BIPOLAR MAGNETIC REGIONS ON THE SUN: GLOBAL ANALYSIS OF THE SOHO/MDI DATA SET

J. O. STENFLO1,2 AND A. G. KOsovichev3

1 Institute of Astronomy, ETH Zurich, CH-8093 Zurich, Switzerland; stenflo@astro.phys.ethz.ch
2 Istituto Ricerche Solari Locarno, Via Patocchi, 6605 Locarno-Monti, Switzerland
3 W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; AKosovichev@solar.stanford.edu

Received 2011 October 11; accepted 2011 October 25; published 2012 January 9

ABSTRACT

The magnetic flux that is generated by dynamo processes inside the Sun emerges in the form of bipolar magnetic regions. The properties of these directly observable signatures of the dynamo can be extracted from full-disk solar magnetograms. The most homogeneous, high-quality synoptic data set of solar magnetograms has been obtained with the Michelson Doppler Imager (MDI) instrument on the Solar and Heliospheric Observatory spacecraft during 1995–2011. We have developed an IDL program that has, when applied to the 73,838 magnetograms of the MDI data set, automatically identified 160,079 bipolar magnetic regions that span a range of scale sizes across nearly four orders of magnitude. The properties of each region have been extracted and statistically analyzed, in particular with respect to the polarity orientations of the bipolar regions, including their tilt-angle distributions and their violations of Hale’s polarity law. The latitude variation of the average tilt angles (with respect to the E–W direction), which is known as Joy’s law, is found to closely follow the relation $32.1^\circ \times \sin(\text{latitude})$. There is no indication of a dependence on region size that one may expect if the tilts were produced by the Coriolis force during the buoyant rise of flux loops from the tachocline region. A few percent of all regions have orientations that violate Hale’s polarity law. We show explicit examples, from different phases of the solar cycle, where well-defined medium-size bipolar regions with opposite polarity orientations occur side by side in the same latitude zone in the same magnetogram. Such oppositely oriented large bipolar regions cannot be part of the same toroidal flux system, but different flux systems must coexist at any given time in the same latitude zones. These examples are incompatible with the paradigm of coherent, subsurface toroidal flux ropes as the source of sunspots, and instead show that fluctuations must play a major role at all scales for the turbulent dynamo. To confirm the profound role of fluctuations at large scales, we show explicit examples in which large bipolar regions differ from the average Joy’s law orientation by an amount between 90° and 100°. We see no observational support for a separation of scales or a division between a global and a local dynamo, since also the smallest scales in our sample retain a non-random component that significantly contributes to the accumulated emergence of a north–south dipole moment that will lead to the replacement of the old global poloidal field with a new one that has the opposite orientation.

Key words: Sun: activity – Sun: dynamo – Sun: interior – Sun: surface magnetism

1. INTRODUCTION

The origin of solar activity with its 11 yr cycle is generally understood in terms of an oscillatory dynamo inside the Sun (cf. Brandenburg & Subramanian 2005; Brandenburg 2005). While a toroidal magnetic field is generated from a poloidal field through differential rotation, the essence of the global dynamo is the regeneration of the poloidal field from the toroidal one through interaction with turbulent convection in the rotating Sun. The systematic twisting due to the Coriolis force generates an N–S dipole moment from the originally E–W oriented toroidal field. This dipole moment spreads by turbulent diffusion to reorient the old global poloidal field and replace it with a new one of opposite sign.

This general scenario provides a framework for the explanation of various observed properties of the cycle: (1) Hale’s polarity law (Hale et al. 1919), according to which sunspots appear in pairs approximately aligned with the E–W direction, but with opposite polarity orientations in the two hemispheres, and with reversal of the orientations between two successive 11 yr cycles; (2) the butterfly diagram, according to which the latitude zones, in which the sunspots appear, migrate from high (≈40°) to low (near the equator) latitudes as the cycle progresses; and (3) Joy’s law (also reported in the seminal paper by Hale et al. 1919), according to which the orientations of the magnetic polarities of the sunspot groups deviate from the E–W direction in a systematic way, such that the preceding (W) part of the region is on average closer to the equator than the following (E) part.

While much of the empirical studies of the solar cycle have been in terms of the properties and distributions of sunspots, we know that sunspots only represent proxies for the underlying fundamental agent, the magnetic field. The solar dynamo operates in the Sun’s interior, which is not accessible to direct observations (except indirectly through helioseismology). At the surface of the Sun, the main directly observable signatures of the dynamo are the bipolar magnetic regions, which represent magnetic flux that has emerged from the interior, and the large-scale flux patterns that are shaped by the accumulated patterns of flux emergence combined with the action of flux dispersion and other transport processes (like meridional circulation).

Bipolar magnetic regions occur at all scales with a size spectrum that follows a power law (Harvey 1993; Harvey & Zwaan 1993; Schrijver & Harvey 1994; Parnell et al. 2009), from the largest regions that harbor major sunspots often accompanied by violent flare activity, to ephemeral active regions (Harvey & Martin 1973; Harvey et al. 1975; Martin & Harvey 1979) without sunspots, and the still smaller intranetwork fields. The global contribution to the overall flux emergence rate dramatically increases as we go down in scale size (Zirin 1987), suggesting that the global flux balance is dominated by the smallest scales, in contrast to the general visual impression that one may get from magnetograms.
Also the smaller scales seem to statistically follow Hale’s polarity law and the butterfly diagram distribution, although with increasing statistical spread as we go down in scale. It is not yet known at what scales the polarity orientations become so randomized that the accumulated effect of still smaller scales no longer contribute significantly to the operation of the global dynamo. Magnetocconvection is expected to cause magnetic structuring down to scales of order 10–100 m, where the magnetic Reynolds number becomes unity so that the magnetic field ceases to be frozen-in and decouples from the turbulent plasma (de Wijn et al. 2009).

The observational signature of the dynamo mechanism that most directly represents the regeneration of the poloidal field from the toroidal one is the systematic tilt of the bipolar magnetic regions that is statistically described by Joy’s law. Combined with Hale’s polarity law, this tilt describes how the emerging bipolar regions bring to the surface an N–S bipolar moment that is the seed for the regeneration of the new global poloidal field of reversed polarity, from which the subsequent 11 yr cycle of solar activity is generated. The observed properties of the tilt angles therefore give guidance to the dynamo theories and constrain the ways in which the dynamo is allowed to operate.

The tilt angles of sunspot pairs have been studied in many papers since the discovery by Hale et al. (1919) of Joy’s law, using Kitt Peak magnetograms (Wang & Sheeley 1989), Mount Wilson magnetograms (Howard 1991b), and sunspot group data (Howard 1991a), confirming the overall magnitude and crude latitude dependence originally found by Hale et al. (1919). In addition, Wang & Sheeley (1989) found that 4% of the bipolar magnetic regions had inverse polarity orientations, and that the spread in the distribution of tilt angles increased significantly as one goes to smaller regions. The superb quality of the Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) data set will allow us in the present work to explore these properties with much better precision and in much greater detail than has been possible before.

Recently, Kosovichev & Stenflo (2008) used the set of MDI magnetograms to study the tilt changes in emerging bipolar magnetic regions. They found that during the first few days after emergence the tilt angles relaxed toward the value expected from Joy’s law and not toward the E–W orientation, in agreement with the findings of Sivaraman et al. (2007) from an analysis of Kodaikanal white-light images. Kosovichev & Stenflo (2008) further found no dependence of the tilt behavior on the amount of flux or size of the bipolar regions. Both these findings contradict the paradigm that the tilt is caused by the Coriolis force acting on initially untitled flux loops that rise from a toroidal source region near the bottom of the convection zone and emerge at the surface as tilted bipolar regions (D’Silva & Choudhuri 1993; Fisher et al. 1995). Instead, the tilt, which is the source of the N–S dipole moment that leads to the reversal and regeneration of the poloidal field, appears to have been established already in the dynamo region in the Sun’s interior. The tilt observed at the surface reflects this property regardless of the size or amount of flux of the observed regions.

2. AUTOMATIC IDENTIFICATION OF BIPOLAR MAGNETIC REGIONS

2.1. Data Set

We have made use of the complete set of 96 minute cadence SOHO/MDI full-disk magnetograms (Scherrer et al. 1995), which covers the 15 yr period 1996 May–2011 April. With a pixel size of 2×2 arcsec2, the effective spatial resolution of the magnetograms is 4×4 arcsec2. The magnetograms represent maps of the line-of-sight component of the magnetic flux density averaged over the spatial resolution window. They have been derived from maps of the circular polarization recorded with a narrowband filter at different wavelength positions within the NiI 6768 Å line (Scherrer et al. 1995).

The complete data set comprises 73,838 full-disk magnetograms. Some of the magnetograms have defects (with pixel values NaN, which we replace by zero). We have rejected from further analysis the 1572 magnetograms that have more than 100 defect pixel values (out of a million for each magnetogram). We have further rejected the 2272 magnetograms for which the P angle is neither (within one degree) 0° (implying that heliographic N is upward, along the y-axis) nor 180° (with heliographic S in the upward direction), to avoid having to deal with odd rotations of the coordinate system. An additional 60 magnetograms have been rejected because the value of the Julian date in the header is inconsistent with other header information.

2.2. Limitations, Reliability, and Incompleteness

Our aim has been to develop a computer program that can be applied to any of the 73,838 MDI magnetograms, to automatically identify the bipolar magnetic regions and extract their properties. However, it does not seem feasible to make a program that can automatically and reliably identify all the bipolar regions. The algorithm that we have developed therefore makes tradeoffs between reliability and completeness. Our priority has been reliability, at the expense of completeness. The regions identified by the program should be truly individual bipolar magnetic regions, rather than clusters of several bipolar regions during times of high solar activity, or chance encounters between opposite polarities in less active areas. By choosing the criteria for an identification in a conservative way to minimize false identifications, the program will fail to identify many truly bipolar regions. Although our set of bipolar regions will represent a sufficiently reliable sample, it is a sample that is incomplete.

The automatic identification of the bipolar regions is done for each magnetogram separately, without following the evolutionary history of the magnetic patterns from one magnetogram to the next. Therefore, the same bipolar regions may be identified in different magnetograms but formally treated as separate, and different regions may represent different evolutionary phases. Thus, the measured region properties may include evolutionary effects, which can add to the spread in the distribution functions of their properties. However, since only relatively compact and well-defined bipolar regions that have not yet significantly decayed get identified by the program, processes such as flux transport and rotational shearing should not affect the results much.

It is known from previous studies that the number of bipolar magnetic regions increases with decreasing region size according to a power law (Harvey 1993; Harvey & Zwaan 1993; Schrijver & Harvey 1994; Parnell et al. 2009). This implies that the majority of regions are small, near the resolution limit of the MDI magnetograms. However, as we need to set the identification criteria to reliably extract the largest bipolar regions during times of maximum solar activity, when the magnetograms are very crowded, the identification thresholds need to be set so high that a large fraction of the smallest regions will be missed. In spite of these compromises the program succeeds, as we will
Figure 1. Vertical flux density map, calculated from the MDI line-of-sight magnetogram recorded on 2002 April 26, as described in Appendix A.1. The IDL program has identified 10 bipolar magnetic regions and enclosed them in rectangular boxes. Only eight of them are retained for the analysis, since the two boxes to the far left and the far right do not satisfy the criterion of limb zone avoidance. The gray-scale cuts are set at +100 G (white) and −100 G (black).

2.3. Set of Extracted Parameters

A detailed description of the reduction steps with the set of selection criteria that must be satisfied for the identification of acceptable bipolar magnetic regions is given in the Appendix. After the IDL program has looped through all the 73,838 magnetogram files, it has written an IDL save file with the extracted bipolar region information for each of the analyzed magnetograms. These save files are then merged into one single master file that contains the extracted information for a total of 245,733 identified bipolar regions, together with the relevant housekeeping data, such as time of the magnetogram, heliographic longitude of the central meridian, heliographic latitude of disk center, Carrington rotation number, etc.

From this data set we remove the bipolar regions, for which the derived centers of gravity do not lie within $r/r_\odot < 0.8$ for both polarities, in order to avoid errors that can occur for regions that are located close to the solar limb. $r/r_\odot = 0.8$ corresponds to the cosine of the heliocentric angle $\mu = 0.6$. This limb zone is conservatively chosen to be this wide to minimize sources of error due to projection effects and noise. A total of 85,654 regions, or 34.9% of the total, do not satisfy this criterion. This leaves us with a rest of 160,079 bipolar regions, which satisfy all our criteria and enter into our statistical analysis.

For each of these bipolar magnetic regions, the heliographic coordinates for the centers of gravity and the total magnetic fluxes of each of the two magnetic polarities are determined and saved, accounting for the geometric foreshortening effect for
pixels away from disk center. Using spherical trigonometry, we connect the centers of gravity of the two polarities with a great circle and calculate the tilt angle of this great circle with respect to the parallel circle that defines the E–W direction, as well as the polarity separation (in Mm along the great circle).

For the N hemisphere the tilt is defined to increase in the clockwise direction, for the S hemisphere in the counterclockwise direction. The zero point of the tilt angle represents a clockwise direction, for the S hemisphere in the counterclockwise direction, such that (on average) the preceding (westward) polarity being of positive sign. The tilt angle for regions with opposite orientation thus differs by 180°.

3. TILT ANGLES

Our set of 160,079 bipolar regions provides us with a rich database with which we can test and explore in detail the behavior of Joy’s law. According to this law the orientations of the bipolar magnetic regions are tilted with respect to the E–W direction, such that (on average) the preceding (westward) polarity is closer to the heliographic equator than the following polarity. This systematic tilt plays a fundamental role for any dynamo theory of the solar activity cycle, since it implies the presence of N–S dipole moments of the bipolar regions, which represent seeds for the reversal and regeneration of the Sun’s poloidal magnetic field.

The Coriolis force acting on buoyant toroidal flux elements rising from the Sun’s interior is generally invoked as the cause of the tilt with its opposite signs in the two hemispheres. With this process the magnitude of the tilt is governed by the strength of the toroidal field in the storage region inside the Sun and the rise time of the flux loops to the surface. As we will see, our present analysis does not support this scenario.

The tilt angles have a strong and well-defined latitude dependence. Our analysis however indicates that there is no significant variation of the average tilt angles with phase of the solar cycle (as also found by Wang & Sheeley 1989) or with the amount of flux (cf. Section 3.3 below), although the statistical spread of tilt angles increases when we go to smaller regions. Therefore, we will start with a global analysis, where we lump the data for the whole 15 yr MDI data set together, to explore latitude and size variations with optimized statistics, while ignoring the possibility of subtle temporal variations of Joy’s law (for which there seems to be no evidence).

3.1. Latitude Dependence

To establish a well-defined reference relation for Joy’s law with optimized statistics, we use all bipolar regions for both hemispheres and all phases of the solar cycle together. Since for approximately half the regions the positive polarity is the preceding polarity, while for the other half it is the following polarity, we get a bimodal angular distribution, with two peaks separated by 180°. Since these peaks are identical except for their 180° separation, we bring them on top of each other by subtracting 180° from tilt angles that fall within quadrants 3 and 4 (90°–270°), to make all angles fall within quadrants 1 and 2. This gives us a single peak for the angular distribution, which we can fit with a Gaussian to determine its position and spread.

The analysis has been made for a set of nine latitude bins, spanning the range 0°–45° with a bin width of 5°. The corresponding latitude range for the S hemisphere has been mapped on top of these positive latitude bins, since there is no evidence for any difference in the behavior of Joy’s law between the two hemispheres except for the sign change of the tilt. We recall that the tilt angles that we have determined for the N hemisphere are defined to be positive if the tilt is clockwise, while those in the S hemisphere are positive if the tilt is counterclockwise.

The result for the mean tilt angles in each latitude bin, as derived from a Gaussian-type fit to the angular distributions, is shown in Figure 2 as the solid circles with their respective 1σ error bars. Through this set of points we have fitted the analytical function

$$\gamma = \gamma_0 \sin b, \quad (1)$$

where b is the heliographic latitude and the tilt amplitude γ_0 is the single free fit parameter. This is the natural choice of fit function if the origin of the systematic tilt is related to the Coriolis force, since this force varies with latitude as $\sin b$. The tilt amplitude is found to be

$$\gamma_0 = 32.1 \pm 0.7. \quad (2)$$

This rather large tilt-angle amplitude is in good general agreement with the results of Wang & Sheeley (1989), but it disagrees with the much flatter latitude dependence found from Mount Wilson and Kodaikanal data by Dasi-Espuig et al. (2010) and deduced from numerical simulations by Schüssler & Baumann (2006).

3.2. Angular Distribution

Figure 3 illustrates what the angular distributions for the tilt angles look like, here for the latitude bin 15°–20°. While the solid curve represents the distribution derived from the MDI data set, the dashed curve is a fit with a Gaussian fit model with four free fit parameters: position, amplitude, Gaussian width, and vertical zero-point offset. This offset, which mimics the extended damping wings of the distribution in the form of a flat, isotropic background, becomes significant for the smallest bipolar regions, which have a much wider angular distribution with a greatly elevated background.

While this choice of fit model may not give the best representation of the shape of the extended wings of the distribution, it gives an extremely robust determination of the position and
distribution width (full width at half-maximum, or FWHM), which is the aim of the fit. Other choices, like Voigt functions, give less stable inversions in situations with non-optimum statistics, which we get when we further subdivide the material into separate flux bins. Note that the FWHM is a function of both the Gaussian width and the background offset.

3.3. Dependence on Flux and Bipolar Moment

Having determined Joy’s law in the form of Equation (1), we next want to explore whether the tilt amplitude γ_0 depends on region size. There are several ways in which we can quantify the region size. We here use two choices: (1) the total flux $F_{\text{tot}} = F_+ + F_-$, and (2) the “bipolar moment” M, defined as $M = \frac{1}{2} F_{\text{tot}} S$, where S is the separation (in Mm) between the centers of gravity of the two polarities, as measured along the great circle that connects them. It may be tempting to call M the “magnetic moment” of the bipolar region, but since this term is much used and defined very differently in classical and quantum electrodynamics, we avoid confusion by using the term “bipolar moment” for M.

Since our data set spans several orders of magnitude in F_{tot} and M, we use six logarithmic bins for each of these two quantities. Figure 4 shows the result when the tilt-angle amplitude γ_0 is determined for each such bin. The γ_0 value of 32.1° from the global tilt analysis of Figure 2 is drawn as a horizontal line for reference.

Figure 4 is consistent with the hypothesis that the tilt-angle amplitude is independent of flux and bipolar moment. It might seem that the points for the smallest bipolar moment bin and for the largest flux bin may indicate a negative slope (larger average tilt for smaller regions), but as these points only deviate by between 2 and 2.5 standard deviations from the global average, they cannot be taken as evidence for a significant slope.

Although we here cover several orders of magnitude in region size, we should remember that our lower flux limit is at about 10^{20} Mx, just above the size range of the ephemeral active regions. We have no evidence whether or not the scale invariance of the average tilt also applies to these smaller scales.

We note that according to the theory of Fan et al. (1994), which explains the tilt in terms of the Coriolis force acting on flux loops that are buoyantly rising from the bottom of the convection zone, the tilt should vary with the total flux to the...
power of 1/4, which in Figure 4 would correspond to a steep positive slope. With such a scaling law the tilt would increase by an order of magnitude as we go from our smallest to our largest flux bin. Clearly this theory can be ruled out by our results in Figure 4.

Figure 5 shows the FWHM of the angular tilt distributions as a function of logarithmic bipolar moment (left panel) and logarithmic flux (right panel). The plotted results represent averages over all latitudes. Thus, the FWHM with its error bar has been determined from the Gaussian fit model for the angular distributions in each latitude bin (in combination with the binning in M and Ftot). Then the results for the different latitude bins have been averaged, using the inverse of the squared error bars as weights. This gives us the filled circles in the figure.

The solid curves in the figure are analytical fit functions. We have chosen the analytical form of these functions such that they smoothly approach the value 180° in the limit of zero Ftot or M, because in this limit we may expect the distribution to become nearly isotropic, while in the asymptotic limit of large Ftot or M a constant value for the FWHM may be reached (an assumption that might not necessarily be valid). Such a fit function needs three free parameters to give us sufficient freedom to find good fits to the empirically determined points. The choice that has been used for Figure 5 has the form

\[y = (180 - a_2) a_0 / (a_0 + x^{a_1}) + a_2, \]

where y represents the FWHM in degrees and x either stands for M or Ftot.

The fit curve in the left panel of Figure 5, where x = M in units of 10^{20} Mx Mm, is defined by the following values of the three free parameters: \(a_0 = 3.7, a_1 = 0.52, \) and \(a_2 = 20/6 \). In the case of the right panel, where x = Ftot in units of 10^{20} Mx, the parameter values are the following: \(a_0 = 1.59, a_1 = 0.84, \) and \(a_2 = 25/3 \). The somewhat different values (of \(a_2 \)) in the asymptotic limit of large x is a reflection of the degree of uncertainty with this choice of fit model with its implicit assumptions. The model should be seen as a useful way to express the empirical behavior in compact form.

Figure 5 shows that the largest bipolar regions have an FWHM of their angular tilt distributions of 20°–25°, but the angular spread increases dramatically as we go to smaller regions, with an indication of becoming nearly isotropic in the limit of zero region size. Note that the described behavior represents an average of the FWHM determined separately for each latitude. We have found no evidence for any significant dependence of the FWHM on latitude.

4. VIOLATIONS OF HALE’S POLARITY LAW

In the previous section with our exploration of Joy’s law and the angular distributions of the tilt angles we optimized the statistics by shifting all tilt angles that fell outside the range \([-90°, +90°]\) by 180° to bring them back into this range, to allow bipolar regions from both hemispheres and different solar cycles to be combined into one single set of tilt distributions, which could then be studied as a function of latitude, flux, or bipolar moment. Through this optimization with 180° shifts we erased information on Hale’s law for the polarity orientations.

In contrast, we will in the present section focus on Hale’s polarity law and let the tilt angles remain in any quadrant in which they fall, without any 180° shifts. Hale’s polarity law states that the polarity orientations of the bipolar magnetic regions is opposite in the N and S hemispheres, and that the orientations in both hemispheres get reversed when we pass from one 11 yr cycle to the next.

4.1. Butterfly Diagrams for the Bipolar Orientations

A common and effective way to visualize how the pattern of solar activity evolves is in terms of the distribution of sunspots in latitude–time space. This representation is called “butterfly
According to Hale’s polarity law we expect quadrants 2 and 4 to be unpopulated, while quadrants 1 and 3 should be populated in a mutually exclusive way. Thus, for a given solar cycle, only one of the N or S hemispheres should be populated in quadrant no. 1, while only the opposite hemisphere should be populated in quadrant no. 3. As the next cycle begins, the hemispheres that are populated get exchanged.

The pattern shown in Figure 6 illustrates these properties of Hale’s polarity law in a very explicit way, while indicating that it is a law that is not strictly obeyed but is fairly often violated. The familiar active-region belts that migrate from higher to lower latitudes are clearly seen, but only in the N hemisphere in quadrant no. 1 (before 2008), while the S hemisphere belt occurs in quadrant no. 3. After 2008 this pattern reverses as the new cycle starts. In comparison, quadrants 2 and 4 are nearly empty, as expected from Hale’s law.

The gray-scale cuts in Figure 6 have been chosen such that white represents zero and black represents 80% of the global maximum value. While Hale’s law is obeyed in the great majority of cases, we note that quadrants 2 and 4 are not entirely empty, and that the “wrong” hemispheres in quadrants 1 and 3 are also weakly populated. As these apparent violations of Hale’s law appear to be rather randomly distributed, the question arises to what extent they represent noise fluctuations and errors in our automatic region identifications, or are real, physical violations of Hale’s law. We address this question in the next section.

4.2. Examples of Unambiguous Violations

Let us first note that the frequency of violations of Hale’s polarity law increases rather steeply as we go to regions of smaller size. This behavior is illustrated in Figure 7, where we have plotted the fraction of bipolar regions assigned to the “wrong” quadrants 2 and 4, relative to the total number of regions, as functions of bipolar moment (left panel) and flux (right panel). For medium-size and large bipolar regions this fraction is typically 4%, and possibly less for the largest regions (although here the statistics is poor). This agrees with the conclusions of Richardson (1948), Wang & Sheeley (1989), Khlystova & Sokoloff (2009), and Sokoloff & Khlystova (2010), who find similar frequencies of violations of Hale’s law. For our smallest size bin, however, the violating fraction exceeds 25% with a very steep gradient, indicating that the tilt distribution may get randomized in the limit of zero region size.

This behavior is consistent with our findings for the FWHM of the tilt distributions in Figure 5, which showed a dramatic increase of the distribution width as we go to smaller regions. As the angular distributions of the smaller regions not only have larger half widths but also extended wings that appear like an elevated, nearly isotropic background, there is no wonder that there will be significant spill-over into the “wrong” tilt quadrants.

Figure 7 does not distinguish between quadrants 1 and 3, because to do this one would need to assign the right cycle number to a given region, which cannot be done in a fully unambiguous way. However, an approximate treatment indicates that the fraction of regions that fall in quadrant 1 when it should belong to quadrant 3, and vice versa, is similar to the fractions that fall in the other wrong quadrants 2 and 4.

The circumstance that the tilt distributions have extended wings and elevated backgrounds with significant spill-over into the wrong quadrants could to some degree be due to errors from misidentifications, in particular in crowded magnetograms.
Visual inspection of magnetograms for a sample of violating cases, however, indicates that the majority of the violations represent a real property of the Sun. Since in the early phase of active-region development, during the first days after flux emergence, the tilt orientation is often found to rotate until it settles to a value more in agreement with Joy’s law (Kosovichev & Stenflo 2008), and since we in the present analysis do not include information on the age of a bipolar region, it could be that evolutionary rotation of bipolar regions may contribute to the spread of tilt angles.

To explicitly demonstrate in an unambiguous way that many physical, undisputable violations of Hale’s polarity law do indeed exist, not only for small bipolar regions but also for large ones, we show in Figure 8 four cases (enclosed by rectangular boxes), selected from different phases of the solar cycle (2004 June 27, 2005 August 4, 2008 January 11, 2010 February 16), where a large bipolar region has reversed orientation (being wrong by approximately 180°), while in the same magnetogram a prominent bipolar region with the correct polarity orientation is present in the same latitude strip. The heliographic latitudes of the four violating regions are $+7.6^\circ$, $+10.3^\circ$, -6.7°, and -18.4°. We have chosen these examples such that the violating and the non-violating regions should be at least medium-size and side by side in the same latitude strip, while at the same time being well separated from each other and all other surrounding regions, so that there can be no question about their identifications as distinct, individual bipolar magnetic regions. Inspections of time sequences of magnetograms confirm that the violations are not due to rotations during region evolution, but are really stable properties of the regions.

The violating case illustrated for 2010 February 16 has previously been reported in Stenflo (2011). Due to the latitude–time positions and magnitudes of these violating regions, we can exclude the possibility that they belong to the “wrong” solar cycle. These violations are clearly incompatible with a Babcock–Leighton type scenario (Babcock 1961; Leighton 1969), according to which one subsurface toroidal flux belt is the source of the emerging bipolar magnetic regions. If major, stable bipolar regions with opposite polarity orientations appear at the same time in the same latitude zone, they cannot possibly be part of the same toroidal flux system.

The reported violations of Hale’s polarity law may be seen as anomalies, but the discovery of such anomalies helps expose deep problems within a given paradigm.

5. CONCLUSIONS

The bipolar magnetic regions represent the most conspicuous directly observable signatures of the dynamo that operates in the Sun’s interior. While their general E–W polarity orientations indicate that they represent amplified largely toroidal flux, their systematic tilt shows that the emerging flux also brings to the surface an N–S dipole moment that represents the seed of the new poloidal field that will replace the old one, with reversed orientation. The tilt angles thus represent explicit signatures of the dynamo process that is responsible for the regeneration of the poloidal field from the toroidal one.

A prevailing paradigm for the origin of the tilt angles has been in terms of the Coriolis force acting on flux loops that buoyantly rise from the tachocline region at the bottom of the convection zone, where the dynamo is assumed to operate (D’Silva & Choudhuri 1993; Fan et al. 1994; Fisher et al. 1995). This paradigm requires superstrong (60–100 kG) toroidal magnetic fields without appreciable tilt in the tachocline zone, much stronger than the value for equipartition with the convective motions. As the speed of the buoyant rise depends both on the amount of flux and the strength of the field, one would expect that the observed tilt at the surface should depend on the size of the bipolar regions.

Work by Sivaraman et al. (2007) and Kosovichev & Stenflo (2008) has however shown that this paradigm is untenable, since the tilt angles are found to relax after emergence not toward the
Figure 8. Four explicit examples, marked by the enclosing rectangular boxes, where Hale’s polarity law is being violated in an unambiguous way by medium-size or large bipolar magnetic regions. In all four cases there are well-defined bipolar regions that obey Hale’s law in the same latitude zone of the same magnetogram. The location of the solar equator is marked by the dashed line. The chosen examples are spread over various phases of the solar cycle: 2004 June 27, 2005 August 4, 2008 January 11, and 2010 February 16. The gray-scale cuts are set at -50 (dark) and $+50$ G (white).

E–W orientation but toward the angle prescribed by Joy’s law, and this behavior is found to be independent of size or amount of flux of the regions. This is evidence that the tilt (or N–S dipole moment) is already established in the source region inside the Sun and not during the buoyant rise of the flux loops. The present work supports this conclusion by showing, with much enhanced statistics, that the average tilt does not change appreciably as we go to regions with orders of magnitude smaller flux contents.

An even much more ingrained, long-term paradigm that is shown to be untenable by the present work is the phenomenological scenario, according to which differential rotation creates from a poloidal field a coherent toroidal flux system, from which the sunspots arise. Such a scenario is not compatible with the violations of Hale’s polarity law that we have presented here. Our illustrated examples where well-defined medium-size bipolar magnetic regions occur side by side in the same magnetogram and the same latitude zone unambiguously show that these oppositely oriented regions cannot be part of the same flux system, but that there must be a coexistence of oppositely oriented toroidal flux in the same latitude zones at any given time.

Although the occurrences of violations of Hale’s polarity law represent only a few percent of all cases, they rule out the possibility of well-defined, coherent toroidal flux systems as a source of all active regions, even the large ones. Our results make clear
that fluctuations represent an essential inherent physical property of the solar dynamo, as expected to various degrees from turbulent dynamo theory (Brandenburg & Subramanian 2005).

The fundamental role of large fluctuations at all scales is further illustrated in Figure 9 for four selected cases of well-defined bipolar magnetic regions, including large ones, which have orientations that differ by 90°–100° from the orientations prescribed by Joy’s law. The existence of many such cases shows that we have fluctuations over the whole range of orientation angles, not only between “Hale and anti-Hale” (proper and reversed) orientations. Also the largest bipolar regions are subject to these fluctuations.

Our results showing the profound role of fluctuations together with the finding that the average tilt angles described by Joy’s law are independent of the amount of flux of the regions, over several orders of magnitude in flux, cast doubt on the validity of tachocline dynamo theories, and seem to be more compatible with distributed dynamo models (cf. Brandenburg 2005).

Other concepts that are not supported by our analysis is the separation of scales and the separation between a global and a local dynamo. Previous work has shown that the size spectrum of magnetic regions follows a power law indicating scale invariance over the whole range of resolved scales (cf. Parnell et al. 2009). Our finding that the average tilt angle is independent of region size shows that also the smallest regions in our sample contribute significantly to the N–S dipole moment that leads to the reversal of the global dipole field. There is no observational evidence that below a certain scale size the fields
no longer contribute to the global dynamo. On the contrary the
accumulated global effect of the small regions may even be
the dominating one, because it has long been well known that
the smallest regions dominate the global flux emergence rate
(Zirin 1987). Since our analysis indicates that even the smallest
regions, although increasingly randomized in their orientations,
retain a non-random component, their net global effect may be
substantial. Although it is beyond the scope of the present
paper to quantify the relative global contributions of the various
scales, we feel that the artificial separation of scales and division
between a global and local dynamo are theoretical idealizations
that are not justified by observations of the Sun.

We acknowledge the fruitful discussions about some of these
issues that took place at ISSI (International Space Science In-
stitute) in Bern during an international team meeting, 2010
November 15–19, and during a Nordita Workshop on “Dy-
namo, Dynamical Systems and Topology” in Stockholm in 2011
August. J.O.S. acknowledges the hospitality of Stanford Uni-
versity during a visit in 2011 March for work on the data
set recorded by the MDI instrument on the SOHO spacecraft.
SOHO is a project of international cooperation between ESA
and NASA.

APPENDIX

REDUCTION STEPS

The identification algorithm has been developed in a prag-
matic way, with the selection criteria and thresholds represented
by a set of free parameters. The values of these free parameters
have been manually optimized and then fixed, by comparing the
program identifications with visual inspections for a selection
of magnetograms representing all phases of solar activity, from
the most active and crowded phase, to the most quiet phase. The
parameters have been optimized such that the same parameter
set can be used for all the magnetograms, for all phases of the
solar activity cycle.

Once this manual program optimization has been done, the
rest is automatic. The optimized IDL program is run in batch
mode in a loop analyzing each of the 73,838 MDI magnetograms
one by one. For each analyzed magnetogram an IDL save file is
written that contains all the extracted bipolar region parameters
within a certain threshold B_{cut} (thus only retaining
the “tips of the icebergs” in this smoothed magnetogram). For
later reference we call this smoothed and cut magnetogram B_{sm}.
The bipolar region identification is based on this version, to
filter out the large number of magnetic elements that have high
flux density values only over a small number of neighboring
pixels, since inclusion of them would lead to confusion in
the overall identification also for the larger regions. The main
reason for the smoothing is that the larger regions usually have
a substantial spatial gap of low flux density between the two
opposite polarities, and this gap gets reduced and is more easily
bridged in the smoothed and cut magnetograms.

Through trial and error we have determined the optimum
choice for the width of the square smoothing window to be
11 pixels or 22 arcsec. For the choice of cut B_{cut}, below which
the smoothed field is set to zero, we have found it necessary
to link to the overall flux level B_{ave} to enable automatic
bipolar region identification with a single algorithm that works
for all phases of solar activity. This link is done by the setting
$B_{\text{cut}} = 5.8(B_{\text{ave}} - 12)$ or 30 G, whichever is larger. As we
will see under Step 3, this initial choice for B_{cut} is adjusted
incrementally upward to avoid faulty identifications in crowded
fields, if certain criteria are not satisfied.

While these choices allow good identifications of the large
bipolar regions, they obviously lead to a filtered suppression
of the contributions from small regions. However, since this
suppression does not lead to a sharp cutoff, while the number of
bipolar regions increases steeply with decreasing size, our
smoothing procedure still gives us a statistically very useful
sample of small-scale bipolar regions, although the sample is
incomplete.

A.2. Step 2

In Step 2 we use the unsigned version $|B_{\text{sm}}|$ of the smoothed
and cut magnetogram, identify each “island” (contiguous region
of non-zero pixels), and draw a rectangular box around each
such “island” with a margin of fixed width on all sides. Through
trial and error optimization the width of this margin has been
chosen to be 9 pixels or 18 arcsec, meaning that the rectangular
boundary box is at least 18 arcsec beyond the island pixels on
all sides. We need a certain margin width to bridge the gap that
frequently occurs between the two polarities in a bipolar region,
but if the margin is chosen too wide, we get excessive overlap
between the different region boxes (which adversely affects the
consolidation process described under Step 3).

A.3. Step 3

In the consolidation process of Step 3 we go through all
the “islands” identified under Step 2 and check for overlaps
between their respective region boxes. When two region boxes
partially overlap, they are replaced by a single rectangular box
that encloses both of them. This process of mergers is continued
until there is no more overlap between boxes. The resulting
number of regions is thereby greatly reduced.

During times of high levels of solar activity, when the
magnetogram is crowded with neighboring prominent bipolar
regions, our process of merging partially overlapping region
boxes may produce boxes that are too large, because they
incremental increase of the unsmoothed vertical flux density given region box can qualify as a bipolar magnetic region. The two additional criteria to decide whether or not the contents of a remaining, merged region boxes in the magnetogram and apply criterion remains unsatisfied, the magnetogram is discarded.

If a merged region box has a width exceeding 240 pixels in the E–W direction, then there is a significant chance that it does not represent a single bipolar region. In such a case the value of the cut parameter \(B_{\text{cut}} \) is raised by 10% to produce a new version of the smoothed and cut magnetogram \(B_{\text{sm}} \), and one goes back to Step 2 with this new \(B_{\text{sm}} \) as input. If with this modification a merged region box still exceeds a width of 240 pixel, then the same procedure with raising the value of \(B_{\text{cut}} \) by 10% and returning to Step 2 is repeated. This repetitive incremental increase of \(B_{\text{cut}} \) can continue for a maximum of seven times, until the box width criterion is satisfied. If the criterion remains unsatisfied, the magnetogram is discarded.

When the box width criterion is satisfied, we loop through the remaining, merged region boxes in the magnetogram and apply two additional criteria to decide whether or not the contents of a given region box can qualify as a bipolar magnetic region. The first criterion is that both the positive and negative amplitudes of the unsmoothed vertical flux density \(B_v \) should be large enough. Thus, we require the maximum value of \(B_v \) to be larger than 200 G and the minimum value smaller than \(-200 \) G.

The second criterion is that the fluxes of positive and negative polarities within a box should be moderately balanced, since a box with too much dominance of a single polarity cannot be classified as bipolar. Let flux \(F_+ \) be the sum of all the \(B_v \) values for pixels with \(B_v > 100 \) G, and similarly \(F_- \) be the sum of all the \(B_v \) values for pixels with \(B_v < -100 \) G. Our balance criterion is satisfied if \((F_+ + F_-)/(F_+ - F_-) < 0.4\). For perfect balance this quantity would be zero, for a monopolar region it would be 1.0. This criterion cannot be made too strict, since we know that a large fraction of all truly bipolar regions have moderately unbalanced polarities, with field-line links to other parts of the Sun.

A.4. Step 4

In Step 4 we loop through all the final region boxes that have passed all our criteria to qualify as bipolar regions and derive their properties. For each of the two polarities we derive the amount of flux and the heliographic coordinates of their centers of gravity, using only the pixels within a box that have \(|B_v| \) (unsmoothed vertical flux density) larger than 100 G. If \(r/r_\odot \) for the centers of gravity is not <0.8 for both polarities, then the bipolar region is not retained for analysis, to avoid errors that can become magnified when analyzing regions too close to the limb.

Using spherical trigonometry we draw a great circle through the centers of gravity of the positive and negative polarities to calculate the distance between them and their tilt angle with respect to the E–W direction, as described in Section 2.3.

REFERENCES

Bahcock, H. W. 1961, ApJ, 133, 572
Brandenburg, A. 2005, ApJ, 625, 539
Brandenburg, A., & Subramanian, K. 2005, Phys. Rep., 417, 1
Dasi-Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R., & Peñuela, T. 2010, A&A, 518, A7
de Wijn, A. G., Stenflo, J. O., Solanki, S. K., & Tsuneta, S. 2009, Space Sci. Rev., 144, 275
D’Silva, S., & Choudhuri, A. R. 1993, A&A, 272, 621
Fan, Y., Fisher, G. H., & McClymont, A. N. 1994, ApJ, 436, 907
Fisher, G. H., Fan, Y., & Howard, R. F. 1995, ApJ, 438, 463
Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, ApJ, 49, 153
Harvey, K. L. 1993, PhD thesis, Univ. Utrecht
Harvey, K. L., Harvey, J. W., & Martin, S. F. 1975, Sol. Phys., 40, 87
Harvey, K. L., & Martin, S. F. 1973, Sol. Phys., 32, 389
Harvey, K. L., & Zwaan, C. 1993, Sol. Phys., 148, 85
Howard, R. F. 1991a, Sol. Phys., 136, 251
Howard, R. F. 1991b, Sol. Phys., 132, 49
Khibystova, A. I., & Sokoloff, D. D. 2009, Astron. Rep., 53, 281
Kosovichev, A. G., & Stenflo, J. O. 2008, ApJ, 688, L115
Leighton, R. B. 1969, ApJ, 156, 1
Martin, S. F., & Harvey, K. L. 1979, Sol. Phys., 64, 93
Parnell, C. E., DeForest, C. E., Hagaenaar, H. J., et al. 2009, ApJ, 698, 75
Richardson, R. S. 1948, ApJ, 107, 78
Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995, Sol. Phys., 162, 129
Schrijver, C. J., & Harvey, K. L. 1994, Sol. Phys., 150, 1
Schüssler, M., & Baumann, I. 2006, A&A, 459, 945
Sivaraman, K. R., Gokhale, M. H., Sivaraman, H., Gupta, S. S., & Howard, R. F. 2007, ApJ, 657, 592
Sokoloff, D., & Khibystova, A. I. 2010, Astron. Nachr., 331, 82
Stenflo, J. O. 2011, in ASP Conf. Ser. 437, Solar Polarization 6, ed. J. R. Kuhn, D. M. Harrington, H. Lin, S. V. Berdyugina, J. Trujillo-Bueno, S. L. Keil, & T. Rimmele (San Francisco, CA: ASP), 3
Wang, Y.-M., & Sheeley, N. R., Jr. 1989, Sol. Phys., 124, 81
Zirin, H. 1987, Sol. Phys., 110, 101