Discovering Supernovae at Epoch of Reionization with Nancy Grace Roman Space Telescope

Takashi Moriya
National Astronomical Observatory of Japan

Robert Quimby (San Diego State University)
Brant Robertson (University of California, Santa Cruz)

arXiv:2108.01801
High-redshift supernova survey with Roman

- Type Ia supernova survey for cosmology
- up to $z \sim 3$ (Rose et al. 2021)

$N = 12471$ (recovered)
High-redshift supernova survey with Roman

- some supernovae become much brighter than Type Ia supernovae
 - superluminous supernovae (SLSNe)
 - a kind of massive star explosions (core-collapse supernovae)
High-redshift supernova survey with Roman

- some supernovae become much brighter than Type Ia supernovae
- pair-instability supernovae (PISNe)
- hypothetical thermonuclear explosions of very massive stars

Kasen et al. (2011)
Discovering SLSNe/PISNe at Epoch of Reionization

- SLSNe and PISNe are probes of massive stars
 - direct identification of massive star properties at EoR
 - top-heavy IMF?
 - constrain massive star contribution to reionization
- confident PISNe have not been identified
 - fundamental prediction of stellar evolution
 - BH mass distributions, etc…
 - PISNe preferentially exist at low metallicity
 - high-redshift SN survey is needed
- etc!

We investigated survey strategy to discover SLSNe/PISNe at $z > 6$.
Light curves with the Roman filters
Light curves with the Roman filters

no severe requirements for survey cadence!

every 0.5 - 1 year observation is fine
Single-epoch candidate screening with CMD

- rare PISN and SLSN candidates need to be identified among other SNe
- color information is essential for the efficient identification

color-magnitude diagram (CMD) of possible filter combinations

- SNe Ia at $z > 1.5$
- SNe II at $z > 1.5$
- SLSN at $z > 6$
- PISN at $z > 6$

F213 is a must!

(SN Ia cosmology survey doesn’t use F213)
Single-epoch candidate screening with CMD
Survey limiting magnitudes

\[F_{158} > 27.0 \text{ mag} \]
\[& F_{213} > 26.5 \text{ mag} \]

will identify PISNe/SLSNe
Survey simulations

- $F_{158} = 27.0$ mag & $F_{213} = 26.5$ mag limits
- 10 deg2, 5 year baseline
- PISN rate based on the SFR density and Saltpeter IMF
- SLSN rate extrapolated based on the local rate and SFR density

Cadence	t_{total}	$z > 5.0$	$z > 6.0$	$z > 6.2$	$z > 6.4$	$z > 6.6$	$z > 6.8$	$z > 7.0$
PISN								
0.5 yr	877 hr	78.9 ± 8.5	24.2 ± 3.3	17.7 ± 2.3	12.1 ± 1.6	7.3 ± 1.0	3.5 ± 0.5	1.2 ± 0.1
1.0 yr	525 hr	76.1 ± 8.2	22.5 ± 2.8	16.0 ± 2.1	10.5 ± 1.4	5.9 ± 0.7	2.1 ± 0.2	0.62 ± 0.08
1.5 yr	385 hr	64.1 ± 6.9	18.4 ± 2.2	13.0 ± 1.7	8.3 ± 1.1	4.5 ± 0.5	1.5 ± 0.1	0.40 ± 0.06
SLSN								
0.5 yr	877 hr	12.0 ± 1.2	4.4 ± 0.5	3.4 ± 0.4	2.7 ± 0.3	2.0 ± 0.2	1.5 ± 0.1	1.1 ± 0.1
1.0 yr	525 hr	9.1 ± 0.9	3.1 ± 0.3	2.4 ± 0.2	1.8 ± 0.2	1.3 ± 0.1	1.0 ± 0.1	0.76 ± 0.09
1.5 yr	385 hr	5.9 ± 0.6	1.9 ± 0.2	1.5 ± 0.2	1.1 ± 0.1	0.8 ± 0.1	0.6 ± 0.1	0.45 ± 0.09

~ 20 PISNe and ~ 3 SLSNe at $z > 6!$
Survey simulations

\[\text{SN discovery number density (redshift}^{-1}) \]

- PISN
- SLSN

- \(F_{158} = 27.0 \text{ mag limit} \)
- \(F_{213} = 26.5 \text{ mag limit} \)

10 deg\(^2\), 1.0 year cadence

\(~ 20 \text{ PISNe and } ~ 3 \text{ SLSNe at } z > 6! \)
Discovering PISNe & SLSNe at $z > 6$ are essential for understanding reionization and stellar evolution.

In order to discover PISNe & SLSNe at $z > 6$, we suggest:
- long-term (5 year) yearly observations of ~ 10 deg2 field
- with $F_{213} > 26.5$ mag and $F_{158} > 27.0$ mag
- quick and reliable candidate identification to trigger follow-up observations with, e.g., JWST
- total required time is ~ 525 hours

~ 20 PISNe and ~ 3 SLSNe at $z > 6$ will be discovered!

See arXiv:2108.01801 for more details.