Research Article

Manseob Lee*

Asymptotic measure-expansiveness for generic diffeomorphisms

https://doi.org/10.1515/math-2021-0037
received November 29, 2020; accepted February 28, 2021

Abstract: In this paper, we will assume M to be a compact smooth manifold and $f : M \to M$ to be a diffeomorphism. We herein demonstrate that a C^1 generic diffeomorphism f is Axiom A and has no cycles if f is asymptotic measure expansive. Additionally, for a C^1 generic diffeomorphism f, if a homoclinic class $H(p, f)$ that contains a hyperbolic periodic point p of f is asymptotic measure-expansive, then $H(p, f)$ is hyperbolic of f.

Keywords: expansive, measure expansive, asymptotic measure expansive, generic, Axiom A, homoclinic class, hyperbolic

MSC 2020: 37C20, 37D20

1 Introduction

Throughout this paper, we will assume M to be a compact smooth manifold and d to be the distance on M induced by a Riemannian metric $\| \cdot \|$. We also assume $f : M \to M$ to be a diffeomorphism and denote by $\text{Diff}(M)$ the set of diffeomorphisms of M endowed with C^1 topology. It is to note that expansiveness has been earlier suggested in the study by Utz [1]. A diffeomorphism f is said to be expansive if there exists a positive constant $\delta > 0$ such that for any two points $x, y \in M$ if $x \neq y$, and if there exists $k \in \mathbb{Z}$ such that $d(f^k(x), f^k(y)) > \delta$. Equivalently, if there is a positive constant $\delta > 0$ such that for any $x, y \in M$ if $d(f^i(x), f^i(y)) \leq \delta$, $\forall i \in \mathbb{Z}$, then $x = y$. Generally speaking, expansiveness means that if any two real orbits are separated by a small distance, the two orbits are identical, and therefore it is appropriate for studying smooth dynamic systems. Expansivities are hence a valuable notion in the investigation of hyperbolic structures (see [2–17], etc.).

Mañé [17] proved that a C^1 robustly expansive diffeomorphism f is quasi Anosov, i.e., the set $\{ ||Df^n(v)|| : n \in \mathbb{Z} \}$ is unbounded for all $v \in TM \setminus \{0\}$.

Morales and Sirvent [18] introduced stochastic perspectives of expansiveness, called measure-expansiveness. Let us assume $M(M)$ to be the set of all Borel probability measures on M endowed with the weak* topology and $M^*(M)$ to be the set of nonatomic measures $\mu \in M(M)$. It is known that $M^*(M) \subset M(M)$.

For any $\mu \in M^*(M)$, a closed f-invariant set $\Lambda \subset M$ is said to be μ-expansive for f if there is a positive constant $\delta > 0$ such that $\mu(\Gamma(\delta, x)) = 0 \ \forall x \in \Lambda$, where $\Gamma(\delta, x) = \{ y \in M : d(f^i(x), f^i(y)) \leq \delta \ \forall i \in \mathbb{Z} \}$.

Definition 1.1. A closed f-invariant set $\Lambda \subset M$ is said to be measure expansive for f if Λ is μ-expansive for all $\mu \in M^*(M)$. If $\Lambda = M$, then we say that a diffeomorphism f is measure expansive.

Here, δ is called a measure expansive constant of f. Now, we introduce a general notion of measure-expansiveness called the asymptotic measure expansive (see [19, Example 1.1]). The notion was suggested
in [19]. Let us assume that \(\mu \in M^*(M) \) is given. A closed \(f \)-invariant set \(\Lambda \subset M \) is said to be asymptotic \(\mu \)-expansive for \(f \) if there is \(\delta > 0 \) such that
\[
\lim_{n \to \infty} \mu(f^n(\Gamma(\delta, x))) = 0
\]
for any \(x \in \Lambda \).

Definition 1.2. Let us assume that \(f \in \text{Diff}(M) \), and \(\Lambda \subset M \) is a closed \(f \)-invariant set. We say that \(\Lambda \) is asymptotic measure expansive for \(f \) if there is a positive constant \(\delta > 0 \) such that \(\Lambda \) is asymptotic \(\mu \)-expansive for \(f \). Moreover, if \(\Lambda = M \), then we say that \(f \) is asymptotic measure expansive.

The following notion is suggested in [20]. A diffeomorphism \(f \) on \(M \) is said to be continuum-wise expansive if there is a positive constant \(\delta > 0 \) such that, for any nontrivial compact connected set \(\Lambda \), there is an integer \(n \in \mathbb{Z} \) such that \(\text{diam } f^n(\Lambda) \geq \varepsilon \), where \(\text{diam } \Lambda = \sup \{d(x, y) : x, y \in \Lambda \} \) for any subset \(\Lambda \subset M \) and \(\lambda \) is nontrivial, which means that \(\Lambda \) is neither one point nor one orbit.

Regarding the result of Artigue and Carrasco-Olivera [21], it is observed that a diffeomorphism \(f \) is measure-expansive if it is continuum-wise expansive. However, the converse is not true. We already know that a diffeomorphism \(f \) is measure-expansive if it is asymptotic measure-expansive. Here, the converse is also untrue. Therefore, we have a question:

What is relation between asymptotic measure expansiveness and continuum-wise expansiveness?

A closed \(f \)-invariant set \(\Lambda \subset M \) is called hyperbolic if a \(Df \)-invariant splitting \(T_{\Lambda}M = E^s \oplus E^u \), there exist constants \(C > 0 \) and \(0 < \lambda < 1 \) such that \(\|Df^n(x)\| \leq C \lambda^n \) for \(x \in \Lambda \) and \(n \geq 0 \),
\[
(a) \quad \|Df^n(v)\| \leq \|\nabla f^n(v)\| \leq \|Df^n(w)\| \quad \text{for } v \in \mathbb{E}^s \setminus \{0\}, \text{ and}
\]
\[
(b) \quad \|Df^n(u)\| \leq \|\nabla f^n(u)\| \quad \text{for } u \in \mathbb{E}^u \setminus \{0\}.
\]
If \(\Lambda = M \), then a diffeomorphism \(f \) is said to be Anosov.

It is known that if \(\Lambda \) is hyperbolic for \(f \), then \(\Lambda \) is expansive, thus it is measure-expansive and asymptotic measure-expansive. A point \(x \in M \) is called periodic if there is \(n(x) > 0 \) such that \(f^{n(x)}(x) = x \), and a point \(x \in M \) is called non-wandering if \(k > 0 \) can be found such that \(f^k(U) \cap U \neq \emptyset \) for any neighborhood \(U \) of \(x \). We denote \(\text{Per}(f) \) as the set of all periodic points of \(f \) and \(\Omega(f) \) the set of all non wandering points of \(f \). It is known that \(\text{Per}(f) \subset \Omega(f) \). We say that \(f \) satisfies Axiom A if the nonwandering set \(\Omega(f) = \text{Per}(f) \) is hyperbolic. According to Aoki [22] and Hayashi [23], \(f \) satisfies Axiom A and has no-cycles if \(f \) is star.

In this paper, we consider sets of diffeomorphisms that are residual for the Baire category, i.e., sets that contain a countable intersection of dense and open subsets of \(\text{Diff}(M) \). Regarding \(C^1 \) generic diffeomorphisms, it is known that the periodic points are dense in \(\Omega(f) \) by Pugh’s closing lemma [24]. Using the \(C^1 \) generic property, Arbieto proved in [25] that \(f \) satisfies Axiom A and has no-cycles for a \(C^1 \) generic expansive diffeomorphism. Lee [26] proved that a \(C^1 \) generic measure expansive diffeomorphism \(f \) satisfies Axiom A and has no-cycle. Recently, Lee [27] proved that \(f \) satisfies Axiom A and has no-cycles for a \(C^1 \) generic continuum-wise expansive diffeomorphism. According to the abovementioned results, we consider general concepts of measure expansiveness. The following is the primary theorem of the paper.

Theorem A. For a \(C^1 \) generic \(f \in \text{Diff}(M) \), \(f \) satisfies Axiom A and has no-cycles if it is asymptotic measure-expansive.

For any hyperbolic periodic point \(p \), define the following sets \(W^s(p) = \{x \in M : f^i(x) \to p \text{ as } i \to \infty\} \) and \(W^u(p) = \{x \in M : f^i(x) \to p \text{ as } i \to -\infty\} \), where \(W^s(p) \) is called the stable manifold of \(p \) and \(W^u(p) \) is called the unstable manifold of \(p \). Denote by \(\text{dim } W^s(p) = \text{index}(p) \). We say that a hyperbolic \(p \in \text{Per}(f) \) is homoclinically related to \(q \in \text{Per}(f) \) if \(W^s(p) \cap W^u(p) \neq \emptyset \) and \(W^u(p) \cap W^s(q) \neq \emptyset \). We write \(p \sim q \). It is clear that \(\text{index}(p) = \text{index}(q) \) if \(p \sim q \).

A closed \(f \)-invariant set \(\Lambda \subset M \) is called transitive if we can take a point \(x \in \Lambda \) such that \(\overline{\text{Orb}(x)} = \Lambda \), where \(\overline{\Lambda} \) is the closure of \(\Lambda \). Denote \(H(p, f) = \{q \in \text{Per}(f) : q \sim p\} \), which is called the homoclinic class. It is
known that the set is a closed f-invariant and transitive set. Note that if a diffeomorphism f satisfies Axiom A, then the nonwandering set $\Omega(f)$ is a disjoint union of transitive invariant closed subsets. In fact, these sets are homoclinic classes that each contain a hyperbolic periodic point. Several researchers are studying these sets and their hyperbolicity (see [4,28–34], etc.). We study whether the homoclinic class is hyperbolic using the asymptotic measure-expansiveness. Yang and Gan [34] proved that a homoclinic class $H(p, f)$ is hyperbolic if it is expansive for a C^1 generic diffeomorphism f. Koo et al. [35] proved that a locally maximal homoclinic class $H(p, f)$ is hyperbolic if it is measure-expansive for a C^1 generic f. Here, a closed f-invariant set $\Lambda \subset M$ is locally maximal if there exists a neighborhood U of Λ for which $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U)$. Later, Lee proved in [32] that a homoclinic class $H(p, f)$ is hyperbolic if it is measure-expansive for a C^1 generic diffeomorphism f. The result is a general version of the proof in [35]. In [31], Lee proved that a homoclinic class $H(p, f)$ is hyperbolic if it is continuum-wise expansive for a C^1 generic f. According to the results, we prove the following:

Theorem B. A homoclinic class $H(p, f)$ is hyperbolic if it is asymptotic measure-expansive for a C^1 generic $f \in \text{Diff}(M)$.

2 Proof of Theorem A

Theorem A will be proven in this section, which requires some notions to be taken into account. A point $p \in \text{Per}(f)$ is weak hyperbolic if there is $g \in C^1$ close to f such that the derivative map $D_p g\circ f^p$ has an eigenvalue λ with $|\lambda| = 1$. For any $\varepsilon > 0$, we consider a closed curve η to be ε simply periodic if η satisfies the following conditions:

(a) there is $k > 0$ such that $f^k(\eta) = \eta$,

(b) $0 < ||f^i(\eta)|| \leq \varepsilon$ for $0 \leq i \leq k$, and

(c) η is normally hyperbolic (see [34]).

If a $p \in \text{Per}(f)$ is hyperbolic, then there are a C^1 neighborhood $U(f)$ of f and a locally maximal neighborhood U of p such that there exists the hyperbolic periodic $p_\varepsilon = \bigcap_{n \in \mathbb{Z}} g^n(U)$ for any $g \in U(f)$. Here, p_ε is called a continuation.

The following is called Franks’ lemma [36], which is a useful notion for a C^1 robust property.

Lemma 2.1. $U(f)$ be any given C^1 neighborhood of f. Then there exist $\varepsilon > 0$ and a C^1 neighborhood $U\varepsilon(f) \subset U(f)$ of f such that, if a set $A = \{x_1, x_2, \ldots, x_k\}$, a neighborhood U of A, and linear maps $L_i : T_x M \to T_{g^ix} M$ satisfy $||L_i - D_{g^ix}|| \leq \varepsilon$ for all $x_i \in A$, then for any $g \in U\varepsilon(f)$, there exists $g \in U(f)$ for which $g(x) = g(x)$ if $x \in A \cup (M\setminus U)$ and $D_{g^ix} \hat{g} = L_i$ for all $1 \leq i \leq k$.

Lemma 2.2. If a diffeomorphism f has a weak hyperbolic periodic point, then for any neighborhood $U(f)$ of f and any $\varepsilon > 0$, there are $g \in U(f)$ and a small curve J with the following property:

(a) J is g periodic, i.e., there is $n \in \mathbb{Z}$ such that $g^n(J) = J$;

(b) the length of $g^i(J)$ is less than ε for all $i \in \mathbb{Z}$;

(c) the endpoints of the curve J are hyperbolic;

(d) J is normally hyperbolic with respect to g (see [37]).

Proof. Let us assume p to be a weak hyperbolic periodic point of f and $U(f)$ to be a C^1 neighborhood of f. For simplicity, we may assume that $f(p) = p$. According to Lemma 2.1, there is $g \in U(f)$ such that $g(p) = p$ and the derivative map $D_p g$ has an eigenvalue λ with $|\lambda| = 1$, i.e., g has a non hyperbolic periodic point p.

As given in the proof of [26, Lemma 2.2], hC^1 can be found close to g (also, $h \in U(f)$) such that

(i) $h^k(J) = J$ for some $k \in \mathbb{Z}$, and

(ii) $h^k|_J : J \to J$ is the identity map.
In items (i) and (ii), \(k = 1 \) and \(k = 2 \) if the eigenvalue \(\lambda \) is a positive or negative real number, respectively. If the eigenvalue \(\lambda \) is a complex number, then one can take \(l > 0 \) such that \(k = l \). As in the proof of [26, Lemma 2.2], it is clear that \(\mathcal{J} \) is normally hyperbolic and the length of \(\mathcal{J} \) is less than \(\varepsilon \). Therefore, the small closed curve \(\mathcal{J} \) satisfies items (a), (b), and (d).

Finally, we show item (c). Let us assume that \(q \) and \(r \) are the endpoints of the closed curve \(\mathcal{J} \). For simplification, we assume that \(h^k = h \). It is observed that the eigenvalue of the derivative maps \(D_q h = 1 \) and \(D_r h = 1 \). Again, using Lemma 2.1, there is \(h \mathcal{C} \) close to \(h \) (also, \(h_1 \in \mathcal{U}(f) \)) such that \(h(q) = q \), \(h(r) = r \), and the norm of every eigenvalue of the derivative map \(D_q h_1 \) and \(D_r h_1 \) are not one. Therefore, we have a small curve \(\mathcal{J} \) that satisfies items (a), (b), (c), and (d). This completes the proof.

A diffeomorphism \(f \) is star if we can take a \(C^1 \) neighborhood \(\mathcal{U}(f) \) of \(f \) for which every periodic point of \(g \) is hyperbolic for \(g \in \mathcal{U}(f) \).

Lemma 2.3. There is a residual set \(\mathcal{R} \) subset in \(\text{Diff}(M) \) such that, for given \(f \in \mathcal{R} \), we have:

(a) either \(f \) is star or

(b) \(f \) has a simple periodic curve \(\mathcal{J} \) with hyperbolic endpoints.

Proof. The proof is similar to [26, Lemma 2.4].

Proof of Theorem A. For \(f \in \mathcal{R} \), we assume that \(f \) is asymptotic measure-expansive. According to Aoki [22] and Hayashi [23], it is sufficient to show that \(f \) is a star. Suppose, by contradiction, that \(f \) is not a star. If \(f \) is not a star, \(f \) has a simple periodic curve \(\mathcal{J} \) with hyperbolic endpoints according to Lemma 2.3. That is, there is \(k \in \mathbb{Z} \) such that \(f^k(\mathcal{J}) = \mathcal{J} \), the length of \(f^i(\mathcal{J}) \) is less than \(\varepsilon \) \((0 \leq i \leq k)\), the endpoints of the curve \(\mathcal{J} \) are hyperbolic, and \(\mathcal{J} \) is normally hyperbolic.

Let us now assume \(\nu_\mathcal{J} \) to be a normalized Lebesgue measure on \(\mathcal{J} \). \(\mu \in \mathcal{M}(M) \) is defined as

\[
\mu(B) = \frac{1}{k} \sum_{i=0}^{k-1} \nu_\mathcal{J}(f^{-i}(B) \cap f^i(\mathcal{J}))
\]

for any Borel set \(B \subset M \). It is clear that \(\mu \in \mathcal{M}^*(M) \) and \(\mu \) is invariant. For any small \(\delta > 0 \) and \(x \in \mathcal{J} \), we define \(\Phi(\delta, x) = \{ y \in \mathcal{J} : d(f^i(x), f^i(y)) \leq \delta \text{ for all } i \in \mathbb{Z} \} \subset \mathcal{J} \). It is also assumed that \(\Gamma(\delta, x) = \{ y \in M : d(f^i(x), f^i(y)) \leq \delta \text{ for all } i \in \mathbb{Z} \} \). It can therefore be seen that \(\Phi(\delta, x) \subset \Gamma(\delta, x) \). Because \(\Phi(\delta, x) \subset \mathcal{J} \), it is observed that \(f^n(\Phi(\delta, x)) = \Phi(\delta, x) \) for all \(n \in \mathbb{Z} \). Therefore, we know that

\[
\lim_{n \to \infty} \mu(f^n(\Phi(\delta, x))) \neq 0.
\]

\(\mu(f^n(\Gamma(\delta, x))) \to 0 \) as \(n \to \infty \) because \(f \) is asymptotic measure-expansive. This is a contradiction because \(\mu(f^n(\Phi(\delta, x))) \to 0(n \to \infty) \). Therefore, for \(C^1 \) generic \(f \), \(f \) satisfies both Axiom A and the no-cycle condition if \(f \) is asymptotic measure-expansive.

3 Proof of Theorem B

Theorem B will be proven in this section using various results of a \(C^1 \) generic property.

For any \(\delta > 0 \), we consider a point \(p \) to be a \(\delta \) weak hyperbolic periodic point if

\[
(1 - \lambda)^{\pi(p)} \leq |\lambda| \leq (1 + \delta)^{\pi(p)},
\]

where \(\lambda \) is the eigenvalue \(\lambda \) of \(D_p f \), and \(\pi(p) \) is the period of \(p \).

We consider \(f \) to be Kupka-Smale if every periodic point is hyperbolic and its stable and unstable manifolds are transversal intersections. It is well known that a diffeomorphism \(f \) is a residual subset of \(\text{Diff}(M) \) if it is Kupka-Smale (see [38]).
For any $\varepsilon > 0$, a sequence of points $\{x_i\}_{i=a}^b$ is a ε-pseudo orbit of f if $d(f(x_i), x_{i+1}) < \varepsilon$ for all $-\infty \leq a \leq i < b \leq \infty$. A point $x \in M$ is called chain recurrent if there is a finite ε-pseudo orbit $\{x_i\}_{i=a}^b$ such that $x_a = x$ and $x_b = x$ for any $\varepsilon > 0$. Let us assume $\mathcal{C}(f)$ to be the set of all chain recurrence sets of f. We define a relation \sim on $\mathcal{C}(f)$ by $x \sim y$ if there exists a finite ε-pseudo orbit $\{w_i\}_{i=0}^n$ for any $\varepsilon > 0$ such that $w_0 = x$, $w_n = y$, and another ε-pseudo orbit $\{z_i\}_{i=0}^n$ such that $z_0 = y$ and $z_n = x$. It is clear that \sim is an equivalence relation on $\mathcal{C}(f)$. The equivalence classes are called the chain recurrent classes of f.

For any hyperbolic periodic point p, we denote $\mathcal{C}(p, f) = \{x \in M : x \sim p\}$. It is clear that $\mathcal{C}(p, f)$ is a closed f-invariant set and $H(p, f) \subset \mathcal{C}(p, f)$.

Lemma 3.1. There is a residual subset \mathcal{G}_1 in $\text{Diff}(M)$ such that, for given $f \in \mathcal{G}_1$, we have the following:
(a) f is Kupka-Smale (see [38]);
(b) for any $\delta > 0$ and any $p \in \text{Per}(f)$, there exists $g \in \mathcal{U}(f)$ for any \mathcal{C}^1 neighborhood $\mathcal{U}(f)$ of f such that g has a δ simply periodic curve I, where the two endpoints of I are homoclinically related to p. Therefore, f has a δ simply periodic curve J such that the two endpoints of J are homoclinically related to p (see [34]);
(c) $H(p, f) = \mathcal{C}(p, f)$ (see [39]).

Proof. See the proof of [33,34]. □

Lemma 3.2. Let us assume $q \in H(p, f) \cap \text{Per}(f)$ and $\delta > 0$ to be given. If q is a δ weak hyperbolic periodic point for f, there exists $g \mathcal{C}^1$ close to f such that g has a δ simply periodic curve I with endpoints that are homoclinically related to p.

Proof. For $f \in \mathcal{G}_1$, assume that f is asymptotic measure-expansive. We shall derive a contradiction. Suppose that there is $q \in H(p, f) \cap \text{Per}(f)$ such that q is weak hyperbolic. Therefore, there is $g \mathcal{C}^1$ close to f such that g has a δ simply periodic curve I with endpoints that are homoclinically related to p according to Lemma 3.2. Because $f \in \mathcal{G}_1$, f has a δ simply periodic curve J such that the two endpoints of J are homoclinically related to p by Lemma 3.1.

Assume that the period of J is $L > 0$. Let us assume that μ_f be a normalized Lebesgue measure on J. $\chi \in M(M)$ is defined by

$$
\chi(B) = \frac{1}{L} \sum_{i=0}^{L-1} \mu_f(f^{-1}(B) \cap f^i(J))
$$

for any Borel set $B \subset M$. It is clear that χ is invariant and $\chi \in M^*(M)$. For any $\delta > 0$ and $x \in J$, we define $\Theta(\delta, x) = \{y \in J : d(f^i(x), f^i(y)) \leq \delta \text{ for all } i \in \mathbb{Z}\} \subset J$. Let us assume that $\Gamma(\delta, x) = \{y \in M : d(f^i(x), f^i(y)) \leq \delta \text{ for all } i \in \mathbb{Z}\}$. It is clear that $\Theta(\delta, x) \subset \Gamma(\delta, x)$. It can be observed that $f^{\mathbb{Z}}(\Theta(\delta, x)) = \Theta(\delta, x)$ for all $n \in \mathbb{Z}$ because $\Theta(\delta, x) \subset J$. Therefore, we know that

$$
\lim_{n \to \infty} \chi(f^n(\Theta(\delta, x))) \to 0.
$$

Because $H(p, f)$ is asymptotic measure-expansive, $\chi(f^n(\Gamma(\delta, x))) = 0$ as $n \to \infty$. This is a contradiction by (1) because $\Theta(\delta, x) \subset \Gamma(\delta, x)$. □

We assume p to be a hyperbolic periodic point of f having a period of $\pi(p)$. Therefore, if $\mu_1, \mu_2, \ldots, \mu_n$ are the eigenvalues of D_pf, then

$$
\lambda_i = \frac{1}{\pi(p)} \log |\mu_i|,
$$
for $i = 1, 2, \ldots, d$ are called the Lyapunov exponents of p. The following was proven by Wang [40]. In fact, Wang proved that there is a $q \in H(p, f) \cap \Per(f)$ such that q has a Lyapunov exponent arbitrarily closed to 0 for a C^1 generic diffeomorphism f if a homoclinic class $H(p, f)$ is not hyperbolic. It can be observed that for a C^1 generic f, if a periodic point $q \in H(p, f)$, then $q \sim p$. We modified the statement as follows:

Lemma 3.4. There is a residual subset \mathcal{G}_2 in $\Diff(M)$ such that there exists a weak hyperbolic periodic point $q \in H(p, f)$ for any $f \in \mathcal{G}_2$, if a homoclinic class $H(p, f)$ is not hyperbolic for f.

Proof of Theorem B. Let us assume that $f \in \mathcal{G}_3 \cap \mathcal{G}_2$ be asymptotic measure-expansive. We shall derive a contradiction. It is assumed that $H(p, f)$ is not hyperbolic. According to Lemma 3.4, there is $q \in H(p, f) \cap \Per(f)$ such that q is a weak hyperbolic periodic point. This is a contradiction by Lemma 3.3 because $H(p, f)$ is asymptotic measure-expansive. Therefore, $H(p, f)$ is hyperbolic for C^1 generic diffeomorphism f if a homoclinic class $H(p, f)$ is asymptotic measure-expansive for f. \hfill \square

Funding information: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (NRF-2020R1F1A1A01051370).

Conflict of interest: Author states no conflict of interest.

References

[1] W. R. Utz, *Unstable homeomorphisms*, Proc. Amer. Math. Soc. 1 (1950), 769–774.

[2] M. Bessa, M. Lee, and X. Wen, *Shadowing, expansiveness and specification for C^1-conservative systems*, Acta Math. Sci. 36 (2015), 583–600.

[3] M. Lee, *Positively continuum-wise expansiveness for C^1 differentiable maps*, Mathematics 7 (2019), 1–8.

[4] M. Lee, *Continuum-wise expansive homoclinic classes for robust dynamical systems*, Adv. Difference Equ. 2019 (2019), 333.

[5] M. Lee, *Weak measure expansiveness for partially hyperbolic diffeomorphisms*, Chaos Solitons & Fractals 103 (2017), 381–385.

[6] M. Lee, *General expansiveness for diffeomorphisms from the robust and generic properties*, J. Dynam. Cont. Syst. 22 (2016), 459–464.

[7] M. Lee, *Generic periodically expansive volume preserving diffeomorphisms*, Dynam. Contin. Discret. Impuls. Syst.-Ser. A 22 (2015), 73–79.

[8] M. Lee, *Continuum-wise expansive symplectic diffeomorphisms*, Chaos Solitons & Fractals 70 (2015), 95–98.

[9] M. Lee, *Generic expansive symplectic diffeomorphisms*, Dynam. Contin. Discret. Impuls. Syst.-Ser. A 21 (2014), 387–392.

[10] M. Lee, *Continuum-wise expansive diffeomorphisms and conservative systems*, J. Inequal. Appl. 2014 (2014), 379.

[11] M. Lee, *Continuum-wise fully expansive diffeomorphisms and dominated splitting*, Int. J. Math. Anal. 8 (2014), 329–335.

[12] M. Lee, *Continuum-wise expansive and dominated splitting*, Int. J. Math. 7 (2013), 1149–1154.

[13] M. Lee, *Dominated splitting with stably expansive*, Sr. B: Pure Appl. Math. 18 (2011), 285–291.

[14] M. Lee and J. Park, *Expansive transitive sets for robust and generic diffeomorphisms*, Dynam. Syst. 33 (2018), 228–238.

[15] M. Lee and J. Park, *Entropy, positively continuum-wise expansiveness and shadowing*, J. Chungcheong Math. Soc. 28 (2015), 647–651.

[16] M. Lee and J. Oh, *Topological entropy for positively weak measure expansive shadowable maps*, Open Math. 16 (2018), 498–506.

[17] R. Mañé, *Expansive diffeomorphisms*, Lecture Notes in Mathematics, vol. 468, Springer, Berlin, 1975.

[18] C. A. Morales and V. F. Sirvent, *Expansive measures*, Publicações Matemáticas do IMPA, 29 Colóquio Brasileiro de Matemática, 2013.

[19] A. Fakhari, C. A. Morales, and K. Tajbakhsh, *Asymptotic measure expansive diffeomorphisms*, J. Math. Anal. Appl. 435 (2016), 1682–1687.

[20] H. Kato, *Continuum-wise expansive homeomorphisms*, Can. J. Math. 45 (1993), 576–598.

[21] A. Artigue and D. Carrasco-Olivera, *A note on measure expansive diffeomorphisms*, J. Math. Anal. Appl. 428 (2015), 713–716.
[22] N. Aoki, *The set of Axiom A diffeomorphisms with no cycles*, Bol. Soc. Bras. Mat. 23 (1992), 21–65.
[23] S. Hayashi, *Diffeomorphisms in $F(M)$ satisfy Axiom A*, Ergodic Theoery & Dynam. Syst. 12 (1992), 233–253.
[24] C. Pugh, *An improved closing lemma and a general density theorem*, Amer. J. Math. 89 (1967), 1010–1021.
[25] A. Arbieto, *Periodic orbits and expansiveness*, Math. Z. 269 (2011), 801–807.
[26] M. Lee, *Measure expansiveness for generic diffeomorphisms*, Dynam. Systems Appl. 27 (2018), 629–635.
[27] M. Lee, *Continuum-wise expansiveness for generic diffeomorphisms*, Nonlinearity 31 (2018), no. 6, 2982–2988.
[28] T. Das, K. Lee, and M. Lee, *C^1 persistently continuum-wise expansive homoclinic classes and recurrent sets*, Topol. Appl. 160 (2013), 350–359.
[29] K. Lee and M. Lee, *Measure-expansive homoclinic classes*, Osaka J. Math. 53 (2016), no. 4, 873–887.
[30] K. Lee and M. Lee, *Hyperbolicity of C^1-stably homoclinic classes*, Discrete Contin. Dynam. Syst. 27 (2010), 1133–1145.
[31] M. Lee, *Continuum-wise expansive homoclinic classes for generic diffeomorphisms*, Publ. Math. Debrecen 88 (2016), 193–200.
[32] M. Lee, *Measure expansive homoclinic classes for generic diffeomorphisms*, Appl. Math. Sci. 9 (2015), 3623–3628.
[33] M. Sambarino and J. Vieitez, *On C^1-persistently expansive homoclinic classes*, Discrete Contin. Dynam. Syst. 14 (2006), 465–481.
[34] D. Yang and S. Gan, *Expansive homoclinic classes*, Nonlinearity 22 (2009), 729–733.
[35] N. Koo, K. Lee, and M. Lee, *Generic diffeomorphisms with measure-expansive homoclinic classes*, J. Diff. Equat. Appl. 20 (2014), 228–236.
[36] J. Franks, *Necessary conditions for stability of diffeomorphisms*, Trans. Amer. Math. Soc. 158 (1971), 301–308.
[37] M. Hirsch, C. Pugh, and M. Shub, *Invariant manifolds*, Lecture Notes in Mathematics, vol. 583, Springer, New York, 1977.
[38] J. Palis and W. de Melo, *Geometric Theory of Dynamical Systems: An Introduction*, Springer-Verlag, New York-Berlin, 1982.
[39] C. Bonatti and S. Corviser, *Récurrence et généricité*, Invent. Math. 158 (2004), 33–104.
[40] X. Wang, *Hyperbolicity versus weak periodic orbits inside homoclinic classes*, Ergodic Theory Dynam. Systems 38 (2018), 2345–2400.