Howell et al Nov • Dec 2010

Challenge

A male 17-year-old presents with history of pain due to a football injury incurred 3 days prior. Axial T2-weighted (Figure 1) and coronal fat suppressed T2-weighted (Figure 2) images of the right midfoot are provided with relevant findings marked with arrows. What are the findings? What is the diagnosis?

Diagnosis

Lisfranc ligament (complex) tear.

Introduction

In the general population, injuries to the Lisfranc ligament complex are uncommon, occurring in approximately 1 in 50,000 people. The incidence of Lisfranc joint fracture dislocations is approximately 1 in 55,000 persons each year. Thus, these injuries account for fewer than 1% of all fractures. The injuries typically occur as a result of high-velocity indirect trauma, such as that from a motor vehicle accident, and so result in obvious displacement and disruption of the midfoot anatomy. Midfoot sprains in athletes represent a lower-velocity injury, with no displacement or with only subtle diastasis.

Although sprains of the midfoot are not common in the general population, certain athletes suffer a much higher rate of this injury. Midfoot sprains are the second-most common athletic foot injury, after injury to the metatarsophalangeal joint, and they occur in 4% of football players per year, with offensive linemen incurring 29.2% of midfoot sprains in one study.

Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians.

Keywords: Lisfranc; ligament tear; midfoot sprain; magnetic resonance imaging

Challenge

A male 17-year-old presents with history of pain due to a football injury incurred 3 days prior. Axial T2-weighted (Figure 1) and coronal fat suppressed T2-weighted (Figure 2) images of the right midfoot are provided with relevant findings marked with arrows. What are the findings? What is the diagnosis?

Diagnosis

Lisfranc ligament (complex) tear.

Introduction

In the general population, injuries to the Lisfranc ligament complex are uncommon, occurring in approximately 1 in 50,000 people. The incidence of Lisfranc joint fracture dislocations is approximately 1 in 55,000 persons each year. Thus, these injuries account for fewer than 1% of all fractures. The injuries typically occur as a result of high-velocity indirect trauma, such as that from a motor vehicle accident, and so result in obvious displacement and disruption of the midfoot anatomy. Midfoot sprains in athletes represent a lower-velocity injury, with no displacement or with only subtle diastasis.

Although sprains of the midfoot are not common in the general population, certain athletes suffer a much higher rate of this injury. Midfoot sprains are the second-most common athletic foot injury, after injury to the metatarsophalangeal joint, and they occur in 4% of football players per year, with offensive linemen incurring 29.2% of midfoot sprains in one study.

Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians.

Keywords: Lisfranc; ligament tear; midfoot sprain; magnetic resonance imaging

Challenge

A male 17-year-old presents with history of pain due to a football injury incurred 3 days prior. Axial T2-weighted (Figure 1) and coronal fat suppressed T2-weighted (Figure 2) images of the right midfoot are provided with relevant findings marked with arrows. What are the findings? What is the diagnosis?

Diagnosis

Lisfranc ligament (complex) tear.

Introduction

In the general population, injuries to the Lisfranc ligament complex are uncommon, occurring in approximately 1 in 50,000 people. The incidence of Lisfranc joint fracture dislocations is approximately 1 in 55,000 persons each year. Thus, these injuries account for fewer than 1% of all fractures. The injuries typically occur as a result of high-velocity indirect trauma, such as that from a motor vehicle accident, and so result in obvious displacement and disruption of the midfoot anatomy. Midfoot sprains in athletes represent a lower-velocity injury, with no displacement or with only subtle diastasis.

Although sprains of the midfoot are not common in the general population, certain athletes suffer a much higher rate of this injury. Midfoot sprains are the second-most common athletic foot injury, after injury to the metatarsophalangeal joint, and they occur in 4% of football players per year, with offensive linemen incurring 29.2% of midfoot sprains in one study.

Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians.

Keywords: Lisfranc; ligament tear; midfoot sprain; magnetic resonance imaging

Challenge

A male 17-year-old presents with history of pain due to a football injury incurred 3 days prior. Axial T2-weighted (Figure 1) and coronal fat suppressed T2-weighted (Figure 2) images of the right midfoot are provided with relevant findings marked with arrows. What are the findings? What is the diagnosis?

Diagnosis

Lisfranc ligament (complex) tear.
metatarsal into the cuneiform—forms the focal point that supports the entire tarsometatarsal articulation. To lessen ambiguity, some investigators have suggested that the term Lisfranc joint complex be used to refer to the tarsometatarsal articulations and that the term Lisfranc joint be applied to the medial articulation involving the first and second metatarsals with the medial and middle cuneiforms. Unlike the other metatarsal bases, there is no intermetatarsal ligament between the base of the first and second metatarsals. This allows the first metatarsal increased sagittal mobility, being tethered by only its attachments to the medial cuneiform. Instead, stability between the first and second rays is achieved by ligaments extending from the lateral margin of the medial cuneiform to the medial margin of the second metatarsal base. In the interest of simplicity and clarity, at least one author suggested that the ligaments between the medial cuneiform and second metatarsal be referred to as the dorsal, interosseous, and plantar Lisfranc ligaments (Figures 3-6) and that the 3 ligaments in combination be designated the Lisfranc ligament complex.

MECHANISM OF INJURY

The anatomic complexity at the Lisfranc joint complex leads to multiple injury patterns. Sprains are the most common injury, with the midfoot sprain being the least severe. The severity of the sprain usually depends on the energy absorbed at the time of injury. Most tarsometatarsal ligament injuries are grade I (pain at the joint, with minimal swelling and no instability) or grade II (increased pain and swelling at the joint, with mild laxity but no instability). The more severe grade III sprain represents complete ligamentous disruption and may represent fracture dislocation. Several further classifications of true fracture dislocations are used, but they do not predict prognosis. Lisfranc joint fracture dislocations and sprains can be caused by high-energy forces in motor vehicle crashes, industrial accidents, and falls from high places. These injuries occasionally result from a less stressful mechanism, such as a twisting fall. Because Lisfranc joint fracture dislocations and sprains carry a high risk of chronic secondary disability, physicians should maintain a high index of suspicion for these injuries in patients with foot injuries characterized by marked swelling, tarsometatarsal joint tenderness, and the inability to bear weight.

High-Velocity Injury

The high-velocity injury to the Lisfranc joint typically occurs with major trauma, such as motor vehicle accidents or falls. The force on the Lisfranc joint is abduction and/or plantar flexion. The joint is grossly dislocated, and fractures of the metatarsals or cuneiforms are commonly seen. Fracture dislocations are classified as either homolateral, with all 5 metatarsals displaced in the medial or lateral direction, or divergent, with a separation of the first and second metatarsals.
Figure 3. This 3-dimensional graphic of the midfoot with the first metatarsal removed demonstrates the dorsal (blue), interosseous (red), and plantar (green) components of the Lisfranc ligament complex.

Figure 4. Coronal T2 image demonstrates normal dorsal (arrowhead), interosseous (long arrow), and plantar (short arrow) components of the Lisfranc ligament complex.

Figure 5. Axial STIR (short T1 inversion recovery) image demonstrating a normal interosseous component of the Lisfranc ligament complex (arrow).

Figure 6. Axial T2 image demonstrating a normal plantar component of the Lisfranc ligament complex (arrowhead).
Low-Velocity Injury: Midfoot Sprain

Low-velocity injuries can also result in mechanically significant disruption of the Lisfranc joint. Two injury mechanisms have been described. The first is plantar flexion and axial load, sometimes with a component of inversion. It occurs when the patient's foot is plantar flexed and suffers an axial load injury. This injury may occur during running and jumping sports or when a patient trips going downstairs or stepping off a curb. It also may occur when a downward force is applied to the heel when the patient's knee is on the ground and the ankle is dorsiflexed.

The second mechanism is forced forefoot abduction. This injury may also occur when an athlete wearing cleats plants the foot and turns quickly. In both mechanisms of injury, stress is applied to the Lisfranc ligament complex, and ligament failure referred to as midfoot sprain occurs. Midfoot sprain is uncommon in nonathletes, but in athletes it is the second most common athletic foot injury, occurring in 4% of football players per year.

MAGNETIC RESONANCE IMAGING FINDINGS

As many as 20% of Lisfranc joint injuries are missed on initial anteroposterior and oblique radiographs. Magnetic resonance imaging (MRI) has been shown to demonstrate the Lisfranc ligament complex reliably in the normal foot. Three distinct structures can be identified: the dorsal, plantar, and interosseous ligaments (Figures 3-6). The interosseous ligament is the strongest and thickest of the 3 ligaments, providing the greatest degree of stability. It is 8 to 10 mm long and 5 to 6 mm thick (Figures 5 and 6). However, the 3 components of the Lisfranc ligament complex fail sequentially from dorsal to plantar due to the mechanism of stress applied to the joint (Figures 7 and 9). MRI frequently shows small avulsion fractures that are not visible on radiographs. The fractures usually arise from the base of the second metatarsal, although other midfoot contusions and fractures are often seen as well (Figure 9). Bone bruises without avulsions are seen commonly and are a useful secondary sign raising suspicion for a Lisfranc ligament complex injury (Figure 10).
Lisfranc joint injuries are uncommon and often misdiagnosed. Typical signs and symptoms include pain, swelling, and the inability to bear weight. These injuries vary from mild sprains (typically in an athlete) to fracture dislocations (as seen in motor vehicle accidents). On physical examination, swelling is found primarily over the midfoot region. Pain is elicited with palpation along the tarsometatarsal articulations, and force applied to this area may elicit medial or lateral pain. Subtle midfoot sprains (diastasis of 1 to 5 mm) are difficult to diagnose and can cause significant disability and frustration in athletes. Partial capsular tears result in no diastasis but can result in an inability to play sports at an elite level for many months. A missed diagnosis has serious consequences. An untreated midfoot sprain rapidly leads to osteoarthritis and flattening of the longitudinal arch. Treatment is usually surgical. MRI can prove helpful for the evaluation of injuries to the midfoot, particularly in the setting of normal radiographs. Specific injuries to the components of the Lisfranc ligament complex can be detected. Other injuries to this region that are exclusive of the Lisfranc ligament complex, such as midfoot contusions and fractures, are also well demonstrated. The accurate diagnosis of Lisfranc and related injuries in the patient with midfoot pain allows appropriate conservative or surgical treatment to be instituted.

REFERENCES

1. Brown DD, Gumbs RV. Lisfranc fracture-dislocations: report of two cases. J Natl Med Assoc. 1991;83:366-369.
2. Burroughs K, Reimer C, Fields K. Lisfranc injury of the foot: a commonly missed diagnosis. Am Fam Physician. 1998. http://www.aafp.org/afp/980700ap/burrough.html. Accessed September 10, 2010.
3. Cheung Y, Rosenberg ZS. MR imaging of ligamentous abnormalities of the ankle and foot. Magn Reson Imaging Clin N Am. 2001;9:507-531.
4. Crim J. MR imaging evaluation of subtle Lisfranc injuries: the midfoot sprain. Magn Reson Imaging Clin N Am. 2008;16:39-27.
5. Curtis MJ, Myerson M, Szura B. Tarsometatarsal joint injuries in the athlete. Am J Sports Med. 1993;21:497-502.
6. de Palma L, Santucci A, Sabetta SP, et al. Anatomy of the Lisfranc joint complex. Foot Ankle Int. 1997;18:356-364.
7. Englanoff G, Anglin D, Hutson HR. Lisfranc fracture-dislocation: a frequently missed diagnosis in the emergency department. Ann Emerg Med. 1995;26:229-233.
8. Hardcastle PH, Reschauer R, Kutscha-Lissberg E, et al. Injuries to the tarsometatarsal joint: incidence, classification and treatment. J Bone Joint Surg Br. 1982;64:349-356.
9. Heckman JD. Fractures and dislocations of the foot. In: Rockwood CA, Green DP, Bucholz RD, eds. Rockwood and Green's Fractures in Adults. Vol 2. 3rd ed. Philadelphia, PA: Lippincott; 1991: 2140-2151.
10. Kraeger DR. Foot injuries. In: Lillegard WA, Rucker KS, eds. Handbook of Sports Medicine: A Symptom-Oriented Approach. Boston, MA: Andover Medical; 1993:159-171.
11. Iy TV, Coetzee JC. Treatment of primarily ligamentous Lisfranc joint injuries: primary arthrodesis compared with open reduction and internal fixation. J Bone Joint Surg Am. 2006;88:514-520.
12. Mantas JP, Burks RT. Lisfranc injuries in the athlete. Clin Sports Med. 1994;13:719-730.
13. Meyer SA, Callaghan JJ, Albright JP, et al. Midfoot sprains in collegiate football players. Am J Sports Med. 1994;22:392-401.
14. Myerson M. The diagnosis and treatment of injuries to the Lisfranc joint complex. Orthop Clin North Am. 1989;20:655-664.
15. Nunley J, Vertullo C. Classification, investigation, and management of midfoot sprains. Am J Sports Med. 2002;30:871-878.
16. Preidler KW, Brossman J, Daenen B, et al. MR imaging of the tarsometatarsal joint: analysis of injuries in 11 patients. Am J Roentgenol. 1996;167:1217-1222.
17. Preidler KW, Wang VC, Brossman J, et al. Tarsometatarsal joint: anatomic details on MR images. Radiology. 1996;199:733-736.
18. Shapiro M, Wascher D, Finerman G. Rupture of Lisfranc’s ligament in athletes. Am J Sports Med. 1994;22:687-691.
19. Trevino SG, Kodros S. Controversies in tarsometatarsal injuries. Orthop Clin North Am. 1995;26:229-238.
20. Vuori JP, Aro HT. Lisfranc joint injuries: trauma mechanisms and associated injuries. J Trauma. 1993;35:40-45.

For reprints and permissions queries, please visit SAGE’s Web site at http://www.sagepub.com/journalsPermissions.nav.