Data Article

Data on samara morphology and wind dispersal in the invasive tree Ailanthus altissima

Greg Planchuelo a,*, Pablo Catalán b, Juan A. Delgado c, Antonio Murciano c

a Department of Ecology, Technische Universität Berlin, Germany
b Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
c Department of Biodiversity, Ecology and Evolution, Universidad Complutense, Spain

A R T I C L E I N F O

Article history:
Received 22 May 2019
Received in revised form 31 July 2019
Accepted 5 September 2019
Available online 18 September 2019

Keywords:
Ailanthus altissima
Diaspore morphology
Samara
Three-dimensional structure
Wind dispersal potential

A B S T R A C T

The data presented in this paper is supporting the research article “Estimating wind dispersal potential in Ailanthus altissima: The need to consider the three-dimensional structure of samaras” [1]. We analyzed the estimation of samara’s wind dispersal potential through a group of morphological variables that succeed in describing the three-dimensional nature of samaras. We present here a dataset containing 8 morphological variables of 200 samaras belonging to 5 different individuals of the invasive tree Ailanthus altissima (Mill.) Swingle. Additionally, we present the average descent velocity of each of the samaras, which was recorded by releasing 5 times each samara under controlled and reproducible conditions. The data set is structured in a single spreadsheet where we also included the samara and the individual identity code of the tree.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The dataset we present contains information of the average descent velocity and the morphology of samaras of *Ailanthus altissima* trees growing spontaneously in an urban area out of its native range. The dataset contains measurements performed on 200 samaras belonging to 5 different trees (40 samaras per tree). Samaras are classified according to the tree they belong to. The average descent velocity along with the mass and 7 morphometric traits have been measured for each samara. Average descent velocity was calculated averaging 5 independent measurements for each samara. Morphometric traits are: frontal area, frontal perimeter, width, length, side area, side perimeter and side height (Fig. 1). A total of 200 samaras belonging to five different individuals of *Ailanthus altissima*.

2. Experimental design, materials and methods

Fieldwork was carried out on UCM Campus in the urban area of Madrid, Spain. We randomly selected five spontaneous female *A. altissima* trees. We presented data on 8 morphological variables of
40 ripened samaras from each of them. We recorded the mass of the samara and morphometric traits measured on a frontal view of the samara (frontal area, frontal perimeter, width and length), but we also measured variables on a side view of the samara (side area, side perimeter, side height) to obtain information of the three-dimensional structure of the samara (Fig. 1). These variables have been shown to relate to the wind dispersal capabilities of the samaras: Frontal area, frontal perimeter and side area are related to the surface area of the samara, which has a direct impact on the flying capabilities of the samaras [2,3]. The width, length and side perimeter can also have an effect on wind dispersal, as they are related to the autorotation capacity of the samara [4]. Side perimeter and side height are related respectively to the magnitude of a samara's spiral twist and its deviation from the samara's axis, which have been shown to affect autorotation capacity and hence be related to the flying potential of the samaras [4,5].

Additionally, the descent velocity (m s\(^{-1}\)) of each samara was calculated by measuring the time it took to fall through a distance of 2 m in an airtight and sealed chamber [6]. Measurements were repeated five times and an average was calculated after verifying the consistency and repeatability of the data by means of an intraclass correlation coefficient (ICC). Throughout the course of this study, samaras were not painted, colored, written on, modified or altered in any way.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

[1] G. Planchuelo, P. Catalán, J.A. Delgado, A. Murciano, Estimating wind dispersal potential in Ailanthus altissima: the need to consider the three-dimensional structure of samaras, Plant Biosyst. 151 (2017) 316–322. https://doi.org/10.1080/11263504.2016.1174170.

[2] C. Nilsson, R.L. Brown, R. Jansson, D.M. Merritt, The role of hydrochory in structuring riparian and wetland vegetation, Biol. Rev. Camb. Philos. Soc. 85 (2010) 837–858. https://doi.org/10.1111/j.1469-185X.2010.00129.x.

[3] I. Saumel, I. Kowarik, Propagule morphology and river characteristics shape secondary water dispersal in tree species, Plant Ecol. 214 (2013) 1257–1272. https://doi.org/10.1007/s11258-013-0249-z.

[4] D. Lentink, W.B. Dickson, J.L. van Leeuwen, M.H. Dickinson, Leading-edge vortices elevate lift of autorotating plant seeds, Science 324 (2009) 1438–1440. https://doi.org/10.1126/science.1174196.

[5] G.R. Matlack, Diaspore size, shape, and fall behavior in wind-dispersed plant species, Am. J. Bot. 74 (1987) 1150–1160. https://doi.org/10.2307/2444151.

[6] D. Greene, E. Johnson, Seed mass and dispersal capacity in wind-dispersed diaspores, Oikos 67 (1993) 69. https://doi.org/10.2307/3545096.