

Supporting Read/Write Applications in Embedded Real-time Systems via Suspension-aware Analysis*

ABSTRACT

In many embedded real-time systems, applications often interact with I/O devices via read/write operations, which may incur considerable suspension delays. Unfortunately, prior analysis methods for validating timing correctness in embedded systems become quite pessimistic when suspension delays are present. In this paper, we consider the problem of supporting two common types of I/O applications in a multiprocessor system, that is, write-only applications and read-write applications. For the write-only application model, we present a much improved analysis technique that results in only $O(m)$ suspension-related utilization loss, where m is the number of processors. For the second application model, we present a flexible I/O placement strategy and a corresponding new scheduling algorithm, which can completely circumvent the negative impact due to read- and write-induced suspension delays. We illustrate the feasibility of the proposed I/O-placement-based schedule via a case study implementation. Furthermore, experiments presented herein show that the improvement with respect to system utilization over prior methods is often significant.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose and Application-Based System—Real-Time and Embedded Systems; D.4.7 [Operating Systems]: Organization and Design—Real-time systems and embedded systems

General Terms

Algorithms, Design, Performance

Keywords

I/O-intensive applications, scheduling algorithm, timing validation

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

EMSOFT ’14 , October 12-17, 2014, New Delhi, India

Copyright 20XX ACM X-XXXXX-XX/XX/XX ...$15.00.

1. INTRODUCTION

Applications that incur read and/or write operations are commonly seen in embedded real-time systems. A typical data processing application may need to write data to the disk after performing computation on CPU. Such read and write operations cause non-negligible suspension delays during an application’s execution, i.e., an application is suspended by the operating system while waiting for the completion of the I/O operation. For example, delays introduced by disk I/O range from 15µs (for NAND flash) to 15ms (for magnetic disks) per read [11]. Unfortunately, such delays cause intractability in validating applications’ timing correctness, even in uniprocessor systems [2]. If applications require hard real-time (HRT) constraints (i.e., meeting deadlines, which is an underlying requirement in many embedded real-time systems), then, in the worst-case, significant utilization of processors have to be sacrificed in order to provide such timing guarantee. Consider an example task system with two identical recurrent tasks τ_1 and τ_2 running on a uniprocessor platform. Each released job in τ_1 and τ_2 first spends 5ms in reading data from the disk, then spends 5ms in performing computation, and finally spends 5ms in writing data to the disk. The relative deadline of these two tasks is set to be 15ms. From the earliest-deadline-first (EDF) schedule shown in Fig. 1, τ_2 misses its deadline while the total utilization of the system is low (i.e., each task only requires 5/15 of the processor capacity because suspensions do not occupy CPU). In this paper, we consider the problem of scheduling and analyzing HRT applications that contain I/O operations in a multiprocessor embedded real-time system. We specifically focus on two common types of such applications, i.e., write-only applications that incur only write operations, and read-write applications that incur both read and write operations.

To deal with the read- and/or write-induced suspensions, perhaps the most commonly used approach is suspension-oblivious analysis, which simply treats suspension as computation by integrating suspension length into per-task worst-
case computation time requirements. However, this approach yields \(\Omega(n) \) suspension-related utilization loss where \(n \) is the number of tasks that may suspend in the system. Significant system utilization may be sacrificed in the worst-case under this approach if the number of suspending tasks is large or suspension delays are long. The alternative is to explicitly consider suspensions in the scheduling analysis; this is known as suspension-aware analysis. Previous research has demonstrated the advantage of using suspension-aware analysis over suspension-oblivious analysis in many scenarios.

We thus consider in this paper designing new suspension-aware analysis techniques to improve system utilization. We focus on global-scheduling approaches where tasks may migrate among processors (as opposed to partitioned-scheduling where tasks are statically assigned to processors). Specifically, we study the global earliest-deadline-first (GEDF) scheduling algorithm herein, but our proposed techniques can also be extended to other fixed-job-priority global scheduling algorithms. We first present an improved analysis technique for write-only applications. For read-write applications, our observation is that if the time at which applications’ read and write operations occur is not controllable, then utilization loss is fundamental. For example, as seen in Fig. 1 regardless of how we prioritize the two tasks, one of them inevitably misses the deadline. Motivated by this observation, we design a flexible I/O placement policy, which allows the scheduler to judiciously control the time at which read and write operations occur. In this way, the negative impact due to read- and write-induced suspensions can be alleviated.

Overview. For the soft real-time (SRT) case (i.e., only requiring bounded response times), an overview of the work in scheduling task systems with suspensions on multiprocessors can be found in [4, 5, 6]. But such technique cannot be applied to the analysis of the HRT case. For the HRT case, several works has been focused on periodic tasks that may suspend at most once on a uniprocessor [4, 5, 6, 7]. On multiprocessors, [6] presents the only existing global suspension-aware analysis for sporadic HRT suspending task systems scheduled under global fixed-priority schedulers. However, the resulting schedulability tests require pseudo-polynomial time complexity and may be pessimistic in many scenarios.

Contributions. The existing suspension-oblivious and suspension-aware approaches for supporting applications containing read and write operations are pessimistic. In order to support such applications in a more efficient way, we present in this paper new suspension-aware analysis techniques for two common application models. For write-only applications, our proposed analysis techniques results in only \(O(m) \) suspension-related utilization loss. To the best of our knowledge, this is the first analysis technique with a provable \(O(m) \) suspension-related utilization loss for HRT suspending task systems. For applications with both read and write operations, we design a controllable I/O placement policy and a corresponding global EDF-based scheduling algorithm. We prove that the proposed I/O-placement-based scheduling technique can completely circumvent the negative impact due to read- and write-induced suspension. The feasibility of implementing this I/O-placement-based schedule in practice is demonstrated via a case study. As demonstrated by experiments, our proposed techniques significantly improve upon prior methods with respect to system utilization.

Organization. The rest of the paper is organized as follows. We define the system model in Sec. 2. In Sec. 3 we present our analysis for write-only applications. In Sec. 4, we present our I/O placement policy for read-write applications and the corresponding scheduling algorithm and schedulability test. In Sec. 5 we provide a case study to show the improvement with respect to reducing response time and the feasibility of our I/O-placement-based schedule. In Sec. 6 we experimentally evaluate the proposed schedulability test. Sec. 7 concludes.

2. SYSTEM MODEL

In this section, we formally define the system model. We first present the general task models for applications with read/write operations. Then we specifically define task models for read-write applications and write-only applications.

General task model. An embedded real-time systems can be represented as a number of sporadic tasks that are invoked recurrently. Each invocation of a task is called a job and there is a minimum time between two consecutive job releases of a task. For each task, the time taken by read/write operations is present as suspensions on processors. Thus, an application with read/write operations is generally modeled as a suspending sporadic task. Let \(\tau = \{\tau_1, ..., \tau_n\} \) denote the task system that contains the set of \(n \) independent suspending sporadic tasks. Let \(T_i \) be the period of task \(\tau_i \) where \(T_i \) is the minimum time between two consecutive job releases of \(\tau_i \). For each task \(\tau_i \), let \(C_i \) and \(S_i \) denote the worst-case computation time and worst-case suspension time, respectively. Define the utilization \(U_i \) of task \(\tau_i \) as the ratio of computation time \(C_i \) to its period \(T_i \) (i.e., \(U_i = \frac{C_i}{T_i} \)) and the suspension ratio \(V_i \) of task \(\tau_i \) as the ratio of suspension time \(S_i \) to its period \(T_i \) (i.e., \(V_i = \frac{S_i}{T_i} \)). We require

\[
U_i + V_i \leq 1, \quad (1)
\]

for otherwise, task \(\tau_i \) must miss its deadline in the worst case. Let \(U_{sum} = \sum_{i=1}^{n} U_i \) and \(V_{sum} = \sum_{i=1}^{n} V_i \), where \(U_{sum} \) is the system utilization.

Let \(\tau_{i,j} \) be the jth job released by task \(\tau_i \); let \(r_{i,j} \) and \(d_{i,j} \) be the corresponding release time and deadline. We consider the implicit-deadline task systems where \(d_{i,j} - r_{i,j} = T_i \).

Different kinds of applications may have varied operation interleaving patterns. Next, we specifically define the task models for read-write applications and write-only applications according to their operation interleaving patterns.
Read-write task model. The most common operation interleaving pattern is to first read data from I/O devices, then perform computation based upon the data, and finally write the result back to I/O devices. As shown in Fig. 2, each read-write task has three phases, a reading phase, a computing phase, and a writing phase where the reading and writing phases are modeled as suspensions. For each read-write task τ_i, let R_i, C_i and W_i denote the total length of its reading phase, computing phase, and writing phase, respectively. Then each read-write task τ_i could be represented as $\tau_i = (R_i, C_i, W_i, T_i)$. For a read-write task τ_i, we have $U_i = \frac{R_i}{T_i}$ and $V_i = \frac{R_i + W_i}{T_i}$.

Write-only task model. The write-only task model is used to represent write-only applications. As shown in Fig. 3, each write-only task has three phases, where the first phase and the last phase are computing phases, and the second phase is a writing phase. For each write-only task τ_i, let $C_{i,1}$, W_i and $C_{i,2}$ denote the length of its first computing phase, writing phase, and the second computing phase, respectively. Each write-only task τ_i can thus be represented as $\tau_i = (C_{i,1}, W_i, C_{i,2}, T_i)$. Similarly, for a write-only task τ_i, we have $U_i = \frac{C_{i,1} + C_{i,2}}{T_i}$ and $V_i = \frac{W_i}{T_i}$. Let $\delta_i = \frac{W_i}{T_i}$ denote the ratio of the length of the writing phase to the length of the first computing phase. We will use δ_i later in the analysis given in Sec. 4.3.

System model. We assume that the platform is comprised of m identical processors. We consider discrete time system. Interval with unit length is called unit interval.

Definition 1. A unit interval $[t, t + 1)$ is busy (resp. non-busy) for a job set J if all m processors execute jobs in J during $[t, t + 1)$. A time interval $[a, b)$ is busy (resp. non-busy) for a job set J if each (resp. not all) unit interval within $[a, b)$ is busy for J. For conciseness, if we say an interval is busy without referring any job set, we mean it is busy for the set of all jobs in the task system.

Definition 2. If job $\tau_{i,j}$ has been released but has not finished its last phase at time instant t, we say $\tau_{i,j}$ is pending at t. If job $\tau_{i,j}$ has been released but has not finished its all computation at time instant t, we say $\tau_{i,j}$ is comp-pending at t. If job $\tau_{i,j}$ has been released but has not finished its all suspension at time instant t, we say $\tau_{i,j}$ is sus-pending at t.

Definition 3. At time instant t, if job $\tau_{i,j}$ is comp-pending and it is able to perform computation at t, we say $\tau_{i,j}$ is comp-available at t. Note that if a job is suspended by read/write operations, it cannot perform computation even if it is comp-pending.

Definition 4. For a unit interval $[t, t + 1)$, if a job $\tau_{i,j}$ is comp-available at t but does not compute in $[t, t + 1)$, we say $\tau_{i,j}$ is comp-preempted in $[t, t + 1)$.

Scheduling algorithm. In this paper, we focus on global earliest-deadline-first (GEDF) scheduling algorithm defined as follows.

Definition 5. At each time instant, GEDF selects m comp-available jobs with the earliest deadlines for computation. Ties are broken by index where tasks with lower indexes are favored. Jobs are allowed to migrate among different processors.

3. SUPPORTING WRITE-ONLY APPLICATIONS

In this section, we investigate the GEDF schedule for HRT write-only task systems. Our analysis draws the inspiration from the lag-based analysis technique presented in the seminal work of Devi [1]. Lag-based technique was originally designed to handle SRT task systems. It has been extensively applied to analyze different SRT suspending task systems in prior work [6]. Based upon this technique, we develop a new suspension-aware analysis for HRT suspending task systems, which is the first of its kind to the best of our knowledge.

We will first introduce the lag-based analysis technique, and then present our suspension-aware analysis and the resulting schedulability test.

3.1 Lag-based Analysis Technique

For any given write-only task system τ, a processor share (PS) schedule is an ideal schedule for computation where each task τ_i performs computation with a speed equal to U_i when it is comp-pending (which ensures that each of its jobs completes its computation exactly at its deadline). Note that suspensions are not considered in the PS schedule and a task could execute the second computing phase as long as it has finished the first computing phase. A valid PS schedule exists for τ if $U_{\text{sum}} \leq m$ holds.

Fig. 4 illustrates the PS schedule of the task system in Fig. 1. Each of the two tasks has a utilization equal to 1/3 and thus shares 1/3 of the processor capacity. Every job of the two tasks finishes its computation at its deadline and suspensions are not considered. We can see that the PS schedule is not a real schedule and only used to keep track of the computation for analysis purposes.

![Figure 3: Example write-only task pattern](image3)

![Figure 4: Example PS schedule](image4)
GEDF schedule S and the PS schedule PS. Let $A(\tau_{i,j}, t_1, t_2, S)$ denote the total computation performed by job $\tau_{i,j}$ under GEDF in $[t_1, t_2)$. Then, the total computation performed by each task τ_i and all tasks in τ in $[t_1, t_2]$ under GEDF is given by
\[
A(\tau_i, t_1, t_2, S) = \sum_{j \geq 1} A(\tau_{i,j}, t_1, t_2, S)
\]
and
\[
A(\tau, t_1, t_2, S) = \sum_{i=1}^{n} A(\tau_i, t_1, t_2, S).
\]

$A(\tau_i, t_1, t_2, PS)$ and $A(\tau, t_1, t_2, PS)$ can be defined in a similar manner corresponding to PS schedule.

The difference between the computation performed by a job $\tau_{i,j}$ up to time t in PS and S, denoted the lag of job $\tau_{i,j}$ at time t, is defined by
\[
lag(\tau_{i,j}, t, S) = A(\tau_{i,j}, 0, t, PS) - A(\tau_{i,j}, 0, t, S).
\]
Similarly, the difference between the computation performed by a task τ_i up to time t in PS and S, denoted the lag of task τ_i at time t, is defined by
\[
lag(\tau_i, t, S) = \sum_{j \geq 1} \lag(\tau_{i,j}, t, S)
= \sum_{j \geq 1} (A(\tau_{i,j}, 0, t, PS) - A(\tau_{i,j}, 0, t, S)). \tag{2}
\]

The LAG for the task system τ at time t is defined as
\[
LAG(\tau, t, S) = \sum_{i=1}^{n} \lag(\tau_i, t, S). \tag{3}
\]

Also, $LAG(\tau, t, S)$ can be represented as follow.
\[
LAG(\tau, t, S) = A(\tau, 0, t, PS) - A(\tau, 0, t, S). \tag{4}
\]

Lemma 1. If $[t_1, t_2)$ is a busy interval, then,
\[
LAG(\tau, t_2, S) \leq LAG(\tau, t_1, S).
\]

Proof. By Eq. (3),
\[
LAG(\tau, t_2, S) - LAG(\tau, t_1, S)
= A(\tau, t_1, t_2, PS) - A(\tau, t_1, t_2, S)
= \sum_{k=1}^{n} \lag(\tau_{k}, d_{i,j}, S)
= (U_{sum} - m) \cdot (t_2 - t_1)
\]
\[
\leq 0.
\]

Lemma 2 implies $LAG(\tau, t, S)$ cannot increase during a busy interval.

3.2 Lag-based Analysis for HRT Write-only Task Systems

Now we analyze the schedulability for sporadic write-only tasks scheduled on m processors under GEDF.

Lemma 2. Consider job $\tau_{i,j}$ and a time instant $t > t_{i,j}$. Let $S'_{i,j}$ denote the suspension of $\tau_{i,j}$ finished by t. Let $C'_{i,j}$ denote the computation of $\tau_{i,j}$ performed by time instant t. Then,
\[
\frac{S'_{i,j}}{C'_{i,j}} \leq \delta_i. \tag{5}
\]

where $\delta_i = W_i/C_{i,1}$, as defined in Sec. 2.

Proof. Case 1. If $\tau_{i,j}$ has not finished its first computing phase at t, then $S'_{i,j} = 0$, Eq. (5) clearly holds.

Case 2. If $\tau_{i,j}$ has finished its first computing phase but has not finished its writing phase at t, then $C'_{i,j} \leq W_i$ and $C_{i,1} = C_{i,1}$. Thus,
\[
\frac{S'_{i,j}}{C'_{i,j}} = \frac{S'_{i,j}}{C_{i,1}} \leq W_i/C_{i,1} = \delta_i.
\]

Case 3. If $\tau_{i,j}$ has finished its writing phase at t, then $C'_{i,j} \geq C_{i,1}$ and $S'_{i,j} = W_i$. Thus,
\[
\frac{S'_{i,j}}{C'_{i,j}} = \frac{W_i}{C_{i,1}} \leq W_i/C_{i,1} = \delta_i.
\]

Lemma 2 proved.

Lemma 3. Let $L_i = (m - 1) \cdot U_i + m \cdot U_i \cdot \delta_i$ and $L = \max\{L_1, \ldots, L_n\}$. If
\[
U_{sum} \leq m - L, \tag{6}
\]
and, for every i,
\[
U_i \cdot (1 + \delta_i) < 1. \tag{7}
\]
then no job misses its deadline under GEDF.

Proof. We prove this lemma by contradiction. Assume job $\tau_{j,i}$ is the first job that misses its deadline at $d_{i,j}$. If more than one job misses deadline at $d_{i,j}$, we choose the one with the highest priority. Since jobs with priorities lower than that of $\tau_{j,i}$ do not impact the scheduling of $\tau_{j,i}$, we get rid of such jobs from our task system.

Because $\tau_{j,i}$ has not finished its last phase at $d_{i,j}$, by the definition of $lag(\tau_{i,j}, d_{i,j}, S)$, $lag(\tau_{i,j}, d_{i,j}, S) > 0$. For every $k \neq i$, $lag(\tau_{i,j}, d_{i,j}, S) = 0$ because $\tau_{i,j}$ is the first job that misses its deadline. Thus,
\[
LAG(\tau, d_{i,j}, S) = \sum_{k=1}^{n} \lag(\tau_{i,j}, d_{i,j}, S)
= \lag(\tau_{i,j}, d_{i,j}, S)
= 0.
\]

From time instant 0, let t^* be the earliest time instant such that
\[
LAG(t, t^*, S) > 0. \tag{8}
\]
Since $LAG(\tau, 0, S) = 0$ and $LAG(\tau, t^*, S) > 0$, t^* is well defined and $d_{i,j} \geq t^* > 0$. By the definition of $LAG(\tau, t^*, S)$, there exists a task τ_k at t^* such that $lag(\tau_k, t^*, S) > 0$, which implies τ_k must have at least one pending job. Because $\tau_{j,i}$ is the first job that misses deadline, τ_k has only one job pending at t^*. Let τ_k, l be this pending job of τ_k and τ_k, l is released at $r_{k, l}$. Because jobs of τ_k released before $r_{k, l}$ have finished all their phases, we have
\[
lag(\tau_k, t^*, S) = lag(r_{k, l}, t^*, S) > 0. \tag{9}
\]

There are three kinds of unit intervals to be considered in $[r_{k, l}, t^*)$ as shown in Fig. 5: (1) τ_k, l suspends in it; (2) τ_k, l computes in it; (3) τ_k, l does not compute or suspend in it. Let β_1, β_2 and β_3 denote the set of each kind of unit intervals, respectively. Thus $\beta_1 \cup \beta_2 \cup \beta_3 = [r_{k, l}, t^*)$ and they are pairwise disjoint. Let B_1, B_2 and B_3 denote the lengths of each set, respectively. Note that unit intervals in β_3 must
be busy. Depending on the lengths of these sets, we have the following cases to consider.

\[
\begin{array}{ccc}
B_1 & B_2 & B_3 \\
\beta_1 & \text{At least one processor is working within these unit intervals} & \beta_2 \\
& \beta_3 & \text{All the processors are working within these unit intervals} \\
\end{array}
\]

Figure 5: Three sets of unit intervals in \([r_{k,l}, t^*]\)

case A. First, we discuss the cases when \(B_1 = 0\), which implies \(\tau_{k,l}\) does not suspend in \([r_{k,l}, t^*]\).

- case A.1: \(B_1 = B_2 = B_3 = 0\). In this case, \(t^* = r_{k,l}\) and \(\text{lag}(\tau_{k,l}, t^*), S) = 0\), which violates Eq. \([9]\).

- case A.2: \(B_1 = 0, B_2 = B_3 > 0\). In this case, \([r_{k,l}, t^*]\) is a busy interval. By Lemma \([1]\),

\[\text{LAG}(\tau, t^*, S) \leq \text{LAG}(\tau, r_{k,l}, S) \leq 0,\]

which violates Eq. \([9]\).

- case A.3: \(B_1 = 0, B_2 > 0, B_3 = 0\). In this case, \(\tau_{k,l}\) has a busy interval within these unit intervals. By the definition of \(A(\tau_{k,l}, t_1, t_2, PS)\) and \(A(\tau_{k,l}, t_1, t_2, S)\), we have

\[A(\tau_{k,l}, r_{k,l}, t^*, PS) = (B_2 + B_3) \cdot u_k, \quad \text{(10)}\]

and

\[A(\tau_{k,l}, r_{k,l}, t^*, S) = B_2. \quad \text{By Eq. \([9]\),}\]

\[0 < \text{lag}(\tau_{k,l}, t^*, S) = A(\tau_{k,l}, r_{k,l}, t^*, PS) - A(\tau_{k,l}, r_{k,l}, t^*, S) \leq (B_2 + B_3) \cdot u_k - B_2 = B_2 \cdot (u_k - 1) + B_3 \cdot u_k,\]

which implies

\[B_2 < \frac{B_3 \cdot u_k}{1 - u_k}. \quad \text{(11)}\]

Now we consider \(\text{LAG}(\tau, t^*, S)\). Because \(t^*\) is the earliest time instant that \(\text{LAG}(\tau, t^*, S) > 0\) and \(r_{k,l} < t^*\), we have \(\text{LAG}(\tau', r_{k,l}, S) \leq 0\). By the definition of \(\text{LAG}\),

\[\text{LAG}(\tau, t^*, S) = \text{LAG}(\tau, r_{k,l}, S) + A(\tau, r_{k,l}, t^*, PS) - A(\tau, r_{k,l}, t^*, S).\]

Thus,

\[\text{LAG}(\tau, t^*, S) \leq A(\tau, r_{k,l}, t^*, PS) - A(\tau, r_{k,l}, t^*, S). \quad \text{(12)}\]

Also we have

\[A(\tau, r_{k,l}, t^*, PS) = \sum (B_2 + B_3) \quad \text{(13)}\]

and because \(\beta_3\) is a busy interval and \(\tau_{k,l}\) is executing during \(\beta_3\),

\[A(\tau, r_{k,l}, t^*, S) \geq m \cdot B_3 + B_2. \quad \text{(14)}\]

Therefore, by Eq. \([8]\),

\[0 < \text{LAG}(\tau, t^*, S) \leq A(\tau, r_{k,l}, t^*, PS) - A(\tau, r_{k,l}, t^*, S) \leq U_{sum} \cdot (B_2 + B_3) - A(\tau, r_{k,l}, t^*, S) \quad \text{(by \([14]\))}\]

\[\leq U_{sum} \cdot (B_2 + B_3) - (m \cdot B_3 + B_2) \quad \text{(by \([11]\))}\]

\[= (U_{sum} - 1) \cdot B_2 + (U_{sum} - m) \cdot B_3 \quad \text{(by \([11]\))}\]

\[< \frac{(U_{sum} - 1) \cdot B_2 \cdot U_k}{1 - U_k} + (U_{sum} - m) \cdot B_3\]

By rearrangements, we have

\[U_{sum} > m - (m - 1) \cdot U_k \quad > m - (m - 1) \cdot U_{max} \quad > m - L\]

However, this violates Eq. \([6]\).

case B. Secondly, we discuss the cases when \(B_1 > 0\).

- case B.1: \(B_1 > 0, B_2 = 0, B_3 > 0\). In this case, \(\tau_{k,l}\) writes data before doing computation, which violates the phase interleaving of write-only tasks according to the write-only task model.

- case B.2: \(B_1 > 0, B_2 > 0, B_3 = 0\). In this case,

\[A(\tau_{k,l}, r_{k,l}, t^*, PS) = (B_1 + B_2) \cdot u_k \quad \text{by Lemma \([2]\)},\]

\[< (B_2 \cdot \delta_k + B_2) \cdot u_k = B_2 \cdot (\delta_k + 1) \cdot u_k \quad \text{(by \([7]\))}\]

and

\[A(\tau_{k,l}, r_{k,l}, t^*, S) = B_2 \quad \text{Thus \text{lag}(\tau_{k,l}, t^*, S) = A(\tau_{k,l}, r_{k,l}, t^*, PS) - A(\tau_{k,l}, r_{k,l}, t^*, S) < 0},\]

which violates Eq. \([9]\).

- case B.3: \(B_1 > 0, B_2 > 0, B_3 > 0\). First we consider \(\text{lag}(\tau_{k,l}, t^*, S)\). By the definitions of \(A(\tau_{k,l}, t_1, t_2, PS)\) and \(A(\tau_{k,l}, t_1, t_2, S)\), we have

\[A(\tau_{k,l}, r_{k,l}, t^*, PS) = (B_1 + B_2 + B_3) \cdot u_k \quad \text{by Lemma \([2]\)},\]

\[< (B_2 \cdot \delta_k + B_2 + B_3) \cdot u_k = B_2 \cdot (\delta_k + 1) \cdot u_k + B_3 \cdot u_k, \quad \text{(15)}\]

and

\[A(\tau_{k,l}, r_{k,l}, t, S) = B_2. \quad \text{By Eqs. \([9]\) and \([15]\)},\]

\[0 < \text{lag}(\tau_{k,l}, t^*, S) = A(\tau_{k,l}, r_{k,l}, t^*, PS) - A(\tau_{k,l}, r_{k,l}, t^*, S) \leq A(\tau_{k,l}, r_{k,l}, t^*, PS) - A(\tau_{k,l}, r_{k,l}, t^*, S) \leq B_2 \cdot (\delta_k + 1) \cdot u_k - B_2 = B_2 \cdot (\delta_k + 1) \cdot u_k - B_2 = B_2 \cdot (\delta_k + 1) \cdot u_k - B_2 \quad \text{(16)}\]

By Eqs. \([7]\) and \([10]\),

\[B_2 < \frac{B_3 \cdot u_k}{1 - U_k \cdot (\delta_k + 1)}. \quad \text{(17)}\]

Now let us consider \(\text{LAG}(\tau, t^*, S)\). Because \(t^*\) is the earliest time instant that \(\text{LAG}(\tau, t^*, S) > 0\) and \(r_{k,l} < t^*\) by the definition of \(\tau_{k,l}\), we thus have \(\text{LAG}(\tau, r_{k,l}, S) \leq 0\). By Eq. \([4]\),

\[\text{LAG}(\tau, t^*, S) = \text{LAG}(\tau, r_{k,l}, S) + A(\tau, r_{k,l}, t^*, PS) - A(\tau, r_{k,l}, t^*, S). \quad \text{(18)}\]
By the definitions of $A(\tau, t_1, t_2, PS)$ and $A(\tau, t_1, t_2, S)$, we have

$$A(\tau, r_{k,t}, t^*, PS) = U_{\text{sum}} \cdot (B_1 + B_2 + B_3)$$ \hspace{1cm} (19)

and

$$A(\tau, r_{k,t}, t^*, S) \geq m \cdot B_3 + B_2.$$ \hspace{1cm} (20)

Thus, by Eq. (18), we have

$$0 < \text{LAG}(\tau, t, S)$$

\hspace{1cm} \{by (18)\}

$$\leq A(\tau, r_{k,t}, t^*, PS) - A(\tau, r_{k,t}, t^*, S)$$

\hspace{1cm} \{by (19)\}

$$= U_{\text{sum}} \cdot (B_1 + B_2 + B_3) - A(\tau, r_{k,t}, t^*, S)$$

\hspace{1cm} \{by (20)\}

$$\leq U_{\text{sum}} \cdot (B_1 + B_2 + B_3) - (m \cdot B_3 + B_2)$$

\hspace{1cm} \{by Lemma 2\}

$$\leq U_{\text{sum}} \cdot (B_1 + B_2 + B_3) - m \cdot B_3 - B_2$$

$$= (U_{\text{sum}} \cdot (\delta_k + 1) - 1) \cdot B_2 + (U_{\text{sum}} - m) \cdot B_3$$

\hspace{1cm} \{by (17)\}

$$< \frac{(U_{\text{sum}} \cdot (\delta_k + 1) - 1) \cdot B_3 \cdot U_k}{1 - (\delta_k + 1) \cdot U_k} + (U_{\text{sum}} - m) \cdot B_3.$$ \hspace{1cm} (21)

By rearrangements, we have

$$U_{\text{sum}}$$

$$> m - ((m - 1) \cdot U_k + m \cdot U_k \cdot \delta_k)$$

$$> m - L,$$

which violates Eq. (3).

Thus far, we have discussed all of the possible cases and each case implies a contradiction. Lemma 3 thus follows.

Lemma 3 implies the following schedulability test.

Theorem 1. Any write-only task system τ can be successfully scheduled under GEDF on m identical processors, provided $U_1 \cdot (1 + \delta_i) < 1$ holds for each $\tau_i \in \tau$, and $U_{\text{sum}} \leq m - L$ holds where L is defined in Lemma 3.

Compared to the suspension-oblivious density test. Density test is a well-known schedulability test originally designed for HRT task systems with no suspensions. The following theorem states the density test.

Theorem 2. A HRT task system can be successfully scheduled by GEDF on m identical processors, provided $U_{\text{sum}} \leq m - (m - 1) \cdot U_{\text{max}}$, where $U_{\text{max}} = \max\{U_1, \ldots, U_n\}$.

By applying suspension-oblivious approach (i.e., treating all suspension as computation) to the density test, we can obtain the suspension-oblivious density test, which is the only existing utilization-based test with polynomial time complexity that can handle HRT suspending task systems. Theorem 3 states the suspension-oblivious density test.

Theorem 3. A HRT suspending task system can be successfully scheduled by GEDF on m identical processors, provided $U_{\text{sum}} \leq m - (m - 1) \cdot Z_{\text{max}} - V_{\text{sum}}$, where $Z_i = U_i + V_i$, $Z_{\text{max}} = \max\{Z_1, \ldots, Z_n\}$ and $Z_{\text{sum}} = \sum_{i=1}^n Z_i$.

By comparing our schedulability test to the suspension-oblivious density test, we can see that these two tests are incomparable (i.e., do not dominate each other). However, in our schedulability test, the total utilization loss is caused by the term L in which $m - U_i \cdot \delta_i$ is an $O(m)$ suspension-related utilization loss. While in the suspension-oblivious density test, the total utilization loss is $(m - 1) \cdot Z_{\text{max}} + V_{\text{sum}}$, which is an $\Omega(n)$ suspension-related utilization loss.

We evaluate our schedulability test by conducting extensive experiments in Sec. 3. In the next section, we consider the read-write task model.

4. SUPPORTING READ-WRITE APPLICATION

In this section, we consider supporting read-write applications. Unfortunately, our analysis technique presented in Sec. 3 cannot be directly applied to the read-write task model. If a job begins with a reading phase, then the value δ_i defined in Sec. 2 is no longer well defined. To deal with the read-write task model, we design an I/O placement policy and a corresponding new scheduling algorithm, which enables us to completely eliminate the negative impact due to read-write-induced suspensions.

4.1 I/O Placement Policy

As shown in Fig. 1 if phases are required to be executed in a pre-defined order, then the negative impact due to read/write-induced suspensions is fundamental. Motivated by this, we design an flexible I/O placement policy that allows the scheduler to decide when to compute and suspend within each job’s execution window. This resulting desirable property is called flexible suspension pattern.

To achieve the flexible suspension pattern, our I/O placement policy let job $\tau_{i,j-1}$ help $\tau_{i,j}$ perform its reading phase, and let job $\tau_{i,j+1}$ help $\tau_{i,j}$ perform its writing phase. Let τ and τ_i denote the task system using our I/O placement policy and the original task system, respectively. For each task τ_i, a pre-fetching job $\tau_{i,0}$ executes the reading phase of $\tau_{i,1}$; job $\tau_{i,1}$ contains the computing phase of $\tau_{i,1}$ and the reading phase of $\tau_{i,2}$. For $j > 2$, $\tau_{i,j}$ contains the writing phase of $\tau_{i,j-1}$, the computing phase of $\tau_{i,j}$ and the reading phase of $\tau_{i,j+1}$. The following example illustrates our I/O placement policy.

Example. Consider a read-write task system containing two tasks τ_1 and τ_2 on a uniprocessor platform. Each released job of both tasks reads data from disk, performs computation on processor, and writes the results back to disk.

Fig. 6 shows the transformed task system τ using our proposed flexible I/O placement policy. After the transfor-
In this section, we analyze the GEDF-R/W schedule of read-write task systems using our I/O placement policy.

LAG and SLAG. In Sec. 3, we introduce the lag-based technique and the related definitions. In this section, \(A(\tau_{i,j}, t_1, t_2, S), \) \(lag(\tau_{i,j}, t, S) \) and \(LAG(\tau, t, S) \) are defined in the same manner corresponding to the GEDF-R/W schedule \(S \) and the PS schedule \(PS \).

For a write-only task, a job is finished if and only if it has finished all its computation because it ends with a computing phase. However, this is not true for read-write tasks, where the last phase finished in a job of a read-write task could be a suspension phase. Intuitively, the PS schedule provides a good means to track the progress on computation performed in the GEDF-R/W schedule. But only using the PS schedule is insufficient to track the progress on suspensions performed in the GEDF-R/W schedule, in which case it is hard to check whether a job of a read-write task misses its deadline (because a job can still miss its deadline while completing all the computation). Therefore, to deal with read-write task model, we define the following perfect schedule for suspensions denoted as the SPS schedule. In a SPS schedule \(SPS \), each read-write task \(\tau \) suspends with a speed equal to \(V_1 \) when it is sus-pending (which ensures that each of its jobs finishes its suspension exactly at its deadline). We use the task system in Fig. 1 to illustrate the SPS schedule as shown in Fig. 8. In the SPS schedule, the two tasks perform suspensions with a speed equal to their corresponding suspension ratios 2/3. Similar to \(PS \), \(SPS \) is not a real schedule and is only used for analysis purposes to keep track of the suspension.

![Figure 7: GEDF-R/W schedules](image)

![Figure 8: Example SPS schedule](image)

Definition 6. At each time instant, GEDF-R/W selects \(m \) comp-pending jobs with the earliest deadlines for computation. If an comp-pending job \(\tau_{i,j} \) is comp-preempted, \(\tau_{i,j} \) will perform suspension if it has not finished all its suspensions.

We use the example task system in Sec. 4.1 to illustrate GEDF-R/W scheduling algorithm. In Fig. 7(a), we can easily see that \(\tau \) is not schedulable under GEDF even the total system utilization is low. In Fig. 7(b), we try to apply GEDF-R/W to the original task system \(\tau \). However GEDF-R/W scheduling is infeasible without the flexible suspension pattern. Fig. 7(c) shows that \(\tau \) can be successfully scheduled by GEDF-R/W.

4.3 Scheduling Analysis
denote the set of unit intervals in which τij is not comp-
preampted and suspends; let γ denote the set of unit in-
tervals in which τij is not comp-preempted and computes.
Thus γ = [r, d) and they are pairwise disjoint. Let L1, L2
and L3 be the length of each set, respectively.
According to GEDF-R/W, τij must suspend in all unit in-
tervals in γ. Thus,
\[\text{lag}(\tau_{ij}, d_{ij}, S) = U_i \cdot (L_1 + L_2 + L_3) - L_3, \]
\[\text{and} \]
\[\text{slag}(\tau_{ij}, d_{ij}, S) = V_i \cdot (L_1 + L_2 + L_3) - (L_1 + L_2), \]
\[\text{and} \]
\[\text{lag}(\tau_{ij}, d_{ij}, S) + \text{slag}(\tau_{ij}, d_{ij}, S) \leq (U_i + V_i - 1) \cdot (L_1 + L_2 + L_3) \]
\[\text{by (1)} \]
\[\leq 0, \]
which violates Eq. (23). Therefore, τij must have finished
all of its suspensions but have not finished its computation,
which implies lag(τij, d_{ij}, S) > 0.

Lemma 5 thus follows. Intuitively, Lemma 5 implies that
when a job misses its deadline it is necessary that it has
not finished its computation, which can be used to derive an
necessary condition for deadline miss, as shown in Lemma.

\[U_{\text{sum}} \leq m - (m - 1) \cdot U_{\text{max}}. \] \hspace{1cm} (24)

then no job misses its deadline under GEDF-R/W.

Proof. Due to the limitation of space, we present this proof in the appendix.

Lemma 5 implies the following schedulability test.

Theorem 4. A HRT read-write task system using our
I/O placement policy can be successfully scheduled under
GEDF-R/W on m identical processors, provided by
\[U_{\text{sum}} \leq m - (m - 1) \cdot U_{\text{max}}. \]

This schedulability test is identical to the density test
shown in Theorem 3 for ordinary task systems with no sus-
pendions, which implies the negative impact of suspension
has been completely eliminated.

5. CASE STUDY

In this section, we show the feasibility of our I/O place-
ment policy and the corresponding GEDF-R/W schedul-
ing via a case study implementation. We also evaluate the
scheduling performance with respect to the response time
bound of tasks. We programmed the real-time matrix cal-
culation read-write applications, which read matrix from disk,
perform the matrix calculation, and write the result to disk.
For conciseness, let us denote the application programmed
using our I/O placement policy as our application and the
application programmed using the original I/O placement
policy as original application.

5.1 Implementation

Our case study was conducted on an ASUS machine with
a two-core CPU running at 3.40GHz. In order to get no-
ticeable response times we used matrices with size 500*500.
First, we generated 5000 matrices stored in the disk and
the elements in the matrices were randomly generated inter-
gers using a uniform distribution [0, 9]. We used GEDF to
schedule the original application and used GEDF-R/W to
schedule our application. We recorded the response time of
the first 400 jobs of each task. In our experiments, 100ms
is the unit interval of computation and suspension.

We conducted experiments for two cases: (1) two tasks on a
uniprocessor; (2) three tasks on two processors. In case
(1), the read-write application has two tasks τ1 and τ2 and
the function of each task in shown in Fig. 9. As the figure
shows, the reading of τ1 contains 3 unit intervals that reads
three matrix A, B and C from disk, respectively; the com-
puting phase of τ1 contains 2 unit intervals that perform two
multiplication operations respectively; the writing phase of
τ1 contains 1 unit interval that writes the resulting matrix
to disk. The second task τ2 has the similar work mode as shown in Fig. 9. We also pre-conducted an experi-
ment to estimate the length of each kind of phases. Reading
one matrix from disk or writing one matrix back to disk
does not exceed 100ms in the worst-case and each matrix
operation consumes less than 200ms in the worst-case.
Thus, we set the periods of τ1 and τ2 as 950ms and 1250ms,
respectively. In case (2), we ran three tasks τ1, τ2 and τ3
on two processors where τ1 and τ3 are identical to τ1 in case
(1) and τ2 is identical to τ2 in case (1).

![Figure 9: Matrix calculation](image-url)

5.2 Performance Evaluation

The performance of each cases is shown in Fig. 10. The
x-axis denotes the job number and the **y**-axis denotes the
response time of each job.

In case (1), the total utilization of τ1 and τ2 is about 0.9
(400/950 + 600/1250) which does not exceed 1. According
to the analysis in Sec. 4.3, the response time of τ1 and τ2
in our application should not exceed 950ms and 1250ms.
However, our analysis has not taken the overhead due to
job migration into consideration. From Fig. 10 we can see,
in practice, the response time of some jobs of τ1 in our ap-
lication is about 50ms larger than the theoretical estima-
tion. However, compare to GEDF, GEDF-R/W performed
considerably better with respect to reducing response time.
Moreover, as shown in Figs. 10(a) and (b), GEDF-R/W is
able to achieve bounded response time while the response
time under GEDF grows unboundedly. In case (2), the ex-
6. EXPERIMENTAL EVALUATION

In this section we evaluate our schedulability test stated in Theorem 1 by experiments. Our goal is to examine how restrictive the derived schedulability test is and to compare it with suspension-oblivious density test shown in Theorem 2.

Experimental setup. Consider that for magnetic disks, the suspension delay incurred is roughly 10\(\mu\)s to 45\(\mu\)s [11]. Thus in our experiment, the lengths of writing phases \(S_i\) were uniformly distributed over [5\(\mu\)s, 50\(\mu\)s]. Task utilizations \(U_i\) were generated using three uniform distributions: [0.001, 0.05](light), [0.05, 0.1](medium) and [0.1, 0.3](heavy). The suspension ratio \(V_i\) of each task was generated by following two uniform distributions: [0.005, 0.1](short) and [0.1, 0.3](long). And for each task \(\tau_i\), we set the ratio of the first computing phase to its total computation length \(\alpha_i\) (\(\alpha_i = \frac{C_{\text{t}}}{C_{\text{t+1}}}\)) as 0.9, 0.5 and 0.2, respectively. Therefore, \(T_i\) can be calculated by \(S_i\) and \(V_i\) and \(C_i\) can be calculated by \(T_i\) and \(U_i\). The length of \(C_{\text{t+1}}\) and \(C_{\text{t+2}}\) can be calculated by \(C_{\text{t}}\) and \(\alpha_i\), and \(\delta_i\) can be calculated by \(W_i\) and \(C_{\text{t}}\). Note that when \(\alpha_i\) grows larger, \(\delta_i\) becomes smaller.

For each task system and a given utilization cap, we generated tasks to each task system until the total utilization equals to \(\frac{1}{m}\) of the derived utilization cap. For every utilization cap we generated 1000 tasks to each task system until the total utilization is restricted the derived schedulability test is and to compare it with suspension-oblivious density test shown in Theorem 2.

Results. The experimental results are shown in Fig. 11 and the detailed explanation is available in the caption of Fig. 11.

From Fig. 11 we can see that in most cases our schedulability test is superior to suspension-oblivious density test, especially when \(\alpha_i = 0.9\) and \(\alpha_i = 0.5\). In Fig. 11 (a), (b) and (c), regardless of the suspension length, our test significantly improves upon the suspension-oblivious density test in reducing the utilization loss. For example, in Fig. 11(a), when suspension is short, all task systems with \(U_{\text{sum}} < 3.5\) are schedulable under our test; while the total utilization of task systems that are schedulable under suspension-oblivious density test is at most 1.9.

However, when the utilization is heavy and \(\alpha_i\) is large, the suspension density-test becomes better than our schedulability test, as shown in Figs. 11(b) and (c). Moreover, with the increase of per-task utilization, both tests performed worst due to the large values of \(Z_{\text{max}}\) in Theorem 2 and \(U_i\) in Theorem 4. This is because with the decrease of \(\alpha_i\), \(\delta_i\) becomes larger. In such cases fewer task systems can pass our test due to the increase of the term \(L\) defined in Lemma 3.

To conclude, in most cases our schedulability test is superior to the suspension-oblivious density test, often by a substantial margin. However, as discussed in Sec. 4.3, these two tests do not dominate each other and in some extreme cases suspension-oblivious density test can be a better choice.

7. CONCLUSION

In this paper, we have considered the problem of supporting applications with read/write operations in embedded real-time systems. First, we have shown that write-only task systems can be supported under GEDF on a multiprocessor with \(O(m)\) suspension-related utilization loss. As demonstrated by experiments presented herein, in most cases our schedulability test is prior to the previous test. Second, in order to support read-write applications, we design a flexible I/O placement and a corresponding scheduling algorithm which enable us to completely eliminate the negative impact due to read- and write-induced suspensions. The presented case study shows our I/O placement is able to significantly reduce the response time. The presented case study implemented in real systems suggest that our proposed I/O-placement-based GEDF-R/W scheduling is feasible in practice.

In this paper, we assume that the resource of I/O devices is sufficient to support as many tasks as we need, which is not true in practice. To handle I/O contention, one possible way is to integrate such contention into the worst-case suspension length parameter. However, this is very pessimistic. Thus, for future work, we plan to consider the co-scheduling problem on multiple resources. We also plan to design better algorithms that can reduce the job migration cost.

8. REFERENCES
Figure 11: Schedulability result. In all nine graphs, the y-axis denotes the fraction of generate task systems that were schedulable under two schedulability tests in different conditions and x-axis denotes the utilization cap. In the first (respectively, second, third) row of graphs, the value of α is 0.9 (respectively, 0.5, 0.2). In the first (respectively, second and third) column of graphs, light (respectively, medium and heavy) per-task utilizations are assumed. Each graph gives two curves per tested approach for the cases of short and long suspensions, respectively.

[1] U. C. Devi. Soft real-time scheduling on multiprocessors. PhD thesis, University of North Carolina, 2006.
[2] P. R. F. Ridouard and F. Cottet. Negative results for scheduling independent hard real-time tasks with self-suspensions. In Proc. of the 25th RTSS, pages 47–56, 2004.
[3] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task systems on multiprocessors. Real-time systems, 25(2-3):187–205, 2003.
[4] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-time tasks with rate-monotonic priorities. In Real-Time and Embedded Technology and Applications Symposium (RTAS), 2010 16th IEEE, pages 3–12. IEEE, 2010.
[5] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft real-time multiprocessor systems. In Proc. of the 30th RTSS, pages 425–436, 2009.
[6] C. Liu and J. Anderson. An o(m) analysis technique for supporting real-time self-suspending task systems. In Proc. of the 33rd RTSS, pages 373–382, 2012.
[7] C. Liu and J. H. Anderson. Improving the schedulability of sporadic self-suspending soft real-time multiprocessor task systems. In RTCSA, pages 13–22, 2010.
[8] C. Liu and J. H. Anderson. Suspension-aware analysis for hard real-time multiprocessor scheduling. In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference, pages 271–281. IEEE, 2013.
[9] J. Palencia and M. G. Harbour. Response time analysis of edf distributed real-time systems. Journal of Embedded Computing, 1(2):225–237, 2005.
[10] J. C. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks with static and dynamic offsets. In Real-Time Systems Symposium,
At least one processor is working within these unit intervals

All the processors are working within these unit intervals

Figure 12: Two sets of unit intervals in \([r_{ki}, t^*]\)