Impacts of bacteria and corrosion on removal of natural organic matter and disinfection byproducts in different drinking water distribution systems

Haibo Wang a, Ying Zhu a, b, Chun Hu a, b, *

a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
b University of Chinese Academy of Sciences, Beijing, 100049, China

Keywords: Bacteria, Corrosion, Natural organic matter, UV disinfection, Disinfection byproducts, Drinking water distribution systems

ABSTRACT

Impacts of bacteria and corrosion on removal of natural organic matter (NOM) and disinfection byproducts (DBPs) were studied in simulated drinking water distribution systems (DWDSs) using two annular reactors (ARs) with different disinfection. The results verified that the removal of NOM and DBPs was related very well to the corrosion and bacterial regrowth in both ARs. The initial stages (before 50 days) at which the rate of corrosion is higher in both ARs is considered as stage I. At stage I, UV controlled bacterial regrowth and more chlorine reacted with iron to promote corrosion rate, inducing the higher removal of NOM and DBPs in AR treated with UV/Cl2 than that treated with Cl2 alone. At stage II (from 50 days to 250 days), comparing with Cl2 disinfection alone, UV/Cl2 decreased the number of the total bacteria in effluents and the dehalogenation related bacteria in biofilms effectively. Moreover, UV/Cl2 induced the bacterial genus Dechloromonas dominant in the biofilms, resulting in the lower corrosion rate. The lower bacterial regrowth and corrosion rate caused the less removal of NOM and DBPs. These results are very helpful for the control of NOM and DBPs in DWDSs with different disinfection.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Chlorine has been used in the disinfection of drinking water for more than 100 years (Abdullah et al., 2009). However, during chlorine disinfection process, chlorine can react with natural organic matters (NOM) to form disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs) (Lyon et al., 2014).

After disinfection, the remaining bacteria in drinking water may result in biofilms formation on the surface of pipes when the water goes through the drinking water distribution systems (DWDSs) (Usher et al., 2014). Therefore, a constant disinfectant residual concentration is needed to control the bacterial regrowth and biofilms formation in DWDSs (Hwang et al., 2012). Moreover, because the UV/Cl2 disinfection can effectively inactivate the microorganisms and UV can decrease the initial Cl2 concentration which would minimize DBPs formation, UV/Cl2 disinfection is always used in the water disinfection (Shah et al., 2011).

UV irradiation might change NOM structure and split large NOM molecules into organic acids with lower molecular weight (Choi and Choi, 2010). The changes of NOM structure resulting from the UV application might affect subsequent DBPs formation when the sequential Cl2 disinfection was used. Liu et al. (2006, 2012) have found that UV irradiation changed NOM structure and increased chloroform, dichloroacetic acid and trichloroacetic acid formation from subsequent chlorine disinfection. However, Liu et al. (2002) and Dotson et al. (2010) have reported little effect on THMs and HAAs formation when UV was applied at 40–186 mJ/cm2 doses.

Moreover, iron pipes are still being used in DWDSs in many countries now, and the iron pipes are usually subject to corrosion (Sarin et al., 2001; Zarasvand and Rai, 2014). The main iron corrosion products were goethite (α-FeOOH), magnetite (Fe3O4), lepidocrocite (β-FeOOH) and green rust (Chun et al., 2005). Many studies have reported the adsorption of NOM by Fe0 and its corrosion products (Tsang et al., 2009; Rao et al., 2009). Some studies have also demonstrated that a variety of chlorinated and brominated DBPs are susceptible to reduction by many iron oxides such as Fe0/goethite, Fe3O4/magnetite and carbonate green rust (Chun...
et al., 2007; Lee et al., 2008). In addition, many halogenated DBPs can be reduced by zero-valent iron (Fe⁰) (Hozalski et al., 2001; Lee et al., 2007). Moreover, pipe corrosion can also protect microorganisms in biofilms from disinfection, and some bacteria including Afipia and Methyllobacterium in biofilms can reduce some DBPs (Zhang et al., 2009). Therefore, Fe⁰, corrosion products and the biofilms in the cast iron pipes may play great roles on the changes of NOM and DBPs in DWDSs.

Although some studies have evaluated the spatial and temporal variability of DBPs in small and real DWDSs (Shanks et al., 2013; Guilherme and Rodriguez, 2015), there is little known about the reason for removal of NOM and DBPs in DWDSs with different disinfection. Therefore, impacts of bacteria and corrosion on the removal of NOM and DBPs in DWDSs with Cl₂ disinfection alone and UV/Cl₂ disinfection were studied in this paper. The relationship among NOM and DBPs removal, corrosion process and bacterial regrowth in DWDSs was also discussed.

2. Materials and methods

2.1. The simulated drinking water distribution systems

The simulated DWDSs were set up using two annular reactors (ARs) (Model 1320Ji, BioSurface Technologies Co., USA). Twenty cast iron coupons were housed in the rotating inner drum of the AR. The exposed surface area of each cast iron coupon was 17.5 cm², and the main composition of the coupon was Fe (90.48%, wt%). Both ARs were run at a rotational speed of 50 rpm, and the hydraulic retention time for both ARs was 6 h, which was determined by the flow rate of 2.5 mL/min.

Two ARs were run in parallel for 250 days. The water as influents in one AR was treated with chlorine disinfection alone, and the other one was treated with UV/Cl₂ disinfection. The fluence of the UV lamp was determined by ultraviolet irradiation meter (Handy, Beijing, China), and a fluence of 40 mJ/cm² was used in this study. The solution of sodium hypochlorite (NaClO) was used as the chlorine disinfectant. Because free chlorine could react with ammonia nitrogen in the water to form chloramines, total chlorine concentration was measured using HANNA HI93711 spectrophotometer (Italy). In order to control different total chlorine concentration in the effluents of both ARs, different concentration of chlorine disinfectant was prepared and added into the disinfection tank, and then the total chlorine concentration in the influents and effluents of both ARs was measured. Before 50 days, the corrosion in both ARs was very fast because new cast iron coupons were used. This stage was stage I, and the initial total chlorine concentration in the influents of both ARs was about 0.85 mg/L. After 50 days, the relatively stable corrosion scales were formed on the surface of cast iron coupons in both ARs, and ARs were run into stage II. At stage II, the initial total chlorine concentration in the influents of both ARs were different, however, both of the total chlorine concentration in effluents of two ARs was controlled at 0.08 mg/L. This stage continued for 200 days.

2.2. NOM and DBPs analysis

The tested water was collected from a drinking water treatment plant in Beijing city of China. The water was treated by coagulation-settlement, sand filtration, and ozonization-biological activated carbon. The tested water had a pH 7.16–7.77, turbidity 0.08–0.25 NTU, alkalinity 104–150 mg CaCO₃/L, DOC 1.78–2.19 mg/L, Cl⁻ 19.8–32.7 mg/L, NO₂⁻ 6.21–10.4 mg/L and SO₄²⁻ 50.4–103 mg/L. The water was disinfected and pumped into both ARs in laboratory. The effluents of both ARs were taken weekly, and NOM and DBPs were analyzed.

A total organic carbon analyzer (TOC-V CPH, Shimadzu, Japan) was used to detect the dissolved organic carbon (DOC) concentration. High performance size exclusion chromatography (HPSEC) was used to measure the molecular size distribution of NOM. Weight-averaged molecular weight (Mw) was calculated according to the methods of Her et al. (2002). Fourier transform infrared (FTIR) spectroscopy (Thermo Nicolet NEXUS 670) was used to analyze the structure of NOM, and it was set to scan from 4000 to 400 cm⁻¹.

DBPs including THMs and HAAs were detected by a gas chromatograph equipped with an electron capture detector (GC-ECD, 6890N; Agilent). THMs were measured using the following temperature program: hold at 35 °C for 4 min and ramp to 65 °C at 2 °C/min. HAAs were measured using the following temperature program: hold at 35 °C for 4 min, ramp to 260 °C at 10 °C/min and hold for 4 min.

Differences in water quality parameters between the two ARs were analyzed using analysis of variance (ANOVA) with a significance threshold of α = 0.05.

2.3. Corrosion process and corrosion products characterization

The corrosion rate of the cast iron coupons in different ARs was characterized by weight loss method according to our previous works (Wang et al., 2015). The scraped coupons were freeze-dried under vacuum conditions, and weighted to determine the weight loss.

Moreover, the corrosion behavior of the cast iron coupons were undertaken on coupons of the size 1 × 1 cm embedded in a three-electrode electrochemical cell. Working electrode potentials were referred to a saturated calomel electrode (SCE). The Tafel curves were recorded by scanning the potential –1000 mV and 0 mV versus the open circuit potential (OCP) at a sweep rate of 2 mV/s. The Electrochemical Workstation CHI 660 D (CH Instrument, China) was used to analyze the corrosion current densities (icorr).

The X-ray powder diffractometer (XRD, X’Pert PRO MPD; PANalytical, The Netherlands) was used to determine the chemical composition of the corrosion products on the surface of cast iron coupons in different ARs, using Cu Kz radiation (λ = 1.5406 Å) at a scanning range of 2θ = 10–70°.

Moreover, the total iron concentration and turbidity in effluents of both ARs were measured according to standard methods (EPA of China, 2002). The differences of the water quality parameters between the two ARs at different stages were also analyzed using analysis of variance (ANOVA) with a significance threshold of α = 0.05.

2.4. Quantitative real time PCR (qPCR) and 454 pyrosequencing

A FastDNA spin kit for soil (Qbiogene, Solon, OH) was used to extract the DNA of all samples. DNA quantity and quality were determined by a NanoDrop (ND-1000, NanoDrop, USA). The primer pairs 1369F (5’-CCGTTAACTTCTTCYG-3’) and 1492R (5’-ACGGCTACCTTGTTACGACT-3’) with the probe 1389F (5’-CTTGAT- CACACCGGCTC-3’) were used to quantify the 16S rDNA of total bacteria (Suzuki et al., 2000). qPCR of all samples was performed in triplicate with the Applied Biosystems 7300 system, and the annealing temperature was 60 °C. The R² and amplification efficiency values for quantification were 0.982 and 96.5%, respectively.

For 454 pyrosequencing, DNA was amplified by PCR with forward primer 541F (5’-CTTACGGGAGGCAGCAG-3’) and reverse primer 907R (5’-ACGGCTACCTTCACGACT-3’). The PCR products were purified with AxyPrep DNA Gel Extraction Kit (Axygen, USA). Roche massively parallel 454 GS-FLX Titanium sequencer (Roche 454 Life Sciences, Branford, CT, USA) was used for the
pyrosequencing. After sequencing, the sequences were processed according to our previous works (Wang et al., 2014), including PCR chimeras filtering, operational taxonomic unit (OTU) clustering and taxonomic classification.

3. Results and discussion

3.1. Chlorine consumption

Two ARs were used to simulate the DWDSs in this study. One was treated with UV/Cl₂ disinfection, and the other one was treated with chlorine disinfection alone. At stage I (before 50 days), the average total chlorine concentration in the influents of the AR treated with UV/Cl₂ was 0.84 ± 0.04 mg/L, and it was 0.85 ± 0.03 mg/L in the AR treated with Cl₂ alone. There was no significant difference of chlorine concentration in the influents (p = 0.18 > 0.05) between the two ARs by ANOVA analysis. The total chlorine concentration was almost zero in effluents of both ARs. The chlorine was completely consumed in both ARs (Fig. 1a). At stage II (from 50 to 250 days), in order to control the same total chlorine concentration 0.08 mg/L in effluents of both ARs, the average total chlorine concentration in the influents was 1.99 ± 0.12 mg/L for the AR treated with UV/Cl₂, and 2.33 ± 0.16 mg/L for the AR treated with Cl₂ alone. The chlorine consumption in both ARs was 1.91 ± 0.12 mg/L and 2.26 ± 0.13 mg/L, respectively (Fig. 1a), and it was significantly different (p < 0.01) between the two ARs.

At stage I, because of the reaction between chlorine and iron in ARs due to the corrosion, the chlorine was completely consumed. At stage II, the corrosion products were formed and inhibited the corrosion. At this stage, chlorine consumption in ARs may be caused by corrosion, disinfection and the reaction with NOM. Therefore, the lower chlorine consumption suggested the reaction process which was caused by chlorine was slower in AR treated with UV/Cl₂.

3.2. Changes of NOM

3.2.1. DOC concentration

At stage I, DOC concentration in the influents of AR treated with UV/Cl₂ varied from 1.67 mg/L to 2.17 mg/L, and it changed from 1.61 mg/L to 2.20 mg/L in the influents of AR treated with Cl₂ alone. There was no difference between the DOC concentration in two influents (p = 0.44 > 0.05). The DOC removal was 0.12–0.25 mg/L in the AR treated with UV/Cl₂, and it was 0.05–0.12 mg/L in the AR treated with chlorine alone (Fig. 1b). The average concentration of DOC removal was 0.20 ± 0.05 mg/L and 0.08 ± 0.03 mg/L for the both ARs, respectively, and it was significantly different between the two ARs (p < 0.01).

At stage II, there was still no difference between the DOC concentration in two influents (p = 0.82 > 0.05). However, the DOC removal was 0.03–0.24 mg/L in the AR treated with UV/Cl₂, and it was 0.10–0.28 mg/L in the AR treated with chlorine alone (Fig. 1b). The average concentration of DOC removal was 0.13 ± 0.05 mg/L and 0.19 ± 0.05 mg/L for both ARs, respectively, and it was also significantly different (p < 0.01) between the both ARs.

The DOC removal was different in both ARs at the two stages. Comparing with AR treated with Cl₂ alone, UV/Cl₂ disinfection

Fig. 1. The chlorine consumption (a), DOC (b), THMs (c) and HAAs (d) removal in both ARs treated with different disinfection at different days. Error bars represent the standard deviation from the average of three replications.
increased the DOC removal at stage I, but decreased the DOC removal at stage II. DOC removal in DWDSs is mainly caused by reaction with chlorine, the sorption of corrosion products and bacterial regrowth (Codony et al., 2002; Rao et al., 2009; Lyon et al., 2014). At stage I, UV inactivated the bacteria in the influents of AR, therefore, more chlorine could react with iron to accelerate the corrosion, and this may be related with the more DOC removal in AR treated with UV/Cl2. At stage II, the corrosion reached relative stable stage, UV could control the bacterial regrowth in the AR, and the chlorine consumption was also less in AR treated with UV/Cl2. Therefore, DOC removal was lower in the AR treated with UV/Cl2.

3.2.3. FTIR spectra of NOM

At stage I, Mw of NOM in the raw water was 615 Da, and it became 618 Da after UV disinfection (Table 1). Mw of NOM in the influents and effluents of the AR treated with UV/Cl2 was 583 Da and 581 Da, respectively. Mw of NOM in the influents and effluents of the AR treated with Cl2 alone was 574 Da and 572 Da, respectively. At stage II, Mw of NOM in both ARs showed the same changes to those at stage I. This indicated that UV disinfection (40 ml/cm2) had little effect on the Mw of NOM, however, the chlorine could decrease the Mw of NOM in the influents of ARs because of the oxidation of NOM. Moreover, Mw of NOM took little changes when the water went through both ARs. Therefore, the chlorine may have reacted with NOM almost completely and the DBPs may also be mainly formed before the water went into the both ARs.

3.3. Removal of DBPs

3.3.1. Removal of THMs

At stage I, the influents, THM4 concentration varied from 13.6 µg/L to 19.3 µg/L in AR treated with UV/Cl2, and it varied from 13.0 µg/L to 21.8 µg/L in AR treated with Cl2 alone. There was no difference between two ARs (p = 0.87 > 0.05). When the water went through the both ARs respectively, the THM4 removal was 2.26–9.53 µg/L in the AR treated with UV/Cl2, and it was 1.02–7.59 µg/L in the AR treated with Cl2 alone (Fig. 1c). The average THM4 removal was 6.05 ± 1.13 µg/L and 4.30 ± 1.20 µg/L for the both ARs, respectively, indicating that the average THM4 removal in AR treated with UV/Cl2 was more than that in AR treated with Cl2 alone at this stage.

At stage II, THM4 concentration in the influents of both ARs was also the same (p = 0.06 > 0.05). However, the THM4 removal was 5.07–13.1 µg/L in the AR treated with UV/Cl2, and it was 8.12–21.8 µg/L in the AR treated with Cl2 alone (Fig. 1d). The average removal of THM4 was 10.2 ± 0.83 µg/L and 14.9 ± 1.07 µg/L mg/L for the both ARs, respectively. It was significantly different (p = 0.002 < 0.01) between the both ARs. At this stage, the THM4 removal in AR treated with UV/Cl2 was lower than that with Cl2 alone.

3.3.2. Removal of HAAs

At stage I, HAA5 concentration varied from 10.4 µg/L to 17.2 µg/L in the influents of AR treated with UV/Cl2, and it varied from 10.0 µg/L to 16.7 µg/L in the influents of AR treated with Cl2 alone. There was no difference between both ARs (p = 0.44 > 0.05). The HAA5 removal was 3.60–13.3 µg/L in the AR treated with UV/Cl2, and it was 2.80–10.7 µg/L in the AR treated with Cl2 alone (Fig. 1d). The average HAA5 removal was 8.00 ± 1.46 µg/L and 6.25 ± 0.90 µg/L for the both ARs, respectively. The average HAA5 removal in AR treated with UV/Cl2 was more than that in AR with Cl2 alone.

At stage II, HAA5 concentration in the influents of both ARs was also the same (p = 0.32 > 0.05). The HAA5 removal was 5.87–15.0 µg/L in AR treated with UV/Cl2, and it was 9.33–20.1 µg/L in AR treated with Cl2 alone.

Table 1

Samples	raw water	after UV	influent 1*	effluent 1*	influent 2*	effluent 2*
50 days	615	618	583	581	574	572
230 days	572	570	542	534	538	532

* Influenls and effluents of AR treated with UV/Cl2 disinfection.

b Influenls and effluents of AR treated with Cl2 disinfection.
in AR treated with Cl₂ alone (Fig. 1d). The average HAA₅ removal was 9.44 ± 0.91 µg/L and 13.8 ± 0.83 µg/L for the both ARs, respectively. It was significantly different (p = 0.002 < 0.01) in both ARs. At this stage, the HAA₅ removal in the AR treated with UV/Cl₂ was lower than that treated with Cl₂ alone.

The changes of HAAs in both ARs were similar with the changes of THMs. Moreover, the DBPs removal was consistent with the DOC consumption in both ARs at different stages. Therefore, the DBPs removal may be also caused by the corrosion and bacteria in ARs at different stages.

3.4. The corrosion of cast iron coupons in both ARs

In this study, the corrosion rate of the cast iron coupons was measured by average weight loss method. At stage I, the corrosion rate of the cast iron coupons was 0.287 ± 0.015 mm/year in AR treated with UV/Cl₂, and it was 0.195 ± 0.003 mm/year in AR treated with Cl₂ alone (Fig. 3a). However, at stage II, the corrosion rate of cast iron coupons in both ARs was 0.153 ± 0.011 mm/year and 0.168 ± 0.006 mm/year, respectively.

The polarization curves were measured for the corroded coupons in the two ARs. The Tafel analytical data of polarization curves are shown in Fig. 3b. In AR treated with UV/Cl₂, the corrosion current densities, ićorr, of cast iron coupons decreased from 54.9 µA cm⁻² at 50 days to 27.5 µA cm⁻² at 210 days. The results indicated that the corrosion rate of the cast iron coupons decreased after 50 days. However, in AR treated with Cl₂ alone, ićorr increased from 34.2 µA cm⁻² at 50 days to 42.7 µA cm⁻² at 130 days, and then decreased to 28.6 µA cm⁻² at 210 days. This indicated that the corrosion rate of cast iron coupons increased and then decreased in this AR. The lower corrosion current densities in both ARs at stage II indicated the more corrosion products were formed to inhibit the corrosion.

The average turbidity at stage II (0.27 ± 0.06 NTU) was lower than that at stage I (0.59 ± 0.44 NTU) in the effluents of AR treated with UV/Cl₂ (p = 0.002) (Fig. 4a). The average turbidity in the effluents of AR treated with Cl₂ alone also showed the same tendency (Fig. 4a). Moreover, the total iron concentration in effluents of both ARs showed the similar changes with turbidity (Fig. 4b). Li et al. (2014) also indicated that the total iron concentration and turbidity correlated very well in effluents of simulated DWDSs. The results suggested that the more corrosion products and dense corrosion layers were formed at stage II in both ARs to inhibit the corrosion and iron release, which also induced the turbidity lower in the effluents of both ARs at this stage.

Both the corrosion rate characterized by polarization curves and weight loss method indicated that the corrosion rate was higher in AR treated with UV/Cl₂ than that treated with Cl₂ alone at stage I, meanwhile, the DOC and DBPs removal were also higher in the AR treated with UV/Cl₂ (Fig. 5). However, at stage II, the corrosion rate was higher in AR treated with Cl₂ alone, and the DOC and DBPs removal were also higher in this AR (Fig. 5). Therefore, the corrosion rate may play great roles in the removal of DOC and DBPs in the simulated DWDSs. Comparing the two ARs, the higher corrosion...
rate could induce higher removal of DOC and DBPs at different stages. However, although the corrosion rate was lower in both ARs at stage II than that at stage I, more DBPs removal was found in both ARs at stage II than at stage I (Fig. 5). This may be due to the more corrosion products formation in both ARs at stage II. More corrosion products could inhibit corrosion, but induced more DBPs removal by the reduction of DBPs (Chun et al., 2007; Lee et al., 2008).

At stage I, the corrosion because of the reaction between Fe\(^{0}\) and water including chlorine was the main chemical process in ARs. The higher corrosion current densities revealed this chemical process was much faster in AR treated with UV/Cl\(_2\). This induced the formation of more corrosion products, such as green rust, goethite (α-FeOOH), magnetite (Fe\(_3\)O\(_4\)) and calcite (CaCO\(_3\)) (Fig. 6). Many studies have reported the sorption of NOM and reduction of DBPs by Fe\(^{0}\) and its corrosion products (Tsang et al., 2009; Rao et al., 2009; Xiao et al., 2014). Moreover, the DBPs could be reduced by the Fe\(^{0}\) (Hozalski et al., 2001; Lee et al., 2007), and some studies have also indicated that green rust and Fe\(_3\)O\(_4\) could reduce the DBPs (Chun et al., 2007; Lee et al., 2008).

At stage I, the main bacterial genera were Novosphingobium, Pseudorhodoferax, Sediminibacterium and Methyloversatilis in AR treated with Cl\(_2\) alone, and their relative abundance was 16.4%, 15.6%, 13.2% and 10.5%, respectively. At this stage, the main bacterial genus was Norcardioles, and its relative abundance was 9.65% in AR treated with UV/Cl\(_2\). At stage II, the bacterial genera Hydrogenophaga (13.3%), Rhodobacter (9.68%) and Sediminibacterium (7.52%) dominated in the biofilms of AR treated with Cl\(_2\) alone, and Dechloromonas (25.9%) dominated in the biofilms of AR treated with UV/Cl\(_2\). Therefore, UV/Cl\(_2\) disinfection impacted the bacterial community composition in biofilms of DWDSs comparing with Cl\(_2\) disinfection alone. At stage I, total bacterial number in biofilms was less in both ARs because the relative stable corrosion scales was not formed, therefore, the chemical corrosion caused by chlorine was the main corrosion process, and the bacterial role on the corrosion was weak. At stage II, the relative stable corrosion scales was formed. Bacteria in biofilms played great roles in the corrosion process. Hydrogenophaga and Sediminibacterium could promote the corrosion rate by the iron oxidation in the AR treated Cl\(_2\) alone (Wang et al., 2014), but UV/Cl\(_2\) disinfection induced the bacterial genus Dechloromonas dominant in biofilms. Dechloromonas could initiate the microbial redox cycling of iron (Coby et al., 2011), and our previous studies had indicated that microbial redox cycling of iron induced by this bacteria genus in corrosion process could inhibit the corrosion effectively (Wang et al., 2014, 2015). Therefore, UV/Cl\(_2\) disinfection impacted the corrosion process and decreased the corrosion rate by adjusting the bacterial community composition in biofilms at stage II.

Moreover, many studies have indicated that Mycobacterium, Pseudomonas, Xanthobacter, Porphyrobacter, Hyphomicrobium, Methylobacterium and Affix are the dehalogenation related bacteria because these bacteria could reduce the DBPs in some conditions (McDonald et al., 2002; McRae et al., 2004; Sletsas et al., 2009; Zhang et al., 2009; Chiang and Tung, 2012; Jang et al., 2012). The total relative abundance of the dehalogenation related bacteria in biofilms of AR treated with Cl\(_2\) alone increased from 6.34% at stage I to 6.55% at stage II. Moreover, it decreased from 4.48% to 3.24% in AR treated with UV/Cl\(_2\) (Fig. 7c). However, the number of the total bacteria increased 1–2 folds in the biofilms at stage II (Fig. 7a). Therefore, the real number of the dehalogenation related bacteria in biofilms of both ARs increased at stage II, and it was 1-fold higher in AR treated with Cl\(_2\) alone than that treated with UV/Cl\(_2\). Some reports had indicated that DBPs would be

Fig. 5. The relationship among the removal of DOC, THMs, HAAs and corrosion rate in both ARs treated with different disinfection.

Fig. 6. X-ray diffraction (XRD) patterns of corrosion products on cast iron coupons at different stages in the AR treated with UV/Cl\(_2\) and Cl\(_2\) only (GR – green rust, G – goethite, Ca – calcite, M – magnetite).
reduced by the bacteria in biofilms in simulated DWDSs (Baribeau et al., 2005; Jang et al., 2012). Therefore, the dehalogenation related bacteria in biofilms of both ARs may also affect the removal of DBPs.

At stage I, although the bacterial number was lower in AR treated with UV/Cl2, the higher corrosion current density and corrosion rate induced the more removal of DOC and DBPs in this AR by the roles of Fe0 and corrosion products. Therefore, at stage I, the corrosion is the main reason for the removal of DOC and DBPs. At stage II, the corrosion reached a relative stable stage in both ARs and more corrosion products formed on the surface of cast iron coupons. Meanwhile, the number of total bacteria and dehalogenation related bacteria increased in biofilms of both ARs at this stage, resulting in the more removal of DOC and DBPs in both ARs. However, Hydrogenophaga and Sediminibacterium could increase the corrosion rate by the iron oxidation, and Dechloromonas could inhibit corrosion by the microbial redox cycling of iron (Coby et al., 2011; Wang et al., 2014, 2015). Correspondingly, the corrosion current density and corrosion rate were higher in AR treated with Cl2 alone than that treated with UV/Cl2. Under this condition, the number of total bacteria and dehalogenation related bacteria were also higher in AR treated with Cl2 alone. The more total bacteria growth could consume more NOM (Codony et al., 2002), which induced more removal of DOC. The more dehalogenation related bacteria induced the more removal of DBPs by the reduction of DBPs (Baribeau et al., 2005; Jang et al., 2012). Therefore, the removal of DOC and DBPs was mainly caused by the corrosion and the number of bacteria in biofilms at stage II. Moreover, the removal of DOC and DBPs were lower in AR treated with UV/Cl2 than that treated with Cl2 alone at this stage.

4. Conclusions

The results showed that UV dose of 40 mJ/cm2 had little effect on the changes of NOM structure. Chlorine reacted easily with the phenolic OH group and C-H of aromatic ring to form DBPs. The removal of DOC and DBPs was related to the corrosion process and bacterial regrowth in both ARs. At stage I, corrosion was the main reason for the removal of DOC and DBPs. The higher corrosion rate induced the higher removal of DOC and DBPs in AR treated with Cl2 alone. At stage II, the more corrosion products and total bacteria including the dehalogenation related bacteria were formed, therefore, higher removal of DOC and DBPs was found in both ARs at this stage. However, comparing with the AR treated with Cl2 alone, UV/Cl2 disinfection could control the bacterial regrowth in AR, and the number of total bacteria and the dehalogenation related bacteria was less in this AR. Moreover, UV/Cl2 disinfection decreased the corrosion rate by adjusting the bacterial community composition. Therefore, the removal of DOC and DBPs were lower in AR treated with UV/Cl2 than that in AR treated with Cl2 alone. These results are very helpful for the control of NOM and DBPs in DWDSs with different disinfection.

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Nos. 51308529, 51290281).

References

Abdullah, Md.P., Yee, L.F., Ata, S., Abdullah, A., Ishak, B., Abidin, K.N.Z., 2009. The study of interrelationship between raw water quality parameters, chlorine demand and the formation of disinfection by-products. Phys. Chem. Earth 34, 806–811.
Baribeau, H., Krasner, S.W., Chinn, R., Singer, P.C., 2005. Impact of biomass on the stability of HAAs and THMs in a simulated distribution system. J. AWWA 97, 69–81.
Carvalho, S.I.M., Otero, M., Duarte, A.C., Santos, E.B.H., 2008. Spectroscopic changes on fulvic acids from a kraft pulp mill effluent caused by sun irradiation. Chemosphere 73, 1845–1852.
Choi, Y., Choi, Y.J., 2010. The effects of UV disinfection on drinking water quality in distribution systems. Water Res. 44, 115–122.
Chun, C.L., Hozalski, R.M., Arnold, W.A., 2005. Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite. Environ. Sci. Technol. 39, 8525–8532.
Chun, C.L., Hozalski, R.M., Arnold, W.A., 2007. Degradation of disinfection byprod-
ucts by carbonate green rust. Environ. Sci. Technol. 41, 1615–1621.
Chuang, Y.H., Tung, H.H., 2012. Isolation of HAA degrading bacteria from drinking
water using complex media. Sustain. Environ. Res. 22, 287–294.
Coby, A.J., Picardal, F., Shelobolina, E., Xu, H.F., Roden, E.E., 2011. Repeated anaerobic
microbial redox cycling of iron. Appl. Environ. Microbiol. 77, 6036–6042.
Codony, F., Morato, J., Ribas, F., Mas, J., 2002. Effect of chlorine, biodegradable dis-
solved organic carbon and suspended bacteria on biofilm development in
drinking water systems. J. Basic Microbiol. 42, 311–319.
Dotson, A.D., Keen, V.O.S., Metz, D., Linden, K.G., 2010. UV/H2O2 treatment of
drinking water increases post-chlorination DBP formation. Water Res. 44, 3703–3713.
EPA of China, 2002. Analysis Method for Water and Waste Water, fourth ed. Press of
Chinese Environmental Science, Beijing.
Fernandez-Calvino, D., Soler-Rovira, P., Polo, A., Arias-Estévez, M., Plaza, C., 2010.
Influence of humified organic matter on copper behavior in acid polluted soils.
Environ. Pollut. 158, 3634–3641.
Guilherme, S., Rodriguez, M.J., 2015. Short-term spatial and temporal variability of
disinfection by-product occurrence in small drinking water systems. Sci. Total
Environ. 518–519, 280–289.
Her, N., Amy, G., Foss, D., Cho, J.W., 2002. Variations of molecular weight estimation
by HP-size exclusion chromatography with UVA versus online DOC detection.
Environ. Sci. Technol. 36, 3393–3399.
Hozalski, R.M., Zhang, L., Arnold, W.A., 2001. Reduction of haloacetic acids by Fe2+
implications for treatment and fate. Environ. Sci. Technol. 35, 2258–2263.
Hwang, C., Ling, F.Q., Andersen, G.L., LeChevallier, M.W., Liu, W.T., 2012. Microbial
community dynamics of an urban drinking water distribution system subjected
to phases of chloramination and chlorination treatments. Appl. Environ.
Microbiol. 78, 7856–7865.
Jang, H.J., Choi, Y.J., Ro, H.M., Ka, J.O., 2012. Effects of phosphate addition on biofilm
bacterial communities and water quality in annular reactors equipped with
stainless steel and ductile cast iron pipes. J. Microbiol. 50, 17–28.
Kanokkantapong, V., Marhaba, T.F., Panapinyaphol, B., Pavanat, P. 2006. FTR
evaluation of functional groups involved in the formation of haloacetic acids
during the chlorination of raw water. J. Hazard. Mater. 136, 188–196.
Lee, J.Y., Hozalski, R.M., Arnold, W.A., 2007. Effects of dissolved oxygen and iron
aging on the reduction of trichloronitromethane, trichloracetonitrile, and tri-
chloropropanone. Chemosphere 66, 2127–2135.
Lee, J.Y., Pearson, C.R., Hozalski, R.M., Arnold, W.A., 2008. Degradation of tri-
chloronitromethane by iron water main corrosion products. Water Res. 42, 2040–2050.
Li, X.X., Wang, H.B., Zhang, Y., Hu, C., Yang, M., 2014. Characterization of the bac-
terial communities and iron corrosion scales in drinking groundwater dis-
tribution systems with chlorine/chloramines. Int. Biodeterior. Biodegr. 87, 66
Li, W., Andrews, S.A., Bolton, J.R., Linden, K.G., Sharpless, C.M., Stefan, M., 2002.
Comparison of disinfection byproduct (DBP) formation from different UV
technologies at bench scale. Water Sci. Technol. 2, 515–521.
Li, W., Cheung, L.M., Yang, X., Shang, C., 2006. THM, HAA and CNI formation from
UV irradiation and chlor(am)ination of selected organic gases. Water Res. 40, 2033–2041.
Li, W., Zhang, Z.L., Yang, X., Xu, Y.Y., Liang, YM., 2012. Effects of UV irradiation and
UV/chlorine co-exposure on natural organic matter in water. Sci. Total Environ.
414, 576–584.
Lyons, B.A., Cory, R.M., Weinberg, H.S., 2014. Changes in dissolved organic matter
fluorescence and disinfection byproduct formation from UV and subsequent
chlorination/chloramination. J. Hazard. Mater 284, 411–419.
McDonald, I.R., Warner, K.L., McAnulla, C., Woodall, C.A., Oremland, R.S.,
Murrell, J.C., 2002. A review of bacterial methyl halide degradation: biochem-
istry, genetics and molecular ecology. Environ. Microbiol. 4, 193–203.
McRae, B.M., LaPara, T.M., Hozalski, R.M., 2004. Biodegradation of haloacetic acids
by bacterial enrichment cultures. Chemosphere 55, 915–925.
Perez-Sanz, A., Lucena, J.J., Graham, M.C., 2006. Characterization of Fe–humic
complexes in an Fe-enriched biocidt bop-byproduct of water treatment. Chemo-
sphere 65, 2045–2053.
Rao, P., Mak, M.S.H., Liu, T.Z., Lai, K.K.C., Lo, I.M.C., 2009. Effects of humic acid on
arsenic (V) removal by zero-valent iron from groundwater with special refer-
ences to corrosion products analysis. Chemosphere 75, 156–162.
Samios, S., Lekkas, T., Nikolaou, A., Gollipnapoulos, S., 2007. Structural investigations
of aquatic humic substances from different watersheds. Desalinat 210, 125–137.
Sarin, P., Snoeyink, V.L., Bebee, J., Kriven, W.M., Clement, J.A., 2001. Physicochemical
characteristics of corrosion scales in old iron pipes. Water Res. 35, 2961–2969.
Sfetsos, C.C., Milios, L., Skopelitou, K., Venieraki, A., Todou, R., Flemetakis, E.,
Katinakis, P., Labrou, N.E., 2009. Characterization of L2-dihromionate-degrad-
ing halolalkane dehalogenase from Bradyrhizobium japonicum USDA 110.
Enzyme Microb. Tech. 45, 397–404.
Shah, A.D., Dotson, A.D., Linden, K.G., Mitch, W.A., 2011. Impact of UV disinfection
combined with chlorination/chloramination on the formation of halonitro-
methanes and haloacetonitriles in drinking water. Environ. Sci. Technol. 45,
3657–3664.
Shanks, C.M., Serodes, J.B., Rodriguez, M.J., 2013. Spatio-temporal variability of
non-regulated disinfection by-products within a drinking water distribution
network. Water Res. 47, 3231–3243.
Suzuki, M.T., Taylor, I.T., Delong, E.F., 2000. Quantitative analysis of small-subunit
rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl. En-
viron. Microbiol. 66, 4605–4614.
Tsang, D.C.W., Graham, N.D.J., Lo, I.M.C., 2009. Humic acid aggregation in zero-
valent iron systems and its effects on trichloroethylene removal. Chemo-
sphere 75, 1338–1343.
Usher, K.M., Kaksenon, A.H., Cole, I., Marney, D., 2014. Critical review: microbially
influenced corrosion of buried carbon steel pipes. Int. Biodeterior. Biodegr. 93,
84–106.
Wang, H.B., Hu, C., Zhang, L.L., Li, X.X., Zhang, Y., Yang, M., 2014. Effects of microbial
redox cycling of iron on cast iron pipe corrosion in drinking water distribution
system. Water Res. 65, 362–370.
Wang, H.B., Hu, C., Han, L.C., Yang, M., 2015. Effects of microbial cycling of Fe(II)/
Fe(III) on cast iron corrosion in simulated drinking water distribution systems.
Corros. Sci. 100, 599–606.
Xiao, J.N., Yue, Q.Y., Gao, B.F., Sun, Y.Y., Kong, J.J., Gao, Y. Li, Q., Wang, Y., 2014.
Performance of activated carbon/nanoscale zero-valent iron for removal of
trihalomethanes (THMs) at infinitesimal concentration in drinking water.
Chem. Eng. J. 253, 63–72.
Zhang, P., Lapara, T.M., Goola, E.H., Xie, Y., Parsons, S.A., Hozalski, R.M., 2009.
Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures
from drinking water systems. Environ. Sci. Technol. 43, 3169–3175.
Zaravvand, K.A., Rai, V.R., 2014. Microorganisms: induction and inhibition of
corrosion in metals. Int. Biodeterior. Biodegr. 87, 66–74.