The Missing Mass Problem

Daniel Berend and Aryeh Kontorovich

November 10, 2011

Abstract

We give tight lower and upper bounds on the expected missing mass for distributions over finite and countably infinite spaces. An essential characterization of the extremal distributions is given. We also provide an extension to totally bounded metric spaces that may be of independent interest.

1 Introduction

1.1 Background

Let \(S \) be a countable set endowed with a probability measure \(P \). Suppose that \(X_1, \ldots, X_t \) are drawn independently from \(S \) according to \(P \). Define the missing mass \(U_t \) as the following random variable:

\[
U_t = \Pr(S \setminus \{X_1, \ldots, X_t\}).
\]

(1)

In words, \(U_t \) is the total probability mass of the elements of \(S \) that were not observed in the \(t \) samples.

The missing mass is a quantity of interest in almost any application involving sampling from a large discrete set, whether it be fish in a pond or words in a language corpus. (Famously, Alan Turing developed what became known as Good-Turing frequency estimators (Good, 1953) as part of his work on cracking the Enigma cypher during WWII; see the account in (Good, 2000)). We note right away that

\[
\mathbb{E}[U_t] = \sum_{s \in S} p_s (1 - p_s)^t
\]

where \(p_s = \Pr(\{s\}) \) and that \(\mathbb{E}[U_t] \to 0 \) as \(t \to \infty \) (the latter follows from Lebesgue’s Dominated Convergence Theorem). Observe also that \(U_t \to 0 \)
almost surely as $t \to \infty$; one way of seeing this is to apply the deviation inequality
\begin{equation}
P[|U_t - \mathbb{E}[U_t]| \geq \varepsilon] \leq 2e^{-t\varepsilon^2}
\end{equation}
of McAllester and Ortiz (2003, Theorem 16) together with the Borel-Cantelli Lemma.

The topic of interest of this paper is the rate of decay of $\mathbb{E}[U_t]$. For example, when S is finite, we have the trivial estimate
\[\mathbb{E}[U_t] \leq (1 - p_{\min})^t \]
where $p_{\min} = \min_{s \in S} p_s$ and we assume without loss of generality that P has full support. Of course, this bound is not distribution-free, since it depends on p_{\min}. Is a distribution-free estimate possible, at least for finite S? What about countable S? How about lower bounds on the decay rate of the missing mass? These and related questions are investigated in this paper.

1.2 Related work

The missing mass problem is an unavoidable feature of density estimation, where non-zero density must be assigned to unobserved regions. The process of transferring some of the probability mass from observed points to unobserved ones is known as smoothing, and Laplace’s “add one” estimator (Laplace, 1814) appears to be the earliest smoother. Smoothing is now an indispensable component of density estimation; dozens of methods have been proposed for discrete densities alone (cf. Krichevsky and Trofimov (1981); Orlitsky et al. (2003)).

Since a review of smoothing methods is beyond the scope of this paper, we briefly mention the celebrated Good-Turing estimator for the missing mass. Given the sample $X = \{X_1, \ldots, X_t\}$, define $Y^{(1)} \subseteq X$ to consist of those X_i that occur exactly once. The Good-Turing missing mass estimator is given by
\[\hat{U}_t = \frac{1}{t} \left| Y^{(1)} \right| ; \]
this is the proportion of frequency-one elements. An attractive feature of this estimator is its diminishing bias:
\begin{equation}
\mathbb{E}[\hat{U}_t] - \mathbb{E}[U_t] = \frac{1}{t} \mathbb{E}[U_t^{(1)}] \end{equation}
where \(U_t^{(1)} = P(Y_t^{(1)}) \) is the random variable corresponding to the total mass of the frequency-one items; this variant of Good’s theorem is proved in McAllester and Schapire (2000, Theorem 1). Additionally, both the missing mass \(U_t \) and its estimate \(\hat{U}_t \) are tightly concentrated about their expectations (inequality (2) establishes this for \(U_t \); see McAllester and Schapire (2000) for other deviation estimates).

2 Main results

Although (2) and (3) provide a computationally efficient estimator of \(E U_t \), they do not yield any a priori information about the magnitude of the latter.

To state results, it will be convenient to define the plateau length \(\ell \) of a probability distribution \(P \) over \(\mathbb{N} \):

\[
\ell(P) = \sup_{0 < \alpha < 1} |\{i \in \mathbb{N} : \alpha/2 \leq p_i < \alpha\}|
\]

(4)

where \(p_i = P(\{i\}) \). (Note that \(\ell(P) = \infty \) is possible.)

Our first two results deal with upper and lower bounds on \(E U_t \). We use the notation \([n] = \{1, 2, \ldots, n\}\) throughout the paper.

Theorem 1. The expected missing mass is bounded above as follows:

(i) For \(n \in \mathbb{N} \) and \(S = [n] \),

\[
E U_t \leq \begin{cases}
 e^{-t/n}, & t \leq n, \\
 \frac{n}{ct}, & t > n.
\end{cases}
\]

(ii) For \(S = \mathbb{N} \),

\[
E U_t \leq \frac{\ell(P)}{ct},
\]

where \(c \) is a universal constant.

Remark 2. It is possible to somewhat (but not by much, see Proposition 3) improve the bound in (i) in some regimes of \(n \) and \(t \); this will become apparent from our proofs. The bound \(\frac{n}{ct} \) holds everywhere, but is vacuous when \(et < n \). A slightly better bound of \(n(1 - 1/n)^{n/t} \) was obtained by R. Boppana in a very elegant way, in response to our question (Boppana, 2011). We took an entirely different route, which also basically characterizes the extremal distribution.
Proposition 3. The estimates in Theorem 1 are essentially tight:

(i) For each \(n \in \mathbb{N} \) and \(t > n \), there is a distribution on \([n]\) such that
\[
\mathbf{E} U_t \geq c \frac{n-1}{t},
\]
where \(c \) is an absolute constant.

(ii) For each integer \(a > 1 \), there is a distribution \(P \) over \(S = \mathbb{N} \) such that \(\ell(P) = a \) and
\[
\mathbf{E} U_t \geq c \frac{a}{t}, \quad t > a,
\]
where \(c \) is an absolute constant.

Furthermore, if we allow distributions with infinite plateau length, then no nontrivial uniform (or even pointwise) bound on \(\mathbf{E} U_t \) is possible:

Proposition 4. For any sequence \(1 > r_1 > r_2 > \ldots \) decreasing to 0, there is a distribution on \(S = \mathbb{N} \) such that \(\mathbf{E} U_t > r_t \) for all \(t \geq 1 \).

Next, we turn our attention to extremizing distributions for finite \(S \). These turn out to exhibit a fairly regular behavior, with essentially a single phase transition. Since \(\mathbf{E} U_t \) is a symmetric function of the \(\{p_i\} \), we henceforth assume that \(p_1 \leq p_2 \leq \ldots \leq p_n \). In the sequel, the vector \((p_1, \ldots, p_n) \) will be denoted by \(p \).

Theorem 5. Let \(|S| = n < \infty \). Then

(i) Every local maximum \(p^* \) of \(\mathbf{E} U_t \) is of the form
\[
p_1^* = p_2^* = p_3^* = \ldots = p_{n-1}^* \leq p_n^*
\]
(that is, \(p^* \) consists of one “heavy” element and \(n-1 \) identical “light” ones, where the possibility of heavy=light is not excluded).

(ii) There exists a threshold \(\tau = \tau(n) > n \) such that:

(a) For \(t < \tau \), there is a unique global maximum
\[
p_1^* = p_2^* = p_3^* = \ldots = p_{n-1}^* = p_n^* = \frac{1}{n}.
\]

(b) For \(t > \tau \), there is a unique global maximum and it has the form
\[
p_1^* = p_2^* = p_3^* = \ldots = p_{n-1}^* < p_n^*.
\]
(iii) As $n \to \infty$,
\[\tau = n + \sqrt{2n}(1 + o(1)). \]

(iv) For $t \geq n + \sqrt{2n}$,
\[\frac{1}{t+1} < p^*_i < \frac{1}{t+1} + e^{-\sqrt{n/2}}. \]

Remark 6. We have not excluded the possibility that for $t = \tau$, both of the distributions described in (ii) attain the maximum. (Of course, this seems highly improbable.)

3 Proofs

Lemma 7. Consider the function $f(x) = x(1 - x)^t$ on the interval $[0, 1]$ for an arbitrary fixed $t > 0$.

(i) For $t > 0$, f increases on $(0, 1/(t+1))$, decreases on $(1/(t+1), 1)$, and achieves its maximum at $x = 1/(t+1)$, where it is bounded above by $\frac{1}{et}$.

(ii) The derivative f' decreases on $(0, 2/(t+1))$ and increases on $(2/(t+1), 1)$.

Proof. (i) A simple calculation shows that $g' > 0$ on $(0, 1/(t+1))$, $g' < 0$ on $(1/(t+1), 1)$, and $g' = 0$ at $x^* = t/(t+1)$. Substituting, we obtain
\[g(x^*) = \frac{1}{t+1} \left(1 - \frac{1}{t+1}\right)^t = \frac{1}{t} \left(1 - \frac{1}{t+1}\right)^{t+1} < \frac{1}{et}. \]

(ii) Routine.

of Theorem 7. (i) It follows from (9) below that, for $t \leq n$, the expected missing mass is maximized when $p^*_1 = p^*_2 = \ldots = p^*_n = 1/n$, yielding the bound
\[EU_t = (1 - 1/n)^t \leq e^{-t/n}. \]

For general t, an application of Lemma 7 yields
\[EU_t = \sum_{i=1}^{n} p_i(1 - p_i)^t \leq \frac{n}{et}. \]
(ii) Let P be a distribution on $S = \mathbb{N}$. Then

$$E U_t = \sum_{i=1}^{\infty} p_i (1 - p_i)^t$$

$$= \sum_{i: p_i \geq 1/(t+1)} p_i (1 - p_i)^t + \sum_{i: p_i < 1/(t+1)} p_i (1 - p_i)^t \equiv E_1 + E_2.$$

By Lemma 7,

$$E_1 = \sum_{i: p_i \geq 1/(t+1)} p_i (1 - p_i)^t$$

$$= \sum_{j=0}^{[\log_2(t+1)]} \ell(P) \frac{2^j}{t+1} \left(1 - \frac{2^j}{t+1} \right)^t$$

$$= \frac{\ell(P)}{t+1} \sum_{j=0}^{[\log_2(t+1)]} 2^j \left(1 - \frac{2^j}{t+1} \right)^{(t+1)-t/(t+1)}$$

$$\leq \frac{\ell(P)}{t+1} \sum_{j=0}^{[\log_2(t+1)]} 2^j \exp(-2^j t/(t+1))$$

$$\leq c' \frac{\ell(P)}{t+1} \sum_{j=0}^{[\log_2(t+1)]} 2^j e^{-j}$$

$$< c' \frac{\ell(P)}{t+1} \sum_{j=0}^{\infty} (2/e)^j$$

$$\leq c'' \frac{\ell(P)}{t+1}, \quad (6)$$

for appropriate absolute constants c', c''.

An analogous argument shows that

$$E_2 \leq c'' \frac{\ell(P)}{t+1}. \quad (7)$$

Combining (6) and (7), we obtain the claim.

\[\boxed{} \]
of Proposition 3

(i) Define the distribution \(p \) by

\[
x = p_1 = p_2 = \ldots = p_{n-1} \leq p_n = 1 - (n-1)x,
\]

where \(x = 1/(t+1) \). Then

\[
\mathbb{E} U_t > \left(\frac{n-1}{t+1} \right) \left(1 - \frac{1}{t+1} \right)^t = \frac{n-1}{t} \left(1 - \frac{1}{t+1} \right)^{t+1} \geq \frac{8(n-1)}{27t}.
\]

(ii) For any \(a \in \mathbb{N} \), define \(p \) as follows:

\[
p_1 = p_2 = \ldots = p_a = \frac{1}{2}; p_{a+1} = \ldots = p_{2a} = \frac{1}{4a}; \ldots; p_{ka+1} = \ldots = p_{(k+1)a} = \frac{1}{2^k a}; \ldots.
\]

Then, denoting \(\kappa = \lceil \log_2(t/a) \rceil \), we have for \(t > a \):

\[
\mathbb{E} U_t = \sum_{k=1}^{\infty} \frac{1}{2^k} \left(1 - \frac{1}{2^k a} \right)^t > \frac{1}{2^k} \left(1 - \frac{1}{2^k a} \right)^t = \frac{1}{2} \cdot \frac{1}{2^{k-1}} \left(1 - \frac{1}{2^{k-1} a} \right)^t \geq \frac{a}{2^k} \left(1 - \frac{1}{t} \right)^t.
\]

of Proposition 4

Let \(1 > r_1 > r_2 > \ldots \) be a sequence decreasing to 0. Observe that

\[
\mathbb{E} U_t = \sum_{i=1}^{n} p_i (1 - p_i)^t \geq \sum_{i:p_i<1/t^2} p_i \left(1 - \frac{1}{t} \right)^t = \left(1 - \frac{1}{t^2} \right)^t \sum_{i:p_i<1/t^2} p_i.
\]

Select \(\tau > 10 \) such that \(r_{\tau} < 0.9 \). Then we can choose \((p_i) \) so that

\[
\left(1 - \frac{1}{t^2} \right)^t \sum_{i:p_i<1/t^2} p_i > r_t, \quad t \geq \tau.
\]

(8)

Indeed, \((1 - 1/t^2)^t > 0.9 \) for \(t \geq \tau > 10 \). Thus, for \(t = \tau \), (8) is satisfied by any \((p_i) \) with \(p_i < 1/\tau^2 \) for all \(i \in \mathbb{N} \). For each \(t > \tau \), choose a finite sequence \((p_{it}) \) such that \(p_{it} < 1/(t+1)^2 \) for each \(i \) and

\[
\sum_{i} p_{it} = r_{t+1} - r_t.
\]

Let \(p \) be the distribution obtained by concatenating all the sequences \((p_{it})_{t > \tau} \) and the number \(1 - r_\tau \). To prove the claim for \(t < \tau \), let us define the following “doubling operator” on distributions:

\[
D((p_1, p_2, \ldots)) = (p_1/2, p_1/2, p_2/2, p_2/2, \ldots).
\]
It is straightforward to verify that for all distributions \(p \) and all \(t \in \mathbb{N} \),
\[
E_{p^k} U_t \xrightarrow{\mathcal{D}} 1 \quad \text{as} \quad k \to \infty
\]
(where the subscript of \(E \) specifies the distribution under which the expectation is taken). Thus, if \(p \) is a distribution that satisfies (8) for all \(t \geq \tau \), there is some finite \(k \) such that \(D^k p \) makes the proposition hold. \(\square \)

of Theorem 5

(i) For \(n, t \in \mathbb{N} \), define \(F : [0,1]^n \to \mathbb{R} \) by
\[
F(x) = \sum_{i=1}^{n} x_i(1-x_i)^t = \sum_{i=1}^{n} f(x_i)
\]
(where \(f(x) = x(1-x)^t \)). An elementary application of Lagrange multipliers shows that, under the constraint \(\sum_{i=1}^{n} x_i = 1 \), a necessary condition for an extremum is
\[
\frac{\partial F}{\partial x_i} = \frac{\partial F}{\partial x_j}, \quad i, j \in [n].
\]

Lemma 7 leaves two possibilities for an extreme point \(p^* \): either all the \(p^*_i \) take the value \(1/n \) (we call such distributions univalent) or the \(p^*_i \) take two values \(\pi < \bar{\pi} \), with \(f'(\pi) = f'(\bar{\pi}) < 0 \) (we call such distributions bivalent).

In the bivalent case, we have, without loss of generality,
\[
p_1^* = p_2^* = \ldots = p_k^* = \pi < \bar{\pi} = p_{k+1}^* = p_{k+2}^* = \ldots = p_n^*
\]
for some \(1 < k < n \). Define the Lagrangian
\[
L(x, \lambda) = F(x) + \lambda(g(x) - 1),
\]
where \(g(x) = \sum_{i=1}^{n} x_i \) and the associated \((n+1) \times (n+1) \) matrix \(H = H(x, \lambda) \), where
\[
H_{ij} = \begin{cases}
\frac{\partial^2 L}{\partial x_i \partial x_j} = t(x_i(t+1) - 2)(1-x_i)^{t-2}, & i = j \leq n, \\
\frac{\partial^2 L}{\partial x_i \partial x_j} = 0, & i \neq j \leq n, \\
\frac{\partial g}{\partial x_i} = 1, & i \leq n, j = n + 1, \\
\frac{\partial g}{\partial x_j} = 1, & j \leq n, i = n + 1, \\
0, & i = j = n + 1.
\end{cases}
\]
Suppose $k \leq n - 2$ and consider the 3×3 lower right submatrix

$$B = B(x) = \begin{pmatrix} t(x_{n-1}(t + 1) - 2)(1 - x_{n-1})^{t-2} & 0 & 0 \\ 0 & t(x_n(t + 1) - 2)(1 - x_n)^{t-2} & 1 \\ 1 & 1 & 0 \end{pmatrix};$$

note that our assumption on k forces $B_{11} = B_{22}$. The second-order necessary condition for p^* to be a local maximum is that a sequence of bordered Hessians, including $\det(B(p^*))$, be nonnegative. Since $f'(\pi) = f'(\bar{\pi}) < 0$ and f' decreases on $(0, 2/(t + 1))$ and increases on $(2/(t + 1), 1)$, it follows that $\pi < 2/(t + 1)$ and $\bar{\pi} > 2/(t + 1)$. This implies that $B_{11} = B_{22} > 0$. Denoting this common value by b, we have

$$\det(B) = -2b < 0.$$

The necessary condition is thus violated, leaving two possibilities: the univalent case $p^*_i \equiv 1/n$ and the bivalent case with $k = n - 1$:

$$\frac{1}{t + 1} < p^*_1 = p^*_2 = \ldots = p^*_n < \frac{2}{t + 1} < p_n. \quad (9)$$

(ii) We saw above that $\mathbf{E}U_t$ is always maximized by a distribution \mathbf{p} of the form

$$x = p_1 = p_2 = \ldots = p_{n-1} \leq p_n = 1 - (n - 1)x.$$

For distributions of this form, we have

$$\mathbf{E}U_t = G_t(x) = (n - 1)x(1 - x)^t + (1 - (n - 1)x)((n - 1)x)^t, \quad (10)$$

where G_t is defined on $[0, 1/n]$. Note that $x = 1/n$ corresponds to the univalent (uniform) distribution, while $x < 1/n$ corresponds to a bivalent distribution.

We claim the existence of a function $\tau : \mathbb{N} \to \mathbb{N}$ such that

(a) for $t < \tau(n)$, G_t has the unique maximizer $x^* = 1/n$

(b) for $t > \tau(n)$, G_t has the unique maximizer $x^* < 1/n$.

(In principle, it may be possible for G_t to have two distinct maxima on $[0, 1/n]$ for $t = \tau(n)$, but this is rather implausible.)

For $t \leq n$, (9) implies that G_t has the unique maximizer $x^* = 1/n$; this shows that $\tau(n) > n$ (if the function τ described in (a) and (b) exists at all).
Now define the function $R_t(x) = G_t(x)/G_t(1/n)$. Then

$$R_t(x) = (n-1)x \left(\frac{1-x}{1-1/n} \right)^t + (1-(n-1)x) \left(\frac{(n-1)x}{1-1/n} \right)^t \quad (11)$$

For $x < 1/n$, the first term on the right-hand side of (11) grows exponentially with t, and certainly $R_t(x) > 1$ is achieved for some finite t. But this means that G_t has a unique maximum at some $x < 1/n$ and so any function $\tau(n)$ satisfying (a) and (b) must be finite for all n.

Suppose that t is such that G_t achieves a maximum at $x < 1/n$. It follows from the uniqueness proof below and from (15) that the maximizer x^* of G_t is contained in the interval $I_t = (1/(t+1), 1/t)$.

We claim that $R_t(x) \geq 1$ implies $R_{t+1}(x) > 1$ for all $x \in I_t$; from here, the existence of τ satisfying (a) and (b) follows immediately. Treating t as a continuous variable, we have

$$\frac{dR_t(x)}{dt} = (n-1)x \log \left(\frac{1-x}{1-1/n} \right) \left(\frac{1-x}{1-1/n} \right)^t + (1-(n-1)x) \log (nx) (nx)^t.$$

We establish the monotonicity claim by showing that

$$\frac{dR_t(x)}{dt} > 0, \quad t \geq n+1, \ x \in I_t. \quad \quad (12)$$

Indeed, appealing to the inequalities $\xi^t \log \xi \geq -\frac{1}{e^t}$ for $0 < \xi < 1$ and $\xi^t \log \xi \geq \xi - 1$ for $\xi \geq 1$ (checked by elementary calculus), we see that the inequality

$$(n-1)x \left(\frac{1-x}{1-1/n} - 1 \right) > \frac{1-(n-1)x}{et}.$$

is even stronger than (12). The latter will hold as long as

$$-e n t x^2 + (e t + n - 1)x - 1 > 0,$$

and it suffices to verify the inequality at the endpoints $1/(t+1)$ and $1/t$ of I_t, which is straightforward. This proves the existence of τ as claimed in (a) and (b).

Uniqueness is established by noting (again, via elementary though rather tedious calculus) that G_t' vanishes at $x = 1/n$ and at not more than two points in the interval $[1/(t+1), 1/n)$, and is strictly positive on $[0, 1/(t+1)$.
(iii) For \(n \in \mathbb{N} \) and \(t \neq \tau(n) \), let \(x^* \) be the maximizer of the function \(G \) defined in (10), where we have dropped the subscript \(t \). A sufficient condition for \(G(x^*) > (1 - \frac{1}{n})^t \) to hold is \(G(\frac{1}{t}) > (1 - \frac{1}{n})^t \). The latter, in turn, will hold as long as \((n-1)(1-1/t)^t/t > (1-1/n)^t\). We will show that the latter inequality holds for large \(n \), if \(t = n + \sqrt{2n} \).

To this end, define the function

\[
g(n) = \frac{n - 1}{n + \sqrt{2n}} \left(1 - \frac{1}{n + \sqrt{2n}} \right)^{n+\sqrt{2n}} - \left(1 - \frac{1}{n} \right)^{n+\sqrt{2n}}.
\]

For \(\nu \in (0, 1) \), define \(\tilde{g}(\nu) = g(1/\nu) \) and expand it about \(\nu = 0 \):

\[
\tilde{g}(\nu) = \frac{\sqrt{2}}{3e} \nu^{3/2} + O(\nu^2).
\]

Since for this choice of \(t \) we have \(G(1/t) - (1 - 1/n)^t = \Omega_+ (n^{-3/2}) \), it follows that

\[
\tau(n) \leq n + \sqrt{2n}, \quad n \gg 1. \tag{13}
\]

To get a lower bound on \(\tau \), we estimate \(G(x^*) \) from above:

\[
G(x^*) \leq \frac{n - 1}{t + 1} \left(1 - \frac{1}{t + 1} \right)^t + \left(1 - \frac{n - 1}{t} \right) \left(\frac{n - 1}{t} \right)^t =: \bar{G}_t(n).
\]

Now let

\[
Q_t(n) = \frac{\bar{G}_t(n)}{(1 - 1/n)^t} = \frac{n - 1}{t + 1} \left(1 - \frac{1}{t + 1} \right)^t + \left(1 - \frac{n - 1}{t} \right) \left(\frac{n - 1}{t} \right)^t \tag{14}
\]

and note that \(Q_t(n) < 1 \) implies \(t < \tau(n) \). Let us put \(t = n + (1-\varepsilon)\sqrt{2n} \) for some \(0 < \varepsilon < 1 \), and observe that for this choice of \(t \), the second term on the right-hand side of (14) is negligible:

\[
\left(1 - \frac{n - 1}{t} \right) \left(\frac{n - 1}{t} \right)^t < \left(\frac{(n - 1)/t}{1 - 1/n} \right)^t = \left(\frac{n}{t} \right)^t = \left(1 - \frac{t - n}{t} \right)^t < \exp(-(t - n)) = \exp(-(1 - \varepsilon)\sqrt{2n}).
\]

Let us now examine the asymptotic behavior of the first term in (14).

To this end, define the functions

\[
h(n) = \frac{n - 1}{t + 1} \left(1 - \frac{1}{t + 1} \right)^t
\]

11
and $\tilde{h}(\nu) = h(1/\nu)$, and expand about $\nu = 0$:

$$\tilde{h}(\nu) = 1 - (2 - \varepsilon)\varepsilon \nu + O(\nu^{3/2}).$$

Hence, for this choice of t, we have

$$\frac{G(x^*)}{(1 - 1/n)^t} \leq 1 - (2 - \varepsilon)\varepsilon n^{-1} + O(n^{-3/2}) + \exp(-(1 - \varepsilon)\sqrt{2n}) < 1$$

for sufficiently large n. This, combined with (13), implies

$$\tau(n) = n + (1 + o(1))\sqrt{2n}.$$

(iv) We claim that in the bivalent case, the maximizer x^* of G satisfies

$$\frac{1}{t+1} < x^* < \frac{1}{t}. \quad (15)$$

The first inequality follows from (ii). To verify the second inequality it suffices to show that $G'(1/t) < 0$. Indeed,

$$\frac{G'(1/t)}{t(n-1)} < - \left(\frac{1}{t} - \frac{1}{t-1}\right) \left(1 - \frac{1}{t}\right)^{t-1} + \left(\frac{n-1}{t}\right)^{t-1}$$

$$= - \frac{1}{t(t+1)} \left(1 - \frac{1}{t}\right)^{t-1} + \left(\frac{n-1}{t}\right)^{t-1}$$

$$< \left(\frac{n}{t}\right)^{t-1} - \frac{1}{t(t+1)(1 - 1/t)} \left(1 - \frac{1}{t}\right)^t$$

$$< \left(\frac{n}{t}\right)^{t-1} - \frac{1}{e(t+1)(t-1)} \leq \left(\frac{n}{t}\right)^{t-1} - \frac{1}{et^2}$$

$$\leq \frac{n^2}{t^2} \left[\left(\frac{n}{n+\sqrt{2n}}\right)^{n-3} - \frac{1}{e}\right] < 0.$$

To establish our claim, we seek a small $\delta > 0$ such that $G'(1/(t+1) + \delta) < 0$; any such δ will yield the bound $\frac{1}{t+1} < x^* < \frac{1}{t+1} + \delta$. Putting $p = \frac{1}{t+1} + \delta$, we have

$$\frac{G'(p)}{n-1} = -\delta(t+1)(1-p)^{t-1} + (t-n+1 - (n-1)\delta(t+1))((n-1)p)^{t-1}$$

$$< -\delta(t+1)(1-p)^{t-1} + (t-n+1)((n-1)p)^{t-1}$$

$$< -\delta(t-1)(1-p)^{t-1} + t((n-1)p)^{t-1}.$$
Thus, to ascertain that $G'(p) < 0$ it suffices to show that

$$\delta > \left(\frac{(n-1)p}{1-p}\right)^{-1}.$$

It follows from (15) that we may take $p < 1/t$, and hence

$$\left(\frac{(n-1)p}{1-p}\right)^{-1} < \left(\frac{(n-1)/t}{1-1/(t+1)}\right)^{-t} = \left(\frac{(n-1)(t+1)}{t^2}\right)^{-1} < \left(\frac{n}{t}\right)^{-1}.$$

Our assumption that $t \geq n + \sqrt{2n}$ implies

$$\left(\frac{n}{t}\right)^{-1} \leq \left(\frac{n}{n + \sqrt{2n}}\right)^{-1} \leq \exp(-\sqrt{n/2}).$$

Thus, we may take $\delta = e^{-\sqrt{n/2}}$.

\[\square\]

4 Application: missing mass in metric spaces

If P is a nondegenerate continuous distribution, then the missing mass as defined in (1) is trivially 1 for all $t \in \mathbb{N}$. To define a nontrivial extension of this notion to continuous spaces let us start with a metric probability space (\mathcal{X}, P, d), whose σ-field is induced by the metric topology. For $x \in \mathcal{X}$, let $B_{\varepsilon}(x)$ to be the ε-ball about x: $B_{\varepsilon}(x) = \{y \in \mathcal{X} : d(x, y) \leq \varepsilon\}$. For $S \subset \mathcal{X}$, define its ε-envelope, S_{ε}, to be

$$S_{\varepsilon} = \bigcup_{x \in S} B_{\varepsilon}(x).$$

For $\varepsilon > 0$, define the ε-covering number, $N(\varepsilon)$, of X as the minimal cardinality of a set $E \subset \mathcal{X}$ such that $\mathcal{X} = E_{\varepsilon}$. A space is totally bounded if $N(\varepsilon) < \infty$ for all $\varepsilon > 0$. Define the ε-missing mass of the sample $S = \{X_1, \ldots, X_t\}$ as the random variable

$$U_t(\varepsilon) = P(\mathcal{X} \setminus S_{\varepsilon}).$$

(16)

The expected ε-missing mass of totally bounded spaces is controlled via the covering numbers:

1 This problem is of interest in anomaly detection applications (Kontorovich et al., 2011).
Theorem 8. In a totally bounded metric probability space \((X, P, d)\),

\[
\mathbb{E}U_t(\varepsilon) \leq \frac{N(\varepsilon)}{et}.
\]

Proof. For a fixed \(\varepsilon > 0\), let \(\{e_1, e_2, \ldots, e_n\}\) be an \(\varepsilon\)-net for \(X\). For \(i = 1, \ldots, n\), put \(p_i = P(B_\varepsilon(e_i))\); note that \(\sum p_i \geq 1\). Then, invoking Lemma 7, we have

\[
\mathbb{E}U_t(\varepsilon) \leq \sum_{i=1}^{n} p_i(1 - p_i)^t \leq \frac{n}{et}.
\]

\(\square\)

Acknowledgments

We thank Antonio Cuevas and Larry Wasserman for helpful correspondence.

References

Ravi Boppana. Missing mass conjecture [answer]. Mathoverflow website http://mathoverflow.net/questions/60722/missing-mass-conjecture, 2011.

Irving J. Good. The population frequencies of species and the estimation of population parameters. Biometrika, 40:237–264, 1953.

Irving J. Good. Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the naval Enigma. J. Statist. Comput. Simulation, 66 (2):101–111, 2000.

Aryeh Kontorovich, Danny Hendler, and Eitan Menahem. Metric anomaly detection via asymmetric risk minimization. Similarity-Based Pattern Analysis and Recognition (SIMBAD), pages 17–30, 2011.

Raphail E. Krichevsky and Victor K. Trofimov. The performance of universal encoding. IEEE Trans. Inform. Theory, 27(2):199–207, 1981.

Pierre-Simon Laplace. Essai philosophique sur les probabilités. 1814.

David A. McAllester and Luis E. Ortiz. Concentration inequalities for the missing mass and for histogram rule error. Journal of Machine Learning Research, 4:895–911, 2003.
David A. McAllester and Robert E. Schapire. On the convergence rate of good-turing estimators. In Conference on Learning Theory (COLT), pages 1–6, 2000.

Alon Orlitsky, Narayana P. Santhanam, and Junan Zhang. Always Good Turing: Asymptotically optimal probability estimation. In IEEE Symposium on Foundations of Computer Science (FOCS), pages 179–188, 2003.