Streptococcus suis Bacterin and Subunit Vaccine Immunogenicities and Protective Efficacies against Serotypes 2 and 9†

Christoph Georg Baums,1* Christoph Kock,1 Andreas Beineke,2 Katharina Bennecke,1 Ralph Goethe,1 Charlotte Schröder,3 Karl-Heinz Waldmann,3 and Peter Valentín-Weigand1

Institut für Mikrobiologie, Zentrum für Infektionsmedizin, Stiftung Tierärztliche Hochschule Hannover, D-30173 Hannover, Germany1; Institut für Pathologie, Stiftung Tierärztliche Hochschule Hannover, D-30173 Hannover, Germany2; and Klinik für Kleine Klauentiere und Forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover, D-30173 Hannover, Germany3

Received 10 October 2008/Returned for modification 4 November 2008/Accepted 16 December 2008

Streptococcus suis causes numerous diseases in pigs, most importantly, meningitis, arthritis, septicemia, and bronchopneumonia. One of the major problems in modern swine production is the lack of a vaccine protecting against more than one S. suis serotype. The objective of this study was to determine the protective efficacy of a serotype 2 murein-associated protein (MAP) fraction subunit vaccine in comparison to that of a bacterin against experimental challenge with serotype 2 (containing muramidase-released protein [MRP], extracellular factor, and suilysin [SLY]) and serotype 9 (containing MRP variant MRP* and SLY) strains. MAP was shown to include different surface-associated proteins, such as the MRP and surface antigen one (SAO) expressed by both pathotypes used for challenge. The results of this study demonstrated that the serotype 2 bacterin induced protective immunity against homologous challenge. In contrast, the protective efficacy of the MAP subunit vaccine was low, though MAP immunization resulted in high serum immunoglobulin G2 titers against MRP and SAO. Importantly, immunization with bacterin but not with MAP induced opsonizing antibody titers against the serotype 2 strain, and these antibody titers were found to correlate with protection. However, after absorption with a nonencapsulated isogenic mutant, the sera from bacterin-immunized piglets failed to facilitate neutrophil killing, indicating that antibodies directed against capsule may not have been essential for opsonophagocytosis. Furthermore, induction of opsonizing antibodies against serotype 9 was not detectable in the group receiving bacterin or in the group receiving the MAP vaccine. In agreement, protection against the heterologous serotype 9 strain was low in both groups. Thus, identification of an antigen protecting against these two important S. suis pathotypes remains an important goal of future studies.

S. suis ranks among the five most important health challenges of pigs worldwide (11, 12). It is associated with numerous diseases, such as meningitis, arthritis, sepsis, and bronchopneumonia. S. suis isolates from diseased animals express a polysaccharide capsule which confers resistance to phagocytosis, as demonstrated for serotype 2 strains (21). Strains of various serotypes have been isolated from affected tissues. In Europe, serotype 2 and 9 strains are the most prevalent types isolated from infections. The 136-kDa muramidase-released protein (MRP) and the 110-kDa extracellular factor (EF) are virulence-associated factors expressed only by virulent serotype 1 and 2 strains (22, 23). The majority of invasive serotype 9 isolates express a larger variant of MRP, termed MRP*, which shares high homology with the 136-kDa MRP protein of serotype 2 strains (20, 23).

A number of S. suis proteins have been investigated as vaccine candidates. Wisselink et al. demonstrated that in comparison to immunization with a bacterin, immunization with MRP alone conferred little protection against challenge with serotype 2 strains (24). Combining MRP with EF substantially improved protective efficacy. However, many invasive isolates, including all serotype 9 strains, do not express EF. Furthermore, immunization with a different cell wall-associated protein, surface antigen one (SAO), elicited protective immunity against homologous challenge (16). Jacobs et al. used the hemolysin suilysin (SLY) for immunization of piglets (13). Their results suggested that SLY might be a protective antigen. Importantly, challenge experiments with different serotypes in pigs have not been described for any of these candidates.

The objective of this work was to evaluate the protective efficacy of a subunit vaccine based on murein-associated proteins (MAP) in comparison to a bacterin. The subunit vaccine included major surface-associated immunogens, such as SAO and MRP, expressed by both pathotypes used for challenge. Therefore, MAP was regarded as a promising candidate for induction of cross-protection against these invasive serotype 2 and 9 strains, which are responsible for major economic losses in Europe.

MATERIALS AND METHODS

Bacterial strains and growth conditions. S. suis strain 10 is an MRP+ EF+ SLY+ serotype 2 strain which has been shown to be highly virulent in experimental infections of piglets (2, 21). The isogenic mutant strain 10cpsEF is deficient in capsule production and attenuated in virulence (21). A3286/94 is an MRP+ SLY+ serotype 9 S. suis strain of sequence type 99, which was originally isolated from a pig with meningitis (18, 20). Intranasal experimental infections of growers revealed that A3286/94 is only moderately virulent in comparison to the highly virulent strain 10 (3). S. suis was cultured as described previously (2).
Preparation of the MAP subunit vaccine. In this study, an S. suis subunit vaccine which consisted of MAP was generated. For the preparation of the MAP fraction, an S. suis strain 10 (100 ml) was grown to an optical density at 600 nm of 0.3 and subsequently incubated at 42°C for two hours. A temperature shift to 42°C was performed to mimic the increase in body temperature associated with S. suis infection in pigs. The bacteria were centrifuged and resuspended in 10 ml of buffer containing 30 mM Tris-HCl (pH 7.5), 25% (wt/vol) sucrose, 0.01 M NaEDTA, and 0.2 mg/ml lysozyme. After incubation at 37°C for 45 min, the resulting protoplasts were centrifuged (15 min at 9,270 g and 4°C). The supernatant was recovered, and MAP were precipitated in 10% trichloroacetic acid (vol/vol). The pellet was washed twice with 80% (vol/vol) acetone and subsequently resuspended in 500 μl of phosphate-buffered saline (PBS). The MAP subunit vaccine contained final concentrations of 0.2 mg/ml MAP, 20% (vol/vol) Emulsigen as an adjuvant, and, for comparison with the bacterin, 0.04% (vol/vol) formaldehyde and 40% (vol/vol) Todd-Hewitt broth (THB; Oxoid, Wels, Germany).

Cloning of sao. Standard DNA manipulations were performed as described previously (19). For the expression of recombinant His-tagged SAO (rSAO), the primer pair saopostssBamHI (AAAGGATCCATCATCAGCGCAAAAC) and saoprefpolssBamHI (GTTATCCATCCGAATTC) were cloned into pQE30 (Qiagen, Hilden, Germany). Purified plasmid DNA was digested with Pfu polymerase (Promega, Mannheim, Germany) and then transformed into competent E. coli DH5α. After screening for ampicillin-resistant colonies, positive clones were grown to an optical density of 0.5 at 600 nm. The plasmid DNA was purified with the PEG algorithm. The sao open reading frame (ORF) was amplified by PCR with the primers sao-PCR-1 (5’-GGCGGATCCGGAAGGATCCATCATCAGCGCAAAAC-3’) and sao-PCR-2 (5’-GTCGACGTTGGATCCGTTTGTTTTCG-3’). The amplified product was cloned into pGEM-T Easy (Promega) and then transformed into E. coli DH5α. The recombinant plasmid DNA was extracted with the Nucleospin plasmid kit (Machery-Nagel, Düren, Germany).

Expression of sao. Bacterial cells were grown overnight in THB at 37°C and inactivated in 0.1% formaldehyde. E. coli DH5α was transformed with the recombinant plasmid DNA and grown to an optical density of 0.5 at 600 nm. The bacteria were centrifuged and resuspended in 10 ml of buffer containing 30 mM Tris-HCl (pH 7.5), 25% (wt/vol) sucrose, 0.01 M NaEDTA, and 0.2 mg/ml lysozyme. After incubation at 37°C for 45 min, the resulting protoplasts were centrifuged (15 min at 9,270 g and 4°C). The supernatant was recovered, and MAP were precipitated in 10% trichloroacetic acid (vol/vol). The pellet was washed twice with 80% (vol/vol) acetone and subsequently resuspended in 500 μl of phosphate-buffered saline (PBS). The MAP subunit vaccine contained final concentrations of 0.2 mg/ml MAP, 20% (vol/vol) Emulsigen as an adjuvant, and, for comparison with the bacterin, 0.04% (vol/vol) formaldehyde and 40% (vol/vol) Todd-Hewitt broth (THB; Oxoid, Wels, Germany).

Preparation of the bacterin. The bacterin was generated with S. suis strain 10 grown overnight in THB at 37°C and inactivated in 0.1% formaldehyde. Emulsigen was added as an adjuvant and, for comparison with the bacterin, 0.04% (vol/vol) formaldehyde and 40% (vol/vol) Todd-Hewitt broth (THB; Oxoid, Wels, Germany).

Hematologic analysis. Blood samples were collected before experimental infection (0 days postinfection), on days 2, 4, 6, and 10 postinfection, and prior to euthanasia. White blood cells were counted in a hemacytometer chamber. Leukocytes were differentiated on blood smears stained with the classical Wright stain.

Histopathological and bacteriological screening. The histological sections were carried out and scored with blind experiments as described previously (2). All tissues screened histologically were also investigated bacteriologically through culture- and PCR-based detection of the challenge strains (2, 3).

Isolation of S. suis capsular polysaccharides. Preparation of serotype 2 capsular polysaccharides was essentially done as described by Elliott and Trust (7). Briefly, S. suis serotype 2 strain 10 was grown in 1 liter of THB at 37°C until late logarithmic growth phase. Bacteria were centrifuged, washed in PBS, and resuspended in 100 ml 0.1 M glycine buffer (pH 9.2) containing 10 mg lsozyme/ml. After bacteria were incubated overnight at 37°C, cellular debris was eliminated by centrifugation and the supernatant was lypophilized. The lyophilization product was dissolved in 20 ml 0.1 M CaCl2. Nucleic acids were removed by precipitation with 25% ethanol. Capsular polysaccharides were then precipitated by increasing the ethanol concentration to 80%. The pellet was dissolved in 20 ml 50 μM Tris-HCl buffer (pH 7.4). Polysaccharides were further purified by RNase, DNase, and proteinase K treatment and subsequent phenol extraction. After extensive dialysis against H2O, capsular polysaccharides were lyophilized and resuspended in PBS. Serotype 2-specific capsular polysaccharides were verified as high-molecular-weight smears in silver staining and Western blot analyses with G (IgG)-peroxidase-conjugated antisera (Amersham Biosciences, Freiburg, Germany) (3). The antisera against FBPS was kindly provided by Astrid de Greèff (Central Vet. Institute of Wageningen, Leestad, The Netherlands).

TABLE 1. Evaluation of protection induced by a bacterin and a subunit vaccine in serotype 2 and 9 challenge experiments of growers

S. suis challenge serotype and immunization antigen	No. of piglets	Application	CFU	CNS	Lameness	Unspecific	Morbidity	Mortality	No. of piglets with clinical symptom(s)	No. of piglets with condition/total no. of piglets	Max. body temp:	Max. WBC:
S. suis challenge serotype and immunization antigen												
Serotype 2	2	Bacterin	10⁶	2/7	1/7	5/7	2/7	7/8	0/7			
Serotype 9	9	Bacterin	10⁶	5/6	1/6	3/6	1/6	5/6	0/6			
Placebo												

* German landrace piglets from a herd known to be free of sly⁺ mrp⁺ cps² and cps⁹ S. suis strains.

b The highly virulent serotype 2 strain 10 (mrp⁺ epf⁺ sly⁺ cps2) and the moderately virulent serotype 9 strain A3286/94 (mrp⁺ sly⁺ cps9) were used in homologous and heterologous challenge experiments, respectively.

c Max., maximum. White blood cell (WBC) counts were performed on days 2, 4, 6, and 10 postinfection. All piglets had WBCs below 20 × 10⁶/liter preinfection.

d i., intranasal; i.v., intravenous.

e CNS, central nervous system.
polyclonal rabbit antisera raised against S. suis serum type 2. The total carbohydrate concentration was determined by the phenol-sulfuric acid method (8).

Conjugation of capsular polysaccharides with BSA. Conjugation of serum type 2 capsular polysaccharide with bovine serum albumin (BSA) was essentially performed as described by Lees et al. (15). Forty-two microliters of 100 mg/ml 1-cyano-4-dimethylaminopyridinium tetrafluoroborate in acetonitrile (Sigma, Taufkirchen, Germany) was slowly added to 2.8 mg of serum type 2 capsular polysaccharides and mixed for 30 s. After the addition of 42 μl of 0.2 M triethylamine (Sigma), the solution was mixed for another 2 min and 5.6 mg BSA was included. After end-over-end rotation for 3 h at 37°C, the reaction was quenched by the addition of 1 M glycine buffer (pH 9) to a final concentration of 0.1 M glycine and subsequent end-over-end rotation at 4°C overnight. Finally, conjugates were dialyzed against PBS for two days. The presence of BSA-conjugated serum type 2 capsular polysaccharides was verified by the detection of band shifts in Western blot analysis with polyclonal rabbit anti-BSA antisera (Sigma) in comparison to BSA and purified capsular polysaccharides. Hyperimmune sera against conjugated serum type 2 capsular polysaccharides were raised in four piglets by two consecutive immunizations with 0.25 mg of BSA-conjugated serum type 2 capsular polysaccharide and 10% Emulsigen.

Detection of antibodies against MRP, SAO, MAP, and serum type 2 capsular polysaccharides. MAP-, MRP-, and serum type 2 capsular polysaccharide-specific total serum IgG antibodies and SAO- and MRP-specific serum antibodies of IgG isotype were determined in immunized piglets as described by enzyme-linked immunosorbent assay (ELISA). Maxisorp plates (Nunc, Rochester, NY) were coated overnight at 8°C with 5 μg S. suis antigen (MAP, MRP, rSAO, or serum type 2 capsular polysaccharides) or BSA (background measurement) in carbonate buffer. The plates were washed between the different incubation steps three times with PBS containing 0.05% Tween 20 (PBST). The plates were blocked with 5% skim milk in PBST for 2 h at 37°C. Samples were added, and the plates were placed on a rocker platform for 1 h at 37°C. For the determination of total IgG, plates were incubated with a 1:20,000 dilution of peroxidase-conjugated goat anti-swine IgG (heavy plus light chain) antisera (Dianova, Hamburg, Germany) for 1 h at room temperature. For the detection of IgG1 and IgG2, mouse anti-porcine IgG1 and IgG2 antisera (Serotec, Kidlington, Oxford, United Kingdom) and peroxidase-conjugated goat anti-mouse IgG2 antisera (Dianova) were used as primary and secondary antibodies, respectively, following the recommendations of the manufacturer. The plates were developed with 2,2-azino-di-[3-ethylbenzthiazoline sulfonate] (ABTS, Boehringer, Mannheim, Germany) and 0.002% H2O2 as the substrate. Absorbance was measured at 405 nm.

All of the samples and the controls were measured in a duplicate series of four (seven for reference serum) twofold dilutions in PBST (starting with 1:200). A convalescent-phase serum obtained from a piglet 20 days after experimental infection with strain 10 was used as a standard. Sera from this animal obtained before experimental infection served as a negative control. For positive controls for MRP/MRP*, SAO, MAP, and serotype 2 capsular polysaccharides and mixed for 30 s. Absorbance was measured at 405 nm.

Statistical analysis. Statistical analysis with the Mann-Whitney test was performed to analyze differences between the three groups of piglets used in each experiment. The Wilcoxon test was used for comparison of different time point values within the same group. The data in the Kaplan-Meier survival diagrams were analyzed with the log rank test. Probabilities lower than 0.05 were considered significant.

RESULTS

Characterization of a MAP subunit vaccine. MAP fractions of S. suis serum type 2 strain 10 and serum type 9 strain A3286/94 were separated by PAGE and analyzed by Western blotting. As demonstrated in Fig. 1, the MAP fractions of both strains showed some similarity in protein band patterns and included MRP/MRP*, SAO, and FBPS. The MAP fraction of S. suis strain 10 was used as a subunit vaccine and compared to a bacterin of the same strain in homologous and heterologous challenge experiments.

Challenge of piglets with the homologous serum type 2 strain 10. One piglet in the bacterin-immunized group had to be euthanized prior to challenge because of an unrelated disease, and the data for this piglet were excluded from analysis. High-dose intranasal challenge of piglets with strain 10 resulted in at least two diseased animals in every group. Morbidity and mortality levels for the bacterin-immunized group were significantly lower than those for the placebo group (Table 1 and Fig. 2A). Five of the seven bacterin-immunized piglets showed neither clinical signs of disease nor fibrinopressurative lesions (Table 2). Elevated numbers of blood leukocytes were, however, temporarily registered in three of these animals (Table 1). In the MAP-immunized piglets, morbidity and mortality levels after serum type 2 challenge were only slightly lower than those for the placebo group (Table 1). Mean times to death were similar for the MAP- and placebo-vaccinated animals (6.1 and 5 days, respectively), but the mean time to death in the bacterin-immunized group was greater (8.9 days) (Fig. 2A).
The differences in morbidity and mortality correlated with the results of the histological screening of fibrinosuppurative lesions, which resulted in scores of 1.0, 3.0, and 3.8 for the bacterin-, MAP-, and placebo-immunized groups, respectively (Table 2). The challenge strain was isolated from at least one inner organ of all but one diseased piglet, and the isolation was always associated with fibrinosuppurative inflammations. Isolation of the challenge strain from three or more different tissues was achieved for four of eight animals of the placebo group but none of those from the bacterin-immunized group. For four of five healthy piglets from the bacterin-immunized group, the challenge strain was detected in the tonsils but not in other tissues (Table 3). In conclusion, clinical, pathohistological, and bacteriological screenings demonstrated protective immunity against the homologous serotype 2 strain 10 in the bacterin-vaccinated group but not in the MAP-vaccinated group.

Challenge of piglets with the heterologous serotype 9 strain A3286/94. Intravenous challenge of piglets with strain A3286/94 resulted in at least 50% mortality in each group. Morbidity and mortality levels for the bacterin-immunized group were slightly lower than those for the placebo group (P values of 0.0426 and 0.28, respectively), and the morbidities and mortalities of the MAP- and placebo-immunized groups were similar (Table 1). Mean times to death were 6.2, 4.5, and 3.5 days in bacterin-, MAP-, and placebo-vaccinated animals, respectively (Fig. 2B). The pathohistological screening revealed only mild fibrinosuppurative lesions in animals of the bacterin group, whereas three animals of the placebo group and two animals of the MAP-vaccinated group showed moderate (MAP-vaccinated group) or severe (placebo group) fibrinosuppurative synovialitis and/or meningitis. The differences in pathohistological findings resulted in substantially different pathology scores for the three groups (Table 2). However, some pathohistological findings might have not been detected in the bacterin-immunized group, as synovialitis was not diagnosed in two piglets that showed severe lameness prior to euthanasia. Bacteriological screening of A3286/94-infected animals revealed a high detection rate of the challenge strain.

Table 2. Scoring of fibrinosuppurative lesions of piglets infected with S. suis strain 10 or A3286/94 after immunization with a bacterin or a MAP-based subunit vaccine

S. suis challenge serotype and immunization antigen	No. of piglets	Meningitis and/or chorioiditis	Pleuritis or peritonitis	Synovialitis	Splenitis or hepatitis	Pneumonia	ωd								
		5	3	1	4	2	1	4	2	1	4	2	1	ωd	
2															
Bacterin	7	1/7	0/7	0/7	0/7	0/7	0/7	0/7	0/7	1/7	0/7	0/7	0/7	0/7	1.0
MAP	8	2/8	0/8	2/8	4/8	1/8	0/8	0/8	0/8	1/8	0/8	0/8	0/8	0/8	3.0
Placebo	8	1/8	1/8	3/8	5/8	3/8	0/8	0/8	0/8	0/8	3/8	2/8	0/8	3/8	0/8
9															
Bacterin	6	0/6	0/6	0/6	0/6	2/6	0/6	0/6	0/6	1/6	0/6	0/6	0/6	0/6	1.2
MAP	6	0/6	0/6	1/6	0/6	0/6	0/6	0/6	0/6	3/6	0/6	0/6	0/6	0/6	2.3
Placebo	6	2/6	0/6	1/6	0/6	0/6	0/6	0/6	0/6	2/6	0/6	0/6	0/6	0/6	3.0

* Scores of 4 and 5 indicates moderate to severe diffuse or multifocal fibrinosuppurative inflammations. Scores of 2 and 3 indicates mild focal fibrinosuppurative inflammation.
*b Neutrophilic accumulation of the splenic red pulp.
*c The sum of the highest scores of each animal for any of the investigated organs was divided by the number of animals (ω = \(\frac{\sum \text{score}_{\text{animal}}}{n_{\text{animals}}} \)) (2).
d For one animal of each group, the score of 4 was assigned due to high numbers of neutrophils in the smear of the joint fluid.
e Synovialitis was not diagnosed in one animal with acute lameness in the bacterin and in two animals with acute lameness in the MAP-vaccinated group.
TABLE 3. Reisolation of the challenge strain from pigs immunized with a bacterin or MAP-based subunit vaccine and then reinfected

S. suis challenge serotype and immunization antigen	S. suis challenge	No. of piglets with indicated site of S. suis challenge strain isolation/total no. of piglets								
Application^a	CFU	Tonsils	Lung^b	Serosa^c	Spleen	Liver	CSF^d	Joint fluid^e		
Bacterin	7	i.n.	10^9	3/8	1/7	0/7	0/7	1/7	1/7	
MAP	8	i.n.	10^9	2/8	3/8	2/8	0/8	1/8	2/8	0/8
Placebo	8	i.n.	10^9	2/8	4/8	6/8	3/8	2/8	1/8	0/8

Bacterin	6	i.v.	10^8	0/6	0/6	1/6	1/6	0/6	0/6	0/6
MAP	6	i.v.	10^8	0/6	1/6	1/6	0/6	0/6	0/6	0/6
Placebo	6	i.v.	10^8	0/6	1/6	1/6	1/6	2/6	0/6	0/6

^a Challenge strains were identified through PCR as described in Materials and Methods.
^b i.n., intranasal; i.v., intravenous.
^c One cranial lobe was investigated.
^d Pleural, peritoneal, or pericardial cavity.
^e Cerebrospinal fluid.
^f One tarsal puncture was investigated in each animal. In cases of lameness, additional joint punctures were screened.

strain in the placebo group in comparison to those of the bacterin- and MAP-immunized groups (Table 3). In conclusion, neither the serotype 2 bacterin nor the respective MAP subunit vaccine conferred significant protection against mortality after heterologous intravenous challenge with a serotype 9 strain. However, clinical, histological, and bacteriological differences suggested partial protection in the bacterin-immunized group.

Seroconversion of piglets immunized with bacterin and MAP. Immunization of piglets with either the bacterin or the MAP subunit vaccine elicited IgG titers against MAP and MRP that were significantly higher than those in the placebo group and comparable to or higher than those in the convalescent-phase reference serum, as shown for anti-MRP in Fig. 3A and B and for anti-MAP in Fig. S1A and B. Antibody titers against the MAP fraction and against MRP were similar in bacterin- and MAP-vaccinated animals (anti-MRP; Fig. 3A and B). Differentiation of MRP-specific IgG1 and IgG2 antibodies revealed that immunization with both antigens induced a significant increase in the neutrophil killing of S. suis strain 10 in comparison to the respective preimmunization sera (Fig. 4A and C). This indicated that opsonizing antibodies against strain 10 were elicited by the homologous bacterin but not by the MAP subunit vaccine. Except for in one animal, the induction of opsonizing antibodies was found to correlate with the survival of piglets in the S. suis strain 10 challenge experiment (Fig. 4B).

In contrast, the survival factors of S. suis serotype 9 strain A3286/94 were similar in neutrophil killing assays with post-and preimmunization sera from piglets of all three groups (as indicated in Fig. 4C, by a ratio of 1). In conclusion, neither immunization with the serotype 2 bacterin nor immunization with the MAP subunit vaccine induced opsonizing antibodies against the heterologous serotype 9 strain A3286/94 (Fig. 4C).

To determine whether antibodies against the capsule were involved in bacterin-induced opsonization of strain 10, postimmunization sera were absorbed with either strain 10 or the isogenic nonencapsulated mutant strain 10cpsΔEF and subsequently tested in the neutrophil killing assay. As demonstrated in Fig. 5B, postimmunization sera which had been absorbed with the isogenic nonencapsulated mutant failed to facilitate killing of strain 10. Comparable survival rates were observed when sera were absorbed with strain 10 or with its isogenic encapsulated mutant. Therefore, antibodies directed against the capsule may not have been essential for opsonophagocytosis in bacterin-immunized piglets. This was in agreement with the finding that serum IgG titers against serotype 2 capsule were very low in all piglets and that there was no difference among the three groups (Fig. 5A).

DISCUSSION

In this study, we designed experiments to evaluate S. suis vaccine candidates for use in porcine practice. Experiments included challenges with the two most important S. suis pathotypes in Europe, a highly virulent homologous serotype 2 strain and a heterologous serotype 9 strain. Both have been characterized previously via experimental infections with pigs (3). A
A comparison with a *S. suis* bacterin was included because that type of vaccines is commonly used today (10).

The results of this study demonstrate that a MAP subunit vaccine conferred less protection than a serotype 2 bacterin. This was surprising, as MAP was shown to include important surface-associated antigens, such as SAO and MRP. Li et al. demonstrated partial protection in pigs immunized with rSAO (16). In contrast, we did not observe protection against *S. suis* strain 10 in MAP-immunized piglets, though these piglets had high humoral antibody titers against SAO. In this study, low antibody titers against SAO were already detected prior to immunization and in the placebo group. This finding is most likely related to other SAO-expressing *S. suis* strains colonizing the upper respiratory tract of all piglets used for challenge. We cannot exclude the possibility that the immune response against SAO after MAP and bacterin immunization, in particular the domination of IgG2 over IgG1, was influenced by the preimmunization status of the piglets. However, as high IgG2-dominated antibody titers against SAO were observed in both studies prior to challenge, the preimmunization status is unlikely to explain the different outcome of challenge. One reasonable explanation may be that we applied the 90% lethal dose for challenge, which is 26 times higher than the dose used by Li et al. (16). Since the serotype 2 bacterin conferred significant protection against this challenge, it seems at least questionable whether a vaccine based on the antigen SAO might induce better protection than an *S. suis* bacterin.

In agreement with our results, Wisselink et al. found that
immunization with MRP was less protective than immunization with a bacterin or a MAP subunit vaccine. As the authors performed only serotype 2 challenge, it was, however, not clear if MRP might induce cross-protection against invasive serotype 9 strains. It has to be noted that these serotype 9 strains express an MRP variant with high homology to the serotype 2 MRP (20). On the other hand, the results of our study demonstrate that high-level antibody responses against MRP, as developed by the MAP-vaccinated animals, did not correlate with protection against serotype 2 or 9 challenge.

As antibody titers against SAO, MRP, and MAP were very similar among the MAP- and bacterin-immunized piglets, we tried to identify qualitative differences in the antibody responses which might explain the differences in protective efficacy. Opsonophagocytosis experiments with porcine neutrophils and sera from the immunized piglets demonstrated a significant increase in neutrophil killing efficacy in the presence of sera from bacterin- but not MAP-immunized piglets. The induced opsonizing activities of the different sera as determined in the neutrophil killing assay were found to be a good prognostic indicator for survival. This is in agreement with the important role of neutrophils in the pathogenesis of *S. suis* (5). Therefore, it is reasonable to hypothesize that the induction of opsonizing antibodies in bacterin- but not MAP-immunized piglets was responsible for the different protective efficacy of these two vaccines.

Interestingly, high IgG2 antibody titers against SAO induced by MAP immunization did not correlate with opsonization, in contrast to the results from an earlier study (16). This might be explained by the fact that we used a much lower neutrophil/
bacterium ratio (1:1) than Li et al. (500:1; 16). The lower ratio was chosen because it is more likely to represent the in vivo situation, at least at an early stage of inflammation.

The lack of protection in MAP-immunized piglets might be explained by the hypothesis that important antigens represented by the MAP subunit vaccine, in particular MRP and SAO, are in the course of \textit{S. suis} infection not accessible to antibodies due to encapsulation. Gor et al. (9) found that only one of three investigated MAP of \textit{S. pneumoniae} induced protection. Their results suggested that antibody accessibility of a MAP is a critical feature for its putative function as a protective antigen. Interestingly, a nonencapsulated \textit{S. suis} mutant bacterin induced less protection than the respective wild-type bacterin, though it elicited identical levels of antibody against MRP (25). The authors of the latter study discussed the enhanced protection in wild-type bacterin-immunized piglets in relation to induction of antibodies directed against capsule. However, in accordance with our findings, antibody titers against the capsule were rather low. Furthermore, we demonstrated that absorption of sera with the same nonencapsulated mutant eliminated opsonizing activity of sera from wild-type bacterin-immunized piglets. Therefore, we concluded that induction of opsonizing antibodies in wild-type bacterin-immunized piglets was directed against surface components other than the capsule.

![FIG. 5. Antibody responses against serotype 2 (ST2) capsular polysaccharides in piglets immunized with a bacterin, a MAP subunit vaccine, or, for comparison, BSA-conjugated ST2 capsular polysaccharides. (A) Serum IgG responses against ST2 capsular polysaccharides. (B) Opsonophagocytic killing by porcine neutrophils in the presence of absorbed sera from immunized piglets. Sera had been absorbed with \textit{S. suis} strain 10 (ST2) or the isogenic capsule mutant 10cpsΔEF (Δcps2) as indicated below the x axis and were then tested in neutrophil killing experiments with \textit{S. suis} strain 10.](http://cvi.asm.org/Downloaded from)
than the capsule. As the results of this study suggest that induction of opsonizing antibodies is critical for protective immunity against S. suis, identification of antigens inducing such antibodies is an important objective of our future studies. Furthermore, it is important to include a S. suis MRP* serotype 9 bacterin in future studies to investigate whether our results obtained for MRP* EF* serotype 2 are similar for both pathotypes.

ACKNOWLEDGMENTS

We thank Hilde Smith (Central Veterinary Institute of Wageningen, Lelystad, The Netherlands) for providing strain 10 and the nonencapsulated isogenic mutant 10cpsLEF. Astrid de Greeff (Central Veterinary Institute of Wageningen, Lelystad, The Netherlands) kindly provided the serum against FBPS. We gratefully acknowledge M. Beyerbach (Stiftung Tierärztliche Hochschule Hannover) for support in statistical analysis. This study was financially supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany (SFB587), and IDT Biologika GmbH Dessau-Toruna. C. G. Baums and C. Kock contributed equally to this work.

REFERENCES

1. Baltimore, R. S., D. L. Kasper, C. J. Baker, and D. K. Goroff. 1977. Antigenic specificity of opsonophagocytic antibodies in rabbit anti-sera to group B streptococci. J. Immunol. 118:673–678.
2. Baums, C. G., U. Kaim, M. Fulde, G. Ramachandran, R. Goethe, and P. Valentin-Weigand. 2004. Identification of a novel virulence determinant with serum opacification activity in Streptococcus suis. Infect. Immun. 72:6154–6162.
3. Beineke, A., K. Bennecke, C. Neis, C. Schröder, K.-H. Waldmann, W. Baumgärtner, P. Valentin-Weigand, and C. G. Baums. 2008. Comparative evaluation of virulence and pathology of Streptococcus suis serotypes 2 and 9 in experimentally infected growing rats. Vet. Microbiol. 128:423–430.
4. Benga, L., R. Goethe, E. Große Beilage, and P. Valentin-Weigand. 2004. Immunogenicity of mucin-associated proteins from temperature-stressed Streptococcus suis cultures. J. Vet. Med. B 51:272–277.
5. Chabot-Roy, G., P. Willson, M. Segura, S. Lacouture, and M. Gottschalk. 2006. Phagocytosis and killing of Streptococcus suis by porcine neutrophils. Microb. Path. 41:21–32.
6. Council of Europe. 2005. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes, European Treaty Series no. 123. Council of Europe, Strasbourg, France. http://conventions.coe.int/Treaty/en/Treaties/Html/123.htm.
7. de Greeff, A., H. Buys, R. Verhaar, J. Dijkstra, L. van Alphen, and H. E. Smith. 2002. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus suis serotype 2. Infect. Immun. 70:1319–1325.
8. Elliott, S. D., and J. Y. Tai. 1978. The type-specific polysaccharides of Streptococcus suis, J. Exp. Med. 148:1699–1704.
9. Fox, J. D., and J. F. Rohby. 1991. Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal. Biochem. 195:93–96.
10. Gor, D. O., X. Ding, D. E. Brisle, M. R. Jacobs, and N. S. Greenspan. 2005. Relationship between surface accessibility for PpmA, PsaA, and PgpA and antibody-mediated immunity to systemic infection by Streptococcus pneumoniae. Infect. Immun. 73:1304–1312.
11. Haeßebrouch, F., F. Pasmans, K. Chiets, D. Maes, R. Ducatelle, and A. Decostere. 2004. Efficacy of vaccines against bacterial diseases in swine: what do we expect? Vet. Microbiol. 108:255–268.
12. Higgins, R., and M. Gottschalk. 2005. Streptococcal diseases, p. 769–783. In S. D. B. E. Strax, W. L. Mengeling, and D. J. Taylor (ed.), Diseases of swine, 9th ed. Iowa State University Press, Ames.
13. Holstau, D., H. Rotho, and R. Garcia. 2007. Economic cost of major health challenges in large US swine production systems. Part 1. 5M Enterprises Ltd., Sheffield, England. http://www.thepigsite.com/articles/1/pig-health/193/economic-cost-of-major-health-challenges-in-large-us-swine-production-systems-part-1.
14. Jacobs, A., A. Van den Berg, and P. Loefen. 1996. Protection of experimentally infected pigs by suilysin, the thiol-activated hemolysin of Streptococcus suis. Vet. Rec. 139:225–228.
15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
16. Lees, A., B. L. Nelson, and J. J. Mond. 1996. Activation of soluble polysaccharides with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate for use in protein-polysaccharide conjugate vaccines and immunological reagents. Vaccine 14:190–198.
17. Li, Y., M. Gottschalk, M. Esgleas, S. Lacouture, J. D. Dubreuil, P. Willson, and J. Harrel. 2007. Immunization with recombinant Sae protein confers protection against Streptococcus suis infection. Clin. Vaccine Immunol. 14:937–943.
18. Rabilloud, T. 1999. Silverstaining of 2-D electrophoresis gels. Methods Mol. Biol. 112:297–305.
19. Rehm, T., C. G. Baums, B. Strommenger, M. Beyerbach, P. Valentin-Weigand, and R. Goethe. 2007. Amplified fragment length polymorphism of Streptococcus suis strains correlates with their profile of virulence-associated genes and clinical background. J. Med. Microbiol. 56:102–109.
20. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
21. Silva, L. M., C. G. Baums, T. Rehm, H. J. Wisselink, R. Goethe, and P. Valentin-Weigand. 2006. Virulence-associated gene profiling of Streptococcus suis isolates by PCR. Vet. Microbiol. 115:117–127.
22. Smith, H. E., M. Damman, J. van der Velde, F. Wagenaar, H. J. Wisselink, N. Stockhofe-Zurwieden, and M. A. Smits. 1999. Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule polysaccharide against phagocytosis and is an important virulence factor. Infect. Immun. 67:1750–1756.
23. Vecht, U., H. J. Wisselink, J. E. van Dijk, and H. E. Smith. 1992. Virulence of Streptococcus suis type 2 strains in newborn germfree pigs depends on phenotype. Infect. Immun. 60:550–556.
24. Wisselink, H. J., H. E. Smith, N. Stockhofe-Zurwieden, K. Peperkamp, and V. U. C. 2000. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet. Microbiol. 74:237–248.
25. Wisselink, H. J., U. Vecht, N. Stockhofe-Zurwieden, K. Peperkamp, and U. Vecht. 2000. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet. Microbiol. 74:237–248.
26. Wisselink, H. J., U. Vecht, N. Stockhofe-Zurwieden, and H. E. Smith. 2001. Protection of pigs against challenge with virulent Streptococcus suis serotype 2 strains by a muramidase-released protein and extracellular factor vaccine. Vet. Rec. 148:473–477.
27. Wisselink, H. J., N. Stockhofe-Zurwieden, L. A. T. Hilgers, and H. E. Smith. 2002. Assessment of protective efficacy of live and killed vaccines based on a non-encapsulated mutant of Streptococcus suis serotype 2. Vet. Microbiol. 84:155–168.