Thrombin promotes sustained signaling and inflammatory gene expression through the CDC25 and Ras-associating domains of phospholipase Cε.
Thrombin Promotes Sustained Signaling and Inflammatory Gene Expression through the CDC25 and Ras-associating Domains of Phospholipase Cε*

Stephanie S. Dusaban‡§1, Maya T. Kunkel‡, Alan V. Smrcka‡, and Joan Heller Brown‡²

From the Departments of Pharmacology, School of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093 and Biomedical Sciences Department and Physiology, University of Rochester, Rochester, New York 14642

Background: PLCε activation is sustained but the underlying regulatory mechanisms are unknown.

Results: PLCε gene deletion and rescue demonstrate that Rap1 activation by the CDC25 domain and regulation via the RA2 domain sustain thrombin-mediated PLCε and PKD activation and inflammatory gene expression.

Conclusion: Unique domains and compartmentalization of PLCε allow for sustained GPCR signaling.

Significance: Targeting these PLCε domains could ameliorate pathophysiological inflammation.

Phospholipase C-epsilon (PLCε) plays a critical role in G-protein-coupled receptor-mediated inflammation. In addition to its ability to generate the second messengers inositol 1,4,5-trisphosphate and diacylglycerol, PLCε, unlike the other phospholipase C family members, is activated in a sustained manner. We hypothesized that the ability of PLCε to function as a guanine nucleotide exchange factor (GEF) for Rap1 supports sustained downstream signaling via feedback of Rap1 to the enzyme Ras-associating (RA2) domain. Using gene deletion and adenoviral rescue, we demonstrate that both the GEF (CDC25 homology domain) and RA2 domains of PLCε are required for long term protein kinase D (PKD) activation and subsequent induction of inflammatory genes. PLCε localization is largely intracellular and its compartmentalization could contribute to its sustained activation. Here we show that localization of PLCε to the Golgi is required for activation of PKD in this compartment as well as for subsequent induction of inflammatory genes. These data provide a molecular mechanism by which PLCε mediates sustained signaling and by which astrocytes mediate pathophysiological inflammatory responses.

Phospholipase C-epsilon (PLCε) has emerged as a novel signaling node through which G-protein-coupled receptors (GPCRs) that activate small G-proteins can lead to biological responses (1–8). In addition to its ability to bind and respond to RhoA, PLCε mediates sustained phosphoinositide hydrolysis (9) and sustained activation of downstream kinases (2, 3, 10). Thus, PLCε may play an especially important role in chronic or dysregulated signaling involved in diseases such as cancer, heart failure, and central nervous system (CNS) injury (1–3, 10–23).

First identified in Caenorhabditis elegans as a Let-66-Ras binding protein (24), PLCε was demonstrated to contain the X, Y, and C2 domains characteristic of enzymes in the phospholipase C (PLC) family (24). Like the other PLC family members, PLCε was found to function to hydrolyze phosphatidylinositol 4,5-bisphosphate to generate the second messengers inositol 1,4,5-trisphosphate ([IP3]3) and diacylglycerol (DAG) (25). Additionally, PLCε has an extended N-terminal, which contains a CDC25 domain not found in the other PLCs and which functions as a GEF for the low molecular weight G-protein Rap1 (26–28). This domain has been shown to be important for PLCε localization to the Golgi, and its deletion leads to more transient PLCε localization to this compartment (26). Moreover, PLCε was found to be uniquely regulated by the small G-protein RhoA through a 65 amino acid sequence within the Y domain (4–8), as well as by other Ras family members through their interactions with the RA2 domain (5, 29).

Of particular interest, while both PLC-β (PLCβ) and PLCε are regulated in response to endothelin-1 (ET-1), lysophosphatidic acid (LPA), and thrombin, knockdown of PLCβ inhibits inositol phosphate generation at short times (1–3 min) whereas knockdown of PLCε is required to inhibit inositol phosphate generation at longer times (10–60 min) (9). Using primary astrocytes from PLCε knock-out (KO) mice, we demonstrated that PLCε is needed for the sustained activation of protein kinase D (PKD) which occurs in response to ligands that activate Goα12/13/Rho whereas ligands that stimulate Goq/PLCβ lead to a more transient activation of PKD (2). Our data also revealed that the sustained activation of PKD is necessary for induction of inflammatory gene expression (2).
We postulate and demonstrate here that the non-catalytic CDC25 and RA2 domains of PLCε are essential components required for sustained PKD activation and inflammatory gene expression. This conclusion is supported by studies using astrocytes from PLCε KO mice and rescue by adenoviral expression of wild-type (WT) and mutant PLCε. A role for compartmentalized PLCε signaling at the Golgi is also established. We conclude that PLCε signaling, initiated by GPCR stimulation and RhoA binding, is sustained by a feedback mechanism involving the CDC25 domain as a generator of active Rap1 and the RA2 domain of PLCε as its effector.

Experimental Procedures

Animals—All procedures were performed in accordance with NIH Guide and Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee at the University of California San Diego. Generation of homozygous C57BL6/Sv129 PLCε KO mice has been described previously (19). PLCε heterozygous KO mice were bred to generate homozygous KO animals.

Primary Culture of Astrocytes—Astrocytes were isolated from P1-P3 postnatal WT and KO mice as previously described (1). Purity of astrocytes was determined to be ~95% based on GFAP staining. In all experiments, WT and PLCε KO astrocytes were used at passage 2.

Transduction of Astrocytes with Adenovirus—PLCε KO astrocytes were infected for 4–6 h in complete media with 200 multiplicity of infection (moi) of adenovirus expressing FLAG-tagged WT PLCε, CDC25-deleted mutant (CDC25Δ) PLCε, RA2 K2150E mutant, or enhanced yellow fluorescent protein (EYFP) as previously described (1, 16, 17). Following 4–6 h of infection, astrocytes were washed and serum starved for 18–24 h prior to agonist treatment.

Fluorescence Resonance Energy Transfer—Astrocytes were plated onto glass coverslips in 35-mm dishes and Golgi or plasma membrane-targeted DKAR constructs were transfected using DharmaFECT3 transfection reagent at a 1:3 DNA: DharmaFECT3 ratio (Thermo Scientific). Cells were serum starved the next day for 18–24 h and then washed with HBSS (Gibco) prior to collecting DKAR images as described previously (30) on a Zeiss Axiovert microscope (Carl Zeiss MicroImaging, Inc.) with a cooled charge-couple device camera (Photometric) controlled by MetaFluor software (Universal Imaging Corp.). Images were collected at baseline for 4 min followed by treatment with thrombin for up to twelve minutes.

Immunofluorescence—Astrocytes were grown on glass slides and infected with 150 moi of mCherry-PLCε. Following serum starvation for 18–24 h, cells were fixed using 4% paraformaldehyde in PBS and then permeabilized with 0.1% Triton in PBS for 5 min before blocking with 5% BSA in PBS and 10% normal goat serum. Antibody GM-130 (BD Biosciences) was diluted in the blocking solution before addition of Alexa 488 mouse. Cells were then washed and mounted with coverslips using Vectashield with DAPI (Vector Labs). Pictures were acquired using the Olympus FV-1000 confocal microscope.

Quantitative-PCR (q-PCR)—Total RNA was extracted from agonist treated WT and PLCε KO astrocytes using an RNeasy kit (Invitrogen) as previously described (2). CDNA was amplified using the TaqMan Universal Master Mix in the presence of gene-specific primers for IL-6 and COX-2 with GAPDH used as an internal control (Applied Biosystems). Data were normalized to internal GAPDH and fold change determined according to published protocol (31).

Western Blotting—Astrocyte lysates were prepared in RIPA buffer. Western blot analysis was performed according to the previous described protocol (32). The antibodies used for immunoblotting were as follows: p-PKD (Ser-916), PKD, and GAPDH from Cell Signaling Technology, COX-2 from Cayman, and Rap1 from Santa Cruz. Immunoblots shown represent a single gel; images are split in cases where unnecessary lanes were removed.

Results

Rap1 Activation Is Sustained and Requires the CDC25 Domain of PLCε—Our earlier work demonstrated that endogenous PLCε functions as a Rap1GEF that is activated in response to GPCR stimulation (1, 16). Here we examined the kinetics of Rap1 activation in primary mouse astrocytes stimulated with thrombin, measuring activated Rap1 using a pull-down assay. Rap1 activation was significantly elevated at 15 min, further increased at 1 h, and sustained for up to 6 h (Fig. 1A). This response was absent in astrocytes from PLCε KO mice (Fig. 1A). To demonstrate that it is the CDC25 domain of PLCε that functions as the thrombin-regulated Rap1GEF, we used a previously generated mutant PLCε construct in which the CDC25 domain was deleted (CDC25Δ) (16). Adenoviral expression of WT PLCε in PLCε KO astrocytes lead to significant recovery of Rap1 activation (Fig. 1B). In contrast Rap1 activation was not recovered in the KO cells expressing the CDC25Δ mutant PLCε (Fig. 1B).

PKD Activation and COX-2 Expression Require the CDC25 Domain of PLCε—We previously demonstrated that sustained activation of PKD and subsequent COX-2 expression in astrocytes require PLCε (2). To determine whether Rap1 activation plays a role in these responses we compared the ability of the CDC25 domain mutant and WT PLCε to support activation of PKD and induction of COX-2 in PLCε KO astrocytes. The activation of PKD was assessed using an antibody directed at the PKD autophosphorylation site (Ser-916) and COX-2 expression was assessed by Western blotting. Thrombin activation of PKD was significantly attenuated in the CDC25Δ mutant compared with those expressing WT PLCε (Fig. 2A). COX-2
PKD Activation and COX-2 Expression Require the RA2 Domain of PLCε—We hypothesized that continued PLCε-mediated phosphoinositide hydrolysis and DAG generation are facilitated by generation of activated Rap1 via the CDC25 domain. A mechanism through which this feedback could occur would be via Rap1 interaction with the RA2 domain. This domain was previously shown to regulate PLCε activity in response to heterologously expressed or recombinant Rap1 (5, 26). We utilized a RA2 mutant of PLCε (PLCεK2150E), shown to lack PLC activation by Ras family proteins (29), to test this hypothesis. In contrast to WT PLCε which supported thrombin stimulated PKD and COX-2 expression in PLCε KO cells (Fig. 3, A and B), the PLCε RA2 mutant was ineffective at supporting thrombin induced PKD activation and induction of COX-2 (Fig. 3, A and B).

The CDC25 and RA2 Domains Are Required for IL-6 mRNA Expression—To extend our findings on COX-2 regulation to another inflammatory gene, we assessed the induction of interleukin-6 (IL-6). Thrombin treatment increased IL-6 mRNA expression, and this response was also dependent on PLCε (Fig. 4A). To demonstrate the importance of the CDC25 and RA2 domains in thrombin stimulated IL-6 induction, we expressed WT PLCε, the CDC25Δ mutant, or the RA2 domain mutant in KO astrocytes. In contrast to what was observed in cells expressing WT PLCε, thrombin failed to induce IL-6 mRNA in cells expressing either the CDC25Δ or RA2 mutant PLCε (Fig. 4B).

PLCε Is Localized to the Golgi—The observation that heterologously expressed PLCε localizes to an intracellular perinuclear compartment (26, 28, 33), confirmed by recent studies in cardiomyocytes (10), has important signaling implications. We hypothesized that this unique localization is critical for the feedback mechanism and sustained signaling proposed above. To examine PLCε localization in primary astrocytes, we expressed an adenoviral mCherry-PLCε construct in KO PLCε astrocytes. The mCherry fluorescence was most intense in an area surrounding the DAPI stained nucleus and was co-localized with the Golgi marker GM-130 (Fig. 5).

PKD Is Activated at the Golgi in a PLCε-dependent Manner—To determine whether PKD is activated through PLCε signaling at the Golgi, we expressed a FRET reporter for PKD (Golgi-DKAR) that is targeted to this compartment (34, 35). Thrombin treatment significantly increased the FRET signal in astrocytes localized at the Golgi, we disrupted the Golgi with brefeldin A (BFA) (Fig. 7A). Parallel studies using a plasma membrane targeted PKD activity reporter revealed minimal thrombin induced activation of PKD at the plasma membrane (Fig. 6C). Thus PKD activation in response to thrombin occurs through PLCε localized at the Golgi.

Intact Golgi Is Necessary for Rap1 Activation, PKD Activation, and COX-2 Expression—We demonstrated in studies above that PLCε activation is required for thrombin stimulated activation of Rap1 and PKD and for induction of COX-2. To demonstrate the importance of compartmentalization at the Golgi, we disrupted the Golgi with brefeldin A (BFA) (Fig. 7A). Astrocytes pretreated with BFA showed significantly reduced Rap1 activation by thrombin (Fig. 7B). PKD activation (Fig. 7C) and COX-2 expression (Fig. 7D) were also markedly disrupted in BFA-treated cells compared with vehicle treated cells.
FIGURE 2. PKD activation and COX-2 expression require the CDC25 domain of PLCε. A, PKD phosphorylation (p-PKDS916) was measured in PLCε KO astrocytes that were infected with WT PLCε or CDC25Δ adenovirus followed by vehicle or thrombin (5 nM) treatment for 1 h. The p-PKDS916 protein levels were normalized to total PKD and expressed relative to its own averaged control. Representative Western blots are shown and data quantitated as the mean ± S.E. (n = 9) of four independent experiments (control error bars are small but present). B, COX-2 protein levels were measured in PLCε KO astrocytes infected with WT PLCε or CDC25Δ adenovirus followed by thrombin (5 nM) treatment for 1 h and 6 h. COX-2 protein levels were normalized to GAPDH and expressed relative to its own control. Representative Western blots are shown and data quantitated at the 6 h time point as the mean ± S.E. (n = 6) of three independent experiments. *, p < .01 between control and thrombin treatment; #, p < .01 between thrombin treatments, one-way ANOVA.

FIGURE 3. PKD activation and COX-2 expression require the RA2 domain of PLCε. A, PKD phosphorylation (p-PKDS916) was measured in PLCε KO astrocytes infected with WT PLCε or RA2 mutant (K2150E) adenovirus followed by thrombin (5 nM) treatment for 1 h. The p-PKDS916 protein levels were normalized to total PKD and expressed relative to their own averaged control. Representative Western blots and data quantitated as the mean ± S.E. (n = 6) of three independent experiments. B, COX-2 protein levels were measured in PLCε KO astrocytes infected with WT PLCε or RA2 mutant adenovirus followed by treatment with thrombin (5 nM) for 1 h and 6 h. COX-2 protein levels were normalized to GAPDH and expressed relative to its own control. Representative Western blots and data quantitated at the 6 h time point as the mean ± S.E. (n = 6) of three independent experiments. *, p < .05 and **, p < .01 between control and thrombin treatment; #, p < .05 and ##, p < .01 between thrombin treatments, one-way ANOVA.

FIGURE 4. The CDC25 and RA2 domains are required for IL-6 mRNA expression. A, IL-6 mRNA levels in primary WT and PLCε KO astrocytes treated with thrombin (5 nM) or vehicle (control) for 1 h were assessed by q-PCR. Fold increase is expressed relative to the WT or KO averaged controls. Data shown are the mean ± S.E. of values (n = 6) from three independent experiments. B, IL-6 mRNA levels were measured by q-PCR in PLCε KO astrocytes infected with WT PLCε, CDC25Δ, or RA2 mutant (K2150E) adenovirus followed by thrombin (5 nM) treatment for 1 h. Fold increase is expressed relative to its own control. Data shown are the mean ± S.E. of values (n = 6) from three independent experiments. *, p < .05 and **, p < .01 between control and thrombin treatment; #, p < .05 between thrombin treatments, one-way ANOVA.
PLCe Domains and Inflammatory Responses

FIGURE 5. PLCe is localized to the Golgi. KO astrocytes were infected with 150 moi of PLCe-mCherry adenovirus. The nucleus was stained with DAPI, and the Golgi was stained with GM-130.

A.戈利-DKAR

Control | Thrombin

Wild-type

B.戈利-DKAR

Control | Thrombin

Knockout

C.膜-膜-DKAR

Control | Thrombin

Wild-type

FIGURE 6. PKD is activated at the Golgi in a PLCe-dependent manner. Following transfection of Golgi-DKAR (1.5 μg) in WT astrocytes (A) or in KO astrocytes (B), the FRET response (CFP/FRET) was measured over time after the addition of thrombin (5 nM). Data quantitated as the mean ± S.E. (n = 8) of four independent experiments. C, plasma membrane-DKAR (1.5 μg) was transfected into WT astrocytes. The FRET response (CFP/FRET) was measured over time after the addition of thrombin (5 nM). Data are quantitated as the mean ± S.E. (n = 8) of four independent experiments.

Discussion

PLCe has been shown to be a critical mediator in a range of disorders including cancer, CNS injury, cardiac hypertrophy, and cardiac ischemia/reperfusion injury (1–3, 10–23). Our hypothesis is that the ability of PLCe to integrate signals from GPCRs to downstream changes in gene expression contributes to the pathophysiology of these diseases. PLCe has a unique structure and is compartmentalized within the cell. Data described here provide evidence that these features are central to its role in sustained inflammatory signaling in astrocytes.

Compared with other PLC family members, PLCe is unique in containing a CDC25 domain that functions as a GEF for Rap1 (26, 27). Previous work using heterologous expression of PLCe or a PLCe mutant lacking the CDC25 domain, demonstrated that the CDC25 domain is required for the Rap1 activation observed for up to 30 min following EGF stimulation (26). We previously reported that PLCe is required for the Rap1 activation observed 15 min following thrombin addition (1). The data presented here are the first to show that PLCe signaling is required for GPCR ligands to elicit long term activation of...
Rap1, persisting for at least 6 h. We demonstrate that the unique CDC25 domain is needed for sustained agonist-induced Rap1 activation, and further show that it is necessary for subsequent activation of chronic signaling resulting in PKD activation and induction of COX-2.

Ras family members including Ras, Rap1, Rap2, and TC21 have been shown to directly interact with PLCγ/H9280 to regulate its activity (5, 29). The findings presented here establish that the RA2 domain of the enzyme is responsible for sustained signaling and suggest that this occurs through feedback by active Rap1 generated through the CDC25 domain. Specifically studies using a mutant PLCγ/H9280, which is unable to bind Ras or Rap (29), demonstrate the requirement for the RA2 domain in long term activation of PKD and subsequent COX-2 expression, responses that require continued generation of DAG.

The CDC25 domain of PLCγ has been shown to be important for its cellular localization. The Kataoka group demonstrated that Rap1 is required for PLCγ localization to the Golgi and that this requires the CDC25 domain (26). Thus Rap1 activation occurs through the CDC25 domain and interaction of Rap1 with this domain contributes to PLCγ localization. Not only does Rap1 retain PLCγ at the Golgi but this organelle is also a rich source of PI4P that can serve as a substrate for PLCγ and a source of DAG (10, 34, 36). Work shown here, as well as recent studies in cardiomyocytes (10), demonstrate that PLCγ localized to the Golgi is important for PKD activation and subsequent induction of genes involved in inflammation and hypertrophy. Furthermore, localization of PLCγ to the Golgi has a biological consequence. Disruption of the Golgi with BFA affects downstream PLCγ signaling including Rap1 and PKD activation and subsequent induction of COX-2.

The protease activate receptor 1 (PAR1) has been implicated in CNS injury and disease and has been shown to induce astrocyte activation and proliferation in response to thrombin both in vitro and in vivo (37, 38). PAR1 is one of the most efficacious GPCRs in coupling to G_{α12/13} and Rho (1, 39–44). We have previously demonstrated that thrombin stimulates phosphoinositide hydrolysis in astrocytes exclusively through PLCγ and
of phospholipase C in skin inflammation induced by tumor-promoting phorbol ester. Cancer Res. 68, 64–72.
14. Li, M., Edamatsu, H., Kitazawa, R., Kitazawa, S., and Kataoka, T. (2009) Phospholipase Cε promotes intestinal tumorigenesis of ApcMin/+ mice through augmentation of inflammation and angiogenesis. Carcinogenesis 30, 1424–1432.
15. Martins, M., McCarthy, A., Baxendale, R., Guichard, S., Magno, L., Kessaris, N., El-Bahrawy, M., Yu, P., and Katan, M. (2014) Tumor suppressor role of phospholipase Cε in Ras-triggered cancers. Proc. Natl. Acad. Sci. U.S.A. 111, 4239–4244.
16. Oestreicher, E. A., Malik, S., Goonasekera, S. A., Blaxall, B. C., Kelley, G. G., Dirksen, R. T., and Smrcka, A. V. (2009) Epac and phospholipase Cε regulate Ca2+ release in the heart by activation of protein kinase Cε and calcium-calmodulin kinase II. J. Biol. Chem. 284, 1514–1522.
17. Oestreicher, E. A., Wang, H., Malik, S., Kaproth-Joslin, K. A., Blaxall, B. C., Kelley, G. G., Dirksen, R. T., and Smrcka, A. V. (2007) Epac-mediated activation of phospholipase C(ε) plays a critical role in β-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J. Biol. Chem. 282, 5488–5495.
18. Oka, M., Edamatsu, H., Kunisada, M., Hu, L., Takenaka, N., Dian, S., Saka-guchi, M., Kitazawa, R., Norose, K., Kataoka, T., and Nishigori, C. (2010) Enhancement of ultraviolet B-induced skin tumor development in phospholipase Cε-knockout mice is associated with decreased cell death. Carcinogenesis 31, 1897–1902.
19. Wang, H., Oestreicher, E. A., Maekawa, N., Bullard, T. A., Vikstrom, K. L., Dirksen, R. T., Kelley, G. G., Blaxall, B. C., and Smrcka, A. V. (2005) Phospholipase Cε modulates β-adrenergic receptor-dependent cardiac contractilation and inhibits cardiac hypertrophy. Circ. Res. 97, 1305–1313.
20. Zhang, L., Malik, S., Kelley, G. G., Kapiloft, M. S., and Smrcka, A. V. (2011) Phospholipase Cε scaffolds to muscle-specific A kinase anchoring protein (mAKAP)β and integrates multiple hypertrophic stimuli in cardiac myocytes. J. Biol. Chem. 286, 23012–23021.
21. Dusaban, S. S., and Brown, J. H. (2014) Phospholipase Cε mediated sustained signaling pathways. Adv. Biol. Regul. 57, 17–23.
22. Smrcka, A. V., Brown, J. H., and Holz, G. G. (2012) Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cell Signal 24, 1333–1343.
23. Yang, S. Y., Dusaban, S. S., and Brown, J. H. (2013) Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim. Biophys. Acta 1831, 213–222.
24. Shibatohge, M., Kariya, K., Liao, Y., Hu, C. D., Watari, Y., Goshima, M., Shima, F., and Kataoka, T. (1998) Identification of PLC210, a Caenorhabditis elegans phospholipase Cε, as a putative effector of Ras. J. Biol. Chem. 273, 6218–6222.
25. Bunney, T. D., and Katan, M. (2006) Phospholipase Cε: linking second messengers and small GTPases. Trends Cell Biol. 16, 640–648.
26. Jin, T. G., Satoh, T., Liao, Y., Song, C., Gao, X., Kariya, K., Hu, C. D., and Kataoka, T. (2001) Role of the CDC25 homology domain of phospholipase Cε in amplification of Rap1-dependent signaling. J. Biol. Chem. 276, 30301–30307.
27. Song, C., Satoh, T., Edamatsu, H., Wu, D., Tadano, M., Gao, X., and Kataoka, T. (2002) Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase Cε. Oncogene 21, 8105–8113.
28. Satoh, T., Edamatsu, H., and Kataoka, T. (2006) Phospholipase Cε guanine nucleotide exchange factor activity and activation of Rap1. Methods Enzymol. 407, 281–290.
29. Kelley, G. G., Reks, S. E., and Smrcka, A. V. (2012) Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cell Signal 24, 1333–1343.
30. Violin, J. D., Zhang, J., Tsien, R. Y., and Newton, A. C. (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase Cε. J. Cell Biol. 161, 899–909.
31. Schmitgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc 3, 1101–1108.
32. Del Re, D. P., Miyamoto, S., and Brown, J. H. (2007) RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J. Biol. Chem. 282, 8069–8078.
33. Song, C., Hu, C. D., Masago, M., Kariya, K., Yamawaki-Kataoka, Y., Shibatohge, M., Wu, D., Satoh, T., and Kataoka, T. (2001) Regulation of a
novel human phospholipase C, PLCε, through membrane targeting by Ras. J. Biol. Chem. 276, 2752–2757
34. Kunkel, M. T., and Newton, A. C. (2010) Calcium transduces plasma membrane receptor signals to produce diacylglycerol at Golgi membranes. J. Biol. Chem. 285, 22748–22752
35. Kunkel, M. T., Toker, A., Tsien, R. Y., and Newton, A. C. (2007) Calcium-dependent regulation of protein kinase D revealed by a genetically encoded kinase activity reporter. J. Biol. Chem. 282, 6733–6742
36. Gallegos, L. L., Kunkel, M. T., and Newton, A. C. (2006) Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J. Biol. Chem. 281, 30947–30956
37. Nicole, O., Goldshmidt, A., Hamill, C. E., Sorensen, S. D., Sastre, A., Lyuboslavsky, P., Hepler, J. R., McKeon, R. J., and Traynelis, S. F. (2005) Activation of protease-activated receptor-1 triggers astrogliosis after brain injury. J. Neurosci. 25, 4319–4329
38. Sorensen, S. D., Nicole, O., Peavy, R. D., Montoya, L. M., Lee, C. J., Murphy, T. J., Traynelis, S. F., and Hepler, J. R. (2003) Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol. Pharmacol. 64, 1199–1209
39. Coughlin, S. R. (2000) Thrombin signalling and protease-activated receptors. Nature 407, 258–264
40. Martin, C. B., Mahon, G. M., Klinger, M. B., Kay, R. J., Symons, M., Der, C. J., and Whitehead, I. P. (2001) The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene 20, 1953–1963
41. Aragay, A. M., Collins, L. R., Post, G. R., Watson, A. J., Feramisco, J. R., Brown, J. H., and Simon, M. I. (1995) G12 requirement for thrombin-stimulated gene expression and DNA synthesis in 1321N1 astrocytoma cells. J. Biol. Chem. 270, 20073–20077
42. Sah, V. P., Seasholtz, T. M., Sagi, S. A., and Brown, J. H. (2000) The role of Rho in G protein-coupled receptor signal transduction. Annu. Rev. Pharmacol. Toxicol. 40, 459–489
43. Siehler, S. (2009) Regulation of RhoGEF proteins by G12/13-coupled receptors. Br. J. Pharmacol. 158, 41–49
44. Sternweis, P. C., Carter, A. M., Chen, Z., Danesh, S. M., Hsiung, Y. F., and Singer, W. D. (2007) Regulation of Rho guanine nucleotide exchange factors by G proteins. Adv. Protein Chem. 74, 189–228
Thrombin Promotes Sustained Signaling and Inflammatory Gene Expression through the CDC25 and Ras-associating Domains of Phospholipase C?
Stephanie S. Dusaban, Maya T. Kunkel, Alan V. Smrcka and Joan Heller Brown

J. Biol. Chem. 2015, 290:26776-26783. doi: 10.1074/jbc.M115.676098 originally published online September 8, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M115.676098

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 44 references, 28 of which can be accessed free at http://www.jbc.org/content/290/44/26776.full.html#ref-list-1