Type M Resistance to Macrolides Is Due to a Two-Gene Efflux Transport System of the ATP-Binding Cassette (ABC) Superfamily

Francesco Iannelli†*, Francesco Santoro†, Maria Santagati‡, Jean-Denis Docquier†, Elisa Lazzeri†, Gabriia Pastore†, Marco Cassone††, Marco R. Oggioni†††, Gian M. Rossolini†††*, Stefania Stefani² and Gianni Pozzi**

1 Department of Medical Biotechnologies, University of Siena, Siena, Italy, 2 Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy

INTRODUCTION

Macrolides are antibiotic compounds composed of 14 (erythromycin and clarithromycin), 15 (azithromycin), or 16 (josamycin, spiramycin, tylosin)-membered lactones to which amino and/or neutral sugars are linked (Roberts et al., 1999; Roberts, 2008). Resistance to macrolides in streptococci is usually associated with two major mechanisms: (i) target site modification, arising...
from the presence of *erm*(B) or *erm*(A) subclass *erm*(TR) belonging to the class of *erm* (erythromycin ribosome methylation) methylase genes (Leclercq and Courvalin, 1991; Seppala et al., 1998) and (ii) drug efflux, associated to the presence of *mef* (A) (macrolide efflux) genes (Clancy et al., 1996; Tait-Kamradt et al., 1997). Methylation of 23S rRNA causes a reduced binding to macrolide, lincosamide, and streptogranin B antibiotics (MLS_B phenotype), whereas active efflux of macrolides confers a low level of resistance to resistance only to 14- and 15-membered macrolides, but not to 16-membered macrolides, lincosamides, and streptogramin B antibiotics (M phenotype; Weisblum, 1995; Roberts et al., 1999).

The macrolide efflux *mef* (A) gene was originally described in *Streptococcus pyogenes* (Clancy et al., 1996) while the allelic variant *mef* (E) was first described in *Streptococcus pneumoniae* (Tait-Kamradt et al., 1997). These variants are highly homologous (about 90% nucleotide identity) and are grouped in the same *mef* (A) class of macrolide resistance genes (Roberts et al., 1999). The *mef* (A) gene was not found only in *S. pyogenes* and *S. pneumoniae*, but also in a wide variety of other streptococcal species such as *Streptococcus agalactiae*, *Streptococcus mitis*, *Streptococcus oralis*, and *Streptococcus salivarius,* in other Gram-positive genera including *Corinebacterium*, *Enterococcus*, *Micrococcus*, and *Staphylococcus*, and in Gram-negative genera such as *Acinetobacter*, *Bacteroides*, and *Neisseria* (Roberts et al., 1999; Klaassen and Mouton, 2005; Santagati et al., 2009). In some countries, the *mef* (A) gene has become more common than *erm*(B) in macrolide-resistant *S. pneumoniae* and *S. pyogenes* (Green et al., 2006; Reinert et al., 2006; Rudolph et al., 2013) and it has been used as a marker for molecular epidemiology studies (Daly et al., 2004; Klaassen and Mouton, 2005; Ametaga and McKenzie, 2006). The *mef* (A) allelic variants are carried by different genetic elements. In *S. pneumoniae*, we described a 7244-bp non-conjugative element named Tn1207.1 carrying *mef* (A), whereas *mef* (E) was found to be carried by the 5532-bp pneumococcal genetic element (mega; Santagati et al., 2000; Gay and Stephens, 2001; Del Grosso et al., 2002). In *S. pyogenes*, *mef* (A) is carried by *φ*1207.3, a 52,491-bp prophage which we found in the erythromycin-resistant clinical strain 2812A, transferable to a variety of streptococcal species and whose left 7244-bp sequence is 100% identical to pneumococcal Tn1207.1 (Santagati et al., 2003; Pozzi et al., 2004; Iannelli et al., 2014a). Other *mef* (A)-carrying prophages in clinical isolates of *S. pyogenes* include *φ*10394.4 (Banks et al., 2003), *φ*m46.1, and its variant VP_00501.1 (Brenchiani et al., 2004, 2010; Vitali et al., 2016).

At first, MeF(A) was defined as a secondary transporter of the major facilitator superfamily (MFS) and considered to be the only gene product responsible for type M macrolide resistance, as shown by cloning and functional characterization in *Escherichia coli* (Clancy et al., 1996). However, in *mef* (A)-carrying genetic elements such as Tn1207.1 and *φ*1207.3, another macrolide resistance gene, *msr*(D), was always found adjacent to *mef* (A), and *msr*(D) was shown to contribute to the macrolide efflux resistance of streptococcal strains carrying the *mef* (A)–*msr*(D) tandem pair (Iannelli et al., 2004; Ambrose et al., 2005; Vitali et al., 2016; Zhang et al., 2016; Tatsuno et al., 2018).

To assess the relative contribution of *mef* (A) and *msr*(D) to macrolide efflux, we generated in-frame isogenic mutants of *S. pneumoniae* and *S. pyogenes* carrying *mef* (A)–*msr*(D) to be used in functional studies. Mutant strains were tested by (i) determining the minimal inhibitory concentration (MIC) of erythromycin and (ii) assaying the actual intracellular accumulation of radiolabeled erythromycin. Results of functional studies were in accordance with bioinformatics analysis predicting that the tandem *mef* (A)–*msr*(D) gene pair encodes an efflux transport system of the ABC-binding cassette (ABC) superfamily.

MATERIALS AND METHODS

Bioinformatic Softwares

Protein sequence analysis was performed with the softwares Phyre2 (Kelley et al., 2015) and TMpred. Conserved aminoacids were identified with the PSI-BLAST multiple sequence alignment. Terminator sequence was predicted with RNAstructure ver. 5.02 (Mathews Lab). Nucleotide sequence analysis was performed using Microbial Nucleotide BLAST with the Megablast algorithm.

Bacterial Strains and Growth Conditions

Streptococcal strains used in this work and their relevant properties are reported in Table 1. Bacteria were routinely grown in Tryptic Soy Broth (TSB) or Tryptic Soy Agar (Difco) supplemented with 3% horse blood at 37°C. When required, 50 μg/ml streptomycin, 10 μg/ml novobiocin, 0.5 μg/ml erythromycin, 100 μg/ml spectinomycin, and 3 μg/ml chloramphenicol were added to both liquid and solid media.

Construction of the Isogenic S. pneumoniae Mutant Strains

To allow construction of mutants deleted for the macrolide resistance genes object of this study, and to facilitate further analysis, it was essential to work in a *S. pneumoniae* strain which is readily transformable and whose genomic sequence is available (Hoskins et al., 2001). For this reason, we transferred *φ*1207.3 to the chromosome of unencapsulated laboratory strains of *S. pneumoniae* which are derived from type 2 strain D39 (Iannelli et al., 1999; Pearce et al., 2002).

Integration of Tn1207.1 or *φ*1207.3 into the chromosome of *S. pneumoniae* occurs within the cds of *celB*, a gene involved in DNA uptake during transformation, and disruption of *celB* leads to impairment of competence for genetic transformation in *S. pneumoniae* strains carrying Tn1207.1 or *φ*1207.3 (Santagati et al., 2000, 2003). For this reason, strain FR125 was constructed in which *celB* was deleted and integration of *φ*1207.3 after mating occurred at a different chromosomal location (Iannelli and Pozzi, unpublished results). Subsequently, strain FR183, a

1[^1]: http://www.tcdb.org/

2[^2]: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=MicrobialGenomes
transformable *S. pneumoniae* DP1004 derivative strain carrying Φ1207.3 integrated elsewhere than *celB*, was obtained by transformation with the chromosomal DNA purified from FR125 (Table 1).

Matings

Mating experiments were performed as already described (Iannelli and Pozzi, 2007). Briefly, cells were grown separately in the presence of appropriate antibiotics until the end of exponential phase (OD₅₉₀nm = 0.8). Cells were mixed at 1:10 ratio (Donor/Recipient), harvested by centrifugation and plated. Following 4-h incubation, cells were harvested by scraping the plates. Selection of recombinants was carried out with a multilayer plating procedure. Transfer frequencies were determined by plating alone each parent strain that was also checked for spontaneous antibiotic resistance acquisition.

Oligonucleotide Primers

Oligonucleotide primers used for mutagenesis, sequencing, and PCR selection of recombinant strains are listed in Supplementary Table S1.

PCR Mutagenesis

Gene splicing by overlap extension (gene SOEing) was used to generate the mutagenic constructs for gene deletions as already described (Pearce et al., 2002; Iannelli and Pozzi, 2004). The deletion of *mef(A)* and *msr(D)* genes was obtained with a mutagenic construct containing the *ami* cassette flanked at the left by a 195-bp DNA fragment corresponding to nucleotides 3112–3307 of Φ1207.3 and at the right by a fragment corresponding to the 532 nucleotides located downstream of the *msr(D)* stop codon. The *ami* chloramphenicol-resistance cassette was obtained with the primer pair IF38/IF39 using the *E. coli* pEVP3 plasmid as template (Claverys et al., 1995). The flanking regions were amplified, respectively, with the primer pairs IF105/F35 and IF183/IF175 from chromosomal DNA of FR183. To minimize possible polar effects, the *mef(A)* coding (cds) was deleted in-frame by allelic replacement with the cds of the cat chloramphenicol-resistance gene. The cat cds was amplified with primer pair IF184/IF39 from a Δcat(pC194)-carrying strain (Iannelli et al., 2014b) and flanked by a 1116-bp DNA region located upstream *mef(A)* start codon and a DNA fragment spanning the 449 nucleotides downstream of the *cat* stop codon, obtained, respectively, with the primer pairs IF176/IF182 and IF185/F20 from FR183 chromosome. A genetic construct containing the *ami*/spc cassette flanked by the 281-bp and 532-bp DNA fragments located respectively upstream and downstream of *msr(D)* cds was produced to inactivate *msr(D)*. The primer couple IF100/IF101 was used to amplify the spectinomycin-resistance cassette from the pR412 plasmid (Martin et al., 2000). This cassette was flanked by the 281-bp and 532-bp DNA fragments located respectively upstream and downstream of *msr(D)* cds was produced to inactivate *msr(D)*. The primer couple IF100/IF101 was used to amplify the spectinomycin-resistance cassette from the pR412 plasmid (Martin et al., 2000). This cassette was flanked by the 281-bp and 532-bp DNA fragments located respectively upstream and downstream of *msr(D)* cds was produced to inactivate *msr(D)*. The primer couple IF100/IF101 was used to amplify the spectinomycin-resistance cassette from the pR412 plasmid (Martin et al., 2000). This cassette was flanked by the 281-bp and 532-bp DNA fragments located respectively upstream and downstream of *msr(D)* cds was produced to inactivate *msr(D)*. The primer couple IF100/IF101 was used to amplify the spectinomycin-resistance cassette from the pR412 plasmid (Martin et al., 2000). This cassette was flanked by the 281-bp and 532-bp DNA fragments located respectively upstream and downstream of *msr(D)* cds was produced to inactivate *msr(D)*. The primer couple IF100/IF101 was used to amplify the spectinomycin-resistance cassette from the pR412 plasmid (Martin et al., 2000). This cassette was flanked by the 281-bp and 532-bp DNA fragments located respectively upstream and downstream of *msr(D)* cds was produced to inactivate *msr(D)*.
Erythromycin Sensitivity Determination

The MIC was assessed by microdilution techniques as suggested by the (Clinical and Laboratory Standards Institute [CLSI], 2017). Briefly, MICs were determined as follows: bacterial cells were grown until exponential growth phase (OD590nm = 0.25) in TSB medium and stored at −70°C in 10% glycerol, then frozen cultures were thawed and diluted at 5 × 10^8 CFU/ml in TSB broth containing serial twofold dilutions of antibiotic, and incubated at 37°C for 18 h. Bacterial growth was determined turbimetrically using the microplate ELISA reader VERSAmax (Molecular Devices). Results are presented as the geometric mean and are derived from at least three experiments.

S. pneumoniae ATCC49619 was used as reference control strain as recommended (Clinical and Laboratory Standards Institute [CLSI], 2017).

Erythromycin Efflux Assay

Frozen starter culture was diluted 100-fold in 100 ml warm TSB medium and grown at 37°C until an optical density at 590 nm = 0.25. Radiolabeled erythromycin [N-methyl-14C] (50 μCi/mmole, purchased from Bio Trend, Germany) was added at a final concentration of 0.2 Ci/mmol, Ci/mmol, purchased from Bio Trend, Germany) was added to a final concentration of 0.2 μCi/ml (Sutcliffe et al., 1996). Erythromycin uptake was assessed by taking 5-ml samples from each culture every 10 min for 40 min after the addition of [14C]erythromycin, filtering samples with prewet GF/C glass microfiber filters (Whatman), and washing the filters twice with 5 ml of a 0.9% NaCl and 1 μg/ml erythromycin solution (Sutcliffe et al., 1996). Filters were dried O.N., dissolved in 10 ml of Insta-Gel Plus liquid (Packard) and the [14C] erythromycin cell-associated was counted with a TRI-CARB 2000 CA Liquid Scintillation Analyzer (Packard).

RESULTS

mef(A) and msr(D) Encode an ABC Transport System

In clinical isolates of macrolide resistant streptococci, the macrolide efflux gene, mef(A), is found in tandem with msr(D), a gene which encodes for an ATP-binding transporter (Santagati et al., 2000, 2003; Gay and Stephens, 2001; Banks et al., 2003; Brenchiani et al., 2004). Bioinformatic analysis of the prototypic tandem mef(A)-msr(D) from Tn1207.1 (Santagati et al., 2000) and their flanking regions revealed that they constitute a two-gene operon which is 3290 bp long, with only one putative promoter sequence −35 TTGCTT, extended −10 TGTGTTAAAAT (nucleotides 2890–2895 and 2908–2918, respectively, Genbank AF227520) located upstream of the mef(A) start codon and a single predicted terminator sequence (nucleotides 6143–6179, Genbank AF227520) located downstream of the msr(D) stop codon. As previously demonstrated (Ambrose et al., 2005; Chancey et al., 2015), RT-qPCR analysis confirmed that mef(A) and msr(D) genes were part of a single transcriptional unit (data not shown). Sequence analysis of the Mef(A) protein with TMpred showed the presence of 12 predicted transmembrane domains, which have the potential to form six transmembrane helices (Figure 1). When the protein sequence of Msr(D) was analyzed by the PSI-BLAST multiple sequence alignment, it was possible to show the presence of two nucleotide binding domains (NBDs) typical of ATP-binding transporters (spanning amino acids 12–154, and 304–463, Genbank AAG12999.1), and a long predicted alpha helical structure (spanning amino acids 181–227) between the two NBDs (Figure 1). Altogether, mef(A) and msr(D) appear to constitute a two-gene efflux transport system of the ABC superfamily, mef(A) encodes the pore (transmembrane channel), and msr(D) the two ATP-binding domains.

mef(A) and msr(D) Are Found in Tandem in Bacterial Genomes

The mef(A) gene sequence (GenBank AF227520) was used as a query to interrogate the database of 20,187 complete Microbial genomes (accessed May 2018). The mef(A) gene was found in 37 genomes, of those: 29 were streptococcal genomes and eight belonged to other genera (namely Turicibacter, Clostridium, Enterococcus, Clostridioides, Gardnerella, and Bacillus). In 33 out of 37 cases, the mef(A) gene was in tandem with msr(D), while in the remaining four cases, msr(D) was substituted by a gene coding for a putative nucleotidyltransferase. No information on macrolide resistance was available for these four genome strains.

Type M Macrolide Resistance Depends on the ATP-Binding Transporter Msr(D)

To define the respective contribution of mef(A) and msr(D) gene products to macrolide efflux resistance, isogenic deletion
mutants were constructed in *S. pneumoniae* for the *mef*(A)–*msr*(D) tandem pair carried by two different genetic elements (Figure 2). Three isogenic deletion mutants were constructed in the Φ1207.3-carrying strain FR183: (i) FP39, Δ*mef*(A)–Δ*msr*(D); (ii) FP40, Δ*mef*(A); and (iii) FP59, Δ*msr*(D). In FP39, a 2748-bp DNA fragment (position 3308–6055, GenBank AY657002) containing *mef*(A) and *msr*(D) was deleted and replaced with the 850-bp ami/cat cassette. In FP40, a 1218-bp DNA fragment (position 3255–4472, GenBank AY657002) containing the *cdd* of *mef*(A) was deleted and replaced in-frame with the 651-bp *cat* gene. In FP59, a 1464-bp DNA fragment (position 4592–6055, GenBank AY657002) containing the *msr*(D) *cdd* was deleted and replaced with the 894-bp ami/spc cassette (Figure 2 and Table 1).

Sensitivity to erythromycin of the *S. pneumoniae* strains carrying *mef*(A)–*msr*(D) and of their isogenic mutants was tested in liquid medium. It was clearly shown that *msr*(D) is required for macrolide resistance (Figure 1 and Table 2). Deletion of *mef*(A) produced only a twofold reduction of the MIC, while deletion of *msr*(D) produced a 64-fold MIC decrease (8 to 0.12 µg/ml), and when both genes were deleted, the MIC decreased 128-folds (Table 2). Identical results were also obtained using the allelic variants of *mef*(A) and *msr*(D) originally found in a macrolide-resistant clinical strain of *S. pneumoniae* formerly described as a “*mef* (E)-positive isolate” (GenBank AF376746) (Del Grosso et al., 2002, 2004). Deletion mutants were constructed and tested for erythromycin resistance. Results on MIC reduction were identical to those obtained using the isogenic mutants.

Table 2: Sensitivity to erythromycin.

Strain	Genotype	MIC of erythromycin (µg/ml)	Phenotype
Streptococcus pneumoniae			
FR183	mef(A), msr(D)	8	Resistant
FP39	Δmef(A), Δmsr(D)	0.06	Sensitive
FP40	Δmef(A), msr(D)	4	Resistant
FP59	mef(A), Δmsr(D)	0.12	Sensitive
DP1004	–	0.03	Sensitive
Streptococcus pyogenes			
FR156	mef(A), msr(D)	8	Resistant
FR155	mef(A), Δmsr(D)	0.12	Sensitive
D471b	–	0.03	Sensitive

a MIC interpretative standard: sensitive ≤ 0.25 µg/ml, intermediate = 0.5 µg/ml, and resistant ≥ 1 µg/ml.

b DP1004 and D471 are parental erythromycin sensitive strains used as controls.

Figure 2 | The *mef*(A)–*msr*(D) operon, carried by Φ1207.3, confers type M resistance to macrolides. Isogenic mutants were produced in a Φ1207.3-carrying *S. pneumoniae* strain. CDSs were deleted by allelic replacement with mutagenic antibiotic resistance cassettes. In order to minimize polar effect, *mef*(A) CDS was in-frame deleted with the chloramphenicol resistance *cat* CDS. The genotype and relative erythromycin resistance phenotype of the pneumococcal isogenic strains are schematized. The genes are reported as arrows while dotted lines indicate gene deletions; the transcriptional promoter (P) and the putative transcriptional terminator (T) of the operon are reported.
to those observed for the \textit{mef}(A)–\textit{msr}(D) alleles described above (data not shown).

Complementation of the \textit{msr}(D) Deletion

To confirm the role of \textit{msr}(D) in determining type M resistance to macrolides, deletion of \textit{msr}(D) was complemented in \textit{S. pneumoniae} FP59 carrying \textit{Φ1207.3/Δmsr}(D). Competent cells of FP59 were transformed with a 2206-bp PCR fragment containing \textit{msr}(D) obtained from wild type \textit{Φ1207.3}, using primer pair IF171/IF175. Transformants were selected by PCR for the presence of the \textit{msr}(D) gene, as previously described (Iannelli and Pozzi, 2004). A total of four transformants were selected out of 186 tested. All four showed acquisition of erythromycin resistance, with an MIC value of 8 µg/ml. A representative transformant was named FP92, checked by DNA sequencing and used as a control in further experiments.

The \textit{msr}(D) Gene in \textit{Streptococcus pyogenes}

The contribution of \textit{msr}(D) to macrolide resistance was also studied in \textit{S. pyogenes}, which is the original host of \textit{Φ1207.3} (Santagati et al., 2003). Two isogenic strains of \textit{S. pyogenes} were constructed: (i) FR156, carrying \textit{Φ1207.3}, and (ii) FR155, carrying \textit{Φ1207.3/Δmsr}(D) (Table 1). \textit{Φ1207.3} transfer from \textit{S. pneumoniae} donors to \textit{S. pyogenes} recipients occurred at frequencies of 10^{-7} recombinants per donor. FR155 lacking \textit{msr}(D) was susceptible to erythromycin (MIC of 0.12 µg/ml), whereas FR156 was resistant, with an MIC of 8 µg/ml (Table 2). These data show that in \textit{S. pyogenes} the presence of the \textit{mef}(A) gene alone determines a fourfold increase of the MIC for erythromycin, while when both \textit{mef}(A) and \textit{msr}(D) are present, the MIC is increased by 256-folds (Table 2).

The \textit{Φ1207.3/Δmsr}(D) \textit{S. pyogenes} FR155 was complemented \textit{in trans} transferring a wild type \textit{Φ1207.3} element from FR122. Recombinants were selected for erythromycin resistance acquisition and in a representative recombinant, FR160, the presence of both the wild type and mutated form of \textit{Φ1207.3} was confirmed by DNA sequencing. FR160 showed an erythromycin MIC value of 8 µg/ml.

Erythromycin Efflux

The function of \textit{mef}(A) and \textit{msr}(D) was studied by testing incorporation of radiolabeled erythromycin in the deletion mutants (Figure 3). Radiolabeled erythromycin was retained/incorporated by strains lacking \textit{msr}(D), while \textit{msr}(D)-carrying strains showed erythromycin efflux. This was observed both in \textit{S. pneumoniae} (Figure 3A) and in \textit{S. pyogenes} (Figure 3B). Accumulation of radiolabeled erythromycin was maximum in the \textit{Δmef}(A)–\textit{Δmsr}(D) \textit{S. pneumoniae} mutant. The deletion of \textit{mef}(A) did not affect erythromycin efflux: \textit{Δmef}(A) mutant showed an erythromycin accumulation comparable to that of the wild type strain, even if the kinetics of accumulation were different (Figure 3A). Both the \textit{S. pneumoniae} and \textit{S. pyogenes}Δ\textit{msr}(D) mutants showed an intracellular accumulation of erythromycin which peaked already 10 min after erythromycin addition (Figures 3A,3B). These results were confirmed in a series of control efflux assays which included (i) testing deletion mutants derived a "\textit{mef}(E) positive strain" carrying \textit{mef}(A)–\textit{msr}(D) allelic variants and (ii) testing complemented strain FP92 (data not shown).
these results suggest that type M resistance to macrolides in streptococci is due to an efflux transport system of the ABC superfamily, in which mef(A) encodes the transmembrane channel, and msr(D) the two ATP-binding domains.

DISCUSSION

In this work, protein sequence analysis showed that Meff(A) contains 12 transmembrane segments and Msr(D) contains two ATP-binding domains (ABC domains). Analysis of bacterial genomes showed that mef(A) and msr(D) are found in tandem in 33 out of 37 cases. We constructed isogenic deletion mutants in *S. pneumoniae* and *S. pyogenes* to define the respective contribution of mef(A) and msr(D) to macrolide resistance. Physiological studies by MIC determinations and efflux assays, carried out in the original streptococcal hosts, showed that msr(D) is essential for erythromycin resistance and drug efflux, whereas mef(A) deletion produces a twofold reduction of MIC and does not affect efflux. Thus, it appears that mef(A) and msr(D) encode an ABC transporter involved in macrolide efflux with Meff(A) as the transmembrane channel, and Msr(D) as the cytoplasmatic ATP-binding protein. ABC transporters are multidomain membrane proteins minimally composed of two transmembrane domains and two ATP-binding domains. Transmembrane domains are responsible for binding and transport, while ATP-binding domains for coupling the energy of ATP hydrolysis to conformational changes in the transmembrane domains. These four domains may belong to a single protein or to different proteins.

In *E. coli*, the majority of transporters are secondary transporters and rely on proton-motive force as a source of energy. Streptococci are fermentative organisms that use ATP as primary source of energy; accordingly, the majority of transporters are ATP-dependent. Because of these metabolic differences, it is likely that Meff(A) works as a major facilitator when expressed in *E. coli* (Clancy et al., 1996), while in the original streptococcal host, Meff(A) is coupled to the cognate ATP-binding protein Msr(D) to function as an efflux system.

In this work, we show that the msr(D) gene (i) is always in tandem with mef(A) (Figure 1), constituting a single transcriptional unit, and (ii) confers type M resistance to macrolides by an ATP-dependent efflux mechanism. The msr(D) gene product, Msr(D), is phylogenetically classified in the ABC-F family of ABC transporters together with other ATP-binding proteins, such as Vga and Lsa, which confer resistance also to other ribosome targeting antibiotics such as lincosamides, streptogramins, pleuromutilins, and ketolides. Proteins in this family share a general architecture with two NBDS and a long, mostly alpha helical, linker sequence connecting them. The spectrum of antibacterial resistances conferred is variable among members of this family, with some proteins giving resistance to multiple classes of antibiotics (Lenart et al., 2015; Sharkey et al., 2016).

Since deletion of mef(A) did not affect erythromycin efflux and produced only a twofold reduction on erythromycin MIC, it is possible that in the absence of Meff(A), Msr(D) uses an alternative transmembrane protein to pump the antibiotic out of the cell. A BlastP search in the genomes of *S. pneumoniae* TIGR4 and *S. pyogenes* M1 revealed that there are, respectively, three and one hypothetical transmembrane proteins homologous to Meff(A). Site-specific mutagenesis of the mef(A) homologous genes will be a first step for the identification of alternative Msr(D) cognate transmembrane domains which could complement the Meff(A) function.

AUTHOR CONTRIBUTIONS

FI and GPo designed the experiments. FI, FS, MS, J-DD, EL, GPa, and MC performed the experimental work. FI, FS, MO, GR, SS, and GPo analyzed and interpreted the data. FI, FS, and GPo wrote the paper.

FUNDING

This study was supported by the European Commission grants ANTIRESDEV HEALTH-F3-2009-241446 and Italian Ministry of University and Research, project PRIN 2012 (2012WJSX8K).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2018.01670/full#supplementary-material

1 http://www.membranetransport.org/transportDB2

REFERENCES

Ambrose, K. D., Nisbet, A. D., and Stephens, D. S. (2005). Macrolide efflux in *Streptococcus pneumoniae* is mediated by a dual efflux pump (mef and msr) and is erythromycin inducible. *Antimicrob. Agents Chemother.* 49, 4203–4209. doi: 10.1128/AAC.49.10.4203-4209.2005

Amezaga, M. R., and McKenzie, H. (2006). Molecular epidemiology of macrolide resistance in beta-haemolytic streptococci of lancefield groups A, B, C and G and evidence for a new mef element in group G streptococci that carries allelic variants of mef and msr(D). *J. Antimicrob. Chemother.* 57, 443–449. doi: 10.1093/jac/dkl490

Banks, D. J., Porcella, S. F., Barbian, K. D., Martin, J. M., and Musser, J. M. (2003). Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phenotypically diverse clones of group A *Streptococcus*. *J. Infect. Dis.* 188, 1898–1908. doi: 10.1086/379897

Brenziani, A., Bacciaglia, A., Vignaroli, C., Pagnaloni, A., Varaldo, P. E., and Giovanetti, E. (2010). Fm46.1, the main *Streptococcus pyogenes* element carrying mef(A) and tet(O) genes. *Antimicrob. Agents Chemother.* 54, 221–229. doi: 10.1128/AAC.00499-09

Brenziani, A., Ojo, K. K., Monachetti, A., Menzo, S., Roberts, M. C., Varaldo, P. E., et al. (2004). Distribution and molecular analysis of mef(A)-containing elements in tetracycline-susceptible and -resistant *Streptococcus pyogenes* clinical isolates with efflux-mediated erythromycin resistance. *J. Antimicrob. Chemother.* 54, 991–998. doi: 10.1093/jac/dkh481

Chasey, S. T., Bai, X., Kumar, N., Drabek, E. F., Daugherty, S. C., Colom, T., et al. (2015). Transcriptional attenuation controls macrolide inducible efflux
and resistance in *Streptococcus pneumoniae* and in other gram-positive bacteria containing mef(mef(mrs(D))) elements. PLoS One 10:e0116254. doi: 10.1371/journal.pone.0116254

Clancy, J., Petitpas, J., Dib-Hajj, F., Yuan, W., Cronan, M., and Kamath, A. V., et al. (1996). Molecular cloning and fuctional analysis of a novel macrolide-resistance determinant, mefA, from *Streptococcus pyogenes*. Mol. Microbiol. 22, 867–879. doi: 10.1111/j.1365-2958.1996.01521.x

Claverys, J. P., Dintilhac, A., Pestova, E. V., Martin, B., and Morrison, D. A. (1995). Construction and evaluation of new drug-resistance cassettes for gene disruption mutagenesis in *Streptococcus pneumoniae*, using an ami test platform. *Gene* 164, 123–128. doi: 10.1016/0378-1119(95)00485-O

Clinical and Laboratory Standards Institute (CLSI) (2017). *Performance Standards for Antimicrobial Susceptibility Testing*, 27th Edn, Wayne, PA: CLSI supplement Clinical and Laboratory Standards Institute.

Daly, M. M., Doktor, S., Flamm, R., and Shortridge, D. (2004). Characterization and prevalence of mefA, mefE, and the associated mrs(D) gene in *Streptococcus pneumoniae* clinical isolates. *J. Clin. Microbiol.* 42, 3570–3574. doi: 10.1128/JCM.42.8.3570-3574.2004

Del Grosso, M., Camilli, R., Iannelli, F., Pozzi, G., and Pantostsi, A. (2006). The mef(E)-carrying genetic element (mega) of *Streptococcus pneumoniae*: insertion sites and association with other genetic elements. *Antimicrob. Agents Chemother.* 50, 3361–3366. doi: 10.1128/AAC.00277-06

Del Grosso, M., Iannelli, F., Messina, C., Santagati, M., Petrosillo, N., and Stefani, S. et al. (2002). Macrolide efflux genes mef(A) and mef(E) are carried by different genetic elements in *Streptococcus pneumoniae*. *J. Clin. Microbiol.* 50, 1230–1240. doi: 10.1128/JCM.40.7.774-780.2002

Del Grosso, M., Scotto d’Abusco, A., Iannelli, F., Pozzi, G., and Pantostsi, A. (2004). Tn2009, a Tn916-like element containing mef in *Streptococcus pneumoniae*. *Antimicrob. Agents Chemother.* 48, 2037–2042. doi: 10.1128/AAC.48.6.2037-2042.2004

Gay, K., and Stephens, D. S. (2001). Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in *Streptococcus pneumoniae*. *J. Infect. Dis.* 184, 56–65. doi: 10.1086/321001

Green, M. D., Beall, B., Marcon, M. J., Allen, C. H., Bradley, J. S., Dashfsky, B., et al. (2006). Multicentre surveillance of the prevalence and molecular epidemiology of macrolide resistance among pharyngeal isolates of group A streptococci in the USA. *J. Antimicrob. Chemother.* 57, 1240–1243. doi: 10.1093/jac/dkl101

Hoskins, J., Alborn, W. E., Arnold, J., Blaszczak, L. C., Burgett, S., Dehoff, B. S., et al. (2001). Genome of the bacterium *Streptococcus pneumoniae* B. *Proc. Natl. Acad. Sci. U. S. A.* 98, 2037–2042. doi: 10.1073/pnas.98.4.2037

Iannelli et al. (2014a). Nucleotide sequence of conjugative prophage Phi1207.3 (formerly phi 1574-6968). *FEMS Microbiol. Lett.* 308, 150–158. doi: 10.1111/j.1571-2968.2010.02002.x

Klaassen, C. H., and Mouton, J. W. (2005). Molecular detection of the macrolide efflux gene: to discriminate or not to discriminate between mef(A) and mef(E). *Antimicrob. Agents Chemother.* 49, 1271–1278. doi: 10.1128/AAC.49.4.1271-1278.2005

Lane, J. A., Ng, W. L., Kazmierczak, K. M., Androzjevska, T. M., Davidson, T. M., Wayne, K. J., et al. (2007). Genome sequence of Avery’s virulent serotype 2 strain D39 of *Streptococcus pneumoniae* and comparison with that of unencapsulated laboratory strain R6. *J. Bacteriol.* 189, 38–51. doi: 10.1128/JB.01148-06

Leclerq, R., and Courvalin, P. (1991). Bacterial resistance to macrolides, lincomycin, and streptogramin antibiotics by target modification. *Antimicrob. Agents Chemother.* 35, 1267–1272. doi: 10.1128/AAC.35.7.1267

Lenart, J., Vimberg, V., Vesela, L., Janata, J., and Balikova Novotna, G. (2015). Detailed mutational analysis of vga(A) interdomain linker: implication for antibiotic resistance specificity and mechanism. *Antimicrob. Agents Chemother.* 59, 1360–1364. doi: 10.1128/AAC.04668-14

Martin, B., Prudhomme, M., Allongo, G., Granadel, C., and Claverys, J. P. (2000). Cross-registration of competence pheromone production and export in the early control of transformation in *Streptococcus pneumoniae*. *Mol. Microbiol.* 38, 867–878. doi: 10.1104/jac.96.2958.2000.02187.x

Pearce, B. J., Iannelli, F., and Pozzi, G. (2002). Construction of new unencapsulated (rough) strains of *Streptococcus pneumoniae*. *Res. Microbiol.* 153, 243–247. doi: 10.1016/S0923-2958(02)03132-8

Pozzi, G., Iannelli, F., Oggiorno, M. R., Santagati, M., and Stefani, S. (2004). Genetic elements carrying macrolide efflux genes in streptococci. *Curr. Drug Targets Infect. Disord.* 4, 203–206. doi: 10.2174/15707392004040601

Reinert, R. R., Ringelstein, A., van der Linden, M., Gil, M. Y., Al-Lahham, A., and Schmitz, F. J. (2006). Molecular epidemiology of macrolide-resistant *Streptococcus pneumoniae* isolates in Europe. *J. Clin. Microbiol.* 43, 1294–1300. doi: 10.1128/JCM.43.3.1294-1300.2005

Roberts, M. C., Sutcliffe, J., Courvalin, P., Jensen, L. B., Roed, J., and Seppala, H. (1999). Nomenclature for macrolide and macrolide -lincomamide-streptogramine B resistance determinants. *Antimicrob. Agents Chemother.* 43, 2823–2830.

Roberts, M. C. (2008). Update on macrolide-lincomamide-streptogramin, ketolide, and oxazolidone resistance genes. *FEBS Lett.* 582, 147–159. doi: 10.1016/j.febslet.2008.01.1145

Rudolph, K., Bucklow, L., Bruce, M., Zulz, T., Reasonover, A., and Harker-Jones, M., et al. (2013). Molecular resistance mechanisms of macrolide-resistant invasive *Streptococcus pneumoniae* isolates from Alaska, 1986 to 2010. *Antimicrob. Agents Chemother.* 57, 5415–5422. doi: 10.1128/AAC.00319-13

Salles, C., Creancier, L., Claverys, J. P., and Mejean, V. (1992). The high level streptomycin resistance gene from *Streptococcus pneumoniae* is a homologue of the ribosomal protein S12 gene from *Escherichia coli*. *Nucleic Acids Res.* 20,1603. doi: 10.1093/nar/20.22.6100

Santagati, M., Iannelli, F., Cassone, C., Campanale, F., Oggiorno, M. R., Stefani, S., et al. (2003). The novel conjugative transposon Tn1207.3 carries the macrolide efflux gene me(A) in *Streptococcus pyogenes*. *Microb. Drug Resist.* 9, 243–247. doi: 10.1016/S1201-0622(02)00284-5

Sharkey, L. K., Edwards, T. A., and O’Neill, A. J. (2016). ABC-F Proteins mediate antibiotic resistance through ribosomal protection. *mBio* 7:e01975. doi: 10.1128/mBio.01975-15
Smith, M. D., and Guild, W. R. (1979). A plasmid in Streptococcus pneumoniae. J. Bacteriol. 137, 735–739.

Sutcliffe, J., Tait-Kamradt, A., and Wondrack, L. (1996). Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob. Agents Chemother. 40, 1817–1824.

Tait-Kamradt, A., Clancy, I., Cronan, M., Dib-Hajj, F., Wondrack, L., Yuan, W., et al. (1997). mefE is necessary for erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 41, 2251–2255.

Tatsuno, I., Isaka, M., Masuno, K., Hata, N., Matsumoto, M., and Hasegawa, T. (2018). Functional predominance of msr(D), which is more effective as mef(A)-associated than mef(E)-associated, over mef(A)/mef(E) in macrolide resistance in Streptococcus pyogenes. Microb. Drug Resist. doi: 10.1089/mdr.2017.0277 [Epub ahead of print].

Vitali, L. A., Di Luca, M. C., Prenna, M., and Petrelli, D. (2016). Correlation between genetic features of the mef(A)-msr(D) locus and erythromycin resistance in Streptococcus pyogenes. Diagn. Microbiol. Infect. Dis. 84, 57–62. doi: 10.1016/j.diagmicrobio.2015.08.007

Weisblum, B. (1995). Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585. doi: 10.1128/AAC.39.3.577

Zhang, Y., Tatsuno, I., Okada, R., Hata, N., Matsumoto, M., Isaka, M., et al. (2016). Predominant role of msr(D) over mef(A) in macrolide resistance in Streptococcus pyogenes. Microbiology 162, 46–52. doi: 10.1099/mic.0.000206

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Iannelli, Santoro, Santagati, Docquier, Lazzeri, Pastore, Cassone, Oggioni, Rossolini, Stefani and Pozzi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.