Qualitative Models and Quality Management of Probiotic Dairy Products Enriched with New Sources of Selenium

N A Galochkina¹, I A Glotova¹

¹Voronezh State Agricultural University named after Emperor Peter the Great, Michurina st., 1, 394087, Voronezh, Russia

E-mail: glotova-irina@yandex.ru

Abstract. Dairy products enriched with functional ingredients and probiotic microorganisms are an important factor in ensuring the quality of life of the population. Since the authors have developed new cereal and collagen supplements for the enrichment of probiotic dairy products with bioavailable selenium, this study aims to justify new probiotic products formulation, to develop the block diagram of its production with selenium-containing additives as a basis for HACCP system introduction as a safety tool of new probiotic products (PP). For the quality characteristics of PP the main groups of indicators: microbiological, organoleptic, physico-chemical indicators and functional properties were selected. The quality index of the developed PP with selenium-containing cereal and collagen additives was 0.83 and 0.87, respectively. Based on the preferred consumer, chemical composition, taste characteristics and influences on the content of solids, proteins, fats and carbohydrates, the dosage of fruit filler in the formulation of PP in the amount of 8-10% is reasonable. Critical control points of PP production were determined; critical limits, corrective actions and monitoring procedures for each critical control points were established; verification procedures were also discussed for HACCP plan implementation.

1. Introduction

Trends in healthy eating have a great influence on consumer demand [1;2]. The basic trend of the modern consumer market is the demand for food ingredients focused on the final consumer, integrated solutions that ensure the rational use of raw ingredients, including those that meet the criteria of "green" standards [3, 4, 5, 6].

Production application of biotechnological processes is relevant in connection with the growing needs of society in biologically active compounds with protective, antioxidant, bio-protective properties [7, 8, 9]. Dairy products enriched with functional ingredients and probiotic microorganisms play an important role in ensuring the quality of life of the population [10,11].

Previously, we have substantiated biotechnological approaches to obtaining collagen and cereal additives enriched with selenium, compatible in functional, technological and organoleptic properties with food systems based on milk. When receiving a selenium-containing collagen Supplement (CDS) was implemented, an approach for the immobilization of selenium using bio-modification collagen proteins [12]. When receiving the selenium-containing cereal additives (CPAS) classical biotechnolo-
gical approach to wheat germination was applied, while the use of dimethyldipirazolilselenid in the composition of the liquid phase during germination was new [13].

The study aims to justify new probiotic products formulation, develop the block diagram of its production with selenium-containing additives as a basis for HACCP system introduction as a safety tool of new probiotic products (PP).

2. Experimental technique

When substantiating the formula-component composition of selenium-rich probiotic products (PP), the methodology of qualimetric modeling of the combined food systems on the milk basis was used [14]. The stages of the research included qualitative modelling (the analysis of normative-technical documentation and legal sources of products, prototypes; identification of evaluation criteria of quality; calculation of high-quality potential of the product prototype), the development and testing of formulations of PP (analysis information data base on the composition and properties of raw materials; formation of functional and technological project of the finished product; substantiation of the content of the prescription components); justification of the modified technological scheme of production; production of prototypes; analysis of organoleptic characteristics, nutritional value and safety of PP [14, 15].

In accordance with the principles of qualimetry assessment of the product quality is considered as a multi-stage process consisting of the assessment of individual indicators that most fully characterize the quality of PP. The quality was considered as a hierarchical set of properties representing the interest for a consumer [16].

To characterize the quality of PP, the main groups of indicators were selected: microbiological, organoleptic characteristics, physical chemical parameters and functional properties (groups a, b, d, c) [16, 17, 18].

The absolute value of the \(i \)-th unit index of the products quality \(P_i \) was measured, which can vary in the range of its maximum \(P_{\text{max}} \) and minimum \(P_{\text{min}} \) values. Conformity assessment of the current value of the base level \(P_{\text{base}} \) was provided.

Let us assume that each property of the set of the kinds is characterized by a parameter \(K_i \) and a weighting coefficient \(M_i \), which determines the degree of influence of complex indicators on the quality of the product [16, 19].

For the quantitative determination of the indicator of the quality of PP equation (1), A. M. Brazhnikova was used [16]:

\[
K = M_a \sum_{i=1}^{n_a} m_i K_a + M_b \sum_{i=1}^{n_b} m_i K_b + M_c \sum_{i=1}^{n_c} m_i K_c + M_d \sum_{i=1}^{n_d} m_i K_d
\]

where \(M_a, M_b, M_c, M_d \) are the weighting coefficients for each group of properties: microbiological, organoleptic characteristics, functional properties and nutritional value, respectively, and

\[
M_a + M_b + M_c + M_d = 1;
\]

\(m_i, m_b, m_c, m_d \)-the weighting coefficients of each \(i \)-th relative quality index in each property group, where

\[
\sum_{i=1}^{n_a} m_i = 1, \sum_{i=1}^{n_b} m_i = 1, \sum_{i=1}^{n_c} m_i = 1, \sum_{i=1}^{n_d} m_i = 1
\]

\[
i = 5, p=4, q=4, n=5
\]

For the food systems

\[
K_i = 1 - \left(C - C_i \frac{P_i}{P_{\text{base}}} \right)
\]

where \(K \) is the relative quality index \((0 \leq K \leq 1)\); \(C \) is the coefficient;
\[
C_i = \frac{P_i^{\text{max}} - P_i^{\text{min}}}{P_i^{\text{max}} - P_i^{\text{min}}}
\]

For analytical studies of the quality of probiotic products conventional standard and modified methods were used (tables 1).

Table 1. Methods of research.

The defined indicators	Documents on research methods
Mass fraction of moisture and dry matter	GOST 3626
Mass fraction of fat	GOST 5867-90
Protein	GOST 23327-98
Microbiological indicators of dairy products	GOST 32901-2014; TR CU 033/2013 [20]
Titratrable acidity	GOST 3624 - 92
Assessment of taste and smell	GOST 28283
The number of mesophilic aerobic and facultative-anaerobic microorganisms	GOST R 53430-2009
Yeast and mold fungi	GOST 10444.12-88
The number of bacteria of the group of E. Coli (coliorm bacteria)	GOST R 52816-2007
The amount of lactic acid microorganisms	GOST 10444.11-89
Vitamin C	GOST 30627.2
Vitamin E	GOST R 52147-2003
Selenium	MUK 4.1.033-95 (fluorimetric method) [21]

3. Discussion

PP refers to functional dairy products. For their production ingredients of natural origin were used. According to this group of functional properties and microbiological indicators, a weighting coefficient was assigned, exceeding the importance of the other indicators. This is due to high microbiological risks connected to the sparing heat treatment. Organoleptic and physical chemical parameters obtain the lowest weighting factor, as they can be corrected by varying the main ingredients.

The results of the research allowed to develop a qualimetric model of quality assessment of PP taking into account the peculiarities of their rheological and physical chemical properties (tables 2 - 3).

The obtained models were used for optimization of PP formulations according to microbiological, organoleptic, physical chemical parameters and functional properties. According to the results of calculations, the quality indicator of the developed PP with SZD and SKD was 0.83 and 0.87 respectively. Thus, the developed formulations were recommended for use in industry.

Based on the calculations of the quality index of PP for the developed qualimetrical models, taking into account the functional properties of the product, the requirements for functional products and the degree of SFP satisfaction in selenium, the dosage of SDS of 9% and SKD-3 % is viable.

The analysis of probable dangerous factors has been carried out by production of PP. As sources of dangers all production phases have been analysed: intake of raw materials, storage, pasteurization, zakvashivaniye, souring, pouring, packing, storage and transportation. The technological scheme of receiving pro-biotic drink with identification possible CCPs (Critical Control Points) is submitted in the figure 1.
Further the following technological processes: stages of acceptance of raw milk, pasteurization of milk, souring have been carried to CCPs which should be controlled and traced to minimize or exclude potential dangers (table 4).
As the main criteria for assessment of CCPs changes of temperatures on time have been accepted. Strict monitoring of the technological modes and the correcting actions will provide decrease in degree of risk in production of dangerous fermented milk products.

Table 2. Qualimetric evaluation model of PCB from the FDD

Composite indicators	Composite indicators	Individual indicators	Cal. Weighting	P_i^{min}	P_i^{max}	P_i	P_i^{max}
a-microbiological safety indicators							
Product weight (g, cm3), in which the following factors are not allowed:							
- CGB (coliforms)	0.2	200	0.1	200	100		
- pathogenic, including Salmonella	0.2	200	0.1	200	100		
-- S. aureus staphylococci	0.2	200	0.1	200	100		
- Yeast, CFU/cm3(g), not more	0.2	0	0.1	0	0.01		
- Mold, CFU / cm3 (g), not more	0.2	0	0.1	0	0.01		
b-organoleptic parameters	0.24						
Color, points	0.1	5	0	5	5		
Consistency, points	0.35	5	0	4	5		
Taste and smell, points	0.45	5	0	5	5		
Appearance, points	0.1	5	0	5	5		
C-functional properties	0.27						
Se, µg/100g	0.25	6	0.25	30	9	12	
Dietary fiber, µg / 100 g	0.25	3	0.25	15	4.5	5	
C, mg	0.25	7	0.25	35	2.3	15	
E, mg	0.25	1	0.25	5	3	3	
d-physical and chemical parameters	0.22						
Mass fraction of vegetable protein, %	0.2	1	0.2	20	10	10	
Mass fraction of milk protein, %	0.2	2.8	0.2	3.2	2.8	2.9	
Acidity, T0	0.2	75	0.2	140	88	100	
Mass fraction of skimmed milk solids, %	0.2	8.5	0.2	9.5	8.6	8.7	
Temperature at release, 0C	0.2	2	0.2	6	4	4	
Table 3. Qualimetric model of evaluation of PP with SKD.

Complex indicators	Coef. weight groups	Individual indicators	Cal. weightiness	\(P_{i} \)	\(P_{i}^\text{max} \)	\(P_{i}^\text{min} \)	\(P_{i}^\text{fac} \)	
a-microbiological safety indicators	0.27	Product weight (g, cm³), in which are not allowed:						
		- CGB (coliforms)	0.2	200	200	100		
		- pathogenic, including Salmonella	0.2	200	1.0	200	100	
		- S. aureus staphylococci, CFU/cm³ (g), not more	0.2	200	50			
		- Mold, CFU/cm³ (g), not more	0.2	0	50	0	0.01	
b-organo-leptic characteristics	0.24	Colour, points	0.1	0	5	5	5	
		Consistency, points	0.35	0	5	4	5	
		Taste and smell, points	0.45	0	5	5	5	
		Appearance, points	0.1	0	5	5	5	
C-functional properties	0.27	Se, µg/100g	0.25	6	30	9	12	
		Dietary fiber, µg/100g	0.25	3	15	4.5	5	
		C, mg	0.25	7	35	2.3	15	
		E, mg	0.25	1	5	3	3	
d-physical and chemical parameters	0.22	Mass fraction of vegetable protein, %	0.2	1	20	10	10	
		Mass fraction of milk protein, %	0.2	2.8	3.2	2.8	2.9	
		Acidity, T0	0.2	75	140	88	100	
		Mass fraction of skimmed milk solids, %	0.2	8.5	9.5	8.6	8.7	
		Temperature at release, °C	0.2	2	6	4	4	

Table 4. Influence of the amount of fruit filler on the performance of PP.

Critical Control Points	Risk	The controlling actions	Level of risk
CCPs 1	Acceptance of raw milk	Temperature of storage of milk \(T = 4 \pm 2 ^\circ\text{C} \)	High
CCPs 2	Pasteurization of milk	Observance is strict limited temperature pasteurizations of \(T = 85 \pm 87 ^\circ\text{C} \) with endurace of 5-10 min.	High
CCPs 3	Sourcing	Control of temperature souring of \(T = 23 \pm 25 ^\circ\text{C} \) and souring time	High

CCPs are processing step where control measures could be performed to prevent, eliminate and reduce any identified hazards (biological, chemical and physical) to an acceptable level.
Figure 1. Technological scheme of receiving a (PP) probiotic product.
Critical limits of each identified CCP during preparation PP were determined. The critical limits of receiving raw ingredients should be listed in supplier guarantee specifications of each ingredients and have to be regulated by TP TC 033-2013 [20]. So levels of different hazards in raw ingredients should be under the maximum values listed in guides of microbiological specifications and criteria for milk products [20]. At the same time, microbiological, chemical and visual inspections of all raw materials should be taken into consideration according to established HACCP plan. Sieved grains should not contain physical hazards was the critical limit of cleaning grains step.

Visual inspection of supplier guarantee for each ingredient and cleaned grains could be established as monitoring procedures for CCPs of receiving raw ingredients and cleaning grains, respectively. Different corrective actions for each identified CCP were established. A corrective action for the receiving raw ingredients used in preparation Kishk was reject any doubtful ingredients as it not accompanied by supplier guarantee. Re-sieved cleaned grains are the corrective action should be taken for cleaning grain step if any physical hazards are seen visually. Check and repair incubation and drying conditions (temperature and time) and reprocess if necessary were the corrective actions could be established when monitoring procedures of incubation and drying steps had been indicated that, the critical limits of those steps were exceeded.

In the process of developing PP with FDD and SKD maximum playback of consumer properties of traditional analogue was set as the goal. The use of berry-fruit fillers in PP technology allows providing the following consumer properties: enrichment with carbohydrates, vitamins, providing sweet taste, expansion of the range and improvement of organoleptic characteristics [22, 23].

In the development of pilot batches of PP the dosages of fruit filler 5, 10, 15 and 20%, introduced after fermentation of the milk base were tested. Denfruit Strawberry N 636 was used.

Recipe Formulation	Fruit filling, %	Mass fraction, %	dry fat-free substances
Control	0	3.60 2.80 7.20	15.00
1	5	3.35 2.65 9.15	17.25
2	10	3.10 2.45 11.85	19.85
3	15	2.90 2.28 13.95	21.35
4	20	2.70 2.05 16.50	23.42

At the same time, the introduction of a different mass fraction of the fruit filler had an impact on the formation of the PP taste, as the most important characteristics of the group of organoleptic indicators. Varying the dosage of the filler from 5 to 20 % led to the appearance of the corresponding flavour, increasing with the rise in the dosage in %: 5-fermented milk, with a weak flavour; 10 sour-milk taste with a flavour of the filler; 15-fermented milk with a pronounced sweet taste; 20 - fermented milk with a sugary - sweet taste.

The results of studies on the justification of the amount of fruit filler in the formulation of PP show that it is advisable to use it in a dosage of 8-10 %. This will ensure that the mass fraction of proteins, fats and dry substances in PP meets the requirements of regulatory documents [17, 18].

There are data on the positive effect of the trace elements on the activity of the development of the starter microflora, probiotic including. When choosing a probiotic starter the compliance of probiotic starter cultures to microbiological, genetic, immunological, toxicological and pharmacological criteria described by a number of scientists [1, 23, 24]. To sufficiently tested on a set of indicator strains include Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12 of the firm Christian Hansen (Holland).
In the formulations of PP we used Nu-trish ABY - 1-starter culture with a certain combination of strains: Bifidobacterium BB-12, Lactobacillus acidophilus LA-5, Streptococcus thermofilus ST, Lactobacillus bulgaricus LB, of the above mentioned firm.

Thus, the modified recipe includes: normalized milk with a mass fraction of fat being 3.0%; selenium-containing Supplement poly-component probiotic starter culture; fruit filling (table 6).

Name of raw material, consumption kg / 1000 kg	Formulations 1	Formulations 2
Milk normalized with a mass fraction of fat 3.0%	819	859
FDD	90	-
SKD	-	30
Leaven (Nu-trish ABY-1 100 DCU)	0.2	0.2
Fruit filler	80	100
Subtotal:	1000.2	1000.2

Summarizing the results, the technological scheme of PP with selenium-containing additives production was developed, shown in figure 1.

The results of the studies of sanitary and hygienic indicators of PP with selenium-containing additives (CDD and SD) are presented in table 7.

The investigated samples of PP	Number of lactic acid microorganisms in PP, CFU / g, with the duration of storage, day.				
	1	3	5	7	Norma, no less
Streptococcus thermophilus u Lactobacillus bulgaricus					
PP with ACS	2.7 \times 10^7	2.1 \times 10^7	1.7 \times 10^7	1.15 \times 10^7	1.0 \times 10^7
PP FDD	2.9 \times 10^7	2.2 \times 10^7	1.8 \times 10^7	1.3 \times 10^7	1.0 \times 10^7
The basic recipe	2.6 \times 10^7	2.0 \times 10^7	1.5 \times 10^7	1.1 \times 10^7	1.0 \times 10^7
Bifidobacterium u Lactobacillus acidophilus					
PP with ACS	2.8 \times 10^6	2.1 \times 10^6	1.7 \times 10^6	1.15 \times 10^6	1.0 \times 10^6
PP FDD	2.9 \times 10^6	2.2 \times 10^6	1.8 \times 10^6	1.3 \times 10^6	1.0 \times 10^6
PP on the base formulation	2.7 \times 10^6	2.0 \times 10^6	1.4 \times 10^6	1.1 \times 10^6	1.0 \times 10^6

The number of microorganisms tends to decrease in all the investigated samples of PP, but by the end of the storage period this indicator was 4.5% higher for PP with ACS and 18.2% higher for PP with FDD compared to the control sample. This indicates that the formulations of the experimental PP contain more components providing a beneficial effect on the processes of the microorganisms activity in the combined probiotic [25].

4. Conclusion
In modern conditions, the priority of ensuring the safety of the consumer market, both from the standpoint of the formation of the consumer basket, and from the point of view of its filling with safe and balanced food products, the role of the research in the field of new raw materials ingredients and technologies, the methodology of the quality control and safety of farm products is becoming more and more important. Taking into account the role of the enriched dairy products as a factor in ensuring the
quality of the population life, recommendations for the production of PP based on cow milk enriched with bioavailable selenium in the composition of cereal and collagen supplements are scientifically substantiated. Qualimetric models of selenium-enriched probiotic products were developed.

5. References
[1] Preedy V R, Srirajaskanthan, R, Patel V B 2013 Handbook of Food Fortification and Health Human Press
[2] Nestle M 2013 Food politics: how the food industry influences nutrition and health Univ. of Caliifornia Press
[3] Nurliyani I, Indratingsih I, Rahmayanti Y 2013 Kualitas Kishk Yang Dibuat Dari Campuran Yogurt Dan Terung Sagu Peran Teknologi dan Industri Pangan untuk Percepatan tercapainya Kedaulatan Pangan (Indonesia) 253-263
[4] Kebary K M K, Kamaly K M, Abou-Zeid N A, Salem O M, El-Den E A 2014 Synbiotic Kishk as Functional Food Menofia Journal of Agricultural Research 39 55-68
[5] Abou-Zeid N A 2016 Review of Egyptian Cereal-Based Fermented Product (Kishk) International Journal of Agriculture Innovations and Research 4 600-609
[6] Abd El-Razik Mohamed M, Mohamed F Y, Gadallah Mohamed G E 2016 Implementation of HACCP Plan for the Production of Egyptian Kishk (A Traditional Fermented Cereal-Milk Mixture) Biomedical & Life Sciences 7(13) 1262-1275
[7] Gerhart M, Schottenheimer M 2013 Mineral fortification in dairy. Wellness Foods
[8] Mann J 2007 Dietary carbohydrate: relationship to cardiovascular disease and disorders of carbohydrate metabolism Eur. J. Clin. Nutr. 61 100-111
[9] Fresco P, Borges F, Marques M, Diniz C 2010 The anticancer properties of dietary polyphenols and its relation with apoptosis Curr. Pharm. Des. 16 114-134
[10] Shirin Panahi, Angelo Tremblay 2016 The Potential Role of Yogurt in Weight Management and Prevention of Type 2 Diabetes J Am Coll Nutr. 22 1-15
[11] El-Nawawy M A, Ibrahim R, Al-Bonayan A M and El-Beialy A R 2012 Development of Functional Food Products International Journal of Dairy Science Research 1 12-17
[12] Glotova I A, Galochkin N A 2014 Justification of conditions of receiving the functional biomodified collagenic substances The messenger of biotechnology and physical and chemical biology of Yu A Ovchinnikov 10(1) 10-19
[13] Glotova I A, Galochkina N A 2017 Effect of selenium sources on biochemical processes during swelling and germination of wheat grain Chemistry of plant raw material 4 211-216
[14] Zelenina L S, Zjuzina O V, Strashnov N M 2013 Methodology of qualimetric modeling of dairy-plant systems Storage and processing of agricultural raw materials 1 12-15
[15] Nikitin I A, Nikitina M A, Allilueva N M, Bogatyrev V A 2017 Development of technology of dietary marmalade and an estimation of its consumer properties by a method of qualimetric modeling Cloud of Science 4(2) 190-199
[16] Alekseev A V, Antipov V V, Bobrovich V Y, Evseenko S M 2016 Implementation of the generalized method of qualimetric analysis of factors of development and technology support management of critical marine facilities Marine Intellectual technologies 1(1) 27-37
[17] 2001 GOST 54682-2011 Fruit and vegetable fillers General specifications M.: Standartinform 12
[18] Technical regulations of the Customs Union TR TC 033/2013 "On the safety of milk and dairy products" TR TS 033/2013
[19] Agassounon Dijkpo Tchibozo M, Anago D G, Guidi T C, Chegnimonhan V, Galimova L V, Savadogo A, Alladagniwékè M, Ameyapoh B 2016 Application of HACCP System and Quality of Yoghurt Production in a Small and Medium Enterprise (SME) of Dairy Products in Benin Republic Bulletin of the International Academy of Refrigeration 4 3–10
[20] 2013 Technical Regulations of the Custon Unit TR CU 033/2013" On safety of milk and dairy products " adopted by the Council of Euroasian Economic Comission 67

[21] MUK 4.1.033-95 Determination of selenium in food products. Methodical instructions. Approved. The Federal Service for Supervision of Consumer Rights Protection and Human Well-Being of the Russian Federation on 24.07.1995

[22] Istikhar Hussain, Attiq-ur-Rahman, Nigel Atkinson 2009 Quality Comparison of Probiotic and Natural Yogurt Pakistan Journal of Nutrition 8 9-12

[23] Hadi Hashemi Gahruie, Mohammad HadiEskandari, Gholamreza Mesbah, Mohammad Amin Hanifpour 2015 Scientific and technical aspects of yogurt fortification Food Science and Human Wellness 4 (1) 1-8

[24] Astashkina A P, Khudyakova L I, Kolbysheva Y V 2014 Microbiological Quality Control of Probiotic Products Procedia Chemistry 10 74-79

[25] Kolaček S, Hojsak I, Berni Canani R, Guarino A, Indrio F, Orel R, Pot B, Shamir R, Szajewska, H, Vandenplas Y, van Goudoever J, Weizman Z 2017 Commercial Probiotic Products: A Call for Improved Quality Control A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics 65(1)