Research on Course Planning for Multi-AEW Cooperative Detection based on Real-time Detection Area

Cai Wanyong, Hua Liangfa, Zhu Pei, Xia Saiqiang and Liu Zhengxin

Air Force Early Warning Academy, Wuhan, 430019, China

31361761@qq.com

Abstract. This paper presents a concept of stable coverage degree and its quantitative formula, and two kind of cooperative detection modes was put forward, which was defined as Mode A and Mode B. On the basis of estimation models including the model for real-time detection area, the model for cross coverage area, and the model for course planning, the decision-making model for multi-AEW optimal deployment was given. Finally, the contrastive analysis on two models was provided by simulation computing, its results showed the Mode B surpass Mode A, and various internal and external factors were considered into estimation models, which can offers the applied basis for multi-AEW course planning.

1. Introduction

When multi-AEW take on aerial defense early warning mission in responsible area, two kinds of cooperative deployment mode was adopted, including Mode A and Mode B. In Mode A way, each AEW take on aerial mission of sub-responsible area independently, can't hand over mission transversely across areas, target information can't be syncretized and shared, which was used commonly. In Mode B way, by contrast, each AEW not only hand over mission transversely across areas, but also target information can be syncretized and shared by superior intelligence fusion center of an appointed AEW. Mode B is much better than Mode A. For the moment, mode A was researched mostly. For example, the concept of real-time coverage was put forward, and the calculation case of a single AEW was presented[1]. The concept of serial-parallel cooperative mode for multi-AEW was put forward, indicating that unstable coverage was caused by serial mode with numbered AEW, and easy to form blind zone[2]. The instantaneous coverage rate in way of parallel line and transverse-8 line was discussed[3]. The concept of high-efficiency and low-efficiency area was put forward, based on relative location and velocity between target and AEW, and detection efficiency was simulated[4]. The strategy of AEW used number was put forward, which discuss the skyway planning of a single AEW[5]. How to optimize deployment for multi-AEW was discussed while active jamming, based on radar self-defense jamming equation[6]. Information fusion and intelligence sharing for multi-AEW were not involved above literatures.

Two coverage estimation model of AEW real-time detection was established, the concept of stable coverage degree was defined and a quantitative equation was given. The decision-model of multi-AEW optimal deployment was given while multi-AEW deployment was discussed. Simulation results showed that Mode B surpass Mode A. With en-lengthen of responsible area L and higher coverage degree, Mode B superior to Mode A evidently. And major factors were considered in models, so the results is valuable.
2. Real-time detection area
The area that target can be detected effectively on altitude layer H with detection probability \(P_d \) and false alarm rate \(P_f \), was called real-time detection area. Usually, take parallel line as examples, as shown in Figure 1. \(O_0 \) is the coordinate origin of parallel line. \(O_{01}(m_0,-n_0) \), \(O_{02}(m_0,-n_0) \), \(O_{03}(m_0,n_0) \), and \(O_{04}(-m_0,n_0) \) are four turning points of parallel line. \(R_i \) is the maximum detection range of airborne radar. \(S_0 \) is the real-time detection area of an AEW which is the shadow in Figure 1.

\[
\begin{align*}
S_0 &= 4 \times (S_{AOD} + S_{ADarc}) \\
S_{AOD} &= 0.5 \times \left(R_0^2 - m_0^2 - n_0 \right) \left(R_0^2 - n_0^2 - m_0 \right) \\
S_{ADarc} &= 0.5 \times \left(R_i^2 \theta_0 - |AB| \times \sqrt{R_0^2 - 0.25 \times |AB|^2} \right) \\
\theta_0 &= 2 \arcsin \left(\frac{\sqrt{2} |AB|}{2R_0} \right) \\
|AB| &= \sqrt{R_0^2 - m_0^2 \sqrt{R_0^2 - n_0^2 - n_0 \sqrt{R_0^2 - m_0^2}}} \\
R_0 &= \sqrt{\frac{P G^2 \bar{Z}_c e^{-0.11S_{SP}}}{\left(4\pi \right)^2 k T_m B_m F_p (S/N)_m L}}^{1/4}
\end{align*}
\]

Where \(m_0 \in [20,50] \) and \(n_0 \in [10,20] \) with unit km. If \(R_i = 400 \text{km}, S_{10} = 457 \text{km}^2 \). According to equation (1) and (2), the size of real-time detection area was determined by the size of parallel line and maximum detection range. \(R_0 \) is generally determined by target cross section \(\sigma \), pulse accumulation \(m \), signal to noise ratio SNR, weather attenuation coefficient \(\delta \), weather attenuation distance \(d_p \), insertion loss \(L \). \(R_0 \) can be calculated as:

3. Cross coverage area of multi-AEW
As Figure 2 shows that ribbon responsible area is divided by inner and outer parallels. \(O_0 \) is the center point of the first course with its length \(2m_0 \) and width \(2n_0 \), which is the coordinate origin. \(O_i \) is the
center point of the second course with its length $2m_i$ and width $2n_i$, the connecting line O_iO_i is parallel to outer boundary line. If the length of O_iO_i is d_i, then the coordinate of O_i is expressed by $(d_i, 0)$.

Assuming that R_0 is maximum range of the first course, R_i is maximum range of the second course, the coordinate of cross point E_0 is expressed by $O_iE_0 = (x_{E_0}, y_{E_0})$, it can be calculated as

$$\begin{align*}
O_{01}E_0 &= O_{01}O_0 + O_0E_0 \\
R_0 &= m_0 + n_0j + x_{E_0} + y_{E_0}j \\
O_{12}E_0 &= O_{12}O_i + O_iE_0 \\
R_i &= -m_i - n_ij + x_{E_0} - d + y_{E_0}j
\end{align*}$$

(4)

![Diagram showing the real-time cross coverage of two AEW](image)

Figure 2. Real-time cross coverage of two AEW

The real-time cross coverage area S_{cross} can be calculated as

$$S_{cross} = S_{E_0F_0D_0} + 4S_{E_0D_0\theta}$$

$$
S_{E_0F_0D_0} = \left| E_0F_0 \right| \cdot \left| B_1D_0 \right|
$$

$$E_0F_0 = 2y_{E_0}$$

$$B_1D_0 = R_0 - m_0 - (d_0 + m_i - R_i)$$

$$S_{E_0D_0\theta} = \frac{1}{2} R_0^2 \theta'_0 - \frac{1}{2} \left| E_0D_0 \right| \cdot \sqrt{R_0^2 - \left(\frac{1}{2} \left| E_0D_0 \right| \right)^2}$$

$$E_0D_0 = \sqrt{\left(m_0 + \sqrt{R_0^2 - n_0^2 - x_{E_0}} \right)^2 + y_{E_0}^2}$$

$$\theta'_0 = 2\arcsin \frac{\left| E_0D_0 \right|}{2R_0}$$

(6)

Obviously, Real-time cross coverage area of two AEW was mostly determined by planning course and radar max detection range.
Figure 3. Real-time detection area of multi-AEW

As showed in Figure 3, the ribbon responsible area is composed of length L and width W, which it is deployed by N AEW. If the center coordinate of the first course is assumed as origin, then the center coordinate of all courses are expressed by \{(0,0),(0,d_{1}),\ldots,(0,d_{N-1})\}. \(l'_0\) is the length between \(O_0\) and origination border, and \(l'_{n-1}\) is the length between \(O_{n-1}\) and expiration border. Ordinarily, \(S_i\) is real-time detection area of \(i\)th AEW with \(P_{d_i}\), \(S^1_i\) is real-time detection area of \(i\)th AEW with \(P^1_{d_i}\). \(S^1_i \cap S^1_{i+1}\), \(S^2_i \cap S^2_{i+1}\), \(S^1_i \cap S^2_{i+1}\) and \(S^2_i \cap S^1_{i+1}\) are cross area of \(S^1_i\) and \(S^2_i\), while \(i=0,1,\ldots,N-1, P_{d_i} > P^1_{d_i}\). Detection probability of cross coverage area \(P_{d_{coss}}\) can be calculated as

\[
P_{d_{coss}} = \begin{cases}
\max\{P_{d_i}\} = P_{d}, & \text{Model 1} \\
1 - \prod_{i=0}^{N-1}(1 - P^1_{d_i}), & \text{Model 2}
\end{cases}, i = 0,1,\ldots,N-1, j = 0,1 \tag{7}
\]

\(P_{d_{coss}} \geq P_{d}\) can be obtained by choosing \(S^1_i\) properly. Cross coverage area of multi-AEW \(S_{sum}\) can be calculated as

\[
S_{sum} = \begin{cases}
S^1_0 + \sum_{i=1}^{N-1} \left[S^1_i - (S^1_{i-1} \cap S^1_i) \right] & , \text{Model 1} \\
S^1_0 + \sum_{i=1}^{N-1} \left[S^1_i + (S^2_{i-1} \cap S^2_i) - (S^1_{i-1} \cap S^1_i) - (S^2_{i-1} \cap S^2_i) \right] & , \text{Model 2}
\end{cases} \tag{8}
\]

4. Multi-AEW course planning

For long ribbon responsible detection area, Multi-AEW course planning is decision-making question with many constrained conditions. The ultimate purpose is to get stable coverage in specified responsible area. The key parameter is interval distance between one course and another course. Constrained conditions are stable coverage degree, distance between inner border and outer border of responsible area, cooperative model, max detection range of an AEW, real-time coverage area of an AEW, and cross real-time coverage area of multi-AEW. Stable coverage degree \(\eta_C\) can be calculated as

\[
\eta_C = \frac{S_{sum} \cap S_0}{S_0} \tag{9}
\]
If the outer border coordinate is expressed by \(y_{D_{\text{out}}} \), then the purpose of multi-AEW course planning is to get optimal interval distance between courses with constrained conditions, that is
\[
\{d_0, d_1, \ldots, d_{N-1}\} = \text{opt}\{d_0, d_1, \ldots, d_{N-1}\}_{j=0,1,\ldots}
\]
\[
\eta_c \geq \eta_c^{\text{need}}
\]
\[
y_{D_{\text{out}}} \leq \frac{W}{2}
\]
\[
L - l'_0 - l'_{N-1} \leq \sum_{j=1}^{N-1} \max d_i
\]
\[
\max d_i \geq \max d_{i+1} \geq \max d_{N-1}
\]
\[
|O_i^1 D_i^1| + |O_{i+1}^1 B_{i+1}^1| - \beta T_{\text{search}} v_{TH} \geq \max d_{i+1} > 0, \text{Mode1}
\]
\[
|O_i^2 D_i^2| + |O_{i+1}^2 B_{i+1}^2| - |B_{i+1}^2 O_{i+1}^2| \geq \max d_{i+1} > 0, \text{Mode2}
\]
\[
i = 1, 2, \ldots, N-1
\]
where \(\eta_c^{\text{need}} \) is prospective stable coverage degree. \(T_{\text{search}} \) is radar scan period. \(\beta \) is plot number required in intelligence handover for Mode A. \(v_{TH} \) is target velocity. Condition 5 assures interval distance \(\beta T_{\text{search}} v_{TH} \) required for intelligence handover, while \(\max d_i \) satisfied the demand of continuous detection area. Condition 6 assures that cross area with \(p_i^0 \) overlap detection area with \(p_i^0 \), to make the target detected incessantly. \(\max d_i \) is constrained with condition 1 and 2.

5. Simulation and analysis

5.1. Contrastive analysis on two models

In order to contrastive analysis the operation efficiency of the two modes, the benefit of stable coverage area \(\eta_G \) can be defined as
\[
\eta_G = \left(\frac{S_{\text{sum_mod}_1}}{S_{\text{sum_mod}_2}} - 1\right) \times 100\%
\]

It is assumed that two AEW with same type are on early warning mission on a fine day. \(m = 50km \) and \(n = 10km \) with \(\min S_{\alpha} \). \(R_{\text{max}} = 400km \) with Swerling I target and \(\text{RCS} = 5m^2 \). With the equation from literature 8, \(R_{\text{max}}' \) is got with any \(p_d \). The relation of \(d_i \) and \(S_{\text{sum_mod}} \) is shown in Figure 4. The relation of \(d_i \) and \(\eta_G \) is shown in Figure 5. The conclusions are as follows:

First, the smaller of \(p_d \), the bigger of cooperative detection area \(S_{\text{sum_mod}} \) for two AEW, the bigger of \(d_i \) critical value. That is to say, the smaller of \(p_d \) working with, the bigger of effective detection area, in which continuous target intelligence can be offered.

Second, When \(d_i \) is smaller than critical value, the bigger of detection probability, the bigger of \(\eta_G \) value. That is to say, Mode B surpass Mode A obviously when \(p_d \) need to be bigger.

Third, When \(S_{\text{sum_mod}} \) is a fixed value, critical value of Mode B exceeds Mode A with any \(p_d \). Results indicates that Mode B can obtain enough cross coverage area with bigger \(d_i \), so that to handover target intelligence reliably between adjacent two AEW.
5.2. Analysis on value of L and N

It is assumed that each AEW with same R_{max}, then $l_i' = l_{i-1}' = l$, $\max d_i = \max d_i' = \cdots = \max d_{N-1} = d$.

$$\min N = \left\lceil \frac{L - 2l}{d} \right\rceil + 1$$ (12)

Where $\lceil \rceil$ is a symbol that round up to an integer.

It is assumed that width of responsible area $W = 700\text{km}$, $P_d = 0.5$, $\beta = 5$, $T_{\text{search}} = 10\text{s}$, $v_{TH} = 380\text{m/s}$, $\eta_{C_{\text{ned}}} = \{0.7, 0.8, 0.9\}$, and other parameters are the same as 5.1 section. The relation of L and N is shown in Figure 6.

In view of the different $\eta_{C_{\text{ned}}}$, the L value of cross coverage area is shown in Table 1 where four AEW are deployed.

The conclusions are as follows: Fewer AEW are need with growing L on mode B; cooperative mode B surpass mode A with growing $\eta_{C_{\text{ned}}}$.

$\eta_{C_{\text{ned}}}$	Cooperative mode	L(km)	1	2	3	4
0.7	Mode B	588	1490	2310	2894	
	Mode A	588	1290	1901	2400	
0.8	Mode B	497	1242	1737	1912	
	Mode A	497	991	1477	1500	
0.9	Mode B	315	817	1319	1438	
	Mode A	315	505	789	859	
6. Conclusion
In view of the problem of course planning for multi-AEW, two kinds of cooperative mode were given, four models were established, including estimating model for real-time detection area, the model for cross coverage area, the model for course planning, and decision-making model for multi-AEW. Lots of influence factor are considered to ensure practicability value of four models, thereby the next study is a step towards the application, how can these models be used into various early warning surveillance mission.

References
[1] Huang Y, Jin J, Pan X L, et al. Evaluation Method for Sea Target Detectivity of AEWR[J]. Journal of Air Force Radar Academy, 2011, 25(3): 175-179.
[2] Cong P L, Ye J H, Wu X X. Study on Target Detection Simulation for AEW Radar[J]. Military Operations Research and Systems Engineer, 2007, 21(3): 35-38.
[3] Fu Y, Tang Z Y, Sun Y J. Cooperative detection routes optimization of AEW radar[J]. Infrared and Laser Engineering, 2014, 43(12): 4177-4185.
[4] Jia L S, Wu W H, Gao W, et al. Analysis on Early Warning Airspace of Airspace Patrolling Route Adopted by Foreign Airborne Early Warning Airplanes[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(1): 36-40.
[5] Wang G S, Li Q, He L, et al. Research on Calculation Model for Blind Zone of an Airborne Warning Radar[J]. Radar Science and Technology, 2010, 8(6): 941-948.
[6] Chen B P, Han T, Wan L. Auxiliary Decision of Military Strength Demand for Blanket Jamming The Airborne Early Warning Radar[J]. Shipboard Electronic Countermeasure, 2011, 34(1): 42-45.
[7] Lu J, Li N J, Cao C, et al. Introduction to airborne early warning system (Version 2) [M]. Beijing: National Defense Industry Press, 2011: 60-62.