RESEARCH ARTICLE

Cyclooxygenase-2 Promoter 765C Increase of Digestive Tract Cancer Risk in the Chinese Population: a Meta-analysis

Yan-Song Xu 1, Bo Zhao 2, Chen-Yan Long 3, Hui Li 4, Xing Lu 1, Gang Liu 4, Xiao-Zhun Tang 4, Wei-Zhong Tang 4*

Abstract

Background: To evaluate relationship between the cyclooxygenase-2 promoter 765G/C polymorphism and digestive cancer risk in China. Materials and Methods: A literature search through February 2014 was performed using PubMed, Chinese Biomedical Literature Database (CBM) and China National Knowledge Infrastructure (CNKI) databases, and a meta-analysis was performed with RevMan 5.2 software for odds ratios and 95% CIs. Results: In total, 9 articles with 3,263 cases and 4,858 controls were included in this meta-analysis. The pooled OR (95% CIs) in the co-dominant model (GC vs GG) was 1.56 [1.19, 2.06], and in the dominant model ((CC+GC) vs GG), the pooled OR was 1.59 [1.21, 2.09] in overall cancers. In the subgroup analysis, stratified by cancer type, significant associations were found that the-765C allele had increased pancreatic cancer and gastric risk. No significant liver cancer and colorectal cancer risk of COX-2 -765G/C polymorphism was found. Conclusions: These findings suggest that COX-2-765*C is related to cancer susceptibility and may increase gastric and pancreatic cancer risk.

Keywords: Digestive tract cancer - cyclooxygenase-2 - polymorphism - meta-analysis

Asian Pac J Cancer Prev, 15 (11), 4563-4566

Introduction

It has been suggested that environmental factors and genetic predisposition may affect the individual’s susceptibility and play an important role in the development of tumors (Cocos et al., 2012; Rubin et al., 2012; Arzumanyan et al., 2013; Hardbower et al., 2013), though the risk attributable to each is unclear. In recent years, a good many genes have been identified as potential digestive tract cancer susceptibility genes. An important one is Cyclooxygenase-2 (COX-2), which works as a multi-functional cytokine that plays a key role in cellular growth, proliferation (Wu et al., 2010) and differentiation (Rizzo et al., 2011), prognosis (Hedieh et al., 2013). So far several polymorphisms in the COX-2 gene have been reported and found to affect COX-2 protein expression. Among them, a functional single nucleotide polymorphism at the 765th nucleotide in the promoter region, with a G to C change, has been shown to vary greatly among different ethnic groups and may result in an altered transcriptional regulation and thereby influence the development and severity of COX-2-related diseases. As for -765G/C polymorphism of COX-2, conflicting results were reported, partially because of the relatively small sample size in each of the published studies. Therefore, we performed a meta-analysis of the published studies to derive a more precise estimation of the association between COX-2, 765G/C polymorphism and the digestive cancers susceptible risk.

Materials and Methods

Publication search

Relevant studies were identified by searching the electronic literature on PubMed, Chinese Biomedical Literature Database (CBM) and China National Knowledge Infrastructure (CNKI) using search terms (last search was updated on 1 January 2014) ‘Cyclooxygenase-2’ or ‘COX-2’, ‘polymorphism’ and ‘digestive tract cancer’ or ‘colorectal cancer’ or ‘gastric cancer’ or ‘pancreatic cancer’ or ‘liver cancer’. Only published studies with full text articles were included. When overlapping data of the same patient population were included in more than one publication, only the most recent or complete study was used in this meta-analysis.

Inclusion criteria

The inclusion criteria were (1) evaluation of COX-2 -765G/C polymorphism and digestive tract cancer risk; (2) case-control studies; (3) genotype frequency was available; (4) published in English or Chinese; (5) full-text articles. When overlapping data of the same patient

1Department of Emergency, 2Department of General Surgery, 3Department of Colorectal and Anal, First Affiliated Hospital, Guangxi Medical University, Nanning, 4Department of General Surgery, Center Hospital, Zhuzhou, China *Equal contributors
*For correspondence: tang6985@qq.com
Yan-Song Xu et al

population were included in more than one publication, only the most recent or complete study was used in this meta-analysis; (6) sufficient published data for estimating an ORs with 95%CIs.

Data extraction

Two investigators (Bo Zhao and Hui Li) independently extracted data and reached a consensus on all of the items (Table 1). The following information was extracted from each enrolled references: first author, year of publication, numbers of cases and controls with the GC, CC and GG genotypes, tumor types, source of control, respectively.

Quantitative analysis

There was statistical significance (Table 2) among different genotypes. The main results of the meta-analysis are listed in Table 3. The association between COX-2-765 G/C polymorphism and cancer risk was estimated in two comparison models: a co-dominant model (GC vs GG) and a dominant model [(CC+GC) vs GG]. In the co-dominant model, we found associations of this SNP with cancer risk in overall cancer susceptibility (OR=1.56, 95%CI=[1.19, 2.06], p=0.001), gastric cancer (OR=1.75, 95%CI=[1.31, 2.32], p=0.0002), liver cancer (OR=1.03, 95%CI=[0.51, 2.07], p=0.94), colorectal cancer (OR=1.27, 95%CI=[0.62, 2.57], p=0.52), pancreatic cancer (OR=2.51, 95%CI=[1.73, 3.66], p<0.0001). In the dominant model, we found associations of this SNP with cancer risk in overall cancer susceptibility (OR=1.59, 95%CI=[1.21, 2.09], p=0.0008), gastric cancer (OR=1.76, 95%CI=[1.33, 2.33], p<0.0001), colorectal cancer (OR=1.47, 95%CI=[1.09, 1.98], p=0.01), liver cancer (OR=1.08, 95%CI=[0.49, 2.36], p=0.86), pancreatic cancer (OR=2.51, 95%CI=[1.73, 3.66], p<0.0001) (Figure 1-4).

Publication bias

Begg’s funnel plot and Egger’s test were conducted

Table 1. Characteristics of Studies of -765G/C Polymorphism with Digestive Cancer Included in this Meta-Analysis

First author	Cases	Controls	Type	Source of control
GC	CC	GG		
Tan et al., 2007	81	0	919	colorectal cancer
				population
Xing et al., 2008	17	1	119	colorectal cancer
				hospital
Chang et al., 2012	36	0	262	liver cancer
				hospital
He et al., 2012	67	10	323	liver cancer
				hospital
Tang et al., 2009	34	9	57	gasteric cancer
				population
Li et al., 2012	53	2	241	gasteric cancer
				population
Zhang et al., 2011	33	0	323	gasteric cancer
				hospital
Zhao et al., 2009	36	0	357	pancreatic cancer
				hospital
Xu et al., 2008	28	0	255	pancreatic cancer
				population

Table 2. Genotype and Allels Frequencies of COX-2 765G/C Polymorphism in Case and Control

Genotype	Case (%)	Control (%)	Chi-square	p value
GG	2856(87.5)	4506(92.6)	66.999	0.000
GC	385(11.8)	343(7.1)		
CC	22(1.7)	9(0.3)		

Table 3. Stratified Analyses of the COX-2 765G/C Polymorphism on Colorectal Cancer Risk

Type	No Case/Control	GC vs GG	GC+CC vs GG				
		OR(95%CI)	p	Heterogeneity	OR(95%CI)	p	Heterogeneity
gc	3	1.56(1.19, 2.06)	0.001	0.003	1.59(1.21, 2.09)	0.0008	0.003
l c	2	1.75(1.31, 2.32)	0.0002	0.42	1.76(1.33, 2.33)	<0.0001	0.42
p c	2	1.03(0.51, 2.07)	0.94	0.68	1.08(0.49, 2.36)	0.86	0.01
crc	2	2.51(1.73, 3.66)	<0.0001	0.95	2.51(1.73, 3.66)	<0.0001	0.95

gg: gastric cancer; lc: liver cancer; pc: pancreatic cancer; crc: colorectal cancer

Figure 1. Forest Plots of Odds Ratios for GC vs GG of Digestive Cancer Associated with COX-2 Gene Promoter -765G/C

Figure 2. Forest Plots of Odds Ratios for GC+CC vs GG of Digestive Cancer Associated with COX-2 Gene Promoter -765G/C

to assess the publication bias of literatures. The shape of funnel plots did not reveal any evidence of funnel plot symmetry. The statistical results still did not show publication bias (p>0.05, for all).

Results and Discussion

Although CRC human digestive carcinogenesis is a complex, multistep and multigenetic process, Cyclooxygenase-2, a key enzyme in arachidonic acid metabolism, is overexpressed in several epithelial malignancies. Analysis of potentially functional polymorphisms in candidate genes has emerged as a powerful approach in deciphering the complex relationship between genotype and phenotype. In this context, the present meta-analysis, including 3263 cases and 4853 controls from 9 published case-control studies (Tan et al., 2007; Xing et al., 2008; Xu et al., 2010; Tang et al., 2009; Zhao et al., 2009; Li et al., 2011; Zhang et al., 2011) showed that COX-2-765 C allele carriers had lower susceptibility to liver cancer, but in this research, we did not find this relationship. COX-2-765 C allele carriers may be a protective factor between COX-2-765C polymorphism and susceptibility of liver cancer. Our results are in line with those of Khorshidi et al. (2014) for colorectal cancer. This meta-analysis is the first research, between COX-2-765C polymorphism and digestive system tumor susceptibility in Chinese population, suggesting a possible role of ethnic differences in genetic background and the environment they lived in.

There are still some limitations in this meta-analysis. First, all the eligible studies were limited to English and Chinese papers. It is likely that some relevant studies in other languages meeting the inclusion criteria were missed. Second, our results were based on unadjusted estimates, while a more precise analysis might be conducted if individual data were available, which could allow for an adjusted estimation by sex, age, smoking, drinking, environmental factors and tumor stage. Third, as cancer is a multifactorial and complex disease, the influence of the COX-2-765C variants may be masked by the presence of other as-yet-unidentified genes involved in carcinogenesis. Therefore, the combined analysis of gene-gene interaction might be more powerful than the analysis of single allele effect. In addition, our researches may be used by clinicians to select individuals for early diagnosis and treatments.

In spite of these limitation, our meta-analysis had several advantages. First, substantial number of cases and controls were pooled from different studies in China, which significantly increased the statistical power of the analysis. Second, no publication biases were detected, indicating that the whole pooled results may be unbiased. Although further research is needed, this present meta-analysis validates a significant association between COX-2-765C polymorphism and cancer genetic susceptibility, especially in gastric cancer, liver cancer and colorectal cancer in the Chinese population. To determine a precise association between the COX-2-765C/C and cancer risk. If considering these factors, our results should be interpreted with caution.

In spite of these limitation, our meta-analysis had several advantages. First, substantial number of cases and controls were pooled from different studies in China, which significantly increased the statistical power of the analysis. Second, no publication biases were detected, indicating that the whole pooled results may be unbiased. Although further research is needed, this present meta-analysis validates a significant association between COX-2-765C polymorphism and cancer genetic susceptibility, especially in gastric cancer, liver cancer and colorectal cancer in the Chinese population. To determine a precise association between the COX-2-765C/C and cancer risk. If considering these factors, our results should be interpreted with caution.

References

Akkiz H, Bayram S, Bekar A, et al (2011). Functional polymorphisms of cyclooxygenase-2 gene and risk for hepatocellular carcinoma. Mol Cell Biochem, 347, 201-8
Arzumanyan A, Reis HM, Feitelson MA (2013). Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer, 13, 123-35
Cao H, Xu Z, Long H, et al (2010). The-765C allele of the cyclooxygenase-2 gene as a potential risk factor for colorectal cancer: a metaanalysis. Tohoku J Exp Med, 222, 15-21.
Chang WS, Yang MD, Tsai CW, et al (2012). Association of Cyclooxygenase 2 Single-Nucleotide Polymorphisms and Hepatocellular Carcinoma in Taiwan. *Chin J Physiol*, **55**, 1-7.

Cocos R, Schipor S, Nicolae I, et al (2012). Role of COX-2 activity and CRP levels in patients with non-melanoma skin cancer.-765G/C PTGS2 polymorphism and NMSC risk. *Arch Dermatol Res*, **304**, 335-42.

Hardbower DM, Sablet T, Chaturvedi R, (2013). Chronic inflammation and oxidative stress: The smoking gun for Helicobacter pyloriinduced gastric cancer? *Gut Microbes*, **4**, 475-81.

He J, Zhang Q, Ren Z, et al (2012). Cyclooxygenase-2-765 G/C polymorphisms and susceptibility to hepatitis B-related liver cancer in Han Chinese population. *Mol Biol Rep*, **39**, 4163-8.

Hou L, Grillo P, Zhu ZZ, et al (2007). COX1 and COX2 polymorphisms and gastric cancer risk in a Polish population. *Anticancer Res*, **27**, 107-12.

Khorshidi F, Haghighi MM, Nazemalhosseini Mojarad E, et al (2014). The prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/ COX2) rs5277 polymorphism does not influence risk of colorectal cancer in an Iranian population. *Asian Pac J Cancer Prev*, **15**, 3507-11.

Li YC, Dai LP, Zhang JZ, et al (2012). Cyclooxygenase-2 polymorphisms and the risk of gastric cancer in various degrees of relationship in the Chinese Han population. *Oncol Lett*, **3**, 107-12.

Rizzo MT (2011). Cyclooxygenase-2 in oncogenesis. *Clin Chim Acta*, **412**, 671-87.

Rubin DC, Shaker A, Levin MS, et al (2012). Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. *Front Immunol*, **3**, 107.

Tabriz HM, Olfati G, Ahmadi SA, et al (2013). Cyclooxygenase-2 expression in urinary bladder transitional cell carcinoma and its association with clinicopathological characteristics. *Asian Pac J Cancer Prev*, **14**, 4539-43.

Takahashi H, Li A, Dawson DW, et al (2011). Cyclooxygenase-2 confers growth advantage to syngeneic pancreatic cancer cells. *Pancreas*, **40**, 453-9.

Tan W, Wu J, Zhang X, et al (2007). Associations of functional polymorphisms in cyclooxygenase-2 and platelet 12-lipoxygenase with risk of occurrence and advanced disease status of colorectal cancer. *Carcinogenesis*, **28**, 1197-201.

Tang XF, Li YM, Li SX, et al (2009). Correlation between the nucleotide polymorphisms of COX-2 and the susceptibility to gastric cancer in Hui ethnic group. *WCJD*, **17**, 1772-6.

Wang J, Joshi AD, Corral R, et al (2012). Carcinogen metabolism genes, red meat and poultry intake, and colorectal cancer risk. *Int J Cancer*, **130**, 1898-907.

Wu WK, Sung JJ, Lee CW, et al (2010). Cyclooxygenase-2 in tumori-genesis of gastrointestinal cancers: an update on the molecular mechanisms. *Cancer Lett*, **295**, 7-16.

Xing LL, Wang ZN, Jiang L, et al (2008). Cyclooxygenase 2 polymorphism and colorectal cancer.-765G.C variant modifies risk associated with smoking and body mass index. *World J Gastroenterol*, **14**, 1785-89.

Xu DK, Zhang XM, Zhao P, et al (2008). Association between single nucleotide polymorphisms in the promoter of cyclooxygenase COX-2 gene and hereditary susceptibility to pancreatic cancer. *CMJ*, **88**, 1961-5.

Zhang XM, Zhong R, Liu L, et al (2011). Smoking and COX-2 functional polymorphisms interact to increase the risk of gastric cardia adenocarcinoma in Chinese population. *PLoS One*, **6**, 21894.

Zhao D, Xu D, Zhang X, et al (2009). Interaction of cyclooxygenase-2 variants and smoking in pancreatic cancer: a possible role of nucleophosmin. *Gastroenterology*, **136**, 1659-68.