Research Article

A QoS-Based Topology Control Algorithm for Underwater Wireless Sensor Networks

Linfeng Liu

School of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Correspondence should be addressed to Linfeng Liu, liulf@njupt.edu.cn

Received 18 September 2010; Accepted 31 October 2010

Copyright © 2010 Linfeng Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The topology control techniques of underwater wireless sensor networks and terrestrial wireless sensor networks are significantly different because of the particularity of underwater environments and acoustic communication. In this paper, an underwater wireless sensor network model was constructed, and six universal topology control objectives were concluded. The QoS topology control problem was mapped into an ordinal potential game model, and a distributed strategy adjustment algorithm for nodes was designed accordingly. The strategy vector resulting from the algorithm converges to the Nash equilibrium; minor complexity and preferable approximate ratios can be represented by the algorithm as well. The performance of the algorithm was analyzed through simulation experiments which indicate a well-constructed topology. Every objective was upgraded when model parameters were set suitable.

1. Introduction

Recently, there has been growing interest in the application of sensor networks in underwater environments to enable and enhance applications such as ocean resource exploration, pollution monitoring, and tactical surveillance [1–3]. Before the emergence of wireless sensor networks (WSNs) [4], the perception and collection of underwater data are generally accomplished through wired networks which are very costly. Underwater wireless sensor networks (UWSNs) [5–7] are the enabling technology for these underwater applications. UWSNs consist of sensors that perform collaborative monitoring tasks over a three-dimensional volume. Acoustic communications [8, 9] are the typical physical layer technology in underwater networks. There are three types of nodes in UWSNs: bottom nodes, anchored nodes, and surface sinks. The given phenomenon is observed by interconnected bottom and anchored nodes in charge of relaying data to surface sinks. The architecture of a UWSN is depicted in Figure 1.

Figure 1 illustrates a three-dimensional UWSN; each bottom or anchored node can monitor and detect environmental events locally, and then transfer these measurements to a surface sink by multihops. Bottom nodes are spread on the seabed. Anchored nodes are equipped with floating buoys that can be inflated by pump. The depth of the anchored node can be regulated by adjusting the length of the wire.

QoS is an important issue in WSNs because quality of service has immediate impact on the availability of networks, and topology control is one of the main techniques to improve the quality of WSN service. Due to the specificity and complexity of the water medium, UWSN and terrestrial wireless sensor networks are significantly different. These differences include the following: (a) the propagation delay of the acoustic wave is much larger than that of the electromagnetic wave, and the propagation delay in UWSN cannot be neglected. (b) The limited bandwidth of underwater acoustic links is prone to cause high error rates and frequent dynamics of topology [10]. (c) Underwater acoustic communication requires more energy for signal modulation, and the energy consumption for sending messages is significantly larger than that for receiving. These differences make it difficult to guarantee the quality of the service (e.g., propagation delay, bandwidth, and transmission success rate) in UWSNs. In this regard, topology control is an efficient way to enhance the quality of services. In addition to the common topology control objectives of WSNs (full coverage, network connectivity, decrease in energy consumption, enhancement of network capacity, reduction of communication interference, and increase of spatial reuse), the topology control
objectives in UWSN should also include the shortening of propagation delay, improvement of energy consumption efficiency, extension of network lifetime, augmentation of transmission bandwidth, and increase in the transmission success rate. Therefore, in this paper QoS-based topology control for UWSN is defined as the art of coordinating nodes’ decisions regarding their communication and sensing ranges, in order to generate a network topology with the desired properties (e.g., connectivity, coverage), while optimizing some (or all) of other service metrics (e.g., energy consumption, propagation delay, transmission bandwidth, and transmission success rate) in underwater environments.

The remainder of this paper is organized as follows. In Section 2, we discuss related works; in Section 3, we describe the UWSN model and define some concepts; in Section 4, we map QoS topology control problem into an ordinal potential game model; Section 5 proposes a strategy adjustment algorithm SAA; in Section 6, SAA is analyzed from the aspects of convergence, complexity, and approximate ratio; in Section 7, we discuss the performance evaluation of SAA; finally, Section 8 provides some conclusions.

2. Related Work

The problem of QoS topology control for WSN has been extensively studied. However, most studies have been based on specific applications or partial objectives. Furthermore, the characteristics of acoustic communication and underwater environments have never been taken into account. Li et al. [11] proposed an MST-based topology control algorithm (LMST) that can effectively reduce transmission power while maintaining global connectivity. However, the topology obtained by LMST is fragile, and network lifetime is prone to termination. In a study by Li et al. [12], the QoS topology control problem in heterogeneous ad hoc networks was formulated as an integer linear programming problem or a mixed integer linear programming problem. This produced a network topology that meets QoS requirements and minimizes the maximum energy utilization of nodes. Liu et al. [13] reported that each node in the network has different functionalities in data transmission, and they correspondingly proposed a topology control algorithm (EasiTPQ) to improve packet loss rate and propagation delay. Cai and Yang [14] presented a multi-QoS optimization distributed topology control algorithm (MQOTC) considering residual energy, end-to-end delay, and link loss ratio; every sensor node builds the local maximum QoS topology independently. MQOTC is distributed and is scalable, but it does not consider the full coverage objective, and it cannot be adapted when the requirements of specific applications change. To ensure high QoS (maximizing network lifetime and ensuring message delivery), a topology control algorithm (EBC) which exploits the edge of the centrality concept is proposed [15]. In the investigation conducted by Ma et al. [16], both centralized and distributed QoS topology control approaches employing opportunistic transmission are put forward; simulations demonstrate that the approach significantly improves energy efficiency with low communication overhead. Forghani et al. [17] improved network lifetime and decreased average energy consumption by reducing the transmission power of nodes and periodically choosing the active path. However, the approach ignores the extra overhead brought by the periodical regulation of active paths. Reference [18] proposed a framework, based on the emergent potential games to deal with a variety of network resource allocation problems. But the framework was designed for terrestrial wireless sensor networks, and some basic topology requirements (e.g., coverage) were not taken into account. An energy-efficient topology control algorithm FiYG was proposed in [19]. FiYG was designed
for three dimensional UWSNs, but it was unable to achieve typical underwater QoS objectives.

In summary, the existing algorithms or approaches of QoS topology control are difficult to apply in UWSN because of the following. (a) Currently, the QoS topology control objectives of UWSN have not been analyzed intensively. Therefore, some important objectives in underwater environments have been neglected. (b) Due to the multiformity of UWSN applications, different QoS objectives will be required in different applications. The QoS topology control model and algorithm should be capable of objective-driven adaptation. (c) Most current studies assume that the deployment space is a two-dimensional plane. However, underwater topography is complicated, and so the deployment space must be three dimensional.

Inspired by such motivations, the QoS topology control for UWSN is investigated in this paper by exploiting the ordinal potential game model. Given an amount of wireless sensor nodes in a 3D space where nodes have a set of strategies (i.e., different communication radiiuses and sensing radiiuses) and given the capacities of energy consumption, propagation delay, bandwidth, and transmission success rates on links, the aim is to find a UWSN topology that can meet both full coverage and global connectivity while optimizing other objectives as much as possible.

3. UWSN Model

Our work is based on the scenario that a set of static sensors are deployed in underwater space $D \subseteq 1R^3$. The topology of UWSN can be represented as a graph $G(V,E)$, where the finite set of nodes $V = \{V_1,V_2,\ldots,V_N\}$ and the set of links $E \subseteq V \times V$.

3.1. Model Description

1. Nodes. For all $V_k \in V$, its current communication radius, sensing radius, and residual energy are denoted as $RC(k)$, $RS(k)$, and $e(k)$, respectively. Any node V_k can be in two kinds of status: awake or asleep. If V_k is asleep, then $RS(k) = RC(k) = 0$. The set of awake nodes $W = \{V_k | V_k \in V, RS(k) > 0, RC(k) > 0\}$. For all $V_k, V_j \in V$ or for all $p,q \in D$, the distance is $d(k,k')$ and $d(p,q)$. We define the neighboring nodes set of V_k as $ne(k)$ and $ne(k) = \{V_k' | d(k,k') \leq RC(k)\}$.

2. Links. For all $V_k' \in ne(k)$, the link between V_k and V_k' is expressed as (k,k'). The propagation delay, bandwidth, and transmission success rate of (k,k') are denoted as $delay(k,k'), band(k,k')$, and $ratio(k,k')$ respectively. For all $V_i, V_j \in V$ if $d(i,j) \leq RC(i)$, then $(i,j) \in E$.

3. Paths. For all $V_i, V_j \in V$ if there are $(i,i_1),(i_1,i_2),\ldots,(j_2,j_1),(j_1,j) \in E$, then path$(i,j)$ exists.

3.2. Definitions and Assumptions. Suppose that X is a set of Boolean values, and R is a set of positive real numbers. UWSN coverage function is expressed as coverage(G): $G(V,E) \rightarrow X$, the connectivity function is defined as

$connectivity(G): G(V,E) \rightarrow X$, and the energy consumption function of the node is consumption(k): $VK \rightarrow R$, with $V_k \in W$. To clarify and simplify the UWSN model, other definitions and assumptions are given.

Definition 1. Node coverage space: for all $V_k \in V$, coverage space of V_k with sensing radius $RS(k)$ defined as $Cover(k,RS(k)) = \{p | d(k,p) \leq RS(k), \text{ for all } p \in D\}$.

Definition 2. Bidirectional links: for all $V_i, V_j \in V$ if $d(i,j) \leq RC(i)$ and $d(i,j) \leq RC(j)$, then link (i,j) is bidirectional.

Definition 3. Full coverage: for all $p \in D$, there exist $V_k \in W$, with $d(k,p) \leq RS(k)$.

Definition 4. Global connectivity: for all $V_i, V_j \in W$, path(i,j) and path(j,i) exist.

Definition 5. Alive status of UWSN: full coverage and global connectivity can be achieved by awake nodes set W, and for all $V_k \in W, e(k) > 0$.

Assumption 1. Sensor nodes are uniformly distributed in D, and the coordinates of every node have been informed.

Assumption 2. D is a convex region, for all $p,q \in D$, we get $a\overline{p} + (1-a)\overline{q} \in D \ (0 \leq a \leq 1)$.

Assumption 3. $RC_1 \geq 2RS_\chi$. RC_1 denotes the minimum communication radius, and RS_χ denotes the maximum sensing radius.

Assumption 4. For all $V_k \in V$, $V_k \in ne(k)$, delay(k,k'), band(k,k') and ratio(k,k') are known values.

Assumption 5. If for all $V_k \in V$, then $RC(k) = RC_\chi$ and $RS(k) = RS_\chi$; therefore, $G(V,E)$ satisfies both full connectivity and global connectivity.

3.3. Objectives. The QoS topology control objectives of UWSN can be presented as

(i) $coverage(G) = 1$,
(ii) $connectivity(G) = 1$,
(iii) $\min \sum_{V_k \in V} consumption(k)$,
(iv) $\min \sum_{V_k, V_j \in W} \sum_{i,j \in \text{path}(i,j)} \text{delay}(i,j)$,
(v) $\max \sum_{V_k, V_j \in W} \min_{i,j \in \text{path}(i,j)} \text{band}(i,j)$,
(vi) $\max \sum_{V_k, V_j \in W} \prod_{i,j \in \text{path}(i,j)} \text{ratio}(i,j)$.

Objectives (i) and (ii) should be strictly satisfied, and objectives (iii)–(vi) are optimized as much as possible. The QoS topology control problem with multiobjective optimization is a NP-hard problem which will be solved approximately by the ordinal potential game in the next section.

4. Ordinal Potential Model

4.1. Game Description. Game theory attempts to mathematically capture behavior in strategic games, in which
Table 1: Description of symbols in the game model.

Symbol	Description	Symbol	Description
A	Strategy space	A_k	Optional strategies set of V_k
A_k	Strategy vector	A_k^-	Strategies set of non-V_k nodes
a	Selected strategy of V_k	U(a)	Payoff function vector
a_k	Strategy vector of non-V_k nodes	u_k(a)	Payoff function of V_k
RC_p	ψth level communication radius	χ	Number of optional strategies
RC_p	ψth level sensing radius	C_k(a)	Coverage function of V_k
RS_p	ψth level sensing radius	D_k(a)	Propagation delay function of V_k
E_k(a)	Energy consumption function of V_k	S_k(a)	Transmission success rate function of V_k
B_k(a)	Bandwidth function of V_k		

Lemma 6. When RC_1 ≥ 2RS_p, if UWSN covers the convex region D, then G(W, E) satisfies global connectivity.

Proof. The proof is similar with Theorem 7 in a study by Wang et al. [25]; for any two nodes V_i and V_j, W_j, P_j is the line segment joining V_i and V_j. Due to the coverage of UWSN, any point p ∈ P_j has been covered by at least one close and awake sensor node. Consequently, the set of closest nodes s_1,...,s_m can be constructed for contiguous segments which consist of points with the same set of closest sensors. For all u ∈ s_k−1, v ∈ s_k, we have d(u, v) ≤ RS(u) + RS(v). We assume RS(u) ≥ RS(v), which directly yields RC(u) ≥ RC(v) and d(u, v) ≤ 2RC(υ) ≤ 2RC(υ). Hence, both (u, v) and (υ, u) are bidirectional links, and there must be path(i, j) between V_i and V_j.

(a) Coverage Function. Any node V_k has a coverage function

\[C_k(a) = \prod_{v \in V} F_i(a) \tag{5} \]

Formula (5) shows that the coverage function is the product of all nodes’ local coverage functions. F_i(a) is defined as the local coverage function of node V_i

\[F_i(a) = \begin{cases} 1 & \text{if } \exists V_j \in W, d(j, p) \leq RS(j), \\ 0, & \text{else}. \end{cases} \tag{6} \]

Formula (6) means all points in every node’s possible maximum coverage area should be covered by at least another node.

Theorem 7. Full coverage can be achieved when C_k(a) = 1.

Proof. ∴ C_k(a) = 1, ∴ for all V_i ∈ V, F_i(a) = 1, ∴ for all p ∈ \bigcup_{V_i \in V} (D ∩ Cover(i, RS_i)), there exist V_j ∈ W, d(i, j) ≤ RS(j). Assumption 5 gives D ⊆ \bigcup_{V_i \in V} Cover(i, RS_i); therefore, for all p ∈ D, there exist V_j ∈ W, d(j, p) ≤ RS(j).
(b) Energy Consumption Function. For any node V_k, the energy consumption function

$$E_k(a) = E_k(a_k, a_{-k})$$

$$= P_0(a_k)$$

$$= P_0 RC(k) \beta 10^{RC(k) a(f)/10},$$

where P_0 is the least received power level to guarantee the required quality of reception [26], and (a_k) is signal attenuation [27]. The energy spreading factor and absorption coefficient are denoted by $\beta (\beta \in [1,2])$ and $a(f)$, respectively.

(c) Propagation Delay Function. Suppose that the number of neighboring nodes is k in V_k with strategy a_k, then $D_k(a)$ can be expressed as

$$D_k(a) = D_k(a_k, a_{-k}) = \frac{\sum_{V_i \in ne(k)} \text{delay}(k, k')}{k},$$

where delay(k, k') [28] is computed as

$$\text{delay}(k, k') = \frac{L}{B} + \frac{d(k, k')}{R_{raw}},$$

where L is the length of every data packet, B is the channel capacity in bits per second, and R_{raw} is the propagation speed of underwater sound. Thus,

$$D_k(a_k, a_{-k}) = \frac{\sum_{V_i \in ne(k)} d(k, k')}{kR_{raw}} + \frac{L}{B},$$

where L is the length of every data packet, B is the channel capacity in bits per second, and R_{raw} is the propagation speed of underwater sound. Thus,

(d) Bandwidth Function

$$B_k(a) = B_k(a_k, a_{-k}) = \min_{V_i \in ne(k)} \text{band}(k, k').$$

(e) Transmission Success Rate Function

$$S_k(a) = S_k(a_k, a_{-k}) = \left(\prod_{V_i \in ne(k)} \text{ratio}(k, k') \right)^{1/k},$$

where ratio$(k, k') \in [0,1]$, and $S_k(a) \in [0,1]$.

Theorem 8. $\Gamma(V, A, U(a))$ is an ordinal potential game.

Proof. The ordinal potential function is defined as

$$\tilde{U}(a) = \sum_{V_i \in W} u_i(a)$$

and let $\Delta u_k = u_i(a_k, a_{-k}) - u_i(b_k, a_{-k})$ which gives

$$\Delta \tilde{U} = \tilde{U}(a_k, a_{-k}) - \tilde{U}(b_k, a_{-k}) = \Delta u_k$$

$$+ \sum_{V_i \in W : i \neq k} \left\{ C_i(a_k, a_{-k}) - C_i(b_k, a_{-k}) \right\}.$$

The proof is similar to the one in previous reports [29].

Definition 9. Nash Equilibrium (NE): a^* is NE if for all $V_k \in V$, for all $a_k \in A_k$, and $u_i(a^*) \geq u_i(a_k, a^*_{-k}).$

Potential games are known to possess at least one NE in pure strategies as proven in previous reports [29].

5. Algorithm

In this section, a distributed strategy adjustment algorithm (SAA) is proposed for nodes to achieve objectives (i) and (ii) while optimizing objectives (iii)–(vi) approximately. The following are the description and pseudocode of the SAA algorithm.
Table 3: Inquire_msg/feedback_msg structure.

Message information	Node information	Neighbor information				
Type	ID	Position	Strategy	Adjust	ID_Set	Local coverage

Strategy Adjustment Algorithm (SAA)

Step 1. Any node V_i has an initial strategy set as $a_i^{(0)} = (RC_{p_i}, R_{S_i})$; the adjustment function of V_i is defined and initialized as $H(i) = 0$. After the initial setting, every node with maximum communication radius RC_x broadcasts the message `announce_msg` whose structure is depicted in Table 2.

Step 2. If one node receives `announce_msg`, then it replies with `receive_msg` (Table 2).

Step 3. At the ξth round, the node which will adjust the strategy is selected randomly from the probability formula

$$P_i(\xi) = \begin{cases} 0 & \text{if } H(i) \neq 0, \\ \frac{\Delta u_i(a_i^{(\xi-1)})}{\sum_{V_j \in V_i, H(j) = 0} \Delta u_j(a_j^{(\xi-1)})} & \text{else,} \end{cases}$$

(14)

where for V_i at the ξth round, $P_i^{(\xi)}$ denotes the probability of becoming the only strategy adjustment node, and $\Delta u_i(a_i^{(\xi-1)})$ is the possible payoff enhancement which is computed as

$$\Delta u_i(a_i^{(\xi-1)}) = \max_{b_i \in A_i} \left(u_i(b_i, a_i^{(\xi-1)}) - u_i(a_i, a_i^{(\xi-1)}) \right).$$

(15)

For any node V_i, if $H(i) = 0$, V_i should broadcast a message `inquire_msg` in the spheriform range of radius RC_x. Suppose that V_j receives `inquire_msg` from V_i, V_j will compute all possible $F_j(a)$ when it adopts different strategies. Subsequently, a message `feedback_msg` containing all possible values of $F_j(a)$ will be replied to V_i. The structures of `inquire_msg` and `feedback_msg` are shown in Table 3.

The strategy of V_i should be updated according to Expression (16) provided that V_i has been chosen to adjust its strategy at the ξth round; following this, the adjustment function must be set as $H(i) = \xi$

$$a_i^{(\xi)} = \arg \max_{b_i \in A_i} u_i(b_i, a_i^{(\xi-1)}).$$

(16)

Step 4. Upon completion of the strategy adjustment, the last round broadcasts `announce_msg`.

Step 5. Steps 1 to 4 are repeated for N rounds.

The pseudocode of SAA is given in Pseudocode 1.

6. Algorithm Analysis

6.1. Convergence. SAA is theoretically proven to be convergent.

Theorem 10. SAA converges to NE.

Proof. For all $V_i \in V$, the minimum sensing radius of V_i to achieve full coverage is denoted as $\Phi(a_{-i})$, a monotonic, nonincreasing function of a_{-i}, that is, if $a_{-i}^{k_1} = (RC(k_1), RS(k_1)), a_{-i}^{k_2}$ and $a_{i}^{k_2} = (RC(k_2), RS(k_2)), a_{-i}^{k_2}$, then $\Phi(a_{-i}^{k_1}) \leq \Phi(a_{-i}^{k_2})$. Accordingly, the value interval of sensing radius $R(a_{-i}) = \{\Phi(a_{-i}), \ldots, (RC_{p_i}, R_{S_i})\}$. To adjust the strategy of V_i, Expression (16) can be rewritten as

$$\tilde{a}_i = \{ (RC_{p_i}, R_{S_i}) R_{S_i} \geq \Phi(a_{-i}), \ \max u_i(\tilde{a}_i, a_{-i}) \}. \tag{17}$$

After strategy update, the payoff of V_i will be maximized with the strategy vector (\tilde{a}_i, a_{-i}); if V_j updates strategy to \tilde{a}_i as well, there must be $RS(j) \leq RS_{p_i}$. $\Phi(\tilde{a}_j, a_{-i}) \geq \Phi(a_{-i})$ and $\tilde{a}_i \in R(\tilde{a}_i, a_{-i})$. In this case, the new strategy vector $(\tilde{a}_i, \tilde{a}_j, a_{-i})$ continues to maximize the payoff of V_i. Therefore, the result of SAA execution $\tilde{a} = (\tilde{a}_i, \tilde{a}_2, \ldots, \tilde{a}_n)$ is determinately NE.

6.2. Complexity. For any node V_i, even though V_i changes strategy, the $F_j(a)$ of any node V_j out of the spheriform range with center V_i and radius RC_i remains the same.

Theorem 11. For all $V_i, V_j \in V$, if $d(i,j) \geq RC_1$, no point $p \in D \cap \text{Cover}(i, RS_i)$ can be found to satisfy $d(i, p) \leq RS_2$.

Proof. Suppose that there exist $p \in D \cap \text{Cover}(i, RS_i)$ and $d(i,p) \leq RS_2, d(i, p) \leq RS_2$ which gives $d(i,j) \leq d(i,p) + d(j,p) \leq 2RS_2 \leq RC_1$. This conclusion contradicts the premise $d(i,j) \geq RC_1$.

The implementation and operating cost of algorithm realization can be measured with algorithm complexity.
of the parameters are shown in Table 4. Moreover, node connectivity and coverage increase until 100% regardless of
the deployment density of nodes must be large enough to achieve full coverage and global connectivity; (b) the plot of
connectivity and coverage increase until 100%. Figure 2 illustrates the connectivity and coverage of UWSN as N increases; the value of χ is assigned as 5, 7, and 10. Three observations can be made: (a) as N increases, both connectivity and coverage increase until 100% regardless of
the value of χ. The reason for such behavior is that the deployment density of nodes must be large enough to achieve full
coverage and global connectivity; (b) the plot of χ = 10 is higher than the other two plots because the growth of
χ augments the maximal communication radius and the sensing radius, acquiring higher connectivity and coverage;
(c) the least number of nodes required for full coverage (N = 1200 at χ = 10) is far more than what is required for
global connectivity (N = 300 at χ = 10). This phenomenon confirms the conclusions of Lemma 6 (full coverage is a
sufficient condition of global connectivity).
7.2. Average Energy Consumption. Set $\varphi_1 = 0.4$ and $\varphi_2 = \varphi_3 = \varphi_4 = 0$. This simulation compares the average energy consumption and UWSN lifetime in SAA, FiYG, LMST, and EBC. As shown in Figure 3, the SAA average energy consumption of the node in unit time is significantly lower than those of FiYG, LMST, and EBC. This is because the topology control model can be transformed into a QoS model aiming at low energy consumption. By setting the parameters, SAA can effectively reduce the average energy consumption of nodes. In Figure 3, the plots decrease as N increases, which is attributed to the fact that full coverage and global connectivity can be met by nodes with a relatively lower strategy rank as more nodes are densely deployed.

Furthermore, from Figure 4, UWSN lifetime apparently increases as N increases, and the UWSN lifetime obtained by SAA is higher than those by other algorithms.

7.3. Average Delay of Single Hop. Set $\varphi_2 = 0.2$ and $\varphi_1 = \varphi_3 = \varphi_4 = 0$. In Figure 5, the average delay of single hop in SAA is lower than that in FiYG, LMST, and EBC. There is a 4.2 ms difference between SAA and LMST when $N = 3000$. As N increases, the average delay of single hop of all algorithms gradually shortens due to increasing deployment density.

7.4. Influence of φ_1 and φ_2. Low energy consumption and low propagation delay are the most important and common
objectives. The influence of \(\varphi_1 \) and \(\varphi_2 \) on the average energy consumption and average delay will be observed and analyzed in this simulation.

There are three observations from Figure 6: (a) when \(\varphi_2 \) is set, the increase in \(\varphi_1 \) generally leads to the reduction in average energy consumption, and reduction is significantly weakened if \(\varphi_1 \) is large enough; (b) when \(\varphi_1 (\varphi_1 \neq 0) \) is set, the increase in \(\varphi_2 \) gives rise to a slight increase in average energy consumption because the QoS model is more concerned about propagation delay with a varying \(\varphi_2 \); (c) at \(\varphi_1 = 0 \), the plot has irregular fluctuations, and \(\varphi_2 \) consistently increases due to the randomness of topology (objective (iii)). An increase in \(\varphi_2 \) results in the contraction of the average delay of a single hop, and conversely, an increase in \(\varphi_1 \) causes the extension of the average delay of a single hop (Figure 7).

7.5. Average Path Bandwidth. Set \(\varphi_3 = 0.1 \) and \(\varphi_1 = \varphi_2 = \varphi_4 = 0 \). When \(\chi \) is assigned as 5, 7, and 10, respectively, the average path bandwidth exhibits the three plots shown in Figure 8. A higher average path bandwidth will be obtained with higher values of \(\chi \). This is because an increase in \(\chi \) implies enlargement of the set optional strategies, and better strategies may be selected for the nodes. The average path bandwidth has irregular fluctuation as \(N \) increases when \(\chi \) is determined. Although lower-ranked strategies can be selected while more nodes are deployed, increasing path hops is possible. Therefore, the average path bandwidth is not affected by \(N \). Moreover, from Figure 9, when \(\varphi_3 = 0.1 \) and \(\varphi_1 = \varphi_2 = \varphi_4 = 0 \), the average path bandwidth obtained by SAA is higher than those by other algorithms, which did not take transmission bandwidth into account.
7.6. Average Path Transmission Success Ratio. Set $\varphi_4 = 0.8$ and $\varphi_1 = \varphi_2 = \varphi_3 = 0$. The curved surface peak is nearly 0.89 ($\chi = 10$, $N = 2700$), as shown in Figure 10. At a fixed χ, the variation in average path transmission success is irregular as N increases; the reason for this is similar to that in Simulation E. The phenomenon suggests that SAA is scalable with respect to the number of nodes. As shown in Figure 11, transmission success ratio of SAA is significantly higher than those of FiYG, LMST, and EBC, and the SAA plot fluctuates obviously with the increase of N. This is because dense nodes deployment will result in extension of practical strategy space, which will improve transmission success ratio probably. However, meanwhile an increase of hops number on paths giving rise to the reduction of transmission success ratio will be caused as well.

In summary, (a) the proposed algorithm SAA efficiently improves performance in terms of energy consumption, propagation delay, bandwidth, and transmission success rate while meeting both full coverage and global connectivity; (b) the simulation results indicate average energy consumption and UWSN lifetime: the average delay is optimized while N increases, whereas the average path bandwidth and average path transmission success ratios are independent of N. Therefore, SAA possesses scalability with respect to the number of nodes; (c) according to different multiobjectives of UWSN applications, SAA shows favorable performance at properly set parameters.

8. Conclusions

Aiming at the particularity of water medium and underwater acoustic communication, the QoS topology control problem was studied in this paper, and a distributed SAA was designed accordingly. SAA can exhibit outstanding performance in every typical objective. However, the UWSN model in this paper is idealistic, that is, it prohibits node mobility, and delays from calculation, energy consumption by receiving messages are neglected. Furthermore, the communication range and sensing range of nodes are irregular rather than spheres. Addressing QoS topology control in more real environments or scenarios is suggested for further study.

Acknowledgments

This research is supported by the National Natural Science Foundation of China under Grants Nos. 60903181, 61003236, 61003040, Talents Start Research Foundation of Nanjing University of Posts and Telecommunications under Grant No. NY208073. L. Liu also wants to acknowledge the support from the Key Laboratory of Ministry of Education for Computer Network and Information Integration (Southeast University), Nanjing, China.
References

[1] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Research challenges and applications for underwater sensor networking,” in *Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC ’06)*, pp. 228–233, Las Vegas, Ne, USA, April 2006.

[2] J.-H. Cui, J. Kong, M. Gerla, and S. Zhou, “The challenges of building scalable mobile underwater wireless sensor networks for aquatic applications,” *IEEE Network*, vol. 20, no. 3, pp. 12–18, 2006.

[3] J. Partan, J. Kurose, and B. N. Levine, “A survey of practical issues in underwater networks,” in *Proceedings of the 1st ACM International Workshop on Underwater Networks (WUWNet ’06)*, pp. 17–24, September 2006.

[4] J. Elson and D. Estrin, *Sensor Networks: A Bridge to the Physical World*, Kluwer Academic Publishers, Norwell, Mass, USA, 2004.

[5] J. Heidemann, W. Ye, J. Wills et al., “Research challenges and applications for underwater sensor networking,” in *Proceedings of the 1st ACM International Workshop on Underwater Networks*, pp. 33–40, ACM Press, 2006.

[6] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” *Ad Hoc Networks*, vol. 3, no. 3, pp. 257–279, 2005.

[7] I. F. Akyildiz, D. Pompili, and T. Melodia, “Challenges for efficient communication in underwater acoustic sensor networks,” *ACM SIGBED Review*, vol. 1, no. 2, pp. 3–8, 2004.

[8] M. Stojanovic, “Acoustic (underwater) communications,” in *Encyclopedia of Telecommunications*, J. G. Proakis, Ed., John Wiley & Sons, New York, NY, USA, 2003.

[9] S. Ibrahim, J.-H. Cui, and R. Ammar, “Surface-level gateway deployment for underwater sensor networks,” in *Proceedings of the Military Communications Conference (MILCOM ’07)*, pp. 1–7, IEEE Press, Orlando, Fla, USA, October 2007.

[10] M. C. Domingo and R. Prior, “Energy analysis of routing protocols for underwater wireless sensor networks,” *Computer Communications*, vol. 31, no. 6, pp. 1227–1238, 2008.

[11] N. Li, J. C. Hou, and L. Sha, “Design and analysis of an MST-based topology control algorithm,” in *Proceedings of the 22nd Annual Joint Conference on the IEEE Computer and Communications Societies (INFOCOM ’03)*, vol. 3, pp. 1702–1712, San Francisco, Calif, USA, March-April 2003.

[12] D. Li, X. Jia, and H. Du, “QoS topology control for nonhomogeneous ad hoc wireless networks,” *EURASIP Journal on Wireless Communications and Networking*, vol. 2006, Article ID 82417, 10 pages, 2006.

[13] W. Liu, L. Cui, and X. Niu, “EasiTPQ: QoS-based topology control in wireless sensor network,” *Journal of Signal Processing Systems*, vol. 51, no. 2, pp. 173–181, 2008.

[14] W.-Y. Cai and H.-B. Yang, “A multi-QoS optimization distributed topology control algorithm for wireless sensor networks,” in *Proceedings of the IET Conference on Wireless, Mobile and Sensor Networks (CCWMSN ’07)*, pp. 261–264, IEEE Press, Shanghai, China, December 2007.

[15] A. Cuzzocrea, D. Katsaros, Y. Manolopoulos et al., “EBC: a topology control algorithm for achieving high QoS in sensor networks,” in *Proceedings of the 6th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness*, pp. 613–626, Springer Press, Canary Islands, Spain, 2009.

[16] J. Ma, C. Qian, Q. Zhang, and L. M. Ni, “Opportunistic transmission based QoS topology control in wireless sensor networks,” in *Proceedings of the 5th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS ’08)*, pp. 422–427, IEEE Press, Atlanta, Ga, USA, October 2008.

[17] A. Forghani, A. M. Rahmani, and A. Khademzadeh, “QCTC: QoS-based clustering topology control algorithm for wireless sensor networks,” in *Proceedings of the International Conference on Advanced Computer Theory and Engineering (ICACTE ’08)*, pp. 966–970, IEEE Press, Phuket, Thailand, December 2008.

[18] G. Scutari, S. Barbarossa, and D. P. Palomar, “Potential games: a framework for vector power control problems with coupled constraints,” in *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’06)*, vol. 4, pp. 241–244, IEEE Press, Toulouse, France, May 2006.

[19] Y. Wang, F. Li, and T. A. Dahlberg, “Energy-efficient topology control for three-dimensional sensor networks,” *International Journal of Sensor Networks*, vol. 4, no. 1, pp. 68–78, 2008.

[20] R. B. Myerson, *Game Theory: Analysis of Conflict*, Harvard University Press, Cambridge, Mass, USA, 1991.

[21] E. Ansheleib, A. Dasgupta, E. Tardos et al., “Near-optimal network design with selfish agents,” in *Proceedings of the 36th Symposium on Theory of Computing*, pp. 511–520, ACM Press, Chicago, Ill, USA, 2004.

[22] S. Eidenbenz, V. S. Anil Kumar, and S. Zust, “Equilibria in topology control games for ad hoc networks,” in *Proceedings of the Joint Workshop on Foundations of Mobile Computing (DIALM-POMC ’03)*, pp. 2–11, ACM Press, San Diego, Calif, USA, 2003.

[23] D. Fudenberg and J. Tirole, *Game Theory*, MIT Press, Cambridge, Mass, USA, 1991.

[24] R. S. Komali and A. B. MacKenzie, “Distributed topology control in ad-hoc networks: a game theoretic perspective,” in *Proceedings of the 3rd IEEE Consumer Communications and Networking Conference (CCNC ’06)*, pp. 563–568, IEEE Press, Las Vegas, USA, January 2006.

[25] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated coverage and connectivity configuration in wireless sensor networks,” in *Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys ’03)*, pp. 28–39, ACM Press, Los Angeles, Calif, USA, November 2003.

[26] E. M. Sozer, M. Stojanovic, and J. G. Proakis, “Underwater acoustic networks,” *IEEE Journal of Oceanic Engineering*, vol. 25, no. 1, pp. 72–83, 2000.

[27] L. Berkhoiskikh and Y. Lysianov, *Fundamentals of Ocean Acoustics*, Springer, New York, NY, USA, 3rd edition, 2003.

[28] S. Ibrahim, J.-H. Cui, and R. Ammar, “Surface-level gateway deployment for underwater sensor networks,” in *Proceedings of the Military Communications Conference (MILCOM ’07)*, pp. 1–7, IEEE Press, San Francisco, Calif, USA, October 2007.

[29] D. Monderer and L. S. Shapley, “Potential games,” *Games and Economic Behavior*, vol. 14, no. 1, pp. 124–143, 1996.

[30] G. Tel, *Introduction to Distributed Algorithms*, Phei Press, Beijing, China, 2nd edition, 2003.

[31] A. Varga, “OMNeT++ - discrete event simulation system user manual [EB/OL],” http://www.omnet.org/.

[32] IEEE 802.15.4 2003, “Wireless Medium Access Control (MAC) and Physical layer (PHY) Specifications for low-rate wireless personal area networks.”
[33] J. Chang and L. Tassiulas, “Energy conserving routing in wireless ad-hoc networks,” in Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM ’00), pp. 22–31, IEEE Press, Tel Aviv, Israel, March 2000.
Submit your manuscripts at http://www.hindawi.com