Design, synthesis, in silico studies and in vitro evaluation of isatin-pyridine oximes hybrids as novel acetylcholinesterase reactivators

Daniel A. S. Kitagawaa,b, Rafael B. Rodriguesb, Thiago N. Silvac, Wellington V. dos Santosd,e, Vinicius C. V. da Rochaf, Joyce S. F. D. de Almeidaa, Leandro B. Bernardob, Taynara Carvalho-Silvab, Cintia N. Ferreiraa, Angelo A. T. da Silvaf, Alessandro B. C. Simasg, Eugenie Nepovimovah, Kamil Kućah, Tanos C. C. Françaa,h and Samir F. de A. Cavalcanteb,c,g,hb

aLaboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Rio de Janeiro, Brazil; bBrazilian Army Technological Center (CTEx), Institute of CBRN Defense (IDQBRN), Rio de Janeiro, Brazil; cSchool of Pharmacy, Universidade Castelo Branco (UCB), Rio de Janeiro, Brazil; dEmergency and Rescue Department (DSE), Rio de Janeiro State Fire Department (CBMER), Rio de Janeiro, Brazil; eUniversidade Estácio de Sá (UNESA), Rio de Janeiro, Brazil; fInstituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Nilópolis, Brazil; gInstituto de Pesquisas de Produtos Naturais Walter Mors (IPPN), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; hDepartment of Chemistry, Faculty of Science, University of Hradec Královec, Hradec Královec, Czech Republic

\textbf{ABSTRACT}
Organophosphorus poisoning caused by some pesticides and nerve agents is a life-threatening condition that must be swiftly addressed to avoid casualties. Despite the availability of medical countermeasures, the clinically available compounds lack a broad spectrum, are not effective towards all organophosphorus toxins, and have poor pharmacokinetics properties to allow them crossing the blood-brain barrier, hampering cholinesterase reactivation at the central nervous system. In this work, we designed and synthesised novel isatin derivatives, linked to a pyridinium 4-oxime moiety by an alkyl chain with improved calculated properties, and tested their reactivation potency against paraoxon- and NEMP-inhibited acetylcholinesterase in comparison to the standard antidote pralidoxime. Our results showed that these compounds displayed comparable \textit{in vitro} reactivation also pointed by the \textit{in silico} studies, suggesting that they are promising compounds to tackle organophosphorus poisoning.

\textbf{1. Introduction}
Acetylcholinesterase (AChE, EC 3.1.1.7) is an enzyme belonging to the family of cholinesterases (ChE), catalysing the hydrolysis of the neurotransmitter acetylcholine (ACh, 1) in its precursors, acetate (2) and choline (3) (Scheme 1), and interrupting the nervous impulses in the central and peripheral nervous systems (CNS and PNS)1–3. AChE function is of paramount importance, since the accumulation of ACh in the synaptic cleft generates a cholinergic crisis, causing several symptoms such as convulsions, cardiac arrhythmia and, ultimately, death4. According to the level of enzyme inhibition, symptoms can be described by the SLUDGEM syndrome (Salivation, Lachrymation, Urination, Defecation, Gastrointestinal disturbs, Emesis, Miosis and Muscular spasms)5.

In this context, pentavalent organophosphorus compounds (OP) are known irreversible ChE inhibitors, which may interrupt the hydrolysis of ACh by phosphorylation/phosphorylation of the hydroxyl group of a serine residue at the ChE active site. These compounds have been used as pesticides (but some are now prohibited in many countries), and some are listed in the “Annex on Chemicals” of the Chemical Weapons Convention as chemical warfare agents (nerve agents). Examples of these toxic chemicals are paraoxon (PXN, 4), sarin (5), VX (6) and A-230 (7), which structures are illustrated in Figure 16–11.

The chemotherapy used in the OP poisoning treatment includes the administration of three types of drugs: an anticholinergic, to antagonise the effects of ACh accumulation; a CNS depressant, which acts as an anticonvulsant, being this optional; and a reactivator of AChE, generally a pyridinium oxime derivative12,13. Despite the use of pyridinium oximes being the current approach to tackle OP poisoning, this therapeutic strategy has a number of disadvantages. Commercial reactivators, like pralidoxime (2-PAM, 8), obidoxime (9), trimedoxime (10) and axoxime (11) (Figure 2), are effective only against specific inhibitors and have poor permeability into the blood-brain barrier (BBB), rendering reduced enzyme reactivation at the brain, due to their positive charges14,15.

An additional limitation of the current antidotes is their inefficacy to reactivate O-dealkylated OP-AChE adducts (aged enzyme)16–18. Thus, the efficacy of the treatment depends on the administration of the antidote immediately upon exposure of the patient to the OP19. Therefore, it is not only important to identify the inhibitory agent to be able to employ the most suitable...
reactivator, but also the further development of novel compounds to address all these situations. Although different methods for OP poisoning treatment have already been proposed, there is still no efficient drug for any type of agent after more than five decades of research.

Recent studies have suggested that monocationic or neutral compounds might be more effective in crossing the BBB. Following this line, and encouraged by promising previous results, we designed new isatin derivatives linked to the pyridine 4-oxime moiety, yielding monocationic compounds with interesting calculated properties. Taking advantage of the fact that isatins are present in many bioactive compounds, are accessible, and easily modifiable by different reactions, we synthesised in the present work, five novel isatin derivatives and further evaluated them as reactivator candidates for two different OP-AChE adducts, paraaxon (PXN) and NEMP (O-(4-nitrophenyl) O-ethyl methylphosphonate), a VX surrogate, in comparison to pralidoxime.

2. Results

2.1. In silico studies

After identifying that isatin-3-oxime could reactivate at some extent our model of Electrophorus eel AChE (EeAChE) inhibited by PXN and NEMP, and having the AChE binding sites in mind, we designed a series of compounds bearing isatin as a lipophilic scaffold linked to the active pyridine 4-oxime group by alkyl chains of different lengths. We hoped that these designs could not only improve the pharmacokinetics (increasing the calculated logP in comparison to available drugs), but also lead to a better interaction with the important binding sites of AChE. Isatin would then be responsible for interactions with the AChE peripheral anionic site (PAS), which presents mainly aromatic residues, while the linker would increase the lipophilicity, and the pyridinium 4-oxime moiety would be in charge of both the displacement of the phosphorus moiety from the hydroxyl serine residue at the active esteratic site (ES), and interactions with the catalytic anionic site (CAS) (Figure 3). By varying the length of the linker, we also could estimate the optimal conformation for achieving the higher reactivation.

Table 1 shows some calculated properties of the designed compounds. LogP was estimated using the Chemicalize server. Results showed higher values than that of 2-PAM, suggesting greater penetration in the BBB. The pKα values were also calculated using the Chemicalize server, and values were compatible with that recommended in the literature. “Drug-scores” (DS) were obtained by the OSIRIS Property Explorer, and results were similar to 2-PAM, with compounds 13a, 13b and 13e standing out for having higher values than 2-PAM, suggesting that these isatin derivates might have a lower toxicity.

Tables 2 and 3 display data from the docking studies using PXN and VX as human AChE (HssAChE) inhibitors and the designed compounds as reactivators. 2-PAM was also included in this study for comparison. Three hundred poses were obtained for each ligand (compound) and those with the shortest distance between the phosphorus atom of the phosphorylated enzyme and the oxygen atom of the hydroximino group were selected for further analysis. The more negative values of energies observed for the ligands suggest that all of them are capable of stabilising better than 2-PAM inside AChE, while the observed P-O distances shorter, or very close to 2-PAM, suggest that they are also capable of getting close enough to the OP to trigger the reactivation reaction. Additionally, for both systems, interactions of all studied ligands (except for 13d with VX) with the Tyr124 residue were observed, corroborating with literature.
Table 1. Calculated druglikeness of the designed compounds.

Compound	Linker	(X−)a	pKa	logP	DSb
13a	(CH2)3−	Br−	8.1	−1.99	0.76
13b	(CH2)2−	Cl−	9.0	−1.54	0.65
13c	(CH2)2−	Br−	9.0	−1.09	0.48
13d	(CH2)3−	Cl−	9.0	−0.63	0.42
13e	(CH2)2−·(CH2)2−	Cl−	8.7	−2.54	0.61
2-PAM (8)	−	I−	7.6	−3.26	0.60

aSalts used in experimental assay.
bDrug score.

Table 2. In silico data obtained using PXN as HssAChE inhibitor.

Compound	E_solvera (kcal/mol)	E_lightb (kcal/mol)	Distance P−O (Å) H-bonding residues
13a	−133.2	−6.2	5.4 Tyr124 (2x), Phe295, Tyr337
13b	−110.9	−7.5	3.5 Tyr124, Phe295, Ser298 (2x)
13c	−128.0	−1.8	3.5 Tyr124 (2x), Phe295
13d	−134.1	−6.0	4.3 Tyr124, Phe295
13e	−133.8	−8.6	3.7 Tyr124, Phe295, Ser298 (2x)
2−PAM (8)	−84.3	−2.5	7.5 Tyr124

aIntermolecular interaction energy between ligand and protein.
bTotal hydrogen bonding energy.

Table 3. In silico data obtained using VX/NEMP as HssAChE inhibitor.

Compound	E_solvera (kcal/mol)	E_lightb (kcal/mol)	Distance P−O (Å) H-bonding residues
13a	−138.0	−4.5	5.7 Tyr124, Tyr337 (2x)
13 b	−145.2	−3.2	5.2 Tyr124, Tyr337, Trp286
13c	−139.4	−4.8	5.7 Tyr124, Tyr337
13d	−135.0	−3.5	6.0 Tyr337 (2x)
13e	−132.6	−8.3	6.5 Tyr124 (2x), Tyr337
2−PAM (8)	−71.2	−4.3	6.3 Tyr124, Tyr337

aIntermolecular interaction energy between ligand and protein.
bTotal hydrogen bonding energy using VX/NEMP as HssAChE inhibitor.

2.2. Synthesis of novel compounds

The novel isatin-pyridinium oxime hybrids (13a–e) were synthesised in a convergent route, as depicted in Scheme 2.

Compounds 13a–e were synthesised from the reaction between 1,ortho(dihaloalkyl)isatins 14a–e (1 eq.mol, X is either chlorine or bromine) and the pyridine 4-aldoxime 15 (2 eq.mol) in dry DMF at 80°C for 96 h (Table 4). Compounds were isolated by trituration (13b–e) and precipitation (13a). Yields of bromine-derived oximes were higher than those of chlorine-derived oximes, except for compound 13e. Compounds 14a–e were synthesised from isatin (1 eq.mol, 16) and 1,ortho-dihaloalkanes (5 eq.mol, compounds 17a–d) or bischloroethylether 17e in dry DMF, using anhydrous K2CO3 (2.5 eq.mol) as base for different times (Table 4). Except for compound 14e, bromine derivatives showed the shortest reaction times as expected, as it is a better leaving group than chlorine. Pyridine 4-aldoxime 15 was synthesised in accordance with our previous publications9,10.

The N(ortho)-haloalkyl)isatins 14a–e were obtained in good yield and purity, despite some difficulties to remove larger linkers, especially 1,6-dichlorohexane (17d), although the literature indicates that they are easily removed by chromatographic methods. We tried to reduce the proportion of the linker to three or four equivalents; however, the yield of the desired products was reduced due to the formation of 1,ortho-bis(indoliny-2,3-dione)alkanes ("isatin homodimers"), even in short reaction times, or with the addition of nucleophilic catalysts (as KI and tetrabutylammonium bromide – TBAB) or lower temperature (60 or 70°C). This difficulty to remove excess of 1,6-dichlorohexane was overcome with distillation of its excess before flash chromatography or purification using preparative thin layer chromatography (TLC). This might be one of the reasons for the lower yield of the final product 13e, which could have reacted with the pyridine 4-aldoxime 15. We again tried to use nucleophilic catalysts’ approach, but no improvement was achieved so far.

Regarding the purification of 13a–e compounds, 13a (1,3-propanediyl linker) could be obtained by simple precipitation using cold acetone. Compounds bearing larger linkers were obtained by trituration with ethyl acetate, exemption given to 13d (1,6-hexanediyl linker), which was subjected to preparative TLC.

Scheme 2. Retrosynthetic analysis for the desired compounds. Linker as defined by Table 1.
2.3. In vitro assays

In the studies with AChE inhibited by PXN (Table 5), all compounds presented reactivation, suggesting that isatin derivatives represent a promising strategy for the treatment of intoxication by this OP. All compounds showed maximum reactivation at a concentration greater than or equal to 100 μM, except compound 13d, whose maximum reactivation occurred at a concentration close to 10 μM. Among the compounds tested, 13c and 13e showed the highest percentage of reactivation, with 13c having the best performance in both concentrations used. Compounds 13b and 13d, on the other hand, showed reactivation values higher than 2-PAM only at a concentration of 10 μM. In studies carried out with our model enzyme, Electrophorus eel AChE (EeAChE), inhibited by NEMP (Table 5), it was observed that, with the exception of compound 13a, all showed reactivation, suggesting that isatin derivatives also represent a promising treatment strategy for intoxication by this OP. All compounds showed maximum reactivation at a concentration greater than or equal to 100 μM. Compounds 13c and 13e showed the highest reactivation per cent, with values comparable to 2-PAM in both tested concentrations. Compounds 13c and 13d also showed activity higher than 10% and about half of that determined for 2-PAM at same concentration. It is noteworthy to inform that the concentration of inhibitors used does not cause full inhibition of enzyme (in our Ellman’s assay, we have been employing concentrations that lead to 85–95% of enzyme activity in comparison to native, non-inhibited enzyme, in the same conditions).

3. Discussion

According to Table 1, the calculated pKa of isatin derivatives are close to the 2-PAM, suggesting that these derivatives can generate the oximate ion required for the nucleophilic attack on the phosphylated serine residue at physiological conditions. Additionally, they also have higher calculated lipophilicity than the reference compound used in this study, indicating that they might have better permeability into the brain, being able to address the inhibition at the CNS. They also have similar calculated “drug score” that led us to hypothesise that they might have similar profile regarding to toxicity, although further studies are required. As compound 13b had an estimated toxicity lower than 2-PAM (Table 1), this compound may be an interesting reactive candidate for PXN-inhibited EeAChE, since it might be administered at concentrations higher than that of conventional oximes.

The designed compounds fared well in in silico studies for both inhibitors when compared to 2-PAM. Some of them had the oximate group closer to 2-PAM’s (Tables 2 and 3), suggesting that they can be promising candidates. When in silico data were compared to in vitro studies, we observed that compounds 13b and 13d showed reactivation values higher than 2-PAM at a concentration of 10 μM for PXN-inhibited AChE (Table 5). We also confirmed that the linker length plays an important role for the optimal conformation that led to the highest reactivation rate for this kind of design, as depicted in Figure 3. The fact that compound 13d (hexane-1,6-diyl linker) displayed higher reactivation at 10 μM in comparison to 100 μM, indicates that this linker length might be an interesting starting point for the development of AChE inhibitors, as the conformation might lead to saturation or conformational changes in the enzymatic sites precluding higher reactivation.

Compounds 13b and 13c showed reactivation even at the lowest concentration tested (1 μM), indicating that they may be lead compounds for further development. Both compounds also exhibited similar reactivation rates at 10 and 100 μM in our test conditions. This plateau in the activity might be due to saturation of the enzyme by test compounds, which led us to hypothesise that these compounds may also be reversible inhibitors of EeAChE. In accordance with our preliminary design, we hoped that our compounds could also display such behaviour, making them promising leads for development of prophylactic countermeasures towards OP poisoning and even for neurodegenerative diseases.
as Alzheimer’s disease. Therefore, we are also carrying out studies on the inhibitory potential of such derivatives.

Compound 13c presented the best performance in the in vitro assay, for both OP at both reactivator concentrations used (see Table 5), indicating that the linker 1,5-pentanediyl is the best choice to achieve optimal interaction with the AChE binding sites (Figure 3), even at the lowest concentration tested (1 μM). Even exhibiting an estimated drug score relatively lower than 2-PAM (Table 1), reactivation values were similar to 2-PAM, and presented favourable pharmacokinetic properties, such as higher lipophilicity, compared to 2-PAM (Table 1). Based on these results, we speculate that 13c might be used in lower doses than 2-PAM, making it a promising reactivator for AChE inhibited by PXN and VX.

Compound 13e showed reactivation values similar to 2-PAM at both concentrations used for AChE inhibited by NEMP (Table 5), and also had an estimated toxicity lower than 2-PAM (see Table 1). Thus, this compound may be administered at concentrations higher than that of conventional oximes, being an interesting reactivator candidate for VX-inhibited AChE.

4. Conclusions

Our theoretical and experimental studies showed that the isatin derivatives 13b and 13e proved to be promising candidates to address AChE inhibition caused by PXN and NEMP, respectively. Derivative 13c presented the best in vitro performance for both OP at both reactivator concentrations used, being better than 2-PAM for PXN and comparable for VX. Besides, all compounds presented similar reactivation results for PXN. We believe that our results indicate that these novel isatin derivatives are potential scaffolds to be further explored in the design of novel reactivators for OP-inhibited AChE. We are now carrying out studies using the human isoform of AChE to compare results, as well working on improvement of current design to achieve better reactivation rates at the lowest concentrations, proving the potential of the compounds to be prophylactic countermeasures towards such toxics and analysing the results to find novel valuable AChE inhibitors.

5. Materials and methods

5.1. General information

All chemicals used in this work were purchased from commercial suppliers and used as received. Isatin, EeAChE (C2888, Type V-S, 1000 U/mg protein), pralidoxime iodide, PXN, 1,ω-dihaloalkanes (1,3-dibromopropane, 1,4-dichlorobutane, 1,5-dibromopentane, 16-dichlorohexane, bischloroethyl ether), DMF (dry, sealed bottle) and inorganic compounds (anhydrous potassium carbonate, phosphoric acid) and 20% water (with 0.1% formic acid), flow: 0.25 mL/min; injection volume, 1 μL; carrier gas: helium; flow rate: 1.8 m/min; inlet: 170°C; temperature program: held at 40°C for 1 min, ramp: 10°C/min, held at 280°C for 6 min; MS interface: 250°C; ionisation energy: 70 eV (electron impact mode).

For LC-MS analysis of isatin-pyridine 4-oxime monocationic hybrids 13a–e, 10 ppm solution of pure compounds 13a–e in methanol for reaction mixtures, samples were at same concentration and filtered through a syringe filter 0.22 μm before injection. Preparation: Agilent J&W HP5-MS (5%-phenyl)-methylpolysiloxane, 30 m × 0.25 mm, 0.25 μl; injection volume, 1 μL; carrier gas: helium; flow rate: 1.8 m/min; inlet: 170°C; temperature program: held at 40°C for 1 min, ramp: 10°C/min, held at 280°C for 6 min; MS interface: 250°C; ionisation energy: 70 eV (electron impact mode).

5.2. General GC-MS and HPLC-MS methods

For GC-MS analysis of N-(ω-haloalkyl)isatins 14a–e, 100 ppm solution of pure compounds in dichloromethane (for reactional mixtures, samples were at same concentration and filtered through a syringe filter 0.22 μm before injection) were prepared. Column: Agilent J&W HP-5MS (5%-phenyl)-methylpolysiloxane, 30 m × 0.25 mm, 0.25 μl; injection volume, 1 μL; carrier gas: helium; flow rate: 1.8 m/min; inlet: 170°C; temperature program: held at 40°C for 1 min, ramp: 10°C/min, held at 280°C for 6 min; MS interface: 250°C; ionisation energy: 70 eV (electron impact mode).

For LC-MS analysis of isatin-pyridine 4-oxime monocationic hybrids 13a–e in methanol for reactional mixtures, samples were at same concentration and filtered through a syringe filter 0.22 μm before injection). Column: Agilent Zorbax HILIC (100 × 2.5 × 3.5 μm); injection volume: 1 μL; isocratic elution: 80% acetonitrile (with 0.1% formic acid) and 20% water (with 0.1% formic acid), flow: 0.25 mL/min; ESI-MS mode (positive ion mode); UV at 254 nm (detection: 254 nm/4, reference: 360 nm/100); fragmentor: 70 V; voltage: 4000 V; mass range: m/z 50–500; gas pressure: 40 psi; vaporiser: 37°C; gas flow: 10 L/min. MS-MS spectra were acquired in selected ion monitoring conditions to MS spectra: method “Product Ion”; ESI-MS mode (positive ion mode); fragmentor: 70–135 V; collision energy: 20–30 V.

5.3. Synthesis of N-(ω-haloalkyl)isatins

In a dry flask (30 min at 130 °C in an oven), under an inert atmosphere and room temperature, isatin 16 (1 mmol) and K2CO3 (2.5 mmol) were added in dry DMF (4 mL). After 10 min of stirring at room temperature, 1,ω-dihaloalkanes 17a–d (3 ≤ ω ≤ 6) or bis-chloroethyl ether 17e (5 mmol, Table 4) were added. The mixture
was heated to 80 °C for different times (see Table 4), and monitored by TLC (silica, using AcOEt/Hex 30:70 as eluent) and GC-MS. After completion of reaction, work-up consisted of addition of AcOEt (40 mL) and successive washes with equal volumes of HCl 1% v/v aq and brine (one wash with each solution). The organic phase was separated and dried over anhydrous Na2SO4. After filtration and concentration of the organic phase, the oily residue was purified by flash chromatography using silica gel (0–40% AcOEt/Hex as eluent). All purified products were orange oils.

5.4. Synthesis of isatin-pyridine 4-oxime monocationic hybrids (novel compounds)

N-(α-Haloalkyl)isatins 14a–e (0.5 mmol) and pyridine 4-aldoxime 15 (1 mmol) were solubilised in ACN (3 mL) in a sealed tube. The reaction solution was maintained at 80 °C for 96 h, being monitored by TLC (50% AcOEt/Hex). After completion of the reaction the solvent was evaporated and products were either isolated by precipitation with cold acetone (20 mL, 13a, yellow solid) or trituration with ethyl acetate (3 × 3 mL), followed by TLC preparative (AcOEt, 13b–e, orange oils).

5.5. Docking studies

The crystallographic structures of HssAChE complexed with PXN (PDB code: 5HFA) and VX (PDB code: 6CQZ) were used for the docking studies. The 3D structures of each ligand were constructed through the program PC Spartan 08@ and their partial atomic charges calculated through the RM1 (Recife Model 1) semi-empirical method. The software Molegro Virtual Docker (MVD) was used to perform docking studies through the algorithm MolDock Score, an adaptation of the algorithm Differential Evolution (DE). Redocking was performed to validate the methodology, using the own inhibitor as reference. The binding site was limited to a sphere with a radius of 15 Å and residues within a 10 Å radius were considered flexible. Due to the stochastic nature of the docking algorithm, about 10 runs were done for each compound, with 30 configurations (poses) returned for evaluation. The best pose of each compound was selected according to the following criteria: distance between the P atom of OP and the O atom of the oxime, interaction energy between the oxime and inhibited AChE, energy involved on hydrogen bonds and total number of AChE residues interacting with the oxime.

5.6. Ellman’s spectrophotometric assays

The method used is a slight modification of a previous published paper, using 96-wells microplates and a maximum volume of 200 μL. For negative and positive controls, i.e. native enzyme activity and enzyme incubated with inhibitor, respectively, it was pipetted 20 μL of phosphate buffer solution (PBS, pH 7.60 ± 0.10), 70 μL of AChE solution (2.14 U/mL in each well), 80 μL of DTNB 0.4 mg/mL, 10 μL of inhibitor (positive control, inhibition range: 85–100) or 10 μL of PBS (negative control, A0), and waited for 10 min for inhibition reaction. Then, we added 20 μL of 1 mmol/L of ATCI and read the absorbance (Ai) to 412 nm in different times to calculate the enzyme reactivation. AChE inhibition and reactivation rates were given by Equations (1) and (2), respectively. None of the synthesised compounds presented absorbance at assay wavelength nor reacted with test reagents (no oximolysis) at the tested concentrations.

\[
\%d = 100 \times \left(\frac{A_0 - A_i}{A_0} \right)
\]

\[
\%R = \left[1 - \left(\frac{A_0 - A_i}{A_0 - A_t} \right) \right] \times 100
\]

Acknowledgements

The authors wish to thank the Brazilian Army Technological Center, Military Institute of Engineering and Faculty of Informatics and Management, University of Hradec, for the infrastructure. Authors also acknowledge “Central Analítica do IPPN” and “Laboratório de Ressonância Magnética do IME” for NMR analyses and the Laboratory of Computational Chemistry of the Federal University of Lavras for software facilities. S.F.A.C. would like to thank OPCW (organisation for the prohibition of Chemical Weapons, The Hague, The Netherlands) for fellowships in Organic Synthesis at Spiez Laboratory (2012) and Analytical Chemistry at VERIFIN/University of Helsinki (2016), and for funding as well.

Disclosure statement

No potential conflict of interest was reported by the author(s). The present work is part of the Brazilian patent application BR 1020180750046, filed on December 03th, 2018, in the Brazilian Patent and Trademark Office (INPI – Instituto Nacional da Propriedade Industrial).

Funding

This research was funded by the Brazilian financial agencies CNPq, grant number [308225/2018-0] and FAPERJ, grant number [E-02/202.961/2017]. This work was also supported by the OPCW Research Project Support Program (L/ICA/ICB/201062/15) and by the UHK project VT2019-2021.

References

1. Quinn DM. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 2002;87: 955–79.
2. Dvir H, Silman I, Harel M, et al. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 2010;187:10–22.

3. Taylor P. The cholinesterases. J Biol Chem 1991;266:4025–8.

4. Worek F, Wille T, Koller M, Thiermann H. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch Toxicol 2016;90:2131–45.

5. Candidotti K. A primer on nerve agents: what the emergency responder, anesthesiologist, and intensivist needs to know. Can J Anesth 2017;64:1059–70.

6. OPCW. Chemical Weapons Convention; 1997; Available from: https://www.opcw.org/chemical-weapons-convention [last accessed 28 Dec 2020].

7. Costanzi S, Machado J-H, Mitchell M. Nerve agents: what they are, how they work, how to counter them. ACS Chem Neurosci 2018;9:873–85.

8. Franca TCC, Kitagawa DAS, Cavalcante SFA, et al. Novichoks: the dangerous fourth generation of chemical weapons. Int J Mol Sci 2019;20:E1222.

9. Cavalcante SFA, Kitagawa DAS, Rodrigues RB, et al. Synthesis and in vitro evaluation of neutral aryl oximes as reactivators of Electrophorus eel acetylcholinesterase inhibited by NEMP, a VX surrogate. Chem Biol Interact 2019;309:108682.

10. Worek F, Thiermann H, Wille T. Oximes in organophosphate intoxication: a patent review (2006–2016). Expert Opin Ther Pat 2017;27:971–85.

11. de A. Cavalcante SFA, Simas ABC, Kuca K. Nerve agents’ surrogates: invaluable tools for development of acetylcholinesterase reactivators. Curr Org Chem 2019;23:1539–59.

12. Jokanović M, Stojičković MP. Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning. Eur J Pharmacol 2006;553:10–7.

13. Soukup O, Jun D, Tobin G, Kuca K. The summary on non-reactivation cholinergic properties of oxime reactivators: the interaction with muscarinic and nicotinic receptors. Arch Toxicol 2013;87:711–9.

14. Worek F, Reiter G, Eyer P, Sznicił Z. Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch Toxicol 2002;76:523–9.

15. Mercey G, Verdelet T, Renou J, et al. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc Chem Res 2012;45:756–66.

16. Carletti E, Colletier J-P, Dupeux F, et al. Structural evidence that human acetylcholinesterase inhibited by Tabun ages through O-dealkylation. J Med Chem 2010;53:4002–8.

17. Radić Z, Kalisiak J, Fokin VV, et al. Interaction kinetics of oximes with native, phosphorylated and aged human acetylcholinesterase. Chem Biol Interact 2010;187:163–6.

18. Masson P, Nachon F, Lockridge O. Structural approach to the aging of phosphorylated cholinesterases. Chem Biol Interact 2010;187:157–62.

19. Petronilho EC, Figueroa-Villar JD. Agents for defense against chemical warfare: reactivators of acetylcholinesterase inhibited with neurotoxic organophosphorus compounds. Mil Med Sci Lett 2015;84:115–27.

20. Gorecki L, Korabecny J, Musilek K, et al. Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: a patent review (2006–2016). Expert Opin Ther Pat 2017;27:971–85.

21. Worek F, Thiermann H, Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem Biol Interact 2016;259:93–8.

22. Garcia GE, Campbell AJ, Olson J, et al. Novel oximes as blood-brain barrier penetrating cholinesterase reactivators. Chem Biol Interact 2010;187:199–206.

23. Renou J, Dias J, Mercey G, et al. Synthesis and in vitro evaluation of donepezil-based reactivators and analogues for nerve agent-inhibited human acetylcholinesterase. RSC Adv 2016;6:17929–40.

24. Sit RK, Radić Z, Gerardi V, et al. New structural scaffolds for centrally acting oxime reactivators of phosphorylated cholines- terases. J Biol Chem 2011;286:19422–30.

25. Sit RK, Fokin VV, Amiat G, et al. Imidazole aldoximes effective in assisting butryrylcholinesterase catalysis of organo- phosphate detoxification. J Med Chem 2014;57:1378–89.

26. Nepovimova E, Korabecny J, Dolezal R, et al. A 7-methoxyla- crine-4-pyridinedaldoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol Res 2016;5:1012–6.

27. Silva BV. Isatin, a versatile molecule: studies in Brazil. J Braz Chem Soc 2013;24:707–20.

28. Da Silva JFM, Garden SJ, Pinto AC. The chemistry of Isatins: a review from 1975 to 1999. J Braz Chem Soc 2001;12:273–324.

29. Varun Sonam R, Kakkar R, Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. Medchemcomm 2019;10:351–68.

30. Chauhan G, Pathak DP, Ali F, et al. Advances on synthesis, derivatization and bioactivity of isatin: a review. Curr Org Synth 2020;17:37–74.

31. Chambers JE, Chambers HW, Meek EC, Pringle RB. Testing of novel brain-penetrating oxime reactivators of acetocholinesterase inhibited by nerve agent surrogates. Chem Biol Interact 2013;203:135–8.

32. Meek EC, Chambers HW, Coban A, et al. Synthesis and in vitro and in vivo inhibition potencies of highly relevant nerve agent surrogates. Toxicol Sci 2012;126:525–33.

33. Cavalcante SFA, Kitagawa DAS, Rodrigues RB, et al. One-pot synthesis of NEMP, a VX surrogate, and reactivation of NEMP-inhibited Electrophorus eel acetylcholinesterase by current antitoxes. J Braz Chem Soc 2019;30:1095–102.

34. Swain M. Chemicalize.org by ChemAxon Ltd. J Chem Inf Model 2012;52:613–5.

35. Musil K, Florianova V, Bucek P, et al. Development and validation of a FIA/UV-vis method for pKa determination of oxime based acetylcholinesterase reactivators. J Pharm Biomed Anal 2016;117:240–6.

36. Osiris Property Explorer. Molecular properties prediction; n.d. https://www.organic-chemistry.org/prog/peo/ [last accessed 28 Dec 2020].

37. Luo C, Chambers C, Pattabiraman N, et al. Y124 at the peripheral anionic site is important for the reactivation of nerve agent-inhibited acetylcholinesterase by H oximes. Biochem Pharmacol 2010;80:1427–36.

38. Matos KS, Mancini DT, Da Cunha EFF, et al. Molecular aspects of the reactivation process of acetylcholinesterase inhibited by cyclorsarin. J Braz Chem Soc 2011;22:1999–2004.

39. Oh KA, Yang GY, Jun D, et al. Bis-pyridiniumaldoxime reactivators connected with CH2O(CH2)nOCH2 linkers between pyri- dinium rings and their reactivity against VX. Bioorg Med Chem Lett 2006;16:4852–5.

40. De A Cavalcante SFA, Kitagawa DAS, Rodrigues RB, et al. Straightforward, economical procedures for microscale ellman’s test for cholinesterase inhibition and reactivation. Quim Nova 2018;41:1192–5.
41. Hehre WJ, Deppmeier BJ, Klunzinger PE. PC SPARTAN pro
molecular modeling for the desktop. Chem Eng News 1999;
77:2.

42. Rocha GB, Freire RO, Simas AM, Stewart JJP. RM1: a repara-
meterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J
Comput Chem 2006;27:1101–11.

43. Thomsen R, Christensen MHMH. MolDock: a new technique
for high-accuracy molecular docking. J Med Chem 2006;49:
3315–21.

44. Storn R, Price K. Differential evolution – simple and efficient
heuristic for global optimization over continuous spaces. J
Glob Optim 1997;11:341–59.