Cyclin A1 shows age-related expression in benign tonsils, HPV16-dependent overexpression in HNSCC and predicts lower recurrence rate in HNSCC independently of HPV16

Daniel Weiss*, Mario Koopmann, Türker Basel and Claudia Rudack

Abstract

Background: Promoter methylation of the tumor suppressor gene Cyclin A1 could be associated with Human Papillomavirus 16 (HPV16) induced Head and Neck Squamous Cell Carcinoma (HNSCC) and Cervical Carcinoma. There is disagreement about the impact of this epigenetic event on protein expression of Cyclin A1 in malignant and non-malignant tissue and there hardly exists any information about possible relationships between Cyclin A1 expression and clinicopathological characteristics in HNSCC.

Methods: We analyzed protein expression of Cyclin A1 in 81 HNSCC and 74 benign tonsils by immunohistochemistry and correlated it to Cyclin A1 methylation status, presence of HPV16 infection and other clinicopathological characteristics.

Results: Overexpression of Cyclin A1 was more present in HNSCC than in tonsils (p < 0.001). In both entities, HNSCC and benign tonsils, expression of Cyclin A1 significantly correlated with the expression of Cyclin-dependent kinase-inhibitor p16 (p = 0.000672 and 0.00495). In tonsils, expression of Cyclin A1 was inversely proportional to age (p = 0.0000396), and further correlated with expression of tumor suppressor gene p53 (p = 0.000228). In HNSCC Cyclin A1 expression was associated with the presence of HPV16 DNA (p = 0.0014) and a lower recurrence rate in univariate and multivariate analysis (p = 0.002 and 0.013). Neither in HNSCC nor in tonsils Cyclin A1 expression correlated with promoter methylation.

Conclusions: Cyclin A1 is an important cell cycle regulator with age-related increased expression in tonsils of children. HPV16 induces overexpression of Cyclin A1 in HNSCC despite promoter methylation. Overexpression of Cyclin A1 predicts a lower recurrence rate in HNSCC independently of HPV16.

Keywords: Head and neck squamous cell carcinoma, Cyclin A1, Promoter methylation, Human Papillomavirus 16.

Background

In all types of tumors the cell cycle is an important target for both tumor progression and anti-tumor therapy. Activators and inhibitors are regulating the cell cycle through Cyclin-dependent kinase (CDK) complexes that catalyze the ordered transition from one phase of the cell cycle to the next [1]. The two known gene families of CDK inhibitors are the cip/kip and the INK4a/ARF family. The cip/kip family includes the genes p21, p27 and p57, which modulate the activity of, inter alia, the Cyclin A-CDK complex [2].

There are two A-type Cyclins, Cyclin A1 and Cyclin A2. Both factors associate with CDK2, whereby Cyclin A2 is essential for DNA replication and proliferation in somatic cells and Cyclin A1 is highly expressed in testis and expressed at low levels in most other tissues [3,4]. Cyclin A1 could bind to important cell cycle regulators: the Rb family of proteins, the transcription factor E2F-1, and the p21 family of proteins [4]. Cyclin A1 is required for S phase and passage through G2 [5,6]. The disruption...
of the cell cycle through HPV by its oncogenes E6 and E7 is sufficiently known. In this connection, the most studied - and probably also the most important - cell cycle targets are pRb and p53 [7]. However, HPV oncoproteins can also abuse other important cell cycle regulators, like Cyclin A. Zerfass et al. could demonstrate that HPV16-E7 can transform rodent fibroblasts through induction of Cyclin A and E [8]. The transcription factor E2F forms a complex with p107, Cyclin A, and the CDK2 kinase (E2F-cyclin A complex) during S phase. HPV16-E7 associates very efficiently with the E2F-Cyclin A complex which is crucial for its transforming activity [4,9]. Malanchi et al. could demonstrate that not only HPV E7 but also E6 is able to promote G1/S transition through increasing the activity of the Cyclin A/Cyclin-dependent kinase 2 complex, which is involved in pRb phosphorylation. This leads to an accumulation of proteins that are negatively regulated by pRb, such as p16_{INK4a}, CDC2, E2F-1 and Cyclin A [10,11].

Besides alcohol and nicotine abuse infection with high-risk HPV is one of the most important risk factors in the development of Head and Neck Squamous Cell Carcinoma (HNSCC) [12-14]. Methylation of Cyclin A1 could be related to the presence of HPV16 DNA in Head and Neck Squamous Cell Carcinoma (HNSCC) and Cervical Neoplasia [15-17]. In cervical cancer Cyclin A1 methylation could be associated with decreased protein expression and the integrated form of HPV. In contrast, we also found a higher frequency of Cyclin A1 promoter methylation in HNSCC, especially in HPV16 positive tumors, but could not attribute it to reduced protein expression at first sight. We thought it was partly due to the low sample size.

Santopietro et al. could identify protein expression of Cyclin A as an independent predictor of high-risk HPV and high-risk HPV associated high-grade lesions in cervical cancer [18]. In renal, ovarian, and lung carcinoma cells Cyclin A1 could be identified as a downstream target of p53 that mediates apoptosis, G2/M arrest, and mitotic catastrophe if up-regulated [19,20]. An inverse correlation between Cyclin A1 methylation and p53 mutation in HNSCC could be shown by Tokumaru et al. [21]. Both research groups did their analysis without taking into account the HPV-status of cells. In our HNSCC collective we found a p53-independent influence of HPV16 on promoter methylation of Cyclin A1 [15].

In this study we wanted to establish the impact of Cyclin A1 expression on clinicopathological parameters in HNSCC. By including a larger sample size we intended to re-evaluate the relationship between HPV16 and Cyclin A1.

Results

Immunohistochemical expression of Cyclin A1 in HNSCC and controls

In a first step we determined Cyclin A1 expression in HNSCC (Figure 1a) and controls (benign tonsils, Figure 2a) through immunohistochemistry by three independent pathologists and categorized it into eleven different staining intensities (Table 1). On the basis of the expression results in tonsils and due to lack of reliable data in literature we set the cut-off for considering a Cyclin A1 overexpression at ≥20% positive cells. Dependent (Chi-square test) or independent (Rank Sum Test) of a cut-off, the expression of Cyclin A1 was much more intense in HNSCC compared to tonsils (p < 0.001). Due to disease-related epidemiology controls were much younger than patients with HNSCC (p < 0.001).

Prevalence of HPV16 DNA, overexpression of p16 or p53, and p53 mutation in HNSCC and controls

In HNSCC we found 37 (46%) HPV16 positive samples in Real-Time PCR (Table 1). Of those 37 HPV16 positive tumors, seven showed no overexpression of p16. Real-Time PCR revealed 44 HPV16 negative samples, whereby four samples showed an overexpression of p16. These samples were further analyzed for other HPV types by in-situ hybridization but remained HPV negative. When looking at the results broken down by primary site, tumors of the oropharynx (tonsil and base of the tongue) showed a substantially higher frequency of HPV16 and p16 overexpression compared to non-oropharyngeal site (p < 0.001 and p = 0.008, Table 2). On the other hand tumors originating from the anterior

Figure 1 Immunohistochemical staining of Cyclin A1 (a), p16 (b) and p53 (c) in HNSCC. Tumor of a 77 year old man; primary site: tonsil; HPV16 positive; Cyclin A1 overexpression (category 8); p16 overexpression (category 9); p53 negative (category 1); original magnification: x50.
two-thirds of the tongue showed markedly lower frequency of HPV16 (p = 0.035). Overexpression and mutation of p53 could be detected in 33 of 80 and 19 of 41 tumor samples. Interestingly, four HPV16 positive tumors showed p53 mutation but no p53 overexpression and four HPV16 negative tumors showed overexpression.

Table 1 Results of HPV16 RT-PCR, immunohistochemistry of p16, Cyclin A1, and p53 and p53 mutation analysis

Age (mean ± sd)	HNSCC (N = 81)	Controls/Tonsils (N = 74)	P
	62.78 ± 11.24	27.19 ± 19.26	<0.001
Sex			
Male	53	40	0.200
Female	28	34	
Cyclin A1 overexpression (abs./%)			
Total	24/29.6	4/5.4	
Category 0 (negative)	0/0.0	2/2.7	
Category 1 (few positive cells)	4/4.9	9/12.2	
Category 2 (< 10%)	25/30.9	34/45.9	
Category 3 (10-20%)	28/34.6	25/33.8	
Category 4 (20-30%)	14/17.3	4/5.4	
Category 5 (30-40%)	5/6.2	0/0.0	
Category 6 (40-50%)	3/3.7	0/0.0	
Category 7 (50-60%)	1/1.2	0/0.0	
Category 8 (60-70%)	1/1.2	0/0.0	
Category 9 (70-80%)	0/0.0	0/0.0	
Category 10 (80-90%)	0/0.0	0/0.0	
Category 11 (90-100%)	0/0.0	0/0.0	
HPV16 positive (abs./%)			
Total	37/45.7	0/0.0	
P16 positive	29 out of 37/78.4		
Cyclin A1 positive	18 out of 37/48.6		
HPV16 negative (abs./%)			
Total	44/54.3	74/100.0	
P16 positive	4 out of 44/9.1	0 out of 74/0.0	
Cyclin A1 positive	6 out of 44/13.6	4 out of 74/5.4	
P16 overexpression (abs./%)			
Total	33 out of 79/41.8		
HPV16 negative	4 out of 33/12.1		
P53 overexpression (abs./%)			
Total	33 out of 80/41.3		
HPV16 positive	4 out of 33/12.1		
P53 positive	9 out of 19/47.4		

Cut off for overexpression in immunohistochemistry: CDKN2A/p16 positive: ≥20% (category ≥4); Cyclin A1 positive: ≥20% (category ≥4); p53 positive: ≥10% (category ≥3).
of p53 without p53 mutation. Only about half of all tumors with p53 mutation demonstrated overexpression of the associated protein in immunohistochemistry.

In tonsils we could not find any positive samples regarding HPV16 Real-Time PCR, overexpression of p16 and overexpression of p53. p53 mutation analysis revealed only wild-type samples.

Correlation of Cyclin A1 expression with clinicopathological parameters in controls

In benign tonsils the expression of Cyclin A1 was inversely proportional to age (p = 0.00000396) (Table 3). Tissue sections from patients with daily nicotine consumption showed significantly lower expression rates than those of patients without nicotine abuse (p = 0.012). The expression of Cyclin A1 showed weak but significant correlation with the protein expression of p16 (p = 0.00495) and p53 (p = 0.000228).

Correlation of Cyclin A1 expression with clinicopathological parameters in HNSCC

In HNSCC expression of Cyclin A1 significantly correlated with HPV16-status (p = 0.001), with higher expression rates in HPV16 positive samples, but not with the copy number of E6 and E7 DNA (Table 4). Like in tonsils, the comparison of expression of Cyclin A1 and p16 revealed a relevant positive correlation between both variables (p = 0.000672). We could not find any correlation between the expression of Cyclin A1 and the expression or mutation of p53. If correlated with other clinicopathological parameters, Cyclin A1 expression showed no significant correlation with age, sex, primary site, tumor size, metastatic spread, Grading, UICC stage or alcohol and nicotine abuse (Table 4). As demonstrated earlier, Cyclin A1 promoter methylation had no impact on Cyclin A1 protein expression (p = 0.882) [15]. However, samples of HNSCC patients without locoregional recurrence showed significantly higher Cyclin A1 expression than those of patients with locoregional recurrence (p = 0.002). This positive impact on the progression of the disease had no influence on survival, since we could not find improved progression-free or overall survival in patients with overexpression of Cyclin A1 in associated samples. As expected, patients with HPV16 positive tumors had improved progression-free and improved overall survival (p = 0.017 and p = 0.018) (data not shown). We could also detect significantly more HPV16 positive samples in the group of patients

Table 3 Correlation of Cyclin A1 expression in immunohistochemistry with clinicopathological characteristics in controls (tonsils)

Clinicopathological parameter	N	Performed Statistic	Subgroups	P
Age [y]	74	Spearman Rank Order	σ = –0.512	0.0000004
Sex	74	Mann–Whitney Rank Sum	male vs. female	0.899
Nicotine abuse	74	Mann–Whitney Rank Sum	nicotine vs. no nicotine	0.012
Alcohol abuse	74	Mann–Whitney Rank Sum	alcohol vs. no alcohol	0.160
P16 Expression	74	Spearman Rank Order	σ = 0.336	0.005
P53 Expression	74	Spearman Rank Order	σ = 0.419	0.0002
Cyclin A1 Methylation	12	Mann–Whitney Rank Sum	methylated vs. non-methylated	0.386

N: number of available samples; Age in years [y].
without locoregional recurrence (p = 0.023). In Cox proportional-hazards regression overexpression of Cyclin A1 represented an independent prognostic risk factor for lower recurrence rate (p = 0.013).

Discussion

We were the first to describe a connection between HPV16 and Cyclin A1 promoter methylation in HNSCC [15]. In contrary to other reports, we could show in this context that the promoter methylation of Cyclin A1 does not lead to a measurable impact on its protein expression and that the relationship between HPV16 and Cyclin A1 methylation is independent of the expression or mutation of p53 [19-21]. This time, we wanted to solve the jigsaw puzzle of HPV16 and Cyclin A1 a little more by analyzing the protein expression of Cyclin A1 in HPV16 positive and HPV16 negative HNSCC as well as in benign tonsils in a greater collective. We were further interested in detecting possible relationships between protein expression of Cyclin A1 and clinicopathological characteristics in malignant and non-malignant oropharyngeal tissue. The results obtained by these investigations showed a strong correlation between Cyclin A1 protein expression and HPV16 in HNSCC. To

Clinicopathological parameter	N	Performed Statistic	Subgroups	P
Age [y]	81	Spearman Rank Order	σ = -0.070	0.532
Sex	81	Mann-Whitney Rank Sum	male vs. female	0.964
Primary site				
Tonsil	33	Fisher exact	CCNA1 < 4 vs. ≥ 4	0.623
Base of the tongue	28	Fisher exact	CCNA1 < 4 vs. ≥ 4	0.447
Anterior two-thirds of the tongue	9	Fisher exact	CCNA1 < 4 vs. ≥ 4	0.268
Floor of the mouth	2	Fisher exact	CCNA1 < 4 vs. ≥ 4	1.000
Hypopharynx	1	Fisher exact	CCNA1 < 4 vs. ≥ 4	1.000
Soft palate	2	Fisher exact	CCNA1 < 4 vs. ≥ 4	1.000
Supraglottic	3	Fisher exact	CCNA1 < 4 vs. ≥ 4	0.551
Unknown (CUP)	3	Fisher exact	CCNA1 < 4 vs. ≥ 4	0.208
T	72	Fisher exact	T1/2 vs. T3/4	0.591
N	73	Fisher exact	N0/1 vs. N2/3	0.312
M	75	Fisher exact	M0 vs. M1	0.094
G	62	Fisher exact	G1/2 vs. G3/4	0.404
UICC stage	71	Fisher exact	stage 1/2 vs. stage 3/4	1.000
Recurrence rate	64	Mann-Whitney Rank Sum	Recurrence vs. no recurrence	0.002 univariate
				0.013 multivariate
Secondary tumor	78	Mann-Whitney Rank Sum	sec. tumor vs no sec. tumor	0.516
Nicotine abuse	79	Mann-Whitney Rank Sum	nicotine vs. no nicotine	0.358
Alcohol abuse	79	Mann-Whitney Rank Sum	alcohol vs. no alcohol	0.743
Progression free survival	81	Kaplan-Meier	CCNA1 < 4 vs. ≥ 4	0.363
Overall survival	81	Kaplan-Meier	CCNA1 < 4 vs. ≥ 4	0.354
HPV16 DNA status	81	Mann-Whitney Rank Sum	HPV16+ vs. HPV16-	0.001
E6 quantitative	37	Spearman Rank Order	σ = 0.229	0.172
E7 quantitative	37	Spearman Rank Order	σ = 0.250	0.134
P16 Expression	79	Spearman Rank Order	σ = 0.376	0.0007
P53 Expression	80	Spearman Rank Order	σ = -0.086	0.448
P53 Mutation	41	Mann-Whitney Rank Sum	P53 mutated vs. wild-type	0.920
Cyclin A1 Methylation	44	Mann-Whitney Rank Sum	methylated vs. non-methylated	0.882

N: number of available samples; CUP: Carcinoma of unknown primary; Age in years [y]; stage: UICC-stage; T: Tumor size: T1 (< 2 cm), T2 (2-4 cm), T3 (> 4 cm), T4 (Tumor infiltrates adjacent structures); N: status of regional lymph node metastasis: N0 (no metastasis), N1 (single ipsilateral lymph node metastasis, size < 3 cm), N2a (single ipsilateral lymph node metastasis, size 3-6 cm), N2b (multiple ipsilateral lymph node metastases, size 3-6 cm), N2c (multiple ipsi- and contralateral lymph node metastases, size 3-6 cm), N3 (lymph node metastasis, size > 6 cm); E6/E7 quantitative: results of quantitative HPV16 Real-Time PCR; CCNA1: Cyclin A1; CCNA1 < 4/≥ 4: immunohistochemical expression of Cyclin A1 less than 20% or at least 20%.
our great surprise, however, the expression of Cyclin A1 depended more on the protein expression of p16 than on the copy number of E6 and E7. It is assumed that Cyclin A1 is induced by HPV16-E7 [4,8,9]. But, it could be proven that also the E6 oncogene of high and low risk HPV types is able to generate elevated Cyclin A1 expression through phosphorylation of pRb. Santopietro et al. could identify protein expression of Cyclin A as independent predictor of high-risk HPV and high-risk HPV associated high-grade lesions in cervical cancer [18]. In cervical cancer no correlation was found between the quantity of HPV (determined by the proportion of HPV L1 and histone acetyltransferase – a human housekeeping gene) and Cyclin A1 promoter methylation [17]. Yet, the physical state of HPV did affect methylation of Cyclin A1; the integrated form of HPV had a significantly higher impact on Cyclin A1 methylation than the episomal form. We did not differentiate between integrated and episomal form of HPV in our HNSCC collective. It remains unclear if HPV16 induces promoter methylation or overexpression of Cyclin A1 or both. Sartor and colleagues could determine a higher methylation frequency and a lower protein expression of Cyclin A1 in HPV positive HNSCC than in HPV negative HNSCC [22]. They compared the methylation patterns and expression differences of various genes in one HPV16 positive cell line, two HPV negative cell lines and CaSkI cells. What if HPV16 causes both, Cyclin A1 promoter methylation and Cyclin A1 protein overexpression? This would enable the virus to down regulate the tumor suppressive properties of Cyclin A1 on the one hand and to have nevertheless the possibility of promoting cell cycle progression through Cyclin A1 on the other hand. This exciting theory needs further clarification. Continuing experiments are already planned by our study group, particularly also because our results regarding Cyclin A1 methylation and p53 mutation are still limited by small sample size. Regardless of HPV, we could identify Cyclin A1 as an independent risk factor of a lower recurrence rate in HNSCC. Nevertheless, overexpression of Cyclin A1 did not have any impact on survival. Methylation of Cyclin A1, along with DCC and CDKN2A, has been found to predict longer disease-free survival in HNSCC [23]. In our collective, patients with Cyclin A1 promoter methylation in their corresponding tumor samples tended to have improved progression-free and overall survival but without statistical significance (data not shown). Interestingly, Cyclin A1 showed an age-related expression in tonsils. Younger patients, especially children under the age of 18 had markedly higher expression rates in corresponding tissue sections than older patients. We guess, that the increased expression of Cyclin A1 in tonsils of little children reflects the enhanced immunological activity taking place in tonsils of patients in this age. This hypothesis is confirmed by the following facts: first, the expression of Cyclin A1 was almost invariably found inside the centre of the lymphoid follicles of tonsils and, secondly, that the expression correlated with those of other markers for a heightened cell division rate, such as p16 and p53. The elevated expression of Cyclin A1 in tonsils of non-smokers could be due to the diminished or absent nicotine consumption in children. Because of epidemiological reasons controls were much younger than patients with HNSCC in our study. But, if we would redo the analysis of Cyclin A1 protein expression with an age-matched control group, the statistical difference between both groups would become even larger.

Conclusions

Taken together, the findings obtained in our study clearly demonstrate a link between HPV16 and Cyclin A1 in HNSCC in one way or another. If the enhanced methylation frequency of Cyclin A1 found in HNSCC and Cervical Cancer is directly caused by the HP-virus and the overexpression of Cyclin A1 is only an indirect consequence of the altered cell cycle needs to be proven in further experiments. Irrespective of the relationship with HPV16 shown herein, Cyclin A1
expression predicts recurrence rate in HNSCC and should therefore be considered as a possible tumor marker.

Methods

Patients and controls

We screened fresh-frozen tissue sections and formalin-fixed, paraffin-embedded tissue blocks of altogether 81 HNSCC from patients diagnosed and treated at the Department of Otorhinolaryngology, Head and Neck Surgery of the University Hospital of Münster, Germany. Patients’ age ranged from 30 to 89 years (mean: 62.78, standard deviation: 11.24 years). Fifty-three males and 28 females were included in the study (Table 1). Histological diagnose was based on examination of hematoxylin and eosin-stained tissue sections by at least two independent pathologists according to the World Health Organization Classification of Tumors [24]. The clinical data was abstracted from the patient’s medical chart. Preoperative evaluation included an endoscopy of the entire pharynx, larynx, trachea, bronchi and esophagus, a CT-scan of the head and neck, of the thorax and abdomen or hyperplasia, were taken as controls (age: 27.19 ± 19.26 years; 34 females; 40 males) (Table 1). The study protocol was reviewed and approved by the ethics committee of the University of Münster, Germany, and informed consent was obtained from all patients.

Quantitative HPV16 E6/E7 Real-Time PCR and HPV in-situ hybridization

Detection of HPV16 through Real-Time PCR and immunohistochemistry for CDKN2A/p16 was done as described previously [25]. Briefly, tissue sections (20-μm) were cut and deparaffinized, and DNA was extracted using a commercial kit (QIamp DNA Mini Kit). Real-time PCR was performed using ABI Prism 7900HT Sequence Detection System and the TaqMan Genotyping PCR Master Mix (Applied Biosystems) (Table 5). Beta-globin, a human housekeeping gene was used as an indicator for successful extraction of an equivalent length of target viral DNA. Serial dilutions of DNA isolated from cervical carcinoma cell line CaSki (ATCC-CRL-1550, 500 integrated HPV16 copies) were run in parallel as controls.

Tumors which were negative in the HPV16 Real-Time PCR but showed high p16 expression were analyzed for presence of other HPV types by in-situ hybridization using the DNP-labelled genomic HPV probe sets IN- FORM HPV II Family 6 (HPV types 6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81) and HPV III Family 16 (HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73, 82) (both from Ventana, Mannheim, Germany) and the automated Benchmark system (Ventana) according to the instructions of the provider. Briefly, 4 μm sections were deparaffinized, pre-treated with Protease 3, hybridized with both probe cocktails and stringently washed. Bound probes were subsequently detected by sequential incubation with anti-DNP antibodies, anti-Ig/Biotin, streptavidin bound alkaline phosphatase and BCIP. Previously analysed cervical biopsies were included as positive controls for both probe sets.

Quantitation of HPV16 E6 and E7 DNA using Real-Time PCR

For Real-Time DNA Quantitation we generated two standard curves, one for determination of absolute DNA amount and one for calculation of E6 and E7 DNA amount [26]. The standard curve for absolute DNA amount was generated by amplification of β-globin using known amounts of genomic DNA from a healthy human individual (200.0 ng, 20.0 ng, 2.0 ng, and 0.2 ng; Promega, Madison, WI). The second standard curve for E6 and E7 DNA was generated by using known amounts of E6 or E7 PCR products obtained from CaSki cell DNA (1x10^8 copies, 1x10^6 copies, 1x10^4 copies, and 1x10^2 copies). The copy number of E6 or E7 DNA of tumor samples was determined by linear extrapolation of the E6 or E7 CT values of tumor samples, using the equation of the line obtained from the absolute E6 or E7 standard curve, and dividing these values by the relative amounts of β-globin.

Immunohistochemical analysis of Cyclin A1, CDKN2A/p16 and p53

For immunohistochemical analysis of Cyclin A1, CDKN2A/p16 and p53 protein expression four micrometer-thick sections sliced from paraffin-embedded HNSCC specimens were deparaffinized by Xylene and subjected to antigen retrieval by microwaving in 10 mmol/L of sodium citrate for 30 minutes. The sections were incubated with a monoclonal mouse anti-human Cyclin A1 antibody (6E6, Novocastra Laboratory, Madison, WI).
Newcastle United Kingdom) and with a monoclonal mouse anti-human p53 antibody (DO-7, DakoCyto-

tion, Glostrup, Denmark) for 60 min and 25 min,

dependently, and stained by DAKO LSAB+™/HRP kit (No.

(0679, Dako, Glostrup, Denmark). For immunohisto-

chemistry of p16 (the protein encoded by CDKN2A) the

CINtec® Histology Kit (mtm laboratories, Heidelberg,

Germany) was used. For verification of specificity of stain-

ing an extra tissue section was stained with a monoclo-

onal mouse anti-Rat oxytocin-related neurophysin

antibody, as a negative control in each case. A HPV16-

positive tumor with high p16 expression was used as a

positive control. The results of immunohistochemistry

were based on examination of tissue sections by at least

three independent pathologists (L.B., T.B. and G.K.)

without knowledge of other clinicopathological data.

Hematoxylin and eosin staining was performed for refer-

ence. The specimens were viewed with a Leica DMLB

microscope. Strong nuclear staining was considered

positive for Cyclin A1 and p53 expression. P16 expression

was scored as positive if strong and diffuse nuclear

and cytoplasmic staining was present (Figure 1 and 2).

Staining intensities were measured as the percentage of

positively stained cells or nuclei in ten randomly selected

fields (minimum of 1000 cells, 100x magnification). In

the event of divergent results from one investigator or

between investigators, the case was discussed again be-

tween the parties to find a consensus conclusion. In case

of persistent differences between them, the mean of the

three opinions was considered. The staining intensities

for all three proteins were scored from 0–11 and allo-

cated as follows: 0: negative specimens, 1: few positive

cells or nuclei, 2: less than 10% positive cells or nuclei,

3: 10-20% positive cells or nuclei, 4: 20-30% positive cells

or nuclei, 5: 30-40% positive cells or nuclei, 6: 40-50%

positive cells or nuclei, 7: 50-60% positive cells or nuclei,

8: 60-70% positive cells or nuclei, 9: 70-80% positive cells

or nuclei, 10: 80-90% positive cells or nuclei, 11: 90-100

% positive cells or nuclei. The cut-off for considering an

overexpression was deduced from the results of those

achieved for the benign tonsils and those of literature

[27-29]. They were in detail for the specific proteins:

CDKN2A/p16: ≥ 20% (IHC category ≥ 4), Cyclin A1/

CCNA1: ≥ 20% (IHC category ≥ 4), and p53: ≥ 10% (IHC

category ≥ 3).

Methylation specific Polymerase Chain Reaction

For methylation analysis of Cyclin A1 in tumor and con-

trol tissue the Methyl-Profiler™ DNA Methylation PCR

Array System (SABiosciences, Frederick, USA) was used.

This system can detect DNA methylation of up to 96

genes simultaneously with pre-designed primers but

without bisulfite conversion. DNA methylation-sensitive

and methylation-dependent restriction enzymes are used

to selectively digest unmethylated or methylated DNA,

respectively. The remaining DNA after digestion is quantified by Real-Time PCR using primers that flank

the region of interest. The relative concentration of differen-

tially methylated DNA (specifically hypermethyl-

ated, intermediated methylated, and unmethylated

DNA) are determined by comparing the amount in each

digest with that of a mock digest. The PCR cycling con-

ditions were as follows: 1 cycle at 95 °C for 10 minutes,

40 cycles including 15 seconds at 97 °C and 1 minute at

72 °C. The PCR product was marked with SYBR® Green.

According to the manufactures protocol the cut-off level

for significant promoter methylation should be defined

by the user. A sample or tumor can be defined as signifi-

antly methylated, if the extent of hypermethylated

DNA reaches 10 to 20 percent irrespective of the inter-

mediately methylated fraction. However, this threshold is

dependent on the extent of non-target cell contamination.

The greater the extent of contamination, the higher the threshold must be set. We decided to set the

cut-off level at 20% to detect only the truly methylated

samples. Methylation analysis was done in 44 tumor and

12 control samples.

Table 6 Primers and probes used for p53 mutation

analysis

Exon	Primer	Sequences (5‘→3’)	Annealing Temperature (°C)
2-4	A1	forward: TCGACACTGGCATGTTGGTG 64	
		reverse: AGGGTGAAGGAATCCCACAGAG 64	
	A2	forward: GTGATGGATCATTGGAGAG 64	
		reverse: GTGAAAAGAGCAGTCAGAG 64	
5/6	B	forward: TGGTGGTTCAGGGAGGTTGC 62	
		reverse: GAGCCCCTAGCTCTGTAAGC 62	
7	C	forward: CTTGTTGTCAGAGGTTC 62	
		reverse: CGGCGATGTGAGAGGTGG 62	
8/9	D	forward: AAGCAAGGGGTGGTGGAGG 62	
		reverse: CAACCGAGGCCATTGTCTTG 62	
ABI Prism 3730 DNA Analyzer (Applied Biosystems, Foster City, CA, USA). *P53* mutational status was estimated in 41 HNSCC patients and 30 controls. Sequence chromatograms were compared with the *p53* reference sequence in the IARC TP53 Mutation Database (www-p53.iarc.fr) and/or the Single Nucleotide Polymorphism (SNP) Database (www.ncbi.nlm.nih.gov/projects/SNP/).

Statistical analysis

The clinical and pathological data was analyzed by Fisher’s exact test for categorical variables and Mann–Whitney test for continuous variables. Possible correlation between two continuous variables was analyzed by Spearman rank order. Differences in survival probability were compared by Kaplan-Meier LogRank, whereby death from any cause was considered an event and data on patients who were alive at the last follow-up contact were censored. These analyses were performed using Sigma-Plot software. Statistical significance was accepted at *p* < 0.05.

Abbreviations

HNSCC: Head and neck squamous cell carcinoma; HPV: Human papillomavirus; CUP: Carcinoma of unknown primary; CDK: Cyclin-dependent kinase; RT-PCR: Real-Time PCR.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The expert technical assistance of Annette Dietrich and Margret Menke is gratefully acknowledged. We thank Dr. Hartmut Schmidt for logistic support in PCR analysis.

Authors’ contributions

DW participated in the design of the study, acquisition of data, and interpretation of data and helped to draft the manuscript. MK participated in the design of the study and helped performing the statistical analysis. CR participated in methylation analysis and *p53* mutation analysis. CR conceived the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Received: 1 February 2012 Accepted: 19 June 2012 Published: 19 June 2012

References

1. Besson A, Dowdy SF, Roberts JM: CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2003, 1(4):159–167.

2. Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999, 13(12):1501–1512.

3. Coverley D, Laman H, Laskey RA: Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat Cell Biol 2002, 4(7):523–528.

4. Yang R, Müller C, Huynh V, Fung YK, Yee AS, Koehler HP: Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. Mol Cell Biol 1999, 19(3):2403–2407.

5. Girard F, Strausfeld U, Fernandez A, Lamb NJ: Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 1991, 67(6):1169–1179.

6. Pagano M, Peppenkok R, Verde F, Angrisone W, Draetta G: Cyclin A is required at two points in the human cell cycle. EMBO J 1992, 11(3):961–971.

7. Zerfass K, Schütze A, Spítkovský D, Friedman V, Henglein B, Jansen-Dürr P: Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol 1995, 69(10):6389–6399.

8. Arroyo M, Bagchi S, Raychaudhuri P: Association of the human papillomavirus type 16 E7 protein with the S-phase-specific E2F-cyclin A complex. Mol Cell Biol 1993, 13(10):6537–6546.

9. Arroyo M, Bagchi S, Raychaudhuri P: Association of the human papillomavirus type 16 E7 protein with the S-phase-specific E2F-cyclin A complex. Mol Cell Biol 1993, 13(10):6537–6546.

10. Malanchi I, Calleira S, Krüzdorf M, Game M, Alunni-Fabbroni M, Tommasini M: Identification of a novel activity of human papillomavirus type 16 E6 protein in deregulating the G1/S transition. Oncogene 2002, 21(37):5665–5672.

11. Malanchi I, Accardi R, Diehl F, Smet A, Androphy E, Hoheisel J, Tommasini M: Human papillomavirus type 16 E6 promotes retinoblastoma protein phosphorylation and cell cycle progression. J Virol 2004, 78(24):13769–13778.

12. D’Souza G, Kreimer AR, Viscidi R, Fakhry C, Koch WM, Westra WH, Gillison ML: Case–control Study of Human Papillomavirus and Oropharyngeal cancer. N Engl J Med 2007, 356(19):1944–1956.

13. Gillespie MB, Rubinchik S, Hirst D, Littmann RV, and samsonov virus and oropharyngeal cancer: what you need to know in 2009. Curr Treat Options Oncol 2009, 10(6):296–307.

14. Maruyama T, Kajiyama G: Cyclin D and cyclin A: a virus-related cancer epidemic. Lancet Oncol 2010, 11(18):781–789.

15. Weiss D, Basel T, Schaele F, Brauningr A, Rudack C: Promoter methylation of cyclin A1 is associated with human papillomavirus 16 induced head and neck squamous cell carcinoma independently of *p53* mutation. Mol Carcinog 2011, 50(9):680–688.

16. Kitkumthorn N, Yanatatsanajit P, Mutirangura A, Kitkumthorn N: Human papillomavirus infection, high-risk human papillomavirus infections and their outcome in women screened in three new independent states of the former soviet union. Cancer Epidemiol Biomarkers Prev 2006, 15(7):1250–1256.

17. Yanatatsanajit P, Mutirangura A, Kitkumthorn N: Human papillomavirus infection, high-risk human papillomavirus infections and their outcome in women screened in three new independent states of the former soviet union. Cancer Epidemiol Biomarkers Prev 2006, 15(7):1250–1256.

18. Santopietro R, Shabalova I, Petrovichev N, Kozachenko V, Zakharova T, Massimino M, Tosi P, Syrjänen K, Syrjänen S: Oncogenes and tumor suppressor genes in cervical carcinoma. Cytogenet Genome Res 2012, 140:307–315.

19. Maxwell SA, Davis GE: Cyclin A1 is a human papillomavirus- associated cervical cancer. BMC Cancer 2006, 6:55.

20. Varela A, Mavila A, Bayless KJ, Davis GE, Maxwell SA: Cyclin A1 is a *p53*- induced gene that mediates apoptosis, G2/M arrest, and mitotic catastrophe in renal, ovarian, and lung carcinoma cells. Cell Mol Life Sci 2006, 63(12):1425–1439.

21. Tomonari Y, Yamashita K, Otsuka M, Nomoto S, Sun Di, Xiao Y, Hogue MO, Westra WH, Califano JA, Sidransky D: Inverse correlation between cyclin A1 hypermethylation and *p53* mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Res 2004, 64(17):5982–5987.

22. Brugarolas JR, D’Amore LG, Jones TR, Colacino JA, Prince ME, Carey TE, Rozen LS: Genome-wide methylation and expression differences in HPV(+)- and HPV(−) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis. Epigenetics 2011, 6(6):777–787.

23. Tani HK, Sauter P, Aupérin A, Lacroix L, Casiraghi O, Janot F, Fouret P, Temam S: Quantitative methylation analyses of resection margins predict local recurrences and disease-specific deaths in patients with head and neck squamous cell carcinomas. J Clin Cancer 2008, 99(2):357–363.

24. Cardesa AN, Gale N, Nadal A, Zidar N: Tumors of the Oral Cavity and Oropharynx. In: World Health Organization Classification of Tumours, Pathology and Genetics of Head and Neck Tumours. Edited by Barnes L, Eveson J, Reichart P, Sidransky D. Lyon (France): IARC Press; 2005:118–181.

25. Weiss D, Koopmann M, Rudack C: Prevalence and impact on clinicopathological characteristics of human papillomavirus-16 DNA in cervical lymph node metastases of head and neck squamous cell carcinoma. Head Neck 2011, 33(6):856–862.
26. Wang-Johanning F, Lu DW, Wang Y, Johnson MR, Johanning GL: Quantitation of Human Papillomavirus 16 E6 and E7 DNA and RNA in Residual Material from ThinPrep Papanicolaou Tests Using Real-Time Polymerase Chain Reaction Analysis. *Cancer* 2002, 94(8):2199–2210.

27. Lingen MW, Chang KW, McMurray SJ, Solt DB, Kies MS, Mittal BB, Haines GK, Pelzer HJ: Overexpression of p53 in squamous cell carcinoma of the tongue in young patients with no known risk factors is not associated with mutations in exons 5–9. *Head Neck* 2000, 22(4):328–335.

28. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, Dallenbach-Hellweg G, Schmidt D, von Knebel Doeberitz M: Overexpression of p16 (INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. *Int J Cancer* 2001, 92(2):276–284.

29. Begum S, Cao D, Gillison M, Zahurak M, Westra WH: Tissue distribution of human papillomavirus 16 DNA integration in patients with tonsillar carcinoma. *Clin Cancer Res* 2005, 11(16):5694–5699.

doi:10.1186/1471-2407-12-259

Cite this article as: Weiss et al: Cyclin A1 shows age-related expression in benign tonsils, HPV16-dependent overexpression in HNSCC and predicts lower recurrence rate in HNSCC independently of HPV16. *BMC Cancer* 2012 12:259.