DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes

ALBERT MATVEEV∗, Skoltech, Russia
RUSLAN RAKHIMOV∗, Skoltech, Russia
ALEXEY ARTEMOV†, Skoltech, Russia
GLEB BOBROVSKIKH, Skoltech, Russia
VAGE EGIAZARIAN, Skoltech, Russia
EMIL BOGOMOLOV, Skoltech, Russia
DANIELE PANOZZO, New York University, USA
DENIS ZORIN, New York University, USA
EVGENY BURNAEV, Skoltech, AIRI, Russia

We propose Deep Estimators of Features (DEFs), a learning-based framework for predicting sharp geometric features in sampled 3D shapes. Differently from existing data-driven methods, which reduce this problem to feature classification, we propose to regressing a scalar field representing the distance from point samples to the closest feature line on local patches. Our approach is the first that scales to massive point clouds by fusing distance-to-feature estimates obtained on individual patches.

We extensively evaluate our approach against related state-of-the-art methods on newly proposed synthetic and real-world 3D CAD model benchmarks. Our approach not only outperforms these (with improvements in Recall and False Positives Rates), but generalizes to real-world scans after training our model on synthetic data and fine-tuning it on a small dataset of scanned data.

© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART108 $15.00
https://doi.org/10.1145/3528223.3530140

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.
We demonstrate a downstream application, where we reconstruct an explicit representation of straight and curved sharp feature lines from range scan data.

We make code, pre-trained models, and our training and evaluation datasets available at https://github.com/artonson/def.

CCS Concepts: • Computing methodologies → Machine learning; Computer vision; Shape modeling.

Additional Key Words and Phrases: sharp geometric features, curve extraction, deep learning

ACM Reference Format:
Albert Matveev, Ruslan Rakhimov, Alexey Artemov, Gleb Bobrovskikh, Vage Egiazarian, Emil Bogomolov, Daniele Panozzo, Denis Zorin, and Evgeny Burnaev. 2022. DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes. ACM Trans. Graph. 41, 4, Article 108 (July 2022), 22 pages. https://doi.org/10.1145/3528223.3530140

1 INTRODUCTION

Most human-made shapes have sharp geometric features, narrow curve-like regions with normals changing rapidly across the region. Sharp features are manually defined and explicitly stored in CAD models, and they are fundamental to faithfully represent the shape and function of CAD models. Detecting and reconstructing sharp features from scanned data is a vital geometry processing task: sharp feature curves can be used to improve the quality of many algorithms, such as surface reconstruction, including approximation with smooth patches, shape classification, and sketch-style rendering of surfaces.

Algorithms based on a priori analytic models of geometric features (e.g., using curvature and its derivatives) often require per-object manual parameter tuning to detect features on a specific object (Section 2), making them difficult to apply to large collections of data or use as building blocks in a larger processing pipeline. Data-driven, learning-based methods, including ours, are a natural alternative for this task as they can leverage global information extracted from a training dataset and automatically adapt to a particular input shape without user interaction.

Our goal is to develop a reliable feature detection algorithm for sampled geometric data. While such data comes in a variety of forms, we focus on point-sampled data, specifically of the type produced by range scanners. Many other geometry representations (e.g., level set meshes obtained from grid-sampled densities) can be easily converted to this form. Some of the most important characteristics of sampled geometric data include: (1) samples are almost never directly on (sharp) features; (2) the number of samples can be high (e.g., for a complex model, a large number of depth images are typically combined into a single dataset with millions of points); (3) the data may be noisy.

We propose Deep Estimators of Features (DEF), a new approach to extracting sharp geometric features from sampled shapes, designed to work with this type of data. We designed our algorithm with the goals of capturing features without the need to sample them exactly, scaling to complex 3D models and large, possibly noisy, point clouds naturally, while at the same time enabling compatibility with real-world 3D acquisition setups (see Figure 1).

Our approach is based on defining features implicitly, by a distance-to-feature function; the problem we solve is a regression problem for this scalar function sampled in input points. The advantage of using a continuous distance-to-feature function, compared, e.g., to a binary classification of points as feature and non-feature points, is that it is much more natural for samples not aligned with feature and noisy samples.

To address the need of handling large and complex models, we use local patch-based distance-to-feature prediction instead of a single-pass global prediction on the entire shape.

As for any supervised learning method, the quality of the results depends on the quality and size of the training dataset. Obtaining real 3D scanned data with ground truth is difficult, as it requires either manual annotation of scanned models, or precise fabrication and scanning of CAD data with annotated features; we follow the latter approach for our real dataset. For this reason, our method uses a two-stage training process (cf. [Gaidon et al. 2016] and [Handa et al. 2016]): we train an initial model on a large synthetic dataset and fine-tune it on a smaller dataset of 3D scanned data. The former is obtained by using a simplified simulated scanning process for a large number of models from ABC dataset [Koch et al. 2019]. For the latter, we fabricate and scan a smaller subset of ABC models, transferring annotations from the original CAD models.

We demonstrate that our method performs favourably on a number of metrics (RMSE, Recall, FPR) to four classical and learning-based state-of-the-art methods: VCM [Mérigot et al. 2010], Sharpness Fields [Raina et al. 2019], EC-Net [Yu et al. 2018], and PIE-Net [Wang et al. 2020].

As a sample application using our algorithm, we show that an explicit parametric representation of feature curves can be extracted from the estimated distance-to-feature fields produced by our algorithm (Figure 1 (c)), producing higher quality results, both qualitatively and quantitatively, than recent learning-based methods [Liu et al. 2021; Wang et al. 2020].

In summary, our contributions are:

1. A method for estimating coherent distance-to-feature fields for high-resolution, high complexity sampled 3D shapes, including localized, CNN-based initial estimation of the field and global fusion of local estimates.
2. A pipeline for constructing large simulated training datasets with controllable noise and different sampling patterns. This pipeline is used to produce a collection of benchmarks suitable for comparison of geometric feature detection algorithms.
3. A process for constructing a real 3D scan dataset with ground truth distance-to-feature annotations and a new publicly available labelled set of range scans that can be used as a realistic benchmark.

2 RELATED WORK

Estimation of sharp features has been studied extensively in computer vision and computer graphics. We review both algorithmic methods relying on local estimation of differential surface properties and data-driven methods.

Normal Estimation, Clustering, Feature Detection on Local Sets. A popular family of methods [Bazazian et al. 2015; Demarsin et al. 2007; Weber et al. 2010] identifies a group of samples in a small area, computes their Gauss map using the samples’ normals, and performs
Our patch-based pipeline for generating image-based (b, d) and point-based (c, e) training datasets proceeds as follows: (a) starts with a 3D CAD model, (b)–(c) extracts local triangulated patches and associated interior sharp feature curves, acquires ray-casted depth images and sampled point clouds, and computes local distance-to-feature annotations. The diversity of image and point patches in our large-scale training datasets (d)–(e) enables us to train highly effective sharp feature estimation models.

clustering to classify the neighborhood as belonging to a feature or not. Similar ideas can be applied to feature-preserving point set resampling [Huang et al. 2013]. A special case of such local estimators is Voronoi Covariance Measure estimator (VCM) [Mérigot et al. 2010]. It is based on constructing Voronoi cells of the local neighborhoods of points and computing covariance matrices of these cells. From these matrices, normals, curvature, and feature curves can be estimated. These methods require per-model tuning of parameters for both normal estimation and feature detection. In comparison, our method exploits the availability of datasets and automatically tunes its parameters to work on a collection of diverse shapes.

Surface Segmentation. Instead of directly detecting features, methods based on surface segmentation identify surface patches first and then classify them as features the interface between them [Lin et al. 2017]. Additional priors can be used to help the segmentation, for example, for patches that are known to be developable [Lee and Bo 2016]. Several works [Lê et al. 2021; Li et al. 2019; Sharma et al. 2020] have attempted to fit surface patches after segmentation, however these approaches do not use feature curves and produce a disconnected set of surface patches with rough boundaries. These methods inherently require the entire model and cannot be applied to single views or incomplete models. Differently, our approach is directly applicable to incomplete data.

Patch Fitting. Feature fitting methods use a predefined set of primitives [Cao et al. 2016; Torrente et al. 2018] which are fitted to large regions of the mesh. These approaches are robust to noise but increase the computational cost and require the features to be contained within a set of predefined shapes. Typical choices of features vary from a pair of planes sharing one edge [Lin et al. 2015] to spline curves. A related, but somewhat distinct method [Daniels et al. 2007; Daniels li et al. 2008] relies on robust moving least squares (RMLS) [Fleishman et al. 2005]. This approach uses the quality of the local RMLS fit to determine the number of separate patches, and computes curve feature points as surface intersections, with several processing stages to obtain the curves. As with other categories, many parameters need to be adjusted to obtain good results.

Ground Truth and Representations. Only recently, several synthetic large-scale datasets with annotated features have been released [Kim et al. 2020; Koch et al. 2019; Willis et al. 2020]. In this work, we provide the first large-scale, objective comparison of algorithms working on triangle meshes and point clouds using the ABC dataset [Koch et al. 2019] and a real scan dataset derived from it.

Data-Driven Approaches. The identification of points lying on a sharp feature is most commonly cast as a binary classification problem, using a surface neighborhood as features. Different machine
learning models were used, such as random forests [Hackel et al. 2016; Hackel et al. 2017], pointwise MLPs [Raina et al. 2019; Wang et al. 2020; Yu et al. 2018], or capsule networks [Bazazian and Parés 2021]. A recent work [Himeur et al. 2021] presents a lightweight MLP-based architecture paired with differential geometry-inspired scale-space matrices that encode features discriminative for edge detection. The methods that are closest to our work are [Liu et al. 2021] and [Wang et al. 2020]; they detect features and corners and approximate analytic curves. We compare against state-of-the-art learning-based methods, discussing results and details in Section 7.2.

3 OVERVIEW

The input to our algorithm is a set of depth images (possibly with missing data), for a given object. In the case of real scanned data, these images are obtained directly from the scanner; in the case of synthetic mesh data, we simulate the scanner to generate a collection of depth images from a mesh (Section 4.2). The algorithm outputs estimates of the truncated distance-to-feature scalar function for each input point. Figure 1 (a)–(b) illustrates this process.

The four main components of our method are:

1. Training Data Construction (Section 4). We generate synthetic training data using the ABC dataset [Koch et al. 2019], obtaining collections ranging from 16,384 to 262,144 training instances. To fine-tune the model and evaluate its performance on real scans, we introduce a fabrication, scanning, and semi-automatic annotation pipeline to create a dataset of 84 real-world models. Our data generation pipeline accepts a set of meshes and their associated feature annotations (edges marked as sharp) as input and produces a set of point-sampled local patches with point-wise distance-to-feature labels as output (Section 4.1). We specify the details on the implementation of our two datasets, the synthetic DEF-Sim and the real-world DEF-Scan, in Sections 4.2–4.3.

2. Patch-Based Deep Estimators (Section 5.1). We train a family of deep feature estimators (DEF), which produce distance-to-feature estimates, on patches (depth images) of the synthetic dataset and fine-tune on a subset of the real-world dataset.

3. Estimation on Complete 3D Models (Section 5.2). The per-patch distance-to-feature predictions produced by DEFs are fused together by transferring estimates from each patch to overlapping patches and combining into a coherent global estimate.

4. Feature Fitting (Section 6). The last (optional) component extracts explicit feature curves from the distance-to-feature function. We show that with our distance function estimate, simple corner detection, combined with kNN clustering and spline fitting, produces higher quality results than state-of-the-art methods.

4 DATASETS WITH DISTANCE-TO-FEATURE ANNOTATION

4.1 Dataset Design

Feature Definition. Each CAD model in the ABC dataset has a boundary representation (B-Rep), that partitions its surface into a collection of CAD regions and associated parametric curves. We identify sharp features as curves at the interface between any two regions for which the normal orientations defined in either region differ by more than a threshold α_{norm} (18°) as was done during the construction of ABC dataset. The threshold is necessary as B-Rep divides smooth areas in regions, which may result in false features.

Directly using the original parametric representations, however, makes it difficult to construct a large training dataset, as B-Reps either need to be traversed using off-the-shelf geometric kernels [Open CASCADE Technology OCCT 2021; Parasolid: 3D Geometric Modeling Engine 2021], a software not designed for batch processing, or require re-implementing a set of elementary operations like closest point, which require nonlinear solvers on B-Reps. To avoid these issues, we use the triangulated versions of the ABC models, where CAD region and sharp feature curve labels are available for vertices and edges in each mesh; we introduce a set of easily testable geometric metrics into our data generation procedure to prevent introducing significant geometric errors when sampling B-Rep data. We use the curve annotation provided in the ABC dataset to identify the mesh edges which were marked as sharp to base our distance field on the proximity to the corresponding mesh edge.

Patch and Feature Selection. Mesh models in ABC vary significantly in geometric complexity [Koch et al. 2019], requiring an adaptive number of samples to represent their 3D surface geometry (in the original dataset, meshes are sampled with 10^2–10^7 vertices), see Figure 4. However, having variable size, high resolution 3D shapes as input is not a good fit for training most state-of-the-art learning algorithms, which require a fixed number of samples and require too much memory and training time to handle hundreds of thousands of samples [Henderson et al. 2020]. To address this problem, we decompose each shape into a collection of patches with a small and fixed number of samples, see Figure 2 (a)–(c); this is different from a number of existing trainable approaches [Wang et al. 2020] that represent entire shapes with the same (fixed) number of samples.

Selecting patches and feature curves for training has a direct impact on performance. We distinguish between interior, contour, and proximal exterior curves, depending on their visibility status; we keep interior curves for annotation and exclude the latter two types. Features appearing as a contour of a sampled region are difficult to distinguish from smooth features; being adjacent to only a single visible surface patch provides insufficient spatial context for inferring these from point samples. Exterior features pass within distance truncation radius ε but still outside the visible patch. Including exterior features would lead to distance-to-feature annotations indicating feature proximity; however, regressing such features from the local patch context would be impossible due to absence of samples covering them. In contrast, we generate the per-patch annotations locally in each patch, using only feature curves passing through the patch interior. Figure 3 demonstrates example annotations obtained by varying the set of included features.

Similarly, patches with depth discontinuities and gaps represent challenging cases with many contour feature curves, see Figure 3, rows 2–3; however, these naturally occur due to shape self-occlusions or ray misses during both ray-casting and real scanning.
We have experimentally observed that including such instances within the patch (this association accounts for sampling noise) and define the sampled point p along the surface. We compute distance-to-feature annotation for a field may provide meaningful feature-related information. Sampling step), leaving a sufficiently wide envelope where our distance r distance $\Gamma = \{y_k\}_{k=1}^K$ in \mathbb{R}^3 as follows. We find for p its closest Euclidean neighbor located at one of the segments in Γ, i.e. a point $q(p)$ s.t.
\[
\|q(p) - p\| = \min_{y_k \in \Gamma} \inf_{q \in y_k} \|q - p\|,
\]
and define the $d^f(p)$ by
\[
d^f(p) = \min(\|q(p) - p\|, \varepsilon),
\]
where we set our truncation radius ε to a multiple of the sampling distance r (we set $\varepsilon = 50$, $r_{\text{high}} = 1$ where $r_{\text{high}} = 0.02$ is a base sampling step), leaving a sufficiently wide envelope where our distance field may provide meaningful feature-related information.

We use Euclidean distance as opposed to the geodesic distance along the surface. We compute distance-to-feature annotation for a sampled point p by associating it to the closest surface spline region within the patch (this association accounts for sampling noise) and only considering sharp feature curves belonging to the contour of that surface region in the ABC feature annotation, see Figure 5. More generally, we construct a surface region/feature curve adjacency graph where each surface region and feature curve (two nodes) that share mesh vertices are connected by an edge, and perform depth-first search of depth k to determine which features should be included in the distance computation over a particular surface region. We additionally record $q(p) - p$, directions to the closest points on the feature curves, for use in the ablation study.

Feature Size and Sampling Density. To accurately reconstruct the distance-to-feature function, it is not safe to rely on fixed-size input point clouds for whole objects (as it is done in recent literature [Liu et al. 2021; Wang et al. 2020]), since many curves are left severely undersampled, see Figure 4. Instead, we assume that most feature curves are sufficiently densely sampled, and that the presence of feature curves can be inferred from the positions of samples; that leads us to have an adaptive number of point samples per object. This assumption is motivated by a common practice in high-quality 3D data acquisition of adapting the number of points per object and sensor placement to the geometric complexity and size of the object.

One way to reason about “sufficient” sampling is to choose a characteristic (object-dependent) spatial size l for each shape and require that features of size close to l are represented by, on average, n samples. Formally, we require the following relation to hold:
\[
\frac{r}{s} \times \frac{n}{\text{num. samples per feature}} = l \times \frac{\text{characteristic spatial size}}{\text{scaling factor}},
\]
where we are free to vary either the sampling step r or the object scaling factor s to achieve the equality (in practice, for each particular dataset, we fix r and vary s). Our characteristic spatial size l is a linear measure set to 25% lower quantile of the distribution of sharp feature curve extents, where “extent” denotes the maximum of three dimensions of an axis-aligned bounding-box enclosing a curve. Figure 6 provides an illustration of this scheme.

Patch-Based Datasets. We run our patch generating algorithm on the first five chunks of the ABC dataset (37,945 3D shapes) and obtain three major data varieties at low, medium, and high resolution by choosing $n_{\text{low}} = 8$, $n_{\text{med}} = 2.5 \times 8 = 20$, and $n_{\text{high}} = 2.5^2 \times 8 = 50$ samples per curve. Each resolution corresponds to sampling distance $r_{\text{low}} = 0.125$, $r_{\text{med}} = 0.05$, and $r_{\text{high}} = 0.02$, respectively. Similarly to related methods [Wang et al. 2020; Yu et al. 2018], we model acquisition uncertainty using additive Gaussian white noise; we use five scales in the viewing direction with a standard deviation $\sigma \in \{0.6, 1.6, 2.6, 2r, 2r\}$ for the high-resolution data only. For each of the mentioned variations we obtain training sets of sizes ranging from 16,384 to 262,144 patches to assess the impact of dataset size on performance (see Supplementary material for details).

Complete 3D Model Datasets. Complementing our patch-based data, we constructed datasets of 3D shapes representing object-level data samples of 3D CAD models, both synthetic and real.

We emphasize that the design principles outlined in this section are used uniformly for both our synthetic and real-world datasets, enabling direct fine-tuning of our networks for the real scenario.

We have selected a diverse set of 68 distinct CAD models from the ABC dataset. Our focus when choosing the models is to cover a variety of qualitative properties, including (1) presence of thin walls and (2) various types of surface regions (e.g., flat, cylindrical, splines, and spheres), (3) curved and straight features, (4) variety of angles incident on sharp features, and (5) presence of fillets. The statistics of the selected models are analyzed in the Supplemental. The models are sampled and annotated as described in this Section to form the input complete 3D shapes.

4.2 Synthetic Datasets: DEF-Sim

Our synthetic datasets provide collections of local patches and 68 complete 3D models in varieties of low, medium, and high resolution, and several noise levels.

Shape Sampling. We set up n_o virtual cameras with locations evenly distributed on a sphere around an object (we use Fibonacci sampling [Hannay and Nye 2004]) and the z-axis pointing at its center of mass. For each camera, we create a regular grid (image) with 64×64 pixels (we specify r as the pixel size) and cast rays from each pixel’s corner in a direction perpendicular to the grid, obtaining patches with up to 4,096 point samples each (some may not correspond to an object point and are set to a background value).

Knowing the camera parameters (K, T) where $K \in \mathbb{R}^{2 \times 3}$ is an intrinsic matrix transforming point coordinates from the camera coordinate frame to the image plane and $T \in \mathbb{R}^{4 \times 4}$ an extrinsic camera matrix transformation from the camera coordinate frame to a global coordinate frame [Hartley and Zisserman 2004], sampled points $p_{ij} = (x_{ij}, y_{ij}, z_{ij})$ (in homogeneous coordinates) may be identified with a depth image $l = (z_{ij}^{\text{cam}})$, where $z_{ij}^{\text{cam}} = (K^{-1}p_{ij})_3$ denotes z-coordinate of point p_{ij} in the camera frame. We create the distance-to-feature annotations image by computing $d = (d^t(p_{ij}))$ and record the pair (l, d) as the training instance. We use $n_o = 18$ and augment the dataset by rotating and offsetting the image grid during data generation, but maintaining the same orientation of z-axis; we discuss the effect of having varying number of views n_o in the ablation study (Section 7.4).

4.3 Real-World Datasets: DEF-Scan

To support generalization to real-world scanning data, we constructed a dataset of 84 real objects and semi-automatically annotated them. Figure 7 presents an overview of the steps involved in the construction of our datasets; details on the selection of CAD models are mentioned in Section 4.1.

Fabrication. As we sought to fabricate a multitude of arbitrary 3D models with high geometric complexity, we opted for fabricating the models using 3D printing, as it can easily produce shapes directly.

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.
Fig. 7. (a) We have selected a diverse set of 84 3D CAD models from the ABC dataset and (b) fabricated them in thermoplastic using the 3D printing technology. (c) We further obtained 12 scans of each shape in two different orientations (totalling 24 scans per object) using a commercial structured-light 3D scanner. (d) We semi-automatically registered the 3D scans onto the original CAD model, computed distance-to-feature annotations in (e), and finally processed the scans to obtain our patch-based datasets.

Fig. 8. A photo of the thermoplastic 3D CAD models fabricated for the evaluation of our approach in a real-world setting.

from CAD models. We used two commodity polylactic acid (PLA) devices (Ultimaker 3 and Ultimaker S5) and considered implications of this choice (most importantly, its accuracy and layer thickness of 0.1 mm). We choose the printed object size to allow acquisition with our 3D scanner at a specific sampling density of the features while simultaneously avoiding scanning any fabrication artifacts. We pick a sampling density value $r > 0.1$ mm for our 3D scanner by selecting a scanning distance (see below), and compute a scaling factor s_i for each fabricated model M_i individually using the relation (3). The fabricated CAD models are displayed in Figure 8.

Scanning. Our depth acquisition process seeks to obtain a homogeneous set of range scan data capturing most of the surface for the fabricated models and suitable for point-based and image-based training. We use RangeVision Spectrum [RangeVision Spectrum 2021], a commercial structured light 3D scanner, to acquire the geometry of the fabricated objects in the form of depth images. The scanning sequence we use captures the object from two orientations w.r.t. the scanner, differing by 90°; in each orientation, we take a scan every 30° using an automated turntable to minimize the operator time. Our resulting scans are acquired from an average range of 2 m and have the resulting sampling distance r of approximately 0.5 mm. In total, we have acquired 1928 depth images corresponding to 166 scanning sequences of 84 unique objects. We give more detailed statistics on our real-world dataset in the Supplemental.

Registration with the CAD Models. Our 3D scanner automatically provides an initial alignment between the obtained 3D scans; however, we found this alignment too coarse. Hence, we manually registered all scans to their respective CAD models using the Align Tool in MeshLab [Cignoni et al. 2008] by first marking 3 points on each scan-mesh pair for rough manual alignment, followed by running the ICP algorithm for refinement. We find that manual alignment results in significantly tighter fits.

5 DEEP ESTIMATION OF DISTANCE-TO-FEATURE FIELDS

5.1 Learning Patch-Based Deep Estimators

We train our deep regression models by solving the standard learning task: given a set of N training instances, find

$$\min_{\theta} \frac{1}{N} \sum_{i} L(d_i, f(P_i; \theta)),$$

where d_i is the ground-truth distance-to-feature field for the patch P_i, $f(\cdot; \theta)$ is the model with trainable parameters θ, and L is the loss function. We have considered a few options for elements in this setup, to identify an optimal learning configuration. We summarize these choices below and present the qualitative comparisons of different options in Section 7.4 and their effect on method robustness in Section 7.5.

Network Architectures and Losses. Overall, we found that CNNs working with regularly resampled data outperform point-based networks for our task (Table 6). We require our deep models to generalize to many unseen targets with high geometric variability,
We use the U-Net CNN model [Ronneberger et al. 2015], which has significantly improved performance across different quality measures. We present results computed using the validation set of depth images (with background), with sampling distance \(r_{\text{high}} = 0.02 \), and noise variance \(\sigma^2 = 0 \).

Loss	RMSE \(\times 10^{-3} \)	RMSE-\(\text{ps} \) \(\times 10^{-3} \)	Recall (1\(r \)), %↑	FPR (1\(r \)), %↓
\(L_2 \) (MSE)	101.3	643	24.2	0.11
\(L_1 \) (MAE)	108.7	691.2	23.5	0.06
Histogram	61.5	361.1	57.4	0.06

thus we search for network architectures with sufficient capacity. We use the U-Net CNN model [Ronneberger et al. 2015], which has proven effective for image-based dense regression [Xue et al. 2019], and probe the ResNet family [He et al. 2016], selecting the largest (ResNet-152) base network based on the quality of predictions on the validation set. For full details on the influence of model size on performance, we refer to [Supplemental].

We compare three types of losses for our regression task: \(L_1 \) loss, \(L_2 \) (MSE) loss, and the Histogram loss [Imani and White 2018]. The latter one requires the model to produce a histogram of values over a predefined interval; we empirically found out that histograms with 244 bins work best on the validation set. Overall, we observed that learning with the Histogram loss considerably improves regression quality measured by all metrics as presented in Table 1. We attribute this to the restriction being imposed on the range of the possible target (ground-truth) distances, allowing the network to focus on a narrow range of targets. Our final setup with the Histogram loss predicts a confidence score for each bin in the histogram and computes the final output as a weighted sum of bin centers multiplied with their respective normalized predicted scores.

Additional Inputs, Supervision, and Data Volume. The second critical ingredient that we investigate is the dataset size and features available in training datasets.

To assess the gains from additional inputs, we concatenate the additional values to the point coordinates: we used the binary sharp feature point segmentation labels obtained by the non-learning algorithm VCM [Mérigot et al. 2010], ground-truth normals, as well as both of these values, keeping distances as our only target variable. Neither of these additional annotations resulted in performance improvement.

To evaluate whether learning configurations for our task benefit from richer supervision compared to distances only, we introduce additional network heads regressing either normals, normalized directions towards the nearest sharp feature line, or both simultaneously. During training with these targets, we optimize a multi-task loss consisting of our main loss and a weighted sum of MSE losses with weights chosen to balance the magnitude of losses: \(10^{-3} \) for normals, and \(10^{-2} \) for directions. None of these configurations led to improved regression performance either. We also trained the network on datasets of increasing size; we observed that performance stabilizes for datasets with more than 64,000 training instances.

In summary, the best-performing choice of architecture was a CNN U-Net with ResNet-152 backbone, trained using the Histogram loss using the supervision from ground-truth distances \(d(p) \) only, on datasets of size at least 64,000. We present detailed results of mentioned experiments in the Supplementary material.

Feature Detection at Varying Sampling Distances. Each DEF network, though trained on data with a specific sampling rate \(r \) in (3), can detect interior features sampled at significantly different rates; in Figure 9, features sampled at \(r_{\text{low}} = 0.125 \) are robustly regressed by DEFs trained on \(2.5 \times r_{\text{med}} = 0.05 \) and \(6.25 \times r_{\text{high}} = 0.02 \) finer sampling, and vice versa. Importantly, when sampling distance in inputs matches that of training datasets, DEF predicts a proper distance field; otherwise, DEF produces a scale-transformed proximity field whose iso-contours capture true features.

5.2 Reconstructing Distance-to-Feature Fields on Complete 3D Models

The trained deep estimators sense distance variations in the direct vicinity of the interior curves visible in individual patches of an input shape; predictions in any two distinct patches may diverge substantially if feature curves are captured differently (e.g., a feature appears as an interior curve in one patch but shows up as a contour in another), see Figure 10 (c). Given a set of these partial and inconsistent estimates (with known camera parameters), we reconstruct a distance-to-feature field defined globally on a complete 3D shape; we give an overview of this fusion process in Figure 10.

Patch Extraction. (Figure 10 (a)–(b).) We convert an input 3D model into a collection \(\{ I_{i} \}_{i \in \mathbb{I}} \) of \(n_{i} \) range images suitable for our patch-based DEF. We assume that the input 3D shape either already comes as range images (e.g., for range scanning) or can be resampled...
we study the influence of the number of input views in Section 7.5.

view. Computational complexity of our distance estimation method
target view conditioned on the information inferred from the source
thesis mechanism (similar to [Khot et al. 2019]): taking each pair
3D shape. The central idea is to employ a warping-based view syn-
point, integrating feature-sensitive information across the complete
gather predictions from multiple processed patches in each sampled
Figure 10 (c).

However, some shapes with many parts of their surfaces visible
many deep indentations) may require many additional directions.

(e.g., represents volumetric data). In the latter case, we obtain depth
maps of the input shape from multiple distinct directions using
raycasting. As our deep models are fully convolutional, we employ
full-object views I_i of input 3D models to compute predictions, which
we found to perform similarly to predicting on patches of the size
our network was trained on, while being more convenient.

Crucially for the completeness of the reconstruction, sufficient
number of views of the input shape must be provided to capture
most features; features not visible in at least one view are likely to
be missed. We observed that for all of the considered 3D shapes,
using $n_p = 128$ directions is sufficient to sample more than 97% of
triangles of the corresponding meshes with at least 8 samples;
we study the influence of the number of input views in Section 7.5.
However, some shapes with many parts of their surfaces visible
only from narrow cone of directions, different for each (e.g., with
many deep indentations) may require many additional directions.

Patch-Based Distance-to-Feature Estimation. Each patch I_i is pro-
cessed independently using our neural network (Section 5.1), yield-
ing predictions \hat{d}_i sensitive to interior feature curves, as shown in
Figure 10 (c).

Transfer of Predictions across Patches. The aim of this stage is to
gather predictions from multiple processed patches in each sampled
point, integrating feature-sensitive information across the complete
3D shape. The central idea is to employ a warping-based view syn-
thesis mechanism (similar to [Khot et al. 2019]): taking each pair
of source and target views, we synthesize distance signal in the
target view conditioned on the information inferred from the source
view. Computational complexity of our distance estimation method
depends on the number of sampled points in each view and (quadratic-
ly) on the number of views n_p.

Let a particular pair (s, t) of source and target views be repre-
sented by depth images I_s, I_t, their associated intrinsic K and extrin-
sic T_s, T_t matrices, and distance-to-feature estimate \hat{d}_s available in
the source view; we seek to construct a warped signal $\hat{d}_t^{s \rightarrow t}$ from this
information. For each pixel $p = (u, v)$ in a target image I_t, we com-
pute the warped coordinates \hat{p} in the source view by re-projecting
p to the image plane of I_s:

$$\hat{p} = KT_s^{-1}T_t(I_t(p) \cdot K^{-1}p).$$

To compute the warped distance-to-feature estimate $\hat{d}_t^{s \rightarrow t}(p)$ at
the target pixel p, we resample a local continuous distance field
obtained by bilinearly interpolating \hat{d}_s on the grid of samples of the
source patch I_s around the warped coordinates \hat{p}:

$$\hat{d}_t^{s \rightarrow t}(p) = \hat{d}_s(\hat{p}).$$

We additionally compute a binary visibility mask $\nu_t^{s \rightarrow t}(p)$ indicat-
ing which pixels have been correctly interpolated as some pixels
have insufficient number of neighbors to resample from (see Sup-
plementary material for details). The number of predictions for a
pixel p is equal to the number of depth images from which the pixel
is visible. Example interpolation results are shown in Figure 10 (d).

As a result, each 3D sample p captured by each depth image I_i
is described by a set D_p of valid predictions interpolated from all
views $\{(I_i)^{n_p}_{i=1}\}$:

$$D_p = \{d_s|d_s = \hat{d}_t^{s \rightarrow t}(p) \text{ where } \nu_t^{s \rightarrow t}(p) = 1\}^{n_p}_{i=1}. \quad (4)$$

ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.
Inference of the Final Distance Field. The assembled predictions are processed to form a final distance estimate by feeding the set \(D_p\) into an inference set-function \(g\). We have considered a number of approaches to constructing \(g\) (we present an ablation study in Section 7.4); computing a minimum over all predictions of the distance \(d(p) = \min_{d_i \in D_p} d_i\) proved to be the most accurate among all approaches we tried, which includes computing simple, robust, or truncated averages, variants of weighting schemes, and fitting a robust locally linear regression. More details on computing the variants of the inference function are presented in the Supplemental.

6 APPLICATION: EXTRACTION OF PARAMETRIC FEATURE CURVES

To evaluate the quality of distance-to-feature fields reconstructed using our method, we designed an algorithm for extracting parametric feature curve networks employing the estimated fields. Our algorithm is based on simple local classifiers for detecting corner vertices, heuristic graph structure analysis, and spline fitting. Making a number of careful choices, we are able to fit significantly more accurate feature curve networks compared to recent methods PIE-NET [Wang et al. 2020] and PC2WF [Liu et al. 2021].

A preliminary version of our method was presented in [Matveev et al. 2021]; similarly to the method described in this section, it uses DEF’s distance-to-feature output to produce a set of feature curves. We keep the overall structure of the approach, re-use its segmentation and spline fitting steps, and follow the same stages as in the earlier work. However, we contribute an improved corner and curve endpoint detection criteria in (5), (7); a more robust \(k\)NN-based polyline construction stage and an optimization functional in (9); a post-processing technique in (11), all resulting in significant performance improvements of the method. We refer the reader to Figure 18 for qualitative demonstration of the difference between performance improvements of the method. We refer the reader to (9); a post-processing technique in (11), all resulting in significant improvements of the method. We refer the reader to (9); a post-processing technique in (11), all resulting in significant improvements of the method. We refer the reader to (9); a post-processing technique in (11), all resulting in significant improvements of the method. We refer the reader to (9); a post-processing technique in (11), all resulting in significant improvements of the method.

Initialization. At the initial stage, given a point cloud \(P\), we select \(P_{\text{sharp}}\) that consists only of points with estimated distance \(d\) less than \(d_{\text{sharp}}\). To further reduce the number of points, we apply Poisson disk sampling, leaving only 10% of points to reduce the size of the set and make the point distribution more even.

Corner Detection. Corner detection is designed as an aggregation procedure of several corner estimates constructed from a grid of parameters. We sample anchor points across \(P_{\text{sharp}}\) (we use 20% of points in \(P_{\text{sharp}}\) chosen by farthest point sampling) and build sets \(B_i\) of points contained in overlapping Euclidean balls of a radius \(R_{\text{corner}}\) centered at the anchor points and covering \(P_{\text{sharp}}\).

We approximate each of these local sets by an ellipsoid by computing PCA on points in the set and the set of variances \((\lambda_1, \lambda_2, \lambda_3)\) such that \(\lambda_1 \leq \lambda_2 \leq \lambda_3\) and \(\sum_{k=1}^{3} \lambda_k = 1\), describing lengths of ellipsoid axes. For each specific set \(B_i\), we use these vectors to compute a squared distance-normalized aggregate:

\[
\Lambda_i = \sum_{k=1}^{3} \sum_{j \in \mathcal{N}_i} \left(\frac{\lambda_j^i}{\delta_{ij}} \right)^2,
\]

where \(\mathcal{N}_i\) is a collection of indices of the sets \(B_j\) nearest to the set \(B_i\), and \(\delta_{ij}\) is a Euclidean distance between anchor points of sets \(B_i\) and \(B_j\). This quantity measures how much a specific ellipsoid deviates from the neighboring ones.

We decide whether a local set \(B_i\) belongs to corner cluster by comparing \(\Lambda_i\) against the characteristic threshold \(T_{\text{variance}}\), and mark \(B_i\) as either corner or curve type set:

\[
\begin{align*}
\mathcal{B}_{\text{corner}} &= \{ B_i | \Lambda_i > T_{\text{variance}} \}, \\
\mathcal{B}_{\text{curve}} &= \{ B_i | \Lambda_i \leq T_{\text{variance}} \}.
\end{align*}
\]

Aposteriori, we use these sets to define the final corner clusters \(\mathcal{B}_{\text{corner}}\) and \(\mathcal{B}_{\text{curve}}\) as sets of local sets labeled as corner or curve type by \(\Lambda\) and \(T_{\text{variance}}\). We decide whether a local set \(B_i\) belongs to corner cluster by comparing \(\Lambda_i\) against the characteristic threshold \(T_{\text{variance}}\), and mark \(B_i\) as either corner or curve type set:

\[
\begin{align*}
\mathcal{B}_{\text{corner}} &= \{ B_i | \Lambda_i > T_{\text{variance}} \}, \\
\mathcal{B}_{\text{curve}} &= \{ B_i | \Lambda_i \leq T_{\text{variance}} \}.
\end{align*}
\]

We evaluate this classification for all combinations of \(\mathcal{N}_i\), \(T_{\text{variance}}\), and \(R_{\text{corner}}\), each varying over a small range, for a total of 60 combinations, and compute a probability of \(B_i\) to be a corner based on the fraction of corner classifications in this set. Refer to Section 7.3 for more details.

This value is available only for the anchor points of \(B_i\). To extend it to the whole point cloud, we apply \(k\) nearest neighbors regressor with \(k = 50\), thus obtaining per-point values \(0 \leq w(p) \leq 1\).

The set of points near corners is obtained by thresholding weights:

\[
P_{\text{corner}} = \{ p \in P_{\text{sharp}} : w(p) > T_{\text{corner}} \}.
\]

Curve and Corner Segmentation. For curve segmentation, we consider the set of corner points \(P_{\text{corner}}\) and the set \(P_{\text{curve}} = P_{\text{sharp}} \setminus P_{\text{corner}}\) consisting of near-sharp points not detected as corners; we process both these sets to extract clusters defining individual corners and curves, respectively. To segment points belonging to individual curves, we construct a dense \(k\)NN graph by creating edges between all points in \(P_{\text{curve}}\) located within sampling distance \(r\) (3) from each other, and cut it into connected components. We treat each connected component as defining one of \(n_{\text{curve}}\) curves, together they constitute the set of point clusters corresponding to each curve:

\[
P_{\text{curve}} = \left\{ P_c \subseteq P_{\text{curve}} : \forall p \in P_c \exists q \in P_c, p \neq q : \|p-q\| < r \right\}^{n_{\text{curve}}}. \]

For corner points \(P_{\text{corner}}\), the procedure is similar; we extract the final corner clusters \(P_{\text{corner}}\) by separating connected components of the detected corner sets.

Extraction of Curve Graph. From the segmentation, we construct a curve graph fitted to \(P_{\text{sharp}}\), separately processing each set of points corresponding to a curve. The next steps include (1) detecting endpoints for each curve, marking curves as either open or closed based on the detections, (2) approximating each curve with a short path polyline, (3) connecting fitted polylines, corners, and endpoints into a complete shape curve graph, and (4) refining endpoint and corner locations.

To detect endpoints for a segmented curve cluster \(P_c\), we construct a neighborhood-based endpoint detector similar to our corner detector. We construct Euclidean neighborhoods \(E_i\) with the radius \(R_{\text{endpoint}}\) centered at the anchor points \(p_{ai}\) sampled in \(P_c\), compute their straight-line approximations (we compute PCA on points in \(E_i\) and reduce its dimensionality to one), and parameterize each point \(p \in E_i\) by a single coordinate \(t(p)\) obtained from PCA. To identify curve endpoints, we compute the share of points \(p \in E_i\) whose parametric coordinates \(t(p)\) are greater or smaller than the
we select an anchor value, we subdivide the polyline by assigning of node and splitting the corresponding segment in two. This choice against the threshold between the estimates candidate subdivision points are identified by computing pose a triangle, and proceed with the subdivision strategy. The from the cluster by farthest point sampling, connect them to com-

we get a set of nearest points while \(V_i \) indicates strong prevalence of points on either side of an anchor. For a curve cluster \(P_c \), if only one such anchor exists, we select an anchor \(p_{ai} \) with the second largest value of \(V_i \) as a second endpoint; for more than two detected endpoints, we select the two most distant ones; if no such points are detected, the curve is considered to be closed.

Next, we compute polyline approximations of curves. For an open curve, we construct \(k \) nearest neighbors graph by connecting all the curve anchor points \(p_{ai} \) sampled in \(P_c \) within twice the average sampling distance from each other, and initialize the polyline with a shortest path in such graph connecting the detected endpoints.

To create a polyline for a closed curve, we sample three points from the cluster by farthest point sampling, connect them to compose a triangle, and proceed with the subdivision strategy. The candidate subdivision points are identified by computing

\[
 p_{\text{split}} = \arg \max_{p_i \in P_c} \left| \sum_{p_j \in E_i} \text{sign}(t(p_j) - t_{ai}) \right|
\]

over points \(p_i \) from the current curve cluster \(P_c \in \mathcal{P}_{\text{curve}} \). where \(\min \pi^I(p_i) \) is a projection of \(p_i \) onto the nearest polyline segment \(I \). To proceed with subdivision, we check an absolute difference between the estimates \(\tilde{d}_i \) and the actual distances \(\|p_i - \pi^I(p_i)\| \) against the threshold \(T_{\text{split}} \); for candidate points \(p_{\text{split}} \) exceeding this value, we subdivide the polyline by assigning \(p_{\text{split}} \) a new polyline node and splitting the corresponding segment in two. This choice of \(p_{\text{split}} \) aims to keep the maximum polyline approximation error below \(T_{\text{split}} \) for individual curves.

Finally, we substitute the detected open curve endpoints with the respective nearest corner cluster centers, yielding a final curve graph \(G(q, e) \) defined by the node positions \(q \) (corner cluster centers and nodes of polylines) and connections \(e \) between them. The last step is node position optimization:

\[
 \min_{q} \left(\frac{1}{|P_{\text{sharp}}|} \sum_{p \in P_{\text{sharp}}} |\tilde{d}(p) - \pi^G(q,e)(p)| - \sum_{\tilde{q} \in \tilde{G}(q,e)} \cos \tilde{q} \right),
\]

where \(\pi^G(p) \) is the projection of a point \(p \) onto the nearest edge in the curve graph \(\tilde{G} \), and \(\sum_{\tilde{q} \in \tilde{G}(q,e)} \cos \tilde{q} \) is sum of cosines of angles between the two consecutive edges incident to the node \(\tilde{q} \) computed only for the set of nodes \(\{G(q,e)\} \) such that they have exactly two incident edges (hence, it is locally linear). Intuitively, the second term represents rigidity of polylines that prevents the acute angles between edges. Optimization helps to position graph nodes more accurately, especially at the intersections of multiple feature curves, and the rigidity term makes polyline segments more straight. After this step is finished, we can identify the final corner positions as coordinates of graph nodes with more than two incident segments.

Spline Fitting and Optimization. For spline fitting one needs to obtain a consistent parameterization of each feature curve. We do that by partitioning the curve graph into shortest paths between graph nodes with degree not equal to 2, each path serving as a proxy to a curve that defines parameter coordinates of points along feature curve. For a path \(g \) represented as a sequence of graph nodes \(q_g = \{q_i\}_{i=1}^{|g|} \) we get a set of nearest points \(P_g \in P_{\text{sharp}} \), and compute projections \(\pi^g(p_i) \), \(p_i \in P_g \) and obtain values of parameters \(u_g = \{u_i\}_{i=1}^{|P_g|} \) as a cumulative sum of norms of \(\pi^g(p_i) \) along the path \(g \). Simultaneously, we compute knots \(\bar{q}_g \) as evenly spaced parameters; number of knots is defined as \(\max(5, \frac{|g|}{5}) \).
Fitting a spline \(s_g \) to the path \(g \) results in a set of control points \(c_i \) that define the exact shape of the spline curve. Once the spline is fitted, we can evaluate points \(P_g(\{c_i\}) = \gamma(u_i, P_g, t_i, c_i) \) on the spline curve \(s_g \). These points, ideally, should be precisely as far away from the sample curve \(P \) as a distance field \(\vec{d} \) suggests. To enforce this property, we optimize over control points to shape the spline to the distance values:

\[
\min_{c} \sum_{i=1}^{n} \left(\hat{d}_i - \|p_i - \gamma(u_i, P, t_i, c)\| \right)^2,
\]

(10)

where \(p_i \in P_g, \hat{d}_i \) is a corresponding distance value, and \(\gamma(u_i, P, t_i, c) \) is a point corresponding to \(p_i \) evaluated on the spline \(s_g \). Additionally, we impose constraints on the spline endpoints to match the polyline endpoints.

The optimization problem and constraints are similar for the closed curves: endpoints of the spline should meet at the same point, and the tangents at the endpoint positions should be equal.

Spline Post-Processing. To improve the final result, we apply post-processing procedure that helps to keep only the curves that have a good fit. First, we compute the quality metric as an \(F_1 \) score of the Chamfer distances between sampled curves and \(P_{\text{sharp}} \) and vice versa, thus getting the fit quality. Second, we turn off each curve separately and compute the metric again. If the quality drops or stays the same, we keep the curve in the final set of curves. Otherwise, we eliminate that curve. The quality metric is given by:

\[
\text{CD}_{X \rightarrow Y} = \frac{1}{N_X} \sum_{x \in X} \inf_{y \in Y} \|x - y\|^2,
\]

\[
F_1(T_{\text{metric}}) = \frac{2 \cdot \mathbb{1}(\text{CD}_{X \rightarrow Y} \leq T_{\text{metric}}) \cdot \mathbb{1}(\text{CD}_{Y \rightarrow X} \leq T_{\text{metric}})}{\mathbb{1}(\text{CD}_{X \rightarrow Y} \leq T_{\text{metric}}) + \mathbb{1}(\text{CD}_{Y \rightarrow X} \leq T_{\text{metric}})}
\]

(11)

where \(\text{CD}_{X \rightarrow Y} \) is a Chamfer distance from point set \(X \) to point set \(Y \), \(\mathbb{1} \) is an indicator function, and \(T_{\text{metric}} \) is a threshold to convert the real-valued distances into 0-1 hard labels. When using this metric for post-processing, we assigned \(P_{\text{sharp}} \) as one of the point sets, and a discretized set of curves as another.

Finally, we apply filtering of curves based on their length. This includes detecting the connected sets of curves, for each set we count the number of curves that form it and compute the total length of all curves in it. If the set contains less than four curves with total length smaller than 20\(r \), we discard such set altogether.

Our method requires setting the following parameters: threshold on distances for selection of points near feature lines \(d_{\text{sharp}} \), corner detector threshold \(T_{\text{corner}} \), endpoint detector radius \(R_{\text{endpoint}} \), endpoint detector threshold \(T_{\text{endpoint}} \), polyline optimization threshold \(T_{\text{split}} \). We express all of the parameters in the scale of sampling distance \(r \) (3). We discuss the exact values of parameters in Supplementary material.

For the illustration of the vectorization pipeline and the results of our spline fitting procedure, refer to Figure 11 and Figure 17.
7 EXPERIMENTS

We start our experimental study by introducing the measures of quality and providing training details in Section 7.1. We further evaluate our models against prior art in a variety of synthetic and real-world settings in Section 7.2. Section 7.3 demonstrates a parametric curve extraction application. We investigate alternative choices of model architecture and training configurations in Section 7.4. We conclude with testing the robustness of our approach w.r.t. sampling patterns and density variations in Section 7.5.

7.1 Experimental Setup

Measures of Quality. We evaluate our feature estimation method in terms of several quality measures (distance-to-curve regression and segmentation, as both are relevant in our case). We compute the following measures to assess feature estimation performance:

- **RMSE**: the root mean squared error between the predicted distances \(\hat{d}(p) \) and the ground-truth distance-to-feature field \(d(p) \). For a set of instances, we report the mean RMSE across the respective items.
- **RMSE-\(q_{95} \)**: the 95% quantile value of RMSE across a set of instances captures the width of distance error distribution.
- **Recall (T)**: we compute Recall using the predicted thresholded labels \(\hat{s}_i \equiv 1(\hat{d}_i < T) \) and the ground-truth distances \(s_i \equiv 1(d_i < T) \). We use \(T_{\text{sim}} = r \) for synthetic instances but increase the threshold for real data to \(T_{\text{scan}} = 4r \) to account for scan misalignments. Recall estimates the quality of feature line estimation in the direct proximity of the ground-truth feature line. As before, we report the mean value of Recall computed across test instances.
- **FPR (T)**: we compute the False Positives Rate using the thresholded predictions and report mean FPR across patches or full models. FPR estimates the fraction of points predicted as belonging to a sharp feature line but located outside the direct proximity of the ground-truth feature line.
- **CD, HD and SD**: We use Chamfer Distance, Hausdorff Distance and Sinkhorn Distance, respectively, for evaluating parametric curve extraction. These measures assess the discrepancy between the extracted and the ground-truth sets of curves.

We provide the exact formulae for our quality measures in Supplementary material. Unless specified otherwise, we present measure values averaged across test instances (patches or full models).

Data and Training. We train networks on 4 nVidia Tesla V100 16Gb GPUs in parallel; we use the synchronous version of batch normalization in all our architectures. All experiments were performed using the PyTorch framework [Paszke et al. 2019], its higher-level neural network API PyTorch Lightning [Falcon 2019], and the Hydra framework [Yadan 2019] for configuring experiments. We use Adam optimizer [Kingma and Ba 2014] with an initial learning rate of 0.001, multiplying it by 0.9 every epoch, and train all our models with a total batch size of 32. We validate network performance on a validation set of patches every epoch, stopping training when the RMSE metric has no improvement over the ten consecutive epochs, and select the model with the best performance on the validation set of patches.

All training patches consist of 4096 (64 \times 64) pixels. We divide depth values in each patch by the 95% quantile value computed among max depths for each patch across the training dataset; no augmentations were applied to depth images. Unless specified otherwise, our training datasets consist of 65,536 patches. The validation set and test set include approximately 32,000 patches. We observed that increasing the size of the training set further does not lead to significant improvement in performance, and report more details in the Supplementary material.

7.2 Comparisons

Baseline Approaches. We compare DEF against five state-of-the-art methods either directly designed or adapted for extracting feature lines from sampled 3D shapes. Four of these methods are deep learning-based, representing natural interest for comparisons [Liu et al. 2021; Raina et al. 2019; Wang et al. 2020; Yu et al. 2018]; the fifth method is the best-performing traditional approach based on local set-based feature detection [Mérigot et al. 2010] (see Section 2 for more context). We briefly review the main principles underlying these approaches below. Most competitor methods have a number of tunable parameters, commonly adjusted to obtain the best results for a specific input shape; as we aim to compare on relatively large datasets, we determine fixed parameters that maximize...
method performance on the whole validation set, as explained in the Supplemental; to obtain predictions, we run each method with the selected set of its parameters on both local patches and complete point-sampled 3D shapes.

Voronoi Covariance Measure (VCM) [Mérigot et al. 2010] is a non-learning method for hard segmentation of a point cloud into sharp and non-sharp points. For this, VCM computes the Voronoi covariance measure of a point as a covariance matrix of the intersection of an estimated Voronoi cell with a ball of radius R, where R is a parameter of the method; a convolution radius r is used for smoothing the measure. The input points are labelled by thresholding the ratio of the smoothed covariance matrix’s eigenvalues, with threshold T being another parameter. We have optimized the parameters (r, R, T) to maximize Recall ($1r$) on each dataset, by a direct search, for each data variety. *VCM* is expected to perform robustly across a range of noise and sampling variations.

Sharpness Fields (ShF) [Raina et al. 2019] is a CNN for predicting the sharpness field — a real-valued function with values close to 1 for points near the feature lines and 0 in smooth areas. To this end, ShF constructs local neighborhoods with fixed-size (30×30), uniformly spaced samples from the underlying Moving Least Squares proxy surface of the point cloud. The method requires normals as an additional input, that we estimate using a neighborhood-based method with the number of neighbors empirically set to 100. *ShF* accepts a noise-free, uniformly sampled point cloud as input, thus, we expected its performance to deteriorate for noisy inputs. We have observed that, in most cases, predicted values do not increase monotonically with distance to the feature line; however, the predicted field is suitable for producing segmentation by thresholding; we thus run a sweep to select the threshold value that would produce the highest Recall on the training set. We also made an effort to compare our distance-to-feature field outputs to the sharpness fields produced by *ShF* directly: to that end, we find the most suitable linear transformation of our field on the train subset.

Edge-Aware Consolidation Network (EC-Net) [Yu et al. 2018] includes a PointNet++ architecture [Qi et al. 2017] derived method for detection of sharp feature lines as an auxiliary signal for point cloud upsampling. The network predicts point locations exactly on the sharp feature curves; we map this output to our patches by selecting one nearest neighbor for each of the sharp points from *ShF*. We share the overall structure with our current vectorization method, a point cloud of arbitrary size with per-point distance-to-feature estimates from DEF neural network. Although Wireframes share the overall structure with our current method, previous approach has major flaws in its design which we have resolved in the current method.

Patch-Based Comparison (DEF-Sim). We start with comparisons to prior art by evaluating DEF vs. the baselines using our synthetic patch datasets (DEF-Sim) to provide a direct network-to-network comparison and eliminate the influence of postprocessing. We present a statistical evaluation in Table 2, compare results visually in Figure 12, and plot dependencies of performance vs. noise and resolution parameters for all methods in Figure 13.

Qualitatively, we observe that our method compares favorably to all competitors (most evidently, *ShF*, *VCM*, and PIE-NET) on less pronounced features that have smaller normal jumps (Figure 12, rows 1.3); while these methods tend to be less sensitive to such subtle features, DEF demonstrates increased robustness when facing such geometry. For instances with large sampling distance variations (Figure 12, row 2), *ShF* and EC-Net miss features while *VCM* and PIE-NET produce substantial numbers of false positive, particularly in under-sampled regions; for *VCM*, this is due to the uniform surface sampling assumed in the model; DEF remains capable of accurately localizing feature locations. In comparison with *ShF* and PIE-NET, DEF performs notably better on noisy data for noise magnitudes of up to $r/2$, with a moderate decrease in Recall but almost no change in FPR, compared to two orders of magnitude increase in FPR from

Method	RMSE \downarrow $\times 10^{-3}$	RMSE-$q_0.1$ \downarrow $\times 10^{-3}$	Recall ($1r$), % \uparrow	FPR ($1r$), % \downarrow
Evaluation using DEF-Sim datasets				
VCM [Mérigot et al. 2010]	—	—	49.1	3.1
EC-Net [Yu et al. 2018]	—	—	79.2	2.9
DEF (Trained on EC data)	124.1	501.1	56.0	0.15
PIE-NET [Wang et al. 2020]	—	—	32.0	3.8
DEF (Trained on PIE data)	86.2	451.8	57.1	0.1
ShF [Raina et al. 2019]	18.0	95.7	80.9	0.3
DEF (Ours)	**11.1**	**42.5**	**80.02**	**0.02**

Evaluation using EC-Net datasets				
DEF (Trained on EC data)	192.9	573.1	46.3	1.5
DEF (Ours)	**153.0**	**526.1**	**46.4**	**1.3**
Fig. 14. Comparison to state-of-the-art sharp feature line estimation methods on high-resolution synthetic full shape datasets (a) and real scanned datasets representing full 3D shapes (b). Our method is able to robustly reconstruct a pointwise distance-to-feature field and scales to 3D shapes represented by millions of points.
Table 3. Our method is able to reconstruct a robust estimate of a distance-to-feature field defined for a complete 3D shape. While DEF achieves similar Recall to VCM, it does so by truncating an accurate distance field and demonstrates nearly 10x lower FPR. ∗ PIE-NET was invoked with 8,096 samples as input.

Method	RMSE \downarrow	RMSE-qsp \downarrow	Recall (r), %\uparrow	FPR (r), %\downarrow
VCM [Mérigot et al. 2010]	—	—	79.2	4.8
EC-Net [Yu et al. 2018]	—	—	48.5	0.2
PIE-NET ∗ [Wang et al. 2020]	—	73.6	2.9	
ShF [Raina et al. 2019]	623	761.4	69.8	0.3
DEF (Ours)	115.1	200.1	79.0	0.5

Table 4. Compared to the closest state-of-the-art competitor approach, VCM, our method achieves 3x higher Recall ($4r$) on noisy and incomplete scanned data, while maintaining a moderate FPR ($4r$). Quantitatively, our method reconstructs the full distance-to-feature field with RMSE $= 1.5$ mm and RMSE-qsp $= 2.9$ mm at a sampling distance of $r = 0.5$ mm.

Method	Recall ($2r$), %\uparrow	FPR ($2r$), %\downarrow	RMSE \downarrow
VCM [Mérigot et al. 2010]	29.5	10.2	5.33 × 10⁻³
EC-Net [Yu et al. 2018]	10.1	0.8	5.33 × 10⁻³
DEF (Ours)	91.7	20.1	11.01 × 10⁻³

Real 3D Shapes (DEF-Scan). To perform an experimental evaluation of distance-to-feature prediction quality for real-world noisy 3D scans, we use our real-world dataset of complete 3D scanned shapes with sharp feature annotations. We first select a DEF CNN model pre-trained on a synthetic dataset (with sampling distance $r_{\text{med}} = 0.05$) and fine-tune it using the real annotated depth images. To this end, we split the 84 scanned objects into training (42 objects, 981 scans), validation (21 shapes, 479 scans), and final testing (21 objects, 468 scans) subsets, and optimize our model until convergence on the validation set. Next, we apply the optimized network to each view of the testing dataset and reconstruct a complete distance-to-feature field using our fusion algorithm (Section 5.2) using $n_o = 12$ views available for each 3D shape; here we perform view synthesis in perspective projection using 4 neighbors for each sampled point.

Overall, our method reconstructs the complete distance field with RMSE $= 1.5$ mm and RMSE-qsp $= 2.9$ mm. We report performance against competitor approaches in Table 4 using Recall ($4r$) and FPR ($4r$) measures where the real-world sampling distance $r = 0.4$ mm. Compared to VCM and EC-Net, our results suggest that DEF systematically outperforms the competitor methods by a significant margin.

Complete 3D Models (DEF-Sim). To obtain results on complete models, we use DEF-Sim, the synthetic validation set of 68 sampled 3D shapes (see Section 4.1), and apply our patch-based DEF to each view of each shape without any fine-tuning on these data. We further reconstruct a complete, object-level distance-to-feature field using the algorithm described in Section 5.2; for our fusion, we use $n_o = 128$ views and perform view synthesis in orthographic projection using 4 neighbors for each sampled point. To obtain the final statistical estimate, we extract minimum value from the set of valid interpolated predictions in (4).

We compare our approach with competitors statistically in Table 3 and visually in Figure 14 (a). Most our complete 3D shapes include from 10^6 to 10^7 point samples. Qualitatively, our method is able to more robustly regress features with smaller difference in normal orientations, undersampled features, or feature curves with large density variations across the feature line, such as features in internal cavities of a 3D shape.

In Figure 15, we additionally demonstrate an example reconstruction of a complete object-level distance field using DEF trained on patches in the EC-Net dataset described above.
DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes

1. Fig. 16. We use distance field estimates obtained by our method for complete, large sampled shapes (up to 10^7 points) to reconstruct full parametrizations of their feature curves. We compare our inference results to PIE-NET (a) and PC2WF (b) using our validation set (rows 1–2) and on validation shapes from the corresponding papers (rows 3–4).

2. We run our vectorization method on the complete 3D shapes sampled using $n_v = 128$ views, where predictions have been computed by the DEF network and a complete object-level distance field has been obtained in the previous steps (Section 7.2). After setting parameters, we run our method without manual intervention. The output consists of (1) spline curve parameters and (2) endpoint coordinates for straight lines, readily available for further processing.

3. PIE-NET [Wang et al. 2020] requires subsampling our point clouds to 8,096 points. We applied the farthest point sampling technique to reduce the size of the point clouds. PIE-NET parametric curves extraction stage produces a set of points sampled along the curves.

4. PC2WF [Liu et al. 2021] is essentially free of point cloud size; however, to reduce the computation time and make sampling density closer to the point clouds of the original paper, we subsampled our shapes to 200,000 points each. PC2WF outputs pairs of endpoint coordinates that represent a straight line wireframe.

5. Wireframes [Matveev et al. 2021] has the same input and output as our method. To assess the wireframe quality, we ran our pipeline on the validation set of 68 complete 3D models (DEF-Sim) along with PIE-NET and compared the obtained results to the ground truth parametric curves. To compute the metrics, we sampled all the predicted curves and lines along with the ground truth set of curves into point sets and derived distances between the closest points to calculate CD, HD, and SD. The aggregated statistical estimation of metrics for our method and PIE-NET are reported in Table 5. We observed a significant difference between one-sided CD’s for PIE-NET predictions. Specifically, the average distance from ground truth to prediction is 0.9, the average distance from prediction to ground truth is 0.064. That implies that PIE-NET misses many curve instances, but it outputs relatively accurate reconstructions for the detected ones. In turn, the one-sided CD of our method is 0.024 from ground truth to prediction and 0.02 for distance in the opposite direction. We refer the reader to Figure 16 for the qualitative results.

7.3 Extracting Parametric Curves

We run our vectorization method on the complete 3D shapes sampled using $n_v = 128$ views, where predictions have been computed by the DEF network and a complete object-level distance field has been obtained in the previous steps (Section 7.2). After setting parameters, we run our method without manual intervention. The output consists of (1) spline curve parameters and (2) endpoint coordinates for straight lines, readily available for further processing.

PIE-NET [Wang et al. 2020] requires subsampling our point clouds to 8,096 points. We applied the farthest point sampling technique to reduce the size of the point clouds. PIE-NET parametric curves extraction stage produces a set of points sampled along the curves.

PC2WF [Liu et al. 2021] is essentially free of point cloud size; however, to reduce the computation time and make sampling density closer to the point clouds of the original paper, we subsampled our shapes to 200,000 points each. PC2WF outputs pairs of endpoint coordinates that represent a straight line wireframe.

Table 5. Compared to PIE-NET parametric feature curve extraction stage, DEF achieves an order of magnitude more accurate reconstruction.

Method	CD ↓	HD ↓	SD ↓
PIE-NET [Wang et al. 2020]	0.97	2.19	0.84
DEF (Ours)	0.04	0.55	0.05
Fig. 17. We showcase twelve additional examples of extracted parametric representations next to the ground truth sets of curves. Row 4 includes visually inferior examples where our method struggles to output clean and complete parametric representation.

Since PC2WF outputs straight lines only, we did not run it on the whole set of validation shapes and report no statistical performance; instead, we provide qualitative results for their method only on the small subset of shapes presented in Figure 16.

For both PIE-NET and PC2WF, qualitative results depict the shapes from our validation set and figures from the respective papers that were used to evaluate the quality of the corresponding methods.

Results indicate that our method is more flexible and robust with respect to the shape sampling variation and geometric complexity. Compared to PIE-NET, DEF detects more curve instances, and due to the predicted distance field, the fitting procedure does not rely solely on the point positions and is free of sampling issues. Our pipeline can fit curves of different types when PC2WF has been designed for straight lines. On the other hand, the performance of our method is strongly conditioned by the choice of parameters when both PIE-NET and PC2WF, as learning-based methods, are almost free of parameter tuning. We described a simple tuning procedure that only exploits the distance field estimation to mitigate that.

Additionally, we demonstrate how our current vectorization pipeline compares to the previous version (Wireframes). We compare the two methods in Figure 18. The improved corner detection and kNN-based polyline construction enable our method to resolve cases of close corners and complex curves. Curve graph topology guides the curve fitting stage and, if imprecise, may lead to outlier curves as it is seen in the Wireframes output.

7.4 Ablation Studies

We conducted a large number of computational experiments to determine the optimal parameters of our method; our main conclusions were outlined in Section 5; here, we summarize the results.
Table 6. Compared to point-based DGCNN [Wang et al. 2019], our CNN-based learning method more efficiently regresses distance-to-feature values. For image-sampled patches that tend to be non-uniform, adding prior sharpness estimates from VCM yields no advantage to either method.

Dataset	Method	RMSE \downarrow 10^{-3}	RMSE-$q_{05}$$\downarrow$ 10^{-3}	Recall ($1r$, %) \uparrow	FPR ($1r$, %) \downarrow
Regular images (no bg, reprojected to points)	DGCNN + Histogram loss	11.3	55.5	80.9	3.7×10^{-2}
Regular images (no bg, reprojected to points)	DGCNN + Histogram loss + VCM	13.6	70.0	68.8	4.8×10^{-2}
Regular images (no bg)	CNN + Histogram loss (DEF)	9.7	32.5	84.6	3×10^{-2}
Regular images (no bg)	CNN + Histogram loss + VCM	10.9	36.8	80.4	3.7×10^{-2}
Regular images (with bg, DEF-Sim)	CNN + Histogram loss (DEF)	11.1	42.5	80.0	2.2×10^{-2}

Learning Architectures. In this paper, our focus is on 3D data represented as a collection of depth images, one of the most common types of scanned 3D data. This allows us to use standard convolutional networks that take advantage of the regular sampling pattern in the data. To quantify the advantage obtained from using this additional regularity of sampling, we consider an alternative approach, ignoring depth image structure, and viewing the collection of images as an unstructured point set. As standard CNNs can no longer be applied to this type of data, we use the DGCNN network [Wang et al. 2019]; we set depth $D = 6$ and width $W = 64 \times 1.35^{D-3} \approx 150$. Similarly to the CNN version, we trained the network using the Histogram loss, studying various modifications, most importantly, training the DGCNN using the ground-truth distances $d(p)$ and VCM sharpness labels as an additional input.

For highly non-uniform image-sampled patches (e.g., rays passing nearly in parallel to parts of the surface), VCM struggles to extract feature-related information. Thus, adding VCM labels yields no advantage for range-scan data for both the DGCNN and the CNN DEF models. Generally, we observe DEF networks to outperform point-based models (DGCNN trained with Histogram loss supervised by $d(p)$ and VCM) on regularly sampled range-scan data, see Table 6, middle rows. CNN DEF models additionally demonstrate better noise-resistance compared to the point-based alternative, as can be seen in Figure 13. In this experiment, we train CNN DEF and DGCNN models on noisy sampled data, and find that the latter yields lower Recall and higher FPR values across noise magnitudes.

Data Generation. We mention an additional configuration of interest, obtained by considering two versions of the range-scan data: a filtered version that excludes patches with depth discontinuities or background pixels (we refer to it as no bg), and a dataset including all types of patches (referred to as with bg); we train models separately on either data variety. DEF models trained on patch datasets without background pixels perform quantitatively better for similar testing data, see Table 6, bottom rows; however, as shown in Figure 19, networks trained on data with background pixels yield more stable predictions, particularly on near-boundary pixels.

Loss Type. (Section 5.1). The results of our study of loss functions lead us to find the Histogram loss [Imani and White 2018] to perform favorably compared to L_1/L_2 losses (see Table 1).
7.5 Robustness Study

Reconstruction on Complete 3D Models. We investigate the two crucial factors in the reconstruction of distance-to-feature fields on complete sampled 3D shapes: the number of views n_v and the inference function applied over the set D_p of interpolated predictions in (4). To this end, we consider an order of magnitude fewer set of $n_v = 18$ views and two additional inference functions: truncated \min and linear fit, as well as compare against an aggregation method applied on top of DGCNN predictions. Truncated \min is computed by removing 20% of smallest values in D_p and taking min; linear fit fits a robust version of local linear regression [Huber et al. 1973] to $d(p)$ in each sampled point p by extracting local patches of Euclidean neighbors of size 50, and computes the final estimate as a fitted value in p.

Statistical results for our sets of 68 synthetic and 84 real scanned models are presented in Table 7. We focus our attention on the Recall and RMSE measures and conclude that having a sufficient number of views is crucial to the successful reconstruction of our distance function. Comparisons of inference functions generally lead to truncated \min improving over RMSE but not Recall measure compared to \min, with linear fit being inferior to both these approaches.

8 CONCLUSIONS

We present a new learning-based pipeline for automatic sharp feature detection from sampled 3D data. Our approach is based on training and comparing different methods on a dataset annotated with distance-to-feature information derived from the ABC dataset of 3D CAD models. Our method works on patches sampled from the input shape, with predictions combined in a postprocessing step. We demonstrate that the CNN-based model operating on regularly sampled range images, when such images are available as an input or via resampling the input, is an efficient predictor for distance-to-feature fields. The image-based CNN model is also the most robust to input noise in our experiments. A somewhat surprising observation is that training a regression model benefits from using a histogram loss. At the same time, providing additional inputs, or including additional outputs in training, did not lead to significant improvements in accuracy either for image- or for point-based networks, except adding VCM as input to DGCNN.

We compared our results to recent learning-based methods and a representative high-quality traditional method, demonstrating quantitative and qualitative improvements over these approaches. For instance, the proposed DEF outperforms the best-performing approach by 4% in terms of Recall measure while offering an order of magnitude improvement in false positives rate (from 0.3% to 0.03%). Our method generalizes to real data after fine-tuning; we are not aware of any other feature estimation approach tested on a large collection of real data with manually annotated ground truth. Our approach also scales to orders of magnitude larger point clouds, which has not been successfully shown before.

We make publicly available the two collections of datasets, the benchmarks, the implementation of all baselines, the reference implementation of our method, and our trained models to foster additional work in this direction.

9 LIMITATIONS AND FUTURE WORK

Limitations of our approach to feature estimation include

(1) Feature Definition. Our definition of sharp geometric features depends on a relatively large 18° normals angle threshold.
Table 7. We demonstrate quantitative results of reconstructing distance-to-feature fields on complete 3D models using variations of our approach. For both DEF-Sim and DEF-Scan collections, we find a significantly better Recall being achieved by min fusion, while RMSE favors truncated min.

Dataset	Method	RMSE, $\downarrow \times 10^{-3}$	RMSE-q_{95}, $\downarrow \times 10^{-3}$	Recall (T), \uparrow	FPR (T), \downarrow
DEF-Sim (crops)	DGCNN + Histogram loss ($n_0 = 18$, min)	247.6	287.9	52.4	92.3
DEF-Sim	DEF ($n_0 = 18$, linear fit)	255.1	351.6	0	3.1
DEF-Sim	DEF ($n_0 = 18$, truncated min)	120.8	227.4	12.5	74.9
DEF-Sim	DEF ($n_0 = 18$, min)	100.2	214.1	47.9	74.9
DEF-Sim	DEF ($n_0 = 128$, truncated min)	62.4	157.1	31.8	90.9
DEF-Sim	DEF ($n_0 = 128$, min)	115.1	200.1	79	98
Dataset	Method	RMSE, mm \downarrow	RMSE-q_{95}, mm \downarrow	$T = 0.5$ mm \uparrow	$T = 2$ mm \uparrow
DEF-Scan	DEF ($n_0 = 12$, linear fit)	1.27	2.36	70.1	7.9
DEF-Scan	DEF ($n_0 = 12$, truncated min)	1.25	2.3	80.9	9.5
DEF-Scan	DEF ($n_0 = 12$, min)	1.54	2.85	91.7	20.1

(normals inner product ≈ 0.95). However, for arbitrarily-oriented normals (e.g., the original ABC data [Koch et al. 2019]), we use the absolute of the inner product, and our annotations do not reflect very sharp edges (i.e., those having normals whose inner product is larger than 0.95); this special case remains an open issue.

(2) Data Annotation Procedure. For complex geometry (e.g., folded shapes, shapes with rich geometric detail in internal cavities), our distance-to-feature annotations may produce spurious signal on flat surfaces due to feature curves that are close in Euclidean (but not geodesic) sense; we exclude such data from training. In such instances, using geodesic instead of local Euclidean distances is more appropriate.

(3) Visibility and Cross-View Consistency. Dependence on feature visibility can be viewed as a limitation of our approach; however, for common real data acquired by scanners, only visible features are present. We eliminate inconsistency in per-view predictions in each 3D surface point by obtaining multiple likely distance-to-feature values, then statistically inferring a final value (e.g., by taking min).

(4) Feature Ambiguity. Sufficiently dense sampling of nearby features is a crucial requirement for our algorithm to accurately distinguish individual features. In instances where having enough (e.g., 8 or more) samples between feature curves is possible, our method efficiently relates samples to respective closest feature lines; otherwise, close feature curves may cause incorrect clustering of points.

(5) Parametric Curve Extraction. Limitations of our vectorization method mainly stem from the quality of the extracted distance-to-feature field. For instances with varying sampling density or unstable distance values, our method may struggle with distinguishing close curves or concentric circles (see, e.g., Figure 17, row 4). A partly related effect is gluing together two close corners (see, e.g., Figure 16, row 4).

Future Work in the direction of our research may include

(1) Extending to Features of Multiple Types. We have used interior curves in all training examples on patches, however we hypothesize that training with boundary (contour) curves on whole shapes or patches with boundary, i.e., distinguishing different feature types, might be beneficial.

(2) Reconstruction of a Complete Distance Field. Our procedure for inferring distance-to-feature fields on complete 3D shapes is agnostic to the type of function that it reconstructs; at the same time, our distance-to-feature is a non-negative, piecewise-linear, bounded function; incorporating such forms of explicit prior knowledge about this function can considerably improve prediction accuracy.

(3) Real-World Prediction. We believe that extending our preliminary study of feature estimation in scanned 3D shapes to a full, robust algorithm capable of vectorizing real-world scans represents a promising research direction.

ACKNOWLEDGMENTS

We are grateful to Prof. Dzmitry Tsetserukou (Skoltech) and his laboratory staff for providing the 3D printing device and technical support. We thank Sebastian Koch (Technical University of Berlin), Timofey Glukhikh (Skoltech) and Teseo Schneider (New York University) for providing assistance in data generation. We also thank Maria Taktasheva (Skoltech) for assistance in computational experiments. We acknowledge the use of computational resources of the Skoltech CDISE supercomputer Zhores for obtaining the results presented in this paper [Zacharov et al. 2019]. The work was supported by the Analytical center under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021).

REFERENCES

D. Bazazian, J. R. Casas, and J. Ruiz-Hidalgo. 2015. Fast and Robust Edge Extraction in Unorganized Point Clouds. In 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), 1–8. https://doi.org/10.1109/DICTA.2015.7371262

D. Bazazian and ME. Parés. 2021. EDC-Net: Edge Detection Capsule Network for 3D Point Clouds. Applied Sciences 11, 4: 1833 (2021), 1–16. https://doi.org/10.3390/app11041833

Yuanhao Cao, Liangliang Nan, and Peter Wonka. 2016. Curve networks for surface reconstruction. arXiv preprint arXiv:1603.08753 (2016).

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. Meshlab: an open-source mesh processing tool. In ACM Trans. Graph., Vol. 41, No. 4, Article 108. Publication date: July 2022.
