Unsupervised machine learning for transient discovery in Deeper, Wider, Faster light curves

Sara Webb1,2*, Michelle Lochner3,4,5, Daniel Muthukrishna6, Jeff Cooke1,2, Chris Flynn1,2, Ashish Mahabal7, Simon Goode1,2, Igor Andreoni7, Tyler Pritchard8 and Timothy M. C. Abbott9.

1Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail Number H29, PO Box 218, 31122, Hawthorn, VIC, Australia
2ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Australia
3Department of Physics and Astronomy, University of the Western Cape, Bellville, Cape Town, 7535, South Africa
4African Institute of Mathematical Sciences, Muizenberg, Cape Town, 7950
5South African Radio Astronomical Observatory, Observatory, Cape Town, 7295
6Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
8Center for Cosmology and Particle Physics, New York University, New York, NY 10003
9NOIRLab, Mid-Scale Observatories/Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, Chile

ABSTRACT

Identification of anomalous light curves within time-domain surveys is often challenging. In addition, with the growing number of wide-field surveys and the volume of data produced exceeding astronomers’ ability for manual evaluation, outlier and anomaly detection is becoming vital for transient science. We present an unsupervised method for transient discovery using a clustering technique and the Astronomaly package. As proof of concept, we evaluate 85,553 minute-cadenced light curves collected over two ∼1.5 hour periods as part of the Deeper, Wider, Faster program, using two different telescope dithering strategies. By combining the clustering technique HDBSCAN with the isolation forest anomaly detection algorithm via the visual interface of Astronomaly, we are able to rapidly isolate anomalous sources for further analysis. We successfully recover the known variable sources, across a range of catalogues from within the fields, and find a further 7 uncatalogued variables and two stellar flare events, including a rarely observed ultra fast flare (∼5 minute) from a likely M-dwarf.

Key words: methods: data analysis – methods: observational – techniques: photo-metric

1 INTRODUCTION

In the era of large time-domain surveys, classification and discovery of transient sources is becoming reliant on machine classification to handle the associated large amounts of data. Current ground based surveys such as the Zwicky Transient Facility (ZTF, Bellm et al. 2019; Graham et al. 2019), Dark Energy Survey (Dark Energy Survey Collaboration: et al. 2016) and the All Sky Automated Survey for Supernovae (Shappee et al. 2014) are able to scan thousands of square degrees continuously, which amounts to petabytes of data annually, and recently the Panoramic Survey Telescope and Rapid Response System Survey (Stubbs et al. 2010; Chambers et al. 2016) delivered the first petabyte scale optical data release. Space-based time-domain missions have provided unprecedented volumes of photometry, light curves, and proper motions for Galactic sources, with Kepler (Borucki et al. 2010) & K2 (Howell et al. 2014) targeting ∼400,000+ individual stars, TESS (Stassun et al. 2018) is expected to target at least 200,000 sources producing light curves for each source, and Gaia has already released almost 2 billion sources. Overcoming the mining challenges of these increasing amounts of data to not only identify and catalogue the multitude of known transient types but to make discoveries of new or anomalous sources is paramount to the success of future large transient surveys and time-domain science.

1.1 Supervised Learning

Supervised machine learning has already been utilised extensively by several surveys and teams in astronomy for identification of variable stars and quasi-stellar objects from light curves via multivariate Gaussian mixture models, random forest classifiers, support vector machines, or Bayesian neural networks (Debosscher et al. 2007;
of variable star light curves by creating variability trees using the
unsupervised learning approach. The computation time and biases
associated with feature selection can be eliminated with this
method. This work presents an approach to classify variable stars
using deep learning.

1.2 Unsupervised Learning

Even with machine learning advances in astronomy, mining data for
unknown or anomalous events is relatively unexplored, as the major-
ity of current algorithms require training data sets of known events.
Mackenzie et al. (2016) developed an unsupervised feature learning
algorithm that takes subsections of variable star light curves to clus-
ter and uses features to train a linear support vector machine. This
work eliminates the need for traditional feature extraction, limiting
the computing time and biases associated with feature selection.
Only limited work into actual transient classification or anomaly
detection via unsupervised means has been performed within time
domain astronomy.

Valenzuela & Pichara (2018) performed unsupervised clustering
of variable star light curves by creating variability trees using the K-
medoids clustering algorithm of fragmented light curves. This
method offers a novel and computationally fast approach to data
exploration but is again limited by the need for known light curve
examples for similarity searches. To identify Kepler data outliers for
visual inspection, Giles & Walkowicz (2019) performed light curve
clustering using Density-Based Spatial Clustering of Applications
with Noise (DBSCAN). They report the successful extraction of the
known anomalous Boyajian’s star via their method; however they
identified that the DBSCAN assumption of constant density clusters
is a limitation. It should be noted that the overwhelming majority of
work performed to date on light curve classification by machine
learning has used 30 minute to several day cadence, including folded
light curves.

Mahabal et al. (2017) presents another approach to light curve
classification, by reducing the time series data to two-dimensional
representation in order to classify them using deep learning tech-
niques. This approach maps the change and magnitude over time to
create a visual representation of the light curve as an image to be
used in the deep learning process. This method presents an alter-
nate approach of unsupervised learning for time-series classification
without the need for feature extraction.

1.3 Anomaly detection in fast cadenced surveys

Currently, the majority of wide field optical surveys explore a lim-
ited region of the luminosity-timescale phase space, with an average
cadence of hours to days between visits to fields, with only a few
programs exploring the phase space shorter than 1-hour cadence
(see, Lipunov et al. 2004; Roykoff et al. 2005; Lipunov et al. 2007;
Rau et al. 2009; Berger et al. 2014; Burdge et al. 2019; Richmond
et al. 2020). What is largely unexplored by these surveys is the
phase space of transient events occurring on seconds-to-minutes
time scales. There are several events expected to occur on these
timescales, and understanding both the events and the general nature
of the fastest transients in the Universe is crucial for understand-
ing the transient Universe as a whole. For example, the upcoming
Rubin Observatory Legacy Survey of Space and Time (LSST) is
predicted to generate nearly 10 million transient alerts each night.
As such, it will be invaluable to quickly and meaningfully quantify
the expected large volume of short timescale events to help assist in
follow-up priority assignment (LSST Science Collaboration et al.
2009). To do so, the astronomical community will rely heavily on
the use of brokers and their integrated algorithms serving alert streams.
Current brokers, which include ALeRCE1, ANTARES2, Lasair3,
and MARS4 are already in use on the nightly ZTF stream, suc-
cessfully identifying known extragalactic and galactic transient and
variable events. However identifying anomalous events can prove
challenging with pre-trained algorithms, especially within the rarely
explored fast timescales (seconds-to-minutes).

The multi-wavelength Deeper, Wider, Faster (DWF) program offers
the ability to explore optical transient events with the depth and
cadence required to enable the quantification and characterisa-
tion of Galactic and extragalactic variable and fast transient rates
for current and upcoming large-area searches and surveys and to
similar depths as 4m - 8m class telescopes. Such as gravitational
wave counterpart searches, the Rubin Observatory LSST survey,
and others. This work presents our effort to explore the DWF optical
data for anomalous light curves without the restrictions of prior
assumptions or expectations.

As our literature review highlights, the vast majority of work
to date on machine learning for transient classification and iden-
tification has relied on pre-existing understanding of longer dura-
tion variable and transient time-series behaviour. In this work, we
demonstrate an unsupervised method to aid in the discovery of
both known and poorly understood transients on the timescales of
seconds-to-minutes.

The paper is organised as follows: A brief introduction to the
DWF program is presented in Section 2, two DWF data gathering
strategies and the data in Section 3. We present our multifaceted
anomaly detection approach in Section 4 and our proof of concept
results in Section 5. We conclude by presenting our overall outcomes
in Section 6.

2 THE DEEPER, WIDER, FASTER PROGRAM

Several new and exciting astronomical fast transient events have
been discovered in recent decades and the progenitors and physical
mechanisms behind many of them are still poorly known (e.g., Fast
Radio Bursts (FRBs)), supernova shock breakouts, Fast-Evolving
Luminous Transients (FELTs) and other rapidly evolving extragalac-
tic events (for example: Lorimer et al. 2007; Garnavich et al. 2016;
Prentice et al. 2018; Perley et al. 2018; Rest et al. 2018). What has

1 https://github.com/alercebroker
2 https://antares.noao.edu
3 https://lasair.roe.ac.uk
4 https://mars.lco.global
limited our ability to detect and understand these events is the capability to gather data in short, regular time intervals before, during and after the events; as well as over a range of wavelengths. The DWF program (Meade et al. 2017; Vohl et al. 2017; Andreoni et al. 2017a, b; Andreoni & Cooke 2018) has been designed with these challenges specifically in mind, constructing an all wavelength and simultaneous observational program of over 70 facilities to date. DWF takes a ‘proactive’ approach to transient astronomy, with co-ordinated simultaneous wide-field fast-cadenced multi-wavelength observations of target fields taken continuously over 1–3 hour periods, capturing data before, during and after the transient events. The optical data collected during the simultaneous observations is processed in near real-time to quickly identify candidates requiring the use of rapid Target of Opportunity (ToO) observations.

DWF unites the worlds most sensitive facilities with large fields of view in the optical — the Dark Energy Camera (DECam, Flaugher et al. 2015) on the Cerro Tololo Inter-American Observatory (CTIO) Blanco 4-m telescope in Chile and Hyper-SurprimeCam (HSC, Miyazaki et al. 2017) on the Subaru 8-m telescope in Hawaii — taking continuous 20-30 second exposures. Using this strategy, DWF is able to explore a region of luminosity phase space rarely explored by many traditional surveys (see Andreoni et al. 2020). From the real-time data processing, DWF can quickly identify candidates and coordinate rapid-response and long-term follow-up observations of transient candidates. DWF began in 2014 and since its inception has had two pilot runs and seven operational runs (see, Andreoni & Cooke 2018, Cooke et al., in prep).

The unique design of DWF allows exploration of transients on the seconds-to-hours timescales, providing further understanding into known classes of fast transients, events theorised to occur on these timescales, and very early detections of slower-evolving events (see Section 3 for observation specifics). Using either DECam or HSC, the deep optical component of DWF can explore a region of parameter space not yet reached by previous transient surveys. Note that, although DWF collects simultaneous fast-cadenced data across all wavelengths, radio through gamma-ray, from multiple facilities, we will only focus on DECam optical data here. Work by Andreoni et al. (2020) utilised the unique DWF data and ‘Mary’, our transient difference image discovery pipeline, to detect both galactic and extragalactic transients on the minute timescales. In this paper, we examine light curves generated purely from science images (i.e., without image subtraction) for all sources in our chosen fields, and explore the ability to identify known and unknown transient and variable sources through the use of unsupervised machine learning. By examining every source light curve through an unsupervised algorithm, we aim to not only distinguish clear source separations in feature space, but identify and classify unknown and outlying sources to comprehensively explore fast transient events and source variability on the seconds-to-hours timescales.

3 DATA

We use fast cadenced data collected during DWF runs using DECam. We collect 20-second, continuous imaging of targeted fields, acquired in a single band, the ‘g’ filter. We choose the continuous use of the ‘g’ filter to maximize depth with DECam, reaching ∼0.5 magnitudes deeper in comparison to the other filters in dark time. The expected limiting magnitude in ‘g’ band is m(AB) ∼23, for an average seeing of 1.0 arcseconds and airmass of 1.5 (relatively high airmass due to the field constraints of observing simultaneously with multiple facilities). For this work, the DECam images are post-processed through the NOAO High-Performance Pipeline System (Valdes & Swaters 2007; Swaters & Valdes 2007; Scott et al. 2007) and then transferred to the OzSTAR supercomputer at Swinburne University of Technology for our data analysis. The DE-Cam 62 CCD mosaic is separated into individual fits files for each extension. Each CCD is processed separately for source extraction using SExtractor (Bertin & Arnouts 1996) and all source magnitudes are corrected for exposure time and magnitude offsets against the SkyMapper Data Release 2 catalogue (Bertin & Arnouts 2010; Onken et al. 2019). A master list is compiled by cross-matching all extracted sources from each CCD, over all exposures within 0.5 arcsecond radius between source centroids into one catalogue of source positions. This master catalogue is used to create light curves for each source, replacing any non-detections per single exposure with the CCD exposure detection upper limit represented in the light curve.

To date, DWF has targeted 20 separate fields, each observed typically for 6 consecutive nights, and has accumulated over 1 million source detections. In this work, we analyse light curves from two separate fields for only one night each, observed using two different observing strategies. In Section 5.1, we analyse data collected from the DWF ‘J04-55 field’ on 18 December 2015, using a field centre of RA:04:10:00.0 & DEC: −55:00:00.0. The continuous 20 second exposures were collected over a 90 minute period, using a stare’ observational strategy (i.e., pointing at the same coordinates with no small field dithering between exposures). In Section 5.2, we analyse data gathered over an 80 minute period of continuous 20 second exposures centred on the ‘Antlia field’ RA: 10:30:00.0 & DEC: −35:20:00.0 on the Antlia cluster of galaxies. These data were collected on 06 February 2017 and utilised a five point dithering strategy at the beginning middle and end of the observation, while staring in between. In these data, we explore the contribution of telescope dithering to the false positive rate of anomaly detection in Section 5.2.

4 METHODOLOGY

We use the following methodology: (1) feature extraction, (2) clustering, (3) t-SNE visual representation, (4) anomaly ranking and visualisation with Astronomaly. We use feature extraction to find a low dimensional representation of the data, clustering to eliminate large clusters of ordinary objects and instrumental effects and isolate possible interesting transients, anomaly detection to rank these remaining objects by “anomaly” and finally Astronomaly to visually explore the detected anomalies. Note that all stages are performed on nightly light curves with an average cadence of ∼60–68 seconds between light curve points, accounting for both the 20s exposure and 40s CCD readout time. CCD clear and rest. We utilize python for all stages, using the following packages scikit-learn, hdbscan, FATS, astropy, numpy, pandas and matplotlib (Pedregosa et al. 2011; McInnes et al. 2017; Nun et al. 2015; Price-Whealan et al. 2018; Oliphant 2015; McKinney et al. 2010; Hunter 2007).

4.1 Features

As the number of data points differ for different light curves, we extract a uniform set of features to (a) reduce the dimensionality, and (b) allow for direct comparison between light curves that may be on different time scales with different sampling properties. To represent

MNRAS 000, 1–19 (2019)
our unique fast-cadenced data, we use a mixture of normalised features developed and used primarily for the identification of variable stars and quasi-stellar objects. We performed principle component analysis on the features and selected those that corresponded to large eigenvalues. The majority of our features are taken from work by Richards et al. (2011), which were used to classify variable stars from sparse and noisy time-series data. We use only the features not restricted explicitly to folded light curves or periodic sources. Some examples of the features used are amplitudes, standard deviation, linear deviation, maximum slope, etc. In addition to these, we used the stellar variability detection features, \(H_1 \) (amplitudes), \(R_{21} \) (the 2nd to 1st amplitude ratio), and \(R_{31} \) (the 3rd to 1st amplitude ratio) which are focused around Fourier decomposition. The remaining features were taken from work in quasi-stellar object selection, these being auto-correlation length, consecutive points, variability index and Stetson KAC as used by Kim et al. (2011) and mean, \(\sigma \) and \(\tau \) taken from a continuous autoregressive model fitted to our data from Pichara et al. (2012). We extract 25 unique features from each light curve using mostly using FATS and some in-house routines. Full details and sources for the features used are shown in Appendix A1.

In this work we run feature extraction in parallel on the OzSTAR supercomputer at Swinburne University. We utilize the Intel Gold 6140 18-core processors on OzSTAR, achieving a feature extraction speed of \(\sim 110 \) seconds per 1000 light curves when processed serially.

4.2 HDBSCAN

The focus of this paper is to use machine learning to analyse and cluster our light curves. We choose to use Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN\(^5\), McInnes et al. 2017). The theoretical method behind this algorithm was first proposed by Campello et al. (2015). HDBSCAN takes the approach of Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and converts it into a hierarchical clustering algorithm by varying the value of epsilon (\(\epsilon \)) to identify clusters of varying densities (for further details see McInnes et al. 2017).

To better understand how HDBSCAN works, we first outline the original DBSCAN algorithm by Ester et al. (1996). DBSCAN performs nearest neighbour searches in a given feature space to determine clusters of over-densities, points closely related in distance, and identify outlier points that exist in low density regions as noise. DBSCAN requires two parameters, \(\epsilon \), which represents the radius of the neighbourhood search and a minimum number of points (\(\text{minPts} \)), which must exist in a neighbourhood to constitute a dense region. What has limited the use of DBSCAN in the past is the inability to vary \(\epsilon \) in a given data set, requiring clusters to have similar densities. However, HDBSCAN can take in a minimum cluster size parameter which eliminates the need for a single value of \(\epsilon \) when determining clusters from a dendrogram, adjusting of \(\epsilon \) as it explores clusters of varying densities.

After several preliminary tests combining the different distance metrics and varying minimum cluster sizes to evaluate cluster purity and uniformity, we opted to require a minimum cluster size of 5 and to use a Euclidean distance metric for its intrinsic ability to calculate the shortest distance between points. We aim to create as many distinct clusters in our feature space as the algorithm will allow to limit the outliers to very low density regions.

4.3 t-SNE

To help visualise the clustering of objects in our high dimensional feature space, we use the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm developed by van der Maaten & Hinton (2008). The t-SNE algorithm uses the same Euclidean distance metric to measure the proximity of all features in higher-dimensional space. It converts these distances to probabilities using a Gaussian distribution. A similarity matrix of the probabilities is stored for the higher-dimensional space, and the feature space is then collapsed down to 2 or 3 dimensions, depending on the user’s choice, where the Euclidean distance is calculated once again using a t-distribution to assign probabilities and saved as a second similarity matrix. The two distributions are then minimized using the sum of Kullback-Leibler divergence of all data points using a gradient descent method to return a 2 dimensional representation of the distance of data in our feature space. It is important to note that due to the stochastic nature of t-SNE, it is used here only for visualisation and not cluster identification. We note here that t-SNE was performed for the entirety of our data sets, using the OzStar\(^6\) computing nodes as well as on a personal machine with 8 GB ram and a 4.0 GHz quad-core Intel Core i7. We acknowledge that for future work the use of Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP, McInnes et al. 2018) is a promising method for dimensionality reduction, however in this work we were unable to use UMAP due to computational issues and we deemed t-SNE to be sufficient.

4.4 Astronomy

To find the most anomalous light curves, in each cluster, we use the python package Astronomy\(^7\) (Lochner & Bassett in prep) which is comprised of a python back end and JavaScript front end to easily explore the data via a locally hosted web interface (for further details see Appendix B1). Astronomy is a flexible framework, designed to detect anomalies within astronomical images or light curves using any of a variety of anomaly detection algorithms. Here we use the scikit-learn implementation of isolation forest (Ting et al. 2008) available in Astronomy. Each cluster of light curves identified by HDBSCAN was saved in individual data frames containing each light curve’s features.

Using Astronomy, each cluster’s light curve’s where evaluated independently, feeding both their features and original light curve file into the back end of the package.

The isolation forest then works to isolate each light curve by recursively generating partitions, creating a tree structure ultimately segregating each light curve point into nodes. Each node either contains one individual data point, or several data points all with the same feature value.

The web interface GUI allows the user to visually inspect the highest ranking anomalous light curves (as measured by the isolation forest algorithm), as well as explore the interactive t-SNE plot to probe the lower dimensional cluster space. To enable more rapid visualisation, for this work we limit Astronomy to present only the 2000 most anomalously ranked light curves in the GUI interface.

Astronomy serves two purposes in this work. The first is easy visualisation of the data in the clusters. Each cluster is analysed individually and the interactive t-SNE plot allows the user to quickly

\(^5\) https://hdbscan.readthedocs.io/en/latest

\(^6\) https://supercomputing.swin.edu.au/ozstar/

\(^7\) https://github.com/MichelleLLochner/astronomy
Unsupervised methods for transient discovery

5 RESULTS

5.1 DWF J04-55 field - No dithering observational strategy

We present the results of our unsupervised method applied to light curves over a 90-minute observation of the DWF 'J04-55 field' using DECam in stare mode (the telescope tracked the same field centre coordinates for the duration of the observations). It is important to acknowledge that small movements of the telescope may still be present due to telescope guiding, shutter movements and small pointing shifts. A total of 89 images were acquired, with 23 199 sources, as identified in the J04-55 field from the 5-night master source list, as having greater than 3 detections ($N_{det} > 3$) for feature extraction.

5.1.1 Clusters

A total of three clusters were identified using HDBSCAN, as shown in Table 1. Cluster 2 dominates, containing 98.7% of light curves in the field. Inspection showed that this cluster overwhelmingly contained sources which were unchanging in magnitude, consisting of both stars and galaxies. In such a short time-scale observation, we expect that the majority of sources will be assigned to a single cluster in this manner. The two remaining clusters identify faint sources only breaching the detection threshold a few times during the 90 minutes, and sources near, or on, the edges of CCDs which have caused unusual/anomalous light curves. A visual representation of the clusters in feature space can be seen in Figure 1.

Description of light curves	Cluster ID	# of Light Curves	% of Sources
Paint sources at detection threshold	Cluster 0	8	0.03%
Sources near CCD edge	Cluster 1	144	0.62%
Steady light curves	Cluster 2	22929	>98.7%
Real and photometrically affected light curves	Unclustered	138	< 0.59%

Table 1. The details of each of the three clusters identified by the HDBSCAN algorithm. The description of the light curves refers to both the light curve and information gathered from individual cutouts of the detection images. unclustered represents light curves unable to be identified to a cluster.

determine if the objects in the cluster do indeed look similar. The data can then be further vetted using the ranked anomaly system. The most anomalous objects within the cluster will appear first and hence should be the objects that are least likely to actually belong to that cluster. Thus the effectiveness of the clustering can be quickly evaluated without the need for exhaustive study of every single light curve in the cluster.

The second reason we use Astronomaly is to identify anomalous sources in the “unclustered” group. With the same ranking system, the most interesting sources (and also instrumental effects) should appear early in the list allowing quick identification. It is critical to note that while this dataset is still small enough to manually investigate every object (especially with Astronomaly’s visual interface), for datasets consisting of millions of light curves this could simply not be possible and the automated ranking becomes much more important to allow rapid discovery of anomalous sources.

5.1.2 Variable/Transient Sources

A total of 138 light curves remained unclustered (referred to as noise by HDBSCAN, shown in black on Figure 1). The unclustered light curves represent those which have a significant distance from identified clusters and represent the outliers in the data. It is these outliers which are variable and transient sources in the field. The light curve of each was visually inspected (in order of anomaly score) using the Astronomaly package and variable sources were cross-matched to existing catalogs to check for known variability (mainly the International Variable Star Index (VSX) catalogue (Watson et al. 2006), identified RR lyrae stars from the Dark Energy Survey (DES) Stringer et al. (2019), and the Catalina Surveys Southern Periodic Variable Star Catalogue (Drake et al. 2017)). For newly discovered sources showing variability, locations on a Colour-Magnitude Diagram (CMD) were calculated using GaIA data release 2 parallax and photometric information (Evans et al. 2018; Luri et al. 2018). The CMD positions were then overlaid on the variability CMDs presented in work by Gaia Collaboration et al. (2019a) and shown in Appendix C1 as green triangles. After evaluation with Astronomaly, it was determined that the majority of the light curves were indeed anomalous in structure, however caused by instrumental and observational effects. The false positives represented sources on the edges of CCDs or those teetering on the detection threshold. However we did identify 6 sources of continuous variability, 5 of which have been previously catalogued, with the remaining variable source discovered by this work. In addition to the variable stars, a stochastic classical flare event was also identified. Source IDs, name, coordinates, known catalog ID (if available) and period are shown in Table 2, and the light curves are shown in Figure 2.

5.1.3 Validating the completeness for J04-55 field

To confirm the effectiveness of our unsupervised clustering we used several methods to verify that all variable sources in the field were identified. First we retrieved all known variable sources from the VSX catalog. We found 13 catalogued variable sources within DECam’s CCD footprint. Five of the known variable sources were recovered as anomalies in this work (see Table 2), and three were below our detection threshold for the vast majority of exposures. The remaining five did not show significant variability over the ~90 minute period and were subsequently clustered in the grouping of steady light curves. These four sources have catalogued periodicities much longer than 90 minutes (See Appendix D1 for their details.) Secondly, Astronomaly was used to display the 2000 light curves ranked most anomalous via the isolation forest algorithm over the identified clusters. After visual inspection, no additional variable light curves were found. Through these evaluations we confirm that our methods successfully retrieve most, if not all, varying or transient sources present in the field during our observations.

5.2 DWF J10-35 (or Antlia) field - Dithering observational strategy

Through the uniqueness of the DWF program, novel and nontraditional observing strategies have been implemented dependent on the strategies of the facilities performing simultaneous observations.
Figure 1. Feature space of the 25 features of the ‘J04-55 field’ collapsed down to 2 dimensions using t-SNE with the clusters labelled in Table 1 and coloured accordingly. It is important to note 1) that the axis values within a t-SNE are not physically meaningful and hence not labeled, and 2) that the t-SNE algorithm works by adapting its own notion of distance to regional density variations in the higher dimensional data. As a result, t-SNE naturally expands dense clusters and contracts sparse ones when collapsed as shown, and this can make some structure within the t-SNE plot appear more significant than it is.

Table 2. Sources identified showing variability in J04-55 and Antlia fields. Note: lines in bold indicate discoveries in this work.

Field	DWF ID	Catalogued ID	Type\(^a\)	Period (Days)\(^b\)
J04-55	DWF040449.509-552715.863	ASASSN-V J040449.48-552715.9	W Ursae Majoris	0.27
J04-55	DWF040807.980-541827.191	ASASSN-V J040807.97-541827.2	W Ursae Majoris	0.35
J04-55	DWF041109.879-544851.201	SSS J041109.9-544851	W Ursae Majoris	0.32
J04-55	DWF041435.853-544157.278	ASAS J041436-5441.9	Contact Binary	0.45
J04-55	DWF040636.176-543322.433	DES 11110400160736	RR Lyrae	0.59
J04-55	DWF040657.647-541626.051	Discovered in this work	Slow pulsating B.	-
J04-55	DWF041006.862-553303.224	Discovered in this work	Flare event on RR Lyrae	0.86

\(^a\) For previously catalogued sources, type is identified by catalogue, if newly discovered source, type approximated from CMD position (see Appendix C1).
\(^b\) For previously catalogued sources the period is taken from the discovery survey, if newly discovered source period is not known.
\(^c\) Absolute G-Band magnitude as calculated using GAIA parallax information.

and the overall goals of the observing program. Here we confirm that our unsupervised analysis is able to successfully identify and quantify both real astrophysical anomalies, and those caused due to an observing strategy with relatively large dithers (~60 arcsec) designed to move the telescope sufficiently to fill the DECam CCD gaps evenly with 5 dithers. We chose a DWF field where observations were a mixture of five point dithers, and continuous stares over an ~80 minute period. Dithering within surveys is often crucial to fill CCD chip gaps and gather photometric information of all sources in the field. Dithering in this manner results in partial light curves for sources in the chip gaps that are missed during the stare mode observations. Here we evaluate the ‘J10-35’ field, which we will refer to as the Antlia field, as the 3 deg² field is centred on the Antlia galaxy cluster. The observations contained three, five point dithers during the beginning, middle and end of the observations.

Using observations taken on the 06 February 2017, a total of 70 348 sources were identified in the Antlia field from the 5-night master source list. Of these, 62 354 light curves met our pipeline
Unsupervised methods for transient discovery

Figure 2. Four previously known and two newly discovered variable/transient sources present in the unclustered noise within the J04-55 field analysis.

Table 3. The nine sub groupings of light curve types as identified in the Antlia field.

Sub Group	Description of light curves	Cluster IDs	# of Light Curves	% of Sources	colour in t-SNE
G1	Steady light curves	36	58279	93.5 %	Grey
G2	Variable sources	1	6	< 0.01%	Cyan
G3	Faint sources at detection threshold	33, 34, 35	23	< 0.01%	Red
G4	Only detected on five point dithers	0, 3, 4, 21, 22, 23, 27, 28, 32	111	< 0.2%	Orange
G5	Photometric correction issues on first 5 dither points	5, 6, 7, 9, 10, 11, 12, 13, 18	266	< 0.45%	Blue
G6	Sources near edge of CCD resulting in dimming and brightening	2, 14, 17, 24, 26, 29	1176	1.88%	Purple
G7	One or more detections affected by cosmic rays, pixel faults, etc	31	5	< 0.01%	Green
G8	Other photometric correction issues eg. Blended sources.	8, 15, 16, 19, 20, 25, 30	319	< 0.6%	Pink
UC	Contains a mixture of real variables and light curves affected by many of the identified photometric concerns outlined above	-1 / unclustered	2169	3.48%	Black

The same 25 features chosen previously were extracted from each of the 62,354 light curves and a total of 37 clusters were identified through the HDBSCAN clustering algorithm, as well as a group of unclustered light curves that did not satisfy the distance requirements to join the identified clusters (see Appendix E1 for individual cluster information). It is immediately apparent that a significantly higher number of clusters were identified throughout these data in comparison to the previous J04-55 field results in Section 5.1, for which we only find four clusters. The increase in clusters is due to characteristics introduced into the light curves from photometric issues caused mainly by the dithering strategy and...
the tip/tilt motion when using the hexapod\(^8\) on DECam. Below, we outline the usefulness of these clusters in identifying and quantifying transient classifications.

5.2.1 Cluster Sub Groupings

The 37 clusters can be broken down into eight sub groups of clusters, including the unclustered grouping, shown in Table 3. Visual inspection of randomly selected, if not all for the smaller groupings, source fits images over time were used to determine the sub groupings. The majority of clusters fall into the subgroups of photometric anomalies caused by telescope dithering, photometric correction issues or, less frequently, by CCD artifacts/cosmic rays. However two sub groupings are of interest, variable sources (G2), and the light curves that were unable to be clustered with HDBSCAN (UC within Figure 3 and Table 3). The variable sources identified in G2 are discussed further in Section 5.2.2.

Representation of the clusters in feature space can been seen in Figure 3 where the feature space has been reduced into 2 dimensions using t-SNE. The figure clearly shows the feature space dominated by one main cluster of non-varying light curves (number 36, sub group G1), which is unsurprising, as we expect the majority of sources in the field to be unchanging over the minutes-to-hours time scales. Figure 3 further illustrates the grouping of clusters with related light curves by highlighting the sub groups of light curve properties and their causes as outlined in Table 3. Example light curves of each of the sub groups are shown in Figure 4.

From the sub grouping of clusters, we are able to meaningfully quantify the light curves for this field: finding that 93.5\% are grouped into one cluster, of steady light curves, while \(\sim 2.0\%\) of light curves were affected by telescope dithering and/or the use of the hexapod on the DECam instrument, and 0.39\% of light curves had photometric correction issues over the first 5 exposures of the 80 due to the initial five point dither pattern and change in standard stars used for correction on certain CCDs.

5.2.2 Sub groups identifying Variable Sources

The algorithm identified one cluster containing sources of true astrophysical variability, described in sub grouping G2 in Table 3. These sources were cross-matched to several catalogs to check for known variability, as outlined in Section 5.1.2. In this group we identified 6 variable sources, 3 of which have been previously catalogued and 3 sources discovered by this work. Source IDs, name, coordinates, known catalog ID (if available) and period are shown in Table 4.

Of the 3 newly discovered sources in this sub grouping we are unable to unambiguously identify the variable types of two sources using the CMD in Appendix C1. The CMD location of the remaining source was calculated using GAIA data release 2 parallax and photometric information (Evans et al. 2018; Luri et al. 2018). The CMD position is overlaid on the variability CMDs presented in work by Gaia Collaboration et al. (2019a) and subsequently used for likely type identification in 3. We are unable to confidently classify DWF103240.961-344522.875 in the CMD because of its large GAIA parallax uncertainty and, thus, absolute magnitude. On the other hand, DWF103147.030-354553.653 sits in an area where few pulsating objects are found, between main sequence stars and white dwarfs but where cataclysmic variables are common. A source in this region was shown by Gaia Collaboration et al. (2019b) to be likely a cataclysmic variable (CV). The light curves for all 6 sources are presented in Figure 5.

5.2.3 Variable/Transient Sources

A total of 2 169 light curves were unclustered by HDBSCAN and not assigned to a specific cluster in our analysis of the Antlia field. These light curves can be seen to sit along the outskirts of the main grouping of G1 in Figure 3, as well as occupying similar feature space to other identified clusters. It is these light curves which are of particular interest for rare transient and variable events, as we expect any unusual and unique light curves in comparison to the majority to be identified as noise via HDBSCAN.

Two independent approaches were used to evaluate the unclustered light curves. The first was manual inspection of all 2 169 light curves and the second was anomaly detection and ranking using Astronomaly. This dual approach was taken to comparatively quantify the successful extraction of interesting anomalous light curves using Astronomaly’s inbuilt isolation forest anomaly ranking. Here, Astronomaly was used to explore groupings of similar light curves through its inbuilt interactive t-SNE plot.

During our evaluation, sources within the unclustered grouping, were again cross-matched to VSX, DES and the Catalina Surveys Southern Periodic Variable Star Catalogue, to identify previous detections and classifications. The majority of the unclustered light curves were false positives caused by dithering affects on sources. However, amongst the false positives we identify 9 variable sources, 6 of which were previously catalogued by surveys, with the remaining 3 sources discovered in this work. We further discover an ultra fast flaring source, with positioning on the CMD suggesting the source is consistent with M dwarf flares. Optical flare events evolving on very short timescales (seconds-to-minutes) such as this have previously only been identified using 10 second cadence of NUV GALAX data by Brasseur et al. (2019), uncovering a previously unexplored population of short duration of stellar flares. Source IDs, name, coordinates, known catalog ID (if available) and period are shown in Table 5. The light curves for each of the sources are presented in Figure 6. The newly discovered sources showing variability are overlaid on the CMD in Appendix C1 as purple triangles.

5.2.4 Astronomaly Performance

We utilised the large set of unclustered light curves identified in the Antlia field to test the abilities of Astronomaly to present only the most astrophysically anomalous light curves to astronomers in a timely manner. Astronomaly takes less than 2 minutes to process the features through the isolation forest algorithm and launch the interactive web GUI.

Using the Astronomaly front end GUI to visually inspect each light curve in ranked order, we identified the nine variable sources within the top 280 of 2000 highest ranking anomalous light curves taken from the grouping of unclustered sources and the ultra fast flare event was identified within the first 600. By using both clustering and Astronomaly we were able to find all the anomalies in the first 0.9\% of the over all Antlia data. This result highlights the possibility to significantly reduce the amount of time needed for light curve evaluation of anomalous events by astronomers, and will be continued to be utilised in the future analysis of DWF light curves.

A more recent version of Astronomaly contains human-in-the-loop learning, designed specifically to deal with finding objects that

\(^8\) The hexapod mechanism is a set of six pneumatically driven pistons that actuate to precisely align the optical elements between exposures.
Unsupervised methods for transient discovery

Figure 3. Feature space of the 25 features of the 62,354 light curves of the Antlia field collapsed down to 2 dimensions using t-SNE. The sub groupings as outlined in Table 3 are coloured accordingly. It is important to note that t-SNE algorithm works by adapting its known notion of distance to regional density variations in the higher dimensional data, as a result t-SNE naturally expands dense clusters and contracts sparse ones when collapsed.

Table 4. Sources identified showing variability in J04-55 and Antlia fields. Note: lines in bold indicate discoveries in this work.

Field	DWF ID	Catalogued ID	Probable Typea	Period (Days)b
Antlia	DWF102919.102-355133.303	SSS J102919.0-355133	Spotted Star	0.34
Antlia	DWF102938.901-345415.969	SSS J102938.8-345416	W Ursae Majoris	0.27
Antlia	DWF103105.927-360744.003	SSS J103105.8-360742	W Ursae Majoris	0.44
Antlia	DWF102552.421-354418.436	Discovered in this work	δ Scuti or γ Doradus	-
Antlia	DWF103240.961-344522.875	Discovered in this work	-	-
Antlia	DWF103147.030-354553.653	Discovered in this work	-	-

a For previously catalogued sources, type is identified by catalogue, if newly discovered source, type approximated from CMD position (see Appendix C1).
b For previously catalogued sources the period is taken from the discovery survey, if newly discovered source period is not known.
c Absolute G-Band magnitude as calculated using GAIA parallax information.
Figure 4. Antlia field examples of typical light curves present in each of the sub groupings. The blue points represent source detections the red triangles represent the limiting magnitudes of the exposures and are only present in the light curves when sources are not detected.

Figure 5. Three Previously known and three newly discovered variable sources as identified in sub group G2.
Unsupervised methods for transient discovery

5.2.5 Validating the completeness for Antlia field

Similar to Section 5.1.3 we took several steps to verify all variable sources which were identified. Within a 1.5 degree radius of the field centre, 22 catalogued variable sources (with periods less than 1 day) existed in the VSX catalogue and within DECam’s CCD footprint. Nine of the known variable sources were recovered as anomalies in this work, both being identified in the cluster of variables and within the unclustered grouping of most anomalous light curves, as explained in detail in Sections 5.2.1 and 5.2.2. Of the remaining sources, 6 did not show significant variability over the ~80 minute period and were subsequently clustered in the grouping of steady light curves, consistent with their longer recorded periods (See Appendix D2 for full details). The remaining 7 were either below detection threshold, at saturation limits or photometrically affected by dithering and were clustered accordingly. Astronomaly was used to display the top 2000 light curves (limited to 2000 light curves by Astronomaly for the handling of the interactive t-SNE plot) ranked most anomalous via the isolated forest algorithm over the identified clusters. After visual inspection, no additional interesting light curves were found.
6 CONCLUSION

Existing and future astronomical surveys are continuously pushing the bounds of the known transient universe, and the ability to efficiently probe a large number of light curves in a timely manner will become vital in the exploration of regions of previously known and unknown classes of events. In this work, we have successfully shown the capability of unsupervised machine learning methods to rapidly and thoroughly explore fast cadenced data collected by transient surveys, using the DWF program as an example. By taking a two-step approach of both clustering and anomaly/outlier detection, we were able to identify 7 previously unidentified variable stars. We also identified two classes of stellar flares, one classical flare and one rapidly evolving flare, further demonstrating the effectiveness of our unsupervised methods and the unique capability of the DWF program. Notable is the speed of which this method can be performed. Feature extraction takes ~110 seconds per 1000 light curves and when run in parallel (on the OzSTAR supercomputer) can complete a set of 70,000 light curves in less than 15 minutes. The HDBSCAN clustering takes a further ~2 minutes, and in total, a set of 70,000 light curves can be ready for human evaluation using Astromomacy within 20 minutes. Both the speed and ease of use our method demonstrates the ability of unsupervised methods in meaningfully evaluating light curves to identify source variability. This method is well suited for the use on current and upcoming surveys for anomaly detection, for which hundreds of millions of light curves will inevitably be produced.

Finally, we stress that this work explores a small fraction of the full DWF data set, only 2 fields for 80-90 minutes each. Future work will involve the evaluation of 250+ hours of data for 17 fields. Moreover, as DWF runs typically occur over 6 consecutive nights, additional variable sources will be found over a range of phase durations when the data is analysed over the full run duration for the 2 fields explored here. Furthermore, we plan to use this unsupervised method on light curves combined over multiple nights to search for long period variables, which would otherwise appear steady in single night light curves.

ACKNOWLEDGEMENTS

We would like to thank the organisers of the 2019 Kavli Summer Program in Astrophysics hosted at the University of California, Santa Cruz, without which this collaboration and work would not have been possible. The program was funded by the Kavli Foundation, The National Science Foundation, UC Santa Cruz, and the Simons Foundation. Part of this research was funded by the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav), CE170100004. We acknowledge the financial assistance of the National Research Foundation (NRF). Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF. This work was partly supported by the GROWTH (Global Relay of Observatories Watching Transients Happen) project funded by the National Science Foundation under PIRE Grant No 1545949. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaboration. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astroparticle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministerio de Ciencia, Tecnología e Innovación, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Enérgicas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians University of Munich, the University of Nottingham, the University of Pennsylvania, the University of Queensland, the University of Oxford, Los Alamos National Laboratory, the University of Pennsylvania, the University of Portsmouth, the Universidad de la República, the University of Salamanca, the University of Oxford, the University of Pennsylvania, the University of Portsmouth, the University of Reading, the University of Siena, the University of Sheffield, the University of Sussex, Texas A&M University, the University of Utah, Vanderbilt University, the University of Virginia, the University of Washington, and Yale University.

Table 5. Sources identified showing variability in J04-55 and Antlia fields. Note: lines in bold indicate discoveries in this work.

Field	DWF ID	Catalogued ID	Type	Period (Days)
Antlia	DWF102641.723-355131.230	SSS J102641.7-355130	W Ursae Majoris	0.29
Antlia	DWF102742.474-343932.754	SSS J102742.4-343933	W Ursae Majoris	0.27
Antlia	DWF103120.961-354209.063	SSS J103120.8-3542094	W Ursae Majoris	0.27
Antlia	DWF103037.999-355800.839	ASAS J103038-355808.0	β Persei	0.72
Antlia	DWF103047.592-354046.884	SSS J103047.5-354047	RR Lyrae	0.31
Antlia	DWF103114.718-343832.907	SSS J103114.5-343834	RR Lyrae	0.33
Antlia	DWF102606.360-354249.252	Discovered in this work	UV Ceti or T Tauri	-
Antlia	DWF103355.245-352124.241	Discovered in this work	T Tauri	-
Antlia	DWF103325.535-353259.289	Discovered in this work	γ Doradus	-
Antlia	DWF102955.559-360035.170	Discovered in this work	Ultra fast flare	-

a For previously catalogued sources, type is identified by catalogue, if newly discovered source period is not known.

b For previously catalogued sources the period is taken from the discovery survey, if newly discovered source period is not known.

c Absolute G-Band magnitude as calculated using GAIA parallax information.
DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

A. Möller et al., 2016, Journal of Cosmology and Astroparticle Physics, 2016, 608
Andreon I., Cooke J., 2018.
Andreon I., et al., 2017a, PASA, 34
Andreon I., et al., 2017b, PASA, 34
Andreon I., et al., 2020, MNRAS, 491, 5852
Bellm E. C., et al., 2019, PASP, 131, 016002
Berceo E., et al., 2014, ApJ, 779
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Bertin E., Arnouts S., 2010, SExtractor: Source Extractor (ascl:1010.064)
Bloom J. S., et al., 2012, Publications of the Astronomical Society of the Pacific, 124, 1175
Borucki W. J., et al., 2010, Science, 327, 977
Brasseur C. E., Osten R. A., Fleming S. W., 2019, ApJ, 883, 88
Burdel K. B., et al., 2019, Nature, 571, 528
Campbell R. J. G. B., Moulavi D., Sander J., 2013, in Poil E., Toeng V. S., Cao L., Motoda H., Xu G., eds, Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 160–172
Chambers K. C., et al., 2016, arXiv e-prints, p. arXiv:1612.05560
Dark Energy Survey Collaboration: et al., 2016, Monthly Notices of the Royal Astronomical Society, 460, 1270
Debosscher J., Sarro L. M., Aerts C., Cuypers J., Vandenbussche B., Garrido R., Solano E., 2007, A&A, 475, 1159
Drake A. J., et al., 2017, MNRAS, 469, 3688
Esté M., Krieger H.-P., Sander J., Xu X., 1996, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. KDD’96. AAAI Press, pp 226–231, http://dl.acm.org/citation.cfm?id=3901460.3901507
Evans D. W., et al., 2018, A&A, 616, A4
Flaugher B., et al., 2015, AJ, 150, 150
Gaia Collaboration et al., 2019a, A&A, 623, A110
Gaia Collaboration et al., 2019b, A&A, 623, A110
Garnavich P. M., et al., 2016, ApJ, 820
Giles D., Walkowicz L., 2019, MNRAS, 484, 834
Graham M. J., et al., 2019, PASP, 131, 078001
Howell S. B., et al., 2014, PASP, 126, 398
Graham M. J., et al., 2019, PASP, 131, 078001
Lawson R., et al., 2017, PASP, 129, 814
Lawson R., et al., 2018, PASP, 130, 025002
McInnes L., Healy J., Astels S., 2017, The Journal of Open Source Software, 2
McInnes L., Healy J., Melville J., 2018, arXiv e-prints, p. arXiv:1802.03426
McKinney W., et al., 2010, in Proceedings of the 9th Python in Science Conference, pp 51–56
Meade B., et al., 2017, Publ. Astron. Soc. Australia, 34, e023
Miyazaki S., et al., 2010, Publications of the Astronomical Society of Japan, 70
Möller A., de Boissière T., 2020, MNRAS, 491, 4277
Muthukrishna D., Narayan G., Manvel K. S., Biswas R., Hložek R., 2019, PASP, 131, 118002
Narayan G., et al., 2018, The Astrophysical Journal Supplement Series, 236, 9
Nun L., Protopapas P., Sim B., Zhu M., Dave R., Castro N., Pichara K., 2015, arXiv e-prints, p. arXiv:1506.00010
Oliphant T. E., 2015, Guide to NumPy, 2nd edn. CreateSpace Independent Publishing Platform, USA
Okenn C. A., et al., 2019, Publ. Astron. Soc. Australia, 36, e033
Pedregosa F., et al., 2016, Journal of Machine Learning Research, 12, 2825
Perley D. A., et al., 2018, Monthly Notices of the Royal Astronomical Society, 484, 1031
Pichara K., Protopapas P., 2013, The Astrophysical Journal, 777, 83
Pichara K., Protopapas P., Kim D. W., Marquette J. B., Tisserand P., 2012, MNRAS, 427, 1294
Prentice S. J., et al., 2018, ApJ, 865, L3
Price-Whelan A. M., et al., 2018, AJ, 156, 123
Protopapas P., Huipe J., Estévez P. A., Zegers P., Principe J. C., Marquette J.-B., 2015, The Astrophysical Journal Supplement Series, 216, 25
Rau A., et al., 2009, 121
Rest A., et al., 2018, Nature Astronomy, 2, 307
Richards J. W., et al., 2011, ApJ, 733, 10
Richmond W. M., et al., 2020, PASI, 72, 3
Roykoff E. S., et al., 2005, ApJ, 631
Scharf E. F., Finkbeiner D. P., 2011, ApJ, 737, 103
Scott D., Pierfederici F., Swaters R. A., Thomas B., Valdes F. G., 2007, in Shaw R. A., Hill F., Bell D. J., eds, Astronomical Society of the Pacific Conference Series Vol. 376, Astronomical Data Analysis Software and Systems XVI, p. 265
Shappee B. J., et al., 2014, The Astrophysical Journal, 788, 48
Stassun K. G., et al., 2018, AJ, 156, 102
Stetson P. B., 1996, PASP, 108, 851
Stringer K. M., et al., 2019, AJ, 158, 16
Stubbs C. W., Doherty P., Cramer C., Narayan G., Brown Y. J., Lykke K. R., Woodward J. T., Tonry J. L., 2010, The Astrophysical Journal Supplement Series, 191, 736
Swaters R. A., Valdes F. G., 2007, in Shaw R. A., Hill F., Bell D. J., eds, Astronomical Society of the Pacific Conference Series Vol. 376, Astronomical Data Analysis Software and Systems XVI, p. 269
Ting K., Liu F., Zhou Z., 2008, in ICDM 2008. Eighth IEEE International Conference on Data Mining. IEEE Computer Society, Los Alamitos, CA, USA, pp 413–422, doi:10.1109/ICDM.2008.17, https://doi. ieeecomputersociety.org/10.1109/ICDM.2008.17
Valdes F. G., Swaters R. A., 2007, in Shaw R. A., Hill F., Bell D. J., eds, Astronomical Society of the Pacific Conference Series Vol. 376, Astronomical Data Analysis Software and Systems XVI, p. 273
Valenzuela L., Pichara K., 2018, MNRAS, 474, 3259
Vohl D., et al., 2017, PASA, 34

Unsupervised methods for transient discovery
Watson C. L., Henden A. A., Price A., 2006, Society for Astronomical Sciences Annual Symposium, 25, 47
van der Maaten L., Hinton G., 2008, Journal of Machine Learning Research, 9, 2579
APPENDIX A: FEATURES

Feature	Description	Inputs	Refs
Amplitudes	Half the difference between the median of the maximum 5% and the median of the minimum 5% Magnitude.	Magnitude	Richards et al. (2011)
Auto correlation length	Length of linear dependence of a signal with itself at two points in time	Magnitude	Kim et al. (2011)
Beyond1Std	Percentage of points beyond one standard deviation from the weighted mean	Magnitude & Error	Richards et al. (2011)
CAR_{mean}	The mean of a continuous time auto regressive model using a stochastic differential equation	Magnitude, Time & Error	Pichara et al. (2012)
CAR_r	The variability of the time series on time scales shorter than τ	Magnitude, Time & Error	Pichara et al. (2012)
CAR_r	The variability amplitude of the time series	Magnitude, Time & Error	Pichara et al. (2012)
H₁	Amplitude derived using the Fourier decomposition	Magnitude	Kim & Bailer-Jones (2016)
Con	The number of three consecutive data points that are brighter or fainter then 2σ and normalized by N -2	Magnitude	Kim et al. (2011)
Linear Trend	Slope of a linear fit to the light curve	Magnitude & Time	Richards et al. (2011)
MaxSlope	Maximum absolute magnitude slope between two consecutive observations	Magnitude & Time	Richards et al. (2011)
Mean	The mean magnitude	Magnitude	Kim et al. (2014)
Mean Variance	the ratio of the standard deviation to the mean magnitude	Magnitude	Kim et al. (2011)
Median Absolute Deviation	The median discrepancy of the data from the median data	Magnitude	Richards et al. (2011)
Median Buffer Range	Fraction of photometric points with amplitude/10 of the median magnitude	Magnitude	Richards et al. (2011)
Pair Slope Trend	The fraction of increasing first differences minus the fraction of decreasing first differences	Magnitude	Richards et al. (2011)
Q31	The difference between the 3rd and 1st quarters	Magnitude	Kim et al. (2014)
R₂₁	2nd to 1st amplitude ratio derived using the Fourier decomposition	Magnitude	Kim & Bailer-Jones (2016)
R₃₁	3rd to 1st amplitude ratio derived using the Fourier decomposition	Magnitude	Kim & Bailer-Jones (2016)
RCS	Range of cumulative sum	Magnitude	Richards et al. (2011)
Skew	The skewness of the sample	Magnitude	Richards et al. (2011)
Slotted Auto Correlation	Slotted auto correlation length	Magnitude & Time	Protopapas et al. (2015)
Small Kurtosis	Small sample kurtosis of magnitudes	Magnitude	Richards et al. (2011)
Standard Deviation	Standard deviation of the magnitudes	Magnitude	Richards et al. (2011)
Stetson K_{AC}	Stetson K applied to the slotted auto correlation function of the light curve	Magnitude	Stetson (1996); Kim et al. (2011)
Variability Index	Ratio of the mean of the square of successive differences to the variance of data points	Magnitude	Kim et al. (2011)

Table A1. Features used in this work and the properties of the light curves they represent.
Figure B1. Top) *Astronomaly* web interface ‘Anomaly Scoring’ tab, where light curves can be visually assessed in order of anomaly ranking as determined by the isolation forest algorithm. Bottom) *Astronomaly* web interface ‘Clustering’ tab, displaying an interactive t-SNE plot produced from the input data. The points within the t-SNE can be clicked and then the corresponding light curve will be displayed to the right of the screen. This feature is extremely useful for searching similar light curves based on their features.

APPENDIX B: ASTRONOMALY WEB INTERFACE
Figure C1. Known pulsating (top panel), eruptive (centre panel), and cataclysmic (bottom panel) variables are shown on the Gaia CMDs (Gaia Collaboration et al. 2019b), with the newly discovered variable and flaring sources (large symbols) overlaid. The green triangles represent sources found in the J04-55 field, the orange represent newly discovered sources from G2 in the Antlia field, and the purple represent the newly discovered sources, which HDBSCAN was not able to cluster. Gaia BP-RP was corrected for galactic reddening (Schlafly & Finkbeiner 2011).

APPENDIX C: COLOUR MAGNITUDE PLOT - NEWLY DISCOVERED TRANSIENTS/VARIABLES FROM THIS WORK
### Field Catalogue Name	Type	Period (Days)	Notes
DWF J04-55 | SSS J041109.9-544851 | W Ursae Majoris eclipsing binary | 0.31 | Identified in this work as anomalous |
DWF J04-55 | ASAS J040958-5520.2 | Cepheid | 9.20 | Below detection threshold most exposures |
DWF J04-55 | ASAS J041436-5441.9 | Contact binary | 0.45 | Identified in this work as anomalous |
DWF J04-55 | ASASSN-V J040807.97-541827.2 | W Ursae Majoris eclipsing binary | 0.55 | Identified in this work as anomalous |
DWF J04-55 | ASASSN-V J040449.48-552715.9 | W Ursae Majoris eclipsing binary | 0.27 | Identified in this work as anomalous |
DWF J04-55 | SSS J041229.7-543444 | Asymmetric RR Lyrae | 0.55 | Below detection threshold most exposures |
DWF J04-55 | SSS J040348.1-552845 | W Ursae Majoris eclipsing binary | 0.39 | Below detection threshold most exposures |
DWF J04-55 | SSS J040421.3-551639 | β Persei eclipsing binary | 1.15 | Flat light curve, unchanging over observations |
DWF J04-55 | ASAS J040237-5502.5 | Detached eclipsing binary | 1.93 | Flat light curve, unchanging over observations |
DWF J04-55 | WISE J041127.4-543854 | β Persei eclipsing binary | 0.68 | Flat light curve, unchanging over observations |
DWF J04-55 | ASASSN-V J041337.83-554819.5 | Variable star of unspecified type | unknown | Flat light curve, unchanging over observations |
DWF J04-55 | ASASSN-V J040350.67-545214.6 | Spotted stars that weren’t classified into a particular class | 0.49 | Flat light curve, unchanging over observations |

Table D1. Variable Star Index (VSX) catalogued variable sources within the DWF J04-55 field

Field	Catalogue Name	Type	Period (Days)	Notes
DWF Antlia | SSS J103047.5-354047 | RR Lyrae | 0.31 | Identified in this work as anomalous |
DWF Antlia | SSS J102938.8-345416 | W Ursae Majoris eclipsing binary | 0.27 | Identified in this work as anomalous |
DWF Antlia | SSS J103120.8-354209 | W Ursae Majoris eclipsing binary | 0.27 | Identified in this work as anomalous |
DWF Antlia | ASAS J103038-3558.0 | β Persei-type eclipsing binary | 0.72 | Identified in this work as anomalous |
DWF Antlia | SSS J103114.5-343834 | RR Lyrae | 0.33 | Identified in this work as anomalous |
DWF Antlia | SSS J102742.4-343933 | W Ursae Majoris eclipsing binary | 0.27 | Identified in this work as anomalous |
DWF Antlia | SSS J103105.8-360742 | W Ursae Majoris eclipsing binary | 0.44 | Identified in this work as anomalous |
DWF Antlia | SSS J102641.7-355130 | W Ursae Majoris eclipsing binary | 0.29 | Identified in this work as anomalous |
DWF Antlia | SSS J102919.0-355133 | RR Lyrae | 0.34 | Identified in this work as anomalous |
DWF Antlia | SSS J102615.2-351023 | RR Lyrae | 0.50 | Below detection threshold most exposures |
DWF Antlia | SSS J102615.2-351023 | Dwarf nova | unknown | Flat light curve, unchanging over observation |
DWF Antlia | SSS J102615.2-351023 | W Ursae Majoris eclipsing binary | 0.29 | Flat light curve, unchanging over observation |
DWF Antlia | SSS J103200.4-353401 | W Ursae Majoris eclipsing binary | 0.44 | Flat light curve, unchanging over observation |
DWF Antlia | SSS J102734.7-353154 | W Ursae Majoris eclipsing binary | 0.40 | Flat light curve, unchanging over observation |
DWF Antlia | SSS J102717.6-353645 | β Persei-type eclipsing binary | 0.89 | Flat light curve, unchanging over observation |
DWF Antlia | SSS J103425.0-350405 | W Ursae Majoris eclipsing binary | 0.41 | Flat light curve, unchanging over observation |
DWF Antlia | SSS J102712.4-353219 | RR Lyrae | 0.63 | At saturation limit with photometry affected, |
DWF Antlia | SSS J103237.3-345913 | Spotted stars that weren’t classified into a particular class | 0.30 | At saturation limit with photometry affected, |
DWF Antlia | SSS J103436.8-352812 | W Ursae Majoris eclipsing binary | 0.35 | At saturation limit with photometry affected |
DWF Antlia | SSS J103157.1-351718 | W Ursae Majoris eclipsing binary | 0.32 | Light curve photometrically affected |
DWF Antlia | SSS J103440.2-351511 | W Ursae Majoris eclipsing binary | 0.31 | Affected photometry from CCD edge |
DWF Antlia | SSS J102906.8-360355 | W Ursae Majoris eclipsing binary | 0.32 | Affected photometry from CCD edge, identified as such in G6 |

Table D2. Variable Star Index (VSX) catalogued variable sources within the DWF Antlia field

APPENDIX D: PREVIOUSLY CATALOGUED SOURCES
Table E1: Clusters Identified from Antlia field light curves using HDBSCAN.

APPENDIX E: LIGHT CURVE TRAITS

This paper has been typeset from a \TeX\ file prepared by the author.