Towards a theory of good SAT representations

Oliver Kullmann

Computer Science Department
Swansea University
http://cs.swan.ac.uk/~csoliver/papers.html

Exploring Computational Complexity
November 9, 2014
Clause-sets

- Let $\mathcal{V}A$ be the set of variables.
- Let \mathcal{LIT} be the set of literals, which are either variables or complemented variables, i.e., $\mathcal{LIT} = \mathcal{V}A \cup \overline{\mathcal{V}A}$.
- A clause is a finite and complement-free subset of \mathcal{LIT}, the set of all clauses is \mathcal{CL}.
- Let \mathcal{CLS} be the set of clause-sets, finite subsets of \mathcal{CL}.

\[
\bot := \emptyset \in \mathcal{CL} \\
\top := \emptyset \in \mathcal{CLS}.
\]
“Hardness”

\[
\begin{align*}
\text{hd} & : \mathcal{CLS} \rightarrow \mathbb{N}_0 \\
\text{awid} & : \mathcal{CLS} \rightarrow \mathbb{N}_0.
\end{align*}
\]

“Hardness” for historical reasons; \(\text{hd} = \text{thd} \).

Open Problem

Develop a general framework for “hardness measures”.

Our approach:

1. **Precise**, not asymptotic: clause-sets have an intrinsic “hardness”, under a certain perspective; for example Horn clause-sets have hardness 1.

2. **SAT** by worst-case from UNSAT.

Our “hardness” is “hardness for very simple, oblivious SAT algorithms”.

What do you mean?

What does it mean that we have

\[\text{hd}(F) = k \]

resp.

\[\text{awid}(F) = k \]

where, just to emphasise, \(F \in \mathcal{CLS} \) is a (single, concrete) clause-set (no hidden parameters), and \(k \in \mathbb{N}_0 \) is a natural number (again, no hidden parameters)?

From a complexity-theory perspective this looks suspicious?

The meaning is, roughly, that with a generic algorithm with time \(n^{O(k)} \) and space \(n^{O(1)} \) resp. \(n^{O(k)} \) all “implicit information” of \(F \) can be uncovered.

\(k \) is a structural parameter of \(F \), measuring at which maximal “level” we can extract prime implicates from \(F \).
Outline

1. Introduction
2. Hardness measures
3. Hierarchies
4. Separations
5. Monotone circuits
6. Conclusion
From USAT to SAT

- Let $\textit{USAT} := \textit{CLS} \setminus \textit{SAT}$.
- Let \textit{PASS} be the set of partial assignments.
- For $\varphi \in \textit{PASS}$ and $F \in \textit{CLS}$ let $\varphi \ast F \in \textit{CLS}$ be the result of applying φ to F.

In Beyersdorff and Kullmann [4] the following approach was formally introduced:

Consider $h_0 : \textit{USAT} \rightarrow \mathbb{N}_0$.

We extend to $h : \textit{CLS} \rightarrow \mathbb{N}_0$ by

$$h(F) := \max \{ h_0(\varphi \ast F) : \varphi \in \textit{PASS} \land \varphi \ast F \in \textit{USAT} \}.$$

If we assume that applying partial assignments does no increase h_0 (and this we always do), then this holds also for h.
Game characterisations of hardness’s I

We characterise $\text{hd}(F)$ and $\text{awid}(F)$, indeed for arbitrary $F \in \mathcal{CLS}$, by a game according to [4], extending

- Pudlák and Impagliazzo [11]
- and Atserias and Dalmau [1].
The general structure of our games is:

- There is a global partial assignment θ; initially θ is empty.
- There are two players, DELAYER and FINISHER, manipulating θ.
- FINISHER seeks $\theta \ast F = \top$ or $\bot \in \theta \ast F$ — once established, the game ends (and it will end).
- DELAYER starts, and must never have $\theta \ast F = \top$ or $\bot \in \theta \ast F$.
- A move of DELAYER is to extend θ to $\theta' \supseteq \theta$ with $\theta' \ast F \neq \top$ and $\bot \notin \theta \ast F$.
- FINISHER can always extend θ to any $\theta' \supseteq \theta$ with $\theta' \ast F = \top$, and then DELAYER gets zero points.
- DELAYER maximises points, FINISHER minimises.

The variations concern the moves of FINISHER and the accounting of points when \bot has been created.
The hardness game

The Finisher extends θ to θ' with exactly one more assignment, i.e., $n(\theta') = n(\theta) + 1$.

The points Delayer obtains is the number of rounds.

1. The optimal value of this game is $hd(F)$.
2. There are quite a few equivalent characterisations: see [7, 8, 9, 4].
The asymmetric-width game

The **Finisher** first restricts θ to $\theta' \subseteq \theta$, and then extends θ' to θ'', not contradicting θ, with $n(\theta'') = n(\theta') + 1$.

The points **Delay**er obtains is the maximal $n(\theta'')$ after moves of **Finisher**.

1. The optimal value of this game is $\text{awid}(F)$.

2. Again, there are quite a few equivalent characterisations.

Finisher might always remove precisely all assignments made by **Delay**er, and in this way we can prove:

$$\forall F \in \mathcal{LS} : \text{awid}(F) \leq \text{hd}(F).$$
Relations to resolution complexity

For $F \in USAT$ holds:

$$2^{\text{hd}(F)} \leq \text{Comp}^*_R(F) \leq (n(F) + 1)^{\text{hd}(F)}$$

$$\exp\left(\frac{1}{8} \frac{\text{awid}(F)^2}{n(F)}\right) < \text{Comp}_R(F) < 6 \cdot n(F)^{\text{awid}(F) + 2}$$

where

- $\text{Comp}^*_R(F)$ is the minimal number of leaves in a tree resolution refutation of F;
- $\text{Comp}_R(F)$ is the minimal number of nodes in a dag resolution refutation of F.
For $k \in \mathbb{N}_0$:

$$\mathcal{UC}_k := \{ F \in \mathcal{CLS} : \text{hd}(F) \leq k \}$$

$$\mathcal{WC}_k := \{ F \in \mathcal{CLS} : \text{awid}(F) \leq k \}.$$

We have $F \in \mathcal{UC}_k$ resp. $F \in \mathcal{WC}_k$ iff for all prime implicants C of F there is a tree/dag resolution derivation of C from F such that

from all nodes there exists a path to some leaf of length at most k resp.

after removal of the literals of C from the refutation, for every resolution step at least one of the parent clauses has length at most k.

Hierarchies

Basic relations

\[\mathcal{UC}_0 \subset \mathcal{UC}_1 \subset \mathcal{UC}_2 \subset \ldots \]
\[\mathcal{WC}_0 \subset \mathcal{WC}_1 \subset \mathcal{WC}_2 \subset \ldots \]
\[\mathcal{UC}_0 = \mathcal{WC}_0 \]
\[\mathcal{UC}_1 = \mathcal{WC}_1 \]
\[\mathcal{UC}_k \subset \mathcal{WC}_k \text{ for } k \geq 2 \]
\[\mathcal{UC}_{k+1} \not\subset \mathcal{WC}_k \text{ for } k \geq 0 \]
\[\mathcal{WC}_3 \not\subset \mathcal{UC}_k \text{ for } k \geq 0. \]

Open Problem

For the last relation, can we use \(\mathcal{WC}_2 \)?
Decision complexity

$\mathcal{UC}_0 = \mathcal{WC}_0$ is decidable in polynomial time.

All \mathcal{UC}_k, \mathcal{WC}_k for $k \geq 1$ are coNP-complete.
\(WC_0 = UC_0 \) is the class of clause-sets which contain all their prime implicates.

The class \(UC := UC_1 = WC_1 \) showed up in two different contexts:

1. **UC** was introduced in del Val [5] for the purpose of Knowledge Compilation (KC).

2. In [7] we showed \(UC = SLUR \), for the umbrella class \(SLUR \) for polytime SAT decision as introduced in Schlipf, Annexstein, Franco, and Swaminathan [12].

More generally we have \(UC_k = SLUR_k \) for \(k \geq 0 \).
Strong separation

In Gwynne and Kullmann [6] we show:

Theorem

For all $k \geq 0$ there are (sequences of) short clause-sets in UC_{k+1}, where all (sequences of) equivalent clause-sets in WC_k are of exponential size.

Conjecture

This strong separation holds between classes $\mathcal{C}, \mathcal{D} \in \{UC_p, WC_q\}$ iff it is not trivially false, i.e., iff $\mathcal{C} \not\subseteq \mathcal{D}$.
Allowing auxiliary variables

Consider $F, G \in \mathcal{CLS}$ with $\text{var}(F) \subseteq \text{var}(G)$.

Definition

G represents F if the satisfying assignments of G projected to $\text{var}(F)$ are precisely the satisfying assignments of F.

Conjecture

For all $k \geq 0$ there are (sequences of) short clause-sets in \mathcal{UC}_{k+1}, where all (sequences of) representing clause-sets in \mathcal{WC}_k are of exponential size.

More generally, such a separation holds between classes $\mathcal{C}, \mathcal{D} \in \{\mathcal{UC}_p, \mathcal{WC}_q\}$ iff it is not trivially false.
The “relative condition”

If G represents F, then the **absolute condition** for G is a requirement

- $G \in \mathcal{UC}_k$ or
- $G \in \mathcal{WC}_k$

for some suitable k.

So the requirements on prime implicates also concern prime implicates containing auxiliary variables (i.e., variables in G but not in F).

Now the **relative condition** considers only prime implicates with variables from F.

We then speak of **relative hardness**.

This is, when using auxiliary variables, a weaker requirement.
Collapse under the relative condition

In [10] we show:

Theorem

Allowing representations with auxiliary variables, under the relative condition all classes \mathcal{UC}_k, \mathcal{WC}_k collapse in polynomial time to \mathcal{UC}_0 or \mathcal{UC}_1.

Conjecture

There are (sequences of) clause-sets which have short representations of relative hardness 1, but for each k have only (sequences of) superpolynomial / exponential size representations in \mathcal{WC}_k.
Monotone circuits

Monotonisation of boolean functions

Consider a boolean function f.

We want partial assignments to f, handled by a boolean function \hat{f}.

- Every variable is doubled.
- So we can encode “not assigned”.

Now

$$\hat{f} = 0 \text{ iff the corresponding partial assignment makes } f \text{ unsatisfiable.}$$

Example: the monotonisation of the bijective PHP$_m^m$ function is the matching function (essentially).
Theorem

Consider a boolean function f and a representation F with relative hardness 1. From F we can compute in time $O(\ell(F) \cdot n(F)^2)$ a monotone circuit computing \hat{f}.

Corollary

Boolean functions f_n have a CNF-representation F_n with relative hardness 1 and $\ell(F_n) = n^{O(1)}$ if and only if \hat{f}_n can be computed by monotone circuits of size polynomial in n.

(The predecessor of these results is Bessiere, Katsirelos, Narodytska, and Walsh [3] (with \hat{f} “hidden”, and a more complicated proof).)
No polysize good representations for XOR’s

Exploiting Babai, Gál, and Wigderson [2] (monotone span programs):

Theorem

The size of representations of systems of XOR-constraints with bounded relative asymmetric width is super-polynomial in the number of constraints.
Theorem

From a clause-set F and $V \subseteq \text{var}(F)$, such that the relative asymmetric width of F w.r.t. V is a constant k, we can compute in polynomial time a $G \in \mathcal{CLS}$ with $V \subseteq \text{var}(G)$ such that

- G represents the same boolean function w.r.t. V as F.
- G has relative hardness 1.
- More strongly, for every partial assignment φ with $\text{var}(\varphi) \subseteq V$, running unit-clause propagation on $\varphi \ast G$ will find all forced assignments on variables from V.
- Moreover, for every φ with $\text{var}(\varphi) = V$, such that $\varphi \ast G$ is satisfiable, running unit-clause propagation on $\varphi \ast G$ yields \top.

The terminology “strongly forcing” has been developed in collaboration with Donald Knuth (for his forthcoming fascicle on satisfiability).
Summary and outlook

I Hopefully a theory of “good SAT representations” will emerge.

II The translation of XOR-systems is a good first test-case: Despite the bad news “no poly-size good representation”, there seem to be a lot of opportunities for good representations (under various circumstances).

III The conjectures seem to require new techniques; inside monotone circuits there should be corresponding subclasses.
End

(references on the remaining slides).

For my papers see

http://cs.swan.ac.uk/~csoliver/papers.html.
Bibliography I

[1] Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution width. *Journal of Computer and System Sciences*, 74(3):323–334, May 2008. doi:10.1016/j.jcss.2007.06.025.

[2] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone span programs. *Combinatorica*, 19(3):301–319, March 1999. doi:10.1007/s004930050058.

[3] Christian Bessiere, George Katsirelos, Nina Narodytska, and Toby Walsh. Circuit complexity and decompositions of global constraints. In *Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09)*, pages 412–418, 2009.
Bibliography II

[4] Olaf Beyersdorff and Oliver Kullmann. Unified characterisations of resolution hardness measures. In Uwe Egly and Carsten Sinz, editors, Theory and Applications of Satisfiability Testing - SAT 2014, volume 8561 of Lecture Notes in Computer Science, pages 170–187. Springer, 2014. ISBN 978-3-319-09283-6. doi:10.1007/978-3-319-09284-3_13.

[5] Alvaro del Val. Tractable databases: How to make propositional unit resolution complete through compilation. In Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR’94), pages 551–561, 1994.

[6] Matthew Gwynne and Oliver Kullmann. Trading inference effort versus size in CNF knowledge compilation. Technical Report arXiv:1310.5746v2 [cs.CC], arXiv, November 2013. URL http://arxiv.org/abs/1310.5746.
[7] Matthew Gwynne and Oliver Kullmann. Generalising unit-refutation completeness and SLUR via nested input resolution. *Journal of Automated Reasoning*, 52(1):31–65, January 2014. doi:10.1007/s10817-013-9275-8.

[8] Matthew Gwynne and Oliver Kullmann. On SAT representations of XOR constraints. In Adrian-Horia Dediu, Carlos Martín-Vide, José-Luis Sierra, and Bianca Truthe, editors, *LATA 2014: Language and Automata Theory and Applications, 8th International Conference*, volume 8370 of *Lecture Notes in Computer Science (LNCS)*, pages 409–420. Springer, 2014. doi:10.1007/978-3-319-04921-2_33.

[9] Matthew Gwynne and Oliver Kullmann. A framework for good SAT translations, with applications to CNF representations of XOR constraints. Technical Report arXiv:1406.7398v2 [cs.CC], arXiv, August 2014. URL http://arxiv.org/abs/1406.7398.
[10] Oliver Kullmann. Collapse of strong relative representation conditions to generalised arc consistency. In preparation, December 2014.

[11] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-SAT (preliminary version). In SODA, pages 128–136. ACM/SIAM, 2000.

[12] John S. Schlipf, Fred S. Annexstein, John V. Franco, and R.P. Swaminathan. On finding solutions for extended Horn formulas. Information Processing Letters, 54(3):133–137, May 1995. doi:10.1016/0020-0190(95)00019-9.