A New Agonist for Peroxisome Proliferation-activated Receptor γ (PPARγ), Fraglide-1 from Zhenjiang Fragrant Vinegar: Screening and Characterization Based on Cell Culture Experiments

Yoshio Tsujino*

School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, JAPAN

Abstract: Zhenjiang fragrant vinegar (Kozu) is a black rice vinegar that has been used as a traditional Chinese medicine and has various health benefits, including anti-obesity effects. In the present study, using luciferase reporter assays of PPARγ promoter activity, a novel ingredient from 8-year-old Kozu, 5-hydroxy-4-phenyl-butenolide, was isolated. The newly found agonist was named as “Fraglide-1”. Moreover, in subsequent experiments, it was confirmed that fraglide-1 was an PPARγ agonist and it could increase expression level of the uncoupling protein (UCP)-1. Fraglide-1 was chemically synthesized and it was verified that expression of the PPARγ was increased in dose dependent manner. Although Kozu has been consumed globally as a functional food for thousands of years, the mechanisms behind its health effects have not been characterized. The active ingredient of Kozu was successfully found and the results unraveled a longtime mystery about Kozu for its beneficial health effect.

Key words: fragrant vinegar, 5-hydroxy-4-phenyl-butenolide, fraglide-1, Kozu, PPARγ, UCP-1, troglitazone

1 INTRODUCTION

Fragrant vinegars (aromatic vinegars) are typically produced by the fermentation of glutinous rice followed by a long ageing time, and have been used for thousands of years as traditional Chinese vinegar seasonings. Recently, fragrant vinegars have become increasingly popular health foods globally. Whereas common vinegars are produced using 1–3-month fermentation and maturation processes, the 8-year-old hengshun fragrant vinegar (Zhenjiang Xiang Cu; Kozu) from Zhenjiang Jiangsu, China, is matured and fermented for 6 months to several years. Kozu is often marketed in a concentrated form with a dark-brown or reddish-brown color and is supplied to 160 countries as a basic flavoring material for Chinese cuisine, which is the world’s most common food category. As a traditional Chinese medicine (Kampo), fragrant vinegar has long been considered as a functional food that ameliorates obesity and lifestyle-related diseases, and is described in the Chinese pharmaceutical magazine Honzo Komoku as follows: ‘only rice vinegar that has been aged for more than 2–3 years can be used as a medicine material.’ However, although the health benefits of vinegar have been demonstrated, the active ingredients of vinegars such as Kozu remain unidentified, and their effects have not been demonstrated in animal or clinical studies.

Excessive caloric intake and decreased physical activity lead to obesity, which has become a major global health issue as the main cause of lifestyle-related diseases such as diabetes, hypertension, and dyslipidemia. Although various medications have been developed for the treatment of metabolic abnormalities, prophylactic approaches remain essential for avoiding obesity. However, despite the increasing demand for obesity-related functional foods, the health care burden of obesity continues to increase globally, suggesting that conventional and established functional foods are not completely effective and fail to meet consumer requirements.

Currently available agents for the treatment of obesity and associated sequelae include the peroxisome proliferator-activated receptor γ (PPARγ) agonist, which has been widely used in the treatment of diabetes. High expression of PPARγ has been associated with metabolic syndrome, obesity, diabetes mellitus, hypertension, arteriosclerosis, hyperlipidemia, inflammatory disease, and malignan-
cy powerful. Binding of agonist to PPARγ improves carbohydrate and lipid metabolism, in part reflecting the induction of mitochondrial uncoupling proteins (UCP) such as UCP-1.

Although thiazolidine ingredients has demonstrated efficacy in the treatment of diabetes, it causes weight gain, fluid retention, and cardiovascular dysfunction, warranting the development of dietary PPARγ agonists with fewer side effects. Thus, in the present study, the novel ingredient, 5-hydroxy-4-phenyl-butenolide (fraglide-1), was identified in 8-year-old Kozu (hengshun fragrant vinegar) by serially isolating active chromatographic fractions using PPARγ activation assays. The present observations may lead to the development of fraglide-1 containing food products that ameliorate obesity.

2 EXPERIMENTAL

2.1 Fraglide-1 extraction from vinegar
Kozu and n-hexane (1L each) were mixed and centrifuged (3,400 × g, 10 min) to recover an aqueous layer. Phase partitioning was performed thrice. Redundant lipid components were removed. Equal volumes of chloroform were added to partitioned aqueous layers and were mixed and centrifuged to yield a chloroform layer. Recovered chloroform layers were then concentrated under reduced pressure, yielding 3970 mg of chloroform extract.

2.2 Normal-phase silica gel column treatment
Chloroform extract (3970 mg) was dissolved in acetone and was adsorbed onto 130 g of silica gel (silica gel 60, 0.040–0.063-mm column chromatography; Merck Millipore), which was packed into a chromatographic glass column (length, 60 cm; diameter, 2.7 cm; volume, 343 mL). Solvent mixtures (550 mL) with benzene:acetone at ratios of 20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 0:1 (v/v) were added to the column in that order, and eluted fractions were collected for each solvent mixture as normal-phase column fractions (fractions 1–7). Recovered fractions were concentrated under reduced pressure using a Diaphragm vacuum pump (DIVAC 1.2L, Leybold GmbH), and residue solid weights were recorded. Portions of dried fractions were dissolved in dimethyl sulfoxide (DMSO; Nacalai Tesque, Inc., Kyoto, Japan) to ≥ 1000 times the final concentration and were then subjected to PPARγ ligand activity assays.

2.3 Cell culture
African green monkey kidney-derived CV-1 cells or C3H10T1/2 cells (Dainippon Sumitomo Pharma, Osaka, Japan) purchased from American Type Culture Collection were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich Co.) containing 10% fetal bovine serum (FBS) at 37°C in an atmosphere containing 5% CO2.

2.4 PPARγ activation monitored by luciferase reporter assay
The plasmids pM-PPARγ, expressing a chimeric protein comprising a human-PPARγ ligand-binding domain and a DNA-binding domain of a yeast-derived GAL4 transcription factor, p4 × UASg-tk-luc, containing firefly luciferase gene linked downstream from a GAL4 responsive elements, and pRL-CMV, expressing Renilla luciferase under the control of CMV promoter were gift from Pharma Foods International Co., Ltd. CV-1 cells seeded in 100-mm Petri dishes were co-transfected with 2 μg of pM-PPARγ, 4 μg of p4 × UASg-tk-luc, and 0.04 μg of pRL-CMV using Lipofectamine Reagent (Invitrogen, CA, USA). After 3.5 h incubation, the transfected cells were transferred to 96-well plates at a density of 5 × 103 cells per well, and test samples, which were diluted in DMEM containing 4% FBS to twice, were then treated to the cells and incubated for 24 h.

Firefly and Renilla luciferase activities were measured using a Dual-Luciferase (R) Reporter Assay System (Promega, WI, USA), according to manufacturer’s instructions. Luminescence intensity was measured for 10 s using a luminometer (Micro Lumat Plus; Berthold Japan Co., Ltd.), and luminescence intensity of firefly luciferase was normalized to that of Renilla luciferase. PPARγ-activity was presented as percentages of the control group.

2.5 PPARγ activation assays of normal-phase column fractions
PPARγ activation assays were performed with seven normal-phase column fractions to investigate PPARγ ligand activity. In these experiments, 100- and 50-μg/mL fractions were used and PPARγ ligand activities of fractions were expressed relative to that of controls (DMSO).

2.6 Reversed-phase column chromatography and PPARγ activation assays of eluates
Fraction 1 from normal-phase column chromatography was subjected to reverse-phase chromatography to prepare five reverse-phase column fractions. Reversed-phase chromatography was performed using a chromatographic glass column (length, 40 cm; diameter, 2.2 cm; volume, 152 mL) packed with 50 g of ODS silica gel (YMC*GEL ODS-A 6 nm S-150 μm; YMC Co., Ltd.) suspended in methanol. Subsequently, 100 mL of 100% degassed methanol was injected to prevent foaming and the packing material was equilibrated with 10 volumes (760 mL) of 10% aqueous degassed methanol. Fraction 1 (117 mg) from normal-phase fractions was dissolved in methanol and added to the material. Aqueous solutions of degassed 10%, 20%, 30%, 40% and 100% (v/v) methanol were injected (180 mL each) onto the packing material in that order. Eluted fractions were then divided according to solvent compositions and were recovered (fractions 1–1–5). Fractions were then concentrated under reduced pressure and portions of each fraction were...
dissolved in DMSO. Separation of recovered fractions was confirmed using HPLC with a YMC-Pack ODS-A column (250 × 4.6 mm I.D., S-5 μm, 30 nm; YMC Co., Ltd.) and gradient mobile phase of 20%–70% (v/v) aqueous methanol (flow rate, 1 mL/min; column temperature, 40°C). The absorbance of elutes were monitored at 280 nm using a UV-Vis detector SPD-20A (Prominence Modular HPLC, Shimazu Co., Kyoto, Japan).

2.7 PPARγ activity measurement of reversed-phase column fraction

PPARγ activation was determined for reversed-phase column fractions 1–1–1–5 and the normal-phase column fraction 1 at 100 μg/mL. In these experiments, the PPARγ agonist troglitazone (1 μM; Wako Pure Chemical Industries, Ltd.) was used as a positive control.

2.8 Fractionation using HPLC

HPLC chromatograms of reversed-phase column fractions indicated plurality of specific peaks in fractions 4 and 5 and PPARγ-activating effects were confirmed. To isolate active ingredients, fractions were further fractionated according to specific peak retention times using reversed-phase HPLC (YMC-Pack ODS-A column; 250 × 4.6 mm I.D., S-5 μm, 30 nm) with a gradient mobile phase of 20%–70% aqueous methanol (flow rate, 1 mL/min; column temperature, 40°C), and elutes were monitored at 280 nm using a UV-Vis detector SPD-20A (Prominence Modular HPLC, Shimazu Co.).

2.9 Structural determination of peak fractions

Structural analyses of the fraction of peak 5, which contained the active ingredients, were performed using LC/ESI-MS, 1H-NMR, 13C-NMR, HMBC and HSQC as described previously[13] and m/z values were graphed against detection intensity.

2.10 Synthesis and characterization of synthetic fraglide-1 (5H4PB)

Synthetic fraglide-1 (5H4PB) was synthesized to confirm the PPARγ-activating effects of the active ingredient from Kozu. In these experiments, 100 mg of glyoxylic acid monohydrate and 150 mg of morpholine were dispersed in 450 μL of 1,4-dioxane and 55 μL of water was added dropwise. To the mixture, 140 mg of phenylacetaldehyde was added, was left to stand at room temperature for 1 h and was then heated to reflux for 24 h. The resulting product was concentrated under reduced pressure, followed by extraction with 2.5 mL of diethyl ether. The extracted diethyl ether layer was dehydrated, dried by addition of anhydrous magnesium sulphate and was then concentrated under reduced pressure. The concentrate was dissolved in an acetone/chloroform mixture and was then recrystallized to obtain 140 mg of 5H4PB. 5H4PB was subjected to gas chromatography, 1H-NMR and 13C-NMR to confirm its identity with the active ingredient from Kozu.

2.11 Measurement of UCP-1 gene expression

UCP-1 expression was determined as previously described[11,12]. Briefly, C3H10T1/2 mesenchymal cells (1 × 10⁴ cells/mL) were added to 12-well plates and cultured until confluence. The fraction of peak 5 (fraglide-1) was added (final concentration 100 μg/mL) and DMSO was used as a control. After 24 h, mRNA was recovered from cells using Sepasol RNA super G (Nacalai Tesque, Inc.) chloroform/iso-propanol extraction according to the manufacturer’s protocol and mRNA concentrations were determined using a Nano Drop instrument (Thermo Fischer Scientific Inc., MA, USA). Subsequently, cDNAs were synthesized using Oligo dT primer (Thermo Fisher Scientific Inc.) and Super script (II) reverse transcriptase (Thermo Fisher Scientific Inc.) according to the manufacturer’s instructions. UCP-1 mRNA expression was then determined using SYBR Green (Toyobo Co., Ltd., Osaka, Japan) and a LightCycler(Roche Applied Science) with the following primers for murine UCP-1: forward, 5'-ggcctctagactgattca-3'; reverse, 5'-tagcgggctgtagtctgt-3. PCR cycling conditions were as follows: 95°C for 5 min followed by 50 cycles of 95°C for 10 s, 60°C for 30 s and 72°C for 1 s, and a final incubation at 40°C for 10 s.

2.12 Statistical analyses

The data were presented as the mean ± standard error of mean (SEM). All in vitro experiments were performed three times independently. Differences between control and treatment groups were examined by using Student’s t-tests. Statistical analyses between multiple groups were performed by ANOVA. Statistical comparisons were made by Tukey–Kramer test. Differences with **p < 0.01 or *p < 0.05 were considered significant.

3 RESULTS

3.1 Isolation of PPARγ-activating ingredients from aged vinegar

Redundant lipid components were removed from Kozu by delipidation (Fig. 1A), and a butenolide compound (Fig. 3A) was effectively extracted using solvent extraction and fractionation treatments as described in the Methods section (Figs. 1A and B). Following fractionation of concentrated chloroform extracts using normal-phase silica gel chromatography, seven fractions were obtained and PPARγ activation was determined[13]. In these experiments, PPARγ activation was greatest in the presence of fraction 1 (mobile phase, benzene:acetone = 20:1 (v/v)) and increased in a concentration-dependent manner (Fig. 1C). Five fractions were then
eluted from reverse-phase chromatography using a silica gel modified with an octadecylsilane (ODS) group (C18) and a methanol–water gradient mobile phase (Fig. 2A). In subsequent reporter assays, PPARγ activation was greatest in the presence of fractions 1-4 (elution solvent, water:methanol = 60:40) and 1-5 (elution solvent, 100% methanol; Fig. 2B), and peaks from the corresponding chromatogram (Fig. 2C) were used to identify elution times for active ingredients. Following the elution of fractions corresponding to peaks 2, 3, 5, 6, 8, 10, 15 and 31, PPARγ activation assays indicated that peak 5 contained the ingredient of interest (Fig. 2D). The high-performance liquid chromatography (HPLC) analysis of peak 5 showed a single peak and was found to be high purity (Fig. 2E).

In recent years, synthetic PPARγ agonists have been shown to convert white adipocytes that store fat into brown like (beige/brite) adipocytes (Fig. 2F). In these experiments, UCP-1 expression was dramatically elevated in the presence of the peak 5 fraction. Therefore, it was speculated that the compound in peak 5 fraction can enhance heat production from lipid catabolism.

3.2 Structural determination of the active ingredient

The results of liquid chromatography coupled with electrospray ionization - mass spectrometry (LC/ESI-MS) are shown in Fig. 3B with m/z values and corresponding detection intensities. These analyses show that peak 5 has a molecular weight of 176.0473 g/mol, which corresponds with the rational formula C10H8O3. The mass spectrum of 351.0870 observed in Fig. 3C might be because a 5H4PB dimer was formed by non-covalent electrostatic interaction such as ionic or hydrogen bonding. Subsequent proton nuclear magnetic resonance (1H-NMR), 13C nuclear magnetic resonance (13C-NMR), 1H-detected multi-bond heteronuclear multiple quantum coherence spectrum (HMBC) and 1H-detected multiple quantum coherence spectrum (HSQC) analyses were performed as previously de-
scribed[12]. The structure of the compound in peak 5 was
analyzed with 1H NMR and 13C NMR. The 1H-NMR spectrum of the
compound in peak 5 showed as follows (500 MHz, CD3OD): δ 7.80-7.78 (2H, d, J = 6.8, H-2 A, H-2 B), 7.50-7.45 (3H, m, H-3 A, H-3 B, H-4) assigned to benzene protons, 6.59 (1H, s, H-5) assigned to olefin proton, 6.53 (1H, s, H-3) assigned to a methine proton. The 13C-NMR spectrum of the compound in peak 5 showed as follows δ (125 MHz, CD3OD): 173.4 (C-2) assigned to carbonyl carbon, 165.4 (C-4) assigned to phenyl substituted doublebond carbon, 132.5 (C-4'), 131.0 (C-1'), 130.0 (C-2 A, C-2' B), 129.2 (C-3 A and C-3' B) assigned to benzene carbons , 115.6 (C-3) assigned to methylene carbon, 100.0 (C-5) assigned to a hydroxyl-substituted carbon. These analyses suggested that the structure of the component in peak 5 was 5-hydroxy-4-phenyl-butenolide (fraglide-1; Fig. 3A). It was predicted that this ingredient was present in Kozu at 0.54 μg/mL using elute of 5H4PB from HPLC as a standard (data not shown).

Luciferase reporter assays confirmed that 5H4PB(Fig. 3C) (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) enhanced PPARγ ligand binding activity dose-dependently (Fig. 4).

4 DISCUSSION

Aged vinegar has a long history of use as a traditional Chinese medicine and various vinegars have been shown to ameliorate obesity and associated metabolic disorders in
multiple studies\(^2,^{17-20}\). However, although the contents of aged Chinese vinegars have been characterized\(^1,^{21,22}\) and fermentation products have been described\(^{23-25}\), no active ingredient has been identified before and only anecdotal evidence of the health benefits of Kozu is available. In a recent study, Yusoff et al. demonstrated antihyperglycaemic effects of extracts from Nypa fruticans Wurmb. vinegar and described mechanisms that led to inhibition of glucose transporters\(^{19}\). Similarly, these authors showed anti-diabetic and anti-oxidant properties of this Malaysian vinegar, but did not identify or isolate active ingredients\(^{20}\). In addition, Kondo et al. associated acetic acid consumption with lowered anthropometric parameters in a randomized placebo controlled trial\(^2\). However, in a recent review of the benefits of vinegar consumption, limited evidence is reported for the use of vinegars as adjuvant therapies for diabetes\(^{17}\). In contrast with regular vinegars, the present Kozu vinegar contains multiple organic ingredients that are products of long fermentation and aging times. With traditional expectations of anti-obesity effects of Kozu, it follows that the unidentified active ingredients may include ingredients that effect energy metabolic pathways.

PPARs have been identified as ligand-dependent intranuclear transcription factors that regulate glucose and lipid metabolism and have been considered as targets for pharmaceutical anti-obesity interventions\(^{26}\). Furthermore, UCP-1 generates heat by leaking proton across the mitochondria inner membrane, thus uncoupling oxidative phosphorylation without ATP production\(^{13,14}\). Moreover, UCP-1 is specifically expressed in brown adipocytes, and a recent study showed that particular synthetic PPAR\(\gamma\) agonists convert white fat storing cells into brown like (beige/brite) fat cells\(^{16}\). Thus, PPAR\(\gamma\) remains an important target for agents that may ameliorate metabolic disorders and obesity and offers a potential mechanism for the anti-obesity effects of aged vinegar. Accordingly, previous studies have demonstrated the presence of PPAR\(\gamma\) agonists in other natural preparations\(^{10,27-30}\). In addition, an anti-obesity ingredient that acts on UCP-1 was found in edible seaweed, warranting further investigations of the anti-diabetic effects of natural ingredients from various herbs and edible plants\(^{10,31,32}\).
A New Agonist for PPARγ, Fraglide-1

In the present study, serial fractionation of the aged vinegar Kozu was performed based on PPARγ activation assays using Cell to identify fractions containing active ingredients. These procedures and corresponding PPARγ activity assays revealed the presence of a potent agonist in chromatographic fractions of Kozu extracts. Additionally, subsequent spectral analyses identified the butenolide compound, fraglide-1. In further experiments with 5H4PB, luciferase reporter expression from the PPARγ promoter-binding region was increased dose-dependently (Fig. 4), and specific activity was concentration dependent up to 10 μM. Moreover, subsequent experiments confirmed that fraglide-1 is an agonist for PPARγ and it also increased expression of the target gene UCP-1. Taken together, these data indicate the presence of a naturally occurring PPARγ agonist in Kozu that may offer an alternative anti-diabetes drug to thiazolidinediones such as troglitazone.

In summary, the present lower alkanol extract of Kozu was successfully found as a new ligand activity by synthetic fraglide-1 (5H4PB).

PPARγ ligand activity of 5H4PB. *p < 0.05 and **p < 0.01. Data in bar graphs were presented as means ± SEM of 5 well.

Fig. 4 PPARγ ligand activity by synthetic fraglide-1 (5H4PB).

In conclusion, it was shown that the active ingredient "Fraglide-1" from Kozu was successfully found as a new agonist for PPARγ at cellular level. Although animal tests and clinical studies are undergoing, it is highly possible that the Fraglide-1 is a drug-lead compound or a dietary supplement for amelioration of pathological conditions that are associated with PPARγ, such as insulin resistance, diabetes mellitus, obesity, hyperlipidemia, and fatty liver and metabolic syndrome.

References

1) Xiao, Z.; Dai, S.; Niu, Y.; Yu, H.; Zhu, J.; Tian, H.; Gu, Y. Discrimination of Chinese vinegars based on head-space solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. *J. Food. Sci.* **76**, C1125-1135 (2011).

2) Kondo, T.; Kishi, M.; Fushimi, T.; Ugajin, S.; Kaga, T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. *Biosci. Biotechnol. Biochem.* **73**, 1837-1843 (2009).

3) Ginter, E.; Sinko, V. Type 2 diabetes mellitus, pandemic in 21st century. *Adv. Exp. Med. Biol.* **771**, 42-50 (2012).

4) Porras, A.; Valladares, A.; Alvarez, A.M.; Roncero, C.; Benito, M. Differential role of PPAR gamma in the regulation of UCP-1 and adipogenesis by TNF-alpha in brown adipocytes. *FEBS Lett.* **520**, 58-62 (2002).

5) Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; Chen, H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. *J. Clin. Invest.* **112**, 1821-1830 (2003).

6) Stulc, T.; Ceska, R. Rosiglitazone in the prevention of diabetes and cardiovascular disease: dream or reality? *Med. Sci. Monit.* **14**, RA45-47 (2008).

7) Akazawa, S.; Sun, F.; Ito, M.; Kawasaki, E.; Eguchi, K. Efficacy of troglitazone on body fat distribution in type 2 diabetes. *Diabetes Care* **23**, 1067-1071 (2000).

8) Yu, Y.H.; Wu, S.C.; Cheng, W.T.; Mersmann, H.J.; Shen, T.L.; Ding, S.T. The function of porcine PPARγ and dietary fish oil effect on the expression of lipid and glucose metabolism related genes. *J. Nutr. Biochem.* **22**, 179-186 (2011).

9) Matsumura, T.; Kinoshi, H.; Ishii, N.; Fukuda, K.; Motoshima, H.; Senokuchi, T.; Taketa, K.; Kawasaki, S.; Nishimaki-Mogami, T.; Kawada, T.; Nishikawa, T.; Araki, E. Telmisartan exerts antiatherosclerotic effects by activating peroxisome proliferator-activated receptor-gamma in macrophages. *Arterioscler. Thromb. Vasc. Biol.* **31**, 1268-1275 (2011).

10) Hosokawa, M.; Kudo, M.; Maeda, H.; Kohno, H.; Tanaka, T.; Miyashita, K. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARγ ligand, troglitazone, on colon cancer cells. *Biochim. Biophys. Acta.* **1675**, 113-119 (2004).

11) Brietzke, S.A. Oral antihyperglycemic treatment options for type 2 diabetes mellitus. *Med. Clin. North. Am.* **99**, 87-106 (2015).

12) Koshino, H.; Yoshihara, T.; Okuno, M.; Sakamura, S.; Tajimi, A.; Shimanuki, T. Gamahonolides A, B, and gamahorin, novel antifungal compounds from stromata of *Epichloë typhina on Phleum pratense*. *Biosci. Biotechnol. Biochem.* **56**, 1096-1099 (1992).

13) Sakamoto, T.; Takahashi, N.; Sawaragi, Y.; Naknukool, S.; Yu, R.; Goto, T.; Kawada, T. Inflammation induced
by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes. Am. J. Physiol. Cell Physiol. 302 (2), C463-472 (2012).

14) Rouset, S.; Alves-Guerra, M.C.; Mozo, J.; Miroux, B.; Cassard-Doulcier, A.M.; Bouilland, F.; Ricquier, D. The biology of mitochondrial uncoupling proteins. Diabetes 53 (Suppl. 1), S130-135 (2004).

15) Nagai, H.; Ebisu, S.; Abe, R.; Goto, T.; Takahashi, N.; Hosaka, T.; Kawada, T. Development of a novel PPARy ligand screening system using pinpoint fluorescence-probed protein. Biosci. Biotechnol. Biochem. 75, 337-341 (2011).

16) Ohno, H.; Shinoda, K.; Spiegelman, B.M.; Kajimura, S. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395-404 (2012).

17) Kolhn, J.B. Is vinegar an effective treatment for glycemic control or weight loss? J. Acad. Nutr. Diet. 115, 1188 (2015).

18) Yusoff, N.A.; Yam, M.F.; Ben, H.K.; Abdul Razak, K.N.; Widyawati, T.; Mahmud, R.; Ahmad, M.; Asmawi, M.Z. Antidiabetic and antioxidant activities of Nypa fruticans Wurmb. vinegar sample from Malaysia. Asian Pac. J. Trop. Med. 8, 595-605 (2015).

19) Yusoff, N.A.; Ahmad, M.; Al-Hindi, B.; Widyawati, T.; Yam, M.F.; Mahmud, R.; Abdul Razak, K.N.; Asmawi, M.Z. Aqueous extract of Nypa fruticans Wurmb. Vinegar alleviates postprandial hyperglycemia in normoglycemic rats. Nutrients 7, 7012-7026 (2015).

20) Setorki, M.; Asgary, S.; Eidi, A.; Rohani, A.H.; Khazaee, M. Acute effects of vinegar intake on some biochemical risk factors of atherosclerosis in hypercholesterolemic rabbits. Lipids Health Dis. 9, 10 (2010).

21) Chen, Q.; Ding, J.; Cai, J.; Sun, Z.; Zhao, J. Simultaneous measurement of total acid content and soluble salt-free solids content in Chinese vinegar using near-infrared spectroscopy. J. Food. Sci. 77, C222-227 (2012).

22) Wang, C.Y.; Zhang, J.; Gui, Z.Z. Acetobacter bacteria are found in Zhenjiang vinegar grains. Genet. Mol. Res. 14, 5054-5064 (2015).

23) Xu, W.; Xu, Q.P.; Chen, J.H.; Lu, Z.M.; Xia, R.; Li, G.Q.; Xu, Z.H.; Ma, Y.H. Ligustrazine formation in Zhenjiang aromatic vinegar: changes during fermentation and storing process. J. Sci. Food. Agric. 91, 1612-1617 (2011).

24) Wang, Z.M.; Lu, Z.M.; Yu, Y.J.; Li, G.Q.; Shi, J.S.; Xu, Z.H. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar. Food Microbiol. 50, 64-69 (2015).

25) Xu, W.; Huang, Z.; Zhang, X.; Li, Q.; Lu, Z.; Shi, J.; Xu, Z.; Ma, Y. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar. Food Microbiol. 28, 1175-1181 (2011).

26) Mansour, M. The roles of peroxisome proliferator-activated receptors in the metabolic syndrome. Prog. Mol. Biol. Transl. Sci. 121, 217-266 (2014).

27) Goto, T.; Nagai, H.; Egawa, K.; Kim, Y.; Kato, S.; Taimatsu, A.; Sakamoto, T.; Ebisu, S.; Hosaka, T.; Miyagawa, H.; Murakami, S.; Takahashi, N.; Kawada, T. Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARgamma agonist. Biochem. J. 438, 111-119 (2011).

28) Takahashi, N.; Yao, R.; Kang, M.S.; Senda, M.; Ando, C.; Nishimura, K.; Goto, T.; Hirai, S.; Ezaki, Y.; Kawada, T. Dehydroabietic acid activates peroxisome proliferator-activated receptor-gamma and stimulates insulin-dependent glucose uptake into 3T3-L1 adipocytes. Biofactors 37, 309-314 (2011).

29) Goto, T.; Takahashi, N.; Kato, S.; Kim, Y.I.; Kusudo, T.; Taimatsu, A.; Egawa, K.; Kang, M.S.; Hiramatsu, T.; Sakamoto, T.; Uemura, T.; Hirai, S.; Kobayashi, M.; Horio, F.; Kawada, T. Bixin activates PPARalpha and improves obesity-induced abnormalities of carbohydric and lipid metabolism in mice. J. Agric. Food Chem. 60, 11952-11958 (2012).

30) Takahashi, N.; Goto, T.; Taimatsu, A.; Egawa, K.; Katoh, S.; Kusudo, T.; Sakamoto, T.; Ohyane, C.; Lee, J.Y.; Kim, Y.I.; Uemura, T.; Hirai, S.; Kawada, T. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARgamma activation. Biochem. Biophys. Res. Commun. 390, 1372-1376 (2009).

31) Maeda, H.; Hosokawa, M.; Sashima, T.; Miyashita, K. Antiobesity effect of fucoxanthin from edible seaweeds and is multibiological functions. Functional Food and Health 993, 376-388 (2008).

32) Gammone, M.A.; D’Orazio, N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs. 13, 2196-2214 (2015).