Serum complement C4a and its relation to liver fibrosis in children with chronic hepatitis C

Behairy E Behairy, Ghada M El-Mashad, Ragab S Abd-Elghany, Enas M Ghoneim, Mostafa M Sira

Department of Pediatric Hepatology, National Liver Institute, Menofiya University, Shebin El-koom, Menofiya 32511, Egypt

Ghada M El-Mashad, Ragab S Abd-Elghany, Department of Pediatrics, Faculty of Medicine, Menofiya University, Shebin El-koom, Menofiya 32511, Egypt

Enas M Ghoneim, Department of Microbiology, National Liver Institute, Shebin El-koom, Menofiya 32511, Egypt

Author contributions: Behairy BE, El-Mashad GM, Abd-Elghany RS and Sira MM designed research, helped in diagnosis and patients recruitment, and shared in writing and revision of the manuscript; Abd-Elghany RS and Sira MM performed data collection; Sira MM performed statistical analysis; Ghoneim EM performed laboratory analysis, shared in writing and revision of the manuscript.

Supported by National Liver Institute, Menofiya University, Egypt

Correspondence to: Dr. Mostafa M Sira, Department of Pediatric Hepatology, National Liver Institute, Menofiya University, POBox 32511, Gamal Abdel Nasser St., 32511 Shebin El-koom, Menofiya, Egypt. msira@liver-eg.org

Telephone: +20-48-2222740 Fax: +20-48-2234586

Received: June 10, 2013 Revised: July 29, 2013 Accepted: August 4, 2013 Published online: August 27, 2013

Abstract

AIM: To evaluate serum complement C4a and its relation to liver fibrosis in children with chronic hepatitis C virus (HCV) infection.

METHODS: The study included 30 children with chronic HCV infection before receiving antiviral therapy. Chronic HCV infection was defined by positive anti-HCV, a positive polymerase chain reaction for HCV-RNA for more than 6 mo with absence of any associated liver disease. A second group of 30 age- and sex-matched healthy children served as controls. Serum C4a levels were measured by enzyme-linked immunosorbent assay. Liver fibrosis stage and inflammatory grade were assessed using Ishak scoring system. Serum C4a levels were compared according to different clinical, laboratory and histopathological parameters. Statistical significance for quantitative data was tested by Mann-Whitney U non-parametric tests. For qualitative data, significance between groups was tested by χ² test. Correlation was tested by Spearman’s test. Results were considered significant if P value ≤ 0.05.

RESULTS: The age of the patients ranged from 3.5 to 18 years and that of controls ranged from 4 to 17 years. C4a mean levels were merely lower in patients (153.67 ± 18.69 mg/L) than that in the controls (157.25 ± 11.40 mg/L) with no statistical significance (P = 0.378). It did not differ significantly in patients with elevated vs those with normal transaminases (152.25 ± 16.62 vs 155.36 ± 21.33; P = 0.868) or with different HCV viremia (P = 0.561). Furthermore, there was no statistical significant difference in serum levels between those with no/mild fibrosis and those with moderate fibrosis (154.65 ± 20.59 vs 152.97 ± 17.72; P = 0.786) or minimal and mild activity (155.1 ± 21.93 vs 152.99 ± 17.43; P = 0.809). Though statistically not significant, C4a was highest in fibrosis score 0 (F0), decreasing in F1 and F2 to be the lowest in F3. When comparing significant fibrosis (Ishak score ≥ 3) vs other stages, C4a was significantly lower in F3 compared to other fibrosis scores (143.55 ± 2.33 mg/L vs 155.26 ± 19.64 mg/L; P = 0.047) and at a cutoff value of less than 144.01 mg/L, C4a could discriminate F3 with 76.9% sensitivity and 75% specificity from other stages of fibrosis.

CONCLUSION: Serum complement C4a did not correlate with any of transaminases, HCV viremia or with the histopathological scores. Although C4a decreased with higher stages of fibrosis, this change was not significant enough to predict individual stages of fibrosis. Yet, it could predict significant fibrosis with acceptable clinical performance.

© 2013 Baishideng. All rights reserved.
Hepatitis C virus (HCV) is a serious health problem affecting more than 170 million people worldwide[1]. It establishes a chronic infection in up to 85% of cases[2]. Estimates range from less than 1.0% in northern Europe to more than 2.9% in northern Africa[3]. In children younger than 11 years, worldwide seroprevalence of HCV is 0.2% and in those older than 11 years it is 0.4%[4]. Egypt reports the highest prevalence worldwide ranging from 8.7% in upper Egypt to 24.3% in lower Egypt with an average of 13.8%[5]. The main (90%) HCV genotype is type 4. Studies of the magnitude of HCV infection in Egyptian children revealed a prevalence of 3% in upper Egypt and 9% in lower Egypt[6].

HCV causes intrahepatic lobular inflammation resulting in fibrosis and eventually cirrhosis[7]. Fibrosis prediction is an essential part of the assessment and management of patients with chronic HCV, worsening of which is probably the best surrogate marker for progression of chronic liver disease[8]. Liver biopsy represents the gold-standard for evaluating fibrosis; however, developing non-invasive tests that can predict liver fibrosis, especially in pediatric population, represents a growing medical need[9].

Conventional biochemical and serological tests are of little value for diagnosis of the degree of liver fibrosis. However, a liver biopsy is sometimes of questionable value because of the heterogeneous distribution of pathological changes in the liver[10]. Blood-based biomarkers offer a number of advantages including safety, cost-savings and widespread accessibility. Although liver biopsy is the gold-standard, it can have life-threatening complications in both adults and children[11].

Current serum biomarkers of fibrosis include indirect measures of fibrosis (such as transaminases and platelet count) or direct measures of fibrinogenesis or fibrinolysis (such as hyaluronic acid)[12]. The serum also contains all tissue proteins as leakage markers. Since the liver makes many serum proteins, it is logical to expect that the serum proteome may reflect liver disease[13].

A recent study, using proteomic analysis of serum from adult patients with chronic HCV infection, revealed that complement C4a was a candidate to predict liver fibrosis[14]. Complement C4 is a polymorphic serum protein consisting of two isoforms, C4a and C4b. C4 is expressed primarily in the liver and in macrophages, and its expression is induced in response to acute inflammation or tissue injury[15]. In adults, serum C4 was found to decrease in HCV patients with moderate fibrosis and cirrhosis compared to healthy controls. But in advanced HCV-induced liver fibrosis, the net production of C4a was found to be down-regulated[16]. Furthermore, it was found to correlate negatively with alanine transaminase and the histological activity index of the Knodell scoring system. The issue has never been investigated in children before.

Core tip: Non-invasive prediction of liver fibrosis is a challenging issue especially in pediatric population. Complement C4a was found, by proteomic analysis, to be associated with liver fibrosis and therefore proposed as a candidate for fibrosis prediction. In adults, serum C4 was found to decrease in hepatitis C virus (HCV) patients with moderate fibrosis and cirrhosis compared to healthy controls. In addition, in advanced HCV-induced liver fibrosis, the net production of C4a was found to be down-regulated. Furthermore, it was found to correlate negatively with alanine transaminase and the histological activity index of the Knodell scoring system. The issue has never been investigated in children before.

Key words: Children; Hepatitis C virus; Complement C4a; Liver biopsy; Liver fibrosis

INTRODUCTION

MATERIALS AND METHODS

Study population

The study included 30 children with chronic hepatitis C recruited from outpatients and inpatients of Pediatric Hepatology department, National Liver Institute, Minoufiya University. Diagnosis was based on serological and virological tests; complete blood count (CBC), liver function tests (LFTs), prothrombin time, anti-HCV antibody (Ab), qualitative and quantitative polymerase chain reaction (PCR) for HCV-RNA. Histopathological findings in liver biopsies, the grade of inflammatory activity and the stage of the disease were also evaluated. A second group of 30 healthy children, served as controls. A signed informed consent was obtained from the parents of all the patients and controls before enrollment in the study. The study was approved by the Research Ethics Committee of the National Liver Institute.

Etiological diagnosis

Chronic HCV infection was defined by positive anti-HCV, a positive PCR for HCV-RNA for more than 6 mo, negative hepatitis B viral markers and absence of any associated liver disease. This was supported by the histopathological features of HCV infection in liver biopsy. Patients with decompensated liver disease or cirrhosis were excluded from the study. Control group were defined by apparently healthy individuals with no signs or symptoms of liver disease or any other diseases, normal liver transaminases and negative anti-HCV Ab.
Table 1  Clinical, laboratory and histopathological characteristics of the studied patients (n = 30)

| Parameter                  | HCV patients (n = 30) |
|----------------------------|-----------------------|
| Jaundice                   | 0 (0.0)               |
| Hepatomegaly               | 4 (13.3)              |
| Splenomegaly               | 1 (3.3)               |
| Ascites                    | 0 (0.0)               |
| Liver function tests       |                       |
| Total bilirubin (mg/dL)    | 1.23 ± 1.051          |
| Direct bilirubin (mg/dL)   | 0.30 ± 0.26           |
| Albumin (g/L)              | 43.17 ± 7.5           |
| Alanine transaminase (U/L) | 55.57 ± 126.16        |
| Aspartate transaminase (U/L)| 72.10 ± 131.97       |
| Gamma glutamyl transpeptidase (U/L)| 38.90 ± 21.92 |
| Alkaline phosphatase (U/L) | 253.48 ± 97.38        |
| Complete blood count       |                       |
| Hemoglobin (g/L)           | 113.6 ± 11.2          |
| White blood cells (× 10³/L)| 8.77 ± 7.52          |
| Platelets (× 10³/L)        | 383.57 ± 390.87       |
| Fibrosis stage             |                       |
| No (F0)                    | 1 (3.3)               |
| Mild (F1)                  | 12 (40)               |
| Moderate (F2-F3)           | 17 (56.7)             |
| Activity grade             |                       |
| Minimal                    | 10 (33.3)             |
| Mild                       | 20 (66.7)             |
| Steatosis                  | 8 (26.7)              |

HCV: Hepatitis C virus; F0/1/2/3: Fibrosis score 0/1/2/3.

Laboratory investigations

Laboratory investigations, including LFTs, CBC, kidney function tests, serum autoantibodies (anti-nuclear antibodies, anti-smooth muscle antibodies and anti-mitochondrial antibodies) and prothrombin time were performed for all the patients. Viral markers were performed using enzyme-linked immunosorbent assay (ELISA) according to the manufacturer instructions; HCV Ab (Innogenetics, Ghent, Belgium), hepatitis B virus surface antigen, hepatitis B virus core immunoglobulin (Ig)M and IgG Abs (all from Dia Sorin, Saluggia, Italy). Real-time PCR for HCV-RNA was performed using COBAS Ampliprep/COBAS TaqMan, Roche Molecular Systems, Inc., Branchburg, NJ 08876, United States (detection limit was 15 IU/mL). According to the viral load, viremia was classified arbitrarily into low (< 2 × 10³ IU/mL), moderate (≥ 2 × 10³-2 × 10⁶ IU/mL), and high viremia (≥ 2 × 10⁶ IU/mL)[28]. Serum C4a levels were assessed using ELISA (WKEA Med Supplies Corp, NY 10123, United States) according to the manufacturer instructions. Serum samples of the patients were collected, maximally, within 6 mo of liver biopsy[19].

Liver biopsy and histopathological evaluation

Liver biopsy was performed using a true cut needle for all the patients. Specimens were fixed in formalin, embedded in paraffin and stained with hematoxylin and eosin, Masson’s trichrome, reticulin and Perl’s stains. Hepatic necroinflammatory activity and liver fibrosis were evaluated according to Ishak staging and grading score. Necroinflammatory activity was classified into minimal (score 1-3), mild (score 4-8), moderate (score 9-12), and severe (score 13-18)[29]. Fibrosis was classified into mild (stage 1), moderate (stages 2-3), and severe fibrosis or cirrhosis (stages 4-6)[9]. Significant fibrosis was defined as Ishak score of 3 or more (presence of bridging fibrosis)[20].

Statistical analysis

Descriptive results were expressed as mean ± SD or number (percentage) of individuals with a condition. For quantitative data, statistical significance was tested by Mann-Whitney U non-parametric tests. For qualitative data, significance between groups was tested by χ² test. Correlation was tested by Spearman’s test. Results were considered significant if P value ≤ 0.05. The diagnostic performance was measured as sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and all were expressed as percentages. The cutoff values for optimal clinical performance was determined from the receiver-operating characteristic curve. Statistical analysis was performed using SPSS statistical package version 13 (SPSS Inc., Chicago, IL, United States).

RESULTS

Study population characteristics

The study included 30 children with chronic HCV infection. They were 12 females and 18 males. Their mean age was 11.12 ± 4.62 ranging from 3.5 to 18 years. A second group of 30 age- and sex-matched (P > 0.05 for both) healthy children served as controls. They were 14 females and 16 males. Their mean age was 10.73 ± 4.19 ranging from 4 to 17 years. The major possible modes of infection were male circumcision and family contact (60% each) followed by surgery (43.4%), blood transfusion (30%) and dental procedures (16.7%). Many children had more than one possible mode of infection. The majority of patients were asymptomatic. Four children had hepatomegaly, one child had splenomegaly and none had jaundice or ascites. Fibrosis stage ranged from F0 to F3 and activity grade ranged from A1 to A7. The majority had moderate fibrosis (56.7%) and mild activity (66.7%), while 8 out of 30 (26.7%) had steatosis (Table 1).

Histopathological findings in patients with normal vs elevated transaminases

All the patients (except one with F0) had mild to moderate fibrosis and minimal to mild activity in liver biopsy. Yet, nearly half of them had normal transaminases (41.7%, 47.1%, 50.0% and 45.0% for mild fibrosis, moderate fibrosis and minimal to mild activity respectively) (Table 2).

C4a did not differ significantly according to laboratory parameters or histopathological parameters

The mean value of serum C4a was lower in patients than in controls (153.67 ± 18.69 mg/L vs 157.25 ± 11.40 mg/L respectively) with no statistically significant difference (P = 0.378). Moreover, there was no statistically significant
difference in C4a regarding sex in both the patients (M/F: 150.33 ± 16.22 mg/L vs 158.75 ± 21.64 mg/L; P = 0.234) and controls (M/F: 154.29 ± 8.60 mg/L vs 160.64 ± 13.46 mg/L; P = 0.130). There was no statistically significant difference in mean level of C4a when comparing patients with different fibrosis stages, different activity grades, different levels of viremia and patients with normal transaminases vs those with elevated transaminases (P > 0.05 for all; Table 3). Furthermore, there was no correlation between C4a and any of the studied laboratory parameters or with fibrosis stage and activity grade (Table 4).

Complement C4a according the individual fibrosis stage

Serum C4a, though not statistically significant, was inversely proportional to the stage of fibrosis. It was the highest (182.52 mg/L) in the patient with F0, decreasing in patients with F1 and F2 (152.33 ± 19.64 mg/L and 155.87 ± 19.46 mg/L respectively) and reaching the lowest level in F3 (143.55 ± 2.33 mg/L) (Figure 1).

Comparing C4a in significant fibrosis (Ishak score ≥ 3) vs other fibrosis stages (F0-F2)

When comparing significant fibrosis with the other stages, C4a was significantly lower in F3 compared to other fibrosis scores (143.55 ± 2.33 mg/L vs 155.26 ± 19.64 mg/L; P = 0.047). C4a at a cutoff level of less than 144.01 mg/L could discriminate F3 with 76.9% sensitivity, 75% specificity, 95.24% PPV and 33.3% NPV from other stages of fibrosis (Figure 2).

**DISCUSSION**

The natural history of chronic HCV infection in children differs from that in adults since HCV infection is relatively benign, induces mild changes in the liver with a low level of fibrosis and a low rate of progression and is rarely associated with severe or decompensate liver disease [23]. However, progressive fibrosis and early appearance of end-stage liver disease have been documented [25]. Bortolotti et al [26], reported that hepatitis C in children is usually asymptomatic. Clinically, most of our patients were asymptomatic (73.36%), 13.3% had hepatomegaly, and 3.3% had splenomegaly but none had jaundice or ascites. A similar finding was reported by El-Raziky et al [23], since soft enlargement of the liver was found in 2 (11%) children with HCV infection and none had splenomegaly.

In the current study, patients with normal transaminases (46.7%) had both mild (41.7%) to moderate (47.1%) fibrosis and minimal (50%) to mild (45%) activity on histopathological examination. It has been reported that ALT levels are elevated in half of the subjects and histological abnormalities are detectable in three quarters of HCV-RNA positive cases [23]. This means that liver enzymes in chronic HCV infection do not reflect histopathological abnormalities in the majority of cases and liver biopsy would be essential for evaluation of the disease state and extent of liver injury.

There is relatively little information on the histopathology of chronic hepatitis C in children. It has been shown that low ALT levels, low viral load and mild histological changes characterize chronic hepatitis C infection in children [23]. Goodman et al [26], reported that, in a cohort study, grading and staging of liver biopsies from 121 children ages 2 to 16 (mean, 9.8 years) infected with HCV revealed minimal, mild, moderate and severe inflammatory activity in 42%, 17%, 38%, 3% of patients

---

**Table 2** Histopathological findings in patients with normal vs elevated transaminases n (%)

| Histopathology                  | Normal transaminases | Elevated transaminases | n   |
|---------------------------------|----------------------|------------------------|-----|
| Fibrosis stage                  |                       |                        |     |
| No fibrosis (n = 1)             | 1 (100)              |                        |     |
| Mild fibrosis (n = 12)          | 5 (41.7)             | 7 (58.3)               |     |
| Moderate fibrosis (n = 17)      | 8 (69.6)             | 9 (52.9)               |     |
| Activity grade                  |                       |                        |     |
| Minimal activity (n = 10)       | 5 (50)               | 5 (50)                 |     |
| Mild activity (n = 20)          | 9 (45)               | 11 (55)                |     |

**Table 3** Serum complement C4a according to different transaminases levels, viral loads and histopathological findings

| Parameter                      | C4a (mg/L) | P value |
|--------------------------------|------------|---------|
| Fibrosis stage                 | 0.786      |         |
| No/Mild (n = 13)               |            |         |
| Moderate (n = 17)              |            |         |
| Activity grade                 | 0.809      |         |
| Minimal (n = 10)               |            |         |
| Mild (n = 20)                  |            |         |
| Steatosis                      | 0.186      |         |
| Present (n = 8)                | 146.13 ± 3.32 |        |
| Absent (n = 22)                | 156.45 ± 21.19 |       |
| Normal transaminases (n = 14)  | 155.36 ± 21.33 | 0.868   |
| Elevated transaminases (n = 16) | 152.25 ± 16.62 |        |
| Viremia                        | 0.561      |         |
| Low viremia (n = 17)           | 156.37 ± 18.91 |        |
| Moderate viremia (n = 9)       | 152.43 ± 22.19 |        |
| High viremia (n = 4)           | 145.2 ± 3.96 |         |

**Table 4** Correlation of complement C4a with laboratory and histopathological parameters in liver biopsy

| Parameter                  | C4a (mg/L) | r     | P value |
|---------------------------|------------|-------|---------|
| Total bilirubin (mg/dL)   | -0.022     | 0.910 |         |
| Direct bilirubin (mg/dL)  | -0.038     | 0.841 |         |
| Albumin (g/L)             | 0.162      | 0.393 |         |
| Alanine transaminase (U/L)| -0.148     | 0.332 |         |
| Aspartate transaminase (U/L)| -0.026  | 0.891 |         |
| Gamma glutamyl transpeptidase (U/L)| 0.000 | 1.000 |         |
| Alkaline phosphatase (U/L)| 0.176      | 0.446 |         |
| Hemoglobin (g/dL)         | -0.100     | 0.599 |         |
| White blood cells (× 10³/µL)| 0.054 | 0.777 |         |
| Platelets (× 10³/µL)      | 0.228      | 0.226 |         |
| HCV-RNA (IU/mL)           | -0.210     | 0.265 |         |
| Fibrosis stage            | -0.208     | 0.269 |         |
| Activity grade            | -0.114     | 0.548 |         |

HCV: Hepatitis C virus.
tively. Five (4%) had bridging fibrosis and 2 (1.7%) had cirrhosis. In the current study, all the patients had liver biopsy. None of them had cirrhosis where fibrosis scores ranged from 0 to 3 and activity grades ranged from 1 to 7. Although universal screening for hepatitis C is not recommended, it is actually the only method to detect HCV in children because carriers are usually asymptomatic. Even transaminases are usually within normal range. Consequently, they would remain undiagnosed until the appearance of symptoms in adolescence or adulthood\[27\].

The main target of the current study was to evaluate serum complement C4a levels in children with chronic HCV infection and its relation to liver fibrosis. Complement represents a significant non-specific host defense system involved in the protection of the host from virus infection\[28\]. To escape this protection, viruses are able to express host-homologous proteins, or to borrow cell membrane proteins from the host with complement regulatory activity, protecting viral particles from neutralization by the complement\[29\]. C4 specific activity appears as a valuable parameter for predicting and monitoring interferon and ribavirin therapy\[30\]. Deficiencies of complement component C4 isotype C4a has been associated with various autoimmune, inflammatory or infectious diseases as well as with mental disorders and cancer survival\[31\]. Phenotypic C4 deficiencies are caused by increased protein consumption or genetic deficiencies\[32\].

Serum C4 levels were found to decrease in adult HCV patients compared to healthy controls as a result of altered transcriptional regulation\[33\]. In the present study, although there was no significant statistical difference in the mean serum C4a levels between patients and controls, it was lower in patients. Moreover, there was no significant statistical difference in complement C4a level according to different stages of fibrosis, grades of activity or presence or absence of steatosis (\(P > 0.05\) for all). Nonetheless, C4a was in its highest value in F0 and decreased as fibrosis increased with its lowest level in F3. This finding is in agreement with that of Imakiire et al\[30\], who reported that C4a increases with HCV infection, but decreases with disease progression which reflects the development of an inflammatory process and, evidently, the higher secretion of complement C4a by stimulated macrophages\[33\]. In addition, we found that C4a was not correlated with any of CBC parameters, liver functions or HCV viremia. Imakiire et al\[30\] showed that the level of C4a in serum was higher in HCV carriers with persistently normal ALT compared to chronic HCV patients or healthy volunteers.

Buğdaci et al\[17\] showed a significant negative correlation of C4 with ALT (\(r = -0.368, P = 0.001\)) and histological activity index (\(r = -0.639, P = 0.001\)) by Knodell score. Such relation was not found in the present study as there was no significant difference in complement C4a levels between patients with normal transaminases and those with elevated ones (\(P = 0.868\)). This discrepancy may be due to the difference in the mean age of the studied population (53.88 ± 11.44 years in Buğdaci et al\[17\], and 11.12 ± 4.62 years in ours), or the smaller number of patients (\(n = 30\)) in our study compared to 70 patients in Buğdaci et al\[17\]. Another important difference is the grade of activity (A1 to A7) and stage of fibrosis (F0 to F3) in ours using Ishak score, compared to that in Buğdaci et al\[17\], (8 ± 2.75 and 1.66 ± 0.784 for activity and fibrosis respectively) using Knodell score. In agreement with our results, Dumestre-Perard et al\[33\] reported that there were no statistical significant correlations between specific C4 activity and each of HCV-RNA, ALT, Knodell score, Metavir histological fibrosis and Metavir histological activity (\(P = 0.29, 0.9, 0.48, 0.96\) and 0.22 respectively).

In chronic HCV infection, patients with no or minimal fibrosis at presentation appear to progress slowly and treatment could possibly be delayed or withheld. On the other hand, patients with significant fibrosis (i.e., septal bridging fibrosis) progress almost invariably to cirrhosis over a 10- to 20- year period, so antiviral treatment should be strongly considered\[34\]. For that we compared C4a in F3 vs other stages of fibrosis. C4a was significantly lower in F3 compared to other fibrosis scores and at a cutoff value of less than 144.01 mg/L it could discriminate F3 with 76.9% sensitivity and 75% specificity (\(P = 0.047\)). Although it is accepted to assess serum markers of fibrosis if serum sample is taken within 6 mo of liver

Figure 1  Complement C4a in the individual fibrosis stages.

![Figure 1](image1.png)

**Figure 1** Complement C4a in the individual fibrosis stages.

**Figure 2** Clinical performance of C4a in discriminating significant fibrosis from other stages of fibrosis. AUROC: Area under the receiver operating characteristic.
biopsy [10], this might be a limitation in the study. For that, serum sampling in the same setting with liver biopsy would be preferred. Another limitation is the relatively small number of patients in the study.

In conclusion, our study demonstrated that complement C4a did not correlate with any of transaminases, HCV viral load or the histopathological scores of liver biopsy. Though C4a decreased in higher stages of fibrosis, this change was not statistically significant enough to predict individual stages of fibrosis. Yet, it could predict significant fibrosis with acceptable clinical performance.

REFERENCES

1 Yazigi N, Balisteri W. Viral hepatitis. In: Nelson Textbook of pediatrics. 19th ed. Kliegman RM, Behrman RE, Jenson HB, Stanton BF, editors. Philadelphia (PA): Saunders, 2011: 1393-1400

2 Welbourn S, Pause A. The hepatitis C virus NS2/3 protease. Curr Issues Mol Biol 2007; 9: 63-69 [PMID: 17263146]

3 Webster DP, Klenerman P, Collier J, Jeffery KJ. Development of novel treatments for hepatitis C. Lancet Infect Dis 2009; 9: 108-117 [PMID: 19179226 DOI: 10.1016/S1473-3099(09)70202-9]

4 Lehman EM, Wilson ML. Epidemic hepatitis C virus infection in Egypt: estimates of past incidence and future morbidity and mortality. J Viral Hepat 2009; 16: 650-658 [PMID: 19431689 DOI: 10.1111/j.1365-3156.2009.00915.x]

5 El-Raziky MS, El-Hawary M, Esmat G, Abouzied AM, El-Koofy N, Mohnsen N, Mansour S, Shaheen A, Abdel Hamid M, El-Karaksy H. Prevalence and risk factors of asymptomatic hepatitis C virus infection in Egyptian children. World J Gastroenterol 2007; 13: 1828-1832 [PMID: 17465475]

6 Shackel NA, McGuinness PH, Abbott CA, Correll MD, McCaughan GW. Novel differential gene expression in human cirrhosis detected by suppression subtractive hybridization. Hepatology 2003; 38: 577-588 [PMID: 12995984 DOI: 10.1053/jhep.2003.50376]

7 Ghany MG, Kleiner DE, Alter H, Doo E, Khokar F, Promrat K, Herion D, Park Y, Liang TJ, Hoofnagle JH. Progression of fibrosis in chronic hepatitis C. Gastroenterology 2003; 124: 97-104 [PMID: 12512043 DOI: 10.1053/gast.2003.50018]

8 Valva F, Cacciato P, Lezama C, Gallopp S, Gadda R, Galoppo MC, Mullen E, De Matteo E, Preciado MV. Serum apoptosis markers related to liver damage in chronic hepatitis C: sFas as a marker of advanced fibrosis in children and adults while M30 of severe steatosis only in children. PLoS One 2013; 8: e53519 [PMID: 23324448 DOI: 10.1371/journal.pone.0053519]

9 Johansen JS, Christoffersen P, Møller S, Price PA, Henriksen JH, Garbarsch C, Bendtsen F. Serum YKL-40 is increased in patients with hepatic fibrosis. J Hepatol 2000; 32: 911-920 [PMID: 10898311 DOI: 10.1016/S0168-8278(00)00095-1]

10 Scheinmann AO, Barrios JM, Al-Tawil YS, Gray KM, Gilger MA. Percutaneous liver biopsy in children: impact of ultrasonography and spring-loaded biopsy needles. J Pediatr Gastroenterol Nutr 2000; 31: 536-539 [PMID: 11144439 DOI: 10.1097/00005176-200011000-00015]

11 Oshrine B, Lehmann LE, Duncan CN. Safety and utility of liver biopsy after pediatric hematopoietic stem cell transplantation. J Pediatr Hematol Oncol 2011; 33: e92-e97 [PMID: 21317809 DOI: 10.1097/MPH.0b013e3182052526]

12 Adams LA. Biomarkers of liver fibrosis. J Gastroenterol Hepatol 2011; 26: 802-809 [PMID: 21988381 DOI: 10.1111/j.1440-1744.2010.06612.x]

13 Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1: 845-867 [PMID: 1248481 DOI: 10.1074/mcp.R200007-MCP220]

14 Yang L, Rudser KD, Higgins L, Rosen HR, Zaman A, Corless CL, David L, Gourley CR. Novel biomarker candidates to predict hepatic fibrosis in hepatitis C identified by serum proteomics. Dig Dis Sci 2011; 56: 3305-3315 [PMID: 21590334 DOI: 10.1007/s10620-011-1745-4]

15 Galibert MD, Boucontet L, Goding CR, Meo T. Recognition of the E-C4 element from the C4 complement gene promoter by the upstream stimulatory factor-1 transcription factor. J Immunol 1997; 159: 6176-6185 [PMID: 9550420]

16 White IR, Patel K, Symonds WT, Dev A, Griffin P, Tsokanas N, Skehel M, Liu C, Zekry A, Cutler P, Gattu M, Rockey DC, Berrey MM, McHutchison JG. Serum proteomic analysis focused on fibrosis in patients with hepatitis C virus infection. J Transl Med 2007; 5: 33 [PMID: 17625010 DOI: 10.1186/1479-5876-5-33]

17 Budagaci MS, Karaç C, Alkim C, Kesci B, Bayraktar B, Sökmen M. Serum complement C4 in chronic hepatitis C: correlation with histopathologic findings and disease activity. Turk J Gastroenterol 2012; 23: 33-37 [PMID: 22505377]

18 Withöft T, Møller B, Wiedmann KH, Mauss S, Link R, Lohmeyer J, Laffrenz M, Gelbmann CM, Hüppe D, Niederau C, Alshuth U. Safety, tolerability and efficacy of peginterferon alpha-2a and ribavirin in chronic hepatitis C
Behairy BE et al. C4a in children with chronic HCV
