A cohort of *Caenorhabditis* species lacking the highly conserved *let-7* microRNA

Charles Nelson*.*,1 and Victor Ambros*

*Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
Running Title: *let-7* is absent in many *Caenorhabditis*

Keywords: *let-7* microRNA; *Elegans* supergroup; *Elegans* group; *Japonica* group; *Caenorhabditis sulstoni*; *Caenorhabditis macrospersma*; *Caenorhabditis elegans*

¹Corresponding author: Charles Nelson, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA, telephone: 508-856-6380, fax: 508-856-2577, email: Charles.Nelson@umassmed.edu
ABSTRACT

The let-7 gene encodes a highly conserved microRNA with critical functions integral to cell fate specification and developmental progression in diverse animals. In Caenorhabditis elegans, let-7 is a component of the heterochronic (developmental timing) gene regulatory network, and loss-of-function mutations of let-7 result in lethality during the larval to adult transition due to misregulation of the conserved let-7 target, lin-41. To date, no bilaterian animal lacking let-7 has been characterized. In this study, we identify a cohort of nematode species within the genus Caenorhabditis, closely related to C. elegans, that lack the let-7 microRNA, owing to absence of the let-7 gene. Using C. sulstoni as a representative let-7-lacking species to characterize normal larval development in the absence of let-7, we demonstrate that, except for the lack of let-7, the heterochronic gene network is otherwise functionally conserved. We also report that species lacking let-7 contain a group of divergent let-7 paralogs -- also known as the let-7-family of microRNAs -- that have apparently assumed the role of targeting the lin-41 mRNA.

INTRODUCTION

MicroRNAs are approximately 22 nucleotide (nt) non-coding RNAs that negatively regulate protein expression through base pairing of nucleotides 2-8 of the microRNA (known as the microRNA seed) to complementary sequences in target mRNA 3’ UTRs. Base pairing with nucleotides 9-22 can also contribute to target repression but non-seed base pairing is less constrained than seed pairing. Accordingly, evolutionary conservation of microRNA sequences is generally highest for nucleotides 2-8, and less so for non-seed nucleotides (Bartel 2009; Ambros and Ruvkun 2018).
Unlike most microRNAs, the entirety of nucleotides 1-22 of let-7 RNA are highly conserved across bilaterians (Fig. 1A) (Pasquinelli et al. 2000). Why let-7 RNA non-seed sequences are so deeply conserved remains a mystery. Alongside the deep conservation of the entire let-7 sequence, let-7 microRNA function is also conserved; across diverse animal phyla, let-7 RNA expression coincides with differentiation and opposes stem cell pluripotency (Reinhart et al. 2000; Pasquinelli et al. 2000; Roush and Slack 2008; Balzeau et al. 2017). Accordingly, in certain contexts let-7 RNA functions as a tumor suppressor through restricting the expression of proteins involved in cell proliferation, growth, and metabolism, among others (Balzeau et al. 2017). We believe that the deep conservation of let-7 sequence holds secrets to important evolutionarily conserved molecular interactions vital to let-7 function, and therefore, a better understanding of let-7 conservation will reveal insights into mechanisms of microRNA function and regulation.

In most bilaterian animal clades (i.e. all animals with bilaterian symmetry), including mammals and nematodes, the let-7 gene family has been expanded into a number of related microRNAs that share the same seed sequence but differ in their non-seed nucleotides (Roush and Slack 2008). In C. elegans, the let-7-family consists of let-7, mir-48, mir-84, mir-241, and mir-795 (Abbott et al. 2005). Despite the presence of multiple let-7-family microRNAs (which could in principle substitute for one another by seed-based pairing to targets), most animals have nevertheless retained the original let-7 microRNA with its non-seed nucleotide sequence conserved (Pasquinelli et al. 2000; Roush and Slack 2008).

The C. elegans heterochronic gene (developmental timing) regulatory network consists of genes that either promote or restrict developmental cell fate progression. Integrated into the heterochronic pathway are the protein coding genes lin-14, lin-28, lin-29, lin-41, lin-46, and hbl-
1, as well as the microRNA genes lin-4 and the let-7-family (let-7, mir-48, mir-84, and mir-241). Loss-of-function mutations of genes that restrict cell fate progression, such as lin-14, lin-28, lin-41, or hbl-1, results in precocious development of the hypodermis through the skipping of larval-specific cellular events; whilst loss-of-function mutations of genes that promote cell fate progression, such as lin-29, lin-46, lin-4, or the let-7-family, results in retarded development of the hypodermis through the reiteration of larval-specific cellular divisions (Chalfie et al. 1981; Ambros and Horvitz 1984; Ambros 1989; Fay et al. 1999; Reinhart et al. 2000; Slack et al. 2000; Lin et al. 2003; Pepper et al. 2004; Abbott et al. 2005).

In C. elegans, expression of the lin-4 microRNA increases during the L1 and L2 stages to promote the transition from L1 cell fates to later larval cell fates through its targeted repression of synthesis of the LIN-14 and LIN-28 proteins (which promote L1 and L2 larval stage cell fates) by base-pairing to the 3’ UTRs of lin-14 and lin-28 mRNAs (Chalfie et al. 1981; Ambros and Horvitz 1984; Ambros 1989; Lee et al. 1993; Moss et al. 1997; Lim et al. 2003). Similarly, miR-48, miR-84, and miR-241 (miR-48/84/241), whose expressions increase during the L2 and L3 larval stages to promote transitions to later larval stages by negatively regulating lin-14, lin-28, and hbl-1 through base-pairing to their respective 3’ UTRs (Abrahante et al. 2003; Lin et al. 2003; Abbott et al. 2005; Tsialikas et al. 2017).

In C. elegans, let-7 is required for cell cycle exit and differentiation in hypodermal cell lineages at the end of larval development, which is reflected by the dramatic up regulation of mature let-7 microRNA in terminal larval stages (Reinhart et al. 2000). let-7 function and regulation are deeply integrated into the C. elegans heterochronic gene regulatory network; LIN-28 post transcriptionally restricts let-7 microRNA biogenesis to later larval stages, and let-7 microRNA negatively regulates the evolutionarily conserved pluripotency-promoting genes lin-
41 and lin-28 through base-pairing to the 3’ UTRs of the lin-41 and lin-28 mRNAs (Reinhart et al. 2000; Slack et al. 2000; Vella et al. 2004; Ding and Grosshans 2009; Lehrbach et al. 2009; Van Wynsberghe et al. 2011; Ecsedi et al. 2015; Stefani et al. 2015). The reciprocal direct regulation between let-7 microRNA and LIN-28, and the direct regulation of lin-41 mRNA by let-7 microRNA, are evolutionarily conserved across vertebrates and invertebrates, suggesting that the unusual conservation of let-7 sequence may be related to these conserved intimate interactions of let-7 microRNA with the lin-28 and lin-41 mRNAs and with LIN-28 protein (Reinhart et al. 2000; Slack et al. 2000; Kloosterman et al. 2004; Vella et al. 2004; Schulman et al. 2005; Lin et al. 2007; Heo et al. 2008; Newman et al. 2008; Rybak et al. 2008; Viswanathan et al. 2008; Lehrbach et al. 2009; Nam et al. 2011; Van Wynsberghe et al. 2011; Piskounova et al. 2011; Stratoulias et al. 2014; Ecsedi et al. 2015; Stefani et al. 2015; Balzeau et al. 2017).

Despite the sharing of a common seed sequence and the seemingly redundant potential to regulate the same targets, the let-7-family microRNAs (mir-48/84/241) and let-7 do not function interchangeably. Specifically, mir-48/84/241, as a semi-redundant cohort, primarily regulate lin-14, lin-28, and hbl-1 during L1-L3 cell fate transitions, whereas let-7 regulates lin-41 during a larval to adult cell fate switch (Slack et al. 2000; Vella et al. 2004; Abbott et al. 2005; Ecsedi et al. 2015; Tsialikas et al. 2017; Ilbay and Ambros 2019). let-7 loss-of-function (let-7(lf)) mutants display phenotypes distinguishable from those of triply-mutant mir-84(lf); mir-48(lf)mir-241(lf) animals, as a consequence of the stage-specific de-repression of their respective targets—essentially gain-of-function of lin-41, or gain-of-function lin-14/lin-28/hbl-1, respectively (Abbott et al. 2005; Aeschimann et al. 2019). The specificity of let-7 for regulation of lin-41 is thought to be conferred by base pairing of 3’ non-seed sequences of let-7 microRNA to the let-7 complementary sites in the lin-41 mRNA 3’ UTR (Reinhart et al. 2000; Vella et al. 2004; Ecsedi
et al. 2015), suggesting that conservation of let-7 microRNA non-seed sequences could reflect evolutionary pressure to conserve functional distinctions between let-7 microRNA and other let-7-family microRNAs.

The deep evolutionary roots of let-7 in the heterochronic pathway, including the apparent conservation of specific targeting of lin-41 mRNA by let-7 microRNA suggests that hypothetical evolutionary loss of let-7 could be expected to be accompanied by significant divergence, compared to C. elegans, in the functions of heterochronic genes downstream of let-7, such as lin-41 and lin-29, and/or upstream genes, such as lin-14, lin-28, and hbl-1. Exploration of these questions would require the identification of species closely related to C. elegans that lack let-7.

Here we identify a faction of Caenorhabditis species within the Japonica group, a sister group to the Elegans group, that lack let-7. As far as we know, this is the first described instance of two sister clades where all known species of one clade have retained let-7, while numerous species of the sister clade do not have let-7. We demonstrate that for an exemplary let-7-lacking species, C. sulstoni, the functional architecture of the heterochronic pathway is otherwise conserved compared to C. elegans. Our findings indicate that lin-41 mRNA is apparently regulated by the remaining let-7-family microRNAs in most Japonica group species, suggesting that the heterochronic pathway can evolve to re-delegate let-7-family function under certain evolutionary circumstances.

MATERIALS AND METHODS

Nematode methods

All Caenorhabditis species were cultured on nematode growth medium (NGM) (Brenner 1974) and fed with E. coli HB101 except for all RNAi experiments, in which C. elegans and C. sulstoni
were fed *E. coli* HT115. Synchronized populations of developmentally staged worms were obtained using standard methods (Stiernagle 2006). All experiments involving *C. elegans*, unless otherwise noted, were performed at 20°C. All experiments with the other *Caenorhabditis* species, unless otherwise noted, were performed at 25°C. A list of strains used in this study is in Table S5.

Staging, developmental, and phenotypic analyses of *C. elegans*, *C. sulstoni*, and *C. macrosperma*

To characterize the effects of temperature on development, synchronized populations of *C. elegans* and *C. sulstoni* were plated at 15°C, 20°C, 25°C, 30°C, 33°C, and 35°C. A synchronized population of *C. macrosperma* was plated at 25°C. Except for *C. sulstoni* animals plated at 15°C, developing populations plated at each respective temperature were observed every hour until animal development reached the adult stage. Following the initial 48 hours of hourly observation, *C. sulstoni* animals plated at 15°C were observed every 12 hours until animals reached the adult stage. L1 alae, lethargy, cuticular molting, gonad migration, vulva development, adult alae, and oogenesis were used as markers to determine and calibrate developmental stages.

For heterochronic phenotype analyses, larvae were fed with RNAi food (as described below) starting from the L1 stage, and subsequent animals of defined developmental stages (as described above) were picked from healthy uncrowded mixed staged cultures and imaged. DIC microscopy was used to image hypodermis and alae. Fluorescence microscopy was used to image GFP-LIN-41.
For quantification of alae formation, the entire length of the animal’s cuticle was observed using DIC microscopy. Alae with one or more discontinuity was scored as incomplete. Any region where alae branched into multiple directions was scored as a branch.

Microscopy

All DIC and fluorescent images were obtained using a ZEISS Imager Z1 equipped with ZEISS Axiocam 503 mono camera, and the ZEN Blue software. Prior to imaging, worms were anesthetized with 0.2 mM levamisole in M9 buffer and mounted on 2% agarose pads. Adobe Photoshop was used to adjust the brightness and contrast of the images to enhance the visualization of the DIC and fluorescent signals. All fluorescent images were taken using the same microscopy settings and a standard exposure time for each larval stage for each reporter (*C. elegans* GFP-LIN-41 and *C. sulstoni* GFP-LIN-41). Identical brightness and contrast adjustments were used for each fluorescent image.

Caenorhabditis genomes

All genomes used in this study were provided by the *Caenorhabditis* Genomes Project (http://caenorhabditis.org).

Syntenic comparisons

Syntenic comparisons were performed using GEvo (https://genomevolution.org/coge/GEvo.pl) (Lyons and Freeling 2008) with the following algorithm settings – Alignment Algorithm: (B)LastZ: Large Regions; Word size: 8; Gap start penalty: 300; Gap extend penalty: 30;
Chaining: chain and extend; Score threshold: 2000; Mask threshold: 0; Minimum HSP length for finding overlapped features: 50.

Gene prediction

Genes predictions were performed using the AUGUSTUS web interface (http://bioinf.uni-greifswald.de/augustus/) with the default settings (Keller et al. 2011).

Identification of homologous genes

Identification of all homologs were performed using CoGeBlast and the *Caenorhabditis* Genomes Project Blast webpages (https://genomevolution.org/coge/CoGeBlast.pl; http://blast.caenorhabditis.org/).

Sequence Alignments

Sequence alignments were performed using Clustal Omega (www.ebi.ac.uk) (Madeira et al. 2019) and visualized using Jalview (www.jalview.org) (Waterhouse et al. 2009).

RNA hybridization predictions and MFE calculations

RNA hybridization predictions and MFE calculations were performed using RNAhybrid (https://bibiserv2.cebitec.uni-bielefeld.de) (Rehmsmeier et al. 2004).

lin-41 phylogeny

lin-41 phylogenetic tree was generated from orthology clustering provided by the *Caenorhabditis* Genomes Project (Stevens 2020) and visualized using iTOL.
(https://itol.embl.de/) (Letunic and Bork 2019). The lin-41 phylogenetic tree was rooted on the outgroup Diploscapter coronatus.

RNA extraction

Populations of animals were collected and flash-frozen in liquid nitrogen, and total RNA was extracted using Qiazol reagen (Qiagen) as described by (McJunkin and Ambros 2017).

FirePlex microRNA detection

microRNAs were quantified from total RNA using FirePlex miRNA assay (Abcam) following the manufacturer's instructions. Guava easyCyte 8HT (Millipore) was used for analysis.

Small RNA sequencing and let-7-family microRNA identification and normalization

Samples of total RNA were used to generate all small RNA libraries using a QIAseq miRNA Library Kit (Qiagen) following the manufacturer’s instructions. All libraries were sequenced on an Illumina NextSeq 500 sequencer.

let-7-family microRNAs were identified by searching for reads that contained the let-7-family microRNA seed sequence “GAGGTAG” at positions 2-8. let-7-family microRNA reads were considered legitimate if the sequence mapped to the genome and if the read was predicted to form a microRNA-like stem-loop secondary structure with adjacent genomic sequence. RNA secondary structure modeling was performed using RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) (Lorenz et al. 2011). In most instances, reads corresponding to
microRNA precursors were identified, adding additional credence to the validation of let-7-family microRNAs.

microRNAs were quantified by normalizing the number of a given microRNA reads per million total reads in that library.

GFP tagging of *C. sulstoni* LIN-41

C. sulstoni GFP-lin-41 was generated using CRISPR/Cas9 methods adapted from Paix et al. 2014, Paix et al. 2015, and Dokshin et al. 2018. The germlines of young adult females were injected with a mix of CRISPR RNA (crRNA) that targeted the 5’ end of the *lin-41* coding sequence and the ‘co-CRISPR’ marker *dpy-10*, tracrRNA (Table S6), a PCR-derived dsDNA HR template, Cas9 protein (IDT) and IDT’s duplex buffer (30 mM HEPES, pH 7.5; 100 mM potassium acetate). L4 females from plates where F1 animals that exhibited the co-CRISPR phenotype were picked, mated to a single male picked from the same plate, allowed to lay eggs, and then genotyped using PCR. F2s with GFP expression were cloned from F1s that scored positively by PCR genotyping for the desired modification. Single male and single female progeny were then mated, and a homozygous line was selected by GFP expression and PCR genotyping and subjected to Sanger sequencing for validation. The mutant was then thrice backcrossed to wild type. Sequence details of the *GFP::lin-41* allele generated in this study can be found in Table S7.

Bacterial RNAi feeding strain constructions
cDNA from mixed staged *C. elegans* and *C. sulstoni* was generated from total RNA using SuperScript IV Reverse Transcriptase (ThermoFisher) and oligoDT following the manufacturer’s instructions. PCR was then used to amplify portions of *C. elegans* lin-41, *C. sulstoni* lin-14, *C. sulstoni* lin-28, *C. sulstoni* lin-29, *C. sulstoni* lin-41, *C. sulstoni* lin-46, *C. sulstoni* hbl-1, and *C. sulstoni* unc-22, respectively. Primers (Table S6) used for each respective PCR also added *KpnI* sites to each end of each PCR product except for *C. elegans* lin-41, which added a *HindIII* site to one end and a *KpnI* site to the other end. The PCR products and the T444T vector were digested with *KpnI* (NEB) restriction enzyme for all *C. sulstoni* genes and *HindIII* and *KpnI* for *C. elegans* lin-41. The cut T444T vector was then dephosphorylated, and the cut PCR products and the cut/dephosphorylated vector were gel purified, ligated, and transformed into TOP10 chemically competent cells. Purified plasmids were subjected to Sanger sequencing for validation and transformed into chemically competent *E. coli* HT115 cells.

RNAi knockdown of heterochronic genes

RNAi by feeding *C. elegans* and *C. sulstoni* with the strains described above was conducted as described in Conte et al. 2015.

C. elegans heterochronic pathway

The *C. elegans* heterochronic pathway schematic shown in Figure S7A was adapted from Resnick et al. 2010.

RESULTS

Most *Caenorhabditis* species belonging to the *Japonica* group lack *let-7* microRNA.
The let-7 microRNA was the first microRNA whose sequence and developmental function in promoting the differentiation of cell fates were shown to be conserved from nematodes to vertebrates (Fig. 1A) (Pasquinelli et al. 2000; Reinhart et al. 2000; Lin et al. 2007; Caygill and Johnston 2008; Sokol et al. 2008). While studying the evolution of regulatory sequences within the let-7 genomic loci of related nematodes, we discovered that most species of the Japonica group of Caenorhabditis lack the let-7 sequence in their genomic assemblies (Fig. 1B; Table S1). Interestingly, one exceptional Japonica group species, C. macrosperma, had let-7 sequence in its genomic assembly, which we confirmed using PCR amplification and Sanger sequencing (Fig. S1).

To determine if the lack of let-7 sequence in the genomic assemblies of these Japonica group species could reflect major genomic rearrangements and/or anomalous assembly of genomic sequence, we analyzed the genome sequences surrounding let-7 in C. elegans for potential synteny to corresponding genomic sequences of all Caenorhabditis species predicted to lack the let-7 sequence. We found that the genomic assemblies of all the Caenorhabditis species lacking let-7 sequence contain a region syntenic to the region surrounding the let-7 locus of C. elegans (representative synteny shown in Fig. 2A and S2A). Except for C. afra, none of the Caenorhabditis species lacking let-7 sequence exhibited any indication that loss of let-7 sequence is associated with genomic rearrangement (Fig. S3).

The absence of the let-7 sequence in the genomic assemblies of Japonica group species could reflect incomplete sequence coverage. In such cases, let-7 microRNA could be expressed from DNA that was, for some reason, not detected by genomic sequencing. Therefore, to gather evidence, independent of genomic sequence, for whether or not let-7 microRNA is expressed in Japonica group species, we profiled microRNAs using FirePlex miRNA assays in RNA samples.
from mixed-stage populations of eight *Japonica* species available from the *Caenorhabditis* Genetics Center (CGC), *C. waitukubuli*, *C. panamensis*, *C. nouraguensis*, *C. becei*, *C. macrosperma*, *C. sulstoni*, *C. afra*, and *C. japonica*.

For all seven of the *Japonica* group species that lack let-7 in their genome assemblies as well as *C. macrosperma*, which has let-7 sequence in its genome assembly (Fig. 1B, 2B and S1; Table S1), we failed to detect let-7 microRNA expression by FirePlex assay. By contrast, let-7 microRNA was readily detectable using FirePlex in mixed-staged total RNA samples from species of the closely related *Elegans* group, *C. inopinata*, *C. elegans*, and *C. kamaaina* (Fig. 1B; Table S1). These FirePlex data also confirmed the expression of other microRNAs, including lin-4 microRNA and the let-7-family microRNAs miR-48 and miR-241 in all eight *Japonica* group species, as well as in the three *Elegans* group species (Fig. 1B; Table S1).

C. macrosperma expresses let-7.

C. macrosperma is the one exceptional *Japonica* species in our experimental set that does contain let-7 genomic sequence. Despite confirming the presence of the let-7 sequence in the *C. macrosperma* genomic sequence assembly and its synteny to the *C. elegans* let-7 genomic locus (Fig. S1 and Fig. 2B; expanded synteny Fig. S2B), we failed to detect let-7 microRNA expression using the FirePlex assay. The FirePlex assay employs a panel of hybridization probes complementary to *C. elegans* microRNAs, which allows detection of microRNAs that precisely match the corresponding probe, or in some cases, that differ by a single internal nucleotide. While the *C. macrosperma* genomic sequence assembly contains an apparent let-7-5p guide RNA sequence identical to the *C. elegans* let-7 microRNA, it is possible that let-7 microRNA was not detected by FirePlex in our *C. macrosperma* RNA samples owing to significant 5’ or 3’
end variation and/or expression levels below the limits of detection by FirePlex. Similarly, other microRNAs that were not detected in our FirePlex data (such as the let-7 microRNA paralog miR-84, which was detected in *C. elegans* only) (Fig. 1B; Table S1), could have been missed owing to low expression levels and/or significant interspecific variation in their non-seed sequences.

To definitively determine if let-7 microRNA is expressed in *C. macrosperma*, we performed small RNA sequencing of RNA samples from each larval stage as well as early adult stage for both *C. elegans* and *C. macrosperma* (staging times shown in Fig. S4A and S4B). From these data, we confirmed that let-7 microRNA is indeed expressed in *C. macrosperma* (Fig. 1B; Table S1). Unlike *C. elegans* let-7 microRNA, whose expression dramatically increases during the L3 stage and peaks at the L4 stage and accumulates to levels similar to miR-48 and miR-84, *C. macrosperma* let-7 microRNA undergoes a more gradual and blunted increase in level during *C. macrosperma* development and never exceeds the level of any other let-7-family microRNA (Fig. 3A and 3B).

Small RNA sequencing also confirmed the expression of *C. macrosperma* lin-4 microRNA, as well as the let-7-family microRNAs, miR-48, miR-241, miR-84 (which is one nucleotide shorter and has four internal nucleotide differences from *C. elegans* miR-84), and a novel let-7-family microRNA, miR-12463 (Fig. 1B, 3B and S5B; Table S1). Interestingly, the *C. macrosperma* mir-12463 genomic sequence is located 106 bp downstream of the mir-84 sequence, suggesting that mir-84 and mir-12463 may be produced from a common primary transcript. Similar to the *C. elegans* let-7-family microRNAs, the developmental expression profiles of miR-48/84/241/12463 in *C. macrosperma* consist of gradual increases during the L1
to L2 stages and peaks during the L3 and L4 stages (Fig 3B). We note a relatively low expression of miR-48 in C. macrosperma compared to C. elegans miR-48 (Fig. 3A and 3B).

The temporal expression profile of C. macrosperma lin-4 microRNA was similar to that of C. elegans, consisting of an increase in expression during early larval stages, followed by a broad peak during middle stages, and a decrease around the L4/adult transition (Fig. S5A and S5B).

Robust assignment of C. macrosperma to the Japonica group.

C. macrosperma was the only member of the Japonica group analyzed here to contain a let-7 gene in its genome, implying the presence of let-7 in a Japonica ancestor and loss of let-7 during the divergence of these Japonica species. An alternative explanation for the exceptionalism of C. macrosperma as a let-7-containing Japonica species could be an erroneous phylogenetic assignment of C. macrosperma. In this regard, C. macrosperma was first recovered as a member the Japonica group based on a comparison of selected gene segments across Caenorhabditis species (Kiontke et al. 2011; Felix et al. 2014). Subsequent genome-wide analyses that include additional Caenorhabditis species again recovered C. macrosperma in the Japonica group with maximal support (a Bayesian posterior probably of 1.0 and a bootstrap value of 100, respectively) (Stevens et al. 2019; Stevens et al. 2020), indicating a high likelihood of its correct assignment.

To obtain additional evidence confirming the evolutionary affinity of C. macrosperma with the Japonica group, we examined the phylogeny of the conserved let-7 target gene, lin-41. We reasoned that if the presence of a let-7 gene reflects evolutionary affinity of C. macrosperma with a clade outside Japonica, then such hypothetical divergence from Japonica might be
reflected in the gene-specific phylogeny of *lin-41*, a conserved *let-7*-specific target. When we constructed a *lin-41* gene tree across 33 *Caenorhabditis* species, we observed a *lin-41* phylogeny nearly identical to the species phylogeny (Fig. S6), confirming the *Japonica* affinity of *C. macrospema lin-41*, and strongly supporting the conclusion that *C. macrospema* is an exceptional *Japonica* group species that has retained *let-7*.

Further support for the assignment of *C. macrospema* to the *Japonica* group comes from considering the novel *let-7*-family microRNA, miR-12463, which we initially identified in small RNA sequencing from *C. macrospema*. Nucleotide BLAST search analyses of *Caenorhabditis* species genomes revealed miR-12463 homologs to be present in all eight *Japonica* group species and in no species outside of the *Japonica* group (Fig. 1B; Table S1). This suggests that miR-12463 is a *Japonica* group specific *let-7*-family microRNA, and its presence in *C. macrospema* supports the view that *C. macrospema* is indeed a member of the *Japonica* group.

The mir-84 loci in the Japonica group are polycistronic with novel let-7-family microRNAs.

The identification of miR-12463 within the *mir-84* locus of *C. macrospema* led us to explore if there are more predicted novel *let-7*-family microRNAs in the *mir-84* loci of other *Caenorhabditis* species. To do this, we searched the genomic sequence surrounding the *mir-84* sequence for the presence of the *let-7*-family seed sequence (GAGGUAG) in all *Caenorhabditis* species. We next used *in silico* RNA folding to predict if the RNA would fold into a stem-loop structure indicative of a microRNA precursor. From this analysis, we concluded that all members of the *Japonica* group have between one and five extra *let-7*-family microRNAs in their *mir-84* loci. Interestingly, *mir-84* is always the 5’ most *let-7*-family microRNA in these loci, and these additional *let-7*-family microRNAs are most likely polycistronic with *mir-84* as they are no
further than 221 bp apart (average of 116 ± 40 bp). We found no evidence of additional let-7-family microRNAs in the mir-84 loci in any Caenorhabditis species outside of the Japonica group (Fig. 1B; Table S1).

C. sulstoni serves as a representative species lacking let-7.

C. sulstoni is a gonochoristic bacteriovore that was isolated from the feces of the east African millipede *Archispirostreptus gigas* purchased at an insect market in Berlin in spring 2013 (Stevens et al. 2019). Based on its robust and consistent developmental trajectory and ease of experimental manipulation (including sensitivity to RNAi), we adopted *C. sulstoni* as a representative let-7-lacking species for our experiments. *C. sulstoni* grows on standard nematode growth media (NGM) plates seeded with *E. coli*. *C. sulstoni* larval development appears largely similar to *C. elegans*, containing six distinct phases: an embryonic stage, L1 through L4 larval stages, and adult stage. The overall organismal morphology and cellular anatomy of *C. sulstoni* males and females appear markedly similar to the corresponding sexes of *C. elegans*. Particularly, the development of the *C. sulstoni* hypodermal cell lineages, the morphologies of stage specific cuticles, and the ontogeny of the gonad and vulva are similar to *C. elegans*.

Like *C. elegans*, *C. sulstoni* embryos can be isolated by sodium hypochlorite/sodium hydroxide treatment of populations that include gravid adults. After allowing embryos to hatch in the absence of food, populations of developmentally arrested L1 larvae (L1 diapause) are obtained. Addition of food to a population of L1 diapause larvae triggers synchronous initiation of larval development, thereby enabling the preparation of populations of developing larvae of defined larval stages for biochemical and molecular experiments. Unlike *C. elegans*, which is typically cultured between 15°C and 25°C, *C. sulstoni* can be cultured between 20°C and 30°C.
(Fig. S4A and S4C). Interestingly, at 25°C C. sulstoni develop from the L1 to adulthood 13 hours faster than C. elegans, 28 hours versus 41 hours, respectively (Fig. S4A and S4C). Moreover, at 30°C and 33°C (temperatures that do not support C. elegans development), C. sulstoni develops from the L1 stage to adulthood in approximately 23 hours (Fig. S4A and S4C). 15°C and 33°C seem to define the low and high limits of C. sulstoni temperature tolerance under our culture conditions; C. sulstoni can develop from L1 to adulthood at 15°C or 33°C but are sterile when raised at either temperature. Populations of C. sulstoni grown at 15°C become asynchronous and take approximately six days for the first animals to reach adulthood (Fig. S4C).

Except for the lack of let-7, the heterochronic pathway is functionally conserved in C. sulstoni.

In C. elegans, let-7 functions as a significant component of the heterochronic pathway by ensuring proper developmental cell fate progression, particularly during the larval to adult cell fate transition (Fig. S6A) (Reinhart et al. 2000). Because this hallmark microRNA of the heterochronic pathway is lacking in C. sulstoni, we sought to determine the status of other major components of the heterochronic pathway. As mentioned in the introduction, the protein coding genes lin-14, lin-28, lin-46, hbl-1, lin-41, and lin-29 as well as the microRNAs lin-4, mir-48/84/241, and let-7 are critical components of the heterochronic pathway in C. elegans (Fig. S7A). In C. elegans, loss of lin-14, lin-28, hbl-1, or lin-41 results in precocious development and the subsequent early formation of adult-specific structures including adult lateral alae (Ambros and Horvitz 1984; Fay et al. 1999; Slack et al. 2000; Abrahante et al. 2003; Lin et al. 2003). By contrast, loss of lin-4, lin-46, mir-48/84/241, or lin-29 result in retarded development, characterized by incomplete formation of adult-specific structures including adult lateral alae.
To assess the conservation of heterochronic pathway gene function between *C. elegans* and *C. sulstoni*, we first characterized the larva-to-adult cell fate transition in the hypodermis of *C. sulstoni*. During the L4-adult transition in *C. elegans*, hypodermal seam cells, which consist of a longitudinal string of cells of either side of the animal, finish dividing, fuse with each other to form a lateral line syncytium, and produce the adult-specific cuticular structure called lateral alae, which signifies the terminal differentiation of the seam cells (Sulston and Horvitz 1977; Ambros and Horvitz 1984). Similar to *C. elegans*, in *C. sulstoni* we observed seam cell fusion and the formation for adult alae during the L4-adult transition (Fig. 4A-4D).

From our FirePlex microRNA profiling, we had already confirmed the expression of *lin-4* microRNA and the *let-7*-family microRNAs miR-48 and miR-241 in *C. sulstoni* (Fig. 1B; Table S1). We sought to determine if these microRNAs are integrated into the *C. sulstoni* heterochronic network through their targeted repression of the *lin-14*, *lin-28*, and *hbl-1* mRNA 3’UTRs as they are in *C. elegans*. Because 3’ UTRs are not annotated in *C. sulstoni*, we used the *C. elegans* 3’ UTRs as a framework and examined sequences downstream of each respective gene’s stop codon for *lin-4* and *let-7*-family microRNAs complementary sites (Table S2). For the *C. sulstoni* *lin-14*, *lin-28*, and *hbl-1* 3’ UTR regions, predicted sites for *lin-4* and *let-7*-family microRNAs were identified, indicating conservation of the targeting of these heterochronic genes by *lin-4* and *let-7*-family microRNAs between *C. elegans* and *C. sulstoni* (Table S2; Fig. S7B).

As mentioned previously, the FirePlex assay we used to detect *lin-4* microRNA and miR-48/241 in *C. sulstoni* employs a panel of hybridization probes complementary to *C. elegans* microRNAs, which does not allow for the detection of microRNAs with multiple nucleotide
differences. This would include *C. sulstoni* miR-84, which, based on homology to *C. macrosperma*, is predicted to be one nucleotide shorter and have three internal nucleotide differences compared to *C. elegans* miR-84.

To assay for miR-84 and to potentially identify novel *let-7*-family microRNAs in *C. sulstoni*, and to determine their temporal expression patterns during development, we performed small RNA sequencing of RNA samples from each larval stage as well as the early adult stage of *C. sulstoni*. From these data, we confirmed the expression of *C. sulstoni* lin-4 microRNA, miR-48, miR-84, miR-241, and miR-12463, and found that their developmental dynamics in *C. sulstoni* are similar to *C. elegans* and *C. macrosperma* (Fig. 3A-3C and S5A-S5C; Table S1).

To assess the potential functional conservation of protein coding components of the heterochronic pathway, we used RNAi to knock down heterochronic gene homologs in *C. sulstoni*. Previous studies reported that loss-of-function mutations of *lin-14, lin-28*, or *hbl-1* in *C. elegans* result in precocious alae formation (Ambros and Horvitz 1984; Ambros 1989; Fay et al. 1999; Abrahante et al. 2003; Lin et al. 2003). Similarly, in *C. sulstoni* RNAi of *lin-14, lin-28*, or *hbl-1* caused essentially identical phenotypes (Fig. 4A and 4B) as previously reported for *C. elegans*.

Previous studies also reported that *lin-46(lf)* results in a mild retarded phenotype manifesting as minor gaps and branches in adult alae (Pepper et al. 2004), and *lin-29(lf)* results in a more severe retarded phenotype manifesting as significant gaps in or complete absence of adult alae (Ambros and Horvitz 1984; Ambros 1989). RNAi of *lin-46* or *lin-29* in *C. sulstoni* resulted in nearly identical phenotypes (Fig. 4C-4E) as previously reported for *C. elegans* *lin-46(lf)* or *lin-29(lf)* mutants.
The similarities in expression of lin-4 and the let-7-family, the conservation of complementary sites in the 3’ UTRs of lin-14, lin-28, and hbl-1 mRNAs, and the RNAi knock down phenotypes for lin-14, lin-28, lin-46, hbl-1, and lin-29 indicate that the heterochronic pathway is largely conserved between C. sulstoni and C. elegans.

Temporal regulation and function of LIN-41 are largely conserved in C. sulstoni.

MicroRNA families are groups of microRNAs that share an identical seed sequence (nucleotides 2-8) but differ in their non-seed sequence (Roush and Slack 2008). In principle, members of the same microRNA family can regulate the same target via seed pairing, but at the same time, differences in non-seed sequences can allow family member specificity of targeting through specific microRNA base-pairing with non-seed nucleotides (Moore et al. 2015; Broughton et al. 2016; Brancati and Grosshans 2018). In C. elegans, the let-7-family of microRNAs consists of let-7 microRNA, miR-48, miR-84, miR-241, and miR-795 (Table S1) (Abbott et al. 2005; Roush and Slack 2008). Interestingly, C. elegans let-7 microRNA targets the lin-41 mRNA 3’ UTR via two sites that are “weakly” complementary to the let-7-family microRNA seed sequence (hereafter referred to as SM for “seed match”), both of which are supplemented with significant non-seed pairings to let-7 microRNA. This base pairing configuration (hereafter referred to as SM+SUP) is thought to confer specificity for regulation of lin-41 mRNA by let-7 microRNA, to the exclusion of the other let-7-family microRNAs. Interestingly, the “weak” seed of each SM is distinct from the other: pairing of let-7 microRNA to the first SM results in a bulged target adenine in the seed helix between the g4 and g5 (hereafter referred to as the “bulge-SM”; Fig. 5A); for the second SM, the seed helix contains a
G-U wobble base pair at g5 (hereafter referred to as the “GU-SM”; Fig. 5B) (Reinhart et al. 2000; Vella et al. 2004; Ecsedi et al. 2015).

To gauge the phylogenetic conservation of the let-7 microRNA SM+SUP configurations in the lin-41 3’ UTR regions of other related species, we aligned predicted lin-41 mRNA SM+SUP sequences for all available Caenorhabditis species genomes. To identify potential let-7-family microRNA base pairing SM+SUP sequences, we searched downstream of the stop codon of lin-41 homologs for sequences complementary to the let-7 microRNA seed sequence, including bulges and G-U pairings. With the exception of the species lacking let-7, all Caenorhabditis species have two “weak” SM+SUPs in their lin-41 3’ UTR regions, and apart from C. parvicauda, which has two GU-SM+SUPs, all let-7-containing Caenorhabditis species have one bulge-SM+SUP positioned 5’ of one GU-SM+SUP (Fig. 5A and 5B; Tables S3 and S4). Moreover, the SM+SUPs are always in relatively close proximity to each other, with the 3’ most base-paired nucleotide of the bulge-SM being no further than 39 nucleotides away from the 5’ most base-paired nucleotide of the GU-SM (Tables S3 and S4). These results indicate that there is strong selective pressure to maintain a strict let-7-specific regulation of lin-41 in Caenorhabditis species that express let-7 microRNA.

One possible explanation for how the absence of let-7 is accommodated in Japonica species is that one or more of the other let-7-family microRNAs may have adopted the role of regulating lin-41. To test this possibility, we examined the lin-41 3’ UTR regions of let-7-lacking genomes for sequences complementary to the remaining let-7-family microRNAs. Remarkably, in all seven of these genomes, we observed conservation of the GU-SM, indicating conservation of the regulation of lin-41 mRNA by one or more let-7-family microRNAs, despite the absence of let-7 itself (Fig. 6A and 6B; Table S4). Interestingly, we failed to observe any significant
conservation of \textit{lin-41} 3’ UTR region sequences adjacent to the GU-SM, arguing against any conservation of supplemental non-seed pairing by a particular \textit{let-7}-family microRNA (Fig. 6A and 6B; Table S4).

Owing to the lack of conservation of supplemental non-seed matching sequence in the \textit{lin-41} 3’UTR regions of \textit{Caenorhabditis} species lacking \textit{let-7}, we hypothesized that one or more \textit{let-7}-family microRNAs could regulate \textit{lin-41} mRNA via GU-SM+SUP base-pairing pattern, but the particular \textit{let-7}-family microRNAs with the best match to \textit{lin-41} mRNA could vary for each species. We presumed that for a \textit{let-7}-family microRNA to assume a similar role as \textit{let-7} microRNA in regulating \textit{lin-41} mRNA, the minimum free energy (MFE) between that \textit{let-7}-family microRNA and the \textit{lin-41} mRNA GU-SM+SUP should be similar to that for the interaction of \textit{let-7} microRNA with \textit{lin-41} mRNA in \textit{let-7}-containing species. To test this, we calculated the MFE of base pairing for each \textit{let-7}-lacking species’ predicted \textit{let-7}-family microRNAs to their respective \textit{lin-41} GU-SM+SUP and compared it to the MFEs of the \textit{let-7}-family microRNAs hybridized to the bulge-SM+SUP as well as GU-SM+SUP in all \textit{let-7}-containing species. In all \textit{let-7}-containing species, the lowest (most favorable) MFE pairing of a \textit{let-7}-family microRNA to the \textit{lin-41} bulge-SM+SUP and GU-SM+SUP was for the interaction with \textit{let-7} microRNA (average MFE of -27.2 ± 0.5 kcal/mol and -29.2 ± 1.2 kcal/mol, respectfully; Fig. S8A and S8B; Tables S3 and S4). By contrast, in \textit{let-7}-lacking species, the \textit{let-7}-family microRNA that had the lowest MFE pairing to the \textit{lin-41} GU-SM+SUP varied between species and was higher (less favorable) than the MFE of \textit{let-7} microRNA with either the bulge-SM+SUP or GU-SM+SUP in species that contain \textit{let-7} (average MFE -21.5 ± 2.1 kcal/mol; Fig. S8B; Table S4).
LIN-41 is an RNA binding protein that, in *C. elegans*, forms distinct foci in the cytoplasm particularly around the periphery of the nucleus (Fig. 7A) (Spike et al. 2014). In the hypodermis of *C. elegans*, LIN-41 is expressed during the L1 through L3 stages and is undetectable in the L4 and adult stages due to its translational repression by *let-7* microRNA (Fig. 7A) (Slack et al. 2000). The relatively weaker predicted MFE of the interaction between *let-7*-family microRNAs and *lin-41* 3’ UTR regions in species lacking *let-7* compared to *let-7* microRNA and *lin-41* 3’ UTR regions in species containing *let-7* suggests that the *let-7*-family could have a less prominent role in down regulation of *lin-41* mRNA in species lacking *let-7* than *let-7* microRNA does in species containing *let-7*. To determine whether LIN-41 protein is down regulated in a representative *let-7*-lacking species as observed in *C. elegans*, we used CRISPR to GFP-tag the N-terminus of endogenous LIN-41 in *C. sulstoni*. We observed a nearly identical expression pattern in *C. sulstoni* to what we observed in *C. elegans*: hypodermal LIN-41 is expressed in the L1 through L3 stages and is downregulated in the L4 and adult stages (Fig. 7A and 7B). This down regulation of LIN-41 is indicative of prominent temporal regulation similar to what is observed in *C. elegans* and could reflect the action of one or more *let-7*-family microRNAs.

In *C. elegans*, *lin-41*(lf) animals precociously produce adult alae during the L4 stage (Slack et al. 2000). To determine if LIN-41 could be functionally conserved in species that lack *let-7*, we used RNAi to knock down *lin-41* in *C. sulstoni*. Similar to *C. elegans*, when *lin-41* was knocked down in *C. sulstoni* we observed L4 animals with adult alae. However, precocious alae occurred in a lower percentage of animals than previously reported for *lin-41*(lf) in *C. elegans*, and generally the precocious adult alae were of rather indistinct morphology compared to bona fide adult alae (Fig. 7D and 7E) (Reinhart et al. 2000; Slack et al. 2000; Banerjee et al. 2005;
Nolde et al. 2007). The relatively low penetrance of the precocious alae phenotype could possibly reflect poor RNAi knock down of lin-41. To test this, we knocked down lin-41 in our GFP-tagged strain and confirmed efficient knockdown by an absence of detectable GFP-LIN-41 fluorescence in hypodermal cells. Moreover, animals in which lin-41 was knocked down were sterile, a hallmark of lin-41 loss-of-function for its germline function in C. elegans (data not shown) (Slack et al. 2000).

To our surprise, RNAi of lin-41 in C. sulstoni caused not only precocious and morphologically abnormal alae at the L4 stage, but also caused a highly penetrant alae formation phenotype in adult stage animals, where alae were often absent, incomplete, and/or morphologically abnormal (Fig. 7F). This sort of adult stage phenotype had not been reported previously for lin-41(lf) in C. elegans. The previous studies of lin-41(lf) in C. elegans employed partial loss-of-function mutations and not the high efficiency RNAi expression vector that we used to knock down lin-41 in C. sulstoni (T444T vector) (Sturm et al. 2018). We hypothesized that the functions of lin-41 could be conserved between C. elegans and C. sulstoni, and the discrepancies in the phenotypes previously reported and observed here could be due to the partial function of the lin-41 alleles used in previous studies. To test this hypothesis, we knocked down lin-41 in C. elegans using the new, high-efficiency vector (T444T), and we observed similar phenotypes observed in C. sulstoni: L4 larvae with adult alae and incomplete/weak alae in adults (Fig. 7C-7F). Interestingly, the L4 alae phenotypes observed in C. sulstoni were still less penetrant and weaker in appearance than what we observed in C. elegans (Fig. 7C and 7D). Moreover, the alae phenotypes observed in C. elegans adults appeared weaker than what we observed in C. sulstoni (Fig. 7E and 7F). Aside from these differences, our results indicate that
the temporal patterning and function of LIN-41 are largely conserved between *C. elegans* and *C. sulstoni*.

DISCUSSION

let-7 appears to be indispensable across diverse bilaterian phyla, indicating deep and pervasive evolutionary constraints on maintaining the entire 22-nt sequence of *let-7* microRNA. Moreover, *let-7*'s function in promoting cellular differentiation and repression of pluripotency are conserved as well, which could reflect some degree of conservation of orthologous targets. Chiefly among these are *lin-41* (*TRIM71* in mammals) and *lin-28* (*LIN28* in mammals) both of which encode pluripotency-promoting RNA binding proteins whose expression is directly repressed by *let-7* microRNA in invertebrates and vertebrates alike (Slack et al. 2000; Kloosterman et al. 2004; Schulman et al. 2005; Lin et al. 2007; Vella et al. 2004; Ding and Grosshans 2009; Ecsedi et al. 2015). Consequently, loss-of-function of *let-7* results in dysregulation of developmental progression (Reinhart et al. 2000; Kloosterman et al. 2004; Sokol et al. 2008; Caygill and Johnston 2008) and can lead to disease such as cancer (Balzeau et al. 2017). Thus, *let-7* is an important regulator of animal development and tissue homeostasis.

In this study, we characterized for the first time a cohort of animal species lacking the *let-7* microRNA sequence in their genomes. Using microRNA profiling, we confirmed the absence of mature *let-7* microRNA expression, while also confirming the conserved expression of the *let-7*-family microRNAs miR-48, miR-84, and miR-241. We also found that, except for the absence of *let-7*, the heterochronic pathway, into which *let-7* is deeply integrated in *C. elegans*, appears otherwise functionally conserved in a representative *let-7*-lacking species, *C. sulstoni*. Finally,
we provide evidence that lin-41, a let-7-specific target in *C. elegans*, is regulated by other members of the let-7-family of microRNAs in *Caenorhabditis* species that lack let-7.

Our finding that *C. macrosperma* appears to be an exceptional member of the *Japonica* group that contains let-7 raises interesting questions. Based on the current phylogenetic tree of *Caenorhabditis* species, for *C. macrosperma* to retain let-7, while the remaining members of the *Japonica* group lack let-7, three possibilities are suggested: 1) *C. macrosperma* does not belong in the *Japonica* group, 2) *C. macrosperma* is correctly assigned to the *Japonica* group, and gained the let-7 sequence after it was lost in a *Japonica* ancestor, or 3) *C. macrosperma* is correctly assigned to *Japonica*, and let-7 was lost at least three times during the evolution of the *Japonica* group.

The evidence strongly suggests that *C. macrosperma* is indeed correctly placed in the *Japonica* clade. Previous publications have routinely recovered *C. macrosperma* as a member of *Japonica* group with the most recent publications being a highly extensive, genome-wide studies with high statistical likelihood of *C. macrosperma*’s correct recovery (Kiontke et al. 2011; Felix et al. 2014; Stevens et al. 2019; Stevens et al. 2020). Our results further strengthen this argument. We found that in *C. macrosperma*, the protein sequence of the let-7-specific target lin-41 was most similar to lin-41 protein sequence in other *Japonica* group species, and homologs of the novel let-7-family microRNA *mir-12463* that we identified in *C. macrosperma* can only be found in *Japonica* group species. Put together, these suggests that *C. macrosperma*’s recovery in the *Japonica* group is correct.

We can imagine two possible ways by which *C. macrosperma* could have gained let-7, 1) in a spontaneous manner, possibly by random sequence drift of a let-7-family paralog, or 2) through gene transfer from another *Caenorhabditis*. The first scenario is unlikely because the let-
7 genomic region in *C. macrosperma* is syntenic to the *let-7* region in *C. elegans*, arguing against spontaneous gain as no other *Japonica* group member has a *let-7*-family paralogue in that syntenic region. The second scenario also seems unlikely, as there are no known examples of horizontal gene transfer between *Caenorhabditis* species. Moreover, the presence in *C. macrosperma* of *lin-41* bulge-SM+SUP and GU-SM+SUP sites matching *let-7* that are nearly identical to the *lin-41* bulge-SM+SUP and GU-SM+SUP sites in every other *let-7*-containing *Caenorhabditis* species strongly suggests that *C. macrosperma* inherited *let-7*, and its targeting of *lin-41*, from a common ancestor of the other *Japonica* species, and that *let-7* was lost during the evolution of other *Japonica* species.

A parsimonious model for loss of *let-7* in the *Japonica* clade suggests at least three independent loss events – once in the common ancestor to *C. waitukubuli*, *C. panamensis*, *C. nouraguensis*, and *C. becei*, a second loss in a common ancestor to *C. sulstoni* and *C. afra*, and a third loss in *C. japonica*. Multiple independent losses of *let-7* in the *Japonica* group, together with the dramatically lower expression level of *let-7* microRNA in *C. macrosperma* compared to the relatively robust expression of *let-7* microRNA in *C. elegans*, suggests that *let-7* became relatively dispensable in a common ancestor of these *Japonica* species. We suggest that a hallmark of the evolution of the *Japonica* group may be a reduced dependency on *let-7* for functions that are otherwise critical in most other *Caenorhabditis* species.

The extensive synteny of the *let-7* region of *C. elegans* with *C. sulstoni* suggest that loss of *let-7* was not associated with dramatic genome rearrangements in the region. Only one gene neighboring *let-7* in *C. elegans*, *C05G5.7*, also appears to have been fully lost in *C. sulstoni*. The loss of this gene might suggest a functional relationship between *let-7* and *C05G5.7*, perhaps even that loss of *C05G5.7* could functionally compensate for loss of *let-7*. Interestingly,
C05G5.7 is transcribed on the same primary transcript as let-7 microRNA and serves as a negative regulator of let-7 microRNA processing. However, C05G5.7 appears not to be conserved outside of C. elegans, and loss of C05G5.7 fails to suppress let-7 loss-of-function (Nelson and Ambros 2019).

A key component of the heterochronic network in C. elegans is the RNA binding protein LIN-41. In C. elegans, loss of let-7 is lethal, primarily due to the de-repression of lin-41 (Ecsedi et al. 2015; Aeschimann et al. 2019). During wild type C. elegans development, LIN-41 levels decrease during the mid-to-late-L4 stage due to a sharp increase in let-7 microRNA expression and subsequent let-7 microRNA-mediated inhibition of LIN-41 translation. let-7 microRNA interacts with the 3’ UTR of lin-41 mRNA via base pairing to two non-canonical seed match (SM) sites – one with a bulge adenosine of the lin-41 mRNA in the seed helix between the g4 and g5 and the other with a G-U wobble base pair at the g5 – combined with extensive supplemental (SUP) non-seed pairings. In Caenorhabditis species that contain let-7, both SM+SUPs are highly conserved. In the set of Caenorhabditis species that lack let-7, the lin-41 3’ UTR contains only the GU-SM, with no extensive conservation of non-seed pairings.

To be sure, the presence of a let-7-family seed match in the 3’ UTR regions of lin-41 in species lacking let-7 indicates that lin-41 is likely regulated by one or more of the remaining let-7-family microRNAs. However, several considerations suggest that let-7-family mediated regulation of lin-41 in these species may be relatively less critical compared to let-7-containing species, where the extensive conservation of two SM+SUP sites indicates that both sites are necessary for robust regulation of lin-41 mRNA by let-7 microRNA. By contrast, the lin-41 3’ UTR regions of Caenorhabditis species lacking let-7 contain just one let-7-family SM site of
relatively weak predicted binding (higher MFE) and do not exhibit evidence of conserved non-seed pairing.

In species lacking let-7, the let-7-family microRNA(s) predicted to regulate lin-41 via SM+SUP pairing varied between species. miR-84 was most favorable in three species (C. waitukubuli, C. sulstoni, and C. afra), miR-48 was most favorable in two species (C. panamensis and C. becei), and miR-12463 was the most favorable in two species (C. nouraguensis and C. japonica) (Fig. 6B; Table S4). Moreover, in some species that lack let-7, the let-7-family microRNA with the most favorable MFE was not much better than the next best MFE. For example, in C. panamensis, miR-48 was the most favorable with an MFE of -25.8 kcal/mol, while miR-84 was the next best with an MFE of -25.2 kcal/mol. This variability in which let-7-family microRNA is most favorable in combination with the relatively close MFEs of multiple let-7-family microRNAs within a species suggests that the regulation of lin-41 mRNA by the let-7-family microRNAs is less constrained, in terms of ortholog specificity, in let-7-lacking species than in let-7-containing species.

We found that despite the lack of let-7 in C. sulstoni the temporal expression pattern and function of LIN-41 protein is largely conserved; LIN-41 levels decrease during the L4 stage of C. sulstoni, as is the case in C. elegans, and knockdown of lin-41 results in similar heterochronic phenotypes in C. sulstoni and C. elegans. This indicates a form a compensatory evolution wherein LIN-41 in C. sulstoni has evolved to be regulated in a different way than LIN-41 in C. elegans to achieve the same functional outcome. While our findings indicate that one or more let-7-family microRNA(s) may stand in for the absent let-7 to developmentally regulate C. sulstoni lin-41, we cannot rule out contributions from transcriptional or other post-transcriptional mechanisms.
Indeed, this instance of compensatory evolution would not be the first example of a regulatory gene and/or pathway being replaced by a related gene/pathway. One example of gene “handoff” is the mosquito *Anopheles stephensi*, where the gene *paired*, which is required for the formation of alternating body segments in many insect species (most classically in *Drosophila melanogaster*), was lost and functionally replaced with a related gene, *gooseberry* (Cheatle Jarvela et al. 2020). Another example is the variation in the usage of Wnt signaling as a regulator of vulva induction in nematodes – Wnt signaling is the primary inducer of vulva formation in *Pristionchus pacificus* but plays a relatively minor role in *C. elegans* vulva formation (which primarily relies on EGF signaling) (Sternberg 2005; Tian et al. 2008).

In this study, we have identified a cohort of related *Caenorhabditis* species within the *Japonica* group that lack the highly conserved *let-7* microRNA. Our findings that one member of the *Japonica* group, *C. macrosp*erma, has retained *let-7*, together with the pattern of species affinities within the *Japonica* group, suggests that *let-7* was lost at least three times during the evolution of the *Japonica* clade. We do not currently know what allowed for the loss of *let-7* in these species. However, it appears that in the *Japonica* group, *let-7* was seemingly released from its evolutionary-entrenched regulatory relationship with *lin-41*, thereby allowing for the regulation of *lin-41* to be taken over by the *let-7*-family, and this hypothetical evolutionary release of *let-7* apparently resulted in the dispensability of *let-7*. Further study is required to determine the nature of evolutionary factors that could cause an otherwise deeply conserved microRNA such as *let-7* to become dispensable.

Data availability
All *Caenorhabditis* strains are available at the *Caenorhabditis* Genetics Center (https://cgc.umn.edu). Reagents used in this study are available upon request. Raw small RNA sequencing data can be found in the NCBI SRA (http://www.ncbi.nlm.nih.gov/sra) (SUB8541612: accession numbers SAMN16816130, SAMN16816131, SAMN16816132, SAMN16816133, SAMN16816134, SAMN16816135, SAMN16816136, SAMN16816137, SAMN16816138, SAMN16816139, SAMN16816140, SAMN16816141, SAMN16816142, SAMN16816143, SAMN16816144, SAMN16816145, SAMN16816146, SAMN16816147, SAMN16816148, SAMN16816149, SAMN16816150, SAMN16816151, SAMN16816152, SAMN16816153, and SAMN16816154) under BioProject PRJNA678899. Normalized small RNA sequencing data used for Figures 3 and S4 can be found in Table S8. The exact timing data used for Figures 3, S3, and S4 can be found in Table S9. The RNAi quantification data used for Figures 4 and 7 can be found in Table S10. microRNA data used for the “confirmed in previous study” sections of Figure 1A and Table S1 were obtained from Pasquinelli et al. 2000, Reinhart et al. 2000, Lau et al. 2001, Lim et al. 2003, Ruby et al. 2006, de Wit et al. 2009, Shi et al. 2013, and Kozomara et al. 2019. Supplemental Material available at figshare: https://doi.org/10.25387/g3.13557194.

ACKNOWLEDGEMENTS

We thank the members of the Ambros and the Mello laboratories for helpful discussions and comments on this project, especially Ye Duan for help with small RNA sequencing. We thank Lewis Stevens and Mark Blaxter for help with the *Caenorhabditis* phylogeny and *lin-41* gene tree. We thank the *Caenorhabditis* Genomes project for providing the *Caenorhabditis* genomic
sequences and annotations. Some strains were provided by the Caenorhabditis Genetics Center (CGC), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). Resources for the genomic analyses were provided by CoGe, which is funded by the NSF (IOS-1444490). The T444T plasmid was a gift from Tibor Vellai (Addgene plasmid # 113081; http://n2t.net/addgene:113081; RRID:Addgene_113081).

FUNDING
This research was supported by funding from National Institutes of Health grants R01GM088365, R01GM034028, and R35GM131741 (V.A.).

COMPETING INTERESTS
The authors declare no competing or financial interests.

AUTHOR CONTRIBUTIONS
Conceptualization: C.N., V.A.; Methodology: C.N., V.A.; Formal analysis: C.N., V.A.; Investigation: C.N.; Resources: V.A.; Data curation: C.N.; Writing - original draft: C.N.; Writing - review & editing: C.N., V.A.; Supervision: V.A.; Project administration: V.A.; Funding acquisition: V.A.

REFERENCES
Abbott, A. L., Alvarez-Saavedra, E., Miska, E. A., Lau, N. C., Bartel, D. P., Horvitz, H. R. and Ambros, V. (2005). The let-7 MicroRNA family members mir-48, mir-84, and mir-241
function together to regulate developmental timing in Caenorhabditis elegans. *Dev Cell* 9, 403-14.

Abrahante, J. E., Daul, A. L., Li, M., Volk, M. L., Tennessen, J. M., Miller, E. A. and Rougvie, A. E. (2003). The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. *Dev Cell* 4, 625-37.

Aeschimann, F., Neagu, A., Rausch, M. and Grosshans, H. (2019). let-7 coordinates the transition to adulthood through a single primary and four secondary targets. *Life Sci Alliance* 2.

Ambros, V. (1989). A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. *Cell* 57, 49-57.

Ambros, V. and Horvitz, H. R. (1984). Heterochronic mutants of the nematode Caenorhabditis elegans. *Science* 226, 409-16.

Ambros, V. and Ruvkun, G. (2018). Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. *Genetics* 209, 651-673.

Balzeau, J., Menezes, M. R., Cao, S. and Hagan, J. P. (2017). The LIN28/let-7 Pathway in Cancer. *Front Genet* 8, 31.

Banerjee, D., Kwok, A., Lin, S. Y. and Slack, F. J. (2005). Developmental timing in C. elegans is regulated by kin-20 and tim-1, homologs of core circadian clock genes. *Dev Cell* 8, 287-95.

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. *Cell* 136, 215-33.

Brancati, G. and Grossshans, H. (2018). An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity. *Nucleic Acids Res* 46, 3259-3269.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. *Genetics* **77**, 71-94.

Broughton, J. P., Lovci, M. T., Huang, J. L., Yeo, G. W. and Pasquinelli, A. E. (2016). Pairing beyond the Seed Supports MicroRNA Targeting Specificity. *Mol Cell* **64**, 320-333.

Caygill, E. E. and Johnston, L. A. (2008). Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. *Curr Biol* **18**, 943-50.

Chalfie, M., Horvitz, H. R. and Sulston, J. E. (1981). Mutations that lead to reiterations in the cell lineages of C. elegans. *Cell* **24**, 59-69.

Cheatle Jarvela, A. M., Trelstad, C. S. and Pick, L. (2020). Regulatory gene function handoff allows essential gene loss in mosquitoes. *Commun Biol* **3**, 540.

Conte, D., Jr., Macneil, L. T., Walhout, A. J. M. and Mello, C. C. (2015). RNA Interference in Caenorhabditis elegans. *Curr Protoc Mol Biol* **109**, 26 3 1-26 3 30.

De Wit, E., Linsen, S. E., Cuppen, E. and Berezikov, E. (2009). Repertoire and evolution of miRNA genes in four divergent nematode species. *Genome Res* **19**, 2064-74.

Ding, X. C. and Grosshans, H. (2009). Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. *EMBO J* **28**, 213-22.

Dokshin, G. A., Ghanta, K. S., Piscopo, K. M. and Mello, C. C. (2018). Robust Genome Editing with Short Single-Stranded and Long, Partially Single-Stranded DNA Donors in Caenorhabditis elegans. *Genetics* **210**, 781-787.

Ecsedi, M., Rausch, M. and Grosshans, H. (2015). The let-7 microRNA directs vulval development through a single target. *Dev Cell* **32**, 335-44.

Fay, D. S., Stanley, H. M., Han, M. and Wood, W. B. (1999). A Caenorhabditis elegans homologue of hunchback is required for late stages of development but not early embryonic patterning. *Dev Biol* **205**, 240-53.
Felix, M. A., Braendle, C. and Cutter, A. D. (2014). A streamlined system for species diagnosis in Caenorhabditis (Nematoda: Rhabditidae) with name designations for 15 distinct biological species. *PLoS One* **9**, e94723.

Heo, I., Joo, C., Cho, J., Ha, M., Han, J. and Kim, V. N. (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. *Mol Cell* **32**, 276-84.

Ilbay, O. and Ambros, V. (2019). Regulation of nuclear-cytoplasmic partitioning by the lin-28-lin-46 pathway reinforces microRNA repression of HBL-1 to confer robust cell-fate progression in *C. elegans*. *Development* **146**.

Keller, O., Kollmar, M., Stanke, M. and Waack, S. (2011). A novel hybrid gene prediction method employing protein multiple sequence alignments. *Bioinformatics* **27**, 757-63.

Kiontke, K. C., Felix, M. A., Ailion, M., Rockman, M. V., Braendle, C., Penigault, J. B. and Fitch, D. H. (2011). A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. *BMC Evol Biol* **11**, 339.

Kloosterman, W. P., Wienholds, E., Ketting, R. F. and Plasterk, R. H. (2004). Substrate requirements for let-7 function in the developing zebrafish embryo. *Nucleic Acids Res* **32**, 6284-91.

Kozomara, A., Birgaoanu, M. and Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. *Nucleic Acids Res* **47**, D155-D162.

Lau, N. C., Lim, L. P., Weinstein, E. G. and Bartel, D. P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. *Science* **294**, 858-62.

Lee, R. C., Feinbaum, R. L. and Ambros, V. (1993). The *C. elegans* heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. *Cell* **75**, 843-54.
Lehrbach, N. J., Armisen, J., Lightfoot, H. L., Murfitt, K. J., Bugaut, A., Balasubramanian, S., and Miska, E. A. (2009). LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. *Nat Struct Mol Biol* **16**, 1016-20.

Letunic, I. and Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res* **47**, W256-W259.

Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., Yekta, S., Rhoades, M. W., Burge, C. B. and Bartel, D. P. (2003). The microRNAs of Caenorhabditis elegans. *Genes Dev* **17**, 991-1008.

Lin, S. Y., Johnson, S. M., Abraham, M., Vella, M. C., Pasquinelli, A., Gamberi, C., Gottlieb, E. and Slack, F. J. (2003). The *C. elegans* hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. *Dev Cell* **4**, 639-50.

Lin, Y. C., Hsieh, L. C., Kuo, M. W., Yu, J., Kuo, H. H., Lo, W. L., Lin, R. J., Yu, A. L. and Li, W. H. (2007). Human TRIM71 and its nematode homologue are targets of let-7 microRNA and its zebrafish orthologue is essential for development. *Mol Biol Evol* **24**, 2525-34.

Lorenz, R., Bernhart, S. H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F. and Hofacker, I. L. (2011). ViennaRNA Package 2.0. *Algorithms Mol Biol* **6**, 26.

Lyons, E. and Freeling, M. (2008). How to usefully compare homologous plant genes and chromosomes as DNA sequences. *Plant J* **53**, 661-73.

Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res* **47**, W636-W641.
Mcjunkin, K. and Ambros, V. (2017). A microRNA family exerts maternal control on sex determination in C. elegans. *Genes Dev* **31**, 422-437.

Moore, M. J., Scheel, T. K., Luna, J. M., Park, C. Y., Fak, J. J., Nishiuichi, E., Rice, C. M. and Darnell, R. B. (2015). miRNA-target chimeras reveal miRNA 3’-end pairing as a major determinant of Argonaute target specificity. *Nat Commun* **6**, 8864.

Moss, E. G., Lee, R. C. and Ambros, V. (1997). The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. *Cell* **88**, 637-46.

Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. and Sliz, P. (2011). Molecular basis for interaction of let-7 microRNAs with Lin28. *Cell* **147**, 1080-91.

Nelson, C. and Ambros, V. (2019). Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity. *Development* **146**.

Newman, M. A., Thomson, J. M. and Hammond, S. M. (2008). Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. *RNA* **14**, 1539-49.

Nolde, M. J., Saka, N., Reinert, K. L. and Slack, F. J. (2007). The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3’UTR-mediated repression of the let-7 microRNA target gene, hbl-1. *Dev Biol* **305**, 551-63.

Paix, A., Folkmann, A., Rasoloson, D. and Seydoux, G. (2015). High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes. *Genetics* **201**, 47-54.

Paix, A., Wang, Y., Smith, H. E., Lee, C. Y., Calidas, D., Lu, T., Smith, J., Schmidt, H., Krause, M. W. and Seydoux, G. (2014). Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 Sites in Caenorhabditis elegans. *Genetics* **198**, 1347-56.
Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B.,
Hayward, D. C., Ball, E. E., Degnan, B., Muller, P., et al. (2000). Conservation of the
sequence and temporal expression of let-7 heterochronic regulatory RNA. *Nature* **408**, 86-9.

Pepper, A. S., Mccane, J. E., Kemper, K., Yeung, D. A., Lee, R. C., Ambros, V. and Moss, E. G.
(2004). The C. elegans heterochronic gene lin-46 affects developmental timing at two
larval stages and encodes a relative of the scaffolding protein gephyrin. *Development*
131, 2049-59.

Piskounova, E., Polytarchou, C., Thornton, J. E., Lapierre, R. J., Pothoulakis, C., Hagan, J. P.,
Iliopoulos, D. and Gregory, R. I. (2011). Lin28A and Lin28B inhibit let-7 microRNA
biogenesis by distinct mechanisms. *Cell* **147**, 1066-79.

Rehmsmeier, M., Steffen, P., Hochsmann, M. and Giegerich, R. (2004). Fast and effective
prediction of microRNA/target duplexes. *RNA* **10**, 1507-17.

Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E.,
Horvitz, H. R. and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates
developmental timing in Caenorhabditis elegans. *Nature* **403**, 901-6.

Resnick, T. D., Mcculloch, K. A. and Rougvie, A. E. (2010). miRNAs give worms the time of
their lives: small RNAs and temporal control in Caenorhabditis elegans. *Dev Dyn* **239**, 1477-89.

Roush, S. and Slack, F. J. (2008). The let-7 family of microRNAs. *Trends Cell Biol* **18**, 505-16.

Ruby, J. G., Jan, C., Player, C., Axtell, M. J., Lee, W., Nusbaum, C., Ge, H. and Bartel, D. P.
(2006). Large-scale sequencing reveals 21U-RNAs and additional microRNAs and
endogenous siRNAs in C. elegans. *Cell* **127**, 1193-207.
Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E. E., Nitsch, R. and Wulczyn, F. G. (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. *Nat Cell Biol* **10**, 987-93.

Schulman, B. R., Esquela-Kerscher, A. and Slack, F. J. (2005). Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis. *Dev Dyn* **234**, 1046-54.

Shi, Z., Montgomery, T. A., Qi, Y. and Ruvkun, G. (2013). High-throughput sequencing reveals extraordinary fluidity of miRNA, piRNA, and siRNA pathways in nematodes. *Genome Res* **23**, 497-508.

Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R. and Ruvkun, G. (2000). The lin-41 RBCC gene acts in the *C. elegans* heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. *Mol Cell* **5**, 659-69.

Sokol, N. S., Xu, P., Jan, Y. N. and Ambros, V. (2008). Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. *Genes Dev* **22**, 1591-6.

Spike, C. A., Coetzee, D., Eichten, C., Wang, X., Hansen, D. and Greenstein, D. (2014). The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of *Caenorhabditis elegans* oocytes. *Genetics* **198**, 1535-58.

Stefani, G., Chen, X., Zhao, H. and Slack, F. J. (2015). A novel mechanism of LIN-28 regulation of let-7 microRNA expression revealed by in vivo HITS-CLIP in *C. elegans*. *RNA* **21**, 985-96.

Sternberg, P. W. (2005). Vulval development. *WormBook*, 1-28.

Stevens, L. (2020). CGP orthology clustering. *Zenodo*. https://doi.org/10.5281/zenodo.4068211
Stevens, L., Felix, M. A., Beltran, T., Braendle, C., Caurcel, C., Fausett, S., Fitch, D., Frezal, L., Gosse, C., Kaur, T., et al. (2019). Comparative genomics of 10 new Caenorhabditis species. *Evol Lett* **3**, 217-236.

Stevens, L., Rooke, S., Falzon, L. C., Machuka, E. M., Momanyi, K., Murungi, M. K., Njoroge, S. M., Odinga, C. O., Ogendo, A., Ogola, J., et al. (2020). The Genome of Caenorhabditis bovis. *Curr Biol* **30**, 1023-1031 e4.

Stiernagle, T. (2006). Maintenance of *C. elegans*. *WormBook*, 1-11.

Stratoulias, V., Heino, T. I. and Michon, F. (2014). Lin-28 regulates oogenesis and muscle formation in *Drosophila melanogaster*. *PLoS One* **9**, e101141.

Sturm, A., Saskoi, E., Tibor, K., Weinhardt, N. and Vellai, T. (2018). Highly efficient RNAi and Cas9-based auto-cloning systems for *C. elegans* research. *Nucleic Acids Res* **46**, e105.

Sulston, J. E. and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, *Caenorhabditis elegans*. *Dev Biol* **56**, 110-56.

Tian, H., Schlager, B., Xiao, H. and Sommer, R. J. (2008). Wnt signaling induces vulva development in the nematode *Pristionchus pacificus*. *Curr Biol* **18**, 142-6.

Tsialikas, J., Romens, M. A., Abbott, A. and Moss, E. G. (2017). Stage-Specific Timing of the microRNA Regulation of lin-28 by the Heterochronic Gene lin-14 in *Caenorhabditis elegans*. *Genetics* **205**, 251-262.

Van Wynsberghe, P. M., Kai, Z. S., Massirer, K. B., Burton, V. H., Yeo, G. W. and Pasquinelli, A. E. (2011). LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in *Caenorhabditis elegans*. *Nat Struct Mol Biol* **18**, 302-8.
Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. and Slack, F. J. (2004). The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR.

Genes Dev **18**, 132-7.

Viswanathan, S. R., Daley, G. Q. and Gregory, R. I. (2008). Selective blockade of microRNA processing by Lin28. *Science* **320**, 97-100.

Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. and Barton, G. J. (2009). Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**, 1189-91.
Figure 1 Conservation of the *let-7* microRNA. (A) Sequence conservation of *let-7* microRNA. (B) Phylogenetic tree of *Caenorhabditis* species based on phylogeny from Stevens et al., 2020. For each species, the makeup of their *let-7*-family microRNAs is indicated. *let-7*-family microRNAs are predicted from their genomic sequences (brown font), detection in previous studies (magenta font), or detection in this study (blue font). Green branches highlight species that are either predicted or confirmed to have *let-7*. Red branches highlight species that are either predicted or confirmed to lack *let-7*. Outlined in the green box are species recovered in the *Elegans* group. Outlined in the red box are species recovered in the *Japonica* group. Branch lengths are in substitutions per site. Scale bar is shown.

Figure 2 The genomic region containing the *let-7* sequence in *C. elegans* is syntenic to genomic regions in *C. sulstoni* and *C. macrosperma*. Synteny of a portion of *C. elegans* chromosome X containing the *let-7* sequence with *C. sulstoni* scaffold 00653 (A) and with *C. macrosperma* scaffold 03904 (B). Regions with sequence similarity are outlined in gray. *let-7* is shown in red. Annotated genes are shown in blue. Predicted genes are shown in green.

Figure 3 *let-7*-family microRNA temporal expression patterns for *C. elegans*, *C. macrosperma*, and *C. sulstoni*. Small RNA sequencing data showing expression of *let-7*-family microRNAs throughout *C. elegans* (A), *C. macrosperma* (B), and *C. sulstoni* (C) development. RPM refers to reads per million.

Figure 4 Heterochronic phenotypes associated with RNAi of *C. sulstoni* lin-14, lin-28, hbl-1, *lin-46*, and *lin-29*. (A) Panels from left to right: representative DIC images of *C. sulstoni* L4
hypodermis of animals fed control (empty vector), *lin-14*, *lin-28*, and *hbl-1* RNAi, respectively.

(B) Quantification of observed L4 alae phenotypes in (A). Scale bars = 10 μM. (C) Panels from left to right: representative DIC images of *C. sulstoni* adult hypodermis of animals fed control (empty vector), *lin-46*, and *lin-29* RNAi, respectively. (D and E) Quantification of observed complete adult alae (D) and adult alae branching (E) phenotypes observed in (C). Scale bars = 10 μM. Note: the control (empty vector) and *lin-46* RNAi animals used for (D) were also used for (E).

Figure 5 The *let-7* seed match (SM) plus supplemental non-seed pairing (+SUP) sites in the 3’ UTR region of *lin-41* are highly conserved in *Caenorhabditis* species that contain *let-7*. Sequence alignment of the bulge-SM+SUP site (A) and the GU-SM+SUP (B) in the 3’ UTR region of *lin-41* in *Caenorhabditis* species containing *let-7*. Shown at the bottom of each panel is the respective consensus sequence predicted hybridization with *let-7* microRNA. Watson-Crick base pairing is shown with a solid line between the paired bases. The G-U base pair in the seed is shown with an asterisk between the paired bases.

Figure 6 The seed match (SM) plus supplemental non-seed pairing (+SUP) site in the 3’ UTR region of *lin-41* are divergent amongst *Caenorhabditis* species lacking *let-7*. (A) Sequence alignment of the GU-SM+SUP in the 3’ UTR region of *lin-41* in *Caenorhabditis* species lacking *let-7*. The G-U base pair in the seed pairings is shown with an asterisk. (B) Predicted RNA hybridizations of *let-7*-family microRNAs with the GU-SM+SUP in the *lin-41* 3’ UTR region in *Caenorhabditis* species lacking *let-7*. Shown are the hybridizations of the *let-7*-family
microRNA with the most favorable hybridization (lowest MFE) for each respective species. The G-U base pair in the seed pairings is shown with an asterisk.

Figure 7 *lin-41* expression and function are conserved between *C. elegans* and *C. sulstoni*. (A and B) Representative DIC images (left panels) and endogenously tagged GFP-LIN-41 images (right panels) of hypodermal cells in *C. elegans* (A) and *C. sulstoni* (B) L3 (top panels) and L4 animals (bottom panels). Scale bars = 10 μM. (C-F) Representative DIC images of *C. elegans* L4 hypodermis (C), *C. sulstoni* L4 hypodermis (D), *C. elegans* adult hypodermis (E), and *C. sulstoni* adult hypodermis (F) of animals fed control (empty vector) (left panels) and *lin-41* RNAi (middle panels) and quantification of alae phenotypes (graphs). Scale bars = 10 μM. Note: RNAi experiments used for Figures 4B, 4D, 7D and 7F were performed together. Therefore, control RNAi data used for Figures 4B and 4D were also used for Figures 7D and 7F.
A

let-7 microRNA sequence conservation

- **C. elegans**: UGA GGAGUAGUAGGUUGUAUAGGUU
- **D. melanogaster**: UGA GGAGUAGUAGGUUGUAUAGGUU
- **D. rerio**: UGA GGAGUAGUAGGUUGUAUAGGUU
- **M. musculus**: UGA GGAGUAGUAGGUUGUAUAGGUU
- **H. sapiens**: UGA GGAGUAGUAGGUUGUAUAGGUU

Consensus: UGA GGAGUAGUAGGUUGUAUAGGUU

B

let-7-family microRNA sequence conservation

- **confirmed in this study**
 - C. zanibari: let-7, mir-48/84/241
 - C. tribulationis: let-7, mir-48/84/241
 - C. sinica: let-7, mir-48/84/241
 - C. nigoni: let-7, mir-48/84/241
 - C. briggae: let-7, mir-48/84/241
 - C. remanei: let-7, mir-48/84/241
 - C. latens: let-7, mir-48/84/241
 - C. wallacei: let-7, mir-48/84/241
 - C. tropicalis: let-7, mir-48/84/241
 - C. doughertyi: let-7, mir-48/84/241
 - C. brenneri: let-7, mir-48/84/241
 - C. inopinata: let-7, mir-48/84/241
 - C. elegans: let-7, mir-48/84/241/795
 - C. kamaaina: let-7, mir-48/84/241
 - C. waitukubuli: mir-48/84/241/12463
 - C. panamensis: mir-48/84/241/12463
 - C. nouraguensis: mir-48/84/241/12463
 - C. becei: mir-48/84/241/12463
 - C. macrosperma: let-7, mir-48/84/241/12463
 - C. sulstoni: mir-48/84/241/12463
 - C. atra: mir-48/84/241/12463
 - C. japonica: mir-48/84/241/12463

- **confirmed in previous studies**
 - C. uteleia: let-7, mir-84
 - C. guadaloupensis: let-7, mir-84
 - C. castelli: let-7, mir-84
 - C. angaria: let-7, mir-84
 - C. quiocckensisis: let-7, mir-84
 - C. vivipara: let-7, mir-84
 - C. virilis: let-7, mir-84
 - C. plicata: let-7, mir-84
 - C. bovis: let-7, mir-84
 - C. parvicauda: let-7

- **predicted from genomic sequence**
 - C. monodelphis: let-7, mir-84
A

C. sulstoni genomic synteny with C. elegans let-7 locus

C. elegans chromosome X

C. sulstoni scaffold 00653

B

C. macroperma genomic synteny with C. elegans let-7 locus

C. elegans chromosome X

C. macroperma scaffold 03904
C. sulstoni: L4 alae phenotypes

A

control
lin-14 RNAi
lin-28 RNAi
hbl-1 RNAi

L4

B

C. sulstoni: L4 alae quantification

control
lin-14 RNAi
lin-28 RNAi
hbl-1 RNAi

% animals with phenotype

C

C. sulstoni: L4 alae phenotypes

control
lin-46 RNAi
lin-29 RNAi

adult

D

C. sulstoni: complete adult alae quantification

control
lin-46 RNAi
lin-29 RNAi

% animal with phenotype

E

C. sulstoni: adult alae branching quantification

control
lin-46 RNAi

% animals with phenotype
Caenorhabditis species lacking let-7:
lin-41 GU-SM+SUP alignment

C. waitukubuli

C. panamensis

C. nouraguensis

C. becei

C. sulstoni

C. afrfa

C. japonica

Consensus

seed pairings:

Caenorhabditis species lacking let-7:
lin-41 GU-SM+SUP hybridized to let-7-family

C. waitukubuli

C. panamensis

C. nouraguensis

C. becei

C. sulstoni

C. afrfa

C. japonica
