Free vibration studies on skew sandwich plates by FEM

Dhotre Pavan Kumar¹ and C V Srinivasa²

¹,² Department of Mechanical Engineering, GM Institute of Technology, Davangere, India.

Abstract. Present study mainly deals with the extraction of fundamental frequencies using simply supported and clamped isotropic and laminated faced skew sandwich plates with the orthotropic core. Available literature values were referred to validate the fundamental frequencies obtained using the finite element method. The effects of aspect ratio, skew angle, a ratio of the length-to total thickness of the sandwich plate, and the ratio of a thickness of the core to a thickness of face sheet on the free vibration of skew sandwich plates were examined. The present method is also used to study the effect of fiber orientation angle and laminate stacking sequence on free vibration of antisymmetric cross-ply laminated skew sandwich plates are also extracted. CQUAD8 type of element gives converged, accurate results than the CQUAD4 element in the present study. The variation of frequencies is directly proportional with the skew angle.

Keywords: Fundamental Frequency, Dimensionless frequency parameter, skew sandwich plates, and skew angle, antisymmetric laminated sandwich plates.

Nomenclature:

a: Plate length (mm)
b: Plate width (mm)
h: Total thickness of plate (mm)
tc: Core thickness (mm)
tf: Face sheet thickness (mm)
E: Modulus of Elasticity (GPa)
G: Modulus of Rigidity (GPa)
ρ: Density (kg/m³)
ν: Poisson’s Ratio
α: Skew Angle (Degrees)
Kf: Dimensionless Frequency Parameter
ω: Circular Frequency (rad/sec)
C: Core
1. Introduction

Skew sandwich plates now a day frequently used into numerous areas like aeronautical, automobile, civil engineering, and in most structural applications. In skew sandwich plates, the effect of shear deformation is considerably more as compared to laminated composite skew plates, which was the reason behind the widespread applications such plates. Also, skew sandwich plates exhibit less weight, more stiffness, more structural efficiency, and more durable.

Much research was made on sandwich plates on the free vibration behaviour for more than two decades. An expression was derived for natural frequency also conducted experiments to validate analytical results [1]. Skew sandwich plates were considered for static and dynamic analysis using finite element displacement model was carried out [2]. Exact solutions were derived for the problems on honeycomb sandwich structures [3]. The p-Ritz method was worked out for free vibration study on Skew sandwich plates with an orthotropic core and laminated facings [4]. A Higher-order shear deformation theory for free vibration of laminated composite and sandwich plates were presented [5]. The vibration parameters of sandwich plates were predicted by a spline finite strip method [6]. Two new C° assumed strain finite element [7], facet shell element [8]. To extract the fundamental frequencies of various plates, Reddy’s higher-order theory was used. Natural frequencies, displacement and stress eigenvectors were extracted, a semi-analytical [9] and exact analytical solutions based on the propagator matrix method [10] higher-order mixed theory was developed for laminated and sandwich plates. Refined plate theory was proposed on sandwich plates [11].

Free vibration studies on laminated composite and sandwich shells were made by adopting 2D-higher-order shear deformation theories [12]. Free vibration analysis of plates and sandwich plates was discussed using C° iso-parametric finite element model [13]. Global-local higher-order theory was developed on free vibration of laminated composite and sandwich plates [14].

Structural dynamic analysis was performed on a skew sandwich plate with laminated composite faces based on the high-order shear deformation plate theory [15]. The third-order zigzag theory was used to produce an improved discrete Kirchhoff quadrilateral element on the composite and sandwich plates for static analysis [16] and the free vibration response [17]. C¹ plate bending elements proved to be more efficient than the C° plate bending elements to extract exact natural frequencies of sandwich plates [18]. An investigation conducted on the free vibrations of rectangular sandwich plates by applying Hamilton’s principle along with the first-order shear deformation theory [19]. C° finite element model used for bending and free vibration studies of laminated soft core skew sandwich plates [20].

Various shear deformation theories [21] were considered for the comparison based on the displacement fields [22]. Free vibration analysis of laminated composite and sandwich plates using trigonometric shear deformation theory [23]. The bending behavior [24] and free vibration response [25] of composite sandwich plates with multi-layered face sheets has been investigated using a four nodded rectangular finite element formulation based on a layer-wise theory. The effect of openings and additional mass on free vibration analysis of laminated composite sandwich skew plates were studied [26].

The present effort concerned with the investigation of fundamental frequencies of skew sandwich plates with an orthotropic core. CQUAD4 and CQUAD8 elements are employed in the analysis. The correctness of the results from the elements is confirmed from literature results. The effects of aspect ratio, skew angle, fiber orientation angle, and boundary conditions on the free vibrations of skew sandwich plates are studied.

2. Convergence and Validation

2.1. Convergence
The geometrical representation of the sandwich plate is as shown in Figure 1. The skewed sandwich plate with global and local coordinate systems is as shown in Figure 2. The displacement boundary conditions cannot be applied directly, due to inclination of displacements to the skew edges. To prevail over this, a local coordinate system \((x', y')\) normal and tangential to the skew edges is preferred.

Figure 1. Geometry details of Sandwich Plate

Figure 2. Finite Element Mesh of Skew sandwich plate with a local and global coordinate system.

Total elements in a plate model are optimized to get exact and consistent values. Consequently, it is essential to analyze the convergence of the values. The convergence was made on simply supported and clamped skew sandwich plates having an aspect ratio, length to thickness ratio and the ratio of a thickness of core to facing for skew angles 0°, 15°, 30° and 45° using both elements. The converged detailed results are delivered in Table 1.

The material properties used are, for face sheets \(E = 68.948\) GPa, \(G = 25.924\) GPa, \(\nu = 0.33\), \(\rho = 2768.0\) kg/m³ and for core \(G_{13} = 0.05171\) GPa, \(G_{13} = 0.13445\) GPa, \(\rho = 121.83\) kg/m³ [1].

2.2. Validation

Validation of the results from the elements used in the present study is made by matching up to the values for the natural frequency found in the present study to the available literature values. The comparison is shown in Table 2, for a simply supported skew sandwich plate. The material constants employed are similar to those used for the convergence study. The values found in the study are in good harmony with literature results.

In Table 3 the dimensionless frequency parameter \((K_f)\) for skew sandwich plates with graphite-epoxy laminate face sheet and Al honeycomb core are compared with literature results with simply supported edge condition. Face sheets having two layers with anti-symmetric layup sequence are employed. The material properties adopted for face sheet are, \(E_1 = 131\) GPa, \(E_3 = 3.275\) GPa, \(G_{13} = 3.275\) GPa, \(\nu_{13} = 0.25\) and \(\rho = 1627\) kg/m³ and for core \(G_{13} = 0.1173\) GPa, \(G_{23} = 0.2415\) GPa and \(\rho = 2386\) kg/m³[13]. In Table 3 the results are compared in Dimensionless form using the formula \(K_f = 100oaoa\sqrt{(p/E_1)F}\). From Table 1 to Table 3 it is observed that CQUAD8 element gives accurate and converge results as than CQUAD4 element. From now CQUAD8 is adopted in the work.

3. Results and discussion

3.1. Sandwich plates with isotropic face sheet and aluminum honeycomb core

The present study considers a variety of parameters such as aspect ratio, ratio of length to thickness of sandwich plates, ratio thickness of face sheet to thickness of core, skew angle and boundary conditions.
The results from the numerical methods are presented in the Table 4 for different aspect ratio and skew angle for all sides simply supported and clamped edge condition. The graphical presentation of the results in the Table 4 is as shown in Fig 3 and Fig 4.

Table 1. Convergence for fundamental frequencies (Hz) of simply supported skew sandwich plates (a/b=1, a/h=10, t_c/t_f =10).

Element Density	Element Type	S-S-S-S	Skew Angle (α)	C-C-C-C	Skew Angle (α)				
Present (10 x 10)	CQUAD 4	2493.991	2570.462	2827.037	3369.724	3017.56	3779.85		
Present (10 x 10)	CQUAD 8	2519.097	2596.492	2856.251	3405.989	3052.65	3717.40	3339.14	3824.81
Present (14 x 14)	CQUAD 4	2507.189	2584.146	2842.358	3388.675	3036.29	3100.64	3720.98	3803.53
Present (14 x 14)	CQUAD 8	2520.018	2597.446	2857.271	3407.130	3054.26	3119.01	3820.76	3826.51
Present (18 x 18)	CQUAD 4	2512.631	2589.787	2848.699	3396.465	3044.04	3108.55	3812.99	3813.30
Present (18 x 18)	CQUAD 8	2520.395	2597.836	2857.720	3407.607	3054.93	3120.02	3826.51	3827.21
Present (22 x 22)	CQUAD 4	2515.387	2592.644	2851.877	3400.404	3047.97	3112.56	3828.77	3828.26
Present (22 x 22)	CQUAD 8	2520.586	2598.034	2857.901	3407.851	3055.26	3120.02	3827.56	3827.56
Present (26 x 26)	CQUAD 4	2516.973	2594.288	2853.718	3402.667	3050.23	3114.87	3821.11	3821.11
Present (26 x 26)	CQUAD 8	2520.696	2598.147	2858.040	3407.993	3055.46	3120.21	3827.77	3827.77
Present (30 x 30)	CQUAD 4	2517.968	2595.319	2854.872	3404.086	3051.65	3116.32	3822.89	3822.89
Present (30 x 30)	CQUAD 8	2520.765	2598.218	2858.119	3408.082	3055.58	3120.33	3827.90	3827.90
Present (34 x 34)	CQUAD 4	2518.634	2596.009	2855.666	3405.033	3052.60	3117.29	3824.09	3824.09
Present (34 x 34)	CQUAD 8	2520.811	2598.266	2858.193	3408.143	3055.66	3120.42	3827.98	3827.98
Present (38 x 38)	CQUAD 4	2519.100	2596.492	2856.207	3405.698	3053.27	3117.97	3824.93	3824.93
Present (38 x 38)	CQUAD 8	2520.843	2598.299	2858.230	3408.186	3055.72	3120.47	3828.04	3828.04

Table 2. Fundamental frequencies (Hz) of skew sandwich plates with simply supported

Authors	0°	15°	30°	45°
Raville [1]	23.0000	-	-	-
Zhou [27]	23.2900	-	-	-
Bardell [28]	23.0500	-	-	-
Yuan [6]	23.4100	-	-	-
FOST	23.5994	-	-	-
HOST	23.4841	-	-	-
Araújo [30]	23.5000	-	-	-
Ferreira [29]	23.2600	-	-	-
Bo Liu [31]	23.2591	-	-	-
Shenoi [7]	23.6300	-	-	-
HOST12	23.4258	-	-	-
HOST11	23.4268	-	-	-
HOST9	23.4265	-	-	-
HOST	23.4251	-	-	-
Voyiadjis [15]	23.3190	24.8550	29.8300	41.4260
Host	23.5279	24.9315	30.0623	43.1677
A. K. Garg [12]	23.4268	-	-	-
HOST12	23.4258	-	-	-
HOST11	23.4268	-	-	-
HOST9	23.4265	-	-	-
HOST	23.4251	24.8438	29.9153	42.7936
A. K. Garg [13]	23.4268	-	-	-
HOST12	23.4258	-	-	-
HOST11	23.4268	-	-	-
HOST9	23.4265	-	-	-
HOST	23.4251	24.8438	29.9153	42.7936

Table 3. Dimensionless frequency parameter (Kf) for simply supported graphite epoxy laminated composite skew sandwich plates with orthotropic core.

AUTHORS	Skew Angle (α)
R. Khare [8]	23.5994
Host	23.5279
A. K. Garg [12]	23.5279
HOST12	23.5251
HOST11	23.5251
HOST9	23.5251
HOST	23.5251
A. K. Garg [13]	23.5251
HOST12	23.5251
HOST11	23.5251
HOST9	23.5251
HOST	23.5251

4
From the results, keeping the ratio of a/h and t_c/t_f as constant, the following observations were made.

- With increment in the aspect ratio, fundamental frequency diminishes for a given skew angle.
- With increment in the skew angle, fundamental frequency increases for a given aspect ratio.
- The value of natural frequency is high for all sides’ clamped edge as compared to the simply supported.

Table 4. Fundamental frequencies [Hz] of skew sandwich plates (a/h=10, t_c/t_f=10)

a/b	All Sides Simply Supported	All Sides Clamped
	Angle of Skew (α)	Angle of Skew (α)
	0 15° 30° 45°	0 15° 30° 45°
1	2532.05 2592.03 2794.67 3232.52	2797.83 2850.8 3032.62 3436.39
1.5	1509.04 2200.22 2269.83 2685.75	1795.36 2012.27 2398.76 2614.63
2	1010.33 1969.91 2108.33 2462.06	1283.64 2145.97 2398.76 2614.63
2.5	724.62 1624.88 1859.73 2345.92	972.97 1787.48 2012.27 2482.03

The results showing the effect of ratio of (t_c/t_f) of the sandwich skew plate on the natural frequency are presented in the Fig 5 and Fig 6. The aspect ratio (a/b=1) and ratio of (a/h=10) of the sandwich skew plate kept constant. From the figures the following observations were made,

- With increment in the ratio of (t_c/t_f), fundamental frequency increases for a given skew angle.
- With increment in the skew angle, fundamental frequency increases for a given ratio of (t_c/t_f).
- The value of natural frequency is high for all sides’ clamped edge as compared to the simply supported.

Fig 7 and Fig 8 shows the results of effect of ratio of (a/h) of the skew sandwich plate on natural frequency. The aspect ratio (a/b=1) and ratio of (t_c/t_f=10) of the sandwich skew plate kept constant. From the figures the following observations were made,

- With increment in the proportion of (a/h), fundamental frequency diminishes for a given skew angle.
- With increment in the skew angle, fundamental frequency increases for a given ratio of (a/h).
- The value of natural frequency is high for all sides’ clamped edge as compared to the simply supported.
3.2. Sandwich plates with orthotropic face sheet and honeycomb core

The numerical study is made for sandwich skew plates with orthotropic face sheet and aluminium honeycomb core. The material constants employed are, face sheet, $E_1=206.84$ GPa, $E_2=E_3=5.1711$ GPa, $\nu_{12}=0.25$, $\nu_{23}=0.3$ and $\rho=1603.1$ kg/m3. And for core, $E=627.9$ MPa $G_{13}=117.21$ MPa, $G_{23}=241.32$ MPa, $\rho=2351.2$ kg/m3.The results are presented in a Dimensionless form using the formula $K_f = \frac{100\omega a}{\sqrt{(\rho/E_1)r}}$. The face sheet is made-up of two layers anti-symmetric laminate with core in the centre. Dimensionless frequency parameters for different aspect ratio and boundary conditions are obtained by varying the skew angle. The values found are as shown in Table 5. The graphical representation of the same is made in Fig 9 and Fig 10.
Figure 5. Fundamental Frequency v/s ratio of t_c/t_f with all sides simply supported.

Figure 6. Fundamental Frequency v/s ratio of t_c/t_f with all sides clamped
Figure 7. Fundamental Frequency v/s ratio of a/h of skew sandwich plate for all sides simply supported

Figure 8. Fundamental Frequency v/s ratio of a/h of skew sandwich plate for all sides clamped edges
Table 5. Dimensionless frequency parameters of laminated antisymmetric skew sandwich plates
\((0^0/90^0/C/0^0/90^0)\) (\(a/h=10, t_c/t_f=10\))

a/b	Angle of Skew (\(\alpha\))	All Sides Simply Supported	All Sides Clamped					
	0^0	15^0	30^0	45^0	0^0	15^0	30^0	45^0
1	9.1174	9.3786	10.2724	12.2037	10.6262	10.8547	11.6391	13.3712
1.5	11.842	12.0111	13.0143	15.7942	14.2666	14.3657	15.1059	17.4253
2	14.8035	14.7184	15.7272	19.4847	18.1454	18.3954	18.7866	21.4101
2.5	17.0208	17.3233	18.4786	23.2834	19.9568	21.2636	21.5831	25.4219

Figure 9. Dimensionless frequency Parameter v/s Aspect ratio for simply supported anti-symmetric cross ply Graphite/Epoxy laminated skew sandwich plates.

Figure 10. Dimensionless frequency Parameter v/s Aspect ratio for clamped anti-symmetric cross ply Graphite/Epoxy laminated skew sandwich plates.
4. Conclusions
The following points are noticed after carrying out numerical study.

• Both CQUAD4 and CQUAD8 elements have good agreement with the available literature results. But CQUAD8 element yields more accurate results. The same is true for both isotropic and orthotropic skew sandwich plates.

• With increment in aspect ratio, fundamental frequency values diminish in all the cases.

• As skew angle increased the fundamental frequency value also increases in all the cases.

• The ratio \(\frac{t_c}{t_f} \) has major influence till \(\frac{t_c}{t_f} = 20 \) for simply supported and \(\frac{t_c}{t_f} = 40 \) for clamped boundary condition, there after the influence is negligible.

Natural frequency values decrease considerably for in the influence of ratio of length to total thickness of the skew sandwich plates.

Acknowledgement
The authors acknowledge the kindly support and encouragement by the Management and Principal of GM Institute of Technology, Davangere-Karnataka.

References
[1] Raville M E and Ueng C E S May 16-19 1967 Ottawa SESA Spring Meeting Determination of Natural Frequencies of Vibration of a Sandwich Plate pp 490-493
[2] Ng S S F and Lam D K Y 1985 J. Sound Vib Dynamic And Static Analysis Of Skew Sandwich Plates 99(3) pp 393-401
[3] Holt P J and Webber J P H 1982 J Strain Anal Exact Solutions To Some Honeycomb Sandwich Beam, Plate, And Shell Problems 17(1) pp 1-8
[4] Wang C M, Ang K K, Yang L and Watanabe E 2000 J Sound Vib Free Vibration Of Skew Sandwich Plates With Laminated Facings 235(2) pp 317-340
[5] Kant T and Swaminathan K 2001 Compos Struct Analytical Solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory 53 pp 73-85
[6] Yuan W X and Dawe D J 2002 Int. J. Numer. Methods Eng Free vibration of sandwich plates with Laminated faces 54 pp 195-217
[7] Nayak A K, Moy S S J and Shenoi R A 2002 Composites, Part B Free vibration analysis of composite sandwich plates based on Reddy’s higher-order theory 33 pp 505-519
[8] Khare R K, Kant T and Garg A K, 2004 Compos Struct Free vibration of composite and sandwich laminates with a higher-order facet shell element 65 pp 405-418
[9] Rao M K and Desai Y M 2004 Compos Struct Analytical solutions for vibrations of composite and sandwich plates using mixed theory 63 pp 361-373
[10] Rao M K, Scherbatiuk K, Desai Y M and Shah A H 2004 J. Eng. Mech Natural Vibrations of Laminated and Sandwich Plates 130 pp 1268-1278
[11] Chakrabarti A and Shah A H 2004 J. Aerosp. Eng Vibration of Laminate-Faced Sandwich Plate by a New Refined Element 17(3) pp 123-134
[12] Khare R K, Kant T and Garg A K 2006 J. Sandwich Struct. Mater Higher-order Closed-form Solutions for Free Vibration of Laminated Composite and Sandwich Shells 8 pp 205-235
[13] Khare R K, Kant T and Garg A K 2006 J. Sandwich Struct. Mater Free Vibration of Skew Fiber-reinforced Composite and Sandwich Laminates using a Shear Deformable Finite Element Model 8 pp 33-55
[14] Zhen W and Wanji C 2006 J. Sound Vib Free vibration of laminated composite and sandwich plates using global–local higher-order theory 298 pp 333-349
[15] Park T, Lee S Y, Seo J W, and Voyiadjis G Z 2008 Composites Part B Structural dynamic behavior of skew sandwich plates with laminated composite faces 39 pp 316-326
[16] Kapuria S and Kulkarni S D 2007 Int. J. Numer. Methods. Eng An improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory for static analysis of composite and sandwich plates 69 pp 1948-1981
[17] Kapuria S and Kulkarni S D 2008 *Comput. Mech.* Free vibration analysis of composite and sandwich plates using an improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory 42 pp 803-824

[18] Zhen W, Xiaohui R and Wanji C 2010 *Compos. Struct.* An accurate higher-order theory and C⁰ finite element for free vibration analysis of laminated composite and sandwich plates 92 pp 1299-1307

[19] Loptin A V and Morozov E V 2011 *Compos. Struct* Fundamental frequency and design of the CFCF composite sandwich plate 93 pp 983-991

[20] Chalak H D, Chakrabarti A, Sheikh A H and Iqbal M A 2014 *Appl. Math. Modell.* C⁰ FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration 38 pp 1211-1223

[21] Pavan Kumar and C V Srinivasa 2018 *J. Thermoplast. Compos. Mater.* On buckling and free vibration studies of sandwich plates and cylindrical shells: A review 33 pp 673-724

[22] Sayyad A S and Ghugal Y M 2015 *Compos. Struct.* On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results 129 pp 177-201

[23] Sayyad A S and Ghugal Y M 2016 *J. Sandwich Struct. Mater.* On the free vibration of angle-ply laminated composite and soft core sandwich plates pp 1-33

[24] Belarbi M O, Tati A, Ounis H and Benchabane A 2016 *Struct. Eng. Mech.* Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates 57(3) pp 473-506

[25] Belarbi M O, Tati A, Ounis H and Khechai A 2017 *Lat. Am. J. Solids Struct.* On the Free Vibration Analysis of Laminated Composite and Sandwich Plates: A Layerwise Finite Element Formulation 14 pp 2265-2290

[26] Anish, Kumar A and Chakrabarti A 2020 *J. Thermoplast. Compos. Mater* Influence of openings and additional mass on vibration of laminated sandwich rhombic plates using IHSDT 33(1) pp 3-34

[27] Zhou H B, Li G Y 1996 *Comput. Struct.* Free vibration analysis of sandwich plates with laminated faces using spline finite point method 59 pp 257–263

[28] Bardell N S, Dunson J M and Langley R S 1997 *Compos. Struct.* Free vibration analysis of coplanar sandwich panels 38 pp 463–475

[29] Ferreira A J M, Araújo A L, Neves A M A, Rodrigues J D, Carrera E, Cinefra M, et al. 2013 *Compos. Part B Eng.* A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates 45(1) pp 1258-1264

[30] Araújo A, Mota Soares C, Mota S C 2010 *Appl. Compos. Mater.* A viscoelastic sandwich finite element model for the analysis of passive, active and hybrid structures 17(5) pp 529-542

[31] Liu B, Zhao L, Ferreira A J M, Xing Y F, Neves A M A, Wang J 2017 *Compos. Part B* Analysis of viscoelastic sandwich laminates using a unified formulation and a differential quadrature hierarchical finite element method 110 pp 185-192