Supporting Information

Metal-Organic Framework MIL-68(Ind)-NH₂ on the Membrane Test Bench for Dye Removal and Carbon Capture

Bahram Hosseini Monjezi¹, Benedikt Sapotta¹, Sarah Moulai¹, Dr. Jinju Zhang², Robert Oestreich³, Dr. Bradley Ladewig², Prof. Dr. Klaus Müller-Buschbaum⁴,⁵, Prof. Dr. Christoph Janiak³, Dr. Tawheed Hashem¹,*, and Dr. Alexander Knebel¹,⁶,*

DOI: 10.1002/cite.202100117

¹(tawheed.hashem@kit.edu) Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

²Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

³Institute for Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.

⁴Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.

⁵Center of Materials Science (LAMA), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.

⁶(alexander.knebel@uni-jena.de) Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany.
S1 Modified Procedures for Preparation of MIL-68(In)-NH₂

To obtain uniform or monodispersed MOF particles, further optimization of the reaction parameters was necessary. Therefore, a simple approach was chosen, commonly used for the generation of nanoparticles. Therefore, the reaction time, temperature, concentration was varied and a modulator was used, which led to different morphologies of MIL-68(In)-NH₂.

As modulators in this project, pyridine and sodium acetate were used. These modulators typically act as space-filling molecules, counter ions for charge balance, or templates to control crystal growth, which determines the structure, size, and shape of the final products. Some SEM images of synthesized MIL-68(In)-NH₂ after modification are shown below.

Table S1. Components for MIL-68(In)-NH₂.

Morphology	Reactants	solvent (ml)	Modulators	Time (h)	Temp. °C
Large needle	(NO₃)₃·X H₂O NH₂-BDC	0.645	-	5	125
Small needle	1.92mmol	0.161	0.225	0.5	125
Spherical shape	0.96mmol	0.322	0.225	0.5	125
Ceramic shape	1.92mmol	0.645	0.225 0.0125	5	125
Figure S1. SEM images of MIL-68(In)-NH$_2$ particles with different synthesis methods to yield different particles shapes. The conditions can be found in Tab. S1.
S2 SEM-EDX Mapping Results of MIL-68(In)-NH$_2$

The spatial distributions of In, C, N, S, and O in PES@MIL-68(In)-NH$_2$ MMMs were shown by element mapping results and EDX spectrum (Fig. S2), demonstrating the presence of these elements in the final product. Platinum was used for sputtering the nanofiber membrane.

Figure S2. SEM image of the scanning area and corresponding EDX mapping on the top, EDX spectroscopy elemental analysis taken from the scanning area of the PES@MIL-68(In)-NH$_2$ MMM.
Table S2. Comparison of experimental parameters and methylene blue dye uptake with other adsorbents.

Adsorbents	Dye	Max. Uptake (mg/g)	Contact time (hr)	Reference
Graphene oxide	MB	243	5	[36]
Multi-walled CNT	MB	196	5	[36]
MIL-101(Al)-NH₂	MB	762	12	[37]
NH₂-MIL-101(Cr)-SO₃H	MB	141	12	[38]
UiO-66	MB	90	2.5	[39]
NH₂-UiO-66	MB	96	2.5	[39]
PES/Banana peel MMM	MB	325	8	[40]
PES/Tea waste MMM	MB	294	8	[40]
PES/Shaddock peel MMM	MB	340	8	[40]
4A-zeolite/PVA MMM	MB	41	3	[41]
Keratin nanofiber	MB	170	6	[42]
PAN/β-CD nanofiber	MB	113	10	[43]
Sericin/β-CD/PVA nanofiber	MB	187	4	[44]
CMC-β-CD	MB	57	5	[45]
PBST- β-CD	MB	91	24	[46]
MIL-68(Al)	MB	666	0.83	[47]
ZIF-8	MB	1667	4	[48]
ZIF-8@GO	MB	2034	4	[48]
ZIF-8@CNT	MB	3300	4	[48]
PES/MIL-68(In)-NH₂ MMM (15 wt-% MOF)	MB	2822	1	This work
Table S3. Comparison of experimental parameters, materials and dyes in cross-flow filtration, adapted from [16] with slight changes.

Material and Dye	Operation Pressure (MPa)	Permeance / (L m⁻² s⁻¹ MPa⁻¹)	Rejection / %	Ref
ZIF-8/PSS	0.5	265	98.6	[16]
PEI-GO/PAA/PVA/GA	0.5	8.7	99.3	[49]
CMCNa/PP	0.8	8.25	99.75	[50]
PVDF/nanoclay/chito	0.1	500	75	[51]
PDDA/PSS	0.6	82.5	92	[52]
ZIF-8/PSS	0.5	210	98.6	[53]
ZIF-12/PAN	0.2	272	99.4	[54]
ZIF-8/PA	3	22.6	99.98	[55]
PEI/CMCNa/PP	0.3	57	99.4	[56]
PVDF-SAN-60	0.4	95	97.7	[57]
PAA/PVA/GA	0.6	42	96	[58]
DEA-Modified PA-TFC	0.5	157.4	99.6	[59]
LM-3	0.4	145.1	98.9	[60]
ZIF-8/PES	--	13	98.95	[61]
Ceramic NF	0.3	247.5	>96.8	[62]
F127/PES	0.2	176.2	95.7	[63]
Tannic acid/TMC	0.2	168	99.7	[64]
PES-TA(M-60)	0.5	37.2	99.9	[65]
PES-SPMA	0.4	145	98	[66]
(NaSS-AC)/PS	0.4	58	96	[67]
PSF-PEG	0.4	76	98	[68]
(PSS/PAH)7	0.48	132	86.2	[69]
Alumina tube supported COF-LZU1	0.5	485.8	99.2	
Methyl blue	0.5	534.3	98.6	[70]
Congo red	0.5	580.5	91.4	
Acid Fuchsin	0.5	390.8	99.1	
Rose Bengal	0.1	159.3 ± 0.7	-	This work
Blank α-Al₂O₃ support	water	0.1	159.3 ± 0.7	This work
Blank Al₂O₃ support	Acid Fuchsin	0.1	159.3 ± 0.7	0 This work
Blank Al₂O₃ support	Rose Bengal	0.1	159.3 ± 0.7	0 This work
MIL-68(In)-NH₂ on α-Al₂O₃ support	Acid Fuchsin	0.1	116.9 ± 0.8	60 ± 2 This work
MIL-68(In)-NH₂ on α-Al₂O₃ support	Rose Bengal	0.1	75.9 ± 0.3	75 ± 2 This work
References

[16] H. Fan, J. Gu, H. Meng, A. Knebel, J. Caro, *Angew. Chem.*, *Int. Ed.* **2018**, 57, 4083–4087.
[36] Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, L. Xia, *Chem. Eng. Res. Des.* **2013**, 91, 361–368.
[37] E. Haque, V. Lo, A. I. Minett, A. T. Harris, T. L. Church, *J. Mater. Chem. A* **2014**, 2, 193–203.
[38] X. P. Luo, S. Y. Fu, Y. M. Du, J. Z. Guo, B. Li, *Microporous Mesoporous Mater.* **2017**, 237, 268–274.
[39] Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, F. Wei, *Appl. Surf. Sci.* **2015**, 327, 77–85.
[40] C. H. Lin, C. H. Gung, J. J. Sun, S. Y. Suen, *J. Membr. Sci.* **2014**, 2, 193–203.
[41] B. Baheri, R. Ghahremani, M. Peydayesh, M. Shahverdi, T. Mohammadi, *Res. Chem. Intermed.* **2016**, 42, 5309–5328.
[42] A. Aluigi, F. Rombaldoni, C. Tonetti, L. Jannoke, *J. Chem. Technol. Biotechnol.* **2016**, 91, 618–623.
[43] M. S. Tehrani, R. Zare-Dorabei, *Spectrochim. Acta, Part A* **2016**, 160, 8–18.
[44] J. Abdi, M. Vossoughi, N. M. Mahmoodi, I. Alemzadeh, *Chem. Eng. J.* **2017**, 326, 1145–1158.
[45] R. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J. R. Li, *Angew. Chem., Int. Ed.* **2014**, 53, 9775–9779.
[46] J. S. Yang, S. Y. Han, L. Yang, H. C. Zheng, *J. Membr. Sci.* **2014**, 471, 285–298.
[47] M. Liu, Q. Chen, K. Lu, W. Huang, Z. Lü, C. Zhou, S. Yu, C. Gao, *Sep. Purif. Technol.* **2017**, 173, 135–143.
[48] J. Wang, L. Qin, J. Lin, J. Zhu, Y. Zhang, J. Liu, B. V. Bruggen, *Chem. Eng. J.* **2017**, 323, 56–63.
[49] Y. Li, L. H. Wee, A. Volodin, J. A. Martens, I. F. J. Vankelecom, *Chem. Commun.* **2015**, 51, 918–920.