Vector fields on certain quotients of the complex Stiefel manifolds.

Shilpa Suresh Gondhali.
Indian Statistical Institute,
Kolkata.

June 25, 2013.
Notice following:

...
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$.
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can’t differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible.

Let M be a closed connected manifold of dimension n.

(i) If $n \equiv 0 \pmod{2}$, then $\text{span}(M) = 0$ or $\text{stable span}(M)$.

(ii) If $n \equiv 1 \pmod{4}$ and $w_2^1(M) = 0$, then $\text{span}(M) = 1$ or $\text{stable span}(M)$.

(iii) If $n \equiv 3 \pmod{8}$ and $w_2^1(M) = w_2(M) = 0$, then $\text{span}(M) = 3$ or $\text{stable span}(M)$.
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can’t differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Let’s recall some of them here.
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating span(M). Problem is that we can’t differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Let’s recall some of them here.

Let M be a closed connected manifold of dimension n.
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can't differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Let's recall some of them here.

Let M be a closed connected manifold of dimension n.

(i) If $n \equiv 0 \pmod{2}$, then

$$\text{span}(M) = 0 \text{ or stable } \text{span}(M)$$
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can’t differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Lets recall some of them here.

Let M be a closed connected manifold of dimension n.
(i) If $n \equiv 0 \pmod{2}$, then

$$\text{span}(M) = 0 \text{ or stable span}(M)$$

(ii) If $n \equiv 1 \pmod{4}$ and $w_1^2(M) = 0$, then

$$\text{span}(M) = 1 \text{ or stable span}(M).$$
Notice following: Understanding KO and/or K ring of a manifold M could be helpful while calculating $\text{span}(M)$. Problem is that we can’t differentiate bundle from stable bundle so we wish to understand relation between span and stable span of a manifold as much as possible. We have a few results (due to Koschorke) relating span and stable span which depend on vanishing of Stiefel-Whitney class. Lets recall some of them here.

Let M be a closed connected manifold of dimension n.

(i) If $n \equiv 0 \pmod{2}$, then

$$\text{span}(M) = 0 \text{ or stable } \text{span}(M)$$

(ii) If $n \equiv 1 \pmod{4}$ and $w_1^2(M) = 0$, then

$$\text{span}(M) = 1 \text{ or stable } \text{span}(M).$$

(iii) If $n \equiv 3 \pmod{8}$ and $w_1^2(M) = w_2(M) = 0$, then

$$\text{span}(M) = 3 \text{ or stable } \text{span}(M).$$
Definition (m- projective Stiefel manifold)

Let $m \in \mathbb{N}$.

$\Gamma_m \subset S^1$, Γ_m subgroup generated by a primitive m-th root of unity.

Γ_m acts on W^n_k, by $z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k)$ where $z \in \Gamma_m$.

We denote the orbit space by $W^n_k; m$ and it will be referred to as the m-projective Stiefel manifolds.

Notice that when $k = 1$, $W^n_1; m = L^n_m$ (m) lens space.

One can see that $W^n_k; m = U(n) / (Z_m \times U(n-k))$.

Also, $Z_m \subset U(1) = Z(U(n))$ and $U(n) / (Z_m \times U(n-k)) = Z_m \setminus U(n) / U(n-k)$.

$3 / 18$
Definition (*m*-projective Stiefel manifold)

Let $m \in \mathbb{N}$.

$\Gamma_m \subset S^1$, Γ_m subgroup generated by a primitive m-th root of unity.
Definition (m-projective Stiefel manifold)

Let $m \in \mathbb{N}$.
$\Gamma_m \subset S^1$, Γ_m subgroup generated by a premitive m-th root of unity.
Γ_m acts on $W_{n,k}$ by

$$z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k) \text{ where } z \in \Gamma_m.$$
Definition (m- projective Stiefel manifold)

Let $m \in \mathbb{N}$.
$\Gamma_m \subset S^1$, Γ_m subgroup generated by a primitive m-th root of unity.
Γ_m acts on $W_{n,k}$ by

$$z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k) \text{ where } z \in \Gamma_m.$$

We denote the orbit space by $W_{n,k;m}$ and it will be referred to as the m-projective Stiefel manifolds.
Definition (**m- projective Stiefel manifold**)

Let \(m \in \mathbb{N} \).
\(\Gamma_m \subset S^1 \), \(\Gamma_m \) subgroup generated by a premitive \(m \)-th root of unity.
\(\Gamma_m \) acts on \(W_{n,k} \) by

\[
 z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k) \quad \text{where} \quad z \in \Gamma_m.
\]

We denote the orbit space by \(W_{n,k;m} \) and it will be referred to as the **m-projective Stiefel manifolds**.

Notice that when \(k = 1 \), \(W_{n,1;m} = L^n(m) \) lens space.
Definition (m-projective Stiefel manifold)

Let $m \in \mathbb{N}$.

$\Gamma_m \subset S^1$, Γ_m subgroup generated by a primitive m-th root of unity.

Γ_m acts on $W_{n,k}$ by

$$z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k) \text{ where } z \in \Gamma_m.$$

We denote the orbit space by $W_{n,k;m}$ and it will be referred to as the **m-projective Stiefel manifolds**.

Notice that when $k = 1$, $W_{n,1;m} = L^n(m)$ lens space.

One can see that $W_{n,k;m} = U(n)/(\mathbb{Z}_m \times U(n-k))$.

Definition (m-projective Stiefel manifold)

Let $m \in \mathbb{N}$.
$\Gamma_m \subset S^1$, Γ_m subgroup generated by a premitive m-th root of unity.
Γ_m acts on $W_{n,k}$ by

$$ z \cdot (v_1, \ldots, v_k) = (zv_1, \ldots, zv_k) \text{ where } z \in \Gamma_m. $$

We denote the orbit space by $W_{n,k;m}$ and it will be referred to as the m-projective Stiefel manifolds.

Notice that when $k = 1$, $W_{n,1;m} = L^n(m)$ lens space.

One can see that $W_{n,k;m} = U(n)/(\mathbb{Z}_m \times U(n-k))$. Also,
$\mathbb{Z}_m \subset U(1) = \mathbb{Z}(U(n))$ and $U(n)/(\mathbb{Z}_m \times U(n-k)) = \mathbb{Z}_m \backslash U(n)/U(n-k)$.

Let $\pi_m: W_{n,k;m} \rightarrow PW_{n,k}$ denote canonical quotient map
Let $\pi_m: W_{n,k} \rightarrow PW_{n,k}$ denote canonical quotient map (which is a principle $U(1)$-bundle).
Let $\pi_m : W_{n,k;m} \rightarrow \mathbb{P}W_{n,k}$ denote canonical quotient map (which is a principle $U(1)$- bundle).
Let $\pi_m: W_{n,k;m} \rightarrow PW_{n,k}$ denote canonical quotient map (which is a principle $U(1)$-bundle).

Let $\beta_{n,k}$ denote complex $(n-k)$-plane bundle over $PW_{n,k}$ whose fibre over $[v_1, \ldots, v_k]_0$ is the vector space $\{v_1, \ldots, v_k\}^\perp \subset \mathbb{C}^n$ where the orthogonal complement is taken with respect to standard Hermitian product on \mathbb{C}^n.

\[\tau_{W_{n,k};m} \sim R^k \xi_{n,k;m} \oplus \beta_{n,k;m} \]

where $\beta_{n,k;m} := \pi^* m(\beta_{n,k})$ and $\xi_{n,k;m}$ denote the complex line bundle associated to the principal $U(1)$-bundle obtained by extension of structure group via the character $\Gamma_m \subset U(1)$ of the Γ_m-bundle $W_{n,k;m} \rightarrow W_{n,k; m}$.

Let $\pi_m: W_{n,k;m} \longrightarrow PW_{n,k}$ denote canonical quotient map (which is a principle $U(1)$-bundle).

Let $\beta_{n,k}$ denote complex $(n - k)$-plane bundle over $PW_{n,k}$ whose fibre over $[v_1, \ldots, v_k]_0$ is the vector space $\{v_1, \ldots, v_k\}^\perp \subset \mathbb{C}^n$ where the orthogonal complement is taken with respect to standard Hermitian product on \mathbb{C}^n.
Let $\pi_m: W_{n,k;m} \rightarrow PW_{n,k}$ denote canonical quotient map (which is a principle $U(1)$-bundle).

Let $\beta_{n,k}$ denote complex $(n - k)$-plane bundle over $PW_{n,k}$ whose fibre over $[v_1, \ldots, v_k]_0$ is the vector space $\{v_1, \ldots, v_k\} \perp \subset \mathbb{C}^n$ where the orthogonal complement is taken with respect to standard Hermitian product on \mathbb{C}^n.
Let $\pi_m : W_{n,k;m} \longrightarrow PW_{n,k}$ denote canonical quotient map (which is a principle $U(1)$-bundle).

Let $\beta_{n,k}$ denote complex $(n-k)$-plane bundle over $PW_{n,k}$ whose fibre over $[v_1, \ldots, v_k]_0$ is the vector space $\{v_1, \ldots, v_k\}^\perp \subset \mathbb{C}^n$ where the orthogonal complement is taken with respect to standard Hermitian product on \mathbb{C}^n.

$$\tau W_{n,k;m} \cong_{\mathbb{R}} k\xi_{n,k;m} \oplus \beta_{n,k;m} \oplus k^2 \varepsilon_{\mathbb{R}}.$$

where $\beta_{n,k;m} := \pi_m^*(\beta_{n,k})$ and $\xi_{n,k;m}$ denote the complex line bundle associated to the principal $U(1)$-bundle obtained by extension of structure group via the character $\Gamma_m \subset U(1)$ of the Γ_m-bundle $W_{n,k} \longrightarrow W_{n,k;m}$.
Let M be a smooth manifold of dimension n. If the tangent bundle τM of M admits $n - p$ everywhere linearly independent vector fields, (where $0 \leq p \leq n$) then $w_{p+1}(\tau M) = \cdots = w_n(\tau M) = 0$. Similarly understanding of Chern class and Pontrjagin class can be of some help while solving vector field problem.
Let M be a smooth manifold of dimension n. If the tangent bundle τM of M admits $n - p$ everywhere linearly independent vector fields, (where $0 \leq p \leq n$) then $w_{p+1}(\tau M) = \cdots = w_n(\tau M) = 0$. Similarly understanding of Chern class and Pontrjagin class can be of some help while solving vector field problem.
Let M be a smooth manifold of dimension n. If the tangent bundle τM of M admits $n - p$ everywhere linearly independent vector fields, (where $0 \leq p \leq n$) then $w_{p+1}(\tau M) = \cdots = w_n(\tau M) = 0$. Similarly understanding of Chern class and Pontrjagin class can be of some help while solving vector field problem.
Condition on n, k and m which would imply $\text{span}(W_{n,k};m) = \text{stable span}(W_{n,k};m)$

$$\tau W_{n,k;m} \oplus k^2 \mathbb{C}_\mathbb{R} \cong nk \xi_{n,k;m}$$
Condition on n, k and m which would imply $\text{span}(W_{n,k;m}) = \text{stable span}(W_{n,k;m})$

\[\tau W_{n,k;m} \oplus k^2 \varepsilon \cong nk \xi_{n,k;m} \]

Calculating $w_1(W_{n,k;m})$ and $w_2(W_{n,k;m})$ by elementary methods and using criteria mentioned above we get,
Condition on n, k and m which would imply $\text{span}(W_{n,k;m}) = \text{stable span}(W_{n,k;m})$

\[
\tau W_{n,k;m} \oplus k^2 \varepsilon_R \cong nk \xi_{n,k;m}^\vee
\]

Calculating $w_1(W_{n,k;m})$ and $w_2(W_{n,k;m})$ by elementary methods and using criteria mentioned above we get,

Proposition

Let $2 \leq k < n$ and let $m \geq 2$.

Condition on \(n, k \) and \(m \) which would imply \(\text{span}(W_{n,k;m}) = \text{stable span}(W_{n,k;m}) \)

\[\tau W_{n,k;m} \oplus k^2 \varepsilon_R \cong nk \xi_{n,k;m} \]

Calculating \(w_1(W_{n,k;m}) \) and \(w_2(W_{n,k;m}) \) by elementary methods and using criteria mentioned above we get,

Proposition

Let \(2 \leq k < n \) and let \(m \geq 2 \). One has

\[\text{span}(W_{n,k;m}) = \text{stable span}(W_{n,k;m}) \]

in each of the following cases:
Condition on n, k and m which would imply $\text{span}(W_{n,k;m}) = \text{stable span}(W_{n,k;m})$

$$\tau W_{n,k;m} \oplus k^2 \varepsilon_R \cong nk \xi_{n,k;m}^\vee$$

Calculating $w_1(W_{n,k;m})$ and $w_2(W_{n,k;m})$ by elementary methods and using criteria mentioned above we get,

Proposition

Let $2 \leq k < n$ and let $m \geq 2$. One has

$$\text{span}(W_{n,k;m}) = \text{stable span}(W_{n,k;m})$$

in each of the following cases: (i) k is even, (ii) n is odd, and (iii) $n \equiv 2 \pmod{4}$.
Cohomology of $W_{n,k;m}$

\[
\begin{array}{c}
S^1 / \Gamma_m \\
\downarrow \\
W_{n,k;m} \\
\downarrow \\
PW_{n,k}
\end{array}
\]
Cohomology of $W_{n,k;m}$

\[
\begin{array}{ccc}
S^1/\Gamma_m & \rightarrow & S^1 \\
\downarrow & & \downarrow \\
W_{n,k;m} & \rightarrow & W_{n,k} \\
\downarrow & & \downarrow \\
PW_{n,k} & \rightarrow & PW_{n,k}
\end{array}
\]
Cohomology of $W_{n,k;m}$
Notations:

(i) Let $N := 2N'$ where N' is defined as:

$N' = \min \{ n - k + 1 \leq j \leq n \mid (n^j) \not\equiv 0 \pmod{p} \}$.

(Note that the value of N' depends on n, k, and p.)

(ii) We shall label (homogeneous) generators of a graded algebra by their degrees. Thus $|x_j| = j$ when $x_j \in H^*(X; \mathbb{R})$.

(iii) $\Lambda_{\mathbb{Z}_p}(x_1, \ldots, x_r)$ denotes any graded commutative algebra A over \mathbb{Z}_p in which square-free monomials in x_1, \ldots, x_r form a basis.
Notations:

(i) Let $N := 2N'$ where $N' := N_p = \min_{n-k+1 \leq j \leq n} \{ j \mid \binom{n}{j} \not\equiv 0 \pmod{p} \}$. (Note that the value of N' depends on n, k and p.)
Notations:

(i) Let \(N := 2N' \) where \(N' := N_p = \min_{n-k+1 \leq j \leq n}\{j \mid \binom{n}{j} \not\equiv 0 \pmod{p}\} \).

(Note that the value of \(N' \) depends on \(n, k \) and \(p \).)

(ii) We shall label (homogeneous) generators of a graded algebra by their degrees. Thus \(|x_j| = j\) when \(x_j \in H^*(X; R)\).
Notations:

(i) Let $N := 2N'$ where $N' := N_p = \min_{n-k+1 \leq j \leq n} \{j \mid \binom{n}{j} \not\equiv 0 \pmod{p}\}$. (Note that the value of N' depends on n, k and p.)

(ii) We shall label (homogeneous) generators of a graded algebra by their degrees. Thus $|x_j| = j$ when $x_j \in H^*(X; R)$.

(iii) $\Lambda_{\mathbb{Z}_p}(x_1, \ldots, x_r)$ denotes any graded commutative algebra A over \mathbb{Z}_p in which square-free monomials in x_1, \ldots, x_r form a basis.
Theorem

Suppose that $2 \leq k < n$ and $m \geq 2$.

(i) If p is any prime not dividing m, then $H^*_{W_n, k; m; Z_p} \cong H^*_{W_n, k; Z_p}$.

(ii) If p is an odd prime that divides m, then $H^*_{W_n, k; m; Z_p} \cong Z_p[y]/\langle y^N \rangle \otimes \Lambda_{Z_p}(y_1, y_2, \ldots, y_{2^{n-2k+1}}, \ldots, y_{2^{n-1}})$ where N, N' are as defined above (As usual, $\hat{\cdot}$ stands for omission of the variable). Also $y_1 = c^1_{\xi_{2^{n-2k+1}}}$ mod p.

(iii) Suppose $m \equiv 2 \pmod{4}$. Then $H^*_{W_n, k; m; Z_2} \cong Z_2[y]/\langle y^N \rangle \otimes \Lambda_{Z_2}(y_2, y_3, \ldots, y_{2^{n-2k+1}}, \ldots, y_{2^{n-1}})$.

(iv) Suppose that $m \equiv 0 \pmod{4}$. Then $H^*_{W_n, k; m; Z_2} \cong Z_2[y]/\langle y^N' \rangle \otimes \Lambda_{Z_2}(y_1, y_2, \ldots, y_{2^{n-2k+1}}, \ldots, y_{2^{n-1}})$, where $y_2 = 0$.

Theorem

Suppose that $2 \leq k < n$ and $m \geq 2$.

(i) If p is any prime not dividing m, then

$$p^*_m : H^*(W_{n,k}; \mathbb{Z}_p) \cong H^*(W_{n,k}; \mathbb{Z}_p) = \Lambda_{\mathbb{Z}_p}(v_{2n-2k+1}, \ldots, v_{2n-1}).$$

is an isomorphism of algebras.

(ii) If p is an odd prime that divides m, then

$$H^*(W_{n,k}; m; \mathbb{Z}_p) \cong \mathbb{Z}_p[y]/\langle y \rangle \otimes \Lambda_{\mathbb{Z}_2}(y_{2n-2k+1}, y_{2n-2k+3}, \ldots, \hat{y}_{N-1}, \ldots, y_{2n-1}),$$

where N, N' are as defined above (As usual, \hat{y} stands for omission of the variable). Also $y_1 = 0$.

(iii) Suppose that $m \equiv 2 \pmod{4}$. Then

$$H^*(W_{n,k}; m; \mathbb{Z}_2) \cong \mathbb{Z}_2[y]/\langle y_N \rangle \otimes \Lambda_{\mathbb{Z}_2}(y_{2n-2k+1}, \ldots, y_{2n-1}).$$

(iv) Suppose that $m \equiv 0 \pmod{4}$. Then

$$H^*(W_{n,k}; m; \mathbb{Z}_2) \cong \mathbb{Z}_2[y]/\langle y_{N'} \rangle \otimes \Lambda_{\mathbb{Z}_2}(y_{2n-2k+1}, \ldots, y_{2n-1}),$$

where $y_2 \equiv c(\xi, k, m) \pmod{p}$.
Theorem

Suppose that $2 \leq k < n$ and $m \geq 2$.

(i) If p is any prime not dividing m, then

$$p^*_m : H^*(W_{n,k;m};\mathbb{Z}_p) \cong H^*(W_{n,k};\mathbb{Z}_p) = \Lambda_{\mathbb{Z}_p}(v_{2n-2k+1}, \ldots, v_{2n-1}).$$

is an isomorphism of algebras.

(ii) If p is an odd prime that divides m, then $H^*(W_{n,k;m};\mathbb{Z}_p) \cong \mathbb{Z}_p[y_2]/\langle y_{2N}' \rangle \otimes \Lambda_{\mathbb{Z}_p}(y_1, y_{2n-2k+1}, y_{2n-2k+3}, \ldots, \hat{y}_{N-1}, \ldots, y_{2n-1})$ where N, N' are as defined above (As usual, $\hat{\text{stands for omission of the variable})$. Also $y_2 = c_1(\xi_{n,k;m}) \mod p$.
Theorem

Suppose that $2 \leq k < n$ and $m \geq 2$.

(i) If p is any prime not dividing m, then

$$p_m^*: H^*(W_{n,k}; \mathbb{Z}_p) \cong H^*(W_{n,k}; \mathbb{Z}_p) = \Lambda_{\mathbb{Z}_p}(v_{2n-2k+1}, \ldots, v_{2n-1}).$$

is an isomorphism of algebras.

(ii) If p is an odd prime that divides m, then

$$H^*(W_{n,k}; \mathbb{Z}_p) \cong \mathbb{Z}_p[y_2]/\langle y_2^{N'} \rangle \otimes \Lambda_{\mathbb{Z}_p}(y_1, y_{2n-2k+1}, y_{2n-2k+3}, \ldots, \hat{y}_N-1, \ldots, y_{2n-1})$$

where N, N' are as defined above (As usual, $\hat{}$ stands for omission of the variable). Also $y_2 = c_1(\xi_{n,k}; m) \mod p$.

(iii) Suppose $m \equiv 2 \pmod{4}$. Then

$$H^*(W_{n,k}; \mathbb{Z}_2) \cong \mathbb{Z}_2[y_1]/\langle y_1^N \rangle \otimes \Lambda_{\mathbb{Z}_2}(y_{2n-2k+1}, y_{2n-2k+3}, \ldots, \hat{y}_N-1, \ldots, y_{2n-1}),$$

...
Theorem

Suppose that $2 \leq k < n$ and $m \geq 2$.

(i) If p is any prime not dividing m, then

$$p^*_m : H^*(W_{n,k;m}; \mathbb{Z}_p) \cong H^*(W_{n,k}; \mathbb{Z}_p) = \Lambda_{\mathbb{Z}_p}(v_{2n-2k+1}, \ldots, v_{2n-1}).$$

is an isomorphism of algebras.

(ii) If p is an odd prime that divides m, then $H^*(W_{n,k;m}; \mathbb{Z}_p) \cong \mathbb{Z}_p[y_2]/\langle y_2^{N'} \rangle \otimes \Lambda_{\mathbb{Z}_p}(y_1, y_{2n-2k+1}, y_{2n-2k+3}, \ldots, \hat{y}_{N-1}, \ldots, y_{2n-1})$ where N, N' are as defined above (As usual, $\hat{\cdot}$ stands for omission of the variable). Also $y_2 = c_1(\xi_{n,k;m}) \mod p$.

(iii) 1. Suppose $m \equiv 2 \pmod{4}$. Then $H^*(W_{n,k;m}; \mathbb{Z}_2) \cong \mathbb{Z}_2[y_1]/\langle y_1^{N} \rangle \otimes \Lambda_{\mathbb{Z}_2}(y_{2n-2k+1}, y_{2n-2k+3}, \ldots, \hat{y}_{N-1}, \ldots, y_{2n-1})$.

2. Suppose that $m \equiv 0 \pmod{4}$. Then $H^*(W_{n,k;m}; \mathbb{Z}_2) \cong \mathbb{Z}_2[y_2]/\langle y_2^{N'} \rangle \otimes \Lambda_{\mathbb{Z}_2}(y_1, y_{2n-2k+1}, y_{2n-2k+3}, \ldots, \hat{y}_{N-1}, \ldots, y_{2n-1})$, where $y_1^2 = 0$.
We give a partial description of the integral cohomology of $W_{n,k;m}$.

Theorem
We will assume that,
1 < k ≤ n − 2 and m ≥ 2. Let $m_r := m$ if $r ≤ n − k$ and $m_r := \gcd\{m, (n_j)\}_{n − k < j ≤ r}$ if $n − k < r ≤ n$. Then:

(i) The (additive) order of $y_r^2 ∈ H_2^r(W_{n,k,m};Z)$ is m_r for $1 ≤ r ≤ n$. In particular the height of $y_2^2 ∈ H_2^2(W_{n,k,m};Z)$ is the largest integer h, $n − k < h ≤ n$, such that $m_h > 1$.

(ii) One has the total Pontrjagin class $p(W_{n,k,m}) = (1 + y_2)^{nk}$ for all $r ≥ 1$.

The total Stiefel-Whitney class $w(W_{n,k,m}) = (1 + y_1)^{nk}$, where it is understood that $y_1 = 0$ when m is odd.
We give a partial description of the integral cohomology of $W_{n,k;m}$. We calculate the (additive) order of $y_2^r \in H^{2r}(W_{n,k;m}; \mathbb{Z})$ where $y_2 = c_1(\xi_{n,k;m})$ and we give explicit formulae for the total Stiefel-Whitney class and the total Pontrjagin class of $W_{n,k;m}$.
We give a partial description of the integral cohomology of \(W_{n,k;m} \). We calculate the (additive) order of \(y_2^r \in H^{2r}(W_{n,k;m}; \mathbb{Z}) \) where \(y_2 = c_1(\xi_{n,k;m}) \) and we give explicit formulae for the total Stiefel-Whitney class and the total Pontrjagin class of \(W_{n,k;m} \).

Theorem

We will assume that, \(1 < k \leq n - 2 \) and \(m \geq 2 \). Let \(m_r := m \) if \(r \leq n - k \) and \(m_r := \gcd\{m, \binom{n}{j}; n - k < j \leq r\} \) if \(n - k < r \leq n \). Then:
We give a partial description of the integral cohomology of $W_{n,k;m}$. We calculate the (additive) order of $y_2^r \in H^{2r}(W_{n,k;m}; \mathbb{Z})$ where $y_2 = c_1(\xi_{n,k;m})$ and we give explicit formulae for the total Stiefel-Whitney class and the total Pontrjagin class of $W_{n,k;m}$.

Theorem

We will assume that, $1 < k \leq n - 2$ and $m \geq 2$. Let $m_r := m$ if $r \leq n - k$ and $m_r := \gcd\{m, \binom{n}{j}; n - k < j \leq r\}$ if $n - k < r \leq n$. Then:

(i) The (additive) order of $y_2^r \in H^{2r}(W_{n,k;m}; \mathbb{Z})$ is m_r for $1 \leq r \leq n$. In particular the height of $y_2 \in H^2(W_{n,k;m}; \mathbb{Z}) \cong \mathbb{Z}_m$ is the largest integer h, $n - k < h \leq n$, such that $m_h > 1$.
We give a partial description of the integral cohomology of $W_{n,k;m}$. We calculate the (additive) order of $y_2^r \in H^{2r}(W_{n,k;m}; \mathbb{Z})$ where $y_2 = c_1(\xi_{n,k;m})$ and we give explicit formulae for the total Stiefel-Whitney class and the total Pontrjagin class of $W_{n,k;m}$.

Theorem

We will assume that, $1 < k \leq n - 2$ and $m \geq 2$. Let $m_r := m$ if $r \leq n - k$ and $m_r := \gcd\{m, \binom{n}{j}; n - k < j \leq r\}$ if $n - k < r \leq n$. Then:

(i) The (additive) order of $y_2^r \in H^{2r}(W_{n,k;m}; \mathbb{Z})$ is m_r for $1 \leq r \leq n$. In particular the height of $y_2 \in H^2(W_{n,k;m}; \mathbb{Z}) \cong \mathbb{Z}_m$ is the largest integer h, $n - k < h \leq n$, such that $m_h > 1$.

(ii) One has the total Pontrjagin class $p(W_{n,k;m}) = (1 + y_2^2)^{nk}$ for all $r \geq 1$. The total Stiefel-Whitney class $w(W_{n,k;m}) = (1 + y_1^2)^{nk}$, where it is understood that $y_1 = 0$ when m is odd.
Theorem

If there exists an \(r \geq 1 \) such that \(\binom{n^k}{r} \) is not divisible by \(m_{2r} \), then \(W_{n,k;m} \) is not stably parallelizable. In particular, if \(W_{n,k;m} \) is stably parallelizable, then \(m \) divides \(nk \).
Definition (K-ring)

\(X\) - a paracompact, Hausdorff topological space.

\(\omega\) - a complex vector bundle over \(X\).
Definition (\(K\)-ring)

\(X\) - a paracompact, Hausdorff topological space.
\(\omega\) - a complex vector bundle over \(X\).
\(\omega' \in [\omega] \) if and only if \(\omega \cong_{\mathbb{C}} \omega'\).
Definition (K-ring)

X - a paracompact, Hausdorff topological space.

ω - a complex vector bundle over X.

$\omega' \in [\omega]$ if and only if $\omega \cong_C \omega'$.

$\text{Vect}_C(X) = \{[\omega] \mid \omega \text{ is a complex vector bundle over } X\}$.

Definition (K-ring)

- X - a paracompact, Hausdorff topological space.
- ω - a complex vector bundle over X.
- $\omega' \in [\omega]$ if and only if $\omega \cong_\mathbb{C} \omega'$.

$\text{Vect}_\mathbb{C}(X) = \{[\omega] \mid \omega \text{ is a complex vector bundle over } X\}$.

Let ω and ξ be two complex vector bundles over M.
Definition (K-ring)

X - a paracompact, Hausdorff topological space.

ω - a complex vector bundle over X.

$\omega' \in [\omega]$ if and only if $\omega \cong_{\mathbb{C}} \omega'$.

$\text{Vect}_{\mathbb{C}}(X) = \{[\omega] \mid \omega \text{ is a complex vector bundle over } X\}$.

Let ω and ξ be two complex vector bundles over M.

Then define the sum $[\omega] + [\xi] := [\omega \oplus \xi]$, the class of the Whitney sum.
Definition (K-ring)

X - a paracompact, Hausdorff topological space.

ω - a complex vector bundle over X.

$\omega' \in [\omega]$ if and only if $\omega \cong_{\mathbb{C}} \omega'$.

$\text{Vect}_\mathbb{C}(X) = \{[\omega] \mid \omega$ is a complex vector bundle over $X\}$.

Let ω and ξ be two complex vector bundles over M.

Then define the sum $[\omega] + [\xi] := [\omega \oplus \xi]$, the class of the Whitney sum and the product $[\omega] \cdot [\xi] := [\omega \otimes \xi]$, the class of the tensor product.
Definition (K-ring)

X- a paracompact, Hausdorff topological space.

ω- a complex vector bundle over X.

$\omega' \in [\omega]$ if and only if $\omega \cong \mathbb{C} \omega'$.

$\text{Vect}_\mathbb{C}(X) = \{[\omega] \mid \omega \text{ is a complex vector bundle over } X\}$.

Let ω and ξ be two complex vector bundles over M.

Then define the sum $[\omega] + [\xi] := [\omega \oplus \xi]$, the class of the Whitney sum and the product $[\omega] \cdot [\xi] := [\omega \otimes \xi]$, the class of the tensor product.

The Grothendieck ring associated to $\text{Vect}_\mathbb{C}(X)$ is denoted by $K(X)$.
Definition (\(K\)-ring)

\(X\) - a paracompact, Hausdorff topological space.
\(\omega\) - a complex vector bundle over \(X\).
\(\omega' \in [\omega]\) if and only if \(\omega \cong_{\mathbb{C}} \omega'\).

\(\text{Vect}_{\mathbb{C}}(X) = \{[\omega] \mid \omega \text{ is a complex vector bundle over } X\}\).

Let \(\omega\) and \(\xi\) be two complex vector bundles over \(M\).
Then define the sum \([\omega] + [\xi] := [\omega \oplus \xi]\), the class of the Whitney sum and the product \([\omega] \cdot [\xi] := [\omega \otimes \xi]\), the class of the tensor product.

The Grothendieck ring associated to \(\text{Vect}_{\mathbb{C}}(X)\) is denoted by \(K(X)\).

We continue to denote the class of \(\omega\) in \(K(X)\) by \([\omega]\). Note that \([\omega] = [\omega']\) if and only if \(\omega \oplus \eta \cong_{\mathbb{C}} \omega' \oplus \eta\) for some complex vector bundle \(\eta\) over \(X\).
Statement:

G- compact connected Lie group, $\text{Tor}(\pi_1(G)) = 0.$

H - a closed subgroup of G.
Statement:

G- compact connected Lie group, $\text{Tor}(\pi_1(G)) = 0.$

H - a closed subgroup of G.

Then, $\text{Tor}^*_R(R(H), \mathbb{Z}) \Longrightarrow K^*(G/H), \quad \Rightarrow$
Statement:

G - compact connected Lie group, $\text{Tor}(\pi_1(G)) = 0.$

H - a closed subgroup of G.

Then, $\text{Tor}^\ast_{R(G)}(R(H), \mathbb{Z}) \Rightarrow K^\ast(G/H)$, where $R(G)$ is complex representation ring of G.

*
Statement:

G - compact connected Lie group, $\text{Tor}(\pi_1(G)) = 0$.
H - a closed subgroup of G.

Then, $\text{Tor}^*_R(R(H), \mathbb{Z}) \Longrightarrow K^*(G/H)$, where $R(G)$ is complex representation ring of G.

Restriction map $\text{Res}: R(G) \longrightarrow R(H)$ makes $R(H)$, an $R(G)$-module
Statement:

G- compact connected Lie group, $\text{Tor}(\pi_1(G)) = 0$.

H - a closed subgroup of G.

Then, $\text{Tor}^*_R(R(H), \mathbb{Z}) \implies K^*(G/H)$, where $R(G)$ is complex representation ring of G.

Restriction map $\text{Res}: R(G) \longrightarrow R(H)$ makes $R(H)$, an $R(G)$-module and \mathbb{Z} is $R(G)$-module via augmentation map $\epsilon_G: R(G) \longrightarrow R\{1\} = \mathbb{Z}$.

Theorem

K-ring of $W_{n,k;2}$ is given by

$$K^\ast(W_{n,k;2}) = \Lambda_\mathbb{Z}^\ast(w_{n-k+1}, \ldots, w_{n-2}, \tilde{L}, \tilde{\vartheta}) \otimes_{\mathbb{Z}} \mathbb{Z}[z]/\mathcal{I},$$

were $\Lambda_\mathbb{Z}^\ast$ denotes the exterior algebra in the indicated generators. The generators $w_{n-k+1}, \ldots, w_{n-2}, \tilde{L}, \tilde{\vartheta}$ are of degree 1 and z is of degree zero and the ideal $\mathcal{I} = \langle z^2 + 2z, 2^\alpha z, \tilde{L}z \rangle$.

Here $\alpha = \min\{n - 1, i - 1 + \nu_2(^n_i) \mid n - k < i < n\}$ where $\nu_2(n)$ denotes the largest number such that $2^{\nu_2(n)}$ divides n.
Theorem

K-ring of $W_{n,k;2}$ is given by

$$K^*(W_{n,k;2}) = \Lambda^*_\mathbb{Z}(w_{n-k+1}, \ldots, w_{n-2}, \tilde{L}, \tilde{\vartheta}) \otimes \mathbb{Z}[z]/\mathcal{I},$$

were $\Lambda^*_\mathbb{Z}$ denotes the exterior algebra in the indicated generators. The generators $w_{n-k+1}, \ldots, w_{n-2}, \tilde{L}, \tilde{\vartheta}$ are of degree 1 and z is of degree zero and the ideal $\mathcal{I} = \langle z^2 + 2z, 2^\alpha z, \tilde{L}z \rangle$.

Here $\alpha = \min\{n - 1, i - 1 + \nu_2\left(\binom{n}{i}\right) \mid n - k < i < n\}$ where $\nu_2(n)$ denotes the largest number such that $2^{\nu_2(n)}$ divides n.

Currently we are working on $K(W_{n,1;m})$ i.e. K ring of lens spaces.
Thank you.
Some properties of Tor:
Some properties of Tor:

Suppose $R(G) = \mathbb{Z}[\alpha_1, \ldots, \alpha_n]$ where $\epsilon_G(\alpha_i) = 0$ for all $1 \leq i \leq n$.
Some properties of Tor:

Suppose $R(G) = \mathbb{Z}[\alpha_1, \ldots, \alpha_n]$ where $\epsilon_G(\alpha_i) = 0$ for all $1 \leq i \leq n$ and $R(H) = \mathbb{Z}[\beta_1, \ldots, \beta_m]$ with $\epsilon_H(\beta_j) = 0$ for all $1 \leq j \leq m$.
Some properties of Tor:

Suppose \(R(G) = \mathbb{Z}[\alpha_1, \ldots, \alpha_n] \) where \(\epsilon_G(\alpha_i) = 0 \) for all \(1 \leq i \leq n \) and \(R(H) = \mathbb{Z}[\beta_1, \ldots, \beta_m] \) with \(\epsilon_H(\beta_j) = 0 \) for all \(1 \leq j \leq m \).

(i) Let \(\Gamma = \mathbb{Z}[\alpha_1, \ldots, \alpha_r] \) for some \(1 \leq r \leq n \) such that \(R(H) \) is a free \(\Gamma \)-module and \(\text{Res}(\alpha_i) = \beta_i \) for \(i = 1, \ldots, r \) then

\[
\text{Tor}^*_R(G)(R(H); \mathbb{Z}) = \text{Tor}^*_A(B; \mathbb{Z}),
\]

where \(A = R(G)/\langle \alpha_1, \ldots, \alpha_r \rangle \) and \(B = R(H)/\langle \beta_1, \ldots, \beta_r \rangle \).
Some properties of Tor:

Suppose \(R(G) = \mathbb{Z}[\alpha_1, \ldots, \alpha_n] \) where \(\epsilon_G(\alpha_i) = 0 \) for all \(1 \leq i \leq n \) and \(R(H) = \mathbb{Z}[\beta_1, \ldots, \beta_m] \) with \(\epsilon_H(\beta_j) = 0 \) for all \(1 \leq j \leq m \).

(i) Let \(\Gamma = \mathbb{Z}[\alpha_1, \ldots, \alpha_r] \) for some \(1 \leq r \leq n \) such that \(R(H) \) is a free \(\Gamma \)-module and \(\text{Res}(\alpha_i) = \beta_i \) for \(i = 1, \ldots, r \) then

\[
\text{Tor}_R^*(R(G); \mathbb{Z}) = \text{Tor}_A^*(B; \mathbb{Z}),
\]

where \(A = R(G)/\langle \alpha_1, \ldots, \alpha_r \rangle \) and \(B = R(H)/\langle \beta_1, \ldots, \beta_r \rangle \).

(ii) Let \(a_1, \ldots, a_s \in A \) such that \(\text{Res}(a_i) = 0 \in B \) for \(1 \leq i \leq s \) then

\[
\text{Tor}_A^*(B; \mathbb{Z}) = \Lambda_\mathbb{Z}^*[t_1, \ldots, t_s] \otimes \text{Tor}_{A'}^*(B; \mathbb{Z})
\]

where \(A' = A/\langle a_1, \ldots, a_s \rangle \) and degree of \(t_i \) is 1 for all \(i = 1, \ldots, s \).
In our case \(G = U(n) \) and \(H = \mathbb{Z}/m \otimes U(n - k) \).
In our case \(G = U(n) \) and \(H = \mathbb{Z}/m \otimes U(n - k) \).

Let \(x_i \) denote character given by projection of \(T = (S^1)^n \) (maximal torus of \(U(n) \) consisting of diagonal matrices of \(U(n) \)) onto \textit{ith factor}.
In our case $G = U(n)$ and $H = \mathbb{Z}/m \otimes U(n - k)$.

Let x_i denote character given by projection of $T = (S^1)^n$ (maximal torus of $U(n)$ consisting of diagonal matrices of $U(n)$) onto ith factor.

Let $\Lambda_k := \sum_{1 \leq i_1 < \ldots < i_k \leq n} (x_{i_1} - 1) \cdots (x_{i_k} - 1)$ for $1 \leq k \leq n$, for all $1 \leq k \leq n$ and $R(G) = \mathbb{Z}[\Lambda_1, \ldots, \Lambda_{n-1}, \sigma_n]$ where $\sigma_n = x_1 \cdot x_2 \cdots x_n$ is one dimensional.

Similarly we can write $R(H) = \mathbb{Z}[z, \lambda_1, \ldots, \lambda_{n-1} - k - 1, \mu_{n-k}] / J$ where $\epsilon_H(z) = \epsilon_H(\lambda_i) = 0$ and $\epsilon_H(\mu_{n-k}) = 1$ and $J = \langle z^m + \sum_{1 \leq j \leq m-1} (m^j)z^j \rangle$.

In our case \(G = U(n) \) and \(H = \mathbb{Z}/m \otimes U(n - k) \).

Let \(x_i \) denote character given by projection of \(T = (S^1)^n \) (maximal torus of \(U(n) \) consisting of diagonal matrices of \(U(n) \)) onto \(i \)th factor.

Let \(\Lambda_k := \sum_{1 \leq i_1 < \ldots < i_k \leq n} (x_{i_1} - 1) \cdots (x_{i_k} - 1) \) for \(1 \leq k \leq n \), then \(\epsilon_G(\Lambda_k) = 0 \) for all \(1 \leq k \leq n \) and \(R(G) = \mathbb{Z}[\Lambda_1, \ldots, \Lambda_{n-1}, \sigma_n^\pm] \) where \(\sigma_n = x_1 \cdot x_2 \cdots x_n \) is one dimensional.
In our case $G = U(n)$ and $H = \mathbb{Z}/m \otimes U(n - k)$.

Let x_i denote character given by projection of $T = (S^1)^n$ (maximal torus of $U(n)$ consisting of diagonal matrices of $U(n)$) onto ith factor.

Let $\Lambda_k := \sum_{1 \leq i_1 < \ldots < i_k \leq n} (x_{i_1} - 1) \cdots (x_{i_k} - 1)$ for $1 \leq k \leq n$, then $\epsilon_G(\Lambda_k) = 0$ for all $1 \leq k \leq n$ and $R(G) = \mathbb{Z}[^k \Lambda, \ldots, \Lambda_{n-1}, \sigma_n^\pm]$ where $\sigma_n = x_1 \cdot x_2 \cdots x_n$ is one dimensional.

Similarly we can write $R(H) = \mathbb{Z}[z, \lambda_1, \ldots, \lambda_{n-k-1}, \mu_{n-k}^\pm] / J$ where $\epsilon_H(z) = \epsilon_H(\lambda_i) = 0$ and $\epsilon_H(\mu_{n-k}) = 1$ and $J = \langle z^m + \sum_{1 \leq j \leq m-1} \binom{m}{j} z^j \rangle$.
$A = \mathbb{Z}[\tilde{\Lambda}_j; n - k \leq j < n]$ is a polynomial algebra and $B = \mathbb{Z}[y]/\langle y^m - 1 \rangle = R\mathbb{Z}_m$. One has the following
\[A = \mathbb{Z}[\tilde{A}_j; n - k \leq j < n] \] is a polynomial algebra and \[B = \mathbb{Z}[y]/\langle y^m - 1 \rangle = R\mathbb{Z}_m. \] One has the following

Lemma

\[\operatorname{Tor}^*_R(G, \mathbb{Z}) \cong \operatorname{Tor}^*_A(B; \mathbb{Z}). \]
\(A = \mathbb{Z}[\bar{\Lambda}_j; n - k \leq j < n] \) is a polynomial algebra and \(B = \mathbb{Z}[y]/\langle y^m - 1 \rangle = R\mathbb{Z}_m \). One has the following

Lemma

\(Tor^*_{RG}(RH, \mathbb{Z}) \cong Tor^*_A(B; \mathbb{Z}). \)

We have the following recurring relations in \(B \) for \(n - k + 1 \leq i \leq n - 1 \):

\[
\overline{\text{Res}}(\bar{\Lambda}_i) + \sum_{J=n-k}^{i-1} \binom{n-J}{i-J} 2^{i-J} \overline{\text{Res}}(\bar{\Lambda}_J) = \binom{n}{i} 2^{i-1} z.
\]
A = \mathbb{Z}[\bar{\Lambda}_j; n - k \leq j < n] is a polynomial algebra and
B = \mathbb{Z}[y]/\langle y^m - 1 \rangle = R\mathbb{Z}_m. One has the following

Lemma

Tor^{\ast}_{RG}(RH, \mathbb{Z}) \cong Tor^{\ast}_A(B; \mathbb{Z}).

We have the following recurring relations in B for \(n - k + 1 \leq i \leq n - 1 \):

\[
\overline{\text{Res}}(\bar{\Lambda}_i) + \sum_{J=n-k}^{i-1} \binom{n-J}{i-J} 2^{i-J} \overline{\text{Res}}(\bar{\Lambda}_J) = \binom{n}{i} 2^{i-1} z.
\]

Can choose \(a_{n-k+1}, \ldots, a_{n-2}, V \in A \) such that \(\text{Res}(a_j) = 0 \) for
\(j = n - k + 1, \ldots, n - 2 \).
\(A = \mathbb{Z}[\bar{\Lambda}_j; n - k \leq j < n] \) is a polynomial algebra and
\(B = \mathbb{Z}[y]/\langle y^m - 1 \rangle = R\mathbb{Z}_m \). One has the following

Lemma

\(\text{Tor}^*_R(RH, \mathbb{Z}) \cong \text{Tor}^*_A(B; \mathbb{Z}). \)

We have the following recurring relations in \(B \) for \(n - k + 1 \leq i \leq n - 1 \):

\[
\overline{\text{Res}}(\bar{\Lambda}_i) + \sum_{J=n-k}^{i-1} \binom{n-J}{i-J} 2^{i-J} \overline{\text{Res}}(\bar{\Lambda}_J) = \binom{n}{i} 2^{i-1} z.
\]

Can choose \(a_{n-k+1}, \ldots, a_{n-2}, V \in A \) such that \(\text{Res}(a_j) = 0 \) for
\(j = n - k + 1, \ldots, n - 2 \)

\[
\text{Tor}^*_{R(G)}(R(H); \mathbb{Z}) = \Lambda^*_\mathbb{Z}(a_{n-k+1}, \ldots, a_{n-2}) \otimes \text{Tor}^*_A'(B; \mathbb{Z})
\]

where \(A' = \mathbb{Z}[\Lambda_{n-k}, V] \) and \(B = \mathbb{Z}[z]/\langle z^2 + 2z \rangle \).