A quantum sensor for atom-surface interactions below 10 μm

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo and G.M. Tino
Dipartimento di Fisica and LENS-Università di Firenze,
INFN-Sezione di Firenze, CNR,
via Sansone 1, 50019 Sesto Fiorentino, Italy

(Dated: February 11, 2022)

We report about the realization of a quantum device for force sensing at micrometric scale. We trap an ultracold 88Sr atomic cloud with a 1-D optical lattice, then we place the atomic sample close to a test surface using the same optical lattice as an elevator. We demonstrate precise positioning of the sample at the μm scale. By observing the Bloch oscillations of atoms into the 1-D optical standing wave, we are able to measure the total force on the atoms along the lattice axis, with a spatial resolution of few microns. We also demonstrate a technique for transverse displacement of the atoms, allowing to perform measurements near either transparent or reflective test surfaces. In order to reduce the minimum distance from the surface, we compress the longitudinal size of the atomic sample by means of an optical tweezer. Such system is suited for studies of atom-surface interaction at short distance, such as measurement of Casimir force and search for possible non-Newtonian gravity effects.

PACS numbers: PACS: 81.16.Ta, 37.10.Gh, 07.07.Df

I. INTRODUCTION

The use of ultracold atoms for studying forces at small length scales has been recently addressed by several groups, both experimentally [1] [2] and theoretically [3] [4]. Besides the technological implications [5], measuring forces at short distance has become attractive for several research fields in physics, spanning from Casimir force at nanometers [6, 7] to possible violations of Newtonian gravity [6, 7].

Force sensing at sub-millimeter scale has been achieved with several techniques based on the interaction between mesoscopic objects [8] [9] [10] [11] [12] [13] [14]. Ultracold atoms offer additional degrees of freedom, and provide a new class of sensors combining good accuracy with high spatial resolution. For instance, by measuring the radial oscillation frequency of a Bose-Einstein condensate in a magnetic trap it is possible to detect forces as weak as $\sim 10^{-4}$ times the earth gravity, such as the atom-surface interaction (Casimir-Polder) force at distances lower than $\sim 8\mu$m [1] [15]. Higher sensitivity is expected from the use of atom interferometry [3] [16] [17] [18]. A promising technique consists in observing the Bloch oscillations of the atomic momentum in a 1-D optical lattice [19]. The oscillation frequency ν_B is simply related to the force F acting on the atoms along the lattice axis:

$$\nu_B = \frac{F \lambda_L}{2\hbar} \quad (1)$$

where λ_L is the wavelength of the light producing the lattice, and \hbar is Planck’s constant.

Most of the proposed schemes make use of quantum degenerate gases. One major advantage of this approach is the very small momentum spread of atomic samples at ultralow temperatures where quantum degeneracy occurs. On the other hand, the effect of interatomic collisions at high density may be detrimental to precision measurements, causing uncontrollable phase shift or decoherence of the quantum degrees of freedom under analysis. A strong suppression of binary collisions occurs in spin-polarized degenerate Fermi gases [20]; however, in such systems the lowest possible temperature is limited by Fermi pressure. Better performance is expected from the use of Bose-Einstein condensates: similar effect of collision suppression can be obtained in a Bose gas, using Feshbach resonances to tune the interatomic cross-section [21] [22].

We adopted a different approach. In two recent papers we demonstrated that excellent performances can be obtained using a classical ultracold gas, by choosing atoms with suited properties [2] [23]. In this respect, 88Sr represents an ideal candidate for precise quantum sensors, as it combines low sensitivity to magnetic fields with remarkably small atom-atom interactions [23]. Moreover, the absence of orbital, electronic and nuclear angular momentum is of great importance in view of measurements close to solid surfaces, as it makes the atom immune from RF fields [23]. These are a sources of decoherence in most of the other schemes, by inducing spin-flip transitions and subsequent collisional relaxation in spin-polarized fermionic samples, or by interfering with Feshbach resonances in degenerate Bose gases.

In this paper we describe the all-optical implementation of a quantum sensor for accurate force measurements with high spatial resolution, based on a sample of ultracold strontium atoms. By means of laser manipulation techniques, we can place an ultracold 88Sr sample close to a test surface. The coherence of Bloch oscillations is preserved in the vicinity of the surface, and the atom-
Our sensor can be employed to study the Casimir-Polder force at the cross-over to the thermal regime [1,15], and to search possible deviations from Newtonian gravity below 10 μm. To this purpose we employ a suited test surface with transparent as well as with metal coated region. An optical elevator brings the sample close to the transparent part of the surface, and we developed a technique for moving the atomic sample along the surface by several mm; in particular, we can transfer the atoms on the metal coated region of the test surface, where short-distance gravity tests can be performed. Moreover, using an optical tweezer we compress the size of our 88Sr sample to a few microns along the direction orthogonal to the test surface; this allows to approach the range of atom-surface distance below 10 microns.

II. GENERAL SCHEME

In order to perform force measurements at small length scale, three main tasks are to be undertaken; i.e. one needs a proper test surface, then a probe of very small size to be precisely positioned at short distance from it, and a suitable read-out technique to detect the interaction between the probe and the test surface.

In our work the probe is represented by a sample of ultracold strontium atoms trapped in an optical lattice. The basic idea for our small-distance force sensor is to employ an optical elevator (see section III) to place the atomic sample close to the test surface. The atomic wave-function evolution within the periodic potential of the optical lattice provides a technique to read out atom-surface interactions (see section IV).

The optical elevator requires independent control on the optical phase of the two counterpropagating lattice laser beams. Apparently, such a scheme for sample positioning at micrometric distance limits the choice of test surface to transparent materials. However, a precise positioning close to metallic surfaces may be desirable as well. This is the case when studying gravitational interactions at short distance: the unavoidable atom-surface electromagnetic interactions become dominant at distance of a few microns, even with dielectric substrates; the best approach to detect tiny gravitational forces is then to shield electrodynamic effects with a thin metal layer [10].

We developed a more general positioning technique allowing also for measurements close to a metallic surface. Our method benefits from the effect of residual surface reflectivity discussed in section III and is described in fig. 1. The basic idea is to employ a test surface made of a glass plate which is rigidly connected to a test mass of composite structure - i.e. made of alternating regions of two different materials such as Au and Al, having a high density contrast but similar electric and thermal properties, in order to generate a purely gravitational alternating potential. The test mass is coated with a "Casimir shield", i.e. a golden layer with a thickness of ≈ 500 nm, which is larger than the plasma length (130 nm in gold) but smaller than the length scale to explore with the force sensor (1 ÷ 10 μm). The surface of the glass plate close to the test mass has a gradient golden coating whose depth is smoothly rising from zero to the thickness of the Casimir shield. We first place the atoms close to the transparent part of the test surface, using the optical elevator; then we trap the atoms in the shallow standing wave provided by a single reflected laser beam; finally, we translate the atoms across the surface at constant distance from it, by moving the lattice beam transversely.

We start the sensor preparation from a sub-μK atomic sample in a magneto-optical trap (MOT). The process of cooling and trapping strontium atoms below the photon recoil limit has been described in detail elsewhere [26,27,28,29]; it consists in a double-stage magneto-optical trapping scheme: a "blue MOT" operated on the 1S0-1P1 transition at 461 nm, with an atomic temperature of few nK, followed by a "red MOT" operated on the 1S0-3P1 intercombination transition at 689 nm, where the minimum attainable temperature is approximately half the photon recoil limit, i.e. 230 nK. In the final red MOT the shape of the atomic cloud is rather flat, as the atoms sag on the bottom of the ellipsoidal shell where they are in resonance with the Zeeman-shifted laser field in the MOT magnetic quadrupole [27]. The vertical size of the atomic cloud is basically limited by the linewidth of the cooling transition. After trapping into the red...
MOT we transfer the atoms to a vertical 1-D optical lattice. The standing wave is produced with two counter-propagating laser beams. As reported in ref. [2], when directly transferring the atoms from the red MOT to a vertical optical lattice we obtain a disk-shaped sample with a rms vertical halfwidth of $\sim 12\mu m$ and a horizontal radius of $\sim 150\mu m$. Typical atomic population and temperature in the lattice are 10^5 atoms and 400 nK. We observe Bloch oscillations of the vertical atomic momentum by releasing the optical lattice at a variable delay, and by imaging the atomic distribution after a fixed time of free fall. We measure a coherence time for the Bloch oscillation of 12 s, corresponding to ~ 7000 oscillations. These values are among the highest ever observed for Bloch oscillations in atomic systems [21]. Measuring the oscillation frequency we determine the vertical force on the atoms - namely, the earth gravity - with a resolution of 5×10^{-6}. Even better resolution can be attained by means of coherent delocalization of the atomic wave-packet, as reported in [22] where the earth gravity was measured with a precision of 2×10^{-6}.

The optical lattice beams are generated by a single-mode 532 nm Nd:YVO$_4$ laser with an overall output power of 5 W. At the chosen laser wavelength the photon scattering rate causes negligible heating, while the photon recoil is high enough for clearly observing Bloch oscillations [2]. The optical power ratio between the two beams can be tuned by means of a half-wave plate mounted on a motorized rotation stage before a polarizing beam splitter. We have independent AM and FM control on the two beams by means of two acousto-optical modulators (AOMs) used in single-pass geometry. The RF signals driving the two AOMs are synthetized from the same stable 400 MHz oscillator. Each beam is coupled into a single-mode optical fibre after the AOM, to avoid misalignment at the trap position during the AOM frequency tuning. Both beams are weakly focused on the atoms, with a waist of $\sim 200\mu m$.

III. OPTICAL ELEVATOR

The optical lattice has a double use: it provides the periodic potential where Bloch oscillations occur, and at the same time it serves as an elevator for accurately positioning the sample close to a transparent surface. We translate the atomic sample along the lattice axis by giving a relative frequency offset to the laser beams [20, 31]. We typically apply a linear frequency ramp to one AOM for a time τ, up to a frequency difference $\delta \nu$. We then keep the frequency difference constant for a time T, and we finally stop the atoms by bringing the frequency difference back to zero with a linear ramp of duration τ. The overall vertical displacement is then $\Delta z = \frac{1}{2} \lambda \delta \nu (\tau + T)$, where λ is the wavelength of the lattice beams. By varying only the duration T of the uniform motion, we change the vertical displacement without affecting the overall momentum transferred to the atoms by the elevator. The whole sequence is illustrated in fig. 2. We keep the frequency chirp of the lattice beam low enough to avoid additional trap losses in the acceleration phase [32]: typical acceleration is of the order of g.

In this way we can place the atoms close to a transparent test surface. The surface is located ~ 5 cm below the MOT region. We measure the number of atoms and the phase of the Bloch oscillation with absorption imaging after bringing the atoms back to the original position. This is done by applying to the other AOM a frequency shift with the same temporal scheme as described above. In fig. 3 we show the number of atoms recorded after an elevator round-trip, as a function of the distance Δz. A sudden drop, corresponding to the loss of atoms kicking the test surface, is clearly visible. The plot gives a direct measure of the vertical size of the atomic sample. By fitting the curve in the inset with an Erf function we obtain the $1/e^2$ halfwidth δz. The resulting value of $\sim 13 \mu m$ is in agreement with in-situ imaging of the atomic spatial distribution.

When studying atom-surface interactions in presence of strongly distance-dependent effects, as in the case of the Casimir-Polder force, one key point is the precision of sample positioning close to the surface. A possible source of instability in the atom displacement is the elevator itself, so we measured the fluctuations in the vertical position before and after the sample round-trip, through in-situ absorption imaging. The results are shown in fig. 4: The measured $3 \mu m$ statistical uncertainty on the vertical position is mainly due to the width of the atomic distribution and to fluctuations in the red laser frequency or in the MOT magnetic field. Fig. 4 also reports a similar measurement with the use of an optical tweezer to reduce the vertical size of the sample (see below). In such case the statistical uncertainty on the vertical position is $2 \mu m$ either with or without the elevator round trip, and is basically limited by the resolution of our imaging system, showing that the elevator does not introduce additional fluctuations at this level.

In order to optimize the transfer efficiency of atoms...
close to the test surface, we studied the possible mechanisms of atom losses along the operation of the optical elevator. Typical losses, as can be seen from the slow decay in fig. 3 before the sudden drop shown in the inset, cannot be explained in terms of background gas collisions, since the trap lifetime is of the order of a few seconds while the typical duration of the elevator round-trip is a few hundreds of ms. By varying the frequency chirp on the AOMs by one order of magnitude we did not observe significant changes in the transfer efficiency. This rules out the effect of lattice acceleration on the excess losses. Changes in the trap depth due to the divergence of the laser beams is not likely to limit the effective trap lifetime to such extent, as the Rayleigh length is larger than the overall atom displacement. In fact we observed that axially shifting the waist position of both laser beams by several cm does not seriously affect the amount of additional losses. Instead we found that the round-trip transfer efficiency of the elevator strongly depends on the intensity ratio between the lattice laser beams. We ascribe the observed losses to the excitation caused by the reflectivity of the test surface.

For clarity, throughout the text we will refer to the lattice beam propagating in the vacuum cell towards the test surface, which is oriented downwards in fig. 1 as “co-propagating” beam; we refer to the other lattice beam, which is oriented upwards in in fig. 1 as “counter-propagating”. The interference between the co-propagating beam and the reflected beam causes a fast modulation in the shape of the optical potential during the operation of the elevator. Lowering the intensity of the co-propagating beam reduces such effect, but makes the lattice trap shallower. As shown in fig. 5 the fraction of residual atoms is maximum when the beam propagating towards the test surface is less intense than the other one by a factor of ∼ 25. The optimal power ratio obviously depends on the surface reflectivity, which is $R \approx 8\%$ in our case. Such relatively high reflectivity is important for our positioning scheme, as described in section V. However, the effect just described might be non negligible even with an anti-reflection coating on the test surface. In fact, if we indicate by E_{down} the amplitude of the co-propagating wave, by E_{up} the amplitude of the counter-propagating wave, and by $E_{refl} = \sqrt{R}E_{down}$ the amplitude of the reflected wave, the lattice potential depth is $U = cost \times E_{down} \cdot E_{up}$ while the interference between E_{down} and E_{refl} produces a modulation depth $\delta U = 2 \times cost \times E_{down} \cdot E_{refl}$. Thus the ratio of the spurious modulation and the trap depth is

$$\frac{\delta U}{U} = 2\sqrt{R} \frac{E_{down}}{E_{up}}.$$ \hspace{1cm} (2)

For $E_{down} \approx E_{up}$, even with a residual window reflectivity as low as $R \approx 0.1\%$ such ratio would be higher than 6%. In the reference frame of the moving atoms the lattice potential is modulated at a frequency v/λ, where v is the velocity of the elevator. In any case, provided the ratio E_{down}/E_{up} is sufficiently low, the additional losses are not detrimental to the sensor operation. As shown in fig. 5 with the optimal power ratio we limit the losses along the elevator round-trip to about 50%. For lower values of the power ratio the lattice trap becomes too shallow, thus reducing the transfer efficiency.

In principle, the lattice modulation could also affect the momentum distribution along the lattice axis. Anyway, we found that the sample temperature is not seriously perturbed by operating the elevator up to a velocity of 20 m/s. We also checked that in our experimental conditions such effect gives no appreciable decoherence of Bloch oscillations; Instead we found that residual lattice
FIG. 5: Fraction of residual trapped atoms after the optical elevator round-trip vs. co-propagating/counter-propagating beams power ratio. The overall optical power in the lattice beams is kept constant. In this measurement the atoms are brought to a minimum distance of $\sim 100 \mu m$ from the surface, so that losses due to direct atom-surface collision are negligible.

modulation causes a position-dependent phase shift in the Bloch oscillations. However, the position-dependent phase shift is highly reproducible, allowing an unambiguous measurement of the Bloch frequency at any given atom-surface displacement.

IV. BLOCH OSCILLATIONS

To detect the atom-surface interaction we move the sample close to the surface with the sequence described above (constant acceleration for time τ, uniform motion for time T, constant deceleration for time τ), then we keep it still for a variable time T_1, bring it back with an inverted sequence, and keep it still in the starting position for a time T_2 before releasing the trap for absorption imaging (see fig. [2]).

We measure the phase of the Bloch oscillation through the width of the vertical momentum-space distribution [2], by imaging the atoms after a fixed time t_{TOF} of free fall. Increasing t_{TOF} gives improved resolution in the momentum distribution mapping, but it reduces the atomic density and thus the signal-to-noise ratio on the CCD camera for absorption imaging. We compensate for such effect by switching off one single lattice beam in the TOF measurement, thus preventing radial expansion of the atomic cloud. In this way we can set $t_{TOF} = 12$ ms and still be able to detect the Bloch oscillations with as few as 10^5 atoms. To observe the Bloch oscillations we vary the time T_1.

The detected phase ϕ of the Bloch oscillation is proportional to the overall momentum transferred to the atoms in the trapping time $T_{trap} = 4\tau + 2T + T_1 + T_2$:

$$\phi = \int_0^{T_{trap}} (F(z) - ma(t)) \frac{\lambda_L}{2\hbar} dt$$ (3)

where $F(z)$ is the force along the lattice axis and $a(t)$ is the acceleration. We change the atom-surface separation by varying the time T, and we vary the time T_2 correspondingly so to keep the whole duration T_{trap} constant. In this way, in absence of extra lattice modulation due to the residual reflectivity of the upper window, we would expect the phase ϕ to be constant for small and fixed values of T_1. In fact no net extra momentum is transferred through the lattice acceleration, and the impulse of the force gradients is negligible for small T_1.

The Bloch frequency at a given atom-surface displacement is measured by recording a few oscillations at short evolution times ($T_1 \sim 0 \div 10$ ms) and at long evolution times ($T_1 \sim 1$ s in this experiment). We also sample a few oscillation periods at intermediate times to avoid aliasing and to rule out a possible chirp of the Bloch frequency due to spurious effects [1].

Typical recorded data for atom-surface distance of $15 \mu m$ are shown in fig. [6]. Bloch oscillations can be clearly observed in such conditions, even if the tail of the atomic distribution is cut by the test surface.

By changing the atom-surface displacement up to a minimum value of $\sim 15 \mu m$ we do not observe any shift in the frequency of Bloch oscillations with 1 s of measurement time, showing that the position-dependent phase shift does not alter the force measurement with such scheme. This is consistent with the magnitude of the expected atom-surface interactions. The asymptotic behaviour of the Casimir-Polder force in the thermal regime, that is for distances higher than the thermal wavelength $\lambda_T = \frac{\hbar}{2m k_B T}$ is described by [33,34]

$$F_{therm} = \frac{3\alpha_0 k_B T}{4d^4} \frac{e_0 - 1}{e_0 + 1}$$ (4)

where α_0 and e_0 are the DC atomic polarizability and the dielectric constant of the test surface, respectively, while d is the atom-surface distance. The magnitude of such force at $d = 15 \mu m$ can be computed as $0.7 \times 10^{-6} mg$ using $\alpha_0 = 2.77 \times 10^{-23}$ cm3 and $e_0 = 3.4$.

With the available signal to noise ratio we are sensitive to a phase shift of ~ 0.08 rad; such a shift would be caused by a force of $\sim 2 \times 10^{-3} mg$ after 600 oscillations, that is after 1 s.

Observing the frequency of Bloch oscillations is not the only possible read-out technique for atom-surface interactions. As already shown in [20,25], even more sensitive force measurements may be attained by means of coherent delocalization of the atomic wave-packet in the optical lattice.
V. TRANSVERSE TRANSLATION

In order to demonstrate our positioning method illustrated in fig. 1, we put into the MOT vacuum cell a simple test surface made of a SF6 glass plate with an uncoated region besides a region of gold-shaded coating. As a first step we transfer the atomic sample close to the uncoated part of the test surface using our elevator, as described above. Then we trap the atoms in the shallow optical lattice generated by the co-propagating laser field and the reflected field. To this purpose we extinguish the counter-propagating lattice beam adiabatically by rotating the half-wave plate before the polarizing beam-splitter that generates the two lattice beams. In order to maximize the number of trapped atoms at this stage, we keep the intensity of the co-propagating beam low during the elevator, as discussed above, then we increase it to maximize the final trap depth. In such way we can transfer nearly 50% of the atoms into the retroreflected-beam trap.

As a final step, we translate the atoms along the test surface by moving the lattice laser beam transversely. The output coupler of the optical fiber delivering the co-propagating beam as well as the focusing lens are mounted on a motorized translation stage. The translation axis is orthogonal to the beam propagation direction. The transverse acceleration is kept as low as 2 mm/s² to limit loss of atoms because of the soft radial frequency of the optical trap.

Fig. 8 shows the number of residual trapped atoms after the transverse displacement, versus the distance travelled. In 4 s the atoms travel more than 2 mm forth and back along the surface, reaching the gold-shaded coating. A major contribution to the ~ 50% losses in fig. 8 is given by background collisions.

VI. SAMPLE COMPRESSION WITH OPTICAL TWEEZERS

The disk-shaped geometry of our sample is suited for force measurements close to a horizontal surface. However, the minimum attainable atom-surface distance is limited by the vertical size of the atomic distribution. In particular, to measure the force between 5 and 10 µm from the surface we should compress our sample by at least a factor of three in the vertical direction. For this purpose we employ an optical tweezer, made of a far-off resonant optical dipole trap (FORT). This is obtained with a strongly astigmatic laser beam with the vertical focus centered on the atoms. In that position the $1/e^2$
halfwidth of the laser beam is \(\sim 10 \mu m \) in the vertical direction, and can be easily varied between 1 and 3 mm in the horizontal direction by moving a cylindrical lens. Laser power and wavelength are 8 W and 1064 nm respectively.

We transfer the atoms into the FORT by superposing the laser beam to the atoms in the final red MOT stage. We attain a rather high transfer efficiency of \(\sim 50\% \) due to the large spatial overlap between the two traps. The optical trap gives a very weak confinement in the transverse horizontal direction, where the atoms quickly diffuse after the red MOT is switched off. Fig. 9 shows an absorption image taken 10 ms after switching off the red MOT. The vertical size of the atomic sample in the optical tweezer is smaller than the resolution of our imaging system. We deduce the rms vertical halfwidth \(\sigma_z \) by measuring the vertical trap frequency \(\omega_z \) and the vertical atomic temperature \(T_z \), then using

\[
\sigma_z = \sqrt{\frac{k_B T_z}{m \omega_z^2}} \tag{5}
\]

where \(k_B \) is the Boltzmann constant and \(m \) is the atomic mass. The measured vertical temperature slightly decreases in the first 20 ms, as the atoms diffuse horizontally. The value of \(\sigma_z \) ranges between 3 and 4 \(\mu m \), depending on the position of the cylindrical lens and the diffusion time of the atoms in the horizontal direction. Better vertical confinement might be achieved either by tighter focusing of the optical tweezer beam, or through more complex optical configurations such as using Hermite-Gaussian beams [36].

After shrinking the vertical size of the atomic cloud with the optical tweezer, we trap the sample into the optical lattice and we move them close to the surface using the elevator. The transfer efficiency from the optical tweezer to the lattice is mainly limited by the geometrical overlap between the two traps and by the ratio of atomic temperature and lattice trap depth. Typical values are in the range \(\sim 15\% \).

Considering all atom losses along the different steps described, it is possible to bring in the final measurement position \(\sim 0.4\% \) of the atoms initially trapped in the red MOT. Such number can be enhanced, i.e. by improving the vacuum level and increasing the laser power for the optical lattice. Our measurements were made with an initial atom number in red MOT around \(10^6 \); this number can be improved by more than one order of magnitude after careful optimization. Though the transfer efficiency into the optical lattice would be slightly lower at higher atomic density, the number of atoms in the final measurement position can be reasonably made high enough to attain a sensitivity to force measurements similar to what reported in [29], where a resolution of 2 ppm on gravity acceleration was demonstrated with only 2 s of measurement time. Moreover, increasing the measurement time by one order of magnitude seems feasible [35], giving a comparable improvement in the sensitivity.

VII. CONCLUSIONS

In conclusion, we have demonstrated a versatile technique to optically manipulate a sample of ultracold strontium atoms in order to measure atom-surface forces at distances below \(10 \mu m \) with high precision. We have characterized the reproducibility of the atom-surface distance at the level of \(2 \mu m \). Further progress in the displacement resolution may be achieved by better focusing the laser beams for the optical tweezer and by mechanical stabilization of the optical setup. In the force detection all spurious effects due to the atomic motion in the elevator, including the lattice modulation caused by the substrate reflectivity, are rejected by measuring the frequency of Bloch oscillations with atoms at rest at a given distance by the test surface. The projected sensitivity of force measurement can be estimated at the level of \(10^{-6} \div 10^{-7} \) times the earth gravity. This will allow precise measurements of position dependent forces with strong gradients such as Casimir-Polder interaction and to search for hypothetical short-range non-Newtonian gravity.

Acknowledgments

This work was supported by LENS, INFN, EU (under Contract No. RII3-CT-2003 506350 and the FINAQS project), ASI and Ente CRF.
[1] D. M. Harber, J. M. Obrecht, J. M. McGuirk, and E. A. Cornell, Phys. Rev. A 72, 033610 (2005).
[2] G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, Phys. Rev. Lett. 97, 060402 (2006).
[3] S. Dimopoulos and A. A. Geraci, Phys. Rev. D 68, 124021 (2003).
[4] I. Carusotto, L. Pitaevskii, S. Stringari, G. Modugno, and M. Inguscio, Phys. Rev. Lett. 95, 093202 (2005).
[5] H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, Phys. Rev. Lett. 87, 211801 (2001).
[6] L. Randall, Science 296, 5572 (2002).
[7] G. M. Tino, in A Relativistic Spacetime Odyssey - Proceedings of JH Workshop, Firenze, 2001, edited by W. Scientific (2003).
[8] J. C. Long, H. W. Chan, A. B. Churnside, E. A. Gulbis, M. C. M. Varney, and J. C. Price, Nature 421, 922 (2003).
[9] S. J. Smullin, A. A. Geraci, D. M. Weld, J. Chiaverini, S. Holmes, and A. Kapitulnik, Phys. Rev. D 72, 122001 (2005).
[10] J. Chiaverini, S. J. Smullin, A. A. Geraci, D. M. Weld, and A. Kapitulnik, Phys. Rev. Lett. 90, 151101 (2003).
[11] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).
[12] C. D. Hoyle, D. J. Kapner, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, U. Schmidt, and H. E. Swanson, Phys. Rev. D 70, 042004 (2004).
[13] R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, D. López, and V. M. Mostepanenko, Phys. Rev. D 68, 116003 (2003).
[14] D. M. Weld, J. Xia, B. Cabrera, and A. Kapitulnik, Phys. Rev. D 77, 062006 (2008).
[15] J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, Phys. Rev. Lett. 98, 063201 (2007).
[16] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).
[17] A. Peters, K. Y. Chung, and S. Chu, Nature 400, 849 (1999).
[18] G. M. Tino, Nucl. Phys. B 113, 289 (2002).
[19] M. Raizen, C. Salomon, and Q. Niu, Physics Today 50, 30 (1997).
[20] G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, Phys. Rev. Lett. 92, 230402 (2004).
[21] M. Gustavsson, E. Haller, M. J. Mark, J. G. Danzl, G. Rojas-Kopeining, and H.-C. Nägerl, Phys. Rev. Lett. 100, 080404 (2008).
[22] M. Fattori, C. D’Errico, G. Roati, M. Zaccanti, M. Jona-Lasinio, M. Modugno, M. Inguscio, and G. Modugno, Phys. Rev. Lett. 100, 080405 (2008).
[23] V. V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Antoni, M. L. Chiofalo, and G. M. Tino, Phys. Rev. Lett. 100, 043602 (2008).
[24] F. Sorrentino, G. Ferrari, N. Poli, R. E. Drullinger, and G. M. Tino, Mod. Phys. Lett. B 20, 1287 (2006).
[25] P. K. Rekdal, S. Scheel, P. L. Knight, and E. A. Hinds, Phys. Rev. A 70, 013811 (2004).
[26] H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 1116 (1999).
[27] T. H. Loftus, T. Ido, A. D. Ludlow, M. M. Boyd, and J. Ye, Phys. Rev. Lett. 93, 073003 (2004).
[28] N. Poli, R. E. Drullinger, G. Ferrari, J. Léonard, F. Sorrentino, and G. M. Tino, Phys. Rev. A 71, 061403(R) (2005).
[29] G. Ferrari, R. E. Drullinger, N. Poli, F. Sorrentino, and G. M. Tino, Phys. Rev. A 73, 023408 (2006).
[30] D. Schrader, S. Kuhr, W. Alt, M. Müller, V. Gomer, and D. Meschede, Appl. Phys. B 73, 819 (2001).
[31] S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, New J. Phys. 8, 159 (2006).
[32] C. F. Bharucha, K. W. Madison, P. R. Morrow, S. R. Wilkinson, B. Sundaram, and M. G. Raizen, Phys. Rev. A 55, R857 (1997).
[33] M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 95, 113202 (2005).
[34] H. L. Schwartz, T. M. Miller, and B. Bederson, Phys. Rev. A 10, 1924 (1974).
[35] A. Alberti, V. V. Ivanov, G. M. Tino, and G. Ferrari, arXiv:0803.4069 (2008).
[36] T. Meyrath, F. Schreck, J. Hanssen, C.-S. Chuu, and M. Raizen, Opt. Expr. 13, 2843 (2005).