Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios Are Associated with Recurrent Ischemic Stroke in Patients with Embolic Stroke of Undetermined Source

Tony Y.W. Li, Ching-Hui Sia, Bernard P.L. Chan, Jamie S.Y. Ho, Aloysius S. Leow, Mark Y. Chan, Pipin Kojodjojo, Mary Joyce Galupo, Hock-Luen Teoh, Vijay K. Sharma, Raymond C.S. Seet, Leonard L.L. Yeo, Benjamin Yong-Qiang Tan

*Department of Cardiology, National University Heart Centre Singapore, Singapore
†Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
‡Division of Neurology, Department of Medicine, National University Health System, Singapore
§Academic Foundation Year Program, Royal Free Hospital NHS Trust, London, UK
∥Department of Medicine, National University Health System, Singapore

*These authors contributed equally to the manuscript as first author.

Dear Sir:

Many researchers have hypothesized that occult atrial fibrillation (AF) could be an etiological factor for embolic stroke of undetermined source (ESUS), since AF is often diagnosed after extended monitoring. However, studies investigating oral anticoagulant effects in patients with ESUS did not report any benefit. Thus, there is an increasing interest in alternative etiologies, including left ventricular dysfunction, atherosclerotic disease, and atrial cardiopathy without AF.

Systemic inflammation is crucial in atherosclerosis and contributes to coronary artery disease and ischemic stroke. The Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) and Colchicine Cardiovascular Outcomes Trial (COCOT) showed reduction in cardiovascular events, including stroke, after canakinumab administration and daily low-dose colchicine, respectively. Thus, attenuating subclinical inflammation could reduce cardiovascular events independent of lipid levels, possibly by increasing plaque stability and reducing progression. A pro-inflammatory state associated with endothelial injury could predispose patients to thrombus and embolus formation. To the best of our knowledge, this hypothesis has not been tested in patients with ESUS.

The neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) are hematological markers of inflammation, and their correlation with venous thromboembolism, pulmonary embolism, and cardiac thrombus formation has been evaluated. We aimed to examine the correlation between NLR and PLR and newly diagnosed AF and recurrent ischemic stroke in patients with ESUS.

We retrospectively evaluated 185 consecutive patients with ESUS admitted to a stroke unit at a tertiary hospital between 2014 and 2017. Ethics approval was obtained from the local institutional review board. Written informed consent by the patients was waived due to a retrospective nature of our study. ESUS was diagnosed according to consensus criteria: non-lacunar ischemic stroke, absence of atherosclerosis causing ≥50% luminal stenosis in the extracranial or intracranial arteries, left ventricular ejection fraction ≥30%, and non-identifiable cardioembolic source. All patients underwent neuroimaging and vascular studies, 24-hour inpatient telemetry, and transthoracic echocardiography (TTE). Routine blood tests on admission included a full blood count (FBC), coagulation profile, creatinine and electrolyte levels, lipid profile, and glycated hemoglobin levels. FBC was performed using the automatic Sysmex XN-series Hematology Analyzer (Sysmex, Kobe, Japan).
Japan) with random sampling, and the results were verified by a hematologist. NLR and PLR were calculated from FBC at admission by dividing the neutrophil and platelet counts, respectively, by the lymphocyte count. Patients were followed-up for newly diagnosed AF and recurrent stroke, and prolonged cardiac monitoring with an implantable loop recorder (ILR) was offered at the clinician’s discretion. In patients who declined ILR, AF development was assessed through clinical examination and electrocardiography during follow-up.

The independent t-test and chi-square test were used to analyze continuous and categorical variables, respectively. Binary logistic regression was performed to determine the association between AF and recurrent stroke. A multivariable logistic regression model adjusted for age, sex, hypertension, diabetes, AF, and left atrial volume index (LAVI) was used. NLR and PLR were analyzed in separate models to avoid collinearity. Receiver operating characteristic (ROC) curves were used to identify the best cutoff values of NLR and PLR to predict new-onset AF, recurrent stroke, and composite events of AF or stroke. Based on these cutoff values, we identified a high-risk population with high LAVI (≥35 mL/m²) and high NLR or PLR.

The mean age was 63.0±12.3 years with a median follow-up period of 2.1 years (interquartile range, 1.4 to 2.8); most patients were male (70.7%) and Chinese (69.2%). Seventy patients received an ILR (Medtronic Reveal LINQ, Medtronic Inc., Minneapolis, MN, USA). During follow-up, AF was newly diagnosed in 14 (7.6%) patients, while 19 (10.2%) developed recurrent stroke. Anticoagulation therapy was initiated in all patients with newly diagnosed AF; none experienced recurrent stroke during follow-up. There were no significant differences in demographics, comorbidities, laboratory findings, or major echocardiographic left ventricular findings between the AF and non-AF groups (Supplementary Table 1).

Both NLR and PLR were significantly associated with recurrent stroke (\(P<0.001\) and \(P=0.011\), respectively), which remained significant (\(P<0.001\) for both NLR and PLR) after adjusting for comorbidities, AF, and LAVI (Table 1). The association with newly diagnosed AF was weaker for NLR (\(P=0.041\)) and absent for PLR (\(P=0.243\)). In the ROC analysis, the models showed a correlation with newly diagnosed AF (area under the curve [AUC] for NLR=0.64, AUC for PLR=0.59). Recurrent stroke was best predicted by NLR >2.98 (sensitivity, 94.7%; specificity, 60.2%; AUC, 0.84) and PLR >115.9 (sensitivity, 78.9%; specificity, 57.2%; AUC=0.72) (Figure 1).

Based on the ROC analyses, we adopted rounded-off cutoffs of NLR ≥3 and PLR ≥120 for ease of application. We assessed

| Table 1. Logistic regression analysis of patients with combinations of NLR/PLR and LAVI |
Variable	New AF	Recurrent stroke	Composite outcome			
OR (95% CI)	P	OR (95% CI)	P	OR (95% CI)	P	
NLR and PLR for predicting outcomes*						
NLR	1.41 (1.11–1.78)	0.041	2.48 (1.66–3.77)	<0.001	2.50 (1.74–3.61)	<0.001
PLR	1.01 (0.99–1.01)	0.243	1.01 (1.01–1.02)	0.011	1.01 (1.01–1.02)	<0.001
NLR and PLR for predicting recurrent stroke after adjusting for AF and LAVI†						
NLR	-	-	3.47 (1.88–6.39)	<0.001	-	-
PLR	-	-	1.02 (1.02–1.03)	<0.001	-	-
Patients with combinations of NLR and LAVI‡						
Low LAVI and low NLR	1 (Reference)	-	1 (Reference)	-	1 (Reference)	-
Low LAVI and high NLR	3.18 (0.56–18.0)	0.191	18.13 (2.25–145.89)	0.062	9.02 (2.46–33.05)	0.001
High LAVI and low NLR	9.21 (1.41–60.16)	0.022	-	-	6.07 (1.11–33.14)	0.037
High LAVI and high NLR	12.64 (2.26–70.65)	0.004	49.71 (5.77–428.55)	<0.001	40.93 (9.78–171.20)	<0.001
Patients with combinations of PLR and LAVI§						
Low LAVI and low PLR	1 (Reference)	-	1 (Reference)	-	1 (Reference)	-
Low LAVI and high PLR	1.78 (0.32–10.06)	0.512	4.30 (0.90–20.67)	0.068	3.20 (0.99–10.34)	0.052
High LAVI and low PLR	5.08 (0.66–39.37)	0.121	5.08 (0.66–39.37)	0.123	5.82 (1.26–26.77)	0.024
High LAVI and high PLR	11.00 (2.05–59.20)	0.005	11.00 (2.04–59.20)	0.005	16.00 (4.41–58.05)	<0.001

NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; LAVI, left atrial volume index; AF, atrial fibrillation; OR, odds ratio; CI, confidence interval.

*Adjusted for age, sex, hypertension, statin and antiplatelet use, and diabetes mellitus; †Adjusted for age, sex, hypertension, statin use, antiplatelet use, diabetes mellitus, high LAVI, and AF; ‡High NLR defined as ≥3, high LAVI defined as ≥35; §High PLR, defined as ≥120; high LAVI, defined as ≥35.
patients with high LAVI and high NLR or PLR for newly diagnosed AF, recurrent stroke, and composite outcomes. A high NLR and LAVI were predictive of new AF (odds ratio [OR], 9.02; 95% confidence interval [CI], 2.46 to 33.05), recurrent stroke

![ROC curve](image)

Figure 1. Receiver operating characteristic (ROC) curves for neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) for atrial fibrillation (AF), recurrent stroke and composite events. (A) NLR and AF, (B) PLR and AF, (C) NLR and recurrent stroke, (D) PLR and recurrent stroke, (E) NLR and combined events, and (F) PLR and combined events. AUC, area under the curve.

https://doi.org/10.5853/jos.2022.00486
(OR, 6.07; 95% CI, 1.11 to 33.14), and the composite endpoint (OR, 40.93; 95% CI, 9.78 to 171.20). A similar finding was observed in patients with high PLR and LAVI. An elevated NLR or PLR with a low LAVI was not significantly associated with new AF or recurrent stroke (Table 1).

This study had several limitations. First, less than half of the patients received an ILR. ILR implantation is affected by financial considerations, since it requires co-payment. Second, none of the patients in this cohort underwent a saline study or transesophageal echocardiography. In our hospital, these tests are performed only if a significant patent foramen ovale is being considered based on TTE.

In conclusion, NLR and PLR were associated with recurrent stroke in patients with ESUS, even after adjustment for comorbidities, AF, and LAVI. The results suggest two different phenotypes of ESUS—one with a strong relationship with atrial cardiomyopathy and AF, and another associated with an inflammatory pathway, atherosclerosis, and systemic disease. Further studies are required to further elucidate these phenotypes and identify more effective and targeted treatments.

Supplementary materials

Supplementary materials related to this article can be found online at https://doi.org/10.5853/jos.2022.00486.

References

1. Sposato LA, Cipriano LE, Saposnik G, Ruiz Vargas E, Riccio PM, Hachinski V. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. *Lancet Neurol* 2015;14:377-387.
2. Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Berkowitz SD, et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. *N Engl J Med* 2018;378:2191-2201.
3. Diener HC, Sacco RL, Easton JD, Granger CB, Bernstein RA, Uchiyama S, et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. *N Engl J Med* 2019;380:1906-1917.
4. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. *N Engl J Med* 2017;377:1119-1131.
5. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. *N Engl J Med* 2019;381:2497-2505.
6. Charo IF, Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. *Nat Rev Drug Discov* 2011;10:365-376.
7. Artoni A, Abbattista M, Buccarelli P, Gianniello F, Scalambro E, Pappalardo E, et al. Platelet to lymphocyte ratio and neutrophil to lymphocyte ratio as risk factors for venous thrombosis. *Clin Appl Thromb Hemost* 2018;24:808-814.
8. Sia CH, Leow AS, Tan BY, Low CJ, Kaur R, Yeo TC, et al. The neutrophil-lymphocyte ratio and platelet-lymphocyte ratio predict left ventricular thrombus resolution in acute myocardial infarction without percutaneous coronary intervention. *Thromb Res* 2020;194:16-20.
9. Hart RG, Catanese L, Perera KS, Ntaios G, Connolly SJ. Embolic stroke of undetermined source: a systematic review and clinical update. *Stroke* 2017;48:867-872.
10. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. *Eur Heart J Cardiovasc Imaging* 2015;16:233-270.

Correspondence: Ching-Hui Sia
Department of Cardiology, National University Heart Centre Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 9, 119228, Singapore
Tel: +65-6779-5555
Fax: +65-6872-2998
E-mail: ching_hui_sia@nuhs.edu.sg
https://orcid.org/0000-0002-2764-2869
Received: February 4, 2022
Revised: February 19, 2022
Accepted: February 23, 2022
The authors have no financial conflicts of interest.
Supplementary Table 1. Characteristics of patients with ESUS

Variable	Total (n=185)	Newly-diagnosed AF (n=14)	Recurrent stroke (n=19)	Composite outcome (new AF or recurrent stroke) (n=33)
Age (yr)				
Age	63.0±12.3	65.3±11.9	2.53 (–4.23 to 9.30)	61.9±10.3
Male sex	128 (70.7)	8 (57.1)	1.92 (0.63–5.82)	15 (78.9)
Ethnicity				
Chinese	128 (69.2)	14 (100)	0.082	14 (73.7)
Malay	35 (18.9)	0 (0)		4 (21.1)
Indian	14 (7.6)	0 (0)		1 (5.3)
Others	8 (4.3)	0 (0)		0 (0)
Co-morbidities				
Hypertension	138 (74.6)	12 (85.7)	2.15 (0.46–9.97)	16 (84.2)
Diabetes mellitus	65 (35.1)	5 (35.7)	0.99 (0.32–3.09)	9 (47.4)
Hyperlipidaemia	104 (56.2)	10 (71.4)	2.09 (0.63–6.92)	12 (63.2)
Ischemic heart disease	34 (18.4)	1 (7.1)	0.33 (0.04–2.68)	7 (36.8)
Heart failure	7 (3.8)	0 (0)	1.03	3 (15.8)
Previous stroke/TIA	32 (17.3)	5 (35.7)	3.01 (0.94–9.71)	9 (47.4)
Peripheral vascular disease	15 (8.1)	0 (0)	0.612	4 (21.1)
Laboratory findings				
eGFR (>60 mL/min)	82.4±23.4	73.4±22.9	0.98 (0.96–1.01)	79.9±26.4
HbA1c (%)	6.66±2.02	6.72±2.30	1.01 (0.75–1.37)	7.26±2.49
LDL-C (mmol/L)	3.01±1.15	2.79±0.84	0.83 (0.50–1.38)	2.87±0.94
Hematological parameters				
Total white cell count	8.18±2.39	8.58±3.06	1.07 (0.86–1.33)	9.18±3.03
Neutrophil count (x10³/μL)	5.26±2.01	6.08±2.96	1.20 (0.95–1.52)	6.89±2.66
Lymphocyte count (x10³/μL)	2.04±0.83	1.67±0.73	0.47 (0.20–1.10)	1.48±0.63
Hemoglobin (g/dL)	13.52±3.01	14.0±1.50	1.13 (0.85–1.51)	13.65±2.54
Platelet count (x10³/μL)	260.2±81.9	244.4±67.4	1.00 (0.99–1.01)	259.5±67.2
NLR	3.01±1.91	4.48±3.64	1.30 (1.06–1.59)	5.33±2.88
PLR	146.8±76.4	173.3±107.6	1.01 (0.99–1.01)	208.7±108.2
Echocardiographic parameters				
LVEF 30%–50%	25 (13.8)	1 (7.1)	1.82 (0.23–14.63)	3 (15.8)
LA volume (mL)	47.4±17.8	62.3±22.0	1.04 (1.01–1.07)	53.6±15.8
LA volume index (mL/m²)	27.7±10.3	36.6±12.2	1.08 (1.03–1.13)	32.1±9.2
LA diameter index (mm/m²)	22.0±4.3	23.7±3.8	1.00 (0.98–1.01)	22.9±2.7
LVEDVi (mL/m²)	60.5±18.5	58.9±15.0	1.00 (0.96–1.02)	67.7±31.0
LVMi (g/m²)	99.7±28.7	102.4±27.2	1.01 (0.98–1.02)	104.9±28.2

Values are presented as mean±standard deviation or number (%). ESUS, embolic stroke of undetermined source; AF, atrial fibrillation; OR, odds ratio; CI, confidence interval; TIA, transient ischemic attack; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; LDL-C, low-density lipoprotein cholesterol; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; LVEF, left ventricular ejection fraction; LA, left atrium; LVEDVi, left ventricular end-diastolic volume index; LVMi, left ventricular mass index.