The coarse Baum-Connes conjecture for Busemann non-positively curved spaces

Tomohiro Fukaya, Shin-ichi Oguni

Abstract

We prove that the coarse assembly maps for proper metric spaces which are non-positively curved in the sense of Busemann are isomorphisms, where we do not assume that the spaces are with bounded coarse geometry. Also it is shown that we can calculate the coarse K-homology and the K-theory of the Roe algebra by using the visual boundaries.

Keywords: coarse Baum-Connes conjecture, coarse compactification, Busemann non-positively curved space, CAT(0)-space, visual boundary.

2010MSC: 58J22.

1 Introduction

For a proper metric space X, the coarse assembly map

$$
\mu(X) : KX_*(X) \to K_*(C^*X)
$$

is defined as ‘a coarse index map’ ([3, 7] and [11]). Here $KX_*(X)$ is the coarse K-homology of X and $K_*(C^*X)$ is the K-theory of the Roe algebra C^*X. It is well-known that $KX_*(X)$, $K_*(C^*X)$ and $\mu(X)$ depend only on the large-scale geometry of X, that is, the coarse structure given by the metric on X (refer to [3 Section 6]). It is interesting to know which proper metric space X satisfies the property that $\mu(X)$ is an isomorphism (resp. a rational injection) because the property is closely related to the analytic Novikov conjecture (resp. non-permission of uniformly positive scalar curvatures). In particular the following is called the coarse Baum-Connes conjecture: if a proper metric space X is reasonable, for example uniformly contractible and with bounded coarse geometry, then $\mu(X)$ is an isomorphism (See Appendix for bounded coarse geometry). Now we can recognize many spaces whose coarse assembly maps are isomorphisms. For example, if X is with bounded coarse geometry and coarsely
embeddable into a Hilbert space, then $\mu(X)$ is an isomorphism ([12, Theorem 1.1]). Also Higson and Roe showed that if X is geodesic and hyperbolic in the sense of Gromov, then $\mu(X)$ is an isomorphism ([3, (8.2) Corollary]), where bounded coarse geometry is not assumed.

Now we consider which proper metric space X has a boundary with informations of $K_* X$ and $K_* (C^* X)$. This question is a variant of Weinberger conjecture which gives a sufficient condition for the property that the assembly map is rationally injective (see [7, (6.33) Conjecture and (6.34) Proposition]). Let W be a boundary which gives a coarse compactification of a proper metric space X (see Section 2). Then we have the following commutative diagram:

$$
\begin{array}{ccc}
K_* X & \xrightarrow{\mu(X)} & K_* (C^* X) \\
T_W \downarrow & & \downarrow b_W \\
\tilde{K}_{*-1}(W) & & \\
\end{array}
$$

Here $\tilde{K}_{*-1}(W)$ is the reduced K-homology of W, T_W is a transgression map and b_W is a map defined in [3, Appendix] (refer to [2, Section 1.2]). There are some classes whose element X has a coarse compactification $X \cup W$ satisfying that T_W and b_W are isomorphisms. Such a typical class consists of unbounded proper geodesic hyperbolic spaces in the sense of Gromov (see [2, Corollary 5.3]). Indeed the Gromov completions are desired coarse compactifications. See [2] for other classes.

In this note, we deal with proper metric spaces which are non-positively curved in the sense of Busemann (for short, proper Busemann spaces). Proper $CAT(0)$-spaces are typical examples. The following is our main theorem:

Theorem 1.1. Let X be an unbounded proper Busemann space (which is not necessarily with bounded coarse geometry) and $\partial_v X$ be the visual boundary. Then $\mu(X)$ is an isomorphism. Also $X \cup \partial_v X$ is a coarse compactification of X, and moreover $T_{\partial_v X}$ and $b_{\partial_v X}$ are isomorphisms.

Remark 1.2. A key in our proof of Theorem 1.1 is to show that the coarsening map

$$
c(X) : K_* (X) \rightarrow K_* X
$$

is an isomorphism for any proper Busemann space X. In general, when a proper metric space is uniformly contractible and with bounded coarse geometry, the coarsening map is an isomorphism (see [3, (3.8) Proposition], [11 Proof of Theorem 4.8] and [2, Section 3.2]). Proper Busemann spaces are uniformly contractible, but they are not necessarily with bounded coarse geometry (see Example A.5). In [3, the below of (7.5) Corollary], Higson and Roe claimed that a proper ‘non-positively curved’ space X without necessarily bounded coarse geometry satisfies that the coarsening map is an isomorphism, but they did not give details. Indeed we prove it for proper Busemann spaces (Proposition 5.4).
2 The visual boundaries of proper Busemann spaces

In this section, we study the visual boundaries of proper Busemann spaces from a coarsely geometric viewpoint. We refer to [9] which deals with $CAT(0)$-spaces (see also [10]).

The following is one of equivalent definitions of Busemann spaces ([9, Proposition 8.1.2 (viii)]).

Definition 2.1. Let X be a space endowed with a metric d. We call X a non-positively curved space in the sense of Busemann, for short, a Busemann space if X is geodesic and satisfies the following: for any points $x_0, x_1, y_0, y_1 \in X$, any geodesics π_{x_0, x_1}, π_{y_0, y_1} and any $t \in [0, 1]$, $d(x_t, y_t)$ is smaller than or equal to $(1 - t)d(x_0, y_0) + td(x_1, y_1)$, where $x_t \in \pi_{x_0, x_1}$ and $y_t \in \pi_{y_0, y_1}$ with $d(x_0, x_t) = td(x_0, x_1)$ and $d(y_0, y_t) = td(y_0, y_1)$, respectively.

$CAT(0)$-spaces and strictly convex Banach spaces like p-spaces ($1 < p < \infty$) are typical examples of Busemann non-positively curved spaces (see also Example 2.2).

We consider the visual boundaries. Let X be a proper Busemann space. Fix a basepoint $o \in X$. Since two points in a Busemann space are connected by a unique geodesic, we have a continuous map

$$X \times [0, 1] \ni (x, t) \mapsto \delta_t(x) \in X,$$

where $\delta_t(x)$ is characterized as a point on a geodesic from o to x with $d(o, \delta_t(x)) = td(o, x)$. For each $t \in (0, \infty)$, put $B(o, t) := \{a \in X \mid d(o, a) \leq t\}$. For any $s, t \in (0, \infty)$ with $s < t$, we define a surjection $\pi_{s,t} : B(o, t) \to B(o, s)$ as $\pi_{s,t}(a) := a$ if $d(o, a) \leq s$ and $\pi_{s,t}(a) := \delta_{s/d(o,a)}(a)$ if $d(o, a) > s$. Also for any $t \in (0, \infty)$, we define a surjection $\pi_t : X \to B(o, t)$ as $\pi_t(a) := a$ if $d(o, a) \leq t$ and $\pi_t(a) := \delta_{t/d(o,a)}(a)$ if $d(o, a) > t$. We consider a projective system consisting of $\{\pi_{s,t} : B(o, t) \to B(o, s)\}_{0 < s < t}$. Then the projective limit $\overline{\lim} B(o, t)$ contains X as an open dense subset by the map $\overline{\lim} \pi_t : X \to \overline{\lim} B(o, t)$. We put $\overline{X} := \overline{\lim} B(o, t)$ and $\partial_v X := \overline{X} \setminus X$. We call $\partial_v X$ the visual boundary of X.

The visual boundary of X is independent (up to canonical homeomorphisms) of choice of basepoints by [5, Main theorem].

Example 2.2. Let p belong to $(1, \infty)$. For each positive integer n, denote by $\ell_p(n)$ the n-dimensional ℓ_p-space. Then $\ell_p(n)$ is a proper Busemann space and the visual boundary is homeomorphic to the $(n - 1)$-dimensional sphere S^{n-1}. We remark that $\ell_p(n)$ is $CAT(0)$ if and only if $n = 1$ or $p = 2$.

For each $p \in (1, \infty)$, we give an example which is a proper Busemann space without bounded coarse geometry. First we consider a half-line $[0, \infty)$ with the standard metric by absolute values. Next we identify the zero vector of $\ell_p(n)$ with $n \in [0, \infty)$ for all positive integers n. Finally we endow the resulting space X_p with the path-metric, where the embeddings $\ell_p(n) \to X_p$ for all $n \in \mathbb{N}$ and $[0, \infty) \to X_p$ are isometric. Then X_p is a proper Busemann space and the
visual boundary of X_p is homeomorphic to the one-point compactification of $\bigcup_{n \in \mathbb{N}} \partial_t \ell_p(n)$, that is, the one-point compactification of $\bigcup_{n \in \mathbb{N}} S^{n-1}$. Obviously X_p is CAT(0) if and only if $p = 2$. In Appendix we show that X_p is without bounded coarse geometry.

The following is implied by the argument in [9, Proof of Lemma 4.6.1] for proper CAT(0)-spaces and the visual boundaries.

Proposition 2.3. Let X be a proper Busemann space. Then $X \cup \partial_v X$ is contractible.

Now we recall a definition of coarse compactifications. Let X be a proper metric space. We denote by $C_b(X)$ the set of all bounded continuous functions of X. An element $f \in C_b(X)$ is a Higson function if for any $\epsilon > 0$ and any $R > 0$, there exists a bounded set $K \subset X$ such that $x, y \in X$ with $d(x, y) < R$ and $x, y \notin K$ satisfy $|f(x) - f(y)| < \epsilon$. We denote by $C_h(X)$ the set of all Higson functions of X. Let \overline{X} be a compact metrizable space which is a compactification of X. We denote by $C(\overline{X})$ the set of all continuous functions of \overline{X}. Then $C(\overline{X})$ is naturally identified with a subalgebra of $C_b(X)$ by the Gelfand-Naimark theorem. After the identification, if every element of $C(\overline{X})$ is a Higson function, we call \overline{X} a **coarse compactification** of X.

The following is known for proper CAT(0)-spaces and the visual boundaries ([9, Lemma 4.6.2]).

Proposition 2.4. Let X be a proper Busemann space. Then $X \cup \partial_v X$ is a coarse compactification of X.

Proof. We need to modify the argument in [9, Proof of Lemma 4.6.2] because his proof uses the CAT(0)-inequality.

We recall that $X \cup \partial_v X = \varprojlim B(o, t)$. We naturally regard $C(B(o, t))$ as a subset of $C_b(X)$ by

$$C(B(o, t)) \ni f \mapsto f \circ \pi_t \in C_b(X),$$

where $C(B(o, t))$ is the set of all continuous functions on $B(o, t)$. Then $C(X \cup \partial_v X)$ is identified with the closure of $\bigcup_{t > 0} C(B(o, t))$. We take $t \in (0, \infty)$ and $f \in C(B(o, t))$. Then it is enough to prove that $F := f \circ \pi_t$ is a Higson function of X. We take $\epsilon > 0$ and $R > 0$. Since $B(o, t + R)$ is compact, we have $\delta > 0$ such that $|F(a') - F(b')| < \epsilon$ for any $a', b' \in B(o, t + R)$ with $d(a', b') < \delta$. We take any $a, b \in X$ with $d(a, b) < R$ and have

$$r := \min\{r_a := d(o, a), r_b := d(o, b)\} > S := \max\{t, tR/\delta\}.$$

We put $a' = \delta_{t/r}(a)$ and $b' = \delta_{t/r}(b)$. Then we have

$$t \leq d(o, a') = tr_a/r < t + R, \quad t \leq d(o, b') = tr_b/r < t + R$$

and $F(a') = F(a), F(b') = F(b)$. Since X is a Busemann space, we have

$$d(a', b') = d(\delta_{t/r}(a), \delta_{t/r}(b)) \leq \frac{t}{r}d(a, b) < \frac{tR}{r} \leq \delta.$$

Hence we have $|F(a) - F(b)| < \epsilon$. □
3 The coarse assembly maps for proper Busemann spaces

In this section we prove that the coarse assembly maps for proper Busemann spaces are isomorphisms.

Let X be a proper metric space. Then we have the following commutative diagram:

\[
\begin{array}{ccc}
K_*(X) & \xrightarrow{A(X)} & K_*(C^*X) \\
\downarrow{c(X)} & & \downarrow{\mu(X)} \\
KX_*(X) & & . \\
\end{array}
\]

Here $K_*(X)$ is the K-homology of X, C^*X is the Roe algebra of X, $K_*(C^*X)$ is the K-theory of C^*X, $A(X)$ is the assembly map for X, $c(X)$ is the coarsening map for X and $\mu(X)$ is the coarse assembly map for X (see [3, Section 6] and also [2, Section 1]).

If a proper metric space X is a scalable space (which is not necessarily with bounded coarse geometry), then Higson and Roe proved that the assembly map $A(X)$ is an isomorphism by a so-called Eilenberg swindle (see [3, (7.2) Theorem] and [4, 12.4.11 Theorem]). Proper $\text{CAT}(0)$-spaces are such examples (see [4, Exercise 12.7.4] and [9, Proof of Proposition 4.6.3]). Their proof works well for proper Busemann spaces and thus we have the following:

Proposition 3.1. Let X be a proper Busemann space. Then X is scalable and thus $A(X)$ is an isomorphism.

We recall definitions of coarse maps. Let (X, d_X) and (Y, d_Y) be proper metric spaces. A map $f : Y \to X$ is a coarse map if f satisfies the following:

- for any bounded subset K of X, $f^{-1}(K)$ is bounded;
- for any $R > 0$, there exists $S > 0$ such that $y, y' \in Y$ with $d_Y(y, y') < R$ satisfy $d_X(f(y), f(y')) < S$.

Two coarse maps $f, g : Y \to X$ are close if there exists $C > 0$ such that $d_X(f(y), g(y)) < C$ for any $y \in Y$.

We need two lemmas in order to prove Proposition 3.1.

Lemma 3.2. Let X be a proper Busemann space, Y be a connected locally finite simplicial complex with the spherical metric and $f : Y \to X$ be a coarse map. Then there exists a continuous coarse map $g : Y \to X$ such that g and f are close.

Here we briefly explain what is the spherical metric. Let Y be a connected locally finite simplicial complex. Denote the 0-th skeleton by $Y^{(0)} := \{v_i\}_{i \in \mathbb{N}}$. Then for every non-negative integer k, we identify every k-simplex with vertices
The set \(\{v_1, \ldots, v_{i+1}\} \) of \(Y \) with

\[
\Delta^k_S := \left\{ (u_{i_1}, \ldots, u_{i_{k+1}}) \in [0, 1]^{k+1} \mid \sum_{j=1}^{k+1} u_{i_j}^2 = 1 \right\}.
\]

By using the identification, we have so-called spherical coordinates \(\{u_i : Y \to [0, 1]\}_{i \in \mathbb{N}} \), where \(\sum_{i \in \mathbb{N}} u_i(y)^2 \) is a finite sum and equal to 1. Now we have an embedding \(Y \ni y \mapsto (u_1(y), u_2(y), \ldots) \in S(\ell_2(\mathbb{N})) \), where \(S(\ell_2(\mathbb{N})) \) is the sphere with radius 1 in \(\ell_2(\mathbb{N}) \). We endow \(Y \) with the metric \(d_S \) induced from the path-metric of the image of the embedding and call \(d_S \) the spherical metric. The spherical metric is very familiar with the graph metric in the following sense: the restriction of \(d_S \) on the first skeleton \(Y^{(1)} \) is equal to the graph metric on \(Y^{(1)} \) up to \(\pi/2 \)-multiplication.

Proof of Lemma 3.2. We denote by \(Y^{(0)} \) the 0-th skeleton of \(Y \). Then we construct a continuous coarse map \(g : Y \to X \) with \(g|_{Y^{(0)}} = f|_{Y^{(0)}} \) such that \(g \) and \(f \) are close.

Every point \(y \) of \(Y \) is uniquely presented by the barycentric coordinate \(\{(v_1, t_1), \ldots, (v_n, t_n)\} \), where \(v_i \in Y^{(0)} \) and \(t_i \in [0, 1] \) with \(\sum_{i=1}^n t_i = 1 \). Now for such a point \(y \), we define \(g(y) \) in \(X \) as the barycenter of \(\{(f(v_1), t_1), \ldots, (f(v_n), t_n)\} \), that is, \(g(y) \) is a unique point which attains the minimum of

\[
X \ni x \mapsto \sum_{i=1}^n t_i d_X(x, f(v_i))^2 \in [0, \infty)
\]

(see [6] Definition 8.4.10). Then we have a map \(g : Y \to X \) with \(g|_{Y^{(0)}} = f|_{Y^{(0)}} \). Since the barycenter continuously depends on weights \(t_i \), the map \(g \) is continuous.

Now we prove that \(g \) is close to \(f \). Since \(f \) is coarse, we have \(C > 0 \) such that for any point \(y, y' \in Y \) contained in a same simplex, \(d_X(f(y), f(y')) < C \). Take a point \(y \in Y \) which is presented by the barycentric coordinate \(\{(v_1, t_1), \ldots, (v_n, t_n)\} \). Then we have \(i_0 \in \{1, \ldots, n\} \) satisfying \(d(g(y), f(v_{i_0})) \leq d(g(y), f(v_{i})) \) for any \(i \in \{1, \ldots, n\} \). Since \(g(y) \) is the barycenter of \(\{(f(v_1), t_1), \ldots, (f(v_n), t_n)\} \) with \(\sum_{i=1}^n t_i = 1 \), we have

\[
d(g(y), f(v_{i_0}))^2 = \sum_{i=1}^n t_i d(g(y), f(v_{i_0}))^2 \leq \sum_{i=1}^n t_i d(g(y), f(v_i))^2 < \sum_{i=1}^n t_i d(f(v_{i_0}), f(v_i))^2 \leq \sum_{i=1}^n t_i C^2 = C^2.
\]

Since we have \(d(f(y), f(v_{i_0})) < C \) and \(f(v_{i_0}) = g(v_{i_0}) \), the triangle inequality implies \(d(g(y), f(y)) < 2C \).

Since \(g \) is close to the coarse map \(f \), \(g \) is also a coarse map.

Lemma 3.3. Let \(X \) be a proper Busemann space and \(\phi : X \to X \) be a continuous coarse map which is close to \(id_X \). Then \(id_X \) and \(\phi \) are properly homotopic.
Proof. We consider the map

\[h : X \times [0, 1] \ni (x, t) \mapsto h(x, t) \in X, \]

where \(h(x, t) \) is characterized as a point on the geodesic from \(x \) to \(\phi(x) \) with \(d(x, h(x, t)) = td(x, \phi(x)) \). Then \(h \) is continuous in view of Definition 2.1. Hence \(h \) is a proper homotopy between \(\text{id}_X \) and \(\phi \).

Proposition 3.4. Let \(X \) be a proper Busemann space. Then \(c(X) \) is an isomorphism.

Proof. The argument in [3, Proof of (3.8) Proposition] works well on our situation when we use Lemmas 3.2 and 3.3 instead of [3, (3.3) Lemma and (3.4) Lemma]. We give a sketch for reader’s convenience. First of all, we take an \(\check{\text{Č}} \)ech system \(\mathcal{U}_1, \mathcal{U}_2, \ldots \) of \(X \) and a partition of unity of \(\mathcal{U}_1 \). When we denote by \(|\mathcal{U}_i| \) the geometrization of \(\mathcal{U}_i \) as a nerve complex for each \(i \in \mathbb{N} \), we have a coarsening sequence:

\[X \xrightarrow{\varphi} |\mathcal{U}_1| \xrightarrow{\varphi_1} |\mathcal{U}_2| \xrightarrow{\varphi_2} \cdots, \]

where all maps are proper continuous maps and coarse equivalences. By Lemma 3.2, we have a continuous coarse map \(g_i : |\mathcal{U}_i| \to X \) for each \(i \in \mathbb{N} \) satisfying that \(g_i \circ (\varphi_{i-1} \circ \cdots \circ \varphi_1 \circ \varphi) \) and \((\varphi_{i-1} \circ \cdots \circ \varphi_1 \circ \varphi) \circ g_i \) are close to \(\text{id}_X \) and \(\text{id}_{|\mathcal{U}_i|} \), respectively. Then Lemma 3.3 implies that \(g_i \circ (\varphi_{i-1} \circ \cdots \circ \varphi_1 \circ \varphi) \) and \(\text{id}_X \) are properly homotopic. Since \((\varphi_{i-1} \circ \cdots \circ \varphi_1 \circ \varphi) \circ g_i \) and \(\text{id}_{|\mathcal{U}_i|} \) are close, we have \(k \geq i \) such that \((\varphi_k \circ \cdots \circ \varphi_1 \circ \varphi) \circ g_i \) and \(\varphi_k \circ \cdots \circ \varphi_i \) are contiguous and thus properly homotopic. Then the coarsening sequence implies that \(K_*(X) \cong \lim_{\rightarrow} K_*(|\mathcal{U}_i|) \), where the right hand side is \(KX_*(X) \) by definition.

Propositions 3.1 and 3.4 imply that \(\mu(X) \) is an isomorphism for a proper Busemann space (see the commutative diagram 1).

4 Proof of Theorem 1.1

In this section we complete a proof of Theorem 1.1.

When \(X \) is an unbounded proper metric space and \(X \cup W \) is a coarse compactification of \(X \), we have the following commutative diagram:

\[
\begin{array}{ccc}
K_*(X) & \xrightarrow{A(X)} & K_*(C^*X) \\
\downarrow{c(X)} & & \downarrow{\mu(X)} \\
KX_*(X) & \xrightarrow{T_W} & \tilde{K}_{*+1}(W)
\end{array}
\]
where ∂_W is a boundary map of the homological long exact sequence for a pair $(X \cup W, W)$ and b_W is a map defined in [3 Appendix] (see also [2 Section 1.2]).

Proof of Theorem 1.1. Let X be an unbounded proper Busemann space and consider the visual boundary $\partial_v X$. We already proved that $A(x), c(X)$ and $\mu(X)$ are isomorphisms in Section 3. Since $X \cup \partial_v X$ is contractible by Proposition 2.3, $\partial_v X$ is an isomorphism. Now the assertion follows from the commutative diagram in the above. □

Example 4.1. Let p belong to $(1, \infty)$. We consider X_p in Example 2.2. Then Theorem 1.1 implies the following:

\[
\begin{align*}
K_{\star}(X_p) &\cong K_{\star}(C^\ast X_p) \cong K_{\star-1}(\partial_v X_p) \\
&\cong K_{\star-1}(\bigsqcup_{n \in \mathbb{N}} S^{n-1}) \cong \prod_{n \in \mathbb{N}} K_{\star-1}(S^{n-1}) \cong \prod_{n \in \mathbb{N}} \mathbb{Z},
\end{align*}
\]

where we used the strong excision property and the cluster axiom (see $\text{[4 Definition 7.3.1]}$).

5 Coarse K-theories and coarse cohomologies of proper Busemann spaces

In this section we briefly consider coarse K-theories and coarse cohomologies of proper Busemann spaces.

Let X be a proper metric space and $X \cup W$ be a coarse compactification of X. Then we have the following commutative diagram:

\[
\begin{array}{ccc}
K_{\star}(X) & \xleftarrow{A(X)} & K_{\star-1}(c^\ast X) \\
\downarrow{\partial_W} & \quad & \downarrow{b_W} \\
K_{\star}^\ast(X) & \xrightarrow{c(X)} & K_{\star-1}(c^\ast X) \\
\downarrow{\mu(X)} & \quad & \downarrow{\partial_W} \\
\tilde{K}_{\star-1}(W). & \quad & \text{coassembly map of } X.
\end{array}
\]

Here $K_{\star}(X)$, $c^\ast X$, $K_{\star}(c^\ast X)$, $K_{\star}^\ast(X)$, $\tilde{K}_{\star-1}(W)$, $A(X)$, $\mu(X)$, $c(X)$, ∂_W, b_W and T_W are the K-theory of X, the reduced stable Higson corona of X, the K-theory of $c^\ast X$, the coarse K-theory of X, the reduced K-theory of W, the co-assembly map of X, the coarse co-assembly map of X, the character map of X, the boundary map of the cohomological long exact sequence of $(X \cup W, W)$, the map induced by the inclusion of $C(W)$ into $c^\ast X$ and the transgression map, respectively (see [1 Section 4], [9 Chapter 4], [2 Sections 3, 4] for details).

When we consider a proper Busemann space X and the visual boundary $\partial_v X$, we have the following by a similar argument in Proof of Theorem 1.1 but we omit details.
Theorem 5.1. Let X be an unbounded proper Busemann space (which is not necessarily with bounded coarse geometry) and ∂_vX be the visual boundary. Then in the above commutative diagram, all maps $A(X)$, $c(X)$, $\mu(X)$, ∂_{∂_vX}, b_{∂_vX} and T_{∂_vX} are isomorphisms.

If X is an unbounded proper $CAT(0)$-space with bounded coarse geometry, then the above was known (see [1, Theorem 4.8] and [9, Section 4.6]).

Similarly we have the following:

Theorem 5.2. Let X be an unbounded proper Busemann space (which is not necessarily with bounded coarse geometry) and ∂_vX be the visual boundary. Then all maps in the commutative diagram

\[
\begin{array}{ccc}
H_c^*(X) & \xleftarrow{c(X)} & HX^*(X) \\
\downarrow{\partial_{\partial_vX}} & & \uparrow{T_{\partial_vX}} \\
\tilde{H}^{*+1}(\partial_vX) & & \end{array}
\]

are isomorphisms. Here $H_c^*(X)$, $HX^*(X)$, $\tilde{H}^*(W)$, $c(X)$, ∂_{W}, and T_{W} are the compactly supported Alexander-Spanier cohomology of X, the coarse cohomology of X, the reduced Alexander-Spanier cohomology of W, the character map of X, the boundary map of the cohomological long exact sequence of $(X \cup W, W)$, and the transgression map, respectively (see [7] and [2, Section 3] for details).

In the above, we can know that $c(X)$ is an isomorphism by another reason. Indeed it is known that the compactly supported Alexander-Spanier cohomology and the coarse cohomology are isomorphic by the character map for any uniformly contractible proper metric space without necessarily bounded coarse geometry ([7 (3.33) Proposition]). We note that Busemann spaces are uniformly contractible.

A Bounded coarse geometry

In this appendix we collect some equivalent definitions of bounded coarse geometry for reader’s convenience (see also [8 Section 3.1]) and prove that X_p in Example 2.2 is without bounded coarse geometry.

Definition A.1. Let Γ be a discrete metric space. Then Γ is said to be with bounded geometry if for any $R > 0$,

\[
\sup\{\#B(\gamma, R) \mid \gamma \in \Gamma\} < \infty.
\]

When a discrete metric space is with bounded geometry, so is every subset with the restricted metric.

The following was introduced in Fan’s PhD thesis (see [3 (3.6) Definition] and also [8 Definition 3.9]).
Definition A.2. Let X be a metric space. Then X is said to be **with bounded coarse geometry** if there exists $\epsilon > 0$ satisfying the following: for any $R > 0$,

$$\sup\{l \mid x \in X, x_1, \ldots, x_l \in B(x, R), i \neq j, d(x_i, x_j) > \epsilon\} < \infty.$$

When a metric space is with bounded coarse geometry, so is every subset with the restricted metric.

Bounded coarse geometry is simply called bounded geometry in many literatures. However a discrete metric space with bounded coarse geometry is not necessarily with bounded geometry in the sense of Definition A.1. Therefore we adopt the notion of bounded coarse geometry.

Definition A.3. Let X be a metric space and Γ be a discrete subset of X. For $\epsilon > 0$ and $C \geq 0$, Γ is said to be **ϵ-separated** if every pair of two distinct elements $\gamma_1, \gamma_2 \in \Gamma$ satisfies $d(\gamma_1, \gamma_2) > \epsilon$. For $C \geq 0$, Γ is said to be **C-dense** if every $x \in X$ satisfies $d(x, \gamma) \leq C$ for some $\gamma \in \Gamma$. Also Γ is called a **net** of X if Γ is C-dense for some $C \geq 0$.

We can show that every metric space has an ϵ-separated net for any $\epsilon > 0$ by using Zorn’s lemma.

Proposition A.4. Let X be a metric space. The following are equivalent.

(i) X is with bounded coarse geometry.

(ii) X has a net with bounded geometry.

(iii) X is coarsely equivalent to a discrete metric space with bounded geometry.

(iv) there exists $\epsilon > 0$ such that every ϵ'-net of X for any $\epsilon' \geq \epsilon$ is with bounded geometry,

(v) there exists $\epsilon > 0$ satisfying the following: for any $R > 0$, there exists $N > 0$ such that for any $x \in X$,

$$B(x, R) \subset \bigcup_{i=1,\ldots,N} B(x, \epsilon)$$

for some $x_1, \ldots, x_N \in X$.

Proof. Conditions (i) and (v) are equivalent by [8, Proposition 3.2 (d)]. It is easy to show equivalence between conditions (ii) and (iii). Trivially condition (iv) implies condition (ii).

Now we prove that condition (i) implies condition (iv). Take ϵ in Definition A.2 We consider any ϵ'-separated net Γ where $\epsilon' \geq \epsilon$. Then for any $R > 0$, any $\gamma \in \Gamma$

$$\#(B(\gamma, R) \cap \Gamma)$$

$$\leq \sup\{l \mid x \in X, x_1, \ldots, x_l \in B(x, R), i \neq j, d(x_i, x_j) > \epsilon\}.$$
Hence Γ is with bounded geometry.

Finally we show that condition (ii) implies condition (v). Suppose that Γ is a C-dense net of X for some $C \geq 0$ and with bounded geometry. For each $x \in X$, we chose $\gamma_x \in \Gamma$ with $d(x, \gamma_x) \leq C$. Then for any $R > 0$ and any $x \in X$, we have

$$B(x, R) \subset \bigcup_{\gamma \in B(x, R+C) \cap \Gamma} B(\gamma, C) \subset \bigcup_{\gamma \in B(\gamma_x, R+2C) \cap \Gamma} B(\gamma, C).$$

Since Γ is with bounded geometry,

$$\sup \{ \#(B(\gamma_x, R + 2C) \cap \Gamma) \mid x \in X \} < \infty.$$

It follows from condition (iii) that bounded coarse geometry is a coarse geometric property, that is, for two coarsely equivalent metric spaces X and Y, X is with bounded coarse geometry if and only if so is Y.

Conditions (ii) and (iii) are useful when we show that some spaces are with bounded coarse geometry. On the other hand we can use condition (iv) to prove that some space is without bounded coarse geometry.

Example A.5. Let X_p be a metric space in Example 2.2. Let k be a positive integer. We take the subset $(k\mathbb{Z})^n$ of $\ell_p(n)$ for $n \in \mathbb{N}$. When we naturally regard $\Gamma_k := \bigcup_{n \in \mathbb{N}} (k\mathbb{Z})^n$ as a subset of X_p, Γ_k is a $(k - 0.01)$-separated net of X_p. Since Γ_k is without bounded geometry, it follows from condition (iv) that X_p is without bounded coarse geometry.

Acknowledgements

The authors would like to thank Professor Hiroyasu Izeki for very helpful discussions. T. Fukaya and S. Oguni are supported by Grant-in-Aid for Scientific Researches for Young Scientists (B) (No. 23740049) and (No. 24740045) Japan Society of Promotion of Science, respectively.

References

[1] Heath Emerson, Ralf Meyer, Dualizing the coarse assembly map. J. Inst. Math. Jussieu 5 (2006), no. 2, 161–186.

[2] Tomohiro Fukaya, Shin-ichi Oguni, Coronae of relatively hyperbolic groups and coarse cohomologies, preprint, 2013. [arXiv:1303.1865](https://arxiv.org/abs/1303.1865).

[3] Nigel Higson, John Roe, On the coarse Baum-Connes conjecture. Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 227–254, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995.
[4] Nigel Higson, John Roe, Analytic K-homology. Oxford Mathematical Monographs. Oxford Science Publications. Oxford University Press, Oxford, 2000. xviii+405 pp.

[5] Philip K. Hotchkiss, The boundary of a Busemann space. Proc. Amer. Math. Soc. 125 (1997), no. 7, 1903–1912.

[6] Athanase Papadopoulos, Metric spaces, convexity and nonpositive curvature. IRMA Lectures in Mathematics and Theoretical Physics, 6. European Mathematical Society (EMS), Zurich, 2005. xii+287 pp.

[7] John Roe, Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc. 104 (1993), no. 497, x+90 pp.

[8] John Roe, Lectures on coarse geometry. University Lecture Series, 31. American Mathematical Society, Providence, RI, 2003. viii+175 pp.

[9] Rufus Willett, Band-dominated operators and the stable Higson corona. PhD-thesis, Penn State, 2009.

[10] Rufus Willett, Some ‘homological’ properties of the stable Higson corona. J. Noncommut. Geom. 7 (2013), no. 1, 203–220.

[11] Guoliang Yu, Coarse Baum-Connes conjecture. K-Theory 9 (1995), no. 3, 199–221.

[12] Guoliang Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139 (2000), no. 1, 201–240.