Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis

G Prashanth¹, Basavaraj Vastrad², Chanabasaya Vastrad³ and Shivakumar Kotrashetti³

¹Department of General Medicine, Basaveshwara Medical College, Chitradurga, India. ²Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India. ³Biostatistics and Bioinformatics, Chanabasava Nilaya, Dharwad, India.

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections (COVID 19) is a progressive viral infection that has been investigated extensively. However, genetic features and molecular pathogenesis underlying remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used bioinformatics to investigate the candidate genes associated in the molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected patients.

METHODS: Expression profiling by high-throughput sequencing dataset (GSE149273) was downloaded from the Gene Expression Omnibus, and the differentially expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples and nontreated SARS-CoV-2 infection samples with an adjusted P value of <.05 and a |log fold change| > 1.3 were first identified by limma in R software package. Next, pathway and gene ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub genes were identified by the Network-Analyzer plugin and the other bioinformatics approaches including protein-protein interaction network analysis, module analysis, target gene—miRNA regulatory network, and target gene—TF regulatory network. Finally, a receiver-operating characteristic analysis was performed for diagnostic values associated with hub genes.

RESULTS: A total of 909 DEGs were identified, including 453 upregulated genes and 457 downregulated genes. As for the pathway and GO enrichment analysis, the upregulated genes were mainly linked with influenza A and defense response, whereas downregulated genes were mainly linked with drug metabolism—cytochrome P450 and reproductive process. In addition, 10 hub genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and APBB1) were identified. Receiver-operating characteristic analysis showed that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2, DUSP9, FM05, and PDE1A) had good diagnostic values.

CONCLUSION: This study provided insights into the molecular mechanism of remdesivir-treated SARS-CoV-2 infection that might be useful in further investigations.

KEYWORDS: SARS-CoV-2 infection, differentially expressed genes, pathway enrichment analysis, protein-protein interaction, ROC analysis

Introduction

At the December of 2019, a novel corona virus, called severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) or novel corona virus 2019 (2019-nCoV) is a single-stranded RNA, nonsegmented, enveloped viruses, resulted fast spreading from its origin in China to the rest of the globe. Symptoms of this viral infection vary in severity from a simple cold to severe illness, and can lead to death. Despite the fact that great progress has been made in antivirals and vaccination for this SARS-CoV-2 infection, differentially expressed genes, pathway enrichment analysis using NGS technology to find out differentially expressed genes (DEGs) during diagnosis of viral infections. We rationally presume that DEGs can affect the promotion of various viral infections. With the rapid advancement of next-generation sequencing (NGS) technology to find out differentially expressed genes (DEGs) during diagnosis of viral infections. We rationally presume that DEGs can affect the promotion of various viral infections. Now, through expression profiling by high-throughput sequencing investigation using NGS technology, more and more DEGs were linked with SARS-CoV-2 infection during remdesivir treatment and understanding its biological characteristics is essential in improving clinical treatment outcomes.

In the current investigation, we downloaded the RNA-seq dataset GSE149273 from the Gene Expression Omnibus
Bioinformatics and Biology Insights

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) and conducted a bioinformatics analysis to study the DEGs between remdesivir-treated SARS-CoV-2 infection samples and nontreated SARS-CoV-2 infection samples. We performed gene ontology (GO) and pathway enrichment analyses, protein-protein interaction (PPI) network construction and analysis, modules analysis, target gene—miRNA regulatory network, and target gene—TF regulatory network construction and analysis. Finally, we performed receiver-operating characteristic (ROC) analyses for diagnostic values of hub genes. The findings in our study may contribute to novel molecular changes during remdesivir treatment for SARS-CoV-2 infection.

Materials and Methods

Data resource

The study was designed according to the flowchart (Figure 1). Expression profiling by high-throughput sequencing dataset GSE149273 based on GPL21290 Illumina HiSeq 3000 (Homo sapiens) platform was downloaded from the GEO database, a public depository database of gene expression data. GSE149273 contains 60 samples, including 30 remdesivir-treated SARS-CoV-2 infection samples and 30 nontreated SARS-CoV-2 infection samples.

Screening of the DEGs

For the expression profiling by high-throughput sequencing dataset, the R package limma was applied for performing the differential analysis between 30 remdesivir-treated SARS-CoV-2 infection samples and nontreated SARS-CoV-2 infection samples. The P values were adjusted by Benjamini and Hochberg method. Based on the |log fold change (FC)| values and the P values, the DEGs (thresholds: |logFC| > 1.3 for upregulated genes and |logFC| < −1.3 for downregulated genes, adjusted P < .05).

Pathway enrichment analysis for DEGs

To analyze the functions of DEGs, BIOCYC (https://biocyc.org/), Kyoto Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/pathway.html), Pathway Interaction Database (https://wiki.nci.nih.gov/pages/viewpage.action?pageId=315491760), REACTOME (https://reactome.org/), GenMAPP (http://www.genmapp.org/), MSigDB C2 BIOCARTA (http://software.broadinstitute.org/gsea/msigdb/collections.jsp), PantherDB (http://www.pantherdb.org/), Pathway Ontology (http://www.obofoundry.org/ontology/pw.html), and Small Molecule Pathway Database (http://smpdb.ca/) pathway analysis were performed by using the ToppGene (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) online tool. P < .05 was set as the cut-off point.

Gene ontology enrichment analysis for DEGs

The ToppGene (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) was used to study GO enrichment analyses of DEGs. The ToppGene online tool for GO analysis (http://
www.geneontology.org)39 was used to complete the function of DEGs. Data from biological processes (BP), cellular components (CC), and molecular functions (MF) were documented from each set of genes. A \(P < .05 \) was considered statistically significant for all analyses.

Protein–protein interaction network construction and module analysis

The IMEX: The International Molecular Exchange Consortium (https://www.imexconsortium.org/)20 is a biological database designed for predicting PPI networks and integrated with PPI databases such as Database of Interacting Proteins (http://dip.doe-mbi.ucla.edu/dip/Main.cgi),21 IntAct Molecular Interaction Database (https://www.ebi.ac.uk/intact/),22 the Molecular INTERaction database (https://mint.bio.uniroma2.it/),23 InnateDB (https://www.innatedb.com/),24 Human Protein Reference Database (http://www.hprd.org/),25 BioGRID (https://thebiogrid.org/),26 Integrated Interactions Database from a well-known online server (http://iid.ophid.utoronto.ca),27 and MatrixDB (http://matrixdb.univ-lyon1.fr/).28 Cytscape (http://www.cytoscape.org/, version 3.8.0),29 open software, was used to visualize the PPI networks. The top genes with the highest node degree,30 betweenness centrality,31 stress centrality,32 closeness centrality,31 and lowest clustering coefficient33 were considered as hub genes based on the analysis using NetworkAnalyzer from Cytoscape. PEWCC1 (http://apps.cytoscape.org/apps/PEWCC1),34 a plugin of Cytoscape, can screen a significant module from the PPI network.

Construction of target genes—miRNA regulatory network

The miRNet database (https://www.mirnet.ca/)35 is the biggest collection of predicted and experimentally verified target gene—miRNA interactions using 10 algorithms such as TarBase (http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index),36 miRTarBase (http://mir.tarbase.mbc.nctu.edu.tw/php/download.php),37 miRecords (http://mirRecords.umn.edu/miRecords),38 miR2Disease (http://www.mir2disease.org/),39 HMDD (http://www.cuilab.cn/hmdd),40 PhenomIR (http://mips.helmholtz-muenchen.de/phenomir/),41 SM2miR (http://bioinfo.hrbmu.edu.cn/SM2miR),42 PharmacomiR (http://www.pharmacomi-r.org/),43 EpimiR (http://bioinfo.hrbmu.edu.cn/EpimiR),44 and starBase (http://starbase.sysu.edu.cn/).45 Target genes—miRNA regulatory network among upregulated and downregulated genes was constructed by Cytoscape (http://cytoscape.org/).29

Validation of hub genes

To identify the diagnostic value of upregulated and downregulated hub genes in SARS-CoV-2 infection, pROC package46 in R language to illustrate ROC curves was used in this investigation and area under the curve (AUC) of ROC curves was determined to check the act of each upregulated and downregulated hub genes. When the AUC was greater than 0.6, the upregulated and downregulated hub genes were able of distinguishing remdesivir-treated SARS-CoV-2 infection samples and nontreated SARS-CoV-2 infection samples. The diagnostic value of upregulated and downregulated hub genes in GSE149273 dataset was estimated in our research work.

Results

Screening of the DEGs

A total of 909 DEGs (453 upregulated genes and 457 downregulated genes) were identified between remdesivir-treated SARS-CoV-2 infection and nontreated SARS-CoV-2 infection [(logFC) > 1.3 for upregulated genes and |logFC| < -1.3 for downregulated genes, adjusted \(P < .05 \)] and volcano plots showing the results of differential analysis are given in Figure 2. The upregulated genes and downregulated genes are listed in Supplemental Table 1. Heatmaps are shown in Figures 3 and 4, respectively.

Pathway enrichment analysis for DEGs

To further understand the function and mechanism of the identified upregulated and downregulated genes, pathway enrichment analysis was performed using the ToppGene web tool. Upregulated genes were particularly enriched in pyrimidine deoxyribonucleoside degradation, tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde, influenza A, cytokine–cytokine receptor interaction, IL23-mediated signaling events, direct p53 effectors, cytokine signaling in immune system, interferon signaling, C21 steroid hormone metabolism, purine metabolism, genes encoding secreted soluble factors, ensemble of genes encoding extracellular matrix (ECM)-associated proteins including ECM-affiliated proteins, ECM regulators and secreted factors, toll receptor signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway, JAK-STAT signaling, purine metabolic, steroidogenesis, and pyrimidine metabolism are listed in Supplemental Table 2. Similarly, downregulated genes were notably enriched in pyridoxal 5′-phosphate salvage, glutamine degradation/glutamate biosynthesis, drug metabolism—cytochrome P450, chemical carcinogenesis, signaling events mediated by the hedgehog family, glypican 2 network,
GPCR ligand binding, phase 2—plateau phase, glycolysis, gluconeogenesis, type III secretion system, genes encoding secreted soluble factors, ensemble of genes encoding ECM-associated proteins including ECM-affiliated proteins, ECM regulators and secreted factors, notch signaling pathway, transforming growth factor-beta signaling pathway, notch signaling, wnt signaling, sulfate/sulfite metabolism, and leukotriene C4 synthesis deficiency are listed in Supplemental Table 3.

Gene ontology enrichment analysis for DEGs

Gene ontology term enrichment analysis was performed using web tool ToppGene. Supplemental Tables 4 and 5 show the functions of the identified upregulated and downregulated genes. Upregulated genes of BP were associated with defense response and response to external biotic stimulus. Downregulated genes of BP were associated with reproductive process and positive regulation of transcription by RNA polymerase II. Upregulated genes of CC were associated with cell surface and external side of plasma membrane. Downregulated genes of CC were associated with intrinsic component of plasma membrane and nuclear chromatin. Upregulated genes of MF were associated with cytokine activity and receptor ligand activity. Downregulated genes of MF were associated with transporter activity and cation transmembrane transporter activity.
Protein-protein interaction network construction and module analysis

The PPI network of upregulated genes consisting of 206 nodes and 412 edges was constructed in the IMEX database (Figure 5). Top hub genes were selected by the NetworkAnalyzer (Supplemental Table 6), including VCAM1, IKBKE, STAT1, IL7R, ISG15, PML, NOS2, FBXO6, IRF1, IRF7, ADAM8, SBK1, ARL14, and TGM2, and statistical results in scatter plot for node degree distribution, betweenness centrality, stress centrality, closeness centrality, and clustering coefficient are displayed in Figure 6A to E. Enrichment analysis revealed that hub genes in PPI network were mainly associated with malaria, influenza A, defense response, cytokine-cytokine receptor interaction, cytokine signaling in immune system, direct p53 effectors, activating transcription factor-2 transcription factor network, adaptive immune system, IL6-mediated signaling events, measles, innate immune system, and ensemble of genes encoding ECM-associated proteins including ECM-affiliated proteins, ECM regulators, and secreted factors. Similarly, PPI network of downregulated genes consisting of 206 nodes and 412 edges was constructed in the IMEX database (Figure 7). Top hub genes were selected by the NetworkAnalyzer (Supplemental Table 6), including E2F1, ZBTB16, TFAP4, ATP6V1B1, APBB1, ELF5, CBX2, USP2, ERP27, DSCAML1, KCNF1, DLX3, EGFL6, and AMIGO1, and statistical results in scatter plot for node degree distribution,
betweenness centrality, stress centrality, closeness centrality, and clustering coefficient are displayed in Figure 8A to E. Enrichment analysis revealed that hub genes in PPI network were mainly associated with notch-mediated HES/HEY network, map kinase inactivation of SMRT corepressor, positive regulation of transcription by RNA polymerase II, iron uptake and transport, positive regulation of RNA metabolic process, nuclear chromatin, reproductive process, positive regulation of developmental process, de novo pyrimidine ribonucleotide biosynthesis, neuronal system, transcription regulatory region sequence-specific DNA binding, signaling receptor binding, and MF regulator.

Analysis using the PEWCC1 Cytoscape software plugin was used to create modules for the PPI networks. A total of 423 modules were created from PPI network of upregulated genes. Four significant modules were identified: module 1 (nodes 44 and edges 173), module 6 (nodes 24 and edges 69), module 12 (nodes 20 and edges 38), and module 16 (nodes 18 and edges 33) are shown in Figure 9. Enrichment analysis revealed that hub genes in modules were mainly associated with influenza A, measles, chemokine signaling pathway, cytokine signaling in immune system, defense response, response to external biotic stimulus, and innate immune response. A total of 219 modules were created from PPI network of downregulated genes. Four significant modules were identified: module 4 (nodes 87 and edges 86), module 5 (nodes 77 and edges 76), module 13 (nodes 41 and edges 41), and module 16 (nodes 29 and edges 28) are shown in Figure 10. Enrichment analysis revealed that hub genes in modules were mainly associated with multiorganism reproductive process, iron uptake and transport, neuroactive ligand-receptor interaction, and cell–cell signaling.

Figure 6. Scatter plot for upregulated genes. (A) Node degree. (B) Betweenness centrality. (C) Stress centrality. (D) Closeness centrality. (E) Clustering coefficient.

Figure 7. Protein-protein interaction network of downregulated genes. Red nodes denote downregulated genes.
Construction of target genes—miRNA regulatory network

The upregulated and downregulated genes were analyzed using the miRNet database. Target genes—miRNA regulatory network for upregulated genes consisting of 2182 nodes (1862 miRNAs and 320 upregulated genes) and 5899 edges (Figure 11). The results of the topological property analysis demonstrated that SOD2 (degree = 257; ex, hsa-mir-4298), PMAIP1 (degree = 147; ex, hsa-mir-5697), APOL6 (degree = 127; ex, hsa-mir-4478), ICOSLG (degree = 119; ex, hsa-mir-4739), and NPR1 (degree = 118; ex, hsa-mir-6131) are listed in Supplemental Table 7. Enrichment analyses revealed that target genes in network were mainly associated with cytokine-mediated signaling pathway, viral carcinogenesis, adaptive immune system, and purine metabolism. Target genes—miRNA regulatory network for downregulated genes consisting of 2345 nodes (1783 miRNAs and 262 downregulated genes) and 4885 edges (Figure 12). The results of the topological property analysis demonstrated that VAV3 (degree = 165; ex, hsa-mir-4315), ZNF703 (degree = 115; ex, hsa-mir-5787), FAXC (degree = 112; ex, hsa-mir-4279), GPR137C (degree = 97; ex, hsa-mir-3914), and ZNF704 (degree = 86; ex, hsa-mir-1538) are listed in Supplemental Table 7. Enrichment analysis revealed that target genes in network were mainly associated with regulation of actin cytoskeleton, positive regulation of developmental process, and transcription regulatory region sequence-specific DNA binding.
Construction of target genes—TF regulatory network

The upregulated and downregulated genes were analyzed using the NetworkAnalyst database. Target genes—TF regulatory network for upregulated genes consisting of 516 nodes (92 TFs and 424 upregulated genes) and 3459 edges (Figure 13). The results of the topological property analysis demonstrated that CD7 (degree = 265; ex, FOXC1), ELOVL7 (degree = 195; ex, GATA2), NTNG2 (degree = 136; ex, YY1), CXCL2 (degree = 125; ex, FOXL1), and (degree = 102; ex, NFKB1) are listed in Supplemental Table 8. Enrichment analysis revealed that target genes in network were mainly associated with fas signaling pathway, ensemble of genes encoding ECM and ECM-associated proteins, ensemble of genes encoding ECM and ECM-associated proteins, and influenza A. Target genes—TF regulatory network for downregulated genes consisting of 516 nodes (80 TFs and 458 downregulated genes) and 2424 edges (Figure 14). The results of the topological property analysis demonstrated that ABCA17P (degree = 217; ex, FOXC1), TACR1 (degree = 182; ex, GATA2), REEP1 (degree = 97; ex, YY1), TRAM1L1 (degree = 97; ex, FOXL1), and FGF9 (degree = 74; ex, TFAP2A) are listed in Supplemental Table 8. Enrichment analysis revealed that target genes in network were mainly associated with calcium signaling pathway, signaling receptor binding, transmembrane transport, and cell-cell signaling.
Validation of hub gene

The prediction achievement by ROC analysis showed that as single classifiers, CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2, DUSP9, FMO5, and PDE1A had significant predictive values with AUCs of 0.956, 0.752, 0.992, 0.914, 0.837, 0.759, 0.781, 0.788, 0.833, and 0.788, and P values of .00022, .00714, .00152, .00038, .00054, .00275, .00093, .00092, .00294, and .00252, respectively (Figure 15).

Discussion

Outbreaks of appearing and reappearing of SARS-CoV-2 infection are frequent threats to human health across globe. When a novel virus was detected and linked with human disease, it is necessary to understand molecular changes during antiviral treatment in SARS-CoV-2 infection. In this investigation, we performed a series of bioinformatics analysis to screen hub genes and pathways were associated with remdesivir-treated SARS-CoV-2 infection. The expression profiling by high-throughput RNA sequencing found that 49 upregulated genes and 72 downregulated genes were identified in remdesivir-treated SARS-CoV-2 infection compared with nontreated SARS-CoV-2 infection. IRF7,50 MX2,51 TRIM25,52 TRIM14,53 IFIT5,54 and IFIT1 55 have been shown to be a meaningful advance factor for progression of influenza virus infection, but these novel genes expressed in remdesivir-treated SARS-CoV-2 infection. Genes including OAS3,56 OASL (2′-5′-oligoadenylate synthetase like),57 and USP1858 were a preferred anticancer target, but these novel genes expressed in remdesivir-treated SARS-CoV-2 infection. Kurokawa et al59
demonstrated that altered expression of RSAD2 during measles virus infection, but this novel gene might be expressed in remdesivir-treated SARS-CoV-2 infection.

The ToppGene online tool was used to perform a pathway enrichment analysis. Xia et al. showed that DDX58 promoted aggressiveness of measles virus infection, but this novel gene was expressed in remdesivir-treated SARS-CoV-2 infection. CIITA (class II major histocompatibility complex trans-activator), CCL2, PML (promyelocytic leukemia), ICAM1, IL1A, MX1, CXCL8, MYD88, CXCL10, STAT1, STAT2, SOCS3, CASP1, TLR3, TNF (tumor necrosis factor), IL32, TRIM22, IFITM3, FGF2, IFITM1, IFITM2, IFI15, ISG15, SOCS1, IRF1, ISG20, IL22RA1, SOCS2, GBP5, BST2, HERC5, IL27, CXCL13, CXCL3, TNFAIP3 proved to be positively correlated with the progress of influenza virus infection, but these novel genes were expressed in remdesivir-treated SARS-CoV-2 infection. Conti et al. and Wu and Yang found expression of IL6 and JAK2 was correlated with SARS-CoV-2 infection progression. TICAM1, OAS1, OAS2, CXCL9, EREG (epiregulin), CCL2, VCAM1, IFIT2, TRIM5, XAF1, IFI6, IL7, SPI1, GPB1, GPB2, IRF4, MIR5193, IFNL3, CYP21A2, CXCL5, CXCL1, CCL4L1, WNT16, GNB3, FLG (flaggrin), and HEY1 have been found to be differentially expressed in various viral infections, but these novel genes were expressed in remdesivir-treated SARS-CoV-2 infection. Sanders et al. believed that NOS2 plays an important role in the pathophysiology of rhinovirus infection, but this novel gene was expressed in remdesivir-treated SARS-CoV-2 infection. Bonville et al. reported that the expression of the gene CCR1 is correlated with pneumovirus infection, but this novel gene was expressed in remdesivir-treated SARS-CoV-2 infection. IRAK2 is a promising biomarker in bronchitis virus infection detection and diagnosis, but this novel gene was expressed in remdesivir-treated SARS-CoV-2 infection.

The functions of the upregulated and downregulated genes were identified by GO enrichment analysis. The involvement of TREX1, IFNL4, MICB (MHC class I polypeptide-related sequence B), RAB43, APOL1, IFI16, APOBEC3B, SLAMF7, HDA9, APOBEC3A, SERPING1, TAP2, LAG3, OPTIN (optineurin), CD68, SP140, PDCD1, PLVAP (plasmalemma vesicle-associated protein), CD34, CD38, CD69, SLC30A8, and ATP6V1G2 with various viral infections was demonstrated previously, but these novel genes were expressed in remdesivir-treated SARS-CoV-2 infection. The altered expression of APOBEC3G, ADAM8, ZBP1, NLR5, AIM2, DUOX2, NOX1, IDO1, CEACAM1, PTX3, TAP1, FFA2, and E2F1 was observed to be associated with the progression of influenza virus infection, but these novel genes were expressed in remdesivir-treated SARS-CoV-2 infection. Currently, CD83 has been reported to be very important in progression of respiratory syndrome virus infection, but this novel gene was expressed in remdesivir-treated SARS-CoV-2 infection. ACE2 is recognized as an important molecular marker of SARS-CoV-2 infection. Cheng et al. found the expression of NMI (N-myc and STAT interactor) in patients with severe acute respiratory syndrome corona virus infection, but this novel gene was expressed in remdesivir-treated SARS-CoV-2 infection. Previous studies had shown that the altered expression of CD274 was closely related to the occurrence of rhino virus infection.
infection, but this novel gene was expressed in remdesivir-treated SARS-CoV-2 infection.

The construction of protein-protein interaction network and module analysis for upregulated and downregulated genes have been proven to be useful in the analysis of hub genes involved in remdesivir-treated SARS-CoV-2 infection. Fusco et al. revealed that HELZ2 may be the potential targets for dengue virus infection diagnosis and treatment, but this novel gene was expressed in remdesivir-treated SARS-CoV-2 infection. BATF3 levels are correlated with disease severity in patients with respiratory poxvirus infection, but this novel gene was expressed in remdesivir-treated SARS-CoV-2 infection. In general, our findings suggested that novel biomarkers such as FBXO6, SBK1, ARL14, LMO2, LAP3, TFAP4, APBB1, ELF5, USP2, ERP27, DSCAML1, NGEF (neuronal guanine nucleotide exchange factor), MARC1, GPRASP1, RAB26, DEPTOR (DEP domain containing MTOR interacting protein), HMGCS2, EEPD1, CAMKK1, PDE1A, etc.

Figure 15. ROC curve validated the sensitivity and specificity of hub genes as a predictive biomarker for SARS-CoV-2 infection. (A) CIITA. (B) HSPA6. (C) MYD88. (D) SOCS3. (E) TNFRSF10A. (F) ADH1A. (G) CACNA2D2. (H) DUSP9. (I) FMO5. (J) PDE1A. ROC indicates receiver-operating characteristic; SARS-CoV-2, severe acute respiratory syndrome corona virus 2.
PPP1R3C, WDR88, SERF1A, KLHL32, SMTNL2, RASL11B, ABLIM1, TOX2, LMCD1, TMCC2, and CERK (ceramide kinase) might play key roles in the action mechanism of SARS-CoV-2 infection.

The construction of target genes—miRNA regulatory network—and target genes—TF regulatory network analysis for upregulated and downregulated genes—has been proven to be useful in the analysis of target genes involved in remdesivir-treated SARS-CoV-2 infection. Uckun et al.77 and Purdy et al.78 revealed that CD7 and ELOVL7 are associated with HIV infection, but these novel genes were expressed in remdesivir-treated SARS-CoV-2 infection. In general, our findings suggested that novel biomarkers such as SOD2, APOL6, NPR1, NTNG2, VAV3, ZNF703, FAXC (failed axon connections homolog, metaxin-like GST domain), GPR137C, ZNF704, ABCA17P, REEP1, and TRAM1L1 might play key roles in the action mechanism of remdesivir treated SARS-CoV-2 infection.

However, in addition to the objection of sample collection, huge obstacles in the analysis need to be overcome. In addition, due to the smallness of available datasets in the GEO database, the sample size in this study was finite. We will raise the sample size in a future investigation if Supplemental datasets can be replaced from the database.

In conclusion, we conducted a comprehensive bioinformatics analysis on NGS data of remdesivir-treated SARS-CoV-2 infection. Pivotal DEGs (upregulated and downregulated genes) and pathways were diagnosed and screened to provide a theoretical basis for molecular changes during antiviral treatment in SARS-CoV-2 infection. Ten hub genes, especially CIITA, HSPA6, MYD88, TNFRSF10A, ADH1A, CACNA2D2, DUSP9, FMO5, and PDE1A, were found to differentiate remdesivir-treated SARS-CoV-2 infection from untreated SARS-CoV-2 infection. Nevertheless, additional relevant investigations are needed to further confirm the identified upregulated and downregulated genes, and pathways in remdesivir-treated SARS-CoV-2 infection.

Acknowledgements
We thank Eugene H Chang, The University of Arizona, Department of Otolaryngology, Eugene Lab, Tucson, Arizona, USA, very much, the author who deposited their next-generation sequencing dataset, GSE149273, into the public Gene Expression Omnibus database.

Author Contributions
GP helped in methodology and validation; BV helped in writing original draft, and review and editing; CV helped in software and investigation; and SK helped in supervision and validation.

Availability of Data and Materials
The datasets supporting the conclusions of this article are available in the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) repository. ([GSE149273] https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149273)

Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent
No informed consent was obtained because this study does not contain human or animals participants.

ORCID iDs
Basavaraj Vastrad https://orcid.org/0000-0003-2202-7637
Chananbasaya Vastrad https://orcid.org/0000-0003-3615-4450

Supplemental Material
Supplemental material for this article is available online.

REFERENCES
1. Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46:854-887.
2. Ferner RE, Aronson JK. Remdesivir in covid-19. BMJ. 2020;369:m1610.
3. Elsawah HK, Elshafee AH. Efficacy and safety of remdesivir in hospitalized Covid-19 patients: systematic review and meta-analysis including network meta-analysis. Rev Med Virol. 2021;31:e2187.
4. Steuerman Y, Cohen M, Pesher-Yalov N, et al. Dissemination of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 2018;6:679-691e4.
5. Souza GAP, Salvador EA, de Oliveira FR, Corta Malaguis LC, Abrahao JS, Leomil Coelho LF. An in silico integrative protocol for identifying key genes and pathways useful to understand emerging virus disease pathogenesis. Virus Res. 2020;284:197986.
6. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991-D995.
7. Ritchie ME, Phipson B, Wu DI, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
8. Abbas A, Kong XB, Liu Z, Jing BY, Gao X. Automatic peak selection by a Benjamin-Hochberg-based algorithm. PLoS ONE. 2013;8:e53112.
9. Caspi R, Billington R, Ferrer L, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2010;38:D590-D595.
10. Schaefer CF, Anthony K, Krupa S, et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2005;33:D450-D455.
11. Dahlquist KD, Salomonis N, Yianianz K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002;31:19-20.
12. Fabregat A, Jupe S, Matthews L, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46:D590-D595.
13. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding, genome variations in KEGG. Nucleic Acids Res. 2019;47:D590-D595.
14. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-15550.
15. Mi H, Huang X, Muruganujan A, et al. PANTHER version 11: expanded annotation database from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2015;43:D183-D189.
16. Petri V, Jayaraman P, Tutaj M, et al. The pathway ontology—updates and enhancements. PLoS ONE. 2013;8:e53112.
17. Abraham MS, El-Shafie AH. Efficacy and safety of remdesivir in hospitalized Covid-19 patients: systematic review and meta-analysis including network meta-analysis. Rev Med Virol. 2021;31:e2187.
20. Orchard S, Kerrien S, Abbasi S, et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods. 2012;9: 345-350.

21. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JV, Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 2004;32:D449-D451.

22. Orchard S, Ammari M, Aranda B, et al. The mintArt project—art as a common curation platform for 11—molecular interaction databases. Nucleic Acids Res. 2014;42:D358-D363.

23. Licata L, Briganti L, Peluso D, et al. MINT, the molecular interaction database: update 2012. Nucleic Acids Res. 2012;40:D367-D361.

24. Breuer K, Forouzani AK, Laird MR, et al. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 2013;41:D1228-D1233.

25. Keshava Prasad TS, Goel R, Kandasamy K, et al. Human Protein Reference Database - 2009 update. Nucleic Acids Res. 2009;37:D676-D672.

26. Oughtred R, Stark C, Brenner BJ, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47:D529-D541.

27. Korylai M, Pastrello C, Malik Z, Jurisica I. I2D 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species. Nucleic Acids Res. 2019;47:D581-D589.

28. Clerc O, Deng J-M, Vallet SD, et al. MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res. 2019;47:D376-D381.

29. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13: 1090-1098.

30. Przulj N, Wigle DA, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics. 2004;20:340-348.

31. Nguyen TP, Liu WC, Jordán F. Inferring pleiotropy by network analysis: linked index more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2004;20:340-348.

32. Niu Z, Zhang B. Fast network centralization analysis using GPUs. BMC Bioinform. 2011;12:149.

33. Liu X, Wang S, Meng F, et al. SM2miR: a database of the experimentally validated small molecules' effects on microRNA expression. Nucleic Acids Res. 2013;41:429-434.

34. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77.

35. Ishikawa E, Nakazawa M, Yoshinari M, Minami M. Role of tumor necrosis factor-related apoptosis-inducing ligand in immune response to influenza virus infection. J Virol. 2005;79:188-188.

36. Banchereau J, Medzhitov R. Innate immunity and beyond—recent updates and continuing curation. Int J Biochem Cell Biol. 2011;43:1427-1431.

37. Kurokawa C, Iankov ID, Galanis E. A key anti-viral protein, RSAD2/MBD4, is highly induced by hepatitis C virus infection in human liver. Virchows Arch. 2003;443:27-37.

38. Vlachos IS, Paraskevopoulou MD, Karagkouni D, et al. DIANA-TarBase v7.0: an updated resource for looking at microRNA interactions in a network context. Nucleic Acids Res. 2010;38:D105-D110.
Wang J, Wang Q, Han T, et al. Soluble interleukin-6 receptor is elevated during influenza A virus infection and mediates the IL-6 and IL-32 inflammatory cytokine burst. Cell Mol Immunol. 2015;12:633-644.

Di Pietro A, Kajaste-Rudnitski A, Oteiza A, et al. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J Virol. 2013;87:e4532-4533.

Sun X, Zeng H, Kumar A, Belzer JA, Maines TR, Tumpey TM. Constitutively expressed IFITM3 protein in human endothelial cells poses an early infection block to human influenza viruses. J Virol. 2016;90:11157-11167.

Wang K, Lai C, Gu H, et al. miR-194 inhibits innate antiviral immunity by targeting P lug2. Influenza H3N2 virus infection. Front Microbiol. 2017;8:2187.

Yu M, Q W, Huang Z, et al. Expression profile and histological distribution of IFITM1 and IFITM3 during H9N2 avian influenza virus infection in BALB/c mice. Microb Immunol. 2015;20:505-514.

Wang HF, Chen L, Luo J, He HX. KLF5 is involved in regulation of IFITM1, 2 and 3 gene expression during H5N1 virus infection in A549 cells. Cell Mol Biol (Nucle - geavis). 2016;62:65-70.

Tang BM, Shojaii M, Parnell GP, et al. A novel immune biomarker IFI27 discriminates between influenza and bacteria in patients with suspected respiratory infection. Eur Respir J. 2017;49:1602098.

Sanyal S, Ashour J, Maruyama T, et al. Type I interferon imposes a TSG101/SOCS complex to human influenza viruses. Cell Host Microbe. 2013;14:510-521.

Ye S, Lowther S, Stambas J. Inhibition of reactive oxygen species production activate in influenza virus infection. J Immunol. 2018;200:1449-1459.

Chai W, L-J, Shao Q, et al. Luc-162G inhibits influenza A virus replication by enhancing ISG20 expression. J Virol. 2018;92:e00539-00518.

Hebert KD, McLaughlin N, Zhang Z, Cipriani A, Alcorn JF, Picciari DA. IL-22Rα1 is induced during influenza infection by direct and indirect TRL3 induction of STAT1. Respir Res. 2019;20:184.

Kedzierski L, Tate MD, Hsu AC, et al. Suppressor of cytokine signaling (SOCS)5 ameliorates influenza virus infection via inhibition of EGRF signaling. Elife. 2017:e24044.

Feng J, Cao Z, Wang L, et al. Inducible GBP5 mediates the antiviral response via interferon-related pathways during influenza A virus infection. J Innate Immun. 2017;9:419-435.

Londrigan SL, Tate MD, Job ER, et al. Endogenous murine VACM-2/therabin is not a major restricting factor of influenza A virus infection. Plas ONE. 2015;10:042925.

Tang Y, Zheng G, Zhu L, et al. Hc05 attenuates influenza A virus by catalyzing the S5ylation of viral NS1 protein. J Immunol. 2016;188:5777-5780.

Kumar P, Rajasekaran N, Nanbakhsh A, Gorski J, Thakar MS, Malarkannan S. IL-27 promotes NK cell effector functions via Maf-NR27 pathway during influenza infection. Sci Rep. 2019;9:4984.

Rangel-Moreno J, Moyano-Quiroz JE, Hartson K, Kusser K, Randall TD. Pulmonary expression of CX3C chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc Natl Acad Sci U S A. 2007;104:10577-10582.

Carlin LE, Hemsan EA, Zacharias ZR, Heusel JG, Legge KL. Natural killer cell recruitment to the lung during influenza A virus infection is dependent on CXCR3, CCR5, and virus exposure dose. Front Immunol. 2018:9:781.

Dai J, Gu L, Su Y, et al. Inhibition of curcumin on influenza A virus infection and influenza pneumonia via oxidative stress, TR2L4, p38 MAPK and NF-κB pathways. Int Immunopharmacol. 2018;154:177-187.

Maedlait J, Roose K, Bogaert P, et al. A20 (Triafuc1) deficiency in myeloid cells protects against influenza A virus infection. PloS Pathog. 2012;8:e1002570.

Salimi V, Ramazani A, Mirzaei H, et al. Evaluation of the expression level of respiratory syncytial virus broncholitis. Pediatr Res. 2011;70:518-523.

Al-Afhl A, Alyazid R, Oldfield SA, et al. Respiratory syncytial virus infection of primary human nasal cells induces the selective production of type I interferons, CXCL10 and CCL4. J Allergy Clin Immunol. 2015;136:1348-1354.

Shi T, He Y, Sun W, et al. Respiratory syncytial virus infection compromises asthma tolerance by recruiting interleukin-17A-producing cells via CCR6-CCL20 signaling [published correction appears in Mol Immunol. 2018 198:328].

Tertene T, Wright C, Kramer HB, Altman M, Kessler BM. Label-free quantita - tive proteomics reveals regulation of interferon-induced protein with tetra trico peptide repeats 3 (IFITM3) and 5′-3′-exoribonuclease 2 (XRN2) during respiratory syncytial virus infection. Viral J. 2011;8:442.
128. Xie L, Huang Y, Zhong J, et al. Short communication: the association of WNT16 polymorphisms with the CD4+ T cell count in the HIV-infected population. *AIDS Res Hum Retroviruses*. 2020;36:119-121.

129. Juno J, Tuffi, Choi R, et al. The role of G protein gene GNB3 C825T polymorphism in HIV-1 acquisition, progression and immune activation. *Retirvirology*. 2012;9:1.

130. Oshiohi MK, Beauplet J, Venturioli N, Lewis CN, Iwakura Y, Gheza RS. Filaggrin deficiency promotes the dissemination of cutaneously inoculated vaccinia virus. *J Allergy Clin Immunol*. 2015;135:1511-1518.

131. Wang X, He Z, Xia T, et al. Latency-associated nuclear antigen of Kaposi sarcoma-associated herpesvirus promotes angiogenesis through targeting notch signaling effectors. *Hum Rept Virology*. 2018;74:2026-2032.

132. Sanders SP, Siekierski ES, Richards SM, Porter JD, Imani F, Proud D. Rhinovirus infection induces expression of type 2 nitric oxide synthase in human respiratory epithelial cells in vitro and in vivo. *J Allergy Clin Immunol*. 2001;107:235-243.

133. Bonville CA, Lau VK, DeLaou JM, et al. Functional antagonism of chemokine receptor CCR1 reduces mortality in acute pneumovirus infection in vivo. *J Virol*. 2004;78:7984-7998.

134. Liu H, Yang X, Zhang ZK, Zou WC, Wang HN. miR-146a-5p promotes replication of infectious bronchiolitis virus by targeting IRAK2 and TNFRSF18. *Arch Virol*. 2019;202:120-238.

135. Wheeler LA, Tisfuraya RT, Vibanav V, et al. TREX1 knockdown induces an interferon response to HIV that delays viral infection in humanized mice. *Cell Rep*. 2016;15:1715-1727.

136. O’Brien TR, Pfeiffer RM, Paquin A, et al. Comparison of functional variants in SMAD9 and IFN13 for association with HCV clearance. *J Hepatol*. 2015;63:1103-1110.

137. Library DH, Zhang L, Ohana A, Brion JD, Capeding RZ. Circulating levels of soluble MIBC in patients with symptomatic primary dendritic virus infections. *PLoS ONE*. 2014;9:e85059.

138. Osono H, Yoshimoto R, Tsu F, Carr F, Crump CM. Analysis of Rab GTase-activating proteins indicates that RabLs and Rab43 are important for herpes simplex virus 1 secondary envelopment. *J Virol*. 2011;85:8021-8022.

139. Estrella MM, Li M, Tin A, et al. The association between APOL1 risk alleles and longitudinal kidney function differs by HIV viral suppression status. *Clin Infect Dis*. 2013;57:646-652.

140. Ozalli MH, Broekema NM, Diner BA, et al. cGAS-mediated stabilization of p53 in CD8+ T cells regulates Th1 immunity to influenza. *Cell Rep*. 2015;20:e01258-e01219.

141. Natarajan P, Singh N, Kumar A, et al. NLRC5 interacts with RHG-1 to induce a robust antiviral response against influenza virus infection. *Eur J Immunol*. 2015;45:778-782.

142. Zhang H, Luo J, Alcorn JF, et al. AIM2 inflammasome is critical for influenza-induced lung injury and mortality. *J Immunol*. 2017;198:4383-4393.

143. Khan B, Cho SW, Jeong S, et al. Membrane delivery of Dna2 DNA using cationic polymer can prevent acute influenza A viral infection in vivo. *Appl Microbiol Biotechnol*. 2018;102:105-115.

144. lemonidis S, Seow HJ, Broughton BR, et al. Novx oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress. *PLoS ONE*. 2013;8:e67972.

145. Fox JM, Crabtree DJ, Sage IK, Tompkins SM, Tripp RA. Interferon lambda upregulates IDO1 expression in respiratory epithelial cells after influenza infection. *J Interferon Cytokine Res*. 2015;35:544-562.

146. Ye S, Cowled CJ, Yap CH, Stamba J. Deep sequencing of primary human lung epithelial cells challenged with H5N1 influenza virus reveals a proviral role for INP15. *J Virol*. 2014;88:271-281.

147. Job ER, Bortzzi B, Short KR, et al. A single amino acid substitution in the hemagglutinin of H3N2 subtype influenza A viruses is associated with resistance to the long pentraxin PTX3 and enhanced virulence in mice. *J Immunol*. 2014;192:271-281.

148. Aep H, Holze M, Powell SB, Karlsson H, Erhardt S. Neonatal infection with neurotropic influenza A virus induces the kynurenine pathway in early life and disrupts sensorimotor gating in adult Tpv-/- mice. *Int J Neuroopharmacol*. 2010;13:475-485.

149. Wang G, Jiang L, Wang J, et al. The G protein-coupled receptor FFAR2 promotes immunization in vivo against influenza A virus infection. *J Virol*. 2020;94:e01707-e01719.

150. Mayank AK, Sharma S, Naivalh W, Lal SK. Nucleoprotein of influenza A virus negatively impacts antipaptotic protein APTIP to enhance E2F1-dependent apoptosis and virus replication. *Cell Death Dis*. 2015;6:e1820.

151. Chen X, Zhang Q, Bai J, et al. The nucleocapsid protein and nonstructural protein 10 of highly pathogenic porcine reproductive and respiratory syndrome virus enhance CD83 production via NF-kB and Spl signaling pathways. *J Virol*. 2017;91:e00986-e00917.

152. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell Rep*. 2020;31:271-281.e8.

153. Cheng W, Chen L, Li R, Chen Y, Wang M, Guo D. Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitine-dependent proteosomal degradation of N-Myc (and STAT) interactor. *Virology*. 2020;570:150-161.

154. Seydel M, Kirchberger S, Malhotra G, et al. Human rhinovirus induces IL-35-producing Treg via induction of B7-H1 (CD274) and sialoadhesin (CD169) on DCs. *Eur J Immunol*. 2010;40:321-329.

155. Uckun FM, Chelstrom LM, Tiel-Ahlgren L, et al. TXU (anti-CD7)-poikweed antiviral protein as a potential therapy for human immunodeficiency virus. *Antivir Agents Chemother*. 1998;42:383-388.

156. Prashanth et al. Fatty acid elongase 7 catalyzes lipidome remodeling essential for human cytomegalovirus replication. *Cell Rep*. 2015;10:1375-1385.