We have entered the cancer era

In 2016, the number of new cancer cases per year in Japan finally exceeded one million [1]. Shockingly, the number also far exceeded the number of new births. Because the prognosis of cancer patients has improved in the last few decades, thanks to advances in cancer treatment, we are having an increasing number of cancer patients at any stage, including those with bone metastases [2]. As the world’s first super-aged society, Japan has already entered the “cancer era”, and is experiencing a paradigm shift in cancer care where not only complete cure of cancer but also care of cancer patients aiming to maintain and improve their quality of life (QOL) is required. It may be needed to accept cancer as a chronic disease and to aim to maintain and improve QOL of cancer patients [3].

“The curse of cancer treatment” hinders comprehensive approach for cancer

It seems customary that both of medical providers and cancer patients prioritize cancer over other diseases. Behind this custom, it is felt that as if there were the “curse of cancer treatment” that coerces the thought that cancer must be cured completely. In Japan, “cancer” is often used as a metaphor for a person who has a bad effect on all the others in a group. This trend is not necessarily unique to Japan but rather can be universal. Vrinten et al. conducted a systematic review and meta-synthesis of “cancer fear” in cancer screening, using thematic synthesis [4]. The authors analyzed 102 relevant studies and labelled cancer as the enemy. They interpreted that fears of cancer emanated from a view of cancer as a vicious, unpredictable, and indestructible “enemy”. Such a view, regarding cancer as the enemy, can force us to fight against cancer. This fight may also narrow the field of view, and compel both of medical providers and patients to pursue the prognosis of life only. As a result, only direct cancer treatment, such as surgery, chemotherapy, and radiotherapy, has tended to be focused on for cancer patients, sometimes until the end of life [5]. Even the provision of palliative care, which is an essential part of cancer care, has been limited [6]. The establishment of comprehensive cancer care, by implementing missing elements and optimizing the balance of biomedicine and the soul of medicine, is warranted [7].

Do not orthopaedic surgeons see cancer patients?

Orthopaedic surgeons may have been at the very center of another “curse of cancer treatment”. They deal mainly with trauma and degenerative diseases, thus most of them are indifferent to cancer and have limited opportunities to participate in cancer treatment. Although the sub-specialty of bone and soft tissue tumor exists, its main target has been bone and soft tissue sarcoma. Because “sarcoma” is a rare cancer, the number of orthopaedic surgeons specializing in bone and soft tissue tumor is also limited; the number of Japanese board-certified orthopaedic surgeons specializing in bone and soft tissue tumor was only 161 in April 2022, whereas that of the whole certified orthopaedic surgeons by the Japanese Orthopaedic Association (JOA) was 20,954 [8]. Sarcoma has been thought to be the disease that only specialists should deal with, and orthopaedic surgeons have been repeatedly educated to refer patients on suspicion of sarcoma to specialists immediately. This awareness-raising activities about sarcoma has been successful, and the frequency of unplanned excision of sarcoma by orthopaedic surgeons has been markedly decreased [9].
surgeons has been reduced [9]. However, they may have mis-
understoodly extended “Do not touch malignant tumor” principle into all cancers.

In 2018, JOA conducted a questionnaire survey to investi-
gate the current involvement of orthopaedic department in cancer management at the orthopaedic training facilities
certified by JOA. In the survey, more than a half of the designated
cancer hospitals answered that they were not involved in cancer treatment including bone metastasis. Approximately 80% of the respondents from facilities other than designated cancer hospitals answered that they had no plans to be involved in the future [10].

There must be many cancer patients at the designated
cancer hospitals nationwide. On the other hand, there are
only a limited number of hospitals that have bone and soft
tissue oncologists. Orthopaedic surgeons tend to avoid being
involved when confronting cancer patients, as they think
they are inexpert. As a result, cancer patients with loco-
motive dysfunction often miss the opportunity to receive
appropriate treatment only because they are cancer patients.
It should be noted that the average age of cancer patients is
75 years [1], and older people have a higher frequency of
locomotive dysfunction, such as spondylosis deformans and
osteoarthritis, before they develop cancer [11]. Restrictions
on activities of daily living (ADL) due to locomotive dys-
function can also affect performance status (PS) and cause
discontinuation of cancer treatment because poorer PS is
generally a contraindication of chemotherapy for cancer.

Performance status and locomotive dysfunction

PS is a worldwide measure of a patient’s daily living abili-
ties, widely used in oncology research and practice [12].
PS 0 is defined as “fully active, able to carry on all pre-
disease performance without restriction”, whereas PS 4 as
“completely disabled; cannot carry on any self-care; totally
confined to bed or chair”. PS 2, “ambulatory and capable
of all self-care but unable to carry out any work activities;
up and about more than 50% of waking hours”, is often a
borderline of chemotherapy indication. It is certain that PS
is largely affected by locomotive dysfunction, but caution
must be taken when poor PS due to locomotive dysfunction
is caused by reversible factors.

PS is defined as the degree of ADL restriction due to
“cancer”, and the restriction due to temporary locomotive
dysfunction should not be applied [12]. For example, if
a cancer patient who was fully active has a femoral neck
fracture, apparent PS may become 3–4, but it is expected
to improve after surgical intervention. As in this example,
apparent poor PS should not be regarded as a contraindi-
cation of cancer treatment if it is reversible. Certainly,

Orthopaedic surgeons have potential to improve apparent
poor PS due to locomotive dysfunction, and further broaden
the therapeutic indications for cancer.

Locomotive syndrome in cancer patients
(Cancer Locomo)

In 2007, JOA proposed the concept of “locomotive syn-
drome”, which is a condition of reduced mobility due to
impairment of locomotive organs [13] as an educational
activity in the orthopaedic field, and has promoted the cam-
paign of “prevention of locomotive syndrome”. The aware-
ness of locomotive syndrome has been increasing thanks to
educational activities, and the concept that the prevention
of locomotive syndrome is crucial for longer and healthier life
has become widely recognized. However, there still remains
an area where such activities can make another significant
contribution. That is exactly “cancer care”.

One in two people in Japan is currently affected by can-
cer in their lifetime [1]. In the cancer era of the super-aged
society, the need of management of locomotive dysfunction,
especially in cancer patients, is increasing. It appears
that orthopaedic surgeons are called to change their attitudes
towards cancer. In response to such a trend demanding more
involvement of orthopaedic surgeons in cancer treatment,
JOA decided the activity theme as “locomotive syndrome
in cancer patients” in 2018.

Locomotive syndrome in cancer patients is defined as “a
condition of reduced mobility due to cancer-related impair-
ment of locomotive organs”, and can be classified into three
types (Fig. 1). Type 3 may look remotely related to cancer,
but this type is clinically the most important; this type can
be neglected or deprioritized by orthopaedic surgeons who
are indifferent to cancer.

1. Locomotive dysfunction directly affected by cancer

This type includes the problems of the locomo-
tor system arising from cancer itself (e.g., bone
metastasis, bone and soft tissue sarcoma, and
cachexia).

2. Locomotive dysfunction related to cancer treatment

This type includes disuse atrophy due to long-
term bed rest, secondary osteoporosis, peripheral
neuropathy, lymphoedema and joint contracture
after cancer treatment. Osteoporosis can be caused
by steroid use and hormone therapy. Peripheral
neuropathy can be caused by chemotherapy. Lym-
phoedema and joint contracture can be caused by
radiotherapy or surgery.
3. Locomotive dysfunction coexisting with cancer

This type includes problems of the general locomotor diseases, such as osteoporosis, lumbar spinal canal stenosis and osteoarthritis. The problems are sometimes neglected or deprioritized by orthopaedic surgeons simply because of the existence of “cancer”.

Little has been known on locomotive syndrome in cancer patients hitherto because this concept is new and only a few studies have been published. The lack of information is partially because of the indifference of orthopaedic surgeons towards cancer. Systematic review on clinical results of orthopaedic surgery for cancer patients was once conducted, but virtually no publication was found. The majority of orthopaedic clinical studies have excluded “cancer patients” from their subjects [14–16].

JOA has started “Survey on the actual condition of locomotive syndrome in cancer patients” as project research of the society. Although limited data are available at this time, Sato et al. have recently revealed that incidence of locomotive syndrome in cancer patients was much higher than that of the general population, 51% vs. 13% for LS stage 2 [17].

The campaign of “Locomotive syndrome in cancer patients” is the activity where not only orthopaedic oncologists but all orthopaedic surgeons, are expected to actively participate in cancer care. Through this activity, even if the cancer itself is incurable, the cancer patients are expected to receive appropriate locomotor management and maintain their independent life as long as possible. Orthopaedic surgeons can greatly contribute to cancer care by improving the QOL of cancer patients, using their professional expertise.

Looking at the situation in other medical care areas, new fields associated with cancer, such as onco-cardiology and onco-nephrology [18, 19], have been already established. Both address problems specific to cancer patients. Similarly, a new field can be created for orthopaedic problems specific to cancer patients, namely locomotive disorders peculiar to cancer patients or locomotive syndrome in cancer patients. This new field, the management of locomotive syndrome in cancer patients, may be called “onco-orthopaedics” following the precedents.

Ideal care for bone metastasis

Bone metastasis is a major cause of locomotive syndrome in cancer patients. Although the actual prevalence of bone metastasis of each cancer is difficult to know, it is said that bone metastasis is present in more than a half of the cancer patients at the terminal stage, and 20% of the cancer patients at terminal stage have clinical symptoms [20]. As the advance in cancer treatment has prolonged the overall survival of cancer patients, the survival time of patients with advanced cancer has also been extended [21].

For a long period of time, it may have been recognized that bone metastases occur near the end of life, and a fundamental or essential approach towards bone metastases have been seldom taken by primary cancer doctors and orthopaedic surgeons. When a diagnosis of bone metastasis is made radiologically, an incurable “stage IV” is often declared by the primary cancer doctors and palliative medicine or supportive care becomes the main focus. There may have been many facilities where the treatment of bone metastases has been managed by the primary cancer doctors, radiologists, and palliative care doctors without the involvement of orthopaedic surgeons. However, it should be noted that the involvement of orthopaedic surgeons can dramatically improve the accuracy of assessments. The judgement of
whether the symptoms are due to bone metastases or not will become more accurate with the involvement of orthopaedic surgeons. In addition, more appropriate clinical decision will be made on bone metastases, especially for femoral and spinal metastases at risk of pathological fractures and spinal cord paralysis by balancing risks and benefits of surgical intervention.

Bone metastasis treatment demands multi-disciplinary approach, and the involvement of many clinical departments is indispensable. In addition to medical doctors, other medical specialists, such as nurses, pharmacists, physiotherapists, occupational therapists, and medical social workers, are required to comprehensively work on the team medical care [22].

Cooperation between cancer rehabilitation and the campaign of “locomotive syndrome in cancer patients”

Cancer rehabilitation is a medical care system for cancer patients approved in the health insurance system in Japan in 2010. It has been introduced at cancer designated hospitals and has achieved some clinical results including a reduction in the frequency of perioperative complications [23]. According to the homepage of the National Cancer Center in Japan, cancer rehabilitation is defined that “improves the resilience of cancer patients, maintains and improves their remaining abilities.” In contrast, the campaign of locomotive syndrome in cancer patients can be said to be the activity that “supports the maintenance and improvement of the mobility of cancer patients through locomotive management.” For example, when a femoral pathological fracture due to bone metastasis occurs, in cancer rehabilitation, ADL training such as wheelchair transfer utilizing the remaining function is the choice on the premise of inability to walk due to the pathological fracture. However, in the concept of Cancer Locomo, walking ability itself can be restored by performing internal fixation or artificial joint replacement. Under cooperation between “cancer rehabilitation” that comprehensively manages cancer patients and “Cancer Locomo” that emphasizes mobility, the ADL and QOL of cancer patients can be maximized more than ever.

Significance of “ambulatory ability” in cancer patients

Now that the period of living with cancer has been extended, ambulatory ability is essential for cancer patients to spend their own independent lives until the end of life, to keep working, and to continue cancer treatment. Through this campaign of locomotive syndrome in cancer patients, we would like all cancer careers to know that it is very effective to manage the locomotor function and maintain ambulatory ability. Although it is mandatory to further clarify the actual conditions of locomotive syndrome in cancer patients and verify the intervention effects of locomotive management, Orthopaedic surgeons, who have been far from "cancer", can and should contribute as an essential team member of cancer care using their professional expertise and skills.

Declarations

Conflict of interest No author has any conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cancer Information Service, National Cancer Center, Japan (National Cancer Registry, Ministry of Health, Labour and Welfare) (2019) Cancer Statistics. In: cancer_incidenceNCR (2016–2018). Available via EXCEL. https://ganjoho.jp/public. Accessed Feb 2022
2. Torre LA, Siegel RL, Ward EM et al (2016) Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev 25(1):16–27. https://doi.org/10.1158/1055-9965.Epi-15-0578
3. Pituskin E, Joy AA, Fairchild A (2021) Advanced cancer as a chronic disease: introduction. Semin Oncol Nurs 37(4):151176. https://doi.org/10.1016/j.soncn.2021.151176
4. Vrinten C, McGregor LM, Heinrich M et al (2017) What do people fear about cancer? A systematic review and meta-synthesis of cancer fears in the general population. Psychooncology 26(8):1070–1079. https://doi.org/10.1002/pon.4287
5. Mullins MA, Ruterbusch JJ, Clarke P et al (2021) Trends and racial disparities in aggressive end-of-life care for a national sample of women with ovarian cancer. Cancer 127(13):2229–2237. https://doi.org/10.1002/cncr.33488
6. Knaul FM, Farmer PE, Krakauer EL et al (2018) Alleviating the access abyss in palliative care and pain relief-an imperative of universal health coverage: the Lancet Commission report. Lancet 391(10128):1391–1454. https://doi.org/10.1016/s0140-6736(17)32513-8
7. Rodin G, Nitizimira C, Sullivan R (2021) Biomedicine and the soul of medicine: optimising the balance. Lancet Oncol 22(7):907–909. https://doi.org/10.1016/s1470-2045(21)00271-0
8. The Japanese Orthopaedic Association (2022) List of board-certified doctors specializing in bone and soft tissue tumor. In: Search
9. Nakamura T, Kawai A, Sudo A (2022) The incidence of unplanned excision in patients with soft tissue sarcoma: reports from the Bone and Soft Tissue Tumor registry in Japan. J Orthop Sci 27(2):468–472. https://doi.org/10.1016/j.jos.2020.12.025

10. Morioka H, Kawano H, Takagi T et al (2021) Involvement of orthopaedic surgeons for cancer patients in orthopaedic training facilities certified by the Japanese Orthopaedic Association—a nationwide survey. J Orthop Sci. https://doi.org/10.1016/j.jos.2021.11.003

11. Yoshimura N, Akune T, Fujiwara S et al (2015) Incidence of disability and its associated factors in Japanese men and women: the Longitudinal Cohorts of Motor System Organ (LOCOMO) study. J Bone Miner Metab 33(2):186–191. https://doi.org/10.1007/s00774-014-0573-y

12. Eastern Cooperative Oncology Group (1999) Common Toxicity Criteria, Version2.0. In: ctctv20_4-30-992. Available via PDF. http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs. Accessed Feb 2022

13. Nakamura K, Ogata T (2016) Locomotive syndrome: definition and management. Clin Rev Bone Miner Metab 14(2):56–67. https://doi.org/10.1007/s12018-016-9208-2

14. Liang CK, Chu CL, Chou MY et al (2014) Interrelationship of postoperative delirium and cognitive impairment and their impact on the functional status in older patients undergoing orthopaedic surgery: a prospective cohort study. PLoS ONE 9:e110339. https://doi.org/10.1371/journal.pone.0110339

15. Marcantonio ER, Flacker JM, Wright RJ et al (2001) Reducing delirium after hip fracture: a randomized trial. J Am Geriatr Soc 49:516–522. https://doi.org/10.1046/j.1532-5415.2001.49108.x

16. Murata K, Matsuoka Y, Nishimura H et al (2020) The factors related to the poor ADL in the patients with osteoporotic vertebral fracture after instrumentation surgery. Eur Spine J 29:1597–1605. https://doi.org/10.1007/s00586-019-06092-0

17. Sato M, Furuya T, Shiga Y et al (2021) Assessment of locomotive syndrome in patients with visceral cancer, the comparison with non-cancer patients using propensity score matching. J Orthop Sci. https://doi.org/10.1016/j.jos.2021.07.018

18. Kubota S, Hara H, Hiroi Y (2021) Current status and future perspectives of onco-cardiology: Importance of early detection and intervention for cardiotoxicity, and cardiovascular complication of novel cancer treatment. Glob Health Med 3(4):214–225. https://doi.org/10.35772/ghm.2021.01024

19. de Francisco ALM, Macía M, Alonso F et al (2019) Onco-Nephrology: cancer, chemotherapy and kidney. Nefrologia (Engl Ed) 39(5):473–481. https://doi.org/10.1016/j. nefro.2018.10.016

20. Fornetti J, Welm AL, Stewart SA (2018) Understanding the bone in cancer metastasis. J Bone Miner Res 33(12):2099–2113. https://doi.org/10.1002/jbmr.3618

21. Yoshioka H, Shimokawa M, Seto T et al (2019) Final overall survival results of WJTOG3405, a randomized phase III trial comparing gefitinib versus cisplatin with docetaxel as the first-line treatment for patients with stage IIIIB/IV or postoperative recurrent EGFR mutation-positive non-small-cell lung cancer. Ann Oncol 30(12):1978–1984. https://doi.org/10.1093/annonc/mdz399

22. Specchia ML, Frisicale EM, Carini E et al (2020) The impact of tumor board on cancer care: evidence from an umbrella review. BMC Health Serv Res 20(1):73. https://doi.org/10.1186/s12913-020-4930-3

23. Dennett AM, Elkins MR (2020) Cancer rehabilitation. J Physiother 66(2):70–72. https://doi.org/10.1016/j.jphys.2020.03.004

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.