Hardness result for the total rainbow k-connection of graphs

Wenjing Li, Xueliang Li, Di Wu

1 Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
liwenjing610@mail.nankai.edu.cn; lxl@nankai.edu.cn; wudiol@mail.nankai.edu.cn

Abstract

A path in a total-colored graph is called total rainbow if its edges and internal vertices have distinct colors. For an ℓ-connected graph G and an integer k with $1 \leq k \leq \ell$, the total rainbow k-connection number of G, denoted by $trc_k(G)$, is the minimum number of colors used in a total coloring of G to make G total rainbow k-connected, that is, any two vertices of G are connected by k internally vertex-disjoint total rainbow paths. In this paper, we study the computational complexity of total rainbow k-connection number of graphs. We show that it is NP-complete to decide whether $trc_k(G) = 3$.

Keywords: total rainbow k-connection number, computational complexity.
AMS subject classification 2010: 05C15, 05C40, 68Q17, 68Q25, 68R10.

1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. We follow the terminology and notation of Bondy and Murty\cite{2} for those not defined here. A set of internally vertex-disjoint paths are called disjoint. Let G be a nontrivial connected graph with an edge-coloring $c : E(G) \to \{0, 1, \ldots, t\}$, $t \in \mathbb{N}$, where adjacent edges may be colored the same. A path in G is called a rainbow path if no two edges of the path are colored the same. The graph G is called rainbow connected if for any two vertices of G, there is a rainbow path connecting them. The rainbow connection

*Supported by NSFC No.11371205 and 11531011.
number of G, denoted by $rc(G)$, is defined as the minimum number of colors that are needed to make G rainbow connected. If G is an ℓ-connected graph with $\ell \geq 1$, then for any integer $1 \leq k \leq \ell$, G is called rainbow k-connected if any two vertices of G are connected by k disjoint rainbow paths. The rainbow k-connection number of G, denoted by $rc_k(G)$, is the minimum number of colors that are required to make G rainbow k-connected. The concepts of rainbow connection and rainbow k-connection of graphs were introduced by Chartrand et al. in [6, 5], and have been well-studied since then. For further details, we refer the readers to the book [15].

Let G be a nontrivial connected graph with a vertex-coloring $c : V(G) \to \{0, 1, \ldots, t\}$, $t \in \mathbb{N}$, where adjacent vertices may be colored the same. A path in G is called a vertex-rainbow path if no interval vertices of the path are colored the same. The graph G is rainbow vertex-connected if for any two vertices of G, there is a vertex-rainbow path connecting them. The rainbow vertex-connection number of G, denoted by $rvc(G)$, is the minimum number of colors used in a vertex-coloring of G to make G rainbow vertex-connected. If G is an ℓ-connected graph with $\ell \geq 1$, then for any integer $1 \leq k \leq \ell$, the graph G is rainbow vertex k-connected if any two vertices of G are connected by k disjoint vertex-rainbow paths. The rainbow vertex k-connection number of G, denoted by $rvc_k(G)$, is the minimum number of colors that are required to make G rainbow vertex k-connected. These concepts of rainbow vertex connection and rainbow vertex k-connection of graphs were proposed by Krivelevich and Yuster [11] and Liu et al. [16], respectively.

Liu et al. [17] introduced the analogous concepts of total rainbow k-connection of graphs. Let G be a nontrivial ℓ-connected graph with a total-coloring $c : E(G) \cup V(G) \to \{0, 1, \ldots, t\}$, $t \in \mathbb{N}$, where $\ell \geq 1$. A path in G is called a total-rainbow path if its edges and interval vertices have distinct colors. For any integer $1 \leq k \leq \ell$, the graph G is called total rainbow k-connected if any two vertices of G are connected by k disjoint total-rainbow paths. The total rainbow k-connection number of G, denoted by $trc_k(G)$, is the minimum number of colors that are needed to make G total rainbow k-connected.
When $k = 1$, we simply write $trc(G)$, just like $rc(G)$ and $rvc(G)$. From Liu et al.\cite{17}, we have that $trc(G) = 1$ if and only if G is a complete graph, and $trc(G) \geq 3$ if G is not complete. If G is an ℓ-connected graph with $\ell \geq 1$, then $trc_k(G) \geq 3$ if $2 \leq k \leq \ell$, and $trc_k(G) \geq 2diam(G) - 1$ for $1 \leq k \leq \ell$, where $diam(G)$ denotes the diameter of G. In relation to $rc_k(G)$ and $rvc_k(G)$, they have $trc_k(G) \geq \max(rc_k(G), rvc_k(G))$. Also, if $rc_k(G) = 2$, then $trc_k(G) = 3$. If $rvc_k(G) \geq 2$, then $trc_k(G) \geq 5$.

The computational complexity of the rainbow connectivity and vertex-connectivity has been attracted much attention. In \cite{4}, Chakraborty et al. proved that deciding whether $rc(G) = 2$ is NP-Complete. Analogously, Chen et al.\cite{8} showed that it is NP-complete to decide whether $rvc(G) = 2$. Motivated by \cite{4, 8}, we consider the computational complexity of computing the total rainbow k-connectivity $trc_k(G)$ of a graph G. For $k = 1$, Chen et al. recently gave reductions to prove that it is NP-complete to decide whether $trc(G) = 3$ in \cite{7}. In this paper, we prove that for any fixed $k \geq 1$ it is NP-complete to decide whether $trc_k(G) = 3$. The reduction of our proof is different from that in \cite{7}.

\section{Main results}

In the following, we will show that deciding whether $trc_k(G) = 3$ is NP-complete for fixed $k \geq 1$.

\textbf{Theorem 2.1.} Given a graph G, deciding whether $trc_k(G) = 3$ is NP-Complete for fixed $k \geq 1$.

We first define the following three problems.

\textbf{Problem 1.} The total rainbow connection number 3.

Given: Graph $G = (V, E)$.

Decide: Whether there is a total coloring of G with 3 colors such that all the pairs $\{u, v\} \in (V \times V)$ are total rainbow k-connected?
Problem 2. The subset total rainbow k-connection number 3.

Given: Graph $G = (V, E)$ and a set of pairs $P \subseteq (V \times V)$, where P contains nonadjacent vertex pairs.

Decide: Whether there is a total-coloring of G with 3 colors such that all the pairs $\{u, v\} \in P$ are total rainbow k-connected?

Problem 3. The subset partial edge-coloring.

Given: Graph $G = (V, E)$ with a set of pairs $Q \subseteq V \times V$ where Q contains nonadjacent vertex pairs, and a partial 2-edge-coloring $\hat{\chi}$ for $\hat{E} \subseteq E$.

Decide: Whether $\hat{\chi}$ can be extended to a 3-total-coloring χ of G that makes all the pairs in Q total rainbow k-connected and $\chi(e) \notin \{\chi(u), \chi(v)\}$ for all $e = uv \in \hat{E}$?

In the following, we first reduce Problem 2 to Problem 1, and then reduce Problem 3 to Problem 2. Finally, Theorem 2.1 is completed by reducing 3-SAT to Problem 3.

Before proving Theorem 2.1, we need an useful result shown in [6].

Lemma 2.2. [6] For every $k \geq 2$, $rc_k(K_{(k+1)^2}) = 2$. Furtherly, the following 2-edge coloring can make G rainbow k-connected. Let $G_1, G_2, \ldots, G_{k+1}$ be mutually vertex-disjoint graphs, where $V(G_i) = V_i$, such that $G_i = K_{k+1}$ for $1 \leq i \leq k + 1$. Let $V_i = \{v_{i,1}, v_{i,2}, \ldots, v_{i,k+1}\}$ for $1 \leq i \leq k+1$. Let G be the join of the graphs $G_1, G_2, \ldots, G_{k+1}$. Thus $G = K_{(k+1)^2}$ and $V(G) = \bigcup_{i=1}^{k+1} V_i$. We assign the edge uv of G the color 0 if either $uv \in E(G_i)$ for some $i(1 \leq i \leq k + 1)$ or if $uv = v_{i,j}v_{j,l}$ for some i,j,l with $1 \leq i,j,l \leq k + 1$ and $i \neq j$. All other edges of G are assigned the color 1.

For $k = 1$, since $rc_1(K_{(k+1)^2}) = 1$, the above coloring surly makes G rainbow 1-connected.

Note that from the above coloring, for every vertex $v \in V(G)$, we have $d(v) = k^2 + 2k$, $2k$ edges incident with v colored with 0, and k^2 edges incident with v colored with 1.

Lemma 2.3. $\text{Problem 2} \preceq \text{Problem 1}$.

4
Finally, the remaining uncolored edges are colored with 0. Now we show that rainbow paths in G are total rainbow k-connected. We now extend it to a total rainbow k-connection coloring $\chi' : V' \cup E' \to \{0, 1, 2\}$, $\chi'(x) = 2$ for all $x \in V' \setminus V$; $\chi'(v, x_{(v,i)}) = 1$ for all $v \in V$ and $x_{(v,i)} \in V_v$; $\chi'(u, x_{(u,v,i)}) = 0, \chi'(v, x_{(u,v,i)}) = 1$ for all $\{u, v\} \in (V \times V) \setminus P$ and all $x_{(u,v,i)} \in V_{(u,v)}$. The edges in $G'[V_v]$ or $G'[V_{(u,v)}]$ are colored with $0, 1$ as Lemma 2.2 for all $v \in V$ and all $\{u, v\} \in (V \times V) \setminus P$. Finally, the remaining uncolored edges are colored with 0. Now we show that G' is total rainbow k-connected under this coloring. For $\{u, v\} \in P$, the k disjoint total rainbow paths in G connecting u and v are also k-disjoint total rainbow paths in G'. For $\{u, v\} \in (V \times V) \setminus P$, $\{ux_{(u,v,1)}v, ux_{(u,v,2)}v, \ldots, ux_{(u,v,k)}v\}$ are k-disjoint total
Lemma 2.4. Problem 3 ≤ Problem 2.

Proof. Since the identity of the colors does not matter, it is more convenient that instead of a partial 2-edge coloring \(\hat{\chi} \) we consider the corresponding partition \(\pi_{\hat{\chi}} = (\hat{E}_1, \hat{E}_2) \). For the sake of convenience, let \(e = e^1 e^2 \) for \(e \in (\hat{E}_1 \cup \hat{E}_2) \). Note that the ends of \(e \) may be labeled by different signs for \(e \in (\hat{E}_1 \cup \hat{E}_2) \). Given such a partial 2-edge coloring \(\hat{\chi} \) and a set of pairs \(Q \subseteq (V \times V) \) where \(Q \) contains nonadjacent vertex pairs. Now we construct a graph \(G' = (V', E') \) and define a set of pairs \(P \subseteq (V' \times V') \) as follows. We first add the vertices

\[
\{c, b_1, b_2\} \cup \left\{\{c^j, d^j_{e^j}, f^j_{e^j}\} : j \in \{1, 2\}, e \in (\hat{E}_1 \cup \hat{E}_2)\right\}
\]

and add the edges

\[
\{b_1 c, b_2 c\} \cup \left\{c c^j_{e^j} : j \in \{1, 2\}, e \in (\hat{E}_1 \cup \hat{E}_2)\right\} \cup \left\{c^j f^j_{e^j}, c^j e^j, d^j_{e^j} : e \in (\hat{E}_1 \cup \hat{E}_2)\right\}.
\]

Now we define the set of pairs \(P \).

\[
P =Q \cup \{b_1, b_2\} \cup \left\{b_i, c_i^j : e \in \hat{E}_i, i, j \in \{1, 2\}\right\} \cup \left\{f^j_{e^j}, c^j, \{d^j_{e^j}, c^j, d^j_{e^j}, e^{(3-j)}\} : j \in \{1, 2\}, e \in (\hat{E}_1 \cup \hat{E}_2)\right\}.
\]
Given a 3CNF formula

Proof.

Then we secondly add the new vertices

\[\{g(u,v,2), g(u,v,3), \ldots, g(u,v,k)\} : \{u,v\} \in P \setminus Q \]

and add the new edges

\[\{ug(u,v,2)v, ug(u,v,3)v, \ldots, ug(u,v,k)v\} : \{u,v\} \in P \setminus Q\].

On one hand, if there is a 3-total-coloring of \(\chi \) of \(G \) that makes all the pairs in \(Q \) total rainbow \(k \)-connected which extends \(\pi_\chi = (\hat{E}_1, \hat{E}_2) \) and \(\chi(e) \notin \{\chi(e^1), \chi(e^2)\} \) for all \(e = e^1e^2 \in \hat{E}, \) then we give a total-coloring \(\chi' \) of \(G' \) as follows. Suppose w.l.o.g that \(\hat{E}_1 \) are colored with 0, and \(\hat{E}_2 \) are colored with 1. \(\chi'(v) = \chi(v), \) and \(\chi'(e) = \chi(e) \) for all \(v \in V, e \in E; \chi'(v) = 2 \) for all \(v \in V' \setminus V; \chi'(b_1c) = 1, \) and \(\chi'(b_2c) = 0; \chi'(c_1e^j) = \chi'(c_2e^j) = 0, \) and \(\chi'(d_i^je^j) = \{1,2\} \setminus \chi(e^j) \) for all \(e \in \hat{E}_1; \chi'(c_1e^j) = \chi'(c_2e^j) = 1, \) and \(\chi'(d_i^je^j) = \{0,2\} \setminus \chi(e^j) \) for all \(e \in \hat{E}_2; \chi'(ug(u,v,t)) = 0, \) and \(\chi'(g(u,v,t)v) = 1 \) for all \(2 \leq t \leq k \) and all \(\{u,v\} \in P \setminus Q. \) One can verify that this coloring indeed makes all the pairs in \(P \) total rainbow \(k \)-connected.

On the other hand, any 3-total-coloring of \(G' \) that makes all the pairs in \(P \) total rainbow \(k \)-connected indeed makes all the pairs in \(Q \) total rainbow \(k \)-connected in \(G, \) because \(G' \) contains no path of length 2 between any pair in \(Q \) that is not contained in \(G. \)

Note that there exactly exist \(k \) disjoint total rainbow paths between any pair in \(P \setminus Q. \) For any \(e \in \hat{E}_i, i \in \{1,2\}, \) from the set of pairs \(\{\{b_1,b_2\}, \{b_i,c_i\}, \{f_j^i,e^j\}, \{d_j^i,c_i\}, \{d_j^i(3-j)\}: j \in \{1,2\}\}, \) we have \(\chi'(b_1c) \neq \chi'(b_2c), \chi'(e) = \chi'(c_1e^j) = \chi'(c_2e^j) = \chi'(b_{(3-j)}c) \) and \(\chi'(e) \notin \{\chi'(e^1), \chi'(e^2)\} \) for \(j \in \{1,2\}. \) Hence the coloring \(\chi' \) of \(G' \) not only provides a 3-total-coloring \(\chi \) of \(G \) that makes all the pairs in \(Q \) are total rainbow \(k \)-connected, but it also make sure that \(\chi \) extends the original partial coloring \(\pi_\chi = (\hat{E}_1, \hat{E}_2) \) and \(\chi(e) \notin \{\chi(e^1), \chi(e^2)\} \) for all \(e = e^1e^2 \in \hat{E}. \)

\[\square \]

Lemma 2.5. 3-SAT \(\leq \) Problem 3.

Proof. Given a 3CNF formula \(\phi = \bigwedge_{i=1}^m c_i \) over variables \(\{x_1, x_2, \ldots, x_n\}, \) we construct a graph \(G = (V, E), \) a partial 2-edge coloring suppose w.l.o.g that \(\chi : \hat{E} \to \{0,1\}, \) and
a set of pairs $Q \subseteq (V \times V)$ where Q contains nonadjacent vertex pairs such that there is an extension χ of $\hat{\chi}$ that makes all the pairs in Q total rainbow k-connected and $\chi(e) \notin \{\chi(u), \chi(v)\}$ for all $e = uv \in \hat{E}$ if and only if ϕ is satisfiable. We define G as follows:

$$V(G) = \{c_t : t \in [m]\} \cup \{c^j_t, t \in [m], 2 \leq j \leq k\} \cup \{x_i : i \in [n]\} \cup \{s\}$$

and

$$E(G) = \{c_t x_i : x_i \in c_t \text{ in } \phi\} \cup \{sx_i : i \in [n]\} \cup \{sc^j_t c_t : t \in [m], 2 \leq j \leq k\}.$$

Now we define the set of pairs Q as follows:

$$Q = \\{\{s, c_t\} : t \in [m]\}.$$

Finally we define the partial 2-edge coloring $\hat{\chi}$ as follows:

$$\hat{\chi}(c_t x_i) = \begin{cases}
0 & \text{if } x_i \text{ is positive in } c_t, \\
1 & \text{if } x_i \text{ is negative in } c_t.
\end{cases}$$

On one hand, if ϕ is satisfiable with a truth assignment over $\{x_1, x_2, \ldots, x_n\}$, we extend $\hat{\chi}$ to χ as follows: $\chi(v) = 2$ for all $v \in V$; $\chi(sc^j_t) = 0$, and $\chi(c^j_t c_t) = 1$ for all $t \in [m]$ and all $2 \leq j \leq k$; $\chi(sx_i) = x_i$ for all $i \in [n]$. One can verify χ is as desired. On the other hand, suppose that χ is as desired as above. Note that for any c_t, there must exist a total rainbow path $sx_i c_t$ by some vertex x_i. Set such $x_i = \{\chi(sx_i), \chi(x_i)\} \cap \{0, 1\}$ which can make c_t true. One can verify ϕ is satisfiable.

References

[1] P. Ananth, M. Nasre, New hardness results in rainbow connectivity, arXiv:1104.2074v1 [cs.CC] 2011.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The Macmillan Press, London and Basingstoker, 1976.
[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, *On rainbow connection*, Electron. J. Comb. 15(2008), R57.

[4] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, *Hardness and algorithms for rainbow connectivity*, J. Comb. Optim. 21(2011), 330-347.

[5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, *Rainbow connection in graphs*, Math. Bohem. 133(1) (2008), 85-98.

[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, *The rainbow connectivity of a graph*, Networks 54(2)(2009), 75-81.

[7] L. Chen, B. Huo, Y. Ma, *Hardness results for total rainbow connection of graphs*, accepted by Discuss. Math. Graph Theory.

[8] L. Chen, X. Li, Y. Shi, *The complexity of determining the rainbow vertex-connection of graphs*, Theoret. Comput. Sci. 412(2011), 4531-4535.

[9] M.R. Garey, D.S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-Completeness*, Freeman, San Francisco, 1979.

[10] J. He, H. Liang, *On rainbow-k-connectivity of random graphs*, Inform. Process. Lett. 112(2012), 406-410.

[11] M. Krivelevich, R. Yuster, *The rainbow connection of a graph is (at most) reciprocal to its minimum degree*, J. Graph Theory, 63(2010), 185-191.

[12] S. Li, X. Li, Y. Shi, *Note on the complexity of determining the rainbow (vertex-)connectedness for bipartite graphs*, Appl. Math. Comput. 258(2015), 155-161.

[13] X. Li, Y. Shi, *On the rainbow vertex-connection*, Discuss. Math. Graph Theory 29(2013), 1471-1475.

[14] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, *Graphs & Combin.* 29(1)(2013), 1–38.
[15] X. Li, Y. Sun, *Rainbow Connections of Graphs*, New York, SpringerBriefs in Math. Springer, 2012.

[16] H. Liu, Â. Mestre, T. Sousa, *Rainbow vertex k-connection in graphs*, Discrete Appl. Math. 161(2013), 2549-2555.

[17] H. Liu, Â. Mestre, T. Sousa, *Total rainbow k-connection in graphs*, Discrete Appl. Math. 174(2014), 92-101.