Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens (Review Article)

Itthipon Jeerapan 1,2,*, Thitaporn Sonsa-ard 3,4 and Duangjai Nacapricha 3,4

1 Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand 2 Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand 3 Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand 4 Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Bangkok 10400, Thailand

Personal biosensors and bioelectronics have been demonstrated for use in out-of-clinic biomedical devices. Such modern devices have the potential to transform traditional clinical analysis into a new approach, allowing patients or users to screen their own health or warn of diseases. Researchers aim to explore the opportunities of easy-to-wear and easy-to-carry sensors that would empower users to detect biomarkers, electrolytes, or pathogens at home in a rapid and easy way. This mobility would open the door for early diagnosis and personalized healthcare management to a wide audience. In this review, we focus on the recent progress made in modern electrochemical sensors, which holds promising potential to support point-of-care technologies. Key original research articles covered in this review are mainly experimental reports published from 2018 to 2020. Strategies for the detection of metabolites, ions, and viruses are updated in this article. The relevant challenges and opportunities of applying nanomaterials to support the fabrication of new electrochemical biosensors are also discussed. Finally, perspectives regarding potential benefits and current challenges of the technology are included. The growing area of personal biosensors is expected to push their application closer to a new phase of biomedical advancement.

Reference:
Jeerapan, I.; Sonsa-ard, T.; Nacapricha, D., Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors 2020, 8 (3).

For More Information

Name : Assoc. Prof. Dr. Duangjai Nacapricha
Mahidol University Rama 6 Road, Ratchtewi,
Bangkok 10400
Tel. : +66 2-201-5127
e-mail : dnacapricha@gmail.com
ใบโอเซนเซอร์ และใบโอเล็กทรอนิกส์เป็นอุปกรณ์ที่ถูกพัฒนาและนำเสนอเพื่อวัตถุประสงค์การตรวจวัด
วินิจฉัยทางการแพทย์ที่สมบูรณ์ที่สามารถทำได้โดยไม่ต้องเป็นโรงพยาบาลหรือคลินิก ซึ่งรูปแบบของอุปกรณ์ตรวจวัดสมัยใหม่นั้นมีความสามารถช่วยให้ผู้ป่วยหรือผู้ใช้งานสามารถติดตามสถานะสุขภาพหรือสัญญาณเตือนของโรคของตัวเองได้ โดยวิจัยจานวนมากพยายามที่จะพัฒนาเซนเซอร์ที่สะดวกต่อการสวมใส่และพกพาเพื่อช่วยให้ผู้ใช้งานสามารถตรวจวัดสาร
ผ่านทางรูมหาย สารอิเลกโทรไลท์ และสารอิเลกโทรไลท์ได้อย่างสบายและรวดเร็ว งานเขียนเพื่อทบทวนวรรณกรรมนี้ได้มุ่งเน้นงานวิจัยที่นำเสนอเซนเซอร์เคมีไฟฟ้าในช่วงปี 2018-2020 ที่มีความสำคัญต่อการพัฒนาเทคโนโลยีเพื่อใช้การ
วินิจฉัย และการให้บริการรักษาผู้ป่วย งานเขียนนี้ได้รวบรวมงานวิจัยและกลวิธีใหม่ๆที่ถูกนำเสนอเพื่อตรวจวัดสาร
แม่สายในรูมหายและไวรัสต่างๆ รวมถึงได้ยกถึงความท้าทายและการประยุกต์ใช้วัสดุนาโนในการพัฒนา
ใบโอเซนเซอร์ทางเคมีไฟฟ้า รวมถึงได้มีการกล่าวถึงภาพรวมของงานวิจัย แนวโน้ม ประโยชน์ที่เป็นไปได้ และความ
ท้าทายใหม่ของการพัฒนาเทคโนโลยีเหล่านี้ด้วย

ติดต่อขอรายละเอียดเพิ่มเติม
ผู้แต่งร่วม: รศ. ดร. ดวงใจ นาคะปรีชา
ที่อยู่: ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
ถ.พระราม 6 ราชเทวี กรุงเทพฯ 10400
โทร.:+66 2-201-5127
e-mail: dnacapricha@gmail.com