One of the salient mathematical features of string theory is the importance of vertex algebras. Their role in the theory can be compared to that of Lie algebras in the “ordinary” physics of point particles.

Mathematically, the approach of string theory can be cast in terms of analysis on the space of free loops, i.e., smooth maps $S^1 \to X$ where X is a given “spacetime” manifold. Accordingly, one has the folklore principle that constructions involving the space of free loops lead to vertex algebras. One class of such constructions is provided by the spaces of highest weight representations of loop groups. Another is Ω_X^{ch}, the chiral de Rham complex of an algebraic variety X, introduced by Malikov, Schechtman and Vaintrob [MSV]. Heuristically, this complex should be interpreted in terms of LX, the space of free loops and its subvariety L^0X consisting of loops extending holomorphically into the unit disk. More precisely, Ω_X^{ch} can be thought of as the semiinfinite de Rham complex with coefficients in the space of distributions on LX supported on L^0X. This is not, however, the way Ω_X^{ch} has been defined mathematically. The definition given in [MSV] is of more computational nature and proceeds by constructing the action of the group of diffeomorphisms on the irreducible module over the Heisenberg algebra. In that approach it seems miraculous that such an action exists at all.

The aim of this paper is twofold. First, to give a precise mathematical theorem underlying the above folklore principle about vertex algebras. For this, we introduce an algebro-geometric version of the free loop space $L(X)$ for any scheme X of finite type over a field. This is an ind-scheme containing $L^0(X)$, the scheme of formal germs of curves on X studied in [DL]. We prove that both $L(X)$ and $L^0(X)$ themselves possess a non-linear version of the vertex algebra structure (which makes it clear that any natural linear construction applied to them should give a vertex algebra in the usual sense). More precisely, we use the geometric approach
to vertex algebras developed by Beilinson and Drinfeld [BD1] and based on the concepts of chiral algebras and factorization algebras. The latter concept has a natural nonlinear version, that of a factorization semigroup. What we prove is that natural “global” versions of $\mathcal{L}(X)$, $\mathcal{L}^0(X)$ have natural structures of factorization semigroups. An earlier known example of a factorization semigroup is given by the affine Grassmannian [G], and this explains why the spaces of representations of loop groups are vertex algebras. Our construction is similar in spirit.

To give a good definition of the algebraic analog of the full loop space LX one has to overcome a certain subtlety. Namely, a natural approach would be to try to (ind-)represent a functor which to any commutative ring R associates the set of $R((t))$-points of X. (This is exactly how one defines the scheme $\mathcal{L}^0(X)$, with $R[[t]]$ instead of $R((t))$.) If X is affine, this indeed gives a good ind-scheme which we denote $\hat{L}(X)$. But when X is, say, projective, then (for R a field) there is no difference between $R[[t]]$-points and $R((t))$-points of X (valuative criterion of properness), so it may seem that nothing is gained by allowing Laurent series. To state this phenomenon differently, the ind-schemes $\hat{L}(U)$ for affine $U \subset X$ do not glue together well. This is in fact understandable on general grounds: the loop space LX is not the union of the LU since a loop need not spend all its time in any given U.

To get around this difficulty we adopt the following strategy. For an affine X we consider $\mathcal{L}(X)$, the formal neighborhood of $\mathcal{L}^0(X)$ in $\hat{L}(X)$. So we are dealing with formal loops which are “infinitesimal in the Laurent direction”. Then, we prove that the $\mathcal{L}(U), U \subset X$, do indeed possess the right gluing properties. This is due to the infinitesimal nature of our loops.

Our second goal is to give a direct geometric construction of Ω_X^{ch} (for smooth X) in terms of our model for the loop space. By the above, this construction explains also the fact that Ω_X^{ch} is a sheaf of vertex algebras. In order to achieve this, we represent $\mathcal{L}(X)$ as an ind-pro-object in the category of schemes of finite type and then show that the shifted de Rham complexes of the terms of this ind-pro-system arrange naturally into a double inductive system whose inductive limit is identified with Ω_X^{ch}.

As with the study of formal arcs and motivic integration [DL], one can view our considerations as algebro-geometric analogs of the basic constructions of p-adic analysis. The difference between our ind-scheme $\mathcal{L}(X)$ and the more familiar scheme $\mathcal{L}^0(X)$ is similar to the difference between \mathbb{Q}_p and \mathbb{Z}_p: while the latter is a pro-object in the category of schemes of finite type (resp. finite sets), the former is an ind-pro-object. Further, our approach to Ω_X^{ch} is similar to the construction of the space of locally constant functions with compact support on $\mathbb{Q}_p = \lim_{\longrightarrow} \lim_{\longleftarrow} p^{-i} \mathbb{Z}_p / p^i \mathbb{Z}_p$ as the double inductive limit of the spaces of functions on the finite sets $p^{-i} \mathbb{Z}_p / p^i \mathbb{Z}_p$,.
cf [P]. Notice that the reason that these spaces of functions indeed form a double inductive system (with respect to the maps of inverse image in the j-direction and direct image in the i-direction) is that the commutative squares in the ind-pro-system $p^{-1}\mathbb{Z}_p/p'^{1}\mathbb{Z}_p$ are Cartesian (so that we have base change). This is an algebraic counterpart of the property of the local compactness of \mathbb{Q}_p, see [Kat]. In our situation it is equally important that the ind-scheme $\mathcal{L}(X)$ satisfies a certain formal analog of local compactness.

This work has been done over a period of several years during which the first author benefitted from visits to and the financial support of the Université Cergy-Pontoise, the IHES, the Ecole Normale Superieure and the Max-Planck-Institut für Mathematik. His research was also partially supported by grants from NSF and NSERC. The second author is partially supported by EEC grant no. ERB. FMRX-CT97-0100.

2. Construction of the formal loop space

(2.1) Generalities on schemes and ind-schemes. If C is a category, then we denote by $\text{Ind}(C)$ and $\text{Pro}(C)$ the categories of ind- and pro-objects of C, see [AM] [GV] for background. Thus, objects of $\text{Ind}(C)$ (resp. $\text{Pro}(C)$) are symbols $\text{"lim}_i^{-}C_i$ (resp. $\text{"lim}_i^{←}C_i$) where (C_i) is a filtering inductive (resp. projective) system over C, with morphisms defined as in loc. cit. Recall that $\text{Ind}(C)$ can be considered as a full subcategory in $\text{Fun}^\circ(C,\text{Sets})$, the category of contravariant functors.

Throughout the paper we fix a field k of characteristic 0. We denote by $\mathbf{Sch} \subset \mathbf{Lrs}$ the categories of schemes and locally ringed spaces over k. If R is a commutative ring, we will write $\text{Spec } R$ for the topological space (the set of prime ideals with the Zariski topology) underlying the affine scheme $\text{Spec } R$ which is thus the ringed space $(\text{Spec } R, \mathcal{O}_{\text{Spec } R})$.

By an ind-scheme we will mean in this paper an ind-object of \mathbf{Sch} represented by an inductive system of closed embeddings. The category of ind-schemes will be denoted by \mathbf{Isch}. Let us make the category \mathbf{Sch} into a Grothendieck site by using Zariski open coverings and let \mathbf{Shf} be the category of sheaves of sets on \mathbf{Sch}. For any ind-scheme Y the functor η_Y on schemes represented by Y is then a sheaf, so we have the embeddings

$$\mathbf{Sch} \subset \mathbf{Isch} \subset \mathbf{Shf} \subset \text{Fun}^\circ(\mathbf{Sch},\text{Sets}).$$

Since the category \mathbf{Sch} has finite inverse limits, so do all the categories in (2.1.1) and the embeddings preserve them. On the contrary, finite direct limits, such as
cokernels (when they exist) are preserved by the first two of the embeddings but not by the third one: cokernels in the category of sheaves are not the same as in the category of all functors (presheaves).

We denote by Alg the category of k-algebras and by $\mathbf{Aff} \subset \mathbf{Sch}$ the dual category of affine schemes. Note that \mathbf{Isch} can be as well realized as a full subcategory in $\text{Fun}^\circ(\mathbf{Aff}, \text{Sets}) = \text{Fun}(\mathbf{Alg}, \text{Sets})$.

Given two contravariant functors $\phi, \phi' : \mathbf{Sch} \to \text{Sets}$, and a morphism $F : \phi' \to \phi$, we will say that F is formally smooth (resp. formally étale), if for any nilpotent extension of affine schemes $S \subset S'$ the natural map $\phi'(S') \to \phi(S') \times_{\phi(S)} \phi'(S)$ is surjective (resp. bijective).

We will say that F is an open embedding, if for any scheme S and any $u \in \phi(S)$ (which is the same as a morphism $\eta_S \to \phi$) the fiber product functor $\eta_S \times_{\phi} \phi'$ is representable by a scheme S' whose natural morphism to S is an open embedding.

We define formal smoothness and openness for morphisms of ind-schemes by considering their representable functors.

For a scheme Z we denote by $Z_{\text{red}} \subset Z$ the corresponding reduced subscheme. We extend this notation to ind-schemes by applying it term by term in inductive systems.

Let X be a k-scheme of finite type. We denote by \mathbf{Aff}_X (resp. \mathbf{Aff}^k_X) the category of schemes affine over X (resp. affine of finite type over X). For future use let us quote the following fact [EGAIV, Corollary 8.13.2].

(2.1.2) Proposition. The category $\text{Pro}(\mathbf{Aff}^k_X)$ is equivalent to \mathbf{Aff}_X via the functor $\lim \leftarrow n S_n \mapsto \lim \n S_n$.

(2.2) The scheme of germs of arcs.

Let X be a scheme. We denote by $\mathcal{L}^0(X)$ the scheme of germs of arcs on X, see [DL] [BLR, Theorem 7.6.4]. It represents the following covariant functor λ^0_X on the category Alg:

$$\lambda^0_X : R \mapsto \text{Hom}_{\text{Sch}}(\text{Spec } R[[t]], X).$$

Here are some of the well-known properties of $\mathcal{L}^0(X)$. Note that if R is a local ring with maximal ideal M, then $R[[t]]$ is a local ring with maximal ideal $M[[t]] + tR[[t]]$. Thus for any scheme S the pair $(S, \mathcal{O}_S[[t]])$ is a locally ringed space.

(2.2.1) Proposition. (a) For any scheme S we have

$$\text{Hom}_{\text{Sch}}(S, \mathcal{L}^0(X)) = \text{Hom}_{\text{Lrs}}((S, \mathcal{O}_S[[t]]), X).$$
(b) The scheme $\mathcal{L}^0(X)$ is the projective limit of the schemes $\mathcal{L}_n^0(X)$, $n \in \mathbb{N}$, representing the functors
\[
\lambda_{n,X}^0 : R \mapsto \text{Hom}_{\text{Sch}}(\text{Spec } \mathbb{R}[[t]]/t^{n+1}, X).
\]
If X is of finite type, than so is each $\mathcal{L}_n^0(X)$.

(c) Denote $\pi_n : \mathcal{L}_n^0(X) \to X$, $\pi : \mathcal{L}^0(X) \to X$ the natural projections. They are affine morphisms. For an open subset $U \subset X$ we have $\pi^{-1}(U) = \mathcal{L}^0(U)$ and $\pi_n^{-1}(U) = \mathcal{L}_n^0(U)$.

(d) If X is smooth, then so is $\mathcal{L}_n^0(X)$ and $\mathcal{L}^0(X)$ is formally smooth.

Let us give the proof of (a), as it will serve as a template for a similar statement about the space of formal loops. It is enough to assume $S = \text{Spec } \mathbb{R}$ affine. The embedding of constant series and the evaluation at 0 give ring homomorphisms $R \to \mathbb{R}[[t]]$ and hence morphisms of topological spaces
\[
(2.2.2) \quad \text{Spec } R \leftarrow \text{Spec } \mathbb{R}[[t]] \leftarrow \text{Spec } R.
\]

(2.2.3) Lemma. We have
\[
i^{-1}\mathcal{O}_{\text{Spec } \mathbb{R}[[t]]} = \mathcal{O}_{\text{Spec } \mathbb{R}[[t]]} = p_*\mathcal{O}_{\text{Spec } \mathbb{R}[[t]]}.
\]

Proof: Let us prove the first equality. If $p \in \text{Spec } R$ is a prime ideal in R, then the stalk of $i^{-1}\mathcal{O}_{\text{Spec } \mathbb{R}[[t]]}$ at p is the localization of $\mathbb{R}[[t]]$ with respect to the multiplicative subset $\beta^{-1}(R - p)$ while the stalk of $\mathcal{O}_{\text{Spec } \mathbb{R}[[t]]}$ is $\mathbb{R}[[t]] \otimes_R R_p$ where R_p denotes, as usual, the localization of R with respect to $R - p$. Now, to see that the two rings are the same, it suffices to use the following obvious property of formal power series rings: if A is a commutative ring and $\beta(t) \in A[[t]]$ is such that $\beta(0)$ is invertible in A, then $\beta(t)$ is invertible in $A[[t]]$.

The second equality is obvious: the stalk of $p_*\mathcal{O}_{\text{Spec } \mathbb{R}[[t]]}$ at p is immediately seen to coincide with $\mathbb{R}[[t]] \otimes_R R_p$. \hfill \Box

Now, composing with i defines a map of sets
\[
\phi : \text{Hom}_{\text{Sch}}(\text{Spec } \mathbb{R}[[t]], X) \to \text{Hom}_{\text{Lrs}}((\text{Spec } \mathbb{R}, \mathcal{O}_{\text{Spec } \mathbb{R}[[t]]}), X).
\]
A map ψ in the other direction comes from the second equality in (2.2.3). One verifies easily that ϕ and ψ are mutually inverse.

We will also need the following generalization of Proposition 2.2.1(c).
(2.2.4) Proposition. If $\phi : X \to Y$ is an étale morphism, then the natural squares

$$
\begin{array}{ccc}
\mathcal{L}^0_n(X) & \xrightarrow{\pi_n} & X \\
\downarrow & & \downarrow \phi \\
\mathcal{L}^0_n(Y) & \xrightarrow{\pi_n} & Y \\
\end{array}, \quad n \geq 0
$$

as well as the analogous square for $\mathcal{L}^0(Y)$, are Cartesian.

Proof: We can assume that $X = \text{Spec} (A), Y = \text{Spec} (B)$ are affine. It is enough to prove that for each $n \geq 0$ the natural morphism

$$
\alpha : \mathcal{L}^0_n(X) \to \mathcal{L}^0_n(Y) \times_Y X
$$

is an isomorphism. Let β be a morphism $S \to \mathcal{L}^0_n(Y) \times_Y X$. Thus, f corresponds to a pair of ring homomorphisms forming the horizontal arrows of the commutative diagram

$$
\begin{array}{ccc}
B & \xrightarrow{u} & R[t]/t^{n+1} \\
\phi^* \downarrow & & \downarrow \pi \\
A & \xrightarrow{v} & R.
\end{array}
$$

Here π is the natural projection. Since ϕ is étale and π is nilpotent, there is a unique homomorphism $w : A \to R[t]/t^{n+1}$ such that both resulting triangles are commutative. Let g be the morphism $S \to \mathcal{L}^0_n(X)$ represented by w. Then we set $\beta(f) = g$. The verifications are obvious and left to the reader. \qed

(2.3) Nil-Laurent series. Let R be a commutative ring. A nil-Laurent series is, by definition, a Laurent series $a(t) = \sum_{i \in \mathbb{Z}} a_i t^i \in R((t))$ such that all the a_i with $i < 0$ are nilpotent. The set of such series will be denoted $R((t))^{\cap}$.

It is clear that $R((t))^{\cap}$ is a subring in $R((t))$, the ring of all Laurent series. Indeed, let \sqrt{R} be the radical of R (the set of all nilpotent elements) and set $R_{\text{red}} = R/\sqrt{R}$. Consider the homomorphism $\rho : R((t)) \to R_{\text{red}}((t))$ induced by the projection $R \to R_{\text{red}}$. Then $R((t))^{\cap} = \rho^{-1}(R_{\text{red}}[[t]])$.

(2.3.1) Proposition. For $a = \sum a_i t^i \in R((t))^{\cap}$ the following are equivalent :

(i) a is invertible in $R((t))^{\cap}$.
(ii) $\rho(a)$ is invertible in $R_{\text{red}}[[t]].$
(iii) The element a_0 is invertible in R.

Proof: (i)\Rightarrow(ii) is obvious. To see that (ii)\Leftrightarrow(iii), note that the invertibility of $\rho(a)$ implies the invertibility of the image of a_0 in R_{red} which certainly implies the invertibility of a_0 and the converse is equally obvious. Let us prove that (ii)\Rightarrow(i). Indeed, if $\rho(a)$ is invertible in $R_{\text{red}}[[t]]$, we have $ab = 1 + c$ for some $b \in R((t))^{\cap}$, $c \in \text{Ker} \rho = \sqrt{R((t))}$. But every element $c \in \sqrt{R((t))}$ is topologically nilpotent (setting $c = c_- + c_+$ with $c_- \in t^{-1} \sqrt{R[[t^{-1}]]}$ and $c_+ \in \sqrt{R[[t]]}$, we have that c_- is nilpotent while c_+ is topologically nilpotent), thus ab is invertible in $R((t))^{\cap}$, and a is invertible, too. \qed
(2.3.2) **Corollary.** If R is a local ring with maximal ideal M, then $R((t))^\sqrt{\cdot}$ is a local ring with maximal ideal $p^{-1}(M_{\text{red}}[[t]] + tR_{\text{red}}[[t]])$.

(2.4) **The formal loop space.** We now describe our main construction. Let X be a scheme of finite type over k. Define a covariant functor λ_X from Alg to sets as follows:

(2.4.1) $$\lambda_X(R) = \text{Hom}_{\text{Sch}}(\text{Spec } R((t))^\sqrt{\cdot}, X).$$

(2.4.2) **Theorem.** (a) The functor λ_X is represented by an ind-scheme $\mathcal{L}(X)$, containing $\mathcal{L}^0(X)$.

(b) $\mathcal{L}(X)$ is an inductive limit of nilpotent extensions of $\mathcal{L}^0(X)$. In particular, for any open set $Y \subset \mathcal{L}^0(X)$ there is a well-defined ind-scheme $\mathcal{L}(X)|_Y$.

(c) If U is an open subset in X, then the ind-scheme $\mathcal{L}(U)$ is identified with $\mathcal{L}(X)|_{\pi^{-1}(U)}$.

(d) If X is smooth, then $\mathcal{L}(X)$ is formally smooth.

The proof will be finished in the next subsection.

Let us now define a contravariant functor λ_X' on the category Sch by

(2.4.3) $$\lambda_X'(S) = \text{Hom}_{\text{Lrs}}((S, \mathcal{O}_S((t))^\sqrt{\cdot}), X).$$

(2.4.4) **Proposition.** For an affine scheme $S = \text{Spec}(R)$ we have $\lambda_X'(S) = \lambda_X(R)$.

Proof: Since $R((t))^\sqrt{\cdot}$ is a nilpotent extension of $R[[t]]$, we have $\text{Spec } R((t))^\sqrt{\cdot} = \text{Spec } R[[t]]$, so $\text{Spec } R((t))^\sqrt{\cdot}$ is the ringed space formed by $\text{Spec } R[[t]]$ and a certain sheaf of rings $\mathcal{O}_{\text{Spec } R((t))^\sqrt{\cdot}}$ on it.

(2.4.5) **Lemma.** With respect to the maps in (2.2.2) we have

$$i^{-1}\mathcal{O}_{\text{Spec } R((t))^\sqrt{\cdot}} = \mathcal{O}_{\text{Spec } R((t))^\sqrt{\cdot}} = p_*\mathcal{O}_{\text{Spec } R((t))^\sqrt{\cdot}}.$$

The proof is analogous to that of Lemma 2.2.3. Instead of the property of $A[[t]]$ quoted there, we use Proposition 2.3.1. \hfill \square

Having Lemma 2.4.5, we prove Proposition 2.4.4 similarly to Proposition 2.2.1(a).

In virtue of Proposition 2.4.4, it suffices to show that the functor λ_X' on Sch is ind-representable. We start by establishing some of its properties.

(2.4.6) **Proposition.** (a) For every scheme X the functor λ_X' is a sheaf on Sch.

(b) If $U \subset X$ is an open subset, then the induced morphism of functors $\lambda_X'_U \to \lambda_X'$ is open.
(c) Let \((U_\alpha)_{\alpha \in A}\) be an open covering of \(X\). Then \(\lambda'_X\) is equal to the cokernel, in the category \(\text{Shf}\), of the pair of morphisms

\[
\prod_{\alpha, \beta} \lambda_{U_\alpha \cap U_\beta} \rightrightarrows \prod_{\alpha} \lambda_{U_\alpha},
\]

Proof: The proposition follows from simple properties of representable functors on the category \(\text{Lrs}\). If \(T = (T, \mathcal{O}_T)\) is a locally ringed space, we will call an open part of \(T\) a ringed space of the form \((U, \mathcal{O}_T|_U)\) where \(U \subset T\) is an open subset in the usual sense. An open embedding is, by definition, a morphism isomorphic to the inclusion of an open part. Accordingly, we have the concept of an open covering of \(T\). This makes \(\text{Lrs}\) into a Grothendieck site. For \(X \in \text{Lrs}\) let \(\eta_X\) be the corresponding representable functor on \(\text{Lrs}\). As in (2.1), a morphism \(F : \phi' \to \phi\) of functors \(\text{Lrs} \to \text{Sets}\) will be called open, if for any \(S \in \text{Lrs}\) and any element \(u \in \phi(S)\) (i.e., a morphism \(\eta_S \to \phi\)) the fiber product functor \(\eta_S \times_{\phi} \phi'\) is representable by a locally ringed space \(S'\) whose natural morphism to \(S\) is an open embedding. Let us recall the following basic facts.

(2.4.7) Lemma. (a) For any \(X \in \text{Lrs}\) the representable functor \(\eta_X\) is a sheaf on \(\text{Lrs}\).

(b) If \(U \subset X\) is an open embedding in \(\text{Lrs}\), then \(\eta_U \to \eta_X\) is an open morphism of functors.

(c) Let \(X \in \text{Lrs}\) and \((U_\alpha)_{\alpha \in A}\) be an open covering of \(X\). Then in the category of sheaves of sets on \(\text{Lrs}\) we have the equality

\[
\eta_X = \text{Coker}\left\{ \prod_{\alpha, \beta} \eta_{U_\alpha \cap U_\beta} \rightrightarrows \prod_{\alpha} \eta_{U_\alpha} \right\}
\]

or, explicitly, for any \(S \in \text{Lrs}\),

\[
\eta_X(S) = \lim_{\alpha} \text{Ker}\left\{ \prod_{\alpha} \eta_{U_\alpha}(S_\alpha) \rightrightarrows \prod_{\alpha, \beta} \eta_{U_\alpha \cap U_\beta}(S_\alpha \cap S_\beta) \right\},
\]

where the limit is taken over the set of open coverings \((S_\alpha)_{\alpha \in A}\) of \(S\) (the indexing set \(A\) being fixed) ordered by simultaneous inclusion.

Proposition 2.4.6 follows from Lemma 2.4.7 applied to \(X = X\) (scheme considered as a ringed space) and the ringed spaces of the form \(S = (S, \mathcal{O}_S((t)))^{\vee}\) where \(S\) is a scheme.

\(\square\)

Proof of (2.4.7): Part (a) is obvious, and Part (b) is proved in [EGA0, (4.5.2)]. Let us prove Part (c). For any \(\phi \in \eta_X(S)\) and any \(\alpha\), consider the ringed space
$S_\alpha = (\phi^{-1}(U_\alpha), \mathcal{O}_S|_{\phi^{-1}(U_\alpha)})$. Clearly, (S_α) is an open covering of S. Let ϕ_α be the restriction of ϕ to S_α. Then, (ϕ_α) is an element of $\prod_\alpha \eta_{U_\alpha}(S_\alpha)$ lying in the kernel (2.4.9). Thus we have constructed a map from $\eta_X(S)$ to the right hand side of (2.4.9). On the other hand, assume that $(\phi_\alpha) \in \prod_{\alpha} \eta_{U_\alpha}(S_\alpha)$ is such that $\phi_\alpha(S_\alpha \cap S_\beta) \subset U_\alpha \cap U_\beta$ and $\phi_\alpha|_{S_\alpha \cap S_\beta} = \phi_\beta|_{S_\alpha \cap S_\beta}$. The corresponding maps $S_\alpha, \text{red} \to U_\alpha, \text{red}$ glue together, giving a continuous map $\phi_{\text{red}} : S_{\text{red}} \to X_{\text{red}}$. Moreover, there is an obvious sheaf homomorphism $\phi^* : \phi^{-1}_{\text{red}} \mathcal{O}_X \to \mathcal{O}_S$: the restriction of ϕ^* to S_α is the composition of the chain of maps $(\phi^{-1}_{\alpha, \text{red}} \mathcal{O}_U)|_{S_\alpha} = \phi^* \mathcal{O}_S|_{S_\alpha} = \mathcal{O}_S|_{S_\alpha}$.

This establishes (2.4.9).

Let C be the cokernel as in (2.4.8) but taken in the category of presheaves. Then the cokernel in the category of sheaves is just the sheaf \mathcal{C} associated to the presheaf C. By definition, for $S \in L_{rs}$ the set $C(S)$ consists of pairs $(\alpha, \phi : S \to U_\alpha)$ taken modulo the identifications coming from morphisms of S into $U_\alpha \cap U_\beta$. Now, by the definition of the sheaf associated to the presheaf,

$$\mathcal{C} = \lim_{\longrightarrow S = \bigcup_{\gamma \in \Gamma} S_\gamma} \text{Ker} \left\{ \prod_{\gamma \in \Gamma} C(S_\gamma) \to \prod_{\gamma, \gamma' \in \Gamma} C(S_\gamma \cap S_{\gamma'}) \right\},$$

where the limit is over all possible open coverings of S (with arbitrary indexing sets Γ) ordered by refinement. Notice now that specifying a section of C over S_γ includes specifying an index α from the set A indexing the covering $\{U_\alpha\}$, so we get a map $p : \Gamma \to A$. Denoting $S_\alpha = \bigcup_{p(\gamma) = \alpha} S_\gamma$, we get an element of the right hand side of (2.4.9). This establishes the equivalence of (2.4.8) and (2.4.9).

Note that Proposition 2.4.6(c) implies the following.

(2.4.10) Corollary. We have $\lambda_X = \lim_{\longrightarrow U \subset X \text{ affine}} \lambda_U$, the limit being taken in the category Shf.

(2.5) Proof of Theorem 2.4.2. We first assume that $X = \text{Spec} A$ is an affine scheme of finite type. Consider the larger functor λ_X on Alg defined by

$$\lambda_X(R) = \text{Hom}_{\text{Alg}}(A, R((t))).$$

(2.5.1) Proposition. (a) The functor λ_X is represented by an ind-scheme $\hat{L}(X)$, which is an inductive limit of affine schemes of infinite type.

(b) If X is smooth, then $\hat{L}(X)$ is formally smooth.

Proof: (a) Consider the k-ind-scheme

$$k((t)) = \lim_{\longrightarrow N} \text{Spec} k[a_i; -N \leq i].$$

Note that Proposition 2.4.6(c) implies the following.

(2.4.10) Corollary. We have $\lambda_X = \lim_{\longrightarrow U \subset X \text{ affine}} \lambda_U$, the limit being taken in the category Shf.

(2.5) Proof of Theorem 2.4.2. We first assume that $X = \text{Spec} A$ is an affine scheme of finite type. Consider the larger functor λ_X on Alg defined by

$$\lambda_X(R) = \text{Hom}_{\text{Alg}}(A, R((t))).$$

(2.5.1) Proposition. (a) The functor λ_X is represented by an ind-scheme $\hat{L}(X)$, which is an inductive limit of affine schemes of infinite type.

(b) If X is smooth, then $\hat{L}(X)$ is formally smooth.

Proof: (a) Consider the k-ind-scheme

$$k((t)) = \lim_{\longrightarrow N} \text{Spec} k[a_i; -N \leq i].$$
We can think of the a_i as the coefficients of an indeterminate Laurent series $\sum a_i t^i$. It is clear that $k((t))$ represents the functor $\tilde{\lambda}_{A^1}$. Since A^1 is a k-algebra object in the category of schemes, multiplication of Laurent series makes $k((t))$ into a k-algebra object in the category of ind-schemes. In particular, each polynomial $f \in k[x_1,...,x_d]$ defines a morphism of ind-schemes $\tilde{\lambda}(f) : k((t))^d \to k((t))$. Hereafter we will write $k[]$ instead of $k[x_1,...,x_d]$ to simplify.

Suppose now that X is given in A^d by a system of algebraic equations, say $f_m(x_1,...,x_d) = 0$, $m = 1,2,...,l$.

The ind-scheme $\tilde{\lambda}(X)$ is realized as the closed sub-ind-scheme in $k((t))^d$ defined as the intersection of the preimages of 0 under the $\tilde{\lambda}(f_m)$. More explicitly, replacing x_i by $x_i(t) = \sum_{j \geq -N} a^{(i)}_{j} t^j$ in the equations above, we get, for each N, a system of algebraic equations in $k[a^{(i)}_l; -N \leq l]$ for each N which defines a subscheme in $(\text{Spec } k[a_l; -N \leq l])^d$. Our desired ind-scheme $\tilde{\lambda}(X)$ is the direct limit of these schemes as $N \to \infty$.

(b) The infinitesimal lifting condition for $\tilde{\lambda}_X$ is formulated for affine schemes $S = \text{Spec}(R)$. We need to prove that for any surjection of k-algebras $R' \to R$ whose kernel I satisfies $I^n = 0$ for some n, the map of sets $\tilde{\lambda}_X(R') \to \tilde{\lambda}_X(R)$ is surjective. But the kernel of $R'((t)) \to R((t))$ is $I((t))$ which is also nilpotent of order n. So the smoothness of A implies that any morphism $A \to R((t))$ can be lifted to a morphism $A \to R'((t))$. \hfill \square

\begin{enumerate}
\item[(2.5.2)] Corollary. The functor λ_X is represented by an ind-scheme $\mathcal{L}(X)$ which is the inductive limit of the formal neighborhoods of $\mathcal{L}^0(X)$ in the schemes forming an inductive system for $\tilde{\lambda}(X)$. If X is smooth, then $\mathcal{L}(X)$ is formally smooth.
\end{enumerate}

This proves parts (a), (b) and (d) of Theorem 2.4.2 for the case of affine X. Part (c) of the theorem follows from Proposition 2.4.6(c).

To prove Theorem 2.4.2 for general X, it is enough to establish the existence of the limit $\lim\limits_{\text{affine } U \subset X} \mathcal{L}(U)$ in the category of ind-schemes. In fact, it is enough to take the limit over a finite set of U consisting of elements of some finite covering and their intersections. Indeed, given this, all the other properties follow from the affine case and from Proposition 2.4.6. But using Proposition 2.4.6(b) again, we see that for any pair $U' \subset U$ of affine open subsets in X the corresponding morphism of ind-schemes $\mathcal{L}(U') \to \mathcal{L}(U)$ is an open embedding. Further, the ind-scheme $\mathcal{L}(U)_{\text{red}}$ is actually a scheme, namely $\mathcal{L}^0(U)$. So our statement follows from the next general fact.

\begin{enumerate}
\item[(2.5.3)] Lemma. Let $(Z_i)_{i \in I}$ be a finite diagram of ind-schemes in which all the arrows are open embeddings. Assume that the inductive limit of Z_i_{red} exists in the category of ind-schemes. Then so does the inductive limit of the Z_i.
\end{enumerate}
Theorem 2.4.2 is proved. Let us also note the following fact.

(2.5.4) Proposition. If \(\phi : X \rightarrow Y \) is an étale morphism of schemes of finite type, then \(\mathcal{L}(\phi) : \mathcal{L}(X) \rightarrow \mathcal{L}(Y) \) is formally étale.

Proof: By the above we can assume that \(X = \text{Spec}(A) \), \(Y = \text{Spec}(B) \) are affine. If \(S \) is a scheme and we have two compatible maps

\[
\alpha : S_{\text{red}} \rightarrow \mathcal{L}(X), \quad \beta : S \rightarrow \mathcal{L}(Y),
\]

we must construct the unique map \(S \rightarrow \mathcal{L}(X) \). If \(S = \text{Spec}R \), then we have a diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\phi^*} & R_{\text{red}}(\!(t)\!) \leftarrow = R_{\text{red}}[[t]] \\
\phi^* \uparrow & & \uparrow \\
B & \xrightarrow{\beta^*} & R(\!(t)\!)
\end{array}
\]

where the right arrow, which is the projection \(\rho \) in (2.3), has nilpotent kernel. Therefore there is a unique homomorphism of rings \(A \rightarrow R(\!(t)\!) \) making the diagram commute. \(\square \)

(2.6) The formal loop space as an ind-object. For future purposes we construct a certain class of local realizations of \(\mathcal{L}(X) \) as an ind-object in the category of schemes.

Let \(x_1, x_2, \ldots, x_d \) be the coordinates on the affine space \(\mathbb{A}^d \). For any \(k \)-algebra \(A \) and any morphism \(\phi : \text{Spec}A \rightarrow \mathbb{A}^d \) let \(\phi^* \) be the corresponding map \(k[x_1, \ldots, x_d] \rightarrow A \).

(2.6.1) Proposition. Assume that \(X = \text{Spec}A \) is an affine scheme and that \(\phi : X \rightarrow \mathbb{A}^d \) is an étale morphism of schemes.

(a) There is a unique morphism \(\theta_\phi : \mathcal{L}(X) \rightarrow X \) such that \(\theta_\phi(f)(\phi^*x_i) = f(\phi^*x_i)_0 \) for any \(f \in \lambda_X(R) \). The restriction of \(\theta_\phi \) to \(\mathcal{L}_0(X) \) is equal to the projection \(p \) from (2.2.1)(b).

(b) We have \(\mathcal{L}(\mathbb{A}^d) \times_{\mathbb{A}^d} X \simeq \mathcal{L}(X) \).

Proof: Consider the morphism of functors \(\tilde{\lambda}_{\mathbb{A}^d} \rightarrow \eta_{\mathbb{A}^d} \) which maps a homomorphism \(f \in \text{Hom}_{\text{Alg}}(k[x_1, \ldots, x_d], R(\!(t)\!)) \) to the unique morphism in \(\text{Hom}_{\text{Alg}}(k[x_1, \ldots, x_d], R) \) such that \(x_i \mapsto f(x_i)_0 \). This morphism of functors can be seen as a morphism of ind-schemes \(\tilde{\theta}_{\mathbb{A}^d} : \tilde{\mathcal{L}(\mathbb{A}^d)} \rightarrow \mathbb{A}^d \). It is clear that its restriction to \(\mathcal{L}^0(\mathbb{A}^d) \) coincides with the projection \(p \) from (2.2.1)(b). Let \(\theta_{\mathbb{A}^d} \) be the restriction of \(\tilde{\theta}_{\mathbb{A}^d} \) to the ind-subscheme \(\mathcal{L}(\mathbb{A}^d) \subset \tilde{\mathcal{L}(\mathbb{A}^d)} \). Since \(\mathcal{L}(X) \) is an inductive limit of nilpotent extensions of the scheme \(\mathcal{L}^0(X) \) and \(\phi \) is formally étale, there is a map \(\theta_\phi : \mathcal{L}(X) \rightarrow X \) such that the diagram

\[
\begin{array}{ccc}
\mathcal{L}^0(X) & \rightarrow & X \\
\downarrow & & \downarrow \phi \\
\mathcal{L}(X) & \rightarrow & \mathbb{A}^d
\end{array}
\]

We need to construct a map χ_{β}.

The composition $\tilde{\gamma}$ is straightforward. Proposition 2.6.1 is proved.

To complete the construction, we notice that L_χ is straightforward. We claim that ψ is an isomorphism. For this, we construct a map $\chi : (\mathbb{A}^d)^\times_{\mathbb{A}^d} X \to L(X)$ inverse to ψ. Let $S = \text{Spec } R$ be a scheme. A morphism $S \to (\mathbb{A}^d)^\times_{\mathbb{A}^d} X$ is a compatible pair

$$(\alpha : S \to (\mathbb{A}^d)^\times_{\mathbb{A}^d} X, \beta : S \to X).$$

We need to construct a map $\chi(\alpha, \beta) : S \to L(X)$. First, $\alpha(S_{\text{red}}) \subset L^0(\mathbb{A}^d)$, and $\beta(S_{\text{red}}) \subset X$. Thus, by Proposition 2.2.2, we have a map $\gamma : S_{\text{red}} \to L^0(X)$. The composition $\tilde{\gamma}$ of γ and the embedding $L^0(X) \subset L(X)$ gives a commutative diagram

$$(2.6.3) \quad \begin{array}{ccc} S_{\text{red}} & \xrightarrow{\tilde{\gamma}} & L(X) \\ \downarrow & & \downarrow \phi \\ S & \xrightarrow{\alpha} & L(\mathbb{A}^d). \end{array}$$

To complete the construction, we notice that $L(\phi)$ is formally étale by Proposition 2.5.4 and so we have a map $S \to L(X)$ splitting (2.6.2) into two commutative triangles. We take this map to be $\chi(\alpha, \beta)$. The verification that χ is inverse to ψ is straightforward. Proposition 2.6.1 is proved.

Let E be the set of $\varepsilon = (\varepsilon_1, \varepsilon_2, ..., \varepsilon_j) \in \mathbb{Z}_+$ such that $\varepsilon_j = 0$ for almost all j. It is equipped with the natural partial order: $\varepsilon \leq \varepsilon'$ if $\varepsilon_j \leq \varepsilon_j'$ for all j. In the remainder of this section we assume that the k-scheme X is smooth. Thus X can be covered by affine open sets $U = \text{Spec } A$ possessing étale maps $\phi : U \to \mathbb{A}^d$. For every such U, ϕ we consider the functor

$$\lambda^\varepsilon_\phi : R \mapsto \{f \in \lambda_U(R) \mid f(\phi^* x_i)^{1+\varepsilon_j} = 0, \forall i \in [1, d], \forall j < 0\}.$$

(2.6.3) Proposition. The functor λ^ε_ϕ is representable by a closed subscheme $L^\varepsilon(\phi) \subset L(U)$, such that $L(U)$ is the inductive limit of the schemes $L^\varepsilon(\phi)$.

Proof: We first consider the case $U = \mathbb{A}^d$, $\phi = \text{Id}$. Let N be such that $\varepsilon_j = 0$ for $j < N$. Define the scheme $L^\varepsilon(\mathbb{A}^d)$ by

$$(2.6.4) \quad L^\varepsilon(\mathbb{A}^d) = \text{Spec } (k[a^{(j)}_i ; -N \leq l] / ((a^{(j)}_i)^{1+\varepsilon_j})).$$

It is immediate that this scheme represents the functor $\lambda^\varepsilon_{\text{Id}}$, and that $\lambda^\varepsilon = \lambda^\varepsilon_{\text{Id}} \times_{\lambda_U} \lambda_U$. The proof of Proposition 2.6.1 implies that the map

$$\lambda^\varepsilon_\phi \to \lambda^\varepsilon_{\text{Id}} \times_{\eta_{\mathbb{A}^d}} \eta_U, \quad f \mapsto (f \circ \phi^* , \theta_\phi(f)),\$$
is an isomorphism of functors. Thus, the closed subscheme
\[(2.6.5) \quad \mathcal{L}^\varepsilon(A^d) \times \mathcal{A} \subset \mathcal{L}(A^d) \times \mathcal{A} = \mathcal{L}(U),\]
see Proposition 2.6.1.(b), represents the functor \(\lambda_\phi^\varepsilon\). It is clear by the definition that \(\lambda_U = \lim_{\varepsilon} \lambda_\phi^\varepsilon\) in the category of functors \(\textbf{Alg} \rightarrow \textbf{Sets}\) and thus we have that
\[\mathcal{L}(U) = \lim_{\varepsilon} \mathcal{L}^\varepsilon(\phi)\]
in the category of ind-schemes. \(\square\)

Let us note the following reformulation of this fact, to be used later.

(2.6.6) Corollary. If \(\phi, \psi\) are two étale maps \(U \rightarrow A^d\), then the ind-objects “\(\lim_{\varepsilon} \mathcal{L}^\varepsilon(\phi)\), “\(\lim_{\varepsilon} \mathcal{L}^\varepsilon(\psi)\) are isomorphic, i.e., for any \(\varepsilon\) there is \(\varepsilon'\) such that \(\mathcal{L}^\varepsilon(\phi) \subset \mathcal{L}^{\varepsilon'}(\psi)\) and vice versa.

Proof: Given \(\psi\), any map \(S \rightarrow \mathcal{L}(U)\) with \(S\) an affine scheme, factors through some \(\mathcal{L}^{\varepsilon'}(\psi)\). Now take \(S = \mathcal{L}^\varepsilon(\phi)\) which we know to be an affine scheme by (2.6.4-5). \(\square\)

(2.7) The formal loop space as an ind-pro-object. We keep the notations of (2.6). Thus \(U = \text{Spec}(A)\) is affine and \(\phi : U \rightarrow A^d\) is étale. The schemes \(\mathcal{L}^\varepsilon(\phi)\) are of infinite type. In fact, each of these schemes is a projective limit of schemes of finite type, so \(\mathcal{L}(U)\) can be viewed as an ind-pro-object in the category of schemes of finite type over \(k\). In this subsection we construct explicit ind-pro-systems for \(\mathcal{L}(U)\).

Consider the functor \(\lambda_{n,\phi}^\varepsilon : R \mapsto \lambda_{n,\phi}^\varepsilon(R)/\sim_{n,\phi}\), where
\[f \sim_{n,\phi} g \iff f(\phi^* x_i) - g(\phi^* x_i) \in t^{n+1} R[[t]], \quad \forall i.\]

(2.7.1) Proposition. (a) The functor \(\lambda_{n,\phi}^\varepsilon\) is representable by a scheme \(\mathcal{L}_{n,\phi}^\varepsilon(\phi)\) of finite type which is a nilpotent extension of the scheme \(\mathcal{L}_{n,0}^0(U) = \mathcal{L}_{n,0}^0(\phi)\). Moreover, \(\mathcal{L}_{n,\phi}^\varepsilon(\phi) = \lim_{\varepsilon, n} \mathcal{L}_{n,\phi}^\varepsilon(\phi)\).

(b) The schemes \(\mathcal{L}_{n,\phi}^\varepsilon(\phi)\) form an ind-pro-system with Cartesian squares \((n' \geq n, \varepsilon' \geq \varepsilon)\)
\[
\mathcal{L}_{n',\phi}^\varepsilon(\phi) \leftarrow \mathcal{L}_{n',\phi}^{\varepsilon'}(\phi) \\
\mathcal{L}_{n,\phi}^\varepsilon(\phi) \leftarrow \mathcal{L}_{n,\phi}^{\varepsilon'}(\phi)
\]
where the vertical arrows are smooth affine morphisms.

(c) The ind-pro-object “\(\lim_{\varepsilon} \lim_{n} \mathcal{L}_{n,\phi}^\varepsilon(\phi)\) is independent, up to isomorphism, on \(\phi\).

Proof: Claim (a) is entirely similar to Proposition 2.6.3. We first consider the case \(U = A^d, \phi = \text{Id}\) and define the scheme \(\mathcal{L}_{n}^\varepsilon(A^d)\) by
\[(2.7.2) \quad \mathcal{L}_{n}^\varepsilon(A^d) = \text{Spec} \left(k[a_i^{(l)}; -N \leq l \leq n]/((a_i^{(l)})^{1+\varepsilon}) \right), \quad N \gg 0.\]
It represents $\lambda_{n\Id}$. As before, we see that for an arbitrary étale $\phi : U \to \mathbb{A}^d$ the fiber product scheme

$$(2.7.3) \quad \mathcal{L}^\epsilon_n(\phi) := \mathcal{L}^\epsilon_n(\mathbb{A}^d) \times_{\mathbb{A}^d} U$$

represents the functor $\lambda^\epsilon_{n}\phi$.

Claim (b) is obvious in the case $\phi = \Id$. The general case follows from (2.7.3) since the since the base change of a smooth affine morphism is still smooth affine, and the base change of a Cartesian square is Cartesian.

Claim (c) follows from Corollary 2.6.6 and Proposition 2.3.2.

Passing to the limit in ϵ we get the ind-scheme $\mathcal{L}_n(\phi) = \lim_{\longrightarrow \epsilon} \mathcal{L}^\epsilon_n(\phi)$. It represents the functor $R \mapsto \lambda_U(R)/\sim_{n\phi}$. As in (2.7.2) we get

$$(2.7.4) \quad \mathcal{L}_n(\mathbb{A}^d) = \lim_{\longrightarrow N} \text{Spf } k[a_i^{(l)}, 0 \leq l \leq n][[a_i^{(l)}], -N \leq l < 0],$$

and we see that $\mathcal{L}_n(\mathbb{A}^d)$ is formally smooth. Further, as in (2.7.3), we see that

$$(2.7.5) \quad \mathcal{L}_n(\phi) = \mathcal{L}_n(\mathbb{A}^d) \times_{\mathbb{A}^d} U,$$

from which we see that $\mathcal{L}_n(\phi)$ is also formally smooth.
(3.1) **Localization on a curve.** Consider the Lie algebra $\text{Der } k[[t]]$ and the group scheme $\text{Aut } k[[t]]$ over k. They form a Harish-Chandra pair [BB] [F, §6.1]. By construction, we have the action of this pair on the scheme $L^0(X)$ and on the ind-scheme $L(X)$ constructed in §2.

Let C be a smooth curve over k. The well known procedure of localization, see loc. cit. and [GKF], gives then a scheme $L^0(X)_C$ and an ind-scheme $L(X)_C$ over C defined as follows. Let $C^\wedge \to C$ be the scheme of pairs (c, t_c) where $c \in C$ and t_c is a formal coordinate near c. Then C^\wedge has a natural $(\text{Der } k[[t]], \text{ Aut } k[[t]])$-structure, i.e. a simply transitive $\text{Der } k[[t]]$-action extending the fiberwise $\text{Aut } k[[t]]$-action. We define

$$(3.1.1) \quad L^0(X)_C = C^\wedge \times_{\text{Aut } k[[t]]} L^0(X), \quad L(X)_C = C^\wedge \times_{\text{Aut } k[[t]]} L(X).$$

If X is affine, we define, in a similar way, the ind-scheme $\tilde{L}(X)_C$ starting from $\tilde{L}(X)$. Because of the simple transitivity of the $\text{Der } k[[t]]$-action on C^\wedge, the (ind-)schemes thus constructed possess natural connections along C which are compatible with the embeddings $L^0(X)_C \subset L(X)_C$ and, for X affine, $L^0(X)_C \subset \tilde{L}(X)_C$.

Note that $L^0(X)_C$ is nothing but the scheme of infinite jets of morphisms $C \to X$, so it is easy to describe explicitly the functor represented by $L^0(X)_C$ (and also by $L(X)_C$, $\tilde{L}(X)_C$). Let us introduce some notations. For a scheme S and a morphism $f : S \to C$ we denote by $\Gamma(f) \subset S \times C$ the graph of f. Let $f_{\text{red}} : S_{\text{red}} \to C$ be the restriction of f to S_{red}. We have then the following sheaves of k-algebras on $S \times C$ supported on $\Gamma(f)$:

- O^\wedge_f, the completion of $O_{S \times C}$ along $\Gamma(f)$, i.e. the sheaf of functions on the formal neighborhood of $\Gamma(f)$.
- K^\wedge_f, the sheaf of functions on the punctured formal neighborhood of $\Gamma(f)$. Thus K^\wedge_f is obtained from O^\wedge_f by inverting the local equations of the divisor $\Gamma(f) \subset S \times C$.
- $K^\wedge_{f, \text{red}} \subset K^\wedge_f$, the subsheaf of sections whose restriction to $S_{\text{red}} \times C$ lies in $O^\wedge_{f, \text{red}} \subset K^\wedge_{f, \text{red}}$.

The following is straightforward and left to the reader, part (a) being proved similarly to Proposition 2.1.1.

(3.1.2) **Proposition.** (a) The sheaves O^\wedge_f and K^\wedge_f are sheaves of local rings.

(b) The scheme $L^0(X)_C$ represents the functor $\lambda^0_{X,C} : \text{Sch} \to \text{Sets}$ which associates to a scheme S the set of pairs (f, ρ) where $f : S \to C$ is a morphism of schemes and $\rho : (\Gamma(f), O^\wedge_f) \to X$ is a morphism of ringed spaces.

(c) The ind-scheme $L(X)_C$ ind-represents the functor $\lambda_{X,C}$ defined as in (b) but with O^\wedge_f replaced by K^\wedge_f.

3. **The global loop space**
(d) Similarly, when X is affine, the ind-scheme $\hat{\mathcal{L}}(X)_C$ ind-represents the functor $\hat{\lambda}_{X,C}$ defined as in (b) but with \mathcal{O}_I^\wedge replaced by \mathcal{K}_I^\wedge.

(3.2) Factorization semigroups. Let C be a smooth curve, as before. For any surjection $J \twoheadrightarrow I$ of finite sets and $i \in I$ we denote by J_i the preimage of i. To such a surjection one associates, in a standard way, the “diagonal” embedding $\Delta^{(J/I)} : C^I \hookrightarrow C^J$. Let $U^{(J/I)} \subset C^J$ be the locus of $(c_j)_{j \in J}$ such that $c_j \neq c_{j'}$ whenever the images of j and j' in I are different. We denote by $j^{(J/I)} : U^{(J/I)} \hookrightarrow C^J$ the embedding.

(3.2.1) Definition. Let Y be an ind-scheme over C. A factorization semigroup structure on Y is a collection of ind-schemes Y_I over C^I for each nonempty finite set I such that $Y_{\{1\}} = Y$, equipped with the following data:

(a) An identification $\Delta^{(J/I)} \star Y_J \sim Y_I$ for every surjection $J \twoheadrightarrow I$, compatible with compositions of surjections.

(b) An isomorphism of $U^{(J/I)}$-ind-schemes

$$\kappa^{(J/I)} : j^{(J/I)} \star (\prod_{i \in I} Y_{J_i}) \sim j^{(J/I)} \star Y_J$$

for every $J \twoheadrightarrow I$, such that for $K \twoheadrightarrow J$ the isomorphism $\kappa^{(K/I)}$ coincides with the composition $\kappa^{(J/I)} \circ (\prod_{i \in I} \kappa^{(K_i/J_i)})$.

(3.2.2) Remarks. (a) This is a nonlinear counterpart of the concept of a factorization algebra due to Beilinson and Drinfeld [BD1] [G], see also (6.1) below. Factorization semigroups can be used to construct factorization algebras by applying “natural” linear constructions.

(b) More generally, we can speak about a factorization semigroup structure on any functor $Y : \textbf{Sch} \to \textbf{Sets}$ (not necessarily representable by an ind-scheme) which is equipped with a morphism to C (i.e. to the representable functor η_C).

(3.2.3) Example. Let G be an affine algebraic group over k. Then $\mathcal{L}^0(G)$ is a group scheme and $\hat{\mathcal{L}}(G)$ is a group ind-scheme over C. The quotient ind-scheme $\mathcal{G}r_G = \hat{\mathcal{L}}(G)/\mathcal{L}^0(G)$ is known as the affine Grassmannian associated to G. The natural family of such Grassmannians over C, i.e. the ind-scheme $\mathcal{G}r_G(C) = \hat{\mathcal{L}}(G)_C/\mathcal{L}^0(G)_C$ is known to have a structure of a factorization semigroup, see [G, §5.2.2].

Now, the main result of this section is the following.

(3.2.4) Theorem. Let X be a scheme of finite type. Then the C-scheme $\mathcal{L}^0(X)_C$ and the C-ind-scheme $\hat{\mathcal{L}}(X)_C$ possess natural structures of factorization semigroups so that the embedding $\mathcal{L}^0(X)_C \subset \hat{\mathcal{L}}(X)_C$ is a factorization homomorphism. Similarly, if X is affine, then the C-ind-scheme $\hat{\mathcal{L}}(X)_C$ has a natural structure of a
similarly to (3.1), the following sheaves of rings on S and by
\[(3.3)\] Factorization semigroup structure on the functors represented by
the homomorphism.

λ The contravariant functor λ functors
\[(3.3.3)\] Proposition. The embeddings of sheaves of rings
O_X, C as such that the embedding $L^0(X)_C \subset \tilde{E}(X)_C$ is a factorization

\[(3.3.2)\] Definition. The contravariant functors λ^0_{X,C^I}, λ_{X,C^I} from Sch to Sets as
follows. For a scheme S the set $\lambda^0_{X,C^I}(S)$ consists of pairs (f_I, ρ) such that

\[
f_I \in \text{Hom}_{\text{Sch}}(S, C^I) \quad \text{and} \quad \rho \in \text{Hom}_{\text{Lrsk}}((\Gamma(f_I), O^\wedge_{f_I}), X).
\]

The contravariant functor λ_{X,C^I} is defined similarly but with $O^\wedge_{f_I}$ replaced by $K^\wedge_{f_I}$.

(b) If X is affine, the functor λ_{X,C^I} from Alg to Sets is such that the set
$\lambda_{X,C^I}(R)$ consists of pairs (f_I, ρ) with

\[
f_I \in \text{Hom}_{\text{Sch}}(\text{Spec} R, C^I) \quad \text{and} \quad \rho \in \text{Hom}_{\text{Alg}}(k[X], H^0(\Gamma(f_I), K^\wedge_{f_I})).
\]

The embeddings of sheaves of rings $O^\wedge_{f_I} \hookrightarrow K^\wedge_{f_I} \hookrightarrow K^\wedge_{f_I}$ induce embeddings of
functors $\lambda^0_{X,C^I} \hookrightarrow \lambda_{X,C^I} \hookrightarrow \tilde{\lambda}_{X,C^I}$.

\[(3.3.1)\] Proposition. The sheaves $O^\wedge_{f_I}$ and $K^\wedge_{f_I}$ are sheaves of local rings.

The proof is analog to the proof of Proposition 2.1.1, and is left to the reader.

\[(3.3.2)\] Definition. Let I be a nonempty finite set.

(a) We define the contravariant functors λ^0_{X,C^I}, λ_{X,C^I} from Sch to Sets as
follows. For a scheme S the set $\lambda^0_{X,C^I}(S)$ consists of pairs (f_I, ρ) such that

\[
f_I \in \text{Hom}_{\text{Sch}}(S, C^I) \quad \text{and} \quad \rho \in \text{Hom}_{\text{Lrsk}}((\Gamma(f_I), O^\wedge_{f_I}), X).
\]

The contravariant functor λ_{X,C^I} is defined similarly but with $O^\wedge_{f_I}$ replaced by $K^\wedge_{f_I}$.

(b) If X is affine, the functor λ_{X,C^I} from Alg to Sets is such that the set
$\lambda_{X,C^I}(R)$ consists of pairs (f_I, ρ) with

\[
f_I \in \text{Hom}_{\text{Sch}}(\text{Spec} R, C^I) \quad \text{and} \quad \rho \in \text{Hom}_{\text{Alg}}(k[X], H^0(\Gamma(f_I), K^\wedge_{f_I})).
\]

The embeddings of sheaves of rings $O^\wedge_{f_I} \hookrightarrow K^\wedge_{f_I} \hookrightarrow K^\wedge_{f_I}$ induce embeddings of
functors $\lambda^0_{X,C^I} \hookrightarrow \lambda_{X,C^I} \hookrightarrow \tilde{\lambda}_{X,C^I}$.

\[(3.3.3)\] Proposition. Let X be a fixed scheme of finite type. The families of
functors $(\lambda^0_{X,C^I}), (\tilde{\lambda}_{X,C^I}), (\lambda_{X,C^I})$ with I running over nonempty finite sets, form
each a factorization semigroup in the category of functors.

\textbf{Proof}: This is almost obvious by construction. Indeed, let $J \rightarrow I$ be a surjection of nonempty sets. Then $\Delta^{(J/I)^*}$ of the Jth functor in any of the three families takes S into the set of (f_J, ρ) where f_J is a morphism $S \rightarrow C^J$ which in fact lie in the image of $\Delta^{(J/I)}$. Thus f_J comes from a uniquely defined I-tuple f_I. Now, $\Gamma(f_J) = \Gamma(f_I)$ and so each of the three sheaves $O^\wedge, K^\wedge, K^\wedge$ associated to them coincide. This
gives the datum (a) of Definition 3.2.1. Similarly, \(j^{(J/I)} \) applied to the \(J \)th functor in any of the families, takes \(S \) into the set of \((f_J, \rho) \) where \(f_J : S \to U^{(J/I)} \). But this means that \(\Gamma(f_J) = \prod_{i \in I} \Gamma(f_{J_i}) \) and hence on the level of set of morphisms of \(\Gamma(f_J) \) equipped with any of the three sheaves of rings, we get a direct product. This gives the datum (b), i.e. the isomorphism \(\kappa^{(J/I)} \). The associativity of these isomorphisms is obvious.

Therefore, to establish Theorem 3.2.4, we need only to prove the representability of the functors \(\lambda^0_{X,C^t}, \lambda_{X,C^t} \) and, when \(X \) is affine, of \(\tilde{\lambda}_{X,C^t} \).

(3.4) The global space of germs of arcs.

(3.4.1) Proposition. The functor \(\lambda^0_{X,C^t} \) is representable by a scheme \(L^0(X)_{C^t} \) of infinite type over \(C^t \).

Proof: For \(n > 0 \) let \(C^{(n)} \) be the \(n \)th symmetric product of \(C \). As \(C \) is a smooth curve, \(C^{(n)} \) is identified with the Hilbert scheme \(\text{Hilb}^n(C) \) parametrizing subschemes in \(C \) of finite length \(n \). Explicitly, to a point of \(C^{(n)} \), i.e. an effective divisor \(D \) on \(C \) of degree \(n \), there corresponds the subscheme \(Z_D = \text{Spec} (\mathcal{O}_C / \mathcal{O}_C(-D)) \). The following lemma is well-known.

(3.4.2) Lemma. Let \(T \) be a \(k \)-scheme, and \(X,Z \) be any \(T \)-schemes. Assume that the morphism \(Z \to T \) is finite, and that \(X \to T \) is of finite type. The contravariant functor \(\text{Sch} \to \text{Sets} \), \(S \mapsto \text{Hom}_T(S \times Z, X) \), is represented by a \(T \)-scheme \(\text{Hom}_T(Z,X) \).

Let \(Z \subset C \times C^{(n)} \) be the total space of the family of the schemes \(Z_D, D \in C^{(n)} \). We set \(\text{Map}^n(C,X) = \text{Hom}_{C^{(n)}}(Z, X \times C^{(n)}) \). Let \(u^n_1 \) be the composition of the maps

\[C^I \to C^{I \times [1,n+1]} \to C^{((n+1)|I|)} \]

where the first map takes the \(I \)-uple \((c_i, i \in I) \) to the \(I \times [1,n+1] \)-uple \((c_i, c_i, ..., c_i, i \in I) \), each \(c_i \) counted \(n \) plus 1 times, and the second map is the projection from the Cartesian product to the symmetric product. Let \(L^0_n(X)_{C^t} \) be the fiber product

\[L^0_n(X)_{C^t} = C^I \times_{C^{((n+1)|I|)}} \text{Map}^{((n+1)|I|)}(C,X). \]

For any \(I \)-uple \(c \in C^I \) we have inclusions of subschemes of \(C \)

\[u^0_I(c) \subset u^1_I(c) \subset u^2_I(c) \subset \cdots \]

Thus we get a projective system of schemes

\[L^0_1(X)_{C^t} \leftarrow L^0_2(X)_{C^t} \leftarrow L^0_3(X)_{C^t} \leftarrow \cdots \]
The morphisms in this projective system are affine because the embeddings $u^n_I(c) \subset u^{n+1}_I(c)$ are purely nilpotent. Therefore we have the limit scheme

$$\mathcal{L}^0(X)_{C^I} = \lim_{\leftarrow n} \mathcal{L}^0_n(X)_{C^I}.$$

We claim that the scheme $\mathcal{L}^0(X)_{C^I}$ represents the functor λ^0_{X,C^I}. Indeed a morphism from a k-scheme S to $\mathcal{L}^0_n(X)_{C^I}$ is a pair (f_I, ψ) where f_I is a morphism $S \to C^I$ and

$$\psi : (\Gamma(f_I), \mathcal{O}_{u^n_I(f_I)}) \to (X, \mathcal{O}_X)$$

is a morphism of ringed spaces. Here $u^n_I(f_I) \subset S \times C$ is the subscheme of relative length $n|I|$ over S corresponding to the S-point f_I of C^I via u^n_I. When we pass to the limit we get $\lim_{\leftarrow n} \mathcal{O}_{u^n_I(f_I)} = \mathcal{O}^\wedge_{f_I}$. □

(3.4.5) Remark. When $X = \text{Spec } A$ is affine, the scheme $\mathcal{L}^0(X)_C$, being the scheme of infinite jets of maps $C \to X$, is the spectrum of a commutative \mathcal{O}_C-algebra with connection along C (in fact, of the universal such algebra with connection generated by $\mathcal{O}_C \otimes_k A$). According to Beilinson and Drinfeld [BD1], [G], commutative \mathcal{O}_C-algebras with connection are particular case of chiral algebras which, in their turn, give factorization algebras. So our construction in this case is a particular case of theirs.

(3.4.6) Proposition. If $\phi : X \to Y$ is an étale morphism of schemes of finite type and $\pi : C \to D$ is an étale morphism of smooth curves, then the square

$$\begin{array}{ccc}
\mathcal{L}^0(X)_{C^I} & \overset{\mathcal{L}^0(\phi)_{C^I}}{\longrightarrow} & \mathcal{L}^0(Y)_{D^I} \\
\downarrow & & \downarrow \\
\mathcal{L}^0_0(X)_{C^I} & \longrightarrow & \mathcal{L}^0_0(Y)_{D^I}
\end{array}$$

is Cartesian. Here $\mathcal{L}^0_0(X)_{C^I}$ is the same as in (3.4.3).

Proof: Similarly to the proof of Proposition 2.2.2, this follows from the fact that all the embeddings in (3.4.4) are purely nilpotent. □

(3.5) The meromorphic loop space of an affine scheme. Here we prove the ind-representability of the functor λ^0_{X,C^I} for X affine. We first treat the case when $X = \mathbb{A}^1$. Let I be fixed. To every point $(c_i)_{i \in I} \in C^I$ we associate the effective divisor $\sum c_i$ on C. For every $m, n \geq 0$ let A_{mn} be the vector bundle on C^I whose fiber over (c_i) is the vector space of global sections of the coherent 0-dimensional sheaf

$$\mathcal{O}_C(m \sum c_i) / \mathcal{O}_C(-n \sum c_i)$$

on C. Thus $\text{rk}(A_{mn}) = |I|(m+n)$. Let A_{nn} be the total space of the bundle A_{mn}, considered as an algebraic variety over C^I. When m, n vary, these varieties form a double inductive-projective system and the following is then obvious.
(3.5.1) Proposition. (a) For every $m > 0$ the limit $\lim \limits_{\leftarrow n} A_{mn}$ exists as a scheme.

The ind-scheme $\tilde{\mathcal{L}}(\mathbb{A}^1)_{C^I} = \lim \limits_{\leftarrow m} \lim \limits_{\rightarrow n} A_{mn}$ represents the functor $\tilde{\lambda}_{\mathbb{A}^1,C^I}$.

(b) $\tilde{\mathcal{L}}(\mathbb{A}^1)_{C^I}$ has a natural structure of a k-algebra object in the category of ind-schemes over C^I.

Proof: A morphism of k-schemes $\text{Spec } R \to A_{mn}$ is a pair of a morphism of k-schemes $f_I : S \to C^I$, and a morphism of sheaves of k-algebras $O_{A_{mn}} \otimes O_{C^I} R \to R$ (here, the right hand side is identified with the constant sheaf on C^I). There is a canonical isomorphism

$$\lim \limits_{\leftarrow m} \lim \limits_{\rightarrow n} \text{Hom}(O_{A_{mn}} \otimes O_{C^I} R, R) \simeq H^0(\Gamma(f_I), K_{f_I}) \simeq \text{Hom}_{\text{Alg}}(k[x], H^0(\Gamma(f_I), K_{f_I})).$$

Claim (a) is proved. In part (b), the variety A_{mn} is not a ring scheme. However there is an obvious map $A_{mn} \times A_{m'n'} \to A_{m+m',n+n'}$ which induces a ring structure on the limit of the ind-pro system. \square

(3.5.2) Proposition. For any affine X of finite type the functor $\tilde{\lambda}_{X,C^I}$ is representable by an ind-scheme $\tilde{\mathcal{L}}(X)_{C^I}$ over C^I.

Proof: By part (b) of Proposition 3.5.1, for every $f \in k[x_1,\ldots,x_d]$ we have a morphism of ind-schemes

$$\tilde{\mathcal{L}}(f)_{C^I} : (\tilde{\mathcal{L}}(\mathbb{A}^1)_{C^I})^d \to \tilde{\mathcal{L}}(\mathbb{A}^1)_{C^I}.$$

If now the scheme X is given in some \mathbb{A}^d be equations $f_j(x_1,\ldots,x_d) = 0$, then $\tilde{\lambda}_{X,C^I}$ is represented by the ind-scheme $\tilde{\mathcal{L}}(X)_{C^I}$ which is the intersection, in $(\tilde{\mathcal{L}}(\mathbb{A}^1)_{C^I})^d$, of the preimages of 0 under the $\tilde{\mathcal{L}}(f_j)_{C^I}$, i.e. the inverse limit of an obvious diagram in the category of ind-schemes. \square

(3.5.3) Corollary. For an affine scheme X the functor λ_{X,C^I} is represented by an ind-scheme $\mathcal{L}(X)_{C^I}$ which is the inductive limit of the formal neighborhoods of $\mathcal{L}^0(X)_{C^I}$ in the schemes of an inductive system for $\tilde{\mathcal{L}}(X)_{C^I}$.

(3.6) The global loop space of an arbitrary scheme. Let now X be an arbitrary scheme of finite type. The (ind-)representability of the functor λ_{X,C^I} follows from Corollary 3.5.3 for the affine case and from the general gluing properties of the functors summarized in the next proposition.

(3.6.1) Proposition. (a) The functor λ_{X,C^I} is a sheaf on Sch.

(b) If $U \subset X$ is an open subset, then the induced morphism of functors $\lambda_{U,C^I} \to \lambda_{X,C^I}$ is open.
(c) Let \(\{ U_\alpha \}_{\alpha \in A} \) be an open covering of \(X \). Then \(\lambda_{X,C^1} \) is equal to the cokernel, in the category \(\text{Shf} \), of the pair of morphisms
\[
\prod_{\alpha, \beta} \lambda_{U_\alpha \cap U_\beta, C^1} \Rightarrow \prod_\alpha \lambda_{U_\alpha, C^1}.
\]

The proof is similar to that of Proposition 2.4.2, using Lemma 2.4.3 and the fact that \(K_{f^i} \) is a sheaf of local rings on \(\Gamma(f_i) \). An immediate corollary of Proposition 3.6.1 and Corollary 3.5.3 is that the functor \(\lambda_{X,C^1} \) is representable by an ind-scheme \(\mathcal{L}(X) \) over \(C^1 \). Then, Proposition 3.3.3 implies that the collections of schemes and ind-schemes \(\mathcal{L}^0(X) \) and \(\mathcal{L}(X) \) are factorization semigroups in the categories of schemes and ind-schemes. Theorem 3.2.4 is proved.

(3.6.2) Proposition. If \(\phi : X \to Y, \pi : C \to D \) are étale morphisms, then the induced morphism
\[
\mathcal{L}(\phi)_\pi : \mathcal{L}(X) \to \mathcal{L}(Y)
\]
is formally étale.

The proof is similar to that of Proposition 2.5.4.

(3.7) Example: the cases \(C = \mathbb{A}^1 \) and \(X = \mathbb{A}^d \). Let \(C = \text{Spec} k[t] \). If \(S = \text{Spec} R \), a morphism \(f_1 = (f_i) : S \to C^1 \) is the same as a collection of elements \(b_i = f_i^*(t) \in R \). Assume these have been fixed. Then the subscheme \(u^*_1(f_1) \subset S \times C \) from the proof of Proposition 3.4.1 is described explicitly:

\[
(3.7.1) \quad u^*_1(f_1) = \text{Spec} \left(R[t]/\prod_{i \in I}(t-b_i)^{n+1} \right).
\]

This implies the following.

(3.7.2) Proposition. (a) The ring
\[
H^0(\Gamma(f_1), \mathcal{O}_{f^i_1}^\lor) = \varinjlim_n (R[t]/\prod_{i \in I}(t-b_i)^{n+1})
\]
is identified with the set of series \(\sum_{i=0}^\infty a_i(t) \prod_{i}(t-b_i)^i \), where \(a_i(t) \in R[t] \) are polynomials of degree less than \(|I| \) (such polynomials form a set of representatives for \(R[t]/\prod_{i}(t-b_i) \)).

(b) The ring \(H^0(\Gamma(f_1), \mathcal{K}_{f_1}^\lor) \) is identified with the set of series \(\sum_{i \gg -\infty} a_i(t) \prod_{i}(t-b_i)^i \), where \(a_i(t) \) are as in (a).

(c) The subring \(H^0(\Gamma(f_1), \mathcal{K}_{f_1}^\lor) \) is identified with the series as in (b) but with the condition that all the coefficients of the polynomials \(a_i(t), l < 0 \), are nilpotent elements of \(R \).

(3.7.3) Notation. For fixed \(b_i \in R \) and \(a \in H^0(\Gamma(f_1), \mathcal{K}_{f_1}) \) we denote by \(a_l(t) \in R[t] \) the \(l \)th coefficient of the series corresponding to \(a \) by Proposition 3.7.2(b) and by \(a_{l_1} \in R, \nu = 0, \ldots, |I| - 1, \) the \(\nu \)th coefficient of the polynomial \(a_l(t) \).
Assume moreover that $X = \mathbb{A}^d$ with coordinates x_1, \ldots, x_d. In this case we can give a completely explicit description of the ind-schemes $\tilde{\mathcal{L}}(\mathbb{A}^d)_{\mathbb{A}^1}$ and $\mathcal{L}(\mathbb{A}^d)_{\mathbb{A}^1}$, using Proposition 3.7.2. Indeed,

$$\tilde{\lambda}_{\mathbb{A}^d, \mathbb{A}^1}(R) = \{(b_i, \rho) \mid (b_i) \in R^I, \rho : k[x] \to H^0(\Gamma(f_I), K_{f_I})\}.$$

The algebra homomorphism ρ is uniquely determined by the choice of

$$\rho(x_j) = \sum_{I \gg -\infty} \sum_{\nu=0}^{[I]-1} a^{(j)}_{i\nu} t^\nu \prod_{i \in I} (t - b_i)^l, \quad a^{(j)}_{i\nu} \in R.$$

A choice of $\rho(x_j)$ is the same as a choice of elements $a^{(j)}_{i\nu} \in R$. Thus the universal case corresponds to $b_i, a^{(j)}_{i\nu}$, with $i \in I$, $j \in [1, d], l \in \mathbb{Z}$ and $\nu \in [0, |I| - 1]$, being independent variables, i.e.

(3.7.4) \quad \tilde{\mathcal{L}}(\mathbb{A}^d)_{\mathbb{A}^1} = \lim_{-\to N} \text{Spec} \ k[b_i, a^{(j)}_{i\nu}; l \geq -N].

and

(3.7.5) \quad \mathcal{L}(\mathbb{A}^d)_{\mathbb{A}^1} = \lim_{-\to N} \text{Spf} \ k[b_i, a^{(j)}_{i\nu}; l \geq 0][[a^{(j)}_{i\nu}; -N \leq l \leq -1]].

Notice further that

$$\mathcal{L}^0_n(\mathbb{A}^d)_{\mathbb{A}^1} = \text{Spec} k[b_i, a^{(j)}_{i\nu}; 0 \leq l \leq n].$$

In particular, we have a natural morphism

(3.7.6) \quad \theta_{\mathbb{A}^d, \mathbb{A}^1} : \mathcal{L}(\mathbb{A}^d)_{\mathbb{A}^1} \to \mathcal{L}^0_n(\mathbb{A}^d)_{\mathbb{A}^1}

taking all $a^{(j)}_{i\nu}, l \neq 0$, to 0.

(3.8) **The global loop space as an ind-object.** We first consider the case $X = \mathbb{A}^d, C = \mathbb{A}^1$, employing the notations of (3.7). Let $\varepsilon = (\varepsilon_{-1}, \varepsilon_{-2}, \ldots) \in \mathbb{E}$ be as in (2.6). Define the scheme

(3.8.1) \quad \mathcal{L}^\varepsilon(\mathbb{A}^d)_{\mathbb{A}^1} = \text{Spec} \ (k[b_i, a^{(j)}_{i\nu}] / (a^{(j)}_{i\nu_1} \cdots a^{(j)}_{i\nu_1+\varepsilon_l})),

where $j \in [1, d], l < 0$ and $\nu_1, \ldots, \nu_{1+\varepsilon_l} \in [0, |I| - 1]$ are arbitrary. It is clear that

$$\mathcal{L}(\mathbb{A}^d)_{\mathbb{A}^1} = \lim_{\varepsilon \to \mathcal{L}^\varepsilon(\mathbb{A}^d)_{\mathbb{A}^1}}.$$

next, assume that X is an arbitrary smooth scheme of finite type and C is an arbitrary smooth curve. Then X can be covered by open $U = \text{Spec} A$ possessing an étale map $\phi : U \to \mathbb{A}^d$ and similarly C can be covered by open V possessing an étale $\pi : V \to \mathbb{A}^1$. For each such $(U, \phi), (V, \pi)$ we get a formally étale map of ind-schemes

$$\mathcal{L}(\phi)_{\pi^1} : \mathcal{L}(U)_{\pi^1} \to \mathcal{L}(\mathbb{A}^d)_{\mathbb{A}^1}$$

and we define the subscheme $\mathcal{L}^\varepsilon(\phi)_{\pi^1} \subset \mathcal{L}(U)_{\pi^1}$ to be the pullback of $\mathcal{L}^\varepsilon(\mathbb{A}^d)_{\mathbb{A}^1}$.
(3.8.2) Proposition. The ind-scheme $L^\varepsilon(\phi)_{\pi^I}$ is in fact an affine scheme, fitting into a Cartesian diagram

$$
\begin{align*}
L^\varepsilon(\phi)_{\pi^I} & \hookrightarrow L(U)_{\pi^I}
\end{align*}
\quad \downarrow
\begin{align*}
\theta_{\phi,\pi^I}
\end{align*}
\begin{align*}
\downarrow
\end{align*}
\begin{align*}
L^0_0(U)_{\pi^I} \rightarrow L^0_0(\mathbb{A}^d)_{\pi^I}.
\end{align*}

The ind-object \(\lim_{\varepsilon} \ L^\varepsilon(\phi)_{\pi^I} \) in \textbf{Sch} is isomorphic to $L(U)_{\pi^I}$.

The proof (including the construction of θ_{ϕ,π^I}) is similar to that of Propositions 2.6.1 and 2.6.3 and is left to the reader.

(3.9) The global loop space as an ind-pro-object. We keep the notation of (3.8). For $\varepsilon \in \mathbb{E}$, $n \geq 1$ consider the scheme

$$\begin{align*}
L_n^\varepsilon(\mathbb{A}^d)_{\pi^I} = \text{Spec} \ (k[h_i, a^{(j)}_{i\nu}; l \leq n]/(a^{(j)}_{i\nu} \cdots a^{(j)}_{i\nu+\varepsilon}))
\end{align*}
$$

which we regard as a quotient scheme of $L^\varepsilon(\mathbb{A}^d)_{\pi^I}$, see (3.8.1). Denoting by $R_n \Rightarrow L^\varepsilon(\mathbb{A}^d)_{\pi^I}$ the corresponding equivalence relation, let $R_n\phi \Rightarrow L^\varepsilon(\phi)_{\pi^I}$ be its pullback under the map $L^\varepsilon(\phi)_{\pi^I} \rightarrow L^\varepsilon(\mathbb{A}^d)_{\pi^I}$.

(3.9.2) Proposition. (a) The quotient $L^\varepsilon_n(\phi)_{\pi^I} = L^\varepsilon(\phi)_{\pi^I}/R_n\phi\pi$ exists and is a scheme of finite type fitting into a Cartesian square

$$
\begin{align*}
L^\varepsilon_n(\phi)_{\pi^I} & \hookrightarrow L^\varepsilon_n(\mathbb{A}^d)_{\pi^I}
\end{align*}
\quad \downarrow
\begin{align*}
\downarrow
\end{align*}
\begin{align*}
L^0_0(U)_{\pi^I} \rightarrow L^0_0(\mathbb{A}^d)_{\pi^I}.
\end{align*}

In particular, the natural map $L^\varepsilon_n(\phi)_{\pi^I} \rightarrow L^\varepsilon_n(\mathbb{A}^d)_{\pi^I}$ is étale.

(b) The scheme $L^\varepsilon_n(\phi)_{\pi^I}$ is a nilpotent extension of $L^0_0(U)_{\pi^I}$.

(c) The schemes $L^\varepsilon_n(\phi)_{\pi^I}$ form a double ind-pro-system with Cartesian squares ($n' \geq n$, $\varepsilon \leq \varepsilon'$)

$$
\begin{align*}
L^\varepsilon_n(\phi)_{\pi^I} & \hookrightarrow L^\varepsilon_n(\phi)_{\pi^I}
\end{align*}
\quad \downarrow
\begin{align*}
\downarrow
\end{align*}
\begin{align*}
L^\varepsilon_n(\phi)_{\pi^I} \hookrightarrow L^\varepsilon_n(\phi)_{\pi^I}
\end{align*}

where the vertical arrows are smooth affine morphisms.

(d) The ind-pro-object \(\lim_{n} \ L^\varepsilon_n(\phi)_{\pi^I} \) is independent on ϕ, π.

Proof: The proof is similar to that of Proposition 2.7.1. The proof of the second part of Claim (a) is as follows. The natural morphism of schemes $L^0_0(U)_{\pi^I} \rightarrow L^0_0(\mathbb{A}^d)_{\pi^I}$ being locally of finite presentation, by base change and [EGAIV, §17] it suffices to check that it is is formally étale. If S is a scheme and we have two compatible pairs

$$
(f_1, \rho) \in \lambda^0_{0,\phi,\pi^I}(S_{\text{red}}), \quad (f'_1, \rho') \in \lambda^0_{0,\mathbb{A}^d,\pi^I}(S),
$$

VERTEX ALGEBRAS AND FORMAL LOOPS 23

we must construct the unique pair $(\tilde{f}_I, \tilde{\rho}) \in \lambda_{0,\phi,\pi}^0(S)$. By definition, we have a commutative square

$$
\begin{array}{ccc}
S_{\text{red}} & \xrightarrow{f_I} & C^I \\
\downarrow & & \downarrow \pi' \\
S & \xrightarrow{f'_I} & \mathbb{A}^I.
\end{array}
$$

Thus, π being étale, there is a unique lift $\tilde{f}_I \in \text{Hom}_{\text{Sch}}(S, C^I)$. Then, $\Gamma(\tilde{f}_I)_{\text{red}} = \Gamma(f_I)$. We have also a commutative diagram

$$
\begin{array}{ccc}
\Gamma(f_I) & \xrightarrow{\rho} & U \\
\downarrow & & \downarrow \phi \\
\Gamma(\tilde{f}_I) & \rightarrow & \mathbb{A}^d
\end{array}
$$

where the lower arrow is the composition of the chain of maps

$$
\Gamma(\tilde{f}_I) \xrightarrow{\text{id} \times \pi} \Gamma(f_I) \xrightarrow{\rho'} \mathbb{A}^d.
$$

Thus, ϕ being étale, there is a unique lift $\tilde{\rho} \in \text{Hom}_{\text{Sch}}(\Gamma(\tilde{f}_I), U)$. We are done.

The smoothness of the vertical arrows in Claim (c) is proved as follows. Set

$$
A^N_n = k[\mathbb{A}_I^I][a^{(j)}_\nu; -N \leq l \leq n].
$$

Then, $L_n^e(\mathbb{A}^d_{\mathbb{A}^I})$ is a closed subset of $\text{Spec} A^N_n$ if $N >> 0$. We have a Cartesian square

$$
\begin{array}{ccc}
\text{Spec} A^N_{n'} & \rightarrow & \text{Spec} A^N_n \\
\uparrow & & \uparrow \\
L^e_n(\phi)_{n'} & \rightarrow & L^e_n(\phi)_{n'}
\end{array}
$$

where the horizontal arrow is the obvious smooth affine projection, and the vertical arrows are the composition of the chain of maps

$$
L^e_n(\phi)_{n'} \xrightarrow{\sim} L^e_n(\mathbb{A}^d_{\mathbb{A}^I}) \times_{L^e_0(\mathbb{A}^d_{\mathbb{A}^I})} L^0_0(U) \rightarrow L^e_n(\mathbb{A}^d_{\mathbb{A}^I}) \hookrightarrow \text{Spec} A^N_n.
$$

Thus, the projection $L^e_n(\phi)_{n'} \rightarrow L^e_n(\phi)_{n'}$ is smooth and affine, by base change. □
4. \(\mathcal{D} \)-modules over ind-schemes

(4.1) Reminder on \(\mathcal{D} \)-modules. Let \(\textbf{Sch}^{ft} \) denote the category of \(k \)-schemes of finite type. For any such scheme \(X \) let \(\mathcal{O}_X \) be the category of all quasi-coherent \(\mathcal{O}_X \)-modules. For a morphism \(f : X \to Y \) in \(\textbf{Sch}^{ft} \) we denote by \(f_* \), \(f^* \) the functors of the direct and inverse images on \(\mathcal{O}_X \), \(\mathcal{O}_Y \). If \(f \) is a closed embedding and \(\mathcal{E} \in \mathcal{O}_Y \), let

\[
\text{(4.1.1)} \quad f^! \mathcal{E} = f^{-1} \text{Hom}_{\mathcal{O}_Y}(f_* \mathcal{O}_X, \mathcal{E})
\]

be the inverse image of the subsheaf of \(\mathcal{E} \) consisting of sections supported scheme-theoretically on \(f(X) \subset Y \).

For \(X \in \textbf{Sch}^{ft} \) let \(\mathcal{D}_X \) be the category of right \(\mathcal{D} \)-modules on \(X \). It is defined as follows, see [BD2, §7.10] or [G, §0.2.2]. If \(X \) is smooth, then we have the sheaf of rings \(\mathcal{D}_X \) of differential operators from \(\mathcal{O}_X \) to itself. An object of \(\mathcal{D}_X \) is then a sheaf of right \(\mathcal{D}_X \)-modules quasicoherent over \(\mathcal{O}_X \). Next, if \(X \) admits a closed embedding into a smooth scheme \(Y \), one defines \(\mathcal{D}_X \) as \(\mathcal{D}_{Y,X} \), the full subcategory of \(\mathcal{D}_Y \) consisting of modules supported (as sheaves) on \(X \). This definition is independent on the choice of embedding: if \(X \) is embedded into two smooth schemes \(Y_1 \) and \(Y_2 \), then one has an equivalence \(\mathcal{D}_{Y_1,X} \to \mathcal{D}_{Y_2,X} \) which is unique up to a unique isomorphism of functors. Now, given any \(X \), an embedding into a smooth scheme always exists locally on \(X \). Therefore we have an open covering \(X = \bigcup U_\alpha \), the categories \(\mathcal{D}_{U_\alpha} \), \(\mathcal{D}_{U_\alpha \beta} \) etc. and the obvious restriction functors among them. One then defines an object \(\mathcal{M} \) of \(\mathcal{D}_X \) as a collection of objects \(\mathcal{M}_\alpha \in \mathcal{D}_{U_\alpha} \) together with isomorphisms of their images in \(\mathcal{D}_{U_\alpha \beta} \) whose images in \(\text{Mor}(\mathcal{D}_{U_\alpha \beta}) \) satisfy the obvious compatibility conditions.

Given \(X \in \textbf{Sch}^{ft} \) and \(\mathcal{M} \in \mathcal{D}_X \), we define a sheaf \(\mathcal{M}^O \in \mathcal{O}_X \) as follows. If \(X \) admits a closed embedding \(i : X \to Y \) with \(Y \) smooth and \(\mathcal{M} \) is represented by a sheaf of right \(\mathcal{D}_X \)-modules quasicoherent over \(\mathcal{O}_X \) then set \(\mathcal{M}^O = i^* \mathcal{M} \). This definition is easily seen to be independent on the choice of \(Y \). In the case of a general \(X \) one defines \(\mathcal{M}^O \) by gluing the sheaves given by above procedures on open parts of \(X \) admitting embeddings into smooth schemes.

Any morphism \(f : X \to Y \) in \(\textbf{Sch}^{ft} \) induces functors \(f_* \), \(f^* \) of the direct and inverse image on \(\mathcal{D}_X \), \(\mathcal{D}_Y \). In the particular case when \(X, Y \) are smooth, we can view \(\mathcal{M} \in \mathcal{D}_X \) as a sheaf on \(X \) and

\[
\text{(4.1.2)} \quad f^\ast (\mathcal{M}) = f^\ast (\mathcal{M} \otimes_{\mathcal{D}_X} \mathcal{D}_{X \to Y}).
\]

Here \(\mathcal{D}_{X \to Y} \) is the sheaf of differential operators from \(f^{-1} \mathcal{O}_Y \) to \(\mathcal{O}_X \), see [BB] [G].

If \(f \) is a closed embedding (\(X \) and \(Y \) are not assumed smooth), the functor \(f_* \) is exact, and we have a canonical embedding

\[
\text{(4.1.2)} \quad \mathcal{M}^O \cong f^! f_\ast (\mathcal{M}) \hookrightarrow f^\ast f_\ast (\mathcal{M}).
\]
For example, if X is non-reduced and $i : X_{\text{red}} \hookrightarrow X$ is the reduced part, then i_* identifies $D_{X_{\text{red}}}$ with D_X.

If f is a smooth morphism and $\omega_{X/Y}$ is its relative canonical bundle, then

$$f^*(M)^O = f^*(M^O) \otimes_{O_X} \omega_{X/Y}.$$

We have then a canonical embedding

$$(4.1.3) \quad M^O \hookrightarrow f_*(f^*M)^O \otimes \omega_{X/Y}^{-1}.$$

We have the following base change property.

$$(4.1.4) \quad \text{Lemma. Suppose that in a Cartesian diagram of schemes of finite type }$$

$$
\begin{array}{ccc}
X & \hookrightarrow & X' \\
\downarrow f & & \downarrow f' \\
Y & \hookrightarrow & Y' \\
\end{array}
$$

the morphisms f, f' are smooth, i, j are closed embeddings. Then for any $M \in D_Y$, we have

$$i_*f^*M \simeq f'^*j_*M.$$

The projection formula holds for right \mathcal{D}-modules. More precisely, if f is an embedding of smooth k-schemes and $M \in D_X, N \in D_Y$, then there is a canonical isomorphism

$$f_*(f^*(N) \otimes_{O_X} M \otimes_{O_X} \omega_X^{-1}) \simeq N \otimes_{O_Y} f_*(M) \otimes_{O_Y} \omega_Y^{-1}.$$

$$(4.2) \quad \mathcal{D}$$-modules over pro-schemes.

$$(4.2.1) \quad \text{Definition. (cf. [Kap].) Let } A \text{ be a filtering poset and } (C_\alpha)_{\alpha \in A} \text{ be an inductive system of categories labelled by } A. \text{ In other words, for each } \alpha \leq \beta \text{ we have a functor } i_{\alpha\beta} : C_\alpha \to C_\beta, \text{ for each } \alpha \leq \beta \leq \gamma \text{ a natural isomorphism } i_{\beta\gamma} \circ i_{\alpha\beta} \Rightarrow i_{\alpha\gamma} \text{ and these isomorphisms satisfy the obvious coherence conditions for any } \alpha \leq \beta \leq \gamma \leq \delta.$$

The inductive limit $\varinjlim_{\alpha} C_\alpha$ is the category whose objects are pairs (α, x_α), $\alpha \in A, x_\alpha \in \text{Ob}(C_\alpha)$ and

$$\text{Hom}(x_\alpha, y_\beta) = \lim_{\gamma \geq \alpha, \beta} \text{Hom}_{C_\alpha}(i_{\alpha\gamma}(x_\alpha), i_{\beta\gamma}(y_\beta)).$$
(4.2.2) **Definition.** A k-scheme X_{∞} (possibly of infinite type) is called compact if it can be represented as $\varprojlim X_\alpha$ where $(X_\alpha)_{\alpha \in A}$ is a filtering projective system over Sch_k^f such that all the maps $p_{\alpha \beta} : X_\beta \to X_\alpha$, $\alpha \leq \beta$, are affine morphisms.

(4.2.3) **Proposition.** The category of compact k-schemes can be identified with a full subcategory in $\text{Pro} (\text{Sch}_k^f)$, via $X_{\infty} = \varprojlim X_\alpha \mapsto \varprojlim X_\alpha$.

(4.2.4) **Definition.** A compact scheme X_{∞} is called smooth if it can be represented as $\varprojlim X_\alpha$ for some (X_α) as in (4.2.2) with the extra property that each X_α is a smooth scheme and each $p_{\alpha \beta}$ is a smooth affine morphism.

(4.2.5) **Example.** For any smooth $X \in \text{Sch}_k^f$, the scheme $L^0(X)$ is smooth and compact.

Let X_{∞} be a compact scheme and (X_α) be as in Definition 4.2.2. We have two inductive systems of categories $(\mathcal{O}_X, p_{\alpha \beta}^*)$, $(\mathcal{D}_X, p_{\alpha \beta}^\bullet)$. We set $\mathcal{D}_{X_{\infty}} = \varprojlim \mathcal{D}_X$, see also [KT, §1.9]. Informally, an object of $\mathcal{D}_{X_{\infty}}$ is a "\mathcal{D}-module pulled back from some X_α". The category $\mathcal{D}_{X_{\infty}}$ is independent, up to a canonical equivalence of categories, on the choice of (X_α) as in (4.2.2). Let $p_\alpha : X_{\infty} \to X_\alpha$ be the projection. Let $p_{\alpha}^* : \mathcal{D}_X \to \mathcal{D}_{X_{\infty}}$, $\mathcal{M} \mapsto (\alpha, \mathcal{M}_\alpha)$ be the canonical functor. If the compact scheme X_{∞} is smooth, there is the functor

$$\mathcal{D}_{X_{\infty}} \to \varprojlim \mathcal{O}_{X_\alpha} \subset \mathcal{O}_{X_{\infty}}, \quad p_{\alpha}^* \mathcal{M}_\alpha \mapsto (p_{\alpha}^* \mathcal{M}_\alpha)^\mathcal{O} := ((p_{\alpha \beta}^* \mathcal{M}_\alpha)^\mathcal{O} \otimes_{\mathcal{O}_{X_\beta}} \omega_{X_\beta}^{-1})_{\beta \geq \alpha}.$$

In particular, we can associate to any $\mathcal{M} \in \mathcal{D}_{X_{\infty}}$ its space of global sections, such that if $\mathcal{M} = p_{\alpha}^* \mathcal{M}_\alpha$ then

$$\Gamma(X_{\infty}, \mathcal{M}) := \Gamma(X_{\infty}, \mathcal{M}^\mathcal{O}) = \varprojlim \Gamma(X_\beta, (p_{\alpha \beta}^* \mathcal{M}_\alpha)^\mathcal{O} \otimes_{\mathcal{O}_{X_\beta}} \omega_{X_\beta}^{-1}).$$

(4.3) **\mathcal{D}-modules over ind-schemes.**

(4.3.1) **Definition.** Let A be a filtering poset and $(\mathcal{C}_\alpha)_{\alpha \in A}$ be a projective system of categories labelled by A. In other words, for each $\alpha \leq \beta$ we have a functor $j_{\alpha \beta} : \mathcal{C}_\beta \to \mathcal{C}_\alpha$ and for any $\alpha \leq \beta \leq \gamma$ a natural isomorphism $j_{\alpha \beta} \circ j_{\beta \gamma} \Rightarrow j_{\alpha \gamma}$ satisfying the obvious compatibility conditions.

The projective limit $\varprojlim \mathcal{C}_\alpha$ is the category whose objects are systems consisting of objects $x_\alpha \in \mathcal{C}_\alpha$ given for all $\alpha \in A$ and isomorphisms $j_{\alpha \beta}(x_\beta) \to x_\alpha$ given for each $\alpha \leq \beta$ and satisfying the compatibility condition for each $\alpha \leq \beta \leq \gamma$. Morphisms are defined in the obvious way.
(4.3.2) **Definition.** Let X^∞ be an ind-scheme. We say that X^∞ is discrete if it can be represented as $X^\infty = \varprojlim_{\alpha} X^\alpha$ where $(X^\alpha)_{\alpha \in A}$ is a filtering inductive system over Sch_k such that each map $i_{\alpha \beta} : X^\alpha \to X^\beta$, $\alpha \leq \beta$, is a closed embedding.

(4.3.3) **Example.** For any ϕ, U as in (2.7) the ind-scheme $L_n(\phi)$ is discrete.

Let X^∞ be a discrete ind-scheme and (X^α) be as in Definition 4.3.2. We have then the projective system of categories $(O_{X^\alpha}, i_{\alpha \beta}^!)$. We define

$$O_{X^\infty} = \varinjlim_{\alpha} O_{X^\alpha}.$$

If $(E^\alpha, \gamma_{\alpha \beta} : E^\alpha \to i_{\alpha \beta}! E^\beta)$ is an object of O_{X^∞}, then the spaces of global sections $\Gamma(X^\alpha, E^\alpha)$ form an inductive system and we define

$$(4.3.4) \quad \Gamma(X^\infty, E) = \varprojlim_{\alpha} \Gamma(X^\alpha, E^\alpha).$$

We will also use the category \hat{O}_{X^∞} which is the limit of the projective system of categories $(O_{X^\alpha}, i_{\alpha \beta}^!)$. There is a functor

$$O_{X^\infty} \times \hat{O}_{X^\infty} \to O_{X^\infty}, \quad (E, \hat{F}) \mapsto E \otimes \hat{F} = (E^\alpha \otimes_{O_{X^\alpha}} \hat{F}^\alpha).$$

See [BD2, §7.11.4] for more details on O_{X^∞}, \hat{O}_{X^∞}.

We set also $D_{X^\infty} = \varinjlim_{\alpha} (D_{X^\alpha}, i_{\alpha \beta}^!)$. Let i_α be the embedding $X^\alpha \hookrightarrow X^\infty$. Let $i_{\alpha !} : D_{X^\alpha} \to D_{X^\infty}$, $\mathcal{M}^\alpha \mapsto (\alpha, \mathcal{M}^\alpha)$ be the canonical functor. It is exact. There is also the functor

$$D_{X^\infty} \to O_{X^\infty}, \quad i_{\alpha !} \mathcal{M}^\alpha \mapsto (i_{\alpha !} \mathcal{M}^\alpha)^\alpha := (i_{\alpha \beta !} \mathcal{M}^\alpha)^\alpha_{\beta \geq \alpha},$$

see (4.1.2). In particular, to any $\mathcal{M} \in D_{X^\infty}$ we can associate its space of global sections: if \mathcal{M} is represented by $\mathcal{M}^\alpha \in D_{X^\alpha}$, then

$$(4.3.4) \quad \Gamma(X^\infty, \mathcal{M}) := \Gamma(X^\infty, \mathcal{M}^\alpha) = \varprojlim_{\beta \geq \alpha} \Gamma(X^\beta, (i_{\alpha \beta !} \mathcal{M}^\alpha)^\alpha)$$

(4.3.5) **Remark.** (a) We have an exact functor

$$\varinjlim_{\alpha} O_{X^\alpha} \to O_{X^\infty}, \quad (\alpha, E^\alpha) \mapsto (i_{\alpha \beta !} E^\alpha)^\alpha_{\beta \geq \alpha}.$$

The two categories are not equivalent in general.

(b) The category O_{X^∞} is closed by inductive limits.

(c) If the ind-scheme X^∞ is not discrete anymore, the O_{X^α}-module $i_{\alpha \beta !} E^\beta$ may not be quasi-coherent. However the category O_{X^∞} is still well-defined.
Let $X^\infty = \lim_{\rightarrow \alpha} X^\alpha$ be a formally smooth discrete ind-scheme. Following [BD2, Proposition 7.11.8] we define the tangent sheaf of X to be the object $\hat{\Theta}_{X^\infty} \in \hat{O}_{X^\infty}$ such that

\[(4.3.6) \quad \mathcal{E} \otimes \hat{\Theta}_{X^\infty} = \lim_{\rightarrow \alpha} \text{Hom}(\Omega^1_{X^\alpha}, \mathcal{E}^\alpha), \quad \forall \mathcal{E} \in \mathcal{O}_{X^\infty}.
\]

Denoting $i^\alpha : X^\alpha \to X^\infty$ the canonical embedding, we have that $i^\alpha_* \hat{\Theta}_{X^\infty}$ is a locally free \mathcal{O}_{X^α}-module (possibly of infinite rank), see [BD2, Proposition 7.12.13].

\[\text{(4.4) D-modules over ind-pro-schemes.}\] The following definition is inspired by the paper of K. Kato [Kat].

\[\text{(4.4.1) Definition.}\] An ind-scheme X^∞ is called locally compact if it can be represented as

\[X^\infty = \lim_{\rightarrow \alpha \in A} \lim_{\rightarrow \beta \in B} X^\alpha_{\beta},\]

where (X^α_{β}) is a bi-filtering ind-pro-system over Sch^{ft} with the following properties:

1. For each $\beta \in B$ and $\alpha \leq \alpha' \in A$ the structure map $i^{\alpha \alpha'}_{\beta} : X^\alpha_{\beta} \to X^{\alpha'}_{\beta}$ is a closed embedding.

2. For each $\alpha \in A$ and $\beta \leq \beta' \in B$ the structure map $p^{\alpha}_{\beta \beta'} : X^\alpha_{\beta} \to X^\alpha_{\beta'}$ is an affine morphism.

3. For each $\alpha \leq \alpha' \in A$ and $\beta \leq \beta' \in B$ the commutative square

\[
\begin{array}{ccc}
X^\alpha_{\beta'} & \hookrightarrow & X^{\alpha'}_{\beta'} \\
\downarrow & & \downarrow \\
X^\alpha_{\beta} & \hookrightarrow & X^{\alpha'}_{\beta}
\end{array}
\]

is Cartesian.

We denote by $\text{Lc} \subset \text{Isch}$ the full subcategory formed by locally compact ind-schemes.

Let (X^β_{α}) be an ind-pro-system as above. The maps $p^{\alpha}_{\beta \beta'}$ being affine, the projective limit $\lim_{\rightarrow \beta} X^\alpha_{\beta}$ is represented by a compact scheme (possibly of infinite type) denoted by X^∞_{∞}. Similarly, we have the discrete ind-schemes $X^\infty_{\beta} = \lim_{\rightarrow \alpha} X^\alpha_{\beta}$. By definition $X^\infty_{\infty} = \lim_{\rightarrow \alpha} X^\alpha_{\infty}$.

\[\text{(4.4.2) Proposition.}\] For an ind-pro-system satisfying the conditions of (4.4.1) we also have $X^\infty_{\beta} = \lim_{\rightarrow \beta} X^\infty_{\beta} = \lim_{\rightarrow \beta \rightarrow \alpha} X^\alpha_{\beta}$.

Proof: By passing to the functors represented by our (ind-)schemes, we reduce the statement (a) to the following lemma whose proof we leave to the reader.
(4.4.3) **Lemma.** Let \((S_\alpha^\beta)^{\alpha \in A, \beta \in B}\) be a bi-filtering ind-pro-system of sets. Then there is a canonical map

\[c : \lim_{\alpha} \lim_{\beta} S_\alpha^\beta \to \lim_{\beta} \lim_{\alpha} S_\alpha^\beta. \]

If, moreover, all the squares in \((S_\alpha^\beta)^{\alpha \in A, \beta \in B}\) are Cartesian, then \(c\) is an isomorphism.

(4.4.4) **Definition.** We say that a locally compact ind-scheme \(X^\infty\) is smooth if it admits a presentation as in (4.1.1) where:

1. All the \(p_{\alpha^\beta}^{\alpha^\beta}\) are smooth morphisms of relative dimension \(d_{\beta^\beta}\) (independent on \(\alpha\)). There is an element \((\alpha, \beta) \in A \times B\) such that \(X_\beta^\alpha\) is smooth.
2. All the ind-schemes \(X_\beta^\alpha = \lim_{\rightarrow} X_\alpha^\beta\) are formally smooth.

Let \(X^\infty\) be a locally compact smooth ind-scheme and \((X_\alpha^\beta)\) be an ind-pro-system as in (4.4.1), (4.4.4). By Lemma 4.1.4, we have then a double inductive system of categories \((D_{X_\alpha^\beta}, i_{\alpha^\alpha^\prime}^{\alpha^\beta}, p_{\beta^\beta}^{\beta^\beta})\) and we define the category of (right) \(D\)-modules on \(X^\infty\) to be

\[D_{X^\infty} = 2\lim_{\rightarrow} D_{X_\alpha^\beta}. \]

(4.4.5) **Remark.** Although we have defined \(D_{X^\infty}\) as an abstract category, it is impossible, in general, to view its objects as sheaves in a more conventional sense. For example, it is impossible to associate to an object of \(D_{X^\infty}\) a vector space of global sections. Indeed, if such an object \(M\) is represented by some \(M_\beta^\alpha \in D_{X_\alpha^\beta}\), then the spaces of global sections of the coherent sheaves

\[(p_{\beta^\beta}^{\beta^\beta}, i_{\beta^\beta}^{\beta^\beta}, M_\beta^\alpha)^{\mathcal{O}} = p_{\beta^\beta}^{\beta^\beta} (i_{\beta^\beta}^{\beta^\beta}, M_\beta^\alpha)^{\mathcal{O}} \otimes_{\mathcal{O}_{X_\beta^\alpha}} \omega_{X_\beta^\alpha / X_\beta^\alpha} \in \mathcal{O}_{X_\beta^\alpha}. \]

do not form an inductive system because of the twist by the relative canonical class. For a compact smooth pro-scheme it is possible to get around this problem by untwisting by the absolute canonical classes of the terms of the projective system, see (4.2.6). To achieve the same effect in the ind-pro-case one would need to make sense of the (absolute) canonical class of the ind-scheme \(X^\infty\), i.e., of the determinant of the (possibly infinite-dimensional) vector bundle \(\tilde{\Theta}_{X^\infty}\). The impossibility of doing this (“the determinantal anomaly”) is precisely the reason why there is no natural space \(\Gamma(X^\infty, M)\).

(4.4.6) **Example.** If \(X\) is a smooth affine variety admitting an étale map to \(\mathbb{A}^d\), then the ind-scheme \(\mathcal{L}(X)\) is locally compact and smooth. Thus, the category \(D_{\mathcal{L}(X)}\) is well-defined. If \(X\) is no longer affine it admits a covering by affine open sets \(U_\alpha\) admitting an étale map to \(\mathbb{A}^d\). Then, an object of \(D_{\mathcal{L}(X)}\) is a sheaf on \(\mathcal{L}(X)\) whose restriction to \(\mathcal{L}(U_\alpha)\) is an object of \(D_{\mathcal{L}(U_\alpha)}\).
5. De Rham complexes on ind-schemes

(5.1) Reminder on the De Rham complexes. Let X be a smooth algebraic variety over k and $\mathcal{M} \in D_X$ be a right D_X-module. Its de Rham complex $\mathcal{D}R(\mathcal{M})$ is given by

\begin{equation}
\mathcal{D}R^i(\mathcal{M}) = \text{Hom}_{O_X}(\Omega^{-i}_X, \mathcal{M}) = \mathcal{M} \otimes_{O_X} \bigwedge^{-i} \Theta_X, \quad i \leq 0.
\end{equation}

If (x_j) is an étale coordinate system on an open part of X, then the differential is given by the formula $d = \sum \partial x_j \otimes dx_j$ where $dx_j \in \Omega^1_X$ is considered as the contraction operator $\bigwedge^{-i} \Theta_X \to \bigwedge^{-i-1} \Theta_X$. We denote by $\mathcal{D}R(\mathcal{M}) = \Gamma(X, \mathcal{D}R(\mathcal{M}))$ the complex of global sections.

Let $i : X \to Y$ be a closed embedding of smooth varieties and $\mathcal{M} \in D_X$. The embedding (4.1.2) induces an embedding of the de Rham complexes $\mathcal{D}R(\mathcal{M}) \hookrightarrow i^*\mathcal{D}R(i_*\mathcal{M})$ and therefore an embedding of the complexes of global sections:

\begin{equation}
\mathcal{D}R(\mathcal{M}) \hookrightarrow \mathcal{D}R(i_*\mathcal{M}).
\end{equation}

Let $p : X \to Y$ be a smooth morphism of smooth varieties of relative dimension d and $\mathcal{M} \in D_Y$. The embedding (4.1.3) induces an embedding of de Rham complexes which now involves a shift in the degrees:

\begin{equation}
p^*\mathcal{D}R(\mathcal{M}) \hookrightarrow \mathcal{D}R(p^*(\mathcal{M})[d]).
\end{equation}

It is induced by the map

$$p^* \bigwedge^i \Theta_Y \to \omega_{X/Y} \otimes_{O_X} \bigwedge^{i+d} \Theta_X.$$

In particular, we get an embedding of the complexes of global sections

\begin{equation}
\mathcal{D}R(\mathcal{M}) \hookrightarrow \mathcal{D}R(p^*\mathcal{M})[d].
\end{equation}

Note that without passing to the de Rham complexes there is no embedding of the space of sections of \mathcal{M} into that of $p^*\mathcal{M}$. The map (5.1.3) can be seen as a D-module manifestation of the fact that “fermions cancel the determinantal anomaly”.

(5.1.4) Example. Let $Y = \mathbb{A}^d$ with coordinates a_1, \ldots, a_d and $i : X \hookrightarrow Y$ be the embedding of the affine subspace $\{a_1 = \ldots = a_l = 0\}$, $l \leq d$. The algebra $\Gamma(Y, D_Y)$ is just the Heisenberg (Weyl) algebra D_Y generated by a_1, \ldots, a_d and a_1^*, \ldots, a_d^* subject to the relations

$$[a_m, a_n] = [a_m^*, a_n] = 0, \quad [a_m^*, a_n] = \delta_{mn}.$$
The space of global sections $\Gamma(Y, i_\bullet \omega_X)$ is the right D_Y-module

$$\omega_{XY} = D_Y / (a_m^*, a_n; n \leq l < m) D_Y.$$

Let also C_Y be the Clifford algebra generated by odd elements $b_1, ..., b_d, b_1^*, ..., b_d^*$ subject to the relations

$$[b_m, b_n]_+ = [b_m^*, b_n^*]_+ = 0, \quad [b_m^*, b_n]_+ = \delta_{mn}.$$

Denote $CD_Y = C_Y \otimes_k D_Y$ the tensor product algebra. Then the global de Rham complex of $i_\bullet \omega_X$ is identified with the right CD_Y-module

$$DR_{XY} = CD_Y / (a_m^*, a_n, b_p; n \leq l < m, p = 1, ..., d) CD_Y.$$

(5.2) **De Rham complexes for ind-schemes.** Let $X_\infty = \lim_{\alpha \in A} X^\alpha$ be a formally smooth discrete ind-scheme. Denote by $i^\alpha : X^\alpha \hookrightarrow X_\infty$ the canonical embedding. The considerations of (5.1) generalize easily to give the global de Rham complex of any $M \in D_{X_\infty}$. Explicitly, let M have the form $i_\bullet M^\alpha$. Then the ith term of its de Rham complex is

(5.2.1) $$DR^i(M) = \lim_{\beta \geq \alpha} \Gamma(X^\beta, (i_\bullet M^\alpha) \otimes_{O_X} i^{\beta*} \hat{\theta}_{X_\infty}).$$

(5.2.2) **Proposition.** Let $p^\infty : X_\infty \rightarrow Y_\infty$ be a morphism of formally smooth discrete ind-schemes which can be included into a Cartesian square

$$
\begin{array}{ccc}
X^\infty & \xrightarrow{p^\infty} & Y^\infty \\
\downarrow f & & \downarrow g \\
X^0 & \xrightarrow{p^0} & Y^0 \\
\end{array}
$$

where $p^0 : X^0 \rightarrow Y^0$ is a smooth morphism of smooth schemes of finite type, of relative dimension d. Then for any $M \in D_{Y_\infty}$ we have an embedding of the shifted de Rham complexes:

$$DR(M) \hookrightarrow DR(p^\infty M)[d].$$

Proof: The conditions on p^∞ in the proposition are equivalent to the following: we can represent $X^\infty = \lim_{\alpha \in A} X^\alpha, Y^\infty = \lim_{\alpha \in A} Y^\alpha$ with the same filtering poset A and represent p^∞ by a morphism of inductive systems $(p^\alpha : X^\alpha \rightarrow Y^\alpha)$ such that for each $\alpha \leq \beta$ the arising commutative square

$$
\begin{array}{ccc}
X^\alpha & \xrightarrow{i^{\alpha\beta}} & X^\beta \\
p^\alpha \downarrow & & \downarrow p^\beta \\
Y^\alpha & \xrightarrow{i^{\alpha\beta}} & Y^\beta \\
\end{array}
$$
is Cartesian, and each p^α is smooth of relative dimension d. There is a commutative diagram

$$
\begin{array}{c}
0 & \to & \hat{\Theta}_{X^\infty/X^0} & \to & \hat{\Theta}_{X^\infty} & \to & f^*\Theta_{X^0} & \to & 0 \\
& & \| & 1 & \|
0 & \to & p^\infty_*\hat{\Theta}_{Y^\infty/Y^0} & \to & p^\infty_*\hat{\Theta}_{Y^\infty} & \to & f^*p^0_*\Theta_{Y^0} & \to & 0,
\end{array}
$$

where horizontal chains are exact sequences, see [BD2, Lemma 7.12.23]. Thus the map

$$
p^0_* \bigwedge^i \Theta_{X^0} \to \omega_{X^0/Y^0} \otimes \Theta_{X^0}
$$

gives a map

$$(5.2.3) \quad p^\infty_* \bigwedge^i \hat{\Theta}_{Y^\infty} \to f^*\omega_{X^0/Y^0} \otimes \Theta_{X^\infty} \bigwedge^{i+d} \Theta_{X^\infty}.$$

Assume that $M = j^\alpha_* M^\alpha$, where $j^\alpha : Y^\alpha \hookrightarrow Y^\infty$ is the canonical embedding. Using (5.2.3) we get a map

$$
\Gamma(Y^\beta, (j^\alpha_* M^\alpha)^O \otimes \Theta_{Y^\infty} \bigwedge^{i+d} \Theta_{Y^\infty}) \to \Gamma(X^\beta, (p^\beta_* (j^\alpha_* M^\alpha)^O \otimes \Theta_{X^\infty} \bigwedge^{i+d} \Theta_{X^\infty}).
$$

The base change for Cartesian squares gives

$$
p^\beta_* j^\alpha_* M^\alpha \simeq j^\alpha_* p^\alpha_* M^\alpha,$$

see Lemma 4.1.4. Thus there is a map

$$
\Gamma(X^\beta, (p^\beta_* (j^\alpha_* M^\alpha)^O \otimes \Theta_{X^\infty} \bigwedge^{i+d} \Theta_{X^\infty} \bigwedge^{i+d} \Theta_{X^\infty}) \to \Gamma(X^\beta, (i^\beta_* p^\alpha_* M^\alpha)^O \otimes \Theta_{X^\infty} \bigwedge^{i+d} \Theta_{X^\infty}).
$$

We are done. □

(5.3) **De Rham complexes for ind-pro-schemes.** Let X^∞_∞ be a locally compact smooth ind-scheme and M be an object of $D_{X^\infty_\infty}$. We fix an ind-pro-system (X^α_β) for X as in (4.4.1), (4.4.4). We have then the formally smooth discrete ind-schemes X^∞_β and projections $p_\beta : X^\infty_\infty \to X^\infty_\beta$. The category $D_{X^\infty_\infty}$ being the double direct limit of $D_{X^\infty_\beta}$, we can think of M as being of the form $p^\beta_* M_\beta$ for some $M_\beta \in D_{X^\infty_\beta}$. Recall that $d_{\beta/\beta'}$ denotes the relative dimension of the smooth morphism $p^\beta_{\beta'} : X^\infty_\beta \to X^\infty_{\beta'}$, $\beta \leq \beta'$. We choose numbers $d_{\beta/\beta} \in B$, such that $d_{\beta/\beta'} = d_{\beta} - d_{\beta'}$ (this can be
done uniquely up to an overall constant). Proposition 5.2.2 implies then that the shifted global de Rham complexes $DR(p^*\beta\cdot\mathcal{M}_\beta)[d_\beta]$ form an inductive system of complexes of vector spaces and we define the de Rham complex of \mathcal{M} to be

$$\tag{5.3.1} DR(\mathcal{M}) = \lim_{\longrightarrow \beta \geq 0} DR(p^*\beta\cdot\mathcal{M}_\beta)[d_\beta].$$

(5.4) The de Rham complexes on $\mathcal{L}(X)$. We now specialize to the particular case $X_\infty = \mathcal{L}(X)$ where X is a smooth affine algebraic variety over k admitting an étale map ϕ to \mathbb{A}^d. In this case $A = \mathbb{E}, B = \mathbb{N}$ with the terms of the ind-pro-systems being $\mathcal{L}_n^\phi(\phi)$, see (2.6.7). Given an object $\mathcal{M} \in \mathcal{D}_\mathcal{L}(X)$ we associate to it its de Rham complex $CDR(\mathcal{M})$ as in (5.3). Note that it is independent on the choice of an étale map to \mathbb{A}^d because two such maps lead to isomorphic ind-pro-objects in the category \mathbf{Sch}^{ft}, see Proposition 2.7.1(c).

Let now X be an arbitrary smooth algebraic variety over k and \mathcal{M} be an object of $\mathcal{D}_\mathcal{L}(X)$. By covering X with affine open U admitting étale maps to \mathbb{A}^d, we get a complex of sheaves $U \mapsto DR(\mathcal{M}|_\mathcal{L}(U))$ which we denote $\mathcal{D}R(\mathcal{M})$. Recall that we have the diagram

$$\tag{5.4.1} X \overset{p}{\longleftarrow} \mathcal{L}^0(X) \overset{i}{\hookrightarrow} \mathcal{L}(X).$$

Thus, every right \mathcal{D}_X-module \mathcal{N} gives an object $i_*p^*\mathcal{N}$ of $\mathcal{D}_\mathcal{L}(X)$. We write $CDR(\mathcal{N})$ for $\mathcal{D}R(i_*p^*\mathcal{N})$ and call it the chiral de Rham complex of \mathcal{N}. In particular, we write CDR_X for $\mathcal{D}R(i_*p^*\omega_X)$. More generally, denoting $p_n : \mathcal{L}^0(X) \to \mathcal{L}_n^0(X)$ the projection, we can start with any right \mathcal{D}-module \mathcal{N} on the algebraic variety $\mathcal{L}_n^0(X)$: then $i_*p_n^*\mathcal{N}$ is an object of $\mathcal{D}_\mathcal{L}(X)$ and we can form its de Rham complex. It is a complex of sheaves on X.

(5.4.2) Example. Let $X = \mathbb{A}^1$. Then the complex of global sections of CDR_X, i.e., the complex $DR(i_*p^*\omega_{\mathbb{A}^1})$ can be found explicitly as follows.

Let V be the topological k-vector space $k((t))$ and V^* be its topological dual (over k). Denote by $= \langle l, v \rangle$ the canonical pairing of $l \in V^*$ and $v \in V$.

Then V^* can be identified with $k((t))dt$, the space of 1-forms, the pairing between V and V^* being $(f, \omega) \to \text{res}(f : \omega)$. Let D be the Heisenberg algebra generated by V^* and V with $[l, v] = \langle l, v \rangle$ and C be the Clifford algebra generated by V^*, V with $[l, v]_+ = \langle l, v \rangle$. Denote $CD = C \otimes_k D$. Explicitly, $CD = \lim_{\longrightarrow M \geq 0 \overset{\longleftarrow}{\longrightarrow} N \geq 0} CD^M_N$, where CD^M_N is the algebra generated by symbols a_n, b_n for $-N \leq n \leq M$ and a^*_n, b^*_n for $-M \leq n \leq N$, subject to the relations

$$[a_m, a_n] = [a_m^*, a_n^*] = 0, \quad [a_m^*, a_n] = \delta_{m,-n},$$

$$[b_m, b_n] = [b_m^*, b_n^*] = 0, \quad [b_m^*, b_n] = \delta_{m,-n},$$

and
\[[a_m, b_n] = [a_m^*, b_n] = [a_m, b_n^*] = [a_m^*, b_n^*] = 0. \]

As \(M, N \) vary, these algebras obviously form an ind-pro-system. Let \(CD^+ \subset CD \) be the right ideal generated by (possibly infinite) linear combinations of \(a_n, b_n, a_{n+1}^*, b_{n+1}^* \), \(n < 0 \).

(5.4.3) **Proposition.** The de Rham complex \(DR(i_* p^* \omega_{A^1}) \) is identified with the (irreducible) \(CD \)-module \(Vac := CD/CD^+ \).

Remark. Although this description is similar to (5.1.4), there is a difference: here the ideal is generated by \(b_{n+1}^*, b_n \) for \(n < 0 \) while in (5.1.4) all the \(b_n \) are in the ideal. This is because in our present situation we are dealing with a semi-infinite de Rham complex obtained as an inductive limit of usual de Rham complexes with respect to maps shifting the degrees.

Proof: To simplify, we write \(\mathcal{L} = \mathcal{L}(A^1) \), etc. We have

\[
\mathcal{L}^e_M = \text{Spec} \left(k[a_i; -N \leq l \leq M]/(a_l^{1+\varepsilon_l}) \right),
\]
where, for each \(\varepsilon \in \mathbb{E} \), we set \(N_\varepsilon = \max \{ l; \varepsilon \neq 0 \} \). Hence

\[
\mathcal{L}_M = \lim_{\to \mathcal{N}} \text{Spf} \left(k[a_i; 0 \leq l \leq M]/[a_l; -N \leq l < 0] \right).
\]

For any \(M \in \mathbb{N}, N \in \mathbb{N} \cup \{ \infty \} \), we put

\[
Y_M^N = \text{Spec} \left(k[a_i; -N \leq l \leq M] \right).
\]

Then \(\mathcal{L}_M \) is just the limit, over \(N > 0 \), of the formal completions of \(Y_M^N \) along \(Y_M^0 \). Since the de Rham complex with coefficients in the \(\mathcal{D} \)-module of distributions along a subvariety depends only on the completion along this subvariety, we can write

(5.4.4)

\[
DR(i_* p^* \omega_{A^1}) = \lim_{\to \mathcal{M}, \mathcal{N}} DR(i_{M,N,*} \omega_{Y_M^N})[M],
\]

where \(i_{M,N} : Y_M^0 \to Y_M^N \) is the embedding. Note that \(i_{M,N} \) is just the embedding of an affine subspace, so we are in the situation of Example 5.1.4.

Let \(D_M^N \) be the subalgebra in \(CD_M^N \) generated by the allowable \(a_n, a_n^* \) only. It is identified with the algebra of polynomial differential operators on functions of \(a_{-N}, ..., a_M \), with \(a_{-1}^* \) corresponding to \(\partial / \partial a_i \). We see therefore that the \((M,N)\)th term of the inductive system in (5.4.4) is identified with

(5.4.5)

\[
Vac_M^N := CD_M^N/(a_i; i < 0; a_i^*, i \leq 0; b_i^*)CD_M^N.
\]

Denote by \(1_M^N \) the generator of this module. Then for \(N \leq N' \) and any \(M \) the embedding takes \(1_M^N \) to \(1_M^{N'} \), while for \(M \leq M' \) and any \(N \) it takes \(1_M^N \) into \(1_{M', M+1}^N \). This means that the inductive limit of algebras \(CD = \lim_{\to M} \lim_{\to N} CD_M^N \) will act on the inductive limit of vector spaces (5.4.5) and the image of \(1_M^0 \) will be annihilated by \(a_{n+1}^*, b_{n+1}^*, a_n, b_n, n < 0 \). It is equally clear (from comparison of the bases) that the limit is in fact an irreducible \(CD \)-module generated by the above vector. \(\square \)
In this section we construct, in a geometric way, the structure of a vertex algebra on the chiral de Rham complex \mathcal{CDR}_X and compare it with the construction of [MSV].

(6.1) Factorization algebras, and De Rham complexes on $\mathcal{L}(X)_{C^I}$. Let C be a smooth curve, as before. For any non-empty finite set I we set $U^{(I)} = U(I/I)$, $\Delta^{(I)} = \Delta(I/I)$ and $j^{(I)} = j(I/I)$ (see §3.2). Hereafter we write U, Δ, j instead of $U(I/I), \Delta(I/I), j(I/I)$ if I has cardinal 2. We will need the following notation: for any (possibly empty) I let \hat{I} = $I \sqcup \heartsuit$ be the corresponding pointed set. Any surjection $\hat{I} \twoheadrightarrow \hat{J}$ maps \heartsuit to \heartsuit. Let us recall the definition of a factorization algebra, see [BD1, §3.4].

(6.1.1) Definition. (a) Let E be a quasi-coherent sheaf on C. A structure of a factorization algebra on E is a collection of quasi-coherent O_{C^I}-modules E_I for each non-empty finite set I, such that
- an isomorphism of O_{C^I}-modules $\Delta^{(J/I)}*E_J \sim \sim E_I$ for every $J \rightarrow I$, compatible with the compositions of $J \rightarrow I$,
- an isomorphism of $O_{U(J/I)}$-modules
 $$\kappa^{(J/I)} : j^{(J/I)}*(\boxtimes_I E_J) \sim \sim j^{(J/I)}*E_J$$
for every $J \rightarrow I$, compatible with the compositions of $J \rightarrow I$,
- a global section $1_E \in H^0(C, E)$ such that for every $f \in E$ one has $1_E \boxtimes f \in E_{\{1, \heartsuit\}} \subset j_*j^*(E \boxtimes \heartsuit)$ and $\Delta^*(1_E \boxtimes f) = f$.

(b) A module over E is a quasi-coherent sheaf M on C with a collection of quasi-coherent O_{C^I}-modules M_I for each non-empty finite set I, such that M_I is flat along the diagonal strata, $M_{\{\heartsuit\}} = M$, and
- an isomorphism of O_{C^I}-modules $\Delta^{(J/I)}*M_J \sim M_I$ for every $J \rightarrow I$, compatible with the compositions of $J \rightarrow I$,
- an isomorphism of $O_{U(J/I)}$-modules
 $$\kappa^{(J/I)} : j^{(J/I)}*((\boxtimes_I M_J) \boxtimes M_{\heartsuit}) \sim \sim j^{(J/I)}*M_J$$
for every $J \rightarrow I$, compatible with the compositions of $J \rightarrow I$, and such that
- for any $f \in M$ one has $1_E \boxtimes f \in M_{\{1, \heartsuit\}} \subset j_*j^*(E \boxtimes M)$ and $\Delta^*(1_E \boxtimes f) = f$.

We have the following immediate global counterpart of (5.4).

(6.1.2) Proposition. For any right D_X-module M there is a unique complex $\mathcal{CDR}(M)_{C^I}$ of sheaves of O_{C^I}-modules on $X \times C^I$ such that:
(a) the fiber of $\mathcal{CDR}(M)_C$ at a point of the curve C is isomorphic to the complex $\mathcal{CDR}(M)$,

(b) the collection $(\mathcal{CDR}(\omega_X)_C)$ is a factorization algebra on the curve C. The collection $(\mathcal{CDR}(M)_C)$ is a $(\mathcal{CDR}(\omega_X)_C)$-module.

Proof: A choice of an element $i_0 \in I$ defines a morphism of schemes $p_{i_0} : \mathcal{L}^0(X)_C \to X$ as follows. Recall that $\mathcal{L}^0(X)_C$ represents the functor $\lambda^0_{X,C}$ which takes a scheme S into the set of pairs (f, ρ) where $f : S \to C^I$ is a morphism of schemes and ρ is a morphism of $\Gamma(f)$, the formal neighborhood of $\Gamma(f) \subset S \times C$, into X. Now, restricting ρ onto the graph of f_{i_0}, which is a subscheme in $\Gamma(f)$, isomorphic to S, we get a natural transformation from $\lambda^0_{X,C}$ into the functor represented by X, so a morphism p_{i_0}.

Denote by $i : \mathcal{L}^0(X)_C \to \mathcal{L}(X)_C$ the embedding. For any $M \in \mathcal{D}_X$, we form the object $i_* p_{i_0}^* M \in \mathcal{D}_{\mathcal{L}(X)_C}$. The general construction of (5.3), applied to the restrictions of $i_* p_{i_0}^* M$ onto open subsets in $X \times C^I$, gives then a complex of sheaves on $X \times C^I$ which we denote $\mathcal{CDR}(M)_C$.

Notice that in the particular case where $M = \omega_X$ the object $p_{i_0}^* M$ of the category $\mathcal{D}_{\mathcal{L}^0(X)_C}$ is independent (up to a unique isomorphism) of the choice of $i_0 \in I$. Indeed, objects of the latter category are, by definition, pairs (n, N) where N is a right \mathcal{D}-module on $\mathcal{L}^0_n(X)_C$, and two such pairs (n, N) and (n', N') are isomorphic, if the pullbacks of N and N' to $\mathcal{L}^0_m(X)_C$, $m \geq n, n'$ are isomorphic as right \mathcal{D}-modules. Since the pullback for right \mathcal{D}-modules is just the \mathcal{O}-module pullback tensored with the relative canonical class, $p_{i_0}^* \omega_X$ is represented by $(n, \omega_{\mathcal{L}^0_n(X)_C})$ for any n, and thus is clearly independent on i_0.

Then, the general construction in (5.3) gives a complex of sheaves on $X \times C^I$, denoted by $\mathcal{CDR}(\omega_X)_C$.

To prove Claim (a) it is sufficient to observe that the fiber of $\mathcal{L}(X)_C$ at a point $0 \in C$ is isomorphic to $\mathcal{L}(X)$. Recall that $\mathcal{L}(X)_C$ represents the contravariant functor $\lambda_{X,C} : \mathbf{Sch} \to \mathbf{Sets}$ such that $\lambda_{X,C}(S)$ is the set of pairs (f, ρ) such that

$$f \in \text{Hom}_{\mathbf{Sch}}(S, C) \quad \text{and} \quad \rho \in \text{Hom}_{\mathcal{L}_{\text{Br}}}(\Gamma(f), \mathcal{K}_f^\vee).$$

Thus the fiber at 0 represents the subfunctor

$$S \mapsto \{ (f, \rho) \in \lambda_{X,C}(S) \mid f(S)_{\text{red}} = \{0\} \}.$$

Let t be a local coordinate on C centered at 0. For any f as above we have $(\Gamma(f), \mathcal{K}_f^\vee) = (S, O_S((t)^n))$. Note that the isomorphism of $\mathcal{L}(X)$ and the fiber of $\mathcal{L}(X)_C$ at 0 is compatible with the ind-pro-systems in (2.7), (3.9).

Claim (b) follows from the fact that $\mathcal{L}^0(X)_C$ and $\mathcal{L}(X)_C$ form factorization algebras, that the inclusion of the former into the latter is a morphism of factorization
algebras and that passing to the de Rham complex takes Cartesian products of (ind-)schemes to tensor products of vector spaces.

(6.2) Reminder on chiral and vertex algebras. Let us recall the basic facts on chiral and vertex algebras. See [BD1, §3], [K] for more details. Let \(C \) be a smooth curve, as before. For any right \(\mathcal{D}_C \)-module \(\mathcal{M} \) the projection formula yields an isomorphism of right \(\mathcal{D}_C \)-modules \(\Delta_\ast \Delta^\ast (\omega_C \boxtimes \mathcal{M}) \cong \Delta \ast \mathcal{M} \). Let

\[
\varepsilon_\mathcal{M} : j_\ast j^\ast (\omega_C \boxtimes \mathcal{M}) \to \Delta \ast \mathcal{M}
\]

be the composition of the projection \(j_\ast j^\ast (\omega_C \boxtimes \mathcal{M}) \to j_\ast j^\ast (\omega_C \boxtimes \mathcal{M})/(\omega_C \boxtimes \mathcal{M}) \) and of the isomorphism \((j_\ast j^\ast (\omega_C \boxtimes \mathcal{M}))/(\omega_C \boxtimes \mathcal{M}) \cong \Delta_\ast \Delta^\ast (\omega_C \boxtimes \mathcal{M}) \cong \Delta \ast \mathcal{M} \).

(6.2.1) Definition. (a) A chiral algebra over \(C \) is a right \(\mathbb{Z}/2\mathbb{Z} \)-graded \(\mathcal{D}_C \)-module \(\mathcal{A} = \mathcal{A}^0 \oplus \mathcal{A}^1 \) with two even maps \(\mu_\mathcal{A} \in \text{Hom}_{\mathcal{D}_C^2}(j_\ast j^\ast (\mathcal{A} \boxtimes \mathcal{A}), \Delta \ast \mathcal{A}) \) and \(1_\mathcal{A} \in \text{Hom}_{\mathcal{D}_C}(\omega_C, \mathcal{A}^0) \) such that

- the map \(\mu_\mathcal{A}(1_\mathcal{A}, id_\mathcal{A}) \) coincides with \(\varepsilon_\mathcal{A} \),
- the map \(\mu_\mathcal{A} \) is antisymmetric, and it satisfies the Jacobi identity.

(b) A module over a chiral algebra \(\mathcal{A} \) over \(C \) is a right \(\mathbb{Z}/2\mathbb{Z} \)-graded \(\mathcal{D}_C \)-module \(\mathcal{M}_C \) with an even map \(\mu_\mathcal{M} \in \text{Hom}_{\mathcal{D}_C^2}(j_\ast j^\ast (\mathcal{A} \boxtimes \mathcal{M}), \Delta \ast \mathcal{M}) \) such that

- the map \(\mu_\mathcal{M}(1_\mathcal{A}, id_\mathcal{M}) \) coincides with \(\varepsilon_\mathcal{M} \),
- the map \(\mu_\mathcal{M} \) is compatible with \(\mu_\mathcal{A} \).

For any factorization algebra on \(\mathcal{E} \), each sheaf \(\mathcal{E}_I \) has a canonical left \(\mathcal{D}_{C^I} \)-module structure, compatible with the factorization structure, such that the section \(1_\mathcal{E} \) is a horizontal (see [BD1, Proposition 3.4.8]). It is proved in [BD1, §3.4.9] that the right \(\mathcal{D}_C \)-module \(\mathcal{E}^r := \mathcal{E} \boxtimes_{\mathcal{D}_C} \omega_C \) is a chiral algebra over \(C \). The map \(\mu_\mathcal{A} \) is the composition of the chain of maps

\[
j_\ast j^\ast (\mathcal{E}^r \boxtimes \mathcal{E}^r) = j_\ast j^\ast \omega_C^2 \boxtimes_{\mathcal{O}_{C^2}} \mathcal{E}_{(1,2)} \to \Delta \ast \omega_C \boxtimes_{\mathcal{O}_{C^2}} \mathcal{E}_{(1,2)} = \Delta \ast \mathcal{E}^r.
\]

Here the 1-st equality is the 2-nd isomorphism in 6.1.1.(a), the second arrow is \(\varepsilon_{\omega_C} \), and the last equality results from the 1-st isomorphism in 6.1.1.(a) and the projection formula for \(\Delta \).

(6.2.2) Definition. (a) A vertex algebra is a \(k \)-supervector space \(V \) with an even vector \(1_V \in V \), an even endomorphism \(\partial_V \in \text{End}(V) \), and an even linear map \(V \to \text{End}(V)[[z, z^{-1}]] \), \(a \mapsto a(z) = \sum_n a_n z^{-n-1} \). These data satisfy the following axioms:

- \(\partial_V(1_V) = 0 \), \(1_V(z) = id_V \), \(a_n(1_V) = 0 \) if \(n \geq 0 \), \(a_{-1}(1_V) = a \),
- \([\partial_V, a(z)] = \partial_z a(z) \),
- we have \((z - w)^N [a(z), b(w)] = 0 \) for \(N >> 0 \).

We will also assume that for all elements \(a, b \in V \) we have \(a_n(b) = 0 \) for \(n >> 0 \).
(b) A module over a vertex algebra V is a k-supervector space W with an even endomorphism $\partial^W \in \text{End}(W)$, and an even linear map $V \to \text{End}(W)[[z, z^{-1}]]$, $a \mapsto a^W(z) = \sum_n a_n^W z^{-n-1}$. These data satisfy the following axioms:
- $1^W_V(z) = \text{id}_W$,
- $[\partial^W, a^W(z)] = \partial_z a^W(z) = (\partial_V a)^W(z)$,
- (Borcherds identity)
\[
\frac{z_0^{-1} \delta(z_1 - z_2)}{z_0} a^W(z_1) b^W(z_2) - z_0^{-1} \delta\left(\frac{-z_2 + z_1}{z_0}\right) b^W(z_2) a^W(z_1) = z_2^{-1} \delta\left(\frac{z_1 - z_0}{z_2}\right) (a(z_0)(b))^W(z_2),
\]
where
\[
z_0^{-1} \delta\left(\frac{z_1 - z_2}{z_0}\right) = \sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{Z}} (-1)^m \binom{n}{m} z_0^{-n-1} z_1^{-n-m} z_2^m.
\]
Assume that C is the formal disk $\text{Spec} k[[t]]$. Let 0 be the closed point of C. Let $t_1 = t \otimes 1$, $t_2 = 1 \otimes t$ be the coordinates on C^2. We have the following basic fact, due to Beilinson-Drinfeld (see [HL], [B] for details). Fix a vertex algebra V. The $k[[t]]$-module $V[[t]]$ has a unique structure of vertex algebra such that
\[
\partial_{V[[t]]} = \partial_V + \partial_t, \quad 1_{V[[t]]} = 1_V, \quad (at^n)(z) = (t + z)^n a(z),
\]
for any elements $a \in V$, $n \in \mathbb{Z}$. Let A_V be the sheaf on C associated to the $k[[t]]$-module $V[[t]] \cdot dt$. The sheaf A_V has a unique structure of a chiral algebra over C such that the field ∂_t acts on A_V as the operator $\partial_{V[[t]]}$, and such that the chiral product is induced by the map
\[
V \otimes V[[t_1, t_2]]((t_1 - t_2)^{-1}) \to V[[t_1, t_2]]((t_1 - t_2)^{-1})/V[[t_1, t_2]]
\]
which takes the element $f(t_1, t_2)a \boxtimes b$, with $f(t_1, t_2) \in k(t_1 - t_2)$ and $a, b \in V$, to the element $f(t_1, t_2)a(t_1 - t_2)(b) + V[[t_1, t_2]]$. Conversely, we have the following.

(6.2.3) Lemma. Let A be a chiral algebra on a smooth curve C. Assume that A is a locally free \mathcal{O}_C-module. Fix a point $0 \in C$ and a formal coordinate t at 0. The fiber, V, of A at 0 has a unique structure of a vertex algebra such that the chiral algebra A_V is isomorphic to $A|_{\text{Spec} k[[t]]}$.

Thus, Proposition 6.1.2 gives the following.

(6.2.4) Theorem. The De Rham complex $\mathcal{CDR}(\omega_X)$ is a sheaf of vertex algebras on X. For any right D_X-module M the De Rham complex $\mathcal{CDR}(M)$ is a sheaf of $\mathcal{CDR}(\omega_X)$-modules.

(6.3) The vacuum module and the chiral de Rham complex. Here we recall the original construction of the chiral de Rham complex of X as given in [MSV].
One first considers the case \(X = \mathbb{A}^d \). Similarly to Example 5.4.2, let \(CD_{/M}_N \) be the \(\mathbb{Z}/2\mathbb{Z} \)-graded \(k \)-algebra generated by even elements \(a_{in}, a_{in}^* \) and odd elements \(b_{in}, b_{in}^* \), with \(i = 1, \ldots, d \) and \(-N \leq n \leq M \) for \(a_{in}, b_{in} \) and \(-M \leq n \leq N \) for \(a_{in}^*, b_{in}^* \), modulo the relations
\[
\begin{align*}
a_{in}^* a_{jn} - a_{jn} a_{in}^* &= \delta_{ij} \delta_{m,-n}, \\
a_{im} a_{jn} - a_{jn} a_{im} &= a_{im}^* a_{jn}^* - a_{jn}^* a_{im} = 0, \\
b_{im}^* b_{jn} + b_{jn} b_{im} &= \delta_{ij} \delta_{m,-n}, \\
b_{im} b_{jn} + b_{jn} b_{im} &= b_{im}^* b_{jn}^* + b_{jn}^* b_{im} = 0.
\end{align*}
\]

We further require that the letters \(a \) and \(b \) commute in all cases. Let \(CD = \lim_{\rightarrow M} CD_{/M}_N \). Let \(CD^+ \subset CD \) be the right ideal generated by (possible infinite) linear combinations of \(a_{i,n-1}, b_{i,n-1}, a_{in}, b_{in} \) with \(n > 0 \) (be careful to the change of normalization with respect to (5.4.2)). We consider the vacuum module \(\text{Vac} = CD/CD^+ \). The vacuum vector is the image in \(\text{Vac} \) of the unity in \(CD \). Let us denote it by 1. The \(CD \)-module \(\text{Vac} \) has a structure of a vertex algebra such that the generating series associated to the 0- and (-1)-modes of \(a_i, b_i \) are given by:
\[
(a_{i,-1})(z) = \sum_{n \in \mathbb{Z}} a_{in} z^{-n-1}, \quad (a_{i0})(z) = \sum_{n \in \mathbb{Z}} a_{in} z^{-n},
\]
and similarly with \((b_{i,-1})(z), (b_{i0})(z) \). The generating series associated to other modes are obtained by differentiation, using the action of \(\partial \) given by
\[
\partial(a_{i,n}) = na_{i,n-1}, \quad \partial(a_{in}) = (n-1)a_{i,n-1},
\]
and similarly for \(b_{i,n}, b_{in} \). The map
\[
\delta = \sum_{i,n} a_{in} b_{i,-n} : \text{Vac} \to \text{Vac}
\]
is a derivation of vertex algebras with zero square.

Setting \(x_i = a_{i0} \) makes \(\text{Vac} \) into a module over \(k[x_1, \ldots, x_n] \), the coordinate ring of \(\mathbb{A}^d \). We denote this ring shortly by \(k[x] \). In [MSV] the authors consider the quasicoherent sheaf \(\Omega^{ch}_{\mathbb{A}^d} := \text{Vac} \otimes_{k[x]} \mathcal{O}_{\mathbb{A}^d} \) corresponding to \(k[x] \)-module \(\text{Vac} \) and extend the vertex algebra structure to it. One also has a vertex algebra structure on
\[
\text{Vac}^\wedge := \text{Vac} \otimes_{k[x]} k[[x_i]].
\]

Now let \(X \) be a smooth algebraic variety, \(U \subset X \) be an open subset and \(\phi : U \to \mathbb{A}^d \) be an étale map. Let 0 \in U be a point such that \(\phi(0) = 0 \) and let \(X^\wedge \) be the formal neighborhood of 0 in \(X \). Then \(x'_i = \phi^* x_i \) are the coordinates on \(X^\wedge \).

In [MSV] the authors construct a sheaf \(\Omega^{ch}_X \) of differential vertex algebras on \(X \) as the unique such sheaf satisfying the following condition. For any \(\phi \) as above, there is an isomorphism of vertex algebras
\[
\phi_{ch} : \Omega^{ch}_X \otimes_{\mathcal{O}_X} \mathcal{O}_X^\wedge \to \phi^* \Omega^{ch}_{\mathbb{A}^d} \otimes_{\mathcal{O}_{\mathbb{A}^d}} \mathcal{O}_{\mathbb{A}^d} = \text{Vac}^\wedge
\]
which coincides, for \(U \subset \mathbb{A}^d \), with the automorphism of \(\text{Vac}^\wedge \) introduced in [MSV, Theorem 3.7]. Our aim in the rest of this paper is to prove the following fact.
(6.3.1) Theorem. There is an isomorphism of sheaves of differential vertex algebras $\Omega^d_{X} \simeq \mathcal{D}\mathcal{R}(\omega_{X})$.

(6.4) The factorization algebra associated to the vacuum module. As the first step in proving Theorem 6.3.1, let us describe the factorization algebra corresponding to $\text{Vac} = \Gamma(A^d, \Omega^d_{\mathbb{A}^d})$. In this, we follow [BD1], [G]: the constructions below are a particular instance of the general concept of the chiral enveloping algebra of a Lie*-algebra. For the convenience of the reader we give a self-contained presentation.

Fix a smooth projective curve C. Recall that ω_{C} is the sheaf of 1-forms on C (in the Zariski topology). Let I be a finite set. Consider the product $C^I \times C$ and its projections p,q to C^I and C. Let us specialize the notation of (3.3) to the case when $S = C^I$ and $f_I = \text{Id}: C^I \to C^I$. We denote the subvariety $\Gamma(f_I)$ simply by

$$\Gamma_I = \{(c_i), x) \in C^I \times C | x \in \{c_i\}\}.$$

Similarly we write $O_{\Gamma_I}^\wedge, K_{\Gamma_I}^\wedge$ for $O_{f_I}^\wedge, K_{f_I}^\wedge$. Set

$$O[[I]] = p_* O_{\Gamma_I}^\wedge, \quad O((I)) = p_* K_{\Gamma_I}^\wedge,$$

$$\omega[[I]] = p_* (O_{\Gamma_I}^\wedge \otimes q^* \omega_{C}), \quad \omega((I)) = p_* (K_{\Gamma_I}^\wedge \otimes q^* \omega_{C}).$$

These are (non-quasicoherent) sheaves of O-modules on C^I. Informally, the “fiber” of, say, $\omega((I))$ at a point $(c_i) \in C^I$ is the space of sections of ω_{C} on the punctured formal neighborhood of the set $\{c_i\}$, and similarly in the other cases. Note that the sum of residues defines a morphism

$$\text{Res}_{c_i} : \omega((I)) \to O_{C^I},$$

trivial on $\omega[[I]]$.

Consider the super-vector space $k^{d|d}$ with basis consisting of even vectors $v_1, ..., v_d$ and odd vectors $v_{d+1}, ..., v_{2d}$. The sheaf

$$\mathfrak{h}^\wedge_I = \left((O((I)) \oplus \omega((I))) \otimes k^{d|d} \right) \oplus O_{C^I} \cdot \gamma$$

is then a Lie superalgebra in the category of left D_{C^I}-modules, with respect to the super-bracket

$$[O^{d|d}_{C^I}, O^{d|d}_{C^I}] = [\omega^{d|d}_{C^I}, \omega^{d|d}_{C^I}] = 0,$$

$$[v_i \otimes f, v_j \otimes \omega] = \delta_{ij} \text{Res}_{c_i}(f \omega) \cdot \gamma, \quad \forall f \in O_{C}, \forall \omega \in \omega_{C},$$
and with γ being a central element. Similarly, let $\mathfrak{h}^\wedge_1^+ \subset \mathfrak{h}^\wedge_1$ be the super-Lie subalgebra $(\mathcal{O}[[t]] \oplus \omega[[t]]) \otimes k^{d,d}$. For any surjective map $J \to I$ there are obvious isomorphisms

$$\Delta^{(J/I)*}\mathfrak{h}^\wedge_1 \cong \mathfrak{h}^\wedge_1, \quad j^{(J/I)*}(\prod_I \mathfrak{h}^\wedge_1) \cong j^{(J/I)*}\mathfrak{h}^\wedge_1.$$

Let \mathcal{U}_{Ci}^\wedge be the quotient of the associative enveloping algebra of \mathfrak{h}^\wedge_1, in the category of left \mathcal{D}_{Ci}-modules, by the right ideal generated by $\gamma - 1$. Consider the sheaf $\mathcal{V}ac_{Ci} = \mathcal{U}_{Ci}^\wedge / \mathcal{U}_{Ci}^{\wedge +}$, where $\mathcal{U}_{Ci}^{\wedge +} \subset \mathcal{U}_{Ci}^\wedge$ is the right ideal generated by $\mathfrak{h}^\wedge_1^{+,}$. The collection $(\mathcal{V}ac_{Ci})$ is clearly a factorization algebra. To simplify we may omit the subscript C, writing $\mathcal{V}ac$ instead of $\mathcal{V}ac_C$.

(6.4.1) Lemma. $\mathcal{V}ac$ is isomorphic, as a vertex algebra, to the fiber of the chiral algebra $\mathcal{V}ac$ at any point of C.

Proof: Fix a point $0 \in C$ and a formal coordinate t at 0. Let $D = \text{Spec } k[[t]]$ be the formal neighborhood of 0 in C. We compute the chiral product, μ, on the right \mathcal{D}_{Ci}-module $\mathcal{V}ac^\times := \mathcal{V}ac \otimes_{\mathcal{O}_C} \omega_C$. The scheme $C \times C$ is equipped with the coordinates $t := t \otimes 1, z := 1 \otimes t$. The \mathcal{O}_C-module $\mathfrak{h}^\wedge_{1(1)}$ is locally free, such that

$$\Gamma(D, \mathfrak{h}^\wedge_{1(1)}) = (k^{d,d} \oplus k^{d,d}dz)[[z-t,t]](z-t)^{-1} \oplus k[[t]] \cdot \gamma.$$

Thus the map

$$\begin{align*}
(z-t)^m v_i &\mapsto a^*_{im}, & (z-t)^m v_{i+1} &\mapsto b^*_{im}, \\
(z-t)^{m-1}v_idz &\mapsto a_{im}, & (z-t)^{m-1}v_{i+1}dz &\mapsto b_{im}
\end{align*}$$

extends uniquely to an isomorphism of $k[[t]]$-vector spaces $\Gamma(D, \mathcal{U}^\times_C) \cong \mathcal{D}[t]$. Let $1,1_{C},1_{C^2}$ be the vacuum elements of $\mathcal{V}ac, \mathcal{V}ac, \mathcal{V}ac_{C^2}$. We consider the unique isomorphism of $\mathcal{D}[t]$-modules $\Gamma(D, \mathcal{V}ac) \cong \mathcal{V}ac[[t]]$ such that $1_C \mapsto 1$.

The scheme $C^2 \times C$ is equipped with the local coordinates $t_i := t_i \otimes 1, z := z \otimes 1 \otimes t, i = 1,2$. Put $R = k[[t_1,t_2]]$. The \mathcal{O}_{C^2}-module $\mathfrak{h}^\wedge_{1(1,1)}$ is locally free, such that

$$\Gamma(D^2, \mathfrak{h}^\wedge_{1(1,1)}) = (R^{d,d} \oplus R^{d,d}dz)[[z-t_1,z-t_2]]((z-t_1)^{-1},(z-t_2)^{-1}) \oplus R \cdot \gamma.$$

Let T_1 (resp. T_2) be the Taylor expansion

$$R[[z-t_1,z-t_2]]((z-t_1)^{-1},(z-t_2)^{-1},(t_1-t_2)^{-1}) \to R((z-t_2))((z-t_1))$$

(resp. $R((z-t_1))((z-t_2))$). The factorization map

$$j_*j^*(\mathfrak{h}^\wedge_{1(1,1)}) \cong j_*j^*(\mathfrak{h}^\wedge_{1(1)} \times \mathfrak{h}^\wedge_{1(1)})$$
takes an element $a \in \Gamma(D^2, j_* j^*(\mathfrak{h}^\wedge_{(1,2)}))$ to $(T_1(a), T_2(a))$. It induces an action of the sheaf of Lie algebras $j_* j^*(\mathfrak{h}^\wedge_{(1,2)})$ on $j_* j^*(\mathfrak{Vac}^r \boxtimes \mathfrak{Vac}^r)$. The factorization map

$$j_* j^*(\mathfrak{Vac}^r \boxtimes \mathfrak{Vac}^r) \xrightarrow{\sim} j_* j^*(\mathfrak{Vac}_{C,2}^r)$$

is the unique morphism of sheaves of $j_* j^*(\mathfrak{h}^\wedge_{(1,2)})$-modules taking $1_C \boxtimes 1_C$ to $1_{C,2}$.

The chiral product μ is the composition of the chain of maps

$$j_* j^*(\mathfrak{Vac}^r \boxtimes \mathfrak{Vac}^r) \xrightarrow{\sim} j_* j^*(\mathfrak{Vac}_{C,2}^r) \rightarrow j_* j^*(\mathfrak{Vac}_{C,2}^r) / \mathfrak{Vac}_{C,2}^r = \Delta \Delta^* (\mathfrak{Vac}_{C,2}^r) = \Delta^* (\mathfrak{Vac}^r).$$

The right $\Gamma(D^2, \mathcal{D}_{C,2})$-module $\Gamma(D^2, \Delta^* (\mathfrak{Vac}^r))$ is spanned by the symbols $a(t)\delta(t_1 - t_2)$, for any $a(t) \in \Gamma(D, \mathfrak{Vac}^r)$, modulo the relations

$$(a(t)\delta(t_1 - t_2))(\partial_{t_1} + \partial_{t_2}) = (a(t)\partial_t)\delta(t_1 - t_2),$$

$$(a(t)\delta(t_1 - t_2))f(t_1, t_2) = (a(t)f(t, t))\delta(t_1 - t_2),$$

for any $f(t_1, t_2) \in k[[t_1, t_2]]$. Fix $b \in \Gamma(D, \mathfrak{Vac}^r)$. Note that

$$T_2((z - t_1)^{-1}) = -\sum_{m \geq 0} (t_1 - t_2)^{-m-1}(z - t_2)^m.$$

Hence,

$$\mu((t_1 - t_2)^n(a^{*}_{i,-1}1_C) \boxtimes b) = \mu((a^{*}_{i,-1}1_C) \boxtimes b)(t_1 - t_2)^n = \sum_{m \in \mathbb{Z}} a^{*}_{i,m} b \delta(t_1 - t_2)\partial_{t_2}^{(m-n)}.$$

Similarly, we get

$$\mu((t_1 - t_2)^n(b^{*}_{i,-1}1_C) \boxtimes b) = \sum_{m \in \mathbb{Z}} b^{*}_{i,m} b \delta(t_1 - t_2)\partial_{t_2}^{(m-n)},$$

$$\mu((t_1 - t_2)^n(a_{i0}1_C) \boxtimes b) = \sum_{m \in \mathbb{Z}} a_{i,m} b \delta(t_1 - t_2)\partial_{t_2}^{(m-n)},$$

$$\mu((t_1 - t_2)^n(b_{i0}1_C) \boxtimes b) = \sum_{m \in \mathbb{Z}} b_{i,m} b \delta(t_1 - t_2)\partial_{t_2}^{(m-n)}.$$
taking \((t_1 - t_2)^n (a^*_{t_{i-1}}) \boxtimes b\) to
\[
\sum_{m \in \mathbb{Z}} a^*_{im} b \partial_{t_2}^{(m-n)} \delta(t_1 - t_2),
\]
where \(\partial_{t_2}^{(m)} \delta(t_1 - t_2)\) stands for the element \((t_1 - t_2)^{-m-1} + k[[t_1, t_2]]\), and similarly for \(b^*_{d_{-1}}, a_i, b_i\). Thus, to prove that the chiral algebra \(\mathrm{Vac}^r\) is isomorphic to the chiral algebra on \(D\) built from \(\mathrm{Vac}\) as in §6.2 it is sufficient to check that the corresponding right \(\mathcal{D}_C\)-modules coincide. See [BD1, Remark 3.4.8(i)] for an elementary definition of the the canonical left \(\mathcal{D}_C\)-module structure on \(\mathrm{Vac}\). By construction we have \(\partial_{t}(1_C) = 0\). It is easy to see that \(\partial_{t}(a^*_{im} 1_C) = ma^*_{im} 1_C\) for all \(m < 0\). Hence, the operators \(\partial\) on \(\Gamma(D, \mathrm{Vac}^r)\) and \(\mathrm{Vac}[[t]]\) coincide on \(a^*_{im}\).

\(\square\)

\textbf{6.5) The action of étale morphisms I.} To prove Theorem 6.3.1 in full generality, it suffices to establish the following lemma.

\textbf{(6.5.1) Lemma.} (a) For any affine open set \(U \subset X\) and an étale map \(\phi : U \to \mathbb{A}^d\), there is an isomorphism of differential vertex algebras \(F_{\phi} : \phi^* \Omega^\text{ch}_{\mathbb{A}^d, \mathcal{L}} \sim k[X^\wedge] \otimes \mathcal{O}_X \mathcal{C}_{\mathcal{D}} \mathcal{R}(\mathcal{L})\).

(b) If \(U \subset \mathbb{A}^d\), then \(F_{\phi}^{-1} \circ F_{\text{Id}} = \phi_{\text{ch}}\) is the isomorphism constructed in [MSV].

The plan of the proof is as follows. We will construct an isomorphism \((F_I)\) of factorization algebras and obtain \(F_{\phi}\) as the fiber of \(F_{\{1\}}\) at a point of \(C\). It is enough to assume that \(C = \mathbb{A}^1\). Set

\[
\mathcal{C}_{\mathcal{D}} \mathcal{R}(\mathcal{L}) \mathcal{I} = \Gamma(\mathbb{A}^1, \mathcal{U}_{C^1}), \quad \mathcal{C}_{\mathcal{D}} \mathcal{R}(\mathcal{L}) \mathcal{I}^+ = \Gamma(\mathbb{A}^1, \mathcal{U}_{\mathcal{C}^1}^+),
\]

\[
\mathcal{D}_{\mathcal{Q}}(\mathcal{O}) = \Gamma(\mathcal{L}(U)_{\mathcal{A}^1}, \mathcal{D}_{\mathcal{Q}}(\mathcal{O})_{\mathcal{A}^1}), \quad \mathrm{Vac}_{\mathcal{I}} = \Gamma(\mathbb{A}^1, \mathcal{V}_{\mathcal{C}^1}).
\]

Thus, \(\mathrm{Vac}_{\mathcal{I}} = \mathcal{C}_{\mathcal{D}} \mathcal{R}(\mathcal{L}) \mathcal{I} / \mathcal{C}_{\mathcal{D}} \mathcal{R}(\mathcal{L}) \mathcal{I}^+\). We first construct a right action

\textbf{(6.5.2)} \[
\mathcal{D}_{\mathcal{Q}}(\mathcal{O})_I \otimes \mathcal{C}_{\mathcal{D}} \mathcal{R}(\mathcal{L}) \mathcal{I} \to \mathcal{D}_{\mathcal{Q}}(\mathcal{O})_I
\]

commuting with the factorization maps. To prove that the factorization algebras \((\mathrm{Vac}_{\mathcal{I}}), (\mathcal{C}_{\mathcal{D}} \mathcal{R}(\mathcal{O})_{\mathcal{A}^1})\) are isomorphic, it is then sufficient to check that the right \(\mathcal{D}_{\mathcal{Q}}(\mathcal{L})_I\)-module \(\mathcal{D}_{\mathcal{Q}}(\mathcal{O})_I\) has a cyclic vector whose annihilator is \(\mathcal{C}_{\mathcal{D}} \mathcal{R}(\mathcal{L}) \mathcal{I}^+\). Observe that, since the map (6.5.2) depends on \(\phi\), the resulting isomorphism of sheaves of vertex algebras \(\phi^* \Omega^\text{ch}_{\mathbb{A}^d, \mathcal{L}} \sim k[X^\wedge] \otimes \mathcal{O}_X \mathcal{C}_{\mathcal{D}} \mathcal{R}(\mathcal{L})\) will also depend on \(\phi\).

\textbf{(6.5.3) The case} \(U = \mathbb{A}^d\). First we consider the particular case where \(U = \mathbb{A}^d\) and \(\phi = \text{Id}\). What we do in this case is to provide an explicit identification of the
right CD_Γ-module $DR(\omega_{\mathbb{A}^d})_I$. To simplify we set $L = L(\mathbb{A}^d)_L$, etc. We proceed as in Example 5.4.2. For any $n, N \in \mathbb{N} \cup \{\infty\}$ we set

\[(6.5.4) \quad A = k[\mathbb{A}^I], \quad A_n^N = A[a_{\nu_l}^{(j)}; -N \leq l \leq n], \quad X_n^N = \text{Spec} A_n^N,\]

where $a_{\nu_l}^{(j)}$ are independent variables such that $j \in [1, d], l \in \mathbb{Z}, \nu \in [0, |I| - 1]$. Then

\[L_n = \lim_{\longrightarrow N} \text{Spf} (A_n^0[[a_{\nu_l}^{(j)}; -N \leq l < 0]]), \quad L_n^\varepsilon = \text{Spec} (A_n^{N_\varepsilon}/(a_{\nu_l}^{(j)} \cdots a_{\nu_{l+1}}^{(j)}; l < 0)),\]

see (3.9.1), where we set $N_\varepsilon = \max \{l; \varepsilon - l \neq 0\}$ for each $\varepsilon \in \varepsilon$. Note that

\[CD_\Gamma = \lim_{\longrightarrow n} \lim_{\longrightarrow N} CD_{X_n^N},\]

where $CD_{X_n^N}$ is the Clifford-Weyl algebra of the variety X_n^N, see (5.1.4). To simplify again we set $X_{n}^\varepsilon = X_n^{N_\varepsilon}$. Thus X_{n}^ε is an affine space of finite dimension. There are closed embeddings $L_n^0 \subset L_n^\varepsilon \subset X_n^\varepsilon$. Let $i_{n\varepsilon} : L_n^0 \hookrightarrow X_n^\varepsilon$ be the composite embedding. We write $\omega_{L_n^0, X_n^\varepsilon}$ for the right D-module $i_{n\varepsilon*}\omega_{L_n^0, X_n^\varepsilon}$ on X_n^ε. Let $DR(\omega_n^\varepsilon) \in \mathcal{O}_{L_n^\varepsilon}$ be the subsheaf of $DR(\omega_{L_n^0, X_n^\varepsilon})$ consisting of the sections supported (scheme-theoretically) on L_n^ε. By definition,

\[\lim_{\longrightarrow \varepsilon} \Gamma(L_n^\varepsilon, DR(\omega_n^\varepsilon)) = \lim_{\longrightarrow N} \Gamma(L_n^0, DR(\omega_{L_n^0, X_n^\varepsilon})) = DR(L_n^0, X_n^\infty).\]

Let us denote this space by $DR(\omega_n)_I$. Hence,

\[(6.5.5) \quad DR(\omega_{\mathbb{A}^d})_I = \lim_{\longrightarrow n} DR(\omega_n)_I[nd],\]

and there is a right $\lim_{\longrightarrow N} CD_{X_n^N}$-action on $DR(\omega_n)_I$, such that $DR(\omega_n)_I$ is the quotient of $\lim_{\longrightarrow N} CD_{X_n^N}$ by $\lim_{\longrightarrow N} CD_{X_n^N}^+$. Here $CD_{X_n^N}^+$ is the right ideal in $CD_{X_n^N}$ generated by the elements $a_{\nu_l}^{(j)}, a_{l+1,\nu}^{(j)}, b_{l+1,\nu}, b_{l,\nu}$, with $l < 0$. Note that

\[CD_\Gamma = \lim_{\longrightarrow n} \lim_{\longrightarrow N} CD_{X_n^N}, \quad CD_\Gamma^\wedge = \lim_{\longrightarrow n} \lim_{\longrightarrow N} CD_{X_n^N}^+.\]

Using (6.5.5) we get a right action of CD_Γ on $DR(\omega_{\mathbb{A}^d})_I$ such that

\[DR(\omega_{\mathbb{A}^d})_I \simeq CD_\Gamma/CD_\Gamma^\wedge \simeq
\text{Vac}_I,\]

thus achieving our goal in the case $X = \mathbb{A}^d$.
(6.5.6) Corollary. Theorem 6.3.1 is true for $X = \mathbb{A}^d$.

Proof: The same argument as in Proposition 5.4.3 identifies the space of global sections of $\mathcal{CDR}_{\mathbb{A}^d}$ with Vac, and the latter is identified with $\Gamma(\mathbb{A}^d, \Omega^h_{\mathbb{A}^d})$. By the above, the resulting isomorphism $\Omega^h_{\mathbb{A}^d} \simeq \mathcal{DR}(\omega_{\mathbb{A}^d})$ is a morphism of sheaves of differential vertex algebras.

(6.6) Etale change of coordinates in Clifford algebras. In order to prove Lemma 6.5.1 for general $\phi : U \to \mathbb{A}^d$ we need some elementary observations about Clifford algebras.

If X is a smooth algebraic variety, we denote by \mathcal{CD}_X the sheaf of differential operators in $\Omega^\bullet X$, the commutative superalgebra of differential forms. In particular, if $X = \mathbb{A}^d$ with coordinates x_1, \ldots, x_d, then x_i, dx_i are free generators of (the algebra of global sections of) Ω^\bullet_X and we denote $\partial_i = \partial/\partial x_i$ and $\xi_i = \partial/\partial dx_i$ the corresponding derivations, which are thus global sections of $\mathcal{CD}_{\mathbb{A}^d}$.

Let now U be an affine open subset of a smooth variety X, and let $\phi : U \to \mathbb{A}^d$ be an étale map. Fix a point $0 \in U$ such that $\phi(0) = 0$. Let $x'_i = \phi^* x_i$ be the coordinate on the formal neighborhood X^\wedge of 0 in X. There are then uniquely determined derivations ∂'_i, ξ'_i of Ω^\wedge_X such that

$$[\partial'_i, x'_j] = [\xi'_i, dx'_j] = \delta_{ij}, \quad [\partial'_i, dx'_j] = [\xi'_i, x'_j] = 0.$$

Set $\mathcal{CD}_X^\wedge = k[X^\wedge] \widehat{\otimes}_{\mathcal{O}_X} \mathcal{CD}_X$. The étale map ϕ gives an isomorphism of formal schemes $X^\wedge \sim \mathbb{A}^d,^\wedge$. Let ϕ' be the inverse isomorphism.

(6.6.1) Lemma. For any ϕ as above, there is a unique $k[X^\wedge]$-algebra isomorphism

$$\phi_2 : \mathcal{CD}_X^\wedge \sim \phi^* \mathcal{CD}_{\mathbb{A}^d,^\wedge}$$

such that

$$\phi_2(dx'_i) = \sum_j \partial_j \phi_1(x) dx_j, \quad \phi_2(\xi'_i) = \sum_j \partial'_j \phi'_1(\phi(x)) \xi_j,$$

$$\phi_2(\partial'_i) = \sum_j \partial'_j \phi'_1(\phi(x)) \partial_j + \sum_{j,k,l} \partial'_l \partial'_k \phi'_j(\phi(x)) \partial_l \phi_k(x) dx_k \xi_j,$$

where $\phi = (\phi_1, \ldots, \phi_d)$.

Proof: It suffices to observe that, since the map ϕ is étale, \mathcal{CD}_X^\wedge is a free $k[X^\wedge]$-module with basis

$$(\partial'_1)^{r_1} (\partial'_2)^{r_2} \cdots (\partial'_d)^{r_d} \otimes (\xi'_1)^{m_1} \cdots (\xi'_d)^{m_d} (dx'_1)^{n_1} \cdots (dx'_d)^{n_d},$$
where \(r_i, m_i, n_i \in \mathbb{N} \). Then use the coordinates change formulas, see [L, chap. II] for instance.

(6.7) **The action of étale morphisms II.** Let now \(\phi : U \to \mathbb{A}^d \) be a general étale morphism, with \(U \) affine. By Proposition 3.9.2 we have an isomorphism of schemes

\[
\mathcal{L}_\varepsilon^\varepsilon(\phi)_{\mathbb{A}^I} \simeq \mathcal{L}_\varepsilon^\varepsilon_n \times \mathcal{L}_0^0(U)_{\mathbb{A}^I}.
\]

We will use freely the notations in (6.5), (6.6). There is an obvious map \(X_n^N \to \mathcal{L}_0^0 \), since \(\mathcal{L}_0^0 = X_0^0 = \text{Spec} A_0^0 \), which restricts to the map \(\mathcal{L}_\varepsilon^\varepsilon_n \to \mathcal{L}_0^0 \) when \(N = N_\varepsilon \). For any \(N \), consider the fiber product

\[
X_n^N,^\wedge = X_0^0,^\wedge \times X_n^N, X_n^N,^\wedge = X_0^0,^\wedge \times X_0^0 \times X_n^N.
\]

By Lemma 6.6.1 applied to \(\phi_n^N \), we have a ring isomorphism

\[
\phi_n^N : CD_{X_n^N,^\wedge} \simeq CD_{X_n^N,^\wedge}.
\]

Thus, by passing to the limits, we get a ring isomorphism

\[
\phi_{\infty}^\infty : \lim_{\longrightarrow} N CD_{X_{n,^\wedge}} \simeq \lim_{\longrightarrow} N CD_{X_{n,^\wedge}} = CD_{I}.
\]

Denote the ring on the left hand side by \(CD_{I,^\wedge} \). Note that

\[
DR(\omega_U)_{^\wedge} = \lim_{\longrightarrow} N DR(\omega_{\mathcal{L}_n^0(U)_{^\wedge}, X_{n,^\wedge}})[nd]
\]

is a module over \(CD_{I,^\wedge} \). We obtain, therefore, a structure of a \(CD_{I} \)-module on \(DR(\omega_U)_{^\wedge} \).

(6.7.2) **Lemma.** With respect to the above structure of a \(CD_{I} \)-module, \(DR(\omega_U)_{^\wedge} \) is isomorphic to \(V ac_I \).

Proof: Follows from the fact that each \(DR(\omega_{\mathcal{L}_n^0(U), X_n^N}) \) is isomorphic to the vacuum module over \(CD_{X_n^N,^\wedge} \). \(\square \)
Note that both $DR(\omega_U)_1$ and Vac have distinguished generators. Namely $1'_I \in DR(\omega_U)_1$ is the image of the following tensor on $L_0(U)_{A^I} = U \times A^I$:

$$dx_1...dx_adt_1...dt_{|I|} \otimes \frac{\partial}{\partial t_1} \wedge ... \wedge \frac{\partial}{\partial t_{|I|}} \in \omega_{U \times A^I} \otimes \bigwedge_{A^I}^{|I|} \Theta_{U \times A^I}.$$

The generator $1''_I \in Vac$ is the image of $1 \in CD_I^\dagger$. We denote $F_I : Vac \to DR(\omega_U)_I$ the unique module isomorphism taking $1''_I$ to $1'_I$. Let $F_I : Vac \to DR(\omega_U)_1$ be the corresponding morphism of quasicoherent sheaves on $U \times A^I$.

Lemma 6.7.3 The (F_I) commute with factorization maps and thus form an isomorphism of factorization algebras.

Proof: Follows from the fact that $(1'_I)$ and $(1''_I)$ are compatible with factorization structures: in the notation of (6.1.1) we have $\kappa^{I'/I}(\Theta_{1'_I}) = 1'_I$ and similarly for $1''_I$.

Set $I = \{1\}$. Let F_ϕ be the fiber of $F_{\{1\}}$ at the point $0 \in A^1$. Lemma 6.7.3 implies that F_ϕ is a morphism of vertex algebras. This establishes part (a) of Lemma 6.5.1

We now prove Lemma 6.5.1(b). So we assume $U \subset A^d$ and need to compare two automorphisms of the vertex algebra $\Gamma(U, \mathcal{V}ac)$, namely $F_\phi^{-1} \circ F_{Id}$ and ϕ_{ch}. Notice that the vertex algebra Vac is strongly generated by the fields $(a^{*}_{i,-1}1)(z)$, $(a_{i0}1)(z)$, $(b^{*}_{i,-1}1)(z)$, $(b_{i0}1)(z)$, see [K], and that $\Gamma(U, \mathcal{V}ac)$ is obtained by localization. Thus it is enough to compare the two automorphisms on the elements

$$\tag{6.7.4} (a^{*}_{i,-1}1), (a_{i0}1), (b^{*}_{i,-1}1), (b_{i0}1) \in Vac.$$

To simplify we set

$$Y = X^\infty = \lim_{-N \to -n} X^N_n, \quad Y_\phi = X^\infty_{\phi} = \lim_{-N \to -n} X^N_{\phi}, \quad \phi = \phi^\infty.$$

Since $|I| = 1$, setting $a_{id} = a^{(i)}_{-l,0}$ in (6.5.4) we get

$$A = k[A^1], \quad A^N_n = A[a_{id}; 1 \leq i \leq d, -N \leq l \leq n].$$

Note that the fiber at $0 \in A^1$ of the A-algebras CD_Y, $CD_{Y\wedge}$ are respectively

$$CD, \quad CD^\wedge := CD[[a_{i0}]],$$

see (6.3), and similarly for CD_Y^\dagger, $CD_{Y\wedge}^\dagger$. Following our simplified notation, we denote the isomorphism $CD_{Y\wedge}^{\phi} \cong CD_{Y\wedge}$ in (6.7.1) simply by ϕ_\wedge. Let $\phi_{20} \in \text{Aut}(CD^\wedge)$ be the fiber of ϕ_\wedge at $0 \in A^1$. We have $\phi_{20}(CD^+\wedge) \subseteq CD^+\wedge$. In particular, ϕ_{20} gives
an automorphism of the $\mathcal{C}D^\wedge$-module Vac^\wedge which is compatible with the vertex algebra structure. To prove Claim \((b)\) it suffices therefore to check that $\phi_{_{0\phi}} = \phi_{_{ch}}$ on elements \((6.7.4)\). Recall that $\mathcal{L}_0(X)_{\mathbb{A}^1} = X \times \mathbb{A}^1$ for any X. Hence, there is a commutative diagram

$$
\begin{array}{ccc}
X^N_{n\phi} & \rightarrow & X^0_{0\phi} = U \times \mathbb{A}^1 \\
\phi^N_n & \downarrow & \downarrow \phi \\
X^N_n & \rightarrow & X^0_0 = \mathbb{A}^d \times \mathbb{A}^1.
\end{array}
$$

This diagram induces a diagram of A-algebra homomorphisms

$$
\begin{array}{ccc}
\mathcal{C}D_{Y^\wedge} & \leftrightarrow & \mathcal{C}D_{X^0_{0\phi}} \\
\phi^N_0 & \downarrow & \downarrow \phi^0_0 \\
\mathcal{C}D_{Y^\wedge} & \leftrightarrow & \mathcal{C}D_{X^0_{0\phi}^\wedge}.
\end{array}
$$

Note that the images of the elements \((6.7.4)\) by ϕ^N_0 and ϕ^0_0 coincide, modulo the identification

$$
a_{i0} \mapsto x_i, \quad b_{i0} \mapsto dx_i, \quad b^*_{i,-1} \mapsto \xi_i, \quad a^*_{i,-1} \mapsto \partial_i.
$$

On the other hand the images of the elements \((6.7.4)\) by ϕ_{ch} and $\phi^0_{0\phi}$ coincide, see the formulas [MSV, (3.17)] for ϕ_{ch}, and Lemma 6.6.1 for $\phi^0_{0\phi}$. We are done. \square
References

[AM] Artin, M., Mazur, B., *Étale Homotopy*, Lecture Notes in Math, vol. 100, Springer, 1970.

[B] Bakalov, B., *Beilinson-Drinfeld’s definition of a chiral algebra*, preprint.

[BB] Beilinson, A., Bernstein, I., *A proof of the Jantzen conjectures*, I.M. Gelfand Seminar (S. Gelfand, S. Gindikin, ed.), vol. 1, pp. 1-50.

[BD1] Beilinson, A., Drinfeld, V., *Chiral algebras*, available from http://zaphod.uchicago.edu/~benzvi/.

[BD2] Beilinson, A., Drinfeld, V., *Quantization of Hitchin’s integrable system and Hecke eigensheaves*, available from http://zaphod.uchicago.edu/~benzvi/.

[BLR] Bosch, S., Lütkebohmert, W., Raynaud, M., *Néron models*, Springer-Verlag, 1990.

[DL] Denef, J., Loeser, F., *Germ of arcs on singular algebraic varieties and motivic integration*, Invent. Math. **135** (1999), 201-232.

[EGA0] Grothendieck, A., Dieudonné, J., *Eléments de géométrie algébrique*, Grund. Math. Wiss., vol. 166, Springer, Boston-Basel-Berlin, 1971.

[EGAIV] Grothendieck, A., Dieudonné, J., *Eléments de géométrie algébrique IV*, Publ. Math. IHES, 1967.

[F] Frenkel, E., *Vertex algebras and algebraic curves*, Séminaire Bourbaki, Éxp. 875, Juin 2000.

[G] Gaitsgory, D., *Notes on 2d conformal field theory and string theory*, Quantum fields and strings: a course for mathematicians (P. Deligne et al., ed.), vol. 2, Amer. Math. Soc., Providence RI, 1999, pp. 1017-1089.

[GKF] Gelfand, I.M., Kazhdan, D.A., Fuks, D.B., *The actions of infinite-dimensional Lie algebras*, Funct. Anal. Appl. **6** (1972), 9-13.

[GV] Grothendieck, A., Verdier, J.-L., *Théorie des topos et cohomologie étale des schémas*, SGA IV, Exp. I, Lecture Notes in Math, vol. 269, Springer, 1970.

[HL] Huang, Y.-Z., Lepowsky, J., *On the D-module and the formal variable approaches to vertex algebras*, in Topics in geometry, Birkhäuser, 1996, pp. 175-202.

[K] Kac, V., *Vertex algebras for beginners*, University Lecture Series, vol. 10, Amer. Math. Soc., Providence RI, 1997.

[Kap] Kapranov, M., *Double affine Hecke algebras and 2-dimensional local fields*, Jour. AMS **14** (2001), 239-262.

[Kat] Kato, K., *Existence theorem for higher local class field theory*, [math.AG/0012150](http://arxiv.org/abs/math.AG/0012150).

[KT] Kashiwara, M., Tanisaki, T., *Kazhdan-Lusztig Conjecture for Symmetrizable Kac-Moody Lie Algebra. II Intersection Cohomologies of Schubert varieties*, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progr. Math., vol. 92, Birkhäuser, 1990, pp. 159-195.

[L] Leites, D. A., *Introduction to the theory of supermanifolds. (Russian)*, Uspekhi Mat. Nauk **35** (1980), 3-57.

[MSV] Malikov, A., Schechtman, V., Vaintrob, A., *Chiral De Rham complex*, Comm. Math. Phys. **204** (1999), 439-473.

[P] Parshin, A.N., *Higher-dimensional local fields and L-functions*, [math.AG/0012151](http://arxiv.org/abs/math.AG/0012151).
