Introduction
Diabetes mellitus is a chronic metabolic disease which involves nearly all organs of human body, and is an important challenge of healthcare system in throughout the world. It is a prominent risk factor for cardiovascular disorders such as hypertension and atherosclerosis, renal failure, neuropathies, eye and skin complications. Hyperglycemia induced over production of reactive species and pro-inflammatory processes are responsible to change normal cellular structure and function, which finally leads to endothelial cell dysfunction and cell death. Therefore, the most efforts are directed to control dyslipidemia and hyperglycemia in diabetes patients. Amongst various antidiabetic plants, recent investigations have shown favorable finding regarding *Abelmoschus esculentus* efficiency on improvement of blood glucose control and lipid profile abnormalities.

Hibiscus esculentus and diabetes mellitus

Fatemeh Dehghan Shahreza*
Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Article Info

Article Type:
Commentary

Article History:
Received: 5 October 2015
Accepted: 23 October 2015
ePublished: 1 November 2015

Keywords:
Hibiscus esculentus
Diabetes mellitus
Hyperglycemia

Implication for health policy/practice/research/medical education:
Diabetes mellitus is a chronic metabolic disease, and is an important challenge of healthcare system in throughout the world. The most efforts are directed to control dyslipidemia and hyperglycemia in diabetes patients. Amongst various antidiabetic plants, recent investigations have shown favorable finding regarding *Abelmoschus esculentus* efficiency on improvement of blood glucose control and lipid profile abnormalities.

Please cite this paper as: Dehghan Shahreza F. *Hibiscus esculentus* and diabetes mellitus. J Nephropharmacol. 2016; 5(2): 104-105.

Corresponding author: Fatemeh Dehghan Shahreza, Email: F_dehghan66@yahoo.com
of diabetic control rats indicated significant alleviation in glucose and HbA1c levels, returned triglyceride and cholesterol level to normal range (2).

More recent investigations, showed the beneficial impacts of okra seed and mucilage on improving histopathological changes and biochemical parameters in preclinical studies. These studies found, the-effectivity of okra seed extract on reduction of total cholesterol, lipoproteins containing cholesterol, triglyceride and glucose levels and enhancement of serum insulin level. Interestingly, seed and mucilage of okra treated diabetic rats may also attenuate inflammation and dysfunction of β-cells of Langerhans islets in histopathological examination, in addition to biochemical parameters improvements. Thus it seems that, okra seed extract had a protective role against inflamed pancreatic β-cells through its both antioxidant and anti-inflammatory activities (5).

Similarly, a study conducted by Rafieian et al reported beneficial effects of consumption of Hibiscus esculentus powder in blood glucose, triglyceride and total cholesterol levels in Alloxan induced diabetic rats that might are associated with antioxidant components (6).

Hence, these presented data indicates nutritional importance of Hibiscus esculentus in health protection and improvement of glycemia and hyperlipidemia induced diabetic complications. Hibiscus esculentus consumption can be as a routine therapeutic application for diabetic individuals.

Authors’ contribution
FDS is the single author of the paper.

Conflicts of interest
The author declared no competing interests.

Ethical considerations
Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the author.

Funding/Support
None.

References
1. Rashid K, Sinha K, Sil P.C. An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol. 2013;62:538-600.
2. Sabitha V, Ramachandran S, Naveen KR, Panneerselvam K. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench in streptozotocin-induced diabetic rats. J Pharm Bioallied Sci. 2011;3:397-402.
3. Xia F, Zhong Y, Li M, Chang Q, Liao Y, Liu X, et al. Antioxidant and anti-fatigue constituents of okra. Nutrient. 2015;7:8846-58.
4. Gemede HF, Ratta N, Haki GD, Woldegiorgis WZ, Beyene F. Nutritional quality and health benefits of okra (Abelmoschus esculentus): a review. J Food Process Techno. 2015;25:16-25.
5. Dayal B, Yannamreddy VR, Singh PA, Lea M, H. Ertel N. Bioactive Compounds from Okra Seeds: Potential Inhibitors of Advanced Glycation End Products. ACS Symposium Series. In: Emerging Trends in Dietary Components for Preventing and Combating Disease. ACS Symposium Series. 2012;287-302.
6. Akbari F, Shahinfard N, Mirhoseini M, Shirzad H, Heidarian E, Hajian S, Rafieian-kopaei M. Impacts of Hibiscus esculentus extract on glucose and lipid profile of diabetic rats. J Nephropharmacol. 2016;5:80-5.

Copyright © 2016 The Author(s); Published by Society of Diabetic Nephropathy Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.