SPECTROSCOPIC EVIDENCES FOR A LOW-MASS BLACK HOLE IN SWIFT J1753.5-0127

Vitaly Neustroev (University of Oulu)
Collaborators

- University of Oulu:
 - Alexandra Veledina
 - Juri Poutanen
 - Sergey Tsygankov
 - Jari Kajava

- OAN SPM (Mexico):
 - Sergey Zharikov

- AAVSO:
 - George Sjoberg

University of Turku
ESA/ESAC
According to the current convention, the black holes are compact objects, whose measured masses exceed the limit of $3M_\odot$. (Belczynski et al., 2012)
An atypical X-ray transient system: the outburst was reported on 2005 May 30 and is still on-going (already 9 years!).

SWIFT J1753.5–0127 shows, in an optical light curve, relatively strong modulations with a period of 3.24 h. They were attributed to a superhump period (Zurita et al. 2008).

Observational properties evidence that the binary hosts a black hole. However, the mass of the primary was not dynamically measured.
Double-peaked $\text{H}\alpha$ and He II 4686 lines were observed immediately after the initial outburst

(Torres et al. 2005a, 2005b).
Optical spectra: no features

Cadolle Bel et al. (2007): 2005 August 11

Durant et al. (2009): 2006, 2007 and 2008.

The X-ray Universe 2014 (Dublin, Ireland)
New Observations

- Far-UV HST/COS spectroscopy:
 - October 8, 2012: 2 orbits (≈4000 sec)
 - The Far-UV G140L grating (spec. resolution ≈0.5 Å)
 - October 2, 2012 (Froning et al. 2013)
 - The Near-UV G230L grating

- OAN SPM optical spectroscopy:
 - August 2013: 54×15 min spectra (≈4000–7000 Å)

- Johnson- Cousins BVRI photometry
 - Several sets (2012-2013)
The spectrum is dominated by broad and double-peaked emission lines of C IV and He II. All absorption lines are of interstellar origin.
Optical spectrum

The X-ray Universe 2014 (Dublin, Ireland)
Optical spectrum
Optical photometry (V and i filters)
The power spectra are dominated by a peak at **2.85 hr**, that is close to the one-day alias of Zurita et al.'s period.
Radial Velocity of the Donor star

Trailed spectrum shows sinusoidal trails of absorption and emission features.
Cross-correlation

CCFs show very strong and distinct peak
Radial Velocity of the Donor star

$K_{2,0} = 382 \pm 8 \text{ km/s}$
Emission lines are now much wider than during Torres et al.’s observations.

The lines are **VERY** wide.

Peak-to-Peak separation:

- $\text{H}\alpha$ (Torres) \rightarrow 1200 km/s
- $\text{H}\alpha$ \rightarrow 1650 km/s
- He II 4686 \rightarrow 2660 km/s
- He II 1640 \rightarrow 3200 km/s
Emission line profiles

The lines have very steep wings.

The shape of the double-peaked profile wings is controlled by the density distribution of the emitting atoms:

\[f(r) \propto r^{-b} \]

\(b \) is usually in range of 1—2, rarely being less than 1.5.
Emission line profiles

A0620 − 00: \(b \approx 1.5 \)

XTE J1550 − 564: \(b \approx 2.0 \)

Johnston et al. 1989

Orosz et al. 2002
The X-ray Universe 2014 (Dublin, Ireland)
Emission line profiles

\(f(r) \propto r^{-b} \)

\(b \) is usually in range of 1—2, rarely being less than 1.5

In Swift J1753 \(b \approx 0.5 \)
Orbital variability of emission lines

Equivalent Widths

The X-ray Universe 2014 (Dublin, Ireland)
Doppler Tomography

Asymmetric structure

The X-ray Universe 2014 (Dublin, Ireland)
System Parameters

- Mass Function:

\[f(M) = \frac{K_2^3 P_{\text{orb}}}{2\pi G} = \frac{M_1^3 \sin^3 i}{(M_1 + M_2)^2} \]

- The secondary star is likely irradiated by the X-ray source

- \(K_2 \) must be corrected!
 \(K_{2,0} / K_2 \approx 0.9 \)

- \(f_0(M) = 0.69 \pm 0.04 \, M_\odot \)

\[f(M) \lesssim 0.95 \, M_\odot \]

One of the lowest measured mass function for a BH in a LMXB!

The X-ray Universe 2014 (Dublin, Ireland)
Assumptions:

- The secondary star fills its Roche lobe.
 \[M_2 = 0.1 - 0.3 \, M_\odot \]
- The double-peaked emission lines originate in an accretion disc.
- The Keplerian velocity in the disc:
 \[V = \sqrt{\frac{GM}{R}} \]
- The outer parts of a large accretion disc are under the gravitational influence of the secondary star, which prevents the disc from growing larger than \(R_{\text{max}} \):
 \[\frac{R_{\text{max}}}{a} = \frac{0.6}{1 + q} \]
Combine with Kepler’s third law and get:

\[(M_1 + M_2) \sin^3 i = \frac{0.074PV_{out}}{G}\]

Adopting Torres et al.’s \(V_{out} = 600 \text{ km/s}\), we obtain:

\[(M_1 + M_2) \sin^3 i = 1.2M_{\odot}\]
Constraints on the inclination

- The emission line are strongly dependent on orbital inclination:
 - Low inclination systems show spectra mainly in absorption (La Dous, 1991).
 - Intermediate-to-low inclination systems show P Cyg profiles and/or blueshifted deep absorptions.
- Strong photometric and spectroscopic orbital variability.
Constraints on the inclination

\[i = 30^\circ \quad i = 40^\circ \quad i = 50^\circ \quad i = 60^\circ \]
Constraints on the inclination

- The emission line are strongly dependent on orbital inclination:
 - low inclination systems show spectra mainly in absorption (La Dous, 1991).
 - Intermediate-to-low inclination systems show P Cyg profiles and/or blueshifted deep absorptions.

- Strong photometric and spectroscopic orbital variability.

- **SWIFT J1753.5-0127** should be a relatively high inclination system (>40°)
System Parameters

Measurements and Assumptions:
- Orbital period: 2.85 h
- The secondary star fills its Roche lobe: \(M_2 = 0.1 \text{–} 0.3 \, M_\odot \)
- Inclination \(i > 40^\circ \)
- \(M_1 > 2.5 \, M_\odot \)

Constrained system parameters
- \(i=40^\circ \text{–} 45^\circ \) (51°)
- \(M_1 / M_\odot = 2.5 \text{–} 3.1 \) (4.1)
- \(q = 0.04 \) (0.03) – 0.12
- \(a / R_\odot = 1.4 \text{–} 1.53 \) (1.67)
For the observed K_2, upper limit for M_1 is $3.1M_\odot$ at a 68% confidence and $3.3M_\odot$ at 95% confidence.

For the K-correction applied, these limits are $4.0M_\odot$ and $4.3M_\odot$, respectively.
Mass distribution of compact objects

SWIFT J1753.5−0127

Belczynski et al., 2012
Mass distribution of compact objects

Özel et al., 2010

The X-ray Universe 2014 (Dublin, Ireland)
We report the re-appearance of the broad emission lines in the previously featureless optical spectrum.

We measured a possible orbital periodicity of 2.85 h, significantly shorter than the reported 3.2 h periodic signal by Zurita et al. (2008).

We estimated the system parameters of Swift J1753.5-0127. We constrain the BH mass to be below 4.3M☉.

Thus, SWIFT J1753.5–0127 is a BH binary that has one of the shortest orbital period and hosts probably one of the smallest stellar-mass BH found to date.
SWIFT J1753.5−0127

A schematic representation of the suggested geometry

THANK YOU!

The X-ray Universe 2014 (Dublin, Ireland)