SUPPLEMENTARY MATERIAL

Comparison Of Essential Oils From Cistus Species Growing In Sardinia

Patrizia Monica Mastino*, Marchetti Maurob, Costa Jeancc and Usai Mariannad

aDipartimento di Scienze e Tecnologie per l’Agricoltura, le Foreste, la Natura e l’Energia (DAFNE), Università della Tuscia, via S. Camillo de Lellis snc 01100 Viterbo, Italy, 0039-079228751, monicamastino@gmail.com
bC.N.R. - Istituto di Chimica Biomolecolare, traversa La Crucca 3, I-07040 Sassari, Italy, 0039-079 2841 203, mauro@ss.cnr.it
cUniversité de Corse, CNRS UMR 6134, Laboratoire de Chimie des Produits Naturels, BP 52, 20250 Corti, France costa@univ-corse.fr
dDipartimento di Scienze della Natura e del TerritorioUniversità degli Studi di Sassari, via Muroni 23, I-07100 Sassari, Italy, 0039228751, dsfusai@uniss.it

*Corresponding author: Patrizia Monica Mastino, monicamastino@gmail.com

Abstract

Cistus genus is present in Sardinia with large populations of C. monspeliensis, C. salvifolius, C. creticus subsp. eriocephalus and few stations of C. albidus, C. creticus subsp. creticus and C. creticus subsp. corsicus. No chemical studies are currently being carried on Cistus species of Sardinia. The essential oils have shown six different profiles. C. creticus subsp. eriocephalus showed a high amount of manoyl oxide and its isomer (70%). C. salvifolius has pointed out the group of labdans, (20%); another consistent percentage is made of perfumed molecules as ionone and its derivate. Several linear hydrocarbons were produced by C. monspeliensis, and the heneicosane was the most represented element. In C. albidus no labdane-type diterpenes were identified. Analysis of C. creticus subsp creticus revealed several oxygenated sesquiterpenes and labdane-type diterpenes, especially manoyl oxide. C. creticus subsp. corsicus was qualitatively very similar to C. creticus subsp. creticus, notably concerning the labdane-type compounds.

Keywords: Cistus, essential oil, labdane, manoyl oxide
RI	Components	C. albidus	C. creticus	C. creticus	C. creticus	C. monspeliensis	C. salvifolius	IDa	References
			subsp. corsicus	subsp. creticus	subsp. eriocephalus				
2021	3-methyl eicosane								
2100	heneicosane								RI, MS
2400	tetracosane								Std
2700	heptacosane								Std
					te				
1101	nonanal			0.12					Std
1320	5,9-dimethyl-5,8-decadien-2-one								RI, MS
1327	undecanal			0.35					Std
1333	2,6,6-trimethyl 1-cyclohexene-1-acetaldehyde	0.24							RI, MS
1348	6-methyl-5-(1-methylethylidene)-6,8-nonadien-2-one	1.41							RI, MS
1401	4-(4-methyl phenyl)-pentanal								RI, MS
1409	dodecanal			0.32					Std
1826	hexahydrofarnesyl acetone [(+/-)-phytene]			6.55					RI, MS
Compound	Retention Index (RI)	Similarity (MS)	Authors & Year						
---	----------------------	-----------------	----------------						
cis,cis,cis-7,10,13-hexadecatrienal	0.39								
15-methyl-(Z)-11-hexadecenal	0.51	0.26							
FATTY ACIDS									
lauric acid	0.81								
miristic acid	1.09								
palmitic acid	1.45								
ALIPHATIC ESTERS									
methoxyacetic acid-2-ethylcyclohexyl ester	0.48								
AROMATIC ESTERS									
(3Z)-2-hexenyl benzoate	2.80	0.45	Hazzit, Baaliouamer, et al., 2006						
(2E)-2-hexenyl benzoate	0.38		Campeol, Flamini, et al., 2001						
benzyl benzoate	0.95		Su, Ho, et al., 2006						
benzyloleate	0.32	0.27							
MONOTERPENE HYDROCARBONS									
α-pinene	0.36								
camphene	0.16								
β-pinene	0.21								
limonene	0.12								
OXIGENATED MONOTERPENES									
borneol	0.49								
terpinen-4-ol	0.26								
Compound	RI	MS	Std						
--------------------------------------	-----	-----	------						
α-terpineol	0.42	0.40							
β-caryophyllene									
ascaridole	0.29	RI, MS	Lucero, Estell, et al., 2003						
10-(acetyl methyl)-3-carene	0.79	RI, MS	Al-Qudah, 2013						

SESQUITERPENE HYDROCARBONS

Compound	RI	MS	Std
α-cubebene	0.1	0.49	0.17
α-copaene			0.45
(-)-β-bourbonene	4.88	0.93	1.38
cis-α-bergamotene	0.61	0.33	
E-α-ionene			0.73
E-β-caryophyllene	4.54	0.92	1.18
β-copaene	0.77	0.32	
α-guaiene		0.27	0.47
aromadendrene	0.98		0.09
β-Z-farnesene	1.79		0.46
α-humulene	1.04		
β-E-farnesene		0.43	
muurola-4,11-diene	2.54		
cis-muurola-4(14)5-diene			0.17
alloaromadendrene	5.32		1.97
α-curcumene (= ar curcumene)	16.01		0.72
D-germacrene	3.57	0.64	0.27
α-zingiberene	3.53		2.33

Weyerstahl, Marschall, et al., 1999
Ret.	Compound	RI	Std	MS	Ref			
1498	α-selinene	2.09	0.50					
1498	viridiflorene	0.90						
1480	γ–muurolene	0.97	0.96	0.46				
1500	α-muurolene	2.04	1.39	1.80	1.15	1.92	0.38	RI, MS
1502	γ-patchoulene	0.77						
1505	β-himachalene	0.66						
1514	γ–cadinene	2.45	1.98	1.17	0.71			
1515	γ-bisabolene	1.25						
1523	δ-cadinene	6.70	7.67	2.18	2.51	0.12	RI, MS	
1528	cada-1,4-diene	1.02		0.85				
1539	α-cadinene	1.67						
1566	β-calacorene	0.71	0.47	0.26	0.50	RI, MS		
1677	cadalene	0.33		0.28	1.07	RI, MS		

OXYGENATED SESQUITERPENES

Ret.	Compound	RI	Std	MS	Ref			
1177	terpinen 4-ol	0.26						
1189	α-terpineol	0.42	0.40					
1498	6-epi-shyobunone	1.13						
1510	shyobunone	1.43						
1566	cis-(Z)-α-bisabolene epoxide	0.80						
1567	isoaromadendrene epoxide	4.86						
1578	spathulenol	0.65	0.31	0.36	0.42	0.18	RI, MS	
1580	trans-(Z)-α-bisabolene epoxide							
1583	caryophyllene oxide	0.80	0.40	0.24	0.53	0.21	Std	Hamm, Bleton, et al., 2005
Compound	RI 1	RI 2	RI 3	RI 4	Std			
--------------------------------	------	------	------	------	-----			
globulol	2.22	0.86	0.95	3.80	0.13			
viridiflorol	2.51	0.43	1.56	0.74	Std			
aromadendrene oxide-(2)	0.58				Std			
cubedol	0.30	0.28	0.88		RI, MS			
guaiol	1.26	2.49	8.80	0.36	Std			
δ-cadinol	3.02	6.47	4.86	2.82	2.23	0.64	RI, MS	
τ-murolol	1.81	0.93	0.92	0.68		RI, MS		
cis-cadin-4-en-7-ol	7.43			5.03		RI, MS	Su, Ho, et al., 2006	
τ-cadinol	6.22	13.63	3.47	3.37		RI, MS		
selina-3,11-dien-6-α-ol	4.23	18.04				RI, MS		
selin-11-en-4-α-ol	15.55	0.69	1.55			RI, MS		
7-epi-α-eudesmol	2.73					RI, MS		
α-bisabolol	3.59		1.07			Std		
ambroxide		0.23		0.75		Std		
alloaromadendrolβ				0.57		RI, MS		

NORISOPRENOIDS

Compound	RI 1	RI 2	RI 3	Std				
β-cyclocitral			0.31	Std				
dehydro-ar-ionene			0.50	RI, MS				
(E)-β-damascenone			0.13	Std				
dihydro-α-ionone			0.75	RI, MS				
β-iso-ionone			2.47	RI, MS				
α-ionene			0.73	RI, MS				
α-ionone			1.32	Std				
7,8-dihydro-β-ionone			3.89	RI, MS				
Year	Compound Description	RI	MS	Std				
------	----------------------	----	----	-----				
1962	geranyl-α-terpinene	2.13	RI, MS	Paolini et al., 2008				
1965	geranyl-p-cymene	9.61	RI, MS	Paolini et al., 2008				
1969	cembrene A (3Z)	1.42	RI, MS	Rahimi-Nasrabadi, Gholivand, et al., 2009				
1972	cembrene A (3E)	8.55	RI, MS	Rahimi-Nasrabadi, Gholivand, et al., 2009				
2017	kaur-16-ene	1.30	RI, MS	Demetzos et al., 2002				
2049	phytol	4.01	Std					
1998	manoyl oxide	0.18	2.47	8.17	64.00	11.98	RI, MS	Demetzos et al., 2002
1985	manoyl oxide isomer		4.40			2.10	RI, MS	Demetzos et al., 2002
2017	13-epi-manoyl oxide	2.46	RI, MS	Demetzos et al., 2002				
2097	dihydromanoyl oxide		0.77				RI, MS	
1825	sclareol oxide (trans-A/B)	1.06	RI, MS	Wulfson et al., 1966				
1846	sclareol oxide (cis-A/B)	0.40	2.07	1.10	6.07	RI, MS	Wulfson et al., 1966	
								Hutschenreuther et
Compounds	RI	MS	Compounds	RI	MS			
-----------	--------	--------	-----------	--------	--------			
Labdane unidentified (MW 281)	1.24		Labdane unidentified (MW 281)	1.21	1.24	1.50		
Labdane unidentified (MW 281)	1.77	RI, MS	Hutschenreuther et al., 2010					
Sclareol oxide (cis B/C)	1.47	RI, MS						
1967			1983	11.66	1.46	0.36		
1983			1996	1.78	5.95			
2057			2022	21.07	20.26	2.82		
2223			Others	3.70	0.78			
1381			1,1-dimethyl-2-(2-methyl-1-propenyl)-cyclopropane	0.49				
1702	hexadecanol	1.56	Std					
	cistodiol		Std					
	99.43	97.6	99.26	94.15	92.15	81.27		

Table S1. Chemical composition of the essential oils of *Cistus* species growing wild in Sardinia

Identification methods: MS by comparison of the Mass spectrum with those of the computer mass libraries Adams, Nist 11 and by interpretation of the mass spectra fragmentations. RI by comparison of retention index with those reported in literature. Std by comparison of the retention time and mass spectrum of available authentic standards.
References
Al-Qudah MA. 2013. Chemical composition of the essential oil from Jordanian Lupinus varius L. Arabian J. Chem., 6: 225-227
Campeol E, Flamini G, Chericoni S, Catalano S, Cremonini R. 2001. Volatile compounds from three cultivars of Olea europaea from Italy. J. Agric. Food Chem., 2001, 49: 5409-5411.
Demetzos C, Agelopoulou D, Perdizoglou D. 2002. A comparative study of the essential oil of Cistus salviifolius in several populations of Crete (Greece). Biochem. Sys. Ecol., 30: 651-655.
Hamm S, Bleton J, Connan J, Tchapla A. 2005. A chemical investigation by headspace SPME and GC-MS of volatile and semi-volatile terpenes in various olibanum samples. Phytochemistry, 66: 1499-1514.
Hazzit M, Baaliouamer A, Faleiro ML, Miguel MG. 2006. Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. J. Agric. Food Chem., 54: 6314-6321.
Hutschenreuther A, Birkemeyem C, Groetzinger K, Straubinger RK, Rauwald HW. 2010. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi s.s. in vitro. Pharmazie, 65: 290-295.
Lucero ME, Esteii RE, Frederickson EL. 2003. The essential oil composition of Psorothamnus scoparius (A. Gray) Rydb. J. Essent. Oil Res., 15: 108-111.
Paolini J, Tomi P, Bernardini AF, Bradesi P, Casanova J, Kaloustian J. 2008. Detailed analyses of the essential oil from Cistus albidus L. by combination of GC/RI, GC/MS and 13C-NMR spectroscopy. Nat Prod Res, 22: 1270-1278.
Su YC, Ho CL, Wang EIC. 2006. Analysis of leaf essential oils from the indigenous five conifers of Taiwan. Flavour Fragr. J., 21: 447-452.
Weyerstahl P, Marschall H, Eckhardt A, Christiansen C. 1999. Constituents of commercial Brazilian Itanta oil. Flavour Fragr. J., 14: 15-28.
Wulfson NS, Zaretskii VI, Sadovskaya LV, Semenovsky AV, Smit WA, Kucherov VF. 1966. Mass spectrometry of steroid systems—IV Cis-trans isomerism of di- and tricyclic model compounds. Tetrahedron, 22: 603-614