Current Directions and Trends of Cancer Chemotherapy: An Overview of the Recently Approved Small-Molecules Anticancer Drugs in the Past Decade

Hadeer M Soudan1,2, Asmaa A Abdel Haseeb1,3, Ahmed A Nasser1,4 and Sherif F Hammad1,5*

1Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934 Alexandria, Egypt
2Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
3Chemistry Department, Faculty of Science, Minia University, El Minya, Egypt
4Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
5Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan 11795, Cairo, Egypt

*Corresponding author: Sherif F Hammad, Associate Professor of Medicinal Chemistry, Egypt-Japan University of Science and Technology, Egypt.

Dedication to Professor. Forrest Smith, Harrison School of Pharmacy, Auburn University, Alabama, USA.

To Cite This Article: Hadeer M Soudan, Asmaa A Abdel Haseeb, Ahmed A Nasser, Sherif F Hammad. Current Directions and Trends of Cancer Chemotherapy: An Overview of the Recently Approved Small-Molecules Anticancer Drugs in the Past Decade. Am J Biomed Sci & Res. 2021 - 13(4). AJBSR.MS.ID.001888. DOI: 10.34297/AJBSR.2021.13.001888.

Received: June 28, 2021; Published: July 14, 2021

Abstract

Background: The everlasting challenge to develop more potent, more selective and less toxic chemotherapeutic antitumor drugs constitutes a substantial weapon to defeat the continuous multidrug resistance characteristics of many cancers. Therefore, the need for the discovery and development of unprecedented antineoplastics drugs still exists.

Results: In this mini review a survey of the novel targets and trends in cancer chemotherapy has been investigated to explore the potential therapeutic lines and treatment protocols. 70 novel small-molecule antineoplastic were studied and categorized according to their mode of action, medicinal use, year of FDA-approval as well as chemical structures. The vast majority of these recently approved drugs over the past decade are kinase inhibitors while the hormone antagonists represent the minority of these novel drugs. The two years of 2018 and 2020 represent the years of the highest approval numbers of small-molecules anticancer drugs with 10 approved drugs, while the year of 2016 is the one with the least number of just 2 newly approved drugs.

Conclusion: In this study, a quick and yet comprehensive survey has been conducted to explore the major targets and trends in the last decade with respect to small-molecule anticancer drugs that have been recently FDA-approved. A new approach of classification of these drugs based on their detailed mechanism of action was demonstrated.

Keywords: Anticancer Drugs; Tyrosine Kinase Inhibitors; Cancer-Drug-Targets

Introduction

Cancer as a broad expression of various malignancies remains as a global health concern as it accounts for more than 10 million annual mortalities throughout the past few years representing about 14.6% of deaths globally. Therefore, Cancer as a major health problem and a life-threatening disease stands out as the second leading cause of death after cardiovascular diseases [1]. The exact root causes and underlying reasons specific for variable cancer illnesses remain undefined and hence the discovery and development of novel antineoplastics to face the continuous mutations and multi-drug resistance is still pivotally demanded. Multiple classification systems have been postulated such as antimetabolites and alkylating agents, also they could be broadly categorized into targeted drugs and cytotoxic agents as another system [2]. Herein, a more comprehensive type of classification...
based on the detailed mechanism of action could be investigated via exploring the main novel trends of the recently approved anticancer drugs. This minireview includes only the FDA approved small molecules anticancer drugs from 2011 to 2020. Despite being apart from the scope of the current review, it is worthy to mention that the passing decade witnessed the dawn of cancer immunotherapy via the inhibition of the regulation of the adaptive immune response against malignancy. The prototype of this class Ipilimumab was approved in 2011 as an immune checkpoint inhibitor of cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4), for the treatment of melanoma [3]. The focus of this review is substantially directed to small-molecules anticancer drugs since they constitute a major segment of all the approved small molecules in > 26% ratio and in > 17% of all approved drugs (with all categories that include biologicals and biopharmaceuticals), as represented in Table 1.

Table 1: Total number of FDA-approved drugs (2011-2020) with small molecules and anticancer drugs.

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Last decade
Total approved drugs	30	39	27	41	45	22	46	59	48	53	410
Small molecule drugs	22	25	21	25	30	8	31	37	32	35	266 64.90%
Small molecules anticancer drugs	5	9	5	4	9	2	8	10	8	10	70 17%

Discussion

Trending of different classes of small molecules anticancer drugs in the past decade depending on the mode of action of the FDA-approved drugs could be categorized according to their mode of action. Figures 1 and 2 illustrate the outline of the classification and the proportions of small molecules anticancer drugs, respectively. The drugs are classified into five major classes: kinases inhibitors, drugs affecting nucleic acids, antiandrogens, hedgehog pathway inhibitors and miscellaneous.

In addition, Figures 3-8 illustrate the chemical structures of all the mentioned drugs with the year of FDA approval and brief about their uses and modes of action. These recently approved drugs could be classified as following:

Figure 1: Schematic representation of the total FDA approved small molecules anticancer drugs from 2011 to 2020. RTK: Receptor-linked tyrosine kinase, NRTK: Non-receptor tyrosine kinase, and PARP: Poly-ADP ribose polymerase-1.

Figure 2: Comparative proportions of small molecules anticancer drugs and their categories.
Figure 3: The chemical Structures of the approved drugs from 2011 to 2012.
Figure 4: The chemical structures of the approved drugs from 2013 to 2014.
Figure 5: The chemical structures of the approved drugs from 2015 to 2016.

Figure 6: The chemical structures of the approved drugs from 2017 to 2018.
Figure 7: The chemical structures of the approved drugs from 2018 to 2019.
Figure 8: The chemical structures of the approved drugs in 2020.

Kinase Inhibitors

In the past decade, kinase inhibitors represent the majority of the FDA approved small molecules anticancer drugs. Most of these kinase inhibitors are tyrosine kinase inhibitors either to receptor kinases or to intracellular kinases.

Tyrosine kinase inhibitors

Receptor-linked tyrosine kinase (RTK) inhibitors: Receptor tyrosine kinases are cell surface receptors for various ligands. They have three domains; extracellular domain (ligand-binding domain, transmembrane domain and intracellular kinase-binding domain [4]. Some inhibitors of this class target a specific RTK, which, in turn, inhibit all the downstream signaling pathway. Osimertinib (2015) [5] and Alectinib (2015) [6], which specifically inhibit epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK), respectively, are indicated for non-small cell lung cancer (NSCLC). In addition, Tucatinib (2020) targets breast cancer by specifically inhibiting human epidermal growth factor receptor 2 (HER2) [7]. On the other hand, other multi-kinase inhibitors inhibit more than one RTK which, accordingly, block the subsequent phosphorylation steps and signal transduction. Examples of multi-RTK inhibitors are Neratinib (2017) is indicated for breast cancer, where it inhibits EGFR, HER2 and human epidermal growth factor receptor 4 (HER4) [8,9]. Other examples of RTK inhibitors that are indicated for NSCLC are Crizotinib (2011) [10], Afatinib (2013) [11,12], Ceritinib (2014) [13], Brigatinib (2017) [14,15], Lorlatinib (2018) [16], Dacomitinib (2018) [17,18], Entrectinib (2019) [19], Pralsetinib (2020) [20], and Capmatinib (2020) [21].

For thyroid cancer, there are Vandetanib (2011) [22], Cabozantinib (2012) [23], Lenvatinib (2015) [24], and Selpercatinib (2020) [25], which targets lung cancer as well. Others include Axitinib (2012) for kidney cancer [26-28], Ponatinib hydrochloride (2012)
The NRTK are crucial for intracellular signal transfer and are indicated for melanoma with mutated BRAF. MEK is a different kinase (MAP2K) or also called MEK) is also a component of the MAPK pathway. MEK inhibitors are Trametinib (2013) [61] and Cobimetinib since it is mixed threonine and tyrosine kinase [60]. Examples of pathway located downstream to BRAF. MEK is a different kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Mitogen-activated protein kinase kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicated for melanoma. Serine/threonine kinases are a class of proteins that are present at the initial point of signalling pathway at the cell surface or as an intracellular intermediate in the pathway. Phosphoinositide 3-kinases (PI3K) are vital members in the intracellular signal transduction pathways. Examples for PI3K inhibitors are Copanlisib (2017) for follicular lymphoma [47], Duvelisib (2018) [48] and Idelalisib (2014) [49] for chronic lymphocytic leukemia (CLL) or small lymphocytic leukemia (SLL) , Alpelisib (2019) for breast cancer [50]. Cyclin-dependent kinases (CDKs) are a group of serine/threonine kinases that regulate the cell cycle at different stages[51]. The approved drugs that can target CDKs are Palbociclib (2015) [52,53], Abemaciclib (2017) [54,55], and Ribociclib (2017) [55], which are indicated for breast cancer. v-raf murine sarcoma viral oncogene homolog B1 (BRAF) is a serine-threonine kinase and an intracellular component of the mitogen-activated protein kinase (MAPK) pathway. Examples of the drugs that target BRAF are Vemurafenib (2011) [56-58] and Dabrafenib (2013) [59] that are indicate ad for melanoma. Mitogen-activated protein kinase kinase (MAP2K) or also called MEK) is also a component of the MAPK pathway located downstream to BRAF. MEK is a different kinase since it is mixed threonine and tyrosine kinase [60]. Examples of the MEK inhibitors are Trametinib (2013) [61] and Cobimetinib (2015) [56] that are indicated for melanoma with mutated BRAF and Selumetinib (2020) that is approved to treat neurofibromatosis type 1 [62]. Furthermore, Binimetinib (2018) has been approved to treat metastatic melanoma in combination with Encorafenib (2018), a BRAF inhibitor [63,64].

Drugs Affecting Nucleic Acids

PARP inhibitors

Poly-ADP ribose polymerase-1 (PARP) are a group of enzymes that play a vital role in recognizing and repairing the damaged DNA. The approved PARP inhibitors include Olaparib (2014) for Advanced ovarian cancer and metastatic breast cancer [65], Rucaparib (2016) for ovarian cancer [66], Niraparib (2017) for fallopian tube, epithelial ovarian or primary Peritoneal cancer [67], and Talazoparib (2018) for breast cancer [68].

Alkylating agents

These agents directly interact with the DNA in the minor groove and methylate the DNA at guanine bases in the C-G rich region. Thus, they affect the transcription process and DNA repair mechanism [69]. Example of this class is Trabectedin (2015) that is indicated for Liposarcoma or leiomyosarcoma [22,23,70]. On the other hand, Lurbinectedin (2020) is indicated for small cell lung cancer (SCLC) and it exerts its action by binding to the guanine bases in the minor groove of the DNA forming adduct [71,72].

Histone-modifying enzymes inhibitors

Histone deacetylase (HDAC) enzyme regulates different DNA-linked processes via deacetylation of histone proteins to be accessible with other enzymes related to replication, transcription, repair, and chromatin remodeling. Inhibition of this enzyme results in growth inhibition and apoptosis induction [73]. Panobinostat (2015) is a HDAC inhibitor that is indicated for treating multiple myeloma in combination with other anticancer agents [74]. Belinostat (2014) is another HDAC inhibitor that is indicated for refractory peripheral T-cell lymphoma [75]. On the other hand, methyltransferase methylates the lysine and arginine residues in histone proteins, regulating the gene expression. Tazemetostat (2020) is a methyltransferase inhibitor that inhibits hypermetylation of histones and hence, preventing cancer cell de-differentiation. It is indicated for treating epitheloid sarcoma [76,77].

Others

The FDA approved a combination of triluridine and tipiracil (2015) that targets the DNA of malignant cells. Triluridine is a nucleoside analogue that is phosphorylated by thymidine kinase forming the active trifluoridine triphosphate. Then, the active form is incorporated in the DNA instead of thymidine bases, blocking DNA function, DNA synthesis and hence tumor cell proliferation. Tipiracil is a thymidine phosphorylase inhibitor, that Prevents the degradation of the active triluridine. This combination is indicated for colorectal cancer [78-80].
Antiandrogens

Antiandrogens are drugs that oppose the effect of the male sex hormones, and they are indicated for castration-resistant prostate cancer therapy. Enzalutamide (2012) [8-83], Darolutamide (2019) and Apalutamide (2018) [84] are androgen receptor inhibitors, where they inhibit or block androgen binding to its receptor, which, in turn, inhibits the subsequent signaling pathway and prevents cancer progression. Relugolix (2020) is approved for the treatment of advanced prostate cancer via androgen deprivation therapy (ADT). The mode of action of Relugolix depends on antagonizing the gonadotropin-releasing hormone (GnRH) receptor, which, consequently, reduces the testosterone level [85]. Furthermore, Abiraterone acetate (2011) inhibits the biosynthesis of testosterone and other androgen decreasing their serum level [86].

Hedgehog Pathway Inhibitors

Vismodegib (2012) [87,88] and Sonidegib (2015) [89] are inhibitors of the hedgehog pathway through inhibiting the transmembrane smoothened (smo) protein. They are indicated for the treatment of basal cell carcinoma. Moreover, Glasdegib (2018) is also an inhibitor of the hedgehog pathway via selective and potent binding to smo receptor. It is approved as anticancer drug against acute myeloid leukemia, in combination with cytarabine (a chemotherapeutic agent) [90,91].

Miscellaneous

Malignant cell death could be addressed by targeting several molecular targets and herein some of the FDA approved drugs with various targets within the last decade. Apoptosis is the most important venue to get rid of the cancer cells by various antineoplastic drugs. Venetoclax (2016) induces the onset of apoptosis, and it is approved to treat acute myeloid leukemia, CLL or SLL. It inhibits the B cell CLL/lymphoma 2 (BCL-2) family, which, in turn, induces apoptosis of the malignant cells [92]. Ivosidenib (2018) is an isocitrate dehydrogenase-1 (IDH1) inhibitor that is indicated for acute myeloid leukemia [93]. Other drugs are designed to modulate the individual immune system such as Pomalidomide (2013) that is indicated for Multiple myeloma in combination with dexamethasone. It modulates the immune system via activation of the T-cells and natural killer (NK) as well as inhibiting proinflammatory cytokines [94]. Furthermore, the protein synthesis process could be targeted to prevent cancer progression by inhibiting the translation such as Omacetaxine mepesuccinate (2012) that is indicated for chronic myelogenous leukemia [95,96]. Moreover, Selinexor (2019) is indicated for multiple myeloma. It inhibits the nuclear transport via binding to and inhibiting exportin-1 (XPO1), a nuclear exporter protein. Consequently, the cells undergo cell cycle arrest and apoptotic cell death [97,98]. Finally, Carfilzomib (2012) is a proteasome inhibitor via inhibition of its chymotrypsin-like activity. It is indicated for treatment of refractory multiple myeloma [99].

References

1. Abeldsalam EA, Zaghary WA, Am in KM, Abou Taleb NA, Mekawy A A I, et al. (2019) Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorganic Chemistry 89: 102985.
2. Jingchun Sun, Qiang Wei, Yubo Zhou, Jingqi Wang, Qi Liu, Hua Xu, et al. (2017) A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol 11(5): 1-17.
3. Dembic Z (2020) Antitumor drugs and their targets. Molecules 25(23): 5776.
4. Zhenfang Du, Christine M Lovly (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17(1): 58.
5. Lian Yi, Junsheng Fan, Ruoan Qian, Peng Luo, Jian Zhang (2019) Efficacy and safety of osimertinib in treating EGFR-mutated advanced NSCLC: A meta-analysis. Int J Cancer 145(1): 284-294.
6. Junsheng Fan, Zengfei Xia, Xiaoli Zhang, Yuqing Chen, Ruoan Qian et al. (2018) The efficacy and safety of alectinib in the treatment of ALK+ NSCLC: A systematic review and meta-analysis. Onco Targets Ther 11: 1105-1115.
7. Lara Ulrich, Alicia F C Okines (2021) Treating Advanced Unresectable or Metastatic HER2-Positive Breast Cancer: A Spotlight on Tucatinib. Breast Cancer: Targets and Therapy 13: 361-381.
8. Rutugandha Paranjpe, Dima Basatneh, Gabriel Tao, Carmine De Angelis, Sophia Noormohammed, et al. (2019) Neratinib in HER2-Positive Breast Cancer Patients. Annals of Pharmacotherapy 53(6): 612-620.
9. Chan A (2016) Nintinib in HER-2-positive breast cancer: Results to date and clinical usefulness. Ther Adv Med Oncol 18(5): 339-350.
10. Arvind Sahu, Kumar Prabhah, Vanita Noronha, Amit Joshi, Saral Desai (2013) Crizotinib: A comprehensive review. South Asian J Cancer 2(2): 91.
11. James Chih Hsin Yang, Martin Schuler, Sanjay Popat, Satoru Miura, Simon Heeke, et al. (2020) Afatinib for the Treatment of NSCLC harboring Uncommon EGFR Mutations: A Database of 693 cases. Journal of Thorac Oncol 15(5): 803-815.
12. Pasqualina Giordano, Anna Manzo, Agnese Montanino, Raffaele Costanzo, Claudia Sandomenico, et al. (2016) Afatinib: An overview of its clinical development in non-small-cell lung cancer and other tumors. Crit Rev Oncol Hematol 97: 143-151.
13. John Kaczmar, Ranee Mehra (2015) The efficacy of ceritinib in patients with ALK-positive non-small cell lung cancer. Ther Adv Respir Dis 9(5): 236-241.
14. Stewart Umbela, Shahnaz Ghaeta, Revia Makumath, Stacey Gause, Shrijana Joshee, et al. (2019) Brigatinib: A new-generation ALK inhibitor for nonsmall cell lung cancer. Curr Probl Cancer 43(6): 100477.
15. Silky Bedi, Shah A Khan, Majed M AbuKhaled, Perwez Alam, Nasir A Siddiqui, et al. (2018) A comprehensive review on Brigatinib- A wonder drug for targeted cancer therapy in Non-Small Cell Lung Cancer A comprehensive review on Brigatinib – A wonder drug for targeted cancer therapy in non-small cell lung cancer. Saudi Pharm J 26(6): 755-763.
16. Alice T Shaw, Enriqueta Felip, Todd M Bauer, Benjamin Besse, Alejandro Navarro, et al. (2017) Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. The Lancet Oncology 18(12): 1590-1599.
17. Daniele Lavacchi, Francesca Mazzoni, Giuseppe Giaccone (2019) Clinical
evaluation of dacarbazine for the treatment of metastatic non-small cell
lung cancer (NSCLC): Current perspectives. Drug Des Devel Ther 13:
3187-3198.

18. Cecilia Bergonzini, Alessandro Leonetti, Marcello Tiseo, Elisa
Giovannetti, Godefridus J Peters (2020) Is there a role for dacarbazine,
a second- generation irreversible inhibitor of the epidermal- growth
factor receptor tyrosine kinase, in advanced non-small cell lung cancer?
Expert Opin Pharmacother 21(11): 1287-1298.

19. Brooke Benner, Logan Good, Dionisia Quiroga, Thomas E Schultz,
Mohammad Kasem, et al. (2020) Pexidartinib, a novel small molecule
csf-1r inhibitor in use for tenosynovial giant cell tumor: A systematic
review of pre-clinical and clinical development. Drug Des Devel Ther 14:
1693-1704.

20. Markham A (2020) Pralsetinib: First Approval. Drugs 80(17): 1865-
1870.

21. Johan Filip Vansteenkiste, Charlotte Van De Kerckhove, Els Wauters,
Pierre Van Mol (2019) Capmatinib for the treatment of non-small cell
lung cancer: Expert Rev Anticancer Ther 19(8): 659-671.

22. Maryse Brassard, Genevieve Rondeau (2012) Role of vandetanib in
the management of medullary thyroid cancer. Biologies: Targets and
Therapy 6: 59-66.

23. Nizar M Tannir, Gisela Schwab, Viktor Grumwald (2017) Cabozantinib:
an Active Novel Multikinase Inhibitor in Renal Cell Carcinoma. Curr
Oncol Rep 19(2): 1-9.

24. Shunji Takahashi, Naomi Kiyota, Tomoko Yamazaki, Naoko Chayahara,
Kenji Nakano, et al. (2019) A Phase II study of the safety and efficacy of
eravutinib in patients with advanced thyroid cancer. Future Oncol 15(7):
717-726.

25. Oliver Illini, Maximilian Johannes Hochmair, Hannah Fabikan, Christoph
Weinlinger, Amanda Tufman, et al. (2021) Selpercatinib in RET fusion-
positive non-small-cell lung cancer (SIREN): a retrospective analysis of
patients treated through an access program. Ther Adv Med Oncol 13:
17588359211019675.

26. Revill P, Mealy N, Bayes M, Bozzo J, Serradell N, et al. (2007) Axitinib:
VEGFR/PDGFR tyrosine kinase inhibitor antiangiogenic agent. Drugs of
the Future 32(5): 389-398.

27. Hiral Parekh, Juliane Grisswold, Brian Rini (2016) Axitinib for the
treatment of metastatic renal cell carcinoma. Future Oncol 12(3):
303-311.

28. Marine Gross Goupil, Louis Francois, Amandine Quivy, Alain Ravaud
(2013) Axitinib: A review of its safety and efficacy in the treatment of
adults with advanced renal cell carcinoma. Clin Med Insights Oncol 7:
269-277.

29. Jain H, Thorat J, Sengar M, Dubey A (2019) Ponatinib: A drug review.
Cancer Research, Statistics, and Treatment 2(2): 190.

30. Fiona H Tan, Tracy L Putoczki, Stanley S Styli, Rodney B Luwor (2019)
Ponatinib: A novel multi-tyrosine kinase inhibitor against human
malignancies. Onco Targets Ther 12: 635-645.

31. Molly Megan Gallogly, Hillard M Lazar (2016) Management of regorafenib-
related toxicities: A review. Therap Adv Gastroenterol 8(5): 292-297.

32. Jean Baptiste Rey, Vincent Launay Vacher, Christophe Tournigand
(2015) Regorafenib as a single-agent in the treatment of patients with
gastrointestinal tumors: an overview for pharmacists. Targeted Oncol
10(2): 199-213.

33. D S Hong, T M Bauer, J J Lee, A Dowlati, M S Brose, et al. (2019)
Larotrectinib in adult patients with solid tumours: A multi-centre, open-
lable, phase I dose-escalation study. Ann Oncol 30(2): 325-331.

34. Loriot Y, Necchi A, Park SH, Garcia Donas J, Huddart, R, et al. (2019)
Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. New
England Journal of Medicine 381(4): 338-348.

35. Valeria Merz, Camilla Zeccheto, Davide Melisi (2021) Pemigatinib, a
potent inhibitor of FGFRs for the treatment of cholangiocarcinoma.
Future Oncol 17(4): 389-402.

36. S Naveen Jayaraman, Mohammad Wasif Saif 5 (2015) Management of regorafenib-
Saravanan K Krishnamoorthy, Valerie Relias, Sunit Sebastian, Vijay
avapritinib on myeloid progenitors derived from patients with KIT
Johannes Lubke, Nicole Naumann, Sebastian Kluger, Juliana Schwaab,
emerging treatment for acute myeloid leukemia patients. J Blood Med
Molly Megan Gallogly, Hillard M Lazarus (2016) Midostaurin: An
malignancies. Onco Targets Ther 12: 635-645.

37. Fiona H Tan, Tracy L Putoczki, Stanley S Styli, Rodney B Luwor (2019)
Ponatinib: A novel multi-tyrosine kinase inhibitor against human
malignancies. Onco Targets Ther 12: 635-645.

38. Sameh H Mohamed, Hossam R Elgiushy, Heba Taha, Sherif F Hammad,
Nageh A Abou Taleb, et al. (2020) An investigative study of antitumor
properties of a novel thiazolo[4,5-d]pyrimidine small molecule
revealing superior antitumor activity with CDK1 selectivity and potent
pro-apoptotic properties. Bioorg Med Chem 28(17): 115633.
An Evidence Review Group Perspective of an NICE Single Technology Appraisal. Pharmacoeconomics 35(2):191-202

87. Aleksandar Sekulic I, Michael R Migden, Anthony E Oro, Luc Dirix, Karl D Lewis, et al. (2012) Efficacy and Safety of Vismodegib in Advanced Basal-Cell Carcinoma. N Engl J Med 366(23): 2171-2179.

88. Macha MA, Batra SK, Ganti AK (2013) Profile of vismodegib and its potential in the treatment of advanced basal cell carcinoma. Cancer Management and Research 5(1): 197-203.

89. Sachin Jain, Ruolan Song, Jingwu Xie (2017) Sonidegib: Mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas. Onco Targets Ther10: 1645-1653.

90. Parveen Chaudhry, Mohan Singh, Timothy J Triche, Monica Guzman, Akil A Merchant (2017) GLI3 repressor determines Hedgehog pathway activation and is required for response to SMO antagonist glasdegib in AML. Blood 129(26): 3465-3475.

91. US Food and Drug Administration (2020) FDA approves glasdegib for AML in adults age 75 or older or who have comorbidities (2018).

92. Toby A Eyre, Lindsey E Roeker, Christopher P Fox, Satyen H Gohill, Renata Walewska, et al. (2020) The efficacy and safety of venetoclax therapy in elderly patients with relapsed, refractory chronic lymphocytic leukemia. British Journal of Haematology 188(6): 918-923.

93. Pasquier F, Chahine C, Marzac C, de Botton S (2020) Ivosidenib for the treatment of relapsed or refractory acute myeloid leukemia with an IDH1 mutation. Expert Review of Precision Medicine and Drug Development 5(6): 429-438.

94. Evangelos Terpos, Nikolaos Kanellas, Dimitrios Christoulas, Efstatios Kastritis, Meletios A Dimopoulos (2013) Pomalidomide: A novel drug to treat relapsed and refractory multiple myeloma. Onco Targets Ther 6: 531-538.

95. V Narayanan, J A Gutman D A Pollyea, A Jimeno (2013) Omacetaxine mepesuccinate for the treatment of chronic myeloid leukemia. Drugs of Today 49(7): 447-456.

96. Omar Al Ustwani, Elizabeth A Griffiths, Eunice S Wang, Meir Wetzler (2014) Omacetaxine mepesuccinate in chronic myeloid leukemia. Expert Opinion on Pharmacother 15(16): 2397-2405.

97. Joshua Richter, Deepu Madduri, Shambavi Richard, Ajai Chari (2020) Selinexor in relapsed/refractory multiple myeloma. Ther Adv in Hematol 11: 2040620720930629.

98. Ujjawal H Gandhi, William Senapedis, Erkan Baloglu, Thaddeus J Unger, Ajai Chari, et al. (2018) Clinical Implications of Targeting XPO1-mediated Nuclear Export in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia 18(5): 335-345.

99. Karel Fostier, Ann De Becker, Rik Schots (2012) Carfilzomib: A novel treatment in relapsed and refractory multiple myeloma. Onco Targets Ther 5: 237-244.