Evaluation of effective location and thickness of shear wall on performance of multi-storey building subjected to lateral load

Shreelakshmi V and S Kavitha
Department of Civil Engineering, ACS College of Engineering, Bangalore, Karnataka, India.

Abstract. The aim of the present study is to identify the optimum thickness of the shear divider and suitable position of shear divider in the structure. In this present study G+20 storeys building is considered which is positioned in a zone IV with soil type as medium. The linear static analysis method is used for analysis by using etabs 2016 software. We have considered four different thickness of shear wall such as 150mm, 175mm, 200mm and 225mm and again considered the three different position in the buildings such as shear divider at corner, shear divider at mid span of the structure and core divider at center of the structure. The parameters considered are storey dislocation, storey drift, Overturning moment, base shear and modal time period.

1. Introduction

Shear partition might be characterized as auxiliary elements, which gives stability, strength and stiffness against transverse loads determining strength and stiffness mainly in the shape in many instances, elevated structures are planned as a surrounded structure with shear dividers that can successfully resist horizontal forces. Transverse forces generated either because of wind blowing against the structure or because of the latency powers initiated by ground shaking will, in general snap the structure in shear and push it over in twisting. This sort of forces can be opposed by the utilization of a shear divider framework which is one of the most productive techniques for guaranteeing the transverse firmness of tall structures. These dividers for the most parts start at foundation level and are unceasing throughout the structures altitude. Their thickness can be as low as 150mm, or as high as 400mm in tall structures. Shear dividers are typically given along both length and width of structure. Shear dividers resemble vertically-oriented wide beams that convey earthquake heaps downwards to the foundation. Shear dividers in high seismic areas require superior descriptions.

The utilization of shear divider structure has acquired reputation in elevated structure, particularly in the creation of administration apartment or office/ business tower. It has been demonstrated that this frame work gives effective basic framework to multi-story working in the scope of 30-35 story's (MARSONO & SUBEDI, 2000). Previous 3 decades records of the administration history of tall structure containing shear divider component, none has tumbled during solid breezes and tremors (FINTEL, 1995).
2. Objectives of the Present Study

- To study conduct of shear divider with various thickness.
- To study the ideal position of the shear divider.
- To study the variants of displacement with respect to altered thickness and distinct position of shear dividers.
- To get the most effective structure to oppose the lateral weights.
- To assess the varieties of base shear, Lateral story dislodging, story float, overturning moment, Time period concerning distinctive thickness and diverse position of shear dividers.

3. Methodology

3.1 Building Configurations

The current study is an exertion towards analysing of the structure located on a flat ground during the earthquake. An ordinary moment resisting building of G+20 stories located over a medium soil is considered. The number of bays will be kept as 5 along both direction and the bay size will be kept as 5m with the storey height being 3m. The building will be analysed considering zone IV by response spectra method using ETABS 2016 software.

3-D space frame study will be plotted on four distinct building arrangements resting on flat ground under the stroke of seismic load. The configurations include the thickness of shear wall like 150mm, 175mm, 200mm and 225mm on height building of G+20 storeys. The main frame remains same having constant height, constant area and constant exposures in all sides and materials with same properties are considered for all configurations.

The Various building models considered are
- Model 1: Building with shear divider with thickness 150mm
- Model 2: Building with shear divider at Corner with thickness 150mm
- Model 3: Building with shear divider at Core with thickness 150mm
- Model 4: Building with shear divider with thickness 175mm
- Model 5: Building with shear divider at Corner with thickness 175mm
- Model 6: Building with shear divider at Core with thickness 175mm
- Model 7: Building with shear divider with thickness 200mm
- Model 8: Building with shear divider at Corner with thickness 200mm
- Model 9: Building with shear divider at Core with thickness 200mm
Model 10: Building with shear divider with thickness 225mm
Model 11: Building with shear divider at Corner with thickness 225mm
Model 12: Building with shear divider at Core with thickness 225mm

figure 2. Shear divider at the corner of structure

figure 3. Shear divider at the Middle of structure
4. Result and Discussion

4.1 Storey Displacement

Table 1. Lateral Storey Displacement along X direction for distinct position of shear divider

Storey Level	SW at Mid	SW at Corner	SW at Core
21	59.19	52.917	77.553
20	56.884	50.167	75.468
19	54.365	47.262	72.995
18	51.715	44.306	70.185
17	48.894	41.276	67.025
16	45.895	38.178	63.533
15	42.724	35.023	59.738
14	39.397	31.826	55.678
13	35.934	28.606	51.393
12	32.364	25.386	46.922
11	28.72	22.191	42.308
10	25.036	19.048	37.593
9	21.367	16.008	32.818
8	17.758	13.098	28.028
7	14.265	10.356	23.269
6	10.952	7.824	18.594
5	7.892	5.55	14.068
4	5.172	3.583	9.781
3	2.891	1.977	5.867
2	1.17	0.796	2.553
1	0.143	0.104	0.291
0	0	0	0
Figure 5. Lateral Storey Displacement for distinct position of shear divider

Table 2. Lateral Storey Displacement along Y direction for different position of shear wall

Storey Level	SW at Mid	SW at Corner	SW at Core
21	66.501	57.691	64.437
20	63.663	54.516	61.392
19	60.65	51.228	58.195
18	57.505	47.888	54.898
17	54.195	44.486	51.474
16	50.713	41.028	47.922
15	47.065	37.528	44.251
14	43.266	34.002	40.477
13	39.341	30.471	36.623
12	35.32	26.96	32.717
11	31.239	23.495	28.796
10	27.136	20.103	24.893
9	23.072	16.84	21.064
8	19.097	13.732	17.353
7	15.272	10.818	13.815
6	11.667	8.142	10.511
5	8.362	5.751	7.509
4	5.446	3.695	4.883
3	3.024	2.029	2.718
2	1.217	0.813	1.107
1	0.156	0.11	0.149
0	0	0	0
It is observed in all the cases that displacement values are higher in shear divider of 150mm thick with contrast to other changing thickness of shear divider. Nevertheless, as the thickness of shear divider is increased the displacement goes on decreases. The displacement Values in the structure goes on increases from lower storey to the higher storey in the structure. In all the considered models the shear divider placing at the corner is showing the ideal results as compared shear divider at mid span and core divider at the center of the structure.

4.2 Modal Time Period

Modes	SW at Mid	SW at Corner	SW at Core
1	2.394	1.938	2.636
2	2.168	1.801	2.262
3	1.674	1.205	1.941
4	0.649	0.452	0.853
5	0.602	0.436	0.588
6	0.437	0.26	0.531
7	0.296	0.195	0.486
8	0.282	0.191	0.33
9	0.193	0.116	0.263
10	0.174	0.114	0.257
11	0.167	0.111	0.244
12	0.118	0.082	0.19
It observed that modal time period is more 150mm shear divider compare to other shear divider. The thickness of shear divider increases time period goes on decrease. By considering ideal position of shear divider among all the building the shear divider at corner is showing the lesser time period when compare the shear wall at different position.

4.3 Base Shear

SW at Mid	SW at Corner	SW at Core
1770.1399	2254.1187	1948.6351

![Base Shear in KN](image)

Figure 8: Base Shear for distinct position of shear divider
Table 5. Base shear in KN along Y direction for distinct position of shear divider

SW at Mid	SW at Corner	SW at Core
1603.357	2095.7283	1672.1344

![Base Shear in Y Direction](image)

Figure 9. Base Shear for different position of shear wall

It can be observed that however the thickness of shear divider increases the base shear values also goes on increases. For variation in thickness of shear divider the values increased about 6%. By comparing different position of the shear divider at the corner is showing higher base shear and shear divider at the middle of the building is showing lesser base shear.

4.4 Storey Drift

Table 6. Storey Drift along X direction for distinct position of shear divider

Storey Level	SW at Mid	SW at Corner	SW at Core
21	0.000784	0.000937	0.00089
20	0.00084	0.000968	0.00094
19	0.000884	0.000985	0.00094
18	0.00094	0.00101	0.001053
17	0.001	0.001033	0.001164
16	0.001057	0.001052	0.001265
15	0.001109	0.001066	0.001353
14	0.001154	0.001073	0.001429
13	0.00119	0.001073	0.00149
12	0.001215	0.001065	0.001538
11	0.001228	0.001048	0.001572
10	0.001223	0.001013	0.001591
9	0.001203	0.00097	0.001597
8	0.001164	0.000914	0.001586
7	0.001104	0.000844	0.001558
6	0.00102	0.000758	0.001509
Table 7. Storey Drift along Y direction for distinct position of shear wall

Storey Level	SW at Mid	SW at Corner	SW at Core
21	0.000784	0.000937	0.00089
20	0.00084	0.000968	0.00094
19	0.000884	0.000985	0.00094
18	0.00094	0.00101	0.001053
17	0.001	0.001033	0.001164
16	0.001057	0.001052	0.001265
15	0.001109	0.001066	0.001353
14	0.001154	0.001073	0.001429
13	0.00119	0.001073	0.00149
12	0.001215	0.001065	0.001538
11	0.001228	0.001048	0.001572
10	0.001223	0.001013	0.001591
9	0.001203	0.00097	0.001597
8	0.001164	0.000914	0.001586
7	0.001104	0.000844	0.001558
6	0.00102	0.000758	0.001509
5	0.000907	0.000656	0.001429
4	0.00076	0.000535	0.001304
3	0.000574	0.000394	0.001105
2	0.000342	0.000231	0.000754
1	0.000119	8.70E-05	0.000243
0	0	0	0

Figure 10. Storey Drift along X direction for distinct position of shear wall
It can be observed that drift values are more or less similar in all the models. In G+20 storied building storeys drift is gradually increasing from base to storey 11 and decreases higher storeys. By considering the distinct position of shear divider the shear divider at the corner is showing the lesser value when compare to the other two position of shear divider and the core wall at the center of the building is showing higher inert storey drift.

4.5 Overturning Moment

Table 8. Overturning in KN for different position of shear wall

Storey Level	SW at Mid	SW at Corner	SW at Core
21	0	0	0
20	666.5848	830.0159	738.16
19	1998.9321	2510.5213	2208.5908
18	3930.1756	4956.0966	4337.7461
17	6396.9868	8085.842	7055.9712
16	9339.575	11823.3769	10297.5026
15	12701.6878	16096.8404	14000.468
14	16430.6103	20838.8913	18106.8867
13	20477.1657	25986.7076	22562.6692
12	24795.7151	31481.9871	27317.6172
11	29344.1574	37270.9473	32325.4239
10	34083.9294	43304.3249	37543.6738
9	38980.006	49537.3764	42933.8428
8	44000.8997	55929.8777	48461.2979
7	49118.6613	62446.1243	54095.2977
6	54308.8791	69054.9315	59808.992
Layer	Moment in KN.m		
-------	---------------		
5	59550.6795		
4	64826.7268		
3	70123.2232		
2	75429.9087		
1	80740.0614		
0	82864.2292		

5. Conclusion

Conclusion

- It can be presumed that 150mm shear divider thickness will be adequate in the event of the low ascent to medium ascent building, which offers great cost benefit.
- In instance of Zone-V just 150mm thickness offers more safety and cost-effective thickness.
- It can be presumed that as thickness of shear divider increases the displacement diminishes.
- It can infer that, increasing the shear divider thickness the timeframe goes on diminishes.
- It can presume that increasing the thickness of shear results in increased base shear.
- In all the considered models the shear divider setting at the corner is indicating ideal situation for the shear divider in all the boundaries of the investigation.
References

[1] Aaradhya L Y R, Praveen J V, Sanjith J and Ranjith June 2016 A seismic analysis of multi-storey building resting on flat ground and sloping ground International research journal of engineering and technology. 5 Issue 6

[2] Md. Samdani A, Syed H and Gani July 2016 Comparative study of seismic analysis of multi-storey buildings with shear walls and bracing systems International journal of advance structures and geotechnical engineering. 05 No. 03

[3] Manjunath C S and Siddu K C S Feb. 2016 Seismic performance of r c buildings on sloping grounds with different types of bracing systems International research journal of engineering and technology. 5 Issue 02

[4] Paresh G M and Hemal J S April 2016 Seismic analysis of building on sloping ground bi-directional earthquake International journal of science and engineering development research. 1 Issue 4

[5] Sripriya A and Arathi S A July 2016 Study on dynamic characteristics of rc buildings on hill slopes International journal of scientific research. 5 Issue 7

[6] S K Hirde and N K Shelar June 2015 Effect of positioning of rc shear walls on seismic performance of buildings resting on plain and sloping ground International journal of current engineering and technology. 5 No 3

[7] Mohd. A Prof. Laxmikant V and Vikrant N Aug 2015 Comparative study on seismic analysis of multi-storey building stiffened with bracing and shear wall International research journal of engineering and technology. 2 Issue 05

[8] Nagarjuna and Shivakumar B P July 2015 Lateral stability of multi-storey building on sloping ground International research journal of engineering and technology. 2 Issue 04