Boundary Conditions for Singular Perturbations of Self-Adjoint Operators

Andrea Posilicano

Abstract. Let $A : D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ be an injective self-adjoint operator and let $\tau : D(A) \rightarrow \mathcal{X}$, \mathcal{X} a Banach space, be a surjective linear map such that $\|\tau \phi\|_{\mathcal{X}} \leq c \|A \phi\|_{\mathcal{H}}$. Supposing that Kernel τ is dense in \mathcal{H}, we define a family A_{τ}^Θ of self-adjoint operators which are extensions of the symmetric operator $A_{\{\tau=0\}}$. Any ϕ in the operator domain $D(A_{\tau}^\Theta)$ is characterized by a sort of boundary conditions on its univocally defined regular component ϕ_{reg}, which belongs to the completion of $D(A)$ w.r.t. the norm $\|A \phi\|_{\mathcal{H}}$. These boundary conditions are written in terms of the map τ, playing the role of a trace (restriction) operator, as $\tau \phi_{\text{reg}} = \Theta Q \phi$, the extension parameter Θ being a self-adjoint operator from \mathcal{X}' to \mathcal{X}. The self-adjoint extension is then simply defined by $A_{\tau}^\Theta \phi := A \phi_{\text{reg}}$. The case in which $A \phi = \Psi \ast \phi$ is a convolution operator on $L^2(\mathbb{R}^n)$, Ψ a distribution with compact support, is studied in detail.

1. Introduction

Let

$A : D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$

be a self-adjoint operator on the complex Hilbert space \mathcal{H} (to prevent any misunderstanding we remark here that all over the paper we will avoid to identify a Hilbert space with its strong dual). As usual $D(A)$ inherits a Hilbert space structure by introducing the scalar product leading to the graph norm

$\|\phi\|^2_A := \langle \phi, \phi \rangle_{\mathcal{H}} + \langle A \phi, A \phi \rangle_{\mathcal{H}}$.

Considering then a linear bounded operator

$\tau : D(A) \rightarrow \mathcal{X}, \quad \tau \in \mathcal{B}(D(A), \mathcal{X}),$

\mathcal{X} a complex Banach space, we are interested in describing the self-adjoint extensions of the symmetric operator $A_{\{\tau=0\}}$. In typical situations A is a (pseudo-)differential operator on $L^2(\mathbb{R}^n)$ and τ is a trace (restriction) operator along some null subset $F \subset \mathbb{R}^n$ (see e.g. [1]-[4], [6]-[8], [16]-[19], [21], [22] and references therein).
Denoting the resolvent set of \(A \) by \(\rho(A) \), we define \(R(z) \in B(\mathcal{H}, D(A)) \), \(z \in \rho(A) \), by
\[
R(z) := (-A + z)^{-1}
\]
and we then introduce, for any \(z \in \rho(A) \), the operators \(\tilde{G}(z) \in B(\mathcal{H}, \mathcal{X}) \) and \(G(z) \in \tilde{B}(\mathcal{X}', \mathcal{H}) \) by
\[
\tilde{G}(z) := \tau \cdot R(z), \quad G(z) := C^{-1}_{\mathcal{H}} \cdot \tilde{G}(z^*)'.
\]
(1)

Here the prime \(' \) denotes both the strong dual space and the (Banach) adjoint map, and \(C_{\mathcal{H}} \) indicates the canonical conjugate-linear isomorphism on \(\mathcal{H} \) to \(\mathcal{H}' \) (the reader is referred to section 2 below for a list of definitions and notations).

As an immediate consequence of the first resolvent identity for \(R(z) \) we have
\[
(z - w) R(w) \cdot G(z) = G(w) - G(z)
\]
and so
\[
\forall w, z \in \rho(A), \quad \text{Range}(G(w) - G(z)) \subseteq D(A).
\]
(3)

In [19, thm. 2.1], by means of a Krein-like formula, and under the hypotheses

\(\tau \) is surjective \hspace{1cm} (h1)
\[
\text{Range } \tau' \cap \mathcal{H}' = \{0\}, \hspace{1cm} (h2)
\]
we constructed a family \(A_{\tau}^{\ominus} \) of self-adjoint extension of \(A_{\{\tau=0\}} \) by giving its resolvent family. The hypothesis (h1) could be weakened, see [19], but here we prefer to use a simpler framework. In formulating (h2) we used the embedding of \(\mathcal{H}' \) into \(D(A)' \supseteq \text{Range } \tau' \) given by \(\varphi \mapsto \langle C^{-1}_{\mathcal{H}} \varphi, \cdot \rangle_{\mathcal{H}} \). Such an hypothesis is then equivalent to the denseness, in \(\mathcal{H} \), of the set \(\{\tau = 0\} \). Indeed there exists \(\ell \in \mathcal{X}' \) such that \(\tau' \ell \in \mathcal{H}' \) if and only if there exists \(\psi \in \mathcal{H} \) (necessarily orthogonal to Kernel \(\tau \)) such that for any \(\phi \in D(A) \) one has \(\langle \psi, \phi \rangle_{\mathcal{H}} = \ell(\tau \phi) \).

The advantage of the formula given in [19] over other approaches (see e.g. [20], [9], [10], [12] and references therein) is its relative simplicity, being expressed directly in terms of the map \(\tau \); moreover the domain of definition of \(A_{\tau}^{\ominus} \) can be described, interpreting the map \(\tau \) as a trace (restriction) operator, in terms of a sort of boundary conditions (see [19, remark 2.10]). In the case \(0 \notin \sigma(A) \), \(\sigma(A) \) denoting the spectrum of \(A \), this description becomes particularly expressive since \(A_{\tau}^{\ominus} \phi \) can be simply defined by the original operator applied to the regular component of \(\phi \). Such a regular component \(\phi_0 \in D(A) \) is univocally determined by the natural decomposition which enter in the definition of \(D(A_{\tau}^{\ominus}) \) and it has to satisfy the boundary condition
\[
\tau \phi_0 = \Theta Q_{\phi}.
\]

More precisely, by (h1), (h2) and by [19, lemma 2.2, thm. 2.1, prop. 2.1, remarks 2.10, 2.12], we have the following
Theorem 1. Let $A : D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ be self-adjoint with $0 \notin \sigma(A)$, let $\tau : D(A) \rightarrow \mathcal{X}$ be continuous and satisfy (h1) and (h2). If $\Theta \in \mathcal{L}(\mathcal{X}', \mathcal{X})$ is self-adjoint, $G := G(0)$ and

$$D(A_G^\tau) := \{ \phi \in \mathcal{H} : \phi = \phi_0 + GQ_\phi, \phi_0 \in D(A), Q_\phi \in D(\Theta), \tau_0 \phi_0 = \Theta Q_\phi \},$$

then the linear operator

$$A_G^\tau : D(A_G^\tau) \subseteq \mathcal{H} \rightarrow \mathcal{H}, \quad A_G^\tau \phi := A\phi_0$$

is self-adjoint and coincides with A on the kernel of τ; the decomposition entering in the definition of its domain is unique. Its resolvent is given by

$$R_G^\tau(z) := R(z) + G(z) \cdot (\Theta + \Gamma(z))^{-1} \cdot \hat{G}(z), \quad z \in W_G^- \cup W_G^+ \cup \mathbb{C} \setminus \mathbb{R},$$

where

$$\Gamma(z) := \tau \cdot (G - G(z))$$

and

$$W_G^\pm := \{ \lambda \in \mathbb{R} \cap \rho(A) : \gamma(\pm \Gamma(\lambda)) > -\gamma(\pm \Theta) \}.$$

Remark 2. By (h1) one has $\mathcal{X} \simeq D(A) / \text{Kernel } \tau \simeq (\text{Kernel } \tau)^\perp$ and so

$$D(A) \simeq \text{Kernel } \tau \oplus \mathcal{X}.$$

This implies that \mathcal{X} inherits a Hilbert space structure and we could then identify \mathcal{X}' with \mathcal{X}. Even if this gives some advantage (see [19, remarks 2.13-2.16, lemma 2.4]) here we prefer to use only the Banach space structure of \mathcal{X}.

The purpose of the present paper is to extend the above theorem to the case in which A is merely injective. Thus, denoting the pure point spectrum of A by $\sigma_{pp}(A)$, we require $0 \notin \sigma_{pp}(A)$ but we do not exclude the case $0 \in \sigma(A) \setminus \sigma_{pp}(A)$; this is a typical situation when A is a differential operator on $L^2(\mathbb{R}^n)$. In order to carry out this program we will suppose that the map τ has a continuous extension to $\hat{D}(A)$, the completion of $D(A)$ with respect to the norm $\|A\phi\|_\mathcal{H}$ (note that $\hat{D}(A) = D(A)$ when $0 \notin \sigma(A)$). This further hypothesis allows then to perform the limit $\lim_{\epsilon \rightarrow 0} G(i\epsilon) - G(z)$ (see lemma 3); thus an analogue on the above theorem 1 is obtained (see theorem 5). Such an abstract construction is successively specialized to the case in which $A\phi = \Psi \ast \phi$ is a convolution operator on $L^2(\mathbb{R}^n)$, where Ψ is a distribution with compact support (so that this comprises the case of differential-difference operators). In this situation the results obtained in theorem 5 can be made more appealing (see theorem 11). The case in which $A = \Delta : H^2(\mathbb{R}^n) \rightarrow L^2(\mathbb{R}^n), n > 4$, and τ is the trace (restriction) operator along a d-set with a compact closure of zero Lebesgue measure, $0 < n - d < 4$, is explicitly studied (see example 14). Of course, since $-\Delta$ is not negative, in this case one could apply theorem 1 to $-\Delta + \lambda, \lambda > 0$, and then define $-\Delta_G^\tau := (-\Delta + \lambda)_G^\tau - \lambda$. However this alternative definition
looks a bit artificial and has the drawback of giving rise to boundary conditions which depend on the arbitrary parameter λ. The starting motivation of this work was indeed the desire to get rid of such a dependence.

2. Definitions and notations

- Given a Banach space X we denote by X' its strong dual;
- $L(X, Y)$, resp. $\tilde{L}(X, Y)$, denotes the space of linear, resp. conjugate linear, operators from the Banach space X to the Banach space Y; $L(X) := L(X, X)$, $\tilde{L}(X) := \tilde{L}(X, X)$.
- $B(X, Y)$, resp. $\tilde{B}(X, Y)$, denotes the (Banach) space of bounded, everywhere defined, linear, resp. conjugate linear, operators on the Banach space X to the Banach space Y.
- Given $A \in L(X, Y)$ and $\tilde{A} \in \tilde{L}(X, Y)$ densely defined, the closed operators $A' \in L(Y', X')$ and $\tilde{A}' \in \tilde{L}(Y', X')$ the are the adjoints of A and \tilde{A} respectively, i.e.
 \[\forall x \in D(A) \subseteq X, \quad \forall \ell \in D(A') \subseteq Y', \quad (A' \ell)(x) = \ell(Ax), \]
 \[\forall x \in D(\tilde{A}) \subseteq X, \quad \forall \ell \in D(\tilde{A}') \subseteq Y', \quad (\tilde{A}' \ell)(x) = (\ell(\tilde{A}x))^* \]
where \ast denotes complex conjugation.
- $J_X \in B(X, X'')$ indicates the injective map (an isomorphism when X is reflexive) defined by $(J_X x)(\ell) := \ell(x)$.
- A closed, densely defined operator $A \in L(X', X) \cup \tilde{L}(X', X)$ is said to be self-adjoint if $J_X \cdot A = A'$.
- For any self-adjoint $A \in L(X', X) \cup \tilde{L}(X', X)$ we define
 \[\gamma(A) := \inf \{ \ell(A\ell), \ \ell \in D(A), \ \|\ell\|_{X'} = 1 \} . \]
- If H is a complex Hilbert space with scalar product (conjugate linear w.r.t. the first variable) $\langle \cdot, \cdot \rangle$, then $C_H \in B(H, H')$ denotes the isomorphism defined by $(C_Hy)(x) := \langle y, x \rangle$. The Hilbert adjoint of the densely defined linear operator A is then given by $A^* = C_H^{-1} \cdot A' \cdot C_{H}$.
- \mathcal{F} and \ast denote Fourier transform and convolution respectively.
- $\mathcal{D}'(\mathbb{R}^n)$ denotes the space of distributions and $\mathcal{E}'(\mathbb{R}^n)$ is the subspace of distributions with compact support.
- $H^s(\mathbb{R}^n)$, $s \in \mathbb{R}$, is the usual scale of Sobolev-Hilbert spaces, i.e. $H^s(\mathbb{R}^n)$ is the space of tempered distributions with a Fourier transform which is square integrable w.r.t. the measure with density $(1 + |x|^2)^s$. As usual the strong dual of $H^s(\mathbb{R}^n)$ will be represented by $H^{-s}(\mathbb{R}^n)$.
- c denotes a generic strictly positive constant which can change from line to line.
3. Singular Perturbations and Boundary Conditions

Given the injective self-adjoint operator \(A : D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H} \), we denote by \(\hat{D}(A) \) the Banach space given by the completion of \(D(A) \) with respect to the norm

\[
\| \phi \|_{(A)} := \| A\phi \|_{\mathcal{H}}.
\]

As usual \(D(A) \) will be treated as a (dense) subset of \(\hat{D}(A) \) by means of the canonical embedding \(I : D(A) \rightarrow \hat{D}(A) \) which associates to \(\phi \) the set of all Cauchy sequences converging to \(\phi \).

As in the introduction we consider then a continuous linear map

\[
\tau : D(A) \rightarrow X,
\]

\(X \) is a Banach space, and we will suppose that it satisfies, besides (h1) and (h2), the further hypothesis

\[
\| \tau \phi \|_X \leq c \| A\phi \|_{\mathcal{H}}.
\]

(h3)

By (h3) \(\tau \) admits an extension belonging to \(\mathcal{B}(\hat{D}(A), X) \); analogously \(A \) admits an extension belonging to \(\mathcal{B}(\hat{D}(A), \mathcal{H}) \). By abuse of notation we will use the same symbols \(\tau \) and \(A \) to denote these extensions.

Let us now take a sequence \(\{\epsilon_n\}_{1}^{\infty} \subset \mathbb{R} \) converging to zero. By functional calculus one has

\[
\| (-A \cdot R(i\epsilon_n) - I)\phi \|_{\mathcal{H}}^2 = \int_{\sigma(A)} d\mu_\phi(\lambda) \frac{\epsilon_n^2}{\lambda^2 + \epsilon_n^2}
\]

with \(\mu_\phi(\{0\}) = 0 \) since \(0 \notin \sigma_{pp}(A) \). Thus

\[
1 \geq \frac{\epsilon_n^2}{\lambda^2 + \epsilon_n^2} \rightarrow 0, \quad \mu_\phi\text{-a.e.}
\]

and, by dominated convergence theorem,

\[
\mathcal{H} - \lim_{n \uparrow \infty} -A \cdot R(i\epsilon_n)\phi = \phi.
\]

So \(\{R(i\epsilon_n)\phi\}_{1}^{\infty} \) is a Cauchy sequence in \(D(A) \) with respect to the norm \(\| \cdot \|_{(A)} \).

We can therefore define \(R \in \mathcal{B}(\mathcal{H}, \hat{D}(A)) \) by

\[
R\phi := \hat{D} - \lim_{n \uparrow \infty} R(i\epsilon_n)\phi,
\]

and then \(K(z) \in \hat{B}(X', \hat{D}(A)) \) by

\[
K(z) := zR \cdot G(z).
\]

Alternatively, using (2), \(K(z) \) can be defined by

\[
K(z)\phi := \hat{D} - \lim_{n \uparrow \infty} (G(i\epsilon_n) - G(z)) \phi.
\]
This immediately implies, using (3),
\[\forall w, z \in \rho(A), \quad \text{Range}(K'(w) - K(z)) \subseteq D(A) \]
and
\[\forall w, z \in \rho(A), \quad K(w) - K(z) = G(z) - G(w). \]
(4)
Also note that
\[-A \cdot K(z) = zG(z). \]
(5)

Lemma 3. The map
\[\Gamma : \rho(A) \to \tilde{B}(X', X), \quad \Gamma(z) := \tau \cdot K(z) \]
satisfies the relations
\[\Gamma(z) - \Gamma(w) = (z - w)\hat{G}(w) \cdot G(z) \]
(6)
and
\[J_X \cdot \Gamma(z^*) = \Gamma(z)', \]
(7)

Proof. Since \(K(z) \) is the strong limit of \(G(\pm i\epsilon_n) - G(z) \), one has
\[\forall \ell \in X', \quad \Gamma(z)\ell = \lim_{n \uparrow \infty} \hat{\Gamma}_n(z)\ell, \]
where
\[\hat{\Gamma}_n(z) : X' \to X, \quad \hat{\Gamma}_n(z) := \tau \cdot \left(\frac{G(i\epsilon_n) + G(-i\epsilon_n)}{2} - G(z) \right). \]
Thus \(\Gamma(z) \) satisfies (6) and
\[\forall \ell_1, \ell_2 \in X', \quad \ell_1(\Gamma(z^*)\ell_2) = (\ell_2(\Gamma(z)\ell_1))^* \]
(which is equivalent to (7)) since \(\hat{\Gamma}_n(z) \) does (see [19, lemma 2.2]).

Before stating the next lemma we introduce the following definition:
Given \(\phi \in \mathcal{H} \) and \(\psi \in \hat{D}(A) \), the writing \(\phi = \psi \) will mean that \(\phi \) is in \(D(A) \) and \(J\phi = \psi \).

Lemma 4. Given \(\phi \in \mathcal{H} \), \(z \in \rho(A) \), suppose there exist \(\psi \in \hat{D}(A) \) and \(Q \in X' \) such that
\[\phi - G(z)Q = \psi + K(z)Q. \]
(8)
Then the couple \((\psi, Q) \) is unique and \(z \)-independent.
Proof. Let $(\psi_1, Q_1), (\psi_2, Q_2)$ both satisfy (8). Then

$$G(z)(Q_2 - Q_1) = (\psi_1 - \psi_2) + K(z)(Q_1 - Q_2).$$

By (h2) and the definition of $G(z)$ one has $\text{Range} G(z) \cap D(A) = \{0\}$ and so $Q_1 - Q_2 \in \text{Kernel} G(z)$. But (h1) implies the injectivity of $G(z)$ (see [19, remark 2.1]). Therefore $(\psi_1, Q_1) = (\psi_2, Q_2)$. The proof is then concluded observing that z-independence follows by (4).

We now can extend theorem 1 to the case in which A is injective:

Theorem 5. Let $A : D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ be self-adjoint and injective, let $\tau : D(A) \rightarrow \mathcal{X}$ satisfy (h1)-(h3). Given $\Theta \in \tilde{L}(\mathcal{X}', \mathcal{X})$ self-adjoint, let $D(A_{\Theta})$ be the set of $\phi \in \mathcal{H}$ for which there exist $\phi_{\text{reg}} \in \hat{D}(A), Q_{\phi} \in D(\Theta)$ such that

$$\phi - G(z)Q_{\phi} = \phi_{\text{reg}} + K(z)Q_{\phi}$$

and

$$\tau \phi_{\text{reg}} = \Theta Q_{\phi}.$$

Then

$$A_{\Theta} : D(A_{\Theta}) \subseteq \mathcal{H} \rightarrow \mathcal{H}, \quad A_{\Theta} \phi := A \phi_{\text{reg}},$$

is a self-adjoint operator which coincides with A on the kernel of τ and its resolvent is given by

$$R_{\Theta}(z) := R(z) + G(z) \cdot (\Theta + \Gamma(z))^{-1} \cdot \tilde{G}(z), \quad z \in W_{\Theta}^{-} \cup W_{\Theta}^{+} \cup \mathbb{C} \backslash \mathbb{R}.$$

where

$$\Gamma(z) := \tau \cdot K(z).$$

Proof. For brevity we define

$$\phi_z := \phi - G(z)Q_{\phi}, \quad \phi \in D(A_{\Theta})$$

and

$$\Gamma_{\Theta}(z) := \Theta + \Gamma(z).$$

Then one has

$$\Gamma_{\Theta}(z)Q_{\phi} = \tau \phi_{\text{reg}} + \tau \cdot K(z)Q_{\phi} = \tau \phi_z.$$

Since $\Gamma(z)$ is a bounded operator satisfying (6) and (7), and Θ is self-adjoint, by (h1) and [19, prop. 2.1, remark 2.12], $\Gamma_{\Theta}(z)$ has a bounded inverse for any $z \in W_{\Theta}^{-} \cup W_{\Theta}^{+} \cup \mathbb{C} \backslash \mathbb{R}$. Therefore

$$Q_{\phi} = \Gamma_{\Theta}(z)^{-1} \cdot \tau \phi_z$$

and

$$D(A_{\Theta}) \subseteq \{ \phi \in \mathcal{H} : \phi = \phi_z + G(z) \cdot \Gamma_{\Theta}(z)^{-1} \cdot \tau \phi_z, \phi_z \in D(A) \}.$$

Let us now prove the reverse inclusion.
Given $\phi \in \mathcal{H}$,

$$\phi = \phi_z + G(z) \cdot \Gamma_{\Theta}(z)^{-1} \cdot \tau \phi_z, \quad \phi_z \in D(A),$$

we define $\phi_{\text{reg}} \in \hat{D}(A)$ by

$$\phi_{\text{reg}} := \phi_z - K(z) \cdot \Gamma_{\Theta}(z)^{-1} \cdot \tau \phi_z.$$

Thus one has

$$\tau \phi_{\text{reg}} = \tau \phi_z - \tau \cdot K(z) \cdot \Gamma_{\Theta}(z)^{-1} \cdot \tau \phi_z \quad = \tau \phi_z - \Theta \cdot \Gamma_{\Theta}(z)^{-1} \cdot \tau \phi_z = \Theta Q_{\phi},$$

with

$$Q_{\phi} := \Gamma_{\Theta}(z)^{-1} \cdot \tau \phi_z.$$

In conclusion

$$D(A_{\Theta}^{\tau}) = \{ \phi \in \mathcal{H} : \phi = \phi_z + G(z) \cdot \Gamma_{\Theta}(z)^{-1} \cdot \tau \phi_z, \phi_z \in D(A) \}.$$

Since, by (5),

$$A \phi_{\text{reg}} = A \phi_z - A \cdot K(z)Q_{\phi} = A \phi_z + zG(z)Q_{\phi}$$

we have

$$(-A_{\Theta}^{\tau} + z)\phi = (-A + z)\phi_z.$$

Thus A_{Θ}^{τ} coincides with the operator constructed in [19, thm. 2.1]; therefore, by (h2), this operator is self-adjoint, has resolvent given by $R_{\Theta}(\Phi)$ and is equal to A on the kernel of τ. \square

4. Singular perturbations of convolution operators

Let $\Psi \in \mathcal{E}'(\mathbb{R}^n)$. By Paley-Wiener theorem we know that $\mathcal{F}\Psi$ is a smooth function which is, together with its derivatives of any order, polynomially bounded. Then we define the continuous convolution operator

$$\Psi \ast : \mathcal{D}'(\mathbb{R}^n) \to \mathcal{D}'(\mathbb{R}^n), \quad \phi \mapsto \Psi \ast \phi,$$

and, supposing $\mathcal{F}\Psi$ real-valued, the restriction of this operator to the dense subspace

$$D(\widetilde{\Psi}) := \{ \phi \in L^2(\mathbb{R}^n) : \Psi \ast \phi \in L^2(\mathbb{R}^n) \}$$

provide us with the self-adjoint convolution operator

$$\widetilde{\Psi} : D(\widetilde{\Psi}) \subseteq L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n), \quad \widetilde{\Psi} \phi := \Psi \ast \phi.$$

Evidently $\widetilde{\Psi}$ is injective if and only if the set of real zeroes of $\mathcal{F}\Psi$ is a null set. From now on we will therefore suppose that $\mathcal{F}\Psi$ is real and has a null set of real zeroes. This implies, since $(\text{Range } \widetilde{\Psi})^\perp = \text{Kernel } \widetilde{\Psi}^*$, that $\widetilde{\Psi}$ has a dense range and, using (h3), the following lemma becomes then obvious:
Lemma 6. The map \(\tau : D(\tilde{\Psi}) \to X \) can be extended to
\[
D(\tilde{\Psi}) := \{ \varphi \in D'(\mathbb{R}^n) : \Psi \ast \varphi \in L^2(\mathbb{R}^n) \},
\]
by defining
\[
\tau \varphi := \lim_{n \to \infty} \tau \phi_n,
\]
where \(\{ \phi_n \}_1^\infty \subset D(\tilde{\Psi}) \) is any sequence such that
\[
L^2 - \lim_{n \to \infty} \Psi \ast \phi_n = \Psi \ast \varphi.
\]

Now we will moreover suppose that \(\mathcal{F}\Psi \) is slowly decreasing, i.e. (see [11]) we will suppose that there exist \(k > 0 \) such that for any \(\zeta \in \mathbb{R}^n \) we can find a point \(\xi \in \mathbb{R}^n \) such that
\[
|\zeta - \xi| \leq k \log(1 + |\zeta|),
\]
\[
|\mathcal{F}\Psi(\xi)| \geq (k + |\xi|)^{-k}.
\]
By [11, thm. 1] we know that \(\Psi : D'(\mathbb{R}^n) \to D'(\mathbb{R}^n) \) is surjective if and only if \(\mathcal{F}\Psi \) is slowly decreasing. This is certainly true when \(\tilde{\Psi} \) is a differential operator, i.e. when \(\mathcal{F}\Psi \) is a polynomial. The hypotheses we made on \(\mathcal{F}\Psi \) permit us to state the following

Lemma 7. Given \(\Psi \) as above, one has the identification
\[
\tilde{D}(\tilde{\Psi}) \simeq D(\tilde{\Psi}) / \sim,
\]
where
\[
\varphi_1 \sim \varphi_2 \iff \Psi \ast \varphi_1 = \Psi \ast \varphi_2.
\]
This identification is given by the isometric maps which to the equivalence class of Cauchy sequences \(\{ \phi_n \}_1^\infty \in \tilde{D}(\tilde{\Psi}) \) associates the equivalence class of distributions \([\varphi] \in D(\tilde{\Psi}) / \sim \) such that
\[
L^2 - \lim_{n \to \infty} \Psi \ast \phi_n = \Psi \ast \varphi.
\]

Proof. Given \(\{ \phi_n \}_1^\infty \in \tilde{D}(\tilde{\Psi}) \), the sequence \(\{ \Psi \ast \phi_n \}_1^\infty \) is a Cauchy one in \(L^2(\mathbb{R}^n) \) and so it converges to some \(f \in L^2(\mathbb{R}^n) \). Then, by [11, thm. 1], there exists \(\varphi \in D(\tilde{\Psi}) \) such that \(\Psi \ast \varphi = f \). Conversely let \(\varphi \in D(\tilde{\Psi}) \); since \(\tilde{\Psi} \) has a dense range there exists a (unique in \(\tilde{D}(\tilde{\Psi}) \)) sequence \(\{ \phi_n \}_1^\infty \subset D(\tilde{\Psi}) \) such that \(\Psi \ast \phi_n \) converges in \(L^2(\mathbb{R}^n) \) to \(\Psi \ast \varphi \).

Defining
\[
\tilde{D}'(\mathbb{R}^n) := D'(\mathbb{R}^n) / \sim
\]
and then the sum of $\phi \in L^2(\mathbb{R}^n) \subset \mathcal{D}'(\mathbb{R}^n)$ plus $\psi = [\varphi] \in \hat{\mathcal{D}}(\tilde{\Psi}) \simeq \mathcal{D}(\tilde{\Psi})/\sim \subset \hat{\mathcal{D}}'(\mathbb{R}^n)$ by

$$\phi + \psi := [\phi + \varphi] \in \hat{\mathcal{D}}'(\mathbb{R}^n),$$

we can introduce the linear operator

$$G : \mathcal{X}' \to \hat{\mathcal{D}}'(\mathbb{R}^n), \quad G := G(z) + K(z).$$

According to lemma 4, theorem 5 and the definition of G, for any $\phi \in D(\tilde{\Psi}_\Theta)$ we can give the unique decomposition

$$\phi = \phi_{\text{reg}} + GQ_\phi.$$

Thus we can define $D(\tilde{\Psi}_\Theta)$ as the set of $\phi \in L^2(\mathbb{R}^n)$ for which there exists $Q_\phi \in D(\Theta)$ such that

$$\phi - GQ_\phi =: \phi_{\text{reg}} \in \hat{D}(\tilde{\Psi})$$

and

$$\tau \phi_{\text{reg}} = \Theta Q_\phi.$$

Lemma 8. The definition of G is z-independent and

$$\forall \ell \in \mathcal{X}', \quad G\ell = [G_\ast \ell],$$

where

$$G_\ast : \mathcal{X}' \to \mathcal{D}'(\mathbb{R}^n),$$

is any conjugate linear operator such that

$$-\Psi \ast G_\ast \ell = \tau^* \ell.$$ \hspace{1cm} (9)

Here $\tau^* : \mathcal{X}' \to \mathcal{D}'(\mathbb{R}^n)$ is defined by

$$\tau^* \ell(\varphi) := (\ell(\tau \varphi^*))^*, \quad \varphi \in C_0^\infty(\mathbb{R}^d).$$

Proof. z-independence is an immediate consequence of (4). By the definition of G and by (5) there follows

$$-\Psi \ast G_\ast \ell = (-\Psi \ast + z)G(z)\ell$$

and the proof is concluded by the relation

$$(-\Psi \ast + z) \cdot G(z) = \tau^* \hspace{1cm} (10)$$

which can be obtained proceeding as in [19, remark 2.4].
Remark 9. By [11, thm. 1], as $\mathcal{F}\Psi$ is slowly decreasing, the equation (9) is always resoluble; in particular, denoting the fundamental solution of $-\Psi^*$ by \mathcal{G}, when the convolution $\mathcal{G} \ast \tau^* \ell$ is well defined (e.g. when $\tau^* \ell \in \mathcal{E}'(\mathbb{R}^n)$), one has

$$G_* : \mathcal{X}' \to \mathcal{D}'(\mathbb{R}^n), \quad G_* \ell = \mathcal{G} \ast \tau^* \ell.$$

Analogously, denoting the fundamental solution of $-\Psi^* + z$ by \mathcal{G}_z, one has

$$G(z) : \mathcal{X}' \to L^2(\mathbb{R}^n), \quad G(z) \ell = \mathcal{G}_z \ast \tau^* \ell.$$

Remark 10. Note that $\mathcal{P}_\phi \mathcal{G} \phi_\phi = \mathcal{G} \phi$ and $\tau \phi_\phi = \tau \phi$ for any $\phi \in \mathcal{D}(\mathcal{P})$ such that $\phi_\phi = [\phi]$. Here we implicitly used the extension given in lemma 6 and the identification given in lemma 7. This also implies that $\Gamma(z)$ in lemma 3 can be re-written as

$$\Gamma(z) = \tau \cdot (G_* - G(z)).$$

By remark 9, when the convolution is well defined, one can also write

$$\Gamma(z) \ell = \tau ((\mathcal{G} - \mathcal{G}_z) \ast \tau^* \ell).$$

In conclusion, by making use of the previous lemmata and remarks, we can restate theorem 5 in the following way:

Theorem 11. Let $\Psi \in \mathcal{E}'(\mathbb{R}^n)$ with $\mathcal{F}\Psi$ real-valued, slowly decreasing and having a null set of real zeroes, let $\mathcal{P} : D(\mathcal{P}) \subseteq L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$, $\mathcal{P} \phi := \Psi \phi$, let $\tau : D(\mathcal{P}) \to \mathcal{X}$ satisfy (h1)-(h3). Given $\Theta \in \mathcal{L}(\mathcal{X}', \mathcal{X})$ self-adjoint, let $D(\mathcal{P}_\Theta)$ be the set of $\phi \in L^2(\mathbb{R}^n)$ for which there exists $Q_\phi \in D(\Theta)$ such that

$$\phi - G_* Q_\phi =: \phi_\phi \in \mathcal{D}(\mathcal{P})$$

and

$$\tau \phi_\phi = \Theta Q_\phi.$$

Then

$$\mathcal{P}_\Theta : D(\mathcal{P}_\Theta) \subseteq L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n), \quad \mathcal{P}_\Theta \phi := \Psi \phi,$$

is a self-adjoint operator which coincides with \mathcal{P} on the kernel of τ and its resolvent is given by

$$R_{\Theta}^\tau(z) := R(z) + G(z) \cdot (\Theta + \Gamma(z))^{-1} \cdot \mathcal{G}(z), \quad z \in W_{\Theta}^- \cup W_{\Theta}^+ \cup \mathbb{C} \setminus \mathbb{R},$$

where

$$\Gamma(z) := \tau \cdot (G_* - G(z)).$$
Remark 12. The boundary conditions and the operators \(\Gamma(z) \) and \(\tilde{\Psi} \) appearing in the previous theorem are independent of the choice of the representative (see lemma 8) \(G_* \) entering in the definition of \(\varphi_{\text{reg}} \). Indeed any different choice will not change the equivalence class to which \(\varphi_{\text{reg}} \) belongs, and both \(\tau \) and \(\tilde{\Psi} \) do not depend on the representative in such a class (see remark 10).

Remark 13. Proceeding as in [19, remark 2.4] one can give the following alternative definition of \(\tilde{\Psi} \) where only \(Q \phi \in D(\Theta) \) appears:

\[
\tilde{\Psi} \phi := \Psi \ast \phi + \tau \ast Q \phi .
\]

This is an immediate consequence of identity (10).

Example 14. Let us consider the case \(A = \Delta : H^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n) \). Obviously \(A \) is an injective convolution operator, thus we can apply to it the previous theorem.

A Borel set \(F \subset \mathbb{R}^n \) is called a \(d \)-set, \(d \in (0, n] \), if

\[
\exists c_1, c_2 > 0 : \forall x \in F, \forall r \in (0, 1), \quad c_1 r^d \leq \mu_d(B_r(x) \cap F) \leq c_2 r^d ,
\]

where \(\mu_d \) is the \(d \)-dimensional Hausdorff measure and \(B_r(x) \) is the closed \(n \)-dimensional ball of radius \(r \) centered at the point \(x \) (see [14, §1.1, chap. VIII]).

Examples of \(d \)-sets are \(d \)-dimensional Lipschitz submanifolds and (when \(d \) is not an integer) self-similar fractals of Hausdorff dimension \(d \) (see [14, chap. II, example 2]). Moreover a finite union of \(d \)-sets which intersect on a set of zero \(d \)-dimensional Hausdorff measure is a \(d \)-set.

In the case \(0 < n - d < 4 \) we take as the linear operator \(\tau \) the unique continuous surjective (thus (h1) holds true) map

\[
\tau_F : H^2(\mathbb{R}^n) \to B^{2,2}_\alpha(F), \quad \alpha = 2 - \frac{n - d}{2}
\]

such that, for \(\mu_d \)-a.e. \(x \in F \),

\[
\tau_F \phi(x) = \left\{ \phi_F^{(j)}(x) \right\}_{|j| < \alpha} = \left\{ \lim_{r \downarrow 0} \frac{1}{\lambda_n(r)} \int_{B_r(x)} dy D^j \phi(y) \right\}_{|j| < \alpha} ,
\]

where \(j \in \mathbb{Z}^n_+ \), \(|j| := j_1 + \cdots + j_n \), \(D^j := \partial_{j_1} \cdots \partial_{j_n} \) and \(\lambda_n(r) \) denotes the \(n \)-dimensional Lebesgue measure of \(B_r(x) \). We refer to [14, thms. 1 and 3, chap. VII] for the existence of the map \(\tau_F \); obviously it coincides with the usual evaluation along \(F \) when restricted to smooth functions. The definition of the Besov-like (actually Hilbert, see remark 1) space \(B^{2,2}_\alpha(F) \) is quite involved and we will not reproduce it here (see [14, §2.1, chap. V]). In the case \(0 < \alpha < 1 \)
(i.e. $2 < n - d < 4$) things simplify and $B^{2,2}_\alpha(F)$ can be defined (see [14, §1.1, chap. V]) as the Hilbert space of $f \in L^2(F; \mu_F)$ having finite norm

$$
\|f\|_{B^{2,2}_\alpha(F)}^2 := \|f\|_{L^2(F)}^2 + \int_{|x-y|<1} d\mu_F(x) d\mu_F(y) \frac{|f(x) - f(y)|^2}{|x-y|^{d+2\alpha}},
$$

where μ_F denotes the restriction of the d-dimensional Hausdorff measure μ_d to the set F. When $\alpha > 1$ and F is a generic d-set the functions $\phi^{(j)}_F \in L^2(F; \mu_F)$ are not uniquely determined by $\phi^{(0)}_F$; contrarily we may then identify $\{\phi^{(j)}_F\} \cup \{\phi^{(0)}_F\}$ with the single function $\phi^{(0)}_F$. This is possible when F preserves Markov’s inequality (see [14, §2, chap. II]). Sets with such a property are closed d-sets with $d > n - 1$ (see [14, thm. 3, §2.2, chap. II]), a concrete example being e.g. the boundary of von Koch’s snowflake domain in \mathbb{R}^2 (a d-set with $d = \log 4/\log 3$, see [24]). If F has some additional differential structure then $B^{2,2}_\alpha(F) \simeq H^\alpha(F)$, where $H^\alpha(F)$ denotes the usual (fractional) Sobolev-Slobodeckii space. Some known cases where $B^{2,2}_\alpha(F) \simeq H^\alpha(F)$ (for any value of $\alpha > 0$) are the following:

- F is the graph of a Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}^{n-d}$ (see [5, §20]);
- F is a bounded manifold of class C_γ, $\gamma > \min(3, \max(1, \alpha))$, i.e. F has an atlas where the transition maps are of class C^k, $k < \gamma \leq k + 1$, and have derivatives of order less or equal to k which satisfy Lipschitz conditions of order $\gamma - k$ (see [13] for the case $\gamma > \max(1, \alpha)$ and see [5, §24] for the case $\gamma > 3$);
- F is a connected complete Riemannian manifold with positive injectivity radius and bounded geometry, in particular a connected Lie group (see [23, §7.4.5, §7.6.1]).

Supposing now that F has a compact closure, let χ be a smooth function with a compact support B such that $\chi = 1$ on F. Then by Sobolev’s inequality one has (from now on $n > 4$),

$$
\|\tau_F \phi\|_{B^{2,2}_\alpha(F)}^2 = \|\tau_F \chi \phi\|_{B^{2,2}_\alpha(F)}^2 \leq c \|\chi \phi\|_{H^2(\mathbb{R}^n)}^2 \\
\leq c (\|\phi\|_{L^2(B)}^2 + \|\nabla \phi\|_{L^2(B)}^2 + \|\Delta \phi\|_{L^2(B)}^2) \\
\leq c (\|\phi\|_{L^{\frac{2n}{n-2}}(B)}^{2n} + \|\nabla \phi\|_{L^{\frac{2n}{n-4}}(B)}^{2n} + \|\Delta \phi\|_{L^2(\mathbb{R}^n)}^2) \\
\leq c \|\Delta \phi\|_{L^2(\mathbb{R}^n)},
$$

and so τ_F satisfies (h3). Moreover, since

$$
\mathcal{D}(\Delta) = \{\varphi \in \mathcal{D}'(\mathbb{R}^n) : \Delta \varphi \in L^2(\mathbb{R}^n)\} \subseteq H^2_{\text{loc}}(\mathbb{R}^n)
$$

and \mathcal{F} is supposed to be compact, the extension of τ_F to $\mathcal{D}(\Delta)$ is again defined by (11). Denoting the dual of $B^{2,2}_\alpha(F)$ by $B^{2,2}_\alpha(F)$ (the space $B^{2,2}_\alpha(F)$ can be explicitly characterized in the case $0 < \alpha < 1$ or when F preserves Markov’s
inequality, see [15]), hypothesis (h2) is equivalent to \(\tau'_F \ell \notin L^2(\mathbb{R}^n) \) for any \(\ell \in B^{2,2}_{-\alpha}(F) \backslash \{0\} \), where \(\tau'_F \ell \in H^{-2}(\mathbb{R}^n) \) is defined by

\[
\tau'_F \ell(\phi) := \ell(\tau_F \phi).
\]

Therefore, as the support of \(\tau'_F \ell \) is given by \(\bar{F} \), (h2) is certainly verified when \(\bar{F} \) has zero Lebesgue measure. Considering the fundamental solution of \(-\Delta \), given by

\[
G(x) = \frac{1}{(n-2)\sigma_n} \frac{1}{|x|^{n-2}},
\]

\(\sigma_n \) the measure of the unitary sphere in \(\mathbb{R}^n \), the convolution \(G \ast \tau'_F \ell \) is a well defined distribution as \(\tau'_F \) is in \(E'(\mathbb{R}^n) \). Therefore, by lemma 8 we can choose \(G \ast \tau'_F \ell \) to be the map

\[
G_* : B^{2,2}_{-\alpha}(F) \to D'(\mathbb{R}^n), \quad G_* \ell := G \ast \tau'_F \ell.
\]

Thus, by the previous theorem (and remark 13), supposing that the \(d \)-set \(F \) has a compact closure of zero Lebesgue measure, given any self-adjoint operator \(\Theta \in L(B^{2,2}_{-\alpha}(F), B^{2,2}_{\alpha}(F)) \), \(\Theta \in L(B^{2,2}_{\alpha}(F)) \) if one uses the identification \(B^{2,2}_{-\alpha}(F) \simeq B^{2,2}_{\alpha}(F) \), we have then the self-adjoint operator

\[
\Delta^F \phi := \Delta \varphi_{\text{reg}} \equiv \Delta \phi + \tau'_F Q \phi,
\]

where

\[
\phi = \varphi_{\text{reg}} + G \ast \tau'_F Q \varphi, \quad \varphi_{\text{reg}} \in D(\Delta), \quad Q \phi \in D(\Theta),
\]

and

\[
\left\{ \lim_{r \downarrow 0} \frac{1}{\lambda_n(r)} \int_{B_r(x)} dy \, D^j(\phi - G \ast \tau'_F Q \phi)(y) \right\}_{|j| < \alpha} = \Theta Q \phi(x),
\]

\(|j| = 0 \) if \(F \) preserves Markov’s inequality or \(B^{2,2}_{\alpha}(F) \simeq H^{\alpha}(F) \). When \(F = M \), \(M \) a compact Riemannian manifold, a natural choice for \(\Theta \) is given by \(\Theta = (-\Delta_{LB})^{-\alpha} \), where \(\Delta_{LB} \) denotes the Laplace-Beltrami operator. The case in which \(A = (\Delta - \lambda) : H^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3) \), \(\lambda > 0 \) (note that here \(0 \notin \sigma(A) \), thus theorem 1 directly applies), and \(F \) is a plane circle, is treated, without giving boundary conditions, in [16] (also see [19, example 3.2] for connections with Birman-Krein-Vishik theory).

References

[1] S. Albeverio, J.R. Fenstad, R. Høegh-Krohn, W. Karwowski, T. Lindstrøm: Schrödinger Operators with Potentials Supported by Null Sets. Published in Ideas and Methods in Mathematical Analysis, Vol. II, New-York, Cambridge: Cambridge Univ. Press 1991
[2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics. Berlin, Heidelberg, New York: Springer-Verlag 1988
[3] S. Albeverio, V. Koshmanenko: On Schrödinger Operators Perturbed by Fractal Potentials. Rep. Math. Phys. 45 (2000), 307-326
[4] S. Albeverio, P. Kurasov: Singular Perturbations of Differential Operators. Cambridge: Cambridge Univ. Press 2000

[5] O.V. Besov, V.P. Il’ in, S.M. Nikol’skiǐ: Integral Representations of Functions and Imbedding theorems. Vol. II. Washington: Winston & Sons 1979

[6] J.F. Brasche: Generalized Schrödinger Operators, an Inverse Problem in Spectral Analysis and the Efimov Effect. Published in Stochastic Processes, Physics and Geometry. Teaneck, New Jersey: World Scientific Publishing 1990

[7] J.F. Brasche, A. Teta: Spectral Analysis and Scattering Theory for Schrödinger Operators with an Interaction Supported by a Regular Curve. Published in Ideas and Methods in Mathematical Analysis, Vol. II. New-York, Cambridge: Cambridge Univ. Press 1991

[8] S. E. Cheremshantsev: Hamiltonians with Zero-Range Interactions Supported by a Brownian Path. Ann. Inst. Henri Poincaré, 56 (1992), 1-25

[9] V.A. Derkach, M.M. Malamud: Generalized Resolvents and the Boundary Value Problems for Hermitian Operators with Gaps. J. Funct. Anal., 95 (1991), 1-95

[10] V.A. Derkach, M.M. Malamud: The Extension Theory of Hermitian Operators and the Moment Problem. J. Math. Sciences, 73 (1995), 141-242

[11] L. Ehrenpreis: Solution of Some Problems of Division IV. Am. J. Math. 82 (1960), 522-588

[12] F. Gesztesy, K.A. Makarov, E. Tsekanovskii: An Addendum to Kreĭn’s Formula. J. Math. Anal. Appl. 222 (1998), 594-606

[13] A. Jonsson: Besov Spaces on Submanifolds of \(\mathbb{R}^n \). Analysis 8 (1988), 225-269

[14] A. Jonsson, H. Wallin: Function Spaces on Subsets of \(\mathbb{R}^n \). Math. Reports 2 (1984), 1-221

[15] A. Jonsson, H. Wallin: The Dual of Besov Spaces on Fractals. Studia Math. 112 (1995), 285-298

[16] W. Karwowski, V. Koshmanenko, S. Ōta: Schrödinger Operators Perturbed by Operators Related to Null Sets. Positivity 2 (1998), 77-99

[17] A.N. Kochubei: Elliptic Operators with Boundary Conditions on a Subset of Measure Zero. Funct. Anal. Appl. 16 (1978), 137-139

[18] Y.V. Kurylev: Boundary Condition on a Curve for a Three-Dimensional Laplace Operator. J. Sov. Math. 22 (1983), 1072-1082

[19] A. Posilicano: A Kreĭn-like Formula for Singular Perturbations of Self-Adjoint Operators and Applications. J. Funct. Anal. 183 (2001), 109-147

[20] Sh.N. Saakjan: On the Theory of Resolvents of a Symmetric Operator with Infinite Deficiency Indices. Dokl. Akad. Nauk Arm. SSR 44 (1965), 193-198 [in russian]

[21] Yu.G. Shondin: On the Semiboundedness of \(\delta \)-Perturbations of the Laplacian Supported by Curves with Angle Points. Theor. Math. Phys. 105 (1995), 1189-1200

[22] A. Teta: Quadratic Forms for Singular Perturbations of the Laplacian. Publ. RIMS Kyoto Univ. 26 (1990), 803-817

[23] H. Triebel: Theory of Function Spaces II. Basel, Boston, Berlin: Birkhäuser 1992

[24] H. Wallin: The Trace to the Boundary of Sobolev Spaces on a Snowflake. Manuscripta Math. 73 (1991), 117-125

Dipartimento di Scienze, Università dell’Insubria, I-22100 Como, Italy
E-mail address: andreap@uninsubria.it