Title
Growth rate of a deep-sea coral using 210Pb and other isotopes

Permalink
https://escholarship.org/uc/item/7k83n0mv

Journal
Geochimica et Cosmochimica Acta, 54(5)

ISSN
0016-7037

Authors
Druffel, Ellen RM
King, Linda L
Belastock, Rebecca A
et al.

Publication Date
1990-05-01

DOI
10.1016/0016-7037(90)90174-j

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
LETTER

Growth rate of a deep-sea coral using 210Pb and other isotopes

ELLEN R. M. DRUFFEL, LINDA L. KING, REBECCA A. BELASTOCK, and KEN O. BUSSEREL
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

(Received January 23, 1990; accepted in revised form April 9, 1990)

Abstract—A deep-sea coral was studied to determine its growth rate and to reconstruct time histories of isotope distributions in the deep ocean. The specimen was collected at a depth of 600 m off Little Bahama Banks using the Deep Submergence Vehicle (DSV) Alvin. The growth rate of the calcitic coral trunk was determined using excess 210Pb measured in concentric bands. Excess 210Pb was found in the outer half of the coral's radius, and a growth rate of 0.11 ± 0.02 mm/a is calculated. Assuming a constant growth rate during formation of the entire trunk, an age of 180 ± 40 a is estimated for the coral. The decrease observed in radiocarbon activities measured on the same bands (GRIFFIN and DRUFFEL, 1989) concurred with the growth rate estimated from excess 210Pb activity. 239,240Pu activities measured by mass spectrometry were also detected in the outer two bands of the coral, as expected from the 210Pb chronology. Stable oxygen and carbon isotopes measured in samples collected by a variety of techniques are positively correlated. This is evidence of a variable kinetic isotope effect most likely caused by variations in the skeletal growth rate. Long-lived corals such as this specimen have the potential for serving as integrators of seawater chemistry in the deep-sea over several century timescales.

INTRODUCTION

CONCENTRATIONS OF BOMB-PRODUCED transient tracers (14C, 3H, 90Sr) in the water column have been used to estimate such processes as the mixing rate of water in the main thermocline (BROECKER et al., 1985), the ventilation rate of midocean gyres (JENKINS, 1982; DRUFFEL, 1989), and inter-ocean transfer of water (FINE, 1985). Transient tracer data are obtained during infrequent global surveys of the water column, such as Geosecs (Geochemical Ocean Sections Study) and TTO (Transient Tracers in the Oceans), whereas high-resolution time histories of tracers are obtained from annually banded corals and are restricted to the upper 70 m of the water column.

Integrators that record the chemistry of waters from depth in the ocean are needed to obtain three-dimensional time histories of the input of transient tracers to the water column. Large reefs of living corals containing no photosynthetic symbiotic algae have been reported off the coasts of Norway (STROMGREN, 1971), the Bahamas (MULLINS et al., 1981; NEUMANN et al., 1977), and New Zealand (SQUIRES, 1964). Small corals are brought up routinely during rock dredges from virtually all depths of the oceans. However, several problems hinder the use of these corals as recorders, most importantly the absence of known-aged skeletal bands. Seasonality in water temperature and other parameters controlling band formation are not present in the deep-sea. Also, the collection of intact deep-sea corals must be done by submersible and the occurrence of large specimens is extremely rare.

The only available growth rate measurements of deep-sea corals have been made on linear extension of branches. Estimates for the growth rate of Lophelia were based on stable isotope and radiocarbon data (MIKKELSEN et al., 1982). GRIGG (1974) tagged colonies of Corallium niobium and determined a growth rate of 0.3 cm/a. To our knowledge, there are no published studies reporting the growth rate of deep-sea corals using detailed radioisotopic distributions.

We measured excess 210Pb concentration in individual bands from a trunk of Corallium niobium to determine the radial growth rate, similar to studies using surface corals (MOORE and KRISHNASWAMI, 1972; MOORE et al., 1973; DODGE and THOMSON, 1974). The sources of 210Pb in seawater are the decay of 226Ra in the water column and the decay of 222Rn in the atmosphere. Atmospheric 210Pb is quickly deposited at the ocean surface. SHEN and BOYLE (1988) developed methods for determining lattice-bound trace element ratios (Pb/Ca and Cd/Ca) in annually banded surface corals. Through a rigorous sequence of oxidative, reductive, and dilute acid treatments, they were able to eliminate detrital and organic phases of Pb and Cd, which were of higher concentrations than those in the lattice-bound phases. The relative distribution of Pb and Ra in the various phases of the Corallium skeleton is unknown, but it is suspected that there are considerable quantities of these divalent cations bound within the CaCO$_3$, as well as in the detrital and organic matter incorporated within the skeleton.

Using excess 210Pb measurements, we show that the lifespan of our C. niobium specimen was about 180 ± 40 a, assuming a constant growth rate for the trunk. Radiocarbon results corroborate this age estimate (GRIFFIN and DRUFFEL, 1989). Bomb radiocarbon was not detected in the Δ^{14}C record from the coral (GRIFFIN and DRUFFEL, 1989), in agreement with the absence of bomb radiocarbon observed in seawater samples from similar isopycnals in the western North Atlantic.
Corallium niobe
Trunk

FIG. 1. a) Schematic of sectioned Corallium niobe trunk used in this study. Two discs, K and G-B, were sampled individually for stable oxygen and carbon isotope analyses. Samples were drilled from disc K and sanded from a wedge of disc G-B. See text for detail. b) Photograph of thin section from base of coral using an enlarger.
THE DEEP-SEA CORAL

Corallium niobe is a branching coral, whose skeleton is composed primarily of calcite. The specimen used in this study grew at 600 m depth on a lithoherm off the Little Bahama Banks (27°01'N, 79°22'W) in the Florida Straits. Lithoherms are lithified mounds approximately 10-50 m high, composed of dead coral skeletons and calcitic silts and clays derived from the surrounding sediment (SQUIRES, 1964; NEUMANN et al., 1977; MULLINS et al., 1981). The northward Florida Current is the dominant flow at this location. The current speed was >1 knot at this depth, and at times >2 knots at the southern edge or front of the lithoherms. This water originates from both the southern part of the North Equatorial Current and from the South Equatorial Current, flows through the Caribbean, through the Yucatan Channel, and into the Florida Straits.

The specimen was collected by the pilot of the DSV _Alvin_ on 21 October 1982 (Dive No. 1273). It was approximately 1 m in diameter and had a two-dimensional, fan-like morphology. The yellowish, epithelial tissue on the surface of the coral was removed on board ship with a solution of 1% sodium hypochlorite in seawater; the specimen was then rinsed with fresh water and air-dried.

In order to section the coral into growth bands, the main trunk (38-39 mm diameter) was sliced into 13 radial sections approximately 5 mm thick (Fig. 1a). Each radial section or disc was photographed using an enlarger directly onto photographic paper (Fig. 1b). In the photographs, seven concentric growth bands were traced throughout the perimeter of each disc; three of these bands were subdivided. The discs were cleaned with 4 N HCl before mapping. The bands were sanded from each disc using a variable speed dremel Moto-Tool. The width of each band and the average distance from the outer growth edge was averaged over the entire coral trunk (see Table 1); these values were used for the growth rate calculations. A sample of the tips from the branches of the coral (<1 mm diameter) was also analyzed for 210Pb, 14C, and stable isotopes.

ISOTOPIC TECHNIQUES

The ground coral samples were acidified and the CO₂ produced was analyzed for radiocarbon (GRiffIN and DRUFFEL, 1989). 210Po was plated onto silver foil from the acid solutions and used to determine 210Pb activities (assuming secular equilibrium between the two isotopes) (FLEER and BACON, 1984). 226Ra was measured using the 222Rn emanation method (MATHIEU et al., 1988). Twelve samples were measured for 210Pb; five of these samples were analyzed for 226Ra to correct for supported 210Pb. 239,240Pu activities were measured on the samples from the two outer bands (7 and 8) using mass spectrometric methods (BUESSELER and HALVERSON, 1987).

δ18O and δ13C measurements were made on samples sectioned by three methods. First, a subsample of each band used for the radiochemical analyses was crushed in an agate mill and analyzed for 18O and 13C.

Table 1. Activities of 210Pb, 226Ra, and 239,240Pu in bands from _Corallium niobe_ collected in 1982.

Sample	Band Width (mm)	Mean Dist. from Edge (mm)	210Pb total (dpm/100g)	226Ra (dpm/100g)	239,240Pu (dpm/100g)	Year of Mean Age	239,240Pu (dpm/kg)
Tips	--	--	44.7 ± 3.5				2.02 ± 0.29
8	0.8	0.4	55.6 ± 2.3	21.5 ± 2.7	64.1 ± 3.5	1978	0.31 ± 0.07
7	0.8	1.2	31.0 ± 2.4	(10.9)²		1971	
6-1	1.0	2.1	21.4 ± 2.4	(10.0)²		1963	
6-2	1.0	3.1	24.2 ± 3.0	10.9 ± 0.9	13.3 ± 3.1	1954	
5	1.5	4.4	18.6 ± 3.2	(10.6)²		1942	
4	1.6	6.8	16.0 ± 2.1	10.0 ± 1.4	5.7 ± 2.5	1930	
3-1	1.9	7.6	11.8 ± 1.7	(10.2)²		1914	
3-2	1.9	9.4	12.2 ± 1.8	10.0 ± 1.2	2.2 ± 2.2	1897	
2-1	2.5	11.0	11.9 ± 1.8	(10.6)²		1878	
2-2	2.5	14.2	12.4 ± 1.5	11.7 ± 1.4	0.7 ± 2.1	1854	
1	4.0	17.4	12.2 ± 1.9	(12.0)²		1824	

1. Calculated as (210Pb total - 226Ra).
2. 226Ra activity calculated as the mean of adjacent 226Ra measurements.
mortar and pestle. Second, holes (0.5 and 1.0 mm diameter) were drilled along two radial axes on disc K (Fig. 1a). Third, a wedge from disc G was removed, and 250 μm-thick samples were sanded along the circumference using the lowest drill speed. Samples were analyzed on a VG Micromass 602E mass spectrometer according to methods described by DRUFFEL (1985).

RESULTS

Total 210Pb concentrations are listed in Table 1 and plotted vs. average distance from the outer growing edge of the coral trunk (Fig. 2a). They range from 12 to 85 dpm/100 g coral with approximately constant values for samples >7.5 mm from the outer edge.

Assuming secular equilibrium between 226Ra and 210Pb, we subtracted the 226Ra activity from the total 210Pb activity in order to calculate the unsupported or excess 210Pb (210Pb$_{ex}$). Band 8 shows a 226Ra activity about double the inner four analyses. We therefore conclude that the outer sample contains significant 226Ra (and 210Pb) associated with living tissue, similar to observations made in shallow corals (MOORE et al., 1973). We assume that the 226Ra activities of the samples not measured are equal to the mean of adjacent sample activities and use this information to correct the remaining total 210Pb activities. 210Pb$_{ex}$ values are plotted vs. mean distance from the outer edge in Fig. 2b. The growth rate (A in mm/a) of the coral is determined from the best fit to the exponential curve through the 210Pb$_{ex}$ values, excluding that for band 8, using the following equation:

$$^{210}\text{Pb}_{ex} = ^{210}\text{Pb}_0 e^{-\lambda A D}$$

where $^{210}\text{Pb}_0$ is the activity of excess 210Pb at time zero, λ is 0.0311 a$^{-1}$, and D is the mean distance from the edge. In this way, we calculate a growth rate of 0.11 ± 0.02 mm/a. This growth rate does not change if we fit only the inner 7 points, excluding bands 7 and 6-1, for which the 226Ra estimates are less certain. If we assume that the linear growth rate remained unchanged for the entire life span of the coral, then the age of the specimen was approximately 180 ± 40 a.

The radiocarbon measurements reported by GRIFFIN and DRUFFEL (1989) are shown for comparison in Fig. 3. The similarity between the Δ14C values in the outer bands (-70 to -80%) and those measured in dissolved inorganic carbon (DIC) in seawater from the same isopycnal surface ($\sigma_b = 27.2$) in the western North Atlantic during 1981 (OSTLUND, 1983) led GRIFFIN and DRUFFEL (1989) to conclude that DIC was the primary source of carbon for the skeletal calcite. A least-squares fit of the 11 Δ14C values revealed a significant decrease from the outer edge to the center of the trunk. Using the half-life for 14C of 5730 a, a growth rate of 0.1 ± 0.03 mm/a (50% confidence interval) was determined. Using this growth rate, an age for the coral specimen of 175 ± 50 a is calculated. This age agrees with that calculated using the 210Pb$_{ex}$ results.

The stable isotope data are shown in Fig. 4 and listed in Table 2. The range of observed δ^{13}C and δ^{18}O values are offset from those expected for the equilibrium precipitation of calcite. Equilibrium values are +1.7 for δ^{18}O, assuming a temperature of 12.3°C and δ^{18}O for seawater of -1.0% (EPSTEIN et al., 1953; CRAIG and GORDON, 1965) and +1.7 for δ^{13}C, assuming a δ^{13}C for DIC of -0.5% (RUBINSON and CLAYTON, 1969; EMRICH et al., 1970; KEELING et al., 1979). The observed values are within the range of that reported for other non-photosynthetic corals (WEBER, 1973; LAND et al., 1975; EMILIANI et al., 1978; SWART, 1983).
The δ¹³C and δ¹⁸O values (Fig. 4c) are positively correlated, similar to observations of non-photosynthetic corals made by other investigators (EMILIANI et al., 1978; SWART, 1983; McCONNAUGHEY, 1989). The main processes affecting the isotopes in these types of corals are respiration and kinetic fractionations (SWART, 1983); this correlation has been termed the kinetic isotope effect (McCONNAUGHEY, 1989). The slope (Δδ¹³C/Δδ¹⁸O) of these values is about 2 and, when extrapolated, approximately intersects the value calculated for equilibrium calcite (Fig. 4c). This observation lends credence to the conclusion, derived from the ¹⁴C record, that respiration is not a major source of skeletal carbon. It also suggests that most of the observed δ¹⁸O and δ¹³C variations are attributable to physiological rather than environmental changes.

The δ¹⁸O and δ¹³C measurements of subsamples of the whole band samples (Fig. 4a, b) decrease from 0 to 7 mm from the outer edge and increase from 9 to 17.4 mm from the outer edge, respectively. Results from both the drilled (●, X) and sanded (○) samples show a similar pattern. These shifts represent a change in the kinetic isotope effect, which is likely associated with a change in growth rate. EMILIANI et al. (1978) concluded that carbon and oxygen isotope values in the solitary coral Bathyspsammia tintinnabulum increased as growth rate decreased and approached zero as maturity was attained on the growing surface. Nonetheless, changes in the growth rate are not expected to substantially change the age estimated for the coral, as the age was estimated from ²¹⁰Pb and Δ¹⁴C measurements that were made on the entire coral trunk.

There are systematic offsets between the stable isotope results in the drilled and sanded samples and the whole band averages (Fig. 4a, b). We believe that these differences are the result of slight variations in the radial growth rate of the coral. ²³⁹,²⁴⁰Pu was detected in band 7 (0.31 ± .07 dpm/kg) and 8 (2.02 ± .29 dpm/kg) (Table 1). These results fall within the range of Pu activities reported for surface corals from St. Croix (BENNINGER and TYNGE, 1986) and from Florida (PURDY et al., 1989). Using the ²¹⁰Pb determined growth rate, the presence of Pu in band 7 (1971 ± 4) is expected given the input of fallout Pu to the oceans that began in the early 1950s. It is difficult to explain the higher Pu activity in band 8 (1978 ± 3) without additional data and a better understanding of the Pu input function to the deep sea (BUESSELER and SHOLKOVITZ, 1987).

DISCUSSION

The activity of ²¹⁰Pb in the tips sample was nearly half of that in the outermost band from the trunk. This is likely due to the removal of organic ²¹⁰Pb phases during bleaching of the tips, which have a much higher surface area-to-volume ratio than that for the outermost band 8. Similar reductions in ²¹⁰Pb activity have been noticed in the outer bands from sponges (BENAVIDES and DRUFFEL, 1986) and surface corals (MOORE and KRISHNASWAMI, 1972). As it was necessary to powder the coral samples (size fraction <63 μm), we were not able to rigorously clean them according to techniques developed by SHEN and BOYLE (1988) prior to the ²¹⁰Pb analyses. Thus, our analyses include Pb from lattice-bound calcite, as well as Pb from organic and detrital phases. As the total ²¹⁰Pb values fit an exponential function with distance from the edge (Fig. 2a), this suggests that the incorporation of total ²¹⁰Pb had been constant with time.

Deep-sea corals have the potential for reconstructing time histories of conservative and transient tracers. These time
Table 2. Stable isotope measurements (PDB) made on bands, and drilled and sanded samples from the *Corallium* niobe specimen.

Distance from edge (mm)	$\delta^{18}O$ (‰)	$\delta^{13}C$ (‰)
Crushed bands (•)		
Tips	-1.03	-5.1
0.4	-0.22	-3.27
1.2	-0.52	-3.08
2.1	-0.59	-3.50
3.1	-0.84	-4.14
4.4	-1.07	-4.33
5.8	-1.31	-4.83
7.6	-1.34	-4.90
9.4	-1.28	-4.23
11.6	-0.92	-4.07
14.2	-0.62	-3.77
17.4	-0.04	-2.83
Drilled-Disc K (90°) (x)		
3.8	-0.29	-2.88
4.9	-0.62	-3.04
6.8	-0.55	-2.82
9.9	-0.83	-4.03
10.8	-0.73	-3.64
13.8	-0.74	-4.41
16.9	0.00	-2.69
Sanded (o)		
1.1	-0.02	-2.45
3.2	-0.36	-2.95
4.4	-0.52	-3.52
5.4	-0.84	-4.09
6.3	-0.93	-4.57
7.3	-1.09	-4.29
8.3	-0.58	-3.68
9.3	-0.96	-4.94
10.3	-0.41	-3.88
11.3	-0.46	-3.32
12.3	-0.42	-3.34
13.5	-0.35	-3.49
16.1	-0.55	-3.45

histories will allow a three-dimensional view of the oceans with respect to time and space on relatively short timescales. Unlike most sediments, they are unaffected by bioturbation and many remain unaltered by diagenesis. Thus, they offer a new avenue for understanding the penetration of anthropogenic substances into the ocean, as well as paleochemical and paleocirculation changes in the deep sea on decadal and longer time scales.

The greatest difficulty that remains is to determine an absolute chronology for the deep-sea organisms from which isotopic and elemental integrators can be reconstructed. 239Th by mass spectrometry (Edwards et al., 1987, 1988) or other methods may provide the absolute chronology past 100 years that has limited us in our use of 210Pb.210

Acknowledgments—We thank Conrad Neumann (Chief Scientist), Ralph Hollis, Elisabeth Sikes, and the captain and crew of the K/V *Lulu* and DSV *Alvin* for their help in capturing this magnificent specimen. We thank Sheila Griffin for her help throughout this study. John Porteous devised photographic techniques that led to the detection of regular banding in the coral. We are indebted to Billy Spitzer for his perceptive work during the early stages of this project. We are grateful to Mike Bacon for his guidance. We thank Ted Bayer for identifying the coral. Sheila Griffin measured the stable isotope ratios, and C. Eben Franks provided assistance with the isotope ratio mass spectrometer. We are very grateful to Billy Moore, J. K. Osmond, Mike Bacon, Ted McConnaughey, and two anonymous reviewers for their thoughtful reviews of this manuscript; they significantly improved our interpretation. We acknowledge funds from the National Science Foundation through Grant No. OCE86-8263 (to ERMD), the Department of Energy through Grant No. DE-FG02-85ER60358 (to KOB), and a grant from the Arthur Vining Davis Foundation. This is Woods Hole Oceanographic Institution Contribution No. 7311.

Editorial handling: G. Faure

REFERENCES

BENAVIDES L. and DRUFFEL E. R. M. (1986) Sclerosponge growth rate as determined by 210Pb and ^{14}C chronologies. *Coral Reefs* 4, 221–224.

BENNINGER L. K. and DODGE R. E. (1986) Fallout plutonium and natural radionuclides in annual bands of the coral Montastraea annularis: St. Croix, U.S. Virgin Islands. *Geochim. Cosmochim. Acta* 50, 2785–2797.

BRECKER W. S., PENG T. H., OSTLUND G., and STUIVER M. (1985) The distribution of bomb radiocarbon in the ocean. *J. Geophys. Res.* 90, 6953–6970.

BUSSERÖER K. O. and HALVERSON J. E. (1987) The mass spectrometric determination of fallout 239Pu and 240Pu in marine samples. *J. Environ. Radioactivity* 5, 425–444.

BUSSERÖER K. O. and SHOKROWTZ E. R. (1987) The geochemistry of fallout plutonium in the North Atlantic: 239Pu/240Pu ratios and their significance. *Geochim. Cosmochim. Acta* 51, 2623–2637.

CRAIG H. and GORDON L. I. (1965) Isotopic oceanography: Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. *Occas. Publ. Nat. Mar. Lab* 3, 277–287.

DODGE R. E. and THOMPSON J. (1974) The natural radiochemical and growth records in contemporary hermatypic corals from the Atlantic and Caribbean. *Earth Planet. Sci. Lett.* 23, 313–322.

DRUFFEL E. R. M. (1985) Detection of El Niño and decade time
scale variations of sea surface temperature from banded coral records: Implications for the carbon dioxide cycle. Geophys. Mon. 32, 111–122.

DRUFFEL E. R. M. (1989) Decade time scale variability of ventilation in the North Atlantic: High-precision measurements of bomb radiocarbon in banded corals. J. Geophys. Res. 94, 3271–3285.

EDWARDS R. L., CHEN J. H., KU T. L., and WASSERBURG G. J. (1987) Precise timing of the last interglacial period from mass spectrometric determination of Th-230 in corals. Science 236, 1547–1553.

EDWARDS R. L., TAYLOR F. W., and WASSERBURG G. J. (1988) Dating earthquakes with high-precision thorium-230 ages of very young corals. Earth Planet. Sci. Lett. 90, 371–381.

EMILIANI C., HUDSON J. H., SHINN E., and GEORGE R. Y. (1978) Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science 202, 627–629.

EMRICH K., EHALT D. H., and VOGEL J. C. (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett. 8, 363–371.

EPSTEIN S., BUCHBAUM R., LOWENSTAM H. A., and UREY H. C. (1953) Revised carbonate-water isotopic temperatures scale. Bull. Geol. Sot. Amer. 64, 1315–1326.

FINE R. A. (1985) Direct evidence using tritium data for throughflow from the Pacific into the Indian Ocean. Nature 315, 478–480.

FLEER A. P. and BACON M. P. (1984) Determination of 206Pb and 210Po in seawater and marine particulate matter. Nucl. Instr. Meth. Phys. Res. 223, 243–249.

GRIGG W. R. (1974) Growth rings: annual periodicity in two Gorgonian corals. Radiocarbon 31, 533–542.

GRIGG W. R. (1974) Growth rings: annual periodicity in two Gorgonian corals. Radiocarbon 31, 533–542.

JENKINS W. J. (1982) On the climate of a subtropical ocean gyre: Decade time-scale variations in water mass renewal in the Sargasso Sea. J. Mar. Res. 40, 265–290.

KEELING C. G., MOOK W. G., and TANS P. P. (1979) Recent trends in the C13/C12 ratio of atmospheric carbon dioxide. Nature 277, 121–123.

LAND L. S., LANG J. C., and SMITH B. N. (1975) Preliminary observations on the carbon isotopic composition of some reef coral tissues and symbiotic zooxanthellae. Limnol. Oceanogr. 20, 283–287.

MATHIEU G. G., BISCAYE P. E., LUPPON R. A., and HAMMOND D. E. (1988) System for measurement of 222Rn at low levels in natural waters. Health Physics 55, 589–592.

McCONNELL T. (1989) Carbon and oxygen isotope disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta 53, 163–171.

MIKKESEN N., ERLENKENKEUSER E., KILLINGLEY J. S., and BERGER W. H. (1982) Norwegian corals: Radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11, 163–171.

MOORE W. S. and KRISHNASWAMI S. (1972) Coral growth rates using 234U and 230Th. Earth Planet. Sci. Lett. 15, 187–190.

MOORE W. S., KRISHNASWAMI S., and BHAT S. G. (1973) Radiometric determinations of coral growth rates. Bull. Mar. Sci. 23, 157–176.

MULLINS H. T., NEWTON C. R., HEATH K., and VAN BUREN H. M. (1981) Modern deep-water coral mounds north of Little Bahama Bank: Criteria for recognition of deep-water bioherms in the rock record. J. Sediment. Petrol. 51, 999–1013.

NEUMANN A. C., KOPFOLD J. W., and KELLER G. H. (1977) Lithoherms in the Straits of Florida. Geology 5, 4–10.

OSTLUND H. G. (1983) Tritium and Radiocarbon—TTO western North Atlantic section GEOSECS re-occupation. Tritium Laboratory Data Release 83-07.

PURDY C. B., DRUFFEL E. R. M., and LIVINGSTON H. J. (1989) Anomalous levels of 235U and 239U in Florida corals: Evidence of coastal processes. Geochim. Cosmochim. Acta 53, 1401–1410.

RUBINSON M. and CLAYTON R. N. (1969) C13 fractionation between aragonite and calcite. Geochim. Cosmochim. Acta 33, 997–1002.

SHEN G. T. and ROY F. A. (1988) Determination of lead, cadmium, and other trace metals in annually-banded corals. Chem. Geology 67, 47–62.

SQUIRES D. F. (1964) Fossil coral thickets in Wairarapa, New Zealand. J. Paleontology 38, 904–915.

STRÖMGREN T. (1971) Vertical and horizontal distributions of Lophelia pertusa (Linne) in Trondheimsfjorden on the west coast of Norway. K. norske Vidensk Selsk. Skr. 6, 1–9.

SWART P. K. (1983) Carbon and oxygen isotope fractionation in scleractinian corals: A review. Earth Sci. Rev. 19, 51–80.

WEBER J. N. (1973) Deep-sea ahermatypic scleractinian corals: Isotopic composition of the skeleton. Deep-Sea Research 20, 901–909.