CRSTIP - An Assessment Scheme for Security Assessment Processes

Arthur-Jozsef Molnar
Info World
Bucharest, Romania
arthur.molnar@infoworld.ro

Jürgen Großmann
Fraunhofer FOKUS
Berlin, Germany
juergen.grossmann@fokus.fraunhofer.de

Abstract—Complex networked systems are an integral part of today’s support infrastructures. Due to their importance, these systems become more and more the target for cyber-attacks, suffering a notable number of security incidents. Also, they are subject to regulation by national and international legislation. An operator of such an infrastructure or system is responsible for ensuring its security and correct functioning in order to satisfy customers. In addition, the entire process of risk and quality control needs to be efficient and manageable. This short paper introduces the Compliance, Risk Assessment and Security Testing Improvement Profiling (CRSTIP) scheme. CRSTIP is an evaluation scheme that enables assessing the maturity of security assessment processes, taking into consideration systematic use of formalisms, integration and tool-support in the areas of compliance assessment, security risk assessment and security testing. The paper describes the elements of the scheme and their application to one of the case studies of the RASEN research project.

Keywords—compliance assessment, risk assessment, security testing

I. INTRODUCTION

Researchers within the RASEN project develop methods dedicated to supporting companies and organizations in undertaking risk analysis for large scale, networked systems. These methods cover security risk assessments on different levels of abstraction and from different perspectives. Compliance assessment especially addresses compliance of products and processes for which regulations are in effect. Security risk assessment deals with the concise assessment of security threats, estimating the probabilities and consequences for a set of technical or business related assets. Finally, security testing can be used to examine the target under assessment, be it an organization or system for actual weaknesses or vulnerabilities. While the industry demands integrative approaches that cope with security as a whole, currently no established process exists that sufficiently emphasizes the systematic integration of compliance assessment, security risk assessment and security testing. Within the RASEN project we aim to close this gap by developing an integrated security assessment framework based on compliance assessment, security risk assessment and security testing. The resulting framework will be evaluated using three industrial case studies.

Currently, there exist a number of methods to evaluate the maturity and quality of test and assessment processes. The most known representative is the Test Process Improvement (TPI) and its successor TPI NEXT [1]. Both schemes are trademarks of SOGETI [2] and have been applied to assess industrial processes across the world. Another approach is the Test Maturity Model (TMM) and its successor Test Maturity Model integration (TMMi) [3]. However, both approaches emphasize on testing and do not sufficiently cover the aspects of compliance assessment and risk assessment as required to assess the RASEN approach.

II. THE CRSTIP APPROACH FOR PROCESS EVALUATION

The CRSTIP (Compliance and Risk Security Testing Improvement Profiling) evaluation scheme can be used to assess the readiness level of an organization, process or system for each of the four key areas: legal and compliance assessment, security risk assessment, security testing and tool support and integration. CRSTIP was initially used to assess the readiness level of an organization, process or system for each of the four key areas for each of the case studies during the project’s life time. The scheme will be used again in order to document the actual progress achieved after deploying RASEN methodology and tooling.

CRSTIP provides a simple, straightforward assessment with regards to the target’s current positioning within the CRSTIP key areas. The approach is based on the general ideas of TMMi and TPI and previous work undertaken within the ITEA2 DIAMONDS project, where it was limited to assess progress in selected key areas of security testing [4]. For each of the key areas we defined a performance scale with a four-level hierarchy that can be used to evaluate security assessment processes with respect to performance. Within each area, levels with a higher number represent an improvement over lower levels. We plan to further refine CRSTIP within our project in order to serve as liaison between project efforts and organizations seeking to improve their standing in the key areas addressed by

1The FP7 RASEN project, http://www.rasenproject.eu

2The ITEA2 DIAMONDS project, http://www.itea2-diamonds.org
A. Key area - Legal and compliance assessment

This key area refers to the overall process that is employed with the objective of adhering to the requirements of laws, to industry and organizational standards and codes, to principles of good governance and accepted community as well as to ethical standards. The overall process should support, to the extent possible, the documentation of compliance with these laws, rules and norms. The levels of this key area are:

- Level 1: Ad-hoc. The compliance assessment is unstructured, does not use a defined compliance process, and compliance decisions are made primarily on an event-driven basis.
- Level 2: Checklist-based. The checklist-based compliance assessment uses a checklist to answer a set of standard questions or to tick checkboxes.
- Level 3: Systematic. A systematic compliance assessment follows a structured and planned approach where there is a defined process and structured documentation of compliance. Generally, the process involves the identification of compliance requirements, evaluation of the compliance issues and taking measures to ensure compliance.
- Level 4: Systematic and risk-driven. A systematic and risk-driven compliance assessment involves a defined process for risk-driven compliance where requirements are prioritized based on their risks. This approach is supported by a systematic documentation that enables the mapping of different risks and controls to relevant compliance requirements.

B. Key area - Security risk assessment

Risk assessment is the overall process of risk identification, estimation and evaluation. Risk identification is the process of finding, recognizing and describing risks. This involves identifying sources of risk, areas of impact and events, together with their causes and potential consequences. Risk estimation is the process of comprehending the nature of risk and determining its level. Finally, risk evaluation is the process of comparing the results of risk estimation with risk criteria to determine whether the magnitude of risk is acceptable. Risk evaluation assists in decisions about risk treatment. The levels of this key area are:

- Level 1: Checklist. Risk assessment mainly consists of answering a sequence of questions or filling in a form.
- Level 2: Qualitative. Risk assessment is based on qualitative risk values. The value descriptions or distinctions are based on some quality or characteristic rather than on some quantity or measured value.
- Level 3: Quantitative. Risk assessment is based on quantitative values. The values are based on some quantity or number, e.g. a measurement, rather than on some quality.
- Level 4: Real time. Risk assessment is done in real-time based on an underlying, computerized monitoring-infrastructure.

C. Key area - Security testing

Security testing is used to empirically check software implementations with respect to their security properties and resistance to attack. Functional security testing is used to check the functionality, efficiency and availability of security features of a dedicated test item. Security vulnerability testing directly addresses the identification and discovery of system vulnerabilities. It targets the identification of design flaws and implementation faults that can harm the availability, confidentiality and integrity of the test item. The levels of this key area are:

- Level 1: Unstructured. Unstructured security testing is performed either by the development team or the testing team without planning or documentation. The tests are intended to be run only once, unless a defect is discovered. The testing is neither systematic nor planned. Defects found using this method may be harder to reproduce.
- Level 2: Planned. Planned security testing is performed either by the development team or the testing team after a structured test plan has been elaborated. A test plan documents the scope, approach, and resources that will be used for testing.
- Level 3: Risk-based. Security tests are planned and executed, either by the development team or by the testing team. The planning of security testing is done on the basis of the security risk assessment using impact estimations or likelihood values to focus the testing process.
- Level 4: Continuous risk based. Continuous risk based security testing is a process of continuously monitoring and testing a system with respect to potential vulnerabilities. Security risk analysis results are still used to focus the security testing and optimize resource planning. Any evolution of the system, of its environment or of the identified threats leads to updated security tests so that vulnerabilities can be detected throughout the whole life cycle of the test item.

D. Key area - Tool support and integration

This key area describes the degree of tool support and integration available for the above mentioned areas. Typically, tools work on their own data structures that are well suited to the task which needs to be performed with or by the tool. Tool integration is the ability of tools to cooperate by exchanging data or sharing a common user interface. The levels of this key area are:

- Level 1: None. No tool support in any of the above mentioned key areas is available.
- Level 2: Stand-alone. Tools are available for some of the
previously mentioned key areas. However, the tools are not integrated thus they do not exchange data nor do they share the same user interface.

Level 3: Partially integrated. Tools are available for some of the above mentioned key areas. Tool integration is based on point-to-point coalitions between tools. Point-to-point coalitions are often used in small and ad-hoc environments but have problems when it comes to more tools and larger environments as they do not scale.

Level 4: Integrated. Tools are available for nearly all the key areas. Tool integration is based on central integration platforms and repositories that provide a common set of interfaces and data definitions to be exchanged.

Figure 1. CRSTIP Evaluation of Medipedia

III. THE MEDIPEDIA CASE STUDY

Medipedia is an eHealth web portal developed by Info World that differentiates itself on the market by allowing users to build and manage their personal electronic healthcare record. As complex networked software system, Medipedia has over 36000 active users and must fulfil legal requirements with regards to processing highly-sensitive personal data such as medical analyses results and diagnostic history. As a case study system for RASEN, we have employed CRSTIP to Medipedia in the following way: first, we evaluated the baseline, shown in Figure 1, as "Before RASEN". Then, based on preliminary project results we estimate the benefits of implementing RASEN, shown on the same figure.

As the system processes sensitive customer data, key areas already present maturity. However, it is clear that a structured approach will benefit Medipedia in virtually all of them. First of all, while the system is legally compliant, a structured approach enables Info World to better prepare for upcoming regulations such as the General Data Protection Regulation[5] and facilitates cornering new markets having different regulations. Furthermore, while the system under goes planned security testing and periodical risk assessment, there is no interplay between these activities. A structured risk assessment process that enables Info World to guide testing and which can be updated using test results facilitates bringing new features to market faster. The final key area concerns software tooling, where Info World recognizes the advantages supportive tooling would bring to its risk assessment and testing processes.

IV. CONCLUSION AND OUTLOOK

CRSTIP was developed as an objective analysis and evaluation scheme of the research and development within RASEN. Currently we have used it to assess the case studies’ baseline and to outline progress expectations for the end of the project. We believe that in its current form, CRSTIP is a useful tool which stakeholders can use to assess a target organization, process or product. More so, as shown above, the scheme can be used to gain understanding about which areas are most suitable for further investment and how the levels in the different key areas relate or require each other.

Furthermore, we envision using CRSTIP as a dissemination tool for RASEN technologies, as it allows identifying maturity levels with respect to key security and compliance areas. Ideally, a concise description for each of the key areas should be available that denote the techniques and tools that can be used to drive the improvement as well as the requirements to other key areas that are the precondition to improve from one level to the next. As future work, our desire is to provide a web-based implementation where users are able to fill in their assessment and obtain information regarding the requirements for moving to the next level in their areas of interest.

REFERENCES

[1] R. Marselis and R. van der Ven, “TPI next clusters for CMMI,” http://www.tmap.net/sites/tmap.net/files/attachments/TPI_NEXT_clusters_for_CMMI_0.pdf, 2009.

[2] SOGETI, “Website of sogeti,” http://www.sogeti.nl/, 2009.

[3] R. van Veenendaal, “Test Maturity Model integration,” http://www.tmmi.org/pdf/TMMi.Framework.pdf, 2012.

[4] ETSI, “ETSI TR 101 582, Security testing : case study experiences V1.1.1,” ETSI, Tech. Rep. 101 582, 2014.

[5] GDPR, “Reform of data protection rule,” http://ec.europa.eu/justice/newsroom/data-protection/news/120125_en.htm, 2012.