Short Communication

EFFECTS OF PLANT GROWTH REGULATORS ON YIELD AND YIELD ATTRIBUTES OF TOMATO (SOLANUM LYCOPERSICUM)

B. Ahmed1*, M. Sultana1, M. Sumi1, A.S. Mitu2, R. Biswas3 and M.A.M. Hussen4

1Bangladesh Agricultural Research Institute (BARI), Gazipur; 2Bangladesh Sugarcrop Research Institute (BSRI), Ishurdi, Pabna; 3Khulna Agricultural University (KAU), Khulna; 4Bangladesh Agricultural Research Council (BARC), Farmgate, Dhaka, Bangladesh

Abstract

A field experiment was carried out at Tuber Crops Research Sub Center, Seujgari, Bogura, Bangladesh to assess the effect of plant growth regulators on tomato during the winter season of 2020-2021. Four Plant Growth Regulators (PGRs) available in market viz., PGR1 = Flora @ 20 ppm, PGR2 = Protozim @ 20 ppm, PGR3 = Vagimax and PGR4 = Miraculan@ 20 ppm were used, and there was a control no use of PGR was used as control in the study. The experiment was conducted in RCBD with three replications. The growth and yield contributing characters significantly differed due to plant growth regulators. The maximum number of fruits/plant (65) was recorded from PGR treatment (application of Flora @ 20 ppm) while the minimum number of fruits/plant (25) was recorded from the control treatment (no application of plant growth regulators). Plant growth regulators had significant influence on growth and yield of tomato. The highest yield (36.21 t/ha) and highest Photosynthesis (Chlorophyll a, Chlorophyll b and Total Chlorophyll) was obtained from the application of PGR1 = Flora @ 20 ppm plant growth regulator. The maximum Benefit Cost Ratio (BCR) (3.34) was also recorded from PGR1 treatment, while the minimum BCR (1.66) was recorded from control (no application of plant growth regulators). Among the four PGRs i.e., application of Flora @ 20 ppm showed the best result in tomato production.

Keywords: Benefit cost ratio, Growth regulators, Tomato, Yield

Introduction

Tomato (Solanum lycopersicum) belonging to Solanaceae family is a vegetable crop grown in Bangladesh during winter. Its food value is very rich because of higher contents of vitamins A, B, and C including calcium and carotene (Alam et al., 2010). It is much popular as salad in the raw state and is made soups, juice, ketchup, pickles, sauces, conserved puree, paste, powder and other products. In Bangladesh, there is a great possibility of increasing tomato yield per unit area with proper use of fertilizer (Kayum et al., 2008; Khan et al., 2014). Tomato requires large quantity of readily available fertilizer nutrient (Khayyat et al., 2007). In absence of other production constraints, nutrient uptake and yield are very closely related. PGRs are chemicals which are used to modify plant

* Corresponding Author: kbdahmed@gmail.com
growth such as increasing branching, suppressing shoot growth, increasing return bloom, removing excess fruit, or altering fruit maturity (Uddin et al., 2009). PGRs have the positive and essential role for building up protoplasm and protein, which induce cell division and initial meristematic activity when applied in optimum quantity.

PGRs have largest effect on yield and quality of tomato. It also promotes vegetative growth, flower and fruit set of tomato. It significantly increases the growth and yield of tomato. Application of PGRs to the plants produces high tomato fruit yield and improves fruit quality whereas excessive application leads to luxuriant development of vegetative parts of the plant at the expense of reproductive growth (Mehraj et al., 2014). In the local market, various companies sell their PGRs. However, studies on the market available PGRs for physiological efficiency, apparent growth recovery and their relation to yield potentiality on tomato are scanty. With the above background, the present study was undertaken to investigate the effect of PGRs on the yield, yield attributes and Benefit Cost Ratio (BCR) of tomato.

Materials and Methods

The experiment was carried out in Tuber Crops Research Sub Center (TCRSC) research field of BARI, Seujgari, Bogura, during the winter season (November 24, 2020 to March 30, 2021) to find out the effect of selected four plant growth regulators (PGR$_0$ = Control, PGR$_1$ = Protozim @ 20 ppm, PGR$_2$ = Flora@ 20 ppm, PGR$_3$ = Vagimax @ 20 ppm and PGR$_4$ = Miraculan @ 20 ppm) available in market of Bogura on BARI Tomato-14. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. Twenty four days old seedlings were transplanted at a spacing of 60 cm × 40 cm in the experimental plot on 24 November 2019. Manures and chemical fertilizers were applied at the rate of cow dung 20 t/ha, Urea 250 kg/ha, Triple Superphosphate (TSP) 200 kg/ha, and Murate of Phosphate (MP) 150 kg/ha. Later the stock solution was diluted in distilled water to prepare the working solutions just before application. Spraying was performed early in the morning to avoid rapid drying of the spray solution due to transpiration. Data were collected from ten randomly selected plants from each plot viz., plant height (cm), number of fruits/plant, fruit length and diameter, average fruit weight (g) and yield/ha. The means were separated at 5% level of significance.

Chlorophyll determination

1. Preparation of the reaction solution: Pure acetone, pure ethanol and distill water (4.5:4.5:1) mix up them.
2. The RS and sample of fresh leaves (small pieces) in small tubes (100:1) mixed up and placed the tubes in dark until the color of leaf pieces converted into white.
3. Reading taken at 663 and 645nm for chlorophyll while for caroteniods at 470nm.
4. Calculation of Chlorophyll Determination (mg/g FW):

\[
\text{Chl. (a)} = (12.71 \times \text{OD663} - 2.59 \times \text{OD645})/100
\]

\[
\text{Chl. (b)} = (22.88 \times \text{OD645} - 4.67 \times \text{OD663})/100
\]

Total chlorophyll = Chl. (a) + Chl. (b)
Effect of PGR on tomato

The benefit cost ratio (or benefit-to-cost ratio) compared the present value of all benefits with that of the cost and investments. These benefits and costs were treated as monetary cash flows or their equivalents. The BCR was calculated to find out the comparison between each treatment. The BCR of tomato was calculated by using the following formula:

$$BCR = \frac{PV_{\text{benefits}}}{PV_{\text{costs}}}$$

Where,

PV_{benefits} = present value of benefits

PV_{costs} = present value of costs

Results and Discussion

Plant height

Statistically significant variation was found in the plant height (cm) of tomato due to application of plant growth regulators (Table 1). The maximum plant height (52.66 cm) was recorded by application of Plant Growth Regulator (Flora @20 ppm), while the minimum plant height (24.45 cm) was recorded from control (no application of plant growth plant growth regulators). It might be due to the effect of plant growth regulators on plant growth which is supported by Choudhury et al., 2013 and Ali et al., 2015.

Table 1. Effect of PGR on yield and yield attributes of tomato

Treatment	Plant height (cm)	No. of fruits/plant	Fruit length (cm)	Fruit diameter (cm)	Individual fruit weight (g)	Yield (t/ha)
T_1	52.66	65	2.86	3.25	40.35	36.21
T_2	45.36	60	3.05	2.61	39.25	26.38
T_3	44.59	55	3.21	2.57	36.89	32.31
T_4	48.24	49	2.05	3.21	45.58	31.38
T_5 (Control)	24.45	25	1.59	2.39	29.68	18.98

CV (%) = 1.56, 4.21, 2.31, 1.75, 7.24, 3.58

T_1=PGR$_1$ (Flora @ 20 ppm), T_2= PGR$_2$ (Protozim @ 20 ppm), T_3= PGR$_3$ (Vagimax @ 20 ppm), T_4= PGR$_4$ (Miraculan @ 20 ppm) and T_5= No PGR(Control)

Number of fruits per plant

Statistically significant variation was found in the number of fruits per plant of tomato due to application of plant growth regulators (Table 1). The maximum number of fruits per plant (65) was recorded from PGR treatment (application of Flora @ 20 ppm) while the minimum number of fruits per plant (25) was recorded from no application of plant growth regulators. It might be due to that flora enhanced fruit setting in tomato.
Fruit length

In case of fruit length (cm), statistically significant variation was found of tomato due to application of plant growth regulators (Table 1). The highest fruit length (2.86 cm) was recorded from PGR treatment (application of Flora @ 20 ppm) while the minimum fruit length was recorded from no application of plant growth regulators (Control).

Fruit diameter

In respect of fruit diameter (cm), statistically significant variation was found in tomato due to application of plant growth regulators (Table 1). The highest fruit diameter (3.25 cm) was recorded from PGR treatment (application of Flora @ 20 ppm) while the minimum fruit diameter (2.39 cm) was recorded from Control.

Individual fruit weight

Average individual fruit weight of tomato revealed statistically significant variation due to application of plant growth regulators (Table 1). The maximum average weight of individual fruit (45.58 g) was recorded from PGR treatment (application of Miraculan @ 20 ppm), while the minimum average weight of individual fruit (29.68 g) was recorded from Control.

Photosynthesis

It is observed that the photosynthetic element Chlorophyll-a, Chlorophyll-b and total chlorophyll was higher in treatment of PGR than the control treatment (Fig. 1). Among the PGRs, application of Flora @ 20 ppm gave the higher photosynthetic element production than other. Higher photosynthetic rate results in higher yield performance (Ahmed et al., 2021 (a), Ahmed et al, 2020, Ahmed et al, 2021(b).

![Graph showing the effect of different PGRs on photosynthesis of tomato](image)

Fig. 1. Effects of different PGRs on photosynthesis of tomato.
Effect of PGR on tomato

Yield
Statistically significant variation was found due to application of plant growth regulators in respect of yield of tomato (Table 1). The maximum yield (36.21 t/ha) was recorded from PGR treatment (application of Flora @20 ppm), while the minimum yield (18.98 t/ha) was recorded from no PGR application (Control). PGRs increased the number and weight of fruits/plant and thus increased yield of tomato (these findings were supported by Akand et al., 2016; Mehdizadeh et al., 2013; Isah et al., 2014).

Benefit Cost Ratio (BCR)
The maximum Benefit-Cost Ratio (BCR) (3.34) was recorded from PGR treatment (application of Flora @20 ppm), while the minimum BCR (1.66) was recorded from Control treatment (no application of Plant Growth Regulators). Plant growth regulators increased yield and weight of fruit per plant and thus increased BCR of tomato (these findings were supported by Ahmed et al., 2018).

Table 2. Effect of PGRs on the Benefit-Cost Ratio (BCR) of tomato

Treatment	Production Cost (ha\(^{-1}\))	Selling cost (Market price @ 40 tk kg\(^{-1}\))	Profit (Tk)	BCR
T\(_1\)	650,000	2801,500	2151,500	3.34
T\(_2\)	670,000	2391,900	1721,900	2.57
T\(_3\)	660,000	2607,000	1947,000	2.95
T\(_4\)	650,000	1904,500	1254,500	1.93
T\(_5\)	600,000	1756,000	1156,000	1.66

T\(_1\)=PGR\(_1\) (Flora @ 20 ppm), T\(_2\)= PGR\(_2\) (Protozim @ 20 ppm,), T\(_3\)= PGR\(_3\) (Vagimax @ 20 ppm), T\(_4\)= PGR\(_4\) (Miraculan @ 20 ppm) and T\(_5\)= No PGR (Control)

Conclusion
Plant growth regulators had significant influence on the growth and yield of tomato. Flora @ 20 ppm gave the highest yield, yield attributes and Benefit-Cost Ratio (BCR).

References
Ahmed, B. D., S. Shabnam, M.A. Hossain and M.M. Islam. 2018. Intercropping grass pea with chilli at varying plant population. Int. J. App. Res. 4(1):58-61.
Ahamed, F. I., A. F.M.S. Ahsan, B. Ahmed and F. Begum. 2021. Physiological and yield responses of some selected rapeseed/mustard genotypes to salinity stress. Bangladesh Agron. J. 24(1):43-55.
Ahmed, B., A. S. Mitu, M. Sultana, N. Tasnim and A.H.M.M.R. Talukder. 2020. Yield and physiological indices of lentil genotypes against drought stress. Bangladesh Agron. J. 23(2):97-102.
Ahmed, B., M. Sultana, M.S.A. Banu, M.H.U. Rashid and K.M.K. Huda. 2021. Effect of different levels of salinity on grasspea genotypes. J. Expt. Biosci. 12(1):1-8.
Akand, M.H., H. E. M. K. Mazed, S. K. Bhagat, J. F. Moonmoon and M. Moniruzzaman. 2016. Growth and yield of tomato as influenced by potassium and gibberellic acid. Bull. Inst. Trop. Agr., Kyushu Univ. 39: 83-94.

Alam, M. S., N. Sultana, S. Ahmed, M. M. Hossain and A. K. M. A. Islam. 2010. Performance of heat tolerant tomato hybrid lines under hot, humid conditions. Bang. J. Agril. Res. 35(3):367-373.

Ali, M. R., H. Mehraj and Jamal A. F. M. Uddin. 2015. Effects of foliar application of zinc and boron on growth and yield of summer tomato. J. Biosci. Agril Res. 6(1):512-517.

Choudhury, S. N. Islam, M.D. Sarkar and M.A. Ali. 2013. Growth and yield of summer tomato as influenced by plant growth regulators. Int. J. Sustain. Agric. 5(1):25-28.

Mehdizadeh, M., E. I. H. Darbandi, N. Rad and A. Tobeh. 2013. Growth and yield of tomato (Lycopersicon esculentum Mill.) as influenced by different organic fertilizers. Int. J. Agron. Plant Product. 4(4):734-738.

Isah, A. S., E. B. Amans, C. Odion and A. A. Yusuf. 2014. Growth rate and yield of two tomato varieties (Lycopersicon esculentum Mill) under green manure and NPK fertilizer rate Samaru Northern Guinea Savanna. Int. J. Agron. 2014(1):1-8.

Kayum, M. A., M. Asaduzzaman and M. Z. Haque. 2008. Effects of indigenous mulches on growth and yield of tomato. J. Agric. Rural Dev. 6(1&2):1-6.

Khan, A. A., M. Sajid, A. Rab, S. Alam and A. Bari. 2014. Effect of potassium sources on the growth, yield and fruit quality of tomato cultivars. Sar. J. Agril. 30(4): 442-450.

Khayyat, M., E. Tafazoli, S. Eshghi and S. Rajaee. 2007. Effect of nitrogen, boron, potassium and zinc sprays on yield and fruit quality of date palm. Ame-Eur. J. Agril & Environ. Sci. 2(3):289-296.

Mehraj, H., S.M. Mutahera, Z.K. Roni, A.S.M. Nahiyan and A.F.M.J. Uddin. 2014. Performance assessment of twenty tomato cultivars for summer cultivation in Bangladesh. J. Sci. Technol. & Environ. Informatics. 1(1):45-53.

Uddin, A.F.M ., A. Hossain, M.G. Mostafa and M.J. Rahman. 2009. Effect of different plant growth regulators on growth and yield of tomato. Int. J. Sustain. Agric. 1(3):58-63.