The Geometry of Rank Decompositions of Matrix Multiplication I: 2×2 Matrices

Luca Chiantinia, Christian Ikenmeyerb, J. M. Landsbergc, and Giorgio Ottavianid

aDipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Universita’ di Siena, Siena, Italy; bMax Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany; cDepartment of Mathematics, Texas A&M University, College Station, TX, USA; dDipartimento di Matematica e Informatica U. Dini, Firenze, Italy

\begin{abstract}
This is the first in a series of papers on rank decompositions of the matrix multiplication tensor. In this paper, we establish general facts about rank decompositions of tensors, describe potential ways to search for new matrix multiplication decompositions, give a geometric proof of the theorem of Burichenko establishing the symmetry group of Strassen’s algorithm, and present two particularly nice subfamilies in the Strassen family of decompositions.
\end{abstract}

\section{Introduction}

This is the first in a planned series of papers on the geometry of rank decompositions of the matrix multiplication tensor $M_{(n)} \in \mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2}$. Our goals for the series are to determine possible symmetry groups for potentially optimal (or near optimal) decompositions of the matrix multiplication tensor and eventually to derive new decompositions based on symmetry assumptions. In this paper, we study Strassen’s rank 7 decomposition of $M_{(2)}$, which we denote Str. In the next paper [Ballard et al. XX], new decompositions of $M_{(3)}$ are presented and their symmetry groups are described. Although this project began before the papers [Burichenko 14, Burichenko 15] appeared, we have benefited greatly from them in our study.

Our study can be seen as the first experimental data point supporting a vague conjecture that among the (almost) optimal decompositions of matrix multiplication there should be at least one that is highly symmetric. This is inspired by Comon’s conjecture [Comon 02] that the optimal rank decomposition of a symmetric tensor is via symmetric rank one tensors, although that conjecture apparently needs modification [Shitov 17]. Of course, more experiments should (and will) follow to support this with more data points and to formulate a conjecture more clearly. We not only provide the 2×2 data point, but we also simplify the upcoming experiments by limiting the parts of the stabilizer that one should focus on.

We begin in Section 2 by reviewing Strassen’s algorithm as a tensor decomposition. Then in Section 3 we explain basic facts about rank decompositions of tensors with symmetry, in particular, that the decompositions come in families, and each member of the family has the same abstract symmetry group. While these abstract groups are all the same, for practical purposes (e.g., looking for new decompositions), some realizations are more useful than others. We review the symmetries of the matrix multiplication tensor in Section 4. After these generalities, in Section 5 we revisit the Strassen family and display a particularly convenient subfamily. We examine the Strassen family from a projective perspective in Section 6, which renders much of its symmetry transparent. Generalities on the projective perspective enable a very short proof of the upper bound in Burichenko’s determination of the symmetries of Strassen’s decomposition [Burichenko 14]. The projective perspective and emphasis on symmetry also enable two geometric proofs that Strassen’s expression actually is a decomposition of $M_{(2)}$, which we explain in Section 7.

\subsection{Notation and conventions}

A, B, C, U, V, W are vector spaces, $GL(A)$ denotes the group of invertible linear maps $A \rightarrow A$, and $PGL(A) = GL(A)/\mathbb{C}^*$ the group of projective transformations of projective space $\mathbb{P}A$. If $a \in A$, $[a]$ denotes the corresponding point in projective space. Σ_d denotes the permutation group on d elements. Irreducible representations of Σ_d are indexed by partitions. We let $[\pi]$ denote the irreducible Σ_d module associated with the partition π. For a matrix a, a_{ij} denotes the entry in the ith row and jth column.
2. Strassen’s algorithm

In 1968, V. Strassen set out to prove that the standard algorithm for multiplying \(n \times n \) matrices was optimal in the sense that no algorithm using fewer multiplications exists. Since he anticipated this would be difficult to prove, he tried to show it just for two by two matrices. His spectacular failure opened up a whole new area of research: Strassen’s algorithm for multiplying \(2 \times 2 \) matrices \(a, b \) using seven scalar multiplications [Strassen 69] is as follows: Set

\[
\begin{align*}
I &= (a_1^2 + a_2^2) (b_1^2 + b_2^2), \\
II &= (a_1^2 + a_2^2) b_1^2, \\
III &= a_1^2 (b_1^2 - b_2^2), \\
IV &= a_2^2 (-b_1^2 + b_2^2), \\
V &= (a_1^2 + a_2^2) b_2^2, \\
VI &= (-a_1^2 + a_2^2) (b_1^2 + b_2^2), \\
VII &= (a_2^2 - a_1^2) (b_1^2 + b_2^2).
\end{align*}
\]

Set

\[
\begin{align*}
c_1^1 &= I + IV - V + VII, \\
c_1^2 &= II + IV, \\
c_1^3 &= III + V, \\
c_2^2 &= I + III - II + VI.
\end{align*}
\]

Then \(c = ab \).

To better see symmetry, view matrix multiplication as a trilinear map \((X, Y, Z) \mapsto \text{trace}(XYZ)\) and in tensor form. To view it more invariantly, let \(U, V, W = \mathbb{C}^2 \), let \(A = U^* \otimes V, B = V^* \otimes W, C = W^* \otimes U \) and consider \(M_{(2)} \in (V \otimes U^*) \otimes (W \otimes V^*) \otimes (U \otimes W^*) \), where \(M_{(2)} = Id_U \otimes Id_V \otimes Id_W \) with the factors re-ordered (see, e.g., [Landsberg 12, Sec. 2.5.2]). Write

\[
u_1 = \begin{pmatrix}
1 \\
0
\end{pmatrix}, \quad
u_2 = \begin{pmatrix}
0 \\
1
\end{pmatrix}, \quad
u^1 = (1, 0) u^2 = (0, 1)
\]

and set \(v_j = w_j = u_j \) and \(v^j = w^j = u^j \). Then Strassen’s algorithm becomes the following tensor decomposition

\[
M_{(2)} = (v_1 u^1 + v_2 u^2) \otimes (w_1 v^1 + w_2 v^2)
\times (u_1 w^1 + u_2 w^2)
\times \left[
\begin{array}
\nu_1 u^1 \otimes w_2 (v^1 - u^2) \otimes (u_1 + u_2) w^2 + (v_1 + v_2) u^2 \otimes w_1 v^1 \otimes u_2 (w^1 - w^2)
\end{array}
\right]
\times \left[
\begin{array}
\nu_2 u^2 \otimes w_1 (v^2 - u^1) \otimes (u_1 + u_2) w^1 + (v_1 + v_2) u^1 \otimes w_2 v^2 \otimes u_1 (w^2 - w^1)
\end{array}
\right]
\times \left[
\begin{array}
\nu_1 (u^2 - v^1) \otimes (w_1 + w_2) v^1 \otimes u_2 w^2
\end{array}
\right].
\]

2.5.2)

Note that this is the sum of seven rank one tensors, while the standard algorithm in tensor format has eight rank one summands.

Introduce the notation

\[
\{(v_1 u^1 \otimes w_2 u^2 \otimes u_2 v^1)\}_{\mathbb{Z}_3} := v_1 u^1 \otimes w_2 u^2 \otimes u_2 v^1 + v_2 u^2 \otimes w_1 v^1 \otimes u_1 w^1 + v_1 u^1 \otimes w_1 v^1 \otimes u_2 w^2 + v_2 u^2 \otimes w_2 u^2 \otimes u_1 w^1.
\]

Then the decomposition becomes

\[
M_{(2)} = (v_1 u^1 + v_2 u^2) \otimes (w_1 v^1 + w_2 v^2) \otimes (u_1 w^1 + u_2 w^2)
\times \left[
\begin{array}
\nu_1 u^1 \otimes w_2 (v^1 - u^2) \otimes (u_1 + u_2) w^2 + (v_1 + v_2) u^2 \otimes w_1 v^1 \otimes u_2 (w^1 - w^2)
\end{array}
\right]
\times \left[
\begin{array}
\nu_2 u^2 \otimes w_1 (v^2 - u^1) \otimes (u_1 + u_2) w^1 + (v_1 + v_2) u^1 \otimes w_2 v^2 \otimes u_1 (w^2 - w^1)
\end{array}
\right]
\times \left[
\begin{array}
\nu_1 (u^2 - v^1) \otimes (w_1 + w_2) v^1 \otimes u_2 w^2
\end{array}
\right].
\]

From this presentation, we immediately see there is a cyclic \(\mathbb{Z}_3 \) symmetry by cyclically permuting the factors \(A, B, C \). The \(\mathbb{Z}_3 \) acting on the rank one elements in the decomposition has three orbits. If we exchange \(u_1 \leftrightarrow u_2, \ u^1 \leftrightarrow u^2, \ v^1 \leftrightarrow v^2, \) etc., the decomposition is also preserved by this \(\mathbb{Z}_2 \), with orbits (1–5) and the exchange of the triples, call this an internal \(\mathbb{Z}_2 \). These symmetries are only part of the picture.

3. Symmetries and families

Let \(T \in (\mathbb{C}^N)^{\otimes k} \). We say \(T \) has rank one if \(T = a_1 \otimes \cdots \otimes a_k \) for some \(a_i \in \mathbb{C}^N \). Define the symmetry group of \(T, G_T \subset (GL_N^k) \times \mathbb{S}_k \) to be the subgroup preserving \(T \), where \(\mathbb{S}_k \) acts by permuting the factors.

For a rank decomposition \(T = \sum_{j=1}^t t_j \) with each \(t_j \) of tensor rank one, define the set \(S := \{ t_1, \ldots, t_r \} \), which we also call the decomposition, and the symmetry group of the decomposition \(\Gamma_S := \{ g \in G_T \mid g \cdot S = S \} \). Let \(\Gamma_S = \Gamma_S \cap (GL(A) \times GL(B) \times GL(C)) \). Let Str denote Strassen’s decomposition of \(M_{(2)} \).

If \(g \in G_T \), then \(g \cdot S := \{ g t_1, \ldots, g t_r \} \) is also a rank decomposition of \(T \). Moreover:

Proposition 3.1. For \(g \in G_T \), \(\Gamma_g S = g \Gamma_S g^{-1} \).

Proof. Let \(h \in \Gamma_S \), then \(g h g^{-1}(g t_j) = g (h t_j) \in g \cdot S \) so \(\Gamma_g S \subseteq g \Gamma_S g^{-1} \), but the construction is symmetric in \(\Gamma_g S \) and \(\Gamma_S \). \(\square \)

Similarly for a polynomial \(P \in S^d \mathbb{C}^N \) and a Waring decomposition \(P = \ell_1^d + \cdots + \ell_r^d \) for some \(\ell_j \in \mathbb{C}^N \), and \(g \in G_P \subset GL_N \), the same result holds where \(S = \{ \ell_1, \ldots, \ell_r \} \).

In summary, algorithms come in \(\text{dim}(G_T) \)-dimensional families, and each member of the family has the same abstract symmetry group.

We recall the following theorem of de Groote.

Theorem 3.1. [de Groote 78] The set of rank seven decompositions of \(M_{(2)} \) is the orbit \(G_{M_{(2)}} \cdot \text{Str} \).
4. Symmetries of \(M_{(n)} \)

We review the symmetry group of the matrix multiplication tensor
\[
G_{M_{(n)}} := \{ g \in GL_{n^3}^* \times \mathfrak{S}_3 \mid g \cdot M_{(n)} = M_{(n)} \}.
\]

One may also consider matrix multiplication as a polynomial that happens to be multi-linear, \(M_{(n)} \in S^3(A \oplus B \oplus C) \), and consider
\[
\tilde{G}_{M_{(n)}} := \{ g \in GL(A \oplus B \oplus C) \mid g \cdot M_{(n)} = M_{(n)} \}.
\]

Note that \((GL(A) \times GL(B) \times GL(C)) \times \mathfrak{S}_3 \subseteq GL(A \oplus B \oplus C)\), so \(G_{M_{(n)}} \subseteq \tilde{G}_{M_{(n)}} \).

It is clear that \(PGL_n^3 \times PGL_n^3 \times PGL_n \times \mathbb{Z}_3 \subseteq G_{M_{(n)}} \), the \(\mathbb{Z}_3 \) because trace(\(XYZ) = \text{trace}(YXZ) \), and the \(PGL_n^3 \)'s appear instead of \(GL_n^3 \) because if we rescale by \(\lambda \text{Id}_U \), then \(U^* \) scales by \(\frac{1}{\lambda} \) and there is no effect on the decomposition. Moreover since trace(\(XYZ) = \text{trace}(YXZ) \), we have \(PGL_n^3 \times D_3 \subseteq G_{M_{(n)}} \), where the dihedral group \(D_3 \) is isomorphic to \(\mathfrak{S}_3 \), but we denote it by \(D_3 \) to avoid confusion with a second copy of \(\mathfrak{S}_3 \) that will appear. We emphasize that this \(\mathbb{Z}_2 \) is not contained in either the \(\mathfrak{S}_3 \) permuting the factors or the \(PGL(A) \times PGL(B) \times PGL(C) \) acting on them. In \(\tilde{G}_{M_{(n)}} \), we can also rescale the three factors by non-zero complex numbers \(\lambda, \mu, \nu \) such that \(\lambda \mu \nu = 1 \), so we have \((C^*)^2 \times PGL_n^3 \times D_3 \) isomorphic to \(\mathfrak{S}_3 \).

We will be primarily interested in \(G_{M_{(n)}} \). The first equality in the following proposition appeared in [de Groot 78, Thms. 3.3,3.4] and [Burichenko 15, Prop. 4.7] with ad hoc proofs. The second assertion appeared in [Gesmundo 16]. We reproduce the proof from [Gesmundo 16], as it is a special case of the result there.

Proposition 4.1. \(G_{M_{(n)}} = PGL_n^3 \times D_3 \) and \(\tilde{G}_{M_{(n)}} = (C^*)^2 \times PGL_n^3 \times D_3 \).

Proof. It will be sufficient to show the second equality because the \((C^*)^2 \) acts trivially on \(A \oplus B \oplus C \). For polynomials, we use the method of [Bermudez et al. 14, Prop. 2.2] adapted to reducible representations. A straight-forward Lie algebra calculation shows the connected component of the identity of \(\tilde{G}_{M_{(n)}} \) is \(\tilde{G}^0_{M_{(n)}} = (C^*)^2 \times PGL_n^3 \). As was observed in [Bermudez et al. 14] the full stabilizer group must be contained in its normalizer \(N(\tilde{G}^0_{M_{(n)}}) \). But the normalizer is the automorphism group of the marked Dynkin diagram for \(A \oplus B \oplus C \), which in our case is

There are three triples of marked diagrams. Call each column consisting of three marked diagrams a group. The automorphism group of the picture is \(D_3 = \mathbb{Z}_2 \times \mathbb{Z}_3 \), where the \(\mathbb{Z}_2 \) may be seen as flipping each diagram, exchanging the first and third diagram in each group, and exchanging the first and second group. The \(\mathbb{Z}_3 \) comes from cyclically permuting each group and the diagrams within each group.

Regarding the symmetries discussed in Section 2, the \(\mathbb{Z}_3 \) is in the \(\mathfrak{S}_3 \) in \(PGL_2^3 \times \mathfrak{S}_3 \) and the internal \(\mathbb{Z}_2 \) is in \(\Gamma_{Str} \subseteq PGL_2^3 \).

Thus if \(S \) is (the set of points of) a rank decomposition of \(M_{(n)} \), then \(\Gamma_S \subseteq \{(GL(U) \times GL(V) \times GL(W)) \times \mathbb{Z}_3\} \times \mathbb{Z}_2 \).

We call a \(\mathbb{Z}_3 \subseteq \Gamma_S \) a standard cyclic symmetry if it corresponds to \((\text{Id}, \text{Id}, \text{Id}) \cdot \mathbb{Z}_3 \subseteq (GL(U) \times GL(V) \times GL(W)) \times \mathbb{Z}_3 \).

We call a \(\mathbb{Z}_2 \subseteq \Gamma_S \) a convenient transpose symmetry if it corresponds to the symmetry of \(M_{(n)} \) given by \(a \otimes b \otimes c \mapsto \tilde{a}^T \otimes \tilde{c}^T \otimes b^T \). The convenient transpose symmetry lies in \((GL(A) \times GL(B) \times GL(C)) \times \mathfrak{S}_3 \subseteq (GL(A) \times GL(B) \times GL(C)) \times \mathfrak{S}_3 \), where the component of the transpose in \(\mathfrak{S}_2 \) switches the last two factors and the component in \(GL(A) \times GL(B) \times GL(C) \) sends each matrix to its transpose.

Remark 4.1. Since \(M_{(n)} \in (U^* \otimes U)^{\otimes 3} \) one could consider the larger symmetry group considering \(M_{(n)} \in U^{\otimes 3} \otimes U^* \otimes 3 \) as is done in [Burichenko 14].

5. The Strassen family

Since \(PGL_2^3 \subseteq G_{M_{(n)}} \), we can replace \(u_1, u_2 \) by any basis of \(U \) in Strassen's decomposition, and similarly for \(v_1, v_2 \) and \(w_1, w_2 \). In particular, we need not have \(u_1 = v_1 \) etc. When we do that, the symmetries become conjugated by our change of basis matrices. If we only use elements of the diagonal \(PGL_2 \) in \(PGL_2^3 \), the \(\mathbb{Z}_3 \)-symmetry remains standard. More subtly, the \(\mathbb{Z}_3 \)-symmetry remains the standard cyclic permutation of factors if we apply elements of \(\mathbb{Z}_3 \) in any of the \(PGL_2 \)'s, i.e., setting \(\omega = e^{2\pi i/3} \), we can apply any of
\[
\rho(\omega) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \text{ and } \rho(\omega^2) = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}
\]
to \(U, V \) or \(W \).
For example, if we apply the change of basis matrices
\[g_U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \in GL(U), \ g_V = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \in GL(V), \]
\[g_w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in GL(W), \]
and take the image vectors as our new basis vectors, then setting \(u_3 = -(u_1 + u_2) \) and \(u' = u' - u' \) and similarly for the \(v \)'s and \(w \)'s, the decomposition becomes:
\[
M_{(2)} = -(v_1 u' + v_3 u') \otimes (v_2 v' + w_2 v') \otimes (u_4 w'' + u_4 w'') \quad (5-8)
\]
\[
+ v_1 u' \otimes w_1 v' \otimes u_1 w' \\
+ v_2 u' \otimes w_2 v' \otimes u_2 w'' \\
+ v_3 u' \otimes w_3 v' \otimes u_3 w''
\]
\[
(5-9) \\
(5-10) \\
(5-11)
\]
\[
- (v_1 u' \otimes w_2 v' \otimes u_3 w'')_{Z_3}.
\]
\[
(5-12)
\]

Remark 5.1. The matrices in (5–12) are all nilpotent, and none of the other matrices appearing in this decomposition are.

Notice that for the first term \(v_1 u' + v_2 u' = v_2 u' + v_3 u' = v_3 u' + v_1 u' \). Here there is a standard \(Z_3 \subset \mathbb{G}_3 \). There are four fixed points for this standard \(Z_3 \): (5–8),(5–9),(5–10),(5–11). (In any element of the Strassen family there will be some \(Z_3 \) with four fixed points, but the \(Z_3 \) need not be standard). There is also a standard \(Z_3 \subset PGL_2^3 \) embedded diagonally, that sends \(u_1 \rightarrow u_2 \rightarrow u_3 \), and acting by the inverse matrix on the dual basis, and similarly for the \(v \)'s and \(w \)'s. Under this action (5–8) is fixed and we have the cyclic permutation (5–9)→(5–11)→(5–10).

If we take the standard vectors of (2–1) in each factor, we get
\[
M_{(2)} = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}
\]
\[
+ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}
\]
\[
(5-13) \\
(5-14) \\
(5-15)
\]

If we want to see the \(Z_3 \subset PGL_2^3 \) more transparently, it is better to diagonalize the \(Z_3 \) action so the first matrix becomes
\[
a = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \]
where \(\omega := \exp(\frac{-2\pi i}{3}) \). Then for \(\iota := i/\sqrt{3}, \ \sigma := \exp(\frac{2\pi i}{3})/\sqrt{3} \) we get
\[
M_{(2)} = a \otimes^3 + b \otimes^3 + (\rho(b)) \otimes^3 + (\rho^2(b)) \otimes^3
\]
\[
+ (c \otimes \rho(c) \otimes \rho^3(c))_{Z_3},
\]
where
\[
b := \begin{pmatrix} \sigma & \iota \\ \iota & \sigma \end{pmatrix}, \ c := \begin{pmatrix} \iota & \iota & \iota \end{pmatrix},
\]
\[
\rho : \mathbb{C}^{2 \times 2} \rightarrow \mathbb{C}^{2 \times 2}, \ \rho(X) = aXa^{-1}.
\]

Note that \(a + b + c = 0 \).

6. Projective perspective

Although the above description of the Strassen family of decompositions for \(M_{(2)} \) is satisfying, it becomes even more transparent with a projective perspective.

6.1. \(M_{(2)} \) viewed projectively

Recall that \(PGL_2 \) acts simply transitively on the set of triples of distinct points of \(\mathbb{P}^1 \). So to fix a decomposition in the family, we select a triple of points in each space. We focus on \(PU \). Call the points \([u_1], [u_2], [u_3] \). Then these determine three points in \(\mathbb{P}U^*, [u_{1 \perp}], [u_{2 \perp}], [u_{3 \perp}] \). We choose representatives \(u_1, u_2, u_3 \) satisfying \(u_1 + u_2 + u_3 = 0 \). We could have taken any linear relation, it just would introduce coefficients in the decomposition. We take the most symmetric relation to keep all three points on an equal footing. Similarly, we fix the scales on the \(u_{1 \perp} \) by requiring \(u_{1 \perp}(u_{j+1} - 1) = 1 \) and \(u_{1 \perp}(u_{j+1}) = -1 \), where indices are considered mod \(Z_3 \), so \(u_{3 \perp} = u_1 \) and \(u_{1 \perp} = u_3 \).

In comparison with what we had before, letting the old indices be hatted, we have \(\hat{u}_1 = u_1, \ \hat{u}_2 = u_2, \ \hat{u}_3 = -u_3 \) and \(\hat{u}_1 = u_{1 \perp}, \ \hat{u}_2 = -u_{1 \perp}, \ \hat{u}_3 = -u_{3 \perp} \). The effect is to make the symmetries of the decomposition more transparent. Our identifications of the ordered triples \(\{u_1, u_2, u_3\} \) and \(\{v_1, v_2, v_3\} \) exactly determine a linear isomorphism \(a_0 : U \rightarrow V \), and similarly for the other pairs of vector spaces. Note that \(a_0 = v_j \otimes u_{j+1 \perp} + v_{j+1} \otimes u_{j+2 \perp} \) for any \(j = 1, 2, 3 \). Then
\[
M_{(2)} = a_0 \otimes b_0 \otimes c_0 + ((v_2 \otimes u_{1 \perp}) \otimes (u_1 \otimes v_{3 \perp}) \otimes (u_3 \otimes u_{2 \perp}))_{Z_3}
\]
\[
+ ((v_3 \otimes u_{1 \perp}) \otimes (u_1 \otimes v_{3 \perp}) \otimes (u_2 \otimes u_{3 \perp}))_{Z_3}.
\]

With this presentation, the \(\mathbb{G}_3 \subset PGL_2 \subset PGL_2^3 \) acting by permuting the indices transparently preserves the decomposition, with two orbits, the fixed point \(a_0 \otimes b_0 \otimes c_0 \) and the orbit of \((v_2 \otimes u_{1 \perp}) \otimes (u_1 \otimes v_{3 \perp}) \otimes (u_3 \otimes u_{2 \perp}) \).

Remark 6.1. Note that here there are no nilpotent matrices appearing.

Remark 6.2. The geometric picture of the decomposition of \(M_{(2)} \) can be rephrased as follows. Consider the space of linear isomorphisms \(U \rightarrow V \) (mod scalar multiplication) as the projective space \(\mathbb{P}^3 \) of \(2 \times 2 \) matrices, in which
we fix coordinates, coming from the choice of basis for U, V. The choice of basis also determines an identification between U and V. Then a_0 represents in \mathbb{P}^4 a point of rank 2, which can be taken as the identity in the choice of coordinates. The other six points $Q_i = u_i \otimes u_i^\perp$ appearing in the first factor of the decomposition can be determined as follows. The points $P_i = u_i \otimes u_i^\perp$ (in the identification) represent the choice of three points in the conic obtained by cutting with a plane (e.g., the plane of traceless matrices) the quadric $q = \text{Seg}(\mathbb{P}^4 \times \mathbb{P}^4)$ of matrices of rank 1. Through each P_i, one finds lines of the two rulings of q, call then L_i, M_i. Then the six points Q_i are given by:

$$
Q_1 = L_1 \cap M_2, \quad Q_2 = L_2 \cap M_3, \quad Q_3 = L_3 \cap M_1
$$

$$
Q_4 = M_1 \cap L_2, \quad Q_5 = M_2 \cap L_3, \quad Q_6 = M_3 \cap L_1.
$$

An analog of the construction determines the seven points in the other two factors of the tensor product, so that the seven final summands can be determined combinatorially and the \mathbb{Z}_2, \mathbb{Z}_3 symmetries can be easily recognized.

The geometric construction can be generalized to higher-dimensional spaces, so it could provide insight for extensions to larger matrix multiplication tensors. The difficult part is to determine how one should combine the points constructed in each factor of the tensor product, in order to produce a decomposition of $M(a)$.

When we view (5–8) projectively, we get

$$
M(2) = \left(v_1 u_1^{1+} + v_2 u_2^{1+} \right) \otimes \left(w_1 v_1^{1+} + w_2 v_2^{1+} \right)
$$

$$
\times \left(u_1 w_1^{1+} + u_2 w_2^{1+} \right) + v_1 u_1^{2+} \otimes w_1 v_1^{2+} \otimes u_1 w_1^{2+}
$$

$$
+ v_2 u_2^{3+} \otimes w_2 v_2^{3+} \otimes u_2 w_2^{3+}
$$

$$
- \left(v_1 u_1^{1+} \otimes w_2 v_2^{1+} \otimes u_3 w_3^{1+} \right)_{\mathbb{Z}_3}.
$$

With this presentation, $\mathcal{G}_3 \subset \Gamma^*_S$ is again transparent.

6.2. Symmetries of Γ^*_Str

Let $M(a) = \sum_{j=1}^r t_j$ be a rank decomposition for $M(a)$ and write $t_j = a_j \otimes b_j \otimes c_j$. Let $r_j = (r_{a_j}, r_{b_j}, r_{c_j}) := (\text{rank}(a_j), \text{rank}(b_j), \text{rank}(c_j))$, and let \bar{r}_j denote the unordered triple. The following proposition is clear.

Proposition 6.1. Let S be a rank decomposition of $M(a)$.

Partition S by unordered rank triples into disjoint subsets: $S := (S_{1,2,1}, S_{1,2,2}, \ldots, S_{m,n,n})$. Then Γ_S preserves each $S_{i,t,w}$.

We can say more about rank one elements:

If $a \in U^* \otimes V$ and $\text{rank}(a) = 1$, then there are unique points $[\mu] \in \mathbb{P}U^*$ and $[v] \in \mathbb{P}V$ such that $[a] = [\mu \otimes v]$.

Now given a decomposition S of $M(a)$, define $S_U \subset \mathbb{P}U^*$ and $S_V \subset \mathbb{P}V$ to correspond to the elements appearing in $S_{1,1,1}$. Then Γ_S preserves S_U and S_V.

In the case of Strassen's decomposition Str_U is a configuration of three points in \mathbb{P}^1, so a priori we must have $\Gamma_{\text{Str}}^* \cap \text{PGL}(U) \subset \mathcal{G}_3$. If we insist on the standard \mathbb{Z}_3-symmetry (i.e., restrict to the subfamily of decompositions where there is a standard cyclic symmetry), there is just one PGL_2 and we have $\Gamma_{\text{Str}}^* \subseteq \mathcal{G}_3$. Recall that this is no loss of generality as the full symmetry group is the same for all decompositions in the family. We conclude $\Gamma_{\text{Str}} \subseteq \mathcal{G}_3 \times D_3$. We have already seen $\mathcal{G}_3 \times D_3 \subset \Gamma_{\text{Str}}$, Burichenko [Burichenko 14] shows that in addition there is a non-convenient \mathbb{Z}_2 obtained by taking the convenient \mathbb{Z}_2 (which sends the decomposition to another decomposition in the family) and then conjugating by $\left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right) \subset \text{PGL}_2 \subset \text{PGL}_2^{\oplus 3}$ which sends the decomposition back to Str. We recover (with a new proof of the upper bound) Burichenko’s theorem.

Theorem 6.1. [Burichenko 14] The symmetry group of Strassen’s decomposition of $M(2)$ is $\mathcal{G}_3 \times D_3 \subset \text{PGL}_2^{\oplus 3} \times D_3 = G_{M(2)}$.

7. How to prove Strassen’s decomposition is actually matrix multiplication

The group Γ_{Str} acts on $(U^* \otimes U)^{\oplus 3}$ (in different ways, depending on the choice of decomposition in the family). Say we did not know Str but did know its symmetry group. Then we could look for it inside the space of Γ_{Str} invariant tensors. In future work, we plan to take candidate symmetry groups for matrix multiplication decompositions and look for decompositions with elements from these subspaces. In this paper, we simply illustrate the idea by going in the other direction: furnishing a proof that Str is a decomposition of $M(2)$, by using the invariants to reduce the computation to a simple verification. We accomplish this in Section 7.2. We first give yet another proof that Strassen’s decomposition is matrix multiplication using the fact that $M(2)$ is characterized by its symmetries.

7.1. Proof that Strassen’s algorithm works via characterization by symmetries

Here is a proof that illustrates another potentially useful property of $M(a)$: it is characterized by its symmetry group [Gesmundo 16]. Any $T \in (U^* \otimes V) \otimes (V^* \otimes W) \otimes (W^* \otimes U)$ that is invariant under $\text{PGL}(U) \times \text{PGL}(V) \times \text{PGL}(W) \times D_3$ is up to scale to $M(a)$. Any $T \in (U^* \otimes V) \otimes (V^* \otimes W) \otimes (W^* \otimes U)$ that is invariant under a group isomorphic to
$PGL(U) \times PGL(V) \times PGL(W) \times D_3$ is $GL(A) \times GL(B) \times GL(C) \times S_3$-equivalent up to scale to M_n.

Remark 7.1. M_n is also characterized as a polynomial by its symmetry group G_{M_n}, and any $T \in (U^* \otimes V) \otimes (V^* \otimes W) \otimes (W^* \otimes U)$ that is invariant under $PGL(U) \times PGL(V) \times PGL(W)$ is up to scale to M_n. However, it is not characterized up to $GL(A) \times GL(B) \times GL(C)$-equivalence by G_{M_n} in the strong sense of up to isomorphism because $(X, Y, Z) \mapsto \text{trace}(XYZ)$ has an isomorphic symmetry group but is not $GL(A) \times GL(B) \times GL(C)$-equivalent.

By the above discussion, we only need to check the right-hand side of $(6-13)$ is invariant under $PGL(U) \times PGL(V) \times PGL(W)$ and to check its scale. But by symmetry, it is sufficient to check it is invariant under $PGL(U)$. For this it is sufficient to check that it is annihilated by $s(U)$, and again by symmetry, it is sufficient to check it is annihilated by $u_1 \otimes u_1^\perp$, which is a simple calculation.

7.2. Spaces of invariant tensors

As an S_3-module $A = U^* \otimes V = [21] \otimes [21] = [3] \oplus [21] \oplus [1^3]$. In what follows we use the decompositions:

- $S^2[21] = [3] \oplus [21]
- \Lambda^2[21] = [1^3]
- S^3[21] = [3] \oplus [21] \oplus [1^3].$

The space of standard cyclic Z_3-invariant tensors in $A^\otimes 3 = S^3A \oplus S^{21}A^\otimes 2 \oplus \Lambda^3A$ is $S^3A \oplus \Lambda^3A$. Inside the space of Z_3-invariant vectors we want to find instances of the trivial S_3-module $[3]$ in $S^3([3] \oplus [2, 1] \oplus [1^3]) \oplus \Lambda^3([3] \oplus [2, 1] \oplus [1^3])$. We have

$$S^3([3] \oplus [2, 1] \oplus [1^3]) = S^3[3] \oplus S^3[2, 1] \oplus S^3[1^3] \oplus [3] \times \otimes S^2[2, 1] \oplus [3] \otimes [21] \otimes [1^3] \oplus [21] \otimes S^3[1^3] \oplus S^3[21] \oplus [13] \oplus [21] \otimes S^1[1^3] \otimes S^1[1^3]$$

and four factors contain (or are) a trivial representation: $S^3[3], [3] \otimes S^2[2, 1], [3] \otimes S^2[1^3], S^3[21]$. Similarly

$$\Lambda^3([3] \oplus [21] \oplus [1^3]) = \Lambda^2[21] \otimes [3] \oplus \Lambda^2[21] \times \otimes [1^3] \oplus [3] \otimes [21] \otimes [1^3]$$

of which $\Lambda^2[21] \otimes [1^3]$ is the unique trivial submodule.

In summary:

Proposition 7.1. The space of $S_3 \times Z_3$ invariants in $(U^* \otimes U)^\otimes 3$ when $\dim U = 2$ is five dimensional.

By a further direct calculation we obtain.

Proposition 7.2. The space of $S_3 \times D_3$ invariants in $(U^* \otimes U)^\otimes 3$ when $\dim U = 2$ is four dimensional.

So if we knew there were an $S_3 \times D_3$ invariant decomposition of $M_{(2)}$, it would be a simple calculation to find it as a linear combination of four basis vectors of the $S_3 \times D_3$-invariant tensors. In future work, we plan to assume similar invariance for larger matrix multiplication tensors to shrink the search space to manageable size.

Acknowledgments

This project began at a November 2013 “Research in pairs” program at Mathematisches Forschungsinstitut Oberwolfach. The authors thank the institute for its hospitality and a great work environment. Christian Ikenmeyer was at Texas A&M University during most of the time this research was conducted.

Funding

J. M. Landsberg is supported by NSF grant DMS-1405348.

References

[Ballard et al. XX] G. Ballard, C. Ikenmeyer, J. M. Landsberg, and N. Ryder. “The Geometry of Rank Decompositions of Matrix Multiplication II: 3x3 Matrices.” Preprint.

[Bermudez et al. 14] Bermudez, S. Garibaldi, and V. Larsen. "Linear Preservers and Representations with a 1-Dimensional Ring of Invariants." Trans. Amer. Math. Soc. 366:9 (2014), 4755–4780. MR 3217699

[Burichenko 14] V. P. Burichenko. "On Symmetries of the Strassen Algorithm." CoRR abs/1408.6273, 2014.

[Burichenko 15] V. P. Burichenko. "Symmetries of Matrix Multiplication Algorithms. I." CoRR abs/1508.01110, 2015.

[Comon 02] P. Comon. “Tensor Decompositions, State of the Art and Applications.” In *Mathematics in Signal Processing V*, edited by J. G. McWhirter and I. K. Proulxor, pp. 1–24. Oxford, UK: Clarendon Press, 2002. arXiv:0905.0454v1.

[de Groote 78] H. F. de Groote. “On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings. I. The Isotropy Group of a Bilinear Mapping.” Theoret. Comput. Sci. 7:1 (1978), 1–24. MR 0506377

[Comon 02] P. Comon. “Tensor Decompositions, State of the Art and Applications.” In *Mathematics in Signal Processing V*, edited by J. G. McWhirter and I. K. Proulxor, pp. 1–24. Oxford, UK: Clarendon Press, 2002. arXiv:0905.0454v1.

[Comon 02] P. Comon. “Tensor Decompositions, State of the Art and Applications.” In *Mathematics in Signal Processing V*, edited by J. G. McWhirter and I. K. Proulxor, pp. 1–24. Oxford, UK: Clarendon Press, 2002. arXiv:0905.0454v1.

[Gesmundo 16] F. Gesmundo. “Geometric Aspects of Iterated Matrix Multiplication.” J. Algebra 461 (2016), 42–64. MR 3513064

[Gesmundo 16] F. Gesmundo. “Geometric Aspects of Iterated Matrix Multiplication.” J. Algebra 461 (2016), 42–64. MR 3513064

[Landsberg 12] J. M. Landsberg. *Tensors: Geometry and Applications, Graduate Studies in Mathematics*, vol. 128, Providence, RI: American Mathematical Society, 2012. MR 2865915.

[Shitov 17] Y. Shitov. “A Counterexample to Comon’s Conjecture.” arXiv:1705.08740 (2017).

[Strassen 69] V. Strassen. “Gaussian Elimination is not Optimal.” Numer. Math. 13 (1969), 354–356. MR 40 #2223