Three New Multiflorane-Type Triterpenes from Pumpkin (Cucurbita maxima) Seeds

Takashi Kikuchi, Mika Takebayashi, Mayumi Shinto, Takeshi Yamada and Reiko Tanaka *

Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki-shi, Osaka 569-1094, Japan

* Author to whom correspondence should be addressed; E-Mail: tanakar@gly.oups.ac.jp; Tel./Fax: +81-72-690-1084.

Received: 17 April 2013; in revised form: 9 May 2013 / Accepted: 10 May 2013 / Published: 14 May 2013

Abstract: Three new multiflorane-type triterpenes; 7α-methoxymultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (1), 7-oxomultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (2), and multiflora-7,9(11)-diene-3α,29-diol 3-p-hydroxybenzoate-29-benzoate (3), were isolated from seeds of Cucurbita maxima, along with three known compounds. Compound 3 and multiflora-7,9(11)-diene-3α,29-diol 3-benzoate (5) exhibited potent inhibitory effects on melanogenesis, with low cytotoxicities, and 2 exhibited single-digit micromolar cytotoxicity against HL-60 and P388 cells.

Keywords: Cucurbita maxima; multiflorane-type triterpenes; melanogenesis inhibitory activity; cytotoxic activity

1. Introduction

Pumpkins, including Cucurbita moschata, C. pepo, and C. maxima are gourd squashes of the genus Cucurbita and the family Cucurbitaceae. Cucurbita moschata seeds have been used as an anthelmintic [1], and Cucurbita pepo seeds as an anthelmintic and a diuretic [2].

Cucurbita maxima (English name: squash, pumpkin, Japanese name: kabocha) is indigenous to the plateaus of central and south America, but is cultivated throughout the World. Its fruits, flowers, and seeds have been eaten as vegetables containing vitamins A, C, and E. Several triterpenes such as cucurbita-5,24-dienol [3] and α- and β-amyrin [4] are present in the seeds of Cucurbita maxima. Additionally, it has been demonstrated that the seeds and flowers of C. maxima contain sterols [4–6]. Herein, we report the isolation and structural elucidation of three new multiflorane-type triterpenes
along with three known compounds, multiflora-7,9(11)-diene-3α,29-diol 3,29-dibenzoate (4), multiflora-7,9(11)-diene-3α-29-diol 3-benzoate (5) and multiflora-5,7,9(11)-triene-3α,29-diol 3,29-dibenzoate (6), from seeds of C. maxima and describe their inhibitory effects on α-MSH-induced melanogenesis in B16 melanomas, and cytotoxic activities against the HL-60 and P388 leukemia cell lines.

2. Results and Discussion

Three new multiflora-type triterpenes 1–3 and three known multiflora-type triterpenes 4–6 were isolated from the MeOH extract of C. maxima seeds (Figure 1).

Figure 1. Chemical structures of isolated compounds 1–6.

The compound 1 was obtained as an amorphous solid with a molecular ion at \(m/z \) 618.4282 [M]+ (calcd. for C_{46}H_{58}O_{5}, 618.4285) in the HREIMS. The IR spectrum showed absorptions indicating two carbonyl groups \(\nu_{\text{max}} \) 1743 (C=O), 1724 (C=O), 1267 (C–O), 1247 (C–O) cm\(^{-1}\). The \(^1\)H- and \(^13\)C-NMR spectra (\(\delta_{\text{H}} \) and \(\delta_{\text{C}} \) in ppm, Table 1) displayed signals for seven tertiary methyl groups \(\{\delta_{\text{H}} 0.88, 0.93, 0.94, 1.04, 1.06, 1.08, 1.13 \} \), an oxymethylene \(\{\delta_{\text{H}} 4.11, 4.15 \} \), two oxymethines \(\{\delta_{\text{H}} 3.53 \} \), a benzoyl group \(\{\delta_{\text{H}} 2.06 \} \), a methoxyl group \(\{\delta_{\text{H}} 3.24 \} \), and a methoxyl group \(\{\delta_{\text{H}} 5.0 \} \). In the HMBC experiment (Figure 2), the following correlations were observed: Me-23 \(\{\delta_{\text{H}} 0.88 \} \) to C-3 \(\{\delta_{\text{C}} 77.2 \} \), C-4, C-5, and C-24; Me-24 \(\{\delta_{\text{H}} 0.93 \} \) to C-3, C-4, C-5, and Me-23; Me-25 \(\{\delta_{\text{H}} 0.94 \} \) to C-1, C-5, C-9 \(\{\delta_{\text{C}} 140.0 \} \), and C-10; Me-26 \(\{\delta_{\text{H}} 1.04 \} \) to C-8 \(\{\delta_{\text{C}} 135.2 \} \), C-13, C-14, and C-15; Me-27 \(\{\delta_{\text{H}} 1.06 \} \) to C-12, C-13, C-14, and C-18; Me-28 \(\{\delta_{\text{H}} 1.13 \} \) to C-16, C-17, C-18, and C-22; H2-29 \{\delta_{\text{H}} 4.11, 4.15 \} to C-19, C-20, C-21, C-30, and 29-OC\(_2\) \(\{\delta_{\text{C}} 166.6 \} \); Me-30 \(\{\delta_{\text{H}} 1.08 \} \) to C-19, C-20, C-21, and C-29 \(\{\delta_{\text{C}} 73.0 \} \); H-3 \(\{\delta_{\text{H}} 4.68 \} \) to 3-OC\(_2\) \(\{\delta_{\text{C}} 171.1 \} \); H-5, H-6\(\beta\), and 7-OMe \(\{\delta_{\text{H}} 3.24 \} \) to C-7 \(\{\delta_{\text{C}} 74.0 \} \); H-6\(\beta\), H-11, and Me-26 to C-8 \(\{\delta_{\text{C}} 135.2 \} \); and H-11 and Me-25 to C-9 \(\{\delta_{\text{C}} 140.0 \} \) (Figure 2).
Table 1. 1H (500 MHz) and 13C (125 MHz) NMR spectroscopic data of compounds 1–3 (CDCl$_3$)a.

Position	δ_C (ppm), type	δ_H (ppm) (J in Hz)	δ_C (ppm), type	δ_H (ppm) (J in Hz)	δ_C (ppm), type	δ_H (ppm) (J in Hz)
1	29.7, t	α, 1.39, m	29.5, t	1.59, m	31.8, t	α, 1.97, m
		β, 1.45, m		β, 1.58, m		β, 1.98, m
2	23.4, t	α, 1.64, m	22.9, t	α, 1.75, m	23.1, t	α, 1.87, m
		β, 1.85, m		β, 1.95, m		β, 1.98, m
3	77.2, d	4.68, t (2.8)	76.9, d	4.71, t (2.5)	78.8, d	4.82, brd (3.2)
4	36.2, s		36.5, s			
5	39.7, d, dd (12.5, 1.1)	42.6, d	2.07, dd (7.5, 3.9)	43.9, d	1.94, m	
6	22.4, t	α, 1.89, m	36.2, t	2.35, m	23.7, t	α, 2.14, brt (5.0)
		β, 1.30, m		β, 2.08, m		β, 2.08, m
7	74.0, d	3.53, brs	198.3, s			
8	135.2, s		142.5, s			
9	140.0, s		163.3, s			
10	38.5, s	39.2, s	36.4, s			
11	21.0, t, 2H, m	198.3, s	22.2, t	α, 2.30, m	114.8, d	5.29, brd (5.9)
		β, 2.14, m		β, 2.08, m		β, 1.79, m
12	31.2, t	α, 1.34, m	29.8, t	α, 1.38, m	39.1, t	α, 2.08, m
		β, 1.60, m		β, 1.59, m		β, 1.79, m
13	37.0, s	38.0, s	37.5, s			
14	41.7, s	39.1, s	40.4, s			
15	25.4, t	α, 2.18, m	29.4, t	α, 2.43, m	27.6, t	α, 1.63, m
		β, 1.25, m		β, 1.59, m		β, 1.42, m
16	36.9, t, 2H, m	1.56, 2H, t	35.9, t	α, 1.39, m	37.2, t	α, 1.76, m
		β, 1.63, m		β, 1.49, m		β, 1.49, m
17	31.1, s		31.1, s		31.9, s	
18	44.0, d	1.59, m	41.3, d	1.66, m	45.1, d	1.68, m
19	28.8, t	α, 1.84, m	30.2, t	α, 1.63, m	29.6, t	α, 1.76, m
		β, 1.30, m		β, 1.29, dd (15.7, 3.9)		β, 1.30, m
Table 1. Cont.

Position	δ_C (ppm), type	1 δ_H (ppm) (J in Hz)	δ_C (ppm), type	2 δ_H (ppm) (J in Hz)	δ_C (ppm), type	3 δ_H (ppm) (J in Hz)
20	31.9, s	32.4, s	29.9, s			
21	29.5, t	1.51, 2H, m	28.3, t	α, 1.56, m	30.1, t	1.63, 2H, m
	β, 0.97, m		β, 1.47, m			
22	35.7, t	α, 1.79, m	38.5, t	α, 1.50, m	33.0, t	α, 1.89, m
	β, 0.97, m			β, 1.03, m		β, 0.95, m
23	27.2, q	0.88, s	26.7, q	0.87, s	28.0, q	0.90, s
24	22.3, q	0.93, s	21.4, q	0.99, s	21.6, q	1.03, s
25	18.2, q	0.94, s	18.0, q	1.03, s	21.1, q	1.01, s
26	26.1, q	1.04, s	26.7, q	1.39, s	21.2, q	0.94, s
27	18.9, q	1.06, s	18.3, q	0.99, s	19.9, q	1.03, s
28	31.2, q	1.13, s	30.6, q	1.22, s	31.4, q	1.11, s
29	73.0, t	a, 4.15, d (10.8)	75.0, t	a, 4.05, d (10.5)	74.2, t	a, 4.34, d (10.7)
	b, 4.09, d (10.8)			b, 4.02, d (10.5)		b, 4.12, d (10.7)
30	29.7, q	1.08, s	26.5, q	1.15, s	31.3, q	1.16, s
3-O CO	171.1, s		170.6, s		165.4, s	
1''	21.5, q	2.06, s	21.3, q	2.07, s	123.1, s	
2', 6'			21.5, q	2.06, s	131.9, d	7.85, 2H, dd (8.4, 2.8)
3', 5'			21.3, q	2.07, s	115.3, d	6.84, 2H, dd (8.4, 2.8)
4'			21.2, q	2.06, s	160.8, s	
29-O CO	166.6, s	166.8, s	166.8, s	168.5, s	130.2, s	8.04, 2H, dd (7.4, 1.4)
1''	130.7, s	130.6, s	130.6, s	130.2, s	129.6, d	7.49, brs
2'', 6''	129.5, d	8.06, 2H, dd (7.4, 1.3)	129.5, d	8.06, 2H, dd (8.0, 1.4)	129.6, d	7.46, 2H, tt (7.4, 1.4)
3'', 5''	128.3, d	7.46, 2H, tt (7.4, 1.3)	132.8, d	7.46, 2H, tt (8.0, 1.4)	128.8, d	7.56, tt (7.4, 1.4)
4''	132.7, d	7.57, tt (7.4, 1.3)	128.4, d	7.58, tt (8.0, 1.4)	133.6, d	
7-O Me	55.0, q	3.24, s	55.0, q	3.24, s	55.0, q	3.24, s
4'-OH			55.0, q	3.24, s	55.0, q	3.24, s

*a Assignments were based on 1H-1H COSY, HMQC, HMBC and NOESY spectroscopic data.
Figure 2. Key HMBC (→) and 1H-1H COSY (←) correlations of 1.

In the 1H-1H COSY experiment, H-7 [δH 3.53 (brs)] correlated with H-6 [δH 1.30, 1.89]. The following significant NOE interactions were observed in 1: H-5/H-15α; H-15α/Me-27; Me-27/H-29; Me-26/H-7, Me-25, and H-18; H-18/Me-28 (Figure 3). Therefore, the methoxy group at C-7 had the α (axial)-orientation. The configuration of the acetoxy group at C-3 was established as the α (axial)-orientation due to the NOE correlations between H-3 and Me-23 and Me-24, and the coupling constants of H-3 [δH 4.68 (t, $J_{3\beta,2\alpha,3\beta} = 2.8$ Hz)]. Therefore, 1 was determined as 7α-methoxymultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate.

Figure 3. Key NOE (↔) correlations of 1.

Compound 2 exhibited a [M]$^+$ ion in the HREIMS data at m/z 602.3975 whose molecular formula was C$_{39}$H$_{54}$O$_5$ (calcd. 602.3972). The IR and UV spectra showed absorptions indicating two carbonyl
In the HMBC experiment, cross-peaks were observed from 4' except for the signal of the C\textsubscript{13} (7.46 (tt), 7.56 (tt), 7.85 (dd), 8.04 (dd); 5.29, 4.12, 4.34 (each d)) and seven tertiary methyl groups (\[\delta\text{C} 133.6 (\text{s})\] (\[\delta\text{H} 1.38, 1.59\]), but H-6 [\delta\text{H} 2.35 (2H)] correlated with only H-5 [\delta\text{H} 2.07 (dd)] (Figure 4). NOESY experiments revealed that the relative of 2 to have the same conformation as 1. As a result, 2 was determined to be 7-oxomultiflor-8-ene-3\alpha,29-diol 3-acetate-29-benzoate.

![Figure 4. Key HMBC (→) and \(^1\)H-\(^1\)H COSY (---) correlations of 2.](image)

The molecular formula of 3 was determined as C\textsubscript{44}H\textsubscript{56}O\textsubscript{5} based on the HREIMS (m/z 664.4127, calcd. 664.4127). In addition, m/z 526 [M–C\textsubscript{7}H\textsubscript{4}O\textsubscript{3}]\(^+\) indicated the presence of a hydroxybenzoyloxy group. The IR spectrum showed the existence of a hydroxy group (\(\upsilon_{\text{max}}\) 3436 cm\(^{-1}\)) and aryl esters (\(\upsilon_{\text{max}}\) 1716, 1683, 1509, 1456, 1274 cm\(^{-1}\)). The \(^1\)H- and \(^1\)\(^3\)C-NMR spectra of 3 displayed signals for seven tertiary methyl groups (\[\delta\text{H} 0.90, 0.94, 1.01, 1.03 (6H), 1.11, 1.16 (each s)\], an oxymethylene (\[\delta\text{H} 4.12, 4.34 (each d)\]; \[\delta\text{C} 74.2 (t)\]), an oxymethine (\[\delta\text{H} 4.82 (brd)\]; \[\delta\text{C} 78.8 (d)\]), a heteroannular diene (\[\delta\text{H} 5.29, 5.60 (each brd)\]; \[\delta\text{C} 114.8 (d), 119.4 (d), 142.3 (s), 145.8 (s)\]), two aryl ester groups (\[\delta\text{H} 6.84 (dd), 7.46 (tt), 7.56 (tt), 7.85 (dd), 8.04 (dd)\]; \[\delta\text{C} 115.3 (d), 123.1 (s), 128.8 (d), 129.6 (d), 130.2 (s), 131.9 (d), 133.6 (d), 160.8 (s), 165.4 (s), 168.5 (s)\]), and a hydroxyl group (\[\delta\text{H} 7.49 (brs)\]). The \(^1\)H and \(^1\)\(^3\)C-NMR spectra of 3 were similar to those of multiflora-7,9(11)-diene-3\alpha,29-diol 3,29-dibenzoate (4) except for the signal of the C-4' (\[\delta\text{C} 160.8 (s)\] in 3, \[\delta\text{C} 133.6 (s)\] in 4). In the HMBC experiment, the correlations were observed from 4'-OH (\[\delta\text{H} 7.49 (brs)\]) to C-4' (Figure 5). Therefore the structure of 3 was determined to be multiflora-7,9(11)-diene-3\alpha,29-diol 3-p-hydroxybenzoate-29-benzoate.

The known compounds 4 [7,8] and 5 [9] were identified by comparing MS and \(^1\)H and \(^1\)\(^3\)C-NMR data with published data, and 6 [7] by MS and \(^1\)H NMR data.
The six multiflorane triterpenes 1–6 from *C. maxima* were evaluated for inhibitory activities against α-MSH-induced melanogenesis in B16 melanomas (Table 2). At a low concentration (10 μM), 5 inhibited melanogenesis (76.9% of melanin content) with low cytotoxicity (99.5% of cell viability). 5 also inhibited melanogenesis (70.9% of melanin content) with low cytotoxicity (97.7% cell viability) at 30 μM. At a high concentration (100 μM), 3 and 5 exhibited inhibitory activities (51.8 and 67.4% of melanin content, respectively) with low cytotoxicity (95.1 and 99.6% of cell viability, respectively). The activity levels of compounds 5 at 10 and 30 μM were comparable with or superior to those of the positive control, arbutin, which has been recognized as a useful depigmentation compound for skin whitening in the cosmetic industry [10]. It appears that two multiflorane-type triterpenes, 5 from *C. maxima* seeds, may be valuable as potential skin-whitening agents. The melanogenesis inhibitory activity of 2 (28.1% of melanin content at 100 μM) is thought to be due to their cytotoxic action (69.0% of cell viability at 100 μM).

Table 2. Melanogenesis inhibitory activity and cytotoxicity in B16 mouse melanoma cells of multiflorane-type triterpenes isolated from *Cucurbita maxima* seeds.

Compound	Melanin content (%) at 10 μM	Cell viability	Melanin content (%) at 30 μM	Cell viability	Melanin content (%) at 100 μM	Cell viability
1	94.8 ± 0.5	92.7 ± 2.2	77.1 ± 3.8	84.4 ± 4.0	73.7 ± 3.6	84.3 ± 5.2
2	106.8 ± 9.3	106.3 ± 8.0	92.2 ± 5.4	107.1 ± 7.4	28.1 ± 2.3	69.0 ± 4.5
3	91.2 ± 2.2	107.2 ± 5.1	81.8 ± 4.0	105.6 ± 3.1	51.8 ± 8.0	95.1 ± 4.3
4	98.4 ± 3.2	110.8 ± 4.3	102.2 ± 11.7	103.0 ± 8.2	95.4 ± 8.4	101.1 ± 5.9
5	76.9 ± 4.0	99.5 ± 3.3	70.9 ± 0.1	97.7 ± 3.1	67.4 ± 3.6	99.6 ± 2.0
6	107.8 ± 2.6	91.0 ± 1.6	111.8 ± 7.1	81.8 ± 2.1	82.0 ± 5.1	74.4 ± 3.2
arbutin	88.9 ± 2.3	100.0 ± 2.7	72.3 ± 3.1	94.4 ± 1.2	55.3 ± 1.0	89.9 ± 0.3

Melanin content (%) and cell viability (%) were determined based on the absorbance at 450 nm, and 540 nm, respectively, by comparison with values for DMSO (100%). Each value represents the mean ± standard deviation (S.D.) of three determinations. The concentration of DMSO in the sample solution was 2 μL/mL.

b Reference compound.
Six triterpenes and a reference compound, 5-fluorouracil (5-FU), were also evaluated for cytotoxic activities against human leukemia (HL-60) and murine leukemia (P388) cell lines by means of the MTT assay (Table 3). Compound 2 exhibited single-digit micromolar cytotoxicity with IC$_{50}$ values of 7.0 and 9.5 µM against HL-60 and P388 cells, respectively. It was slightly less cytotoxic than 5-FU [IC$_{50}$ 2.3 (HL-60); 1.9 (P388) µM] (Table 3).

Table 3. Cytotoxic activities of multiflorane-type triterpenes from *Cucurbita maxima* seeds.

Compound	IC$_{50}$ (µM) a	
	HL-60 (human leukemia)	P388 (murine leukemia)
1	>100	>100
2	7.0 ± 1.1	9.5 ± 1.1
3	55.9 ± 1.1	92.6 ± 1.3
4	>100	>100
5	>100	>100
6	54.1 ± 1.3	46.7 ± 1.2
5-fluorouracil b	2.3 ± 0.2	1.9 ± 0.2

a HL-60 and P388 cell lines (each 1 x 104 cells in 100 µL) were treated with test compounds for 72 h, and MTT solution was added to the wells. The grown cells were labeled with 5 mg/mL MTT in phosphate-buffered saline (PBS), and the absorbance of formazan dissolved with 20% sodium dodecyl sulfate (SDS) in 0.1 N HCl was measured at 550 nm using a microplate reader. Data are expressed as mean ± S.D. (n = 3); b Reference compound.

3. Experimental

3.1. General Procedures

Chemicals and reagents were purchased as follows: fetal bovine serum (FBS) from Invitrogen Co. (Carlsbad, CA, USA), 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) from Sigma-Aldrich Japan Co. (Tokyo, Japan), and 5-fluorouracil (5-FU) (purity ≥ 98.5%), arbutin (purity ≥ 95.0%), Roswell Park Memorial Institute (RPMI) 1640 medium, Dulbecco’s modified Eagle’s medium (D-MEM), and antibiotics from Nacalai Tesque, Inc. (Kyoto, Japan). All other chemicals and reagents were of analytical grade. Melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP-1000 digital polarimeter. IR spectra were recorded on a Perkin-Elmer 1720X FTIR spectrophotometer. The 1H (500 MHz) and 13C (125 MHz) NMR spectra were recorded on a Varian INOVA 500 spectrometer in CDCl$_3$ with tetramethysilane as the internal standard. The EIMS was recorded on a Hitachi 4000H double-focusing mass spectrometer (70 eV). Silica gel (70–230 mesh, Merck) and silica gel 60 (230–400 mesh, Nacalai Tesque, Inc., Kyoto, Japan) were used for column chromatography and medium-pressure liquid chromatography, respectively. The 20% AgNO$_3$/SiO$_2$ (w/w) used for chromatography was prepared from silica gel 60 and AgNO$_3$ (Nacalai Tesque, Inc., Kyoto, Japan). HPLC was carried out on an SiO$_2$ column (Cosmosil 5SL-II column, 25 cm x 20 mm i.d., Nacalai Tesque, Inc., Kyoto, Japan) at 25 °C with n-hexane/EtOAc [10:1 (HPLC system I) and 5:1 (HPLC system II), flow rate 8.0 mL/min].
3.2. Plant Material

The seeds of *Cucurbita maxima*, produced in Japan (Nara prefecture), were purchased from JA (Japan Agricultural Co-operation)-Takatsuki in 2011. A voucher specimen was deposited in the Herbarium of the Laboratory of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences.

3.3. Extraction and Isolation

The seeds of *Cucurbita maxima* (3 kg) were subjected to extraction with MeOH (10 L) under reflux (1 week, 4 times). After concentration the MeOH extract (102.2 g) was then partitioned between Et₂O and H₂O. The Et₂O-soluble fraction (62.2 g) was subjected to SiO₂ column chromatography (CC) [SiO₂ (1.5 kg); CHCl₃/EtOAc 1:0, 5:1, 2:1, 0:1 and MeOH, in increasing order of polarity] resulting in seven fractions (Fr. A–G). Fr. B, eluted with CHCl₃, was subjected to SiO₂ CC to yield 10 fractions, B₁–B₁₀. Among them, Fr. B₃, eluted with hexane/EtOAc (5:1), was subjected to SiO₂ CC to yield 11 fractions; B₃₁–B₃₁₁. Preparative HPLC of B₃⁻₄ (123.0 mg), eluted with hexane/EtOAc (5:1), gave 4 (15.5 mg; tᵣ 11.2 min) (HPLC system I). Fr. C, eluted with CHCl₃, was subjected to SiO₂ CC to yield 22 fractions, C₁–C₂₂. Preparative HPLC of C₃ (14.8 mg), eluted with hexane/EtOAc (10:1), gave 4 (5.1 mg) and 6 (3.1 mg; tᵣ 12.0 min), respectively (HPLC system I). Fr. C₁₁ (1.3 g), eluted with hexane/EtOAc (10:1), was subjected to CC with 20% AgNO₃/SiO₂ to give C₁₁⁻¹–C₁₁⁻¹₁, followed by preparative HPLC of C₁₁⁻⁴⁻¹ (795.6 mg), eluted with hexane/CHCl₃ (20:1), with 20% AgNO₃/SiO₂ to yield C₁₁⁻⁴⁻¹⁻¹⁻⁴⁻⁹. Preparative HPLC of C₁₁⁻⁴⁻³ (15.0 mg), eluted with hexane/EtOAc (2:1), gave 2 (2.0 mg; tᵣ 18.9 min) (HPLC system II). Fr. D, eluted with CHCl₃, was fractionated with SiO₂ CC to D₁⁻⁻D₁₆. Fr. D₄ (1369.0 mg), eluted with hexane/EtOAc (5:1) was subjected to SiO₂ CC to yield D₄⁻¹⁻D₄⁻¹₂. Preparative HPLC of D₄⁻⁵ (10.0 mg), eluted with hexane/EtOAc (5:1), gave 1 (1.6 mg; tᵣ 15.3 min) (HPLC system II). Fr. D₄⁻⁷ (194.3 mg), eluted with hexane/EtOAc (5:1), was subjected to SiO₂ CC to yield D₄⁻⁷⁻¹⁻D₄⁻⁷⁻₇, followed by preparative HPLC of D₄⁻⁷⁻₂ (99.9 mg), eluted with hexane/EtOAc (5:1), for the isolation of 2 (3.0 mg; tᵣ 22.2 min) and 1 (1.4 mg) (HPLC system II). Fr. D₆ (265.4 mg), eluted with hexane/EtOAc (5:1) was subjected to SiO₂ CC to yield D₆⁻¹⁻D₆⁻₁₁, followed by preparative HPLC of D₆⁻₂ (6.7 mg), eluted with hexane/EtOAc (10:1), for the isolation of 5 (3.6 mg; tᵣ 35.6 min) (HPLC system I). Fr. D₇ (176.3 mg), eluted with hexane/EtOAc (10:1), was subjected to SiO₂ CC with hexane/EtOAc (10:1) for fractionation to D₇⁻¹⁻D₇⁻₁₂. SiO₂ CC of D₇⁻₈ gave 3 (1.7 mg).

7α-Methoxymultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (1). Amorphous solid; [α]® D =−74.8 (c 0.1, CHCl₃); UV (EtOH) λ_max (logε) 206.0 (3.58), 228.5 (3.68), 271 (2.81) nm; IR (KBr) ν_max: 2,924, 2,855, 1,743, 1,724, 1,467, 1,452, 1,374, 1,267, 1,247, 1,110, 1,072 cm⁻¹; 1H- and 13C-NMR spectroscopic data (in ppm), see Table 1; EIMS m/z 618 [M]+ (10), 586 (26), 526 (30), 511 (100), 483 (9), 389 (13), 105 (66); HREIMS m/z 618.4282 (calcd for C₄₀H₅₈O₅, 618.4285).

7-Oxomultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (2). Amorphous solid; [α]® D =−67.4 (c 0.1, CHCl₃); UV (EtOH) λ_max (logε) 233.0 (3.91), 250.5 (3.81) nm; IR (KBr) ν_max: 2,937, 2,883, 1,739, 1,723, 1,658, 1,270, 1,245 cm⁻¹; 1H- and 13C-NMR spectroscopic data (in ppm), see Table 1; EIMS
m/z 602 [M]+ (100), 587 (11), 542 (8), 480 (14), 465 (16), 420 (7), 371 (4), 325 (10), 303 (11), 278 (47), 243 (33), 203 (34), 105 (39); HREIMS m/z 602.3975 (calcd for C$_{39}$H$_{54}$O$_5$, 602.3972).

Multiflora-7,9(11)-diene-3α,29-diol 3-p-hydroxybenzoate-29-benzoate (3). Amorphous solid; [α]$_D^{29}$ −3.9 (c 0.09, CHC$_3$); UV (EtOH) λ$_{max}$ (log ε) 231.0 (4.25), 246.5 (4.12), 266.5 (3.95) nm; IR (KBr) ν$_{max}$: 3,436, 2,941, 2,863, 1,716, 1,683, 1,636, 1,509, 1,456, 1,384, 1,274, 1,166, 1,111 cm$^{-1}$; 1H- and 13C-NMR spectroscopic data (in ppm), see Table 1; EIMS m/z 664 (16) [M]+, 526 (90) [M–C$_7$H$_6$O$_3$]+, 511 (32), 389 (26), 253 (41), 121 (100); HREIMS m/z 664.4127 (calcd for C$_{44}$H$_{56}$O$_5$, 664.4127).

3.4. Cell Cultures

The cell lines HL-60 (human leukemia) and P388 (murine leukemia) were grown in RPMI 1640 medium, while B16 4A5 cells were grown in D-MEM. The medium was supplemented with 10% FBS and antibiotics (100 units/mL penicillin and 100 µg/mL streptomycin). The cells were incubated at 37 °C in a 5% CO$_2$ humidified incubator.

3.5. Determination of B16 4A5 Cells Proliferation

B16 4A5 cell proliferation was examined according to a method reported previously [11] with slight modifications. Briefly, B16 4A5 cells (obtained from the Riken Cell Bank, Tsukuba, Ibaraki, Japan) (3 × 104 cells in 500 µL), preincubated for 24 h were treated for 48h with test samples dissolved in dimethyl sulfoxide (DMSO) at a final concentration of 100, 30, or 10 µM, and MTT solution was added. After 3 h of incubation, 2-propanol containing 0.08 M HCl was added to dissolve the formazan produced in the cells. The absorbance of each well was read at 550 nm using a microplate reader.

3.6. Assay of Melanin Content

The assay of melanin content was performed as described previously [11] with small modifications. B16 4A5 cells (3 × 104 cells in 500 µL) were pre-incubated as above in α-MSH (100 nM)-containing medium. Test samples dissolved in DMSO were added to the medium and the cells were cultured for 48 h. The medium was removed and the cells were dissolved in 2 M NaOH containing 10% DMSO. The amount of melanin was determined spectrophotometrically by measuring absorbance at 450 nm using a microplate reader. The optical density of control cells was assumed to be 100%.

3.7. Cytotoxicity Assay against Cancer Cell Lines

The cytotoxicity assay against HL-60 and P388 cells was determined as described previously [12].

4. Conclusions

Six multiflorane-type triterpenes, including the three new compounds 7α-methoxymultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (1), 7-oxomultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (2) and multiflora-7,9(11)-diene-3α,29-diol 3-p-hydroxybenzoate-29-benzoate (3) were isolated from the MeOH extract of Cucurbita maxima seeds. The seeds included more 4 than other multiflorane-type
triterpenes. It was suggested that multiflorane-type triterpenes in C. maxima were biosynthesized from 4, or consumed to biosynthesize 4. The melanogenesis inhibitory activity of 5 suggests they may be potential skin whitening agents. On the other hand, the results of cytotoxicity assays suggest that 2 may be valuable as an anticancer lead compound.

Supplementary Materials

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/18/5/5568/s1.

Acknowledgments

We thank Katsuhiko Minoura and Mihoyo Fujitake (this university) for NMR and MS measurements.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Okada, M., Ed. *Newly Revised Illustrated Medicinal Plants of World*; Hokuryukan Publishing Co., Ltd.: Tokyo, Japan, 2002; p. 514.
2. Andrew Chevallier. *The Encyclopedia of Medicinal Plants*; Seibundo Shinkosha Publishing Co., Ltd.: Tokyo, Japan, 2000; p. 194.
3. Akihisa, T.; Ghosh, P.; Thakur, S.; Rosenstein, F.U.; Tamura, T.; Matsumoto, T. Widespread occurrence of cucurbita-5,24-dienol in Cucurbitaceae. *Yukagaku* **1986**, *35*, 1036–1040.
4. Cattel, L.; Balliano, G.; Caputo, O. Sterols and triterpenes from *Cucurbita maxima*. *Planta Med.* **1979**, *37*, 264–267.
5. Fenner, G.P.; Patterson, G.W.; Koinès, P.M. Sterol composition during the life cycle of the soybean and the squash. *Lipids* **1986**, *21*, 48–51.
6. Fenner, G.P.; Patterson, G.W.; Lusby, W.R. Developmental regulation of sterol biosynthesis in *Cucurbita maxima* L. *Lipids* **1989**, *24*, 271–277.
7. Ukiya, M.; Akihisa, T.; Tokuda, H.; Toriumi, M.; Mukainaka, T.; Banno, N.; Kimura, Y.; Hasegawa, J.; Nishino, H. Inhibitory Effects of Cucurbitane Glycosides and Other Triterpenoids from the Fruit of *Momordica grosvenori* on Epstein-Barr Virus Early Antigen Induced by Tumor Promoter 12-O-Tetradecanoylphorbol-13-acetate. *J. Agric. Food Chem.* **2002**, *50*, 6710–6715.
8. Sekine, T.; Kurihara, H.; Waku, M.; Ikegami, F.; Ruangrunsi, N. A New Pentacyclic Cucurbitane Glucose and a New Triterpene from the Fruits of *Gymnopetalum integrifolium*. *Chem. Pharm. Bull.* **2002**, *50*, 645–648.
9. Akihisa, T.; Tamura, T.; Matsumoto, T.; Eggleston, D.S.; Kokke, W.C.M.C. Karounidiol [D:C-friedo-oleana-7,9(11)-diene-3α,29-diol] and its 3-O-benzoate: novel pentacyclic triterpenes from *Trichosanthes kirilowii*. X-ray molecular structure of karounidiol diacetate. *J. Chem. Soc. Perkin Trans. I* **1988**, *3*, 439–443.
10. Lim, Y.-J.; Lee, E.H.; Kang, T.H.; Ha, S.K.; Oh, M.S.; Kim, S.M.; Yoon, T.-J.; Kang, C.; Park, J.-H.; Kim, S.Y. Inhibitory effects of arbutin on melanin biosynthesis of α-melanoeyte stimulating hormone-induced hyperpigmentation in cultured Brownish guinea pig skin tissues. *Arch. Pharm. Res.* **2009**, *32*, 367–373.

11. Akihisa, T.; Seino, K.; Kaneko, E.; Watanabe, K.; Tochizawa, S.; Fukatsu, M.; Banno, N.; Metori, K.; Kimura, Y. Melanogenesis inhibitory activities of iridoid-, hemiterpene-, and fatty acid-glycosides from the fruits of *Morinda citrifolia* (Noni). *J. Oleo Sci.* **2010**, *59*, 49–57.

12. Yamada, T.; Muroga, Y.; Jinno, M.; Kajimoto, T.; Usami, Y.; Numata, A.; Tanaka, R. New class azaphilone produced by a marine fish-derived *Chaetomium globosum*. The stereochemistry and biological activities. *Bioorg. Med. Chem.* **2011**, *19*, 4106–4113.

Sample Availability: Not available.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).