A note on a Sung-Wang’s paper

Nguyen Thac Dung

May 29, 2015

Abstract

The purpose of this note is to study the connectedness at infinity of manifold by using the theory of p-harmonic functions. We show that if the first eigenvalue $\lambda_{1,p}$ for the p-Laplacian achieves its maximal value on a Kähler manifold or a quaternionic Kähler manifold then such a manifold must be connected at infinity unless it is a topological cylinder with an explicit warped product metric.

2000 Mathematics Subject Classification: 53C24, 53C21

Key words and phrases: p-harmonic function, p-Laplacian, the first eigenvalue, connectedness at infinity, warped metric product.

1. Introduction

It is well-known that the theory of L^2 harmonic functions/forms has close relation to geometry of manifolds, in particular, geometric structure at infinity. We refer the reader to [4, 5, 6, 7, 8] for further details of this topic. From a variational point of view, p-harmonic functions are natural extensions of harmonic functions. Therefore, it is very natural to study p-harmonic functions/forms on submanifolds and ask what is the relationship between geometry of such these submanifolds and the space of p-harmonic functions/forms. We emphasize that compared with the theory for harmonic functions, the study of p-harmonic functions is generally harder, even though elliptic, is degenerate and the regularity results are far weaker. In [2], Buckley and Koskela gave volume estimate of p-parabolic ends, p-nonparabolic ends in term of the first eigenvalue of the p-Laplacian. Then, in [2], Batista, Cavalcante and Santos used p-harmonic function to introduce a definition of p-parabolic ends (also see [9]). They proved that if E is an end of a complete Riemannian manifold and satisfies a Sobolev-type inequality then E must either have finite volume or to be p-nonparabolic. A characterization of p-nonparabolic ends in the context of submanifold is also verified. Recently, Chang, Chen and Wei (see [1]) studied p-harmonic maps with finite q-energy and prove a Liouville type theorem. As an application, they extended this theorem to some p-harmonic maps such as p-harmonic morphisms and conformal maps between Riemannian manifolds.

The main purpose of this note is to understand manifolds whose principal eigenvalue $\lambda_{1,p}$ for the p-Laplacian achieves its maximal. When $p = 2$, this problem has
been studied by Li and Wang in [6, 7, 8]. In [4], Kong, Li and Zhou proved a splitting theorem on quaternionic Kähler manifolds. In the general case of \(p \geq 2 \), Sung and Wang generalized Li-Wang’s results on a Riemannian manifold with \(\lambda_{1,p} \) obtaining its maximal value. They showed that such a manifold must be connected at infinity unless it is a topological cylinder endowed with an explicit warped product metric. Motivated by these results, we consider the same problem on Kähler manifolds and obtain following two theorems.

Theorem 1.1. Let \(M^{2m} \) be a complete Kähler manifold of complex dimension \(m \geq 1 \) with holomorphic bisectional curvature bounded by

\[
BK_M \geq -1.
\]

If \(\lambda_{1,p} \geq \left(\frac{2m}{p} \right)^p \), then either

1. \(M \) has no \(p \)-parabolic end; or
2. \(M \) splits as a warped product \(M = \mathbb{R} \times N \) where \(N \) is a compact manifold. Moreover, the metric is given by

\[
ds_M^2 = dt^2 + e^{-4t} \omega_2^2 + e^{-2t} \sum_{\alpha=3}^{2m} \omega_\alpha^2,
\]

where \(\{\omega_2, \ldots, \omega_{2m}\} \) are orthonormal coframes for \(N \).

Similarly, we obtain a splitting theorem on quaternionic Kähler manifolds, under a weaker assumption on the scalar curvature

Theorem 1.2. Let \(M^{4m} \) be a complete noncompact quaternionic Kähler manifold of real dimension \(4m \) with the scalar curvature of \(M \) bounded by

\[
S_M \geq -16m(m+2).
\]

If \(\lambda_{1,p} \geq \left(\frac{2(2m+1)}{p} \right)^p \), then either

1. \(M \) has no \(p \)-parabolic end; or
2. \(M \) splits as a warped product \(M = \mathbb{R} \times N \) where \(N \) is a compact manifold. Moreover, the metric is given by

\[
ds_M^2 = dt^2 + e^{4t} \sum_{p=2}^{4} \omega_p^2 + e^{2t} \sum_{\alpha=5}^{4m} \omega_\alpha^2,
\]

where \(\{\omega_2, \ldots, \omega_{4m}\} \) are orthonormal coframes for \(N \).

The note has two sections. In the section 2, we give a unified proof of Theorems 1.1 and 1.2.
2. Structure theorems on Kähler manifolds with maximal $\lambda_{1,p}$

In this section, we provide a unified proof of Theorems 1.1 and 1.2. Our argument is close to the proof of Theorem 3.1 in [10]. First, recall that a smooth function u is said to be p-harmonic if

$$\Delta_p u := div(|\nabla u|^{p-2}\nabla u) = 0.$$

Proof of theorems 1.1 and 1.2. Note that by theorem 5.1 and 5.2 in [2], we have that $\lambda_{1,p}$ achieves its maximal value. Suppose that M has a p-parabolic end E. Let β be the Busemann function associated with a geodesic ray γ contained in E, namely,

$$\beta(q) = \lim_{t \to \infty} (t - \text{dist}(q, \gamma(t))).$$

The Laplacian comparison theorems in [8] and [4] imply

$$\Delta \beta \geq -a,$$

where $a = 2m$ in theorem 1.1 (see [8]) and $a = 2(2m + 1)$ in theorem 1.2 (see [4]). Hence, for $b = \frac{a}{p}$, we have

$$\Delta_p (e^{b\beta}) = div \left(b^{p-2} e^{b(p-2)\beta} \nabla (e^{b\beta}) \right)$$

$$= b^{p-1} div \left(e^{b(p-1)\beta} \nabla \beta \right)$$

$$\geq b^{p-1} e^{b(p-1)\beta} (-bp + b(p-1)) = -b p e^{b\beta}.$$

Let $g = e^{b\beta}$, we obtain

$$\Delta_p (g) \geq -\lambda_{1,p} g^{p-1}.$$

The variational characterization of $\lambda_{1,p}$ gives

$$\lambda_{1,p} \int_M (\phi g)^p \leq \int_M |\nabla (\phi g)|^p,$$

for any nonnegative compactly supported smooth function ϕ on M. Integration by parts implies

$$\int_M \phi^p g \Delta_p g = -\int_M \phi^p |\nabla g|^p - p \int_M \phi^{p-1} g \langle \nabla \phi, \nabla g \rangle |\nabla g|^{p-2}.$$

We note that

$$|\nabla (\phi g)|^p = (|\nabla \phi|^2 g^2 + 2\phi g \langle \nabla \phi, \nabla g \rangle + \phi^2 |\nabla g|^2)^{\frac{p}{2}}$$

$$\leq \phi^p |\nabla g|^p + p\phi g \langle \nabla \phi, \nabla g \rangle \phi^{p-2} |\nabla g|^{p-2} + c |\nabla \phi|^2 g^p.$$
for some constant c depending on p. Therefore, we have

$$\int_M \phi^p g(\Delta_p g + \lambda_{1,p} g^{p-1})$$

$$= \lambda_{1,p} \int_M (\phi g)^p - \int_M (\phi^p |\nabla g|^p - p \int_M \phi^{p-1} g \langle \nabla \phi, \nabla h \rangle |\nabla h|^{p-2}$$

$$\leq \int_M |\nabla (\phi g)|^p - \int_M |\phi^p |\nabla g|^p - p \int_M \phi^{p-1} g \langle \nabla \phi, \nabla h \rangle |\nabla h|^{p-2}$$

$$\leq c \int_M |\nabla \phi|^2 g^p. \quad (2.1)$$

Now, for $R > 0$, we choose the test function $0 \leq \phi \leq 1$ such that

$$\phi = \begin{cases} 1, & \text{on } B(R) \\ 0, & \text{on } M \setminus B(2R) \end{cases}$$

and $|\nabla \phi| \leq \frac{2}{R}$. It turns out that

$$\int_M |\nabla \phi|^2 g^p = \int_M |\nabla \phi|^2 e^{a\beta} \leq \frac{4}{R^2} \int_{B(2R) \setminus B(R)} e^{a\beta}$$

$$\leq \frac{4}{R^2} \int_{E \cap (B(2R) \setminus B(R))} e^{a\beta} + \frac{4}{R^2} \int_{(M \setminus E) \cap (B(2R) \setminus B(R))} e^{a\beta}. \quad (2.2)$$

Since $\lambda_{1,p} = b^p = \left(\frac{a}{p}\right)^p$, the theorem 0.1 in [3] implies $V(E \setminus B(R)) \leq ce^{-aR}$. Therefore, the first term of (2.2) tends to 0 when $R \to \infty$. Note that Li and Wang (see [8]) showed that

$$\beta(q) \leq -r(q) + c$$

on $M \setminus E$. Moreover, by volume comparison theorem in [4, 8], we have $V(B(R)) \leq ce^{aR}$. This implies that the second term of (2.2) converges to 0 as R goes to infinity. Hence, by (2.1) we have

$$\Delta_p g + \lambda_{1,p} g^{p-1} \equiv 0.$$

Thus,

$$\Delta \beta = -a.$$

The conclusion is followed by using the argument in [8] (in theorem 1.1) and [4] (in theorem 1.2). The proof is complete. \qed

Acknowledgment:

The author was supported in part by NAFOSTED under grant number 101.02-2014.49. A part of this note was written during a his stay at Vietnam Institute for Advance Study in Mathematics (VIASM). He would to express his sincerely thanks to staffs there for excellent working condition and financial support.
References

[1] S. C. Chang, J. T. Chen and S. W. Wei, Liouville properties for p-harmonic maps with finite q-energy, to appear in Trans. Amer. Math. Soc., see arXiv:1211.2899v2

[2] M. Batista, M. P. Cavalcante and N. L. Santos, The p-hyperbolicity of infinite volume ends and applications, Geometriae Dedicata, 171 (2014), 397-406

[3] S. Buckley and P. Koskela, Ends of metric measure spaces and Sobolev inequality, Math. Zeits., 252 (2005), 275-285

[4] S. Kong, P. Li and D. Zhou, Spectrum of the Laplacian on quaternionic Kähler manifolds, Jour. Diff. Geom., 78 (2008), 295 - 332.

[5] P. Li, Harmonic functions on complete Riemannian manifolds, Adv. Lect. Math., 7, Int. Press, Somerville, MA, (2008), no. 1, 195-227,

[6] P. Li and J. Wang, Complete manifolds with positive spectrum, Jour. Diff. Geom., 58 (2001), 501 - 534.

[7] P. Li and J. Wang, Complete manifolds with positive spectrum II, Jour. Diff. Geom., 62 (2002), 143 -162.

[8] P. Li and J. Wang, Connectedness at infinity of complete Kähler manifolds, Amer. Jour. Math., 131 (2009), 771 - 817.

[9] S. Pigola, A. Setti and M. Troyanov, The topology at infinity of a manifold and $L^{p,q}$-Sobolev inequality, Expositiones Math., 32 (2014), 365–383. See also arXiv:1007.1761

[10] C. J. Anna Sung and J. Wang, Sharp gradient estimate and spectral rigidity for p-Laplacian, Math. Res. Lett., 21 (2014), 885-904.

Nguyen Thac Dung
Department of Mathematics, Mechanics, and Informatics (MIM)
Hanoi University of Sciences (HUS-VNU)
Vietnam National University
334 Nguyen Trai Str., Thanh Xuan, Hanoi
E-mail:dungmath@yahoo.co.uk