Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma

Shahab Mahmoudvand, Somayeh Shokri, Reza Taherkhani, Fatemeh Farshadpour

ORCID number: Shahab Mahmoudvand (0000-0002-9155-9938); Somayeh Shokri (0000-0003-4609-3110); Reza Taherkhani (0000-0001-6499-0531); Fatemeh Farshadpour (0000-0002-8317-9573).

Author contributions: Mahmoudvand S designed the research and wrote the paper; Shokri S provided the literature review and wrote the paper; Taherkhani R performed research and contributed to writing the paper; Farshadpour F designed the study, edited the manuscript and was involved in writing the paper.

Conflict-of-interest statement: The authors declare that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: October 19, 2018

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common cancer, and hepatitis C virus (HCV) infection plays a major role in HCC development. The molecular mechanisms by which HCV infection leads to HCC are varied. HCV core protein is an important risk factor in HCV-associated liver pathogenesis and can modulate several signaling pathways involved in cell cycle regulation, cell growth promotion, cell proliferation, apoptosis, oxidative stress and lipid metabolism. The dysregulation of signaling pathways such as transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), Wnt/β-catenin (WNT), cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptor α (PPARα) by HCV core protein is implicated in the development of HCC. Therefore, it has been suggested that this protein be considered a favorable target for further studies in the development of HCC. In addition, considering the axial role of these signaling pathways in HCC, they are considered druggable targets for cancer therapy. Therefore, using strategies to limit the dysregulation effects of core protein on these signaling pathways seems necessary to prevent HCV-related HCC.

Key words: Hepatitis C virus; Core protein; Transforming growth factor β; Vascular endothelial growth factor; Wnt/β-catenin; Cyclooxygenase-2; Peroxisome proliferator-activated receptor α; Hepatocellular carcinoma

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Hepatitis C virus (HCV) core protein can modulate several signaling pathways involved in cell cycle regulation, cell growth promotion, cell proliferation, apoptosis,
Hepatitis C virus (HCV) is an enveloped positive-stranded RNA virus that exhibits significant variations across the viral genome. At the beginning of the new century, it became clear that infectious agents have an undeniable role in the development of some cancers in humans. It is currently estimated that nearly 16%-18% of all human cancers are attributed to oncogenic viruses\(^1\). To date, several viruses are linked to cancer in humans, including Epstein-Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), human T-cell lymphotropic virus (HTLV), Kaposi’s sarcoma herpesvirus (KSHV), Merkel cell polyomavirus (MCPV) and hepatitis C virus (HCV)\(^2\). HCV is classified as a member of the Flaviviridae family and the Hepacivirus genus. HCV primarily affects the liver and causes chronic HCV infection. Chronic HCV infection inevitably causes additional liver damage, such as hepatitis, cirrhosis and hepatocellular carcinoma (HCC)\(^3\). Globally, an estimated 185 million people, equating to about 2.8% of the world population, have been infected with HCV\(^4\). Although the prevalence of HCV is declining, the burden of HCV-related mortality due to advanced liver disease is on the rise\(^5\). Two major forms of HCV infection are acute and chronic infection. Acute HCV infection can be seen in nearly 20%-25% of infected individuals, and approximately 15% of these acute infections develop recognizable symptomatic disease\(^6\). Chronic HCV infection develops in 75%-85% of acute HCV infections, and 10%-20% of all cases with chronic HCV infection slowly progress to liver cirrhosis, of which 1%-5% lead to HCC annually\(^7\). HCC is a significant health burden worldwide, and it is interesting to note that HCC is the fifth common malignant tumor in men (746000 cases) and the ninth common tumor in women (228000 cases). HCC is the second leading cause of cancer deaths worldwide and was responsible for about 746000 deaths in 2012\(^8\). Interestingly, 27% and 25% of cases with cirrhosis and HCC, respectively, are associated with HCV infection worldwide\(^9\).

Globally, approximately 399000 deaths per year occur due to HCV-related liver diseases. According to the World Health Organization (WHO) treatment guidelines, more than 95% of HCV-infected patients can be cured by antiviral medicines. Therefore, the use of appropriate antiviral therapy can reduce the risk of death from HCC. The current standard of care for patients with HCV infection is therapy with a novel class of direct-acting antivirals (DAAs) in combination with pegylated-interferon α (Peg-IFNα) plus ribavirin. To date, the sustained virologic response (SVR) is the best indicator of successful therapy for chronic HCV infection. SVR is defined as having no detectable HCV RNA at 12-24 wk after completion of antiviral therapy, and increasing the chances of achieving SVR is the main goal of treatment\(^10\). In the treatment course of HCV infection, the rate of SVR has improved to over 95%\(^11\). Several studies showed that the risk of HCC is significantly lower in patients who achieved SVR following antiviral therapy compared to untreated patients\(^12-14\). Overall, more studies are needed to determine whether HCC is reduced among hepatitis C patients after achieving SVR. However, the achievement of SVR is important for HCC prevention. There is currently no prophylactic vaccine for HCV; however, research is ongoing to generate an efficient vaccine\(^15\). HCV is an enveloped positive-stranded RNA virus that exhibits significant variations across the viral genome. Accordingly, HCV is currently classified into seven genotypes and 67 confirmed subtypes\(^16\). The HCV genome is approximately 9600 nucleotides in length and encodes a single polyprotein of ~3000 amino acids (aa). The polyprotein is cleaved into ten different structural and nonstructural proteins by viral and cellular proteases. Structural proteins, including core, E1, E2 and p7, are

INTRODUCTION

At the beginning of the new century, it became clear that infectious agents have an undeniable role in the development of some cancers in humans. It is currently estimated that nearly 16%-18% of all human cancers are attributed to oncogenic viruses\(^1\). To date, several viruses are linked to cancer in humans, including Epstein-Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), human T-cell lymphotropic virus (HTLV), Kaposi’s sarcoma herpesvirus (KSHV), Merkel cell polyomavirus (MCPV) and hepatitis C virus (HCV)\(^2\). HCV is classified as a member of the Flaviviridae family and the Hepacivirus genus. HCV primarily affects the liver and causes chronic HCV infection. Chronic HCV infection inevitably causes additional liver damage, such as hepatitis, cirrhosis and hepatocellular carcinoma (HCC)\(^3\). Globally, an estimated 185 million people, equating to about 2.8% of the world population, have been infected with HCV\(^4\). Although the prevalence of HCV is declining, the burden of HCV-related mortality due to advanced liver disease is on the rise\(^5\). Two major forms of HCV infection are acute and chronic infection. Acute HCV infection can be seen in nearly 20%-25% of infected individuals, and approximately 15% of these acute infections develop recognizable symptomatic disease\(^6\). Chronic HCV infection develops in 75%-85% of acute HCV infections, and 10%-20% of all cases with chronic HCV infection slowly progress to liver cirrhosis, of which 1%-5% lead to HCC annually\(^7\). HCC is a significant health burden worldwide, and it is interesting to note that HCC is the fifth common malignant tumor in men (554000 cases) and the ninth common tumor in women (228000 cases). HCC is the second leading cause of cancer deaths worldwide and was responsible for about 746000 deaths in 2012\(^8\). Interestingly, 27% and 25% of cases with cirrhosis and HCC, respectively, are associated with HCV infection worldwide\(^9\).

Globally, approximately 399000 deaths per year occur due to HCV-related liver diseases. According to the World Health Organization (WHO) treatment guidelines, more than 95% of HCV-infected patients can be cured by antiviral medicines. Therefore, the use of appropriate antiviral therapy can reduce the risk of death from HCC. The current standard of care for patients with HCV infection is therapy with a novel class of direct-acting antivirals (DAAs) in combination with pegylated-interferon α (Peg-IFNα) plus ribavirin. To date, the sustained virologic response (SVR) is the best indicator of successful therapy for chronic HCV infection. SVR is defined as having no detectable HCV RNA at 12-24 wk after completion of antiviral therapy, and increasing the chances of achieving SVR is the main goal of treatment\(^10\). In the treatment course of HCV infection, the rate of SVR has improved to over 95%\(^11\). Several studies showed that the risk of HCC is significantly lower in patients who achieved SVR following antiviral therapy compared to untreated patients\(^12-14\). Overall, more studies are needed to determine whether HCC is reduced among hepatitis C patients after achieving SVR. However, the achievement of SVR is important for HCC prevention. There is currently no prophylactic vaccine for HCV; however, research is ongoing to generate an efficient vaccine\(^15\). HCV is an enveloped positive-stranded RNA virus that exhibits significant variations across the viral genome. Accordingly, HCV is currently classified into seven genotypes and 67 confirmed subtypes\(^16\). The HCV genome is approximately 9600 nucleotides in length and encodes a single polyprotein of ~3000 amino acids (aa). The polyprotein is cleaved into ten different structural and nonstructural proteins by viral and cellular proteases. Structural proteins, including core, E1, E2 and p7, are
located near the 5’ end of the genome, and nonstructural proteins, including NS1, NS2, NS3, NS4A, NS4B, NS5A and NS5B, are located near the 3’ end of the genome\(^{[23]}\) (Figure 1). These proteins make numerous interactions with host cell factors involved in important activities such as cell cycle regulation, cell proliferation, cell growth promotion, transcriptional regulation, apoptosis, oxidative stress and lipid metabolism\(^{[16,19]}\). Many lines of evidence clearly indicate that HCV proteins such as core, NS3, NS5A and NS5B can modulate several potentially oncogenic pathways. These proteins also potentiate oncogenic transformation through direct and indirect interactions with various transcription factors and their induction\(^{[20-22]}\). The core protein is an important HCV protein and is responsible for packaging viral RNA and virion budding. This protein (191 aa) is organized into three main domains that include an N-terminal two-thirds hydrophilic domain (D1, approximately 120 aa), a C-terminal one-third hydrophobic domain (D2, approximately 50 aa), and approximately the last 20 aa that serves as a signal sequence for targeting E1 (D3)\(^{[23]}\) (Figure 1). Kunke et al.\(^{[24]}\) showed that the residues 76-113 (tryptophan-rich region) are largely solvent exposed, suggesting that it may interact with cellular proteins. It has been shown that core protein has multi-functional activity and can interact with cellular proto-oncogenes and change their expression patterns, thereby leading to hepatocarcinogenesis\(^{[27]}\). Several lines of investigation have demonstrated that core protein plays a pivotal role in the modulation of several key signaling pathways involved in HCC, such as transforming growth factor β (TGF-β), nuclear factor κB (NF-κB), cyclooxygenase-2 (COX-2), Wnt/β-catenin (WNT), vascular endothelial growth factor (VEGF), and peroxisome proliferator-activated receptor α (PPARα)\(^{[25-27]}\). The mechanisms by which core protein modulates these signaling pathways are extremely complicated. To prevent HCV-related HCC, the molecular events underlying the interactions between HCV core protein and the signaling pathways need to be well understood. In this review, we investigate how the interaction of HCV core protein with several signaling pathways contributes to the development of HCC in HCV-infected patients.

TGF-BETA SIGNALING PATHWAY

TGF-β is a multifunctional profibrotic cytokine that is found in three isoforms (TGF-β1-3). Of them, TGF-β1 plays a key role in the pathogenesis of liver inflammation, fibrosis, cirrhosis and HCC\(^{[19]}\). It is interesting to note that TGF-β is considered a central mediator of fibrogenesis and plays an important role in the regulation of tumorigenesis, as it controls numerous cellular functions, including apoptosis, differentiation, proliferation, extracellular matrix production, embryonic development, epithelial-mesenchymal transition (commonly known as EMT), and immune response\(^{[13,14]}\). Fibrosis is one of the most important consequences of TGF-β dysregulation, which is characterized by excessive accumulation of extracellular matrix (commonly known as ECM). TGF-β activity is mediated through activation and proliferation of hepatic stellate cells and connective tissue growth factor. Eventually, progressive fibrosis leads to the development of cirrhosis and HCC\(^{[9]}\). TGF-β acts as a double-edged sword depending on the cellular context; in the early stages of cancer development, it exhibits anti-tumor effects, while in the late stages, it has tumor-promoting activities\(^{[9]}\). TGF-β is implicated in several human diseases such as cardiovascular diseases, connective tissue diseases, skeletal and muscular disorders, reproductive disorders, autoimmune disorders, fibrotic disease, atherosclerosis and carcinogenesis\(^{[13,30]}\). Studies have shown that the downstream signaling pathways for TGF-β involve both canonical (Smad-dependent) and non-canonical (Smad-independent) pathways. TGF-β can induce fibrosis via activation of these two pathways, which results in activation of myofibroblasts and excessive production of ECM\(^{[40-43]}\). Smads mediate intracellular responses to TGF-β and have three classes, including receptor-regulated Smads (named R-Smads, including Smad1, 2, 3, 5 and 8), co-modulator Smads (named Co-Smad, including Smad4) and inhibitory Smads (named I-Smads, including Smad6 and 7)\(^{[44]}\). Smads are regulated via direct phosphorylation by kinase activities of TGF-β receptors (TβRI and TβRII). The model of TGF-β-induced Smad activation is as follows: TGF-β binds to its receptor TβRII, which further interacts and activates TβRI. Activated TβRI then activates Smad2 and Smad3 via phosphorylation. Subsequently, the activated Smad2/3 forms a heterotrimer with Smad4 that translocates into the cell nucleus. Ultimately, the complex associates with other transcription factors and regulates the expression of target genes by binding to promoters containing the minimal Smad binding element\(^{[45,46]}\). Furthermore, TGF-β can activate non-canonical pathways such as JAK, Erk, JNK, p38 MAPK kinase, Ras and RhoA\(^{[46,47]}\) (Figure 2). It has also been shown that
Figure 1 Genome organization of HCV. Scheme of HCV core protein domains and functional residues. HCV: Hepatitis C virus.

HCV-induced transcription factors such as AP-1, Sp1, NF-κB, EGR-1, USF and STAT-3 can activate the TGF-β1 promoter\(^{[45]}\). Taken together, it should be noted that the dysregulation of TGF-β signaling pathway could result in cancer development through either direct or indirect effects on other intracellular signaling pathways involved in carcinogenesis.

It has been indicated that oncogenic viruses such as HCV, HBV, HPV, EBV, KSHV and HTLV-1 can modulate TGF-β signaling pathway through various direct or indirect mechanisms, suggesting that this pathway is a desirable target for connecting viral proteins\(^{[37]}\). Several studies support the contention that HCV induces TGF-β1 secretion in HCV patients, as TGF-β1 levels are extremely high in these patients\(^{[49-51]}\). The results of the study performed by Jee et al\(^{[52]}\) indicated that TGF-β1 protein in HCV-infected cells and in neighboring cells was more than 20-fold higher than in uninfected cells, and this increased production was observed 2 d after HCV infection. Several studies have demonstrated that HCV core protein can induce TGF-β1 promoter activity and directly and indirectly upregulate its gene expression. These findings suggest that HCV infection is one mechanism by which liver fibrosis can be exacerbated\(^{[52,53-55]}\). Taniguchi et al\(^{[28]}\) showed that TGF-β1 mRNA expression is increased by HCV core protein, whereas TGF-β2 and TGF-β3 mRNA levels do not change upon core protein expression. The results of their study suggested that bases 331 to 376 in the TGF-β1 promoter are upregulated by HCV core protein\(^{[28]}\). In studies conducted by Battaglia et al\(^{[57]}\) and Pavio et al\(^{[58]}\), it was revealed that core protein is able to switch TGF-β from a tumor suppressor to tumor promoter by decreasing hepatocyte apoptosis and increasing EMT by decreasing Smad3 activation. The Smad proteins consist of two principal domains, DNA-binding domain (N-terminal Mad homology 1, MH1 domain) and protein-protein interacting module (C-terminal Mad homology 2, MH2 domain). Pavio et al\(^{[58,59]}\) indicated that the central domain (59-126 aa) of core protein binds to the MH1 domain of Smad3, leading to TGF-β inhibition. Cheng et al\(^{[60]}\) explained that HCV core protein utilizes various mechanisms to regulate TGF-β, including the following: (1) suppression of TGF-β/Smad3-mediated transcriptional activation through interference with the DNA-binding ability of Smad3; (2) block of TGF-β-induced G1 phase arrest via downregulation of TGF-β-induced p21 promoter activation; and (3) resistance to TGF-β/Smad3-mediated apoptosis. Notably, over-expression of HCV core protein indirectly induces TGF-β production by increased reactive oxygen species production, which in turn increases JNK, Erk and p38 MAP kinase activity in a NF-κB-dependent manner\(^{[56,61,62]}\) (Figure 2).

In addition, Shin et al\(^{[54]}\) revealed that HCV core protein can regulate other factors associated with fibrosis, such as connective tissue growth factor, TβRII and TGF-β1. Nevertheless, considering the pivotal role of TGF-β in the development of fibrosis and tumor progression, this pathway is an important pharmaceutical target to prevent cancer progression. Furthermore, treatment with antiviral drugs such as DAAs in combination with Peg-IFNα and ribavirin increases the chances of achieving SVR. On the other hand, there are some but not conclusive data that TGF-β1 serum levels in chronic hepatitis C patients under antiviral therapy significantly decreases, especially...
Figure 2 Interaction between the TGF-β signaling pathway and HCV core protein. TGF-β regulates target gene transcription via canonical (Smad-dependent) and non-canonical (Smad-independent) pathways, and HCV core protein modulates TGF-β signaling pathway in various ways. For detailed information, see text. TGF-β: Transforming growth factor β; HCV: Hepatitis C virus; TβR: TGF-β receptor; ROS: Receptor tyrosine kinase c-ros oncogene 1; TFs: Transcription factors; Smad: Small mothers against decapentaplegic; RhoA: Ras homolog gene family member A; MEKK: Mitogen-activated protein kinase kinase; RAS: Rat sarcoma; ERK: Extracellular signal-regulated kinase; JNKs: Jun N-terminal kinases; P160ROCK: Rho-associated coiled-coil containing protein kinase 1; SBEs: SMAD-binding elements; TBE: T-box binding element.

in patients achieving SVR\(^{63-66}\). In this condition, HCV proteins are unable to upregulate TGF-β1 expression, which in turn leads to reduced fibrogenesis and prevention of cancer progression.

VEGF SIGNALING PATHWAY

VEGF is a signal protein that is produced by most parenchymal cells and stimulates angiogenesis. In cancer progression, VEGF is the key mediator of angiogenesis and vasculogenesis, which leads to the formation of new blood vessels from pre-existing vessels. In turn, this allows tumors to access oxygen and nutrients\(^{67}\). VEGFA, also known as VEGF, is a protein with vascular permeability activity that is a member of a family of growth factors. In addition, VEGFB, VEGFC, VEGFD and placental growth factor are also in this family. These growth factors play an important role in angiogenesis and differ in their biological functions and expression patterns\(^{68}\). Several factors play roles in the upregulation of VEGF. It has been demonstrated that a number of growth factors such as PDGF, epidermal growth factor, fibroblast growth factor, TNF, TGF-β and interleukin-1 can induce VEGF gene expression\(^{69}\). VEGF applies its effects by binding to VEGF receptors, which are expressed on vascular endothelial cells. The VEGF receptors include VEGF receptor-1 (Flt-1), VEGF receptor-2 (KDR) and VEGF receptor-3 (Flt-4)\(^{69}\). VEGF has several roles, including the following: (1) inducing angiogenesis through a direct impact on endothelial cells; (2)
inducing cells to invade the underlying matrix and to form capillary-like tubules; (3) elicitation of non-mitogenic responses by vascular endothelial cells; (4) instrumental in maintaining the viability of immature vasculature and inducing hemotaxis; and (5) the expression of plasminogen activators and collagenases in endothelial cells. It should be noted that the induction and activation of hypoxia-inducible factor-1 alpha (HIF-1α) is a major inducer of VEGF expression in tumors. It is one of the first transcription factors in response to hypoxia and is a closely related angiogenesis factor. HIF-1α responds to hypoxia through binding to hypoxic response element, which in turn leads to an increase in VEGF protein expression because it plays a regulatory role in VEGF expression. Given the importance of the angiogenic effects of VEGF, dysregulation of its expression is important in disease processes and progression toward cancer. A large body of evidence exists that suggests a role for VEGF in tumorogenesis in human cancers.

Oncogenic viruses such as HCV, EBV, HPV, KSHV and HBV can upregulate VEGF with the use of cellular signaling machinery, which leads to angiogenesis. Several reports have shown upregulation of VEGF in patients with HCC-related HCC. Mukouz et al. demonstrated that VEGF serum levels of patients with HCC-related HCC are significantly higher than those of the control group. HCV core protein can upregulate cellular VEGF expression through HIF-1α transcription factors and activator protein 1 (AP-1). Core protein induces over-expression and stabilization of HIF-1α, which in turn induces VEGF expression. Abe et al. showed that core protein increases HIF-1α expression level by activating the NF-xB signaling pathway, which leads to an increase in VEGF expression under hypoxia followed by HIF-1α upregulation. They also observed that when cells were incubated with HIF-1α inhibitor, VEGF expression clearly decreased. In a study performed by Zhu et al. in Huh7.5.1 cells, it was demonstrated that core protein contributes to VEGF biosynthesis by inducing VEGF expression and secretion. They indicated that using HIF-1α siRNA in Huh7.5.1 cells, which results in reducing expression of HIF-1α, significantly reduces VEGF expression. Shao et al. indicated that VEGF expression increased due to activation of AP-1 transcription factor, because the promoter region of VEGF contains binding sites for AP-1 transcription factors, which lead to enhanced VEGF expression via promoter binding. This observation is in line with previous studies of AP-1 activity associated with VEGF expression and HCV core protein-induced AP-1 activity. HCV core protein affects androgen receptor (AR) transcriptional activity by activating several signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/AKT and JAK/STAT3. Since VEGF is a target gene for AR in the liver, HCV core protein increases VEGF expression through activation of the AR signaling pathway. Hassan et al. recently reported that HCV core protein induces VEGF expression mediated by JNK, p38 and ERK signaling pathways. Given the results of various studies, HCV core protein can upregulate the VEGF signaling pathway. These data increase our insights into the molecular mechanisms by which HCV core protein mediates angiogenesis in HCV-infected patients.

WNT SIGNALING PATHWAY

The WNT signaling pathways are a group of signal transduction pathways that regulate different cellular processes such as cell polarity, organogenesis, cell migration and neural patterning during embryonic development. Alteration of WNT activity has been linked to the development of HCC and other liver diseases. β-catenin has a crucial role in Wnt signaling and also tightly binds to the cytoplasmic domain of type I cadherins and is implicated in the structural organization and function of cadherins. Wnts are secreted cysteine-rich lipid-modified glycoproteins that bind to the N-terminal extracellular cysteine-rich domain of the Frizzled (Fz or Fzd) receptor family and low-density-lipoprotein-related protein 5/6 (LRP5/6) as co-receptors. When WNT signaling is inactive, cytoplasmic β-catenin interacts with a multiprotein degradation complex comprised of casein kinase I (CKI), adenomatous polyposis coli gene product (APC), glycogen synthase kinase 3β (GSK3β) and Axin. Axin binds to newly synthesized β-catenin, which is subsequently phosphorylated by CKI and GSK3 on conserved Ser and Thr residues in the amino terminus. Following phosphorylation, β-catenin is targeted for proteasome-dependent degradation, including an interaction with β-transducin repeat-containing protein (β-TrCP), a part of the E3 ubiquitin ligase complex, leading to β-catenin ubiquitination and degradation. WNT signaling is regulated by secreted proteins, including secreted Frizzled-related proteins (sFRPs) and Wnt inhibitory protein (WIF) that can bind to Wnts and prevent interactions between Wnt
Figure 3 Interaction between VEGF signaling pathway and HCV core protein. HCV core protein upregulates VEGF expression mediated by AR, AP1 and HIF-1α. VEGF: Vascular endothelial growth factor; VEGFRs: Vascular endothelial growth factor receptors; GRB2: Growth factor receptor bound protein 2; RAS: Rat sarcoma; RAF: Rapidly accelerated fibrosarcoma; MEK: Mitogen-activated protein kinase; ERK: Extracellular signal-regulated kinase; JNKs: Jun N-terminal kinases; AR: Androgen receptor; AP1: Activator protein 1; HIF-1α: Hypoxia-inducible factor-1 alpha.

Figure 4 Abnormal Wnt and Fzd expression in hepatocytes, stellate and Kupffer cells might play important roles in liver pathology. Wnt and Fzd receptors belong to the Frizzled (Fzd) family, which include activated by binding to LRP5/6. If the concentration of Wnts increases, Wnts interact with receptors to activate Dishevelled (Dvl) protein. Dvl, a modular phosphoprotein, is phosphorylated by several kinases such as CK1. Activated Dvl recruits the destruction complex to the plasma membrane and binds to Axin and Fzd. Intriguingly, Axin binds to the cytoplasmic domain of LRP5/6. When Dvl is activated, it leads to the inhibition of GSK3 activity, which activates a complex series of events that decreases β-catenin phosphorylation and degradation. Therefore, β-catenin accumulates in the nucleus and activates the transcription of target genes through interaction with DNA-bound T-cell factor (TCF) and lymphoid enhancer-binding factor 1 (LEF) family members. WNT signaling has been implicated in the modulation of innate immunity by stimulating invariant natural killer T cell (iNKT) responses and production of chemokine-like chemotactic factor leukocyte cell-derived chemotaxin 2 (LECT2) or by decreasing the release of tumor necrosis factor. LECT2 is involved in inflammation, chemotaxis, immuno-modulation, cell proliferation and carcinogenesis. In addition, LECT2 signaling induces inflammatory responses by activating the proinflammatory NF-κB pathway. Abnormal Wnt and Fzd expression in hepatocytes, stellate and Kupffer cells might play important roles in liver pathobiology.
promoter. Decreased production of E-cadherin induces Wnt signaling activation\cite{30}. HCV core protein enhances β-catenin expression and nuclear stabilization by inactivating GSK-3β. Nuclear accumulation of β-catenin forms a transcriptional complex with TCF and activates downstream target genes, such as c-Myc, Cyclin D1 and WNT1 inducible signaling pathway (WISP-2), which regulate cell growth and cell cycle progression\cite{22,133}. Additionally, HCV core protein elevates the expression of LRPS/6 co-receptors and FZD receptors and releases β-catenin from the β-catenin-E-cadherin complexes\cite{39}. Taken together, the direct involvement of HCV core protein in the Wnt pathway is an attractive candidate to mediate liver pathogenesis.

COX-2 SIGNALING PATHWAY

The cyclooxygenase (COX) family consists of constitutive COX-1, inducible COX-2 and COX-3, which are involved in prostaglandin synthesis by conversion of arachidonic acid to prostanooids, including thromboxanes and prostaglandins\cite{117,119}. COX-2 can be induced by tumor promoters, cytokines and growth factors via the cis-acting elements within the 5' UTR of the COX-2 gene and is known as a pathogenic factor involved in cellular proliferation, anti-apoptosis activity, inflammation, fibrogenesis and tumorigenesis. Moreover, increased levels of prostaglandin E, and COX-2 contribute to various biological processes, including oxidative stress, liver damage, bacterial and viral infection, acute and chronic inflammation and cancer\cite{137,138,139}.

Studies have shown that there is a close relationship between oncogenic viruses such as HCV, HBV, EBV and HPV and COX-2\cite{120,121}. Previous reports demonstrated that increased production of COX-2 is observed in response to HCV infection\cite{122,123,124}. Overexpression of COX-2 supports HCV replication and has a potential role in hepatocarcinogenesis in HCC and human hepatoma cell lines\cite{121,122,129}. Several studies have previously documented that HCV stimulates COX-2 expression via oxidative stress\cite{130,131}.

Oxidative stress is a key contributor in liver fibrosis and carcinogenesis related to HCV infection\cite{132}. HCV core protein upregulates COX-2 levels in hepatocytes and has carcinogenic effects that lead to HCC\cite{62,122,133}. Jahan et al\cite{30} demonstrated that core protein of HCV genotype 3a induces COX-2 expression in Huh-7 cells compared to the core protein of HCV genotype 1a. Conversely, several studies have shown that HCV core protein downregulates COX-2 expression. HCV might avoid the inflammatory responses of host by downregulating this signaling pathway\cite{125-127}. COX-2 plays a crucial role in the production of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, by liver cells, which are associated with cell migration via degradation of cellular and extracellular components during organ development, morphogenesis, tissue damage and cancer invasion\cite{136}. COX-2 is involved in the regulation of superoxide anion expression, namely NADPH oxidase 1 (NOX1) and NADPH oxidase 4 (NOX4), in hepatocytes\cite{135,136}. Lan et al\cite{30} demonstrated that NOX1 and NOX4 are increased in cirrhotic patients and play an important role in liver fibrosis via regulating proliferation, inflammation and fibrogenesis in hepatic stellate cells. COX-2 stimulates β-catenin activation, which leads to WNT pathway activation and subsequent cell growth and proliferation through its interaction with TCF in the nucleus\cite{139}. COX-2 induces the production of VEGF and the anti-apoptotic proteins of the Bcl-2 family, which are associated with an increase in angiogenesis, invasiveness, and resistance to apoptosis\cite{140}. Leng et al\cite{141} showed a positive correlation between COX-2 and phosphatidylinositol 3-kinase 3-protein Kinase B (PI3K-Akt/PKB) pathway activation in human HCC tissue. PI3K-Akt/PKB plays a major role in cancer development and progression by inhibiting apoptosis and stimulating cell proliferation. A recent study showed that long non-coding RNA (lncRNA) COX-2 inhibits immune evasion, migration and invasion of HCC cells and may provide a novel theoretical basis for HCC treatment\cite{142}. In view of these facts, there is a direct relationship between HCV core protein and COX-2 overexpression, which in turn leads to alterations in cell signaling pathways (Figure 5). Therefore, the COX-2 signaling pathway should be considered a target to prevent HCV replication and HCV-associated diseases.

PPAR ALPHA SIGNALING PATHWAY

PPARs are a family of nuclear receptor proteins that belong to the steroid/thyroid hormone receptor superfamily and function as transcription factors. This family has three members, including PPARα, PPARγ and PPARβ/δ\cite{143}, which play regulatory roles in cellular processes such as differentiation, proliferation, inflammation,
oxidative stress, tumorigenesis and metabolism (carbohydrate, lipid, protein)[144]. In order to function, all PPARs initially heterodimerize with the retinoid X receptor (RXR) and then bind to peroxisome proliferator hormone-response elements (PPREs), which are located in the promoter region of PPAR target genes[145]. PPARα is one of the most abundant nuclear receptors expressed in hepatocytes, and it acts as an important and vital regulator in lipid and lipoprotein metabolism. It becomes activated by several molecules such as long-chain unsaturated fatty acids, and once activated, it promotes lipid clearance through β-oxidation upregulation[146]. The relationship between PPARα and cancer development is very complicated. Epidemiological studies have shown that PPARα has carcinogenic consequences in the liver of humans and rodents[147-150]. It is also noted that long-term administration of PPARα ligands can lead to increased ROS generation, accelerated hepatocyte proliferation and development of HCC[151]. In other words, persistent PPARα activation induces hepatic steatosis through increased liver triglyceride synthesis. On the other hand, hepatic steatosis promotes HCC development and acts as an important accelerating factor of HCC in HCV-infected patients[152-154]. Therefore, the hepatic steatosis induced by alteration of fatty acid metabolism in hepatocytes may act as a mediator in causing HCC in HCV-infected patients. Thus, it is important to understand the interaction between HCV infection and PPARα signaling pathway.

On the basis of several lines of evidence, PPARα activity is impaired in patients with chronic hepatitis C infection, which may contribute to hepatocarcinogenesis[32,155]. Dharancy et al[32] showed that PPARα expression is significantly decreased in HCV-infected patients compared to the control group. In this study, HCV core protein expression in HepG2 cells led to disruption of PPARα transcriptional activity, demonstrated by decreased expression of the PPARα target gene CPT1A. Shen et al[156] indicated that PPARα has an inhibitory effect on NF-κB. On the other hand, HCV core protein can disrupt PPARα activity. From this point of view, HCV core protein can indirectly activate PPARα through activation and phosphorylation of ERK1/2 and P38 MAPK[155,157] (Figure 6). HCV core protein also binds to RXR and enhances RXR transcriptional activity, leading to the upregulation of some lipid metabolism enzymes. This result suggests that the dysregulation of RXR by HCV core protein may contribute to HCC development[158]. These findings demonstrate that HCV core protein disrupts PPARα activity, leading to HCC in HCV-infected patients. Thus, PPARα can be considered a new therapeutic target for preventing HCC.

Figure 4 Interaction between Wnt/β-catenin signaling pathway and HCV core protein. HCV core protein increases the expression of Fzd and LRP5/6, decreases the expression of sFRPs and Dickkopf and suppresses the E-cadherin gene promoter. The components shown are explained in more detail in the text: sFRPs: Secreted Frizzled-related proteins; WIF: Wnt inhibitory factor; DKK: Dickkopf WNT signaling pathway inhibitor; LRP5/6: Low-density-lipoprotein-related protein 5/6; Fzd: Frizzled; CDH1: E-cadherin; DVL: Dishevelled segment polarity protein; GSK3: Glycogen synthase kinase 3; CK1: Casein kinase 1; UB: Ubiquitin protein; APC: Adenomatous polyposis coli; TCF/LEF: Transcription factor/lymphoid enhancer-binding factor.
HCV can cause liver diseases, especially HCC, through the modulation of various signaling pathways. TGF-β, VEGF, WNT, COX-2 and PPARα signaling pathways play important roles in the regulation of fibrogenesis, angiogenesis and tumorigenesis by controlling cell proliferation, apoptosis, transcriptional regulation and cell growth promotion. Therefore, their dysregulation is associated with HCC. As previously mentioned, HCV core protein uses various mechanisms to dysregulate these pathways. Hence, it seems necessary to undertake major research efforts for a better understanding of how HCV core protein leads to the dysregulation of these signaling pathways, which in turn helps in designing effective therapeutic methods. Furthermore, these signaling pathways should be considered therapeutic targets for cancer therapy, and prevention programs should be implemented to prevent their overexpression. Given the commercially available inhibitors against these pathways, HCV-related HCC development can be prevented in the near future. Moreover, the use of antiviral drugs such as DAAs in combination with Peg-IFNa plus ribavirin leads to SVR in chronic hepatitis C patients, which in turn can help reduce some of the factors involved in cancer development, such as TGF-β1. However, these findings require more research.
Figure 6 Interaction between the PPARα signaling pathway and HCV core protein. HCV core protein can directly and indirectly activate PPARα, and PPARα activation increases liver triglyceride accumulation, leading to hepatic steatosis. See the text for more details. PPARα: Peroxisome proliferator-activated receptor α; ROS: Receptor tyrosine kinase c-ros oncogene 1; RXR: Retinoid X receptor; PPRE: Peroxisome proliferator hormone response elements.

REFERENCES

1. Fiorina L, Ricotti M, Vanoli A, Luinetti O, Dallera E, Riboni R, Paolucci S, Brugnatelli S, Paulli M, Pedrazzoli P, Baldanti F, Porfetti V. Systematic analysis of human oncogenic viruses in colon cancer revealed EBV latency in lymphoid infiltrates. *Infect Agent Cancer* 2014; 9: 18 [PMID: 24936208 DOI: 10.1186/1750-9378-9-18]

2. White MK, Pagano JS, Khalili K. Viruses and human cancers: a long road of discovery of molecular paradigms. *Clin Microbiol Rev* 2014; 27: 463-481 [PMID: 24982317 DOI: 10.1128/CMR.00124-13]

3. Dubuisson J, Cosset FL. Virology and cell biology of the hepatitis C virus life cycle: an update. *J Hepatol* 2014; 61: S3-S13 [PMID: 25443344 DOI: 10.1016/j.jhep.2014.06.031]

4. Taherkhani R, Farshadpour F. Global elimination of hepatitis C virus infection: Progresses and the remaining challenges. *World J Hepatol* 2017; 9: 1239-1252 [PMID: 29312527 DOI: 10.4254/wjh.v9.i33.1239]

5. Taherkhani R, Farshadpour F. Lurking epidemic of hepatitis C virus infection in Iran: A call to action. *World J Hepatol* 2017; 9: 1040-1042 [PMID: 28932350 DOI: 10.4254/wjh.v9.i24.1040]

6. Maheshwari A, Ray S, Thuluvath PJ. Acute hepatitis C. *Lancet* 2008; 372: 321-332 [PMID: 18657711 DOI: 10.1016/S0140-6736(08)61116-2]

7. Taherkhani R, Farshadpour F. Epidemiology of hepatitis C virus in Iran. *World J Gastroenterol* 2015; 21: 10790-10810 [PMID: 26478671 DOI: 10.3748/wjg.v21.i38.10790]

8. Webber P, Klennerman P, Dusheiko GM. Hepatitis C. *Lancet* 2015; 385: 1124-1135 [PMID: 25687730 DOI: 10.1016/S0140-6736(14)62401-6]

9. Smith-Palmer J, Cerri K, Valentine W. Achieving sustained virologic response in hepatitis C: a systematic review of the clinical, economic and quality of life benefits. *BMC Infect Dis* 2015; 15 [PMID: 25996623 DOI: 10.1186/s12879-015-0748-8]

10. Guarino M, Sessa A, Cassiga V, Morando F, Caporaso N, Morisco F; Special Interest Group on “Hepatocellular carcinoma and new anti-HCV therapies” of the Italian Association for the Study of the Liver. Direct-acting antivirals and hepatocellular carcinoma in chronic hepatitis C: A few lights and many shadows. *World J Gastroenterol* 2018; 24: 2582-2595 [PMID: 29962815 DOI: 10.3748/wjg.v24.i24.2582]

11. Alemán S, Rabbin N, Welland O, Davidsdottir L, Hedensterna M, Rose N, Verbaan H, Ståhl P, Carlsson T, Norrgren H, Ekbom A, Granath F, Hultcrantz R. A risk for hepatocellular carcinoma persists long-term after sustained virologic response in patients with hepatitis C-associated liver cirrhosis. *Clin Infect Dis* 2013; 57: 230-236 [PMID: 23616492 DOI: 10.1093/cid/cit234]
El-Serag HB, Kanwal F, Richardson P, Kramer J. Risk of hepatocellular carcinoma after sustained virological response in Veterans with hepatitis C virus infection. *Hepatology* 2016; 64: 130-137 [PMID: 26946191 DOI: 10.1002/hep.28355]

van der Meer AJ, Feld JJ, Hofer H, Almassi PL, Calvaruso V, Fernández-Rodríguez CM, Aleman S, Garne-Carrié N, D’Ambrosio R, Pol S, Trapero-Marugan M, Maan R, Moreno-Otero R, Mallet V, Hultcrantz R, Weiland O, Rutter K, Di Marco V, Alonso S, Bruno S, Colombo M, de Knecht R, Veldt BJ, Hansen BE, Janssen HLA. Risk of cirrhosis-related complications in patients with advanced fibrosis following hepatitis C virus eradication. *J Hepatol* 2017; 66: 405-493 [PMID: 27789714 DOI: 10.1016/j.jhep.2016.10.017]

W HO. Hepatitis C, WHO fact sheet. Available from: http://www.who.int/en/news-room/fact-sheets/detail/hepatitis-c

Smith DB, Bukh J, Kukl C, Muerhoff AS, Rice CM, Stapleton JT, Simmonds P. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. *Hepatology* 2014; 59: 318-327 [PMID: 24115009 DOI: 10.1002/hep.26744]

Pirakitkul N, Kohlway A, Lindenbach BD, Pyle AM. The Coding Region of the HCV Genome Contains a Network of Regulatory RNA Structures. *Mol Cell* 2016; 62: 111-120 [PMID: 25924328 DOI: 10.1016/j.molcel.2015.12.024]

Tellingshuisen TL, Rice CM. Interaction between hepatitis C virus proteins and host cell factors. *Curr Opin Microbiol* 2002; 5: 419-427 [PMID: 12160863 DOI: 10.1016/S1369-5274(02)00341-7]

Banerjee A, Ray RB, Ray R. Oncogenic potential of hepatitis C virus proteins. *Viruses* 2010; 2: 2108-2133 [PMID: 21994721 DOI: 10.3390/v20921008]

Abdallah C, Lejamel C, Benzoubir N, Battaglia S, Sdahmad-Adrar N, Desteker C, Lemasson M, Rosenberg AR, Samuel D, Bréchet P, Plieger D, Le Naour F, Bougeade MF. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice. * Oncarget* 2017; 8; 56228-56242 [PMID: 28915586 DOI: 10.18632/oncarget.17284]

Kasprzak A, Adamek A. Role of hepatitis C virus proteins (C, NS3, NSSA) in hepatic oncogenesis. *Hepatol Res* 2008; 38: 1-26 [PMID: 17894800 DOI: 10.1111/j.1872-034X.2007.00261.x]

Liu J, Ding X, Tang J, Cao Y, Hu P, Zhou F, Shan X, Cai X, Chen Q, Ling N, Zhang B, Bi Y, Chen K, Ren H, Huang A, He TC, Tang N. Enhancement of canonical Wnt-β-catenin signaling activity by HCV core promotes cell growth of hepatocellular carcinoma cells. *PloS One* 2011; 6: e27496 [PMID: 22110652 DOI: 10.371/journal.pone.027496]

Jiang YF, He B, Li NP, Ma J, Gong GZ, Zhang M. The oncogenic role of NSSA of hepatitis C virus is mediated by up-regulation of survivin gene expression in the hepatocellular cell through p53 and NF-κB pathways. *Cell Biol Int* 2011; 35: 1225-1232 [PMID: 21612579 DOI: 10.1042/CBD010102]

Qadri I, Iwahashi M, Capasso JM, Hopken MW, Flores S, Schaack J, Simon FR. Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. *Biochem* 2004; 378; 919-928 [PMID: 14690077 DOI: 10.1042/Bi20035107]

Boulant S, Vanbelle C, Ebel C, Penin F, Lavergey JP. Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. *J Virol* 2005; 79: 1133-11365 [PMID: 16103187 DOI: 10.1128/JVI.00102-09]

Kunkel M, Watowich SJ. Biophysical characterization of hepatitis C virus core protein: implications for interactions within the virus and host. *FEBS Lett* 2004; 557: 174-180 [PMID: 14713561 DOI: 10.1016/S0014-5793(03)05186-8]

Bartsch B, Thimme R, Blum HE, Zoulim F. Hepatitis C virus-induced hepatocarcinogenesis. *J Hepatol* 2009; 51: 810-820 [PMID: 19559732 DOI: 10.1016/j.jhep.2009.05.006]

Taniguchi H, Kato N, Otsuka M, Goto T, Yoshida H, Shiratori Y, Omata M. Hepatitis C virus core protein upregulates transforming growth factor-beta 1 transcription. *J Med Virol* 2004; 72: 52-59 [PMID: 14635001 DOI: 10.1002/jmv.20145]

Joo M, Hahn YS, Kwon M, Sadikot RT, Blackwell TS, Christman JW. Hepatitis C virus core protein suppresses NF-kappab activation and cyclooxygenase-2 expression by direct interaction with IkappaB kinase beta. *J Virol* 2005; 79: 7648-7657 [PMID: 15919197 DOI: 10.1128/JVI.79.12.7648-7657.2005]

Jahan S, Khalili S, Ijaz B, Ahmad W, Hassan S. Role of HCV Core gene of genotype 1a and 3a and host gene Cox-2 in HCV-induced pathogenesis. *Hepatology* 2011; 8: 155 [PMID: 21457561 DOI: 10.1002/1874-422X-8-155]

Hassan M, Selimovic D, Ghozlan H, Abdel-kader O. Hepatitis C virus core protein triggers hepatic angiogenesis by a mechanism including multiple pathways. *Hepatology* 2009; 49: 1469-1482 [PMID: 19235829 DOI: 10.1002/hep.22849]

Dharancy S, Malapel M, Perlembat, Roskams T, Cheng Y, Dubuquoy L, Pol S, Auwerx J, Desreumaux P, Dharancy S, Malapel M, Perlembat G, Roskams T, Cheng Y, Dubuquoy L, Pol S, Auwerx J, Desreumaux P. Impaired expression of the peroxisome proliferator-activated receptor alpha during hepatitis C virus infection. *Gastroenterology* 2005; 128: 334-342 [PMID: 15685543 DOI: 10.1053/j.gastro.2004.11.016]

Massagüe J. TGF-beta in Cancer. *Cell* 2008; 134: 215-230 [PMID: 18662538 DOI: 10.1016/j.cell.2008.07.001]

Syed V. TGF-β Signaling in Cancer. *J Cell Biochem* 2016; 117: 1279-1287 [PMID: 26774024 DOI: 10.1002/jcb.25496]

Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. *J Histochem Cytochem* 2016; 64: 157-167 [PMID: 26747705 DOI: 10.1369/002215516527681]

Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. *Growing Factors* 2011; 29: 196-202 [PMID: 21740331 DOI: 10.3109/08997719.2010.59714]

Mirzaei H, Faghhihio E. Viruses as key modulators of the TGF-β pathway; a double-edged sword involved in cancer. *Rev Med Virol* 2018; 28 [PMID: 29345394 DOI: 10.1002/rmv.1967]

Gordon KJ, Blobc GE. Role of transforming growth factor-beta superfamily signaling pathways in human disease. *Biochim Biophys Acta* 2008; 1782: 197-228 [PMID: 18513409 DOI: 10.1016/j.jbbadis.2008.01.006]

Blobc GC, Schimmann WP, Wieland H. Role of transforming growth factor beta in human
Mahmoudvand S et al. Modulation of signaling pathways involved in HCC

Copyright © 2019 Wolters Kluwer. Unauthorized reproduction of this article is prohibited.

January 7, 2019 Volume 25 Issue 1
alpha 2b plus ribavirin treatment on plasma transforming growth factor-beta1, metalloproteinase-1, and tissue metalloproteinase inhibitor-1 in patients with chronic hepatitis C. *World J Gastroenterol* 2005; 11: 6833-6838 [PMID: 16425992 DOI: 10.3748/wjg.v11.i43.6833]

Janiczewska-Kazek E, Marek R, Kajdanialuk D, Borgeil-March E. Effect of interferon alpha and ribavirin treatment on serum levels of transforming growth factor-beta1, vascular endothelial growth factor, and basic fibroblast growth factor in patients with chronic hepatitis C. *World J Gastroenterol* 2006; 12: 961-965 [PMID: 16521228 DOI: 10.3748/wjg.v12.i6.961]

Holmes DJ, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. *Genome Biol* 2005; 6: 209 [PMID: 15699956 DOI: 10.1186/gb-2005-6-2-209]

Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. *Cold Spring Harb Perspect Med* 2012; 2: a006502 [PMID: 22762018 DOI: 10.1101/cshperspect.a006502]

Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. *Oncology* 2004; 9 Suppl 1: 2-10 [PMID: 1517810 DOI: 10.1344/theoncologist.9.suppl.1-2]

Goel HL, Mercurio AM. VEGF targets the tumour cell. *Nat Rev Cancer* 2013; 13: 871-882 [PMID: 24263190 DOI: 10.1038/nrc3627]

Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. *Oncology* 2005; 69 Suppl 3: 4-10 [PMID: 16031830 DOI: 10.1159/000088479]

Lemus-Varela ML, Flores-Soto ME, Cervantes-Munguia R, Torres-Mendoza BM, Gudino-Cabrera G, Chaparro-Huerta V, Ortuno-Sahagun D, Beas-Zarate C. Expression of HIF-1 alpha, VEGF and EPO in peripheral blood from patients with two cardiac abnormalities associated with hypoxia. *Clin Biochem* 2010; 43: 234-239 [PMID: 19804771 DOI: 10.1016/j.clinbiochem.2009.09.022]

Wong C, Wellman TL, Louboury KM. VEGF and HIF-1alpha expression are increased in advanced stages of epithelial ovarian cancer. *Gynecol Oncol* 2003; 91: S13-S17 [PMID: 14675669 DOI: 10.1016/s0090-8258(02)00676-9]

Poon RT, Fan ST, Wong J. Clinical implications of circulating angiogenic factors in patients. *J Clin Oncol* 2001; 19: 1207-1225 [PMID: 11816167 DOI: 10.1200/JCO.2001.19.4.1207]

Allahsahab KR. VEGF upregulation in viral infections and its possible therapeutic implications. *Int J Mol Sci* 2018; 19 [PMID: 29685171 DOI: 10.3390/ijms19061642]

Llovet JM, Peña CE, Lathia CD, Shan M, Meinhardt G, Bruix J. SHARP Investigators Study Group. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. *Clin Cancer Res* 2012; 18: 2290-2300 [PMID: 22374331 DOI: 10.1158/1078-0432.CCR-11-2175]

Nasimuzzaman M, Warris C, Mikolon D, Stupack DG, Siddiqui A. Hepatitis C virus stabilizes hypoxia-inducible factor alpha and stimulates the synthesis of vascular endothelial growth factor. *J Viral* 2007; 81: 1024-1029 [PMID: 17626077 DOI: 10.1111/j.1178-2496.2007.00736.x]

Mukozu T, Nagai H, Matsuji D, Kanekawa T, Sumimoto Y. Serum VEGF as a tumor marker in patients with HCV-related liver cirrhosis and hepatocellular carcinoma. *Anticancer Res* 2013; 33: 1013-1021 [PMID: 23482775]

Yamamoto EY, Forrether RF, Nogueira V, Pinhe MA, Tenani GD, Andrade JG, Bialleme M, Gregorio ML, Fucuta PS, Silva RF, Souza DR, Silva RC. Influence of vascular endothelial growth factor alpha and -fetoprotein on hepatocellular carcinoma. *Genet Mol Res* 2015; 14: 17435-17462 [PMID: 26782388 DOI: 10.4238/2015.December.21.16]

Zhu C, Liu X, Wang S, Yan X, Tang Z, Wu K, Li Y, Liu F. Hepatitis C virus core protein induces hypoxia-inducible factor 1a-mediated vascular endothelial growth factor expression in Huh7.5.1 cells. *Mol Med Rep* 2014; 9: 2010-2014 [PMID: 24626461 DOI: 10.3892/mmr.2014.2039]

Liu XH, Zhou X, Zhu CL, Song H, Liu F. [Effects of HCV core protein on the expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor]. *Zhonghua Gan Zang Bing Za Zhi* 2011; 19: 751-754 [PMID: 24098472 DOI: 10.3760/cma.j.issn.1001-4440.2011.02.006]

Shao YJ, Hsieh MS, Wang HY, Li YS, Lin H, Hsu HW, Huang CY, Hsu CH, Cheng AL. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells. *Oncotarget* 2015; 8: 86681-86692 [PMID: 29156827 DOI: 10.18632/oncotarget.21407]

Tzeng HE, Tsai CH, Chang ZL, Su CM, Wang SW, Hwang WL, Tang CH. Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through core signal-regulating kinase 1 in human osteosarcoma. *Biochem Pharmacol* 2013; 85: 531-540 [PMID: 23291956 DOI: 10.1016/j.bjp.2012.11.021]

Dong W, Li Y, Gao M, Hu M, Li X, Mai S, Guo N, Yuan S, Song L. IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation. *Nucleic Acids Res* 2012; 40: 2940-2953 [PMID: 22169922 DOI: 10.1093/nar/gkr2121]

Tsutsumi T, Suzuki T, Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Matsuura Y, Kimura S, Koike K, Miyamura T. Alteration of intrahepatic cytokine expression and AP-1 activation in transgenic mice expressing hepatitis C virus core protein. *Virology* 2002; 304: 415-424 [PMID: 12504380 DOI: 10.1006/viro.2002.1702]

Shrivastava A, Manna SK, Ray R, Aggarwal BB. Ectopic expression of hepatitis C virus core protein differentially regulates nuclear transcription factors. *J Virol* 1998; 72: 9722-9728 [PMID: 9811706]

Kanda T, Steele R, Ray R, Ray RB. Hepatitis C virus core protein augments androgen receptor-mediated signaling. *J Virol* 2008; 82: 11066-11072 [PMID: 18760969 DOI: 10.1128/jvi.01303-08]

Komiya Y, Haban R. Wnt signal transduction pathways. *Oncogene* 2008; 4: 68-75 [PMID: 18635011 DOI: 10.1038/sj.onc.1211213]

Tsuda M, Fujita K, Nishimura K, Kage Y, Ito M, Abe M, Koga H, Yoshida T, Masuda H, Hanada S, Nakamura T, Maekawa T, Torimura T, Ueno T, Sata M. Hepatitis C virus core protein upregulates the expression of vascular endothelial growth factor via the nuclear factor κB/hypoxia-inducible factor-1α axis under hypoxic conditions. *Hepatol Res* 2011; 41: 431-438 [PMID: 21359757 DOI: 10.1111/j.1540-8759.2010.92951.x]
Mahmoudvand S et al. Modulation of signaling pathways involved in HCC

PMID: 25574724 DOI: 10.1026/j.gastro.2015.02.005

Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303: 1483-1487 [PMID: 15001769 DOI: 10.1126/science.1094291]

Kikuchi A, Yamamoto H, Sato A, Matsumoto S. New insights into the mechanism of Wnt signaling pathway activation. Int Rev Cell Mol Biol 2011; 291: 21-71 [PMID: 22017973 DOI: 10.1016/B978-0-12-366035-4.00021-1]

Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell 2012; 149: 1192-1205 [PMID: 22862243 DOI: 10.1016/j.cell.2012.05.016]

MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9-26 [PMID: 19619488 DOI: 10.1016/j.devcel.2009.06.016]

King TD, Zhang W, Buto MJ, Li Y. Frizzled7 as an emerging target for cancer therapy. Cell Signal 2012; 24: 846-851 [PMID: 22192810 DOI: 10.1016/j.cellsig.2011.12.009]

Logan CY. Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781-810 [PMID: 15473860 DOI: 10.1146/annurev.cellbio.20.010403.113126]

Nusse R, Clevers H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017; 169: 985-999 [PMID: 28575679 DOI: 10.1016/j.cell.2017.05.016]

Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature 2005; 434: 843-850 [PMID: 15829953 DOI: 10.1038/nature03319]

Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2010; 2: a002915 [PMID: 21826252 DOI: 10.1101/cshperspect.a002915]

Flanagan DJ, Austin CR, Vincan E, Phesse TJ. Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes (Basel) 2018; 9 [PMID: 29570681 DOI: 10.3390/genes9040178]

Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 2005; 132: 4421-4436 [PMID: 16192308 DOI: 10.1242/dev.01610]

Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008; 8: 387-398 [PMID: 18432252 DOI: 10.1038/nrc2389]

Jeong WJ, Ro EJ, Choi KY. Interaction between Wnt/beta-catenin and RAS-ERK pathways and an anti-cancer strategy via degradation of beta-catenin and RAS by targeting the Wnt/beta-catenin pathway. NPJ Precis Oncol 2018; 2: 5 [PMID: 29872722 DOI: 10.1038/s41598-018-0048-z]

Trischler J, Shiomi T, Turner DL, Slepekiewicz PL, Goldklang MP, Tanaka KF, Xu M, Faber DL, D’Armentio JM. Immune Modulation of the T Cell Response in Asthma through Wnt10b. Am J Respir Cell Mol Biol 2016; 54: 584-595 [PMID: 26366949 DOI: 10.1165/rcmb.2014-0425OC]

Reuter S, Martin H, Beckert H, Bros M, Montenmann E, Belz C, Heinz A, Ohlmann S, Sahin U, Stassen M, Buhl R, Eshkind L, Taube C. The Wnt/beta-catenin pathway attenuates experimental allergic airway disease. J Immunol 2014; 193: 485-495 [PMID: 24929902 DOI: 10.4049/jimmunol.1400103]

Wang W, Pan Q, Fuhler GM, Smits R, Peppelenbosch MP. Action and function of Wnt/beta-catenin signaling in the progression from chronic hepatitis C to hepatocellular carcinoma. J Gastroenterol 2017; 52: 419-431 [PMID: 28035485 DOI: 10.1007/s00535-016-1299-5]

Anson M, Crain-Denoyelle AM, Baud V, Chereau F, Gougeau A, Terriss B, Yamagoe S, Colnot S, Viguier M, Perret C, Couty JP. Oncogenic beta-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. J Clin Invest 2012; 122: 586-599 [PMID: 22251704 DOI: 10.1172/JCI43937]

Zeng G, Awan F, Otruba W, Muller P, Apte U, Tan X, Gandhi C, Demetrius AJ, Monga SP. Wnt’er in liver: expression of Wnt and frizzled genes in mouse. Hepatology 2007; 45: 195-204 [PMID: 17187422 DOI: 10.1002/hep.21473]

Wang Q, Chou X, Guan F, Fang Z, Lu S, Lei J, Li Y, Liu W. Enhanced Wnt Signalling in Hepatocytes is Associated with Schistosoma japonicum Infection and Contributes to Liver Fibrosis. Sci Rep 2017; 7: 230 [PMID: 23312124 DOI: 10.1186/s13497-017-10774-4]

Khanizadeh S, Hasanvand B, Esmaeil Lashgarian H, Almasian M, Goudarzi G. Interaction of viral oncogenic proteins with the Wnt signaling pathway. Iran J Basic Med Sci 2017; 20: 160 DOI: 10.22038/IJBMS.2018.28903.6982

Quan H, Zhou F, Nie D, Chen Q, Cai X, Shan X, Zhou Z, Chen K, Huang A, Li S, Tang N. Hepatitis C virus core protein activates Wnt/beta-catenin signaling through multiple regulation of upstream molecules in the SMMC-7721 cell line. Arch Virol 2011; 156: 1013-1023 [PMID: 21340743 DOI: 10.1007/s00705-011-0943-3]

King TD, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303: 1483-1487 [PMID: 15001769 DOI: 10.1126/science.1094291]

Umer M, Qureshi SA, Hashmi ZY, Raza A, Ahmad J, Rahman M, Iqbal M. Promoter hypermethylation of Wnt pathway inhibitors in hepatitis C virus-induced multistep hepatocarcinogenesis. Viral J 2014; 11: 117 [PMID: 24997308 DOI: 10.1186/1743-422X-11-117]

Ripoli M, Barbano R, Balsamo T, Piccoli C, Brunetti V, Coco M, Mazzoccoli G, Vinciguerra M, Piazza V. Hypermethylated levels of E-cadherin promoter in Huh-7 cells expressing the HCV core protein. Virus Res 2011; 160: 74-81 [PMID: 21640770 DOI: 10.1016/j.virusres.2011.05.014]

Jhaveri R, Kundu P, Shapiro AM, Venkatesan A, Dasgupta A. Effect of hepatitis C virus core protein on cellular gene expression: specific inhibition of cyclooxygenase 2. J Infect Dis 2005; 191: 1498-1506 [PMID: 15890909 DOI: 10.1086/429301]

Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 2004; 56: 387-437 [PMID: 15317910 DOI: 10.1124/pr.56.3.3]

Chen WC, Tseng CK, Chen YH, Lin CK, Hsu SH, Wang SN, Lee JC. HCV NS5A Up-Regulates COX-2 Expression via IL-8-Mediated Activation of the ERK/JNK MAPK Pathway. Plos One 2015; 10: e0133264 [PMID: 26231035 DOI: 10.1371/journal.pone.0133264]

Greenough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A. The COX-2/PRO12 pathway: key roles in the hallmarks of cancer and adaptation to the tumour
microenvironment. *Carcinogenesis* 2009; 30: 377-386 [PMID: 19136477 DOI: 10.1093/carcin/bgp014]

121 Núñez O, Fernández-Martínez A, Majano PL, Apolinario A, Gómez-Gonzalo M, Benedicto I, López-Cabrera M, Bosca L, Clemente G, García-Monzón C, Martín-Sanz P. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. *Gut* 2004; 53: 1665-1672 [PMID: 15479690 DOI: 10.1136/gut.2003.038664]

122 Cheng AS, Chan HL, Leung WK, To KF, Go MY, Chan JY, Liew CT, Sung JF. Expression of HBx and COX2 in chronic hepatitis B, cirrhosis and Hepatocellular carcinoma: implications of HBx in upregulation of COX-2. *Mod Pathol* 2004; 17: 1169-1179 [PMID: 15218507 DOI: 10.1088/mod-pathol.3800196]

123 Kaul R, Verma SC, Murakami M, Lan K, Choudhuri T, Robertson ES. Epstein-Barr virus protein p27 can upregulate cyclo-oxygenase-2 expression through association with the suppressor of metastasis Nm23-H1. *J Viral Hepat* 2006; 13: 1231-1331 [PMID: 16415009 DOI: 10.1111/j.1365-3156.2006.00857.x]

124 Subbarao SK, Dannenberg AJ. Cyclooxygenase-2 transcription is regulated by human papillomavirus 16 E6 and E7 oncoproteins: evidence of a coexpressor/coactivator exchange. *Cancer Res* 2007; 67: 3976-3985 [PMID: 17440114 DOI: 10.1158/0008-5472.CAN-06-2473]

125 Moss SF, Blaser MJ. Mechanisms of disease: Inflammation and the origins of cancer. *Nat Clin Pract Oncol* 2005; 2: 90-97; quiz 1 p following 113 [PMID: 16264881 DOI: 10.1038/nponc0081]

126 Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. *Clin Cancer Res* 2009; 15: 425-430 [PMID: 19714746 DOI: 10.1158/1078-0432.CCR-08-2174]

127 Gozmaa WM, Ibrahim MA, Shatat ME. Overexpression of cyclooxygenase-2 and transforming growth-factor-1 is an independent predictor of poor virological response to interferon therapy in chronic HCV genotype 4 patients. *Saudi J Gastroenterol* 2014; 20: 59-63 [PMID: 24468160 DOI: 10.4103/1319-3767.126034]

128 Trujillo-Murillo K, Álvarez-Martínez O, Garza-Rodríguez L, Martínez-Rodríguez H, Bosques-Padilla F, Ramos-Jiménez J, Barrera-Saldáñia H, Rincón-Sánchez AR, Rivas-Estilla AM. Additive effect of ethanol and HCV subgenomic replicon expression on COX-2 protein levels and activity. *J Viral Hepat* 2007; 14: 608-617 [PMID: 17697012 DOI: 10.1111/j.1365-2893.2006.00854.x]

129 Trujillo-Murillo K, Rincón-Sánchez AR, Martínez-Rodríguez H, Bosques-Padilla F, Ramos-Jiménez J, Barrera-Saldáñia HA, Rojkind M, Rivas-Estilla AM. Peroxynitrite induces hepatitis C virus RNA and protein expression through cyclooxygenase 2 signaling pathways. *Hepatology* 2008; 47: 1462-1472 [PMID: 18395288 DOI: 10.1002/hep.22215]

130 Ivanov AV, Bartosch B, Smirnova OA, Isagulians MG, Kochetkov SN. HCV and oxidative stress in the liver. *Virus* 2013; 5: 439-469 [PMID: 23358390 DOI: 10.1007/s13302-012-0213-8]

131 Waris G, Siddiqui A. Hepatitis C virus stimulates the expression of cyclooxygenase-2 via oxidative stress: role of prostaglandin E2 in RNA replication. *J Virol* 2005; 79: 9725-9734 [PMID: 16014934 DOI: 10.1128/JVI.79.15.9725-9734.2005]

132 Simula MP, De Re V. Hepatitis C virus-induced oxidative stress and mitochondrial dysfunction: a focus on recent advances in proteomics. *Proteomics Clin Appl* 2010; 4: 782-793 [PMID: 21317022 DOI: 10.1002/prca.201000049]

133 Jahan S, Ashfaq UA, Qasim M, Khaliq S, Saleem MJ, Afzal N. Hepatitis C virus infection promotes lung cancer: a focus on recent advances in proteomics. *Protomol Biol Med* 2012; 10: 3976-3985 [PMID: 12591385 DOI: 10.1002/prot.24039]

134 Callejas NA, Casado M, Díaz-Guerra MJ, Bosca L, Martín-Sanz P. Expression of cyclooxygenase-2 promotes the release of matrix metalloproteinase-2 and -9 in fetal rat hepatocytes. *Hepatology* 2001; 33: 860-867 [PMID: 11283850 DOI: 10.1038/hep.2001.20032]

135 Ivanov AV, Smirnova OA, Petrushanko IV, Ivanova ON, Karpenko IL, Alesevka E, Seminskaya I, Makarov AA, Bartosch B, Kochetkov SN, Isagulians MG. HCV core protein uses multiple mechanisms to induce oxidative stress in human hepatoma HuH7 cells. *Viruses* 2015; 7: 24-27 [PMID: 26035647 DOI: 10.3390/v7020024]

136 Lan T, Kisseleva T, Brenner DA. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatocellular Cell Activation. *PloS One* 2015; 10: e0129743 [PMID: 26222337 DOI: 10.1371/journal.pone.0129743]

137 Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Go-axin-beta-catenin signaling axis. *Science* 2005; 310: 1504-1510 [PMID: 16295724 DOI: 10.1126/science.1116221]

138 Yamanaka Y, Shiraki K, Inoue T, Miyashita K, Fuke H, Yamaguchi Y, Yamamoto N, Ito K, Sugimoto K, Nakano T. COX-2 inhibitors sensitive human hepatocellular carcinoma cells to TRAIL-induced apoptosis. *Int J Mol Med* 2006; 18: 41-47 [PMID: 16786154 DOI: 10.3892/ijmm.18.1.41]

139 Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in a celcoxib-induced apoptosis. *Hepatology* 2003; 38: 758-766 [PMID: 12909620 DOI: 10.1053/jhep.2003.050380]

140 Ye Y, Xu Y, Lai Y, He W, Li Y, Wang R, Luo X, Chen R, Chen T. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering Mi/M2 macrophage polarization. *J Cell Biochem* 2018; 119: 2951-2963 [PMID: 29131380 DOI: 10.1002/jcb.26509]

141 Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. *J Adv Pharm Technol Res* 2011; 2: 236-240 [PMID: 22246809 DOI: 10.1140/2214-4000.98579]

142 Michalakis L, Wahl W. PPARGs Mediate Lipid Signaling in Inflammation and Cancer. *PPAR Res* 2008; 2008: 134059 [PMID: 19125181 DOI: 10.1155/2008/134059]
Ament Z, Masoodi M, Griffin JL. Applications of metabolomics for understanding the action of peroxisome proliferator-activated receptors (PPARs) in diabetes, obesity and cancer. *Genome Med* 2012; 4 [PMID: 22546357 DOI: 10.1186/gm331]

Agrawal R, Tatarami T, Ruggieri Y, Capitanio N, Piccoli C. PPARs and HCV-Related Hepatocarcinoma: A Mitochondrial Point of View. *PPAR Res* 2012; 2012: 605302 [PMID: 22966221 DOI: 10.1155/2012/605302]

Ashby J, Brady A, Elcombe CR, Elliott BM, Ishmael J, Oudem J, Tugwood JD, Kettle S, Purchase IF. Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis. *Hum Exp Toxicol* 1994; 13 Suppl 2: S1-117 [PMID: 7857698 DOI: 10.1177/096032719401300201]

Saha SA, Kizhakepunnur LG, Bahekar A, Arora RR. The role of fibrates in the prevention of cardiovascular disease—a pooled meta-analysis of long-term randomized placebo-controlled clinical trials. *Am Heart J* 2007; 154: 943-953 [PMID: 17967602 DOI: 10.1016/j.ahj.2007.07.011]

Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. *Nature* 1990; 347: 645-650 [PMID: 2129546 DOI: 10.1038/347645a0]

Peters JM, Cattley RC, Gonzalez FJ. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. *Carcinogenesis* 1997; 18: 2029-2033 [PMID: 9395198 DOI: 10.1093/carcin/18.11.2029]

Tanaka N, Moriya K, Kiyosawa K, Koike K. Aoyama T. Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor alpha in transgenic mice: implications for HCV-associated hepatocarcinogenesis. *Int J Cancer* 2008; 122: 124-131 [PMID: 17941115 DOI: 10.1002/ijc.23256]

Yan F, Wang Q, Xu C, Cao M, Zhou X, Wang T, Yu C, Jing F, Chen W, Gao L, Zhao J. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect. *PLoS One* 2014; 9: e99245 [PMID: 24926685 DOI: 10.1371/journal.pone.0099245]

Ohata K, Hamsaki K, Toriyama K, Matsumoto K, Saeki A, Yanagi K, Abiru S, Nakagawa Y, Shigeno M, Miyaoka S, Ichikawa T, Ishikawa H, Nakao K, Eguchi K. Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. *Cancer* 2003; 97: 3036-3043 [PMID: 12784399 DOI: 10.1002/cncr.11427]

Koike K. Steatosis, liver injury, and hepatocarcinogenesis in hepatitis C viral infection. *J Gastroenterol* 2009; 44 Suppl 19: 82-88 [PMID: 19148799 DOI: 10.1007/s00535-008-0227-4]

Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T. PPARalpha activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. *J Clin Invest* 2008; 118: 685-694 [PMID: 18188449 DOI: 10.1172/JCI35594]

Shen W, Gao Y, Lu B, Zhang Q, Hu Y, Chen Y. Negatively regulating TLR4/NF-κB signaling via PPARα in endotoxin-induced uveitis. *Biochim Biophys Acta* 2014; 1842: 1109-1120 [PMID: 24179212 DOI: 10.1016/j.bbadis.2014.03.013]

Barger PM, Browning AC, Garner AN, Kelly DP. p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. *J Biol Chem* 2001; 276: 44495-44501 [PMID: 11577087 DOI: 10.1074/jbc.M105945200]

Tsutsumi T, Suzuki T, Shimokata T, Suzuki R, Moriya K, Shintani Y, Fuji H, Matsura Y, Koike K, Miyazawa T. Interaction of hepatitis C virus core protein with retinoid X receptor alpha modulates its transcriptional activity. *Hepatology* 2002; 35: 937-946 [PMID: 11915042 DOI: 10.1053/jhep.2002.32470]

P- Reviewer: Kai K, Zhao HT
S- Editor: Ma RY L- Editor: Filipodia E- Editor: Huang Y
