Introduction

The global prevalence of hyperuricemia is increasing [1], and this may be related to recent changes in diet, lifestyle and increasing prevalence of obesity. There appears to be a recent increase in the prevalence of hyperuricemia owing to the rapid economic development and the effect of westernized dietary habits in Korea [2].

Hyperuricemia is a precursor to gout and is associated with metabolic syndrome and cardiovascular disease. Many studies have reported that elevated uric acid is one of the most important risk factors for cardiovascular disease and that it plays a significant role in the development of metabolic syndrome [3-7]. Hyperuricemia can induce endothelial dysfunction in addition to inflammatory and oxidative changes, which
Nutrient Intake and Diet Quality in Hyperuricemia

may explain the association with metabolic syndrome [8]. Uric acid is an organic compound that is endogenously produced as a purine metabolite. It is formed by the liver and primarily excreted by the kidneys (65–75%) and intestines (25–35%) [9]. Hyperuricemia occurs due to a decrease in uric acid excretion, an overproduction of uric acid, or an excessive intake of purine. But the primary cause is known to be a decrease in the excretion by the kidneys [10].

Although a purine-rich diet is responsible for increasing uric acid by only 1–2 mg/dL [11], the management of hyperuricemia has been focused on dietary recommendations to avoid purine-rich foods such as meats and meat products and alcoholic beverage [12]. To our knowledge, a few studies have reported the prevalence and clinical features of hyperuricemia in Korea [13-15], but there has been no study on the associations between diet and hyperuricemia among Korean adults. Therefore, the objective of our study was to investigate and compare nutrient intake and diet quality between hyperuricemia subjects and controls in Korea.

Materials and Methods

Subjects

This cross-sectional study compared nutritional intake and quality between hyperuricemia subjects and controls. Of the 28,589 subjects who underwent health examination between January 2008 and December 2011, those that completed a self-administered questionnaire, laboratory tests, and a complete 3-day food record were included. Subjects were excluded who reported an unrealistic daily energy intake (<500 kcal or ≥3,500 kcal). This resulted in 9,010 subjects in the final analysis (Figure 1).

Anthropometric and biochemical measurements

Weight (kg) and height (m) were measured using an automatic body composition analyzer (X-scan Plus II, Jawon Medical, Gyeongsan, South Korea) in light clothing and with shoes off, and body mass index (BMI) was calculated (kg/m²). The waist circumference was taken at the narrowest point between the lower costal margin and the superior iliac crest. Biochemical data, including uric acid, glucose, and serum lipid such as total cholesterol, serum triglycerides (TG), high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol levels, were collected from the medical records relating to the health examination. During the screening, venous blood samples were collected in the morning following a 10–12 h overnight fast.

Dietary habits and diet quality assessment

Dietary habits were evaluated using a self-reported 10-item questionnaire focusing on skipped meals, meal speed, meal regularity, and preference for salty foods. For each question, subjects selected Yes (1 point) or No (0 points), and the total Food Habit Score (FHS) ranged from 0–10 points. A higher score indicated better food habits.

Nutrient intake assessment

Usual dietary intake was assessed using 3-day food records (1 weekend and 2 week days). A self-administered 3-day food record and written instructions were sent via post to the subjects 2 weeks before the scheduled visit. During the scheduled visit, the food records were reviewed by trained nutritionists using aids such as food models to improve the reporting accuracy. The daily energy, macro-, and micro-nutrient intakes were calculated using the Korean Nutrition Society nutrient database (Can-Pro 3.0, The Korean Nutrition Society, Seoul, South Korea) [17]. Nutrient density (ND) was calculated by standardizing the nutrient intake per 1,000 kcal based on the individual’s intake.
appropriateness of nutrient intake. In addition, the index of nutritional quality (INQ; nutrient intake per 1,000 kcal/recommended nutrient intake per 1,000 kcal), a comparison of the nutrient intake against the 12 nutrients for which the recommended nutrient intake (RNI) is defined by the Korean Dietary Reference Intake (KDRIs), was analyzed.

Statistical analysis
Data were expressed as frequencies or mean ± standard deviation and were analyzed using SAS ver.9.1 (SAS Institute, Cary, NC, USA). A generalized linear model (GLM) was used to compare the distribution of subjects and the mean differences between the hyperuricemia subjects and controls. The significance level was set at p < 0.05.

Results
The overall prevalence of hyperuricemia was 13.8% (27.1%, men; 5.2%, women), and the proportion of men was significantly higher in the hyperuricemia subjects than in the controls (83.7% vs 49.3%, p < 0.0001). Table 1 provided the demographic and clinical characteristics of the subjects, compared between hyperuricemia subjects and controls. BMI and energy intake were also significantly higher in the hyperuricemia subjects than in the controls (both p < 0.0001).

The age-, sex-, and BMI-adjusted value for waist circumference, triglycerides, total cholesterol, and LDL cholesterol were all significantly higher (p < 0.0001), and HDL cholesterol (p < 0.001) was significantly lower in the hyperuricemia subjects than in controls.

The differences in ND between the hyperuricemia subjects and controls were provided in Table 2. Hyperuricemia subjects had significantly lower intakes of carbohydrate (p < 0.01), fiber (p < 0.001), calcium (p < 0.001), phosphorus (p < 0.001), iron (p < 0.001), sodium (p < 0.05), potassium (p < 0.001), vitamin A (p < 0.01), vitamin B2 (p < 0.01), vitamin C (p < 0.001), and folate (p < 0.001).

Table 3 provided the comparison of daily food group intake between the groups. The intake of vegetables (p < 0.001), seaweed (p < 0.05), and dairy products (p < 0.001) was significantly lower in the hyperuricemia subjects than in controls, and alcohol intake was significantly higher with the hyperuricemia consuming approximately twice the amount of alcohol than the controls (137.1 g vs 69.2 g, p < 0.001). Although the consumption of meat, eggs, fish, and shellfish was higher in the hyperuricemia, the differences were not significant.

Table 4 listed the total and component FHS compared between the hyperuricemia subjects and controls. The total FHS

Table 1. Demographic and clinical characteristics of the study subjects

Variables	Hyperuricemia subjects (n = 1242)	Controls (n = 7768)	p value
Age, yrs	50.5 ± 10.0	50.9 ± 9.6	NS
Male : Female, %	1039 (83.7) : 203 (16.3)	3830 (49.3) : 3938 (50.7)	p < 0.0001
Body Mass Index, kg/m²	25.5 ± 2.9	23.4 ± 2.9	p < 0.0001
Total energy intake, kcal	1970.1 ± 508.9	1799.9 ± 471.5	p < 0.0001
Waist Circumference, cm	89.8 ± 7.5	83.6 ± 8.5	p < 0.0001
Uric acid, mg/dL*	7.6 ± 0.9	4.9 ± 1.0	p < 0.0001
SBP, mmHg*	125.7 ± 13.5	121.0 ± 14.2	NS
DBP, mmHg*	77.5 ± 10.0	73.8 ± 10.2	NS
FBS, mg/dL*	91.8 ± 18.2	89.3 ± 18.7	p < 0.01
Triglyceride, mg/dL*	161.9 ± 116.8	107.9 ± 71.0	p < 0.0001
Total-cholesterol, mg/dL*	207.3 ± 37.5	196.4 ± 34.1	p < 0.0001
HDL-cholesterol, mg/dL*	52.5 ± 12.4	59.2 ± 14.1	p < 0.001
LDL-cholesterol, mg/dL*	131.3 ± 32.7	120.8 ± 30.3	p < 0.0001

SBP: systolic blood pressure, DBP: diastolic blood pressure, FBS: fasting blood sugar, HDL-cholesterol: high-density lipoprotein cholesterol, LDL-cholesterol: low-density lipoprotein cholesterol, NS: not significant
Data are presented as mean ± standard deviation; Significance as determined by the GLM test.
*Adjusted for age, sex, body mass index.
was significantly lower in the hyperuricemia subjects than in the controls \((p < 0.001)\). The items that contributed to the lower score in the hyperuricemia were meal regularity, vegetable consumption, fruit consumption, and dairy product consumption.

The NAR and MAR values for the hyperuricemia subjects and controls were provided in Table 5. The NARs for calcium \((p < 0.001)\), vitamin A \((p < 0.05)\), vitamin B2 \((p < 0.001)\), vitamin C \((p < 0.001)\), and folate \((p < 0.001)\) were significantly lower in the hyperuricemia subjects than in the controls. The MAR was also significantly lower in the hyperuricemia subjects than in the controls \((p < 0.001)\).

The comparison of the INQ values was shown in Table 6. The INQs for calcium \((p < 0.001)\), vitamin A \((p < 0.01)\), vitamin B2 \((p < 0.01)\), vitamin C \((p < 0.001)\), and folate \((p < 0.001)\) were significantly lower, while the phosphorus \((p < 0.01)\) and iron \((p < 0.01)\) values were significantly higher in the hyperuricemia subjects than in the controls.

Discussion

To our knowledge, this study was the first to compare nutrient intake and diet quality between hyperuricemia subjects and controls in Korea. A larger portion of the hyperuricemia subjects was men, and they also had higher BMIs, poorer lipid profiles, and poorer diet quality than the controls.

Previous studies have also reported that the prevalence of hyperuricemia is higher in men than in women. Such a difference between genders is probably due to the estrogen which purportedly increases urinary excretion of uric acid \([11,18]\). Poletto et al. \([18]\) reported that the prevalence of hyperuricemia, in 1,330 Japanese-Brazilian adults was lower in younger women than in older women \(\text{women <55 years, 24%; women} \geq 55 \text{ years, 76%}; p < 0.05\). Similarly, in the current study, the prevalence of hyperuricemia was significantly higher in men than in women.

Obesity is another strong risk factor for the development of hyperuricemia. A large prospective study indicated that weight gain was the risk factor for hyperuricemia in men, while
Table 3. Comparisons of daily food group intake between hyperuricemia subjects and controls

Variables	Hyperuricemia subjects (n = 1242)	Controls (n = 7768)	p value*
Total, g	1446.4 ± 482.1	1374.0 ± 434.2	NS
Cereals, g	289.2 ± 88.4	267.8 ± 92.8	NS
Potato and starches, g	32.5 ± 58.2	37.7 ± 67.4	NS
Sugars and sweeteners, g	7.1 ± 8.5	6.8 ± 8.6	NS
Pulses, g	46.9 ± 51.5	47.2 ± 54.2	NS
Nuts and seeds, g	5.7 ± 15.5	6.5 ± 15.0	NS
Vegetables, g	323.0 ± 142.8	326.0 ± 154.5	p < 0.0001
Fungi and mushrooms, g	4.7 ± 8.8	5.4 ± 15.3	NS
Fruits, g	189.1 ± 203.3	213.6 ± 200.0	NS
Meats, g	93.4 ± 74.0	77.2 ± 65.9	NS
Eggs, g	26.5 ± 28.2	24.6 ± 24.4	NS
Fish and shellfish, g	94.1 ± 70.3	81.3 ± 64.3	NS
Seaweeds, g	2.8 ± 5.5	3.5 ± 9.0	p < 0.01
Dairy products, g	66.6 ± 98.9	85.6 ± 106.0	p < 0.0001
Oils and fat, g	8.4 ± 5.5	7.5 ± 5.1	NS
Beverages, g	84.9 ± 163.8	81.4 ± 149.4	NS
Seasoning, g	33.4 ± 19.8	31.3 ± 17.7	NS
Alcohols, g	137.1 ± 277.5	69.2 ± 182.3	p < 0.0001
Others, g	0.8 ± 3.1	0.9 ± 5.3	NS

NS: not significant.

Data are presented as mean ± standard deviation; Significance as determined by the GLM test.

*Adjusted for age, sex, body mass index.

Table 4. Comparisons of the Food Habit Score (FHS) between hyperuricemia subjects and controls

Variables	Hyperuricemia subjects (n = 1242)	Controls (n = 7768)	p value*
Total score (0-10)	5.50 ± 1.92	5.83 ± 1.89	p < 0.0001
Meal regularity	0.80 ± 0.40	0.83 ± 0.38	p < 0.001
Meal speed	0.78 ± 0.42	0.83 ± 0.38	NS
Meat/egg consumption	0.40 ± 0.49	0.37 ± 0.48	NS
Seafood consumption	0.55 ± 0.50	0.53 ± 0.50	NS
Tofu, soy, soymilk consumption	0.50 ± 0.50	0.53 ± 0.50	NS
Vegetables, seaweeds, mushrooms consumption	0.51 ± 0.50	0.55 ± 0.50	p < 0.01
Fruits consumption	0.54 ± 0.50	0.65 ± 0.48	p < 0.001
Dairy products consumption	0.36 ± 0.48	0.43 ± 0.49	p < 0.01
Variety of diet	0.87 ± 0.34	0.86 ± 0.34	p < 0.01
Salty taste	0.50 ± 0.50	0.55 ± 0.50	NS

NS: not significant.

Data are presented as mean ± standard deviation; Significance as determined by the GLM test.

*Adjusted for age, sex, body mass index.
weight loss reduced the risk [19]. Our study also showed that BMI was significantly higher in the hyperuricemia subjects than in the controls.

A number of previous studies have reported that hyperuricemia is associated with various chronic diseases such as arterial hypertension, cardiovascular disease, dyslipidemia, diabetes mellitus, and gout, all of which are associated with an increase in mortality risk [3-7, 20-24]. Furthermore, animal studies indicated that hyperuricemia can contribute to the development of these diseases.

Table 5. Comparison of the Nutrient Adequacy Ratio (NAR) and Mean Adequacy Ratio (MAR) between hyperuricemia subjects and controls

Variables	Hyperuricemia subjects (n = 1242)	Controls (n = 7768)	p value*
Nutrient Adequacy Ratio (NAR)			
Protein	0.99 ± 0.05	0.98 ± 0.06	NS
Calcium	0.69 ± 0.20	0.72 ± 0.21	p < 0.0001
Phosphorus	0.99 ± 0.05	0.99 ± 0.06	NS
Iron	0.97 ± 0.09	0.94 ± 0.13	NS
Zinc	0.95 ± 0.10	0.94 ± 0.13	NS
Vitamin A	0.84 ± 0.21	0.85 ± 0.20	p < 0.01
Vitamin B₁	0.91 ± 0.14	0.90 ± 0.14	p < 0.001
Vitamin B₂	0.76 ± 0.19	0.78 ± 0.19	p < 0.0001
Vitamin B₆	0.96 ± 0.10	0.95 ± 0.10	NS
Niacin	0.93 ± 0.13	0.91 ± 0.14	NS
Vitamin C	0.83 ± 0.21	0.86 ± 0.20	p < 0.0001
Folate	0.74 ± 0.24	0.75 ± 0.24	p < 0.0001
Mean Adequacy Ratio (MAR)	0.88 ± 0.09	0.88 ± 0.10	p < 0.0001

NS: not significant.
Data are presented as mean ± standard deviation; Significance as determined by the GLM test.
*Adjusted for age, sex, body mass index.

Table 6. Comparison of the Index of Nutritional Quality (INQ) between hyperuricemia subjects and controls

Variables	Hyperuricemia subjects (n = 1242)	Controls (n = 7768)	p value*
Protein	1.72 ± 0.32	1.69 ± 0.31	NS
Calcium	0.82 ± 0.30	0.87 ± 0.31	p < 0.0001
Phosphorus	1.80 ± 0.35	1.73 ± 0.33	p < 0.001
Iron	1.76 ± 0.61	1.69 ± 0.66	p < 0.001
Zinc	1.42 ± 0.91	1.38 ± 0.73	NS
Vitamin A	1.22 ± 0.61	1.33 ± 0.74	p < 0.001
Vitamin B₁	1.28 ± 0.69	1.29 ± 1.22	NS
Vitamin B₂	0.90 ± 0.25	0.96 ± 0.30	p < 0.001
Vitamin B₆	1.52 ± 0.44	1.51 ± 1.04	NS
Niacin	1.34 ± 0.35	1.28 ± 0.35	NS
Vitamin C	1.25 ± 0.71	1.40 ± 0.77	p < 0.0001
Folate	1.03 ± 0.53	1.06 ± 0.53	p < 0.0001

NS: not significant.
Data are presented as mean ± standard deviation; Significance as determined by the GLM test.
*Adjusted for age, sex, body mass index.
cate that a decrease in uric acid levels can prevent or reverse the features of metabolic syndrome [25-26]. We also found significantly higher waist circumference, triglyceride, total cholesterol, and LDL cholesterol and lower HDL cholesterol in the hyperuricemia subjects than in the controls after adjusting for age, sex, and BMI.

Relationships between the consumption of animal protein and hyperuricemia have been reported in the literature [27]. In this study, the intake of the purine-rich foods such as meat, fish, and shellfish tended to be higher in the hyperuricemia subjects than in the controls. The intake of vegetables, seaweed, and dairy products was significantly lower, while alcohol intake was higher in the hyperuricemia subjects than in the controls. Consequently, the intake of fiber, potassium, vitamin C, and folate was lower and resulted in lower NARs for calcium, vitamin A, vitamin B6, vitamin C, and folate in the hyperuricemia subjects than in the controls.

Previous studies indicate that a greater vitamin C intake is independently associated with lower serum uric acid levels via its uricosuric effects [28-29]. The presence of milk-forming proteins such as lactalbumin and casein, which have uricosuric effects [30], may explain the inverse relationship observed between the consumption of dairy products and uric acid levels [31]. However, there does not appear to be an association between calcium supplementation and uric acid levels [2].

Alcohol abuse can increase the production of uric acid by promoting the metabolism of adenine nucleotide to uric acid [32]. In addition, ethanol can decrease renal uric acid excretion through an increase in lactic acid concentrations, which then competitively suppress the excretion of acid in the renal tubules by activating the ion exchange function of human urate anion exchanger (URAT1) to stimulate the reabsorption of uric acid in the proximal tubule [33-34]. We also found that alcohol intake in the hyperuricemia subjects were significantly higher than in the controls. In summary, the results of the dietary quality indices indicated that the hyperuricemia subjects had poorer diet quality than the controls, especially relating to meal regularity and the intake of vegetables, fruit, and dairy products. Few studies have examined the associations between diet quality and hyperuricemia. However, a number of studies have reported that poor diet quality is likely to result in obesity, abdominal obesity, elevated blood pressure, hyperlipidemia, and other risk factors associated with metabolic syndrome [35-37].

Our study had certain limitations. First, the dietary information might not reflect an individual’s usual intake owing to the use of 3-day food records. Second, it was not possible to establish causal associations between hyperuricemia and diet, because of the cross-sectional study design. Therefore, prospective or longitudinal studies are necessary to further elucidate the dietary factors related to hyperuricemia among Koreans. However, the strengths of the current study include the large sample size and the related statistical power. Furthermore, this study was the first to investigate nutrient intake and diet quality in people with hyperuricemia in Korea.

In conclusion, the hyperuricemia subjects reported poorer diet quality than the controls, including higher alcohol intake and lower vegetable and dairy product intake. Our findings suggest that a balanced diet that includes consumption of dairy products and plenty of vegetables, limited alcohol intake, and maintenance of a healthy weight can assist with the management of hyperuricemia. However, further research is needed to clarify the role of dietary factors in hyperuricemia and to establish evidence-based dietary guidelines for the management of hyperuricemia.

Conflict of interest
We declare that we have no conflict of interest.

References
1. Puig JG, Martinez MA, Mora M, Fraile JM, Montoya F, Torres RJ. Serum urate, metabolic syndrome, and cardiovascular risk factors. A population-based study. Nucleosides Nucleotides Nucleic Acids 2008;27:620-3.
2. Zgaga L, Theodoratou E, Kyle J, Farrington SM, Agakov F, Tenesa A, Walker M, McNeil G, Wright AF, Rudan I, Dunlop MG, Campbell H. The association of dietary intake of purine-rich vegetables, sugar-sweetened beverages and dairy with plasma urate, in a cross-sectional study. PLoS One 2012;7:e38123.
3. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. JAMA 2000;283:2404-10.
4. Fessel WJ. High uric acid as an indicator of cardiovascular disease. Independence from obesity. Am J Med 1980;68:401-4.
5. Chien KL, Chen MF, Hsu HC, Chang WT, Su TC, Lee YT, Hu FB. Plasma uric acid and the risk of type 2 diabetes in a Chinese community. Clin Chem 2008;54:310-6.
6. Heining M, Johnson RJ. Role of uric acid in hypertension, renal disease, and metabolic syndrome. Cleve Clin J Med 2006;73:1059-64.
7. Burack RC, Keller JB, Higgins MW. Cardiovascular risk factors and obesity: are baseline levels of blood pressure, glucose, cholesterol and uric acid elevated prior to weight gain? J Chronic Dis 1985;38:865-72.
8. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med 2008;359:1811-21.
9. de Oliveira EP, Burini RC. High plasma uric acid concentration: causes and consequences. Diabetol Metab Syndr 2012;4:12.
10. Lee KH, Lee SK. Pathophysiology of gout. Korean J Med 2011;80:251-4.
11. Emmerson BT. The management of gout. N Engl J Med 1996;334:445-51.
12. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med 1998;334:2445-51.
Nutrient Intake and Diet Quality in Hyperuricemia

Med 2004;350:1093-103.
13. Hong SJ, Kim YS, Kim HS. Prevalence and clinical features of hyperuricemia in Gwangju and Jeonnam territories. J Rheum Dis 2012;19:138-46.
14. Kim YB, Jhang WG, Hwangbo Y, Kim HS, Ahn KD, Lee BK, Lee YJ, Lee JE, Lee JS, Lss CG, Lee HJ, Lee SS. Risk factors of hyperuricemia in the citizens of Asan. J Soonchunhyang Med Coll 2006;12:41-9.
15. Kim EH, Jeon K, Park KW, Kim HJ, Ahn JK, Jeon CH, Cha HS, Koh EM. The prevalence of gout among hyperuricemic population. J Korean Rheum Assoc 2004;11:7-13.
16. Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH. Rheumatology. 3th ed. St. Louis (MO): Mosby; 2003.
17. The Korean Nutrition Society. Dietary reference intakes for Koreans 2010. Seoul: The Korean Nutrition Society; 2010.
18. Poletto J, Harima HA, Ferreira SR, Gimeno SG. Hyperuricemia and associated factors: a cross-sectional study of Japanese-Brazilians. Cad Saúde Publica 2011;27:369-78.
19. Choi HK, Atkinson K, Karlson EW, Curhan G. Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study. Arch Intern Med 2005;165:742-8.
20. Lottmann K, Chen X, Schädlich PK. Association between gout and all-cause as well as cardiovascular mortality: a systematic review. Curr Rheumatol Rep 2012;14:195-203.
21. Vučak J, Katić M, Bielen I, Vrdoljak D, Lalić DI, Kranjčević K, Marković BB. Association between hyperuricemia, prediabetes, and hypertension in the Croatian adult population--a cross-sectional study. BMC Cardiovasc Disord 2012;12:117.
22. Torralba KD, De Jesus E, Rachabattula S. The interplay between diet, urate transporters and the risk for gout and hyperuricemia: current and future directions. Int J Rheum Dis 2012;15:499-506.
23. Kang DH. Does hyperuricemia play a causative role in the development and/or aggravation of renal, cardiovascular and metabolic disease? Korean J Med 2011;80:524-8.
24. Chin HJ, Na KY, Kim Y, Chae DW, Kim S. The impact of uric acid and metabolic syndrome on the incidence of hypertension in a Korean population. Korean J Med 2007;73:58-66.
25. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 2006;290:F625-31.
26. Sánchez-Lozada LG, Tapia E, Bautista-Garcia P, Soto V, Avila-Casado C, Vega-Campos IP, Nakagawa T, Zhao L, Franco M, Johnson RJ. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 2008;294:F710-8.
27. Schlesinger N. Dietary factors and hyperuricemia. Curr Pharm Des 2005;11:1433-8.
28. Choi HK, Gao X, Curhan G. Vitamin C intake and the risk of gout in men: a prospective study. Arch Intern Med 2009;169:502-7.
29. Sutton JL, Basu TK, Dickerson JW. Effect of large doses of ascorbic acid in man on some nitrogenous components of urine. Hum Nutr Appl Nutr 1983;37:136-40.
30. Ghadirian P, Shatenstein B, Verdy M, Hamet P. The influence of dairy products on plasma uric acid in women. Eur J Epidemiol 1995;11:275-81.
31. Choi HK, Liu S, Curhan G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 2005;52:283-9.
32. Wang Y, Yan S, Li C, Zhao S, Lv J, Wang F, Meng D, Han L, Wang Y, Miao Z. Risk factors for gout developed from hyperuricemia in China: a five-year prospective cohort study. Rheumatol Int 2013;33:705-10.
33. Luk AJ, Simkin PA. Epidemiology of hyperuricemia and gout. Am J Manag Care 2005;11:5435-42.
34. Choi HK, Mount DB, Reginato AM; American College of Physicians; American Physiological Society. Pathogenesis of gout. Ann Intern Med 2005;143:499-516.
35. Nicklas TA, O’Neil CE, Fulgoni VL 3rd. Diet quality is inversely related to cardiovascular risk factors in adults. J Nutr 2012;142:2112-8.
36. Lim SY, Yoo HJ, Kim AL, Oh JA, Kim HS, Choi YH, Cho JH, Lee JH, Yoon KH. Nutritional intake of pregnant women with gestational diabetes or type 2 diabetes mellitus. Clin Nutr Res 2013;2:81-90.
37. Drewnowski A, Fidder EC, Dauchet L, Gaiani G, Hercberg S. Diet quality measures and cardiovascular risk factors in France: applying the Healthy Eating Index to the SU.VI.MAX study. J Am Coll Nutr 2009;28:22-9.