Quantitative Microbial Risk Assessment (QMRA) of Campylobacter for Roof-harvested rainwater domestic use †

Jálvaro da Hora 1, Eduardo Borges Cohim 2, Samuel Sipert 3 and Adriano Leão 4

1 Federal Institute of Education, Science and Technology of Bahia; jalvaro.hora@gmail.com
2 State University of Feira de Santana; edcohim@gmail.com
3 State University of Feira de Santana; ssipert@gmail.com
4 State University of Feira de Santana; adrianoleaoeng@outlook.com
† Presented at the 2nd International Electronic Conference on Water Sciences.

Abstract: The present study evaluated the microbiological risk for roof-harvested rainwater (RHRW), with Campylobacter as the pathogenic microorganism of reference, using a Quantitative Microbial Risk Assessment (QMRA). QMRA has been widely used as an alternative method for epidemiological assessment of human exposure to microorganisms that can cause diseases, through a four-step process: hazard identification, exposure assessment, dose-response assessment, and risk characterization. The results presented drinking as the water use with the highest median value for microbiological risk, with 3.4 x 10^{-04} DALY per person per year, and bathing, food washing, hose irrigation and toilet flushing with median values of 6.5 x 10^{-07}, 4.0 x 10^{-07}, 2.1 x 10^{-07} and 1.4 x 10^{-07} DALY pppy, respectively. Therefore, drinking would be the only water use that would require preliminary treatment for its safe use, considering the acceptable risk standards set by the World Health Organization for drinking water. However, with the adoption of a sanitary barrier and a simple point-of-use treatment system, it was observed that drinking rainwater would have a median microbiological risk of 2 x 10^{-06} DALY pppy, enough to meet the safety criteria considering developing countries.

Keywords: risk assessment, rainwater harvesting, drinking water

1. Introduction

Roof-harvested rainwater (RHRW) has been increasingly adopted as an alternative water supply for domestic uses, including drinking, especially in rural areas of developing countries [1,2]. In Brazil, for example, since 2003, more than 588,000 cisterns were built in order to provide safe water for rural communities in Northeast that do not have access to centralized water supply systems [3].

However, there is an ongoing debate whether RHRW should be used as drinking water [4]. Some epidemiological studies suggest that consumption of untreated rainwater do not contribute to the incidence of disease in a community [5,6], while others have documented contamination in stored rainwater, posing a definitive public health risk if consumed without treatment [7-9].

The World Health Organization (WHO) has created drinking water guidelines to ensure the provision of high-quality water around the world [10]. In order to satisfy these limits, especially regarding microbiological contaminants, chlorine has been applied in rainwater cisterns as a disinfection method in Brazil, raising the concern about consumption of chlorination by-products in drinking water, which are associated with cancer in humans [11-15].
In this context, there is an increasing need to assess human health risks associated with RHRW exposure, especially in developing countries, where its use is becoming more widespread. The Quantitative Microbiological Risk Assessment (QMRA) approach apply risk assessment principles to estimate the effects of human exposure to infectious microorganisms in different scenarios [16], and has been used worldwide to establish guidelines and recommendations for water quality (WHO, 2011), with many studies focusing on rainwater [7,8,17].

This study aims to assess the human health risks from untreated RHRW domestic use through the QMRA method, and analyze the overall impact for the adoption of a sanitary barrier and a point-of-use device to improve rainwater quality on RHRW systems.

2. Methods

2.1. Literature review

Data collection regarding pathogen concentration in RHRW was conducted by searching web-based databases and governmental agencies’ websites for key words such as ‘roof-harvested rainwater’, ‘pathogens’, ‘health’, and ‘risk’. The literature review did not have any geographical restrictions, although English-language papers were the major source of information.

2.2. Quantitative Microbial Risk Assessment (QMRA)

A QMRA framework was applied to assess the potential microbial health risks associated with the following proposed uses for RHRW: bathing, food washing, hose irrigation, toilet flushing and drinking. Where possible, input data have been represented as probability distributions rather than point-estimates in order to reduce uncertainty. A Monte Carlo sampling composed of 10,000 iterations was used for simulations using the software @Risk version 4.5 Professional edition (Palisade Corporation 2002).

Results for health impacts were quantified using disability-adjusted life year (DALYs). DALYs are a summary measure of a population’s health, allowing comparison of effects across a wide range of health outcomes. The measure combines years of life lost (YLL) as a result of premature mortality, with years lived with a disability (YLD), standardized using severity weights with a range from 0 (perfect health) to 1 (dead) [18-21].

The QMRA addresses a quantitative approach through simulation techniques and scenario modeling, following a four-step process [16], divided into: hazard identification and characterization, exposure assessment, dose-response evaluation, and risk characterization.

2.3. Hazard identification

The main source of waterborne pathogens in RHRW in Brazil is likely to be from faecal droppings from birds and other animals with roof habits. Other possible routes from the catchment surface, according to Sanchez et al. [22], include deposits of dirt, lichens and mosses, fungus or fallen vegetable material from the surrounding trees.

From the literature review, the most commonly found microorganisms in stored RHRW are Campylobacter, Cryptosporidium, Salmonella, Giardia, Escherichia coli and Enterococcus, all major etiological agents of gastroenteritis worldwide [23-27].

Campylobacter ssp. is linked with zoonosis in birds and animals that inhabit or transit on the roofs [28,29], being one of the most important causes of acute gastroenteritis worldwide [10]. In addition, it has been isolated from rainwater supplies (Table 1) and implicated in illness from rainwater supplies used for drinking water [30]. So, for this study, Campylobacter ssp. was used as the pathogen of reference for the QMRA.
Table 1. Presence of Campylobacter in stored RHRW from different sources.

Samples tested	Positive samples	Frequency of contamination (%)	Concentration (MPN/L)
27	11	40.7%	n.a. [31]
10	1	10.0%	<3-43 [32]
27	10	37.0%	n.a. [33]
100	20	20.0%	n.a. [7]
115	0	0.0%	n.a. [34]
24	5	20.8%	5-100 [35]
17	2	11.8%	n.a. [36]
24	9	37.5%	<0.6-5.6 [37]
32	3	9.4%	26-240 [38]
100	3	3.0%	0-0.056 [20]

2.4. Exposure assessment

A literature review has been conducted to gather data regarding exposure routes for Campylobacter infection and intake volumes associated with each of the proposed domestic uses for RHRW. Infection routes may include liquid ingestion due to drinking, accidental liquid ingestion due to hose irrigation and food washing, aerosol ingestion due to showering, and by direct contact with water.

Volume ingested, and exposure duration and frequency for drinking were taken from the publication titled “Exposure Factors Handbook” from the American Environmental Agency [39]. Parameters of exposure for hose irrigation and food washing were taken from Ahmed et al. [7]. Data for toilet flushing were taken from Ashbolt et al. [40] and Fewtrell et al. [20]. Finally, data from Cohn et al. [17] was used for exposure assessment for bathing.

The input data used for exposure assessment is summarized in Table 2.

2.5. Dose-response assessment

Pathogen ingestion was calculated using Equation 1, based on the probability distributions for parameters from the exposure assessment. The equation used is expressed as:

\[d = N \cdot V \text{ing} \]

where:
\[d = \text{Dose of pathogens ingested in one exposure (MPN.day}^{-1}) \]
\[N = \text{Pathogen concentration in RHRW (MPN.mL}^{-1}) \]
\[V \text{ing} = \text{Volume of RHRW ingested in one exposure (mL.day}^{-1}) \]

The mathematical model used to relate the ingested dose with its outcome varies depending on the pathogen considered. A dose-response β-poisson model for Campylobacter ssp. has been developed by Medema et al. [41] and it is presented in Equation 2.

\[P_{\text{inf}} = 1 - \frac{[1+(d/N_{50})]/[2^{\alpha}(1/ \alpha) - 1]^\alpha}{(-\alpha)}, \]

where:
\[P_{\text{inf}} = \text{probability of infection for one exposure;} \]
\[N_{50} = \text{microbial dose eliciting 50% infections in the exposed population = 896 [41];} \]
\[\alpha = \text{slope parameter = 0.145 [41].} \]
2.3. Risk characterization

Risk characterization encompasses all the previous steps (hazard characterization, dose-response assessment and exposure-assessment) to determine the probability of infection and illness. The annual probability of infection is calculated using Equation 3:

\[P_t = 1 - (1 - P_{\text{inf}})^t, \]

where:
- \(P_t \) = annual probability of infection;
- \(P_{\text{inf}} \) = probability of infection for one exposure;
- \(t \) = number of exposures in one year.

To estimate the annual probability of disease, i.e. the number of disease cases per person per year, it has been assumed that 70\% of infections result in illness [42], as seen in Equation 4.

\[P_d = K \cdot P_t, \]

where:
- \(P_d \) = annual probability of illness;
- \(K \) = disease/infection ratio = 0.7 [42].

Based on probability of illness, results of case of disease for each use were transformed in DALY loss per person per year (pppy). We have adopted a value of DALY loss per case of disease of 4.6 \times 10^{-3} for Campylobacter [42].

The distributions and @Risk input values used in the QMRA are shown in Table 2.

Input	Distribution	Mean	Median	Mode	Standard deviation	Range
Campylobacter concentration (mL)	Lognormal	-	5.6	-	-	0-240
Volume ingested (mL)						
Drinking	Triangular	-	2500	-	-	1400-3600
Bathing (mL/min)	Normal	0.5	-	-	0.2	-
Food washing	Normal	0.5	-	-	0.1	-
Hose irrigation	Lognormal	1.0	-	-	0.1	-
Toilet flushing	Triangular	-	-	0.1	-	0.01-0.5
Exposure duration (minutes)						
Bathing	Lognormal	-	3	-	-	0.9-44
Frequency of use (#/day)						
Bathing	Lognormal	0.9	-	-	-	0.1-5
Food washing	Triangular	-	4	-	-	2.0-6
Hose irrigation	Lognormal	-	3	-	-	1.0-7
Toilet flushing	Triangular	-	4	-	-	2.0-6

3. Results and discussion

The risks for the proposed domestic uses for RHRW are summarized in Table 3, both in probability of illness and DALYs pppy.
Table 3. Median values of annual risk for different RHRW uses

Proposed water use	Probability of illness	DALY pppy
Drinking	7.39 x 10^{-02}	3.40 x 10^{-04}
Bathing	1.41 x 10^{-04}	6.50 x 10^{-07}
Food washing	8.70 x 10^{-05}	4.00 x 10^{-07}
Hose irrigation	4.57 x 10^{-05}	2.10 x 10^{-07}
Toilet flushing	3.04 x 10^{-05}	1.40 x 10^{-07}

As expected, drinking untreated RHRW had the highest microbiological estimated risk, with a value of 3.40 x 10^{-04} DALY pppy. All the other uses (bathing, food washing, hose irrigation and toilet flushing) had results in the order magnitude of 10^{-07}. Therefore, only drinking untreated RHRW would not satisfy the microbiological risk limit suggested by the WHO for drinking water of 10^{-06} DALY pppy.

However, there has been a discussion on whether this limit would be the most appropriate, especially for developing countries [43]. The WHO itself admits that this target may not be achievable or realistic in some locations and circumstances in the near term, where the overall burden of disease is high for multiple exposure routes (water, food, air, etc.). In these cases, setting this limit from water-borne exposure alone would not have a big impact on the overall disease burden, and more contextualized values could be established [10]. For Brazil, for example, the risk of drinking untreated RHRW is significantly lower than 1.8 x 10^{-02} DALY pppy, which represents the DALY loss from tobacco-related diseases in 2015 [44].

Therefore, to evaluate the severity of consequences from the estimated risks, we adopted the classification proposed by Westrell et al. [45] (Table 4), based on the increase of endemic disease in the community caused by RHRW use. Studies estimate a median value of 3 to 5 episodes of diarrhoea per child per year for children under 5 years of age in developing countries [46-51]. We adopted a median value of 4 episodes of diarrhoea per person per year for Brazil.

Table 4. Suggested definitions of severity of consequences of hazard based on increase of endemic disease in the community [45].

Item	Definition
Catastrophic	Major increase in diarrhoeal disease >25% or >5% increase in more severe
	disease or large community outbreak (100 cases) or death
Major	Increase in more severe diseases (0.1-5%) or large increase in diarrhoeal
	disease (5-<25%)
Moderate	Increase in diarrhoeal disease (1-<5%)
Minor	Slight increase in diarrhoeal diseases (0.1-<1%)
Insignificant	No increase in disease incidence (<0.1%)

Based on the increase of disease cases (Table 5), drinking RHRW without any treatment would represent a 1.85% increase, with a hazard classified as ‘moderate’ by Westrell et al. [45].

Table 5. Severity consequences for the RHRW proposed uses

Proposed water use	Probability of illness	Increase of disease cases	Hazard
Drinking	7.39 x 10^{-02}	1.85%	Moderate
Bathing	1.41 x 10^{-04}	0.004%	Insignificant
Food washing	8.70 x 10^{-05}	0.002%	Insignificant
Hose irrigation	4.57 x 10^{-05}	0.001%	Insignificant
Toilet flushing	3.04 x 10^{-05}	0.001%	Insignificant
Once the health risks for the domestic use of untreated RHRW have been estimated, the adoption of measures to increase the quality of rainwater was tested. The adoption of a rainwater first-flush diverter device for the catchment system, and the use of a ceramic water filter, a simple point-of-use treatment for drinking water, were considered given their good public acceptance and due to the fact they do not require high maintenance for their operation.

Many studies have evaluated the efficiency of rainwater first-flush diverter devices (Table 6), and ceramic water filters (Table 7), showing effective contaminant removal and water quality improvement, proving their potential as measures to improve RHRW quality. Based on the literature, we have estimated a pathogen removal efficiency for Campylobacter of 96% and 93%, for rainwater fist-flush diverters and ceramic water filters, respectively.

Table 6. Pathogen removal efficiency for rainwater first-flush systems

Pathogen	Removal efficiency
Total coliforms	95.5% [52]
	96.5% [53]
	96.5% [54]
Thermostable coliforms	100% [55]
E. coli	80% [56]
	100% [54]
	100% [53]
	90% [57]
Heterotrophic bacteria	94.59% [52]
Salmonella	100% [57]

Table 7. Pathogen removal efficiency for ceramic water filters

Pathogen	Removal efficiency
E. coli	97.8% [58]
	85% [59]
	99% [60]
Vibrio spp.	100% [59]
Shigella spp.	93% [59]
Salmonella	86% [59]

Values for health risks were then calculated and the hazards characterized based on increase of disease cases considering the adoption of each sanitary barrier and, for drinking water, with both of them (Table 8).

Table 8. Median values of annual risk considering the adoption of sanitary barriers

Proposed water use	Sanitary barrier	Probability of illness	DALY	Increase of disease	Hazard
Drinking	First-flush diverter	6.30 x 10^{-6}	2.92 x 10^{-5}	0.16%	Minor
	Ceramic filter	7.61 x 10^{-6}	3.50 x 10^{-5}	0.19%	Minor
	Both	4.35 x 10^{-6}	2.00 x 10^{-5}	0.01%	Insignificant
Bathing	First-flush diverter	7.83 x 10^{-6}	3.60 x 10^{-5}	0.00%	Insignificant
Food washing	First-flush diverter	5.00 x 10^{-6}	2.30 x 10^{-5}	0.00%	Insignificant
Hose irrigation	First-flush diverter	2.61 x 10^{-6}	1.20 x 10^{-5}	0.00%	Insignificant
Toilet flushing	First-flush diverter	1.74 x 10^{-6}	8.00 x 10^{-6}	0.00%	Insignificant
Results show that the estimated health risks for drinking RHRW would drop from 3.4×10^{-04} to 2.92×10^{-05} DALY and 3.5×10^{-05} DALY pppy by using rainwater first-flush diverter and ceramic water filter, respectively. When considered together, it was possible to achieve a risk reduction from 3.4×10^{-04} to 2×10^{-06} DALY pppy, a significant gain in safety, nearly satisfying the WHO guidelines for drinking water, with no need for disinfection through chlorination.

3. Conclusion

Based on a literature survey, we conducted a QMRA study on untreated RHRW use for domestic purposes. Our results indicated drinking RHRW as the only domestic water use that are not in conformity with the WHO guidelines for drinking water, even so, drinking untreated RHRW would only represent 1.85% of increase in disease cases in Brazil.

The adoption of simple sanitary barriers such as rainwater first-flush diverters and point-of-use treatment systems such as ceramic water filters, have proved to be sufficient to reduce the health risk for drinking untreated RHRW to levels that nearly satisfy the WHO guidelines. Such results rise the discussion of adopting a tolerable risk for drinking water that respects regional characteristics, especially in developing countries, in detriment of chlorination for residential rainwater catchment systems.

Author Contributions:
Jávaro da Hora and Eduardo Borges Cohim collected the data and conducted the Quantitative Microbiological Risk Analysis. Samuel Sipert and Adriano Leão also analyzed the results and contributed by writing the paper in the English language. The paper was originally written in Portuguese. All authors wrote the paper.

Conflicts of Interest:
The authors declare no conflict of interest.

References
1. Meera, V.; Ahammed, M.M. Water quality of rooftop rainwater harvesting systems: A review. *Journal of Water Supply: Research and Technology - Aqua* 2006, 55, 257-268.
2. Amin, M.; Han, M. Roof-harvested rainwater for potable purposes: Application of solar collector disinfection (soco-dis). *Water research* 2009, 43, 5225-5235.
3. (ASA), A.d.S.B. Ações - p1mc. http://www.asabrasil.org.br/acoes/p1mc (05/11/16).
4. Kim, Y.; Dao, A.D.; Kim, M.; Nguyen, V.-A.; Han, M. Design and management of rainwater harvesting systems to control water quality for potable purposes in cu khe, vietnam. *Water Science and Technology: Water Supply* 2017, 17, 452-460.
5. Rodrigo, S.; Sinclair, M.; Forbes, A.; Cunliffe, D.; Leder, K. Drinking rainwater: A double-blinded, randomized controlled study of water treatment filters and gastroenteritis incidence. *American journal of public health* 2011, 101, 842-847.
6. Heyworth, J.S.; Glonek, G.; Maynard, E.; Baghurst, P.A.; Finlay-Jones, J. Consumption of untreated tank rainwater and gastroenteritis among young children in south australia. *International Journal of Epidemiology* 2006, 35, 1051-1058.
7. Ahmed, W.; Vieritz, A.; Goonetilleke, A.; Gardner, T. Health risk from the use of roof-harvested rainwater in southeast queensland, australia, as potable or nonpotable water, determined using quantitative microbial risk assessment. *Applied and Environmental Microbiology* 2010, 76, 7382-7391.
8. Lim, K.-Y.; Jiang, S.C. Reevaluation of health risk benchmark for sustainable water practice through risk analysis of rooftop-harvested rainwater. *Water research* 2013, 47, 7273-7286.
9. Lye, D.J. Rooftop runoff as a source of contamination: A review. *Science of the total environment* 2009, 407, 5429-5434.
10. Organization, W.H. *Guidelines for drinking-water quality*. 4 ed.; World Health Organization: 2011; Vol. 1.
11. Morris, R.D.; Audet, A.-M.; Angelillo, I.F.; Chalmers, T.C.; Mosteller, F. Chlorination, chlorination by-products, and cancer: A meta-analysis. *American journal of public health* 1992, 82, 955-963.
12. Tokmak, B.; Capar, G.; Dilek, F.B.; Yetis, U. Trihalomethanes and associated potential cancer risks in the water supply in ankara, turkey. *Environmental Research* 2004, 96, 345-352.
13. Ashbolt, N.J. Risk analysis of drinking water microbial contamination versus disinfection by-products (dbps). *Toxicology* 2004, 198, 255-262.
14. Pentamwa, P.; Sukton, B.; Wongklom, T.; Pentamwa, S. Cancer risk assessment from trihalomethanes in community water supply at northeastern thailand. *International Journal of Environmental Science and Development* 2013, 4, 538.
15. Mishra, B.K.; Gupta, S.K.; Sinha, A. Human health risk analysis from disinfection by-products (dbps) in drinking and bathing water of some indian cities. *Journal of Environmental Health Science and Engineering* 2014, 12, 73.
16. Haas, C.N.; Rose, J.B.; Gerba, C.P. *Quantitative microbial risk assessment*. John Wiley & Sons: 1999.
17. Cohim, E. É seguro usar água de chuva para banho? In *Simpósio Brasileiro de Captação e Manejo de Água de Chuva*, 2009; Vol. 7.
18. Murray, C.J.; Ezzati, M.; Flaxman, A.D.; Lim, S.; Lozano, R.; Michaud, C.; Naghavi, M.; Salomon, J.A.; Shibuya, K.; Vos, T. Gbd 2010: Design, definitions, and metrics. *The Lancet* 2012, 380, 2063-2066.
19. Murray, C.J.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S. Disability-adjusted life years (daly) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. *The lancet* 2012, 380, 2197-2223.
20. Fewtrell, L.; Kay, D. Quantitative microbial risk assessment with respect to campylobacter spp. In toilets flushed with harvested rainwater. *Water and Environment Journal* 2007, 21, 275-280.
21. Organization, W.H. Who methods and data sources for global burden of disease estimates 2000-2011. *Geneva: Department of Health Statistics and Information Systems* 2013.
22. Sánchez, A.; Cohim, E.; Kalid, R. A review on physicochemical and microbiological contamination of roof-harvested rainwater in urban areas. *Sustainability of Water Quality and Ecology* 2015, 6, 119-137.
23. Laine, J.; Huovinen, E.; Virtanen, M.; Snellman, M.; Lumio, J.; Ruutu, P.; Kujansuu, E.; Vuento, R.; Pitkänen, T.; Miettinen, I. An extensive gastroenteritis outbreak after drinking-water contamination by sewage effluent, finland. *Epidemiology & Infection* 2011, 139, 1105-1113.
24. Fhogartaigh, C.N.; Dance, D. Bacterial gastroenteritis. *Medicine* 2013, 41, 693-699.
25. Nielsen, H.L.; Ejertsen, T.; Engberg, J.; Nielsen, H. High incidence of campylobacter concisus in gastroenteritis in north jutland, denmark: A population-based study. *Clinical Microbiology and Infection* 2013, 19, 445-450.
26. Murphy, H.; Thomas, M.; Schmidt, P.; Medeiros, D.; McFadyen, S.; Pintar, K. Estimating the burden of acute gastrointestinal illness due to giardia, cryptosporidium, campylobacter, e. Coli o157 and norovirus associated with private wells and small water systems in canada. *Epidemiology & Infection* 2016, 144, 1355-1370.
27. Soller, J.A.; Eftim, S.; Wade, T.J.; Ichida, A.M.; Clancy, J.L.; Johnson, T.B.; Schwab, K.; Ramirez-Toro, G.; Nappier, S.; Ravenscroft, J.E. Use of quantitative microbial risk assessment to improve interpretation of a recreational water epidemiological study. *Microbial Risk Analysis* 2016, 1, 2-11.
28. Mohan, V. Faeco-prevalence of campylobacter jejuni in urban wild birds and pets in new zealand. *BMC research notes* 2015, 8, 1.
29. Hald, B.; Skov, M.N.; Nielsen, E.M.; Rahbek, C.; Madsen, J.J.; Wainø, M.; Chriël, M.; Nordentoft, S.; Baggesen, D.L.; Madsen, M. Campylobacter jejuni and campylobacter coli in wild birds on danish livestock farms. *Acta Veterinaria Scandinavica* 2016, 58, 11.
30. Eberhart-Phillips, J.; Walker, N.; Garrett, N.; Bell, D.; Sinclair, D.; Rainger, W.; Bates, M. Campylobacteriosis in new zealand: Results of a case-control study. *Journal of Epidemiology & Community Health* 1997, 51, 686-691.
31. Ahmed, W.; Huygens, F.; Goonetilleke, A.; Gardner, T. Real-time pcr detection of pathogenic microorganisms in roof-harvested rainwater in southeast queensland, australia. *Applied and environmental microbiology* 2008, 74, 5490-5496.
32. Chapman, H.; Cartwright, T.; Huston, R.; O’ETool, J. Water quality and health risks from urban rainwater tanks. In Water quality and health risks from urban rainwater tanks, CRC for Water Quality and Treatment: 2008.
33. Ahmed, W.; Vieritz, A.; Gardner, T.; Goonetilleke, A. Microbial risks from rainwater tanks in south east queensland. Water 2009, 36, 80-85.
34. Simmons, G.; Hope, V.; Lewis, G.; Whitmore, J.; Gao, W. Contamination of potable roof-collected rainwater in auckland, new zealand. Water Research 2001, 35, 1518-1524.
35. Ahmed, W.; Sidhu, J.; Toze, S. Speciation and frequency of virulence genes of enterococcus spp. Isolated from rainwater tank samples in southeast queensland, australia. Environmental science & technology 2012, 46, 6843-6850.
36. Albrechtsen, H.-J. Microbiological investigations of rainwater and graywater collected for toilet flushing. Water Science and Technology 2002, 46, 311-316.
37. Savill, M.; Hudson, J.; Ball, A.; Klena, J.; Scholes, P.; Whyte, R.; McCormick, R.; Jankovic, D. Enumeration of campylobacter in new zealand recreational and drinking waters. Journal of Applied Microbiology 2001, 91, 38-46.
38. Schets, F.; Italiaander, R.; Van Den Berg, H.; de Roda Husman, A. Rainwater harvesting: Quality assessment and utilization in the netherlands. Journal of water and health 2010, 8, 224-235.
39. EPA, U. Exposure factors handbook 2011 edition (final). Washington, DC 2011.
40. Ashbolt, N.; Pettersson, S.; Stenstrom, T.; Schonning, C.; Westrell, T.; Ottoson, J. Microbial risk assessment (mra) tool. Urban Water Report 2005, 7.
41. Medema, G.; Teunis, P.; Havelaar, A.; Haas, C. Assessment of the dose-response relationship of campylobacter jejuni. International journal of food microbiology 1996, 30, 101-111.
42. Mara, D. Water-and wastewater-related disease and infection risks: What is an appropriate value for the maximum tolerable additional burden of disease? Journal of Water and health 2011, 9, 217-224.
43. Mara, D.; Hamilton, A.; Sleigh, A.; Karavarsamis, N. Discussion paper: Options for updating the 2006 who guidelines. WHO, FAO, IDRC, IWMI 2010.
44. José, B.P.d.S.; Corrêa, R.d.A.; Malta, D.C.; Passos, V.M.d.A.; França, E.B.; Teixeira, R.A.; Camargos, P.A.M. Mortality and disability from tobacco-related diseases in brazil, 1990 to 2015. Revista Brasileira de Epidemiologia 2017, 20, 75-89.
45. Westrell, T.; Schonning, C.; Stenström, T.-A.; Ashbolt, N. Qmra (quantitative microbial risk assessment) and haccp (hazard analysis and critical control points) for management of pathogens in wastewater and sewage sludge treatment and reuse. Water Science and Technology 2004, 50, 23-30.
46. Cuevas, L.E.; González, E.S.; Veras, I.C.L.; da Luz, E.O.; Batista Filho, M.; Gurgel, R.Q. Incidência e fatores de risco de diarréia e infeções respiratórias agudas em comunidades urbanas de pernambuco, brasile incidence and risks factors for diarrhoea and acute respiratory infections in urban. Cad. Saúde Pública 1999, 15, 163-171.
47. Lima, A.; Moore, S.; Barboza Jr, M.; Soares, A.; Schleupner, M.; Newman, R.; Sears, C.; Nataro, J.; Fedorko, D.; Wuhib, T. Persistent diarrhea signals a critical period of increased diarrhea burdens and nutritional shortfalls: A prospective cohort study among children in northeastern brazil. The Journal of infectious diseases 2000, 181, 1643-1651.
48. Moraes, L.R.S.; Cancio, J.A.; Cairncross, S.; Huttly, S. Impact of drainage and sewerage on diarrhoea in poor urban areas in salvador, brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 2003, 97, 153-158.
49. Kosek, M.; Bern, C.; Guerrant, R.L. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bulletin of the World Health Organization 2003, 81, 197-204.
50. Vasconcelos, M.J.O.B.; Batista Filho, M. Doenças diarréicas em menores de cinco anos no estado de pernambuco&58; prevalência e utilização de serviços de saúde diarrheal disease in children under five years of age in the state of pernambuco, brazil&58; prevalence and utilization of health services. Revista Brasileira de Epidemiologia 2008, 11, 128-138.
51. Walker, C.L.F.; Perin, J.; Aryee, M.; Boschì-Pinto, C.; Black, R.E. Diarrhea incidence in low-and middle-income countries in 1990 and 2010: A systematic review. BMC public health 2012, 12, 220.
52. Souza, S.d.; Montenegro, S.; Santos, S.M.; Pessoa, S.G.; Nóbrega, R.L. Avaliação da qualidade da água e da eficácia de barreiras sanitárias em sistemas para aproveitamento de águas de chuva. Rev Bras Recur Híd 2011, 16, 81-93.
53. de Lima, J.C.A.L. Avaliação do desempenho de dispositivo de desvio das primeiras águas de chuva utilizado em cisternas no semiárido pernambucano. Águas Subterrâneas 2016, 26.
54. Carvalho, J.d.; Lima, J.d.; Figueiras, M.; Medeiros, L.; Santos, S.d.; Gavazza, S. Influência do descarte das primeiras águas de chuva sobre a qualidade da água encaminhada às cisternas. In Simpósio Brasileiro de Captação e Manejo de Água de Chuva, 2012; Vol. 8.
55. Ntale, H.K.; Moses, N. In Improving quality of harvested rainwater by using first flush interceptors/retainers, Proc. of 11th International Conference on Rainwater Catchment Systems, Texcoco, Mexico, 2003; Citeseer.
56. Xavier, R.P. Influência de barreiras sanitárias na qualidade da água de chuva armazenada em cisternas no semiárido paraibano. 2010. 130f. Dissertação (Mestrado em Engenharia Civil e Ambiental)–Universidade Federal de Campina Grande. Campina Grande–PB, 2010.
57. Lee, J.Y.; Bak, G.; Han, M. Quality of roof-harvested rainwater–comparison of different roofing materials. Environmental Pollution 2012, 162, 422-429.
58. Oyanedel-Craver, V.A.; Smith, J.A. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environmental science & technology 2007, 42, 927-933.
59. Mwabi, J.; Adeyemo, F.; Mahlangu, T.; Mamba, B.; Brouckaert, B.; Swartz, C.; Offringa, G.; Mpenyana-Monyatsi, L.; Momba, M. Household water treatment systems: A solution to the production of safe drinking water by the low-income communities of southern africa. Physics and Chemistry of the Earth, Parts A/B/C 2011, 36, 1120-1128.
60. Simonis, J.; Basson, A. Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria. Physics and Chemistry of the Earth, Parts A/B/C 2012, 50, 269-276.

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).