Patient delay impact on breast cancer survival at Khartoum Referral Hospital: a retrospective study [version 1; peer review: awaiting peer review]

Amanda Elgoraish1, Ahmed Alnory2

1Department of Epidemiology, Tropical Medicine Research Institute, National Centre for Research, Khartoum, Khartoum, P.O. Box 1304, Sudan
2Department of Applied Statistics and Demography, Faculty of Economics and Rural Development, University of Gezira, Medani, Gezira, P.O. Box 20, Sudan

Abstract

Background: Breast cancer can be invasive and advanced at diagnosis causing enormous suffering and premature death. Delay to stage diagnosis and treatment is related to survival evaluation and several factors determine delay. The aim of the study was to examine predictor covariates associated with breast cancer delay and its impact on patient prognosis and survival.

Methods: This retrospective cross-sectional hospital-based study was carried out at Khartoum Oncology Hospital. Participants were 411 breast cancer patients diagnosed and treated during the period 2016. Patients' pathological and socio-demographic data were extracted from their medical files and delay data from telephone questionnaire survey and survival times calculated from follow-up. Fisher exact test, Cox and Logistic regression models were used to examine relationships between demographic, clinical and delay variables and survival outcome.

Results: The mean age of the study subjects was 50.07 years old and the majority were ≥45 years. Cancer delay analysis showed that there were different reasons for different types of delay but the majority of participants (86.2%) claimed fear of the disease and treatment and lack of information were real drivers of delay. The study confirmed the majority of participants expressed long delay estimated at 28.3 weeks and patient delay had a significant association with the advanced stage (P-value<0.05). The hazard ratio was four times for risk of dying from cancer for long delay compared to the short one.

Conclusion: The results of the study suggest delays at diagnosis and treatment are more common steps leading to advanced stage at diagnosis and poor survival. Early detection of the disease provides tremendous opportunities for early diagnosis, effective treatment and high chances of survival.
Introduction
Cancer is a major public health problem worldwide, particularly in low- and middle-income countries due to the aging population as well as wider social and environmental factors such as infectious disease, education and ethnicity. There are observed variations in world cancer prognosis as mortality is higher among developing countries due to a lack of comprehensive early diagnosis, screening and effective medical treatment. Cancer is a leading cause of death among women in both low- and middle-income and developed countries and the rate is rising. In Sudan, cancer can be described as of advanced stage at diagnosis and there is a noticeable delay at Khartoum Oncology Hospital (KOH), Khartoum, and National Cancer Institute (NCI), Wad Medani, central of Sudan, because patients come from all over the country, travelling long distance (hundreds of miles) looking for medical care. Some reports suggested that cancer mortality became the third highest cause of death.

Breast cancer is an extensive cause of death among women in low- and middle-income countries even though it is potentially curable if detected early and treated effectively. In Sudan, according to KOH annual statistics, breast cancer represents more than 36% of all cancers in women in 2016 and is increasing steadily and remains the most important type of cancer. This alarming increase in breast cancer was attributed to changes in demography, economic and social factors, other disease factors and disease awareness. Breast cancer patients peak at an age less than 50 years old (premenopausal) and the majority are diagnosed at an advanced stage with invasive ductal carcinoma leading to poor survival.

Previous related studies linked late diagnosis with the advanced stage at presentation. Though late stage at diagnosis is considered the main cause of poor survival, it has been explained by other risk factors, especially by delay at diagnosis and treatment. Delay is observed in all steps taken by women cancer patients along the journey from recognition of disease symptoms to completion of medical care. Cancer is a progressive disease and delays in disease progression overtime can lead to unfavourable opportunities of successful treatment of the more difficult to cure cancers at late stages. Delays to stage at diagnosis could lead to exasperating of the disease state and treatment complications.

Early diagnosis improves breast cancer patient survival outcome by providing greater chances of effective treatment, at low cost and with optimal intervention. It has been suggested that delay in starting diagnosis and treatment could reduce survival significantly. The consequences of delays in diagnosis and treatment make the likelihood of dying from the disease increase by a large extent. Several studies have attempted to explain the relationship between patient survival and stage at diagnosis and delay. These studies came to different conclusions about the strength and the shape of these relationships and their impact. Socio-demographic attributes such as age, gender, education and ethnicity have also shown significant relationships with stage and delay.

More recent research has demonstrated clearly the complexity of determining the shape of these relationships. Many variables have been suggested in explaining these relationships, however, there is no complete agreement on potential predictor covariates that gave overall explanations. Thus, it becomes of great importance to examine and evaluate barriers to early diagnosis and treatment. One can conclude that stage at diagnosis and delay are related to survival evaluation and assessment. Several factors determine stage at diagnosis and delay including socio-demographic factors, clinical features, availability and accessibility of adequate diagnostic and treatment facilities. Stage at diagnosis is critical to disease treatment since treatment plans are normally based on stage of the disease at diagnosis. The aim of the study was to examine barriers to early diagnosis and treatment and whether delays in diagnosis and treatment could negatively impact cancer patient prognosis and survival.

Material and methods

Ethical approval
The research has received ethical approval of concerned parties and Sudan Federal Ministry of Health (number: 3-10-2015, dated: 15/12/2015) on strict adherence to procedures of confidentiality, debriefing, counselling and additional information. The health ministry waived the consent of the study participants to use their clinical and personal information from their respective medical files due to the utmost urgency to ascertain the reasons behind the unprecedented surge in these most devastating killer diseases of women. No written consent was obtained from the participants during the telephone interview survey due to the fact that the majority of them were illiterate. The study does not require any form of medical procedures or sample taking.

Study design, setting and population
This is a retrospective cross-sectional hospital-based study. It was carried out at Khartoum Oncology Hospital, Sudan, which is the only referral hospital that provides a complete diagnostic and cancer treatment service where more than 80% of all Sudan cancer patients are registered. Available patient data was collected from the hospital’s medical records during the study period of 2016.
The target population of the study was patients with breast cancer at the hospital. To be included in the study, patients had to be between 14 and 99 years old, be registered at the hospital, have complete medical records, histopathologically confirmed cancer and had received available treatment. Patients with incomplete medical records, unclear diagnosis and not treated at the hospital were excluded from the analysis. Written consent was obtained from the hospital to use participants’ data. No direct contact was made with patients during this data collection level. However, the telephone questionnaire survey interview aimed at collecting data describing seeking medical care behaviour and delay was carried out by the researcher. Before carrying out the telephone interview, a piloted pre-test was conducted to ensure validity and reliability of the survey as a tool for collecting accurate information. Consent was obtained verbally from patients and/or next of kin after explaining the reasons behind the interview.

The total number of patients at the hospital during the study period who met the inclusion criteria and included in the analysis was 411. This sample size of randomly selected participants was calculated from the number of cancer patients of this hospital as follows:

The formula \(n = \frac{3.84 \times p(1-p)}{(\text{precision})^2} \)

For breast cancer, proportion = 0.484 (report of Federal Ministry of Health 2015), precision = 0.0483 with 95% CI

\[n = \frac{3.84 \times 0.484(1-0.484)}{(0.0483)^2} = 411 \]

Data collection and sources
The study data collected from patients’ medical records were checked and rechecked for accuracy, completion, duplication and consistency by the researcher with continuous assistance from the hospital medical staff. Active follow-up was carried out during the period of 2017 by the researcher through contacting patients and/or next of kin to ensure collection of needed information concerning patients’ survival status data (dead or alive) and delay at first medical consultation, diagnosis and initiation of treatment. Moreover, a checklist was prepared by the researcher from the literature of cancer patients' survival and delay times concerning socio-demographic and clinical factors affecting survival to assist in needed data collection. Data collected from patients’ medical files and telephone interview was arranged according to TNM staging system which describes the extent of cancer based on morphological attributes numerically into four basic stages (I, II, III, IV). The T stands for the size and extent of the primary tumor, N for regional lymph involvement and M for the presence or absence of distant metastasis.

Variables
Data routinely collected concerning socio-demographic characteristics and clinical status of patients and delay data included age, education, occupation, marital status, urban/rural residential area, tribe, menopause status, stage at diagnosis, tumor grade, histological subtype, treatment modalities, residence state and close family relation with previous cancer disease history. Date of birth, death, loss of follow-up, diagnosis, first medical consultation, initiation of treatment, survival times and reasons for patient-related delay were checked by other information provided by hospital medical and statistical staff. This information was clearly defined in medical terms concerning certificate of death, confirmation of diagnosis and calculation of survival and delay times.

Statistical analysis
The statistical analysis is divided into two parts, descriptive and analytical using several statistical techniques and tools including the most widely used software packages such as SPSS, SAS and Stata. The study selected Stata version 11 (StataCorp, College Station, Texas) software for use in the analysis for its appropriateness in observational studies. In the descriptive analysis, visual presentation of data in tables given provides socio-demographic and clinical data in numbers, percentage, Fisher exact test and \(p \)-values as a clear indication of the study population data distribution, relationships and associations. Then, important statistical conclusions were drawn. Statistical methods such as Fisher exact test, logistic and Cox regression were, also, used to find out most prognostic factors associated with cancer disease stage and delay. Socio-demographic variables, stage and reasons for delay were tested by Fisher exact test. Delay, stage, age, socio-demographic variables and treatment modalities were tested using univariate and multivariate models. Delays in relation to stage at diagnosis in terms of overall survival were tested by Cox regression. The analysis focuses on stage at diagnosis as the most crucial prognostic predictor of breast cancer patient survival.

Results

Descriptive statistics
The mean age of participants was 50.07 years (SD = 13.35 at 95%CI = 48.77-51.36) with the majority (67.9%) of these patients being ≥45 years old. In total, (83.7%) of participants were married, (85.4%) were unemployed and (87.1%) were
Factors	Total no. N(%)	Fear N(%)	Lack of information N(%)	Misdiagnosis N(%)	competing life priorities N(%)	Distance/Financial constraints N(%)	Fisher test, P-value
Patient time							
Short delay	164(39.9)	71(43.3)	70(42.7)	8(4.9)	10(6.1)	5(3.0)	3.45, 0.490
Long delay	247(60.1)	120(48.6)	93(37.7)	18(7.3)	9(3.6)	7(2.8)	
Stagea							
Early	150(36.5)	70(46.7)	58(38.7)	14(9.3)	3(2.0)	5(3.3)	7.109, 0.127
Advanced	261(63.5)	121(46.4)	105(40.2)	12(4.6)	16(6.1)	7(2.7)	
Age mean±SD	50.07±13.3	47.5±11.1	54.2±14.6	52.2±11.8	40.2±13.9	46.4±13.6	9.41b, 0.000**
Tribe							
Non-Arab decent	183(44.5)	72(39.3)	89(48.6)	7(3.8)	6(3.3)	9(5.0)	21.87, 0.002*
Arab decent	219(53.3)	116(53.0)	69(31.5)	18(8.2)	13(5.9)	3(1.4)	
Others	9(2.2)	3(33.3)	5(55.6)	1(11.1)	0	0	
Occupation							
Non-employed	351(85.4)	148(42.2)	152(43.3)	22(6.3)	18(5.1)	11(3.1)	19.04, 0.001*
Employed	60(14.6)	43(71.7)	11(18.3)	4(6.7)	1(1.7)	1(1.7)	
Marital status							
Unmarried	67(16.3)	37(55.2)	22(32.8)	6(9.0)	1(1.5)	1(1.5)	4.92, 0.278
Married	344(83.7)	154(44.8)	141(41.0)	20(5.8)	18(5.2)	11(3.2)	
Education							
Illiterate	207(50.4)	48(23.2)	140(67.6)	8(3.9)	6(2.9)	5(2.4)	154.25, 0.000**
Low education	151(36.7)	106(70.2)	19(12.6)	14(9.3)	6(4.0)	6(4.0)	
High education	53(12.9)	37(69.8)	4(7.5)	4(7.5)	7(13.2)	1(2.0)	
Urban/Rural status							
Rural	47(11.4)	19(40.4)	23(48.9)	1(2.1)	2(4.3)	2(4.3)	3.39, 0.467
Urban	364(88.6)	172(47.2)	140(38.5)	25(6.9)	17(4.7)	10(2.7)	
Resident state							
Khartoum	99(24.1)	52(52.5)	31(31.3)	5(5.1)	8(8.1)	3(3.0)	28.17 0.059
Central	77(18.7)	34(44.1)	32(41.6)	7(9.1)	2(2.6)	2(2.6)	
Northern	68(16.5)	36(53.0)	23(33.8)	6(8.8)	3(4.4)	0	
Eastern	25(6.1)	16(64.0)	6(24.0)	3(12.0)	0	0	
Western	119(29.0)	43(36.1)	61(51.3)	5(4.2)	4(3.4)	6(5.0)	
Southern	23(5.6)	10(43.5)	10(43.5)	0	28(7.5)	1(4.3)	
Parent relationship							
First degree relation	296(72.0)	136(46.0)	112(37.8)	25(8.4)	16(5.4)	7(2.4)	12.16, 0.120
Relatives	56(13.6)	28(50.0)	24(42.9)	0	1(1.8)	3(5.3)	
Non relatives	59(14.4)	27(45.8)	27(45.8)	1(1.6)	2(3.4)	2(3.4)	
Total	411	191(46.5)	163(39.7)	26(6.3)	19(4.6)	12(2.9)	

*P-value < 0.05 statistically significant relationship. **P-value < 0.001 highly statistically significant relationship.

% of invasive ductal carcinoma (74.8%). * One way ANOVA test.
illiterate or had no formal education. Most of the participants resided in Western, Khartoum and Central states of Sudan (Table 1). The distribution frequency of breast cancer cases, according to TNM staging classification demonstrated that the majority (63.5%) of participants were at the advanced stage (III&IV), invasive ductal carcinoma (74.8%), with a high probability of spreading to distant organs (Table 2). Most of these tumors were of high-grade and moderately to poorly differentiated cells. Furthermore, most of these patients had first-degree relations with previous disease experience. Regarding different treatment modalities, (92.9%) of these participants received chemotherapy, (36.0%) surgery, (26.0%) hormone and (17.0%) radiotherapy, alone or in combination with other therapies. The analysis showed the reasons behind different types of delays such as fear of the disease and treatment, embarrassment, lack of information about the disease, competing life priorities, distance and financial constraints. The majority (86.2%) of these participants who were mainly patient-related delayed, claimed that fear and lack of information of the disease were the main reasons for delay. When these reasons claimed for delay were compared according to socio-demographic factors showed significant association with ethnicity, occupation, education and age group but not for the others (Table 1).

Regression analysis
The overall mean survival time interval after 12 months follow-up from time of diagnosis to the end of the study period, was 10.89 months at 95%CI (10.57 to 11.20) and the survival probability estimate was (30.0%). The median duration of delay time of the study participants was 12 weeks and 44.0 interquantile range (IQR) for patient delay, 3.29 weeks and 4.99 (IQR) for diagnostic delay, 0.43 weeks and 1.57 (IQR) for treatment delay and 23.0 weeks and 40.28 (IQR) for total delay. There was no significant association between short and long delays for different types of delays with the exception of diagnostic delay (Table 2).

Table 2. Association between delay and stage in relation to overall survival.

Factor	No. of subjects	Median of delay time (IQR)	HR(95%CI)	P-value
Patient-related delay				
Short delay	164	8.0(4.0)	1(reference)	-
Long delay	247	32.0(62.0)	1.45(0.77 to 2.70)	0.248
Total patient delay	411	12.0(44.0)		
Early stage	150	12.0(30.0)	1(reference)	
Advanced stage	261	12.0(44.0)	3.80(1.69 to 8.56)	0.001**
Diagnostic-related delay				
Short delay	358	3.0(3.71)	1(reference)	-
Long delay	53	19.29(15.36)	0.34(0.13 to 0.89)	0.028*
Total diagnostic delay	411	3.29(4.99)		
Early stage	150	3.86(4.62)	1(reference)	-
Advanced stage	261	3.14(5.06)	4.13(1.82 to 9.33)	0.001**
Treatment-related delay				
Short delay	401	0.45(1.22)	1(reference)	-
Long delay	10	16.93(15.86)	0.66(0.09 to 4.84)	0.684
Total treatment delay	411	0.43(1.57)		
Early stage	150	0.43(1.61)	1(reference)	-
Advanced stage	261	0.57(1.57)	3.72(1.65 to 8.36)	0.001**
Total-related delay				
Short delay	75	9.14(4.40)	1(reference)	-
Long delay	336	28.36(42.43)	0.67(0.33 to 1.35)	0.261
Total delay	411	23.0(40.28)		
Early stage	150	19.72(40.04)	1(reference)	-
Advanced stage	261	24.71(4.01)	3.76(1.67 to 8.46)	0.001*

HR: Hazard ratio, CI: confident interval, IQR: Interquartile range.
*P-value < 0.05 statistical significant association.
**P-value < 0.001 highly statistical significant association.
The median of patient-related delay time interval was eight weeks (range 0.70-10.0) and 4.0 (IQR) for short delays, 32 weeks (range 12.0-260.0) and 62.0 (IQR) for long delays and 12 weeks (range 0.70-260.0) and 44.0 (IQR) for total delay (Table 2). The patient delay had a strong significant association with the advanced stage at diagnosis (p-value < 0.001) in relation to overall survival. The hazard ratio which measures the risk of dying from cancer was approximately four times at the advanced stage at diagnosis for long delay compared to the short one. In a univariate single predictor regression, the advanced stage at diagnosed indicated strong association with patient delay, but not in a multivariate logistic regression analysis (Table 3). Patient delay can be described mainly as long since 60% of all these patients experienced long delay and most likely related to the advanced stage at presentation.

| Table 3. Univariate and multivariate regression models for association between patient delay and all factors. |
| --- | --- | --- | --- | --- |
| Factor | Univariate model | Multivariate model |
| | OR(95%CI) | P-value | OR(95%CI) | P-value |
| Age | 1.01(0.99 to 1.02) | 0.407 | 1.004(0.99 to 1.02) | 0.703 |
| Stage | | | | |
| Early | 1(reference) | | 1 (reference) | |
| Advanced | 0.64(0.42 to 0.98) | 0.040* | 0.65(0.40 to 1.05) | 0.076 |
| Treatment | | | | |
| Surgery | 1.05(0.69 to 1.58) | 0.825 | 0.93(0.59 to 1.46) | 0.739 |
| Chemotherapy | 1.07(0.49 to 2.29) | 0.866 | 1.82(0.71 to 4.65) | 0.214 |
| Radiotherapy | 1.33(0.78 to 2.29) | 0.293 | 1.53(0.86 to 2.72) | 0.147 |
| Hormonal | 1.49(0.94 to 2.36) | 0.088 | 1.59(0.91 to 2.80) | 0.101 |
| Residence state | | | | |
| Khartoum | 1(reference) | | 1(reference) | |
| Central | 0.90(0.49 to 1.65) | 0.743 | 0.91(0.48 to 1.72) | 0.778 |
| Northern | 0.81(0.43 to 1.51) | 0.506 | 1.16(0.58 to 2.36) | 0.671 |
| Eastern | 0.63(0.26 to 1.51) | 0.297 | 0.66(0.26 to 1.65) | 0.371 |
| Western | 1.29(0.74 to 2.23) | 0.366 | 1.37(0.71 to 2.66) | 0.348 |
| Southern | 1.92 (0.69 to 5.29) | 0.207 | 2.03(0.67 to 6.12) | 0.211 |
| Urban/Rural status | | | | |
| Rural | 1(reference) | | 1(reference) | |
| Urban | 1.84(0.99 to 3.39) | 0.050 | 1.99(1.001 to 3.95) | 0.050 |
| Education | | | | |
| Illiterate | 1(reference) | | 1(reference) | |
| Low education | 0.77(0.50 to 1.18) | 0.226 | 0.69(0.42 to 1.13) | 0.141 |
| High education | 0.76(0.41 to 1.39) | 0.372 | 0.56(0.26 to 1.22) | 0.145 |
| Marital status | | | | |
| Unmarried | 1(reference) | | 1(reference) | |
| Married | 1.02(0.59 to 1.74) | 0.942 | 0.94 (0.53 to 1.68) | 0.844 |
| Tribe | | | | |
| Non Arab decent African | 1(reference) | | 1(reference) | |
| Arab decent African | 0.71(0.47 to 1.06) | 0.091 | 0.80(0.47 to 1.38) | 0.429 |
| Others | 1.10 (0.27 to 4.55) | 0.894 | 1.08 (0.25 to 4.71) | 0.922 |
| Occupation | | | | |
| Non employed | 1(reference) | | 1(reference) | |
| Employed | 1.66(0.092) | 0.092 | 1.87(0.96 to 3.65) | 0.066 |

*P-value < 0.05 statistical significant association, OR: Odds Ratio, CI: confident interval.
Both diagnostic- and treatment-related delays showed no significant associations with all factors, with the exception of diagnostic-related delay with chemotherapy treatment (Tables 4 and 5). They also revealed short delay estimated at (86.6%) and (97.5%) of patients experience, respectively. In contrast total delay demonstrated significant association only with Western state and high education in a univariate analysis and Southern state in a multivariate analysis. These results mean that there was a considerable amount of delay among breast cancer patients, since long delay was observed among (81.7%) of all these patients estimated at 28.36 weeks (198 days).

Table 4. Univariate and Multivariate regression models for association between diagnostic delay and all factors.
Factor
Age
Stage
Treatment
Residence state
Rural status
Marital status
Tribe

P-value < 0.05 statistically significant association.
These different delays results confirmed strong evidence of the association between long delay and advanced stage at diagnosis. This long delay was most likely related to patient delay. Though there was no clear association between long delay and survival outcome, the association between long delay and advanced stage was strong in relation to overall survival. The progression of the disease to the advanced stage due to long delay could lead to poor prognosis, outcome, limited and complicated treatment options.

Table 5. Univariate and Multivariate regression models for association between treatment delay and all factors.

Factor	Univariate model	Multivariate model		
	OR(95%CI)	P-value	OR(95%CI)	P-value
Age	1.02(0.97 to 1.06)	0.467	0.99(0.93 to 1.05)	0.709
Stage				
Early (reference)				
Advanced	0.37(0.10 to 1.35)	0.132	0.32(0.07 to 1.53)	0.154
Treatment				
Surgery	1.19 (0.33 to 4.29)	0.790	0.75(0.17 to 3.29)	0.702
Chemotherapy	0.29(0.06 to 1.43)	0.128	0.10(0.01 to 1.45)	0.091
Radiotherapy	2.14(0.54 to 8.47)	0.280	3.64(0.69 to 19.16)	0.127
Hormonal	0.69(0.14 to 3.29)	0.638	0.15(0.01 to 1.90)	0.142
Residence state^a				
Khartoum (reference)				
Central	3.97(0.41 to 38.97)	0.236	3.53(0.31 to 39.55)	0.307
Northern	6.13(0.67 to 56.05)	0.109	5.44(0.51 to 58.34)	0.161
Eastern				
Western	1.68(0.15 to 18.75)	0.675	5.33(0.36 to 79.43)	0.224
Southern				
Urban/Rural status				
Rural (reference)				
Urban	1.17(0.14 to 9.42)	0.885	1.56(0.16 to 14.90)	0.701
Education				
Illiterate	1(reference)		1(reference)	
Low education	1.09(0.29 to 4.16)	0.889	1.08(0.22 to 5.20)	0.928
High education	0.78(0.09 to 6.79)	0.820	0.79(0.05 to 13.85)	0.875
Marital status^b				
Unmarried	1(reference)		1(reference)	
Married				
Tribe^c				
Non Arab decent Arican	1(reference)		1(reference)	
Arab decent African	7.80(0.98 to 62.15)	0.052	6.95(0.55 to 87.53)	0.134
Others				
Occupation				
Non employed	1(reference)		1(reference)	
Employed	0.64(0.80 to 5.18)	0.679	0.72(0.06 to 8.87)	0.801

^aAll patient from Eastern and Southern states have short delay only and predicted probability of long delay would have to be zero.

^bOmitted because of collinearity.

^cAll patient from other tribe have short delay only and predicted probability of long delay would have to be zero.
Various factors contribute to the differences in breast cancer survival rates at the global and regional levels. Determining drivers of these disparities is complicated and no comprehensive studies looking at this to date. However, stage, clinical features, quality of treatment and delay are the most likely accepted explanation for these differences. Breast cancer survival depends mainly on early detection and effective treatment modalities. Thus, by examining this survival through the eyes of prevention and control of the disease at diagnosis, one can make assessment and evaluation of the potential covariates which have the most effect on patient survival. This study focused on stage at diagnosis and delays as the most important potential predictor covariates of survival. The results showed that these breast cancer patients were

Table 6: Univariate and Multivariate regression models for association between total delay and all factors.
Factor
OR(95%CI)
Age
Stage
Early
Advanced
Treatment
Surgery
Chemotherapy
Radiotherapy
Hormonal
Residence state
Khartoum
Central
Northern
Eastern
Western
Southern
Urban/Rural status
Rural
Urban
Education
Illiterate
Low education
High education
Marital status
Unmarried
Married
Tribe
Non Arab decent African
Arab decent African
Others
Occupation
Non employed
Employed

*P-value < 0.05 statistically significant association.
relatively young, married, unemployed, illiterate and belonged to non-Arab decent African groups. Breast cancer, in Sudan, is described as advanced at presentation and grade, aggressive and invasive ductal carcinoma and moderately to poorly differentiated cells leading to poor survival. Several previous studies reached the same conclusion of the disease as being invasive, advanced at presentation and delayed at diagnosis. The stage at diagnosis and delay are much related to survival and cancer survival and delay analysis measure these relationships and the effectiveness of the medical care system.

This study showed clearly that advanced stage presentation at diagnosis and long delay had a significant effect on survival outcome compared to the early stage. This conclusion agrees with previous studies in different parts of developed and low- and middle-income countries. The study provided an adequate explanation for the significant association between the advanced stage at diagnosis and long delay and expected poor survival. The consequences of breast cancer delay are most likely would lead to greater risks of death as the disease progresses overtime. In this sense, delay could affect prognosis and survival outcome.

Patient-related delay was observed to be mostly long and related to the advanced stage at diagnosis. This clear conclusion is in concert with several previous studies. Reasons for this patient-related delay were clearly explained in terms of fear of disease and treatment and lack of disease awareness. Many other studies showed similar reasons for patient-related delay. The study explained factors associated with patient delay reasons for delay as education, employment, ethnicity, and age group. One Sudanese breast cancer study revealed no such association between delay and several socio-demographic factors. However, there are other studies that showed an association between delay and socio-demographic and other variables such as distance, lack of medical care and early detection. Though there was no consensus on the exact shape and strength of the relationship between delay and prognosis and survival, more than three months delay was accepted as the major cause of the advanced stage at diagnosis. For breast cancer, effective control measures are generally available and affordable. This disease can be, to a large extent, prevented by screening and treating pre-cancerous lesions. Other than this, early detection of breast cancer is imperative to improve treatment outcomes. Assessment of the study conclusion should be interpreted with relative caution since the study was based on retrospectively collected data from a referral hospital with the largest registration of cancer patients in the country. It does not include all data of breast cancer patients and is limited by the type and quality of available data. Due to differences in setting between countries, one would expect the outcome not to be similar.

Conclusions

The results of the study suggest that stage at diagnosis and delay are important covariates affecting survival and prognosis. The evidence presented has shown the complexity of determining exactly what drives variations in cancer outcome. It is most likely all steps the cancer patient takes when looking for medical care contribute to some degree or another to differences in breast cancer survival rates.

Delay at diagnosis can affect the disease level of stage classification, negatively. Long patient delay has significant association with the advanced stage at diagnosis. Breast cancer current bleak situation can be reversed by early detection and prompt treatment. Early detection of cancer provides tremendous opportunities for early diagnosis, screening, more effective treatment and better chances of survival outcome.

Government intervention to reduce the suffering of breast cancer patients is of vital importance by providing diagnostic and oncological services in all general public hospitals and the introduction of oncology units in all states capital’s public hospitals. Early detection of breast cancer should be the core of a proposed woman cancer strategy through providing intensive and comprehensive breast cancer screening and raising disease awareness among female patients.

Data availability

This project contains the following underlying data:

- breast cancer2016 l.xlsx

Extended data

This project contains the following extended data:

- breast cancer questionnaire.xlsx
This project contains the following extended data:

- Questionnaire.docx

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements
We are thankful to all people who participated in the study. We thank the medical and statistical staff of Khartoum Oncology Hospital for their help in collecting personal and clinical data of cancer patients.

References

1. Parkin DM, Bray F, Ferlay J, et al.: Cancer in Africa 2012. Cancer Epidemiol Biomarkers Prev. 2014; 23(6): 953–66. Epub 2014 Apr 3. PubMed Abstract | Publisher Full Text

2. Torre LA, Siegel RL, Ward EM, et al.: Global Cancer Incidence and Mortality Rates and Trends-An Update. Cancer Epidemiol Biomarkers Prev. 2016; 25(1): 16–27. Epub 2015 Dec 14. PubMed Abstract | Publisher Full Text

3. American Cancer Society: Global Cancer: Facts and Figures. In: (3rd Ed.), edition Atlanta: American Cancer Society, 2015.

4. Elhaj AM, Abdalsalam AI, Abudris AO, et al.: Overall survival of females with breast cancer in the National Cancer Institute, University of Gezira, Sudan. Sudan Med. Journal. 2015; 10(1). Publisher Full Text

5. Awadelkarim KD, Mariani-Costantini R, Elwali NE: Prevalence of Themes Linked to Delayed Presentation of Breast Cancer in Africa: A Meta-Analysis of Patient-Reported Studies. JCO Glob Oncol. 2020; 6(6): 731–742. PubMed Abstract | Publisher Full Text | Free Full Text

6. Berraho M, Obtel M, Bendahhou K, et al.: Socio-demographic factors and delay in the diagnosis of cervical cancer in Morocco. Pan Afr Med J. 2012; 12: 14. Epub 2012 May 25. PubMed Abstract | Publisher Full Text

7. Salim, Omer El Farouq H, Mukhtar, et al.: Breast cancer in Africa, are we dealing with a different disease. Sudan Med J 2014; 11(2254): 1–24. Publisher Full Text

8. Stapleton M, Mullan, Patricia B, et al.: Patient-mediated factors predicting early and late-stage presentation of breast cancer in Egypt. Psychol Oncol. 2011; 20(5): 532–537. PubMed Abstract | Publisher Full Text | Free Full Text

9. Fost, Catherine, Harrison: How to improve cancer survival Explaining England’s relatively poor rates. The King’s Fund. 2011. Accessed 15 Jan 2019. Reference Source

10. Arndt, Volker, Sturme, et al.: Patient delay and stage of diagnosis among breast cancer patients in Germany—a population based study. Br J Cancer. 2002; 86(7): 1034. PubMed Abstract | Publisher Full Text | Free Full Text

11. WHO: Guide to cancer early diagnosis. Geneva: World Health Organization. 2017. Accessed 20 Jan 2019. Reference Source

12. Ganguro, Ninu, Anshu, et al.: Prevalence and risk factors for patient delay among women with breast cancer in rural india. Asia Pac J Public Health. 2016; 28(1): 72–82. PubMed Abstract | Publisher Full Text

13. IAEA: Inequity in Cancer Care: A Global Perspective Vienna. International Atomic Energy Agency. 2011.

14. Sankaranarayanan R, Swaminathan R, Brenner H, et al.: Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol. 2010; 11(2): 165–173. Epub 2009 Dec 10. PubMed Abstract | Publisher Full Text

15. Aqal, Mohamed M, Cao J, Fadul B, et al.: A five-year survey of cancer prevalence in Sudan. Anticancer Res. 2016; 36(1): 279–286. PubMed Abstract

16. Nelima KE: Estimating the survival of patients with cancer of the cervix at Kenyatta National Hospital in Nairobi, Kenya. Afr J Health Sci. 2013; 20: 92–103.

17. Greene RL, Sobin LH: A worldwide approach to the TNM staging system: collaborative efforts of the AJCC and UICC. J Surg Oncol. 2009; 99(5): 209–272. PubMed Abstract | Publisher Full Text

18. Jedy-Agba E: Breast Cancer in Sub-Saharan Africa: Determinants of Stage at Diagnosis and Diagnostic Delays in Women with Symptomatic Breast Cancer. (PhD dissertation). University of London, U.K.; 2017; Accessed 2 March 2019.

19. Ho PJ, Cook AR, Binte Mohamed RIW, et al.: Impact of delayed treatment in women diagnosed with breast cancer: A population-based study. Cancer Med. 2020; 9(7): 2435–2444. PubMed Abstract | Publisher Full Text | Free Full Text

20. Elhassan TOM: Factors Affecting survival of women diagnosed with breast cancer in National Cancer Institute (NCI) 2006-2015. (PhD Dissertation). University of Gezira; 2017; Accessed 2 March 2019.

21. Elkareem A, Elgasim A, Abbas and Ismail, Wafaa Mohammed Abdurrahim. Detection of P53 Estrogen Receptors and Progesterone Receptors in Breast cancer. Sudan J Sci Technol. 2016; 17(2): 39–45.

22. Hamed R, Abdelbadie A, Osman I, et al.: Clinical correlation of Breast cancer among Sudanese female patient. Integratied j British. 2015; 1(4): 18–20.

23. Bhikoo R, Srinivasa S, YU T-C, et al.: Systematic review of breast cancer biology in developing countries (part 2): Asian subcontinent and South East Asia. Cancers. 2011; 3(2): 2382–2401. PubMed Abstract | Publisher Full Text | Free Full Text

24. Elgali EM, Abuidro DO, Rahman M, et al.: Breast cancer burden in central Sudan, Int J Women Health. 2010; 2: 77–82. PubMed Abstract | Publisher Full Text | Free Full Text

25. Agodirin OS, Aremu I, Rahman GA, et al.: Prevalence of Themes Linked to Delayed Presentation of Breast Cancer in Africa: A Meta-Analysis of Patient-Reported Studies. JCO Glob Oncol. 2020; 6(6): 731–742. PubMed Abstract | Publisher Full Text | Free Full Text

26. Coleman MP, Forman D, Bryant H, et al.: Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet. 2011; 377(9760): 127–138. PubMed Abstract | Publisher Full Text | Free Full Text

27. do Carmo CC, Luij R: Survival of a cohort of women with cervical cancer diagnosed in a Brazilian cancer center. Rev Saude Publica. 2011; 45(4): 661–667. PubMed Abstract | Publisher Full Text

28. Rambwau PF, Chalya PL, Manyama MM, et al.: Pathological Features of Breast Cancer seen in Northwestern Tanzania: A Nine Years Retrospective Study. BMC Res Notes. 2011; 4. PubMed Abstract | Publisher Full Text | Free Full Text

29. Jassem J, Ozmen V, Bacanu F, et al.: Delays in diagnosis and treatment of breast cancer: a multinational analysis. Eur J Public Health. 2013; 23(5): 761–767. PubMed Abstract | Publisher Full Text | Free Full Text

30. Bucimazza I: Delays in breast cancer: Do they matter? South African J Surgery. 2015; 53(2): 34–36. Publisher Full Text

31. Freitas AGO, Weller M: Patient delays and system delays in breast cancer treatment in developed and developing countries. Cien
32. Maghaou A, Rais F, Ahid S, et al.: Factors influencing diagnosis delay of advanced breast cancer in Moroccan women. BMC Cancer. 2016; 16(1): 356. PubMed Abstract | Publisher Full Text | Free Full Text

33. Akuoko CP, Armah E, Sarpong T, et al.: Barriers to early presentation and diagnosis of breast cancer among African women living in sub-Saharan Africa. PLoS One. 2017; 12(2): e0171024. PubMed Abstract | Publisher Full Text | Free Full Text

34. Shamsi U, Khan S, Azam I, et al.: Patient Delay in Breast Cancer Diagnosis in Two Hospitals in Karachi, Pakistan: Preventive and Life-Saving Measures Needed. JCO Glob Oncol. 2020; (6): 873–883. PubMed Abstract | Publisher Full Text | Free Full Text

35. Sharma K, Costas A, Shulman LN, et al.: A systematic review of barriers to breast cancer care in developing countries resulting in delayed patient presentation. J Oncol. 2012; 8. PubMed Abstract | Publisher Full Text | Free Full Text

36. Pace LE, Mpunga T, Hategekimana V, et al.: Delays in breast cancer presentation and diagnosis at two rural cancer referral centers in Rwanda. Oncologis. 2015; 20(7): 780–788. PubMed Abstract | Publisher Full Text | Free Full Text

37. Ponce N, Glenn B, Shinkhada R, et al.: Barriers to Breast Cancer Care in California. Am J Med Res. 2017; 4(2): 73–126. Publisher Full Text

38. Zhang H, Wang G, Zhang J, et al.: Patient delay and associated factors among Chinese women with breast cancer: A cross-sectional study. Medicine. 2019; 98(40). PubMed Abstract | Publisher Full Text | Free Full Text

39. Salih AM, Alfaki MM, Alam Elhuda DM, et al.: Factors delaying presentation of Sudanese breast cancer patients: an analysis using Andersen’s model. Asian Pac J Cancer Prev. 2016; 17(4): 2105–2110. PubMed Abstract | Publisher Full Text

40. Kohler RE, Gopal S, Miller AR, et al.: A framework for improving early detection of breast cancer in sub-Saharan Africa: A qualitative study of help-seeking behaviors among Malawian women. Patient Educ Couns. 2017; 100(1): 167–173. PubMed Abstract | Publisher Full Text | Free Full Text

41. Rivera-Franco MM, Leon-Rodriguez E: Delays in breast cancer detection and treatment in developing countries. Breast Cancer: Basic and Clinical Research. 2018; 12. PubMed Abstract | Publisher Full Text | Free Full Text

42. Angeles-Llerenas A, Torres-Mejia G, Lazcano-Ponce E, et al.: Effect of care-delivery delay on the survival of Mexican women with breast cancer. Salud Publica Mex. 2016; 58: 237–250. PubMed Abstract | Publisher Full Text

43. Elgoraish A, Alnory A: Breast cancer dataset [Dataset]. Zenodo. 2021. Publisher Full Text

44. Elgoraish A, Alnory A: Breast cancer questionnaire. Zenodo. 2021. Publisher Full Text
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com