A generalization of Cauchy-Khinchin-van Dam inequality

Baozhi Sun1*, Zhixi Wang2 and Lijun Zhao2

Abstract: We first give an alternative proof of a theorem originally presented by E. R. van Dam. Then we show a generalization of the van Dam matrix inequality.

1. Introduction

D. de Caen (1998) gave an upper bound on the sum of squares of degrees in a graph by considering some positive semidefinite quadratic form related to the line graph of the complete graph. Following de Caen’s idea, van Dam (1998) gave a matrix inequality, which generalizes the Cauchy-Schwarz inequality for vectors, and Khinchin’s inequality for zero-one matrices. In Section 2, we first present a different proof of Theorem 1 of van Dam (1998). In Section 3, we give the main result of this paper, a generalization of the van Dam matrix inequality. Then, in Section 4, we compare with the result of Yan (2011).

2. An alternative proof of van Dam’s theorem

Theorem 1 (van Dam, 1998, Theorem 1) Let \(A = (a_{ij}) \) be a real \(m \times n \) matrix. Then

\[
m \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \right)^2 + n \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \right)^2 \leq \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \right)^2 + mn \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2.
\]

ABOUT THE AUTHORS

Baozhi Sun is working as an associate professor in School of Mathematical Sciences at Qufu Normal University in China. She is pursuing her PhD degree in Mathematics from Capital Normal University of China in 2006. Her area of interest is matrix inequalities, quantum entanglement and Hopf algebra.

Zhixi Wang is working as a professor in School of Mathematical Sciences at Capital Normal University in China. He is pursuing his PhD degree in Mathematics from Beijing Normal University in China in 1992. His area of interest is quantum information.

Lijun Zhao is a doctoral student in School of Mathematical Sciences at Capital Normal University in China. Her research interests are quantum coherence and quantum entanglement.

PUBLIC INTEREST STATEMENT

D. de Caen had gave an upper bound on the sum of squares of degrees in a graph by considering some positive semidefinite quadratic form related to the line graph of the complete graph. Following de Caens idea, E. R. van Dam gave a matrix inequality, which generalizes the Cauchy-Schwarz inequality for vectors, and Khinchins inequality for zero-one matrices. In this paper, we present a different proof of van Dam’s inequality and then give a generalization. Finally, we compare with the generalization of Zizong Yan (2011). We hope that the result can be used to the investigation of quantum entanglement.

*Corresponding author: Baozhi Sun, School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China. E-mails: sun_bao_zhi@163.com, wenyuesbz@qq.com

Reviewing editor: Hari M. Srivastava, University of Victoria, Canada

Additional information is available at the end of the article

© 2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
The equality holds if and only if \(a_j = b_j + c_j \) for some real \(b_j \) and \(c_j, i = 1, 2, \ldots, m, j = 1, 2, \ldots, n \).

von Dam (cf. 1998) proved the theorem using the positivity of the matrix \(nI_n - J_m \), where \(I_n \) is the identity matrix of order \(n \) and \(J_n \) is the square matrix of order \(n \) with all elements are equal to 1.

It is easy to see that the matrix \(nI_n - J_n \) has eigenvalue 0 with multiplicity 1 and \(n \) with multiplicity \(n - 1 \). By \(a_n = \frac{1}{\sqrt{n}} (1, 1, \ldots, 1) \), we denote the eigenvector of \(nI_n - J_n \) associated to the eigenvalue 0, and \(\beta^1, \beta^{2n}, \ldots, \beta^{n-1} \) denote the orthonormal basis of eigenspace associated to the eigenvalue \(n \). For positive integers \(m \) and \(n \), we can obtain eigenvalues of the matrix \((mI_m - J_m) \otimes (nI_n - J_n) \) are 0 with multiplicity \(m + n - 1 \) and \(mn \) with multiplicity \((m - 1)(n - 1)\). Moreover, the vector set \(\{ a_m \otimes a_n, a_m \otimes \beta^1, \ldots, a_m \otimes \beta^{n-1}, \beta^1 \otimes a_n, \ldots, \beta^{m-1} \otimes a_m \} \) is an orthonormal basis of eigenspace of \((mI_m - J_m) \otimes (nI_n - J_n)\) with eigenvalue 0. Given an arbitrary real \(m \times n \) matrix \(A = (a_{ij}) \), we have an \(mn \) column vector defined as

\[
\text{Vec}(A) = (a_{11}, a_{12}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{m1}, \ldots, a_{mn})^\top.
\]

From the positive-semidefinite property of \((nI_n - J_n) \otimes (mI_m - J_m)\) we have that

\[
\text{Vec}(A)^\top (mI_m - J_m) \otimes (nI_n - J_n) \text{Vec}(A) \geq 0.
\]

Hence

\[
mn \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \right)^2 - n \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \right)^2 + \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \right)^2.
\]

\[
= \text{Vec}(A)^\top (mnI_m \otimes I_n - mI_m \otimes J_n - nJ_m \otimes I_n + J_m \otimes J_n) \text{Vec}(A)
\]

\[
= \text{Vec}(A)^\top [(nI_n - J_n) \otimes (mI_m - J_m)] \text{Vec}(A) \geq 0.
\]

This proves (1).

Also, from the positive-semidefinite property of \((nI_n - J_n) \otimes (mI_m - J_m)\), it follows that \(\text{Vec}(A)^\top [(mI_m - J_m) \otimes (nI_n - J_n)] \text{Vec}(A) = 0 \) if and only if \([(mI_m - J_m) \otimes (nI_n - J_n)] \text{Vec}(A) = 0 \), i.e.

\[
\text{Vec}(A) = k_0 a_m \otimes a_n + k_1 a_m \otimes \beta^1 + \cdots + k_{n-1} a_m \otimes \beta^{n-1} + l_0 \beta^1 \otimes a_n + \cdots + l_{m-1} \beta^{m-1} \otimes a_n,
\]

for some \(k_0, k_1, \ldots, k_{n-1}, l_0, \ldots, l_{m-1} \). Thus

\[
\text{Vec}(A)^\top [(mI_m - J_m) \otimes (nI_n - J_n)] \text{Vec}(A) = 0
\]

if and only if

\[
a_j = k_0 + k_1 \beta^1 + \cdots + k_{n-1} \beta^{n-1} + l_0 \beta^1 + \cdots + l_{m-1} \beta^{m-1},
\]

where

\[
b_j = l_1 \beta^1 + \cdots + l_{m-1} \beta^{m-1}, \quad c_j = k_0 + k_1 \beta^1 + \cdots + k_{n-1} \beta^{n-1}.
\]
3. Main result

We fix some notations which will be used in the following:

\[[s] = \{1, 2, \ldots, s\}, \]
\[\Gamma_{k,n} = \{\alpha = (i_1, \ldots, i_k), 1 \leq i_1 < i_2 < \cdots < i_k \leq n, i = 1, 2, \ldots, k\}, \]
\[n_{a_i} = n_{i_1} \cdots n_{i_k} \quad \text{for} \quad \{i_1, i_2, \ldots, i_k\} = \alpha \in \Gamma_{k,n}, \quad \text{if} \quad k = 0, \quad \text{fix} \quad n_{a_i} = 1. \]

Since \((n_1 I_{n_1} - J_{n_1}) \otimes (n_2 I_{n_2} - J_{n_2}) \otimes \cdots \otimes (n_s I_{n_s} - J_{n_s}) \), \(s \in \mathbb{Z}^+ \), \(n_i \in \mathbb{Z}^+ \), \(i = 1, 2, \ldots, s \), is positive, we have

Theorem 2 Let \(A = (a_{i_1,\ldots,i_s}) \) be a real \(n_1 \times n_2 \times \cdots \times n_s \) matrix. Then

\[
\sum_{i=0}^s \sum_{a_{i_1,\ldots,i_s}} (-1)^{n_{a_i}} \left(\sum_{i,j,k,l} a_{i_1,i_2} \right)^2 \geq 0. \quad (2)
\]

The equality holds if and only if \(\text{Vec}(A) \) is in the kernel of \((n_1 I_{n_1} - J_{n_1}) \otimes (n_2 I_{n_2} - J_{n_2}) \otimes \cdots \otimes (n_s I_{n_s} - J_{n_s}) \).

Here, \(a_{i_1,\ldots,i_s} \) is the \(i_s \) component of \(\text{Vec}(A) \).

Notation: We have an orthonormal basis for the eigenspace with eigenvalue 0 (i.e. kernel) of \((n_1 I_{n_1} - J_{n_1}) \otimes (n_2 I_{n_2} - J_{n_2}) \otimes \cdots \otimes (n_s I_{n_s} - J_{n_s}) \)

\[\mathcal{Y}_1 \otimes \mathcal{Y}_2 \otimes \cdots \otimes \mathcal{Y}_s, \]

where \(\mathcal{Y}_i \in \{\alpha_i\} \cup \{\beta^{n_1}, \beta^{2n_1}, \ldots, \beta^{n_i-1} n_i\} \) and at least one \(\mathcal{Y}_i \in \{\alpha_i\} \).

For example, when \(s = 3 \), we have

\[
\Omega = mn l \sum_{i,j,k} a_{i,j,k}^2 + m \sum_{i} \left(\sum_{j} a_{i,j} \right)^2 + n \sum_{j} \left(\sum_{i} a_{i,j} \right)^2 + l \sum_{k} \left(\sum_{j} a_{j,k} \right)^2
- mn \sum_{j} \left(\sum_{j} a_{j,k} \right)^2 - ml \sum_{i} \left(\sum_{j} a_{i,j} \right)^2 - nl \sum_{j} \left(\sum_{i} a_{i,j} \right)^2 - \left(\sum_{i,j,k} a_{i,j,k} \right)^2 \geq 0, \quad (3)
\]

where \(n_1 = m, n_2 = n, n_3 = l. \)

4. The case of \(s = 3 \)

For the case of \(s = 3 \), Yan (2011) present another inequality.

Theorem 3 (Yan, 2011, Theorem 1.1) Let \(A = (a_{ijk}) \) be a real \(m \times n \times l \) and \(\alpha, \beta, \gamma \) are real numbers. Then

\[
\Pi = mn l \sum_{i,j,k} a_{i,j,k}^2 + 2\beta \gamma m \sum_{j} \left(\sum_{j} a_{i,j} \right)^2 + 2\gamma m \sum_{i} \left(\sum_{j} a_{i,j} \right)^2
+ 2\alpha \gamma \sum_{k} \left(\sum_{j} a_{j,k} \right)^2
- (2\beta - \gamma^2)m \sum_{i} \left(\sum_{j} a_{i,j} \right)^2 - nl(2\alpha - \beta) \sum_{j} \left(\sum_{i} a_{i,j} \right)^2
- (\alpha + \beta + \gamma - 1)^2 \sum_{i,j,k} a_{i,j,k}^2 \geq 0. \quad (4)
\]

Next, we will have a comparison between these two results.
\[\Pi - \Omega = (2\beta\gamma - 1)m \sum_i \left(\sum_j a_{ijk} \right)^2 + (2\alpha\gamma - 1)n \sum_j \left(\sum_k a_{ijk} \right)^2 \\
+ (2\alpha\beta - 1)n \sum_k \left(\sum_i a_{ijk} \right)^2 + (1 - \gamma)^2 mn \sum_k \left(\sum_i a_{ijk} \right)^2 \\
+ (1 - \beta)^2 mn \sum_i \left(\sum_k a_{ijk} \right)^2 + (1 - \alpha)^2 nl \sum_j \left(\sum_k a_{ijk} \right)^2 \\
- (\alpha + \beta + \gamma)(\alpha + \beta + \gamma - 2) \left(\sum_{i,j,k} a_{ijk} \right)^2. \]

Due to

\[(\alpha + \beta + \gamma)(\alpha + \beta + \gamma - 2) = (1 - \alpha)^2 + (1 - \beta)^2 + (1 - \gamma)^2 + (2\alpha\beta - 1) + (2\alpha\gamma - 1) + (2\beta\gamma - 1), \]

we have that

\[\Pi - \Omega = (2\beta\gamma - 1) \left[m \sum_i \left(\sum_j a_{ijk} \right)^2 - \left(\sum_{i,j,k} a_{ijk} \right)^2 \right] + (2\alpha\gamma - 1) \left[n \sum_j \left(\sum_k a_{ijk} \right)^2 - \left(\sum_{i,j,k} a_{ijk} \right)^2 \right] \\
+ (2\alpha\beta - 1) \left[l \sum_k \left(\sum_i a_{ijk} \right)^2 - \left(\sum_{i,j,k} a_{ijk} \right)^2 \right] + (1 - \gamma)^2 mn \left[\sum_k \left(\sum_i a_{ijk} \right)^2 - \left(\sum_{i,j,k} a_{ijk} \right)^2 \right] \\
+ (1 - \beta)^2 mn \left[\sum_i \left(\sum_k a_{ijk} \right)^2 - \left(\sum_{i,j,k} a_{ijk} \right)^2 \right] + (1 - \alpha)^2 nl \left[\sum_j \left(\sum_k a_{ijk} \right)^2 - \left(\sum_{i,j,k} a_{ijk} \right)^2 \right] \\
= \text{Vec}(A)^T \text{Vec}(A), \]
where

\[\text{Vec}(A)^t = (a_{111}, \ldots, a_{11l}, a_{121}, \ldots, a_{12l}, \ldots, a_{ml1}, \ldots, a_{mln}) \]
and

\[T = (2\beta\gamma - 1)(mI_m \otimes J_n \otimes J_l - J_m \otimes J_n \otimes J_l) + (2\alpha\gamma - 1)(nJ_n \otimes I_l \otimes J_m \otimes J_l) \\
+ (2\alpha\beta - 1)(l \otimes J_m \otimes I_n \otimes J_l) + (1 - \gamma)^2 (mnI_m \otimes I_l \otimes J_m \otimes J_l) \\
+ (1 - \beta)^2 (mlJ_m \otimes J_n \otimes J_l - J_m \otimes J_l \otimes J_m) + (1 - \alpha)^2 (mlI_m \otimes I_n \otimes I_l \otimes J_m \otimes J_l). \]

For the matrix \(T \), we have \(mnl \) orthogonal eigenvectors as

\[\gamma_1 \otimes \gamma_2 \otimes \cdots \otimes \gamma_s, \]
where \(\gamma_i \in \{ a_{ijk} \} \cup \{ \beta^{1n_1}, \beta^{2n_2}, \ldots, \beta^{n_{-1}n} \} \). By a direct calculation we can find all different eigenvalues for \(T \) are 0, \((1 - \alpha)^2 mnI \), \((1 - \beta)^2 mnl \), \((1 - \gamma)^2 mnl \), \((\alpha + \beta - 1)^2 mnl \), \((\alpha + \gamma - 1)^2 \), \((\beta + \gamma - 1)^2 \). So we can get that \(T \) is semipositive, i.e. \(\Pi - \Omega \geq 0 \) for all \(A = (a_{ijk}) \in \mathcal{R}^{mn \times ml} \) and \(\alpha, \beta, \gamma \in \mathcal{R} \). Then from (3) we can obtain the result (4). Or else, there is an advantage that (3) can be easily generalized.

Another comparison in the inequality (4) is that if \(\alpha = \beta = l = 1, \gamma = 0 \), then the inequality (1) can be obtained. But if \(l = 1 \) in (3), we can obtain an equality.
Funding
Baozhi Sun was partially supported by NSFC [grant number 11401339, 11275131 and 11675113], NSF of Shandong [grant number 2014AQ027].

Author’s contributions
Sun and Zhao involved in drafting the manuscript. Wang revised it critically and gave final approval of the version to be published.

Author details
Baozhi Sun1
E-mails: sun_bao_zhi@163.com, wenyuesbz@qq.com
Zhixi Wang2
E-mail: wangzhx@cnu.edu.cn
Lijun Zhao1
E-mail: zhaolijun1009@126.com

1 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China.
2 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China.

Citation information
Cite this article as: A generalization of Cauchy-Khinchin-van Dam inequality, Baozhi Sun, Zhixi Wang & Lijun Zhao, Cogent Mathematics (2017), 4: 1295784.

References
de Caen, D. (1998). An upper bound on the sum of squares of degrees in a graph. Discrete Mathematics, 185, 245–248.
van Dam, E. R. (1998). A Cauchy-Khinchin matrix inequality. Linear Algebra and its Applications, 280, 163–172.
Yan, Z. Z. (2011). A Cauchy-Khinchin-van Dam matrix inequality. Linear Multilinear Algebra, 59, 825–829.