A Cost and Power Feasibility Analysis of Quantum Annealing for NextG Cellular Wireless Networks

SRIKAR KASI1,2, P. A. WARBURTON3, JOHN KAEWELL2, KYLE JAMIESON1

1Princeton University, NJ 08542, USA
2InterDigital, Inc., PA 19428, USA
3University College London, WC1E 6BT, UK

Corresponding author: Srikar Kasi (email: skasi@princeton.edu).

ABSTRACT In order to meet mobile cellular users’ ever-increasing data demands, today’s 4G and 5G wireless networks are designed mainly with the goal of maximizing spectral efficiency. While they have made progress in this regard, controlling the carbon footprint and operational costs of such networks remains a long-standing problem among network designers. This paper takes a long view on this problem, envisioning a NextG scenario where the network leverages quantum annealing for cellular baseband processing. We gather and synthesize insights on power consumption, computational throughput and latency, spectral efficiency, operational cost, and feasibility timelines surrounding quantum annealing technology. Armed with these data, we project the quantitative performance targets future quantum annealing hardware must meet in order to provide a computational and power advantage over CMOS hardware, while matching its whole-network spectral efficiency. Our quantitative analysis predicts that with 82.32 µs problem latency and 2.68M qubits, quantum annealing will achieve a spectral efficiency equal to CMOS while reducing power consumption by 41 kW (45% lower) in a Large MIMO base station with 400 MHz bandwidth and 64 antennas, and a 160 kW power reduction (55% lower) using 8.04M qubits in a CRAN setting with three Large MIMO base stations.

INDEX TERMS Quantum annealing, quantum computing, radio access networks, wireless communication

I. INTRODUCTION

Radio Access Networks (RANs) are experiencing unprecedented growth in traffic at base stations due to increased subscriber numbers and their higher quality of service requirements [1]. To meet the resulting demand, 5G and NextG RANs are expected to deploy sophisticated techniques such as cell densification, multiple-input multiple-output communication, and millimeter-wave communication [2]. But this significantly increases the power and cost required to operate RANs backed by complementary metal oxide semiconductor (CMOS)-based processing. While general energy-saving strategies such as sleep mode [3] and network planning [4] can be used to decrease RAN’s power consumption to a point, the fundamental problem of power requirements scaling with the exponentially increasing computational requirements of the RAN persists. Previously (ca. 2010), this problem had not limited innovation in the design of RANs, due to a rapid pace of improvement in CMOS’s computational efficiency—which has typically followed Dennard scaling [5]–[7] for power consumption. Unfortunately however, today, such improvements are becoming increasingly difficult to maintain, due to transistor sizes approaching atomic limits, and issues such as leakage current control and thermal runaway [8]. As a result, CMOS operational clock speeds have reached a plateau and Moore’s Law scaling has come to an end (ca. 2025–2030) [9]–[11]. This therefore calls into question the prospects of CMOS to handle NextG cellular demand in terms of both energy and spectral efficiency. While unanticipated advances in CMOS may allow it to handle this demand, this paper makes the case for the possible future feasibility and potential power advantage of quantum annealing, a candidate quantum technology, over CMOS, in certain RAN operation scenarios. Recently quantum computers previously only hypothesized have been commercialized [12]–[14], and are now available for use by researchers. The current and near-term quantum technology can be broadly classified into digital gate-model and analog annealing-model architectures [15]–[18]. Gate-model devices are fully general purpose computers, using programmable logic gates acting on qubits, whereas annealing-model devices are specialized computers, offering a means to
search an optimization problem for its lowest energy configurations in a high-dimensional energy landscape [18]. While gate-model devices of size relevant to practical applications are not yet generally available [19], today’s annealing-model devices with about 5,000 qubits enable us to commence empirical studies at realistic scales [16]. In particular there are several published proof-of-principle studies of using quantum annealing to solve computational problems in communications networks [20]–[31]. Therefore we conduct this study from the perspective of annealing-model devices.

Here we present the first extensive analysis on power consumption and quantum annealing (QA) architecture to make the case for the future feasibility of quantum processing based RANs. We seek to quantitatively analyze whether in the coming years and decades, mobile operators might rationally invest in the RAN’s capital expenditure (CapEx) by purchasing quantum hardware of high cost, in a bid to lower its operational expenditure (OpEx) and hence the Total Cost of Ownership (CapEx + OpEx). The OpEx cost reduction would result from the reduced power consumption of the RAN, due to higher computational efficiency of quantum processing over CMOS processing for certain heavyweight baseband computational tasks. Unlike CMOS devices, the power consumption of quantum devices is dominated by their refrigeration unit rather than the computation at hand [32]–[34], implying that the increasing computational demand in RANs will have negligible impact on power consumption. Note that nothing which we propose with quantum annealing here is fundamentally out of the reach of classical computation. The potential advantages of QA for RAN applications are purely economic (i.e., the lower cost of operation resulting from the lower power consumption). Figure 1 depicts our envisioned scenario, where quantum processing units (QPUs) co-exist with CMOS processing units (CPUs) at Centralized RAN (CRAN) Baseband Units (BBUs). QPUs will then be used for the BBU’s heavy baseband processing, whereas CPUs will handle the network’s lightweight processing such as the control plane (e.g., resource allocation), and pre-/post-processing the QPU-specific computation.

While recent successful point-solutions that apply QA to a variety of wireless applications [20]–[31] serve as our motivation, previous work stops short of a holistic power and cost comparison between QA and CMOS. Despite QA’s benefits demonstrated by these prior works in their respective point settings, a reasoning of how these results will factor into the overall computational performance and power requirements of the base station and CRAN remains lacking. Therefore, here we investigate these issues head-on, to make an end-to-end case that QA will likely offer benefits over CMOS for handling BBU processing, and to make time predictions on when these benefits might be realized. Specifically, we present informed answers to the following questions:

Question 1: How many qubits are required to realize a base station or CRAN BBU processing requirements? (Answer: §V, §VII)

Question 2: Given sufficient number of qubits, how much power and cost does QA save over CMOS? (Answer: §VII)

Question 3: At what year might these qubit numbers become feasible, based on the current industry trends? (Answer: §VI)

Question 4: How does QA processing latency and solution accuracy impact the qubit requirement and power/cost benefits? (Answer: cf. §III, §V, §VI)

Question 5: In what wireless network scenarios QA will provide power/cost advantage over CMOS? (Answer: cf. §VI, VII)

In order to answer the above questions, several key performance indicators need to be analyzed, quantified, and evaluated, most notably the computational throughput and latency (§III), the power consumption of the entire system and resulting spectral efficiency (bits per second per Hertz of frequency spectrum) and operational cost (§VI). We first describe the factors that influence processing latency and throughput on current QA devices and then, by assessing recent developments in the area, project what computational throughput and latency future QA devices can achieve (§III). We analyze cost by evaluating the power consumption of QA and CMOS-based processing at equal spectral efficiency targets (§VI). Our analysis reveals that a three-way interplay between latency, power consumption, and qubit count available in the QA hardware determines whether QA can benefit over CMOS. In particular, latency influences spectral efficiency, power consumption influences energy efficiency, and the number of qubits influences both. Based on these insights, we determine properties that QA hardware must meet in order to provide an advantage over CMOS in terms of energy, cost, and spectral efficiency in wireless networks.

Table 1 summarizes our results, showing that for 200 and 400 MHz bandwidths, respectively, with 1.34M and 2.68M qubits, we predict that QA processing will achieve spectral efficiency equal to today’s 14 nm CMOS processing, while reducing power consumption by 8 kW (16% lower) and

Figure 1: Our envisioned scenario in a Centralized RAN context, where quantum processing units handle heavyweight baseband computational tasks and CMOS units undertake lightweight control plane processing.
Table 1: QA qubit count requirements to achieve equal spectral efficiency to CMOS, and power consumption of CMOS and QA.1 Shaded cells indicate the lesser power of CMOS vs. QA.

\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{B/W} & \textbf{Qubits} & \textbf{Power Consumption} & \\
& \textbf{BS} & \textbf{CRAN} & \textbf{CMOS} & \textbf{QA} & \textbf{CRAN (MW)} \\
\hline
50 MHz & 335K & 1.00M & 19.3 & 36 & 0.079 & 0.081 \\
100 & 669K & 2.00M & 29.4 & 37.9 & 0.11 & 0.09 \\
200 & 1.34M & 4.02M & 49.5 & 41.6 & 0.17 & 0.10 \\
400 & 2.68M & 8.04M & 89.9 & 49 & 0.29 & 0.13 \\
\hline
\end{tabular}

41 kW (45% lower) in representative 5G/NextG base station scenarios. In a CRAN setting with three base stations of 200 and 400 MHz bandwidths, QA processing with 4.02M and 8.04M qubits, respectively, reduces power consumption by 70 kW (41% lower) and 160 kW (55% lower), while achieving equal spectral efficiency to CMOS.

Our further evaluations compare QA against future 1.5 nm CMOS, which is expected to be the silicon technology at the end of Moore’s Law scaling [9]–[11]. In a CRAN setting with three 400 MHz bandwidth 64-antenna base stations, QA with 8M qubits will reduce power consumption by 23.6 kW (21% lower) while achieving equal spectral efficiency to CMOS.

A projected QA feasibility timeline is reported in Figure 14, describing year-by-year milestones on the application of QA for wireless networks (see §VII). Our analysis shows that with QA qubit connectivity matching the problem connectivity (see §V) and qubits growing $2.65 \times$ every three years (the 2017–2020 trend), a power/cost benefit of QA over CMOS is a predicted 11–14 years (ca. 2034–2037) away, whereas the feasibility in processing for a small base station with 10 MHz bandwidth and 32 antennas is a predicted three years away.

Overall, our quantitative results show that QA will offer power/cost benefits over CMOS in certain wireless network scenarios, once QA hardware scales to at least 537K qubits (§VII) while reducing problem processing time to tens of microseconds, which we argue is feasible within our projected timelines. Scaling of QA processors hold challenges related to engineering, control, and operation of hardware resources, which designers continue to investigate [35], [36]. Recent work demonstrates large-scale qubit control techniques, showing that control of million qubit-scale quantum hardware is already at this point in time a realistic prospect [37].

II. BACKGROUND

In this section, we provide background on 5G/NextG wireless architecture (§II-A) and Quantum Annealing (§II-B).

A. MASSIVE/LARGE MIMO NEXTG ARCHITECTURE

Today’s wireless industry is facing significant challenges in handling mobile cellular traffic at base stations (BSs) due to sharp rises in user counts and their network usage. To meet the resulting demand, the baseband unit (BBU) processing (i.e., digital processing) from many BSs is being aggregated into centralized locations, a concept referred to as a Centralized Radio Access Network or CRAN [38], [39]. This has two immediate advantages: first, compute resources previously dedicated to each BS can be statistically multiplexed among many BSs, saving energy and reducing cost, and second, joint computational processing over the signals to or from many BSs is simplified, since each BS’s processing occurs on either exactly the same physical servers, or physical servers in close network proximity. Despite these advantages, however, CRAN BBUs need to process heavy computational loads within a threshold turnaround time, imposing additional latency and bandwidth requirements on the interconnect between BSs and the centralized BBU.

In 5G and NextG CRAN networks, BSs are envisioned with Multiple-Input Multiple-Output (MIMO) communication, a spatial multiplexing technique typically implemented using multiple antennas at the BS. MIMO communication is a key requirement to enable high spectral efficiency networks envisioned in 5G and NextG [40]–[42]. The status quo implementation, called Massive MIMO, uses a number of antennas (typically 4 or 8 in 5G) for capturing the same user signal, and so to support more users simultaneously, Massive MIMO demands significantly more antennas at the BS [41]. To address this problem, NextG Large MIMO techniques are underway, which use one antenna for the same task, increasing the number of simultaneous users, thus maximizing the wireless network’s spectral efficiency [43].

Typical real-world BS and CRAN implementations involves performance sacrifices which arise due to the strict timing deadline (0.5–1 ms in 5G) by which wireless signals must turnaround. Most notably, this includes the use of linear/low-complexity algorithms, reduced bit precision, and limiting the count of iterative procedures, which all sacrifice spectral efficiency. While Maximum-Likelihood (ML) methods are known to provide optimal performance by maximizing spectral efficiency, they are of exponential computational complexity and so challenging to realize on CMOS hardware. Recent prior work in this area has shown QA to be a promising alternative to CMOS in this regard, realizing ML methods on the order of hundreds of microseconds (excluding overheads) [20], [22], [23]. In our evaluations, we compare the cost/power of QA and CMOS in both Massive and Large MIMO BS and CRAN networks with non-linear MIMO settings (see §VI).

B. QUANTUM ANNEALING

Quantum Annealing is an optimization-based approach that aims to find the lowest energy spin configuration (i.e., solution) of an Ising model described by the time-dependent energy functional (Hamiltonian):

$$H(s) = -\Gamma(s)H_I + L(s)H_P$$

where H_I is the initial Hamiltonian, H_P is the (input) problem Hamiltonian, $s \in [0, 1]$ is a non-decreasing function of time
called an\textit{ annealing schedule}, $\Gamma(s)$ and $L(s)$ are energy scaling functions of the transverse and longitudinal fields in the annealer respectively. Essentially, $\Gamma(s)$ guides the probability of quantum tunneling during the annealing process, and $L(s)$ guides the probability of finding the ground state of the input problem Hamiltonian H_P [16]. The QA hardware is a network of locally interacting radio-frequency superconducting qubits, organized in groups of \textit{unit cells}. Fig. 2 shows the unit cell structures of recent (Chimera) and state-of-the-art (Pegasus) QA devices. The nodes and edges in the figure are \textit{qubits} and \textit{couplers} respectively [20].

The process of optimizing a problem in the QA is called annealing. Starting with a high transverse field (i.e., $\Gamma(0) > L(0) \approx 0$), QA initializes the qubits in a pre-known ground state of the initial Hamiltonian H_I, then gradually interpolates this Hamiltonian over time—decreasing $\Gamma(s)$ and increasing $L(s)$—by adiabatically introducing quantum fluctuations in a low-temperature environment, until the transverse field diminishes (i.e., $L(1) \gg \Gamma(1) \approx 0$). This time-dependent interpolation of the Hamiltonian is essentially the quantum annealing algorithm. The Adiabatic Theorem then ensures that by interpolating the Hamiltonian slowly2 enough, the system remains in the ground state of the interpolating Hamiltonian [45]. Thus during the annealing process, the system ideally stays in a local minimum and probabilistically reaches the global minimum of the problem Hamiltonian H_P at its conclusion [16]. The initial and problem Hamiltonians take the form $H_I = \sum_i \sigma_i^{x,z}$ and $H_P = \sum_i h_i \sigma_i^{x,z} + \sum_{i<j} J_{ij} \sigma_i^z \sigma_j^z$, where $\sigma_i^{x,z}$ are the Pauli spin operators acting on the i^{th} qubit, h_i and J_{ij} are the optimization problem inputs (coefficients) that the user supplies [16].

\textbf{Input Problem Forms.} QAs optimize Ising model problems, whose problem format matches the above problem Hamiltonian: $E = \sum_i h_i s_i + \sum_{i<j} J_{ij} s_i s_j$, where E is the energy of the candidate solution, s_i is the i^{th} solution variable which can take on values in $\{-1, +1\}$, h_i and J_{ij} are called the \textit{bias} of s_i and the \textit{coupling strength} between s_i and s_j, respectively. Ising form is equivalent to quadratic unconstrained binary optimization (QUBO) form, where solution variables take values in $\{0, 1\}$. Biases represent individual preferences of qubits to take on a particular classical value (-1 or $+1$), whereas coupling strengths represent pairwise preferences (i.e., two particular qubits should take on same/opposite values), in the solution the machine outputs. Biases and coupling strengths are specified to qubits and couplers, respectively, using a programmable on-chip control circuitry [46], [47]. The QA probabilistically returns the solution variable configuration with the minimum energy E at its output [20].

\textbf{Assumption 1—Ising Model formulation.} To enable QA computation, cellular baseband’s heavy processing tasks must be formulated as Ising model problems. Recent prior work in this area has formulated the most heavyweight tasks in the baseband, such as frequency domain detection, forward error correction, and precoding problems, into Ising models [20], [21], [23], [30], [31], [48]. Further baseband tasks will either admit Ising model formulations via binary representation of continuous values [49] (we leave for future work), or are so lightweight they require negligible power.

\textbf{C. INPUT PROBLEM EMBEDDING}

The process of mapping a given input problem onto the physical QA hardware is called \textit{embedding}. To understand embedding, let us consider an example Ising problem:

\begin{equation}
E = h_1 s_1 + h_2 s_2 + h_3 s_3 + J_{12} s_1 s_2 + J_{23} s_2 s_3 + J_{13} s_1 s_3 \tag{2}
\end{equation}

The logical representation of Eq. 2 is depicted in Fig. 3(a), where nodes and edges are qubits and couplers respectively. The curved arrows are used to visualize the linear coefficients. However, observe that a complete three-node qubit connectivity does not exist in the Chimera graph (cf. Fig. 2(a)). Hence the standard approach is to map one of the logical problem variables (e.g., q_3) onto two physical qubits (e.g., q_{3a} and q_{3b}) as Fig. 3(b) shows, such that the resulting connectivity can be realized on the native QA hardware. To ensure proper embedding: q_{3a} and q_{3b} must agree with each other. This is achieved by enforcing the condition $h_3 = h_{3a} + h_{3b}$, and chaining these physical qubits with a strong ferromagnetic coupling strength called J_{Ferro} (J_F)—see dotted line in Fig. 3(b). The physical Ising problem the QA optimizes for the example in Eq. 2 is then:

\begin{equation}
E = h_1 q_1 + h_2 q_2 + h_{3a} q_{3a} + h_{3b} q_{3b} + J_{12} q_1 q_2 + J_{13} q_1 q_{3a} + J_{23} q_2 q_{3b} + J_F q_{3a} q_{3b} \tag{3}
\end{equation}

2If the adiabatic evolution is infinitely slow, then the annealing algorithm is guaranteed to find the global minimum of H_P [44].

Fig. 2: Unit cell structures of (a) Chimera and (b) Pegasus QA graphs. Nodes are qubits, and edges are couplers.

Fig. 3: Embedding process of Eq. 2, where the logical variable q_3 in (a) is mapped onto two physical qubits q_{3a} and q_{3b} as in (b) with a J_{Ferro} of J_F (dotted).
To characterize current and future QA performance, this section analyzes processing time on QA devices, the client of which sends quantum machine instructions (QMI) that characterize an input problem computation to a QA QPU. The QPU then responds with solution data. Fig. 4 depicts the entire latency a QMI experiences from entering the QPU to the read-out of the solution, which consists of programming (§III-A), sampling (§III-B), and post-processing (§III-C) times.

A. PROGRAMMING TIME

As the QMI reaches the QPU, the QPU programs the QMI’s input problem coefficients—biases and coupling strengths (§II): room temperature electronics send raw signals into the QA refrigeration unit to program the on-chip flux digital-to-analog converters (Φ-DACs). The Φ-DACs then apply external magnetic fields and magnetic couplings locally to the qubits and couplers respectively. This process is called a programming cycle, and in current technology it takes 4–40 µs, dictated by the amount of programming data, bandwidth of control lines, and the Φ-DAC addressing scheme [35], [56]. During the programming cycle, the QPU dissipates an amount of heat that increases the effective temperature

\[J_F \]

\[E \]

\[N \]

Since \(J_F \) is finite, some parameter optimization may be necessary [50], [51].

Assumption 2—Bespoke QA hardware. Qubit connectivity significantly impacts performance, with sparse qubit connectivity negatively affecting dense problem graphs due to problem mapping difficulties [20]. Recent advances in QA have bolstered qubit connectivity—6 to 15 to 20 couplers per qubit in the Chimera (2017), Pegasus (2020), and Zephyr (ca. 2023-24) topologies respectively [52], [53]—and further improvement efforts continue [54], [55], which will allow QA hardware tailored to baseband processing problems within the timescales of our predictions, resulting in a highly efficient embedding process (see §V-B for a more detailed discussion).

III. QUANTUM PROCESSING PERFORMANCE

To characterize current and future QA performance, this section analyzes processing time on QA devices, the client of which sends quantum machine instructions (QMI) that characterize an input problem computation to a QA QPU. The QPU then responds with solution data. Fig. 4 depicts the entire latency a QMI experiences from entering the QPU to the read-out of the solution, which consists of programming (§III-A), sampling (§III-B), and post-processing (§III-C) times.

A. PROGRAMMING TIME

As the QMI reaches the QPU, the QPU programs the QMI’s input problem coefficients—biases and coupling strengths (§II): room temperature electronics send raw signals into the QA refrigeration unit to program the on-chip flux digital-to-analog converters (Φ-DACs). The Φ-DACs then apply external magnetic fields and magnetic couplings locally to the qubits and couplers respectively. This process is called a programming cycle, and in current technology it takes 4–40 µs, dictated by the amount of programming data, bandwidth of control lines, and the Φ-DAC addressing scheme [35], [56]. During the programming cycle, the QPU dissipates an amount of heat that increases the effective temperature of the qubits. This is due to the movement of flux quanta in the inductive storage loops of Φ-DACs. Thus, a post-programming thermalization time is required to cool the QPU, ensure proper reset/initialization of qubits, and allow the QPU

\[QPU \]
dissipated on chip is on the order of \(I_c \times \Phi_0 \) per single flux quantum (SFQ) moved in an inductor storage loop, where \(I_c \) is the \(\Phi_0 \)-DAC’s junction critical current and \(\Phi_0 \) is the magnetic flux quantum.\(^4\) Therefore, the dissipated on-chip programming energy \((E_{\text{prog}}) \) is given by:

\[
E_{\text{prog}} = 4 \times (6N_Q + N_C) \times I_c \times \Phi_0 \times N_{\text{SFQ}}
\]

where \(N_Q \) and \(N_C \) are the number of qubits and couplers being programmed, and \(N_{\text{SFQ}} \) is the number of SFQs moving into (or out of) inductor storage loops. The required programming thermalization time \((T_{\text{therm}}) \) is then given by:

\[
T_{\text{therm}} = \frac{E_{\text{prog}}}{P_{\text{QPU}}}
\]

where \(P_{\text{QPU}} \) is the cooling power available at the 20 mK QPU stage, which is typically 30 \(\mu \)W [57]. The supported bit-precision on QA devices is currently up to five bits (four for value, one for sign), and for the worst-case reprogramming scenario, this corresponds to 32 SFQs (16 to +16) moving into (or out of) all \(\Phi_0 \)-DAC inductor storage loops [36]. Figure 6 reports these results, showing that programming a large-scale QA device with 10M qubits and 20 couplers per qubit will dissipate only 42 pJ energy on chip, requiring a thermalization time of 1.4 \(\mu \)s only.

After programming and thermalization, the next step resets/initializes the qubits (cf. §II-B), during which each qubit transitions from a higher energy state to an intended ground state, generating spontaneous photon emissions, heating the QPU. Reed et al. [59] demonstrate the suppression of these emissions using Purcell filters, requiring 80 ns (120 ns) for 99% (99.9%) fidelity. Heretofore, an overall programming time of 41.52 \(\mu \)s (data programming: 40 \(\mu \)s, thermalization: 1.4 \(\mu \)s, reset: 0.12\(\mu \)s) is considered for a large-scale 10M qubit QA device, which is subject to the requirement of 33 GHz aggregate control line bandwidth and Purcell filter integration.

\(^4\)\(\Phi_0 = h/2e \), where \(h \) is Planck’s constant and \(e \) is the electron charge.

B. SAMPLING TIME

The process of executing a QMI on a QA device is called sampling, and the time taken for sampling is called the sampling time. The sampling time is classified into three sub-components: the anneal, readout, and readout delay times. A single QMI consists of multiple samples of an input problem, with each sample annealed and read out once, followed by a readout delay (see Fig. 4). Sampling a QMI begins after the QPU programming process.

1) Anneal

In this time interval, the QPU implements a QA algorithm (§II-B) [16] to solve the input problem, where low-frequency annealing lines control the annealing algorithm’s schedule. The bandwidth of these control lines limits the minimum annealing time, which is 0.5 \(\mu \)s today. Weber et al. [60] propose the use of flexible print cables with a moderate bandwidth (\(\approx 100 \) MHz) and high isolation (\(\approx 50 \) dB) for annealing, which potentially decrease annealing time to tens of nanoseconds. Further experiments have demonstrated that large-scale QA devices can be operated under 40 ns anneal time, enabling coherent quantum annealing regimes [61], [62].

2) Readout

After annealing, the spin configuration of qubits (i.e., the solution) is read out by measuring the qubits’ persistent current \((I_p) \) direction. This readout information propagates from the qubits to readout detectors located at the perimeter of the QPU chip via flux bias lines. Each flux bias line is a chain of electrical circuits called Quantum Flux Parametrons (QFPs), which detect and amplify qubits’ \(I_p \) to improve the readout signal-to-noise ratio. These QFP chains act like shift registers, propagating the information from qubits to detectors [63]. In current QA devices with \(N_Q \) qubits, there are \(\sqrt{N_Q/2} \) flux bias lines, with each flux bias line responsible for reading out \(\sqrt{N_Q/2} \) qubits. Further, each flux bias line reads out one qubit at a time (i.e., time-dimension readout), thus a total of \(\sqrt{N_Q/2} \) qubits are readout in parallel. Hence, the readout time depends on the qubits’ physical locations, the bandwidth of flux bias lines, and the signal integration time. For the current status of technology, the readout time is 25–150 \(\mu \)s per sample [16]. Nevertheless, recent research demonstrates promising fast readout techniques, which we describe next.

Chen et al. [64] and Heinsow et al. [65] describe frequency-multiplex readout schemes that enable simultaneous readout of multiple qubits within a flux bias line. While there is no fundamental limit on the number of qubits read out simultaneously, a physical limit is imposed by the line width of qubits’ readout microresonators and the 4–8 GHz operating band (6 GHz center frequency, 4 GHz bandwidth) of commercial microwave transmission line components used in the readout architecture [63]. Microresonators with quality factor \(Q_r \) can capture line widths up to 6/\(Q_r \) GHz, thus enabling up to \(4 \times Q_r/6 \) qubits to be readout simultaneously. Table 2 reports these results, showing that a \(Q_r \) of \(10^6 \) will enable up to \(\approx 666 \) K qubit-parallel readout. This analysis assumes that
Table 2: The table shows the number of qubits read out in parallel by time-division (status quo) and frequency-multiplex (projected) readout schemes at various choices of QPU sizes and readout microresonator quality factors (Q_r).

Qubits	Qubits readout in parallel	
	Time-division	Frequency-multiplex
512	16	512
2,048	≈ 666	2,048
5,436	≈ 52	≈ 666
10 M	≈ 2,200	≈ 666

Each microresonator can be fabricated at exactly its design frequency, which is currently not the case. Further developments in understanding the RF properties of microresonators will be needed to achieve this multiplexing performance.

In order to avoid sample-to-sample readout correlation, microresonators reading out the current sample’s qubits must ring down before reading the next sample’s qubits. McClure et al. [67] achieve ring-down times on the order of hundreds of nanoseconds by applying pulse sequences that rapidly extract residual photons exiting the microresonators after readout. Fast ring-down can also be achieved by switching off the QFP (after the readout) coupled to a microresonator, and then switching on a different QFP that couples the microresonator to a lossy line. While QFP on-off switching takes hundreds of nanoseconds [68], [69], it ensures high fidelity readout.

Recent work by Grover et al. [68] shows the application of QFPs as isolators, achieving a readout fidelity of 98.6% (99.6%) in 80 ns (1 μs) only. Work by Walter et al. [70] describes a single-shot readout scheme requiring only 48 ns (88 ns) to achieve a 98.25% (99.2%) readout fidelity. Their designs are also compatible with multiplexed architectures and earlier readout schemes, implying that by design integration readout time reaches on the order of microseconds per sample.

3) Readout delay
After a sample’s anneal-readout process, a readout delay is added (see Fig. 4). In this time interval, qubits are reset for the next sample’s anneal. QA clients can specify times in the range 0–10 ms, and the default value is a conservative one millisecond. Nevertheless, about one microsecond is sufficient for high fidelity qubit reset (§3.1) [59].

C. POSTPROCESSING TIME
This time interval is used for post-processing the solutions returned by QA for improving the solution quality [71]. Multiple samples’ solutions are post-processed at once in parallel with the current QMI’s annealer computation, whereas the final batch of post-processing occurs in parallel with the programming of next QMI. Thus, the post-processing time does not factor into the overall processing time [56].

In summary, the projected programming time is 41.52 μs (data programming: 40 μs, thermalization: 1.4 μs, reset: 0.12 μs), anneal time is 40 ns/sample, readout time is one μs/sample, and readout delay time is one μs/sample. For a target sample count N_s, total QMI run time is 41.52 + 2.04 N_s μs.

IV. RAN POWER MODELS AND CELLULAR TARGETS
We now describe power modeling in RANs (§IV-A) and computational complexity of cellular networks (§IV-B).

A. POWER MODELING
RAN power models account for power by splitting the BS or CRAN functionality into the components and sub-components shown in Figs. 1 and 7. This section details these components and their associated power models. We follow the developments by Desset et al. [72] and Ge et al. [73].

1) RAN Power Model
A RAN BS (see Fig. 7) is comprised of a baseband unit (BBU), a radio unit (RU), power amplifiers (PAs), and a power system (PS). The entire BS power consumption (P_{BS}) is then:

$$P_{BS} = \frac{P_{BBU} + P_{RU} + P_{PA}}{1 - \sigma_{AC}(1 - \sigma_{MS})(1 - \sigma_{DC})},$$

where P_i is the ith BS component’s power consumption, and σ_{AC}, σ_{MS}, and σ_{DC} correspond to fractional losses of Active Cooling (A/C), Mains Supply (MS), and DC–DC conversions of the power system respectively [73].

The BBU performs the processing associated with digital baseband (BB), and control and transfer systems. The baseband includes computational tasks such as digital pre-distortion (DPD), up/down sampling or filtering, OFDM-FFT processing, frequency domain (FD) mapping/demapping and equalization, and forward error correction (FEC). The control system undertakes the platform control processing (PCP), and the transfer system processes the eCPRI transport layer. The total BBU power consumption (P_{BBU}) is then [72], [73]:

$$P_{BBU} = P_{DDP} + P_{Filter} + P_{FFT} + P_{FBA} + P_{FDB} + P_{FEC} + P_{PCP} + P_{CPU} + P_{Leak},$$

where P_i is the ith BBU task’s power consumption, and P_{Leak} is the leakage power resulted from the employed hardware in processing these tasks. FD processing is split into two parts, with linear and non-linear scaling over number of antennas.
Table 3: Baseband unit’s computational complexity in Large MIMO base stations. Time and frequency duty cycles are at 100%, modulation is 64-QAM, and coding rate is 0.5. Values are in Tera operations per second. See §IV for abbreviations.

Task	BBU Reference	4G (B/W = 20 MHz)	5G (B/W = 200 MHz)	5G (B/W = 400 MHz)			
	\(N_A = 1\)	\(N_A = 2\)	\(N_A = 4\)	\(N_A = 8\)	\(N_A = 32\)	\(N_A = 64\)	\(N_A = 128\)
					\(N_A = 32\)	\(N_A = 64\)	\(N_A = 128\)
DPD	0.160	0.320	0.640	1.280	51.2	102.4	204.8
Filter	0.400	0.800	1.600	3.200	128.0	256.0	512.0
FFT	0.160	0.320	0.640	1.280	51.2	102.4	204.8
FD_{lin}	0.090	0.180	0.360	0.720	28.8	57.6	115.2
FD_{fl}	0.030	0.120	0.240	0.480	307.2	614.4	1,228.8
FEC	0.140	0.280	0.560	1.120	22.4	44.8	89.6
CPRI	0.720	1.440	2.880	5.760	115.2	230.4	460.8
PCP	0.400	0.800	1.600	3.200	12.8	25.6	51.2
Total	2.100	3.400	7.040	15.040	716.8	2,048.0	6,533.6
					1,420.8	4,070.4	13,056.0

In this section, we estimate QA qubit count and their connectivity requirements that meet the cellular computational targets described above (§IV). While we exemplify this analysis from today’s 4G/5G perspective, same ideas can be used to study NextG systems as well.

A. QUBIT COUNT REQUIREMENT

To estimate qubit count, our approach considers the computational complexity of baseband tasks, their QUBO forms’ variable count, and run time on a QA device implementation. In particular, we convert the target TOPS complexity values (Table 3) into target problems per second (PPS), then estimate the qubit count required to achieve this PPS by analyzing QUBO forms of individual baseband computational tasks. We formulate the qubit count requirement as:

\[N_Q = \sum_k N_{Q,k} \] \hfill (11)

\[N_{Q,k} = \text{PPS}_k \times N_{Q,p,k} \times T_{p,k} \] \hfill (12)

\[\text{PPS}_k = \text{TOPS}_k / \text{Operations per problem} \] \hfill (13)
where \(N_Q \) is the total number of qubits the QA requires for the entire baseband processing, and \(N_{Q,k} \) is the qubit requirement for the \(k^{th} \) baseband task. PPS\(k \) is the target problems per second, \(N_{Q,p,k} \) is the number of qubits per problem, and \(T_{p,k} \) is the run time per problem, of the \(k^{th} \) baseband task. We next demonstrate how to compute these values for FD\(n_l \) and FEC tasks with running examples.

The FD\(n_l \) task corresponds to the MIMO detection problem whose objective is to demodulate the received wireless data into bits [79]. In a multi-user system with multiple antennas at the BS, the optimal MIMO detection performance is obtained by solving the QUBO objective function [23]:

\[
\text{argmin}_{x \in \mathbb{C}^{N_r \times 1}} \| y - H x \|^2 \tag{14}
\]

where \(y \in \mathbb{C}^{N_r \times 1} \) is received data, \(H \in \mathbb{C}^{N_r \times N_t} \) is wireless channel, and \(x \in \mathbb{C}^{N_t \times 1} \) is transmitted data to be estimated. \(N_t \) and \(N_r \) are the number of transmitters (users) and receivers (antennas) in the system respectively. We observe that upon expansion Eq. 14 becomes a quadratic minimization function, if each entry in \(x \) is formulated as a linear function of variables. The search is over all possible \(x \), and the entries in \(x \) are selected based on the employed modulation scheme. For instance in BPSK modulation, we must search for values in \(\{ \pm 1 \} \) and so each entry in \(x \) takes the form \(2q - 1 \), where \(q \) is a binary variable. Such formulations exist for various modulations (see [23] for details).

Solving a demodulation problem with \(Z \) users and \(Z \) antennas via state-of-the-art sphere decoding algorithm requires on average 80 (\(Z/64 \))^2 million operations [80].\(^5\) Solving the same problem using QA requires \(N_{bps} \times Z \) qubits, where \(N_{bps} \) is the number of bits per symbol in the employed modulation scheme (see [23]). Therefore, for a typical 5G scenario: \(Z = 64 \) and 64-QAM modulation (\(N_{bps} = 6 \)), we note that PPS\(k \), is 30.72M (i.e., 2457.6 TOPS/80M, see Table 3), \(N_{Q,p,FD,n_l} \) is 384 qubits, and \(T_{p,FD,n_l} \) is 41.52 + 2.04 Ns \(\mu \)s (\(\$III \)). Substituting these values in Eq. 12 shows that the 5G FD\(n_l \) processing requires 971K qubits with \(N_s = 20 \) samples.

The FEC task corresponds to the channel decoding problem which aims to correct the bit errors that noise and interference of the wireless channel inevitably introduce into the user data. In our analysis, we consider Low Density Parity Check (LDPC) codes employed in the 5G-NR traffic channel for FEC evaluation [81]. An (\(M, N \))-LDPC code is characterized by a binary-valued parity check matrix \([h_{ij}]_{M \times N} \), where each row defines a check constraint and each column defines which check constraint a bit participates in. In particular, an entry \(h_{ij} = 1 \) indicates that \(j^{th} \) bit participates in \(i^{th} \) check constraint. A check constraint is said to be satisfied when its modulo two bit-sum is zero (i.e., zero checksum), and a successful decoding occurs when all the check constraints of the code are satisfied. The optimal LDPC decoding performance

\[^5\] A \(64 \times 64 \) MIMO detection problem requires 80 million operations [80], and it scales quadratic with number of antennas [72], [73].

![Figure 8: QA qubit requirement at various problem run times](image-url)

Figure 8: QA qubit requirement at various problem run times to achieve spectral efficiency equal to CMOS processing, in a 5G scenario with 400 MHz BW and 64 antennas.
indicates the required QA target fidelity in terms of error performance—when N_j is 20, QA must reach ground state of the input problem in 20 anneal trials. Hence, QA must meet these run time–qubit count combinations to achieve spectral efficiency equal to CMOS. While in Fig. 8 we demonstrate an example scenario, a similar methodology is applied to estimate network-specific qubit requirements. Fig. 13 shows this qubit requirement for various bandwidths and antenna count choices (later described in §VII).

B. QUBIT CONNECTIVITY REQUIREMENT

To estimate qubit connectivity, we now analyze the native problem connectivity of the QUBOs described above. In this work, we consider future QA qubit connectivity to match the problem connectivity, which is typically challenging to realize for dense problems from a hardware perspective but will result in a highly efficient embedding process. Nevertheless, we describe promising methods that circumvent this issue.

From Eq. 14, we observe that the connectivity graph of the $F_{d_{nl}}$ task is a complete graph on $N_{d_{nl}} \times Z$ variables. For a typical 5G scenario: $N_{d_{nl}} = 6$ and $Z = 64$, this corresponds to a 384-qubit full connectivity, which is challenging to realize on QA devices. Scaling to more users and higher modulation schemes envisioned in NextG will increase this qubit connectivity requirement even further, making it more challenging from a hardware perspective. To address this connectivity issue, hybrid QPU–CPU approaches that decompose a large QUBO into a number of smaller sub-QUBOs realizable on hardware may be necessary. Existing methods such as that of qbsolv based on Glover’s algorithm provides such a hybrid interface for generic problems, rendering it useful in this regard [83]–[85]. Further decomposition approaches tailored to the $F_{d_{nl}}$ task also exist, which demonstrate that decomposed sub-problems can be parallelized via warm state initialization to obtain good performance [86]. While the size of decomposed sub-problems can be chosen flexibly, we note that such decomposition methods typically entail performance loss due to reduced complexity. Quantifying this performance loss for NextG problems requires an empirical evaluation on future QAs—we leave this for future work. Nevertheless, this loss is observed to be negligible for 5G problems [86].

Unlike the $F_{d_{nl}}$ task, the connectivity graph of the FEC task is highly sparse due to the inherent nature of LDPC codes being low density codes. Each qubit in LDPC decoding typically requires a different connectivity degree, which can be precisely calculated as follows. Consider an LDPC code with M rows and N columns in its parity check matrix, and let rw_i be its i^{th} row’s weight (i.e., number of 1s in i^{th} row). Compute $t_i = \arg\min_{a \in \mathbb{Z}} \{2^{n+1} - 2 \geq rw_i - (rw_i \mod 2)\}$, the number of ancillary qubits required for i^{th} row. Then the connectivity degree required for t_i ancillary qubits is $rw_i + t_i - 1$ for all $i \in [1, M]$. Each ancillary qubit is unique, and so the number of qubits whose connectivity degree we have determined above is $\sum_{v_i} t_i$. Alongside ancillary qubits, the decoding requires N distinct solution qubits whose connectivity degree is calculated next. To compute j^{th} solution qubit’s connectivity degree, construct a submatrix of the parity check matrix by eliminating the rows whose j^{th} column entry is zero. Then compute C_{ij}, the number of non-zero columns in this submatrix. The connectivity degree required for the j^{th} solution qubit is then $(\sum_{v_{ij}} h_{ij} = 1) t_i + C_{ij} - 1$ for all $j \in [1, N]$, where h_{ij} is the $(i, j)^{th}$ entry of parity check matrix. These connectivity degrees are derived by analyzing the QUBO form given in Eq. 15 (see Ref. [20]). For decoding the longest LDPC code in 5G, QA needs 21,120 qubits, where {46%, 28%, 2%, 11%, 13%} of the qubits require {<10, 11–30, 30–60, 60–100, >100} couplers per qubit respectively. The highest connectivity degree is 205, and the average connectivity degree is 34.28. While we present numbers for the longest LDPC code, a similar methodology can be used to compute connectivity degree requirement for smaller LDPC codes in practice. Further, all the quadratic coefficients of the LDPC QUBO function remain constant for a given a parity check matrix (i.e., only linear coefficients change from problem to problem), which eases the coupler programming process, making it a favorable candidate for a tailored hardware design.

VI. EVALUATION: POWER AND COST ANALYSIS

This section presents a holistic power and cost comparison between QA and CMOS in cellular wireless networks. Our methodology compares CMOS and QA processing at equal spectral efficiency outcomes. We specify the same BBU targets (Table 3) with CMOS and QA hardware, ensuring equal bits processed per second per Hz per km2.

The power consumption of CMOS hardware depends on its performance-per-watt efficiency and the amount of computation at hand. Technology scaling improves this efficiency from generation to generation, inversely proportional to the square of its transistors’ core supply voltage (V_{dd}) [87]. A 65 nm CMOS device ($V_{dd} = 1.1$ V) has a 0.04 TOPS/Watt efficiency, from which we compute the same for today’s 14 nm CMOS ($V_{dd} = 0.8$ V) and future 1.5 nm CMOS ($V_{dd} = 0.4$ V), via V_{dd}^2 scaling, and they obtain a 0.076 and 0.3 TOPS/Watt efficiency respectively [11], [72], [88]. Using this hardware efficiency and the TOPS requirements of Table 3, we compute CMOS hardware power consumption. Additional power results from leakage currents in CMOS transistor channel, and this leakage power is set to 30% of dynamic power [72].

Power consumption of D-Wave’s QA is ca. 25 kW, dominated by its refrigeration unit (see Supplementary information–[32]). Additional power draw due to the computation at hand is negligible compared to QA refrigeration power, since the QPU resources used for computation are thermally isolated in a superconducting environment. This power requirement is further not expected to significantly scale up with increased qubit numbers [32], [34], due to the fairly constant power consumption of pulse-tube dilution refrigerators which are used to cool the QPU in practice [32], [57], [89]. More general NISQ processors such as Google’s Sycamore (see Supplementary information–[33]) and IBM’s Rochester [90] also show a similar ca. 25 kW power consumption and a fairly
constant scaling with increased qubit numbers [34]. However, to maintain this 25 kW power for the entire 5G baseband processing, sufficient amount of qubits are required, all under the same refrigeration unit (couplers do not require additional space [35], [36]). This raises the question—how many qubits are possible in a QA refrigeration unit?

To answer this question, we consider the physical size of qubits in their unit cell packaging (a die) versus the available space in the dilution refrigerator. The number of useful square dies (N_d) of length L_d placed onto a wafer of radius R_w is approximately [91]: $N_d = \frac{\pi R_w^2}{L_d^2} - \frac{1}{16}\pi R_w^2$. A square die of eight qubits requires $335 \times 335 \, \mu\text{m}^2$ QPU chip area with $L_d = 335 \, \mu\text{m}$ [36], and a dilution refrigerator’s experimental space has a radius $R_w = 250 \, \text{mm}$ [57]. Substituting these values in the above equation gives $N_d \approx 1.75\text{M}$, which implies ≈ 14 million qubits allowed in a refrigeration unit. Larger dilution refrigerators such as IBM’s Goldeneye can accommodate at least $6 \times$ qubits than a regular dilution refrigerator considered above [92]. Since qubit count estimates for 5G (cf. §V, §VII) are well below this allowed limit, QA power consumption is 25 kW for 5G baseband processing.

A. BS AND CRAN POWER COMPARISON

Applying the foregoing power analysis, Fig. 9 reports power consumption results of 4G and 5G Large MIMO BSs where QA handles BBU’s baseband processing. The BS power at $N_A = \{32, 64, 128\}$ is $\{37, 49, 73\} \, \text{kW}$ respectively. (b) Power consumption of CMOS (290 kW) and QA (131 kW) processing in C-RAN scenario with three 5G Large MIMO base stations. In both (a) and (b), BBU’s further computation (i.e., Control and Transfer systems) is processed by 14 nm CMOS. BBU bar plots are shown with its sub-components (see legend, §4.1.1) in increasing order of power consumption from bottom to top. The percentages correspond to components labeled on the axis.

Figure 10: (a) Power consumption of 5G Large MIMO base stations where QA handles BBU’s baseband processing. The BS power at $N_A = \{32, 64, 128\}$ is $\{37, 49, 73\} \, \text{kW}$ respectively. (b) Power consumption of CMOS (290 kW) and QA (131 kW) processing in C-RAN scenario with three 5G Large MIMO base stations. In both (a) and (b), BBU’s further computation (i.e., Control and Transfer systems) is processed by 14 nm CMOS. BBU bar plots are shown with its sub-components (see legend, §4.1.1) in increasing order of power consumption from bottom to top. The percentages correspond to components labeled on the axis.
B. BASEBAND POWER COMPARISON

This section compares the power consumption of QA and CMOS for the BBU’s baseband processing along a variety of base station (Fig. 11) and CRAN (Fig. 12) operation scenarios.

1) Base Station

Across MIMO degree. MIMO degree (·) is the number of antennas used to serve one user, where MIMO(8) and MIMO(4) are the status quo 5G implementations and MIMO(1), referred to as Large MIMO, is the ideal scenario that maximizes spectral efficiency. Figures 11(a) and 11(d) report these results, showing that with MIMO(8), both 14 and 1.5 nm CMOS processing require lesser power than QA, at all bandwidths and antenna counts. However, as we decrease the MIMO degree to MIMO(1), we observe that QA achieves power advantage over 14 nm CMOS (Fig. 11(a)) in 256-antenna systems at all bandwidths and in 64-antenna systems at 200MHz and 400MHz bandwidths. QA processing at 100, 200, and 400 MHz bandwidth 5G BSs with 256 antennas benefit in power over 1.5 nm CMOS.

Across antenna count. Figs. 11(b) and 11(e) compare power consumption of BSs at various antenna count choices. In 32-antenna BSs at 200 and 400 MHz bandwidths, we note that the power consumption of both 14 and 1.5 nm CMOS is lesser than QA at all MIMO degrees. This is because when the antenna count is low, the number of users supported at the BS and their resulting computational demand is low, leading to low CMOS power consumption. However, as we increase the antenna counts we see a significant rise in CMOS power consumption. In 256-antenna systems with 200 and 400 MHz bandwidths, QA benefits in power over 14 nm CMOS at MIMO degrees is 4, 2, and 1. In comparison to 1.5 nm CMOS, the same systems benefit in power at MIMO degrees 2 and 1.

Across network bandwidth. From Figs. 11(c) and 11(f), we see that the lowest bandwidth for which QA achieves power advantage over 14 nm CMOS are 20 MHz bandwidth 256-antenna systems (Point ‘A’), 50 MHz bandwidth 128-antenna systems (Point ‘B’), and 160 MHz bandwidth 64-antenna systems (Point ‘C’). In comparison to 1.5 nm CMOS, such points correspond to 60 MHz bandwidth 256-antenna systems (Point ‘D’), and 190 MHz bandwidth 128-antenna systems (Point ‘E’).

2) CRAN

Massive MIMO. Fig. 12(a) compares power consumption of 1.5 nm CMOS against QA in a CRAN setting with 2–5 Massive MIMO(4) base stations. We see that even when CRAN handles five 64-antenna base stations, power consumption of 1.5 nm CMOS is lesser than QA at all bandwidths. Whereas a CRAN handling more than one 256-antenna 400 MHz base stations benefits in power with QA over 1.5 nm CMOS.
Further, CRAN with at least four 256-antenna 200MHz base stations requires lesser power with QA than 1.5 nm CMOS.

Large MIMO. Fig. 12(b) investigates how power consumption of 1.5 nm CMOS compares with that of QA when CRAN handles Large MIMO base stations, whose MIMO degree is one. In a CRAN setting with 2–5 256-antenna BSs, QA requires 1–2 orders of magnitude lesser power than 1.5 nm CMOS. With at least two 400 MHz bandwidth and four 200 MHz bandwidth 64-antenna base stations, CRAN achieves a power advantage with QA over 1.5 nm CMOS.

Cost and Carbon savings. In Fig. 12(c), we see the summary of OpEx cost savings and carbon emission reductions associated with the respective power savings, computed by considering an average $0.143 (USD) electricity price and 0.92 pounds of CO$_2$ equivalent emitted per kWh [93], [94]. The figure reports the savings of QA against 1.5 nm CMOS in a CRAN setting with 400 MHz bandwidth 256-antenna base stations in Massive MIMO(4) and Large MIMO scenarios. To provide a cost and carbon benefit over CMOS hardware, assuming CMOS CapEx is negligible, future QAs’ CapEx must be lower than the respective OpEx savings. For instance, if QA was to be employed in a CRAN setting with five Large MIMO base stations, a QA CapEx lower than 2.3M, 4.6M, 6.8M, 9.1M, and 11.4M USD will provide cost benefit over 1.5 nm CMOS in two, four, six, eight, and ten years, respectively. This would also reduce 6.7, 13.3, 20, 26.6, and 33.3 metric kilotons of carbon emissions, respectively in the time frame of above years.

VII. QA FEASIBILITY TIMELINE

In this section, we present a projected QA feasibility timeline, describing year-by-year milestones on the application of QA to wireless networks, referring to Figs. 13 and 14. For this analysis, we compute the QA qubit requirement to achieve equal spectral efficiency to CMOS as described above (§V-A), and then project the year by which these qubit numbers become feasible in the QA hardware by extrapolating the historical QA qubit growth trends into future.

![Figure 12: CRAN. Power consumption of CRAN baseband and its associated power system at various number of (a) Massive and (b) Large MIMO base stations using 1.5nm CMOS. The dotted horizontal line is the 25 kW QA power consumption. (c) CRAN OpEx electricity cost savings and carbon emission reduction (in metric kilotons) QA will achieve over 1.5 nm CMOS. System parameters correspond to 400 MHz bandwidth 256-antenna base stations, and Massive MIMO degree is four.](image1)

![Figure 13: QA qubit requirement in wireless network scenarios. Compare Points A–E with that of Figs. 11(c) and 11(f).](image2)

Roadmap for feasibility. The processing of a base station with 10-MHz bandwidth and 32 antennas requires 33K qubits in the QA hardware for QA to achieve equal spectral efficiency to CMOS, and this qubit requirement is projected to become available by the year 2026 based on current industry trends (Fig. 14). However, leveraging QA for such a system does not provide power advantage in comparison to both 14 nm and 1.5 nm CMOS devices (see Figs. 11(c), 11(f)).

Roadmap for power dominance. From Figs. 11(c) and 11(f), we note that Points A–E are the lowest bandwidths at each antenna count for which QA achieves power advantage over CMOS. Fig. 13 shows the number of qubits required in the QA hardware to process these systems (Points A–E) with equal spectral efficiency to CMOS. The figure shows that to achieve a power dominance over 14 nm CMOS, at least 537K qubits (Point ‘A’) are required in the QA hardware, and this qubit requirement is projected to become available by the year 2034 (Fig. 14). QA with at least 1.6M qubits benefit in power over 1.5 nm CMOS, and such a QA is predicted to become available by the year 2037 (Fig. 14). In summary, our analyses show that power advantage of QA over CMOS is a predicted 11–14 years away. Fig. 14 summarizes Fig. 13 in a
(2011–2020) are the historical QA qubit counts. The 2023 data point (*) with 7,440 qubits corresponds to a next-generation QA processor roadmap [53], [95]. The blue filled (dark shade) area is the projected QA qubit count, whose upper/lower bounds are extrapolations of the best-case (2017–2020) and the worst-case (2020–2023) qubit growths respectively. Annotations corresponding to further data points (■) show the base station scenarios their respective qubit counts will enable. The figure shows that if future QA qubit count scales along this best-case trend, starting from the years 2034–2037, QA may be applicable to practical wireless systems with power/cost benefits over CMOS hardware.

feasibility timeline, showing the years by which QA enables these base station operation scenarios along with associated power advantage/loss.

VIII. CONCLUSION
This paper makes the case for the future feasibility of QA processing-based wireless networks from a cost/power perspective. Our extensive analysis of QA technology projects quantitative targets that future QAs must meet in order to provide benefits over CMOS in terms of performance, power, and cost. Our results show that with QA hardware advancements, a cost/power benefit of QA over CMOS is a predicted 11–14 years away.

Furthermore, fundamental physical advances in the QA technology itself, which we do not leverage in the projections given in this paper, may offer further benefits, advantaging our projected timelines. Examples of these advances include faster annealing times (< 40 ns) and/or qubits with longer coherence lifetimes (such as the qubits in IARPA’s QEO and DARPA’s QAFA Q chips [96]) that enable coherent quantum annealing regimes, benefiting future QA spectral efficiency [61], [97]. While we acknowledge the practical feasibility of QA processors to be at least tens of years away, this early study informs NextG QA hardware design and wireless networks.

Limitations of this study. We stress that our analysis assumes that QA devices will continue to advance according to the current industry trends, and that any future technological breakthrough or setback is not accounted for. In such an event, our projections must be revised accordingly, nevertheless, the methodology remains the same.

ACKNOWLEDGEMENTS
This material is based upon work supported by the National Science Foundation under Grant No. CNS-1824357. P.A.W. is supported by the Engineering and Physical Sciences Research Council (EPSRC) Hub in Quantum Computing and Simulation, Grant Ref. EP/T001062/1. K.J. and S.K. gratefully acknowledge a gift from InterDigital Corporation. We thank Andrew J. Berkley, Keith Briggs, Andrew D. King, Catherine McGeoch, Davide Venturelli, and Catherine White for useful discussions.

References
[1] Cisco. Annual Internet Report (2018–2023) White Paper, 2018.
[2] 3rd Generation Partnership Project (3GPP). Technical specification group services and system aspects, TR 21.915, v.15.0.0, 2017.
[3] Panu Lahdekorpi, Michal Hronec, Petri Jolma, and Jani Moilanen. Energy efficiency of 5G mobile networks with base station sleep modes. In 2017 IEEE Conference on Standards for Communications and Networking (CSCN), pages 163–168, 2017.
[4] Jingjin Wu, Yujing Zhang, Moshe Zukerman, and Edward Kai-Ning Yung. Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey. IEEE communications surveys & tutorials, 17(2):803–826, 2015.
[5] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.
[6] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and A.R. Leblanc. Design of ion-implanted mosfet’s with very small physical dimensions. Proceedings of the IEEE, 87(4):668–678, 1999.
[7] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings of the 38th annual international symposium on Computer architecture, pages 365–376, 2011.
[8] N.S. Kim, T. Austin, D. Bauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets static power. Computer, 36(12):68–75, 2003.
[9] Hassan N Khan, David A Hounshell, and Erica RH Fuchs. Science and research policy at the end of Moore’s law. Nature Electronics, 1(1):14–21, 2018.
[10] John Shalf. The future of computing beyond Moore’s law. Philosophical Transactions of the Royal Society A, 378(2166):20190061, 2020.
[11] ITRS. International technology roadmap for semiconductors 2.0, executive report, 2015.
[12] Davide Castelvecchi. IBM’s quantum cloud computer goes commercial. Nature, 543(7644), 2017.
[13] Evan R MacQuarrie, Christoph Simon, Stephanie Simmons, and Elicia Maine. The emerging commercial landscape of quantum computing. Nature Reviews Physics, 2(11):596–598, 2020.
Dmitri Maslov, Yunseong Nam, and Jungsang Kim. An outlook for quantum computing [point of view]. Proceedings of the IEEE, 107(1):5–10, 2018.

Emanuel Knill. Quantum computing with realistically noisy devices. Nature, 434(7029):39–44, 2005.

Sergio Boixo, Troels F Rønnow, Sergei V Isakov, Zhihui Wang, David Wecker, Daniel Lidar, John M Martinis, and Matthias Troyer. Quantum annealing with more than one hundred qubits. arXiv:1304.4595, 2013.

IBM. Quantum computing systems. Website.

Srikar Kasi and Kyle Jonckheere. Towards quantum belief propagation for LDPC decoding in wireless networks. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, MobiCom 20, New York, NY, USA, 2020. Association for Computing Machinery.

Srikar Kasi, Abhishek Kumar Singh, Davide Venturelli, and Kyle Jonckheere. Quantum annealing for large MIMO downlink vector perturbation precoding. In ICC 2021 - IEEE International Conference on Communications, pages 1–6, 2021.

Srikar Kasi, John Kaewell, and Kyle Jonckheere. The design and implementation of a hybrid classical-quantum annealing Polar decoder. In GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pages 5819–5825, 2022.

Minsung Kim, Davide Venturelli, and Kyle Jonckheere. Leveraging quantum annealing for large MIMO processing in centralized radio access networks. In Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19, page 241–255, New York, NY, USA, 2019. Association for Computing Machinery.

Chi Wang, Hau Chen, and Edmond Jonckheere. Quantum versus simulated annealing in wireless interference network optimization. Scientific reports 6(1):1–9, 2016.

Yong Cao, Youjie Zhao, and Fei Dai. Node localization in wireless sensor networks based on quantum annealing algorithm and edge computing. In 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 564–568. IEEE, 2019.

Fumio Ishizaki. Computational method using quantum annealing for TDMA scheduling problem in wireless sensor networks. In 13th International Conference on Signal Processing and Communication Systems (ICSPCS), pages 1–9. IEEE, 2019.

Chi Wang and Edmond Jonckheere. Simulated versus reduced noise quantum annealing as a maximum independent set solution to wireless network scheduling. Quantum Information Processing, 18(1):1–25, 2019.

Nicholas Chancellor, Stefan Zohren, Paul A Warburton, Simon C Benjamin, and Stephen Roberts. A direct mapping of max k-SAT and high order parity checks to a chimera graph. Scientific reports, 6(1):1–9, 2016.

Brad Lackey. A belief propagation algorithm based on domain decomposition. arXiv:1810.00005, 2018.

Zhengbing Bian, Fabio Altomare, Robert Israel, Brad Lackey, William Macready, and Aidan Roy. Discrete optimization using quantum annealing on sparse ising models. Frontiers in Physics, 2:56, 2014.

Nicholas Chancellor, Szilard Szoke, Walter Vinci, Gabriel Appeli, and Paul A Warburton. Maximum-entropy inference with a programmable annealer. Scientific reports, 6(1):1–14, 2016.

Andrew D. King, Jack Raymond, Trevor Lanting, Serge V Isakov, Massoud Mohseni, Gabrielle Poulin-Lamarre, Sara Ettenharse, William Bernoudy, Isil Ozfidan, Anatoly Yu. Smirnov, Mauricio Reis, Fabio Altomare, Michael Babcock, Catia Baron, Andrew J. Berkley, Kelly Boothby, Paul I. Bunyk, Holly Christiani, Colin Enderud, Bram Evert, Richard Harris, Emil Hoskinson, Shuyuan Huang, Kais Jooya, Ali Khodabandelou, Nicolas Ladizynski, Ryn Li, P. Aaron Lott, Allison J. R. MacDonald, Danica Marsden, Teresa Medina, Reza Molavi, Richard Neufeld, Mara Norouzpour, Travis Oh, Igor Pavlov, Ilya Perminov, Thomas Precott, Chris Rich, Yuki Sato, Benjamin Sheldon, George Sterling, Loren J. Swenson, Nicholas Tsai, Mark H. Volkmann, Jed D. Whitaker, Warren Wilkinson, Jason Yao, Hartmut Neven, Jeremy P. Hilton, Eric Ladizynski, Mark W. Johnson, and Mohammad H. Amin. Scaling advantage over path-integral monte carlo in quantum simulation of geometrically frustrated magnets. Nature Communications, 12(1):1113, 2021.

Frank Arute, Kunal Arya, Ravan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Ci, Roberto Collins, William Courtney, Andrew Dunssworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Graff, Steve Guerin, Steve Hagger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffsommer, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michelsen, Massoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neely, Craig Neil, Murphy, Eric Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin S. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, 2019.

Benjamin Villalonga, Dmitry Lyakh, Sergio Boixo, Hartmut Neven, Travis S Humble, Rupak Biswas, Eleanor G Rieffel, Alan Ho, and Salvatore Mandrà. Establishing the quantum supremacy frontier with a 281 qubit/s simulation. Quantum Science and Technology, 5(3):034003, 2020.

Kelly Boothby, Colin Enderud, Trevor Lanting, Reza Molavi, Nicolas Tsai, Mark H Volkmann, Fabio Altomare, Mohammad H Amin, Michael Babcock, Andrew J Berkley, et al. Architectural considerations in the design of a third-generation superconducting quantum annealing processor. arXiv:2108.03223, 2021.

Paul I. Bunyk, Emile H. Hoskinson, Mark W. Johnson, Elena Tokacheva, Fabio Altomare, Andrew J. Berkley, Richard Harris, Jeremy P. Hilton, Trevor Lanting, Anthony J. Przybysz, and Jed Whitaker. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity, 24(4):1–10, 2014.

Ensar Vahapoglu, James P Slack-Smith, Ross CC Leen, Wei Han Lin, Fay E Hudson, Tom Day, Tuomo Tanttu, Chh Hwai Yang, Arne Laucht, Andrew S Dzurak, et al. Single-electron spin resonance in a nonelectronic device using a global field. Science Advances, 7(33):eabg9158, 2021.

Alexandra Checko, Henrik L Christiansen, Ying Yan, Lara Scolari, Georgios Kardaras, Michael S Berger, and Lars Dittmann. Cloud RAN for mobile networks—a technology overview. IEEE Communications surveys & tutorials, 17(4):405–425, 2015.

Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Communications Surveys Tutorials, 18(3):1617–1655, 2016.

Robin Chataut and Robert Akl. Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction. Sensors, 20(10):2733, 2020.

Erik G Larsson, Ove Edfors, Fredrik Tufvesson, and Thomas L Marzetta. Massive MIMO for next generation wireless systems. IEEE communications magazine, 52(2):186–195, 2014.

Issie Kanno, Kosuke Yamazaki, Yoji Kishi, and Satoshi Konishi. A survey on research activities for deploying cell free massive MIMO towards beyond 5G. IEICE Transactions on Communications, 105(10):1107–1116, 2022.

Kan Zheng, Long Zhao, Jie Mei, Bin Shao, Wei Xiang, and Lajos Hanzo. Survey of large-scale MIMO systems. IEEE Communications Surveys & Tutorials, 17(3):1738–1760, 2015.

John A Smolin and Graeme Smith. Classical signature of quantum annealing. Frontiers in physics, 2:52, 2014.

Carlo Baldassi and Riccardo Zecchina. Efficiency of quantum versus classical annealing in non-convex learning problems. Proceedings of the National Academy of Sciences, 115(7):1457–1462, 2018.

Mark W Johnson, Mohammad H Amin, Suzanne Gildert, Trevor Lanting, Firas Hamze, Neil Dickson, Richard Harris, Andrew J Berkley, Jan Johnson, Paul Bunyk, et al. Quantum annealing with manufactured spins. Nature, 473(7346):194–198, 2011.

Andrew D King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, et al. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature, 560(7719):456–460, 2018.

Jiäg Jing Cui, Yi Ling Xiong, Soon Xin Ng, and Lajos Hanzo. Quantitative approximate optimization algorithm based maximum likelihood detection. IEEE Transactions on Communications, 70(8):5386–5400, 2022.

John Mattingley and Stephen Boyd. Real-time convex optimization in signal processing. IEEE Signal Processing magazine, 27(3):50–61, 2010.
SRIKAR KASI is Ph.D. student in the Department of Computer Science at Princeton University. His research interest is in wireless networks, quantum and quantum-inspired computing, graph theory, and mobile systems. He received B.Tech degree (2018) in Electrical Engineering from the Indian Institute of Technology Delhi, and M.A degree (2022) in Computer Science from the Princeton University. He is a recepient of Qualcomm Innovation Fellowship 2021 (North America).

PAUL WARBURTON received the BA degree in Electrical and Information Sciences in 1990 and the PhD degree in Materials Science in 1994, both at the University of Cambridge, UK. He is currently Professor of Nanoelectronics at University College London (UCL), UK. From 1994 to 1995, he was a post-doc at the University of Maryland, USA. From 1995 to 2001 he was Lecturer at King’s College London, UK. Since 2001 he has been at UCL where he holds a joint appointment between the London Centre for Nanotechnology and the Department of Electrical and Electronic Engineering. His research interests include superconducting devices, quantum annealing and nanofabrication.

JOHN KAEWELL joined InterDigital in 1986 where he has developed multiple generations of wireless communication systems. He leads InterDigital’s exploration of using quantum computing to solve wireless optimization problems and is working on applying Machine Learning to improve wireless system performance. Mr. Kaewell has been inducted into the Drexel College of Engineering Circle of Distinction and has received InterDigital’s Chairman award. He holds 56 US Patents and over 650 patents and applications worldwide.

KYLE JAMIESON is Professor of Computer Science and Associated Faculty in Electrical and Computer Engineering at Princeton University. His research focuses on mobile and wireless systems for sensing, localization, and communication, and on massively-parallel classical, quantum, and quantum-inspired computational structures for NextG wireless communications systems. He received the B.S. (Mathematics, Computer Science), M.Eng. (Computer Science and Engineering), and Ph.D. (Computer Science, 2008) degrees from the Massachusetts Institute of Technology. He then received a Starting Investigator fellowship from the European Research Council, a Google Faculty Research Award, and the ACM SIGMOBILE Early Career Award. He served as an Associate Editor of IEEE Transactions on Networking from 2018 to 2020. He is a Senior Member of the ACM and the IEEE.