FREE FIELD REALIZATION OF QUANTUM AFFINE SUPERALGEBRA $U_q(\hat{\mathfrak{sl}}(N|1))$

January 26, 2013

TAKEO KOJIMA

Department of Mathematics and Physics, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
kojima@yz.yamagata-u.ac.jp

Abstract

We construct a free field realization of the quantum affine superalgebra $U_q(\hat{\mathfrak{sl}}(N|1))$ for an arbitrary level $k \in \mathbb{C}$.
1 Introduction

The free field approach [1] provides a powerful method to construct correlation functions of exactly solvable models. In this paper we construct a free field realization of the quantum affine superalgebra $U_q(\widehat{sl}(N|1))$ ($N \geq 2$) for an arbitrary level $k \in \mathbb{C}$. The level parameter k plays an important role in representation theory. Free field realizations of an arbitrary level $k \in \mathbb{C}$ are completely different from those of level $k = 1$. In the case of level $k = 1$, free field realizations [2, 3, 4] have been constructed for quantum affine algebra $U_q(g)$ in many cases $g = (ADE)^{(r)}$ [4, 7], $(BC)^{(1)}$, $G_2^{(1)}$ [5, 6, 8], $\widehat{sl}(M|N)$, $osp(2|2)^{(2)}$ [9, 10, 11]. In the case of an arbitrary level $k \in \mathbb{C}$, free field realizations [12, 13, 14], have not yet been studied well for quantum affine algebra $U_q(g)$. In the case of an arbitrary level $k \in \mathbb{C}$, free field realizations have been constructed only for $U_q(\widehat{sl}(N))$ [16] and $U_q(\widehat{sl}(2|1))$ [17]. The purpose of this paper is to construct a free field realization of the quantum affine superalgebra $U_q(\widehat{sl}(N|1))$ for an arbitrary level $k \in \mathbb{C}$. The representation theories of the superalgebra are much more complicated than non-superalgebra and have rich structures [18, 19, 20, 21].

This paper is organized as follows. In section 2 we review the Chevalley realization of the quantum superalgebra $U_q(sl(N|1))$ [22] and the Drinfeld realization of the quantum affine superalgebra $U_q(\widehat{sl}(N|1))$ [23]. In section 3 we review the Heisenberg realization of quantum superalgebra $U_q(sl(N|1))$ [15] and construct a free field realization of the quantum affine superalgebra $U_q(\widehat{sl}(N|1))$ for an arbitrary level $k \in \mathbb{C}$. In appendix A we explain how to find the free field realization of affine $U_q(\widehat{sl}(N|1))$ from the Heisenberg realization $U_q(sl(N|1))$. In appendix B we summarize some useful formulae.

2 Quantum Affine Superalgebra $U_q(\widehat{sl}(N|1))$

In this section we review the Chevalley realization of the quantum superalgebra $U_q(sl(N|1))$ [22] and the Drinfeld realization of the quantum superalgebra $U_q(\widehat{sl}(N|1))$ [23, 24] for $N = 2, 3, 4, \cdots$. We fix a complex number $q \neq 0, |q| < 1$. In what follows we use

\begin{align}
[x, y] &= xy - yx, \\
\{x, y\} &= xy + yx, \\
[a]_q &= \frac{q^a - q^{-a}}{q - q^{-1}}.
\end{align}
2.1 Quantum Superalgebra $U_q(sl(N\{1\}))$

Let us recall the definition of the quantum superalgebra $U_q(sl(N\{1\}))$ [22]. We set $\nu_1 = \nu_2 = \cdots = \nu_N = +, \nu_{N+1} = -$. The Cartan matrix $(A_{i,j})_{1 \leq i,j \leq N}$ of the Lie algebra $sl(N\{1\})$ is given by

$$A_{i,j} = (\nu_i + \nu_{i+1})\delta_{i,j} - \nu_i\delta_{i,j+1} - \nu_{i+1}\delta_{i+1,j}. \quad (2.4)$$

The diagonal part is $(A_{i,i})_{1 \leq i \leq N} = (\underbrace{N-1}_{N-1}, \cdots, 2, 0)$.

Definition 2.1 [22] The Chevalley generators of the quantum superalgebra $U_q(sl(N\{1\}))$ are

$$h_i, e_i, f_i \quad (1 \leq i \leq N). \quad (2.5)$$

Defining relations are

$$[h_i, h_j] = 0, \quad (2.6)$$

$$[h_i, e_j] = A_{i,j}e_j, \quad (2.7)$$

$$[h_i, f_j] = -A_{i,j}f_j, \quad (2.8)$$

$$[e_i, f_j] = \delta_{i,j} \frac{q^{h_i} - q^{-h_i}}{q - q^{-1}} \quad \text{for} \; (i, j) \neq (N, N), \quad (2.9)$$

$$\{e_N, f_N\} = \frac{q^{h_N} - q^{-h_N}}{q - q^{-1}}, \quad (2.10)$$

and the Serre relations

$$e_i e_j e_i - (q + q^{-1})e_i e_j e_i + e_j e_i e_i = 0 \quad \text{for} \; |A_{i,j}| = 1, i \neq N, \quad (2.11)$$

$$f_i f_j f_i - (q + q^{-1})f_i f_j f_i + f_j f_i f_i = 0 \quad \text{for} \; |A_{i,j}| = 1, i \neq N. \quad (2.12)$$

2.2 Quantum Affine Superalgebra $U_q(\widehat{sl}(N\{1\}))$

Let us recall the definition of the quantum affine superalgebra $U_q(\widehat{sl}(N\{1\}))$ [23]. The Cartan matrix $(A_{i,j})_{0 \leq i,j \leq N}$ of the affine Lie algebra $\widehat{sl}(N\{1\})$ is given by

$$A_{i,j} = (\nu_i + \nu_{i+1})\delta_{i,j} - \nu_i\delta_{i,j+1} - \nu_{i+1}\delta_{i+1,j}. \quad (2.13)$$

Here we should read the suffixes j of $\nu_j \mod(N+1)$, i.e. $\nu_0 = \nu_{N+1}$. Here the diagonal part is $(A_{i,i})_{0 \leq i \leq N} = (0, 2, \cdots, 2, 0)$.

3
Definition 2.2 \[23\] The Drinfeld generators of the quantum affine superalgebra \(U_q(\hat{\mathfrak{sl}}(N|1)) \) are

\[
x_{i,m}^\pm, \quad h_{i,m}, \quad c, \quad (1 \leq i \leq N, m \in \mathbb{Z}).
\]

(2.14)

Defining relations are

\[
c : \text{central}, \quad [h_i, h_{j,m}] = 0, \tag{2.15}
\]

\[
[a_{i,m}, h_{j,n}] = \frac{[A_{i,m}]}{m} q^{c|m|} q^{-c|m|} \delta_{m+n,0} \quad (m, n \neq 0), \tag{2.16}
\]

\[
[h_i, x_j^+(z)] = \pm A_{i,j} x_j^+(z), \tag{2.17}
\]

\[
[h_{i,m}, x_j^+(z)] = \frac{[A_{i,m}]}{m} q^{-c|m|} z^m x_j^+(z) \quad (m \neq 0), \tag{2.18}
\]

\[
[h_{i,m}, x_j^-(z)] = -\frac{[A_{i,m}]}{m} z^m x_j^-(z) \quad (m \neq 0), \tag{2.19}
\]

\[
(x_1 - q^{\pm A_{i,j}} z_2) x_i^\pm(z_1) x_j^\pm(z_2) = (q^{\pm A_{i,j}} z_1 - z_2) x_j^\pm(z_2) x_i^\pm(z_1) \quad \text{for } |A_{i,j}| \neq 0, \tag{2.20}
\]

\[
x_i^\pm(z_1) x_j^\pm(z_2) = x_j^\pm(z_2) x_i^\pm(z_1) \quad \text{for } |A_{i,j}| = 0, (i, j) \neq (N, N), \tag{2.21}
\]

\[
\{x_N^+(z_1), x_N^-(z_2)\} = 0, \tag{2.22}
\]

\[
[x_i^+(z_1), x_j^-(z_2)] = \frac{\delta_{i,j}}{(q - q^{-1}) z_1 z_2} \left(\delta(q^{-c} z_1/z_2) \psi_i^+(q^{1/2} z_2) - \delta(q^c z_1/z_2) \psi_i^-(q^{-1/2} z_2) \right),
\]

\text{for } (i, j) \neq (N, N), \tag{2.23}

\[
\{x_N^+(z_1), x_N^-(z_2)\} = \frac{1}{(q - q^{-1}) z_1 z_2} \left(\delta(q^{-c} z_1/z_2) \psi_N^+(q^{1/2} z_2) - \delta(q^c z_1/z_2) \psi_N^-(q^{-1/2} z_2) \right), \tag{2.24}
\]

\[
(x_i^+(z_1) x_j^+(z_2) x_j^-(z) - (q + q^{-1}) x_i^+(z_1) x_j^+(z) x_i^+(z_2) + x_j^+(z) x_i^+(z_1) x_j^+(z_2))
\]

\[
(1 - z_1 \leftrightarrow z_2) = 0 \quad \text{for } |A_{i,j}| = 1, \quad i \neq N. \tag{2.25}
\]

where we have used \(\delta(z) = \sum_{m \in \mathbb{Z}} z^m \). Here we have used the abbreviation \(h_i = h_{i,0} \). We have set the generating function

\[
x_j^\pm(z) = \sum_{m \in \mathbb{Z}} x_{j,m}^\pm z^{-m-1}, \tag{2.26}
\]

\[
\psi_i^+(q^{1/2} z) = q^{h_i} \exp \left((q - q^{-1}) \sum_{m > 0} h_{i,m} z^{-m} \right), \tag{2.27}
\]

\[
\psi_i^-(q^{-1/2} z) = q^{-h_i} \exp \left(-(q - q^{-1}) \sum_{m > 0} h_{i,-m} z^m \right). \tag{2.28}
\]

We changed the gauge of boson \(h_{i,m} \) from those of [23] and revised a misprint (2.22) in [23].
3 Free Field Realization

In this section we review the Heisenberg realization of $U_q(sl(N|1))$ [17] and construct a free field realization of the quantum affine superalgebra $U_q(\hat{sl}(N|1))$ for an arbitrary level $k \in \mathbb{C}$.

3.1 Heisenberg Realization

Let us recall the Heisenberg realization of quantum superalgebra $U_q(sl(N|1))$ [17]. We introduce the coordinates $x_{i,j}$, $(1 \leq i < j \leq N + 1)$ by

$$x_{i,j} = \begin{cases} z_{i,j} & (1 \leq i < j \leq N), \\ \theta_{i,j} & (1 \leq i \leq N, j = N + 1). \end{cases} \tag{3.1}$$

Here $z_{i,j}$ are complex variables and $\theta_{i,N+1}$ are the Grassmann odd variables that satisfy $\theta_{i,N+1} \theta_{i,N+1} = 0$ and $\theta_{i,N+1} \theta_{j,N+1} = -\theta_{j,N+1} \theta_{i,N+1}$, $(i \neq j)$. We introduce the differential operators $\partial_{i,j} = x_{i,j} \frac{\partial}{\partial x_{i,j}}$, $(1 \leq i < j \leq N + 1)$. We fix parameters $\lambda_i \in \mathbb{C}$, $(1 \leq i \leq N)$. We set the differential operators H_i, E_i, F_i, $(1 \leq i \leq N)$ by

$$H_i = \sum_{j=1}^{N} H_{i,j}, \quad E_i = \sum_{j=1}^{i} E_{i,j}, \quad F_i = \sum_{j=1}^{N} F_{i,j}. \tag{3.2}$$

Here we have set

$$H_{i,j} = \begin{cases} \nu_i \partial_{j,i} - \nu_{i+1} \partial_{j,i+1} & (1 \leq j \leq i - 1), \\ \lambda_i - (\nu_i + \nu_{i+1}) \partial_{i,i+1} & (j = i), \\ \nu_{i+1} \partial_{i+1,j+1} - \nu_i \partial_{i,j+1} & (i + 1 \leq j \leq N). \end{cases} \tag{3.3}$$

$$E_{i,j} = \frac{x_{j,i}}{x_{j,i+1}} [\partial_{j,i+1}]_q q^{\sum_{l=i+1}^{j-1} (\nu_i \partial_{l,i} - \nu_{i+1} \partial_{l,i+1})}, \tag{3.4}$$

$$F_{i,j} = \begin{cases} \nu_i \frac{x_{j,i+1}}{x_{j,i}} [\partial_{j,i}]_q q^{\sum_{l=j+1}^{i} (\nu_i \partial_{l,i+1} - \nu_{i+1} \partial_{l,i})} & (1 \leq j \leq i - 1), \\ x_{i,i+1} \left[\lambda_i - \nu_i \partial_{i,i+1} - \sum_{l=i+2}^{N+1} (\nu_i \partial_{l,i} - \nu_{i+1} \partial_{l,i+1}) \right]_q & (j = i), \\ -\nu_{i+1} \frac{x_{i+1,j+1}}{x_{i+1,i+1}} [\partial_{i+1,j+1}]_q q^{\lambda_i + \sum_{l=j+1}^{N+1} (\nu_{i+1} \partial_{l,i+1} - \nu_i \partial_{i,i})} & (i + 1 \leq j \leq N). \end{cases} \tag{3.5}$$

Here we read $x_{i,i} = 1$ and, for Grassmann odd variables $x_{i,j}$, the expression $\frac{1}{x_{i,j}}$ stands for the derivative $\frac{1}{x_{i,j}} = \frac{\partial}{\partial x_{i,j}}$.
Theorem 3.1 [17] A Heisenberg realization of the quantum superalgebra $U_q(sl(N|1))$ is given in the following way.

\begin{align}
 h_i & \rightarrow H_i, \\
 e_i & \rightarrow E_i, \\
 f_i & \rightarrow F_i.
\end{align}

(3.6) (3.7) (3.8)

In appendix A we explain how to find the free field realization of affine $U_q(\hat{sl}(N|1))$ from this Heisenberg realization $U_q(sl(N|1))$.

3.2 Boson

Let us fix the level $c = k \in \mathbb{C}$. Let us introduce the bosons and the zero-mode operators a^i_m, Q^i_m ($m \in \mathbb{Z}$, $1 \leq j \leq N$), b^i_m, Q^i_m, c^i_m, Q^i_m ($m \in \mathbb{Z}$, $1 \leq i < j \leq N + 1$). The bosons $a^i_m, b^i_m, c^i_m, (m \in \mathbb{Z}_\neq 0)$ satisfy

\begin{align}
 [a^i_m, a^j_n] &= \frac{[(k + N - 1)m][A_i,j]_m q}{m}[d_{m,n,0}, \\
 [b^i_m, b^j_{n'}] &= -\nu_i \nu_j [m]_{A_i,j}^2 \delta_{i,i'} \delta_{j,j'} \delta_{m+n,0}, \\
 [c^i_m, c^j_{n'}] &= \nu_i \nu_j [m]_{A_i,j}^2 \delta_{i,i'} \delta_{j,j'} \delta_{m+n,0}.
\end{align}

(3.9) (3.10) (3.11)

The zero-mode operators $a^i_0, Q^i_0, b^i_0, Q^i_0, c^i_0, Q^i_0$ satisfy

\begin{align}
 [a^i_0, Q^i_n] &= (k + N - 1)A_i,j, \\
 [b^i_0, Q^{i'}_{n'}] &= -\nu_i \nu_j \delta_{i,i'} \delta_{j,j'}, \\
 [c^i_0, Q^{i'}_{n'}] &= \nu_i \nu_j \delta_{i,i'} \delta_{j,j'}.
\end{align}

(3.12) (3.13) (3.14)

and other commutators vanish. We impose the cocycle condition on the zero-mode operator $Q^{i,j}_b$, ($1 \leq i < j \leq N + 1$) by

\begin{align}
 [Q^{i,j}_b, Q^{i',j'}_{b}] = \delta_{j,N+1} \delta_{j',N+1} \pi \sqrt{-1} \quad \text{for} \ (i, j) \neq (i', j').
\end{align}

(3.15)

We have the following (anti)commutation relations

\begin{align}
 \left\{ \exp \left(Q^{i,j}_b \right), \exp \left(Q^{i',j'}_{b} \right) \right\} &= 0 \quad (1 \leq i < j \leq N, 1 \leq i' < j' \leq N), \\
 \left\{ \exp \left(Q^{i,N+1}_b \right), \exp \left(Q^{i',N+1}_{b} \right) \right\} &= 0 \quad (1 \leq i \neq j \leq N).
\end{align}

(3.16) (3.17)

We use the following normal ordering symbol :: as follows.

\begin{align}
 :b^i_m b^{i'}_{n'}:= \begin{cases}
 b^i_m b^{i'}_{n'} & (m < 0), \\
 b^i_{m'} b^{i'}_{m} & (m > 0),
\end{cases} & :a^i_m a^j_n:= \begin{cases}
 a^i_m a^j_n & (m < 0), \\
 a^j_n a^i_m & (m > 0),
\end{cases} \\
 :b^i_0 Q^{i'}_b := Q^{i'}_{b} Q^{i}_b & :a^i_0 Q^i_0 := Q^i_0 a^i_0 := Q^i_0 a^i_0.
\end{align}

(3.18) (3.19)
The above boson structure is the straightforward generalization of those in [17]. Note that \((N - 1)\) is the dual Coxeter number. In what follows we use \(\{a^j_m(1 \leq j \leq N), b^i_m, Q^{ij}_c(1 \leq i < j \leq N)\, b^{ij}_m, Q^{ij}_c(1 \leq i < j \leq N)\}\) which is a subset of the above boson system. In what follows we use the abbreviations \(b^{ij}(z), c^{ij}(z), b^{ij}_\pm(z), a^{ij}_\pm(z)\).

\[
b^{ij}(z) = - \sum_{m \neq 0} \frac{b^{ij}_m}{|m|} z^{-m} + Q^{ij}_c + b^{ij}_0 \log z, \tag{3.20}
\]

\[
c^{ij}(z) = - \sum_{m \neq 0} \frac{c^{ij}_m}{|m|} z^{-m} + Q^{ij}_c + c^{ij}_0 \log z, \tag{3.21}
\]

\[
b_{\pm}^{ij}(z) = \pm (q - q^{-1}) \sum_{m > 0} b^{ij}_m z^{-m} \pm b^{ij}_0 \log q, \tag{3.22}
\]

\[
a_{\pm}^{ij}(z) = \pm (q - q^{-1}) \sum_{m > 0} a^{ij}_m z^{-m} \pm a^{ij}_0 \log q. \tag{3.23}
\]

3.3 Free Field Realization

In this section we construct a free field realization of the quantum affine superalgebra \(U_q(\widehat{sl}(N|1))\) for an arbitrary level \(k\). In [15], on the basis of the Heisenberg realization of the quantum algebra \(U_q(sl(N))\), a free field realization of the quantum affine algebra \(U_q(\widehat{sl}(N))\) was obtained. Here we try to generalize it to the quantum affine superalgebra \(U_q(\widehat{sl}(N|1))\). Detailed calculations of this trial are summarized in appendix A. We introduce the operators \(X^{\pm}_i(z), \Psi^{\pm}_i(z), (1 \leq i \leq N)\) on the Fock space as follows. For \(1 \leq i \leq N - 1\) we introduce

\[
X^+_i(z) = \frac{1}{(q - q^{-1})z} \prod_{j=1}^{i} \left(X^+_i z^{j-1}(z) - X^+_j z^{j-1}(z) \right), \tag{3.24}
\]

\[
X^+_N(z) = \sum_{j=1}^{N} X^+_N z^{j-1}(z), \tag{3.25}
\]

\[
X^-_i(z) = \frac{1}{(q - q^{-1})z} \left(\sum_{j=1}^{i-1} (X^-_i z^{j-1}(z) - X^-_j z^{j-1}(z)) + (X^-_{i,2i-1}(z) - X^-_{i,2i}(z)) \right. \\
\left. + \sum_{j=i+1}^{N-1} (X^-_{i,2j-1}(z) - X^-_{i,2j}(z)) \right) + q^{k+N-1} X^-_{i,2N-1}(z), \tag{3.26}
\]

\[
X^-_N(z) = \frac{1}{(q - q^{-1})z} \prod_{j=1}^{N} \left(-q^{j-1} X^-_N z^{j-1}(z) + q^{j-1} X^-_N z^{j-1}(z) \right), \tag{3.27}
\]

\[
\Psi^{\pm}_i(\tilde{q}^{H} z) = \exp \left(a^i_\pm (q^{i+N-1} z^{-1}) + \sum_{j=1}^{i} (b^i_{\pm} (q^{i+N-1} z^{-1}) - b^i_{\pm} (q^{i+N-1} z^{-1})) \right)
\]
For 1 \leq i \leq N - 1 and 1 \leq j \leq i we set
\[
X_{i,2j-1}^+(z) = \exp \left((b + c)^{j,i}(q^j z) + b_{i+1}^{j,i+1}(q^{j+1} z) \right)
+ \sum_{l=1}^{j-1} (b_{i+1}^{j,i+1}(q^{j-l} z) - b_{i}^{j,i}(q^{j-l} z)) \right) :,
\]
\[
X_{i,2j}^+(z) = \exp \left((b + c)^{j,i}(q^j z) + b_{i+1}^{j,i+1}(q^{j-1} z) \right)
+ \sum_{l=1}^{j-1} (b_{i+1}^{j,i+1}(q^{j-l} z) - b_{i}^{j,i}(q^{j-l} z)) \right) :,
\]
\[
X_{i,2j-1}^-(z) = \exp \left(a_{i}^{k,i}(q^{-k} z) + (b + c)^{j,i+1}(q^{-k-j} z) \right)
- b_{i+1}^{j,i}(q^{k-j} z) \right)
+ \sum_{l=1}^{i} (b_{i+1}^{j,i+1}(q^{-j-l+1} z) - b_{i}^{j,i}(q^{-j-l} z))
+ \sum_{l=1}^{N} (b_{i}^{j,i}(q^{-j-l} z) - b_{i+1}^{j,i+1}(q^{-j-l+1} z))
+ b_{i+1}^{j,i+1}(q^{-k-N} z) - b_{i+1,N+1}^{j,i+1}(q^{-k-N+1} z) \right) :,
\]
\[
X_{i,2j}^-(z) = \exp \left(a_{i}^{k,i}(q^{-k} z) + (b + c)^{j,i+1}(q^{-k-j} z) \right)
- b_{i+1}^{j,i}(q^{k-j} z) \right)
+ \sum_{l=1}^{i} (b_{i+1}^{j,i+1}(q^{-j-l+1} z) - b_{i}^{j,i}(q^{-j-l} z))
+ \sum_{l=1}^{N} (b_{i}^{j,i}(q^{-j-l} z) - b_{i+1}^{j,i+1}(q^{-j-l+1} z))
+ b_{i+1}^{j,i+1}(q^{-k-N} z) - b_{i+1,N+1}^{j,i+1}(q^{-k-N+1} z) \right) :,
\]
Here we have used the auxiliary bosonic operators \(X^+_{i,j}(z) \) as follows.

For 1 \leq i \leq N - 1 and 1 \leq j \leq 1 we set
\[
\Psi_{N}^{\pm}(q^{\pm\frac{N}{2}}) = \exp \left(a_{N}^{N}(q^{\pm N} \frac{N}{2} z) - b_{N}^{N}(q^{N} \frac{N}{2} z) \right) \)
\]
\[+b_{i,N+1}^i(q^{-k-N}z) - b_{i,N+1}^{i+1}(q^{-k-N+1}z) \]

For \(1 \leq i \leq N - 1\) we set

\[X_{i,2i-1}^-(z) = : \exp \left(a_i^-(q^{-\frac{k+N-1}{2}}z) + (b + c)^i,i+1(q^{-k-i}z) \right. \]
\[+ \sum_{l=i+1}^{N} (b_{i,l}^{-i}(q^{-k-l}z) - b_{i+1,l}^{-i+1}(q^{-k-l+1}z)) \]
\[+b_{i,N+1}^{-i}(q^{-k-N}z) - b_{i+1,N+1}^{-i+1}(q^{-k-N+1}z) \] \(, \) \hspace{1cm} (3.35)

\[X_{i,2j}^-(z) = : \exp \left(a_i^-(q^{-\frac{k+N-1}{2}}z) + (b + c)^i,i+1(q^{k-i}z) \right. \]
\[+ \sum_{l=j+1}^{N} (b_{j,i}^{i+1}(q^{k+j}z) - b_{i+1,j}^{i+1}(q^{k+j+1}z)) \]
\[+b_{i+1,N+1}(q^{k+N}z) - b_{i,j+1,N+1}(q^{k+N+1}z) \] \(, \) \hspace{1cm} (3.36)

For \(1 \leq i \leq N - 1\) and \(i + 1 \leq j \leq N - 1\) we set

\[X_{i,2j-1}^-(z) = : \exp \left(a_i^-(q^{-\frac{k+N-1}{2}}z) + (b + c)^i,j+1(q^{k+j}z) \right. \]
\[+b_{i,j+1}^{i+1,j+1}(q^{k+j}z) - (b + c)^i,j+1(q^{k+j+1}z) \]
\[+b_{j+1,N+1}(q^{k+N}z) - b_{i+1,j+1,N+1}(q^{k+N+1}z) \] \(, \) \hspace{1cm} (3.37)

\[X_{i,2j}^-(z) = : \exp \left(a_i^-(q^{-\frac{k+N-1}{2}}z) + (b + c)^i,j+1(q^{k+j}z) \right. \]
\[+b_{j+1,N+1}(q^{k+N}z) - b_{i,j+1,N+1}(q^{k+N+1}z) \] \(, \) \hspace{1cm} (3.38)

For \(1 \leq i \leq N - 1\) we set

\[X_{i,2N-1}^-(z) = : \exp \left(a_i^-(q^{-\frac{k+N-1}{2}}z) - b_{i+1,N+1}(q^{k+N-1}z) \right. \]
\[-b_{i+1,N+1}(q^{k+N-1}z) + b_{i+1,N+1}(q^{k+N}z) \] \(, \) \hspace{1cm} (3.39)

For \(1 \leq j \leq N - 1\) we set

\[X_{N,2j-1}^-(z) = : \exp \left(a_j^N(q^{-\frac{k+N-1}{2}}z) - b_{i,j}^{i,j}(q^{k-j}z) - (b + c)^j,j,N(q^{k-j+1}z) \right. \]
\[+b_{i,j+1,N+1}(q^{k-j}z) - b_{i,j+1,N+1}(q^{k-j+1}z) \]
Now we have introduced the bosonic operators $X_i^\pm(z)$ and $\Psi_i^\pm(z)$. The following is main result of this paper.

Theorem 3.2 A free field realization of the quantum affine superalgebra $U_q(\widehat{sl}(N|1))$ is given in the following way.

\[
\begin{align*}
 c & \mapsto k \\
 x_i^\pm(z) & \mapsto X_i^\pm(z) \\
 \psi_i^\pm(z) & \mapsto \Psi_i^\pm(z).
\end{align*}
\]

In other words, the above map gives a homomorphism from $U_q(\widehat{sl}(N|1))$ to the bosonic operator. Very explicitly the relation (3.46) is written as

\[
\begin{align*}
 h_{i,m} & \mapsto q^{\frac{k+k-N-1}{2}|m|}a_i^m + \sum_{l=1}^i (q^{-(k+l-1)|m|}b^l_{m}|i\rangle - q^{-(k+l)|m|}b^l_{m}|i\rangle) \\
 & \quad + \sum_{l=i+1}^N (q^{-(k+l)|m|}b^l_{m}|i\rangle - q^{-(k+l-1)|m|}b^l_{m}|i\rangle) \\
 & \quad + q^{-(k+N)|m|}b^i_{m}|N+1\rangle - q^{-(k+N-1)|m|}b^i_{m}|N+1\rangle \\
 h_{N,m} & \mapsto q^{\frac{k+k-N-1}{2}|m|}a^N_m - \sum_{l=1}^{N-1} (q^{-(k+l)|m|}b^l_{m}|N\rangle + q^{-(k+l)|m|}b^l_{m}|N\rangle).
\end{align*}
\]

We give some comments on this realization. Upon the specialization $N = 2$, this free field realization reproduces the result for $U_q(\widehat{sl}(2|1))$ in [17]. The structure of non-superalgebra $U_q(\widehat{sl}(N))$ exists inside the superalgebra $U_q(\widehat{sl}(N|1))$. Hence the free field realizations of the currents $X_i^\pm(z)$ ($i \neq N$) for $U_q(\widehat{sl}(N|1))$ are quite similar as those for $U_q(\widehat{sl}(N))$. The free field realizations of the fermionic operators $X_{N,j}^+(z)$, $X_{N,2j-1}^-(z)$, $X_{N,2j}^-(z)$ and $X_{j,2N-1}^-(z)$ of
$U_q(\widehat{sl}(N|1))$ are completely different from those of $U_q(\widehat{sl}(N))$. The free field realization of this paper is not irreducible representation. We have to construct screening currents that commute with the currents $X^\pm_j(z)$ in order to get an irreducible representation [26, 27, 28]. We would like report this subject in the future publication. Applying the dressing method developed in [25] to this theorem, we have a free field realization of the elliptic algebra $U_{q,p}(\widehat{sl}(N|1))$.

Proof of Theorem. Direct calculations of the normal orderings show this theorem. The normal orderings of bosonic operators $X^\pm_{i,j}(z)$ ($i \neq N, j \neq 2N - 1$) of the superalgebra $U_q(\widehat{sl}(N|1))$ are exactly the same as those of the non-superalgebra $U_q(\widehat{sl}(N))$. Hence the proof of the relations for the bosonic operators $X^\pm_i(z)$ ($i \neq N$) is exactly the same as those of $U_q(\widehat{sl}(N))$. Let us focus our attention on the fermionic operators $X^\pm_N(z)$ that is new for the superalgebra. We show the following relations for the fermionic operators $X^\pm_N(z)$.

\[
\{X^+_N(z_1), X^-_N(z_2)\} = \frac{1}{(q - q^{-1})z_1 z_2} \left(\delta(q^k z_2 / z_1) \Psi_N^+(q^{k/2} z_2) - \delta(q^{-k} z_2 / z_1) \Psi_N^-(q^{-k/2} z_2) \right), \tag{3.49}
\]

and

\[
[X^+_N(z_1), X^-_j(z_2)] = 0 \quad \text{for } 1 \leq j \leq N - 1. \tag{3.50}
\]

First, let us show (3.49). Using the relation (B.5) in appendix B, we have

\[
\{X^+_N(z_1), X^-_N(z_2)\} = \frac{1}{(q - q^{-1})z_1 z_2} \sum_{j=1}^{N} q^{j-1} \left(-\{X^+_{N,j}(z_1), X^-_{N,2j-1}(z_2)\} + \{X^+_{N,j}(z_1), X^-_{N,2j}(z_2)\} \right).
\]

Using the relations (B.1), (B.2), (B.3) and (B.4) in appendix B, we have

\[
\{X^+_N(z_1), X^-_N(z_2)\} = \frac{1}{(q - q^{-1})z_1 z_2} \left(\delta(q^k z_2 / z_1) \Psi_N^+(q^{k/2} z_2) - \delta(q^{-k} z_2 / z_1) \Psi_N^-(q^{-k/2} z_2) \right) + \frac{1}{(q - q^{-1})z_1 z_2} \exp \left(a_+^N(q^{k+1/2} / z_2) \right) \times
\]

\[
\left\{ \sum_{j=1}^{N-1} \delta \left(\frac{q^{-k-2j} z_2}{z_1} \right) : \exp \left(-\sum_{l=1}^{j} (b_+^{l,N}(q' z_1) + b_+^{l,N+1}(q' z_1)) - \sum_{l=j+1}^{N-1} (b_+^{l,N}(q^{-k-l} z_2) + b_+^{l,N+1}(q^{-k-l} z_2)) \right) : \right\}
\]

\[
- \sum_{j=2}^{N} \delta \left(\frac{q^{-k-2j+2} z_2}{z_1} \right) : \exp \left(-\sum_{l=1}^{j-1} (b_+^{l,N}(q' z_1) + b_+^{l,N+1}(q' z_1)) - \sum_{l=j}^{N-1} (b_+^{l,N}(q^{-k-l} z_2) + b_+^{l,N+1}(q^{-k-l} z_2)) \right) : \right\}.
\]

Making the transformation $j \rightarrow j - 1$ in the first sum $\sum_{j=1}^{N-1} \delta(q^{-k-2j} z_2 / z_1)$, we see cancellations.

We have the relation (3.49).
Next, let us show (3.50). Using the relation (B.9) in appendix B, we have the following for $1 \leq j \leq N - 2$.

$$\left[X_N^+(z_1), X_j^-(z_2) \right] = \frac{-1}{(q - q^{-1})z_2} \left[X_{N,j}^+(z_1), X_{j,2N-3}(z_2) \right] + q^{k+N-1} \left[X_{N,j+1}^+(z_1), X_{j,2N-1}(z_2) \right].$$

Using the relations (B.6), (B.8) in appendix B, we have

$$\left[X_N^+(z_1), X_j^-(z_2) \right] = \delta \left(\frac{q^{k+N-j}z_2}{z_1} \right) \left(-\frac{1}{z_2} + \frac{q^{k+N-j}}{z_1} \right) \times : \exp \left(a^j_+ \left(q^{k+N-1} - \frac{1}{z_2} \right) - b^j_{+1,N+1} \left(q^{k+N-1}z_2 \right) + b_{j+1,N+1} \left(q^{k+N}z_2 \right) + (b+c)^{j,N} \left(q^{k+N-1}z_2 \right) \right) - \sum_{l=1}^{j-1} \left(a^{l,N}_+ \left(q^{k+N-j+l}z_2 \right) + b^{l,N+1}_+ \left(q^{k+N-j+l}z_2 \right) \right) : \right.$$

From the relation $\left(-\frac{1}{z_2} + \frac{q^{k+N-j}}{z_1} \right) \delta \left(\frac{q^{k+N-j}z_2}{z_1} \right) = 0$, we have

$$\left[X_N^+(z_1), X_j^-(z_2) \right] = 0 \text{ for } 1 \leq j \leq N - 2.$$

From the relation (B.9) in appendix B, we have

$$\left[X_N^+(z_1), X_{N-1}^-(z_2) \right] = \frac{-1}{(q - q^{-1})z_2} \left[X_{N,N-1}^+(z_1), X_{N-1,2N-2}^-(z_2) \right] + q^{k+N-1} \left[X_{N,N}^+(z_1), X_{N-2N-1}^-(z_2) \right].$$

Using the relations (B.7), (B.8) and the relation $\delta \left(\frac{q^{k-1}z_2}{z_1} \right) \left(-\frac{1}{z_2} + \frac{q^{k-1}}{z_1} \right) = 0$, we have

$$\left[X_N^+(z_1), X_{N-1}^-(z_2) \right] = \delta \left(\frac{q^{k-1}z_2}{z_1} \right) \left(-\frac{1}{z_2} + \frac{q^{k-1}}{z_1} \right) \times : \exp \left(a^N_{+1} \left(q^{k+N-1} - \frac{1}{z_2} \right) - b^N_{+1,N+1} \left(q^{k+N-1}z_2 \right) + b^{N,N+1} \left(q^{k+N}z_2 \right) + (b+c)^{N-1,N} \left(q^{k+N-1}z_2 \right) \right) - \sum_{l=1}^{N-2} \left(a^{l,N}_+ \left(q^{k+l+1}z_2 \right) + b^{l,N+1}_+ \left(q^{k+l+1}z_2 \right) \right) := 0.$$

We have shown the relation (3.50). Q.E.D.

Acknowledgements

This work is supported by the Grant-in-Aid for Scientific Research C (21540228) from Japan Society for Promotion of Science. The author would like to thank Professor Hiroyuki Yamane for informing the author of a misprint in the paper [23]. The author would like to thank Professors
Laszlo Feher, Hitoshi Konno and Akihiro Tsuchiya for their interests to this work. The author is grateful to Professor Pascal Baseilhac and the colleagues in University of Tours for kind invitation and warm hospitality during his stay in Tours. This paper is dedicated to Professor Michio Jimbo on the occasion of his 60th birthday.

A Replacement

In this appendix we explain how to find the free field realization of affine $U_q(sl(N|1))$ from the Heisenberg realization of $U_q(sl(N|1))$.

A.1 Basic Operator

We would like to explain the role of the basic operators

$$\exp \left(\pm b^{i,N+1}(z) \right), \exp \left(b^{i,j}(z) \pm (b + c)^{i,j}(q^{\mp 1}z) \right),$$

(A.1)

which have been used for $U_q(sl(2|1))$ [17] and $U_q(sl(2))$ [14], respectively. The basic operators $\exp \left(\pm b^{i,N+1}(z) \right) : (1 \leq i \leq N)$ satisfy the fermionic relation

$$\{ : \exp(b^{i,N+1}(z_1)) : , : \exp(-b^{i,N+1}(z_2)) : \} = \frac{1}{z_1} \delta(z_2/z_1).$$

(A.2)

The basic operators $\exp \left(\pm b^{i,N+1}(z) \right)$: create the delta-function $\delta(z)$ and play important roles in constructions of the fermionic operators $X_{N}^{\pm}(z)$ that satisfy

$$\{X_{N}^{+}(z_1), X_{N}^{-}(z_2)\} = \frac{1}{(q - q^{-1})z_1z_2} \left(\delta(q^k z_2/z_1)\Psi_{N}^{+}(q^{\frac{k}{2}}z_2) - \delta(q^{-k} z_2/z_1)\Psi_{N}^{-}(q^{-\frac{k}{2}}z_2) \right).$$

The basic operators $\exp \left(b^{i,j}(z) \pm (b + c)^{i,j}(q^{\mp 1}z) \right) : (1 \leq i < j \leq N)$ satisfy the bosonic relations

$$\begin{align*}
&\left[: \exp(b^{i,j}(z_1) - (b + c)^{i,j}(qz_1)) : , : \exp(b^{i,j}(z_2) + (b + c)^{i,j}(q^{-1}z_2)) : \right] \\
&= (q^{-1} - q) \delta(q^{-2}z_2/z_1) : \exp\left(b^{i,j}_{+}(z_1) + b^{i,j}_{-}(z_2)\right) : \\
&\left[: \exp(b^{i,j}(z_1) - (b + c)^{i,j}(q^{-1}z_1)) : , : \exp(b^{i,j}(z_2) + (b + c)^{i,j}(qz_2)) : \right] \\
&= (q - q^{-1}) \delta(q^{2}z_2/z_1) : \exp\left(b^{i,j}_{+}(z_1) + b^{i,j}_{-}(z_2)\right) : .
\end{align*}$$

(A.3)

(A.4)

The basic operators $\exp \left(b^{i,j}(z) \pm (b + c)^{i,j}(q^{\mp 1}z) \right)$: create the delta-function $\delta(z)$ and play important roles in constructions of the bosonic operators $X_{i}^{\pm}(z)$ ($i \neq N$) that satisfy

$$\left[X_{i}^{+}(z_1), X_{j}^{-}(z_2) \right] = \frac{\delta_{i,j}}{(q - q^{-1})z_1z_2} \left(\delta(q^k z_2/z_1)\Psi_{i}^{+}(q^{\frac{k}{2}}z_2) - \delta(q^{-k} z_2/z_1)\Psi_{i}^{-}(q^{-\frac{k}{2}}z_2) \right).$$
Multiplying and adding proper operators to these basic operators (A.1), we construct the free field realization. For this purpose, the following replacement from the Heisenberg realization of $U_q(sl(N|1))$ to the free field realization of the affine $U_q(\widehat{sl}(N|1))$ gives useful information.

A.2 Replacement

In this appendix we explain how to find the free field realization of the affine superalgebra $U_q(\widehat{sl}(N|1))$ from the Heisenberg realization of $U_q(sl(N|1))$. We make the following replacement with suitable argument.

\[
\begin{align*}
\vartheta_{i,j} & \rightarrow -b_{i,j}^\pm(z)/\log q \quad (1 \leq i < j \leq N + 1), \\
[\vartheta_{i,j}]_q & \rightarrow \begin{cases}
\exp \left(\pm b_{i,j}^\pm(z) \right) - \exp \left(\pm b_{i,j}^\pm(z) \right) & (j \neq N + 1), \\
(q - q^{-1})z & (j = N + 1).
\end{cases} \\
x_{i,j} & \rightarrow \begin{cases}
: \exp \left((b + c)^{i,j}(z) \right) : & (j \neq N + 1), \\
: \exp \left(-b^{i,j}(z) \right) : \text{ or } : \exp \left(-b_{i,j}^\pm(q^\pm1z) - b^{i,j}(z) \right) : & (j = N + 1).
\end{cases} \\
\lambda_i & \rightarrow a_i^\pm(z)/\log q \quad (1 \leq i \leq N), \\
[\lambda_i]_q & \rightarrow \begin{cases}
\exp \left(\pm a_i^\pm(z) \right) - \exp \left(\pm a_i^\pm(z) \right) & (1 \leq i \leq N).
\end{cases}
\end{align*}
\]

Taking the basic operators (A.1) into account, we gave this rule of the replacement.

From the above replacement, H_i of the Heisenberg realization (3.2) is replaced as following.

\[
q^{H_i} \rightarrow \begin{cases}
\exp \left(a_i^\pm(z) + \sum_{l=1}^i(b_{i,l}^{\pm1}(z) - b_{l,i}^\pm(z)) + \sum_{l=i+1}^N(b_{l,i}^{\pm1}(z) - b_{i,l}^\pm(z)) \right) & (1 \leq i \leq N - 1), \\
\exp \left(a_i^\pm(z) - \sum_{l=1}^{N-1}(b_{l,N}^l(z) + b_{i,N}^l(z)) \right) & (i = N).
\end{cases}
\]

There exist small gaps between the above operators (A.10) and the free field realizations $\Psi_i^\pm(z)$ (3.28), (3.29). In order to make the operators (A.10) satisfy the defining relations of $U_q(\widehat{sl}(N|1))$, we have to impose q-shift to variable z of the operators $a_i^\pm(z)$, $b_{i,j}^\pm(z)$. For instance, we have to replace $a_i^\pm(z) \rightarrow a_i^\pm(q^{\pm1+i/2}z)$. Bridging the gap by the q-shift, we have the free field realizations $\Psi_i^\pm(q^{\pm1/2}z)$ (3.28), (3.29) from q^{H_i}.

\[
q^{H_i} \rightarrow \Psi_i^\pm(q^{\pm1/2}z) \quad (1 \leq i \leq N).
\]

The structure of non-superalgebra $U_q(sl(N))$ exists inside the superalgebra $U_q(\widehat{sl}(N|1))$. Hence the free field realizations of the currents $X_i^\pm(z)$ ($i \neq N$) for $U_q(\widehat{sl}(N|1))$ are quite similar.
as those for $U_q(\hat{sl}(N))$. Let us focus our attention on the fermionic operators $X^\pm_N(z)$ that is new for the superalgebra. Let us consider $E_N = \sum_{j=1}^N E_{N,j}$ of the Heisenberg realization (3.2). From the above replacement, we have

$$ E_{N,j} \rightarrow \exp \left((b + c)j^N(z) + b^jN+1(z) - \sum_{l=1}^{j-1} (b^{l,jN+1}_+ + b^{l,jN+1}_-) \right) : \quad (A.12) $$

There exists an ambiguity of the replacement of $x_{j,N+1}$ in (A.7). Here we have chose the replacement $x_{j,N+1} \rightarrow \exp \left(-b^jN+1(z) \right) : (1 \leq j \leq N)$. Imposing proper q-shift to the variable z of the operators $(b + c)j^N(z)$, $b^jN+1(z)$, $b^{j\pm j}(z)$, we have the free field realizations $X^+_{N,j}(z)$ in (3.32).

$$ E_{N,j} \rightarrow X^+_{N,j}(z) \quad (1 \leq j \leq N). \quad (A.13) $$

Let us consider $F_N = \sum_{j=1}^N F_{N,j}$ of the Heisenberg realization (3.2). From the above replacement we have

$$ F_{N,j} \rightarrow \frac{1}{(q - q^{-1})z} \times

\times \left \{ \exp \left(-a^-_N(z) - b^jN+1(z) - (b + c)j^N(z) + \sum_{l=j+1}^{N-1} (b^{l,jN+1}_+ - b^{l,jN}_-) \right) \right \}

\times \left \{ \begin{array}{ll}
\exp \left(-b^jN(z) - b^jN+1(z) \right) - \exp \left(-b^jN(z) - b^jN+1(z) \right) & (j \neq N), \\
\exp \left(-b^N(z) \right) \left(\exp \left(a^N(z) \right) - \exp \left(a^-_N(z) \right) \right) & (j = N).
\end{array} \right.

(A.14) $$

There exists an ambiguity of the replacement of $x_{j,N+1}$ in (A.7). Here we have chose the replacement $x_{j,N+1} \rightarrow \exp \left(b^{j,jN+1}_+ (q^{j+1}z) - b^{j,jN+1}_- (z) \right) : (1 \leq j \leq N - 1)$ and $x_{N,N+1} \rightarrow \exp \left(-b^N(z) \right) :$. Imposing proper q-shift to the variable z of the operators $(b + c)j^N(z)$, $b^jN+1(z)$, $b^{j\pm j}(z)$, $a^N(z)$, we have the free field realizations $X^-_{N,2j-1}(z)$, $X^-_{N,2j}(z)$ in (3.40), (3.41), (3.42) and (3.43).

$$ F_{N,j} \rightarrow \frac{-1}{(q - q^{-1})z} \left(X^-_{N,2j-1}(z) - X^-_{N,2j}(z) \right) \quad (1 \leq j \leq N). \quad (A.15) $$

Replacements for bosonic operators $X^\pm_j(z), (j \neq N)$ have already appeared in $U_q(\hat{sl}(N))$ [16]. We explained details of the replacement for the fermionic operator $X^+_N(z)$, which is new for the superalgebra.

B Normal Orderings

In this appendix we summarize useful relations.

For $1 \leq j \leq N$ we have

$$ \{ X^+_{N,j}(z_1), X^-_{N,2j-1}(z_2) \} = \frac{1}{q^{j-1}z_1} \delta(q^{-2j+2}z_2/z_1) $$

15
\[\times \exp \left(a^- N_q \left(q^{-k+N-1} \right)^{2z_2} z_2 \right) - \sum_{l=1}^{j-1} \left(b^l+_{N_2} \left(q^{-k-2j+l+2} \right) z_2 + b^l+_{N+1} \left(q^{-k-2j+l+2} \right) z_2 \right) \]
\[- \sum_{l=j}^{N-1} \left(b^-_{N_2} \left(q^{-k-l} \right) z_2 + b^-_{N+1} \left(q^{-k-l} \right) z_2 \right) \right) :. \] (B.1)

Especially for \(j = 1 \) we have
\[\left\{ X^+_N(z_1), X^-_N(z_2) \right\} = \frac{1}{z_1} \delta(q^{-k} z_2 z_1) \Psi_N(q^{-k} z_2). \] (B.2)

For \(1 \leq j \leq N - 1 \) we have
\[\left\{ X^+_N(z_1), X^-_{N,j}(z_2) \right\} = \frac{1}{q^{j-1} z_1} \delta(q^{-k-2j} z_2 z_1) \]
\[\times \exp \left(a^- N_q \left(q^{-k+N-1} \right)^{2z_2} z_2 \right) - \sum_{l=1}^{j} \left(b^l+_{N_2} \left(q^{-k-2j+l} \right) z_2 + b^l+_{N+1} \left(q^{-k-2j+l} \right) z_2 \right) \]
\[- \sum_{l=j+1}^{N-1} \left(b^-_{N_2} \left(q^{-k-l} \right) z_2 + b^-_{N+1} \left(q^{-k-l} \right) z_2 \right) \right) :, \] (B.3)

\[\left\{ X^+_N(z_1), X^-_{N,2N}(z_2) \right\} = \frac{1}{q^{N-1} z_1} \delta(q^k z_2 z_1) \Psi^+_N(q^k z_2). \] (B.4)

Other anti-commutators relations \(\left\{ X^+_N(z_1), X^-_{N,j}(z_2) \right\} \) vanish.
\[\left\{ X^+_N(z_1), X^-_{N,j}(z_2) \right\} = 0 \quad \text{for} \quad j \neq 2i - 1, 2i. \] (B.5)

For \(1 \leq j \leq N - 2 \) we have
\[\left[X^+_N,j+1(z_1), X^-_{j,2N-3}(z_2) \right] = (q - q^{-1}) \delta(q^{k+N-j} z_2 z_1) \]
\[\times \exp \left(a^-_N q^{k+N-1} z_2 \right) - b^l+_{N+1} \left(q^{k+N-1} z_2 \right) \]
\[+ b^l+_{N+1} \left(q^{k+N-1} z_2 \right) + (b + c)^{j,N} \left(q^{k+N-1} z_2 \right) \]
\[- \sum_{l=1}^{j-1} \left(b^l+_{N} \left(q^{k+N-j+l} \right) z_2 + b^l+_{N+1} \left(q^{k+N-j+l} \right) z_2 \right) :. \] (B.6)

We have
\[\left[X^+_N(z_1), X^-_{N-1,2N-2}(z_2) \right] = (q - q^{-1}) \delta(q^{k+1} z_2 z_1) \]
\[\times \exp \left(a^-_N q^{k+N-1} z_2 \right) - b^N+_{N+1} \left(q^{k+N-1} z_2 \right) \]
\[+ b^N+_{N+1} \left(q^{k+N-1} z_2 \right) + (b + c)^{N-1,N} \left(q^{k+N-1} z_2 \right) \]
\[- \sum_{l=1}^{N-2} \left(b^l+_{N} \left(q^{k+l+1} \right) z_2 + b^l+_{N+1} \left(q^{k+l+1} \right) z_2 \right) :. \] (B.7)
For $1 \leq j \leq N - 1$ we have
\[
[X_{N,j}^+(z_1), X_{j,2N-1}^-](z_2) = \frac{1}{q^{j-1}z_1} \delta(q^{k-N-j}z_2/z_1)
\times \exp \left(a_j^+(q^{k-N-j}z_2) - b_j^{i+1,N+1}(q^{k-N-1}z_2)
+ b_j^{i+1,N+1}(q^{k+N}z_2) + (b+c)^{j,N}(q^{k-N}z_2)
- \sum_{l=1}^{j-1} (b^{l,N}_+(q^{k-N-j+l}z_2) + b^{l+1,N+1}_+(q^{k+N-j+l}z_2)) \right).
\] (B.8)

Other commutation relations $[X_{N,i}^+(z_1), X_{i,j}^-](z_2)$ vanish.

\[
[X_{N,i}^+(z_1), X_{j,l}^-(z_2)] = 0 \quad \text{for} \quad (i, j, l) \neq \begin{cases} (j, j, 2N-1) & (1 \leq j \leq N - 1), \\
(j + 1, j, 2N-3) & (1 \leq j \leq N - 2), \\
(N, N - 1, 2N-2). & \end{cases}
\] (B.9)

For $1 \leq i \leq N - 1$ we have
\[
[X_{i,2}^+(z_1), X_{i,1}^-](z_2) = (q - q^{-1}) \delta(q^{-k}z_2/z_1) \Psi_i^-(q^{-k}z_2),
\] (B.10)
\[
[X_{i,2i-1}^+(z_1), X_{i,2i}^-](z_2) = -(q - q^{-1}) \delta(q^kz_2/z_1) \Psi_i^+(q^kz_2).
\] (B.11)

References

[1] M.Jimbo and T.Miwa, *Algebraic Analysis of Solvable Lattice Models*, CBMS Regional Conference Series in Mathematics 85 (American Mathematical Society), 1994.

[2] I.B.Frenkel and V.G.Kac, Basic Representations of Affine Lie Algebras and Dual Resonance Models, *Invent.Math.* 62, 23-66 (1980).

[3] G.Segal, Unitary Representation of some Infinite Dimensional Groups, *Commun.Math.Phys.* 80, 301-342 (1981).

[4] I.B.Frenkel and N.Jing, Vertex Representations of quantum affine algebras, *Proc.Natl.Acad.Sci.* 85, 9373-9377 (1988).

[5] D.Bernard, Vertex Operator Representations of Quantum Affine Algebra $U_q(B_r^{(1)})$, *Lett.Math.Phys.* 17, 239-245 (1989).
[6] N.Jing, Y.Koyama and K.Misra, Level One Representations of Quantum Affine Algebra $U_q(C_n^{(1)})$, Selecta Math. 5, no. 2, 243-255 (1999).

[7] N.Jing, Twisted vertex representations of quantum affine algebras, Invent. Math. 102, 663-690 (1990).

[8] N.Jing, Level one Representations of $U_q(G_2^{(1)})$, Proc. Amer. Math. Soc. 127, no.1 21-27 (1999).

[9] K.Kimura, J.Shiraishi and J.Uchiyama, A level-one representation of the quantum affine superalgebra $U_q(\widehat{sl}(M+1|N+1))$, Comm. Math. Phys. 188 no. 2, 367-378 (1997).

[10] Y.-Z.Zhang, Level-one representations and vertex operators of quantum affine superalgebra $U_q(\widehat{sl}(N|N))$, J.Math.Phys. 40, no.11, 6110-6124 (1999).

[11] W.-L.Yang and Y.-Z.Zhang, Drinfeld basis and free boson representation of twisted quantum affine superalgebra $U_q(osp(2|2)^{(2)})$, Phys.Lett.A 261, 252-258 (1999).

[12] M.Wakimoto, Fock Representations of the affine Lie algebra $A_1^{(1)}$, Commun.Math.Phys. 104, no.4, 605-609 (1986).

[13] A.Matsuo, A q-Deformation of Wakimoto Modules, Primary Fields and Screening Operators, Commun.Math.Phys. 160, 33-48 (1994).

[14] J.Shiraishi, Free Boson Representation, Phys.Lett. A 171, 243-248 (1992).

[15] H.Awata, N.Noumi and S.Odake, Heisenberg realization for $U_q(sl_n)$ on the flag manifold, Lett.Math.Phys. 30, 35-43 (1994).

[16] H.Awata, S.Odake and J.Shiraishi, Free Boson Realization of $U_q(\widehat{sl}_N)$, Commun.Math.Phys. 162 no. 1, 61-83 (1994).

[17] H.Awata, S.Odake and J.Shiraishi, q-difference realization of $U_q(sl(M|N))$ and its application to free boson realization of $U_q(\widehat{sl}(2|1))$, Lett. Math. Phys.42 no. 3, 271-279 (1997).

[18] V.G.Kac, Lie superalgebras, Advances in Math.26 no. 1, 8-96 (1977).

[19] V.G.Kac, A sketch of Lie superalgebra theory, Comm. Math. Phys. 53 no. 1, 31-64 (1977).

[20] L.Frappat, A.Sciarrino and P.Sorba, Structure of basic Lie superalgebras and of their affine extensions Comm. Math. Phys.121 no. 3, 457-500 (1989).

[21] V.G.Kac and M.Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, Lie theory and geometry, Progr. Math.123, 415-456 (1994).
[22] H.Yamane, Quantized enveloping algebras associated with simple Lie superalgebras and their universal R-matrices, *Publ.Res.Inst.Math.Sci.* 30, 15-87 (1994).

[23] H.Yamane, On Defining Relations of the affine Lie Superalgebras and their Quantized Universal Enveloping Superalgebras, *Publ.Res.Inst.Math.Sci.* 35, 321-390, (1999).

[24] V.G. Drinfeld, A New Realization of Yangians and Quantized Affine Algebras, *Sov.Math.Dokl.* 36, 212-216, (1988).

[25] T.Kojima, Elliptic Deformed Superalgebra $U_{q,p}(\hat{sl}(M\mid N))$, [arXiv.1103.5527], accepted for publication, to appear in *J.Phys.A:Math.Theor.*

[26] D.Bernard and G.Felder, Fock Representations and BRST cohomology in $SL(2)$ current algebra, *Commun.Math.Phys.* 127, 145-168, (1990).

[27] H.Konno, BRST cohomology in quantum affine algebra $U_q(\hat{sl}_2)$, *Mod.Phys.Lett.* A 9, 1253-1265, (1994).

[28] Y.-Z.Zhang and M.D.Gould, $U_q(\hat{sl}(2\mid 1))$ Vertex Operators, Screening Currents and Correlation Functions at Arbitrary Level, *J.Math.Phys.* 41, 5577-5291, (2000).