Global Well-Posedness for the 2-D Inhomogeneous Incompressible Navier-Stokes System with Large Initial Data in Critical Spaces

Hammadi Abidi & Guilong Gui

Communicated by P.-L. Lions

Abstract

Without any smallness assumption, we prove the global unique solvability of the 2-D incompressible inhomogeneous Navier-Stokes equations with initial data in the critical Besov space, which is almost the energy space in the sense that they have the same scaling in terms of this 2-D system.

1. Introduction

We consider in this paper the Cauchy problem of the 2-D incompressible inhomogeneous Navier-Stokes equations

\[
\begin{align*}
\partial_t \rho + \text{div}(\rho u) &= 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^2, \\
\partial_t (\rho u) + \text{div}(\rho u \otimes u) - \text{div}(\mu D(u)) + \nabla \Pi &= 0, \\
\text{div} u &= 0, \\
\rho|_{t=0} &= \rho_0, \quad \rho u|_{t=0} = m_0,
\end{align*}
\]

(1.1)

where \(\rho \) and \(u = (u_1, u_2)^T \) stand for the density and velocity of the fluid, respectively, \(D(u) = \nabla u + \nabla u^T \), \(\Pi \) is a scalar pressure function, and in general, the viscous coefficient \(\mu = \mu(\rho) \) is a smooth, positive function on \([0, \infty)\). Such a system describes a fluid which is obtained by mixing two miscible fluids that are incompressible and that have different densities. It may also describe a fluid containing a melted substance. One may check [21] for the detailed derivation.

If \(\mu(\rho) \) is independent of \(\rho \), that is, \(\mu \) is a positive constant (taking \(\mu = 1 \) for simplicity), then the system is rewritten in the form

\[
\begin{align*}
\partial_t \rho + \text{div}(\rho u) &= 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^2, \\
\rho (\partial_t u + (u \cdot \nabla) u) - \Delta u + \nabla \Pi &= 0, \\
\text{div} u &= 0, \\
(\rho, u)|_{t=0} &= (\rho_0, u_0).
\end{align*}
\]

(1.2)
When \(\rho_0 \) is bounded away from 0, Kazhikhov [5] proved the global existence of strong solutions to the system (1.2) for smooth initial data in two dimensions, also proved that the system (1.1) has at least one global weak solutions in the energy space. However, the uniqueness of this type weak solutions has not be solved. Considering the case of the bounded domain \(\Omega \) with homogeneous Dirichlet boundary condition for the fluid velocity, Ladyzenskaja and Solonnikov [20] first addressed the question of unique solvability of (1.1). In particular, under the assumptions that \(u_0 \in W^{2-\frac{2}{\nu}, p}(\Omega) \) (\(p > 2 \)) is divergence free and vanishes on \(\partial \Omega \) and that \(\rho_0 \in C^1(\Omega) \) is bounded away from zero, then they [20] proved global well-posedness of (1.1). Similar results were obtained by Danchin [13] in \(\mathbb{R}^2 \) with initial data in almost critical Sobolev spaces.

In general, DiPerna and Lions [17,21] proved the global existence of weak solutions to (1.1) in energy space in any space dimensions. However the uniqueness and regularities of such weak solutions are big open questions even in two space dimensions, as was mentioned by Lions in [21].

On the other hand, if the density \(\rho \) is away from zero, we denote by \(a \overset{\text{def}}{=} \rho^{-1} - 1, \) then the system (1.2) can be equivalently reformulated as

\[
\begin{align*}
\frac{\partial}{\partial t} a + u \cdot \nabla a &= 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^2, \\
\frac{\partial}{\partial t} u + u \cdot \nabla u + (1 + a)(\nabla \Pi - \Delta u) &= 0, \\
div u &= 0, \\
(a, u)|_{t=0} &= (a_0, u_0).
\end{align*}
\]

(1.3)

Just as the classical Navier-Stokes system, which is the case when \(a = 0 \) in (1.3), the system (1.3) also has a scaling-invariant transformation. Indeed if \((a, u)\) solves (1.3) with initial data \((a_0, u_0)\), then, for \(\forall \ell > 0, \)

\[
(a, u)_{\ell}(t, x) \overset{\text{def}}{=} (a(\ell^2, \cdot), \ell u(\ell^2, \cdot))
\]

is also a solution of (1.3) with initial data \((a_0(\ell_{\cdot}), \ell u_0(\ell_{\cdot}))\). Some results about global existence and uniqueness of the solutions in critical spaces for small data were proved in [1,3,16]. Recently, we [2] first investigated the well-posedness of the 3-D incompressible inhomogeneous Navier-Stokes equation (1.2) with initial data \((a_0, u_0)\) in the critical spaces and without size restriction on \(a_0\).

For the two-dimensional case, when the density and the velocity have more regularity, Danchin [13] proved the global well-posedness result of the system (1.2). More precisely, if \(0 < m \leq \rho_0 \leq M, \rho_0^{-1} - 1 \in H^{1+\alpha} \) and \(u_0 \in H^\beta \) with \(\alpha, \beta > 0, \) the system (1.2) is globally well-posed. Recently, some improvements of this result have been achieved. Paicu, Zhang, and Zhang [22] investigated the unique solvability of the global solution of the 2-D system (1.2) if \(0 < m \leq \rho_0 \leq M \) and \(u_0 \in H^s \) with \(s > 0, \) and the first author in the paper and Zhang [4] proved the global existence and uniqueness of the solution to the 2-D system (1.2) if \(0 < m \leq \rho_0 \leq M, \rho_0^{-1} - 1 \in \dot{B}^1_{2,1} \cap \dot{B}^{\infty}_{\infty, \infty} \) with \(\alpha > 0 \) and \(u_0 \in \dot{B}^0_{2,1}, \) which is some extension of the results in the 2-D homogeneous incompressible Navier-Stokes equations (see [6] for instance). In fact, it is well known that there is the gain of two derivatives in \(L^1_{loc}(\mathbb{R}^+, \dot{B}^2_{2,1}) \) starting from \(\dot{B}^0_{2,1} \) initial velocity in the the 2-D homogeneous incompressible Navier-Stokes equations (1.6). Without a positive
lower bound of the density, Danchin and Mucha [15] studied the existence and uniqueness of global solution to (1.2) if $0 \leq \rho_0 \leq M$, $\int_{\mathbb{R}^2} \rho_0 > 0$ and $u_0 \in H^1$. It is worth to mentioning that Haspot [19] proved the global well-posedness of the system (1.2) with small non-Lipschitz velocity $u_0 \in \dot{B}^{\frac{2}{p_2} - \frac{1}{p_2} - 1}_p$, and more regular density $\rho_0^{-1} - 1 \in \dot{B}^{\frac{2}{p_1} + \varepsilon}_{p_1, \infty}$ under some restrictions on p_1, p_2, r, and ε.

In summary, all the well-posedness results of the 2-D system (1.2) obtained so far are under the additional assumption that the density or the velocity has more regularity compared to critical spaces.

In this paper, we investigate the global well-posedness of the 2-D inhomogeneous incompressible Navier-Stokes system (1.2) with large initial data in the critical space, which is almost the energy space in the sense that they have the same scaling in terms of the system (1.1) (see Remark 1.1 below).

The main theorem of the paper is stated as follows:

Theorem 1.1. Assume that m, M are two positive constants and ε is a positive constant in $(0, 1)$. Let $u_0 \in \dot{B}^0_{2,1}(\mathbb{R}^2)$ be a solenoidal vector field and $\rho_0^{-1} - 1 \in \dot{B}^{\frac{2}{p_2}}_{p_2,1}(\mathbb{R}^2)$ satisfy

$$m \leq \rho_0 \leq M.$$ (1.5)

Then the 2-D system (1.2) has a global solution $(\rho, u, \nabla \Pi)$ with

$$\rho^{-1} - 1 \in C(\mathbb{R}^+; \dot{B}^{\frac{2}{p_2}}_{p_2,1}(\mathbb{R}^2))$$

$$u \in C(\mathbb{R}^+; \dot{B}^0_{2,1}(\mathbb{R}^2)) \cap L^1_{loc}(\mathbb{R}^+; \dot{B}^2_{2,1}(\mathbb{R}^2))$$ and

$$\partial_t u, \nabla \Pi \in L^1_{loc}(\mathbb{R}^+; \dot{B}^0_{2,1}(\mathbb{R}^2)).$$ (1.6)

Furthermore, if, in addition, $\rho_0^{-1} - 1 \in \dot{B}^1_{2,1}$, then the 2-D system (1.2) is globally well-posed.

Remark 1.1. Compared with the global existence theorem of weak solutions to the system (1.2) in the energy space ([5, 17, 21]) (where initial data satisfies $\rho_0 - 1 \in L^\infty(\mathbb{R}^2)$ and $u_0 \in L^2(\mathbb{R}^2)$), Theorem 1.1 requires that the initial density $\rho_0 - 1 \in \dot{B}^1_{2,1}(\mathbb{R}^2)$ which has the same scaling as $\rho_0 - 1 \in L^\infty(\mathbb{R}^2)$ in the sense of the scaling-invariant transformation (1.4) of the system (1.2), and the initial velocity $u_0 \in \dot{B}^0_{2,1}(\mathbb{R}^2)$ which has the same scaling and regularity as $u_0 \in L^2(\mathbb{R}^2)$ in the energy space.

The proof of Theorem 1.1 is completed in Sects. 2-4. We now present a summary of principal difficulties we encounter in our analysis as well as a sketch of the key ideas used in our proof.

The first difficulty to the proof of Theorem 1.1 lies in the fact that when a is not small, we can not use the classical arguments in [1, 3] to deal with the following linearized momentum equations of (1.3):

$$\partial_t u - (1 + a)(\Delta u - \nabla \Pi) = f.$$ (1.7)
Motivated by [11] and [2], for some large enough integer \(m \), we shall rewrite (1.7) as
\[
\partial_t u - (1 + \dot{S}_m a)(\Delta u - \nabla \Pi) = (a - \dot{S}_m a)(\Delta u - \nabla \Pi) + f, \tag{1.8}
\]
with the low frequency part \(\dot{S}_m a \) of \(a \) (defined in (2.2)). Then the basic energy method can be used to solve (1.8) when we deal with the global existence of the solution to (1.3).

The other difficulty in the proof of Theorem 1.1 is how to deal with the uniqueness issue of the solution. In order to solve this problem, the crucial part is, roughly speaking, to control the \(\text{Lip} \) norm of the velocity \(u \), which will conserve all the regularities of the density and the velocity in critical spaces, as well as the smallness of the high frequency part \(a - \dot{S}_m a \) of \(a \) with \(m \) being large enough.

As we mentioned above, if the density or the velocity has more regularity than the data in the critical space, combining the losing estimates for transport equations with the theory of transport-diffusion equations [6] provides the boundness of the \(\text{Lip} \) norm of the velocity, which will in turn close the estimates in the proof of global well-posedness of (1.2) (see [4, 15, 22]).

In our critical case, there is no more regularity of the density or the velocity to rescue their losing regularity when we solve the transport equation of the density or the transport-diffusion equations in terms of the velocity.

For this reason, we need first to get, at least in a small time interval, the \(L^1([0, T]; \dot{B}^2_{2,1}) \) estimate for the velocity field (see Proposition 3.2), which relies on more elaborate application of Littlewood-Paley theory, as well as the basic energy and the estimate of \(\|\nabla \Pi\|_{L^1_t(L^2_x)} \). Based on this, together with Osgood’s lemma applied, we solve the uniqueness issue of the solution to (1.2) in the critical space. The global well-posedness of the system (1.2) then will be obtained from the result in [22] as well as the smoothness of the velocity in the dissipative system (1.2).

The rest of the paper is organized as follows. In Sect. 2, we recall some basic ingredients of Littlewood-Paley theory, and derive some qualitative and analytic properties of the flow, as well as some necessary commutator estimates. We then prove the \(L^1([0, T]; \dot{B}^2_{2,1}) \) estimate for the velocity field in Sect. 3. Finally, the proof of Theorem 1.1 is completed in Sect. 4.

Notations. Let \(A, B \) be two operators, we denote \([A, B] = AB - BA\), the commutator between \(A \) and \(B \). By \(a \lesssim b \), we mean that there is a uniform constant \(C \), which may be different on different lines, such that \(a \leq C b \) and \(C_0 \) denotes a positive constant depending only on the initial data. And \(a \sim b \) means that both \(a \lesssim b \) and \(b \lesssim a \). For \(r \in [1, +\infty] \), we denote \(\{c_{j,r}\}_{j \in \mathbb{Z}} \) (or \(\{c_{j,r}\}_{j \in \mathbb{N} \cup \{-1\}} \)) a sequence in \(\ell^r(\mathbb{Z}) \) (or \(\ell^r(\mathbb{N} \cup \{-1\}) \)) such that \(\|\{c_{j,r}\}_j\|_{\ell^r} = 1 \).

For \(X \) a Banach space and \(I \) an interval of \(\mathbb{R} \), we denote by \(\mathcal{C}(I; X) \) the set of continuous functions on \(I \) with values in \(X \), and by \(\mathcal{C}_b(I; X) \) the subset of bounded functions of \(\mathcal{C}(I; X) \). For \(q \in [1, +\infty) \), the notation \(L^q(I; X) \) stands for the set of measurable functions on \(I \) with values in \(X \), such that \(t \mapsto \|f(t)\|_X \) belongs to \(L^q(I) \). In particular, if \(I = [0, T] \) for \(T \in (0, +\infty) \), we denote \(L^q([0, T]; X) \).
by $L^q_t(X)$ for short. Usually, we denote P the Leray projector over divergence-free vector fields defined as $P \overset{\text{def}}{=} I + \nabla(-\Delta)^{-1}\text{div}$, where I means the identity operator.

2. Preliminaries

For the convenience of the reader, in what follows, we recall some basic facts on Littlewood-Paley theory, one may check [6, 25] for more details.

Lemma 2.1. (Bernstein’s inequality) Let B be a ball and C a ring of \mathbb{R}^2. A constant C exists so that for any positive real number λ, any non-negative integer k, any smooth homogeneous function σ of degree m, and any couple of real numbers (a, b) with $b \geq a \geq 1$, it holds that

\[
\text{Supp } \hat{u} \subset \lambda B \Rightarrow \sup_{|\alpha| = k} \| \partial^{\alpha} u \|_{L^b} \leq C k + 1 \lambda k + 2 (\frac{1}{a} - \frac{1}{b}) \| u \|_{L^a},
\]

\[
\text{Supp } \hat{u} \subset \lambda C \Rightarrow C^{-1 - k} \lambda^k \| u \|_{L^a} \leq \sup_{|\alpha| = k} \| \partial^{\alpha} u \|_{L^a} \leq C^{1 + k} \lambda^k \| u \|_{L^a},
\]

\[
\text{Supp } \hat{u} \subset \lambda C \Rightarrow \| \sigma(D) u \|_{L^b} \leq C_{\sigma, m} \lambda^m + 2 (\frac{1}{a} - \frac{1}{b}) \| u \|_{L^a}.
\]

The proof of Theorem 1.1 requires a dyadic decomposition of the Fourier variables, which is called the Littlewood-Paley decomposition. Let us briefly explain how it may be built in the case $x \in \mathbb{R}^2$ (see e.g. [6]). Let φ be a smooth function supported in the ring $C \overset{\text{def}}{=} \{ \xi \in \mathbb{R}^2, \frac{2}{3} \leq |\xi| \leq \frac{8}{3} \}$ and $\chi(\xi)$ be a smooth function supported in the ball $B \overset{\text{def}}{=} \{ \xi \in \mathbb{R}^2, |\xi| \leq \frac{4}{3} \}$ such that

\[
\sum_{j \in \mathbb{Z}} \varphi(2^{-j} \xi) = 1 \quad \text{for } \xi \neq 0 \quad \text{and} \quad \chi(\xi) + \sum_{q \geq 0} \varphi(2^{-q} \xi) = 1 \quad \text{for all } \xi \in \mathbb{R}^2.
\]

Now, for $u \in S'(\mathbb{R}^2)$, we set

\[
\forall q \in \mathbb{Z}, \quad \hat{\Delta}_q u = \varphi(2^{-q} D) u \quad \text{and} \quad \hat{S}_q u = \sum_{j \leq q - 1} \hat{\Delta}_j u.
\]

\[
q \geq 0, \quad \Delta_q u = \varphi(2^{-q} D) u, \quad \Delta_{-1} u = \chi(D) u \quad \text{and} \quad S_q u = \sum_{-1 \leq q' \leq q - 1} \Delta_{q'} u.
\]

We have the formal decomposition

\[
u = \sum_{q \in \mathbb{Z}} \hat{\Delta}_q u, \quad \forall u \in S'(\mathbb{R}^2)/\mathcal{P}[\mathbb{R}^2] \quad \text{and} \quad \nu = \sum_{q \geq -1} \Delta_q u, \quad \forall u \in S'(\mathbb{R}^2),
\]

where $\mathcal{P}[\mathbb{R}^2]$ is the set of polynomials (see [23]). Moreover, the Littlewood-Paley decomposition satisfies the property of almost orthogonality:
\[
\hat{\Delta}_k \hat{\Delta}_q u \equiv 0 \quad \text{if} \quad |k - q| \geq 2 \quad \text{and} \quad \hat{\Delta}_k (\hat{S}_{q-1} u \hat{\Delta}_q u) \equiv 0 \quad \text{if} \quad |k - q| \geq 5,
\]
\[
\Delta_k \Delta_q u \equiv 0 \quad \text{if} \quad |k - q| \geq 2 \quad \text{and} \quad \Delta_k (S_{q-1} u \Delta_q u) \equiv 0 \quad \text{if} \quad |k - q| \geq 5.
\]

(2.3)

We recall now the definitions of nonhomogeneous and homogeneous Besov spaces from [6,25].

Definition 2.1. ([6]) Let \(s \in \mathbb{R} \), \(1 \leq p, r \leq +\infty \), we set
\[
\| u \|_{B_{p,r}^s} \overset{\text{def}}{=} 2^{qs} \| \Delta_q u \|_{L^p} \| \ell_r(\mathbb{N} \cup \{-1\}) \quad \text{and} \quad \| u \|_{\dot{B}_{p,r}^s} \overset{\text{def}}{=} 2^{qs} \| \hat{\Delta}_q u \|_{L^p} \| \ell_r(\mathbb{Z}) \).
\]

The nonhomogeneous Besov space \(B_{p,r}^s(\mathbb{R}^2) \) consists of those distributions \(u \) in \(\mathcal{S}'(\mathbb{R}^2) \) such that \(\| u \|_{B_{p,r}^s} < \infty \), and the homogeneous Besov space \(\dot{B}_{p,r}^s(\mathbb{R}^2) \) consists of those distributions \(u \) in \(\mathcal{S}'(\mathbb{R}^2) \) such that \(\| u \|_{\dot{B}_{p,r}^s} < \infty \), where
\[
\dot{B}_{p,r}^s(\mathbb{R}^2) \overset{\text{def}}{=} \{ u \in \mathcal{S}'(\mathbb{R}^2) \mid \lim_{\lambda \to +\infty} \| \theta(\lambda D)u \|_{L^\infty} = 0 \text{ for any } \theta \in \mathcal{D}(\mathbb{R}^2) \}.
\]

Remark 2.1. (1) We point out that if \(s > 0 \) then \(B_{p,r}^s = \dot{B}_{p,r}^s \cap L^p \) and
\[
\| u \|_{B_{p,r}^s} \approx \| u \|_{\dot{B}_{p,r}^s} + \| u \|_{L^p}.
\]

(2) It is easy to verify that the homogeneous Besov space \(\dot{B}_{2,2}^s(\mathbb{R}^2) \) (resp. \(B_{2,2}^s(\mathbb{R}^2) \)) coincides with the classical homogeneous Sobolev space \(\dot{H}^s(\mathbb{R}^2) \) (resp. \(H^s(\mathbb{R}^2) \)) and \(\dot{B}_{\infty,\infty}^s(\mathbb{R}^2) \) coincides with the classical homogeneous Hölder space \(\dot{C}^s(\mathbb{R}^2) \) when \(s \) is not positive integer, in case \(s \) is a nonnegative integer, \(\dot{B}_{\infty,\infty}^s(\mathbb{R}^2) \) coincides with the classical homogeneous Zygmund space \(\dot{C}^s(\mathbb{R}^2) \).

(3) Let \(s \in \mathbb{R} \), \(1 \leq p, r \leq +\infty \), and \(u \in \mathcal{S}'(\mathbb{R}^2) \). Then \(u \) belongs to \(\dot{B}_{p,r}^s(\mathbb{R}^2) \) if and only if there exists some positive constant \(C \) and some nonnegative sequence \(\{ c_{j,r} \}_{j \in \mathbb{Z}} \) such that \(\| c_{j,r} \|_{\ell^r} = 1 \) and \(\forall \ j \in \mathbb{Z} \)
\[
\| \hat{\Delta}_j u \|_{L^p} \leq C c_{j,r} 2^{-js} \| u \|_{\dot{B}_{p,r}^s}.
\]

(2.4)

Similarly, for \(u \in \mathcal{S}'(\mathbb{R}^2) \), \(u \) belongs to \(B_{p,r}^s(\mathbb{R}^2) \) if and only if it holds that
\[
\| \Delta_j u \|_{L^p} \leq C c_{j,r} 2^{-js} \| u \|_{B_{p,r}^s}.
\]

(2.5)

Proposition 2.1. ([6]) The following properties hold:

(1) For \(s \in \mathbb{R} \), \(1 \leq p, r \leq +\infty \), the normed space \((B_{p,r}^s(\mathbb{R}^2), \| \cdot \|_{B_{p,r}^s}) \) is complete. When \(s < \frac{1}{p} \) and \(1 \leq r \leq +\infty \), or \(s \leq \frac{1}{p} \) and \(r = 1 \), the normed space \((\dot{B}_{p,r}^s(\mathbb{R}^2), \| \cdot \|_{\dot{B}_{p,r}^s}) \) is complete.

(2) Sobolev embeddings: if \(1 \leq p_1 \leq p_2 \leq +\infty \), \(1 \leq r_1 \leq r_2 \leq +\infty \), \(s \in \mathbb{R} \), and \(s_1 < s_2 \), then we have \(\dot{B}_{p_1,r_1}^s(\mathbb{R}^2) \hookrightarrow \dot{B}_{p_2,r_2}^{s-2(\frac{1}{p_1} - \frac{1}{p_2})}(\mathbb{R}^2) \), \(B_{p_1,r_1}^s(\mathbb{R}^2) \hookrightarrow B_{p_2,r_2}^{s-2(\frac{1}{p_1} - \frac{1}{p_2})}(\mathbb{R}^2) \), and \(\dot{B}_{p_1,r_1}^{s_2} \hookrightarrow \dot{B}_{p_1,r_1}^{s_1} \).
(3) A constant C exists which satisfies the following properties. If s_1 and s_2 are real numbers such that $s_1 < s_2$, $\theta \in (0, 1)$, $1 \leq p$, $r \leq +\infty$, then we have
\[
\|u\|_{B^{(\theta s_1 + (1-\theta)s_2)}_{p,r}} \leq \|u\|_{B^{s_1}_{p,r}}^\theta \|u\|_{B^{s_2}_{p,r}}^{1-\theta} \quad \text{and} \quad \|u\|_{B^{s_1}_{p,r}} \leq \frac{C}{s_2 - s_1} \left(\frac{1}{\theta} + \frac{1}{1-\theta}\right) \|u\|_{B^{s_1}_{p,\infty}}^\theta \|u\|_{B^{s_2}_{p,\infty}}^{1-\theta}.
\]
(2.6) These assertions are true for homogeneous Besov spaces $B^s_{p,r}$.
(4) Let $m \in \mathbb{R}$ and f be a S^m-multiplier (that is, $f : \mathbb{R}^2 \to \mathbb{R}$ is smooth and satisfies that for all multi-index s, there exists a constant C_s such that $\forall \xi \in \mathbb{R}^2$, $|\partial^s f(\xi)| \leq C_s (1 + |\xi|)^{m-|s|}$.) Then for all $s \in \mathbb{R}$ and $1 \leq p$, $r \leq +\infty$, the operator $f(D)$ is continuous from $B^s_{p,r}$ to $B^{s-m}_{p,r}$.

In the rest of the paper, we shall frequently use Bony’s decomposition [8] in both the homogeneous and the inhomogeneous context. The homogeneous Bony’s decomposition reads as
\[
uv = T_u v + T'_u u = T_v u + T_v u + R(u, v),
\]
where
\[
T_u v \overset{\text{def}}{=} \sum_{q \in \mathbb{Z}} \hat{S}_{q-1} u \hat{\Delta}_q v, \quad T'_u u \overset{\text{def}}{=} \sum_{q \in \mathbb{Z}} \hat{\Delta}_q u \hat{S}_{q+2} v,
\]
\[
R(u, v) \overset{\text{def}}{=} \sum_{q \in \mathbb{Z}} \hat{\Delta}_q u \hat{\Delta}_q v \quad \text{with} \quad \hat{\Delta}_q v \overset{\text{def}}{=} \sum_{|q' - q| \leq 1} \hat{\Delta}_{q'} v,
\]
and the inhomogeneous Bony’s decomposition can be defined in a similar manner.

The main continuity properties of the paraproduct are described below, which provides us with product laws in inhomogeneous Besov spaces. These assertions hold also true in the homogeneous Besov spaces.

Proposition 2.2. ([6])

(1) A constant C exists which satisfies the following inequalities: for $s \in \mathbb{R}$, $t < 0$, $1 \leq p$, r, r_1, $r_2 \leq +\infty$, we have
\[
\|T_u v\|_{B^s_{p,r}} \leq C|s|+1 \|u\|_{L^\infty} \|v\|_{B^s_{p,r}},
\]
\[
\|T_u v\|_{B^s_{p,r}} \leq \frac{C|s|+1}{1-t} \|u\|_{B^s_{p,\infty}} \|v\|_{B^s_{p,r}} \quad \text{with} \quad \frac{1}{r} \overset{\text{def}}{=} \min\{1, \frac{1}{r_1} + \frac{1}{r_2}\}.
\]
(2) A constant C exists which satisfies the following inequalities. Let (s_1, s_2) be in \mathbb{R}^2 and (p_1, p_2, r_1, r_2) be in $[1, \infty]^4$. Assume that $\frac{1}{p} \overset{\text{def}}{=} \frac{1}{p_1} + \frac{1}{p_2}$ and
\[
\frac{1}{r} \overset{\text{def}}{=} \frac{1}{r_1} + \frac{1}{r_2} \leq 1. \quad \text{Then we have}
\]
\[
\|R(u, v)\|_{B^{s_1+s_2}_{p,r}} \leq \frac{C^{s_1+s_2+1}}{s_1+s_2} \|u\|_{B^{s_1}_{p_1,r_1}} \|v\|_{B^{s_2}_{p_2,r_2}} \quad \text{if} \quad s_1 + s_2 > 0,
\]
\[
\|R(u, v)\|_{B^{s_1+s_2}_{p,r}} \leq C \|u\|_{B^{s_1}_{p_1,r_1}} \|v\|_{B^{s_2}_{p_2,r_2}} \quad \text{if} \quad r = 1 \quad \text{and} \quad s_1 + s_2 = 0.
In order to obtain a better description of the regularizing effect of the transport-diffusion equation, we will use Chemin-Lerner type spaces from [9, 10].

Definition 2.2. Let \(s \in \mathbb{R}, 1 \leq r, \lambda, p \leq +\infty \), and \(T > 0 \), we set
\[
\|u\|_{\tilde{L}^s_T(B^r_{p,\lambda})} \overset{\text{def}}{=} \left\| 2^{qs}\|\Delta^su\|_{L^r_T(L^p)} \right\|_{\ell'([0,1])}
\]
and
\[
\|u\|_{\tilde{L}^s_T(B^r_{p,\lambda})} \overset{\text{def}}{=} \left\| 2^{qs}\|\hat{\Delta}u\|_{L^r_T(L^p)} \right\|_{\ell'((\mathbb{Z})^d)}.
\]

For \(s \in \mathbb{R} \), we define \(\tilde{L}^s_T(B^r_{p,\lambda}) \overset{\text{def}}{=} \{ u \in \mathcal{S}'((0, T) \times \mathbb{R}^d) \mid \|u\|_{\tilde{L}^s_T(B^r_{p,\lambda})} < \infty \} \) and \(\tilde{L}^r_T(B^s_{p,\lambda}) \overset{\text{def}}{=} \{ u \in \mathcal{S}'((0, T) \times \mathbb{R}^d) \mid \|u\|_{\tilde{L}^r_T(B^s_{p,\lambda})} < \infty \), \(\lim_{j \to -\infty} \hat{S}_j u = 0 \) in \(L^\infty_T(L^\infty(\mathbb{R}^d)) \).

In the particular case when \(p = r = 2 \), we denote \(\tilde{L}^2_T(B^s_{2,2}) \) (resp. \(\tilde{L}^2_T(B^2_{2,2}) \)) by \(\tilde{L}^2_T(H^s) \) (resp. \(\tilde{L}^2_T(H^2) \)).

Remark 2.2. It is easy to observe that for \(\theta \in [0, 1] \), we have
\[
\|u\|_{\tilde{L}^s_T(B^r_{p,\lambda})} \leq \|u\|_{\tilde{L}^s_T(B^r_{p,\lambda})}^{\theta} \|u\|_{\tilde{L}^s_T(B^r_{p,\lambda})}^{1-\theta} \quad (2.9)
\]
with \(\frac{1}{\lambda} = \frac{\theta}{\lambda_1} + \frac{1-\theta}{\lambda_2} \) and \(s = \theta s_1 + (1-\theta)s_2 \). Moreover, Minkowski’s inequality implies that
\[
\|u\|_{\tilde{L}^s_T(B^r_{p,\lambda})} \leq \|u\|_{\tilde{L}^s_T(B^r_{p,\lambda})} \quad \text{if} \quad \lambda \leq r \quad \text{and} \quad \|u\|_{\tilde{L}^r_T(B^s_{p,\lambda})} \leq \|u\|_{\tilde{L}^r_T(B^s_{p,\lambda})} \quad \text{if} \quad r \leq \lambda.
\]

Let us now recall the following commutator estimate which will be frequently used throughout the succeeding sections:

Lemma 2.2. (Commutator estimate, Lemma 1 in [24], Lemma 2.97 in [6]) Let \((p, q, r) \in [1, \infty]^3\), \(\theta\) be a \(C^1\) function on \(\mathbb{R}^d\) such that \((1 + |\cdot|)\hat{\phi} \in L^1\). There exists a constant \(C\) such that for any Lipschitz function \(a\) with gradient in \(L^p\) and any function \(b\) in \(L^q\), we have, for any positive \(\lambda\),
\[
\|[(\lambda^{-1}D), a]b\|_{L^r} \leq C\lambda^{-1}\|\nabla a\|_{L^p}\|b\|_{L^q} \quad \text{with} \quad p^{-1} + q^{-1} = r^{-1}. \quad (2.10)
\]

Almost all the estimates of the nonlinear terms in the paper are based on the following commutator estimates, which proofs rely on Bony’s decomposition (2.8) and (2.10). Although their proofs are similar to the ones used in previous papers, some new observations and their applications play a crucial role in dealing with the functions in critical spaces, so we prove them for the sake of self-containedness.

Lemma 2.3. (1) Let \(\alpha \in (-1, 1)\), \((p, r) \in [1, \infty]^2\), \(u \in \dot{B}_{p,r}^\alpha(\mathbb{R}^2)\) and \(\nabla v \in L^\infty(\mathbb{R}^2)\) with \(\text{div} v = 0\). Then \(\forall q \in \mathbb{Z}\), it holds
\[
\|[(\hat{\Delta}q, v \cdot \nabla)]u\|_{L^p} \lesssim c_{q,r} 2^{-q \alpha} \|\nabla v\|_{L^\infty} \|u\|_{\dot{B}_{p,r}^\alpha}. \quad (2.11)
\]
(2) Let $u \in \dot{B}^1_{2,1}(\mathbb{R}^2)$ and $\nabla v \in \dot{B}^0_{\infty,1}(\mathbb{R}^2)$ with $\text{div} \, v = 0$. Then $\forall \, q \in \mathbb{Z}$, that holds
\[
\| [\hat{\Delta}_q, v \cdot \nabla] u \|_{L^2} \lesssim c_{q,1} 2^{-q} \| \nabla v \|_{B^0_{\infty,1}} \| u \|_{B^1_{2,1}}.
\] (2.12)

(3) Let $r = 1$ or 2, $u \in \dot{B}^1_{2,r}(\mathbb{R}^2)$ with $\text{div} \, u = 0$. Then $\forall \, q \in \mathbb{Z}$, that holds
\[
\| [\hat{\Delta}_q, u \cdot \nabla] u \|_{L^2} \lesssim c_{q,r} \| \nabla u \|_{L^2} \| u \|_{\dot{B}^1_{2,r}}.
\] (2.13)

(4) Let $u \in B^{-1}_{2,\infty}(\mathbb{R}^2)$ and $v \in B^1_{1,1}(\mathbb{R}^2)$ with $\text{div} \, v = 0$. Then $\forall \, q \in \mathbb{N} \cup \{-1\}$, that holds
\[
\| [\Delta_q, v \cdot \nabla] u \|_{L^2} \lesssim c_{q,\infty} 2^q \| v \|_{B^1_{1,1}} \| u \|_{B^{-1}_{2,\infty}}.
\] (2.14)

(5) Let $u \in B^0_{2,1}(\mathbb{R}^2)$, $a \in B^1_{1,\infty}(\mathbb{R}^2)$ and $\nabla a \in L^\infty(\mathbb{R}^2)$. Then $\forall \, q \in \mathbb{N} \cup \{-1\}$, that holds
\[
\| [a, \Delta_q] \nabla u \|_{L^2} \lesssim c_{q,\infty} (\| \nabla a \|_{L^\infty} + \| a \|_{B^1_{1,\infty}}) \| u \|_{B^0_{2,1}}.
\] (2.15)

(6) Let $\nabla u \in H^\frac{1}{2}(\mathbb{R}^2)$ and $a \in B^1_{1,\infty}(\mathbb{R}^2)$. Then $\forall \, q \in \mathbb{N} \cup \{-1\}$, that holds
\[
\| [a, \Delta_q] \nabla u \|_{L^2} \lesssim c_{q,1} 2^{-q} \| a \|_{B^1_{1,\infty}} \| \nabla u \|_{L^2} + \| a \|_{B^2_{1,\infty}} \| \nabla u \|_{H^\frac{1}{2}}.
\] (2.16)

(7) Let $\varepsilon \in (0, 1)$, $f \in L^2(\mathbb{R}^2)$ and $a \in \dot{B}^{\frac{1}{2}}_{\frac{1}{2},1}(\mathbb{R}^2)$. Then $\forall \, q \in \mathbb{Z}$, that holds
\[
\| [a, \Delta_q] f \|_{L^2} \lesssim c_{q,1} \| a \|_{\dot{B}^{\frac{1}{2}}_{\frac{1}{2},1}} \| f \|_{L^2}.
\] (2.17)

(8) Let $\varepsilon \in (0, 1)$, $f \in \dot{B}^{-1}_{2,1}(\mathbb{R}^2)$ and $a \in \dot{B}^{1+\varepsilon}_{\frac{1}{2},1}(\mathbb{R}^2)$. Then $\forall \, q \in \mathbb{Z}$, that holds
\[
\| [a, \Delta_q] f \|_{L^2} \lesssim c_{q,1} (\| \nabla a \|_{L^\infty} \| f \|_{\dot{B}^{-1}_{2,2}} + \| a \|_{\dot{B}^{1+\varepsilon}_{\frac{1}{2},1}} \| f \|_{\dot{B}^{-1}_{2,2}}).
\] (2.18)

Proof. Thanks to Bony’s decomposition (2.8), we have
\[
[\hat{\Delta}_q, v \cdot \nabla] u = \hat{\Delta}_q (v \cdot \nabla u) - v \cdot \nabla \hat{\Delta}_q u
= \hat{\Delta}_q (T_{v,j} \partial_j u) + \hat{\Delta}_q (T_{\partial_j u} v^j) + \hat{\Delta}_q R(v^j, \partial_j u) - (T_{v,j} \hat{\Delta}_q \partial_j u + T'_{\partial_j u} v^j, \partial_j u),
\]
which along with the divergence free condition of v, yields
\[
[\hat{\Delta}_q, v \cdot \nabla] u = \hat{\Delta}_q (\partial_j R(v^j, u)) + \hat{\Delta}_q (T_{\partial_j u} v^j) - T'_{\partial_j u} v^j + [\hat{\Delta}_q, T_{v,j}] \partial_j u
\]
def \(=\) \[\sum_{j=1}^4 R^j_q.\] (2.19)

For $R^1_q = \hat{\Delta}_q (\partial_j R(v^j, u)) = \sum_{k \geq q-3} \hat{\Delta}_q \partial_j (\hat{\Delta}_k v^j \tilde{\Delta}_k u)$, it follows from Lemma 2.1 that
\[
\| R^1_q \|_{L^p} \lesssim 2^q \sum_{k \geq q-3} \| \hat{\Delta}_k v^j \tilde{\Delta}_k u \|_{L^p} \lesssim 2^q \sum_{k \geq q-3} \| \tilde{\Delta}_k u \|_{L^p} \| \Delta_k v^j \|_{L^\infty}.
\] (2.20)
Hence, we obtain from (2.4) that, for \(\alpha > -1 \),
\[
\| R^1_q \|_{L^p} \lesssim 2^q \| \nabla v \|_{L^\infty} \sum_{k \geq q-3} \| \tilde{\Delta}_k u \|_{L^p} 2^{-k} \lesssim c_{q,r} 2^{-q\alpha} \| \nabla v \|_{L^\infty} \| u \|_{\dot{B}^\alpha_{p,r}}.
\]
Notice that for \(\alpha < 1 \), we get from (2.4) that
\[
\| \dot{\Delta}_{k-1} \nabla u \|_{L^p} \lesssim \sum_{\ell \leq k-2} 2^\ell \| \dot{\Delta}_\ell u \|_{L^p} \lesssim c_{k,r} 2^{k(1-\alpha)} \| u \|_{\dot{B}^\alpha_{p,r}},
\]
then for \(R^2_q = \dot{\Delta}_q (T_{\partial_j u} v^j) = \sum_{|q-k| \leq 4} \dot{\Delta}_q (\dot{\Delta}_{k-1} \partial_j u \dot{\Delta}_k v^j) \), we obtain
\[
\| R^2_q \|_{L^p} \lesssim \sum_{|q-k| \leq 4} \| \dot{\Delta}_{k-1} \partial_j u \|_{L^p} \| \dot{\Delta}_k v^j \|_{L^\infty} \lesssim c_{q,r} 2^{-q\alpha} \| \nabla v \|_{L^\infty} \| u \|_{\dot{B}^\alpha_{p,r}},
\]
whereas for \(\alpha = 1 \), we deduce from \(\| \dot{\Delta}_{k-1} \nabla u \|_{L^2} \lesssim \sum_{\ell \leq k-2} 2^\ell \| \dot{\Delta}_\ell u \|_{L^2} \lesssim \| u \|_{\dot{B}^1_{2,1}} \) that
\[
\| R^2_q \|_{L^2} \lesssim \sum_{|q-k| \leq 4} \| \dot{\Delta}_{k-1} \partial_j u \|_{L^2} \| \dot{\Delta}_k v^j \|_{L^\infty} \lesssim c_{q,1} 2^{-q} \| \nabla v \|_{\dot{B}^0_{\infty,1}} \| u \|_{\dot{B}^1_{2,1}}.
\]
Thanks to the properties to the support of Fourier transform to \(\dot{\Delta}_{k+2} \dot{\Delta}_q \partial_j u \), for \(R^3_q = -T'_{\partial_j u} v^j = -\sum_{k \geq q-3} \dot{\Delta}_{k+2} \dot{\Delta}_q \partial_j u \dot{\Delta}_k v^j \), one obtains that for \(\alpha \in \mathbb{R} \)
\[
\| R^3_q \|_{L^p} \lesssim \| \dot{\Delta}_q \partial_j u \|_{L^p} \sum_{k \geq q-3} \| \dot{\Delta}_k v^j \|_{L^\infty} \lesssim \| \dot{\Delta}_q u \|_{L^p} \sum_{k \geq q-3} 2^{q-k} \| \dot{\Delta}_k \nabla v \|_{L^\infty}
\lesssim c_{q,r} 2^{-q\alpha} \| u \|_{\dot{B}^\alpha_{p,r}} \| \nabla v \|_{L^\infty}.
\]
For the last term in (2.19), owing to the properties of spectral localization of the Littlewood-Paley decomposition, we have
\[
R^4_q = [\dot{\Delta}_q, T_{v^j}] \partial_j u = \sum_{|k-q| \leq 4} [\dot{\Delta}_q, \dot{\Delta}_{k-1} v^j] \dot{\Delta}_k \partial_j u.
\]
Applying Lemma 2.2 leads to
\[
\| [\dot{\Delta}_q, \dot{\Delta}_{k-1} v^j] \dot{\Delta}_k \partial_j u \|_{L^p} \lesssim 2^{-q} \| \nabla \dot{\Delta}_{k-1} v \|_{L^\infty} \| \partial_j \dot{\Delta}_k u \|_{L^p} \lesssim 2^{k-q} \| \nabla v \|_{L^\infty} \| \dot{\Delta}_k u \|_{L^p}.
\]
We thus get, for \(\alpha \in \mathbb{R} \),
\[
\| R^4_q \|_{L^p} \lesssim \sum_{|k-q| \leq 4} \| [\dot{\Delta}_q, \dot{\Delta}_{k-1} v^j] \dot{\Delta}_k \partial_j u \|_{L^p}
\lesssim \| \nabla v \|_{L^\infty} \sum_{|k-q| \leq 4} \| \dot{\Delta}_k u \|_{L^p} \lesssim c_{q,r} 2^{-q\alpha} \| u \|_{\dot{B}^\alpha_{p,r}} \| \nabla v \|_{L^\infty}.
\]
Therefore, owing to \(\dot{B}^0_{\infty,1} \hookrightarrow L^\infty \), we arrive at (2.11) and (2.12).
Similarly, in order to prove (2.13), we shall use the decomposition (2.19) with \(v = u \). We first apply Lemma 2.1 to \(\mathcal{R}_q^1 = \sum_{k \geq q-3} \Delta_q \partial_j (\Delta_k u^i / \Delta_k u) \) to get
\[
\| \mathcal{R}_q^1 \|_{L^2} \lesssim 2^q \sum_{k \geq q-3} \| \Delta_k u^i / \Delta_k u \|_{L^1} \lesssim 2^q \sum_{k \geq q-3} \| \Delta_k u \|_{L^2} \| \Delta_k u \|_{L^2},
\]
from which it follows that
\[
\| \mathcal{R}_q^1 \|_{L^2} \lesssim 2^q \| \nabla u \|_{L^2} \| u \|_{ \dot{B}^1_{2, r}} \sum_{k \geq q-3} 2^{-k} c_{k, r} \lesssim c_{q, r} \| \nabla u \|_{L^2} \| u \|_{ \dot{B}^1_{2, r}}.
\]

Thanks to Lemma 2.1 again, one has
\[
\| \mathcal{R}_q^2 \|_{L^2} \lesssim 2^q \sum_{|q-k| \leq 4} \| \Delta_k \partial_j u \Delta_k u^i \|_{L^1} \lesssim \sum_{|q-k| \leq 4} \| \Delta_k \partial_j u \|_{L^2} \| \Delta_k u^i \|_{L^2} \lesssim c_{q, r} \| \nabla u \|_{L^2} \| u \|_{ \dot{B}^1_{2, r}}.
\]

For \(\mathcal{R}_q^3 = - \sum_{k \geq q-3} \Delta_{k+2} \partial_j u \Delta_k u^i \), we find that
\[
\| \mathcal{R}_q^3 \|_{L^2} \lesssim \| \Delta_q \partial_j u \|_{L^\infty} \sum_{k \geq q-3} \| \Delta_k u^i \|_{L^2} \lesssim 2^q \| \Delta_q \nabla u \|_{L^2} \| u \|_{ \dot{B}^1_{2, r}} \sum_{k \geq q-3} 2^{-k} c_{k, r} \lesssim c_{q, r} \| \nabla u \|_{L^2} \| u \|_{ \dot{B}^1_{2, r}}.
\]

While for \(\mathcal{R}_q^4 = [\Delta_q, \mathcal{S}_{k-1} u^j] \Delta_k \partial_j u = \sum_{|k-q| \leq 4} [\Delta_q, \mathcal{S}_{k-1} v^j] \Delta_k \partial_j u \), we deduce from Lemma 2.2 that
\[
\| \Delta_q, \mathcal{S}_{k-1} u^j] \Delta_k \partial_j u \|_{L^2} \lesssim 2^{-q} \| \nabla \mathcal{S}_{k-1} u \|_{L^\infty} \| \partial_j \Delta_k u \|_{L^2}.
\]

Remark that
\[
\| \nabla \mathcal{S}_{k-1} u \|_{L^\infty} \lesssim \sum_{t \leq k-2} \| \nabla \Delta_t u \|_{L^\infty} \lesssim \sum_{t \leq k-2} 2^t \| \nabla \Delta_t u \|_{L^2} \lesssim \| u \|_{L^2} 2^k c_{k, 2},
\]
we thus get
\[
\| \mathcal{R}_q^4 \|_{L^2} \lesssim \| u \|_{ \dot{B}^1_{2, r}} \| \nabla u \|_{L^2} 2^{-q} \sum_{|k-q| \leq 4} 2^k c_{k, r} \lesssim c_{q, r} \| \nabla u \|_{L^2} \| u \|_{ \dot{B}^1_{2, r}}.
\]

Hence, we prove (2.13).

Next, due to the inhomogeneous Bony’s decomposition (2.8), we may find the inhomogeneous version of (2.19). In this case, similar to (2.20), one can see
\[
\| \mathcal{R}_q^1 \|_{L^2} \lesssim 2^q \sum_{k \geq q-3} \| \Delta_k u \|_{L^2} \| \Delta_k v^i \|_{L^\infty} \lesssim \| u \|_{ \dot{B}^1_{\infty, 1}} \| v \|_{ \dot{B}^1_{\infty, 1}} 2^q \sum_{k \geq q-3} c_{k, \infty} c_{k, 1} \lesssim c_{q, \infty} 2^q \| v \|_{ \dot{B}^1_{\infty, 1}} \| u \|_{ \dot{B}^1_{\infty, 1}}.
\]
For R^2_q, we get from the proof of (2.21) that
\[\| R^2_q \|_{L^2} \lesssim c_{q, \infty} 2^q \| \nabla v \|_{L^\infty} \| u \|_{B^1_{2, \infty}} \lesssim c_{q, \infty} 2^q \| v \|_{B^1_{\infty, 1}} \| u \|_{B^{2, 1}_{2, \infty}}. \]

And for $R^3_q = - \sum_{k \geq q-3} S_{k+2} \Delta_q \partial_j u \Delta_k v^j$, we prove
\[\| R^3_q \|_{L^2} \lesssim \| \Delta_q \partial_j u \|_{L^2} \| \Delta_k v^j \|_{L^\infty} \lesssim 2^q c_{q, \infty} \| u \|_{B^1_{2, \infty}} \sum_{k \geq q-3} 2^{q-k} c_{k, 1} \| v \|_{B^{1, 1}_{\infty, 1}} \lesssim c_{q, \infty} 2^q \| v \|_{B^1_{\infty, 1}} \| u \|_{B^{2, 1}_{2, \infty}}. \]

Finally, similar to the proof of (2.22), we obtain
\[\| R^4_q \|_{L^2} \lesssim c_{q, \infty} 2^q \| v \|_{B^1_{\infty, 1}} \| u \|_{B^{2, 1}_{2, \infty}}. \]

Hence, we prove (2.14).

Thanks to Bony’s decomposition (2.8) in the inhomogeneous context again, we write
\[[a, \Delta_q] \nabla u = \Delta_q R(a, \nabla u) + \Delta_q T_{\nabla u} a - T'_{\Delta_q \nabla u} a - [T_a, \Delta_q] \nabla u. \]

Applying Lemma 2.1 gives
\[\| \Delta_q R(a, \nabla u) \|_{L^2} \lesssim \sum_{k \geq q-3} \| \Delta_k a \|_{L^\infty} \| \tilde{\Delta}_k \nabla u \|_{L^2}, \]
from which it follows that
\[\| \Delta_q R(a, \nabla u) \|_{L^2} \lesssim \sum_{k \geq q-3} 2^k \| \Delta_k a \|_{L^\infty} \| \tilde{\Delta}_k \nabla u \|_{L^2} \lesssim \| a \|_{B^1_{\infty, \infty}} \| u \|_{B^0_{2, 1}} \sum_{k \geq q-3} c_{k, 1} \lesssim c_{q, \infty} \| a \|_{B^1_{\infty, \infty}} \| u \|_{B^0_{2, 1}}. \]

In a similar manner, for $T'_{\Delta_q \nabla u} a = \sum_{k \geq q-3} S_{k+2} \Delta_q \nabla u \Delta_k a$, we prove
\[\| T'_{\Delta_q \nabla u} a \|_{L^2} \lesssim \sum_{k \geq q-3} \| S_{k+2} \Delta q \nabla u \|_{L^2} \| \Delta_k a \|_{L^\infty} \lesssim \| \Delta_q \nabla u \|_{L^2} \sum_{k \geq q-3} \| \Delta_k a \|_{L^\infty} \lesssim \| a \|_{B^1_{\infty, \infty}} \| u \|_{B^0_{2, 1}} 2^q c_{q, 1} \sum_{k \geq q-3} 2^{-k} c_{k, \infty} \lesssim c_{q, 1} \| a \|_{B^1_{\infty, \infty}} \| u \|_{B^0_{2, 1}}. \]

Due to Lemma 2.1, we have
\[\| S_{k-1} \nabla u \|_{L^2} \lesssim \sum_{\ell \leq k-2} 2^\ell \| \Delta \ell u \|_{L^2} \lesssim \| u \|_{B^0_{2, 1}} \sum_{\ell \leq k-2} 2^\ell c_{\ell, 1} \lesssim \| u \|_{B^0_{2, 1}} 2^k c_{k, 1}, \]
which leads to
\[\| \Delta_q T_{\nabla u} a \|_{L^2} \lesssim \sum_{|q-k| \leq 4} \| \Delta_k a \|_{L^\infty} \| S_{k-1} \nabla u \|_{L^2} \lesssim \| a \|_{B^1_{\infty, \infty}} \| u \|_{B^0_{2, 1}} \sum_{|q-k| \leq 4} c_{k, \infty} c_{k, 1} \lesssim c_{q, 1} \| a \|_{B^1_{\infty, \infty}} \| u \|_{B^0_{2, 1}}. \]
Since $\|\nabla S_{k-1}a\|_{L^\infty} \lesssim \|\nabla a\|_{L^\infty}$, we deduce from Lemma 2.2 that

$$\|[\Delta_q, T_a]\nabla u\|_{L^2} \lesssim \sum_{|k-q| \leq 4} 2^{-q} \|\nabla S_{k-1}a\|_{L^\infty} \|\nabla \Delta_k u\|_{L^2} \lesssim c_{q,1} \|\nabla a\|_{L^\infty} \|u\|_{B^1_{2,1}}.$$

As a consequence, we obtain (2.15).

In order to prove (2.16), we will use the decomposition (2.23) of the term $[a, \Delta_q] \nabla u$ again. We first apply (2.24) to get

$$\|\Delta_q R(a, \nabla u)\|_{L^2} \lesssim \|a\|_{B^1_{\infty,1}} \|\nabla u\|_{L^2} \sum_{k \geq q-3} 2^{-q} \|\Delta_k c_{k,1} \|_{L^\infty} \|\nabla u\|_{L^2}.$$

For $T'_\Delta_q \nabla u a = \sum_{k \geq q-3} S_{k+2} \Delta_q \nabla u \Delta_k a$, we prove

$$\|T'_\Delta_q \nabla u a\|_{L^2} \lesssim \sum_{k \geq q-3} \|S_{k+2} \Delta_q \nabla u\|_{L^2} \|\Delta_k a\|_{L^\infty} \lesssim \|\nabla u\|_{L^2} \sum_{k \geq q-3} \|\Delta_k a\|_{L^\infty}$$

$$\lesssim \|\nabla u\|_{L^2} \|a\|_{B^1_{\infty,1}} \sum_{k \geq q-3} 2^{-q} \|\nabla u\|_{L^2} \lesssim c_{q,1} \|\nabla a\|_{L^\infty} \|\nabla u\|_{L^2}.$$

Note that $\|\nabla S_{k-1}u\|_{L^2} \lesssim \|\nabla u\|_{L^2}$, it follows from Lemma 2.1 that

$$\|\Delta_q T_\nabla u a\|_{L^2} \lesssim \sum_{|q-k| \leq 4} \|\Delta_k a\|_{L^\infty} \|S_{k-1} \nabla u\|_{L^2}$$

$$\lesssim \|a\|_{B^1_{\infty,1}} \|\nabla u\|_{L^2} \sum_{|q-k| \leq 4} 2^{-q} \|\nabla u\|_{L^2} \lesssim c_{q,1} 2^{-q} \|a\|_{B^1_{\infty,1}} \|\nabla u\|_{L^2}.$$

Finally, thanks to

$$\|\nabla S_{k-1}a\|_{L^\infty} \lesssim \sum_{\ell \leq k-2} 2^\ell \|\Delta_\ell a\|_{L^\infty} \lesssim \|a\|_{B^1_{\infty,1}} \sum_{\ell \leq k-2} c_{\ell,1} 2^{\frac{1}{2} \ell} \lesssim \|a\|_{B^1_{\infty,1}} c_{k,1} 2^{\frac{1}{2} k},$$

we obtain from Lemma 2.2 that

$$\|[\Delta_q, T_a]\nabla u\|_{L^2} \lesssim \sum_{|k-q| \leq 4} 2^{-q} \|\nabla S_{k-1}a\|_{L^\infty} \|\nabla \Delta_k u\|_{L^2}$$

$$\lesssim \|a\|_{B^1_{\infty,1}} \|\nabla u\|_{H^\frac{1}{2}} \sum_{|k-q| \leq 4} 2^{-q} \|\Delta_k c_{k,1} \|_{L^\infty} \|\nabla u\|_{H^\frac{1}{2}} \lesssim c_{q,1} \|\nabla a\|_{L^\infty} \|\nabla u\|_{H^\frac{1}{2}}.$$

Therefore, we get (2.16).

Towards (2.17), we will use the homogeneous version of the decomposition (2.23), that is,

$$[a, \Delta_q] f = \Delta_q (a, f) + \Delta_q T_f a - T'_\Delta_q f a - [T_a, \Delta_q] f. \quad (2.25)$$

Thanks to Lemma 2.1, we find

$$\|\Delta_q R(a, f)\|_{L^2} \lesssim 2^{q_{\epsilon}} \sum_{k \geq q-3} \|\Delta_k a \Delta_k f\|_{L^\frac{2}{1+\epsilon}} \lesssim 2^{q_{\epsilon}} \sum_{k \geq q-3} \|\Delta_k a\|_{L^2} \|\Delta_k f\|_{L^2},$$
which implies
\[\| \hat{\Delta}_q R(a, f) \|_{L^2} \lesssim 2^{q\varepsilon} \| a \|_{\dot{B}^{\varepsilon}_{\frac{p}{2}, 1}} \| f \|_{L^2} \sum_{k \geq q-3} c_{k,1} 2^{-k\varepsilon} c_{k,2} \lesssim c_{q,1} \| a \|_{\dot{B}^{\varepsilon}_{\frac{p}{2}, 1}} \| f \|_{L^2}. \]

In a similar manner, for \(T'_\hat{\Delta}_q f a = \sum_{k \geq q-3} \hat{S}_{k+2} \hat{\Delta}_q f \hat{\Delta}_k a \), we prove
\[\| T'_\hat{\Delta}_q f a \|_{L^2} \lesssim 2^{q\varepsilon} \| a \|_{\dot{B}^{\varepsilon}_{\frac{p}{2}, 1}} \| f \|_{L^2} c_{q,2} \sum_{k \geq q-3} c_{k,1} 2^{-k\varepsilon} \lesssim c_{q,1} \| a \|_{\dot{B}^{\varepsilon}_{\frac{p}{2}, 1}} \| f \|_{L^2}. \]

Due to Lemma 2.1, we deduce from \(\| \hat{S}_{k-1} f \|_{L^2} \lesssim \| f \|_{L^2} \) that
\[\| \hat{\Delta}_q T f a \|_{L^2} \lesssim \sum_{|q-k| \leq 4} \| \hat{\Delta}_k a \|_{L^\infty} \| \hat{S}_{k-1} f \|_{L^2} \lesssim \| f \|_{L^2} \sum_{|q-k| \leq 4} 2^{k\varepsilon} \| \hat{\Delta}_k a \|_{L^2} \lesssim c_{q,1} \| f \|_{L^2} \| a \|_{\dot{B}^{\varepsilon}_{\frac{p}{2}, 1}}. \]

Finally, notice that
\[\| \nabla \hat{S}_{k-1} a \|_{L^\infty} \lesssim \sum_{\ell \leq k-2} \| \nabla \hat{\Delta}_\ell a \|_{L^\infty} \lesssim \sum_{\ell \leq k-2} 2^{(\ell+\varepsilon)} \| \hat{\Delta}_k a \|_{L^2} \lesssim \| a \|_{\dot{B}^{\varepsilon}_{\frac{p}{2}, 1}} \sum_{\ell \leq k-2} 2^{\ell} c_{\ell,1} \lesssim \| a \|_{\dot{B}^{\varepsilon}_{\frac{p}{2}, 1}} 2^k c_{k,1}, \]
so one gets from Lemma 2.2 that
\[\| [\hat{\Delta}_q, T a] f \|_{L^2} \lesssim \sum_{|k-q| \leq 4} 2^{-q} \| \nabla \hat{S}_{k-1} a \|_{L^\infty} \| \hat{\Delta}_k f \|_{L^2} \lesssim \| f \|_{L^2} \| a \|_{\dot{B}^{\varepsilon}_{\frac{p}{2}, 1}} \sum_{|k-q| \leq 4} 2^{-q} c_{k,2} c_{k,1} \lesssim c_{q,1} \| f \|_{L^2} \| a \|_{\dot{B}^{\varepsilon}_{\frac{p}{2}, 1}}. \]

As a consequence, we obtain (2.17).

Along the same line as in the proof of (2.17), for the decomposition (2.25), we first deduce from Lemma 2.1 that
\[\| \hat{\Delta}_q R(a, f) + \hat{\Delta}_q T f a \|_{L^2} \lesssim 2^{q\varepsilon} \sum_{k \geq q-3} \| \hat{\Delta}_k a \hat{S}_{k+2} f \|_{L^\frac{2}{1+\varepsilon}} \lesssim 2^{q\varepsilon} \sum_{k \geq q-3} \| \hat{\Delta}_k a \|_{L^2} \| \hat{S}_{k+2} f \|_{L^2}, \]
which, along with \(\| \dot{S}_{k+2} f \|_{L^2} \lesssim \sum_{\ell \leq k+1} \| \hat{\ell} f \|_{L^2} \lesssim \| f \|_{\dot{B}_{2,2}^{-1}} \) \(2^k \), implies

\[
\| \dot{\Delta}_q R(a, f) + \dot{\Delta}_q T f a \|_{L^2} \lesssim 2^{q\varepsilon} \| a \|_{\dot{B}_{2,1}^{1+\varepsilon}} \| f \|_{\dot{B}_{2,2}^{-1}} \sum_{k \geq q-3} c_k, \frac{1}{2} 2^{k\varepsilon} c_k, \frac{2}{2} \lesssim c_{q,1} \| a \|_{\dot{B}_{2,1}^{1+\varepsilon}} \| f \|_{\dot{B}_{2,2}^{-1}}.
\]

Similarly, for \(T'_{\dot{\Delta}_q} f a = \sum_{k \geq q-2} \dot{S}_{k+2} \dot{\Delta}_q f \dot{\Delta}_k a \), we obtain from (2.26) that

\[
\| T'_{\dot{\Delta}_q} f a \|_{L^2} \lesssim 2^{-q(1+\varepsilon)} \| a \|_{\dot{B}_{2,1}^{1+\varepsilon}} \| f \|_{\dot{B}_{2,2}^{-1}} \sum_{k \geq q-3} c_k, \frac{1}{2} 2^{-(k(1+\varepsilon))} \lesssim c_{q,1} \| a \|_{\dot{B}_{2,1}^{1+\varepsilon}} \| f \|_{\dot{B}_{2,2}^{-1}}.
\]

For \([\dot{\Delta}_q, T_a] f\) , thanks to Lemma 2.2 again, we prove that

\[
\| [\dot{\Delta}_q, T_a] f \|_{L^2} \lesssim \sum_{|k-q| \leq 4} 2^{-q} \| \nabla \dot{S}_{k-1} a \|_{L^\infty} \| \dot{\Delta}_k f \|_{L^2} \lesssim \| \nabla a \|_{L^\infty} \| f \|_{\dot{B}_{2,1}^{-1}} \sum_{|k-q| \leq 4} 2^{-k} c_{k,1} \lesssim c_{q,1} \| \nabla a \|_{L^\infty} \| f \|_{\dot{B}_{2,1}^{-1}}.
\]

Hence, we obtain (2.18).

This achieves the proof of Lemma 2.3. \(\square \)

Remark 2.3. By virtue of [24], we may obtain that all the assertions in Lemma 2.3 hold true if the dyadic operator \(\Delta_q \) (or \(\dot{\Delta}_q \)) is replaced by \(\sigma(D) \Delta_q \) (or \(\sigma(D) \dot{\Delta}_q \)) with any zero-order multiplier \(\sigma(D) \).

Applying Lemma 2.3 to the transport equation, we have

Proposition 2.3. Let \(k \in \mathbb{Z}, \alpha \in [0, 1], (p, r) \in [1, \infty]^2, a_0 \in \dot{B}_{p,r}^\alpha(\mathbb{R}^2), \nabla u \in L_T^1(\dot{B}_{2,1}^0(\mathbb{R}^2)) \) with \(\mathrm{div} \, u = 0 \), and the function \(a \in C([0, T]; \dot{B}_{p,r}^\alpha(\mathbb{R}^2)) \) solves

\[
\begin{cases}
\partial_t a + u \cdot \nabla a = 0, & \forall (t, x) \in [0, T] \times \mathbb{R}^2, \\
a|_{t=0} = a_0, & \forall x \in \mathbb{R}^2.
\end{cases}
\]

Then it holds that for \(\forall t \in (0, T) \)

\[
\| a - \dot{S}_k a \|_{L_T^\infty(\dot{B}_{p,r}^\alpha)} \leq \left(\sum_{q \geq k} 2^q \| \Delta_q a_0 \|_{L^p} \right)^\frac{1}{7} (2.28)
\]

\[
+ \| a_0 \|_{\dot{B}_{p,r}^\alpha} \left(e^{c \| \nabla u \|_{L_T^1(\mathbb{R}^2)^\infty}) - 1 \right) \text{ if } \alpha \in [0, 1),
\]

and

\[
\| a - \dot{S}_k a \|_{L_T^\infty(\dot{B}_{2,1}^1)} \leq \sum_{q \geq k} 2^q \| \Delta_q a_0 \|_{L^2} + \| a_0 \|_{\dot{B}_{2,1}^1} \left(e^{c \| \nabla u \|_{L_T^1(\dot{B}_{2,1}^0)} - 1 \right). \quad (2.29)
\]
Motivated by [2], we first apply $\dot{\Lambda}_q$ to (2.27) to yield
\[\partial_t \dot{\Lambda}_q a + u \cdot \nabla \dot{\Lambda}_q a = [u \cdot \nabla, \dot{\Lambda}_q]a \]
From the maximum principle we deduce that
\[\| \dot{\Lambda}_q a(t) \|_{L^p} \leq \| \dot{\Lambda}_q a_0 \|_{L^p} + \int_0^t \| [u \cdot \nabla, \dot{\Lambda}_q]a \|_{L^p} (\tau) \, d\tau. \tag{2.30} \]
For $\alpha \in [0, 1)$, thanks to (2.11), we have
\[\| [u \cdot \nabla, \dot{\Lambda}_q]a \|_{L^p} \leq c_{q,r} 2^{-q \alpha} \| \nabla u \|_{L^\infty} \| a \|_{\dot{B}_{p,r}^\alpha}, \]
From this and (2.30), one has
\[\| a(t) \|_{\dot{B}_{p,r}^\alpha} \leq \| a_0 \|_{\dot{B}_{p,r}^\alpha} + C \int_0^t \| \nabla u \|_{L^\infty} \| a(\tau) \|_{\dot{B}_{p,r}^\alpha} \, d\tau. \]
Gronwall’s inequality yields
\[\| a(t) \|_{\dot{B}_{p,r}^\alpha} \leq C \| a_0 \|_{\dot{B}_{p,r}^\alpha} e^{C \| \nabla u \|_{L^1_{t,\infty}(L^\infty)}}, \tag{2.31} \]
from which we use (2.30) again to deduce that
\[2^{q \alpha} \| \dot{\Lambda}_q a(t) \|_{L^\infty_t (L^p)} \leq 2^{q \alpha} \| \dot{\Lambda}_q a_0 \|_{L^p} + C \| a_0 \|_{\dot{B}_{p,r}^\alpha} \int_0^t c_{q,r}(\tau) \| \nabla u(\tau) \|_{L^\infty} e^{C \| \nabla u \|_{L^1_{t,\infty}(L^\infty)}} \, d\tau. \]
Then, taking the ℓ^r norm in terms of $q \in \{ q \geq k \}$ leads to
\[\| a - \dot{S}_k a \|_{\dot{B}_{p,r}^\alpha(B^p_{\infty,1})} \leq \left(\sum_{q \geq k} 2^{r q \alpha} \| \dot{\Lambda}_q a_0 \|_{L^p}^r \right)^{\frac{1}{r}} + \| a_0 \|_{\dot{B}_{p,r}^\alpha} \int_0^t C U'(\tau) e^{C U(\tau)} \, d\tau, \]
which implies (2.28). For $\alpha = 1$, thanks to (2.12), we have
\[\| [u \cdot \nabla, \dot{\Lambda}_q]a \|_{L^2} \leq c_{q,1} 2^{-q} \| \nabla u \|_{\dot{B}_{\infty,1}^\alpha} \| a \|_{\dot{B}_{2,1}^1}. \]
Repeating the above argument, we get (2.29). \qed

To prove the uniqueness part of Theorem 1.1, we need the following Propositions:

Proposition 2.4. Let $u_0 \in B^{-1}_{2,\infty}(\mathbb{R}^2)$ and v be a divergence free vector field satisfying $v \in L^1_T(B^1_{\infty,1})$. Let $f \in \tilde{L}^1_T(B^{-1}_{2,\infty})$, and $a \in \tilde{L}^\infty_T(B^2_{2,\infty})$ with $1 + a \geq c_1 > 0$ for some positive constant c_1. Assume that $u \in L^\infty_T(B^{-1}_{2,\infty}) \cap \tilde{L}^1_T(B^1_{2,\infty})$ and $\nabla \Pi \in \tilde{L}^1_T(B^{-1}_{2,\infty})$, which solves
\[\begin{cases} \partial_t u + v \cdot \nabla u - (1 + a)(\Delta u - \nabla \Pi) = f, & (t, x) \in \mathbb{R}_+ \times \mathbb{R}^2, \\ \text{div} \, u = 0, \\ u|_{t=0} = u_0. \end{cases} \tag{2.32} \]
Then it holds that
\[
\|u\|_{L^\infty_t(B_{2,\infty}^1)} + \|u\|_{L^1_t(B_{2,\infty}^1)} \leq Ce^{C(T + T\|\nabla a\|_{L^\infty_t(B_{2,\infty}^1)}^2 + \|v\|_{L^1_t(B_{2,\infty}^1)})} \times \left\{ \|u_0\|_{B_{2,\infty}^1} + \|f\|_{L^1_t(B_{2,\infty}^1)} + \|a\|_{L^\infty_t(B_{2,\infty}^1)} \|\nabla \Pi\|_{L^1_t(B_{2,\infty}^1)} \right\}.
\]
(2.33)

Proof. Let \(P \overset{\text{def}}{=} I + \nabla (-\Delta)^{-1} \text{div} \) be the Leray projection operator. Applying \(\Delta_q P\) to (2.32), then a standard commutator process gives
\[
\partial_t \Delta_q u + (v \cdot \nabla) \Delta_q u - \text{div}((1 + a) \nabla \Delta_q u) = [v, \Delta_q P] \cdot \nabla u - \Delta_q P(\nabla a \cdot \nabla u) + \Delta_q P(T_{\nabla u} \Pi) - \Delta_q P T_{\nabla \Pi} a + \text{div}([\Delta_q P, a] \nabla u) + \Delta_q P f.
\]
(2.34)

Thanks to the fact that \(\text{div} u = \text{div} v = 0\) and \(1 + a \geq c_1\), we get by taking the \(L^2\) inner product of (2.34) with \(\Delta_q u\) that
\[
\frac{d}{dt} \|\Delta_q u\|^2_{L^2} - \int_{\mathbb{R}^2} \text{div}((1 + a) \nabla \Delta_q u) \Delta_q u dx \\
\lesssim \|\Delta_q u\|_{L^2} \left(\| [v, \Delta_q P] \cdot \nabla u \|_{L^2} + \| \Delta_q P(\nabla a \cdot \nabla u) \|_{L^2} + 2^q \| [a, \Delta_q P] \nabla u \|_{L^2} \right.
\]
\[
\left. + \| \Delta_q P(T_{\nabla u} \Pi) \|_{L^2} + \| \Delta_q P T_{\nabla \Pi} a \|_{L^2} + \| \Delta_q P f \|_{L^2} \right).
\]

We get, by using integration by parts and Lemma A.5 of [11], that
\[
- \int_{\mathbb{R}^2} \text{div}((1 + a) \nabla \Delta_q u) \Delta_q u dx = \int_{\mathbb{R}^2} (1 + a) |\Delta_q \nabla u|^2 dx \\
\geq \left\{ \begin{array}{ll} 2^{2q} \|\Delta_q u\|^2_{L^2}, & \forall \ q \geq 0, \\
0, & \text{if} \ q = -1. \end{array} \right.
\]

This leads to
\[
\|\Delta_q u\|_{L^\infty_t(L^2)} + 2^{2q} 1_{q \geq 0} \|\Delta_q u\|_{L^1_t(L^2)} \lesssim \|\Delta_q u_0\|_{L^2} \\
+ \int_0^T \left(\| [v, \Delta_q P] \cdot \nabla u \|_{L^2} + \| \Delta_q P(\nabla a \cdot \nabla u) \|_{L^2} + 2^q \| [\Delta_q P, a] \nabla u \|_{L^2} \right.
\]
\[
\left. + \| \Delta_q P(T_{\nabla u} \Pi) \|_{L^2} + \| \Delta_q P T_{\nabla \Pi} a \|_{L^2} + \| \Delta_q P f \|_{L^2} \right) dt'.
\]
(2.35)

Thanks to (2.14) and (2.15) (up to a zero-order multiplier \(P\) in terms of \(\Delta_q\), we deduce from \(\text{div} v = 0\) that
\[
\sup_{q \geq -1} 2^{-q} \| [v, \Delta_q P] \cdot \nabla u \|_{L^1_t(L^2)} \lesssim \int_0^T \| v \|_{B_{\infty,1}^1} \| u \|_{B_{2,\infty}^{-1}} dt
\]
(2.36)
and

\[
\sup_{q \geq -1} \| [\Delta_q^P, a] \nabla u \|_{L_T^1(L^2)} \lesssim (\| \nabla a \|_{L_T^\infty(L^\infty)} + \| a \|_{L_T^\infty(B^0_{2,1})}) \| u \|_{L_T^1(B^0_{2,1})}.
\] (2.37)

On the other hand, it follows from Bony’s decomposition that

\[
\| \Delta_q^P (\nabla a \cdot \nabla u) \|_{L_T^1(L^2)} \lesssim \| \Delta_q^P T \nabla a \|_{L_T^1(L^2)} + \| \Delta_q^P T^a \nabla a \|_{L_T^1(L^2)}
\]

\[
\lesssim \sum_{|k-q| \leq 4} \| S_{k-1} \nabla a \|_{L_T^\infty(L^\infty)} \| \Delta_k \nabla u \|_{L_T^1(L^2)} + 2^q \sum_{k \geq q-3} \| S_{k+2} \nabla u \|_{L_T^1(L^2)} \| \Delta_k \nabla a \|_{L_T^\infty(L^2)}.
\] (2.38)

Notice that \(\| S_{k-1} \nabla a \|_{L_T^\infty(L^\infty)} \lesssim \| \nabla a \|_{L_T^\infty(L^\infty)} \) and

\[
\| S_{k+2} \nabla u \|_{L_T^1(L^2)} \lesssim \sum_{\ell \leq k+1} \| \Delta_{\ell} \nabla u \|_{L_T^1(L^2)} \lesssim \| \nabla u \|_{L_T^1(B^0_{2,1})} 2^k c_{k,1}.
\]

We then obtain from (2.38) that

\[
\| \Delta_q^P (\nabla a \cdot \nabla u) \|_{L_T^1(L^2)} \lesssim \| \nabla a \|_{L_T^\infty(L^\infty)} \sum_{|k-q| \leq 4} \| \Delta_k \nabla u \|_{L_T^1(L^2)} + 2^q \| \nabla u \|_{L_T^1(B^0_{2,1})}
\]

\[
\sum_{k \geq q-3} 2^k c_{k,1} \| \Delta_k \nabla a \|_{L_T^\infty(L^2)}
\] (2.39)

\[
\lesssim 2^q \| \nabla u \|_{L_T^1(B^0_{2,1})} \| \nabla a \|_{L_T^\infty(L^\infty)} c_{q,1} + \| \nabla a \|_{L_T^\infty(B^0_{2,1})} \sum_{k \geq q-3} c_{k,1}
\]

\[
\lesssim 2^q \| \nabla u \|_{L_T^1(B^0_{2,1})} \| \nabla a \|_{L_T^\infty(B^0_{2,1})}.
\]

For \(\Delta_q^P T^a \nabla \Pi a = \Delta_q^P \sum_{k \geq q-3} S_{k+2} \nabla \Pi \Delta_k a \), we first split this into three parts:

\[
\Delta_q^P T^a \nabla \Pi a = 1_{-1 \leq q \leq 2} \Delta_q^P (S_1 \nabla \Pi \Delta_{-1} a) + 1_{-1 \leq q \leq 2} \Delta_q^P \sum_{k \geq 0} S_{k+2} \nabla \Pi \Delta_k a
\]

\[
+ 1_{q \geq 3} \Delta_q^P \sum_{k \geq q-3} S_{k+2} \nabla \Pi \Delta_k a.
\]
Owing to Lemma 2.1, one can see that
\[
\| \Delta_q \mathcal{P}^q \nabla a \|_{L^1_T L^2_y(L^2_y)} \lesssim 1_{-1 \leq q \leq 2} \| \nabla \Pi \Delta^{-1} a \|_{L^1_T(L^2_y)}
+ 1_{-1 \leq q \leq 2} 2^q \sum_{k \geq 0} \| S_{k+2} \nabla \Pi \Delta_k a \|_{L^1_T(L^1_y)} + 2^q 1_{q \geq 3} \sum_{k \geq q-3} \| S_{k+2} \nabla \Pi \Delta_k a \|_{L^1_T(L^1_y)}
\]
\[
\lesssim 1_{-1 \leq q \leq 2} \left(\| \nabla \Pi \|_{L^1_T(L^2_y)} \| \Delta^{-1} a \|_{L^\infty_T(L^\infty_y)} \right)
+ \sum_{k \geq 0} \| S_{k+2} \nabla \Pi \|_{L^1_T(L^2_y)} \| \Delta_k a \|_{L^\infty_T(L^2_y)}
+ 2^q 1_{q \geq 3} \sum_{k \geq q-3} \| S_{k+2} \nabla \Pi \|_{L^1_T(L^2_y)} \| \Delta_k a \|_{L^\infty_T(L^2_y)}.
\]

Thanks to Lemma 2.1 again, we deduce that
\[
\| S_{k+2} \nabla \Pi \|_{L^1_T(L^2_y)} \lesssim \sum_{\ell \leq k+1} \| \Delta^\ell \nabla \Pi \|_{L^1_T(L^2_y)} \lesssim \| \nabla \Pi \|_{L^1_T(B^{2,-1}_{2,\infty})} 2^k c_{k,\infty},
\]
which, along with (2.40), implies that
\[
\| \Delta_q \mathcal{P} \nabla a \|_{L^1_T(L^2_y)}
\]
\[
\lesssim 1_{-1 \leq q \leq 2} \| \nabla \Pi \|_{L^1_T(B^{2,-1}_{2,\infty})} \left(\| a \|_{L^\infty_T(L^\infty_y)} + \| a \|_{L^\infty_T(B^{1,1}_{2,1})} \sum_{k \geq 0} c_{k,1} \right)
\]
\[
+ 2^q 1_{q \geq 3} \| \nabla \Pi \|_{L^1_T(B^{2,-1}_{2,\infty})} \| a \|_{L^\infty_T(B^{1,1}_{2,1})} \sum_{k \geq q-3} c_{k,1}
\]
\[
\lesssim 2^q \| \nabla \Pi \|_{L^1_T(B^{2,-1}_{2,\infty})} \| a \|_{L^\infty_T(B^{1,1}_{2,1})}.
\]

Similarly, for \(\Delta_q \mathcal{P} \nabla a \Pi = \Delta_q \mathcal{P} \sum_{|k-q| \leq 4} S_{k-q} \nabla a \Delta_k \Pi = \Delta_q \mathcal{P} \sum_{|k-q| \leq 4, k \geq 0} S_{k-q} \nabla a \Delta_k \Pi \), we directly deduce from \(\| S_{k-q} \nabla a \|_{L^\infty_T(L^2_y)} \lesssim \| \nabla a \|_{L^\infty_T(L^2_y)} \) that
\[
\| \Delta_q \mathcal{P} \nabla a \Pi \|_{L^1_T(L^2_y)} \lesssim 2^q \sum_{|k-q| \leq 4, k \geq 0} \| S_{k-q} \nabla a \Delta_k \Pi \|_{L^1_T(L^1_y)}
\]
\[
\lesssim 2^q \sum_{|k-q| \leq 4, k \geq 0} \| S_{k-q} \nabla a \|_{L^\infty_T(L^2_y)} \| \Delta_k \Pi \|_{L^1_T(L^1_y)}
\]
\[
\lesssim 2^q \| \nabla a \|_{L^\infty_T(L^2_y)} \sum_{|k-q| \leq 4, k \geq 0} 2^{-k} \| \Delta_k \nabla \Pi \|_{L^1_T(L^2_y)}
\]
\[
\lesssim 2^q \| \nabla \Pi \|_{L^1_T(B^{1,1}_{2,1})} \| a \|_{L^\infty_T(B^{1,1}_{2,1})}.
\]
Plugging (2.36)-(2.42) into (2.35), we arrive at
\[
\|u\|_{L_T^\infty(B_{2,\infty}^{-1})} + \|u\|_{L_T^1(B_{2,\infty}^1)} \lesssim \|u_0\|_{B_{2,\infty}^1} + \|\Delta^{-1}u\|_{L_T^1(L^2)} \\
+ \int_0^T \|u(t)\|_{B_{2,\infty}^{-1}} \|v(t)\|_{B_{2,\infty}^1} \, dt + \|
abla a\|_{L_T^\infty(B_{2,1}^1)} \|u\|_{L_T^1(B_{2,1}^0)} \\
+ \|a\|_{\bar{L}^{-1}_T(B_{2,1}^1)} \|\nabla \Pi\|_{\bar{L}^{-1}_T(B_{2,\infty}^1)} + \|f\|_{\bar{L}^{-1}_T(B_{2,\infty}^1)}.
\]

Thanks to (2.5) and the interpolation inequality (2.7), we have
\[
\|\Delta^{-1}u\|_{L_T^1(L^2)} \lesssim \int_0^T \|u(t)\|_{B_{2,\infty}^{-1}} \, dt, \quad \|u\|_{L_T^1(B_{2,1}^0)} \lesssim \|u\|_{\bar{L}^\infty(B_{2,1}^1)} + \|u\|_{\bar{L}_T^1(B_{2,\infty}^1)}.
\]

Hence, we obtain
\[
\|u\|_{L_T^\infty(B_{2,\infty}^{-1})} + \|u\|_{L_T^1(B_{2,\infty}^1)} \lesssim \|u_0\|_{B_{2,\infty}^1} + \int_0^T \|u(t)\|_{B_{2,\infty}^{-1}} (1 + \|v(t)\|_{B_{2,1}^1}) \, dt \\
+ \|
abla a\|_{L_T^\infty(B_{2,1}^1)} \|u\|_{\bar{L}^\infty(B_{2,\infty}^{-1})} + \|a\|_{\bar{L}^\infty(B_{2,1}^1)} \|\nabla \Pi\|_{\bar{L}^{-1}_T(B_{2,\infty}^1)} + \|f\|_{\bar{L}^{-1}_T(B_{2,\infty}^1)}.
\]

Thanks to Young’s inequality, we deduce that
\[
\|u\|_{L_T^\infty(B_{2,\infty}^{-1})} + \|u\|_{L_T^1(B_{2,\infty}^1)} \lesssim \|u_0\|_{B_{2,\infty}^1} + \int_0^T \|u(t)\|_{B_{2,\infty}^{-1}} (1 + \|v(t)\|_{B_{2,1}^1}) \, dt \\
+ \|
abla a\|_{L_T^\infty(B_{2,1}^1)} \|u\|_{\bar{L}^\infty(B_{2,\infty}^{-1})} + \|a\|_{\bar{L}^\infty(B_{2,1}^1)} \|\nabla \Pi\|_{\bar{L}^{-1}_T(B_{2,\infty}^1)} + \|f\|_{\bar{L}^{-1}_T(B_{2,\infty}^1)},
\]

which, along with Gronwall’s inequality, yields (2.33). This completes the proof of the proposition. \qed

Proposition 2.5. Assume \(0 < b < \bar{b}\). Let \(a \in \hat{B}_{2,1}^1(\mathbb{R}^2)\) such that \(0 < b \leq 1 + a \leq \bar{b}\), and
\[
\|a - \hat{S}_k a\|_{\hat{B}_{2,1}^1} \leq c \tag{2.43}
\]
for some sufficiently small positive constant \(c\) and some integer \(k \in \mathbb{N}\). Let \(F \in B_{2,\infty}^{-1}(\mathbb{R}^2)\) and \(\nabla \Pi \text{ def } = \mathcal{H}_b(F) \in B_{2,\infty}^{-1}(\mathbb{R}^2)\) solves
\[
\text{div} ((1 + a)\nabla \Pi) = \text{div} \ F. \tag{2.44}
\]

Then it holds that
\[
\|\nabla \Pi\|_{B_{2,\infty}^{-1}} \lesssim (1 + 2^k \|a\|_{B_{1,1}^0} (1 + \|a\|_{B_{\infty,1}^0})) (\|F\|_{B_{2,\infty}^{-2}} + \|\text{div} \ F\|_{B_{2,\infty}^{-2}}). \tag{2.45}
\]
Proof. We first deduce from (2.43) and \(b \leq 1 + a \) that
\[
1 + \dot{S}_k a = 1 + a + (\dot{S}_k a - a) \geq \frac{b}{2}.
\]
Motivated by [2,14], we shall use a duality argument to prove (2.45). For the sake of simplicity, we just prove (2.45) for sufficiently smooth function \(F \). In order to make the computation rigorous, one has to use a density argument, which we omit here.

For this, we first estimate \(\| \nabla \Pi \|_{B^1_{2,1}} \) under the assumption that \(F \in B^1_{2,1}(\mathbb{R}^2) \). Indeed, we write (2.44) as
\[
\text{div}[(1 + \dot{S}_k a) \nabla \Pi] = \text{div} [(\dot{S}_k a - a) \nabla \Pi],
\]
applying \(\Delta \) to the above equation gives
\[
\text{div} [(1 + \dot{S}_k a) \Delta_q \nabla \Pi] = \text{div} \Delta_q F + \text{div} \Delta_q [(\dot{S}_k a - a) \nabla \Pi] + \text{div} [(\dot{S}_k a, \Delta_q] \nabla \Pi). \]

Taking the \(L^2 \) inner product of this equation with \(\Delta_q \Pi \), we obtain from (2.16) that
\[
\| \nabla \Pi \|_{B^1_{2,1}} \lesssim \| (\dot{S}_k a - a) \nabla \Pi \|_{B^1_{2,1}} + \| F \|_{B^1_{2,1}} + \sum_{q \geq -1} 2^q \| [(\dot{S}_k a, \Delta_q] \nabla \Pi \|_{L^2} \]
\[
\lesssim \| \dot{S}_k a - a \|_{B^1_{2,1}} \| \nabla \Pi \|_{B^1_{2,1}} + \| F \|_{B^1_{2,1}} \]
\[
+ (\| \dot{S}_k a \|_{B^1_{\infty,1}} \| \nabla \Pi \|_{L^2} + \| \dot{S}_k a \|_{B^1_{\infty,1}} \| \nabla \Pi \|_{H^1}^2).
\]

Applying the classical elliptic estimate to (2.44), we get \(\| \nabla \Pi \|_{L^2} \lesssim \| F \|_{L^2} \). Due to Lemma 2.1, we get
\[
\| \dot{S}_k a \|_{B^1_{\infty,1}} \lesssim \sum_{\ell \leq k-1} 2^\ell \| \Delta \ell a \|_{L^\infty} \lesssim \| a \|_{B^0_{\infty,1}} \sum_{\ell \leq k-1} 2^{\ell} c_{\ell,1} \lesssim 2^k \| a \|_{B^0_{\infty,1}},
\]
and a similar inequality, \(\| \dot{S}_k a \|_{B^1_{\infty,1}} \lesssim 2^\ell \| a \|_{B^0_{\infty,1}} \).

While, by the definition of the Besov space, one can see \(\| \dot{S}_k a - a \|_{B^1_{2,1}} \lesssim \| \dot{S}_k a - a \|_{B^1_{\infty,1}} \), for \(k \) large. This, together with (2.43) and the interpolation inequality
\[
\| \nabla \Pi \|_{H^1} \lesssim \| \nabla \Pi \|_{B^1_{2,1}} \| \nabla \Pi \|_{L^2} \lesssim \| \nabla \Pi \|_{B^1_{2,1}} \| F \|_{L^2},
\]
leads to
\[
\| \nabla \Pi \|_{B^1_{2,1}} \lesssim \| F \|_{B^1_{2,1}} + (2^k \| a \|_{B^0_{\infty,1}} \| F \|_{L^2} + 2^{\frac{2}{3}k} \| a \|_{B^0_{\infty,1}} \| \nabla \Pi \|_{B^1_{2,1}} \| F \|_{L^2}).
\]

Hence, applying Young’s inequality yields
\[
\| \nabla \Pi \|_{B^1_{2,1}} \lesssim \left(1 + 2^k \| a \|_{B^0_{\infty,1}} \left(1 + \| a \|_{B^0_{\infty,1}} \right)\right) \| F \|_{B^1_{2,1}}.
\]

Now we use a duality argument (see Corollary 6.2.8 in [7]) to estimate \(\| \nabla \Pi \|_{B^{-1}_{2,\infty}} \) in the case when \(F \in B^{-1}_{2,\infty}(\mathbb{R}^2) \). Notice that
\[
\| \nabla \Pi \|_{B^{-1}_{2,\infty}} = \sup_{\| g \|_{B^{1}_{2,1}} \leq 1} \langle g, \nabla \Pi \rangle = \sup_{\| g \|_{B^{1}_{2,1}} \leq 1} \left(-\int \Pi \text{div} g \, dx \right),
\]
and conclude with the interpolation inequality.
where \(\langle g, \nabla \Pi \rangle \) denotes the duality bracket between \(\mathcal{S}'(\mathbb{R}^2) \) and \(\mathcal{S}(\mathbb{R}^2) \). Whereas (2.46) ensures that, for any \(g \in B^1_{2,1}(\mathbb{R}^2) \),

\[
\text{div} \left((1 + a) \nabla h_g \right) = \text{div} \ g
\]

has a unique solution \(\nabla h_g \in B^1_{2,1}(\mathbb{R}^2) \) satisfying

\[
\| \nabla h_g \|_{B^1_{2,1}} \lesssim (1 + 2^k \| a \|_{B^0_{\infty,1}} (1 + \| a \|_{B^0_{\infty,1}})) \| g \|_{B^1_{2,1}},
\]

(2.48) which, along with (2.47), yields

\[
\| \nabla \Pi \|_{B^{-1}_{2,\infty}} = \sup_{\| g \|_{B^1_{\infty,1}} \leq 1} \langle \Pi, \text{div} \left((1 + a) \nabla h_g \right) \rangle = \sup_{\| g \|_{B^1_{2,1}} \leq 1} \langle (1 + a) \nabla \Pi, \nabla h_g \rangle
\]

\[
= \sup_{\| g \|_{B^1_{\infty,1}} \leq 1} \langle h_g, \text{div} \left((1 + a) \nabla \Pi \right) \rangle = \sup_{\| g \|_{B^1_{2,1}} \leq 1} \langle \text{div} F, h_g \rangle
\]

\[
= \sup_{\| g \|_{B^1_{2,1}} \leq 1} \langle \text{div} F, \sum_{\ell \geq -1} \Delta_{\ell} h_g \rangle.
\]

Hence, it follows that

\[
\| \nabla \Pi \|_{B^{-1}_{2,\infty}} = \sup_{\| g \|_{B^1_{\infty,1}} \leq 1} \langle \text{div} F, \Delta_{-1} h_g \rangle + \sup_{\| g \|_{B^1_{2,1}} \leq 1} \langle \text{div} F, \sum_{\ell \geq 0} \Delta_{\ell} h_g \rangle
\]

\[
= \sup_{\| g \|_{B^1_{\infty,1}} \leq 1} \{ F, \nabla \Delta_{-1} h_g \} + \sup_{\| g \|_{B^1_{2,1}} \leq 1} \langle \text{div} F, \sum_{\ell \geq 0} \Delta_{\ell} h_g \rangle.
\]

Whence, thanks to (2.48), we obtain

\[
\| \nabla \Pi \|_{B^{-1}_{2,\infty}} \lesssim \sup_{\| g \|_{B^1_{\infty,1}} \leq 1} \| F \|_{B^{-2}_{2,\infty}} \| \nabla \Delta_{-1} h_g \|_{B^2_{2,1}} + \sup_{\| g \|_{B^1_{2,1}} \leq 1} \| \text{div} F \|_{B^{-2}_{2,\infty}}
\]

\[
\sum_{\ell \geq 0} \Delta_{\ell} h_g \|_{B^2_{2,1}}
\]

\[
\lesssim \sup_{\| g \|_{B^1_{\infty,1}} \leq 1} \| F \|_{B^{-2}_{2,\infty}} \| h_g \|_{B^1_{2,1}} + \sup_{\| g \|_{B^1_{2,1}} \leq 1} \| \text{div} F \|_{B^{-2}_{2,\infty}} \| h_g \|_{B^1_{2,1}}
\]

\[
\lesssim (1 + 2^k \| a \|_{B^0_{\infty,1}} (1 + \| a \|_{B^0_{\infty,1}})) \left(\| F \|_{B^{-2}_{2,\infty}} + \| \text{div} F \|_{B^{-2}_{2,\infty}} \right),
\]

which completes the proof of this proposition. \(\square \)

In order to get the uniqueness of the solution in the critical case in Theorem 1.1, we need to recall the Osgood’s lemma [18].

Lemma 2.4. ([18], Osgood’s lemma) Let \(f \geq 0 \) be a measurable function, \(\gamma \) be a locally integrable function and \(\mu \) be a positive, continuous and nondecreasing function which verifies the following condition:

\[
\int_0^1 \frac{dr}{\mu(r)} = +\infty.
\]
Also let \(a \) be a positive real number and let \(f \) satisfy the inequality

\[
f(t) \leq a + \int_0^t \gamma(s) \mu(f(s)) \, ds.
\]

Then if \(a \) is equal to zero, the function \(f \) vanishes. If \(a \) is not zero, then we have

\[
-M(f(t)) + M(a) \leq \int_0^t \gamma(s) \, ds \quad \text{with} \quad M(x) = \int_x^1 \frac{dr}{\mu(r)}.
\]

3. The \(L^1([0, T]; \dot{B}^2_{2,1}) \) Estimate for the Velocity Field

In this section, we want to get, at least in the small time interval, the \(L^1([0, T]; \dot{B}^2_{2,1}) \) estimate for the velocity field, which plays a crucial role in the study of the uniqueness of the solution to (1.1). For this, we first investigate some \(a \) \textit{priori} estimates about the basic energy and the pressure.

Proposition 3.1. Let \(\varepsilon \in (0, 1) \), \(a_0 := \rho_0^{-1} - 1 \in \dot{B}^0_{\infty,1} \cap \dot{B}^\varepsilon_{\infty,\infty}(\mathbb{R}^2) \) and \(u_0 \in L^2(\mathbb{R}^2) \), and (1.5) holds. Let \((\rho, u, \nabla \Pi) \) be a smooth enough solution of (1.1) on \([0, T^*[, \) then, for any \(t \in]0, T^*[\), it holds that

\[
\|\sqrt{\rho}u\|_{L^\infty_t(L^2)}^2 + 2\|\nabla u\|_{L^2_t(L^2)}^2 \leq \|\sqrt{\rho_0}u_0\|_{L^2}^2,
\]

for any positive constant \(\eta \).

Proof. We first get, by using standard energy estimate to (1.2), that

\[
\frac{1}{2} \frac{d}{dt} \|\sqrt{\rho}u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2 = 0,
\]

which immediately follows (3.1). On the other hand, let \(a \overset{\text{def}}{=} \rho^{-1} - 1 \), the system (1.2) can be equivalently reformulated as

\[
\begin{aligned}
\partial_t a + u \cdot \nabla a &= 0, \\
\partial_t u + (u \cdot \nabla)u - (1 + a)(\Delta u - \nabla \Pi) &= 0,
\end{aligned}
\]

\[\text{div} u = 0,\]

\[\left(a, u_0 \right)_{t=0} = (a_0, u_0).\]
Applying the maximum principle and Lemma 2.3 to the first equation in (3.3) gives rise to
\[\|a(t)\|_{L^\infty} \leq \|a_0\|_{L^\infty} \quad \text{and} \quad \|a\|_{L_t^\infty(B^{\frac{2}{5}}_{\infty,\infty})} \leq \|a_0\|_{B^{\frac{2}{5}}_{\infty,\infty}} e^{C\|\nabla u\|_{L_t^1(L^\infty)}}. \tag{3.4} \]

Applying the div operator to the momentum equation of (3.3) yields that
\[\text{div}((1 + a) \nabla \Pi) = \text{div}(a \Delta u) - \text{div}((u \cdot \nabla)u), \tag{3.5} \]
for some large enough integer \(k \) we shall rewrite the above equality as
\[\text{div}((1 + a) \nabla \Pi) = \text{div}((a - \dot{S}_k a) \Delta u) + \text{div}(\dot{S}_k a \Delta u) - \text{div}((u \cdot \nabla)u) \]
\[= \text{div}((a - \dot{S}_k a) \Delta u) + T_{\Delta u} \nabla \dot{S}_k a + T_{\nabla \dot{S}_k a} \Delta u + \text{div}(R(\dot{S}_k a, \Delta u)) \]
\[- \text{div}((u \cdot \nabla)u). \]

By taking \(L^2 \) inner product of the above equation with \(\Pi \), we get from the fact \(1 + a = \frac{1}{\rho} \geq \frac{1}{M} \) that
\[\frac{1}{M} \|\nabla \Pi\|_{L^2}^2 \leq \|\nabla \Pi\|_{L^2} \left(\|(a - \dot{S}_k a) \Delta u\|_{L^2} + \|T_{\Delta u} \nabla \dot{S}_k a\|_{\dot{H}^{-1}} + \|T_{\nabla \dot{S}_k a} \Delta u\|_{\dot{H}^{-1}} \right. \]
\[+ \left. \|R(\dot{S}_k a, \Delta u)\|_{L^2} + \|(u \cdot \nabla)u\|_{L^2} \right). \tag{3.6} \]

Thanks to product laws in Besov spaces Proposition 2.2, one can see that
\[\|(a - \dot{S}_k a) \Delta u\|_{L^2} \leq \|a - \dot{S}_k a\|_{L^\infty} \|\Delta u\|_{L^2}, \]
\[\|T_{\Delta u} \nabla \dot{S}_k a\|_{\dot{H}^{-1}} + \|T_{\nabla \dot{S}_k a} \Delta u\|_{\dot{H}^{-1}} \lesssim \|\nabla \dot{S}_k a\|_{L^\infty} \|\Delta u\|_{\dot{H}^{-1}} \lesssim \|\nabla \dot{S}_k a\|_{L^\infty} \|\nabla u\|_{L^2}, \]
\[\|R(\dot{S}_k a, \Delta u)\|_{L^2} \lesssim \|R(\dot{S}_k a, \Delta u)\|_{B^{\frac{2}{5}}_{\frac{2}{5},\infty}} \lesssim \|\dot{S}_k a\|_{B^{\frac{2}{5}+1}_{\frac{2}{5},\infty}} \|\nabla u\|_{L^2} \lesssim 2^k \|a\|_{B^{\frac{2}{5}}_{\frac{2}{5},\infty}} \|\nabla u\|_{L^2}, \]
\[\|(u \cdot \nabla)u\|_{L^2} \lesssim \|u\|_{L^4} \|\nabla u\|_{L^4} \lesssim \|u\|_{L^2}^{\frac{1}{2}} \|\nabla u\|_{L^2} \|\Delta u\|_{L^2}^{\frac{1}{2}}. \]

from which, and (3.6), we infer
\[\|\nabla \Pi\|_{L^2} \leq M \|a - \dot{S}_k a\|_{L^\infty} \|\Delta u\|_{L^2} + \frac{C}{2} \|a\|_{L^\infty} \|\nabla u\|_{L^2} \]
\[+ \frac{C}{2} \|a\|_{B^{\frac{2}{5}}_{\frac{2}{5},\infty}} \|\nabla u\|_{L^2} + \frac{C}{2} \|u\|_{L^2}^{\frac{1}{2}} \|\nabla u\|_{L^2} \|\Delta u\|_{L^2}^{\frac{1}{2}}. \tag{3.7} \]

Thus, by Young’s inequality, we deduce from (3.4) that for any positive constant \(\eta \),
\[\|\nabla \Pi\|_{L_t^1(L^2)} \leq \left(M \|a - \dot{S}_k a\|_{L_t^\infty(L^\infty)} + \eta\right) \|\Delta u\|_{L_t^1(L^2)} \]
\[+ \frac{C}{2} \|a\|_{L^\infty} \|\nabla u\|_{L_t^2(L^2)^2} \]
\[+ \frac{C}{2} \|a\|_{B^{\frac{2}{5}}_{\frac{2}{5},\infty}} \|\nabla u\|_{L_t^2(L^2)} e^{C\|\nabla u\|_{L_t^1(L^\infty)}} \tag{3.8} \]
\[+ \frac{C}{2} \|u\|_{L_t^\infty(L^2)} \|\nabla u\|_{L_t^2(L^2)}. \]
Thanks to Proposition 2.3, we have
\[
\|a - \dot{S}_k a\|_{L^\infty_t(L^\infty)} \leq \|a - \dot{S}_k a\|_{\dot{B}^0_{\infty,1}} \leq \sum_{q \geq k} \|\dot{\lambda}_q a_0\|_{L^\infty} + \|a_0\|_{\dot{B}^0_{\infty,1}} (e^{C\|\nabla u\|_{L^1_t(U^\infty)}} - 1).
\]
(3.9)

Plugging (3.9) into (3.8) ensures (3.2). This completes the proof of Proposition 3.1. \(\square\)

With Proposition 3.1 in hand, we are in a position to prove the following proposition about the estimate \(\|u\|_{L^1_t(\dot{B}^2_{2,1})}\):

Proposition 3.2. Let \(\varepsilon \in (0, 1)\), \(u_0 \in \dot{B}^0_{2,1}\) and \(a_0 \in \dot{B}^\varepsilon_{2,1}\). Let \((a, u, \nabla \Pi)\) be a smooth enough solution of (3.3) on \([0, T^*]\), then there is small positive time \(T_1 < T^*\) such that, for all \(t \leq T_1\), there holds
\[
\|u\|_{L^1_t(\dot{B}^2_{2,1})} + \|\nabla u\|_{L^1_t(L^2)} \lesssim \sum_{j \in \mathbb{Z}} (1 - e^{-c2^2j}) \|\dot{\lambda}_j u_0\|_{L^2} + \sqrt{t}.
\]
(3.10)

Proof. Let \(P \overline{\equiv} I + \nabla(-\Delta)^{-1}\div\) be the Leray projection operator. We get, by first dividing the momentum equation of (1.2) by \(\rho\) and then applying the resulting equation by the operator \(P\), that
\[
\partial_t \dot{u} + P(u \cdot \nabla u) - P(\rho^{-1}(\Delta u - \nabla \Pi)) = 0.
\]

Applying \(\dot{\lambda}_j\) to the above equation and using a standard commutator’s process, we write
\[
\rho \partial_t \dot{\lambda}_j u + \rho u \cdot \nabla \dot{\lambda}_j u - \Delta \dot{\lambda}_j u = -\rho [\dot{\lambda}_j P, u \cdot \nabla] u + \rho [\dot{\lambda}_j P, \rho^{-1}](\Delta u - \nabla \Pi).
\]
(3.11)

Taking \(L^2\) inner product of (3.11) with \(\dot{\lambda}_j u\), we obtain
\[
\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^2} \rho |\dot{\lambda}_j u|^2 \, dx - \int_{\mathbb{R}^2} \Delta \dot{\lambda}_j u \cdot \dot{\lambda}_j u \, dx
\leq \|\dot{\lambda}_j u\|_{L^2} \left(\|\rho [\dot{\lambda}_j P, u \cdot \nabla] u\|_{L^2} + \|\rho [\dot{\lambda}_j P, \rho^{-1}](\Delta u - \nabla \Pi)\|_{L^2}\right).
\]
(3.12)

We get, by using integration by parts and Lemma 2.1, that
\[
- \int_{\mathbb{R}^2} \Delta \dot{\lambda}_j u \cdot \dot{\lambda}_j u \, dx = \int_{\mathbb{R}^2} |\nabla \dot{\lambda}_j u|^2 \, dx \geq \tilde{c} 2^{2j} \|\dot{\lambda}_j u\|_{L^2}^2.
\]

Thus, we deduce from (3.12) that
\[
\frac{d}{dt} \|\sqrt{\rho} \dot{\lambda}_j u\|_{L^2}^2 + 2\tilde{c} 2^{2j} \|\sqrt{\rho} \dot{\lambda}_j u\|_{L^2}^2
\leq \|\sqrt{\rho} \dot{\lambda}_j u\|_{L^2}^2 (\|\dot{\lambda}_j P, u \cdot \nabla] u\|_{L^2} + \|[\dot{\lambda}_j P, \rho^{-1}](\Delta u - \nabla \Pi)\|_{L^2}),
\]
where \(c = \tilde{c}/M \). This gives rise to

\[
\| \sqrt{\rho} \hat{\Delta}_j u(t) \|_{L^2} \lesssim e^{-c2^j t} \| \sqrt{\rho_0} \hat{\Delta}_j u_0 \|_{L^2} + \int_0^t e^{-c2^j (t-t')} \left(\| [\hat{\Delta}_j \mathbb{P}, u \cdot \nabla] u \|_{L^2} + \| [\hat{\Delta}_j \mathbb{P}, \rho^{-1}] (\Delta u - \nabla \Pi) \|_{L^2} \right) dt'.
\]

(3.13)

As a consequence, by virtue of Definition 2.2, we infer

\[
\| u \|_{L_t^1(\dot{B}^{-2}_{2,1})} \lesssim \sum_{j \in \mathbb{Z}} (1 - e^{-c2^j}) \| \hat{\Delta}_j u_0 \|_{L^2} + \sum_{j \in \mathbb{Z}} \| [\hat{\Delta}_j \mathbb{P}, u \cdot \nabla] u \|_{L_t^1(L^2)} + \sum_{j \in \mathbb{Z}} \| [\hat{\Delta}_j \mathbb{P}, \rho^{-1}] (\Delta u - \nabla \Pi) \|_{L_t^1(L^2)}.
\]

(3.14)

In what follows, we shall deal with term by term the right-hand side of (3.14). Thanks to (2.13), we first obtain

\[
\sum_{j \in \mathbb{Z}} \| [\hat{\Delta}_j \mathbb{P}, u \cdot \nabla] u \|_{L_t^1(L^2)} \lesssim \| \nabla u \|_{L_t^1(L^2)} \| u \|_{L_t^2(\dot{B}^{-2}_{2,1})},
\]

from which we use the interpolation inequality (2.6), \(\| u \|_{L_t^2(\dot{B}^{-1}_{2,1})} \lesssim \| u \|_{L_t^\infty(L^2)}^{1/2} \| u \|_{L_t^1(\dot{B}^{-2}_{2,1})}^{1/2} \), and Young’s inequality to find that

\[
\sum_{j \in \mathbb{Z}} \| [\hat{\Delta}_j \mathbb{P}, \rho^{-1}] (\Delta u - \nabla \Pi) \|_{L_t^1(L^2)} \leq C_\eta \| u \|_{L_t^\infty(L^2)} \| \nabla u \|_{L_t^2(L^2)}^2 + \eta \| u \|_{L_t^1(\dot{B}^{-1}_{2,1})}.
\]

(3.15)

for any positive constant \(\eta \).

While thanks to (2.17), we deduce that

\[
\sum_{j \in \mathbb{Z}} \| [\hat{\Delta}_j \mathbb{P}, \rho^{-1}] \nabla \Pi \|_{L_t^1(L^2)} \lesssim \| a \|_{\tilde{L}_t^{\infty}(\dot{B}^{e}_{2,1})} \| \nabla \Pi \|_{L_t^1(L^2)}.
\]

(3.16)

On the other hand, note that

\[
[\hat{\Delta}_j \mathbb{P}, \rho^{-1}] \Delta u = [\hat{\Delta}_j \mathbb{P}, a] \Delta u = [\hat{\Delta}_j \mathbb{P}, a - \hat{S}_k a] \Delta u + [\hat{\Delta}_j \mathbb{P}, \hat{S}_k a] \Delta u.
\]

(3.17)

Using (2.17) again, we obtain

\[
\sum_{j \in \mathbb{Z}} \| [\hat{\Delta}_j \mathbb{P}, a - \hat{S}_k a] \Delta u \|_{L_t^1(L^2)} \lesssim \| a - \hat{S}_k a \|_{\tilde{L}_t^{\infty}(\dot{B}^{e}_{2,1})} \| \Delta u \|_{L_t^1(L^2)}.
\]

(3.18)

For \([\hat{\Delta}_j \mathbb{P}, \hat{S}_k a] \Delta u \), we deduce from (2.18) that

\[
\sum_{j \in \mathbb{Z}} \| [\hat{\Delta}_j \mathbb{P}, \hat{S}_k a] \Delta u \|_{L_t^1(L^2)} \lesssim \| \nabla \hat{S}_k a \|_{L_t^\infty(L^\infty)} \| u \|_{L_t^1(\dot{B}^{-2}_{2,1})} + \| \hat{S}_k a \|_{L_t^{\infty}(\dot{B}^{e+e}_{2,1})} \| \nabla u \|_{L_t^1(L^2)}.
\]
for any positive constant \(\gamma \).

Hence, due to Lemma 2.1, one has

\[
\sum_{j \in \mathbb{Z}} \| [\hat{\Delta}_j, \hat{\rho}^{-1}] \Delta u \|_{L^1_t(L^2)} \lesssim \gamma \| \Delta u \|_{L^1_t(L^2)} + C \gamma t 2^{2k} \| a \|_{L^\infty_t(L^2)} \| u \|_{L^\infty_t(L^2)} \\
+ C \sqrt{t} 2^k \| a \|_{L^\infty_t(\dot{B}^{1+\varepsilon}_{\frac{2}{2},1})} \| \nabla u \|_{L^1_t(L^2)}.
\]

Combining (3.18), (3.19) and (3.17) gives rise to

\[
\sum_{j \in \mathbb{Z}} \| [\hat{\Delta}_j, \hat{\rho}^{-1}] \Delta u \|_{L^1_t(L^2)} \leq \left(\gamma + C \| a - \hat{\rho}^{-1} \hat{\rho} \|_{L^\infty_t(\dot{B}^{1+\varepsilon}_{\frac{2}{2},1})} \right) \| \Delta u \|_{L^1_t(L^2)} \\
+ C \gamma t 2^{2k} \| a \|_{L^1_t(L^2)} \| u \|_{L^\infty_t(L^2)} + C \sqrt{t} 2^k \| a \|_{L^\infty_t(\dot{B}^{1+\varepsilon}_{\frac{2}{2},1})} \| \nabla u \|_{L^1_t(L^2)}.
\]

Substituting (3.15), (3.16) and (3.20) into (3.14), and taking \(\eta \) and \(\gamma \) small enough, we obtain

\[
\| u \|_{L^1_t(\dot{B}^{\varepsilon}_{\frac{2}{2},1})} \leq C \sum_{j \in \mathbb{Z}} (1 - e^{-ct2^j}) \| \hat{\Delta}_j u_0 \|_{L^2} + C \| \nabla u \|_{L^1_t(L^2)}^2 \\
+ C \| a \|_{L^\infty_t(\dot{B}^{\varepsilon}_{\frac{2}{2},1})} \| \nabla \Pi \|_{L^1_t(L^2)} + C \| a - \hat{\rho}^{-1} \hat{\rho} \|_{L^\infty_t(\dot{B}^{1+\varepsilon}_{\frac{2}{2},1})} \Delta u \|_{L^1_t(L^2)} \\
+ C \sqrt{t} 2^k (\sqrt{t} + \| a \|_{L^\infty_t(\dot{B}^{1+\varepsilon}_{\frac{2}{2},1})}).
\]

Thanks to (2.31) and (2.28), we get

\[
\| a \|_{L^\infty_t(\dot{B}^{\varepsilon}_{\frac{2}{2},1})} + \| a \|_{L^\infty_t(\dot{B}^0_{\frac{2}{2},1})} \lesssim e^{C \| \nabla u \|_{L^1_t(L^2)}} - 1.
\]

(3.21)
Therefore, thanks to (3.2) and (3.22), we obtain from (3.21) that

\[
\|u\|_{L_t^1(B_{2,t}^2)} \leq C \sum_{j \in \mathbb{Z}} (1 - e^{-c t 2^j}) \|\hat{\Delta}_j u_0\|_{L_x^2} + C e^{C\|\nabla u\|_{L_t^1(L_x^\infty)}} \left(\sqrt{t} 2^k + \|\nabla u\|_{L_t^2(L_x^2)}^2\right) + C e^{C\|\nabla u\|_{L_t^1(L_x^\infty)}} \left(\eta + M \sum_{q \geq k} \|\hat{\Delta}_q a_0\|_{L_x^\infty}\right) + M \|a_0\|_{\dot{B}_{\infty,1}^0} \left(e^{C\|\nabla u\|_{L_t^1(L_x^\infty)}} - 1\right) \|u\|_{L_t^1(B_{2,t}^2)}.
\]

(3.23)

By using (3.13) again, we deduce from the fact \(\ell^1 \hookrightarrow \ell^2 \) that

\[
\|\nabla u\|_{L_t^2(L_x^2)} \lesssim \left(\sum_{j \in \mathbb{Z}} (1 - e^{-c t 2^j}) \|\hat{\Delta}_j u_0\|_{L_x^2}^2\right)^{1/2} + \left(\sum_{j \in \mathbb{Z}} \|\hat{\Delta}_j [p, u \cdot \nabla] u\|_{L_t^1(L_x^2)}^2\right)^{1/2} + \sum_{j \in \mathbb{Z}} \|\hat{\Delta}_j [p, \rho^{-1}] (\Delta u - \nabla \Pi)\|_{L_t^1(L_x^2)}.
\]

Thanks to (2.13), we get

\[
\left(\sum_{j \in \mathbb{Z}} \|\hat{\Delta}_j [p, u \cdot \nabla] u\|_{L_t^1(L_x^2)}^2\right)^{1/2} \lesssim \|\nabla u\|_{L_t^2(L_x^2)}^2.
\]

Hence, from (3.16), (3.20), and (3.2), it follows that

\[
\|\nabla u\|_{L_t^2(L_x^2)} \lesssim \left(\sum_{j \in \mathbb{Z}} (1 - e^{-c t 2^j}) \|\hat{\Delta}_j u_0\|_{L_x^2}^2\right)^{1/2} + C e^{C\|\nabla u\|_{L_t^1(L_x^\infty)}} \left(\sqrt{t} 2^k + \|\nabla u\|_{L_t^2(L_x^2)}^2\right) + C e^{C\|\nabla u\|_{L_t^1(L_x^\infty)}} \left(\eta + M \sum_{q \geq k} \|\hat{\Delta}_q a_0\|_{L_x^\infty} + M \|a_0\|_{\dot{B}_{\infty,1}^0} \left(e^{C\|\nabla u\|_{L_t^1(L_x^\infty)}} - 1\right)\right) + M \|a_0\|_{\dot{B}_{\infty,1}^0} \left(e^{C\|\nabla u\|_{L_t^1(L_x^\infty)}} - 1\right) \|u\|_{L_t^1(B_{2,t}^2)}.
\]

(3.24)
Combining (3.23) and (3.24), we achieve
\[
\|u\|_{L^r_t(\hat{B}^2_{2,1})} + \|\nabla u\|_{L^2_t(L^2)} \\
\leq C \sum_{j \in \mathbb{Z}} \left(1 - e^{-cr_2^{2j}} \right) \|\hat{\Delta}_j u_0\|_{L^2} + C e^{C\|\nabla u\|_{L^1_t(L^\infty)}} \left(\sqrt{2^k} L + \|\nabla u\|_{L^2_t(L^2)} \right) \\
+ C e^{C\|\nabla u\|_{L^1_t(L^\infty)}} \left(\eta + M \sum_{q \geq k} \|\hat{\Delta}_q a_0\|_{L^\infty} + M \|a_0\|_{\hat{B}^0_{r,1}} \left(e^{C\|\nabla u\|_{L^1_t(L^\infty)}} - 1 \right) \right) \\
\|u\|_{L^r_t(\hat{B}^2_{2,1})} + C \left(\sum_{q \geq k} 2^q \|\hat{\Delta}_q a_0\|_{L^2} + \|a_0\|_{\hat{B}^0_{r,1}} \left(e^{C\|\nabla u\|_{L^1_t(L^\infty)}} - 1 \right) \right) \|u\|_{L^r_t(\hat{B}^2_{2,1})}.
\]
(3.25)

Consequently, taking \(\eta \) small enough, \(k \) large enough, and then \(t \) sufficiently small in (3.25), we deduce (3.10), which completes the proof of Proposition 3.2. □

Based on this, we may get a further estimate about the pressure.

Proposition 3.3. Let \(\varepsilon \in (0, 1) \) and \(a \in \hat{B}^\varepsilon_{r,1}(\mathbb{R}^2) \) such that \(0 < b \leq 1 + a \leq \bar{b} \), and
\[
\|a - \hat{S}_k a\|_{\hat{B}^\varepsilon_{r,1}} \leq c
\]
for some sufficiently small positive constant \(c \) and some integer \(k \in \mathbb{Z} \). Let \(F \in \hat{B}^{0}_{2,1}(\mathbb{R}^2) \) and \(\nabla \Pi \overset{\text{def}}{=} \mathcal{H}_b(F) \in \hat{B}^{0}_{2,1}(\mathbb{R}^2) \) solves
\[
\text{div} \left((1 + a) \nabla \Pi \right) = \text{div} \ F.
\]
(3.27)

Then it holds that
\[
\|\nabla \Pi\|_{\hat{B}^0_{2,1}} \lesssim \|F\|_{\hat{B}^0_{2,1}} + \|a\|_{\hat{B}^\varepsilon_{r,1}} \|\nabla \Pi\|_{L^2}.
\]
(3.28)

Proof. We first deduce from (3.26) and \(b \leq 1 + a \) that
\[
1 + \hat{S}_k a = 1 + a + (\hat{S}_k a - a) \geq \frac{b}{2}.
\]

We rewrite (3.27) as
\[
\text{div} \left[(1 + \hat{S}_k a) \nabla \Pi \right] = \text{div} \ F + \text{div} \left[(\hat{S}_k a - a) \nabla \Pi \right],
\]
and applying \(\hat{\Delta}_q \) to the above equation gives
\[
\text{div} \left[(1 + \hat{S}_k a) \hat{\Delta}_q \nabla \Pi \right] = \text{div} \hat{\Delta}_q F + \text{div} \left[(\hat{S}_k a - a) \nabla \Pi \right] + \text{div} \left[(\hat{S}_k a, \hat{\Delta}_q) \nabla \Pi \right].
\]

Taking the \(L^2 \) inner product of this equation with \(\hat{\Delta}_q \Pi \), we obtain that
\[
\|\nabla \Pi\|_{\hat{B}^0_{2,1}} \lesssim \|(\hat{S}_k a - a) \nabla \Pi\|_{\hat{B}^0_{2,1}} + \|F\|_{\hat{B}^0_{2,1}} + \sum_{q \in \mathbb{Z}} \|(\hat{S}_k a, \hat{\Delta}_q) \nabla \Pi\|_{L^2},
\]
from which it follows from the product law in Besov spaces and (2.17) that
\[\| \nabla \Pi \|_{\dot{B}_{2,1}^0} \lesssim \| \hat{S}_k a - a \|_{\dot{B}_{2,1}^\epsilon} \| \nabla \Pi \|_{\dot{B}_{2,1}^0} + \| F \|_{\dot{B}_{2,1}^0} + \| a \|_{\dot{B}_{2,1}^\epsilon} \| \nabla \Pi \|_{L^2}. \]

Hence, due to (3.26), we deduce (3.28), which completes the proof of the proposition.

Consequently, we may derive the main result of the section as follows:

Proposition 3.4. Under the assumptions of Proposition 3.2, it holds that for any \(t \in [0, T_1] \)
\[\| u \|_{L_t^\infty(\dot{B}_{2,1}^0)} + \| u \|_{L_t^1(\dot{B}_{2,1}^2)} + \| \partial_t u \|_{L_t^1(\dot{B}_{2,1}^0)} + \| \nabla \Pi \|_{L_t^1(\dot{B}_{2,1}^0)} \leq C_0, \] (3.29)
where the constant \(C_0 \) depends only on the initial data \((\rho_0, u_0)\), and the positive time \(T_1 \) is determined by Proposition 3.2.

Proof. Back to the proof of Proposition 3.2, according to (3.5), we have
\[\text{div}((1 + a) \nabla \Pi) = \text{div}(a \Delta u) - \text{div}(u \cdot \nabla u). \] (3.30)
Combining Proposition 2.3 with Proposition 3.2, we know that the inequality (3.26) holds for any \(t \in [0, T_1] \). Then applying Proposition 3.3 to (3.30) yields that
\[\| \nabla \Pi \|_{\dot{B}_{2,1}^0} \lesssim \| a \Delta u \|_{\dot{B}_{2,1}^0} + \| (u \cdot \nabla) u \|_{\dot{B}_{2,1}^0} + \| a \|_{\dot{B}_{2,1}^\epsilon} \| \nabla \Pi \|_{L^2}, \]
and then
\[\| \nabla \Pi \|_{L_t^1(\dot{B}_{2,1}^0)} \lesssim \| a \Delta u \|_{L_t^1(\dot{B}_{2,1}^0)} + \| (u \cdot \nabla) u \|_{L_t^1(\dot{B}_{2,1}^0)} + \| a \|_{L_t^1(\dot{B}_{2,1}^\epsilon)} \| \nabla \Pi \|_{L_t^1(L^2)}. \] (3.31)
Due to product laws in Besov spaces (Proposition 2.2) and the interpolation inequality (2.6), we get \(\| a \Delta u \|_{L_t^1(\dot{B}_{2,1}^0)} \lesssim \| a \|_{L_t^\infty(\dot{B}_{2,1}^\epsilon)} \| u \|_{L_t^1(\dot{B}_{2,1}^2)} \) and
\[\| (u \cdot \nabla) u \|_{L_t^1(\dot{B}_{2,1}^0)} \lesssim \| \text{div} (u \otimes u) \|_{L_t^1(\dot{B}_{2,1}^0)} \lesssim \| u \otimes u \|_{L_t^1(\dot{B}_{2,1}^1)} \lesssim \int_0^t \| u \|_{\dot{B}_{2,1}^1}^2 \, d\tau \]
\[\lesssim \int_0^t \| u \|_{L^2} \| u \|_{\dot{B}_{2,1}^1} \, d\tau \lesssim \| u \|_{L_t^\infty(L^2)} \| u \|_{L_t^1(\dot{B}_{2,1}^0)}. \]
Hence, thanks to Propositions 3.1, 3.2, and (2.31), we achieve
\[\| a \|_{L_t^\infty(\dot{B}_{2,1}^\epsilon)} \leq C_0, \quad \| \nabla \Pi \|_{L_t^1(L^2)} \leq C_0, \quad \| u \|_{L_t^1(\dot{B}_{2,1}^0)} \leq C_0, \]
\[\| a \Delta u \|_{L_t^1(\dot{B}_{2,1}^0)} \leq C_0, \quad \| (u \cdot \nabla) u \|_{L_t^1(\dot{B}_{2,1}^0)} \leq C_0. \] (3.32)
Inserting (3.32) into (3.31) ensures that
\[\| \nabla \Pi \|_{L_t^1(\dot{B}_{2,1}^0)} \leq C_0. \]
On the other hand, thanks to (3.13), (3.15), (3.16) and (3.20), we readily deduce that

\[\|u\|_{L^\infty_t(\dot{B}^{0}_{2,1})} \leq C_0. \]

While from the momentum equations in (1.2) and (3.32), one has

\[
\|\partial_t u\|_{L^1_t(\dot{B}^{0}_{2,1})} \lesssim \|(u \cdot \nabla) u\|_{L^1_t(\dot{B}^{0}_{2,1})} + \|\Delta u - \nabla \Pi\|_{L^1_t(\dot{B}^{0}_{2,1})} + \|a(\Delta u - \nabla \Pi)\|_{L^1_t(\dot{B}^{0}_{2,1})}
\]

\[
\leq C_0 + C(1 + \|a\|_{L^\infty_t(\dot{B}^{0}_{2,1})}) (\|u\|_{L^1_t(\dot{B}^{0}_{2,1})} + \|\nabla \Pi\|_{L^1_t(\dot{B}^{0}_{2,1})}) \leq C_0,
\]

which follows (3.29). This ends the proof of Proposition 3.4. \(\square\)

4. The Proof of Theorem 1.1

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof into two steps. **Step 1.** Existence of strong solutions.

Given \(\rho_0\) with \(a_0 := \rho_0^{-1} - 1 \in \dot{B}^1_{2,1}(\mathbb{R}^2)\) and satisfying (1.5), \(u_0 \in \dot{B}^0_{2,1}(\mathbb{R}^2)\), we first mollify the initial data to be

\[
a_{0,n} \overset{\text{def}}{=} a_0 * j_n, \quad \text{and} \quad u_{0,n} \overset{\text{def}}{=} u_0 * j_n,
\]

(4.1)

where \(j_n(|x|) = n^2 j(|x|/n)\) is the standard Friedrich’s mollifier. Then we deduce from the standard well-posedness theory of inhomogeneous Navier-Stokes system (see [13] for instance) that (1.2) has a unique solution \((\rho_n, u_n, \nabla \Pi_n)\) on \([0, T^*_n]\) for some positive time \(T^*_n\). It is easy to observe from (4.1) that

\[
\|a_{0,n}\|_{\dot{B}^1_{2,1}} \leq C \|a_0\|_{\dot{B}^1_{2,1}} \quad \text{and} \quad \|u_{0,n}\|_{\dot{B}^0_{2,1}} \leq C \|u_0\|_{\dot{B}^0_{2,1}},
\]

so, under the assumptions of Theorem 1.1, we infer from Propositions 3.2 and 3.4 that it holds that

\[
\|u_n\|_{L^\infty_t(\dot{B}^{0}_{2,1})} + \|u_n\|_{L^1_t(\dot{B}^{0}_{2,1})} + \|\partial_t u_n\|_{L^1_t(\dot{B}^{0}_{2,1})} + \|\nabla \Pi_n\|_{L^1_t(\dot{B}^{0}_{2,1})} \leq C_0 \quad \text{and}
\]

\[
\|a_n\|_{L^\infty_t(\dot{B}^{1}_{2,1})} \leq C_0 \quad \text{for} \quad t < T^*_n.
\]

(4.2)

Without loss of generality, we may assume \(T^*_n\) is the lifespan of the approximate solutions \((\rho_n, u_n, \nabla \Pi_n)\). Then, due to the uniform bounds (4.2), we conclude that \(T^*_n \geq T_1\) for some positive constant \(T_1\). With (4.2), we get, by using a standard compactness argument (similar to the ones in [12] for the system (1.2) in critical spaces with small initial density \(a_0\)), that (1.2) has a solution \((\rho, u, \nabla \Pi)\) so that

\[
a \in C([0, T_1]; \dot{B}^1_{2,1}(\mathbb{R}^2)), \quad u \in C([0, T_1]; \dot{B}^0_{2,1}(\mathbb{R}^2)) \cap L^1([0, T_1]; \dot{B}^2_{2,1}(\mathbb{R}^2)),
\]

\[
\partial_t u, \nabla \Pi \in L^1([0, T_1]; \dot{B}^0_{2,1}(\mathbb{R}^2)).
\]

(4.3)
Furthermore, we can find some \(t_0 \in (0, T_1) \) such that \(u(t_0) \in H^1(\mathbb{R}^2) \). Based on the initial data \(a(t_0) \in B^\frac{\alpha}{2},1(\mathbb{R}^2) \) and \(u(t_0) \in H^1(\mathbb{R}^2) \), we may deduce the global existence of the solution to (1.2) according to [15,22]. This completes the proof of the existence of the global solution to (1.2).

Step 2. Uniqueness of strong solutions.

Let us first recall from (2.31) that for any \(t > 0 \)

\[
\|a\|_{L^\infty_t(B^1_{2,1})} \leq \|a_0\|_{B^1_{2,1}} e^{C_1 \|u\|_{L^1_t(B^1_{2,1})}}. \tag{4.4}
\]

Let \((\rho^i, u^i, \nabla \Pi^i) \) with \(i = 1, 2 \) be two solutions of (1.2) which satisfy (1.6), (4.3), (4.4) with \(\rho = \frac{1}{1+a} \).

We set

\[
(\delta a, \delta u, \nabla \delta \Pi) \overset{\text{def}}{=} (a^2 - a^1, u^2 - u^1, \nabla \Pi^2 - \nabla \Pi^1).
\]

Then the system for \((\delta a, \delta u, \nabla \delta \Pi) \) reads as

\[
\begin{aligned}
&\partial_t \delta a + u^2 \cdot \nabla \delta a = -\delta a \cdot \nabla a^1 \\
&\partial_t \delta u + (u^2 \cdot \nabla) \delta u - (1 + a^2)(\Delta \delta u - \nabla \delta \Pi) = \delta F, \\
&\text{div} \delta u = 0,
\end{aligned} \tag{4.5}
\]

where \(\delta F \) is determined by \(\delta F = -\left(\delta u \cdot \nabla\right)u^1 + \delta a(\Delta u^1 - \nabla \Pi^1) \).

For \(\delta u \), we first write the momentum equation of (4.5) as

\[
\partial_t \delta u + (u^2 \cdot \nabla) \delta u - (1 + S_k a^2)(\Delta \delta u - \nabla \delta \Pi) = H \tag{4.6}
\]

with

\[
H = (a^2 - S_k a^2)(\Delta \delta u - \nabla \delta \Pi) - \delta u \cdot \nabla u^1 + \delta a(\Delta u^1 - \nabla \Pi^1).
\]

Applying Proposition 2.4 to (4.6) yields that, for \(\forall 0 < t \leq T \),

\[
\|\delta u\|_{L^\infty_t(B^1_{2,\infty})} + \|\delta u\|_{L^1_t(B^1_{2,\infty})} \leq C e^{C \|H\|_{L^1_t(B^1_{2,1})} + \|\nabla \delta \Pi\|_{L^1_t(B^1_{2,1})}} \tag{4.7}
\]

Notice that

\[
\|\nabla S_k a^2\|_{L^\infty_t(B^1_{2,1})} \leq \|\nabla S_k a^2\|_{L^\infty_t(H^0)} + \|\nabla S_k a^2\|_{L^\infty_t(B^1_{2,1})} \\
\leq \|\nabla a^2\|_{L^\infty_t(H^0)} + 2k \|a^2\|_{L^\infty_t(B^1_{2,1})} \\
\leq 2k \|a^2\|_{L^\infty_t(B^1_{2,1})} + 2k \|a^2\|_{L^\infty_t(B^1_{2,1})} \leq 2k \|a^2\|_{L^\infty_t(B^1_{2,1})},
\]

from which, along with (4.3), (4.4), and (4.7), it follows that

\[
\|\delta u\|_{L^\infty_t(B^1_{2,\infty})} + \|\delta u\|_{L^1_t(B^1_{2,\infty})} \leq C e^{2k \left(\|\nabla \delta \Pi\|_{L^1_t(B^1_{2,1})} + \|H\|_{L^1_t(B^1_{2,1})}\right)}. \tag{4.8}
\]
On the other hand, applying \(\text{div} \) to the momentum equation of (4.5) yields

\[
\text{div}[(1 + a^2)\nabla \delta \Pi] = \text{div} \ G \tag{4.9}
\]

with

\[
G = a^2 \Delta \delta u - \delta u \cdot \nabla u^1 - u^2 \cdot \nabla \delta u + \delta a(\Delta u^1 - \nabla \Pi^1)
\]

\[
= (a^2 - S_m a^2) \Delta \delta u + S_m a^2 \Delta \delta u - \delta u \cdot \nabla u^1 - u^2 \cdot \nabla \delta u
\]

\[
+ \delta a(\Delta u^1 - \nabla \Pi^1) \overset{\text{def}}{=} \sum_{\ell = 1}^{5} I_\ell.
\]

Thanks to Propositions 3.2 and 2.3, we get that, for any small constant \(c_0 > 0 \), there exist sufficiently large \(j_0 \in \mathbb{N} \) and a positive existence time \(T_1 \) such that

\[
\|a^2 - S_j a^2\|_{L_t^\infty(B_{2,1}^1)} = \|a^2 - S_j a^2\|_{L_t^\infty(B_{2,1}^1)} \lesssim \|a^2 - S_j a^2\|_{L_t^\infty(B_{2,1}^1)} < c_0,
\]

for any \(j \geq j_0 \) and \(t \in [0, T_1] \). Then applying Proposition 2.5 to (4.9) leads to

\[
\|
\n\|
\n+\|
\n\|
\]

\[
\begin{aligned}
\|\nabla \delta \Pi\|_{L_t^1(B_{2,\infty}^{-1})} &\lesssim (1 + 2^j \|a^2\|_{L_t^\infty(B_{1,1}^1)} (1 + \|a^2\|_{L_t^\infty(B_{1,1}^1)})) (\|G\|_{L_t^1(B_{2,\infty}^2)} \\
+ &\|
\n\|
\end{aligned}
\tag{4.10}
\]

While by Lemma 2.1 and product laws in Besov spaces in Proposition 2.2, one can see

\[
\|
\n\|
\n\|
\n\|
\n\|
\n\|
\n\|
\n\|
\n\|
\n\|
\]

Similarly, one has

\[
\|
\n\|
\]

and

\[
\|
\n\|
\]

and

\[
\|
\n\|
\]
Thus, we obtain
\[
\|G\|_{L_t^1(B_{2,\infty}^{-2})} + \| \text{div } G\|_{L_t^1(B_{2,\infty}^{-2})} \\
\lesssim \|a^2 - S_m a^2\|_{L_t^\infty(B_{2,1}^1)} \|\delta u\|_{L_t^1(B_{2,\infty}^1)} + 2^m \|\delta u\|_{L_t^1(B_{2,\infty}^0)} \\
+ \int_0^t \left(\|\delta u\|_{B_{2,\infty}^1} (\|u^1\|_{B_{1,1}^1} + \|u^2\|_{B_{1,1}^1}) + \|\delta a\|_{L^2} (\|\Delta u^1\|_{L^2} + \|\nabla \Pi^1\|_{L^2}) \right) d\tau,
\]
from which it follows from (4.10) that
\[
\|\nabla \delta \Pi\|_{L_t^1(B_{2,\infty}^{-1})} \lesssim \left\{ 1 + 2^j \|a^2\|_{L_t^\infty(B_{2,1}^1)} (1 + \|a^2\|_{L_t^\infty(B_{2,1}^1)}) \right\} \\
\times \left\{ \|a^2 - S_m a^2\|_{L_t^\infty(B_{2,1}^1)} \|\delta u\|_{L_t^1(B_{2,\infty}^1)} + 2^m \|\delta u\|_{L_t^1(B_{2,\infty}^0)} \\
+ \int_0^t \left(\|\delta u\|_{B_{2,\infty}^1} (\|u^1\|_{B_{1,1}^1} + \|u^2\|_{B_{1,1}^1}) + \|\delta a\|_{L^2} (\|\Delta u^1\|_{L^2} + \|\nabla \Pi^1\|_{L^2}) \right) d\tau \right\}.
\]
(4.11)

Towards the estimate of \(\|H\|_{L_t^1(B_{2,\infty}^{-1})} \), thanks to product laws in Besov spaces in Proposition 2.2, we find
\[
\|H\|_{L_t^1(B_{2,\infty}^{-1})} \lesssim \|a^2 - S_k a^2\|_{L_t^\infty(B_{2,1}^1)} (\|\delta u\|_{L_t^1(B_{2,\infty}^1)} + \|\nabla \delta \Pi\|_{L_t^1(B_{2,\infty}^{-1})}) \\
+ \int_0^t \|\delta u\|_{B_{2,\infty}^1} \|u^1\|_{B_{1,1}^1} d\tau + \int_0^t \|\delta a\|_{L^2} (\|\Delta u^1\|_{L^2} + \|\nabla \Pi^1\|_{L^2}) d\tau.
\]
(4.12)

Taking \(k_0 \) sufficiently large and \(0 < T_2 (\leq T_1) \) small enough, one may achieve, due to (4.4), that, for any \(k \geq k_0 \) and \(t \in (0, T_2) \),
\[
\|a^2 - S_k a^2\|_{L_t^\infty(B_{2,1}^1)} \leq c_0,
\]
(4.13)

Therefore, thanks to (4.8), and (4.11)-(4.13), we prove
\[
\|\delta u\|_{L_t^\infty(B_{2,\infty}^{-1})} + \|\delta u\|_{L_t^1(B_{2,1}^1)} \lesssim \left\{ 1 + 2^j \|a^2\|_{L_t^\infty(B_{2,1}^1)} (1 + \|a^2\|_{L_t^\infty(B_{2,1}^1)}) \right\} \\
\times \left\{ \|a^2 - S_m a^2\|_{L_t^\infty(B_{2,1}^1)} \|\delta u\|_{L_t^1(B_{2,\infty}^1)} + 2^m \|\delta u\|_{L_t^1(B_{2,\infty}^0)} \\
+ \int_0^t \|\delta u\|_{B_{2,\infty}^1} (\|u^1\|_{B_{1,1}^1} + \|u^2\|_{B_{1,1}^1}) d\tau \right\}.
\]

Taking \(m_0 \) sufficiently large and the positive time \(T_3 (\leq T_2) \) small enough, we obtain that, for any \(m \geq m_0 \) and \(t \in (0, T_3) \),
\[
\|\delta u\|_{L_t^\infty(B_{2,\infty}^{-1})} + \|\delta u\|_{L_t^1(B_{2,1}^1)} \lesssim \left\{ 1 + 2^j \|a^2\|_{L_t^\infty(B_{2,1}^1)} (1 + \|a^2\|_{L_t^\infty(B_{2,1}^1)}) \right\} \\
\times \left\{ 2^m \|\delta u\|_{L_t^1(B_{2,\infty}^0)} + \int_0^t \|\delta u\|_{B_{2,\infty}^1} (\|u^1\|_{B_{1,1}^1} + \|u^2\|_{B_{1,1}^1}) d\tau \right\}.
\]
On the other hand, by a classical estimate of the transport equation, we get from the first equation in (4.5) that
\[\|\delta u\|_{L^2} \leq \int_0^\tau (\|\delta u \cdot \nabla a\|_{L^2} + \int_0^\tau \|\delta u\|_{L^\infty} \|\nabla a\|_{L^2} + \int_0^\tau \|\delta u\|_{L^\infty} \) \int_0^\tau \|\delta u\|_{L^\infty} \]
(4.14)

While thanks to the interpolation inequality (2.7), \(\|\delta u\|_{\bar{L}_{1}^{1}(B_{2,\infty})} \lesssim \|\delta u\|_{\bar{L}_{1}^{1}(B_{2,\infty})}^{\frac{1}{2}} \|\delta u\|_{\bar{L}_{1}^{1}(B_{2,\infty})}^{\frac{1}{2}} \), one may prove that
\[2^{m} \left(1 + 2^{j} \|a^2\|_{\bar{L}_{1}^{1}(B_{2,\infty})}^{\frac{1}{2}} (1 + \|a^2\|_{\bar{L}_{1}^{1}(B_{2,\infty})}^{\frac{1}{2}}) \|\delta u\|_{\bar{L}_{1}^{1}(B_{2,\infty})} \right) \]
\[\lesssim 2^{m} \left(1 + 2^{j} \|a^2\|_{\bar{L}_{1}^{1}(B_{2,\infty})}^{\frac{1}{2}} (1 + \|a^2\|_{\bar{L}_{1}^{1}(B_{2,\infty})}^{\frac{1}{2}}) \|\delta u\|_{\bar{L}_{1}^{1}(B_{2,\infty})}^{\frac{1}{2}} \right) \|\delta u\|_{\bar{L}_{1}^{1}(B_{2,\infty})} \]
\[\leq \eta \|\delta u\|_{\bar{L}_{1}^{1}(B_{2,\infty})} + c_{\eta} 2^{m} \left(1 + 2^{j} \|a^2\|_{\bar{L}_{1}^{1}(B_{2,\infty})}^{\frac{1}{2}} (1 + \|a^2\|_{\bar{L}_{1}^{1}(B_{2,\infty})}^{\frac{1}{2}}) \right) \int_0^\tau \|\delta u\|_{B_{2,\infty}} \]
As a result, we get
\[\|\delta u\|_{L_{1}^{1}(B_{2,\infty})} + \|\delta u\|_{\bar{L}_{1}^{1}(B_{2,\infty})} \leq C(a_0, k, j, m, \eta) \int_0^\tau \|\delta u\|_{B_{2,\infty}} (1 + \|u^1\|_{B_{0,1}} + \|u^2\|_{B_{0,1}}) d\tau \]
\[+ \int_0^\tau \|\delta u\|_{L_{1}^{1}(L^{\infty})} (\|\Delta u^1\|_{L^2} + \|\nabla \Pi^1||_{L^2}) d\tau \],
so for \(T_4 \in (0, T_3) \) small enough, we obtain, \(\forall t \in [0, T_4] \),
\[\|\delta u\|_{L_{1}^{1}(B_{2,\infty})} + \|\delta u\|_{\bar{L}_{1}^{1}(B_{2,\infty})} \lesssim \int_0^\tau \|\delta u\|_{L_{1}^{1}(L^{\infty})} (\|\Delta u^1\|_{L^2} + \|\nabla \Pi^1||_{L^2}) d\tau \]
(4.15)

Letting \(N \) be an arbitrary positive integer which will be determined later on, we have that
\[\|\delta u\|_{L_{1}^{1}(L^{\infty})} \leq \|\delta u\|_{L_{1}^{1}(B_{0,1}^{1})} \leq \left(\sum_{q \leq -N} + \sum_{1-N \leq q \leq N} + \sum_{q \geq N+1} \right) \|\dot{A} q \delta u\|_{L_{1}^{1}(L^{\infty})} \].

Hence, due to Bernstein’s inequality (Lemma 2.1), we infer
\[\|\delta u\|_{L_{1}^{1}(L^{\infty})} \lesssim 2^{-N} \|\delta u\|_{L_{1}^{1}(L^2)} + N \|\delta u\|_{L_{1}^{1}(B_{0,1}^{1})} + 2^{-N} \|\nabla \delta u\|_{L_{1}^{1}(L^{\infty})} \]
\[\lesssim 2^{-N} \|\delta u\|_{L_{1}^{1}(L^2)} + N \|\delta u\|_{L_{1}^{1}(B_{0,1}^{1})} + 2^{-N} \|\nabla \delta u\|_{L_{1}^{1}(L^{\infty})} \].

If we choose \(N \) such that
\[N \sim \ln \left(e + \frac{\|\delta u\|_{L_{1}^{1}(L^2)} + \|\nabla \delta u\|_{L_{1}^{1}(L^{\infty})}}{\|\delta u\|_{L_{1}^{1}(B_{0,1}^{1})}} \right) \],
then it holds that
\[
\| \delta u \|_{L^1_t(L^\infty)} \lesssim \| \delta u \|_{L^1_t(B_{2,\infty}^1)} \ln(e + \frac{\| \delta u \|_{L^1_t(L^2)} + \| \nabla \delta u \|_{L^1_t(L^\infty)}}{\| \delta u \|_{L^1_t(B_{2,\infty}^1)}}),
\]
and then
\[
\| \delta u \|_{L^1_t(L^\infty)} \lesssim \| \delta u \|_{L^1_t(B_{2,\infty}^1)} \ln(e + \frac{\sum_{i=1}^2 \{ \tau \| u^i \|_{L^\infty_t(L^2)} + \| \nabla u^i \|_{L^1_t(L^\infty)} \}}{\| \delta u \|_{L^1_t(B_{2,\infty}^1)}}).
\]
(4.16)

Notice that for \(\alpha \geq 0 \) and \(x \in (0, 1] \), it holds that
\[
\ln(e + \alpha x^{-1}) \leq \ln(e + \alpha)(1 - \ln x).
\]

Thus, plugging (4.16) into (4.15) leads to
\[
\| \delta u \|_{L^\infty_t(B_{2,\infty}^1)} + \| \delta u \|_{L^1_t(B_{2,\infty}^1)} \lesssim \int_0^T \| \delta u \|_{L^1_t(B_{2,\infty}^1)}(1 - \ln \| \delta u \|_{L^1_t(B_{2,\infty}^1)})(\| \Delta u^1 \|_{L^2} + \| \nabla \Pi^1 \|_{L^2})d\tau.
\]
(4.17)

As \(\int_0^1 \frac{dx}{x(1 - \ln x)} = +\infty \), and \(\| \Delta u^1 \|_{L^2} + \| \nabla \Pi^1 \|_{L^2} \) is locally integral in \(\mathbb{R}^+ \), then by Osgood’s lemma (Lemma 2.4), we obtain that \(\delta u(t) = 0 \), which, together with (4.14) and (4.11), implies that \(\delta a(t) = \delta \nabla \Pi(t) = 0 \) for all \(t \in [0, T] \) with \(T \) small. Applying an inductive argument implies that \(\delta u(t) = \delta a(t) = \delta \nabla \Pi(t) = 0 \) for all \(t > 0 \).

Furthermore, applying (4.17) (up to a slight modification) to the system (1.1), we may readily prove that the solution \((a, u) \in C(\mathbb{R}^+; \dot{B}_{2,1}^1(\mathbb{R}^2)) \times C(\mathbb{R}^+; \dot{B}_{2,1}^0(\mathbb{R}^2))\) depends continuously on the initial data \((a_0, u_0) \in \dot{B}_{2,1}^1(\mathbb{R}^2) \times \dot{B}_{2,1}^0(\mathbb{R}^2)\). This completes the proof of Theorem 1.1. \(\square \)

Funding We thank the anonymous referee for the profitable suggestions. G. Gui is supported in part by the National Natural Science Foundation of China under the Grants 11571279 and 11931013.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. ABIDI, H.: Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique. *Rev. Mat. Iberoam.* **23**(2), 537–586, 2007
2. ABIDI, H., GUI, G., ZHANG, P.: On the wellposedness of 3–D inhomogeneous Navier-Stokes equations in the critical spaces. *Arch. Rational Mech. Anal.* **204**, 189–230, 2012
3. Abidi, H., Paicu, M.: Existence globale pour un fluide inhomogène. *Ann. Inst. Fourier (Grenoble)* 57, 883–917, 2007
4. Abidi, H., Zhang, P.: On the global well-posedness of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscous coefficient. *J. Differ. Equ.* 259, 3755–3802, 2015
5. Kazhikov, A.V.: Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid, (Russian) *Dokl. Akad. Nauk SSSR* 216, 1008–1010, 1974
6. Bahouri, H., Chemin, J.Y.; Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Grundlehren der Mathematischen Wissenschaften, 2010
7. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Cham, 1976
8. Bony, J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. *Ann. Sci. École Norm. Sup.* 14, 209–246, 1981
9. Chemin, J.Y.: Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel. *J. Anal. Math.* 77, 27–50, 1999
10. Chemin, J.-Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. *J. Differ. Equ.* 121, 314–328, 1995
11. Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. *Comm. Partial Differ. Equ.* 26, 1183–1233, 2001
12. Danchin, R.: Density-dependent incompressible viscous fluids in critical spaces. *Proc. R. Soc. Edin. Sect. A* 133, 1311–1334, 2003
13. Danchin, R.: Local and global well-posedness results for flows of inhomogenous viscous fluids. *Adv. Differ. Equ.* 9, 353–386, 2004
14. Danchin, R.: The inviscid limit for density-dependent incompressible fluids. *Annales de la Faculté de Sciences des Toulouse Sér.* 15, 637–688, 2006
15. Danchin, R., Mucha, P.B.: The incompressible Navier-Stokes equations in vacuum. *Comm. Pure. Appl. Math.* 72(7), 1351–1385, 2019
16. Danchin, R., Mucha, P.B.: A Lagrangian approach for the incompressible Navier-Stokes equations with variable density. *Comm. Pure. Appl. Math.* 65, 1458–1480, 2012
17. DiPerna, R. J., Lions, P. L.: Equations différentielles ordinaires et équations de transport avec des coefficients irréguliers. In *Séminaire EDP 1988-1989*, Ecole Polytechnique, Palaiseau, 1989
18. Fleet, T.M.: Differential analysis. Cambridge University Press, Cambridge, 1980
19. Haspot, B.: Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity. *Annales de l’Institut Fourier* 62(5), 1717–1763, 2012
20. Ladyzyenskaja, O.A., Solonnikov, V.A.: The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. (Russian) Boundary value problems of mathematical physics, and related questions of the theory of functions. *Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)* 52(52–109), 218–219, 1975
21. Lions, P. L.: Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996
22. Paicu, M., Zhang, P., Zhang, Z.: Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density. *Commun. Partial Differ. Equ.* 38(7), 1208–1234, 2013
23. Peetre, J.: New thoughts on Besov spaces, *Duke University Mathematical Series* 1, Durham N. C., 1976
24. Planchon, F.: An extension of the Beale-Kato-Majda criterion for the Euler equations. *Comm. Math. Phys.* 232, 319–326, 2003
25. Triebel, H.: Theory of Function Spaces, Monograph in mathematics, vol. 78. Birkhauser Verlag, Basel, 1983
