Abstract

Normally the distributed network has to execute the tasks that shall be the more than the number of processors. The assignment problem is a case of linear programming helps to solve the problems related to tasks and processors. The problem of execution of “m” tasks to “n” processors (m > n) in a distributed networks is addressed here through a new modified tasks allocation policy for distributed networks. The model, presented in this paper allocates the tasks or modules to the processor to increase the performance and to reduce the execution time. This paper reduces the problem of allocation of tasks where number of processors is less than the number of tasks. The example mentioned in the paper has three tasks and solved it in such a way that the task t1 processed with minimum time, the task t2 with minimum cost while the task t3 with maximum reliability. In this problem, the tasks are fused (or clubbed) with another task(s) on the basis of minimum communication cost to form a balanced allocation.
1. Anapathur, Ramesh, V., Twigg, David W., Sandadi, Upender R. and Sharma, Tilak C. 2002. Reliability Analysis of System with Operation Time Management, IEEE Transactions on Reliability, 51, 39-48.
2. Bahi, Jacques, Couturier, Raphaël and Vernier, Flavien. 2005. Synchronous distributed load balancing on dynamic networks, Elsevier Inc., 65(11), 1397-1405.
3. Bierbaum, Rene L., Brown, Thomas D. and Kerschen, Thomas J. 2002, Model-Based Reliability Analysis, IEEE Transactions on Reliability, 51, 133-140.
4. Chiu, Steve C., Liao, Wei-keng, Choudhary, Alok N. and Kandemir, Mahmut T. 2005. Processor-embedded distributed smart disks for I/O-intensive workloads: architectures, performance models and evaluation. Elsevier Inc., 65(4), 532-55.
5. Coit, D.W. and Smith, A.E. 1996. Reliability Optimization of Series Parallel Systems using a Genetic Algorithm, IEEE Transactions on Reliability, 45, 254-260.
6. Contreras, Javier, Losi, Arturo, Russo, Mario and Wu, Felix F. 2000. DistOpt: A Software Framework for Modeling and Evaluating Optimization Problem Solutions in Distributed Environments”, Elsevier Inc., 60(6), 741 – 763.
7. Ensink, Brian, Stanley, Joel and Adve, Vikram. 2003. Program Control Language: a programming language for adaptive distributed applications, Elsevier Inc., Vol. 63(12) 1082 –1104.
8. Fitzgerald, Kent, Latifi, Shahram and Srimani, Pradip K. 2002. Reliability Modeling and Assessment of the Star-Graph Networks, IEEE Transactions on Reliability, 51, 49-57.
9. Grosu, Daniel and Chronopoulos, Anthony T. 2005. Noncooperative load balancing in distributed systems. Elsevier Inc., 65(9), 1022-1034.
10. Iqbal, Saeed and Carey, Graham F. 2005. Performance analysis of dynamic load balancing algorithms with variable number of processors. Elsevier Inc., 65(8), 934-948.
11. Jan, Gene Eu and Lin, Ming-Bo. 2005. Concentration, load balancing, partial permutation routing, and superconcentration on cube-connected cycles parallel computers. Elsevier Inc., 65(12),1471-1482.
12. Kandemir M., Ramanujam J. and Choudhary A. 2000. Compiler Algorithms for Optimizing Locality and Parallelism on Shared and Distributed-Memory Machines, Elsevier Inc., 60(8), 924 – 965.
13. Kuang, Hairong, Bic, Lubomir F. and Dillencourt, Michael B. 2005. PODC: Paradigm-oriented distributed computing. Elsevier Inc., 65(4), 506-518.
14. Kumar, Avanish. 1999. Optimizing for the Dynamic Task Allocation, in proceedings of the ‘IIl Conference of the International Academy of Physical Sciences, 1999 Allahabad, 281-294.
15. Kumar, Avanish. 2001. An Algorithm for Optimal Index to Tasks Allocation Based on Reliability and cost, in proceedings of ‘International Conference on Mathematical Modeling’ 2001Roorkee, 150-155.
16. Kumar, V. Singh, M. P. and Yadav, P.K. 1995. An Efficient Algorithm for Allocating Tasks to Processors in a Distributed System, in proceedings of the ‘19th National system conference, SSI’, 1995 Coimbatore, 82-87.
17. Kumar, V. Singh, M.P. and Yadav, P.K. 1995. A Fast Algorithm for Allocating Tasks in Distributed Processing System, in proceedings of the ‘30th Annual Convention of CSI’, 1995 Hyderabad, 347-358.
18. Kumar, V. Singh, M.P. and Yadav, P.K. 1996. An Efficient Algorithm for Multi-processor Scheduling with Dynamic Reassignment, in proceedings of the ‘6th National seminar on
theoretical Computer Science', 1996 Banasthally Vidyapeeth, 105-118.
19. Kwok,Yu-Kwong, Maciejewski, Anthony A., Siegel,Howard Jay, Ahmad, Ishfaq and Ghafoor, Arif. 2006. A semi-static approach to mapping dynamic iterative tasks onto heterogeneous computing systems, Elsevier Inc., 66(1), 77-98.
20. Lin, Min-Sheng 2002. A Linear-time Algorithm for Computing K-terminal Reliability on Proper Interval Graphs, IEEE Transactions on Reliability, 51, 58-62.
21. Lyu, Michael R., Rangarajan, Sampath and Moorsel, Aad P. A. Van. 2002. Optimal Allocation of test Resources for Software Reliability growth modeling in Software Development, IEEE Transactions on Reliability, 51, 183-192.
22. Mitchell D. Theys, Howard Jay Siegel and Edwin K. P. Chong. 2001. Heuristics for Scheduling Data Requests Using Collective Communications in a Distributed Communication Network Elsevier Inc., 61(9), 1337 – 1366.
23. Muhammad K. Dhodhi, Imtiaz Ahmad, Anwar Yatama and Ishfaq Ahmad 2002. An Integrated Technique for Task Matching and Scheduling onto Distributed Heterogeneous Computing Systems Elsevier Inc., 62(9), 1338 – 1361.
24. Ormon, Stephen W., Cassady, C. Richard and Greenwood, Allen G. 2002. Reliability Prediction model to Support Conceptual Design, IEEE Transactions on Reliability, 51, 151-157.
25. Painton, L. and Campbell, J. 1992. Genetic Algorithm in Optimization of System Reliability, IEEE Transactions on Reliability, 44, 172-178.
26. Palmer, J. and Mitrani, I. 2005. Optimal and heuristic policies for dynamic server allocation, Elsevier Inc., 65(10), 1204-1211.
27. Ravindran, Binoy, Devarasetty, Ravi K. and Shirazi, Behrooz. 2002. Adaptive Resource Management Algorithms for Periodic Tasks in Dynamic Real-Time Distributed Systems, Elsevier Inc., 62(10) 1527 – 1547.
28. Richard R.Y., Lee, E.Y.S. and Tsuchiya, M. 1982. A Task Allocation Model for Distributed Computer System, IEEE Transactions on Computer, 31, 41-47.
29. Singh, M.P., Kumar, V. and Kumar, A. 1999. An Efficient Algorithm for Optimizing Reliability Index in Tasks-Allocation, Acta Ciencia Indica, xxv(m), 437-444.
30. Ucar, Bora, Aykanat, Cevdet, Kaya, Kamer and Ikinci, Murat. 2006. Task assignment in heterogeneous computing systems. Elsevier Inc., 66(1),32-46.
31. Wong, Han Min, Bharadwaj, Veeravalli and Gerassimos, Barlas. 2005. Design and performance evaluation of load distribution strategies for multiple divisible loads on heterogeneous linear daisy chain networks. Elsevier Inc., 65(12), 1558-1577.

Index Terms

Computer Science Networks
Keywords

Allocation, Cost, Distributed Network, Performance, Processor, Reliability, Task, Time.