Design of Shrewd Underwater Routing Synergy using Porous Energy Shells

CURRENT STATUS: POSTED

Shahzad Ashraf
Hohai University - Changzhou Campus
nfc.iet@hotmail.comCorresponding Author
ORCiD: https://orcid.org/0000-0002-7637-7870

Tauqeer Ahmed
Hohai University - Changzhou Campus

Asif Raza
Shanghai Jiao Tong University

Hamad Naeem
Neijiang Normal University

DOI:
10.21203/rs.2.24214/v1

SUBJECT AREAS
Systems and Networking

KEYWORDS
Underwater wireless sensor networks, Shaky links, Ramshackle, Resurrect link factor, end-to-end delay, Network performance
Abstract
Underwater sensors link establishment and quality inspection challenges are blurt out during ubiquitous data monitoring. The energy utilization has a direct impact because all active devices are battery dependents and no charging or replacement actions could be made when cost- effective data packet delivery has been set as a benchmark. The hop link inspection and the selection of a Shrewd link through resurrecting link factor was a nothing short of bleak challenge which could only be made possible after going through meticulous research by developing a shrewd underwater routing synergy using extra porous energy shells (SURS-PES) which might never have conducted of before. After broadcasting packets the sensor node conducts a link inspection phase thereby, if any link is found to be less than or equal to 50% shaky; the destination receiving node puts in own residual energy status and return back to the source node which in result adds some unusable energy porous shell to strengthen the link from 50 to 90% at most and send it only to the targeted node and an unaltered data packet delivery is anticipated. Performance evaluation has been carried out using NS2 simulator and obtained results have been compared with DBR and EEDBR to observe the distinguish outcomes thereon results in vouches for the statement that has been made earlier for this research direction.

Full Text
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed.

However, the manuscript can be downloaded and accessed as a PDF.

Tables

Table 1 Types of link and threshold value
Metric type
Shrewd link
Pristine link
Fair link
Uncouth link
Parameter

Deployment area
Distance among sensor couplet
No. of nodes
Communication range
Type of protocol
Start energy
Medium
Bandwidth capacity
Packet generation rate
Velocity
Node movement
Energy consumption
Data packet volume
Data packet interval (Hello)
Packet creation time
No. of runs

Figures
Figure 1

Proposed (SURS-PES) methodology flow chart
Figure 2

Modular topology
Figure 3
Relay node selection process
Figure 4

Link Grain determination
Figure 5

Point to point impediment observations
Figure 6

Packet delivery rate
Figure 7

Network Lifespans
Figure 8

Energy Diminution analysis