Variability total phenolic content and antioxidant activity of *Curcuma zanthorrhiza* and *C. aeruginosa* cultivated in three different locations in West Java, Indonesia

SURYANI¹, **ASMAUL CHUSNA AL ANSHORY**¹, **MARLIN**², **I MADE ARTIKA**¹, **LAKSMI AMBARSARI**³, **WARAS NURCHOLIS**²,³, ⁴

¹Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor. Jl. Meranti, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia. Tel./fax: +62-251-8625481, *email: wnurcholis@apps.ipb.ac.id*

²Department of Crop Production, Faculty of Agriculture, Universitas Bengkulu. Jl. WR. Supratman, Kandang Limun, Kota Bengkulu 38371, Bengkulu, Indonesia

³Tropical Biopharmaca Research Center, Institut Pertanian Bogor. Jl. Taman Kencana No. 3, Kampus IPB Taman Kencana, Bogor 16128, West Java, Indonesia

Abstract. Suryani, Al Anshory AC, Marlin, Artika IM, Ambarsari L, Nurcholis W. 2022. Variability total phenolic content and antioxidant activity of *Curcuma zanthorrhiza* and *C. aeruginosa* cultivated in three different locations in West Java, Indonesia. Biodiversitas 23: 1998-2003. *Curcuma zanthorrhiza* Roxb. and *C. aeruginosa* Roxb. are medicinal plants belonging to the Zingiberaceae family, which contained phenolic compounds. Phenolic is one of the antioxidant compounds. This study aimed to investigate variation on the total phenolic and antioxidant activity of three *C. zanthorrhiza* varieties and twenty *C. aeruginosa* genotypes cultivated in three different locations in West Java, Indonesia. Total phenolic content was determined using the Folin-Ciocalteu reagent, whereas antioxidant activity was used spectrophotometry using DPPH method. The total phenolic content ranged from 2.403 to 7.539 mg GAE/ g DW) differed significantly among the *C. zanthorrhiza* and *C. aeruginosa* varieties/genotypes, with the highest concentration found in the Cursina 3 variety of *C. zanthorrhiza* in Cianjur. The antioxidant activity ranged from 2.443 to 14.960 µmol TE/g DW, with the maximum activity identified in the Cursina 2 variety of *C. zanthorrhiza* in the Bogor location. G1, G6, G13, and G16 were identified as stable genotypes for phenolic antioxidant production. Three *C. zanthorrhiza* cultivars demonstrated higher total phenolic content and antioxidant activity than all *C. aeruginosa* genotypes in all planting areas. *C. zanthorrhiza* cultivars are the most promising source of phenolic content and antioxidant activity and are thus recommended for mass plantation at suitable locations in West Java, Indonesia to maximize potential.

Keywords: Antioxidant activity, *Curcuma aeruginosa*, *Curcuma zanthorrhiza*, DPPH, phenolic

INTRODUCTION

Indonesia has a wide variety of medicinal plants, having between 2500 and 2700 plant species (Cahyaningsih et al. 2021). Rhizomes of some species within the Zingiberaceae family are frequently utilized as medicinal plants, two species of which are *Curcuma zanthorrhiza* Roxb. and *C. aeruginosa* Roxb. (Yuanadini et al. 2021). Several studies reported pharmacological activities from these plants, including anticancer, antidiabetic, antimicrobial, and antioxidant properties (Akarchariya et al. 2017; Nurcholis et al. 2017; Nurcholis et al. 2018; Fitria et al. 2019). This demonstrates the significance of these plants as potential Indonesian medicinal herbs.

Secondary metabolites, such as polyphenols influence the pharmacological activities of *C. zanthorrhiza* and *C. aeruginosa* rhizomes. Curcuminoid compounds consisting of curcumin, demethoxy curcumin, and bisdemethoxy curcumin are polyphenolic compounds that have been reported to be present in the rhizomes of *C. zanthorrhiza* and *C. aeruginosa* (Nurcholis et al. 2016a; Nurcholis et al. 2016b; Nurcholis et al. 2019; Atun et al. 2020; Nurcholis et al. 2020). Many studies have found polyphenols to be effective as antioxidants (Bahukhandi et al. 2018; Feduraev et al. 2019; Xiang et al. 2019), and as a result, evaluating polyphenol in samples will be excellent compared to antioxidant activity. These parameters have been used in several studies of *C. zanthorrhiza* and *C. aeruginosa*. Sandrasari et al. (2019) evaluated phenolic and antioxidant activity in rhizomes of five species of Zingiberaceae native to Indonesia with maximum identified results in *Zingiber officinale* followed by *C. longa*, *C. zedoaria*, *C. zanthorrhiza* and *C. aeruginosa*. Phenolic and antioxidant characteristics were also employed in other studies, such as the use of solar drier (Vitanti et al. 2016), identifying elite accessions (Khumaida et al. 2019; Rosidi 2020), and evaluating Indonesian Zingiberaceae herbs (Muflihah et al. 2021).

Plant genotype and environmental conditions and interactions between genotype x environment are essential factors affecting the productivity of medicinal plant secondary metabolites. Productivity secondary metabolites have been shown in several plants, including *C. longa* (Pal et al. 2020), *Solanum viarum* (Patel et al. 2022), *Andrographis paniculata* (Kalariya et al. 2021), and *Amelanchier alnifolia* (Lachowicz et al. 2017), which are...
affected by genotype x environment. According to Seno et al. (2020), C. zanthorrhiza varieties and C. aeruginosa genotypes grown at different locations were affected by photosynthetic parameters and rhizome productivity. Photosynthesis is an essential parameter for producing primary plant metabolites which are precursors in the biosynthesis of secondary metabolites in plants (Nocchi et al. 2020).

We suspect that C. zanthorrhiza and C. aeruginosa cultivated at different locations will also affect the content of secondary metabolites, one of which is phenolic compounds. Until present, research on the total phenolic content and antioxidant activity of C. zanthorrhiza varieties and C. aeruginosa cultivated in different locations has not been reported. Therefore, this study aimed to investigate total phenolic content and antioxidant activity in C. zanthorrhiza and C. aeruginosa extract as well as identified stable genotype that cultivated in three different locations in West Java, Indonesia.

MATERIALS AND METHODS

Study area

Plant materials used in the study were collected from three locations in West Java, Indonesia from October 2019 to July 2020 (Table 1).

Plant materials

Curcuma zanthorrhiza varieties namely Cursina 1, Cursina 2, and Cursina 3 (C1-C3) used in the study were received from Indonesian Spices and Medicinal Crops Research Institute, Bogor, West Java, Indonesia. The C. aeruginosa genotypes (G1-G20) were obtained from Agricultural Biochemistry Laboratory, Department Biochemistry, IPB University, Bogor, Indonesia. All C. zanthorrhiza and C. aeruginosa were grown under identical conditions, except for the cultivated sites, and harvested at the same time in the same regions. Three samples of each C. zanthorrhiza variety and C. aeruginosa genotype from each site were evaluated in this work. All of the samples’ rhizomes were broken into small pieces and air-dried before being processed into a powder.

Procedures

Plant extraction

All dried rhizomes were extracted utilizing the sonication with maceration procedure, as described in Calvindi et al. (2020), with minor modifications. Rhizome sample of 4 g was extracted with 80% ethanol (20 mL) and then sonicated using Branson 1510 for 30 min. The solution was macerated for 3 h at room temperature in dark condition. Then, the solution was filtered using filter paper. All of the extraction steps were done again three times. Finally, the supernatant was concentrated or adjusted to a final concentration extract of 0.2 g/mL and this extract was used for the evaluation of total phenolic content and antioxidant activity.

Total phenolic content

The determination was performed using the previously described 2,2-diphenyl picrylhydrazyl (DPPH) technique (Nurcholis et al. 2021). The amount of antioxidant activity was expressed in micromol Trolox equivalents per g of dry weight (mg GAE/ g DW).

Data analysis

ANOVA was determined using the ExpDes package in the R program, followed by a Scott-Knot test (Ferreira et al. 2014). When p <0.05 is evaluated, considerable significant differences. The stability of samples was determined using additive main effect and multiplicative interaction (AMMI) with using PBSTAT-GE (www.pbstat.com). Visualization of genotype stability was used AMMI-2 biplot based on data of total phenolic content and antioxidant activity obtained from the pbstat.com on the GGE (genotype plus genotype-by-environment) menu.

Table 1. Information of experimental sites condition in Bogor, Cianjur, and Sukabumi, West Java

Locations	Latitude (S)	Longitude (E)	Altitude (m asl.)	Rainfall (mm)	Temp. (°C)
Tropical Biopharmaca Research Center, IPB University, Dramaga, Bogor, West Java	6°33'00.0"	106°43'12.0"	141	424.6	26.4
Pasir Sarongge, IPB University, Ciputri, Cianjur, West Java	6°46'12.0"	107°03'00.0"	1083	249.1	20.6
Local farmer, Nagrak, Sukabumi, West Java	6°52'12.0"	106°48'00.0"	493	321.1	17.6

Source: Meteorological, Climatological, and Geophysical Agency in Bogor, West Java, Indonesia (data monthly 2019-2020).
RESULTS AND DISCUSSION

Total phenolic contents

Total phenolic contents (TPC) in 20 genotypes of C. aeruginosa thimzone ranged from 2.403 to 5.118 mg/g GAE DW and 3 varieties of C. zanthorrhiza thimzone ranged from 4.871 to 7.539 mg/g GAE DW. The average TPC of C. aeruginosa and C. zanthorrhiza was the highest produced by C. aeruginosa and C. zanthorrhiza cultivated in the Bogor (3.872 mg/g GAE DW), followed by C. aeruginosa and C. zanthorrhiza that cultivated in Cianjur (3.728 mg/g GAE DW) and Sukabumi (3.651 mg/g GAE DW). The highest mean total phenolic content of C. aeruginosa based on its genotype was G14 (3.909 mg/g GAE DW) after comparison Cursina 1 (C1), Cursina 2 (C2), and Cursina 3 (C3). The maximum TPC of C. zanthorrhiza varieties was found in C3 cultivated in Cianjur, followed C2 and C3 in Bogor. C. zanthorrhiza varieties thimzone contained high TPC compared to the C. aeruginosa genotypes (Table 2).

Antioxidant activity

The antioxidant activity values of C. aeruginosa ranged from 2.443 to 6.794 μmol TE/g DW and C. zanthorrhiza ranged from 5.265 to 14.960 mol TE/g DW. Genotype G1 (5.547 μmol TE /g DW) has the highest mean value of antioxidant after comparison and Bogor (5.034 μmol TE/g DW) is the location with the highest antioxidant activity value compared to Sukabumi (4.951 μmol TE/g DW) and Cianjur (4.333 μmol TE/g DW). The highest antioxidant activity of C. zanthorrhiza varieties was found in C2 followed C1 and C3 cultivated in Bogor (Table 3).

Genotype stability

The results of the combined variance analysis of 20 genotypes of C. aeruginosa and 3 varieties of C. zanthorrhiza showed that the genotypes had a very significant effect with p-value less than 0.001 for TPC and antioxidant activity (Table 4). The p-value less than 0.001 for the total phenolic content and antioxidant activity indicated that there was variation in yield based on the genotype. Experimental replicates on antioxidant activity had a p-value of 0.011 and the interaction between genotype and environment had a significant effect with a p-value of 0.009 for antioxidant activity of DPPH. The interaction between genotype and environment, PC1 has p-value of 0.088 for total phenolic content and p-value of less than 0.001 for antioxidant activity.

The AMMI-2 biplot can be used to describe the genotype’s stability across all experimental sites by utilizing the confidence region of the ellipse with a center point of (0.0) and the first and second most significant interaction principal component (PCA) values. The contribution of the diversity of interaction effects on the total phenolic parameters and antioxidant activity that can be explained by the main component of the interaction, which is 100% with each component PC1 and PC2 on the total phenolic parameters were 67.1% and 32.9% (Figure 1) and the antioxidant activity parameters of components PC1 and PC2 were 89.1% and 10.9%, respectively (Figure 2).
Table 4. Analysis of variance for AMMI model of 20 genotypes of C. aeruginosa and 3 varieties of C. zanthorrhiza

Source of variation	DF	SS	MS	F	P-value
Total phenolic content					
Environment	2	1,798	0.899	2.494	0.162
Replication/Environment	6	2.163	0.360	0.417	0.866
Genotype	22	262.177	11.917	11.958	<0.001*
Genotype x Environment	44	43.847	0.996	1.182	0.266
PC1	23	29.430	1.279	1.48	0.088
PC2	21	14.416	0.686	0.79	0.727
Error	132	114.092	0.864		

Antioxidant activity

Source of variation	DF	SS	MS	F	P-value
Environment	2	19.981	9.990	8.585	0.470
Replication/Environment	6	69.863	11.643	2.863	0.011
Genotype	22	959.169	43.598	6.015	<0.001*
Genotype x Environment	44	309.140	7.025	1.727	0.009
PC1	23	275.349	11.971	2.94	<0.001*
PC2	21	33.790	1.609	0.4	0.991
Error	132	536.813	4.067		

Note: *Significance at p <0.001

Stable genotypes are presented by the AMMI-2 biplot, which is the genotype inside the circle (ellipse) (Figure 1). There are 8 genotypes namely G1, G2, G3, G4, G6, G12, G13, and G16 based on TPC, while the specific genotype for total phenolic parameters, C. aeruginosa genotype G7 is specific for the Sukabumi area, G18 is specific for the Bogor area and G5 and G15 were specific for the Cianjur area. There are 6 stable genotypes with antioxidant activity parameters that is G1, G5, G6, G13, G16, and G17 (Figure 2). Specific genotypes based on antioxidant activity parameters in the Cianjur area were G7, G8, G15, G18, and G19. The C. zanthorrhiza variety C1 is a specific variety for the Bogor area and C. aeruginosa genotypes G9 and G13 are the specific genotypes for the Sukabumi area.

Discussion

Phenolics are key secondary metabolites that are effective antioxidants (Zeb 2020). Antioxidant qualities in plants can lower the risk of a variety of diseases, such as cancer (Rôleira et al. 2015), diabetes (Lin et al. 2016), hypercholesterolemia (Wang et al. 2012), and other cardiovascular disorders (Olas 2017). As a result, there is a strong demand for plant materials with high phenolic content and antioxidant capacities (Machu et al. 2015). C. zanthorrhiza showed a greater total phenolic content and antioxidant activity than C. aeruginosa (Tables 2 and 3). These results are consistent with the findings of previous studies (Nurcholis et al. 2012; Sandrasari et al. 2019). The C2 variety of C. zanthorrhiza cultivated in Bogor produced the highest TPC (7.304 mg GAE/g DW) and antioxidant activity (14.960 µmol TE /g DW) compared to other plant samples. C. zanthorrhiza variety C2 in Bogor, West Java, Indonesia, has great promise as a source of antioxidant phenolic commercially.

Environmental factors influenced the total phenolic content and antioxidant activity in plants studied in this work. Bogor with the highest rainfall and temperature conditions showed maximum phenolic antioxidant contents than Cianjur and Sukabumi. This finding is consistent with prior studies on Salvia officinalis, which have shown that
rainfall and growth environment temperature affected phenolic and antioxidant production (Generalić Mekinić et al. 2019). Additionally, various studies have demonstrated that altitude affects the antioxidant phenolic content of plants (Cirak et al. 2022). The low altitude was found in Bogor, which identified the plant's highest phenolic and antioxidant production. Previous studies on Achilllea collina found that the production of antioxidant phenolics increased when the plants were cultivated in environments with a high altitude (Giorgi et al. 2010). This research indicated that the phenolic antioxidant content in C. zanthorrhiza and C. aeruginosa plants is influenced by altitude, rainfall, and temperature conditions of cultivated area locations.

Evaluating genotypes/cultivars in different environments is crucial in a plant breeding program. The results presented the genotypes/varieties (C. zanthorrhiza and C. aeruginosa) main effects were significant (p < 0.001) but not significant in environmental as well as the genotype-by-environment interaction for total phenolic content and antioxidant activity (Table 4). This finding differs from our prior findings on rhizome productivity and photosynthetic rate, which showed that genotype and environment interacted to influence C. zanthorrhiza and C. aeruginosa samples (Seno et al. 2020). Both the total phenolic and antioxidant characteristics of the C2 variety indicated a specific location in Bogor. Numerous stable C. aeruginosa genotypes, namely G1, G6, G13, and G16, suggest a high potential for new varieties to be generated through plant breeding programs (Elias et al. 2016; Pour-Aboughadareh et al. 2019).

In conclusion, the C. zanthorrhiza varieties cultivated in Bogor have the highest total phenolic content and antioxidant activity. Cursina 2 variety of C. zanthorrhiza has emerged as one of the most promising cultivars, and hence mass planting in their ideal site is recommended. The stable genotypes for phenolic antioxidant production were G1, G6, G13, and G16. These genotypes were potentially to develop a new variety through plant breeding programs.

ACKNOWLEDGEMENTS

We thank the Ministry of Research, Technology and Higher Education of the Republic of Indonesia led by Prof. I Made Artika (IPB University, Bogor, Indonesia) for financial support through Penelitian Dasar Perguruan Tinggi (PDUPT) project in 2020-2022.

REFERENCES

Akarcharya N, Sirilun S, Julsrigval J, Chansakaow S. 2017. Chemical profiling and antimicrobial activity of essential oil from Curcuma aeruginosa Roxb., Curcuma glauca K. Larsen & J. Mood and Curcuma cl. xanthorrhiza Roxb. collected in Thailand. Asian Pac J Trop Biomed 7 (10): 881-885. DOI: 10.1016/j.ajpb.2017.09.009.

Atun S, Azam N, Arianiram R, Senam, Naila BIA, Leostar A, Purnamansingsh NA. 2020. Characterization of curcumiod from Curcuma xanthorrhiza and its activity test as antioxidant and antibacterial. Molecules 15 (2): 79-87. DOI: 10.20884/1 jm.2020.15.2.540.

Bahukhandi A, Diyani P, Bhatt ID, Rawal RS. 2018. Variation in polyphenolics and antioxidant activity of traditional apple cultivars from West Himalaya, Uttarakhand. Hortic Plant J 4 (4): 151-157. DOI: 10.1016/j.hpq.2018.05.001.

Batubara I, Komariah K, Sandrawati A, Nurcholis W. 2020. Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. leaves using chemometric analysis. Sci Rep 10 (1): 20945. DOI: 10.1038/s41598-020-77991-2.

Cahyaningsih R, Magos Brehn J, Maxted N. 2021. Gap analysis of Indonesian priority medicinal plant species as part of their conservation planning. Glob Ecol Conserv 26: e01459. DOI: 10.1016/j.gecco.2021.e01459.

Calvindi J, Syukur M, Nurcholis W. 2020. Investigation of biochemical characters and antioxidant properties of different winged bean (Psophocarpus tetragonolobus) genotypes grown in Indonesia. Biodiversitas 21 (6): 2420-2424. DOI: 10.3057/biodiv/202012.

Cirak C, Radusieen J, Raudone L, Vilikyte G, Seysis F, Markska M, Ivanauksas L, Yaya L. 2022. Phenolic compounds and antioxidant activity of Achillea arabica populations. S Afr J Bot 147: 425-433. DOI: 10.1016/j.sajb.2022.02.006.

Elias AA, Robbins KR, Dowere RW, Tuinstra MR. 2016. Half a century of studying genotype × environment interactions in plant breeding experiments. Crop Sci 56 (5): 2090-2105. DOI: 10.2135/cropsy2015.01.0061.

Fedurac P, Chupukhina G, Maslemnikov P, Tacenko N, Skrynuk L. 2019. Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants 8 (7): 237. DOI: 10.3390/antiox8070237.

Ferreira EB, Cavaclanci PP, Nogueira DA. 2014. ExpDesc: an R package for ANOVA and experimental designs. Appl Math 5 (19): 2952-2958. DOI: 10.4236/am.2014.519280.

Fritia R, Seno DSH, Priorseryanto BP, Nurcholis W. 2019. Volatile compound profiles and cytotoxicity in essential oils from rhizome of Curcuma aeruginosa and Curcuma zanthorrhiza. Biodiversitas 20 (10): 2943-2948. DOI: 10.13057/biodiv/2021024.

Generalić Mekinić I, Ljubenkov I, Smole Možina S, Abramović H, Šimat V, Katulinić A, Novak T, Skroza D. 2019. Abiotic factors during a one-year vegetation period affect sage phenolic metabolites, antioxidants and antimicrobials. Ind Crops Prod 141: 111741. DOI: 10.1016/j.indcrops.2019.111741.

Giorgi A, Madoe M, Speranza G, Cucco M. 2010. Influence of environmental factors on composition of phenolic antioxidants of Achillea collina Becker ex Rchb. Nat Prod Res 24 (16): 1546-1559. DOI: 10.1080/147864910.2010.490656.

Kalariya KA, Gajbhiye NA, Meena RP, Saran PL, Minipara D, Macwan GS, Geetha KA. 2021. Assessing suitability of Andrographis paniculata genotypes for rain-fed conditions in semi-arid climates. Int Process Agric 8 (2): 359-368. DOI: 10.1016/j.ipa.2020.09.003.

Khumaida N, Syukur M, Bintang M, Nurcholis W. 2019. Phenolic and flavonoid content in ethanol extract and agro-morphological diversity of Curcuma aeruginosa accessions growing in West Java, Indonesia. Biodiversitas 20 (3): 655-663. DOI: 10.3057/biodiv/20200306.

Lachowicz S, Ozsmański J, Pluta S. 2017. The composition of bioactive compounds and antioxidant activity of saskatoon berry (Amelanchier alnifolia Nutt.) genotypes grown in central Poland. Food Chem 235: 233-243. DOI: 10.1016/j.foodchem.2017.05.050.

Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21 (10): 1374. DOI: 10.3390/molecules21101374.

Machu L, Misurová L, Vavříková J, Orlová J, Mikušová J, Sochor J, Juníková T. 2015. Phenolic content and antioxidant capacity in algal food products. Molecules 20 (1): 118-133. DOI: 10.3390/molecules20011118.

Muflihah YM, Golaffelli G, Ling Y-C. 2021. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants 10 (10): 1550. DOI: 10.3390/antiox10101550.

Nocchi N, Duarte HM, Pereira RC, Konno TUP, Soares AR. 2020. Effects of UV-B radiation on secondary metabolite production, antioxidant activity, photosynthesis and herbivory interactions in Nymphoides Humboldtiana (Menyanthaceae). J Photochem Photobiol B Biol 212: 112021. DOI: 10.1016/j.jphotobiol.2020.112021.
Nurcholis W, Priosoeryanto BP, Purwakusumah ED, Katayama T, Suzuki T. 2012. Antioxidant, cytotoxic activities and total phenolic content of four Indonesian medicinal plants. J Kim Val 2 (4): 501-510. DOI: 10.15408/jkv.v2i4.267.

Nurcholis W, Ambarsari L, Purwakusumah EDED. 2016a. Curcumin analysis and cytotoxic activities of some Curcuma xanthorrhiza Roxb. accessions. Int J Pharm Tech Res 9 (7): 175-180.

Nurcholis W, Khumaida N, Syukur M, Bintang M. 2016b. Variability of curcuminoid content and lack of correlation with cytotoxicity in ethanolic extracts from 20 accessions of Curcuma xanthorrhiza Roxb. Asian Pacific J Trop Dis 6 (11): 887-891. DOI: 10.1016/S2222-1808(16)61152-0.

Nurcholis W, Khumaida N, Syukur M, Bintang M. 2017. Evaluation of free radical scavenging activity in ethanolic extract from promising accessions of Curcuma xanthorrhiza Roxb. Molekul 12 (2): 133-138. DOI: 10.20884/1.jm.2017.12.2.350.

Nurcholis W, Munshif AA, Ambarsari L. 2018. Xanthorrhizol contents, α-glucosidase inhibition, and cytotoxic activities in ethyl acetate extracts from accessions of Curcuma xanthorrhiza Roxb. J Agric Food Chem 66: 1328-1336. DOI: 10.1021/acs.jafc.7b05650.

Nurcholis W, Ariffin PF, Ridwan T, Susilowidodo R, Batubara I, Wisastra R, Artika IM. 2020. The multifunctionality of turmeric genotypes and their bioactive compound profiling and ex-situ conservation of turmeric genotypes (Curcuma longa L.) from sub-Himalayan terai region of India. Ind Crops Prod 150: 112401. DOI: 10.1016/j.indcrop.2020.112401.

Patel P, Prasad A, Srivastava D, Niranjan A, Saxena G, Singh SS, Misra P, Chakrabarty D. 2022. Genotype-dependent and temperature-induced modulation of secondary metabolites, antioxidative defense and gene expression profile in Solanum viarum Dunal. Environ Exp Bot 194: 104686. DOI: 10.1016/j.envexpbot.2021.104686.

Pour-Aboughadareh A, Yousefian M, Moradkhani H, Poczai P, Siddique KHM. 2019. STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Appl Plant Sci 7 (1): e01211. DOI: 10.1002/aps3.1211.

Rhodes FMP, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F. 2015. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chem 183: 235-258. DOI: 10.1016/j.foodchem.2015.03.039.

Rosidi A. 2020. The difference of curcumin and antioxidant activity in Curcuma xanthorrhiza at different regions. J Adv Pharm Educ Res 10 (1): 14-18.

Sandra Sari DA, Sabariman M, Azni IN. 2019. Determination of potential level of Indonesian rhizomes as an antioxidant based on phenolic compound and antioxidant activity. IOP Conf Ser Earth Environ Sci 383 (1): 12017. DOI: 10.1088/1755-1315/383/1/012017.

Seno DSH, Rafi M, Bintang M, Kurniati PA, Nurcholis W. 2020. Stability of photosynthetic rate and rhizome yield of Curcuma xanthorrhiza and Curcuma zanthorrhiza genotypes. Jurnal Agronomi Indonesia 48 (1): 89-96. DOI: 10.24831/jai.v48i1.30100.

Vintanti TAP, Kawaiji, Edhi N. 2012. Effect of extraction method on Curcuma xanthorrhiza oleoresin using solar dryer to concentration of curcuminoid, total phenol, and antioxidant activity. Asian J Nat Prod Biochem 14: 1-9. DOI: 10.13057/bjp/17551315/383/1/012017.

Wang L, Sun J, Yi Q, Wang X, Ju X. 2012. Protective effect of polyphenol extracts of adlay (Coix lachryma-jobi L. var. ma-yaen Stapf) on hypercholesterolemia-induced oxidative stress in rats. Molecules 17 (8): 8886-8897. DOI: 10.3390/molecules1708886.

Xiang J, Li W, Ndolo VU, Beta T. 2019. A comparative study of the phenolic compounds and in vitro antioxidant capacity of finger millets from different growing regions in Malawi. J Cereal Sci 87: 143-149. DOI: 10.1016/j.jcs.2019.03.016.

Yuanadi, Jantim I, Rohani AS, Sumantri IB. 2021. Immunomodulatory effects and mechanisms of Curcuma species and their bioactive compounds: A Review. Front Pharmacol 12: 643119. DOI: 10.3389/fphar.2021.643119.

Zeb A. 2020. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 44 (9): e13394. DOI: 10.1111/jfbc.13394.