = 12$) ± S.E.M, two-tailed t-test.

Gene Knockdown by RNA Interference (RNAi) Further Validates the Role of hMATE1

Protein in the Mechanism of Compound 1. Ultimate evidence for a direct role of hMATE1 transporter in promoting the cellular accumulation and cytotoxicity of compound 1 came from gene knockdown experiments using RNA interference (RNAi). Such an assay is complicated by the non-trivial task of combining transient gene silencing with a long-term cell proliferation assay. Using transfection of appropriate siRNAs, we were able to generate an A549 model in which hMATE1 was transiently reduced by 40–50% relative to scrambled control, which is consistent with reported knockdown efficiencies achieved for the SLC47A1 gene in this cells line using RNAi.26 Knockdown was confirmed by Western blot analysis and immunofluorescence intensity evaluation of transfected cells (Figure 3a,b). The cellular uptake of compound 1 was studied under the same conditions as in the transporter inhibition assay using PM. In hMATE1 knockdown cells, accumulation of platinum was significantly ($p = 0.0091$) reduced by 50% relative to control cells transfected with a scrambled RNA sequence (Figure 3c). We then designed a 96-well plate assay that allowed us to assess the performance of compound 1 in A549 cells after hMATE1 knockdown. After 24 hours of continuous treatment, the dose- and time-dependent cytotoxicity of compound 1 was reduced in A549 cells at concentrations of 100 nM and 1 µM by 12% and 35%, respectively. At the higher concentration, the level of protection persists after 48 hours of treatment, which resulted in a 36% higher survival of hMATE1-silenced cells compared to mock-treated cells. These results unequivocally confirm that hMATE1 protein plays a direct role in the mechanism of compound 1 by mediating its cellular uptake, which ultimately controls the chemosensitivity of the lung cancer cell line.
Figure 3. Transient knockdown of the membrane transporter hMATE1 (SLC47A1) attenuates uptake and cytotoxicity of compound 1. a) Western blot analysis of hMATE1 and GAPDH (loading control) protein levels in A549 cells reverse-transfected with scrambled RNA sequence (“mock”) (left) or hMATE1 siRNA (right) (one 72-hour transfection at 2.5 nM siRNA). b) Immunofluorescence staining of fixed, permeabilized A549 cells 72 hours after siRNA knockdown or mock treatment. Scale bars: 20 μm. c) Uptake of compound 1 into A549 cells after siRNA or mock transfection determined by ICP-MS. Accumulated platinum (ng/10^6 cells) is shown as the mean ± S.E.M. of three independent experiments. The assay was performed several times under slightly varied conditions with similar results (see Figure S5); *p < 0.01, **. d) Effect of hMATE1 knockdown on the cytotoxicity of compound 1 in A549 cells assessed by a cell proliferation assay (MTS). Data are the mean ± S.E.M of two independent experiments performed in triplicate (n = 6; the results were significant at *p < 0.05 (*) and **p < 0.001 (***), respectively; two-tailed t-test). For additional data and replicates, see Figure S5.
Transcriptomics and Gene Set Overlap Analysis Suggest that hMATE1 Expression is Epigenetically Regulated in Many Types of Cancer. Significant correlations exist between SLC47A1 transcript levels and DNA methylation status (CpG islands, CGI) of the gene ($p < 0.001$), as well as correlations involving epigenetic repressors of gene expression, such as DNA methyltransferase I (DNMT1) and the histone methyltransferase, enhancer of zeste homolog 2 (EZH2) (Table S5). Thus, in addition to DNA copy number amplifications (Table S3), epigenetic alterations appear to dominate hMATE1 expression in cancer tissue. This was confirmed in an extended set of 963 cell lines in the Genomics of Drug Sensitivity in Cancer database (GDSC, Sanger Institute) for which SLC47A1 expression is strongly negatively correlated with CGI methylation (Pearson’s $R = -0.32$, $p = 4.9 \times 10^{-25}$) (Figure S6, Table S6). A recent study demonstrates that hMATE1 expression in normal liver tissue is attenuated epigenetically by promoter hypermethylation, which supports the above observations.

We also discovered a link between genes whose methylation status is negatively correlated with SLC47A1 transcript levels in NCI-60 (CellMiner), including SLC47A1 itself, and specific gene sets in the Molecular Signatures Database (MSigDB, gsea-msigdb.org) (Table S7). Hypergeometric distribution analysis of our list of genes (Table S8) showed the highest correlation with genes epigenetically silenced in embryonic stem cells. The process involves EZH2-mediated histone protein H3 trimethylation at lysine 27 (H3K27me3) by the polycomb repressive complex 2 (PRC2) and downstream promoter CGI hypermethylation. These data provide additional clues about hMATE1 regulation at the epigenome level and a potential link between hMATE1 expression, cancer stemness, and drug resistance. Taken together, these observations led us to hypothesize that epigenetic drugs reversing the repression of hMATE1 might increase the uptake of compound 1 and sensitize resistant cancer cells to this agent.
Treatment of HCT-116 Colon Cancer Cells with Epigenetic Drugs Activates hMATE1 Expression and Enhances the Cellular Uptake and Cytotoxicity of Compound 1. To test if cancer cells can be sensitized to compound 1 by priming with epigenetic drugs, we chose the colon cancer cell line HCT-116. HCT-116 cells show low hMATE1 expression caused by repressive modifications in its SLC47A1 promoter region (see Figure S6) and proved to be relatively resistant to compound 1 in NCI-60 (Figure 1c, Figure S1).

We first pre-screened several epigenetic drugs in cultured HCT-116 cells in a multi-well plate format for their ability to increase the uptake of compound 1 using fluorescence microscopy (Figure 4a, see caption for conditions). Cells were treated with four epigenetic drugs that are currently being studied in advanced phase clinical trials: EPZ-6438 (tazemetostat, a potent inhibitor of enhancer of zeste homolog 2, EZH2), EED226 (an allostERIC inhibitor of the polycomb repressive complex 2, PRC2), decitabine (a DNA methyltransferase I, DNMT1, inhibitor), and valproic acid (a histone deacetylase, HDAC, inhibitor), as well as combinations of these drugs (Figure 4b). Epigenetic drugs have previously been demonstrated to enhance the expression of epigenetically silenced genes in HCT-116, including the SLC47A1 gene. EPZ-6438 and EED226, alone or in combination, resulted in enhanced uptake of compound 1, based on the observation of increased acridine-associated, blue fluorescence in the confocal microscopy images, without causing changes in cell morphology and viability (Figure S7). These compounds were then tested again at escalating doses (2.5–20 mM) (Figure 4a). A combination of EPZ-6438 and EED226 (“E/E”) resulted in the most pronounced increase in uptake of compound 1 in a dose-dependent manner (Figure 4c). Additionally, images of representative cells stained with hMATE1 antibody showed a higher level of immunofluorescence compared to the no-treatment control, which was considered preliminary evidence of increased hMATE1 expression (Figure 4d).

We then used a cell proliferation assay to determine if pre-exposing HCT-116 cells to non-toxic concentrations of EPZ-6438 and EED226 sensitized them to compound 1. At higher concentrations, the epigenetic drugs alone also caused significant changes in the cells’ growth characteristics and significant
cell death. Because of this limitation, the experiments were performed with 2.5 µM and 5 µM E/E. When cells were treated with 10 µM compound 1, pre-exposure to E/E resulted in a pronounced decrease in cell viability that was dependent on the dose of epigenetic drug. At 5.0 µM E/E, the maximum enhancement in cell growth inhibition relative to unsensitized control was 45% (Figure 4e). Under these ad hoc conditions, Western blot analysis of lysates from HCT-116 cells show a 20% and 70% increase in hMATE1 levels relative to control at the lower and the higher concentration, respectively (Figure 4f). This observation in conjunction with the microscopy results (Figure 4c,d) strongly suggests that hMATE1 protein is the mediator of the chemosensitizing effect. The results of this proof-of-concept experiment demonstrate the feasibility of sensitizing cancer cells to compound 1 using nontoxic concentrations of epigenetic drugs.
Figure 4. Epigenetic, PRC2-targeted drugs sensitize HCT-116 colon cancer cells to compound 1.

Schematic layout of drug screening assay. A darker cyan color indicates higher levels of drug accumulation based on fluorescence intensity. Wells labeled ‘C’ are no-treatment controls (DMSO) and crossed-out wells indicate tested concentrations of drug affect cell viability.

b) Structures of epigenetic drugs used in this assay.

c) Microscopy images of HCT-116 cells exposed to 10 µM compound 1 for 4 hours after pretreatment with varying concentrations of EPZ-6438 and EED226 (“E/E”) for 72 hours. Scale bars: 20 µm.

d) Immunofluorescence staining of cells from the control and 10 µM treatment groups. Scale bars: 20 µm.

e) Viability of HCT-116 cells pre-treated with epigenetic drugs determined using cell proliferation assays (MTS). Data are presented as the mean ± S.E.M. for an assay performed with triplicate wells (*, p < 0.05; **, p < 0.01; two-tailed t-test). For replicates of this assay, see Figure S8.

f) Expression levels of hMATE1 and GAPDH (loading control) in HCT-116 cells determined by Western blot analysis under the same conditions as described in panel (e).
DISCUSSION

At physiological pH, compound 1 and its derivatives exist as 2+ charged, hydrophilic cations comprising a positively charged platinum(II) moiety and a protonated 9-aminoacridine chromophore ($pK_a = 9–10$). In earlier work, we have demonstrated that the most potent platinum-acridines accumulate in NSCLC cells at a 60–100-fold faster rate than cisplatin, which is consistent with the efficient, SLC transporter-mediated uptake mechanism established in this study. Compound 1 is the first chemotherapeutic agent for which bioinformatics and high-throughput screening tools have identified an overexpressed transport protein as a target that confers a high level of chemosensitivity to cancer cells.

Compound 1 has emerged from a pipeline of platinum–acridine agents that were designed based on the guiding principle that rapid formation of unique DNA adducts would overcome tumor resistance to DNA-targeted drugs, including platinum-based pharmaceuticals. While DNA damage indisputably is the ultimate cause of cancer cell death produced by the hybrid agent, its low-nanomolar activity critically depends on a transport protein, which is an unprecedented feature among anticancer drugs in the NCI-60 database. hMATE1 controls the pattern of activity with a high level of predictability. Cancer cells overexpressing the membrane transporter are highly sensitive to compound 1 regardless of genetic background and phenotypic abnormalities. Efficient transmembrane transport that leads to high intracellular drug concentrations has the potential to overcome common resistance mechanisms such as DNA repair or multidrug resistance-mediated drug efflux.

hMATE1 expression is high in most NSCLC cell lines (Fig. 1c), which explains why the advantage of platinum–acridines over cisplatin and other cytotoxic agents was first noted in this aggressive type of cancer. Membrane transporters that help drugs accumulate in diseased tissue may ultimately result in a more favorable therapeutic window for systemic treatment. Compound 1 has already demonstrated efficacy in xenograft models of A549 in mice when administered intravenously, both directly and as liposomal formulation. Using a non-optimized dosing schedule, the agent was able to reduce tumor growth by 65% with less than 20% weight loss in test animals, which was reversible,
without causing other signs of systemic toxicity. It is possible that hMATE1-enhanced uptake into tumors contributes to the efficacy of compound 1 in vivo.

A few cases have been reported of membrane transporters typically involved in drug elimination that may also enhance drug uptake into tumor tissue. Organic cation transporters (hOCT, SLC22A) are an example of such a dual pharmacokinetic role.\(^{45}\) hOCTs have been shown to enhance the cytotoxicity and efficacy of platinum-containing drugs.\(^ {43,46}\) For instance, in colorectal cancer tissue, high levels of hOCT assist in the cellular uptake of oxaliplatin, which has provided a rationale for the drug’s therapeutic use in this form of cancer.\(^ {47}\) hMATE1 protein, which mediates efflux of substrate from polarized epithelial cells in excretory organs, may play a similar role by transporting substrates across the plasma membrane into cells.\(^ {21}\) This has recently been demonstrated for the clinical kinase inhibitor imatinib (Gleevec) in chronic myeloid leukemia (CML) cells, which enhances the drug’s potency in this hematological cancer.\(^ {48}\) Importantly, in the same study hMATE1 expression levels have been validated as a predictor of interindividual differences in imatinib response and clinical outcome in CML patients.\(^ {48}\) These findings corroborate the critical role solute carrier (SLC) transporters may play in mediating delivery of pharmacologically relevant levels of drug to diseased tissue.\(^ {49}\)

Finally, we provide proof-of-concept data to demonstrate that colorectal cancer cells treated with epigenetic drugs can be sensitized to compound 1 and that the enhanced cytotoxicity is caused by hMATE1-mediated drug accumulation. A growing body of clinical evidence supports the utility of co-administering cytotoxic drugs with epigenetic drugs (see also clinicaltrials.gov). Liu et al.\(^ {50}\) recently demonstrated that renal cell carcinoma (RCC) cells can be sensitized to oxaliplatin by pre-treatment with the hypomethylating agent decitabine, which promotes hOCT2 expression and oxaliplatin accumulation. Another compelling case of epigenetic sensitization has been reported by Gardner et al.\(^ {51}\) for the Schlafen-11 protein (SLFN11), a putative RNA/DNA helicase that acts as a sensor of replicative stress and tumor suppressor.\(^ {52}\) In patient-derived small-cell lung cancer (SCLC) tissue, Schlafen-11, which sensitizes cancer cells to topoisomerase I poisons, was epigenetically silenced.\(^ {51}\) Treatment with
epigenetic drugs restores Schlafen-11 levels, which reverses resistance in SCLC and re-sensitizes cells to the drug topotecan.51 There also appears to be an epigenetic component to hMATE1 (\textit{SLC47A1}) expression in SCLC53 (sclcelllines.cancer.gov). Since topotecan is a substrate of hMATE1,54 the reported level of sensitization to the topoisomerase I poison in SCLC cell lines after treatment with EPZ-643851 may also reflect higher drug accumulation due to increased levels of hMATE1. Using compound 1 as a cytotoxic component in similar combination regimens to treat SCLC and other cancers not responding optimally to our hybrid agent (e.g., leukemias, colorectal cancer, ovarian cancer, see Figure 1), would be an attractive opportunity.

CONCLUSION

In summary, the current study provides the mechanistic basis for the unique spectrum of anticancer activity of a platinum–acridine hybrid agent, compound 1. The data demonstrates that the fate of a cancer cell treated with compound 1 is decided at the plasma membrane. The results underscore the crucial role of hMATE1 in mediating intracellular delivery of oncology drugs and as a potential pan-cancer marker of drug responsiveness. In addition, epigenetic priming may present a new strategy for tackling intractable tumors with platinum–acridines and other oncology drugs targeting this membrane transporter. These features render compound 1 a unique cytotoxic agent, which may have applications as a component of personalized combination regimens to treat resistant tumors.

ASSOCIATED CONTENT

Supporting Information

Data from COMPARE correlation analysis; pattern comparisons for \textit{SLC47A1} expression, DNA methylation, and copy number variations in CellMiner (Tables S2 and S5); summary of gene set overlap
analysis; NCI-60 screening data; supplemental figures of SLC47A1 tissue expression, Western blot analysis (uncropped images), confocal microscopy images; results of assay replicates; schematic plate layouts with experimental details (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: bierbau@wfu.edu. Phone: +1 336-701-1957

ORCID

Ulrich Bierbach: 0000-0001-5658-7662

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENTS

This work was funded in part by the National Institutes of Health/National Cancer Institute (grant CA101880, to U. B.), through resources provided by the Cell Engineering Shared Resource (CESR) of the Comprehensive Cancer Center of Wake Forest School of Medicine (NIH Cancer Center Grant P30 CA012197), and by Wake Forest Innovations (innovations@wakehealth.edu). The authors are grateful to Dr. G. L. Donati and J. T. Sloop for technical assistance with the ICP-MS analysis, and Dr. L. R. Comstock-Ferguson, Dr. N. Sirasunthorn, and Dr. K. Zhang (all WFU) for sharing resources and for technical advice. We also thank S. Zhang (WFU) for providing a sample of compound 1.
REFERENCES

1. Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. *Chem. Rev.* **2016**, *116*, 3436-3486.

2. Farrell, N. Nonclassical Platinum Antitumor Agents: Perspectives for Design and Development of New Drugs Complementary to Cisplatin. *Cancer Invest.* **1993**, *11*, 578-589.

3. Hanif, M.; Hartinger, C. G. Anticancer Metallodrugs: Where is the Next Cisplatin? *Future Med. Chem.* **2018**, *10*, 615-617.

4. Ding, S.; Pickard, A. J.; Kucera, G. L.; Bierbach, U. Design of Enzymatically Cleavable Prodrugs of a Potent Platinum-Containing Anticancer Agent. *Chem. Eur. J.* **2014**, *20*, 16164-16173.

5. Suryadi, J.; Bierbach, U. DNA Metalating–Intercalating Hybrid Agents for the Treatment of Chemoresistant Cancers. *Chem. Eur. J.* **2012**, *18*, 12926-12934.

6. Ding, S.; Qiao, X.; Kucera, G. L.; Bierbach, U. Using a Build-and-Click Approach for Producing Structural and Functional Diversity in DNA-Targeted Hybrid Anticancer Agents. *J. Med. Chem.* **2012**, *55*, 10198-10203.

7. Liu, F.; Suryadi, J.; Bierbach, U. Cellular Recognition and Repair of Monofunctional-Intercalative Platinum-DNA Adducts. *Chem. Res. Toxicol.* **2015**, *28*, 2170-2178.

8. Kostrhunova, H.; Malina, J.; Pickard, A. J.; Stepankova, J.; Vojtiskova, M.; Kasparkova, J.; Muchova, T.; Rohlfing, M. L.; Bierbach, U.; Brabec, V. Replacement of a Thiourea with an Amidine Group in a Monofunctional Platinum-Acridine Antitumor Agent. Effect on DNA Interactions, DNA Adduct Recognition and Repair. *Mol. Pharmaceutics* **2011**, *8*, 1941-1954.

9. Cheung-Ong, K.; Song, K. T.; Ma, Z.; Shabtai, D.; Lee, A. Y.; Gallo, D.; Heisler, L. E.; Brown, G. W.; Bierbach, U.; Giaever, G.; Nislow, C. Comparative Chemogenomics to Examine the Mechanism
of Action of DNA-Targeted Platinum-Acridine Anticancer Agents. *ACS Chem. Biol.* 2012, 7, 1892-901.

10. Shoemaker, R. H. The NCI60 Human Tumour Cell Line Anticancer Drug Screen. *Nat. Rev. Cancer* 2006, 6, 813-823.

11. Wang, H.; Klinginsmith, J.; Dong, X.; Lee, A. C.; Guha, R.; Wu, Y.; Crippen, G. M.; Wild, D. J. Chemical Data Mining of the NCI Human Tumor Cell Line Database. *J. Chem. Inf. Model.* 2007, 47, 2063-2076.

12. Reinhold, W.; Pommier, Y. Genomics and Pharmacogenomics Analyses of Cancer Cell Lines Using the CellMinerCDB and CellMiner Web-Applications. *Ann. Oncol.* 2019, 30 Suppl 1, i14.

13. Reinhold, W. C.; Varma, S.; Sunshine, M.; Rajapakse, V.; Luna, A.; Kohn, K. W.; Stevenson, H.; Wang, Y.; Heyn, H.; Nogales, V.; Moran, S.; Goldstein, D. J.; Doroshow, J. H.; Meltzer, P. S.; Esteller, M.; Pommier, Y. The NCI-60 Methylome and Its Integration into CellMiner. *Cancer Res.* 2017, 77, 601-612.

14. Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.; Ebert, B. L.; Gillette, M. A.; Paulovich, A.; Pomeroy, S. L.; Golub, T. R.; Lander, E. S.; Mesirov, J. P. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. *Proc. Natl. Acad. Sci. U.S.A.* 2005, 102, 15545-15550.

15. McQuin, C.; Goodman, A.; Chernyshev, V.; Kamentsky, L.; Cimini, B. A.; Karhohs, K. W.; Doan, M.; Ding, L.; Rafelski, S. M.; Thirstrup, D.; Wiegraebe, W.; Singh, S.; Becker, T.; Caicedo, J. C.; Carpenter, A. E. CellProfiler 3.0: Next-Generation Image Processing for Biology. *PLoS Biol.* 2018, 16, e2005970.

16. Rose, P. K.; Watkins, N. H.; Yao, X. Y.; Zhang, S. J.; Mancera-Ortiz, I. Y.; Sloop, J. T.; Donati, G. L.; Day, C. S.; Bierbach, U. Effect of the Nonleaving Groups on the Cellular Uptake and Cytotoxicity of Platinum-Acridine Anticancer Agents. *Inorg. Chim. Acta* 2019, 492, 150-155.
17. Paull, K. D.; Shoemaker, R. H.; Hodes, L.; Monks, A.; Scudiero, D. A.; Rubinstein, L.; Plowman, J.; Boyd, M. R. Display and Analysis of Patterns of Differential Activity of Drugs Against Human Tumor Cell Lines: Development of Mean Graph and COMPARE Algorithm. *J. Natl. Cancer Inst.* 1989, 81, 1088-1092.

18. Zeeberg, B. R.; Reinhold, W.; Snajder, R.; Thallinger, G. G.; Weinstein, J. N.; Kohn, K. W.; Pommier, Y. Functional Categories Associated with Clusters of Genes that are Co-expressed Across the NCI-60 Cancer Cell Lines. *PLoS ONE* 2012, 7, e30317.

19. Zeeberg, B. R.; Kohn, K. W.; Kahn, A.; Larionov, V.; Weinstein, J. N.; Reinhold, W.; Pommier, Y. Concordance of Gene Expression and Functional Correlation Patterns Across the NCI-60 Cell Lines and the Cancer Genome Atlas Glioblastoma Samples. *PLoS ONE* 2012, 7, (7), e40062.

20. Zhang, X.; He, X.; Baker, J.; Tama, F.; Chang, G.; Wright, S. H. Twelve Transmembrane Helices form The Functional Core of Mammalian MATE1 (Multidrug and Toxin Extruder 1) Protein. *J. Biol. Chem.* 2012, 287, 27971-27982.

21. Otsuka, M.; Matsumoto, T.; Morimoto, R.; Arioka, S.; Omote, H.; Moriyama, Y. A Human Transporter Protein that Mediates the Final Excretion Step for Toxic Organic Cations. *Proc. Natl. Acad. Sci. U.S.A.* 2005, 102, 17923-17928.

22. Harrach, S.; Ciarimboli, G. Role of Transporters in the Distribution of Platinum-Based Drugs. *Front. Pharmacol.* 2015, 6, 85.

23. Tremmel, R.; Klein, K.; Battke, F.; Fehr, S.; Winter, S.; Scheurenbrand, T.; Schaeffeler, E.; Biskup, S.; Schwab, M.; Zanger, U. M. Copy Number Variation Profiling in Pharmacogenes using Panel-Based Exome Resequencing and Correlation to Human Liver Expression. *Hum. Genet.* 2019, 139, 137-149.

24. Konig, J.; Muller, F.; Fromm, M. F. Transporters and Drug-Drug Interactions: Important Determinants of Drug Disposition and Effects. *Pharmacol. Rev.* 2013, 65, 944-966.
25. Ito, S.; Kusuhara, H.; Kuroiwa, Y.; Wu, C.; Moriyama, Y.; Inoue, K.; Kondo, T.; Yuasa, H.; Nakayama, H.; Horita, S.; Sugiyama, Y. Potent and Specific Inhibition of mMate1-Mediated Efflux of Type I Organic Cations in the Liver and Kidney by Pyrimethamine. *J. Pharmacol. Exp. Ther.* **2010**, *333*, 341-350.

26. Gausterer, J. C. Investigations on Membrane Transport Activity in Human Respiratory Epithelial Cells (Thesis). University of Vienna, **2014**. DOI: 10.25365/thesis.34054.

27. Yang, W.; Soares, J.; Greninger, P.; Edelman, E. J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J. A.; Thompson, I. R.; Ramaswamy, S.; Futreal, P. A.; Haber, D. A.; Stratton, M. R.; Benes, C.; McDermott, U.; Garnett, M. J. Genomics of Drug Sensitivity in Cancer (GDSC): A Resource for Therapeutic Biomarker Discovery in Cancer Cells. *Nucleic Acids Res.* **2013**, *41*, (Database issue), D955-961.

28. Tanaka, T.; Hirota, T.; Ieiri, I. Relationship between DNA Methylation in the 5' CpG Island of the SLC47A1 (Multidrug and Toxin Extrusion Protein MATE1) Gene and Interindividual Variability in MATE1 Expression in the Human Liver. *Mol. Pharmacol.* **2018**, *93*, 1-7.

29. Ben-Porath, I.; Thomson, M. W.; Carey, V. J.; Ge, R.; Bell, G. W.; Regev, A.; Weinberg, R. A. An Embryonic Stem Cell-Like Gene Expression Signature in Poorly Differentiated Aggressive Human Tumors. *Nat. Genet.* **2008**, *40*, 499-507.

30. Kaniskan, H. U.; Martini, M. L.; Jin, J. Inhibitors of Protein Methyltransferases and Demethylases. *Chem. Rev.* **2018**, *118*, 989-1068.

31. Moody, J. D.; Levy, S.; Mathieu, J.; Xing, Y.; Kim, W.; Dong, C.; Tempel, W.; Robitaille, A. M.; Dang, L. T.; Ferreccio, A.; Detraux, D.; Sidhu, S.; Zhu, L.; Carter, L.; Xu, C.; Valensisi, C.; Wang, Y.; Hawkins, R. D.; Min, J.; Moon, R. T.; Orkin, S. H.; Baker, D.; Ruohola-Baker, H. First Critical Repressive H3K27me3 Marks in Embryonic Stem Cells Identified Using Designed Protein Inhibitor. *Proc. Natl. Acad. Sci. U.S.A.* **2017**, *114*, 10125-10130.
32. Huang, Y.; Zhang, J.; Yu, Z.; Zhang, H.; Wang, Y.; Lingel, A.; Qi, W.; Gu, J.; Zhao, K.; Shultz, M. D.; Wang, L.; Fu, X.; Sun, Y.; Zhang, Q.; Jiang, X.; Zhang, J.; Zhang, C.; Li, L.; Zeng, J.; Feng, L.; Zhang, C.; Liu, Y.; Zhang, M.; Zhang, L.; Zhao, M.; Gao, Z.; Liu, X.; Fang, D.; Guo, H.; Mi, Y.; Gabriel, T.; Dillon, M. P.; Atadja, P.; Oyang, C. Discovery of First-in-Class, Potent, and Orally Bioavailable Embryonic Ectoderm Development (EED) Inhibitor with Robust Anticancer Efficacy. J. Med. Chem. 2017, 60, 2215-2226.

33. Stresemann, C.; Lyko, F. Modes of Action of the DNA Methyltransferase Inhibitors Azacytidine and Decitabine. Int. J. Cancer 2008, 123, 8-13.

34. Duenas-Gonzalez, A.; Candelaria, M.; Perez-Plascencia, C.; Perez-Cardenas, E.; de la Cruz-Hernandez, E.; Herrera, L. A. Valproic Acid as Epigenetic Cancer Drug: Preclinical, Clinical and Transcriptional Effects on Solid Tumors. Cancer Treat. Rev. 2008, 34, 206-222.

35. Maryan, N.; Statkiewicz, M.; Mikula, M.; Goryca, K.; Paziewska, A.; Strzalkowska, A.; Dabrowska, M.; Bujko, M.; Ostrowski, J. Regulation of the Expression of Claudin 23 by the Enhancer of Zeste 2 Polycomb Group Protein in Colorectal Cancer. Mol. Med. Rep. 2015, 12, 728-736.

36. Ferreira, H. J.; Heyn, H.; Moutinho, C.; Esteller, M. CpG Island Hypermethylation-Associated Silencing of Small Nucleolar RNAs in Human Cancer. RNA Biol. 2012, 9, 881-890.

37. Ikehata, M.; Ueda, K.; Iwakawa, S. Different Involvement of DNA Methylation and Histone Deacetylation in the Expression of Solute-Carrier Transporters in 4 Colon Cancer Cell Lines. Biol. Pharm. Bull. 2012, 35, 301-307.

38. Qiao, X.; Zeitany, A. E.; Wright, M. W.; Essader, A. S.; Levine, K. E.; Kucera, G. L.; Bierbach, U. Analysis of the DNA Damage Produced by a Platinum–Acridine Antitumor Agent and its Effects in NCI-H460 Lung Cancer Cells. Metallomics 2012, 645-652.
39. Leroy, B.; Girard, L.; Holleste, A.; Minna, J. D.; Gazdar, A. F.; Soussi, T. Analysis of TP53 Mutation Status in Human Cancer Cell Lines: A Reassessment. *Hum. Mutat.* **2014**, *35*, 756-765.

40. Ikediobi, O. N.; Davies, H.; Bignell, G.; Edkins, S.; Stevens, C.; O'Meara, S.; Santarius, T.; Avis, T.; Barthorpe, S.; Brackenbury, L.; Buck, G.; Butler, A.; Clements, J.; Cole, J.; Dicks, E.; Forbes, S.; Gray, K.; Halliday, K.; Harrison, R.; Hills, K.; Hinton, J.; Hunter, C.; Jenkinson, A.; Jones, D.; Kosmidou, V.; Lugg, R.; Menzies, A.; Mironenko, T.; Parker, A.; Perry, J.; Raine, K.; Richardson, D.; Shepherd, R.; Small, A.; Smith, R.; Solomon, H.; Stephens, P.; Teague, J.; Tofts, C.; Varian, J.; Webb, T.; West, S.; Widaa, S.; Yates, A.; Reinhold, W.; Weinstein, J. N.; Stratton, M. R.; Futreal, P. A.; Wooster, R. Mutation Analysis of 24 Known Cancer Genes in the NCI-60 Cell Line Set. *Mol. Cancer Ther.* **2006**, *5*, 2606-2612.

41. Martin, L. P.; Hamilton, T. C.; Schilder, R. J. Platinum Resistance: the Role of DNA Repair Pathways. *Clin. Cancer Res.* **2008**, *14*, 1291-1295.

42. Gottesman, M. M.; Ling, V. The Molecular Basis of Multidrug Resistance in Cancer: The Early Years of P-glycoprotein Research. *FEBS Lett.* **2006**, *580*, 998-1009.

43. Hucke, A.; Park, G. Y.; Bauer, O. B.; Beyer, G.; Koppen, C.; Zeeh, D.; Wehe, C. A.; Sperling, M.; Schroter, R.; Kantauskaite, M.; Hagos, Y.; Karst, U.; Lippard, S. J.; Ciarimboli, G. Interaction of the New Monofunctional Anticancer Agent Phenanthriplatin With Transporters for Organic Cations. *Front. Chem.* **2018**, *6*, 180.

44. Bierbach, U.; Ding, S.; Hackett, C. L. Liposomal Formulations of Platinum-Acridine Anticancer Agents and Methods Thereof. *US Patent App.* **16,114,431, August 28, 2018**.

45. Okabe, M.; Szakacs, G.; Reimers, M. A.; Suzuki, T.; Hall, M. D.; Abe, T.; Weinstein, J. N.; Gottesman, M. M. Profiling SLCO and SLC22 genes in the NCI-60 Cancer Cell Lines to Identify Drug Uptake Transporters. *Mol. Cancer Ther.* **2008**, *7*, 3081-3091.
46. Zhang, S.; Lovejoy, K. S.; Shima, J. E.; Lagpacan, L. L.; Shu, Y.; Lapuk, A.; Chen, Y.; Komori, T.; Gray, J. W.; Chen, X.; Lippard, S. J.; Giacomini, K. M. Organic Cation Transporters are Determinants of Oxaliplatin Cytotoxicity. *Cancer Res*. 2006, 66, 8847-8857.

47. Tashiro, A.; Tatsumi, S.; Takeda, R.; Naka, A.; Matsuoka, H.; Hashimoto, Y.; Hatta, K.; Maeda, K.; Kamoshida, S. High Expression of Organic Anion Transporter 2 and Organic Cation Transporter 2 is an Independent Predictor of Good Outcomes in Patients with Metastatic Colorectal Cancer Treated with FOLFOX-Based Chemotherapy. *Am. J. Cancer Res*. 2014, 4, 528-536.

48. Harrach, S.; Schmidt-Lauber, C.; Pap, T.; Pavenstadt, H.; Schlatter, E.; Schmidt, E.; Berdel, W. E.; Schulze, U.; Edemir, B.; Jeromin, S.; Haferlach, T.; Ciariimboli, G.; Bertrand, J. MATE1 Regulates Cellular Uptake and Sensitivity to Imatinib in CML Patients. *Blood Cancer J*. 2016, 6, e470.

49. Girardi, E.; César-Razquin, A.; Lindinger, S.; Papakostas, K.; Konecka, J.; Hemmerich, J.; Kickinger, S.; Kartnig, F.; Gürtl, B.; Klavins, K.; Sedlyarov, V.; Ingles-Prieto, A.; Fiume, G.; Koren, A.; Lardeau, C.-H.; Kumaran Kandasamy, R.; Kubicek, S.; Ecker, G. F.; Superti-Furga, G. A Widespread Role for SLC Transmembrane Transporters in Resistance to Cytotoxic Drugs. *Nat. Chem. Biol*. 2020, 16, 469-478.

50. Liu, Y.; Zheng, X.; Yu, Q.; Wang, H.; Tan, F.; Zhu, Q.; Yuan, L.; Jiang, H.; Yu, L.; Zeng, S. Epigenetic Activation of the Drug Transporter OCT2 Sensitizes Renal Cell Carcinoma to Oxaliplatin. *Sci. Transl. Med*. 2016, 8, 348ra97.

51. Gardner, E. E.; Lok, B. H.; Schneeberger, V. E.; Desmeules, P.; Miles, L. A.; Arnold, P. K.; Ni, A.; Khodos, I.; de Stanchina, E.; Nguyen, T.; Sage, J.; Campbell, J. E.; Ribich, S.; Rekhtman, N.; Dowlati, A.; Massion, P. P.; Rudin, C. M.; Poirier, J. T. Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. *Cancer Cell* 2017, 31, 286-299.
52. Murai, J.; Thomas, A.; Miettinen, M.; Pommier, Y. Schlafen 11 (SLFN11), a Restriction Factor for Replicative Stress Induced by DNA-Targeting Anti-Cancer Therapies. *Pharmacol. Ther.* **2019**, 201, 94-102.

53. Polley, E.; Kunkel, M.; Evans, D.; Silvers, T.; Delosh, R.; Laudeman, J.; Ogle, C.; Reinhart, R.; Selby, M.; Connelly, J.; Harris, E.; Fer, N.; Sonkin, D.; Kaur, G.; Monks, A.; Malik, S.; Morris, J.; Teicher, B. A. Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression. *J. Natl. Cancer Inst.* **2016**, 108(10).

54. Ivanyuk, A.; Livio, F.; Biollaz, J.; Buclin, T. Renal Drug Transporters and Drug Interactions. *Clin. Pharmacokinet.* **2017**, 56, 825-892.
Supporting Information

for

A Membrane Transporter Determines the Spectrum of Activity of a Potent DNA-Targeted Hybrid Anticancer Agent

Xiyuan Yao, Noah H. Watkins, Heather Brown-Harding, and Ulrich Bierbach*
Table of Contents

Table S1. Ten NCI-60 cell lines most sensitive to compound 1 .. S3

Figure S1. Comparison of NCI-60 chemosensitivity profiles ... S4

Table S2. Results of NCI COMPARE analysis .. S5

Table S3. NCI-60/COMPARE analysis .. S27

Figure S2. Expression of hMATE1 (SLC47A1) in normal human tissue and in cancer cells ... S28

Figure S3. SLC47A1 gene copy numbers and transcript levels in NCI-60 S29

Table S4. Summary of top 10 overlaps .. S30

Figure S4. Western blot analysis of A549 cell lysate for hMATE1 expression S32

Figure S5. (A) Western blot for optimized RNAi conditions. (B) hMATE1 antibodies used in this study and aligned amino-acid sequences of the 63-kDa full-length protein and the 34-kDa splice variant (NCBI). (C,D) Results for drug uptake experiments after hMATE1 knockdown ... S33

Table S5. Pattern comparisons for SLC47A1 expression in NCI CellMiner S34

Figure S6. Correlation between CPI methylation status and expression levels of SLC47A1 ... S35

Table S6. Summary of significant \((p < 0.05)\) correlations identified between CPI methylation status and expression levels of the SLC47A1 gene .. S36

Table S7. Summary of correlations for chemosensitivity and omics data for compound 1 S37

Table S8. Summary of top 10 overlaps between all gene sets of the molecular signatures database (MSigDB) and the input gene set of hypermethylated genes negatively correlated with SLC47A1 expression, ... S38

Figure S7. Pre-screening of HCT-116 colon cancer cells for the effects of epigenetic drugs on cell viability and accumulation of compound 1, ... S40

Figure S8. (A) Western blot analysis of hMATE1 protein in HCT-116 cell lysates. B) Cell proliferation assay for HCT-116 cells, ... S41

Assay Layouts AL1–AL4 .. S42

SI References ... S44
Table S1. Ten NCI-60 cell lines most sensitive to compound 1 and their genetic backgrounds

Tissue of Origin	Cell Line	log$_{10}$GI$_{50}$	CDKN2A	TP53	PTEN	RB1	PIK3CA	KRAS	BRAF
Lung	NCI-H460	< -8.00	■	■	■	■	■	■	■
	NCI-H226	< -8.00	■	■	■	■	■	■	■
	NCI-H522	-7.92	■	■	■	■	■	■	■
	A549	< -8.00	■	■	■	■	■	■	■
CNS	SF-295	-7.88	■	■	■	■	■	■	■
Renal	SN12C	< -8.00	■	■	■	■	■	■	■
Melanoma	SK-MEL-5	-7.75	■	■	■	■	■	■	■
	UACC-62	< -8.00	■	■	■	■	■	■	■
Prostate	DU-145	< -8.00	■	■	■	■	■	■	■
Breast	T-47D	-7.83	■	■	■	■	■	■	■

■ homozygous mutation/deletion ■ heterozygous mutation/deletion (based on refs. 1 and 2)
Figure S1. Comparison of NCI-60 chemosensitivity profiles (averages of at least 2 assays) for cisplatin (CDDP, NSC 119875), doxorubicin (DOX, NSC 123127), topotecan (TOP, NSC 609699), and compound 1 (NSC # not disclosed).
Table S2. Results of NCI COMPARE analysis: positive and negative correlations between chemosensitivity (NCI-60, logGI50) and microarray gene expression data (z-scores)

Entry	Positive Correlation	Negative Correlation	p-value	
1	0.692 SLC47A1	-0.525 ZNF330	p < 0.00001 ******	
2	0.541 CCDC104	-0.52 CCT8	p < 0.01 **	
3	0.535 FAM120AOS	-0.511 MYSM1	p < 0.001 ***	
4	0.533 CCDC113	-0.504 TEMM222	p < 0.05 *	
5	0.531 LOC100268168	-0.501 CIDEB		
6	0.527 DOLK	-0.489 MRPL41		
7	0.522 NQO1	-0.485 RQCD1		
8	0.519 POLDIP2	-0.477 ADCY10P1		
9	0.513 ARL8A	-0.477 DUSP7		
10	0.509 PHLP2P2	-0.476 WRAP73		
11	0.508 MOCS2	-0.475 GK2		
12	0.499 LOC100287590	-0.474 NDST1		
13	0.497 DOCK1	-0.474 SMU1		
14	0.495 AKAP10	-0.473 PEX5		
15	0.495 TNPO1	-0.47 DR1		
16	0.489 LOC728431	-0.47 FOX3		
17	0.487 ULK1	-0.47 RFX3		
18	0.486 ZNF652	-0.469 LARS		
19	0.484 TMTC3	-0.468 WASF2		
20	0.478 CLIP1	-0.466 SYNPO2		
21	0.476 TENC1	-0.462 SYNCRIP		
22	0.476 KIAA1841	-0.461 SMIM8		
23	0.476 C5AR1	-0.453 ZNF451		
24	0.475 SQSTM1	-0.451 MAP3K19		
25	0.474 TMEM218	-0.449 RBM15		
26	0.474 LOC100287525	-0.447 KHSRP		
27	0.473 ANKRD40	-0.446 LRRC3B		
28	0.47 SNRNP27	-0.446 PVT1		
29	0.468 TACO1	-0.444 ADH1B		
30	0.467 FBXL20	-0.441 CSRNP3		
31	0.465 IFT27	-0.44 IPOS		
32	0.464 ZNF219	-0.44 DNAH2		
33	0.464 UNC119	-0.44 CSF2		
34	0.463 HFE	-0.44 DPH2		
35	0.463 PSMD11	-0.438 MKI67IP		
---	---	---	---	---
36	0.462	TAOK1	-0.438	TARP
37	0.462	SEMA3C	-0.435	BABAM1
38	0.459	SKP1	-0.434	NCS1
39	0.457	TXNRD1	-0.434	EXOSC3
40	0.456	TMLHE	-0.433	FAM186B
41	0.455	LRRC23	-0.433	DIAPH2
42	0.454	HSF4	-0.431	EPAG
43	0.453	ZBTB40	-0.431	VCPIP1
44	0.453	MAN1A2	-0.43	FAM91A1
45	0.452	ADSSL1	-0.428	TTYH1
46	0.452	ACACB	-0.428	RBM33
47	0.452	PCGF2	-0.427	SLC24A2
48	0.451	BCAS4	-0.427	SLC24A2
49	0.451	TOB1	-0.427	BTF3L4
50	0.45	RBPMS	-0.425	TNFRSF10C
51	0.449	SNAPIN	-0.425	LOC100129250
52	0.449	RNPEP	-0.424	ST6GAL1
53	0.445	PTGR1	-0.424	JPH3
54	0.443	NIN1	-0.424	TFAP4
55	0.443	SRXN1	-0.422	ZNF473
56	0.443	NFYB	-0.421	FHI
57	0.441	RUBDL3	-0.421	XAB2
58	0.439	WBP1	-0.421	ZMYM2
59	0.437	PSMD3	-0.42	VAPB
60	0.437	NTSC3B	-0.42	KCNQ5
61	0.437	STAT3	-0.42	ZNF800
62	0.437	FBXW4	-0.418	WDR52
63	0.435	COPRS	-0.416	KRT77
64	0.434	FAM188B	-0.416	ZRANB2
65	0.434	F2RL2	-0.416	CCL16
66	0.434	GOLGA1	-0.416	LOC284998
67	0.433	VEZT	-0.415	SLC43A3
68	0.433	ZBTB41	-0.415	POLR1E
69	0.433	NFU1	-0.415	CDKN3
70	0.432	MFSD5	-0.415	KIAA1009
71	0.431	RUFY2	-0.414	RIN3
72	0.431	GABARAPL2	-0.414	TPP2
73	0.43	TMEM5	-0.414	ORMDL1
74	0.43	OLFM1	-0.414	CHRAC1
75	0.43	TRNP1	-0.414	CCDC18
---	---	---	---	
76	0.43	PQLC3	-0.414	
77	0.43	HOXC13	-0.414	
78	0.43	ABHD15	-0.413	
79	0.429	TRIM23	-0.413	
80	0.429	ZNF268	-0.413	
81	0.429	FBXO21	-0.413	
82	0.429	HOXA-A52	-0.412	
83	0.428	KIAA0319	-0.412	
84	0.428	KYNU	-0.412	
85	0.428	TBK1	-0.412	
86	0.428	TMEM132A	-0.412	
87	0.427	MPP3	-0.411	
88	0.427	BLVRA	-0.41	
89	0.427	EGF	-0.41	
90	0.427	IRX2	-0.41	
91	0.426	WIPF2	-0.41	
92	0.425	RHBD2	-0.409	
93	0.425	SETD1A	-0.409	
94	0.425	UNKL	-0.409	
95	0.425	FDXR	-0.409	
96	0.424	G6PD	-0.409	
97	0.424	LETM1	-0.408	
98	0.424	NLGN4Y	-0.407	
99	0.424	WISP2	-0.406	
100	0.423	MMP28	-0.406	
101	0.422	TUBG1	-0.406	
102	0.422	MTA3	-0.406	
103	0.421	ERAL1	-0.406	
104	0.421	MED13	-0.406	
105	0.421	LRIG2	-0.405	
106	0.421	VMO1	-0.405	
107	0.42	DAZAP2	-0.405	
108	0.42	ATXN1L	-0.405	
109	0.42	JOSD2	-0.404	
110	0.42	AP1G1	-0.404	
111	0.419	IDNK	-0.403	
112	0.419	SPATS2	-0.402	
113	0.419	SLC35E3	-0.402	
114	0.419	CD163	-0.402	
115	0.419	DYNC2LI1	-0.402	
---	-----	----------	-------	------------
116	0.419	TLE2	-0.4	C19orf70
117	0.419	MAP2K4	-0.399	CCNB1IP1
118	0.419	VMP1	-0.398	DBT
119	0.418	GATA5	-0.397	LYNX1
120	0.418	TP53I11	-0.397	DHR54-A51
121	0.418	SDF2	-0.397	DNAJA1
122	0.417	FBXO15	-0.397	SLC22A7
123	0.417	PCDHA	-0.397	STX12
124	0.417	CDK3	-0.396	CSPG4
125	0.417	NR1H2	-0.396	PLVAP
126	0.416	KIAA0100	-0.396	PTER
127	0.416	TSSK6	-0.396	CEP152
128	0.416	TRADD	-0.395	ZER1
129	0.415	MARK3	-0.393	DDX18
130	0.415	MSL1	-0.393	LINC00312
131	0.415	GSR	-0.393	SMIM12
132	0.415	FAM134B	-0.393	NDUFB6
133	0.414	ATG10	-0.393	PFKFB1
134	0.414	MLIP	-0.393	PLAG1
135	0.413	GJC2	-0.392	SRIF3
136	0.412	CCDC121	-0.391	GRK1
137	0.411	XYL12	-0.391	LOC100505964
138	0.411	MEGF9	-0.391	HEMK1
139	0.411	FLJ12120	-0.391	NES
140	0.411	SLC30A5	-0.391	OBP2B
141	0.41	TRIM16	-0.391	ZMYND11
142	0.41	AMFR	-0.39	DDX49
143	0.41	SPAG5	-0.39	PHIP
144	0.409	FAM155B	-0.389	MPPE1
145	0.409	SRGAP3	-0.389	PREP
146	0.409	MOB3B	-0.389	GATA5
147	0.409	SNF8	-0.389	ZNF544
148	0.408	RABGAP1	-0.389	E4F1
149	0.408	BLVRB	-0.389	RIOK3
150	0.408	CLTC	-0.388	SCN2B
151	0.407	NKIRAS2	-0.388	LRRC14
152	0.407	SIRT3	-0.388	MON1A
153	0.406	BMPR1A	-0.388	CCDC58
154	0.406	LOC399884	-0.387	METTL8
---	---	---	---	---
156	0.406	PSMG4	-0.387	TMEM51-AS1
157	0.405	BLOC1S2	-0.387	ANPEP
158	0.405	IDE	-0.387	APPL1
159	0.405	DHX29	-0.386	PPP1R3E
160	0.404	FAM45A	-0.386	SIRT6
161	0.404	C7orf25	-0.386	WDR27
162	0.404	ANKRD32	-0.386	RASSF1
163	0.404	S1PR3	-0.386	KCNJ4
164	0.403	ARHGEF26	-0.385	UFM1
165	0.403	ADORA3	-0.385	FAM184B
166	0.402	C8orf42	-0.385	ACOT11
167	0.402	RNASEH1	-0.385	RPF1
168	0.402	AMER2	-0.384	SAMD8
169	0.402	SREBF1	-0.384	WDR48
170	0.402	PIGS	-0.383	GTF2B
171	0.401	THSD4	-0.383	GTPBP5
172	0.401	SH3BGR	-0.382	PDE12
173	0.401	LRRC46	-0.382	ATP11C
174	0.401	FAM218A	-0.382	MTUS2
175	0.4	MIEN1	-0.382	TSPO
176	0.4	DLGAP1	-0.382	CLCN6
177	0.4	KCNA1	-0.382	ARHGAP27
178	0.4	ACP1	-0.381	PMAIP1
179	0.399	TVP23B	-0.381	VPS13A
180	0.399	ABHD1	-0.381	GRP21L2
181	0.399	ZNF821	-0.381	CLECL1
182	0.399	EIF2B4	-0.381	LOC100505519
183	0.399	GCLM	-0.381	PAQR3
184	0.398	C2CD3	-0.38	CD22
185	0.398	SMIM20	-0.38	SLC6A19
186	0.397	ZNF132	-0.379	IDI2
187	0.397	NBR1	-0.379	LSM11
188	0.397	AQP11	-0.379	GTPBP1
189	0.397	ATP2A2	-0.379	CELF6
190	0.397	SAR1B	-0.379	SFPQ
191	0.397	RUNDC1	-0.379	LAMTOR3
192	0.396	LOC100132004	-0.379	LPAR1
193	0.396	STX17	-0.379	POGLUT1
194	0.396	TMEM178B	-0.379	PLA2G2E
195	0.396	FAM212B	-0.378	CYB561D2
---	---	---	---	---
196	0.396	MEG3	-0.378	AURKAIP1
197	0.395	ASXL2	-0.378	MEX3C
198	0.395	SDSL	-0.378	PHF7
199	0.395	EID3	-0.378	DFFB
200	0.395	PTRH2	-0.378	LOC100499489
201	0.394	PBX1	-0.378	RCL1
202	0.394	PDE4D	-0.378	DNMT1
203	0.394	NCOA7	-0.378	GALNT15
204	0.394	GBF1	-0.378	FLJ39639
205	0.393	MYBL1	-0.378	HLA-DQB1
206	0.393	TAF15	-0.378	RNGTT
207	0.393	SLC51B	-0.377	UMP5
208	0.393	LOC100506603	-0.377	TICRR
209	0.392	C5AR2	-0.377	BRWD3
210	0.392	KDM6A	-0.377	MAX
211	0.392	TMEM106C	-0.376	SRR
212	0.392	LOC100507501	-0.376	LONRF3
213	0.392	GFM1	-0.376	SMARCB1
214	0.392	EML2	-0.376	LHPP
215	0.392	SLC3A2	-0.376	C8orf82
216	0.391	JAM3	-0.376	BCL10
217	0.391	FBF1	-0.375	LOC100505697
218	0.391	RNF40	-0.375	PNMA3
219	0.39	FUNDC1	-0.375	ZNF41
220	0.39	RNF135	-0.375	IQCB1
221	0.39	NALCN	-0.375	POP1
222	0.39	LOC100506668	-0.375	GPBP1L1
223	0.39	IL6ST	-0.375	AZI2
224	0.39	SIDT2	-0.375	TFB2M
225	0.39	ZDHHC16	-0.374	KLHL21
226	0.39	PIGX	-0.374	FAM154A
227	0.389	SPR	-0.374	GTPBP8
228	0.389	FKBP15	-0.374	RCC1
229	0.389	IFT43	-0.374	CNTR0B
230	0.389	KIAA0195	-0.374	ZADH2
231	0.389	LOC100505564	-0.374	ZNF496
232	0.388	LIX1L	-0.374	SLC2A9
233	0.387	MARCO	-0.374	AGXT
234	0.387	BRCA1	-0.373	RTFDC1
235	0.387	GNRHR	-0.373	OPRL1
Gene	Correlation	Gene	Correlation	
-----------	-------------	-----------	-------------	
BAD	0.387	MTO1	-0.373	
EPHX1	0.387	TGS1	-0.373	
EXOC6B	0.386	EIF3G	-0.373	
EPDR1	0.386	JRK	-0.373	
PPP1R9A	0.386	MRPL34	-0.373	
CCDC127	0.386	TWISTN8	-0.373	
APH1B	0.386	DDX28	-0.373	
PHF12	0.386	ZNF259	-0.372	
FAM66D	0.385	CENPW	-0.372	
ZNF287	0.385	DRD3	-0.372	
JAKMIP3	0.385	BTLA	-0.372	
C1orf115	0.385	TCF20	-0.372	
TMED2	0.385	RAD21	-0.372	
LOC100653206	0.384	MAN1A2	-0.371	
TRAF4	0.384	CLK1	-0.371	
HRAS	0.384	PRKACA	-0.371	
AGBL2	0.384	TIMM44	-0.371	
FM05	0.384	TNN	-0.371	
WDR34	0.383	FGF22	-0.371	
TUSC3	0.383	SHOX2	-0.371	
TSKU	0.383	RNF126	-0.371	
SDK2	0.383	GRIN1	-0.37	
KDM5B	0.383	C1orf228	-0.37	
ZMIZ2	0.382	STOML1	-0.37	
PDCD2	0.382	BOP1	-0.37	
COX15	0.382	SPATA8	-0.37	
MYO19	0.382	LRRC4B	-0.37	
SLC39A8	0.381	CAAP1	-0.369	
DDB2	0.381	SEMA6D	-0.369	
IFT140	0.381	CCNC	-0.369	
RGRIP1L	0.381	WWP2	-0.369	
SHC1	0.381	LONP1	-0.369	
TBC1D5	0.381	PYGB	-0.369	
SLC22A5	0.38	CHERP	-0.368	
PCYOX1	0.38	USP6	-0.368	
ZNF334	0.38	KCTD5	-0.368	
DHX40	0.38	AFF2	-0.368	
SLC48A1	0.38	KDM4D	-0.368	
MAFK	0.38	PASD1	-0.368	
---	---	---	---	---
276	0.38	ZCRB1	-0.367	MRTO4
277	0.38	CHRM4	-0.367	MYOT
278	0.38	BTBD11	-0.367	CBX2
279	0.38	ABHD4	-0.367	PADI4
280	0.38	FGD6	-0.366	LPCAT2
281	0.379	OAZ3	-0.366	SLC17A9
282	0.379	INVS	-0.366	WDTC1
283	0.379	TMEM18	-0.365	ZRANB2-AS1
284	0.379	LOC339803	-0.365	MPEG1
285	0.379	MDM2	-0.365	NDUFB7
286	0.379	DICER1	-0.365	TMEM39A
287	0.379	KIAA0895	-0.365	ENTPD8
288	0.378	LOC100130502	-0.365	ECHDC1
289	0.378	P2RX4	-0.365	ZNF182
290	0.378	DALRD3	-0.364	IGH
291	0.378	ZFAND4	-0.364	TRMT1
292	0.378	ADIPOR1	-0.364	JMJD1C
293	0.378	CUZD1	-0.364	LINC00338
294	0.377	G6PC3	-0.364	OPTC
295	0.377	RNH1	-0.364	SYNJ2
296	0.377	ASPN	-0.364	RAD54L
297	0.377	TMEM256	-0.364	OSGEP
298	0.377	KLF7	-0.364	ROBO4
299	0.377	RDM1	-0.364	TPD52L2
300	0.377	JKAMP	-0.364	TAOK3
301	0.377	CCND3	-0.364	PLD4
302	0.377	RPL3L	-0.363	RPS28
303	0.377	ALPK1	-0.363	ADO
304	0.377	TMEM254-AS1	-0.363	MAP2K7
305	0.376	KRIT1	-0.363	MAP3K7
306	0.376	RAB5C	-0.363	CMKLR1
307	0.376	KBTBD4	-0.363	GANC
308	0.376	SNX17	-0.363	IL11RA
309	0.376	XIAP	-0.363	AQP8
310	0.376	CCS	-0.363	RAB3IP
311	0.375	GPC1	-0.363	NHP2L1
312	0.375	CLU	-0.362	CLPP
313	0.375	ALDH3A2	-0.362	CCR3
314	0.375	NF1	-0.362	DSEL
315	0.375	TP53I3	-0.362	CDC40
---	---	---	---	---
316	0.375	DLGAP1-AS1	-0.362	FAM69A
317	0.374	KAT2A	-0.362	UBIAD1
318	0.374	COPZ1	-0.362	EEF1A1
319	0.374	LOC100996321	-0.362	KRTAP10-12
320	0.374	SLC22A17	-0.361	CCDC93
321	0.373	EFNA3	-0.361	TTK
322	0.373	EMX2	-0.361	LOC390705
323	0.373	YLPM1	-0.361	IL12RBI
324	0.373	BTD	-0.361	INTS1
325	0.373	PRDM15	-0.361	PTPN22
326	0.373	IL2OR8	-0.361	LOC100499227
327	0.373	MCPH1	-0.361	LOC100240728
328	0.372	CCNB1	-0.361	DPH3
329	0.372	C12orf10	-0.361	MED30
330	0.372	AMZ2	-0.361	KLC4
331	0.372	CISD3	-0.361	DUSP15
332	0.371	KCTD20	-0.36	SRSF11
333	0.371	HCP5	-0.36	SLC26A8
334	0.371	SLC6A2	-0.36	USP37
335	0.371	SETDB1	-0.36	WNT10A
336	0.371	TRIM3	-0.36	BRD4
337	0.371	SLC30A1	-0.36	MIOX
338	0.371	LOC728012	-0.36	CDC37
339	0.37	SHC2	-0.36	N4BP1
340	0.37	EFEMP1	-0.359	POLR2K
341	0.37	BAZ2A	-0.359	C9orf123
342	0.37	RP9P	-0.359	TSHZ1
343	0.37	COQ6	-0.359	IPCEF1
344	0.37	AP3M2	-0.359	ABHD14A
345	0.37	LOC100288911	-0.359	LRIG1
346	0.37	DCST2	-0.358	SCTR
347	0.37	FAM24B	-0.358	GPATCH2L
348	0.369	ZNF687	-0.358	RRS1
349	0.369	BPTF	-0.358	MARK1
350	0.369	FOXN3-AS1	-0.358	SASS6
351	0.369	CSPG5	-0.358	C17orf105
352	0.369	VPS9D1	-0.358	CFC1B
353	0.369	MALSU1	-0.358	RPS6KA1
354	0.369	DND1	-0.357	PLA2G12B
355	0.368	HSPB8	-0.357	MTSS1
---	---	---	---	
356	0.368	ZNF76	-0.357	
357	0.368	PAQR6	-0.357	
358	0.368	ZDHHC11	-0.357	
359	0.368	AGFG1	-0.357	
360	0.368	NR5A2	-0.357	
361	0.368	ALG13	-0.356	
362	0.368	ETTA1	-0.356	
363	0.367	HSPB7	-0.356	
364	0.367	SYT3	-0.356	
365	0.367	PLEKHH3	-0.356	
366	0.367	SIAH1	-0.356	
367	0.367	FMNL3	-0.356	
368	0.367	KRT86	-0.356	
369	0.367	TXNRD3	-0.356	
370	0.366	TNRC18	-0.356	
371	0.366	PYY	-0.355	
372	0.366	LXN	-0.355	
373	0.366	NEO1	-0.355	
374	0.366	SIX5	-0.355	
375	0.366	LYRM9	-0.354	
376	0.366	DHX57	-0.354	
377	0.365	MFF	-0.354	
378	0.365	MAPT	-0.354	
379	0.365	SDCBP2-AS1	-0.354	
380	0.365	C2orf76	-0.353	
381	0.365	NPPA	-0.353	
382	0.365	LYPLAL1	-0.353	
383	0.364	MTMR12	-0.353	
384	0.364	ULK2	-0.353	
385	0.364	COL4A4	-0.353	
386	0.364	CD99P1	-0.353	
387	0.364	ARL2BP	-0.353	
388	0.364	STX6	-0.353	
389	0.364	SMIM14	-0.352	
390	0.364	RAB4B	-0.352	
391	0.364	LEPREL4	-0.352	
392	0.364	CWC25	-0.352	
393	0.364	SLC8A1	-0.352	
394	0.364	HP07349	-0.352	
395	0.364	PSMD4	-0.352	
396	0.364	FAM192A	-0.352	FOXK2
397	0.363	KIAA1324	-0.352	PLTP
398	0.363	PSMA2	-0.352	NCSTN
399	0.363	SIX3-AS1	-0.352	DCLRE1C
400	0.363	ZMAT5	-0.352	C3orf38
401	0.363	ASMT	-0.352	TMEM133
402	0.363	TOP2A	-0.352	LRRC40
403	0.362	DDX52	-0.352	PFDN6
404	0.362	AMACR	-0.352	DIS3
405	0.362	STAMBPA	-0.352	HIVEP3
406	0.362	SLC38A7	-0.352	DCN
407	0.362	ARF3	-0.352	SREBF2
408	0.362	METRN	-0.352	FAM182B
409	0.362	DCAF8	-0.351	BPTF
410	0.362	GLI4	-0.351	NUP214
411	0.361	ST3GAL2	-0.351	ZNF710
412	0.361	CCL26	-0.351	TMEM110
413	0.361	SNHG10	-0.351	SYNPO2L
414	0.361	CHD9	-0.351	DSG3
415	0.361	ZNF577	-0.351	DNAH7
416	0.361	OMD	-0.351	TRPV4
417	0.36	TOM1L2	-0.351	TMEM207
418	0.36	GRIP1	-0.351	ARID1A
419	0.36	ERLEC1	-0.351	C1orf86
420	0.36	EP400	-0.351	ZNF324B
421	0.36	CFHR4	-0.35	TACO1
422	0.36	GALNT8	-0.35	ANKRD13C
423	0.36	PRPSAP2	-0.35	ZNF292
424	0.36	UBE3B	-0.35	PPIP5K2
425	0.359	ATRAID	-0.35	CCDC130
426	0.359	ADAM17	-0.35	DOK3
427	0.359	MBDS	-0.35	VPS13D
428	0.359	EHD3	-0.35	DES1
429	0.359	RARB	-0.35	LOC221814
430	0.359	LOC149134	-0.35	ETS1
431	0.359	SURF1	-0.35	HSF1
432	0.358	GFM2	-0.35	TBC1D26
433	0.358	APLP1	-0.35	SREK1
434	0.358	FAM76A	-0.35	RAC2
435	0.358	TAX1BP1	-0.349	PIGK
---	---	---	---	
436	0.358	LINC00669	-0.349	NPC1
437	0.358	NRBP1	-0.349	RGCC
438	0.358	SLC16A4	-0.349	PGS1
439	0.358	ZNF385A	-0.349	CLEC12A
440	0.358	CACNG4	-0.349	MAPKAPK3
441	0.358	B4GALNT1	-0.349	C18orf54
442	0.358	LOC100507481	-0.349	GSPT1
443	0.358	ZNF341	-0.349	TIMM13
444	0.358	PIP4K2B	-0.349	FLG-AS1
445	0.358	SERF1B	-0.349	BZRAP1
446	0.357	CTSL1	-0.349	GOLGA8A
447	0.357	CCDC19	-0.349	MMP9
448	0.357	IFT20	-0.349	SHANK3
449	0.357	SPPL2A	-0.348	PITHD1
450	0.357	THNSL2	-0.348	RREB1
451	0.357	NFIC	-0.348	APBA1
452	0.357	BAIAP2-AS1	-0.348	TAF4B
453	0.357	METAP1	-0.348	HCG18
454	0.357	FTO	-0.348	CREBZF
455	0.357	ZNF281	-0.348	EIF5B
456	0.356	TSKS	-0.347	OGFOD3
457	0.356	FAM224B	-0.347	GRIK1-AS1
458	0.356	C5orf51	-0.347	MLLT1
459	0.356	POMZP3	-0.347	SMAD2
460	0.356	ALOXE3	-0.347	TOE1
461	0.355	ORMDL2	-0.347	NKX2-1-AS1
462	0.355	PAGR1	-0.347	CCL23
463	0.355	ZFPNM1	-0.347	TRIM25
464	0.355	LHFL4	-0.347	GNL1
465	0.355	SLK	-0.347	RGS13
466	0.355	MIF4GD	-0.347	CDK6
467	0.355	RND1	-0.347	PAK1P1
468	0.354	TLCD1	-0.347	CEP63
469	0.354	TMOD3	-0.347	GART
470	0.354	PEX13	-0.346	C2orf69
471	0.354	AQP8	-0.346	CDKN2B
472	0.354	PLEKHA2	-0.346	HSPA1L
473	0.354	SIX3	-0.346	CBLC
474	0.354	TMEM37	-0.346	SMARCC1
475	0.354	TRIP11	-0.346	SPIB
---	---	---	---	
476	0.354	ZNF839	-0.346	
477	0.354	WASL	-0.346	
478	0.354	SMARCC2	-0.346	
479	0.353	WAC	-0.346	
480	0.353	CDK5RAP2	-0.346	
481	0.353	NOL3	-0.346	
482	0.353	PPP2R2C	-0.346	
483	0.353	SUB1	-0.346	
484	0.353	ME1	-0.345	
485	0.353	TBC1D9B	-0.345	
486	0.353	FRA10AC1	-0.345	
487	0.353	ZNF140	-0.345	
488	0.353	HRH3	-0.345	
489	0.353	SPATA20	-0.345	
490	0.353	SLC35F6	-0.345	
491	0.353	GADD45G	-0.345	
492	0.353	FLJ39632	-0.345	
493	0.353	INSM1	-0.345	
494	0.352	OSGIN2	-0.345	
495	0.352	FGD4	-0.344	
496	0.352	SLC12A4	-0.344	
497	0.352	CACNA2D3	-0.344	
498	0.352	NKAP	-0.344	
499	0.352	SMO	-0.344	
500	0.352	CIDEC	-0.344	
501	0.352	TRIM68	-0.344	
502	0.351	C1orf56	-0.344	
503	0.351	CENPK	-0.344	
504	0.351	HIST1H3E	-0.344	
505	0.351	LOC100507424	-0.344	
506	0.351	GSE1	-0.344	
507	0.351	DCC	-0.343	
508	0.351	CAP2	-0.343	
509	0.351	GN85	-0.343	
510	0.35	SNX29	-0.343	
511	0.35	COASY	-0.343	
512	0.35	AGBL5	-0.343	
513	0.35	VPS72	-0.343	
514	0.35	TCTN1	-0.343	
515	0.35	ARID4B	-0.343	
Gene	p-value	Fold Change	Correlation	
-------	---------	-------------	-------------	
IARS2	0.35	-0.343	SUPT16H	
SPIRE2	0.35	-0.343	MAEL	
HIBADH	0.35	-0.343	PPM1A	
TPD52L1	0.35	-0.343	C11orf21	
AADAC	0.35	-0.343	MYL3	
OSMR	0.35	-0.342	LOC100996665	
DNAJC7	0.349	-0.342	C22orf31	
GGNBP2	0.349	-0.342	SMIM10	
FAM134C	0.349	-0.342	ELAVL1	
TSACC	0.349	-0.342	SLC19A1	
HDGFPR3	0.349	-0.342	FOXN3	
SNCB	0.349	-0.342	ZNF148	
GAST	0.349	-0.342	NUDC	
GRAMD1B	0.349	-0.342	LOC155060	
ADCY6	0.348	-0.341	IL6ST	
MAGED4	0.348	-0.341	ARMC6	
HIP1	0.348	-0.341	NDRG3	
PCGF5	0.348	-0.341	COL8A2	
LIN7B	0.348	-0.341	ZNF503-A52	
NLN	0.348	-0.341	FAF1	
GAPVD1	0.348	-0.341	UROS	
GTF3C1	0.348	-0.341	LILRB3	
CCKBR	0.348	-0.341	OXSR1	
PLAC4	0.348	-0.341	UBE2L6	
RAB1A	0.348	-0.341	EIF2S3	
ZFP1	0.348	-0.341	DST	
PBXIP1	0.348	-0.341	ZNHIT6	
DPF1	0.348	-0.341	SLC30A7	
IGHMBP2	0.347	-0.341	RPL5	
TMEM107	0.347	-0.341	PYDC1	
IAH1	0.347	-0.341	SLC25A32	
TVP23C	0.347	-0.341	NPFF	
RHBDL1	0.347	-0.341	PARP8	
GIP	0.347	-0.341	ABCA9	
PDNP	0.347	-0.339	ZEB2	
MBTPS1	0.347	-0.339	PPIE	
PTGES	0.347	-0.339	UBAP2L	
REEP5	0.347	-0.339	SSU72	
GPR25	0.347	-0.339	MGC12488	
---	---	---	---	
556	0.346	CSNK1D	-0.339	
557	0.346	PCGF1	-0.339	
558	0.346	TBCD	-0.339	
559	0.346	DNAJC27	-0.339	
560	0.346	MAPK9	-0.339	
561	0.346	MRPL19	-0.339	
562	0.346	C11orf92	-0.339	
563	0.346	DYNLL1	-0.338	
564	0.346	STRN	-0.338	
565	0.345	NDRG4	-0.338	
566	0.345	AKT1	-0.338	
567	0.345	BAI2	-0.338	
568	0.345	XPR1	-0.338	
569	0.345	C5orf15	-0.338	
570	0.345	PTH1R	-0.338	
571	0.345	RFX3	-0.338	
572	0.345	ABAT	-0.337	
573	0.345	CAMSAP1	-0.337	
574	0.344	ZFP64	-0.337	
575	0.344	ANKEF1	-0.337	
576	0.344	MTX1	-0.337	
577	0.344	SUPT6H	-0.337	
578	0.344	TEKT4P2	-0.336	
579	0.344	MIER3	-0.336	
580	0.344	ANKRDS55	-0.336	
581	0.344	DSEL	-0.336	
582	0.344	GRAMD1C	-0.336	
583	0.344	COL4A6	-0.336	
584	0.344	UBE2K	-0.336	
585	0.344	C10orf35	-0.336	
586	0.343	ABCC1	-0.336	
587	0.343	MYH8	-0.336	
588	0.343	GDF11	-0.335	
589	0.343	FBXO4	-0.335	
590	0.343	ZNF234	-0.335	
591	0.343	CREB2F	-0.335	
592	0.343	CEP112	-0.335	
593	0.343	B3GALT5	-0.335	
594	0.343	NENF	-0.335	
595	0.343	CDKL1	-0.335	
---	---	---	---	---
	0.342	LRRC16B	-0.335	IRX2
597	0.342	SWI5	-0.335	CNTN5
598	0.342	DUS3L	-0.335	DBR1
599	0.342	KRT10	-0.335	ADAM7
600	0.342	KCNF1	-0.335	TXNL4A
601	0.342	UNC79	-0.335	PURB
602	0.342	DNAH1	-0.335	TMEM68
603	0.342	TP53I13	-0.335	ZNRD1-AS1
604	0.342	MPHOSPH9	-0.335	SCLT1
605	0.342	POLR2J4	-0.335	IGF1
606	0.342	RNF187	-0.335	SAFB
607	0.342	C9orf16	-0.335	LOC283143
608	0.342	SMEK2	-0.335	PCK2
609	0.341	LMTK2	-0.334	HNMT
610	0.341	UBB	-0.334	MDN1
611	0.341	DSN1	-0.334	RGS7BP
612	0.341	LRP10	-0.334	GSDMD
613	0.341	IDH1-AS1	-0.334	ATF6
614	0.341	PBLD	-0.334	SIGLEC6
615	0.341	YTHDC2	-0.334	NUS1
616	0.34	C11orf16	-0.334	ZNF460
617	0.34	LOC100505622	-0.334	OGT
618	0.34	CNTN1	-0.334	HAUS6
619	0.34	CABYR	-0.334	NOTCH4
620	0.34	SOBP	-0.334	CPPED1
621	0.34	TMEM231	-0.334	SERPINB8
622	0.34	LONP2	-0.334	PVRL3
623	0.34	SF3B3	-0.334	RARS2
624	0.34	TMEM245	-0.333	GORASP2
625	0.34	GPR137	-0.333	TSN
626	0.34	CRLS1	-0.333	TBL1XR1
627	0.34	DNAJC28	-0.333	SLC26A6
628	0.34	DHX8	-0.333	ALOX12
629	0.339	ARFGEF2	-0.333	DNAJC8
630	0.339	ABCA8	-0.333	NUPL2
631	0.339	PDCL2	-0.333	UGT2B15
632	0.339	GFOD2	-0.333	OSCAR
633	0.339	RASGEF1C	-0.333	CNPPD1
634	0.339	PXN	-0.333	NOP16
635	0.339	C1orf27	-0.333	LOC401176
---	---	---	---	---
636	0.339	RECQL5	-0.333	MUL1
637	0.339	TCEA2	-0.333	MIR143HG
638	0.339	ODF3L1	-0.332	KCNK10
639	0.339	MON2	-0.332	ZNF266
640	0.339	ZNF226	-0.332	FUS
641	0.338	CDK12	-0.332	ATP10A
642	0.338	GTF2H2	-0.332	TPSG1
643	0.338	ATP6V0A1	-0.332	NCAHP2
644	0.338	FGG	-0.332	CSPP1
645	0.338	AK7	-0.332	PPIL3
646	0.338	DPY19L1P1	-0.332	KRTDAP
647	0.338	TFE3	-0.332	AMD1
648	0.338	TEMEM8B	-0.332	STK17B
649	0.338	GAA	-0.332	PARL
650	0.338	CHD3	-0.332	HLF
651	0.338	C17orf97	-0.331	RORA
652	0.338	ZDHHHC12	-0.331	ADRA1A
653	0.338	CYB5D2	-0.331	TLE4
654	0.337	NSF	-0.331	DIO2
655	0.337	JAK3	-0.331	MTFR1
656	0.337	TUBD1	-0.331	CHD4
657	0.337	PI4KB	-0.331	DCAF13
658	0.337	TAF10	-0.331	GNG5
659	0.337	RNF112	-0.331	ABCB1
660	0.337	FCER1A	-0.331	WNK2
661	0.337	IGFBP4	-0.331	RAB8A
662	0.337	KCNK15	-0.331	YME1L1
663	0.337	CD160	-0.331	ZBTB7A
664	0.337	NES	-0.331	TSC2
665	0.337	PPAP2A	-0.331	ZFPL1
666	0.337	SULT4A1	-0.331	OSBPL2
667	0.337	MTFMT	-0.331	ZRANB1
668	0.337	AP4E1	-0.33	NIPAL3
669	0.337	C2orf72	-0.33	CHRM2
670	0.337	TRPV5	-0.33	DOCK8
671	0.337	ITLN1	-0.33	FAR2
672	0.336	LLGL1	-0.33	ZNF454
673	0.336	ASTN2	-0.33	CDX4
674	0.336	COX7A2L	-0.33	EMILIN2
675	0.336	CACNA1D	-0.33	RD3
----	---	-----	-----	------------------
676	0.336	AKT1S1	-0.33	DNASE1L1
677	0.336	PTPLAD1	-0.33	SNRPE
678	0.336	ZNF609	-0.33	STX4
679	0.336	FAM177A1	-0.33	LOC100996694
680	0.336	MF12-AS1	-0.329	KCNQ2
681	0.336	CCDC74A	-0.329	ISY1
682	0.336	MAR6	-0.329	LOC146880
683	0.336	WWC2-AS2	-0.329	REG3A
684	0.336	ACBD6	-0.329	UTP23
685	0.336	GOSR1	-0.329	C15orf39
686	0.336	VPS41	-0.329	SSCA1
687	0.336	SULT1A3	-0.329	SDR16C5
688	0.336	AP3B1	-0.329	CHD7
689	0.336	CUEDC1	-0.329	ARID1B
690	0.335	AP2B1	-0.329	PRCD
691	0.335	TBX3	-0.329	WDR81
692	0.335	USP9X	-0.329	RANGAP1
693	0.335	ZNF223	-0.328	CDC5L
694	0.335	TCTN3	-0.328	TBC1D25
695	0.335	SMC2	-0.328	OBSL1
696	0.335	COQ9	-0.328	DNAJC9
697	0.335	DHH	-0.328	CNOT8
698	0.335	LINC00674	-0.328	WNT6
699	0.334	SMKR1	-0.328	TTTY7
700	0.334	FLOT2	-0.328	KPNA1
701	0.334	KIF3A	-0.328	GATAD2A
702	0.334	SULT1A2	-0.328	CCDC86
703	0.334	YIPF4	-0.327	BMP8B
704	0.334	TEF	-0.327	PPP2R3C
705	0.334	ADCY1	-0.327	TFB1M
706	0.334	ZNF711	-0.327	TRIM27
707	0.334	LRRC37A	-0.327	IFNK
708	0.334	SYNGR4	-0.327	CMSS1
709	0.334	TRIM32	-0.327	NCAN
710	0.334	RNF103	-0.327	CDRT1SL2
711	0.334	LOC100506746	-0.327	YPEL2
712	0.334	CLPTM1L	-0.327	DHX30
713	0.334	LOC101060027	-0.327	HOXB-AS5
714	0.334	FAM102A	-0.327	WBSCR27
715	0.334	ZFR2	-0.326	OB2P2A
----	----	----	----	----
716	0.333	TTY2	-0.326	MRPL3
717	0.333	THSD7A	-0.326	IL9
718	0.333	ACRY	-0.326	QRS11
719	0.333	LOC100505938	-0.326	ZNF430
720	0.333	EGFL7	-0.326	LARP1B
721	0.333	MTX3	-0.326	IGHG1
722	0.333	ABCB6	-0.326	LOC100106009
723	0.333	RAB3C	-0.326	CCNT2
724	0.333	SKI	-0.326	SEP15
725	0.333	METTL9	-0.326	HMGA1
726	0.333	ZNF638	-0.326	RAB27A
727	0.332	NUP98	-0.326	PDX1
728	0.332	AKR1C2	-0.326	DENND2A
729	0.332	C1QTNF3	-0.326	GCSHP3
730	0.332	IFI6	-0.326	TEX12
731	0.332	PAIP1	-0.326	AP2B1
732	0.332	DAW1	-0.325	PITPN8
733	0.332	H2AFY2	-0.325	PTGER1
734	0.332	ALDH7A1	-0.325	FBXL6
735	0.332	PMS2P3	-0.325	PDLIM5
736	0.332	KPNB1	-0.325	STX3
737	0.332	CLDN8	-0.325	EBNA1BP2
738	0.332	GLI1	-0.325	HSPA8
739	0.332	B9D1	-0.325	GMPR2
740	0.331	RSBN1L	-0.325	UGT8
741	0.331	SCN8A	-0.325	RNPS1
742	0.331	GKPAP1	-0.325	RPL23AP7
743	0.331	ZNF701	-0.325	RSF1
744	0.331	MST1	-0.325	SNX31
745	0.331	HTRA1	-0.325	OPRM1
746	0.331	TREM1	-0.324	HIPK2
747	0.331	LOC100129935	-0.324	ESRRA
748	0.331	LOC100507367	-0.324	FBXO41
749	0.33	AKIP1	-0.324	TEKT2
750	0.33	LINC00473	-0.324	ZMYM6
751	0.33	USP42	-0.324	EIF1AD
752	0.33	IQCH	-0.324	SSBP1
753	0.33	PDZD4	-0.324	HDAC2
754	0.33	ATMIN	-0.324	PEX14
755	0.33	CCDC53	-0.324	ARPC2
---	---	---	---	---
756	0.33	BECN1	-0.324	LOC100507373
757	0.33	GTF2I	-0.324	THBS1
758	0.33	SNX21	-0.324	HECA
759	0.33	GLP1R	-0.324	CYP2A7
760	0.33	DIABLO	-0.323	ATAD3B
761	0.33	PARP6	-0.323	TMEM209
762	0.33	OR2W1	-0.323	RPL27A
763	0.33	SDHA	-0.323	PDZD4
764	0.329	SF3B4	-0.323	TNRC6B
765	0.329	CRTAP	-0.323	FAM24A
766	0.329	HCO2	-0.323	NME8
767	0.329	SFSWAP	-0.323	DLEU2
768	0.329	MAR7	-0.323	SMG1
769	0.329	ZNF501	-0.323	PRKCSH
770	0.329	UBE2B	-0.323	UBE2G2
771	0.329	EPHX2	-0.323	DEFA1
772	0.329	FAM110C	-0.323	GRIN2D
773	0.329	LRRRC73	-0.323	FCR2
774	0.328	DYNLRB2	-0.323	HAUS2
775	0.328	SLC11A2	-0.323	KCN7
776	0.328	KLK2	-0.323	PABPC1
777	0.328	TNKS	-0.322	PXDNL
778	0.328	TRMT1L	-0.322	PTCH2
779	0.328	RNFT2	-0.322	FAM43A
780	0.328	NAP1L2	-0.322	ZNF75A
781	0.328	CDC14A	-0.322	A1BG-AS1
782	0.328	TOR3A	-0.322	MAG1
783	0.328	ABCC3	-0.322	RN182
784	0.328	SP2	-0.322	CHORDC1
785	0.328	ACER3	-0.322	LOC100506088
786	0.328	PTPRZ	-0.322	CHCHD7
787	0.328	SLC7A11	-0.321	FKBP6
788	0.327	PLC8D4	-0.321	KCNJ5
789	0.327	STRADA	-0.321	PIGA
790	0.327	CIAPIN1	-0.321	KRT75
791	0.327	RBM24	-0.321	CPSF1
792	0.327	ARL3	-0.321	POLRMT
793	0.327	PTRHD1	-0.321	C17orf104
794	0.327	PSMD7	-0.321	PKNOX1
	0.327	CHD1L	-0.321	MIS188P1
----	-------	--------	--------	----------
797	0.327	AKTIP	-0.321	GLYCTK
798	0.327	ERMAP	-0.321	ELOF1
799	0.327	ATP6V1E2	-0.32	EXTL3
800	0.327	PRKAA1	-0.32	RBM44
801	0.327	PDIA6	-0.32	PRDM2
802	0.327	PIP4K2C	-0.32	TRIM4
803	0.326	ANKD54	-0.32	ACRBP
804	0.326	AHCYL1	-0.32	MICAL3
805	0.326	HAUS3	-0.32	PLEK
806	0.326	ACACA	-0.32	PPP6R1
807			-0.32	PPP4R1
808			-0.32	FUOM
809			-0.32	ACTR3
810			-0.319	ENAM
811			-0.319	NUDT4
812			-0.319	C2CD4A
813			-0.319	EXTL2
814			-0.319	SMIM1
815			-0.319	ETV6
816			-0.319	HTR4
817			-0.319	PPP1R12C
818			-0.319	GLMN
819			-0.319	LSM4
820			-0.319	KLF4
821			-0.319	FCRL4
822			-0.318	TCP11
823			-0.318	UBA52
824			-0.318	EEF2
825			-0.318	SP8
826			-0.318	SLC41A3
827			-0.318	L3MBTL2
828			-0.318	FAM209A
829			-0.318	PPIH
830			-0.318	MRPL37
831			-0.318	MRQH1
832			-0.318	MLEC
833			-0.318	PTPN4
834			-0.318	C1OA
835			-0.318	LOC90499
---	---	---	---	
836		-0.318	ATG5	
837		-0.318	CCDC61	
838		-0.318	AQPEP	
839		-0.318	REXO4	
840		-0.318	LILRB2	
841		-0.317	GPR171	
842		-0.317	C16orf95	
843		-0.317	HSPA6	
844		-0.317	HMGCLL1	
845		-0.317	FAM194A	
846		-0.317	FLJ43663	
847		-0.317	VPS13A-AS1	
848		-0.317	STX16	
849		-0.317	DGAT1	
Table S3. NCI-60/COMPARE analysis: summary of SLC genes whose mRNA expression is positively or negatively correlated with chemosensitivity to compound 1 (logGI₅₀)

Gene	Pearson's R^a	Function	P value^b
SLC11A2	0.328	H⁺-coupled Cu and M²⁺ symporter	*
SLC12A4	0.352	K⁺/Cl⁻ coupled transporter	**
SLC16A1	0.327	lactate/pyruvate transporter	*
SLC16A4	0.358	monocarboxylic acid transporter	**
SLC17A9	-0.366	ATP/mononucleotide vesicular uptake	**
SLC22A17	0.374	multi-specific cation transporter (brain)	**
SLC22A5	0.38	carnitine transporter	**
SLC22A7	-0.397	multi-specific anion transporter	**
SLC24A2	-0.427	Ca²⁺/cation antiporter	***
SLC25A32	-0.318	mitochondrial folate transporter	*
SLC26A8	-0.36	anion transporter	**
SLC27A7	-0.352	fatty acid transporter	**
SLC29A9	-0.374	uric acid transporter GLUT9	**
SLC30A1	0.371	cation transporter	**
SLC30A5	0.404	Zn²⁺ transporter	**
SLC35E3	0.419	putative transporter	**
SLC35F6	0.353	carbohydrate/H⁺ symporter	**
SLC38A7	0.362	Na⁺ coupled amino acid transporter	**
SLC39A8	0.381	Zn²⁺ and Cd²⁺ transporter	**
SLC3A2	0.392	amino acid transporter	**
SLC41A3	-0.318	cation transporter	*
SLC43A3	-0.415	putative transporter	**
SLC47A1	**0.692**	**H⁺-coupled organic cation antiporter**	*****
SLC48A1	0.38	heme transporter	**
SLC51B	0.393	bile acid transporter	**
SLC6A19	-0.38	Na⁺ dependent neutral amino acid transporter	**
SLC6A2	0.371	Na⁺/neurotransmitter symporter	**
SLC7A11	0.328	anionic amino acid transporter	*
SLC8A1	0.364	Na⁺/Ca²⁺ exchanger	**
SLC04A1	-0.328	organic anion transporter	*

^aN = 58. ^b* P < 0.05; ** P < 0.01; *** P < 0.001; ***** P < 0.00001.
Figure S2. Expression of hMATE1 (*SLC47A1*) in normal human tissue (A) and in cancer cells (B); The Human Protein Atlas, version 19.1, 12/2019, www.proteinatlas.org.
Figure S3. SLC47A1 gene copy numbers (left) and transcript levels (right) in NCI-60 (NCI CellMiner analysis tool, database version 2.2)
Table S4. Summary of top 10 overlaps\(^a\) between gene ontology (GO) gene sets of the Molecular Signatures Database (MSigDB)\(^b\) and the input gene set\(^c\) derived from NCI-60 COMPARE correlation between activity of compound 1 (GI\(_{50}\)) and gene transcript levels for SLC47A1

MSigDB Gene Set	\(K^d\)	Description	\(k^e\)	\(k/K\)	\(p\text{-value}^f\)	FDR q-value	
GO_INTRACELLULAR_TRANSPORT	1825	The directed movement of substances within a cell. [GOC:ai]	101	0.056	2.07 \(\times\) 10\(^{-19}\)	2.07 \(\times\) 10\(^{-15}\)	
GO_CELLULAR_MACROMOLECULE_LOCALIZATION	1897	Any process in which a macromolecule is transported to, and/or maintained in, a specific location at the level of a cell. Localization at the cellular level encompasses movement within the cell, from within the cell to the cell surface, or from one location to another at the surface of a cell. [GOC:mah]	102	0.054	1.01 \(\times\) 10\(^{-18}\)	5.02 \(\times\) 10\(^{-15}\)	
GO_CELL_PROJECTION_PART	1440	Any constituent part of a cell projection, a prolongation or process extending from a cell, e.g. a flagellum or axon. [GOC:jl]	85	0.059	4.35 \(\times\) 10\(^{-18}\)	1.45 \(\times\) 10\(^{-14}\)	
GO_WHOLE_MEMBRANE	1653	Any lipid bilayer that completely encloses some structure, and all the proteins embedded in it or attached to it. Examples include the plasma membrane and most organelle membranes. [GOC:gos]	91	0.055	2.14 \(\times\) 10\(^{-17}\)	5.34 \(\times\) 10\(^{-14}\)	
GO_INTRACELLULAR_PROTEIN_TRANSPORT	1164	The directed movement of proteins in a cell, including the movement of proteins between specific compartments or structures within a cell, such as organelles of a eukaryotic cell. [GOC:mah]	73	0.063	4.97 \(\times\) 10\(^{-17}\)	9.93 \(\times\) 10\(^{-14}\)	
GO_PROTEOLYSIS	1762	The hydrolysis of proteins into smaller polypeptides and/or amino acids by cleavage of their peptide bonds. [GOC:bf, GOC:mah]	93	0.053	1.3 \(\times\) 10\(^{-16}\)	2.16 \(\times\) 10\(^{-13}\)	
7	GO_NEURON_PART	1715	Any constituent part of a neuron, the basic cellular unit of nervous tissue. A typical neuron consists of a cell body (often called the soma), an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the nervous system. [GOC:pr, http://en.wikipedia.org/wiki/Neuron]	91	0.053	2.07 e^{-16}	2.95 e^{-13}
8	GO_CELL_PROJECTION_ORGANIZATION	1512	A process that is carried out at the cellular level which results in the assembly, arrangement of constituent parts, or disassembly of a prolongation or process extending from a cell, e.g. a flagellum or axon. [GOC:jl, GOC:mah, http://www.cogsci.princeton.edu/~wn/]	84	0.056	2.43 e^{-16}	3.04 e^{-13}
9	GO_RIBONUCLEOTIDE BINDING	1891	Interacting selectively and non-covalently with a ribonucleotide, any compound consisting of a ribonucleoside that is esterified with (ortho)phosphate or an oligophosphate at any hydroxyl group on the ribose moiety. [GOC:mah]	95	0.050	1.29 e^{-15}	1.43 e^{-12}
10	GO_MICROTUBULE_BASED_PROCESS	734	Any cellular process that depends upon or alters the microtubule cytoskeleton, that part of the cytoskeleton comprising microtubules and their associated proteins. [GOC:mah]	53	0.072	4.34 e^{-15}	4.34 e^{-12}

\(^a\) Number of genes in comparison (n): 785, number of genes in universe (N): 38055. \(^b\) MSigDB database v6.2, updated July 2018; GSEA/MSigDB website v6.3, released 01/2018 by the Broad Institute Inc. \(^c\) See Table S2. Number of positively correlated genes: 806, \(P < 0.05\). \(^d\) Number of genes in gene set. \(^e\) Number of genes in overlap. \(^f\) For hypergeometric distribution.
Figure S4. Western blot analysis of A549 cell lysate for hMATE1 expression. The blot shows a band consistent with the 63-kDa full-length, 586-amino acid protein (The Human Protein Atlas, version 19.1, 12/2019, www.proteinatlas.org).
Figure S5. (A) Western blot for optimized RNAi conditions. The full-length protein (63 kDa) and the 34-kDa splice variant are observed. Transfection with 2.5 nM of both siRNA1 and siRNA2 provided the best knockdown efficiency relative to scrambled control and empty vector (lipofectamine). The GAPDH loading control is also shown. The gel image (30 sec. exposure) was contrast enhanced but otherwise not altered. (B) Rabbit–anti-human hMATE1 antibodies used in this study and aligned amino-acid sequences of the 63-kDa full-length protein and the 34-kDa splice variant (NCBI). Specific antibodies/epitopes: underlined: Thermo Fisher PA5-25272 and AVIVA OAAB02770 (residues 492-519, based on full length protein); bold: Abcam, ab104016 (residues 500-530, based on full length protein). (C,D) Results for two additional drug uptake experiments after hMATE1 (SLC47A1) knockdown, quantified by ICP-MS, showing reduction in uptake of compound 1 by 39% ($p < 0.01$) and 32% ($p < 0.01$), respectively.
Table S5. Pattern comparisons for $SLC47A1$ expression in NCI CellMiner

Deposited as separate file
Figure S6. A highly significant correlation ($R = -0.32$, $p = 4.9 \times 10^{-25}$) between CPI methylation status and expression levels of the SLC47A1 gene is observed in 963 cancer cell lines of the Genomics of Drug Sensitivity in Cancer (GDSC) database (CellMinerCDB, version 1.1, discover.nci.nih.gov/cellminercdb). The data point for the colorectal cancer cell line HCT-116 used in this study is highlighted.
Table S6. Summary of significant ($p < 0.05$) correlations identified between CPI methylation status and expression levels of the *SLC47A1* gene in 963 cancer cell lines of different tissues of origin and cell types

Cell Line Origin	Pearson’s R	P value
Multiple Myeloma	−0.55	0.028
Colon	−0.33	0.025
Esophagus/Stomach	−0.41	7.6×10^{-4}
Liver	−0.56	0.02
Lung	**−0.32**	**8.2 \times 10^{-6}**
NSCLC	**−0.43**	**1.1 \times 10^{-5}**
Lung Adenocarcinoma	**−0.47**	**4.7 \times 10^{-4}**
Ovaries	−0.32	0.032
Pancreas	−0.47	8.1×10^{3}
Epithelial	−0.16	4.4×10^{3}
Epithelial–Mesenchymal	−0.43	2.7×10^{7}
Mesenchymal	−0.23	1.3×10^{5}

a Genomics of Drug Sensitivity in Cancer (GDSC) database (CellMinerCDB, version 1.1, discover.nci.nih.gov/cellminercdb).
Table S7. Summary of correlations observed for chemosensitivity and omics data for compound 1.

Data in Comparison	Pearson’s R	P value	
NCI-60, logGI₅₀	SLC47A1 transcript level	0.692^a	< .00001 (*****)^a
NCI-60, logGI₅₀	DNMT1 transcript level	-0.378^a	0.0034 (**)^a
SLC47A1 transcript level	SLC47A1 CGI methylation	-0.416^b	< 0.001 (***)^b
SLC47A1 transcript level	SLC47A1 gene copy number	0.398^b	< 0.001 (***)^b
SLC47A1 transcript level	EZH2 transcript level	-0.289^b	0.025 (*)^b
SLC47A1 CGI methylation	DNMT1 transcript level	0.311^b	0.015 (*)^b
EZH2 transcript level	DNMT1 transcript level	0.479^b	< 0.001 (***)^b

^a NCICOMPARE analysis, n = 58. ^b NCI CellMiner analysis tool, database version 2.2, n = 60.
Table S8. Summary of top 10 overlaps\(^a\) between all gene sets of the molecular signatures database (MSigDB)\(^b\) and the input gene set\(^c\) of hypermethylated genes negatively correlated with SLC47A1 expression.

MSigDB Gene Set	\(K\)	Description	\(k\)	\(k/K\)	\(p\)-value\(^d\)	FDR \(q\)-value
1 BENPORATH_ES_WITH_H3K27ME3	1118	Set 'H3K27 bound': genes possessing the trimethylated H3K27 (H3K27me3) mark in their promoters in human embryonic stem cells, as identified by ChIP on chip.	115	0.1029	1.21 \(\times\) 10^{-92}	2.15 \(\times\) 10^{-88}
2 BENPORATH_EED_TARGETS	1062	Set 'Eed targets': genes identified by ChIP on chip as targets of the Polycomb protein EED [GeneID=8726] in human embryonic stem cells.	111	0.1045	5.70 \(\times\) 10^{-90}	5.08 \(\times\) 10^{-86}
3 MIKKELSEN_MEF_HCP_WITH_H3K27ME3	590	Genes with high-CpG-density promoters (HCP) bearing histone H3 trimethylation mark at K27 (H3K27me3) in MEF cells (embryonic fibroblast).	91	0.1542	1.23 \(\times\) 10^{-88}	7.28 \(\times\) 10^{-85}
4 BENPORATH_SUZ12_TARGETS	1038	Set 'Suz12 targets': genes identified by ChIP on chip as targets of the Polycomb protein SUZ12 [GeneID=23512] in human embryonic stem cells.	108	0.104	3.62 \(\times\) 10^{-87}	1.61 \(\times\) 10^{-83}
5 BENPORATH_PRC2_TARGETS	652	Set 'PRC2 targets': Polycomb Repression Complex 2 (PRC) targets; identified by ChIP on chip on human embryonic stem cells as genes that: posess the trimethylated H3K27 mark in their promoters and are bound by SUZ12 [GeneID=23512] and EED [GeneID=8726] Polycomb proteins.	75	0.115	7.73 \(\times\) 10^{-63}	2.75 \(\times\) 10^{-59}
6 MEISSNER_BRAIN_HCP_WITH_H3K4ME3_AND_H3K27ME3	1069	Genes with high-CpG-density promoters (HCP) bearing histone H3 dimethylation at K4 (H3K4me2) and trimethylation at K27 (H3K27me3) in brain.	89	0.0833	1.21 \(\times\) 10^{-62}	3.60 \(\times\) 10^{-59}
	Description	Count	P-val	q-val		
---	--	-------	--------	--------		
7	GO_INTRINSIC_COMPONENT_OF_PLASMA_MEMBRANE	1649	0.0631	7.53 e-62	1.92 e-58	
	The component of the plasma membrane consisting of the gene products and protein complexes having either part of their peptide sequence embedded in the hydrophobic region of the membrane or some other covalently attached group such as a GPI anchor that is similarly embedded in the membrane.					
8	MEISSNER_NPC_HCP_WITH_H3K4_ME2_AND_H3K27ME3	349	0.1719	7.26 e-61	1.62 e-57	
	Genes with high-CpG-density promoters (HCP) bearing histone H3 dimethylation mark at K4 (H3K4me2) and trimethylation mark at K27 (H3K27me3) in neural precursor cells (NPC).					
9	MIKKELSEN_NPC_HCP_WITH_H3K27ME3	341	0.1701	1.54 e-58	3.04 e-55	
	Genes with high-CpG-density promoters (HCP) bearing histone H3 trimethylation mark at K27 (H3K27me3) in neural progenitor cells (NPC).					
10	MIKKELSEN_MCV6_HCP_WITH_H3K27ME3	435	0.1379	6.82 e-55	1.21 e-51	
	Genes with high-CpG-density promoters (HCP) bearing the tri-methylation mark at H3K27 (H3K27me3) in MCV6 cells (embryonic fibroblasts trapped in a differentiated state).					

Number of genes in comparison (n): 402, number of genes in universe (N): 38055. b MSigDB database v6.2, updated July 2018; GSEA/MSigDB website v6.3, released 01/2018 by the Broad Institute Inc. c See Table S5. Number of negatively correlated genes: 452, P < 0.05. d Number of genes in gene set. e Number of genes in overlap. f For hypergeometric distribution.
Figure S7. Pre-screening of HCT-116 colon cancer cells for the effects of epigenetic drugs on cell viability and accumulation of compound 1.

Cells were treated with single drugs or combinations of up to four epigenetic drugs at 2.5 μM for 72 hours. Cells were then fixed and imaged in the bright-field and blue fluorescence channels. (A) Bright-field images show intact monolayers of viable cells after incubation with EPZ-6438 and EED226 similar to DMSO-treated cells (control) but show changes in morphology and cell death after treatment with valproic acid and decitabine (only selected images of single treatments are shown). (B) Treatment at 2.5 μM EPZ-6438 and EED226, or a combination of the two drugs, for 72 hours leads to enhanced cellular accumulation of compound 1, based on increased acridine-associated blue fluorescence localized to regions previously identified as vesicular structures (see the main text). Scale bars in (A) and (B) are 20 μm.
Figure S8. (A) Western blot analysis of hMATE1 protein in HCT-116 cell lysates pre-treated with a combination of EPZ-6438 and EED226 (E/E). Bands for GAPDH (36 kDa), full-length hMATE1 (63 kDa), and a splice variant of hMATE1 containing the antibody epitope (34 kDa) are labeled. (B) Cell proliferation assay for HCT-116 cells pre-exposed to 2.5 µM or 5 µM E/E for 72 hours and subsequently treated with 1 µM or 10 µM compound 1 for another 72 hours. A pronounced decrease in cell viability was observed at higher doses of epigenetic drugs. The data is presented as the mean ± S.E.M. for an assay performed in sextuplicate (***, p < 0.001; ***, p < 0.001; two-tailed t-test).
Assay Layouts

AL1. Uptake of compound 1 into HCT-116 cells after sensitization with epigenetic drugs\(^a\) monitored by confocal fluorescence microscopy (pre-screening).

Control	VA	VA EPZ	VA	VA EED EPZ	VAL DEC EPZ
Control	VA	EPZ	EPZ VA	EPZ EED DEC	EPZ DEC VAL EED
Control	EED	EED EPZ	EED VA	EED	EED DEC EPZ
Control	DEC	DEC EPZ	DEC VA	DEC EED	DEC

\(^a\) VA, valproic acid; DEC, decitabine; EPZ, EPZ-6438; EED, EED226.

AL2. Uptake of compound 1 into HCT-116 cells after sensitization with EPZ-6438, EED226, and a combination of both drugs at escalating doses monitored by confocal fluorescence microscopy.

Control	2.5 \(\mu\)M	5 \(\mu\)M	10 \(\mu\)M	20 \(\mu\)M	50 \(\mu\)M
Control	2.5 \(\mu\)M	5 \(\mu\)M	10 \(\mu\)M	20 \(\mu\)M	50 \(\mu\)M
Control	2.5 \(\mu\)M	5 \(\mu\)M	10 \(\mu\)M	20 \(\mu\)M	50 \(\mu\)M

Green: EPZ-6438, Blue: EED226, Red: EPZ-6438 + EED226 (“E/E”), 1:1

AL3. Cell proliferation assay for A549 cells after hMATE1 (SLC47A1) knockdown.

	1	2	3	4	5	6	7
A	PBS						
B	PBS	Comp. 1	Comp. 1	blank	PBS		
C	PBS						
D	PBS						
E	PBS						

Assembly: Add 20 \(\mu\)L Opti-Mem into wells B2-5, C2-6, and D2-5. Add 23.2 \(\mu\)L of Opti-Mem into wells B6, C6, D6. Then add siRNA to B2-3, C2-3, and D2-3. Add scrambled RNA to B4-5, C4-5, and D4-5. Add diluted lipofectamine (siRNA:lipo 6:1) to B2-5, C2-5, and D2-5. Transfer cells to B2-5, C2-5, and D2-5 at a density of 5000 cells/well. Add same amount of medium into well B6-D6 as blank control. Add PBS into the outermost wells to prevent evaporation of transfection reactions. B2, C2, and D2 are siRNA
+ compound 1; B3, C3, and D3 are siRNA only; B4, C4, and D4 are scrambled RNA + compound 1; B5, C5, and D5 are scrambled RNA only; B6, C6, and D6 are blanks.

AL4. Cell proliferation assay for HCT-116 cells after exposure to epigenetic drugs.

	1	2	3	4	5	6	7	8	9	10	11
A	PBS										
B	PBS	No drug	1 µM	10 µM	No drug	1 µM	1 µM	10 µM	10 µM	PBS	
C	PBS										

Assembly: Add EED-226 and EPZ-6438 (“E/E”) to the cells in wells B5-G5, B7-G7, and B9-G9 to produce a final concentration of 2.5 µM, and to wells B6-G6, B8-G8, and B10-G10 to a final concentration of 5 µM. Incubate for a total of 72 hours and replace medium with fresh epi-drug(s) every 24 hours. Replace epi-drug after 72 hours with compound 1 at a final concentration of 1 µM in wells B3-G3, B7-G7, and B8-G8, and 10 µM in wells B4-G4, B9-G9, and B10-G10. Yellow columns: 2.5 µM E/E; Blue columns: 5 µM E/E. Column 2 is a no-treatment control, columns 3 and 4 are no-sensitization controls.
SI References

1. O. N. Ikediobi, H. Davies, G. Bignell, S. Edkins, C. Stevens, S. O'Meara, T. Santarius, T. Avis, S. Barthorpe, L. Brackenbury, G. Buck, A. Butler, J. Clements, J. Cole, E. Dicks, S. Forbes, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton, C. Hunter, A. Jenkinson, D. Jones, V. Kosmidou, R. Lugg, A. Menzies, T. Mironenko, A. Parker, J. Perry, K. Raine, D. Richardson, R. Shepherd, A. Small, R. Smith, H. Solomon, P. Stephens, J. Teague, C. Tofts, J. Varian, T. Webb, S. West, S. Widaa, A. Yates, W. Reinhold, J. N. Weinstein, M. R. Stratton, P. A. Futreal, R. Wooster, *Mol. Cancer Ther.* **2006**, *5*, 2606-2612.

2. B. Leroy, L. Girard, A. Hollestelle, J. D. Minna, A. F. Gazdar, T. Soussi, *Hum. Mutat.* **2014**, *35*, 756-765.
| Other files |
|-------------|
| Table S5.xlsx (77.62 KiB) | view on ChemRxiv » download file |