MAGNETIZED MOVING MESH MERGER OF A CARBON–OXYGEN WHITE DWARF BINARY

CHENCHONG ZHU1, RÜDIGER PAKMOR2, MARTEN H. VAN KERKWIJK1, AND PHILIP CHANG3

1 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada; cczhu@astro.utoronto.ca
2 Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
3 Department of Physics, University of Wisconsin–Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211, USA

Received 2015 April 7; accepted 2015 May 4; published 2015 June 2

ABSTRACT

White dwarf (WD) binary mergers are possible progenitors to a number of unusual stars and transient phenomena, including type Ia supernovae. To date, simulations of mergers have not included magnetic fields, even though they are believed to play a significant role in the evolution of the merger remnant. We simulated a 0.625–0.65 Msolar carbon–oxygen WD binary merger in the magnetohydrodynamic moving mesh code AREPO. Each WD was given an initial dipole field with a surface value of $\sim 10^{10}\, G$. As in simulations of merging double neutron star binaries, we find exponential field growth within Kelvin–Helmholtz instability-generated vortices during the coalescence of the two stars. The final field has complex geometry, and a strength $>10^{10}\, G$ at the center of the merger remnant. Its energy is $\sim 2 \times 10^{47}\, \text{ergs}$, $\sim 0.2\%$ of the remnant’s total energy. The strong field likely influences further evolution of the merger remnant by providing a mechanism for angular momentum transfer and additional heating, potentially helping to ignite carbon fusion.

Key words: binaries: close – magnetohydrodynamics (MHD) – stars: magnetic field – supernovae: general – white dwarfs

1. INTRODUCTION

White dwarf (WD) binaries are common end products of binary, stellar evolution. Gravitational wave emission, magnetic braking, or the influence of a third body will cause a fraction of these to merge, producing a diversity of unusual stars and electromagnetic transients. In particular, for double carbon–oxygen (CO) WD mergers, the final outcome could be a massive and rapidly rotating WD (e.g., Segretein et al. 1997), an accretion-induced collapse into a neutron star (NS; Saio & Nomoto 1985), or a nuclear explosion that might resemble a type Ia supernova (SN Ia). Understanding the conditions that lead to each outcome requires understanding the merging process, which has, in the last decade, been investigated with increasingly sophisticated 3D hydrodynamic simulations (Lorén-Aguilar et al. 2009; Pakmor et al. 2010; Dan et al. 2012, 2014; Raskin et al. 2012; Zhu et al. 2013; Moll et al. 2014). However, one fundamental piece missing in WD merger studies so far is magnetic fields.

Mergers (that do not immediately explode) are expected to produce differentially rotating merged objects—”merger remnants” —that are susceptible to magnetic dynamo processes such as the magnetorotational instability (MRI; Balbus & Hawley 1991), Tayler–Spruit dynamo (e.g., Spruit 2002), and the $\alpha\omega$ dynamo (if convection occurs in the inner disk; García-Berro et al. 2012). It has therefore long been suspected that they can generate strong fields, and recent 2D simulations of MRI in the remnant (Ji et al. 2013) have indeed shown amplification of a weak seed field to $>10^{10}\, G$. Magnetic shear from these fields transports angular momentum over a timescale of $\sim 10^4–10^8\, \text{s}$ (van Kerkwijk et al. 2010; Shen et al. 2012)—far shorter than the thermal timescale of the remnant—and also (non-locally) heats the remnant. The latter, combined with loss of rotational support from angular momentum transport, could push remnant temperatures past the point of carbon ignition ($\sim 6 \times 10^8\, K$ for densities between 10^9 and $10^7\, \text{g}\, \text{cm}^{-3}$), leading to either stable nuclear burning or a runaway. This mechanism could potentially drive nuclear runaways even in remnants with masses below the Chandrasekhar Mass M_{C} that have traditionally been considered stable (van Kerkwijk et al. 2010).

While field growth after the merger has been explored, field growth during the merger is also expected, and can have a profound impact on the post-merger magnetic evolution. Magnetohydrodynamic (MHD) double NS binary merger simulations (e.g., Price & Rosswog 2006; Giacomazzo et al. 2014; Kiuchi et al. 2014) have found that Kelvin–Helmholtz vortices produced along the shear interface between the coalescing stars can amplify field strengths by orders of magnitude (Obergaulinger et al. 2010; Zrake & MacFadyen 2013). The same should hold true for WD mergers. Motivated by this, we present the first MHD simulation of a CO WD binary merger.

2. METHODS

We employ the moving-mesh code AREPO (Springel 2010), which solves the equations of ideal MHD on a Voronoi mesh coupled with self-gravity. We operate the code in its pseudo-Lagrangian mode, so that the mesh-generating points that define the Voronoi grid move with the local velocity of the fluid. To conserve angular momentum to within $\sim 2\%$ of its initial value, we use the latest improvements to time integration and gradient estimate (Pakmor et al. 2015). AREPO’s MHD implementation is described in Pakmor et al. (2011) and Pakmor & Springel (2013); we use the Powell et al. (1999) eight-wave scheme for divergence control. Our simulation ignores outer hydrogen and helium layers, composition gradients, and nuclear reactions (negligible for sub-M_{C} CO WD mergers; Lorén-Aguilar et al. 2009; Raskin et al. 2012).

We model the merger of two CO WDs with masses of 0.625 and 0.65 Msolar, respectively, in a circular, unsynchronized binary with initial separation $a_0 = 2.20 \times 10^9\, \text{cm}$ (corresponding period $P = 49.5\, \text{s}$), chosen (using the estimate of Eggleton 1983) such that the lower-mass WD just lifts its Roche
lobe. We chose masses typical of the narrowly peaked empirical mass distribution of field CO WDs (Kleinman et al. 2013). Our initial conditions are very similar to those of the 0.625–0.65 \(M_\odot \) binary simulated with smoothed particle hydrodynamics (SPH) in Zhu et al. (2013, henceforth Z13). As in Z13, both WDs are generated with a uniform initial temperature of \(5 \times 10^6 \) K (the corresponding thermal pressure is dynamically irrelevant) and a uniform composition of equal parts carbon and oxygen by mass. They are separately relaxed to hydrostatic equilibrium using the SPH code GASOLINE (Wadsley et al. 2004) and added to AREPO by converting the SPH particles to mesh-generating points while retaining their conservative quantities (mass, momentum, and energy). A uniform \(10^{-5} \) g cm\(^{-3}\) background grid fills up a \(10^{12} \) cm box centered on the binary. Each WD is given a (dynamically irrelevant) dipole seed magnetic field with an equatorial surface value of \(10^3 \) G (and corresponding central field of \(\sim 2 \times 10^7 \) G). The fields are overlapped when the two stars are placed into a binary.

The mass resolution of our simulation is \(m_{\text{cell}} \approx 1 \times 10^{-6} M_\odot \). We utilize explicit refinement and derefinement (Vogelsberger et al. 2012) to keep cell masses within a factor of two of \(10^{-6} M_\odot \), and to ensure adjacent cells differ by less than a factor of 10 in volume.

3. RESULTS

We depict the evolution of the binary in Figure 1, highlighting temperature \(T \) and magnetic field strength \(|B| \) (right) logarithmic intensity profiles in the equatorial plane of the merger for four snapshots in time (rows; time indicated at the top left of each row).

![Figure 1](image1.png)

Figure 1. Series of temperature \(T \) (left column) and magnetic field strength \(|B|\) (right) logarithmic intensity profiles in the equatorial plane of the merger for four snapshots in time (rows; time indicated at the top left of each row).

In the first stage of the merger, up to \(\sim 180 \) s, the 0.625 \(M_\odot \) donor WD transfers mass to the 0.65 \(M_\odot \) accretor for about 3.5 orbits before fully disrupting. Because our initial conditions are approximate—the WDs are not initially tidally deformed—mass transfer begins in spurts as the WDs stretch in response to the binary potential, and occurs at a rate that is artificially high (Dan et al. 2011). The early mass transfer shears the atmospheres of both WDs. As a result, \(E_B \) grows roughly linearly in the first \(\sim 100 \) s, reaching about quadruple its initial value. Since the initial mass transfer rate is artificially high, this growth is likely an overestimate, but remains negligible compared to what follows.

By \(\sim 120 \) s, mass transfer becomes steady, and a stream of material from the donor wraps around the accretor, forming a shear layer. Along it, the Kelvin–Helmholtz instability generates a string of hot vortices that exponentially amplify their entrained magnetic fields. This is illustrated in Figure 1 (row 2), where the hot vortices along the donor–accretor interface correspond to regions of high field strength. At \(\sim 180 \) s, tidal forces between the two WDs become strong enough to fully disrupt the donor, which then coalesces with the accretor over \(\sim 50 \) s. During this time, infalling donor material spirals into the accretor, severely deforming the accretor while carrying the string of magnetized vortices toward the system’s center of mass (CM).

Figure 2. Total magnetic energy \(E_B \) over time, with a best fit to the rapid exponential growth (dashed \(E_B \propto e^{t/6.4} \) line).

![Figure 2](image2.png)

Figure 2 shows the growth of total magnetic energy \(E_B \) over time.

In the second stage, the \(\sim 180 \) s merger becomes chaotic, and a hot, rapidly rotating underdense void at the CM (Figure 1, row 4). Magnetic growth within the void begins to saturate as its magnetic and kinetic energy approach equipartition. The rate of field growth slows as well, with \(E_B \) growing another two orders
of magnitude over \(\sim 150\) s before plateauing at \(\sim 2 \times 10^{47}\) ergs at \(\sim 400\) s.

In Figure 3 we show the density \(\rho\), \(T\), \(|\mathbf{B}|\), and ratio of magnetic to rotational energy density \(e_B/e_\text{rot}\) of the merger remnant at 400 s. The remnant consists of a dense, degeneracy-supported core containing \(\sim 60\%\) of the remnant’s mass, a partly thermally supported hot envelope that surrounds the core, and a rotationally supported disk, a configuration similar to the SPH 0.625–0.65 \(M_\odot\) remnant from Z13. The \textsc{Arepo} remnant core, however, has distinctly non-axisymmetric density and temperature structures, unlike the SPH simulation which achieves axisymmetry \(\sim 170\) s after coalescence (Z13, online figure set Figure 1.16). The magnetic fields are too weak during the merger to have an effect on merger dynamics, so these contrasts are due to differences in the hydrodynamic schemes between \textsc{Arepo} and SPH (C. Zhu et al. 2015, in preparation).

The remnant magnetic field configuration is complex: while field lines are coherent along “strands” of high field strength, neighboring strands often point in opposite directions (see Figure 3). In the core, the volume-averaged field strength is \(4 \times 10^{10}\) G, but strands of \(>10^{11}\) G penetrate the core. The field remains \(>10^9\) G near the core–disk interface at \(\sim 10^9\) cm, before dropping below \(10^7\) G at \(\gtrsim 3 \times 10^9\) cm. The total magnetic field energy is \(\sim 0.2\%\) of the total, \(\sim 0.6\%\) the total rotational, and \(\sim 6\%\) the total differential rotation energy of the remnant. This energy is roughly equally partitioned into toroidal and poloidal field components, with the ratio of poloidal to total magnetic energy \(E_{Bp}/E_B = 0.62\). Studies of local field amplification within Kelvin–Helmholtz vortices predict magnetic growth saturates when the magnetic and kinetic energy densities are close to equipartition (Obergaulinger et al. 2010; Zrake & MacFadyen 2013). In our simulation, this is only the case for the strands of \(>10^{11}\) G field, where magnetic energy density is \(\sim 7\%\) (\(\sim 47\%\)) the rotational (differential rotation) energy density (see Figure 3, column 4). It is possible that because the strands are distributed throughout the core, they drive the core’s overall evolution and inhibit further magnetic amplification in their surroundings.

Some of the magnetized accretion stream is ejected during coalescence and integrates into the inner disk (\(\sim 1–3 \times 10^3\) cm), producing a \(10^7–10^8\) G field by 400 s. This field has a negligible hydrodynamic effect on the disk (magnetic energy density to pressure ratio \(e_B/P \approx 3 \times 10^{-6}\) at \(2 \times 10^9\) cm), and, unlike the field in the core, has not saturated: \(|\mathbf{B}|\) continues to grow exponentially with \(\tau \sim 200\) s.\(^2\)

4. ROBUSTNESS TESTS

4.1. Resolution Test

To check that our results are not resolution-limited, we performed simulations, otherwise identical to the fiducial one in Section 3, with lower and higher mass resolutions of \(m_{\text{cell}} \approx 5 \times 10^{-6} \ M_\odot\) and \(m_{\text{cell}} \approx 2 \times 10^{-7} \ M_\odot\), respectively. Figure 4 compares the \(E_B\) evolution between these simulations (dashed lines) and the fiducial one (solid).

The three runs are qualitatively identical. Donor disruption and the start of exponential field growth occurs \(\sim 0.75\) orbital periods earlier at low resolution, and \(\sim 0.5\) periods later at high, because the outer layers of the WDs are better captured and the differences in hydrostatic equilibrium between \textsc{Arepo} and \textsc{GASOLINE} are less pronounced at higher resolution. Exponential growth rates are similar between the runs—the \(E_B\) e-folding time is \(\tau = 4.9\) s for the low resolution run, faster than \(\tau = 6.4\) s for the fiducial. At high resolution, the growth curve appears to be separated into two phases, with \(\tau = 7.8\) s before coalescence, and \(\tau = 3.9\) s during it. The total magnetic energy at the end of exponential growth is also similar—at 400 s, \(E_B\) is \(\sim 4 \times 10^{47}\) ergs in the low resolution run and \(\sim 1.5 \times 10^{47}\) ergs in the high, compared to \(\sim 2 \times 10^{47}\) ergs at

1 Differential rotation energy of a cell is estimated with
\[E_{\text{drot}} = m_{\text{cell}} |v \cdot (\nabla \times |v|)^{1/2} |. \]

2 The remnant disk is generally poorly resolved, even at the highest resolution used in Section 4.1; this may artificially slow the disk field growth rate.
the fiducial resolution. The fiducial and high resolution runs also qualitatively have very similar magnetic field structures by 400 s. Our fiducial resolution of $1 \times 10^{-6} M_\odot$ therefore appears sufficient for qualitatively capturing the growth and final field configuration of the merger.

In their MHD disk galaxy simulations, Pakmor & Springel (2013) find faster field growth and higher field strength at saturation in their lowest resolution run, which they attribute to larger divergence errors at lower resolution. We perform a similar test, and also see a trend of decreasing divergence error (and more accurate magnetic evolution) at higher resolution, though the errors of all our simulations are at least a factor of two smaller than any reported in Pakmor & Springel (2013). The errors are highly localized in space and trace steep magnetic gradients, suggesting they contribute only to small-scale variations in the magnetic field.

4.2. Changing the Seed Field Strength

To understand the dependence of our results on the initial seed field, we ran two additional simulations in which we decreased the strength of the seed field by three and six orders of magnitude leading to an initial equatorial surface field of 1 G (central field $\sim 2 \times 10^4$ G), and 10^{-3} G (~ 20 G), respectively. Figure 4 shows their E_B evolution (dotted lines). We find the growth curves to be homologous between both low initial field runs and the fiducial one—differing only by the ratios of seed E_B—up to ~ 200 s, with the e-folding time for exponential amplification approximately 6.5 s for all three runs. By ~ 250 s, the field in the fiducial simulation begins to plateau, while amplification (of initially weaker fields) continues for several hundred more seconds in the low initial field runs. For both runs, E_B plateaus at $\sim 3 \times 10^{47}$ ergs, comparable to the fiducial $\sim 2 \times 10^{47}$ ergs. Because the fields in the low initial field runs remain dynamically irrelevant for longer, however, their structures differ from that of the fiducial run and resemble more the crescent in Figure 1, row 4. The disk field does not saturate in any simulation—it’s strength is proportional to the strength of the seed field, and is thus much weaker in the low initial field runs. Our tests thus suggest that the exponential growth, growth timescale and plateau E_B are robust to changes in initial field strength, while the remnant field configuration is more sensitive to the choice of seed field.

5. DISCUSSION

We have shown that the merger of a 0.625–0.65 M_\odot CO WD binary produces a strong, $> 10^{10}$ G magnetic field with a complex structure that winds through the remnant core and into the inner disk. Similar to previous simulations of binary NS mergers, the strong field is generated by dynamo action within Kelvin–Helmholtz vortices formed during the coalescence of the two WDs. Since these vortices are ubiquitous in WD mergers, strong magnetic fields are a likely feature of all merger remnants. The degree to which a field permeates the remnant core depends on how thoroughly the donor and accretor mix during coalescence, which itself is sensitive to initial conditions such as the degree of synchronization between the WDs, or how accurately their tidal bulges and early mass transfer are captured (Dan et al. 2011; 2014). A parameter space study of magnetized mergers is needed to investigate the range of possible remnant field configurations.

We note that NS mergers simulated in Eulerian grid codes generally show E_B growing by only a factor of $\sim 10^2 – 10^3$ during coalescence, compared to the $\sim 10^3$ we see, despite these simulations having resolutions comparable or superior to our low resolution Arepo run. This weaker growth is also inconsistent with the amplification to local kinetic equipartition seen in small-scale simulations (Obergaulinger et al. 2010; Zrake & MacFadyen 2013), and is attributed to insufficient resolution in the NS merger simulations (Giacomazzo et al. 2014; Kiuchi et al. 2014, though see Dionysopoulou et al. 2015). Giacomazzo et al. (2014) incorporated a subgrid magnetic amplification model, calibrated using Zrake & MacFadyen (2013)’s results, into their Eulerian NS merger simulation, and found E_B amplification by a factor of $\sim 10^{10}$ over a single dynamical time. This suggests Arepo may be better able to resolve small-scale velocity structures than an Eulerian code at comparable resolution, or better able to couple these structures to magnetic growth. Further work is needed to understand the magnetic field growth in detail.

The density profile of the remnant remains non-axisymmetric for hundreds of seconds after coalescence. As a result, the core continues to evolve dynamically, and by 400 s has begun to launch a pair of spiral waves into the surrounding medium (see the density panel of Figure 3), which transport angular momentum on a timescale rivalling that for magnetic shear. While Kashyap et al. (2015) report a similar spiral instability in their Eulerian remnant evolution simulation, SPH simulations like those of Z13 rapidly achieve axisymmetry after coalescence and do not form spiral waves. As noted earlier, this difference between Arepo and SPH simulations is a product of the differences between their hydrodynamic schemes. Further study is needed to understand these differences and their consequences for remnant evolution (C. Zhu et al. 2015, in preparation).

The post-merger evolution of the remnant has been followed to $\sim 3 \times 10^4$ s with axisymmetric cylindrical (two-
dimensional) Eulerian grid simulations (Schwab et al. 2012; Ji et al. 2013). As described earlier, Ji et al. (2013)’s MHD simulation of a 0.6–0.6 M_\odot remnant shows the development of a strong magnetic field due to MRI. The subsequent heating and angular momentum transport due to the fields pushes core temperatures to ignition, supporting the possibility of a nuclear runaway within sub-M_\odot remnants. Their results are, however, likely sensitive both to their initial hydrodynamic conditions—which may have artificially high core temperatures—and their chosen seed magnetic field, a pure poloidal one to optimize the onset of MRI. Our much stronger poloidal–toroidal field could substantially change post-merger evolution. Moreover, the persistence of a non-axisymmetric remnant core will lead to evolution that clearly cannot be captured in a axisymmetric cylindrical grid. We therefore stress the need to perform high-resolution three-dimensional simulations of post-merger evolution to determine the final fate of the remnant.

There are a number of potentially observable consequences of the magnetic fields produced by the merger. Ji et al. (2013) note the creation of a magnetized corona and biconal jet in their simulations, which act in concert to cause an outflow of material near the remnant’s poles. This outflow eventually unbinds $\sim 10^{-3} M_\odot$ of material, and Beloborodov (2014) estimates it should lead to an optical transient with a duration of ~ 1 day and peak $L \sim 10^{41} L_\odot$, which should be detectable by optical surveys.

If a remnant later experiences a nuclear runaway and explodes as a SN Ia, its magnetic field will increase the late-time emission by trapping positrons (produced by 56Co β^+ decay) that would otherwise escape the ejecta. The trapping efficiency depends on the strength and configuration of the remnant magnetic field, with a locally entangled $\sim 10^{11}$ G field—similar to our findings—well able to trap positrons past 1000 days (Ruiz-Lapuente & Spruit 1998). This is in line with observed late-time SN Ia light curves (most recently Kerzendorf et al. 2014).

Those remnants that do not explode will retain strong fields when they reach quiescence, and populate the high-mass tail of the distribution of isolated high-field magnetic WDs (García-Berro et al. 2012; Külebi et al. 2013; Wickramasinghe et al. 2014; Briggs et al. 2015). Since these remnants will have temperatures high enough to fuse any remaining hydrogen and helium they possess, their properties might eventually be akin to the recently discovered hot DQ WDs (akin to the recently discovered hot DQ WDs (Lawrie et al. 2013; Williams et al. 2013).

We thank Christopher Thompson, Christopher Matzner, Volker Springel, Bart Dunlap, Yuri Levin, Henk Spruit, Ue-Li Pen, and Stephen Ro for their insights into magnetohydrodynamics and simulations. This work utilized the SciNet HPC Consortium’s GPC supercomputer (Loken et al. 2010). C.Z. acknowledges support from the Natural Sciences and Engineering Research Council (NSERC) Vanier Canada Graduate Scholarship. R.P. acknowledges support by the European Research Council under ERC-StG grant EXAGAL-308037 and by the Klaus Tschira Foundation. P.C. is supported by the NASA ATP program through NASA grant NNX13AH43G, and NSF grant AST-1255469.

REFERENCES

Althaus, L. G., García-Berro, E., Córscos, A. H., Miller Bertolami, M. M., & Romero, A. D. 2009, ApJL, 693, L23

Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214

Beloborodov, A. M. 2014, MNRAS, 438, 169

Briggs, G. P., Ferrario, L., Tout, C. A., Wickramasinghe, D. T., & Hurley, J. R. 2015, MNRAS, 447, 1713

Dan, M., Rosswog, S., Brüggen, M., & Podsiadlowski, P. 2014, MNRAS, 438, 14

Dan, M., Rosswog, S., Guillonchon, J., & Ramirez-Ruiz, E. 2011, ApJ, 737, 89

Dan, M., Rosswog, S., Guillonchon, J., & Ramirez-Ruiz, E. 2012, MNRAS, 422, 2417

Dionysopoulou, K., Alic, D., & Rezzolla, L. 2015, arXiv:1502.02021

Dunlap, B. H., & Clemens, J. C. 2015, in ASP Conf. Ser. 493, 19th European Workshop on White Dwarfs, ed. P. P. Dufour, P. Bergeron, & G. Fontaine (San Francisco, CA: ASP), in press

Dufour, P., Vornanen, T., Bergeron, P., & Fontaine, A. B. 2013, in ASP Conf. Ser. 469, 18th European White Dwarf Workshop, ed. J. Krzesiński et al. (San Francisco, CA: ASP), 167

Eggleton, P. P. 1983, ApJ, 268, 368

García-Berro, E., Lorentz-Aguilar, P., Aznar-Siguán, G., et al. 2012, ApJ, 749, 25

Giacomazzo, B., Znaje, J., Duffell, P., MacFadyen, A. I., & Perna, R. 2014, arXiv:1410.0013

Ji, S., Fisher, R. T., García-Berro, E., et al. 2013, ApJ, 773, 136

Kashyap, R., Fisher, R., García-Berro, E., et al. 2015, ApJL, 800, L7

Kerzendorf, W. E., Taubenberger, S., Seitenzahl, I. R., & Rüiter, A. J. 2014, ApJL, 796, L26

Kiuchi, K., Kyotoku, K., Sekiguchi, Y., Shibata, M., & Wada, T. 2014, PPhD-V, 90, 041502

Kleinmann, S. J., Kepler, S. O., Koester, D., et al. 2013, ApJS, 204, 5

Külebi, B., Ekşi, K. Y., Lorentz-Aguilar, P., Isern, J., & García-Berro, E. 2013, MNRAS, 431, 2778

Lawrie, K. A., Burleigh, M. R., Dufour, P., & Hodgkin, S. T. 2013, MNRAS, 433, 1599

Loken, C., Gruner, D., Groer, L., et al. 2010, JPBCS, 256, 012026

Loren-Aguilar, P., Isern, J., & García-Berro, E. 2009, A&A, 500, 1193

Moll, R., Raskin, C., Kasen, D., & Woosley, S. E. 2014, ApJ, 785, 105

Obergaulinger, M., Aloy, M. A., & Müller, E. 2010, A&A, 515, A30

Pakmor, R., Bauer, A., & Springel, V. 2011, MNRAS, 418, 1392

Pakmor, R., Kromer, M., Röpke, F. K., et al. 2010, Natur, 463, 61

Pakmor, R., & Springel, V. 2013, MNRAS, 427, 176

Pakmor, R., Springel, V., Bauer, A., et al. 2015, arXiv:1503.00562

Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & de Zeeuw, D. L. 1999, JCoPh, 154, 284

Price, D. J. 2012, JCoPh, 231, 759

Price, D. J., & Rosswog, S. 2006, Sci, 312, 719

Raskin, C., Scannapieco, E., Fryer, C., Rockefeller, G., & Timmes, F. X. 2012, MNRAS, 424, 62

Ruiz-Lapuente, P., & Springel, H. C. 1998, ApJ, 500, 360

Saio, H., & Nomoto, K. 1985, A&A, 150, L21

Schwab, J., Shen, K. J., Quataert, E., Dan, M., & Rosswog, S. 2012, MNRAS, 427, 190

Segretain, L., Chabrier, G., & Mochkovitch, R. 1997, ApJ, 481, 355

Shen, K. J., Bildsten, L., Kasen, D., & Quataert, E. 2012, ApJL, 768, 35

Springel, V. 2010, MNRAS, 401, 791

Spruit, H. C. 2002, A&A, 381, 923

van Kerkwijk, M. H., Chang, P., & Justham, S. 2010, ApJL, 722, L157

Vogelsberger, M., Sijacki, D., KereˇSI, D., Springel, V., & Hernquist, L. 2012, MNRAS, 425, 3024

Wadsley, J. W., Stadel, J., & Quinn, T. 2004, NewA, 9, 137

Wickramasinghe, D. T., Tout, C. A., & Ferrario, L. 2014, MNRAS, 437, 675

Williams, K. A., Winget, D. E., Montgomery, M. H., et al. 2013, ApJ, 769, 123

Zhao, Z., Bridge, M. H., & Wadsley, J. 2013, ApJ, 767, 164