Species Differences in the 5-Hydroxytryptamine-Induced Contraction in the Isolated Distal Ileum

Mayumi Yamano, Hiroyuki Ito and Keiji Miyata
Pharmacology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd.,
21 Miyukigaoka, Tsukuba, Ibaraki 305, Japan

Received February 26, 1997 Accepted April 28, 1997

ABSTRACT—We investigated the mechanism of 5-hydroxytryptamine (5-HT)-induced contraction in the longitudinal muscle of isolated distal ileum from ferrets, piglets and rats. 5-HT and 5-methoxytryptamine concentration-dependently contracted the ileum of ferrets, piglets and rats. 2-Methyl-5-HT and m-chlorophenylbiguanide concentration-dependently contracted the ferret ileum, whereas they had no effect in piglets and rats. In ferrets, the 5-HT-induced contraction was inhibited by methysergide and by ramosetron, but not by ketanserin or GR113808. Atropine and tetrodotoxin suppressed contractions elicited by 5-HT, 2-methyl-5-HT and m-chlorophenylbiguanide in ferrets, but not that elicited by 5-methoxytryptamine. In piglets, 5-HT-induced contraction was inhibited by methysergide and by tetrodotoxin, but not by ketanserin, ramosetron, GR113808 or atropine. In rats, 5-HT-induced contraction was inhibited by methysergide and by ketanserin, but not by ramosetron or tetrodotoxin. In contrast, GR113808 enhanced contractions elicited by 5-HT or 5-methoxytryptamine. These results suggest that 5-HT-induced contraction in ferrets is mediated via 5-HT1 receptors on the muscle and by release of acetylcholine via 5-HT3 receptors. In piglets, 5-HT-induced contraction was inhibited by methysergide and by tetrodotoxin, but not by ketanserin, ramosetron, GR113808 or atropine. In rats, 5-HT-induced contraction was inhibited by methysergide and by ketanserin, but not by ramosetron or tetrodotoxin. In contrast, GR113808 enhanced contractions elicited by 5-HT or 5-methoxytryptamine. These results suggest that 5-HT-induced contraction in ferrets is mediated via 5-HT1 receptors on the muscle. Furthermore, 5-HT1 receptors may participate in the relaxation elicited by 5-HT in rats.

Keywords: Species difference, 5-HT receptor, Distal ileum, Longitudinal muscle

5-Hydroxytryptamine (5-HT) is known to be distributed in blood platelets, the nervous system and enterochromaffin cells. In the gastrointestinal tract, 5-HT is reported to contribute to the regulation of the motility and secretion via several 5-HT-receptor subtypes. The involvement of the 5-HT-receptor subtype in 5-HT-induced intestinal contraction has been well-examined in the guinea pig small and large intestines (1-8). In contrast, the effect of 5-HT on the regulation of intestinal motility has not been established in species other than guinea pigs.

Defecation and intestinal transit in rats are frequently utilized as an in vivo system for the evaluation of the action of 5-HT on the motility of the small and large intestine. However, the involvement of 5-HT receptor subtypes in 5-HT-elicited responses has been less extensively investigated in vitro by the use of selective 5-HT receptor antagonists in rat isolated intestine. In the present study, we examined the participation of 5-HT1a, 5-HT2a, 5-HT3a and 5-HT4 receptor subtypes in 5-HT-induced contraction in rat isolated distal ileum.

Since the ferret and piglet have been shown to have similarities with respect to anatomical and physiological characteristics of the gut to that of humans (9, 10), the intestinal responses in ferret and piglet are suggested to be good models of some of the physiologic and pharmacologic processes in humans. Furthermore, 5-HT-containing neurons were observed in the submucosal and myenteric plexus of ferret and pig intestine as well as that of humans (11-16). The participation of 5-HT in the modulation of ileal motility, however, has not been evaluated in ferrets and piglets. Therefore, we also evaluated the mechanism of 5-HT-induced contraction in the isolated distal ileum of ferrets and piglets as well as in that of rats. We obtained evidence of a species difference among ferrets, piglets and rats in the mechanism of 5-HT-induced ileal contraction.
MATERIALS AND METHODS

Tissue preparation
Male ferrets (0.95 – 1.6 kg; Charles River Japan, Yokohama), male Wistar rats (230 – 350 g; SLC, Hamamatsu) and piglets of both genders (0.95 – 2.5 kg; Hamri Co., Sashima, Ibaraki) were killed by cervical dislocation and exsanguinated. The distal portion of the ileum (discarding the terminal 2 – 3 cm) was removed. The ileum was divided longitudinally into segments approximately 2 cm in length. The longitudinal muscle of isolated rat ileum with myenteric plexus was removed by gentle stroking with a cotton swab at an angle to the mesenteric attachment. In the isolated ileum of ferret and piglet, the whole segment was used. The tissues were vertically suspended in a 10-ml organ bath containing Krebs-bicarbonate solution (118.4 mM NaCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 4.7 mM KCl, 1.2 mM MgSO4, 25.0 mM NaHCO3 and 10.0 mM glucose) maintained at 37°C and gassed with a mixture of 95 % O2 and 5 % CO2. Tissues were attached to isometric force-displacement transducers (SB-1T; Nihon Kohden, Tokyo) connected to a recorder (MC 6621; Graphtec, Tokyo) through a carrier amplifier (AP-621G, Nihon Kohden). The tissues were allowed to equilibrate for approximately 30 min before exposure to test compounds. Isometric contractions under a loading tension of 0.5 (the tissue from rats) or 1 g (the tissues from ferrets and piglets) were recorded because stable contractions were recorded under this condition.

Experimental protocol
Cumulative concentration-response curves for the 5-HT-receptor agonists were constructed by increasing the bath concentrations of each agonist by approximately threefold. The preliminary study showed the concentration-response curve for 5-HT to be not reproducible in the same preparation. Because of this problem all subsequent experiments were controlled by use of paired preparations taken from adjacent portions of distal ileum in the same animal. The concentration-response curve for 5-HT in the first tissue was not significantly different from that in the paired partner. Thus one tissue received agonist alone and the paired partner received agonist plus antagonist for antagonist studies. Antagonists were allowed to pre-equilibrate for 30 min prior to the construction of concentration-response curves for agonists.

Data analyses
All values are expressed as the mean ± S.E.M. or as the mean with 95% confidence limits. Responses were measured as an increase in isometric tension and expressed as a percentage of the maximal contraction obtained with 5-HT. EC50 values were obtained by linear regression with the least square method. Significance between groups was assessed by one-way ANOVA. Probabilities of < 5% (P < 0.05) were considered significant.

Drugs
Ramosetron hydrochloride (YM060), GR113808 [1-[2-[(methylsulfonyl)amino]ethyl]-4-piperidyl]methyl 1-methyl-1H-indole-3-carboxylate], 2-methyl-5-HT and 1-(m-chlorophenyl)biguanide hydrochloride (mCPB) were prepared by Yamanouchi Pharmaceutical Co. (Tsukuba). Methysergide hydrogen maleate was kindly donated by Sandoz, Ltd. (Basle, Switzerland). 5-HT creatinine sulfate and 5-methoxytryptamine hydrochloride (5-MOT) were purchased from E. Merck (Darmstadt, Germany) and Fluka AG (Buchs, Switzerland), respectively. Ketanserin, atropine sulfate and tetrodotoxin were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Ramosetron, GR113808 and methysergide were dissolved in a minimal amount of a 0.1 N HCl solution and diluted with Krebs-bicarbonate solution. Ketanserin was dissolved in a minimal amount of a tartaric acid solution and diluted with Krebs-bicarbonate solution. The reported concentrations are the final bath concentrations.

RESULTS
The 5-HT-receptor agonist-induced contraction
5-HT (0.1 – 100 µM), the 5-HT-receptor agonist 5-MOT (0.01 – 30 µM), and selective 5-HT3-receptor agonists 2-methyl-5-HT (0.1 – 100 µM) and mCPB (0.01 – 10 µM) concentration-dependently induced contraction in the isolated distal ileum of ferrets (Fig. 1A). The maximal contractions of 5-MOT (3 µM), 2-methyl-5-HT (10 pM) and mCPB (3 pM) were 117 ± 10, 38% and 38% of the maximal response of 5-HT (10 pM) in the ferret ileum, respectively. 5-HT and 5-MOT also produced concentration-dependent contraction in piglets and rats, whereas 2-methyl-5-HT and mCPB had no effect up to 10 pM (Fig. 1: B and C). The EC50 values for 5-HT, 5-MOT, 2-methyl-5-HT and mCPB are given in Table 1. On the basis of EC50 values, the agonistic activity of 5-HT in rats was approximately 10 times weaker than that in ferrets and piglets.

The mechanism of 5-HT-induced contraction in the ferret ileum
In the ferret ileum, the 5-HT-induced contraction was significantly inhibited by methysergide (10 µM), a 5-HT1 and 5-HT2-receptor antagonist, and by ramosetron (0.3 µM), a selective 5-HT3-receptor antagonist (Fig. 2: A and C). However, it was not affected by ketanserin (0.1 µM), a selective 5-HT2-receptor antagonist, or GR113808 (0.3 µM), a selective 5-HT4-receptor antagonist (Fig. 2: B and
D). Tetrodotoxin (1 μM) and atropine (1 μM) significantly suppressed the contraction elicited by 5-HT (Fig. 3). The inhibitory effects of ramosetron and tetrodotoxin, however, were significant only on the contractions elicited by the higher concentrations of 5-HT (≥ 10 pM). Combinations of methysergide plus ramosetron and of methysergide plus atropine abolished the 5-HT-induced contraction (data not shown, n=3). Although the 5-MOT-induced contraction was abolished by methysergide, it was not inhibited by ketanserin, ramosetron, GR113808 or tetrodotoxin (data not shown, n=2). The combinations of methysergide plus ramosetron and of methysergide plus atropine abolished the 5-HT-induced contraction (data not shown, n=3). Although the 5-MOT-induced contraction was abolished by methysergide, it was not inhibited by ketanserin, ramosetron, GR113808 or tetrodotoxin (data not shown, n=3). The contractions elicited by 2-methyl-5-HT and by mCPB were abolished by ramosetron, tetrodotoxin or atropine, but they were not affected by methysergide (data not shown, n=4–11).

The mechanism of 5-HT-induced contraction in the piglet ileum

In the piglet ileum, the 5-HT-induced contraction was significantly inhibited by methysergide (10 μM, Fig. 4A) and by tetrodotoxin (1 μM, Fig. 5A), but it was not inhibited by ramosetron (0.3 μM, Fig. 4C), GR113808 (0.3 μM, data not shown, n=2) or atropine (1 μM, Fig. 5B). Although ketanserin (0.1 μM) failed to influence the contraction elicited by lower concentrations of 5-HT (0.1–10 μM), it significantly enhanced the contraction elicited by higher concentrations of 5-HT (30–100 μM) (Fig. 4B).

The mechanism of 5-HT-induced contraction in the rat ileum

In the rat ileum, the 5-HT (0.1–30 μM)-induced contraction was significantly inhibited by methysergide (10 μM) and by ketanserin (0.1 μM) (Fig. 6: A and B). In contrast, higher concentrations of 5-HT (100–300 μM)-induced contractions were significantly inhibited by methysergide but not by ketanserin (Fig. 6: A and B). Ramosetron (0.3 μM, Fig. 6C) and tetrodotoxin (1 μM, data not shown, n=3) failed to influence the response to 5-HT. Although methysergide inhibited the 5-MOT-induced contraction, ketanserin and tetrodotoxin had no
Fig. 2. Inhibitory effects of methysergide (10 μM, A), ketanserin (0.1 μM, B), ramosetron (0.3 μM, C) and GR113808 (0.3 μM, D) on the 5-HT-induced contraction in the isolated distal ileum of ferrets. Antagonists were preincubated 30 min before 5-HT application. Absence (●) or presence (○) of antagonists. Each point represents the mean±S.E.M. of 4 to 33 preparations. a)Figures in parentheses represent the number of preparations. *P<0.05, **P<0.01, ***P<0.001, compared with the control group without antagonists.

Fig. 3. Inhibitory effects of tetrodotoxin (1 μM, A) and atropine (1 μM, B) on the 5-HT-induced contraction in the isolated distal ileum of ferrets. Antagonists were preincubated 30 min before 5-HT application. Absence (●) or presence (○) of antagonists. Each point represents the mean±S.E.M. of 11 or 33 preparations. a)Figures in parentheses represent the number of preparations. *P<0.05, **P<0.01, compared with the control group without antagonists.
DISCUSSION

Species differences in the effect of 5-HT in the mammalian cardiovascular system have been elucidated. The tachycardia elicited by 5-HT is species-dependent and is mediated by 5-HT₁ (cat), 5-HT₂ (rat, dog), 5-HT₃ (rabbit, dog, guinea pig) or 5-HT₄ (piglet, human) receptors, or by a tryptamine-like (guinea pig) mechanism (17–20). We also reported that there was a species difference between guinea pigs and other species in the participation of 5-HT-receptor subtypes in 5-HT-induced bradycardia (21).

Endogenous and exogenous 5-HT affects not only the cardiovascular system but also the gastrointestinal system in most species. Therefore, it may be hypothesized that a species difference exists in the involvement of 5-HT-receptor subtypes in the effect of 5-HT on intestinal motility. Although the effect of 5-HT on intestinal motility has been well-examined in guinea pigs, its effect in other species has not been clear. The aim of the present study was to investigate the action of 5-HT on the motility of the longitudinal muscle of the distal ileum of ferrets, piglets and rats in vitro. Species differences among these animals in the mechanism of 5-HT-induced contraction in the isolated distal ileum were also examined.

We found that 5-HT induced concentration-dependent contractions in the isolated distal ileum of ferrets, piglets
and rats. In the longitudinal muscle of isolated ferret distal ileum, not only 5-HT but also 5-MOT, 2-methyl-5-HT and mCPB concentration-dependently induced contractions. The 5-HT-induced contraction in ferret ileum was inhibited by methysergide and by ramosetron. However, it was not affected by ketanserin or GR113808. Tetrodotoxin and atropine also suppressed the contraction elicited by 5-HT. The inhibitory effects of ramosetron and tetrodotoxin, however, were significant only on the contractions elicited by higher concentrations of 5-HT (>10 μM). Furthermore, the 5-HT₁ receptor (2-methyl-5-HT and mCPB)-mediated contraction was abolished by tetrodotoxin and by atropine, whereas the 5-HT₁ receptor-mediated contractile response to 5-MOT was insensitive to tetrodotoxin. Taken together, these results suggest that 5-HT-induced contraction in the ferret ileum is mediated by the direct activation of 5-HT₁ receptors on the muscle and the release of acetylcholine through an activation of 5-HT₃ receptors and that the lower and higher concentrations of 5-HT may act on the 5-HT₁ and 5-HT₃ receptors, respectively. Kameda et al. (22) also reported that ondansetron, a selective 5-HT₃-receptor antagonist, non-competitively inhibited 5-HT-induced contraction in the ferret ileum. Our results are consistent with their finding.

In the longitudinal muscle of isolated piglet distal ileum, 5-HT and 5-MOT produced concentration-dependent contractions. 2-Methyl-5-HT and mCPB had no effect in the piglet ileum, unlike their effect in ferret ileum. The 5-HT-induced contraction in the piglet ileum was inhibited by methysergide, but it was not suppressed by ketanserin, ramosetron or GR113808. Furthermore, the 5-HT-induced contraction in the piglet ileum was inhibited by tetrodotoxin but not by atropine, indicating that it was mediated through the stimulation of a release of neurotransmitters other than acetylcholine via 5-HT₁ receptors. Kirchgessner et al. (23) reported that the 5-HT₁β receptor was found on the neurons of the submucosal ganglia in the pig ileum. It was also reported that 5-HT enhanced pig jejunum motility in vivo and that this

Fig. 6. Inhibitory effects of methysergide (10 μM, A), ketanserin (0.1 μM, B), ramosetron (0.3 μM, C) and GR113808 (0.3 μM, D) on the 5-HT-induced contraction in the isolated distal ileum of rats. The preparation was preincubated with the antagonists 30 min before 5-HT application. Absence (●) or presence (○) of antagonists. Each point represents the mean±S.E.M. of 6 or 7 preparations. *P<0.05, **P<0.01, compared with the control group without antagonists.
response was not inhibited by atropine (24). In the present study, although ketanserin failed to influence the contraction elicited by lower concentrations of 5-HT, it enhanced the contraction elicited by higher concentrations of 5-HT. This result suggests that higher concentrations of 5-HT may elicit relaxation via 5-HT2 receptors in the piglet ileum. Further studies are necessary to test this hypothesis.

A number of candidates can be proposed as neurotransmitters released in the enteric nervous system involved in the 5-HT-induced contraction in the distal ileum of piglets. Neurotransmitters such as galanin, calcitonin gene-related peptide, enkephalin, neuromedin U, neuropeptide Y, somatostatin, substance P and neurokinin A are found in the enteric nervous system of pig small intestine (13, 14, 25). Although these neurotransmitters may participate in the atropine-resistant contraction elicited by 5-HT, further experiments are required to confirm which transmitter is involved.

In the myenteric plexus of rat small and large intestine, 5-HT-containing neurons have been observed (26, 27). It is known that the contractile response to 5-HT is sensitive to methysergide but insensitive to atropine and tetrodotoxin in the longitudinal muscle of isolated rat ileum and colon (28–30). In the present study, contraction of the longitudinal muscle of rat distal ileum induced by the lower 5-HT concentration was inhibited by methysergide and by ketanserin, but the contractions induced by higher concentrations of 5-HT were suppressed by methysergide but not by ketanserin. Ramosetron, GR113808 and tetrodotoxin failed to influence the 5-HT-induced contraction. In addition, methysergide inhibited the 5-MOT-induced contractions, but ketanserin, GR113808 and tetrodotoxin did not. These results indicate that the 5-HT-induced contraction in the rat ileum is evoked by the activation of both 5-HT1 and 5-HT2 receptors on the muscle and that the lower and higher concentrations of 5-HT act on the 5-HT2 and 5-HT1 receptors, respectively. Benouali-Pellissier et al. (31) reported the involvement of 5-HT2 receptors in postprandial contraction in the rat ileum and distal colon. In the present study, GR113808 enhanced the contractile responses elicited by 5-HT or 5-MOT in the rat ileum. It was also reported that 5-HT-induced relaxation in the isolated rat ileum was antagonized by GR113808 (32, 33). Therefore, an activation of 5-HT4 receptors may participate in the relaxation elicited by 5-HT in the rat ileum.

The involvement of the 5-HT-receptor subtype in 5-HT-induced intestinal contraction has been well-examined in guinea pig small and large intestines as mentioned in the Introduction. It was suggested that both neuronal and non-neuronal 5-HT receptors in the longitudinal muscle of guinea pig ileum were involved in the 5-HT-induced contraction (1–8). Although the nature of the non-neuronal 5-HT receptor remains unclear, the neuronal 5-HT receptor was defined as the 5-HT3 and 5-HT4 receptor subtypes which mediated acetylcholine release (7). The mechanism of 5-HT-elicited contraction in the isolated human ileum has not been identified. Bennett (34) reported that 5-HT-induced contraction was inhibited by methysergide but not by hyoscine in the longitudinal muscle of isolated human ileum. Borman and Burleigh (35) also reported that 5-HT-induced contraction in the human ileum was inhibited by methysergide and was unaffected by ketanserin, ondansetron, a selective 5-HT3-receptor antagonist, and DAU6285, a 5-HT4-receptor antagonist. Taken together, these findings indicate that an activation of the 5-HT1 receptor was involved in the 5-HT-induced contraction in the longitudinal muscle of human ileum, but the location of these 5-HT1 receptors has not been determined. On the basis of experimental evidence, the mechanism of 5-HT-evoked contraction in the isolated ileum of ferrets, piglets and rats was found to be inconsistent with that in guinea pigs.

In conclusion, these results suggest that the 5-HT-induced contraction in the ferret ileum is mediated by the activation of 5-HT1 receptors on the muscle and the release of acetylcholine through the activation of 5-HT3 receptors. In the piglet ileum, the 5-HT-induced contraction is mediated by the release of neurotransmitters other than acetylcholine via 5-HT3 receptors. Higher concentrations of 5-HT may elicit relaxation via 5-HT2 receptors in the piglet ileum. In contrast, the 5-HT-induced contraction in the rat ileum is evoked by the activation of both 5-HT1 and 5-HT2 receptors on the muscle. In addition, the activation of 5-HT4 receptors may participate in the relaxation elicited by 5-HT in the rat ileum. Taken together, our results demonstrate species differences in the mechanism of 5-HT-induced contraction in the longitudinal muscle of isolated distal ileum among ferrets, piglets and rats.

REFERENCES

1. Gaddum JH and Picarelli JP: Two kinds of tryptamine receptor. Br J Pharmacol 12, 323–328 (1957)
2. Costa M and Furness JB: The sites of action of 5-hydroxytryptamine in nerve-muscle preparations from the guinea-pig small intestine and colon. Br J Pharmacol 65, 237–248 (1979)
3. Sakai K, Shiraki Y, Tatsunami T and Tsuji K: The actions of 5-hydroxytryptamine and histamine on the isolated ileum of the tree shrew (Tupaia glis). Br J Pharmacol 66, 405–408 (1979)
4. Engel G, Hoyer D, Kalkman HO and Wick MB: Identification of 5-HT receptors on longitudinal muscle of the guinea pig ileum.
5 Buchheit KH, Engel G, Mutschler E and Richardson B: Study of the contractile effect of 5-hydroxytryptamine (5-HT) in the isolated longitudinal muscle strip from guinea-pig ileum. Evidence for two distinct release mechanisms. Naunyn Schmiedebers Arch Pharmacol 329, 36–41 (1985)

6 Fox AJ and Morton IKM: An examination of the 5-HT1 receptor mediating contraction and evoked [3H]-acetylcholine release in the guinea-pig ileum. Br J Pharmacol 101, 553–556 (1990)

7 Ramírez MJ, Cantruzabeitia E, Del Río J and Lasberas B: Involvement of neurokinins in the non-cholinergic response to activation of 5-HT and 5-HT1 receptors in guinea-pig ileum. Br J Pharmacol 111, 419–424 (1994)

8 Woollard DJ, Bornstein JC and Furness JB: Characterization of 5-HT receptors mediating contraction and relaxation of the longitudinal muscle of guinea-pig distal colon in vitro. Naunyn Schmiedebers Arch Pharmacol 349, 455–462 (1994)

9 Poddar S and Murgatroyd L: Morphological and histological study of the gastrointestinal tract of the ferret. Acta Anat 96, 321–334 (1976)

10 Rowan AM, Moughan PJ, Wilson MN, Maher K and Tasman-Jones C: Comparison of the ileal and faecal digestibility of dietary amino acids in adult humans and evaluation of the pig as a model animal for digestion studies in man. Br J Nutr 71, 29–42 (1994)

11 Griffith SG and Burnstock G: Serotoninergic neurons in human fetal intestine: an immunohistochemical study. Gastroenterology 85, 929–937 (1983)

12 Kurian SS, Ferri GL, De Mey J and Polak JM: Immunocytochemistry of serotonin-containing nerves in the human gut. Histochemistry 78, 523–529 (1983)

13 Timmermans J-P, Scheuermann DW, Stach W, Adriensen D and De Groodt-Lasseel MHA: Distinct distribution of CGRP-, enkephalin-, galanin-, neuropeptide Y-, somatostatin-, substance P-, VIP- and serotonin-containing neurons in the two submucosal ganglionic neural networks of the porcine small intestine. Cell Tissue Res 260, 367–379 (1990)

14 Timmermans J-P, Scheuermann DW, Stach W, Adriensen D and De Groodt-Lasseel MHA: Functional morphology of the enteric nervous system with special reference to large mammals. Eur J Morphol 30, 113–122 (1992)

15 Crowe R, Kamm MA, Burnstock G and Lennard-Jones JE: Peptide-containing neurons in different regions of the submucous plexus of human sigmoid colon. Gastroenterology 102, 461–467 (1992)

16 Barbiers M, Timmermans J-P, Adriensen D, De Groodt-Lasseel MH and Scheuermann DW: Projections of neurochemically specified neurons in the porcine colon. Histochem Cell Biol 103, 115–126 (1995)

17 Saxena PR: Nature of the 5-hydroxytryptamine receptors in mammalian heart. Preg Pharmacol 6, 173 (1986)

18 Wilson H, Coffman WJ and Cohen ML: 5-Hydroxytryptamine, receptors mediate tachycardia in conscious instrumented dogs. J Pharmacol Exp Ther 252, 683–688 (1990)

19 Saxena PR and Villalón CM: Cardiovascular effects of serotonin agonists and antagonists. J Cardiovasc Pharmacol 15, Supp 7, S17 (1990)

20 Villalón CM, Denboer MO, Heiligers JPC and Saxena PR: Mediatiion of 5-hydroxytryptamine-induced tachycardia in the pig by putative 5-HT1, receptor. Br J Pharmacol 100, 665–667 (1990)

21 Yamano M, Ito H, Kamato T and Miyata K: Species difference in the 5-hydroxytryptamine, receptor associated with the von Bezold-Jarisch reflex. Arch Int Pharmacodyn Ther 330, 177–189 (1995)

22 Kameda H, Minami M, Yoshioka M and Saito H: Classification of functional 5-HT receptors in ferret ileum and trachea. Jpn J Pharmacol 49, Supp, 282P (1989)

23 Kirchgesner AL, Liu MT, Raymond JR and Gershon MD: Identification of cells that express 5-hydroxytryptamine (1A) receptors in the nervous systems of the bowel and pancreas. J Comp Neurol 364, 439–455 (1996)

24 Wechsung E and Houvenaghel A: Are muscarinic receptors involved in the effect of serotonin on gastrointestinal electrical activity in the conscious piglet? Zentralbl Veterinarmed [B] 41, 459–465 (1994)

25 Schmidt P, Poulsen SS, Rasmussen TN, Bersani M and Holst JJ: Substance P and neurokinin A are codistributed and colocalized in the porcine gastrointestinal tract. Peptides 12, 963–973 (1991)

26 Dahlström A and Ahlman H: Immunocytochemical evidence for the presence of tryptaminergic nerves of blood vessels, smooth muscle and myenteric plexus in the rat small intestine. Acta Physiol Scand 117, 589–591 (1983)

27 Nada O and Toyohara T: An immunohistochemical study of serotonin-containing nerves in the colon of rats. Histochemistry 86, 229–232 (1987)

28 Gagnon DJ: Contraction of the rat colon by sympathomimetic amines: effect of methysergide and 5-HT desensitization. Eur J Pharmacol 17, 319–324 (1972)

29 Sakai K, Akima M and Shiraki Y: Comparative studies with 5-hydroxytryptamine and its derivatives in isolated, blood-perfused small intestine and ileum strip of the rat. Jpn J Pharmacol 29, 223–233 (1979)

30 Lu YF, Mizutani M, Neya T and Nakayama S: Indomethacin-induced lesion modifies contractile activity in rat small intestines. Scand J Gastroenterol 30, 445–450 (1995)

31 Benouali-Pellissier S, Roger T and Roche M: A possible interaction between serotonin and cholecystokinin-8 in the ileo-colonic motor responses to feeding in rats. Scand J Gastroenterol 29, 138–143 (1994)

32 McLean PG, Coupar IM and Molenar P: A comparative study of functional 5-HT4 receptors in human colon, rat oesophagus and rat ileum. Br J Pharmacol 115, 47–56 (1995)

33 Tuludhar BR, Costall B and Naylor RJ: Pharmacological characterization of the 5-hydroxytryptamine receptor mediating relaxation in the rat isolated ileum. Br J Pharmacol 119, 303–310 (1996)

34 Bennett A: A pharmacological investigation of human isolated ileum. Nature 208, 1289–1291 (1965)

35 Borman RA and Burleigh DE: Functional evidence for a 5-HT3 receptor mediating contraction of longitudinal muscle in human small intestine. Br J Pharmacol 114, 1525–1527 (1995)