First Result of the Experimental Search for the 9.4 keV Solar Axion Reactions with $^{83}$Kr in the Copper Proportional Counter$^{1,2}$

Yu. M. Gavrilyuk$^a$, A. M. Gangapshev$^{a,*}$, A. V. Derbin$^a$, V. V. Kazalov$^a$, H. J. Kim$^b$, Y. D. Kim$^b$, V. V. Kobychev$^d$, V. V. Kuzminov$^a$, Luqman Ali$^f$, V. N. Muratova$^b$, S. I. Panasenko$^{a,c}$, S. S. Ratkevich$^{a,c}$, D. A. Semenov$^b$, D. A. Tekueva$^a$, S. P. Yakimenko$^a$, and E. V. Unzhakov$^b$

$^a$Institute for Nuclear Research, RAS, Moscow, Russia
$^b$Petersburg Nuclear Physics Institute, St. Petersburg, Russia
$^c$Kharkov National University, Kharkov, Ukraine
$^d$Institute for Nuclear Research of NAS Ukraine, Kiev, Ukraine
$^e$Department of Physics, Kyungpook National University, Daegu, Republic of Korea
$^f$Institute of Basic Science, Daejeon, Republic of Korea
$^*$e-mail: gangapsh@list.ru

Abstract—The experimental search for solar hadronic axions is started at the Baksan Neutrino Observatory of the Institute for Nuclear Researches of Russian Academy of Science (BNO INR RAS). It is assumed that axions are created in the Sun during M1 transition between the first thermally excited level at 9.4 keV and the ground state in $^{83}$Kr. The experiment is based on axion detection via resonant absorption process by the same nucleus in the detector. The big copper proportional counter filled with krypton is used to detect signals from axions. The experimental setup is situated in the deep underground low background laboratory. No evidence of axion detection were found after the 26.5 days data collection. Resulting new upper limit on axion mass is $m_A \leq 130\,\text{eV}$ at 95% C.L.

DOI: 10.1134/S1063779615020094

1. INTRODUCTION

A solution of the strong CP problem based on the global chiral symmetry $U(1)$ was proposed by Peccei and Quinn (PQ) [1]. The existence of the axions was predicted by Weinberg [2] and Wilczek [3] as result of spontaneous breaking of the PQ-symmetry at the energy $f_A$. The axion mass ($m_A$) and the strengths of an axion’s coupling to an electron ($g_{Ae}$), a photon ($g_{A\gamma}$) and nucleons ($g_{AN}$) are proportional to the inverse of $f_A$.

At the moment there are two classes of models for the axion: the hadronic axion (KSVZ-model) [4] and GUT axion (DFSZ-model) [5]. The axion mass in both models is defined as:

$$m_A = \frac{f_A m_\pi}{(1 + z + w)(1 + z)}$$

(1)

where $f_\pi = 93\,\text{MeV}$—pion decay constant, $z = m_\pi/m_d = 0.56$ and $w = m_\pi/m_s = 0.029$—quark-mass ratios. It gives $m_A\,[\text{eV}] = 6.0 \times 10^6/ f_A\,[\text{GeV}]$.

The main difference between models is that in contrast to the DFSZ-model in KSVZ-model axions have no coupling to leptons and ordinary quarks at the tree level. As result the interaction of the KSVZ axion with electrons through radiatively induced coupling is strongly suppressed [6].

If axions do exist, then the Sun and other stars should be an intense source of these particles. In 1991 Haxton and Lee calculated the energy loss of stars along the red-giant and horizontal branches due to the axion emission in nuclear magnetic transitions in $^{57}$Fe, $^{55}$Mn, and $^{23}$Na nuclei [7]. In 1995 Moriyama proposed experimental scheme to search for 14.4 keV monochromatic solar axions that would be produced when thermally excited $^{57}$Fe nuclei in the Sun relax to its ground state and could be detected via resonant excitation of the same nuclide in a laboratory [8]. Searches for resonant absorption of solar axions emitted in the nuclear magnetic transitions were performed with $^{57}$Fe [9–14], $^{7}$Li [15–17] and $^{83}$Kr [18] nuclei.

In this paper we present the results of the search for solar axions using the the resonant absorption by $^{83}$Kr nuclei. The energy of the first excited $7/2^+$ nuclear level is equal to 9.405 keV, lifetime $\tau = 2.23 \times 10^{-7}$ s, internal conversion coefficient $\alpha = 17.0$ and the mixing ratio of E2 and M1 transitions is $\delta = 0.013$ [19].

In accordance with indirect estimates the abundance of the krypton in the Sun ($\text{Kr/H} = 1.78 \times$
$10^{-9}$ atom/atom [20] that corresponds to $N = 9.08 \times 10^{13}$ of $^{83}$Kr atom per 1 g material in the Sun.

To estimate axion flux from the Sun, the calculation can be performed as in [7]. The axion flux from a unit mass is equal

$$\delta\Phi(T) = \frac{N 2 \exp(-\beta \tau)}{1 + 2 \exp(-\beta \tau) \tau \omega / \omega} \frac{\omega_0}{\omega},$$

where $N$—number of $^{83}$Kr atoms in 1 g of material in the Sun, $\beta = E_a / kT$, $\tau$—lifetime of the nuclear level, $\omega_0/\omega$—represents the branching ratio of axions to photons emission. The ratio $\omega_0/\omega$ was calculated in [7, 21, 22] as

$$\frac{\omega_0}{\omega} = \frac{1}{2\pi a_1} \frac{1}{\delta^2} \left((\mu_0 - 0.5) \beta + \mu_3 - \eta \right)^2 \frac{\omega}{\gamma},$$

where $\mu_0$ and $\mu_3$—isoscalar and isovector magnetic moments, $g_0$ and $g_3$—isoscalar and isovector parts of the axion-nucleon coupling constant $g_{AN}$ and $\beta$ and $\eta$—nuclear structure dependent terms.

In case of the $^{83}$Kr nucleus, which has the odd number of nucleons and an unpaired neutron, in the one-particle approximation the values of $\beta$ and $\eta$ can be estimated as $\beta \approx -1.0$ and $\eta \approx 0.5$.

In the hadronic axion models, the $g_0$ and $g_3$ constants can be represented in the form [6]:

$$g_0 = -\frac{m_\gamma}{6f_A} \left(2S + (3F - D) \frac{1 + z - 2w}{1 + z + w} \right),$$

$$g_3 = -\frac{m_\gamma}{2f_A} \left(D + F \frac{1 - z}{1 + z + w} \right),$$

where $D$ and $F$ denote the reduced matrix elements for the SU(3) octet axial vector currents and $S$ characterizes the flavor singlet coupling [6]. The parameter $S$ characterizing the flavor singlet coupling still remains a poorly constrained one [14]. The most stringent boundaries ($0.37 \leq S \leq 0.53$) and ($0.15 \leq S \leq 0.5$) were found in [23] and [24], accordingly.

The axion flux was calculated for the standard solar model BS05 [25] characterized by a highmetallicity [26]. The differential flux at the maximum of the distribution (6) is

$$\Phi_a(E_{M1}) = 5.97 \times 10^{22} \left(\frac{\omega_0}{\omega} \right) \text{cm}^{-2} \text{s}^{-1} \text{keV}^{-1}.$$
BNO INR RAS [27], at the depth of 4700 m w.e., where the cosmic ray flux is reduced by ~10⁷ times in comparison to that above ground, and evaluated as (3.0 ± 0.1) × 10⁻⁹ cm⁻² s⁻¹ [28].

The detector signals are passed from one end of the anode wire to the charge-sensitive preamplifier. A total shape of pulses (waveforms) are recorded by the digitizer after amplification in an auxiliary amplifier. A digital oscilloscope LAn-n20-12USB integrated with a computer via USB-port is used. Sampling frequency is 12.5 MHz and record window is 2048 bins (164 μs). Sample of the recorded waveform is presented in Fig. 1a. There is a feature in the waveforms, namely the presence of secondary pulse after the primary pulse. Those secondary pulses are result of photoemission from the cathode. Photons appear near anode wire in time of the development of an electron avalanche from the primary ionization electrons. The relative height of the secondary pulse depends on the position of the events along anode wire due to the changing of a cathode view solid angle. The lowest value of the angle is reached at the ends of the anode wire and the smallest secondary pulses are appeared as a result. Recorded waveforms are processed to define parameters of the events. First of all, the response function of the LPC for single electron of the primary ionization is used to define the electron density profile for the given event (electron current). The shape of the response function is defined as:

\[ V(t) = a \cdot \exp\left(\frac{-t}{\tau}\right) \cdot \log\left(1 + \frac{t}{B}\right) + \frac{t + \frac{t^2}{8\tau}}{\tau} \times \cos\left(\frac{2\pi t}{T}\right), \]  

where \( T = 460 \mu s, B = 2.4 \times 10^{-3} \mu s \) and \( \tau = 240 \mu s \). The cumulative sum (integral) of the electronic current is an corrected waveform as in the [29]. Samples of the recorded electronic current and the corrected waveform are presented in Fig. 1a. Schematic description of the used parameters are presented in Fig. 1b. The amplitude of the secondary pulse is used to define the relative position of the events along the anode wire by ratio:

\[ \lambda = \frac{1000 \cdot A_1}{A_0}, \]  

where \( A_1 \)—amplitude of the secondary pulse, \( A_0 \)—amplitude of the primary pulse (see Fig. 1b).

### 3. RESULTS

The background spectra collected during 26.5 days and fit result curve are presented in Fig. 2. Fitting function is taken as

\[ f(x) = 7151 \cdot e^{\frac{(x - 134.6)^2}{9.567}} + 886.4 \cdot e^{\frac{(x - 119.1)^2}{16.64}} + 130.7 \cdot e^{\frac{(x - 85.73)^2}{12.00}} + 81.40 \cdot \left(\frac{x}{1.57}\right) - \arctan\left(\frac{x - 123.4}{2.171}\right) + 10.88 \cdot e^{\frac{(x - 569.6)}{1.716}} + 5.596. \]  

The peak of 13.5 keV from \( K \)-capture of \( ^{81}\text{Kr} \) is well seen. \( ^{81}\text{Kr} \) is a cosmogenic isotope. It present as a trace admixture in the used samples of krypton. This isotope is produced in atmosphere mainly in reactions \(^{80}\text{Kr}(n, 2n)^{81}\text{Kr} \) and \(^{80}\text{Kr}(n, \gamma)^{81}\text{Kr} \), the half-life time is \( T_{1/2} = 2.1 \times 10^7 \) yr. There are two more peaks: ~12 and ~8 keV. The peak near 12 keV is produced by events,
where the $K$-capture of $^{81}$Kr happens near the end of the counter (out of the fiducial volume) and the characteristic photon of daughter nuclide $^{81}$Br is registered in the fiducial volume ($K_{\alpha 1} = 11.923$ keV (57.1%), $K_{\alpha 2} = 11.877$ keV (29.1%), $K_{\beta 1} = 13.290$ keV (12.7%), $K_{\beta 2} = 13.465$ keV (1.0%) [30]). The peak near 8 keV is produced by characteristic photons from the copper ($K_{\alpha 1} = 8.047$ keV (58.4%), $K_{\alpha 2} = 8.027$ keV (29.8%), $K_{\beta 1} = 8.904$ keV (11.7%) [30]). The distributions of the events versus pulse rise time and parameter $\lambda$ are presented in Fig. 3 and Fig. 4 respectively. The events with pulse rise time $=55$ bins (4.4 $\mu$s) mostly are the single site events from the inner surface of the cathode (well seen in the distribution for the events with $E > 15.0$ keV). The pulses with longer pulse rise time are mostly the multi site events. The events with $\lambda < 115$ are mostly close to the edge of the fiducial volume (events in the peak of $\sim 12$ keV) or out of it (high energy events at the ends of the counter, where is no gas amplification).

Thus, as we are looking for single site events in the inner volume of the detector, the events with pulse rise time longer then 47 bins (3.8 $\mu$s) and $\lambda$ lower then 115 are rejected. The resulting spectrum in comparison with original one is presented in Fig. 5. There is no visible peak around 9.4 keV from axions. Region of interest is 8.2—9.4 keV, where should be 47.5% of axion events. Detection efficiencies after applying energy cut, pulse rise time cut and $\lambda$ cut are $\epsilon_E = 0.475$, $\epsilon_\tau = 0.94$, $\epsilon_\lambda = 0.91$ respectively. The number of events in the region of interest after cuts applying equal to 703 cts. As there is no "signal" from axions, the upper limit on excitation rate of $^{83}$Kr by solar hadronic axions in the detector is defined as:

$$R_{\exp} \leq \frac{2\sqrt{2}B}{m_{Kr} \epsilon_{E} \epsilon_{\tau} \epsilon_{\lambda}} = 0.069 \ [g^{-1} \ day^{-1}], \ (14)$$

where $B$—background in the region of interest, $m_{Kr}$—the mass of the $^{83}$Kr (gram), $t_{\text{meas}}$—measurement time (day).

The relation (14) obtained in the experiment limits the region of possible values of the coupling constants $g_0$, $g_3$ and axion mass $m_A$. In accordance with Eqs. (8)—(10), and on condition that $(p_A/p_\gamma) \approx 1$ provided for $m_A < 3$ keV one can obtain:

$$|g_3 - g_0| \leq 1.69 \times 10^{-6}, \text{ and} $$

$$m_A \leq 130 \text{ eV at 95% C.L.} \ (16)$$

The limit (16) is stronger then the constrain obtained with 14.4 keV $^{57}$Fe solar axions—($m_A \leq 145$ eV [14]) and is significantly stronger then previous result obtained in $^{83}$Kr experiment [18].

---

**Fig. 3.** Distribution of the events versus pulse rise time.

**Fig. 4.** Distribution of the events versus $\lambda$.

**Fig. 5.** Original energy spectrum and spectrum after rejection of the events with pulse rise time longer then 47 bins (3.8 $\mu$s) and $\lambda$ lower then 115.
4. CONCLUSIONS

A search for resonant absorption of the solar axion by Kr nuclei was performed using the proportional counter installed inside the low-background setup at the Baksan Neutrino Observatory. The intensity of the 9.4 keV peak measured for 26.5 days turned out to be ≤156 events/day. The obtained model independent upper limit on axion–nucleon couplings allowed us to set the new upper limit on the hadronic axion mass of $m_a \leq 130$ eV (95% C.L.) with the generally accepted values $S = 0.5$ and $z = 0.56$. The obtained limit on axion mass strongly depends on the exact values of the parameters $S$ and $z$.

The work is supported by Russian Foundation of Basic Research (Grants nos. 14-02-00258A, 13-02-01199A, 13-02-12140-ofi-m, and 15-02-02117A). V.V. Kobychev is supported in part by the Space Research Program of NAS Ukraine.

REFERENCES

1. R. D. Peccei and H. R. Quinn, “Constraints imposed by CP conservation in the presence of instantons,” Phys. Rev., D 16, 1791 (1977).
2. S. Weinberg, “A new light boson?,” Phys. Rev. Lett. 40, 223 (1978).
3. F. Wilczek, “Problem of strong $p$ and $r$ invariance in the presence of instantons,” Phys. Rev. Lett. 40, 279 (1978).
4. J. E. Kim, “Weak interaction singlet and strong CP invariance,” Phys. Rev. Lett. 43, 103 (1979); M. A. Shifman, A. I. Vainstein, and V. I. Zakharov, “Can confinement ensure natural CP invariance of strong interactions?,” Nucl. Phys., B 166, 493 (1980).
5. A. R. Zhitnitskii, “On possible suppression of the axion hadron interactions,” Yad. Fiz. 31, 497 (1980); M. Dine, F. Fischler, and M. Srednicki, “A simple solution to the strong CP problem with a harmless axion,” Phys. Lett., B 104, 199 (1981).
6. M. Srednicki, “Axion couplings to matter, I: CP conserving parts,” Nucl. Phys., B 260, 689 (1985); D. B. Kaplan, “Opening the axion window,” Nucl. Phys., B 260, 215 (1985).
7. W. C. Haxton and K. Y. Lee, “Red giant evolution, metallicity and new bounds on hadronic axions,” Phys. Rev. Lett. 66, 2557 (1991).
8. S. Moriyama, “A proposal to search for a monochromatic component of solar axions using Fe-57,” Phys. Rev. Lett. 75, 3222 (1995).
9. M. Krcmar, Z. Krecak, M. Stipcevic, et al., “Search for invisible axions using Fe-57,” Phys. Lett., B 442, 38 (1998).
10. A. V. Derbin, A. I. Egorov, I. A. Mitropolsky, et al., “Search for resonant absorption of solar axions emitted in an M1 transition in Fe-57 nuclei,” JETP Lett. 85, 12 (2007).
11. T. Namba, “Results of a search for monochromatic solar axions using Fe-57,” Phys. Lett., B 645, 398 (2007).
12. A. V. Derbin, A. I. Egorov, I. A. Mitropolsky, et al., “Search for resonant absorption of solar axions emitted in M1 transition in Fe-57 nuclei,” Eur. Phys. J., C 62, 755 (2009).
13. F. A. Danevich, O. V. Ivanov, V. V. Kobychev, and V. I. Tretyak, “Heat flow of the Earth and resonant capture of solar 57Fe axions,” “Kinematics and physics of celestial bodies,” 25, 102 (2009).
14. A. V. Derbin, V. N. Muratova, D. A. Semenov, and E. V. Unzhakov, “New limit on the mass of 14.4-keV solar axions emitted in an M1 transition in Fe-57 nuclei,” Phys. At. Nucl. 74, 596 (2011).
15. M. Krcmar, Z. Krecak, M. Stipcevic, et al., “Search for solar axions using Li-7,” Phys. Rev., D 64, 115016 (2001).
16. A. V. Derbin, A. I. Egorov, I. A. Mitropolsky, et al., “Search for solar axions emitted in an M1 transition in Li-7 nuclei,” JETP Lett. 81, 365 (2005).
17. P. Belli et al. (DAMA Collab.), “Search for Li-7 solar axions using resonant absorption in LiF crystal: final results,” Phys. Lett., B 711, 41 (2012).
18. K. Jakovicz, Z. Krecak, M. Krcmar, and A. Ljubicic, “A search for solar hadronic axions using Kr-83,” Radiat. Phys. Chem. 71, 93 (2004), arXiv:nucl-ex/0402016v1.
19. S. C. Wu, Nucl. Data Sheets 92, 893 (2001).
20. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, “The chemical composition of the Sun,” Ann. Rev. Astron. Astrophys. 47, 481 (2009), arXiv:0909.0948.
21. T. W. Donnelly, S. J. Freedman, R. S. Lytel, et al., “Do axions exist?,” Phys. Rev., D 18, 1607 (1978).
22. F. T. Avignone III, C. Baktash, W. C. Barker, et al., “Search for axions from the 1115-keV transition of 65Cu,” Phys. Rev., D 37, 618 (1988).
23. G. Faeldt and H. Pilkuhn, “Inner Coulomb corrections to pion-nucleus scattering,” Phys. Lett., B 46, 337 (1997).
24. D. Adams et al. (Spin Muon Collab.), “Spin structure of the proton from polarized inclusive deep inelastic muon-proton scattering,” Phys. Rev., D 56, 5330 (1997).
25. J. H. Bahcall, A. M. Serenelli, and S. Basu, “New solar opacities, abundances, helioseismology, and neutrino fluxes,” Astrophys. J. 621, L85 (2005).
26. N. Grevesse and A. J. Sauval, “Standard solar composition,” Space Sci. Rev. 85, 161 (1998).
27. M. Gavrilijuk et al., “Working characteristics of the New Low-Background Laboratory (DULB-4900, Baksan Neutrino Observatory),” Nucl. In. Meth., A 729, 576 (2013).
28. V. N. Gavrin et al., Preprint INR RAS (1991).
29. Yu. M. Gavrilyuk et al., Phys. Rev., C 89, 035501 (2013).