A Fluorous-Tagged “Safety Catch” Linker for Preparing Heterocycles by Ring-Closing Metathesis

Catherine O’Leary-Steele,† Christopher Cordier,† Jerome Hayes,‡ Stuart Warriner,† and Adam Nelson*†
School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom, and Chemical Development, GlaxoSmithKline, Old Powder Mill, Leigh, Tonbridge, Kent, TN11 9AN, United Kingdom
a.s.nelson@leeds.ac.uk
Received December 15, 2008

ABSTRACT

A fluorous-tagged “safety catch” linker is described for the synthesis of heterocycles with use of ring-closing metathesis. The linker facilitates the purification of metathesis substrates, the removal of the catalyst, the functionalization of the products, and the release of only metathesis products. The synthesis of a range of heterocycles is described.

Ring-closing metathesis has revolutionalized organic synthesis.¹ Ruthenium complexes are particularly functional group tolerant,² but the catalyst residues often need to be scavenged.³ Recently, we developed a fluorous-tagged linker for synthesizing heterocycles by metathesis but a fluorous-tagged catalyst was needed to allow easy product purification.⁴ We now describe a fluorous-tagged “safety catch”⁵ linker that facilitates the synthesis, purification, and functionalization of metathesis products without the use a fluorous-tagged catalyst (Scheme 1). We use the term “linker” to describe compounds (e.g., 1) which are functionalized to yield metathesis substrates (e.g., 2).

It was envisaged that functionalization of 1 (→ 2) would be followed by removal of excess reagents by fluorous-solid phase extraction⁶ (F-SPE). Initiation of a metathesis cascade would be expected at the terminal alkene⁷ of 2 (→ 3). Cyclization (→ 4) would be followed by a second ring-closing metathesis (→ 5) in which a catalytically active methylene complex was regenerated.⁸ Crucially, the product 5 would still be fluorous-tagged; F-SPE would thus allow

¹ University of Leeds.
² GlaxoSmithKline.
³ (a) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199. (b) Chattopadhyay, S. K.; Karmakar, S.; Biswas, T.; Majumdar, K. C.; Rahaman, H.; Roy, B. Tetrahedron 2007, 63, 3919. (c) Gradillas, A.; Péres-Castells, J. Angew. Chem., Int. Ed. 2006, 45, 6086.
⁴ (a) Leach, S. G.; Cordier, C. J.; Morton, D.; McKiernan, G. J.; Warriner, S.; Nelson, A. J. Org. Chem. 2008, 73, 2752. (b) Morton, D.; Leach, S.; Cordier, C.; Warriner, S.; Nelson, A. Angew. Chem., Int. Ed. 2009, 48, 104.
⁵ Patek, M.; Lebl, M. Biopolymers 1999, 47, 353.
⁶ Zhang, W.; Curran, D. F. Tetrahedron 2006, 62, 11837.
⁷ (a) Ulman, M.; Grubbs, R. H. Organomet. 1998, 17, 2484. (b) Wallace, D. J. Angew. Chem., Int. Ed. 2005, 44, 1912.
removal of the metathesis catalyst and removal of the excess reagents in subsequent functionalization steps. Finally, acetal cleavage would release only metathesis products (e.g., 6) and not unreacted substrates such as 2 from the fluorous tag. The fluorous-tagged linker 1 was, therefore, designed to be a “safety catch” linker since the cleavage step should release only metathesis products.

To validate the design, we prepared the trienes 8 and 9 from a known glucose derivative (see the Supporting Information). Treatment of 8 and 9 (4 mM in CH₂Cl₂) with 6 mol % Grubbs’s second generation catalyst gave the expected metathesis products 10 and 11 (Scheme 2). Thus, irrespective of the initiation site,7 the metathesis cascade proceeded smoothly, cleaving the central dihyropyran ring. The study validated the “safety catch” linker design since hydrolysis of the resulting acyclic acetals would yield the required dihyropyran products.

Scheme 3 describes the synthesis of the linkers 1 and 18. Reaction of the anion of 12 with ethyl α-bromomethyl acrylate9 and reduction, gave the allylic alcohol 13. A Fukuyama–Mitsunobu reaction10 between 13 and the sulfonamide4 14, and deprotection, gave the fluorous-tagged linker 18. The linkers 1 and 18 were functionalized with a range of reactants (see Figure 1, Table 1, and the Supporting Information). Thus, the substrates were prepared by using the Fukuyama–Mitsunobu reaction,10 allylation, silaketal formation,11 or esterification. In general, the fluorous-tagged products were purified by F-SPE alone, and the purities were determined by HPLC.

The cascade reactions of a range of the metathesis substrates were successful (Table 1). Six- and seven-

Scheme 1. Design of the Fluorous-Tagged “Safety Catch” Linker 1

Scheme 2. Validation of the Design of the Linker 1

Scheme 3. Preparation of the Fluorous-Tagged Linkers 1 and 18

For the definition of RF, see Scheme 1.

(8) Moriggi, J.-D.; Brown, L. J.; Castro, J. L.; Brown, R. C. D. Org. Biomol. Chem 2004, 2, 835.
(9) Villieras, J.; Rambaud, M. Org. Synth. 1988, 66, 220.
(10) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373.
(11) Cordier, C.; Morton, D.; Leach, S.; Woodhall, T.; O’Leary-Steele, C.; Warriner, S.; Nelson, A. Org. Biomol. Chem. 2008, 6, 1734.
membered nitrogen and oxygen heterocycles were formed in good to excellent yield. In the case of the terminal alkyne substrate (entry 6), the reaction was performed under an ethylene atmosphere, and a 53% yield of the fluorous-tagged product \(R^3 \) (R) was obtained. More complex cascade reactions in which two new heterocyclic rings were formed were also successful (entries 4 and 5). Unlike with our previous linker, it was not possible to prepare eight- or nine-membered heterocycles (see the Supporting Information for the substrates studied); instead, dimerization was competitive with cyclization and, hence, release from the linker. Six metathesis products \(26-31 \) (R) were released directly from the linker by treatment of the corresponding metathesis products with 3% TFA in CH₂Cl₂ (entries 1-6, Table 1).

The metathesis products could also be functionalized before release from the fluorous tag (see Table 2 and Figure 2). In each case, the excess reagents were removed by F-SPE only. Thus, removal of the \(o \)-nitrophenylsulfonyl group from \(26 \) (R), derivatization, and release from the linker produced the desired compounds.

Table 1. Heterocycle Synthesis by Functionalization of the Linker, Metathesis, and Release (See Scheme 1 for the Definitions of \(R^F \) and \(R'^F \))

entry	linker (reactant, method)	functionalisation product	yield \(/\%\)	method \((\text{catalyst mol \%})\)	yield \(/\%\)	metathesis product	cleavage method \([\text{yield} /\%]\)
1	1 (19, A)	\(R^F \) O MeO Ns H Ns	87 \(\text{d}(93^e) \)	B (3 x 5)	90 \(\text{d}(94^e) \)	RO	C \(26 \) (R = H) [70]
2	1 (20, A)	\(R^F \) O MeO Ns H Ns	98 \(\text{d}(92^e) \)	B (3 x 5)	55 \(\text{d}(80^e, 69^f) \)	RO	C \(27 \) (R = H) [77]
3	1 (21, A)	\(R^F \) O MeO Ns H Ns	26 \(\text{b}(2 x 5) \)	B (2 x 5)	98 \(\text{b}(85^g) \)	RO	C \(28 \) (R = H) [62]
4	1 (22, A)	\(R^F \) O MeO Ns H Ns	98 \(\text{b}(2 x 5) \)	B (2 x 5)	41 \(\text{b}(85^g) \)	RO	C \(29 \) (R = H) [67]
5	18 (23, A)	\(R^F \) O MeO Ns H Ns	>98 \(\text{e}(83^e) \)	B (6 x 5)	87 \(\text{e}(83^e) \)	RO	C \(30 \) (R = H) [35]
6	18 (24, A)	\(R^F \) O MeO Ns H Ns	>98 \(\text{e}(84^e) \)	B (5)	53 \(\text{e}(83^e, 65^f) \)	RO	C \(31 \) (R = H) [23]
7	1 (25, D)	\(R^F \) O MeO Ns H Ns	72 \(\text{d}(93^e) \)	B (2 x 5)	51 \(\text{d}(93^e) \)	RO	h \(- \)

Figure 1. Reactants used to derivatize the linkers 1 and 18.

complex cascade reactions in which two new heterocyclic rings were formed were also successful (entries 4 and 5). Unlike with our previous linker, it was not possible to prepare eight- or nine-membered heterocycles (see the Supporting Information for the substrates studied); instead, dimerization was competitive with cyclization and, hence, release from the linker. Six metathesis products \([26-31] \) (R = H) were released directly from the linker by treatment of the corresponding metathesis products with 3% TFA in CH₂Cl₂ (entries 1–6, Table 1).

The metathesis products could also be functionalized before release from the fluorous tag (see Table 2 and Figure 2). In each case, the excess reagents were removed by F-SPE only. Thus, removal of the \(o \)-nitrophenylsulfonyl group from \(26 \) (R = H), derivatization, and release from the linker...
the fluorous tag yielded the tetrahydropyridines 33 (R = H), 34 (R = H), and 35 (R = H) (entries 1–3). Alternatively, the diene 29 (R = R′F) underwent efficient Diels–Alder reaction with 4-phenyl-[1,2,4]-triazole-3,5-dione to yield 36 (R = R′F): the resulting adduct could either be released directly from the fluorous tag [→ 36 (R = H), entry 4] or after deprotection and derivatization [→ 37 (R = H), entry 5].

In summary, we have developed a linker for the synthesis of arrays of heterocyclic products using metathesis cascade reactions. The design of the fluorous-tagged linker allowed (a) easy purification of metathesis substrates; (b) easy removal of the catalyst from the metathesis products; (c) functionalization of the products before release; and (d) the release of only metathesis products.

Acknowledgment. We thank the Wellcome Trust, EPSRC, Leeds University and GSK for funding, and Stuart Leach and Daniel Morton (University of Leeds) for discussions.

Supporting Information Available: Details of all experimental procedures, including unsuccessful metathesis substrates, and NMR spectra for all novel compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

Table 2. Functionalisation of the Metathesis Products and Release from the Fluorous Tag

entry	starting material	purity/%	functionalization methodb	product	mass recovery/% (purity/%)	cleavage methodb	product	yield/%
1	26 (R = R′F)	94	A	33 (R = R′F)	87 (>90)	B	33 (R = H)	82
2	26 (R = R′F)	94	C	34 (R = R′F)	86 (87)	B	34 (R = H)	67f
3	26 (R = R′F)	>99	E	35 (R = R′F)	86 (>95)	B	35 (R = H)	57f
4	29 (R = R′F)	>99	D	36 (R = R′F)	86 (87)	B	36 (R = H)	59
5	36 (R = R′F)	87	A	37 (R = R′F)	79 (>95)	B	37 (R = H)	67

a See Scheme 1 for the definition of R′F. b Method A: (i) PhSH, DBU, MeCN; (ii) BnNCO; (iii) F-SPE. Method B: (i) 3% TFA in CH2Cl2; (ii) F-SPE. Method C: (i) PhSH, DBU, MeCN; (ii) Ac2O, pyridine; (iii) F-SPE. Method D: (i) 4-phenyl-[1,2,4]-triazole-3,5-dione, CH2Cl2; (ii) F-SPE. Method E: (i) PhSH, DBU, MeCN; (ii) DMAP and isoxazole-5-carbonyl chloride; (iii) F-SPE. c Mass of product after F-SPE only. d Purity (%) determined by HPLC after F-SPE only. e Isolated yield of purified product. f Isolated yield of product over 2 steps.

Figure 2. Derivatized metathesis products after release from the fluorous tag, R = H.