Development and Evaluation of Fluorescence Immunochromatography for Rapid and Sensitive Detection of Thermophilic Campylobacter

Hiroshi Asakura1, Junko Sakata2, Yoshimasa Sasaki1, and Kentaro Kawatsu2

1Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
2Bacteriology Section, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan.

Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli) are leading causes of foodborne gastroenteritis in Japan. Epidemiological surveillance has provided evidence that poultry meat is one of the main reservoirs for human campylobacteriosis, and therefore, improvement in process hygiene at slaughter is required to reduce the number of human infections. This study thus aimed to develop fluorescent immunochromatography strips for rapid and sensitive detection of thermophilic Campylobacter on poultry carcasses at slaughter. To establish the required detection levels, we first determined the numbers of C. jejuni and C. coli on poultry carcasses at one large-scale poultry slaughterhouse in Japan, resulting in the detection of Campylobacter at 1.97 ± 0.24 log CFU/25 g of neck skin during the post-chilling process by using ISO 10272-2:2017. Our developed Campylobacter fluorescence immunochromatography (FIC) assay exhibited a 50% limit of detection of 3.51 log CFU or 4.34 log CFU for C. jejuni NCTC 11168 or C. coli JCM 2529, respectively. Inclusive and exclusive tests resulted in good agreement. The practical usefulness of this test toward poultry carcasses should be evaluated in future studies, perhaps concentration of the target microorganisms prior to the testing might be helpful to further enhance sensitivity. Nevertheless, our data suggest the potential of FIC for rapid and sensitive detection of thermophilic Campylobacter for monitoring the process hygiene of poultry carcasses at slaughter.

Key word: Campylobacter, fluorescence immunochromatography (FIC), poultry slaughter, process hygiene

Introduction

Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli) are the leading causes of foodborne gastroenteritis worldwide, particularly in developed countries1). Similar to in Western countries2,3), poultry meat and its products are recognized as some of the major reservoirs for human campylobacteriosis in Japan4). Thus, it is necessary to monitor and improve the hygienic status of poultry processing at slaughter to reduce human campylobacteriosis.

Received: 26 April 2021; Accepted: 17 August 2021; Published online: 24 September 2021
Correspondence to: Hiroshi Asakura, D.V.M., Ph.D.hasakura@nihs.go.jp
The contents of this article reflect solely the view of the author(s).
Suggested citation: Hiroshi Asakura, Junko Sakata, Yoshimasa Sasaki, Kentaro Kawatsu. Development and Evaluation of Fluorescence Immunochromatography for Rapid and Sensitive Detection of Thermophilic Campylobacter. Food Safety. 2021; 9 (3) 81–87. doi: 10.14252/foodsafetyfscj.D-21-00006
Abbreviations: C. coli: Campylobacter coli, C. jejuni: Campylobacter jejuni, C. lari: Campylobacter lari, EFSA: the European Food Safety Agency, FIC: fluorescent immunochromatography, FSAI: the Food Safety Authority of Ireland, LOD50%: 50% limit of detection, Mab: monoclonal antibody, PBS: sterile phosphate-buffered saline

Open Access This article is an open access article distributed under the term of the Creative Commons Attribution 4.0 International License.
In this regard, the European Food Safety Agency (EFSA) performed a baseline survey and concluded that broiler carcasses were contaminated at an average of 75.8%, with significant variations between member states and slaughterhouses. The EFSA also estimated that the public health risk from the consumption of broiler meat could be reduced by more than 50% if the poultry carcasses complied with a limit of 3.0 log CFU/g of neck skin. Based on this evidence, the Food Safety Authority of Ireland (FSAI) amended Regulation (EC) No 2073/2005 to newly set a process hygiene criterion for *Campylobacter* at slaughterhouses and, in January 2018, started to monitor the bacterial burden.

To monitor the bacterial contamination levels on poultry carcasses, the FSAI recommended using ISO 10272-2, an international standard method to quantitatively detect the numbers of thermophilic *Campylobacter*, which is mainly composed of direct plating onto selective agar and subsequent confirmation testing. However, such a standard method is time-consuming and requires technical capability to obtain accurate results mainly due to the bacterial characteristics, such as their microaerophilic nature. In the slaughter field, easy-to-use and rapid technologies are expected to allow continuous monitoring. However, such an alternative method should putatively detect approximately 3.0 log CFU of *C. jejuni* and *C. coli* in order to achieve a 50% reduction in public health risk, as recommended by the FSAI.

To date, several chromometric immunochromatography strips have been developed, most of which show a sensitivity of more than 5.0 log CFU of *Listeria monocytogenes* and *Salmonella* spp. For *Campylobacter*, a previous study also developed chromometric immunochromatography for its rapid detection from human clinical specimens in combination with preenrichment culture; however, the detection limits of this method ranged from 4.3 to 5.9 log CFU/mL for *C. jejuni* and 5.1 to 6.7 log CFU/mL for *C. coli*. Further study showed that a chromometric immunochromatography kit showed sensitivity at 8.0 log CFU/g from chicken feces. These are likely to be insufficient for bacterial monitoring at slaughter, as mentioned above.

A recent advancement in fluorescent silica nanoparticles technology enables us to develop sensitive assay systems for the detection of a series of target molecules. Indeed, fluorescent silica nanoparticles have been used for the development of rapid detection and/or diagnostic tools for clinical specimens for *Acanthamoeba keratitis*, *Salmonella*, *Staphylococcus aureus*, and *Escherichia coli*. As fluorescent silica nanoparticles show binding affinity to immunoglobulins, the particles might be utilized for construction of a sensitive immunochromatography system for thermophilic *Campylobacter*.

Given this background, we aimed to develop a fluorescent immunochromatography (FIC) assay for rapid and sensitive detection of *Campylobacter*, and its performance was evaluated by estimating the 50% limit of detection (LOD) as well as inclusive/exclusive testing as qualitative testing method.

Materials and Methods

Samples

Neck skins were taken from poultry carcasses at post-de feathering, post-evisceration and post-chilling processes at one large-scale poultry slaughterhouse in Japan, which processes approximately 75,000 broilers per day on average. The skins from five birds were pooled to obtain 25 g (designated as a skin sample), and 15 samples were prepared at three processing points collected from the same lot on the same day.

Quantitative Detection of Campylobacter from Poultry

Thermophilic *Campylobacter* was quantitatively detected from poultry neck skin samples essentially according to ISO 10272-2:2017. Briefly, after homogenization with 225 mL of buffered peptone water (Oxoid, Hampshire, UK), a total of 1 mL of the homogenates and serial dilutions were spread on modified charcoal-cefoperazone-deoxycholate agar plates (Oxoid), followed by microaerophilic incubation at 41.5 °C for 48 h using an AnaeroPack-Microaero (Mitsubishi Gas Chemicals, Tokyo, Japan). Per sample, five suspected colonies grown on the plates were subjected to PCR-based identification using *C. jejuni*- and *C. coli*-specific primers, as previously described.

Development of a Campylobacter fluorescence Immunochromatography (FIC) assay as Qualitative Detection Method

Membrane-based lateral flow immunochromatographic strips with fluorescent nanoparticles were constructed by Furukawa Advanced Engineering, Japan (Chiba, Japan). In brief, a mouse anti-*Campylobacter* monoclonal antibody (MAB) was conjugated with fluorescent silica nanoparticles (Quartz Dot; Furukawa Advanced Engineering) as previously described. The prepared MAB-fluorescent silica nanoparticle conjugates were suspended in 1.0 mL of 50 mM Tris-HCl/150 mM NaCl/1% bovine serum albumin/20% glycerol and then freeze-dried before storage at -30 °C until use. To construct a test strip, an absorbent pad (Millipore, Bedford, MA, USA) was attached to a laminated membrane card (Whatman FP, Cytiva, Marlborough, MA, USA) so that
the pad slightly overlapped the membrane, and the assembly was then cut into strips consisting of the membrane (5 by 25 mm) with the absorbent pad (5 by 17 mm). One microliter aliquots of the MAb-Quartz Dot® conjugates were deposited on the membrane, which was stored in the dark until use.

Determination of the Specificity of the Campylobacter FIC Assay

For inclusive testing, a total of 55 bacterial strains, including 25 C. jejuni, 25 C. coli, and 5 Campylobacter lari (C. lari) strains, were subjected to the Campylobacter FIC assay. For exclusive testing, 5 Campylobacter fetus, 3 Campylobacter upsaliensis, 3 Campylobacter hyointestinalis strains and non-Campylobacter bacterial strains (10 Escherichia coli, 10 Salmonella spp., 10 Arcobacter butzleri, 4 Enterobacter spp., 1 Klebsiella aerogenes, 1 Shigella flexneri, 5 Pseudomonas spp., and 5 Helicobacter pylori strains) were used. These bacterial strains were generally cultured in Mueller-Hinton broth (Becton Dickinson, Franklin lakes, NJ, USA), except for H. pylori, which was cultured in Brucella broth (Becton Dickinson) supplemented with horse serum (Thermo Fisher Scientific), then followed by washing twice with sterile phosphate-buffered saline (PBS). The bacterial pellets were resuspended in PBS to achieve approximately 8.0 to 8.3 log CFU/mL, and 50 μL aliquots of these suspensions (equivalent to approximately 6.7 to 7.0 log CFU) were then added to equal volumes of the B-PER II reagent (Thermo Fisher Scientific, Waltham, MA, USA). After homogenization in microtubes with zirconia beads (Zircoprep Mini, Nippon Genetics, Tokyo, Japan) on a Digital Disruptor Genie (Scientific Industries, Bohemia, NY, USA) at 2,850 rpm for 5 min, the homogenates were centrifuged at 10,000 x g at 4°C for 5 min. The resulting supernatants (crude extracts) were applied to the Campylobacter FIC assay strip. At 15 min post loading, the appearance of detectable bands for Campylobacter antigens was visually monitored by using a fluorescence hand scope (Furukawa Advanced Engineering). PBS alone was used as a negative control.

Determination of the Sensitivity of the Campylobacter FIC Assay

The sensitivity of the Campylobacter FIC assay was examined using different numbers (a total of 6 inoculation levels) of C. jejuni NCTC 11168 and C. coli JCM 2529 cells grown on Mueller-Hinton agar (Becton Dickinson) at 41.5 °C for 24 h under a microaerobic atmosphere. Following two washes with PBS, a bacterial suspension (corresponding to 6.0 to 6.6 log CFU/50 μL) and serial 10-fold dilutions were prepared in PBS (Thermo Fisher Scientific), and 50 μL aliquots of each dilution were processed as mentioned above. Simultaneously, the cell suspensions were spread onto Mueller-Hinton agar to enumerate CFU. PBS alone was used as a negative control. This test was performed in 5 independent sets, and the LOD50% was calculated accordingly.

Results and Discussion

Quantitative Detection of Thermophilic Campylobacter on Broiler Carcasses at Slaughter

We first examined the quantitative detection of thermophilic Campylobacter on broiler neck skin samples collected at three processing points in one poultry slaughterhouse according to ISO 10272-2:2017. Overall, all samples were positive for Campylobacter. At post-defeathering, Campylobacter was detected at levels ranging from 3.48 to 5.27 log CFU/sample (25 g) of neck skin (mean ± SD of 4.21 ± 0.78 log CFU/25 g) (Fig. 1). The bacterial counts were then increased after the evisceration process to 4.78 ± 0.46 log CFU/25 g on average (4.30 to 5.43 log CFU/25 g) (Fig. 1), suggesting the occurrence of cross-contamination of this pathogen on the carcass during evisceration. The carcasses at the post-chilling process thereafter exhibited decreased bacterial contamination levels at 1.97 ± 0.24 log CFU/25 g on average (1.70 to 2.30 log CFU/25 g) (Fig. 1), which indicated that the chilling process effectively reduced bacterial contamination. An interview of the slaughterhouse personnel confirmed that the chilling tank contained 30 ppm sodium hypochlorite at <5 °C for >30 min, which was set as the critical control point by the facility. As chilling and antimicrobial treatment have usually been combined in many processing plants to save energy and rapidly inhibit bacterial survival and growth by washing the carcasses with cold chlorinated water, our data indicated that the target facility maintained good manufacturing control during the chilling process. Nevertheless, the samples at the post-chilling process possessed approximately 2.0 log CFU/25 g Campylobacter, suggesting the further necessity to reduce the bacterial contamination; accordingly, quantitative microbial risk assessments have validated the effectiveness of interventions such as scalding and chilling during processing by reporting an average of 4.0 log reductions in Campylobacter concentrations from before processing to immediately after carcass chilling, but the current process examined herein did not satisfy such criteria. The facility is encouraged to confirm the adequacy of chemical antimicrobial interventions, as several more effective antimicrobials have been reported to date.

Specificity of the Campylobacter FIC Strip

The quantitative detection procedure of Campylobacter could provide useful information for risk management in the
slaughter process, as well as evaluation of the efficiency of the adopted intervention24. To perform continuous monitoring, practical approach with reduced costs and times for screening highly contaminated carcasses is seemingly expected. To address this issue, we developed an FIC assay for rapid and sensitive detection of thermophilic Campylobacter, which can obtain qualitative results within 15 min (Fig. 2). The developed Campylobacter FIC assay showed 100% detection of C. jejuni (n = 25), C. coli (n = 25), and C. lari (n = 5), but no other bacterial strains (n = 56) except for one C. upsaliensis strain were detected even when high numbers (6.40-6.70 log CFU) of bacterial cells were applied (Table 1).

Recently, immunochromatographic tests, which produce a result within a few minutes and exhibit operational simplicity, have been developed. The first evaluations of these tests showed good sensitivity but an apparent lack of specificity in comparison to those of culture25,26. Given these data, we next examined the sensitivity of the Campylobacter FIC assay.

Sensitivity of the Campylobacter FIC Assay

Next, the sensitivity of the Campylobacter FIC assay was examined by using different numbers of the C. jejuni NCTC 11168 and C. coli JCM 2529 strains. The FIC assay detected > 3.08 log CFU of C. jejuni NCTC 11168 and > 3.84 log CFU of C. coli JCM 2529 (Table 2), even when a hand-type

Fig. 1. Quantitative detection of thermophilic Campylobacter from poultry carcasses at slaughter. Neck skin samples were taken at the postdefeathering, postvisceration and postchilling processes. Means represent the bacterial numbers as log CFU/g.

Fig. 2. Representative images of the Campylobacter FIC assay for the detection of C. jejuni NCTC 11168. The images were captured by a hand-type scope.
A recently developed nanoparticle-based piezoelectric immunosensor integrated with a magnetic immunoseparation system could detect 20-30 CFU of Campylobacter, but it requires atomic force microscopy, which is seemingly hard to simultaneously apply to a broad range of slaughterhouses.

Another study showed quite a sensitive detection tool for Campylobacter using PCR and immunochromatography strips, although it required short-term cultivation prior to genetic detection. Comparatively, our evaluated FIC assay requires fewer instruments without cultivation, and a total detection time of less than 30 min, which seems to be advantageous for possible implementation.

Our future practical study at the poultry slaughterhouse clarifies its possible implications for process hygiene at
facility. Perhaps pretreatment of the sample homogenates with centrifugation might allow the concentration of target microorganisms to obtain enough numbers of Campylobacter before loading onto the FIC assay, allowing us to qualitative detection of less numbers of Campylobacter in the fields. To examine this possibility, the effects of contaminants other than Campylobacter, existing on the poultry carcass skin should be considered because of their complexity. Since poultry processing steps, including scalding, defeathering, evisceration, nick removal, and inside and outside (or inside-out) washing, can all contribute to cross-contamination of Campylobacter in one way or another, monitoring of the quantitative dynamics of this pathogen throughout whole processes is expected to reveal the bacterial contamination risks, thereby leading to an adequate control approach at poultry slaughter.

Acknowledgments

We thank Mr. Takayuki Kamada and Mr. Hideki Watanabe, Furukawa Advanced Engineering, Co. Ltd. for their kind support in the construction of fluorescence immunochromatography. This research was commissioned under the “2018 FSCI Research Grant Program for Risk Assessment on Food Safety (Topic No. 1806)”, and Grant-in-aid of Scientific Research from Japan Society for Promotion of Science (JSPS) (grant number 19K06432).

Conflict of Interest

The authors declare no conflict of interest.

References

1. Fitzgerald C. Campylobacter. Clin Lab Med. 2015; 35(2): 289–298. PMID:26004643, doi:10.1016/j.cll.2015.03.001
2. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018; 16(12): e05500. PMID:32625785
3. Geissler AL, Bustos Carrillo F, Swanson K, et al. Increasing Campylobacter infections, outbreaks, and antimicrobial resistance in the United States, 2004-2012. Clin Infect Dis. 2017; 65(10): 1624–1631. PMID:29020144, doi:10.1093/cid/cix624
4. Kumagai Y, Pires SM, Kubota K, Asakura H. Attributing human foodborne diseases to food sources and water in Japan using analysis of outbreak surveillance data. J Food Prot. 2020; 83(12): 2087–2094. PMID:32649749, doi:10.4315/JFP-20-151
5. European Food Safety Authority. Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008. EFSA J. 2010; 8(3): 1503.
6. EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA Journal. 2011; 9(4): 2105. doi:10.2903/j.efsa.2011.2105
7. Food Safety Authority of Ireland (FSAI). Commission regulation (EU) 2017/1495 of 23 August 2017-amending regulation (EC) No. 2073/2005 as regards Campylobacter in broiler carcasses. Official J European Union. 2017; L218. https://www.fsai.ie/uploadedFiles/Reg2017_1495.pdf. Accessed on April 19, 2021.
8. International Organization for Standardization (ISO), ISO 10272-2:2017. Microbiology of the food chain - Horizontal method for detection and enumeration of Campylobacter spp. - Part 2: Aolony-count technique. https://www.iso.org/standard/63228.html. Accessed on April 18, 2021.
9. Stambach N, Carr S, Cox C, Voorhees K. Rapid detection of Listeria by bacteriophage amplification and SERS-lateral flow immunochromatography. Viruses. 2015; 7(12): 6631–6641. PMID:26694448, doi:10.3390/v7122962
10. Moonkarndi P, Rodpai E, Kanarat S. Evaluation of an immunochromatographic assay for rapid detection of Salmonella enterica serovars Typhimurium and Enteritidis. J Vet Diagn Invest. 2011; 23(4): 797–801. PMID:21908327, doi:10.1177/1040638711408063
11. Kawatsu K, Kumed Y, Taguchi M, Yamazaki-Matsune W, Kanki M, Inoue K. Development and evaluation of an immunochromatographic assay for simple and rapid detection of Campylobacter jejuni and Campylobacter coli in human stool specimens. J Clin Microbiol. 2008; 46(4): 1226–1231. PMID:18256225, doi:10.1128/JCM.02170-07
12. Takahashi N, Koga M, Matsunaga N, Maruyama H. Screening of Campylobacter jejuni coli in fowl droppings by real-time PCR and immunochromatography [in Japanese]. Fukuo-ka city Institute of Health and Environment report. 2018; 43: 109–112.
13. Yang S, Li Y. Fluorescent hybrid silica nanoparticles and their biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020; 12(3): e1603. PMID:31837124, doi:10.1002/j.wnn.1603
14. Toriyama K, Suzuki T, Inoue T, et al. Development of an immunochromatographic assay kit using fluorescent silica nanoparticles for rapid diagnosis of Acanthamoeba keratitis. J Clin Microbiol. 2015; 53(1): 273–277. PMID:25392356, doi:10.1128/JCM.02595-14
15. Wang QY, Kang YJ. Bioprobes based on aptamer and silica fluorescent nanoparticles for detection and enumeration of Campylobacter jejuni and Campylobacter coli in fowl droppings by real-time PCR and immunochromatography. Nanoscale Research Letters. 2016; 11(1): 150. PMID:26983430, doi:10.1186/s11671-016-1359-z
16. Shangguan J, Li Y, He D, et al. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. The Analyst. 2015; 140(13): 4489–4497. PMID:25963028, doi:10.1039/C5AN00535C
17. Chen ZZ, Cai L, Chen MY, Lin Y, Pang DW, Tang HW. Indirect immunofluorescence detection of E. coli O157:H7 with fluorescent silica nanoparticles. Biosens Bioelectron. 2015; 66: 95–102. PMID:25460888, doi:10.1016/j.bios.2014.11.007
18. Tachihana H, Kakino A, Kazama M, et al. Development of a sensitive immunochromatographic kit using fluorescent silica nanoparticles for rapid serodiagnosis of amebiasis. Parasitology. 2018; 145(14): 1890–1895. PMID:29739480, doi:10.1017/S0031182018000690

19. Kawase J, Asakura H, Kurosaki M, et al. Rapid and accurate diagnosis based on real-time PCR cycle threshold value for the identification of Campylobacter jejuni, astA gene-positive Escherichia coli, and eae gene-positive E. coli. Jpn J Infect Dis. 2018; 71(1): 79–84. PMID:29093317, doi:10.7883/yoken.JJID.2017.151

20. Wilrich C, Wilrich PT. Estimation of the POD function and the LOD of a qualitative microbiological measurement method. J AOAC Int. 2009; 92(6): 1763–1772. PMID:20166595, doi:10.1093/jaoac/92.6.1763

21. Keener KM, Bashor MP, Curtis PA, Sheldon BW, Kathariou S. Comprehensive Review of Campylobacter and Poultry Processing. Compr Rev Food Sci Food Saf. 2004; 3(2): 105–116. PMID:1541-4337.2004.tb00060.x

22. Dogan OB, Clarke J, Mattos F, Wang B. A quantitative microbial risk assessment model of Campylobacter in broiler chickens: Evaluating processing interventions. Food Control. 2019; 100: 97–110. doi:10.1016/j.foodcont.2019.01.003

23. Thames HT, Theradiyil Sukumaran A. A Review of Salmonella and Campylobacter in broiler meat: Emerging challenges and food safety measures. Foods. 2020; 9(6): 776. PMID:32545362, doi:10.3390/foods9060776

24. Habib I, Coles J, Fallows M, Goodchild S. Human campylobacteriosis related to cross-contamination during handling of raw chicken meat: Application of quantitative risk assessment to guide intervention scenarios analysis in the Australian context. Int J Food Microbiol. 2020; 332: 108775. PMID:32645510, doi:10.1016/j.ijfoodmicro.2020.108775

25. Wang H, Wang L, Hu Q, Wang R, Li Y, Kidd M. Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. Journal of Food Protection. 2018; 81(8): 1321–1330. PMID:30019963, doi:10.4315/0362-028X.JFP-17-381

26. Poonlapdecha W, Seetang-Nun Y, Wonglumsom W, et al. Antibody-conjugated ferromagnetic nanoparticles with lateral flow test strip assay for rapid detection of Campylobacter jejuni in poultry samples. Int J Food Microbiol. 2018; 286: 6–14. PMID:30031226, doi:10.1016/j.ijfoodmicro.2018.07.009

27. Zhang X, Peng Z, Li P, et al. Complex internal microstructure of feather follicles on chicken skin promotes the bacterial cross-contamination of carcasses during the slaughtering process. Front Microbiol. 2020; 11: 571913. PMID:33042079, doi:10.3389/fmicb.2020.571913

28. Hakeem MJ, Lu X. Survival and control of Campylobacter in poultry production environment. Front Cell Infect Microbiol. 2021; 10: 615049. PMID:33585282, doi:10.3389/fcimb.2020.615049