Theoretical and Experimental Study of Corrosion Behavior of Carbon Steel Surface in 3.5% NaCl and 0.5 M HCl with Different Concentrations of Quinolin-2-One Derivative

Rehab Majed Kubba* Mustafa Alaa Mohammed

Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq.

*Correspond author: Rehab_mmr_kb@yahoo.com, Mustafa.alaa602@yahoo.com

ORCID ID: https://orcid.org/0000-0003-4855-7871, https://orcid.org/0000-0001-7575-3558

Received 4/2/2020, Accepted 16/6/2020, Published Online First 20/7/2021, Published 1/2/2022

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract: A theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namely 7-Ethyl-4-methyl-1-[(4-nitrobenzylidene)-amino]-1H-quinolin-2-one (EMNQ2O). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G/ 2d, 2p level was carried out to calculate the geometrical structure, physical properties and chemical inhibition chemical parameters, with the local reactivity in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks, in vacuum and two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in (3.5% NaCl) and (0.5M HCl) solutions were studied using potentiometric polarization measurements. The results revealed that the (%IE) in the salty solution (94.98%) is greater than that in the acid solution (81.40%). The thermodynamic parameters obtained, supported the physical adsorption mechanism and the adsorption followed the Langmuir adsorption isotherm. The surface changes of the carbon steel were studied using SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) techniques.

Keywords: Corrosion Inhibition, DFT, Quinolin, Thermodynamic parameters.

Introduction: Corrosion inhibitors are chemicals substances that interact with a metal surface or environments to which the metal surface is exposed and act to protect the metal from corrosion. Most organic compounds having heterogeneous atoms (Nitrogen, Oxygen, Sulfur) in their aromatic composition have been successfully used as corrosion inhibitors. Often high heterogeneous organic compounds and the density of electrons on heterogeneous atoms usually have a tendency to resist corrosion. Quantitative chemical calculations were used to study the reaction mechanism and to solve chemical mystery. This is a useful approach to investigate the mechanism of the reaction molecule inhibitor and the metal surface. The structural and electronic parameters of the inhibitor molecule can be obtained by theoretical calculations using the computational methodologies of quantum chemistry. It is generally known that quinoline derivatives have a variety of pharmacological and biological activities, such as immunomodulatory, anti-malarial and anti-bacterial activity. Numerous reports have been presented in the literature on the use of quinoline and some of its derivatives as corrosion inhibitors in various media. In this search, it has been focused on the Quinolin-2-one derivative, a heterocyclic entity and pharmacologically important molecule.

The aim of this work is to study the inhibition efficiency of organic inhibitor (EMNQ2O) prepared by Lumia SA. et al. experimentally, in salty (3.5% NaCl) and acidic solutions using potentiostat method, and theoretically, the calculations of quantum chemical parameters were done in three media (vacuum, DMSO and water) using DFT of B3LYP/ 6-311++G/ 2d, 2p level theory and Gaussian 09 program.

Materials and Methods: Preparation of carbon steel samples

Carbon steel’s rod symbolized as (C45) having the following percentage of metallic
Electrochemical measurements

Potentiostatic polarization study

The potentiostat set up including host computer, Mat lab (Germany, 2000), magnetic stirrer, thermostat, potentiostat, and galvanostat. The main part of the apparatus is the corrosion cell; it’s made of Pyrex with 1L capacity. This cell consists of two bowls external and internal. Three electrodes are mainly present in the electrochemical corrosion cell, carbon steel specimen having 1cm² surface area has been represented as a working electrode that is used to determine the working electrode potential due to another electrode namely reference electrode was putting in a close to the working electrode. The reference electrode was s (Ag/AgCl, 3.0M KCl). The last electrode is a platinum auxiliary electrode having (10cm) length. The starting step has been represented by immersing the working electrode in the test solution for a period of (15 minute), to establish the potential of the open-circuit stable state (Eocp). This possibility has been observed to start electrochemical measurements in the range of ±200 (mV). All tests have been conducted at (293, 303, 313 and 323) K.

Results and Discussion:

Quantum chemical calculations

The structural nature of the organic inhibitors and their inhibition mechanism were described by density functional theory (DFT). The inhibition efficiencies of compound (EMNQ2O) was investigated by the theoretical corrosion inhibition parameters such as energy of the highest occupied molecular orbital (E_HOMO) and energy of the lowest unoccupied molecular orbital (E_LUMO), energy gap (E_gap) between E_HOMO and E_LUMO, dipole moment (μ), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization energy (IE), global electrophilicity (ω), the fraction of electrons transferred (ΔN) and the total energy (Etot)

The Molecular geometry

The organic inhibitors compound was built in two dimensions structure using Chem-Draw of Mopac program, (Fig. 1a). Gaussian 09 packages were carried out for calculating the fully optimized structure in vacuum, using quantum mechanical method of DFT (Density Functional Theory) of Becke's three-parameter of Lee, Yang and Parr (B3LYP) with 6-311++Gf (2d, 2p) level of theory (Fig. 1b). In addition to vacuum, the equilibrium geometry was calculated in two solvents (DMSO and H2O).
The non-planarity of the compound indicates that the preferred active site is mainly located on the (7-ethyl-4-methyl-1-[(4-nitro-benzylidene)-amino]-1H-quinolin-2-one (EMNQ2O)) with the numbering of atoms. This indicates that the preferred active site for an electrophilic attack are located within the region around the phenyl and nitrogen atoms. Moreover, the electronic density of LUMO is distributed at the aromatic ring and around the ring of (4-nitro-phenyl) moiety. Both HOMO and LUMO are located at the planar parts of the EMNQ2O molecule, Fig. 2b.

Table 1 displays the geometrical structure details of EMNQ2O compound such as bond lengths, bond angles and dihedral angles which were calculated in vacuum and two solvents (DMSO, and H₂O) using DFT method. The optimized geometrical structure is the same in the three media (vacuum, DMSO, and H₂O). Table 1 shows that in EMNQ2O compound, the C12-C13 owns the longest bond length of (1.515 Å), and the C11-H26 bond is the shortest bond with (1.096 Å) length. The values of the dihedral angles (cis & trans) indicate non-planarity of the compound within C1 point group, the dihedral angles are neither 0.00 nor 180.00 degree.

Table 1. Geometrical structure for EMNQ2O as inhibitor in vacuum and in different solvents (DMSO and H₂O) as calculated by using DFT method.

Bond description	Bond length (Å)	Angle description	Angle (degree)	Dihedral angle description	Dihedral angle (degree)
C1-C2	1.399	C2C1C10	120.076	C10C1C2C3	0.537
C1-C10	1.382	C2C1H	120.025	C10C1C2C12	179.606
C1-H	1.096	C1C2C3	119.522	C1C2C3C4	-0.532
C2-C3	1.387	C1C2C12	119.532	C12C2C3C4	-179.598
C2-C12	1.495	C2C3H	121.053	C2C3C4N	-176.704
C3-C4	1.404	C3C4C9	119.719	C3C4N5N15	20.672
C4-C9	1.409	C3C4N5	120.390	C3C4N5C6	171.140
C4-N5	1.438	C4N5N15	115.756	N5N15C6O	-17.717
N5-C6	1.451	N5C6C7	117.618	C4NC6C7	12.564
N5-N15	1.444	C7C6O14	124.619	OC6C7C8	174.005
C6-C7	1.466	C6C7C8	122.273	C6C7C8C9	-0.465
C6-O14	1.221	C6C7H	116.185	C6C7C8C11	-179.681
C7-C8	1.349	C7C8C9	120.277	C7C8C9C4	1.407
C8-C9	1.456	C7C8C11	119.964	C7C8C9C10	-177.636
C8-C11	1.487	C9C10C1	121.320	C4C9C10C1	-0.546
C9-C10	1.403	HC12H	105.679	C8C9C10C1	-178.512
C12-H	1.108	C2C12H	110.436	NNC16C17	5.131
C12-C13	1.515	C12C13H	111.624	NNC16H	-179.164
N15-C16	1.287	N5N15C16	122.631	NCC16C17	-100.199
C18-N19	1.498	N15C16C17	128.803	C20C18N19O22	-3.668
N19-O23	1.215	N15C16H	114.464	C21C18N19O23	176.456

Figure 2a shows the HOMO and LUMO density distributions for the optimized geometry of the studied inhibitor (in vacuum). The HOMO is mainly located on the (7-Ethyl-4-methyl-1-[(4-nitro-benzylidene)-amino]-1H-quinolin-2-one moiety. This indicates that the preferred active-sites for an electrophilic attack are located within the region around the phenyl and nitrogen atoms.
The dipole moment for EMNQ2O inhibitor (in vacuum) becomes less in both DMSO and H2O solvents.

The Ionization potential (IP) becomes less in both DMSO and H2O solvents. Chemical softness (S) is a measure of the flexibility of an atom to receive electrons (S). Molecules having a high value of S are considered to be a good inhibitor. The values of S in the vacuum is 0.421 eV, becomes more in both DMSO and H2O solvents.

Chemical softness (S) is a measure of the flexibility of an atom to receive electrons (S). Molecules having a high value of S are considered to be a good inhibitor. The values of S in the vacuum is 0.421 eV, becomes more in both DMSO and H2O solvents.

The electronegativity (χ) is the ability of an atom or a group to pull electrons, low electronegativity indicates a good inhibitor. The calculated (χ) in the vacuum is 5.342 eV, becomes less in both DMSO and H2O solvents.

Global electrophilicity index (ω) is the measure of the stability of an atom after gaining an electron. High value of (ω) meaning the molecule has a good inhibition. It was (6.000 eV) in the vacuum, becomes more in both DMSO and H2O solvents.

ΔN (difference in the number of electrons transferred). The fraction of electrons transferred (ΔN) from an inhibitor to carbon steel surface 0.348 of EMNQ2O has larger values in solvents compared with the vacuum, by the tendency of EMNQ2O molecule to receive the electrons from the metallic surface by Fe atoms in the unoccupied orbital (3d). This ability increases the inhibition efficiency (IE) when two systems, Fe and inhibitor, are brought together. The net result of the order for inhibition efficiency is IE (H2O)> IE (DMSO)> IE (Vacuum), meaning IE increase with increasing the polarity of the medium. From this, we conclude that the stability of the inhibitor is higher in both solvents than in vacuum. Equations are used for calculating the chemical parameters.

\[
\text{IP} = -E_{\text{HOMO}} \\
\text{EA} = -E_{\text{LUMO}} \\
\Delta E = E_{\text{LUMO}} - E_{\text{HOMO}} \\
\eta = (\text{IP} - \text{EA})/2 \\
\chi = (\text{IP} + \text{EA})/2 \\
S = 1/\eta \\
\omega = \chi^2/2\eta \\
\Delta N = (\chi_{\text{Fe}} - \chi_{\text{inh}})/[2(\eta_{\text{Fe}} + \eta_{\text{inh}})]
\]

Whereas χFe is 7.0 eV mol\(^{-1}\); and ηFe is of 0.0 eV mol\(^{-1}\) for carbon steel.

Figure 2. a- Frontier molecular orbital density distributions of EMNQ2O compound. b- the planar parts of the EMNQ2O molecule. [Red color: negatively charged lobe; green color: positive charge lobe].
Active sites of EMNQ2O inhibitor

The inhibition of EMNQ2O inhibitor was done by using DFT Mulliken’s charge population analysis in electron control unit (ecu), which gave an indication of the reactive centers of the molecules (electrophilic and nucleophilic sites). For that reason, the regions that have a large electronic charge are chemically softer than the regions that have a small electronic charge. Thus, the density of electron plays an important role in the chemical reactivity calculating. The chemical adsorption interactions are either by orbital interactions or electrostatic. The sites of nucleophilic attack will be the place where the positive charge value is a maximum, thus only the charges on the oxygen (O), nitrogen (N), and some carbon atoms are presented. In turn, the site of electrophilic attack was controlled by the negative charge value. The nucleophilic and electrophilic electronic charge values of compounds in DMSO and H2O solutions are higher than in vacuum. Table 3 shows the order of the nucleophilic reactive sites of EMNQ2O inhibitor as follows: C4 > C11 > C18 > C16 > C14 > C3; whereas the order of the electrophilic reactive sites is: C2 > C17 > C8 > C9 > C5.

Table 3. Mulliken charge population analysis for EMNQ2O molecule calculated in three media (vacuum, DMSO, and H2O) by DFT method.

Atom	Electronic Charge (ecu)	Atom	Electronic Charge (ecu)
C1	-0.878V	C7	-0.054V
-0.127D	-0.270D	-0.271H	0.602V
0.862V	0.651D	0.651H	0.434V
C2	0.937D	C8	0.651D
0.936H	0.434V	0.434V	0.581D
-0.354V	0.581H	-0.399V	-0.372V
C3	-0.408D	C9	-0.399V
-0.408H	-0.372V	-0.372V	0.581H
-0.399V	-0.324V	-0.324V	0.581H
C4	-0.691D	C10	-0.691D
-0.690H	-0.488D	-0.488H	0.602V
0.019V	-0.324V	-0.324V	0.602V
N5	0.570D	C11	0.570D
0.570H	-0.523D	-0.523D	0.524H
0.008V	-0.149V	-0.149V	0.524H
C6	-0.113D	C12	-0.113D
-0.112H	-0.200D	-0.200D	-0.200D

V: vacuum; D: dimethyl sulfoxide; H: water; ecu: electron control unit.

Table 2. DFT calculations results for a- some physical properties and b- quantum chemical parameters for EMNQ2O inhibitor calculated at the optimized structure.

Inhibition Medium	Point group	Molecular formula	E_{HOMO} (eV)	E_{LUMO} (eV)	$\Delta E_{\text{HOMO-LUMO}}$ (eV)	μ (Debye)	E_{total} (eV)
Vacuum	C1	C$_{1}$H$_{17}$N$_{5}$O$_{3}$	-7.720	-2.964	4.756	6.4032	-30597.352
DMSO	C1	C$_{1}$H$_{17}$N$_{5}$O$_{3}$	-6.342	-3.259	3.083	7.6342	-30596.859
Water	C1	C$_{1}$H$_{17}$N$_{5}$O$_{3}$	-6.344	-3.262	3.082	7.6660	-30596.868

Inhibition Medium	IP (eV)	EA (eV)	η (eV)	χ (eV)	S (eV)	ω (eV)	ΔN
Vacuum	7.720	2.964	2.378	5.342	0.421	6.000	0.348
DMSO	6.342	3.259	1.542	4.800	0.648	7.470	0.713
Water	6.344	3.262	1.541	4.803	0.648	7.485	0.713
Corrosion inhibition measurement

Potentiodynamic polarization measurements

The parameters of the electrochemical corrosion are listed in Table 4 such as corrosion potential (E_{corr}), Tafel slopes (bc and/or ba) and corrosion current density (I_{corr}) obtained by cathodic and anodic regions of Tafel lines. Figs. 3 and 4 present potentiodynamic polarization curves for C.S in salt and acid solutions containing different concentrations of EMNQ2O compound. IE%, Θ, can be measured using equations 8,11.

$$\%IE = \frac{i_{corr}(un) - i_{corr}(in)}{i_{corr}(un)} \times 100 \ldots (8)$$

Where $i_{corr}(in)$ is the inhibited corrosion current densities; $i_{corr}(un)$ is the uninhibited current densities. The values of polarization resistance (Rp) can be calculated using equation 9.

$$Rp = \frac{b_a \times b_c}{2.303(b_a + b_c) \times i_{corr}} \ldots (9)$$

The surface coverage (Θ) of the carbon steel corrosion immersed in 3.5% NaCl and acidic solutions containing different EMNQ2O concentrations (C) can be estimated using equation 10.

$$\Theta = \frac{\%IE}{100} \ldots (10)$$

The corrosion rate (CR) can be calculated using equation 11:

$$CR = i_{corr} \times 0.249 \ldots (11)$$

The addition of the quinolin-2-one derivative leads to a decrease in the corrosion rate i.e the conversion of cathode and anode curves to lower values of the current density. Both cathode and anode corrosion reactions in C.S (carbon 45) electrode were prevented by EMNQ2O in both 3.5% NaCl and 0.5M HCl solution. Figs. 3 and 4 show Tafel lines of anodic and cathodic polarization curves for the corrosion of carbon steel in the salty and in the acidic solution respectively, with and without the addition of various concentrations of EMNQ2O inhibitor as well as the optimum conditions of (20ppm) inhibitor and (293K) temperature.

Tables 4 and 5 list the corrosion rate values of C.S and inhibition efficiencies of various inhibitor concentrations measured at salty and acidic solutions at different temperature, respectively. The tables show that increasing temperature leads to increasing the corrosion current densities I_{corr}. While the efficiencies IE% is enhanced with the increasing of the inhibitor concentration. The optimum conditions for EMNQ2O in the salty and in the acidic solutions were found at 293K temperature and 20ppm inhibition concentration both corresponded to the lowest I_{corr} of 37.84 (μA.cm$^{-2}$) and the maximum IE% of 94.98 (%) in the salty solution and lowest I_{corr} of 6.68 (μA.cm$^{-2}$) and the maximum IE% of 80.75 (%) in the acidic solution, respectively. The values of iron corrosion rate CR decreased with the increase of EMNQ2O concentration. The addition of the inhibitor to the blank solution increases the cathodic and anodic current densities without shifting the corrosion potential. The EMNQ2O inhibitor therefore can be described as a mixed-type inhibitor in which its inhibition action is caused by the adsorption process. The inhibition action is a proportional of the reduction reaction area on the carbon steel surface 15.

Table 4. Electrochemical data of C.S corrosion in salty solution at different concentrations of EMNQ2O compound.

Inhib. conc.	T (K)	E_{corr} (mV)	i_{corr} (μA.cm$^{-2}$)	B_c (mV.dec$^{-1}$)	B_a (mV.dec$^{-1}$)	IE%	Θ	CR
Blank	293	-408.0	133.13	-230.4	138.5	------	------	33.15
0ppm	303	-446.7	172.04	-279.6	110.2	------	------	42.84
	313	-491.2	189.34	-269.0	96.5	------	------	47.15
	323	-547.7	192.99	-252.9	84.4	------	------	48.05
5ppm	303	-495.9	25.94	-195.4	58.9	84.92	0.849	6.46
	313	-441.0	34.30	-104.9	76.9	81.88	0.819	8.54
	323	-521.2	43.23	-232.6	83.5	77.59	0.776	10.76
	293	-411.5	17.13	-43.6	35.8	87.13	0.871	4.27
10ppm	303	-460.4	23.53	-62.6	44.5	86.32	0.863	5.86
	313	-472.2	31.04	-96.2	57.7	83.60	0.836	7.73
	323	-490.1	42.41	-180.4	63.9	78.02	0.780	10.56
	293	-359.8	6.68	-43.3	38.7	94.98	0.950	1.66
20ppm	303	-407.4	24.83	-74.5	50.2	85.56	0.856	6.18
	313	-378.6	32.03	-93.9	60.2	83.08	0.830	7.98
	323	-552.8	38.29	-278.5	89.6	80.15	0.801	9.53
Figure 3. Polarisation curve of carbon steel in seawater at 293 (K) for EMNQ2O compound; (a) at different concentrations, and (b) at the optimum concentration.

Table 5. Electrochemical data of carbon steel corrosion in acid solution at different concentrations for EMNQ2O compound.

Inhib. conc.	T (K)	\(E_{corr}\) (mV)	\(i_{corr}\) (μA.cm\(^{-2}\))	\(B_c\) (mV.dec\(^{-1}\))	\(ba\) (mV.dec\(^{-1}\))	IE%	Θ	CR
Blank 0ppm	293	-340.2	196.59	-132.9	76.1	-----	-----	48.95
	303	-349.9	285.76	-129.4	87.4	-----	-----	71.15
	313	-336.8	383.29	-123.8	77.4	-----	-----	95.44
	323	-326.9	495.50	-107.5	58.6	-----	-----	123.38
	293	-412.2	56.59	-61.1	49.6	72.00	0.720	14.09
5ppm	303	-413.7	89.19	-58.8	45.8	71.21	0.712	22.21
	313	-413.6	107.32	-47.7	45.2	68.78	0.688	26.72
	323	-411.7	196.02	-50.6	46.8	60.43	0.604	48.81
	293	-402.2	41.45	-46.4	44.0	78.91	0.789	10.32
10ppm	303	-399.3	74.73	-62.4	51.2	73.84	0.738	18.61
	313	-410.2	107.92	-49.9	53.1	71.84	0.718	26.87
	323	-401.3	160.74	-50.2	45.9	67.56	0.676	40.02
	293	-410.9	37.84	-59.7	42.4	81.40	0.814	9.42
20ppm	303	-405.0	53.14	-63.6	52.5	80.75	0.808	13.23
	313	-405.0	96.09	-81.5	63.7	75.20	0.752	23.93
	323	-404.6	122.84	-54.1	55.6	74.93	0.749	30.59
Figure 4. Polarisation curve of carbon steel in acidic solution at 293 (K) for EMNQ2O compound; (a) at different concentrations, and (b) at the optimum concentration.

Corrosion kinetic and thermodynamic activation parameters

Arrhenius law is presented as a straight line of the logarithm of the corrosion rate. The activation parameters were calculated with and without inhibitors at different concentrations. The activation energy of the corrosion process \((E_a) \), and the pre-exponential factor \((A) \), were calculating from the slope and intercept of plotting \(\log(I_{corr}) \) against \((1/T) \) equation 12, Figs. 5 and 7 for salty and acidic media, respectively. All \(E_a \) values in presence of EMNQ2O inhibitor are higher than that of the blank (09.6348 kJ/ mol) for the salty solution and (24.1828 kJ/ mol) for the acidic solution which means that the corrosion reaction of C.S is retarded by EMNQ2O inhibitor. These observations support the physical observation. Plot of log \((CR/T) \) or log \((I_{corr}/T) \) against \((1/T) \), gave a linear relationship with the slope of \((-\Delta H^*/2.303R) \) and intercept of \(\log(R/ Nh) + (\Delta S^*/2.303R) \) equation (13), as shown in Figs. 6 and 8 for salty and acidic media, respectively.

\[
\log(I_{corr}) = \log A - \frac{E_a}{2.303RT} \quad (12)
\]

\[
\log \left(\frac{I_{corr}}{T} \right) = \log \left(\frac{CR}{T} \right) = \log \left(\frac{R}{Nh} \right) + \frac{\Delta S^*}{2.303R} - \frac{\Delta H^*}{2.303RT} \quad (13)
\]

Where \(I_{corr} \) is the corrosion current density which is equal to the corrosion rate \(CR \), \(R \) is the universal gas constant \((8.314 \text{ J mol}^{-1} \text{ K}^{-1}) \), \(T \) is the absolute temperature in K, \(h \) is Planck’s constant \((6.626 \times 10^{-34} \text{ J s}) \), \(N \) is Avogadro’s number \((6.022 \times 10^{23} \text{ mol}^{-1}) \), \(\Delta H^* \) is the enthalpy of activation and \(\Delta S^* \) is the entropy of activation.

Accordingly, the activation thermodynamic parameters \((\Delta H^* \text{ and } \Delta S^*) \) were calculated in salty and acidic media, respectively, as shown in Tables 6 and 7. Positive values of \(\Delta H^* \) for the corrosion reaction in 3.5% NaCl and in acidic media at the temperature range of (293-323) K and different concentrations support the endothermic nature of this reaction.

\[\Delta G^* = \Delta H^* - T\Delta S^* \quad (14) \]

Whereas negative values of \(\Delta S^* \) for the corrosion reaction reveals that an increase in disordering takes place on going from reactant to the activated complex. The values of \(\Delta H^* \), \(\Delta S^* \) and \(E_a^* \) obtained in presence of EMNQ2O inhibitor are higher than those obtained in the blank solution. This observation further supports the proposed physical mechanism. The values of \(\Delta G^* \) for corrosion reaction were calculated from equation 14. The positive values of \(\Delta G^* \) indicating that the transition state of the adsorption process is not spontaneous.

Table 6. Corrosion kinetic parameters for carbon steel in 3.5% NaCl solution for blank and with various concentrations of EMNQ2O inhibitor.

Conc. (ppm)	\(\Delta G^* \) (kJ/ mol)	\(\Delta H^* \) kJ/ mol	\(\Delta S^* \) kJ/ mol K	\(E_a^* \) kJ/ mol	\(A \) Molecule/cm² S			
Blank 0	63.072	64.983	66.894	68.805	7.080	-0.1911	09.6360	1.10E+27
5	68.015	69.643	71.271	72.899	20.315	-0.1628	22.8713	3.31E+28
10	68.187	69.797	71.407	73.017	21.014	-0.1610	23.5701	4.07E+28
20	66.320	77.562	68.804	70.046	29.929	-0.1242	43.7838	8.65E+31
Figure 5. Plotting $\log(I_{corr})$ against $(1/T)$ for carbon steel in salty solution in absence (blank) and in presence of different concentrations of the EMNQ2O inhibitor.

Figure 6. Plotting $\log(CR/T)$ against $(1/T)$ of carbon steel in salty solution for in absence (blank) and in presence of different concentrations of the EMNQ2O inhibitor.

Table 7. Corrosion kinetic parameters for carbon steel in acid medium for blank and with various concentrations of the inhibitor.

Conc. (ppm)	ΔG^* (kJ/mol)	ΔH^* (kJ/mol)	ΔS^* (kJ/mol K)	E_a (kJ/mol)	A (Molecule/cm².s)			
	293K	303K	313K	323K				
Blank	57.869	59.106	60.343	61.580	21.625	-0.1237	24.1828	6.15E+29
5	65.323	66.592	67.861	69.130	28.141	-0.1269	30.6967	2.48E+30
10	65.929	67.073	68.217	69.361	32.410	-0.1144	32.4870	3.43E+30
20	66.320	67.562	68.804	70.046	29.929	-0.1242	34.9665	1.11E+31
Figure 7. Plotting log (I_{corr}) against (1/ T) for carbon steel in acidic solution in absence (blank) and in presence of different concentrations of the EMNQ2O inhibitor.

Figure 8. Plotting log (CR/ T) against (1/ T) of carbon steel in acidic solution in absence (blank) and in presence of different concentrations of the EMNQ2O inhibitor.

Adsorption isotherm

The adsorption isotherms are essential in characterizing the reaction between carbon steel surface and inhibitor molecules. Langmuir adsorption isotherm is the most frequently used isotherms. It can be described by the following equation:

\[
\frac{C}{\theta} = \left(\frac{1}{K_{ads}} \right) + C
\]

(15)

Whereas C is the inhibitor concentration in 3.5% NaCl and 0.5M HCl, K_ads is the adsorption equilibrium constant and \(\theta \) is the surface coverage. The dependence of the \(\frac{C}{\theta} \) fraction as a function of (C) for EMNQ2O in salty and acidic solutions is shown in Figs. 9 and 11. It can be used to determine K_ads. The adsorption equilibrium constant has a relation with the free energy of adsorption \((\Delta G_{ads}) \) through the following equation 15:

\[
K_{ads} = \frac{1}{55.55} \exp \left(\frac{\Delta G_{ads}}{RT} \right)
\]

(16)

Here R is the gas constant (J K\(^{-1}\) mol\(^{-1}\)), T is the absolute temperature (K) and 55.5 is the molar concentration of water in the solution (mol L\(^{-1}\)). So the values of \(\Delta G_{ads} \) at different temperature were obtained from equation 17. Enthalpy value of adsorption \((\Delta H_{ads}) \) was obtained from the slope of Vant Hoff equation expressed by equation 18, and entropy value of adsorption \((\Delta S_{ads}) \) was obtained from the intercept of the same equation (Figs. 10 and 12).

\[
\Delta G_{ads} = -2.303RT \log K_{ads}
\]

(17)

\[
\Delta G_{ads} = \Delta H_{ads} - T\Delta S_{ads}
\]

\[
\log K_{ads} = - \Delta H_{ads}/2.303RT + \Delta S_{ads}/2.303R
\]

(18)
Tables 8 and 9 list the thermodynamic functions of EMNQ2O inhibitor on C.S surface in 3.5% NaCl and 0.5M HCl at various temperatures, respectively. Higher values of K_{ads} obtained from Langmuir isotherm for EMNQ2O indicate strong adsorption on the carbon steel in 3.5% NaCl and 0.5M HCl. Negative values of ΔG_{ads}° indicate spontaneous adsorption process. The values of ΔG_{ads}° around -20 (kJ/mol) or less negative consisted with the electrostatic interaction (physic-sorption); while those values of -40 (kJ/mol) or more negative involve electron transfer which leads to form a chemical bond (chemisorptions)\(^2\).

The calculated values for ΔG_{ads}° were found in the range of -49.652 to -40.929 (kJ mol\(^{-1}\)) at different temperatures (293-323K) in the salt medium, while, ΔG_{ads}° were found in the range of -39.394 to -40.612 (kJ mol\(^{-1}\)) at different temperatures (293-323K) in the acidic medium. These values indicate that the adsorption of EMNQ2O follows physisorption processing. The obtained entropy ΔS_{ads}° value is positive which confirms that the corrosion process is entropically favorable\(^1\). The negative value of ΔH_{ads}° in the salt and acidic media indicates an exothermic process for the adsorption of inhibitory molecules on the C.S surface. For EMNQ2O compound, ΔH_{ads}° is equal to -89.442 (kJ mol\(^{-1}\)) in the salt medium, and equal to -24.537 (kJ mol\(^{-1}\)) in acidic medium (Tables 8 and 9).

Table 8. Thermodynamic parameters for adsorption of (EMNQ2O) compound on C.S surface in 3.5% NaCl at various temperatures.

T (K)	K_{ads} (L mol\(^{-1}\))	ΔG_{ads}° (kJ mol\(^{-1}\))	ΔH_{ads}° (kJ mol\(^{-1}\))	ΔS_{ads}° (kJ mol\(^{-1}\))	
293	2.6*10\(^5\)	-41.480	-89.442	0.438	
303	3.3*10\(^5\)	-40.929		-89.442	0.438
313	8.8*10\(^5\)	-43.953			
323	9.0*10\(^5\)	-49.652			

Figure 9. Langmuir isotherms plot for the adsorption EMNQ2O inhibitor on carbon steel in salty medium at temperatures of (293, 303, 313 and 323) K.
Figure 10. Plotting of log K_{ads} against (1/ T) for EMNQ2O compound.

Table 9. Langmuir parameters for adsorption of (EMNQ2O) compound on carbon steel surface in 0.5M HCl solution at different temperatures.

T (K)	K_{ads} (L mol$^{-1}$)	ΔG_{ads} (kJ mol$^{-1}$)	ΔH_{ads} (kJ mol$^{-1}$)	ΔS_{ads} (kJ mol$^{-1}$)
293	1.4*105	-41.492	-24.537	0.216
303	1.9*105	-40.612		
313	3.4*105	-41.654		
323	6.0*105	-39.394		

Figure 11. Langmuir isotherms plot for the adsorption of EMNQ2O inhibitor on carbon steel in acidic medium at temperatures of (293, 303, 313 and 323) K.
Scanning Electron Microscopy (SEM):
The SEM micrographs of the corroded carbon steel in 3.5% NaCl and 0.5M HCl solutions in the prescence and absence of EMNQ2O inhibitor are shown in Figs. 13 and 14, respectively. In images (a) of these figures (absence of inhibitor of carbon steel surface), a clear damage is obvious on the metal surface. In contrast, Figs. 13b and 14b show a remarkable improvement in the metal surface morphology due to the presence of EMNQ2O inhibitor which is responsible for forming a protective film of an insoluble complex on carbon steel surface (Fe\(^{2+}\)-EMNQ2O complex).

AFM is a technique for obtaining the surface morphology at (Nano to micro-scale) and has become a good choice for studying the influence of inhibitor on the generation and the progress of the corrosion at the metal interface. AFM image analysis was performed to obtain the average roughness (Ra), the root-mean-square roughness (Rq), and the maximum peak–to–valley (P-V) height values. Figures 15a, 16a show the corroded metal surface in the absence of the inhibitor immersed in 3.5% NaCl and 0.5M HCl solution, respectively. In this case, the Rq, Ra and P-V height values for the carbon steel surface observed are (28.2nm, 34.1nm, and 184nm) in 3.5% NaCl solution, and (17.24nm, 21.45nm, and 127.89nm) in 0.5M HCl solution. In the presence of 20ppm of EMNQ2O inhibitor, they are less and had been (154nm, 17nm, and 63.9nm) in salt environment and (9.1nm, 10.7nm, and 39.8nm) in the acidic environment. These parameters confirm that the surface is smoother, (Figs. 15b, 16b). Surface smoothness results from the formation of a compact (Fe\(^{2+}\)-EMNQ2O complex) protective layer on the metal surface, thus preventing corrosion of carbon steel. These data indicate that the surface of carbon steel immersed in the saline and acidic

Figure 12. Plotting log K\(_{ads}\) against (1/ T) for EMNQ2O compound in acid solution.

Figure 13. SEM of C.S surface (a) in salt medium of 3.5% NaCl solution without presence of EMNQ2O inhibitor, (b) in presence of 20 ppm of EMNQ2O inhibitor.

Figure 14. SEM of C.S surface (a) in acidic solution without presence of EMNQ2O inhibitor, (b) in presence of 20 ppm of EMNQ2O inhibitor.

Atomic force microscopy characterization
solution has a greater surface roughness in the blank than in the presence of the inhibitor, which indicates that the surface of the unprotected soft steel is harder due to the corrosion of carbon steel in salt and acid environments \cite{27-30}.

Figure 15. AFM of C.S surface (a, b) in salt medium of 3.5% NaCl solution without presence of the (EMNQ2O) inhibitor, (c, d) in presence of 20 ppm of (EMNQ2O) inhibitor.

Figure 16. AFM of C.S surface (a, b) in acidic solution without presence of the (EMNQ2O) inhibitor, (c, d) in presence of 20 ppm of (EMNQ2O) inhibitor.
Conclusions:
- The results of DFT calculations on EMNQ2O quinoline derivative have been presented in vacuum, DMSO and in water solutions. The HOMO, LUMO, and charges on atoms predict a similar center that would prefer to be attacked by nucleophilic or electrophilic species.
- The ΔE and dipole moment values suggest that EMNQ2O has greater tendency to interact with the metal surface in solvent solutions than in vacuum, and it is a good inhibitor in both of them.
- Quantum chemical calculations of (DFT/ B3LYP/ 6-311++G/ 2d, 2p) gave realistic results in the case of the geometry of the conformers, and the results of DFT/B3LYP were closer to the experimental data.
- Experimentally, it was observed that the corrosion rates of carbon steel in the corrosive medium decreased with the addition of different concentrations of the inhibitor.
- A comparison of EMNQ2O inhibition efficiency in the salt solution (94.98%) is more electron deficient than in acid solution (81.4%). However the thermodynamic and kinetic parameters suggest that EMNQ2O has greater tendency to interact with the metal surface in (3.5% NaCl) solution than in (0.5M HCl) solution, and it is a very good inhibitor in both of them.

Authors' declaration:
- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are mine ours. Besides, the Figures and images, which are not mine ours, have been given the permission for republication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

Authors' contributions statement:
M.A. contributed to samples preparation, performed the experiment calculations. R.K. devised the project, carried out the theoretical part with all its calculations (tables and figures), discussed all the results (experiment and theoretical), wrote the manuscript.

References:
1. David A. Predicting the performance of organic corrosion inhibitors. Metals. 2017;7(553):1-8.
2. El-Bakri Y, Boudalia M, Echihi S, Harmouoi A, Sebhaoui J, Elmsellem H, et al. Performance and theoretical study on corrosion inhibition of new Triazolopyrimidine derivative for carbon steel in hydrocholoric acid. J. Mat. Envir. Sci. 2017;8(2):378-388.
3. Yadav M, Kumar S, Behera D, Bahadur I, Ramjugernath D. Electrochemical and quantum chemical studies on adsorption and corrosion inhibition performance of quinoline-thiazole derivatives on mild steel in hydrochloric acid solution. Int. J. Electrochem Sci. 2014;9:5235–5257.
4. Louadi YE, Abirgach F, Bouyanez A, Touzani R, El Assyry A, Zarrouk A, et al. Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of Two Tetrakis Pyrazole Derivatives for Mild Steel in 1.0M HCl. Portug. Electrochim. Acta. 2017;35(3):159-178.
5. Kitagawa W, Tamura T. A Quinoline. antibiotic from rhodococcus erythropolis JCM 6824. J. Antibio. 2008;61(11): 680–682.
6. Kubbta RM, Challoob DA. Hussen SM. Quantum mechanical and electrochemical study of new isatin derivative as corrosion inhibitor for carbon steel in 3.5 % NaCl. Int. J. Sci. Res. 2017; 6 (7):1656-1669.
7. GneDy PO, PALMER R, RooceEne H, Svrpn R. Isolation of aeromonass almonicidaS trains resistant to the Quinoline antibiotics. Bull. Eur. Ass. Fish parhol. 1987;7(2):43.
8. Fu HG, Li ZW, Hu XX, Si SY, You XF, Tang S, et al. Synthesis and biological evaluation of quinoline derivatives as a novel class of broad-spectrum antibacterial agents. Molecules. 2019 Jan;24(3):548.
9. Singh P, Srivastava V, Quraishi MA. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: electrochemical, SEM, AFM, and XPS studies. J. Mol. Liq. 2016;216:164–173.
10. Elyoussfi1 A, Dafali1 A, Elmsellem1 H, Bouzian Y, bouhfid R, Zarrouk1 A, et al. Some quinoline derivatives: Synthesis and comparative study towards corrosion of mild steel in 0.5M H2SO4. Der Phar. Chem. 2016;8(4):226-236.
11. Naik UJ, Jha PC, Lone MY, Shah RR, Shah NK. Electrochemical and theoretical investigation of the inhibitory effect of two Schiff bases of benzaldehyde for the corrosion of aluminium in hydrochloric acid. J. Mol. Str. 2016;1125:61-68.
12. Saha SK, Ghosh P, Hens A, Murmu NC, Banerjee P. Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica E. 2015;66:332–341.
13. Sundaram RG, Sundaravadivelu M. Electrochemical and surface Investigation of quinoline-8-sulphonyl chloride as corrosion inhibitor for mild steel in acidic medium. Int J Chem Tech Res. 2016;9:527–539.
14. Luma SA, Rana AA, Rana SA, Mohammed RA, Redha IA. Synthesis of new 7-ethyl- 4-methyl 1-[[4- nitrophenyl]- amino]-1H- quinolin- 2-one quinoline derivatives. Scientific International Conference , College of Science, AL-Nahrain University. 2017:357:0–37.
15. Kubbta RM, Al-Majidi SMH, Ahmed AH. Synthesis, characterization and quantum chemical studies of inhibition ability of novel 5-nitro isatin derivatives on
دراسة نظرية وتجريبية لسلوك تآكل سطح حديد الصلب الكربوني في 3.5% كليوريد الصوديوم و0.5M HCl

抽查: مقصد علماء محمد

قسم الكيمياء كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة:
تم إجراء دراسة نظرية وتجريبية على حماية تآكل سطح حديد الصلب الكربوني عند تراكب مختلفة من مشتق الكوينولين-
ثنائي-(الكون وليس)-مون، الذي يحمل الاسم: EMNQ2O. 7-Ethyl-4-methyl-1-[(4-nitro-benzylidene)-amino]-1H-quinolin-2-one
التي تعمل على حماية جيدة للسلسلة في المحلول الملغامات. و (B3LYP) 6-311++G (2d,2p) النظري، تم استخدام نظرية دالة الكثت
الذرية (DFT) عند المستوى، مع مواقع الامتصاص للفعالة من أتمتم اتباع المعادلة الممتدة للموجب انتكاس الكهفية والاستقلاليبية
في الفراغ و في اللعب من المذيبات (DMSO)، كل ذلك عند الأشكال الهندسية النوازية. من الناحية التجريبية، تم دراسة كفاءة
رابع (HCl 0.5M) و (NaCl 0.1M) التثبيت (IE) في محلولي (%IE) في انتاجي 81.40% في المحالل الملح (الكربون) (94.98%)
على دعمية الامتصاص الضوئي، و أن التثبيت على سطح حديد الصلب الكربوني يعطي إزتراع أمزاز التكنولوجيا
Wallerford
18. Lee C, Yang W, Parr RG. Development of the Colle-
Salvetti correlation energy formula into a functional
of the electron density. Phys. Rev. 1988;B 41:785-
789.
19. Parr RG. Yang W. Density Functional Theory of
Atoms and Molecules. 1st Ed., Oxford University
Press: New York, 1989.
20. Kubba RM, Alag AS. Experimental and theoretical evaluation of new quinazoline derivative as organic
corrosion inhibitor for carbon steel in 1M HCl
solution. IJSR. 2017;6(6):1832-1843.
21. Dubosq J, Sabot R, Jeannin M, Refait Ph. Localized
corrosion of carbon steel in seawater: Processes
occurring in cathodic zones. Mat. Corr. 2019;70(6):941-1140.
22. Fleming I. Frontier Orbitals and Organic Chemical
Reactions. John Wiley and Sons, NewYork, 1976.
23. Koopmans T. Über die Zuordnung von
Wellenfunktionen und Eigenwerten zu den Einzelnen
Elektronen Eines Atoms. Physica. 1933;1:104-113.