Rapid Communication

Undergoing invasion of the fangtooth moray *Enchelycore anatina* (Lowe, 1838) in the western Ionian Sea, Central Mediterranean

Giuliana Marletta* and Andrea Lombardo
Department of Biological, Geological and Environmental Sciences – University of Catania, 95124 Catania, Italy
Author e-mails: giulianamarletta93@gmail.com (GM), andylombardo94@gmail.com (AL)
*Corresponding author

Abstract

The present short note explores the westward expansion of the non-indigenous fangtooth moray *Enchelycore anatina* (Lowe, 1838) within the Mediterranean Sea. Indeed, this species that is native to the Atlantic Ocean, has extended its distribution range into the Mediterranean Sea, reaching firstly the eastern part of the basin. In the last decades, the fangtooth moray has been reported in the central Mediterranean Sea, representing a further westward expansion within the Basin. This record of the fangtooth moray is the third report from Italian territorial waters and the second one for Sicilian waters. In this study, two new individuals of the species are reported along the Ionian coast of Sicily. The rapid expansion of this fish species within the Mediterranean might be the result of its long pelagic larval stage. The fangtooth moray is an active predator, which can heavily impact native communities, thus it is necessary to keep monitoring the occurrence and expansion of this species within the Mediterranean.

Key words: non-indigenous fish, Muraenidae, Atlantic migration, range-expanding species, Sicily

Introduction

The fangtooth moray *Enchelycore anatina* (Lowe, 1838) belongs to the family Muraenidae and is a subtropical species widely distributed in the eastern Atlantic, from St. Helena Island in the south to the Azores in the north (Golani et al. 2002). This species is considered as an Atlantic range-expanding species within the Mediterranean (Zenetos et al. 2012). The fangtooth moray has been first caught in the Mediterranean in 1979 at a depth of 50 m, off the Israeli coast (Ben-Tuvia and Golani 1984). Since then, in the Mediterranean *E. anatina* has been recorded within eastern and central sectors (Figure 1). In fact it has been observed in Greece (Golani et al. 2002; Kalogirou 2010; Pirkenseer 2013; Kapiris et al. 2014; Dailianis et al. 2016), Turkey (Altan 1998; Yokes et al. 2002; Okuş et al. 2004; Can and Bilecenoglu 2005; Ergüden et al. 2013; Teker et al. 2019), Syria (Saad 2005), Israel (Lipej et al. 2011), Cyprus (Katsanevakis et al. 2009; Iglésias and Frotté 2015), western Ionian Sea (Guidetti et al. 2012;
The expansion of the fangtooth moray in the Central Mediterranean

Figure 1. Eastern and central sectors of the Mediterranean Sea where *Enchelycore anatina* (Lowe, 1838) has been previously reported. The red dots show the known records in the Mediterranean depicting the spatio-temporal spread of the species: 1 – Tel Aviv (Israel), Ben-Tuvia and Golani 1984; 2 – Elafonissos Island (Greece), Golani et al. 2002; 3 – Fethiye Bay (Turkey), Altan 1998; 4 – Antalya Bay (Turkey), Yokes et al. 2002; 5 – Mersin coast (Turkey), Can and Bilecenoglu 2005; 6 – Datca Peninsula (Turkey), Okus et al. 2004; 7 – Coast of Syria (Syria), Saad 2005; 8 – Island of Bisevo, Vis (Croatia), Lipej et al. 2011; 9 – Coast of Cyprus (Cyprus), Katsanevakis et al. 2009; 10 – Kolimbia Bay, Rhodes Island (Greece), Kalogirou 2010; 11 – Herti liyya north of Tel-Aviv (Israel), Li pej et al. 2011; 12 – Island of Susac (Croatia), Li pej et al. 2011; 13 – Northern Haifa Bay (Israel), Li pej et al. 2011; 14 – Iskenderun Bay (Turkey), Ergüden et al. 2013; 15 – Apulian coast (Italy), Guidetti et al. 2012; 16 – Bijelac Islet near Lastovo Island (Croatia), Dulčić et al. 2014; 17 – Plemmirio marine reserve (Italy), Katsanevakis et al. 2014; 18 – National Marine Park of Zakynthos (Greece), Kapiris et al. 2014; 19 – Kalamaki beach (Greece), Pirksenner 2013; 20 – Island of Malta (Malta), Deidun et al. 2015; 21 – Agio Anargyroi (Cyprus), Iglesias and Fro tó 2015; 22 – Lopud Island (Croatia), Bartulović et al. 2017; 23 – Kyklades Archipelago (Greece), Dailianis et al. 2016; 24 – Phaselis (Turkey), Teker et al. 2019 (for details see Supplementary material Table S1).

Katsanevakis et al. 2014), Maltese waters (Deidun et al. 2015) and Adriatic coasts (Lipej et al. 2011; Dulčić et al. 2014; Bartulović et al. 2017). These reports show that this species probably established reproductive populations in the Mediterranean waters (Kalogirou 2010). This dispersal success over a broad geographical range could putatively be attributed to the fangtooth moray’s long pelagic larval stage (Golani et al. 2006). *E. anatina* is a demersal inshore species usually inhabiting rocky bottoms at depths of 3–60 m (Kalogirou 2010), but it has even been reported in shallower waters (Dailianis et al. 2016). It is a nocturnal predator mainly feeding on benthic fish, cephalopods and crustaceans, reaching 120 cm in total length (Göthel 1992; Kalogirou 2010). The main characteristics of this fish are a very elongated body with large yellowish blotches arranged in longitudinal rows, a dorsal fin which is very long and originating above branchial opening, and an anal fin which is confluent with the caudal fin. The head is
The expansion of the fangtooth moray in the Central Mediterranean

Marletta and Lombardo (2020), BioInvasions Records (in press)

pointed with an elevated occipital region. The anterior nostril is tubular, while the posterior one can be round-to oval-shaped and opens in front of eyes. The mouth is large and the jaws are arched with fang-like teeth visible even when the mouth is closed (Golani et al. 2002).

The aim of this short note is to report the third record of fangtooth moray in the western Ionian Sea (the second one in Sicily) and to document the secondary westward expansion of this species within the Mediterranean.

Materials and methods

This short note reports on the sighting of two specimens of fangtooth moray found: the first in Aci Trezza (37°33′41.57″N; 15°09′26.97″E; Aci Castello, Catania, Sicily) and the second one in Santa Maria La Scala (37°37′02″N; 15°10′20″E; Acireale, Catania, Sicily), respectively. Both of these areas are located along the northern sector of the Ionian coasts of Sicily (Figure 2A).
The expansion of the fangtooth moray in the Central Mediterranean

In Aci Trezza (Figure 2B) there is a Marine Protected Area named Ciclopi Islands. The seabed in this area has a sloping topography, from the coastline to about 40 m depth, and consists of basaltic bedrock locally covered with large volcanic blocks (Sciuto et al. 2017). Santa Maria La Scala (Figure 2B) is a fishing town situated in the Timpa Nature Reserve, a protected area extending on the emerged part of Acireale coastal strip. The Timpa Nature Reserve encompasses a coastal slope which extends for 6 km. Santa Maria La Scala sea floor resembles the morphology of the Timpa, being a rocky steep slope extending to a depth range of 20–30 m (Catra et al. 2006). A recreational diver photographed the specimen recorded at Aci Trezza with an Olympus TG4 underwater camera; while the other individual was shot with an Action Camera SJCAM SJ4000, during an underwater survey conducted by the authors.

Results

The fangtooth moray of Aci Trezza (Figure 3A) was sighted for the first time in September 2016 in a crevice between boulders on a rocky slope at a depth of 16 m. This specimen has persisted in this area for the past 3 years, in fact it has always been found in the same crevice. On the other hand, the specimen of Santa Maria La Scala (Figure 3B) was photographed in June 2017 in a rocky crevice at a depth of 15 m. This individual was only sighted two times and was smaller than the other one. In all the sightings, only the head was visible, while the other part of the body was hidden within the rocks. However, the peculiar characteristic of the arched jaws, the nostrils and the livery of the head, allowed for the positive identification of the species. The fangtooth moray is distinguished from the indigenous moray of the Mediterranean Sea, *Muraena helena* Linnaeus, 1758, since the latter species has no arched jaws, and both posterior and anterior nostrils have tubes (Guidetti et al. 2012). Moreover, as reported in Deidun et al. (2015), *E. anatina* shows a fearless behavior in approaching SCUBA divers, compared to the more prudent movements exhibited by *M. helena*.
Discussion

The present records of *E. anatina*, a species widely distributed in the eastern Atlantic, from where it entered the Mediterranean Sea, represents the third report from Italian territorial waters and the second one from Sicily, preceded by the records from the south-eastern Apulian coast (Guidetti et al. 2012) and the Plemmirio marine reserve (Katsanevakis et al. 2014). Since the species has been previously reported in the western Ionian Sea and in Sicily, this report could represent a sign of establishment of *E. anatina* in this marine area.

Supplementary material Table S1 shows the number of known records (which corresponds to the red dots in Figure 1) of the fangtooth moray in the eastern and central sectors of the Mediterranean Sea. The number of records depicts the spatio-temporal spread of the species. From these reports, it can be observed that this species commonly lives in shallow waters and prefers rocky bottoms rich in crevices and holes. Sometimes, the fangtooth moray has been found in vertical walls or in rocky slopes. Indeed, similarly to the individual photographed in 2007 on the small island of Bisevo, Croatia, (Lipej et al. 2011), both specimens of this short note were found in steep rocky wall, covered with a sciaphilous assemblage. Therefore, the fangtooth moray is a species that usually stays concealed among rocks, waiting for prey to come along.

Overall, 48.3% of Atlantic marine species introduced in the Mediterranean Sea succeeded in spreading eastwards within the Basin. This is due to the prevailing water circulation in the western Mediterranean driven by the Atlantic current. The incoming surface Atlantic stream flows along the southern side of the Mediterranean Sea in a west–east direction, and then, off the Tunisian coast, along the western flank of the Sicily Channel, rises to the north of the western basin in a cyclonic movement (Albérola and Millot 1995). Therefore, it has been hypothesized that the dispersal of Atlantic range-expanding species and their propagules is driven by this hydrodynamic regime (Lasram et al. 2009). There is extensive evidence to show that ocean currents allow marine species to disperse over extremely long distances (e.g. Shanks et al. 2003). Species whose larvae and eggs have wider dispersal ability are expected to attain broader geographic ranges (Emlet 1995; Gaston 2003). Guidetti et al. (2012) have suggested that the rapid expansion of *E. anatina* could be attributed to its long pelagic larval stage, enabling this moray to cross long distances. Moreover, the colonization success of Atlantic species into the Mediterranean has been positively related to the climate match between their native and their colonized environment (Wolf et al. 1998; Duncan et al. 2001). Indeed, a species expanding into an area within the same latitudinal range can experience similar environmental conditions (e.g. temperature) and successfully establish in the new area (Lasram et al. 2009). This theory could explain how the fangtooth moray entered the Mediterranean Sea but not its pattern of spread within the Basin. In fact, this species was originally
The expansion of the fangtooth moray in the Central Mediterranean

recorded in the eastern Mediterranean, apparently bypassing the entire western part of the Basin. A similar event occurred for another non-indigenous species, the opisthobranch *Aplysia dactylomela* Rang, 1828. Valdés et al. (2013) confirmed that this species has an Atlantic origin, but it was first recorded in 2002 in the Sicily Channel (Trainito 2003) and then expanded into the Adriatic, central and eastern Mediterranean (Crocetta and Galil 2012). There are several hypotheses, related with historical and contemporary events which could justify the pattern of spread of this species in Mediterranean.

Another analogous case of an Atlantic range-expanding species with an anomalously higher distribution in the eastern Mediterranean than in the western Mediterranean is that of Atlantic tripletail *Lobotes surinamensis* (Bloch, 1790). This fish is considered as a rare occurrence in the western Mediterranean (Riera et al. 1999) and was reported in some areas of the eastern and central Mediterranean waters (Tortonese 1975; Fischer et al. 1987), although records from the Strait of Sicily have recently become more common (Camilleri et al. 2005). This species for which the majority of Mediterranean records hailed from the eastern Mediterranean (Tortonese 1975), is extending westwards and northwards its range within the same basin, with well-established populations (Deidun et al. 2010).

One hypothesis explaining the “shuttling” of Atlantic range-expanding species into eastern swathes of the Basin is based on the weakening of the Almería-Oran Front, putatively due to climate change, and the powerful Algerian Current, which could have carried the pelagic larvae of *E. anatina* directly in the eastern Mediterranean. Another hypothesis to explain the same phenomenon is that *E. anatina* could have been introduced directly into the eastern Mediterranean by human-mediated vectors, most notably shipping (through ballast water). The ballast water pathway appears to be the most feasible in view of the species’ extended pelagic larval stage. Therefore, in this context, it would be useful to step up monitoring efforts within key shipping crossroads in the Basin, including the Sicily Channel (Azzurro et al. 2014). In fact, the introduction of non-native species in the Mediterranean can modify food web structure and energy canalization (Libralato et al. 2002). The fangtooth moray is an active predator that could heavily affect native communities directly (via predator-prey interactions) and indirectly (via food web or habitat alterations) (Stergiou and Karpouzi 2002; Sala et al. 2011). Furthermore, when such gradual replacement of native species by non-indigenous ones happens in a semi-closed basin which is a hotspot of biodiversity, it contributes to the breakdown of regional distinctiveness of the Earth’s biota and to the global biotic homogenization (Vitousek et al. 1997; McKinney and Lockwood 1999). As a result, continuous monitoring and *in situ* observations are needed to understand how non-indigenous species can modify ecosystem functioning and change native fish community structure (Katsanevakis et al. 2014).
The expansion of the fangtooth moray in the Central Mediterranean

Acknowledgements

The authors wish to thank Dr. Venera Ferrito, Section of Animal Biology of the University of Catania, and Dr. Giuseppina Alongi, Section of Botany of the University of Catania, for kindly reviewing and enhancing the manuscript. We would like to express our gratitude to two anonymous reviewers for their constructive comments that improved this manuscript. We are grateful to the diver Massimo Lombardo for the photos of the fangtooth moray of Acitrezza that he has found and followed for three years.

References

Albérola C, Millot C (1995) On the seasonal and mesoscale variabilities of the Northern current during the PRIMO-0 experiment in the Western Mediterranean Sea. Oceanologica Acta 18: 163–192
Ałtan H (1998) Ege’nin dibinde bir hayal alemi: Sarigerme. Gezi, National Geographic Traveler 1: 60–75
Azzurro E, Ben Souissi J, Boughedir W, Castriota L, Deidun A, Falautano M, Ghanem R, Zammit-Mangion M, Andaloro F (2014) The Sicily Strait: a transnational observatory for monitoring the advance of non indigenous species. Biologia Marina Mediterranea 21: 105–106
Bartulović V, Dobroslavić T, Onukijević J, Glamuzina B (2017) Undergoing invasion of the fangtooth moray, Enchelycore anatina (Lowe, 1838) in the Adriatic Sea - Evidence of post spawning reproduction stage. Cahiers de Biologie Marine 58: 247–249, https://doi.org/10.21411/CBM.A.1068BDCE
Ben-Tuvia A, Golani D (1984) A west African fangtooth moray Enchelycore anatina from the Mediterranean coast of Israel. Copeia 2: 541–544, https://doi.org/10.2307/1445214
Camilleri M, Ragones e S, Darmanin M, Rosso B (2005) The discovery of a specimen of Lobotes surinamensis off the Maltese Islands (Central Mediterranean Sea). Biologia Marina Mediterranea 12: 480–483
Can A, Bilecenoglu M (2005) Türkiye denizleri’nin dip balıkları atlası. Arkadaş Yayınevi, Ankara, 224 pp
Catra M, Giaccone T, Giardina S, Nicastro A (2006) Il patrimonio naturale marino bentonico della Timpa di Acireale (Catania). Bollettino dell’accademia Gioenia di Scienze naturali 39: 129–158
Croccetta F, Galil BS (2012) The invasive spotted sea hare Aplysia dactylomela (Mollusca: Gastropoda: Aplysiidae): New records and spread pattern in the Mediterranean. Vie et Milieu 62: 43–46
Dailianis T, Akyol O, Babali N, Bariche M, Crocetta F, Gerovasileiou V, Ghanem R, Gökoğlu M, Hasiotis T, Izquierdo-Muñoz A, Julian D, Katsanevakis S, Lipej L, Mancini E, Mytilineou CH, Ounifi Ben Amor K, Özgül A, Ragkousis M, Rubio-Portillo E, Servello G, Sini M, Stamouli C, Sterioti A, Teker S, Tiralongo F, Trkov D (2016) New Mediterranean biodiversity records (July 2016). Mediterranean Marine Science 17: 608–626, https://doi.org/10.12681/mms.1734
Dailianis T, Akyol O, Babali N, Bariche M, Crocetta F, Gerovasileiou V, Ghanem R, Gökoğlu M, Hasiotis T, Izquierdo-Muñoz A, Julian D, Katsanevakis S, Lipej L, Mancini E, Mytilineou CH, Ounifi Ben Amor K, Özgül A, Ragkousis M, Rubio-Portillo E, Servello G, Sini M, Stamouli C, Sterioti A, Teker S, Tiralongo F, Trkov D (2016) New Mediterranean biodiversity records (July 2016). Mediterranean Marine Science 17: 608–626, https://doi.org/10.12681/mms.1734
Deidun A, Vella P, Sciberras A, Sammut R (2010) New records of Lobotes surinamensis (Bloch, 1790) in Maltese coastal waters. Aquatic Invasions 5: S113–S116, https://doi.org/10.3391/ai.2010.5.S1.023
Deidun A, Watson D, Castriota L, Mazza G, Passoli L (2015) First record of the Fangtooth moray, Enchelycore anatina (Actinopterygii: Anguilliformes: Muraenidae), from Maltese waters, Central Mediterranean. Acta Ichthyologica et Piscatoria 45: 315–317, https://doi.org/10.3750/AIP2015.45.3.11
Dulčić J, Dragičević B, Antolović N, Sulić-Šprem J, Kožul W, Grigićević R (2014) Additional records of Lobotes surinamensis, Caranx crypsos, Enchelycore anatina, and Lagocephalus sceleratus (Actinopterygii) in the Adriatic Sea. Acta Ichthyologica et Piscatoria 44: 71–74, https://doi.org/10.3750/AIP2014.44.1.09
Duncan RP, Bomford M, Forsyth DM, Conibear L (2001) High predictability in introduction outcomes and the geographical range size of introduced Australian birds: a role for climate. Journal of Ecology 70: 621–632, https://doi.org/10.1046/j.1365-2664.2001.00517.x
Emlet RB (1995) Developmental mode and species geographic range size in regular sea urchins (Echinodermata: Echinoidea). Evolution 49: 476–489, https://doi.org/10.1111/j.1558-5646.1995. tib02280.x
Ergüden D, Gürlek M, Uyyu nur, Turan C (2013) Occurrence of Fangtooth Moray Enchelycore anatina (Lowe, 1839) (Muraenidae) in Iskenderun Bay, Eastern Mediterranean, Turkey. Biharean Biologist 7: 108–110
Emlet RB (1995) Developmental mode and species geographic range size in regular sea urchins (Echinodermata: Echinoidea). Evolution 49: 476–489, https://doi.org/10.1111/j.1558-5646.1995. tib02280.x
Fischer W, Bauchot ML, Schneider M (1987) Fiches FAO d’identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noire. Zone de Pêche 37, vol II. Vertébrés. FAO, Rome, Italy : Service des ressources marines, département des pêches de la FAO, pp 761–1530
Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford, 276 pp
Golani D, Orsi-Relini L, Massuti E, Quignard JP (2002) CIESM Atlas of Exotic Species in the Mediterranean. CIESM Publishers, Monaco, 256 pp

Golani D, Ozturk B, Basusta N (2006) The Fishes of Eastern Mediterranean. Turkish Marine Research, Istanbul, 260 pp

Gothel H (1992) Fauna marina del Mediterráneo. Ediciones Omega, Barcelona, 319 pp

Guidetti P, Causio S, Liechelli C (2012) The first record of Enchelycore anatina (Muraenidae: Pisces) in the Ionian Sea (Mediterranean basin). Marine Biodiversity Records 5: 22, https://doi.org/10.1017/S1755267212000164

Iglésias SP, Frostell L (2015) Alien marine fishes in Cyprus: update and new records. Aquatic Invasions 10: 425–438, https://doi.org/10.3391/ai.2015.10.4.06

Kalogirou S (2010) First record of the non-indigenous fangtooth moray Enchelycore anatina from Rhodes Island, south-eastern Aegean Sea. Mediterranean Marine Science 11: 357–361, https://doi.org/10.12681/mms.83

Kapiris K, Apostolidis C, Baladacconi R, Başusta N, Bilecenoğlu M, Bitar G, Bobori D, Boyaci Y, Dimitriadi C, Djurović M, Dulčić J, Duručan F, Gerovasileiou V, Gökoğlu M, Koutsoubas D, Lefkadiotou E, Lipej L, Marković O, Mavić B, Özyarol V, Pesic V, Petriki O, Siapatis A, Sini M, Tibullo D, Tiralongo F (2014) New Mediterranean Biodiversity Records (April 2014). Mediterranean Marine Science 15: 198–212, https://doi.org/10.12681/mms.737

Katsanevakis S, Tsimas K, Ioannou G, Michailidis N, Zenetos A (2009) Inventory of alien marine species of Cyprus (2009) Mediterranean Marine Science 10: 109–133, https://doi.org/10.12681/mms.113

Katsanevakis S, Acar Ü, Ammar I, Balci BA, Bekas P, Belmonte M, Consoli P, Dimiza M, Frygangiotis K, Gerovasileiou V, Gniisci V, Gülşahin N, Hoffmann R, Issaris Y, Izquierdo-Gomez D, Izquierdo-Muñoz A, Kavadas S, Koehler L, Konstantinidis E, Mazza G, Nowell G, Özal U, Özen MR, Paflis P, Pastore M, Perdikaris C, Poursandis D, Prato E, Russo F, Siciro B, Tarkan AN, Thessalou-Legaki M, Tiralongo F, Triantaphyllou M, Tsiamis K, Tunçer S, Turan C, Türk A, Yapici S (2014) New Mediterranean Biodiversity Records (October, 2014). Mediterranean Marine Science 15: 675–695, https://doi.org/10.12681/mms.1123

Lasram FBR, Tomasini JA, Romdhane MH, Chi TD, Mouillot D (2009) Historical colonization of the Mediterranean Sea by Atlantic fishes: do biological traits matter? Hydrobiologia 607: 51–62, https://doi.org/10.1007/s10750-008-9366-4

Libralato S, Pastres R, Pranovi F, Raicevich S, Golani D, Dulčić J, Antolović N, Lipej L, Marković O, Ozvarol Y, Pesic V, Petriki O, Siapatis A, Sini M, Tibullo D, Tiralongo F (2011) The first record of fangtooth moray Enchelycore anatina (Lowe, 1839) in the Adriatic Sea. Journal of Applied Ichthyology 27: 1387–1389, https://doi.org/10.1111/j.1439-0485.2011.01816.x

McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14: 450–453, https://doi.org/10.1016/S0169-5347(99)01679-1

Okuş E, Sur HI, Yüksel A, Yilmaz IN, Aslan-Yilmaz A, Karhan SU, Oz MI, Demirel N, Tunçer S, Türker A, Yapıcı S (2014) First data on ostracods and foraminifera living in the Mediterranean. Mediterranean Marine Science 15: 109–133, https://doi.org/10.12681/mms.1123

Pisces) in the Ionian Sea (Mediterranean basin).

Riera F, Grau A, Grau AM, Pastor E, Quetglas A, Pou S (1999) Ichthyofauna associated with drifting floating objects in the Balearic Islands (western Mediterranean). Scientia Marina 63: 229–235, https://doi.org/10.3989/scimar.1999.6363-4239

Saad A (2005) Checklist of bony fish collected from the coast of Syria. Turkish Journal of Fisheries and Aquatic Sciences 5: 99–106

Sala E, Kizilkaya Z, Yildirim D, Ballesteros E (2011) Alien marine fishes deplete algal biomass in the Eastern Mediterranean. PLoS ONE 6: e17356, https://doi.org/10.1371/journal.pone.0017356

Sciuto F, Sanfilippo R, Alongi G, Catra M, Serio D, Bejaoui S, Leonardi R, Viola A, Rosso A (2012) The first record of Enchelycore anatina (Muraenidae: Pisces) from Rhodes Island, south-eastern Aegean Sea. Mediterranean Marine Science 13: 159–169, https://doi.org/10.18367/10.18367/pha.19011

Stergiou KI, Karpouzi VS (2002) Feeding habits and trophic levels of Mediterranean fish. Reviews in Fish Biology and Fisheries 11: 217–254, https://doi.org/10.1023/A:1020556722822

Teker M, Gökoğlu K, Gökoğlu M (2019) Phaseolus‘ın Denizel Biyoçeşitliligine Leopar Müren‘in (Enchelycore anatina Lowe, 1838) İlaçısı. Phaselis 5: 169–173, https://doi.org/10.18367/pha.19011
Tortonese E (1975) Osteichthyes (Pesci ossei), Parte seconda. Fauna d’Italia. Edizioni Calderini, Bologna, 636 pp
Trainito E (2003) Mediterranean Harlequins. A field guide to Mediterranean sea slugs. Taphros, Olbia, 58 pp
Valdès A, Alexander J, Crocetta F, Yokeş MB, Giacobbe S, Poursanidis D, Zenetos A, Cervera JL, Caballer M, Galil BS, Schembri PJ (2013) The origin and dispersal pathway of the spotted sea hare *Aplysia dactylomela* (Mollusca: Opisthobranchia) in the Mediterranean Sea. *Aquatic Invasions* 8: 427–436, https://doi.org/10.3391/ai.2013.8.4.06
Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. *Science* 277: 494–499, https://doi.org/10.1126/science.277.5325.494
Wolf CM, Garland T, Griffith B (1998) Predictors of avian and mammalian translocation success: reanalysis with phylogenetically independent contrasts. *Biology Conservation* 86: 243–255, https://doi.org/10.1016/S0006-3207(97)00179-1
Yokes B, Dervisoglu R, Karacilik B (2002) An investigation of the marine biological diversity along Likya shores. *Sualtı Bilim ve Teknoloji Toplantısı Bildiriler Kitabı İstanbul 2000*: 166–181
Zenetos A, Gofas S, Morri C, Rosso A, Violanti D, Garcia Raso JE, Çinar ME, Almogi-Labin A, Ates AS, Azzurro E, Ballesteros E, Bianchi CN, Bilecenoglu M, Gambi MC, Giangrande A, Gravili C, Hyams-Kaphzan O, Karachle PK, Katsanevakis S, Lipej L, Mastrototaro F, Mineur F, Pancucci-Papadopoulou MA, Ramos Esplá A, Salas C, San Martín G, Sfriso A, Streftaris N, Verlaque M (2012) Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. *Mediterranean Marine Science* 13: 328–352, https://doi.org/10.12681/mms.327

Supplementary material

The following supplementary material is available for this article:

Table S1. Known records of *E. anatina* in the Mediterranean Sea with information on the year of observation, number of specimens, depth and habitat of finding.