Lines crossing a tetrahedron and the Bloch group

Kevin Hutchinson and Masha Vlasenko

April 23, 2012

According to B. Totaro ([7]), there is a hope that the Chow groups of a field \(k \) can be computed using a very small class of affine algebraic varieties (linear spaces in the right coordinates), whereas the current definition uses essentially all algebraic cycles in affine space. In this note we consider a simple modification of \(\text{CH}^2(\text{Spec}(k), 3) \) using only linear subvarieties in affine spaces and show that it maps surjectively to the Bloch group \(B(k) \) for any infinite field \(k \). We also describe the kernel of this map.

The second autor is grateful to Anton Mellit, who taught her the idea of passing from linear subspaces to configurations (Lemma 1 below) and pointed out the K-theoretical meaning of Menelaus’ theorem, and to the organizers of IMPANGA summer school on algebraic geometry for their incredible hospitality and friendly atmosphere.

1 Lines crossing a tetrahedron

Let \(k \) be an arbitrary infinite field. Consider the projective spaces \(\mathbb{P}^n(k) \) with fixed sets of homogenous coordinates \((t_0 : t_1 : \cdots : t_n) \in \mathbb{P}^n(k)\). We call a subspace \(L \subset \mathbb{P}^n(k) \) of codimension \(r \) admissible if

\[
\text{codim}(L \cap \{t_{i_1} = \cdots = t_{i_s} = 0\}) = r + s
\]

for every \(s \) and distinct \(i_1, \ldots, i_s \). (Here \(\text{codim}(X) > n \) means \(X = \emptyset \).) Let

\[
C^r_n = \mathbb{Z}\left[\text{admissible } L \subset \mathbb{P}^n(k), \ \text{codim}(L) = r \right]
\]

be the free abelian group generated by all admissible subspaces of \(\mathbb{P}^n(k) \) of codimension \(r \). Then for every \(r \) we have a complex

\[
\cdots \xrightarrow{d} C^r_{r+2} \xrightarrow{d} C^r_{r+1} \xrightarrow{d} C^r_r \xrightarrow{d} 0 \xrightarrow{d} \cdots
\]

(we assume that \(C^r_n = 0 \) when \(n < r \)) with the differential

\[
[d[L]] = \sum (-1)^i [L \cap \{t_i = 0\}]
\]

(1)

where every \(\{t_i = 0\} \subset \mathbb{P}^n(k) \) is naturally identified with \(\mathbb{P}^{n-1}(k) \) by throwing away the coordinate \(t_i \). We are interested in the homology groups of these complexes \(H^r_n = H_n(C^*_{\cdot}) \).
For example, one can easily see that $H^1_1 \cong k^*$. Indeed, a hyperplane $(\sum \alpha_i t_i = 0)$ is admissible whenever all the coefficients α_i are nonzero, and if we identify d then the differential $d : C^2_2 \longrightarrow C^1_1$ turns into

$$
\begin{align*}
C^1_1 &\cong \mathbb{Z}[k^*] & \{[\alpha_0 t_0 + \alpha_1 t_1 = 0]\} &\longmapsto \left[\frac{\alpha_1}{\alpha_0}\right] \\
C^2_2 &\cong \mathbb{Z}[k^* \times k^*] & \{[\alpha_0 t_0 + \alpha_1 t_1 + \alpha_2 t_2 = 0]\} &\longmapsto \left[\frac{\alpha_1}{\alpha_0}, \frac{\alpha_2}{\alpha_0}\right]
\end{align*}
$$

(2)

then the differential $d : C^2_2 \longrightarrow C^1_1$ turns into

$$
[(x, y)] \longmapsto [x] - [xy] + [y].
$$

(one can recognize Menelaus’ theorem from plane geometry behind this simple computation). Hence we have

$$
H^1_1 \cong \mathbb{Z}[k^*] / \{[x] - [xy] + [y] : x, y \in k^*\} \cong k^* .
$$

Continuing the identifications of (2), C^2_2 turns into the bar complex for the group k^* (with the term of degree 0 thrown away) and therefore

$$
H^1_n = H_n(k^*, \mathbb{Z}) , \quad n \geq 1 .
$$

Now we switch to $r = 2$ and try to compute H^2_3. The four hyperplanes $\{t_i = 0\}$ form a tetrahedron Δ in the 3-dimensional projective space $\mathbb{P}^3(k)$ and the line ℓ is admissible if it

1) intersects every face of Δ transversely, i.e. at one point $P_i = \ell \cap \{t_i = 0\}$;

2) doesn’t intersect edges $\{t_i = t_4 = 0\}$ of Δ, i.e. all four points $P_0, \ldots, P_3 \in \ell$ are different .

Therefore it is natural to associate with ℓ a number, the cross-ratio of the four points P_0, \ldots, P_3 on ℓ. Namely, there is a unique way to identify ℓ with $\mathbb{P}^1(k)$ so that P_0, P_3 and P_2 become $0, \infty$ and 1 respectively, and we denote the image of P_3 by $\lambda(\ell) \in \mathbb{P}^1(k) \setminus \{0, \infty, 1\} = k^* \setminus \{1\}$. We extend λ linearly to a map

$$
\sum n_i [\ell_i] \longmapsto \sum n_i [\lambda(\ell_i)]
$$

\[C^3_3 \longrightarrow \mathbb{Z}[k^* \setminus \{1\}] \]

Theorem 1. Let $\sigma : k^* \otimes k^* \longrightarrow k^* \otimes k^*$ be the involution $\sigma(x \otimes y) = -y \otimes x$.

(i) If $d(\sum n_i [\ell_i]) = 0$ then $\sum n_i \lambda(\ell_i) \otimes (1 - \lambda(\ell_i)) = 0$ in $(k^* \otimes k^*)_\sigma$.

(ii) Let $L \subset \mathbb{P}^1(k)$ be an admissible plane and $\ell_i = L \cap \{t_i = 0\}$, $i = 0, \ldots, 4$. If we denote $x = \lambda(\ell_0)$ and $y = \lambda(\ell_1)$ then

$$
\lambda(\ell_2) = \frac{y}{x}, \quad \lambda(\ell_3) = \frac{1 - x^{-1}}{1 - y^{-1}} \quad \text{and} \quad \lambda(\ell_4) = \frac{1 - x}{1 - y} .
$$

(iii) The map induced by λ on homology

$$
\lambda_* : H^2_3 \longrightarrow B(k)
$$

(3)
is surjective, where
\[B(k) = \frac{\text{Ker} \left(\frac{\mathbb{Z}[k^* \setminus \{1\}] \to (k^* \otimes k^*)_\sigma}{[a] \mapsto a \otimes (1-a)} \right)}{\langle [x] - [y] + \left\lfloor \frac{x}{y} \right\rfloor - \left\lfloor \frac{x}{1-y} \right\rfloor + \left\lfloor \frac{1-x}{y} \right\rfloor, x \neq y \rangle} \]

is the Bloch group of \(k \) \([5]\).

(iv) We have \(H_3^2 \cong H_3(\text{GL}_2(k))/H_3(k^*) \) and the kernel of \(\text{K} = \text{Ker}(H_3^2 \xrightarrow{\lambda} B(k)) \)
fits into the exact sequence
\[0 \to \text{Tor}(k^*, k^*) \to K/T(k) \to k^* \otimes K_2(k) \to K_3^M(k)/2 \to 0, \]
where \(\text{Tor}(k^*, k^*) \) is the unique nontrivial extension of \(\text{Tor}(k^*, k^*) \) by \(\mathbb{Z}/2 \), and \(T(k) \) is a 2-torsion abelian group (conjectured to be trivial).

We remark that \(\text{Tor}(k^*, k^*) = \text{Tor}(\mu(k), \mu(k)) \) is a finite abelian group if \(k \) is a finitely-generated field. Furthermore, it is proved in \([5]\) that \(B(k) \) has the following relation to \(K_3(k) \): let \(K_3^\text{ind}(k) \) be the cokernel of the map from Milnor’s K-theory \(K_3^M(k) \to K_3(k) \), then there is an exact sequence
\[0 \to \text{Tor}(k^*, k^*) \to K_3^\text{ind}(k) \to B(k) \to 0 \] \((5)\)
In particular, if \(k \) is a number field then as a consequence of \((5)\) and Borel’s theorem \((\text{II})\) we have
\[\dim B(k) \otimes \mathbb{Q} = r_2, \]
where \(r_2 \) is the number of pairs of complex conjugate embeddings of \(k \) into \(\mathbb{C} \).

Proof of (i) and (ii). One can check that the diagram
\[\begin{array}{ccc}
\mathbb{Z}[k^* \setminus \{1\}] & \xrightarrow{[a] \mapsto a \otimes (1-a)} & (k^* \otimes k^*)_\sigma \\
\text{Tor}(k^*, k^*) & \xrightarrow{\lambda} & K_3^\text{ind}(k) \\
\end{array} \]

is commutative, and therefore (i) follows. It is another tedious computation to check (ii).

In the next section we will prove the remaining claims (iii) and (iv) and also show that
\[H_n^2 \cong H_n(\text{GL}_2(k), \mathbb{Z})/H_n(k^*, \mathbb{Z}) \quad n \geq 3. \] \((6)\)
2 Complexes of configurations

We say that $n + 1$ vectors $v_0, \ldots, v_n \in k^r$ are in general position if every $\leq r$ of them are linearly independent. Let $C(r, n)$ be the free abelian group generated by $(n + 1)$-tuples of vectors in k^r in general position. For fixed r we have a complex

$$\ldots \xrightarrow{d} C(r, 2) \xrightarrow{d} C(r, 1) \xrightarrow{d} C(r, 0)$$

with the differential

$$d[v_0, \ldots, v_n] = \sum (-1)^i[v_0, \ldots, \hat{v}_i, \ldots, v_n]$$

(7)

The augmented complex $C(r, \bullet) \rightarrow \mathbb{Z} \rightarrow 0$ is acyclic. Indeed, if $v \in k^r$ is such that all $(n + 2)$-tuples $[v, v_0, \ldots, v_n]$ are in general position (such vectors v exist since k is infinite) then

$$\sum n_i[v_0^i, \ldots, v_n^i] = d\left(\sum n_i[v, v_0^i, \ldots, v_n^i]\right).$$

Lemma 1. $C_n^* \cong C(r, n)_{GL_r(k)}$ for the diagonal action of $GL_r(k)$ on tuples of vectors. Moreover, the complex C_n^* is isomorphic to the truncated complex $C(r, \bullet)_{GL_r(k), \bullet \geq r}$.

Proof. For $n \geq r$ there is a bijective correspondence between subspaces of codimension r in $\mathbb{P}^n(k)$ and $GL_r(k)$-orbits on $(n + 1)$-tuples $[v_0, \ldots, v_n]$ of vectors in k^r satisfying the condition that v_i span k^r. It is given by

$$L \subset \mathbb{P}^n \mapsto [v_0, \ldots, v_n], \quad v_i = \text{image of } e_i \text{ in } k^{n+1}/\tilde{L} \cong k^r$$

$$[v_0, \ldots, v_n] \mapsto \tilde{L} = \text{Ker}[v_0, \ldots, v_n]^T \subset k^{n+1}$$

where \tilde{L} is the unique lift of L to a linear subspace in k^{n+1} and e_0, \ldots, e_n is a standard basis in k^{n+1}.

An admissible point in $\mathbb{P}^r(k)$ is a point which doesn’t belong to any of the $r + 1$ hyperplanes $\{t_i = 0\}$, and for the corresponding vectors $[v_0, \ldots, v_n]$ it means that every r of them are linearly independent. For $n > r$ a subspace L of codimension r in $\mathbb{P}^n(k)$ is admissible whenever all the intersections $L \cap \{t_i = 0\}$ are admissible in $\mathbb{P}^{n-1}(k)$. Hence it follows by induction that admissible subspaces correspond exactly to $GL_r(k)$-orbits of tuples “in general position”. Obviously, differential (7) is precisely (7) for tuples. □

The tuples of vectors in general position in k^r modulo the diagonal action of $GL_r(k)$ are called configurations, so $C(r, n)_{GL_r(k)}$ is the free abelian group generated by configurations of $n + 1$ vectors in k^r.

Proof of (iii) in Theorem 1. For brevity we denote $C(2, n)$ by C_n and $GL_2(k)$ by G. Since the complex of G-modules C_\bullet is quasi-isomorphic to \mathbb{Z} we have the hypercohomology spectral sequence with $E^1_{pq} = H_q(G, C_p) \Rightarrow H_{p+q}(G, \mathbb{Z})$. Since all modules C_p with $p > 0$ are free we have $E^1_{pq} = 0$ for $p, q > 0$ and $E^1_{00} = (C_0)_G$. If $G_1 \subset G$ is the stabilizer of (0) then $E^1_{00} = H_q(G, \mathbb{Z}[G/G_1]) = \ldots$
$H_q(G_1, \mathbb{Z})$ by Shapiro's lemma. We have $k^* \subset G_1$ and $H_q(k^*, \mathbb{Z}) = H_q(G_1, \mathbb{Z})$ (see Section 1 in [5]), so $E_{0q}^1 = H_q(k^*, \mathbb{Z})$. Further, $E_{00}^2 = H_p((C_\bullet)_G)$ and $E_{0q}^2 = H_q(k^*, \mathbb{Z})$. This spectral sequence degenerates on the second term. Indeed, the embedding
\[
 k^* \hookrightarrow G
 \quad \alpha \mapsto \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix}
\]
is split by determinant, and therefore all maps $H_q(k^*, \mathbb{Z}) \to H_q(G, \mathbb{Z})$ are injective. Consequently, $E_{\infty}^{pq} = E_{2pq}$ and for every $n \geq 2$ we have a short exact sequence
\[
 0 \to H_n(k^*, \mathbb{Z}) \to H_n(G, \mathbb{Z}) \to H_n((C_\bullet)_G) \to 0.
\]
It follows from Lemma 4 that
\[
 H_n^2 = H_n((C_\bullet)_G) = H_n(G, \mathbb{Z})/H_n(k^*, \mathbb{Z}), \quad n \geq 3.
\]

Let D_n be the free abelian group generated by $(n+1)$-tuples of distinct points in $\mathbb{P}^1(k)$. Again we have the differential like (7) on D_\bullet and the augmented complex $D_\bullet \to \mathbb{Z} \to 0$ is acyclic. We have a surjective map from C_\bullet to D_\bullet since a non-zero vector in k^2 defines a point in $\mathbb{P}^1(k)$ and the group action agrees. The spectral sequence $\bar{E}_{pq}^1 = H_q(G, D_p) \Rightarrow H_{p+q}(G, \mathbb{Z})$ was considered in [5]. In particular, $\bar{E}_{p0}^1 = (D_p)_G$ is the free abelian group generated by $(p-2)$-tuples of different points since G-orbit of every $(p+1)$-tuple contains a unique element of the form $(0, \infty, 1, x_1, \ldots, x_{p-2})$, and the differential $d^3 : \bar{E}_{03}^3 \to \bar{E}_{03}^4$ is given by
\[
 [x, y] \mapsto [x] - [y] + \left[\frac{y}{x} \right] - \left[\frac{1 - x^{-1}}{1 - y^{-1}} \right] + \left[\frac{1 - x}{1 - y} \right]. \quad (8)
\]
According to [5], terms \bar{E}_{pq}^2 with small indices are
\[
 H_3(k^* \oplus k^*)
\]
\[
 H_2(k^*) \oplus (k^* \otimes k^*)_\sigma \quad (k^* \otimes k^*)^\sigma
\]
\[
 k^* \quad 0 \quad 0
\]
\[
 \mathbb{Z} \quad 0 \quad 0 \quad p(k)
\]
where $p(k)$ is the quotient of $\mathbb{Z}[k^* \smallsetminus \{1\}]$ by all 5-term relations as in right-hand side of (8), and the only non-trivial differential starting from $p(k)$ is
\[
 d^3 : p(k) \to H_2(k^*) \oplus (k^* \otimes k^*)_\sigma = \Lambda^2(k^*) \oplus (k^* \otimes k^*)_\sigma
\]
\[
 [x] \mapsto x \wedge (1-x) - x \otimes (1-x)
\]
Therefore $\tilde{E}_3^{30} = \tilde{E}_3^\infty = B(k)$ and we have a commutative triangle

$$
\begin{array}{c}
H_3(G) \\
\downarrow \\
\tilde{E}_3^\infty = H_3^2 \\
\downarrow \\
\tilde{E}_3^\infty = B(k)
\end{array}
$$

where both maps from $H_3(G)$ are surjective, hence the vertical arrow is also surjective. It remains to check that the vertical arrow coincides with λ_*. A line ℓ in $\mathbb{P}^3(k)$ is given by two linear equations and for an admissible line it is always possible to chose them in the form

$$
\begin{align*}
t_0 + x_1 t_2 + x_2 t_3 &= 0, \\
t_1 + y_1 t_2 + y_2 t_3 &= 0.
\end{align*}
$$

This line corresponds to the tuple of vectors

$$
\left(\frac{1}{0}, \frac{0}{1}, \frac{x_1}{y_1}, \frac{x_2}{y_2} \right)
$$

which can be mapped to the points $0, \infty, 1, \frac{x_1 y_2}{y_1 x_2}$ in $\mathbb{P}^1(k)$, hence the vertical arrow maps it to $[x_1 y_2 y_1 x_2]$ (actually we need to consider a linear combination of lines which vanishes under d but for every line the result is given by this expression).

On the other hand, four points of its intersection with the hyperplanes are

$$
\begin{align*}
P_0 &= (0 : y_1 x_2 - y_2 x_1 : -x_2 : x_1) \\
P_1 &= (y_2 x_1 - y_1 x_2 : 0 : -y_2 : y_1) \\
P_2 &= (-x_2 : -y_2 : 0 : 1) \\
P_3 &= (-x_1 : -y_1 : 1 : 0)
\end{align*}
$$

and if we represent every point on ℓ as $\alpha P_0 + \beta P_1$ then the corresponding ratios $\frac{\beta}{\alpha}$ will be $0, \infty, -\frac{x_2}{y_2}, -\frac{x_1}{y_1}$. Hence $\lambda(\ell) = \frac{x_1 y_2}{y_1 x_2}$ again and (iii) follows.

To prove (iv) we first observe that the Hochschild-Serre spectral sequence associated to

$$
1 \longrightarrow \text{SL}_2(k) \longrightarrow \text{GL}_2(k) \xrightarrow{\text{det}} k^* \longrightarrow 1
$$

gives a short exact sequence

$$
1 \longrightarrow H_0 \left(k^*, H_3(\text{SL}_2(k), \mathbb{Z}) \right) \longrightarrow \text{Ker} \left(H_3(\text{GL}_2(k), \mathbb{Z}) \xrightarrow{\text{det}} H_3(k^*, \mathbb{Z}) \right) \longrightarrow H_1 \left(k^*, H_2(\text{SL}_2(k), \mathbb{Z}) \right) \longrightarrow 1.
$$

The first term here maps surjectively to $K_3^{\text{ind}}(k)$ (see the last section of [2]), and the map is conjectured by Suslin to be an isomorphism (see Sah [4]). It is known that its kernel is at worst 2-torsion (see Mirzaii [3]). Thus we let

$$
T(k) := \text{Ker} \left(H_0(k^*, H_3(\text{SL}_2(k), \mathbb{Z})) \longrightarrow K_3^{\text{ind}}(k) \right).
$$

6
By the preceding remarks, this is a 2-torsion abelian group. Since the embedding \(k^* \rightarrow \text{GL}_2(k) \) is split by the determinant, the middle term in (9) is isomorphic to \(H_3^2 \). Then applying the snake lemma to the diagram

\[
\begin{array}{ccccccccc}
0 & \to & T(k) & \to & H_0 \left(k^*, H_3(\text{SL}_2(k), \mathbb{Z}) \right) & \to & K_3^{\text{ind}}(k) & \to & 0 \\
0 & \to & K & \to & H_2^2 & \to & B(k) & \to & 0
\end{array}
\]

gives the short exact sequence

\[
0 \rightarrow \text{Tor}(k^*, k^*) \rightarrow K/T(k) \rightarrow H_1 \left(k^*, H_2(\text{SL}_2(k), \mathbb{Z}) \right) \rightarrow 0.
\]

Finally, it follows from \([2]\) that there is a natural short exact sequence

\[
0 \rightarrow H_1 \left(k^*, H_2(\text{SL}_2(k), \mathbb{Z}) \right) \rightarrow k^* \otimes K^2_2(k) \rightarrow K^M_3(k)/2 \rightarrow 0.
\]

This proves \([4]\). \(\square\)

References

[1] A. Borel, Cohomologie de \(SL_n \) et valeurs de fonctions \(\zeta \) aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sc., Sér. 4, no. 4 (1977), 613-636.

[2] K. Hutchinson, L. Tao, The third homology of the special linear group of a field, J. Pure. Appl. Algebra 213 (2009), no. 9, 1665–1680.

[3] B. Mirzaii, Third homology of general linear groups. J. Algebra, 320(5) (2008), 1851–1877.

[4] Chih-Han Sah. Homology of classical Lie groups made discrete. III. J. Pure Appl. Algebra, 56(3):269–312, 1989.

[5] A. Suslin, \(K_3 \) of a field and the Bloch group, Proceedings of the Steklov Institute of Mathematics 1991, Issue 4

[6] A. Suslin, The homology of \(\text{GL}_n \), characteristic classes and Milnor K-theory, Proceedings of the Steklov Institute of Mathematics 1985, Issue 3

[7] B. Totaro, Milnor K-Theory is the Simplest Part of Algebraic K-theory, K-theory 6 (1992), 177–189.