Noninfectious mixed cryoglobulinaemic glomerulonephritis associated with monoclonal gammopathy of undetermined significance

CURRENT STATUS: UNDER REVIEW

Adam Flavell
Royal Melbourne Hospital

adamflavell@gmail.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-1278-4303

Robert Fullinfaw
Royal Melbourne Hospital

Edward R Smith
Royal Melbourne Hospital

Steve Holt
Royal Melbourne Hospital

Moira Finlay
Royal Melbourne Hospital

Thomas Barbour
Royal Melbourne Hospital

Tom.Barbour@mh.org.au Corresponding Author

DOI:
10.21203/rs.3.rs-18752/v1

SUBJECT AREAS
Urology & Nephrology

KEYWORDS
cryoglobulinaemia, monoclonal gammopathy of unknown significance, monoclonal gammopathy of renal significance, glomerulonephritis
Abstract

Background

Cryoglobulins are cold-precipitable immunoglobulins that may be found in association with systemic vasculitis including cryoglobulinaemic glomerulonephritis (CGN). Type 1 cryoglobulins consist of isolated monoclonal immunoglobulin (mIg), whereas mixed cryoglobulins are typically immune complexes comprising either monoclonal (type 2) or polyclonal (type 3) Ig with rheumatoid activity against polyclonal IgG. Only CGN related to type 1 cryoglobulins has been clearly associated with monoclonal gammopathy of undetermined significance (MGUS) using the conventional serum-, urine- or tissue-based methods of paraprotein detection.

Methods

We retrospectively assessed our patient cohort of CGN related to mixed (type 2 or 3) cryoglobulins for those with a monoclonal band on serum protein electrophoresis (SPEP), with exclusion of infectious cases and those involving malignant clonal plasma cell or B cell disorders.

Results

We identified four patients with a median age of 54 years, including three women. Two patients had type 2 cryoglobulinaemia, one had type 3 cryoglobulinaemia, and one lacked definitive typing of the serum cryoprecipitate. The serum monoclonal band identified on SPEP was IgM-κ in all four cases. Treatments included corticosteroids, cyclophosphamide, plasma exchange, and rituximab. At median 3.5 years’ follow-up, no patient had developed a haematological malignancy or advanced chronic kidney disease. Other potential causes of mixed cryoglobulinaemia were also present in our cohort, notably primary Sjögren’s syndrome in three cases.

Conclusions

Our study raises questions regarding the attribution of causation to MGUS, and the role of clonally directed therapies outside the setting of haematological malignancy.

Background

Cryoglobulinaemia is defined by the presence of circulating immunoglobulin (Ig) that aggregates in vitro at temperatures <37°C, and redissolves on rewarming (1). For cryoglobulinaemia to be
detected, blood sampling, clotting and serum separation by centrifugation must ideally be performed at 37°C, before serum storage at 4°C for up to seven days (2). Any significant cryoprecipitate (usually >0.05g/L or cryocrit >1%) may then be quantified and analyzed by electrophoresis and immunofixation after washing and redissolving at 37°C. The classification system for cryoglobulinaemia devised by Brouet and colleagues distinguishes three main types (3). Type 1 cryoglobulins consist of monoclonal Ig (mlg) or biclonal Ig, and occur in patients with clonal B cell or plasma cell disorders (4). So-called ‘mixed’ cryoglobulins are considered as immune complexes typically comprising either monoclonal (type 2) or polyclonal (type 3) Ig (mostly IgM) with rheumatoid factor activity against the Fc portion of polyclonal IgG. Infections are the commonest cause of mixed cryoglobulinaemia, notably hepatitis C virus (HCV) (5) and hepatitis B virus (HBV) (6), together with human immunodeficiency virus (HIV) and numerous other viral, bacterial, parasitic and fungal infections (1, 7). Noninfectious causes of mixed cryoglobulinaemia include autoimmune diseases, especially primary Sjögren’s syndrome (pSS) (8), and the malignant clonal disorders (9).

There is some uncertainty as to whether cryoglobulins are truly pathogenic in vivo, given that disease manifestations including systemic vasculitis occur in only a minority of patients with detectable cryoglobulinaemia (10). The systemic vasculitis is exemplified by cryoglobulinaemic glomerulonephritis (CGN), which can be classified as type 1 or mixed according to whichever type of cryoglobulin is found in association. Classic renal histological features of CGN, including membranoproliferative glomerulonephritis (MPGN), intracapillary ‘pseudothrombi’, crescents and small vessel vasculitis are nonspecific for cryoglobulinaemia as the underlying cause of glomerulonephritis (11). On the other hand, causation due to glomerular deposition of cryoglobulins may be strengthened by the appearance on electron microscopy (EM) of curvilinear microtubules, suggestive of aggregated cryoglobulins (12, 13), or immunohistochemistry showing light chain restriction of pseudothrombi in the case of (monotypic) type 1 CGN (14, 15).

Monoclonal gammopathy is diagnosed when mlg secreted into the circulation by a proliferating clone of plasma cells or B cells is detected by means of serum protein electrophoresis (SPEP), immunofixation (SIFE) or free light chain assays (SFLC), or urine protein electrophoresis (UPEP) or
immunofixation (UIFE) (16). Further evaluation is often required for the malignant clonal disorders, which include multiple myeloma, Waldenström’s macroglobulinaemia, B cell lymphoma and chronic lymphocytic leukemia. However, in most patients, monoclonal gammopathy of undetermined significance (MGUS) or another pre-malignant haematological disorder is diagnosed. Previous studies have established a clear association of type 1 CGN not only with malignant clonal disorders, but also with MGUS (14, 17-20). This has led to the inclusion of type 1 CGN within the disease classification of monoclonal gammopathy of renal significance (MGRS) (21-23). The term MGRS recognizes that certain renal lesions may be caused by nephrotoxic mlg produced by small (i.e. pre-malignant) plasma cell or B cell clones. This diagnostic concept is underscored in many cases by light chain restricted renal immunostaining (as noted above for type 1 CGN) (24). Yet surprisingly, type 2 CGN has also been included within MGRS (21-23), despite a weak association with MGUS in the published literature, and the inability to confirm light chain restriction owing to the polyclonal Ig component of type 2 cryoglobulins (11). We undertook this study to assess whether mixed (type 2 or 3) CGN can equally be associated with MGUS.

Methods
Cases were identified on retrospective review of clinical and pathological databases at our hospital for the period 2002-19, and were included if they met all the following criteria: (1) renal histology compatible with CGN; and both (2) cryoglobulinaemia >0.05 g/L and (3) a monoclonal band on SPEP at the time of diagnostic renal biopsy. Patients were excluded if they met any of the following criteria: (i) type 1 cryoglobulinaemia based on immunofixation of the cryoprecipitate and/or light chain restriction of renal biopsy tissue, as assessed by immunofluorescent staining of paraffin-embedded tissue after protease digestion (paraffin-IF) (25); (ii) a malignant clonal disorder based on tests comprising at a minimum bone marrow aspirate and trephine (BMAT) with flow cytometry of the aspirate and/or peripheral blood, and computed tomography with positron emission tomography (CT-PET); (iii) a potential infectious aetiology for mixed cryoglobulinaemia based on tests comprising at a minimum blood cultures, HBV surface antigen, and HBV core, HCV, and HIV antibodies; or (iv) vasculitis potentially due to causes other than cryoglobulinaemia based on serologies comprising at a
minimum anti-neutrophil cytoplasmic, anti-glomerular basement membrane, anti-double stranded DNA, anti-U₁-ribonucleoprotein, and anti-cardiolipin antibodies, and lupus anticoagulant.

Results

Of twenty patients with noninfectious mixed CGN in whom SPEP was performed, four had MGUS, comprising three females and one male (Table 1). Median age at presentation was 54 years (range 47 – 66 years). All patients had microscopic haematuria and proteinuria, with a median urinary protein creatinine ratio (uPCR) of 106mg/mmol (range 70-134mg/mmol). Renal function was significantly impaired in three of the four patients, with a median serum creatinine overall of 221μmol/L (range 80-292μmol/L) eGFR of 27mL/min per 1.73m² (range 15-70mL/min per 1.73m², MDRD). All patients had mildly reduced serum albumin levels, and serum complement C4 ± C3 levels were low in three patients. All three female patients had previously been diagnosed with pSS and showed seropositivity for antinuclear, SSA/Ro and SSB/La antibodies. In the weeks following diagnosis of CGN, Patient 2 underwent laparotomy for an incidental finding of cholangiocarcinoma (not previously reported in the setting of CGN (26)).

Histological features of CGN included MPGN in three patients, cellular crescents with arteriolar necrosis and thrombosis in one patient, and intracapillary pseudothrombi in three patients (Figure 1 and Table 2). Interstitial fibrosis ≥25% with mild glomerulosclerosis was also present in three cases. Immunohistochemistry showed variable IgG, IgM and C3 staining in capillary loops and the mesangium, with IgM and/or IgG staining of pseudothrombi in two cases. No case showed light chain restriction on paraffin-IF. EM was performed in three cases, revealing intracapillary curvilinear deposits in one case and unstructured deposits in the other two cases.

Serum biochemistry at presentation (Table 3) included a median cryoglobulin concentration of 0.43g/L (range 0.1-0.62g/L) in three cases, with a cryocrit of 9% in the fourth case. Immunofixation of the cryoprecipitate confirmed type 2 cryoglobulinaemia with a monoclonal IgM-k component in two patients and type 3 cryoglobulinaemia in one patient, and was not performed in the remaining patient. SPEP revealed generally small monoclonal bands of median concentration <1g/L (range <1 - 2g/L). In all four cases, the paraprotein was IgM-k, with an IgG-k paraprotein also present in one case.
(Patient 2). No patient showed bone marrow evidence of a malignant plasma cell or B cell disorder (Table 4).

Treatment consisted of corticosteroids in all patients, cyclophosphamide in three patients, plasma exchange in three patients, and rituximab in two patients, one of whom (Patient 4) later received maintenance therapy for a diagnosis of seronegative lupus nephritis with mycophenolate mofetil (Table 5). At a median follow-up of 3.5 years (range 1.5 – 11 years), no patient had developed a malignant clonal disorder or end-stage renal failure, or was deceased. Renal parameters were improved in all cases but one (Patient 4), with a median uPCR at last follow-up of 103mg/mmol (range 24 – 302mg/mmol), serum creatinine of 133μmol/L (range 62 - 168μmol/L), and eGFR of 45mL/min per 1.73m² (range 39-90mL/min per 1.73m²). Serum C4 ± C3 levels remained low in the three patients with this finding on presentation. Cryoglobulinaemia was undetectable at last follow up in all four patients, and SPEP/UPEP was negative. However, SIFE revealed an IgM-k paraprotein (<1g/L) in one patient, and the SFLC ratio was elevated at 2.09 in one other patient, with no evidence for persisting monoclonal gammopathy in the remaining two patients.

Discussion

We report a series of four patients with noninfectious mixed CGN in whom MGUS was diagnosed using the conventional methods for paraprotein detection (16, 27). One in every five patients assessed in our hospital cohort of noninfectious mixed CGN was found to have MGUS, although the true incidence of this association remains uncertain owing to a paucity of data in the major published series (11, 28, 29). This is partly because of limited biochemical analysis in these studies, which tended to focus only on typing of the cryoglobulin by means of immunofixation of the cryoprecipitate. Whilst this remains a highly sensitive technique for detecting mlg (>0.05g/L) in patients with type 1 or 2 cryoglobulinaemia, for example in comparison to SPEP (>0.5g/L) (30), its role in diagnosis of MGUS is not established. Thus all 20 patients in one series of noninfectious mixed CGN were shown to have type 2 CGN, with monoclonal gammopathy reported in 18 patients, yet without reference to cryoglobulin quantitation, SPEP, SIFE, SFLC, UPEP or UIFE (29). This data was also not available in a recent series of 80 patients with noninfectious mixed CGN comprising 75 patients with type 2 CGN.
Conditions other than MGUS were present in our cohort potentially accounting for the development of mixed CGN. Thus pSS, which represents the commonest cause of mixed cryoglobulinaemia/CGN after HCV infection (8, 9, 11, 28, 29), was present at time of diagnostic renal biopsy in three patients (conforming to current EULAR/ACR criteria (31)). pSS involves a disease process of continuous polyclonal B cell activation, with malignant transformation of B cell clones in some cases, based on the increased incidence of lymphoma in patients with pSS (32, 33) (especially those with mixed cryoglobulinaemia (34, 35)). Of note, MGUS may also be more common in patients with pSS, and may confer an increased risk of developing lymphoma (36, 37) or myeloma (38). Yet co-presence of pSS and MGUS has not been previously reported in non-infectious mixed CGN. These observations raise questions regarding the underlying pathophysiological processes responsible for type 2 CGN in our three patients with pSS. The patient in our cohort who did not have pSS was one of three cases in which only a very small monoclonal band (<1g/L) was identified, emphasizing the need for further studies in which robust biochemical analysis is undertaken, if the association of mixed CGN with MGUS is to become established.

It remains unclear from our study whether the identification of MGUS in a patient with noninfectious mixed CGN provides any guide to treatment and prognosis. A designation of MGRS would imply the need for clonally targeted therapies to be considered in preference to conventional immunosuppression, with the primary aim of improving renal outcomes (24). Evidence for this approach in patients with noninfectious mixed CGN consists largely of retrospective studies of rituximab, mostly involving patients with type 2 CGN and a monoclonal IgM-k cryoglobulin (11, 28, 29, 39). As in previous series (11, 28), our cohort received multiple therapies including rituximab but also conventional immunosuppressive agents (11, 28). Outcomes were generally favourable, and of the two patients with chronic kidney disease stage 3B at last follow-up, both had shown significant (25-40%) interstitial fibrosis on pre-treatment biopsies (potentially due to pSS-associated interstitial nephritis in one of these cases). Given previous, larger cohorts of noninfectious mixed CGN showing ESKD rates of 9-10% at 4 years (11, 29), our study
possibly indicates that MGUS does not always confer a treatment-resistant course. No patient in our series received bortezomib, for which a single instance of use in refractory noninfectious mixed CGN is reported, in a patient with type 2 CGN and a monoclonal IgM-k component, but no detectable monoclonal band on SPEP (40).

Conclusions
Our study is the first to show conclusively that MGUS may be present in a subset of patients with noninfectious mixed CGN. Even where this is the case, a designation as MGRS may be open to question, given the presence in our cohort of other potential aetiologies for mixed CGN, including pSS in three out of four patients.

Declarations
Ethics approval & consent to participate: N/A
Consent for publication: N/A
Competing interests: none declared
Funding: none
Authors contributions: A Flavell and T Barbour collected & analysed the data and prepared the manuscript. R Fullinfaw assisted with data collection & interpretation. M Finlay collected pathology data and images. E Smith and S Holt reviewed the manuscript.

Acknowledgements: Nephworks database
Availability of data: all data generated or analysed during this study are included in this published article.

References
1. Roccatello D, Saadoun D, Ramos-Casals M, Tzioufas AG, Fervenza FC, Cacoub P, Zignego AL, Ferri C. Cryoglobulinaemia. Nat Rev Dis Primers. 2018;4(1):11.
2. Sargur R, White P, Egner W. Cryoglobulin evaluation: best practice? Ann Clin Biochem. 2010;47(Pt 1):8-16.
3. Brouet JC, Clauvel JP, Danon F, Klein M, Seligmann M. Biologic and clinical significance of cryoglobulins. A report of 86 cases. Am J Med. 1974;57(5):775-88.
4. Terrier B, Karras A, Kahn JE, Le Guenno G, Marie I, Benarous L, Lacraz A, Diot E, Hermine O, de Saint-Martin L, Cathebras P, Leblond V, Modiano P, Leger JM, Mariette X, Senet P, Plaisier E, Saadoun D, Cacoub P. The spectrum of type I cryoglobulinemia vasculitis: new insights based on 64 cases. Medicine (Baltimore). 2013;92(2):61-8.

5. Agnello V, Chung RT, Kaplan LM. A role for hepatitis C virus infection in type II cryoglobulinemia. N Engl J Med. 1992;327(21):1490-5.

6. Annear NM, Cook HT, Atkins M, Pusey CD, Salama AD. Non-hepatitis virus associated mixed essential cryoglobulinemia. Kidney Int. 2010;77(2):161-4.

7. Terrier B, Marie I, Lacraz A, Belenotti P, Bonnet F, Chiche L, Graffin B, Hot A, Kahn JE, Michel C, Quemeneur T, de Saint-Martin L, Hermine O, Leger JM, Mariette X, Senet P, Plaisier E, Cacoub P. Non HCV-related infectious cryoglobulinemia vasculitis: Results from the French nationwide CryoVas survey and systematic review of the literature. J Autoimmun. 2015;65:74-81.

8. Galli M, Oreni L, Saccardo F, Castelnovo L, Filippini D, Marson P, Mascia MT, Mazzaro C, Origgi L, Ossi E, Pietrogrande M, Pioltelli P, Quartuccio L, Scarpato S, Sollima S, Riva A, Fraticelli P, Zani R, Giuggioli D, Sebastiani M, Sarzi Puttini P, Gabrielli A, Zignego AL, Scaini P, Ferri C, De Vita S, Monti G. HCV-unrelated cryoglobulinaemic vasculitis: the results of a prospective observational study by the Italian group for the study of cryoglobulinaemias (GISC). Clin Exp Rheumatol. 2017;35 Suppl 103(1):67-76.

9. Terrier B, Krastinova E, Marie I, Launay D, Lacraz A, Belenotti P, de Saint-Martin L, Quemeneur T, Huart A, Bonnet F, Le Guenno G, Kahn JE, Hinschberger O, Rullier P, Diot E, Lazaro E, Bridoux F, Zenone T, Carrat F, Hermine O, Leger JM, Mariette X, Senet P, Plaisier E, Cacoub P. Management of noninfectious mixed cryoglobulinemia vasculitis: data from 242 cases included in the CryoVas survey. Blood.
10. Ramos-Casals M, Stone JH, Cid MC, Bosch X. The cryoglobulinaemias. Lancet. 2012;379(9813):348-60.

11. Zaidan M, Terrier B, Pozdzik A, Frouget T, Rioux-Leclercq N, Combe C, Lepreux S, Hummel A, Noel LH, Marie I, Legallicier B, Francois A, Huart A, Launay D, Kaplanski G, Bridoux F, Vanhille P, Makdassi R, Augusto JF, Rouvier P, Karras A, Jouanneau C, Verpont MC, Callard P, Carrat F, Hermine O, Leger JM, Mariette X, Senet P, Saadoun D, Ronco P, Brocheriou I, Cacoub P, Plaisier E, CryoVas study g. Spectrum and Prognosis of Noninfectious Renal Mixed Cryoglobulinemic GN. J Am Soc Nephrol. 2016;27(4):1213-24.

12. Ojemakinde K, Turbat-Herrera EA, Zeng X, Gu X, Herrera GA. The many faces of cryoglobulinemic nephropathy: a clinico-pathologic study of 47 cases with emphasis on the value of electron microscopy. Ultrastruct Pathol. 2014;38(6):367-76.

13. Paueksakon P, Revelo MP, Horn RG, Shappell S, Fogo AB. Monoclonal gammopathy: significance and possible causality in renal disease. Am J Kidney Dis. 2003;42(1):87-95.

14. Harel S, Mohr M, Jahn I, Aucouturier F, Galicier L, Asli B, Malphettes M, Szalat R, Brouet JC, Lipsker D, Fermand JP. Clinico-biological characteristics and treatment of type I monoclonal cryoglobulinaemia: a study of 64 cases. Br J Haematol. 2015;168(5):671-8.

15. Sidana S, Rajkumar SV, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Hayman SR, Dingli D, Kapoor P, Gonsalves WI, Go RS, Hwa YL, Leung N, Fonder AL, Hobbs MA, Zeldenrust SR, Russell SJ, Lust JA, Kyle RA, Kumar SK. Clinical presentation and outcomes of patients with type 1 monoclonal cryoglobulinemia. Am J Hematol. 2017;92(7):668-73.
16. Bird J, Behrens J, Westin J, Turesson I, Drayson M, Beetham R, D'Sa S, Soutar R, Waage A, Gulbrandsen N, Gregersen H, Low E, Haemato-oncology Task Force of the British Committee for Standards in Haematology UKMF, Nordic Myeloma Study G. UK Myeloma Forum (UKMF) and Nordic Myeloma Study Group (NMSG): guidelines for the investigation of newly detected M-proteins and the management of monoclonal gammopathy of undetermined significance (MGUS). Br J Haematol. 2009;147(1):22-42.

17. Neel A, Perrin F, Decaux O, Dejoie T, Tessoulin B, Halliez M, Mahe B, Lamy T, Fakhouri F, Jego P, Agard C, Vigneau C, Guenet L, Grosbois B, Moreau P, Hamidou M. Long-term outcome of monoclonal (type 1) cryoglobulinemia. Am J Hematol. 2014;89(2):156-61.

18. Karras A, Noel LH, Droz D, Delansorne D, Saint-Andre JP, Aucouturier P, Alyanakian MA, Grunfeld JP, Lesavre P. Renal involvement in monoclonal (type I) cryoglobulinemia: two cases associated with IgG3 kappa cryoglobulin. Am J Kidney Dis. 2002;40(5):1091-6.

19. Nasr SH, Markowitz GS, Reddy BS, Maesaka J, Swidler MA, D'Agati VD. Dysproteinemia, proteinuria, and glomerulonephritis. Kidney Int. 2006;69(4):772-5.

20. Sethi S, Zand L, Leung N, Smith RJ, Jevremonic D, Herrmann SS, Fervenza FC. Membranoproliferative glomerulonephritis secondary to monoclonal gammopathy. Clin J Am Soc Nephrol. 2010;5(5):770-82.

21. Leung N, Bridoux F, Hutchison CA, Nasr SH, Cockwell P, Fermand JP, Dispenzieri A, Song KW, Kyle RA, International K, Monoclonal Gammopathy Research G. Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood. 2012;120(22):4292-5.

22. Fermand JP, Bridoux F, Kyle RA, Kastritis E, Weiss BM, Cook MA, Drayson MT,
Dispenzieri A, Leung N, International K, Monoclonal Gammopathy Research G. How I treat monoclonal gammopathy of renal significance (MGRS). Blood. 2013;122(22):3583-90.

23. Leung N, Bridoux F, Batuman V, Chaidos A, Cockwell P, D'Agati VD, Dispenzieri A, Fervenza FC, Fermand JP, Gibbs S, Gillmore JD, Herrera GA, Jaccard A, Jevremovic D, Kastritis E, Kukreti V, Kyle RA, Lachmann HJ, Larsen CP, Ludwig H, Markowitz GS, Merlini G, Mollee P, Picken MM, Rajkumar VS, Royal V, Sanders PW, Sethi S, Venner CP, Voorhees PM, Wechalekar AD, Weiss BM, Nasr SH. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat Rev Nephrol. 2018;15:45-59.

24. Sethi S, Rajkumar SV, D'Agati VD. The Complexity and Heterogeneity of Monoclonal Immunoglobulin-Associated Renal Diseases. Journal of the American Society of Nephrology. 2018;29(7):1810-23.

25. Larsen CP, Messias NC, Walker PD, Fidler ME, Cornell LD, Hernandez LH, Alexander MP, Sethi S, Nasr SH. Membranoproliferative glomerulonephritis with masked monotypic immunoglobulin deposits. Kidney Int. 2015;88(4):867-73.

26. Spatola L, Generali E, Angelini C, Badalamenti S, Selmi C. HCV-negative mixed cryoglobulinemia and kidney involvement: in-depth review on physiopathological and histological bases. Clin Exp Med. 2018;18(4):465-71.

27. Berenson JR, Anderson KC, Audell RA, Boccia RV, Coleman M, Dimopoulos MA, Drake MT, Fonseca R, Harousseau JL, Joshua D, Lonial S, Niesvizky R, Palumbo A, Roodman GD, San-Miguel JF, Singhal S, Weber DM, Zangari M, Wirtschafter E, Yellin O, Kyle RA. Monoclonal gammopathy of undetermined significance: a consensus statement. Br J Haematol. 2010;150(1):28-38.

28. Foessel L, Besancenot JF, Blaison G, Magy-Bertrand N, Jaussaud R, Etienne Y, Maurier
29. Matignon M, Cacoub P, Colombat M, Saadoun D, Brocheriou I, Mougenot B, Roudot-Thoraval F, Vanhille P, Moranne O, Hachulla E, Hatron PY, Fermand JP, Fakhouri F, Ronco P, Plaisier E, Grimbert P. Clinical and morphologic spectrum of renal involvement in patients with mixed cryoglobulinemia without evidence of hepatitis C virus infection. Medicine (Baltimore). 2009;88(6):341-8.

30. Batko K, Malyszko J, Jurczyszyn A, Vesole DH, Gertz MA, Leleu X, Suska A, Krzanowski M, Sulowicz W, Malyszko JS, Krzanowska K. The clinical implication of monoclonal gammopathies: monoclonal gammopathy of undetermined significance and monoclonal gammopathy of renal significance. Nephrol Dial Transplant. 2018.

31. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, Rasmussen A, Scofield H, Vitali C, Bowman SJ, Mariette X, International Sjogren's Syndrome Criteria Working G. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjogren's syndrome: A consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis. 2017;76(1):9-16.

32. Zintzaras E, Voulgarelis M, Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med. 2005;165(20):2337-44.

33. Nocturne G, Mariette X. Sjogren Syndrome-associated lymphomas: an update on pathogenesis and management. Br J Haematol. 2015;168(3):317-27.

34. Tzioufas AG, Boumba DS, Skopouli FN, Moutsopoulos HM. Mixed monoclonal cryoglobulinemia and monoclonal rheumatoid factor cross-reactive idiotypes as predictive factors for the development of lymphoma in primary Sjogren's syndrome.
Arthritis Rheum. 1996;39(5):767-72.

35. Nishishinya MB, Pereda CA, Munoz-Fernandez S, Pego-Reigosa JM, Rua-Figueroa I, Andreu JL, Fernandez-Castro M, Rosas J, Loza Santamaria E. Identification of lymphoma predictors in patients with primary Sjogren's syndrome: a systematic literature review and meta-analysis. Rheumatol Int. 2015;35(1):17-26.

36. Brito-Zeron P, Retamozo S, Gandia M, Akasbi M, Perez-De-Lis M, Diaz-Lagares C, Bosch X, Bove A, Perez-Alvarez R, Soto-Cardenas MJ, Siso A, Ramos-Casals M. Monoclonal gammopathy related to Sjogren syndrome: a key marker of disease prognosis and outcomes. J Autoimmun. 2012;39(1-2):43-8.

37. Yang Y, Chen L, Jia Y, Liu Y, Wen L, Liang Y, An Y, Chen S, Su Y, Li Z. Monoclonal gammopathy in rheumatic diseases. Clin Rheumatol. 2018;37(7):1751-62.

38. Tomi AL, Belkhir R, Nocturne G, Desmoulins F, Berge E, Pavy S, Miceli-Richard C, Mariette X, Seror R. Brief Report: Monoclonal Gammopathy and Risk of Lymphoma and Multiple Myeloma in Patients With Primary Sjogren's Syndrome. Arthritis Rheumatol. 2016;68(5):1245-50.

39. Terrier B, Launay D, Kaplanski G, Hot A, Larroche C, Cathebras P, Combe B, de Jaureguiberry JP, Meyer O, Schaeverbeke T, Somogyi A, Tricot L, Zenone T, Ravaud P, Gottenberg JE, Mariette X, Cacoub P. Safety and efficacy of rituximab in nonviral cryoglobulinemia vasculitis: data from the French Autoimmunity and Rituximab registry. Arthritis Care Res (Hoboken). 2010;62(12):1787-95.

40. Bazari H, Mahindra AK, Farkash EA. Case records of the Massachusetts General Hospital. Case 3-2014. A 61-year-old woman with gastrointestinal symptoms, anemia, and acute kidney injury. N Engl J Med. 2014;370(4):362-73.

Tables
Table 1. Demographic and renal clinical features at time of renal biopsy

Patient	Age (Years)	Sex	Extrarenal clinical features	Comorbid conditions	Urine studies	Red cells	PCR (<30mg/mmol)	ACR (<3.5mg/mmol)
1	47	F	Purpura, arthritis	pSS	Pos	70	33	
2	60	F	Purpura, benign lymphadenopathy	pSS, CC	Pos	126	75	
3	66	M	-	-	Pos	86	55	
4	47	F	Purpura, arthritis	pSS, hypoGG	Pos	134		

PCR - protein creatinine ratio; ACR - albumin creatinine ratio; eGFR - estimated glomerular filtration rate; ANA - antinuclear antibodies; pSS - primary Sjögren's syndrome; CC - cholangiocarcinoma; hypoGG - hypogammaglobulinaemia
* Modified diet in renal disease (MDRD)
^Nephrotic syndrome

Table 2. Renal histology

Patient	N° glomeruli (N° globally sclerosed)	Pattern of glomerular inflammation	Arteriolar necrosis, thrombosis	Interstitial inflammatory infiltrate	Interstitial fibrosis (<5%)	Pseudothromb
1	25 (0)	Early MPGN	No	Patchy, mild	<5%	Yes
2	18 (6)	Crescents (5 cellular, 1 fibrocellular, 2 fibrous)	Yes	Light, chronic	40%	No
3	20 (5)	MPGN, endocapillary (CD68+)	No	Light, chronic	25%	Yes
4	18 (2)	MPGN	No	Moderate	25%	Sparse

MPGN - membranoproliferative glomerulonephritis; IHC - immunohistochemistry; IF - immunofluorescence; IF - electron microscopy; κ - kappa; λ - lambda
Table 3. Biochemistry at time of renal biopsy

Patient	Serum cryoglobulin				
	Concentration	Type	RF	SPEP	SIFE
	(g/L)	(g/L)	(g/L)		
1	0.1	2 or 3	Neg		
2	0.43	2	Pos	<1	IgM-κ, IgG-κ
3	0.62	3	Pos	<1	IgM-κ
4	9% cryocrit	2	Pos	<1	IgM-κ

RF - rheumatoid factor; SPEP - serum protein electrophoresis; SIFE - serum immunofixation; SFLC - serum free light chains; UPEP/UIFE - urine protein electrophoresis/immunofixation; mIg - monoclonal immunoglobulin; pIg - polyclonal immunoglobulin

Freelite assay, The Binding Site Group, Birmingham, UK

Table 4. Bone marrow aspirate and trephine

Patient	Trephine	Aspirate		
	Cellularity	Immunohistochemistry	Lymphoid cells (5-20%)	
	Plasma cells (<5%)	Lymphoid aggregates		
1	Normal	<5%	One small	16%
2	Normal	<5%	Two small	9%
3	Mildly hypercellular	<5%	None	9%
4	Normal	<5%	None	5%

Figures
Table 5. Treatment and last follow-up

Patient	Treatment received	Recurrent vasculitis	Urine PCR (<30mg/mmol)	Serum creatinine (μmol/L)	eGFR* (mL/min per 1.73 m²)	Serum cryoglobulin
1	CS/PE/CYC	No	41	62	90	Ne
2	CS/PE/CYC/AZA	No	24	159	30	Ne
3	CS/PE/RTX	Yes	165	168	38	Ne
4	CS/CYC/RTX/MS	No	302	106	51	Ne

PCR - protein creatinine ratio; eGFR - estimated glomerular filtration rate; SPEP/SIFE - serum protein electrophoresis/immunofixation; κ - kappa; λ - lambda; CS - corticosteroids; PE - plasma exchange; CYC - cyclophosphamide; AZA - azathioprine; RTX - rituximab; MS - mycophenolate sodium

* MDRD

† Freelite, UK
Figure 1

Histology. Light microscopy in patient 1 with a) periodic acid-Schiff stain and b) silver stain showing MPGN with double contours and striking intraluminal, PAS-positive pseudothrombi. Equal (+++) intensity of paraffin-IF staining of pseudothrombi for c) 1 and d) 2 light chain.

In patient 2, e) silver stain showing a small cellular crescent with necrosis, and f) haematoxylin and eosin stain of a small artery with concentric intimal arteritis.

Magnification x40.