Biomedical Application of Functional Materials in Organ-on-a-Chip

Chizhu Ding1, Xiang Chen1, Qinshu Kang1 and Xianghua Yan2,3,4*

1 State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, China, 2 State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China, 3 The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China, 4 Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China

The organ-on-a-chip (OOC) technology has been utilized in a lot of biomedical fields such as fundamental physiological and pharmacological researches. Various materials have been introduced in OOC and can be broadly classified into inorganic, organic, and hybrid materials. Although PDMS continues to be the preferred material for laboratory research, materials for OOC are constantly evolving and progressing, and have promoted the development of OOC. This mini review provides a summary of the various type of materials for OOC systems, focusing on the progress of materials and related fabrication technologies within the last 5 years. The advantages and drawbacks of these materials in particular applications are discussed. In addition, future perspectives and challenges are also discussed.

Keywords: organ-on-a-chip, microfluidics, elastomer, hydrogel, microfabrication

INTRODUCTION

An organ-on-a-chip (OOC) is a microfluidics-based cell culture device that contains continuously perfused chambers inhabited by living cells to simulate tissue- and organ-level physiology (Bhatia and Ingber, 2014; Ahadian et al., 2018). The development of OOC stems from the recognition that the conventional two-dimensional static cell culture methods lack the ability to mimic the environment that cells experience in vivo (Ryan et al., 2016; Duval et al., 2017). Microfluidic technology provides a way to simulate spatiotemporal chemical gradients, dynamic mechanical forces, and critical tissue interfaces by manipulation of fluids at micro levels. OOC systems that can recreate key aspects of the complex physiological microenvironment of human lung (Huh et al., 2010), heart (Maoz et al., 2017), stomach (Lee K. K. et al., 2018), intestine (Kim et al., 2016), liver (Weng et al., 2017), kidney (Sateesh et al., 2018), blood vessels (Wang et al., 2015), etc., have been developed. Moreover, multi-organs-on-a-chip or body-on-a-chip systems have been proposed (Sung et al., 2019; Zhao et al., 2019a). OOC platforms have shown application potential in a lot of biomedical fields such as fundamental physiological and pharmacological researches (Zhang and Radisic, 2017; Zhang et al., 2018a).
Materials play the major roles in the development of microfluidics and OOC technologies. In general, material considerations include non-toxic to cells, gas permeable, optically transparent for microscopic imaging, costs of the materials and the fabrication process, and the ability to model specific properties of organs (Lee et al., 2014). Although polydimethylsiloxane (PDMS) is still the most common material for laboratory research, emerging materials such as hydrogel, paper and hybrid materials are being developed and used. In this mini review, the classic and advanced materials and fabrication technologies for OOC devices are introduced and discussed, focusing on the progress within the last 5 years. The major properties, limitations, and typical applications in OOC of some representative materials are summarized in Table 1. Future perspectives and challenges in the development of materials for OOCs are briefly discussed.

MATERIALS FOR OOCs

Inorganic Materials

Silicon and glass are the main inorganic materials for OOCs. The first-generation microscale cell culture analog (µCCA) devices mimicking the organ-level function of human physiology were fabricated on silicon (Sin et al., 2004; Mahler et al., 2009). Compared to opaque silicon, glass is optically transparent and optimal for real-time imaging, while reducing the absorbance of hydrophobic molecules and the adsorption of biomolecules (Lee S. et al., 2017; Kulkthong et al., 2018). Nevertheless, glass chips with enclosed channels are not suitable for long-term cell culture because glass is not gas permeable. Another problem is that glass is typically processed with standard photolithography and etching, which are time-consuming and expensive. Recently, femtosecond laser ablation technique has been applied to fabricate 3D structures in glass-based OOCs (Xu et al., 2015; Schulze et al., 2017). Liquid glass, a photocurable amorphous silica nanocomposite enabling soft replication, has been developed for low-cost prototyping of glass microfluidics (Kotz et al., 2016).

Elastomer

Elastomers are polymers with elasticity, and generally having lower Young's modulus and higher yield strain than other materials. PDMS is one of the most common materials used for the fabrication of microchips for the life science applications. It is not only gas permeable, biocompatible and optically transparent, but also particularly useful in prototyping new devices by soft lithography and micromolding technique (McDonald and Whitesides, 2002). Its elasticity allows to demold the PDMS replica with complex 3D structures (Suzuki et al., 2017). Moreover, the elasticity can be used to fabricate biomimetic cell culture scaffolds, such as the human lung-on-a-chip and gut-on-a-chip with pneumatically controlled deformation (Figure 1A) (Hu et al., 2010; Kim et al., 2012) and the microvascular models (Choi et al., 2014; Zhang W. et al., 2016). Apart from the conventional replication method, other strategies including hybrid stamp approach (Kung et al., 2015), razor-printing (Cosson et al., 2015), sacrificial template methods (Cheng et al., 2016) can also be used for PDMS. An optimized blend of PDMS-methacrylate macromers has been developed and demonstrated for 3D stereolithography (SL) with mechanical properties similar to conventional thermally cured PDMS. The 3D-printable PDMS resin would facilitate the fabrication of PDMS-based OOC platforms (Bhattacharjee et al., 2018).

Nevertheless, some characteristics of PDMS such as incompatibility with organic solvents, hydrophobicity and strong adsorption of biomolecules also limits its application in certain fields. Surface modifications of PDMS or the use of alternative materials may be feasible solutions. Some polymers with similar fabrication procedures suitable for rapid prototyping, higher rigidity, and better resistance to solvents, such as thermoset polyester (TPE), polyurethane methacrylate (PUMA) and Norland adhesive 81 (NOA81), have been assessed as complementary to PDMS (Sollier et al., 2011). However, they have not developed into the common choice in OOC devices. Styrene-(ethylene/butylene)-styrene (SEBS) copolymer (Domansky et al., 2017) and tetrafluoroethylene-propylene (FEPM) elastomer (Sano et al., 2019) that do not absorb hydrophobic molecules have been used for fabrication of OOCs for drug discovery and development.

To establish vascular networks, a biodegradable elastomer, poly(octamethylene maleate (anhydride) citrate) (POMaC) is used to construct a scaffold (AngioChip) with a build-in microchannel network. This material provides desired mechanical properties, biodegradation rate, and biocompatibility for specific applications (for example, human myocardium or liver tissue engineering) (Zhang B. et al., 2016; Zhang et al., 2018b). In a platform termed Biowire II, two parallel POMaC wires are suspended in the microwell between which cardiac tissue would self-assemble, matching the mechanical properties of the native cardiac tissue (Zhao et al., 2019b). A biodegradable elastomer with significantly low Young's modulus has been synthesized and demonstrated utility in cardiac tissue engineering constructs (Davenport Huyer et al., 2016).

Plastic

Typical plastic materials for microfluidics include poly(methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), Cyclic Olefin Polymer (COP) and Cyclic Olefin Copolymer (COC). They are generally optically transparent, more rigid than elastomers, less gas-permeable than PDMS, resistant to the permeation of small molecule, but incompatible with most organic solvents (Ren et al., 2013; Gencturk et al., 2017). Among these materials, PMMA has been widely utilized as substrate materials for OOC devices due to its rigid mechanical property, excellent optical transparency and low auto-fluorescence background (Chen X. et al., 2016; Miller and Shuler, 2016). Porous PC membranes are usually incorporated between microchannels in OOC systems to model tissue-tissue interfaces (Shah et al., 2016; Pocock et al., 2017). PS is highly biocompatible and suitable for cell growth and adhesion (Lee et al., 2019). COP and COC present excellent optical transmittance in both the visible and UV range, allowing for high quality fluorescence imaging. They are also FDA approved,
showing a promising potential for future routine clinical use (Mottet et al., 2014). And recently, polyactic acid (PLA) as a sustainable, low absorption, low autofluorescence alternative to other plastics for OOC applications has been demonstrated (Ongaro et al., 2020).

Thermoplastics are suitable for thermo-processing, which is excellent for commercial production due to high production-rate and low cost, but not economical for prototypic use (Ren et al., 2013). Some novel materials such as a photocurable soft lithography compatible liquid PS prepolymer (Nargang et al., 2014) and a fast curing PMMA prepolymer that can be used as a negative photoresist and directly structured using UV or visible light (Kotz et al., 2018) have been developed for rapid prototyping. Fabrication methods for rapid prototyping of whole-thermoplastic microfluidic chips with microvalves and micropumps are being developed and could be employed for the OOC applications (Pourmand et al., 2018; Shaegh et al., 2018).

Table 1 | Typical materials for OOC applications.

Materials	Major properties	Limitations	Typical applications in OOC
Glass	+ Surface stability + Optically transparent + Electrically insulating	– Not gas permeable – High cost of fabrication	OOC device substrate Glass-based chip for transform studies (Kulthong et al., 2018) Enabling real-time imaging (Li X. et al., 2018)
PDMS	+ High elasticity + High gas permeability + Biocompatibility + Rapid prototyping	– Hydrophobicity – Strong adsorption of biomolecules – Not compatible with organic solvents	Most common OOC substrate Biomimetic cell culture scaffold (Kim et al., 2012) Microvascular model (Zhang W. et al., 2016)
Plastic	+ Optically transparent + Low absorption + Rigid + Suitable for mass production	– Less gas-permeable – Unsuitable for prototyping	OOC device substrate (Miller and Shuler, 2016) Porous membrane to model tissue-tissue interfaces (Pocock et al., 2017)
Paper	+ Highly porous + Matrix of cellulose + Potable and low cost	– Limited detection methods – Difficult to integrate microcomponents	OOC device substrate TRACER (Young et al., 2018) Model of respiratory system (Fahimi et al., 2016)
Collagen	+ Biocompatible + Enzymatically degradable + Similar in structural and mechanical properties to native tissues + Good cell adhesion	– Weak mechanical properties	Microvascular networks (Zheng et al., 2012) Scaffold mimicking 3D villi structure (Shim et al., 2017) Neurovascular model (Adriani et al., 2017) Skin model (Lee S. et al., 2017) Kidney model (Lee S. J. et al., 2018) Pumping heart chamber model (Li R. A. et al., 2018) Liver spheroids, tumor spheroids (Yamada et al., 2015; Jeong et al., 2016)
Gelatin	+ Biocompatible + Biodegradable + Similar in composition to collagen + Good cell adhesion + Tunable properties by the addition of functional group (e.g., GelMA)	– Weak mechanical properties – Rapid degradation	Heart-on-a-chip (Zhang Y. S. et al., 2016) Skin model (Zhao et al., 2016) Microvascular networks (Yang et al., 2016) Spheroid-based liver model (Ghise et al., 2016)
Alginate	+ Biocompatible + Biodegradable + Easy functionalization + Immediate gelation at mild condition	– Weak mechanical properties – Poor cell adhesion – Uncontrollable degradation	Scaffolds containing living cells (Ning et al., 2018) Liver spheroids, tumor spheroids (Chan et al., 2016; Kang et al., 2016) Hydrogel fibers (Zhu et al., 2017) Self-organizing cardiac microchambers (Ma et al., 2015) Liver organoids generation (Ng et al., 2018) Intestinal organoids generation (Cruz-Acuña et al., 2017)
PEG and its derivatives (e.g., PEGDA)	+ Biocompatible + Tunable and precise mechanical and degradation properties + Relatively low protein adsorption	– Less cell adhesive – Limited biodegradation	
device named tumor roll for analysis of cellular environment and response (TRACER), different cells are seeded in a defined area on the paper, and then the 3D tumors are assembled by rolling the biocomposite strip. By unrolling the strip, the model can be rapidly disassembled for snapshot analysis (Figure 1B) (Rodenhizer et al., 2016; Young et al., 2018). The Khademhosseini group presented the use of hydrophobic paper as a semi-permeable membrane for culturing cells at the air-liquid interface. The final paper-based device provides a cost-effective platform for human respiratory system studies under physiologically relevant conditions (Figure 1C) (Rahimi et al., 2016).

Having many similarities with paper, nitrocellulose membranes (Guo et al., 2018), threads (Yang et al., 2014), and cloths (Wu and Zhang, 2015) have also been investigated as a scaffold for cell culture. They have potential as superior alternatives to paper due to the stronger, higher controllable rates for fluid mixing and lower environmental impact (Bagherbaigi et al., 2014).

Hydrogel

Hydrogels are polymeric materials distinguished by high water content (Seliktar, 2012). They can mimic salient elements of native extracellular matrices (ECMs) due to their high biocompatibility and tunable properties, such as elasticity, porosity, permeability, stiffness and degradability. These properties of hydrogels are largely dependent on the types, gelation methods, and fabrication technologies. Hydrogels can be broadly classified into natural, synthetic, and hybrid according to their source (Caliari and Burdick, 2016; Jiang et al., 2016; Liu et al., 2019). Typical natural hydrogels include collagen, alginate, gelatin, agarose, and fibrin. They are generally highly biocompatible and containing cell-binding sites for cell attachment, spreading, growth, and differentiation. Collagen is the most common ECM component in the body and one of the most widely used hydrogels for bioengineered tissue microenvironments (Antoine et al., 2014). Gelatin has a similar composition to collagen. Gelatin methacryloyl (GelMA) hydrogels closely resemble some essential properties of native ECM and can be microfabricated using different methodologies (Yue et al., 2015). In recent studies, ECM hydrogels derived from decellularized tissues have been used to provide a supportive microenvironment capable of long-term culture of islets or directing cell growth (Giobbe et al., 2019; Jiang et al., 2019). Nevertheless, natural hydrogels suffer from some drawbacks such as relatively poor mechanical properties, limited long-term stability, and batch-to-batch variability. Typical synthetic hydrogels include polyethylene glycol (PEG) and its derivatives [e.g., PEG-diacrylate (PEG-DA)], polylactic acid (PLA), poly(lactic-co-glycolic acid) (PLGA), and poly(ε-caprolactone)
Defined 4D control even in the presence of live cells (Figure 1G). Based on photodegradable hydrogels, 3D vascular networks design dynamic cell microenvironments (Rosales et al., 2017). and photoinitiated crosslinking reactions, which is useful to of light stimulation (Li et al., 2019). Softening or stiffening manipulation and the inherent space-time control capabilities in OOC. Light-responsive hydrogels are of particular adapting to external stimuli has found its applications microenvironments as well as simple but precise methods to permit the soluble factors, such as nutrients, proteins, and signaling molecules exchange (Figure 1D) (Adriani et al., 2017). Compared with other artificial membranes used in OOC models, hydrogel barriers allow close cell association by making direct cell-cell contact between multiple cell types possible (Tibbe et al., 2018). Thanks to the progress in 3D (bio)printing technology, cell-laden hydrogels scaffolds can be rapidly created with spatial heterogeneity in predefined patterns (Miri et al., 2018; Moroni et al., 2018). Methods for the fabrication of hydrogel-based microfluidic chips are being developed. By stereolithographic high-resolution printing of PEG-DA, microfluidic chips with biofunctionalized complex 3D perfusion networks can be rapidly fabricated (Zhang and Larsen, 2017). Combining casting and bonding processes, Nie et al. (2018) fabricated a hydrogel-based vessel-on-a-chip of gelatin and GelMA.

Another frequently employed strategy for cell-based assays using hydrogels is to generate cell-encapsulated hydrogel droplets or hydrogel microfibers, especially through microfluidic approaches. On-chip production, storage, sorting and high-resolution imaging of hydrogel droplet has been achieved (Aubry et al., 2015). The generated microgels, including multicellular microspheres and microcapsules, create microenvironments for cell growth and proliferation (Figure 1E) (Headen et al., 2014; Alessandri et al., 2016; Chen Q. et al., 2016). By adjusting flow conditions in the microfluidic devices, various microfibers with morphological and compositional diversity can be generated as platforms for cell coculture (Figure 1F) (Yu et al., 2016; Xu et al., 2017; Liu et al., 2018; Xie et al., 2018).

The development of “smart” responsive hydrogels adapting to external stimuli has found its applications in OOC. Light-responsive hydrogels are of particular interest because of their capability of contact-free remote manipulation and the inherent space-time control capabilities of light stimulation (Li et al., 2019). Softening or stiffening hydrogels can be achieved by sequential photodegradation and photoinitiated crosslinking reactions, which is useful to design dynamic cell microenvironments (Rosales et al., 2017). Based on photodegradable hydrogels, 3D vascular networks within hydrogels can be altered dynamically, permitting user-defined 4D control even in the presence of live cells (Figure 1G) (Arakawa et al., 2017). In addition to applications related to cell culture, nanocomposite hydrogels crosslinking with metal or metal-oxide nanoparticles, and hydrogels of conducting polymers, such as poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) based hydrogels, have biocompatibility, desired electrical and mechanical properties, and can be used to make sensors integrated in OOC platforms (Gaharwar et al., 2014; Park et al., 2015; Lu et al., 2019).

Organic-Inorganic Hybrid Materials

Organic–inorganic hybrid materials offer the advantages of the organic content and the inorganic matrix. By combining inorganic clay nanoparticles with polymer matrix, clay-polymer nanocomposites has the ability to marry important biomaterial parameters such as porosity or self-organization with mechanical strength and toughness. Enhancements in cell adhesion, proliferation, and differentiation in response to clay nanoparticles have been observed in investigation into clay-cell interactions, suggesting the potential for the generation of multifunctional scaffolds for tissue engineering (Dawson and Oreffo, 2013). A UV-curable hybrid ceramic polymer Ormocomp is inherently biocompatible supporting cell adhesion without any additional coating and has been utilized as scaffolds for cell culture (Scheiwe et al., 2015; Järvinen et al., 2020). Ormocomp has excellent transparency for VIS and near UV down to 350 nm. In a recent study, round concave cross-sectional shaped microchannels of Ormocomp were fabricated via single step lithography to improve the sensitivity of fluorescence imaging (Bonabi et al., 2017). Novel organic–inorganic hybrid materials can potentially be used in the fabrication of OOC devices (Mechref et al., 2016a,b).

SUMMARY AND OUTLOOK

The OOC technology has been utilized in biomedical fields and has displayed great potential to speed up and simplify fundamental physiological and pathophysiological researches. The choice of chip materials is the first and crucial step for a successful OOC application. PDMS and plastics have been utilized as substrate materials for the majority of OOC platforms. Hydrogel materials are particularly suitable for mimicking native ECMs, and are often combined with other substrate materials to form hybrid chips. Many materials suitable for 3D (bio)printing technologies have been developed, providing a convenient method for prototyping complex chip structures. In particular, novel multi-material bioprinting technologies facilitate the fabrication of cell-laden constructs that highly similar to the biological tissues. These advances in materials and fabrication technologies have promoted the development of OOCs.

However, limitations and challenges exist. The hydrogel simulated microenvironments still differ from the native ECM microenvironments in stiffness, permeability and biochemical components. Moreover, the native microenvironment is diverse and may dynamically change during the stages of growth. It is important to design materials that can mimic the real ECM microenvironments as well as simple but precise methods to
regulate the properties. In addition, the design of most OOC devices typically requires the assembly of hybrid materials. Novel materials together with fabrication methods covering both biological and engineering aspects can be a great challenge and an active area of research.

AUTHOR CONTRIBUTIONS

CD and XY conceived and designed the manuscript. CD and XC wrote the original draft. QK and XY revised the manuscript.

REFERENCES

Adriani, G., Ma, D., Pavesi, A., Kamm, R. D., and Goh, E. L. K. (2017). A 3D neurovascular model mimicking of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. *Lab Chip* 17, 448–459. doi: 10.1039/C6LC00638H

Ahadian, S., Civitarese, R., Bannerman, D., Mohammadi, M. H., Lu, R., Wang, E., et al. (2018). Organ-on-a-chip platforms: a convergence of advanced materials, cells, and microscale technologies. *Adv. Healthc. Mater.* 7:1700506. doi: 10.1002/adhm.201700506

Alessandrini, K., Feyeux, M., Gurchenkov, B., Delgado, C., Trushtko, A., Krause, K.-H., et al. (2016). A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). *Lab Chip* 16, 1593–1604. doi: 10.1039/C6LC00133E

Annabi, N., Selimović, Š., Acevedo Cox, J. P., Ribas, J., Afshar Bakooshli, M., Heintze, D., et al. (2013). Hydrogel-coated microfluidic channels for cardiomyocyte culture. *Lab Chip* 13, 3569–3577. doi: 10.1039/C3LC50252J

Antoine, E. E., Vlachos, P. P., and Rylander, M. N. (2014). Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. *Tissue Eng. Part B Rev.* 20, 683–696.

Arakawa, C. K., Badeau, B. A., Zheng, Y., and DeForest, C. A. (2017). Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. *Adv. Mater.* 29:1703156. doi: 10.1002/adma.201703156

Aubry, G., Zhan, M., and Lu, H. (2015). Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. *Lab Chip* 15, 1424–1431. doi: 10.1039/C4LC01384K

Bagherbazi, S., Cárcoles, E. P., and Wicaksono, D. H. B. (2014). Cotton fabric as a based material with sylgard-184 properties. *Adv. Mater.* 26, 760–772. doi: 10.1002/adma.201300525

Bhattarai, K., Sliz, J. D., Wen, N., Hinojosa, C., Thompson, G., Fraser, J. P., et al. (2016). SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. *Microfluid. Nanofluid.* 21:107.

Bu, Y., Tian, S., and Mammoto, A. (2017). Modeling physiological events in 2D vs. 3D cell culture. *Physiology 32, 266–277. doi: 10.1152/physiol03006.2016

Chen, Q., Utech, S., Chen, D., Prodanovic, R., Lin, J.-M., and Weitz, D. A. (2016). Controlled assembly of heterotypic cells in a core–shell scaffold: organ in a droplet. *Lab Chip* 16, 1346–1349. doi: 10.1039/C6LC00231E

Chen, X., Shen, J., and Zhou, M. (2016). Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO₂-laser micromachining and thermal bonding. *J. Micromech. Microeng.* 26:107001. doi: 10.1088/0960-1317/26/10/107001

Cheng, S.-B., Xie, M., Xu, J.-Q., Wang, J., Li, S.-W., Guo, S., et al. (2016). High-efficiency capture of individual and cluster of circulating tumor cells by a microchip embedded with three-dimensional Poly(dimethylsiloxane) Scaffold. *Anal. Chem.* 88, 6773–6780. doi: 10.1021/acs.analchem.6b01130

Cho, J. S., Piao, Y., and Seo, T. S. (2014). Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel. *Biomaterials 35, 63–70. doi: 10.1016/j.biomaterials.2013.09.106

Dawson, J. L., and Orefio, R. O. C. (2013). Clay: new opportunities for tissue engineering and biomaterial design. *Adv. Mater.* 25, 4069–4086. doi: 10.1002/adma.201301034

Domanski, K., Sliz, J. D., Wen, N., Hinojosa, C., Thompson, G., Fraser, J. P., et al. (2017). SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. *Microfluid. Nanofluid.* 21:107.

Duval, K., Grover, H., Han, L.-H., Mou, Y., Peggioro, A. F., Fredberg, J., et al. (2017). Modeling physiological events in 2D vs. 3D cell culture. *Physiology 32, 266–277. doi: 10.1152/physiol03006.2016

Gaharwar, A. K., Peppas, N. A., and Khademhosseini, A. (2014). Nanocomposite hydrogels for biomedical applications. *Biomater. Sci.* 1196–1205. doi: 10.1039/c4lc00573a

Guo, Y., Li, Z., Su, W., Wang, L., Zhu, Y., and Qin, J. (2018). A biomimetic human Neural Stem Cells (hNSC). *Biomicrofluidics* 12, 2720–2730. doi: 10.1002/smll.201502932

Huh, D., Matthews, B. D., Mammo, A., Montoya-Zavala, M., Hsin, H. Y., and Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip. *Science 328, 1662–1668. doi: 10.1126/science.1188302

M., Heintze, D., et al. (2013). Hydrogel-coated microfluidic channels for cardiomyocyte culture. *Lab Chip* 13, 3569–3577. doi: 10.1039/C3LC50252J

Caliari, S. R., and Burdick, J. A. (2016). A practical guide to hydrogels for cell culture. *Nat. Methods 13, 405–414. doi: 10.1038/nmeth.3839

Chan, H. F., Zhang, Y., and Leong, K. W. (2016). Efficient one-step production of microencapsulated hepatocyte spheroids with enhanced functions. *Small 12, 2720–2730. doi: 10.1002/smll.201502932

FUNDING

This research was financially supported by the National Natural Science Foundation of China (31730090), Hubei Provincial Natural Science Foundation of China (2018CFA020), and the Fundamental Research Funds for the Central Universities (2662018C008 and 2662019Y010).

All the authors contributed to the article and approved the submitted version.

Ding et al. Materials for Organ-on-a-Chip
Humayun, M., Chow, C.-W., and Young, E. W. K. (2018). Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip 18, 1298–1309. doi: 10.1039/C7LC01357D

Järvinen, P., Bonabi, A., Jokinen, V., and Sikanen, T. (2020). Simultaneous culturing of cell monolayers and spheroids on a single microfluidic device for bridging the gap between 2D and 3D cell assays in drug research. Adv. Funct. Mater. 30:2000479. doi: 10.1002/adfm.202000479

Jeong, S.-Y., Lee, J.-H., Shin, Y., Chung, S., and Kuh, H.-J. (2016). Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One 11:e0159013. doi: 10.1371/journal.pone.0159013

Jiang, K., Chaimov, D., Patel, S. N., Liang, J. P., Wiggins, S. C., Samoljik, M. M., et al. (2019). 3-D physiomeiotic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 198, 37–48. doi: 10.1016/j.biomaterials.2018.08.057

Jiang, W., Li, M., Chen, Z., and Leong, K. W. (2016). Cell-laden microfluidic microgels for tissue regeneration. Lab Chip 16, 4482–4506. doi: 10.1039/c6lc01193d

Kang, J., Lee, D. W., Hwang, H. J., Yeon, S.-E., Lee, M.-Y., and Kuh, H.-J. (2016). Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids. Lab Chip 16, 2265–2276. doi: 10.1039/C6LC00526H

Kenney, R. M., Boyce, M. W., Whitman, N. A., Kromhout, B. P., and Lockett, M. R. (2018). A ph-sensing electrode for mapping spatiotemporal gradients in 3D paper-based cell cultures. Anal. Chem. 90, 2376–2383. doi: 10.1021/acs.analchem.7b05015

Kim, H.-J., Huh, D., Hamilton, G., and Ingber, D. E. (2016). Human gut-on-a-chip with arrayable suspended gels for studying epithelial and tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 18, 2614–2631. doi: 10.1039/C8LC00418H

Li, L., Scheiger, J. M., and Levkin, P. A. (2019). Design and applications of photoresponsive hydrogels. Adv. Mater. 31:1807333. doi: 10.1002/adma.201807333

Li, R. A., Keung, W., Cashman, T. J., Backeris, P. C., Johnson, B. V., Bardot, E. S., et al. (2018). Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials 163, 116–127. doi: 10.1016/j.biomaterials.2018.02.024

Li, X., George, S. M., Vernetti, L., Gough, A. H., and Taylor, D. L. (2018). A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 18, 2614–2631. doi: 10.1039/C8LC00418H

Liu, H., Wang, Y., Cui, K., Guo, Y., Zhang, X., and Qin, J. (2019). Advances in hydrogels in organoids and organs-on-a-chip. Adv. Mater. 31:e1902042. doi: 10.1002/adma.201902042

Liu, Y. X., Li, Q., Liang, Z., Xie, R., Ding, M., Liu, H., et al. (2018). Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology. RSC Adv. 8, 23475–23480. doi: 10.1039/C8RA04192J

Lu, B., Yun, H., Lin, S., Jin, Q., Ku, K., Xu, J., et al. (2019). Pure PEDOT:PSS hydrogels. Nat. Commun. 10:1043.

Ma, Z., Wang, J., Loskill, P., Huensch, N., Koo, S., Svedlund, F. L., et al. (2015). Self-organizing human cardiac microchambers mediated by geometric confinement. Nat. Commun. 6, 7413. doi: 10.1038/ncomms8413

Majer, G. J., Esch, M. B., Glahn, R. P., and Shuler, M. L. (2009). Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 104, 193–205. doi: 10.1002/bit.22366

Maoz, B. M., Herland, A., Henry, O. Y. F., Leineweber, W. D., Yadid, M., Doyle, J., et al. (2017). Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip 17, 2294–2302. doi: 10.1039/C7LC00412E

McDonald, J. C., and Whitesides, G. M. (2002). Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499. doi: 10.1021/ar010110q

Mechref, E., Jabbour, J., Calas-Etienne, S., Amro, K., Mehdi, A., Tauc, R., et al. (2016a). New organic–inorganic hybrid material based on a poly(amic acid) oligomer: a promising opportunity to obtain microfluidic devices by a photolithographic process. RSC Adv. 6, 90666–90673. doi: 10.1039/C6RA0584J

Mechref, E., Jabbour, J., Calas-Etienne, S., Amro, K., Mehdi, A., Tauc, R., et al. (2016b). Synthesis and characterization of a photosensitive organic–inorganic, hybrid positive resin type material: application to the manufacture of microfluidic devices by laser writing. RSC Adv. 6, 3951–3959. doi: 10.1039/C5RA21393B

Miller, P. G., and Shuler, M. L. (2016). Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol. Bioeng. 113, 2213–2227. doi: 10.1002/bit.25989

Miri, A. K., Nieto, D., Iglesias, L., Goodarzi Hosseinabadi, H., Maharjan, S., Ruiz-Esparza, G. H., et al. (2018). Microfluidics-enabled multilevel massless stereolithic bioprinting. Adv. Mater. 30:e1800242. doi: 10.1002/adma.201800242

Moroni, L., Burdick, J. A., Highley, C., Lee, S. J., Morimoto, Y., Takeuchi, S., et al. (2018). Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37. doi: 10.1038/s41578-018-0006-y

Mosadegh, B., Lockett, M. R., Minn, K. T., Simon, K. A., Gilbert, K., Hillier, S., et al. (2015). A paper-based invasion assay: assessing chemotaxis of cancer cells in gradients of oxygen. Biomaterials 52, 262–271. doi: 10.1016/j.biomaterials.2015.02.012

Mottet, G., Perez-Toralla, K., Tulucukuoglu, E., Bidard, F.-C., Pierga, J.-Y., Draskovic, I., et al. (2014). A three dimensional thermoplastic microfluidic chip for robust cell capture and high resolution imaging. Biomicrofluidics 8, 024109. doi: 10.1063/1.4871035

Nargang, T. M., Brockmann, L., Nikolov, P. M., Schild, D., Hillier, S., et al. (2015). Liquid glass: a facile soft replication method for structuring glass. Adv. Funct. Mater. 25, 51–61. doi: 10.1002/adfm.201403945

Ng, S. S., Saab-Parsy, K., Blackford, S. J. L., Segal, J. M., Serra, M. P., Horcas-Lopez, L., et al. (2018). Human iPSC derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials 182, 299–311. doi: 10.1016/j.biomaterials.2018.07.043
Nie, J., Gao, Q., Wang, Y., Zeng, J., Zhao, H., Sun, Y., et al. (2018). Vessel-on-a-chip with hydrogel-based microfluidics. Small 14:1802368. doi: 10.1002/smll.201802368

Ning, L., Xu, Y., Chen, X., and Schreyer, D. J. (2016). Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. J. Biomater. Sci. Polym. Ed. 27, 898–915. doi: 10.1080/09205063.2016.1170415

Ongaro, A. E., Di Giuseppe, D., Kermanizadeh, A., Miguelez Crespo, A., Mencattini, A., Gibelli, L., et al. (2020). Poly lactic is a sustainable, low absorption, low autofluorescence alternative to other plastics for microfluidic and organ-on-chip applications. Anal. Chem. 92, 6693–6701. doi: 10.1021/acs.analchem.0c00651

Park, S., Kang, Y. J., and Majd, S. (2015). A review of patterned organic Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. Lab Chip 11, 3572–3765. doi: 10.1039/C1LC02514E

Shah, P., Fritz, J. V., Glaab, E., Desai, M. S., Greenhalgh, K., Frachet, A., et al. (2016). A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7:11535. doi: 10.1038/ncomms11535

Shim, K. Y., Lee, D., Han, J., Nguyen, N. T., Park, S., and Sung, J. H. (2017). Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed. Microdevices 19:37. doi: 10.1007/s10544-017-0179-y

Sin, A., Chiu, K. C., Jamil, M. F., Kostov, Y., Rao, G., and Shuler, M. L. (2004). The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20, 338–345. doi: 10.1021/bp034077d

Sollier, E., Murray, C., Maoddi, P., and Di Carlo, D. (2011). Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11, 3752–3765. doi: 10.1039/C1LC02514E

Sung, J. H., Wang, Y. I., Narasimhan Sriman, N., Jackson, M., Long, C., Hickman, J. J., et al. (2019). Recent advances in body-on-a-chip systems. Anal. Chem. 91, 330–351. doi: 10.1021/acs.analchem.8b05293

Tibbe, M. P., Feferink, A. M., van den Berg, A., Eijkel, J. C. T., and Segerink, L. I. (2018). Microfluidic gel patterning method by use of a temporary membrane for organ-on-chip applications. Adv. Mater. Technol. 3:1700200.

Tibbe, M. P., Feferink, A. M., van den Berg, A., Eijkel, J. C. T., and Segerink, L. I. (2018). Microfluidic gel patterning method by use of a temporary membrane for organ-on-chip applications. Adv. Mater. Technol. 3:1700200.

Yu, Y., Wei, W., Wang, Y., Xu, C., Guo, Y., and Qin, J. (2016). Simple spinning of gelatin methacryloyl (GelMA) hydrogels. K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell behaviour. Acta Biomater. 46, 2396–2406. doi: 10.1021/acs.macro Letters.7b00023

Young, L., Shridhar, S. V., Gerwitz, M., and Soman, P. (2016). An artificial blood vessel implanted three-dimensional microsystem for modeling tumor microvascular migration of tumor cells. Lab Chip 15, 1178–1187. doi: 10.1039/c3lc00973h

Yang, Y.-A., Lin, C.-H., and Wei, Y.-C. (2014). Thread-based microfluidic system of gelatin methacryloyl (GelMA) hydrogels. K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell behaviour. Acta Biomater. 46, 2396–2406. doi: 10.1021/acs.macro Letters.7b00023

Yang, L., Shridhar, S. V., Gerwitz, M., and Soman, P. (2016). An artificial blood vessel implanted three-dimensional microsystem for modeling tumor microvascular migration of tumor cells. Lab Chip 15, 1178–1187. doi: 10.1039/c3lc00973h

Yu, X., Xu, P., Liu, Y., Li, L., Luo, G., Ding, M., et al. (2018). Necklace-like microfluidic devices with variable knots and perforable channels fabricated by an oil-free microfluidic spinning process. Adv. Mater. 30:1705082. doi: 10.1002/adma.201705082.

Xu, J., Wu, D., Ip, I. Y., Midoriikawa, K., and Sugioka, K. (2015). Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis. RSC Adv. 5, 24072–24080. doi: 10.1039/C5RA00256G

Xu, P., Xie, R., Liu, Y., Luo, G., Ding, M., and Liang, Q. (2017). Bioinspired microfluidics with embedded perforable helical channels. Adv. Mater. 29:1701664. doi: 10.1002/adma.201701664.

Yamada, M., Horii, A., Sugaya, S., Yajima, Y., Uotu, R., Yamato, M., et al. (2015). Cell-sized condensed collagen microparticles for preparing microengineered composite spheroids of primary hepatocytes. Lab Chip 15, 3941–3951. doi: 10.1039/c5LC00785B

Yang, L., Shridhar, S. V., Gerwitz, M., and Soman, P. (2016). An in vitro vascular chip using 3D printing-enabled hydrogel casting. Biofabrication 8, 035015. doi: 10.1088/1758-5090/8/3/035015

Yang, Y.-A., Lin, C.-H., and Wei, Y.-C. (2014). Thread-based microfluidic system of gelatin methacryloyl (GelMA) hydrogels. K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell behaviour. Acta Biomater. 46, 2396–2406. doi: 10.1021/acs.macro Letters.7b00023

Young, M., Rodenhizer, D., Dean, T., D’Arcangelo, E., Xu, B., Ailles, L., et al. (2015). Au- and Cu-based microfluidic structures for in situ control of electrotaxis. RSC Adv. 5, 24072–24080. doi: 10.1039/C5RA00256G

Yue, K., Trujillo-de Santiago, G., Alvarez, M. M., Tamayol, A., Annabi, N., and Khademhosseini, A. (2015). Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271. doi: 10.1016/j.biomaterials.2015.08.045

Zhang, B., Korolj, A., Lai, B. F. L., and Radiusc, M. (2018a). Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 3, 257–278.
Zhang, B., Lai, B. F. L., Xie, R., Davenport Huyer, L., Montgomery, M., and Radisic, M. (2018b). Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature. Nat. Protoc. 13, 1793–1813.

Zhang, B., Montgomery, M., Chamberlain, M. D., Ogawa, S., Korolj, A., Pahnke, A., et al. (2016). Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15, 669–678. doi: 10.1038/nmat4570

Zhang, B., and Radisic, M. (2017). Organ-on-a-chip devices advance to market. Lab Chip 17, 2395–2420. doi: 10.1039/c6lc01554a

Zhao, Y., Kankala, R. K., Wang, S. B., and Chen, A. Z. (2019a). Multi-organs-on-chips: towards long-term biomedical investigations. Molecules 24:675. doi: 10.3390/molecules24040675

Zhao, Y., Rafatian, N., Feric, N. T., Cox, B. J., Aschar-Sobbi, R., Wang, E. Y., et al. (2019b). A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913. doi: 10.1016/j.cell.2018.11.042

Zheng, Y., Chen, J., Craven, M., Choi, N. W., Totorica, S., Diaz-Santana, A., et al. (2012). In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. U.S.A. 109, 9342–9347. doi: 10.1073/pnas.1201240109

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ding, Chen, Kang and Yan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.