Investigation on tensile properties and analysis of wear property of glass fiber-epoxy-nanoclay ternary nanocomposite using response surface methodology

Pavan Hiremath, Achutha Kini U, Manjunath Shettar, Sathyashankara Sharma and Jayashree P K

Cogent Engineering (2021), 8: 1877869
MATERIALS ENGINEERING | RESEARCH ARTICLE

Investigation on tensile properties and analysis of wear property of glass fiber-epoxy-nanoclay ternary nanocomposite using response surface methodology

Pavan Hiremath1, Achutha Kini U1, Manjunath Shettar1+, Sathyashankara Sharma1 and Jayashree P K1

Abstract: The current study’s objective is to investigate the impact of nanoclay on the tensile and wear properties of glass fiber-epoxy-nanoclay ternary nanocomposite. Three types of composites are produced by hand lay-up process and compression molding. Tensile and wear tests are executed according to ASTM standards. The findings disclosed that nanoclay enhanced the tensile properties of glass fiber-epoxy-nanoclay ternary nanocomposite. The causes for the failure under tensile load are revealed by SEM micrographs. Response surface methodology (RSM) is applied to analyse the wear loss of nanocomposite. The “Box–Behnken method” is employed for experimental design to establish the main and interaction effects among factors comprising nanoclay (NC), load, and sliding distance in three levels (0, 2, and 4 wt.% for nanoclay; 1, 3, and 5 kg for load; and 300, 600, and 900 rpm for sliding distance). The RSM offers a strong confidence model for each response. Also, RSM models are often used to estimate the optimum case with the minimum mass loss. The optimum results are estimated for the combination of 4 wt.% nanoclay, 1 kg load, and 300 rpm for sliding distance. Experimental test results revealed an agreement with the predicted values.

Subjects: Polymers & Plastics; Composites; Materials Processing

Keywords: nanoclay; glass fiber; epoxy; tensile properties; wear property; response surface methodology

ABOUT THE AUTHOR

Mr. Pavan Hiremath, Dr. U Achutha Kini, Dr. Manjunath Shettar, Dr. Sathyashankara Sharma, and Dr. Jayashree P K are the faculty members in the Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India. The authors’ areas of interest are polymer matrix composites’ characterization, hygrothermal aging behavior of polymer nanocomposites, heat treatment of metals and alloys, etc. In this manuscript, the authors found the influence of process parameters on composite specimens using Response Surface Methodology.

PUBLIC INTEREST STATEMENT

In various applications, there is a growing market for the use of exceptional functioning and lightweight composites to replace conventional metals. In many applications, polymer matrix composites (PMC) are commonly used as structural materials. In recent days, nanoparticles and inorganic fillers have been used progressively in PMCs to boost their performance and applications in many fields. In this article, research is carried out on the effect of nanoclay on the tensile and wear properties of ternary nano-composite glass fiber-epoxy-nanoclay.
1. Introduction
There is a growing market for the usage of exceptional functioning and light-weight composites to substitute traditional metals in different applications (Rajak et al., 2019). Polymer matrix composites (PMC) are generally used as structural materials in many applications. Some examples of PMCs’ applications are sand and sludge transporting pipelines, helicopter rotor blades, automobile body parts, and airplane body parts. Resistance to particle erosion (wear) is an essential property in aforesaid applications since these parts are frequently operated in surroundings with abrasive (sand) particles (Chawla, 2012; Patnaik et al., 2010; Thomas et al., 2016).

One of the alternatives suggested to polymers is to introduce reinforcement to boost the mechanical, wear, and thermal properties (Shettar, Kini et al., 2020). The reinforcements used to improve the composite’s aforesaid properties are distinguished as whiskers, fibers, micro, and nanoparticles. Nanoparticles and inorganic fillers have been gradually being used in PMCs in current days to enhance their performance (Friedrich, 2018). Owed to the higher area of the surface and great aspect ratio of nanoparticles, the load is passed on to nanoparticles from the matrix, and the matrix properties could be enhanced (Fu et al., 2019; Islam et al., 2013). Nanoparticles display different properties compared to their bigger counterparts. Nanoparticles tender higher reinforcing competence owing to their higher aspect ratios (Shettar, Achutha Kini et al., 2017). The degree of mixing (uniformity) and particle size have a substantial effect on the nanocomposite properties. The deciding factors, including the kinds of nanoparticles and its volume percentage, resins, and preparation procedure, significantly impact the properties of end products (Müller et al., 2017; Sahoo & Tripathy, 2017). Carbon nanofibers, nanotubes, and nanoclays are optimum contenders for such reinforcements, with respect to their load-bearing abilities.

Nanoclay is the utmost frequently employed and widely explored nanoparticles with polymer nanocomposites. Due to its easiness in usage, ecological usefulness, and thorough chemistry, nanoclay has earned importance over other nanoparticles (Shettar et al., 2017; Shettar et al., 2019a; Shettar et al., 2019b). Montmorillonite (MMT) nanoclay is one of the most widely used types of nanoclay. MMT has a strong elastic modulus, less expensive, lower density, lower coefficient of thermal expansion, and relatively higher surface area (Bhattacharya, 2016). Aforesaid features considerably increase the strength, fracture toughness, and wear properties of nanoclay-reinforced polymer composites. The literature exposes that a substantial quantity of studies are performed on the influence of nanoclay on the mechanical and wear properties of nanocomposites (Domun et al., 2015; Jumahat et al., 2016; Krishnamurty et al., 2015; Mohan & Kanny, 2017; Nanda et al., 2019; Withers et al., 2015; Zade et al., 2018).

“Design of experiments” is a tool that could be applied to minimize the total experiments (numbers). The “response surface methodology” (RSM) could offer a predicted model comprising of several factors at different levels and scrutinize the main and interaction effects. Multi-response optimisation of material properties may be derived from the predicted model’s desirability feature. Several researchers effectively used the RSM to optimize the mechanical properties for various materials (Bagheri et al., 2018; Kunnan Singh et al., 2018; Moghri et al., 2015).

This work aims to investigate the influence of nanoclay addition on the tensile properties of glass fiber-epoxy composite. Furthermore, this work emphasizes the analysis of each factor’s effect on the wear property of glass fiber-epoxy-nanoclay ternary nanocomposite using RSM.
2. Methodology

2.1. Materials
The epoxy resin (L-12) and hardener (K-6) are delivered by “Atul Polymers,” woven E-glass fiber mat is delivered by “Yuje Enterprises Bengaluru,” and nanoclay (“Surface modified contains 25–30 wt.% trimethyl stearyl ammonium”) is delivered by “Sigma Aldrich” are used.

2.2. Sample preparation
Figure 1 demonstrates a detailed composite specimen preparation process. Nanocomposites are produced by hand lay-up process and compression molding. Nanoclay with differing weight percentages (Table 1) is added in epoxy resin using a stirrer and sonicator to produce the glass fiber-epoxy-nanoclay ternary nanocomposite. The nanoclay-epoxy blend and hardener are carefully blended and applied to both sides of the glass fiber mat. Totally the coated mats are piled collectively and constantly pressed in the middle of two metal sheets, then placed for 24 hours of curing.

2.3. Tensile test
Tensile tests are executed as per the ASTM D3039 standard (Specimen dimensions—250 X 25 X 3 mm³) utilizing “Computerized Universal Testing Machine (UTM) (ZWICK-ROELL Z020, LOADCELL 20 kN)”. A minimum of five specimens for each type is tested to minimize error.

![Preparation of glass fiber-epoxy-nanoclay ternary nanocomposite.](image)

Table 1. Composition of glass fiber-epoxy-nanoclay ternary nanocomposite

Composite code	Wt.% of glass fabric	Wt.% of epoxy resin	Wt.% of nanoclay
GE	45	55	0
2NCGE	45	53	2
4NCGE	45	51	4
2.4. Wear test

A three-body abrasive wear test (Figure 2) is carried out for all the nanocomposites as per ASTM G 65–04. The abrasive particles (silica sand of size ≤250 μm) are fed at the interface of the rotating “chlorobutyl rubber wheel” and the nanocomposite specimen. The specimen is cleaned and weighed initially using a high precision digital weighing apparatus before it is fixed in the specimen holder. The test specimen is pressed at a defined load against the rotating wheel, put in by the lever arm, whereas a regulated flow of abrasives abrades the test surface. The abrasive wheel's contact face moves into the path of abrasive flow. The lever arm's pivot axis resides inside a line that is nearly tangent to the surface of the wheel. After the completion of the test, the specimen is finally removed, cleaned properly, and weighed again (final weight). A minimum of three tests are carried out on each condition, and the average values are recorded.

2.5. Design of experiments

In the present analysis, the “Box—Behnken experimental design” of the RSM is applied in order to lessen the number of wear tests, expenses, and time, in addition, to determine the effect of individual factors (at various levels) independently and concurrently on the wear property of glass fiber-epoxy-nanoclay ternary nanocomposite. RSM will obtain the optimal solution by having an estimated function to predict the wear property, i.e., mass loss (responses in this work), and assess the effect of each factor (nanoclay, load, and sliding distance).

Minitab® 19 software is employed to generate the matrix design and analyse the experimental data. Three levels of each factor, viz., nanoclay, load, and sliding distance, are considered as represented in Table 2. A sum of 15 experiments is acquired from the “Box—Behnken experimental design,” comprising three centre points for three factors, as presented in Table 3.

3. Results and discussion

3.1. Tensile properties

As presented in Table 4, the nanoclay (2NCGE and 4NCGE) has enhanced the tensile properties compared to GE composites. In glass fiber-epoxy-nanoclay ternary nanocomposite, nanoclay is not the main load-bearing constituent; still, the nanoclay enhances the tensile strength and modulus by 6 and 7% at 2 wt.% nanoclay and 12 and 14% at 4 wt.% nanoclay, respectively. The percentages of increase in tensile strength and modulus are compared with the available literature, which is adjacent to each other and presented in Table 5. The results might be attributed to the following reasons: 1) nanoclay platelets enact as interlocking agents among the fiber and epoxy, that could enhance their interfacial bonding (Withers et al., 2015); 2)
nanoclay addition in epoxy can increase the mechanical properties of the epoxy (Wang et al., 2019); 3) nanoclay enhances the epoxy properties, which will strengthen the load taking ability of the epoxy, leading to decrease in the stress intensity on the glass fibers (Feiz & Khosravi, 2019). Also, some literature reports that crack pinning and bifurcation, etc., are a few of the strengthening mechanisms witnessed to increase nanocomposites’ strength (Bashar et al., 2014; Basturk & Celik Erbas, 2018). As presented in Table 4, tensile strain (%) is decreased for 2NCGE and 4 NCGE compared to GE composite due to the improved stiffness of glass fiber-epoxy-nanoclay ternary nanocomposite.

Table 2. Factors in Box–Behnken experimental design

Factors	Levels		
	Low (-1)	Middle (0)	High (+1)
Nanoclay (wt.%)	0	2	4
Load (kg)	1	3	5
Sliding distance (m)	300	600	900

Table 3. Box–Behnken experimental design with factors and levels

Experiment run	Nanoclay (wt.%)	Load (kg)	Sliding distance (m)
1	0	1	600
2	4	3	900
3	4	1	600
4	4	3	300
5	2	3	600
6	2	3	600
7	2	1	300
8	2	1	900
9	0	3	300
10	0	3	900
11	2	5	300
12	4	5	600
13	2	3	600
14	2	5	900
15	0	5	600

Table 4. Tensile properties of glass fiber-epoxy-nanoclay ternary nanocomposite

Composite code	Tensile strength (MPa)	Tensile strain (%)	Tensile modulus (GPa)
GE	258	6.6	5.1
2NCGE	273	6.1	5.5
4NCGE	288	5.9	5.8

3.1.1. SEM analysis

Figure 3 displays the SEM images of the fractured specimen. Figure 3(a) illustrates the woven bi-directional fiber mat arrangement. Figure 3(b) displays the specimen failure under tensile load due
Figure 3. SEM images of glass fiber-epoxy-nanoclay ternary nanocomposite.

(a) Bi-directional woven fibers
(b) Fiber pull out
(c) Fiber pull out
(d) Fiber - Matrix bonding
(e) Crack arrest/Diversion of crack propagation
(f) Resin cluster

The fibers look clean and no residue matrix. Figure 3 (c) displays pulled out fibers exposing the de-bonding between fiber and matrix.

Figure 3(d-f) shows that nanoclay addition improved the interfacial bonding among fiber and matrix, which is evidence for an increase in tensile properties. The existence of large clusters of resin is apparent in nanocomposite micrographs, demonstrating strong adhesion to fibers by matrix. Well, after the fracture, a minimal amount of relative de-bonding is observed among the glass fibers and epoxy. This specifies the existence of a robust bond because of nanoclay addition in the nanocomposite at the interface of fiber and matrix. Also, the addition of nanoclay helps in crack arresting and diversion of crack propagation in glass fiber-epoxy-nanoclay ternary nanocomposite (U A et al., 2018; Kini et al., 2019).
3.2. Wear property

3.2.1. ANOVA
The RSM is analysed using Minitab® 19 software. For the response variable and input factors, the analysis presented the “analyses of variance” (ANOVA) table. The ANOVA is a statistical technique that is employed to evaluate statistical hypotheses. For all the particulars provided in the ANOVA table, the researcher's primary attention would most definitely be centered on “P-Value” column. Since the value is typically set at 0.05, any value lower than 0.05 will contribute to significant effects, whereas the value higher than 0.05 would result in a non-significant effect. The ANOVA results for the mass loss are presented in Table 6.

The quadratic model for the “mass loss” in terms of input factor by excluding non-significant factors is given by Equation 1:

\[
\begin{align*}
\text{Mass Loss} &= 0.8003 - 0.1763 \text{NC} + 0.7487 \text{Load} + 0.003275 \text{Sliding Distance} \\
&\quad - 0.000208 \text{NC} \times \text{Sliding Distance} \\
&\quad - 0.03094 \text{NC} + 0.00156 \text{Load} \times \text{Load} - 0.04562 \text{NC} \times \text{Load}
\end{align*}
\]

Equation 1

As presented in equation 1, plus (+) and minus (-) signs indicate the positive and negative influence on mass loss, respectively. All factors influence mass loss, where nanoclay (NC) has a negative effect; load and sliding distance have a positive effect. Out of all the factors, load has the most influence on the mass loss as per its uppermost coefficient in the equation, even though the influence is antagonistic. The main effects and 2-way interaction effects of individual factors are shown in Figures 4 and 5.

3.2.2. Main effects plots
Figure 4 shows that the slope of the load is extremely sharp, which impacts the maximum on mass loss, followed by sliding distance and nanoclay (NC). Load vs. mass loss and sliding distance vs. mass loss curves are stepping up, indicating that increase in load and sliding distance escalate the mass loss under wear test. Simultaneously, the nanoclay vs. mass loss curve is stepping down, which suggests increasing the wt.% of nanoclay declines the mass loss. Higher mass loss is observed with increasing load and sliding distance because of increased friction between the rubber wheel and specimen, leading to deeper grooving on the composite surface. The nanoclay addition to the composite has declined the mass loss. Nanoclay enhances the load-carrying ability.
and stiffness of the matrix, resulting in lower mass loss (Bagci et al., 2020; Rashmi et al., 2011; Shettaret al., 2020).

3.2.3. Interaction effects plots

Figure 5 presents the 2-way interaction effects plots. Line parallel to each other indicates no interaction among the factors. All the lines presented between 2 factors do not interact for the given levels. The lines between NC*Load and NC*Sliding distance are not parallel to each other, which means at higher levels lines might interact, and P-value for the same in Table 5 confirms it. But, the lines between Load*Sliding distance are parallel to each other, indicating there is no interaction effect, as could be established from its P-value in Table 5.

3.2.4. Surface plots

The graphical 3D responses of mass loss according to equation 1, against the factors, are presented in Figure 6(a-c). For individual Figure, one factor is kept uniform (at mid-level), and the vertical axis presented as response, i.e., mass loss and horizontal axis presented the other two factors. Figure 6(a) portraysthe mass loss vs. NC and load by keeping the sliding distance

Work/Literature	Wt.% of nanoclay	Percentage of increase in Tensile strength	Percentage of increase in Tensile modulus
Present work	2	6	7
	4	12	14
Jeyakumar et al. (2017)	1	6	8
	3	14	14
Karippal et al. (2011)	2	6	7
	3	8	13
Krishnamurty et al. (2015)	1	4	-
	3	11	-
Shettaret al. (2020)	2	4–8	6–9
	4	11–13	9–15
Table 6. ANOVA results for mass loss

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	9	22.8094	2.5344	2547.11	0.000
Linear	3	22.5560	7.5187	7556.44	0.000
NC	1	3.1626	3.1626	3178.51	0.000
Load	1	13.4421	13.4421	13509.66	0.000
Sliding Distance	1	5.9512	5.9512	5981.16	0.000
Square	3	0.0577	0.0192	19.32	0.004
NC*NC	1	0.0565	0.0565	56.83	0.001
Load*Sliding Distance	1	0.0000	0.0000	0.01	0.942
2-Way Interaction	3	0.1957	0.0652	65.57	0.000
NC*Load	1	0.1332	0.1332	133.89	0.000
NC*Sliding Distance	1	0.0625	0.0625	62.81	0.001
Load*Sliding Distance	1	0.0000	0.0000	0.00	1.000
Error	5	0.0050	0.0010		
Lack-of-Fit	3	0.0050	0.0017	*	*
Pure Error	2	0.0000	0.0000		
Total	14	22.8143			

at 600 rpm. The surface plot can be learned in Figure 6(a) that the mass loss is maximum at 0 wt.% of NC and 5 kg load and minimum at 4 wt.% of NC and 1 kg load. The mass loss is increased with increasing the load when nanoclay (NC) wt.% is constant. Also, the addition of nanoclay decreased the mass loss in all the loads. Figure 6(b) shows mass loss vs. NC and sliding distance by keeping the load at 3 kg. Similarly, it can be established from the surface plot in Figure 6(b) that the mass loss is maximum at 0 wt.% of NC and 900 rpm sliding distance and minimum at 4 wt.% of NC and 300 rpm sliding distance. The mass loss is increased with increasing the sliding distance when nanoclay (NC) wt.% is constant. Also, the addition of nanoclay decreased the mass loss in all the sliding distances. Figure 6(c) indicates the effect of load and sliding distance on mass loss by keeping nanoclay at 2 wt.%. The mass loss is maximum at 5 kg load and 900 rpm sliding distance and minimum at 1 kg load and 300 rpm sliding distance. The mass loss is increased by increasing the load and sliding distance when either one is constant.

3.2.5. Prediction of optimal condition
In the present work, the optimization of mass loss is performed by Minitab® 19 software. The result of predicting optimal conditions is presented in Figure 7. As can be observed in this Figure, to minimize the mass loss, the factor levels should be set at the values: nanoclay at 4 wt.%; load at 1 kg; sliding distance at 300 rpm.

The experiment’s RSM design predicted the minimum mass loss is 1.8887 mg, according to the optimal levels of factors mentioned above. As can also be seen from Figure 7, the desirability (d) is 1, which means the settings seemed to accomplish favorable for the response.
Figure 6. Surface plots of mass loss.

(a) Mass loss vs. NC and load at 600 rpm sliding distance

(b) Mass loss vs. NC and sliding distance at 3 kg of load

(c) Mass loss vs. load and sliding distance at 2 wt.% of NC
3.2.6. Confirmation test
In this analysis, after optimization, an experimental test is carried out using the optimal factor's levels (NC (4 wt.%), load (1 kg), Sliding Distance (300 rpm)). Table 7 represents the predicted and experimental value of the mass loss. According to Table 7, the confirmation test's mass loss is close enough to the predicted value.

4. Conclusions
(1) Addition of nanoclay enhances the tensile strength and modulus of glass fiber-epoxy-nanoclay ternary nanocomposite, whereas tensile strain is decreased.
(2) SEM images under tensile load disclosed that the addition of nanoclay helps in crack arresting and diversion of crack propagation in glass fiber-epoxy-nanoclay ternary nanocomposite.
(3) ANOVA and main effect plots disclose that all factors viz., nanoclay, load, sliding distance have an influence on mass loss, where nanoclay (NC) decreases the mass loss whereas load and sliding distance increases the mass loss.
(4) 2-way interaction effects plots revealed that there is no interaction among the factors.
(5) Surface plots disclosed that the mass loss is increased by increasing the load and sliding distance when either one is constant.
(6) RSM estimated optimal conditions as 4 wt.% nanoclay, 1 kg load, and 300 rpm for sliding distance. The mass loss obtained from the confirmation test is close enough to the desirability optimization data.

Table 7. Result of the confirmation test

Response	Predicted value	Experimental value	Error (%)
Mass loss (mg)	1.8887	1.875	0.725

Funding
The authors received no direct funding for this research.

Author details
Pavan Hiremath
E-mail: pavan.hiremath@manipal.edu
Achutha Kini U
E-mail: achutha.kini@manipal.edu
Manjunath Shettar
E-mail: manjunath.shettar@manipal.edu
ORCID ID: http://orcid.org/0000-0003-4318-3129
Sathyashankara Sharma
E-mail: ss.sharma@manipal.edu
Jayashree P K
E-mail: jayashree.pk@manipal.edu

1 Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.

Citation information
Cite this article as: Investigation on tensile properties and analysis of wear property of glass fiber-epoxy-nanoclay ternary nanocomposite using response surface
methodology, Pavan Hiremath, Achutha Kini U, Manjunath Shettar, Sathiyashankara Sharma & Jayasheer P K. Cogent Engineering (2021), 8: 1877869.

References
Bagci, M., Demirci, M., Sukur, E. F., & Kaybol, H. B. (2020). The effect of nanoclay particles on the incubation period in solid particle erosion of glass fibre/epoxy nanocomposites. Wear, 444-445, 203159. https://doi.org/10.1016/j.wear.2019.203159

Bagheri, M. S., Ashenai Ghosemi, F., Ghosemi, I., & Saberian, M. H. (2018). Analysis of the Young’s modulus and impact strength of A-glass/epoxy/nano-silica ternary nano-composites using surface response methodology. Journal of Failure Analysis and Prevention, 18(6), 1472–1483. https://doi.org/10.1007/s11668-018-0546-z

Bashar, M., Mertiny, P., & Sundararaj, U. (2014). Effect of nanocomposite structures on fracture behavior of epoxy-clay nanocomposites prepared by different dispersion methods. Journal of Nanomaterials, 2014, 1–12. https://doi.org/10.1155/2014/312813

Basturk, S. B., & Celik Erbas, S. (2016). Mechanical and thermo-mechanical properties of nanoclay/epoxy composites: Synergistic effects of silanization and surfactant application. Materials Research Express, 3 (9), 095017. https://doi.org/10.1088/2053-1591/ooa60c

Bhattacharya, M. (2016). Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials (Basel), 9(4), 262. https://doi.org/10.3390/ma9040262

Chawla, K. K. (2012). Composite materials. Springer New York.

Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G. H., & Vahid, S. (2015). Improving the fracture toughness and the strength of epoxy using nano-materials – A review of the current status. Nanoscale, 7(23), 10294–10329. https://doi.org/10.1039/C5NR01354B

Felz, A., & Khosrov, H. (2019). Multiscale composite based on a nanoclay-enhanced matrix and E-glass chopped strand mat. Journal of Reinforced Plastics and Composites, 38(13), 591–600. https://doi.org/10.1177/073168441836219

Friedrich, K. (2018). Polymer composites for tribological applications. Advanced Industrial and Engineering Polymer Research, 1(1), 3–39. https://doi.org/10.1016/j.ajiper.2018.05.001

Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019). Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1(1), 2–30. https://doi.org/10.1016/j.nanosci.2019.02.006

Islam, M. S., Masiodi, R., & Rostami, H. (2013). The effect of nanoparticles percentage on mechanical behavior of silico-epoxy nanocomposites. Journal of Nanoscience, 2013, 1–10. https://doi.org/10.1155/2013/275037

Jeyakumar, R., Sampath, P. S., Ramamoorthy, R., & Ramakrishnan, T. (2017). Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites. The International Journal of Advanced Manufacturing Technology, 93 (1–4), 527–535. https://doi.org/10.1007/s00170-017-0565-x

Jumahat, A., Tolib, A. A. A., & Abdullah, A. (2016) Wear properties of nanoclay filled epoxy polymers and fiber reinforced hybrid composites. 247–260

Karippal, J. J., Narasimha Murthy, H. N., Rai, K. S., Sreejith, M., & Krishna, M. (2011). Study of mechanical properties of epoxy/glassnanoclay hybrid composites.

Journal of Composite Materials, 45(18), 1893–1899. https://doi.org/10.1177/0021998310389087

Kini, U. A., Shettar, M., Sharma, S., Hiremath, P., G. M. C., Hegde, A., & S. D. (2019). Effect of hygrothermal aging on the mechanical properties of nanoclay-glass fiber-epoxy composite and optimization using full factorial design. Materials Research Express, 6 (6), 065311. https://doi.org/10.1088/2053-1591/ab0d68

Krushnamurty, K., Srikanth, I., Rangababu, B., Majee, S. K., Bauri, R., & Subrahmanyan, C. (2015). Effect of nanoclay on the toughness of epoxy and mechanical, impact properties of e-glass-epoxy composites. Advanced Materials Letters, 6 (8), 684–689. https://doi.org/10.5185/amlett.2015.5817

Kunnum Singh, J., Ching, Y., Abdullah, L., Ching, K., Razali, S., & Gan, S. (2018). Optimization of mechanical properties for polyoxymethylene/glass fiber/polytetrafluoroethylene composites using response surface methodology. Polymers (Basel), 10(3), 338. https://doi.org/10.3390/polym10030338

Moghri, M., Shamaeae, H., Shahrojjabahar, H., & Gharannejad, A. (2019). The effect of different parameters on mechanical properties of PA-6/clay nanocomposite through genetic algorithm and response surface methods. International Nano Letters, 3(3), 133–140. https://doi.org/10.1007/s40089-015-0146-7

Mohan, T. P., & Kannay K. (2017). Tribological studies of nanoclay filled epoxy hybrid laminates. Tribology Transactions, 60(4), 681–692. https://doi.org/10.1080/00204202016.1204039

Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J., Miesbauer, O., Bianchin, A., Hankin, S., Boli, U., Pérez, G., Jesdinski, M., Lindner, M., Scheuerer, Z., Castelló, S., & Schmid, M. (2017). Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 7(4), 74. https://doi.org/10.3390/nano7040074

Nando, T., Sharma, G., Mehta, R., Shelly, D., & Singh, K. (2019). Mechanisms for enhanced impact strength of epoxy based nanocomposites reinforced with silicate platelets. Materials Research Express, 6(6), 065061. https://doi.org/10.1088/2053-1591/ab10b9

Patnaik, A., Satapathy, A., Chand, N., Borkaula, N. M., & Biswas, S. (2010). Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: A review. Wear, 268(1–2), 249–263. https://doi.org/10.1016/j.wear.2009.07.021

Rajak, D. K., Pagar, D. D., Kumar, R., & Pruncu, C. I. (2019). Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of Materials Research and Technology, 8(6), 6354–6374. https://doi.org/10.1016/j.jmrt.2019.09.068

Rashmi, R. N. M., Suresha, B., Devarajaiha, R. M., & Shivakumar, K. N. (2011). Dry sliding wear behaviour of organo-modified montmorillonite filled epoxy nanocomposites using Taguchi’s techniques. Materials & Design, 32(8–9), 4528–4536. https://doi.org/10.1016/j.matdes.2011.03.028

Sahoo, B. P., & Tripathy, D. K. (2017). Introduction to clay and carbon-based polymer nanocomposites: materials, processing, and characterization. In Properties and applications of polymer nanocomposites (pp. 1–24). Springer Berlin Heidelberg.

Shettar, M., Achutha Kini, U., Sharma, S., & Hiremath, P. (2017). Study on mechanical characteristics of
nanoclay reinforced polymer composites. Materials Today: Proceedings, 4(10), 11158–11162. https://doi.org/10.1016/j.matpr.2017.08.081

Shettar, M., Kini, A., Sharma, S., & Hiremath, P. (2017). FRP-Nanoclay hybrid composites: A review (Vol. 904). MSF.

Shettar, M., Kini, U. A., Sharma, S., Hiremath, P., & G. M. C. (2019a). Investigation and optimization of thermal shock effects on the properties and microstructure of Nano clay-Glass Fiber Reinforced Epoxy Composites. Materials Research Express, 6(10), 105360. https://doi.org/10.1088/2053-1591/ab3f67

Shettar, M., Kini, U. A., Sharma, S., Hiremath, P., & G. M. C. (2020). Hygrothermal chamber aging effect on mechanical behavior and morphology of glass fiber-epoxy-nanoclay composites. Materials Research Express, 7(1), 015318. https://doi.org/10.1088/2053-1591/ab6405

Shettar, M., Kini, U. A., Sharma, S., Hiremath, P., & Gowrishankar, M. C. (2019b). Study on the mechanical properties of nanoclay-epoxy composites under different hygrothermal aging conditions. Materials Research Express, 6(8), 085333. https://doi.org/10.1088/2053-1591/ab2502

Shettar, M., Kowshik, C. S. S., Manjunath, M., & Hiremath, P. (2020). Experimental investigation on mechanical and wear properties of nanoclay-epoxy composites. Journal of Materials Research and Technology, 9(4), 9108–9116. https://doi.org/10.1016/j.jmrt.2020.06.058

Thomas, S., Abraham, J., Manayan Parambil, A., Krishnan, A., Maria, H. J., Ilschner, B., Lees, J. K., Dhingra, A. K., & McCullough, R. L. (2016). Composite materials. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA.

U A. K., Shettar, M., Sharma, S., Hiremath, P., & Gowrishankar, M. C. (2018). Investigation on effect of cold soaking on the properties of nanoclay-GFRP composite. Materials Research Express, 6(1), 015206. https://doi.org/10.1088/2053-1591/aae967

Wang, C., Goo, X., & Li, Y. (2019). Mechanical properties improvement of nanoclay addition epoxy 3D orthogonal woven composite material. Fibers and Polymers, 20(7), 1495–1503. https://doi.org/10.1007/s12221-019-9116-4

Withers, G. J., Yu, Y., Khbashesku, V. N., Cercone, L., Hadjiev, V. G., Souza, J. M., & Davis, D. C. (2015). Improved mechanical properties of an epoxy glass-fiber composite reinforced with surface organo-modified nanoclays. Composites Part B: Engineering, 72, 175–182. https://doi.org/10.1016/j.compositesb.2014.12.008

Zade, S. K., B., V. S., & S. K. V. S. (2018). Effect of nanoclay, glass fiber volume and orientation on tensile strength of epoxy-glass composite and optimization using Taguchi method. World Journal of Engineering, 15(2), 312–320. https://doi.org/10.1108/WJE-08-2017-0286

© 2021 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.