Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Low-Molecular-Weight Heparin Compared to Unfractionated Heparin in Critically Ill COVID-19 Patients

Panagiotis Volteas, M.D., Panagiotis Drakos, M.D., Leor N. Alkadaa, B.A., Nathaniel A. Cleri, B.S., Anthony A. Asencio, B.S., Anthony Oganov, B.S., Stefanos Giannopoulos, M.D., Jordan R. Saadon, B.S., Charles B. Mikell, III, M.D., Jerry A. Rubano, M.D., Nicos Labropoulos, Ph.D., Apostolos K. Tassiopoulos, M.D., Sima Mofakham, Ph.D., Mohsen Bannazadeh, M.D.

PII: S2213-333X(22)00260-8
DOI: https://doi.org/10.1016/j.jvsv.2022.04.019
Reference: JVSV 1428

To appear in: Journal of Vascular Surgery: Venous and Lymphatic Disorders

Received Date: 7 January 2022
Revised Date: 5 April 2022
Accepted Date: 26 April 2022

Please cite this article as: P. Volteas, P. Drakos, L.N. Alkadaa, N.A. Cleri, A.A. Asencio, A. Oganov, S. Giannopoulos, J.R. Saadon, C.B. Mikell III., J.A. Rubano, N. Labropoulos, A.K. Tassiopoulos, S. Mofakham, M. Bannazadeh, Low-Molecular-Weight Heparin Compared to Unfractionated Heparin in Critically Ill COVID-19 Patients, Journal of Vascular Surgery: Venous and Lymphatic Disorders (2022), doi: https://doi.org/10.1016/j.jvsv.2022.04.019.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022 Published by Elsevier Inc. on behalf of the Society for Vascular Surgery.
Low-Molecular-Weight Heparin Compared to Unfractionated Heparin in Critically Ill COVID-19 Patients

R1WC: 283/3228

Short Title: Low-Molecular-Weight vs Unfractionated Heparin in COVID-19 Patients

Panagiotis Volteas, M.D.¹*, Panagiotis Drakos, M.D.¹*, Leor N. Alkadaa, B.A.², Nathaniel A. Cleri, B.S.³, Anthony A. Asencio, B.S.³, Anthony Oganov, B.S.³, Stefanos Giannopoulos M.D.¹,², Jordan R. Saadon, B.S.³, Charles B. Mikell III, M.D.³, Jerry A. Rubano, M.D.¹, Nicos Labropoulos, Ph.D.², Apostolos K. Tassiopoulos, M.D.¹,², Sima Mofakham, Ph.D.³*, Mohsen Bannazadeh, M.D.¹,²*

¹Department of Surgery, Renaissance School of Medicine, Stony Brook, NY, USA
²Division of Vascular Surgery, Department of Surgery, Renaissance School of Medicine, Stony Brook, NY, USA
³Department of Neurosurgery, Renaissance School of Medicine, Stony Brook, NY, USA

*Drs. Panagiotis Volteas M.D. and Panagiotis Drakos M.D. contributed equally to this work as first authors. Sima Mofakham Ph.D. and Dr. Mohsen Bannazadeh M.D. contributed equally to this work as last authors.

Corresponding authors: Sima Mofakham Ph.D. and Dr. Mohsen Bannazadeh M.D.

Department of Surgery, HSC T-12, Room 064
Stony Brook, NY 11794

E-mail: sima.mofakham@stonybrookmedicine.edu
E-mail: mohsen.bannazadeh@stonybrookmedicine.edu

Phone: 631-444-1278
This study was presented as a virtual poster at the 2021 Eastern Vascular Society conference, Charleston, South Carolina, September 23-26, 2021.

Article Highlights

Type of Research: Single-center retrospective cohort study

Key Findings: Of 218 patients, 135 received Low-Molecular-Weight Heparin and 83 received unfractionated Heparin. Among intubated critically ill COVID-19 ICU patients, therapeutic AC, with either LMWH or UFH, conveyed no survival benefit over prophylactic AC. AC with LMWH was associated with higher cumulative survival compared to AC with UFH.

Table of Contents Summary: In this retrospective single-center cohort study of 218 critically ill intubated COVID-19 patients, therapeutic AC conveyed no survival benefit over prophylactic AC. AC with LMWH was associated with higher cumulative survival compared to AC with UFH.

Abstract

Background. Thrombosis in COVID-19 worsens mortality. In our study we sought to investigate how the dose and type of anticoagulation (AC) can influence patient outcomes.

Methods. This is a single-center retrospective analysis of critically ill intubated COVID-19 patients, comparing low molecular weight heparin (LMWH) and unfractionated heparin (UFH) at therapeutic and prophylactic doses. Of 218 patients, 135 received LMWH (70 prophylactic, 65 therapeutic) and 83 UFH (11 prophylactic, 72 therapeutic). The primary outcome was mortality. Secondary outcomes were thromboembolic complications confirmed on imaging and major bleeding complications. Cox proportional-hazards regression models were utilized to determine
whether the type and dose of AC were independent predictors of survival. We performed
Kaplan-Meier survival analysis to compare the cumulative survivals.

Results.
Overall, therapeutic AC, with either LMWH (65% versus 79%, P-value 0.09) or UFH (32%
versus 46%, P-value 0.73), conveyed no survival benefit over prophylactic AC. UFH was
associated with a higher mortality rate than LMWH (66% versus 28%, P-value 0.001), which
was also evident in the multivariable analysis (LMWH versus UFH mortality HR: 0.47, P-value
0.001) and in the Kaplan-Meier survival analysis. Thrombotic and bleeding complications did
not depend on the AC type (prophylactic LMWH vs. UFH: thrombosis P-value 0.49, bleeding P-
value 0.075, therapeutic LMWH vs. UFH: thrombosis P-value 0.5, bleeding P-value 0.17). When
comparing prophylactic to therapeutic AC, the rate of both thrombotic and bleeding
complications was higher with the use of LMWH compared with UFH. Additionally, transfusion
requirements were significantly higher with both therapeutic LMWH and UFH.

Conclusions. Among intubated critically ill COVID-19 ICU patients, therapeutic AC, with either
LMWH or UFH, conveyed no survival benefit over prophylactic AC. AC with LMWH was
associated with higher cumulative survival compared to AC with UFH.

Keywords: COVID-19, SARS-CoV-2, Low-Molecular-Weight Heparin (LMWH),
Unfractionated Heparin (UFH), Thromboprophylaxis, Anticoagulation (AC)

Introduction
The COVID-19 pandemic has led to a global health crisis with more than 471 million cases and
6 million deaths [1]. The high mortality associated with COVID-19 is partially related to
microvascular [2], and macrovascular thromboembolic complications [3, 4, 5], attributed to
SARS-CoV-2 induced thrombo-inflammation [6] and hypercoagulability [7]. The International Society on Thrombosis and Hemostasis recommended using prophylactic-doses of LMWH for all hospitalized COVID-19 patients unless they have active bleeding or low platelet count (< 25 x 10^9/L) [8], while further guidelines also stated to consider a 50% increase in the dose of thromboprophylaxis in obese patients [9]. Recent randomized controlled clinical trials have demonstrated increased survival to discharge in non-critically COVID-19 patients while no benefit was seen in critically ill patients [11,12]. In this study, we sought to identify whether the different types of AC; LMWH versus UFH, and AC level, prophylactic versus therapeutic, can have an impact on patient mortality, and the development of thrombotic and bleeding complications. We also evaluated the correlation between the type of AC and COVID-19 inflammatory markers such as CRP and IL-6 to demonstrate any potential anti-inflammatory properties of LMWH and UFH in critically ill patients affected by the SARS-CoV2 [10].

Methods

Ethics Statement

This study was a retrospective chart review of a COVID-19 patient database. Stony Brook University Committee on Research in Human Subjects approved the study protocol and supervised all study procedures according to state and federal regulations, with a waiver of informed consent.

Target Population and Data Sources

We identified all critically ill intubated COVID-19 patients admitted to Stony Brook University Hospital between February 7, 2020, and May 17, 2020. The diagnosis of COVID-19 was based on positive RT-PCR test for SARS-CoV-2. Aside from the difference in the AC type and dose,
the patients were treated in the same manner for all aspects of COVID-19 disease. We selected
the study population based on the following criteria: age \geq 18 years old, RT-PCR proven
COVID-19, initiation, and administration of chemical AC regimen for at least 24 hours, and
respiratory failure requiring endotracheal intubation. Patients were excluded from the study if
AC was never started, or the administered AC was other than LMWH or UFH. As many people
were intubated soon after their presentation to the emergency department, we elected to exclude
those who were receiving oral AC prior to hospital admission to avoid any bias in our analysis
which targeted to compare the effectiveness of LMWH versus UFH.

Electronic Medical Record (EMR) Review

We reviewed each EMR and collected the following data: demographics (age, gender, BMI),
dates of admission, intubation, comorbidities (HTN, COPD, CHF, DM, CKD), laboratory data
(D-dimer, CRP, creatinine, IL-6), SOFA score which was calculated based on lab values
obtained at the time of intubation and for 24 hours subsequently, thromboembolic complications,
both venous (DVT, PE) and arterial (MI, stroke, peripheral thrombosis), clinically significant
bleeding defined as: upper or lower gastrointestinal bleeding requiring transfusion of at least two
units of red blood cells, hemoglobin < 7 mg/dL, intracranial bleeding, other major bleeding
requiring transfusion, including massive hemoptyisis, hematuria, retroperitoneal hematoma,
intraperitoneal or intrathoracic bleeding, heparin-induced thrombocytopenia (HIT) and mortality.
An overall of 30 CT angiography scans and 20 Venous Duplex ultrasound scans were performed
in the whole cohort following clinical suspicion for VTE. For all patients, 5-month follow-up
data were available. All patients were included in the Kaplan-Meier analysis.

AC protocol
All patients admitted to Stony Brook University Hospital were placed at least on thromboprophylaxis regimen on admission, unless medically contraindicated. Our institution implemented an aggressive anticoagulation protocol, which included dose escalation based on daily measured D-dimer levels. Patients with D-dimer < 1,000 ng/mL received enoxaparin 40 mg daily, those with D-dimer ≥ 1,000 ng/mL but < 3000 ng/mL received enoxaparin 40 mg twice a day. Finally, those with D-dimer ≥ 3,000 ng/mL received therapeutic anticoagulation with enoxaparin 1 mg/kg twice a day or intravenous heparin drip at a starting rate of 18 units/kg/hr to achieve a goal PTT of 60 to 90. Therapeutic AC was also initiated whenever it was medically warranted, such as atrial fibrillation or suspected and confirmed venous thromboembolic disease (DVT, PE). Because of the absence of patient randomization, the type of AC was based on physicians’ preference and was characterized by wide heterogeneity as the patients were admitted in five different intensive care units that were managed by both medicine and surgery intensivists. When these patients were becoming critically ill, our institution was in the rapidly escalating pandemic curve. Although UFH was used more commonly in patients with known CKD or new AKI, LMWH was also used in patients despite creatinine elevation.

Data Analysis

Statistics

Statistical analyses were performed using SPSS 21.0 software (SPSS Inc, Chicago, Ill) and in-house developed coding in MATLAB. The significance level for all tests was 0.05. All reported P-values were calculated two-sided. The primary endpoint was mortality. Secondary endpoints were the development of thromboembolic and bleeding complications. Data were reported as group means and the two-tailed Student's T-statistic for several labs (D-dimer, CRP, creatinine, IL-6). We used chi-square test to compare categorical variables. Two-sample T-test or Mann-
Whitney U test were used for continuous variables as indicated based on normal distribution versus skewness of factors. Non-parametric Mann-Whitney U test analysis was performed to compare the means of maximum D-dimer, CRP, creatinine, and IL-6. Survival and its association with measured factors were evaluated using Kaplan-Meier models. Log-rank test was used to compare survival between groups. To determine whether the type and the level of AC were independent predictors of survival, we used Cox proportional-hazards regression models. Based on the univariable analysis we determined significant factors to be involved in the multivariable Cox regression model. These factors included age, gender, type of AC (UFH vs LMWH), level of AC (prophylactic vs therapeutic), SOFA score, steroid use. Entry-level for multivariable analysis was P-value <0.1. This model provided hazard ratios to estimate which parameters are independent predictors of survival. There was no missing data regarding survival measures.

Results

Study Population

Our study included 240 intubated patients Stony Brook University Hospital ICUs between February 7, 2020, and May 17, 2020. Twenty-two patients were excluded after implementation of the exclusion criteria, leaving 218 patients for analysis. We found 135 patients that received LMWH and 83 UFH. There was no significant difference in mean ages (P-value 0.7), BMI (P-value 0.7), and gender (P-value 0.062) between the LMWH and UFH groups. This cohort was divided based on therapeutic AC (65 on LMWH and 72 on UFH) and prophylactic AC dosing (once or twice daily thromboprophylaxis with 70 on LMWH and 11 on UFH) (Figure 1). There was no significant difference in the SOFA scores, calculated on the day of intubation, between
LWMH and UFH (P-value 0.5) in those who received therapeutic AC. However, there was a statistically significant difference in the prophylactic dose groups, with the SOFA score being slightly higher in those who received LMWH (P-value 0.04) (Table 1).

Primary Outcomes

Mortality

In the univariable survival analysis, sex (P-value 0.61), BMI (P-value 0.699), HTN (P-value 0.441), DM (P-value 0.583), CKD stage 3a-5 (P-value 0.153), CHF (P-value 0.253), COPD (P-value 0.284), steroid use (P-value 0.053) were not predictors of outcome. On the other hand, age above 70 years old (P-value 0.001), SOFA score above seven (P-value 0.002) and use of UFH instead of LMWH AC (P-value <0.0001) proved to be predictors of mortality. Multivariable analysis showed that patients who received UFH had higher mortality compared to patients who received LMWH, and this finding was independent of age, sex, or SOFA score (mortality LMWH vs UFH hazard ratio [HR], 0.47; 95% confidence interval [CI], 0.30-0.74; P-value 0.001). Furthermore, male sex (HR, 1.68; 95% CI, 1.01-2.78; P-value 0.044), and age over 70 years old (HR, 2.15; 95% CI, 1.36-3.39; P-value <0.001) were also predictors of higher mortality. By contrast, SOFA score greater than seven (HR, 1.33; 95% CI, 0.86-2.06; P-value 0.188) and steroid use (HR, 1.50; 95% CI, 0.69-3.3; P-value 0.303) did not reach statistical significance in the multivariable analysis (Table 2).

We performed a subgroup analysis for creatinine level less than 1.3 measured at the initiation of the therapeutic dose of AC between those who received LMWH and UFH, to account for the potential selection bias, as UFH is more commonly used in patients with decreased renal function compared to using LMWH. Similarly, to the general cohort, mortality once more was
significantly lower in the LMWH group when compared to the UFH group (32.7% versus 64%, P-value 0.002).

In Kaplan-Meier survival analysis, patients who received LMWH had higher cumulative survival than patients who received UFH in both prophylactic and therapeutic groups (P-value 0.001) (Figure 2). Cumulative survival difference between prophylactic LMWH and therapeutic LMWH was not statistically significant (P-value 0.09). Similarly, the cumulative survival difference between prophylactic UFH and therapeutic UFH did not reach statistical significance (P-value 0.73) (Figure 2).

In our patient population, the most frequent cause of death was multisystem organ failure (MSOF) (75/93 patients, 31/38 in LMWH group, and 44/55 in UFH group), primarily driven by hypoxic respiratory failure. Other less common causes of death were myocardial infarction, lethal arrhythmias, and massive pulmonary embolism.

Secondary outcomes

Thromboembolic and bleeding events

There was no significant difference in thrombotic complications, both venous (DVT, PE) and arterial (MI, stroke, peripheral thrombosis) and bleeding complications (upper and lower GI bleed, hemothorax, mediastinal and tracheostomy site bleeding) when comparing LMWH and UFH in the therapeutic groups (LMWH vs UFH: thrombosis P-value 0.5, bleeding P-value 0.17). We observed similar results when we compared LMWH and UFH in the prophylactic groups (LMWH vs UFH: thrombosis P-value 0.49, bleeding P-value 0.075). However, we found that the transfusion requirements were significantly higher in those who received therapeutic LMWH and UFH (P-value 0.001). Notably, there was no difference in the prophylactic LMWH versus prophylactic UFH groups (P-value 0.17) (Table 3). For the VTE diagnosis a total of 30
CT angiography scans and 20 Venous Duplex ultrasound scans were performed following clinical suspicion for PE and DVT, respectively.

To establish the safety profile of the administration of therapeutic AC in the management of severe COVID-19, we further compared prophylactic versus therapeutic AC for the rates of thrombotic and bleeding complications. We found that the rate of thrombotic complications was higher with the use of therapeutic compared to prophylactic LMWH (LMWH *P*-value 0.051) and the same between prophylactic and therapeutic doses of UFH (UFH *P*-value 0.45). Bleeding complications were higher in the therapeutic LMWH than prophylactic LMWH (*P*-value 0.002) but not different between prophylactic and therapeutic UFH groups (*P*-value 0.35). The rate of blood transfusions was higher with therapeutic than prophylactic AC for both LMWH and UFH (LMWH *P*-value 0.002, UFH *P*-value 0.0008) (Table 3).

Laboratory results: CRP and D-dimer levels

There was no significant difference in the maximum CRP levels between the therapeutic and prophylactic groups among those who received LMWH and UFH (Table 1). Notably, the CRP peak in both groups occurred early in the hospital course and reduced following AC treatment, both in those who received LMWH and UFH. (Figure 3).

Prophylactic AC with LMWH was associated with a significantly lower max IL-6 level in COVID-19 intubated patients when compared with the UFH group (*P*-value 0.003), although our data were limited (n=6). However, there was no statistically significant difference in the maximum IL-6 level between LMWH and UFH in those who received therapeutic AC (n=35) (*P*-value 0.6) (Table 1).

Maximum D-dimer levels were not statistically different between therapeutic and prophylactic groups among patients who received LMWH and UFH (Table 1). The D-dimer peak occurred
early in the ICU course matching the time of AC initiation, and following the same trend as CRP, gradually down-trended over the hospital course (Figure 3).

Discussion

Our study found that in critically ill intubated patients hospitalized with COVID-19, therapeutic AC did not affect the cumulative survival compared to prophylactic AC, with either LMWH or UFH. Our findings are in line with the most lately published National Institution of Health guidelines, according to which therapeutic doses of heparin has no significant benefit in patients with COVID-19 admitted to the ICU, unless VTE is confirmed [13]. We analyzed patients that suffered from COVID-19 during the first wave of the pandemic, when no official guidelines for AC in COVID-19 existed. Our decision to implement an aggressive AC protocol, similar to a protocol proposed by the European Society of Cardiology [15] was based on our observation that severe arterial and venous thromboembolic events emerged despite the use of routine thromboprophylaxis. Although the escalation of AC to high intensity thromboprophylaxis and furthermore to therapeutic AC in our cohort of patients was associated with significantly improved organ function and overall survival [14], and that this practice might be able to balance the negative effects of obesity on the overall patient mortality [16], the most updated NIH guidelines recommend against this practice and advice over de-escalation of AC once patients get admitted to the ICU [13]. The cornerstone of these recommendations is based on two randomized controlled clinical trials by the REMAP-CAP/ACTIV-4a/ATTACC investigators who showed that although the strategy to administer therapeutic AC increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support as compared with the administration of prophylactic AC in non-critically ill
patients [11], this benefit disappeared in critically ill patients who received ICU level of care [12]. We also support the hypothesis that has been made by the clinical trial investigators that the initiation of therapeutic AC after severe COVID-19 has developed may be too late to alter the consequences of established disease processes [12].

We also found that in critically ill intubated patients hospitalized with COVID-19, UFH was associated with higher mortality rate compared to those who received LMWH, regardless of the AC level, prophylactic or therapeutic. LMWH has been the mainstay AC regimen in most studies, as it was shown early in the COVID-19 pandemic to be associated with better prognosis, especially in severe COVID-19 patients with sepsis induced coagulopathy score (SIC) score ≥4 or D-dimer >6-fold of upper limit of normal [17]. Our observation regarding the superiority of LMWH agrees with the findings from a large intention to treat trial in which UFH was not associated with significant survival benefit, administered at prophylactic or therapeutic doses while LMWH improved survival when given as prophylaxis [15].

The rate of thrombo-embolic complications was higher with the use of therapeutic LMWH compared to prophylactic LMWH, while the rate was similar between therapeutic and prophylactic UFH groups. This can be explained by the fact that in our institution we do not regularly monitor the anticoagulant effect of LMWH with anti-factor Xa levels which could lead to subtherapeutic levels [18,19]. This is further supported by a recent observation in which COVID-19 patients who were administered anti-Factor Xa–guided LMWH were achieving appropriate levels compared to weight-based approach [20]. There was no observed superiority of LMWH versus UFH, when these were compared at prophylactic and therapeutic doses respectively in preventing imaging confirmed macrovascular thromboembolic complications.

These findings should be interpreted with caution though. Due to the risk of viral contamination...
and the instability of critically ill COVID-19 patients that frequently precluded transportation, we did not routinely screen all our patients for the presence of subclinical PE or DVT and thus we have probably underestimated the true VTE rate. It has been shown in studies that adopted a more systematic screening approach that there was a higher VTE incidence compared to the ones that implemented imaging upon clinical suspicion only [21].

Previous studies have also shown that elevated D-dimer levels is a marker of COVID-19 hypercoagulability and disease severity, linked with worse mortality [22,23]. Our analysis found that the peak of the D-dimers matched the time of intubation and although there was no difference in the maximum D-dimer level between LMWH and UFH, regardless of AC dose, their levels significantly decreased after AC escalation, during the patients’ hospital course. Our findings were supported by another retrospective study in which the early implementation of AC was associated with down trending D-dimer levels and improved 30-day mortality in patients suffering from severe COVID-19 [24]. Based on the most updated NIH guidelines, therapeutic AC is currently recommended in adults with D-dimer levels above the upper limit, but only for those who require low-flow oxygen and do not require ICU-level of care [13].

Despite the survival benefit of AC administration to COVID-19 patients, a major contributor to morbidity and mortality is clinically significant bleeding. In our cohort when comparing LMWH to UFH, there was no difference in bleeding risk. This finding has been supported by studies that showed equivalent bleeding risk among patients receiving either LMWH or UFH [25], although others indicate that LMWH is associated with less risk for major bleeding, mostly attributed to more predictable anticoagulant response [26].

On the other hand, when comparing level of AC, we found that those who received therapeutic LMWH had higher bleeding complications compared to those on prophylactic, while there was
no difference in the UFH group between prophylactic or therapeutic doses. Although the
development of clinically significant bleeding with therapeutic AC is intuitive from a
physiologic perspective since higher doses can lead to impaired clotting, some studies have
shown no statistically significant difference in major bleeding events between prophylactic and
therapeutic AC in COVID-19 patients [27,28]. Nevertheless, our findings seem to be in line with
other studies in which therapeutic AC was associated with an increased risk of major bleeding
[30] although this observation could be due to a relative bias towards administering higher doses
of AC to sicker patients with higher D-dimer levels, [31], which was also the case in out cohort.
In our study population, the transfusion requirements were significantly higher in both LMWH
and UF therapeutic dose groups compared to prophylactic groups. Even though previous studies
have shown no difference in transfusion requirements with therapeutic AC [28,29], anemia
which is common in patients requiring ICU level of care, can be attributed not only to bleeding
events but also to decreased erythropoiesis by the cytokine-induced inflammatory status and the
frequent venipunctures [4].

Limitations
Our study has a retrospective, observational, opportunistic design based on a single center
experience, that was feasible in the setting of a new evolving phenomenon during which our
understanding of SARS-CoV2 was expanding. The fact that pulmonary embolism is common in
patients with severe COVID-19 infection and imaging was underutilized might have led to
underdiagnosis of thromboembolic complications. Our study did not include patients who did not
receive AC and thus we cannot make safe assumptions as to if some of the mortalities could be
attributed clearly to adverse effects of AC. The preferential administration of UFH to patients
with elevated creatinine could also introduce a potential selection bias. In our attempt to control this, we evaluated patients with acceptable renal function. Still, the small sample size precluded further conclusions in those who received prophylactic AC dose. Even though we found a statistically significant difference in the survival between LMWH and UFH in patients with creatinine <1.3, this comparison needs to be made with caution due to possibility for unobserved differences between the groups.

Conclusions. Among intubated critically ill COVID-19 ICU patients, therapeutic AC, with either LMWH or UFH, conveyed no survival benefit or greater organ support free days over prophylactic AC. AC with LMWH was associated with higher cumulative survival compared to AC with UFH.

References

1. https://www.worldometers.info/coronavirus/

2. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020 Jul 16;383(2):120-128. doi: 10.1056/NEJMoa2015432. Epub 2020 May 21. PMID: 32437596; PMCID: PMC7412750.

3. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res. 2020 Jul;191:148-150. doi: 10.1016/j.thromres.2020.04.041. Epub 2020 Apr 30. PMID: 32381264; PMCID: PMC7192101.
14. Nadkarni GN, Lala A, Bagiella E, Chang HL, Moreno PR, Pujadas E, Arvind V, et al. Anticoagulation, Bleeding, Mortality, and Pathology in Hospitalized Patients With COVID-19. J Am Coll Cardiol. 2020 Oct 20;76(16):1815-1826. doi: 10.1016/j.jacc.2020.08.041. Epub 2020 Aug 26. PMID: 32860872; PMCID: PMC7449655.

55. Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann Intern Med. 2020 Aug 18;173(4):268-277. doi: 10.7326/M20-2003. Epub 2020 May 7. PMID: 32374815; PMCID: PMC7240772.

96. Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020 Jul;18(7):1559-1561. doi: 10.1111/jth.14849. Epub 2020 May 26. PMID: 32302453.

127. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020 Jun;46(6):1089-1098. doi: 10.1007/s00134-020-06062-x. Epub 2020 May 4. PMID: 32367170; PMCID: PMC7197634.

168. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020 May;18(5):1023-1026. doi: 10.1111/jth.14810. Epub 2020 Apr 27. PMID: 32338827.

199. Spyropoulos AC, Levy JH, Ageno W, Connors JM, Hunt BJ, Iba T, et al. Subcommittee on Perioperative, Critical Care Thrombosis, Haemostasis of the Scientific, Standardization Committee of the International Society on Thrombosis and Haemostasis. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J Thromb
1 Haemost. 2020 Aug;18(8):1859-1865. doi: 10.1111/jth.14929. PMID: 32459046; PMCID:
2 PMC7283841.
310. Shi C, Wang C, Wang H, Yang C, Cai F, Zeng F, et al. The Potential of Low Molecular Weight
4 Heparin to Mitigate Cytokine Storm in Severe COVID-19 Patients: A Retrospective Cohort
5 Study. Clin Transl Sci. 2020 Nov;13(6):1087-1095. doi: 10.1111/cts.12880. Epub 2020 Oct
6 15. PMID: 32881340; PMCID: PMC7719364.
711. The ATTACC, ACTIV-4a, and REMAP-CAP Investigators. Therapeutic Anticoagulation with
8 Heparin in Noncritically Ill Patients with Covid-19. N Engl J Med. 2021 Aug;26(385):790-802.
9 DOI: 10.1056/NEJMoa2105911
1012. The ATTACC, ACTIV-4a, and REMAP-CAP Investigators. Therapeutic Anticoagulation with
11 Heparin in Critically Ill Patients with Covid-19. N Engl J Med. 2021Aug;26(385):777-789. DOI:
12 10.1056/NEJMoa2103417
1313. https://www.covid19treatmentguidelines.nih.gov/man...management/hospitalized-adults--therapeutic--
14 management/?utm_source=site&utm_medium=home&utm_campaign=highlights
1614. Tassiopoulos AK, Mofakham S, Rubano JA, Labropoulos N, Bannazadeh M, Drakos P, et al. D-
17 Dimer-Driven Anticoagulation Reduces Mortality in Intubated COVID-19 Patients: A Cohort
study With a Propensity-Matched Analysis. Front Med (Lausanne). 2021 Feb 4;8:631335. doi:
18 10.3389/fmed.2021.631335. PMID: 33634153; PMCID: PMC7902033.
2015. Atallah B, Mallah SI, AlMahmeed W. Anticoagulation in COVID-19. Eur Heart J Cardiovasc
21 Pharmacother. 2020 Jul 1;6(4):260-261. doi: 10.1093/ehjcyp/pvaa036. PMID: 32352517;
22 PMCID: PMC7197600.
116. Drakos P, Volteas P, Naeem Z, Asencio AA, Cleri NA, Alkadaa LN, et al. Aggressive Anticoagulation May Decrease Mortality in Obese Critically Ill COVID-19 Patients. Obes Surg. 2022 Feb;32(2):391-397. doi: 10.1007/s11695-021-05799-8. Epub 2021 Nov 24. PMID: 34816357; PMCID: PMC8610786.

517. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020 May;18(5):1094-1099. doi: 10.1111/jth.14817. Epub 2020 Apr 27. PMID: 32220112.

918. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001 Jan;119(1 Suppl):64S-94S. doi: 10.1378/chest.119.1_suppl.64s. PMID: 11157643.

1319. Bigos R, Solomon E, Dorfman JD, Ha M. A Weight- and Anti-Xa-Guided Enoxaparin Dosing Protocol for venous thromboembolism Prophylaxis in intensive care unit Trauma Patients. J Surg Res. 2021 Sep;265:122-130. doi: 10.1016/j.jss.2021.02.034. Epub 2021 Apr 28. PMID: 33930618.

1720. Dutt T, Simcox D, Downey C, McLenaghan D, King C, Gautam M, et al. Thromboprophylaxis in COVID-19: Anti-FXa-the Missing Factor? Am J Respir Crit Care Med. 2020 Aug 1;202(3):455-457. doi: 10.1164/rccm.202005-1654LE. PMID: 32510975; PMCID: PMC7397804.

2121. Jenner WJ, Kanji R, Mirsadraee S, Gue YX, Price S, Prasad S, et al. Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: a systematic review. J Thromb
1. Thrombolysis. 2021 Apr;51(3):595-607. doi: 10.1007/s11239-021-02394-7. Epub 2021 Feb 14. PMID: 33586113; PMCID: PMC7882250.

2. Lippi G, Favaloro EJ. D-dimer is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb Haemost. 2020 May;120(5):876-878. doi: 10.1055/s-0040-1709650. Epub 2020 Apr 3. PMID: 32246450; PMCID: PMC7295300.

3. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020 Jun;18(6):1421-1424. doi: 10.1111/jth.14830. Epub 2020 May 6. PMID: 32271988; PMCID: PMC7262324.

4. Hsu A, Liu Y, Zayac AS, Olszewski AJ, Reagan JL. Intensity of anticoagulation and survival in patients hospitalized with COVID-19 pneumonia. Thromb Res. 2020 Dec;196:375-378. doi: 10.1016/j.thromres.2020.09.030. Epub 2020 Sep 23. PMID: 32980620; PMCID: PMC7511207.

5. He P, Liu Y, Wei X, Jiang L, Guo W, Guo Z, et al. Comparison of enoxaparin and unfractionated heparin in patients with non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention: a systematic review and meta-analysis. J Thorac Dis. 2018 Jun;10(6):3308-3318. doi: 10.21037/jtd.2018.05.113. PMID: 30069327; PMCID: PMC6051807.

6. Spyropoulos AC, Levy JH, Ageno W, Connors JM, Hunt BJ, Iba T, Levi M, et al. Subcommittee on Perioperative, Critical Care Thrombosis, Haemostasis of the Scientific, Standardization Committee of the International Society on Thrombosis and Haemostasis. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020 Aug;18(8):1859-1865. doi: 10.1111/jth.14929. PMID: 32459046; PMCID: PMC7283841.
20. Paranjpe I, Fuster V, Lala A, Russak AJ, Glicksberg BS, Levin MA, et al. Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19. J Am Coll Cardiol. 2020 Jul 7;76(1):122-124. doi: 10.1016/j.jacc.2020.05.001. Epub 2020 May 6. PMID: 32387623; PMCID: PMC7202841.

528. Jonmarker S, Hollenberg J, Dahlberg M, Stackelberg O, Litorell J, Everhov ÅH, et al. Dosing of thromboprophylaxis and mortality in critically ill COVID-19 patients. Crit Care. 2020 Nov 23;24(1):653. doi: 10.1186/s13054-020-03375-7. PMID: 33225952; PMCID: PMC7680989.

829. Billett HH, Reyes-Gil M, Szymanski J, Ikemura K, Stahl LR, Lo Y, Rahman S, et al. Anticoagulation in COVID-19: Effect of Enoxaparin, Heparin, and Apixaban on Mortality. Thromb Haemost. 2020 Dec;120(12):1691-1699. doi: 10.1055/s-0040-1720978. Epub 2020 Nov 13. PMID: 33186991; PMCID: PMC7869055.

1230. Fraissé M, Logre E, Pajot O, Mentec H, Planteфève G, Contou D. Thrombotic and hemorrhagic events in critically ill COVID-19 patients: a French monocenter retrospective study. Crit Care. 2020 Jun 2;24(1):275. doi: 10.1186/s13054-020-03025-y. PMID: 32487122; PMCID: PMC7265664.

1631. Musoke N, Lo KB, Albano J, Peterson E, Bhargav R, Gul F, et al. Anticoagulation and bleeding risk in patients with COVID-19. Thromb Res. 2020 Dec;196:227-230. doi: 10.1016/j.thromres.2020.08.035. Epub 2020 Aug 24. PMID: 32916565; PMCID: PMC7444469.
Table 1. Characteristics of patients that were on LMWH vs. UFH prophylactic vs. therapeutic level of AC.

	LMWH	UFH	P-value
SOFA (mean ± SD)			
prophylactic	5.8+0.23	4.09+0.95	0.04
therapeutic	5.8+0.24	7.6+0.25	0.5
Max D-dimer for			
prophylactic (mean ± SE)	3472+458	3223+989	0.64
therapeutic	12672+1618	11743+1470	0.67
Admit Creatinine for			
prophylactic (mean ± SE)	0.99+0.11	1.34+0.25	0.14
	Max Creatinine for prophylactic (mean ± SE)	Max Creatinine for therapeutic (mean ± SE)	p-value
--------------------------	---	---	---------
Admit Creatinine for	1.46+0.18	1.9+0.25	0.017
therapeutic			
Max CRP, prophylactic	36.18+4.9	39.49+13.7	0.97
(mean ± SE)			
Max CRP, therapeutic	40.4+4.3	39.7+3.8	0.88
(mean ± SE)			
Max Interleukin 6	218+70	1949+1134	0.003
(Vivacor), prophylactic			
(mean ± SE)			
Max Interleukin 6	428+120	284+73	0.6
(Vivacor), therapeutic			
(mean ± SE)
Table 2. Multivariable analysis

Variable	Comparison level	Hazard Ratio (95% CI.)	*P*-value
Sex	Male vs. Female	1.68 (1.01-2.78)	0.044
Anticoagulation type	LMWH vs. UFH	0.47 (0.30-0.74)	0.001
Age	More than 70 vs. Less than 70 years old	2.15 (1.36-3.39)	0.001
SOFA	More than 7 vs. Less than 7	1.33 (0.86-2.06)	0.188
Steroids	On vs. off steroids	1.50 (0.69-3.30)	0.303
Table 3. Comparing the complications of LMWH vs. UFH in prophylactic vs. therapeutic AC doses.

Complications	Prophylactic	Therapeutic	P- value
	UFH 11	UFH 72	
	LMWH 70	LMWH 65	
Thromboembolic	9%	18.06%	0.45
UFH	4.2%	13.8%	0.051
LMWH			
Bleeding	18.1%	31.9%	0.35
UFH	4.2%	21.54%	**0.002**
LMWH			
HIT	0	4.17%	
UFH	0	1.54%	
LMWH			
Received Transfusion	36.3%	72.2%	**0.0008**
UFH	18.5%	38.46%	**0.002**
LMWH			
Condition	UFH (n=11)	LMWH (n=70)	p-value
---------------------------	------------	-------------	---------
Thromboembolic PE/DVT	18.06%	13.8%	0.5
Arterial complications	9.7%	9.2%	0.9
Bleeding	31.9%	21.54%	0.17
HIT	4.17%	1.54%	0.36
Received transfusion	72.2%	38.46%	0.001
Prophylactic UFH (n=11)			
Thromboembolic	9%	4.2%	0.49
Bleeding	18.1%	4.2%	0.075
HIT	0%	0%	
Received transfusion	36.3%	18.5%	0.17
Figure 1. Patient selection algorithm
Figure 2. AC with LMWH is associated with significantly higher cumulative survival compared to UFH based AC, regardless of AC level, prophylactic or therapeutic. There was no difference in cumulative survival when comparing prophylactic UFH to therapeutic UFH. Similarly, there was no difference in cumulative survival when comparing prophylactic LMWH to therapeutic LMWH.
Figure 3. Evolution of the critical inflammation markers and organ function laboratory values over the ICU period in COVID-19 intubated patients treated by UFH (green, n = 83) and LMWH (blue, n = 134), regardless of AC level.