Modelling and Forecasting Climate Time Series with State-Space Model

A. F. Adedotun, T. Latunde, O. A. Odusanya

Abstract

This study modelled and estimated climatic data using the state-space model. The study was specifically to identify the pattern of the trend movement i.e., increase or decrease in the occurrence of the climatic change; to use of Univariate Kalman Filter for the computation of the likelihood function for climatic projections; to modelling the climatic dataset using the state-space model and to assess the forecasting power of the state-space models. The data used for the work includes temperature and rainfall for periods January 1991 to December 2017. The data are tested for normality. Shapiro-Wilk, Anderson-Darling and Kolmogorov-Smirnov test of normality for the climatic data all showed that the variables are not normally distributed. The work spans the use of breaking trend regression model to fit climatic data to estimate the slopes which show much increase in climatic data has been recorded from the initial time data collection until the present. Investigations and diagnostic are carried out by checking for corrections in the residuals and also checking for periodicity in the residuals. The results of this investigation show significant autocorrelation in the residuals indicating the presence of underlying noise terms which is not accounted for. By treating the residual as an autoregressive moving average (ARMA) process whereby we can obtain its spectral density, the result from the parametric spectral estimate shows underlying periodic patterns for monthly data, thus, leads to a discussion on the need to treat climatic data as a structural time series model. We select appropriate models by considering the goodness of fit of the model by comparing the Akaike information criterion (AIC) values. Parameters are estimated and accomplished with some measures of precision.

Keywords: Rainfall, Temperature, Kalman filter, State-space models, Residuals

1. Introduction

Largely, state-space models (SSMs) have been used in several areas of applied statistics. In specifically, there are some desirable properties of the linear state-space models and also, they have vast potential in time series modelling that incorporates latent processes. When a model is found to be in the linear state-space form, the most used algorithm to predict the latent process, the state, is the Kalman filter algorithm. This algorithm is a technique for computing, at each time \(t = 1, 2, \ldots \), the optimal estimator of the state vector based on the existing information until \(t \) and its success lies on the fact that is an online estimation procedure.

This predicting structure, whose performance was in recent times compared to other numerous forecasting methods across thousands of time series [1], adapts to underlying alterations...
in series dynamics and automatically revises forecasts as new observations. In agreement with the above, the study adopts the state-space model to analyse and forecast for the temperature and rainfall data in Nigeria.

The purpose of this study is to model and estimate the climate using the state-space model and the specific objectives are to: identify the pattern of the trend movement i.e. increase or decrease in the occurrence of the climatic change; use of Univariate Kalman Filter for the computation of the likelihood function for climatic projections; modelling the climatic dataset using the state-space model and assess the forecasting power of the state-space models.

Shamshad et al. [2] show a comparison of Artificial Neural Networking Multilayer Perceptron (ANN-MLP) with the Automatic Exponential Smoothing Algorithm (ETS) and the Auto-Regressive Integrated Moving Average (ARIMA) models for forecasting Lahore, Pakistan’s main weather parameter. Models are built by taking into account average monthly maximum and minimum temperature, relative humidity, wind speed and precipitation amount. Data covering thirty years (1987-2016) was used to build the models. ANN-MLP is a mathematical method, and the computational methods are ARIMA and ETS. They divide the thirty years data (1987-2018) data into training (1987 till 2016) and test (2017 till 2018) set to ensure the efficiency and reliability of all these models along with the performance criteria of the estimates. The research explained in brief how the various methods of learning can be used to formulate ANN-MLP. Deciding the most appropriate model and network configuration is based on their performance forecast. MAE (Moving Average Error), RMSE (Root-Mean-Square error), ME (mean error), MASE (mean absolute scaled error) suggest better results for ANN-MLP. Afsar et al. [3] investigated variability in temperature and precipitation in the Gilgit-Baltistan region. They used regression and stochastic models to show temperature and rainfall predictions. We observed precipitation prolonged with temperature increasing. A decrease in the amount of precipitation is observed from 2007 to 2011 with an increase in the monthly average maximum temperature. They considered AR(1) ideally suited to temperature forecasting.

In the study of Faisal and Ghaflar [4] on the Thiessen Polygon technique to test Pakistan’s 56 stations for 50 years (1961-2010) weighted rainfall area (AWR). Month-to-month precipitation records of fifty-six stations, storm measurements for the fifty-year season (1961-2010) and a standard precipitation size relationship were used by the Theissen system. Yusof et al. [5] used an amount of rainfall to be categorised into seven categories (extremely wet to extremely dry) to analyze dry and wet events using Peninsular Malaysia data. They used precipitation index (SPI) standardizes to model the best fit distribution to reflect the rainfall. In comparison with Gamma and Weibull distributions, the lognormal distribution is found to be better matched to the daily rainfall in the area.

Extreme Pakistan temperature events and rainfall for the period 1965-2009 were examined in Zahid and Rasul work [6] to quantify Pakistan frequency. They used F-test to determine the country minimum and maximum extreme temperature events. We pointed out that all over the country, certain extreme events are increasing. Regarding extreme rainfall events, they used the K-S method at a confidence interval of 95 per cent and concluded that the southern half of Pakistan faces more wet spells due to global warming and climate change. In the same vein, rainfall data in Queensland, Australia including climate indices, monthly rainfall and temperature was surveyed in Abbott and Marohasy [7]. They brought ANN into the area to predict monthly rainfall. They suggested there is scope for improvement in this product design. Analysis of ANN to forecast lasting monthly temperature and rainfall from 76 stations in Turkey at any point for the period 1975-2006 was also carried out in Bilgili and Sahin’s work [8] based on knowledge from neighbouring stations. They divided 76 measuring stations into training sets and test sets. The fitted model was satisfactory because the errors are within reasonable limits.

2. Materials and Methods

2.1. State-Space Model

A state-space representation in control engineering is a mathematical model of a physical system as a collection of input, output and state variables similar to first-order differential equations or difference equations. State variables are variables whose values change over time in a way that depends on the values they have at any given time and often depends on the values of input variables placed externally. The values of the output variables depend on the values of the state variables.

“State-space” is the Euclidean space, where the variables on the axes are the variables of the body. The state of the system within that space can be expressed as a vector. The state-space method is characterized by significant algebraization of general system theory, which makes it possible to use Kronecker vector-matrix structures. The ability of these structures can be efficiently used to study systems with modulation or without modulation. The state-space representation (also called the “time-domain method”) gives a convenient and compact way to model and analyze systems with multiple inputs and outputs. With p and q outputs, we would otherwise have to write down $q \times p$ Laplace transforms to encode all the information about a system.

2.2. State-Space Representation

In the time domain, a system can be described in general by a set of linear differential and algebraic equations (i.e., state-
space model):
\[
\frac{dx}{dt} = Ax + Bu
\]
\[
y = Cx + Du
\]
(1)
(2)

Where \(x\) is the vector of the state variable \(u\) is the vector of inputs (manipulated variables) \(y\) is the vector of outputs (controlled/measured variables), and \(A, B, C,\) and \(D\) are constant matrices of appropriate dimensions.

Taking Laplace transform of Equations (1) and (2) using zero initial conditions, and re-arranging, the system transfer function matrix \(G(s)\), the relationship between the inputs \(u\) and the outputs relates the state model equations (1) and (2) as:
\[
G(s) = \frac{y(s)}{u(s)} = C(sI - A)^{-1}B + D
\]
(3)

The representation of the (SSM) was developed based on graph theory principles. Two major types are used:

1. The signal-flow-graph (SFG) type.
2. The matrix representation.

The first type is easier to use and hence has been adopted by many researchers [9-10], and it has also been adopted in this research for the same reason.

Each SFG consists of directed branches interconnected at nodes. In the state-space model, the nodes represent the variables (signals), and the branches connecting the nodes indicate that these nodes are related. Each branch is assigned a numerical value or a function, which quantifies the relationship between the two variables in terms of a gain factor or a transfer function.

2.3. Identification and estimation of a state-space model process

Before the analysis can be processed, identification of the state-space model would be carried out in the following ways:

The measurement equation has the form
\[
Y_t = Z_t \alpha_t + d_t + \epsilon_t = 1 \ldots T
\]
(4)

To accommodate data properties as temporal correlation and the periodic behaviour, a periodic state-space model is proposed. This model is defined as
\[
Y_{s,n} = [S (n - 1) + s] X_{s,n} + D_{s,n} + \epsilon_{s,n}
\]
(5)

\[
X_{s,n} = \mu_s + S(X_{s-1,n} - \mu_{s-1}) + \epsilon_{s,n}
\]
(6)

where
\(s\) is the season of the year with \(s = 1, 2, \ldots, S\);
\(n\) is the year with \(n = 1, 2, \ldots, N\);
\(Y_{s,n}\) represents the time series observation in the \(S^n\) season of the \(n^{\text{th}}\) year;
\([S (n - 1) + s]^{\text{th}}\) is the observation of the time series;
\([1, 2, 3, 4, \ldots, S]\) are the unknown parameters representing the fixed effects in the model;
\(D_{s,n}\) is a \(1 \times S\) matrix of known values, a design matrix;
the error process \((\epsilon_{s,n})\) is a white noise disturbance, which is assumed to have \(\text{var} (\epsilon_{s,n}) = \frac{\sigma^2}{c}\)
\(\mu_s\) is the mean of the process \((X_{s,n})\) for the \(s^{\text{th}}\) season, \(s\) is the autoregressive parameter for season \(s\) and \(\epsilon_{s,n}\) is the white noise disturbance;

The means, standard deviations and variances of the different series gotten for each sector would be examined where the series with a lesser variance being the most efficient. Their skewness and kurtosis will also be determined. Also, the existence of stationarity, unit root and long memory properties would be determined.

2.4. Univariate Kalman Filter for the computation of the likelihood function for climatic projection

Parameter estimation that specifies the state-space model is very important in analyzing various components of the time series model. The idea is that
\[
\Theta = \{ \mu_0, \Sigma_0, \varphi, Q, R, Y, \Gamma \}
\]

used to represent the vector of unknown parameters containing the elements of the initial mean \(\mu_0\), the covariance \(\Sigma_0\), the transition matrix, \(\varphi\), the state and observation covariance matrices, \(Q\) and \(R\) are inputs \(Y\) and \(\Gamma\) are estimated using the maximum likelihood estimation. The maximum likelihood, for a time series model where the observations \(y_1, y_2, \ldots, y_n\) are not independent, is defined as a conditional probability density function to write the joint density function
\[
L(Y : \theta) = \prod_{t=1}^{n} p(y_t | Y_{t-1})
\]
(7)

Where \(p(y_t | Y_{t-1})\) is the distribution of \(y_t\) conditional on the information set at time \(t - 1\) that is \(Y_{t-1} = \{ y_1, y_2, \ldots, y_{t-1} \}\). The maximum likelihood is used under the assumption that the initial state is normal \(X_0 \sim N(\mu_0 : \Sigma_0)\) and the error \(V_1, V_2, \ldots, V_n\) and \(W_1, W_2, \ldots, W_n\) are jointly normal and uncorrelated vector variables. \(W_t \sim N(0 : Q)\) and \(V_t \sim N(0 : \sigma^2)\).

Hence, the likelihood is derived by using the innovations
\[
\epsilon_t = y_t - A_t X_{t-1} - \Gamma_{\mu t}
\]
(8)

Which are independent normal where \(E(\epsilon_t) = 0\) and the covariance matrix
\[
\sum_0 = A_t P_{t-1} A_t + R
\]
(9)

Where the dependence of the innovation on the parameter \(\theta\) has been emphasized using the Kalman filter for given \(\theta\), this can be done as follow:

1. Select initial and starting values for the parameter \((\theta^0)\)
2. For θ^* compute the likelihood $L(y : \theta^*)$ using the Kalman filter
3. Apply a numerical optimization algorithm to $L(y : \theta^*)$
4. Repeat this process for n steps until the value of θ corresponding to the maximum likelihood is found.

2.5. Forecasting with Kalman filter

An m-period-ahead forecast of the state vector can be calculated from the equation below:

$$\hat{\xi}_{t+k} = F^k \xi_t + F^{k-1} V_{t+1} + F^{k-2} V_{t+2} + \ldots + F^1 V_{t+k-1} + V_{t+k} \text{ for } k = 1, 2,$$

Lead to equation

$$\hat{\xi}_{t+k} = E(\xi_{t+k} | y_t, x_t, y_{t-1}, \ldots, x_{t-1}, y_{t-1}, \ldots, x_1) = F^k \hat{\xi}_t$$ \hspace{1cm} (11)

The error of this forecast can be found by subtracting $\hat{\xi}_{t+k}$ from $\hat{\xi}_{t+k}$$

$$\xi_{t+k} - \hat{\xi}_{t+k} = F^k (\xi_t - \hat{\xi}_t) + F^{k-1} V_{t+1} + F^{k-2} V_{t+2} + \ldots + F^1 V_{t+k-1} + V_{t+k}$$

from which it follows that the mean squared error of the forecast is

$$P_{t+k | t} = E[(\xi_{t+k} - \hat{\xi}_{t+k})(\xi_{t+k} - \hat{\xi}_{t+k})']$$ \hspace{1cm} (13)

$$= F^k P_{t | t} (F^k)' + F^{k-1} Q (F^{k-1})' + F^{k-2} Q (F^{k-2})' + \ldots + F Q F' + Q$$ \hspace{1cm} (14)

These results can also be used to describe m-period-ahead forecasts of the observed vector y_{t+m}, provided that x_t is deterministic. Applying the law of iterated expectations to

$$E(y_{t+k} | \hat{\xi}_t, \hat{\xi}_{t-1}, \ldots, \hat{\xi}_t)$$

$$E((Ax_{t+k}, + H' \xi_{t+k} + W_{t+k}) | \hat{\xi}_t, \hat{\xi}_{t-1}, \ldots, \hat{\xi}_{t}, \hat{\xi}_{t-1}, \ldots, x_{t}, y_{t-1}, \ldots)$$ \hspace{1cm} (15)

results in

$$\hat{y}_{t+k} = E(y_{t+k} | \hat{\xi}_t, \hat{\xi}_{t-1}, \ldots, y_t, y_{t-1}, \ldots)$$ \hspace{1cm} (16)

The error of this forecast is

$$y_{t+k} - \hat{y}_{t+k} = (A' x_{t+k} + H' \xi_{t+k} + W_{t+k}) - (A' \hat{x}_{t+k} + H' \hat{\xi}_{t+k})$$ \hspace{1cm} (17)

$$= H' (\xi_{t+m} - \hat{\xi}_{t+m}) + W_{t+m}$$ \hspace{1cm} (18)

With mean squared error

$$E[(y_{t+k} - \hat{y}_{t+k} | y_{t+k} - \hat{y}_{t+k})'] = H' P_{t+k | t} H + R$$ \hspace{1cm} (19)

3. Presentation of Results and Discussion

Figures 1-2 represent the time plot of temperature and rainfall;

![Figure 1. The time plot of the monthly temperature series shows the underlying trend and possible seasonal and cyclic patterns as well](image)

![Figure 2. The time plot of the monthly rainfall series shows the underlying trend and possible seasonal and cyclic patterns as well](image)

3.1. Fourier Analysis

Table 1 shows the values of the various components of the spectral analysis for temperature. The numbers in parentheses, (d, D, s, M, T), are defined as follows: d is the regular differencing order, D is the seasonal differencing order, s is the number of seasons (ignorad if D is 0), M is 1 if the mean is subtracted, 0 otherwise, T is 1 if the trend is subtracted, 0 otherwise. (0, 0, 12, 1, 0) indicates that there is no regular differencing. The seasonal differencing is zero, while the number of seasons is zero. The value indicates that the mean is subtracted, while the trend is not subtracted.

Figures 3-6 show that there exists an underlying periodic component in the residuals obtained by fitting the smoothed and filtered data to the observation. We can see that the first peak looking at the monthly series corresponding to the fitted data is at a frequency $\omega = 0.389$, corresponding to a period of 50 months. And the second peak is at a frequency of $\omega = 0.35$, with a period of approximately 12 months.

Therefore, the need to extend the structural model to contain a Seasonal and cyclic component is important.
Table 1. Fourier Analysis of temp (0,0,12,1,0)

Frequency	Wavelength	Period	Cosine(a’s)	Sine(b’s)	Spectrum
0.2010619	31.25	17392.62	21.48521	-14.59315	9522.42
0.2764601	22.72727	2180.31	0.8657146	-9.155004	7795.009
0.3518584	17.85714	3812.099	11.42719	-4.155941	4270.688
0.4272566	14.70588	6819.656	-14.50404	-7.357564	15927.96
0.5026549	12.5	37152.14	-6.556379	37.38934	17404.13
0.5780531	10.86957	8240.605	-13.99402	-11.12565	15948.32
0.6534513	9.615385	2452.211	-7.719598	5.959619	3608.136
0.7288495	8.620689	131.5911	2.229034	-0.3676695	2495.332
0.8042477	7.8125	4902.192	-12.52921	-5.757686	6569.818
0.8796459	7.142857	14675.67	4.816339	23.36665	7431.676
0.9550442	6.578948	2717.165	13.99337	-11.12565	15948.32
1.030442	6.097561	28936.85	16.04339	-25.16181	12334.13
1.105841	5.681818	5348.37	3.409208	-13.99337	11674.39
1.181239	5.319149	737.9613	4.387738	5851.817	
1.256637	5	11469.12	25.16181	12334.13	
1.332035	4.716981	3892.745	11.29772	5620.186	
1.407434	4.464286	1498.693	7.624041	3149.379	
1.482832	4.237288	4056.698	-3.564355	4142.489	
1.55823	4.032258	3174.855	4.774079	4193.151	
1.633628	3.846154	5347.899	3.591002	4181.128	
1.709026	3.676471	4020.631	16.04339	5366.608	
1.784425	3.521127	3058.936	7.860816	2993.722	
1.859823	3.378378	1901.597	8.331114	1728.495	
1.935221	3.246753	224.9497	10.01725	1347.075	
2.010619	3.125	1914.677	2.08475	1418.189	
2.086018	3.012048	2114.941	-8.523886	4419.094	
2.161416	2.906977	9227.663	-16.48055	4187.763	
2.236814	2.808989	1220.684	0.3565736	6609.169	
2.312212	2.717391	9379.16	16.41459	5221.976	
2.38761	2.631579	5066.084	8.594324	5238.45	
2.463009	2.55102	1270.106	4.720753	2286.001	
2.538407	2.475248	521.812	0.8846894	4.410879	1232.752
2.613805	2.403846	1906.337	-8.432693	1.681413	1483.803
2.689203	2.336449	2023.261	6.147003	1774.629	
2.764601	2.272727	1394.288	-0.8783695	7.3011	2174.107
2.84	2.212389	3104.772	-10.88803	-1.367346	4679.055
2.915398	2.155172	9538.105	-18.3482	5.768869	4346.808
2.990796	2.10084	397.5458	-3.743783	1.184457	3586.218
3.066195	2.04918	823.0026	-5.125026	2.377886	668.0311
3.141593	2	783.5449	-5.5127	-2.484305E-12	809.85
Table 2. Fourier Analysis of rainfall (0,0,12,1,0)

Frequency	Wavelength	Period	Cosine(a’s)	Sine(b’s)	Spectrum
0.2010619	31.25	3505336	-155.2216	334.4563	1.340589E+07
0.2764601	22.72727	2.376145E+07	-473.745	834.9586	1.081362E+07
0.3518584	17.85714	5174079	204.4676	398.5852	1.242262E+07
0.4272566	14.70588	8332332	372.0547	429.8204	8652136
0.5026549	12.5	1.245E+07	-522.3141	458.3256	1.045092E+07
0.5780531	10.86957	1.057043E+07	496.6129	-404.1668	2.557089E+07
0.6534513	9.615385	5.369223E+07	347.9105	-1400.506	2.371912E+07
0.7288495	8.620689	6894689	310.2988	-413.6736	2.459778E+07
0.8042477	7.8125	1.320643E+07	271.7906	-662.0743	1.099229E+07
0.8796459	7.142857	1.287576E+07	-420.4702	-567.9723	9935063
0.9550442	6.578948	3723000	-203.048	-321.1984	1.345724E+07
1.105841	5.681818	7312064	418.9944	328.6986	1.113207E+07
1.181239	5.319149	2311208	-185.0102	235.3968	5046145
1.256637	5	5515162	108.9928	-449.4738	3876995
1.332035	4.716981	3804614	-342.3183	174.3	4267821
1.407434	4.464286	3483686	-122.2476	-346.6563	5960738
1.482832	4.237288	1.059391E+07	-237.493	-595.3847	2.304692E+07
1.55823	4.032258	5.506316E+07	-1014.657	-1051.713	2.313139E+07
1.633628	3.846154	3737106	182.7847	-333.9667	1.996097E+07
1.709026	3.676471	1082651	77.12722	-189.8476	1860007
1.784425	3.521127	778264.9	-13.22315	173.2346	1592170
1.859823	3.378378	2915595	331.0794	-58.89026	1575621
1.935221	3.246753	1033002	79.65166	183.632	2011053
2.010619	3.125	2084562	141.3623	246.7116	3220544
2.086018	3.012048	6544069	-469.2179	183.4309	5135841
2.161416	2.906977	6778893	-507.325	-74.44065	5237774
2.236814	2.808989	2390359	-264.1649	151.4172	4376703
2.312212	2.717391	3960858	-391.2391	23.54103	2330373
2.38761	2.631579	639903.6	54.25442	-147.9026	2294082
2.463009	2.55102	2281486	-274.1098	115.5485	979001.7
2.538407	2.475248	15615.94	5.175655	-24.05989	2194616
2.613805	2.403846	4286746	-333.2503	-234.9598	1575710
2.689203	2.336449	424768.6	-121.5072	-41.36044	1572502
2.764601	2.272727	626.016	-3.307111	-15.22817	806171.2
2.84	2.212389	1987484	64.74786	269.9861	1018778
2.915398	2.155172	1062588	-102.2991	175.3496	1285118
2.990796	2.10084	805281.5	176.6789	4.182919	2102421
3.066195	2.04918	4439392	126.9668	-395.0464	2849186
3.141593	2	3302885	-357.9144	2.442917E-10	4060556
Table 2 shows the values of the various components of the spectral analysis for rainfall. The numbers in parentheses, \((d, D, s, M, T)\), are defined as follows: \(d\) is the regular differencing order, \(D\) is the seasonal differencing order, \(s\) is the number of seasons (ignored if \(D\) is 0), \(M\) is 1 if the mean is subtracted, 0 otherwise, \(T\) is 1 if the trend is subtracted, 0 otherwise. \((0, 0, 12, 1, 0)\) indicates that there is no regular differencing. The seasonal differencing is zero, while the number of seasons is zero. The value indicates that the mean is subtracted, while the trend is not subtracted.

Figures 7-10 show that there exists an underlying periodic component in the residuals obtained by fitting the smoothed and filtered data to the observation. We can see that the first peak looking at the monthly series corresponding to the fitted data
3.2. State-space model

From Table 3, the AR coefficients with respect to the MLEs are given as 1.271 and -0.274, respectively also, the roots of the characteristic equation \(\phi = 1 - 1.271z + 0.274z^2 = 0 \) are 0.542 and 1.998, respectively. Since these values are greater than 1, the AR component is covariance stationary.

The variance of the permanent component is 0.000000, and the variance of the transitory component is 2.648752906. Hence, the variance of the transitory component is higher than the variance of the permanent component and the ratio of the variance of the permanent component to the variance of the stationary component is 0.000. This shows that the stationary component is almost twice as important as the permanent component for explaining the variation of temperature.

3.3. Forecasting

The in-sample performance of the state-space model for forecasting the rainfall and temperature series appears to be more favourable to the model identified by Shittu and Yemitan [11]. This is evident in Tables 5 and 6.

Given the relative accuracy of the model by Shittu and Yemitan [11], the improvement achieved by the Kalman filter method is mainly as a result of the built-in the specification for updating the estimation based on latest available information. Hence, the rainfall and temperature exhibit elements of time-varying or regime-switching characteristics over the study period. As a result, it is an indication and a signal that the climatic data may be best estimated using non-linear time series methodologies.

4. Conclusion

This study modelled and estimated climatic data using the state-space model. The study was specifically to identify the pattern of the trend movement, model the dataset using the state-space model and to evaluate the forecasting power of the state-space models.

The data used for the study include temperature and rainfall for periods January 1991 to December 2017. The data were tested for normality. The study showed that the average temperature is 27.3\(^\circ\)C and standard deviation is 1.87\(^\circ\)C. The maximum temperature is 31.5\(^\circ\)C and minimum temperature is 23.3\(^\circ\)C. The average rainfall is 94.5mm with a standard deviation of 86.3mm. The maximum rainfall is 314.3mm and the minimum rainfall is 0.2mm. Shapiro-Wilk, Anderson-Darling and Kolmogorov-Smirnov test of normality for the climatic data all showed that the variables are not normally distributed. The plot of the monthly temperature series shows the underlying trend and possible seasonal and cyclic patterns as well. The plot of the monthly rainfall series shows the underlying trend and possible seasonal and cyclic patterns as well.

The MLEs for the AR coefficients are 1.311 and -0.456, respectively. The roots of the characteristic equation \(\phi = 1 - 1.311z + 0.456z^2 = 0 \) are 1.779 and 1.137, respectively. Since these values are greater than 1, the AR component is covariance stationary.

The variance of the permanent component is 0.000000, and the variance of the transitory component is 2.648752906. Hence, the variance of the transitory component is higher than the variance of the permanent component and the ratio of the variance of the permanent component to the variance of the stationary component is 0.000. This shows that the stationary component is almost twice as important as the permanent component for explaining the variation of temperature.
Table 3. State-space Model (Temperature)

Coefficient	Std. Error	z-Statistic	Prob.
C(1)	0.818740	10.32875	0.0000
C(2)	1.271171	22.88260	0.0000
C(3)	-0.274151	-4.874137	0.0000

Final State

SV1	Root MSE	z-Statistic	Prob.
22.24512	1.505869	14.77229	0.0000

Log likelihood -600.6427

Akaike info criterion 3.726190

Schwarz criterion 3.761197

Hannan-Quinn criter. 3.740162

Table 4. State-space Model (Rainfall)

Coefficient	Std. Error	z-Statistic	Prob.
C(1)	7.792711	115.8147	0.0000
C(2)	1.311527	26.69830	0.0000
C(3)	-0.456845	-8.697765	0.0000

Final State

SV1	Root MSE	z-Statistic	Prob.
-1.907737	49.22274	-0.038757	0.9691

Log likelihood -1723.221

Akaike info criterion 10.65568

Schwarz criterion 10.69069

Hannan-Quinn criter. 10.66966
Table 5. Forecast for Temperature

Period	Forecast (SSM)	95% Limits	
		Lower	Upper
2018	24.6816	21.8312	27.5320
2018	25.6077	22.2266	28.9888
2018	26.1985	22.6239	29.7730
2018	26.5754	22.9250	30.2258
2018	26.8158	23.1351	30.4966
2018	26.9692	23.2762	30.6623
2018	27.0671	23.3690	30.7652
2018	27.1295	23.4294	30.8296
2018	27.1694	23.4684	30.8703
2018	27.1948	23.4935	30.8960
2018	27.2110	23.5096	30.9124
2018	27.2213	23.5199	30.9228
2019	27.2279	23.5264	30.9294
2019	27.2321	23.5306	30.9336
2019	27.2348	23.5333	30.9363
2019	27.2365	23.5350	30.9380
2019	27.2376	23.5361	30.9391
2019	27.2383	23.5368	30.9398
2019	27.2388	23.5373	30.9403
2019	27.2391	23.5375	30.9406
2019	27.2392	23.5377	30.9407
2019	27.2393	23.5378	30.9409
2019	27.2394	23.5379	30.9409
2019	27.2395	23.5380	30.9410

Table 6. Forecast for Rainfall

Period	Forecast (SSM)	95% Limits	
		Lower	Upper
2018	21.9472	-83.629	127.524
2018	37.1513	-97.037	171.340
2018	49.0790	-100.014	198.172
2018	58.4364	-99.130	216.003
2018	65.7775	-96.785	228.340
2018	71.5366	-94.025	237.099
2018	76.0547	-91.327	243.436
2018	79.5992	-88.892	248.091
2018	82.3799	-86.791	251.551
2018	84.5614	-85.027	254.149
2018	86.2728	-83.571	256.117
2018	87.6154	-82.386	257.617
2019	88.6687	-81.430	258.767
2019	89.4950	-80.663	259.653
2019	90.1433	-80.051	260.338
2019	90.6518	-79.565	260.869
2019	91.0508	-79.180	261.282
2019	91.3638	-78.876	261.603
2019	91.6094	-78.635	261.854
2019	91.8020	-78.446	262.050
2019	91.9531	-78.297	262.203
2019	92.0717	-78.180	262.323
2019	92.1647	-78.087	262.417
2019	92.2377	-78.015	262.490
MLEs for the AR coefficients are 1.311 and -0.456, respectively. The roots of the characteristic equation $\phi(z) = 1 - 1.311z + 0.456z^2 = 0$ are 1.779 and 1.137, respectively.

Investigations and diagnostic were carried out by checking for correlations in the residuals and also checking for periodicity in the residuals. The results of this investigation show significant autocorrelation in the residuals indicating the presence of underlying noise terms which is not accounted for. Also, the result from the parametric spectral estimate shows underlying periodic patterns for monthly data, thus, leads to a discussion on the need to treat climatic data as a structural time series model. We selected the appropriate models by considering the goodness of fit of the models and by comparing the AIC values. Parameters were estimated and accomplished with some measures of precision. An important aspect of fitting structural models is the underlying changes in the unobserved trend component.

For the case of state-space models with correlated errors, further work can be done here by taking into consideration correlation between the error terms in state equation when considering structural models of the form trend, seasonal, cycle and an autoregressive process. This type of results is important since they show how well the Kalman filter for correlated errors carries out the filtering of the unobserved component as compared to the case when errors are not correlated.

References

[1] S. Makridakis & M. Hibon, “The M3-Competition: results, conclusions and implications”, International Journal of Forecasting, 16(2000), 451.
[2] B. Shamshad, M. Z Khan & Z. Omar, “Modeling and forecasting weather parameters using ANN-MLP, ARIMA and ETS model: a case study for Lahore, Pakistan”, Journal of Applied Statistics 5 (2019) 388.
[3] S. Afzar, N. Abbas, & B. Jan, “Comparative study of temperature and rainfall fluctuation in Hunza-Nagar District”, Journal of Basic and Applied Sciences 9 (2013) 151.
[4] N. Faisal & A. Ghaffar, “Development of Pakistan’s new area weighted rainfall using Thiessen polygon method”, Pakistan Journal of Metrology 17 (2012) 107.
[5] F. Yusof, I. L. Kane & Z. Yusop, “Structural break or long memory: An empirical survey on daily rainfall data sets across Malaysia”, Hydrology and Earth System Sciences 17 (2013) 1311.
[6] M. Zahid & G. Rasul, “Frequency of extreme temperature and precipitation events in Pakistan 1965-2009”, Science International 23 (2011) 313.
[7] J. Abbot, & J. Marohasy, “Application of artificial neural networks to rainfall in Queensland, Australia”, Advances in Atmospheric Sciences 29 (2012) 717.
[8] M. Bilgili & B. Sahin, “Prediction of long-term monthly temperature and rainfall in Turkey, Energy Sources 1 (2010) 60.
[9] R. D. Johnston, “Steady-state closed-loop structural interaction analysis”, International Journal of Control 6 (1990) 1351.
[10] J. Wang, & K. M. Cameron, “A method of constructing a modified signal-flow-graph”, International Journal of Control 12 (1993) 305.
[11] O. I. Shittu & R. A. Yemitan, “Inflation targeting with dynamic time series modelling - the Nigerian case”, International Journal of Scientific and Engineering Research 9 (2014) 206.