Computing the Wiener index in Sierpiński carpet graphs

Daniele D’Angeli*, Alfredo Donno† and Alessio Monti**

* Institut für Mathematische Strukturtheorie (Math C), TU Graz, Steyrergasse 30, 8010 Graz, Austria. ¹
† Università degli Studi Niccolò Cusano – Via Don Carlo Gnocchi, 3 00166 Roma, Italia. ²
** Università degli Studi Niccolò Cusano – Via Don Carlo Gnocchi, 3 00166 Roma, Italia. ³

Abstract. We describe an algorithm to compute the Wiener index of a sequence of finite graphs approximating the Sierpiński carpet.

Keywords: Sierpiński carpet graph, Wiener index, obstruction.

Mathematics Subject Classification (2010): 05C12, 05C38, 92E10.

INTRODUCTION

The famous Sierpiński carpet is a self-similar, infinitely ramified fractal introduced by W. Sierpiński in 1916 [12]. Many physical models and critical phenomena on this and other related fractals, or on their discrete approximations, have been widely studied in the literature [1, 4, 5, 9, 10, 11]. In this short note, we study the Wiener index of a sequence \(\{ \Gamma_n \} \) of graphs defined below.

WIENER INDEX AND CARPET GRAPHS

Let \(\Gamma = (V, E) \) be a connected finite graph. The Wiener index \(W(\Gamma) \) of \(\Gamma \) is the number

\[
W(\Gamma) = \frac{1}{2} \sum_{v \neq w \in V} d(v, w),
\]

where \(d \) is the geodesic distance on \(\Gamma \). We investigate it for the sequence of \(\Gamma_n \) defined below.

Fix two finite alphabets \(X = \{0, 1, \ldots, 7\} \) and \(Y = \{a, b, c, d\} \), and let \(X^n = \{x_1, x_2, \ldots : x_i \in X\} \) be the set of all infinite words over \(X \). Let \(C_4 \) be the cyclic graph of length 4 whose vertices will be denoted by \(a, b, c, d \) (Fig. 1).

Recursive construction of the graphs \(\Gamma_n \).

• Step 1. The graph \(\Gamma_1 \) is the cyclic graph \(C_4 \).

• Step \(n - 1 \to n \). Take 8 copies of \(\Gamma_{n-1} \) and glue them together on the model graph \(\overline{\Gamma} \), in such a way that these copies occupy the positions indexed by 0, 1, \ldots, 7 in \(\Gamma \) (Fig. 1). Note that each copy shares at most one (extremal) side with any other copy. A vertex of \(\Gamma_n \) is associated with the word \(yx_1 \ldots x_{n-1} \in Y \times X^{n-1} \), if it belongs to the copy of \(\Gamma_{n-1} \) indexed by \(x_{n-1} \) contained in \(\Gamma_n \), and if it was associated with the word \(yx_1 \ldots x_{n-2} \) at the previous step. Notice that any word in \(Y \times X^{n-1} \) corresponds to a unique vertex of \(\Gamma_n \), but the viceversa is not true.

In Fig. 1, for instance, the vertex associated with the word \(c45 \) in \(\Gamma_3 \) also corresponds to the word \(d64 \).
The graph Γ_n can be embedded into \mathbb{Z}^2, in such a way that the left corner vertex on the bottom of Γ_n coincides with the vertex $(0,0)$ of \mathbb{Z}^2, and each horizontal edge of Γ_n coincides with an edge of \mathbb{Z}^2 connecting two vertices of type v and $v \pm (1,0)$, whereas each vertical edge of Γ_n coincides with an edge of \mathbb{Z}^2 connecting two vertices of type w and $w \pm (0,1)$. This embedding does not preserve, in general, the distances. In fact, the bigger and bigger holes, denoted by H_n, that we produce in our recursive construction may contain edges that belong to the shortest path connecting two vertices of Γ_n after its embedding into \mathbb{Z}^2. In some sense, these holes correspond to obstructions (in the terminology of [3]) that should be taken into account in order to determine $W(\Gamma_n)$. In what follows, we analyse all possible cases in which the distances between vertices differ from the case \mathbb{Z}^2: we will say that the path joining such vertices meets an obstruction. The representation of the vertices of Γ_n in terms of words in $Y \times X^{n-1}$, the description of the obstructions and the symmetry of the graphs Γ_n allow us to describe an algorithm to compute $W(\Gamma_n)$.

In order to explicitly describe the embedding of Γ_n into \mathbb{Z}^2, we define the following vectors of \mathbb{Z}^2 associated with the letters of the alphabet Y:

$$v_0 = (0,0) \quad v_1 = (1,0) \quad v_2 = (1,1) \quad v_3 = (0,1)$$

and the following vectors of \mathbb{Z}^2 associated with the letters of the alphabet X:

$$v_0 = (0,0) \quad v_1 = (1,0) \quad v_2 = (2,0) \quad v_3 = (2,1) \quad v_4 = (2,2) \quad v_5 = (1,2) \quad v_6 = (0,2) \quad v_7 = (0,1)$$

Now let $w_n = yx_1x_2\ldots x_{n-1} \in Y \times X^{n-1}$; we associate with w_n a vector w_n of \mathbb{Z}^2 defined as $w_n = v_y + \sum_{i=1}^{n-1} 3^{i-1} v_{x_i}$.

Given two finite words w_1^{1} and w_2^{1} and the corresponding vectors $w_1^{1}(X(w_1^{1}), Y(w_1^{1}))$ and $w_2^{1}(X(w_2^{1}), Y(w_2^{1}))$, we put $\|w_1^{1} - w_2^{1}\| = |X(w_1^{1}) - X(w_2^{1})| + |Y(w_1^{1}) - Y(w_2^{1})|$, which is the geodesic distance in \mathbb{Z}^2. Given $w_1^{1} = y^1x_1^{1}\ldots x_{n-1}^{1}, w_2^{1} = y^2x_1^{2}\ldots x_{n-1}^{2} \in Y \times X^{n-1}$, let $h = \max_{i=1,\ldots,n-1}(i : x_{i}^{1} \neq x_{i}^{2})$. Note that if $x_{i}^{1} = x_{i}^{2}$ for each $i = 1, \ldots, n-1$, then $d(w_1^{1}, w_2^{1})$ can take the values 0, 1, 2, depending on the first letters of w_1^{1} and w_2^{1} (the vectors correspond to vertices belonging to the same square of side 1).

By definition of the index h, the distance $d(w_1^{1}, w_2^{1})$ equals the distance $d(w_{h+1}^{1}, w_{h+1}^{2})$ in the graph Γ_{h+1}; observe that the vectors w_{h+1}^{1} and w_{h+1}^{2} are associated with the truncated words $y^1x_1^{1}\ldots x_{h}^{1}$ and $y^2x_1^{2}\ldots x_{h}^{2}$, and they occupy two distinct copies of the graph Γ_{h+1}, indexed by x_{h}^{1} and x_{h}^{2}, respectively.

CASE I: $d(w_{h+1}^{1}, w_{h+1}^{2}) = \|w_{h+1}^{1} - w_{h+1}^{2}\|$, since there is no obstruction in the shortest path from w_{h+1}^{1} to w_{h+1}^{2} in Γ_{h+1}. This occurs in the following cases:

- $x_{h}^{1} = 0, x_{h}^{2} = 4; x_{h}^{1} = 2, x_{h}^{2} = 6$.
- $x_{h}^{1} = 0, x_{h}^{2} = 3; x_{h}^{1} = 1, x_{h}^{2} = 4; x_{h}^{1} = 2, x_{h}^{2} = 5; x_{h}^{1} = 3, x_{h}^{2} = 6; x_{h}^{1} = 4, x_{h}^{2} = 7; x_{h}^{1} = 5, x_{h}^{2} = 0; x_{h}^{1} = 6, x_{h}^{2} = 1; x_{h}^{1} = 7, x_{h}^{2} = 2$.
- $x_{h}^{1} = 1, x_{h}^{2} = 3; x_{h}^{1} = 3, x_{h}^{2} = 5; x_{h}^{1} = 5, x_{h}^{2} = 7; x_{h}^{1} = 7, x_{h}^{2} = 1$.

CASE II

$x_{h}^{1} = 1, x_{h}^{2} = 5$: we have to consider two different subcases. First of all, observe that the corner vertices of middle hole
Now if \(\frac{X(w_{h+1}^1)+X(w_{h+1}^2)}{2} \geq \frac{X(A_{h+1})+X(B_{h+1})}{2} = \frac{3h}{2} \), then:
\[
d(w_{h+1}, w_{h+1}^2) = d(w_{h+1}, B_{h+1}) + d(B_{h+1}, C_{h+1}) + d(C_{h+1}, w_{h+1}^2) = \|w_{h+1}^1 - B_{h+1}\|_1 + 3^{h-1} + \|C_{h+1} - w_{h+1}^2\|_1.
\]
Similarly, if \(\frac{X(w_{h+1}^1)+X(w_{h+1}^2)}{2} < \frac{X(A_{h+1})+X(B_{h+1})}{2} = \frac{3h}{2} \), then
\[
d(w_{h+1}, w_{h+1}^2) = \|w_{h+1}^1 - A_{h+1}\|_1 + 3^{h-1} + \|D_{h+1} - w_{h+1}^2\|_1.
\]
An analogous argument holds in the case \(x_3^1 = 3, x_4^2 = 7 \).

CASE III

\(x_1^3 = 0, x_2^2 = 2 \). Let us put \(\ell = \max\{j : x_j^1 = 7\} \). We put \(\ell = -\infty \) if \(x_j^1 \neq 7 \), for each \(j = 1, \ldots, h - 1 \).

- **Case \(\ell = -\infty \)**. We have \(d(w_{h+1}^1, w_{h+1}^2) = \|w_{h+1}^1 - w_{h+1}^2\|_1 \), since there is no obstruction in the shortest path from \(w_{h+1}^1 \) to \(w_{h+1}^2 \) in \(\Gamma_{h+1} \).
- **Case \(\ell \neq -\infty \)**. Any geodesic path joining \(w_{h+1}^1 \) to \(w_{h+1}^2 \) in \(\Gamma_{h+1} \) meets an obstruction (the largest one) given by a hole isomorphic to \(H_{\ell+1} \), whose corner vertices are:

\[
\begin{align*}
A_{\ell+1} &= (3^{\ell+1}, 3^{\ell+1}) + \sum_{k=\ell+1}^{h} 3^{k-1} v_{x_k^1} \\
B_{\ell+1} &= (2 \cdot 3^{\ell+1}, 3^{\ell+1}) + \sum_{k=\ell+1}^{h} 3^{k-1} v_{x_k^1} \\
C_{\ell+1} &= (2 \cdot 3^{\ell+1}, 2 \cdot 3^{\ell+1}) + \sum_{k=\ell+1}^{h} 3^{k-1} v_{x_k^1} \\
D_{\ell+1} &= (3^{\ell+1}, 2 \cdot 3^{\ell+1}) + \sum_{k=\ell+1}^{h} 3^{k-1} v_{x_k^1}.
\end{align*}
\]

Now if \(\frac{Y(w_{h+1}^1)+Y(w_{h+1}^2)}{2} \geq \frac{Y(A_{\ell+1})+Y(D_{\ell+1})}{2} \), then:
\[
d(w_{h+1}, w_{h+1}^2) = d(w_{h+1}, D_{\ell+1}) + d(D_{\ell+1}, C_{\ell+1}) + d(C_{\ell+1}, w_{h+1}^2) = \|w_{h+1}^1 - D_{\ell+1}\|_1 + 3^{\ell+1} + \|C_{\ell+1} - w_{h+1}^2\|_1.
\]
Similarly, if \(\frac{Y(w_{h+1}^1)+Y(w_{h+1}^2)}{2} < \frac{Y(A_{\ell+1})+Y(D_{\ell+1})}{2} \), then
\[
d(w_{h+1}, w_{h+1}^2) = \|w_{h+1}^1 - A_{\ell+1}\|_1 + 3^{\ell+1} + \|B_{\ell+1} - w_{h+1}^2\|_1.
\]

The same argument holds in the cases \(x_3^1 = 6, x_4^2 = 4 \). Moreover, an analogous method works in the cases \(x_3^1 = 2, x_4^2 = 4 \) and \(x_3^1 = 0, x_4^2 = 6 \), but now the definition of \(\ell \) must be replaced with \(\ell' = \max\{j : x_j^1 = 1\} \), since we have now to consider the obstruction that we meet when we move from the bottom to the top of \(\Gamma_{h+1} \).

CASE IV

\(x_1^1 = 0, x_2^2 = 1 \). Let us define \(\ell \) as in Case III.

- **Case \(\ell = -\infty \)**. In this case, we have \(d(w_{h+1}^1, w_{h+1}^2) = \|w_{h+1}^1 - w_{h+1}^2\|_1 \), since there is no obstruction in the shortest path from \(w_{h+1}^1 \) to \(w_{h+1}^2 \) in \(\Gamma_{h+1} \).
- **Case \(\ell \neq -\infty \)**. Any geodesic path connecting \(w_{h+1}^1 \) to \(w_{h+1}^2 \) in \(\Gamma_{h+1} \) meets an obstruction (the largest one) given by a hole isomorphic to \(H_{\ell+1} \), whose corner vertices are defined as in (1). If \(\frac{Y(w_{h+1}^1)+Y(w_{h+1}^2)}{2} \geq \frac{Y(A_{\ell+1})+Y(D_{\ell+1})}{2} \), then:
\[
d(w_{h+1}, w_{h+1}^2) = d(w_{h+1}, D_{\ell+1}) + d(D_{\ell+1}, C_{\ell+1}) + d(C_{\ell+1}, w_{h+1}^2) = \|w_{h+1}^1 - D_{\ell+1}\|_1 + 3^{\ell+1} + \|C_{\ell+1} - w_{h+1}^2\|_1.
\]
Similarly, if \(\frac{Y(w_{h+1}^1)+Y(w_{h+1}^2)}{2} < \frac{Y(A_{\ell+1})+Y(D_{\ell+1})}{2} \), then
\[
d(w_{h+1}, w_{h+1}^2) = \|w_{h+1}^1 - A_{\ell+1}\|_1 + 3^{\ell+1} + \|B_{\ell+1} - w_{h+1}^2\|_1.
\]
The same argument holds in the cases \(x_3^1 = 1, x_4^2 = 2; x_3^1 = 6, x_4^2 = 5; x_3^1 = 5, x_4^2 = 4 \). Finally, a similar argument works in the cases \(x_3^1 = 0, x_4^2 = 7; x_3^1 = 7, x_4^2 = 6; x_3^1 = 2, x_4^2 = 3; x_3^1 = 3, x_4^2 = 4 \), where \(\ell \) must be replaced with the index \(\ell' \) defined as in the last part of Case III.

Example 1. In Fig. 2 we have represented in \(\Gamma_4 \) the vertices corresponding to the words \(w_4^1 = a670 \) and \(w_4^2 = b432 \). The corresponding vectors, after the embedding into \(\mathbb{Z}^2 \), are \((0,5) \) and \((27,5) \), respectively. We have \(n = 4, h = 3, \ell = 2 \), so that \(A_3(3,3), B_3(6,3), C_3(6,6), D_3(3,6) \) are the corner vertices of the first of the three biggest obstructions met by the shortest path from \(w_4^1 \) to \(w_4^2 \) (case III). One has \(d(w_4^1, w_4^2) = 29 \).
In the previous description we have redundancy if we consider all possible words in \(Y \times X^{n-1} \). In fact, as we pointed out before, different words may correspond to the same vertex of \(\Gamma_n \). We solve this problem by giving a lexicographic order to such words and considering the smallest one.

Theorem 2. The sum of the distances between all vertices obtained in the cases I, II, III, IV and considered without redundancy is the Wiener index \(W(\Gamma_n) \).

The numerical values of \(W(\Gamma_n) \) have been computed by using the commercial software Wolfram Mathematica and are reported in Table 1.

\(n \)	\(8 \)	\(320 \)	\(31264 \)	\(4642456 \)
1				
2				
3				
4				
5				
6				

REFERENCES

1. B. Bonnier, Y. Leroyer, and C. Meyers, Critical exponents for Ising-like systems on Sierpinski carpets, *J. Physique* **48**, 553–558 (Avril 1987).
2. D. D’Angeli and A. Donno, Isomorphism classification of infinite Sierpiński carpet graphs, *AIP Conference Proceedings* **1648**, 570002 (2015); doi: 10.1063/1.4912788
3. D. D’Angeli, and A. Donno, Metric compactification of infinite Sierpiński carpet graphs, preprint, arXiv: 1501.03178
4. D. D’Angeli, A. Donno, and T. Nagnibeda, Counting dimer coverings on self-similar Schreier graphs, *European J. Combin.* **33**, Issue 7, 1484–1513 (2012).
5. D. D’Angeli, A. Donno, and T. Nagnibeda, Partition functions of the Ising model on some self-similar Schreier graphs, in *Progress in Probability: Random Walks, Boundaries and Spectra* **64**, edited by D. Lenz, F. Sobieczky and W. Woess, Springer Basel (2011), pp. 277–304.
6. A. A. Dobrynin, R. Entringer, and I. Gutman, Wiener index of trees: Theory and applications, *Acta Appl. Math.* **66**, 211–249 (2001).
7. A. A. Dobrynin, I. Gutman, S. Klavžar, and P. Žigert, Wiener index of hexagonal systems, *Acta Appl. Math.* **72**, 247–294 (2002).
8. A. Donno and D. Iacono, Distances and isomorphisms in 4-regular circulant graphs, *Proceedings of the 2nd Minisymposium on Mathematics in Engineering and Technology*, ICNAAM 2015, Rhodes, 23–29/09/2015, accepted.
9. Y. Gefen, A. Aharony, Y. Shapir, and B. B. Mandelbrot, Phase transitions on fractals. II. Sierpiński gaskets, *J. Phys. A* **17**, no. 2, 435–444 (1984).
10. Y. Gefen, A. Aharony, and B. B. Mandelbrot, Phase transitions on fractals. III. Infinitely ramified lattices, *J. Phys. A* **17**, no. 6, 1277–1289 (1984).
11. M. Shinoda, Existence of phase transition of percolation on Sierpiński carpet lattices, *J. Appl. Probab.* **39**, no. 1, 1–10 (2002).
12. W. Sierpiński, Sur une courbe cantorienne qui contient une image bicontinue et continue de toute courbe donnée, *C. R. Acad. Sci. Paris*, **162**, 629–642 (1916).
13. H. Wiener, Structural determination of paraffin boiling points, *J. Amer. Chem. Soc.*, 69 17–20 (1947).