Progression of Renal Dysfunction in Patients with Cardiovascular Disease

Yasunobu Hirata*, Arihiro Kiyosue, Masao Takahashi, Hiroshi Satonaka, Daisuke Nagata, Masataka Sata, Etsu Suzuki and Ryozo Nagai

Department of Cardiovascular Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Abstract: It has been established that patients with chronic kidney disease (CKD) suffer from frequent cardiovascular events. On the other hand, recent studies suggest that renal damage tends to worsen in patients with cardiovascular diseases (CVD). Although the mechanisms for the cardiorenal association are unclear, the presence of arteriosclerotic risk factors common to both CVD and CKD is important. In arteriosclerosis, vascular derangement progresses not only in the heart but also in the kidney. In addition, heart failure, cardiac catheterization and hesitation of medical treatments due to renal dysfunction may explain the progression of renal damage. Therefore, the goal of treatments is a total control of arteriosclerotic risk factors. Medication should be selected among agents with protective effects on both heart and kidney. It is important to always consider the presence of CKD for the treatment of the cardiovascular disease and strictly control the risk factors.

Key Words: CKD, angiotensin II, aldosterone, ARB, hypertension.

INTRODUCTION

Subgroup analyses of epidemiological surveys and large-scale clinical studies have shown one after another that the presence of chronic kidney disease (CKD) worsens the prognosis of cardiovascular disease (CVD) [1, 2]. Various pathophysiological mechanisms have already been proposed as shown in Fig. (1). However, it is not clear whether there is a difference in the aggravation of renal function between patients with CVD and those without CVD, because there have hardly been large-scale clinical trials to prove it. Nevertheless, because such evidence has begun to accumulate, in the present review article we investigate whether renal failure tends to progress when CVD is present, and if so, discuss the pathophysiological mechanisms and the most appropriate treatment strategy.

1. RENAL FAILURE IN EPIDEMIOLOGICAL SURVEYS INVOLVING PATIENTS WITH CVD

The KEEP study [3] examined independent components of CKD as a cardiovascular risk state in patients presenting both disorders. Because the patients with CKD tended to die of CVD, not of renal insufficiency, this study followed 37,153 residents of 53 years old on average for a mean period of 16 months and examined the relation between CKD and CVD. During the follow-up period 7.8% of the patients suffered a myocardial infarction or cerebrovascular accident. Significant risk factors of CVD were gender male (odds ratio; 1.64), smoking (1.73), diabetes mellitus (1.66), hypertension (1.77), an estimated glomerular filtration rate (GFR) of 30-59 mL/min/1.73m² (1.37), hemoglobin of less than 12.8 g/dL (1.45) and microalbuminuria of more than 30 mg/L (1.28). In comparison with the control group, the mortality increased from 3.02 in patients with only CVD and 1.98 in those with only CKD to 3.80 in those with both diseases.

Thus, it is clear that the presence of both disorders requires careful management.

In the multi institutional observation study by Levin et al. [4] 313 patients with CKD with an average creatinine clearance of 36 mL/min were followed for 23 months. In this study population 27% of the patients had hypertension, 18% had chronic glomerulonephritis, 25% had diabetic nephropathy and 8% had polycystic kidney disease. Moreover, 46% of the subjects had CVDs such as myocardial infarction, angina pectoris, coronary angioplasty, transient ischemic attack, cerebrovascular disorder, peripheral vascular disorder or congestive heart failure. The frequency of dialysis was significantly higher by 1.58 times in patients who concomitantly had CVD.

When both CKD and CVD were present, the two trials mentioned above showed that the prognosis was poor, but it was not absolutely clear whether CVD was a risk factor for the worsening of renal disease. O'Hare et al. [5] measured
the ankle brachial blood pressure index (ABI) and serum creatinine concentration in 13,655 subjects of the Atherosclerosis Risk in Communities (ARIC) study. They measured serum creatinine level again three years later and examined the relation with the baseline ABI in those whose serum creatinine had increased by more than 50%. The frequency of increased creatinine was significantly greater in patients with an ABI < 0.9 by 2.16% (odds ratio 2.5) than in patients with an ABI 0.9-0.99 (0.9%) and those with an ABI > 1 (0.48%). These results did not differ after the exclusion of patients with either renal insufficiency, diabetes mellitus or hypertension. The authors concluded that the presence of atherosclerosis was a risk factor for exacerbation of the renal disease.

Elsayed et al. [6] monitored renal function for 9.3 years on average in subjects from the ARIC study and the Cardiovascular Health Study (CHS). The patients with an increased serum creatinine concentration (by >0.4 mg/dL to 1.2 mg/dL or higher in women, or to 1.4 mg/dL in men) or a decrease of the estimated GFR (by > 15 mL/min/1.73m² or to < 60 mL/min/1.73m²) were considered to show renal failure progression. The baseline creatinine concentration of 13,826 subjects was 0.9+/-.0.2 mg/dL and the estimated GFR was 89.8+/-.20.1 (SD) mL/min/1.73m². Renal failure progressed in 3.8% of the subjects according to their creatinine concentration and in 2.3% according to the estimated GFR at the end of the follow up. At baseline the patients with CVD accounted for 12.9% of the study population. In patients with CVD, the odds ratio for progression of renal failure was significantly high at 1.70. The result was similar even when patients with a high level of creatinine at baseline were excluded. Risk factors such as hypertension and diabetes mellitus were present more frequently and their mobility periods were longer in patients with CVD. Thus, it was plausible that renal failure tended to progress independent of the presence of CKD when CVD was present.

2. MECHANISMS OF RENAL DAMAGE IN PATIENTS WITH CVD

The potential pathophysiological mechanisms for renal damage in CVD are:

a) Presence of Risk Factors Common to CVD and CKD

Patients have many risk factors for the progression of CVD that also aggravate renal insufficiency. In the Framingham Heart study by Fox et al. [7] 2,585 subjects 43 years old on average who did not show renal disease were followed up for 18.5 years and the factors that influenced the new onset of renal disease were analyzed. Patients with CKD accounted for 9.4% of the population when CKD was defined as a GFR of <59.25 mL/min/1.73m² in women and <64.25 mL/min/1.73m² in men determined by the equation of MDRD. Age, GFR, BMI, diabetes mellitus, smoking, hypertension and low level of HDL-cholesterol contributed to the onset. This suggests that risk factors of CVD closely contribute to the new onset of CKD. Furthermore, the frequency of CKD increases as the number of risk factors increases. During the ARIC study CKD occurred in 7% of patients with metabolic syndrome but without diabetes mellitus, and the frequency increased significantly more in patients with metabolic syndrome than in those without it. The odds ratio was higher in subjects with more risk factors [8].

Smoking, which is an arteriosclerotic risk factor, is also a risk for renal failure. Bleyer et al. [9] repeated measurements of creatinine concentration more than 3 years apart in 4,142 patients 65 years of age or older. Of them, 2.8% showed elevation of the creatinine level by more than 0.3 mg/dL. This correlated with the number of cigarettes smoked, systolic blood pressure and intimal thickening of the internal carotid artery. In the MRFIT study, smoking was shown to be a risk factor of end-stage renal disease [10]. The results suggested that the presence of arteriosclerotic risk factors leads to CVD and CKD.

b) Atherosclerotic Development of the Renal Vasculature

Tracy et al. [11] reported that the hyalinization of kidney arterioles parallels coronary arteriosclerotic progress in 25 to 54-year-old autopsy cases. Kasiske et al. [12] reported similar autopsy findings. They compared 57 cases with mild systemic arterial sclerosis with 57 cases that had moderate or severe sclerosis, and they found that the degree of glomerulosclerosis, arterial wall area in the kidney and glomerular size were larger in the latter group. Furthermore, the glomerular area positively correlated with heart weight and the degree of coronary arteriosclerosis.

The mechanisms involved in renal failure caused by hypertension and diabetes mellitus, but not by hypercholesterolemia, have already been reviewed in detail. The deposition of lipoprotein on glomerular mesangial cells and the matrix may be important in disordered lipid metabolism [13]. In particular, oxidative LDL-cholesterol activates various growth factors and causes proliferation of mesangial cells and expansion of the matrix. Furthermore, LDL-cholesterol promotes the expression of MCP-1 chemokine and inflammation mediators such as IL-6 and NF-xB. Development of focal glomerulosclerosis and glomerular hypertrophy is associated with obesity. However, clinical diagnosis of such microvascular renal damage associated with arterial sclerosis is difficult. This disorder may account for a substantial part of the etiologic-unknown end-stage renal failure in elderly persons.

DECLINE OF RENAL PERFUSION IN THE PRESENCE OF HEART FAILURE AND ACTIVATION OF NEUROHUMORAL FACTORS

Fig. (2) shows the treatment course of a 41-year-old man with dilated cardiomyopathy and altered renal function. He did not respond to pharmacotherapy, and hepatic failure and renal insufficiency developed. Finally, a left ventricular assist device (LVAD) had to be implanted. Renal function normalized immediately as the cardiac output increased. Although such a case is exceptional, prerenal dysfunction is commonly observed even in patients with mild heart failure [2]. In case of heart failure and the resulting cardiac output decrease, the effective volume of circulating blood is reduced, baroreceptors are stimulated and excite the sympathetic nervous activity. Besides, renin secretion from the juxtaglomerular apparatus is enhanced due to the fall of renal perfusion pressure. Both norepinephrine and angiotensin II increase Na reabsorption from the proximal tubules and con-
strict glomerular mesangial cells decreasing the filtration area. Furthermore, angiotensin II increases the filtration fraction due to the constrictive action of efferent arterioles; as a result, plasma colloid oncotic pressure in the efferent arteriole rises leading to an increase of Na reabsorption from renal tubules. Besides, redistribution of blood flow from the cortical nephron to the juxtamedullary nephron, whose Na reabsorption ability is enhanced, results in fluid retention. Angiotensin II-induced secretion of aldosterone from adrenal zona glomerulosa cells promotes Na reabsorption from cortical collecting tubules. Furthermore, the decrease of effective intraarterial blood volume stimulates secretion of vasopressin (AVP) and causes water retention. Thus, the renin-angiotensin system (RAS), sympathetic nervous system and AVP are mutually activated in a vicious circle (Fig. (3)).

The natriuretic peptide family improves the balance of these neurohumoral factors. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) inhibit aggravation of heart failure through vasodilatory and natriuretic actions. Also, natriuretic peptides antagonize the vasoconstrictor action and fluid retention action of RAS, sympathetic nervous system and AVP. The secretion of both ANP and BNP increases remarkably in heart failure, but the action is not potent enough to completely reduce edema or improve cardiac functions.

In heart failure, renal blood flow decreases due to the decline of cardiac output, but the GFR remains relatively constant. This is because intraglomerular pressure is elevated by the activation of RAS and the sympathetic nervous system. Because natriuretic peptides constrict efferent arterioles, while they dilate the afferent arterioles, GFR is relatively constant at this point. Moreover, the elevation of venous pressure in heart failure results in an increase of vascular resistance in the glomerular efferent side.

In the compensated state of heart failure, a constant GFR and fluid volume increase result in an increase of cardiac output, whereas in the decompensated state they lead to a reduced cardiac output and an increase of congestion. If renal hypoperfusion persists, it finally leads to ischemic injury of renal tissue. On the other hand, elevation of the intraglomerular pressure for a long time may induce an increase of proteinuria and glomerulosclerosis in patients who have already suffered glomerular damage. Furthermore, expres-

Fig. (2). Time course changes in cardiac and renal functions in patients with dilated cardiomyopathy after implantation of left ventricular assist device (LVAD). DOA: dopamine, DOB: dobutamine, CI: cardiac index, Cr: creatinine, BNP: B-type natriuretic peptide.

Fig. (3). Compensatory mechanisms for renal dysfunction and volume retention in heart failure.

HT: hypertension, DM: diabetes mellitus, HL: hyperlipidemia, LVH: left ventricular hypertrophy, CHD: coronary heart disease, CO: cardiac output, prs: pressure, BP: blood pressure, SNA: sympathetic nervous activity, RAS: renin angiotensin system, AVP: arginine vasopressin, RBF: renal blood flow, GFR: glomerular filtration rate, FF: filtration fraction, ↓: decrease or constriction, ↑: increase or dilatation.
sion of proinflammatory cytokines such as TNF-α, IL-1β or IL-6 increases in heart failure, and in fact, their levels are elevated in circulating blood. It is possible that cytokines contribute to the deterioration of the clinical condition of patients with heart failure although anticytokine therapies for heart failure have not proved successful so far. Renal vascular inflammation may occur likewise in heart failure. On the other hand, the blood level of asymmetric dimethylarginine (ADMA), a potent inhibitor of NO synthase, is increased in heart failure [14]. In addition to the above mentioned cytokines, NO synthase inhibition by ADMA causes endothelial damage in the renal vasculature.

4. POSSIBLE RENAL DAMAGE BY AGENTS USED TO TREAT AND DIAGNOSE CVD

a) Contrast Media-Induced Nephropathy

Contrast media is the most important agent involved in the progression of renal damage in patients with CVD. Hypotension, congestive heart failure, less than 60 mL/min/1.73m² of GFR, 75 years old or older, anemia, and diabetes mellitus are risk factors for contrast media-induced nephropathy. Most patients with CVD present some of these risk factors. Hydration with physiological saline most effectively prevents contrast media-induced nephropathy at present [15]. In addition, it has been reported that this type of nephropathy can be prevented by various methods including hemodialysis, dopamine, ANP, etc, but there is no consensus in this regard. The utility of elimination of reactive oxygen species by N-acetylcysteine and the dose-dependent efficacy of this amino acid were recently reported [16]. Hydration combined with the administration of N-acetylcysteine is recommended because it does not cause severe side effects. Furthermore, concomitant administration of bicarbonate with N-acetylcysteine also prevents increases in serum creatinine [17].

b) Cholesterol Crystal Emboli

Fig. (4) shows a photograph of the biopsed skin from a 68-year-old man [18]. The patient showed progressive renal dysfunction and eosinophilia, and ultrasonography revealed an important degree of aortic atheromatosis. Cholesterol crystal emboli were observed in the arterioles. Cholesterol emboli in this case occurred spontaneously. However, it is highly likely that cholesterol crystal emboli are easily induced by cardiac catherization in such cases with systemic atherosclerosis. Cholesterol emboli may also be involved in renal damage considered to be induced by contrast media.

Fig. (4). Photograph of the biopsed skin from a patient with cholesterol emboli. Arrow heads indicate cholesterol crystals. Taken from ref. [18]; Matsumura T, Hirata Y, et al. Am J Med Sci 2006; 331: 280-3.
cially, an optimal blood pressure of 120/80 mmHg [27] should be aimed, although there is no clear evidence of its advantage. A positive correlation between baseline blood pressure and renal dysfunction exacerbation rate was found in 98,759 residents of Okinawa from 1983 to 2000, at the time of their medical check up. The incidence of ESRD was significantly elevated even in patients with a blood pressure slightly higher than normal (130-140/85-90 mmHg) [28]. In the subgroup analysis of the CAMELOT study population under treatment with various kinds of antihypertensive medications [29], the atheromatous plaque volume in the coronary arteries was larger in patients with a blood pressure of 140/90 mmHg or higher, did not change in those with 120-140/80-90 mmHg and decreased significantly in those with a blood pressure below 120/80 mmHg. According to these results, the target blood pressure in high-risk patients with both cardiac and renal damage should be the optimal one rather than just lower than 140/90 mmHg. A strict control of risk factors such as lipids, blood glucose or smoking is likewise necessary.

CONCLUSION

It has been clarified that the presence of CKD tends to be rather than just lower than 140/90 mmHg. A strict control of risk factors, such as lipids, blood glucose or smoking is likewise necessary.

REFERENCES

[1] Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296-305.

[2] Schrier RW. Role of diminished renal function in cardiovascular mortality: marker or pathogenetic factor? J Am Coll Cardiol 2006; 47: 1-8.

[3] McCullough PA, Jurkovitz CT, Pergola PE, et al. Independent components of chronic kidney disease as a cardiovascular risk state: results from the Kidney Early Evaluation Program (KEEP). Arch Intern Med 2007; 167: 1122-9.

[4] Levin A, Djurdjev O, Barrett B, et al. Cardiovascular disease in patients with chronic kidney disease: getting to the heart of the matter. Am J Kidney Dis 2001; 38: 1398-407.

[5] O'Hare AM, Rodriguez RA, Bacchetti P. Low ankle-brachial index and subsequent kidney disease. Arch Intern Med 2005; 165: 1481-5.

[6] Elsayed EF, Tighiouart H, Griffith J, et al. Cardiovascular disease and subsequent kidney disease. Arch Intern Med 2007; 167: 1130-6.

[7] Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA 2004; 291: 844-50.

[8] Kurella M, Pergola PE, et al. Effect of inhibitors of renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet 2005; 366: 2026-33.

[9] Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T. Increased endogenous nitric oxide synthase inhibitor in patients with congestive heart failure. Life Sci 1998; 62: 2425-30.

[10] Solomon R, Werner C, Mann D, D'Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med 1994; 331: 416-20.

[11] Marenzi G, Assaneli E, Marana I, et al. N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med 2006; 354: 2773-82.

[12] Briguori C, Airoldi F, D'Andrea D, et al. Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation 2007; 115: 1211-7.

[13] Matsunuma T, Matsumoto A, Ohno M, et al. A case of cholesterol embolism confirmed by skin biopsy and successfully treated with statins and steroids. Am J Med Sci 2006; 331: 280-3.

[14] Rahman M, Pressel S, Davis BR, et al. Cardiovascular outcomes in high-risk hypertensive patients stratified by baseline glomerular filtration rate. Ann Intern Med 2006; 144: 172-80.

[15] Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T. Increased endogenous nitric oxide synthase inhibitor in patients with congestive heart failure. Life Sci 1998; 62: 2425-30.

[16] Mohamed R, Assaneli E, Marana I, et al. N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med 2006; 331: 280-3.

[17] Manzini F, Per per R, Pfeffer MA, et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation 2006; 113: 671-8.

[18] Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999; 341: 709-17.

[19] Bianchi S, Bigazzi R, Campese VM. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int 2006; 70: 2116-23.

[20] Kagel MJ, Welton PK, Randall BL, Neaton JD, Brancati FL, Stamler J. End-stage renal disease in African-American and white men. 16-year MRFFIT findings. JAMA 1997; 277: 1293-8.

[21] Tracy RE, Strong JP, Newman WP 3rd, Malcom GT, Oalmann MC, Guzman MA. Renovascularopathies of nephrosclerosis in relation to atherosclerosis at ages 25 to 54 years. Kidney Int 1996; 49: 564-70.

[22] Kasiske BL. Relationship between vascular disease and age-related changes in the human kidney. Kidney Int 1987; 31: 1153-9.

[23] Parks JB. Lipids and progressive kidney disease. Kidney Int 1991; 39 (Suppl): S35-40.

[24] Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T. Increased endogenous nitric oxide synthase inhibitor in patients with congestive heart failure. Life Sci 1998; 62: 2425-30.

[25] Solomon R, Werner C, Mann D, D'Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med 1994; 331: 416-20.

[26] Marenzi G, Assaneli E, Marana I, et al. N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med 2006; 354: 2773-82.

[27] Briguori C, Airoldi F, D'Andrea D, et al. Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation 2007; 115: 1211-7.

[28] Matsunuma T, Matsumoto A, Ohno M, et al. A case of cholesterol embolism confirmed by skin biopsy and successfully treated with statins and steroids. Am J Med Sci 2006; 331: 280-3.

[29] Rahman M, Pressel S, Davis BR, et al. Cardiovascular outcomes in high-risk hypertensive patients stratified by baseline glomerular filtration rate. Ann Intern Med 2006; 144: 172-80.

[30] Anavekar NS, McMurtry JJ, Velazquez EJ, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 2004; 351: 1285-95.

[31] Hillege HL, Nitsch D, Pfeffer MA, et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation 2006; 113: 671-8.

[32] Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999; 341: 709-17.

[33] Bianchi S, Bigazzi R, Campese VM. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int 2006; 70: 2116-23.

[34] Nagata D, Takahashi M, Sawai K, et al. Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension 2006; 48: 165-71.

[35] Casas JP, Chua W, Loukogeorgakis S, et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet 2005; 366: 2026-33.

[36] Arima S, Kohagura K, Xu HL, et al. Nongenomic vascular action of aldosterone in the glomerular microcirculation. J Am Soc Nephrol 2003; 14: 2255-63.

[37] Bakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis 2000; 36: 646-61.

[38] Tozawa M, Iseki K, Iseki C, Kinjo K, Ikemiyai Y, Takishita S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension 2003; 41: 1341-5.

[39] Sipahi I, Tuzcu EM, Schoenigence, et al. Effects of normal, prehypertensive, and hypertensive blood pressure levels on progression of coronary atherosclerosis. J Am Coll Cardiol 2006; 48: 833-8.