Supplementary Information

Theoretical investigations of a new two-dimensional semiconducting boron-carbon-nitrogen structure

Yihua Lu,a Xi Zhu*a and Min Wang*b

aShenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), 14-15F, Tower G2, Xinghe World, Rd Yabao, Longgang District, Shenzhen, Guangdong 518172, China. E-mail:zhuxi@cuhk.edu.cn
bChongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China. E-mail: minwang@swu.edu.cn

Fig. S1 Convergence test based on different cutoff energies (450, 500 and 550 eV) and k-point grids (4×8×1, 5×9×1 and 6×10×1).

Compared with two experimental synthesized BCN structures (denoted as BCN_v1 and BCN_v3) [ACS Nano, 2017, 11, 2486-2493.], oC-B_{12}C_{12}N_{12} has a higher energy, as shown in Fig. S2. The energy difference between BCN_v3 and oC-B_{12}C_{12}N_{12} is 0.4 eV/atom.

Fig. S2 Total energies of different BCN structures as a function of area ratio.