Overdiagnosis and overtreatment of early detected prostate cancer

C. H. Bangma · S. Roemeling · F. H. Schröder

Abstract Early detection of prostate cancer is associated with the diagnosis of a considerable proportion of cancers that are indolent, and that will hardly ever become symptomatic during lifetime. Such overdiagnosis should be avoided in all forms of screening because of potential adverse psychological and somatic side effects. The main threat of overdiagnosis is overtreatment of indolent disease. Men with prostate cancer that is likely to be indolent may be offered active surveillance. Evaluation of active surveillance studies and validation of new biological parameters for risk assessment are expected.

Keywords Rationale for screening · Overdiagnosis · Overtreatment · Prostate cancer · Active surveillance

Introduction

What is the rationale for screening?

Screening for diseases, especially cancer, has become part of modern medicine. Screening for breast, cervical and colorectal cancer is already normal practice in some countries, and will probably become routine in other countries in the future. Screening for prostate, melanoma and lung cancer are subject to ongoing studies [1–5]. The rationale behind screening is simple: to detect cancers at an early stage, when they are still curable. Screening is currently performed using one of the three methods: mass screening (i.e. large scale screening of an entire population), selective screening (i.e. screening of high-risk populations) or opportunistic screening (e.g. incorporated as part of a medical consultation). Diagnostic testing differs from screening because it attempts to identify the disease in the presence of symptoms, while screening is offered to symptom-free individuals.

In any population screened for cancer, four basic groups of patients exist: those diagnosed with cancer who would not have developed cancer symptoms during their lifetime (overdiagnosis); those diagnosed with cancer at an early stage that might otherwise have led to symptoms and/or the need for more aggressive curative treatment; those diagnosed with cancer at a curable stage with aggressive disease that might otherwise have progressed to metastatic disease at the time of diagnosis; and those whose cancer is diagnosed by screening at the same stage as it would have been diagnosed through clinical routines, and that involves cancers that are too late for curative therapy. Ideally, screening should reduce the number of patients in the fourth group (that cannot be cured), and increase those in the second and third group. The window of opportunity for decreasing cancer-mortality by screening for cancer lies with the second and third group. Randomized clinical trials, considered the gold standard for the evaluation of a screening test, have to show how sizeable the window of opportunity is. The difference between the first group and the second is however not always clear at the time of initial diagnosis. Any screening procedure carries a risk of overdiagnosis and overtreatment, which should be balanced against the benefits for those in...
which the cancers are diagnosed at a curative stage. Whether this balance is justifiable depends on more than mortality differences of randomized study groups only, but also on quality of life issues measured against the cultural background of the population studied.

Incidence

Does screening influence prostate cancer incidence?

Since the potential value of PSA for the early detection of prostate cancer was described in the early 1990s, both prostate cancer incidence and mortality rates have changed profoundly [6]. Between 1989 and 2003, for example, the age-standardized incidence rate of prostate cancer increased by 48.4% in The Netherlands (reaching an incidence of 93.2 cases per 100,000 men). Based on rates from 2001 to 2003, 17.1% of U.S. men born today will be diagnosed with cancer of the prostate at some time during their lifetime [http://www.cancer.gov]. It is now the most frequently diagnosed non-cutaneous cancer, with 225,000 new cases reported each year in Europe alone [7]. This increase of incidence suggests that this is due to the detection of cancers in the first three groups described above. This is supported by the reports on autopsy studies. These autopsy studies have revealed that histologic prostate cancer occurs in an even larger proportion of men compared to the screening incidence: up to 55% of men in their fifties, and 64% of men in their seventies have prostate cancer diagnosed at autopsy, while only 5–10% are detectable in a screening setting during life [8].

A number of influences might have contributed to the increase of cancer diagnosis over the last decades, apart from the structured screening studies that have been initiated at various places. First, the PSA thresholds for biopsy appears to have been reduced gradually in some areas of the world due to the detection of significant cancers in the low PSA range [9]. Most guidelines, however, still mention the traditional cut-off of 4 ng/ml as an indication for biopsy. Secondly, an increase in the number of core samples per biopsy have been advocated, based on the observation that more cancers are diagnosed when more biopsies are taken. Thirdly, awareness of prostate cancer within the general population has increased stimulated by the information obtained predominantly from the urologic profession [10]. If these current trends continue, the number of living men diagnosed with prostate cancer will increase even further [11].

Mortality

What happens to prostate cancer mortality by screening and detecting indolent tumors?

Despite this rising incidence, the age-standardized prostate cancer mortality rate has decreased in many countries around the world with or without early detection programs. In The Netherlands, for example, rates fell by 11% between 1989 and 2003, to 28.4 deaths per 100,000 men or 2,349 in total [http://www.cancer.gov]. It is however unclear whether the stage and grade migration observed in screening studies results in a reduction in the mortality, although case-control studies with conflicting results are available [12–14]. A decrease of mortality shown in randomized studies would form a strong argument in favor of population screening.

Screening results in the more frequent detection of small volume, low grade and organ confined prostate cancers, which are diagnosed earlier in their course [6, 15]. Many of these tumors have the histological characteristic of autopsy tumors, that is, tumors that have not become symptomatic during life [16]. They have been called indolent or clinically insignificant cancers. Various definitions of clinically insignificant tumors have been designed based on the characteristics of the autopsy studies, of which the Epstein definition is widely known [17]. Detecting such tumors will increase the detection frequency of cancer, but it is unlikely that they will influence the prostate cancer specific mortality, as they do not alter the course of life.

Early diagnosis

Screen detected tumors are diagnosed more early

Screen detected tumors are not only diagnosed more often, but can be expected more early during their natural course. Lead-time is defined as the time period from detection by a screening procedure to the time of diagnosis in absence of screening due to symptoms. If the patient dies during the lead-time period of the tumor, the lead-time is indefinite and therefore equal to overdiagnosis.

Early detection by PSA advances prostate cancer diagnosis in time (i.e. lead time) [18]. For men aged 55–75 years lead time amounts to 12.3 years in a screening setting [19]. The lead-time is likely to be shorter for aggressive cancers and longer for indolent ones. Early detection also causes a significant stage shift towards more locally confined and less aggressive cancers [20].
Overdiagnosis

Overdiagnosis and overtreatment, what does it mean?

During recent years, increased interest has risen to the possibility that increased detection of prostate cancer may lead to the diagnosis of cancers that rather should not have been diagnosed, and certainly should not have been treated, as their detection and subsequent treatment is unlikely to benefit patients, or even might harm them. Related to this, the terms ‘overdiagnosis’ and ‘overtreatment’ are being used. So, when is prostate cancer overdiagnosed?

By using the clinical definition of overdiagnosis, that is diagnosing tumors that would otherwise remain clinically unrecognized until the individual died from other causes, it is clear that this definition can only be applied in retrospect in the evaluation of studies. There are currently no clinical or biological parameters that can identify such tumors 100% adequately at the time of diagnosis. By studying the natural course of prostate cancer, and comparing autopsy results with findings from screened populations, clinical and histological parameters can be identified that predict indolent tumors best. Those indolent tumors are likely to be also a subset of the tumors that are overdiagnosed in retrospect.

Overdiagnosis is predominantly being associated with early detection or screening programs. Overdiagnosis appears to be especially harmful when it results in invasive treatment of the tumors that would unlikely to be harmful. This is called overtreatment.

Overdiagnosis occurs when screening detects small tumors that would otherwise remain clinically unrecognized until the individual dies from other causes. Such tumors are predominantly found in the low PSA ranges. Unfortunately, an unknown number of biologically more aggressive cancers may hide between the larger number of detectable tumors with favorable stages. Though some of the aggressive tumors can be diagnosed by adverse histological criteria such as high Gleason score in the biopsy, some of these features might be missed due to the heterogeneity of prostate cancers and their representation in the biopsy sampling. This might justify the amount of overtreatment that has been practiced in various areas of the world. Overtreatment is thus defined as unnecessary invasive treatment with respect to the outcome of the natural course of the tumor in combination with its host.

One can wonder what number needed-to-treat to prevent one prostate cancer death we are prepared to accept. Based on the Swedish randomized trial of radical prostatectomy versus watchful waiting, the Connecticut observation series, and the Toronto active surveillance experience, a number needed to treat analysis of the benefit of radical treatment of all newly diagnosed favorable-risk prostate cancer patients, compared with a strategy of active surveillance with selective delayed intervention, has been...
been taken. and histologic markers at the time that biopsies have

screening, every 5 years for baseline PSA less than

the PLCO as well as from the ERSPC [29, 30] showed that

men with a PSA less than 1 ng/ml did not develop inva-

sive cancer over the time period of more than 5 years

of repeated check-ups. In the Rotterdam site of the

ERSPC, 1703 men with an initial PSA of less than 1 ng/

ml men were followed during two consecutive 4 year

screening rounds. Eighty percent of men attended the

second screening round, and 77% the third round. In

total, only 8 cancers were found in 47 prostate biopsies

on the indication of PSA of >3 ng/ml. In the PLCO

screening, every 5 years for baseline PSA less than

1 ng/ml and every 2 years for PSA 1–2 ng/ml could

result in a 50% reduction in PSA tests and in less than

1.5% of men missing earlier positive screens.

In men who were enrolled onto a cardiovascular

study in Sweden, 21,277 men aged <50 years old were

assessed over a period of more than 20 years starting

between 1974 and 1986. Two decades later, 498 (2.3%)

were eventually diagnosed with prostate cancer (out-

side a structured screening procedure). In retrospect,

the level of serum kallikreins (hK2, total PSA, and free

PSA) at baseline and thereafter were strongly associ-

ated with emerging prostate cancer. This supports the

idea of risk stratification for screening on prostate can-

cer in an early age, that is during the fourth decade of

life. Men at low risk may refrain from frequent serum

testing for long periods of time based on their individ-

ual risk assessment that incorporates the information

above.
obtained from currently available and newly validated parameters.

Overtreatment

Side effects of treatment are substantial

Treatment for prostate cancer may involve surgery, external beam radiation therapy, brachytherapy, high intensity focused ultrasound (HIFU), watchful waiting, active surveillance, chemotherapy, cryosurgery, hormonal therapy, or combinations. The most frequently applied treatments for organ confined prostate cancer are radical prostatectomy, external beam radiotherapy and brachytherapy.

Although, severe or life-threatening complications with radical prostatectomy are rare, the adverse effects of greatest concern are damage to the urinary sphincter and erectile nerves (nervi erigenti), resulting in urinary incontinence and impotence, respectively. Complete incontinence is uncommon after radical prostatectomy, although a significant number of men experience some degree of stress-urinary incontinence [31–33]. In the Prostate Cancer Outcomes Study, a population-based study of 1,291 men who underwent radical prostatectomy for localized prostate cancer and were followed for 2 years, 1.6% reported no urinary control at 24 months following surgery (compared with 0.7% at baseline prior to surgery), while 7 and 42% reported frequent and occasional leakage, respectively (compared with 2 and 9% at baseline) [32]. Age had an impact on the degree of incontinence; 14% of men aged between 75 and 79 years experienced the highest level of incontinence compared with 0.7–4% of younger men. In the Prostate Cancer Outcomes Study, 42% of men reported that sexual performance was a moderate to large problem at 24 months (compared with 18% at baseline); 60% were not able to have erections firm enough for sexual intercourse (compared with 16% at baseline) [32]. At 24 months postoperatively, men over the age of 60 were more likely to be impotent than younger men (78–85 vs. 61%, respectively).

Complications after external beam radiotherapy include bladder irritation (urgency, pain, frequency) in up to 5% of men, and impotence in 40–50% [34]. In contrast to surgery, these complications tend to increase over time. The reported incidence of radiation proctitis ranges from 2 to 39%, depending upon the definition used, and the dose field, and technique of radiotherapy. Prostate inflammation and swelling can occur acutely following brachytherapy, suggesting that men with significant urinary symptoms or a large prostate are not good candidates. Urinary retention can be severe enough to require self-catheterization; transurethral resection to improve micturition is contraindicated until a substantial portion of the radioactivity (usually five half-lives) has dissipated because of the risk of incontinence and radiation risks to the surgeon and pathologist. Later complications include irritative voiding symptoms, urinary retention, rectal urgency, bowel frequency, rectal bleeding or ulceration, and proctorectal fistulas [35–37]. The incidence of erectile dysfunction ranges from 14 to 52%, depending on whether it is physician- or patient-reported.

It is obvious that invasive treatment may influence the quality of life of men with prostate cancer and their families substantially. But so does a potential threat of prostate cancer that is not actively treated or not even diagnosed yet. It is unlikely that quality of life studies will be able to indicate the best balance between these points of view for management decisions on an individual patient level.

Active surveillance as alternative to invasive treatment

Because not all cancers diagnosed require treatment, one of the major challenges for the future is to determine which diagnosed cancers should be treated, and which can be managed by active surveillance. Active Surveillance manages selected men with prostate cancer expectantly with curative intent. This means men are carefully selected and subsequently actively observed in order to have the possibility to offer them deferred curative treatment once the tumor seems to progress. Active surveillance should be clearly differentiated from watchful waiting. Watchful waiting entails a strategy for all men who are managed expectantly, whereas active surveillance focuses on men for whom therapy is delayed until the tumor becomes progressive and curative treatment can be offered. This offers an attitude of active control over the cancer diagnosed for patients and their doctors. The stage migration that screening provides has resulted in an over-representation of low-risk cancers. Therefore, studies which validate monitoring algorithms in active surveillance regimens are ongoing [38].

Risk stratification for indolent disease

Over the last decade, a number of nomograms have been composed to predict the presence of an indolent cancer [39, 40]. The identification of indolent cancers was strongly based on histologic information of prostate biopsies, and power of Gleason score as a predictive parameter for aggressiveness of prostate cancer
was unsurpassed. As a single serum parameter at the time of diagnosis, the level of PSA contributed most to prognosis.

These nomograms were based on extensive clinical series. A new nomogram recently appeared based on information obtained from a screening series of the general population [41]. Screening series differ from clinical studies, as the incidence of indolent cancer is almost 50% compared to maximal 20% in multicentred clinical series. With the use of the nomogram, at a 70% probability cut-off, at least 69% of all indolent cancers would be diagnosed as such, and be treated with active surveillance.

Conclusions

It is still too early to say whether population-based prostate cancer screening is a useful tool with regard to cancer mortality. We must wait until the results of ongoing prostate cancer screening trials are available. Until then, opportunistic screening should not be encouraged and those men who do want a PSA test should participate in carefully designed, balanced information program. Even if PSA screening is found to reduce prostate-cancer-specific mortality, levels of overdiagnosis may remain unacceptable for population-based screening.

To reduce overdiagnosis in a screening setting, markers are needed that reduce the risk on a positive prostate biopsy, increasing the specificity of this procedure. Men from the age of forty, as well as their advising doctors, need instruments to reduce their doubts and anxiety of the potential presence of a prostate cancer. This, together with balanced information about the benefits and risks of the individual outcome of screening procedures, might induce a more selective and step-wise screening action. Risk assessment, incorporating the main determinants known for the presence of prostate cancer from the age of 50, such as age, family history, and micturition complaints, should form the base of an individual screening approach. Objective values of serum markers might enhance the accuracy of such of risk predictors.

Various efforts are performed to find new markers in the proteome and genome of blood and urine. Based on large and longitudinal serum collections of men diagnosed with prostate cancer in screening settings, the EC-sponsored P-MARK consortium evaluates candidate markers as prognostic tools [42].

Until alternative screening tools are found, PSA will continue to be used, and overdiagnosis will remain an unavoidable drawback of prostate cancer screening. The current challenge is to ensure that in the still growing numbers of men diagnosed with prostate cancer world-wide, overdiagnosis does not result in overtreatment. To this end, research efforts presently focus on clarifying which cancers can be managed through active surveillance.

Acknowledgment This work has been supported by P-MARK (Sixth EU Framework Programme contract no. LSHC-CT-2004-503011).

References

1. de Koning HJ, Auvinen A, Berenguerr Sanchez A et al (2002) Large-scale randomized prostate cancer screening trials: program performances in the European randomized screening for prostate cancer trial and the prostate, lung, colorectal and ovary cancer trial. Int J Cancer 97(2):237–244
2. Lowe JB, Ball J, Lynch BM et al (2004) Acceptability and feasibility of a community-based screening programme for melanoma in Australia. Health Promot Int 19(4):437–444
3. Van Iersel CA, de Koning HJ, Draisma G et al (2006) Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multiple CT screening trial (NELSON). Int J Cancer (in press)
4. Henschke CI, Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP, Miettinen OS (2006). Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med 355(17):1763–1771
5. O’Brien B, Nichaman L, Browne JE, Levin DL, Prorok PC, Gohagan JK (2000) Prostate, lung, colorectal and ovarian cancer screening trial project team. coordination and management of a large multicenter screening trial: the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Control Clin Trials 21(Suppl 6):310S–328S
6. Catalona WJ, Smith DS, Ratliff TL et al (1991) Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med 324(17):1156–1161
7. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108
8. Sakr WA, Grignon DJ, Crissman JD et al (1994) High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases. In Vivo 8(3):439–443
9. Nadler RB, Loeb S, Roehl KA, Antenor JA, Eggener S, Catalona WJ (2005) Use of 2.6 ng/ml prostate specific antigen prompt for biopsy in men older than 60 years. J Urol 174(6):2154–2157
10. Aus G, Abbou CC, Bolla M et al (2005) EAU guidelines on prostate cancer. Eur Urol 48(4):546–551
11. Welch HG, Schwartz LM, Woloshin S (2005) Prostate-specific antigen levels in the United States: implications of various definitions for abnormal. J Natl Cancer Inst 97(15):1132–1137
12. Kopec JA, Goel V, Bunting PS et al (2005) Screening with prostate specific antigen and metastatic prostate cancer risk: a population based case-control study. J Urol 174(2):495–499; discussion 499
13. Concato J, Wells CK, Horwitz RI et al (2006) The effectiveness of screening for prostate cancer: a nested case-control study. Arch Intern Med 166(1):38–43
14. Weinmann S, Richert-Boe K, Glass AG, Weiss NS (2004) Prostate cancer screening and mortality: a case-control study (United States). Cancer Causes Control 15(2):133–138
15. Postma R, van Leenders AG, Roobol MJ, Schroder FH, van der Kwast TH (2006) Tumor features in the control and screening arm of a randomized trial of prostate cancer. Eur Urol 50(1):70–5 Epub 2005 Dec 19
16. Gosselaar C, Roobol MJ, Schroder FH (2005) Prevalence and characteristics of screen-detected prostate carcinomas at low prostate-specific antigen levels: aggressive or insignificant? BJU Int 95(2):231–7 Review
17. Epstein JI, Walsh PC, Carmichael M, Brendler CB (1994) Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271(5):368–374
18. Auvin A, Maattanen L, Stenman UH et al (2002) Lead-time and over-detection due to prostate-specific antigen screening: estimates from the European randomized study of screening for prostate cancer. J Natl Cancer Inst 95(12):868–878
19. Draisma G, Boer R, Otto SJ et al (2003) Lead times and over-detection due to prostate-specific antigen screening: estimates from the European randomized study of screening for prostate cancer. J Natl Cancer Inst 95(12):868–878
20. Rietbergen JB, Hoedemaeker RF, Kruger AE, Kirkels WJ, Schroder FH (2005) Prevalence and free PSA, a powerful prognostic combination in predicting minimal prostate cancer in screen-detected men within the PSA range 4–10 ng/mL. Eur Urol (submitted)
21. Bill-Axelson A, Holmberg L, Ruutu M et al (2005) Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 352(19):1977–1984
22. Draisma G, Postma R, Schroder FH, van der Kwast TH, de Koning HJ (2006) Gleason score, age and screening: modeling dedifferentiation in prostate cancer. Int J Cancer 119(10):2366–2371
23. Albertsen PC, Hanley JA, Fine J (2005) 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA 293(17):2095–2101
24. Johansson JE, Andreassen O, Andersson SO et al (2004) Natural history of early, localized prostate cancer. JAMA 291(22):2713–2719
25. Klotz L (2006) Active surveillance versus radical treatment for favorable-risk localized prostate cancer. Curr Treat Options Oncol 7(5):355–362
26. Bangma CH, Rietbergen JB, Kranse R, Blijenberg BG, Petterson K, Schroder FH (1997) The free-to-total prostate specific antigen ratio improves the specificity of prostate specific antigen in screening for prostate cancer in the general population. J Urol 157(6):2191–2196
27. Raaijmakers R, de Vries SH, Blijenberg BG, Wildhagen MF, Postma R, Bangma CH, Darte C, Schröder FH (2007) HK2 and free PSA, a powerful prognostic combination in predicting minimal prostate cancer in screen-detected men within the PSA range 4–10 ng/mL. Eur Urol (submitted)
28. Yurdakul G, Bangma CH, Blijenberg BG, van Zelst BD, Wildhagen MF, van der Kwast TH, Schroder FH (2002) Different PSA assays lead to detection of prostate cancers with identical histological features. Eur Urol 42(2):154–158
29. Roobol MJ, Roobol DW, Schroder FH (2005) Is additional testing necessary in men with prostate-specific antigen levels of 1.0 ng/mL or less in a population-based screening setting? (ERSPC, section Rotterdam). Urology 65(2):343–346
30. Crawford ED, Pinsky PF, Chia D, Kramer BS, Fagerstrom RM, Andreiole G, Reding D, Gelmann EP, Levin DL, Gohagan JK (2006) Prostate specific antigen changes as related to the initial prostate specific antigen: data from the prostate, lung, colorectal and ovarian screening trial. J Urol 175(4):1199–2000
31. Sokoloff MH, Brendler CB (2000) Radical retropubic prostatectomy. Principles and Practice of Oncology Updates 14:1
32. Stanford JL, Peng Z, Hamilton AS et al (2000) Urinary and sexual function after radical prostatectomy for clinically localized prostate cancer: the Prostate Cancer Outcomes Study. JAMA 283(3):354–360
33. Benoit RM, Naslund MJ, Cohen JK (2000) Complications after radical retropubic prostatectomy in the medicare population. Urology 56(1):116–120
34. Hamilton AS, Stanford JL, Gilliland FD et al (2001) Health outcomes following external-beam radiation therapy for clinically localized prostate cancer: results from the prostate cancer outcomes study. J Clin Oncol 19(9):2517–2526
35. Gelblum DY, Potters L (2000) Rectal complications associated with transperineal interstitial brachytherapy for prostate cancer. Int J Radiat Oncol Biol Phys 48(1):119–124
36. Kleinberg L, Wallner K, Roy J et al (1994) Treatment-related symptoms during the first year following transperineal 125I prostate implantation. Int J Radiat Oncol Biol Phys 28(4):985–990
37. Theodorescu D, Gillenwater JY, Koutrouvelis PG (2000) Prostateurethral-rectal fistula after prostate brachytherapy. Cancer 89(10):2085–2091
38. Klotz LH (2005) Active surveillance for good risk prostate cancer: rationale, method, and results. Can J Urol 12(Suppl 2):21–24
39. Goto Y, Ohori M, Arakawa A, Kattan MW, Wheeler TM, Scardino PT (1996) Distinguishing clinically important from unimportant prostate cancers before treatment: value of systematic biopsies. J Urol 156(3):1059–1063
40. Kattan MW, Eastham JA, Wheeler TM et al (2003) Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol 170(5):1792–1797
41. Steyerberg EW, Roobol MJ, Kattan MW, van der Kwast TH, de Koning HJ, Schröder FH (2007). Prediction of indolent prostate cancer: validation and updating of a prognostic nomogram. J Urol 177:107–112
42. Van Gils MPMQ, Stenman UH, Schalken JA, Schröder FH, Luider TM, Lilja H, Bjartell A, Hemdy FC, Petterson KSI, Bischoff R, Takalo H, Nilsson O, Mulders PFA, Bangma CH (2005) Innovations in serum and urine markers in prostate cancer. Current European research in the P-Mark project. Eur Urol 48:1031–1041