Effect of cysteine, insulin-like growth factor-1 and epidermis growth factor during in vitro oocyte maturation and in vitro culture of yak-cattle crossbred embryos

Rao-fen Yang*, Xian-rong Xiong and Xiang-dong Zi

Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, People’s Republic of China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu, People’s Republic of China

ABSTRACT

Some antioxidants and growth factors play an important role in promoting oocyte maturation and embryo development in many mammalian species, but there is little information about the yak (Bos grunniens). Therefore, the objective of this study was to evaluate Cys, insulin-like growth factor-1 (IGF-1) and epidermis growth factor (EGF) on yak oocyte maturation, cleavage and blastocyst rates after in vitro fertilized with Jersey sperm. A single or different combination of Cys, EGF and IGF-1 was added to in vitro maturation (IVM) and in vitro culture (IVC) media. The results showed that a single addition of Cys and IGF-1 increased oocyte maturation and blastocyst rates (p < .05), but did not increase cleavage rate; EGF or IGF-1 + EGF increased oocyte maturation, cleavage and blastocyst rates (p < .05) compared with the control. A combination of IGF-1 + EGF + Cys could have a beneficial effect (p < .05). These results indicated that supplementation of IVM and IVC media with Cys, IGF-1, EGF and their combinations could improve in vitro production efficiency of yak-cattle crossbred embryos.

1. Introduction

The yak (Bos grunniens) is one of the world’s most remarkable domestic animals – an herbivore living in and around the Himalayas and further north at altitudes ranging from 2500 to 5500 m. They are very important to local herders by providing milk and meat, as few other domestic animals can survive in such cold, hypoxic ecological conditions, but their production performance is much inferior to the improved cattle breeds. The meat and milk performance of hybrids derived from that yaks crossbred with the improved bovine breeds were greatly improved, however, sterility of F1 males prevents successful inter-se matings (Wiener et al. 2003). With the current development of in vitro production (IVP) and embryo transfer, the F1 females are possible not only give additional milk, but also produce valuable offspring (F1) if they are used as recipients of yak-cattle crossbred embryos. The desirable IVP efficiency of crossbred embryos is prerequisite for F1 producing F1, but because this is the only marketing season for yaks) and transported, within 3 h, to the laboratory in DPBS (29–33°C). IVM and IVF were performed as previously described by Zi et al. (2018). Briefly, groups of 50 yak COCs were matured in a four

2. Materials and methods

2.1. Ethics statement

All animal procedures were approved by the Institutional Animal Care and Use Committee of the Southwest Minzu University and all methods were performed in accordance with the relevant guidelines and regulations.

2.2. Materials

G-IVF™ PLUS, SpermRinse™ and mineral oil were purchased from Vitrolife Sweden AB. Synthetic oviductal fluid (SOF) was purchased from Caission Labs (UT, USA). FSH and LH were purchased from Bioniche Life Sciences Inc. (Belleville, Ontario, Canada). Fetal calf serum (FCS) and Pen Strep were purchased from Gibco (Grand Island, NY, USA). Medium199 (10×), L-cysteine (Cys) and β-estradiol were obtained from Sigma-Aldrich (St. Louis, MO, USA). IGE-1 and EGF were purchased from PeproTech (Rocky Hill, NJ, USA).

2.3. In vitro maturation (IVM), fertilization (IVF), and culture (IVC)

Yak ovaries were collected at local slaughterhouses from October to December (at the end of breeding season, because this is the only marketing season for yaks) and transported, within 3 h, to the laboratory in DPBS (29–33°C). IVM and IVF were performed as previously described by Zi et al. (2018). Briefly, groups of 50 yak COCs were matured in a four
well dish (500 μl/well) containing TCM 199 supplemented with 20% (v/v) FCS, 5 μg/ml FSH, 5 μg/ml LH, 1 μg/ml estradiol-17β, and 100 U/ml penicillin and 100 μg/ml streptomycin (IVM medium) at 38.5°C in a humidified incubator with 5% CO2. After 24 h of IVM, COCs with 61–100% cumulus cells expended were classified as matured oocytes (Hensleigh and Hunter 1985; Gliedt et al. 1996).

Jersey frozen semen was thawed and incubated in Sperm-Rinse™ at 38.5°C for 50 min allowed the motile sperm to swim up. Groups of 30 COCs were inseminated with sperm that had been prepared by swim-up procedure at a final concentration of 2 × 106 sperm/ml in 70-μl drops of the IVF™, and after a period of 24 h post-insemination (hpi), presumptive zygotes were cultured in a four-well dish containing 500 μl of SOF medium (IVC medium) consisting of different concentrations of IGF-1, IGF-2 and EGF with an overlay of mineral oil at 38.5°C. The culture medium was changed at 96 hpi. Cleavage and blastocyst formation were assessed on days 2 and 7 of culture, respectively.

2.4. Experimental design

IVM and IVC media were supplemented with Cys, IGF-1 and EGF to final concentrations of 0.6 mM, 100 ng ml–1 and 10 ng ml–1, respectively, and supplemented with none of them in the control. The experiment contained eight groups: Cys, IGF-1, EGF, IGF-1 + EGF, IGF-1 + Cys, EGF + Cys, IGF-1 + EGF + Cys, and control. These concentrations were chosen because they had previously been shown to be the most effective dosage for IVM and IVC in some studies (Shabankareh and Zandi 2010; Lott et al. 2011; Chen et al. 2017).

2.5. Statistical analysis

All data were subjected to ANOVA followed by Tukey–Kramer test. Analyses were carried out using the GLM procedure of Statistical Analysis System (SAS; SAS institute, Cary, NC, USA).

3. Results and discussion

The effects of supplementation of Cys, IGF-1, EGF and their combinations in IVM and IVC media on maturation cleavage, and blastocyst rates of yak oocytes are listed in Table 1. The results showed that a single addition of Cys or IGF-1 increased oocyte maturation and blastocyst rates of yak-cattle crossbred embryos (p < .05), but did not increase cleavage rate compared to control. EGF increased oocyte maturation, cleavage and blastocyst rates (p < .05) compared to control. No additive effect of combining EGF and IGF-I was seen when results were compared to those following supplementation of the media with EGF alone, but the cleavage rate was greater than those supplemented with IGF-I alone (p < .05). IGF-1 + Cys and EGF + Cys did not give a significantly more beneficial effect compared to Cys, IGF-1 or EGF alone, however, the combination of IGF-1 + EGF + Cys could greatly improve oocyte maturation (84.44%), cleavage (80.45%) and blastocyst rates (38.67%).

The excessive production of reactive oxygen species (ROS) leads to oxidative stress and impedes oocyte maturation and embryonic development (Takahashi 2012). Cys is a critical component amino acid of glutathione (GSH), which plays an important role in protecting from the toxic effect of oxidative damage (Meister 1983). EGF and IGF-1 are involved in regulating cell proliferation and apoptosis (Paria and Dey 1990; Wasielak and Bogacki 2007; Chen et al. 2017). Positive effects on oocyte maturation and/or embryonic development have been observed if a single or different combination of Cys, EGF and IGF-1 concentrations in IVM, IVF and IVC media is optimal in cattle (Ali et al. 2003; Sirisathien et al. 2003; Neira et al. 2010; Nabenishi et al. 2012), pig (Choe et al. 2010; Lott et al. 2011), sheep (Shabankareh and Zandi 2010), buffalo (Pawshe et al. 1998), human (Yu et al. 2012), mouse (Toori et al. 2014); cat (Thongkittidilok et al. 2015), goat (Conceiccao et al. 2016; Zhou et al. 2016) canine (Sato et al. 2018), and yak (Pan et al. 2015; Chen et al. 2017). Our results are in agreement with other reports showing that significant improvements in the proportion of oocytes undergoing cleavage and blastocyst development were achieved when cysteine (0.6 mM) was added to the bovine maturation medium as compared to control medium without antioxidant supplementation (Ali et al. 2003; Lott et al. 2011), however, this concentration did not have favourable effects in porcine oocytes under low oxygen tension (Viet Linh et al. 2009) and bovine oocytes exposed to heat stress. The addition of 1.2 mM cysteine during IVM could alleviate the influence of heat stress for oocyte developmental competence by increasing GSH content and inhibiting the production of oocyte ROS followed by apoptosis of cumulus cells (Nabenishi et al. 2012).

There are studies showing that the positive effect of growth factors on embryo development may vary depending on the maturation and culture medium component like granulosa cell co-culture (Herrler et al. 1992), bovine serum (Palma et al.

Table 1. Effects of combined cysteine, IGF-1 and EGF on yak oocyte maturation and embryo development.
No. of COCs
Cys
IGF-1
EGF
IGF-1 + EGF
IGF-1 + Cys
EGF + Cys
IGF-1 + EGF + Cys
Control

Means ± SEM presented. Five replicated trials were carried out, and blastocysts were harvested on Day 7 (Day 0: day of insemination). Blastocyst formation rate was calculated from the cleaved zygotes. a,b,c,d Means in a column with superscript are significantly different (p < .05).
were some di...appears that the optimal concentrations of EGF and IGF-1 were suggested by Sakagami et al. (2012), but 50 ng/ml EGF and 100 ng/ml IGF-1 were suggested by Arat et al. (2016). It appears that the optimal concentrations of EGF and IGF-1 were some different among different animal species (Sirisathien et al. 2003; Choe et al. 2010; Shabankareh and Zandi 2010; Thongkittidiok et al. 2015; Zhou et al. 2016; Sato et al. 2018).

In this study, IVM and IVC media of yak were supplemented with only one dose for each Cys (0.6 mM), IGF-1 (100 ng ml\(^{-1}\)) and EGF (10 ng ml\(^{-1}\)).

There was no difference between the rate of embryo development obtained by the addition of similar growth factors to the maturation medium and the rate of blastocyst growth obtained by the addition of growth factors to both the maturation medium and culture medium in cattle (Arat et al. 2016). Since Cys, IGF-1 and EGF were added to both the maturation medium and the culture medium in this study, it was not clear at which stage they contribute to the development of yak embryo. This should be investigated in the future studies.

4. Conclusion

Cys, IGF-1, EGF or their combinations can improve yak oocyte maturation and/or development to blastocyst competence after in vitro fertilized with cattle sperm. This provides important information to improve IVP efficiency of yak-cattle crossbred embryos. However, there is a need to study the optimal concentrations of Cys, IGF-1 and EGF in IVM and IVC media that are the most effective for IVP of yak-cattle crossbred embryos.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was funded by National Major Science and Technology Projects of China, China (2018YFD0502303), and the Fundamental Research Funds for the Central Universities, Southwest Minzu University (no. 2015NZYTD02).

Author contributions

F.R.Y. performed experiment and analyzed data. X.R.X. participated in the experimental design. X.D.Z. performed the experimental design and wrote the manuscript.

ORCID

Xiang-dong Zi http://orcid.org/0000-0001-8762-9183

References

Ali AA, Bilodeau JF, Sirard MA. 2003. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology. 59:939–949.

Arat S, Caputcu Tas A, Cevik M, Akkoc T, Cetinkaya G, Bagis H. 2016. Effect of growth factors on oocyte maturation and allocations of inner cell mass and trophectoderm cells of cloned bovine embryos. Zygote. 24:554–562.

Chen P, Pan Y, Cui Y, Wen Z, Liu P, He P, Li Q, Peng X, Zhao T, Yu S. 2017. Insulin-like growth factor I enhances the developmental competence of yak embryos by modulating aquaporin 3. Reprod Domest Anim. 52:825–835.

Choe C, Shin YW, Kim EJ, Cho SR, Kim HJ, Choi SH, Han MH, Han J, Son DS, Kang D. 2010. Synergistic effects of glutathione and β-mercaptoethanol treatment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine. J Reprod Dev. 56:575–582.

Conceicao JC, Moura MT, Ferreira-Silva JC, Cantanhêde LF, Chaves RM, Lima PF, Oliveira MA. 2016. Incidence of apoptosis after retinooids and insulin-like growth factor-1 (IGF-I) supplementation during goat in vitro embryo production. Zygote. 24:808–813.

Gliedt DW, Rosenkrans CF Jr, Rorie RW, Munyon AL, Pierson JN, Miller GF, Rakes JM. 1996. Effects of media, serum, oviductal cells, and hormones during maturation on bovine embryo development in vitro. J Dairy Sci. 79:536–542.

Hersleigh HC, Hunter AG. 1985. In vitro maturation of bovine cumulus enclosed primary oocytes and their subsequent in vitro fertilization and cleavage. J Dairy Sci. 68:1456–1462.

Herrler A, Lucas-Hahn A, Niemann H. 1992. Effects of insulin-like growth factor-I on in vitro production of bovine embryos. Theriogenology. 37:1213–1224.

Lott WM, Anchamparuthy VM, Mc Gillard ML, Mullarky IK, Gwazdauskas FC. 2011. Influence of cysteine in conjunction with growth factors on the development of in vitro-produced bovine embryos. Reprod Domest Anim. 46:585–594.

Meister A. 1983. Selective modification of glutathione metabolism. Science. 220:472–477.

Nabenshi H, Ohta H, Nishimoto T, Morita T, Ashiawa K, Tsuzuki Y. 2012. The effects of cysteine addition during in vitro maturation on the developmental competence, ROS, GSH and apoptosis level of bovine oocytes exposed to heat stress. Zygote. 20:249–259.

Neira JA, Tainturier D, Peña MA, Martal J. 2010. Effect of the association of IGF-I, IGF-II, bFGF, TGF-β1, GM-CSF, and ILF on the development of bovine embryos produced in vitro. Theriogenology. 73:595–604.

Palma GA, Müller M, Brem G. 1997. Effect of insulin like growth factor I (IGF-I) at high concentrations on blastocyst development of bovine embryos produced in vitro. Reproduction. 110:347–353.

Pan Y, Cui Y, He H, Fan J, Baloch AR, He J, Li Q, Yang K, Zhang Q, Yu S. 2015. Epidermal growth factor enhances the developmental competence of yak (Bos grunniens) preimplantation embryos by modulating the expression of survivin and hsp70. Livest Sci. 182:118–124.

Paria BC, Dey SK. 1990. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc Natl Acad Sci USA. 87:4756–4760.

Pawshe CH, Rao KB, Totey SM. 1998. Effect of insulin-like growth factor I and its interaction with gonadotropins on in vitro maturation and embryonic development, cell proliferation, and biosynthetic activity of cumulus-oocyte complexes and granulosa cells in buffalo. Mol Reprod Dev. 49:277–285.

Quetglas MD, Coelho LA, Garcia JM, Oliveira Filho EB, Esper CR. 2001. Effect of insulin-like growth factor-1 during in vitro oocyte maturation and in vitro culture of bovine embryos. Arq Bras Med Vet Zootec. 53:207–211.

Sakagami N, Umeki H, Nishino O, Uchiyama H, Ichikawa K, Takeshita K, Kaneko E, Akiyama K, Kobayashi S, Tamada H. 2012. Normal calves produced after transfer of embryos cultured in a chemically defined medium supplemented with epidermal growth factor and insulin-like growth factor-1 following ovum pick-up and in vitro fertilization in Japanese Black cows. J Reprod Dev. 58:140–146.

Sato A, Sarentonglaga B, Ogata K, Yamaguchi M, Hara A, Atchalalt K, Sugane N, Fukumori R, Nagao Y. 2018. Effects of insulin-like growth factor-1 on the in vitro maturation of canine oocytes. J Reprod Dev. 64:83–88.

Shabankareh HK, Zandi M. 2010. Developmental potential of sheep oocytes cultured in different maturation media: effects of epidermal growth factor, insulin-like growth factor I, and cysteamin. Fertil Steril. 94:335–340.

Sirisathien S, Hernandez-Fonseca HJ, Brackett BG. 2003. Influences of epidermal growth factor and insulin-like growth factor-I on bovine blastocyst development in vitro. Anim Reprod Sci. 77:21–32.
Takahashi M. 2012. Oxidative stress and redox regulation in vitro development of mammalian embryos. J Reprod Dev. 58:1–9.

Thongkittidilok C, Tharasanit T, Songsasen N, Sananmuang T, Buarpung S, Techakumphu M. 2015. Epidermal growth factor improves developmental competence and embryonic quality of singly cultured domestic cat embryos. J Reprod Dev. 61:269–276.

Toori MA, Mosavi E, Nikseresht M, Barmak MJ, Mahmoudi R. 2014. Influence of insulin-like growth factor-I on maturation and fertilization rate of immature oocyte and embryo development in NMRI mouse with TCM199 and α-MEM medium. J Clin Diagn Res. 8:AC05–08.

Viet Linh N, Dang-Nguyen TQ, Nguyen BX, Manabe N, Nagai T. 2009. Effects of cysteine during in vitro maturation of porcine oocytes under low oxygen tension on their subsequent in vitro fertilization and development. J Reprod Dev. 55:594–598.

Wasielak M, Bogacki M. 2007. Apoptosis inhibition by insulin-like growth factor (IGF)-I during in vitro maturation of bovine oocytes. J Reprod Dev. 53:419–426.

Wiener G, Han JL, Long RJ. 2003. The yak. 2nd ed. Bangkok: RAP Publication.

Yu Y, Yan J, Li M, Yan L, Zhao Y, Lian Y, Li R, Liu P, Qiao J. 2012. Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-1 on human oocyte maturation and early fertilized and cloned embryo development. Human Reprod. 27:2146–2159.

Zhou Z, Jia RX, Zhang G, Wan Y, Zhang Y, Fan Y, Wang Z, Huang P, Wang F. 2016. Using cysteine/cystine to overcome oxidative stress in goat oocytes and embryos cultured in vitro. Mol Med Rep. 14:1219–1226.

Zi XD, Liu S, Xia W, Xiong XR, Luo B. 2018. Transcriptional profiles of crossbred embryos derived from yak oocytes in vitro fertilized with cattle sperm. Sci Rep. 8:1115.

Zi XD, Yin RH, Chen SW, Liang GN, Zhang DW, Guo CH. 2009. Developmental competence of embryos derived from reciprocal in vitro fertilization between yak (Bos grunniens) and cattle (Bos taurus). J Reprod Dev. 55:480–483.