Research Article

Strong Convergence for Hybrid S-Iteration Scheme

Shin Min Kang, Arif Rafiq, and Young Chel Kwun

Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of Korea
School of CS and Mathematics, Hajvery University, 43-52 Industrial Area, Gulberg-III, Lahore 54660, Pakistan
Department of Mathematics, Dong-A University, Pusan 614-714, Republic of Korea

Correspondence should be addressed to Young Chel Kwun; yckwun@dau.ac.kr

Received 19 November 2012; Accepted 4 February 2013

Abstract: We establish a strong convergence for the hybrid S-iterative scheme associated with nonexpansive and Lipschitz strongly pseudo-contractive mappings in real Banach spaces.

1. Introduction and Preliminaries

Let E be a real Banach space and let K be a nonempty convex subset of E. Let J denote the normalized duality mapping from E to 2^E^* defined by

$$J(x) = \{ f^* \in E^* : \langle x, f^* \rangle = \|x\|^2, \|f^*\| = \|x\| \}, \quad \forall x, y \in E,$$

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. We will denote the single-valued duality map by j.

Let $T : K \to K$ be a mapping.

Definition 1. The mapping T is said to be Lipschitzian if there exists a constant $L > 1$ such that

$$\|Tx - Ty\| \leq L \|x - y\|, \quad \forall x, y \in K.$$ \hspace{1cm} (2)

Definition 2. The mapping T is said to be nonexpansive if

$$\|Tx - Ty\| \leq \|x - y\|, \quad \forall x, y \in K.$$ \hspace{1cm} (3)

Definition 3. The mapping T is said to be pseudocontractive if for all $x, y \in K$, there exists $j(x - y) \in J(x - y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2.$$ \hspace{1cm} (4)

Definition 4. The mapping T is said to be strongly pseudocontractive if for all $x, y \in K$, there exists $k \in (0, 1)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \leq k\|x - y\|^2.$$ \hspace{1cm} (5)

Let K be a nonempty convex subset C of a normed space E.

(a) The sequence $\{x_n\}$ defined by, for arbitrary $x_1 \in K$,

\begin{align*}
x_{n+1} &= (1 - \alpha_n)x_n + \alpha_nTy_n, \\
y_n &= (1 - \beta_n)x_n + \beta_nTx_n, \quad n \geq 1,
\end{align*}

where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in $[0, 1]$, is known as the Ishikawa iteration process [1].

If $\beta_n = 0$ for $n \geq 1$, then the Ishikawa iteration process becomes the Mann iteration process [2].

(b) The sequence $\{x_n\}$ defined by, for arbitrary $x_1 \in K$,

\begin{align*}
x_{n+1} &= Ty_n, \\
y_n &= (1 - \beta_n)x_n + \beta_nTx_n, \quad n \geq 1,
\end{align*}

where $\{\beta_n\}$ is a sequence in $[0, 1]$, is known as the S-iteration process [3, 4].

In the last few years or so, numerous papers have been published on the iterative approximation of fixed points of Lipschitz strongly pseudocontractive mappings using the Ishikawa iteration scheme (see, e.g., [1]). Results which had
been known only in Hilbert spaces and only for Lipschitz mappings have been extended to more general Banach spaces (see, e.g., [5–10] and the references cited therein).

In 1974, Ishikawa [1] proved the following result.

Theorem 5. Let K be a compact convex subset of a Hilbert space H and let $T : K \to K$ be a Lipschitzian pseudocontractive mapping. For arbitrary $x_1 \in K$, let $\{x_n\}$ be a sequence defined iteratively by

$$
\begin{align*}
& x_{n+1} = (1 - \alpha_n) x_n + \alpha_n Ty_n, \\
& y_n = (1 - \beta_n) x_n + \beta_n Tx_n, \\
& n \geq 1,
\end{align*}
$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences satisfying

(i) $0 \leq \alpha_n \leq 1$

(ii) $\lim_{n \to \infty} \beta_n = 0$

(iii) $\sum_{n=1}^{\infty} \alpha_n \beta_n = \infty$.

Then the sequence $\{x_n\}$ converges strongly at a fixed point of T.

In [6], Chidume extended the results of Schu [9] from Hilbert spaces to the much more general class of real Banach spaces and approximated the fixed points of (strongly) pseudocontractive mappings.

In [11], Zhou and Jia gave the more general answer of the question raised by Chidume [5] and proved the following.

If X is a real Banach space with a uniformly convex dual X^*, K is a nonempty bounded closed convex subset of X, and $T : K \to K$ is a continuous strongly pseudocontractive mapping, then the Ishikawa iteration scheme converges strongly at the unique fixed point of T.

In this paper, we establish the strong convergence for the hybrid S-iterative scheme associated with nonexpansive and Lipschitz strongly pseudocontractive mappings in real Banach spaces. We also improve the result of Zhou and Jia [11].

2. Main Results

We will need the following lemmas.

Lemma 6 (see [12]). Let $J : E \to 2^E$ be the normalized duality mapping. Then for any $x, y \in E$, one has

$$
\|x + y\|^2 \leq \|x\|^2 + 2 \langle y, J(x + y) \rangle,
$$

\forall j \in J(x + y).

Lemma 7 (see [10]). Let $\{\rho_n\}$ be nonnegative sequence satisfying

$$
\rho_{n+1} \leq (1 - \theta_n) \rho_n + \omega_n,
$$

where $\theta_n \in [0, 1], \sum_{n=1}^{\infty} \theta_n = \infty$, and $\omega_n = o(\theta_n)$. Then

$$
\lim_{n \to \infty} \rho_n = 0.
$$

The following is our main result.

Theorem 8. Let K be a nonempty closed convex subset of a real Banach space E, let $S : K \to K$ be nonexpansive, and let $T : K \to K$ be Lipschitz strongly pseudocontractive mappings such that $p \in F(S) \cap F(T) = \{x \in K : Sx = Tx = x\}$ and

$$
\|x - Sy\| \leq \|Sx - Sy\|, \quad \forall x, y \in K,
$$

$$
\|x - Ty\| \leq \|Tx - Ty\|, \quad \forall x, y \in K.
$$

Let $\{\beta_n\}$ be a sequence in $[0, 1]$ satisfying

(iv) $\sum_{n=1}^{\infty} \beta_n = \infty$,

(v) $\lim_{n \to \infty} \beta_n = 0$.

For arbitrary $x_1 \in K$, let $\{x_n\}$ be a sequence iteratively defined by

$$
\begin{align*}
& x_{n+1} = Sy_n, \\
& y_n = (1 - \beta_n) x_n + \beta_n Tx_n, \\
& n \geq 1.
\end{align*}
$$

Then the sequence $\{x_n\}$ converges strongly at the common fixed point p of S and T.

Proof. For strongly pseudocontractive mappings, the existence of a fixed point follows from Delmling [13]. It is shown in [11] that the set of fixed points for strongly pseudocontractions is a singleton.

By (v), since $\lim_{n \to \infty} \beta_n = 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$
\beta_n \leq \min \left\{ \frac{1}{4k}, \frac{1 - k}{(1 + L)(1 + 3L)} \right\},
$$

where $k < 1/2$. Consider

$$
\|x_{n+1} - p\|^2 = \langle x_{n+1} - p, j(x_{n+1} - p) \rangle
$$

$$
= \langle Sy_n - p, j(x_{n+1} - p) \rangle
$$

$$
= \langle Tx_{n+1} - p, j(x_{n+1} - p) \rangle
$$

$$
+ \langle Sy_n - Tx_{n+1}, j(x_{n+1} - p) \rangle
$$

$$
\leq k \|x_{n+1} - p\|^2 + \|Sy_n - Tx_{n+1}\| \|x_{n+1} - p\|,
$$

which implies that

$$
\|x_{n+1} - p\| \leq \frac{1}{1 - k} \|Sy_n - Tx_{n+1}\|,
$$

where

$$
\|Sy_n - Tx_{n+1}\| \leq \|Sy_n - Ty_n\| + \|Ty_n - Tx_{n+1}\|
$$

$$
\leq \|x_n - Sy_n\| + \|x_n - Ty_n\| + \|Ty_n - Tx_{n+1}\|
$$

$$
\leq \|x_n - Sy_n\| + \|Tx_n - Ty_n\| + \|Ty_n - Tx_{n+1}\|
$$

$$
\leq \|x_n - Sy_n\| + L \left(\|x_n - y_n\| + \|y_n - x_{n+1}\| \right),
$$

$$
\|y_{n+1} - x_{n+1}\| \leq \|y_{n+1} - x_n\| + \|x_n - x_{n+1}\| = \|y_{n+1} - x_n\| + \|x_n - Sy_n\| \leq \|y_{n+1} - x_n\| + \|Sx_n - Sy_n\|,
$$

$$
\lim_{n \to \infty} \beta_n = 0.
$$

The following is our main result.
and consequently from (16), we obtain
\[
\|S_{y_n} - T_{x_{n+1}}\| \leq (1 + L) \|S_{x_n} - S_{y_n}\| + 2L \|x_n - y_n\|
\]
\[
\leq (1 + 3L) \|x_n - y_n\|
\]
\[
= (1 + 3L) \beta_n \|x_n - T_{x_n}\|
\]
\[
\leq (1 + L) (1 + 3L) \beta_n \|x_n - p\|.
\]
Substituting (18) in (15) and using (13), we get
\[
\|x_{n+1} - p\| \leq \frac{(1 + L)(1 + 3L)}{1 - k} \beta_n \|x_n - p\|
\]
\[
\leq \|x_n - p\|. \tag{19}
\]
So, from the above discussion, we can conclude that the sequence \(\{x_n - p\}\) is bounded. Since \(T\) is Lipschitzian, so \(\{Tx_n - p\}\) is also bounded. Let \(M_1 = \sup_{n \geq 1} \|x_n - p\| + \sup_{n \geq 1} \|Tx_n - p\|\). Also by (ii), we have
\[
\|x_n - y_n\| = \beta_n \|x_n - T_{x_n}\|
\]
\[
\leq M_1 \beta_n \rightarrow 0 \tag{20}
\]
as \(n \rightarrow \infty\), implying that \(\{x_n - y_n\}\) is bounded, so let \(M_2 = \sup_{n \geq 1} \|x_n - y_n\| + M_1\). Further,
\[
\|y_n - p\| \leq \|y_n - x_n\| + \|x_n - p\|
\]
\[
\leq M_2, \tag{21}
\]
which implies that \(\{y_n - p\}\) is bounded. Therefore, \(\{Ty_n - p\}\) is also bounded.

Set
\[
M_3 = \sup_{n \geq 1} \|y_n - p\| + \sup_{n \geq 1} \|Ty_n - p\|.
\]
Denote \(M = M_1 + M_2 + M_3\). Obviously, \(M < \infty\).

Now from (12) for all \(n \geq 1\), we obtain
\[
\|x_{n+1} - p\|^2 = \|S_{y_n} - T_{x_n} - p\|^2 \leq \|y_n - p\|^2, \tag{23}
\]
and by Lemma 6, we get
\[
\|y_n - p\|^2 = \|(1 - \beta_n) x_n + \beta_n T_{x_n} - p\|^2
\]
\[
= \|(1 - \beta_n) (x_n - p) + \beta_n (T_{x_n} - p)\|^2
\]
\[
\leq (1 - \beta_n)^2 \|x_n - p\|^2 + 2\beta_n \langle T_{x_n} - p, j(y_n - p) \rangle
\]
\[
= (1 - \beta_n)^2 \|x_n - p\|^2 + 2\beta_n \langle T_{x_n} - p, j(y_n - p) \rangle
\]
\[
+ 2\beta_n \langle T_{x_n} - T_{y_n}, j(y_n - p) \rangle
\]
\[
\leq (1 - \beta_n)^2 \|x_n - p\|^2 + 2k\beta_n \|y_n - p\|^2
\]
\[
+ 2\beta_n \|T_{x_n} - T_{y_n}\| \|y_n - p\|
\]
\[
\leq (1 - \beta_n)^2 \|x_n - p\|^2 + 2k\beta_n \|y_n - p\|^2
\]
\[
+ 2ML\beta_n \|x_n - y_n\|, \tag{24}
\]
which implies that
\[
\|y_n - p\|^2 \leq \frac{(1 - \beta_n)^2}{1 - 2k\beta_n} \|x_n - p\|^2 + \frac{2ML\beta_n}{1 - 2k\beta_n} \|x_n - y_n\|
\]
\[
\leq (1 - \beta_n) \|x_n - p\|^2 + 4ML\beta_n \|x_n - y_n\|. \tag{25}
\]
because by (13), we have \((1 - \beta_n)/(1 - 2k\beta_n) \leq 1\) and \((1/(1 - 2k\beta_n)) \leq 2\). Hence, (23) gives us
\[
\|x_{n+1} - p\|^2 \leq (1 - \beta_n) \|x_n - p\|^2 + 4ML\beta_n \|x_n - y_n\|. \tag{26}
\]
For all \(n \geq 1\), put
\[
\rho_n = \|x_n - p\|, \quad \theta_n = \beta_n, \quad \omega_n = 4ML\beta_n \|x_n - y_n\|,
\]
then according to Lemma 7, we obtain from (26) that
\[
\lim_{n \to \infty} \|x_n - p\| = 0. \tag{28}
\]
This completes the proof.

\(\square\)

Corollary 9. Let \(K\) be a nonempty closed convex subset of a real Hilbert space \(H\), let \(S : K \rightarrow K\) be nonexpansive, and let \(T : K \rightarrow K\) be Lipschitz strongly pseudocontractive mappings such that \(p \in F(S) \cap F(T)\) and the condition (C). Let \(\{\beta_n\}\) be a sequence in \([0, 1]\) satisfying the conditions (iv) and (v).

For arbitrary \(x_1 \in K\), let \(\{x_n\}\) be a sequence iteratively defined by (12). Then the sequence \(\{x_n\}\) converges strongly at the common fixed point \(p\) of \(S\) and \(T\).

Example 10. As a particular case, we may choose, for instance, \(\beta_n = 1/n\).

Remark 11. (1) The condition (C) is not new and it is due to Liu et al. [14].

(2) We prove our results for a hybrid iteration scheme, which is simple in comparison to the previously known iteration schemes.

Acknowledgment

This study was supported by research funds from Dong-A University.

References

[1] S. Ishikawa, “Fixed points by a new iteration method,” *Proceedings of the American Mathematical Society*, vol. 44, pp. 147–150, 1974.

[2] W. R. Mann, “Mean value methods in iteration,” *Proceedings of the American Mathematical Society*, vol. 4, pp. 506–510, 1953.

[3] D. R. Sahu, “Applications of the S-iteration process to constrained minimization problems and split feasibility problems,” *Fixed Point Theory*, vol. 12, no. 1, pp. 187–204, 2011.
[4] D. R. Sahu and A. Petruşel, “Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces,” *Nonlinear Analysis. Theory, Methods & Applications*, vol. 74, no. 17, pp. 6012–6023, 2011.

[5] C. E. Chidume, “Approximation of fixed points of strongly pseudocontractive mappings,” *Proceedings of the American Mathematical Society*, vol. 120, no. 2, pp. 545–551, 1994.

[6] C. E. Chidume, “Iterative approximation of fixed points of Lipschitz pseudocontractive maps,” *Proceedings of the American Mathematical Society*, vol. 129, no. 8, pp. 2245–2251, 2001.

[7] C. E. Chidume and C. Moore, “Fixed point iteration for pseudocontractive maps,” *Proceedings of the American Mathematical Society*, vol. 127, no. 4, pp. 1163–1170, 1999.

[8] C. E. Chidume and H. Zegeye, “Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps,” *Proceedings of the American Mathematical Society*, vol. 132, no. 3, pp. 831–840, 2004.

[9] J. Schu, “Approximating fixed points of Lipschitzian pseudocontractive mappings,” *Houston Journal of Mathematics*, vol. 19, no. 1, pp. 107–115, 1993.

[10] X. Weng, “Fixed point iteration for local strictly pseudocontractive mapping,” *Proceedings of the American Mathematical Society*, vol. 113, no. 3, pp. 727–731, 1991.

[11] H. Zhou and Y. Jia, “Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumption,” *Proceedings of the American Mathematical Society*, vol. 125, no. 6, pp. 1705–1709, 1997.

[12] S. S. Chang, “Some problems and results in the study of nonlinear analysis,” *Nonlinear Analysis*, vol. 30, no. 7, pp. 4197–4208, 1997.

[13] K. Deimling, “Zeros of accretive operators,” *Manuscripta Mathematica*, vol. 13, pp. 283–288, 1974.

[14] Z. Liu, C. Feng, J. S. Ume, and S. M. Kang, “Weak and strong convergence for common fixed points of a pair of nonexpansive and asymptotically nonexpansive mappings,” *Taiwanese Journal of Mathematics*, vol. 11, no. 1, pp. 27–42, 2007.