With the many recent advances in the biomedical world, vast changes are taking place in our growing knowledge of the physiological aspects of almost all the tissues and organs of the human body. One of the most prevalent topics of discussion is the question of obesity and its effect on the metabolic changes in the human body. The original classical role of adipose tissue as an energy storage organ has been greatly modified. We now know that it is an endocrine organ, producing adipokines like leptin, adiponectin, visfatin, resistin, apelin, etc, which modulate metabolic processes in the body. Since obesity is associated with an increase in the adipose tissue mass, these hormones may be expected to be produced in increased concentrations and may thus have a significant impact on the macronutrient metabolism. Further, these adipokines may interact with long term energy modulators like insulin. Even though the scientific community has started unravelling the mysteries of the close linkage between obesity, its hormones and their physiological effects, a lot still remains to be discovered. The present discussion makes an attempt to trace the basic modern day concepts of the role of obesity in various metabolic processes.
has suggested that, due to the increase in obesity, future life expectancy may even decrease[6,7].

REGULATION OF ENERGY HOMEOSTASIS AND OBESITY

Obesity is characterized by an excess of adipose tissue. The increase of food intake (hyperphagia) triggered by a period of fasting is a simple but compelling example of food-intake regulation. The balance between energy intake (food consumption) and energy expenditure (basal metabolic rate, i.e. biochemical processes required to maintain cellular viability, physical activity and adaptive thermogenesis) is tightly regulated. A homeostatic network maintains energy stores through a complex interplay between the feeding regulatory centres in the central nervous system (CNS), particularly in the hypothalamus and the regulated storage and mobilization of fat stores that maintains the body energy stores[1,12,13]. Thus, genes that encode the molecular components of this system may underlie obesity and related disorders. A number of recent research groups have encoded the molecular and genetic mysteries that underlie obesity and its related disorders.

Signalling pathways in the hypothalamus

The hypothalamus is the major nervous centre controlling food intake. It has two major areas which play important role in maintaining the normal energy homeostasis of the body by controlling the hunger and satiety centres. The ventro-medial hypothalamic nucleus (VMN), a portion of the hypothalamus, is known as the ‘satiety centre’. Stimulation of the VMN causes suppression of food intake, whereas a bilateral VMN lesion induces hyperphagia and obesity. The lateral hypothalamic area is known as the ‘hunger centre’, and its stimulation or any lesion induces the opposite set of responses[14,15]. Various neuropeptides (e.g. the melanocortin system, neuropeptide Y) and neurotransmitters (e.g. serotonin, dopamine and noradrenaline) along with insulin and leptin molecules function in the hypothalamus and thus coordinate the behavioural, physiological and metabolic responses. These response elements maintain the energy balance via both the intake and the expenditure pathways[16].

In addition to these long-term adiposity signals, short-term meal-related signals are also transmitted to the CNS through afferent nerves or gut-secreted peptides (e.g. cholecystokinin, ghrelin[17]). Neurons in the CNS also directly sense carbohydrates and fats[16,17].

Melanocortins

Melanocortins are peptides that are cleaved from the proopiomelanocortin precursor molecule, and thus exert their effects by binding to members of a family of melanocortin receptors[18].

Melanocortins also promote negative energy balance. Among the growing list of melanocortins, the signifi-
various hormones that regulate body metabolism. An increase in the fat cell mass leads to imbalances in its release of hormones, which can have various metabolic effects. The metabolic complications of obesity, often referred to as the metabolic syndrome, consist of insulin resistance, often culminating in β-cell failure, impaired glucose tolerance and type 2 diabetes, dyslipidemia, hypertension, and premature heart disease. Abdominal obesity, ectopic lipid accumulation, hepatic steatosis, and sleep apnea can also be included in the metabolic complications of obesity."[14]

In mammals, white adipose tissue functions as the main depot for fuel storage. In the past decade, identification of myriad lipid and protein signals secreted from this tissue has led to its recognition as a major endocrine organ[35,36]. Adipocytes secrete a variety of biologically active molecules, termed as adipokines[37]. Adipose tissue has been found to be an important source of various hormones. Of these, the hormones which play an important role in body weight regulation are mainly leptin, visfatin, apelin, resistin, and adiponectin.

ROLE OF LEPTIN IN BODY WEIGHT REGULATION

Leptin

Leptin, the 167 amino acid protein, is a cytokine-like hormone secreted from white adipose tissue. It was the first adipocytokine identified, encoded by the *ob* gene. Leptin receptors are expressed in a number of different tissues. Adipocytes have been identified as the primary site for leptin expression, however it is also expressed in the gastric wall, vascular wall, placenta, ovary, in skeletal muscle, and the liver[38-41]. Leptin has several roles, including growth control, metabolic control, immune regulation, insulin sensitivity regulation, and reproduction[42-44]. However, its most important role is in body weight regulation.

Leptin and insulin

The mechanisms involved in leptin secretion are all quite different. The rate of insulin-stimulated glucose utilization in adipocytes is a key factor linking leptin secretion to body fat mass[43]. Although the mechanism is incompletely understood, it may involve glucose flux through the hexosamine pathway[44]. In addition, various observations indicate that leptin has a more important role than insulin in the CNS control of energy homeostasis. Insulin is secreted from the endocrine pancreas and exerts potent effects on peripheral nutrient storage. Insulin is an afferent signal to the CNS that causes long-term inhibitory effects on energy intake. Leptin receptors and insulin receptors are expressed by brain neurons involved in energy intake[45-49], and administration of either peptide directly into the brain reduces food intake[50-52] whereas deficiency of either hormone does the opposite[53,54]. Leptin deficiency causes severe obesity, with hyperphagia that persists despite high insulin levels. In contrast, obesity is not induced by insulin deficiency. However, such comparisons are complicated by the critical role that insulin has in promoting both fat storage and leptin synthesis by fat cells.

Leptin and obesity

Leptin is the chief regulator of the “brain gut axis”, which provides a satiety signal through its action on the CNS receptors within the hypothalamus[55,56]. Activation of hypothalamic leptin receptors suppresses food intake and promotes energy expenditure pathways[57]. Leptin levels decrease with weight reduction.

The hypothesis that leptin resistance can occur in association with obesity was first suggested by the finding of elevated plasma leptin levels in obese humans[57]. This hypothesis suggests that some cases of human obesity may be due to reduced leptin action in the brain, and affected individuals are unlikely to respond to pharmacological treatment with leptin. Several mechanisms contribute to leptin resistance.

Leptin uptake into the brain is facilitated by leptin receptors expressed by endothelial cells[58] in the blood-brain barrier that function as leptin transporters. Impaired leptin transport across endothelial cells of the blood-brain barrier is one potential mechanism leading to leptin resistance. Whether dysfunction of this transport process can lead to obesity remains to be determined, but it has been seen that in obese humans cerebrospinal fluid demonstrate low levels of leptin in comparison to plasma[59].

Upon activation of leptin receptors in the brain, a series of integrated neuronal responses required for food intake and energy balance are activated, and these neuronal effector pathways play a key role in energy homeostasis. Failure of one or more of these pathways in response to the leptin signalling will manifest as leptin resistance[60].

Reduced leptin-receptor signal transduction is another potential cause of leptin resistance. Like other cytokine receptors, activation of the leptin receptor induces expression of a protein that inhibits any further leptin signal transduction, termed 'suppressor of cytokine signalling-3' (SOCS-3)[61]. The potential contribution of SOCS-3 to acquired forms of leptin resistance and obesity is an active area of study.

Leptin and inflammation

The role of Leptin in inflammation can be summarized as: (1) Pro-inflammatory; (2) Increases T cell activation, and cytokine release proliferation; (3) Promotes Th1 response; (4) Increases NK cell activation; (5) Increases macrophage activation and cytokine release [tumor necrosis factor (TNF-α)] /interleukin (IL-6) et al.; and (6) Activates neutrophils and increases their chemotaxis and oxidative burst.

Leptin acts on the monocytes and induces the release of cytokines such as TNF-α or IL-6 as well as CCL2 and VEGF[58]. It leads to increased proliferation and
differentiation of the monocytes. Acting on the neutrophils, leptin leads to an increased expression of CD11b, as well as increased neutrophil chemotaxis and oxidative burst, all of which are very important in innate immune responses and regulation of pathogen colonization of the skin and mucosa.

Visfatin

Visfatin is also known as pre-B cell colony enhancing factor (PBEF). Visfatin also possess nicotinamide phosphoribosyltransferase (Nampt) activity. It is produced by the visceral adipose tissue. The expression of visfatin is increased in abdominal obesity and type 2 DM. Visfatin binds to the insulin receptors at a site distinct from insulin and mimics insulin in exerting a hypoglycemic effect by reducing glucose release from the hepatocytes, and stimulating the glucose utilization in the peripheral tissues.

However, recent studies indicate the association of visfatin with obesity alone and make its metabolic role debatable. Revello et al. demonstrated that the extracellular form of Nampt (eNampt/Visfatin/PBEF) secreted through the non-classical secretory pathway had nicotinamide adenine dinucleotide (NAD) biosynthetic activity. Haploinsufficiency and chemical inhibition of Nampt resulted in decreased NAD biosynthesis and glucose-stimulated insulin secretion in pancreatic islets in vitro and in vivo. It has been suggested that supplementation of nicotinamide mononucleotide, a Nampt reaction product, results in an amelioration of these defects. Revello and his co-workers also demonstrated that visfatin does not mimic insulin.

Apelin

Apelin is an adipocytokine whose plasma concentration is increased in obesity, insulin resistance and hyperinsulinemia. In the cardiovascular system, apelin elicits endothelium dependent, nitric oxide mediated vasorelaxation and reduces arterial blood pressure, along with a positive inotropic activity.

Resistin

Resistin is thus named because it renders resistance to the action of insulin. It is made up of 114 amino acids. It has been observed that circulating resistin levels are increased in obese humans. It is considered a pro-inflammatory molecule. It activates NFkB-dependent cytokine release and adhesion molecule expression including TNF-α and IL-6. It also plays an important role in the pathogenesis of diabetes and its complications. The release of resistin is often associated with stimulation by the inflammatory process, IL-6, hyperglycemia and hormones like the growth hormone and the gonadal hormones. The role of resistin in obesity and insulin resistance in humans is controversial.

Adiponectin

Adiponectin is an important adipocytokine, present within cells and in the circulation, in multimeric forms: trimers, hexamers, high-MW oligomers and full-length adiponectin multimers. The fAd may cleave to liberate a fragment containing the C-terminal globular domain (gAd), which plays an important role in adipose tissue metabolism. Adiponectin oligomers act via two receptor subtypes (AdipoR1 and AdipoR2), the stimulation of which results in increased AMP-activated protein kinase (AMP-kinase), PPAR-α ligand activities and activation of a NF-κB signaling pathway.

Adiponectin has the following metabolic functions in the body: (1) Enhances hepatic insulin actions and suppresses fatty acid influx into the liver; (2) Enhances glucose uptake in the liver and skeletal muscles; and (3) Increases fatty acid oxidation.

The main difference between adiponectin and the other hormones is that, whereas the other hormones are related to insulin resistance and are increased in obesity, adiponectin production and concentration decreases in obesity.

Combined efforts of various researchers have led to the discovery that the adiponectin levels in humans is less in obese individuals than in the lean subjects. In another recent study it has been observed that plasma MMW and LMW adiponectin levels decrease in Type 2 diabetics as compared to the non-diabetic individuals. Various other studies have demonstrated the inverse relationship between plasma adiponectin and serum triglyceride levels as well as fasting and post-prandial plasma glucose concentrations.

Adiponectin and inflammation: The role of adiponectin has been defined beneficial to the body. (1) It is anti-inflammatory; (2) It decreases T cell activation and proliferation; (3) It inhibits NFkB dependent cytokine release and molecule expression including TNF-α/IL-6; (4) It increases IL-10; and (5) It inhibits phagocytosis oxidative burst.

In obesity, concentrations of inflammatory mediators like TNF-α and IL-6 increases. This leads to a decrease in adiponectin expression and release. The main function of adiponectin in an immune metabolism is via the NFkB pathway. In the immune system, adiponectin inhibits T cell activation and proliferation.

Adiponectin also inhibits B-cell lymphopoiesis. Adiponectin induces the production of the anti-inflammatory mediators IL-10 in human monocytes, monocyte-derived macrophages, and dendritic cells. In addition, adiponectin significantly impairs the production of the pro-inflammatory cytokine IFN-γ. Moreover, adiponectin-treated macrophages exhibit reduced phagocytic capacity.

Adiponectin and cardiovascular function: Adiponectin has been shown to have various vasculoprotective effects. In obesity, the adiponectin level decreases and it leads to an increase in cardiovascular risk.

Various studies have made an effort to correlate this
adipokine to the plasma lipoprotein concentration and its implication on CAD[84-86] but without any conclusive results.

The beneficial role of adiponectin on the cardiovascular system might be related to the following factors: (1) Adipo-vascular axis: It proposes the mechanism of adiponectin induced vascular protection via the epidermal growth factor and other endothelial growth factors by augmenting endothelial cell proliferation[87]; and (2) Adiponectin also decreases human aortic smooth muscle cell growth and migration response to growth factors[88].

Adiponectin and the hepatic system: In a recent study on Japanese subjects it was seen that adiponectin concentrations are lower in subjects with increased transaminase activities, indicating that hypoadiponectinemia contributes to an increase in transaminase activity. This may signify that liver diseases could be worsened if associated with metabolic diseases[89]. Moreover, it has been observed that high levels of adiponectin can protect against steatohepatitis[90]: (1) Hypoadiponectinemia→Insulin resistance + Hyperlipidemia→Fatty Liver, and (2) Hypoadiponectinemia→Increase hepatic fatty acid influx→Fatty Liver.

Adiponectin and bone: In recent studies, it has been observed that adiponectin and its receptors are also expressed in osteoblasts[91-93]. Further studies suggest that adiponectin stimulates the proliferation, differentiation and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions[94]. It has been found that the suppression of AdipoR1 expression by its siRNA inhibited the differentiation and mineralization of the cells and that adiponectin promoted these processes through the action of AdipoR1 on the osteoblasts. Recent studies have also shown that adiponectin promotes osteoblast proliferation[91-93] and exerts an enhancing action on human osteoblast differentiation and mineralization[98].

However, despite intensive research being carried out on adiponectin, various issues still remain to be explored further such as the complete identification of the adiponectin receptor and the exact mechanism of adiponectin action.

Acute-phase serum amyloid A: Circulating acute-phase serum amyloid A (A-SAA) levels are elevated in obese individuals as compared to lean[95-96], and the expression of A-SAA is strictly correlated with the BMI and fat cell size. It is a pro-inflammatory and lipolytic adipokine in humans. A-SAA may act locally to alter cytokine production and fat metabolism, as well as systemically on liver, muscle, and cells of the immune metabolism and the vasculature, to impact insulin resistance and atherosclerosis. Research on A-SAA has shown that the increased expression of A-SAA by adipocytes in obesity suggests that it may play a critical role in local and systemic inflammation and free fatty acid production and could be a direct link between obesity and its co-morbidities, such as insulin resistance and atherosclerosis[97].

The signaling pathways of the A-SAA mediated inflammation response are not well studied. However, in neutrophils, SAA has been found to induce IL-8 production through the formyl peptide receptor like 1/lipoxin A4 receptor and activates nuclear factor kappa B[98]. The same signaling pathways have recently been shown to be an important mediator of inflammation associated with insulin resistance[99,100].

Since energy balance involves this complex interplay between multiple tissues and signaling pathways, an integrated view of feeding behavior, neuroendocrine signaling, nutrient uptake, transport, storage and utilization is required for understanding fat regulation.

EFFECTS OF OBESITY ON THE MACRONUTRIENT METABOLISM ARE MAINLY MEDITED BY INSULIN RESISTANCE

Several adipokines like Leptin[101], adiponectin[102] and visfatin[103] have been shown to stimulate insulin sensitivity. On the other hand, resistin[104] and the retinol binding protein[105] induce insulin resistance. Adiponectin is proposed to be essential in insulin sensitivity[106]. In obesity there is a decrease in the Adipo R expression levels, thereby reducing adiponectin sensitivity and enhancing insulin resistance[107].

The term “insulin resistance” is defined as resistance to the effects of insulin on glucose uptake, metabolism, or storage. Insulin resistance in obesity is manifested by decreased insulin-stimulated glucose transport and metabolism in adipocytes and skeletal muscle, and by impaired suppression of hepatic glucose output[108].

Insulin is a critical regulator of virtually all aspects of adipocyte biology, and adipocytes are one of the most highly insulin-responsive cell types. The physiological role of insulin includes the metabolism of all 3 macronutrients (carbohydrates, lipids, and proteins) as well as cellular growth. Insulin’s action on lipid metabolism is analogous to its role in glucose metabolism, i.e. promoting anabolic and inhibiting catabolism. Insulin stimulates glucose transport and triglyceride synthesis (lipogenesis), as well as inhibiting lipolysis[109]. Specifically, insulin upregulates LPL and stimulates gene expression of intracellular lipogenic enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). In addition, insulin inhibits adipocyte HSL through inhibition of its phosphorylation[110,111]. It has also been demonstrated that insulin influences the secretion of proteins from mature adipocytes probably by increasing the production of enzymes necessary for the processing of secreted protein precursors[112].

Mechanism of insulin resistance

Insulin's metabolic effects are mediated by a broad array of tissue-specific actions that involve rapid changes in protein phosphorylation and function, as well as changes
in gene expression. The initial molecular signal for insulin action involves activation of the insulin receptor tyrosine kinase, which results in phosphorylation of insulin receptor substrates (IRSs) on multiple tyrosine residues. These phosphotyrosine residues act as docking sites for many SH2 domain-containing proteins, including the p85 regulatory subunit of phosphoinositide 3′ kinase (PI3K). Binding of the p110 catalytic subunit of PI3K to p85 activates the lipid kinase that promotes glucose transport.

Insulin action in adipocytes also involves changes in gene transcription. The transcrip
tion factor ADD-1/SREBP-1c (adipocyte determination and differentiation factor-1/sterol regulatory element-binding protein-1c) may play a critical role in the actions of insulin to regulate adipocyte gene expression, by inducing genes involved in lipogenesis and repressing those involved in fatty acid oxidation.

Functional defects in insulin resistance may be due to impaired insulin signalling in all three target tissues i.e. in adipose tissue, skeletal muscle and liver. In both muscle and adipocytes, insulin binding to its receptor, receptor phosphorylation and tyrosine kinase activity, and phosphorylation of IRSs are reduced. Recent studies have indicated that defective signaling from the insulin receptor is an important component of insulin resistance associated with obesity in humans.

There are also tissue-specific alterations observed in adipocytes of obese humans, IRS-1 expression is reduced, resulting in decreased IRS-1-associated PI3K activity, and IRS-2 becomes the main docking protein for PI3K. In contrast, in skeletal muscle of obese individuals, IRS-1 and IRS-2 protein levels are normal but PI3K activity associated with both IRSs are impaired.

Mechanism for signaling defects in insulin pathways in obesity

It has been suggested that there is increased expression and activity of several protein tyrosine phosphatases (PTPs), which dephosphorylate and thus terminate signaling propagated through tyrosyl phosphorylation events. Some data indicate that there is increased expression and/or activity of the three PTPs i.e. PTP1B, leukocyte antigen-related phosphatase (LAR), and src-homology phosphatase 2, in the muscle and adipose tissue of obese humans. PTP1B and LAR have been shown to dephosphorylate the insulin receptor and IRS-1 in vitro, PTP1B not only has a regulatory role in insulin action, but also has a role in energy homeostasis.

Role of TNF-α in insulin resistance in obesity

TNF-α is a pluripotent cytokine produced by macrophages. Fat tissue is a significant source of endogenous TNF-α production and the expression of this cytokine in adipose tissue is elevated in obesity. This abnormal expression of TNF-α in adipose tissue plays a critical role in peripheral insulin resistance. In obesity, it has been studied that neutralization of TNF-α in obese and insulin-resistant animals results in significant increases in peripheral insulin sensitivity. Various studies have demonstrated that TNF-α induces insulin resistance through its ability to inhibit intracellular signalling through serine phosphorylation of IRS-1, and can reduce GLUT4 expression. This inhibition can be reversed by neutralizing TNF-α in vivo. The increased expression of TNF-α is significantly correlated with the hyperinsulinemia in the presence of normoglycemia. It has been demonstrated as a marker of insulin resistance. In addition to its role in host defense, TNF-α also has important effects on whole body lipid and glucose metabolism.

Effect of obesity on carbohydrate metabolism

The action of insulin in lowering blood glucose levels results from the suppression of hepatic glucose production and the increased glucose uptake into muscle and adipose tissue via GLUT4. Muscle has long been considered the major site of insulin-stimulated glucose uptake, with adipose tissue contributing relatively little to total body glucose disposal. On the other hand, various transgenic studies have raised the possibility of a greater role for glucose uptake into fat in systemic glucose homeostasis. Over-expression of GLUT4 selectively in fat tissue enhances whole body insulin sensitivity and glucose tolerance, and knocking out GLUT4 selectively from fat tissue results in a degree of insulin resistance similar to that seen with muscle-specific knock-out of GLUT4. In all forms of obesity, there is downregulation of GLUT4, a major factor contributing to the impaired insulin-stimulated glucose transport in adipocytes. However, in the skeletal muscle of obese humans, GLUT4 expression is normal. It has also been suggested that defective glucose transport may be due to impaired translocation, docking, or fusion of GLUT4-containing vesicles with the plasma membrane. With obesity there is reduced glucose disposal in adipose tissue. It has been suggested that obesity leads to the development of hyperglycemia, hyperlipemia, hyperinsulinemia, and insulin resistance. Molecules like FFA, leptin, or TNF-α, all of which are released from adipose tissue, are known to affect glucose homeostasis indirectly. Consequently, there are other, as yet undiscovered, molecules from adipose tissue that influence systemic metabolism.

Effect of obesity on lipid metabolism

Obesity is associated with increased basal lipolysis in adipose tissue, and elevated circulating FFAs. Acute-phase serum amyloid A (SAA), a lipolytic adipokine in humans, stimulates basal lipolysis. The lipolysis has been postulated to be an autocrine feedback mechanism by which increased SAA production from enlarged adipocytes A into the circulation may contribute to insulin resistance. The SAA act through the CLA-1 and the extra-cellular signal regulated kinase signaling pathway to stimulate lipolysis directly. Alternatively, increased...
lipolysis by SAA may be indirect, i.e. through the stimulation of the lipolytic cytokines viz IL-6 and TNF-α.

Plasma triglyceride (TG) concentration is another metabolic variable, most affected in obesity. It has been suggested that there is tissue resistance to insulin mediated glucose uptake, which in turn accelerates the very low density lipoprotein (VLDL), TG production rate and leads to endogenous hypertriglyceridemia[137-139]. In obesity there is decreased Lipoprotein lipase mediated lipolysis of chylomicron-TG and ineffective inhibition of hormone-sensitive lipase mediated lipolysis in adipose tissue[4,49]. Postprandial lipemia and elevated plasma FA levels are well-recognized abnormalities in obesity. Excess fatty acid availability early in the postprandial period (when it is normally suppressed by insulin) is estimated to influence glucose uptake by as much as 50%[140]. SAA has also a direct effect on cholesterol metabolism. Being an apolipoprotein by nature, it is the apoprotein of high-density lipoprotein (HDL)[142]. The inter-action of SAA with HDL may impair the function of HDL as an anti-atherogenic molecule[143] and facilitate its degradation[144]. The increase of adipose tissue derived SAA in obesity may be a link between obesity, low HDL and increased coronary Artery Disease risk.

Effect of obesity on protein metabolism

It is a well established fact that human obesity is accompanied by abnormalities in both glucose and lipid metabolism[145-149]. However, it is controversial whether protein metabolism is also disturbed in overweight individuals. Some researchers have reported that moderate obesity and difference in body fat distribution are as pair the function of HDL as an anti-atherogenic molecule[4,49]. Adipose tissue-resident macrophages are responsible for the expression of most of the tissue TNF-α and IL-6. The expression of macrophage markers in human adipose tissue was high in subjects with obesity and insulin resistance, and was also correlated with the expression of TNF-α and IL-6[161,162].

With obesity and progressive adipocyte enlargement, the blood supply to adipocytes may be reduced, and the induction of adipocyte hypoxia in vitro results in the expression of a number of inflammatory cytokines[165]. Obesity is associated with elevated levels of circulating proinflammatory cytokines such as plasminogen activator inhibitor-1 (PAI-1), C-reactive protein (CRP), TNF-α, and IL-6 and monocyte chemoattractant protein-1 (MCP-1)[166]. Many of these factors are produced by adipose tissue, such as circulating levels of TNF-α, IL-6, and MCP-1. Adipocytes express low levels of the MCP-1, and increased expression has been seen in obese subjects[167]. Adiponectin acts as a key regulator of adipocyte secretory function via its autocrine action, which correlates with adiposity and insulin resistance[168].

PAI-1 is elevated in subjects with metabolic complications of obesity, and is expressed in the stromal fraction of adipose tissue, including endothelial cells[167-169]. PAI-1 inhibits both the tissue-type plasminogen activator and the urokinase-type plasminogen activator through its serine protease inhibitor function, and this inhibition of fibrinolysis may contribute to a pro-thrombotic state[170].

The cell types involved in the inflammatory response in obesity are not fully delineated. Recent attention has focused on adipose tissue macrophages (ATMs) as a mediator of inflammatory responses in adipose tissue. In addition to the production of pro-inflammatory cytokines that promote metabolic complications, adipose tissue is the sole source of adiponectin, which is anti-inflammatory and associated with protection from atherosclerosis[171].

From an evolutionary perspective, adipose macrophages may have represented an important part of the host defense against injury or infection.

ROLE OF DIFFERENT FAT DEPOTS IN METABOLISM

Many studies have shown that excess fat in the upper part of the body, i.e. central or abdominal (android or male-type obesity) correlates with increased mortality and risk for disorders such as diabetes, hyperlipidemia, hypertension, and atherosclerosis of coronary, cerebral, and peripheral vessels more than the lower body or gluteo-femoral or peripheral depot (gynoid i.e. female-type of fat distribution)[172,173]. Abdominal fat is composed of abdominal subcutaneous fat and intraabdominal fat (which includes visceral or intraperitoneal fat). The visceral fat is associated with disturbances in insulin-glucose homeostasis, alterations in plasma lipoprotein-lipid levels[174], particularly increased plasma triglycerides and low HDL.
of body composition after overfeeding, food restriction or starvation of mature female rats. J Nutr 1986; 116: 2536-2546
12 Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Pro R Soc Lond 1953; 140: 579-592
13 Woods SC, Seeley RJ, Porte DJ Jr, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science 1998; 280: 1378-1383
14 Bray GA, Fisler J, York DA. Neuroendocrine control of the development of obesity: understanding gained from studies of experimental animal models. Front Neuroendocrinol 1990; 11: 128-181
15 Satoh N. The arcuate nucleus as a primary site of satiety effect of leptin in rats. Neurosci. Lett 1997; 224: 149-152
16 Figlewicz DP, Stein LJ, West D, Porte D Jr, Woods SC. Intracerebral insulin alters sensitivity to CCK-induced meal suppression in baboons. Am J Physiol 1986; 250: R856-R860
17 Arora S, Anubhuti. Role of neuropeptides in appetite regulation and obesity—a review. Neuropeptides 2006; 40: 375-401
18 Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 1994; 8: 1298-1308
19 Huszar D. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131-141
20 Kow L, Pfaff D. The effects of the TRH-metabotropic cycle (His-Pro) and its analogs on feeding. Pharmacol Biochem Behav 1991; 38: 359-364
21 Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997; 385: 165-168
22 Krude H, Biefernann H, Schnabel D, Tandoz MZ, Theunissen P, Mullis PE, Grueters A. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroxine hormone and ACTH4-10. J Clin Endocrinol Metab 2003; 88: 4633-4640
23 Leibowitz SF. Neurochemical-neuroendocrine systems in the brain controlling macronutrient intake and metabolism. Trends Neurosci 1992; 15: 491-497
24 Cone RD, Lu D, Koppula S, Vage DI, Klungland H, Boston B, Chen W, Orth DN, Pouton C, Kesterson RA. The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 1996; 51: 287-317, discussion 318
25 Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999; 20: 68-100
26 Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 1986; 7: 1189-1192
27 Zarjevska N, Cusin I, Vetter R, Rohner-Jeanrenaud F, Jeanrenaud B. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 1993; 133: 1753-1758
28 Leibowitz SF. Brain peptides and obesity: pharmacologic treatment. Obes Res 2002; 3: 573S-589S
29 Wilding JP, Gilby SG, Bailey CJ, Bann RA, Williams G, Ghatei MA, Bloom SR. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neuropeptidin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology 1993; 132: 1993-1994
30 Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster DR, Lasser G, Prunkard DE, Porte DJ Jr, Woods SC, Seeley RJ, Weigle DS. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 1996; 45: 531-535
31 Cowley MA, Grove KL. Ghrelin-satisfying a hunger for the mechanism. Endocrinology 2004; 145: 2604-2606
32 Gilg S, Lutz TA. The orexigenic effect of peripheral ghrelin...
Singla P et al. Metabolic effects of obesity
differs between rats of different age and with different ba-
seline food intake, and it may in part be mediated by the area postrema. Physiol Behav 2006; 87: 353-359
33 Tschop M, Smiley DL, Heiman ML. Ghrelin induces adip-
osity in rodents. Nature 2000; 407: 908-913
34 Parati G, Lombardi C, Narkiewicz K. Sleep apnea: epide-
miology, pathophysiology, and relation to cardiovascular risk. Am J Physiol Regul Integ Physiol 2007; 293: R1671-R1683
35 Havel PJ. Update on adipocyte hormones: regulation of
energy balance and carbohydrate/lipid metabolism. Diabetes 2004; 53 Suppl 1: S143-S151
36 Ukkola O. Endocrinological activities of ghrelin: new in-
sights. Eur J Intern Med 2003; 14: 351-356
37 Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y,
Matsubara K. Analysis of an expression profile of genes in the human adipose tissue. Gene 1997; 190: 227-235
38 Koerner A, Kratzsch J, Kiess W. Adipokytokines: leptin,
the classical, resistin, the controversial, adiponectin, the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005; 19: 525-546
39 Brzozowski T, Konturek PC, Konturek SJ, Brzozowska I,
Pawlik T. Role of prostaglandins in gastroprotection and
gastropathy adaptation. J Physiol Pharmacol 2005; 56 Suppl 5: 33-55
40 Nawrot-Porabka K, Jaworek J, Leja-Szpak A, Palonek M,
Szklarzcyk J, Konturek SJ, Pawlik WW. Leptin is able to stimulate pancreatic enzyme secretion via activation of duo-
deno-pancreatic reflex and CCK release. J Physiol Pharmacol 2004; 55 Suppl 2: 47-57
41 Konturek PC, Brzozowski T, Burnat G, Kwiecien S, Pawlik T,
Hahn EG, Konturek SJ. Role of brain-gut axis in healing of gastric ulcers. J Physiol Pharmacol 2004; 55: 179-192
42 Schwartz MW, Woods SC, Porte D Jr, Saley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404: 661-671
43 Bajari TM, Nimpf J, Schneider WJ. Role of leptin in reproduc-
tion. Curr Opin Lipidol 2004; 15: 315-319
44 Kaur T, Zhang ZF. Obesity, breast cancer and the role of
adipokytokines. Asian Pac J Cancer Prev 2005; 6: 547-552
45 Friedman JM, Halaas JL. Leptin and the regulation of body
weight in mammals. Nature 1998; 395: 763-770
46 Mueller WM, Gregoire FM, Stanhope KL, Mobbs CV, Mi-
zuno TM, Warden CH, Stern JS, Havel PJ. Evidence that glucagon metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 1998; 139: 551-558
47 Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM. Insulin and insulin-like factors in the CNS. Trends Neurosci 1988; 11: 107-111
48 Baskin DG, Breiningler JF, Schwartz MW. Leptin receptor
mRNA identifies a subpopulation of neuropeptid Y neurons activated by fasting in rat hypothalami. Diabetes 1999; 48: 828-833
49 Cheung CC, Clifton DK, Steiner RA. Propiomelanocortin
neurons are direct targets for leptin in the hypothalamus. Endocrinology 1997; 138: 4489-4492
50 Weigle DS, Bukowski TR, Foster DC, Holderner SM, Kramer
JM, Lasser G, Lotton-Day CE, Prunkard DE, Raymond C,
Kuijper JL, Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. J Clin Invest 1995; 96: 2965-2970
51 Campfield LA, Smith EJ, Guisez Y, Devos R, Burn P. Rec-
ombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 1995; 269: 546-549
52 Woods SC, Lotter EC, McKay LD, Porte D Jr. Chronic intra-
cerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979; 282: 503-505
53 Zhang Y, Froenca R, Maffei M, Barone M, Leopold L, Friedmann JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-432
54 Sipols AJ, Baskin DG, Schwartz MW. Effect of intra-
cerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 1995; 44: 147-151
55 Konturek SJ, Konturek JW, Pawlik T, Brzozowski T. Brain-
gut axis and its role in the control of food intake. J Physiol Pharmacol 2004; 55: 137-154
56 Tilg H, Moschen AR. Adipokytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006; 6: 772-783
57 Mantzoros CS, Frederich RC, Qu D, Lowell BB, Maratos-
Flir E, Flier JS. Severe leptin resistance in brown fat-deficient uncoupling protein promoter-driven diphtheria toxin A mice despite suppression of hypothalamic neuropeptide Y and circulating corticosterone concentrations. Diabetes 1998; 47: 230-238
58 Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003; 54: 469-487
59 Matereese G, Moschos S, Mantzoros CS. Leptin in immuno-
logy. J Immunol 2005; 174: 3137-3142
60 Schwartz MW, PrigIon RL, Kahn SE, Nicolson M, Moore J,
Morawiecki A, Boyko EJ, Porte D Jr. Evidence that plasma leptin and insulin levels are associated with body adiposity via different mechanisms. Diabetes 1997; 46: 1476-1481
61 Guzik TJ, Bzowska M, Kasprzwicki A. Persistent skin co-
lonization with Staphylococcus aureus in atopic dermatitis: relationship to clinical and immunological parameters. Clin Exp Allergy 2005; 35: 448-455
62 Knudson JD, Dincer UD, Zhang C, Swafford AN Jr, Koshida
R, Pichii A, Focardi M, Dick GM, Tune JD. Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction. Am J Physiol Heart Circ Physiol 2005; 289: H481-H56
63 Anderson CM. Leptin resistance and endothelial dysfunction in pre-eclampsia. Cell Mol Biol (Noisy-le-grand) 2002; 48: OL323-OL329
64 Galili O, Versari D, Sattler KJ, Olson ML, Mannheim D,
McConnel JP, Chade AR, Lerman LO, Lerman A. Early Experimental Obesity Is Associated with Coronary Endo-
theial Dysfunction and Oxidative Stress. Am J Physiol Heart Circ Physiol 2006; 292: H1804-H1911
65 Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M,
Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S,
Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005; 307: 426-430
66 Revollo JR. Namp/IPBEF/Visfatin regulates insulin se-
cretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007; 6: 363-375
67 Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A, Castan-Laurell I, Tack I, Knibiehler B, Carling D, Barnepné C, Audigier Y, Sauhnier-Blanche JS, Valett P, Apelin, a newly identified adipokine up-regulated in insulin resistance. Endocrinology 2005; 146: 1764-1771
68 Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR,
Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature 2003; 429: 307-312
69 Kosminski CM, McMorrow FC, Kumar S. Role of resistin
in obesity, insulin resistance and Type II diabetes. Curr Clin (Lond) 2005; 109: 243-256
70 Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF.
A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270: 26746-26749
71 Yamauchi T, Kanon J, Minokoshi Y, Ito Y, Waki H, Uchida S,
Yamashita S, Noda M, Kitaz S, Ueki K, Eto E, Akahama Y, Frolgel P, Foulle F, Ferre P, Carlbg D, kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose
utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288-1295

72 Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagarettani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPARγ-ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50: 2094-2099

73 Tsao TS, Murrey HE, Hug C, Lee DH, Lodish HF. Oligomerization state-dependent activation of NF-κB signaling pathway by adipocyte-complement-related protein of 30 kDa (Acrp30). J Biol Chem 2002; 277: 29359-29362

74 Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7: 947-953

75 Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohkita T, Uchida S, Takeka K, Waki H, Tsuono NH, Shibata Y, Terauchi Y, Fregnol P, Toke B, Koyasu S, Taíra K, Kitamura, Shimizu T, Nagai R, Kadowaki T. Cloning of adiponectin receptors that mediate anti-diabetic metabolic effects. Nature 2003; 423: 762-769

76 Reue J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MRS, You FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte-complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001; 98: 2005-2010

77 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Mi-yagawa J, Kotta H, Shimomura I, Nakamura T, Miyaoaka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 267: 79-83

78 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Prattley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930-1935

79 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwasaki H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscl Thromb Vasc Biol 2000; 20: 1595-1599

80 Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86: 3815-3819

81 Schöber F, Neumeier M, Weigert J, Wurm B, Wanninger J, Schäffler A, Dada A, Liebsch G, Schmitz G, Aslanidis C, Buechler C. Low molecular weight adiponectin negatively correlates with the waist circumference and monocytic IL-6 release. Biochem Biophys Res Commun 2007; 361: 968-973

82 Wolf AM, Wolf D, Rumpold H, Enrich B, Tlig H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun 2004; 320: 630-635

83 Behre CJ, Fagerberg B, Hultén LM, Hulte J. The reciprocal association of adipocytokines with insulin resistance and C-reactive protein in clinically healthy men. Metabolism 2005; 54: 439-444

84 Pischon T, Girman CJ, Hotamisligil GS. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291: 1730-1737

85 Wolk R, Berger P, Lennon RJ, Brilakis ES, Somers VK. Body mass index risk factor for unstable angina and myocardial infarction in patients with angiographically confirmed coronary artery disease. Circulation 2003; 108: 2206-2211

86 Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamahata T, Kamon J, Satoshi H, Yano W, Fugroel P, Naganuma T, Kadowaki T, Noda T. Dysruption of adiponectin causes insulin resistance and neo- natal form. J Biol Chem 2002; 277: 25863-25866

87 Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kuman M, Okamoto Y, Nagarettani H, Nishizawa H, Kishida K, Komuro R, Ouchi N, Kihara S, Nagai R, Funahashi T, Matsuzawa Y. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 2002; 277: 57495-57491

88 Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, Kumada M, Hotta K, Nishida M, Takahashi M, Nakamura T, Shimomura I, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cells. Circulation 2002; 105: 2893-2898

89 Yokoyama H, Hinose H, Ohgo H, Saito I. Inverse association between serum adiponectin level and transaminase activities in Japanese male workers. J Hepatology 2004; 41: 19-24

90 Méndez-Sánchez N, Chávez-Tapia N C, Villa A R, Sánchez-Lara K, Zamora-Valdés D, Ramos M H, Uribe M: adiponectin as a protective factor in hepatic steatosis. World J Gastroenterol 2005; 11: 1737-1741

91 Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H, Shimomura I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 2005; 331: 520-526

92 Shinoda Y, Yamauchi T, Ogiya N, Akune T, Kubota N, Yamauchi T, Terauchi Y, Kadowaki T, Takeuchi Y, Fukumoto S, Ikeda T, Hoshi K, Chung UI, Nakamura K, Kawaguchi H. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 2006; 99: 196-208

93 kanaizawa I, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T. Adiponectin and AMP kinase activator stimulate proliferation, differentiation and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biology 2007; 8: 51-63

94 Luo X, Guo LJ, Yuan LX, Qie H, Zhou HD, Wu XP, Liao EY. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 2005; 309: 99-109

95 Josuahtli P, Salomaa V, Rasi V, Vahtera E, Palosuo T. The association of C-reactive protein, serum amyloid A and fibrinogen with prevalent coronary heart disease-Baseline findings of the PAIS project. Atherosclerosis 2001; 156: 451-456

96 Yang RZ, Lee MJ, Hu H, Pollin TI, Ryan AS, Nicklas BJ, Sniokier S, Horenstein RR, Hull K, Goldberg NH, Goldberg AP, Shulderer AR, Fried SK, Geng DW. Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med 2006; 3: e287

97 He R, Sang H, Ye RD. Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPR1/LX244R. Blood 2003; 101: 1572-1581

98 Arkac MN, Heveren AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191-198

99 Arner P. Control of lipolysis and its relevance to development of obesity in man. Diabetes Metab Rev 1988; 4: 507-515

100 Haala JS, Gaijwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543-546
van Dielen FM, van’t Veer C, Schols AM, Soeters PB, Buurman WA, Greve JW. Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals. *Int J Obes Relat Metab Disord* 2001; 25: 1759-1767.

Yamamoto Y, Hirose H, Saito I, Tomita M, Taniyama M, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB. Tumor necrosis factor (TNF). *J Clin Invest* 1999; 104: 733-741.

Goldstein BJ, Ahmad F, Ding W, Li PM, Zhang WR. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. *Mol Cell Biol* 1998; 182: 91-99.

Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck MR. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. *J Biol Chem* 2000; 275: 4283-4289.

Elcehly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. *Science* 1999; 283: 1544-1548.

Old JI. Tumor necrosis factor (TNF). *Science* 1985; 230: 630-632.

Peraldi P, Spiegelman B. TNF-alpha and insulin resistance: summary and future prospects. *Mol Cell Biol* 1998; 182: 169-175.

Hotamisligil GS. The role of TNF-alpha and TNF receptors in obesity and insulin resistance. *Intern Med* 1999; 245: 621-625.

Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose tissue excretion of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. *Science* 1993; 259: 87-91.

Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. *Diabetes* 1994; 43: 1271-1278.

Hofmann C, Lorenz K, Brathwaite SS, Colca JR, Palmaz JK, Hotamisligil GS, Spiegelman BM. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. *Endocrinology* 1994; 134: 264-270.

Feinstein R, Kanety H, Papa MZ, Lumenfeld B, Karasik A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. *J Biol Chem* 1993; 268: 26055-26058.

Shepherd PR, Kahn BB. Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. *N Engl J Med* 1999; 341: 248-257.

Shepherd PR, Grudi L, Tozzo E, Yang H, Leach F, Kahn BB. Adiopose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. *J Biol Chem* 1997; 268: 22243-22246.

Tozzo E, Grudi L, Kahn BB. Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter. *Endocrinology* 1997; 138: 1604-1611.

Colditz GA, Willett WC, Stampfer MJ, Manson JE, Hennekens CH, Arky RA, Speizer FE. Weight as a risk factor for clinical diabetes in women. *Am J Epidemiol* 1990; 132: 501-513.

Kraegen EW, James DE, Jenkins AB, Chisholm DJ. Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. *Am J Physiol* 1985; 248: E535-526.

Reaven GM. Pathophysiology of insulin resistance in human disease. *Physiol Rev* 1995; 75: 473-486.

van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscok N, Moller K, Saltin B, Febbraio MA, Pedersen BK. Interleukin-6 stimulates lipolysis and fat oxidation in humans. *J Clin Endocrinol Metab* 2003; 88: 3005-3010.

Souza SC, Palmer HJ, Kang YH, Yamamoto MT, Muliro KV, Paulson KE, Greenberg AS. TNF-alpha induction of lipolysis is mediated through activation of the extracellular signal.
related kinase pathway in 3T3-L1 adipocytes. J Cell Biochem 2003; 89: 1077-1086

137 Reaven GM, Lerner RL, Stern MP, Farquhar JW. Role of insulin in endogenous hypertriglyceridemia. J Clin Invest 1986; 77: 575-581

138 Barter PJ, Nestel PJ. Precursors of plasma triglyceride fatty acids in obesity. Metabolism 1973; 22: 779-783

139 KisselbAH, Alfarsi S, Adams PW, Wynn V. The metabolic fate of plasma lipoproteins in normal subjects and in patients with insulin resistance and endogenous hypertriglyceridaemia. Diabetologia 1976; 12: 501-509

140 Lewis GF, Uffelman KD, Szeto LW, Steiner G. Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. Diabetes 1993; 42: 833-842

141 Yu KC, Cooper AD. Postprandial lipoproteins and atherosclerosis. Front Biosci 2001; 6: D332-D354

142 Van Lenten BJ, Hama SY, de Beer FC, Stafforini DM, McIntyre TM, Prescott SM, Lu Da BN, Fogelman AM, Navab M. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest 1989; 95: 2758-2767

143 Benditt EP, Hoffman JS, Eriksen N, Parmelee DC, Walsh KA, SAA, an apoprotein of HDL: its structure and function. Ann NY Acad Sci 1982; 389: 183-189

144 Wu A, Hinds CJ, Thiemermann C. High-density lipoproteins in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock 2004; 21: 210-221

145 Kolterman OG, Insel J, Saekow M, Olefsky JM. Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects. J Clin Invest 1980; 65: 1272-1284

146 DeFronzo RA, Soman V, Sherwin RS, Hendler R, Felig P. Insulin binding to monocytes and insulin action in human obesity, starvation, and refeeding. J Clin Invest 1978; 62: 204-213

147 Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 1989; 83: 1168-1173

148 Bonadonna RC, Group L, Kraemer N, Ferrannini E, del Prato S, DeFronzo RA. Obesity and insulin resistance in humans: a dose-response study. Metabolism 1990; 39: 452-459

149 Bonora E, Del Prato S, Bonadonna RC, Gulli G, Solini A, Shanks ML, Ghiasa AA, Lancaster JL, Kilcoyne RF, Alyassin AM. Total body fat content and fat topography are associated differently with in vivo glucose metabolism in nonobese and obese nondiabetic women. Diabetes 1992; 41: 1151-1159

150 Jensen MD, Haymond MW. Protein metabolism in obesity: effects of body fat distribution and hyperinsulinemia on leucine turnover. Am J Clin Nutr 1991; 53: 172-176

151 Welle S, Barnard RR, Statt A, Amatruda JM. Increased protein turnover in obese women. Metabolism 1992; 41: 1028-1034

152 Caballero B, Wurtman RJ. Differential effects of insulin resistance on leucine and glucose kinetics in obesity. Metabolism 1991; 40: 51-58

153 Welle S, Statt M, Barnard R, Amatruda J. Differential effect of insulin on whole-body proteolysis and glucose metabolism in normal-weight, obese and reduced-obese women. Metabolism 1994; 43: 441-445

154 Luzi L, Castellino P, DeFronzo RA. Insulin and hyperaminoacidaemia regulate by different mechanism leucine turnover and oxidation in obesity. Am J Physiol 1996; 270: E273-E281

155 Jeejee huy KN, Anderson GH, Nakhooda AF, Greenberg GR, Sanderson J, Marliess EB. Metabolic studies in total parenteral nutrition with lipid in man. Comparison with glucose. J Clin Invest 1976; 57: 125-136

156 Tessari P, Nissen SL, Miles JM, Haymond MW. Inverse relationship of leucine flux and oxidation to free fatty acid availability in vivo. J Clin Invest 1986; 77: 575-581

157 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821-1830

158 Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibl RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796-1808

159 Cinti S, Mitchell G, Barbabelli G, Murano I, Ceresi E, Falloia E, Wang S, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46: 2347-2355

160 Welten KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003; 112: 1785-1788

161 Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW 2nd, De-Furia J, Jick Z, Greenberg AS, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007; 56: 2910-2918

162 Rausch ME, Weisberg S, Vardhana P, Tortorici DV. Obesity in C57BL/6J female mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond) 2008; 32: 451-463

163 Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 2004; 92: 347-355

164 Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM, Ranganathan G, Peterson CA, McGehee RE, Kern PA. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes 2005; 54: 2305-2313

165 Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280: E745-E757

166 Alessi MC, Petretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 1997; 46: 860-867

167 Cicogini M, Tonoli M, Borgato L, Frigotto L, Manzato F, Zeminian S, Cardinale C, Camin M, Chiaramonte E, De Sandre G, Lunardi C. Expression of plasminogen activator inhibitor-1 in human adipose tissue: a role for TNF-a? Atherosclerosis 1999; 143: 81-90

168 Alessi MC, Bastelica D, Morange P, Berthet B, Leduc I, Verdier M, Goel O, Juhan-Vague I. Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 2000; 49: 1374-1380

169 Mertens I, Verrijken A, Michiels J, Van der Plancken M, Ruige JB, Van Gaal LF. Among inflammation and coagulation markers, PAI-1 is a true component of the metabolic syndrome. Int J Obes (Lond) 2006; 30: 1308-1314

170 Chow WS, Cheung BM, Tso AW, Xu A, Wat NM, Fong CH, Ong LH, Tam S, Tan KC, Janus ED, Lam TH, Lam KS. Hypoadipopectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension 2007; 49: 1455-1461

171 Donahue RP, Abbott RD, Bloom E, Reed DM, Yano K. Central obesity and coronary heart disease in men. Lancet 1987; 1: 821-824

172 Ohlson LO, Larsson B, Svardsudd K, Welin L, Eriksson H, Wilhelmsson L, Björntorp P, Tibblin G. The influence of body
Singla P et al. Metabolic effects of obesity

fat distribution on the incidence of diabetes mellitus-13.5 years of follow-up of the participants in the study of men born in 1913. *Diabetes* 1985; **34**: 1055-1058

174 **Després JP**. Obesity and lipid metabolism: relevance of body fat distribution. *Curr Opin Lipidol* 1991; **2**: 5-15

175 **Laakso M**, Sarlund H, Mykkänen L. Insulin resistance is associated with lipid and lipoprotein abnormalities in subjects with varying degrees of glucose tolerance. *Arteriosclerosis* 1990; **10**: 223-231

176 **Björntorp P**. Metabolic implications of body fat distribution. *Diabetes Care* 1991; **14**: 1132-1143

177 **Arner P**. Not all fat is alike. *Lancet* 1998; **351**: 1301-1302

S- Editor Zhang HN L- Editor Herholdt A E- Editor Liu N