Product Authentication Using Two Mitochondrial Markers Reveals Inconsistent Labeling and Substitution of Canned Tuna Products in the Taiwanese Market

Chia-Hao Chang 1*, Yueh-Tzu Kao 2, Ting-Ting Huang 1 and Yu-Chun Wang 3, 4

1 TIGP Biodiversity Program, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan; chiahaoo928@gmail.com (C.-H.C.); miaohting00@gmail.com (T.-T.H.)
2 Department of Life Science, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan; hyakkiin@gmail.com
3 Planning and Information Division, Fisheries Research Institute, No.199, Hou-Ih Road, Keelung City 202008, Taiwan
* Correspondence: ycwang@mail.tfrin.gov.tw; Tel.: +886-2-24622101 (ext. 2524)

Abstract: Fish of the tribe Thunnini represent a significant proportion of the stock caught by the fishing industry, with many of these fishes being collectively called tuna. However, only certain species can be used legally as an ingredient in canned tuna products, depending on regional food regulations. In Taiwan, only Thunnus species or Katsuwonus pelamis can be used as canned tuna. Here, we authenticated 90 canned tuna products, including 25 cat food samples, by sequencing two mitochondrial regions, 16S rRNA (16S) and the control region (CR). BLAST analysis revealed that Sarda orientalis, Euthynnus affinis, Auxis rochei, and Auxis thazard are all used as substitutes for legitimate tuna products. We found that 63.33% of investigated samples are true canned tuna, i.e., contain Thunnus species or skipjack tuna. We advocate that the Taiwanese government publishes an official standardized list of fishes, especially so that scientific, Chinese and vernacular names can be assigned unambiguously based on a “one species-one name policy”, thereby clarifying which species can be used in seafood products such as tuna. Furthermore, we feel that the large-scale and long-term monitoring of canned tuna products is warranted to fully assess the extent of tuna product adulteration in Taiwan.

Keywords: Thunnini; substitution; mislabeling rate; one species-one name; adulteration

1. Introduction

Approximately 17% of the global human population’s intake of animal protein in 2017 consisted of fish [1]. Although aquaculture satisfied about half of that consumption, wild-capture from oceans, lakes and rivers remains a mainstay of the global fishing industry. Among these wild-caught fishes, scombrids are particularly important fishery resources, especially species in the tribe Thunnini that constitute ~10% of the international seafood market [2,3]. In 2018, the global catch of Thunnini species represented ~7.9 million tons, 58% of which can be attributed to skipjack tuna (Katsuwonus pelamis) (in Chinese: 正鰹) and yellowfin tuna (Thunnus albacares) (in Chinese: 黃鰶) [1]. A large proportion of the Thunnini catch is destined for the canning industry [4,5].

The tribe Thunnini comprises five genera: Thunnus (in Chinese: 鮪屬), Katsuwonus (in Chinese: 正鰹屬), Auxis (in Chinese: 鱩屬), Euthynnus (in Chinese: 巴鰹屬), and Allothunnus (in Chinese: 細鰹屬). Fishes of this tribe can be generally termed “tuna”. For example, Auxis rochei is called bullet tuna (in Chinese: 圓花鰹), Euthynnus alletteratus is little tuna (in Chinese: 小鰹), and Allothunnus fallai is slender tuna (in Chinese: 細鰹). However, the Chinese translation of tuna is 鮪 in Taiwan or 金槍魚 in Mainland China, which specifically refers solely to Thunnus spp. Previously, many different scombrids were used as an ingredient in “canned tuna”, even if they did not belong to the tribe Thunnini.
For instance, *Sarda* (in Chinese: 鲷鰭屬) spp. were once widely used in canned tuna because they possess a similar taste and texture to it [6]. Importantly, a species of the tribe Thunnini may not always be used legally as a canned tuna product ingredient. Various legislative bodies have developed regulations that clearly define which species can be used in canned tuna products (Table 1). The Food and Agriculture Organization (FAO) and the federal government of the United States allow spotted tuna to be used as canned tuna, but that species is prohibited by Taiwanese and Japanese regulations. In general, fishes of the genus *Thunnus* and skipjack tuna are widely recognized as legal canned tuna species. To align with international standards, the Taiwan Food and Drug Administration allows skipjack canned tuna ingredient. Thunnus species is prohibited by Taiwanese and Japanese regulations. In general, fishes of the genus *Sarda* are used in canned tuna products, even though it does not belong to the genus *Thunnus*, but other “pseudo-tunas” can no longer be used legally as a canned tuna ingredient.

Table 1. Scientific, English common, Chinese common and vernacular names of scombrid fishes permitted by various legislative bodies as canned tuna or bonito products.

Scientific Name	English Common Name	Chinese Name	Chinese Vernacular Name	Taiwan	FAO	USA	Japan	European Union
Thunnini tribe								
Thunnus alibarua	Albacore tuna	長脅鰭	串仔、長鰭串、白肉串、長鰭串	✓	✓	✓		
Thunnus albacares	Yellowfin tuna	黃鰭鰭	串仔、黃鰭串、黑肉鰭串、黃鰭串	✓	✓	✓		
Thunnus atlanticus	Blackfin tuna	黑鰭鰭	串仔、長鰭串	✓	✓	✓		
Thunnus obesus	Bigeye tuna	大目鰭	串仔、大眼鰭、大目串	✓	✓	✓		
Thunnus maccoyii	Southern bluefin tuna	南方黑鰭	串仔、大眼鰭、大目串	✓	✓	✓		
Thunnus thynnus	Atlantic bluefin tuna	大西洋黑鰭	串仔、大眼鰭、大目串	✓	✓	✓		
Thunnus orientalis	Pacific bluefin tuna	太平洋黑鰭	串仔、大眼鰭、大目串	✓	✓	✓		
Thunnus tongol	Longtail tuna	長脅鰭	串仔、長鰭串	✓	✓	✓		
Katsuwonous pelamis	Skipjack tuna	正鰭	串仔、長鰭串	✓	✓	✓		
Auxis rochei	Bullet tuna	圈花鰭	串仔、長鰭串	✓	✓	✓		
Auxis thazard	Frigate tuna	圈花鰭	串仔、長鰭串	✓	✓	✓		
Euthynus affinis	Kawakawa	巴鰭	串仔、長鰭串	✓	✓	✓		
Euthynus allerus	Little tunny	小巴鰭	串仔、長鰭串	✓	✓	✓		
Euthynus lineatus	Black skipjack tuna	黑巴鰭	串仔、長鰭串	✓	✓	✓		
Allothunnus fallai	Slender tuna	派巴鰭	串仔、長鰭串	✓	✓	✓		
Sardina orientalis	Oriental bonito	東方鰭鰭	串仔、長鰭串	✓	✓	✓		
Sardina sarda	Atlantic bonito	鯖鰭	串仔、長鰭串	✓	✓	✓		
Sardinus chilensis	Eastern Pacific bonito	智利鰭鰭	串仔、長鰭串	✓	✓	✓		

1. 107年度「鰭橋完整魚品標示管理體系計畫」—「宣稱鰭橋魚種標示說明會」，Taiwan; 2. Standard for canned tuna and bonito CXS 70-1981, Codex Alimentarius FAO-WHO; 3. Code of federal regulations CFR 21. Sec. 161.190, United State Food and Drug Administration, USA; 4. 水産物魚品及び水産物製品の日産規格, Japan; 5. European regulation (Council Regulation (EEC) No 1536/92) [7–11].
Seafood mislabeling is profuse worldwide [12–21]. Such mislabeling can be categorized into two types, i.e., deliberate or unintentional. Deliberate mislabeling primarily involves the substitution of high-priced fishes with low-priced ones for financial reasons, though the reverse scenario also arises occasionally, perhaps due to illegal fishing. Unintentional mislabeling occurs when morphologically similar fishes are misidentified, when the usage of vernacular names is not unified, or when product information is lost along the supply chain. Whatever the form of mislabeling, it ultimately entails consumer deception, public health risk, problems for fisheries management, and has religious implications (reviewed in Chang et al. [22]).

Traditional morphology-based identification is rarely applied to seafood because many products undergo physical (e.g., filleting) or chemical (e.g., smoking) processing before being sold. These aspects of food processing typically eliminate diagnostic morphological characters needed for species authentication. Fortunately, molecular authentication based on nucleic acid sequence similarity can overcome this limitation. DNA can be obtained from a tiny piece of tissue and it is more resistant to degradation and food processing. Therefore, DNA-based authentication is being widely employed to identify species in seafood [15,21,23–30].

The increasing global popularity of Japanese cuisine has markedly increased market demand for tuna, since *Thunnus* fishes are important elements of sashimi and sushi. The development of freezing technology and booming global trade in the early 1970s has transformed the bluefin tunas (*T. thynnus* (in Chinese: 大西洋黒鮪), *T. maccogii* (in Chinese: 南方黒鮪), and *T. orientalis* (in Chinese: 太平洋黑鮪)) from a cat food into a delicacy served at high-end restaurants [31]. Bluefin tunas are the most sought after of all *Thunnus* fishes, attaining the largest size and greatest price. However, increased consumption has also threatened their stocks, which are decreasing and the status of all three species is deemed Critical (IUCN). Today, regional fishery management organizations are responsible for managing and monitoring tuna fishing in order to keep it sustainable [32].

The soaring demand for *Thunnus* fishes, especially bluefin tuna, makes them very vulnerable to mislabeling. Previous molecular authentication studies on sushi reported that many fishes are used as substitutes for *Thunnus* species, including escolar (*Lepidocybium flavobrunneum*) (in Chinese: 鱸網帶鰆), salmon (*Salmo salar*) (in Chinese: 安大略鱒), banded rudderfish (*Seriola zonata*) (in Chinese: 環帶鰤), great amberjack (*Seriola dumerilii*) (in Chinese: 杜氏鰤), skipjack tuna, little tunny, as well as various shark species [14,17,18,20,33–37]. Furthermore, the value of different *Thunnus* species varies, prompting high-priced bluefin tuna or bigeye tuna (*T. obesus*) (in Chinese: 大目鮪) to be substituted for a cheaper species such as yellowfin tuna. Notably, enforcement of fishery management can drive reverse substitution, whereby high-priced bluefin tuna is sold as cheap yellowfin tuna or *Thunnus* fishes are labeled as skipjack tuna to enable market entry of illegal catch [33,38,39].

Although DNA-based methods are very powerful tools for authenticating fish products, food processing, and especially canning, can limit their applicability. To date, conventional DNA barcoding remains the most widely deployed authentication approach, whereby a ~650-bp region of the mitochondrial gene encoding for cytochrome c subunit I (COI) is sequenced as a bioidentification “barcode” [40,41]. However, the high heat treatment integral to the canning process largely degrades DNA into small fragments [42,43], so shorter fragments (or nested polymerase chain reaction, PCR) must be deployed for canned products [4–6,39,44,45], but a comprehensive investigation of canned tuna substitution in a particular region has not yet been conducted. In Taiwan, the mislabeling rate of tuna products varies according to the product type. Chang et al. [22] documented that all tuna-labeled meals produced at conveyor-belt sushi restaurants appear to truly come from *Thunnus* fishes, but Xiong et al. [46] and Hwang et al. [44] detected mislabeled Taiwan canned tuna products. Therefore, the goal of this study is to estimate levels of canned tuna product adulteration and to determine which species of scombrids are being marketed as canned product in the Taiwanese market.
2. Materials and Methods

2.1. Sample Collection

We purchased a total of 90 canned tuna products, belonging to 59 brands, from grocery stores or online, encompassing all major brands in Taiwan. Twenty-five of the collected samples represented canned cat food. Cans were selected if their label showed the Chinese word 鮪 (for tuna), if the company website claimed the product was made from Thunnus fishes, if the ingredients list contained Thunnus spp. or skipjack tuna, or if an image on the label indicated the can harbored Thunnus fishes. We recorded information, typically written in Chinese, on brand, manufacturer or importer, place of manufacture, labeling, and ingredients. If the cans were imported from the USA or Japan, the respective English or Japanese labels were also recorded (Table 2). The sampled cans were first photographed using a smartphone (Supplementary Information S1), and then a small quantity of the contents of each can was removed using autoclaved dissection tools, washed with 95% ethanol, before being preserved in 99.5% ethanol at −20 °C until DNA extraction. Some of the canned cat food products contained more than one type of meat, so potential Thunnus meat was selected based on color and texture.

2.2. Molecular Identification

DNA was extracted from each of the 90 tissue samples using DNA Extraction Kit S (Cat No./ID: GS100, Geneaid). PCR amplifications of the mitochondrial 16S rRNA fragment (16S) (85 bp) were performed in a mixture containing 5 ng template DNA, 12.5 µL of 2× Taq PCR MasterMix (GN-PCR201-01, Genomix), and 12.5 µmol of each forward and reverse primer. We used primers designed by Horreo et al. [47] and modified them by adding M13 primer to facilitate sequencing: Forward, M13F(-20)16S-HF (5′-GTA AAA CGA CGG CCA GTA TAA CAC GAG AAG ACC CT-3′); Reverse, M13R(-24)16S-HR1+2 (5′-AACAGCTATGACCATGCCCGGCGGTCCGCCCCA AC-3′). These primers were made up to a final volume of 25 µL using distilled water. If BLAST analysis (in the NCBI basic local alignment search tool) indicated that a sequenced 16S fragment belonged to Thunnus spp., we PCR-amplified a fragment of the mitochondrial control region (CR, approximately 236 bp) from the same DNA sample. CR amplification was conducted in a mixture containing 5 ng template DNA, 12.5 µL of 2× Taq PCR MasterMix (GN-PCR201-01, Genomix), and 12.5 µmol of each forward and reverse primer—Forward, Tuna-CR_F; Reverse, Tuna-CR_R1 or Tuna-CR_R2 [48]—made up to a final volume of 25 µL using distilled water. Thermal cycling began with one cycle at 95 °C for 4 min, followed by 35 cycles of denaturation at 95 °C for 30 s, 47–55 °C for 30 s, and 72 °C for 30 s and, finally, a single extension step at 72 °C for 7 min. PCR products were purified using a PCR DNA Fragment Extraction Kit (Geneaid, Taipei, Taiwan). The amplified mitochondrial fragments were subjected to Sanger sequencing, performed by Mission Biotech. (Taipei, Taiwan) using M13 sequencing primers. Primer sequences linked to the amplified fragments were trimmed before constructing the contigs using CodonCode Aligner. The mitochondrial sequences we generated in this study have not been submitted to GenBank as they do not come from voucher specimens.
Table 2. List of all canned tuna product samples authenticated by 16S rRNA BLAST and the results of neighbor-joining (NJ) analysis based on the mitochondrial control region (CR).

No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
1	T1	遠洋牌	遠洋冷凍食品	Taiwan	鮪魚片	Light tuna in oil	鮪魚	Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccogii (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO YES		
2	T53	遠洋牌	遠洋冷凍食品	Taiwan	油漬鮪魚肉塊(煙仔虎)	煙仔虎	Skipjack tuna or oriental bonito	YES	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES NO			
3	T57	遠洋牌	遠洋冷凍食品	Taiwan	玉米+鮪魚	Tuna + sweet corn	鮪魚	Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccogii (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO YES		
4	T62	三興	恵昇食品	Taiwan	SH油漬鮪魚(東方鰆)	Tuna in oil	東方鰆	Oriental bonito	YES	Hap_A	Sarda orientalis (3)	NO NO		
5	T2	三興	恵昇食品	Taiwan	SH水煮鮪魚(東方鰆)	Tuna in brine	東方鰆	Oriental bonito	YES	Hap_A	Sarda orientalis (3)	NO NO		
Table 2. Cont.

No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
6	T3	好媽媽	東和食品	Taiwan	鯖魚	Tuna flakes in brine	鯖魚	Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES	
7	T52	好媽媽	東和食品	Taiwan	陳妹鮪魚	Tuna flakes in chili oil	鮪魚	Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccgoyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES	
8	T4	好媽媽	東和食品	Taiwan	三明治鮪魚 (煙仔虎)	Tuna sandwich	烟仔虎 (鮪魚)	Skipjack tuna or oriental bonito (Thunnus spp.)	YES	Hap_A	Sarda orientalis (3)	?	NO	
9	T49	好媽媽	東和食品	Taiwan	無添加玉米鮪魚 Corn Tuna	Corn tuna	烟仔虎	Skipjack tuna or oriental bonito	YES	Hap_A	Sarda orientalis (3)	NO	NO	
10	T18	蘇澳區漁會	東和食品	Taiwan	水煮鮪魚	Canned boiled tuna	鮪魚	Thunnus spp.	NO	Hap_B	Euthynnus affinis (4), E. lineatus (1)	YES	NO	
11	T20	冬山河	東和食品	Taiwan	三明治鮪魚	鮪魚	Thunnus spp.	NO	Hap_B	Euthynnus affinis (4), E. lineatus (1)	YES	NO		
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haploype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
-----	-------------	-------	--------------------------	----------------------	---------------	---------------	---------------------	----------------------------------	----------------------	-------------------------	-------------------------	---------------	------------	-----------------
12	T21	鮪拉鮮	東和食品	Vietnam	鮪魚罐頭	鮪魚	Thunnus spp.	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO		
13	T5	紅鷹牌	活寶食品	Taiwan	鮪魚罐頭	鮪魚	Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES		
14	T6	紅鷹牌	活寶食品	Taiwan	鮪魚罐頭	東方鰹魚	Oriental bonito	YES	Hap_A	Sarda orientalis (3)	NO	NO		
15	T7	紅鷹牌	活寶食品	Taiwan	鮪魚罐頭	鮪魚 (鮪魚)	Thunnus spp. (Thunnus)	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccouui (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES		
16	T8	紅鷹牌	活寶食品	Taiwan	竹筍鮪魚	正當 (釣魚)	Skipjack tuna (Thunnini)	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO		
17	T9	紅鷹牌	活寶食品	Taiwan	鮪魚罐頭	鮪魚	Thunnus spp.	NO	Hap_A	Sarda orientalis (3)	YES	NO		
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
-----	-------------	-------	---------------------------	----------------------	---------------	--------------	--------------------	----------------------------------	----------------------	------------------------	----------------------	----------------	-------------	-----------------
18	T54	紅鷹牌	活寶食品	Taiwan	紅鷹牌海底珍藏鰹魚片	Slices tuna	正鰹（鰹族）	Skipjack tuna (Thunnini)	NO	Hap_A	Sarda orientalis	YES	NO	
19	T55	紅鷹牌	活寶食品	Taiwan	洋蔥鮪魚	Onion tuna	正鰹（鰹族）	Skipjack tuna (Thunnini)	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO	
20	T10	台糖	台糖	Taiwan	香筍鮪魚	Tuna flakes	鮪魚、鰹魚（鰹族）	Thunnus spp., skipjack tuna	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccopy (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES	
21	T46	台糖	台糖	Taiwan	台糖三明治鮪魚（油漬）	Tuna flakes	鮪鰹魚類	Thunnus spp., skipjack tuna	NO	Hap_H	Thunnus tonggol (1), T. obesus (1)	NO	YES	
22	T61	台糖	台糖	Taiwan	台糖鮪魚片（油漬）	Tuna flakes	鮪魚、鰹魚（鰹族）	Thunnus spp., skipjack tuna	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccopy (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES	
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
-----	-------------	-------	--------------------------	----------------------	---------------	---------------	---------------------	-----------------------------------	----------------------	------------------------	------------------------	----------------	-------------	------------------
23	T11	新東陽	新東陽	Taiwan	新東陽水煮鮪魚片	鮪魚、鰹魚	Thunnus spp., skipjack tuna	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES NO			
24	T12	愛之味	愛之味	Taiwan	愛之味鮪魚片	鮪魚	Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccocyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO YES			
25	T45	愛之味	愛之味	Thailand	獎贊三明治鮪魚	鮪魚	Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccocyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO YES			
26	T13	老船長	金將騰食品	Taiwan	老船長特製鮪魚(煙仔虎)	煙仔虎	Skipjack tuna or oriental bonito	YES	Hap_A	Sarda orientalis (3)	NO NO			
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
-----	-------------	-------	--------------------------	----------------------	---------------	---------------	---------------------	----------------------------------	----------------------	-------------------------	----------------------------	----------------	------------	-----------------
27	T56	老船長 金春勝食品	Taiwan 肉仔焼き鮪魚	Tuna flakes with bamboo shoots	鮪魚	Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), Th. orientalis (4), Th. atlanticus (2), Th. thynnus (4), Th. albacares (14), Th. maccoyi (6), Th. obesus (4), Th. alalunga (1), Katsuwonus pelamis (1)	T. albacares	NO	YES		
28	T14	新宜興 隆育企業	Taiwan 水煮鮪魚	Tuna in brine 鮪魚	鮪魚	Thunnus spp., skipjack tuna	NO	Hap_H	Thunnus tonggol, Th. obesus	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO		
29	T47	新宜興 隆育企業	Taiwan 新宜興三明治鮪魚	Tuna sandwich 鮪魚類	鮪魚類	Thunnus spp., skipjack tuna	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO			
30	T58	新宜興 隆育企業	Taiwan 新宜興原味鮪魚片	Tuna slice 鮪魚	鮪魚	Thunnus spp., skipjack tuna	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO			
31	T15	Viridis Vivus	Taiwan V V 鮪魚片	Tuna slice 鮪魚	鮪魚	Thunnus spp., skipjack tuna	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO			
32	T16	同榮 同榮實業	Taiwan 同榮鮪魚片	Tuna flake in oil 鮪魚	鮪魚	Skipjack tuna or oriental bonito	YES	Hap_A	Sarda orientalis (3)	NO	NO			
Table 2. Cont.

No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
33	T44	同榮	同榮實業	Vietnam	三明治鰹魚	鰹魚	Skipjack tuna	Euthynnus affinis (4), E. lineatus (1)	YES	NO				
34	T17	爭鮮	爭鮮	Taiwan	油漬鰹魚	鰹魚.鰹魚	Tuna flakes in oil	Thunnus spp., skipjack tuna	NO	Hap_H				
35	T19	藍海	旺來興	Taiwan	三明治鰹魚	鰹魚.鰹魚	Tuna in oil	Thunnus spp., skipjack tuna	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)			
36	T22	KY	寬元行(進口)	Vietnam	三明治鰹魚	鰹魚.鰹魚	Shredded light tuna in oil	Thunnus spp., skipjack tuna	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccyii (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)			
37	T23	大海鰹魚	力達貿易	Vietnam	鰹魚罐頭	鰹魚	Thunnus spp.	NO	Hap_F					
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	CR NJ Analysis	Mislabeled	True Canned Tuna	
-----	-------------	-------	----------------------------	----------------------	---------------	---------------	---------------------	------------------------------------	---------------------	----------------------	----------------	------------	------------------	
38	T24	紅龍	蔑富食品	Thailand	紅龍蒸煮三明治鰤魚	鰤魚	Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES		
39	T25	金熊	洋華(進口商)	Indonesia	金熊三明治鰤魚	鰤魚	Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES		
40	T27	MACORO	寬元行(進口商)	Vietnam	每口變片狀三明治鰤魚	Tuna flake in oil	鰤魚、鰹魚	Thunnus spp., skipjack tuna	NO	Hap_H	Thunnus tonggol (1), T. obesus (1)	NO	YES	
41	T28	南海洋	力達貿易	Taiwan	油漬鰤魚(煙仔虎)	煙仔虎	Skipjack tuna or oriental bonito	YES	Hap_A	Sarda orientalis (3)	NO	NO		
42	T29	California Fresh	Unicord Public	Thailand	California Fresh油漬鰤魚片	Skipjack tuna shredded in soybean oil	鰤鰤魚類 (正鰤)	Thunnus spp., skipjack tuna (skipjack tuna)	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	NO	YES	
43	T30	慶全	老三林食品	Taiwan	慶全油漬鰤魚	鰤鰤魚肉	Thunnus spp., skipjack tuna	NO	Hap_A	Sarda orientalis (3)	YES	NO		
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna	
-----	-------------	-------	--------------------------	----------------------	---------------	---------------	-------------------	--------------------------------	-------------------	------------------------	---------------	------------	-----------------	
44	T40	老三林	老三林食品	Taiwan	油漬魚(煙熏魚)	煙仔魚	Skipjact tuna or oriental bonito	YES	Hap_A	Sarda orientalis (3)	NO	NO		
45	T31	三乃	三乃	Taiwan	light meat tuna	鮪魚	Thunnus spp.	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO		
46	T32	雄哥標	雄哥企業*	Thailand	Tuna omega3 in extra virgin olive oil	精選鮪魚	Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyii (6), T. oheuse (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES		
47	T33	雄哥標	雄哥企業*	Thailand	Tuna chunks in extra virgin olive oil	精選鮪魚	Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyii (6), T. oheuse (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES		
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
-----	-------------	-------	--------------------------	----------------------	---------------	---------------	-------------------	---------------------------------	---------------------	------------------------	--------------------------	----------------	-----------	----------------
48	T36	丸鯖魚夢工廠	山區海產加工廠	Taiwan	黑鮪魚罐頭	Bluefin tuna	黑鮪魚	bluefin tuna	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	?	YES	
49	T37	美鷹牌	逮捕企業(代理商)	Thailand	鰹魚、鮪魚	Thunnus spp., skipjack tuna	鰹魚	Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES	
50	T41	丸漢堡	賢丸食品	Vietnam	鮪魚	Thunnus spp.	鮪魚	Thunnus spp.	NO	Hap_B	Euthynnus affinis (4), E. lineatus (1)	YES	NO	
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna	
-----	-------------	-------	--------------------------	----------------------	---------------	---------------	---------------------	----------------------------------	------------------	----------------------	---------------	-------------	----------------	
51	T43	慶祥	慶祥食品	Taiwan	慶祥鮪魚罐頭	鮪魚類	Thunnus spp.	skipjack tuna	NO	Hap_F		NO	YES	
								Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyi (6), T. obesus (4), T. alalunga (1), Katsuonius pelamis (1)						
52	T48	GERRN &SAFE	永豐生技	Taiwan	橄欖油漬鮪魚(東方鰆)	鮪魚(東方鰆)	Thunnus spp. (oriental bonito)	YES	Hap_A	Sarda orientalis (3)	?	NO		
53	T42	Kirkland signature	Costco	Fiji	kirkland signature 科克蘭	Albacore	Chinese: 鮪魚/English: Albacore tuna	Chinese: Thunnus spp./English: albacore tuna	NO	Hap_D	Thunnus obesus (3), T. thynnus (2), T. albacares (2), T. alalunga (3), T. orientalis (1)	NO	YES	
54	T26	マルハ	マルハニチロ株式会社	Japan	丸希鮪魚罐	Tuna in soy sauce	Chinese: 金槍魚/Japanese: まぐろ	Chinese and Japanese: Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyi (6), T. obesus (4), T. alalunga (1), Katsuonius pelamis (1)	NO	YES	
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
-----	-------------	-------	---------------------------	----------------------	---------------	---------------	---------------------	----------------------------------	---------------------	-------------------------	-------------------------	-------------	-----------	----------------
55	T50	良好生活	くらし良好	Thailand	生活良好	鮪魚罐(三人)	鮪魚 / Japanese: きはだまぐろ	Chinese: 鮪魚 / Japanese: yellowfin tuna	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoupi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES	
56	T51	黄金口福(コウフ)	KODANML GROUP CO., LTD	Thailand	黃金口福油三入黃	鮪魚罐	鮪魚 / Japanese: まぐろ	Chinese and Japanese: Thunnus spp.	NO	Hap_B	Euthynnus affinis (4), E. lineatus (1)	YES	NO	
57	T59	HOTEI	ホテイフーズ	Thailand	HOTEI油漬鯖魚罐頂	黃鰭 / Japanese: かつお	Chinese: yellowfin tuna / Japanese: skipjack tuna	Chinese: yellowfin tuna / Japanese: skipjack tuna	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES	
58	T65	HOTEI	ホテイフーズ	Japan	豪德本堂鮪魚罐頂	鮪魚 / Japanese: きはだまぐろ	Chinese and Japanese: yellowfin tuna	Chinese and Japanese: yellowfin tuna	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoupi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES	
Table 2. Cont.

No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
59	T60	今津	今津株式会社	Thailand	今津鰹魚/玉未漬	Chinese: 鰹魚/ Japanese: きはたまぐろ	Chinese: skipjack tuna/ Japanese: yellowfin tuna	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), Thunnus spp.	YES	YES		
60	T34	極洋	極洋株式会社	Thailand	極洋鰹魚罐頭-油漬	Chinese: 鰹魚/ Japanese: まぐろ	Chinese: Japanese: Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), Thunnus spp.	NO	YES	T. albacares	
61	T35	極洋	極洋株式会社	Thailand	極洋油漬鰹魚罐	Chinese: 鰹魚/ Japanese: まぐろ	Chinese: Japanese: Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES		
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
-----	-------------	-------	--------------------------	----------------------	---------------	---------------	-------------------	----------------------------------	---------------------	-------------------------	------------------------	----------------	-----------	----------------
62	T38	いなば食品	Thailand	稻葉鮪魚/鰹魚罐	Light tuna	Chinese: 鮪魚、鰹魚罐/Japanese:まぐろ	Chinese: Thunnus spp. and skipjack tuna/Japanese: Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	NO	YES		
63	T39	伊藤食品	Japan	伊藤油漬鮪魚(金罐)		Chinese: 鮪魚/Japanese:まぐろ	Chinese and Japanese: Thunnus spp.	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES		
64	T63	Hagoromo	Japan	一本釣頂級鮪魚罐		Chinese: 鮪魚/Japanese: ひんなりまぐろ	Chinese: Thunnus spp./Japanese: albacore tuna	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES		
Table 2. Cont.

No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
65	T64	SSK	清水食品株式会社	Japan	油浸鮪魚	Chinese: 鮪魚/Japanese: きはたまぐろ	Chinese: Thunnus spp./Japanese: yellowfin tuna	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoupi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES		
66	B1B	SEEDS	THAI UNION	Thailand	Hello Fresh 好鮮原汁湯罐 (清蒸鮪魚)	Tuna	鮪魚	Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES	
67	B1C	SEEDS	UNICORD	Thailand	Tuna愛貓天然食(兩倍鮮嫩雞肉+白身鮪魚)	Chicken & Tuna light meat	自身鮪魚, 雞肉	Thunnus spp., chicken	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES	
68	B2E	SEEDS	UNICORD	Thailand	Tuna愛貓天然食	Chicken & tuna light meat	雞肉, 自身鮪魚	Chicken, Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES	
69	B2F	SEEDS	UNICORD	Thailand	Tuna愛貓天然食	Light tuna meat & shirasu	自身鮪魚, 瑛仔魚	Whitebait, Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES	
Table 2. Cont.

No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
70	B2G	SEEDS	THAI UNION Thailand	Bistro Cat	Tuna light meat + shrimp	Thunnus spp., shrimp	NO Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES YES					
71	B1D	YAMI	Hi-Q Food Thailand	健寶鰤魚蟹柳活力餐	鮭魚、蟹柳	Thunnus spp., crab stick	NO Hap_B	Euthynnus affinis (4), E. lineatus (1)	YES NO					
72	B3A	GOEN	Pataya Food Thailand	御宴湯罐白身鰤魚、蟹柳	白身鰤魚、蟹柳	Thunnus spp., chicken	NO Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES YES					
73	B3B	GOEN	Pataya Food Thailand	御宴湯罐白身鰤魚、鮭魚	白身鰤魚、鮭魚	Thunnus spp., salmon	NO Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES YES					
74	B3F	元氣家族	Pataya Food Thailand	元氣家族金罐鮭魚、鰤魚	鮭魚、鰤魚	Thunnus spp., snapper	NO Hap_B	Euthynnus affinis (4), E. lineatus (1)	YES NO					
75	B3H	元氣家族	Pataya Food Thailand	元氣家族金罐鮭魚、鮮蝦	鮭魚、鮮蝦	Thunnus spp., shrimp	NO Hap_B	Euthynnus affinis (4), E. lineatus (1)	YES NO					
76	C1A	愛情貴族	UNICORD Thailand	CIH-C08白身鰤魚 & 牛肉	白身鰤魚、牛肉	Thunnus spp., beef	NO Hap_E	Katsuwonus pelamis (1)	YES YES					
77	C1B	愛情貴族	UNICORD Thailand	CIH-C02白身鰤魚 & 鮭仔魚	白身鰤魚、鮭仔魚	Thunnus spp., whitebait	NO Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES YES					
Table 2. Cont.

No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
78	C2B	每日貓罐	泛美力 (鼎食)	Taiwan	每日貓罐-鮪魚 + 蟹味絲湯	鮪魚、蟹味絲	Thunnus spp., crab stick	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES		
79	C2C	每日貓罐	泛美力 (鼎食)	Taiwan	每日貓罐-鮪魚 + 巴沙魚湯	鮪魚、巴沙魚	Thunnus spp., basa fish	NO	Hap_D	Thunnus obesus (3), T. thynnus (2), T. albacares (2), T. alalunga (3), T. orientalis (1)	NO	YES		
80	C4A	鼎食貓罐 (鼎食)	永慶企業有限公司	Taiwan	鼎食貓罐(新鮮鮪魚 + 丁香魚)	鮪魚、丁香魚	Thunnus spp., clove fish	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES		
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
-----	-------------	-------	--------------------------	----------------------	---------------	---------------	--------------------	---------------------------------	---------------------	-----------------------	-------------------------	---------------	-------------	----------------
81	C4C	鼎食貓罐	台湾	鼎食貓罐 (新鮮鮪魚+樱花蝦)	鮪魚、櫻花蝦	Thunnus spp., sakura shrimp	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. mackiyyi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES			
82	C5A	怪獸部落	泰國	無膠無穀鮮肉煲-鮪魚片湯	鮪魚	Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES	YES			
83	D1B	YAMI亞米	泰國	YAMI Platinum	鮪魚白肉	Thunnus spp.	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO			
84	D1C	YAMI亞米	泰國	YAMI Platinum	鮪魚白肉	Thunnus spp.	NO	Hap_G	Auxis thazard (6), A. rochei (7), Euthynnus affinis (1)	YES	NO			
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	English Translation of Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna
-----	-------------	-------	--------------------------	----------------------	---------------	---------------	---------------------	---------------------------------	-----------------------	--------------------------	------------------------	----------------	------------	----------------
85	D2B	TRIL GY	Real Pet Food Company	Thailand	奇境無穀野生鰹魚燉湯	鰹魚	Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES YES			
86	D2C	O’KAT	黑豆國際有限公司	Thailand	美喵人生無穀化毛餐	鰹魚	Thunnus spp.	NO	Hap_C	Katsuwonus pelamis (7), Thunnus albacares (1)	YES YES			
87	D2G	Rico	聰奇寵物用品企業有限公司	Taiwan	芝可-滋用副食鮮湯罐2號(鮪魚+鰹魚)	鮪魚, 鰹魚, 鯖魚	Thunnus spp., chicken, skipjack tuna	NO	Hap_F	T. tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoupi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO YES			
88	E1E	樂妙貓	サステナ株式会社	Japan	獸界新3號-鮪.吻仔魚	鮪魚, 吻仔魚/Japanese:マグロ,しらす	Chinese and Japanese: Thunnus spp., whitebait	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccoupi (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO YES			
No.	Sample Code	Brand	Manufacturer or Importer	Place of Manufacture	Chinese Label	English Label	Declared Ingredient	Inconsistent Labeling	16S rRNA Haplotype Code	16S BLAST (No. of Hits)	CR NJ Analysis	Mislabeled	True Canned Tuna	
-----	-------------	-------	--------------------------	----------------------	---------------	--------------	-------------------	-----------------------	---------------------------	---------------------------	---------------	------------	-----------------	
89	E2C	厚肉肉	厚肉肉（台湾）股份有限公司	Taiwan	鮪魚、鯖魚	Thunnus spp., salmon	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccocyti (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES			
90	E2D	愛喜雅	愛喜雅株式会社	Japan	鮪魚、鮭魚	Thunnus spp., chicken, salmon	NO	Hap_F	Thunnus tonggol (101), T. orientalis (4), T. atlanticus (2), T. thynnus (4), T. albacares (14), T. maccocyti (6), T. obesus (4), T. alalunga (1), Katsuwonus pelamis (1)	NO	YES			
2.3. Data Analysis

Edited 16S sequences were first aligned using ClustalW in MEGA11 [49], and then the haplotypes were determined in DnaSP 6. Species identity for each 16S haplotype was achieved by comparing them (by BLAST) to reference sequences in the NCBI GenBank database. Following the approach of both Armani et al. [50] and Horreo et al. [51], only matches displaying full sequence coverage and 100% similarity, and with unambiguous species-level scientific names, were considered positive fish identifications. If more than one fish species was shown as a positive match, all of them were considered potential candidates (Table 2).

All CR sequences used in the study of Mitchell and Hellberg (2016) were downloaded to serve as reference sequences, and then our CR fragments and reference sequences were aligned in ClustalW. A neighbor-joining (NJ) analysis was then conducted based on Kimura two-parameter (K2P) distances and 1×10^3 bootstrapping replicates in MEGA11 [49]. According to the phylogenetic species concept [52], monophyly is a prerequisite for species recognition, so our specimens were authenticated based on the reference species with which they clustered and formed a monophyletic group (with high statistical support, i.e., bootstrapping value ≥ 70) in the NJ phenogram.

2.4. Comparison of Analytical Results and Product Labels

We compared the molecular identification of each sample to the ingredient list of the sampled cans. Since a Taiwanese government-approved standard for common names of fishes does not exist, the English names of labeled Chinese names were ascertained from the fish database of Taiwan (https://fishdb.sinica.edu.tw/ (accessed on 26 October 2021)). Although the Chinese symbols 鰹鱼 could broadly refer to any species from the genera Auxis (in Chinese: 花鰤屬), Euthynnus (in Chinese: 巴鰤屬), and Katsuwonus (in Chinese: 正鰤屬), skipjack tuna is the only species generally termed 鰹鱼 and that can be used legally in Taiwan to make canned tuna (Table 1). Therefore, we assumed that if 鰹鱼 appeared on the ingredient list of a canned tuna product, it specifically represented skipjack tuna. Many of the imported products displayed labeling in Chinese and the language of source, but in those cases we exclusively relied on the Chinese label since Chinese is the only official language in Taiwan.

A sample was judged as displaying inconsistent labeling if the fish name in the ingredient list could not be linked unambiguously to a Thunnus species or skipjack tuna. It was then deemed mislabeled if the molecularly authenticated species it contained did not match the ingredient list on the label. Where a vernacular name used in an ingredient list refers to more than one species, a case of mislabeling was assigned when the molecularly authenticated species did not correspond to any fishes bearing that vernacular name. Finally, we determined a product as being true canned tuna if it contained Thunnus species or skipjack tuna.

3. Results

We observed inconsistent labeling in 11 of 65 canned tuna products destined for human consumption, but no such problem with cat food products. Inconsistent labeling reflected canned tuna products also claiming to be made from oriental bonito (Sarda orientalis) (in Chinese: 東方齒鰆) or displaying the ambiguous vernacular name 煙仔虎, which can refer to either skipjack tuna or oriental bonito (Figure 1, Table 2).
We successfully amplified the 16S fragment from all 90 samples, resulting in eight haplotypes (Supplementary Information S2). All haplotypes could be identified to species-level by BLAST analysis, but only haplotypes Hap_A and Hap_E specifically relate to oriental bonito and skipjack tuna, respectively. More than one species was identified by BLAST analysis for the remaining six haplotypes, but based on the number of BLAST hits we assume Hap_B represents kawakawa (*Euthynnus affinis*) (in Chinese: 巴鰹), Hap_C is skipjack tuna, Hap_D and Hap_F are *Thunnus* species, Hap_H is either longtail tuna (*T. tonggol*) (in Chinese: 長腰鰹) or bigeye tuna (*T. obesus*), and Hap_G is either bullet tuna or frigate tuna (*Auxis thazard*) (in Chinese: 庇花鰹).

Our BLAST analysis of 16S sequences revealed that 31 of our samples contained *Thunnus* fishes. However, the success rate of CR amplification from those samples was quite low (5/31; 16%). The aligned CR dataset (Supplementary Information S3) for NJ analysis is 256 bp in length and contains 47 taxa, including 159 variable sites and 131 parsimony-informative sites. The NJ analysis of CR sequences supports that samples T1, T7, and T56 are yellowfin tuna, and that sample T34 is longtail tuna, but we could not authenticate sample D2G based on its CR sequence (Figure 2).

Excluding the canned cat food samples that were all accurately labeled, 25 of the remaining 65 canned tuna products were mislabeled and a further three were potential mislabeling cases. Our BLAST analysis confirmed that sample T36 contained *Thunnus* fish, but did not reveal which species. We found the labeling of sample T48 to be misleading. In Chinese, the symbol “鰹” (for tuna) is never associated with oriental bonito, so it is unreasonable for the symbol for oriental bonito to be placed in parentheses following “鰹魚” (representing “tuna fish”) on the label for this sample. We observed a similar issue for sample T4, since neither skipjack tuna nor oriental bonito can be regarded as a type of “鰹” (*Thunnus* spp.). Since the ingredient statement on the label fails to clearly indicate which species is contained in the can, it is difficult to judge whether or not these two samples are mislabeled. Notably, many of the products identified as exhibiting inconsistent labeling were also found to be mislabeled. The mislabeling rate of canned products for human consumption was 38% (25/65). Mislabeling was even more pervasive among cat food products, with a rate of 68% (17/25). The main reason for this high mislabeling rate of cat food products is that many claim to contain *Thunnus* fishes but are in actual fact made from skipjack tuna. The overall mislabeling rate for the 90 tested products of this study is ~47% (42/90).

Figure 1. Taiwanese canned tuna products displaying inconsistent labeling. “鰹” (red arrows) in the Chinese labels declares both of these canned tuna products as legally being made from *Thunnus* fishes or skipjack tuna (*Katsuwonus pelamis*) (in Chinese: 正鰹). (a) Oriental bonito (*Sarda orientalis*) (in Chinese: 東方齒鰆) (white arrow) in the label indicates the product contains that species. (b) The Chinese vernacular name 魚仔虎 (black arrow) may represent both oriental bonito and skipjack tuna.
The Neighbor-joining (NJ) tree of the K2P model of 47 taxa inferred from 256 bp of mitochondrial control region (CR) sequences with 1000 bootstrapping replicates. Each terminal is labeled with the GenBank accession number or sample code. Bootstrapping values ≥ 70 are indicated on the respective branches.

Figure 2. Neighbor-joining (NJ) tree of the K2P model of 47 taxa inferred from 256 bp of mitochondrial control region (CR) sequences with 1000 bootstrapping replicates. Each terminal is labeled with the GenBank accession number or sample code. Bootstrapping values ≥ 70 are indicated on the respective branches.

Of the 65 human food products we tested, 37 (57%) legitimately contained either *Thunnus* fishes or skipjack tuna, and 20 out of 25 cat food products are true canned tuna. Overall, the proportion of true canned tuna products is about 63.33% (57/90) in this study.
4. Discussion

According to Article 28 of the Act Governing Food Safety and Sanitation in Taiwan, public labeling, promotion and advertisement of foods or food additives, cleansers, utensils, containers or packaging designated by the central competent authority shall not be false, exaggerated or misleading. The 11 cases of inconsistent labeling we identified among our 90 samples, which display “鯖” (for tuna) on their labels but also list scombrids other than *Thunnus* species or skipjack tuna as an ingredient, obviously mislead customers into believing these products contain true canned tuna. For this study, we solely relied on the information on Chinese labeling, but we also noted conflicting information between Chinese and source-language labeling of imported products. For example, the ingredient statement in Japanese of sample T42 clearly declares that it is made from albacore tuna (*T. alalunga*), but its Chinese label only states that it contains *Thunnus* fishes (in Chinese: 鮪魚). Similarly, the Japanese label of sample T59 indicates skipjack tuna as an ingredient (in Japanese: かつお), but its Chinese label specifies yellowfin tuna (in Chinese: 黃鰭鮪) (Table 2). Such conflicting labeling of imported products not only confuses consumers but may also circumvent legal controls.

The “one species-one name” policy is critical to the authentication of fishery products [38]. Clearly, usage of scientific names could enable investigators to easily judge if a product is mislabeled. Under European Union labeling regulations, including the species’ scientific name on fishery product labels is mandatory [53]. However, scientific names are not required on Taiwanese fishery products nor are such names familiar to the public. Xiong et al. [54] and Chang et al. [22] advocated the adoption of the Chinese-Latin Dictionary of Fish Names (https://fishdb.sinica.edu.tw/chi/chinesequer1.php (accessed on 26 October 2021)) as a standard list of fishes in Chinese corresponding to scientific nomenclature. This Dictionary indeed clarifies that the Chinese symbols 東方齒鰆 (in English: oriental bonito) correspond to *Sarda orientalis*, but it does not include other Chinese vernacular names. Thus, any official “one species-one name” standard should not only contain scientific and Chinese names, but also incorporate vernacular names.

Notably, our success rates for amplifying the two mitochondrial DNA fragments differed considerably—100% for 16S, but only 16% for CR. The canning process is known to damage DNA molecules, with Quinteiro et al. [43] documenting that most DNA segments extracted from canned tuna are <100 bp in length. Therefore, it is not surprising that amplification of the 85-bp 16S region was more successful than the 236-bp CR fragment (Binominal Generalized Logical Model, \(p < 0.01 \)).

Apart from haplotypes Hap_A and Hap_C, a single species was not identified by BLAST for the other 16S haplotypes. There are a number of possible reasons for that outcome. First, DNA degradation through the canning process limits molecular authentication based on longer sequences, such as via conventional DNA barcoding. Accordingly, shorter DNA segments must be targeted, but they contain less information and so are less likely to unambiguously assign a specific species [55]. Second, molecular identification based on mitochondrial sequences is very sensitive to gene flow and incomplete lineage sorting [25,56,57]. The tribe *Thunnus* comprises very closely related species, some of which display genetic introgression [58,59]. Consequently, though Hap_D, Hap_E, and Hap_H are all clearly form *Thunnus* fishes, their exact species identity remains unclear. Though conventional DNA barcoding can distinguish *Thunnus* fishes [60–62], it would be problematic to amplify the ~650 bp barcode from the degraded DNA of canned samples. Third, a reliable database is crucial to accurate DNA-based identification [63]. GenBank does not guarantee that deposited sequences display correct species names. For example, the BLAST result for Hap_C matches multiple sequences for skipjack tuna sequences and one for yellowfin tuna (GenBank accession number: KM055376), implying that accession KM055376 is very likely misidentified. Hence, as highlighted in a number of studies [22,64,65], a reliable and complete DNA reference database for authenticating seafood resources is sorely needed.
In this study, we found that many canned tuna products in Taiwan are made from oriental bonito, kawakawa, bullet tuna, or frigate tuna instead of legitimate *Thunnus* fishes or skipjack tuna. Although oriental bonito was never found in canned cat food products, the other three substituted fishes were identified in both human and cat food samples. These same four species have also been reported as illegitimate tuna substitutes in other studies [44,46,48,50,66,67]. Though istiophorid fishes have been reported as mislabeled *Thunnus* products in other studies [46,68], we did not detect them in this study.

Our NJ analysis of CR sequences, including five haplotypes generated in this study, further revealed that both yellowfin tuna and longtail tuna are used in canned tuna products. Yellowfin tuna is one of the commonest canned tunas [5,69], so it is not surprising that three of our five CR haplotypes clustered with yellowfin tuna sequences (sample T34 was identified as longtail tuna, and sample D2G could not be identified to species level). Our difficulties with amplifying the CR region mean that the specific *Thunnus* composition of canned tuna products in Taiwan remains unclear. Identifying canned tuna products to species level is important because certain *Thunnus* fishes have higher mercury levels [70], posing a human health risk. Therefore, mitochondrial regions other than CR, such as ATP synthase membrane subunit 8 (ATP8), ATP6, and COIII could be considered [71], or smaller CR fragments could be targeted.

We observed the terms 白身鰤魚 or 鰤魚白肉 commonly in the ingredient statements of our cat food samples (Table 2), reflecting the high mislabeling rate (17/25) among cat food products. However, most of the cat food samples (20/25) still represented true canned tuna, albeit not the species that might be expected. To date, there is no official definition for either of these two Chinese terms. They may be translated as “light tuna”, which often refers to yellowfin tuna or skipjack tuna, but could actually be any fishes mentioned in the Code of Federal Regulation Title 21 (CFR 161.190) and with flesh color in the Munsell color system ≥5.3 [48]. If those terms were to be officially recognized as translations of light tuna, then the mislabeling rate of cat food we report herein would be much lower (down to 8/25) (Binominal Generalized Logical Model, \(p < 0.01 \)). Accordingly, we implore the responsible authorities to clearly define the terms for use in canned product labeling.

Although we found that 63.33% of our samples are true canned tuna, this outcome may not reflect the actual adulteration level of canned tuna products in Taiwan. First, we selected only one small piece of tissue from each can, but the mixing of tuna species in cans has been found in the European market [4]. An assessment of how prevalent the mixing of tuna species is in cans in the Taiwanese market would be needed to determine how close our calculated adulteration level is to the real scenario. Second, we solely sampled major brands, so there are some that remain to be assessed, especially of cat food. Moreover, seasonality in scombrid catch may alter the species composition of adulterated canned tuna products. Thus, more comprehensive and long-term monitoring of the species composition of canned tuna products is needed.

5. Conclusions

We report an overall mislabeling rate of 46.67% among the 90 samples of this study, with 63.33% of sampled canned products being true canned tuna legitimately made from *Thunnus* fish or skipjack tuna. In many cases, the labels of the sampled canned tuna products would confuse customers as to what species they contain. Either they contain species such as oriental bonito that do not conform to Taiwanese legislation, or ill-defined terms such as 白身鰤魚 or Chinese vernacular names are used. We assert that a standard list of scientific names and their corresponding Chinese and vernacular names conforming to the “one species-one name” principle, as well as clear definitions of terms for use in canned tuna labeling, is crucial to tackling fish product adulteration. We found that ~37% of investigated canned tuna products contain illegitimate species. In many cases, the manufacturers have substituted so-called “pseudo-tunas”, such as oriental bonito, kawakawa, bullet tuna, and frigate tuna, for legal species, i.e., *Thunnus* species and skipjack tuna. Our study demonstrates that a pair of primers targeting a short segment (85 bp) of
16S performs well in amplifying DNA extracted from canned food samples. However, the limited information content provided by this short sequence hampered molecular identification to species level, especially given the close phylogenetic relationships and potential for gene flow among *Thunnus* species. Moreover, the CR fragment we targeted largely proved uninformative, likely owing to the extreme DNA fragmentation caused by high heat treatment during the canning process. Our previous study of seafood adulteration in conveyor-belt sushi restaurants revealed no case of tuna fraud in such establishments [22], so such adulteration appears to be more common in canned products. A large-scale and long-term monitoring study would help fully establish the extent of canned tuna fraud in the Taiwanese market.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/foods10112655/s1, Supplementary Information S1: The photos of all sampled canned tuna items, Supplementary Information S2: The 16S haplotypes, Supplementary Information S3: The aligned CR sequences for constructing NJ phylogenetic analysis.

Author Contributions: All authors contributed to the study conception and design. Conceptualization, C.-H.C. and Y.-C.W.; methodology, C.-H.C. and Y.-C.W.; software, Y.-T.K. and T.-T.H.; validation, C.-H.C., Y.-T.K. and T.-T.H.; formal analysis, Y.-T.K. and T.-T.H.; investigation, Y.-T.K. and T.-T.H.; resources, Y.-T.K. and T.-T.H.; data curation, Y.-T.K. and T.-T.H.; writing—original draft preparation, C.-H.C.; writing—review and editing, C.-H.C.; visualization, C.-H.C.; supervision, Y.-C.W.; project administration, C.-H.C. and Y.-C.W.; funding acquisition, C.-H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, MOST 109-2621-B-029-006 and 110-2621-B-029-005.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the first author.

Acknowledgments: The authors are grateful to John O’Brien for editing assistance. Lisa, Do-Do, Bagel, Spot, and Jiu-Jiu happily ate the cat food samples after tissue collection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. FAO. *The State of World Fisheries and Aquaculture 2020*; Sustainability in Action; FAO: Rome, Italy, 2020; Available online: http://www.fao.org/state-of-fisheries-aquaculture (accessed on 26 October 2021).
2. Brill, R.W.; Hobday, A.J. Tunas and their fisheries: Safeguarding sustainability in the twenty-first century. *Rev. Fish Biol. Fish.* 2017, 27, 691–695. [CrossRef]
3. Guillotreau, P.; Squires, D.; Sun, J.; Compean, G.A. Local, regional and global markets: What drives the tuna fisheries? *Rev. Fish Biol. Fish.* 2017, 27, 909–929. [CrossRef]
4. Bojolly, D.; Doyen, P.; Fur, B.L.; Christaki, U.; Verrez-Bagnis, V.; Grard, T. Development of a qPCR method for the identification and quantification of two closely related tuna species, bigeye tuna (*Thunnus obesus*) and yellowfin tuna (*Thunnus albacares*), in canned tuna. *J. Agric. Food Chem.* 2017, 65, 913–920. [CrossRef]
5. Mata, W.; Chammalee, T.; Punyasuk, N.; Thitamadee, S. Simple PCR-RFLP detection method for genus- and species-authentication of four types of tuna used in canned tuna industry. *Food Control* 2020, 108, 106842. [CrossRef]
6. Ram, J.L.; Ram, M.L.; Baidoun, F.F. Authentication of canned tuna and bonito by sequence and restriction site analysis of polymerase chain reaction products of mitochondrial DNA. *J. Agric. Food Chem.* 1996, 44, 2460–2467. [CrossRef]
7. 107年度「建構完整食品標示管理體系計畫—宣揚鱸魚罐頭之標示說明會」 (in Chinese). Taiwan. Available online: https://www.ieatpe.tw/upload/img-Y29132534-0001 (accessed on 26 October 2021).
8. Standard for Canned Tuna and Bonito CXS 70-1981, Codex Alimentarius FAO-WHO. Available online: https://www.fao.org/who-codexalimentarius/sh-proxy/es/?link=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252F252F%252F252F%252F252F%252F2 standards%252F252FCXS%252F70-1981%252F252FCXS%252F070e.pdf (accessed on 26 October 2021).
9. Code of Federal Regulations CFR 21. Sec. 161.190. United State Food and Drug Administration; USA. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=161.190 (accessed on 26 October 2021).
10. Yang, Q.-Q.; Qian, Z.-X.; Ye, Z.-H.; Zhou, A.-N.; Zhao, X.-X.; Zhang, P.-J.; Liu, G.-F.; Yu, X.-P. Widespread mislabeling of nonnative foods.

11. Barendse, J.; Roel, A.; Longo, C.; Andriessen, L.; Webster, L.M.I.; Ogden, R.; Neat, F. DNA barcoding validates species labelling of fishery performance indicators for global tuna fisheries.

12. Xing, R.-R.; Hu, R.-R.; Han, J.-X.; Deng, T.-T.; Chen, Y. DNA barcoding and mini-barcoding in authenticating processed fish products in southern Italy markets.

13. Wong, E.H.-K.; Hanner, R.H. DNA barcoding detects market substitution in North American seafood.

14. Pappalardo, A.M.; Ferrito, V. DNA barcoding species identification unveils mislabeling of processed flatfish products in southern Italy markets.

15. Kusche, H.; Hanel, R. Consumers of mislabeled tropical fish exhibit increased risks of ciguatera intoxication: A report on substitution patterns in fish imported at Frankfurt Airport, Germany.

16. Fernandes, T.J.R.; Amaral, J.S.; Mafra, I. DNA barcode markers applied to seafood authentication: An updated review.

17. Minoudi, S.; Karaiskou, N.; Avgeris, M.; Gkagkavouzis, K.; Tarantilid, P.; Triantafyllidou, D.; Palilis, L.; Avramopoulou, V.; Kusche, H. DNA barcoding revealing seafood mislabeling in Greek market using DNA barcoding.

18. Pardo, M.A.; Jiménez, E. DNA barcoding revealing seafood mislabeling in food services from Spain.

19. Prida, V.; Sepúlveda, M.; Quezada-Romegialli, C.; Harrod, C.; Gomez-Uchida, D.; Cid, B.; Canales-Aguirre, C.B. Chilean salmon sushi: Genetics reveals product mislabeling and a lack of reliable information at the point of sale.

20. Staffen, C.F.; Staffen, M.D.; Becker, M.L.; Löfgren, S.E.; Muniz, Y.C.N.; de Freitas, R.H.A.; Marrero, A.R. DNA barcoding reveals the mislabeling of fish in a popular tourist destination in Brazil.

21. Xiong, X.; Yuan, F.; Huang, M.; Lu, L.; Xiong, X.; Wen, J. DNA barcoding revealed mislabeling and potential health concerns with roasted fish products sold across China.

22. Chang, C.-H.; Tsai, M.-L.; Huang, T.-T.; Wang, Y.-C. Authentication of fish species served in conveyor-belt sushi restaurants in Taiwan using DNA barcoding.

23. Barendse, J.; Roel, A.; Longo, C.; Andriessen, L.; Webster, L.M.I.; Ogden, R.; Neat, F. DNA barcoding validates species labelling of certified seafood.

24. Chang, C.-H.; Lin, H.-Y.; Ren, Q.; Lin, Y.-S.; Shao, K.-T. DNA barcode identification of fish products in Taiwan: Government-commissioned authentication cases.

25. Fernandes, T.J.R.; Amaral, J.S.; Mafra, I. DNA barcode markers applied to seafood authentication: An updated review.

26. Hellberg, R.S.; Isaacs, R.B.; Hernandez, E.L. Identification of shark species in commercial products using DNA barcoding.

27. Liu, C.J.N.; Neo, S.; Rengifo, N.M.; French, I.; Chiang, S.; Ooi, M.; Heng, J.M.; Soon, N.; Yeo, J.Y.; Bungum, H.Z.; et al. Sharks in hot soup: DNA barcoding of shark species traded in Singapore.

28. Wang, Y.-C. DNA barcoding revealed mislabeling and potential health concerns with roasted fish products sold across China.

29. Wong, E.H.-K.; Hanner, R.H. DNA barcoding detects market substitution in North American seafood.

30. Ceruso, M.; Mascolo, C.; De Luca, P.; Venuti, I.; Biffali, E.; Ambrosio, R.L.; Smaldone, G.; Sordino, P.; Pepe, T. Dentex dentex Frauds: Establishment of a New DNA Barcoding Marker.

31. Paul Greenberg. Four Fish: The Future of the Last Wild Food; Penguin Book: London, UK, 2020.

32. McCluney, J.K.; Anderson, C.M.; Anderson, J.L. The fishery performance indicators for global tuna fisheries.

33. Hsu, Y.; Huang, S.Y.; Hanner, R.; Levin, J.; Lu, X. Study of fish products in Metro Vancouver using DNA barcoding methods reveals fraudulent labeling.

34. Vandermeire, S.; Griffiths, A.M.; Taylor, S.-A.; Muri, C.D.; Hendant, E.A.; Towne, J.A.; Watson, M.; Mariani, S. Sushi barcoding in the UK: Another kettle of fish.

35. Willette, D.A.; Simmonds, S.; Estes, S.; Kane, T.L.; Nuetzel, H.; Pilaud, N.; Rachmawati, R.; Barber, P.H. Using DNA barcoding to track seafood mislabeling in Los Angeles restaurants.

36. Pangalopoulou, V.; Tsikliras, A.; Barmperis, K.; et al. Seafood mislabeling in Greek market using DNA barcoding.

37. Yang, Q.-Q.; Qian, Z.-X.; Ye, Z.-H.; Zhou, A.-N.; Zhao, X.-X.; Zhang, P.-J.; Liu, G.-F.; Yu, X.-P. Widespread mislabeling of nonnative apple snails (Ampullariidae: Pomacea) as native field snails (Viviparidae: Cipangopaludina) on the Chinese food markets.

38. Hanson, J.L.; Anderson, C.M.; Anderson, J.L. The fishery performance indicators for global tuna fisheries.

39. Vandermeire, S.; Griffiths, A.M.; Taylor, S.-A.; Muri, C.D.; Hendant, E.A.; Towne, J.A.; Watson, M.; Mariani, S. Sushi barcoding in the UK: Another kettle of fish.

40. Willette, D.A.; Simmonds, S.; Estes, S.; Kane, T.L.; Nuetzel, H.; Pilaud, N.; Rachmawati, R.; Barber, P.H. Using DNA barcoding to track seafood mislabeling in Los Angeles restaurants.

41. Xiong, X.; Yuan, F.; Huang, M.; Lu, L.; Xiong, X.; Wen, J. DNA barcoding revealed mislabeling and potential health concerns with roasted fish products sold across China.

42. Chang, C.-H.; Tsai, M.-L.; Huang, T.-T.; Wang, Y.-C. Authentication of fish species served in conveyor-belt sushi restaurants in Taiwan using DNA barcoding.

43. Barendse, J.; Roel, A.; Longo, C.; Andriessen, L.; Webster, L.M.I.; Ogden, R.; Neat, F. DNA barcoding validates species labelling of certified seafood.

44. Chang, C.-H.; Lin, H.-Y.; Ren, Q.; Lin, Y.-S.; Shao, K.-T. DNA barcode identification of fish products in Taiwan: Government-commissioned authentication cases.

45. Fernandes, T.J.R.; Amaral, J.S.; Mafra, I. DNA barcode markers applied to seafood authentication: An updated review.

46. Hellberg, R.S.; Isaacs, R.B.; Hernandez, E.L. Identification of shark species in commercial products using DNA barcoding.

47. Liu, C.J.N.; Neo, S.; Rengifo, N.M.; French, I.; Chiang, S.; Ooi, M.; Heng, J.M.; Soon, N.; Yeo, J.Y.; Bungum, H.Z.; et al. Sharks in hot soup: DNA barcoding of shark species traded in Singapore.

48. Pangalopoulou, V.; Tsikliras, A.; Barmperis, K.; et al. Seafood mislabeling in Greek market using DNA barcoding.

49. Yang, Q.-Q.; Qian, Z.-X.; Ye, Z.-H.; Zhou, A.-N.; Zhao, X.-X.; Zhang, P.-J.; Liu, G.-F.; Yu, X.-P. Widespread mislabeling of nonnative apple snails (Ampullariidae: Pomacea) as native field snails (Viviparidae: Cipangopaludina) on the Chinese food markets.

50. Hanson, J.L.; Anderson, C.M.; Anderson, J.L. The fishery performance indicators for global tuna fisheries.
38. Gordoa, A.; Carreras, G.; Sanz, N.; Viñas, J. Tuna species substitution in the Spanish commercial chain: A knock-on effect. *PLoS ONE* **2017**, *12*, e0170809. [CrossRef] [PubMed]

39. Sotelo, C.G.; Velasco, A.; Perez-Martin, R.I.; Kappel, K.; Schröder, U.; Verrez-Bagnis, V.; Jérôme, M.; Mendes, R.; Silva, H.; Mariani, S.; et al. Tuna labels matter in Europe: Mislabeling rates in different tuna products. *PLoS ONE* **2018**, *13*, e0196641. [CrossRef]

40. Ward, R.D.; Hanner, R.; Hebert, P.D.N. The campaign to DNA barcode all fishes, FISH-BOL. *J. Fish Biol.* **2009**, *74*, 329–356. [CrossRef]

41. Ceruso, M.; Mascalo, C.; De Luca, P.; Venuti, I.; Smaldone, G.; Biffali, E.; Anastasio, A.; Pepe, T.; Sordino, P. A Rapid Method for the Identification of Fresh and Processed *Pagellus erythrinus* Species against Frauds. *Foods* **2020**, *9*, 1397. [CrossRef] [PubMed]

42. Pollack, S.J.; Kawalek, M.D.; Williams-Hill, D.M.; Hellberg, R.S. Evaluation of DNA barcoding methodologies for the identification of fish species in cooked products. *Food Control* **2018**, *84*, 297–304. [CrossRef]

43. Quinteiro, J.; Sotelo, C.G.; Rehbein, H.; Pryde, S.E.; Medina, I.; Pérez-Martin, R.I.; Rey-Méndez, M.; Mackie, I.M. Use of mtDNA direct polymerase chain reaction (PCR) sequencing and PCR–restriction fragment length polymorphism methodologies in species identification of canned tuna. *J. Agric. Food Chem.* **1998**, *46*, 1662–1669. [CrossRef]

44. Hwang, C.-C.; Lee, Y.-C.; Huang, Y.-R.; Lin, C.-M.; Shiau, C.-Y.; Hwang, D.-F.; Tsai, Y.-H. Biogenic amines content, histamine-forming bacteria and adulteration of bonito in tuna candy products. *Food Control* **2010**, *21*, 845–850. [CrossRef]

45. Servusova, E.; Piskata, Z. Identification of selected tuna species in commercial products. *Molecules* **2021**, *26*, 1137. [CrossRef]

46. Xiong, X.; Xu, W.; Guo, L.; An, J.; Huang, L.; Qian, H.; Cui, X.; Li, Y.; Cao, M.; Xiong, X.; et al. Development of loop-mediated isothermal amplification (LAMP) assay for rapid screening of skipjack tuna (*Katsuwonus pelamis*) in processed fish products. *J. Food Compos. Anal.* **2021**, *102*, 104038. [CrossRef]

47. Horreo, J.L.; Ardura, A.; Pola, I.G.; Martinez, J.L.; Garcia-Vazquez, E. Universal primers for species authentication of animal foodstuff in a single polymerase chain reaction. *J. Sci. Food Agric.* **2016**, *96*, 146–150. [CrossRef] [PubMed]

48. Mitchell, J.K.; Hellberg, R.S. Use of the mitochondrial control region as a potential DNA mini-barcoding target for the identification of canned tuna species. *Food Anal. Methods* **2019**, *12*, 147–153. [CrossRef]

49. Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. *Mol. Biol. Evol.* **2021**, *38*, 3022–3027. [CrossRef]

50. Armani, A.; Tinacci, L.; Xiong, X.; Castigliego, L.; Gianfaldoni, D.; Guidi, A. Fish species identification in canned pet food by BLAST and Forensically Informative Nucleotide Sequences (FINS) analysis of short fragments of the mitochondrial 16S ribosomal RNA gene (16S rRNA). *Food Control* **2015**, *50*, 821–830. [CrossRef]

51. Horreo, J.L.; Fitz, P.S.; Jiménez-Valverde, A.; Noriega, J.A.; Pelaez, M.L. Amplification of 16S rDNA reveals important fish mislabeling in Madrid restaurants. *Food Control* **2019**, *93*, 146–156. [CrossRef]

52. Nixon, K.C.; Wheeler, Q.D. An amplification of the phylgenetic species concept. *Cladistics* **2009**, *25*, 1, 211–223. [CrossRef]

53. D’Amico, P.; Armani, A.; Gianfaldoni, D.; Guidi, A. New provisions for the labelling of fishery and aquaculture products: Difficulties in the implementation of Regulation (EU) n. 1379/2013. *Mar. Policy* **2016**, *71*, 147–156. [CrossRef]

54. Xiong, X.; D’Amico, P.; Guardone, L.; Castigliego, L.; Guidi, A.; Gianfaldoni, D.; Armani, A. The uncertainty of seafood labeling in China: A case study on cod, salmon and tuna. *Mar. Policy* **2016**, *68*, 123–135. [CrossRef]

55. Meusnier, I.; Singer, G.A.C.; Landry, J.-F.; Hickey, D.A.; Hebert, P.D.N.; Hajibabaei, M. A universal DNA mini-barcode for biodiversity analysis. *BMC Genom.* **2008**, *9*, 214. [CrossRef] [PubMed]

56. Baker, A.J.; Tavares, E.S.; Elbourne, R.F. Countering criticisms of single mitochondrial DNA gene barcoding in birds. *Mol. Ecol. Resour.* **2009**, *9*, 257–268. [CrossRef]

57. Weber, A.A.-T.; Stöhr, S.; Chenuil, A. Species delimitation in the presence of strong incomplete lineage sorting and hybridization: Lessons from *Ophioderma* (Ophiuroidea: Echinodermata). *Mol. Phylogenet. Evol.* **2019**, *131*, 138–148. [CrossRef]

58. Bayona-Vásquez, N.J.; Glenn, T.C.; Uribe-Alcocer, M.; Pecoraro, C.; Diaz-Jaimes, P. Complete mitochondrial genome of the yellowfin tuna (*Thunnus albacares*) and the blackfin tuna (*Thunnus atlanticus*): Notes on mtDNA introgression and paralogy on tunas. *Conserv. Genet. Resour.* **2018**, *10*, 697–699. [CrossRef]

59. Díaz-Arce, N.; Arrizabalaga, H.; Murua, H.; Irigoien, X.; Rodríguez-Ezepeleta, N. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas. *Mol. Phylogenet. Evol.* **2016**, *102*, 202–207. [CrossRef]

60. Abdulla, A.; Rehbein, H. Authentication of raw and processed tuna from Indonesian markets using DNA barcoding, nuclear gene and character-based approach. *Eur. Food Res. Technol.* **2014**, *239*, 695–706. [CrossRef]

61. Lowenstein, J.H.; Amato, G.; Kolokotronis, S.-O. The real maccouyi: Identifying tuna sushi with DNA barcodes—contrasting characteristic attributes and genetic distances. *PLoS ONE* **2009**, *4*, 1, e7666. [CrossRef]

62. Puncher, G.N.; Arrizabalaga, H.; Alemany, F.; Cariani, A.; Oray, I.K.; Karakulak, F.S.; Basilone, G.; Cuttitta, A.; Mazzola, S.; Tinti, F. Molecular identification of Atlantic bluefin tuna (*Thunnus thynnus*, Scombridae) larvae and development of a DNA character-based identification key for Mediterranean scombrids. *PLoS ONE* **2015**, *10*, e0130407. [CrossRef]

63. Kappel, K.; Schröder, U. Difficulties in DNA barcoding-based authentication of snapper products due to ambiguous nucleotide sequences in public databases. *Food Control* **2020**, *116*, 107348. [CrossRef]

64. Mitchel, A.; Rothbart, A.; Frankham, G.; Johnson, R.N.; Neaves, L.E. Could do better! A high school market survey of fish labelling in Sydney, Australia, using DNA barcodes. *PeerJ* **2019**, *7*, e7138. [CrossRef]

65. Shehata, H.R.; Naaum, A.M.; Garduño, R.A.; Hanner, R. DNA barcoding as a regulatory tool for seafood authentication in Canada. *Food Control* **2018**, *92*, 147–153. [CrossRef]
66. Espiñeira, M.; Gonzalez-Lavin, N.; Vieites, J.M.; Santaclara, F.J. Development of a method for the identification of scombroid and common substitute species in seafood products by FINS. *Food Chem.* 2009, 117, 698–704. [CrossRef]

67. Lockley, A.K.; Bardsley, R.G. Novel method for the discrimination of tuna (*Thunnus thynnus*) and bonito (*Sarda sarda*) DNA. *J. Agric. Food Chem.* 2020, 48, 4463–4468. [CrossRef] [PubMed]

68. Yao, L.; Lu, J.; Qu, M.; Jiang, Y.; Li, F.; Guo, Y.; Wang, L.; Zhai, Y. Methodology and application of PCR-RFLP for species identification in tuna sashimi. *Food Sci. Nutr.* 2020, 8, 3138–3146. [CrossRef]

69. Boughattas, F.; Karoui, R. Mid infrared spectroscopy combined with chemometric tools for the identification of canned tuna species in brine. *J. Food Compos. Anal.* 2021, 96, 103717. [CrossRef]

70. Kumar, G. Mercury concentrations in fresh and canned tuna: A review. *Rev. Fish Sci. Aquac.* 2018, 26, 111–120. [CrossRef]

71. Amaral, C.R.L.; Maciel, V.; Goldenberg-Barbosa, R.; Silva, D.A.; Amorim, A.; Carvalho, E.F. Tuna fish identification using mtDNA markers. *Forensic Sci. Int. Genet. Suppl. Ser.* 2017, 6, e471–e473. [CrossRef]