Integrated analysis of IncRNA-associated ceRNA network reveals potential biomarkers for the prognosis of hepatitis B virus-related hepatocellular carcinoma

Hongyan Li
Xiaonan Zhao
Chenghua Li
Chuanlun Sheng
Zhenzi Bai
Infectious Department, China-Japan Union Hospital, Jilin University, Changchun 130033, China

Background: There is evidence that abnormal expression of IncRNAs is associated with hepatitis B virus (HBV) infection-induced hepatocellular carcinoma (HCC). However, the mechanisms remain not fully elucidated. The study aimed to identify novel IncRNAs and explore their underlying mechanisms based on the ceRNA hypothesis.

Methods: The RNA and miRNA expression profiling in 20 tumor and matched adjacent tissues from HBV–HCC patients were retrieved from the Gene Expression Omnibus database under accession numbers GSE77509 and GSE76903, respectively. Differentially expressed lncRNAs (DELs), miRNAs (DEMs), and genes (DEGs) were identified using the EdgeR package. Protein–protein interaction (PPI) network was constructed for DEGs followed by module analysis. The ceRNA network was constructed based on interaction relationships between miRNAs and mRNAs/IncRNAs. The functions of DEGs were predicted using DAVID and BinGO databases. The prognosis values (overall survival [OS] and recurrence-free survival [RFS]) of ceRNA network genes were determined using The Cancer Genome Atlas (TCGA) data with Cox regression analysis and Kaplan–Meier method.

Results: The present study screened 643 DELs, 83 DEMs, and 1,187 DEGs. PPI network analysis demonstrated that CDK1 and CCNE1 were hub genes and extracted in functionally related modules. E2F2, CDK1, and CCNE1 were significantly enriched into cell cycle pathway. FAM182B-miR-125b-5p-E2F2 and LINC00346-miR-10a-5p-CDK1/CCNE1 ceRNA axes were obtained by constructing the ceRNA network. Patients with high expressions of DELs and DEGs in the above ceRNA axes had poor OS, while patients with the high expression of DEMs possessed excellent OS. CDK1 was also an RFS-related biomarker, with its high expression predicting poor RFS. The upregulation of LINC00346 and CDK1 but the downregulation of miR-10a-5p in HCC was validated in other microarray datasets and TCGA database.

Conclusion: The LINC00346-miR-10a-5p-CDK1 axis may be an important mechanism for HBV-related HCC, and genes in this ceRNA axis may be potential prognostic biomarkers and therapeutic targets.

Keywords: hepatocellular carcinoma, hepatitis B virus, ceRNA, IncRNA, miRNA, prognosis, bioinformatics analysis, TCGA

Introduction

Hepatocellular carcinoma (HCC) is the fourth most prevalent human malignancy and the third cause of cancer-related deaths in China.1 In 2015, it is estimated that there are 466,100 new cases and 422,100 deaths due to this disease.1 Although patients with HCC can be managed with a series of therapeutic methods (including surgical resection,
adjuvant chemotherapy, radiotherapy, and liver transplantation), the overall 5-year survival rate still remains poor (less than 20%). Epidemiological studies have shown that chronic hepatitis B virus (HBV) infection is the predominant risk factor for the development, metastasis, and recurrence of HCC, accounting for about 80% of all HCC in China. Thus, it is necessary to further investigate the molecular mechanisms of HBV-related HCC in order to screen novel prognostic biomarkers and develop effective therapeutic strategies.

Recently, there have studies to indicate that the abnormal expression of lncRNAs, a class of noncoding RNAs longer than 200 nt in length, is associated with the development of various cancers, including HBV-related HCC. For example, Zuo et al found that lncRNA AX800134 was upregulated in HBV-positive HCC compared with HBV-negative HCC. Silencing AX800134 with siRNA interference significantly suppressed the growth and invasion but enhanced spontaneous apoptosis of HBx-expressing HepG2 cells. The study of Lv et al revealed that the expression of lncRNA DREH was frequently downregulated in HBV-associated HCC tissues in comparison with adjacent noncancerous hepatic tissues. Inhibition of DREH expression by HBx remarkably promoted the proliferation of HCC cells in vitro and in vivo. Yang et al identified that lncRNA-HEIH was highly expressed in liver samples from patients with HBV-related HCC. The expression level of lncRNA-HEIH in HBV-related HCC was significantly associated with recurrence and was an independent prognostic factor for survival. However, the mechanisms of lncRNAs in HBV-related HCC remain not fully elucidated.

Previously, emerging evidence has demonstrated that lncRNAs may function as molecular sponges for a miRNA through their miRNAs response elements (MREs) and thereby influence the translation inhibition or mRNA degradation of the transcript on the targets by the respective miRNAs, which is proposed as ceRNA hypothesis. Accumulating data also indicated that this regulatory action plays important roles in HCC development. For example, Lv et al showed that lncRNA Unigene56159 promoted the proliferation and invasion of HCC cells by acting as a ceRNA for miR-140-5p to de-repress the expression of Slug and induce the epithelial–mesenchymal transition (EMT). Mo et al observed the upregulated LINC01287 competitively bound to miR-298 and increased the expression of its target gene STAT3 to promote EMT and invasion of HCC cells. IncRNA n335586 was also reported to promote EMT of HCC cells and then migration as well as invasion through facilitating the expression of its host gene creatine kinase, mitochondrial 1A (CKMT1A) by competitively binding miR-924. IncRNA SNHG12 functioned as an oncogene to accelerate tumorigenesis and metastasis of HCC cells by sponging miR-199a/b-5p, which resulted in the high expression of MLK3 (mitogen-activated protein kinase kinase kinase 11) and activated the NF-κB pathway. HCAL directly interacted with and functioned as a sponge for miR-15a, miR-196a, and miR-196b to modulate lysosomal protein transmembrane 4 beta (LAPT4B) expression in HCC. However, studies performed to investigate the ceRNA mechanisms of lncRNAs for HBV-related HCC were rare.

The goal of this study was to identify novel lncRNA–miRNA–mRNA interaction axes for explaining the development of HBV-associated HCC by constructing a ceRNA regulatory network using sequencing data collected from a public database. Also, the prognosis performance of related lncRNAs, miRNA, and mRNAs was also validated by utilizing The Cancer Genome Atlas (TCGA) datasets. We believe that our study may provide novel prognostic biomarkers and therapeutic targets for HBV-associated HCC.

Methods

Data collection and preprocessing

Two datasets under accession numbers GSE77509 and GSE76903 were retrieved from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). These two datasets examined the RNA expression profiling and noncoding (miRNA) expression profiling in 20 primary tumors and 20 matched adjacent normal tissues from patients with HBV-induced HCC by high-throughput sequencing via HiSeq 2500 System (Illumina, San Diego, CA, USA). The samples were the same for the two datasets. The fragment per kilobase per million mapped reads (FPKM) expression data in TXT files were downloaded and preprocessed by removing low abundance genes with an FPKM of <1. The lncRNA and mRNA genes in RNA expression profiling were annotated based on the Ensembl Gene ID and HUGO Gene Nomenclature Committee (HGNC; http://www.genenames.org/).

Differentially expressed RNA analysis

The differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed miRNAs (DEMs) between primary tumors and adjacent normal tissues were identified using the EdgeR package of R software (Version 3.22.3; http://www.bioconductor.org/packages/release/bioc/html/edgeR.html). P-value was adjusted to false discovery rate (FDR) with multitest package (Version 2.36.0; http://bioconductor.org/packages/release/bioc/html/multtest.html). The FDR of <0.05 and |logFC(fold change)|
>1 were set as the statistical threshold value. Hierarchical cluster heatmap representing the expression intensity and direction of DEGs, DELs, and DEMs was generated using the heatmap R package (Version: 1.0.8; https://cran.r-project.org/web/packages/heatmap) based on Euclidean distance.

Protein–protein interaction (PPI) network

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING; Version 10.0; http://stringdb.org/) database was used to assess the direct and indirect correlations between DEGs. The screened interaction pairs among DEGs were used to construct the PPI network with the Cytoscape software (Version 3.6.1; www.cytoscape.org/).24 The topological features of the PPI network, consisting of degree (the number of edges [interactions] of a node protein), betweenness centrality (BC; the number of shortest paths that run through a node), closeness centrality (CC; the average length of the shortest paths to access all other proteins in the network), and average path length (APL; the average of distances between all pairs of nodes), were then calculated using the CytoNCA plugin in cytoscape software (http://apps.cytoscape.org/apps/cytonca)25 to determine which genes were hub nodes. Functionally related clusters with well-interconnected genes were further identified from the PPI network using the Molecular Complex Detection (MCODE; Version: 1.4.2, http://apps.cytoscape.org/apps/mcode) algorithm26 with default scoring options. Modules with score >4 and node >6 were considered to be significant.

Function enrichment analysis

Gene Ontology (GO) Biological Process term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (Version 6.8; http://david.abcc.ncifcrf.gov/)27 and BinGO plugin in Cytoscape to predict their underlying functions. Statistical significance was defined as FDR <0.05.

IncRNA–miRNA–mRNA ceRNA regulatory network construction

The miRcode database (Version 11; http://www.mircode.org/)29 was used to screen the interaction relationships between DELs and DEMs, and then, the DELs–DEMs interaction network was constructed using the Cytoscape software (Version 3.6.1; www.cytoscape.org/).24 The target genes of DEMs in the DELs–DEMs interaction network were predicted using the miRwalk database (Version 2.0; http://www.zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2),30 which were then overlapped with the DEGs to obtain the DELs–DEMs–DEGs regulatory relationships. The negative interaction pairs between DEMs and DEGs/DELs were integrated to construct the DELs–DEMs–DEGs ceRNA network using the Cytoscape software (Version 3.6.1; www.cytoscape.org/).24 Furthermore, all known HCC-related pathways were downloaded from Comparative Toxicogenomics Database (CTD; http://ctd.mdibl.org/),31 which was then overlapped with the pathways enriched by the genes in the ceRNA network to obtain potentially HCC-related ceRNA network.

Prognosis values of DELs, DEMs, and DEGs in ceRNA network

The miRNAs and mRNAs expression profile data of HCC were also collected from TCGA (https://gdc-portal.nci.nih.gov/) database, with only the HBV samples having survival information, included. Univariate Cox regression analysis was performed to screen prognosis-related DELs, DEMs, and DEGs using the survival package (Version 2.40.1; https://cran.r-project.org/package=survival). The samples were then classified into a low-expression group (< median) and a high-expression group (> median) based on the expression of each prognosis-related DEL, DEM, and DEG. The Kaplan–Meier (KM) method with the log-rank test was employed to compare the overall survival (OS) and recurrence-free survival (RFS) between the high- and low-expression groups through the GraphPad Prism software (Version 5; GraphPad Software, Inc., La Jolla, CA, USA). P<0.05 was considered to be statistically significant.

Validation of expressions of crucial DELs, DEMs, and DEGs in ceRNA network

The expressions of crucial DELs, DEMs, and DEGs were also validated in TCGA dataset and other microarray datasets that detected the mRNA (GSE121248: 70 vs 37; GSE9466032: 21 vs 5), miRNA (GSE69580: 5 vs 5), and IncRNA (GSE2746234: 5 vs 5) expression profile between tumor and matched adjacent tissues from HBV–HCC patients. All microarray datasets were also collected from the GEO database. The expression difference was tested by t-test. P<0.05 was set as statistical significance.

Results

Differential expression analysis

A total of 133 IncRNAs, 18,628 protein-coding mRNAs, and 2,578 miRNAs were annotated in mRNA-seq and miRNA-seq data. After removing the low abundance genes with an
DEGs (Figure 1C). The expressions of DELs (Figure 1A), DEMs (Figure 1B), and lncRNAs (Figure 1D) were identified between adjacent normal tissues and primary tumors (Table 1). The heat map analysis showed that the samples with similar features tended to be clustered according to the DEGs (650 downregulated and 537 upregulated), 83 DEMs (10 downregulated and 73 upregulated), and 1,187 DEGs (14 downregulated and 29 upregulated), which were subjected to the DAVID to predict their functions. The results indicated that 16 GO biological process terms were obtained for the upregulated genes, mainly involving cell cycle (ie, E2F2, CDK1, CCNE1, BUB1, UBE2C, and CCNB1), while 27 GO biological process terms were enriched for the downregulated genes, mainly involving inflammatory response (PF4 and CXCR1) (Table 2 and Figure 2A). Furthermore, the KEGG pathway enrichment analysis was performed. In line with the GO enrichment results, the cell cycle (E2F2, CDK1, CCNE1, BUB1, and CCNB1) and p53 signaling pathway (CDK1, CCNE1, and CCNB1) were also obtained for the upregulated genes, while cytokine–cytokine receptor interaction was enriched for the downregulated genes (PF4 and CXCR1) (Table 3 and Figure 2B).

PPI network construction
Using the STRING database, 2,065 interaction relationship pairs (eg, BUB1–CDK1) were obtained between the 357 DEGs (182 downregulated and 175 upregulated), which were used for constructing a PPI network (Figure 3). After calculating the topological features for each protein in PPI network, CCNB1, CDK1, G protein subunit gamma 4 (GNG4), UBE2C, G protein subunit gamma transducin 1 (GNGT1), kinesin family member 4A (KIF4A), PF4, and G protein subunit gamma 13 (GNG13) were found to be shared in four topological characteristics and ranked in the top 30, suggesting that they may be hub genes (Table 4).

Four significant functionally related modules (Figure 4) were subsequently screened using the MCODE, among which the module 1 was the most significant with score =14.47 and node =38, followed by module 2 with score =13.152 and node =46. Also, GO analysis of genes in modules 1 and 2 with BinGO plugin of Cytoscape indicated that they were involved in mitotic cell cycle (CCNB1, CDK1, BUB1, and UBE2C) and cell surface receptor-linked signaling pathway (PF4 and CXCR1) (Table 5).

Table 1 Differentially expressed genes, miRNAs, and lncRNAs

Symbol	LogFC	FDR	Symbol	LogFC	FDR	Symbol	LogFC	FDR
CDC6	1.05	2.01E-03	hsa-miR-215-3p	29.41	3.08E-06	LINC01662	4.62	1.21E-07
CCNE1	1.02	1.22E-02	hsa-miR-30b	3.80	8.46E-11	DSCR8	4.49	1.73E-17
CDK1	1.04	2.02E-03	hsa-miR-483-3p	3.42	3.40E-09	LINC01976	4.30	7.43E-06
E2F2	1.03	7.83E-03	hsa-miR-410-3p	3.25	1.76E-08	LINC00632	3.70	8.51E-13
BUB1	1.11	6.22E-04	hsa-miR-7974	3.25	3.05E-08	DSCR4	3.63	2.03E-12
CCNB1	1.03	2.17E-03	hsa-miR-483-5p	3.22	2.62E-08	LINC02089	3.50	9.85E-05
SFN	1.54	4.46E-06	hsa-miR-200c-3p	3.17	4.31E-08	MIR2052HG	3.34	4.32E-11
GNG4	1.48	6.54E-05	hsa-miR-183-5p	3.11	6.10E-08	PRNT	2.54	1.17E-02
UBE2C	1.23	2.15E-04	hsa-miR-1910-5p	3.09	4.44E-04	LINC00346	2.02	3.33E-05
GNTG1	2.04	1.49E-05	hsa-miR-493-5p	3.08	8.66E-08	FAM182B	1.30	1.04E-02
KIF4A	1.15	5.96E-04	hsa-miR-139-5p	-2.22	1.49E-04	PACRGAS5	-1.24	2.72E-02
GNG13	1.40	1.87E-02	hsa-miR-30c-2-3p	-1.59	1.04E-02	LINC01558	-1.59	1.17E-03
PF4	-1.36	2.03E-02	hsa-miR-378i	-1.54	1.32E-02	LINC02312	-1.60	1.47E-03
IL-6	-1.04	2.94E-02	hsa-miR-199a-5p	-1.45	2.11E-02	LINC02453	-1.74	3.36E-04
CXCR1	-1.05	1.64E-02	hsa-miR-30a-5p	-1.45	2.16E-02	LIRB1-AS1	-1.87	0.013104
INS	-3.6	9.75E-11	hsa-miR-125b-5p	-1.43	2.29E-02	LINC01561	-2.05	7.28E-05
RD3L	-3.16	2.70E-10	hsa-miR-378d	-1.43	2.43E-02	LINC01530	-2.09	1.89E-05
VGLL1	-2.96	4.88E-06	hsa-miR-10a-3p	-1.41	2.62E-02	LINC01620	-2.16	2.77E-05
TH	-2.85	7.02E-15	hsa-miR-133a-3p	-1.38	3.15E-02	LINC01554	-2.19	5.61E-06
CLDN8	-2.83	3.13E-06	hsa-miR-101-3p	-1.37	3.12E-02	B3GALT5-AS1	-2.31	3.83E-06

Abbreviations: FC, fold change; FDR, false discovery rate.
CeRNA network construction
By searching the miRcode database, 14 DELs–DEMs interaction relationship pairs (including five DELs, all upregulated, and 10 DEMs, five upregulated and five downregulated) were predicted, which were used for constructing the DELs–DEMs network. Subsequently, the target genes of these 10 DEMs were predicted with the miRwalk database. After removal of the positive–negative relationships between DEMs and DEGs, 113 DELs–DEMs interaction relationship pairs (including eight DEMs, three upregulated and five downregulated, and 82 DEGs, 67 upregulated and 15 downregulated) were left for constructing the DEMs–DEGs network. By integrating the DELs–DEMs network and DEMs–DEGs network, a DELs–DEMs–DEGs ceRNA network was established containing 95 nodes (five DELs, eight DEMs, and 82 DEGs) and 239 edges (14 DELs–DEMs, 113 DELs–DEGs, and 112 DEGs–DEGs) (Figure 5).

Function enrichment analysis with DAVID showed the genes in the ceRNA network participated in four significant KEGG pathways, including cell cycle, p53 signaling pathway, neuroactive ligand–receptor interaction, and pathways in cancer (Table 6). By searching the CTD database with “Hepatocellular Carcinoma” as the keyword, 244 KEGG pathways were found to be associated with HCC. Among them, three were common with the enrichment results of the genes in the ceRNA network, including cell cycle (CCNE1, E2F2, and CDK1), p53 signaling pathway (CCNE1 and CDK1), and pathways in cancer (E2F2). Thus, the DELs–DEMs–DEGs interaction relationship pairs associated with these three pathways were extracted to form the HCC-related ceRNA network.
Category	Term	FDR	Genes
Up	GO:0007049–cell cycle	4.24E–10	E2F1, KIF23, E2F2, KIFC1, XRCC2, E2F7, E2F8, MAEL, PKMYT1, TTK, PTTG1, AURKB, GTSE1, KIF2C, CCNE1, CDC8, CDC45, CDC2A, PIWIL3, CDCAS, CD6, CDK1, EGFL6, MND1, PBK, HMG2, UBE2C, PRDM9, BUB1B, ERN2, NEK2, ANLN, CEP55, SPCC24, SPCC25, NCAPH, DUSP13, HJURP, NCAPG, CENPA, BUB1, FBXO43, SKA3, SKA1, TRIP13, EXO1, DGLAPS, NUF2, KIF18A, BIRC5, NDC80, CDC20, CDKN3, CDC25C, CDC25A, GSG2, CCNB1, CCNB2, TEX1
	GO:0022402–cell cycle process	1.13E–11	KIF23, E2F1, KIFC1, XRCC2, SCC2, MAEL, PKMYT1, TTK, AURKB, PTTG1, GTSE1, CCNE1, KIF2C, CDC8, CDC2A, PIWIL3, CDCAS, CD6, CDK1, MND1, PBK, UBE2C, HMG2, PRDM9, BUB1B, ERN2, NEK2, ANLN, CEP55, SPCC24, SPCC25, NCAPH, DUSP13, CENPA, NCAPG, FBXO43, BUB1, SKA3, SKA1, TRIP13, EXO1, DGLAPS, KIF18A, NUF2, NDC80, BIRC5, CDC20, CDC25C, CDKN3, CDC25A, CCNB1, CCNB2, TEX1
	GO:0022403–cell cycle phase	1.74E–15	E2F1, KIF23, KIFC1, XRCC2, NEK2, MAE, TTK, PKMYT1, ANLN, PTGG1, CEP55, AURKB, GTSE1, SPCC24, CCNE1, KIF2C, SPCC25, NCAPH, CDC8, DUSP13, NCAPG, BUB1, FBXO43, CDC2A, SKA3, PIWIL3, SKA1, CDCAS, TRIP13, EXO1, CDK1, CD6, DGLAPS, NUF2, KIF18A, MND1, CDC20, BIRC5, NDC80, PBK, HMG2, CDKN3, CDC25C, UBE2C, CDC25A, CCNB1, PRDM9, CCNB2, BUB1B, TEX1
	GO:0000279–M phase	3.28E–16	KIF23, KIFC1, XRCC2, NEK2, MAE, TTK, PKMYT1, ANLN, PTGG1, CEP55, AURKB, SPCC24, KIF2C, SPCC25, NCAPH, CDC8, DUSP13, NCAPG, BUB1, FBXO43, CDC2A, SKA3, PIWIL3, SKA1, CDCAS, TRIP13, EXO1, CDK1, CD6, DGLAPS, NUF2, KIF18A, MND1, CDC20, BIRC5, NDC80, PBK, HMG2, CDC25C, UBE2C, CDC25A, CCNB1, PRDM9, CCNB2, BUB1B, TEX1
	GO:0000278–mitotic cell cycle	2.13E–11	E2F1, KIF23, KIFC1, NEK2, TTK, PKMYT1, ANLN, PTGG1, CEP55, AURKB, GTSE1, SPCC24, CCNE1, KIF2C, SPCC25, CDC8, NCAPH, NCAPG, CENPA, BUB1, CDC2A, SKA3, SKA1, CDCAS, CDK1, CD6, DGLAPS, NUF2, KIF18A, CDC20, BIRC5, NDC80, PBK, HMG2, CDKN3, CDC25C, UBE2C, CDC25A, CCNB1, CCNB2, BUB1B, TEX1
	GO:0007067–mitosis	6.55E–14	KIF23, KIFC1, NEK2, PKMYT1, ANLN, CEP55, AURKB, PTGG1, KIF2C, SPCC25, CDC8, NCAPH, NCAPG, BUB1, CDC2A, SKA3, SKA1, CDCAS, CDK1, CD6, DGLAPS, NUF2, KIF18A, BIRC5, NDC80, CDC20, PBK, HMG2, CDC25C, UBE2C, CDC25A, CCNB1, CCNB2, BUB1B

(Continued)
Table 2 (Continued)

Category	Term	FDR	Genes
GO:0000280–nuclear division		6.55E–14	KIF23, KIFC1, NEK2, PKMYT1, ANLN, CEP55, AURKB, PTTG1, SPC24, KIF2C, SPC25, CDC8A, NCAHP, NCAPG, BUB1, CDC2A, SKA3, SKA1, CDC2A, CDK1, CDC6, DLGAP5, NUFG2, KIF18A, BIRC5, NDC80, CDC20, PBK, HMG2A, CDC25C, UBE2C, CDC25A, CCNB1, CCNB2, BUB1B
GO:0000087–M phase of mitotic cell cycle		9.83E–14	KIF23, KIFC1, NEK2, PKMYT1, ANLN, CEP55, AURKB, PTTG1, SPC24, KIF2C, SPC25, CDC8A, NCAHP, NCAPG, BUB1, CDC2A, SKA3, SKA1, CDC2A, CDK1, CDC6, DLGAP5, NUFG2, KIF18A, BIRC5, NDC80, CDC20, PBK, HMG2A, CDC25C, UBE2C, CDC25A, CCNB1, CCNB2, BUB1B
GO:0048285–organelle fission		1.97E–13	KIF23, KIFC1, NEK2, PKMYT1, ANLN, CEP55, AURKB, PTTG1, SPC24, KIF2C, SPC25, CDC8A, NCAHP, NCAPG, BUB1, CDC2A, SKA3, SKA1, CDC2A, CDK1, CDC6, DLGAP5, NUFG2, KIF18A, BIRC5, NDC80, CDC20, PBK, HMG2A, CDC25C, UBE2C, CDC25A, CCNB1, CCNB2, BUB1B
GO:0051301–cell division		2.47E–08	KIF23, KIFC1, NEK2, CKAN, CEP55, AURKB, PTTG1, SPC24, KIF2C, SPC25, CDC8A, NCAHP, NCAPG, CDC2A, BUB1, SKA3, POU3F2, SKA1, CDC2A, CDK1, CDC6, NUFG2, BIRC5, NDC80, CDC20, HMG2A, UBE2C, CDC25C, CDC25A, CCNB1, CCNB2, BUB1B
Down	GO:0007267–cell–cell signaling	1.82E–07	EDN3, GABRB3, FCLR2, VIPR1, VIPR2, GDNF, WNT2, KCNQ5, WISP2, SLCA12, GRIN2B, CHRNA4, EFNB3, NP6WR1, IL26, NRXN1, NTSR1, IL22, SICLE6, GRM7, WNT9A, DRD1, GRAP, OXT, DRD5, TH, MME, RIMS1, CCL24, INS, CCL1, PRIMA1, BMP3, IL6, PLP1, NOS1, NTG3, DLGAP2, GABRA5, NP5RY, KCNK3, CCL17, WNT7B, CCL14, PNC, GRIA1, NTRK2, ADRA1A, SLCA7, WNT7A, IL2, HTR2A
GO:0006952–defense response		2.83E–07	KLRC4, KLRC2, KLRC3, CXCR1, CFP, GRIN2B, HAMP, RNASE7, IFNG, XCR1, NLRP7, CAMP, PRC2, PSC3, IL22, NCR1, NCR3, CCR9, PROK2, PSG8, PRBP, CD40LG, GRM7, DEFA3, PLA2G2D, CTSG, NGF, KIR3DL2, CLEC1B, C7, DRD1, CCK, CCL24, AZU1, FCN3, INS, CCL21, FCN2, CNR2, SFTPBD, IL1RAPL2, SELP, IL6, IL5, IL1RL1, GABRA5, CCL19, CDSL, STAB2, S100A12, CCL17, MPO, SELE
GO:0044057–regulation of system process		3.67E–05	BMP10, EDN3, DRD1, CCK, ERBB4, MYL3, EDN2, DRD5, OXT, TH, GDNF, DES, GRIN2B, INS, IFNG, LG1, ARC, GNAO1, NOS1, NTG3, NP6YR, NP5YR, PROK2, TNN17, CHRM2, NTRK2, TBA2R8, AVPR1A, IL2, HTR2A, NGF
GO:0007268–synaptic transmission		1.17E–04	DRD1, GABRB3, DRD5, OXT, TH, VIPR1, RIMS1, WNT2, KCNQ5, SLCA12, GRIN2B, CHRNA4, PRIMA1, PLP1, NOS1, NTG3, DLGAP2, NP6WR1, GABRA5, NRXN1, NTSR1, NP5RY, KCNK3, PNC, GRIA1, GRM7, SLCA7, WNT7A, HTR2A

(Continued)
Table 2 (Continued)

Category	Term	FDR	Genes
GO:0051046—regulation of secretion	gO:0051046	1.79E–03	EDN3, IL6, EDN2, OXT, FGF23, NPY1R, GDNF, NPY5R, GC3, GRIN2B, CD40LG, INS, GRM7, IFNG, NTRK2, AVPR1A, CHRNA4, TRPV6, IL2, HTR2A, NGF
GO:0006935—chemotaxis	gO:0006935	3.12E–03	EDN3, IL6, EDN2, CXCR1, CCL19, PF4, CCL17, CCR9, AZU1, CCL24, PROK2, PPBP, CXCL14, CCL21, IFNG, SSTPD, XCR1, LECT2
GO:0042742—defense response to bacterium	gO:0042742	8.64E–03	SELP, IL6, CAMP, PRG2, STAB2, S100A12, AZU1, CFP, PPBP, HAMP, RNASE7, IFNG, DEFA3, CTSG AZU1, EDN3, SELP, IL6, EDN2, IFNG, ELANE, SSTPD, PF4, SELE
GO:0050900—leukocyte migration	gO:0050900	9.20E–03	AZU1, EDN3, SELP, IL6, EDN2, IFNG, ELANE, SSTPD, PF4, SELE
GO:0022610—biological adhesion	gO:0022610	1.39E–02	CLDN8, CLSTN2, OPCML, DSCAML1, CLDN10, L1CAM, MEGF10, WISP2, SRPX, TNR, DPT, DSCAM, TECTA, SELP, MAG, HAPLN4, RET, CDHR1, PCDH11X, CDHR2, IGFL5, SIGLEC11, AJAPI, STAB2, NRXN1, PCDH19, CTNNAA3, CLEC4M, DSG4, LYVE1, FREM3, HEPACAM, SIGLEC6, FREM2, CD40LG, DSG1, CDH19, ITGAD, CNTN3, SELE, COL20A1, IL2
GO:0006954—inflammatory response	gO:0006954	2.80E–02	SELP, C7, IL6, IL5, CXCR1, CCL19, IL22, S100A12, CCL17, NCR3, AZU1, CFP, CCL24, PROK2, FCN3, CD40LG, INS, CCL21, FCN2, CNR2, XCR1, SELE, PLA2G2D, NGF

Note: Top 10 terms were listed.

Abbreviations: DAVID, Database for Annotation, Visualization and Integrated Discovery; FDR, false discovery rate; GO, Gene Ontology.

(Figure 6), in which four DELs (DSCR4, FAM182B, PRNT, and LINC00346), five DEMs (hsa-miR-199a-5p, hsa-miR-30a-5p, hsa-miR-125b-5p, hsa-miR-10a-5p, and hsa-miR-133a-3p), and seven DEGs (CDC6, CCNE1, CDK1, E2F2, BUB1, CCNB1, and SFN) were involved.

Prognosis prediction for DELs, DEMs, and DEGs

Ninety-eight HBV-related HCC samples, which have been used for mRNA and miRNA sequencing, were collected from TCGA database. Univariate Cox regression analysis was then used to screen OS- and RFS-related DELs, DEMs, and DEGs from HCC-related ceRNA network in these samples. The results showed that two DELs, four DEMs, and seven DEGs were significantly associated with OS, but only five DEGs were significantly associated with RFS (Table 7). KM curve was subsequently drawn according the expression level of each DEL, DEM, and DEG in the sequencing data. In line with the Cox regression analysis results, KM curve analysis also (Figure 7) showed that two DELs (FAM182B and LINC00346), four DEMs (hsa-miR-30a-5p, hsa-miR-125b-5p, hsa-miR-10a-5p, and hsa-miR-133a-3p), and seven DEGs (CDC6, CCNE1, CDK1, E2F2, BUB1, CCNB1, and SFN) were significantly associated with OS but not PRNT (expression value = 0 in TCGA data), DSCR4 ($P=0.493$), and hsa-miR-199a-5p ($P=0.101$). Also, all the relationships between their expressions and the prognosis results were in line with our expectation, that is, patients with the high expression of the DELs and DEGs (all were upregulated genes in HBV-related HCC) had the poor survival, while patients with the high expression of DEMs (all were downregulated genes in HBV-related HCC) possessed excellent survival. As shown in Figure 8, KM curve analysis also showed that the highly expressed five DEGs (CDC6, CDK1, BUB1, CCNB1, and SFN) were significantly associated with RFS.

Further combination with their interaction relationships in the ceRNA network suggested that FAM182B-miR-125b-5p-E2F2 and LINC00346-miR-10a-5p-CDK1/CCNE1 ceRNA axes were especially important for the development and prognosis of HBV-related HCC.

Validation of expressions of crucial DELs, DEMs, and DEGs in ceRNA network

The upregulation of LINC00346, CDK1, and CCNE1 but the downregulation of miR-10a-5p and miR-125b-5p was also validated in other microarray datasets and TCGA data.
FAM182B was not found to be differentially expressed in GSE27462 and TCGA data. E2F2 was demonstrated to be differentially expressed in GSE94660, GSE25599, and TCGA data but not in GSE121248 (Table 8). These findings indicated that LINC00346-miR-10a-5p-CDK1 ceRNA axis may be a potentially verifiable mechanism for HBV-related HCC.

Discussion

In the present study, we identified FAM182B-miR-125b-5p-E2F2 and LINC00346-miR-10a-5p-CDK1/CCNE1 ceRNA axes as important mechanisms for the development of HBV-related HCC. They were involved in HBV-related HCC by influencing cell cycle. Also, the genes in these two axes were significantly associated with the OS of patients. LINC00346-miR-10a-5p-CDK1 may be especially crucial because CDK1 was considered as a hub gene in the PPI network and was also associated with RFS as well as the expressions of all of them confirmed in other datasets.

Numerous studies have shown that HBV infection of hepatocytes promotes cell cycle progression by accelerating G1/S and G2/M transition and thus increases cell proliferation ability, ultimately inducing the development of HCC.35,36 It is well accepted that CCNE1 is a positive regulator of G1/S phase transition37 and CCNB1 is required for G2/M transition and mitosis resumption by forming a maturation promoting factor with CKD1.38 Transcriptional factor E2F2 can be activated by Cyclin-CDK enzymatic complex after phosphorylating the protein retinoblastoma (Rb), which promotes the transcription of E2F2.

Table 3 KEGG pathway enrichment for differentially expressed genes using the DAVID database

Category	Term	FDR	Genes
Up	hsa04110:cell cycle	2.16E-08	E2F1, E2F2, CDK1, CDC6, PKMYT1, TTK, CDC20, PTTG1, SFN, CDC25C, CDC25A, CCNB1, CCNE1, CDC45, CCNB2, BUB1, BUB1B
	hsa04080:neuroactive ligand–receptor interaction	2.66E-04	GABRD, CGA, GABRG2, GABRA2, GABRA3, GLRA2, LEP, GRM4, SSTR5, KISS1R, HTR1B, GABR1, GRID2, NPPFR2, TAAR1, HTR1D, GLP1R
	hsa04115:p53 signaling pathway	2.08E-02	CCNB1, CDK1, CCNE1, CCNB2, SFN, GTSE1
	hsa04060:cycline–cycline receptor interaction	2.69E-02	LEP, CCR8, CCL20, GDF5, EGF, BMP7, CCL7, IL11, CCL26
	hsa04062:chemokine signaling pathway	2.73E-02	CCR8, GNTG1, CCL20, GNG13, GNG4, CCL7, CCL26
	hsa00604:glycosphingolipid biosynthesis	2.99E-02	ST6GALNAC5, B4GALNT1
	hsa04512:ECM–receptor interaction	3.14E-02	IBSP, COMP, COL2A1, COL11A
	hsa0350:TGF-beta signaling pathway	3.33E-02	COMP, GDF5, BMP7, PTPX2
	hsa0320:PPAR signaling pathway	4.83E-02	LPL, MMP1, FABP6
Down	hsa00830:retinol metabolism	8.15E-10	CYP3A4, CYP1A1, CYP2B6, CYP2C8, ADH1B, CYP2A1, ADH7, CYP1A2, CYP3A4, CYP2A13, CYP4A11, UGT2B17, CYP4A22, LCAT, ADH4, CYP2A6, CYP2A7, RDH16
	hsa00982:drug metabolism	2.89E-05	CYP3A4, CYP2B6, CYP2C8, ADH1B, CYP1A2, CYP2A1, CYP2A13, GSTM5, CYP3A43, CYP2A13, UGT2B17, ADH4, CYP2A6, CYP2A7
	hsa04080:neuroactive ligand–receptor interaction	1.79E-04	GPR83, DRD1, GABRB3, DRD3, PTHR1R, PRSS1, VIPR1, VIPR2, GGR, GRIN2B, CNR2, GLP2R, GABRP, NPBWR1, GABRA5, NPYR1, NTSR1, NPY5R, GRIA1, CHRM2, GRM7, PTGDR, TXB4AR, AVPR1A, ADRA1A, CTSG, HTR2A
	hsa04060:cycline–cycline receptor interaction	2.07E-04	CXCR1, CNFTR, P4F, P4F1V1, CCL24, CXCR5, CCL21, IFNG, XCR1, AMHR2, IL6, IL5, FLT3, TNFRSF1B, TNFRSF13C, IL26, CCL19, IL22, CCL17, CCR9, TSLP, CXCL14, PPBP, CD40LG, IL5RA, NGFR, IL2
	hsa00980:metabolism of xenobiotics by CYP/CYP450	3.64E-04	CYP3A43, CYP3A4, UGT2B17, CYP1A1, CYP2B6, ADH4, CYP2C8, ADH1B, ADH7, CYP2A13, CYP2A12, GSTM5
	hsa00232:caffeine metabolism	1.50E-03	CYP2A13, NAT2, CYP2A6, CYP2A7, CYP1A2
	hsa00983:drug metabolism	2.10E-02	CYP3A43, CYP3A4, CYP2A13, UGT2B17, NAT2, UPP2, CYP2A6, CYP2A7
	hsa04340:Hedgehog signaling pathway	2.00E-02	WNT2, WNT1, WNT10A, WNT7B, WNT9A, HHIP, GAS1, WNT7A, BMP5

Abbreviations: DAVID, Database for Annotation, Visualization and Integrated Discovery; FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes.
target genes to regulate the G1/S-phase transition. Thus, CCNE1, CCNB1, CKD1, and E2F2 genes are suggested to be upregulated in HBV-related HCC. These hypotheses have been demonstrated by previous studies. For example, Sung et al. used the RNA sequencing (RNA-seq) and Sanger sequencing to confirm that CCNE1 gene was highly expressed in HBV integrated tumors compared with adjacent normal tissue. Chin et al. observed that delivery of a replication competent HBV genome into hepatocyte lines Huh7 and PMH induced the expression of CCNB1.
Figure 3 Protein and protein interaction network for the differentially expressed genes.

Notes: Red, upregulated; green, downregulated. The larger size of node (protein) indicates the higher degree (interaction relationships) of it.

Abbreviation: FC, fold change.

Table 4 Topological features for each protein in PPi network

Gene	Degree	Gene	CC	Degree	Gene	BC	Gene	APL	Overlapped	Expression
GNGT1	87	IL6	0.3179	IL6	0.2515	IL6	3.1461	CCNB1	Up	
GNG13	85	CHRM2	0.2989	UBE2C	0.1845	CHRM2	3.3455	CDK1	Up	
GNG4	64	SH3GL2	0.2959	NGF	0.1695	SH3GL2	3.3792	GNG4	Up	
CDK1	56	EGF	0.2947	TH	0.1586	EGF	3.3933	UBE2C	Up	
CCNB1	52	ESR1	0.2890	GNGT1	0.1413	ESR1	3.4607	GNGT1	Up	
CDC20	48	CCL20	0.2848	FOSB	0.1406	CCL20	3.5112	KIF4A	Up	
BUB1	48	GNGT1	0.2846	MMP1	0.1388	GNGT1	3.5140	PF4	Down	
CCNB2	47	GNG13	0.2823	CHRM2	0.1186	GNG13	3.5421	GNG13	Up	
KIF2C	47	IN5	0.2821	SH3GL2	0.1164	IN5	3.5449			
PMCH	45	UBE2C	0.2808	EGF	0.1106	UBE2C	3.5618			
AURKB	44	PF4	0.2803	E2F1	0.1043	PF4	3.5674			
CENPA	43	PTHLH	0.2786	ESR1	0.1013	PTHLH	3.5899			
KIF20A	39	GNG4	0.2777	GNG13	0.0956	GNG4	3.6011			
BUB1B	39	NFG	0.2766	INS	0.0904	NFG	3.6152			
NCAPG	38	GNAO1	0.2728	KIF4A	0.0670	GNAO1	3.6657			
CDC8	38	KIF4A	0.2722	PTHLH	0.0669	KIF4A	3.6742			
GCCR	37	PPBP	0.2713	CDK1	0.0637	PPBP	3.6854			
NPSR1	37	GNA14	0.2709	ACAN	0.0632	GNA14	3.6910			
BIRC5	37	LEP	0.2707	CCL20	0.0620	LEP	3.6938			
TTK	37	TERT	0.2707	GNAO1	0.0593	TERT	3.6938			
NDC80	37	GNAZ	0.2669	CAMK2B	0.0547	GNAZ	3.7472			
DLGAP5	36	NFR	0.2661	LPL	0.0444	NFR	3.7584			
UBE2C	35	SYT9	0.2655	CYP19A1	0.0430	SYT9	3.7669			
CDC45	35	E2F1	0.2651	CCNB1	0.0417	E2F1	3.7725			
PF4	34	HTR1B	0.2645	GNG4	0.0402	HTR1B	3.7809			
KIF4A	34	CDK1	0.2639	CHRNA1	0.0394	CDK1	3.7893			
PBK	34	PMCH	0.2639	PF4	0.0393	PMCH	3.7893			
KIF23	34	HTR1D	0.2639	RHO	0.0370	HTR1D	3.7893			
CXCR1	33	CCNB1	0.2625	NOS1	0.0353	CCNB1	3.8090			
XCR1	33	CCXR1	0.2597	NFR	0.0348	CCXR1	3.8511			

Note: Top 30 genes were listed.

Abbreviations: APL, average path length; BC, betweenness centrality; CC, closeness centrality; PPI, protein–protein interaction.
Cheng et al also used in vitro experiments to prove HBV persistently activated the CCNB1-CDK1 kinase in HCC cells. In line with these studies, our study also found CCNE1, CCNB1, and CKD1 were upregulated in tumor samples of patients with HBV-related HCC and the high expression of them predicted poor prognosis. The CKD1 may be especially important because it was associated with both OS and RFS. Although there was a study to indicate E2F2 upregulation in HCC, its relationship with HBV has not been investigated. Our study may be the first to reveal that HBV infection may trigger E2F2 upregulation and lead to the development of HCC and poor prognosis for patients. miRNAs are the class of small RNAs (18–25 nucleotides) that downregulate target gene expressions via binding to the 3′-untranslated region (UTR). Thus, the upregulation of cell cycle-related genes may be attributed to the downregulation of miRNAs. In this study, we also investigated the DEMs between tumor and normal samples and predicted their interaction with target genes by the

Table 5 BinGO enrichment for genes in modules

Module	Description	FDR	Genes in test set
M1	Mitotic cell cycle	9.74E–37	CDCA5[(BUB1]CDCA8[NCAPG][TTK][CEPA][AURK][BUB1]CDCA20[CCNB2][CCNB1][PTTG][NUF2][PBK][NEK2][BUB1][CEP55][DLGAP5][UBE2C][KIF23][NDC80][ANLN][KIF18A][CDK1][BIRC5][KIF2C][SPC24][CDK3][SPC25]
	Nuclear division	9.74E–37	CDCA5[(BUB1]CDCA8[NCAPG][SKA1][AURK8][CDCA20][CCNB2][CCNB1][PTTG][NUF2][PBK][NEK2][BUB1][CEP55][DLGAP5][UBE2C][KIF23][NDC80][ANLN][KIF18A][CDK1][BIRC5][KIF2C][SPC24][CDK3][SPC25]
	Mitosis	9.74E–37	CDCA5[(BUB1]CDCA8[NCAPG][SKA1][AURK8][CDCA20][CCNB2][CCNB1][PTTG][NUF2][PBK][NEK2][BUB1][CEP55][DLGAP5][UBE2C][KIF23][NDC80][ANLN][KIF18A][CDK1][BIRC5][KIF2C][SPC24][CDK3][SPC25]
	M phase of mitotic cell cycle	1.65E–36	CDCA5[(BUB1]CDCA8[NCAPG][SKA1][AURK8][CDCA20][CCNB2][CCNB1][PTTG][NUF2][PBK][NEK2][BUB1][CEP55][DLGAP5][UBE2C][KIF23][NDC80][ANLN][KIF18A][CDK1][BIRC5][KIF2C][SPC24][CDK3][SPC25]
	Organelle fission	1.65E–36	CDCA5[(BUB1]CDCA8[NCAPG][SKA1][AURK8][CDCA20][CCNB2][CCNB1][PTTG][NUF2][PBK][NEK2][BUB1][CEP55][DLGAP5][UBE2C][KIF23][NDC80][ANLN][KIF18A][CDK1][BIRC5][KIF2C][SPC24][CDK3][SPC25]
	M phase	2.75E–36	CDCA5[(BUB1]CDCA8[NCAPG][TTK][SKA1][AURK8][CDCA20][CCNB2][CCNB1][PTTG][NUF2][PBK][NEK2][BUB1][CEP55][DLGAP5][UBE2C][KIF23][NDC80][ANLN][KIF18A][CDK1][BIRC5][KIF2C][TRIP13][SPC24][CDK3][SPC25]

(Continued)
Table 5 (Continued)

Module	Description	FDR	Genes in test set																																		
Cell cycle phase		1.03E–35	CDCAS5	BUB1B	CDCAB8	NCAPG	TTK	SKA1	AURKB	CDC20	CCNB2	CCNB1	PITG1	NUF2	PBK	NEK2	BUB1	CEP55	DLGAP5	UBE2C	KIF23	NDC80	ANLN	KIF18A	CDK1	BIRC5	KIF2C	TRIP13	Spc24	Cdkn3	Spc25						
Cell cycle process		5.27E–34	CDCAS5	BUB1B	CDCAB8	NCAPG	TTK	SKA1	AURKB	CDC20	CCNB2	CCNB1	PITG1	NUF2	PBK	NEK2	BUB1	CEP55	DLGAP5	UBE2C	KIF23	NDC80	ANLN	KIF18A	CDK1	BIRC5	KIF2C	TRIP13	Spc24	Cdkn3	Spc25						
Cell cycle		7.78E–34	CDCAS5	BUB1B	CDCAB8	NCAPG	TTK	SKA1	AURKB	CDC20	CCNB2	CCNB1	PITG1	NUF2	PBK	NEK2	BUB1	CEP55	DLGAP5	UBE2C	KIF23	NDC80	ANLN	KIF18A	CDK1	BIRC5	KIF2C	TRIP13	Spc24	Cdkn3	Spc25						
Cell division		8.53E–28	UBE2C	CDCAS5	BUB1B	CDCAB8	NCAPG	KIF23	SKA1	AURKB	NDC80	CCNB2	ANLN	CCNB1	PTTG1	NUF2	PBK	CDK1	BIRC5	KIF2C	TRIP13	Spc24	Cdkn3	Spc25													
G-protein-coupled receptor protein signaling pathway		4.81E–36	NPFFR2	CHR2	PMCH	CCKR5	HTRA2	ADRA1A	GNGT1	GN1A4	GRM4	CXCR5	CNR2	TBX2AR	NPBW1	KISS1R	CCNR9	CCB9R	PROK2	TAC3	NTSR1	P2RY12	XR1	EDN2	NPYSR	GGR	HTR1D	NPY1R	HTR1B	CCK	AVPR1A	SGTR5	GN1G3	PPYR1	PNOC		
Cell surface receptor-linked signaling pathway		8.03E–26	NPFFR2	CHR2	PMCH	CCKR5	HTRA2	ADRA1A	GNGT1	GN1A4	GRM4	CXCR5	CNR2	TBX2AR	NPBW1	KISS1R	CCNR9	CCB9R	PROK2	TAC3	NTSR1	P2RY12	XR1	EDN2	NPYSR	GGR	HTR1D	NPY1R	HTR1B	CCK	AVPR1A	SGTR5	GN1G3	PPYR1	PNOC		
Signaling		6.64E–24	NPFFR2	CHR2	PMCH	CCKR5	HTRA2	ADRA1A	GNGT1	GN1A4	GRM4	CXCR5	CNR2	TBX2AR	NPBW1	KISS1R	CCNR9	CCB9R	PROK2	TAC3	NTSR1	P2RY12	XR1	EDN2	NPYSR	GGR	HTR1D	NPY1R	HTR1B	CCK	AVPR1A	SGTR5	GN1G3	PLN	PPYR1	PNOC	
Behavior		1.44E–23	PMCH	OXT	HTRA2	GRM4	CXR1	CNR2	KISS1R	CCB9R	PROK2	CCL19	NTSR1	XCR1	EDN2	NPYSR	CCL2	EDN3	CCL20	GGR	HTR1D	NPY1R	HTR1B	CCK	AVPR1A	APBP1	PPYR1	PP4C									
Signaling pathway		3.33E–20	NPFFR2	CHR2	PMCH	CCKR5	HTRA2	ADRA1A	GNGT1	GN1A4	GRM4	CXCR5	CNR2	TBX2AR	NPBW1	KISS1R	CCNR9	CCB9R	PROK2	TAC3	NTSR1	P2RY12	XCR1	EDN2	NPYSR	GGR	HTR1D	NPY1R	HTR1B	CCK	AVPR1A	SGTR5	GN1G3	PLN	PPYR1	PNOC	
Signaling process		2.04E–17	CHRM2	PMCH	OXT	HTRA2	ADRA1A	GNGT1	GN1A4	GRM4	CNR2	GRM7	NPBW1	KISS1R	CCB9R	PROK2	CCL19	NTSR1	P2RY12	XCR1	EDN2	NPYSR	CCL2	EDN3	CCL20	GGR	HTR1D	NPY1R	HTR1B	CCK	AVPR1A	SGTR5	GN1G3	PLN	PPYR1	PNOC	

(Continued)
Table 5 (Continued)

Module	Description	FDR	Genes in test set																							
Signal transmission	2.04E–17	CHRM2	PMCH	OXT	HTR2A	ADRA1A	GNGT1	GNA14	GRM4	CNR2	GRM7	NPBWRI	KISS1R	PRK21	CCL19	N TSR1	P2RY12	XCR1	EDN2	NPY5R	CCL20	GNG13	APLN	PNOC	GNNR2	PF4
Signal transduction	1.43E–14	CHRM2	PMCH	OXT	HTR2A	ADRA1A	GNGT1	GNA14	GRM4	CNR2	KISS1R	PRK21	CCL19	P2RY12	XCR1	EDN2	CCL20	GNG13	APLN	PNOC	GNNR2	PF4				
Response to stimulus	2.05E–12	CHRM2	PMCH	OXT	HTR2A	ADRA1A	GNGT1	GNA14	GRM4	CNR2	KISS1R	PRK21	CCL19	P2RY12	XCR1	EDN2	CCL20	GNG13	APLN	PNOC	GNNR2	PF4				
Response to chemical stimulus	2.96E–11	CHRM2	PMCH	OXT	HTR2A	ADRA1A	GNGT1	GNA14	GRM4	CNR2	KISS1R	PRK21	CCL19	P2RY12	XCR1	EDN2	CCL20	GNG13	APLN	PNOC	GNNR2	PF4				
M3	Cyclic-nucleotide-mediated signaling	6.43E–09	GLP1R	VIPR2	PH1	HR	DR1	PTHLH	DRD5																	
	G-protein-coupled receptor protein	2.93E–08	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
	signaling pathway	9.78E–08	VIPR2	GLP2R	PH1	HR	DR1	PTHLH	DRD5																	
	Second messenger-mediated signaling	9.78E–08	VIPR2	GLP2R	PH1	HR	DR1	PTHLH	DRD5																	
	G-protein signaling, coupled to cyclic	2.27E–05	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
	cyclic nucleotide second messenger	3.01E–05	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
	Cell surface receptor-linked signaling	5.37E–05	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
	pathway	8.25E–05	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
	Signaling	1.41E–04	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
	Intracellular signal transduction	1.59E–04	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
	Cell–cell signaling	4.51E–04	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
	Signaling process	7.10E–04	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
	Drug communication	3.44E–16	VIPR2	GRF1	GLP2R	PH1	HR	DR1	PTHLH	DRD5	D5	PTGDR														
M4	Secondary metabolic process	4.89E–11	CYP2A6	CYP2C8	CYP2B6	CYP1A2	CYP1A1	CYP2E1	CYP3A4																	
	Oxidation reduction	2.91E–10	CYP2A6	CYP2C8	CYP2B6	CYP4A1	CYP1A2	CYP2E1	CYP3A4																	
	Steroid metabolic process	3.78E–10	CYP2A6	CYP2B6	CYP1A2	UGT2B7	CYP2E1	CYP3A4																		
	Lipid metabolic process	1.79E–09	CYP2A6	CYP2B6	CYP4A1	CYP1A1	UGT2B7	CYP2E1	CYP3A4																	
	Response to drug	1.12E–07	CYP2A6	CYP2B6	CYP1A2	CYP1A1	CYP3A4																			
	Cellular catabolic process	2.17E–06	CYP2A6	CYP2B6	CYP1A2	CYP1A1	CYP3A4																			
	Small molecule metabolic process	3.78E–06	CYP2A6	CYP2B6	CYP1A2	CYP1A1	CYP3A4																			
	Cellular lipid metabolic process	6.87E–06	CYP2A6	CYP2B6	CYP1A2	CYP1A1	CYP3A4																			
	Catabolic process	9.30E–06	CYP2A6	CYP2B6	CYP1A2	CYP1A1	CYP3A4																			

Abbreviation: FDR, false discovery rate.
miRwalk database. Our results indicated that miR-10a-5p and miR-125b-5p could regulate CDK1/CCNE1 and E2F2, respectively. There have been studies to explore the miRNAs to regulate these target genes in HCC, such as miR-7/497/195-CCNE1, miR-582-5p-CDK1, and miR-214/490-E2F2, but not focused on the relationships of our prediction. However, the studies on the expressions of miR-10a-5p and miR-125b-5p in HCC may indirectly illuminate their underlying negative relations. Zhu et al. identified the DEMs in seven paired specimens of HCC using the microarray technique and found that miR-10a-5p and miR-125b-5p were significantly downregulated. Overexpression of miR-10a and miR-125b was reported to suppress the metastasis of HCC cells in vivo. In line with these studies, our study also showed that miR-10a-5p and miR-125b-5p were downregulated in HBV-related HCC and high expression of them predicted excellent prognosis. lncRNAs are proposed to act as a ceRNA to involve in the regulation effects of miRNAs on the expression of target genes. Thus, the upregulation of cell cycle-related genes may also be attributed to the upregulation of lncRNAs that sponged the miRNAs. In this study, we also investigated the DELs between tumor and normal samples and predicted their interaction with miRNAs by the miRcode database. Our results indicated that upregulated FAM182B and LINC00346 may regulate cell cycle-related genes by interacting with miR-125b-5p and miR-10a-5p, resulting in poor prognosis. In line with our study, there has been a study to demonstrate that LINC00346 was upregulated illuminate their underlying negative relations. Zhu et al. identified the DEMs in seven paired specimens of HCC using the microarray technique and found that miR-10a-5p and miR-125b-5p were significantly downregulated. Overexpression of miR-10a and miR-125b was reported to suppress the metastasis of HCC cells in vivo. In line with these studies, our study also showed that miR-10a-5p and miR-125b-5p were downregulated in HBV-related HCC and high expression of them predicted excellent prognosis. lncRNAs are proposed to act as a ceRNA to involve in the regulation effects of miRNAs on the expression of target genes. Thus, the upregulation of cell cycle-related genes may also be attributed to the upregulation of lncRNAs that sponged the miRNAs. In this study, we also investigated the DELs between tumor and normal samples and predicted their interaction with miRNAs by the miRcode database. Our results indicated that upregulated FAM182B and LINC00346 may regulate cell cycle-related genes by interacting with miR-125b-5p and miR-10a-5p, resulting in poor prognosis. In line with our study, there has been a study to demonstrate that LINC00346 was upregulated illuminate their underlying negative relations. Zhu et al. identified the DEMs in seven paired specimens of HCC using the microarray technique and found that miR-10a-5p and miR-125b-5p were significantly downregulated. Overexpression of miR-10a and miR-125b was reported to suppress the metastasis of HCC cells in vivo. In line with these studies, our study also showed that miR-10a-5p and miR-125b-5p were downregulated in HBV-related HCC and high expression of them predicted excellent prognosis. lncRNAs are proposed to act as a ceRNA to involve in the regulation effects of miRNAs on the expression of target genes. Thus, the upregulation of cell cycle-related genes may also be attributed to the upregulation of lncRNAs that sponged the miRNAs. In this study, we also investigated the DELs between tumor and normal samples and predicted their interaction with miRNAs by the miRcode database. Our results indicated that upregulated FAM182B and LINC00346 may regulate cell cycle-related genes by interacting with miR-125b-5p and miR-10a-5p, resulting in poor prognosis. In line with our study, there has been a study to demonstrate that LINC00346 was upregulated illuminate their underlying negative relations. Zhu et al. identified the DEMs in seven paired specimens of HCC using the microarray technique and found that miR-10a-5p and miR-125b-5p were significantly downregulated. Overexpression of miR-10a and miR-125b was reported to suppress the metastasis of HCC cells in vivo. In line with these studies, our study also showed that miR-10a-5p and miR-125b-5p were downregulated in HBV-related HCC and high expression of them predicted excellent prognosis. lncRNAs are proposed to act as a ceRNA to involve in the regulation effects of miRNAs on the expression of target genes. Thus, the upregulation of cell cycle-related genes may also be attributed to the upregulation of lncRNAs that sponged the miRNAs. In this study, we also investigated the DELs between tumor and normal samples and predicted their interaction with miRNAs by the miRcode database. Our results indicated that upregulated FAM182B and LINC00346 may regulate cell cycle-related genes by interacting with miR-125b-5p and miR-10a-5p, resulting in poor prognosis. In line with our study, there has been a study to demonstrate that LINC00346 was upregulated illuminate their underlying negative relations. Zhu et al. identified the DEMs in seven paired specimens of HCC using the microarray technique and found that miR-10a-5p and miR-125b-5p were significantly downregulated. Overexpression of miR-10a and miR-125b was reported to suppress the metastasis of HCC cells in vivo. In line with these studies, our study also showed that miR-10a-5p and miR-125b-5p were downregulated in HBV-related HCC and high expression of them predicted excellent prognosis. lncRNAs are proposed to act as a ceRNA to involve in the regulation effects of miRNAs on the expression of target genes. Thus, the upregulation of cell cycle-related genes may also be attributed to the upregulation of lncRNAs that sponged the miRNAs. In this study, we also investigated the DELs between tumor and normal samples and predicted their interaction with miRNAs by the miRcode database. Our results indicated that upregulated FAM182B and LINC00346 may regulate cell cycle-related genes by interacting with miR-125b-5p and miR-10a-5p, resulting in poor prognosis. In line with our study, there has been a study to demonstrate that LINC00346 was upregulated

Figure 5 ceRNAs interaction network of IncRNA–miRNA–mRNA. Notes: Square nodes represent IncRNAs; triangle nodes represent miRNAs; circular nodes represent mRNAs. Red, upregulated; green, downregulated. Abbreviation: FC, fold change.

Table 6 KEGG pathways for genes in ceRNA network

Term	P-value	Genes
hsa04110: cell cycle	2.85E–06	CCNB1, E2F2, CDK1, CCNE1, CDC6, BUB1, SFN
hsa04115: p53 signaling pathway	0.001617	CCNB1, CDK1, CCNE1, SFN
hsa04080: neuroactive ligand–receptor interaction	0.04606	GPR83, GABRB3
hsa05200: pathways in cancer	0.046995	E2F2, CCNE1

Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes.
in bladder cancer tissues compared to normal tissues. Knockdown of LINC00346 inhibited bladder cancer cell proliferation and migration and induced cell cycle arrest and cell apoptosis.\(^5\) The high expression of LINC00346 was also found to be significantly associated with poor OS in HCC\(^5\) and breast cancer samples.\(^5\) Nevertheless, no studies were performed to investigate the interaction of LINC00346 with miRNAs. Also, any investigation related to FAM182B has not been found until now. These implied that our identified ceRNA axes (FAM182B-miR-125b-5p-E2F2 and LINC00346-miR-10a-5p-CDK1/CCNE1) may be novel mechanisms for HBV-related HCC.

There were some limitations in this study. First, our study has preliminarily predicted that these ceRNA axes may be associated with the development of HBV-related HCC and some of them were confirmed in some other microarray datasets. Thus, further clinical, in vitro (dual luciferase reporter assay), and in vivo (loss of function) experiments are necessary to validate the expressions of controversial genes (such as FAM182B and E2F2) and regulatory relationships between DELs and DEMs as well as between DEMs and DEGs, and their roles for the proliferation, metastasis, and invasion of HBV infection hepatocytes. Second, there were no clinical data in our used datasets (GSE77509 and GSE76903) and, thus, we only preliminarily predicted the associations between prognosis (OS and RFS) and each of our identified DEL/DEM/DEG using TCGA data via univariate cox regression analysis. Whether these genes were independent biomarkers needed further clinical trials with multivariate Cox’s model that integrated all the clinical information (such as HBV DNA level, liver function parameters, pathologic stage, pathologic node, and pathologic metastasis, grade, therapeutic strategies including hepatectomy, radiofrequency ablation, and sorafenib)\(^5\) and all DELs/DEM/DEGs expression levels.

Table 7 Cox regression analysis to screen survival-related genes

ID	Overall survival HR	P-value	Recurrence-free survival HR	P-value
E2F2	1.24	0.049	1.19	0.16
CDC6	1.05	0.0372	1.41	0.0099
CCNE1	1.05	0.0456	1.08	0.32
CDK1	1.32	0.022	1.48	0.0036
BUB1	1.31	0.013	1.37	0.0054
CCNB1	1.4	0.014	1.36	0.023
SFN	1.22	0.0023	1.19	0.0055
hsa-miR-10a-5p	0.882	0.04	0.854	0.27
hsa-miR-125b-5p	0.835	0.019	0.952	0.74
hsa-miR-133a-3p	0.11	0.045	0.879	0.39
hsa-miR-199a-5p	0.986	0.88	0.907	0.28
hsa-miR-30a-5p	0.911	0.0452	0.866	0.32
LINC00346	1.67	0.0051	0.99	0.85
DSCR4	1.03	0.68	0.994	0.95
FAM182B	1.152	0.047	0.84	0.19
Conclusion
The present study preliminarily indicates that FAM182B and LINC00346 may be novel prognostic biomarkers and therapeutic targets for HBV-associated HCC. They function as a ceRNA to sponge miR-125b-5p and miR-10a-5p to derepress cell cycle-related genes (E2F2, CDK1, and CCNE1) and promote the cell growth of HCC cells.

Ethics approval and informed consent
As the data used in this study were downloaded from GEO or TCGA database, and no human experiment was involved in this study, there were no ethical approval and informed consent. Thus, the principles of the Declaration of Helsinki were also not followed.
Figure 8 Kaplan–Meier analysis to display the correlation of differentially expressed genes with recurrence-free survival outcomes for patients with HBV-related HCC. Abbreviations: HBV, hepatitis B virus; HCC, hepatocellular carcinoma.
Table 8 Confirmation of expressions of crucial lncRNAs, miRNAs, and mRNAs using other datasets

RNA type	Dataset	Symbol	Tumor (mean ± SD)	Control (mean ± SD)	P-value
lncRNA	GSE27462	FAM182B	75.83±27.913	71.79±23.127	0.8096
		LINC00346	124.65±28.955	72.84±14.226	0.01208
	TCGA	FAM182B	3.40±1.255	2.53±0.944	0.081
		LINC00346	14.83±4.336	12.67±1.402	0.0397
	GSE69580	miR-125b-5p	39.38±23.416	355.42±82.423	0.000606
		miR-10a-5p	4.22±1.030	10.11±2.647	0.00507
	TCGA	miR-125b-5p	8.96±1.092	10.20±3.052	0.49E–08
		miR-10a-5p	13.60±1.198	14.77±0.472	4.89E–06
miRNA	GSE12148	E2F2	4.25±0.181	4.23±0.157	0.696
		CDK1	7.22±1.105	5.37±0.797	2.68793E–16
		CCNE1	7.05±1.032	6.41±0.216	1.20000034
	GSE94660	E2F2	0.83±0.443	0.06±0.028	1.234E–07
		CDK1	2.14±0.769	0.25±0.121	2.9E–10
		CCNE1	1.41±0.669	0.24±0.129	9.01E–08
	GSE25599	E2F2	0.76±0.496	0.30±0.255	0.01958
		CDK1	5.11±2.925	1.15±0.923	0.005978
		CCNE1	5.01±1.820	0.43±0.242	0.02254
	TCGA	E2F2	5.61±1.296	2.95±1.076	0.000926
		CDK1	8.01±1.428	4.57±1.266	0.00374
		CCNE1	6.32±1.993	3.16±0.979	0.00193

Abbreviation: TCGA, The Cancer Genome Atlas.

Availability of data and materials
All the microarray data were downloaded from the GEO database in NCBI (http://www.ncbi.nlm.nih.gov/geo/). The miRNA and miRNA Seq-data were obtained from TCGA (https://tcga-data.nci.nih.gov/).

Author contributions
HL and ZB participated in the conception and design of this study. HL and XZ performed the acquisition of data. CL and CS were involved in the analysis and interpretation of data. HL and CL performed the statistical and bioinformatics analyses. HL drafted the manuscript. ZB revised the manuscript for important intellectual content. All authors read and approved the final manuscript. All authors contributed toward data analysis, drafting and critically revising the paper and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–132.
2. Li J, Huang L, Yan J, Qiu M, Yan Y. Liver resection for hepatocellular carcinoma: personal experiences in a series of 1330 consecutive cases in China. ANZ J Surg. 2018;88(10):E713–E717.
3. Li Y, Zhang Z, Shi J, et al. Risk factors for naturally-occurring early-onset hepatocellular carcinoma in patients with HBV-associated liver cirrhosis in China. Int J Clin Exp Med. 2015;8(1):1205–1212.
4. Xiang L, Liu K, Chen Y. Analysis of Risk Factors Associated with the Development of Hepatocellular Carcinoma in Chronic HBV-Infected Chinese: A Meta-Analysis. Int J Environ Res Public Health. 2016;13(6):604.
5. Lin CL, Kao JH. Risk stratification for hepatitis B virus related hepatocellular carcinoma. J Gastroenterol Hepatol. 2013;28(1):10–17.
6. Fan H, Zhang Q, Zhao X, Lv P, Liu M, Tang H. Transcriptomic profiling of long non-coding RNAs in hepatitis B virus-related hepatocellular carcinoma. Oncotarget. 2017;8(39):65421–65434.
7. Mou Y, Wang D, Xing R, et al. Identification of long noncoding RNAs biomarkers in patients with hepatitis B virus-associated hepatocellular carcinoma. Cancer Biomed. 2018;23(1):95–106.
8. Zuo K, Kong L, Xue D, Yang Y, Xie L. The expression and role of lncRNA AX800134 in hepatitis B virus-related hepatocellular carcinoma. Virus Genes. 2018;54(4):475–483.
9. Lv D, Wang Y, Zhang Y, Cui P, Xu Y. Downregulated long non-coding RNA DREH promotes cell proliferation in hepatitis B virus-associated hepatocellular carcinoma. Oncol Lett. 2017;14(2):2025–2032.
10. Yang F, Zhang L, Huo X-Song, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology. 2011;54(5):1679–1689.
11. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfini PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–358.
12. Li Y, Liu G, Li X, Dong H, Xiao W, Lu S. Long non-coding RNA SNORD112 promotes hepatocellular carcinoma progression through regulation of miR-140-5p-TGFBR1 pathway. Biochem Biophys Res Commun. 2018;503(4):2826–2832.
13. Sui J, Yang X, Qi W, et al. Long Non-Coding RNA Linc-USP16 Functions As A Tumour Suppressor in Hepatocellular Carcinoma by Regulating PTEN Expression. Cell Physiol Biochem. 2017;44(3):1188–1198.
14. Lv J, Fan HX, Zhao XP, et al. Long non-coding RNA Unigene56159 promotes epithelial-mesenchymal transition by acting as a ceRNA of miR-140-5p in hepatocellular carcinoma cells. Cancer Lett. 2016;382(2):166–175.
15. Mo Y, He L, Lai Z, et al. LINC01287/miR-298/STAT3 feedback loop regulates growth and the epithelial-to-mesenchymal transition phenotype in hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2018;37(1):149.
16. Fan H, Lv P, Mu T, et al. LncRNA n335586/miR-924/CKMT1A axis contributes to cell migration and invasion in hepatocellular carcinoma cells. Cancer Lett. 2018;429:89–99.

17. Lai T, Ma W, Hong Z, Wu L, Chen X, Yuan Y. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a-5p in hepatocellular carcinoma. J Exp Clin Cancer Res. 2017;36(1):11.

18. Xie CR, Wang F, Zhang S, et al. Long Noncoding RNA HCAFL Facilitates the Growth and Metastasis of Hepatocellular Carcinoma by Acting as a ceRNA of LAPTMB4. Mol Ther Nucleic Acids. 2017;9:440–451.

19. Yang Y, Chen L, Gu J, et al. Recurrently deregulated lncRNAs in hepatocellular carcinoma. Nat Commun. 2017;8:14421.

20. Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H. The Homo Gencode Nomenclature Committee (HGNC). Human Genetics. 2001;109(6):678–680.

21. Nikolayeva O, Robinson MD. edger for differential RNA-seq and ChIP-seq analysis: an application to stem cell biology. Methods Mol Biol. 2014;1150:45–79.

22. Pollard KS, Dudoit S, Laan MJ. Multiple testing procedures: the multtest package and applications to genomics. In: Gentleman R., Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New York: Springer; 2005:249–271.

23. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–D452.

24. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291–303.

25. Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015;127:67–72.

26. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4(1):2.

27. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative transcriptional profiling in hepatocellular carcinoma of recurrence risks of hepatitis B virus-associated hepatocellular carcinoma. Nucleic Acids Res. 2016;45(1):D972–D978.

28. Fang Y, Yu H, Liang X, Xu J, Cai X. Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer. Cancer Biol Ther. 2014;15(9):1268–1279.

29. Dimova DK, Dyson NJ. The E2F transcriptional network: old acquaintances with new faces. Oncogene. 2005;24(17):2810–2826.

30. Dong WW, Zheng H, Li L, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44(7):765–769.

31. Chiu R, Earnest-Silveira L, Koeberlein B, et al. Modulation of MAPK pathways and cell cycle by replicating hepatitis B virus: Factors contributing to hepatocarcinogenesis. J Hepatol. 2007;47(3):325–337.

32. Cheng P, Li Y, Yang L, et al. Hepatitis B virus X protein (HBx) induces G2/M arrest and apoptosis through sustained activation of cyclin B1-CDK1 kinase. Oncol Rep. 2009;22(5):1101–1107.

33. Gnani D, Romito I, Artuso S, et al. Focal adhesion kinase depletion reduces human hepatocellular carcinoma growth by repressing enhancer of zeste homolog 2. Cell Death Differ. 2017;24(5):889–902.

34. Furuta M, Kozaki T, Tanimoto K, et al. The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma. PLoS One. 2013;8(3):e60155.

35. Zhang X, Hu S, Zhang X, et al. MicroRNA-7 arrests cell cycle in G1 phase by directly targeting CCNE1 in human hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2014;443(3):1078–1084.

36. Zhang Y, Huang W, Ran Y. et al. miR-582-5p inhibits proliferation of hepatocellular carcinoma by targeting CDK1 and AKT3. Tumour Biol. 2015;36(11):8309–8316.

37. Wang P, Chen S, Fang H, et al. miR-214/199a/199a cluster levels predict poor survival in hepatocellular carcinoma through interference with cell-cycle regulators. Oncotarget. 2016;7(1):929–945.

38. Fang ZQ, Li MC, Zhang YQ, Liu XG. MiR-490-5p inhibits the metastasis of hepatocellular carcinoma by down-regulating EZF2 and ECT2. J Cell Biochem. 2018;119(10):8317–8324.

39. Zhu HR, Huang RZ, Zu XN, et al. Microarray expression profiling of microRNAs reveals potential biomarkers for hepatocellular carcinoma. Tohoku J Exp Med. 2016;240(4):89–98.

40. Yan Y, Luo YC, Wan HY, et al. MicroRNA-10a is involved in the metastatic process by regulating Eph tyrosine kinase receptor A4-mediated epithelial-mesenchymal transition and adhesion in hepatoma cells. Hepatology. 2013;57(2):667–677.

41. Zhou HC, Fang JH, Shang LR, et al. MicroRNAs miR-125b and miR-100 suppress metastasis of hepatocellular carcinoma by disrupting the formation of vessels that encapsulate tumour clusters. J Pathol. 2016;240(4):450–460.

42. Ye T, Ding W, Wang N, Huang H, Pan Y, Wei A. Long noncoding RNA linc00346 promotes the malignant phenotypes of bladder cancer. Biochem Biophys Res Commun. 2017;491(1):79–84.

43. Zhang J, Fan D, Jian Z, Chen GG, Lai PB. Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma. PLoS One. 2017;12(8):e0184104.

44. Liu H, Li I, Koirala P, et al. Long non-coding RNAs as prognostic markers in human breast cancer. Oncotarget. 2016;7(15):20584–20596.

45. Akuta N, Suzuki F, Kobayashi M, et al. Circulating microRNA-122 as a biomarker for the diagnosis and monitoring of hepatitis B virus infection. Hepatology. 2007;47(3):325–337.

46. Nie QH, Gao LH, Cheng YQ, et al. Hepatitis C virus infection of human cytotoxic lymphocytes in vitro. J Med Virol. 2012;84(10):1586–1592.

47. Zhang MH, Niu H, Li Z, Huo RT, Wang JM, Liu J. Activation of PI3K/AKT is involved in TINAG-mediated promotion of proliferation, invasion and migration of hepatocellular carcinoma. Cancer Biomark. 2018;23(1):33–43.
