Marshall-Positive SU(\(N\)) Quantum Spin Systems and Classical Loop Models: A Practical Strategy to Design Sign-Problem-Free Spin Hamiltonians

Ribku K. Kaul

University of Kentucky, rkk@pa.uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Kaul, Ribku K., "Marshall-Positive SU(\(N\)) Quantum Spin Systems and Classical Loop Models: A Practical Strategy to Design Sign-Problem-Free Spin Hamiltonians" (2015). Physics and Astronomy Faculty Publications. 289.
https://uknowledge.uky.edu/physastron_facpub/289

This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Marshall-Positive SU(N) Quantum Spin Systems and Classical Loop Models: A Practical Strategy to Design Sign-Problem-Free Spin Hamiltonians

Digital Object Identifier (DOI)
http://dx.doi.org/10.1103/PhysRevB.91.054413

Notes/Citation Information
Published in Physical Review B: Condensed Matter and Materials Physics, v. 91, no. 5, article 054413, p. 1-7.

©2015 American Physical Society
The copyright holder has granted permission for posting the article here.

This article is available at UKnowledge: https://uknowledge.uky.edu/physastron_facpub/289
Marshall-positive SU(\(N\)) quantum spin systems and classical loop models: A practical strategy to design sign-problem-free spin Hamiltonians

Ribhu K. Kaul

Department of Physics & Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA

(Received 26 March 2014; revised manuscript received 2 February 2015; published 19 February 2015)

We consider bipartite SU(\(N\)) spin Hamiltonians with a fundamental representation on one sublattice and a conjugate to fundamental on the other sublattice. By mapping these antiferromagnets to certain classical loop models in one higher dimension, we provide a practical strategy to write down a large family of SU(\(N\)) symmetric spin Hamiltonians that satisfy Marshall’s sign condition. This family includes all previously known sign-free SU(\(N\)) spin models in this representation and in addition provides a large set of new models that are Marshall positive and can hence be studied efficiently with quantum Monte Carlo methods. As an application of our idea to the square lattice, we show that in addition to Sandvik’s \(Q\) term, there is an independent nontrivial four-spin \(R\) term that is sign free. Using numerical simulations, we show how the \(R\) term provides a new route to the study of quantum criticality of Néel order.

I. INTRODUCTION

The study of the ground states of lattice spin Hamiltonians has a long history in physics [1]. Due to its relevance to quantum magnetism in solid state materials, the study is currently one of the cornerstones of modern condensed matter physics [2]. The scarcity of controlled analytic solutions of spin models has spurred the development of a wide array of sophisticated numerical approaches [3–5]. Quantum Monte Carlo (QMC) is often the method of choice for unbiased studies of large higher-dimensional \((d > 1)\) quantum spin systems [6]. In practice this capability is restricted to models that do not suffer from the notorious sign problem [7,8]. The absence of this problem is guaranteed in standard world line methods only if the Marshall sign rule [9] \((\langle \alpha | H | \beta \rangle < 0\) for \(\alpha \neq \beta\)) is satisfied in a convenient local basis. Surprisingly, at the current time, there is no systematic knowledge of the extent of Marshall-positive spin Hamiltonians. Such an understanding would clearly be of great practical and conceptual value, since Marshall-positive Hamiltonians constitute a large fraction of the valuable examples of higher-dimensional models that can be simulated on a classical computer in polynomial time [10,11].

Here we will address this issue for a specific but important subset of models, SU(\(N\)) quantum spin Hamiltonians on the square lattice, which have spins that transform as the fundamental representation \((\mathcal{N})\) on the A sublattice and the conjugate to fundamental \((\overline{\mathcal{N}})\) on the B sublattice, Fig. 1(a) [12]. Let us call the set of all such Hamiltonians \(\mathcal{N}^-\overline{\mathcal{N}}\). Note that for \(N = 2\) the fundamental representation is self-conjugate so this class includes all SU(2) symmetric Hamiltonians, \(\mathcal{N}^-\overline{\mathcal{N}}\) includes both models that are widely believed to have no solution to the sign problem (e.g., the \(J_1-J_2\) Heisenberg model with \(J_1,J_2\) antiferro [13]) and others for which the absence of the sign problem is well known. The simplest interaction in \(\mathcal{N}^-\overline{\mathcal{N}}\) was introduced by Affleck [12],

\[
H_{J_1}^{(\mathcal{N})} = -J_1 T_i^a \cdot T_j^a \, ,
\]

where \(i\) and \(j\) are on different sublattices of the bipartition and \(T^a\) are the SU(\(N\)) generators in the fundamental representation (sum on \(a\) is implied). It happens that this interaction is Marshall positive and can hence be simulated efficiently with QMC [14]. We note that the familiar SU(2) Heisenberg antiferromagnet, \(H_{J_1}^{(2)} = J_1 \vec{S}_i \cdot \vec{S}_j\), a special case of Eq. (1) with \(N = 2\), was the original model for which Marshall proved his theorem [15]. This fact has been exploited to study it using QMC on various ordered and disordered bipartite lattices for the past three decades (see, for example, the bibliography in Ref. [6]). In an important breakthrough, Sandvik found that in addition to the two-spin interactions, a four-spin plaquette \(Q\) term [16],

\[
H_Q^{(2)} = -4 \sum_i \vec{S}_i \cdot \vec{S}_j - \frac{1}{2} \left(\sum_i \vec{S}_i \cdot \vec{S}_j - \frac{1}{2} \right) + i \leftrightarrow k \, ,
\]

also satisfied the Marshall sign condition [see Fig. 1(a) for site labeling]. The sign-free \(J_1-Q\) Hamiltonian has since been studied extensively using QMC [17–21]. The discovery of the \(Q\) idea has lead to the proposal and study of a number of extensions, including generalizations for \(N > 2\) along the lines of Eq. (1) [22–27]. The discovery of the \(Q\) term and its popularity in numerical studies begs the following questions. Are there other \(\mathcal{N}^-\overline{\mathcal{N}}\) models that satisfy Marshall’s sign rule? What is the full extent of these sign-free models?

II. GENERAL SIGN-FREE \(\mathcal{N}^-\overline{\mathcal{N}}\) MODELS

We now show that it is easiest to address these questions by considering the structure of the imaginary time statistical mechanics \((Z = \text{Tr}(e^{-\beta H}))\) generated by the \(\mathcal{N}^-\overline{\mathcal{N}}\) Hamiltonians. Each site on the bipartite lattice has \(N\) states. Our goal is to write down sign-positive model interactions that are invariant under rotation by \(U\) [an SU(\(N\)) matrix] on all the A sublattice spins and rotation \(U^*\) on all the B sublattice spins. Let us begin by reviewing how this works for a two-spin interaction, which we can write in the form \(\Gamma_{\alpha\beta\gamma\eta} |\alpha\beta\rangle \langle \gamma\eta|\). To preserve SU(\(N\)) invariance, the spin indices on the sites have to be paired up. If the two sites are on opposite sublattices the only interaction is \(H_{J_1}^{(N)} = -\frac{1}{2} \sum_{\alpha\beta} |\alpha\beta\rangle \langle \beta\alpha|\), which can be shown to be unitary equivalent to Eq. (1) up to a constant. Between sites on the same sublattice we must have \(H_{J_2}^{(N)} = -\frac{1}{2} \sum_{\alpha\beta} |\alpha\beta\rangle \langle \beta\alpha|\) [28,29] (for \(N = 2\) this is a ferromagnetic Heisenberg interaction between sites on the...
same sublattice). The effect of these two-spin terms on the imaginary time evolution of the basis states can be represented by the diagrams shown in Figs. 1(b) and 1(c). It becomes clear that the quantum statistical mechanics of models in $N \times N$ is equivalent to the classical statistical mechanics of specific tightly packed loop models of N colors in one higher dimension. The staggered representations of SU(N) appear in the loop picture by requiring the orientation of a given loop to be such that it travels (in imaginary time) in opposite directions on opposite sublattices. Stated explicitly, if the loop travels up when its on an A site, it must always travel down when it’s on a B site; when its on an A site, it must always do so on all other A sites on opposite sublattices. Stated explicitly, if the loop travels up on a B site, it must always travel down when it’s on an A site; when its on an A site, it must always do so on all other A sites on opposite sublattices. Stated explicitly, if the loop travels up on a B site, it must always travel down when it’s on an A site; when its on an A site, it must always do so on all other A sites on opposite sublattices.

Let us apply these ideas to design Marshall-positive four-spin Hamiltonian terms acting on the sites of an elementary plaquette. The simplest such connection is shown in Fig. 1(d); writing this as a Hamiltonian operator, it is $H_Q^{(N)} = -\frac{Q}{2} \sum_{\alpha\beta\gamma\eta} (|\alpha\alpha\beta\beta\rangle\langle\gamma\gamma\eta\eta| + |\beta\alpha\alpha\beta\rangle\langle\eta\gamma\gamma\eta|)$ (the bra and kets are labeled by the spin indices at sites, $ijkl$). It is easy to prove that for $N = 2$ this interaction is unitarily equivalent to the Q term in Eq. (2). Interestingly, an independent four-spin interaction can be achieved by reconnecting the loops differently as shown in Fig. 1(e). In the bra-ket notation the new Hamiltonian is

$$H_R^{(N)} = -\frac{R}{N^2} \sum_{\alpha\beta\gamma\eta} (|\alpha\alpha\beta\beta\rangle\langle\gamma\gamma\eta\eta| + |\beta\alpha\alpha\beta\rangle\langle\eta\gamma\gamma\eta|).$$

Written this way, the Marshall positivity of the R term is obvious. We point out however that, unlike the Q term which is a product of two Marshall-positive J_1 terms, in the usual language the R interaction’s positivity is nontrivial. Indeed, for $N = 2$, our new term may be written with familiar $S = 1/2$ operators on each elementary plaquette [labeling the sites $ijkl$ cyclically as shown in Fig. 1(a)]

$$H_R^{(2)} = R \left[(\vec{S}_i \cdot \vec{S}_k - \frac{1}{4}) (\vec{S}_j \cdot \vec{S}_l - \frac{1}{4}) - (\vec{S}_i \cdot \vec{S}_j - \frac{1}{4}) (\vec{S}_k \cdot \vec{S}_l - \frac{1}{4}) - (\vec{S}_i \cdot \vec{S}_l - \frac{1}{4}) (\vec{S}_j \cdot \vec{S}_k - \frac{1}{4}) \right].$$

FIG. 1. (Color online) Cartoon illustration of the various Marshall-positive interaction terms studied in the paper. (a) The decomposition of the bipartite square lattice into A and B sublattices, and the groups of sites that the various interactions act on. (b)–(e) Cartoons of the different interactions acting on the basis states; the initial state is shown at the bottom and the final state is shown on top. (b) The J_1 interaction that acts between sites on different sublattices. (c) The J_2 interaction that acts on sites on the same sublattice. (d) An example of a Q interaction and (e) an example of an R interaction that both act on elementary plaquettes of the square lattice. Colors of the loop represent the N colors of SU(N). Note that loops meeting at a vertex may have the same color and that the loops always travel in opposite directions on the A and B sublattices. (f) Cartoon illustration of singlet rearrangements affected by R and Q terms; see discussion on Eq. (5).

FIG. 2. (Color online) Illustration of a path-integral or SSE contribution to the partition function of an SU(N) antiferromagnet with only J_1 interactions with seven sites at a temperature β, which may be viewed as a higher dimensional closed packed loop model. The orientation of one particular loop is followed with black arrows to show how it always travels in imaginary time in opposite directions on opposite sublattices (up on A and down on B). This orientation is preserved by the J_1 interaction as well as all other SU(N) invariant interactions. An SU(N) antiferromagnet will have N different color assignments to the loops.
FIG. 3. (Color online) For completeness we show here the diagrams that correspond to two more sign-free four-spin interactions, in addition to those shown in Figs. 1(d) and 1(e). Taken together, these four terms are the complete set of sign-free four-spin interactions that can be obtained from our construction.

In contrast to the Q term, the first term contains dot products between spins on sites on the same sublattice. Naively the first term would seem to make the R interaction violate the Marshall rule, and indeed the first term by itself would. Remarkably however when all three terms of the R interaction are taken together the offending matrix elements exactly cancel (after one does the usual Marshall rotation by an angle of π about the z axis for the spins on one of the sublattices). We can re-write the Q and R terms in a way in which their physics is more transparent,

$$H_Q^{(N)} = -Q(S_{ij}S_{kl} + S_{il}S_{kj})$$

and

$$H_R^{(N)} = -R(S_{ij}S_{kl} + S_{il}S_{kj})$$

where $|S_{ij}| = \frac{1}{\sqrt{N}} \sum_{i,j} \alpha_i \alpha_j$ is the SU(N) singlet [refer to Fig. 1(a) for $ijkl$ labeling]. Now the physical distinction between these two terms is apparent; see Fig. 1(f): the Q interaction is a diagonal attractive term between two neighboring parallel singlets, whereas the R interaction is an off-diagonal term that causes neighboring x-oriented singlets to become y-oriented singlets on an elementary plaquette. We note here that the Q and R are very reminiscent of the diagonal and off-diagonal terms respectively of the original quantum dimer model [30], but defined for spin models. Indeed in the $N \to \infty$ mapping of the SU(N) antiferromagnet to the quantum dimer model [31], these are precisely the terms they would become.

We note here that both Q and R act within the total spin zero sector of the four sites. For completeness, two additional sign-free four-spin interactions (S and T) that act on higher-spin sectors are shown in Fig. 3. Analogous to our discussion above for two- and four-spin interactions, we can systematically enumerate the six-, eight-, or even higher spin interactions and can be carried out on any bipartite lattice by constructing loop reconfigurations of the kind shown in Figs. 1(b)–1(e) with the desired sets of sites. The study of this large family of Marshall-positive Hamiltonians is an exciting

FIG. 4. (Color online) Magnetic phase transitions from the crossing of ρ_s (stiffness) data shown for SU(3) and SU(4). In the main panels for $L\rho_s$ is shown for the J_1-R model as a function of R/J_1. Clear evidence for a crossing is found which implies the existence of a critical point where magnetic order is destroyed. The insets show the magnetic phase boundaries for the J_1-Q-R model inferred from the kind of data shown in the main panel with $Q \neq 0$ (not shown). We have chosen $\beta = L$ and $J_1 = 1$ here.
can destroy this Néel order in the Oa valence-bond solid. Finite-size scaling of the VBS and Néel order parameters are defined in Appendix C. All fits through the QMC data points are shown only as a guide to the eye. The dashed (solid) lines correspond to cases where finite (zero) order parameters are obtained in the thermodynamic limit.

It is well known that the J₁ interaction can also destroy the magnetic order at a coupling ratio R ≤ 0.12 [24], consistent with the deconfined criticality scenario [32]. An in depth study of the critical behavior is beyond the scope of the current work and will be presented elsewhere.

We note the VBS order parameter is finite in both the columnar and plaquette VBS states. It is now well established that the Q term favors columnar order [24], consistent with its interpretation as an attraction between neighboring parallel dimers. Since the R term appears to be more like the kinetic term in the dimer model [see Eq. (5) and discussion], it is interesting to ask what kind of VBS ordering the J₁-R model favors.

In order to make a comparison of the two, we have studied both with the VBS histogram technique [16,33]. A summary of our histogram study is shown in Fig. 6. For each configuration of our MC sample we can calculate the value of D_π, D_σ, as well as the O_{VBS} and $O_{\text{Néel}}$ order parameters. The insets in Fig. 4 show the phase diagram of the J₁-Q-R model to connect our work with previous work on the J₁-Q model [24].

The natural candidate for the large R nonmagnetic state is a valence-bond solid. Finite-size scaling of the VBS and Néel order parameters (O_{VBS} and $O_{\text{Néel}}$) close to the critical point confirm this expectation as shown in Fig. 5. The definition of the order parameters are standard; they are included in Appendix C for completeness. It is found that the Néel order parameters turn off at the same time the VBS order parameters first come on, consistent with the observation of such behavior in the J-Q model [24] and with the deconfined criticality scenario [32]. An in depth study of the critical behavior is beyond the scope of the current work.
shown in (c). In contrast, the R term admits a broad angular distribution even for large value of the R/J_1 and big volumes [the data in (d) is shown for 64×64]. As R/J_1 is increased even further, there appears to be a trend towards a columnar VBS with increase of weight around $\theta = 0$, though as shown in Fig. 6 this crossover is very slow. This is somewhat surprising since both R and Q destroy Néel order at approximately the same value of the coupling. This new microscopic route to quantum criticality provided by the R term is an alternative to the well-studied J-Q model and will be useful to test the independence from microscopic details of critical exponents and other putative universal quantities in future studies.

IV. SUMMARY

To conclude, we have introduced a systematic method to generate an infinitely large family of SU(N) Marshall-positive Hamiltonians on bipartite lattice with multispin interactions. Our understanding of this family of models is poor and their study raises the following intriguing questions. How do we choose our coupling in this large parameter space to stabilize new phases of matter, e.g., a spin liquid, in a sign-positive Hamiltonian? In what sense is the family of models we have found a complete set of Marshall positive models? As a practical application of our idea, we provided an alternate way to see the positivity of the popular Q interaction \cite{16}, and discovered an independent positive four-spin R term, which can be utilized as a new route to quantum criticality. In a straightforward manner, our method can be extended to classify interactions that involve more than four spins on the square lattice as well as other bipartite lattices in arbitrary dimensions. Our general approach might also be useful to design Marshall positive models with symmetries different from the N-\bar{N} $SU(N)$ model.

ACKNOWLEDGMENTS

The author thanks K. Damle, T. C. Lang, M. A. Levin, and A. W. Sandvik for stimulating discussions, J. Demidio for his help in preparing some figures, NSF Grant No. DMR-1056536 for partial financial support, and the visitor programs at BU for their hospitality during the preparation of this manuscript. Part of this work was completed while the author held an adjunct faculty position at the TIFR.

APPENDIX A: TEST ENERGIES

For future reference, Table I contains test comparisons between the energies obtained from a SSE-QMC study and exact diagonalization on 4×4 and 4×6 systems with various J_2-Q-R at $N = 2$, working with $J_1 = 1$. The various interaction terms are described in Sec. II.
Table I. Test comparisons of energies from exact diagonalization and finite-T QMC studies for the SU(2) model. Note that $J_1 = 1$ always. The energies reported here are per site and on square lattices with periodic boundary conditions.

Size	J_2	Q	R	β_{QMC}	E_{ex}	E_{QMC}
4×4	1	0	0	16	-1.164574932621	$-1.16453(2)$
4×4	0	1	0	16	-1.547407628767	$-1.54735(2)$
4×4	0	0	1	16	-1.532604539066	$-1.53258(3)$
4×4	0	1	1	16	-2.395806575537	$-2.39577(4)$
4×4	0	1	0	16	-4.947607904937	$-4.94757(8)$
6×4	1	0	0	16	-1.144492865177	$-1.14438(2)$
6×4	0	1	0	16	-1.51911890163	$-1.51913(3)$
6×4	0	0	1	16	-1.50325567768	$-1.50323(3)$
6×4	0	1	1	16	-2.349607914424	$-2.34962(4)$
6×4	0	1	4	16	-4.847067604114	$-4.84711(6)$

APPENDIX B: PHASE DIAGRAM FOR $N = 2$

For completeness Fig. 7 shows an approximate phase diagram of the SU(2) J_1-Q-R model, by monitoring the crossings of the size $L = 16$ and $L = 32$ data for L_{QMC}. Similar to data shown in Fig. 4 but on smaller system sizes.

APPENDIX C: OBSERVABLES

We follow previous work [27] by defining an SU(N) magnetic order parameter:

$$Q_{ab}(r, \tau) = \begin{cases}
(\langle |\alpha\rangle \langle |\beta\rangle)_{r, r+\delta_a} - \delta_a |\frac{\delta_b}{N} \rangle_{r, r}, & \text{A sublattice,} \\
(\langle |\beta\rangle \langle |\alpha\rangle)_{r, r-\delta_a} - \delta_a |\frac{\delta_b}{N} \rangle_{r, r}, & \text{B sublattice,}
\end{cases} \quad (C1)$$

where α and β vary over the N colors. We can then define a magnetic order parameter as

$$O_{\mu}^2 = \frac{1}{(N_s)^2} \sum_{r, \tau} \int_0^\beta d\tau' \int_0^\beta d\tau \langle T_r Q_{ab}(r, \tau) Q_{ab}(r', \tau') \rangle. \quad (C2)$$

In a similar fashion we can define a VBS correlation function. First we define the bond operator on a pair of nearest neighbor sites as follows:

$$B^{\mu}(r, \tau) = \frac{1}{N} \mathcal{P}(r, \tau; r + \mu, \tau), \quad (C3)$$

where $\mathcal{P}_{ij} = \sum_{\alpha, \beta} |\alpha\rangle_i \langle |\beta\rangle_j$, with space-time locations of the two points given by the arguments. The superscript μ denotes the bond type. On the square lattice this index would run over $\mu = x, y$. We can then study the correlations of these bond operators at different points in space and take the $\omega = 0$ component:

$$C^{\mu\nu}(r - r') = \frac{1}{\beta^2} \int_0^\beta d\tau \int_0^\beta d\tau' \langle T_r B^{\mu}(r, \tau) B^{\nu}(r', \tau') \rangle - \langle B^{\mu}(r) \rangle \langle B^{\nu}(r') \rangle. \quad (C4)$$

The plaquette and columnar VBS patterns correspond to a wave vector $Q = (\pi, 0)$ and correlated bond type $\mu, \nu = x$. By taking the Fourier component of this wave vector, we can check for a signal in this VBS pattern. This is how we define our VBS order parameter:

$$O_{\text{VBS}}^2 = \frac{1}{N_s} \sum_r C^{xx}(r) e^{iQ\cdot r}. \quad (C5)$$

Finally to create the VBS histograms we take a basis state and assign 1 to all bonds which have the same SU(N) colors on the sites that connect the bonds and zero to all bonds connecting different colors. We then Fourier transform all the x directed bonds to $(\pi, 0)$ and call this D_x and all the y directed bonds to $(0, \pi)$ and call this D_y. This gives us a value of D_x and D_y for each basis state. We then histogram this data to get the density plots shown in Fig. 6.
[9] A. Auerbach, *Interacting Electrons and Quantum Magnetism* (Springer, New York, 1994).
[10] S. Bravyi, D. P. DiVincenzo, R. I. Oliveira, and B. M. Terhal, Quant. Inf. Comput. **8**, 361 (2008).
[11] R. K. Kaul, R. G. Melko, and A. W. Sandvik, Annu. Rev. Condens. Matter Phys. **4**, 179 (2013).
[12] I. Affleck, Phys. Rev. Lett. **54**, 966 (1985).
[13] T. Nakamura and N. Hatano, J. Phys. Soc. Jpn. **62**, 3062 (1993).
[14] K. Harada, N. Kawashima, and M. Troyer, Phys. Rev. Lett. **90**, 117203 (2003).
[15] W. Marshall, Proc. R. Soc. A **232**, 48 (1955).
[16] A. W. Sandvik, Phys. Rev. Lett. **98**, 227202 (2007).
[17] R. G. Melko and R. K. Kaul, Phys. Rev. Lett. **100**, 017203 (2008).
[18] F. Jiang, M. Nyfeler, S. Chandrasekharan, and U. Wiese, J. Stat. Mech.: Theory Exp. (2008) P02009.
[19] K. Harada, T. Suzuki, T. Okubo, H. Matsuo, J. Lou, H. Watanabe, S. Todo, and N. Kawashima, Phys. Rev. B **88**, 220408 (2013).
[20] A. W. Sandvik, Phys. Rev. Lett. **104**, 177201 (2010).
[21] A. Banerjee, K. Damle, and F. Alet, Phys. Rev. B **82**, 155139 (2010).
[22] A. Sen and A. W. Sandvik, Phys. Rev. B **82**, 174428 (2010).
[23] S. Pujari, K. Damle, and F. Alet, Phys. Rev. Lett. **111**, 087203 (2013).
[24] J. Lou, A. W. Sandvik, and N. Kawashima, Phys. Rev. B **80**, 180414 (2009).
[25] R. K. Kaul, Phys. Rev. B **84**, 054407 (2011).
[26] A. Banerjee, K. Damle, and F. Alet, Phys. Rev. B **83**, 235111 (2011).
[27] M. S. Block, R. G. Melko, and R. K. Kaul, Phys. Rev. Lett. **111**, 137202 (2013).
[28] R. K. Kaul and A. W. Sandvik, Phys. Rev. Lett. **108**, 137201 (2012).
[29] R. K. Kaul, Phys. Rev. B **85**, 180411 (2012).
[30] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. **61**, 2376 (1988).
[31] N. Read and S. Sachdev, Nucl. Phys. B **316**, 609 (1989).
[32] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. Fisher, Science **303**, 1490 (2004).
[33] N. Kawashima and Y. Tanabe, Phys. Rev. Lett. **98**, 057202 (2007).