Molecular mechanism for vitamin C-derived C5-glyceryl-methylcytosine DNA modification catalyzed by algal TET homologue CMD1

Wenjing Li1,4, Tianlong Zhang1,4, Mingliang Sun1,4, Yu Shi1,2, Xiao-Jie Zhang1, Guo-Liang Xu1 & Jianping Ding1,2,3✉

C5-glyceryl-methylcytosine (SgmC) is a novel DNA modification catalyzed by algal TET homologue CMD1 using vitamin C (VC) as co-substrate. Here, we report the structures of CMD1 in apo form and in complexes with VC or/and dsDNA. CMD1 exhibits comparable binding affinities for DNAs of different lengths, structures, and 5mC levels, and displays a moderate substrate preference for 5mCpG-containing DNA. CMD1 adopts the typical DSBH fold of Fe2+/2-OG-dependent dioxygenases. The lactone form of VC binds to the active site and mono-coordinates the Fe2+ in a manner different from 2-OG. The dsDNA binds to a positively charged cleft of CMD1 and the 5mC/C is inserted into the active site and recognized by CMD1 in a similar manner as the TET proteins. The functions of key residues are validated by mutagenesis and activity assay. Our structural and biochemical data together reveal the molecular mechanism for the VC-derived SgmC DNA modification by CMD1.
Covariant modifications of DNA bases, such as C5-methylcytosine (5mC), N4-methylcytosine (4mC), and N6-methyladenine (6mA), were discovered to exist in many living organisms. Among these modifications, 5mC is the most common and well-studied DNA modification and an important epigenetic mark in eukaryotes, which plays diverse functional roles in many fundamental cellular and developmental processes, including transcription, chromatin remodeling, X-chromosome inactivation, genomic imprinting, pluripotency of stem cells, embryonic development, and tumor development1-2. In the past two decades, there is increasing interest in the discovery of additional DNA base modifications and their biological functions in the epigenetic field. It was recently found that 5mC in DNA can be oxidized stepwise into C5-hydroxymethyl-cytosine (5hmC), C5-formyl-cytosine (5fC), and C5-carboxyl-cytosine (5caC) by the ten-eleven translocation (TET) enzymes, using Fe2+ as cofactor and 2-oxoglutarate (2-OG) as co-substrate8-10. These 5mC derivatives are also considered as stable epigenetic marks and are demonstrated to play vital roles in the epigenetic regulation of gene expression2-4,7,11,12. In addition, five additional DNA base modifications, 4mC and 6mA, which were previously thought to be restricted to prokaryotes, were recently reported to be present in the genomic DNAs of a variety of Metazoa13,14. However, the existence of 4mC and 6mA in Metazoa is still in debate: some studies suggest that the 6mA modification might be a potential epigenetic mark and plays important roles in gene transcription and chromatin remodeling15-21; others suggest that the detected 6mA and 4mC might be due to artifacts in measurements22.

The TET proteins responsible for the oxidation of DNA 5mC constitute a subfamily of the Fe2+/2-OG-dependent dioxygenases that catalyze diverse oxidative reactions and play vital roles in many biological processes2-12,23-25. The majority of the Fe2+/2-OG-dependent dioxygenases utilize Fe2+ as cofactor, and 2-OG and O2 as co-substrates, producing CO2 and succinate as co-products. These enzymes are structurally characterized by a conserved double-stranded β-helix (DSBH) core fold consisting of a major and a minor β-sheet with the more open end containing the Fe2+ and 2-OG binding sites. The DSBH core is usually supplemented with additional β-strands, α-helices, or domains at the N- or/and C-termini, which play roles in stabilization of the DSBH fold, and in recognition and binding of the substrate. The catalytically required Fe2+ is usually chelated by three highly conserved residues of the conserved HXD/E...H motif; however, the residues involved in the 2-OG binding are not universally conserved, but are subfamily-characteristic23-25.

Very lately, a TET homologue in a green alga Chlamydomonas reinhardtii, named as CMD1, was found to exhibit a novel enzymatic activity36. In vitro biochemical studies showed that recombinant CMD1 can catalyze the conjugation of a glyceryl moiety to the C5-methyl group of 5mC via a direct carbon–carbon bond, leading to a new DNA base modification named as C5-glyceryl-methylcytosine (5gmC). Like the other TET proteins, the enzymatic activity of CMD1 is Fe2+-dependent and requires the existence of a conserved HXD/E...H motif. However, unlike the canonical TET proteins, CMD1 uses vitamin C (VC, l-ascorbic acid) rather than 2-OG as co-substrate, which surprisingly contributes the glyceryl moiety (the C4–C6 atoms) to the C5-methyl group of 5mC with glyoxylate and CO2 as co-products. VC is widely demonstrated to function as a potent antioxidant to reduce and neutralize oxidizing agents, such as free radicals and reactive oxygen species or as a reducing agent for Fe2+/2-OG-dependent dioxygenases to enhance their catalytic activities27-35; but no studies had shown that VC could act as a co-substrate. In vivo functional studies further showed that the 5gmC modification exists in the green alga genomic DNA and the modification level is substantially reduced when CMD1 was knocked out, and that the 5gmC modification plays a vital role in the regulation of photosynthesis for adaptation under intense light26. These studies not only identified a new eukaryotic DNA base modification as a potential epigenetic mark and suggested a new fate of 5mC in the green alga genome, but also uncovered a novel activity of a TET-like enzyme and revealed a functional role of VC as co-substrate in the epigenetic regulation. However, the underlying molecular mechanism remains unknown.

In this work, we performed in vitro DNA binding assay for CMD1 and showed that CMD1 exhibits comparable binding affinities for DNAs of different lengths, structures, and 5mC levels, and displays a moderate substrate preference for 5mCpG-containing DNA than 5mCpC, 5mCpA, and 5mCpT-containing DNAs. We determined the crystal structures of CMD1 in apo form and in complexes with VC or dsDNA, and with both VC and dsDNA. Structural analysis shows that CMD1 assumes a typical DSBH fold. The Fe2+ at the active site is coordinated by the three conserved residues of the HXD/E...H motif. The lactone form of VC binds to the active site and mono-coordinates the Fe2+ in a manner different from 2-OG in the Fe2+/2-OG-dependent dioxygenases. The dsDNA binds to a positively charged cleft of CMD1 via the phosphate backbone, and the methylcytosine or cytosine is flipped out of the dsDNA, and inserted into the active site and is recognized by the enzyme in a manner similar to the TET proteins. In vitro enzymatic activity assay shows that mutations of the key residues involved in the binding of Fe2+ and VC abolish the activity, and those involved in the DNA binding significantly impair the activity. Our structural and biochemical data together reveal the molecular basis for how CMD1 recognizes the DNA substrate and utilizes VC as the co-substrate, and provide mechanistic insight into the catalytic reaction of the 5gmC DNA modification by CMD1.

Results

Biochemical characterization of CMD1. The full-length CMD1 (residues 1–532) used in the biochemical studies and the MBP-fused CMD1 used in the structural studies were expressed in Escherichia coli, and purified using a combination of affinity chromatography and gel filtration chromatography (Supplementary Fig. 1a, b). The previous biochemical study showed that CMD1 can catalyze the formation of 5gmC from 5mC in DNA using VC as co-substrate in the presence of ATP (1 mM)36. In the optimization of the activity assay, we found that CMD1 exhibits a much higher activity in the absence than in the presence of ATP (Supplementary Fig. 1c, d). Thus, ATP was removed from the reaction mixture in the activity assay of CMD1 in this work. As the DNA substrate (0.5–1.1 kb) used in the activity assay in the previous study is too long for structural study, we analyzed the binding affinities of CMD1 for a variety of DNAs with different lengths, sequences, and structures using an in vitro bio-layer interferometry (BLI) assay to investigate the substrate specificity of CMD1 and to identify suitable DNA substrate for co-crystalization. The genomic DNA of C. reinhardtii is GC-rich (nearly 65%) with a relatively low 5mC level (~0.4%)36,37. To examine whether CMD1 exhibits preference for DNA substrates with GC-rich and/or different 5mC levels, we first measured the binding of CMD1 with four dsDNAs (40 bp) containing unmodified C, two of which are AT-rich (dsDNA1 and dsDNA2) and two are GC-rich (dsDNA3 and dsDNA4), and the results show that the binding affinities (Kd) of CMD1 with all these dsDNAs are in the range of 1.97–2.50 μM (Supplementary Table 1), indicating that CMD1 exhibits no notable preference for the sequence of dsDNA (GC-rich or AT-rich). Then, we measured the binding of CMD1 for dsDNAs (40 bp) containing different
5mC levels (dsDNA5 and dsDNA6), and found that the binding affinities of CMD1 for dsDNAs containing one or two 5mC modifications are ~2.28–2.52 μM, which are comparable to those for the unmethylated dsDNAs (dsDNA1–4) (Supplementary Table 1), indicating that CMD1 also exhibits no notable preference for the 5mC levels. In addition, we measured the binding of CMD1 toward dsDNAs of different lengths (10–30 bp; dsDNA7, dsDNA8, and dsDNA9), and found that the binding affinities of CMD1 for these shorter dsDNAs (1.74–2.15 μM) are comparable to those for the 40-bp dsDNAs (dsDNA1–4; Supplementary Table 1). Moreover, we measured the binding of CMD1 toward a 40-nt ssDNA, and found that the binding affinity of CMD1 for this ssDNA is 2.77 μM, which is comparable to those for the dsDNAs (Supplementary Table 1). Furthermore, we measured the binding affinities of CMD1 toward several DNAs with different structures, including Y-DNA, bubble, 5′-flap, 3′-flap, S′-OH, and 3′-OH, and found that the binding affinities of CMD1 for all these DNAs are in the range of 1.19–1.61 μM, which are slightly stronger than those for the dsDNAs and ssDNA examined in this study (Supplementary Table 1). In addition, we found that the binding affinities of CMD1 for DNA5 and DNA6 are significantly lower (1.74 and 2.15 μM, respectively), indicating that CMD1 has a strong preference for specific DNA structures. Taken together, our in vitro binding assay results show that CMD1 exhibits comparable binding affinities for DNA substrates of different lengths, structures, and 5mC levels.

Crystal structure of CMD1 in apo form. Crystalization of the full-length CMD1 in the absence and presence of VC or/apo DNA substrates of different lengths, sequences, and structures did not yield any crystals. After various trails, an N-terminal MBP-fused CMD1 with an α-helical linker yielded crystals of high diffraction quality, which led to the successful structure determination of CMD1 in apo form. The structure of the MBP-fused CMD1 in apo form was solved by the single-wavelength anomalous dispersion (SAD) method at 2.20 Å resolution with the asymmetric unit containing one MBP (Supplementary Fig. 3b). As the MBP is located distantly to the active site of CMD1, it has no direct impact on the activities of CMD1, and residues 1–57 of the MBP and 5mCpG-containing DNAs38. To investigate whether 5mC in adjacent to CMD1, and its position and orientation are dictated by the long α-helix. There are only a few interactions between one short α-helix (residues 44–57) from the N-domain of MBP and two surface loops of CMD1 (the β8–β9 and α12–β23 loops; Supplementary Fig. 3a). Crystal packing is mediated mainly by several α-helices of CMD1 (a2 and α5–α8) supplemented by the MBP (Supplementary Fig. 3b). As the MBP is located distant from the active site of CMD1, it has no direct impact on the chemical property and structure of the active site.

Crystal structures of CMD1 in complexes with VC, DNA, and both VC and DNA. Co-crystallization of the MBP-fused CMD1 with VC yielded crystals of CMD1 in apo form. ITC (Isothermal Titration Calorimetry), SPR (Surface Plasmon Resonance), MST (Micro Scale Thermophoresis), and BLI analyses showed undetectable binding of VC to CMD1, indicating that CMD1 has a weak binding affinity for VC. Eventually, the crystals of CMD1 in complex with VC were obtained by soaking the apo CMD1 crystals in the reservoir solution containing VC, and the structure was solved by the molecular replacement (MR) method at 2.20 Å resolution (Table 1). After many co-crystallization trails of the MBP-fused CMD1 with various DNA substrates of different lengths, sequences, and structures, we obtained crystals of CMD1 in complexes with several dsDNAs with or without 3′-overhang (9–16 nt). Among these CMD1–DNA complexes, the crystals of CMD1 in complex with a 14-nt DNA which comprises a 10-bp dsDNA region and a 4-nt 3′-overhang with or without 5mC at the 3′-position on both the forward (or substrate) strand and the reverse (or non-substrate) strand diffracted X-rays to relatively higher resolution. The structures of the CMD1 in complexes with 5mC–DNA or DNA were solved by the MR method at 2.10 and 2.15 Å resolution, respectively (Table 1). The crystals of CMD1 in complex with both DNA and VC were obtained by soaking the crystals of the CMD1–DNA complex in the reservoir solution containing VC, and the structure was solved by the MR method at 2.40 Å resolution (Table 1 and Fig. 1b). In all of the structures, the HXD…H motif and the metal ion are well-defined with evident electron density; in all of the complex structures, the co-substrate and/or a large portion of the DNA substrate are also well-defined with evident electron density (Fig. 1c and Supplementary Fig. 4a–e).

In the structure of the CMD1–5mC–DNA–VC complex, the electron density clearly shows that the bound VC in the lactone
form, suggesting that the catalytic reaction does not take place in the crystals or crystallization drops. To explore the possible reason(s), we analyzed the buffer and pH profile of the catalytic reaction. The results show that CMD1 exhibits substantially different activity in different buffers with different pH values (Supplementary Fig. 4f). Among the conditions examined, CMD1 displays the highest activity in the HEPES buffer at pH 7.0 which was used in the enzymatic activity assay; however, it is inactive in the citrate buffers at pH 5.0–6.0, which were used in the crystallization solutions for both the apo CMD1 and the CMD1–DNA complex. This might explain why CMD1 is inactive in the crystals and the crystallization drops. The molecular basis for the CMD1 inactivation at the acidic conditions is unclear. It is possible that the acidic conditions might affect the protonation states of VC and/or residues involved in the binding of the metal ion, co-substrate and substrate, and consequently the catalytic reaction.

Comparison of the apo and VC-bound CMD1 structures shows that the VC binding does not cause notable conformational changes at the active site, and in the overall structure of CMD1 (RMSD of 0.12 Å for 492 Cα atoms) (Fig. 1d and Supplementary Table 5). Comparison of the apo and DNA-bound CMD1 structures shows that the DNA binding also induces no notable conformational changes in the overall structure of CMD1 (RMSD of 0.24 Å for 494 Cα atoms; Fig. 1d and Supplementary Table 5). However, a disordered region adjacent to the active site (residues 244–249, the β11–β12 loop) in the apo CMD1 structure is well-defined in the CMD1–DNA structures and is involved in the DNA binding and recognition (Fig. 1d). In addition, structural

Table 1 Summary of diffraction data and refinement statistics.

	Apo	VC	5mC-DNA	DNA	5mC-DNA + VC	Se-Met
PDB code	7CY4	7CY5	7CY6	7CY7	7CY8	
Data collection						
Beamline	BL19U1	BL19U1	BL19U1	BL19U1	BL18U	BL17U1
Space group	C2	C2	C2	C2	C2	C2
Wavelength (Å)	0.9785	0.9785	0.9785	0.9785	0.9792	0.9792
Cell dimensions						
α (Å)	154.7	153.8	153.2	153.6	154.5	154.7
β (Å)	125.6	126.4	127.1	125.8	125.7	122.5
γ (°)	64.2	64.2	64.2	64.0	64.1	64.2
Resolution (Å)	47.77	48.38	48.29	49.28	49.28	49.28
Experiments			(2.20–2.20)a	(2.15–2.10)	(2.20–2.20)	(2.40–2.40)
Unique reflections	48,745	56,672	52,383	60,566	35,155	40,382
No. of reflections	2437	(2783)	(3199)	(3028)	(1758)	(3987)
No. of atoms						
Macromolecules	6521	6575	6993	6969	6718	
Ligand	12	12	12	12	12	
Ion	1	1	1	1	1	
Solvent	236	428	520	438	210	
B-factors (Å2)	39.0	37.2	28.4	31.1	41.9	
RMS deviations						
Bond lengths (Å)	0.009	0.010	0.007	0.006	0.008	
Bond angles (°)	1.23	1.27	1.18	1.12	1.28	
Ramachandran plot (%)						
Favored	97.8	97.7	97.5	97.4	97.4	
Allowed	2.2	2.3	2.5	2.6	2.6	
Outliers	0.0	0.0	0.0	0.0	0.0	

aNumbers in parentheses represent the highest resolution shell.

bI/σ(I) = ∑Ihkl(1−(hkl))/∑Ihkl.

fl/σ(fl) = ∑|Ii|/∑|fhkl|.

ccFl/σ(fl) = ∑|Ii|/∑|fhkl|.

—<ref>ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21061-2 | www.nature.com/naturecommunications</ref>
comparison shows that the overall structure of CMD1 in the CMD1–5mC–DNA–VC complex exhibits no notable conformational differences from that in the CMD1–VC and CMD1–DNA complexes (Fig. 1d). As the structure of the CMD1–5mC–DNA–VC complex represents the most biologically relevant state, we will use it in the following structural analyses unless otherwise specified.

The active site of CMD1. The active site of CMD1 is located on the more open end of the DSBH fold and consists of the binding sites for the Fe$^{2+}$, the VC and the flipped base of DNA substrate (Fig. 1a, b). In the apo CMD1 structure, the Fe$^{2+}$ is coordinated by three strictly conserved residues (His345, Asp347, and His397) from the characteristic HXD/E…H motif of the Fe$^{2+}$/2-OG-dependent dioxygenases24,25,39, and three water molecules with an octahedral geometry (Fig. 2a). In the CMD1–5mC–DNA–VC structure, the Fe$^{2+}$ also makes interactions with the C2-hydroxyl group of VC and Wat3 with a tetrahedral pyramidal coordination geometry; Wat2 is replaced by the side chain of Arg244 (Fig. 2b). In the other CMD1 structures, the Fe$^{2+}$ maintains the
coordination bonds with the three conserved residues (Supplementary Fig. 5a–c). As expected, the CMD1 mutants containing mutations H345A and D347N completely lost the activity because these mutations would impair the Fe$^{2+}$ binding (Fig. 2c). Of note, the CMD1 mutant containing mutation H397A could not be expressed for unknown reason.

In the CMD1–5mC–DNA–VC complex, the VC forms a number of direct and indirect hydrogen-bonding interactions with the surrounding residues, including Arg244, His249, Ser335, Thr337, Trp358, Thr399, and Ser414. Besides, the C2-hydroxyl of VC forms a coordination bond with the Fe$^{2+}$. In addition, the VC also forms hydrophobic interactions with the side chains of Val342, Ile356, and Phe371 (Fig. 2b). In the CMD1–VC complex, the VC makes essentially identical interactions with the protein and the surrounding residues and VC (green). The zoom-in window shows that the disordered [T12–T12 loop in the structures of CMD1 in the apo form and VC-bound complex is well-defined in the structures of CMD1 in the DNA-bound complexes. The disordered [T12–T12 loop in the apo form and VC-bound complex are indicated with dotted lines.

Fig. 1 Overall structure of CMD1. a Ribbon representation of CMD1 in apo form. The minor β-sheet and major β-sheet of the DSBH fold are colored in magenta and yellow, respectively. The two layers of α-helices are colored in cyan. The extra β-strands flanking the minor and major β-sheet of the DSBH fold are colored in green. The Fe$^{2+}$ at the active site is shown with an iron-red sphere. The disordered regions are indicated with black dotted lines. The secondary structure elements are labeled. The N- and C-termini are indicated. b Ribbon representation of CMD1 in complex with VC and 5mC-5DNA. The color coding for CMD1 is the same as a. The bound dsDNA is colored in salmon and the 5mC base is shown with a ball-and-stick model. The VC is shown as a ball-and-stick model and colored in lemon. c Representative simulated annealing composite omit maps (contoured at 1.0σ level) for the VC in the CMD1–VC complex, the flipped-out 5mC at the 3-position of the substrate strand in the CMD1-5mC-5DNA complex, the flipped-out C at the 3-position of the substrate strand in the CMD1-5DNA complex, and the VC and the flipped-out 5mC at the 3-position of the substrate strand in the CMD1-5mC-5DNA–VC complex. d Comparison of the structures of CMD1 in apo form (cyan), in complex with VC (wheat), in complex with 5mC (yellow), in complex with 5mC–DNA (magenta), and in complex with 5mC–DNA and VC (green). The zoom-in window shows that the disordered [T12–T12 loop in the structures of CMD1 in the apo form and VC-bound complex is well-defined in the structures of CMD1 in the DNA-bound complexes. The disordered [T12–T12 loop in the apo form and VC-bound complex are indicated with dotted lines.

Fig. 2 Structure of the active site. a Structure of the active site of CMD1 in apo form showing the interactions of the Fe$^{2+}$ with the surrounding residues. b Structure of the active site of CMD1 in complex with VC and 5mC–DNA showing the interactions of the Fe$^{2+}$ and the VC, with the surrounding residues. The carbon atom of VC are numbered. c Effect of mutations on the enzymatic activity of CMD1. Data are presented as mean values ± SEM (standard error of the mean). n = 3 independent replicates. d Structure of the active site of CMD1 in complex with 5mC–DNA and VC showing the interactions of the Fe$^{2+}$ and the flipped-out 5mC base, with the surrounding residues and VC. The hydrogen bonds and coordination bonds are indicated with black dotted lines.

mutagenesis and activity assay. Mutations of Arg244, His249, Thr337, Trp358, and Thr399 to Ala abolish the activity of CMD1, and mutations of Ser335 and Val342 reduce the activity by two to threefolds (Fig. 2c), indicating that the hydrophilic interactions play a major role in the VC binding, and the activity of CMD1 is dependent on the proper binding of VC. Of note, the His$_S$–SUMO tag of the S414A mutant could not be efficiently cleaved for unknown reason, and thus the His$_S$–SUMO tagged S414A mutant was not used in the activity assay.

In the CMD1–5mC–DNA–VC complex, the 5mC base of the substrate strand is flipped out of the dsDNA and inserted into the active site of CMD1, and is specifically recognized by several residues of CMD1 (Fig. 2d). In detail, the N4 and O2 atoms of the 5mC base make hydrogen-bonding interactions with the side chains of Asp350 and Arg418, respectively. The N3 atom of the 5mC base forms an indirect hydrogen bond with the side chain of Asp350 via a water molecule. The pyrimidine ring of the 5mC is
sandwiched between the side chains of Arg244 and Phe416 via cation–π and π–π interaction, respectively. The side chain of Arg244 is further stabilized via a cation–π interaction with the side chain of Phe245 and a hydrogen-bonding interaction with the side chain of Asp347. In the CMD1–5mC–DNA complex, the 5mC base makes almost identical interactions with the protein (Supplementary Fig. 5b). Intriguingly, although the C5-methyl group of the 5mC base points to the active site, it is not specifically recognized by any residue (Fig. 2d and Supplementary Fig. 5b). This suggests that an unmethylated C base could bind to the active site of CMD1 as well. Indeed, in the CMD1–DNA complex containing no 5mC modification at the 3-position of the DNA, the unmodified C base is also flipped out of the dsDNA and inserted into the active site, which makes similar interactions with the surrounding residues (Supplementary Fig. 5c). These results are consistent with our biochemical data showing that CMD1 exhibits no notable preference for 5mC modification (Supplementary Table 1). On the other hand, docking of other bases into the active site of CMD1 shows that the O4 atom of the T base would not form a favorable hydrogen-bonding interaction with the side chain of Asp350, and the A and G bases would have steric conflicts with the side chains of Asp350 and Arg244, and could not from hydrogen bonds with the side chain of Arg418 (Supplementary Fig. 5d). These results explain why only 5mC or C can bind to the active site of CMD1. To verify the functional roles of the key residues involved in the 5mC binding, we performed mutagenesis and activity assay. The results show that mutations of these residues abolish or significantly impair the CMD1 activity (Fig. 2c). Specifically, mutations of Arg244, Phe245, and Arg418 to Ala and Asp350 to result in a complete loss of the CMD1 activity, and mutation of Phe416 to Ala lead to eightfold reduction of the activity (Fig. 2c). Taken together, our structural and biochemical results suggest that residues Arg244, Phe245, Asp350, and Arg418 play vital roles and residue Phe416 plays an important role in the binding and recognition of the 5mC base.

It was previously reported that TET could oxidize thymine, which contains a C5-methyl group on the pyrimidine scaffold to 5-hydroxymethyluracil in mouse embryonic stem cells. Thus, we performed enzymatic activity assays of the wild-type CMD1 and the D350N mutant (which might be able to form a hydrogen bond with the O4 atom of the T base) toward 0.5-kb 5mCpG- and CpG-containing DNAs (which contain ~25.5% T base) to examine whether CMD1 could catalyze the glyceryl transfer from VC to T. The results showed that for the 5mCpG-DNA substrate, the wild-type CMD1 could catalyze the formation of 5gmC efficiently and the D350N mutant could generate a very little amount of 5gmC; and for the CpG-DNA substrate, both the wild-type and mutant CMD1 cannot catalyze the formation of 5gmC. On the other hand, in all of these assays, no new product peak could be identified at the expected position for C5-glyceryl-thymine (5T or 5gmU) and the abundance of the T peak has no notable change (Supplementary Fig. 5e). These results suggest that the wild-type and the D350N mutant CMD1 cannot catalyze the reaction of a glyceryl transfer from VC to T.

Binding and recognition of DNA. In the CMD1–5mC–DNA–VC complex, a major portion of the dsDNA region (nucleotides 1–8 of the substrate strand and nucleotides 3–11 of the non-substrate strand), including the 5mC at the 3-position of the substrate strand is clearly defined in the electron density map, whereas the 3' overhang regions are largely disordered (Fig. 1b, c and Supplementary Fig. 4e). The DNA binds to a shallow and positively charged surface cleft formed mainly by helices α7 and α10–α12 of CMD1 (Figs. 1b and 3a). CMD1 interacts mainly with the phosphate backbone of the DNA via extensive hydrophilic interactions (Fig. 3b–d). For the substrate strand, the phosphate group of 5mC forms a hydrogen bond with the main-chain amine of Phe245; the phosphate group of G4 forms a hydrogen bond with the side chain of Tyr270 and a salt bridge with the side chain of Arg418; the phosphate group of C5 forms a direct hydrogen bond with the main-chain amine of Ala271 and indirect hydrogen bonds with the side chain of Asp262 and the main-chain amine of Ala271 via a water molecule and the main-chain amine of Val272 via another water molecule; and the phosphate group of G6 forms two direct salt bridges with the side chains of Lys264 and Arg245 (Fig. 3b, d). For the non-substrate strand, the ribose moiety of C7 forms a hydrogen bond with the side chain of Arg461; the phosphate group of G9 forms a hydrogen bond with the side chain of Ser465; the phosphate group of G10 forms a salt bridge with the side chain of Arg471, a direct hydrogen bond with the main-chain carbonyl of Ala468, and indirect hydrogen bonds with the side chains of Arg471 and Asn260 and the main-chain amine of Lys472 via a water molecule (Fig. 3c, d). In addition, the side chain of Asn261 forms direct hydrogen bonds with the guanine moiety of unpaired G8' and the ribose moiety of G9'. In the CMD1–DNA complexes with or without 5mC modification, a similar portion of the dsDNA region (nucleotides 1–7 of the substrate strand and nucleotides 3–11 of the non-substrate strand), including the modified or unmodified C3 of the substrate strand is also clearly defined in the electron density maps (Supplementary Fig. 4c, d), and the DNA makes essentially identical interactions with the protein except that the phosphate group of A11' also forms a salt bridge with the side chain of Lys479 probably due to the relatively higher resolution of the CMD1–DNA complexes (Supplementary Fig. 6a, b). These results also suggest that the VC binding has no direct impact on the DNA binding. Furthermore, structural analysis reveals that there are several basic residues located adjacent to the DNA-binding site, including Lys420, Arg484, and Arg494 (Fig. 3e). Although these residues have no interactions with the DNA in the CMD1–5mC–DNA–VC and CMD1–DNA complexes, a modeling study suggests that these residues could make interactions with a 20-bp dsDNA modeled based on the extension of the dsDNA region of the bound 14-nt DNA (Supplementary Fig. 6c).

To verify the functional roles of the key residues involved in the DNA binding, we performed mutagenesis and biochemical analyses. In vitro binding assays show that mutations of these residues have only slight or insignificant impacts on the binding affinity of CMD1 toward the DNA substrate (0.3–1.5-folds; Fig. 3f), consistent with the structural data showing that a number of residues of CMD1 make extensive hydrophilic interactions with the DNA and single mutation of any of these residues could not disrupt the DNA binding. On the other hand, the enzymatic activity assays show that mutations of these residues abolish or significantly impair the CMD1 activity (Fig. 3f). Specifically, mutations of Tyr270, Ser465, and Arg471 abolish the activity; mutations of Arg275 and Lys472 lead to >30-fold reduction of the activity; and mutations of Lys264, Asn261, and Arg461 lead to about five to eightfold reduction of the activity. It is likely that mutations of these residues might affect the interactions of CMD1 with the DNA, and thus the precise positioning of the 5mC base at the active site, leading to the abolishment or impairment of the activity. In addition, mutations of the basic residues adjacent to the DNA-binding site (Lys420, Arg484, and Arg494) result in >30-fold decrease of the activity (Fig. 3f). This is consistent with our modeling study showing that these residues might be involved in the binding of a longer DNA (Supplementary Fig. 6c). Taken together, residues Tyr270, Arg275, Ser465, Arg471, and Lys472 play vital roles and residues Lys264, Asn261, and Arg461 play important roles in the binding and proper positioning of the DNA. Of note, the His5–SUMO tag of the K479A mutant could...
not be efficiently cleaved for unknown reason, and thus the His6-SUMO-tagged K479A mutant was not used in the activity and DNA binding assays.

In all of the DNA-bound CMD1 structures, there is no direct interactions between the DNA and the MBP. However, nucleotide A11' of the reverse chain points toward the MBP with a distance of ~12 Å (between the ribose of A11' and Asn13 of the MBP; Supplementary Fig. 6c). Modeling studies indicate that the 3' end of the non-substrate strand of the 14-nt DNA could make interaction with the MBP, and this interaction might stabilize the binding of the 14-nt DNA with the MBP-fused CMD1; and that a longer overhang or a longer dsDNA would have steric conflict with the MBP (Supplementary Fig. 6c). These results are in agreement with our biochemical data showing that the MBP-fused CMD1 exhibits a slightly higher binding affinity (0.81 ± 0.03 μM) toward the 14-nt DNA used in the structural study than...
Fig. 3 Interactions between CMD1 and DNA in the CMD1-5mC-DNA-VC structure.

a Electrostatic potential surface of CMD1. Bases of the DNA defined in the structure are shown in ring representation and labeled. The DNA-binding site of CMD1 is largely positively charged (blue). b, c Detailed interactions of CMD1 with the substrate strand (b) and the non-substrate strand (c) of the bound DNA. The bound DNA and the residues of CMD1 involved in the interactions are shown with ball-and-stick models. Water molecules are shown in red spheres. The color coding is the same as Fig. 1b. The hydrogen bonds are indicated with black dotted lines. d A schematic diagram showing the interactions between the CMD1 and the 5mC-DNA in the CMD1-5mC-DNA-VC complex. The defined region of the DNA is highlighted in a shaded yellow box. The hydrophilic interactions are indicated with blue solid lines, and the hydrophobic, cation-π, and π-π stacking interactions with blue dashed lines. The phosphates of the DNA involved in the interactions with CMD1 are highlighted in orange. The residues of CMD1 interacting with the DNA via the side chains and main chains are colored in blue and black, respectively. Water molecules are indicated with green spheres. e Structure of the DNA-binding site of CMD1. The bound DNA is shown with a ribbon representation and the flipped-out 5mC base is shown with a ball-and-stick model. The basic residues located at the DNA-binding site of CMD1 are shown with ball-and-stick models. The basic residues located in adjacent to the DNA-binding site of CMD1 that might have potential interactions with the DNA are also shown with ball-and-stick models and circled with black dashed line. f Effect of mutations of the key residues involved in the DNA binding on the enzymatic activity of CMD1 and the binding affinities of CMD1 toward dsDNA. ND not detected. Data are presented as mean values ± SEM. n = 3 independent replicates.

CMD1 without the MBP tag (2.01 ± 0.11 μM; Supplementary Fig. 6d). Moreover, although the two types of CMD1 exhibit comparable activities towards the 14-nt DNA substrate, the MBP-fused CMD1 is less efficient in catalyzing the 0.5-kb DNA substrate than CMD1 without the MBP tag (Supplementary Fig. 6e). These results may explain why in the structure of CMD1 in complex with the 14-nt DNA, a large portion of the DNA is defined with high-quality electron density, whereas in the structures of CMD1 in complexes with DNAs with a shorter or longer overhang, only a small portion of the DNA is defined.

Discussion

The TET homologue CMD1 in the green alga *C. reinhardtii* utilizes VC as the co-substrate to catalyze the conjugation of a glycerol moiety to the C5-methyl group of 5mC, forming a new DNA base modification named as 5gmC.26 The 5gmC modification exists in the genomic DNA of the wild-type green alga, and CMD1 is responsible for maintaining the 5gmC level in vivo. Functional studies demonstrated that 5gmC is a potential epigenetic mark and plays a vital role in the regulation of photosynthesis.26 In this work, we carried out extensive structural and biochemical studies of CMD1, which not only reveal the molecular basis for how CMD1 recognizes the DNA substrate and utilizes VC as the co-substrate, but also provide mechanistic insight into the catalytic reaction of the 5gmC DNA modification by CMD1.

Comparison of the overall structures of the DNA-bound CMD1, *Homo sapiens* TET2 (HsTET2, PDB code: 4NM6)38 and *Naegleria gruberi* TET1 (NgTET1, PDB code: 4LT5)41 shows that the DSBH core of CMD1 is similar to that of HsTET2 (RMSD of 3.3 Å for 214 Ca atoms) and NgTET1 (RMSD of 3.0 Å for 196 Ca atoms) despite the fact that the flanking structure elements are quite different and could not be aligned very well (Fig. 4a). In all of these enzymes, the DNA substrate always binds to a positively charged surface cleft, and the protein interacts mainly with the phosphate backbone of the DNA substrate via extensive hydrophilic interactions (Fig. 3a; refs. 38, 41 and this study).

A detailed structural comparison reveals that the active site of CMD1 has some commonalities, as well as some differences with that of HsTET2 and NgTET1. Particularly, despite the low overall sequence identity (Supplementary Fig. 7), the conserved HXD/E...H motif of CMD1, HsTET2, and NgTET1 could be structurally aligned very well (Fig. 4b, c). Nevertheless, although the residues composing the active sites could be structurally aligned well, the chemical properties of some residues are different, and thus there are substantial differences in the binding and recognition mode of the co-substrate. Specifically, in the structures of CMD1 in complexes with VC and with both DNA and VC, the VC coordinates the Fe^{2+} in a monodentate manner via its C-2 hydroxyl group (Supplementary Fig. 5a and Fig. 2b). This is significantly different from the binding mode of the 2-OG analog NOG, which coordinates the Fe^{2+} in a bidentate manner via its C-1 carboxyl and C-2 ketone in the HsTET2 and NgTET1 structures.40,41 (Fig. 4b). In addition, in the DNA-bound HsTET2 and NgTET1 structures, the NOG is stabilized by two salt bridges and a number of direct hydrogen-bonding interactions (Supplementary Fig. 8a, b). However, in the CMD1-5mC-DNA-VC complex, the VC is stabilized by a few direct hydrogen-bonding interactions and several indirect hydrogen-bonding interactions via water molecules (Supplementary Fig. 8c). These results suggest that VC makes less hydrophilic interactions with CMD1 than NOG with HsTET2 and NgTET1, which might explain why CMD1 has weak binding affinity for VC.

In the HsTET2 and NgTET1 structures, the C1-carboxyl and C5-carboxyl of NOG are each stabilized by an Arg residue (Arg1261 and Arg1896 of HsTET2, and Arg224 and Arg289 of NgTET1, respectively), and these two Arg residues are strictly conserved and are characteristic basic residues responsible for the 2-OG binding in the Fe^{2+}/2-OG-dependent dioxygenases.24,39 Although CMD1 contains two Arg residues at the active site (Arg244 and Arg410) and the structure-based sequence alignment shows that these Arg residues can be aligned with those of HsTET2 and NgTET1 (Supplementary Fig. 7), only the side chain of Arg244 makes an indirect hydrogen-bonding interaction with the VC, while the side chain of Arg410 points away from the active site and forms several hydrophilic interactions with the surrounding residues and thus makes no interaction with the VC (Fig. 4b). In addition, the side chain of Trp358 occupies the spatial position of the side chain of Arg1896 of HsTET2 or Arg289 of NgTET1, and has potential steric conflict with the C5-carboxyl of NOG (Fig. 4b). Thus, due to the lack of a basic residue to stabilize the C5-carboxyl of 2-OG and the potential steric hindrance of the side chain of Trp358, 2-OG would not be able to bind properly at the active site of CMD1. This may explain why CMD1 could not use 2-OG as co-substrate. On the other hand, the shape of the co-substrate binding pocket of CMD1 is substantially different from that of the TET proteins (Supplementary Fig. 8d), and VC would have potential steric conflicts with some residues constituting the co-substrate binding pocket of the TET proteins (Fig. 4b). This may explain why the TET proteins could not use VC as co-substrate. Taken together, our structural and biochemical data show that although CMD1 is a TET homologue belonging to the Fe^{2+}/2-OG-dependent dioxygenase family, the key residues of CMD1 involved in the VC binding are quite different from those of HsTET2 and NgTET1 involved in the NOG (or 2-OG) binding, and the binding and recognition mode of VC by CMD1 is thus substantially different from that of NOG.
by HsTET2 and NgTET1. These differences could explain why CMD1 could not use 2-OG and why the TET proteins could not use VC as co-substrate.

On the other hand, structural comparison shows that the binding and recognition mode of 5mC by CMD1 shares some commonalities with that by HsTET2 and NgTET1 (Fig. 4c). Structure-based sequence alignment shows that the residues involved in the 5mC binding can be aligned well among CMD1, HsTET2, and NgTET1, and the aligned residues share similar chemical properties (Fig. 4c and Supplementary Fig. 7). Specifically, the N4 atom of the 5mC base is stabilized by an Asp or Asn (Asp350 of CMD1, Asn1387 of HsTET2, and Asp234 of NgTET1) via a hydrogen bond. The N3 atom of the 5mC base is recognized by a His (His1904 of HsTET2 and His297 of NgTET1) with a hydrogen bond, and the O2 atom of the 5mC base is stabilized by an Arg or Asn (Arg418 of CMD1 and Asn147 of NgTET1) from the bottom. Nonetheless, the N4 atom of the 5mC base is stabilized by an Asp or Asn (Asp350 of CMD1, Asn1387 of HsTET2, and Asp234 of NgTET1) via a hydrogen bond. In addition, the pyrimidine ring of the 5mC base makes a π–π stacking interaction with the side chain of a Phe or Tyr (Phe416 of CMD1, Tyr1902 of HsTET2, and Phe295 of NgTET1) from the bottom. Nonetheless, the pyrimidine ring of the 5mC base also makes a cation–π stacking interaction with the side chain of Arg244 on the top in the CMD1–DNA complexes, and a partial cation–π stacking interaction with the side chain of Arg1261 and Arg224 in the HsTET2–DNA and NgTET1–DNA complexes, respectively (Fig. 4c). These results suggest that the TET and TET-like proteins utilize a conserved manner to bind and recognize 5mC.

In the DNA-bound CMD1, HsTET2, and NgTET1 complexes, the 5mC base is flipped out of the dsDNA and inserted into the active site (Fig. 4d). In the HsTET2–DNA complex, the orphaned guanine base is also flipped out of the dsDNA and the side chains of Met1293 and Tyr1294 occupy the position of the guanine base38 (Fig. 4d). It was suggested that the side chains of Met1293 and Tyr1294 might push the guanine base out of the dsDNA, which would disrupt the hydrogen-bonding interactions of the 5mC:G base pair, and thus facilitate the flipping of the 5mC base38. However, in the CMD1–DNA and NgTET1–DNA complexes, the orphaned guanine base maintains an intra-helical conformation and forms a direct hydrogen bond with the side chain of Asn261 of CMD1 or Ser148 of NgTET1 (Fig. 4d). In addition, in the CMD1–DNA complexes, there is no large side chain residue located in the vicinity of the 5mC:C base pair. Our biochemical data also shows that mutation of Asn261 to Ala leads to about fivefold reduction of the CMD1 activity (Fig. 3f), suggesting that the hydrophilic interaction between the side chain of Asn261 and the orphaned guanine base plays an important role in the stabilization of the orphaned guanine base and the catalytic reaction. It is possible that the flipping of the 5mC:C base might take place during the transient breakage of hydrogen bonds, namely hydrogen bond breathing in DNA duplex42. When the 5mC:C base is flipped out of dsDNA and inserted into the active site of CMD1, it would be stabilized by Arg244 and Phe245, and meanwhile the orphaned guanine base would be stabilized by the side chain of Asn261. It is also possible that the interaction between the side chain of Asn261 and the guanine base might weaken the hydrogen bonds of the 5mC:C base pair, and thus facilitate the base flipping process.

In the well-established catalytic mechanism of the Fe2+/2-OG-dependent dioxygenases23–25, the O2 molecule is first activated by the metal ion and then the activated oxygen attacks the C2-oxo group of co-substrate 2-OG, leading to the cleavage of the C1=C2 bond of 2-OG to produce the co-products succinate and CO2 and the formation of a ferryl-oxo (FeIV=O or FeIII=O−) species. Subsequently, the ferryl-oxo species abstracts a hydrogen atom.

Fig. 4 Structural comparison of CMD1 with TET proteins. a Comparison of the overall structures of CMD1, HsTET2 (PDB code, 4NM6) and NgTET1 (PDB code, 4LTS). CMD1, HsTET2, and NgTET1 are colored in green, light-blue, and orange, respectively. b Comparison of the co-substrate binding sites (b) and the substrate binding sites (c) of CMD1, HsTET2, and NgTET1. The co-substrate and residues composing the active site are shown with ball-and-stick models. d Comparison of the 5mC base flipping in the structures of CMD1, HsTET2, and NgTET1.
from the substrate, leading to the formation of a substrate radical and a Fe(III)-hydroxide species. Finally, the substrate radical and the hydroxide join together to form a hydroxylated product. In the CMD1–5mC–DNA–VC structure, a water molecule (Wat3) mediates the hydrophilic interactions between the side chain of Ser14 and the C3-hydroxyl group of VC (Fig. 2d). It is possible that Wat3 might occupy the position of the O2 molecule in the catalytic reaction. In addition, Arg244 makes interactions with the conserved Asp347, the VC, and the 5mC base (Fig. 2e). These results indicate that Arg244 plays a vital role not only in the stabilization of the 5mC base and the binding of VC, but also in the catalytic reaction.

The previous biochemical studies have shown the metabolic destiny of VC in the reaction catalyzed by CMD1 (ref. 25). Briefly, the CO2 is derived from the C1 atom of VC; the glyoxylic acid is 2-keto-L-gulonate and the decarboxylated intermediate L-xylonic acid (Supplementary Fig. 9, step 1). The transformation of bacteriochemical cells was grown in LB medium at 37 °C to OD600 of 0.6–0.8, and then induced with 0.2 mM IPTG at 16 °C overnight. The cells were collected, resuspended, and lysed on ice by high-pressure crushing in buffer A (287 mM NaCl, 2.7 mM MgCl2, 1 mM Na2HPO4, and 2 mM KCl), followed by buffer B (20 mM HEPES, pH 7.5, and 0.8 mM NaCl) or buffer C (20 mM HEPES, pH 7.0, and 100 mM NaCl). The MBP–CMD1–His6 protein was purified by affinity chromatography using a Ni-NTA column with buffer B followed by buffer C and elution buffer, respectively. The MBP–CMD1–His6 protein was further purified with gel filtration using a Superdex G200 10/300 column (GE Healthcare) pre-equilibrated with buffer C (20 mM HEPES, pH 7.0, and 100 mM NaCl). The final protein purity was >95% as analyzed by SDS–PAGE (10%).

Catalysis, data collection, and structure determination. Prior to crystalization, the purified MBP–tagged CMD1 was concentrated to ~30 mg/ml in buffer D and then incubated with (NH4)2Fe(SO4)2 at a molar ratio of 1:2. Crystallization was carried out using the hanging drop vapor diffusion method at 16 °C. Crystals of the Se-Met derivative CMD1 were grown in drops consisting of equal volumes of the protein solution and the reservoir solution [0.1 M sodium citrate, pH 5.5, and 16% (w/v) PEG 8000]. Crystals of CMD1 in apo form were grown in drops consisting of the protein solution and the reservoir solution [2% (w/v) tascimate, pH 5.0, 0.1 M sodium citrate, pH 5.6, and 16% (w/v) PEG 3350]. Crystals of CMD1 in complex with DNA were grown in drops consisting of the protein solution pre-incubated with synthesized DNA substrates at a molar ratio of 1:1.2 and the reservoir solution [15% (w/v) 2-propanol, 0.1 M sodium citrate, pH 5.0, and 10% (w/v) PEG 10,000]. To obtain VC-bound CMD1 and CMD1–5mC–DNA complexes, the crystals of the apo CMD1 or the CMD1–5mC–DNA complex were soaked in the reservoir solution supplemented with 400 mM VC (sodium l-ascorbate) for 5 min, and then transferred to the cryoprotectant consisting of the reservoir solution and 30% ethylene glycol followed by flash-cooling into liquid N2. Diffraction data were collected at BL17U1 of Shanghai Synchrotron Radiation Facility or BL18U and BL19U1 of National Facility for Protein Science Shanghai, using Blu-Ice as the control and data collection software, and processed with HKL2000 (ref. 46). The statistics of the diffraction data are summarized in Table 1. The crystal structure of the Se-Met derivative CMD1 was solved using the SAD method as implemented in Phenix47. All of the other structures were solved by the MR method using the Se-Met derivative CMD1 or the apo CMD1 structure as the search model. Model building was performed with Coot48, and structure refinement was carried out using programs in CCP4 (ref. 49). The structure figures were generated using PyMOL (www.pymol.org)49. The statistics of the structure refinement and the quality of the final structure models are also summarized in Table 1.

Preparation of DNA substrates. For co-crystalization of CMD1 and DNA, a 14-nt ssDNA with a sequence of 5′-CC(mC)GGGGGAGATGTTG-3′ was synthesized and annealed to obtain a 10-bp palindromic dsDNA plus a 4-nt 3′-overhang on both the substrate strand and the non-substrate strand. All of the DNA oligos used in the enzymatic activity assay and BLI assay were synthesized and annealed properly, and the sequences of the oligos are summarized in Supplementary Tables 1 and 2. The 0.5-kb 5mCpG- and CpG-containing DNA substrates used in the enzymatic activity assay were amplified by PCR from a randomly selected portion of C. reinhardtii genomic DNA using 5-methyl-dCTP and dCTP, respectively. The forward primer (DNA-Sub-F) and the reverse primer (DNA-Sub-R) are summarized in Supplementary Table 6. The 0.5-kb 5mCpG- and CpG-containing DNA substrates contain ~25.5% T base.

Bio-layer interferometry assay. The binding affinities of the full-length CMD1 with different DNA substrates were analyzed by the BLI assay using Octet Red 96
The gradient program was as follows: 0% B, 12 min 0% A, 5 min 100% A, 12.5 min 100% A. The reaction mixture was substituted with other buffers with different pH values, including sodium citrate (pH 5.0 and 6.0), sodium cacodylate (pH 5.0, 6.0, and 7.0), MES (pH 6.0 and 7.0), Bis-TRIS (pH 6.0 and 7.0), and HEPES (pH 8.0). The purified DNA was digested into nucleoside deoxyribonucleotides by nucleases P (Sigma) at 55°C for 1 h in the buffer containing 20 mM NaAc (pH 5.3) and 0.2 mM ZnSO4, and then dephosphorylated with calf intestinal alkaline phosphatase (Takara) at 55°C for 1 h in the buffer containing 20 mM NaAc (pH 5.3) and 0.2 mM ZnSO4, and then dephosphorylated with calf intestinal alkaline phosphatase (Takara) at 57°C for 1 h. The digested mixture was centrifuged and then subjected to LC-MS analysis. The supernatant was analyzed using the multi-ligand monitoring (MRM) mode of LC/MS QQQ (Agilent 1260/6495B tandem mass spectrum). Metabolite standards were used to identify the metabolites of the catalytic reaction. A Hypersil GOLD adsorbent (1 μm particle size, 150 mm x 2.1 mm, Thermo Scientific) was used for LC separation using gradient elution with water supplemented with 0.1% formic acid as solvent A and acetonitrile supplemented with 0.1% formic acid as solvent B. The gradient program was as follows: 0–5 min 100% B, 5–10 min 100%–92% A, 10–12 min 92%–0% A, 12–15 min 50% B, and 15–15.1 min 100% B. The flow rate was 0.3 ml/min and the column temperature was 25°C. An AJS ESI ion source in positive ion mode was used for detection. Nitrogen generator (PEAK Shanghai) was used for ionization. The produced 5gmC and the remaining 5mC were semi-quantitatively represented by the ratio of the 5gmC over the total of the 5gmC and the remaining 5mC. All experiments were performed in triplicates and the error bars represent the standard error of the mean. The graphs were generated with GraphPad Prism.

In vitro enzymatic activity assay. The enzymatic activity assay of the full-length and MBP-fused CMD1 was performed at 37°C using a modified method described previously66. The reaction mixture of 100 μl consisted of 7 μM wild-type or mutant CMD1 protein, 1 mM mC-ribose acid, and 0.2 μM biotinylated 90-bp 5mC-GpxX DNAs or 2 μM biotinylated 14-nt 5mC-5mC/CNA in the reaction buffer [50 mM HEPES, pH 7.0, 50 mM NaCl, 0.1 mM Fe(NH4)2(SO4)2, and 2 mM Tris(2-carboxyethyl)phosphine]. After 2 h reaction, the mixture was treated with protease K (LifeLong) at 55°C for 1 h, and the biotylated DNA was purified by Streptavidin Sepharose beads (GE Healthcare) according to the manufacturer’s instructions. In the analysis of the effects of different buffers with different pH values on the activity of CMD1, the HEPES buffer (pH 7.0) in the reaction mixture was substituted with other buffers with different pH values, including sodium citrate (pH 5.0 and 6.0), sodium cacodylate (pH 5.0, 6.0, and 7.0), MES (pH 6.0 and 7.0), Bis-TRIS (pH 6.0 and 7.0), and HEPES (pH 8.0). The reaction mixture was incubated and carried out in solid-black-96-well plates containing 200 μl of solution in each well with an agitation speed of 1000 rpm at 25°C. The Kc values were obtained by global fitting of the binding curves with the 1:1 binding model using the Octet data analysis software 9.0.
40. Pfaffeneder, T. et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 10, 574–581 (2014).
41. Hashimoto, H. et al. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 506, 391–395 (2014).
42. Roberts, R. J. & Cheng, X. Base flipping. Annu. Rev. Biochem. 67, 181–198 (1998).
43. Jin, T. et al. Design of an expression system to enhance MBP-mediated crystallization. Sci. Rep. 7, 40991 (2017).

44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
45. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
46. Emsley, P. & Cowtan, K. COOT: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
47. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
48. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
49. Schrödinger, L. C. The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC, New York, 2015).

Acknowledgements
We thank the staff members at BL17U1 of Shanghai Synchrotron Radiation Facility of China and BL18U and BL19U1 of National Facility for Protein Science Shanghai for technical supports in diffraction data collection, and the staff members at the Core Facility of Molecular Biology of our institute for technical supports in biochemical studies. We are grateful to Dr. Jin-Qiu Zhou, Dr. Suwen Zhao, and other members of our group for valuable discussion. This work was supported by grants from the National Key Research and Development Program of China (2020YFA0509000) and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB37030305). W.L. acknowledges the support of the SA-SIBS scholarship program.

Author contributions
J.D. conceived the study. W.L. and M.S. carried out the protein preparation, DNA binding assays, and crystallization experiments. W.L., M.S., and T.Z. collected the diffraction data. W.L. and T.Z. carried out the structure determination and refinement. M.S. carried out the mutagenesis and enzymatic activity assays. Y.S. and X.-J.Z. participated in the biochemical studies. C.-L.X. participated in the data analyses and discussion. W.L., T.Z., and J.D. designed the experiments, performed the data analyses, and wrote the manuscript with contributions from all of the other authors.

Competing interests
The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.D.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021