An algebraic approach to laying a ghost to rest

M C Nucci and P G L Leach

1 Dipartimento di Matematica e Informatica, Università di Perugia, 06123 Perugia, Italy
2 DICSE, University of the Aegean, Karlovassi 83 200, Greece

E-mail: nucci@unipg.it, leachp@ukzn.ac.za and leach@math.aegean.gr

Received 25 February 2010
Accepted for publication 15 March 2010
Published 23 April 2010
Online at stacks.iop.org/PhysScr/81/055003

Abstract
In the recent literature there has been a resurgence of interest in the fourth-order field-theoretic model of Pais–Uhlenbeck (1950 Phys. Rev. 79 145–65) which has not had a good reception over the past half a century due to the existence of ghosts in the properties of the quantum mechanical solution. Bender and Mannheim (2008 J. Phys. A: Math. Theor. 41 304018) were successful in persuading the corresponding quantum operator to ‘give up the ghost’. Their success had the advantage of making the model of Pais–Uhlenbeck acceptable to the physics community and in the process added further credit to the cause of advancement of the use of PT symmetry. We present a case for the acceptance of the Pais–Uhlenbeck model in the context of Dirac’s theory by providing an Hamiltonian that is not quantum mechanically haunted. The essential point is the manner in which a fourth-order equation is rendered into a system of second-order equations. We show by means of the method of reduction of order (Nucci M C 1996 J. Math. Phys. 37 1772–5) that it is possible to construct a Hamiltonian that gives rise to a satisfactory quantal description without having to abandon Dirac.

PACS numbers: 02.30.Hq, 02.30.Xx, 03.65.Fd

1. Introduction
In one of the great books of science Dirac [5] provided a theoretical environment for the rapidly developing subject of quantum mechanics based on an interpretation of mechanics elaborated by Hamilton [7] almost a century earlier in terms of operators. In the process and following the audacious line of thinking established by his predecessor at Bristol, Oliver Heaviside, Dirac introduced the distributions that were the bane of mathematicians until Laurent Schwartz [16, 17] provided a theoretical justification and George Temple [18] clarified that justification. In his monograph Dirac took the classical Hamiltonian as the energy and it is by no means obvious that he ever considered the possibility of any other Hamiltonian function as the basis for his operators. Moreover one should emphasize that the energy was conserved so that the approach of Bateman [2] to the quantization of the damped linear oscillator could scarcely be regarded as being within the purview of Dirac’s theory.

There arose models of quantum mechanical systems that did not coincide with Dirac’s obiter dictum of a Hamiltonian as the energy. Indeed the direct association of a Hamiltonian with such a model was impossible. A well-known example is the model of Pais–Uhlenbeck [15] in which the action is given by

\[A = \frac{1}{2} \int \left\{ \dot{z}^2 - (\Omega_1^2 + \Omega_2^2) \dot{z}^2 + \Omega_1^2 \Omega_2^2 \dot{z}^2 \right\} \, dt, \]

(1.1)

so the Euler–Lagrange equation is of the fourth order being

\[\dddot{z} + (\Omega_1^2 + \Omega_2^2) \dot{z} + \Omega_1^2 \Omega_2^2 \dot{z} = 0. \]

(1.2)

To bring this model within the context of Hamiltonian theory, Mannheim and Davidson [10] and Mannheim [11] introduced

4 Bateman’s contribution seems already to have become lost by the following decade since the names often associated with this problem are Caldriola [4] and Kanai [8]. The question of how to deal properly with dissipation in quantum mechanics became a lively issue in the following decades and is an interesting study in itself, but it is not immediately germane to our present topic.

0031-8949/10/055003+04$30.00 Printed in the UK & the USA © 2010 The Royal Swedish Academy of Sciences
a new variable y to describe the model in terms of a system with two degrees of freedom. The resulting Hamiltonian is [3]

$$
H = \frac{p_y^2}{2y} + p_x y + \frac{y}{2} (\Omega_1^2 + \Omega_2^2) y^2 - \frac{y}{2} \Omega_1^2 \Omega_2^2 z^2. \tag{1.3}
$$

The problem with the model of Pais–Uhlenbeck is that it possesses ‘ghost’ states, i.e., the norm of the (quantum) state is negative. This is not acceptable mathematically as well as physically since the whole concept of a norm is rooted in the essence of being non-negative. Consequently the model has been regarded as unphysical. Even in the representation as a two-degree-of-freedom system (1.3) there are problems. According to Bender and Mannheim [3], there are two possibilities depending upon which operators annihilate the ground state. The first gives a negative norm\(^5\). The second avoids that problem by giving a spectrum that is unbounded from below. Neither option could be described as acceptable!

In the past decade or so there has been a considerable expansion of what has been termed \mathcal{PT} quantum mechanics. This is not the place to enter into a discussion on the subject. We refer the reader to the references given in Bender and Mannheim [3]. It suffices to observe that in \mathcal{PT} quantum mechanics the concept of a hermitian operator in the sense of Dirac\(^6\) is replaced by definitions based more on physics. The \mathcal{P} operator is that of reflection in space and \mathcal{T} is the operation of time reversal.

The case made by Bender and Mannheim [3] is that, if one interprets the Pais–Uhlenbeck model in terms of \mathcal{PT} quantum mechanics, the problem of existence of ghost states is removed. Thereby the validity of the model is enhanced.

In this paper we do not argue against the use of \mathcal{PT} quantum mechanics for it does seem to be able to explain many phenomena that experience difficulties when discussed in terms of the model of Dirac. However, we present a case for the acceptance of the Pais–Uhlenbeck model in the context of Dirac’s theory. The essential point is the manner in which the fourth-order equation (1.2) is rendered into a system of second-order equations. We show by means of the method of reduction of order [12] that it is possible to construct a Hamiltonian that gives rise to a satisfactory quantal description without having to abandon Dirac.

The structure of this paper is simple. In section 2, we demonstrate the construction of a suitable Lagrangian by means of the technique called the method of reduction of order. The Hamiltonian follows in a natural way. In section 3, we briefly perform the obvious quantization procedure in the manner of Dirac to demonstrate explicitly that we have a physically consistent description in the case of the Pais–Uhlenbeck model.

Before we commence it is appropriate that we remind the reader of the importance of symmetry in the analysis of differential equations, be they from classical or quantal origins. When one is dealing with Lagrangian, and hence Hamiltonian, systems, the importance of symmetry seems to be enhanced. One can make many Lagrangians for a given system [14]. They need not be identical in their properties in terms of their symmetries. It is a present matter for investigation of the implications of a differing number of Noether symmetries for Lagrangians describing the same physical system.

2. Lagrangian description for the Pais–Uhlenbeck model

The method of reduction of order has been in use in a number of papers in recent years (see [13] and references therein) and we briefly summarize the method. Further details may be found in the papers cited. Given a system of ordinary differential equations of greater than the first order (at least one of the system), the system is replaced by another system of equations of the first order by the introduction of the requisite number of new dependent variables. At least one of the variables is removed so that there is at least one equation of the second order. This enables one to make sensible use of Lie’s theory of continuous groups since the number of point symmetries is then finite. Armed with the symmetries one can then make a further analysis by means of the standard theory. In the present case we are concerned with the transition from a classical description to a quantum mechanical description. Obviously symmetry plays an important role in both descriptions. Our initial problem in terms of the method of reduction of order of the fourth-order equation (1.2) is to find a pair of second-order equations for which an obtainable Lagrangian description exists. Then we have the question of the determination of a Hamiltonian and its quantization to an operator that has sensible properties.

We observe that generally speaking there are many possible ways in which a system of first-order equations can be constructed from the original fourth-order equation and then retraced as a pair of second-order equations. The way\(^7\) chosen by Mannheim and Davidson [10] and Mannheim [11] was demonstrated by Bender and Mannheim [3] to be unsatisfactory in terms of the prescriptions of Dirac\(^8\). Our systematic approach through the method of reduction of order demonstrates a more than somewhat different result.

We introduce new variables to render (1.2) as a system of four first-order equations. To maintain a consistent notation we write $z = w_1$ and continue as

$$
\dot{w}_1 = w_2, \tag{2.1}
$$

$$
\dot{w}_2 = w_3, \tag{2.2}
$$

$$
\dot{w}_3 = w_4, \tag{2.3}
$$

$$
\dot{w}_4 = - (\Omega_1^2 + \Omega_2^2) w_3 - \Omega_1^2 \Omega_2^2 w_1. \tag{2.4}
$$

In the usual application of the method of reduction of order an ignorable coordinate can be eliminated, but in this instance we do not wish to remove t as the independent variable. As our intermediate aim is to construct a Hamiltonian, we wish to rewrite the system of four first-order equations as a pair of second-order equations as a prelude to the construction

\(^5\) We maintain the definition of norm in the sense of Dirac.

\(^6\) This is the perfectly normal one in mathematics of being invariant under the two processes of transposition of the matrix and taking the complex conjugate of the elements.

\(^7\) Evidently without an appreciation of the general principles of the method of reduction of order.

\(^8\) Although it is not stated so in [3], in [10] and [11] we are informed that the Hamiltonian description is obtained using the method of Ostrogradsky, as described in the classical text by Whittaker [19].
of a first-order Lagrangian in two dependent variables. If we eliminate \(w_2 \) and \(w_4 \), the system (2.1)–(2.4) becomes

\[
\dot{w}_1 = w_3, \quad (2.5) \\
\dot{w}_3 = - (\Omega^2_3 + \Omega^2_2) w_3 - \Omega^2_1 \Omega^2_2 w_1. \quad (2.6)
\]

Continuing in the spirit of the method of reduction of order we introduce two more suitable dependent variables by means of

\[
w_1 = r_1 - r_2, \quad (2.7) \\
w_3 = -\Omega^2_1 r_1 + \Omega^2_2 r_2, \quad (2.8)
\]

from which it is evident that we are dealing with the case \(\Omega_1 > \Omega_2 \). Equations (2.7) and (2.8) are written in terms of the new variables and rearranged to give

\[
\dot{r}_1 = -\Omega^2_1 r_1, \quad (2.9) \\
\dot{r}_2 = -\Omega^2_2 r_2, \quad (2.10)
\]

which obviously describe a two-dimensional anisotropic oscillator.

A first-order Lagrangian for equation (2.9) and (2.10) is

\[
L = \frac{1}{2} (t_1^2 \dot{r}_1^2 + t_2^2 \dot{r}_2^2 - \Omega_1^2 r_1^2 - \Omega_2^2 r_2^2) \quad (2.11)
\]

from which it is obvious that the canonical momenta are

\[
p_1 = t_1 \quad \text{and} \quad p_2 = t_2 \quad (2.12)
\]

and so the Hamiltonian is

\[
H = \frac{1}{2} (p_1^2 + p_2^2 + \Omega_1^2 r_1^2 + \Omega_2^2 r_2^2). \quad (2.13)
\]

We note that the Hamiltonian of (2.13) belongs to the class of classical Hamiltonians envisaged by Dirac.

3. Quantum mechanical formulation

Since the Hamiltonian (2.13) is under the aegis of Dirac’s canon, we may apply standard methods of quantization to obtain the Schrödinger equation

\[
2i \frac{\partial u}{\partial t} = -\frac{\partial^2 u}{\partial r_1^2} - \frac{\partial^2 u}{\partial r_2^2} + (\Omega_1^2 r_1^2 + \Omega_2^2 r_2^2) u. \quad (3.1)
\]

This has seven Lie point symmetries\(^9\). They are

\[
\Gamma_{\pm 1} = \exp \left[\pm i \Omega_1 t \left\{ \mp \partial_{r_1} + \Omega_1 r_1 u \partial_u \right\} \right], \quad (3.2) \\
\Gamma_{\pm 2} = \exp \left[\pm i \Omega_2 t \left\{ \mp \partial_{r_2} + \Omega_2 r_2 u \partial_u \right\} \right], \quad (3.3) \\
\Gamma_3 = i \partial_t, \quad (3.4) \\
\Gamma_4 = u \partial_u. \quad (3.5)
\]

\(^9\) Five of these correspond to the Noether point symmetries of the Lagrangian (2.11) as one would expect [9]. The remaining two are generic to linear evolution equations. The corresponding system (2.9, 2.10) possesses seven Lie point symmetries [6]. Five of these are the same as the Noether point symmetries. The other two are a consequence of the linearity of the equations in the dependent variables.

\[
\Gamma_5 = f(t, r_1, r_2) \partial_u, \quad (3.6)
\]

where \(f \) is a solution of (3.1)\(^{10}\).

Since the Hamiltonian (2.13) is separable in the variables we have selected, the determination of Dirac’s creation and annihilation operators follows immediately from symmetries (3.2) and (3.3) which are their progenitors [1, 9]. The energy follows from the eigenvalue of the action of \(\Gamma_3 \) on a solution. The ground state, as an explicitly time-dependent function, is obtained using \(\Gamma_1 \) and \(\Gamma_2 \) as follows.

The invariants of \(\Gamma_1 \) are determined by the solution of the associated Lagrange’s system

\[
\frac{dt}{0} = \frac{dr_1}{-1} = \frac{dr_2}{0} = \frac{du}{\Omega_1 r_1 u} \quad (3.7)
\]

and are \(t, r_2 \) and \(v = u \exp \left[\pm \Omega_1 r_1^2 \right] \). In terms of these invariants \(\Gamma_2 \) is \(\exp [\Omega_2 r_2 t] (- \partial_{r_2} + \Omega_2 r_2 u \partial_u) \). The solution of the corresponding associated Lagrange’s system gives the invariants \(t \) and \(v = v \exp [\Omega_2 r_2^2] \). The double reduction of (3.1) to an ordinary differential equation is achieved by writing

\[
u = \exp \left[- \frac{1}{2} (\Omega_1 r_1 + \Omega_2 r_2^2) \right] f(t). \quad (3.8)
\]

The reduced equation is

\[
\frac{\dot{f}}{f} = \frac{1}{2t} (\Omega_1 + \Omega_2), \quad (3.9)
\]

where the overdot denotes differentiation with respect to \(t \), and has the solution \(f(t) = \exp \left[- \frac{1}{2} (\Omega_1 + \Omega_2) \right] \).

The ground-state wavefunction is, up to the normalization factor,

\[
u_0 = \exp \left[- \frac{1}{2} (\Omega_1 + \Omega_2) \right] u - \frac{1}{2} (\Omega_1 r_1 + \Omega_2 r_2^2) \quad (3.10)
\]

The action of \(\Gamma_3 \) gives the ground-state energy through

\[
\Gamma_3 u_0 = \frac{1}{2} (\Omega_1 + \Omega_2) u_0, \quad (3.11) \quad \Rightarrow \quad E_0 = \frac{1}{2} (\Omega_1 + \Omega_2). \quad (3.12)
\]

Further eigenstates are obtained by the actions of \(\Gamma_{-1} \) and \(\Gamma_{-2} \) which act as creation operators for the time-dependent Schrödinger equation (3.1). Since these are simply combinations of the eigenstates of two harmonic oscillators, there are no difficulties with the positivity of the energy spectrum, which is obtained by the action of \(\Gamma_3 \) on the created eigenstates, and the non-negativity of the norm of the wavefunction in the sense of Dirac.

4. Observations

It has not been our intention to belittle the value of the use of \(PT \) symmetry in the resolution of some questionable problems in quantum mechanics. What we have specifically aimed to demonstrate is that the model of Pais–Uhlenbeck can be rendered into a Hamiltonian form that can be quantized and leads to results after a mathematical analysis that are consistent with the physical principles underlying the model.

In this respect we are guided by the principle of the maintenance of symmetry in going from the classical model

\(^{10}\) Naturally, equation (3.1) comes with boundary conditions. The symmetry \(\Gamma_5 \) is not confined to being in terms of functions that satisfied the boundary conditions.
to the corresponding Schrödinger equation. The second-order Lagrangian for the action integral in (1.1) possesses five Noether point symmetries. After the application of the method of reduction of order for obtaining the Lagrangian (2.11) we found that this Lagrangian possesses seven Noether point symmetries. This increase is not unexpected since we have essentially introduced generalized symmetries. In our approach these Noether symmetries are preserved in the transition to quantum mechanics as nongeneric symmetries of the Schrödinger equation corresponding to our Hamiltonian. It is not at all obvious that this is the case for the Hamiltonian used in [3, 10, 11].

We would propose as a general principle that any technique of quantization from a corresponding classical system be such that there is preservation of the Noether point symmetries of the classical Lagrangian in the nongeneric Lie point symmetries of the corresponding Schrödinger equation. It is unfortunate that at this stage we cannot remove the ‘would’ from that which we propose since it is a very general question, but we are working on it.

Acknowledgments

PGLL thanks DICSE, University of the Aegean, for providing facilities during this study. The University of KwaZulu-Natal and the National Research Foundation of South Africa are thanked for their support.

References

[1] Andriopoulos K and Leach P G L 2005 Wave-functions for the time-dependent linear oscillator and Lie point symmetries J. Phys. A: Math. Gen. 38 4365–74
[2] Bateman H 1931 On dissipative systems and related variational principles Phys. Rev. 38 815–9
[3] Bender C M and Mannheim P D 2008 Giving up the ghost J. Phys. A: Math. Theor. 41 304018
[4] Caldiroli P 1941 Forze non conservative nella meccanica quantistica Nuovo Cimento 18 393–400
[5] Dirac P A M 1932 The Principles of Quantum Mechanics (Oxford: Clarendon)
[6] Gorringe V M and Leach P G L 1988 Lie point symmetries for systems of second order linear ordinary differential equations Quest. Math. 11 95–117
[7] Hamilton W R 1834 On a general method in dynamics Phil. Trans. R. Soc. Part II 247–308
[8] Kanai E 1948 On the quantization of dissipative systems Prog. Theor. Phys. 3 440–2
[9] Lemmer R L and Leach P G L 1999/200 A classical viewpoint on quantum chaos Arab J. Math. Sci. 5 1–17
[10] Mannheim P D and Davidson A 2005 Dirac quantization of the Pais–Uhlenbeck fourth order oscillator Phys. Rev. A 71 042110
[11] Mannheim P D 2007 Solution to the ghost problem in fourth-order derivative theories Found. Phys. 37 532–71
[12] Nucci M C 1996 The complete Kepler group can be derived by Lie group analysis J. Math. Phys. 37 1772–5
[13] Gradassi A and Nucci M C 2007 Hidden linearity in systems for competition with evolution in ecology and finance J. Math. Anal. Appl. 333 274–94
[14] Nucci M C and Leach P G L 2007 Lagrangians galore J. Math. Phys. 48 123510
[15] Pais A and Uhlenbeck G E 1950 On field theories with nonlocalized action Phys. Rev. 79 145–65
[16] Schwartz L 1950 Théorie des Distributions vol 1 (Publications de l’Institut de Mathématiques de l’Université de Strasbourg no 9)
[17] Schwartz L 1951 Théorie des Distributions vol 2 (Publications de l’Institut de Mathématiques de l’Université de Strasbourg no 10)
[18] Temple G 1955 The theory of generalized functions Proc. R. Soc. A 228 175–90
[19] Whittaker E T 1944 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (New York: Dover)

11 The application of the method of Ostrogradsky does the same in that the second dependent variable introduced is z. This does not mean that the construction of the two first-order Lagrangians is equivalent with respect to point symmetries.