Determination and study the energy characteristics of vibrational-rotational levels and spectral lines of GaF, GaCl, GaBr and GaI for ground state

Adil Nameh Ayaash

Department of Physics, College of Science, University of Anbar, Anbar, Iraq.

E-mail address: adil_nameh78@yahoo.com

Keywords: GaF; GaCl; GaBr and GaI; vibrational-rotational energy; P(J); R(J)

ABSTRACT

A theoretical study of four gallium monohalides molecules (GaF, GaCl, GaBr and GaI) of ground state \(\Sigma^+ \) by using computer model is presented to study the energy characteristics of vibrational-rotational levels as a function of the vibrational and rotational quantum number, respectively. The calculations has been performed to examine the vibrational-rotational characteristics of some gallium halides molecules. These calculations appeared that all energies (\(G_v \), \(E_{vJ} \), and \(F_{vJ} \)) increase with increasing vibrational and rotational quantum number and by increasing the vibrational quantum number, and by increasing the vibrational quantum number, the vibrational constant will decrease. Also theoretical study of spectra of these molecules for ground state \(\Sigma^+ \) has been carried out. The values of spectral lines R(J) and P(J) were calculated and the relationship between the spectral lines and the rotational quantum number was established. The results appeared the spectra line values R(J) increases when the values of rotational quantum number decrease but the spectra line values P(J) decrease when the values of rotational quantum number increase, also the spectra line values P(J) decrease when the values of (m) increase, while the values of R(J) increase at first, then decrease showing Forrar parabola.

1. INTRODUCTION

The gallium monohalides play an important role as intermediates in the production of new high frequency and opto-electronic semiconductor devises[1]. Spectroscopic investigations on the diatomic halides of gallium have been the subject of much interest for a long time[2,3]. The general behavior of the spectrum of gallium monohalides is very similar to the one described for indium monohalides[4]. The ground state of all gallium monohalides is of the \(\Sigma^+ \) similar to other diatomic molecules formed by IIIA group elements (e.g., B, Al, Ga, and In) with halogens (e.g., F, Cl, Br, and I).

In 1933, Partrikaln and Hochberg[2] first observed the electronic spectrum of the GaCl radical. Miescher and Wehrli [5] recorded the electronic band spectrum of GaCl, GaBr, and GaI in both emission and absorption. Grabandt et al.[6] investigated the photoelectron spectra of gallium monohalide molecules. First measurements of pure rotational transitions of gallium monohalides GaCl, GaBr, and GaI were done by Barrett and Mendel[7].

Recently ab initio based MRDCI calculations on GaI molecule reported by Dutta et al.[8]. Further microwave spectral studies on the gallium monohalides have been carried out by a number of researchers and most recently, Lenthe et al.[9] performed DFT calculations to evaluate nuclear quadrupole coupling constants of a number of metal halide molecules, including the GaX molecules and most recently ab initio study of the ground state of GaCl reported by Yanget al.[10] also reveal that the ground states of GaI and GaCl are \(\Sigma^+ \) type.
2. THEORY

Theory of any vibrational–rotational state expressed in its wave number equivalent and measured in cm\(^{-1}\) units, can be written to a good approximation as[11]:

\[
E_{v',J} = G_v + B_v(J + 1) - D_vJ(J + 1)^2 + \cdots \cdots \cdot (1)
\]

Where \(v\): the vibrational quantum number equal 0,1,2,3,…etc., \(J\): the rotational quantum number equal 0,1,2,3,…etc., \(B_v\): rotational constant for vibrational state \(v\), \(D_v\): the centrifugal distortion constant for vibrational state \(v\), \(G_v\): the vibration energy.

The rotational energy is given by the following expression:

\[
F_{v,J} = J(J + 1)[B_v - \alpha_x (v + \frac{1}{2})] \cdots \cdots (4)
\]

Where: \(B_v\): the equilibrium rotational constant, \(\alpha_x\) the vibrational-rotational coupling constant, \(\omega_e\) the fundamental vibrational constant, \(\omega_{e\chi}\) the first anharmonic correction constant.

By satisfying the selection rules of vibrational quantum number \((\Delta v = 1)\) and rotational quantum number \((\Delta J = \pm 1)\), we have an allowed vibration-rotation absorption transition in diatomic will all electrons spin-paired. Those transition with \((\Delta J = -1)\) are said to be members of the " P branch" and those with \((\Delta J = +1)\) rome the " R branch".

The spectra lines were calculated using of the following equations[12]:

\[
R(J) = G_v + 2B_v(J + 1)(3B_{v'} - B_{v''})J + (B_{v'} - B_{v''})J^2 \quad (5)
\]

\[
P(J) = G_v - (B_{v'} + B_{v''})J + (B_{v'} - B_{v''})J^2 \quad (6)
\]

The Fortrat parabola curve could be found from the relation among \(R(J)\), \(P(J)\) and \(m\) using the following equation[13,14]:

\[
R(J), P(J) = G_v + (B_{v'} + B_{v''})m + (B_{v'} - B_{v''})m^2 \quad (7)
\]

By using equation (2), \(B_v\) rotational constant for vibrational state for all gallium halides is calculated and figure (1) and table (2) show its variation with the vibrational quantum number \(v\).

3. RESULTS AND DISCUSSION

In the present work, the calculations of the vibrational and rotational energy as a function of vibrational and rotational quantum number , respectively for gallium monohalides molecules (GaF, GaCl, GaBr and GaI) are presented by using computer model and by depended on spectroscopic constants for ground state \(\chi_{1\Sigma^+}^1\) for these molecules as shown in table (1).

molecule	Spectroscopic constants of ground state \(\chi_{1\Sigma^+}^1\) in cm\(^{-1}\) and \(r_e\) in a.u.[15,6,9,16]					
GaF	\(T_e\)	\(\omega_e\)	\(\omega_{e\chi}\)	\(r_e\)	\(B_e\)	\(\alpha_x\)
	0	622.10	3.286	1.774	0.359535	0.2864235
GaCl	0	365.70	1.249	2.202	0.149913	7.9359
GaBr	0	266.70	0.83	2.349	0.082797	3.26677
GaI	0	216.60	0.50	2.576	0.056895	1.8890

By using equation (2), \(B_v\) rotational constant for vibrational state for all gallium halides is calculated and figure (1) and table (2) show its variation with the vibrational quantum number \(v\).
Table 2. Rotational constant in cm$^{-1}$ for vibrational state (\(v=1,2,\ldots,10\))

V	GaF	GaCl	GaBr	GaI
0	0.3581	0.1495	0.0828	0.0568
1	0.3552	0.1487	0.0825	0.0566
2	0.3523	0.1479	0.0822	0.0564
3	0.3495	0.1471	0.0819	0.0562
4	0.3466	0.1463	0.0816	0.0560
5	0.3437	0.1455	0.0813	0.0558
6	0.3409	0.1447	0.0810	0.0556
7	0.338	0.1443	0.0807	0.0554
8	0.3351	0.1443	0.0804	0.0553
9	0.3323	0.1442	0.0801	0.0552
10	0.3294	0.1441	0.0798	0.0550

It is seen that \(B_v\) decreases with increasing \(v\) for all molecules and particularly at high values of \(v\) for GaF. The values for GaCl, GaBr and GaI appear closest values that due to the small difference between the equilibrium rotational constant of these molecules.

The calculations of the vibrational energy of all molecules are made by using equation (3) and the results of calculation are shown in table (3) and figure (2). It can be seen that this factor varies linearly with the vibrational quantum number and the highest value is determined for GaF molecule, that is due to the fact the constants of the GaF molecule are several orders of magnitude larger than that for the other molecules (GaCl, GaBr and GaI).
Table 3. Vibration energy in cm\(^{-1}\) for vibrational state (v=1,2,…..10)

V	GaF	GaCl	GaBr	GaI
0	310.39	182.58	133.17	108.19
1	925.92	545.75	398.43	323.79
2	1534.88	906.43	662.23	538.39
3	2137.27	1264.61	924.57	751.99
4	2733.08	1620.29	1185.45	964.59
5	3327.33	1973.47	1444.88	1176.19
6	3904.99	2324.16	1702.86	1386.79
7	4481.09	2672.35	1959.38	1596.39
8	5050.63	3018.04	2214.44	1804.99
9	5613.58	3361.24	2468.04	2012.59
10	6169.97	3701.94	2720.19	2210.33

It is quite important to know the rotational energy levels \(F_{v,J}\) in order to predict the population of each vibrational-rotational level. Since the distribution of these level depends on the fraction of energy transferred to the vibrational degree of freedom of a molecule, which is a reaction product. By using the values of \(B_v\) to calculate the rotational energy (equation 4) as a function of the rotational quantum number at various values of vibrational quantum number \((v)\). the results of the rotational energy at vibrational states are presented in figures(3,4,5,6and 7) and tables (4,5,6,7 and 8).

Table 4. Rotational energy in cm\(^{-1}\) at vibrational state (v=0) and J=(0,…10)

J	GaF	GaCl	GaBr	GaI
0	0	0	0	0
1	0.716	0.299	0.1656	0.1136
2	2.1486	0.897	0.4968	0.3408
3	4.2972	1.794	0.9936	0.6816
4	7.162	2.99	1.656	1.136
5	10.743	4.485	2.484	1.704
6	15.0402	6.279	3.4776	2.3856
7	20.0536	8.372	4.6368	3.1808
8	25.7832	10.764	5.9616	4.0896
9	32.229	13.455	7.452	5.112
10	39.391	16.445	9.108	6.248
Table 5. Rotational energy in cm\(^{-1}\) at vibrational state (v=1) and J=(0,…,10)

J	GaF	GaCl	GaBr	GaI
0	0	0	0	0
1	0.7104	0.2974	0.165	0.11332
2	2.1312	0.8922	0.495	0.3396
3	4.2624	1.7844	0.99	0.6792
4	7.104	2.974	1.65	1.132
5	10.656	4.461	2.475	1.698
6	14.9184	6.2454	3.465	2.3772
7	19.8912	8.3272	4.62	3.1696
8	25.5744	10.7064	5.94	4.0752
9	31.968	13.383	7.425	5.094
10	39.072	16.357	9.075	6.226

Fig. (3) Rotational energy at vibrational state \(v=0\) as a function of rotational quantum number.
Table 6. Rotational energy in cm$^{-1}$ at vibrational state ($v=2$) and $J=(0,…,10)$

J	GaF	GaCl	GaBr	GaI
0	0	0	0	0
1	0.7046	0.2994	0.1644	0.1128
2	2.1138	0.8982	0.4932	0.3384
3	4.2276	1.7964	0.9864	0.6768
4	7.046	2.994	0.644	1.128
5	10.569	4.491	2.466	1.692
6	14.7966	6.2874	3.4524	2.3688
7	19.7288	8.3832	4.6032	3.1584
8	25.3656	10.7784	5.9184	4.0608
9	31.707	13.473	7.398	5.076
10	38.753	16.467	9.042	6.204

Fig. (4) Rotational energy at vibrational state $v=1$ as a function rotational quantum number

Fig. (5) Rotational energy at vibrational state $v=2$ as a function rotational quantum number
Table 7. Rotational energy in cm\(^{-1}\) at vibrational state \((v=3)\) and \(J=(0,...,10)\)

J	GaF	GaCl	GaBr	GaI
0	0	0	0	0
1	0.699	0.2834	0.1638	0.1124
2	2.097	0.8502	0.4914	0.3372
3	4.194	1.7004	0.9828	0.6744
4	6.99	2.834	1.638	1.124
5	11.385	4.251	2.457	1.686
6	15.939	5.9514	3.4398	2.3604
7	21.252	7.9352	4.5864	3.1422
8	27.324	10.2024	5.8968	4.0464
9	34.155	12.753	7.371	5.058
10	41.745	15.587	9.009	6.182

Fig. (6) Rotational energy at vibrational state \(v=3\) as a function rotational quantum number
Table 8. Rotational energy in cm$^{-1}$ at vibrational state (v=4) and J=(0,…,10)

J	GaF	GaCl	GaBr	GaI
0	0.6932	0.2926	0.1632	0.112
1	2.0796	0.8778	0.4896	0.336
2	4.1592	1.7556	0.9792	0.672
3	6.9322	2.926	1.632	1.12
4	10.3982	4.389	2.448	1.68
5	14.5572	6.1446	3.4272	2.352
6	19.4062	8.1928	4.5696	3.136
7	24.9552	10.5336	5.8752	4.032
8	31.1942	13.167	7.344	5.04
9	38.1262	16.093	8.976	6.16

From results above it is seen that the rotational energy increases with the rotational quantum number at vibrational states for all galliumes halides molecules and the highest value is determined for GaF at vibrational state v=3 as would be expected, and the lowest value is determined for GaI at vibrational state v=4. Also the values for GaCl, GaBr and GaI appear closet values that due to the small difference between the equilibrium rotational constant of these molecules, but values of GaF are far from values of other molecules by a small magnitudes that due to the difference in B_e for GaF with other molecules is larger than the difference in B_e between (GaCl, GaBr and GaI) molecules.

Also table (9) and figure (8) show the variation of the total energy which is called the vibrational-rotational energy at vibrational state v=0 as a function of rotational quantum number. it can be shown that the variation is as in figure (2) which means that the vibrational energy has predominate values in comparison with the rotational energy, all previous results are converge from other researchers values[17,18,19].
Table 9. Vibrational-rotational energy in cm\(^{-1}\) for vibrational state (v=0)

J	GaF	GaCl	GaBr	GaI
0	310.3863	182.5828	133.173	108.1873
1	311.1025	182.8817	133.3385	108.3036
2	312.5349	183.4797	134.1665	108.8688
3	314.6835	184.3767	134.8289	109.528
4	317.5483	185.5727	136.6505	110.2433
5	321.1292	187.0677	137.8097	111.3132
6	325.4264	188.8617	139.1345	112.1125
7	330.4397	190.9547	139.1345	113.4412
8	336.1692	193.3467	140.6249	114.352
9	342.6149	196.0377	140.6249	114.352
10	349.7768	199.0276	142.2809	114.352

Fig. (8) Vibrational-rotational energy as a function of rotational quantum number at v=0

After that the spectra lines R(J) and P(J) values have been calculated for gallium halides molecules (GaF, GaCl, GaBr, and GaI) and (1-0) band by using equations (5 and 6), and by depended on spectroscopic constants in table (1). It appears from tables (10,11,12 and 13) and figures (9,10,11 and 12), that the spectral lines values R(J) and P(J) are influenced by difference between B\(_v\)' and B\(_\nu\)' . the spectral lines values R(J) increase with the increasing of J, whereas the spectra lines values P(J) decrease with the increasing of J. In addition note that the spectra line Q(J) was missing because in the \(\Sigma \) transition of the electronic angular moment A=0.
Table 10. Spectra lines $P(J)$ and $R(J)$ in cm$^{-1}$ for (1-0) band of GaF molecule

For GaF molecule

J	$P(J)$	$R(J)$
0	615.532	616.2425
1	614.8158	616.9472
2	614.0939	617.6463
3	613.3662	618.3396
4	612.6329	619.0272
5	611.8938	619.7091
6	611.1512	620.3852
7	610.3985	621.0557
8	609.6422	621.7204
9	608.8803	622.6654
10	608.1126	623.0327

![Graph showing the relation between spectra lines $R(J)$ and $P(J)$, measured in cm$^{-1}$ and rotational quantum number J in the (1-0) band of GaF.](attachment:graph.png)
Table 11. Spectra lines $P(J)$ and $R(J)$ in cm$^{-1}$ for (1-0) band of GaCl molecule

J	$P(J)$	$R(J)$
0	363.1723	363.4697
1	362.8733	363.7655
2	362.5727	364.0597
3	362.2705	364.3523
4	361.9667	364.6433
5	361.6613	364.9327
6	361.3543	365.2205
7	361.0457	365.5067
8	360.7355	365.7913
9	360.4237	366.0743
10	360.1103	366.3557

Fig. (10) Relation between spectra lines $R(J)$ and $P(J)$ measured in cm$^{-1}$ and rotational quantum number J in (1-0) band of GaCl

Table 12. Spectra lines $P(J)$ and $R(J)$ in cm$^{-1}$ for (1-0) band of GaBr molecule

J	$P(J)$	$R(J)$
0	265.254	265.419
1	265.0884	265.5834
2	264.9222	265.7472
3	264.7554	265.9104
4	264.588	266.073
5	264.42	266.235
6	264.2514	266.3964
7	264.0822	266.5572
8	263.9124	266.7174
9	263.742	266.876
10	263.571	267.036
Table 13. Spectra lines P(J) and R(J) in cm$^{-1}$ for (1-0) band of GaI molecule

J	P(J)	R(J)
0	215.5992	215.7127
1	215.4853	215.8258
2	215.371	215.9385
3	215.2563	216.0508
4	215.1412	216.1627
5	215.0257	216.2742
6	214.9098	216.3853
7	214.7935	216.496
8	214.6768	216.6063
9	214.5597	216.7162
10	214.4422	216.8257
Equation (7) has been used to calculating Fortrat parabola and the results appear in tables (14,15,16 and 17) and figures (13,14,15 and 16). It appears that the spectra lines values R(J) at \(m = J + 1 \) increase at first, then decrease because the third term in right side of equation (7) becomes larger than the second one, therefore, we find that R(J) values deviate, forming Fortrat parabola and extreme curving representing the band head towards red region. As regards the spectra lines values P(J) at \(m = J \), they decrease when increasing \(m \) values.

Table 14. Spectra lines P(J) and R(J) in cm\(^{-1}\) for \((1-0)\) band of GaF molecule at \((J=0, 10, 20, 30, \ldots, 200)\)

J	P(J)	R(J)
0	615.532	616.2425
10	616.2425	623.0327
20	629.2509	635.8752
30	639.9713	659.7479
40	644.4735	659.7924
50	654.4037	659.8391
60	651.7619	659.8991
70	654.5481	659.9405
80	658.7623	659.9933
90	658.4045	659.5253
100	659.7479	658.0355
110	659.7924	658.2457
120	659.8391	653.8839
130	659.8991	650.9501
140	659.9405	647.4443
150	659.9933	643.3665
160	658.7623	643.3665
170	658.4045	643.3665
180	659.7479	643.3665
190	659.7924	643.3665
200	659.8391	643.3665

Fig. (13) Fortrat Parabola by \((1-0)\) band of GaF
Table 15. Spectra lines P(J) and R(J) in cm$^{-1}$ for (1-0) band of GaCl molecule at (J=0, 10, 20, 30, ……, 200)

J	m	P(J)	R(J)	
0	0	363.1723	1	363.7697
10	-10	360.1103	11	366.3557
20	-20	356.8883	21	369.0817
30	-30	353.5063	31	371.6477
40	-40	349.9643	41	374.0537
50	-50	346.2623	51	376.2997
60	61	378.3857		
70	71	380.3117		
80	81	382.0777		
90	91	383.6837		
100	101	385.1297		
110	111	386.4157		
120	121	387.5417		
130	131	388.5077		
140	141	389.3137		
150	151	389.9597		
160	161	390.4457		
170	171	390.7717		
180	181	390.9377		
190	191	390.9437		
200	201	390.7897		

Fig. (14) Parabola by (1-0) band of GaCl
Table 16. Spectra lines $P(J)$ and $R(J)$ in cm$^{-1}$ for (1-0) band of GaBr molecule at
(J=0, 10, 20, 30, ..., 200)

J	$P(J)$	J	$R(J)$
0	0	1	265.419
10	-10	11	267.036
20	-20	21	268.593
30	-30	31	270.087
40	-40	41	271.527
50	-50	51	272.904
60		61	274.221
70		71	275.478
80		81	276.675
90		91	277.812
100		101	278.889
110		111	279.906
120		121	280.863
130		131	281.76
140		141	282.597
150		151	283.374
160		161	284.091
170		171	284.748
180		181	285.345
190		191	285.882
200		201	286.359

Fig. (15) Fortrat Parabola by (1-0) band of GaBr
Table 17. Spectra lines $P(J)$ and $R(J)$ in cm$^{-1}$ for $(1-0)$ band of GaI molecule at $(J=0, 10, 20, 30, \ldots, 200)$

J	For GaI molecule				
0	m	0	215.5992	1	215.7127
10	m	-10	214.4422	11	216.8257
20	m	-20	213.2452	21	217.8987
30	m	-30	212.0082	31	218.9317
40	m	-40	210.7312	41	219.9247
50	m	-50	209.4142	51	220.8777
60	m	61	221.7907		
70	m	71	222.6637		
80	m	81	223.4967		
90	m	91	224.2897		
100	m	101	225.0427		
110	m	111	225.7557		
120	m	121	226.4287		
130	m	131	227.0617		
140	m	141	227.6547		
150	m	151	228.2077		
160	m	161	228.7207		
170	m	171	229.1937		
180	m	181	229.6267		
190	m	191	230.0197		
200	m	201	230.3727		

4. CONCLUSIONS

The main conclusion from this work that there is a small variation in the G_v, $E_{v,J}$, and $F_{v,J}$ for gallium monohalides molecules for different values of v as it can be shown in all figures and the variation approximately in the same manners for all molecules except GaF molecule which has values far rather than other molecules, that due to rotational constant B_v for this molecule. All
energies increase with increasing vibrational and rotational quantum number and by increasing the vibrational quantum number, the vibrational constant will decrease. The spectra line values $R(J)$ increases when the values of rotational quantum number decrease but the spectra line values $P(J)$ decrease when the values of rotational quantum number increase. Also the spectra line values $P(J)$ were decrease when the values of (m) increase, while the values of $R(J)$ increase at first, then decrease showing Fortrar parabola.

References

[1] O. Grabandt. C. A.De Lange, and R. Mooyman, Chem. Phys. Lett. 160, 359 (1989).
[2] A. Pertrilalan and J. Hochberg, Z. phys. 86,214,(1933).
[3] I. R. Bartky, Mol. Spectrose. 5, 206 (1960).
[4] S.K. Mishra, Raj. K. S. Yadav, S. B. Rai, and V. B. Singh, J. Phys. Chem. Ref. Data. 33(2) 453 (2004).
[5] E. Miescher and M. Wehrli, Helv. Phys. Acta. 6, 458 (1933).
[6] O. Grabandt. C. A.De Lange, and R. Mooyman, Chem. Phys. 143, 227 (1990).
[7] A. H. Barrett and M. Mandel, Phys. Rev. 109, 1572 (1958).
[8] A. Dutta, J. Bhattacharjee, and K. Kumar Das, Chem. Phys. Lett. 314, 347 (1999).
[9] E. V. Lenthe and E. J. Barerends, J. Chem. Phys. 112, 8279 (2000).
[10] (a)X. Yang, M. Lin, Chem. Phys. Lett. 362, 190 (2002); (b) J. Phys. B: At. Mol. Opt. Phys. 36, 4651 (2003).
[11] N. G. Basov, G. Bashkin, Chem. Laser, (springer verlag), 33-34 (1990).
[12] J. Klinowski, High-Resolution Molecular Spectroscopy, Electronic Spectroscopy (Univ. of Cambridge Press, 2005).
[13] M.M. emerik, Design of a Mid-Infrared Cavity Ring Down Spectrometer (Technische Univ., Eindhoven, 2001).
[14] L. Gang, Fourier Transform Spectroscopy of Selected Transient Species (Waterloo, On-tario, Canada, 2003).
[15] T. Savithry, D. V. Rao, A.A.N. Murthy and P.T.Rao, Physica 75, 386 (1974).
[16] J. Berkowitz and J. L. Dehmer, J. Chem. Phys. 57, 3194 (1972).
[17] J. F. Ogilive, H.Uehara and K. Horiai, J. Chem. Soc., Faraday Trans.,91, 3007-3013,(1995).
[18] J. Hoeft, K. Nair Zeitschrift für Physik D Atoms, Molecules and Clusters 2, 189-193(1986).
[19] Y. Bin Cao, C. Lu Yang Computational and Theoretical Chemistry, Vol. 1016 , 42–47,15 July (2013)

(Received 07 April 2015; accepted 22 April 2015)