Water-stable halide perovskite nanocrystals in biological environment

Pavel M. Talianov1, a), Oleksii O. Peltek1, Mikhail A. Masharin1, Soslan Khubezhov2, Mikhail A. Baranov3, Audrius Drabavičius4, Alexander S. Timin5,6, Lev E. Zelenkov1, Anatoly P. Pushkarev1, Sergey V. Makarov1, Mikhail V. Zyuzin1

1Department of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russian Federation
2Department of Physics, North Ossetian State University, 362025 Vladikavkaz, Russian Federation
3Faculty of Photonics and Optical Information, Center of Information Optical Technologies ITMO University, 197101 St Petersburg, Russian Federation
4Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
5Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
6RM Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation

a) Corresponding author: pavel.talianov@metalab.ifmo.ru

Abstract. Tetramethyl orthosilicate and triethoxyphenylsilane, which contains hydrophobic phenyl groups, were used as a silica (SiO2) source in a modified ligand-assisted reprecipitation synthesis approach for the fabrication of water-stable perovskite nanocrystals. Hydrolysis-condensation reaction of tetramethyl orthosilicate and triethoxyphenylsilane results in a formation of 3D siloxane network. Employing triethoxyphenylsilane in the synthesis enhances the hydrophobic properties of the SiO2 shell, which increases the stability of perovskites in aqueous medium. The stability of the CsPbBr2@SiO2 nanocrystals was estimated after 24 h of water exposure by the photoluminescence measurements at different time points. The synthesized CsPbBr2@SiO2 nanocrystals were visualized during in vitro experiments with murine melanoma B16-F10 cells. Hence, the potential of CsPbBr@SiO2 nanocrystals for bioimaging purposes was observed.

1. Introduction

Recently, perovskite nanostructured materials have attracted significant interest due to their excellent photophysical properties, such as narrow full width at half maximum (FWHM), high photoluminescence (PL) quantum yield (PLQY), tunable emission spectra, etc. There are a number of reports dedicated to the fabrication of optoelectronic devices based on perovskite materials, e.g., light-emitting diodes [1], scintillators [2], lasers [3], solar cells. Moreover, not only the linear optical properties of perovskite nanocrystals (NCs) are worthy of attention, but also their nonlinear optical properties, such as near-infrared-triggered photon upconversion, which can be potentially applied for in vivo bioimaging due to an increased penetration depth of near-infrared light [4]. Nevertheless, the instability of perovskites in aqueous medium is still a challenge, which prevents from applying them in bioimaging. This study is...
aimed at obtaining lead halide perovskite (CsPbBr$_3$) nanocrystals coated with a silica shell exhibiting an improved stability in water.

2. Materials and methods

Synthesis of CsPbBr$_3$@SiO$_2$ NCs:
The perovskite nanocrystals covered with silica shells (CsPbBr$_3$@SiO$_2$ NCs) were synthesized using a modified ligand-assisted reprecipitation (LARP) method [5]. Briefly, lead halide perovskite NCs precursor was obtained by mixing PbBr, CsBr and stabilizers (oleylamine (OAm) and oleic acid (OA)) in dimethylformamide (DMF). Subsequently, the colloidal solution was stirred at 90 °C for 2 hours to obtain a clear, slightly yellow solution. Afterwards, a small amount of ammonia was added to the precursor solution, and then the resulting mixture was injected to the excess of toluene solution that contained a tetramethyl orthosilicate (TMOS) and triethoxyphenylsilane (phTEOS) (molar ratio= 50:50) for the hydrolysis-condensation reaction under vigorous stirring at room temperature. After 10 s, the stirring speed was decreased and kept constant overnight. The obtained CsPbBr$_3$ NCs were washed with toluene by centrifugation (8000 rpm for 5 min). A control experiment with non-passivated NCs was performed by Qixuan Z et al [5]. The obtained perovskite sample demonstrated poor stability, decomposing in less than 16 minutes.

Characterization of CsPbBr$_3$@SiO$_2$ NCs:
To check the water resistance, a fresh sample of CsPbBr$_3$ NCs covered with SiO$_2$ shell (CsPbBr$_3$@SiO$_2$ NCs) was sustained in water during 24 h, and then the PL analysis of CsPbBr$_3$@SiO$_2$ NCs was performed using CARY 60 UV-Vis spectrophotometer (excitation λ = 400 nm). The high quality of the obtained CsPbBr$_3$@SiO$_2$ NCs was confirmed with scanning transmission electron microscopy (STEM) on Merlin 42-37 microscope, and with high-resolution transmission microscopy (HRTEM) on Tecnai F20 X-TWIN microscope. The elemental analysis was performed using energy-dispersive X-ray (EDX) measurements.

Cell experiments with CsPbBr$_3$@SiO$_2$ NCs:
B16-F10 cells were cultured in AlphaMEM medium (37°C, aseptic atmosphere with 95% air and 5% CO$_2$). CsPbBr$_3$@SiO$_2$ NCs incubated with B16-F10 cells were visualized using confocal laser scanning microscopy (CLSM). The cells were seeded into cell imaging dishes. Afterwards, the cells were stained with Rhodamine 800, and the cell nuclei with propidium iodide (PI). Then, CsPbBr$_3$@SiO$_2$ NCs were added to the cells and incubated for 24 hours. The stained cells were excited using a HeNe laser (λ = 633 nm, emission filter: LP λ = 650 nm). Perovskite NCs were excited using an argon laser (λ = 488 nm, emission filter: BP λ = 500-550 nm).

3. Results
CsPbBr$_3$ NCs covered with SiO$_2$ shells were visualized with STEM (Fig. 1) and HRTEM (Fig.2). According to the obtained data, the core size distribution of the individually coated CsPbBr$_3$@SiO$_2$ NCs is in the range of 20-30 nm, and their shell thicknesses are in the range of to 8-20 nm. HRTEM image analysis confirms the good quality and the high crystallinity of the synthesized CsPbBr$_3$ cores.
EDX analysis was performed for a single CsPbBr₃@SiO₂ NC (Fig. 3). According to the EDX spectrum, it contains the peaks corresponding to Cs, Pb, Br (perovskite core) and Si (silica shell). To reveal stability of the obtained NCs in aqueous solutions, CsPbBr₃@SiO₂ NCs were sustained in water for 24 h, and the PL measurements were carried out at different time points (0, 1, 4, 24 h) (Fig. 4). According to the obtained PL data, the PL from the perovskite NCs decreased to 25% after 24 h of water exposure. The water resistance of the silica shell formed around CsPbBr₃ NCs can be explained as follows. To obtain a silica shell, TMOS and phTEOS were added to the reaction at 50:50 molar ratio. It should be noted that phTEOS contains phenyl groups, which provide hydrophobic properties and, thus, the improved stability in water.

Further, the stability of CsPbBr₃@SiO₂ NCs was tested in a biological environment; apart from water, it contained organic compounds (ions, enzymes, and proteins), which can induce dissolution of nanomaterials. As a proof of concept, the synthesized CsPbBr₃@SiO₂ NCs were incubated with B16-
F10 cells and visualized with CLSM (Fig. 5). Bright green fluorescence from CsPbBr$_3$@SiO$_2$ associated with B16-F10 cells (stained with tetramethylrhodamine) (TRITC) confirmed the stability of perovskite nanocrystals in biological environment.

![CLSM image](image_url)

Figure 5. CLSM image of the association of CsPbBr$_3$@SiO$_2$ NC (green) with a stained B16 cell (red). Excitation $\lambda = 488$ nm. Scale bar corresponds to 20 μm.

4. Conclusions
To conclude, a synthesis approach to obtain water-stable CsPbBr$_3$@SiO$_2$ NCs was developed. For this, TMOS and pHTEOS were added in molar ratio 50:50 to the reaction within LARP method. The used ratio of pHTEOS and TMOS allows obtaining stable shells, which prevent water penetration to the perovskite core. The water stability of the sample was estimated with PL measurements. The crystal morphology, quality and elemental composition were verified by EDX, STEM, and HRTEM analyses. Moreover, lead halide perovskites were visualized in living cells using confocal laser scanning microscopy. The obtained results prove the good stability of CsPbBr$_3$@SiO$_2$ in water and biological environment.

5. Acknowledgments
This work was supported by Russian Science Foundation (Project 21-73-20189).

References
1. Veldhuis, S.A., Boix, P.P., Yantara, N., Li, M., Sum, T.C., Mathews, N. and Mhaisalkar, S.G., *Adv. Mater.*, 2016, 28: 6804-6834.
2. Chen, Q., Wu, J., Ou, X. et al., *Nature*, 2018, 561, 88–93.
3. Zhu, H., Fu, Y., Meng, F. et al. *Nature Mater*, 2015, 14, 636–642.
4. Liang, L., Chen, N., Jia, Y. et al. *Nano Res.*, 2019, 12, 1279–1292.
5. Qixuan, Z., Muhan C., Huicheng H.,et al., *ACS Nano*, 2018, 12, 8, 8579–8587.