Mechanism of 1,25(OH)2D3 in the Treatment of Acute Lung Injury Based on UHPLC/Q-TOF MS-Based Metabolomics and Network Pharmacology

Xuan Shi
Tongji University Affiliated Shanghai Pulmonary Hospital

Yuanli Chen
Tongji University Affiliated Shanghai Pulmonary Hospital

Yiguo Zhang
Wannan Medical College

Xiaohong Jin
Nanchang University Second Affiliated Hospital

Huanping Zhou
Tongji University Affiliated Shanghai Pulmonary Hospital

Juan Wei
Tongji University Affiliated Shanghai Pulmonary Hospital

Di Feng
Tongji University Affiliated Shanghai Pulmonary Hospital

Qingqing Zhang
Tongji University Affiliated Shanghai Pulmonary Hospital

Yang Gu
Tongji University Affiliated Shanghai Pulmonary Hospital

Pengcheng Zhang
Tongji University Affiliated Shanghai Pulmonary Hospital

Xin Lv (✉ xinlv@126.com)
Tongji University Affiliated Shanghai Pulmonary Hospital

Research

Keywords: 1,25(OH)2D3, acute lung injury, acute respiratory distress syndrome, metabolomics, network pharmacological analysis

DOI: https://doi.org/10.21203/rs.3.rs-39205/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Sepsis-induced acute lung injury (ALI), a high morbidity and mortality disease, still has no effective therapies. 1,25(OH)\(_2\)D\(_3\) is one of the indispensable nutrients in our body. The regulation mechanism of 1,25(OH)\(_2\)D\(_3\) in inflammation has been recognized gradually. Network pharmacology was used wildly to broaden the understanding of diseases and advance drug discovery. In this study, we used network pharmacology and metabolomics to generate the potential mechanism of 1,25(OH)\(_2\)D\(_3\) on acute lung injury.

Methods: We used metabolomics and network pharmacology to elucidate the therapeutic mechanism of 1,25(OH)\(_2\)D\(_3\) on acute lung injury. Serum samples, collected from mice with LPS-induced acute lung injury, were detected by UHPLC/Q-TOF MS to evaluate the differential metabolites from multiple metabolic pathways. Meanwhile, the H&E staining, ELISA and QPCR were used to estimate the efficacy of 1,25(OH)\(_2\)D\(_3\) on acute lung injury.

Results: The results of animal experiments showed that 1,25(OH)\(_2\)D\(_3\) could mitigate severe pulmonary edema and inflammatory infiltration caused by LPS, and the treatment of 1,25(OH)\(_2\)D\(_3\) reduced the levels of inflammatory cytokines, interacted 25 related proteins and TNF signaling pathway, Toll-like receptor signaling pathway, PI3K-Akt signaling pathway.

Conclusions: The integrated methods coupled with UHPLC/Q-TOF MS and network pharmacology provided a new way to study the potential mechanism of 1,25(OH)\(_2\)D\(_3\) on acute lung injury, which may provide a possible solution for patients with clinical acute lung injury.

1. Background:

Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are two kinds of severe respiratory disorders clinically, which caused by many conditions, such as sepsis, severe trauma with shock, pancreatitis or inhalation of poisonous gases\(^1\). With a mortality over 40%, ALI and ARDS remain a leading cause of morbidity and mortality\(^2, 3\). ALI is characterized with the disruption of the alveolar endothelial and epithelial barrier\(^4, 5\), which in turn leads to pulmonary alveolar and interstitial edema, impaired gas exchange and hypoxemia\(^6\). Although many efforts have been made, the mechanism of ALI is still unclear and there are no effective pharmacotherapies available that can improve survival of patients with ALI/ARDS. Therefore, an effective treatment of ALI must consider all these factors and the molecular networks behind them.

1,25-dihydroxyvitamin D (1,25(OH)\(_2\)D\(_3\)) is a fat-soluble steroid hormone which regulates the calcium-phosphorus homeostasis. Growing evidences from epidemiological and basic researches reveal that 1,25(OH)\(_2\)D\(_3\) can modulate immune responses and many acute and chronic disorders\(^7\). 1,25(OH)\(_2\)D\(_3\), the active form of vitamin D binds to vitamin D receptor (VDR) and retinoid X receptor (RXR) and the trimeric complex translocates into the nucleus, regulating the expression of more than 900 genes\(^8, 9\), regulating cell proliferation, differentiation and survival\(^10, 11\). Recent studies have shown that 1,25(OH)\(_2\)D\(_3\) plays an important role in anti-infection and anti-inflammation\(^12\). In children and adults with asthma and chronic obstructive pulmonary disease, the levels of serum 25-hydroxyvitamin D are associated with impaired lung function, airway hyperresponsiveness and increased exacerbation frequency\(^13\text{–}15\). Besides, 1,25(OH)\(_2\)D\(_3\) deficiency has been found to be associated with lung injury, high-dose preoperative treatment with cholecalciferol reduced changes in postoperative pulmonary vascular permeability index effectively\(^16\). Despite the evidence linking 1,25(OH)\(_2\)D\(_3\) to lung diseases, there is little information concerning 1,25(OH)\(_2\)D\(_3\) and ALI and the potential targets are still unclear.

Because of the complex mechanisms of ALI, the traditional reductionist ‘one drug, one target’ cannot investigate all the mechanisms. With the rapid development of bioinformatics, metabolomics and network pharmacology have become effective methods to detect the molecular and pharmacological mechanisms of diseases and drugs, focusing on the multiple targets\(^17\). Network pharmacology can reveal the action mechanisms of the drug through the combination of computational biology, systems biology and “omics” related to target drugs\(^18\). Metabolomics, a new omics technique developed after
genomics, transcriptomics, and proteomics, has developed rapidly. It focuses on the holistic investigation of multi-parametric metabolite responses of living systems and can be used to find new biomarkers, gain a better understanding of metabolic pathways[19]. What's more, metabolomics combined with network pharmacology can be used to construct a network, containing drug-targets-pathways-disease, to detect the potential therapeutic mechanisms of drugs.

In this study, we sought to determine the potential therapeutic mechanisms of 1,25(OH)\(_2\)D\(_3\) on acute lung injury by metabolomics combining with network pharmacology. First, we identified the differential metabolites among mice in different groups and predicted the potential targets of these metabolites. Then we detected the GEO database for microarray data related to ALI. Since VDR is the receptor of 1,25(OH)\(_2\)D\(_3\), we also detected the potential proteins related to VDR and examined the overlapping targets shared by above three target lists. Our work highlights the mechanisms of 1,25(OH)\(_2\)D\(_3\) treating ALI and facilitate the development of novel drugs.

2. Methods:

2.1 Animal Models and Sample Collection

24 Balb/C mice (22–24 g) were purchased from Cavens Animal Corp (Changzhou, Jiangsu, China), and housed in specific pathogen-free conditions (24–26°C, 50 ± 5% humidity) with a 12 h light/dark cycle. Animals had free access to standard diet and water. All animals were randomly divided into three groups: the control group (n = 8), LPS group (n = 8) and LPS + VD group (n = 8). The LPS group was established by injecting lipopolysaccharide (LPS, Sigma-Aldrich, St. Louis, MO, USA) into peritoneal cavity (10 mg/kg). The LPS + VD group was established by treating calcitriol (2ug/kg) at 48, 24 and 1 h before LPS injection[20]. 24 h after LPS injection, all animals were euthanized and the lung tissues were collected for further analysis. All studies were reviewed and approved by the Animal Experiment Administration Committee of the Shanghai Pulmonary Hospital (Shanghai, China).

2.2 Hematoxylin and Eosin (H&E) Staining

Lung tissues were fixed with 4% paraformaldehyde for 24 hours, embedded in paraffin, stained with hematoxylin-eosin (H&E) using the standard protocol. Then, images were captured with a digital camera (Nikon, Tokyo, Japan) by pathologists blinded to the groups.

2.3 RNA Extraction and Real-Time Quantitative PCR

Total RNA from the lung tissues were isolated by TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions and reverse-transcribed into cDNA at 37°C for 15 minutes using a commercial kit from Takara according to the standard protocol. The expression levels of target genes were detected by the SYBR Premix Ex Taq™ II (RR820A, Takara, Japan) with an ABI 7500 PCR system (Life Technologies, USA). Primers for RT-qPCR analysis synthesized by Shanghai Sangon Biotech Co., Ltd (Shanghai, China) and listed in Supplementary Table 1. Expression levels were calculated using the 2\(^{-\Delta\Delta Ct}\) method and normalized with the level of β-actin gene in the same sample.

2.4 ELISA Analysis

The quantification of sera cytokines (IL-1β, IL-6 and TNF-α) were assessed with Mouse ELISA MAX™ Standard Sets (BioLegend, San Diego, CA) according to the manufacturer's instructions using serum samples.

2.5 Metabolomic Analysis

Serum samples were collected at room temperature, ice-cold methanol containing 25ug/ml 2-chloro-L-phenylalanine was added to 100 ul serum, prepared as the internal standard to precipitate the protein and extract the metabolites. After vortexing for 1 min, the serum samples were mixed with the internal standard for 5 minutes, tranquilized for 10 minutes and centrifuged at 13000 rpm, 4°C for 15 minutes. The supernatant was transferred into a new vial. The QC sample was prepared from all samples collected in this study for monitoring the data acquisition performance during analysis.
UHPLC-Q-TOF/MS analysis was performed using an Agilent 1290 Infinity LC system equipped with an Agilent 6538 Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) mass spectrometer (Agilent, USA). Chromatographic separations were performed at 40°C using an Acquity UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 um; Waters, Milford, MA, USA). The flow rate was 0.4 mL/min and the injection volume was 3 µL. 0.1% formic acid (A) and ACN modified with 0.1% formic acid (B) were composed in the mobile phase. The total run time for equilibration and the optimized UHPLC elution conditions were set as follows: 5%B at 0–2 min, 5–95%B at 2–17 min, 95%B at 17–19 min. The flow rate was 0.4 mL/min and the injection volume was 3 µL.

Mass spectrometry was operated in both positive and negative ion modes of operation. The optimized conditions used set as follows: capillary voltage, 4 kV for the positive mode and 3.5 kV for the negative mode; drying gas flow, 11 L/min; gas temperature, 350°C; fragment or voltage, 120 V; nebulizer pressure, 45 psig; and skimmer voltage, 60 V. Data were collected in the profile mode and the mass range was set at 50 to 1,100 m/z. The biomarkers were further analyzed by MS/MS, and the collision energy was set at 10 to 40 eV.

The raw data in the instrument specific format (.d) were collected and converted into a common (mz.data) format using the Agilent Masshunter Qualitative Analysis B.04.00 software (Agilent Technologies, USA), in which the filtration threshold of the high of the absolute peak was set to 500, and the isotope interferences were excluded. We used the XCMS program[21] (https://xcmsonline.scripps.edu) to identify peak extraction, retention time correction, RT alignment, and integration, in order to generate a visualization matrix. After 80% based on the principle of selection, frequency of more than 80% of the ions present in each group retained samples[22], and to correct the MS response shift, all detected ions in each sample were normalized to total intensity. The sample names, RT, and m/z pairs, were imported to SIMCA-P software (version 13.0, Umetrics, Umea, Sweden) for principal component analysis (PCA) and partial least squares discriminate analysis (PLS-DA). Variable importance plot (VIP) was used to select metabolites with the threshold value of 1. The statistical significant differences were analyzed by SPSS 17.0. P < 0.05 was considered statistically significant.

To identify the discovered biomarkers, the exact masses of ion were input into databases such as Metlin (http://metlin.scripps.edu), Human Metabolome Database (http://www.hmdb.ca/) and PubChem (http://pubchem.ncbi.nlm.nih.gov). Moreover, these metabolites were imported into metaboanalyst database (https://www.metaboanalyst.ca/) for metabolic pathway analysis.

2.6 Network Pharmacology

The target proteins of the differential metabolites were searched for in the Search Tool for Interactions of Chemicals database (STITCH, http://stitch.embl.de). The gene expression data of LPS-induced ALI were searched from the GEO database (GSE1871), the differential gene was analyzed by GEO2R. P < 0.05, FC > 2 or FC< -2 were considered as significant differential genes. The proteins related to VDR were obtained from the Search Tool for the Retrieval of Interacting Genes database (STRING, https://string-db.org/). A VDR-metabolites-target-disease network was constructed using Cytoscape (http://cytoscape.org) software.

2.7 Protein-protein Interaction Data

The protein-protein interaction (PPI) data was obtained from STRING database (https://string-db.org/)[23]. STRING database provides information regarding the experimental and predicted interactions of these proteins.

2.8 Gene Ontology and Pathway Enrichment

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed with the STRING Database (string-db.org/). GO enrichment analysis and pathways with False Discovery Rate (FDR) < 0.01 were defined as enriched terms and pathways. R software (R 3.6.0 for Windows) was used to chart the bubble plot in KEGG enrichment analysis.

2.9 Statistical analysis
Data were expressed as mean ± standard error of the mean (SEM) and were assessed by one-way ANOVA followed by a Tukey's post-test using SPSS 17.0 statistical software (SPSS Inc., Chicago, IL, USA). Values of P < 0.05 were considered statistically significant.

3. Results:

3.1 Scheme for precise investigation of calcitriol against acute lung injury

The pharmacologic effect of calcitriol against ALI was evaluated in vivo (Fig. 1). Firstly, the physiopathological changes of mice lung tissues and the changes of pro- and anti-inflammatory cytokines were measured. Then, the changes of the differential metabolites in mice were measured by metabolic profiling analysis. Differential metabolites-related proteins, disease-related proteins from GSE1871 and vitamin D receptor-related proteins were obtained from databases. Finally, signatures biomarkers corresponding to the specific efficacy of calcitriol can be obtained.

3.2 Effects of calcitriol on lung injury and production of pro- and anti-inflammatory cytokines

The representative images of hematoxylin and eosin (H&E) staining for each group are illustrated in Fig. 2A. In LPS group, treated with 10 mg/kg LPS, severe pulmonary edema and inflammatory infiltration were detected. It is noteworthy that when treated with calcitriol (2ug/kg), the lung injury was attenuated significantly.

The levels of pro-inflammatory cytokines in serum such as IL-1β, IL-6 and TNF-α were significantly higher than control group after LPS administration, while calcitriol treatment effectively decreased these pro-inflammatory cytokines in serum (Fig. 2B-D). The pro-inflammatory cytokines in the lung tissues were detected by RT-qPCR analysis, just as the trends in serum, the levels of pro-inflammatory cytokines were up-regulated and anti-inflammatory cytokine (IL-10) were down-regulated after LPS administration. Conversely, calcitriol pretreatment attenuated the changes in LPS group. Compared with LPS group, lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokine were shown after calcitriol pretreatment (Fig. 2E-H).

3.3 Metabolic profiling analysis

The PLS-DA model was used to investigate the general interrelation among control group, LPS group and LPS + VD group to observe the clear separation in positive and negative ion models. In the PLS-DA model, R^2_Y and Q^2 [cumulative (cum)] were parameters used for evaluation of the models, indicating the prediction ability. R^2_Y and Q^2 (cum) in the PLS-DA model were 0.804 and 0.96 in the positive mode and 0.548 and 0.693 in the negative mode, respectively. The result of the permutation test is shown in Figure S1. As shown in Fig. 3A-F, S-plot and variable importance plots (VIPs) were used to select the potential biomarkers in control group, LPS group and LPS + VD group. The points farther away from the origin point were selected as potential biomarkers with higher possibility.

3.4 Identification of the potential biomarkers

Among these significant differential metabolite ions related to ALI, we identified 49 differential metabolites altered in LPS group, and the trends of 16 metabolites were reversed by calcitriol intervention. These reversed metabolites were regarded as the biomarkers related to the protective effect of calcitriol (Table 1). As shown in Fig. 4A-B, all identified differential metabolites in three groups were presented in the heatmaps both in positive (A) and negative (B) modes. Moreover, metabolic pathway analysis of these metabolites were shown in Fig. 4C.
Table 1
Identification of significantly differential metabolites for serum from control, LPS, and LPS + VD groups by UHPLC/Q-TOF MS.

NO	RT/min	MZ	VIP	Ion	Formula	Metabolites	Fold change LPS/Control	LPS + VD/LPS	
1	0.696268	61.03356	0.983097	M + H	C2H4O2	Glycolaldehyde	2.754402127	1.59926289	
2	1.250586	86.09663	1.6358	M + H	C5H11N	Piperidine*	0.963904131	1.39014743	
3	0.993188	111.0095	1.18601	M - H	C4H4N2O2	Uracil*	0.438642696	3.67222609	
4	2.055882	120.081	1.85554	M + H	C4H9NO3	L-Threonine	1.309282899	1.37004179	
5	0.705338	126.0217	1.15636	M + H	C2H7N03S	Taurine	1.87481513	2.65370823	
	0.667629	147.9987	1.18648	M + Na	C2H7N03S	Taurine	1.761525587	2.50380626	
6	0.996105	129.0171	0.87722	M + Na	C3H6O4	Glymeric acid*	0.451512997	3.13561109	
7	1.250776	132.1033	4.14766	M + H	C6H13NO2	L-Leucine*	0.952893982	1.41128624	
8	0.98994	150.0583	1.05242	M + H	C5H11NO2S	L-Methionine	0.674615886	0.57873851	
9	1.620905	160.0756	1.22108	M + H	C10H9NO	Indoleacetaldehyde	0.647751563	0.5449116	
10	0.720671	160.1306	1.08727	M + H	C7H13NO3	3-Dehydrocarnitine*	0.699145004	1.24129545	
11	0.68031	162.1024	1.19521	M + H	C7H15NO3	L-Carnitine	0.542209405	0.65133356	
12	2.055615	166.0877	2.97873	M + H	C9H11NO2	L-Phenylalanine	1.356721357	1.41046288	
13	0.992655	167.0224	2.0763	M - H	C5H4N4O3	Uric acid*	1.200870188	0.5048149	
14	0.659433	169.9812	1.25207	M + H	C3H7NO2Se	Selenocysteine	1.800485889	2.20630299	
15	1.621185	177.1022	0.892941	M + H	C10H12N2O	Serotonin	0.657505546	0.53921093	
NO	RT/min	MZ	VIP	Ion	Formula	Metabolites	Fold change	LPS/Control	LPS + VD/LPS
----	--------	--------	--------	-------	-----------------	------------------------	-------------	--------------	--------------
16	0.679864	181.9677	1.27828	M-H	C4H9NO5S	L-Homocysteic acid	1.914035459	2.49345592	
17	1.086303	182.0813	0.823781	M+H	C9H11N03	L-Tyrosine	0.776547569	0.93915227	
18	5.02191	194.0812	1.34835	M+H	C10H11N03	Phenylacetylglucose*	0.863155554	4.01770682	
19	0.666578	203.0478	2.32927	M+H	C6H12O6	alpha-D-Glucose	0.48326983	0.73344698	
20	0.998042	210.061	0.911296	M+Na	C11H9NO2	Indoleacrylic acid*	0.354370923	2.68831631	
21	0.999036	215.0163	1.09932	M+Na	C6H8O7	Citric acid*	0.390267741	2.90480586	
22	0.679991	215.035	2.43108	M+FA-H	C3H7O6P	Glyceraldehyde 3-phosphate	0.587480231	0.80876195	
23	0.693568	249.1469	0.889754	M+H	C13H16N2O3	6-Hydroxymelatonin	2.18840512	1.71031366	
24	14.00614	281.2484	0.820619	M-H	C18H34O2	Oleic acid	2.218271566	1.79832587	
25	11.36941	303.2319	0.979612	M+Na	C18H32O2	Linoleic acid	0.503425461	0.90872121	
26	11.3527	319.2286	1.53245	M-H	C20H32O3	12 Hydroxy arachidonic acid	0.508691578	0.92111293	
27	13.07992	327.2328	1.31749	M-H	C22H32O2	Retinol acetate*	0.965109071	1.76896173	
28	11.26451	343.2283	0.835149	M-H	C22H32O3	7-HDoHE*	0.465790864	1.27157518	
29	10.67054	400.3423	2.05668	M+H	C23H45N04	L-Palmitoylcarnitine	1.97163726	2.10745436	
30	10.69522	452.2781	1.67362	M-H	C21H44N07P	LysoPE(16:0/0:0)*	1.724115601	0.74454549	
31	10.33063	476.2781	1.0134	M-H	C23H44N07P	LysoPE(18:2/0:0)	1.469777981	1.03154655	
32	11.85894	480.3089	1.44114	M-H	C23H48N07P	LysoPC(15:0/0:0)	1.618409062	0.73223248	
NO	RT/min	MZ	VIP	Ion	Formula	Metabolites	Fold change	LPS/Control	LPS + VD/LPS
----	--------	-------	------	-----	---------------	------------------------------	-------------------	-------------	--------------
33	10.22379	482.3238	1.30551	M + H	C23H48NO7P	LysoPE(18:0/0:0)	0.485193827	0.86372619	
34	10.03739	494.3244	2.13156	M + H	C24H48NO7P	LysoPC(16:1/0:0)*	0.478558134	1.13361137	
35	10.37779	500.2778	0.812714	M - H	C25H44NO7P	LysoPE(20:4/0:0)*	0.873090995	1.0805551	
36	11.34217	510.3554	0.974645	M + H	C25H52NO7P	LysoPE(20:0/0:0)	0.543726803	0.65707045	
37	10.40312	520.3447	4.92177	M + H	C26H50NO7P	LysoPC(18:2/0:0)	0.744997405	0.68678646	
38	11.08722	522.3595	4.55548	M + H	C26H52NO7P	LysoPC(18:1/0:0)	0.546745532	0.73788905	
39	11.05837	566.3466	2.49128	M + FA-H	C26H52NO7P	LysoPC(18:1/0:0)	0.638709042	0.78526408	
40	10.35312	524.2778	0.990594	M - H	C27H44NO7P	LysoPE(22:6/0:0)	1.349455838	1.12424067	
41	11.81125	524.3753	8.31843	M + H	C26H54NO7P	LysoPC(18:0/0:0)*	0.328487311	1.8948763	
42	10.3764	526.2934	1.12899	M + H	C27H44NO7P	LysoPE(22:6/0:0)	1.381892745	1.13231358	
43	12.51895	538.3861	0.824555	M + H	C27H56NO7P	LysoPE(22:0/0:0)	0.44120658	0.50416438	
44	10.44247	544.342	4.55657	M + H	C28H50NO7P	LysoPC(20:4/0:0)	0.370007621	0.67010627	
45	10.82393	546.3552	2.12407	M + H	C28H52NO7P	LysoPC(20:3/0:0)	0.295259573	0.46945333	
46	10.79584	590.3453	1.29514	M + FA-H	C28H52NO7P	LysoPC(20:3/0:0)	0.363299824	0.51203885	
NO	RT/min	MZ	VIP	Ion	Formula	Metabolites	Fold change		
----	--------	--------	---------	------------	------------------	------------------	----------------------		
							LPS/Control	LPS + VD/LPS	
46	11.3922	548.3705	0.975057	M + H	C28H54NO7P	LysoPC(20:2/0:0)	0.327371202	0.65154209	
47	12.1532	550.3864	1.33528	M + H	C28H56NO7P	LysoPC(20:1/0:0)	0.319489064	0.69898131	
	12.1264	594.3762	0.850176	M + FA-H	C28H56NO7P	LysoPC(20:1/0:0)	0.378870595	0.72996296	
48	13.1064	552.4018	1.20628	M + H	C28H58NO7P	LysoPC(20:0/0:0)	0.379335542	0.78102387	
49	10.4194	568.3414	2.54023	M + H	C30H50NO7P	LysoPC(22:6/0:0)	0.614535868	0.93920062	
	10.396	612.3301	1.44529	M + FA-H	C30H50NO7P	LysoPC(22:6/0:0)*	0.732949942	1.01360236	
							* metabolites with different trends in LPS/Control and LPS + VD/LPS		

3.5 Network pharmacology analysis

Reversed differential metabolites were selected to do the further analysis. The protocol of the integrated systems pharmacology approach is listed in Fig. 1. The predicted proteins targeted by reversed differential metabolites was detected in STITCH database (http://stitch.embl.de) and 2202 proteins were obtained (Supplementary table 2). GEO database mining was used to search genes related to LPS-induced ALI. We screened the database of LPS-induced acute lung injury as the sample and GSE1871 were selected finally. We used the GEO2R to analysis the differential genes between vehicle group and LPS group and genes with significant difference (P < 0.05, FC > 2 or FC < -2) were compared with the metabolites-related proteins. Since calcitriol is the active ligand of vitamin D receptor (VDR) and the VD$_3$-VDR axis has been shown to regulate both innate and adaptive immune responses, we used STRING database (https://string-db.org/) to detect the protein targets of VDR. In Fig. 5A, after combining these target proteins together and take their intersection, 25 proteins were obtained (Fig. 5A and Table 2): Akt1, Arf2, Arf3, Aspn, Creb1, Cxcl10, Cyp11a1, Cyp1a1, Cyp27a1, Cyp27b1, Cyp7b1, Dpep1, Ldlr, Myc, NFKBIA, Ptgs2, SERPINB2, SERPINB8, SERPINB9, SERPINE1, Sod2, Sost, Sox9, Tlr4 and Trp53. A visual network about the three groups and protein-protein interaction (PPI) network are shown in Fig. 5B: C and helpful to explore the protective effect of calcitriol on ALI by acting on these targets and their related pathways.
Table 2
Target proteins with potentially critical roles in calcitriol treatment of acute lung injury.

No.	Gene abbreviation	UniProt ID	Degree	BetweennessCentrality
1	Trp53	P02340	6	0.02037845
2	Tlr4	Q9QUK6	3	0.0572075
3	Sox9	Q04887	3	0.00782159
4	Sost	Q99P68	3	0.00782159
5	Sod2	P09671	3	0.0572075
6	SERPINB1	Q9D154	3	0.01014867
7	SERPINB9	Q08797	3	0.01014867
8	SERPINB8	Q08800	3	0.01014867
9	SERPINB2	Q542A3	3	0.01014867
10	Ptgs2	Q05769	3	0.00782159
11	NFKBIA	Q9Z1E3	3	0.01014867
12	Myc	P01108	3	0.01799181
13	Ldlr	P35951	3	0.0572075
14	Dpep1	P31428	3	0.00965975
15	Cyp7b1	Q60991	3	0.01014867
16	Cyp27b1	O35084	3	0.01014867
17	Cyp27a1	Q9DBG1	3	0.01014867
18	Cyp1a1	P00184	3	0.01014867
19	Cyp11a1	Q9QZ82	3	0.01014867
20	Cxcl10	P17515	3	0.01799181
21	Creb1	Q01147	3	0.00782159
22	Aspn	Q99MQ4	3	0.00965975
23	Arf3	P61205	3	0.00965975
24	Arf2	Q8BSL7	3	0.00965975
25	Akt1	P31750	3	0.01799181

3.6 Functional enrichment analysis of the target proteins

To further understand the function and role of calcitriol in treating ALI, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed by STRING database (https://string-db.org/). For GO term, the top ten enriched biological process terms, molecular function terms and cellular component terms were shown in Fig. 6A-C. KEGG pathway analysis further showed that the proteins involved in TNF signaling pathway, Toll-like receptor signaling pathway, PI3K-Akt signaling pathway and so on. The top 20 pathways were shown in Fig. 6D in the form of bubble plot.

4. Discussion
The diseases of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) still keep a poor prognosis, which leads to high mortality every year worldwide. It is important to figure out the potential mechanisms of ALI and find better treatments for patients. LPS can regulate the lung injury involving biomacromolecule synthesis, hepatocyte apoptosis stimulation, free radical generation, lipid peroxidation and other various mechanisms. In this study, high levels of pro-inflammatory cytokines were found in serum and lung tissues from animal model of acute lung injury induced by LPS. When treated with calcitriol, the expression of these pro-inflammatory cytokines were decreased and anti-inflammatory cytokines were increased significantly.

The role of calcitriol on ALI has not been clear till now. It is generally accepted that vitamin D has an effective therapeutic role in sepsis and calcitriol, the active form of vitamin D, has been reported to induce host defense[24]. Since ALI is characterized with the disruption of the alveolar endothelial and epithelial barrier[4, 5], vitamin D has been reported to attenuate lung edema via blocking the Ang-2-Tie-2-MLC kinase cascade and the renin-angiotensin system to repair alveolar endothelial and epithelial barrier[25]. Meanwhile, several researches have demonstrated that 1,25(OH)_{2}D_{3}, the hormonal form of vitamin D, has been shown to reduce vascular permeability and ameliorate pulmonary edema[25–27]. Nie et al. showed that vitamin D augments transalveolar fluid clearance via unregulating the expression of a-ENaC[28]. Moreover, vitamin D has been reported to alleviate seawater aspiration-induced lung injury via inhibiting nuclear translocation of NF-κB and membrane translocation of RhoA and protecting alveolar epithelial and pulmonary microvascular endothelial barrier[27].

In the current study, metabolomics was used to detect the changes of differential metabolites in the three groups. A total of 49 metabolites were identified as the differential metabolites and the trends of 16 metabolites were opposite in LPS group and LPS + VD group. These metabolites were selected to detect their target proteins via STITCH database. We integrated these target proteins with differential genes in GSE1871 and target proteins of VDR. Finally, a total of 25 proteins were selected and considered to be closely related to the mechanism of calcitriol ameliorates ALI. STRING database was used to demonstrate the GO analysis and KEGG pathway analysis.

From the KEGG pathways, TNF signaling pathway, PI3K-Akt signaling pathway and Toll-like receptor signaling pathway are closely related to the mechanism of calcitriol ameliorates ALI.

TNF signaling pathway is one of the critical pathways in the development and maintenance of inflammation[29] and it has been found to provoke the release of inflammatory cytokines in ALI and mediate the following innate immune response and inflammatory process[30]. Previous study demonstrated that TNF is initiated by TNF-α receptor 1 (TNFR1), its activation induces the increased expression of nuclear factor kappa B (NF-κB)[31]. Zhang et. al. has indicated that 1,25(OH)_{2}D_{3} down-regulated TNF signaling pathway to alleviate osteoarthritis[32].

Toll-like receptor signaling pathway functions as molecular patterns in adaptive or innate immunity and the activation of toll-like receptor signaling pathway leads to the production of costimulatory factors and cytokines, which is one important reasons contributing to ALI[33]. The normal activation of TLRs is critical to defense molecules in the recognition of pathogens, including M. tuberculosis[34–36]. In HIV-seropositive individuals, vitamin D rescues impaired Mycobacterium tuberculosis-mediated tumor necrosis factor release in macrophages by enhancing toll-like receptor signaling pathway[37]. However, uncontrolled excessive TLR activation may lead to serious infection[38]. Multiple lines of evidence showed that ARDS is associated with the vigorous activation of TLR2, TLR3, TLR4 and TLR9[39] and noninfectious ALI is associated with the activation of TLR2 and TLR4[40]. In addition, the survival rates of ARDS patients were correlated with downregulation of TLR1, TLR4 and TLR5[41]. One pharmacologic strategy to manage the excessive inflammation in ALI is to regulate over activation of Toll-like receptors (TLRs)[42].

PI3K-Akt signaling pathway is expressed in eukaryotes widely, which plays critical roles in growth, differentiation, proliferation, and survival[43, 44]. Several groups have documented that 1,25(OH)_{2}D_{3} activates PI3K/Akt in vitro in a variety of cell types, like squamous cell carcinoma cells, osteoblasts and podocytes[45–47]. Xiao et al. has demonstrated that 1,25(OH)_{2}D_{3} activates PI3K-Akt signaling pathway to protect podocytes from apoptosis[47]. Studies showed that the phosphorylation of
Akt downregulates the downstream pro-apoptotic factor Bax and upregulates the anti-apoptotic factor Bcl-2, which inhibits cell apoptosis\cite{48}. LPS-induced ALI is highly associated with cell apoptosis\cite{49} and thus in the treatment of calcitriol, PI3K-Akt signaling pathway plays a critical role.

In conclusion, in this study, the pharmacologic effect of calcitriol against LPS-induced ALI was evaluated in vivo and with the combination of metabolomics, GEO database and network pharmacology, we found out 25 related proteins which were associated to the protective effects of calcitriol. GO and KEGG analysis were used to classify these identified proteins and we selected TNF signaling pathway, PI3K-Akt signaling pathway and Toll-like receptor signaling pathway to be the potential pathway which are closely related to the mechanism of calcitriol ameliorates ALI. Since the network pharmacology strategy produces many possible targets, these differential targets should be thoroughly tested in our further studies.

5. Conclusions:

In this study, the pharmacologic effect of 1,25(OH)$_2$D$_3$ against ALI was evaluated in vivo. Then we performed metabolomics to find out 16 differential metabolites which were associated with the protective effects of 1,25(OH)$_2$D$_3$ against ALI. Meanwhile, STRING database and GEO database was used to find out the differential metabolites-related proteins and disease-related proteins. GO and KEGG analysis were used to classify these identified proteins. Further studies will be performed about the differential proteins to understand the mechanism of 1,25(OH)$_2$D$_3$ against ALI and the potential clinical applications.

Abbreviations

ALI: acute lung injury; ARDS: acute respiratory distress syndrome; VDR: vitamin D receptor; RXR: retinoid X receptor; LPS: lipopolysaccharide; HE: hematoxylin-eosin; PCA: principal component analysis; PLS-DA: partial least squares discriminate analysis; VIP: Variable importance plot; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; 1,25(OH)$_2$D$_3$: 1,25-dihydroxyvitamin D.

Declarations

Ethics approval and consent to participate:

All studies were reviewed and approved by the Animal Experiment Administration Committee of the Shanghai Pulmonary Hospital (Shanghai, China).

Consent for publication:

Not applicable.

Availability of data and materials:

The data and materials in this study are available from the corresponding author on reasonable request.

Competing interests:

The authors report no conflicts of interest.

Funding:
This project was supported by the National Natural Science Foundation of China (NSFC, NO. 81671947, 81871601).

Authors’ contributions:

XS, YLC and YGZ planned and did experiments including animal experiments, QPCR and ELISA. XHJ, HPZ and PCZ analyzed the data from metabolomics, JW, DF, QQZ and YG used the database to obtain the related proteins, YGZ and XHJ conceived the data, XS and YLC wrote the manuscript, XL planned the project and conceived the experiments. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res 2016, 167(1): 183-191.

2. Villar J, Sulemanji D, Kacmarek RMJ. The acute respiratory distress syndrome. Curr Opin Crit Care 2014, 20(1): 3-9.

3. Yadav H, Thompson BT, Gajic O. Fifty years of research in ARDS: is Acute Respiratory Distress Syndrome a Preventable Disease? Am J Respir Crit Care Med 2017, 195(6): 725-736.

4. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012, 122(8): 2731.

5. Kushimoto S, Taira Y, Kitazawa Y, Okuchi K, Sakamoto T, Ishikura H, Endo T, Yamanouchi S, Tagami T, Yamaguchi J, Yoshikawa K, Sugita M, Kase Y, Kanemura T, Takahashi H, Kuroki Y, Izumino H, Rinka H, Seo R, Takatori M, Kaneko T, Nakamura T, Irahara T, Saito N, Watanabe A. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Critical care (London, England) 2012, 16(6): R232.

6. Cross LJ, Matthay MA. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Crit Care Clin 2011, 27(2): 355-377.

7. Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol 2014, 2(1): 76-89.

8. Zhang J, Chalmers MJ, Stayrook KR, Burris LL, Wang Y, Busby SA, Pascal BD, Garcia-Ordonez RD, Bruning JB, Istrate MA, Kojotin DJ, Dodge JA, Burris TP, Griffin PR. DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 2011, 18(5): 556-563.

9. Tian G, Liang X, Chen D, Mao X, Yu J, Zheng P, He J, Huang Z, Yu B. Vitamin D3 supplementation alleviates rotavirus infection in pigs and IPEC-J2 cells via regulating the autophagy signaling pathway. J Steroid Biochem Mol Biol 2016, 163: 157-163.

10. White JH. Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun 2008, 76(9): 3837-3843.

11. Bikle DD. Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends Endocrinol Metab 2010, 21(6): 375-384.

12. Sun J. Vitamin D and mucosal immune function. Curr Opin Gastroenterol 2010, 26(6): 591-595.

13. Wu AC, Tantisira K, Li L, Fuhlbrigge AL, Weiss ST, Litonjua A. Effect of vitamin D and inhaled corticosteroid treatment on lung function in children. Am J Respir Crit Care Med 2012, 186(6): 508-513.
14. Sutherland ER, Goleva E, Jackson LP, Stevens AD, Leung DYM. Vitamin D levels, lung function, and steroid response in adult asthma. Am J Respir Crit Care Med 2010, 181(7): 699-704.

15. Joliffe DA, Stefanidis C, Wang Z, Kermani NZ, Dimitrov V, White JH, McDonough JE, Janssens W, Pfeffer P, Griffiths CJ, Bush A, Guo Y, Christensen S, Adcock IM, Chung KF, Thumvelope KE, Martinou AR. Vitamin D Metabolism is Dysregulated in Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2020.

16. Parekh D, Dancer RCA, Scott A, D’Souza VK, Howells PA, Mahida RY, Tang JCY, Cooper MS, Fraser WD, Tan L, Gao F, Martinou AR, Tucker O, Perkins GD, Thickett DR. Vitamin D to Prevent Lung Injury Following Esophagectomy-A Randomized, Placebo-Controlled Trial. Critical care medicine 2018, 46(12): e1128-e1135.

17. Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 2013, 11(2): 110-120.

18. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nature chemical biology 2008, 4(11): 682-690.

19. Liu X-W, Tang C-L, Zheng H, Wu J-X, Wu F, Mo Y-Y, Liu X, Zhu H-J, Yin C-L, Cheng B, Ruan J-X, Song F-M, Chen Z-N, Song H, Guo H-W, Liang Y-H, Su X-H. Investigation of the hepatoprotective effect of Corydalis saxicola Bunting on carbon tetrachloride-induced liver fibrosis in rats by H-NMR-based metabonomics and network pharmacology approaches. J Pharm Biomed Anal 2018, 159: 252-261.

20. Tan Z-X, Chen Y-H, Xu S, Qin H-Y, Wang H, Zhang C, Xu D-X, Zhao H. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice. Steroids 2016, 112: 81-87.

21. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem 2012, 84(11): 5035-5039.

22. Smilde AK, van der Werf MJ, Bijlsma S, van der Werff-van der Vat BJC, Jellema RH. Fusion of mass spectrometry-based metabolomics data. Anal Chem 2005, 77(20): 6729-6736.

23. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic acids research 2017, 45(D1): D362-D368.

24. Schrummpf JA, Amatngalim GD, Veldkamp JB, Verhoosel RM, Ninaber DK, Ordonez SR, van der Does AM, Haagsman HP, Hiemstra PS. Proinflammatory Cytokines Impair Vitamin D-Induced Host Defense in Cultured Airway Epithelial Cells. Am J Respir Cell Mol Biol 2017, 56(6): 749-761.

25. Kong J, Zhu X, Shi Y, Liu T, Chen Y, Bhan I, Zhao Q, Thadhani R, Li YC. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol Endocrinol 2013, 27(12): 2116-2125.

26. Chen SF, Ruan YJ. 1 alpha,25-Dihydroxyvitamin D3 decreases scalding- and platelet-activating factor-induced high vascular permeability and tissue oedema. Pharmacol Toxicol 1995, 76(6): 365-367.

27. Zhang M, Jin F. 1α,25-Dihydroxyvitamin D3 Ameliorates Seawater Aspiration-Induced Lung Injury By Inhibiting The Translocation Of NFκB and RhoA. Inflammation 2017, 40(3): 832-839.

28. Nie H, Cui Y, Wu S, Ding Y, Li Y. 1,25-Dihydroxyvitamin D Enhances Alveolar Fluid Clearance by Upregulating the Expression of Epithelial Sodium Channels. J Pharm Sci 2016, 105(1): 333-338.

29. Xie Y, Liu K, Luo J, Liu S, Zheng H, Cao L, Li X. Identification of and as Potential Biomarkers in Acute Respiratory Distress Syndrome. DNA Cell Biol 2019, 38(12): 1444-1451.

30. Togbe D, Schynider-Candrian S, Schnyder B, Doz E, Noulain N, Janot L, Secher T, Gasse P, Lima C, Coelho FR, Vasseur V, Erard F, Ryffel B, Couillin I, Moser R. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol 2007, 88(6): 387-391.

31. Liu W, Wang Z, Hou J-G, Zhou Y-D, He Y-F, Jiang S, Wang Y-P, Ren S, Li W. The Liver Protection Effects of Maltol, a Flavoring Agent, on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Inhibiting Apoptosis and Inflammatory Response. Molecules (Basel, Switzerland) 2018, 23(9).
32. Zhang G, Gu M, Xu Y, Wu Z. A comprehensive analysis on the effects of 1,25(OH)2D3 on primary chondrocytes cultured from patients with osteoarthritis. Gene 2020, 730: 144322.

33. Kong D, Wang Z, Tian J, Liu T, Zhou H. Glycyrrhizin inactivates toll-like receptor (TLR) signaling pathway to reduce lipopolysaccharide-induced acute lung injury by inhibiting TLR2. J Cell Physiol 2019, 234(4): 4597-4607.

34. Heldwein KA, Fenton MJ. The role of Toll-like receptors in immunity against mycobacterial infection. Microbes Infect 2002, 4(9): 937-944.

35. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999, 163(7): 3920-3927.

36. Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(25): 14459-14463.

37. Anandaiah A, Sinha S, Bole M, Sharma SK, Kumar N, Luthra K, Li X, Zhou X, Nelson B, Han X, Tachado SD, Patel NR, Koziel H. Vitamin D rescues impaired Mycobacterium tuberculosis-mediated tumor necrosis factor release in macrophages of HIV-seropositive individuals through an enhanced Toll-like receptor signaling pathway in vitro. Infect Immun 2013, 81(1).

38. Kovach MA, Standiford TJ. Toll like receptors in diseases of the lung. Int Immunopharmacol 2011, 11(10): 1399-1406.

39. Tsujimoto H, Ono S, Efron PA, Scumpia PO, Moldawer LL, Mochizuki H. Role of Toll-like receptors in the development of sepsis. Shock 2008, 29(3): 315-321.

40. Jiang D, Liang J, Li Y, Noble PW. The role of Toll-like receptors in non-infectious lung injury. Cell Res 2006, 16(8): 693-701.

41. Ramírez Cruz NE, Maldonado Bernal C, Cuevas Urióstegui ML, Castaño J, López Macías C, Isibasi A. Toll-like receptors: dysregulation in vivo in patients with acute respiratory distress syndrome. Rev Alerg Mex 2004, 51(6): 210-217.

42. Tolle LB, Standiford TJ. Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol 2013, 229(2): 145-156.

43. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002, 296(5573): 1655-1657.

44. Chen X, Chen Q, Wang L, Li G. Ghrelin induces cell migration through GHSR1a-mediated PI3K/Akt/eNOS/NO signaling pathway in endothelial progenitor cells. Metab Clin Exp 2013, 62(5): 743-752.

45. Ma Y, Yu W-D, Kong R-X, Trump DL, Johnson CS. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells. Cancer Res 2006, 66(16): 8131-8138.

46. Zhang X, Zanello LP. Vitamin D receptor-dependent 1 alpha,25(OH)2 vitamin D3-induced anti-apoptotic PI3K/AKT signaling in osteoblasts. J Bone Miner Res 2008, 23(8): 1238-1248.

47. Xiao H, Shi W, Liu S, Wang W, Zhang B, Zhang Y, Xu L, Liang X, Liang Y. 1,25-Dihydroxyvitamin D(3) prevents puromycin aminonucleoside-induced apoptosis of glomerular podocytes by activating the phosphatidylinositol 3-kinase/Akt-signaling pathway. Am J Nephrol 2009, 30(1): 34-43.

48. Métrailler-Ruchonnet I, Pagano A, Carnesecchi S, Khatib K, Herrera P, Donati Y, Bron C, Barazzzone C. Bcl-2 overexpression in type II epithelial cells does not prevent hyperoxia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2010, 299(3): L312-L322.

49. Chambers E, Rounds S, Lu Q. Pulmonary Endothelial Cell Apoptosis in Emphysema and Acute Lung Injury. Adv Anat Embryol Cell Biol 2018, 228: 63-86.

Figures
Figure 1

Scheme for signature-oriented precise investigation of calcitriol against sepsis-induced ALI. Efficacy evaluation of calcitriol was measured by H&E and inflammatory cytokines. Signatures of sepsis-induced ALI and calcitriol pretreatment were measured by metabolomics and network pharmacology. Shared proteins, targets and pathways were obtained by combining these target proteins together.
Figure 2

Calcitriol ameliorated the sepsis-induced ALI. (A) Hematoxylin and eosin staining of lung tissues (upper panel: Magnification, ×100; lower panel: Magnification, ×200). (B-D) IL-1β, IL-6 and TNF-α were measured by ELISA in serum samples. (E-H) The mRNA expression of IL-1β, IL-6, TNF-α and IL-10 were measured by RT-qPCR analysis.
Figure 3

PLS-DA and VIP-score plot in positive and negative modes. (A-B) Score plots of the partial least squares discriminant analysis (PLS-DA) scores performed on the UHPLC/Q-TOF MS profile of serum samples obtained from the control group (black squares), LPS group (red round) and LPS+VD group (blue rhombus) in the positive (A) and negative (B) modes. (C-D) S-plot based on PLS-DA analysis from ESI positive ion mode (C) and negative mode (D). (E-F) The combination of S-plot and VIP-score plot based on PLS-DA analysis from ESI positive ion mode (E) and negative mode (F).
Figure 4

Heatmaps showed the expression levels of differential metabolites. (A-B) Heatmaps visualization of the differential metabolites in the three groups in positive (A) and negative (B) groups. Each row represents a metabolite and each column represents the expression level (red: upregulation, blue: downregulation). (C) Enriched pathways of these differential metabolites.
Figure 5
Topological network schematic of differential metabolites-related proteins, disease-related proteins and VDR-related proteins. (A) A venn diagram of proteins in these three groups and 25 proteins were shown in all three groups. (B) Protein-protein interactions networks of proteins targeted by differential metabolites, genes associated with acute lung injury and genes associated with VDR. (C) Metabolites-targets-disease network. The hexagon outside represent the differential metabolites; the nodes in the middle part represent the proteins overlapping proteins. Nodes with deeper color means they have more interactions with other nodes.

Figure 6

GO and KEGG analysis of overlapping proteins. (A-C) GO enrichment analysis identified genes involved in biological processes (A), cellular components (B) and molecular functions (C). (D) KEGG pathway enrichment analysis. The color scales indicate different thresholds of adjusted p-values, and the sizes of the dots represent the gene counts of each term.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTable3.xlsx
- SupplementaryTable2.xlsx
- SupplementaryTable1.xlsx
- SupplementaryFigure1.tif