Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation

Franz Kratochvill1, Christian Machacek1, Claus Vogl2, Florian Ebner1, Vitaly Sedlyarov1, Andreas R Gruber3, Harald Hartweger1, Raimund Vielnascher2, Marina Karaghiosoff2, Thomas Rülicke4, Mathias Müller2,4, Ivo Hofacker3, Roland Lang5 and Pavel Kovarik1,*

1 Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria, 2 Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria, 3 Department of Theoretical Chemistry, University of Vienna, Vienna, Austria, 4 Institute of Laboratory Animal Science and Biomedics Austria, University of Veterinary Medicine Vienna, Vienna, Austria and 5 Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Erlangen, Germany

* Corresponding author. Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria. Tel.: +43 14 277 54608; E-mail: pavel.kovarik@univie.ac.at

Received 31.5.11; accepted 7.11.11

For a successful yet controlled immune response, cells need to specifically destabilize inflammatory mRNAs but prevent premature removal of those still used. The regulatory circuits controlling quality and timing in the global inflammatory mRNA decay are not understood. Here, we show that the mRNA-destabilizing function of the AU-rich element-binding protein tristetraprolin (TTP) is inversely regulated by the p38 MAPK activity profile such that after inflammatory stimulus the TTP-dependent decay is initially limited to few mRNAs. With time, the TTP-dependent decay gradually spreads resulting in cumulative elimination of one third of inflammation-induced unstable mRNAs in macrophages in vitro. We confirmed this sequential decay model in vivo since LPS-treated mice with myeloid TTP ablation exhibited similar cytokine dysregulation profile as macrophages. The mice were hypersensitive to LPS but otherwise healthy with no signs of hyperinflammation seen in conventional TTP knockout mice demonstrating the requirement for myeloid TTP in re-installment but not maintenance of immune homeostasis. These findings reveal a TTP- and p38 MAPK-dominated regulatory mechanism that is vital for balancing acute inflammation by a temporally and qualitatively controlled mRNA decay.

Molecular Systems Biology 7; Article number 560; doi:10.1038/msb.2011.93

Subject Categories: functional genomics; immunology

Keywords: immune homeostasis; inflammation; mRNA stability; p38 MAPK; tristetraprolin

Introduction

Inflammation-elicited gene expression changes are controlled by mechanisms that allow sufficiently strong responses but restrain the amplitude and interval of altered gene expression to avoid tissue damage and pathological inflammation. Cells achieve this control by employing a number of cell-autonomous positive and negative feedback mechanisms. At the level of gene transcription, this dynamic control was shown to result from regulatory circuits such as those of the transcription factors NF-κB, C/EBPβ and ATF3 that act as activator, amplifier and attenuator, respectively (Litvak et al, 2009). Another important broad range control of inflammatory gene expression targets mRNA stability (Raghavan and Bohjanen, 2004; Cheadle et al, 2005; Anderson 2010). The rate of mRNA decay was shown to be particularly important for the expression of cytokine and chemokine genes that exhibit the most dynamic expression pattern (Hao and Baltimore, 2009). mRNAs of these genes are enriched in AU-rich elements (AREs) in their 3’ untranslated regions (UTRs) confirming the prominent role of AREs in mRNA stability (Barreau et al, 2005). The regulatory circuits coordinating global ARE-mediated decay are not well understood. The stability of ARE-containing mRNAs is regulated by the recruitment of stabilizing or destabilizing ARE-binding proteins that facilitate or prevent contact with RNA-degrading complexes (Barreau et al, 2005; Stoecklin and Anderson, 2007). The complexity and dynamics of ARE-mediated mRNA stability is increased by combinatorial effects of ARE-binding proteins (Mukherjee et al, 2009). Coupling between translation and mRNA degradation as well as cooperation of RNA-binding proteins with microRNAs contribute to the global mRNA stability control (Chekulaeva and Filipowicz, 2009; Dahan et al, 2011). TTP, which is encoded by the Zfp36 gene, is one of the best-characterized ARE-binding proteins. After binding to AREs, TTP initiates the assembly of the mRNA degradation machinery thereby causing elimination of the bound mRNAs (Carballo et al, 1998; Blackshear, 2002; Sandler and Stoecklin, 2008). TTP was initially characterized as a key inflammation-induced Tnf mRNA-destabilizing factor whose deficiency resulted in multiple chronic inflammatory syndromes including arthritis, cachexia and dermatitis in mice (Taylor et al, 1996). Notably, TTP deficiency does not lead to any developmental defects, which contrasts the essential function of the TTP-related genes Zfp36l1 and Zfp36l2 in animal development and in the control of cell proliferation (Hodson et al, 2010). The phenotype of the
TTP-deficient mice remains incompletely understood particularly with respect to the growing number of TTP targets. The function of TTP during inflammatory responses in vivo has not been explored.

In this study, we employed a global mRNA stability assay to demonstrate TTP as non-redundant component of a negative feedback mechanism that sequentially targets one third of intrinsically unstable inflammation-induced mRNAs for timely degradation in macrophages. This regulatory circuit is controlled by the dual function of p38 MAPK in the regulation of TTP activity. p38 MAPK is known to be needed for TTP expression but in parallel it restrains the mRNA-stabilizing activity of TTP (Sandler and Stoecklin, 2008). We show that the p38 MAPK activity profile during inflammatory response qualitatively and temporally controls TTP-driven ARE-dominated mRNA decay such that a premature degradation of inflammatory mRNAs is prevented until the onset of the resolution phase of the inflammatory response. We show the ability of this TTP- and p38 MAPK-dominated regulatory system to determine which mRNAs are degraded at a certain time in macrophages. To demonstrate the function of this regulatory system in vivo, we generated mice deficient in myeloid TTP. In response to LPS, these mice displayed temporal dysregulation of cytokine production resembling defects seen in TTP-deficient macrophages. The mice were hypersensitive to LPS-induced endotoxin shock. However, under normal conditions the animals were healthy and fertile, indicating that myeloid TTP has an essential role in the negative feedback upon inflammatory stimulus rather than in the originally proposed maintenance of immune homeostasis under steady-state conditions.

Results

Genome-wide analysis of mRNA stability in LPS-stimulated WT and TTP−/− macrophages

Because of their functions as sensors and effectors of inflammation, macrophages are often used to study inflammatory gene expression patterns (Hume et al., 2007). Macrophages stimulated with Toll-like receptor (TLR) ligands exhibit highly dynamic gene expression profiles in terms of both the magnitude and timing. To address the timely removal of inflammation-induced mRNAs in these cells, we examined the global effect of TTP on mRNA decay rates by microarray-based measurement of remnant mRNA after transcriptional blockade with actinomycin D (act D) in LPS-treated bone marrow-derived macrophages (BMDMs) from WT and conventional knockout (TTP−/−) mice (Taylor et al., 1996). Previous screens were not successful in the identification of one or more of the few already known TTP targets such as Tnf, the best-characterized TTP target (Lai et al., 2006; Emmons et al., 2008; Stoecklin et al., 2008). To increase the sensitivity of the mRNA decay profiling, we pharmacologically inhibited the LPS-activated p38 MAPK (using the specific p38 MAPK inhibitor SB203580) at the time of transcriptional blockade by act D. Although p38 MAPK is required for TTP expression and TTP protein stability, at the same time it inhibits the mRNA-stabilizing activity of TTP (Sandler and Stoecklin, 2008). The pharmacological inhibition of p38 MAPK mimics an intrinsic inhibitory pathway that is driven by IL-10 and the IL-10-induced phosphatase Dusp1 that gradually inactivates p38 MAPK (Hammer et al., 2005). BMDMs from WT and TTP−/− animals were stimulated for 3 h with LPS followed by simultaneous treatment with act D and SB203580. The remnant mRNA levels were measured at 45 and 90 min thereafter. The 3-h treatment with LPS was sufficient to induce high levels of TTP protein that remained detectable even 90 min after the transcriptional block, and despite degradation caused by the inhibition of p38 MAPK (Supplementary Figure 1). After normalization, filtering and statistical analysis of the microarray data, the probe set IDs of the remaining genes (9847 from total 28 853 present on the chip) were classified according to two criteria: (1) mRNA decay significantly (P<0.05) increased above the overall average of the data set in WT cells and (2) significantly (P<0.05) slower decay in TTP−/− compared with WT cells. Approximate half-lives of the mRNAs are also shown (Table I; Supplementary Table 1). The half-lives were calculated individually for each gene using the signal differences between 0 and 90 min of act D treatment. The 45-min act D time point was not considered for half-life calculations since the difference in means was low compared with the variation at this time point. The single criterion for classification of an mRNA as unstable or TTP destabilized was the P-value, which also incorporated inversely the gene-specific standard error, instead of the half-life, which did not (Materials and methods). Among the 9847 genes, 1090 (10%) were found to be significantly unstable (Supplementary Table 1), with the 25 most significantly unstable genes listed in Table I.A. Of the 1090 unstable mRNAs, 309 transcripts (28%) displayed significantly increased stability in TTP−/− cells (Supplementary Table 1). Most of the so far known TTP targets were present in this group (Table IB; Supplementary Table 1) while those not found in our screen are known to be expressed in other cell types than in BMDMs, i.e., in T cells (Il2, Il4g), B cells (E47) or mast cells (Il3) (Carballo et al., 2000; Stoecklin et al., 2003, 2008; Tchen et al., 2004; Ogilvie et al., 2005, 2009; Chen et al., 2006; Lai et al., 2006; Frasca et al., 2007; Datta et al., 2008; Horner et al., 2009; Tudor et al., 2009; Zhao et al., 2011). Several of the known TTP targets did not rank among the top 25 unstable mRNAs though they all displayed TTP-dependent decays with P-values <0.05 in our analysis (Table I). Within the 25 most unstable mRNAs only three were not destabilized in a TTP-dependent manner (Table IA) emphasizing the fundamental role of TTP particularly in the removal of the short-lived messages. Increased mRNA stability in TTP−/− BMDMs can be also caused by an indirect involvement of TTP, e.g., by an mRNA-stabilizing protein that may be more abundant in TTP−/− cells. To test the direct involvement of TTP, we selected the mRNAs of Il1α and Cxcl2 (GenBank IDs: NM_010554 and NM_009140, respectively) for a comprehensive analysis. The P-values for TTP-mediated decays and the half-lives of these mRNAs ranged from being strong (Cxcl2) to modest (Il1α) dependent on TTP (Table IB). Verification of the microarray data by quantitative RT–PCR (qRT–PCR) under same experimental conditions (i.e., in the presence of p38 MAPK inhibitor) confirmed that Il1α and Cxcl2 were degraded in a TTP-dependent manner (Figure IA). Analysis of the 3′ UTRs of the two mRNAs using ARSsite (Gruber et al., 2011) revealed that they contained several
Qualitative and temporal mRNA decay control by TTP
F Kratochvill et al

AUUUAA pentamers represent a minimal ARE, and several UAUUUAAU heptamers, the core TTP binding site (Lai et al., 2006; Supplementary Figure 2A). To test TTP binding to RNA in vitro, RNA oligonucleotides comprising the conserved AREs (Supplementary Figure 2B) were examined for their ability to compete with the Tnf ARE, a well-characterized TTP-binding sequence (Blackshear et al., 2003), for TTP binding in RNA electrophoretic mobility shift assay (RNA-EMSA) experiments. The conserved AREs of the selected mRNAs were all able to compete with the Tnf ARE confirming their binding to TTP (Figure 1B). To prove that TTP conferred instability to the two targets through their 3′ UTRs, and to exclude secondary effects of the general transcriptional blockade by act D (e.g., by blocking transcription of genes encoding labile RNases), we fused the 3′ UTRs of the chosen mRNAs to a tetracycline-regulated β-globin reporter (Ogilvie et al., 2005). HeLa Tet-Off cells were co-transfected with a TTP expression construct and the 3′ UTR reporters. After shutting off transcription by tetracycline, TTP accelerated the decay of the two targets whereas the stability of the control reporter (3′ UTR of Hprt) remained unaffected (Figure 1C). All these independent assays confirmed Ccl2 and Il1a to be TTP targets in BMDMs. Previous reports describing Il1a and Ccl2 as TTP targets (Jalonen et al., 2006; Tudor et al., 2009) were based only on one type of assay which, if employed individually, may not be sufficient to unambiguously define TTP targets. To further validate the results of our screen, we demonstrated binding of several novel targets (Ccl2, Ccl4, Ccl7, Ccl20, Ets2, Il1a, Junb, Plaur and Tnfsf9) to TTP by RNA immunoprecipitation (Figure 1D). Tnf and Il6 served as positive and Hprt as negative controls. Extracts from LPS-treated WT and, for control, TTP−/−/C0 BMDMs were incubated with antibody to TTP or control preimmune serum. The bound RNA was isolated, reverse transcribed and used for RT–PCR to demonstrate binding to TTP. Cumulatively, these data support the concept that our microarray-based mRNA

Table 1 Decay of most significantly unstable mRNAs is TTP dependent

Nr.	mRNA accession nr.	Gene name	P-value for decay in WT	P-value for TTP-dependent decay	Half-life in WT (min)	Half-life in TTP−/−/C0 (min)
1	NM_013693	Tnf	0.000	0.000	21	208
2	NM_009404	Tnfsf9	0.000	0.000	5	444
3	NM_010104	Edn1	0.000	0.000	5	444
5	NM_152804	Pik2	0.000	0.000	25	43
46	NM_001756	Zfp36	0.000	0.000	24	60
47	NM_008176	Cxcl1	0.000	0.000	31	567
30	NM_007007	Sox3	0.000	0.000	24	38
41	NM_009397	Tnfap3	0.000	0.000	28	39
76	NM_009097	Nfkbia	0.000	0.005	26	45
77	NM_008348	Il10ra	0.000	0.000	40	130
11	NM_007746	Map3k8	0.000	0.009	36	58
35	NM_175666	Hist1h2bb	0.000	0.000	42	89
13	NM_053109	Clec2d	0.000	0.061	33	44
14	NM_009140	Cxcl2	0.000	0.000	47	Stable
15	NM_017373	Nfli3	0.000	0.001	38	75
16	NM_020044	Hist1h1b	0.000	0.000	36	66
17	NM_008416	Jund	0.000	0.004	47	65
18	NM_030609	Hist1h1a	0.000	0.043	45	68
19	BC011440	LOCC66622	0.000	0.037	44	60
20	NM_007679	Cebp	0.000	0.000	48	81
21	NM_019873	Fkbp1	0.000	0.000	48	81
22	NM_018820	Sertad1	0.000	0.005	41	83
23	NM_178199	Hist1h2bl	0.000	0.025	44	70
24	NM_010500	Ier5	0.000	0.003	40	86
25	NM_178201	Hist1h2bn	0.000	0.037	46	71

(A) Top 25 transcripts displaying most significant instability values.

(B) Reported TTP targets and targets characterized in detail in this study

Nr.	mRNA accession nr.	Gene name	P-value for decay in WT	P-value for TTP-dependent decay	Half-life in WT (min)	Half-life in TTP−/−/C0 (min)
1	NM_013693	Tnf	0.000	0.000	21	208
5	NM_001756	Zfp36	0.000	0.000	5	444
6	NM_008176	Cxcl1	0.000	0.000	5	444
14	NM_009140	Cxcl2	0.000	0.000	47	Stable
34	NM_133662	Ier3	0.000	0.008	39	63
58	NM_009969	Cxcl2	0.000	0.002	36	83
89	NM_010548	Iil10	0.000	0.001	28	151
131	NM_010554	Iil1a	0.000	0.004	73	355
164	NM_031168	Iil6	0.000	0.005	77	269
216	NM_008361	Iilb	0.000	0.011	102	Stable

(B) Data for reported TTP targets and targets characterized in detail in this study (i.e., Clec2d and Il1a) are depicted.

© 2011 EMBO and Macmillan Publishers Limited

Molecular Systems Biology 2011 3
Figure 1 Characterization of Il1a and Cxcl2 mRNAs as TTP targets. (A) TTP destabilizes mRNA of Il1a and Cxcl2 in a p38 MAPK-dependent way. WT (TTP+/+) and TTP−/− BMDMs were stimulated for 3 h with LPS followed by transcriptional blockage with act D in the presence of the p38 MAPK inhibitor SB203580 (SB). Decay rates of Il1a and Cxcl2 were monitored by qRT–PCR at the indicated time points. Remnant Il1a and Cxcl2 mRNAs in percent of the amount at the time point of act D treatment is depicted; s.e.m. is shown (n=3). (B) TTP binds to conserved AREs within the 3’ UTR of Il1a and Cxcl2. HeLa Tet-Off cells were transfected with tetracycline-controlled expression plasmid for Flag-tagged TTP. TTP expression was activated or blocked by cultivating the cells overnight in the absence or presence of tetracycline, respectively. Extracts containing TTP (−tetracycline) or without TTP (+tetracycline) were assayed by RNA-EMSA for binding to Cy5.5-labeled Tnf ARE. For competition experiments, 1×, 10× or 100× excess of unlabeled Tnf ARE, a random RNA sequence, Il1a ARE or Cxcl2 ARE was added 20 min after the labeled Tnf ARE. The complexes were incubated for additional 20 min and loaded onto the gel. The identity of TTP-containing complexes was confirmed by supershift (ssTTP) using Flag antibody. (C) 3’ UTRs of Il1a and Cxcl2 confer TTP-dependent instability. HeLa Tet-Off cells were transfected with reporter plasmids containing tetracycline-regulated β-globin fused to 3’ UTRs of Il1a (pTetBBB/Il1a), Cxcl2 (pTetBBB/Cxcl2) and the control Hprt (pTetBBB/Hprt) together with pCMV-TTP or empty pCMV vector. Twenty-four hours after transfection, tetracycline was added to stop the reporter gene transcription and RNA was isolated at the times indicated. Remnant mRNA is shown in percent of the amount at the time point of transcription stop. Values at each time point represent the mean and s.e.m. of independent experiments (n=3). (D) TTP interacts with the novel targets Ccl2, Ccl4, Ccl7, Cxcl2, Ets2, Il1a, Junb, Plaur, Tnfsf9, and the known targets Tnf and Il6 but not with the negative control Hprt. WT or TTP−/− BMDMs were treated with LPS for 4 h and the cell lysates were used for RNA immunoprecipitation with TTP antibody (AB) or preimmune serum control (SC). Input control sample was taken before immunoprecipitation. Immunoprecipitated RNA was analyzed by RT–PCR. H2O control contains no template. Note: Junb-specific PCR product is the upper band whereas the lower band represents unused PCR primers that are most strongly visible in the H2O control. The data are representative of three independent experiments. Source data is available for this figure in the Supplementary Information.
decay analysis identified most of the TTP target mRNAs present in cells after 3 h of LPS treatment (Figure 2A; Supplementary Table 1).

Removal of one third of unstable mRNAs in LPS-induced macrophage transcriptome depends on TTP

To estimate the selective contribution of TTP to the overall decline of inflammatory response after TLR stimulation, we calculated mRNA stability only for the LPS-induced genes. Expression of these genes was recently shown to be strongly controlled by mRNA stability (Hao and Baltimore, 2009). The transcripts with the most dynamic expression profile, i.e., those showing a rapid and transient induction, were particularly robustly regulated at the level of mRNA stability.

To examine the role of TTP in the stability of these early inflammatory mRNAs, we selected LPS-induced genes from our recently published data set of the LPS-induced

![Diagram A](https://example.com/diagramA.png)

Unstable transcripts (93)
- **TTP independent**
- **Stable transcripts (418)**

LPS-induced transcriptome

![Diagram B](https://example.com/diagramB.png)

Unstable transcripts (781)
- **TTP independent**
- **Stable transcripts (8757)**

Whole transcriptome

Figure 2 mRNA stability and TTP-dependent mRNA decay in the whole and LPS-induced transcriptome, and Cxcl2 mRNA stability profile during LPS response. (A) mRNA stability of LPS-induced transcripts. Unstable mRNAs represent 25% of LPS-induced transcripts (138 out of 546) illustrating that unstable mRNAs are enriched in LPS-induced transcriptome compared with whole transcriptome (25:10%). Out of the 138 unstable mRNAs, 45 (33%) are destabilized by TTP. (B) mRNA stability in the whole transcriptome. Within 9847 transcripts, 1090 (10%) are unstable. Out of the 1090 unstable transcripts, 309 (28%) mRNAs display TTP-dependent decay. (C) Cxcl2 mRNA becomes destabilized in a TTP-dependent manner after prolonged LPS treatment. WT and TTP^{-/-} BMDMs were left unstimulated or were stimulated for 3, 6 or 8 h with LPS followed by transcriptional blockade with act D. Decay rate of Cxcl2 was monitored by qRT–PCR at the indicated time points. Remnant Cxcl2mRNA in percent of the amount at the time point of act D treatment is depicted; s.e.m. is shown (n=3). Source data is available for this figure in the Supplementary Information.
transcriptome (Mages et al., 2007) and compared their mRNA stability using the mRNA decay data set. Transcripts induced at least three-fold after stimulation with LPS for 3 h were considered as LPS induced. Out of 546 LPS-induced transcripts, 138 transcripts (25%) were classified as significantly unstable (Figure 2A). Thus, unstable transcripts were enriched in the LPS-induced transcriptome compared with the whole transcriptome (25 versus 10%) (Figure 2B). Transcripts displaying TTP-dependent decay represented 33% of the unstable LPS-induced mRNAs revealing a key role of TTP in the removal of inflammatory mRNAs (Figure 2A; Table II; Supplementary Table 2). Apart from the known TTP targets (e.g., Tnf, Il10, Cxcl1, Il1b, and Il6) and those described in more immune response is destabilized in a TTP-dependent way, and hence are putative TTP targets.

Table II LPS-induced mRNAs destabilized by TTP

Nr.	mRNA accession nr.	Gene name	P-value for decay in WT	P-value for TTP-dependent decay	Half-life in WT (min)	Half-life in TTP /− (min)	Induction by LPS (fold)
1	NM_03693	Tnf	0.000	0.000	21	208	4.52
2	NM_00876	Cxcl1	0.000	0.000	31	567	5.83
3	NM_009140	Cxcl2	0.000	0.000	47	Stable	24.42
4	NM_009404	Tnfsf9	0.000	0.000	29	65	3.55
5	NM_012004	Edn1	0.000	0.001	31	54	3.2
6	NM_017373	Nfll	0.000	0.001	38	75	15.1
7	NM_008416	Junb	0.000	0.004	36	66	3.23
8	NM_010907	Nkbia	0.000	0.005	26	45	3.65
9	NM_007707	Soc3	0.000	0.007	24	38	5.37
10	NM_007746	Map3k8	0.000	0.009	36	58	7.31
11	NM_009397	Tnfaip3	0.000	0.041	28	39	9.8
12	NM_009895	Cish	0.000	0.000	34	129	100.62
13	NM_008654	Myd116	0.000	0.001	48	117	3.67
14	NM_135662	Ier3	0.000	0.008	39	63	3.51
15	NM_011368	Ccl2	0.000	0.002	36	82	3.86
16	NM_172911	D8erd82e	0.000	0.014	57	87	7.02
17	NM_153287	Axadr	0.000	0.017	38	78	4.81
18	NM_008642	Pim1	0.000	0.000	73	381	8.73
19	NM_035484	Il10	0.000	0.001	28	151	3.41
20	NM_153159	Zc3h12a	0.000	0.017	62	108	3.13
21	NM_175045	Bcor	0.000	0.005	82	224	4.83
22	NM_010554	Il1a	0.000	0.004	73	355	49.23
23	NM_015790	Icosl	0.000	0.014	92	411	8.51
24	NM_013168	Il6	0.000	0.005	77	269	5.83
25	NM_011333	Ccl2	0.000	0.005	85	409	3.81
26	NM_010755	Maff	0.000	0.001	95	Stable	94.21
27	NM_013652	Ccl4	0.000	0.005	106	Stable	4.54
28	NM_03601	Bel3	0.000	0.013	106	422	4.16
29	NM_012352	Il23a	0.000	0.003	109	Stable	4.92
30	NM_008361	Il1b	0.000	0.011	102	Stable	5.54
31	NM_013822	Jag1	0.000	0.006	114	Stable	8.78
32	NM_000801289	Lphp2	0.000	0.000	81	Stable	3.01
33	NM_01113	Plaur	0.001	0.008	136	Stable	167.55
34	NM_13547	Pld1	0.000	0.001	41	Stable	52.95
35	NM_008057	Fzd7	0.001	0.017	117	Stable	3.92
36	NM_013654	Ccl7	0.001	0.031	117	454	8.85
37	NM_011337	Ccl3	0.001	0.011	184	Stable	14.94
38	NM_198600	Poes	0.001	0.008	106	Stable	4.12
39	NM_172572	Rhbd2	0.001	0.022	147	Stable	3.04
40	NM_011198	Ptg2	0.004	0.038	139	Stable	4.15
41	NM_010731	Zbetb7a	0.006	0.045	150	Stable	10.13
42	NM_019835	B4gat5	0.008	0.042	196	Stable	8.21
43	NM_17572	Rgbd2	0.010	0.022	189	Stable	25.03
44	NM_014493	Icam1	0.014	0.014	247	Stable	4.55
45	NM_178644	Oaf	0.025	0.011	222	Stable	8.4

In all, 45 out of 138 unstable LPS-induced unstable transcripts are destabilized in TTP-dependent manner. TTP-dependent decay was defined by P-values <0.05 for decay differences between WT and TTP /− cells. The transcripts are ordered according to their P-values for decay in WT cells. Calculated half-lives support the visualization of the P-values.
for mRNA bound to TTP (Lai et al., 2006; Emmons et al., 2008; Stoecklin et al., 2008). In our data set (Supplementary Table 2), the TTP-destabilized LPS-induced transcripts were significantly (**) enriched in AUIUA pentamers (P=0.0074) and WWAUUAWW nonamers (P=0.0013) if compared with unstable transcripts not targeted by TTP. This distribution further confirms the dominant role of AREs in TTP-mediated mRNA degradation.

Timing of TTP-dependent degradation of individual mRNAs is controlled by the profile of p38 MAPK activity during inflammatory response

We explain this so far underestimated extent of TTP-dependent mRNA decay by the rapid pharmacological inhibition of p38 MAPK at the peak of inflammatory response, i.e., at the time of still high abundance of inflammatory transcripts. Normally, the p38 MAPK inactivation occurs gradually (Supplementary Figure 3) due to the endogenous IL-10 production that is needed for a sustained expression of Dusp1 in LPS-treated BMDMs (Hammer et al., 2005, 2006; Schaljo et al., 2009). Consequently, the TTP-dependent mRNA decay should become more pronounced during the resolution phase of inflammation when the p38 MAPK-mediated inhibition of TTP activity is already strongly diminished. We tested this model by assaying the decay of Cxcl2 mRNA prior and during the entire inflammatory response to LPS (Figure 2C). Before LPS treatment, Cxcl2 mRNA was considerably more unstable in WT (t1/2=49 min) than in TTP−/− cells (t1/2=158 min) showing that the basal amount of TTP present in the cells under low p38 MAPK activity conditions (Supplementary Figure 3) was sufficient to measurably destabilize mRNA. After 3 h treatment with LPS, i.e., under conditions of high p38 MAPK activity (Supplementary Figure 3), Cxcl2 mRNA was stable in WT cells (Figure 2C) indicating that TTP activity toward Cxcl2 mRNA was blocked. However, after 6 and 8 h of LPS treatment, i.e., under conditions of diminishing p38 MAPK activity, Cxcl2 mRNA became gradually unstable in WT cells, and it was more stable in TTP−/− cells at both time points (Figure 2C). The half-lives in WT cells were 68 min at 6 h and 47 min at 8 h whereas in TTP−/− cells the mRNA was stable at 6 h and displayed a half-life of 103 min at 8 h of LPS treatment. The mRNA stability profile demonstrated that Cxcl2 mRNA was more resistant to TTP-mediated destabilization than, e.g., Tnf mRNA since after 3 h of LPS treatment only strong activation of TTP by means of pharmacological inhibition of p38 MAPK revealed the effect of TTP (Figures 1A and 2C), whereas Tnf mRNA was destabilized without p38 MAPK inhibition although enhanced destabilization in the presence of the p38 MAPK inhibitor was also observed (Supplementary Figure 4). Together, these data indicate that after the peak p38 MAPK activation and the highest mRNA stabilization the steadily decreasing p38 MAPK activity reduces TTP protein levels but progressively increases TTP activity such that the initially stable TTP targets become destabilized with time. This model is further supported by experiments employing cells and animals with myeloid-specific conditional TTP ablation as described below (Figure 4A; Supplementary Figure 5). The continuous inverse coupling of p38 MAPK activity with the mRNA-destabilizing function of TTP during the inflammatory response represents an efficient and self-limiting regulatory system that determines the chronology of the elimination of individual mRNAs.

mRNA decay in macrophages with conditional TTP deletion

To validate the proposed regulatory circuit in vivo and to circumvent the systemic inflammatory disease of the conventional TTP deletion (Taylor et al., 1996), we generated mice lacking TTP in monocytes, macrophages and neutrophils. These cells are the main cell types involved in the lethal outcome of LPS-induced endotoxin shock (Grivennikov et al., 2005). Mice for conditional TTP deletion were produced by standard gene-targeting techniques (Figure 3A). Mice bearing loxp-flanked TTP were crossed with LysMcre mice to obtain TTP deletion in myeloid cells (TTPAM; Clausen et al., 1999). Genomic PCR of BMDMs from TTPAM mice indicated successful TTP deletion (Figure 3B). LPS-treated BMDMs obtained from TTPAM did not express TTP and produced two-fold more TNF cytokine compared with TTPfl/fl control cells (Figure 3C and D). The induction of Tnf mRNA by LPS was similar in TTPAM BMDMs and the conventional TTP knockout cells (Taylor et al., 1996) further confirming the TTP deficiency in the conditionally ablated cells (Figure 3E).

We used TTPAM BMDMs to provide additional evidence for our model describing how a permanent link between p38 MAPK and TTP controls the timing and extent of degradation of individual mRNAs. We analyzed the mRNA stability profile of Tnf, the best-known TTP target, Il1a as one of the TTP targets identified and characterized in detail in this study, and Il6 that was recently identified as a target strongly regulated by p38 MAPK (Tudor et al., 2009; Zhao et al., 2011) at 0, 3, 6 and 9 h of LPS treatment in TTPAM and the control TTPfl/fl BMDMs. In TTPfl/fl cells, the initially highly unstable Tnf mRNA was stabilized at 3 h after which it became again more unstable: t1/2=30 min (LPS 0 h), t1/2=47 min (LPS 3 h), t1/2=20 min (LPS 6 h) and t1/2=18 (LPS 9 h) (Figure 4A). In TTPAM cells, Tnf mRNA was at all time points more stable compared with the TTPfl/fl control cells: 0 h t1/2=36 min (LPS 0 h), t1/2=180 min (LPS 3 h), t1/2=69 min (LPS 6 h) and t1/2=53 min (LPS 9 h) (Figure 4A). Thus, in contrast to Cxcl2 mRNA (Figure 2C), TTP was able to destabilize Tnf also at high p38 MAPK activity confirming previous reports and above-mentioned data (Supplementary Figure 4). However, similar to Cxcl2, TTP exhibited increasing destabilizing activity toward Tnf mRNA at later time points as apparent from the ratios of remaining mRNA amounts in TTPAM cells versus TTPfl/fl cells (Figure 4B). Il1a and Il6 mRNAs were generally more stable throughout the time course, but both displayed decreased stability at 6 h (for Il1a) and 9 h (for both Il1a and Il6) in TTPfl/fl cells whereas in TTPAM they remained stable (Il1a throughout the time course, Il6 for 3 and 6 h) or were only slightly destabilized (Il6 for 9 h) (Supplementary Figure 5). Due to low expression of these two cytokines in unstimulated cells, we were not able to obtain consistent results at 0 h. Together, these experiments supported our model derived from the analysis of the Cxcl2 mRNA stability profile (Figure 2) that early after LPS stimulation the TTP-dependent mRNA decay is inhibited, but
thereafter it progressively unfolds in terms of quality and quantity. Analysis of Tnf mRNA decay further revealed that in unstimulated cells (0 h LPS) the Tnf mRNA was unstable also in TTPΔM cells although it was still even more unstable in TTPfl/fl cells ($t_{1/2}=36$ min in TTPAM versus $t_{1/2}=30$ min in TTPfl/fl) (Figure 4A). The TTP-independent Tnf mRNA degradation was abolished or reduced after 3 and 6 h of LPS treatment since the Tnf message was stabilized in TTPAM cells at these time points (Figure 4A). After 9 h of LPS treatment, the TTP-independent component of Tnf mRNA degradation became apparent again, although to a lesser extent than at 0 h (Figure 4A). Tnf mRNA can be destabilized by other members of the TTP family, the Tis11b and Tis11c proteins (gene names Zfp36l1 and Zfp36l2, respectively) although the
regulation of mRNA degradation by these proteins and their targets in vivo are poorly understood (Lai et al., 2000; Hodson et al., 2010). We noticed that expression of Tis11b and Tis11c was high in unstimulated cells but it rapidly dropped after LPS stimulation (Supplementary Figure 6). This expression profile suggested that the TTP-independent \(\text{Tnf} \) mRNA degradation before LPS stimulation could be caused by Tis11b and Tis11c. The rapid decrease of Tis11b and Tis11c expression after LPS treatment was consistent with the disappearance of the TTP-independent \(\text{Tnf} \) mRNA decay.

The TTP-dependent \(\text{Tnf} \) mRNA destabilization in unstimulated cells (Figure 4A) resembled the observation obtained for \(\text{Cxcl2} \) (Figure 2C), and it further confirmed that the basal TTP expression was sufficient to measurably destabilize TTP targets. TTP expression was low but detectable at both mRNA and protein levels in unstimulated cells (Supplementary Figure 7). Regardless of the mRNA degradation by TTP in cells before LPS treatment, the mRNA stability profile of \(\text{Tnf}, \text{Il}1\alpha \) and \(\text{Il}6 \) at 3, 6 and 9 h after LPS treatment was in agreement with the model of gradually increasing TTP activity as first revealed by analysis of \(\text{Cxcl2} \) (Figure 2C). To substantiate our model, we employed microarrays to analyze mRNA stability at 3 and 9 h after LPS stimulation of TTP\(^{\Delta M} \) and control TTP\(^{fl/fl} \) BMDMs. mRNA amounts were determined before (0 min) and 90 min after the transcription inhibition by act D. We calculated half-lives of novel TTP targets for which we show RNA immunoprecipitation data in Figure 1D (\(\text{Ccl2}, \text{Ccl4}, \text{Ccl7}, \text{Cxcl2}, \text{Ets2}, \text{Il}1\alpha, \text{Junb}, \text{Plaur} \) and \(\text{Tnfsf9} \)), as well as for targets identified in previous screens (\(\text{Ccl3}, \text{Cxcl1}, \text{Ier3}, \text{Il}6, \text{Il}10, \text{Il}12b \) and \(\text{Tnf} \)). Averaged log\(2 \)-transformed microarray signal intensities derived from three biological replicates for each of these genes (Supplementary Table 3) were used for half-life calculations. As shown in Table III, except for \(\text{Ccl2}, \text{Junb} \) and \(\text{Ets2} \) all targets displayed half-lives that were in agreement with the proposed model since the mRNAs were less stable after 9 h LPS than after 3 h LPS in TTP\(^{fl/fl} \) cells, and at the same time they were always more stable in TTP\(^{\Delta M} \) cells. Importantly, in most cases the half-life differences between TTP\(^{fl/fl} \) and TTP\(^{\Delta M} \) cells confirmed progressively increasing TTP-dependent mRNA degradation with time of LPS treatment. \(\text{Ccl2} \) was stable under these conditions (in contrast to experiments employing p38 MAPK inhibition in Table II), suggesting that p38 MAPK was still too
high to allow Ccl2 mRNA degradation. Junb and Ets2 were more stable in TTPm mice than in TPfl/fl only after 3 h of LPS treatment but not after 9 h, suggesting that TTP-independent decay mechanisms became more prominent for these targets at later phase of LPS stimulation. Cumulatively, the mRNA stability profiles obtained using different approaches supported the proposed model for the regulation of timing and extent of mRNA decay by TTP.

Ablation of TTP in myeloid cells is not detrimental to health but causes hypersensitivity to LPS and dysregulated timing of cytokine production

For validation of our model of TTP-mediated mRNA decay, we employed LPS-induced shock. At the age of 6–12 weeks, i.e., the age at which animals were used for experiments, TTPm mice appeared healthy, had normal body weight (Figure 5A) and were fertile. No aberrant blood counts and no signs of dermatitis were detected (Figure 5B and C). TTPm animals remained free of dermatitis and cachexia until the age of at least 7 months, the latest time of observation, when most of the conventional TTPfl/fl mice had already died from it (unpublished observation). These data implicate that cells other than those involved in the chronic inflammation or had already died from it (unpublished observation). These data implicate that cells other than those involved in the chronic inflammation or had already died from it.

Table III Decay rates in TTPm and TPfl/fl BMDMs at 3 and 9 h of LPS treatment

Nr.	RNA accession nr.	Gene name	3 h LPS, TPfl/fl half-life (min)	3 h LPS, TTPm half-life (min)	9 h LPS, TPfl/fl half-life (min)	9 h LPS, TTPm half-life (min)
1	NM_01333	Ccl2	Stable	Stable	Stable	Stable
2	NM_01337	Ccl3	Stable	Stable	58	Stable
3	NM_013652	Ccl4	54	Stable	31	41
4	NM_013654	Ccl5	Stable	Stable	486	Stable
5	NM_0001276	Cxcl1	104	202	19	19
6	NM_009140	Cxcl2	Stable	Stable	39	84
7	NM_01809	Ets2	68	73	107	107
8	NM_133662	Ikerg	36	79	12	17
9	NM_00548	Iil10	Stable	Stable	12	44
10	NM_00554	Iil1a	Stable	Stable	29	197
11	NM_008361	Iil1b	Stable	Stable	54	174
12	NM_031168	Iil6	Stable	152	44	111
13	NM_008416	Junb	25	30	19	17
14	NM_01113	Flaur	Stable	Stable	118	541
15	NM_013693	Tnf	54	283	12	23
16	NM_009404	Tnfsf9	26	35	20	28

3 h (Figure 6B). The profiles of Cxcl1 and Cxcl2 displayed the highest difference after 8 h of LPS treatment (Figure 6C). These data are in agreement with the profile of mRNA stability in WT versus TPfl/fl or TTPm mice showing TTP effect on Tnf mRNA at the peak of inflammatory response, whereas the effect on Cxcl2 was detectable either only upon p38 MAPK inhibition or at the later phase of inflammation when p38 MAPK activity dropped (Figures 4A and 2C, respectively). Similarly, Cxcl1 mRNA was found strongly destabilized in WT macrophages only upon inhibition of p38 MAPK (Datta et al, 2008) or at the later time point after LPS stimulation (Table III). These data demonstrate the functional importance of the TTP-mediated control of timing and quality of mRNA decay for the regulation of inflammatory mediators in vivo. This control allows sequential shut-off of individual cytokines such that potentially deleterious effects of a premature or delayed termination of these cytokines are prevented. The LPS endotoxin shock model reveals that myeloid TTP is phenotypically more important in the control of the proinflammatory factors since the higher IL-10 levels in the TTPm mice were not able to reverse the increased sensitivity to LPS. The overall good health of TTPm animals together with their increased susceptibility to LPS indicates that myeloid TTP is not primarily involved in the maintenance of immune homeostasis under steady-state conditions but rather controls balanced responses to inflammatory stimuli such as TLR ligation.

Discussion

Cessation of transcription does not immediately result in the termination of expression unless the already generated mRNAs are degraded. This has been demonstrated by studies describing lethal consequences of uncontrolled Tnf expression caused by the removal of AREs from its 3’ UTR (Kontoyiannis et al., 1999; Murray, 2005). On the other hand, immune cells must be able to robustly stimulate the expression of inflammatory genes in the early phase of the inflammatory response. In addition, the shutdown of the most potent inflammatory cytokines (e.g., Tnf) must precede the down-
Figure 5 TTP^{−/−} mice are healthy. (A) Sex-matched (males) TTP^{−/−} mice (n=8) and control TTP^{fl/fl} littermates (n=6) have comparable body weight (age of both genotypes: 9 weeks). (B) Sex-matched (females) TTP^{−/−} mice (n=3) and control TTP^{fl/fl} littermates (n=5) have normal blood counts (age of both genotypes: 6–8 weeks). (C) Skin of female TTP^{−/−} mice and control TTP^{fl/fl} littermates displays healthy architecture with comparable subcutaneous fat tissue and no signs of dermatitis (H&E-stained sections representative of at least five 7–9-week-old animals are shown). (D) Spleen of TTP^{−/−} mice (n=10) exhibit 70% increased weight compared with control TTP^{fl/fl} littermates (n=8). Animals of both genotypes were males of 9–10 weeks of age. Significance of different spleen weight is indicated by asterisk (*P<0.05). Source data is available for this figure in the Supplementary Information.

Figure 6 TTP^{−/−} mice are more susceptible to LPS-induced endotoxin shock and exhibit dysregulated temporal control of cytokine production. (A) Kaplan–Meier survival curves reveal increased lethality of female TTP^{−/−} mice (n=6) compared with control TTP^{fl/fl} littermates (n=6) after LPS challenge. Animals of both genotypes were females of 9–10 weeks of age. Experiments were carried out three times with similar outcome. (B) TTP^{−/−} mice exhibit elevated serum levels of TNF (after 1 h of LPS treatment) and IL-10 (after 3 h of LPS treatment) compared with control TTP^{fl/fl} littermates. (C) Cxcl1 and Cxcl2 levels were increased only at later time points after LPS treatment in the serum of TTP^{−/−} mice compared with TTP^{fl/fl} littermates. In (B) and (C), error bars display s.e.m. (n=5); significance of different cytokine levels is indicated by asterisks. Source data is available for this figure in the Supplementary Information.
regulation of anti-inflammatory (e.g., \textit{Il10}) or tissue-regenerating cytokines. Thus, a mechanism must be in place that actsuate the inflammatory mRNA degradation with some delay after the initial inflammatory stimulus. The delay is variable but specific for individual mRNAs. This study describes a TTP- and p38 MAPK-driven negative feedback system that executes a delayed yet robust elimination of a large number of inflammation-induced mRNAs in a qualitative and temporally resolved manner (Figure 7). The downstream effector of the system is the ARE-binding protein TTP whose mRNA destabilizing function inversely correlates with the profile of p38 MAPK activity during the entire inflammatory response. This negative regulatory circuit is operational also in vivo since its inactivation impairs the ability of mice to cope with inflammatory challenge but the mice are still able to maintain their immune homeostasis under steady-state conditions.

The large extent of TTP-dependent mRNA decay uncovered by the microarray-based differential analysis of mRNA stability is supported by several lines of evidence. First, we employed the most stringent criterion for finding TTP targets namely a slower decay in TTP-/- compared with WT cells instead just increased steady-state mRNA levels in TTP-/- cells or a direct physical interaction of mRNA with TTP. Second, two selected mRNAs were confirmed by detailed studies as TTP targets. Third, all the best-characterized TTP targets expressed in macrophages were identified as TTP targets. Fourth, two selected mRNAs were confirmed by detailed studies as TTP targets. Third, all the best-characterized TTP targets expressed in macrophages were identified as TTP targets. Fourth, the TTP-related proteins Tis11b and Tis11c was inhibited by p38 MAPK, for the decay of other targets a low p38 MAPK activity, i.e., a high TTP activity is needed. This is illustrated by the high stability of \textit{Cxcl2} after 3 h of LPS treatment when only an inhibition of p38 MAPK reveals this target to be unstable. After 6 and 8 h of LPS treatment, \textit{Cxcl2} becomes spontaneously unstable and the inhibition of p38 MAPK is no longer needed to detect TTP-dependent decay. This temporal and qualitative control of mRNA decay by TTP is observed also in vivo since mice with TTP ablation in macrophages display sequential increase of several cytokines upon LPS challenge compared with WT animals. How does p38 MAPK enable TTP to discriminate between different targets is an important topic for future studies. The sequence of the ARE alone cannot account for the observed differences since both \textit{Tnf} and \textit{Cxcl2} possess comparable AREs yet only \textit{Tnf} is destabilized by TTP at a high p38 MAPK activity. Thus, so far unknown regulatory elements in the 3’ UTRs such as micro RNA-binding sites are likely to be involved (von Roretz and Gallouzi, 2008). Another aspect of the integrated regulation of mRNA decay was revealed by our experiments in unstimulated cells showing that \textit{Tnf} mRNA was significantly destabilized also independently of TTP whereas \textit{Cxcl2} mRNA was only slightly unstable in the absence of TTP. The TTP-independent \textit{Tnf} mRNA decay was almost abolished upon LPS treatment. Since expression of the TTP-related proteins Tis11b and Tis11c was inhibited by LPS, it is intriguing to speculate that these proteins might be targeting \textit{Tnf} together with TTP under steady-state conditions whereas TTP alone is the major \textit{Tnf} mRNA-destabilizing factor during inflammation. The advantage of such a system lies in the regulation of TTP activity by the continuous inverse coupling to p38 MAPK that allows permanent sensing of the inflammatory status. Such regulation has so far not been reported for Tis11b and Tis11c. One could hypothesize that the small extent of TTP-independent decay of \textit{Cxcl2} mRNA compared with \textit{Tnf} mRNA in unstimulated cells is caused by differential target specificity of Tis11b and Tis11c toward these transcripts. Given the currently limited knowledge about Tis11b and Tis11c with regard to their regulation and targets

is documented by the mRNA stability profile of \textit{Cxcl2} displaying increasing TTP-dependent decay following the spontaneous drop of p38 MAPK activity. In further support, \textit{fos} mRNA that is known to be unstable independently of TTP (Stoecklin \textit{et al}, 2001; Lai \textit{et al}, 2006) was unstable yet not targeted by TTP in our study as well. For all these reasons, we conclude that the majority of mRNAs stabilized in TTP-/- cells are direct TTP targets. Nevertheless, indirect effects of TTP by, e.g., upregulation of an inhibitor of mRNA decay in TTP-/- cells cannot be entirely ruled out as demonstrated by the presence of the few ARE-free mRNAs in our data set. However, the mRNA levels of HuR, the most prominent mRNA-stabilizing factor that in some cases antagonizes TTP (Abdelmohsen \textit{et al}, 2007), were comparable in WT and TTP-/- cells in the microarray data set (http://www.ncbi.nlm.nih.gov/geo/, accession number GSE28880).

Our study indicates that the TTP-mediated mRNA destabilization process discriminates between the different targets depending on the p38 MAPK activity. This allows for a fine-tuning of the control of the inflammatory response in terms of both kinetics and strength. Whereas some targets can be significantly degraded also at a high p38 MAPK activity (e.g., \textit{Tnf}), for the decay of other targets a low p38 MAPK activity, i.e., a high TTP activity is needed. This is illustrated by the high stability of \textit{Cxcl2} after 3 h of LPS treatment when only an inhibition of p38 MAPK reveals this target to be unstable. After 6 and 8 h of LPS treatment, \textit{Cxcl2} becomes spontaneously unstable and the inhibition of p38 MAPK is no longer needed to detect TTP-dependent decay. This temporal and qualitative control of mRNA decay by TTP is observed also in vivo since mice with TTP ablation in macrophages display sequential increase of several cytokines upon LPS challenge compared with WT animals. How does p38 MAPK enable TTP to discriminate between different targets is an important topic for future studies. The sequence of the ARE alone cannot account for the observed differences since both \textit{Tnf} and \textit{Cxcl2} possess comparable AREs yet only \textit{Tnf} is destabilized by TTP at a high p38 MAPK activity. Thus, so far unknown regulatory elements in the 3’ UTRs such as micro RNA-binding sites are likely to be involved (von Roretz and Gallouzi, 2008). Another aspect of the integrated regulation of mRNA decay was revealed by our experiments in unstimulated cells showing that \textit{Tnf} mRNA was significantly destabilized also independently of TTP whereas \textit{Cxcl2} mRNA was only slightly unstable in the absence of TTP. The TTP-independent \textit{Tnf} mRNA decay was almost abolished upon LPS treatment. Since expression of the TTP-related proteins Tis11b and Tis11c was inhibited by LPS, it is intriguing to speculate that these proteins might be targeting \textit{Tnf} together with TTP under steady-state conditions whereas TTP alone is the major \textit{Tnf} mRNA-destabilizing factor during inflammation. The advantage of such a system lies in the regulation of TTP activity by the continuous inverse coupling to p38 MAPK that allows permanent sensing of the inflammatory status. Such regulation has so far not been reported for Tis11b and Tis11c. One could hypothesize that the small extent of TTP-independent decay of \textit{Cxcl2} mRNA compared with \textit{Tnf} mRNA in unstimulated cells is caused by differential target specificity of Tis11b and Tis11c toward these transcripts. Given the currently limited knowledge about Tis11b and Tis11c with regard to their regulation and targets
in vivo, more comprehensive studies of these proteins will be required in the future to establish functional links within the TTP protein family.

Despite the ability of TTP to profoundly control gene expression in macrophages, the phenotypic effects were restricted on broad feedback control after inflammatory challenge demonstrating the remarkable specificity of the TTP function. Mice with LysMcre-driven deletion of TTP did not display the multiple inflammatory pathologies of the conventional TTP knockout except of splenomegaly (Taylor et al., 1996). This finding indicates that the complex hyperinflammation seen in the complete TTP knockout is caused primarily by cells other than macrophages and granulocytes since LysMcre deletes in these cell types (Claussen et al., 1999). In addition, the good health of the conditionally deleted mice and the LPS hypersensitivity demonstrate that myeloid TTP is required for the dampening of gene expression after an inflammatory stimulus rather than for a continuous monitoring of the immune homeostasis under steady-state conditions. In further support, the increased cytokine levels in the serum of TTP¬/¬ mice relative to TTP¬/¬ controls were observed after LPS challenge but not before it. The inability of elevated IL-10 levels in TTP¬/¬ mice to compensate the high TNF and other inflammatory mediators in the endotoxin shock model was not surprising since the most beneficial anti-inflammatory effects of IL-10 are observed only if animals are exposed to IL-10 before the LPS challenge (Berg et al., 1995). Furthermore, IL-10 cannot unfold its full activity in the TTP¬/¬ animals since TTP is one of its downstream effectors (Schaljo et al., 2009).

Our study provides insight into the temporal and qualitative control of acute inflammation in vivo. The data explain how the control of mRNA stability contributes to the chronologically restricted function of individual inflammatory mediators in certain phases of the acute inflammatory response. The underlying regulatory circuit consisting of p38 MAPK and TTP has an outstanding functional specificity for inflammatory processes as shown by our animal studies. This characteristic is so far unique among the best-characterized ARE-binding proteins such as the TTP homologs TIS11b and TIS11d, or the RNA-stabilizing HuR which appear to have more pleiotropic functions (Ghosh et al., 2009; Hodson et al., 2010). The tight inverse coupling of TTP function with p38 MAPK activity and the self-regulatory features (e.g., disappearance of TTP expression with the drop of p38 MAPK activity) may in part explain the functional specificity of this control system. This regulatory circuit is likely to have co-evolved with the immune system since Drosophila may employ similar mechanisms to control inflammation (Cairrao et al., 2009) whereas yeast does not appear to have such coupled regulation although the individual players such as p38 MAPK, ARE-binding proteins and ARE-mediated mRNA decay are present (Puig et al., 2005).

Materials and methods

Microarray analysis of mRNA decay (with p38 MAPK inhibitor SB203580)

BMDMs from WT and TTP¬/¬ mice were treated with LPS for 3 h. Medium was then replaced by fresh medium containing act D and SB203580 for 0, 45 and 90 min before RNA extraction. BMDMs from three different mice were used for each time point, i.e., in total 18 independent biological samples were collected (9 for WT and 9 for TTP¬/¬ cells). Total RNA was then used for genome-wide expression analysis using Affymetrix Mouse Gene ST 1.0 microarrays containing 28 853 genes. Standard protocols for labeling and hybridization were followed. In brief, 200 ng of total RNA was reverse transcribed introducing by random priming a T7-binding site into the cDNA for subsequent in vitro transcription. The resulting cRNA was subjected to a second round of random primed cDNA synthesis in the presence of dUTP, which allows fragmentation of the cDNA with uracil DNA glycosylase and apurinic/apyrimidinic endonuclease 1. Fragmented cDNA was biotinylated by incubation with terminal deoxynucleotidyl transferase (TdT), and 5.5 µg of biotinylated DNA was hybridized to Mouse Gene ST 1.0 GeneChips overnight, washed, stained and scanned following Affymetrix protocols. For generation of probe set expression values, CEL files containing probe level data were normalized using the RMA algorithm implemented in the Affymetrix Expression Console. Microarray data have been deposited in Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), accession number GSE28880. Subsequently, the data were log-transformed, after subtraction of a constant of 1.41 to account for the background, to achieve approximate normality and standardized to zero mean and unit variance. A linear model with genotype (WT and TTP¬/¬), treatment (0, 45 and 90 min) and their interaction as independent variables was fitted. Residual variances were adjusted using an empirical Bayes method (Smyth, 2004) to obtain approximately i-distributed differences in gene expression values. It turned out that the resulting distribution of log 2-transformed signal intensities was slightly bi-modal, with a sharp peak at low values. We interpreted this peak as resulting from spurious background fluorescence of unexpressed genes. Thus, we filtered out genes expressed at an absolute level of <1.13, which falls into the valley between the two peaks. In addition, many fewer genes could be classified as unstable at the 45-min decay time point (due to the lower difference in relation to the variation at this time point) than at 90 min so that only the results for the 90-min time point are presented. The most extremely regulated genes were then selected according to the following criteria: (i) genes where the decay of mRNAs after 90 min was outside the one-sided z = 0.05 limit (=one *; or P < 0.05) (z-value > 1.86); (ii) genes where additionally the decay of mRNAs in TTP¬/¬ compared with WT cells after 90 min was outside the one-sided z = 0.05 limit.

The half-lives were determined using the microarray data set. First, the average difference between the time point 0 min (=transcription blockage) and 90 min (end of the decay assay) in the three biological replicates was calculated for each mRNA. These average decay values were then used to calculate the half-lives assuming an exponential decay. For half-lives > 600 min, the value was set as ‘stable’. For direct access and to allow comparison with other global screens for TTP targets, the data set is deposited in the AREsite (http://rna.tbi.univie.ac.at/cgi-bin/AREsite.cgi) (Gruber et al, 2011) (available after acceptance of the paper).

Analysis of mRNA decay in the LPS-induced transcriptome

LPS-induced genes were retrieved from our recently published microarray data set (GEO accession number GSE8621; Mages et al., 2007) obtained by stimulation of BMDMs for 3 h with LPS. Transcripts that were induced at least three-fold in comparison with unstimulated cells were examined with regard to their decay rates using the mRNA decay data set from this study.

Construction of TTP targeting vector and generation of mice with conditional TTP deletion

For conditional deletion of TTP, the CreLoxP strategy is used. TTP (Zfp36) targeting vector was generated by inserting LoxP sites at both sides of exon 2. Homologous integration of the vector after selection using neomycin was monitored by PCR. Before blastocyst injection, the neomycin resistance cassette was excised by transiently transfecting targeted ES cells with a Cre recombinase-expressing construct.

© 2011 EMBO and Macmillan Publishers Limited

Molecular Systems Biology 2011 13
Loss of the Neo cassette but not exon 2 was monitored by PCR using primers pl and p2 that were also used for subsequent genotyping (Figure 3A). Two positive clones were injected into C57BL/6 blastocysts and used to generate chimeric mice. Male chimeric mice were mated to C57BL/6 females and heterozygote offspring were further backcrossed five times with C57BL/6 using speed congenics for selection of animals with the highest C57BL/6 background (Wakeland et al., 1997). Assessment of 112 genetic markers revealed over 98.8% C57BL/6 background in the animals used for further breeding.

Mice

TTP−/− (Zfp36l2−/−) mice (Taylor et al., 1996) were on C57BL/6 background (backcrossed 10 times to C57BL/6). Mice conditionally deleting TTP in myeloid cells were obtained by breeding TTP−/− mice to LysMcre mice (Claussen et al., 1999) on C57BL/6 background to generate TTP−/− bearing single LysMcre allele (TTPΔM). All mice were housed under specific pathogen-free conditions. All animal experiments were discussed and approved by the institutional ethics committee and conform with the Austrian law (ref. 68.205/0204-C/ GT/2007, ref. 68.205/0233-IIB/10/2009 and ref. 66.006/0002-II/10B/ 2010).

ELISA

For ELISA of serum, blood serum was prepared as described and diluted 1/8 before usage. Cytokine concentration of TNF, Cxcl1, Cxcl2 and IL-10 was determined using ELISA kits (R&D Systems). IL-10 was determined using ELISA kits (R&D Systems).

Blood analysis

Blood counts of peripheral blood were determined using a V-Sight Hematology Analyzer (A. Menarini Diagnostics).

LPS-induced endotoxin shock

Animal experiments were performed with sex- and age-matched (8 weeks) mouse groups (n=10) for TTP−/− and TTPΔM mice. LPS at a concentration of 62.5 mg/kg body weight dissolved in 0.9% NaCl was injected intraperitoneally. Mice were then monitored for time of death and then centrifuged at 1000 g for 15 min before collecting the serum.

Quantitation of gene expression by qRT–PCR

Total RNA was isolated using Trizol reagent (Invitrogen) and reverse transcribed by Mu-MLV reverse transcriptase (Fermentas). Amplification of DNA was monitored by SYBR Green (Molecular Probes) as described (Morrison et al., 1998). Primers for rabbit β-globin, Tnf, Il6 and murine or human Hprt are listed in the primer list. For detection of Cxcl2, Cxcl1, Cxcl2 and IL-10 was determined using ELISA kits (R&D Systems).

RNA immunoprecipitation

Isolation of TTP-associated mRNAs under native conditions was performed essentially as described previously (Gama-Carvalho et al., 2006) with modifications. Briefly, the preextracted clear of 1× TTP−/− or WT primary macrophages was immunoprecipitated using TTP antisem or preimmune serum control for 1 h at 4°C. Immune complexes were precipitated using protein A sepharose beads (GE Healthcare) coated with RNA and RNase-free bovine serum albumin (Ambion) by rotating for 1 h at 4°C. After three washing steps with lysis buffer, bound complexes were eluted using TES buffer (10 mmol/l Tris–HCl (pH 7.9)). RNA was analyzed by qRT–PCR as described before or used for microarray hybridization.

Reagents

Rabbit antibody to TTP was used as described (Schaljo et al., 2009). pp38 MAPK and p38 MAPK antibodies were from Cell Signaling Technologies and Santa Cruz Biotechnology, respectively. LPS from Escherichia coli 055:B5 was used at a concentration of 10 ng/ml, act D and SB203580 (all from Sigma) were used at a concentration of 5 μg/ml and 4 μM, respectively.

Cell culture

HeLa Tet-Off cells (Clontech) were grown in DMEM supplemented with 10% FCS. BMDMs were grown in L cell-derived CSF-1 as described (Schaljo et al., 2009). For experiments with cells derived from TTP−/− and WT mice, littermates from TTP−/− colony were used. For experiments with cells derived from TTPΔM and TTPΔMΔ/M colony, littermates from TTPΔMΔ/M colony were used. Mouse bone marrow collection were 8–12 weeks old.

Western blot

After treatment, whole cell extracts were prepared and assayed by western blotting as described elsewhere (Schaljo et al., 2009).
Detection and quantitation of signals were performed using the infrared imaging system Odyssey (LI-Cor Biosciences).

Plasmids
pTetBBB/Ll1a, pTetBBB/CasCl2, and pTetBBB/HPRT were created by insertion of the full-length 3' UTRs of Ll1a, CasCl2, and Hprt into the BgIII and BamHI site located in the β-globin 3' UTR of the pTetBBB plasmid which was containing a TRE in the promoter (Ogilvie et al., 2005). The 3' UTRs were PCR cloned using the primers pfl1 fwd and pfl1 rev for Ll1a, pCasCl2 fwd and pCasCl2 rev for CasCl2 and pHpRt fwd and pHpRt rev for Hprt (see primer list). For constitutive expression of TTP, murine TTP was expressed from the CMV promoter in the plasmid pCMV-TTP.

Primer list
- p1: 5’-ATC TAG CTG ATC ACT ATG GGG-3’
- p2: 5’-AGC TGG TCC GTG GAT TTT GTC TGA-3’
- Murine Hprt fwd 5’-GGATTTGATACAGCTTTTGCTC-3’
- Murine Hprt rev 5’-GGTTCACCGATCGCGACAG-3’
- Human TTP fwd 5’-CTGGTGCTCAAGGGGGGGC-3’
- Human Hprt rev 5’-CTGGGGTGTTCTTTTACC-3’
- Rabbit β-globin fwd 5’-TCTTAAGGTAAGGCTCTGGCAAA-3’
- Rabbit β-globin rev 5’-GTGGTTGTTTGAGGCAGGCATT-3’
- Murine TNF fwd 5’-TTCTGTCATCTGAACTGGGGAGTCGTC-3’
- Murine TNF rev 5’-GTATGTCGATACAGTGCTGGACG-3’
- Murine IL6 fwd 5’-ATGAGCCTACCAAAACTGCT-3’
- Murine IL6 rev 5’-TGAAAGACCTGCTGGTTCTC-3’
- pfl1 fwd 5’-TCTTGGGACACGGCATTATTCGGGACCTA-3’
- pfl1 rev 5’-TTTTTGAAGCAGTGTAGGCTATTGTTTATG-3’
- pCasCl2 fwd 5’-TTTCTGGGACACGGCATTATTCGGGACCTA-3’
- pCasCl2 rev 5’-TTTTTGAAGCAGTGTAGGCTATTGTTTATG-3’
- pHpRt fwd 5’-TCTTGGGACACGGCATTATTCGGGACCTA-3’
- pHpRt rev 5’-TTTTTGAAGCAGTGTAGGCTATTGTTTATG-3’
- Ccl2 fwd 5’-AGGCCAGACCTGATTACCGCC-3’
- Ccl2 rev 5’-ATCCTCATTGATCGTGTGACACCTGACG-3’
- Ccl4 fwd 5’-TGTGCTTCTACACCTGCCGG-3’
- Ccl4 rev 5’-AAAAGAGGGGCCAACCATCCTGCTG-3’
- Ccl7 fwd 5’-GCATCCACATGCTGCTATGTC-3’
- Ccl7 rev 5’-CAGTCTCAGAAGAAACACGGG-3’
- Ets2 fwd 5’-AAA GGA GCA ACC AGC TCT TG-3’
- Ets2 rev 5’-CGT GTA GGA GAT GGT TCT CTA-3’
- Junb: QuantiTect Primer Assay (Qiagen) QT00241892
- Plaur fwd 5’-TGA AGC GAC CCT GCA GAG-3’
- Plaur rev 5’-TTGG ATG ACA GCC GCC TCC TG-3’
- Il6 fwd 5’-ATG GAT GAT ACC AAA CATG GAT-3’
- Il6 rev 5’-TGA AGC ACT CTG GTC TGT TGG-3’
- Tnfsf9 fwd 5’-CCA ACA CTA CAC AAC AGC GCT-3’
- Tnfsf9 rev 5’-TAG TAG ACC GCC GGA CTA TC-3’
- TTP fwd 5’-CTGGTGCTCAAGGGGGGGC-3’
- TTP rev 5’-GATGGACCTGCGATGGTTCTC-3’

Statistical analysis
For microarray data, a linear model analysis with genotype (WT versus BglII and BbHII) was developed. Analysis of variance (ANOVA) was used for generating effect sizes of differentially expressed genes (DEGs). The fold change of the expression was calculated as the ratio of expression level in the induced state divided by that in the baseline state. The fold change was considered significant if it was larger than 2.0 or smaller than 0.5. The statistical significance of differences in mRNA and cytokine levels in LPS-treated animals was calculated using T test (\(P < 0.05 \); \(* * P < 0.01 \); \(** * P < 0.001 \)). Kaplan–Meier survival analysis was employed in LPS-induced endotoxin shock model.

Supplementary information
Supplementary information is available at the Molecular Systems Biology website (www.nature.com/msb).

Acknowledgements
We wish to thank Perry Blackshear for providing TTP−/− mice; Thomas Kolbe for excellent assistance with animal breeding; Paul Bohjanen for providing beta-globin reporter vector; Peter J Murray, Birgit Strobil, Christoph Schlüder and Amanda Jamieson for critical reading of the manuscript. The study was funded by the Austrian Science Fund (FWF) grants SFB F28 to PK and MM and W1220-B09 DP ‘Molecular Mechanisms of Cell Signaling’ to PK, the University of Vienna Research platform 323500 to PK and IH, the Austrian Federal Ministry of Science and Research Program GEN-AU II/III project ‘Austrian Network for Functional Genomics of the Mouse’ to TR and MM, and Deutsche Forschungsgemeinschaft SFB 643, TP A10 to RL.

Author contributions: FK designed experiments, did most of the experimental studies and drafted the manuscript; CM cloned reporter plasmids and did reporter assays; CV did computational analysis and statistics of microarrays; FE and VS validated several TTP target mRNAs; RV MK, TR and MM generated and provided reagents; ARG and IH did 3' UTR analysis; HH did RNA-EMSA studies; RL did microarray experiments and computational analysis; and PK designed experiments, supervised the study and wrote the manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Abdelmohsen K, Lal A, Kim HH, Gorsep M (2007) Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle 6: 1288–1292
Anderson P (2010) Post-transcriptional regulations coordinate the initiation and resolution of inflammation. Nat Rev 10: 24–35
Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33: 7138–7150
Berg DJ, Kuhn R, Rajewsky K, Muller W, Menon S, Davidson N, Grunig G, Rennick D (1995) Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest 96: 2339–2347
Blackshear PJ (2002) Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans 30 (Part 6): 945–952
Blackshear PJ, Lal WS, Kennington EA, Brewer G, Wilson GM, Guan X, Zhou P (2003) Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. J Biol Chem 278: 19947–19955
Cairrao F, Halees AS, Khabar KS, Morrello D, Vanzo N (2009) AU-rich elements regulate Drosophila gene expression. Mol Cell Biol 29: 2636–2643
Carballo E, Lal WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281: 1001–1005
Carballo E, Lal WS, Blackshear PJ (2000) Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95: 1891–1899
Cheadle C, Fan J, Cho-Chung YS, Werner T, Ray J, Do L, Gorsep M, Becker KG (2005) Stability regulation of mRNA and the control of gene expression. Ann NY Acad Sci 1058: 196–204
Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated gene repression. Curr Opin Cell Biol 21: 452–460
Chen YL, Huang YL, Lin NY, Chen HC, Chiu WC, Chang CJ (2006) Differential regulation of ARE-mediated TNFalpha and IL-1beta mRNA stability by lipopolysaccharide in RAW264.7 cells. Biochem Biophys Res Commun 346: 160–168
Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I (1999) Conditional gene targeting in macrophages and granulocytes using LysMCre mice. Transgenic Res 8: 265–277

Dahan O, Gingold H, Pipel P (2011) Regulatory mechanisms and networks couple the different phases of gene expression. Trends Genet 27: 316–322

Datta S, Biswas R, Novotny M, Pavicic Jr PG, Herjan T, Mandal P, Hamilton TA (2008) Tristetraprolin regulates CXCL1 (RC) mRNA stability. J Immunol 180: 3245–3253

Emmons J, Townley-Tolson WH, Deleault KM, Skinner SJ, Gross RH, Whittfeld ML, Brooks SA (2008) Identification of TTP mRNA targets in human dendritic cells reveals TTP as a critical regulator of dendritic cell maturation. RNA 14: 888–902

Frasca D, Landin AM, Alvarez JP, Blackshear PJ, Riley RL, Blomberg BB (2007) Tristetraprolin, a negative regulator of mRNA stability, is increased in old B cells and is involved in the degradation of E47 mRNA. J Immunol 179: 918–927

Gama-Carvalho M, Barbosa-Morais NL, Brodksy AS, Silver PA, Carmo-Fraca D, Landin AM, Alvarez JP, Blackshear PJ, Riley RL, Datta S, Biswas R, Novotny M, Pavicic Jr PG., Herjan T, Mandal P (2009) Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol Cell Biol 26: 9196–9208

Litvak V, Ramsey SA, Rust AG, Zalk DE, Kennedy KA, Lampano AE, Nytker M, Shmulevich I, Aderem A (2009) Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol 10: 457–463

Mages J, Dietrich H, Lang R (2007) A genome-wide analysis of LPS tolerance in macrophages. Immunobiology 212: 723–737

Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green 1 monitoring during amplification. Biotechniques 24: 954–958, 960, 962

Mukherjee N, Lager PJ, Friedersdorf MB, Thompson MA, Keene JD (2009) Coordinated posttranscriptional mRNA population dynamics during T-cell activation. Mol Syst Biol 5: 288

Murray PJ (2005) The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc Natl Acad Sci USA 102: 8686–8691

Oglivie RL, Abelson M, Hau HH, Vlasova IA, Blackshear PJ, Bohjanen P (2005) Tristetraprolin down-regulates IL-2 gene expression through AU-Rich element-mediated mRNA decay. J Immunol 174: 953–961

Oglivie RL, Sternjohn JR, Studdenbacher B, Vlasova IA, Williams DA, Hau HH, Blackshear PJ, Bohjanen P (2009) Tristetraprolin mediates interferon-gamma mRNA decay. J Biol Chem 284: 11216–11223

Puig S, Askeland E, Thiele DJ (2005) Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120: 99–110

Raghavan A, Bohjanen P (2004) Microarray-based analyses of mRNA decay in the regulation of mammalian gene expression. Brief Funct Genomic Proteomic 3: 112–124

Sandler H, Stoecklin G (2008) Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans 36 (Part 3): 491–496

Schaljo B, Kratochvill F, Gratz N, Sadzak I, Sauer I, Hammer M, Vogl C, Strobl B, Muller M, Blackshear PJ, Poli V, Lang R, Murray PJ, Kovarik P (2009) Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10. J Immunol 183: 1197–1204

Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3

Stoecklin G, Anderson P (2007) In a tight spot: ARE-mRNAs at processing bodies. Genes Dev 21: 627–631

Stoecklin G, Gross B, Ming FX, Moroni C (2003) A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene 22: 3554–3561

Stoecklin G, Stoeckle P, Lu M, Muehlemann O, Moroni C (2001) Cellular mutants define a common mRNA degradation pathway targeting cytokine AU-Rich elements. RNA 7: 1578–1588

Stoecklin G, Tenenbaum SA, Mayo T, Chittur SV, George AD, Baroni TE, Blackshear PJ, Anderson P (2008) Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem 283: 11689–11699

Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ, Patel DD, Schenken DI, Gilkeson GS, Broxmeyer HE, Haynes BF, Blackshear PJ (1996), A pathogenetic role for TFF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4: 445–454

Tobin CR, Brook M, Saklatvala J, Clark AR (2004) The stability of tristetraprolin mRNA is regulated by mitogen activated protein kinase p38 and by tristetraprolin itself. J Biol Chem 279: 32393–32400

Tudor C, Marchese FP, Hitti E, Auhabera A, Rawlinson L, Gaestel M, Blackshear PJ, Clark AR, Saklatvala J, Dean JL (2009) The p38 MAPK pathway inhibits tristetraprolin-directed decay
of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages. FEBS Lett 583: 1933–1938
von Roretz C, Gallouzi IE (2008) Decoding ARE-mediated decay: is microRNA part of the equation? J Cell Biol 181: 189–194
Wakeland E, Morel L, Achey K, Yui M, Longmate J (1997) Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol Today 18: 472–477
Worthington MT, Pelo JW, Sachedina MA, Applegate JL, Arseneau KO, Pizarro TT (2002) RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. J Biol Chem 277: 48558–48564
Zhao W, Liu M, D’Silva NJ, Kirkwood KL (2011) Tristetraprolin regulates interleukin-6 expression through p38 MAPK-dependent affinity changes with mRNA 3’ untranslated region. J Interferon Cytokine Res 31: 629–637

Molecular Systems Biology is an open-access journal published by European Molecular Biology Organization and Nature Publishing Group. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.