INTRODUCTION

The ongoing outbreak of the coronavirus disease 2019 (Covid-19) has caused overwhelming disruptions to healthcare systems around the globe, especially the emergency medical services (EMS). Researchers have conducted extensive studies on different aspects of the EMS since the outbreak of Covid-19, including the temporal distribution of EMS demand and emergency department visits, pre-hospital patient assessment, medical resource availability and allocation, personnel protective equipment, EMS response practices and strategies, and ethical considerations.

Globally, the EMS utilisation rates varied during the early stage of the Covid-19 outbreak. The number of EMS calls increased in some parts of Europe (France, Ankara, Turkey, Copenhagen, Denmark) and Saudi Arabia. However, other observational studies suggested a significant decrease in the number of EMS calls across the United States, Canada, and other parts of Europe (Italy, England, Finland). Nonetheless, there is very limited information available after the beginning of summer 2020, when

Abstract

Introduction: The aim of our retrospective study was to quantify the impact of Covid-19 on the temporal distribution of emergency medical services (EMS) demand in Travis County, Austin, Texas and propose a robust model to forecast Covid-19 EMS incidents.

Methods: We analysed the temporal distribution of EMS calls in the Austin-Travis County area between 1 January 2019 and 31 December 2020. Change point detection was performed to identify the critical dates marking changes in EMS call distributions, and time series regression was applied for forecasting Covid-19 EMS incidents.

Results: Two critical dates marked the impact of Covid-19 on the distribution of EMS calls: March 17th, when the daily number of non-pandemic EMS incidents dropped significantly, and 13 May, by which the daily number of EMS calls climbed back to 75% of the number in pre-Covid-19 time. The new daily count of the hospitalisation of Covid-19 patients alone proves a powerful predictor of the number of pandemic EMS calls, with an r^2 value equal to 0.85. In particular, for every 2.5 cases, where EMS takes a Covid-19 patient to a hospital, one person is admitted.

Conclusion: The mean daily number of non-pandemic EMS demand was significantly less than the period before the Covid-19 pandemic. The number of EMS calls for Covid-19 symptoms can be predicted from the daily new hospitalisation of Covid-19 patients. These findings may be of interest to EMS departments as they plan for future pandemics, including the ability to predict pandemic-related calls in an effort to adjust a targeted response.
states began to lift travel restrictions, and people became better informed of the nature of the virus.

There is a long history of forecasting that has explored many factors to model EMS demand. The study of forecasting models dates back to the 1970s.37,38 Earlier studies in cities across the United States incorporated socio-demographic and socioeconomic variables to forecast daily demand.38-41 Other studies also found that weather factors and seasonality (season, day of the week and holidays) could also be used to predict the daily ambulance demand.42-45

Nevertheless, these EMS models were developed under normal conditions. It is unclear whether they are able to adapt to large-scale disasters such as the Covid-19 pandemic. Studies in the 2016 Melbourne thunderstorm asthma epidemic46 discovered a positive correlation between thunderstorm asthma cases and increased EMS demand. To our best knowledge, no models specifically targeting Covid-19-related EMS demand have been proposed. However, earlier studies in France47,48 and Israel49 hinted correlations between Covid-19 case hospitalisation and Covid-19 EMS demand.

The objective of this study is two-fold. First, we seek to examine the long-term impact of Covid19 on the temporal distribution of emergency calls and the average response time of ambulance assignment, dispatch and arrival. Second, we seek to design a predictive model to forecast the daily number of Covid-19 pandemic EMS calls.

2 | METHODS

2.1 | Data description

Our retrospective study is based on two datasets from the City of Austin Open Data Portal. The first dataset contains all records of EMS incidents in Austin Travis County from 1 January 2019 to 31 December 2020.50 These EMS incident records do not contain any identifiable information. For each incident, this dataset included its problem type, call disposition, priority number and the date of the incident. Additionally, it included EMS response times, such as the time elapsed, in minutes, to assign the call, dispatch the ambulance and for the ambulance to arrive. For a comprehensive list of descriptions of the dataset, see Table 1. This data are collected by the 911 call taker and the ambulance crew. As the caller is interrogated using the medical priority dispatch system (MPDS) protocol,51 the data are entered into the computer-aided dispatch (CAD) software. Once enough information is gathered to generate a unique call, the data are transferred into a Microsoft SQL Server database. The data appear on the mobile data centre (MDC) in the ambulance showing the address and nature of the emergency. The ambulance crew then acknowledges receipt of the call and travels en route to the emergency. From this point onward, the ambulance crew enters the information into the MDC. The timestamps gathered by the ambulance crew are the time elapsed, in minutes, to assign the call, dispatch the ambulance and for the ambulance to arrive.

Please note that in our study, we define incidents of priority number 1 or 2 as high-priority incidents. These incidents are of very high acuity and require a very fast response. Examples include cardiac arrest, severe bleeding and unconsciousness. For a detailed description of the level of risk corresponding to each priority number, please see Table 2.

The second dataset consists of the daily frequencies of all incidents from 1 January 2019, to 31 December 2020.52 This aggregated dataset distinguishes Covid-19 pandemic incidents from incidents of other problem types, as well as the defunct incidents from the incidents of other types of call dispositions. The 911 call taker interrogated the caller on breathing difficulty, level of alertness, vomiting, chest pain, chills and sweats, and then, via the MPDS protocol, the call taker decided whether an incident was classified as a Covid-19 pandemic incident. Defunct calls are defined as EMS incidents where neither the call was from another government agency, nor did the ambulance transport the patient to a hospital. For a complete list of descriptions of the subcategories of defunct calls, see Table 3. The Covid-19 hospitalisation data consist of the daily count of the hospital admission of Covid-19 patients in the Austin-Round Rock metropolitan statistical area. This hospitalisation data were requested from the University of Texas Covid-19 Modeling Consortium.53 For a comprehensive list of descriptions of each series of daily frequencies in the dataset, see Table 4.

2.2 | Statistical analysis

The statistical analysis was performed using R statistical computing and graphics environment. The R code is available on GitHub.1 To evaluate the impact of Covid-19 on non-pandemic incidents, we applied change point detection from the R software package "change-point.np." We identified the changes in mean and variance (the
function "cpt.meanvar") with binary segmentation method and Bayesian information criterion (BIC) penalty assuming underlying the normal distribution. To restrict our attention to the impact of the pandemic only, we chose the maximal number of change points as 2.

After identifying the change point dates, student's t tests were applied to make various comparisons between the first period (pre-pandemic) and the third period (post-pandemic). To identify which of the 22 major problems (see Figure 3 for a complete list) were impacted by the outbreak of the Covid-19 pandemic, we use student's t test with Bonferroni correction to compare the mean number of daily calls for each problem type between the first period and the third period. In other words, we set the significance cut-off

TABLE 1 ATCEMS database: incident records

Raw names	Names Description
Problem	Problem type The problem type of the emergency
Priority Number	Priority number The acuity of the emergency. The number 1 indicates the highest priority and 15 indicates the least priority
Time_PhonePickUp_Date	Date The date of the EMS call
Time_First_Unit_Assigned	Assignment time The length of time, in minutes, after the EMS call was picked up and before the first ambulance received notification of the emergency and was assigned
Time_First_Unit_Enroute	Dispatch time The length of time, in minutes, after the first ambulance was assigned and before the ambulance set off toward the emergency
Time_First_Unit_Arrived	Arrival time The length of time, in minutes, after the first ambulance wheels began to roll and before the ambulance arrived at the emergency and the wheels stopped
Call_Disposition	Call disposition The final disposition of the event, such as cancelled call, transported to the hospital, etc. If the ambulance transported the patient to a hospital, the name of the hospital would be specified. If the emergency call was from another government agency, for example, the Austin Fire Department, then the call disposition would be labelled as "referred." Other types of call dispositions fall into the category of "defunct calls," whose subcategories are defined in Table 2; in this case, the call disposition of an incident would be labelled as to its respective subcategory

TABLE 2 Description of Incident Priority

Priority	Priority number	Description
High priority	1	An imminent emergency requiring a very fast response. For example, it can be a person having a cardiac arrest and not breathing, or a person bleeding profusely
High priority	2	Incidents also of very high acuity. For example, it can be a person having a cardiac arrest but still breathing, or a person falling off a roof, but breathing and conscious
Mid priority	3	Incidents such as a car accident with low-level injuries. The patient is breathing, conscious and alert
Mid priority	4	Incidents of a lower level such as a patient who is conscious and stable but still needs transport. For example, it can be a patient who steps on glass and is bleeding, but not profusely and the patient is not in imminent danger
Low priority	5	Incidents that could be responded to without lights and sirens. For example, it can be a stubbed toe or a very low-level injury
Low priority	6-15	Incidents of very low priority

TABLE 3 The subcategories of defunct calls

Call disposition	Description
Refusal	A refusal means the situation when the ambulance arrives on the scene and speaks with the patient, the patient refuses medical help
No patient	The ambulance responds to the address provided but does not find a patient
Other	Call disposition is unspecified
Call cancelled	
Duplicate call	
False alarm call	
Information call only	
XIE ET AL.

RESULTS

This section consists of three major parts. The first subsection includes the descriptive statistics concerning the big picture of the EMS in Austin. During the 2019 to 2020 period, the total number of EMS calls was 246,809, with the six major hospitals covering 47% of all EMS incidents. Moreover, the average time it took for a dispatched ambulance to arrive on the scene was 7.14 minutes.

The second subsection identifies two critical dates, 17 March and 13 May, indicating the change in mean and variance of the temporal distribution of non-pandemic EMS calls. (Unless otherwise specified, in the result section, we use non-pandemic EMS calls to refer to non-pandemic effect EMS calls and pandemic EMS calls to refer to pandemic effect EMS calls.) To further investigate the lasting impact of the outbreak of Covid-19, we separated the timeline into three periods: period one, from 1 January 2019 to 17 March 2020 with n = 442, represents the pre-pandemic norm; period two, from 18 March to 12 May 2020, represents the sudden outbreak of Covid-19 in Austin; and period three, after 13 May 2020, represents the new normal. Comparing periods one and three, we found that the average daily number of non-pandemic EMS incidents dropped, and the average EMS response time became slower.

In the third subsection, we propose a time series regression model predicting the daily frequency of pandemic EMS incidents. The regressor, the daily frequency of the Covid-19 hospitalisation, is reasonable because in practical settings epidemiological models commonly output the hospitalisation forecasts as “expected values,” which would then be fed into our model as inputs. Next, we parsed the daily hospitalisation data into different periods in accordance with the detected change point dates by adding dummy variables. Lastly, after splitting the training (80%) and testing set (20%), we applied exhaustive (non-stepwise) selection of autoregressive integrated moving average (ARIMA) models and binomial thinning. The function used was “auto.arima” from the R software package “forecast.” To evaluate the robustness of our model, we estimated the r^2 value using smoothed daily pandemic EMS incident data to remove unnecessary random noise. To evaluate the predictive power of our model, we estimated the mean squared error and standard error of prediction residual using the original daily pandemic EMS incident data.

3.1 Overall statistics

The total number of EMS calls during the 2019 to 2020 period was 246,809. On average, the 37 ambulances in Austin Travis County responded to 338 ± 34 calls per day. Out of all incidents, 29.8% are of high-priority, 40.8% are of mid-priority, and 29.3% are of low-priority, as shown in Figure 1. The spatial distribution of EMS incidents is shown in Figure 2. Noticeably, EMS incidents were prevalent along the I-35 highway in Austin and were most frequent in downtown Austin. There are six major hospitals in Travis County (for the locations of these hospitals, see Figure 3; for the percentages of EMS incidents classified by call dispositions, see Figure 4), among which Dell Seton Medical Center and South Austin Hospital are the two biggest ones, covering 26% of all EMS incidents. In summary, the six major hospitals took care of 47% of all EMS incidents.
Meanwhile, refusal (20%), cancellation (7%) and missing patient (5%) are also among the highest percentages.

There were 22 types of problems with the highest number of calls, which in sum comprise 88% of the total number of incidents. For a complete list of problem types and their frequencies in the period of 2019 to 2020, see Figure 5. Notably, there were 12,926 emergency calls related to the Covid-19 pandemic.

The distribution of EMS response times in 2019-2020 is shown in Figure 6. On average, after an EMS call was picked up, the mean time for an ambulance assignment was 1.21 minutes, and the median was 1.03 minutes. The mean and median time for an assigned ambulance to dispatch were both 1.05 minutes. The average time for a dispatched ambulance to arrive on the scene was 7.14 minutes, and the median was 6.1 minutes. For more information on EMS response time at a hospital level, we refer the reader to Appendix 1.1.
3.2 | Impact of the pandemic

3.2.1 | EMS call volumes changed significantly with two critical dates

Via change point detection in mean and variance of the temporal distribution of non-pandemic EMS calls, with binary segmentation method and BIC penalty, we found two critical dates marking the impact of Covid-19 on non-pandemic EMS calls (shown as purple vertical lines in Figure 7). The first date was 17 March, around the time of the Austin shelter-in-place order. The average daily number of non-pandemic EMS incidents dropped significantly, from 225.69 in period one to 155.84 in period two.

The second critical date was 13 May, or the beginning of summer, by which the daily number of EMS calls climbed back to a new plateau, which is about 75% of that before 17 March (169.53 in period one vs 225.69 in period two).
three vs 225.69 in period one). In sum, the total number of non-pandemic EMS calls decreased during Covid-19 times.

Noticeably, despite the disruption of Covid-19, non-pandemic defunct calls did not witness the same level of decrease in daily frequency (shown by the orange line in Figure 7). Nevertheless, the proportion of defunct calls rose from 35% of the overall number of non-pandemic EMS calls in period one to 39% in period three. For a complete comparison of the number of non-pandemic EMS incidents per day among periods one, two and three, see Table 5.

As for pandemic-related incidents, the red line represents pandemic EMS calls disposed to hospitals, and the brown line represents pandemic-related defunct calls in Figure 7. Note that the pandemic EMS calls are closely correlated with the daily frequency of the newly admitted Covid-19 patients to hospitals in the Austin-Round Rock metropolitan statistical area, shown by the green line. Our time-series model in the next subsection found that this hospitalisation trend alone is a powerful predictor for the pandemic EMS calls.

A closer comparison between period one and period three showed that the frequencies of only certain types of problems dropped, whilst others remained unaffected by Covid-19. The complete list of comparisons of the number of non-pandemic EMS incidents of each problem type can be found in Table 6.

3.2.2 | EMS response times were slower during the pandemic

The performance of EMS response was also impacted since the outbreak of Covid-19. The mean response time for each action, assignment, dispatch and arrival, was slower during period two and period three than that in period one (one-sided t test, \(P < .01 \)). In particular,
the arrival time during period three is 0.73 minutes slower than during period one for each EMS incident. A complete list of comparisons of the mean and median of response time is in Table 7. The reader can also see from Figure 8 that the mean (solid line) and median (dashed line) of the distributions of the response time has slightly shifted to the right from period one to period three. As shown in Table 8, the proportions of high-priority incidents EMS whose response time (in minutes) were within 5 minutes decreased from 44.7% in period one to 33.6% in period three. A one-sided t test suggests that this decrease is statistically significant with a $P < .01$.

3.3 Covid-hospitalisation predicts pandemic EMS calls

The exact change point detection on variance with MBIC penalty yielded four Covid-19 hospitalisation stages since March 2020. The four change point dates are shown by the purple vertical lines in Figure 9. In particular, we see rises in Covid-19 hospitalisations during summer 2020 (8 June-18 August) and winter 2020 (5 November-31 December). This resonated with the global pandemic second and third waves. To achieve optimal modelling performance, we avoided the uncertainties at the earliest stage of the pandemic by only fitting and testing the model using data from 9 April to 31 December in 2020. Thus, we set the dummy variable “1st period” to 1 during the period from 9 April to 8 June, the dummy variable “2nd period” to 1 during the period from 8 June to 17 August, and the dummy variable “3rd period” to 1 during the period from 17 August to 31 December.

The exhaustive selection of ARIMA models outputs 0 autoregressive order, 0 degrees of differencing and 0 moving average order. The coefficients of the linear regression model, with the pandemic EMS calls regressed on the smoothed (7-day average) hospitalisation data, are specified in Table 9. This model obtained an r^2 value equal to 0.85. If the reader is interested in how this model compares to a regression without change points, please see Appendix 1.3. Moreover, the residual standard error of the training and test set are 6.62 and 5.44, respectively, which mainly characterise the random fluctuations on daily counts. The reader can also see from Figure 10 that most of the actual daily frequencies of pandemic EMS incidents fall within the 95% prediction interval. Therefore, the daily new hospitalisation of Covid-19 patients alone proves a powerful and robust indicator of pandemic-related EMS demand. The 0.40 estimate of slope suggests that on average, for every 2.5 cases, where EMS took a Covid-19 patient to a hospital, one person was admitted. Moreover,
moving from the first to the third period, there was a decreasing offset between pandemic EMS incidents and hospitalisation numbers.

4 | DISCUSSION

The daily number of non-pandemic EMS incidents dropped precipitously since the beginning of the Covid-19 pandemic and the declaration of the local state of emergency. This resonates with earlier studies in the United States, Italy, England, Canada and Finland. Even though the number of non-pandemic EMS incidents increased at the beginning of summer, it remained consistently lower than in the pre-pandemic era. More interestingly, the proportion of non-pandemic defunct calls rose after the outbreak of the Covid-19 pandemic. The rise of refusals to transportation to hospitals has also been observed in Israel. This corroborates with earlier studies in the United States suggesting that people showed reluctance to receive hospitalisation out of fear of contagion.

This significant decrease in non-pandemic EMS incidents may also be partially explained by travel restrictions (attended patient, community health assist, fall, hemorrhage, traffic injury) and misclassification into Covid-19 cases (chest pain, respiratory and sickness). An overall decrease in traffic-related incidents was also observed in Israel and Ontario during period two. People may have travelled less frequently because of the shelter-in-place order issued in March 2020 and possibly been less exposed to injury-prone locations. A study in Connecticut found that the mean daily vehicle miles travelled and the mean daily counts of crashes significantly decreased in the post-stay-at-home period in 2020. Our comparison between periods one and three in Table 5 showed that the frequencies of traffic-related incidents remained lower in the long run than those of the pre-pandemic time, despite the lifting of Texas stay-at-home order.

The decrease in emergency calls regarding chest pain, sickness and respiratory problems was also found in the Netherlands and Ontario, Canada. One possible explanation is that calls previously classified as “chest pain,” “respiratory,” and “sick,” because of their similarity to Covid-19 symptoms, became categorised as “pandemic.”

Prior studies have found an increase in EMS calls regarding cardiac arrest, stroke, mental health and overdose during the early stages of the Covid-19 pandemic. Our study confirmed that, in the long term, the EMS demand for these problems did not decrease. Interestingly, although earlier findings in Ontario, Canada showed a decrease in emergency calls related to assault during the period March-May 2020, our study found that the daily average number of emergency calls related to assault in Austin was higher during the post-pandemic time (period three) than pre-pandemic time (period one).

Despite the overall decrease in emergency call volume, we observed a statistically significant prolongation of the EMS response

Assignment	Dispatch	Arrival				
Mean	Median	Mean	Median			
Period 1	1.18	1.02	1.01	1.00	6.88	5.87
Period 2	1.33	1.12	1.08	1.10	7.52	6.40
Period 3	1.25	1.05	1.11	1.10	7.61	6.55

Note: Assignment time, dispatch time and arrival time were all slower during periods two and three than those in period one.
time (see Section 3.2.2). Whether this is clinically significant is beyond our scope, though there are studies that may raise concerns. In particular, it was shown that for incidents of intermediate or high risk of mortality, a survival benefit was identified when the response time was within 4 to 5 minutes for patients when compared with that exceeding 5 minutes. Hence, as found in this study, the 11.1% decrease in the proportion of high-priority incidents whose response time was within 5 minutes may raise concerns for EMS practitioners.

Investigating the cause of the lengthened response time is a very interesting problem, but it is well beyond the scope of this study. One possible explanation is that the adaptation to Covid19 personal protective equipment (PPE) protocol may have contributed to the overall prolongation of EMS response time. Prior studies reported that the following Covid-19 PPE protocols have hampered surgical performance by causing visual impairment, communication impediments and increased fatigue. We hypothesise that the same could have happened to health workers at the EMS department. Additionally, previous studies have reported shortages in resources such as PPE equipment among EMS facilities, which may limit the number of available personnel and ambulances. Indeed, local news reported in Austin suggested that the EMS department did not receive adequate funding to maintain sufficient personnel and ambulances during the pandemic, leading to delays in the response time. Meanwhile, the prolongation of EMS response time after the beginning of the Covid-19 pandemic was also found in Finland and Western Pennsylvania.

Previous studies reporting the patterns of EMS demand under the impact of Covid-19 in France and Israel suggested that the increase in EMS calls for Covid-19 symptoms followed the same shape as for the confirmed Covid-19 patients. Our study confirms and quantifies this observation. We computed the correlation between the daily new hospitalisation of Covid-19 patients and pandemic-related EMS demand. Covid-19 hospitalisation projection models have been investigated extensively. Our regression model, which can use forecasts of the Covid-19 hospitalisation count

TABLE 8 Comparison of the proportions of high-priority incidents EMS whose response time (in minutes) were within 5 minutes among period one (before 17 March), period two (18 March-12 May), period three (after 13 May)

High-priority incidents	Period 1	Period 2	Period 3
Total count	44 790	48 234	20 402
≤5 min	20 023	16 714	6 854
Proportion	44.7%	34.6%	33.6%

Note: Assignment time, dispatch time and arrival time were all slower during periods two and three than those in period one.

FIGURE 8 Distribution of EMS response times (in minutes) among period one (before March 17th), period two (18 March-12 May), period three (after 13 May). The mean is represented by the solid line and median by the dashed line. Both mean and median of the three types of response time have slightly shifted to the right from period one to period three.
as input, can thus serve as a simple and convenient tool for EMS departments to quickly forecast pandemic-related EMS demand. Interestingly, as time progressed, the offset between pandemic EMS and hospitalisation numbers became smaller. The reason remains unclear. We hypothesise that people became better at making informed decisions about Covid-19-related EMS Calls. At the beginning of the outbreak, because of a lack of knowledge of the epidemic, people might have made haste to raise red flags even though they were not contaminated by Covid-19. However, we did not find supporting evidence for our hypothesis.

5 | LIMITATIONS

Our analysis and the proposed time series model were restricted to the data observed in Austin. It will be interesting to see whether a similar simple model can be fitted to forecast pandemic-related EMS demand in other cities. Moreover, the decrease in the offset between pandemic EMS and hospitalisation numbers stood out very interesting. However, we are unable to find a satisfying reason, and we hope for future studies to test our hypothesis.
Another limitation was that our regression model forecasts the overall number of Covid-19 EMS cases without differentiating the priority levels or the geolocation of each incident. The ability to identify and forecast urgent incidents may improve EMS further. Additionally, a more fine-grained model incorporating spatial information may help identify incident hotspots within the city.

6 | CONCLUSIONS

This study analyzed the impact of the Covid-19 pandemic on EMS call distributions and response time. We have confirmed that, overall, non-pandemic EMS calls in Austin have significantly decreased since the beginning of the Covid-19 pandemic, yet the proportion of non-pandemic defunct calls increased. In terms of problem types, we observed that despite an overall decrease in call volumes, some types of problems seemed to remain unaffected. Specifically, EMS calls related to traffic and Covid-19 symptoms decreased whilst calls related to cardiac arrest, stroke, mental health, overdose and assault did not. These results resonate with those in other geographical areas around the globe.

Meanwhile, the response time of EMS was significantly prolonged since the outbreak of the Covid-19 pandemic. This information can provide an opportunity for dialogue amongst EMS agencies, government officials and healthcare partners on adjusting changes in EMS demand and shortening response time during future pandemics.

Moreover, we proposed a time series regression model with change point detection to predict the daily frequency of pandemic EMS incidents. The daily new hospitalisation of Covid-19 patients caused a powerful predictor for the number of Covid-19-related EMS calls. In particular, this model suggested that for every 2.5 cases, where EMS took a Covid-19 patient to a hospital, one person was admitted. This model may be of interest to other EMS departments as they plan for future pandemics, including the ability to predict pandemic-related calls in an effort to adjust a targeted response.

ACKNOWLEDGMENTS

This research is supported by the Good Systems Research Initiative, part of University of Texas at Austin Bridging Barriers. https://bridgingbarriers.utexas.edu/good-systems/. Ngoc Tran is supported by NSF Grant DMS-2113468 and the NSF IFML 2019844 award to the University of Texas at Austin. Evdokia Nikolova is supported by NSF CCF 1733832 award. We would like to thank Prof. Junfeng Jiao for suggesting the CDC SVI data and Mauricio Tec for providing data on the hospital admission of Covid-19 patients in the Austin-Round Rock metropolitan statistical area. We also thank Natasha Stewart for the insightful comments on earlier drafts.

DISCLOSURES

The authors have declared no disclosures.

AUTHOR CONTRIBUTIONS

NMT and EN: Principal investigators, study design, statistical expertise, acquisition of funding, critical revision of the manuscript. DK: Acquisition and preparation of the data, critical revision of the manuscript. YX: Analysis and interpretation of the data, drafting of the manuscript. JO: Analysis and interpretation of the data, critical revision of the manuscript.

DATA AVAILABILITY STATEMENT

All datasets were extracted from Austin Open Data Portal (https://data.austintexas.gov). The statistical analysis was performed using R statistical computing and graphics environment. The R code is available on GitHub (https://github.com/Xieyangxinyu/AustinEMS2020).

ENDNOTES

1 https://github.com/Xieyangxinyu/AustinEMS2020.

2 The average response time varies among the 6 major hospitals. For a detailed comparison, see the Appendix section.

REFERENCES

1. World Health Organization, et al. Coronavirus disease 2019 (COVID-19): situation report B6. 2020.
2. Moghadas SM, Shoukat A, Fitzpatrick MC, et al. Projecting hospital utilization during the COVID-19 outbreaks in the United States. Proc Natl Acad Sci USA. 2020;117:9122-9126.
3. Willan J, King AJ, Jeffery K, Bienz N. Challenges for NHS hospitals during covid-19 epidemic. BMJ. 2020;368:m1117.
4. Guharoy R, Krenzelok E, Novisky J. Race against the pandemic: the United States and Global Health. J Emerg Med. 2021;60:402-406.
5. Lerner EB, Newgard CD, Mann NC. Effect of the coronavirus disease 2019 (COVID-19) pandemic on the U.S. Emergency Medical Services System: a preliminary report. Acad Emerg Med. 2020;27:693-699.
6. Boserup B, McKenney M, Elkbuli A. The impact of the COVID-19 pandemic on emergency department visits and patient safety in the United States. Am J Emerg Med. 2020;38:1732-1736.
7. Hartnett KP, Kite-Powell A, DeVies J, et al. Impact of the COVID-19 pandemic on emergency department visits—United States, January 1, 2019–May 30, 2020. Morb Mortal Wkly Rep. 2020;69:699.
8. Jeffery MM, D’Onofrio G, Paek H, et al. Trends in emergency department visits and hospital admissions in health care systems in 5 states in the first months of the COVID-19 pandemic in the US. JAMA Intern Med. 2020;180:1328-1333.
9. Lazzerini M, Barbi E, Apicella A, Marchetti F, Cardinale F, Trobia G. Delayed access or provision of care in Italy resulting from fear of COVID-19, The Lancet Child & Adolescent. Health. 2020;4:e10-e11.
10. Thornton J. Covid-19: A&E visits in England fall by 25% in week after lockdown. 2020.
11. Al-Wathinani A, Hertelendy AJ, Alhurishi S, et al. Increased emergency calls during the COVID-19 pandemic in Saudi Arabia: a national retrospective study. Healthcare. 2021;9(1):14.
12. Şan I, Uslu E, Bekgöz B, Korkut S. Effects of COVID-19 pandemic on emergency medical services. Int J Clin Pract. 2020;75:e13885.
13. WongLaura E, Hawkins Jessica E, MurrellKaren L, et al. Where are all the patients? Addressing Covid-19 fear to encourage sick patients to seek emergency care. NEJM Catalyst Innov Care Delivery. 2020. https://catalyst.nejm.org/doi/full/10.1056/CAT.20.0193
14. Jensen T, Holgersen MG, Jespersen MS, et al. Strategies to handle increased demand in the COVID-19 crisis: a coronavirus EMS
support track and a web-based self-triage system. *Prehosp Emerg Care*. 2020;25:28-38.

15. Lucero AD, Lee A, Hyun J, et al. Underutilization of the emergency department during the COVID-19 pandemic. *West J Emerg Med*. 2020;21:15.

16. Butt AA, Azad AM, Kartha BA, Masoodi NA, Bertollini R, Abou-Samra A-B. Volume and acuity of emergency department visits prior to and after COVID-19. *J Emerg Med*. 2020;59:730-734.

17. Montagnon R, Rouffilange L, Agard G, Benner P, Cazes N, Renard A. Impact of the COVID-19 pandemic on emergency department use: focus on patients requiring urgent revascularization. *J Emerg Med*. 2021;60:229-236.

18. Fernandez AR, Crowe RP, Bourn S, et al. COVID-19 preliminary case series: characteristics of EMS encounters with linked hospital diagnoses. *Prehosp Emerg Care*. 2020;25:16-27.

19. Yang BY, Barnard LM, Emerj MT, et al. Clinical characteristics of patients with coronavirus disease 2019 (COVID-19) receiving emergency medical services in King County, Washington. *JAMA Netw Open*. 2020;3(7):e2014549.

20. Gibson C, Ventura C, Collier GD. Emergency Medical Services resource capacity and competency amid COVID-19 in the United States: preliminary findings from a national survey. *Helion*. 2020;6:e03900.

21. Hick JL, Hanfling D, Wynn MK, Pavia AT. Duty to plan: health care, duty to protect themselves and the patients during COVID-19 pandemic? *JAMA Netw Open*. 2020;3(7):e2014549.

22. Devereaux A, Yang H, Seda G, et al. Optimizing scarce resource allocation during COVID-19: rapid creation of a regional healthcare coalition and triage teams in San Diego County, California. *Disaster Med Public Health Prep*. 2020;1-7. http://doi.org/10.1017/dmp.2020.344

23. Schreyer KE, Daniel A, King LL, et al. Emergency department management of the Covid19 pandemic. *J Emerg Med*. 2020;59:946-951.

24. Murphy DL, Barnard LM, Drucker CJ, et al. Occupational exposures and programmatic response to COVID-19 pandemic: an emergency medical services experience. *Emerg Med J*. 2020;37:707-713.

25. Jalili M. How should emergency medical services personnel protect themselves and the patients during COVID-19 pandemic? *Front Emerg Med*. 2020;4:e37.

26. Ehrlich H, McKenney M, Elkbuli A. Defending the front lines during the COVID-19 pandemic: protecting our first responders and emergency medical service personnel. *Am J Emerg Med*. 2021;40:213-214.

27. Spina S, Marrazzo F, Migliari M, Stucchi R, Sforza A, Fumagalli R. The response of Milan’s Emergency Medical System to the COVID-19 epidemic: a retrospective study in Ile-de-France region, France. *BMJ*. 2017;539:j5636.

28. Channouf N, L’Ecuyer P, Ingolfsson A, Avramidis AN. The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta. *Health Care Manag Sci*. 2007;10:25-45.

29. Setzler H, Saydam C, Park S. EMS call volume predictions: a comparative study. *Comput Oper Res*. 2009;36:1843-1851.

30. McConnel CE, Wilson RW. The demand for prehospital emergency services in an aging society. *Soc Sci Med*. 1998;46:1027-1031.

31. Wong HT, Lai PC. Weather inference and daily demand for emergency ambulance services. *Emerg Med J*. 2012;29:60-64.

32. McCarthy ML, Zeger SL, Ding R, Aronsky D, Hoot NR, Kelen GD. The challenge of predicting demand for emergency department services. *Acad Emerg Med*. 2008;15:337-346.

33. Satty T, Ramgopal S, Elmer J, Mosesso VN, Martin-Gill C. EMS responses and nontransports during the COVID-19 pandemic. *Am J Emerg Med*. 2021;42:1-8.

34. Ferron R, Agarwal G, Cooper R, Munkley D. The effect of COVID-19 on emergency medical service call volumes and patient acuity: a cross-sectional study in Niagara, Ontario. *BMC Emerg Med*. 2021;21:39.

35. Mantica G, Riccardi N, Terrone C, Gratarola A. Non-COVID-19 visits to emergency departments during the pandemic: the impact of fear. *Public Health*. 2020;183:40.

36. Laukkanen L, Lahtinen S, Liisanantti J, Kaakinen T, Ehrola A, Raatiniemi L. Early impact of the COVID-19 pandemic and social restrictions on ambulance missions. *Eur J Public Health*. 2021;Ckab065. http://doi.org/10.1017/dmp.2020.344

37. Hall WK. Management science approaches to the determination of urban ambulance requirements. *Socio-Econ Plan Sci*. 1971:5:491-499.

38. Aldrich CA, Hisserich JC, Lave LB. An analysis of the demand for emergency ambulance service in an urban area. *Am J Public Health*. 1971:61:1156-1169.

39. Siler KF. Predicting demand for publicly dispatched ambulances in a metropolitan area. *Health Serv Res*. 1975;10:254.

40. Kvålseth TO, Deems JM. Statistical models of the demand for emergency medical services in an urban area. *Am J Public Health*. 1979;69:250-255.

41. McDowell KE, Wilson RW. The demand for prehospital emergency services in an aging society. *Soc Sci Med*. 1998;46:1027-1031.

42. Wong HT, Lai PC. Weather inference and daily demand for emergency ambulance services. *Emerg Med J*. 2012;29:60-64.

43. McCarthy ML, Zeger SL, Ding R, Aronsky D, Hoot NR, Kelen GD. The challenge of predicting demand for emergency department services. *Acad Emerg Med*. 2008;15:337-346.

44. Channouf N, L’Ecuyer P, Ingolfsson A, Avramidis AN. The application of forecasting techniques to modelling emergency medical system calls in Calgary, Alberta. *Health Care Manag Sci*. 2007;10:25-45.

45. Setzler H, Saydam C, Park S. EMS call volume predictions: a comparative study. *Comput Oper Res*. 2009;36:1843-1851.

46. Andrew E, Nehme Z, Bernard S, et al. Stormy weather: a retrospective analysis of demand for emergency medical services during epidemic thunderstorm asthma. *BMJ*. 2017;539:j5636.

47. COVID-19 APHP-Universities-INRIA-INSERM Group. Early indicators of intensive care unit bed requirement during the COVID-19 epidemic: a retrospective study in Ile-de-France region, France. *PloS One*. 2020;15:e0241406.

48. Riou B & Early indicators of intensive care unit bed requirement during the COVID-19 epidemic: A retrospective study in Ile-de-France region, France. *PloS ONE*. 2020;15:(11):e0241406. https://doi.org/10.1371/journal.pone.0241406

49. Jaffe E, Sonkin R, Strugo R, Zerath E. Evolution of emergency medical calls during a pandemic – an emergency medical service during the COVID-19 outbreak. *Am J Emerg Med*. 2020;50735–6757(20):30527-30531.

50. Kulpanowski D University of Texas Good Systems and ATCEMS Incidents data. 2021. https://data.austin texas.gov/Public-Safety/University-of-Texas-Good-Systems-and-ATCEMS-incide/8mwidpdp. Accessed August 13, 2021.

51. Medical Priority Dispatch System EMD Cardset. https://priorityd ipatch.net/emd-cardset/. Accessed August 08, 2021.

52. Kulpanowski D University of Texas Good Systems and ATCEMS Hospitalization time series. 2021. https://data.austintexas.gov/Public-Safety/University-of-Texas-Good-Systems-and-ATCEMS-Hospit/25rm55iz. Accessed August 13, 2021.

53. Tec M, Lachmann M, Fox SJ, Pasco R, Woody S, Starling J, Dahan M, Gaithier K, Scott J, Meyers LA. Austin COVID-19 transmission estimates and healthcare projections. 2020.
1.2 | Comparison of change point locations with respect to various choices of penalty

To evaluate the impact of the pandemic on non-pandemic incidents, we identified changes in mean and variance with binary segmentation method and BIC penalty assuming an underlying normal distribution. To restrict our attention to the impact of the pandemic only, we identified changes in mean and variance with binary segmentation method and BIC penalty assuming an underlying normal distribution. To restrict our attention to the impact of the pandemic only, we chose the maximal number of change points as 2. When we allowed a greater number of change points, binary segmentation with both BIC penalty and Schwarz information criterion (SIC) was sensitive to random noise and produced too many dates. When we identified the changes in mean and variance, the PELT method was sensitive to random noise and produced too many dates. When we restricted the PELT method to variance only, it failed to identify the changes in mean and variance. The complete list of the mean and median response times for each of the six hospitals is given in Table 10.

1.1 | Comparison of mean response time across hospitals

One-way analysis of variance (ANOVA) suggested that the mean response time varied for the six major hospitals (F-test, P < .01 for assignment, dispatch and arrival). This is also shown in the mean plots in Figure 11. In particular, Dell Seton Medical Center, located in downtown Austin, had a low response time than other hospitals. However, the slight difference in time may not have practical significance. A complete list of the mean and median response times for each of the six hospitals is given in Table 10.
To identify the multiple change points in the daily hospitalisation data, we applied the PELT method on the variance with MBIC penalty assuming an underlying normal distribution. We chose PELT on the variance with MBIC penalty because it produced a relatively small number of change points, which could help avoid overfitting. The PELT method with other types of penalties (BIC, Akaike information criterion (AIC), SIC), as well as the binary segmentation method, however, produced too many change points (≥ 6).
1.3 | Time series regression model without change point detection

Table 11 gives the output of a single variable time series regression model. The mean squared error of this model is 40.501, which is worse than that of our proposed model (Table 9).