Antidiabetic activity of Solanum torvum fruit extract in streptozotocin-induced diabetic rats

Namani Satyanarayana, Suresh V. Chinni, Ramachawolran Gobinath, Paripelli Sunitha, Akula Uma Sankar and Bala Sundaram Muthuvenkatachalam

Background: Solanum torvum Swartz, a medicinal plant belonging to the family Solanaceae, is an important medicinal plant widely distributed throughout the world and used as medicine to treat diabetes, hypertension, tooth decay, and reproductive problems in traditional systems of medicine around the world including Malaysia. The objective of this study was to investigate hypoglycemic, antilipidemic, and hepatoprotective activities, histopathology of the pancreas, and specific glucose regulating gene expression of the ethanolic extract of S. torvum fruit in streptozotocin-induced diabetic Sprague–Dawley rats.

Materials and methods: Acute toxicity study was done according to OECD-423 guidelines. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in male Sprague–Dawley rats. Experimental diabetic rats were divided into six different groups; normal, diabetic control, and glibenclamide at 6 mg/kg body weight, and the other three groups of animals were treated with oral administration of ethanolic extract of S. torvum fruit at 120, 160, and 200 mg/kg for 28 days. The effect of ethanolic extract of S. torvum fruit on body weight, blood glucose, lipid profile, liver enzymes, histopathology of pancreas, and gene expression of glucose transporter 2 (slc2a2), and phosphoenolpyruvate carboxykinase (PCK1) was determined by RT-PCR.

Results: Acute toxicity studies showed LD50 of ethanolic extract of S. torvum fruit to be at the dose of 1600 mg/kg body weight. Blood glucose, total cholesterol, triglycerides, low-density lipoproteins, very low-density lipoproteins, serum alanine aminotransferase, and aspartate aminotransferase were significantly reduced, whereas high-density
lipoproteins were significantly increased in *S. torvum* fruit (200 mg/kg)-treated rats. Histopathological study of the pancreas showed an increase in number, size, and regeneration of β-cell of islets of Langerhans. Gene expression studies revealed the lower expression of *slc2a2* and *PCK1* in treated animals when compared to diabetic control.

Conclusion: Ethanolic extract of *S. torvum* fruits showed hypoglycemic, hypolipidemic, and hepatoprotective activity in streptozocin-induced diabetic rats. Histopathological studies revealed regeneration of β cells of islets of Langerhans. Gene expression studies indicated lower expression of *slc2a2* and *PCK1* in treated animals when compared to diabetic control, indicating that the treated animals prefer the gluconeogenesis pathway.

KEYWORDS
antidiabetic activity, streptozotocin, lipid profile, hepatoprotective activity, gene expression, *Solanum torvum*

Introduction

Diabetes mellitus is a chronic and non-communicable leading public health problem. Diabetes mellitus is a metabolic disorder of carbohydrate due to insulin deficiency resulting from dysfunction of pancreatic beta cells. Over the past decade, diabetes prevalence has risen faster in low- and middle-income countries compared to high-income countries. One of the risk factors being the overweight with possible complications include heart attack, stroke, kidney failure, leg amputation, vision loss, and nerve damage. In addition, during pregnancy, poorly controlled diabetes increases the risk of fetal death and other complications (1).

Diabetes is a potential public health problem in Malaysia and according to the National Health Survey the Ministry of Health, Malaysia reported that the prevalence of diabetes was 13.80% for men and 14.54% for women. In terms of the main ethnic groups, the most common is in the Indian’s subpopulation (25.10%), followed by the Malays (15.25%), Chinese (12.87%), Bumiputera (8.62%), and others (6.91%) (2). About two to three decades ago, most of the drugs were obtained from natural sources. Herbal plants have been used for the treatment of various disorders with no sound scientific knowledge on its function, phyto-chemistry, and adverse effects (3). Thus, the focus of this study is to establish scientific basis of antidiabetic effect of ethanolic fruit extract of *Solanum torvum* fruit through biochemical, histopathological, and molecular evidence.

Medicinal plants play an important role in both preventive and curative medicinal preparations for human beings. Herbal medicines are the only affordable source of healthcare, especially for the poorest patients (4). Furthermore, herbal medicines are gaining popularity both in developing and developed countries due to their safety, efficacy, quality, very low adverse effects, and easy availability. Some of the currently available drugs such as aspirin, digitalis, quinine (anti-malarial), vincristine, and vinblastine (anti-cancerous) were derived from the plant sources. Plant-derived phytochemicals have beneficial effect against diabetes, microorganism, inflammation, cardiovascular diseases, blood disorders, cerebral disorders, immune system, oxidative stress, reproductive disorder, and cancer chemotherapy (5). According to the World Health Organization (WHO), more than 21,000 plants are used for medicinal purposes in the world (6). Ethnobotanical information reports about 800 plants which possess antidiabetic potential (7).

Despite the introduction of many new antidiabetic drugs from natural and synthetic sources, diabetes and its secondary complications continue to be a major medical problem. Many indigenous medicinal plants have been found to be useful to successfully manage diabetes. One of the great advantages of medicinal plants is that these are readily available and have very low adverse effects (8). Even though plant sources are potential antidiabetic drugs, they have not gained sufficient momentum among the scientific community. In recent times, it is understood that a proper nutritional regulation with appropriate herbs in our diet shall help to reduce the incidence of diabetes (9). *S. torvum* fruit is also infrequently used by a section of a population as a vegetable. From the literature, it is evident that it is used against various diseases because of its rich phytochemical contents. Furthermore, not much study has been directed toward its potential as antidiabetic activity particularly with the *S. torvum* found locally in Malaysia. Therefore, the aim of this study was to find out the scientific basis of the use of *S. torvum* fruits in the management of diabetes used by traditional practitioners using 70% ethanol extracts on streptozotocin-induced diabetic rats.
Collection of plant material

Solanum torvum fruits were collected from the local market, Bedong, Sungai Petani, Kedah, Malaysia. The fruits were authenticated by a plant biologist, AIMST University, Malaysia. The herbarium with voucher specimen (specimen no: 13455) was deposited with the Faculty of Applied Sciences, AIMST University, Malaysia. The fruits were washed with distilled water and dried under shade, powdered finely using heavy duty blender (Waring commercial, USA), and stored at 4°C until further use.

Chemicals and instruments

Streptozotocin (Sigma Chemical Company, St Louis, MO, United States) was used to induce diabetes in rats, and glibenclamide (Hoechst Pharmaceuticals, Mumbai, India) was used as a standard hypoglycemic drug. Diethyl ether was used as anesthetic, and ethanol (BDH Ltd., Mumbai, India) and distilled water were used for extraction of the plant materials. Glucometer, 3,5-dinitrosalicylic acid (DNSA) (Sigma-Aldrich Co., St. Louis, MO, USA), and Accu-Check® Active glucometer test strips (Hoffman-La Roche Ltd., Basel, Switzerland) were used to carry out the experiment. All other used reagents were of analytical grade.

Preparation of plant crude extract

The finely powdered *S. torvum* fruits (100 gm) were mixed with ethanol (500 ml) for the preparation of ethanolic extracts by cold maceration process for a period of 72 h (10). Ethanolic extracts were prepared by maceration process and concentrated using rotary evaporator (Eyela Rotary evaporator N-1000, Japan). Then, the extracts were dried in an oven (Sanyo Microwave Oven Electric Co. Ltd., Taipei, Taiwan) at 40°C. After drying, the amount of dry extract obtained was harvested, and the dried extract was transferred into airtight bottles and stored in a refrigerator at −4°C until used. The weight of the dry extract was expressed as percentage of the total mass of dry plant matter to determine the percentage yield.

Experimental animals

This study was carried on forty healthy adult male Sprague–Dawley (SD) rats, weighing 170–200 gm, which were obtained from Central Animal House, AIMST University, Bedong, Malaysia. The animals were housed in large spacious poly-acrylic cages at an ambient room temperature with 12-h light/12-h dark cycle under standard laboratory and environmental conditions. The animals were free access to water and fed with standard rat feed *ad libitum*. The study was approved by AIMST University Human and Animal Ethics Committee (AUHAEC8/FAS, 2012).

Acute oral toxicity study

The determination of LD50 for the extract was carried out as per the guidelines of OECD-423 (11). In this toxicity study, Sprague–Dawley (SD) male rats were weighed 170–200 gm (n = 3) and selected by random sampling technique. The animals were fasted for 4 h prior to the experiment and maintained under standard conditions of temperature (22 ± 1°C) and humidity (55 ± 3°C). The rats were allowed to free access to water. The *S. torvum* fruit extract was dissolved in distilled water and administered orally by gavage with the initial doses. The general behavior of the experimental rats was observed continuously over a period of 24 h for any signs of toxicity and the latency of death (12).

Induction of diabetes in Sprague–Dawley rats

In this study, 16-week-old normal (fasting blood glucose level of 90–110 mg/dl) rats were used. A single dose of intraperitoneal injection of STZ (55 mg/kg/i.p) (Sigma, St. Louis, MO, USA) dissolved in 0.1M citrate buffer (pH 4.5) was used to induce diabetes in overnight fasted male SD rats weighing 170–200 gm. Rats were allowed to free access to 10% glucose water to prevent hypoglycemia. After 72 h, the rats were checked for the blood glucose level from the tail vein using glucometer (Accu-check, Roche Diagnostic, Indianapolis, IN, United states). Only the rats with fasting blood glucose levels ≥ 250 mg/dl were considered as diabetic-induced rats and included in this study.

Animal experimental design

No mortality was observed at the acute oral dose of 1600 mg/per kg body weight by the oral route. The medial lethal dose following oral administration was 1800 mg/per kg body weight. For the selection of doses, 7.5, 10, and 12.5% of 1600 mg/kg body weight were used as concentration of doses for *S. torvum* (13). Six normal healthy rats were chosen randomly for the control group. Thirty diabetic-induced rats were selected, and six rats were randomly assigned for each group for the study.

Group I: Control rats orally administered with distilled water.
Group II: Streptozotocin-induced diabetic rats administered orally with distilled water.
Group III: Streptozotocin-induced diabetic rats administered orally with Glibenclamide (5 mg/kg) dissolved in distilled water.

Group IV: Streptozotocin-induced diabetic rats administered orally with ethanolic extract of S. torvum fruit (120 mg/kg) dissolved in distilled water.

Group V: Streptozotocin-induced diabetic rats administered orally with ethanolic extract of S. torvum fruit (160 mg/kg) dissolved in distilled water.

Group VI: Streptozotocin-induced diabetic rats administered orally with ethanolic extract of S. torvum fruit (200 mg/kg) dissolved in distilled water.

All the treatments were started on the fourth day after STZ injection and once a day continued for 28 days.

Biochemical analysis

After 28 days of treatment, blood samples were collected from the retro-orbital plexus, and blood glucose levels were estimated using glucometer (Accu-check, Roche Diagnostic, Indianapolis, IN, United States) before sacrificing the rats (14). The remaining blood was centrifuged at 3000 rpm for 5 min. Serum was collected immediately and stored at −70°C until the analysis of biochemical parameters. The serum was used for the estimation of biochemical parameters such as lipid profile (total serum cholesterol, serum triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL)) and liver function tests [serum glutamate oxaloacetate transaminase (ALT) and serum glutamate pyruvate transaminase (AST)]. These biochemical parameters were measured using Reflectron plus (Roche, Germany) (15).

Histopathological study

The animals were sacrificed by anesthetized with diethyl ether and cervical dislocation; after the dissection of pancreas, it was quickly washed in ice-cold isotonic saline and blotted on ash-free filter paper. Then, the organ was processed immediately for the histopathological studies. The tissue processing procedure includes fixation, dehydration, clearing, and embedding of the materials in wax and block making, microtomy, and finally stained by hematoxylin and eosin (H and E) and mounting the sections on a slide (10). All tissue processing were done in Leica TP1020 Semi-enclosed Bench top Automatic Tissue Processor. The tissue-embedded block was used for sectioning using rotary microtome to obtain a tissue section of 5 μ thickness.

Gene expression studies

Reverse transcription-polymerase chain reaction

The effects on the expression level of some genes involved in production, secretion, and regulation of insulin were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). After 6 and 24 h treatment, total RNA from cells was extracted using GENEzol™ reagent as described by the manufacturer (Geneaid, Taipei, Taiwan). Complimentary DNA (cDNA) of the slc2a2, PCK1, and β-actin was synthesized from total RNA using specific reverse primers by reverse transcriptase enzyme (Superscript reverse transcriptase IV, Thermo Fisher Scientific, Xinjiang, China) as shown in Table 1. Complimentary DNA (cDNA) of the control gene was synthesized from HeLa total RNA using specific reverse primers by reverse transcriptase enzyme which was supplied by Thermo Fisher Scientific, Xinjiang, China. RT-PCR was performed using SYBR Premix Ex Taq technology (TaKaRa Bio Inc., Otsu, Shiga, Japan) on the Applied Biosystems StepOne RT-PCR system. PCR products were analyzed using 1.5% agarose gel electrophoresis under UV transilluminator (BioRad, USA).

Results

The yield of crude extract was 0.8% (ethanol extract). The body weight of diabetic control group was significantly reduced as compared to the normal control group. The animals treated with glibenclamide (6 mg/kg) and S. torvum extract for 28 days significantly increased the body weight as compared to the diabetic control group. The body weight of normal control
group was significantly increased on day 14 and 28 compared to day 0, while in the diabetic control group which was significantly decreased on day 14 and 28 compared to day 0. However, the body weight of diabetic rats treated with ethanol extract of *S. torvum* fruit in different doses (120, 160, and 200 mg/kg) was significantly increased (Table 2).

The results indicated that the fasting blood glucose levels during the experimental period (day 0–28) were significantly higher in diabetic control group as compared with the normal control group. Significantly decreased blood glucose levels were observed in glibenclamide group (6 mg/kg) from day 0 to control group. Significantly decreased blood glucose levels during the experimental period (day 0–28) were significantly decreased on day 14 and 28 compared to day 0. However, the day 0, while in the diabetic control group which was significantly decreased, whereas HDL was significantly increased in diabetic control group as compared with normal control. Serum TC, TG, LDL, and VLDL were significantly reduced, whereas HDL was significantly increased in diabetic control group compared to normal control. Histopathological evidence of pancreas of animals treated with ethanolic extract of *S. torvum* fruits showed comparable regeneration of β cells comparable to that of glibenclamide-treated group.

Interestingly, the diabetic rats treated with ethanolic extract of *S. torvum* fruits (120, 160, and 200 mg/kg) showed a dose-dependent effect on regeneration of β-cells (Figures 4–6A,B). It is evident that the ethanolic extract of *S. torvum* fruits at 200 mg/kg showed pronounced regeneration of β-cells as compared to 120 and 160 mg/kg.

In the present investigation, the molecular mechanism of *S. torvum* action as a hypoglycemic agent was studied by analyzing the expression levels of GLUT-2 and PKC1 genes in normal, diabetic, and diabetic-treated rats using RT-PCR assay. Significant decrease in GLUT-2 gene expression was observed in STZ-induced diabetic group compared to normal rats probably due to insulin deficiency (Figure 7). After administering *S. torvum* ethanolic fruit extract, the diabetic rats showed lower expression of GLUT-2 gene despite of decreased blood glucose level.

Discussion

Diabetes mellitus is a disorder in which the body tissues failed to utilize the glucose which leads to increased utilization of proteins responsible for reduction in body weight (16). It has been suggested that an increase in the body weight of *S. torvum* fruit extract-treated rats might be due to an enhancement in glycemic control and increased synthesis of structural protein (17). This may be achieved via the inhibition of hepatic gluconeogenesis and glucose output from the liver, which is accompanied by the suppression of lipolysis in adipose tissue (18). Abu-Odeh and Talib (19) suggested that the possible mechanism for body weight gain in plant extract-treated rats may be due to extra pancreatic action which might have contributed to the increased utilization of glucose by the tissues.

Diabetes is a metabolic disorder caused by impaired metabolism of carbohydrates, proteins, and lipids predisposing to hyperglycemia (20). Glycemic control is the main target of the treatment to prevent micro- and macrovascular and neurological complications of diabetes (21). The medicinal

Table 2

Groups	Day 0	Day 14	Day 28
Group-I	181.67 ± 1.63a	192.67 ± 3.26a	202.50 ± 3.78b
Group-II	205.00 ± 8.98a	176.33 ± 8.73a	154.67 ± 10.32a
Group-III	189.33 ± 4.84ab	204.50 ± 6.97c	221.33 ± 2.65b
Group-IV	184.33 ± 2.87a	197.00 ± 3.68b	206.50 ± 4.37b
Group-V	192.83 ± 9.60b	204.17 ± 9.27c	219.17 ± 3.54c
Group-VI	187.33 ± 6.50b	206.33 ± 6.37d	227.67 ± 1.86d

The values are expressed as mean ± SD (*n* = 6). Values in the column having similar superscripts are not statistically different (*P* < 0.05) (one-way ANOVA followed by Duncan’s multiple comparison test).
plants are widely used as a prophylaxis and for curing of human diseases due to the presence of phytochemicals such as flavonoids and phenols in *S. torvum* fruit extract (22).

Many research reports showed that medicinal plants that possess hypoglycemic activity act through various mechanisms include improvement of insulin sensitivity of target cells, augmenting insulin secretion and stimulating the regeneration of β-cells of islets of Langerhans in pancreas (23). Several authors reported that the presence of flavonoids, steroids, terpenoids, and phenols is responsible for antidiabetic activity (24). Flavonoids have also been known to regenerate the damaged beta cells in alloxan-induced diabetic rats and act as insulin secretagogues (25).

The potential therapeutic use of polyhydroxylated alkaloids in the treatment of type 2 diabetes due to their ability to inhibit maltase-glucosaminase has been reported (26). In this study, the marked reduction in blood glucose levels may be due to regeneration of pancreatic beta cells leading to an increased secretion of insulin in *S. torvum*-treated groups. High-performance liquid chromatography revealed the presence of quercetin (flavonoid) in *S. torvum* fruit extract. It has been shown that quercetin possesses antidiabetic activity in streptozotocin-induced diabetic rats through regeneration of pancreatic islets which increases insulin secretion (27). This histological evidence may also account for the hypoglycemic activity of the *S. torvum* fruit extract. Biologically active, naturally occurring phytochemical compounds found in plants provide health benefit for humans (28).

Oxidative stress is one of the contributing factors in the pathogenesis of diabetes. Diabetes, by itself, increases the production of tissue damaging reactive oxygen species (ROS) by glucose auto-oxidation that inhibits enzymatic protein glycosylation (29). The antioxidant enzyme levels are affected by diabetes, which further increase oxidative stress (30).

TABLE 3 Effect of ethanol extract of *Solanum torvum* fruits on fasting blood glucose level in streptozotocin (STZ)-induced diabetic Sprague–Dawley (SD) rats.

Groups	Day 0 (mg/dl)	Day 7 (mg/dl)	Day 14 (mg/dl)	Day 21 (mg/dl)	Day 28 (mg/dl)
Group-I	93.33 ± 2.58²	92.67 ± 4.45²	93.67 ± 3.32²	95.00 ± 1.78²	90.43 ± 2.36²
Group-II	292.00 ± 5.13³	278.83 ± 12.33³	277.00 ± 9.77³	280.33 ± 6.56³	280.83 ± 7.02³
Group-III	294.83 ± 5.87³	261.83 ± 9.17³	165.67 ± 9.52³	128.83 ± 6.85³	101.83 ± 3.76³
Group-IV	281.67 ± 9.18⁴	257.67 ± 5.46⁴	244.17 ± 3.71⁴	232.83 ± 3.37⁴	210.00 ± 7.61⁴
Group-V	280.83 ± 9.66⁴	241.00 ± 7.72⁴	211.83 ± 19.65⁴	165.83 ± 18.35⁴	137.33 ± 6.28⁴
Group-VI	289.83 ± 6.73⁴	205.50 ± 13.03⁴	184.00 ± 15.47⁴	141.50 ± 14.57⁴	118.16 ± 3.81⁴

The values are expressed as mean ± SD (n = 6). Values in the column having different superscripts are statistically different (P < 0.05) (One-way ANOVA followed by Duncan’s multiple comparison test).

TABLE 4 Effect of Ethanolic extract of *Solanum torvum* fruits on lipid profile in streptozotocin (STZ)-induced diabetic Sprague–Dawley (SD) rats.

Groups–Treatment	Serum total cholesterol mg/dl	Triglycerides mg/dl	S.HDL mg/dl	S.LDL mg/dl	S.VLDL mg/dl
Group-I	94.31 ± 2.64⁴	84.31 ± 2.64⁴	33.10 ± 3.50⁴	44.35 ± 4.64⁴	16.85 ± 0.52⁴
Group-II	130.84 ± 5.03⁴	123.58 ± 3.24⁴	23.01 ± 1.63⁴	83.11 ± 4.86⁴	24.71 ± 0.64⁴
Group-III	106.13 ± 4.79⁴	92.30 ± 2.52⁵	36.42 ± 2.58⁴	51.25 ± 4.33⁴	18.45 ± 0.50⁴
Group-IV	124.17 ± 3.77⁵	111.18 ± 3.58⁵	29.43 ± 1.38⁵	72.51 ± 3.87⁵	22.23 ± 0.71⁴
Group-V	117.54 ± 3.06⁵	106.23 ± 3.52⁵	31.27 ± 1.43⁵	65.26 ± 1.99⁵	21.24 ± 0.70⁵
Group-VI	107.82 ± 3.63⁵	93.01 ± 4.12⁵	33.58 ± 2.60⁵	55.64 ± 4.33⁵	18.59 ± 0.82⁴

The values are expressed as mean ± SD (n = 6). Values in the column having different superscripts are statistically different (P < 0.05) (One-way ANOVA followed by Duncan’s multiple comparison test).

TABLE 5 Effect of Ethanolic extract *Solanum torvum* fruits on liver enzymes in streptozotocin-induced diabetic Sprague–Dawley (SD) rats.

Groups–Treatment	ALT (U/L)	AST (U/L)
Group-I	35.68 ± 2.62³	56.63 ± 3.19³
Group-II	56.17 ± 3.57³	67.56 ± 2.63³
Group-III	33.83 ± 2.97³	52.57 ± 2.97³
Group-IV	42.4 ± 3.00³	65.54 ± 1.17³
Group-V	38.41 ± 1.09³	63.99 ± 1.21³
Group-VI	35.11 ± 2.02³	60.95 ± 1.41³

The values are expressed as mean ± SD (n = 6). Values in the column having different superscripts are statistically different (P < 0.05) (One-way ANOVA followed by Duncan’s multiple comparison test).
Hyperglycemia and hyperlipidemia are the main causes of oxidative stress in type 2 diabetes. Reactive oxygen species (ROS) formed in this process triggers tissue damage and has been shown to affect the two major mechanisms failing during diabetes: insulin resistance and insulin secretion (31). In diabetes, tissue damage is considered to be mediated by free radicals by attacking membranes through peroxidation of unsaturated fatty acids which lead to extensive membrane damage and dysfunction (32). Decreased lipid peroxidation and improved antioxidant condition could be one of the mechanisms to prevent complications of diabetes (33).

Poongothai et al. (34) reported that methanolic extract of Solanum xanthocarpum leaves at a dose of 200 mg/kg significantly reduced the blood glucose level and increased the serum insulin level in alloxan-induced diabetic rats. Saponins at 1.3 mg/100 g from Solanum anguivi fruit strongly inhibited lipid peroxidation and increased the levels of antioxidant enzymes, thus preventing hyperglycemia-induced oxidative stress (35).

Diabetic rats treated with Solanum lycocarpum fruit extract at 1000 mg/kg resulted in reduced levels of blood glucose and also reduced food and water intake (36).

Two varieties Solanum melongena such as white and graffiti showed antioxidant activity, reduced the hyperglycemia-related complications, and decreased glucose absorption in the intestine (37). Similarly, ethanolic root extract of S. xanthocarpum at 200 and 400 mg/kg showed antihyperglycemic activity in alloxan-induced diabetic rats (38).

A recent study by Ammulu et al. (39) indicated that Solanum trilobatum ethanolic leaf extract at 100 and 200 mg/kg lowered blood glucose and generation of free radicals in alloxan-induced diabetic rats. Aqueous fruit extract of Solanum nigrum reduced blood glucose levels and hyperglycemia-related vascular complications in STZ-induced diabetic rats (40). Solanum pubescens methanolic leaf extract at 300 mg/kg was reported...
to decrease the blood glucose levels in alloxan-induced diabetic rats (41).

Generally, the diabetes is accompanied by hyperglycemia and hyperlipidemia (42). Hypercholesterolemia and hypertriglyceridemia are major risk factors for atherosclerosis which could be prevented by hypocholesterolemic drugs (29). During diabetic condition, serum fatty acids are produced in excess and converted into phospholipids and cholesterol in liver. These two substances along with excess triglycerides formed at the same time in liver may be discharged into blood in the form of lipoproteins (43). The abnormal high concentration of serum lipids in the diabetic condition is mainly due to increase in the mobilization of free fatty acids from the peripheral fat depots, since insulin inhibits the hormone-sensitive lipase.

In diabetes, the hyperlipidemia is the consequence of the uninhibited action lipolytic hormones on the fat depots (44). During normal metabolism, insulin activates lipoprotein lipase to hydrolyze triglycerides. However, in a state of insulin deficiency, lipoprotein lipase is not activated resulting in hypertriglyceridemia (45). In accordance with this study, the possible mechanism of antidiabetic and hypolipidemic activity of S. torvum fruit extract is mainly due to the presence of polyphenolic compounds. In addition to this, it also possesses antioxidant property which could be beneficial to diabetes (46).

Hepatoprotective, anti-inflammatory, and antioxidant effects of herbal medicines could be attributed to the presence of a variety of phytochemicals such as tannins, kaempferol, rutin, bergapten, psoralenes, flavonoids, coumarin, and phenolic glycosides (47). STZ-induced diabetic rats treated with S. torvum fruit extract showed decreased levels of ALT and AST indicating the hepatoprotective effect through maintenance of functional integrity of hepatic cell membrane and restoration of liver metabolism in diabetic rats (48).

The liver enzymes ALT and AST are considered to be good biomarkers of hepatotoxicity, wherein the elevated levels of these enzymes are indicative of liver cell damage (49). In diabetic rats, an increased level of these enzymes is due to the hepatic cell damage. Furthermore, the high levels of ROS play a critical role in the inflammatory damage of liver cells (50). Earlier studies have indicated the elevated levels of AST and ALT in diabetic condition including STZ-induced diabetics (51). It was also observed that STZ-induced diabetic rats showed a time-dependent rise in AST and ALT levels (52). Tripathi (47) reported hepatoprotective, anti-inflammatory, and antioxidant effects could be attributed to the presence of the various phytoconstituents including tannins, kaempferol, rutin, bergapten, psoralenes, flavonoids, coumarin, and phenolic glycosides. STZ-induced diabetic rats treated with S. torvum fruit extract showed decreased activity of ALT and AST enzymes that might support its hepatoprotective indicating maintenance of functional integrity of hepatic cell membrane,
and normalization capability of impaired liver metabolism in diabetic rats (17).

The endocrine capability of pancreas is determined by apoptosis, replication, and neogenesis of beta cells of islets of Langerhans (45). Oxidative stress plays an important role in beta cell dysfunction and apoptosis (53). Apoptosis is activated by stress factors including growth factor deprivation, cell cycle disturbance, and DNA damage, which lead to mitochondrial release of cytochrome c followed by stimulation of caspase-9, 8, 3, 6, and 7 in sequence, that promote DNA fragmentation and cell death (54).

In this context, the protective effect of some phytochemicals on pancreas has been found to be mediated through their antioxidant activity (55). Furthermore, some phytochemicals stimulate the proliferation and differentiation of progenitor cells involved in protection and regeneration of β-cells (26). Most of the plants possess natural antioxidants such as phenol and flavonoids. The regeneration of pancreas may be also attributable to the tannins in the plant extracts through their anti-inflammatory action (57). The phytochemicals and amino acids in the herbal plants are associated with regeneration of β-cells in diabetic rats (58).

Modulation in gene expression related to carbohydrate metabolism is an important component of the pathogenesis of diabetes (59). In liver tissue, carbohydrate metabolism is regulated by multiple transcription factors through insulin response (60). Glucose transport is the key step in carbohydrate metabolism which is facilitated by glucose transporters. GLUT-2 is a transmembrane carrier protein that enables passive glucose movement across cell membranes (61). GLUT-2 is principal glucose transporter among the 14 GLUT protein family (62). Antihyperglycemic effect of S. torvum may be through a different glucose transporter rather than GLUT-2. The histopathological evidence in the treated animals showed regeneration of beta cells which may lead to an increased insulin secretion that could induce a different glucose intake pathway than GLUT-2.

Gluconeogenesis is controlled by hormone-mediated gluconeogenic enzymes at the level of gene expression. In the liver, phosphoenolpyruvate carboxykinase (PCK1) catalyzes the conversion of oxaloacetate to phosphoenolpyruvate and is considered to be the major rate-controlling enzyme in the gluconeogenesis pathway from pyruvate, lactate, and alanine (63). This study revealed that the ethanolic extract of S. torvum fruit represses PCK1 gene expression which limits the gluconeogenesis pathway. Deficiency of glucose in the cells triggers gluconeogenesis pathway (64). The lower expression of PCK1 was observed in treated groups compared to normal and diabetic group suggesting decreased gluconeogenesis in treated groups. This could be due to the sufficient intake of glucose by the cells after the treatment with glibenclamide or S. torvum fruit extract. Most of the experimental studies suggested that increased gluconeogenesis is a main source of hyperglycemia in insulin deficiency (65). It is also suggested that insulin may inhibit PCK1 gene transcription by activation of a possible insulin response factors (66). Thus, S. torvum-treated diabetic rats showed the decreased expression of PCK1 gene possibly due to the availability of insulin.

Conclusion

The effect of S. torvum fruit extract on histopathology of pancreas has showed the regeneration of β cells of islets of Langerhans which may be responsible for increased secretion of insulin resulting in hypoglycemia. S. torvum fruit extract (200 mg/kg)-treated rats showed decreased blood glucose level may be due to lower expression of PCK1 gene. The PCK1 genes regulate phosphoenolpyruvate carboxykinase enzyme activity in the gluconeogenesis pathway. Thus, S. torvum fruits can be a good candidate for novel phytomedicine that can be used to treat several diseases.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

This animal study was reviewed and approved by AIMST University Animal Ethics Committee.

Author contributions

NS and SC have equally contributed to design and conceived the study. NS, SC, and PS carried out the experiments, conducted the data analysis, and interpreted the data. NS has procured the Institutional Ethical Approval for the study. All authors have drafted, edited, and reviewed the manuscript and given their consent for submission.

Acknowledgments

The authors acknowledge AIMST University and all the participants who have participated in the study. The authors also thank Xavier Rathinam for his suggestions for this project.
Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer SP declared a shared affiliation with the authors AU and BM to the handling editor at the time of review.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. NIDDK. Diabetes, Heart Disease, & Stroke | NIDDK [WWW Document]. (2021). Available online at: https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems/heart-disease-stroke (accessed July 22, 2022).

2. Aftab S, Nazir JA, Ali A, Asghar M, Majed R, Sarwar A. Prevalence of type-2 diabetes and prediabetes in Malaysia: a systematic review and meta-analysis. FlASe One. (2022) 17:e2663139. doi: 10.1371/journal.pone.0266319

3. Shedoera A, Leavesley D, Upton Z, Fan C. Wound healing and the use of medicinal plants. Evit Based Complement Altern Med. (2019) 2019:2684108.

4. Azeem A, Ep AA, Selvi GA, Sharma G, Ap SK. What attracts and sustain urban poor to informal healthcare practitioners? A study on practitioners’ perspectives and patients' experiences in an Indian city. Int J Health Plan Manag. (2021) 36:83-99. doi: 10.1002/hpm.3068

5. Roychoudhury S, Sinha B, Choudhury BP, Iha NK, Palit P, Kundu S, et al. Scavenging properties of plant-derived natural biomolecule para-coumaric acid in the prevention of oxidative stress-induced diseases. Antioxidants. (2021) 10:1205. doi: 10.3390/antiox10081205

6. Pandey AK, Kumar P, Saxena MJ, Maurya P. Distribution of aromatic plants in the world and their properties. In: Flourov-Paneri P, Christaki E, Giannenas IBT-FA editors. Feed Additives. Amsterdam: Elsevier (2020). p. 89-114.

7. Nde AL, Chukwuma CI, Erukainure OL, Chukwuma MS, Matabisa MG. Ethnobotanical, phytochemical, toxicology and anti-diabetic potential of Senna occidentalis (L.) Link; a review. J Ethnopharmacol. (2022) 283:114663. doi: 10.1016/j.jep.2021.114663

8. Saheli B, Ata A, V. Amal Kumar P, Ramirez-Alarcon K, Ruiz-Ortega A, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. (2019) 9:551

9. Visen A, Visen S, Sharma A, Visen PKS. Chapter 40 ñ Nutraceuticals as a natural alternative for preventive and proactive health care. In: Singh RB, Watanabe J, editors. Functional foods and nutraceuticals in metabolic and non-communicable diseases. Cambridge, MA: Academic Press (2022) p. 603-18. doi: 10.1016/B978-0-12-819815-5.00040-9

10. Gobinath R, Parasuraman S, Sreeramanan S, Chinni SV. Antidiabetic and antihyperlipidemic activities of methanolic extract of leaves of Coccinia grandis in diabetic rats. Int J Res Pharm Sci. (2020) 11:2324-31. doi: 10.26452/ijrps.v11i5PL4.4460

11. OECD. Test No. 420. Acute Oral Toxicity – Fixed Dose Procedure. Paris: Organisation for Economic Co-operation and Development (2002).

12. Mambe FT, Nhikhomba CE, Wamba BE, Nainy P, Ashu F, Manekeng HT, et al. Modes of action of the methanol extract and 3-O-[β-galactopyranosyl-(1’-4’)-β-D-galactopyranosyl]-oleic acid from Ascasia polysacantha against multidrug-resistant Gram-negative bacteria. Investig Med Chem Pharmacol. (2022) 5:60.

13. Saravanan V, Murugan SS, Navaneetha Krishnan KR, Mohana N, Sakhthive K, Sathya TN. Toxicological assessment of ethanolic leaves extract of Kalanchoe pinnata in rats. Indian J Forensic Med Toxicol. (2019) 15:615-22.

14. Modanoria, N, Ahirwar K, Khurudkar P. Anti-diabetic potential of a polyherbal formulation (FA1) in STZ induced diabetic rats. J Med Care Res Dev Rev. (2021) 4:1112-6.

15. Parasuraman S, Ching TH, Leong CH, Banik U. Antidiabetic and antihyperlipidemic effects of a methanolic extract of Mimosia pudica (Fabaceae) in diabetic rats. Null. (2019) 6:137-48. doi: 10.20873/biobx.2019.1681660

16. Kumar S, Saha S, Behl T, Sachdeva M, Sehgal A, Kumari S, Kumar A, et al. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. (2021) 264:118661. doi: 10.1016/j.lfs.2020.118661

17. Mihaloviov M, Diniç Ş, Arambaşlı Čovanović I, Uzusková A, Grdovní M, Vidaković M. The influence of plant extracts and phytocomponents on antioxidant enzymes activity and gene expression in the prevention and treatment of impaired glucose homeostasis and diabetes complications. Antioxidants. (2021) 10:480. doi: 10.3390/antiox10030480

18. Lewis GE, Carpenter AC, Pereira S, Hahn M, Giacca A. Direct and indirect control of hepatic glucose production by insulin. Cell Metab. (2021) 33, 799-720. doi: 10.1016/j.cmet.2021.03.007

19. Abu-Odeh AM, Talib WH. Middle eastern medicinal plants in the treatment of diabetes: a review. Molecules. (2021) 26:7412.

20. Silveira Rossi JL, Barbalho SM, Revere de Araujo R, Bechara MD, Sloan KD, Sloan LA. Metabolic syndrome and cardiovascular diseases going beyond traditional risk factors. Diabetes Metab Res Rev. (2022) 38:e3502. doi: 10.1002/dmrr.3502

21. Rodrigues-Gutiérrez R, Millan-Alanis JM, Barrera F, McCoy RG. Value of patient-centered glycemic control in patients with type 2 diabetes. Curr Diabetes Rep. (2021) 21:1-13.

22. Namani S, Paripelli S, Chinni SV, Kasi M, Subramaniam S, Rathinam N. In vitro anti-oxidant assay, HPLC profiling of polyphenolic compounds, AAS and FTIR spectrum of Malaysian origin Solanum torvum fruit. Indian J Pharm Educ Res. (2021) 50:511-20.

23. Alam S, Sarkar MM, Sultana TN, Choudhury MNR, Rashid MA, Chaitly NI, et al. Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Front Endocrinol. (2022) 13:800714. doi: 10.3389/fendo.2022.800714

24. Jayant KK, Vijayakumar BS. In vitro anti-oxidant and anti-diabetic potential of endophytic fungi associated with Ficus religiosa. Ital J Mycol. (2021) 50:10-20.

25. Hussain F, Hafeez J, Khalifa AS, Naem M, Ali T, Erd EM. In vitro and in vivo study of inhibitory potentials of α-glucosidase and acetylcholinesterase and biochemical profiling of M. charantia in alfalon-induced diabetic rat models. Am J Transl Res. (2022) 14:3824.

26. Muhammad I, Rahman N, Nishan U, Shah M. Antidiabetic activities of alkaloids isolated from medicinal plants. Braz J Pharm Sci. (2021) 57:e19130.

27. Latifi E, Mohammadpour AA, Fathi Hafshejani B, Nourani H. Ferula assa-foetida oleo gum resin extract alleviated the pancreatic changes and antioxidant status in streptozotocin-induced diabetic rats: a biochemical, histopathological, and ultrastructural study. J Food Biochem. (2022) 46:e14191. doi: 10.1111/jfbc.14191

28. Saha S. Phytochemical screening and comparative study of antioxidative properties of the fruits and leaves of Spondias mombin in Bangladesh. J Pharmacogn Phytochem. (2019) 8:379-83.

29. Singh A, Kukreji R, Sao L, Kukreji S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules. (2022) 27:950. doi: 10.3390/molecules27030950

30. Aslam F, Iqbal S, Nazir M, Anjum AA. White sesame seed oil mitigates blood glucose level, reduces oxidative stress, and improves biomarkers of hepatic and renal function in participants with type 2 diabetes mellitus. J Am Coll Nutr. (2019) 38:235-46. doi: 10.1080/07315724.2018.1500183

31. Bhatti JS, Sehrawat A, Mishra J, Siddhu IS, Navik U, Khullar N, et al. Oxidative stress in the pathophysiology of type 2 diabetes and its related complications: current therapeutics strategies and future perspectives. Free Radic Biol Med. (2022) 184:114-34. doi: 10.1016/j.freeradbiomed.2022.03.019
32. Chen X, Li X, Xu X, Li L, Liang N, Zhang L, et al. Ferroptosis and cardiovascular disease: role of free radical synthesis lipid peroxidation. *Free Radic Res.* (2021) 55:485–10. doi: 10.1080/10715762.2021.1876856

33. Sinbad O, Folorunsho AA, Olabisi OL, Ayiola OA, Temitope EJ. Vitamins as antioxidants. *J Food Nutr Res.* (2019) 2:214–35.

34. Poongothai K, Ahmed KSZ, Ponnurupan P, Jayanthi M. Assessment of antidiabetic and antihyperlipidemic potential of *Solania nigrum* and *Musa parasisca* in alloxan induced diabetic rats. *J Pharm Res.* (2010) 3:2203–5.

35. Nakitto AMS, Muyonga JH, Byaruhanga YB, Wagner NE. *Solania anguiv Lam*. fruits: their potential effects on type 2 diabetes mellitus. *Molecules.* (2021) 26:2044. doi: 10.3390/molecules26072044

36. Morikawa T, Niminmiya K, Tanabe G, Matsuoka H, Yoshihikawa M, Muraoka O. A review of antidiabetic active thiosugar sulturonium, salacinol and neokotalanol, from plants of the genus *Salacia.* *J Nat Med.* (2021) 75:449–66. doi: 10.1007/s11418-021-01522-0

37. Yarmohammadi F, Rahbardeh MG, Hosseinzadeh H. Effect of eggplant (*Solanum melongena*) on the metabolic syndrome: a review. *Iran J Basic Med Sci.* (2021) 24:420.

38. Sujiana D, Saptarini NM, Sumwia SA, Leija J. Nephroprotective activity of medicinal plants: a review on *silica*, in vitro-, and in vivo-based studies. *J Appl Pharm Sci.* (2011) 1:113–7.

39. Ammuha MA, Vinay Viswanath K, Gudutri AK, Vemuri PK, Mangamuri U, Poda S. Phytoassisted synthesis of magnesium oxide nanoparticles from *Psitacopsis marsupium* ron. b heartwood extract and its biomedical applications. *J Gemet Eng Biotechnol.* (2019) 19:1–18. doi: 10.1186/s43141-021-0119-0

40. Tsenum JL. Antihyperlipidemic effect of *Solanum incanum* on alloxan induced diabetic wistar albino rats. *Cardiovase Pharm Open Access.* (2018) 7:18–20.

41. Kingo RM, Maregesi SM, Kidukuli AW. Hypoglycemic efficacy and phytochemical screening of fruits ethanolic extract of *Solanum termale* and *Solanum melongena* fruits: a comparative study. *Int J Res Pharm Biotech.* (2020) 11:13–27.

42. Kilari BP, Mudgil P, Azimullah S, Bansal N, Ojha S, Maqsood S. Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated metabolism. *Issues Biol Sci Pharm Res.* (2021) 11:13–27.

43. Ammulu MA, Vinay Viswanath K, Giduturi AK, Vemuri PK, Mangamuri U, Poda S. Phytoassisted synthesis of magnesium oxide nanoparticles from *Psitacopsis marsupium* ron. b heartwood extract and its biomedical applications. *J Gemet Eng Biotechnol.* (2019) 19:1–18. doi: 10.1186/s43141-021-0119-0

44. Holman GD. Structure, function and regulation of mammalian glucose transporters of the SLC2 family. *Pigarers Arch.* (2020) 481:1080/13880209.2022.2039727

45. Lee J-H, Mellado-Gil JM, Bahn YJ, Pathy SM, Zhang YE, Rane SG. Protection against hyperglycemia, hyperlipidemia, and associated metabolic syndrome: a review. *Frontiers in Nutrition* (2019) 10:472. doi: 10.3389/fnut.2019.00472

46. Nismala JG, Lopus M. Cell death mechanisms in eukaryotes. *Cell Biol Toxicol.* (2020) 36:145–64.

47. Tan N, Sun M, Liu Z. Phytochemicals with protective effects against acute pancreatitis: a review of recent literature. *Pharm Biol.* (2020) 60:479–90. doi: 10.1080/13880209.2022.2039727

48. Rathiwa N, Patel R, Palti SP, Parmar N, Rana S, Ansari MI, et al. β-cell replenishment: possible curative approaches for diabetes mellitus. *Nutr Metab Cardiovasc Dis.* (2020) 30:1870–81. doi: 10.1016/j.numecd.2020.08.006

49. Tran N, Pham B, Le I. Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery. *Biology.* (2020) 9:252. doi: 10.3390/biology9090025

50. Apaya MK, Kuo T-F, Yang M-T, Yang G, Hsiao C-L, Chang S-B, et al. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: recent discoveries in pharmacological mechanisms and clinical potential. *Pharmacol Res.* (2020) 156:104754. doi: 10.1016/j.phrs.2020.104754

51. Kang GG, Francis N, Hill R, Waters D, Blanchard C, Santhakumar AB. Dietary polyphenols and gene expression in molecular pathways associated with type 2 diabetes mellitus: a review. *Int J Mol Sci.* (2019) 21:1340.

52. Ortega-Prieto P, Poticic C. Carbohydrate sensing through the transcription factor ChREBP. *Front Genet.* (2019) 10:472. doi: 10.3389/fgene.2019.00472

53. Hussar P, Popovska-Percinic F, Blagojevska K, Jarveots T. Dietary polyphenols and gene expression in molecular pathways associated with type 2 diabetes mellitus: a review. *Int J Mol Sci.* (2019) 21:1340.

54. Apaya MK, Kuo T-F, Yang M-T, Yang G, Hsiao C-L, Chang S-B, et al. Polyphenols as modulators of β-cells and immunity for the therapy of type 1 diabetes: recent discoveries in pharmacological mechanisms and clinical potential. *Pharmacol Res.* (2020) 156:104754. doi: 10.1016/j.phrs.2020.104754

55. Patel R, Palti SP, Parmar N, Rana S, Ansari MI, et al. β-cell replenishment: possible curative approaches for diabetes mellitus. *Nutr Metab Cardiovasc Dis.* (2020) 30:1870–81. doi: 10.1016/j.numecd.2020.08.006

56. Nishimura K, Iitaka S, Nakagawa H. Effect of trivalent chromium on β-cell function in streptozotocin-induced diabetic rats through modulating AMPK/SIRT1/NF-κB signaling pathway. *Nutr Metab.* (2021) 18:1–13. doi: 10.1186/s12886-021-00621-9

57. Saeedi Borujeni M, Esfandary E, Baradaran A, Valiani A, Ghanadian M, Codroiter-Frank P, et al. Molecular aspects of pancreatic β-cell dysfunction: oxidative stress, microRNA, and long noncoding RNA. *J Cell Physiol.* (2019) 234:8411–25. doi: 10.1002/jcp.27755

58. Poongothai K, Ahmed KSZ, Ponnurupan P, Jayanthi M. Assessment of antidiabetic and antihyperlipidemic potential of *Solania nigrum* and *Musa parasisca* in alloxan induced diabetic rats. *J Pharm Res.* (2021) 13:870399. doi: 10.3389/fphys.2022.870399