DYNAMICS OF L^p MULTIPLIERS ON HARMONIC MANIFOLDS

KINGSHOOK BISWAS AND RUDRA P. SARKAR

Abstract. Let X be a complete, simply connected harmonic manifold with sectional curvatures K satisfying $K \leq -1$. In [Bis18], a Fourier transform was defined for functions on X, and a Fourier inversion formula and Plancherel theorem were proved. We use the Fourier transform to investigate the dynamics on $L^p(X)$ for $p > 2$ of certain bounded linear operators $T : L^p(X) \to L^p(X)$ which we call "L^p-multipliers" in accordance with standard terminology. These operators are required to preserve the subspace of L^p radial functions. A notion of convolution with radial functions was defined in [Bis18], and these operators are also required to be compatible with convolution in the sense that

$$T\phi \ast \psi = \phi \ast T\psi$$

for all radial C^∞-functions ϕ, ψ. They are also required to be compatible with translation of radial functions. Examples of L^p-multipliers are given by the operator of convolution with an L^1 radial function, or more generally convolution with a finite radial measure. In particular elements of the heat semigroup $e^{t\Delta}$ act as multipliers. Given $2 < p < \infty$, we show that for any L^p-multiplier T which is not a scalar multiple of the identity, there is an open set of values of $\nu \in \mathbb{C}$ for which the operator $\frac{1}{\nu} T$ is chaotic on $L^p(X)$ in the sense of Devaney, i.e. topologically transitive and with periodic points dense. Moreover such operators are topologically mixing. We also show that there is a constant $c_p > 0$ such that for any $c \in \mathbb{C}$ with $\text{Re} \, c > c_p$, the action of the shifted heat semigroup $e^{ct} e^{t\Delta}$ on $L^p(X)$ is chaotic. These results generalize the corresponding results for rank one symmetric spaces of noncompact type and negatively curved harmonic NA groups (or Damek-Ricci spaces).

Contents

1. Introduction 1
2. Preliminaries 5
 2.1. CAT(-1) spaces and Busemann functions 5
 2.2. Radial and horospherical eigenfunctions of the Laplacian 6
 2.3. The spherical and Helgason Fourier transforms 6
 2.4. Convolution operators and L^p multipliers 7
3. Dynamics of L^p multipliers 13
 3.1. General multipliers 13
 3.2. The heat semigroup 14
References 16

1. Introduction

The study of chaos in linear dynamics originated in the work of Godefroy and Shapiro [GS91]. The dynamics of a linear operator T on a Frechet space X is said
to be chaotic (in the sense of Devaney) if T is hypercyclic (i.e. has a dense orbit, equivalently is topologically transitive), and has a dense set of periodic points. There is now an extensive literature on chaotic and hypercyclic operators, of which a summary may be found in the books [BM09], [GEM11].

In a geometric context, linear chaos has been investigated for the heat semigroup $e^{t\Delta}$ acting on the Lebesgue spaces $L^p(X)$, for certain complete Riemannian manifolds X (where $\Delta = \text{div} \text{ grad}$ is the Laplace-Beltrami operator on X). Ji and Weber considered finite volume locally symmetric spaces of rank one in [JW10a], where they showed that for $p \in (1, 2)$ there is a constant $c_p \in \mathbb{R}$ such that for $c > c_p$ the shifted semigroup $e^{t(\Delta + c)}$ is subspace chaotic on $L^p(X)$, i.e. there is a closed, invariant subspace such that the semigroup restricted to the subspace is chaotic.

In [JW10a], Ji and Weber investigated the case of symmetric spaces of noncompact type, and showed that in this setting for $p \in (2, \infty)$ there is a constant $c_p \in \mathbb{R}$ such that for $c > c_p$ the shifted semigroup $e^{t(\Delta + c)}$ is subspace chaotic on $L^p(X)$.

In [Sar13], Sarkar improved on the result of Ji and Weber for rank one symmetric spaces, by showing that for the Damek-Ricci spaces (these are certain solvable Lie groups equipped with a left-invariant metric, which include as a particular case rank one symmetric spaces of noncompact type [DR92]), for $p \in (2, \infty)$ there is a constant $c_p \in \mathbb{R}$ such that for $c > c_p$ the shifted semigroup $e^{t(\Delta + c)}$ is subspace chaotic on $L^p(X)$.

In [Bis18], a study of harmonic analysis on noncompact harmonic manifolds in terms of eigenfunctions of the Laplace-Beltrami operator Δ was initiated. We briefly describe the results from [Bis18] which we will be needing:
Let X be a complete, simply connected, harmonic manifold with sectional curvatures K satisfying $K \leq -1$. Then X is a CAT(-1) space, and can be compactified by adjoining a boundary at infinity ∂X, given by equivalence classes of geodesic rays $\gamma : [0, \infty) \to X$ in X. The Busemann cocycle $B : X \times X \times \partial X \to \mathbb{R}$ is defined by

$$B(x, y, \xi) := \lim_{z \to X, z \to \xi} (d(x, z) - d(y, z))$$

Given $x \in X$ and $\xi \in \partial X$, the Busemann function at ξ based at x is defined by $B_{\xi,x}(y) := B(y, x, \xi)$. The Busemann functions $B_{\xi,x}$ are C^2 convex functions, and their level sets are called horospheres based at ξ. As X is harmonic, X is also asymptotically harmonic, i.e. all horospheres have constant mean curvature, so there is a constant $h \in \mathbb{R}$ such that $\Delta B_{\xi,x} \equiv h$ for all $x \in X, \xi \in \partial X$. Since X is negatively curved, in fact $h > 0$. We let

$$\rho = \frac{1}{2} h$$

Then in [Bis18] it is shown that for all $\lambda \in \mathbb{C}$, the function $e^{(i\lambda - \rho) B_{\xi,x}}$ is an eigenfunction of Δ with eigenvalue $-(\lambda^2 + \rho^2)$. Given $f \in C^\infty(X)$ and $x \in X$, the Fourier transform of f based at x is the function \hat{f}^x on $\mathbb{C} \times \partial X$ defined by

$$\hat{f}^x(\lambda, \xi) := \int_X f(y)e^{-(i\lambda - \rho) B_{\xi,x}(y)}\,dvol(y)$$

Given $x \in X$, a function f on X is said to be radial around x if f is constant on geodesic spheres centered at x. In [Bis18] it is shown that for any $\lambda \in \mathbb{C}$, there is a unique eigenfunction $\phi_{\lambda,x}$ of Δ for the eigenvalue $-(\lambda^2 + \rho^2)$ which is radial around x and satisfies $\phi_{\lambda,x}(x) = 1$. For $p > 2$, the functions $\phi_{\lambda,x}$ are in $L^p(X)$ for λ in the strip

$$S_p := \{ \lambda \in \mathbb{C} | | \Im \lambda | < (1 - 2/p)\rho \}$$

Let $1 \leq q < 2$ be such that $1/p + 1/q = 1$. The spherical Fourier transform based at x of a function $f \in L^q(X)$ is the function \hat{f}^x on \mathbb{R} defined by

$$\hat{f}^x(\lambda) := \int_X f(y)\phi_{\lambda,x}(y)dvol(y)$$

The spherical Fourier transform \hat{f}^x extends to a holomorphic function on the strip S_p.

When X is a rank one symmetric space of noncompact type, an L^p-multiplier is a bounded operator $T : L^p(X) \to L^p(X)$ which is translation invariant. Examples of L^p-multipliers are given by convolution on the right with radial L^1-functions, or more generally convolution on the right with finite radial measures. For a general harmonic manifold as in our case, a notion of convolution of functions with radial functions was defined in [Bis18] as follows: given a function g radial around a point x and another point $y \in X$, the y-translate of g is the function $\tau_y g$ radial around y defined by requiring that the value of $\tau_y g$ on a geodesic sphere of radius r around y equals the value of g on the geodesic sphere of radius r around x. The convolution of a function f with g is the function $f \ast g$ defined by

$$(f \ast g)(y) := \int_X f(z)\tau_y g(z)dvol(z)$$
Fixing a basepoint \(o \in X \), convolution with an \(L^1 \)-function radial around \(o \) gives rise to a bounded operator \(T : L^p(X) \to L^p(X) \) for all \(p \in [1, +\infty] \) satisfying the following properties (see section 2.4):

1. \(T \) preserves the subspace of \(L^p \)-functions radial around \(o \).
2. \(T \tau_x \phi = \tau_x T \phi \) for all \(\phi \in C_c^\infty(X) \) radial around \(o \) and for all \(x \in X \).
3. \(T \phi * \psi = \phi * T \psi \) for all \(\phi, \psi \in C_c^\infty(X) \) radial around \(o \).

This motivates the following definition: an \(L^p \)-multiplier is a bounded operator \(T : L^p(X) \to L^p(X) \) which satisfies properties (1)-(3) above. Examples of \(L^p \)-multipliers are given by convolution with radial \(L^1 \)-functions, or more generally convolution with radial complex measures of finite total variation (see section 2.4).

The terminology “multiplier” is motivated by the following: for \(p > 2 \), if \(T : L^p(X) \to L^p(X) \) is an \(L^p \)-multiplier, then there exists a holomorphic function \(m_T \) on the strip \(S_p \), called the symbol of \(T \), such that for all \(C_c^\infty \)-functions \(\phi \) radial around \(o \), the spherical Fourier transform of \(T \phi \) is given by

\[
\hat{T} \phi (\lambda) = m_T(\lambda) \hat{\phi}(\lambda), \lambda \in S_p
\]

Moreover if \(T \) is not a scalar multiple of the identity, then the function \(m_T \) is a nonconstant holomorphic function. We can now state our main theorem:

Theorem 1.1. Let \(X \) be a complete, simply connected, harmonic manifold with sectional curvature \(K \leq -1 \). Let \(2 < p < \infty \) and let \(T : L^p(X) \to L^p(X) \) be an \(L^p \)-multiplier with symbol \(m_T \) such that \(T \) is not a scalar multiple of the identity. Then for all \(\lambda \in S_p \) such that \(m_T(\lambda) \neq 0 \), for any \(\nu \in \mathbb{C} \) such that \(|\nu| = |m_T(\lambda)|\) the dynamics of the operator \(\frac{1}{p}T \) on \(L^p(X) \) is topologically mixing with periodic points dense, in particular the dynamics is chaotic in the sense of Devaney.

A particular case of multipliers is given by the heat semigroup \(e^{t\Delta} \) on \(X \). For a simply connected harmonic manifold, the heat kernel \(H_t(x, y) \) is radial, i.e. there exists an \(L^1 \) function \(h_t \) radial around \(o \) such that \(H_t(x, y) = (\tau_x h_t)(y) \) (see [Sza90]). The action of \(e^{t\Delta} \) is thus given by convolution with the radial \(L^1 \) function \(h_t \), so \(e^{t\Delta} \) is an \(L^p \)-multiplier for all \(p \in [1, +\infty] \). We determine the symbol of \(e^{t\Delta} \) and then apply the previous theorem to obtain the following corollary:

Corollary 1.2. Let \(X \) be a complete, simply connected, harmonic manifold with sectional curvature \(K \leq -1 \), and let \(2 < p < \infty, 1 < q < 2 \) be such that \(1/p + 1/q = 1 \). There exists a constant \(c_p = \frac{4p^2}{pq} \) such that the action of the shifted heat semigroup \((e^{ct\Delta})_{t \geq 0} \) on \(L^p(X) \) is chaotic in the sense of Devaney for all \(c \in \mathbb{C} \) with \(\text{Re } c > c_p \). In fact for any \(t_0 > 0 \), the operator \(e^{ct_0\Delta} \) on \(L^p(X) \) is chaotic for all \(c \in \mathbb{C} \) with \(\text{Re } c > c_p \).

In section 2 we recall some basic facts about eigenfunctions of the Laplacian, the Fourier transform, and convolution on harmonic manifolds, show that convolution with a radial measure of finite variation is an \(L^p \)-multiplier, and prove existence of the symbol of a multiplier. In section 3 we prove the main theorem. We also prove the corollary by determining the symbol of the multiplier \(e^{t\Delta} \).
2. Preliminaries

In this section we briefly recall the facts about the Fourier transform on harmonic manifolds which we will require. For details the reader is referred to [Bis18]. Throughout, X will denote a complete, simply connected harmonic n-manifold with sectional curvatures K satisfying $K \leq -1$. We fix a basepoint $o \in X$.

2.1. CAT(-1) spaces and Busemann functions. In this case, X is a CAT(-1) space, and we can define a boundary at infinity ∂X of the space X, defined as the set of equivalence classes of geodesic rays $\gamma : [0, \infty)$ in X, where two rays are equivalent if they stay at bounded distance from each other. There is a natural topology on $X := X \cup \partial X$ called the cone topology for which X becomes a compactification of X (for details on CAT(κ) spaces we refer to [BH99]).

Given a point $x \in X$, let $\lambda _x$ be normalized Lebesgue measure on the unit tangent sphere $T^1_x X$, i.e. the unique probability measure on $T^1_x X$ invariant under the orthogonal group of the tangent space $T_x X$. For $v \in T^1_x X$, let $\gamma _v : [0, \infty) \to X$ be the unique geodesic ray with initial velocity v. Then we have a homeomorphism $p_x : T^1_x X \to \partial X, v \mapsto \gamma _v(\infty)$. The visibility measure on ∂X (with respect to the basepoint x) is defined to be the push-forward $(p_x)_* \lambda _x$ of $\lambda _x$ under the map p_x; for notational convenience, we will however denote the visibility measure on ∂X by the same symbol $\lambda _x$.

The Busemann cocycle $B : X \times X \times \partial X$ is defined by

$$B(x, y, \xi) := \lim_{z \to \xi} (d(x, z) - d(y, z))$$

Given a point $x \in X$ and a boundary point $\xi \in \partial X$, the Busemann function at ξ based at x is defined by

$$B_{\xi, x}(y) := B(y, x, \xi)$$

The Busemann functions $B_{\xi, x}$ are C^2 convex functions, and their level sets are called horospheres based at ξ.

2.2. Radial and horospherical eigenfunctions of the Laplacian. Let Δ denote the Laplace-Beltrami operator of X, or Laplacian. As X is harmonic, X is also asymptotically harmonic, i.e. all horospheres have constant mean curvature, so there is a constant h such that $\Delta B_{\xi, x} \equiv h$ for all $\xi \in \partial X, x \in X$. Since X is negatively curved, in fact $h > 0$. We let

$$\rho := \frac{1}{2} h$$

A function f on X is called radial around a point $x \in X$ if f is constant on geodesic spheres centered at x. For any $x \in X$ and $\lambda \in \mathbb{C}$, there is a unique eigenfunction $\phi_{\lambda, x}$ of Δ for the eigenvalue $-(\lambda ^2 + \rho ^2)$ which is radial around x and satisfies $\phi_{\lambda, x}(x) = 1$. Moreover for any fixed $y \in Y, \lambda \mapsto \phi_{\lambda, x}(y)$ is an entire function of λ. The functions $\phi_{\lambda, x}$ are real-valued for $\lambda \in \mathbb{R} \cup i \mathbb{R}$, and bounded by 1 for $|\text{Im} \lambda| \leq \rho$. Given $p > 2$, for all λ in the strip $S_p := \{ |\text{Im} \lambda| < (1 - 2/p)\rho \}$, the function $\phi_{\lambda, x}$ is in $L^p(X)$.
For any \(x \in X, \xi \in \partial X \) and \(\lambda \in \mathbb{C} \), the function \(e^{(i\lambda - \rho)B_{\xi,x}} \) is an eigenfunction of \(\Delta \) for the eigenvalue \(- (\lambda^2 + \rho^2)\). Note that this eigenfunction is constant on horospheres based at \(\xi \).

2.3. The spherical and Helgason Fourier transforms. Let \(f \in L^1(X) \). Given a point \(x \in X \), the spherical Fourier transform of \(f \) based at \(x \) is the function \(\hat{f}^x \) on \(\mathbb{R} \) defined by pairing \(f \) with the radial eigenfunctions \(\phi_{\lambda,x} \):

\[
\hat{f}^x(\lambda) := \int_X f(y) \phi_{\lambda,x}(y) \, d\text{vol}(y), \quad \lambda \in \mathbb{R}
\]

There exists a function \(c \) on \(\mathbb{C} - \{0\} \) satisfying, for some constants \(C, K > 0 \), the estimates

\[
\frac{1}{C}|\lambda| \leq |c(\lambda)|^{-1} \leq C|\lambda|, \quad 0 < |\lambda| \leq K
\]

\[
\frac{1}{C}|\lambda|^{(n-1)/2} \leq |c(\lambda)|^{-1} \leq C|\lambda|^{(n-1)/2}, \quad |\lambda| \geq K
\]

such that the following inversion formula for the spherical Fourier transform from [Bis18] holds:

Theorem 2.1. Let \(f \in C^\infty_c(X) \) be radial around \(x \). Then

\[
f(y) = \int_0^\infty \hat{f}^x(\lambda) \phi_{\lambda,x}(y)|c(\lambda)|^{-2} \, d\lambda
\]

for all \(y \in X \).

Given \(1 \leq q < 2 \), if \(p > 2 \) is the conjugate exponent such that \(1/p + 1/q = 1 \), then using the fact that the functions \(\phi_{\lambda,0} \) are in \(L^p(X) \) for \(\lambda \) in the strip \(S_p \), we have the following proposition from [Bis18]:

Proposition 2.2. Let \(1 \leq q < 2 \) and \(p > 2 \) be such that \(1/p + 1/q = 1 \). Then for any \(x \in X \) and \(f \in L^q(X) \), the spherical Fourier transform of \(f \) based at \(x \) is well-defined and extends to a holomorphic function on the strip \(S_p \).

Let \(f \in C^\infty_c(X) \). Given \(x \in X \), the Helgason Fourier transform of \(f \) based at \(x \) is the function \(\tilde{f}^x : \mathbb{C} \times \partial X \to \mathbb{C} \) defined by

\[
\tilde{f}^x(\lambda, \xi) := \int_X f(y)e^{-i\lambda \rho)B_{\xi,x}(y)} \, d\text{vol}(y), \quad \lambda \in \mathbb{C}, \xi \in \partial X
\]

We have the following relation between the Helgason Fourier transforms based at two different basepoints \(o, x \in X \):

\[
\tilde{f}^x(\lambda, \xi) = e^{i(\lambda+\rho)B_{\xi,o}(x)} \tilde{f}^o(\lambda, \xi)
\]

If \(f \) is radial around the point \(x \) then the Helgason Fourier transform reduces to the spherical Fourier transform,

\[
\tilde{f}^x(\lambda, \xi) = \hat{f}^x(\lambda), \lambda \in \mathbb{C}, \xi \in \partial X
\]
From [Bis18] we have the following inversion formula for the Helgason Fourier transform:

Theorem 2.3. Let \(x \in X \) and let \(f \in C_c^\infty(X) \). Then

\[
f(y) = \int_0^\infty \int_{\partial X} \tilde{f}^x(\lambda, \xi) e^{i(\lambda-\rho)B_t(y)} d\lambda_x(\xi) |c(\lambda)|^{-2} d\lambda
\]

for all \(y \in X \).

2.4. Convolution operators and \(L^p \) multipliers.

For a point \(x \in X \), let \(d_x \) denote the distance function from the point \(x \), defined by \(d_x(y) := d(x, y), y \in X \).

Given a function \(f \) on \(X \) radial around a point \(x \), let \(u \) be a function on \([0, \infty)\), such that \(f = u \circ d_x \). Given a point \(y \) in \(X \), the \(y \)-translate of \(f \) is the function \(\tau_yf \) radial around \(y \) defined by \(\tau_yf := u \circ d_y \). It follows from the fact that \(X \) is harmonic that \(||\tau_yf||_p = ||f||_p \) for all \(p \in [1, +\infty] \). Moreover if \(f \) is also in \(L^1 \), then the spherical Fourier transforms satisfy

\[
\hat{\tau_yf^y}(\lambda) = \tilde{f}^x(\lambda)
\]

We note also from [Bis18] that there is an even \(C^\infty \) function on \(\mathbb{R} \) which we denote by \(\phi_\lambda \) such that \(\phi_{\lambda,x} = \phi_\lambda \circ d_x \). Thus the \(x \)-translate of the eigenfunction \(\phi_{\lambda,o} \) radial around \(o \) is the eigenfunction \(\phi_{\lambda,x} \) radial around \(x \), \(\tau_x \phi_{\lambda,o} = \phi_{\lambda,x} \).

For simplicity, in the sequel, unless otherwise mentioned, by ”radial function” we will mean a function which is radial around the basepoint \(o \). Likewise, by ”spherical Fourier transform” we will mean the spherical Fourier transform based at \(o \), unless otherwise mentioned.

Given \(f, g \in L^1(X) \) with \(g \) radial, the convolution of \(f \) with \(g \) is the function \(f \ast g \) on \(X \) defined by

\[
(f \ast g)(x) = \int_X f(y) \tau_x g(y) d\text{vol}(y)
\]

The integral above converges for a.e. \(x \), and satisfies

\[
||f \ast g||_1 \leq ||f||_1 ||g||_1
\]

We note that if \(f \in L^\infty(X) \) and \(g \in L^1(X) \) with \(g \) radial, then the integral defining \((f \ast g)(x) \) converges for all \(x \) and satisfies

\[
||f \ast g||_\infty \leq ||f||_\infty ||g||_1
\]

It follows by interpolation that for any \(p \in [1, +\infty] \), convolution with a radial \(L^1 \) function \(g \) defines a bounded linear operator on \(L^p(X) \) satisfying

\[
||f \ast g||_p \leq ||f||_p ||g||_1
\]

for all \(f \in L^p(X) \).

A standard argument using the above inequality and density of \(C_c^\infty(X) \) in \(L^p(X) \) gives that if \(\{ \phi_n \} \) is an approximate identity, i.e. \(\phi_n \geq 0, \int_X \phi_n d\text{vol} = 1 \) and \(\int_{B(o,r)} \phi_n d\text{vol} \to 1 \) for any \(r > 0 \), then for any \(f \in L^p(X) \),

\[
||f \ast \phi_n - f||_p \to 0
\]

as \(n \to \infty \).
In [Bis18] it is shown that for $\phi, \psi \in C_c^\infty(X)$ with ψ radial, the Helgason Fourier transform of the convolution $\phi * \psi$ satisfies

$$\hat{\phi * \psi}(\lambda, \xi) = \hat{\phi}(\lambda, \xi) \hat{\psi}(\lambda) , \lambda \in \mathbb{C}, \xi \in \partial X$$

In particular, if both ϕ, ψ are radial, then

$$\hat{\phi * \psi}(\lambda) = \hat{\phi}(\lambda) \hat{\psi}(\lambda)$$

We also have from [Bis18] that the radial L^1 functions form a commutative Banach algebra under convolution. It follows, using density of radial C_c^∞-functions in radial L^p functions, that for a radial L^1 function g the convolution operator $T_g : f \mapsto f * g$ on $L^p(X)$ preserves the subspace of radial L^p functions and satisfies, for all radial C_c^∞-functions ϕ, ψ,

$$T_g\phi * \psi = \phi * T_g\psi$$

In fact for any $x \in X$ the convolution operator T_g preserves the subspace of L^p functions radial around x. This is a consequence of the following lemma:

Lemma 2.4. Let ϕ, ψ be radial C_c^∞-functions. Then for any $x \in X$,

$$\tau_x \phi * \psi = \tau_x(\phi * \psi)$$

Proof: We compute Helgason Fourier transforms:

$$\tau_x \hat{\phi * \psi}(\lambda, \xi) = \tau_x \hat{\phi}(\lambda, \xi) \hat{\psi}(\lambda)$$

$$= e^{-i(\lambda + \rho)B_{\xi,o}(x)} \tau_x \hat{\phi}(\lambda) \hat{\psi}(\lambda)$$

$$= e^{-i(\lambda + \rho)B_{\xi,o}(x)} \tau_x \hat{\phi}(\lambda) \hat{\psi}(\lambda)$$

$$= e^{-i(\lambda + \rho)B_{\xi,o}(x)} \tau_x (\phi * \psi)(\lambda)$$

$$= e^{-i(\lambda + \rho)B_{\xi,o}(x)} \tau_x (\phi * \psi)(\lambda, \xi)$$

$$= \tau_x (\phi * \psi)(\lambda, \xi)$$

It follows from the Fourier inversion formula (Theorem 2.3) that $\tau_x \phi * \psi = \tau_x (\phi * \psi)$.

Now given g a radial L^1 function and $\phi \in C_c^\infty(X)$, let $\{\psi_n\}$ be a sequence of radial C_c^∞-functions converging to g in L^1. Given $x \in X$, since ϕ and $\tau_x \phi$ are in L^∞, it follows that $\phi * \psi_n$ and $\tau_x \phi * \psi_n$ converge pointwise to $\phi * g$ and $\tau_x \phi * g$ respectively, so $\tau_x (\phi * \psi_n)$ converges pointwise to $\tau_x (\phi * g)$. Applying the previous Lemma, we obtain $\tau_x \phi * g = \tau_x (\phi * g)$. Thus the convolution operator T_g satisfies

$$T_g \tau_x \phi = \tau_x T_g \phi$$

for all radial C_c^∞ functions ϕ and all $x \in X$.

This leads us to the following definition:
Definition 2.5. (L^p-multipliers) For \(p \in [1, +\infty] \), an L^p-multiplier is a bounded operator \(T : L^p(X) \to L^p(X) \) such that:

1. \(T \) preserves the subspace of radial L^p functions.
2. For all radial \(C_c^\infty \)-functions \(\phi, \psi \) we have
 \[T\phi \ast \psi = \phi \ast T\psi \]
3. For all radial \(C_c^\infty \)-functions \(\phi \) and all \(x \in X \) we have
 \[T\tau_x \phi = \tau_x T\phi \]

Thus convolution operators given by radial \(L^1 \) functions are \(L^p \) multipliers for all \(p \in [1, +\infty] \). For more general examples of \(L^p \)-multipliers we can consider convolution with radial complex measures \(\mu \) of finite total variation, which is defined as follows:

We say that a complex measure \(\mu \) on \(X \) is radial around \(o \) if there exists a complex measure \(\bar{\mu} \) on \([0, \infty) \) such that for any continuous bounded function \(f \) on \(X \) we have
\[
\int_X f(x) d\mu(x) = \int_0^\infty \left(\int_{S(o,r)} f(y) d\lambda_{o,r}(y) \right) d\bar{\mu}(r)
\]
where \(S(o,r) \) denotes the geodesic sphere of radius \(r \) around \(o \) and \(\lambda_{o,r} \) denotes the volume measure on \(S(o,r) \) induced from the metric on \(X \). For \(x \in X \), the \(x \)-translate of such a measure \(\mu \) is the measure \(\tau_x \mu \) radial around \(x \) defined by requiring that
\[
\int_X f(y) d\tau_x \mu(y) = \int_0^\infty \left(\int_{S(x,r)} f(y) d\lambda_{x,r}(y) \right) d\bar{\mu}(r)
\]
for all continuous bounded functions \(f \) on \(X \) (where \(S(x,r) \) is the geodesic sphere of radius \(r \) around \(x \) and \(\lambda_{x,r} \) is the volume measure on \(S(x,r) \)).

For an \(L^1 \) function \(f \) on \(X \) and a radial complex measure \(\mu \) on \(X \) of finite variation, the convolution \(f \ast \mu \) is the function on \(X \) defined by
\[
(f \ast \mu)(x) := \int_X f(y) d\tau_x \mu(y)
\]
We note that any \(L^1 \) function \(g \) which is radial around \(o \) gives a complex measure \(\mu = gdvol \) which is radial around \(o \) and satisfies \(||\mu|| = ||g||_1 \) (where \(||\mu|| \) is the total variation norm of \(\mu \)), and \(f \ast \mu = f \ast g \), so convolution with finite variation radial measures generalizes convolution with \(L^1 \) radial functions.

Given a finite variation radial measure \(\mu \), we can approximate \(\mu \) in the weak-* topology by measures \(g_n \) where \(g_n \)'s are radial \(L^1 \) functions such that \(||g_n||_1 \to ||\mu|| \), then for any \(f \in C_c^\infty(X) \) we have \(f \ast g_n \to f \ast \mu \) pointwise, and an application of Fatou’s Lemma then leads to the inequality
\[
||f \ast \mu||_1 \leq ||f||_1 ||\mu||
\]
valid for all \(f \in C_c^\infty(X) \) and all finite variation radial measures \(\mu \). The inequality then continues to hold for all \(f \in L^1(X) \) by density of \(C_c^\infty(X) \) in \(L^1(X) \).
Moreover for \(f \in L^\infty(X) \) and \(\mu \) a finite variation radial measure, it is straightforward to see that the integral defining \(f * \mu \) exists for all \(x \) and satisfies
\[
||f * \mu||_\infty \leq ||f||_\infty ||\mu||
\]
Thus by interpolation for any \(p \in [1, +\infty] \), convolution with a finite variation radial measure \(\mu \) defines a bounded operator on \(L^p(X) \) satisfying
\[
||f * \mu||_p \leq ||f||_p ||\mu||
\]
for all \(f \in L^p(X) \).

Proposition 2.6. Let \(\mu \) be a radial complex measure of finite total variation. Then for any \(p \in [1, +\infty] \), the operator \(T_\mu : f \mapsto f * \mu \) is an \(L^p \) multiplier.

Proof: Fix \(p \in [1, \infty] \). Let \(\{g_n\} \) be a sequence of radial \(L^1 \) functions such that \(g_n \text{divol} \to \mu \) in the weak-* topology and such that \(||g_n||_1 \to ||\mu|| \). Then for any radial \(C^\infty \)-function \(\phi \), the functions \(\phi * g_n \) are radial and converge to \(\phi * \mu \) pointwise, so \(\phi * \mu \) is radial. It follows that \(T_\mu \) preserves the subspace of radial \(L^p \) functions.

Let \(\phi, \psi \) be radial \(C^\infty \)-functions. Then
\[
||\phi * g_n||_\infty \leq ||\phi||_\infty ||g_n||_1 \leq C||\phi||_\infty
\]
for some constant \(C > 0 \), so for any \(x \in X \) the functions \(\phi * g_n \) are uniformly bounded on the support of \(\tau_x \psi \), and converge to \(\phi * \mu \) pointwise, so it follows from dominated convergence that \((\phi * g_n) * \psi(x) \to (\phi * \mu) * \psi(x) \) for all \(x \in X \). A similar argument gives that \(\phi * (\psi * g_n)(x) \to \phi * (\psi * \mu)(x) \) for all \(x \in X \). Since \((\phi * g_n) * \psi = \phi * (\psi * g_n) \) for all \(n \), it follows that \((\phi * \mu) * \psi = \phi * (\psi * \mu) \).

Let \(\phi \) be a radial \(C^\infty \)-function and let \(x \in X \). Then \(\phi * g_n \) and \(\tau_x \phi * g_n \) converge to \(\phi * \mu \) and \(\tau_x \phi * \mu \) respectively, so \(\tau_x (\phi * g_n) \) converges pointwise to \(\tau_x (\phi * \mu) \). Since \(\tau_x (\phi * g_n) = \tau_x (\phi * g_n) \) for all \(n \), it follows that \(\tau_x (\phi * \mu) = \tau_x (\phi * \mu) \).

Let \(1 \leq q < 2 \) and \(p > 2 \) such that \(1/p + 1/q = 1 \). Let \(f \) be a radial \(L^q \) function, then the spherical Fourier transform \(\hat{f} \) is holomorphic in the strip \(S_p \), and it turns out that for any radial \(C^\infty \)-function \(\psi \), we have
\[
\hat{f} * \psi(\lambda) = \hat{f}(\lambda) \hat{\psi}(\lambda), \lambda \in S_p
\]
This can be seen as follows: let \(\{\phi_n\} \) be a sequence of radial \(C^\infty \)-functions converging to \(f \) in \(L^q(X) \), then since \(\phi_{\lambda,\varphi} \in L^p(X) \) for \(\lambda \in S_p \), it follows from H"older's inequality that \(\hat{\phi}_n(\lambda) \to \hat{f}(\lambda) \) for \(\lambda \in S_p \). Moreover, since \(\psi \in L^1(X) \), \(\phi_n * \psi \) converges to \(f * \psi \) in \(L^q(X) \), so as before \(\hat{\phi}_n * \hat{\psi}(\lambda) \to \hat{f} * \hat{\psi}(\lambda) \) for \(\lambda \in S_p \). The desired equality follows by passing to the limit in the equality \(\phi_n * \hat{\psi}(\lambda) = \hat{\phi}_n(\lambda) \hat{\psi}(\lambda) \).

Other examples of \(L^p \)-multipliers can be obtained by using the Kunze-Stein phenomenon proved in [Bis18]. This asserts that if \(1 \leq q < 2 \), then there is a constant \(C_q > 0 \) such that for all \(C^\infty \)-functions \(f, g \) with \(g \) radial, we have
\[
||f * g||_2 \leq C_q ||f||_2 ||g||_q.
\]
Combining this with the trivial estimate
\[
||f * g||_1 \leq ||f||_1 ||g||_1
\]
it follows from interpolation that for any \(p > 2 \), if \(1 \leq r < 2 \) is such that \(1/r < 1 + 1/p \), then there is a constant \(C_p > 0 \) such that

\[
||f * g||_p \leq C_p ||f||_p ||g||_r.
\]

The above inequality then implies that convolution with a radial \(L^r \)-function \(g \) defines an \(L^p \)-multiplier \(T_g : L^p(X) \to L^p(X) \).

The following proposition justifies the use of the term "multiplier":

Proposition 2.7. Let \(1 \leq q < 2 \) and \(p > 2 \) be such that \(1/p + 1/q = 1 \). Let \(T : L^p(X) \to L^p(X) \) be an \(L^p \)-multiplier. Then there exists a holomorphic function \(m_T \) on the strip \(S_p \) such that, for any radial \(C_c^\infty \)-function \(\phi \), we have \(T\phi \in L^q(X) \), and

\[
\hat{T}\phi(\lambda) = m_T(\lambda)\hat{\phi}(\lambda), \lambda \in S_p
\]

Proof: We first show that given a radial \(C_c^\infty \) function \(\phi \), \(T\phi \in L^q(X) \). For any radial \(C_c^\infty \)-function \(\psi \), we have

\[
\left| \int_X T\phi(x)\psi(x)dvol(x) \right| = |T\phi * \psi(o)|
\]

\[
= |\phi \ast T\psi(o)|
\]

\[
= \left| \int_X \phi(x)T\psi(x)dvol(x) \right|
\]

\[
\leq ||\phi||_q ||T\psi||_p
\]

\[
\leq (||T||||\phi||_q)||\psi||_p
\]

Since \(T\phi \) is radial and the above inequality holds for all radial \(C_c^\infty \)-functions \(\psi \), it follows that \(||T\phi||_q \leq ||T||||\phi||_q < +\infty \).

Thus for any radial \(C_c^\infty \)-function \(\phi \) which is not identically zero, \(\hat{T}\phi \) is a holomorphic function in the strip \(S_p \), and we can define a meromorphic function \(m_\phi \) on \(S_p \) by

\[
m_\phi := \frac{\hat{T}\phi}{\hat{\phi}}
\]

If \(\psi \) is another radial \(C_c^\infty \)-function which is not identically zero, then the equality \(T\phi \ast \psi = \phi \ast T\psi \) implies \(\hat{T}\phi \ast \hat{T}\psi = \hat{\phi} \hat{T}\psi \) on \(S_p \) and hence \(m_\phi = m_\psi \). Thus the meromorphic function \(m_\phi \) is independent of the choice of \(\phi \), and we may denote it by \(m_T \).

It suffices to show that \(m_T \) is in fact holomorphic in \(S_p \). For this it is enough to show that given any \(\lambda_0 \in S_p \), there is a radial \(C_c^\infty \)-function \(\phi \) such that \(\hat{\phi}(\lambda_0) \neq 0 \), since then \(m_T = \hat{T}\phi/\hat{\phi} \) will be holomorphic near \(\lambda_0 \). If \(\hat{\phi}(\lambda_0) = 0 \) for all radial \(C_c^\infty \)-functions \(\phi \), then

\[
\int_X \phi(x)\phi_{\lambda_0,o}(x)dvol(x) = 0
\]

for all such \(\phi \), and since \(\phi_{\lambda_0,o} \) is radial this implies that \(\phi_{\lambda_0,o} \equiv 0 \), a contradiction. Thus \(m_T \) is holomorphic in \(S_p \) and by definition satisfies \(\hat{T}\phi = m_T\hat{\phi} \) for all radial \(C_c^\infty \)-functions \(\phi \). \(\diamond \)
Remark. If for $1 \leq q < 2$ we have an L^q-multiplier T, then by definition $T \phi \in L^q$ for ϕ a radial C_∞^∞-function, and then the proof of the above proposition applies to show that for any L^q-multiplier T there is a function m_T holomorphic in the strip S_p such that $\hat{T}\phi(\lambda) = m_T(\lambda)\hat{\phi}(\lambda)$ for $\lambda \in S_p$ and ϕ a radial C_∞^∞-function. Thus the conclusion of the proposition holds in fact for all L^p-multipliers with $p \neq 2$.

We will call the holomorphic function m_T given by the above proposition the symbol of the L^p-multiplier T. Note that if T is given by convolution with a radial L^1-function g, then the symbol m_T equals the spherical Fourier transform \hat{g}^ϕ of g, since $\hat{\phi} * \hat{g}^\phi = \hat{\phi}^\phi \hat{g}^\phi$ for all radial C_∞^∞-functions ϕ.

Proposition 2.8. Let $1 \leq q < 2$ and $p > 2$ be such that $1/p + 1/q = 1$. Let $T : L^p(X) \to L^p(X)$ be an L^p-multiplier. Then for all $\lambda \in S_p$ and $x \in X$, we have

$$T \phi_{\lambda,x} = m_T(\lambda) \phi_{\lambda,x}$$

Proof: Let $\lambda \in S_p$ and let $\{\phi_n\}$ be a sequence of radial C_∞^∞-functions converging to $\phi_{\lambda,o}$ in $L^p(X)$. Then $T\phi_n$ converges to $T\phi_{\lambda,o}$ in $L^p(X)$. For any radial C_∞^∞-function ψ, since $\psi \in L^q(X)$ it follows from Holder’s inequality that

$$\int_X T\phi_n(x)\psi(x)dvol(x) \to \int_X T\phi_{\lambda,o}(x)\psi(x)dvol(x)$$

as $n \to \infty$. On the other hand, again using Holder’s inequality and the fact that ϕ_n converges to $\phi_{\lambda,o}$ in $L^q(X)$, we have

$$\int_X T\phi_n(x)\psi(x)dvol(x) = T\phi_n * \psi(o)$$

$$= \phi_n * T\psi(o)$$

$$= \int_X \phi_n(x)T\psi(x)dvol(x)$$

$$\to \int_X \phi_{\lambda,o}T\psi(x)dvol(x)$$

$$= \hat{T}\psi(\lambda)$$

$$= m_T(\lambda)\hat{\psi}(\lambda)$$

$$= m_T(\lambda)\int_X \phi_{\lambda,o}(x)\psi(x)dvol(x)$$

Thus

$$\int_X T\phi_{\lambda,o}(x)\psi(x)dvol(x) = m_T(\lambda)\int_X \phi_{\lambda,o}(x)\psi(x)dvol(x)$$

for all radial C_∞^∞-functions ψ, so it follows that $T\phi_{\lambda,o} = m_T(\lambda)\phi_{\lambda,o}$.
Now given \(x \in X \) and \(\lambda \in S_p \), the functions \(\tau_x \phi_n \) converge to \(\phi_{\lambda,x} \) in \(L^p(X) \), and so

\[
T\phi_{\lambda,x} = \lim_{n \to \infty} T\tau_x \phi_n \\
= \lim_{n \to \infty} \tau_x T\phi_n \\
= \tau_x T\phi_{\lambda,o} \\
= m_T(\lambda) \tau_x \phi_{\lambda,o} \\
= m_T(\lambda) \phi_{\lambda,x}
\]

\[\diamond \]

3. Dynamics of \(L^p \) multipliers

3.1. General multipliers. We show in this section that the dynamics of appropriately scaled \(L^p \)-multipliers is chaotic in the sense of Devaney if \(2 < p < \infty \). The following lemma is the key to the results which follow:

Lemma 3.1. Let \(1 < q < 2 \) and \(2 < p < \infty \) be such that \(1/p + 1/q = 1 \). Let \(K \subset S_p \) be a subset such that \(K \) has a limit point in \(S_p \). Then the subspace

\[
V_K := \text{Span}\{ \tau_x \phi_{\lambda,o} | x \in X, \lambda \in K \}
\]

is dense in \(L^p(X) \).

Proof: It suffices to show that if \(f \in L^q(X) \) is such that \(\int_X f(y) \tau_x \phi_{\lambda,o}(y) \text{dvol}(y) = 0 \) for all \(x \in X, \lambda \in K \), then \(f = 0 \). Given such an \(f \in L^q(X) \), the hypothesis on \(f \) means that for any \(x \in X \), the spherical Fourier transform of \(f \) based at \(x \) vanishes on the set \(K \). By Proposition 2.2, \(\hat{f}^x \) is holomorphic in \(S_p \) and \(K \) has a limit point in \(S_p \), thus \(\hat{f}^x \) vanishes identically in \(S_p \), in particular on \(\mathbb{R} \). Thus for all \(x \in X \) and \(\lambda \in \mathbb{R} \), we have

\[
(f * \phi_{\lambda,o})(x) = \int_X f(y) \phi_{\lambda,x}(y) \text{dvol}(y) = \hat{f}^x(\lambda) = 0
\]

Let \(\phi \) be a radial \(C^\infty_c \)-function, then by the Fourier inversion formula (Theorem 2.1) we have

\[
\phi(y) = \int_0^\infty \hat{\phi}(\lambda) \phi_{\lambda,o}(y) |c(\lambda)|^{-2} d\lambda
\]

for all \(y \in X \), so it follows from Fubini’s theorem that

\[
(f * \phi)(x) = \int_0^\infty (f * \phi_{\lambda,o})(x) \hat{\phi}(\lambda) |c(\lambda)|^{-2} d\lambda = 0
\]

for all \(x \in X \). Thus \(f * \phi = 0 \) for all radial \(C^\infty_c \)-functions \(\phi \). Now letting \(\{ \phi_n \} \) be a sequence of radial \(C^\infty_c \)-functions which forms an approximate identity, we have \(f * \phi_n = 0 \) for all \(n \), and \(f * \phi_n \) converges to \(f \) in \(L^q(X) \), thus \(f = 0 \). \(\diamond \)

We will also need the following lemma:

Lemma 3.2. Let \(2 < p < \infty \) and let \(T : L^p(X) \to L^p(X) \) be an \(L^p \)-multiplier. Suppose \(T \) is not a scalar multiple of the identity. Then the symbol \(m_T \) is a nonconstant holomorphic function in the strip \(S_p \).
Proof: Suppose to the contrary that \(m_T \equiv C \) for some constant \(C \in \mathbb{C} \). By Proposition 2.8 we then have \(T \phi_{\lambda,x} = C \phi_{\lambda,x} \) for all \(\lambda \in S_p \) and \(x \in X \). Thus \(T = C \text{Id} \) on the subspace \(V = \text{Span}\{\phi_{\lambda,x}|\lambda \in S_p, x \in X\} \), which is dense by the previous Lemma, hence \(T = C \text{Id} \) on \(L^p(X) \), a contradiction. \(\diamond \)

The main tool to prove that the dynamics of \(L^p \) multipliers is chaotic is the following criterion of Godfrey-Shapiro (GEMI, Theorem 3.1):

Theorem 3.3. (Godfrey-Shapiro criterion) Let \(X \) be a separable Banach space and let \(T: X \to X \) be a bounded operator. Suppose the subspaces \(X^+, X^- \) defined by

\[
X^+ = \text{Span}\{v \in X | Tv = \lambda v \text{ for some } \lambda \in \mathbb{C} \text{ such that } |\lambda| < 1\}
\]
\[
X^- = \text{Span}\{v \in X | Tv = \lambda v \text{ for some } \lambda \in \mathbb{C} \text{ such that } |\lambda| > 1\}
\]

are dense in \(X \). Then the dynamics of \(T \) on \(X \) is topologically mixing, i.e. for any two nonempty open sets \(U, V \subset X \), there exists \(N \geq 1 \) such that \(T^n U \cap V \neq \emptyset \) for all \(n \geq N \).

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Let \(\lambda_0 \in S_p \) be such that \(m_T(\lambda_0) \neq 0 \), let \(\nu \in \mathbb{C} \) be such that \(|\nu| = |m_T(\lambda)| \) and set \(\alpha = m_T(\lambda)/\nu \in S^1 \). Let \(D_0 = \{z \in \mathbb{C}||z| < 1\} \) and \(D_\infty = \{z \in \mathbb{C}||z| > 1\} \). Let \(U \subset S_p \) be an open neighbourhood of \(\lambda_0 \), then since \(\alpha \in S^1 \) and by Lemma 3.2 \(m_T \) is a nonconstant holomorphic function, there are nonempty open subsets \(U^+, U^- \subset U \) such that \(\{m_T(\lambda)/\nu | \lambda \in U^+\} \subset D_0 \) and \(\{m_T(\lambda)/\nu | \lambda \in U^-\} \subset D_\infty \). By Proposition 2.8 for all \(\lambda \in U \) and \(x \in X \), the function \(\phi_{\lambda,x} \in L^p(X) \) is an eigenfunction of the operator \(\frac{1}{p}T \) with eigenvalue \(m_T(\lambda)/\nu \). By Lemma 3.1 the subspaces \(V^+ = \{\phi_{\lambda,x} | \lambda \in U^+, x \in X\} \) and \(V^- = \{\phi_{\lambda,x} | \lambda \in U^-, x \in X\} \) are dense in \(L^p(X) \). It follows from the Godfrey-Shapiro criterion that the dynamics of \(\frac{1}{p}T \) is topologically mixing.

It remains to show that the periodic points of \(\frac{1}{p}T \) are dense in \(L^p(X) \). Since \(m_T \) is a nonconstant holomorphic function and \(m_T(\lambda_0)/\nu \in S^1 \), we can choose sequences \(\{\lambda_n\} \subset U \) and \(\{p_n/q_n\} \subset \mathbb{Q} \) such that \(m_T(\lambda_n)/\nu = e^{2\pi ip_n/q_n} \) and \(\lambda_n \to \lambda_0 \) as \(n \to \infty \). Then by Lemma 3.1 the subspace \(V = \text{Span}\{\phi_{\lambda_n,x}|x \in X,n \geq 1\} \) is dense in \(L^p(X) \). It thus suffices to show that each element of \(V \) is a periodic point of \(\frac{1}{p}T \). Any element \(\phi \in V \) can be written as \(\phi = \sum_{j=1}^N a_j \phi_{\lambda_j,x_j} \) for some \(N \geq 1, a_1, \ldots, a_N \in \mathbb{C} \) and \(x_1, \ldots, x_N \in X \). Since \(\phi_{\lambda_j,x_j} \) is an eigenvector of \(\frac{1}{p}T \) with eigenvalue \(e^{2\pi ip_j/q_j} \), letting \(q = \prod_{j=1}^N q_j \) it follows that \((\frac{1}{p}T)^q \phi_{\lambda_j,x_j} = \phi_{\lambda_j,x_j} \) for all \(j \), thus \((\frac{1}{p}T)^q \phi = \phi \) and \(\phi \) is a periodic point of \(\frac{1}{p}T \). \(\diamond \)

3.2. The heat semigroup

We recall some basic facts about the heat semigroup and heat kernel on a complete Riemannian manifold \(X \). Denote by \(\Delta_X = \text{div grad} \) the Laplacian acting on \(C_c^\infty(X) \subset L^2(X) \), then this is an essentially self-adjoint operator, and so its closure \(\Delta_{X,2} \) is a self-adjoint operator on \(L^2(X) \). Since \(\Delta_{X,2} \) is negative, it generates a semigroup \(e^{t\Delta_{X,2}} \) on \(L^2(X) \) by the spectral theorem for unbounded self-adjoint operators. The operators \(e^{t\Delta_{X,2}} \) are positive, leave \(L^1(X) \cap L^\infty(X) \subset L^2(X) \) invariant, and may be extended to a positive contraction
semigroup $e^{t\Delta X,p}$ on $L^p(X)$ for any $p \in [1, +\infty]$, which is strongly continuous for $p \in [1, +\infty]$ ([Dav90]). In the sequel we will write simply $e^{t\Delta}$ for the semigroup $e^{t\Delta X,p}$ on $L^p(X)$. From [Str83] we have the following:

There exists a C^∞ function $H_t(x,y)$ on $\mathbb{R}^+ \times X \times X$, the heat kernel, such that for all $t > 0$ and $x \in X$ the function $H_t(x,.)$ is positive and in L^p for all $p \in [1, +\infty]$, and for all $f \in L^p(X)$,

$$e^{t\Delta} f(x) = \int_X f(y)H_t(x,y)dvol(y)$$

and

$$\frac{\partial}{\partial t}e^{t\Delta} f(x) = \Delta e^{t\Delta} f(x)$$

Moreover, it is shown in [Sza90] that for a X a simply connected harmonic manifold, the heat kernel is radial, i.e. there exists a function h_t radial around the basepoint o such that $H_t(x,y) = (\tau_x h_t)(y)$. Thus the action of the heat semigroup on $L^p(X)$ is given in our case by convolution with the radial L^1 function h_t,

$$e^{t\Delta} f = f \ast h_t$$

for all $f \in L^p(X)$, so $e^{t\Delta}$ is an L^p-multiplier for all $p \in [1, +\infty]$. The symbol of the multiplier $e^{t\Delta}$ is given by the following proposition:

Proposition 3.4. For any $t > 0$, the spherical Fourier transform of the heat kernel is given by

$$\hat{h}_t^o (\lambda) = e^{-t(\lambda^2 + \rho^2)}, \lambda \in S_\infty$$

Proof: Let $p \in (2, \infty)$ and let $\lambda \in S_p$. Then $\phi_{\lambda,o} \in L^p(X)$, and using the fact that the operators $\Delta, e^{t\Delta}$ on $L^p(X)$ commute and $\Delta \phi_{\lambda,o} = -(\lambda^2 + \rho^2)\phi_{\lambda,o}$, we have

$$\frac{\partial}{\partial t} e^{t\Delta} \phi_{\lambda,o} = \Delta e^{t\Delta} \phi_{\lambda,o}$$

$$= e^{t\Delta} \Delta \phi_{\lambda,o}$$

$$= -(\lambda^2 + \rho^2) e^{t\Delta} \phi_{\lambda,o}$$

Thus $t \mapsto e^{t\Delta} \phi_{\lambda,o} \in L^p(X)$ satisfies the first order linear ODE

$$\frac{\partial}{\partial t} e^{t\Delta} \phi_{\lambda,o} = -(\lambda^2 + \rho^2) e^{t\Delta} \phi_{\lambda,o}$$

and $e^{t\Delta} \phi_{\lambda,o} \to \phi_{\lambda,o}$ in $L^p(X)$ as $t \to 0$, hence

$$e^{t\Delta} \phi_{\lambda,o} = e^{-t(\lambda^2 + \rho^2)} \phi_{\lambda,o}$$

for all $t > 0$. Evaluating both sides above at the point o gives

$$\hat{h}_t^o (\lambda) = \int_X \phi_{\lambda,o}(x)h_t(x)dvol(x)$$

$$= e^{t\Delta} \phi_{\lambda,o}(o)$$

$$= e^{-t(\lambda^2 + \rho^2)} \phi_{\lambda,o}(o)$$

$$= e^{-t(\lambda^2 + \rho^2)}$$
We can now prove the result on the chaotic dynamics of shifted heat semigroups:

Proof of Corollary 1.2. Given \(2 < p < \infty\) and \(1 < q < 2\) such that \(1/p + 1/q = 1\), let \(c_p = 4\rho^2/(pq)\). Let \(c \in \mathbb{C}\) be such that \(\text{Re } c > c_p\), and let \(t_0 > 0\). Let \(T = e^{-t_0\Delta}\) and \(\nu = e^{-ct_0}\). By Proposition 3.4 above, the symbol of \(T\) is given by \(m_T(\lambda) = e^{-t_0(\lambda^2 + \rho^2)}\). In order to show that the operator \(e^{ct_0}e^{-t_0\Delta} = \frac{1}{2}T\) is chaotic, it suffices by Theorem 1.1 to show that there exists \(\lambda \in S_p\) such that \(|\nu| = |m_T(\lambda)|\).

Letting \(\lambda = s + it \in S_p\), the equality \(|\nu| = |m_T(\lambda)|\) is equivalent to

\[s^2 - t^2 + \rho^2 = \text{Re } c\]

Let \(t\) be such that \(t = (1 - 2/p)\rho - \epsilon\) where \(\epsilon > 0\) is small, then we have

\[
\text{Re } c + t^2 - \rho^2 = (\text{Re } c - c_p) + c_p + (1 - 2/p)^2 \rho^2 + O(\epsilon)
\]

\[= (\text{Re } c - c_p) + (4(1/p)(1 - 1/p) - 4/p + 4/p^2)\rho^2 + O(\epsilon)
\]

\[= (\text{Re } c - c_p) + O(\epsilon)
\]

\[> 0
\]

for \(\epsilon\) small enough such that \(\text{Re } c - c_p > 0\). Thus we can choose \(t\) with \(0 < t < (1 - 2/p)\rho\) such that \(\text{Re } c + t^2 - \rho^2 > 0\), so we can then choose \(s \in \mathbb{R}\) such that \(s^2 = \text{Re } c + t^2 - \rho^2\), or \(s^2 - t^2 + \rho^2 = \text{Re } c\), as required. \(\diamondsuit\)

References

[BH99] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature. *Grundlehren der mathematischen Wissenschaften, ISBN 0072-7830; 319*, 1999.

[Bis18] K. Biswas. The fourier transform on negatively curved harmonic manifolds. *Preprint, https://arxiv.org/pdf/1802.07236.pdf*, 2018.

[BM09] F. Bayart and E. Matheron. Dynamics of linear operators. *Cambridge Tracts in Mathematics, 179*, Cambridge University Press, Cambridge, 2009.

[CR40] E. T. Copson and H. S. Ruse. Harmonic riemannian spaces. *Proc. Roy. Soc. Edinburgh 60*, pages 117–133, 1940.

[Dav90] E. B. Davies. Heat kernels and spectral theory. *Cambridge Tracts in Mathematics, vol. 92*, Cambridge University Press, 1990.

[DR92] E. Damek and F. Ricci. A class of nonsymmetric harmonic riemannian spaces. *Bull. Amer. Math. Soc., N.S. 27* (1), pages 139–142, 1992.

[GEM11] K. G. Grosse-Erdmann and A. Peris Manguillot. Linear chaos. *Universitext, Springer*, London, 2011.

[GS91] G. Godefroy and J. H. Shapiro. Operators with dense, invariant, cyclic vector manifolds. *J. Funct. Anal. 98*(2), pages 229–269, 1991.

[Heb06] J. Heber. On harmonic and asymptotically harmonic homogeneous spaces. *Geom. Funct. Anal. 16* (4), pages 869–890, 2006.

[JW10a] L. Ji and A. Weber. Dynamics of the heat semigroup on symmetric spaces. *Ergodic Theory and Dynamical Systems 30*, no. 2, pages 457–468, 2010.

[JW10b] L. Ji and A. Weber. \(L^p\) spectral theory and heat dynamics of locally symmetric spaces. *J. Funct. Anal. 258*, no. 4, pages 1121–1139, 2010.

[JW15] L. Ji and A. Weber. The \(L^p\) spectrum and heat dynamics of locally symmetric spaces of higher rank. *Ergodic Theory and Dynamical Systems 35*, no. 5, pages 1524–1545, 2015.

[KP13] G. Knieper and N. Peyerimhoff. Noncompact harmonic manifolds. *Oberwolfach Preprints, https://arxiv.org/pdf/1302.3841.pdf*, 2013.

[Nik05] Y. Nikolaevsky. Two theorems on harmonic manifolds. *Comment. Math. Helv. 80*, pages 29–50, 2005.
M. Pramanik and R. P. Sarkar. Chaotic dynamics of the heat semigroup on riemannian symmetric spaces. *J. Funct. Anal.* 266, no. 5, pages 2867–2909, 2014.

S. K. Ray and R. P. Sarkar. Chaotic behaviour of the fourier multipliers on riemannian symmetric spaces of noncompact type. Preprint, https://arxiv.org/pdf/1805.10048.pdf, 2017.

R. P. Sarkar. Chaotic dynamics of the heat semigroup on the damek-ricci spaces. *Israel J. Math.* 198, no. 1, pages 487–508, 2013.

R. S. Strichartz. Analysis of the laplacian on the complete riemannian manifold. *J. Funct. Anal.* 52, no. 1, pages 48–79, 1983.

Z. Szabo. The lichnerowicz conjecture on harmonic manifolds. *Journal of Differential Geometry*, 31, pages 1–28, 1990.

A. C. Walker. On lichnerowicz’s conjecture for harmonic 4-spaces. *J. London Math. Soc.* 24, pages 317–329, 1948.

Indian Statistical Institute, Kolkata, India. Email: kingshook@isical.ac.in

Indian Statistical Institute, Kolkata, India. Email: rudra@isical.ac.in