Anti-Inflammatory Activities of Natural Products Isolated from Soft Corals of Taiwan between 2008 and 2012

Wen-Chi Wei 1, Ping-Jyun Sung 2,3, Chang-Yih Duh 4, Bo-Wei Chen 4, Jyh-Horng Sheu 4,5,6,*, and Ning-Sun Yang 1,7,8,*

1 Agricultural Biotechnology Research Center, Academia Sinica, Taipei 128, Taiwan; E-Mail: jackwei@gate.sinica.edu.tw
2 National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan; E-Mail: pjsung@nmmba.gov.tw
3 Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
4 Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; E-Mails: yihduh@mail.nsysu.edu.tw (C.-Y.D.); a6152761@yahoo.com.tw (B.-W.C.)
5 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
6 Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
7 Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
8 Department of Life Science, National Central University, Taoyuan 320, Taiwan

* Authors to whom correspondence should be addressed; E-Mails: sheu@mail.nsysu.edu.tw (J.-H.S.); nsysang@gate.sinica.edu.tw (N.-S.Y.); Tel./Fax: +886-7525-2000 (ext. 5030) (J.-H.S.), +886-2-2787-2067 (N.-S.Y.).

Received: 30 July 2013; in revised form: 12 September 2013 / Accepted: 13 September 2013 / Published: 23 October 2013

Abstract: This review reports details on the natural products isolated from Taiwan soft corals during the period 2008–2012 focusing on their in vitro and/or in vivo anti-inflammatory activities. Chemical structures, names, and literature references are also reported. This review provides useful and specific information on potent anti-inflammatory marine metabolites for future development of immune-modulatory therapeutics.

Keywords: soft coral; anti-inflammatory activity; iNOS; COX-2; superoxide anion; elastase
1. Introduction

Marine natural products, especially those from stationary or slow moving marine organisms, are used naturally as a chemical defense to protect the organisms from dangerous predators, stressful local environments, and/or the encroachment of competitors. Due to the biological and chemical diversity of marine habitats, and the identification and greater understanding of marine secondary metabolites with unique chemical structures and biological activities, natural products from marine organisms are increasingly being considered as a major source of new therapeutics [1–3]. More than 20,000 novel compounds have been isolated and identified from marine organisms since the 1960s [4]. At least two current drugs and a series of anti-tumor drug candidates in preclinical or clinical trials have been developed from marine natural products [2–4]. The soft corals or Alcyonacea, an order of Anthozoa widely distributed in warm seawaters, have been a particular focus of attention. An abundance of unique secondary metabolites including sesquiterpenoids, diterpenoids, steroids and other chemical compounds have been isolated and identified from various species of soft corals [5–7]. It has been estimated that the percentage of new metabolites discovered from soft corals represents up to 22% of the total new marine natural products reported from 2010 to 2011 [5,6]. Importantly, many of the natural products discovered from soft corals have been demonstrated to exhibit a spectrum of biological activities such as anti-tumor, antiviral, antifouling and anti-inflammatory [5–8].

Inflammation processes often constitute an initial activation of the mammalian immune system, and the body’s normal defense or protective mechanisms in response to microbial infection or irritation or injury of tissues/-organs. Increasing evidence suggests a critical link between inflammation and the chronic promotion/progression of various human diseases, including atherosclerosis, diabetes, arthritis, inflammatory bowel disease, cancer and Alzheimer. Proinflammatory enzymes, particularly the inducible nitric oxide synthase (iNOS) for nitric oxide production and cyclooxygenase (COX-2) for prostaglandin production, have been demonstrated to play central roles in the development of inflammatory diseases. In addition, it is also known that during the initial phase of acute inflammation, neutrophils are one of the first leukocyte populations to migrate towards the damaged tissue sites [9]. Neutrophils play a key role in the pathogenesis of various chronic inflammation diseases such as rheumatoid arthritis [10,11]. Activated neutrophils can secrete the superoxide anion, reactive oxygen species (ROS) and enzymes that are associated with the killing of invading pathogens [12]. Furthermore, elastase secreted by stimulated neutrophils has been recognized to play a key contribution in the demolition of tissues affected by chronic inflammatory disease [13]. Therefore, evaluation of the inhibition of iNOS and COX-2 expression, the production of superoxide anion, and the release of elastase in inflammatory cells/tissues by various natural products have been extensively employed in a spectrum of in vitro preliminary screening systems for lead compound or drug discovery. Recently, a number of marine biology and chemistry researchers in Taiwan (including our laboratory) have systematically screened several marine natural products isolated from soft corals for such in vitro anti-inflammatory activities, mainly by measuring the inhibition of iNOS, COX-2, superoxide anion or elastase in murine immune cells. Animal models were further used to evaluate the potential therapeutic activities of candidate compounds in specific disease models. This report reviews some recent representative studies and examples of marine natural products with anti-inflammatory and other related bioactivities that have been isolated from soft corals of Taiwan. Soft corals are
abundant in the off-shore environment of the island of Taiwan, and have hence become a focus of local studies of marine nature products. We hope that this review will provide a useful data for the further study of marine natural products.

2. Results and Discussion

In the reports reviewed here, anti-inflammatory activities of natural products from the soft corals of Taiwan were generally determined in vitro by their inhibition of LPS-induced expression of iNOS and COX-2 in murine macrophage cells (RAW264.7) or by their inhibition of the production of superoxide anion and the release on the elastase from human neutrophils in response to FMLP/CB.

2.1. Sesquiterpenoids

2.1.1. Triquinane-Type Sesquiterpenoids

Table 1 summarizes nine triquinane-type sesquiterpenoids (1–9) evaluated for in vitro anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 1.

Table 1. Chemical constituents of triquinane-type sesquiterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
1	Δ^9(12)-Capnellene-8β,10α-diol	Capnella imbricata	I,C	[14]
2	8α-Acetoxy-Δ^9(12)-capnellene-10α-ol	Capnella imbricata	I,C	[14]
3	Δ^9(12)-Capnellene-10α-ol-8-one	Capnella imbricata	I	[14]
4	Δ^9(12)-Capnellene-8β,15-diol	Capnella imbricata		[14]
5	Δ^9(12)-Capnellene-8β,10α,13-triol	Capnella imbricata		[14]
6	8β,10α-Diacetoxy-Δ^9(12)-capnellene	Capnella imbricata		[14]
7	8β-Acetoxy-Δ^9(12)-capnellene	Capnella imbricata		[14]
8	Δ^9(12)-Capnellene-8β-ol	Capnella imbricata		[14]
9	Δ^9(12)-Capnellene-12-ol-8-one	Capnella imbricata	I,C	[14]

* Inhibition of iNOS (I) and COX-2 (C).

Figure 1. The structures of triquinane-type sesquiterpenoids (1–9).
2.1.2. Nardosinane-Type Sesquiterpenoids

Table 2 summarizes seven nardosinane-type sesquiterpenoids (10–16) evaluated for *in vitro* anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 2.

Table 2. Chemical constituents of nardosinane-type sesquiterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
10	Paralemnolin J	*Paralemnalia thyrsoides*		[15]
11	Paralemnolin K	*Paralemnalia thyrsoides*		[15]
12	Paralemnolin L	*Paralemnalia thyrsoides*		[15]
13	Flavalin A	*Lemnalia flava*	I,C	[16]
14	Flavalin B	*Lemnalia flava*		[16]
15	Flavalin C	*Lemnalia flava*		[16]
16	Flavalin D	*Lemnalia flava*		[16]

* Inhibition of iNOS (I) and COX-2 (C).

Figure 2. The structures of nardosinane-type sesquiterpenoids (10–16).
2.1.3. Aromadendrane-Type Sesquiterpenoids

Table 3 summarizes six aromadendrane-type sesquiterpenoids (17–22) evaluated for *in vitro* anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 3.

Table 3. Chemical constituents of aromadendrane-type sesquiterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
17	Lochmolin A	*Sinularia lochmodes*	C	[17]
18	Lochmolin B	*Sinularia lochmodes*	C	[17]
19	Lochmolin C	*Sinularia lochmodes*		[17]
20	Lochmolin D	*Sinularia lochmodes*		[17]
21	Lochmolin E	*Sinularia lochmodes*	C	[17]
22	Lochmolin F	*Sinularia lochmodes*	C	[17]

* Inhibition of COX-2 (C).

Figure 3. The structures of aromadendrane-type sesquiterpenoids (17–22).

2.1.4. Selinane- and Oppositane-Type Sesquiterpenoids

Table 4 summarizes four selinane- and oppositane-type sesquiterpenoids (23–26) evaluated for *in vitro* anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 4.

Table 4. Chemical constituents of selinane- and oppositane-type sesquiterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
23	1β-Hydroxy-6α-acetoxyeudesm-4(15)-ene	*Sinularia leptoclados*		[18]
24	1β,6α-Dihydroxyeudesm-4(15)-ene	*Sinularia leptoclados*	I	[18]
25	Leptocladelolin A	*Sinularia leptoclados*		[18]
26	Leptocladelolin B	*Sinularia leptoclados*		[18]

* Inhibition of iNOS (I).
2.1.5. Ylangene-Type Sesquiterpenoids

Table 5 summarizes three ylangene-type sesquiterpenoids (27–29) evaluated for *in vitro* anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 5.

Table 5. Chemical constituents of ylangene-type sesquiterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
27	(1S,2S,4R,6S,7R,8S)-4α-Formyloxy-β-ylangene	*Lemnalia flava*	I,C	[16]
28	Lemnalol	*Lemnalia flava*		[16]
29	Isolemnalol	*Lemnalia flava*		[16]

* Inhibition of NOS (I) and COX-2 (C).

2.1.6. Germacrane-Type Sesquiterpenoids

Table 6 summarizes three germacrane-type sesquiterpenoids (30–32) evaluated for *in vitro* anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 6.
Table 6. Chemical constituents of germacrane-type sesquiterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
30	Lochmolin G	*Sinularia lochmodes*		[17]
31	Menelloide D	*Menella* sp.	E	[19]
32	Menelloide E	*Menella* sp.		[20]

* Inhibition of elastase (E).

Figure 6. The structures of germacrane-type sesquiterpenoids (30–32).

2.1.7. Other-Type Sesquiterpenoids

Table 7 summarizes six other-type sesquiterpenoids (33–38) evaluated for in vitro anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 7.

Table 7. Chemical constituents of other-type sesquiterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
33	Erectathiol	*Nephthea erecta*	I	[21]
34	Scabralin A	*Sinularia scabra*	I	[22]
35	Leptocladol A	*Sinularia leptoclados*		[23]
36	Paralemmolin D	*Paralemmalia thyroside*		[15]
37	1-epi-Chabrolidine A	*Sinularia leptoclados*		[23]
38	(–)-Hydroxylindestrenolide	*Menella* sp.	S	[24]

* Inhibition of iNOS (I) and superoxide anion (S).

Figure 7. The structures of other-type sesquiterpenoids (33–38).
At a concentration of 10 μM, compounds 1–3, 13, 24, 28, 33 and 34 reduced LPS-induced expression of iNOS in murine macrophage cells [14–16, 18, 21, 22]. Compounds 1, 2, 13, 17, 18, 21 and 28 suppressed LPS-induced expression of COX-2 in these cells [14–17]. At 10 μg/mL, compound 38 was shown to slightly inhibit the generation of superoxide anion in FMLP/CB-stimulated human neutrophils, and compound 31 weakly inhibited the release of elastase by activated human neutrophils [19, 24]. In addition, an inflammation animal model induced by intraplantar injection of carrageenan into rat hind paws was also used to evaluate *in vivo* anti-inflammatory activity of lemnalol (28). Intramuscular injection of 28 (15 mg/kg) significantly inhibited the carrageenan-induced rat paw edema and thermal hyperalgesia behavior. Moreover, lemnalol significantly suppressed the carrageenan-induced expression of iNOS and COX-2 in paw tissue of test rats. Post-intrathecal injection of lemnalol provided an antinociceptive effect in carrageenan-injected rats (1 and 5 μg) [25]. Δ9(12)-capnellene-8β,10α-diol (GB9, 1) and its acetylated derivative, 8α-acetoxy-Δ9(12)-capnellene-10α-ol (GB10, 2) were reported to inhibit the expression of iNOS and COX-2 in BV2 cells post-stimulation by IFN-γ.

Intraperitoneal administration of GB9 reduced CCl-induced thermal hyperalgesia, suppressed microglial cells activation and COX-2 upregulation in the dorsal horn of the lumbar spinal cord, ipsilateral to the injury. Also, intrathecal administration of GB9 and GB10 suppressed activities of CCl-induced nociceptive sensitization and thermal hyperalgesia [26]. The above findings suggest that some of these compounds may warrant systematic investigation for future development as immune-modifiers.

2.2. Diterpenoids

2.2.1. Cembrane-Based Diterpenoids

Table 8 summarizes 92 cembrane-based diterpenoids (39–130) evaluated for *in vitro* anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 8.
Table 8. Chemical constituents of cembrane-based diterpenoids from soft corals of Taiwan.

Name	Sources	Activities *	Reference
39 Gibberosene B	*Sinularia gibberosa*	I,C	[27]
40 (+)-11,12-Epoxysarcophytol A	*Sinularia gibberosa*	I,C	[27]
41 Grandilobatin B	*Sinularia grandilobata*	I,C	[28]
42 Grandilobatin D	*Sinularia grandilobata*	I	[28]
43 Durumolide A	*Lobophytum durum*	I,C	[29]
44 13S-Hydroxylobolide	*Lobophytum durum*	I,C	[29]
45 13R-Hydroxylobolide	*Lobophytum durum*	I	[29]
46 Deacetyl-13-hydroxylobolide	*Lobophytum durum*	I,C	[27]
47 (7E,11E)-13,18-Dihydroxy-3,4-epoxy-7,11,15(17)-cembratrien-16,14-olide	*Lobophytum durum*	I,C	[27]
48 Durumolide B	*Lobophytum durum*	I	[28]
49 (3E,7E,11E)-18-Acetoxy-3,7,11,15(17)-cembratetraen-16,14-olide	*Lobophytum durum*	I,C	[28]
50 Durumolide C	*Lobophytum durum*	I,C	[29]
51 Durumolide D	*Lobophytum durum*	I	[29]
52 Durumolide E	*Lobophytum durum*	I	[29]
53 Granosolide C	*Sinularia granosa*	I	[30]
54 Querciformolide E	*Sinularia querciformis*	I	[30]
55 Granosolide D	*Sinularia granosa*	I	[30]
56 Flexibilisolide A	*Sinularia granosa*	I	[30]
57 Flexilarin	*Sinularia granosa*	I	[30]
58 Sinulariolide	*Sinularia granosa*	I	[30]
59 Sinulaflexiolide E	*Sinularia granosa*	I	[30]
60 Crassumolide A	*Lobophytum crassum*	I,C	[31]
61 Crassumolide B	*Lobophytum crassum*	I	[31]
62 Crassumolide C	*Lobophytum crassum*	I,C	[31]
63 Crassumolide F	*Lobophytum crassum*	I	[31]
64 Lobohedleolide	*Lobophytum crassum*	I,C	[31]
65 17-Dimethylaminolobohedleolide	*Lobophytum crassum*	I	[31]
66 Sinulariol A	*Lobophytum crassum*	I,C	[31]
67 Dentivulatolide	*Lobophytum crassum*	I,C	[31]
68 Durumhemiketalolide A	*Lobophytum durum*	I,C	[32]
69 Durumhemiketalolide B	*Lobophytum durum*	I	[32]
70 Durumhemiketalolide C	*Lobophytum durum*	I,C	[32]
71 Durumolide F	*Lobophytum durum*	I,C	[33]
72 Durumolide G	*Lobophytum durum*	I	[33]
73 Durumolide H	*Lobophytum durum*	I	[33]
74 Durumolide I	*Lobophytum durum*	I	[33]
75 Durumolide J	*Lobophytum durum*	I	[33]
76 Sinulariolide D	*Lobophytum durum*	I	[33]
77 Durumolide K	*Lobophytum durum*	I,C	[33]
78 Durumolide L	*Lobophytum durum*	I	[33]
No.	Compound	Source	Ref.
-----	-------------------------------	---	------
79	Sarcocrassocolide A	Sarcophyton crassocaule	I
80	Sarcocrassocolide C	Sarcophyton crassocaule	I
81	Sarcocrassocolide B	Sarcophyton crassocaule	I
82	Sarcocrassocolide D	Sarcophyton crassocaule	I
83	Sarcocrassocolide E	Sarcophyton crassocaule	I
84	Sarcocrassolide	Sarcophyton crassocaule	I
85	Sarcocrassolide	Sarcophyton crassocaule	I
86	13-Acetoxysarcocrassolide	Sarcophyton crassocaule	I
87	Thioflexibilolide A	Sinularia flexibilis	I,C
88	Triangulene A	Sinularia triangular	I
89	Triangulene B	Sinularia triangular	I
90	Sinularin	Sinularia triangular	I
91	Dihydrosinularin	Sinularia triangular	I,C
92	(−)14-Deoxycrassin	Sinularia triangular	I,C
93	Sarcocrassocolide F	Sarcophyton crassocaule	I
94	Sarcocrassocolide G	Sarcophyton crassocaule	I
95	Sarcocrassocolide H	Sarcophyton crassocaule	I
96	Sarcocrassocolide I	Sarcophyton crassocaule	I,C
97	Sarcocrassocolide J	Sarcophyton crassocaule	I
98	Sarcocrassocolide K	Sarcophyton crassocaule	I
99	Sarcocrassocolide L	Sarcophyton crassocaule	I
100	Sarcophytolin A	Lobophytum sarcohypoides	I
101	Sarcophytolin B	Lobophytum sarcohypoides	I
102	Sarcophytolin C	Lobophytum sarcohypoides	I
103	Sarcophytolin D	Lobophytum sarcohypoides	I
104	11-Dehydrosinulariolide	Sinularia discrepans	I,C
105	11-epi-Sinulariolide acetate	Sinularia discreet	I,C
106	Crassumolide G	Lobophytum crassum	I
107	Crassumolide H	Lobophytum crassum	I
108	Crassumolide I	Lobophytum crassum	I
109	Crassarine A	Sinularia crassa	I
110	Crassarine B	Sinularia crassa	I
111	Crassarine C	Sinularia crassa	I
112	Crassarine D	Sinularia crassa	I
113	Crassarine E	Sinularia crassa	I
114	Crassarine F	Sinularia crassa	C
115	Crassarine G	Sinularia crassa	I
116	Crassarine H	Sinularia crassa	I
117	Sarcocrassocolide M	Sarcophyton crassocaule	I
118	Sarcocrassocolide N	Sarcophyton crassocaule	I
119	Sarcocrassocolide O	Sarcophyton crassocaule	I
120	Culobophylin A	Lobophytum crassum	I
121	Culobophylin B	Lobophytum crassum	I
122	Culobophylin C	Lobophytum crassum	I
123	Lobophylin B	Lobophytum crassum	I
Table 8. Cont.

	Name	Source	Ref.
124	Lobophyllin A	*Lobophytum crassum*	[43]
125	Lobocrassin A	*Lobophytum crassum*	[44]
126	Lobocrassin B	*Lobophytum crassum*	
127	Lobocrassin C	*Lobophytum crassum*	[44]
128	Lobocrassin D	*Lobophytum crassum*	
129	Lobocrassin E	*Lobophytum crassum*	
130	Lobocrassin F	*Lobophytum crassum*	[20]

* Inhibition of iNOS (I), COX-2 (C), superoxide anion (S) and elastase (E).

Figure 8. The structures of membrane-based diterpenoids (39–130).
Figure 8. Cont.

55

56: $R_1 = \text{CH}_3$, $R_2 = \text{OH}$
57: $R_1 = \text{OH}$, $R_2 = \text{CH}_3$

58

59

60

61: $R = \text{CH}_3\text{OH}$
62: $R = \text{COOMe}$

63

64

65

66

67

68

69

70

71: $R_1 = \text{OH}$, $R_2 = \text{H}$
72: $R_1 = \text{OAc}$, $R_2 = \text{OH}$
73: $R_1 = \text{OAc}$, $R_2 = \text{OAc}$
Figure 8. Cont.

74: $R_1=\text{OAc}, R_2=\text{OAc}, R_3=\text{OH}$
75: $R_1=\text{H}, R_2=\text{OH}, R_3=\text{H}$
76: $R_1=\text{OH}, R_2=\text{H}, R_3=\text{H}$

79: $R=\text{OAc}$
80: $R=\text{H}$

81: $R=\text{OAc}$
82: $R=\text{H}$

83: $R=\text{OCOEt}$
84: $R=\text{H}$
85: $R=\text{OH}$
86: $R=\text{OAc}$

87
88

89

90: $R_1=R_2=\text{CH}_2$
91: $R_1=\text{CH}_3, R_2=\text{H}$
Figure 8. Cont.

93: $R_1=\text{CH}_3$, $R_2=\text{OOH}$
94: $R_1=\text{OOH}$, $R_2=\text{CH}_3$
95: $R_1=\text{CH}_3$, $R_2=\text{OH}$
96: $R_1=\text{OH}$, $R_2=\text{CH}_3$

100: $R=\text{OH}$
101: $R=\text{OAc}$

102

103

104

105

106

107

108

109: $R_1=\text{CH}_3$, $R_2=\text{OH}$, $R_3=\text{H}$
110: $R_1=\text{OH}$, $R_2=\text{CH}_3$, $R_3=\text{Ac}$
111: $R_1=\text{OH}$, $R_2=\text{CH}_3$, $R_3=\text{CHO}$

112: $R_1=\text{OH}$, $R_2=\text{CH}_3$
113: $R_1=\text{CH}_3$, $R_2=\text{OH}$
Figure 8. Cont.

114: $R_1=\text{OH}, R_2=\text{H}$
115: $R_1=\text{H}, R_2=\text{OH}$
116
117: $R=\text{OAc}$
118: $R=\text{H}$
119
120
121
122
123
124
125
126
127: $R_1=\text{H}, R_2=\text{OH}$
128: $R_1=\text{H}, R_2=\text{OAc}$
129: $R_1=\text{OH}, R_2=\text{H}$
130
At the concentration of 10 µM, compounds 39, 42–52, 54–58, 60–87, 90–101, 103–108 and 116–119 reduced LPS-induced expression of iNOS in murine macrophage (RAW264.7) cells [27–42]. Compounds 39, 43, 44, 46, 47, 49, 50, 62, 64, 66–68, 70, 71, 77, 84, 87, 91, 92, 96, 104, 105 and 114 suppressed LPS-induced expression of COX-2 in these cells [27,29,31–37,39,41]. At 10 µg/mL, compound 126 inhibited the generation of superoxide anion and the release of elastase in human neutrophils [44]. Compound 130 inhibited the release of elastase by activated human neutrophils [24]. For in vivo anti-inflammatory activities, subcutaneous (s.c.) administration of sinularin (90) (80 mg/kg) significantly inhibited carrageenan-induced nociceptive behaviors as well as carrageenan-induced activation of microglial and astrocyte, and the iNOS expression in the dorsal horn of the lumbar spinal cord [45]. Due to its promising anti-inflammatory profile, sinularin may warrant future exploration as a lead compound for immune-/inflammation-modulation.

2.2.2. Eunicellin-Based Diterpenoids

Table 9 summarizes 58 eunicellin-based diterpenoids (131–188) evaluated for in vitro anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 9.

Table 9. Chemical constituents of eunicellin-based diterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
131	Simplexin A	Klyxum simplex	I	[46]
132	Simplexin B	Klyxum simplex		[46]
133	Simplexin C	Klyxum simplex		[46]
134	Simplexin D	Klyxum simplex	I	[46]
135	Simplexin E	Klyxum simplex	I,C	[46]
136	Simplexin F	Klyxum simplex		[46]
137	Simplexin I	Klyxum simplex		[46]
138	Klysimplexin I	Klyxum simplex		[47]
139	Klysimplexin J	Klyxum simplex	I	[47]
140	Klysimplexin K	Klyxum simplex	I	[47]
141	Klysimplexin L	Klyxum simplex	I	[47]
142	Klysimplexin M	Klyxum simplex	I	[47]
143	Klysimplexin N	Klyxum simplex	I	[47]
144	Klysimplexin O	Klyxum simplex		[47]
145	Klysimplexin P	Klyxum simplex		[47]
146	Klysimplexin Q	Klyxum simplex		[47]
147	Klysimplexin R	Klyxum simplex	I	[47]
148	Klysimplexin S	Klyxum simplex	I,C	[47]
149	Klysimplexin T	Klyxum simplex		[47]
150	Hirsutalin A	Cladiella hirsuta		[48]
151	Hirsutalin B	Cladiella hirsuta	I,C	[48]
152	Hirsutalin C	Cladiella hirsuta	I	[48]
153	Hirsutalin D	Cladiella hirsuta	I	[48]
154	Hirsutalin E	Cladiella hirsuta	I	[48]
155	Hirsutalin F	Cladiella hirsuta		[48]
Table 9. Cont.

No.	Compound	Origin	Ref.
156	Hirsutalin G	Cladiella hirsuta	[48]
157	Hirsutalin H	Cladiella hirsuta	I
158	Klysimplexin sulfoxide A	Klyxum simplex	I
159	Klysimplexin sulfoxide B	Klyxum simplex	I
160	Klysimplexin sulfoxide C	Klyxum simplex	I,C
161	Lymollin A	Klyxum molle	I
162	Lymollin B	Klyxum molle	I
163	Lymollin C	Klyxum molle	I,C
164	Lymollin D	Klyxum molle	I,C
165	Lymollin E	Klyxum molle	I
166	Lymollin F	Klyxum molle	I,C
167	Lymollin G	Klyxum molle	I,C
168	Lymollin H	Klyxum molle	I,C
169	Krempfielin A	Cladiella krempfi	I
170	Krempfielin D	Cladiella krempfi	I
171	Krempfielin B	Cladiella krempfi	I
172	krempfielin C	Cladiella krempfi	I
173	Litophynol B	Cladiella krempfi	I
174	(1R*,2R*,3R*,6S*,7S*,9R*,10R*,14R*)-3-Butanoyloxycladiell-11(17)-en-6,7-diol	Cladiella krempfi	I [51]
175	Klysimplexin U	Klyxum simplex	I
176	Klysimplexin V	Klyxum simplex	I
177	Klysimplexin W	Klyxum simplex	I
178	Klysimplexin X	Klyxum simplex	I
179	Cladienunicellin A	Cladiella sp.	S,E
180	Cladienunicellin C	Cladiella sp.	I
181	Cladienunicellin D	Cladiella sp.	I
182	Cladienunicellin E	Cladiella sp.	I
183	Cladienunicellin G	Cladiella sp.	S,E
184	6-epi-Cladienunicellin F	Cladiella sp.	I
185	Cladienunicellin F	Cladiella sp.	S,E
186	(–)-Solenopodin C	Cladiella sp.	I
187	Cladielloide A	Cladiella sp.	I
188	Cladielloide B	Cladiella sp.	S,E

* Inhibition of iNOS (I), COX-2 (C), superoxide anion (S) and elastase (E).

Figure 9. The structures of cembrane-based diterpenoids (131–188).
Figure 9. Cont.

137

138: \(R = (\text{CH}_2)_2\text{CH}_3 \)
139: \(R = (\text{CH}_2)_4\text{CH}_3 \)
140: \(R = (\text{CH}_2)_6\text{CH}_3 \)

141: \(R = \text{OH} \)
142: \(R = \text{OOH} \)

143

144

145

146

147

148

149

150

151

152

153

154: \(R = \text{COCH}_2\text{CH}_2\text{CH}_3 \)
Figure 9. Cont.

155: R = COCH₂CH₂CH₃

156

157

158

159

160

161: R = β-CH₃
162: R = α-CH₃

163: R = OAc
164 : R = H

165: R = Ac
166: R = CH₃(CH₂)₁₂CO
167: R = CH₃(CH₂)₁₄CO
168: R = CHO

169: R = OH
170: R = OMe

171: R₁ = OMe, R₂ = OH
172: R₁ = OAc, R₂ = OH
173: R₁ = OH, R₂ = OH
174: R₁ = OH, R₂ = H

175
Figure 9. Cont.

2.2.3. Briarane-based Diterpenoids

Table 10 summarizes 35 briarane-based diterpenoids (189–223) evaluated for *in vitro* anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 10.
Table 10. Chemical constituents of briarane-type diterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
189	Excavatolide B	*Briareum excavatum*		[57]
190	Excavatolide K	*Briareum excavatum*		[57]
191	Excavatolide F	*Briareum excavatum*		[57]
192	Briaexcavatolide R	*Briareum excavatum*		[57]
193	Excavatolide Z	*Briareum excavatum*		[57]
194	Briaexcavatolide B	*Briareum excavatum*		[57]
195	Briaexcavatolide K	*Briareum excavatum*		[57]
196	Briaexcavatolide H	*Briareum excavatum*		[57]
197	Junceol D	*Junceella juncea*		[58]
198	Junceol E	*Junceella juncea*	S	[58]
199	Junceol F	*Junceella juncea*	S	[58]
200	Junceol G	*Junceella juncea*	S	[58]
201	Junceol H	*Junceella juncea*	S	[58]
202	Excavatoid L	*Briareum excavatum*	S,E	[59]
203	Excavatoid M	*Briareum excavatum*	S,E	[59]
204	Excavatoid N	*Briareum excavatum*	S,E	[59]
205	Briarenolide F	*Briareum sp.*	S	[60]
206	Briarenolide G	*Briareum sp.*		[60]
207	Fragilide J	*Ellisella robusta*	E	[61]
208	Robustolide L	*Ellisella robusta*	S	[61]
209	Briaexcavatin P	*Briareum excavatum*	S	[62]
210	Frajunolide L	*Junceella fragilis*	S,E	[63]
211	Frajunolide M	*Junceella fragilis*		[63]
212	Frajunolide N	*Junceella fragilis*	E	[63]
213	Frajunolide O	*Junceella fragilis*	S,E	[63]
214	Juncenolide M	*Junceella juncea*		[64]
215	Juncenolide N	*Junceella juncea*	E	[64]
216	Juncenolide O	*Junceella juncea*	S,E	[64]
217	Frajunolide E	*Junceella fragilis*	S,E	[65]
218	Frajunolide F	*Junceella fragilis*		[65]
219	Frajunolide G	*Junceella fragilis*		[65]
220	Frajunolide H	*Junceella fragilis*		[65]
221	Frajunolide I	*Junceella fragilis*		[65]
222	Frajunolide J	*Junceella fragilis*	S,E	[65]
223	Frajunolide K	*Junceella fragilis*		[65]

* Inhibition of superoxide anion (S) and elastase (E).
Figure 10. The structures of briarane-type diterpenoids (189–223).

189
190
191
192
193
194
195
196
197: R₁=OC(O)CH(CH₃)₂, R₂=OC(O)CH₂CH(CH₃)₂, R₃=OAc
198: R₁=OC(O)CH(CH₃)₂, R₂=OAc, R₃=H
199: R₁=OC(O)CH(CH₃)CH₂CH₃,
 R₂=OAc, R₃=H
200: R₁=OC(O)CH(CH₃)CH₂CH₃, R₂=H,
 R₃=OAc
201: R=OAc, R₂=H, R₃=OC(O)CH(CH₃)₂
202
203: R₁=C(O)(CH₂)₂CH₃, R₂=α-OH
204: R₁=C(O)(CH₂)₂CH₃, R₂=β-OH
205
Figure 10. Cont.
2.2.4. Verticillane-Based Diterpenoids

Table 11 summarizes 10 verticillane-based diterpenoids (224–233) evaluated for *in vitro* anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 11.

Table 11. Chemical constituents of verticillane-type diterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
224	Cespitularin R	*Cespitularia hypotentaculata*		[66]
225	Cespitularin S	*Cespitularia hypotentaculata*	I,C	[66]
226	Cespitularin J	*Cespitularia hypotentaculata*		[66]
227	Cespitularin K	*Cespitularia hypotentaculata*	I	[66]
228	Cespitularin M	*Cespitularia hypotentaculata*	I	[66]
229	Cespitularin I	*Cespitularia hypotentaculata*	I	[66]
230	Cespitularin F	*Cespitularia hypotentaculata*	I	[66]
231	Cespitularin Q	*Cespitularia hypotentaculata*		[66]
232	Cespitulin E	*Cespitularia taenuate*	S,E	[67]
233	Cespitulin G	*Cespitularia taenuate*	S,E	[67]

* Inhibition of iNOS (I), COX-2 (C), superoxide anion (S) and elastase (E).

Figure 11. The structures of verticillane-based diterpenoids (224–233).
2.2.5. Norditerpenoids

Table 12 summarizes 18 norditerpenoids (234–251) evaluated for in vitro anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 12.

Table 12. Chemical constituents of norditerpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
234	Gyrosanolide A	Sinularia gyrosa	I	[68]
235	Gyrosanolide B	Sinularia gyrosa	I	[68]
236	Gyrosanolide C	Sinularia gyrosa	I	[68]
237	Gyrosanolide D	Sinularia gyrosa		[68]
238	Gyrosanolide E	Sinularia gyrosa		[68]
239	Gyrosanolide F	Sinularia gyrosa	I	[68]
240	Gyrosanin A (1S*,5R*,8S*,10R*,11S*)-11-Hydroxyl-1-isopropenyl-8-methyl-3,6-dioxo-5,8-epoxycyclotetradec-12-ene-10,12-carbonlactone	Sinularia gyrosa	I	[68]
241	Norcembrene (1S*,5S*,8S*,10R*,11S*)-11-Hydroxyl-1-isopropenyl-8-methyl-3,6-dioxo-5,8-epoxycyclotetradec-12-ene-10,12-carbonlactone	Sinularia gyrosa	I	[68]
242	epi-Norcembrene	Sinularia gyrosa		[68]
243	Norcembrene	Sinularia gyrosa		[68]
244	Leptocladoride B	Sinularia gyrosa	I	[68]
245	Scabrolide D	Sinularia gyrosa	I	[68]
246	Norcembrene	Sinularia gyrosa		[68]
247	Ineleganolide	Sinularia gyrosa		[68]
248	Sinulochemodin C	Sinularia gyrosa		[68]
249	Yanarolide	Sinularia gyrosa		[68]
250	Scabrolide A	Sinularia gyrosa		[68]
251	Scabrolide A	Sinularia gyrosa		[68]

* Inhibition of iNOS (I).
Figure 12. The structures of norditerpenoids (234–251).
2.2.6. Xenicane-Type Diterpenoids

Table 13 summarizes six xenicane-type diterpenoids (252–257) evaluated for \textit{in vitro} anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 13.

No.	Name	Sources	Activities *	Reference
252	Asterolaurin A	\textit{Asterospicularia laurae}		[69]
253	Asterolaurin B	\textit{Asterospicularia laurae}		[69]
254	Asterolaurin C	\textit{Asterospicularia laurae}		[69]
255	Asterolaurin D	\textit{Asterospicularia laurae}	S,E	[69]
256	Asterolaurin E	\textit{Asterospicularia laurae}		[69]
257	Asterolaurin F	\textit{Asterospicularia laurae}		[69]

* Inhibition of superoxide anion (S) and elastase (E).

Figure 13. The structures of xenicane-type diterpenoids (252–257).
2.2.7. Other-Type Diterpenoids

Table 14 summarizes five other-type diterpenoids (258–262) evaluated for in vitro anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 14.

Table 14. Chemical constituents of other type diterpenoids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
258	Gyrosanol A	Sinularia gyrosa	C	[70]
259	Gyrosanol B	Sinularia gyrosa	C	[70]
260	Echinohalimane A	Echinomuricea sp.	E	[71]
261	Echinoclerodane A	Echinomuricea sp.	S,E	[72]
262	Echinolabdane A	Echinomuricea sp.		[73]

* Inhibition of COX-2 (C), superoxide anion (S) and elastase (E).

Figure 14. The structures of other type diterpenoids (258–262).

At a concentration of 10 μM, compounds 131, 133, 134, 139, 140–143, 147, 148, 151–153, 157–160, 162–168, 170 ceramide and cerebrosides 174, 225, 229, 230, 235, 236, 239–242, 244, 245, 258 and 259 reduced LPS-induced expression of iNOS in murine macrophage cells [46–51,66,68,70]. Compounds 134, 148, 151, 160, 163, 164, 166–168, 225, 258 and 259 suppressed the LPS-induced expression of COX-2 in these cells [46–50,66,70]. At 10 μg/mL, compounds 180, 184, 186, 188, 198–205, 208–210, 213, 216, 217, 222, 232, 233, 255 and 261 inhibited the generation of superoxide anion by activated human neutrophils [54–56,58–65,67,69,70,72]. Compounds 180, 184, 186, 188,
202–204, 207, 210, 212, 213, 215–217, 222, 232, 233, 255, 260 and 261 inhibited the release of elastase from these activated human neutrophils [53–56,59,61,63,65,67,69,71,72]. These results provided useful baseline information on the immune-regulatory and anti-oxidant activities of various marine diterpenoids. Compound 184, as 185 epimer at C-6, was showed to be more potent in the inhibition of the generation of superoxide anion and in inducing the release of elastase by active human neutrophils, suggesting that the stereochemistry at C-6 may play a key role in the above biological effects [54].

The briarane-type diterpenoid excavatolide B (189) has been demonstrated to significantly inhibit TPA-induced cutaneous inflammation activities in mice, including those related to vascular permeability, edema, and TPA-induced expression of iNOS, COX-2 and matrixmetalloproteinase-9. Excavatolide B also suppressed LPS-induced expression of TNF-α and IL-6 in mouse bone marrow derived dendritic cells (BMDCs) [57]. Also, excavatolide F (191), K (190) and Z (193) and briarexcavatolide B (194), H (196), K (195) and R (192) exhibited a broad spectrum of activity in inhibition of LPS-induced expression of IL-6 in BMDCs [57]. A study on the structure-activity relationship between the structures of the briarane-type diterpenoids and their inhibition of IL-6 expression in BMDCs revealed that the eight 17-epoxide of briarane-type diterpenoids may play an important role in the inhibition of IL-6 expression in specific immune cells [57]. Replacement of the C-12 hydroxyl group with long esters in briarane-type diterpenoids decreased the inhibition of IL-6 expression [57].

2.3. Steroids

Table 15 summarizes 60 steroids (263–322) evaluated for in vitro anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 15.

Table 15. Chemical constituents of steroids from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
263	Stoloniferone R	Clavularia viridis		[74]
264	Stoloniferone S	Clavularia viridis	I	[74]
265	Stoloniferone T	Clavularia viridis	I,C	[74]
266	(25S)-24-Methylenecholestane-3β,5α,6β-triol-26-acetate	Clavularia viridis	I,C	[74]
267	Griffinisterone A	Nepthea griffini	I	[75]
268	Griffinisterone B	Nepthea griffini	I	[75]
269	Griffinisterone C	Nepthea griffini	I	[75]
270	Griffinisterone D	Nepthea griffini	I	[75]
271	Chabrosterol	Nepthea chabroli	I,C	[21]
272	Nebrosteroid A	Nepthea chabroli	I	[76]
273	Nebrosteroid B	Nepthea chabroli	I	[76]
274	Nebrosteroid C	Nepthea chabroli	I	[76]
275	Nebrosteroid D	Nepthea chabroli	I,C	[76]
276	Nebrosteroid F	Nepthea chabroli	I,C	[76]
277	Nebrosteroid E	Nepthea chabroli		[76]
No.	Name	Source	Isolation	Literature
-----	---	---------------------------------------	------------	------------
278	Nebrosteroid G	*Nepthea chabroli*	I,C	[76]
279	Nebrosteroid H	*Nepthea chabroli*	I	[76]
280	Griffinisterone F	*Dendronephthya griffini*	I,C	[77]
281	Griffinisterone G	*Dendronephthya griffini*	I,C	[77]
282	Griffinisterone H	*Dendronephthya griffini*	I	[77]
283	Griffinipregnone	*Dendronephthya griffini*	I,C	[77]
284	1α,3β-Dihydroxy-24S-methylcholesta-5-ene	*Sinularia sp.*	I,C	[78]
285	1α,3β-Dihydroxy-24S-methylcholest-5-en	*Sinularia sp.*	I,C	[78]
286	5,24(28)-Ergostadien-3β,23S-diol	*Nepthea erecta*	I,C	[79]
287	5,24(28)-Ergostadien-3β,23R-diol	*Nepthea erecta*	I	[79]
288	5,24(28)-Ergostadien-3β,17α,22-triol	*Nepthea erecta*	I,C	[79]
289	Ergostanoid	*Nepthea erecta*	I	[79]
290	Nebrosteroid I	*Nepthea chabroli*	I,C	[80]
291	Nebrosteroid J	*Nepthea chabroli*	I,C	[80]
292	Nebrosteroid K	*Nepthea chabroli*	I	[80]
293	Nebrosteroid L	*Nepthea chabroli*	I,C	[80]
294	Nebrosteroid M	*Nepthea chabroli*	IC	[80]
295	Sarcophytosterol	*Lobophytum sarcophytoides*		[38]
296	5α,8α-Epidioxy-24S-methylcholesta-6-en	*Lobophytum sarcophytoides*		[38]
297	5α,8α-Epidioxy-22,23-methylene-24-methylcholesta-6-en-3β-ol	*Lobophytum sarcophytoides*	I	[38]
298	Paraminabeolide A	*Paraminabea acronocephala*	I	[81]
299	Paraminabeolide B	*Paraminabea acronocephala*	I	[81]
300	Paraminabeolide C	*Paraminabea acronocephala*	I	[81]
301	Paraminabeolide D	*Paraminabea acronocephala*	I	[81]
302	Paraminabeolide E	*Paraminabea acronocephala*	I	[81]
303	Minabeolide-1	*Paraminabea acronocephala*	I,C	[81]
304	Minabeolide-2	*Paraminabea acronocephala*	I,C	[81]
305	Minabeolide-4	*Paraminabea acronocephala*	I,C	[81]
306	Minabeolide-5	*Paraminabea acronocephala*	I,C	[81]
307	Minabeolide-8	*Paraminabea acronocephala*	I	[81]
308	Hirsutosterol A	*Cladiella hirsuta*	I	[82]
309	Hirsutosterol B	*Cladiella hirsuta*	I	[82]
310	Hirsutosterol C	*Cladiella hirsuta*	I	[82]
311	Hirsutosterol D	*Cladiella hirsuta*	I	[82]
312	Hirsutosterol E	*Cladiella hirsuta*	I	[82]
313	Hirsutosterol F	*Cladiella hirsuta*	I	[82]
314	Hirsutosterol G	*Cladiella hirsuta*	I	[82]
315	Crassarosterol A	*Sinularia crassa*	I	[83]
316	Crassarosteroside A	*Sinularia crassa*	I	[83]
317	Crassarosteroside B	*Sinularia crassa*	I	[83]
318	Crassarosteroside C	*Sinularia crassa*	I	[83]
Table 15. Cont.

Compound Description	Source	Inhibition(s)	Reference
8αH-3β,11-Dihydroxy-5α,6α-expoy-24-methylene-9,11-secocholestan-9-one	Sinularia granosa	I,C	[84]
3β,11-Dihydroxy-5β,6β-expoxy-24-methylene-9,11-secocholestan-9-one	Sinularia granosa	I	[84]
6-epi-Yonarasterol B	Echinomuricea sp.	S,E	[73]
Carijoside A	Carijoa sp.	S,E	[85]

* Inhibition of iNOS (I), COX-2 (C), superoxide anion (S) and elastase (E).

Figure 15. The structures of steroids (263–322).
Figure 15. Cont.

286: $R_1=(S)$-OH, $R_2=H$, $R_3=H$, $R_4=H$
287: $R_1=(R)$-OH, $R_2=H$, $R_3=H$, $R_4=H$
288: $R_1=H$, $R_2=H$, $R_3=OH$, $R_4=OH$
289: $R_1=H$, $R_2=OH$, $R_3=H$, $R_4=H$
Figure 15. Cont.
Figure 15. Cont.

At a concentration of 10 µM, compounds 264–275, 277–291, 293, 294, 297, 303–307 and 316–320 reduced LPS-induced expression level of iNOS in murine macrophage cells (RAW264.7) [21,74–81,83,84]. Compounds 265, 266, 271, 275, 277, 278, 280, 281, 283–286, 288, 290, 291, 293 and 319 suppressed LPS-induced expression level of COX-2 in murine macrophage
cells (RAW264.7) [21,74–80,84]. At 10 µg/mL, compounds 321 and 322 inhibited the generation of superoxide anion and the release of elastase by activated human neutrophils [73,85].

2.4. Ceramide and Cerebrosides

Table 16 summarizes ceramide (323) and five cerebrosides (324–328) evaluated for in vitro anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 16.

Table 16. Chemical constituents of ceramide and cerebrosides from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
323	Ceramide	Sarcophyton ehrenbergi	I,C	[86]
324	Sarcoehrenoside A	Sarcophyton ehrenbergi	I	[86]
325	Sarcoehrenoside B	Sarcophyton ehrenbergi	I	[86]
326	Cerebroside-3	Sarcophyton ehrenbergi	I	[86]
327	Cerebroside-5	Sarcophyton ehrenbergi	I	[86]
328	Cerebroside-6	Sarcophyton ehrenbergi	I	[86]

* Inhibition of iNOS (I) and COX-2 (C).

Figure 16. The structures of ceramide and cerebrosides (323–328).
2.5. Other Metabolites

Table 17 summarizes 11 secondary metabolites of other types (329–339) evaluated for in vitro anti-inflammatory activity in literature published from 2008 to 2012. The corresponding chemical structures are reported in Figure 17.

Table 17. Chemical constituents of other metabolites from soft corals of Taiwan.

No.	Name	Sources	Activities *	Reference
329	Capilloquinone	Sinularia capillosa	I	[87]
330	Capillobenzopyranol	Sinularia capillosa	I	[87]
331	Capillobenzofuranol	Sinularia capillosa		[87]
332	Capillofuranocarboxylate	Sinularia capillosa		[87]
333	(E)-5-(2,6-Dimethylocta-5,7-dienyl)furan-3-carboxylic acid	Sinularia capillosa		[87]
334	2-[(2E,6E)-3,7-Dimethyl-8-(4-methylfuran-2-yl)octa-2,6-dienyl]-5-methylcyclohexa-2,5,diene-1,4-dione	Sinularia capillosa	I,C	[87]
335	2-[(2E,6E)-3,7-Dimethyl-8-(4-methylfuran-2-yl)octa-2,6-dienyl]-5-methylbenzene-1,4-diol	Sinularia capillosa	I	[87]
336	(−)-Loliolide	Sinularia capillosa		[87]
337	3,4,11-Trimethyl-7-methylenebicyclo[6.3.0]undec-2-en-11R-ol	Sinularia capillosa		[87]
338	Austrasulfone	Cladiella australis		[88]
339	Dihydroaustrasulfone alcohol	Cladiella australis	I,C	[88]

* Inhibition of iNOS (I) and COX-2 (C).

Figure 17. Structures of other metabolites (329–339).
At a concentration of 10 µM, compounds 323, 324, 326–330, 334, 335 and 339 reduced LPS-induced expression level of iNOS in murine macrophage cells (RAW264.7) [86–88]. Compounds 323, 334 and 339 suppressed LPS-induced expression levels of COX-2 in murine macrophage cells (RAW264.7) [86,88]. Austrasulfone (338) was found to exhibit a potent neuroprotective effect in human dopaminergic neuron cells (SH-SY5Y) [89,90]. In animal disease models, the synthetic precursor of austrasulfone dihydroaustrasulfone alcohol (339) was not only demonstrated to attenuate neuropathic pain, but also to suppress the progression of multiple sclerosis and atherosclerosis [88].

3. Conclusions

Marine invertebrates, particularly octocorals, are rich potential sources of drug leads. Most of our own and other studies on anti-inflammatory activities of natural products from soft corals have been focused on “screening-like” assays using COX-2 and iNOS as target markers. These assay studies have been useful in generating small libraries of anti-oxidant and anti-inflammatory activities from a broad spectrum of soft corals. These results, however, apparently have limitations. For example, the findings are usually generic in nature, and there is often difficulty in immediate or specific application of such results to drug/pharmaceutical discovery, as compared to the existing synthetic chemicals or phytochemicals or those being developed for clinical use. We [45,57,88] and others [25,26] have recently initiated a number of cross-disciplinary studies, employing bio-organic chemistry, cellular
immunology and animal disease models for systematic and in-depth studies. As a result, we believe that useful information on the possible application of specific natural products from soft corals for future clinical studies have been obtained. We consider such approaches [57] may need to be encouraged and organized at the international level, and hopefully be integrated into systematic studies, aiming to create translational research of marine natural products for pharmaceuticals/nutraceuticals. Special emphasis may need to be placed on new or specific cell biological/disease model systems.

In terms of evaluating marine natural products for future pharmaceutical application, despite the abundance of unique marine natural products identified, the extremely low quantity of a given compound of interest that can be isolated from marine organisms may be a big hurdle for evaluation of in vivo bioactivities and development for pharmaceutical applications.

Fortunately, due to the recent advancement in aquaculture technologies, aquacultural cultivation of various types of specific soft corals is becoming possible. Our team has successfully cultured a number of species of soft corals, including Klyxum simplex and Briareum excavatum [47,91]. As a result, more abundant and routine preparations of experimental materials will become available for global distribution and collaborative research purposes. Nonetheless, the vast volume of marine organisms and the small base of knowledge so far assembled on soft coral-derived marine chemicals calls for increased international cooperation in this field.

Acknowledgments

We thank Ms. Miranda Loney of the Agricultural Biotechnology Research Center, Academia Sinica, Taiwan; and Subramanian Senthilkumar of Shanmugha Arts, Science, Technology & Research Academy, India for editing the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Marris, E. Marine natural products: Drugs from the deep. *Nature* **2006**, *443*, 904–905.
2. Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. *Mol. Cancer Ther.* **2005**, *4*, 333–342.
3. Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. *Nat. Rev. Drug Discov.* **2009**, *8*, 69–85.
4. Hu, G.P.; Yuan, J.; Sun, L.; She, Z.G.; Wu, J.H.; Lan, X.J.; Zhu, X.; Lin, Y.C.; Chen, S.P. Statistical research on marine natural products based on data obtained between 1985 and 2008. *Mar. Drugs* **2011**, *9*, 514–525.
5. Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* **2013**, *30*, 237–323.
6. Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* **2012**, *29*, 144–222.
7. Blunt, J.W.; Copp, B.R.; Munro, M.H.; Northcote, P.T.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* 2011, 28, 196–268.

8. Mayer, A.M.; Rodriguez, A.D.; Berlinck, R.G.; Fusetti, N. Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities affecting the immune and nervous system, and other miscellaneous mechanisms of action. *Comp. Biochem. Physiol. C Toxicol. Pharmacol.* 2011, 153, 191–222.

9. Kaplanski, G.; Marin, V.; Montero-Julian, F.; Mantovani, A.; Farnarier, C. IL-6: A regulator of the transition from neutrophil to monocyte recruitment during inflammation. *Trends Immunol.* 2003, 24, 25–29.

10. Wright, H.L.; Moots, R.J.; Bucknall, R.C.; Edwards, S.W. Neutrophil function in inflammation and inflammatory diseases. *Rheumatology* 2010, 49, 1618–1631.

11. Vinten-Johansen, J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. *Cardiovasc. Res.* 2004, 61, 481–497.

12. Hwang, T.L.; Su, Y.C.; Chang, H.L.; Leu, Y.L.; Chung, P.J.; Kuo, L.M.; Chang, Y.J. Suppression of superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils. *Lipid Res.* 2009, 50, 1395–1408.

13. Pham, C.T. Neutrophil serine proteases: Specific regulators of inflammation. *Nat. Rev. Immunol.* 2006, 6, 541–550.

14. Chang, C.H.; Wen, Z.H.; Wang, S.K.; Duh, C.Y. Capnellenes from the Formosan soft coral *Capnella imbricata*. *J. Nat. Prod.* 2008, 71, 619–621.

15. Cheng, S.Y.; Lin, E.H.; Huang, J.S.; Wen, Z.H.; Duh, C.Y. Ylangene-type and nardosinane-type sesquiterpenoids from the soft corals *Lemnalia flava* and *Paralemnalia thyrsoides*. *Chem. Pharm. Bull.* 2010, 58, 381–385.

16. Lu, Y.; Li, P.J.; Hung, W.Y.; Su, J.H.; Wen, Z.H.; Hsu, C.H.; Dai, C.F.; Chiang, M.Y.; Sheu, J.H. Nardosinane sesquiterpenoids from the Formosan soft coral *Lemnalia flava*. *J. Nat. Prod.* 2011, 74, 169–174.

17. Tseng, Y.J.; Shen, K.P.; Lin, H.L.; Huang, C.Y.; Dai, C.F.; Sheu, J.H. Lochmolins A–G, new sesquiterpenoids from the soft coral *Sinarvia lochmodes*. *Mar. Drugs* 2012, 10, 1572–1581.

18. Huang, C.Y.; Su, J.H.; Liu, C.Y.; Wen, Z.H.; Hsu, C.H.; Chiang, M.Y.; Sheu, J.H. Oppositane-Type sesquiterpenoids from the Formosan soft coral *Sinarvia leptocladus*. *Bull. Chem. Soc. Jpn.* 2010, 83, 678–682.

19. Kao, S.Y.; Su, J.H.; Hwang, T.L.; Sheu, J.H.; Wen, Z.H.; Wu, Y.C.; Sung, P.J. Menelloydoids C and D, new sesquiterpenoids from the Gorgonian coral *Menella* sp. *Mar. Drugs* 2011, 9, 1534–1542.

20. Lee, C.H.; Kao, C.Y.; Kao, S.Y.; Chang, C.H.; Su, J.H.; Hwang, T.L.; Kuo, Y.H.; Wen, Z.H.; Sung, P.J. Terpenoids from the octocorals *Menella* sp. (Plexauridae) and *Lobophytum crassum* (Alcyonacea). *Mar. Drugs* 2012, 10, 427–438.

21. Cheng, S.Y.; Huang, Y.C.; Wen, Z.H.; Chiou, S.H.; Wang, S.K.; Hsu, C.H.; Dai, C.F.; Duh, C.Y. Novel sesquiterpenes and norerosterol from the soft corals *Nepthea erecta* and *Nepthea chabroli*. *Tetrahedron Lett.* 2009, 50, 802–806.

22. Su, J.H.; Huang, C.Y.; Li, P.J.; Lu, Y.; Wen, Z.H.; Kao, Y.H.; Sheu, J.H. Bioactive cadinane-type compounds from the soft coral *Sinarvia scabra*. *Arch. Pharmacal. Res.* 2012, 35, 779–784.
23. Su, J.H.; Chiang, M.Y.; Wen, Z.H.; Dai, C.F.; Hsu, C.H.; Sheu, J.H. Sesquiterpenoids from the formosan soft coral Sinularia leptoclados. Chem. Pharm. Bull. 2010, 58, 250–253.

24. Kao, S.Y.; Chang, Y.C.; Su, J.H.; Lu, M.C.; Chen, Y.H.; Sheu, J.H.; Wen, Z.H.; Wang, W.H.; Kuo, Y.H.; Hwang, T.L.; et al. (–)-Hydroxylindestrenolide, a new sesquiterpenoid from a gorgonian coral Menella sp. (Plexauridae). Chem. Pharm. Bull. 2011, 59, 1048–1050.

25. Jean, Y.H.; Chen, W.F.; Duh, C.Y.; Huang, S.Y.; Hsu, C.H.; Tai, M.H.; Tseng, S.F.; Wen, Z.H. Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. Eur. J. Pharmacol. 2008, 578, 323–331.

26. Jean, Y.H.; Chen, W.F.; Sung, C.S.; Duh, C.Y.; Huang, S.Y.; Lin, C.S.; Tai, M.H.; Tseng, S.F.; Wen, Z.H. Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic pain in rats. Br. J. Pharmacol. 2009, 158, 713–725.

27. Ahmed, A.F.; Wen, Z.H.; Su, J.H.; Hsieh, Y.T.; Wu, Y.C.; Hu, W.P.; Sheu, J.H. Oxygenated cembranoids from a Formosan soft coral Sinularia gibberosa. J. Nat. Prod. 2008, 71, 179–185.

28. Ahmed, A.F.; Tai, S.H.; Wen, Z.H.; Su, J.H.; Wu, Y.C.; Hu, W.P.; Sheu, J.H. A C-3 methylated isocembranoid and 10-oxocembranoids from a Formosan soft coral, Sinularia grandilobata. J. Nat. Prod. 2008, 71, 946–951.

29. Chao, C.H.; Wen, Z.H.; Wu, Y.C.; Yeh, H.C.; Sheu, J.H. Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum durum. Tetrahedron 2008, 64, 9698–9704.

30. Lu, Y.; Su, J.H.; Huang, C.Y.; Liu, Y.C.; Kuo, Y.H.; Wen, Z.H.; Hsu, C.H.; Sheu, J.H. Cembranoids from the soft corals Sinularia granosa and Sinularia querciformis. Chem. Pharm. Bull. 2010, 58, 464–466.

31. Chen, B.W.; Chao, C.H.; Su, J.H.; Huang, C.Y.; Dai, C.F.; Wen, Z.H.; Sheu, J.H. Bioactive cembrane-based diterpenoids from the soft coral Sinularia triangular. Mar. Drugs 2011, 9, 944–951.

32. Lin, W.Y.; Lu, Y.; Su, J.H.; Wen, Z.H.; Dai, C.F.; Kuo, Y.H.; Sheu, J.H. A novel symmetric sulfur-containing biscembranoid from the Formosan soft coral Sinularia flexibilis. Tetrahedron Lett. 2010, 51, 5764–5766.

33. Su, J.H.; Wen, Z.H. Bioactive cembrane-based diterpenoids from the soft coral Sinularia triangular. Mar. Drugs 2011, 9, 944–951.
38. Lu, Y.; Lin, Y.C.; Wen, Z.H.; Su, J.H.; Sung, P.J.; Hsu, C.H.; Kuo, Y.H.; Chiang, M.Y.; Dai, C.F.; Sheu, J.H. Steroid and cembranoids from the Dongsha atoll soft coral *Lobophytum sarcophytoides*. *Tetrahedron* **2010**, *66*, 7129–7135.

39. Lu, Y.; Su, H.J.; Chen, Y.H.; Wen, Z.H.; Sheu, J.H.; Su, J.H. Anti-Inflammatory cembranoids from the Formosan soft coral *Sinularia discrepans*. *Arch. Pharmacal. Res.* **2011**, *34*, 1263–1267.

40. Tseng, Y.J.; Wen, Z.H.; Hsu, C.H.; Dai, C.F.; Sheu, J.H. Bioactive cembranoids from the Dongsha atoll soft coral *Lobophytum crassum*. *Bull. Chem. Soc. Jpn.* **2011**, *84*, 1102–1106.

41. Chao, C.H.; Chou, K.J.; Huang, C.Y.; Wen, Z.H.; Hsu, C.H.; Wu, Y.C.; Dai, C.F.; Sheu, J.H. Bioactive cembranoids from the soft coral *Sinularia crassa*. *Mar. Drugs* **2011**, *9*, 1955–1968.

42. Lin, W.Y.; Lu, Y.; Chen, B.W.; Huang, C.Y.; Su, J.H.; Wen, Z.H.; Dai, C.F.; Kuo, Y.H.; Sheu, J.H. Sarcocrassocolides M–O, bioactive cembranoids from the Dongsha atoll soft coral *Sarcophyton crassocaule*. *Mar. Drugs* **2012**, *10*, 617–626.

43. Lee, N.L.; Su, J.H. Tetrahydrofuran cembranoids from the cultured soft coral *Lobophytum crassum*. *Mar. Drugs* **2011**, *9*, 2526–2536.

44. Kao, C.Y.; Su, J.H.; Lu, M.C.; Hwang, T.L.; Wang, W.H.; Chen, J.J.; Sheu, J.H.; Kuo, Y.H.; Weng, C.F.; Fang, L.S.; Wen, Z.H.; Sung, P.J. Lobocrassins A–E: New cembrane-type diterpenoids from the soft coral. *Lobophytum crassum*. *Mar. Drugs* **2011**, *9*, 1319–1331.

45. Huang, S.Y.; Chen, N.F.; Chen, W.F.; Hung, H.C.; Lee, H.P.; Lin, Y.Y.; Wang, H.M.; Sung, P.J.; Sheu, J.H.; Wen, Z.H. Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. *Mar. Drugs* **2012**, *10*, 1899–1919.

46. Wu, S.L.; Su, J.H.; Wen, Z.H.; Hsu, C.H.; Chen, B.W.; Dai, C.F.; Kuo, Y.H.; Sheu, J.H. Simplexins A–I, eunicellin-based diterpenoids from the cultured soft coral *Klyxum simplex*. *J. Nat. Prod.* **2009**, *72*, 994–1000.

47. Chen, B.W.; Chao, C.H.; Su, J.H.; Tsai, C.W.; Wang, W.H.; Wen, Z.H.; Huang, C.Y.; Sung, P.J.; Wu, Y.C.; Sheu, J.H. Klysimplexins I–T, eunicellin-based diterpenoids from the cultured soft coral *Klyxum simplex*. *Org. Biomol. Chem.* **2011**, *9*, 834–844.

48. Chen, B.W.; Chang, S.M.; Huang, C.Y.; Chao, C.H.; Su, J.H.; Wen, Z.H.; Hsu, C.H.; Dai, C.F.; Wu, Y.C.; Sheu, J.H. Hirsutalins A–H, eunicellin-based diterpenoids from the soft coral *Cladiella hirsuta*. *J. Nat. Prod.* **2010**, *73*, 1785–1791.

49. Chen, B.W.; Chao, C.H.; Su, J.H.; Wen, Z.H.; Sung, P.J.; Sheu, J.H. Anti-Inflammatory eunicellin-based diterpenoids from the cultured soft coral *Klyxum simplex*. *Org. Biomol. Chem.* **2010**, *8*, 2363–2366.

50. Hsu, F.J.; Chen, B.W.; Wen, Z.H.; Huang, C.Y.; Dai, C.F.; Su, J.H.; Wu, Y.C.; Sheu, J.H. Klymollins A–H, bioactive eunicellin-based diterpenoids from the Formosan soft coral *Klyxum molle*. *J. Nat. Prod.* **2011**, *74*, 2467–2471.

51. Tai, C.J.; Su, J.H.; Huang, M.S.; Wen, Z.H.; Dai, C.F.; Sheu, J.H. Bioactive eunicellin-based diterpenoids from the soft coral *Cladiella krempfi*. *Mar. Drugs* **2011**, *9*, 2036–2045.

52. Chen, B.W.; Huang, C.Y.; Wen, Z.H.; Su, J.H.; Wang, W.H.; Sung, P.J.; Wu, Y.C.; Sheu, J.H. Klysimplexins U–X, eunicellin-based diterpenoids from the cultured soft coral *Klyxum simplex*. *Bull. Chem. Soc. Jpn.* **2011**, *84*, 1237–1242.
53. Chen, Y.H.; Tai, C.Y.; Kuo, Y.H.; Kao, C.Y.; Li, J.J.; Hwang, T.L.; Fang, L.S.; Wang, W.H.; Sheu, J.H.; Sung, P.J. Cladieunicellins A–E, new eunicellins from an Indonesian soft coral Cladiella sp. Chem. Pharm. Bull. 2011, 59, 353–358.
54. Chen, Y.H.; Hwang, T.L.; Su, Y.D.; Chang, Y.C.; Chen, Y.H.; Hong, P.H.; Hu, L.C.; Yen, W.H.; Hsu, H.Y.; Huang, S.J.; Kuo, Y.H.; Sung, P.J. New 6-hydroxyeunicellins from a soft coral Cladiella sp. Chem. Pharm. Bull. 2012, 60, 160–163.
55. Chen, Y.H.; Tai, C.Y.; Su, Y.D.; Chang, Y.C.; Chen, Y.H.; Hong, P.H.; Hu, L.C.; Yen, W.H.; Hsu, H.Y.; Huang, S.J.; Kuo, Y.H.; Sung, P.J. Discovery of new eunicellins from an Indonesian octocoral Cladiella sp. Mar. Drugs 2011, 9, 934–943.
56. Chen, Y.H.; Tai, C.Y.; Hwang, T.L.; Weng, C.F.; Li, J.J.; Fang, L.S.; Wang, W.H.; Wu, Y.C.; Sung, P.J. Cladielloides A and B: New eunicellin-type diterpenoids from an Indonesian octocoral Cladiella sp. Mar. Drugs 2010, 8, 2936–2945.
57. Wei, W.C.; Lin, S.Y.; Chen, Y.J.; Wen, C.C.; Huang, C.Y.; Palanisamy, A.; Yang, N.S.; Sheu, J.H. Topical application of marine briarane-type diterpenes effectively inhibits 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and dermatitis in murine skin. J. Biomed. Sci. 2011, 18, doi:10.1186/1423-0127-18-94.
58. Sung, P.J.; Pai, C.H.; Hwang, T.L.; Fan, T.Y.; Su, J.H.; Chen, J.J.; Fang, L.S.; Wang, W.H.; Sheu, J.H. Junceols D–H, new polyoxygenated briaranes from sea whip gorgonian coral Junceella juncea (Ellisellidae). Chem. Pharm. Bull. 2008, 56, 1276–1281.
59. Su, J.H.; Chen, B.Y.; Hwang, T.L.; Chen, Y.H.; Huang, I.C.; Lin, M.R.; Chen, J.J.; Fang, L.S.; Wang, W.H.; Li, J.J.; et al. Excavatoids L–N, new 12-hydroxybriaranes from the cultured octocoral Briareum excavatum (Briareidae). Chem. Pharm. Bull. 2010, 58, 662–665.
60. Hong, P.H.; Su, Y.D.; Su, J.H.; Chen, Y.H.; Hwang, T.L.; Weng, C.F.; Lee, C.H.; Wen, Z.H.; Sheu, J.H.; Lin, N.C.; et al. Briarenolides F and G, new briarane diterpenoids from a Briareum sp. octocoral. Mar. Drugs 2010, 10, 1156–1168.
61. Wang, S.H.; Chang, Y.C.; Chiang, M.Y.; Chen, Y.H.; Hwang, T.L.; Weng, C.F.; Sung, P.J. Chlorinated briarane diterpenoids from the sea whip gorgonian corals Junceella juncea (Ellisellidae) and Ellisella robusta (Ellisellidae). Chem. Pharm. Bull. 2010, 58, 928–933.
62. Sung, P.J.; Lin, M.R.; Hwang, T.L.; Fan, T.Y.; Su, W.C.; Ho, C.C.; Fang, L.S.; Wang, W.H. Briaecavatins M–P, four new briarane-related diterpenoids from cultured octocoral Briareum excavatum (Briareidae). Chem. Pharm. Bull. 2008, 56, 930–935.
63. Liaw, C.C.; Kuo, Y.H.; Lin, Y.S.; Hwang, T.L.; Shen, Y.C. Frajunolides L–O, four new 8-hydroxybriarane diterpenoids from the gorgonian Junceella fragilis. Mar. Drugs 2011, 9, 1477–1486.
64. Chang, J.Y.; Liaw, C.C.; Fazary, A.E.; Hwang, T.L.; Shen, Y.C. New Briarane diterpenoids from the gorgonian coral Junceella juncea. Mar. Drugs 2012, 10, 1321–1330.
65. Liaw, C.C.; Shen, Y.C.; Lin, Y.S.; Hwang, T.L.; Kuo, Y.H.; Khalil, A.T. Frajunolides E–K, briarane diterpenes from Junceella fragilis. J. Nat. Prod. 2008, 71, 1551–1556.
66. Cheng, S.Y.; Lin, E.H.; Wen, Z.H.; Chiang, M.Y.; Duh, C.Y. Two new verticillane-type diterpenoids from the Formosan soft coral Cespitularia hypotentaculata. Chem. Pharm. Bull. 2010, 58, 848–851.
67. Chang, J.Y.; Fazary, A.E.; Lin, Y.C.; Hwang, T.L.; Shen, Y.C. New verticillane diterpenoids from *Cespitularia taeniata*. *Chem. Biodivers.* **2012**, *9*, 654–661.

68. Cheng, S.Y.; Chuang, C.T.; Wen, Z.H.; Wang, S.K.; Chiu, S.F.; Hsu, C.H.; Dai, C.F.; Duh, C.Y. Bioactive norditerpenoids from the soft coral *Sinularia gyrosa*. *Bioorg. Med. Chem.* **2010**, *18*, 3379–3386.

69. Lin, Y.C.; Abd El-Razek, M.H.; Hwang, T.L.; Chiang, M.Y.; Kuo, Y.H.; Dai, C.F.; Shen, Y.C. Asterolaurins A–F, xenicane diterpenoids from the Taiwanese soft coral *Asterospicularia laurae*. *J. Nat. Prod.* **2009**, *72*, 1911–1916.

70. Cheng, S.Y.; Chuang, C.T.; Wang, S.K.; Wen, Z.H.; Chiu, S.F.; Hsu, C.H.; Dai, C.F.; Duh, C.Y. Antiviral and anti-inflammatory diterpenoids from the soft coral *Sinularia gyrosa*. *J. Nat. Prod.* **2010**, *73*, 1184–1187.

71. Chung, H.M.; Hu, L.C.; Yen, W.H.; Su, J.H.; Lu, M.C.; Hwang, T.L.; Wang, W.H.; Sung, P.J. Echinohalimane A, a bioactive halimane-type diterpenoid from a Formosan gorgonian *Echinomuricea* sp. (Plexauridae). *Mar. Drugs* **2012**, *10*, 2246–2253.

72. Cheng, C.H.; Chung, H.M.; Hwang, T.L.; Lu, M.C.; Wen, Z.H.; Kuo, Y.H.; Wang, W.H.; Sung, P.J. Echinoclerodane A: A new bioactive clerodane-type diterpenoid from a gorgonian coral *Echinomuricea* sp. *Molecules* **2012**, *17*, 9443–9450.

73. Chung, H.M.; Hong, P.H.; Su, J.H.; Hwang, T.L.; Lu, M.C.; Fang, L.S.; Wu, Y.C.; Li, J.J.; Chen, J.J.; Wang, W.H.; et al. Bioactive compounds from a gorgonian coral *Echinomuricea* sp. (Plexauridae). *Mar. Drugs* **2012**, *10*, 1169–1179.

74. Chang, C.H.; Wen, Z.H.; Wang, S.K.; Duh, C.Y. New anti-inflammatory steroids from the Formosan soft coral *Clavularia viridis*. *Steroids* **2008**, *73*, 562–567.

75. Chao, C.H.; Wen, Z.H.; Chen, I.M.; Su, J.H.; Huang, H.C.; Chiang, M.Y.; Sheu, J.H. Anti-inflammatory steroids from the octocoral *Dendronephthya griffini*. *Tetrahedron* **2008**, *64*, 3554–3560.

76. Huang, Y.C.; Wen, Z.H.; Wang, S.K.; Hsu, C.H.; Duh, C.Y. New anti-inflammatory 4-methylated steroids from the Formosan soft coral *Nephthea chabroli*. *Steroids* **2008**, *73*, 1181–1186.

77. Chao, C.H.; Wen, Z.H.; Su, J.H.; Chen, I.M.; Huang, H.C.; Dai, C.F.; Sheu, J.H. Further study on anti-inflammatory oxygenated steroids from the octocoral *Dendronephthya griffini*. *Steroids* **2008**, *73*, 1353–1358.

78. Su, J.H.; Lo, C.L.; Lu, Y.; Wen, Z.H.; Huang, C.Y.; Dai, C.F.; Sheu, J.H. Anti-Inflammatory polyoxygenated steroids from the soft coral *Sinularia* sp. *Bull. Chem. Soc. Jpn.* **2008**, *81*, 1616–1620.

79. Cheng, S.Y.; Wen, Z.H.; Wang, S.K.; Chiang, M.Y.; El-Gamal, A.A.; Dai, C.F.; Duh, C.Y. Revision of the absolute configuration at C(23) of lanostanoids and isolation of secondary metabolites from Formosan soft coral *Nephthea erecta*. *Chem. Biodivers.* **2009**, *6*, 86–95.

80. Cheng, S.Y.; Huang, Y.C.; Wen, Z.H.; Hsu, C.H.; Wang, S.K.; Dai, C.F.; Duh, C.Y. New 19-oxygenated and 4-methylated steroids from the Formosan soft coral *Nephthea chabroli*. *Steroids* **2009**, *74*, 543–547.
81. Chao, C.H.; Chou, K.J.; Wen, Z.H.; Wang, G.H.; Wu, Y.C.; Dai, C.F.; Sheu, J.H. Paraminabeolides A–F, cytotoxic and anti-inflammatory marine withanolides from the soft coral Paraminabea acronocephala. J. Nat. Prod. 2011, 74, 1132–1141.

82. Chen, B.W.; Chang, S.M.; Huang, C.Y.; Su, J.H.; Wen, Z.H.; Wu, Y.C.; Sheu, J.H. Hirsutosterols A–G, polyoxygenated steroids from a Formosan soft coral Cladiella hirsuta. Org. Biomol. Chem. 2011, 9, 3272–3278.

83. Chao, C.H.; Chou, K.J.; Huang, C.Y.; Hsu, C.H.; Wu, Y.C.; Dai, C.F.; Sheu, J.H. Steroids from the soft coral Sinularia crassa. Mar. Drugs 2012, 10, 439–450.

84. Huang, C.Y.; Su, J.H.; Duh, C.Y.; Chen, B.W.; Wen, Z.H.; Kuo, Y.H.; Sheu, J.H. A new 9,11-secosterol from the soft coral Sinularia granosa. Bioorg. Med. Chem. Lett. 2012, 22, 4373–4376.

85. Liu, C.Y.; Hwang, T.L.; Lin, M.R.; Chen, Y.H.; Chang, Y.C.; Fang, L.S.; Wang, W.H.; Wu, Y.C.; Sung, P.J. Carijoside A, a bioactive sterol glycoside from an octocoral Carijoa sp. (Clavulariidae). Mar. Drugs 2010, 8, 2014–2020.

86. Cheng, S.Y.; Wen, Z.H.; Chiou, S.F.; Tsai, C.W.; Wang, S.K.; Hsu, C.H.; Dai, C.F.; Chiang, M.Y.; Wang, W.H.; Duh, C.Y. Ceramide and cerebrosides from the octocoral Sarcophyton ehrenbergii. J. Nat. Prod. 2009, 72, 465–468.

87. Cheng, S.Y.; Huang, K.J.; Wang, S.K.; Wen, Z.H.; Chen, P.W.; Duh, C.Y. Antiviral and anti-inflammatory metabolites from the soft coral Sinularia capillosa. J. Nat. Prod. 2010, 73, 771–775.

88. Wen, Z.H.; Chao, C.H.; Wu, M.H.; Sheu, J.H. A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. Eur. J. Med. Chem. 2010, 45, 5998–6004.

89. Kitamura, Y.; Kosaka, T.; Kakimura, J.I.; Matsuoka, Y.; Kohno, Y.; Nomura, Y.; Taniguchi, T. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol. Pharmacol. 1998, 54, 1046–1054.

90. Blum, D.; Torch, S.; Lambeng, N.; Nissou, M.; Benabid, A.L.; Sadoul, R.; Verna, J.M. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol. 2001, 65, 137–172.

91. Sung, P.J.; Chen, B.Y.; Lin, M.R.; Hwang, T.L.; Wang, W.H.; Sheu, J.H.; Wu, Y.C. Excavatoids E and F: Discovery of two new briaranes from the cultured octocoral Briareum excavatum. Mar. Drugs 2009, 7, 472–482.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).