Abstract

Let M be a non-zero module over an associative (not necessarily commutative) ring. In this paper, we investigate the so-called second and coprime submodules of M. Moreover, we topologize the spectrum $\text{Spec}^s(M)$ of second submodules of M and the spectrum $\text{Spec}^c(M)$ of coprime submodules of M, study several properties of these spaces and investigate their interplay with the algebraic properties of M.

1 Introduction

Several papers considered the so called top modules, i.e. modules over commutative rings whose spectrum of prime submodules attains a Zariski-like topology, e.g. [Lu1995, Lu1997, Lu1999, MMS1997, MMS1998]. In [Abu2006] and [Abu2008], the author investigated and topologized the spectrum of fully coprime subbicomodules of a given non-zero duo bicomodule over a coring. Recently, he introduced module theoretic versions of these results in [Abu2011], where a dual Zariski topology was introduced on the spectrum of fully coprime submodules of a given non-zero duo module over an associative ring. Moreover, he introduced and studied a Zariski topology on the spectrum of fully prime submodules of a given non-zero duo module in [Abu].

As a dual notion of prime submodules, Yassemi [Yas2001] introduced the notion of second submodules of a given non-zero module over a commutative ring. This notion was generalized to modules over arbitrary associative rings by Annin in [Ann2002], where a second module was called a coprime module. Moreover, the notion of coprime submodules was introduced by Kazemifard et al. [KNR]. In this paper, we investigate conditions under
which the spectrum $\text{Spec}^s(M)$ of second submodules ($\text{Spec}^c(M)$ of coprime submodules) of a given non-zero module M over an arbitrary associative – not necessarily commutative – ring R attains a (dual) Zariski topology. We study these spaces and investigate the interplay between the properties of these topologies and the algebraic properties of $R M$.

After this introductory section, we introduce in Section 2 some preliminaries. In particular, we recall some properties and notions of modules that will be needed in the sequel. Section 3 is devoted to a study of the second and coprime submodules of M. In Section 4, we introduce a dual Zariski topology on $\text{Spec}^s(M)$ and study its properties. The results obtained are similar to results on the spectrum $\text{Spec}^c(M)$ of fully coprime submodules of $R M$ [Abu2011]. In Section 5, we investigate a Zariski topology on $\text{Spec}^c(M)$. The results obtained are similar to results on the spectrum $\text{Spec}^p(M)$ of fully prime submodules of $R M$ [Abu2011].

Throughout, R is an associative (not necessarily commutative) ring with $1_R \neq 0_R$. With $\text{Max}(R)$ (resp. $\text{Max}(R R)$, $\text{Max}(R R R)$) we denote the spectrum of maximal ideals (resp. maximal left ideals, maximal right ideals) of R. On the other hand, we denote by $\text{Min}(R)$ (resp. $\text{Min}(R R)$, $\text{Min}(R R R)$) the set of minimal ideals (resp. minimal left ideals, minimal right ideals) of R. Recall that an ideal p of R is said to be (completely) prime iff for any ideal I, J of R (any $a, b \in R$) with $IJ \subseteq p$ ($ab \in p$), either $I \subseteq p$ or $J \subseteq p$ ($a \in p$ or $b \in p$). With $\text{Spec}(R)$ (C$\text{Spec}(R)$) we denote the spectrum of (completely) prime ideals of R. With $\text{Rad}(R) := \bigcap_{m \in \text{Max}(R)} m$ ($\text{Prad}(R) := \bigcup_{p \in \text{Spec}(R)} p$) we denote the (prime) radical of R. The set of zero-divisors in R is denoted by $Z(R)$ while the group of invertible elements of R is denoted by $U(R)$. Unless otherwise explicitly mentioned, a module will mean a left R-module and an ideal is a two-sided ideal.

Moreover, we fix an arbitrary left non-zero R-module $R M$ with ring of endomorphisms $S := \text{End}(R M)^{op}$ and consider M as an (R, S)-bimodule in the canonical way. We write $K \leq_R M$ ($K \subseteq_R M$) to indicate that L is a (proper) submodule of M and denote with $\pi_K : M \to M/K$ the canonical surjection. With $\mathbb{P} \subset \mathbb{Z}$ we denote the set of prime positive integers.

2 Preliminaries

For the convenience of the reader, we recall in this section some definitions and properties of modules that will be used in the sequel. Moreover, we illustrate these notions by introducing several examples. For more information, the interested reader may refer to any book in Module Theory (e.g. [Wis1991]).

2.1. We call $L \leq_R M$ fully invariant iff L is also an S-submodule. We call $R M$ duo iff every R-submodule of M is fully invariant. The ring R is said to be left duo (right duo) iff every left (right) ideal is two-sided and to be left quasi-duo (right quasi-duo) iff every maximal left (right) ideal of R is two-sided. Moreover, R is said to be (quasi-) duo iff R is left and right (quasi-) duo.

Notation. With $\mathcal{L}(M)$ ($\mathcal{L}^{fi}(M)$) we denote the lattice of (fully invariant) R-submodules of M and with $\mathcal{I}_r(R)$ (resp. $\mathcal{I}_l(R)$, $\mathcal{I}(R)$) the lattice of right (resp. left, two-sided) ideals.
For subsets $X, Y \subseteq M$ and $Z \subseteq R$ we set

\[
(X :_Z Y) := \{ r \in Z | ry \in X \text{ for every } y \in Y \}; \\
(X :_Y Z) := \{ m \in Y | rm \in X \text{ for every } r \in Z \}.
\]

In particular, $\text{ann}_R(Y) := (0 :_R Y)$ and $\text{ann}_M(Z) := (0 :_M Z)$. On the other hand, for any non-empty subsets $K \subseteq M$ and $I \subseteq S$ we set $\text{An}(K) := (0 :_S K)$ and $\text{Ke}(I) := (0 :_M I)$. Moreover, we set

\[
\mathcal{L}_m(M) := \{ IM \mid I \in \mathcal{I}(R) \} \text{ and } \mathcal{L}_e(M) := \{ L \leq_R M \mid L = (0 :_M (0 :_R L)) \}.
\]

Definition 2.2. We say $R M$ is

- **self-injective** iff for every $K \leq_R M$, every $f \in \text{Hom}_R(K, M)$ extends to some $\tilde{f} \in S$;
- **intrinsically injective** iff $\text{AnKe}(I) = I$ for every finitely generated right ideal I of S;
- **self-cogenerator** iff M cogenerates all its factor R-modules.

2.3. By $\mathcal{M}(M)$ ($\mathcal{M}^{f.i.}(M)$), we denote the possibly empty class of maximal R-submodules of M (the class of maximal (R, S)-subbimodules of $R M_S$). For every $L \leq_R M$, we set

\[
\mathcal{M}(L) := \{ K \in \mathcal{M}(M) \mid K \supseteq L \} \text{ and } \mathcal{M}^{f.i.}(L) := \{ K \in \mathcal{M}^{f.i.}(M) \mid K \supseteq L \}.
\]

2.4. Let $L \leq_R M$. We say that L is **superfluous** or **small** in M, and write $L \ll M$, iff $L + \bar{L} \neq M$ for every $\bar{L} \leq_R M$. The **radical** of M is defined as

\[
\text{Rad}(M) := \bigcap_{L \in \text{Max}(M)} L = \sum_{L \ll M} L \ (:= M \text{ iff } \text{Max}(M) = \emptyset).
\]

Definition 2.5. We say $R M$ is

- **local** iff M contains a proper R-submodule that contains every proper R-submodule of M, equivalently iff $\sum_{L \leq_R M} L \neq M$ (this is also equivalent to $R M$ being cyclic, or finitely generated, and having a unique maximal submodule);
- **hollow** (or **couniform**) iff for any $L_1, L_2 \leq_R M$ we have $L_1 + L_2 \leq_R M$, equivalently iff every proper R-submodule of M is superfluous;
- **coatomic** (or **B-module** [Fal97]), **Bass module** [Ann02] iff every proper R-submodule of M is contained in a maximal R-submodule of M, equivalently iff $\text{Rad}(M/L) \neq M/L$ for every $L \leq_R M$;
- **f.i.-coatomic** iff $\mathcal{M}^{f.i.}(L) \neq \emptyset$ for every $L \leq^{f.i.}_R M$, equivalently iff $R M_S$ is coatomic.

2.6. By $S(M)$ ($S_{f.i.}(M)$) we denote the possibly empty class of simple R-submodules of M (simple (R, S)-subbimodules of $R M_S$). Let $L \leq_R M$. We set

\[
S(L) := \{ K \in S(M) \mid K \subseteq L \} \text{ and } \tilde{S}(L) := \{ K \in S_{f.i.}(M) \mid K \subseteq L \}.
\]

We say that L is **essential** or **large** in M, and write $L \leq M$ iff $L \cap L \neq 0$ for every $0 \neq L \leq_R M$. The **socle** of $R M$ is defined as

\[
\text{Soc}(M) := \sum_{L \in S(M)} L = \bigcap_{L \leq M} L \ (:= 0 \text{ iff } S(M) = \emptyset)
\]
Definition 2.7. We call $R M$:

- **homogenous semisimple** iff M is a (direct) sum of isomorphic simple R-submodules;
- **completely inhomogenous semisimple** iff M is a (direct) sum of pairwise non-isomorphic simple submodules.

Definition 2.8. We say $R M$ is

- **colocal** (or **cocyclic** [Wis1991], **subdirectly irreducible** [AF1974]) iff M contains a smallest non-zero R-submodule that is contained in every non-zero R-submodule of M, equivalently if
$$\bigcap_{0 \neq L \leq R M} L \neq 0;$$
- **uniform** iff for any $0 \neq L_1, L_2 \leq R M$, also $L_1 \cap L_2 \neq 0$, equivalently iff every non-zero R-submodule of M is essential;
- **atomic** iff every $0 \neq L \leq R M$ contains a simple R-submodule, equivalently iff $\text{Soc}(L) \neq 0$ for every $0 \neq L \leq R M$;
- **f.i.-atomic** iff $\text{Soc}(L) \neq \emptyset$ for every $0 \neq L \leq R M$, equivalently iff $R M S$ is atomic.

Example 2.9. ([Wis1991, 17.13]) Let $p \in \mathbb{P}$ and consider the Prüfer p-group
$$Z_{p^\infty} := \sum_{n \in \mathbb{N}} \mathbb{Z}(\frac{1}{p^n} + \mathbb{Z}) = \bigcup_{n \in \mathbb{N}} \mathbb{Z}(\frac{1}{p^n} + \mathbb{Z}) \subseteq \mathbb{Q}/\mathbb{Z}.$$ Every non-zero proper submodule of Z_{p^∞} is of the form $\mathbb{Z}(\frac{1}{p^n} + \mathbb{Z})$ for some $n \in \mathbb{N}$ (whence finite) and is fully invariant (i.e. Z_{p^∞} is duo). Clearly, Z_{p^∞} is Artinian but not Noetherian. Moreover, Z_{p^∞} is uniserial whence hollow and uniform (i.e. **biuniform** after [CLVW2006]). Notice that Z_{p^∞} is not local. On the other hand, Z_{p^∞} is colocal (being an injective hull of \mathbb{Z}_p).

Remark 2.10. Hollow modules are not necessarily coatomic (e.g. Z_{p^∞} is clearly hollow but not coatomic). This shows that the claim of [Gon1998] about hollow modules being coatomic is not correct.

Examples 2.11.

1. By [Var1979, Proposition 1.14], Z_{p^∞} and Z_{p^k} – where p is some prime and $k \in \mathbb{N}$ – are the only hollow Abelian groups (up to isomorphism). Since local modules are precisely the cyclic hollow modules, it follows that the set of local Abelian groups (up to isomorphism) is $\{Z_{p^k} \mid p \in \mathbb{P} \text{ and } k \in \mathbb{N}\}$. Any colocal Abelian group is either injective ($\simeq Z_{p^\infty}$ for some $p \in \mathbb{P}$) or finite [Wis1991, 34.14].

2. Examples of uniform modules include, in addition to Z_{p^∞} and Z_{p^k} – where $p \in \mathbb{P}$ and $k \in \mathbb{N}$ – any additive subgroup of \mathbb{Q}. Any commutative domain R is obviously uniform when considered as an R-module in the canonical way.

3. Let $R M$ be a non-zero uniserial module (e.g. the Abelian group Z_{p^∞}). Then $R M$ is trivially hollow and uniform. Moreover, $R M$ is local (colocal) if and only if $\text{Rad}(M) \neq M$ ($\text{Soc}(R M) \neq 0$).

4. The Abelian group \mathbb{Z} is uniform but not atomic. On the other hand, \mathbb{Z} is coatomic but not hollow. If $M = S_1 \oplus S_2$, where $R S_1$ and $R S_2$ are simple, then $R M$ is coatomic but not hollow.
Definition 2.12. R is said to be

1. left Lewy ring (or left semiartinian, or left socular [Fai1976 22.10]) iff every non-zero left R-module has a simple submodule;

2. left Bass ring [CLVW2006 2.19] (or a B-ring [Fai1976 22.7]) iff every non-zero left R-module has a maximal submodule.

Right Lewy rings and right Bass rings can be defined analogously. A left and right Lewy (Bass) rings is said to be a Lewy (Bass) ring.

Remarks 2.13. For any ring R, one can deduce immediately from the definitions:

1. R is a left Lewy ring if and only if every non-zero left R-module has essential socle if and only if every non-zero left R-module is atomic.

2. R is a left Bass ring if and only if every non-zero left R-module has small radical if and only if every non-zero left R-module is coatomic.

Example 2.14. Every right (left) perfect ring is a left Lewy ring [Bac1995] (left Bass ring [CLVW2006]). Any semiprimary ring is a Bass ring.

2.15. RM is said to be multiplication iff every $L \leq R M$ is of the form $L = IM$ for some $I \in \mathcal{I}(R)$, equivalently $L = (L : R M) M$ (i.e. $\mathcal{L}(M) = \mathcal{L}_m(M)$). It is obvious that every multiplication module is duo. Multiplication modules over commutative rings have been studied intensively in the literature (e.g. [AS2004, PC1995, Smi1994]). Several results in these papers were generalized to multiplication modules over rings close to be commutative (e.g. [Tug2003, Tug2004]).

Recall that a commutative ring R is arithmetical iff R_m is a chain ring for every $m \in \text{Max}(R)$ [Fuc1949].

Example 2.16. A commutative ring R is arithmetical if and only if every finitely generated ideal of R is multiplication. Let R be arithmetical and $I \in \mathcal{I}(R)$ be finitely generated. For every $m \in \text{Max}(R)$, the R_m-ideal I_m is finitely generated whence principal since R_m is a chain ring. Moreover, R is an fpqc-ring, i.e. RI is self-projective, equivalently πI is projective [AJK]. Since I is locally principle and πI is projective, it follows by [Smi1994 Theorem A] that RI is multiplication. On the other hand, if every finitely generated ideal of R is multiplication, then every finitely generated ideal of R is locally principal by [Smi1994 Theorem A], whence R is arithmetical by [Jen1966].

2.17. RM is said to be comultiplication iff every $L \leq R M$ is of the form $L = (0 : R M) I$ for some $I \in \mathcal{I}(R)$, equivalently $L = (0 : M (0 : R L))$ (i.e. $\mathcal{L}(M) = \mathcal{L}_c(M)$). A ring R for which $R \mathcal{R} (R \mathcal{R})$ is a comultiplication module is called a left dual (right dual) ring. A left dual and right dual ring is said to be a dual ring. For more information on comultiplication modules and dual rings, the interested reader is referred to [A-TF2007, AS] and [NY2003].

Examples 2.18. Let R be left quasi-duo and assume that $PI = IP$ for every $P \in \text{Max}(R)$ and $I \in \mathcal{I}(R)$.

1. All multiplication left R-modules are coatomic. The proof is similar to that for multiplication modules over commutative rings \cite{A-ES1988, Theorem 2.5 (i)} (see also \cite{Zha2006, Proposition 2.4} for the details in the non-commutative case).

2. All comultiplication left R-modules are atomic. The proof is similar to that for comultiplication modules over commutative rings \cite{A-TF2008, Theorem 3.2 (a)}.

Notation. For any $L \in \text{Max}(M)$ we set

$$L^e := \bigcap_{K \in \text{Max}(M) \setminus \{L\}} K \quad (\text{:=} M \text{ iff } \text{Max}(M) = \{L\}).$$

Dually, for every $L \in S(M)$ we set

$$L_e := \sum_{K \in S(M) \setminus \{L\}} K \quad (\text{:=} 0 \text{ iff } S(M) = \{L\}).$$

In \cite{Abu} and \cite{Abu2011}, we introduced the class of modules with the (complete) max-property and the class of modules with the min-property. For a study and survey on these modules see \cite{SmI}.

2.19. We say that $R^e M$ has the complete max-property, iff for any $L \in \text{Max}(M)$ we have $L^e \nsubseteq L$. We also say that $R^e M$ has the max-property, iff for any $L \in \text{Max}(M)$ and any finite subset $A \subseteq \text{Max}(M) \setminus \{L\}$ we have $\bigcap_{K \in A} K \nsubseteq L$.

Lemma 2.20. (\cite{Abu, Lemma 3.15}) Let $R^e M$ be self-projective and duo. Then M has the max-property.

2.21. We say that $R^e M$ has the min-property iff for any simple R-submodule $L \in S(M)$ we have $L \nsubseteq L_e$. Since simple modules are cyclic, $R^e M$ has the min-property if and only if for any $L \in S(M)$ and any finite subset $\{L_1, \ldots, L_n\} \subseteq S(M) \setminus \{L\}$, we have $L \nsubseteq \sum_{i=1}^n L_i$.

Lemma 2.22. (\cite{Abu2011, Lemma 3.17}) If $R^e M$ is self-injective and duo, then $R^e M$ has the min-property.

Topological Spaces

In what follows, we fix some definitions and notions for topological spaces. For further information, the reader might consult any book in General Topology (e.g. \cite{Bou1966}).

Definition 2.23. We call a topological space X (countably) compact iff every open cover of X has a (countable) finite subcover. Countably compact spaces are also called Lindelöf spaces. Note that some authors (e.g. \cite{Bou1966, Bou1998}) assume that compact spaces are in addition Hausdorff.

2.24. We say a topological space X is Noetherian (Artinian) iff every ascending (descending) chain of open sets is stationary, equivalently iff every descending (ascending) chain of closed sets is stationary.
Definition 2.25. (e.g. [Bou1966], [Bou1998]) A non-empty topological space X is called

1. **ultraconnected** iff the intersection of any two non-empty closed subsets is non-empty.

2. **irreducible** (or **hyperconnected**) iff X is not the union of two proper closed subsets, equivalently iff the intersection of any two non-empty open subsets is non-empty.

3. **connected** iff X is not the disjoint union of two proper closed subsets, equivalently iff the only subsets of X that are clopen (i.e. closed and open) are \emptyset and X.

2.26. ([Bou1966], [Bou1998]) Let X be a non-empty topological space. A non-empty subset $A \subseteq X$ is said to be **irreducible** iff it’s an irreducible space w.r.t. the relative (subspace) topology. A maximal irreducible subspace of X is called an **irreducible component**. An irreducible component of a topological space is necessarily closed. Every irreducible subset of X is contained in an irreducible component of X, whence X is the union of its irreducible components. The irreducible components of a Hausdorff space are just the singleton sets.

Lemma 2.27. The following are equivalent for $A \subseteq X$:

1. A is irreducible;

2. For any closed subsets A_1, A_2 of X:

$$A \subseteq A_1 \cup A_2 \Rightarrow A \subseteq A_1 \text{ or } A \subseteq A_2.$$ \hspace{1cm} (1)

3. For any open subsets U_1, U_2 of X:

$$U_1 \cap A \neq \emptyset \neq U_2 \cap A \Rightarrow (U_1 \cap U_2) \cap A \neq \emptyset.$$ \hspace{1cm} (2)

Definition 2.28. Let X be a topological space and $Y \subseteq X$ a closed subset. A point $y \in Y$ is said to be a **generic point** iff $Y = \{y\}$. If every irreducible closed subset of X has a unique generic point, then we call X a **Sober** space.

Definition 2.29. A collection \mathcal{G} of subsets of a topological space X is **locally finite** iff every point of X has a neighborhood that intersects only finitely many elements of \mathcal{G}.

3 Coprime and second submodules

As before, RM is a non-zero left module over the associative ring R and $S := \text{End}_R(M)^{op}$. In this section, we introduce and investigate the spectrum $\text{Spec}^c(M)$ of second submodules of M and the spectrum $\text{Spec}^c(M)$ of coprime submodules of M.

Definition 3.1. We call RM (**completely** coprime) iff for every $I \in \mathcal{I}(R)$ ($r \in R$) we have $IM = M$ or $IM = 0$ ($rM = M$ or $rM = 0$). Moreover, we say that $K \leq R M$ is (**completely** coprime in M, or a (**completely**) coprime submodule, iff for every $I \in \mathcal{I}(R)$ ($r \in R$) we have $IM + K = M$ or $IM \subseteq K$ ($rM + K = M$ or $rM \subseteq K$). On the other hand, we say that $0 \neq L \leq R M$ is a (**completely** second submodule of M iff rL is a (**completely**) coprime module.
3.2. We set

\[\text{Spec}^c(M) : = \{ K \leq_R M \mid K \text{ is coprime in } M \}; \]
\[\text{Spec}^{cc}(M) : = \{ K \leq_R M \mid K \text{ is completely coprime in } M \}. \]

We say that \(R M \) is coprimeless (c-coprimeless) iff \(\text{Spec}^c(M) = \emptyset \) (\(\text{Spec}^{cc}(M) = \emptyset \)). On the other hand, we set

\[\text{Spec}^s(M) : = \{ 0 \neq K \leq_R M \mid K \text{ is a second submodule} \}; \]
\[\text{Spec}^{cs}(M) : = \{ 0 \neq K \leq_R M \mid K \text{ is a completely second submodule} \}. \]

We say that \(R M \) is secondless (c-secondless) iff \(\text{Spec}^s(M) = \emptyset \) (\(\text{Spec}^{cs}(M) = \emptyset \)).

Example 3.3. ([Smi-2]) A finitely generated non-zero Abelian group \(G \) is coprime if and only if \(G \) is divisible or homogenous semisimple: Let \(G \) be coprime. If \(pG = G \) for every \(p \in \mathbb{P} \), then \(G \) is divisible. If \(pG = 0 \) for some \(p \in \mathbb{P} \), then \(G \simeq \bigoplus \mathbb{Z}/p\mathbb{Z} \) is homogenous semisimple. The converse is obvious.

Remarks 3.4. 1. \(R M \) is (completely) coprime if and only if 0 is (completely) coprime in \(M \) if and only if \(R M \) is a (completely) second submodule of itself.

2. Let \(R \) be commutative. Then \(R M \) is coprime if and only if \(R M \) is completely coprime.

Example 3.5. Let \(R \) be a simple ring that is not a division ring (e.g. \(M_n(D) \), \(n \geq 2 \), the matrix ring of \(n \times n \)-matrices with entries in some division ring \(D \)). Then \(R R \) (\(R R \)) is coprime but not completely coprime.

Examples 3.6. 1. The Abelian group \(\mathbb{Q} \) is coprime.

2. Let \(V \) be a vector space over a division ring \(D \). Then \(D V \) is completely coprime, every \(W \leq_{D} V \) is completely coprime in \(V \) and every \(0 \neq W \leq_{D} V \) is completely second in \(V \).

3. Every maximal submodule \(L \leq_R M \) is coprime in \(M \), i.e. \(\text{Max}(M) \subseteq \text{Spec}^c(M) \). In particular, if \(R \) is a left max ring, i.e. a ring over which every non-zero left \(R \)-module has a maximal submodule (e.g. a left perfect ring, or a left V-ring), then \(\text{Spec}^c(M) \neq \emptyset \).

4. Every simple submodule \(0 \neq L \leq_R M \) is second in \(M \), i.e. \(\text{S}(M) \subseteq \text{Spec}^s(M) \). In particular, \(\text{Spec}^s(M) \neq \emptyset \).

Example 3.7. Every homogenous semi-simple \(R \)-module is clearly coprime. Consider the semisimple abelian group \(M := \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \). Then \(\mathbb{Z}M \) is not coprime. Notice that setting \(I := 3\mathbb{Z} \) we have \(0 \neq IM = \mathbb{Z}/2\mathbb{Z} \neq M \). This shows that the condition homogenous in cannot be removed.

Proposition 3.8. (Compare with [Wij2006, WW2009]) The following are equivalent:

1. \(R M \) is coprime;
2. \(\text{ann}_R(M) = \text{ann}_R(M/L) \) for every \(L \leq_{R} M \);
3. \(\text{ann}_R(M) = \text{ann}_R(M/L) \) for every \(L \leq_R M \);

4. every \(L \leq_R M \) is coprime in \(M \);

5. every \(L \leq_{\text{fi}, R} M \) is coprime in \(M \);

6. \(R/\text{ann}_R(M) \) is cogenerated by \(M/L \) for every \(L \leq_{\text{fi}, R} M \);

7. \(R/\text{ann}_R(M) \) is cogenerated by \(M/L \) for every \(L \leq_R M \).

Proof. (1) \(\Rightarrow \) (2) Let \(L \leq_{\text{fi}, R} M \) and \(I := \text{ann}_R(M/L) \). Suppose that \(\text{ann}_R(M) \subsetneq I \). Since \(IM \neq 0 \), it follows that \(IM = M \), a contradiction.

(2) \(\Rightarrow \) (3) Let \(L \leq_R M \) and \(I := \text{ann}_R(M/L) \). Then \(I \subseteq \text{ann}_R(M/IM) = \text{ann}_R(M) \) (notice that \(IM \leq_{\text{fi}, R} M \)).

(3) \(\Rightarrow \) (4) Let \(L \leq_R M \) and \(I \in \mathcal{I}(R) \). If \(\tilde{L} := IM + L \not\subset M \), then \(I \subseteq \text{ann}_R(M/\tilde{L}) = \text{ann}_R(M) \) whence \(IM = 0 \subseteq L \).

(4) \(\Rightarrow \) (5) obvious.

(5) \(\Rightarrow \) (1) Set \(L := 0 \leq_{\text{fi}, R} M \).

The equivalences (2) \(\Leftrightarrow \) (6) and (3) \(\Leftrightarrow \) (7) follow from immediately from the fact that, over any ring, a module \(N \) cogenerates the ring if and only if it is faithful over it.

Example 3.9. Let \(_R M \) be non-Hopf kernel (i.e. \(M/K \simeq M \) for every \(K \leq_R M \)) [HM1987, HM1987]. Then \(_R M \) is clearly coprime. In particular, the Prüfer group \(\mathbb{Z}_{p^\infty} \) is coprime as \(\mathbb{Z} \)-module.

The following result follows from the definition and Proposition 3.8.

Proposition 3.10. The following are equivalent for \(K \leq_R M \):

1. \(K \) is (completely) coprime in \(M \);

2. \(L \) is (completely) coprime in \(M \) whenever \(K \leq_R L \leq_{\text{fi}, R} M \);

3. \(L \) is (completely) coprime in \(M \) whenever \(K \leq_R L \leq_R M \);

4. \(M/L \) is a (completely) coprime \(R \)-module whenever \(K \leq_R L \leq_R M \);

5. \(M/L \) is a (completely) coprime \(R \)-module whenever \(K \leq_R L \leq_{\text{fi}, R} M \);

6. \(M/K \) is a (completely) coprime \(R \)-module.

Example 3.11. (cf. [Ann2002, Example 102]) Let \(R \) be a UFD with an infinite representative set of the prime elements \(\mathbb{P}(R) \) (e.g. \(R = \mathbb{Z} \)). Consider \(M = \prod_{p \in \mathbb{P}(R)} R/pR \) and \(K = \bigoplus_{p \in \mathbb{P}} R/pR \). Let \(r \in R \) and let \(D_r = \{p_1, \cdots, p_k\} \subset \mathbb{P}(R) \) be a representative set of the prime divisors of \(r \). Clearly, \(rM = \prod_{r \in \mathbb{P}(R) \setminus D_r} R/pR \not\subseteq K \). However, \(rM + K = M \). So, \(K \) is coprime in \(M \).
Remarks 3.12. 1. If $\text{ann}_R(M) \in \text{Max}(R)$, then $R M$ is coprime: Let $I \in \mathcal{I}(R)$. If $IM \neq 0$, then $\text{ann}_R(M) + I = R$ whence $IM = M$. The converse is not true in general. For example, \mathbb{Z}/\mathbb{Q} is coprime but $\text{ann}_\mathbb{Z}(\mathbb{Q}) = 0$ is not a maximal ideal.

2. If $R M_S$ is simple, then $R M$ is coprime by Proposition 3.8.

3. R is a simple ring if and only if $R R \ (R R)$ is coprime. In particular, a commutative ring R is a field if and only if $R R$ is coprime.

4. The following are equivalent:

 (a) R is a division ring;

 (b) $R R$ is completely coprime;

 (c) $R R$ is completely coprime;

 (d) $R R$ is coprime and R is (left) duo;

 (e) $R R$ is coprime and R is (right) duo.

Proposition 3.13. Let $0 \neq L \trianglelefteq_R M$. If $K \trianglelefteq_R M$ is (completely) coprime in M, then $K \cap L$ is (completely) coprime in L or $(K + L)/L$ is (completely) coprime in M/L.

Proof. Let $0 \neq L \trianglelefteq_R M$ and assume that K is (completely) coprime in M.

 Case I. $K + L \varsubsetneq L$. It follows by Proposition 3.10 that $K + L \trianglelefteq_R M$ is (completely) coprime in M whence $(K + L)/L \simeq M/(K + L)$ is a (completely) coprime R-module and so $(K + L)/L$ is (completely) coprime in M/L.

 Case II. $K + L = M$. Consider $K \cap L \varsubsetneq L$.

 For any $I \in \mathcal{I}(R)$ ($r \in R$) we have either $IM + K = M$ ($r M + K = M$) whence

 $\begin{align*}
 IL + (K \cap L) & = (IL + K) \cap L = (I(L + K) + K) \cap L = (IM + K) \cap L = M \cap L = L \\
 rl + (K \cap L) & = (r L + K) \cap L = (r(L + K) + K) \cap L = (r M + K) \cap L = M \cap L = L
 \end{align*}$

 or $IM \subseteq K \ (r M \subseteq K)$ whence $IL \subseteq L \cap K \ (rL \subseteq K \cap L)$. Consequently, $K \cap L$ is (completely) coprime in L.

Corollary 3.14. Let $0 \neq L \trianglelefteq_R M$. If L and M/L are coprimeless (c-coprimeless), then $R M$ is also coprimeless (c-coprimeless).

Lemma 3.15. 1. If $R M$ is (completely) coprime, then $\text{ann}_R(M)$ is (completely) prime.

2. If $K \trianglelefteq_R M$ is (completely) coprime in M, then $p := (K : R M)$ is (completely) prime.

Proof. 1. Assume that $R M$ is (completely) coprime. Let $IJ \subseteq \text{ann}_R(M)$ (ab $\in \text{ann}_R(M)$) and suppose that $J \nsubseteq \text{ann}_R(M)$ ($b \notin \text{ann}_R(M)$) i.e. $JM \neq 0$ ($b M \neq 0$). Since $R M$ is (completely) coprime, we conclude that $JM = M$ ($b M = M$) whence $IM = IJM = 0$ ($a M = a(b M) = (ab) M = 0$) i.e. $I \subseteq \text{ann}_R(M)$ ($a \in \text{ann}_R(M)$).

2. The result follows from “1” and Proposition 3.10.
Definition 3.16. Let $K \subseteq_R M$ be (completely) coprime and consider the (completely) prime ideal $p := (K :_R M)$. We say K is a (completely) p-coprime submodule of M.

The following result extends some results in [A-TF2007] to comultiplication modules over non-commutative rings and improves some other results.

Proposition 3.17. 1. Let $R M$ be multiplication. Then $R M$ is coprime if and only if $R M$ is simple.

2. Let $R M$ be comultiplication. Then $R M$ is coprime if and only if $\text{ann}_R(M)$ is a prime ideal.

Proof. 1. Clearly, every simple module is coprime. Conversely, let $R M$ be multiplication and coprime. If $N \subseteq_R M$, then setting $I := (N :_R M)$ we have $IM \neq M$ whence $N = IM = 0$, i.e. $R M$ is simple.

2. If $R M$ is coprime, then $\text{ann}_R(M)$ is a prime ideal by Lemma 3.15. Let $R M$ be comultiplication and assume that $\text{ann}_R(M) \in \text{Spec}(R)$. Let $I \in \mathcal{I}(R)$ be such that $IM \neq 0$ and let $J := (0 :_R IM)$. Since $JI \subseteq \text{ann}_R(M)$ and $I \nsubseteq \text{ann}_R(M)$ we obtain $J \subseteq \text{ann}_R(M)$ whence $M = (0 :_M J) = (0 :_M (0 :_R IM)) = IM$. Consequently, $R M$ is coprime. ■

Corollary 3.18. Let $R M$ be multiplication and comultiplication. The following are equivalent:

1. $R M$ is coprime;

2. $\text{ann}_R(M)$ is a prime ideal;

3. $R M$ is simple.

In particular, if R is a prime ring and $R M$ is faithful, multiplication and comultiplication, then $R M$ is coprime if and only if $R M$ is simple.

3.19. Recall that the ring R is said to be zero-dimensional iff every prime ideal of R is maximal. Examples of zero-dimensional rings include biregular rings [Wis1991 3.18 (6, 7)] and left (right) perfect rings. For left (right) duo rings, the notion of zero-dimensionality coincides with that of π-regularity [Hir1978]. A prime ring (e.g. a commutative integral domain) is said to be one-dimensional iff every non-zero prime ideal is maximal. In particular, commutative Dedekind domains are one-dimensional.

Corollary 3.20. 1. If $R M$ is multiplication, then $\text{Spec}^<(M) = \text{Max}(M)$.

2. If $R M$ is comultiplication, then

$$\text{Spec}^<(M) = \{0 \neq L \subseteq_R M \mid (0 :_R L) \in \text{Spec}(R)\}.$$ (3)

If, moreover, R is zero-dimensional, then

$$\text{Spec}^<(M) = S(M).$$ (4)
Proof. In light of Proposition 3.17 we need to prove only the last part of the second statement. Notice that $S(M) \subseteq \text{Spec}^s(M)$. Assume that every prime ideal of R is maximal. Let $K \in \text{Spec}^s(M)$ so that $(0 :_RMK) \in \text{Spec}(R)$ by Lemma 3.15 whence a maximal ideal by our assumption on R. It follows that $K = (0 :_M(0 :_RK))$ is simple: if $0 \neq K_1 \subseteq R$, then $(0 :_RK) \subseteq (0 :_RK_1) \subseteq R$, a contradiction. ■

Corollary 3.21. 1. If R is a left due ring (e.g. a commutative ring), then

$$\text{Spec}^c(RR) = \text{Max}(R).$$

2. If R is a left dual ring, then

$$\text{Spec}^s(RR) = \{I \in \mathcal{I}_l(R) \mid (0 :_R I) \in \text{Spec}(R)\}.$$

If moreover R is zero-dimensional, then

$$\text{Spec}^e(RR) = \text{Min}(RR).$$

Example 3.22. A ring R is Quasi-Frobenius if and only if R is dual and Artinian. Examples of Quasi-Frobenius rings include semisimple Artinian rings, the group algebra $\mathbb{F}[G]$ where \mathbb{F} is a field and G is a finite group, and R/aR where R is a commutative PID and $0 \neq a \not\in U(R)$ (e.g. $\mathbb{Z}/n\mathbb{Z}$, $n \geq 2$).

Example 3.23. Let $B \subseteq \mathbb{Q}$ be the subring consisting of all rational numbers with odd denominators and $M := \mathbb{Q}/B$. Consider the idealization $R := B \oplus M$ with multiplication

$$(b_1, m_1)(b_2, m_2) = (b_1b_2, b_1m_2 + b_2m_1).$$

Then R is a dual ring which is not Quasi-Frobenius.

Remark 3.24. For any module M, the so-called generalized associated prime ideals of RM were introduced in [D-AT2000] as the set

$$\text{Ass}_R(M) := \{p \in \text{Spec}(R) \mid p = (0 :_RL) \text{ for some } L \leq R M\}.$$

If RM is comultiplication, then one case easily see that there is a 1-1 correspondence

$$\text{Spec}^s(M) \leftrightarrow \text{Ass}_R(M), \quad L \mapsto (0 :_RL)$$

with inverse $p \mapsto (0 :_M p)$. In particular, if R is a left dual ring, then there is a 1-1 correspondence

$$\text{Spec}^s(RR) \leftrightarrow \text{Ass}_R(R).$$

3.25. For every $L \leq_R M$ we define

$$V^s(L) := \{K \in \text{Spec}^s(M) \mid K \subseteq L\} \text{ and } A^s(L) := \{K \in \text{Spec}^s(M) \mid K \not\subseteq L\}.$$

For every $A \subseteq \text{Spec}^s(M)$ we set

$$H(A) := \sum_{K \in A} K \quad (:= 0 \text{ iff } A = \emptyset).$$

12
In particular, we set
\[
\text{Corad}^s_M(L) := H(\mathcal{V}^s(L)) = \sum_{K \in \mathcal{V}^s(L)} K \quad (:= 0 \text{ iff } \mathcal{V}^s(L) = \emptyset)
\] (13)
and
\[
\text{Corad}^s(M) := \text{Corad}^s_M(M) = \sum_{K \in \text{Spec}^s(M)} K \quad (:= 0 \text{ iff } \text{Spec}^s(M) = \emptyset).
\] (14)

We say \(L \leq_R M \) is \(s \)-coradical in \(M \) iff \(\text{Corad}^s_M(L) = L \). In particular, we call \(R \) \(M \) an \(s \)-coradical module iff \(\text{Corad}^s(M) = M \).

Remarks 3.26.
1. For any \(L \leq_R M \) we have
\[
\text{Spec}^s(L) = L(L) \cap \text{Spec}^s(M) = \mathcal{V}^s(L).
\]
2. For any \(L_1 \leq_R L_2 \leq_R M \) we have \(\text{Corad}^s_M(L_1) \subseteq \text{Corad}^s_M(L_2) \). Moreover, for any \(L \leq_R M \) we have
\[
\text{Corad}^s_M(\text{Corad}^s_M(L)) = \text{Corad}^s_M(L).
\]
3. Notice that \(\mathcal{S}(M) \subseteq \text{Spec}^s(M) \). In particular, if \(R \) \(M \) is atomic, then for every \(0 \neq L \leq_R M \) we have \(\emptyset \neq \mathcal{S}(L) \subseteq \text{Spec}^s(L) = \mathcal{V}^s(L) \subseteq \text{Spec}^s(M) \).

Definition 3.27. Let \(0 \neq L \leq_R M \). A maximal element of \(\mathcal{V}^s(L) \), if any, is said to be maximal under \(L \). A maximal element of \(\text{Spec}^s(M) \) is said to be a maximal second submodule of \(M \).

Lemma 3.28. Let \(R \) \(M \) be atomic and comultiplication. For every \(0 \neq L \leq_R M \) there exists \(K \in \text{Spec}^s(M) \) which is maximal under \(L \).

Proof. Let \(0 \neq L \leq_R M \). Since \(R \) \(M \) is atomic, \(\emptyset \neq \mathcal{S}(L) \subseteq \mathcal{V}^s(L) \). Let
\[
K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n \subseteq K_{n+1} \subseteq \cdots
\]
be an ascending chain in \(\mathcal{V}^s(L) \) and set \(\tilde{K} := \bigcup_{i=1}^{\infty} K_i \). Then we have a descending chain of prime ideals
\[
(0 :_R K_1) \supseteq (0 :_R K_2) \supseteq \cdots \supseteq (0 :_R K_n) \supseteq (0 :_R K_{n+1}) \supseteq \cdots
\] (15)
and it follows that \(p := (0 :_R \tilde{K}) = \bigcap_{i=1}^{\infty} (0 :_R K_i) \) is a prime ideal. Since \(R \) \(M \) is comultiplication, \(\tilde{K} \in \mathcal{V}^s(L) \) by Corollary 3.20. By Zorn’s Lemma, \(\mathcal{V}^s(L) \) has a maximal element. •

3.29. For every \(L \leq_R M \) we define
\[
\mathcal{V}^s(L) := \{ K \in \text{Spec}^s(M) \mid L \subseteq K \} \quad \text{and} \quad \lambda^s(L) := \{ K \in \text{Spec}^s(M) \mid L \nsubseteq K \}.
\]
For every \(\mathcal{A} \subseteq \text{Spec}^s(M) \), we set
\[
\mathcal{J}(\mathcal{A}) := \bigcap_{K \in \mathcal{A}} K \quad (:= M \text{ iff } \mathcal{A} = \emptyset)
\] (16)
and
\[\text{Rad}_M^c(L) := \mathcal{J}(\mathcal{V}_c(L)) = \bigcap_{K \in \mathcal{V}_c(L)} K \ (\text{iff} \ \mathcal{V}_c(L) = \emptyset). \] (17)

In particular,
\[\text{Rad}_c^c(M) := \text{Rad}_M^c(0) = \bigcap_{K \in \text{Spec}_c(M)} K \ (\text{iff} \ \text{Spec}_c(M) = \emptyset). \] (18)

We say \(L \leq_R M \) is c-radical iff \(\text{Rad}_M^c(L) = L \).

Remarks 3.30.
1. For any \(L \leq_R M \) let
\[\mathcal{U}(L) := \{ \tilde{L} \leq_R M \mid L \leq_R \tilde{L} \leq_R M \}. \] (19)

We have a bijection
\[\text{Spec}_c(M) \cap \mathcal{U}(L) \leftrightarrow \text{Spec}_c(M/L). \]

2. For any \(L_1 \leq_R L_2 \leq_R M \) we have \(\text{Rad}_M^c(L_1) \subseteq \text{Rad}_M^c(L_2) \). Moreover, for any \(L \leq_R M \) we have
\[\text{Rad}_M^c(\text{Rad}_M^c(L)) = \text{Rad}_M^c(L). \]

3. Max(M) \(\subseteq \) Spec_c(M). If \(R\ M \) is coatomic, then for every \(L \leq_R M \) we have \(\emptyset \neq M \subseteq \mathcal{V}_c(L) \subseteq \text{Spec}_c(M) \).

Definition 3.31. We call \(R\ M \) (completely) endo-coprime iff \(M_S \) is (completely) coprime. Moreover, we say that \(K \leq_{R\ M} M \) is a (completely) endo-coprime \(R\) submodule iff \(K \leq_S M \) is a (completely) coprime submodule.

Proposition 3.32.
1. If \(R\ M \) is (completely) endo-coprime, then \(S \) is a prime ring (a domain).

2. Let \(M_S \) be duo and \(R\ M \) be a self-cogenerator. Then \(R\ M \) is endo-coprime if and only if \(S \) is a prime ring.

Proof.
1. If \(R\ M \) is (completely) endo-coprime, then – by definition – \(M_S \) is (completely) coprime and it follows by Lemma 3.15 that \(0 = \text{ann}_S(M) \) is a (completely) prime ideal, i.e. \(S \) is a prime ring (a domain).

2. Assume that \(M_S \) is duo and \(R\ M \) is a self-cogenerator. Let \(L \leq_S M \) be an arbitrary submodule. Since \(M_S \) is duo, \(L \leq_B M \) where \(B := \text{End}(M_S) \). Considering the canonical ring morphism \(\beta : R \to B \), we know that \(M \) is a \((B, S)\)-bimodule and conclude that \(L \leq_{R\ M} M \) whence \(0 :_S L \in \mathcal{I}(S) \). Since \(R\ M \) is a self-cogenerator, \(L = (0 :_M (0 :_S L)) \) [Vis1991, 28.1., 28.2.]. Consequently, \(M_S \) is a comultiplication module and it follows by Lemma 3.17 that \(M_S \) is coprime, i.e. \(R\ M \) is endo-coprime.\[\square\]

3.33. We say \(R\ M \) is divisible iff \(rM = M \) for every \(r \in R \setminus Z(R) \). The sum of all divisible submodules of \(R\ M \) is a divisible submodule, denoted by \(\text{div}(M) \). If \(\text{div}(M) = 0 \), then \(R\ M \) is said to be reduced. Moreover, \(L \leq_R M \) is said to be relatively divisible iff
\[rl = rM \cap L \text{ for every } r \in R. \]
Proposition 3.34. Let $K \leq_R L \leq_R M$.

1. Let RM be flat.
 (a) If $L \leq_R M$ is pure and K is coprime in M, then K is coprime in L.
 (b) RM is coprime if and only if every non-zero pure submodule of M is second in M.
 (a) If $L \leq_R M$ is relatively divisible and K is completely coprime in M, then K is completely coprime in L.
 (b) RM is completely coprime if and only if every non-zero relatively divisible R-submodule of M is completely second in M.

Proof. 1. Let RM be flat.
 (a) Assume that K is coprime in M. Since RM is flat and $L \leq_R M$ is pure, we have $IL = IM \cap L$ for every $I \in \mathcal{I}(R)$ (e.g. [Wis1991, 36.6]). If $IL \nsubseteq K$ for some $I \in \mathcal{I}(R)$, then indeed $IM \nsubseteq K$ and so
 \[IL + K = (IM \cap L) + K = (IM + K) \cap L = M \cap L = L. \tag{20} \]
 (b) The proof is similar to that of (a).
 (a) Assume that K is coprime in M. Since $L \leq M$ is relatively divisible, for every $r \in R$ we have
 \[rL = rM \cap L \subseteq K \cap L = K \tag{21} \]
 or
 \[rL + K = (rM \cap L) + K = (rM + K) \cap L = M \cap L = L. \]
 (b) The proof is similar to that of (a).

Lemma 3.35. Let $K \leq_R M$ and $q := (K :_R M)$. Then K is completely coprime in M if and only if q is completely prime and M/K is a divisible R/q-module. In particular, RM is completely coprime if and only if $\overline{R} := R/\text{ann}_R(M)$ is a domain and $\overline{R}M$ is divisible.

Proof. (\Rightarrow) Assume that K is completely coprime in M, so that q is completely prime by Lemma 3.15 and $\overline{R} := R/q$ is a domain. Let $m + K \in M/K$ and consider any $0 \neq \overline{r} \in \overline{R}$. Since $r \notin q$, we have $rM + K = M$ and so $\overline{r}(M/K) = M/K$. Consequently, M/K is a divisible R/q-module.

(\Leftarrow) Assume that q is completely prime and that M/K is a divisible R/q-module. Let $r \in R$ be such that $rM \nsubseteq K$, i.e. $r \notin q$. Since M/K is a divisible R/q-module, we conclude that $\overline{r}(M/K) = M/K$ and so $rM + K = M$. Consequently, K is completely coprime in M.

Corollary 3.36. If $K \leq_R M$ and $(K :_R M) \in \text{Max}(R)$, then K is completely coprime in M. In particular, if $m \in \mathcal{I}(R) \cap \text{Max}(R)$ and $mM \neq M$, then mM is completely coprime in M.\[\]
3.37. ([MR1987], [Mar1972]) Recall that the ring \(R \) is said to be right (left) bounded iff every essential right (left) ideal of \(R \) contains a non-zero two-sided ideal. We say that \(R \) is bounded iff \(R \) is left and right bounded. Let \(R \) be a Noetherian prime ring with simple Artinian classical ring of quotients \(Q \). If each ideal of \(R \) distinct from zero is invertible in \(Q \), then \(R \) is called a Dedekind prime ring. For example, all commutative Dedekind domains and full matrix rings over them are bounded Dedekind prime rings. Moreover, all (hereditary Noetherian) prime principal ideal rings are (bounded) Dedekind prime rings.

Lemma 3.38. ([Mar1972, Theorem 3.19]) Let \(R \) be a bounded Dedekind prime ring. Any \(R \)-module \(M \) possesses a unique largest divisible submodule \(D \) such that \(M = D \oplus K \) where \(K \) has no divisible submodules.

Definition 3.39. Let \(R \) be a bounded Dedekind prime ring, \(M \) an \(R \)-module and consider the decomposition \(M = D \oplus K \) from the previous lemma. The submodule \(\text{div}(M) := D (\text{Red}(M) := K) \) is called the divisible (reduced) part of \(M \).

Proposition 3.40. Let \(R \) be a bounded Dedekind prime ring.

1. If \(RM \) is completely coprime, then \(RM \) is divisible or reduced.

2. Let \(R \) be a domain. Then \(\text{Red}(M) \) is completely coprime in \(M \) if and only if \(RM \) is not reduced.

Proof.

1. Let \(RM \) be completely coprime. If \(RM \) is divisible, then we are done. Suppose that \(rM \neq M \) for some \(r \in R \setminus Z(R) \). Since \(RM \) is completely coprime, we have

\[
0 = rM = r(\text{div}(M) \oplus \text{Red}(M)) = \text{div}(M) \oplus r\text{Red}(M).
\]

It follows that \(\text{div}(M) = 0 \), i.e. \(RM \) is reduced.

2. Let \(R \) be domain. If \(\text{Red}(M) \) is completely coprime in \(M \), then in particular \(\text{Red}(M) \preceq_R M \) and so \(RM \) is not reduced (i.e. \(RM \) is divisible or mixed). On the other hand, assume that \(\text{Red}(M) \preceq_R M \). Since \(R \) is a domain, we conclude that

\[
(\text{Red}(M) :_R M) = (0 :_R \text{div}(M)) = 0.
\]

Applying Lemma 3.35, we conclude that \(\text{Red}(M) \) is completely coprime in \(M \).

Corollary 3.41.

1. If \(RM \) is c-coprimeless, then \(mM = M \) for every \(m \in \mathcal{I}(R) \cap \text{Max}(RR) \).

2. Let \(R \) be a bounded Dedekind prime domain. If \(RM \) is c-coprimeless, then \(RM \) is reduced.

Proposition 3.42. Let \(\{M_\lambda\}_\Lambda \) be a family of non-zero \(R \)-modules.

1. We have:

(a) If \(\prod_{\lambda \in \Lambda} M_\lambda \) is (completely) coprime, then \(RM_\lambda \) is (completely) coprime for every \(\lambda \in \Lambda \).
(b) If $\bigoplus_{\lambda \in \Lambda} M_\lambda$ is (completely) coprime, then RM_λ is (completely) coprime for every $\lambda \in \Lambda$.

2. Assume that $\text{ann}_R(M_\lambda) = p = \text{ann}_R(M_\gamma)$ for every $\lambda, \gamma \in \Lambda$.

 (a) $\prod_{\lambda \in \Lambda} M_\lambda$ is (completely) p-coprime if and only if RM_λ is (completely) p-coprime for every $\lambda \in \Lambda$.

 (b) $\bigoplus_{\lambda \in \Lambda} M_\lambda$ is (completely) p-coprime if and only if RM_λ is (completely) p-coprime for every $\lambda \in \Lambda$.

Proof. Notice that $\prod_{\lambda \in \Lambda} M_\lambda \neq 0 \neq \bigoplus_{\lambda \in \Lambda} M_\lambda$.

1. (a) Assume that $M := \prod_{\lambda \in \Lambda} M_\lambda$ is (completely) coprime. For any $\lambda \in \Lambda$ and any $I \in \mathcal{I}(R)$ ($r \in R$): If $IM_\lambda \neq M_\lambda (rM_\lambda \neq M_\lambda)$, then $IM \neq M (rM \neq M)$ and so $IM = 0 (rM = 0)$. Whence $IM_\lambda = 0 (rM_\lambda = 0)$ for every $\lambda \in \Lambda$.

 (b) The proof is similar to that of (a).

2. Since $\text{ann}_R(M_\lambda) = p = \text{ann}_R(M_\gamma)$ for every $\lambda, \gamma \in \Lambda$, we have $\text{ann}_R(\prod_{\lambda \in \Lambda} M_\lambda) = p = \text{ann}_R(\bigoplus_{\lambda \in \Lambda} M_\lambda)$.

 (a) Let $M := \prod_{\lambda \in \Lambda} M_\lambda$. Assume that RM_λ is (completely) p-coprime for every $\lambda \in \Lambda$.

 For any $I \in \mathcal{I}(R)$ ($r \in R$): If $IM \neq M (rM \neq M)$, then $IM_{\lambda_0} \neq M_{\lambda_0} (rM_{\lambda_0} \neq M_{\lambda_0})$ for some $\lambda_0 \in \Lambda$. Since RM_λ is (completely) p-coprime, $IM_{\lambda_0} = 0 (rM_{\lambda_0} = 0)$ whence $I \subseteq p (r \in p)$ i.e. $IM = 0 (rM = 0)$. It follows that RM is (completely) p-coprime.

 (b) The proof is similar to that of (a).■

Proposition 3.43. If $\{M_\lambda\}_\Lambda$ is a family of coprimeless (c-coprimeless) R-modules, then $\prod_{\lambda \in \Lambda} M_\lambda$ and $\bigoplus_{\lambda \in \Lambda} M_\lambda$ are coprimeless (c-coprimeless).

Proof. Let $\{M_\lambda\}_\Lambda$ be a family of coprimeless (c-coprimeless) R-modules and set $M := \prod_{\lambda \in \Lambda} M_\lambda$. Suppose that $K \in \text{Spec}^c(M)$ ($K \in \text{Spec}^{cc}(M)$) so that, in particular, $\pi_{\lambda_0}(K) \subsetneq M_{\lambda_0}$ for some $\lambda_0 \in \Lambda$. For every $I \in \mathcal{I}(R)$ ($r \in R$) we have $IM \subseteq K (rM \subseteq K)$ whence $I\pi_{\lambda_0}(M) \subseteq \pi_{\lambda_0}(K)$ ($r\pi_{\lambda_0}(M) \subseteq \pi_{\lambda_0}(K)$) or $IM + K = M (rM + K = M)$ whence $IM_{\lambda_0} + \pi_{\lambda_0}(K) = M_{\lambda_0} (rM_{\lambda_0} + \pi_{\lambda_0}(K) = M_{\lambda_0})$. It follows that $\pi_{\lambda_0}(K) \in \text{Spec}^c(M_{\lambda_0})$ ($\pi_{\lambda_0}(K) \in \text{Spec}^{cc}(M_{\lambda_0})$), a contradiction.■

The ring R is said to be binoetherian (or weakly Noetherian [Row2008 page 74]) iff R satisfies the ACC on $\mathcal{I}(R)$.

Example 3.44. (cf. [Ann2002, Proposition 107]) Let R be a binoetherian ring. Then qM is coprime in M for some prime ideal $q \in \text{Spec}(R)$. In particular, $\text{Spec}^c(M) \neq \emptyset$.

17
Proof. Since R is binoetherian, for every $J \in \mathcal{I}(R)$ there exist (e.g. [Row2008, Theorem 16.24], [Row2006, Theorem 9.2]) $p_1, \ldots, p_n \in \text{Spec}(R)$ such that
\[q_1 \cdot \cdots \cdot q_k \subseteq J \subseteq q_1 \cap \cdots \cap q_k. \] (22)
In particular, there exist $p_1, \ldots, p_n \in \text{Spec}(R)$ such that $p_1 \cdot \cdots \cdot p_n = 0$, whence
\[\mathcal{E} := \{ p \in \text{Spec}(R) \mid pM \neq M \} \neq \emptyset. \]

By assumption, \mathcal{E} has a maximal element q. Let $I \in \mathcal{I}(R)$.

Case I: $I \subseteq q$. In this case, $IM \subseteq qM$.

Case II: $I \nsubseteq q$, so that $q \nsubseteq J := I + q$.

By (22), there exist $q_1, \ldots, q_k \in \text{Spec}(R)$ such that
\[q_1 \cdot \cdots \cdot q_k \subseteq J \subseteq q_1 \cap \cdots \cap q_k. \]
Since q is maximal in \mathcal{E}, we have $q_jM = M$ for all $j = 1, \ldots, k$, whence
\[IM + qM = JM = M. \]
Consequently, $qM \in \text{Spec}^c(M)$.

\section{Top$_s$-modules}

As before M is a non-zero left R-module. In this section we topologize the spectrum of second submodules of R^sM and investigate the properties of the induced topology. Several proofs in this section are similar to proofs of results in [Abu2011], whence omitted.

Notation. Set
\[
\begin{align*}
\xi^s(M) &:= \{ V^s(L) \mid L \in \mathcal{L}(M) \}; & \xi^c_s(M) &:= \{ V^s(L) \mid L \in \mathcal{L}_c(M) \}; \\
\tau^s(M) &:= \{ A^s(L) \mid L \in \mathcal{L}(M) \}; & \tau^c_s(M) &:= \{ A^s(L) \mid L \in \mathcal{L}_c(M) \}; \\
Z^s(M) &:= (\text{Spec}^s(M), \tau^s(M)); & Z^c_s(M) &:= (\text{Spec}^s(M), \tau^c_s(M)).
\end{align*}
\]

Lemma 4.1. Consider the class of varieties $\xi^s(M)$.

1. $V^s(0) = \emptyset$ and $V^s(M) = \text{Spec}^s(M)$;

2. $\bigcap_{\lambda \in \Lambda} V^s(L_{\lambda}) = V^s(\bigcap_{\lambda \in \Lambda} L_{\lambda})$ for any $\{L_{\lambda}\}_\Lambda \subseteq \mathcal{L}(M)$;

3. For any $I, I \in \mathcal{I}(R)$, we have
\[
V^s((0 :_M I)) \cup V^s((0 :_M I)) = V^s((0 :_M I) + (0 :_M I)) = V^s((0 :_M I \cap I)) = V^s((0 :_M I I)).
\] (23)
We call $0 \neq L \leq_R M$ strongly hollow in M iff for any $L_1, L_2 \leq_R M$ we have

$$L \subseteq L_1 + L_2 \Rightarrow L \subseteq L_1 \text{ or } L \subseteq L_2;$$

(24)

completely hollow, iff for any collections $\{L_\lambda\}_\Lambda$ of R-submodules of M we have:

$$L = \sum L_\lambda \Rightarrow L = L_\lambda \text{ for some } \lambda \in \Lambda;$$

(25)

Remark 4.3. Strongly hollow submodules were considered briefly in [RRW2005] under the name \lor-coprime submodules. Completely hollow modules were introduced under the name completely coirreducible modules in [A-TF2008]; however, the zero submodule was allowed to be completely coirreducible which does not fit with our scheme.

Notation. We set

$$\mathcal{SH}(M) := \{L \leq_R M \mid L \text{ is strongly hollow in } M\}. \quad (26)$$

Remarks 4.4. 1. If $R M$ is uniserial, then every submodule of M is strongly hollow.

2. If $S(M) \subseteq \mathcal{SH}(M)$, then $R M$ has the min-property.

Example 4.5. Let M be an n-dimensional vector space over a division ring D. If $n \geq 2$, then M has a vector subspace which is hollow but not strongly hollow: Let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be a basis for V and consider $L = D(v_1 + \cdots + v_n)$. Then L is clearly hollow, being 1-dimensional, but not strongly hollow in M since $L \subseteq D(v_1 + \cdots + v_n)$ but $L \not\subseteq Dv_i$ for any $i = 1, \ldots, n$. In particular, $\{(x, y) \mid y = x\}$ is hollow but not strongly hollow in \mathbb{R}^2.

If M is a uniserial non-zero module with $0 \neq L \leq_R M$ not finitely generated, then clearly L is strongly hollow but not completely hollow. In particular, the Abelian group \mathbb{Z}_{ν^∞} is strongly hollow but not completely hollow.

In general, $\xi^s(M)$ is not closed under finite unions. This motivates

Definition 4.6. We call $R M$ a tops-module iff $\xi^s(M)$ is closed under finite unions, equivalently iff $\mathcal{Z}^s(M) := (\text{Spec}^s(M), \tau^s(M))$ is a topological space.

Remark 4.7. If $R M$ is secondless (i.e. $\text{Spec}^s(M) = \emptyset$), then $R M$ is trivially a tops-module.

Theorem 4.8. 1. $\mathcal{Z}^s_c(M) := (\text{Spec}^s(M), \tau^s_c(M))$ is a topological space.

2. If $\text{Spec}^s(M) \subseteq \mathcal{SH}(M)$, then $R M$ is a tops-module.

Proof. 1. This follows directly from Lemma 4
2. This follows from the observation that $\text{Spec}^s(M) \subseteq \mathcal{SH}(M)$ if and only if $\mathcal{V}^s(L_1) \cup \mathcal{V}^s(L_2) = \mathcal{V}^s(L_1 + L_2)$ (equivalently, $\mathcal{X}^s(L_1 + L_2) = \mathcal{X}^s(L_1) \cap \mathcal{X}^s(L_2)$) for any $L_1, L_2 \leq_R M$. ■

Proposition 4.9. Let R^M be comultiplication.

1. Every second submodule of M is strongly hollow (i.e. $\text{Spec}^s(M) \subseteq \mathcal{SH}(M)$).

2. Every finitely generated second submodule of M is completely hollow.

3. R^M is a tops-module.

4. R^M has the min-property.

Proof. Let R^M be comultiplication.

1. This follows directly from Lemma 4.1 and the definition of comultiplication modules.

2. This follow directly from the definitions and “1”.

3. This follows from “1” and Theorem 4.8.

4. This follows from “1”, which yields $\mathcal{S}(M) \subseteq \text{Spec}^s(M) \subseteq \mathcal{SH}(M)$. ■

Lemma 4.10. Let R^M be a tops-module. The closure of any subset $\mathcal{A} \subseteq \text{Spec}^s(M)$ is

$$\overline{\mathcal{A}} = \mathcal{V}^s(\mathcal{H}(\mathcal{A})).$$

(27)

Remarks 4.11. Let R^M be a tops-module and consider the Zariski topology

$$\mathcal{Z}^s(M) := (\text{Spec}^s(M), \tau^s(M)).$$

(28)

1. $\mathcal{Z}^s(M)$ is a T_0 (Kolmogorov) space.

2. Let $\text{Spec}^s(M) \subseteq \mathcal{SH}(M)$ (e.g. R^M is comultiplication). Then

$$\mathcal{B} := \{\mathcal{X}^s(L) \mid L \leq_R M \text{ is finitely generated}\}$$

(29)

is a basis of open sets for $\mathcal{Z}^s(M)$.

3. If $L \in \text{Spec}^s(M)$, then $\overline{\{L\}} = \mathcal{V}^s(L)$. In particular, for any $K \in \text{Spec}^s(M)$:

$$K \in \overline{\{L\}} \iff K \subseteq L.$$

4. $\mathcal{X}^s(L) = \emptyset \Rightarrow \text{Soc}(M) \subseteq L$. The converse holds if, for example, $\mathcal{S}(M) = \text{Spec}^s(M)$.

5. Let R^M be atomic. For every $L \leq_R M$ we have $\mathcal{V}^s(L) = \emptyset$ if and only if $L = 0$.

20
6. Let $0 \neq L \leq_R M$. The embedding

$$\iota : \text{Spec}^*(L) \to \text{Spec}^*(M)$$

induces as continuous map

$$\iota : Z^*(L) \to Z^*(M).$$

This follows from the fact that $\iota^{-1}(\mathcal{V}^*(N)) = \mathcal{V}^*(N \cap L)$ for every R-submodule $N \leq_R M$.

Notation. Set

$$\text{CL}(Z^*(M)) := \{\mathcal{A} \subseteq \text{Spec}^*(M) \mid \mathcal{A} = \overline{A}\} \text{ and } \text{CR}^*(M) := \{L \leq_R M \mid \text{Corad}^*_M(L) = L\}.$$

Theorem 4.12. Let R^M be a top*-module.

1. We have an order-preserving bijection

$$\text{CR}^*(M) \longleftrightarrow \text{CL}(Z^*(M)), \quad L \mapsto \mathcal{V}^*(L). \quad (30)$$

2. $Z^*(M)$ is Noetherian if and only if R^M satisfies the DCC condition on $\text{CR}^*(M)$.

3. $Z^*(M)$ is Artinian if and only if R^M satisfies the ACC condition on $\text{CR}^*(M)$.

Theorem 4.13. Let R^M be a top*-module. If R^M is Artinian (Noetherian), then $Z^*(M)$ is Noetherian (Artinian).

Proposition 4.14. Let R^M be a top*-module and $\mathcal{A} \subseteq \text{Spec}^*(M)$.

1. If $\mathcal{A} \subseteq \text{Spec}^*(M)$ is irreducible, then $\mathcal{H}(\mathcal{A})$ is a second submodule of M.

2. Let $\text{Spec}^*(M) \subseteq S\mathcal{H}(M)$. The following are equivalent:

 (a) $\mathcal{A} \subseteq \text{Spec}^*(M)$ is irreducible;

 (b) $\mathcal{H}(\mathcal{A})$ is a second submodule of M;

 (c) $0 \neq \mathcal{H}(\mathcal{A}) \leq_R M$ is strongly hollow.

Proof. 1. Assume that \mathcal{A} is irreducible. By definition, $\mathcal{A} \neq \emptyset$ and so $\mathcal{H}(\mathcal{A}) \neq 0$. Let $I \in \mathcal{I}(R)$ and suppose that $I\mathcal{H}(\mathcal{A}) \neq \mathcal{H}(\mathcal{A})$ and $I\mathcal{H}(\mathcal{A}) \neq 0$. Set $A_1 := \{K \in \mathcal{A} \mid IK = K\}$ and $A_2 := \{K \in \mathcal{A} \mid IK = 0\}$. Then $\mathcal{A} \subseteq \mathcal{V}^*(\mathcal{H}(A_1)) \cup \mathcal{V}^*(\mathcal{H}(A_2))$. Notice that $\mathcal{A} \not\subseteq \mathcal{V}^*(\mathcal{H}(A_1))$ (otherwise, $I\mathcal{H}(\mathcal{A}) = I\mathcal{H}(A_1) = \mathcal{H}(A_1) = \mathcal{H}(\mathcal{A})$) and $\mathcal{A} \not\subseteq \mathcal{V}^*(\mathcal{H}(A_2))$ (otherwise, $I\mathcal{H}(\mathcal{A}) = I\mathcal{H}(A_2) = 0$), a contradiction. Consequently, $I\mathcal{H}(\mathcal{A}) = \mathcal{H}(\mathcal{A})$ or $I\mathcal{H}(\mathcal{A}) = 0$, i.e. $\mathcal{H}(\mathcal{A})$ is a second submodule of M.

2. Let $\text{Spec}^*(M) \subseteq S\mathcal{H}(M)$.

 (a) \Rightarrow (b) follows from “1”.

 (b) \Rightarrow (c) is obvious.

 (c) \Rightarrow (a) Since $\mathcal{H}(\mathcal{A}) \neq 0$, we conclude that $\mathcal{A} \neq \emptyset$. Suppose that $\mathcal{A} \subseteq \mathcal{V}^*(L_1) \cup \mathcal{V}^*(L_2) \subseteq \mathcal{V}^*(L_1 + L_2)$, i.e. $\mathcal{H}(\mathcal{A}) \subseteq L_1 + L_2$. Since $\mathcal{H}(\mathcal{A})$ is strongly hollow, we conclude that $\mathcal{H}(\mathcal{A}) \subseteq L_1$ whence $\mathcal{A} \subseteq \mathcal{V}^*(L_1)$ or $\mathcal{H}(\mathcal{A}) \subseteq L_2$ whence $\mathcal{A} \subseteq \mathcal{V}^*(L_2)$. Consequently, \mathcal{A} is irreducible.\blacksquare
Theorem 4.15. Let $R^s M$ be a tops-module.

1. (a) If $\text{Spec}^s(M)$ is irreducible, then $\text{Corad}_M^s(M)$ is a second submodule of M.
 (b) If $\mathcal{S}(M)$ is irreducible, then $\text{Soc}(M)$ is a second submodule of M.

2. Let $\text{Spec}^s(M) \subseteq \mathcal{SH}(M)$.

 (a) The following are equivalent:
 i. $\text{Spec}^s(M)$ is irreducible;
 ii. $\text{Corad}_M^s(M)$ is a second submodule of M;
 iii. $0 \neq \text{Corad}_M^s(M) \subseteq_R M$ is strongly hollow.

 (b) The following are equivalent:
 i. $\mathcal{S}(M)$ is irreducible;
 ii. $\text{Soc}(M)$ is a second submodule of M;
 iii. $0 \neq \text{Soc}(M) \subseteq_R M$ is strongly hollow.

Example 4.16. Let $R^s M$ be a tops-module. If $\emptyset \neq \mathcal{A} \subseteq \text{Spec}^s(M)$ is a chain, then \mathcal{A} is irreducible. In particular, if $R^s M$ is uniserial, then $\text{Spec}^s(M)$ is irreducible.

Notation. Set
\[
\text{Max}(\text{Spec}^s(M)) := \{ K \in \text{Spec}^s(M) \mid K \text{ is a maximal second submodule of } M \}. \tag{31}
\]

Proposition 4.17. Let $\text{Spec}^s(M) \subseteq \mathcal{SH}(M)$ (whence $R^s M$ be a tops-module).

1. The bijection \[(30)\] restricts to a bijection:
\[\text{Spec}^s(M) \longleftrightarrow \{ \mathcal{A} \mid \mathcal{A} \subseteq \text{Spec}^s(M) \text{ is an irreducible closed subset} \} \tag{32}\]

2. The bijection \[(32)\] restricts to a bijection
\[\text{Max}(\text{Spec}^s(M)) \longleftrightarrow \{ \mathcal{A} \mid \mathcal{A} \subseteq \text{Spec}^s(M) \text{ is an irreducible component} \}.
\]

Proof. Recall the bijection $\mathcal{CR}^s(M) \overset{\psi(-)}{\longrightarrow} \mathcal{CL}(\mathcal{Z}^s(M))$.

1. Let $K \in \text{Spec}^s(M)$. Then $K = \mathcal{H}(\mathcal{V}^s(K))$ and so the closed set $\mathcal{V}^s(K)$ is irreducible by Proposition 4.14 “2”. On the other hand, let $\mathcal{A} \subseteq \text{Spec}^s(M)$ be a closed irreducible subset. Notice that $\mathcal{H}(\mathcal{A})$ is second in M by Proposition 4.14 “2” and that $\mathcal{A} = \overline{\mathcal{A}} = \mathcal{V}^s(\mathcal{H}(\mathcal{A}))$.

2. Let K be maximal in $\text{Spec}^s(M)$. Then $\mathcal{V}^s(K)$ is irreducible by “1”. Let \mathcal{Y} be the irreducible component containing $\mathcal{V}^s(K)$. Since \mathcal{Y} is closed, $\mathcal{Y} = \mathcal{V}^s(L)$ for some $L \in \text{Spec}^s(M)$. Since $\mathcal{V}^s(K) \subseteq \mathcal{V}^s(L)$ we have $K \subseteq L$. Since $K \in \text{Max}(\text{Spec}^s(M))$, we conclude that $K = L$ and so $\mathcal{V}^s(K)$ is an irreducible component of $\text{Spec}^s(M)$.

Conversely, let \mathcal{Y} be an irreducible component of $\text{Spec}^s(M)$. Since \mathcal{Y} is closed and irreducible, it follows by “1” that $\mathcal{Y} = \mathcal{V}^s(L)$ for some $L \in \text{Spec}^s(M)$. Suppose that L is not maximal in $\text{Spec}^s(M)$, i.e. there exists $K \in \text{Spec}^s(M)$ such that $L \subsetneq K \subseteq M$. It follows that $\mathcal{V}^s(L) \subsetneq \mathcal{V}^s(K)$, a contradiction since $\mathcal{V}^s(K) \subseteq \text{Spec}^s(M)$ is irreducible by “1”. We conclude that L is maximal in $\text{Spec}^s(M)$.
Corollary 4.18. If Spec^s(M) ⊆ SH(M), then Spec^s(M) is a Sober space.

Proof. Let \(\mathcal{A} \subseteq \text{Spec}^s(M) \) be an irreducible closed subset. By Proposition 4.17 “1”, \(\mathcal{A} = \mathcal{V}^s(K) \) for some \(K \in \text{Spec}^s(M) \). It follows that
\[
\mathcal{A} = \mathcal{A} = \mathcal{V}^s(\mathcal{H}(\mathcal{A})) = \mathcal{V}^s(K) = \overline{\{K\}},
\]

i.e. \(K \) is a generic point for \(\mathcal{A} \). If \(L \) is a generic point of \(\mathcal{A} \), then \(\mathcal{V}^s(K) = \mathcal{V}^s(L) \) whence \(K = L \).■

Proposition 4.19. Let \(R^M \) be an atomic top^s-module. Then \(R^M \) is uniform if and only if \(\text{Spec}^s(M) \) is ultraconnected.

Theorem 4.20. Let \(R^M \) be an atomic top^s-module.

1. If \(S(M) \) is countable, then \(Z^s(M) \) is countably compact.
2. If \(S(M) \) is finite, then \(Z^s(M) \) is compact.

Example 4.21. The Prüfer group \(Z(p^\infty) \) is an atomic top^s-module over \(Z \). Since \(S(Z(p^\infty)) = \{Z(\frac{1}{p} + Q/Z)\} \) is finite, we conclude that \(Z^s(Z(p^\infty)) \) is compact.

Proposition 4.22. Let \(R^M \) be a top^s-module and assume that every second submodule of \(M \) is simple.

1. If \(R^M \) has the min-property, then \(\text{Spec}^s(M) \) is discrete.
2. \(M \) has a unique simple \(R \)-submodule if and only if \(R^M \) has the min-property and \(\text{Spec}^s(M) \) is connected.

Proof. 1. If \(R^M \) has the min-property, then for every \(K \in \text{Spec}^s(M) = S(M) \) we have \(\{K\} = \mathcal{X}({\{K\}_e}) \) an open set. Since every singleton set is open, \(\text{Spec}^s(M) \) is discrete.

2. (⇒) Assume that \(R^M \) has a unique simple \(R \)-submodule. Clearly, \(R^M \) has the min-property and \(\text{Spec}^s(M) \) is connected since it consists of only one point.

(⇐) Assume that \(R^M \) has the min-property and that \(\text{Spec}^s(M) \) is connected. By “1”, \(\text{Spec}^s(M) \) is discrete and so \(S(M) = \text{Spec}^s(M) \) has only one point since a discrete connected space cannot contain more than one-point.■

Theorem 4.23. Let \(R^M \) be an atomic top^s-module and assume that every second submodule of \(M \) is simple. If \(R^M \) has the min-property, then

1. \(\text{Spec}^s(M) \) is countably compact if and only if \(S(M) \) is countable.
2. \(\text{Spec}^s(M) \) is compact if and only if \(S(M) \) is finite.

As a direct consequence of Proposition 4.22 we obtain:

Theorem 4.24. Let \(R^M \) be atomic and assume that \(S(M) = \text{Spec}^s(M) \subseteq SH(M) \) so that \(M \) is a top^s-module. Then \(R^M \) is colocal if and only if \(\text{Spec}^s(M) \) is connected.
Lemma 4.25. Let $\text{Spec}^s(M) \subseteq \mathcal{SH}(M)$. If $n \geq 2$ and $\mathcal{A} = \{K_1, \ldots, K_n\} \subseteq \text{Spec}^s(M)$ is a connected subset, then for every $i \in \{1, \ldots, n\}$, there exists $j \in \{1, \ldots, n\}\{i\}$ such that $K_i \leq_R K_j$ or $K_j \leq_R K_i$.

Proposition 4.26. Let R^M be an atomic tops-module with the min-property and let $\emptyset \neq \mathcal{A} = \{K_\lambda\}_{\lambda} \subseteq \mathcal{S}(M)$. If $|\mathcal{S}(L)| < \infty$ for every $L \in \text{Spec}^s(M)$, then \mathcal{A} is locally finite.

Lemma 4.27. Let R^M be an atomic tops-module. Then the following are equivalent for any $L \leq_R M$:

1. $L \in \mathcal{S}(M)$;
2. L is a second submodule of M and $\mathcal{V}^s(L) = \{L\}$;
3. $\{L\}$ is closed in Z^s_M.

Proposition 4.28. If R^M is an atomic tops-module, then $\text{Spec}^s(M) = \mathcal{S}(M)$ if and only if $Z^c(M)$ is T_1 (Fréchet space).

Combining Propositions 4.22 and 4.28 we obtain

Theorem 4.29. Let R^M be an atomic tops-module with the min-property. The following are equivalent:

1. $\text{Spec}^s(M) = \mathcal{S}(M)$;
2. $Z^s(M)$ is discrete;
3. $Z^s(M)$ is T_2 (Hausdorff space);
4. $Z^s(M)$ is T_1 (Fréchet space).

5 Topc-modules

As before, R^M is a non-zero left R-module. In this section we topologize the spectrum of coprime submodules of R^M and investigate the properties of the induced topology. Several proofs in this section are similar to proofs of similar results in [Abu] and dual results in Section 4, whence omitted.

Notation. Recall that for every $L \leq_R M$ we define

$$\mathcal{V}^c(L) := \{K \in \text{Spec}^c(M) \mid L \subseteq K\} \text{ and } \mathcal{X}^c(L) := \{K \in \text{Spec}^c(M) \mid L \nsubseteq K\}.$$

Moreover, we set

$$\xi^c(M) := \{\mathcal{V}^c(L) \mid L \in \mathcal{L}(M)\}; \quad \xi^c_\mathcal{m}(M) := \{\mathcal{V}^c(L) \mid L \in \mathcal{L}_\mathcal{m}(M)\};$$
$$\tau^c(M) := \{\mathcal{X}^c(L) \mid L \in \mathcal{L}(M)\}; \quad \tau^c_\mathcal{m}(M) := \{\mathcal{X}^c(L) \mid L \in \mathcal{L}_\mathcal{m}(M)\};$$
$$Z^c(M) := (\text{Spec}^c(M), \tau^c(M)); \quad Z^c_\mathcal{m}(M) := (\text{Spec}^c(M), \tau^c_\mathcal{m}(M)).$$

Lemma 5.1. Consider the class of varieties $\xi^c(M)$.

1. $\mathcal{V}^c(M) = \emptyset$ and $\mathcal{V}^c(0) = \text{Spec}^c(M)$;

2. $\bigcap_{\lambda \in \Lambda} \mathcal{V}^c(L_\lambda) = \mathcal{V}^c(\sum_{\lambda \in \Lambda} L_\lambda)$ for any $\{L_\lambda\}_\Lambda \subseteq \mathcal{L}(M)$;

3. For any $I, \tilde{I} \in \mathcal{I}(R)$, we have

$$\mathcal{V}^c(IM) \cup \mathcal{V}^c(\tilde{I}M) = \mathcal{V}^c(IM \cap \tilde{I}M) = \mathcal{V}^c((I \cap \tilde{I})M) = \mathcal{V}^c(I\tilde{I}M).$$

Proof. Statements “1”, “2” and the inclusions

$$\mathcal{V}^c(IM) \cup \mathcal{V}^c(\tilde{I}M) \subseteq \mathcal{V}^c(IM \cap \tilde{I}M) \subseteq \mathcal{V}^c((I \cap \tilde{I})M) \subseteq \mathcal{V}^c(I\tilde{I}M) \quad (33)$$

in (3) are clear. Let $K \in \mathcal{V}^c(I\tilde{I}M)$ and suppose that $K \notin \mathcal{V}^c(\tilde{I}M)$. Then $M = \tilde{I}M + K$, whence $IM = I(\tilde{I}M + K) = I(\tilde{I}M) + IK = (I\tilde{I})M + IK \subseteq K$, i.e. $K \notin \mathcal{V}^c(IM))$.\[\square\]

In general, $\xi^c(M)$ is not closed under finite unions. This motivates

Definition 5.2. We call $R\!M$ a topc-module iff $\xi^c(M)$ is closed under finite unions, equivalently $\mathcal{Z}^c(M) := (\text{Spec}^c(M), \tau^c(M))$ is a topological space.

Remark 5.3. If $R\!M$ is coprimeless, i.e. $\text{Spec}^c(R\!M) = \emptyset$, then $R\!M$ is trivially a topc-module.

Example 5.4. (cf. [Ann2002] Remark 105) Let R have a unique prime ideal p. For any $R\!M$ we have

$$\text{Spec}^c(R\!M) = \begin{cases} pM, & pM \neq M \\ \emptyset, & pM = M \end{cases} \quad (34)$$

So, if $pM = M$, then M is a topc-module.

Example 5.5. ([Ann2002] Example 106) Let $R = \mathbb{Q}[x_1, x_2, \cdots]$, where $x_i^2 = 0$ for every $i \in \mathbb{N}$, be the commutative local ring with unique prime ideal $p = (x_1, x_2, \cdots)$. Let $E = \{e_1, e_2, \cdots\}$ be a countably infinite set, F the free R-module with basis E and M the R-module F modulo the relations $e_ix_i = e_{i-1}$ for each $i \geq 2$. Indeed $pM = M$, whence $\text{Spec}^c(M) = \emptyset$. So, M is a topc-module.

Example 5.6. ([Sm2-2]) Let R have a unique (completely) prime ideal m. If m is idempotent, then m is (c-coprimeless) coprimeless: Suppose that m contains a left subideal $J \nsubseteq m$ that is (completely) coprime in m. By Lemma 5.5, $p := (J :_R m)$ is a (completely) prime ideal, whence $p = m$ and consequently $m = m^2 = pm \subseteq J$, a contradiction. Consequently, m is (c-coprimeless) coprimeless. We conclude that if m is idempotent, then $R\!m$ is a topc-module.

Example 5.7. Let $R := \mathbb{F}[G]$, where \mathbb{F} is a field, $G = \mathbb{Z}(p^\infty)$ and $m = \sum_{g \in G} R(g - 1)$: Notice that $R/m \cong \mathbb{F}$ whence $m \in \text{Max}(R)$. For every $x \in G$, there exists $y \in G$ such that $x = y^p$. So $(x - 1) = (y - 1)^p \in p \subseteq m^2$. Therefore, $m = m^2$ and so m is the only prime ideal of R. Consequently, $R\!m$ is a topc-module.
5.8. We call $L \leq_R M$:

irreducible iff for any $L_1, L_2 \leq_R M$:

$$L_1 \cap L_2 = L \Rightarrow L_1 = L \text{ or } L_2 = L;$$

(35)

strongly irreducible iff for any $L_1, L_2 \leq_R M$:

$$L_1 \cap L_2 \subseteq L \Rightarrow L_1 \subseteq L \text{ or } L_2 \subseteq L.$$

(36)

completely irreducible, iff any collections $\{L_\lambda\}_\Lambda$ of R-submodules of RM we have:

$$\bigcap_{\lambda \in \Lambda} L_\lambda = L \Rightarrow L_\lambda = L \text{ for some } \lambda \in \Lambda;$$

(37)

Remark 5.9. Strongly irreducible ideals were introduced first by Bourbaki [Bou1998, p. 301, Exercise 34] and named quasi-prime ideals. Recently, they were investigated by Heinzer et al. [HRR2002] while the class of completely irreducible ideals was introduced by Fuchs et al. in [FHO2006]. The corresponding notions for submodules of modules over commutative rings were investigated in [E-A2005] and [A-TF2008], respectively.

Notation. We set

$$SI(M) := \{L \leq_R M \mid L \text{ is strongly irreducible}\}.$$

(38)

Examples 5.10.

1. If RM is uniserial, then every submodule of M is strongly irreducible.

2. $\text{Spec}^c(M) \subseteq SI(M)$ if and only if $\mathcal{V}^c(L_1) \cup \mathcal{V}^c(L_2) = \mathcal{V}^c(L_1 \cap L_2)$ (equivalently, $\mathcal{X}^c(L_1) \cap \mathcal{X}^c(L_2) = \mathcal{X}^c(L_1 \cap L_2)$) for all $L_1, L_2 \leq_R M$.

3. If $\text{Max}(M) \subseteq SI(M)$, then RM has the max-property.

As a direct consequence of Lemma 5.1 we obtain

Theorem 5.11.

1. $Z_m^c(M) := (\text{Spec}^c(M), \tau_m^c(M))$ is a topological space.

2. If $\text{Spec}^c(M) \subseteq SI(M)$, then RM is a topc module.

Recall that a left R-module N is said to be finitely cogenerated iff for any monomorphism $N \xrightarrow{f} \prod_{\lambda \in \Lambda} N_\lambda$, there exists a finite subset $\{\lambda_1, \cdots, \lambda_n\} \subseteq \Lambda$ such that

$$N \xrightarrow{f} \prod_{\lambda \in \Lambda} N_\lambda \xrightarrow{\pi} \bigoplus_{i=1}^n N_{\lambda_i}$$

is injective.

Proposition 5.12. Let RM be a multiplication module.

1. Every coprime submodule of M is strongly irreducible (i.e. $\text{Spec}^c(M) \subseteq SI(M)$).

2. If $L \in \text{Spec}^c(M)$ is such that M/L is finitely cogenerated, then L is completely irreducible.
3. RM is a topc module.

4. RM has the max-property.

Proof. 1. This follows directly from Lemma 5.1.

2. This follows directly from the definitions and “1”.

3. This follows directly from “1” and Theorem 5.11.

4. This follows directly from “1”, which yields $\text{Max}(M) \subseteq \text{Spec}^c(M) \subseteq \text{SI}(M)$. \blacksquare

The following example provides a topc-module which is not multiplication.

Example 5.13. ([Smi-2]) Consider the Abelian group $G := \bigoplus_{p \in \mathbb{P}} \mathbb{Z}/p\mathbb{Z}$. Let $K \subseteq_R G$ be coprime in G. Notice that $\mathfrak{p} := (K : G) \neq 0$ (otherwise, G/K would be a divisible \mathbb{Z}-module by Lemma 3.35, a contradiction). So, $\mathfrak{p} = q\mathbb{Z}$ for some $q \in \mathbb{P}$ and $K = \bigoplus_{p \in \mathbb{P}\setminus\{q\}} \mathbb{Z}/p\mathbb{Z}$. On the other hand, for every $q \in \mathbb{P}$, the \mathbb{Z}-submodule $K := qG$ is coprime in G.

Consequently, $\text{Spec}^c(G) = \{qG \mid q \in \mathbb{P}\}$ and $\text{Rad}^c(G) = \bigcap_{q \in \mathbb{P}} qG = 0$.

Since G is semisimple, every subgroup $L \leq \mathbb{Z} G$ is of the form $L = \sum_{p \in \Lambda} \mathbb{Z}/p\mathbb{Z}$ for some $\Lambda \subseteq \mathbb{P}$. Let $qG \in \text{Spec}^c(G)$ be arbitrary and suppose there are subsets $\Lambda, \tilde{\Lambda} \subseteq \mathbb{P}$ such that $\left(\sum_{p \in \Lambda} \mathbb{Z}/p\mathbb{Z}\right) \cap \left(\sum_{p \in \tilde{\Lambda}} \mathbb{Z}/p\mathbb{Z}\right) \subseteq qG$. Then indeed $q \in \Lambda \cup \tilde{\Lambda}$ and it follows that $\sum_{p \in \Lambda} \mathbb{Z}/p\mathbb{Z} \subseteq qG$ or $\sum_{p \in \tilde{\Lambda}} \mathbb{Z}/p\mathbb{Z} \subseteq qG$. We conclude that every coprime subgroup of G is strongly irreducible, i.e. $\text{Spec}^c(\mathbb{Z} G) \subseteq \text{SI}(\mathbb{Z} G)$, whence $\mathbb{Z} G$ is a topc-module by Theorem 5.11. Notice that $\mathbb{Z} G$ is not a multiplication module: Let $\Lambda \subseteq \mathbb{P}$ be a finite subset and $N := \bigoplus_{p \in \Lambda} \mathbb{Z}/p\mathbb{Z}$. Then $(N :_{\mathbb{Z}} G) = \bigcap_{p \in \mathbb{P}\setminus\Lambda} p\mathbb{Z} = 0$, whence $N \neq (N :_{\mathbb{Z}} G)G$ and $\mathbb{Z} G$ is not a multiplication module.

Lemma 5.14. Let RM be a topc-module. The closure of any $A \subseteq \text{Spec}^c(M)$ is

$$\overline{A} = \mathcal{V}_c(\mathcal{J}(A)).$$ (39)

Remarks 5.15. Let RM be a topc-module and consider the Zariski topology

$$\mathcal{Z}_c(M) := (\text{Spec}^c(M), \tau^c(M)).$$ (40)

1. $\mathcal{Z}_c(M)$ is a T_0 (Kolmogorov) space.

2. Set $\mathcal{X}_m := \mathcal{X}_c(Rm)$ for each $m \in M$. The set

$$\mathcal{B} := \{\mathcal{X}_m \mid m \in M\}$$

is a basis of open sets for the Zariski topology $\mathcal{Z}_c(M)$.
3. If $L \in \text{Spec}^c(M)$, then $\overline{\{L\}} = V^c(L)$. In particular, for any $K \in \text{Spec}^c(M)$:

$$K \in \overline{\{L\}} \iff L \subseteq K.$$

4. $X^c(L) = \emptyset \Rightarrow L \subseteq \text{Rad}(M)$. The converse holds if, for example, $\text{Max}(M) = \text{Spec}^c(M)$.

5. Let R_M be coatomic. For every $L \leq_R M$ we have $V^c(L) = \emptyset$ if and only if $L = M$.

6. Let $L \leq_R M$. The mapping

$$\pi : \text{Spec}^c(M) \to \text{Spec}^c(M/L), \ N \mapsto (N + L)/L$$

induces a continuous mapping

$$\pi : \mathbb{Z}^c(M) \longrightarrow \mathbb{Z}^c(M/L).$$ (41)

This follows from the fact that $\pi^{-1}(V^c(N/L)) = V^c(N)$ for every $L \leq_R N \leq_R M$.

Notation. Set

$$\text{CL}(\mathbb{Z}^c(M)) := \{A \subseteq \text{Spec}^c(M) \mid A = \overline{A}\} \text{ and } \mathcal{R}^c(M) := \{L \leq_R M \mid \text{Rad}^c_M(L) = L\}.$$

Theorem 5.16. Let R_M be a top-\mathfrak{p}-module.

1. We have an order-reversing bijection

$$\mathcal{R}^c(M) \leftrightarrow \text{CL}(\mathbb{Z}^c(M)), \ L \mapsto V^c(L).$$ (42)

2. $\mathbb{Z}^c(M)$ is Noetherian if and only if R_M satisfies the ACC condition on $\mathcal{R}^c(M)$.

3. $\mathbb{Z}^c(M)$ is Artinian if and only if R_M satisfies the DCC condition on $\mathcal{R}^c(M)$.

Theorem 5.17. Let R_M be a top-\mathfrak{p}-module. If R_M is Noetherian (Artinian), then $\mathbb{Z}^c(M)$ is Noetherian (Artinian).

5.18. Recall that R_M is said to be **distributive** iff

$$L \cap (K_1 + K_2) = (L \cap K_1) + (L \cap K_2) \text{ (equivalently, } (L + K_1) \cap (L + K_2) = L + (K_1 \cap K_2))$$ (43)

for all submodules of M. We call R_M **completely distributive** iff for all $L, K_\lambda \in \mathcal{L}(M)$:

$$\bigcap_{\lambda \in \Lambda} (L + K_\lambda) = L + \bigcap_{\lambda \in \Lambda} K_\lambda.$$

Proposition 5.19. Let R_M be a completely distributive top-\mathfrak{p}-module and $A \subseteq \text{Spec}^c(M)$.

1. If A is irreducible, then $J(A)$ is a coprime submodule of M.

2. If $\text{Spec}^c(M) \subseteq \mathcal{S}^c(M)$, then the following are equivalent:
(a) $\mathcal{A} \subseteq \text{Spec}^c(M)$ is irreducible;
(b) $\mathcal{J}(\mathcal{A})$ is a coprime submodule of M;
(c) $\mathcal{J}(\mathcal{A}) \subseteq_R M$ is strongly irreducible.

Proof. Let $R^c M$ be a topc-module and $\mathcal{A} \subseteq \text{Spec}^c(M)$.

1. Assume that \mathcal{A} is irreducible. By definition, $\mathcal{A} \neq \emptyset$ and so $\mathcal{J}(\mathcal{A}) \subseteq_R M$. Let $I \in \mathcal{I}(R)$ and suppose that $IM \not\subseteq \mathcal{J}(\mathcal{A})$ and $IM + \mathcal{J}(\mathcal{A}) \neq M$. Let $\mathcal{A}_1 := \{ K \in \mathcal{A} | IM \subseteq K \}$ and $\mathcal{A}_2 := \{ K \in \mathcal{A} \mid IM + K = M \}$. Notice that $\mathcal{A} \subseteq V^c(\mathcal{J}(\mathcal{A}_1)) \cup V^c(\mathcal{J}(\mathcal{A}_2))$. However, $\mathcal{A} \not\subseteq V^c(\mathcal{J}(\mathcal{A}_1))$ (otherwise, $IM \subseteq \mathcal{J}(\mathcal{A}_1) = \mathcal{J}(\mathcal{A})$) and $\mathcal{A} \not\subseteq V^c(\mathcal{J}(\mathcal{A}_2))$ (otherwise, $IM + \mathcal{J}(\mathcal{A}) = IM + \mathcal{J}(\mathcal{A}_2) = IM + \bigcap_{K \in \mathcal{A}_2} K = \bigcap_{K \in \mathcal{A}_2} (IM + K) = M$).

This is a contradiction, whence $IM \subseteq \mathcal{J}(\mathcal{A})$ or $IM + \mathcal{J}(\mathcal{A}) = M$. Consequently, $\mathcal{J}(\mathcal{A})$ is a coprime submodule of M.

2. (a) \Rightarrow (b) follows by “1”.
 (b) \Rightarrow (c) is obvious.
 (c) \Rightarrow (a) Since $\mathcal{J}(\mathcal{A})$ is a proper submodule of M, we conclude that $\mathcal{A} \neq \emptyset$. Suppose that $\mathcal{A} \subseteq V^c(L_1) \cup V^c(L_2) \subseteq V^c(L_1 \cap L_2)$ for some $L_1, L_2 \leq_R M$, so that $L_2 \cap L_2 \subseteq \mathcal{J}(\mathcal{A})$. Since $\mathcal{J}(\mathcal{A}) \subseteq_R M$ is strongly irreducible, $L_1 \subseteq \mathcal{J}(\mathcal{A})$ so that $\mathcal{A} \subseteq V^c(L_1)$ or $L_2 \subseteq \mathcal{J}(\mathcal{A})$ so that $\mathcal{A} \subseteq V^c(L_2)$. We conclude that \mathcal{A} is irreducible.

Theorem 5.20. Let $R^c M$ be a completely distributive topc-module.

1. If $\text{Spec}^c(M)$ is irreducible, then $\text{Rad}^c_M(M)$ is a coprime submodule of M.
2. If $\text{Max}(M) \subseteq \text{Spec}^c(M)$ is irreducible, then $\text{Rad}^c_M(M)$ is a coprime submodule of M.
3. Let $\text{Spec}^c(M) \subseteq SI(M)$.

 (a) The following are equivalent:
 i. $\text{Spec}^c(M)$ is irreducible;
 ii. $\text{Rad}^c_M(M)$ is a coprime submodule of M;
 iii. $\text{Rad}^c_M(M) \leq_R M$ is strongly irreducible.

 (b) The following are equivalent:
 i. $\text{Max}(M) \subseteq \text{Spec}^c(M)$ is irreducible;
 ii. $\text{Rad}(M)$ is a coprime submodule of M;
 iii. $\text{Rad}(M) \leq_R M$ is strongly irreducible.

Example 5.21. Let $R^c M$ be a topc-module. If $\emptyset \neq \mathcal{A} \subseteq \text{Spec}^c(M)$ is a chain, then \mathcal{A} is irreducible. In particular, if $R^c M$ is uniserial, then $\text{Spec}^c(M)$ is irreducible.

Notation. We denote by $\text{Min}(\text{Spec}^c(M))$ the minimal elements of $\text{Spec}^c(M)$.
Proposition 5.22. Let RM be completely distributive and $\text{Spec}^c(M) \subseteq SI(M)$ (whence RM is a top-ℓ-module).

1. The bijection $(\ref{5.24})$ restricts to a bijection

$$\text{Spec}^c(M) \leftrightarrow \{A \mid A \subseteq \text{Spec}^c(M) \text{ is an irreducible closed subset}\}.$$

2. The bijection $(\ref{5.24})$ restricts to a bijection

$$\text{Min}(\text{Spec}^c(M)) \leftrightarrow \{A \mid A \subseteq \text{Spec}^c(M) \text{ is an irreducible component}\}.$$

Proof. Recall the bijection $R^c(M) \xrightarrow{V_c(-)} \text{CL}(Z^c(M)).$

1. Let $K \in \text{Spec}^c(M).$ Then $K = J(V_c(K))$ and it follows that the closed set $V_c(K)$ is irreducible by Proposition 5.20. On the other hand, let $\mathcal{A} \subseteq \text{Spec}^c(M)$ be a closed irreducible subset. Then $\mathcal{A} = V_c(L)$ for some $L \leq_R M.$ Notice that $J(\mathcal{A})$ is coprime in M by Proposition 5.20 and that $\mathcal{A} = \overline{A} = V_c(J(\mathcal{A})).$

2. Let K be minimal in $\text{Spec}^c(M).$ Then $V_c(K)$ is an irreducible subset of $\text{Spec}^c(M)$ by “1”. By [Bon1998], $V_c(K)$ is contained in some irreducible component \mathcal{Y} of $\text{Spec}^c(M).$ Since \mathcal{Y} is closed, there exists by “1” some $L \in \text{Spec}^c(M)$ such that $\mathcal{Y} = V_c(L).$ If $V_c(K) \not\subseteq V_c(L),$ then $L \not\subseteq K,$ a contradiction. Consequently, $V_c(K) = V_c(L)$ is an irreducible component of $L.$

On the other hand, let \mathcal{Y} be an irreducible component of $\text{Spec}^c(M).$ Then \mathcal{Y} is closed and irreducible, i.e. $\mathcal{Y} = V_c(L)$ for some $L \in \text{Spec}^c(M)$ by “1”. Suppose that L is not minimal in $\text{Spec}^c(M),$ so that there exists $K \in \text{Spec}^c(M)$ such that $K \subseteq L.$ It follows that $V_c(L) \subseteq V_c(K),$ a contradiction since $V_c(K) \subseteq \text{Spec}^c(M)$ is irreducible by “1”. We conclude that L is minimal in $\text{Spec}^c(M).$

Corollary 5.23. If RM is completely distributive and $\text{Spec}^c(M) \subseteq SI(M),$ then $\text{Spec}^c(M)$ is a Sober space.

Theorem 5.24. Let RM be a coatomic top-ℓ-module. Then RM is hollow if and only if $\text{Spec}^c(M)$ is ultracompact.

Example 5.25. Let RM be a coatomic multiplication module. Then $\text{Spec}^c(M)$ is ultracompacted if and only if RM is local. Indeed, if $\text{Spec}^c(M) = \text{Max}(M)$ is ultracompacted, then $|\text{Max}(M)| = 1 :$ If $m_1, m_2 \in \text{Max}(M)$ are distinct, then $V(m_1) \cap V(m_2) = \emptyset.$ Since RM is coatomic, we conclude that RM is local. On the other hand, if RM is local, then indeed RM is hollow whence $\text{Spec}^c(M)$ is ultracompacted by Theorem 5.24.

Theorem 5.26. Let RM be a coatomic top-ℓ-module.

1. If $\text{Max}(M)$ is countable, then $\text{Spec}^c(M)$ is countably compact.

2. If $\text{Max}(M)$ is finite, then $\text{Spec}^c(M)$ is compact.
Example 5.27. Let $M = \mathbb{Z}_{p^\infty}$ and recall that
\[
\text{Spec}^c(\mathbb{Z}_{p^\infty}) = \{ \mathbb{Z}(\frac{1}{p^n} + \mathbb{Z}) \mid n \in \mathbb{N} \}.
\]
Notice that $\text{Max}(M) = \emptyset$ (in particular finite) but $\text{Spec}^c(\mathbb{Z}_{p^\infty})$ is not compact since the open cover
\[
\{ X^c(\mathbb{Z}(\frac{1}{p^n} + \mathbb{Z})) \mid n \in \mathbb{N} \}
\]
has no finite subcover. Recall that \mathbb{Z}_{p^∞} is not coatomic as a \mathbb{Z}-module. This shows that the assumption that $R M$ be a coatomic in Theorem 5.26 “2” cannot be removed.

Proposition 5.28. Let $R M$ be a topc-module and assume that every coprime submodule of M is maximal.

1. If $R M$ has the complete max-property, then $\text{Spec}^c(M)$ is discrete.

2. M has a unique maximal R-submodule if and only if $R M$ has the complete max-property and $\text{Spec}^c(M)$ is connected.

Theorem 5.29. Let $R M$ be a coatomic topc-module and assume that every coprime submodule of M is maximal. If $R M$ has the complete max-property, then

1. $\text{Spec}^c(M)$ is countably compact if and only if $\text{Max}(M)$ is countable.

2. $\text{Spec}^c(M)$ is compact if and only if $\text{Max}(M)$ is finite.

As a direct consequence of Proposition 5.28 we obtain:

Theorem 5.30. Let $R M$ be a coatomic topc-module with the complete max-property and assume that every coprime submodule of M is maximal. Then $R M$ is local if and only if $\text{Spec}^c(M)$ is connected.

Lemma 5.31. Let $\text{Spec}^c(M) \subseteq \mathcal{SI}(M)$. If $n \geq 2$ and $A = \{ K_1, \ldots, K_n \} \subseteq \text{Spec}^c(M)$ is a connected subset, then for every $i \in \{ 1, \ldots, n \}$, there exists $j \in \{ 1, \ldots, n \} \setminus \{ i \}$ such that $K_i \leq_R K_j$ or $K_j \leq_R K_i$.

Proposition 5.32. Let $R M$ be a coatomic topc-module with the complete max-property and let $\emptyset \neq A = \{ K_\lambda \}_\Lambda \subseteq \text{Max}(M)$. If $|\mathcal{M}(L)| < \infty$ for every $L \in \text{Spec}^c(M)$, then A is locally finite.

Proposition 5.33. If $R M$ be a coatomic topc-module, then the following are equivalent for any $L \leq_R M$:

1. $L \in \text{Max}(M)$;

2. L is a coprime submodule of M and $\mathcal{V}^c(L) = \{ L \}$;

3. $\{ L \}$ is closed in \mathcal{Z}_M^c.
Proposition 5.34. Let $R^c M$ be a coatomic topc-module. Then $\text{Spec}^c(M) = \text{Max}(M)$ if and only if $\mathcal{Z}^c(M)$ is T_1 (Fréchet space).

Combining the previous results we obtain

Theorem 5.35. Let $R^c M$ be a coatomic topc-module with the complete max-property. The following are equivalent:

1. $\text{Spec}^c(M) = \mathcal{S}(M)$;
2. $\mathcal{Z}^c(M)$ is discrete;
3. $\mathcal{Z}^c(M)$ is T_2 (Hausdorff space);
4. $\mathcal{Z}^c(M)$ is T_1 (Fréchet space).

Acknowledgement: Several results in Section 3 resulted from discussions with Professor Patrick F. Smith during the visit of the author to the University of Glasgow (September 2008). The author thanks Prof. Smith for these fruitful discussions and for providing him with several examples on coprime (coprimeless) modules. He also thanks the University of Glasgow for the hospitality and the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for the financial support.

References

[Abu] J. Y. Abuhlail, *A Zariski topology for modules*, Comm. Algebra, accepted (arXiv: math.RA 1007.3149).

[AJK] J. Y. Abuhlail, M. Jarrar and S. Kabbaj, *Commutative rings in which every finitely generated ideal is a star-module*, preprint (arxiv: math.AC 0810.0359).

[Abu2006] J. Y. Abuhlail, *Fully coprime comodules and fully coprime corings*, Appl. Categ. Structures 14 (5-6) (2006), 379–409.

[Abu2008] J. Y. Abuhlail, *A Zariski topology for bicomodules and corings*, Appl. Categ. Structures 16 (1-2) (2008), 13–28.

[Abu2011] J. Y. Abuhlail, *A dual Zariski topology for modules*, Topology Appl. 158 (2011) 457–467.

[A-ES1988] Z. Abd El-Bast and P. F. Smith, *Multiplicative Modules*, Commun. Algebra 16 (4), 755-779 (1988).

[AF1974] F. W. Anderson and K. Fuller, *Rings and Categories of Modules*, Springer-Verlag (1974).
Author1	Author2	Title	Source
L. Fuchs		Über die Ideale arithmetischer Ringe	Math. Helv. 23 (1949), 334–341.
C. Güngöröglu		Coatomic modules	Far East J. Math. Sci., Special Volume, Part II (1998), 153–162.
Y. Hirano		Some studies on strongly π-regular rings	Math. J. Okayama Univ. 20 (1978), 141–149.
Y. Hirano and I. Mogami		Modules whose proper submodules are non-Hopf kernels	Commun. Algebra 15 (8) (1989), 1549–1567.
W. Heinzer, L. Ratliff and D. Rush		Strongly irreducible ideals of a commutative ring	J. Pure Appl. Algebra 166 (3) (2002), 267–275.
V. A. Hiremath and Poonam M. Shanbhag		Atomic modules	Int. J. Algebra, 4 (2) (2010), 61–69.
C. Jensen		Arithmetical rings	Acta Math. Hung. 17 (1966), 115–123.
R. Johnson		Representations of prime rings	Trans. Amer. Math. Soc. 74 (1953), 351–357.
A. Kazemifard, A.R. Naghipour and F. Rahamati		Coprime submodules	unpublished manuscript.
Ch. Lomp		Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions	J. Algebra Appl. 4 (1) (2005), 77–97.
Chin-Pi Lu		Prime submodules of modules	Comment. Math. Univ. St. Paul. 33(1) (1984), 61–69.
C-P. Lu		Spectra of modules	Comm. Algebra 23(10) (1995), 3741–3752.
C-P. Lu		Unions of prime submodules	Houston J. Math. 23(2) (1997), 203–213.
C-P. Lu		The Zariski topology on the prime spectrum of a module	Houston J. Math. 25(3) (1999), 417–432.
H. Marubayashi		Modules over bounded Dedekind prime rings	Osaka J. Math. 9 (1972), 95–110.
R. McCasland		Some Commutative Ring Results Generalized to Unitary Modules	Ph.D. thesis, University of Texas at Arlington (1984).
R. McCasland, M. Moore and P. Smith		On the spectrum of a module over a commutative ring	Comm. Algebra 25 (1997), 79–103.
Reference	Author(s)	Title and Details	
-------------	-----------	--------------------	
[MMS1998]	R. McCasland, M. Moore and P. Smith	An introduction to Zariski spaces over Zariski topologies, Rocky Mountain J. Math. 28 (4) (1998), 1357–1369.	
[MR1987]	J. C. McConnell and J. C. Robson	Noncommutative Noetherian rings, Wiley Interscience, New York (1987).	
[NT2001]	R. Nekooei and L. Torkzadeh	Topology on coalgebras, Bull. Iran. Math. Soc. 27 (2) (2001), 45–63.	
[NY2003]	W. K. Nicholson and M. F. Yousif	Quasi-Frobenius Rings, Cambridge University Press, 2003.	
[OHS2006]	A. Özcan, A. Harmanci and P. F. Smith	Duo modules, Glasgow Math. J. 48 (2006), 33—545.	
[PC1995]	Y. S. Park and C. W. Choi	Multiplication modules and characteristic submodules, Bull. Korean Math. Soc. 32 (2) (1995), 321–327.	
[Row2006]	L. H. Rowen	Graduate Algebra: Commutative View, Graduate Studies in Mathematics 73, AMS, Providence, RI (2006).	
[Row2008]	L. H. Rowen	Graduate Algebra: Noncommutative View, Graduate Studies in Mathematics 91, AMS, Providence, RI (2008).	
[RRRF-AS2002]	F. Raggi, J. Rios, H. Rincón and R. Fernández-Alonso C. Signoret	The lattice structure of preradicals. II, Partitions, J. Algebra Appl. 1 (2) (2002), 201–214.	
[RRW2005]	F. Raggi, J. Rios Montes and R. Wisbauer	Coprime preradicals and modules, J. Pur. App. Alg. 200 (2005), 51–69.	
[Smi1994]	P. Smith	Multiplication modules and projective modules, Period. Math. Hungar. 29 (2) (1994), 163–168.	
[Smi-1]	P. F. Smith	Modules with coindependent maximal submodules, to appear in J. Alg. Appl.	
[Smi-2]	P. F. Smith	Personal correspondence.	
[Tug2002]	A.A. Tuganbaev	Rings Close to Regular, Kluwer Academic Publishers (2002).	
[Tug2003]	A. A. Tuganbaev	Multiplication modules over noncommutative rings, Sb. Math. 194 (11-12) (2003), 1837–1864.	
[Tug2004]	A. A. Tuganbaev	Multiplication modules, J. Math. Sci. (N.Y.) 123 (2) (2004), 3839-3905.	
[Var1979]	K. Varadarajan	Dual Goldie dimension, Commun. Alg. 7 (6) (1979), 565 - 610.	
[Wij2006] I. Wijayanti, *Coprime Modules and Comodules*, Ph.D. Dissertation, Heinrich-Heine Universität, Düsseldorf (2006).

[Wis1991] R. Wisbauer, *Foundations of Module and Ring Theory. A Handbook for Study and Research*. Gordon and Breach Science Publishers (1991).

[Wis1996] R. Wisbauer, *Modules and Algebras : Bimodule Structure and Group Action on Algebras*, Addison Wesely Longman Limited (1996).

[WW2009] I. Wijayanti and R. Wisbauer, *Coprime modules and comodules*, Comm. Algebra 37 (4) (2009), 1308–1333.

[Yas2001] S. Yassemi, *The dual notion of prime submodules*, Arch. Math. (Brno) 37 (2001), 273–278.

[Zha1999] G. Zhang, *Spectra of modules over any ring*, Math. Biq. J. Nanjing Univ. 16 (1) (1999), 42–52.

[Zha2006] G. Zhang, *Multiplication modules over any rings*, Nanjing Daxue Xuebao Shuxue Bannian Kan 23 (1) (2006), 59–69.

[Zos1980] H. Zöschinger, *Koatomare Moduln*, Math. Z. 170 (1980), 221–232.