Optimal Resource Allocation and Beamforming for Two-User MISO WPCNs for a Non-linear Circuit-Based EH Model

Nikita Shanin*, Moritz Garkisch*, Amelie Hagelauer†‡, Robert Schober*, and Laura Cottatellucci*

*Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
†Fraunhofer EMFT, Germany
‡Technische Universität München, Germany

Abstract

We study two-user multiple-input single-output (MISO) wireless powered communication networks (WPCNs), where the user devices are equipped with non-linear energy harvesting (EH) circuits. We consider time-division duplex (TDD) transmission, where the users harvest power from the signal received in the downlink phase, and then, utilize this harvested power for information transmission in the uplink phase. In contrast to existing works, we adopt a non-linear model of the harvested power based on a precise analysis of the employed EH circuit. We jointly optimize the beamforming vectors in the downlink and the time allocated for downlink and uplink transmission to minimize the average transmit power in the downlink under per-user data rate constraints in the uplink. We provide conditions for the feasibility of the resource allocation problem and the existence of a trivial solution, respectively. For the case where the resource allocation has a non-trivial solution, we show that it is optimal to employ no more than three beamforming vectors for power transfer in the downlink. To determine these beamforming vectors, we develop an iterative algorithm based on semi-definite relaxation (SDR) and successive convex approximation (SCA). Our simulation results reveal that the proposed resource allocation scheme outperforms two baseline schemes based on linear and sigmoidal EH models, respectively.

The work was supported in part by German Research Foundation under Project SFB 1483.
I. INTRODUCTION

The growth of the number of low-power Internet-of-Things (IoT) devices has fuelled a significant interest in wireless powered communication networks (WPCNs) that enable energy-sustainable communication with such devices [1]–[5]. A typical WPCN comprises a base station (BS) that broadcasts a radio frequency (RF) signal to the user devices in the downlink [1], [2]. The users are equipped with energy harvesting (EH) circuits that extract the received RF energy. The collected energy is then used for information transmission in the uplink [1], [2].

A WPCN employing multiple antennas at the BS was considered in [3]. The authors optimized the beamforming vectors and transmit powers for maximization of the total throughput in the uplink. Although the results in [3] provide insights for WPCN design, they are based on a linear EH model, whereas the experiments in [6] and [7] showed that typical EH circuits are non-linear. In order to take the non-linearities of EH circuits into account, the authors in [8] proposed a practical EH model based on a parametrized sigmoidal function of the average power of the received RF signal. This model was utilized for the analysis of multi-antenna WPCNs in [4], where the authors optimized the covariance matrix of the transmit symbol vectors in the downlink for maximization of the sum information rate in the uplink. Since the EH model in [8] characterizes only the average harvested power at the user devices, the WPCN design in [4] does not fully capture the non-linearity of the EH circuits. Therefore, based on an accurate analysis of a typical EH circuit, the authors in [9] developed a precise EH model that maps the instantaneous received RF power to the instantaneous harvested power. Based on this model, the authors in [10] considered multi-user multi-antenna wireless power transfer (WPT) systems and showed that the optimal transmit strategy that maximizes a weighted sum of the average harvested powers at EH nodes employs multiple beamforming vectors at the BS.

The main contributions of this paper can be summarized as follows. We consider a two-user multiple-input single-output (MISO) WPCN, where the EH at the user devices is characterized by the non-linear circuit-based EH model developed in [9]. We formulate an optimization problem to minimize the average transmit power in the downlink under per-user rate constraints in the uplink. We provide conditions for the feasibility of the optimization problem and the existence of a trivial solution, respectively. Next, when the problem is feasible and has a non-trivial solution, we show that three beamforming vectors are sufficient for optimal transmission in the downlink. To determine these beamforming vectors, we design an iterative algorithm based on
semi-definite relaxation (SDR) and successive convex approximation (SCA) [11]. Our simulation results demonstrate that the proposed approach significantly outperforms two baseline schemes that are based on the linear and sigmoidal EH models in [3] and [4], respectively.

Throughout this paper, we use the following notations. Bold upper case letters X represent matrices. Bold lower case letters x stand for vectors and x_i is the i^{th} element of x. X^H denotes the Hermitian transpose of matrix X. $\|x\|_2$ represents the L2-norm of x. The sets of complex and real numbers are denoted by \mathbb{C} and \mathbb{R}, respectively. The real part of a complex number is denoted by $R\{\cdot\}$. I_K stands for the square identity matrix of size K. The imaginary unit is denoted by j.

II. System Model

We consider a MISO WPCN, where $K = 2$ single-antenna users are equipped with EH circuits [9] and $N_t \geq K$ antennas are employed at the BS. We adopt time-division duplex (TDD) transmission and assume that each time frame of length T_f is divided into two subframes, as shown in Fig. 1. In the first subframe of length τT_f, $\tau \in [0, 1)$, the BS transmits a power-carrying RF signal to the user devices, which harvest the received power. In the subsequent subframe of length $(1 - \tau)T_f$, this harvested power is utilized for information transmission in the uplink. We assume that the channels between the BS and the user devices are constant for the duration of a time frame. Furthermore, we denote the channel between the BS and user $k \in \{1, 2\}$ by $h_k \in \mathbb{C}^{N_t}$ and assume that it is perfectly known at the BS.

A. Downlink Phase

In the downlink, the BS broadcasts a pulse-modulated RF signal, whose equivalent complex baseband representation is modelled as $x(t) = \sum_{n=1}^{N} x_n \psi_n(t)$, where $\psi_n(t) = \Pi(t/T_f - \sum_{k=1}^{n-1} \tau_k)$ is the transmit pulse, $\tau_0 = 0$, $\Pi(t)$ is a rectangular function that takes value 1 if $t \in [0, 1)$ and 0, otherwise, $x_n \in \mathbb{C}^{N_t}$ is the symbol vector transmitted in time slot $n \in \{1, 2, \cdots, N\}$, and N
is the number of employed symbol vectors, see Fig. 1. Here, \(\tau_n \) is the portion of the time frame of length \(T_f \) utilized for the transmission of symbol vector \(x_n \) with \(\sum_{n=1}^{N} \tau_n = \bar{\tau} \). Thus, the RF signal received at user \(k \in \{1, 2\} \) is given by \(z_k^{RF}(t) = \sqrt{2}R \{ h_k^H x(t) \exp(j2\pi f_c t) \} \), where \(f_c \) denotes the carrier frequency. Similar to [9], the noise received at the users is neglected since its contribution to the harvested power is negligible.

To harvest power, the users are equipped with identical non-linear EH circuits. We denote the power harvested at user \(k \) in time slot \(n \) by \(\rho_{k,n} \) and, as in [9] and [12], model it by a non-linear monotonic non-decreasing function \(\phi(\cdot) \) of the instantaneous received power. Thus, \(\rho_{k,n} = \phi(|z_{k,n}|^2) \) with \(z_{k,n} = h_k^H x_n \) and \(\phi(\cdot) \) is given by [9]:

\[
\phi(|z|^2) = \min \{ \varphi(|z|^2), \varphi(A_s^2) \}, \tag{1}
\]
\[
\varphi(|z|^2) = \lambda \left[\mu^{-1} W_0 \left(\mu \exp(\mu) I_0 \left(\nu \sqrt{2|z|^2} \right) - 1 \right) \right]^2, \tag{2}
\]

where \(W_0(\cdot) \) is the principle branch of the Lambert-W function, \(I_0(\cdot) \) is the modified Bessel function of the first kind and order zero, and \(\lambda, \mu, \) and \(\nu \) are parameters of the EH circuit that depend on the circuit elements but not on the received signal. Since practical EH circuits are driven into saturation for large input powers [8], [9], \(\phi(\cdot) \) in (1) is bounded, i.e., \(\phi(|z|^2) \leq \phi(|A_s|^2) \), \(\forall z \in \mathbb{C} \), where \(A_s \) is the minimum input signal magnitude level at which the output power starts to saturate. Hence, the average power harvested at user \(k \in \{1, 2\} \) in the downlink can be expressed as follows:

\[
p_d^k = \sum_{n=1}^{N} \tau_n \phi(|h_k^H x_n|^2) \tag{3}
\]

Finally, we assume that user \(k \) is equipped with a rechargeable built-in battery having initial energy \(q_k \), which is known to the BS. Thus, at the end of the downlink phase, the amount of energy available at user \(k \) is given by \(E_k = q_k + p_d^k T_f \).

B. Uplink Phase

In the uplink, user \(k \in \{1, 2\} \) transmits information symbols \(s_k \) with zero mean and unit variance to the BS utilizing a portion of the available energy \(E_k \). Assuming uplink-downlink reciprocity of the channel, the symbol vector \(r \in \mathbb{C}^{N_t} \) received at the BS in the scheduled time slot is given by

\[
r = \sum_{k=1}^{K} h_k \sqrt{p_k} s_k + n, \tag{4}
\]
where p^u_k is the power utilized by user k for information transmission and $\mathbf{n} \in \mathbb{C}^{N_t}$ is an additive white Gaussian noise (AWGN) vector with zero mean and covariance matrix $\sigma^2 \mathbf{I}_{N_t}$. Since we have $N_t \geq K$, we can adopt zero forcing (ZF) equalization to suppress the inter-user interference at the BS. Hence, the detected information symbol \hat{s}_k of user k can be expressed as follows:

$$\hat{s}_k = f_k \mathbf{r} = \sqrt{p^u_k} s_k + \tilde{n}_k,$$

where $\tilde{n}_k = f_k \mathbf{n}$ is the equivalent AWGN with variance $\tilde{\sigma}_k^2 = \|f_k\|^2 \sigma^2$ for user k at the BS. Here, equalization vector $f_k \in \mathbb{C}^{N_t}$ is the kth row of matrix $\mathbf{F} = (\mathbf{H}^H \mathbf{H})^{-1} \mathbf{H}^H$ with $\mathbf{H} = [\mathbf{h}_1 \mathbf{h}_2]$. Finally, the data rate of user k is given by $R_k = (1 - \bar{\tau}) \log_2(1 + \Gamma_k)$, where $\Gamma_k = p^u_k / \tilde{\sigma}^2$ is the signal-to-noise ratio (SNR).

III. Problem Formulation and Solution

In this section, we develop a resource allocation algorithm for the considered MISO WPCN.

A. Problem Formulation

We formulate the following non-convex optimization problem:

$$\text{minimize } P_{DL} = \sum_{n=1}^{N} \tau_n \|x_n\|^2 \quad (6a)$$

subject to

$$R_k \geq R_{k}^\text{eq}, \forall k \quad (6b)$$

$$(1 - \bar{\tau}) p^u_k T_f \leq E_k, \forall k \quad (6c)$$

$$\sum_{n=1}^{N} \tau_n = \bar{\tau} \quad (6d)$$

where we jointly optimize $\bar{\tau}, \tau = [\tau_1, \tau_2 \cdots \tau_N]$, the uplink transmit powers $\mathbf{p}^u = [p^u_1, p^u_2]$, symbol vectors \mathbf{x}_n collected in $\mathbf{X} = [\mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_N]$, and the number of time slots N. In (6), we minimize the average transmit power in the downlink $P_{DL} = \sum_{n=1}^{N} \tau_n \|x_n\|^2$ under per-user rate constraints in the uplink in (6b), where R_{k}^eq is the minimum required rate of user k. Here, (6c) and (6d) ensure that the transmit energy consumed by user k in the uplink does not exceed E_k and the obtained resource allocation is feasible, respectively. We note that in contrast to the WPCN design in [3] and [4], where covariance matrix $\mathbf{X} = \sum_{n=1}^{N} \tau_n \mathbf{x}_n \mathbf{x}_n^H$ was optimized, the EH model in (1) characterizes the instantaneous harvested power and enables the optimization of individual transmit symbol vectors \mathbf{x}_n in (6).
B. Characterization of Optimal Solution

In the following propositions, we provide a feasibility condition and characterize the optimal solution of (6).

Proposition 1. Problem (6) is feasible if and only if \(\exists \bar{\tau} \in [0, 1) \), such that the following condition holds \(\forall k \in \{1, 2\} \):

\[
f_k(\bar{\tau}) \triangleq 1 - \frac{\bar{\tau}}{\bar{\tau}} \left[2^{R_{\text{req}}^k} - 1 \right] \hat{\sigma}^2 - \frac{q_k}{Tf} \leq \phi(A_2^k).
\]

(7)

Proof. Please refer to Appendix A.

Proposition 2. If the following conditions hold:

\[
\left[2^{R_{\text{req}}^k} - 1 \right] \hat{\sigma}^2 < \frac{q_k}{T_f}, \forall k \in \{1, 2\},
\]

(8)

problem (6) is feasible and the optimal solution is trivial\(^1\): \(\bar{\tau}^* = 0, N^* = 0, \tau^* = 0, x^* = 0, \)

\(p_k^* = \left[2^{R_{\text{req}}^k} - 1 \right] \hat{\sigma}^2, \forall k \in \{1, 2\} \).

Proof. Please refer to Appendix B.

Proposition 3. If problem (6) is feasible and conditions (8) do not hold, the optimal number of transmit symbol vectors is \(N^* \leq 3 \) and \(\bar{\tau}^* \in [\bar{\tau}^\text{min}, \bar{\tau}^\text{max}] \) with \(\bar{\tau}^\text{max} = \max\{\bar{\tau}^\text{max}_1, \bar{\tau}^\text{max}_2\} \) and \(\bar{\tau}^\text{min} = \max\{\bar{\tau}^\text{min}_1, \bar{\tau}^\text{min}_2\} \). Here, for \(k \in \{1, 2\} \), \(\bar{\tau}^\text{max}_k \) is the solution of the following equation:

\[
2^{R_{\text{req}}^k} \ln 2 R_{\text{req}}^k \hat{\sigma}^2 = f_k(\bar{\tau}^\text{max}_k) + \frac{q_k}{T_f}
\]

and \(\bar{\tau}^\text{min}_k = \min\{\bar{\tau} : f(\bar{\tau}) = \phi(A_2^k)\} \).

Proof. Please refer to Appendix C.

Proposition 1 shows that problem (6) is feasible if and only if the power required for uplink transmission with rate \(R_{\text{req}}^k \) is not greater than \(\phi(A_2^k) \) for all \(k \in \{1, 2\} \). Next, Proposition 2 reveals that no power transfer in the downlink is needed if the available power \(q_k \) is sufficient for transmission at the data rate required for each user. Finally, as shown in Proposition 3, if the problem is feasible and the solution is non-trivial, the optimal number of time slots satisfies \(N^* \leq 3 \) and the optimal length of the downlink subframe \(\bar{\tau}^* \in [\bar{\tau}^\text{min}, \bar{\tau}^\text{max}] \). In the following, we consider the case, where problem (6) is feasible and has a non-trivial solution.

\(^1\)We note that the trivial solution of problem (6) is not unique. Here, we provide the energy efficient solution with the minimum feasible \(p_k^*, \forall k \).
We note that the functions that appear in (6) are invariant with respect to a scalar phase rotation of the symbol vectors in \(X \). Hence, for the solution of (6), the transmit symbol vectors can be decomposed as \(x_n = w_n d_n \), \(n \in \{1, 2, 3\} \), where \(w_n \) are beamforming vectors rotated by unit-norm symbols \(d_n = \exp(j\theta_n) \) with arbitrary phases \(\theta_n \).

C. Reformulation of Optimization Problem

Next, we determine the optimal fraction \(\bar{\tau}^* \) using a one-dimensional grid search as \(\bar{\tau}^* = \arg \min_{\bar{\tau} \in [\bar{\tau}_{\min}, \bar{\tau}_{\max}]} P_{DL}(\bar{\tau}) \), where

\[
P_{DL}(\bar{\tau}) = \min_{\mathcal{F}} \left\{ P_{DL} \right\}
\]

with \(\mathcal{F} = \{ \mathbf{W}, \mathbf{p}^u, \tau : (6b), (6c), (6d) \} \) and \(\mathbf{W} = [w_1 \ w_2 \ w_3] \). In order to solve (10), we equivalently reformulate constraints (6b) and (6c) as follows:

\[
p_k^u \geq \rho_k^{\text{req}}, \ \forall k,
\]

\[
p_k^u \leq \bar{q}_k/T_f + p_d^k \bar{\tau}, \ \forall k,
\]

respectively, where \(\rho_k^{\text{req}} = (2\gamma_k^{\text{req}} - 1)\bar{\sigma}_k^2 \), \(\bar{q}_k = \frac{q_k}{1 - \bar{\tau}} \), and \(\bar{\tau} = (1 - \bar{\tau})^{-1} \). Here, \(\gamma_k^{\text{req}} = \frac{R_k^{\text{req}}}{1 - \bar{\tau}} \) is the equivalent rate required by user \(k \). Thus, we can equivalently reformulate optimization problem (10) as follows:

\[
\begin{align*}
\text{minimize} \quad & \bar{\tau} \sum_{n=1}^{3} \beta_n \text{Tr}\{W_n\} \\
\text{subject to} \quad & \text{rank}\{W_n\} \leq 1, W_n \in \mathcal{S}_+, \forall n \\
& (6d), (11), (12)
\end{align*}
\]

where \(\beta = [\beta_1, \beta_2, \beta_3]^T \), \(\beta_n = \frac{\tau_n}{\bar{\tau}} \geq 0 \), \(W_n = w_n w_n^H, n \in \{1, 2, 3\} \), and \(\mathcal{S}_+ \subset \mathbb{C}^{N_t \times N_t} \) denotes the set of positive semidefinite matrices. Here, the harvested power is given by \(p_d^k = \bar{\tau} \sum_{n=1}^{3} \beta_n \phi(h_k^H W_n h_k) \). Problem (13) is still non-convex due to the non-convexity of constraints (12) and (13b).

D. Suboptimal Iterative Solution

In the following, we design an iterative algorithm to solve (13). First, we drop the rank-1 constraint in (13b). Next, we note that the EH circuits of the user devices are not driven into saturation if

\[
h_k^H W_n h_k \leq A_s^2, \ \forall n, k.
\]
Furthermore, if condition (14) holds, function $\phi(\cdot)$ is convex and, thus, problem (13) can be efficiently solved via SCA [11]. Therefore, in the following, we assume that the EH circuits are not driven into saturation\(^2\), i.e., condition (14) holds. Thus, in iteration t of the algorithm, we linearize convex function $\phi(\cdot)$ in (12) as follows [11]:

$$
\beta_n \phi(h_k^H W_n h_k) \geq \phi'(h_k^H W_n^{(t)} h_k) \text{Tr}\{H_k V_n\} +
$$

$$
\beta_n \hat{\psi}(W_n^{(t)}) \triangleq \psi_k(\beta_n, V_n; W_n^{(t)}),
$$

(15)

where $\hat{\psi}(W_n^{(t)}) = \phi(h_k^H W_n^{(t)} h_k) - \phi'(h_k^H W_n^{(t)} h_k) \text{Tr}\{H_k W_n^{(t)}\}$, $V_n = \beta_n W_n$, $W_n^{(t)} = V_n^{(t)}/\beta_n^{(t)}$, $H_k = h_k h_k^H$, and $\beta_n^{(t)}$ and $W_n^{(t)}$ are the values of β_n and matrix W_n obtained in iteration $t - 1$ of the algorithm, respectively. Thus, we reformulate constraint (12) as follows:

$$
p_k^u - \bar{\tau} \sum_{n=1}^{3} \psi_k(\beta_n, V_n; W_n^{(t)}) \leq \bar{q}_k/T_t
$$

(16)

Finally, in iteration t of the algorithm, we solve the following optimization problem:

$$
\text{minimize}_{\beta, p^u} \quad \beta \sum_{n=1}^{3} \text{Tr}\{V_n\}
$$

subject to

$$
V_n \in S_+, \forall n
$$

(6d), (11), (14), (16)

(17a)

(17b)

Optimization problem (17) is convex and, hence, can be solved via a convex solver, such as CVX [13]. In the following proposition, we show that although we dropped the rank-1 constraint in (13b), the solution of (17) satisfies $\text{rank}\{V_n^*\} \leq 1$.

Proposition 4. The solution of (17) satisfies $\text{rank}\{V_n^*\} \leq 1, \forall n \in \{1, 2, 3\}$.

Proof. Please refer to Appendix D.

Hence, as solution of (13), we obtain $\beta_n^* = \beta_n^{(t)}$ and $w_n^* = \lambda_n \hat{w}_n^*$, where λ_n and \hat{w}_n^* are the non-zero eigenvalue and the corresponding eigenvector of $W_n^* = V_n^{(t)}/\beta_n^{(t)}, \forall n$, respectively. The proposed algorithm\(^3\) is summarized in Algorithm 1. Since the channel gains h_k, the required rates R_k^{eq}, and the initial energies $q_k, \forall k$, are known to the BS, problem (6) can be solved at the BS with Algorithm 1.

\(^{2}\)Alternatively, as in [10], one can adopt an exhaustive search exhibiting high computational complexity to identify the users that are driven into saturation.

\(^{3}\)We note that the extension of Algorithm 1 to the multi-user case is possible.
Algorithm 1: Algorithm for solving (6)

\begin{algorithm}
\begin{algorithmic}
\State Initialize: Required rates R^req_k, initial energies $q_k, \forall k$, and error tolerances $\epsilon_{\text{SCA}}, \epsilon_{\tau}$.
\State 1. Set initial values $\bar{\tau} = \bar{\tau}_{\text{min}}$, $i = 1$.
\Repeat
\State 2. Determine required harvested powers ρ^req_k
\State 3. Randomly initialize $V_n^{(0)}, \forall n, \beta_n^{(0)}$, set $t = 0$.
\Repeat
\State a. For given $V_n^{(t)}, \beta_n^{(t)}$, obtain $p_n, V_n^{(t+1)}, \beta_n^{(t+1)}$ as the solution of (17)
\State b. Evaluate $h^{(t+1)} = \bar{\tau} \sum_{n=1}^{N} \text{Tr}(V_n)$
\State c. Determine $W^{(t)} = V_n^{(t)} / \beta_n^{(t)}$
\State d. Set $t = t + 1$
\Until $|h^{(t)} - h^{(t-1)}| \leq \epsilon_{\text{SCA}}$.
\State 4. Obtain $w_n^* = \lambda_n w_n, \forall n$
\State 5. Store $W_i = [w_1^* w_2 w_3^*]$, $\beta_i = \beta^{(t-1)}$, $p_i^n = p_n^\text{eq}$, $\xi_i = \bar{\tau} \sum_n \beta_n^{(t-1)} ||w_n^*||^2_2$
\State 6. Set $\bar{\tau} = $ $\bar{\tau} + \epsilon_{\tau}$, $i = i + 1$.
\Until $\tau \geq \tau_{\text{max}}$.
\State 7. Find index i^* yielding the minimum ξ
\State \underline{Output}: $\bar{\tau}^* = \bar{\tau}_{\text{min}} + (i^* - 1)\epsilon_{\tau}, \beta_i^*, W_i^*, p_i^n$.
\end{algorithmic}
\end{algorithm}

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed resource allocation scheme via simulations. In order to enable reliable communication, we assume that the BS and each user device have a line-of-sight link. The noise variance is set to $\sigma^2 = -110$ dBm. We compute the path losses as $(\frac{c}{4\pi d_{kl}f_c})^2$, where $f_c = 868$ MHz, and c_l and $d_k = 10$ m, $k \in \{1, 2\}$, are the speed of light and the distance between the BS and user device k, respectively. Furthermore, the channel gains h_k follow Ricean distributions with Ricean factor 1. For the EH model in (1), we adopt parameter values $\mu = 1.85, \nu = 2.2 \cdot 10^3, \lambda = 2.5 \cdot 10^{-7}, A^2_s = 2 \cdot 10^{-4}$ as in [9]. For Algorithm 1, we adopt error tolerances $\epsilon_{\text{SCA}} = 10^{-4}$ and $\epsilon_{\tau} = 0.1$ and the initial energy for each user is set to $q_k = 0$ J. All simulation results are averaged over 100 channel realizations.

In Fig. 2, we show the average transmit power P_{DL} as a function of sum rate R_2, where $R_2 = \sum_k R^\text{req}_k$ and $P^\text{req}_1 = P^\text{req}_2$. As Baseline Scheme 1 and Baseline Scheme 2, we adopt the WPCN designs in [4] and [3], which are based on the sigmoidal and linear EH models, respectively. Since time fraction $\bar{\tau}$ and covariance matrix \bar{X} were optimized in [3] and [4], for the baseline schemes, in the downlink, we adopt $\bar{N} = \text{rank}\{\bar{X}\}$ symbol vectors with $\tau_n = \bar{\tau} / \bar{N}, n \in \{1, 2, \cdots, \bar{N}\}$, and obtain these vectors from the dominant eigenvectors of \bar{X}. First, we observe that for each
considered system setup, the sum rates are bounded from above (indicated by the dashed green line) since the EH circuits are driven into saturation for high transmit power levels. Next, we note that for given \(N_t \) and \(R_{\Sigma} \), the proposed scheme requires a significantly lower transmit power than the baseline schemes. This is due to the more accurate modelling of the EH circuits which enables the optimization of the instantaneous powers harvested at the user devices. Finally, since a higher number of BS antennas leads to beamforming gain and channel hardening, we observe a better system performance in this case.

V. CONCLUSIONS

We considered two-user MISO WPCNs with non-linear EH circuits at the user devices, where the downlink and uplink transmission phases were utilized for power and information transfer, respectively. We formulated an optimization problem for the minimization of the transmit power in the downlink with per-user rate constraints in the uplink. We provided conditions for the feasibility of the formulated problem and the existence of a trivial solution, respectively. Next, for the case when the problem is feasible and the solution is non-trivial, we proved that three beamforming vectors are sufficient for optimal power transfer in the downlink. We obtained suboptimal solutions for these vectors via SDR and SCA. Our simulation results revealed that the proposed WPCN design outperforms baseline schemes based on linear and sigmoidal EH models.
Appendix A: Proof of Proposition 1

First, we note that the optimal value $\bar{\tau}^*$ as solution of (6) can be obtained as $\bar{\tau}^* = \arg \min P_{DL}^*(\bar{\tau})$, where

$$P_{DL}^*(\bar{\tau}) = \min_{\mathcal{F}} \{P_{DL}\}$$ \hspace{1cm} (18)

and $\mathcal{F} = \{\tau, X, p^u, N : (6b), (6c), (6d)\}$. Next, we equivalently reformulate optimization problem in (18) as follows:

$$\begin{align*}
\text{minimize} & \quad \bar{\tau} \sum_{n=1}^{N} \beta_n \|x_n\|_2^2 \\
\text{subject to} & \quad \sum_{n=1}^{N} \beta_n \phi(|h_k^H x_n|^2) \geq \frac{g_k(\bar{\tau})}{\bar{\tau}}, \forall k \\
& \quad \sum_{n=1}^{N} \beta_n = 1,
\end{align*}$$

where $\beta = [\beta_1, \beta_2, \ldots, \beta_N]$ with $\beta_n = \frac{\tau_n}{\bar{\tau}} \geq 0, n \in \{1, 2, \ldots, N\}$, and $g_k(\bar{\tau}) = (1 - \bar{\tau})\left[2\frac{g_{eq}}{\bar{\tau}} - 1\right]\bar{\sigma}^2 - \frac{g_k}{\bar{\tau}^2}$. We note that the minimum transmit power $P_{DL}^*(\cdot)$ in (18) can be evaluated as the value of the objective function (19a) obtained in the optimal point of problem (19). Here, for a given $\bar{\tau}$, function $f_k(\bar{\tau}) \triangleq \frac{g_k(\bar{\tau})}{\bar{\tau}}$ returns the minimum harvested power required at user k for uplink transmission with data rate R_{k}^{eq}. Since function $\phi(\cdot)$ is bounded, problem (19) is feasible if and only if $f_k(\bar{\tau}) \leq \varphi(A_{k}^2), \forall k \in \{1, 2\}$. Hence, problem (6) is feasible if and only if $\exists \bar{\tau} \in [0, 1] : f_k(\bar{\tau}) \leq \varphi(A_{k}^2), \forall k \in \{1, 2\}$. This concludes the proof.

Appendix B: Proof of Proposition 2

We note that the optimal value $\bar{\tau}^*$ as solution of (6) can be obtained as $\bar{\tau}^* = \arg \min P_{DL}^*(\bar{\tau})$, where function $P_{DL}^*(\bar{\tau})$ is given by (18). Furthermore, optimization problem (18) can be equivalently reformulated as in (19). Let us consider function $f_k(\bar{\tau}) \triangleq \frac{g_k(\bar{\tau})}{\bar{\tau}}, k \in \{1, 2\}$, in (19). First, we note that $f_k(\bar{\tau}) \rightarrow \infty$ for $\bar{\tau} \rightarrow 1$. Next, if condition (8) holds for user k, we have $g_k(0) < 0$, and hence, $f_k(\bar{\tau}) \rightarrow -\infty$ for $\bar{\tau} \rightarrow 0$. Furthermore, if (8) holds, it can be shown that for the derivative $f'_k(\bar{\tau})$ of function $f_k(\bar{\tau})$, we have $f'_k(\bar{\tau}) > 0, \forall \bar{\tau} \in [0, 1), \forall k$, and therefore, function $f_k(\bar{\tau})$ is monotonic increasing, $\forall k \in \{1, 2\}$. Let us consider $\bar{\tau}_2 \geq \bar{\tau}_1$, where $\bar{\tau}_n \in [0, 1], n \in \{1, 2\}$, and denote the feasible sets of (19) corresponding to $\bar{\tau} = \bar{\tau}_1$ and $\bar{\tau} = \bar{\tau}_2$ by \mathcal{F}_1 and \mathcal{F}_2, respectively. We note that if condition (8) holds $\forall k \in \{1, 2\}$, then $\mathcal{F}_2 \subset \mathcal{F}_1$, and hence, $P_{DL}^*(\bar{\tau}_2) > P_{DL}^*(\bar{\tau}_1), \forall \bar{\tau}_1, \bar{\tau}_2 \in [0, 1)$. Thus, we conclude that function $P_{DL}^*(\cdot)$ is monotonic.
increasing, and therefore, the optimal value is \(\tilde{\tau}^* = 0 \). Hence, the optimal solution of (6) is trivial, i.e., \(N^* = 0, x^* = 0, \tau^* = 0, p_k^{\tau^*} = [2\hat{\tau}_k^{\text{min}} - 1]\tilde{\sigma}^2, \forall k \in \{1, 2\} \). This concludes the proof.

Appendix C: Proof of Proposition 3

We note that the optimal value \(\tilde{\tau}^* \) as solution of (6) can be obtained as \(\tilde{\tau}^* = \arg\min P_{\text{DL}}^*(\tilde{\tau}) \), where function \(P_{\text{DL}}^*(\tilde{\tau}) \) is given by (18). Furthermore, optimization problem (18) can be equivalently reformulated as in (19). If problem (6) is feasible and condition (8) does not hold for any \(k \in \{1, 2\} \), in (19), we have \(g_k(0) > 0 \) and \(f_k(\tilde{\tau}) \rightarrow \infty \) for \(\tilde{\tau} \rightarrow 0 \). Moreover, it can be shown that for the second derivative of function \(f_k(\cdot) \), \(f_k''(\tilde{\tau}) > 0 \) holds \(\forall \tilde{\tau} \in (0, 1) \), and hence, function \(f_k(\tilde{\tau}) \) is convex and reaches its minimum at \(\tilde{\tau} = \tilde{\tau}_k^\text{max} \). Furthermore, it can be shown that \(f_k(\tilde{\tau}_k^\text{max}) > 0, \forall k \). Thus, for \(\tilde{\tau} \in [\tilde{\tau}_k^\text{max}, 1] \), function \(P_{\text{DL}}^* \) is monotonic increasing and \(\tilde{\tau}^* \in [0, \tilde{\tau}_k^\text{max}] \). Furthermore, if we assume that \(\tilde{\tau} \in [0, \tilde{\tau}_k^\text{min}] \), then \(\exists k \in \{1, 2\} \), such that \(f_k(\tilde{\tau}) > \varphi(A_s^2) \) and problem (19) is infeasible. Hence, the optimal \(\tilde{\tau}^* \in [\tilde{\tau}_k^\text{min}, \tilde{\tau}_k^\text{max}] \).

Finally, we prove that for the solution of (19), the optimal number of transmit vectors satisfies \(N^* \leq 3 \). To this end, let us consider a function \(\bar{P}_{\text{DL}}(\tilde{\tau}, X, N) \) defined as

\[
\bar{P}_{\text{DL}}(\tilde{\tau}, X, N) = \min_{\beta} \tilde{\tau} \sum_{n=1}^{N} \beta_n \|x_n\|_2^2 \quad \text{subject to (19b), (19c).}
\]

(20)

For any given \(\tilde{\tau} \in [\tilde{\tau}_k^\text{min}, \tilde{\tau}_k^\text{max}] \), the optimal transmit power in (18) can be obtained as \(P_{\text{DL}}^*(\tilde{\tau}) = \min_{\{X, N\}} \bar{P}_{\text{DL}}(\tilde{\tau}, X, N) \). Optimization problem (20) is linear in \(\beta \) and involves \(N \) variables and 3 constraints. We note that the solution of a linear optimization problem with \(\bar{N} \) variables and \(\bar{K} \leq \bar{N} \) constraints is a vertex of the polytope defined by \(\bar{K} \) constraints, and thus, has at most \(\bar{K} \) non-zero elements [14]. Thus, for the optimal solution of (20) and, hence, (19) and (6), at most \(N^* = 3 \) time slots have non-zero lengths. This concludes the proof.
First, we rewrite convex problem (17) equivalently as follows:

\[
\begin{align*}
\text{minimize} & \quad \sum_{n=1}^{3} \text{Tr}\{V_n\} \\
\text{subject to} & \quad \bar{\tau} \sum_{n=1}^{3} \left[\phi'(h_k^T W_n^{(t)} h_k) \text{Tr}\{H_k V_n\} + \beta_n \hat{\psi}(W_n^{(t)}) \right] + \bar{q}_k/T_t \geq \rho_k \text{req}, \ \forall k, \quad (21a)
\end{align*}
\]

\[
\begin{align*}
\text{Tr}\{H_k V_n\} - \beta_n A_k^2 & \leq 0, \ \forall n, k, \quad (21b)
\text{Tr}\{H_k V_n\} - \beta_n A_k^2 & \leq 0, \ \forall n, k, \quad (21b)
\sum_{n=1}^{3} \beta_n & = 1 \quad (21d)
V_n & \in S_+, \ \forall n. \quad (21e)
\end{align*}
\]

Since (21) is feasible and convex, strong duality holds and the gap between (21) and its dual problem is equal to zero [15]. We express the Lagrangian of (21) with respect to \(V_n\) as follows:

\[
\begin{align*}
\mathcal{L}(V_n) = \text{Tr}\{V_n\} - \sum_k (\mu_k \bar{\psi}_k - \lambda_k) \text{Tr}\{H_k V_n\} - \text{Tr}\{Y_n V_n\} + \gamma, \quad (22)
\end{align*}
\]

where \(\mu_k\) and \(\lambda_k\), \(k \in \{1, 2\}\), are Lagrangian multipliers associated with constraints (21b) and (21c), respectively, and \(\bar{\psi}_k\) collects all terms that do not depend on \(V_n\). Here, \(Y_n\) is the Lagrangian multiplier associated with the constraint on \(V_n\) in (21e) and \(\gamma\) accounts for all terms that do not involve \(V_n\). We note that the Karush-Kuhn-Tucker (KKT) conditions are satisfied for the optimal solution of (21) with respect to \(V_n\), denoted by \(V_n^*\), and the solutions \(\mu_k^*, \lambda_k^*, k \in \{1, 2\}\), and \(Y_n^*\) of the corresponding dual problem. The KKT conditions are given by

\[
\begin{align*}
\nabla \mathcal{L}(V_n^*) &= 0_{N_t \times N_t}, \quad (23a)
\mu_k^* & \geq 0, \lambda_k^* \geq 0, Y_n^* \geq 0, \ \forall k \in \{1, 2\} \quad (23b)
Y_n^* V_n^* &= 0_{N_t \times N_t}, \quad (23c)
\end{align*}
\]

where \(\nabla \mathcal{L}(V_n^*)\) and \(0_{N_t \times N_t}\) denote the gradient of \(\mathcal{L}(V_n^*)\) evaluated in \(V_n^*\) and the square all-zero matrix of size \(N_t\), respectively. Next, we express condition (23a) as follows

\[
Y_n^* = I_{N_t} - \Delta, \quad (24)
\]

where \(\Delta = \sum_k (\mu_k^* \bar{\psi}_k - \lambda_k^*) H_k^\top\). Let us now investigate the structure of \(\Delta\). We denote the maximum eigenvalue of \(\Delta\) by \(\delta_{\text{max}} \in \mathbb{R}\). Due to the randomness of the channel, with probability 1, only one eigenvalue of \(\Delta\) has value \(\delta_{\text{max}}\). Observing (24), we note that if \(\delta_{\text{max}} < 1\), then
\(Y_n^*\) is a positive semidefinite matrix with full rank. In this case, (23c) yields \(V_n^* = 0_{N_t \times N_t}\) and, hence, \(\text{rank } V_n^* = 0\). Furthermore, if \(\delta_{\text{max}} > 1\), then \(Y_n^*\) is not a positive semidefinite matrix, which contradicts (23b). Finally, if \(\delta_{\text{max}} = 1\), then \(Y_n^*\) is a positive semidefinite matrix with \(\text{rank}\{Y_n^*\} = N_t - 1\). Then, applying Sylvester’s rank inequality to (23c), we have

\[
0 = \text{rank}\{Y_n^* V_n^*\} \geq \text{rank}\{Y_n^*\} + \text{rank}\{V_n^*\} - N_t = \text{rank}\{V_n^*\} - 1.
\]

(25)

Thus, we conclude that \(\text{rank}\{V_n^*\} \leq 1, \forall n \in \{1, 2, 3\}\). This concludes the proof.

REFERENCES

[1] S. Bi, Y. Zeng, and R. Zhang, “Wireless powered communication networks: An overview,” IEEE Wirel. Commun., vol. 23, no. 2, pp. 10–18, Apr. 2016.

[2] B. Clerckx, R. Zhang, R. Schober, D. W. K. Ng, D. I. Kim, and H. V. Poor, “Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs,” IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 4–33, Jan. 2019.

[3] L. Liu, R. Zhang, and K.-C. Chua, “Multi-antenna wireless powered communication with energy beamforming,” IEEE Trans. Commun., vol. 62, no. 12, pp. 4349–4361, Dec. 2014.

[4] E. Boshkovska, D. W. K. Ng, N. Zlatanov, A. Koelpin, and R. Schober, “Robust resource allocation for MIMO wireless powered communication networks based on a non-linear EH model,” IEEE Trans. Commun., vol. 65, no. 5, pp. 1984–1999, May 2017.

[5] Z. B. Zawawi, Y. Huang, and B. Clerckx, “Multiuser wirelessly powered backscatter communications: Nonlinearity, waveform design, and SINR-energy tradeoff,” IEEE Trans. Wirel. Commun., vol. 18, no. 1, pp. 241–253, Jan. 2019.

[6] J. Kim, B. Clerckx, and P. D. Mitcheson, “Signal and system design for wireless power transfer: Prototype, experiment and validation,” IEEE Trans. Wirel. Commun., vol. 19, no. 11, pp. 7453–7469, Nov. 2020.

[7] N. Sakai, K. Noguchi, and K. Itoh, “A 5.8-GHz band highly efficient 1-W rectenna with short stub-connected high impedance dipole antenna,” IEEE Trans. Microw. Theory Tech., vol. 69, no. 7, pp. 3558–3566, Jul. 2021.

[8] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical non-linear energy harvesting model and resource allocation for SWIPT systems,” IEEE Commun. Lett., vol. 19, no. 12, pp. 2082–2085, Dec. 2015.

[9] R. Morsi, V. Jamali, A. Hagelauer, D. W. K. Ng, and R. Schober, “Conditional capacity and transmit signal design for SWIPT systems with multiple nonlinear energy harvesting receivers,” IEEE Trans. Commun., vol. 68, no. 1, pp. 582–601, Jan. 2020.

[10] N. Shanin, L. Cottatellucci, and R. Schober, “Harvested power region of two-user MISO WPT systems with non-linear EH nodes,” arXiv preprint arXiv:2103.13802, 2021.

[11] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.

[12] N. Shanin, L. Cottatellucci, and R. Schober, “Optimal transmit strategy for multi-user MIMO WPT systems with non-linear energy harvesters,” arXiv preprint arXiv:2105.04833, 2021.

[13] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.0 beta (2013),” URL: http://cvxr.com/cvx, 2015.
[14] J. Nocedal, *Numerical Optimization*, 2nd ed., S. J. Wright, Ed. New York, NY: Springer, 2006.

[15] S. Boyd, S. P. Boyd, and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2004.