THE TWISTED SATAKE ISOMORPHISM AND CASSELMAN-SHALIKA FORMULA

NADYA GUREVICH

Abstract. For an arbitrary split adjoint group we identify the unramified Whittaker space with the space of skew-invariant functions on the lattice of coweights and deduce from it the Casselman-Shalika formula.

1. Introduction

The Casselman-Shalika formula is a beautiful formula relating values of special functions on a p-adic group to the values of finite dimensional complex representations of its dual group. Further, the formula is particularly useful in the theory of automorphic forms for studying L-functions.

In this note we provide a new approach to (and a new proof of) Casselman-Shalika formula for the value of spherical Whittaker functions.

To state our results we fix some notations. Let G be a split adjoint group over a local field F. We fix a Borel subgroup B with unipotent radical N, and consider its Levi decomposition $B = NT$, where T is the maximal split torus. Furthermore, we fix a maximal compact subgroup K.

Let Ψ be a non-degenerate complex character of N. For an irreducible representation π of G it is well known that $\dim \text{Hom}_G(\pi, \text{ind}_N^G \Psi) \leq 1$ and in case it is non-zero we say that the representation π is generic. The Whittaker model of such a generic irreducible representation π of G is the image of an embedding

$$W : \pi \hookrightarrow \text{Ind}_N^G \Psi.$$

Let now π be a generic irreducible representation. Recall that π is called unramified if $\pi^K \neq \{0\}$ and that in this case $\pi^K = \mathbb{C} \cdot v_0$. Here v_0 is a spherical vector. The explicit formula for the function $W(v_0)$ was given in [CS] and is commonly called the Casselman-Shalika formula.

Recall that there is a bijection between irreducible unramified representations of G and the spectrum of the spherical Hecke algebra $H_K = C_c(K \backslash G/K)$. This commutative algebra admits the following description. Let Λ be the coweight lattice of G. Recall that Λ is canonically identified with $T/(T \cap K)$. The Weyl group W acts naturally on the lattice Λ. Denote by $\mathbb{C}[\Lambda]^W$ the algebra of W-invariant elements in $\mathbb{C}[\Lambda]$.

The Satake isomorphism

$$S : H_K \simeq (\text{ind}_{T \cap K}^T 1)^W = \mathbb{C}[\Lambda]^W$$
is defined by
\[S(f)(t) = \delta_{B}^{-1/2}(t) \int_{N} f(nt) \, dn \]

The main result of the paper is a description of the Whittaker spherical space \((\text{Ind}_{N}^{G} \Psi)^{K} \) as a concrete \(H_{K} \simeq \mathbb{C}[\Lambda]^{W} \)-module. Namely, it is identified with the space \(\mathbb{C}[\Lambda]^{W,-} \) of functions on the lattice of coweights, that are skew-invariant under the action of the Weyl group \(W \). More formally,

Theorem 1.1. There is a canonical isomorphism
\[j : (\text{ind}_{N}^{G} \Psi)^{K} \to \mathbb{C}[\Lambda]^{W,-}, \]
compatible with Satake isomorphism \(S : H_{K} \simeq \mathbb{C}[\Lambda]^{W} \).

From this result it easily follows that the twisted Satake map
\[S_{\Psi} : C_{c}(G/K) \to (\text{ind}_{N}^{G} \Psi)^{K}, \quad S_{\Psi}(f)(t) = \int_{N} f(nt) \overline{\Psi(n)} \, dn \]
sends the spectral basis of the spherical Hecke algebra \(H_{K} = C_{c}(K \backslash G/K) \) to the basis of characteristic functions of \((\text{ind}_{N}^{G} \Psi)^{K} \). In [FGKV], it is explained that this latter result is equivalent to the Casselman-Shalika formula in [CS] (see section 6 for a full account). Thus, we obtain a proof of the Casselman-Shalika formula that does not use the uniqueness of the Whittaker model.

Let us now quickly describe our proof of the main result. It was inspired by a new simple proof [S] by Savin of the Satake isomorphism of algebras
\[S : H_{K} \simeq (\text{ind}_{T \cap K}^{T} 1)^{W} = \mathbb{C}[\Lambda]^{W}. \]

Savin has observed that the Satake map \(S : C_{c}(G/K) \to (\text{ind}_{N}^{G} 1)^{K} \) restricted to
\[C_{c}(I \backslash G/K) = (\text{ind}_{I}^{G} 1)^{K}, \]
where \(I \) is an Iwahori subgroup, defines an explicit isomorphism
\[(\text{ind}_{I}^{G} 1)^{K} \simeq \text{ind}_{T \cap K}^{T} 1 = \mathbb{C}[\Lambda]. \]

Restricting \(S_{\Psi} \) to \((\text{ind}_{I}^{G} 1)^{K} \), we prove there there exists an isomorphism
\[j : (\text{ind}_{N}^{G} \Psi)^{K} \to \mathbb{C}[\Lambda]^{W,-} \]
of \(H_{K} \simeq \mathbb{C}[\Lambda]^{W} \)-modules, making the following diagram
\[
\begin{array}{ccc}
(\text{ind}_{I}^{G} 1)^{K} & \xrightarrow{S_{\Psi}} & (\text{ind}_{N}^{G} \Psi)^{K} \\
\downarrow S & & \downarrow j \\
\mathbb{C}[\Lambda] & \xrightarrow{alt} & \mathbb{C}[\Lambda]^{W,-}
\end{array}
\]
Commutative. Here the space $\mathbb{C}[\Lambda]^W$ is a space of W skew-invariant elements of $\mathbb{C}[\Lambda]$ and the alternating map alt are defined in the section 3.

Acknowledgements. I wish to thank Gordan Savin for explaining his proof of the Satake isomorphism and encouraging me to prove the Casselman-Shalika formula. I am most grateful to Joseph Bernstein for his attention and his help in formulating the main result. I thank Roma Bezrukavnikov for answering my questions and Eitan Sayag for his suggestions for improving the presentation. Part of this work was done during the workshop in RIMS. I wish to thank the organizers for their hospitality. My research is partly supported by ISF grant 1691/10.

2. Notations

Let F be a local non-archimedean field and let q be a characteristic of its residue field. Let G be a split adjoint group defined over F. Denote by B a Borel subgroup of G, by N its unipotent radical, by \bar{N} the opposite unipotent radical, by T the maximal split torus and by W the Weyl group.

Denote by R the set of positive roots of G and by Δ the set of simple roots. For each $\alpha \in R$ let $x_\alpha : F \to N$ denote the one parametric subgroup corresponding to the root α and $N_\alpha^k = \{x_\alpha(r) : |r| \leq q^{-k}\}$.

Let Ψ be a non-degenerate complex character of N of conductor 1, i.e. for any $\alpha \in \Delta$

$$\Psi|_{N_\alpha^{0}} \neq 1, \Psi|_{N_\alpha^{1}} = 1.$$

Let K be a maximal compact subgroup of G. Then $T_K = T \cap K$ is a maximal compact subgroup of T. Choose an Iwahori subgroup $I \subset K$ such that $I \cap N = N_\alpha^1$ for all $\alpha \in R$. In particular $\Psi|_{N \cap I} = 1$, but $\Psi|_{N_\alpha^{0}} \neq 1$ for any $\alpha \in \Delta$.

We fix a Haar measure on G normalized such that the measure of I is one.

The coweight lattice Λ of G is canonically identified with T/T_K. For any $\lambda \in \Lambda$ denote by $t_\lambda \in T$ its representative. The coweight ρ denotes the half of all the positive coroots. Since G is adjoint one has $\rho \in \Lambda$. We denote by Λ^+ the set of dominant coweights.

Let LG be the complex dual group of G. Then Λ is also identified with the lattice of weights of LG. For a dominant weight λ we denote by V_λ the highest weight module of LG and by $wt(V_\lambda)$ the multiset of all the weights of this module.

3. Functions on Lattices

Consider the algebra $\mathbb{C}[\Lambda] = \text{Span}\{e^\nu : \nu \in \Lambda\}$. The Weyl group W acts naturally on the lattice Λ. We denote by $\mathbb{C}[\Lambda]^W$ the algebra of W-invariant elements in $\mathbb{C}[\Lambda]$. The character map defines an isomorphism of algebras

$$\text{Rep}(^LG) \simeq \mathbb{C}[\Lambda]^W.$$
For an irreducible module V_λ denote
\[a_\lambda = \text{char}(V_\lambda) = \sum_{\nu \in \text{wt}(V_\lambda)} e^\nu. \]
The elements $\{a_\lambda | \lambda \in \Lambda^+\}$ form a basis of $\mathbb{C}[\Lambda]^W$. The algebra $\mathbb{C}[\Lambda]^W$ acts on the space $\mathbb{C}[\Lambda]$ by multiplication.

The element $f \in \mathbb{C}[\Lambda]$ is called skew-invariant if $w(f) = (-1)^{l(w)} f$, where $l(w)$ is the length of the element w. Denote by $\mathbb{C}[\Lambda]^{W,-}$ the space of W skew-invariant elements. The algebra $\mathbb{C}[\Lambda]^W$ acts on $\mathbb{C}[\Lambda]^{W,-}$ by multiplication. Note that the action is torsion free.

Define the alternating map
\[\text{alt} : \mathbb{C}[\Lambda] \to \mathbb{C}[\Lambda]^{W,-}, \quad \text{alt}(e^\mu) = \sum_{w \in W} (-1)^{l(w)} e^{w\mu} : \mu \in \Lambda \]

It is a map of $\mathbb{C}[\Lambda]^W$ modules. The elements
\[\{r_{\mu+\rho} = \sum_{w \in W} (-1)^{l(w)} e^{w(\mu+\rho)} : \mu \in \Lambda^+\} \]
form a basis of $\mathbb{C}[\Lambda]^{W,-}$. Note that for any $\lambda \in \Lambda^+$
\[\text{alt}(e^{\lambda+\rho}) = r_{\lambda+\rho} = r_\rho \cdot a_\lambda = \text{alt}(a_\lambda), \]
where the second equality is the Weyl character formula.

4. HECKE ALGEBRAS

4.1. The spherical Hecke algebra. The spherical Hecke algebra $H_K = C_c(K\backslash G/K)$ is the algebra of locally constant compactly supported bi-K invariant functions with the multiplication given by convolution \ast. It has identity element 1_K - the characteristic function of K divided by $[K : I]$.

Consider the Satake map
\[S : C_c(G/K) \to C(N\backslash G/K) = C(T/T_K) \]
defined by
\[S(f)(t) = \delta_B^{-1/2}(t) \int_N f(nt)dn. \]
The famous Satake theorem claims that the restriction of S to H_K defines an isomorphism of algebras $S : H_K \simeq \mathbb{C}[\Lambda]^W$. Denote by A_λ the element of H_K corresponding to a_λ under this map. Thus $H_K = \text{Span}\{A_\lambda : \lambda \in \Lambda^+\}$.

4.2. The Iwahori-Hecke algebra. The Iwahori-Hecke algebra $H_I = C_c(I\backslash G/I)$ is the algebra of locally constant compactly supported bi-I invariant functions with the multiplication given by convolution. Below we remind the list of properties of H_I, all can be found in [HKP].
(1) The algebra H_{I} contains a commutative algebra $A \cong \mathbb{C}[\Lambda]$.

\[A = \text{Span}\{\theta_{\mu} | \mu \in \Lambda\}, \]

where

\[\theta_{\mu} = \begin{cases} \delta_{B}^{1/2} 1_{I_\mu} & \mu \in \Lambda^+; \\ \theta_{\mu_1} \ast \theta_{\mu_2}^{-1} & \mu = \mu_1 - \mu_2, \quad \mu_1, \mu_2 \in \Lambda^+ \end{cases} \]

The center Z_{I} of the algebra H_{I} is $A^{W} \cong \mathbb{C}[\Lambda]^{W}$.

(2) The finite dimensional Hecke algebra $H_{f} = \mathbb{C}(I \backslash K/I)$ is a subalgebra of H_{I}. The elements $t_{w} = 1_{IwI}$, where $w \in W$ form a basis of H_{f}. Multiplication in H induces a vector space isomorphism

\[H_{f} \otimes_{\mathbb{C}} A \rightarrow H_{I} \]

In particular the elements $t_{w}\theta_{\mu}$ where $w \in W, \mu \in \Lambda$ form a basis of H_{I}.

(3) The algebra H_{K} is embedded naturally in H_{I}. One has $H_{K} = Z_{I} \ast 1_{K}$ and

\[A_{\lambda} = \left(\sum_{\nu \in \text{wt}(V_{\lambda})} \theta_{\nu} \right) \ast 1_{K} \]

(4) For the simple reflection $s \in W$ corresponding to a simple root α and a coweight μ one has

\[t_{s}\theta_{\mu} = \theta_{s\mu}t_{s} + (1-q)\frac{\theta_{s\mu} - \theta_{\mu}}{1-\theta_{-\alpha}}. \]

In particular t_{s} commutes with $\theta_{k\alpha} + \theta_{-k\alpha}$ for any $k \geq 0$. In addition t_{s} commutes with θ_{μ} whenever $s\mu = \mu$.

4.3. The intermediate algebra. Finally consider the space $H_{I,K}$ defined by

\[H_{K} \subset H_{I,K} = H_{I} \ast 1_{K} = C_{c}(I \backslash G/K) \subset H_{I}. \]

It has a structure of right H_{K} module. The space $H_{I,K}$ plays a crucial role in Savin’s paper [S]. The Satake map restricted to it is the isomorphism of $H_{K} \cong \mathbb{C}[\Lambda]^{W}$ modules:

\[S : H_{I,K} \cong \mathbb{C}[\Lambda], \quad S(\theta_{\mu} \ast 1_{K}) = e^{\mu}. \]

In particular, it is shown that the elements $\{\theta_{\mu}^{K} = \theta_{\mu} \ast 1_{K}, \mu \in \Lambda\}$ form a basis of $H_{I,K}$.

5. The Whittaker space $(\text{ind}_{N}^{G} \Psi)^{K}$

Let Ψ be a non-degenerate character of conductor 1. Consider the space $(\text{ind}_{N}^{G} \Psi)^{K}$ of complex valued functions on G that are (N, Ψ)-equivariant on the left, right K-invariant functions and are compactly supported modulo N.
The space \((\text{ind}_{N}^{G}\Psi)^{K}\) has a structure of right \(H_{K}\) module by
\[
(\phi \ast f)(x) = \int_{G} \phi(xy^{-1})f(y)dy, \quad \phi \in (\text{ind}_{N}^{G}\Psi)^{K}, f \in H_{K}.
\]

Any function \(\phi\) on \((\text{ind}_{N}^{G}\Psi)^{K}\) is determined by its values on \(t_{\lambda}: \lambda \in \Lambda\) and \(\phi(t_{\lambda}) = 0\) unless \(\lambda \in \Lambda^{+} + \rho\).

The space \((\text{ind}_{N}^{G}\Psi)^{K}\) has a basis of characteristic functions \(\{\phi_{\lambda}: \lambda \in \Lambda^{+} + \rho\}\) where
\[
\phi_{\lambda}(ntk) = \begin{cases}
\delta_{B}^{1/2}(t)\Psi(n) & t \in Nt_{\lambda}K, \lambda \in \Lambda^{+} + \rho; \\
0 & \text{otherwise}
\end{cases}
\]

The main theorem of this paper is the description of \((\text{ind}_{N}^{G}\Psi)^{K}\) as \(H_{K}\) module.

Theorem 5.1. Let \(\Psi\) be a character of conductor 1. Then there is an isomorphism
\[
j: (\text{ind}_{N}^{G}\Psi)^{K} \simeq \mathbb{C}[\Lambda]^{W,-}
\]
compatible with \(H_{K} \simeq \mathbb{C}[\Lambda]^{W}\).

5.1. **The twisted Satake isomorphism.** For a fixed character \(\Psi\) of \(N\), consider a twisted Satake map
\[
S_{\Psi}: C_{c}(G/I) \rightarrow (\text{ind}_{N}^{G}\Psi)^{I}
\]
defined by
\[
S_{\Psi}(f)(t) = \int_{N} f(nt)\overline{\Psi(n)}dn.
\]

Corollary 5.2. The restriction of \(S_{\Psi}\) to the right \(H_{K}\) submodule \(\theta_{\rho}^{K} \ast H_{K}\) defines an isomorphism
\[
S_{\Psi}: \theta_{\rho}^{K} \ast H_{K} \simeq (\text{ind}_{N}^{G}\Psi)^{K}
\]
such that \(S_{\Psi}(\theta_{\rho}^{K} \ast A_{\lambda}) = \phi_{\lambda+\rho}\).

Proof. By Weyl character formula \(r_{\lambda+\rho} = r_{\rho} \cdot a_{\lambda}\). Hence
\[
j(\phi_{\lambda+\rho}) = r_{\lambda+\rho} = r_{\rho} \cdot a_{\lambda} = j(\phi_{\rho} \ast A_{\lambda}),
\]
and thus \(\phi_{\rho} \ast A_{\lambda} = \phi_{\lambda+\rho}\).

Restricting \(S_{\Psi}\) to \(H_{I,K}\), we obtain
\[
S_{\Psi}(\theta_{\rho}^{K} \ast A_{\lambda}) = S_{\Psi}(\theta_{\rho}^{K}) \ast A_{\lambda} = \phi_{\rho} \ast A_{\lambda} = \phi_{\lambda+\rho}.
\]

Since \(A_{\lambda}\) and \(\phi_{\lambda+\rho}\) are bases of \(H_{K}\) and \((\text{ind}_{N}^{G}\Psi)^{K}\) respectively, the map \(S_{\Psi}\) is an isomorphism.

To prove the theorem we shall need two lemmas. The first one ensures surjectivity of the map \(S_{\Psi}\) and the second one describes its kernel.
Lemma 5.3. $S_{\Psi}(\theta_{\mu}^{K}) = \phi_{\mu}$ for all $\mu \in \Lambda^{+} + \rho$. In particular the map

$$S_{\Psi} : H_{I,K} \rightarrow (\text{ind}_{N}^{G} \Psi)^{K}$$

is surjective.

Proof. It is enough to compute $S_{\Psi}(\theta_{\mu} * 1_{K})(t_{\gamma})$ for $\gamma \in \Lambda^{+}$.

Since μ is dominant one has

$$\theta_{\mu}^{K} = \delta_{B}^{1/2}(t_{\mu})1_{It_{\mu}K}$$

and hence

$$S_{\Psi}(\theta_{\mu}^{K})(t_{\gamma}) = \delta_{B}^{1/2}(t_{\gamma}) \int_{N_{\gamma,\mu}} \overline{\Psi(n)} dn,$$

where

$$N_{\gamma,\mu} = \{n \in N : nt_{\gamma} \in It_{\mu}K\}.$$

The set

$$N_{\gamma,\mu} = \begin{cases} \emptyset & \gamma \neq \mu \\ N \cap K & \gamma = \mu \end{cases}$$

Indeed, since $\mu \in \Lambda^{+}$ one has $It_{\mu}K = (N \cap I)t_{\mu}K$. One inclusion is obvious. For another inclusion use the Iwahori factorization

$$I = (I \cap N)T_{K}(I \cap \overline{N})$$

to represent any $g \in It_{\mu}K$ as

$$g = na_{0}\overline{n}t_{\mu}k = nt_{\mu}a_{0}(t_{\mu}^{-1}\overline{n}t_{\mu})k,$$

where $n \in N \cap I, a_{0} \in T_{K}, \overline{n} \in \overline{N}, k \in K$. Since μ is dominant one has $(t_{\mu}^{-1}\overline{n}t_{\mu}) \in K$. So $g \in (N \cap I)t_{\mu}K$. Hence $N_{\gamma,\mu} = \emptyset$ unless $\gamma = \mu$ and $N_{\mu,\mu} = (N \cap I)t_{\mu}(N \cap K)t_{\mu}^{-1} = N \cap I$ since $\mu \in \Lambda^{+} + \rho$. In particular $\Psi|_{N_{\mu,\mu}} = 1$. Hence

$$S_{\Psi}(\theta_{\mu} * 1_{K}) = \phi_{\mu}.$$

Lemma 5.4. Let $\alpha \in \Delta, s$ be a simple reflection corresponding to α and $\iota_{\alpha} = 1_{I} + t_{s}$ be the characteristic function of a parahoric subgroup I_{α} corresponding to α.

1) $S_{\Psi}(\iota_{\alpha}) = 0$.
2) $S_{\Psi}(\theta_{\mu}^{K} + \theta_{s,\mu}^{K}) = 0$ for all $\mu \in \Lambda$.

Proof. 1) $S_{\Psi}(\iota_{\alpha})(tw) = \int_{N} \iota_{\alpha}(ntw)\overline{\Psi(n)} dn = \int_{N \cap I_{\alpha}(tw)^{-1}} \overline{\Psi(n)} dn$

The set $N \cap I_{\alpha}(tw)^{-1}$ is empty unless $w \in \{e, s\}$ and $t \in T_{K}$, in which case

$$S_{\Psi}(\iota_{\alpha})(tw) = \int_{N \cap I_{\alpha}} \overline{\Psi(n)} dn = 0$$
since the integral contains an inner integral over N^0_{α} on which Ψ is not trivial.

2) Let us represent any $\mu = \mu' + k\alpha$ where $(\mu', \alpha) = 0$. Then $s\mu = \mu' - k\alpha$.

In particular

$$\theta^K_{\mu'} + \theta^K_{s\mu} = \theta_{\mu'}(\theta_{k\alpha} + \theta_{-k\alpha})i_{\alpha}1_K$$

By the results in 4.2 the element i_{α} commutes with $\theta_{\mu'}(\theta_{k\alpha} + \theta_{-k\alpha})$ and hence the above equals

$$i_{\alpha}\theta_{\mu'}(\theta_{k\alpha} + \theta_{-k\alpha})1_K = i_{\alpha}(\theta^K_{\mu'} + \theta^K_{s\mu})$$

By part (1) it follows that $S_{\Psi}(\theta^K_{\mu'} + \theta^K_{s\mu}) = 0$. \hfill \square

Proof. of 5.1. We have shown that the map S_{Ψ} is surjective onto $(\text{ind}_{N}^{G}\Psi)^K$ and

$$\text{Ker} S_{\Psi} = \text{Span}\{\theta_{\mu} - (-1)^{l(w)}\theta_{w\mu}|\mu \in \Lambda, w \in W\}.$$

Another words

$$(\text{ind}_{N}^{G}\Psi)^K \simeq H_{I,K}/\text{Ker} S_{\Psi} = \mathbb{C}[\Lambda]^{W,-}$$

as $H_{K} \simeq \mathbb{C}[\Lambda]^{W}$-modules. \hfill \square

6. **Casselman-Shalika Formula**

Let (π, G, V) be an irreducible smooth generic unramified representation and denote by $\gamma \in LT/W$ its Satake conjugacy class. Choose a spherical vector v_0 and normalize the Whittaker functional $W_{\gamma} \in \text{Hom}_{G}(\pi, \text{Ind}_{N}^{G}\overline{\Psi})$ such that $W_{\gamma}(t_{\rho}v_0) = 1$.

The Casselman-Shalika formula reads as follows:

Theorem 6.1.

$$W_{\gamma}(v_0)(t_{\lambda+\rho}) = \begin{cases}
\delta_{B}^{1/2}(t_{\lambda+\rho}) \text{tr} V_{\lambda}(t_{\gamma}) & \lambda \in \Lambda^+ \\
0 & \text{otherwise}
\end{cases}$$

It is shown in [FGKV], that Theorem 5.2 that the formula (6.1) implies the Corollary 5.2 and it is mentioned that the two statements are equivalent. Let us now prove the other direction.

Proof. We deduce the formula 6.1 from 5.2. Let π be a generic unramified representation with the Satake parameter $\gamma \in LT$ and a spherical vector v_0 and the Whittaker model $W_{\gamma} : \pi_{\gamma} \rightarrow \text{Ind}_{N}^{G}\overline{\Psi}$ such that $W_{\gamma}(v_0)(t_{\rho}) = 1$.

Define the map $\chi_{\gamma} : H_{K} \rightarrow \mathbb{C}$ by

$$\pi(f)v_0 = \int_{G} f(g)\pi(g)v_0 \, dg = \chi_{\gamma}(f)v_0$$

and the map $r_{\gamma} : \text{ind}_{N}^{G}\Psi \rightarrow \mathbb{C}$ by

$$r_{\gamma}(\phi) = \int_{N\backslash G} W_{\gamma}(v_0)(g)\phi(g) \, dg.$$
Then
\[
\begin{align*}
 r_{\gamma}(S_{\Psi}(\theta_{\rho}^{K} * A_{\lambda})) & = \int_{N \backslash G} \int_{N} (\theta_{\rho}^{K} * A_{\lambda})(ng)\overline{\Psi}(n)W_{\gamma}(v_{0})(g) \, dn \, dg = \\
 & = \int_{G} \int_{G} (\theta_{\rho}^{K} * A_{\lambda})(g)W_{\gamma}(v_{0})(g) \, dg = \\
 & = \int_{G} \int_{G} \theta_{\rho}^{K}(gx^{-1})A_{\lambda}(x)W_{\gamma}(gx^{-1} \cdot x \cdot v_{0})(1) \, dx \, dg = \chi_{\gamma}(A_{\lambda})W_{\gamma}(v_{0})(t_{\rho}).
\end{align*}
\]

Under the identification \(H_{K} \simeq \text{Rep}(^{L}G) \) the homomorphism \(\chi_{\gamma} \) sends an irreducible representation \(V \) to \(\text{tr} \, V(\gamma) \). In particular \(\chi_{\gamma}(A_{\lambda}) = \text{tr} \, V_{\lambda}(\gamma) \).

\[
\text{tr} \, V_{\lambda}(\gamma) = \chi_{\gamma}(A_{\lambda})W(v_{0})(t_{\rho}) = r_{\gamma}(S_{\Psi}(\theta_{\rho}^{K} * A_{\lambda})) = r_{\gamma}(\phi_{\lambda+\rho}) = \delta_{B}^{-1/2}(t_{\lambda+\rho})W(\gamma)(v_{0})(t_{\lambda+\rho})
\]

Hence
\[
W_{\gamma}(v_{0})(t_{\lambda+\rho}) = \delta_{B}^{1/2}(t_{\lambda+\rho}) \text{tr} \, V_{\lambda}(\gamma).
\]

\[\square\]

REFERENCES

[CS] W. Casselman, J. Shalika The unramified principal series of \(p \)-adic groups. II. The Whittaker function. Compositio Math. 41 (1980), no. 2, 207-231.

[FGKV] E. Frenkel, D. Gaitsgory, D. Kazhdan, K. Vilonen Geometric realization of Whittaker functions and the Langlands conjecture. J. Amer. Math. Soc. 11 (1998), no. 2, 451-484.

[HKP] T. Haines, R. Kottwitz, A. Prasad Iwahori-Hecke Algebras, J. Ramanujan Math. Soc. 25 (2010), no. 2, 113-145.

[S] G. Savin The tale of two Hecke algebras, arXiv:1202.1486

School of Mathematics, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105, Israel
E-mail address: ngur@math.bgu.ac.il