Almost complete coherent state subsystems and partial reconstruction of wavefunctions in the Fock–Bargmann phase-number representation

M Calixto¹, J Guerrero² and J C Sánchez-Monreal³

¹ Departamento de Matemática Aplicada, Universidad de Granada, Facultad de Ciencias, Campus de Fuentenueva, 18071 Granada, Spain
² Departamento de Matemática Aplicada, Universidad de Murcia, Facultad de Informática, Campus de Espinardo, 30100 Murcia, Spain
³ Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena, Spain

E-mail: calixto@ugr.es, juguerre@um.es and JCarlos.Sanchez@upct.es

Received 2 August 2011, in final form 17 February 2012
Published 30 May 2012
Online at stacks.iop.org/JPhysA/45/244029

Abstract
We provide (partial) reconstruction formulas and discrete Fourier transforms for wavefunctions in standard Fock–Bargmann (holomorphic) phase-number representation from a finite number \(N \) of phase samples \(\{ \theta_k = 2\pi k/N \}_{k=0}^{N-1} \) for a given mean number \(p \) of particles. The resulting coherent state subsystem \(S = \{ |z_k\rangle = p^{|z_k|^2}/(2\pi)^{N/2} \} \) is complete (a frame) for truncated Hilbert spaces (finite number of particles) and reconstruction formulas are exact. For an unbounded number of particles, \(S \) is ‘almost complete’ (a pseudo-frame) and partial reconstruction formulas are provided along with a study of the accuracy of the approximation, which tends to be exact when \(p < N \) and/or \(N \to \infty \).

This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

PACS numbers: 03.65.+w, 02.60.Ed, 02.30.Nw, 45.50.—p
Mathematics Subject Classification: 81R30, 81R05, 42B05, 30H20, 42C15
(Some figures may appear in colour only in the online journal)

1. Introduction

The subject of completeness of coherent state (CS) subsystems traces back to von Neumann results concerning the density of the canonical CS [1] and is closely related to standard theorems like Fourier, Heisenberg (uncertainty relations), Nyquist–Shannon (information theory), etc. Criteria of completeness for a CS subsystem \(S = \{ |z_k\rangle \} \) corresponding to a set of points \(\mathbb{C} = \{ z_k \} \) in the complex plane \(\mathbb{C} \) are known in the literature (see e.g. the standard text books [2, 3], the report [4] and references therein). In general, \(S \) is complete iff no function (vector symbol) \(\Psi(z) = \langle z | \psi \rangle \), \(\psi \neq 0 \), in the Fock–Bargmann space, vanishing at all points
in Q, exists. Of special interest is the case where the points z_k form a rectangular lattice $z_k = z_{mn} = m\omega_1 + n\omega_2$, where the periods of the lattice ω_1 and ω_2 are linearly independent, $S \equiv S(\omega_1,\omega_2) \neq 0$ and m, n are arbitrary integers. The simplest example is the von Neumann square lattice with elementary Planck cell area $S = \pi$, corresponding to the most accurate simultaneous measurement of both coordinate and momentum. For $S = \pi$, the CS subsystem $S = \{ |z_{mn}| \}$ is complete and it remains complete if one state is removed, but becomes incomplete when any two states are removed. For $S < \pi$, the CS subsystem S is overcomplete and remains so if a finite number of states are removed. For $S > \pi$, the CS subsystem S is not complete. This gives a characterization of overcompleteness in terms of density of states per Planck cell. All these results can also be stated in the language of (discrete) frames and sampling, resolution and frame operators and overlapping and sinc-type kernels. We address the organization of the paper is as follows. In section 2, we briefly review some properties of CS and their restriction to the circle, suggesting the possibility of reconstructing states from phase samples for a finite mean number of particles. Some notions about frames and their duals are also introduced, particularizing to the case of coherent states on the circle, and deriving the circle representation in the language of frames. Section 3 discusses the case of exact reconstruction for truncated (finite-dimensional) Hilbert spaces (finite number of particles—bosons) in the language of discrete frames, sampling operators and 'sinc-type' kernels. The more interesting and general case of partial reconstruction of arbitrary functions in terms of finite (non-complete) CS subsystems (pseudo-frames and undersampling), in the number-phase parametrization, is developed in section 4. The advantage of this number-phase
parametrization is that it allows the explicit inversion of resolution and reproducing kernel operators by making use of the theory of circulant matrices and rectangular Fourier matrices. We also study the accuracy of the approximation and the conditions under which it tends to be exact. Section 5 is left for some comments on potential physical applications in quantum optics and an outlook. The proof of the main theorem of our work is given in the appendix.

2. Canonical coherent states and its restriction to the circle

Bose quanta are described by a pair of annihilation (lowering a) and creation (rising a^\dagger) ladder operators fulfilling the commutation relations $[a, a^\dagger] = 1$. The Hilbert (occupation number or Fock) space \mathcal{H} realizing this commutation relation is expanded by (normalized) eigenstates $|n\rangle$ of the (Hermitian) number operator $\hat{N} = a^\dagger a$, i.e. $\hat{N}|n\rangle = n|n\rangle$, $\langle n|m \rangle = \delta_{nm}$. These states can be generated from the Fock vacuum $|0\rangle$ as $|n\rangle = \frac{1}{\sqrt{n!}} (a^\dagger)^n |0\rangle$, and they fulfill the completeness condition $\sum_{n=0}^{\infty} |n\rangle \langle n| = 1$.

Coherent states $|z\rangle$, $z \in \mathbb{C}$, are defined as eigenstates of the annihilation operator a, namely $a|z\rangle = z|z\rangle$. They can be explicitly generated by acting with the (unitary) displacement operator $U(z, \bar{z}) \equiv e^{i z^2/2}$ on the vacuum $|0\rangle$, that is,

$$|z\rangle \equiv U(z, \bar{z})|0\rangle = e^{-z^2/2} e^{i z^\dagger z/2} e^z |0\rangle = e^{-z^2/2} \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}} |n\rangle.$$

Since a is not Hermitian, there is no reason (in principle) for the set $\{|z\rangle, z \in \mathbb{C}\}$ to span an orthonormal complete set. In fact, one can easily compute the CS overlap (or reproducing kernel)

$$C(z, z') = \langle z|z'\rangle = e^{-|z|^2/2} e^{-|z'|^2/2} e^{zz'},$$

which is not zero for $z \neq z'$. Actually, the set $\{|z\rangle, z \in \mathbb{C}\}$ turns out to be overcomplete. In fact, it defines a tight frame in \mathcal{H}, with the resolution of unity

$$I = \frac{1}{\pi} \int_{\mathbb{C}} |z\rangle \langle z| d^2z,$$

where we denote $d^2z = d\text{Re}(z) d\text{Im}(z) = r dr d\theta$ the Lebesgue measure in \mathbb{C} in polar coordinates $z = re^{i\theta}$ (see below for a more formal definition of frames). The average number of particles p (bosons) in a coherent state $|z\rangle$ is

$$p = \langle z|\hat{N}|z\rangle = |z|^2 = r^2$$

and the probability amplitude of finding n particles in $|z\rangle$ is

$$|U_n(z)|^2 \equiv \langle n|z\rangle = \langle n|U(z, \bar{z})|0\rangle = e^{-z^2/2} \frac{1}{\sqrt{n!}} z^n.$$

In the same way, the probability amplitude of finding any state

$$|\psi\rangle = \sum_{n=0}^{\infty} a_n |n\rangle \in \mathcal{H}$$

in the coherent state $|z\rangle$ is given by the CS representation

$$\Psi(z) \equiv \langle z|\psi\rangle = \sum_{n=0}^{\infty} a_n U_n(z).$$

The ‘Fourier’ coefficients a_n can be calculated through the following integral formula:

$$a_n = \langle n|\psi\rangle = \frac{1}{\pi} \int_{\mathbb{C}} \Psi(z) U_n(z) d^2z.$$
Due to the over-completeness of the coherent states and to the holomorphic character of the representation, the integration on the radius $|z|$ is not really necessary (see e.g. [9, 10, 4] and below). Actually, we can recover a_n from the values of $\Psi(z)$ on $z = \sqrt{p} e^{i\theta}$ for a fixed average number of particles $p = |z|^2$ as

$$a_n = \frac{n!}{p^n \ e^{-p}} \frac{1}{2\pi} \int_0^{2\pi} e^{i n \theta} \Psi(\sqrt{p} e^{i\theta}) \ d\theta. \quad (9)$$

This fact suggests the possibility of discretizing (9) and reconstructing the state ψ from a finite number N of phases $\{\theta_k\}_{k=0}^{N-1}$ and a fixed (but arbitrary) mean number of particles p. We will pursue this idea in the next sections and we will study the conditions under which total and partial reconstructions of ψ from N samples $\{\Psi(z_k), z_k = \sqrt{p} e^{i\theta_k}\}_{k=0}^{N-1}$ are possible and the accuracy of the approximation for partial reconstructions, which tends to be exact in the limit $N \to \infty$.

Let us briefly justify formula (9) in the framework of frames, which will be widely used in this paper. See, for instance, [3, 12, 13] and references therein for a detailed discussion about frames.

2.1. Frames and their duals

Let \mathcal{H} be a Hilbert space and Q a measurable space (which can be discrete with the counting measure). A family of states $S = \{|q\}, q \in Q\}$ is called a frame if

- the function $\Psi(q) = \langle q | \psi \rangle$ is measurable and square-integrable;
- the frame condition is satisfied, i.e. there exist constants $0 < b \leq B$ such that

$$b \langle \psi | \psi \rangle \leq \int_Q |\Psi(q)|^2 \ dq \leq B \langle \psi | \psi \rangle, \quad \forall \psi \in \mathcal{H}. \quad (10)$$

The constants b, B are called frame bounds for the frame S, and if $b = B$ the frame is said to be tight.

Let us introduce the resolution operator $A = \int_Q |q\rangle \langle q| \ dq$, which is a positive, bounded, with a bounded inverse, operator. It satisfies $bI \leq A \leq BI$, and for a tight frame A is a multiple of the identity operator I in \mathcal{H}. The dual frame is then defined as $\tilde{S} = \{|\tilde{q}\} = A^{-1}\{|q\}, q \in Q\}$.\footnote{Note that in general $q \notin Q$, i.e. $|\tilde{q}\rangle$ is just a notation for the state dual to $|q\rangle$.} A frame and its dual frame provide a resolution of the identity

$$\int_Q |q\rangle \langle q| \ dq = \int_Q |\tilde{q}\rangle \langle \tilde{q}| \ dq = I. \quad (11)$$

It is convenient to introduce the frame (or sampling) operator as

$$T : \mathcal{H} \longrightarrow L^2(Q, dq)$$

$$|\psi\rangle \longmapsto \Psi(q) = \langle T \psi | q \rangle = \langle q | \psi \rangle. \quad (12)$$

It turns out that $A = T^* T$, and that T is injective and its range $T(\mathcal{H}) \subset L^2(Q, dq)$ is closed; therefore, it admits left-inverses. In particular, it admits a unique, bounded left pseudo-inverse $T^*_l = A^{-1} T^*$. An important result is the reconstruction formula

$$|\psi\rangle = T^*_l [\Psi] = \int_Q \Psi(q) |\tilde{q}\rangle \ dq, \quad (13)$$

which expands $|\psi\rangle$ in terms of the dual-frame states $|\tilde{q}\rangle$ with coefficients (the data) $\Psi(q) = \langle T \psi | q \rangle = \langle q | \psi \rangle$. The orthogonal projector onto the range of T is $P = TT^*_l$ and have the expression

$$P \Psi(q) = \int_Q K(q, q') \Psi(q') \ dq', \quad \Psi \in L^2(Q, dq). \quad (14)$$
where \(K(q, q') = \langle q | q' \rangle \) is a reproducing kernel which makes the range of \(T \) a reproducing kernel Hilbert space. It is worth stressing that the dual frame \(\tilde{S} \) is itself a frame, and that the corresponding reconstruction formula

\[
|\psi\rangle = \int_Q \tilde{\Psi}(q) |q\rangle \, dq
\]

(15)

expands \(|\psi\rangle\) in terms of the frame states \(|q\rangle\) with dual coefficients (the dual data) \(\tilde{\Psi}(q) = \langle \tilde{q} | \psi \rangle \).

The data \(\Psi(q) \) and the dual data \(\tilde{\Psi}(q) \) are related through

\[
\Psi(q) = \int_Q \langle q | q' \rangle \tilde{\Psi}(q') \, dq', \quad \tilde{\Psi}(q) = \int_Q \langle \tilde{q} | q' \rangle \Psi(q') \, dq'.
\]

(16)

These formulas acquire a simpler form when \(A \) is a multiple of the identity, since in this case \(|\tilde{q}\rangle = |q\rangle\) (up to a constant).

A family of coherent states associated with a square-integrable representation constitutes a particular example of a frame. Standard coherent states \(|z\rangle \in \mathbb{C}\) is the paradigmatic example of a tight frame, and all the results shown here apply in its simpler form (i.e. with \(A = A^{-1} = P = I \), \(|\tilde{z}\rangle = |z\rangle\) and \(\tilde{\Psi}(z) = \Psi(z) \)). For this particular case, \(\Psi(z) \) turns out to be of the form \(\Psi(z) = e^{-|z|^2/2} f(z) \), with \(f(z) \) an analytic function on the whole complex plane. However, in the rest of the paper, we will work with \(\Psi(z) \) instead of \(f(z) \) since it fits better into the formalism of frames and sampling theory.

2.2. Coherent states on the circle

Given the set of standard coherent states \(|z\rangle \in \mathbb{C}\), when we restrict ourselves to a subset of coherent states, like a one-dimensional curve in the complex plane, it turns out that although still overcomplete, it may not be a frame. Let us consider the subset \(C_r \) of coherent states on a circle of radius \(r \), i.e. \(C_r = \{|r e^{\theta} \rangle, \theta \in [0, 2\pi)\} \). In this case our measurable set \(Q \) is \(C_r \) and the measure is \(dq = d\theta \).\(^5\) We should first check that the frame condition (10) is satisfied, which reads

\[
b(\langle \psi | \psi \rangle)\lesssim \int_0^{2\pi} \left| \Psi(r e^{i\theta}) \right|^2 d\theta \leq B \langle \psi | \psi \rangle,
\]

(17)

with \(\Psi(z) = \langle z | \psi \rangle \). Expanding the state \(|\psi\rangle\) in the number-state basis, \(|\psi\rangle = \sum_{n=0}^{\infty} a_n |n\rangle\), the frame condition reads

\[
b \sum_{n=0}^{\infty} |a_n|^2 \leq 2\pi \sum_{n=0}^{\infty} \tilde{\lambda}_n |a_n|^2 \leq B \sum_{n=0}^{\infty} |a_n|^2
\]

(18)

where \(\tilde{\lambda}_n = e^{-r^2 \tilde{\lambda}_n} \) and \(2\pi \tilde{\lambda}_n \) are the eigenvalues of the resolution operator \(A \), which is diagonal in the number-state basis.\(^6\) The right inequality in (18) is satisfied with \(B = 2\pi \max(\tilde{\lambda}_n) \), which means that \(A \) is a bounded operator. Since \(\tilde{\lambda}_n > 0 \) the inverse \(A^{-1} \) exists, but since \(\tilde{\lambda}_n \) goes to zero as \(n \to \infty \), \(A^{-1} \) is not a bounded operator and therefore the left inequality in (18) does not hold in the whole Hilbert space \(\mathcal{H} \). The fact that the set of coherent states on the circle does not constitute a frame on \(\mathcal{H} \) does not invalidate the construction of the previous subsection, but convergence and domain problems can occur when computing expressions involving \(A^{-1} \) and the dual frame \(|r e^{i\theta}\rangle\), like for instance the dual data \(\tilde{\Psi}(r e^{i\theta}) \). In fact, the dual frame states \(|r e^{i\theta}\rangle\) are not normalizable, since their Fourier coefficients

\(^5\) A different choice of measure can be made like \(dq = dz = i z \, d\theta = i e^{i\theta} \, d\theta \). The results would be equivalent, although the explicit expressions might be different.

\(^6\) Note also that \(\tilde{\lambda}_n = \frac{2}{r^2} \lambda_n \) where \(\lambda_n \) appears in the discrete case in equation (34).
\[\langle n | r e^{i\theta} \rangle \rightarrow \infty \text{ as } n \text{ goes to } \infty. \] However, they can be used in the computations if special care is taken in checking the validity of the final expressions.

Particularizing (13) to the circle, the Fourier coefficient \(a_n \) of \(|\psi\rangle \) can be obtained as
\[
a_n = \langle n | \psi \rangle = \int_0^{2\pi} \Psi(r e^{i\theta}) \langle n | r e^{i\theta} \rangle \, d\theta, \tag{19}
\]
and using that \(\langle n | r e^{i\theta} \rangle = \frac{1}{2\pi} \sum_{n=0}^{\infty} \bar{\lambda}^{-1/2} e^{-i\theta} \), we recover the announced formula (9). It should be stressed that this formula is always valid and does not suffer from the same problems as expressions involving the dual data (see below).

The dual data can be computed using the number-state basis and turn out to be
\[
\tilde{\Psi}(r e^{i\theta}) = \langle r e^{i\theta} | \psi \rangle = \sum_{n=0}^{\infty} \langle r e^{i\theta} | n \rangle \langle n | \psi \rangle = \frac{1}{2\pi} \sum_{n=0}^{\infty} \bar{\lambda}^{-1/2} e^{-i\theta} a_n = \frac{e^{r^2/2}}{2\pi} \sum_{n=0}^{\infty} \sqrt{n!} e^{-\bar{\lambda}^{-1/2} a_n}, \tag{20}
\]
where \(z = r e^{i\theta} \). Using this expression, we can check that the dual data \(\tilde{\Psi}(z) \) are directly related to the circle representation [7–11, 4], by
\[
\tilde{\Psi}(z) = \frac{e^{r^2/2}}{2\pi} z g(z); \tag{21}
\]
thus, the conditions for the existence of both functions are the same (see [7–11, 4]).

To end this section, we would like to briefly comment on the traditional interesting problems associated with the proper definition of phase operators (see e.g. [14–21]) and point out that the inherent difficulties in defining a proper phase operator can be overcome by restricting oneself to a truncated Hilbert subspace \(\mathcal{H}_M \) of \(\mathcal{H} \) (finite number of particles). One can also circumvent this problem by considering quantum systems with a large average number of particles (i.e. semi-classical states) for which phase (and number) uncertainties are negligible.

3. Finite number of particles

Firstly, we will work with systems with finite (but arbitrarily large) number of particles \(M < \infty \), so that our Hilbert space will be the truncated state space \(\mathcal{H}_M \subset \mathcal{H} \) of \(M + 1 \) dimensions. Following the terminology introduced in [17, 18], we denote by physically accessible or preparable states those that can be obtained from the vacuum state by acting during a finite time with a source of finite energy and with a finite interaction. These states belong to \(\mathcal{H}_M \) for some integer \(M \). There are also states, denoted by physical states that are characterized by the fact that \(\langle N^q \rangle \) is finite for finite, but arbitrary \(q \in \mathbb{N} \). These states include coherent states, squeezed states, thermal equilibrium states and in general Gaussian states [22] and will be considered in section 4.

Before discussing the reconstruction of states \(\psi \in \mathcal{H}_M \) from a finite number of phase samples, we will adapt the general definitions on frames, frame operators and reproducing kernels of sections 2.1 and 2.2 to the discrete case. The advantages of using finite frames for finite-dimensional Hilbert spaces has been recently discussed in [23]. We have also made use of them when discussing sampling theorems on the sphere [24] and the hyperboloid [25].

3.1. General considerations on discrete frames

Since in this section we will restrict ourselves to truncated states \(|\psi\rangle \in \mathcal{H}_M \), all coherent states will also be truncated so that, by \(|z\rangle \), we will understand \(P_M |z\rangle \), with \(P_M \) the orthogonal projector onto \(\mathcal{H}_M \). Nevertheless, this will not be a limitation, as we will see at the end of section 3.2.
Our purpose is to discretize the integral (3), by restricting ourselves to a discrete subset \(\mathcal{Q} = \{z_k\} \subset \mathbb{C} \) (we use calligraphic \(\mathcal{Q} \) to emphasize the discrete nature of \(\mathcal{Q} \) in the following). The question is whether this restriction will imply a loss of information, that is, whether the discrete family \(\mathcal{S} = \{|z_k\rangle, z_k \in \mathcal{Q}\} \) constitutes a discrete frame itself, with the (discrete) resolution operator

\[
\mathcal{A} = \sum_{z_k \in \mathcal{Q}} |z_k\rangle\langle z_k|.
\] (22)

The operator \(\mathcal{A} \) will not be in general a multiple of the identity. In fact, a continuous tight frame might contain discrete non-tight frames, as happens in our case (see later in section 3.2).

Let us assume that \(\mathcal{S} \) generates a discrete frame in \(\mathcal{H}_M \), that is, there are two frame bounds \(0 < b < B < \infty \) such that the frame condition

\[
b\|\psi\|^2 \leq \sum_{z_k \in \mathcal{Q}} |\langle z_k|\psi\rangle|^2 \leq B\|\psi\|^2 \quad (23)
\]

holds \(\forall \psi \in \mathcal{H}_M \). The discrete frame operator \(\mathcal{T} : \mathcal{H}_M \to \ell^2 \) is now given by

\[
\mathcal{T}(\psi) = \sum_{z_k \in \mathcal{Q}} |\langle z_k|\psi\rangle| \equiv \Psi_1(z).
\] (24)

where \(\Psi_k \equiv \langle z_k|\psi\rangle \), holds in \(\mathcal{H}_M \), that is, the expression

\[
T_i^+ T = \sum_{z_k \in \mathcal{Q}} |\tilde{z}_k\rangle\langle z_k| = T^*(T_i^+)^* = \sum_{z_k \in \mathcal{Q}} |z_k\rangle\langle \tilde{z}_k| = I
\] (25)

provides a resolution of the identity, where \(T_i^+ \equiv (T^*T)^{-1}T^* \) is the (left) pseudoinverse (see, for instance, [26]) of \(T \) (see e.g. [3, 12] for a proof, where the authors introduce the dual frame operator \(\tilde{T} = (T_i^+)^* \) instead).

It is interesting to note that the operator \(P = TT_i^+ \) acting on \(\ell^2 \) is an orthogonal projector onto the range of \(T \). Eventually, we are interested in a finite number \(N \) of phase samples, so that the space \(\ell^2 \) can be substituted by \(\mathbb{C}^N \), with \(N \) the cardinal of \(\mathcal{Q} \).

From (24), the function \(\Psi(z) \) can be obtained

\[
\Psi(z) \equiv \langle z|\psi\rangle = \sum_{z_k \in \mathcal{Q}} E_k(z)\Psi_k
\] (26)

from its samples \(\Psi_k = \langle z_k|\psi\rangle \), through some ‘sinc-type’ kernel

\[
E_k(z) = \langle z|\tilde{z}_k\rangle
\] (27)

fulfilling \(E_k(z) = P_k \). A projector is obtained, instead of the identity, to account for the fact that an arbitrary set of overcomplete data \(\Psi_k \in \mathbb{C}^N \) can be incompatible with \(|\psi\rangle \in \mathcal{H}_M \), and therefore they are previously projected (note that an overdetermined system of equations is being solved).

This case will be named oversampling, since there are more data than unknowns, and will be discussed in the following subsection. In other contexts, when equation (23) holds, the set \(\mathcal{Q} \) is said to be sampling for the space \(\mathcal{H}_M \) [27].
3.2. Exact reconstruction of truncated states

In our case, there is a convenient way to select the sampling points \(z_k \) in such a way that the resolution operator \(A \) is invertible and an explicit formula for its inverse is available. These are given by the set of \(N \) points (phases) uniformly distributed on a circumference of radius \(\sqrt{p} \):

\[
Q = \{ z_k = \sqrt{p} e^{2\pi i k/N}, \ k = 0, 1, \ldots N - 1 \}.
\]

(28)

Denote by \(S = \{ |z_k\rangle, k = 0, 1, \ldots, N - 1 \} \) the CS subsystem associated with the points in \(Q \) and by

\[
\mathcal{H}^S = \text{Span}(|z_0\rangle, |z_1\rangle, \ldots, |z_{N-1}\rangle)
\]

(29)

the subspace of \(\mathcal{H} \) spanned by \(S \). For finite \(N \), we have \(\mathcal{H}^S \neq \mathcal{H} \), so that we cannot reconstruct exactly every function \(\psi \in \mathcal{H} \) from \(N \) of its samples \(\Psi_k = \langle z_k | \psi \rangle \), but we will prove that for \(\psi \in \mathcal{H}_M \) we can always provide an exact reconstruction formula.

Definition 3.1. We define the subspace \(\mathcal{H}_M \) of truncated functions with a finite number of particles \(M < \infty \) as

\[
\mathcal{H}_M \equiv \text{Span}(|0\rangle, |1\rangle, \ldots, |M\rangle).
\]

(30)

The subspace \(\mathcal{H}_M \) is clearly a finite \((M+1)\)-dimensional vector subspace of \(\mathcal{H} \).

Theorem 3.2. Given a truncated function \(\psi \in \mathcal{H}_M \) on \(\mathbb{C} \), with a finite expansion

\[
|\psi\rangle = \sum_{m=0}^{M} a_m |m\rangle,
\]

(31)

there exists a reconstruction formula (24) of \(\psi \)

\[
\psi(z) = \sum_{k = 0}^{N-1} \xi_k(z) \psi_k,
\]

(32)

from \(N > M \) of its samples \(\Psi_k \) taken at the sampling points (phases) in (28), through a ‘sinc-type’ kernel given by

\[
\xi_k(z) = \frac{1}{N} e^{(z-z_k)/2} \sum_{m=0}^{M} \frac{(z-z_k)^m}{m!}.
\]

(33)

Firstly, we will introduce some notation and prove some previous lemmas.

Lemma 3.3. For \(N > M \), the frame operator \(T : \mathcal{H}_M \rightarrow \mathbb{C}^N \) given by \(T(\psi) = \{ \langle z_k | \psi \rangle, z_k \in Q \} \) (remember the construction after equation (23)) is such that the resolution operator \(A = T^\dagger T \) is diagonal, \(A = \text{diag}(\lambda_0, \ldots, \lambda_M) \), in the basis (30) of \(\mathcal{H}_M \), with

\[
\lambda_m(p) \equiv N^{p-\cdot} m! p^m, \quad m = 0, \ldots, M.
\]

(34)

Hence, \(A \) is invertible and bounded in \(\mathcal{H}_M \). Therefore, denoting \(\tilde{z}_k \equiv A^{-1} |z_k\rangle \), the dual frame, the expression

\[
I_M = \sum_{k=0}^{N-1} |\tilde{z}_k\rangle \langle \tilde{z}_k| = \sum_{k=0}^{N-1} |\tilde{z}_k\rangle \langle z_k|
\]

(35)

provides a resolution of the identity in \(\mathcal{H}_M \).

\footnote{The quantities \(\lambda_m \) are well defined for \(m \in \mathbb{N} \cup \{0\} \) and they will also be used in the case of an infinite number of particles \(M = \infty \). Note also that \(f(n; p) = \lambda_n(p)/N = \hat{\lambda}_n \) is the density function of the Poisson distribution.}
Proof. Using (5), the matrix elements of T can be written as
\[
T_{kn} = \langle z_k|n\rangle = e^{-i/2} \frac{P^{n/2}}{\sqrt{N!}} e^{-i2\pi km/N} \equiv \lambda_n^{1/2} F_{kn},
\]
where F denotes the rectangular Fourier matrix (RFM) \[24\] given by $F_{kn} = \frac{1}{\sqrt{N}} e^{-i2\pi km/N}$, $k = 0, \ldots, N - 1$, $n = 0, \ldots, M$.

Then, the matrix elements of the resolution operator turn out to be
\[
A_{nm} = \langle n|A|m\rangle = \sum_{k=0}^{N-1} T^*_{kn} T_{km} = (\lambda_n \lambda_m)^{1/2} \sum_{k=0}^{N-1} F^*_{kn} F_{km} = \lambda_n \delta_{nm},
\]
where we have used the well-known orthogonality relation for the RFM:
\[
N \sum_{k=0}^{N-1} F^*_{nk} F_{km} = \sum_{k=0}^{N-1} (e^{i2\pi(n-m)/N})^k = \begin{cases} N, & \text{if } (n-m) \mod N = 0 \\ 0, & \text{if } (n-m) \mod N \neq 0 \end{cases}
\]
and this equals $N \delta_{n,m}$ if $N > M$. Since A is diagonal with non-zero diagonal elements λ_n, then it is invertible and bounded and a dual frame and a (left) pseudoinverse for T can be constructed, $T_l^+ \equiv A^{-1} T^*$, providing, according to equation (25), a resolution of the identity. \qed

Proof of theorem 3.2. From the resolution of the identity (35), any $\psi \in \mathcal{H}_M$ can be written as $|\psi\rangle = \sum_{k=0}^{N-1} \Psi_k |z_k\rangle$, and therefore $\Psi(z) = \langle z|\psi\rangle = \sum_{k=0}^{N-1} \Psi_k (z \bar{z}_k)$. Using $|z_k\rangle = A^{-1}|z_k\rangle$, we derive that
\[
\langle z|z_k\rangle = \sum_{m,n=0}^M \langle z|m\rangle \langle m|A^{-1}|n\rangle \langle n|z_k\rangle = \sum_{m,n=0}^M \langle z|m\rangle A_{nm}^{-1} T^*_m = \sum_{m,n=0}^M \langle z|m\rangle \lambda_m^{-1} \delta_{mn} T^*_m
\]
\[
= \sum_{m=0}^M \langle z|m\rangle \lambda_m^{-1} T^*_m = \sum_{m=0}^M \langle z|m\rangle \lambda_m^{-1} \lambda_m^{1/2} F^*_m = \frac{1}{\sqrt{N}} \sum_{m=0}^M \langle z|m\rangle \lambda_m^{-1/2} e^{i2\pi km/N}
\]
\[
= \frac{1}{N} \sum_{m=0}^M e^{-i/2} \sum_{m=0}^M e^{i/2} e^{i2\pi km/N} = \frac{1}{N} e^{-i\xi z \bar{z}/2} p^{-m/2} e^{i2\pi km/N} = \frac{1}{N} e^{i(z \bar{z} - z \bar{z})/2} \sum_{m=0}^M (z \bar{z}^{-1})^m = \mathcal{Z}_k(z),
\]
where we have used the expressions of $\langle z|m\rangle$ given by equations (5) and (28), and that $p = z \bar{z}$. \qed

Remark 3.4. It is interesting to note that equation (32) can be interpreted as a sinc-type reconstruction formula, where the role of the sinc function is played by the functions $\mathcal{Z}_k(z)$, satisfying the ‘orthogonality relations’
\[
\mathcal{Z}_k(z_l) = \frac{1}{N} \sum_{m=0}^M e^{i\pi k m/N} = P_k,
\]
with $P = T^* T^+$ an orthogonal projector onto an M-dimensional subspace of \mathbb{C}^N, the range of T. In the case of critical sampling, $N = M + 1$, the result $\mathcal{Z}_k(z_l) = \delta_k$ is recovered (corresponding to an interpolation formula), but for the strict oversampling case, $N > M + 1$, a projector is obtained to account for the fact that an arbitrary set of overcomplete data Ψ_k, $k = 0, \ldots, N - 1$, can be incompatible with $|\psi\rangle \in \mathcal{H}_M$.

A reconstruction in terms of the Fourier coefficients can be directly obtained by means of the (left) pseudoinverse of the frame operator T.

9
Corollary 3.5 (Discrete Fourier transform). The Fourier coefficients a_m of the expansion $|\psi\rangle = \sum_{m=0}^{M} a_m |m\rangle$ of any $\psi \in \mathcal{H}_M$ can be determined in terms of the data $\Psi_k = \langle z_k | \psi \rangle$ as

$$a_m = \frac{1}{\sqrt{N\lambda_m}} \sum_{k=0}^{N-1} e^{2\pi i km/N} \Psi_k, \quad m = 0, \ldots, M.$$ \hspace{1cm} (41)

Proof. Taking the scalar product with $\langle z_k |$ in the expression (31) of $|\psi\rangle$, we arrive at the over-determined system of equations

$$\sum_{m=0}^{M} T_{km} a_m = \Psi_k, \quad T_{km} = \langle z_k | m \rangle,$$ \hspace{1cm} (42)

which can be solved by left multiplying it by the (left) pseudoinverse of T, $T^+_l = (T^* T)^{-1} T^* = \mathcal{A}^{-1} T^*$. Using the expressions of $\mathcal{A}^{-1} = \text{diag}(\lambda_0^{-1}, \lambda_1^{-1}, \ldots, \lambda_M^{-1})$, given in lemma 3.3, and the matrix elements T_{km}, given by formula (5), we arrive at the desired result. \square

Remark 3.6. Note that the Fourier coefficients a_m are obtained as a (rectangular) discrete Fourier transform of the data $\langle z_k |$ up to a normalizing factor $1/\sqrt{\lambda_m}$ (that is, a modulation by $\mathcal{A}^{-1/2}$), which can be seen as a filter. Expression (41) provides a discretization of (9), admitting an extension to a fast Fourier transform.

It should also be stressed that, as far as $|\psi\rangle \in \mathcal{H}_M$, the data $\langle z_k | \psi \rangle$ do not depend on whether $|z_k\rangle$ is truncated or not. Hence, the results obtained in this section are still valid if we work in \mathcal{H} instead of \mathcal{H}_M (i.e. if we work with the true $|z\rangle$ instead of their truncated version $P_M|z\rangle$) in the sense that the reconstruction formula (32) and the discrete Fourier transform (41) are exact. However, reconstruction formulas like the discrete version of (15) in terms of the dual data are no longer exact, and extra conditions are required for these formulas to be accurate (see proposition 4.6 studying the conditions under which, for general $|\psi\rangle \in \mathcal{H}$, data $\langle z_k | \psi \rangle$ and truncated data $\langle z_k | P_M | \psi \rangle$ approximately coincide).

4. Infinite number of particles

In this section, we study the more interesting/realistic case of states with an indeterminate (infinite) number of particles. Among these, we can find the physical states commented on in the previous section for which many of the results presented here simplify due to the finiteness of all number operator moments.

Before studying the partial reconstruction of states from a finite number of phase samples, let us introduce some general definitions.

4.1. Discrete pseudo-frames and pseudo-inverses

We will be mainly interested in cases where there are not enough phase samples to completely reconstruct a given function ψ. We will call this case undersampling. However, a partial reconstruction is still possible. In these cases, \mathcal{S} does not generate a discrete frame but a ‘pseudo-frame’, and the resolution operator \mathcal{A} would not be invertible. But we can construct another operator from T, $B \equiv TT^*$, acting on ℓ^2. The matrix elements of B are

$$B_{kl} = \langle z_k | z_l \rangle;$$ \hspace{1cm} (43)
therefore, \mathcal{B} is the discrete reproducing kernel operator, see equation (2). If the set \mathcal{S} is linearly independent, the operator \mathcal{B} will be invertible and a (right) pseudoinverse can be constructed for \mathcal{T}, $\mathcal{T}_r^+ = T^*(TT^*)^{-1}$ in such a way that $T T_r^+ = I$. As in the previous case, there is another operator $P_S = T_r^+ T$ acting on \mathcal{H} which is an orthogonal projector onto the subspace \mathcal{H}_S spanned by \mathcal{S}. A pseudo-dual frame can be defined as

$$|\tilde{z}_k\rangle = \sum_{z_\ell \in \mathcal{Q}} (\mathcal{B}^{-1})_k^{\ell} |z_\ell\rangle$$

providing a resolution of the projector P_S,

$$T_r^+ T = \sum_{z_\ell \in \mathcal{Q}} |\tilde{z}_k\rangle \langle z_\ell| = T^* (T_r^+)^* = \sum_{z_\ell \in \mathcal{Q}} |z_\ell\rangle \langle \tilde{z}_k| = P_S.$$

Using this, a partial reconstruction (an ‘alias’) $\hat{\psi}$ of ψ is obtained:

$$\hat{\psi}(z) = \langle z | \hat{\psi} = \sum_{z_\ell \in \mathcal{Q}} L_k(z) \Psi_k,$$

from its samples $\Psi_k = \langle z_\ell | \psi \rangle$, through some ‘Lagrange-like’ interpolating functions

$$L_k(z) = \langle z | z_\ell \rangle$$

fulfilling $L_k(z_\ell) = \delta_{k\ell}$. The alias $\hat{\psi}$ is the orthogonal projection of ψ onto the subspace \mathcal{H}_S, that is, $|\hat{\psi}\rangle = P_S |\psi\rangle$. The relative (normalized) distance from the exact ψ to the reconstructed function $\hat{\psi}$ is given by the relative error function:

$$E_\psi(\mathcal{H}_S) = \frac{\|\psi - \hat{\psi}\|}{\|\psi\|} = \sqrt{\frac{|\langle \psi| I - P_S |\psi\rangle|^2}{\langle \psi | P_S |\psi\rangle}}.$$

As mentioned above, we will denote this case by undersampling, since there are not enough data to fully reconstruct ψ. In other contexts, a set \mathcal{Q} is said to be interpolating if, for an arbitrary set of data Ψ_k, there exists a $|\psi\rangle \in \mathcal{H}$ such that $|z_\ell\rangle \langle \psi| = \Psi_k$ [27]. This condition is satisfied in this case since $L_k(z_\ell) = \delta_{k\ell}$.

The two operators \mathcal{A} and \mathcal{B} are intertwined by the frame operator \mathcal{T}, $\mathcal{T} = \mathcal{B} \mathcal{T}$. If \mathcal{T} were invertible, then both \mathcal{A} and \mathcal{B} would be invertible and $\mathcal{T}_r^+ = \mathcal{T}_s^+ = \mathcal{T}^{-1}$. This case would correspond to critical sampling, where both operators \mathcal{A} and \mathcal{B} can be used to fully reconstruct the function ψ. However, in many cases, it is not possible to find a set of points \mathcal{Q} such that both \mathcal{A} and \mathcal{B} are invertible, that is, there is no critical sampling, or there are no sets \mathcal{Q} which are sampling and interpolating at the same time. The most common example is the Bargmann–Fock space of analytical functions on \mathbb{C}, where one can find rectangular lattices which are sampling (and therefore \mathcal{A} is invertible), or which are interpolating (and thus \mathcal{B} is invertible), but not both simultaneously [2, 27]. Examples of critical sampling are given by the space of band-limited functions on \mathbb{R} and the set \mathbb{Z}, which is both sampling and interpolating, and the space of functions on the Riemann sphere (or rather its stereographic projection onto the complex plane) with fixed angular momentum s and the set of Nth roots of unity, with $N = 2s + 1$ [24].

It should be noted that in the case in which there is a finite number N of sampling points z_ℓ, the space ℓ^2_s should be substituted by \mathcal{C}^N, and the operator \mathcal{B} can be identified with its matrix once a basis has been chosen.

4.2. Partial reconstruction of states and aliasing

In the previous section, we have seen that using N phase samples, we can fully reconstruct functions $\psi \in \mathcal{H}_m$ for a number of particles up to $M = N - 1$. When the reconstruction of
a function $\psi \in \mathcal{H}$ from a finite number N of samples is required, we cannot use the results of the previous section since the resolution operator A is no longer invertible\(^8\). However, the overlapping kernel operator B turns out to be invertible, and a partial reconstruction can be done following the guidelines of section 4.1 (undersampling).

The space \mathcal{H} is infinite-dimensional, and therefore in the partial reconstruction of an arbitrary function $|\psi\rangle = \sum_{n=0}^{\infty} a_n |n\rangle$ a considerable error will be committed unless further assumptions on the probability amplitudes, a_n, are made. Since $|\psi\rangle$ is normalizable, the Fourier coefficients a_n should decrease to zero; thus, even if $|\psi\rangle \notin \mathcal{H}_M$, if a_n goes to zero fast enough, it will ‘approximately’ belong to \mathcal{H}_M if the norm of $|\psi_M\rangle \equiv \sum_{n=M}^{\infty} a_n |n\rangle$ is small compared to the norm of $|\psi\rangle$ for an appropriately chosen M. Let us formally state these ideas.

Definition 4.1. Let us define by

$$P_M = \sum_{n=0}^{M} |m\rangle \langle m|$$

the projector onto the truncated space \mathcal{H}_M for some $M < \infty$. We will denote by

$$\epsilon_{M+1}^2(\psi) \equiv \epsilon_{\psi}^2(\mathcal{H}_M) = \frac{\langle \psi | I - P_M |\psi\rangle}{\langle \psi | \psi\rangle} = \frac{\sum_{n=M+1}^{\infty} |a_n|^2}{\sum_{n=0}^{\infty} |a_n|^2},$$

the normalized squared distance (similar to (48)) from

$$|\psi\rangle = \sum_{n=0}^{\infty} a_n |n\rangle \in \mathcal{H}$$

to its orthogonal projection

$$|\psi_M\rangle = P_M |\psi\rangle = \sum_{n=0}^{M} a_n |n\rangle$$

onto the subspace \mathcal{H}_M. In other words, $\epsilon_{M+1}(\psi)$ is the sine of the angle between ψ and ψ_M.

We hope that the (normalized) error committed when reconstructing ψ from its samples Ψ_q will be of the order of $\epsilon_{\psi}(\psi)$ (here $M = N - 1$), which will be small as long as the Fourier coefficients a_n decay fast enough. More precisely, if $|a_n| \leq C/n^\alpha$ for some constant C, $\alpha > 1/2$ and $n \geq N$, then

$$\|\psi\|^2 \epsilon_{\psi}^2(\psi) = \sum_{n=0}^{\infty} |a_n|^2 \leq C^2 \sum_{n=0}^{\infty} \frac{1}{n^{2\alpha}} \leq C^2 \int_{N-1}^{\infty} \frac{1}{x^{2\alpha}} \, dx \leq \frac{C^2}{2\alpha - 1} \frac{1}{(N-1)^{2\alpha-1}},$$

which says that $\epsilon_{\psi}^2(\psi) = O(1/N^{2\alpha-1})$\(^9\).

For the special case in which $|\psi\rangle$ is a physical state, for instance a coherent state $|\zeta\rangle$, i.e. when $a_n = C^{-1/2} \sqrt{n} \zeta^n / \sqrt{n!}$, we have that $\epsilon_{\psi}^2(\zeta) = 1 - \Gamma(N, |\xi|^2) / \Gamma(N)$, which approximately verifies for large N:

$$\epsilon_{\psi}^2(\zeta) \simeq \begin{cases} 0 & \text{if } |\xi|^2 < N \\ 1 & \text{if } |\xi|^2 \geq N \end{cases}$$

This means that taking $M = N - 1$ and denoting by $p = |\xi|^2$ the mean number of particles, if $N > p$ then $|\zeta_M\rangle \simeq |\zeta\rangle$, whereas if $N < p$ then $|\zeta_M\rangle \simeq 0$. This behavior is similar for

\(^8\) While the operator $T : \mathcal{H} \to C^N$ has the same expression as in the previous section, the operator A is an infinite-dimensional matrix given by $A_{mn} = \lambda^{1/2} \phi_j \delta_{j,m}$, with $m = j + pN$ and $n = j + qN$, that is, it is a matrix made of $N \times N$ diagonal blocks.

\(^9\) This condition could be more formally stated by saying that ψ belongs to a certain Sobolev space H^α with $k < \alpha - 1/2$.

J. Phys. A: Math. Theor. 45 (2012) 244029 M Calixto et al
Theorem 4.2. Given \(\psi \in \mathcal{H} \), there exists a partial reconstruction of \(\psi \), in terms of the alias

\[
\hat{\psi}(z) = \sum_{k=0}^{N-1} L_k(z) \Psi_k, \tag{55}
\]

from \(N \) of its samples \(\Psi_k \), taken at the sampling points in (28), up to an error (48):

\[
\mathcal{E}_\psi^2(p, N) \equiv \mathcal{E}_\psi^2(\mathcal{H}^S) \leq \frac{v_0(p, N)}{1 + v_0(p, N)} + 2\epsilon_N(\psi) \sqrt{1 - \epsilon_N^2(\psi)} + \epsilon_N^2(\psi) \frac{2 + v_0(p, N)}{1 + v_0(p, N)}, \tag{56}
\]

with \(v_0(p, N) \equiv \sum_{n=1}^{\infty} \frac{1}{n^p} p^n N^2 \).

The Lagrange-like interpolating functions (47) now adopt the following form:

\[
L_k(z) = \frac{1}{N} e^{i(zz_k - z)/2} \sum_{j=0}^{N-1} \lambda_{j}^{-1} \sum_{q=0}^{\infty} \lambda_{j+qN} \bar{z}_{z_k}^{q}/2 \lambda_{j+qN}, \tag{57}
\]

where

\[
\lambda_{j} = \sum_{q=0}^{\infty} \lambda_{j+qN}, \quad j = 0, \ldots, N - 1, \tag{58}
\]

are the eigenvalues of the discrete reproducing kernel operator \(B = T T^* \) (defined in (43) with matrix elements \(B_{kl} = \langle z_k | z_l \rangle \)) and \(\lambda_n \) is given by (34), but now for \(n = 0, 1, 2, \ldots \). The proof of this theorem is quite involved and we move it to the appendix in order to make the presentation more dynamic. There we also prove an asymptotic expression (A.17) for \(v_0(p, N) \), so that the quadratic error (56) approaches zero when \(N \to \infty \), with the asymptotic behavior

\[
\mathcal{E}_\psi^2(p, N) \leq 2\epsilon_N(\psi) \sqrt{1 - \epsilon_N^2(\psi)} + 2\epsilon_N^2(\psi) + O(N^{-N}), \tag{59}
\]

as long as \(p < p_0(N) \) given in (A.18). Thus, the reconstruction of \(\psi \) by \(\hat{\psi} \) is exact in this limit.

The Fourier coefficients of the alias \(\hat{\psi} \) can also be computed, providing a discrete version of the Fourier transform (9), which also admits a fast version.

Corollary 4.3 (Discrete Fourier transform). The Fourier coefficients \(a_n \) of expansion (51) can be approximated by the discrete Fourier transform:

\[
\hat{a}_n = \frac{\lambda_{n}^{1/2}}{\lambda_{n} \bmod N} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i n k/N} \Psi_k. \tag{60}
\]

Proof. The Fourier coefficients of the alias (55) are given by

\[
\hat{a}_n = \langle n | \hat{\psi} \rangle = \langle n | P_S | \psi \rangle = \sum_{k=0}^{N-1} \langle n | z_k \rangle \Psi_k = \sum_{k=0}^{N-1} \langle n | z_k \rangle (B^{-1})_{kl} \Psi_k, \tag{61}
\]

where \(P_S \) is defined in the appendix. Using that \(T_{in} = \langle z_i | n \rangle = \lambda_{i}^{1/2} F_{in} \), given in (36), and the expression for the inverse of \(B \) given in (A.7), we obtain the final result once the orthogonality relation (38) for Fourier matrices is used.
Remark 4.4. Note that (60) provides a discretization of (9) and both coincide when \(N \to \infty \), since, in this limit, \(\hat{\lambda}_n \mod N \to \lambda_n \), \(e^{2\pi im/N} \to e^{in} \) and \(\frac{2\pi}{N} \sum_{k=0}^{N-1} j_{2\pi k} \to \int_0^{2\pi} d\theta \).

Remark 4.5. The expression for the Fourier coefficients \(\hat{a}_n \) entails a kind of ‘periodization’ of the original \(a_n \). Indeed, putting

\[
\Psi_k = \langle z_k | \psi \rangle = \sum_{m=0}^{\infty} \langle z_k | m \rangle \langle m | \psi \rangle = \sum_{m=0}^{\infty} T_{km} \hat{a}_m = \sum_{m=0}^{\infty} \lambda_m^{1/2} \mathcal{F}_{km} \hat{a}_m
\]

and using the orthogonality relations (38), we can write (60) as

\[
\hat{a}_n = \frac{\lambda_n^{1/2}}{\lambda_n \mod N} \sum_{k=0}^{N-1} \mathcal{F}_{kn} \sum_{m=0}^{\infty} \lambda_m^{1/2} \mathcal{F}_{km} \hat{a}_m
\]

\[
= \frac{\lambda_n^{1/2}}{\lambda_j} \sum_{q=0}^{\infty} \lambda_j^{1/2} \mathcal{F}_{j+qN} \hat{a}_{j+qN}, \quad j = n \mod N,
\]

(62)

which implies

\[
\lambda_n^{-1/2} \hat{a}_n = \lambda_{n+pN}^{-1/2} \hat{a}_{n+pN} \Rightarrow \hat{a}_{n+pN} = \sqrt{\frac{\lambda_{n+pN}}{\lambda_n}} \hat{a}_n, \quad \forall p \in \mathbb{N}.
\]

(63)

This is the ‘complex plane’ counterpart of the typical aliasing effect for band-unlimited signals on the real line.

We could think that for the case \(\epsilon_N(\psi) = 0 \), we should recover the results of section 3.2, but we will see that this is not the case. Before, a process of truncation and filtering of \(\hat{\psi} \) in (55) is necessary to recover the reconstruction formula (32) for functions \(\psi \in \mathcal{H}_M \) (31). Indeed, if \(M = N - 1 \), the truncation operation

\[
|\hat{\psi}_M \rangle = P_M |\hat{\psi}\rangle = \sum_{m=0}^{M} \hat{a}_m |n\rangle
\]

(64)

followed by a rescaling (a filter) of the Fourier coefficients

\[
|\hat{\psi}_M^P \rangle = R|\hat{\psi}_M \rangle = \sum_{m=0}^{M} \frac{\lambda_n}{\lambda_n} \hat{a}_m |n\rangle
\]

(65)

renders the reconstruction formula for \(\hat{\psi}_M^P(z) = \langle z | \hat{\psi}_M \rangle \) to the expression (32). For arbitrary functions \(\psi \in \mathcal{H} \), the new bound for the squared normalized error turns out to be

\[
\frac{\| \psi - \hat{\psi}_M^P \|^2}{\| \psi \|^2} \leq \epsilon_N^2(\psi) + \frac{\| \psi \|^2}{\| \psi \|^2} \leq \epsilon_N^2(\psi) + \epsilon_N^2(\psi)(1 + \nu_0(p, N))^2,
\]

(66)

where we have followed the same steps as in the proof of theorem 4.2 in the appendix, using that the spectral radius \(\rho(R) = \| R \| = 1 + \nu_0(p, N) \) and that \(R P_M P_M = P_M \). Contrary to (56), the new bound (66) is proportional to \(\epsilon_N^2(\psi) \). If we, moreover, assume a behavior for \(a_n \) as in (53), then we have that the error (66) is of order \(O(1/N^2\nu-1) \).

Let us comment on an alternative approach to the reconstruction of functions \(\psi \) for small \(\epsilon_{M+1}(\psi) \), which will turn out to be more convenient in a certain limit. Actually, for \(\epsilon_{M+1}(\psi) \ll 1 \) we have

\[
\| \psi - P_M \psi \|^2 \ll \epsilon_{M+1}(\psi) \| \psi \|^2 \ll \| \psi \|^2,
\]

(67)

so that the reconstruction formula (32) for \(\psi_M = P_M \psi \) would give a good approximation of \(\psi \), similarly to the approach followed in [28], section 4. The problem is that, in general, the original data \(\Psi_k = \langle z_k | \psi \rangle \) for \(\psi \) and the (unknown) ‘truncated’ data \(\Psi_{M,k} = \langle z_k | P_M | \psi \rangle \)
for ψ_M are different unless $\langle z_k | P_M | z_k \rangle = \langle z_k | P_M | z_k \rangle = 1$, $\forall k = 0, \ldots, N - 1$, which is equivalent to $\langle z_k | P_M | z_k \rangle = 1$, $\forall k = 0, \ldots, N - 1$. The following proposition studies the conditions under which such a requirement is approximately satisfied.

Proposition 4.6. For large M, the diagonal matrix elements of P_M in \mathcal{H}^S have the following behavior:

$$P_M(p) \equiv \langle z_k | P_M | z_k \rangle \simeq \begin{cases} 1 & \text{if } p < p_c - \sigma_c, \\ 0 & \text{if } p > p_c + \sigma_c \end{cases}$$

(i.e. an approximation to the Heaviside (unit step) function), where

$$p_c = M + 1, \quad \sigma_c = \sqrt{M + 1} \quad (69)$$

denote a ‘critical’ average number of particles and the standard deviation, respectively.

Proof. Using expression (36), we have

$$P_M(p) \equiv \langle z_k | P_M | z_k \rangle = \sum_{m=0}^M T_{LM} T_{LM}^* e^{-p m}.$$ \hfill (70)

We can compute

$$\frac{dP_M(p)}{dp} = -e^{-p} p^M M! = -Q_M(p).$$ \hfill (71)

$Q_M(p)$ is an Erlang-$M + 1$ distribution (gamma distribution for integer M) with an average value of $p_c \equiv \int_0^\infty p Q_M(p) \, dp = M + 1$ and variance $\sigma_c^2 = \int_0^\infty (p - p_c)^2 Q_M(p) \, dp = M + 1$. The Erlang-$(M + 1)$ distribution converges to a normal distribution $N(p_c, \sigma_c^2)$ for large values of M. Furthermore, we know that the Dirac delta distribution δ is the limit of Gaussians $\delta(x - \mu) = \lim_{\sigma \to 0} N(\mu, \sigma^2)$. This implies that $N(p_c, \sigma_c^2) \simeq \frac{1}{\sigma_c} \delta\left(\frac{p - p_c}{\sigma_c}\right)$ for large values of M, which means that $P_M(p)$ approaches a Heaviside function for large M. This is the so-called droplet in quantum Hall effect language (see e.g. [29] for an alternative proof in this context). \hfill \square

Figure 1 shows a plot of $P_M(p)$ as a function of p for different values of M. It is clear how $P_M(p)$ approaches the step function as M grows.

Remark 4.7. The matrix elements of P_M in \mathcal{H}^S have a circulant matrix structure. In fact, they can be seen as the Fourier transform of the coefficients λ_n. They have the expression

$$\langle z_k | P_M | z_l \rangle = C_{k-l}(p),$$

where

$$C_{k}(p) = \frac{1}{N} \sum_{m=0}^{M} \lambda_m e^{-2\pi i \frac{k}{N}}.$$ \hfill (72)

Note that $C_{N-l} = C_{l}^*$, therefore the only independent elements are $C_{l}, l = 0, \ldots, \frac{N}{2}$.

Figure 1. $P_M(p)$ as a function of p for three different values of M: 10, 100 and 1000.
5. Comments and outlook

Restricting canonical CSs to the (discrete) circle provides an alternative way of analyzing functions in the Fock–Bargmann representation. For truncated Hilbert spaces, these finite CS subsystems provide finite frames with interesting properties. The lack of completeness in the general case still allows for partial reconstructions up to a certain error which goes to zero when the number of phase samples $N \to \infty$. We also prove that an almost-exact treatment is also possible when the number of phase samples N is greater than the mean number of particles p for physical states. This ‘critical’ behavior proved in proposition 4.6 was also noticed in [9, 10], where the optimal distribution of a given number of coherent states on a circle having the maximal amplitude squeezing was found. More precisely, for a few coherent states, the optimal distribution was asymmetric while above a certain threshold in the number of coherent states, depending on the radius of the circle, it turned out to be symmetric. In our language, this means $N > p$.

Quantum state reconstruction is important in quantum optics and quantum computation and information. Quantum states are reconstructed by using measurements on an ensemble of identical quantum states. In quantum optics, phase measurements heavily rely on beam splitters and phase shifters to make simultaneous homodyne measurements of the light field using photon counting statistics [30]. There are also quite a few experimental schemes (mainly in quantum optics) where discrete superpositions of coherent states (as non-classical states of light) are generated. See e.g. the pioneering proposals in [31] and [11] (and references therein), or more recent laser-spectroscopic techniques [32, 33] involving ‘Schrödinger-cat states’. Moreover, the special case of even (and odd) CS ($N = 2$) turns out to provide a remarkable variational description for the ground (and first excited) state of the Dicke model of matter–field (spin-boson) interactions and vibron models of molecules (see e.g. [34, 35] and references therein); these parity-symmetry-adapted CSs capture the essence of the quantum phase transition occurring in these models. We feel that our mathematical results will be of physical usage here.

Our formalism deals with pure states, but it could be easily extended to mixed states, allowing us to reconstruct accurately quasiprobability distribution functions from discrete phase samples. Also an alternative exact approach would also be to consider samples of p, thus leading to ‘circular-lattice’ structures.

Acknowledgments

This work is partially supported by the Fundación Séneca, Spanish MICINN and Junta de Andalucía under projects [08816/PI/08, 08814/PI/08], [FIS2008-06078-C03-01, FIS2011-29813-C02-01] and FQM219, respectively. We all thank the anonymous referees for bringing to our attention some interesting references.

Appendix. Proof of theorem 4.2

In this appendix, we prove the main theorem 4.2 of our work. Before tackling the proof of this theorem, we will introduce some notation and prove some auxiliary results.

Lemma A.1. The pseudo-frame operator $T : \mathcal{H} \to \mathbb{C}^N$ given by $T(\psi) = \{ \langle z_k | \psi \rangle, z_k \in \mathcal{Q} \}$ (remember the construction after equation (23)) is such that the overlapping kernel operator $B = TT^*$ is an $N \times N$ Hermitian positive definite invertible matrix, admitting the
Proof. Let us see that \(B \) is diagonalizable and its eigenvalues \(\hat{\lambda}_k \) are given by the expression (58), which actually shows that all are strictly positive and hence \(B \) is invertible. This can be done by taking advantage of the circulant structure of \(B \) (see e.g. appendix B in [24]). Actually, using the expression of the CS overlap (2), we have
\[
B_{kl} = (z_k | z_l) = e^{-p} \exp(p \frac{e^{2\pi i (l-k)}/N}{}) \equiv C_{l-k},
\]
where the circulant structure becomes apparent. The eigenvalues of \(B \) are easily computed by the formula
\[
\hat{\lambda}_k = \hat{D}_{kk} = (\mathcal{F}^* B \mathcal{F})_{kk} = \frac{1}{N} \sum_{n,m=0}^{N-1} \mathcal{F}^{2\pi kn/N} C_{m-n} e^{-i2\pi mk/N}.
\]
If we expand (A.1) as
\[
C_l = e^{-p} \sum_{q=0}^{\infty} \frac{p^q q!}{q!} e^{2\pi i q/N},
\]
insert this in (A.2) and use the general orthogonality relation for rectangular Fourier matrices (38), we arrive at (58). It is evident that \(\hat{\lambda}_k > 0, \forall k = 0, 1, \ldots, N - 1 \), so that \(B \) is invertible.

Following the general guidelines of subsection 4.1, we now introduce the projector \(P_S \).

Lemma A.2. Under the conditions of the previous lemma, the set \(\{|\tilde{z}_k\rangle = \sum_{l=0}^{N-1} (B^{-1})_{kl} |z_l\rangle, k = 0, \ldots, N - 1\} \) constitutes a dual pseudo-frame for \(S \), the operator \(P_S = T^+ T \) is an orthogonal projector onto the subspace \(\mathcal{H}^S \), where \(T^+ = T^* B^{-1} \) is a (right) pseudoinverse for \(T \), and
\[
\sum_{k=0}^{N-1} |\tilde{z}_k\rangle \langle z_k| = \sum_{k=0}^{N-1} |z_k\rangle \langle \tilde{z}_k| = P_S
\]
provides a resolution of the projector \(P_S \), whose matrix elements in the orthonormal base of Fock states of \(\mathcal{H} \) exhibit a structure of diagonal \(N \times N \) blocks:
\[
P_{mn}(p, N) \equiv (m | P_S | n) = (\hat{\lambda}_m \hat{\lambda}_n)^{1/2} \delta_{m \mod N, n \mod N, 0}, \quad m, n = 0, 1, 2, \ldots,
\]
with \(\hat{\lambda}_n \) given by (58).

Proof. If we define \(T^+ = T^* B^{-1} \), it is easy to check that \(TT^+ = I_N \) is the identity in \(\mathbb{C}^N \). In the same way, \(P_S = T^+ T \) is a projector since \(P_S^2 = T^+ T T^+ T = T^+ T = P_S \) and it is orthogonal \(P_S^2 = (T^* B^{-1} T)^* = T^* B^{-1} T = P_S \) since \(B \) is self-adjoint. The resolution of the projector is provided by equation (45). Its matrix elements can be calculated through
\[
P_{mn}(p, N) = \sum_{k,l=0}^{N-1} T^*_{ml}(B^{-1})_{lk} T_{kr}.
\]
The inverse of \(B \) can be obtained through the eigendecomposition:
\[
(B^{-1})_{lk} = (\mathcal{F} \hat{D}^{-1} \mathcal{F}^*)_{lk} = \frac{1}{N} \sum_{j=0}^{N-1} \hat{\lambda}_j^{-1} e^{2\pi i (k-l)/N}.
\]
Inserting this last expression and $T_{kl} = \lambda_i^{1/2} F_{kl}$ in (A.6) and using the general orthogonality relation (38) for RFM, we finally arrive at (A.5).

The matrix elements (A.5) will be useful when computing the error function (56) for a general function (51). At some point, we will be interested in their asymptotic behavior for large N (large number of samples). In order to give an explicit expression of this asymptotic behavior of $P_{mn}(p, N)$, it will be useful to define the following functions:

$$v_n(p, N) \equiv \frac{\hat{\lambda}_n - \hat{\lambda}_n}{\hat{\lambda}_n} = \sum_{u=1}^{\infty} \frac{n!}{(n+uN)!} p^{uN}, \quad n = 0, \ldots, N - 1. \quad (A.8)$$

Note that $v_n(p, N) = \frac{n!}{p} H_{N,u}(p) - 1$, where $H_{N,u}(p)$ are the generalized hyperbolic functions [36]. In terms of $v_n(p, N)$, the matrix elements (A.5) adopt the following form:

$$P_{mn}(p, N) = \frac{\left(\frac{1}{\lambda_{j+sN}^{1/2}}\right)}{\sum_{s=0}^{\infty} \lambda_{j+sN}} \frac{j!}{\sqrt{j+sN}!} \frac{1}{\sqrt{j+tN}!} \frac{1}{1 + v_j(p, N)} \quad (A.9)$$

for $m = j + sN$ and $n = j + tN$, with $j = 0, \ldots, N - 1$ and $s, t = 0, 1, \ldots$, and zero otherwise. In particular, for $m, n \leq N - 1$, the projector (A.9) adopts the simple diagonal form

$$P_{mn}(p, N) = \frac{1}{1 + v_n(p, N)} \delta_{m,n}, \quad n, m = 0, \ldots, N - 1. \quad (A.10)$$

Let us state and prove an interesting monotonic property of $v_n(p, N)$.

Lemma A.3. The functions (A.8) are strictly decreasing sequences of n for $p > 0$, that is

$$v_m(p, N) < v_n(p, N) \iff n > m, \quad n, m = 0, \ldots, N - 1. \quad (A.11)$$

Proof. The difference between two consecutive terms of the sequence is

$$v_{n+1} - v_n = \sum_{u=1}^{\infty} \left[\frac{(n+1)!}{(n+1+uN)!} - \frac{(n)!}{(n+uN)!} \right] p^{uN}, \quad n = 0, \ldots, N - 1.$$

Moreover, it can be easily checked that

$$\frac{(n+1)!}{(n+1+uN)!} < \frac{(n)!}{(n+uN)!}, \quad \forall u \in \mathbb{N}, \quad n = 0, \ldots, N - 1$$

which implies that $v_{n+1} < v_n, n = 0, \ldots, N - 1$. \hfill \Box

Now we are in a condition to prove our main theorem in this section.

Proof of theorem 4.2. According to (44), the pseudo-dual frame is defined by

$$|z_k\rangle = \sum_{l=0}^{N-1} (B^{-1})_{kl} |z_l\rangle = \sum_{l=0}^{N-1} \hat{\lambda}^{-1}_l e^{2\pi i (k-l)/N} |z_l\rangle.$$

Thus, the interpolating functions (47) read

$$L_k(z) = \langle z | z_k \rangle = \sum_{l=0}^{N-1} \frac{1}{\hat{\lambda}_l} e^{2\pi i (k-l)/N} \langle z | z_l \rangle.$$

Noting that

$$\langle z | z_l \rangle = \sum_{n=0}^{\infty} \langle z | n \rangle \langle n | z_l \rangle = \sum_{n=0}^{\infty} e^{-|z|^2/2n^2} \frac{n^2}{n!} T_{ln}, \quad (A.12)$$

and using the orthogonality relation for Fourier matrices (38), we arrive at (57).
Now it remains to prove the bound (56) for the error. Decomposing $|\psi\rangle$ in terms of $|\psi_{N-1}\rangle = P_{N-1}|\psi\rangle$ and $|\psi_N^\perp\rangle = (I - P_{N-1})|\psi\rangle$, we can write
\[
E_\delta^2(p, N)\|\psi\|^2 = \langle \psi|\psi\rangle - \langle \psi_{N-1}|P_S|\psi_{N-1}\rangle - \langle \psi_N^\perp|P_S|\psi_N^\perp\rangle = 2\text{Re}\langle \psi_{N-1}|P_S|\psi_N^\perp\rangle.
\]

Let us start by bounding the term
\[
\langle \psi_{N-1}|P_S|\psi_{N-1}\rangle = \sum_{n=0}^{N-1} |a_n|^2 (n|P_S|n) = \sum_{n=0}^{N-1} |a_n|^2 \frac{1}{1 + v_n(p, N)} \geq \frac{1 - 2^\nu \epsilon(p)}{1 + v_0(p, N)} \|\psi\|^2,
\]
where we have used expression (A.10), lemma A.3 in bounding $\frac{1}{1 + v_n(p, N)} \geq \frac{1}{1 + v_0(p, N)}$, $\forall n = 0, \ldots, N - 1$ and definition (50). Next we will bound the term
\[
-2\text{Re}\langle \psi_{N-1}|P_S|\psi_N^\perp\rangle \leq 2\langle \psi_{N-1}|P_S|\psi_N^\perp\rangle \leq 2\|\psi_{N-1}\|\|P_S|\psi_N^\perp\| \leq 2\|\psi_{N-1}\||P_S||\psi_N^\perp|| = 2\sqrt{1 - 2^\nu \epsilon(p)} \epsilon_N(p) \|\psi\|^2.
\]

Putting together all this information in (A.13), we arrive at the bound (56) for the error.

It can be easily seen that $\lim_{N \to \infty} v_0(p, N) = 0$, $\forall p > 0$. As a consequence, the error (56) goes to zero as $N \to \infty$. To obtain the order of magnitude of this error, we will first give the asymptotic behavior of $v_0(p, N)$ for large N.

Proposition A.4. The quantity $v_0(p, N)$ has the following asymptotic behavior (as a function of N):
\[
v_0(p, N) = \frac{1}{N^p} + O(N^{-2N}),
\]

as long as
\[
p < p_0(N) = 2N! \left(\frac{2N!}{N!}\right)^\frac{1}{2} = N^p \left(1 + \frac{1}{2N} \ln(2) + O\left(\frac{1}{N^2}\right)\right).
\]

Proof. Let us see that the first addend ($u = 1$) of
\[
v_0(p, N) = \sum_{u=1}^{\infty} \frac{1}{(uN)!} p^u N!
\]
is dominant when $p < p_0(N)$. Indeed, the quotient between two consecutive terms of the series (A.19) is
\[
\frac{p^{u+1} (uN)!}{((u+1)N)!} < \frac{p^u N!}{(2N)!},
\]
where we have used that the quotient of factorials is decreasing in $u \in \mathbb{N}$. If we impose the terms of the series (A.19) to be monotonically decreasing for any $u \in \mathbb{N}$, i.e.
\[
p^u N! < 1,
\]
then we arrive at (A.18). Thus, the first addend, $u = 1$, of (A.19) is the leading term. Using the Stirling formula, the asymptotic behavior of the factorial $\frac{1}{(2N)!}$ of the second term, $u = 2$, gives the announced result (A.17).
References

[1] von Neumann J 1996 Mathematical Foundations of Quantum Mechanics (Princeton, NJ: Princeton University Press)
[2] Perelomov A 1986 Generalized Coherent States and Their Applications (Berlin: Springer)
[3] Ali S T, Antoine J-P and Gazeau J P 2000 Coherent States, Wavelets and Their Generalizations (Berlin: Springer)
[4] Vourdas A 2006 J. Phys. A: Math. Gen. 39 R65–141
[5] Seip K 1992 Bull. Am. Math. Soc. 26 322–8
[6] Janszky J and Vinogradov An V 1990 Phys. Rev. Lett. 64 2771–4
[7] Schleich W, Pernigo M and Kien F L 1991 Phys. Rev. A 44 2172–87
[8] Sun J, Wang J and Wang C 1992 Phys. Rev. A 46 1700–2
[9] Janszky J, Domokos P and Adam P 1993 Phys. Rev. A 48 2213–9
[10] Domokos P, Adam P and Janszky J 1994 Phys. Rev. A 50 4293–7
[11] Szabo S, Adam P, Janszky J and Domokos P 1996 Phys. Rev. A 53 2698–710
[12] Holschneider M 1998 Wavelets: An Analysis Tool (Oxford: Oxford University Press)
[13] Aniello P, Man’ko V I and Marmo G 2008 J. Phys. A: Math. Gen. 41 285304
[14] Dirac P A M 1927 Proc. R. Soc. A 114 243–65
[15] Suskind L and Glogower J 1964 Physics 1 49–61
[16] Carruthers P and Nieto M M 1968 Rev. Mod. Phys. 40 411–40
[17] Pegg D T and Barnett S M 1988 Europhys. Lett. 6 483–7
[18] Pegg D T and Barnett S M 1989 Phys. Rev. A 39 1665–75
[19] González J A and del Olmo M A 1998 J. Phys. A: Math. Gen. 31 8841–57
[20] García de León P L and Gazeau J P 2007 Phys. Lett. A 361 301–4
[21] Daoud M and Kibler M R 2010 J. Phys. A: Math. Theor. 43 115303
[22] Wang X B, Hiroshima T, Tomita A and Hayashi M 2007 Phys. Rep. 448 1–111
[23] Cotfas N and Gazeau J P 2010 J. Phys. A: Math. Theor. 43 193001
[24] Calixto M, Guerrero J and Sánchez-Monreal J C 2008 J. Fourier Anal. Appl. 14 538–67
[25] Calixto M, Guerrero J and Sánchez-Monreal J C 2011 J. Fourier Anal. Appl. 17 240–64
[26] Ben-Israel A and Greville T N E 2003 Generalized Inverses (Berlin: Springer)
[27] Führ H 2005 Abstract Harmonic Analysis of Continuous Wavelet Transforms (Berlin: Springer)
[28] Pensinon I 2009 J. Geom. Anal. 19 390–419
[29] Sakita B 1993 Phys. Lett. B 315 124–8
[30] Schleich W P 2001 Quantum Optics in Phase Space (New York: Wiley-VCH)
[31] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13–6
[32] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Science 312 83–6
[33] Kira M, Koch S W, Smith R P, Hunter A E and Cundiff S T 2011 Nature Phys. 799–804
[34] Romera E, Calixto M and Nagy Á 2012 Europhys. Lett. 97 20011
[35] Calixto M and Romera E 2012 Schrödinger’s catlike-states and entanglement in quantum phase transitions of vibron models (in preparation)
[36] Ungar A 1982 Am. Math. Mon. 89 688–91