A PH-like domain of the Rab12 guanine nucleotide exchange factor DENND3 binds actin and is required for autophagy

Jie Xu¹, Guennadi Kozlov², Peter S. McPherson¹, Kalle Gehring²,*

Running title: The PHenn domain of DENND3 binds actin

¹ Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, jie.xu3@mail.mcgill.ca, peter.mcpherson@mcgill.ca.

² Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada, guennadi.kozlov@mcgill.ca, kalle.gehring@mcgill.ca.

* Corresponding author: kalle.gehring@mcgill.ca

Key words: DENN domain, PH domain, PHenn domain, DENND3, Rab12, intramolecular interaction, guanine-nucleotide exchange factor, GEF, autophagy, GTPase

Introduction

Small GTPases, key regulators of cellular function, are found in five classes, Ras, Rho, Ran, Rab and Arf (1,2). Ras and Rho family members function in signal transduction, Ran mediates nucleocytoplasmic transport, and Arf and Rab proteins are regulators of intracellular vesicle trafficking (1,2). All of these small GTPases cycle between inactive GDP-bound and active GTP-bound forms. In their GTP-bound form, GTPases interact with effectors that carry out their cellular functions. Guanine nucleotide exchange factors (GEFs) catalyze the exchange of GDP to GTP to activate small GTPases and as such GEF activity is often tightly regulated by physiological activities. For example, through conformational changes the catalytic activity of GEFs can be released from auto-inhibition and through subcellular translocation, GEFs can be recruited to specific membranes to recruit and activate their substrates. Phosphorylation is another mechanism to regulate GEFs in response to specific physiological stimulation (1,3).

With 26 members, many of them involved in human diseases, the differentially expressed in normal and neoplastic cells (DENN) domain-containing proteins are the largest family of Rab
GEFs (4-8). We previously demonstrated that DENN domain-containing protein 3 (DENND3), a GEF for Rab12, is regulated through phosphorylation during macroautophagy (9,10). Macroautophagy, hereafter referred to as autophagy, is a conserved process functioning in degradation of macromolecules. Upon specific stimulation, such as starvation, selective cellular materials are sequestered into a double membrane organelle, the autophagosome. Following fusion with lysosomes, the materials enclosed in the autophagosome are degraded and the resulting products, such as amino acids, are released into the cytosol for reuse (11). DENND3 plays a vital role in this process. Upon starvation, the most upstream kinase in the autophagy process, unc-51-like kinase (ULK) phosphorylates DENND3 activating its GEF activity towards Rab12. Active Rab12 facilitates the traffic of autophagosomes towards lysosomes (9). In addition to ULK-mediated phosphorylation, DENND3 is regulated by an intramolecular interaction that auto-inhibits its GEF activity at the steady state (12,13). Phosphorylation of Tyr940 within DENND3 counters the intramolecular interaction and renders an open conformation of DENND3, resulting in enhanced GEF activity towards Rab12 (12,13).

Tyr940 resides in a region of DENND3 thought to be unstructured. Through generation of a series of protein constructs followed by expression studies, we identified a stable region surrounding Tyr940 and solved its 3D structure at 1.85 Å resolution. Based on its structure and function, we propose the term, PHenn, for PH-like domain binding to a DENN domain. We demonstrate that the PHenn domain functions as a novel actin-binding module and that the actin and DENN domain interactions are required for the role of DENND3 in autophagy.

Results and Discussion

Structure of a PHenn domain of DENND3

The N-terminus of DENND3 has a DENN domain which is preceded by an N-terminal 79 amino acid extension. We refer to the two regions collectively as the extended-DENN (Ext-DENN) domain. The C-terminus contains a WD40 repeats domain (Fig. 1A). The region between these domains is termed the linker. We previously demonstrated an intramolecular interaction between Ext-DENN and the linker that auto-inhibits DENND3 GEF activity at steady state (12). Importantly, the phosphorylation status of Tyr940 near the C-terminus of the linker regulates this intramolecular interaction. Using PSIPRED, a secondary structure prediction tool (14), we noticed that the region surrounding Tyr940 contains clustered α-helices and β-sheets, a sign of a structured domain. We thus sought to solve the structure of the linker through crystallography.

The purified full-length linker failed to produce protein amenable to crystal formation. We thus generated a series of constructs involving progressive deletion of the N-terminal side of the linker until we mapped a minimal region that retained binding to the Ext-DENN and was suitable for structural studies. The construct, encoding residues 720-973 bound to FLAG-Ext-DENN in pull-down experiments to the same extent as full-length linker (Fig. 1B). Crystals generated from the 720-973 construct diffracted to better than 2 Å resolution. To determine the phases, the protein was labeled with selenomethionine and the structure was solved using the single-wavelength anomalous dispersion (SAD) method and refined to 1.85 Å. Statistics of data collection and refinement are in Supplemental Table 1. The structure, termed a PHenn domain, is present in two copies in the asymmetric unit. The molecules are very similar to each other with a root-mean-square deviation of atomic positions of 0.63 Å over 206 Cα atoms (supplemental Fig. S1A). We observed residues 722-946 (chain A) and 723-947 (chain B) in the electron density map. The N-terminal residues 720-721 and the C-terminal residues 948-973 are absent in the model due to disorder. The structure shows a large helical bundle capped by a sandwich of two β-sheets stacked perpendicularly to each other (Fig. 1C). The β-sheets in combination with the following helix form a characteristic pleckstrin homology (PH)-like fold (yellow color in Fig. 1D). The PH-like fold is an integral part of the larger domain, as it is preceded by four α-helices and followed by another three α-helices, all of which make up the helical bundle (Fig. 1D).
Previous studies demonstrated a key role for Tyr940 in regulating the GEF activity of the DENN domain via an intramolecular interaction with the Ext-DENN region (12). Tyr940 is positioned at the surface made by the junction of four helices on the opposite site of the PHenn domain (supplemental Fig. S1B). The side chain of Tyr940 is solvent-accessible and is primed for contacts with the Ext-DENN (supplemental Fig. S1B). Moreover, when evolutionarily conserved regions of the PHenn domain were mapped onto the surface of the structure (gray: poorly conserved regions, green: highly conserved regions) we noticed that one of the most highly conserved surfaces is centered on Tyr940 (supplemental Fig. S1C). This further highlights the physiological relevance of the intramolecular interaction.

A hydrophobic β-turn in the PHenn domain is involved in the intramolecular interaction

The most unusual structural feature of the PHenn domain is a cluster of hydrophobic residues (Phe856, Leu857, Leu858 and Leu859) that make up a hydrophobic β-turn that protrudes from the structure (Fig. 2A). On the outside surface of the β-sheet, the hydrophobic surface extends on either side by Val854 and Ile861 (Fig. 2A). Interestingly, in the crystal the hydrophobic β-turn is stabilized by interactions between DENND3 molecules (Fig. 2B). We previously observed that DENND3 self-associates (12) and wondered if the PHenn domain contributes to DENND3 oligomerization. We thus performed pull-down experiments using GST-PHenn domain with cell lysates expressing FLAG-tagged PHenn domain, but detected no interaction (Fig. 2C). To test a possible role of the hydrophobic β-turn in the context of the full-length protein, we mutated both Leu857 and Leu858 to either glutamine or serine (labeled "L to Q" or "L to S"). The interaction of full-length FLAG-tagged and HA-tagged DENND3 proteins was not altered by the mutations (Fig. 2D). These results indicate that the hydrophobic β-turn is not involved in the oligomerization of DENND3. The interaction between the PHenn domains seen in the crystal is likely limited to the process of crystal formation.

To test whether the hydrophobic β-turn is involved in the intramolecular interaction between PHenn domain and the Ext-DENN, we performed pull-down experiments using GST-PHenn domain with cell lysates expressing FLAG-tagged Ext-DENN. As shown in Fig. 2E, the binding between Ext-DENN and the PHenn domain was abolished by the Leu857Gln and Leu858Gln double mutation in the PHenn domain, suggesting that the hydrophobic β-turn is critical for the intramolecular interaction.

Release of the intramolecular interaction, leading to upregulation of GEF activity, would leave the hydrophobic cluster exposed. In some cases, clustered hydrophobic residues insert into lipid bilayers, such as what is seen in the N-BAR domain of endophilin, which anchors into membranes through hydrophobic residues in its N-terminal amphipathic helix (15,16). We wondered if the hydrophobic β-turn would insert into membranes upon release of the intramolecular interaction. We thus compared the membrane pool of wild-type DENND3 with that of DENND3 with Leu857Gln and Leu858Gln mutations using subcellular fractionation experiments. Post-nuclear supernatants from lysates expressing the DENND3 proteins were centrifuged at 200,000 x g and the membrane (pellet, P) and cytosolic (supernatant, S) fractions were analyzed. While NaK'-ATPase, an integral membrane protein was found in the pellet and GAPDH, a cytosolic protein, was found mainly in the supernatant, the Leu857Gln and Leu858Gln mutant was found mainly in the membrane fraction, the same as wild-type DENND3 (supplemental Fig. S2A/B). Thus, the hydrophobic β-turn does not appear to be a determinant of membrane association of DENND3.

PH domains are well known for their property to bind phosphatidylinositol (17). We thus tested for the association of the PHenn domain with an array of lipid species using GST-PHenn fusion protein overlay assay with hydrophobic membrane strips spotted with various lipid species (supplemental Fig. S2C). As for GST, the GST-PHenn domain failed to bind any lipid species whereas GST-PH domain of PLC-δ1 binds to PI(4,5)P₂ as expected (18) (supplemental Fig. S2C). This suggests the
The PHenn domain of DENND3 is a novel actin-binding module

Structure-based alignment using the Dali server (19), which compares a query protein 3D structure against structures in the Protein Data Bank, revealed that the PHenn domain has structural similarity to the FERM domain from sorting nexin-17 (20) and focal adhesion kinase (21) (supplemental Fig. S3). FERM domains consist of three subdomains, an ubiquitin-like fold, an acyl-CoA binding protein-like fold, and a PH domain fold (22). FERM domains are frequently found in actin-binding proteins and it is reported that the isolated PH subdomain of FERM domains binds to filamentous actin (F-actin) (23). We thus tested if the PHenn domain of DENND3 binds to F-actin. Purified GST-PHenn domain, GST alone, or purified actinin, a known F-actin binding protein were incubated with purified, preassembled F-actin, then subject to ultracentrifugation, which is capable of pelleting F-actin but not monomeric actin. After centrifugation in the absence of F-actin, purified GST, GST-PHenn domain, and actinin remained in the supernatant (Fig. 3A lane 1, 3 and 13). In contrast, in the presence of F-actin, the DENND3 GST-PHenn domain sedimented (Fig. 3A lane 10) as did actinin (Fig. 3A lane 12), but GST remained in the supernatant (Fig. 3A lane 8). Purified full-length DENND3 also co-sedimented with F-actin (Fig. 3B) and the GST-PHenn domain bound to endogenous actin from rat tissue lysates (Fig. 3C). Together, these data demonstrate that the PHenn domain is a novel actin-binding module.

Actin binding is required for the function of DENND3 in autophagy

To investigate whether actin binding is required for the role of DENND3 in autophagy, we sought to map the interaction between actin and DENND3 through site-directed mutagenesis. Bruton’s tyrosine kinase interacts with F-actin through basic amino acids close to the N-terminus of its PH domain (24). We thus mutated surface exposed Arg and Lys residues around the N-terminal region of the first β-sheet of the PHenn domain of DENND3. We screened for actin binding by pull-down experiments with GST fusion proteins. As shown in Fig. 4A, 10 μg of GST-PHenn domain with mutations at Lys812, Arg815, Lys819, Arg834 or Arg844 have compromised actin binding compared to wild-type protein. In contrast, mutation of both Leu857 and Leu858 to glutamine in the β-turn of the PHenn domain does not influence binding (Fig. 4A, compare lane 3 with lane 9). Even with increased amounts of GST-PHenn domain up to 30 μg, Arg815Glu and Lys819Glu still exhibit clear defects in binding to actin (Fig. 4B). We then performed actin sedimentation experiments with these mutants (Fig. 4C). While the majority of wild-type PHenn domain and of the Leu857Gln Leu858Gln double mutant co-sediments with F-actin, the mutants of the basic residues have less co-sedimentation. Among these mutants Arg844Glu, which resides on a loop connecting the first and second β-sheets, has only a subtle reduction of actin binding (Fig. 4A and C). The basic residues with obvious defects in actin binding cluster on a surface of the PHenn domain, rendering a binding platform (Fig. 4D). To test the role of actin binding in autophagy, we performed
knockdown/rescue experiments. As shown previously, knockdown of DENND3 counters the change of p62 and LC3 induced by starvation, indicating that autophagy is inhibited (Fig. 5A lane 3). The compromised autophagy resulting from DENND3 knockdown is rescued with re-expression of wild-type DENND3 (Fig. 5A, lane 4), but not with the Arg815 or Lys819 mutants (Fig. 5A, lane 5 and 6). These data demonstrate that actin binding is required for the role of DENND3 in autophagy.

Actin has essential roles in multiple aspects of autophagy, which includes providing tracks for myosin-based traffic (25). Previously we had predicted that Rab12, the substrate of DENND3 that engages in autophagosome trafficking, associates with a motor protein to achieve its role in autophagy (9). Since we identified the PHenn domain of DENND3 as a novel actin-binding module, we tested if Rab12 binds to actin motor protein myosin. Among three non-muscle myosins IIA, IIB and IIC we tested (26), endogenous myosin IIA has robust binding with GST-Rab12 fusion protein (Fig. 5B). In addition, we found that the GST-PHenn domain of DENND3 interacts with endogenous myosin IIA (Fig. 5B). Interestingly, PHenn domain mutants with defects in actin binding also have compromised interactions with myosin IIA (Fig. 5C), which suggests actin binding may bridge the binding between DENND3 and myosin IIA. Upon starvation ULK-mediated phosphorylation of DENND3 activates Rab12, which localizes at autophagosome and facilitates autophagosome trafficking (9). Considering ULK-mediated activation of myosin II is also required for starvation-induced autophagy (27), autophagosome-associated Rab12 may traffic along actin through interacting with myosin IIA. In this way, this functional protein complex of myosin IIA, DENND3 and Rab12 lies downstream of ULK upon starvation. The close proximity within the protein complex may facilitate the immediate coupling of Rab12 with myosin IIA to transport autophagosome along actin to fuse with lysosome/endosome after Rab12 is recruited and activated by DENND3 during autophagy.

The PH domain is well known as a phosphatidylinositol lipid-binding module (17). In fact, it has diverse functions in GEFs. For example, the PH domain of Ras-GRF binds to βγ subunits of heterotrimeric G proteins (28) and the PH domain of PDZ-RhoGEF binds to GTP-bound RhoA (29). There are often Dbl homology (DH)/PH domain tandems in GEFs for Rho family GTPases. The PH domain of Sos binds to the DH domain, a GEF domain, inhibiting the GEF activity of Sos towards Rac (30,31). Here, for the first time, we find that a PH-like module binds to a DENN domain and thus auto-inhibits the GEF activity, suggesting a common role of PH domains across different GEF families.

The intramolecular interaction within DENND3 may be conserved among other DENN proteins that possess PH domains, such as MTMR5 and MTMR13, whose mutation links to Charcot-Marie-Tooth disease (32). It will be interesting to test whether PH domains in these proteins also bind to actin. Our findings provide a paradigm for future investigations of the large family of DENN proteins.

Experimental Procedures

Antibodies and reagents

Flag and HA antibodies were from Sigma and BioLegend, respectively. Myosin II A, LC3 antibodies were from Cell Signaling Technology. The rabbit polyclonal antibody against pS554 of DENND3 was custom made under contract with Phosphosolutions. NaKATPase antibody was from Millipore. GST antibody was purchased from Sigma. Mouse DENND3 cDNA was from Imagenes. Amino acid 716-973 of DENND3 was cloned into pGEX vector creating GST-PHenn domain. FLAG-DENND3, FLAG-Ext-DENN, GST-linker, etc. were generated as previously described (9,12). L857 and L858 mutations of FLAG-DENND3 and GST-PHenn domain were created by the Quikchange site-directed mutagenesis kit from Stratagene, the same as the mutation of K812, R815, K819, R834 or R844 of GST-PHenn domain.

Protein expression and purification for crystallography
Mouse DENND3 fragment 720-973 was codon-optimized for *E. coli* expression (BioBasic) and inserted into pGEX-6P-1 vector. The plasmid was transformed into BL21 (DE3) and plated on LB-agar with ampicillin (100 mg/L) for selection. A single colony was inoculated in 20 mL LB medium and incubated in a 37 ºC shaker overnight. The overnight culture was then inoculated into 1 L LB medium and grown at 37 ºC. When OD600 reached 0.8, the cell culture was induced with 1 mM IPTG at 18 ºC for 18 h. For production of selenomethionine-labeled protein, the expression plasmid was transformed into the *E. coli* methionine auxotroph strain DL41 (DE3) and the protein was produced using LeMaster medium. After expression, the cell culture was pelleted at 7000 × g for 20 min and re-suspended in PBS buffer (10 mM sodium phosphate pH 7.4, 137 mM NaCl, 2.7 mM potassium chloride). Cells were lysed by sonication and centrifuged at 30,000 × g for 45 min. The supernatant was loaded onto glutathione sepharose resin (Qiagen, Valencia, CA, USA), which was pre-equilibrated with PBS buffer. The protein-resin mixture was incubated at 4 ºC for 30 min followed by washes with PBS buffer. Subsequently, the GST-tagged protein was eluted with 20 mM glutathione and the GST tag was cleaved with PreScission Protease, followed by purification using a size exclusion Superdex 75 column (GE), equilibrated with 20 mM MES pH 6.5, 150 mM NaCl, 3 mM DTT.

Crystallization

DENND3 (720-973) was concentrated to approximately 10 mg/mL. Crystallization screens were performed in 24-well plates in a hanging drop format using commercial Qiagen screens. Promising conditions were further explored by systematic modifications of the initial conditions within a narrow range. The best native crystals for DENND3 (720-973) were obtained at 20 ºC by equilibrating a 0.8 µL drop of protein at 10 mg/mL in 20 mM MES pH 6.5, 150 mM NaCl, 3 mM DTT, with 0.8 µL of reservoir solution containing 0.24 M sodium malonate pH 7.0, 20% PEG 3350, suspended over 1 mL of reservoir solution. The selenomethionine-labeled crystals for were obtained in similar condition. For cryoprotection, crystals were transferred into crystallization solution containing 25% (w/v) ethylene glycol. For data collection, crystals were picked up in a nylon loop and flash frozen in a N2 cold stream (Oxford Cryosystem).

Structure determination and refinement

The selenium SAD dataset was collected using a single-wavelength (0.98 Å) regime on an ADSC Quantum-210 CCD detector (Area Detector Systems Corp.) at beamline A1 at the Cornell High-Energy Synchrotron Source (CHESS) (Supplemental Table 1). Data processing and scaling were performed with HKL2000 (33). The anomalously scattering selenium substructure was determined using the program AUTOSOL in the PHENIX suite (34), which built approximately 80% of the model. The model was further extended manually using the program Coot (35) and was improved by multiple cycles of refinement using the program PHENIX (34). Coordinates have been deposited in the RCSB Protein Data Bank with accession code 6B3Y.

Immunoprecipitation

Cells were collected in HEPES lysates buffer (20 mM HEPES, pH 7.4, 10 mM sodium fluoride, 0.5 mM sodium orthovanadate, 60 nM Okadaic acid, 100 mM sodium chloride, 1% Triton X-100, 0.5 µg/mL aprotinin, 0.5 µg/mL leupeptin, 0.83 mM benzamidine, and 0.23 mM phenylmethylsulfonyl fluoride). Following 10 min on ice, lysates were spun at 238,700 x g for 15 min. The supernatant was incubated for ~3 h at 4 ºC with antibodies coupled to protein A or G Sepharose. Beads were subsequently washed three times with HEPES lysates buffer, and processed for SDS-PAGE. Samples were then analyzed through western blot.

Pull-down assay

Cell lysates prepared in the same way as described in immunoprecipitation were incubated for ~3 h at 4 ºC with GST or GST fusion proteins coupled to glutathione-Sepharose. The samples were subsequently washed and prepared for western blot as described in immunoprecipitation.

Subcellular Fractionation

HEK-293T cells were transfected overnight with FLAG-tagged wild-type DENND3 or L857Q and L858Q double mutant. Cells were then washed in PBS and collected in HEPES buffer (20 mM
HEPES, pH 7.4, 0.5 μg/mL aprotinin, 0.5 μg/mL leupeptin, 0.83 mM benzamidine, and 0.23 mM phenylmethylsulfonyl fluoride). After 10 min incubation on ice, lysates were passed through syringes with 25-gauge needles 5 times under positive pressure, and then spun at 800 x g for 10 min. The supernatant was adjusted to 1.2 mg/mL and then subject to centrifugation at 200,000 x g (TLA-100 Beckman rotor) for 30 min at 4 °C. The resulting supernatant and pellet were processed for SDS-PAGE and western blot.

Lipid overlay assay

Following the manual of PIP Strip membrane (Echelon Biosciences) with slight modification: briefly, cover the PIP Strip membrane with blocking buffer (PBS, 0.1% v/v Tween-20 and 3 % BSA) for 1 h at room temperature. Change the blocking buffer for 1.8 μg/mL GST/GST-PHenn domain of DENND3 or 0.5 μg/mL GST-PH domain of PLC-δ1 (Echelon Biosciences) in blocking buffer for 1 h at room temperature, then anti-GST primary antibody, followed by secondary HRP antibody, wash with PBST buffer (PBS and 0.1% v/v Tween-20) in between, processing as western blot.

Actin sedimentation experiment

GST/GST-PHenn domains freshly purified, or purified then snap-froze in liquid nitrogen and stocked at -80 °C (maximum one freeze thaw cycle) were used. The experiments were performed following the manual of Actin Binding Protein Biochem Kit (Cytoskeleton) with modifications. Briefly, for preparing the F-actin: the lyophilized actin was resuspended to 1 mg/mL with General Actin Buffer (Cytoskeleton) and left on ice for 30 m. Actin Polymerization Buffer (Cytoskeleton) was then added. The polymerization reaction was kept at room temperature for 1 h. For preparing GST/GST-PHenn domains to be tested: 16 μL of purified GST/GST-PHenn domain wild-type or mutants (~3 mg/mL) was diluted with addition of 49 μL General Actin Buffer, then subject to centrifugation at 217,000 x g (TLA-100 Beckman rotor) for 1.5 h at 4 °C. 30 μL of the supernatant was gently mixed with 80 μL F-actin or 80 μL buffer of the F-actin, and incubated at room temperature for 30 m, then centrifuged at 148,300 x g (TLA-100 Beckman rotor) for 1 h at 24 °C. The resulted supernatant was immediately collected, followed by adding 27.5 μL 5 x Laemmli Sample Buffer (LSB). The resulted pellet was resuspended into 68.8 μL double distilled water. 2 x LSB was then added to the resuspension. After boiling the sample, 65 μL samples from the supernatant or the pellet were processed for SDS-PAGE and gel was stained by Coomassie Blue.

Knockdown and rescue experiments

Cells were treated with control non-targeting siRNA (AllStars Negative Control siRNA, Qiagen) or with a previously validated (9) siRNA targeting human DENND3 (5'-cgacggtttagttctgataaa-3') for 3 days (Lipofectamine RNAiMAX, Thermo Fisher) before lysing the cells. Cells that were treated with DENND3 siRNA were subsequently mock transfected or transfected with wild-type mouse DENND3 or mouse DENND3 with L857Q & L858Q, R815E or K819E mutation for 9 h (Lipofectamine 3000, Thermo Fisher) before the cells were starved with Earle's balanced salt solution. Cells were then collected in HEPES lysis buffer (20 mM HEPES, pH 7.4, 10 mM sodium fluoride, 0.5 mM sodium orthovanadate, 60 nM Okadaic acid, 100 mM sodium chloride, 1% Triton X-100, 0.5 μg/mL aprotinin, 0.5 μg/mL leupeptin, 0.83 mM benzamidine, and 0.23 mM phenylmethylsulfonyl fluoride). Following 10 min on ice, lysates were spun at 238,700 x g for 15 min. The supernatant was processed for SDS-PAGE and then western blot.

Statistical evaluation

Experiments were repeated at least three times. Statistical analysis of the results was carried out by one-way analysis of variance, followed by Tukey’s multiple comparison test when appropriate. p < 0.05 was considered significant.
Acknowledgement

We thank Tin Pan, Maïwenn Beaugrand, Marie Ménaïde and Véronique Sauvé for fragment screening and identifying the crystallization conditions. Diffraction data were acquired at the Macromolecular Diffraction (MacCHESS) facility at the Cornell High Energy Synchrotron Source (CHESS). CHESS is supported by the NSF & NIH/NIGMS via NSF award DMR-0225180, and the MacCHESS resource is supported by NIH/NCRR award RR-01646. This work was supported by a Foundation Grant from the Canadian Institutes of Health Research to PSM and Canadian Institutes of Health Research Grant (MOP-14219) to KG. JX is a recipient of McGill MedStar Award. PSM is a James McGill Professor.

Conflict of Interest

The authors declare they have no conflict of interest.
Reference

1. Cherfils, J., and Zeghouf, M. (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. *Physiological reviews* **93**, 269-309
2. Wennerberg, K., Rossman, K. L., and Der, C. J. (2005) The Ras superfamily at a glance. *Journal of cell science* **118**, 843-846
3. Bos, J. L., Rehmann, H., and Wittinghofer, A. (2007) GEFs and GAPs: critical elements in the control of small G proteins. *Cell* **129**, 865-877
4. Levine, T. P., Daniels, R. D., Gatta, A. T., Wong, L. H., and Hayes, M. J. (2013) The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. *Bioinformatics* **29**, 499-503
5. Zhang, D., Iyer, L. M., He, F., and Aravind, L. (2012) Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease. *Frontiers in genetics* **3**, 283
6. Marat, A. L., Dokainish, H., and McPherson, P. S. (2011) DENN domain proteins: regulators of Rab GTPases. *The Journal of biological chemistry* **286**, 13791-13800
7. Yoshimura, S., Gerondopoulos, A., Linford, A., Rigden, D. J., and Barr, F. A. (2010) Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. *The Journal of cell biology* **191**, 367-381
8. Allaire, P. D., Marat, A. L., Dall'Armi, C., Di Paolo, G., McPherson, P. S., and Ritter, B. (2010) The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. *Molecular cell* **37**, 370-382
9. Xu, J., Fotouhi, M., and McPherson, P. S. (2015) Phosphorylation of the exchange factor DENND3 by ULK in response to starvation activates Rab12 and induces autophagy. *EMBO reports* **16**, 709-718
10. Xu, J., and McPherson, P. S. (2015) DENND3: a signaling/trafficking interface in autophagy. *Cell Cycle*, 1-2
11. Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011) The role of Atg proteins in autophagosome formation. *Annual review of cell and developmental biology* **27**, 107-132
12. Xu, J., and McPherson, P. S. (2017) Regulation of DENND3, the exchange factor for the small GTPase Rab12 through an intramolecular interaction. *The Journal of biological chemistry* **292**, 7274-7282
13. Caplan, S. (2017) Into the linker's DENN: A tyrosine's control of autophagy. *The Journal of biological chemistry* **292**, 7283-7284
14. Jones, D. T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. *Journal of molecular biology* **292**, 195-202
15. Gallop, J. L., Jao, C. C., Kent, H. M., Butler, P. J., Evans, P. R., Langen, R., and McMahon, H. T. (2006) Mechanism of endophilin N-BAR domain-mediated membrane curvature. *The EMBO journal* **25**, 2898-2910
16. Masuda, M., Takeda, S., Sone, M., Ohki, T., Mori, H., Kamioka, Y., and Mochizuki, N. (2006) Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. *The EMBO journal* **25**, 2889-2897
17. Lemmon, M. A. (2007) Pleckstrin homology (PH) domains and phosphoinositides. *Biochemical Society symposium*, 81-93
18. Lemmon, M. A., Ferguson, K. M., O'Brien, R., Sigler, P. B., and Schlessinger, J. (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. *Proceedings of the National Academy of Sciences of the United States of America* **92**, 10472-10476
19. Holm, L., and Rosenstrom, P. (2010) Dali server: conservation mapping in 3D. *Nucleic acids research* **38**, W545-549
20. Stiegler, A. L., Zhang, R., Liu, W., and Boggon, T. J. (2014) Structural determinants for binding of sorting nexin 17 (SNX17) to the cytoplasmic adaptor protein Krev interaction trapped 1 (KRIT1). *The Journal of biological chemistry* **289**, 25362-25373

21. Ceccarelli, D. F., Song, H. K., Poy, F., Schaller, M. D., and Eck, M. J. (2006) Crystal structure of the FERM domain of focal adhesion kinase. *The Journal of biological chemistry* **281**, 252-259

22. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S., and Hakoshima, T. (2000) Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. *The EMBO journal* **19**, 4449-4462

23. Lee, H. S., Bellin, R. M., Walker, D. L., Patel, B., Powers, P., Liu, H., Garcia-Alvarez, B., de Pereda, J. M., Liddington, R. C., Volkmann, N., Hanein, D., Critchley, D. R., and Robson, R. M. (2004) Characterization of an actin-binding site within the talin FERM domain. *Journal of molecular biology* **343**, 771-784

24. Yao, L., Janmey, P., Frigeri, L. G., Han, W., Fujita, J., Kawakami, Y., Apgar, J. R., and Kawakami, T. (1999) Pleckstrin homology domains interact with filamentous actin. *The Journal of biological chemistry* **274**, 19752-19761

25. Kast, D. J., and Dominguez, R. (2017) The Cytoskeleton-Autophagy Connection. *Current biology : CB* **27**, R318-R326

26. Conti, M. A., and Adelstein, R. S. (2008) Nonmuscle myosin II moves in new directions. *Journal of cell science** 121**, 11-18

27. Tang, H. W., Wang, Y. B., Wang, S. L., Wu, M. H., Lin, S. Y., and Chen, G. C. (2011) Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. *The EMBO journal* **30**, 636-651

28. Touhara, K., Inglese, J., Pitcher, J. A., Shaw, G., and Lefkowitz, R. J. (1994) Binding of G protein beta gamma-subunits to pleckstrin homology domains. *The Journal of biological chemistry* **269**, 10217-10220

29. Chen, Z., Medina, F., Liu, M. Y., Thomas, C., Sprang, S. R., and Sternweis, P. C. (2010) Activated RhoA binds to the pleckstrin homology (PH) domain of PDZ-RhoGEF, a potential site for autoregulation. *The Journal of biological chemistry* **285**, 21070-21081

30. Soisson, S. M., Nimnual, A. S., Uy, M., Bar-Sagi, D., and Kuriyan, J. (1998) Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. *Cell* **95**, 259-268

31. Sondermann, H., Soisson, S. M., Boykevisch, S., Yang, S. S., Bar-Sagi, D., and Kuriyan, J. (2004) Structural analysis of autoinhibition in the Ras activator Son of sevenless. *Cell* **119**, 393-405

32. Senderek, J., Bergmann, C., Weber, S., Ketselsen, U. P., Schorle, H., Rudnik-Schoneborn, S., Buttner, R., Buchheim, E., and Zerres, K. (2003) Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. *Human molecular genetics* **12**, 349-356

33. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. *Methods in enzymology* **276**, 307-326

34. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Echols, N., Headd, J. J., Hung, L. W., Jain, S., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2011) The Phenix software for automated determination of macromolecular structures. *Methods* **55**, 94-106

35. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. *Acta crystallographica. Section D, Biological crystallography* **66**, 486-501
Figure legends

FIGURE 1. Structure of the PHenn domain of DENND3.

(A) Schematic diagram of DENND3 with an N-terminal DENN domain with its preceding extension, a C-terminal WD40 domain, and the PHenn domain (residues 720-973) which is the minimal fragment required for binding the Ext-DENN.

(B) HEK-293T cells were transfected with FLAG-Ext-DENN and lysates were incubated with GST, GST-PHenn (720-973) or GST-linker amino acids 538-973 coupled to glutathione-Sepharose beads. Proteins specifically bound to the beads were processed for western blot with anti-FLAG antibody. An aliquot of the lysate (starting material; SM) equal to 10% of that added to the beads was analyzed in parallel.

(C) Cartoon representation of PHenn domain of DENND3 colored in rainbow, from blue at the N-terminus to red at the C-terminus. Secondary structure elements are labeled.

(D) The PHenn domain is composed of a PH domain (yellow) surrounded by N- and C-terminal helices (green).

FIGURE 2. A hydrophobic β-turn in the PHenn domain is required for DENN domain binding but not DENND3 oligomerization.

(A) PHenn β-strands 5 and 6 form an extended hydrophobic surface.

(B) The β5-β6 loops are involved in hydrophobic contacts between adjacent PHenn domains in the protein crystals.

(C) The PHenn domain does not oligomerize. HEK-293T cells were transfected with FLAG-PHenn domain (716-973) and lysates were incubated with GST or GST-PHenn domain (716-973) coupled to glutathione-Sepharose beads. Proteins specifically bound to the beads were processed for western blot with anti-FLAG antibody. An aliquot of the lysate (starting material; SM) equal to 10% of that added to the beads was analyzed in parallel.

(D) Mutations in the PHenn hydrophobic loop do not impair DENND3 oligomerization. Lysates from HEK-293T cells co-transfected with FLAG-DENND3 and HA-DENND3, or mutants FLAG-DENND3 L to Q (L857Q & L858Q) and HA-DENND3 L to S (L857S & L858S) were incubated with protein G beads alone or protein G beads coupled to anti-FLAG antibody (IP-FLAG). Proteins bound specifically to the beads were processed for western blot with anti-FLAG and anti-HA antibodies. An aliquot of the cell lysate (starting material, SM) equal to 10% of that added to the beads was analyzed in parallel.

(E) Mutations in the hydrophobic loop impair DENN domain binding. HEK-293T cells were transfected with FLAG-Ext-DENN and lysates were incubated with GST, GST-PHenn domain wild-type or GST-PHenn domain with the mutation of L857Q & L858Q coupled to glutathione-Sepharose beads. Proteins specifically bound to the beads were processed for western blot with anti-FLAG antibody. An aliquot of the lysate (starting material; SM) equal to 10% of that added to the beads was analyzed in parallel.

(F) Mutations in the hydrophobic loop impair DENND3-dependent autophagy. Cells were treated with control siRNA or with siRNA for human DENND3. Additionally, cells treated with DENND3 siRNA were subsequently mock transfected or transfected with wild-type mouse DENND3 or mouse DENND3 with Leu857Gln Leu858Gln mutations. The cells were subsequently starved with EBSS then lysates were processed for western blot with anti-pS554 of DENND3, anti-FLAG, anti-p62, anti-LC3 or anti-GAPDH
antibody. Relative p62 and LC3-II level were determined from three repeats. Bars represent mean ± SD. Statistical analysis employed one-way ANOVA followed by Tukey’s post-test. *p < 0.05.

FIGURE 3. The PHenn domain of DENND3 is a novel actin-binding module.

(A) Purified PHenn domain binds to F-actin. GST-PHenn domain (720-973, codon-optimized construct), negative control GST or positive control actinin was incubated with or without F-actin, followed by centrifugation capable of pelleting F-actin. Protein bound to F-actin was co-sedimented during the centrifugation. Supernatant (S) and pellet (P) were processed for SDS-PAGE and gel was stained by Coomassie Blue.

(B) Full-length DENND3 binds to F-actin. Purified FLAG-tagged DENND3 was cleared by centrifugation at 240,800 x g for 15 min at 4 °C and incubated with or without F-actin, followed by centrifugation at 148,300 x g for 15 min at 24 °C. Protein bound to F-actin co-sedimented during the centrifugation. Supernatant (S) and pellet (P) were processed for western blotting with an anti-FLAG antibody.

(C) GST-PHenn binds actin in tissue lysates. Rat lung lysates were incubated with GST or GST-PHenn domain (720-973, codon-optimized construct) coupled to glutathione-Sepharose beads. Proteins specifically bound to the beads were processed for western blot with anti-actin antibody. An aliquot of the lysate (starting material; SM) equal to 10% of that added to the beads was analyzed in parallel.

FIGURE 4. Mapping for actin binding sites of the PHenn domain.

(A) Positively charged residues in PHenn are required for actin binding. Rat lung lysates were incubated with 10 μg GST, GST-PHenn domain (716-973) or GST-PHenn domain with mutation at K812, R815, K819, R834, R844 or (L857 & L858) that was coupled to glutathione-Sepharose beads. Proteins specifically bound to the beads were processed for western blot with anti-actin antibody. An aliquot of the lysate (starting material; SM) equal to 2.5% of that added to the beads was analyzed in parallel.

(B) Rat lung lysates were incubated with 30 μg GST or GST-PHenn domains. Experiments were carried out as in (A).

(C) Loss of basic residues impairs co-sedimentation with actin. Purified GST, GST-PHenn domain (716-973) wild-type, or with mutation at K812, R815, K819, R834, R844 or (L857 & L858) was incubated with or without F-actin, followed by centrifugation capable of pelleting F-actin. Supernatant (S) and pellet (P) were processed for SDS-PAGE and gel was stained by Coomassie Blue.

(D) A surface model of the PHenn domain highlighting residues K812, R815, K819 and R834 with blue, L857 and L858 with dark grey.

FIGURE 5. Actin binding is required for DENND3-mediated autophagy.

(A) Defect in actin binding impairs DENND3-dependent autophagy. Cells were treated with control siRNA or with siRNA for human DENND3. Cells treated with DENND3 siRNA were subsequently mock transfected or transfected with wild-type mouse DENND3 or mouse DENND3 with R815, K819 mutation. The cells were subsequently starved with EBSS then lysates were processed for western blot with anti-pS554 of DENND3, anti-FLAG, anti-p62, anti-LC3 or anti-GAPDH antibody. Relative p62 and LC3-II
level were determined from three repeats. Bars represent mean ± SD. Statistical analysis employed one-way ANOVA followed by Tukey’s post-test. *p < 0.05.

(B) The DENND3 PHenn domain binds myosin. Rat lung lysates were incubated with GST, GST-PHenn domain (720-973, codon-optimized construct) or GST-Rab12 coupled to glutathione-Sepharose beads. Proteins specifically bound to the beads were processed for western blot with anti-myosin IIA antibody.

(C) Actin binding is required for the DENND3 PHenn domain to interact with myosin IIA. Rat lung lysates were incubated with 30 μg GST, GST-PHenn domain or GST-PHenn domain with mutation at K812, R815, K819, R834, R844 or (L857 & L858) that was coupled to glutathione-Sepharose beads. Proteins specifically bound to the beads were processed for western blot with anti-myosin IIA antibody.
Figure 1
Figure 3
Figure 4
Figure 5

A

Lane #	1	2	3	4	5	6
starved	-	+	+	+	+	+
control siRNA	+	+	-	-	-	-
DENND3 siRNA	-	-	+	+	+	+
DENND3 WT	-	-	-	+	-	-
DENND3 R815E	-	-	-	-	+	-
DENND3 K819E	-	-	-	-	-	+

Lane #	1	2	3	4	5
relative p62 level	0	2	4	6	
n.s.	n.s.	n.s.			

B

Lane #	1	2	3	4	5
relative LC3-II level	0	2	4	6	
n.s.	n.s.	n.s.			

C

Lane #	1	2	3	4	5	6
Myosin IIA	205					

Figure 5
A PH-like domain of the Rab12 guanine nucleotide exchange factor DENND3 binds actin and is required for autophagy
Jie Xu, Guennadi Kozlov, Peter S. McPherson and Kalle Gehring

J. Biol. Chem. published online January 19, 2018 originally published online January 19, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.001446

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts