The NOD2 Single Nucleotide Polymorphisms rs2066843 and rs2076756 Are Novel and Common Crohn’s Disease Susceptibility Gene Variants

Jürgen Glas1,2,3,*, Julia Seiderer1,3, Cornelia Tillack1, Simone Pfennig1, Florian Beigel1, Matthias Jürgens1,4, Torsten Olszak1,5, Rüdiger P. Laubender6, Maria Weidinger1, Bertram Müller-Myhsköll,7, Burkhard Göke1, Thomas Ochsenkühn1, Peter Lohse9, Julia Diegelmann1,2, Darina Czamara7, Stephan Brand1,8

1 Department of Medicine II - Grosshadern, Ludwig-Maximilians-University, Munich, Germany, 2 Department of Preventive Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany, 3 Department of Human Genetics, RWTH (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany, 4 Division of Gastroenterology, University of Leuven, Leuven, Belgium, 5 Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 6 Institute of Medical Informatics, Biometry and Epidemiology (IBE), Ludwig-Maximilians-University, Munich, Germany, 7 Max-Planck-Institute of Psychiatry, Munich, Germany, 8 Institute of Clinical Chemistry - Grosshadern, Ludwig-Maximilians-University, Munich, Germany

Abstract

Background: The aims were to analyze two novel NOD2 variants (rs2066843 and rs2076756) in a large cohort of patients with inflammatory bowel disease and to elucidate phenotypic consequences.

Methodology/Principal Findings: Genomic DNA from 2700 Caucasians including 812 patients with Crohn’s disease (CD), 442 patients with ulcerative colitis (UC), and 1446 healthy controls was analyzed for the NOD2 SNPs rs2066843 and rs2076756 and the three main CD-associated NOD2 variants p.Arg702Trp (rs2066844), p.Gly908Arg (rs2066847), and p.Leu1007fsX1008 (rs2066847). Haplotype and genotype-phenotype analyses were performed. The SNPs rs2066843 (p = 3.01 × 10⁻⁵; OR 1.48, [95% CI 1.23-1.78]) and rs2076756 (p = 4.01 × 10⁻⁶; OR 1.54, [95% CI 1.28-1.86]) were significantly associated with CD but not with UC susceptibility. Haplotype analysis revealed a number of significant associations with CD susceptibility with omnibus p values <10⁻¹⁰. The SNPs rs2066843 and rs2076756 were in linkage disequilibrium with each other and with the three main CD-associated NOD2 mutations (D’>0.9). However, in CD, SNPs rs2066843 and rs2076756 were more frequently observed than the other three common NOD2 mutations (minor allele frequencies for rs2066843 and rs2076756: 0.390 and 0.380, respectively). In CD patients homozygous for these novel NOD2 variants, genotype-phenotype analysis revealed higher rates of a penetrating phenotype (rs2076756: p = 0.015) and fistulas (rs2076756: p = 0.015) and significant associations with CD-related surgery (rs2076756: p = 0.003; rs2066843: p = 0.015). However, in multivariate analysis only disease localization (p<2×10⁻⁶) and behaviour (p = 0.02) were significantly associated with the need for surgery.

Conclusion/Significance: The NOD2 variants rs2066843 and rs2076756 are novel and common CD susceptibility gene variants.

Introduction

Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases (IBD) characterized by an exaggerated immune response of the intestinal mucosa and a dysfunctional epithelial barrier [1,2,3,4]. The identification of nucleotide-binding oligomerization domain 2 (NOD2, GeneID: 64127), also known as caspase recruitment domain-containing protein 15 (CARD15) as the first susceptibility gene in CD in 2001 [5,6] has provided significant new insights in the pathogenesis of IBD focusing on the genetic background of innate immune response and interaction with bacterial antigens [7,8,9,10]. Most recently, genome-wide associa-
tion studies and subsequent replication studies have provided further insights into IBD pathogenesis by identification and confirmation of susceptibility genes such as the interleukin-23 receptor (IL23R) [11,12], SLCO2A1/5 [13] and ATP16L1 [14] (autophagy-related 16-like 1) gene.

NOD2 represents a cytoplasmatic protein and functions mainly as a NF-kB pathway activating sensor for bacterial muramyl dipeptide (MDP), found in the cell wall of Gram-positive and Gram-negative bacteria [8,15,16,17]. In addition, NOD2 seems to be a negative regulator of Toll-like receptor 2-mediated T helper cell type 1 responses and modulates ileal expression of antimicrobial peptides such as alpha-defensins and the expression of proinflammatory cytokines and chemokines in the intestinal mucosa [18,19,20]. The identification of NOD2 as a susceptibility gene for CD therefore suggests an important role of genetically determined enteric bacteria-host interactions and an inappropriate activation of the mucosal immune system in IBD. Large genotype-phenotype analyses by us [21,22] and others [23,24,25] also demonstrated a significant association of NOD2 variants with ileal involvement, stricturing phenotype and early disease onset in CD patients.

The NOD2 gene is located on chromosome 16q in the IBD1 locus and contains 11 constant exons and a twelfth alternatively spliced exon in the 5’-region. So far, three main NOD2 variants, which include two amino acid substitutions, p.Arg702Trp encoded by exon 4, and p.Gly908Arg encoded by exon 8, and the frameshift mutation p.Leu1007fsX1008 located in exon 11, were identified to be overrepresented in CD patients. There is also evidence for further NOD2 variants being involved in IBD pathogenesis as demonstrated by us [26] and others in recent association studies [18,19,20]. However, the extent of disease modification or phenotypic consequences of other NOD2 variants such as the SNPs rs2066843 and rs2076756 have not been investigated so far.

We therefore genotyped 2700 individuals of Caucasian origin and performed a large and detailed genotype-phenotype analysis for the NOD2 variants rs2066843 and rs2076756 analyzing the influence of these variants on the disease susceptibility and phenotype of patients with CD and UC.

Materials and Methods

Study population

The study population (n = 2700) was comprised of 1254 IBD patients of Caucasian origin including 812 patients with CD, 442 patients with UC, and 1446 healthy, unrelated controls. The patients were recruited in two cohorts; the discovery sample was recruited from the University Hospital Munich-Grosshadern and comprised 519 CD patients, 232 UC patients and 770 controls, while the replication cohort recruited from the University Hospitals Bochum and Munich-Innenstadt consisted of 293 CD patients, 210 UC patients and 676 controls. Patients with indeterminate colitis were excluded from the study. All individuals gave written, informed consent prior to the study. The study was approved by the local Ethics committee and adhered to the ethical principles for medical research involving human subjects of the Helsinki Declaration. Phenotypic parameters were collected blind to the results of the genotype analysis and included demographic and clinical data (behaviour and anatomic location of IBD, disease-related complications, surgical or immunosuppressive therapy). Two senior gastroenterologists analyzed data which were recorded by patient charts analysis and a detailed questionnaire based on an interview at time of enrolment. For the analysis of demographic and phenotypic data, the diagnosis of CD and UC was related to established international guidelines based on endoscopic, radiological, and histopathological parameters [27]. CD patients were classified according to the Montreal classification [28] including age at diagnosis (A), location (L), and behaviour (B) of disease. In patients with UC, anatomic location was also assessed in accordance to the Montreal classification based on the criteria ulcerative proctitis (E1), left-sided UC (distal UC; E2), and extensive UC (pancolitis; E3). The clinical characteristics of the IBD study population are summarized in Table 1.

DNA extraction and NOD2 genotyping

Genomic DNA was isolated from peripheral blood leukocytes by standard procedures using the DNA blood mini kit from Qiagen (Hilden, Germany). Genotyping of the NOD2 variants p.Arg702Trp (rs2066844), p.Gly908Arg (rs2066847), and p.Leu1007fsX1008 (rs2066847) were performed as described previously [26] (primer and probe sequences are available on request). The NOD2 SNPs rs2066845 and rs2076756 were genotyped by PCR and melting curve analysis using a pair of fluorescence resonance energy transfer (FRET) probes, a sensor and an anchor probe, respectively, in a LightCycler 480 Instrument (Roche Diagnostics, Mannheim, Germany). The donor fluorescent molecule (fluorescein) at 3’-end of the sensor probe in case of rs2066843 or the anchor probe in case of rs2076756, respectively, is excited at its specific fluorescence excitation wavelength (533 nm) and the energy is transferred to the acceptor fluorescent molecule at the 5’-end of the anchor probe in case of rs2066843 or the anchor probe in case of rs2076756, respectively, is excited at its specific fluorescence excitation wavelength (533 nm) and the energy is transferred to the acceptor fluorescent molecule at the 5’-end of the anchor probe in case of rs2066843 (LightCycler Red 640) or the sensor probe in case of rs2076756 (LightCycler Red 670). The specific fluorescence signal emitted by the acceptor molecule is detected by the optical unit of the LightCycler 480 Instrument. The sensor probe is exactly matching to one allele of each SNP, whereas in the case of the other allele there is a mismatch resulting in a lower melting temperature. The total volume of the PCR was 5 μl containing 25 ng of genomic DNA, 1 x Light Cycler 480

| Table 1. Demographic characteristics of the IBD study population. |
| --- | --- | --- |
| Crohn’s disease n = 812 | Ulcerative colitis n = 442 | Controls n = 1446 |
| Gender Male (%) | 49.0 | 48.1 | 63.1 |
| Female (%) | 51.0 | 51.9 | 36.9 |
| Age (yrs) Mean ± SD | 39.4±13.2 | 41.7±14.6 | 46.1±10.6 |
| Range 10-80 | 7-85 | 18-71 |
| Body mass index Mean ± SD | 23.1±4.1 | 23.9±4.2 | 23.4±4.2 |
| Range 13–40 | 15–41 |
| Age at diagnosis (yrs) Mean ± SD | 27.5±11.5 | 32.1±13.5 | 32.1±13.5 |
| Range 7–71 | 9–81 |
| Disease duration (yrs) Mean ± SD | 12.2±8.5 | 11.0±7.8 | 11.0±7.8 |
| Range 0–44 | 1–40 |
| Positive family history of IBD (%) | 16.2 | 16.1 | 16.1 |

doc:10.1371/journal.pone.0014466.t001
Genotyping was performed using the Genotyping Master (Roche Diagnostics), 2.5 pmol of each primer and 0.75 pmol of each FRET probe (TIB MOLBIOL, Berlin, Germany). The PCR comprised an initial denaturation step (95°C for 10 min) and 45 cycles (95°C for 10 sec, primer annealing temperature as given in Supplemental Table S1 for 10 sec, 72°C for 15 sec). The melting curve analysis comprised an initial denaturation step (95°C for 1 min), a step rapidly lowering the temperature to 40°C and holding for 60 sec, and a heating step slowly (1 acquisition/C) increasing the temperature up to 95°C and continuously measuring the fluorescence intensity. The results of melting curve analysis had been confirmed by analyzing samples representing all possible genotypes using sequence analysis. For sequencing, the total volume of the PCR was 100 μl containing 250 ng of genomic DNA, 1 x PCR-buffer (Qiagen, Hilden, Germany), a final MgCl2 concentration of 1.5 mM, 0.5 mM of a dNTP-Mix (Sigma, Steinheim, Germany), 2.5 units of HotStar Plus Taq™ DNA polymerase (Qiagen) and 10 pmol of each primer (TIB MOLBIOL, Berlin, Germany). The PCR was used for sequencing comprising an initial denaturation step (95°C for 5 min), 35 cycles (denaturation at 94°C for 30 sec, primer annealing at 60°C for 30 sec, extension at 72°C for 30 sec) and a final extension step (72°C for 10 min). The PCR products were purified using the QIAquick PCR Purification Kit (Qiagen) and sequenced by a commercial sequencing company (Sequiserve, Vaterstetten, Germany). All sequences of primers and FRET probes and primer annealing temperatures used for genotyping and for sequenceanalysis are given in the supplementary data section (Supplemental Table S1 and S2).

The results of the genotyping sequence analysis are given in the supplementary data section (Supplemental Table S3) and the replication cohort from the University Hospital Munich-Grosshadern (Supplemental Table S4). As shown in Table 3, we demonstrated for a number of haplotypes significant associations with CD susceptibility, including several associations with omnibus p values of less than 10^-10. The strongest association of a haplotype including one of the SNPs rs2066843 or rs2076756 comprised of the NOD2 SNPs rs2066844-rs2066847-rs2076756 (omnibus p-value = 1.14 x 10^-23). In contrast, no significant associations were found with UC susceptibility (Supplemental Table S8).

To analyze for potential disease associations with certain NOD2 haplotypes, we performed a detailed haplotype analysis (Table 3 and Supplemental Table S8). As shown in Table 3, we demonstrated for a number of haplotypes significant associations with CD susceptibility, including several associations with omnibus p values of less than 10^-10. The strongest association of a haplotype including one of the SNPs rs2066843 or rs2076756 comprised of the NOD2 SNPs rs2066844-rs2066847-rs2076756 (omnibus p-value = 1.14 x 10^-23). In contrast, no significant associations were found with UC susceptibility (Supplemental Table S8).

Table 2. Allele frequencies of the SNPs rs2066843 and rs2076756 in patients with Crohn’s disease, ulcerative colitis and controls.

Gene marker	Minor allele	Crohn’s disease n = 812	Ulcerative colitis n = 442	Controls n = 1446	
rs2066843	T	0.390	3.01 x 10^-5	1.48 [1.23–1.78]	0.299
rs2076756	G	0.380	4.01 x 10^-6	1.54 [1.28–1.86]	0.270
rs2066844	p.Arg702TrpT	0.089	1.43 x 10^-6	2.07 [1.53–2.79]	0.046
rs2066845	p.Gly908Arg	0.042	1.1 x 10^-3	1.72 [1.14–2.60]	0.022
rs2066847	p.Leu1007X1008	0.121	1.88 x 10^-14	5.03 [3.54–7.15]	0.022

Minor allele frequencies (MAF), allelic test p-values, and odds ratios (OR, shown for the minor allele) with 95% confidence intervals (CI) are depicted for both the CD and UC case-control cohorts.

doi:10.1371/journal.pone.0014466.t002

Results

The novel NOD2 variants rs2066843 and rs2076756 are associated with susceptibility to CD but not to UC

In the controls, the genotype frequencies of the SNPs rs2066843 and rs2076756 were in agreement with the predicted Hardy-Weinberg equilibrium. Significant differences in the allele frequencies of the SNPs rs2066843 and rs2076756 were observed in CD patients but not in UC patients compared to healthy controls. As summarized in Table 2, the SNPs rs2066843 and rs2076756 were strongly associated with CD. In the group of CD patients, the frequency of the rarer T allele of the rs2066843 variant was 0.390, whereas in the controls it was 0.299 (p = 3.01 x 10^-5; OR 1.48, [95% CI 1.23-1.78]). The frequencies of the less common G allele of the rs2076756 variant were 0.390 in CD and 0.256 in the controls (p = 4.01 x 10^-6; OR 1.54, [95% CI 1.28-1.86]). In contrast to CD, no associations of both NOD2 SNPs were observed in UC. The frequency of the rs2066843 T allele was 0.300 (p = 9.67 x 10^-1; OR 1.01 [95% CI 0.85-1.19]), while the frequency of the rs2076756 G allele was 0.270 (p = 3.74 x 10^-1, OR 1.09 [95% CI 0.94-1.27]). The association of the NOD2 SNPs with CD susceptibility was found in both our initial discovery cohort from the University Hospital Munich-Grosshadern (Supplemental Table S3) and the replication cohort from the University Hospital Munich, Campus Innenstadt and from Ruhr-University Bochum (Supplemental Table S4).

In this study, rs2066843 and rs2076756 were in LD in all studied subpopulations (CD, UC, healthy controls; Supplemental Tables S5, S6, S7).

To analyze for potential disease associations with certain NOD2 haplotypes, we performed a detailed haplotype analysis (Table 3 and Supplemental Table S8). As shown in Table 3, we demonstrated for a number of haplotypes significant associations with CD susceptibility, including several associations with omnibus p values of less than 10^-10. The strongest association of a haplotype including one of the SNPs rs2066843 or rs2076756 comprised of the NOD2 SNPs rs2066844-rs2066847-rs2076756 (omnibus p-value = 1.14 x 10^-23). In contrast, no significant associations were found with UC susceptibility (Supplemental Table S8).
Table 3. Haplotype analysis for NOD2 SNPs in the CD patient cohort.

NOD2 haplotypes	p-value	OR	CI lower	CI upper
rs2066843-rs2066844	1.31 x 10^-8	1.94	1.81	2.08
TT	1.34 x 10^-5	1.34	1.28	1.40
TC	3.09 x 10^-4	0.65	0.63	0.66
CC	1.72 x 10^-8	2.80	2.65	3.09
rs2066844-rs2066845	7.94 x 10^-8	1.80	1.58	2.06
CC	3.25 x 10^-3	1.39	1.28	1.50
TG	3.80 x 10^-6	0.29	0.28	0.30
CG	1.08 x 10^-8	0.52	0.50	0.54
rs2066845-rs2066847	1.09 x 10^-18	4.06	3.90	4.22
GC	6.88 x 10^-17	1.74	1.50	2.02
GX	4.38 x 10^-20	0.32	0.31	0.33
rs2066847-rs2076756	2.48 x 10^-15	3.84	3.67	4.02
CG	2.88 x 10^-14	1.09	0.91	1.30
TX	2.35 x 10^-9	0.62	0.61	0.64
rs2066843-rs2066844-rs2066845	5.94 x 10^-10	1.90	1.69	2.14
TCC	1.16 x 10^-3	2.01	1.90	2.13
TTG	8.40 x 10^-7	1.21	1.12	1.31
TCG	9.68 x 10^-10	0.62	0.61	0.64
rs2066844-rs2066845-rs2066847	8.22 x 10^-24	4.07	3.91	4.23
CGG	5.84 x 10^-17	1.70	1.45	1.99
CCX	1.08 x 10^-2	1.89	1.78	2.00
GXG	4.19 x 10^-28	0.37	0.36	0.37
rs2066845-rs2066847-rs2076756	2.48 x 10^-15	4.09	3.93	4.25
GCG	5.41 x 10^-17	1.94	1.72	2.13
CGX	1.04 x 10^-2	0.92	0.76	1.11
GXA	3.89 x 10^-12	0.59	0.57	0.60
rs2066843-rs2066844-rs2066845-rs2066847	1.60 x 10^-23	4.28	4.11	4.46
TCGC	4.10 x 10^-17	1.90	1.69	2.14
TCCX	1.18 x 10^-3	1.99	1.88	2.10
TTGX	8.51 x 10^-7	0.66	0.63	0.69
TGX	2.32 x 10^-5	0.59	0.58	0.60
CGXG	8.57 x 10^-13	0.59	0.57	0.60
rs2066844-rs2066845-rs2066847-rs2076756	1.14 x 10^-23	4.04	3.89	4.20
CGCG	5.20 x 10^-17	1.93	1.71	2.18
CCXG	1.10 x 10^-3	2.05	1.95	2.18
TGCG	2.47 x 10^-7	0.64	0.61	0.67
CGXG	1.24 x 10^-5	0.59	0.57	0.60
CGXG	7.82 x 10^-13	0.59	0.57	0.60
rs2066843-rs2066844-rs2066845-rs2066847-rs2076756	1.43 x 10^-21	4.18	4.02	4.35
TCCCG	6.33 x 10^-17	1.93	1.71	2.18
TCCXG	1.07 x 10^-3	2.05	1.94	2.17
TGXG	9.42 x 10^-5	0.67	0.64	0.71
TGXG	6.48 x 10^-2	0.61	0.60	0.63

Omnibus as well as individual p-values are presented.
doi:10.1371/journal.pone.0014466.t003
...genotype-phenotype correlation in IBD patients. In univariate analysis, CD patients homozygous for the SNP rs2066843 were found to have a lower body mass index (p = 0.039) and less colonic involvement (p = 0.041) compared to the wildtype patients and we observed also a trend towards a predominantly penetrating disease phenotype (B3) (p = 0.066; Table 4). In addition, a higher need for CD-related surgery in homozygous carriers of the SNP rs2066843 (p = 0.015) was observed compared to the wildtype group (Table 5).

Analyzing CD patients regarding the rs2076756 genotype status, a significant younger age at disease onset was observed in homozygous carriers (mean 25.8 ±11.4 years) compared to wildtype patients (p = 0.023; Table 6). Similarly, to the analysis of SNP rs2066843, homozygous carriers of SNP rs2076756 had less colonic involvement than wildtype patients (p = 0.032) but showed a trend towards ileocolonic disease location (p = 0.058) and had a significant higher rate of penetrating disease phenotype (B3) (p = 0.015; Table 6). The significant association of SNP rs2076756 with a severe disease phenotype was also reflected by the significantly higher percentage of patients with CD-related surgery (p = 0.003) and internal fistulas (p = 0.015) in homozygous carriers of this SNP (Table 7). Moreover, there was also a trend towards stenotic complications (p = 0.067) in homozygous CD patients (Table 7). However, given the large number of associations investigated, most associations lost significance following Bonferroni correction.

Given the increased prevalence of the three common NOD2 variants among carriers of the risk allele of rs2066843 and rs2076756 and previous reports demonstrating a severe phenotype in carriers of these three NOD2 variants, we next investigated if the phenotypic effects of rs2066843 and rs2076756 were independent of the main three CD-associated NOD2 variants p.Arg702Trp (rs2066844), p.Gly908Arg (rs2066847), and p.Leu1007X1008 (rs2066847). As shown in Table 8, there were no significant differences regarding homozygous carriers of these SNPs when stratified for the presence and absence of the main three CD-associated NOD2 variants and the significant phenotypic characteristics found in Tables 5, 6 and 7, suggesting that the CD-modifying effect of rs2066843 and rs2076756 is independent of the three main NOD2 variants.

Analyzing potential therapeutic consequences such as need for surgery, we next conducted a logistic regression analysis with R, using the need for surgery as dependent variable, and the SNP genotype as independent variable, taking localization as well as behaviour as covariates. This revealed that disease localization has a significant influence on the need for surgery (p = 0.02). In addition, disease behaviour is significantly associated with the need for surgery (p = 2.0 × 10⁻¹⁰, independently of localization). However, using the NOD2 genotype status as further explanatory variable does not improve the model fit (F-test p = 0.36 rs2066843, p = 0.32 rs2076756).

In UC patients, the analysis revealed no significant associations of the SNPs rs2066843 and rs2076756 with phenotypic characteristics such as age, age a diagnosis, male-to-female-ratio, body mass index [BMI], family history, anatomic location and disease characteristics such as age, age a diagnosis, male-to-female-ratio, body mass index [BMI], family history, anatomic location and disease characteristics found in Tables 5, 6 and 7, suggesting that the CD-modifying effect of rs2066843 and rs2076756 is independent of the three main NOD2 variants.

No evidence for epistasis between NOD2 variants and the CD-associated ATG16L1 variant rs2241880 (pThr300Ala)

Very recent studies indicate that NOD2 recruits the autophagy protein ATG16L1 to the plasma membrane at the bacterial entry site [31]. In contrast, CD-associated mutants failed to recruit ATG16L1 to the plasma membrane and wrapping of invading bacteria by autophagosomes was impaired [31]. Moreover, dendritic cells from CD patients expressing

Table 4. Association between rs2066843 genotype and CD disease characteristics based on the Montreal classification [28].

rs2066843 genotype status	(1) CC n = 322	(2) CT n = 345	(3) TT n = 150	(1) vs. (2) p-value	(1) vs. (3) p-value	(1) vs. (2) + (3) p-value
Age at diagnosis						
≤16 years (A1)	74/239 (31.0%)	81/237 (34.2%)	37/116 (31.9%)	0.494	0.903	0.591
17–40 years (A2)	150/239 (62.8%)	125/237 (52.7%)	69/116 (59.5%)	1.16 (0.79–1.70)	1.04 (0.65–1.68)	1.12 (0.79–1.59)
>40 years (A3)	15/239 (6.2%)	31/237 (13.1%)	10/116 (8.6%)	0.013	0.033	0.062
Location						
Terminal ileum (L1)	32/244 (13.1%)	46/238 (19.3%)	12/120 (10.0%)	0.838	0.494	0.352
Colon (L2)	42/244 (17.2%)	33/238 (13.9%)	11/120 (9.2%)	1.59 (0.97–2.57)	0.74 (0.36–1.49)	1.28 (0.80–2.04)
Ileocolon (L3)	166/244 (67.9%)	155/238 (65.1%)	93/120 (77.5%)	0.831	0.041	0.097
Upper GI (L4)	4/244 (1.6%)	4/238 (1.7%)	4/120 (3.3%)	0.77 (0.47–1.27)	0.48 (0.24–0.98)	0.67 (0.43–1.07)
Any ileal involvement (L1+L3)	198/244 (81.1%)	201/238 (84.5%)	105/120 (87.5%)	0.501	0.066	0.788
Behaviour						
Non-stricturing,Non-penetr. (B1)	49/232 (21.1%)	61/233 (26.2%)	14/116 (15.5%)	0.230	0.249	0.684
Strictureing (B2)	117/232 (50.4%)	108/233 (46.3%)	71/116 (61.2%)	1.32 (0.86–2.04)	0.69 (0.38–1.24)	1.09 (0.73–1.63)
Penetrating (B3)	66/232 (28.4%)	64/233 (27.5%)	27/116 (23.3%)	0.837	0.368	0.567
	0.95 (0.63–1.43)	0.76 (0.45–1.28)	0.89 (0.61–1.29)	0.404	0.068	0.866
	0.85 (0.59–1.22)	1.55 (0.98–2.44)	1.03 (0.74–1.44)			

1Disease behaviour was defined according to the Montreal classification [28]. Strictureing disease phenotype was defined as presence of stenosis without penetrating disease. The diagnosis of stenosis was made surgically, endoscopically, or radiologically (using MR enteroclysis). For each variable, the number of patients included is given.

doi:10.1371/journal.pone.0014466.t004
Table 5. Association between rs2066843 genotype and CD disease characteristics.

rs2066843 genotype status	(1) CC n = 322	(2) CT n = 345	(3) TT n = 150	(1) vs. (2) p-value OR [95% CI]	(1) vs. (3) p-value OR [95% CI]	(1) vs. (2) + (3) p-value OR [95% CI]
Male sex	129/277 (46.6%)	153/289 (52.9%)	74/134 (55.2%)	0.131 (1.29–1.80)	0.115 (1.41–2.14)	0.075 (1.33–2.18)
Age at diagnosis (yrs)	27.1 ± 10.9 11–70	28.7 ± 12.5 1–78	25.8 ± 11.3 6–71	0.151	0.302	0.526
Disease duration (yrs)	12.3 ± 8.4 0–37	11.4 ± 9.0 11–44	11.8 ± 8.2 1–35	0.381	0.675	0.403
Body mass index (yrs)	23.3 ± 4.4 16–40	23.4 ± 4.0 16–37	22.0 ± 3.6 13–31	0.845	0.039	0.473
Use of immunosuppressive agents	141/169 (83.4%)	135/175 (77.1%)	70/83 (84.3%)	0.176 (0.67–0.39–1.15)	1.000 (1.07–0.52–2.19)	0.316 (0.77–0.46–1.27)
Surgery because of CD²	113/221 (51.1%)	120/224 (53.6%)	76/116 (65.5%)	0.636 (1.10–0.76–1.60)	0.015 (1.82–1.14–2.89)	0.140 (1.30–0.93–1.83)
Fistulas	117/232 (50.4%)	108/233 (46.3%)	71/116 (61.2%)	0.404 (0.85–0.59–1.22)	0.068 (1.55–0.98–2.44)	0.866 (1.03–0.74–1.44)
Perianal fistulas	24/92 (26.1%)	18/90 (20.0%)	7/49 (14.3%)	0.212 (1.41–0.70–2.83)	0.079 (2.12–0.84–5.34)	0.996 (1.61–0.85–3.04)
Stenosis	140/229 (61.1%)	144/233 (61.8%)	80/115 (69.6%)	0.924 (1.13–0.71–1.50)	0.153 (1.45–0.90–2.34)	0.481 (1.15–0.81–1.62)

²Immunosuppressive agents included azathioprine, 6-mercaptopurine, 6-thioguanine, methotrexate, and/or infliximab.

CD-associated NOD2 or ATG16L1 risk variants are defective in autophagy induction, bacterial trafficking and antigen presentation [32]. We therefore hypothesized that there may be epistasis between CD-associated NOD2 and ATG16L1 variants regarding susceptibility to CD. However, as shown in Supplemental Table S9, none of the 5 CD-associated NOD2 variants showed evidence for epistasis to the CD-associated ATG16L1 variant rs2241880 (pThr300Ala).

Table 6. Association between rs2076756 genotype and CD disease characteristics based on the Montreal classification [28].

rs2076756 genotype status	(1) AA n = 339	(2) AG n = 334	(3) GG n = 143	(1) vs. (2) p-value OR [95% CI]	(1) vs. (3) p-value OR [95% CI]	(1) vs. (2) + (3) p-value OR [95% CI]
Age at diagnosis	73/241 (30.3%)	75/233 (32.2%)	35/110 (31.8%)	0.692 (1.09–0.64–1.61)	0.020 (0.04–0.93)	0.002 (2.77–1.44–5.31)
Location	31/245 (12.7%)	45/235 (19.1%)	11/113 (9.7%)	0.061 (1.63–0.99–2.69)	0.083 (0.04–0.82)	0.333 (0.04–0.51–1.38)
Location	41/245 (16.7%)	34/235 (14.5%)	9/113 (8.0%)	0.006 (1.63–0.99–2.69)	0.083 (0.04–0.82)	0.333 (0.04–0.51–1.38)
Location	169/245 (70.0%)	152/235 (64.7%)	89/113 (78.8%)	0.531 (0.84–0.65–1.38)	0.058 (0.09–0.02)	0.676 (0.34–1.24–4.35)
Location	4/245 (1.6%)	4/235 (1.7%)	4/113 (3.5%)	0.333 (0.33–0.06–1.20)	0.058 (0.09–0.02)	0.676 (0.34–1.24–4.35)
Location	200/245 (81.6%)	197/235 (83.8%)	100/113 (88.5%)	0.082 (0.82–0.56–1.20)	0.071 (0.71–0.66–1.75)	0.717 (0.52–2.19)
Location	7/85 (8.2%)	2/217 (0.9%)	1/113 (0.9%)	0.006 (0.01–0.10–0.34)	0.007 (0.01–0.10–0.34)	0.007 (0.01–0.10–0.34)
Location	1/44 (2.3%)	1/200 (0.5%)	0/113 (0.0%)	0.006 (0.01–0.10–0.34)	0.007 (0.01–0.10–0.34)	0.007 (0.01–0.10–0.34)
Location	1/50 (2.0%)	2/200 (1.0%)	0/113 (0.0%)	0.021 (0.17–0.33–0.87)	0.146 (0.13–0.87–2.03)	0.316 (0.13–0.87–2.03)
Location	0/20 (0.0%)	2/200 (1.0%)	0/113 (0.0%)	0.021 (0.17–0.33–0.87)	0.146 (0.13–0.87–2.03)	0.316 (0.13–0.87–2.03)
Location	0/20 (0.0%)	2/200 (1.0%)	0/113 (0.0%)	0.021 (0.17–0.33–0.87)	0.146 (0.13–0.87–2.03)	0.316 (0.13–0.87–2.03)
Location	0/20 (0.0%)	2/200 (1.0%)	0/113 (0.0%)	0.021 (0.17–0.33–0.87)	0.146 (0.13–0.87–2.03)	0.316 (0.13–0.87–2.03)

¹Only surgery related to CD-specific problems (e.g. fistulectomy, colectomy, ileostomy) was included. For each variable, the number of patients included is given.

doi:10.1371/journal.pone.0014466.0005
also implications for clinical practice [21,22,23,25].

The identification of \textit{NOD2} as the first CD susceptibility gene in 2001 represents a landmark finding that implicated bacterial recognition and innate immunity as key processes involved in the pathogenesis of CD. Since genotype-phenotype analyses of the \textit{NOD2} variants \textit{p.Arg702Trp}, \textit{p.Gly908Arg}, and \textit{p.Leu1007fsX1008} have also provided strong evidence for the existence of a \textit{NOD2}-related CD phenotype, these studies have not only changed our understanding of IBD pathogenesis but have also implications for clinical practice [21,22,23,25].

Table 7. Association between rs2076756 genotype and CD disease characteristics.

rs2076756 genotype status	(1) AA	n = 339	(2) AG	n = 334	(3) GG	n = 143	(1) vs. (2) p-value OR [95% CI]	(1) vs. (3) p-value OR [95% CI]	(1) vs. (2) + (3) p-value OR [95% CI]
Male sex	129/280 (46.1%)	152/283 (53.7%)	69/127 (54.3%)	0.077	1.36 (0.75–1.89)	0.135	0.85 (0.59–1.22)	0.044	1.37 (1.01–1.86)
Age at diagnosis (yr)	26.8±10.5	29.2±12.7	25.8±11.4	0.023	0.465	0.157			
Disease duration (yr)	12.4±8.4	11.2±8.8	11.6±8.2	0.188	0.507	0.202			
Body mass index (yr)	23.4±10.5	23.2±4.0	22.3±3.7	0.691	0.074	0.309			
Use of immunosuppressive agents	147/174 (84.5%)	136/176 (77.3%)	65/80 (81.2%)	0.103	0.62 (0.36–1.07)	0.586	0.134		
Surgery because of CD	114/221 (51.6%)	120/222 (54.1%)	76/110 (69.1%)	0.635	1.07 (0.76–1.60)	0.003	0.097		
Fistulas	116/232 (50.0%)	106/231 (45.9%)	70/109 (64.2%)	0.403	0.85 (0.59–1.22)	0.015	0.733		
Perianal fistulas	21/95 (22.1%)	21/90 (23.3%)	5/47 (10.6%)	0.646	0.93 (0.47–1.86)	0.073	0.337		
Stenosis	142/229 (62.0%)	139/230 (60.4%)	79/109 (72.5%)	0.774	0.94 (0.64–1.36)	0.067	0.595		

For each variable, the number of patients included is given. Footnotes: see Table 4 and 5 for details.

doi:10.1371/journal.pone.0014466.t007

Table 8. Significant CD phenotype associations of rs2066843 and rs2076756 as shown in Tables 5, 6 and 7 stratified for the presence (\textit{NOD2+}) or absence (\textit{NOD2−}) of the three CD-associated \textit{NOD2} mutations \textit{p.Arg702Trp} (rs2066844), \textit{p.Gly908Arg} (rs2066847), and \textit{p.Leu1007fsX1008} (rs2066847).

	\textit{NOD2−} n (%)	\textit{NOD2+} n (%)	p value
rs2066843-TT carriers	65/95 (68.4%)	11/21 (52.4%)	0.206
Surgery because of CD			
rs2076756-GG carriers	67/96 (69.8%)	9/14 (64.3%)	0.759
Surgery because of CD			
B3	63/96 (65.6%)	8/13 (61.5%)	0.765
Fistulas	63/96 (65.6%)	8/13 (61.5%)	0.765

Here, we investigated the two novel CD-associated \textit{NOD2} variants rs2066843 and rs2076756 in a large German IBD patient cohort, confirming these \textit{NOD2} variants as susceptibility gene variants for CD but not for UC. We could demonstrate a highly significant association of SNPs rs2066843 and rs2076756 in CD. The haplotype analysis revealed a number of significant associations with CD susceptibility, including several associations with omnibus p values of less than 10-10.

In addition, for the first time, our genotype-phenotype analysis revealed a significant association of the SNPs rs2066843 and rs2076756 with phenotypic characteristics such as early disease onset, severe penetrating disease phenotype complicated by fistulas. Moreover, univariate analysis revealed a frequent need for CD-related surgery associated with SNPs rs2066843 and rs2076756 in CD patients. However, the two novel CD-associated \textit{NOD2} variants could not be identified as independent variables for the need for surgery in CD patients after logistic regression analysis, suggesting that ileal disease localization and a strictureing or penetrating phenotype are clinically more relevant predictors for the need for CD-related surgery than the \textit{NOD2} genotypes alone. In addition, the strength of the association of rs2066843 and rs2076756 with CD was less pronounced than that of the \textit{NOD2} variant rs2066847 (\textit{p.Leu1007fsX1008}) which results in patients homozygous for this variant in a more severe phenotype [21,22] than found for rs2066843 and rs2076756 in this study. Early deep-sequencing studies of the \textit{NOD2} locus by the Hugot group also suggested that the \textit{NOD2} ‘‘gene-dosage’’ effect is more important in the CD phenotype development than the type of \textit{NOD2} mutation 22. In the study by the Hugot group, patients with ‘‘double-dose’’ \textit{NOD2} mutations (homozygous or compound heterozygous) were characterized by a younger age at onset, a more frequent stricturing phenotype, and less frequent colonic involvement than were seen in those patients who had no mutation 23.

Table 8. Significant CD phenotype associations of rs2066843 and rs2076756 as shown in Tables 5, 6 and 7 stratified for the presence (\textit{NOD2+}) or absence (\textit{NOD2−}) of the three CD-associated \textit{NOD2} mutations \textit{p.Arg702Trp} (rs2066844), \textit{p.Gly908Arg} (rs2066847), and \textit{p.Leu1007fsX1008} (rs2066847).
Although the phenotypic effects of rs2066843 and rs2076756 were independent of the presence of the three common NOD2 variants p.Arg702Trp, p.Gly908Arg, and p.Leu1007X1008, the observed associations demonstrate similarities to the phenotype as previously shown to be related to the three common NOD2 variants in our cohort [21,22]. The explorative character of our study has to be acknowledged. Given the large number of associations investigated, most associations would loose significance following Bonferroni correction. However, considering the size of our cohort and given that the highest percentages of carriers with ileocolonic involvement, stenoses, fistulas, and CD-related surgery were found without exception among the homozygous carriers of these two novel NOD2 SNPs, an association with a severe CD phenotype is very likely. Moreover, this result has to be seen in the background of a study population of a tertiary referral center with a very high percentage of severe CD demonstrated by fistulas and stenoses and CD-related surgery in more than half of the study population regardless of the genotype. These phenotypic associations found in homozygous carriers of these SNPs were demonstrated with similar frequencies in the subgroup of CD patients with additional CD-associated NOD2 mutations and in patients without these mutations, suggesting a specific disease-modifying effect of rs2066843 and rs2076756.

Our findings highlight the essential role of the NOD2 region as CD susceptibility gene encoding a protein which acts as sensor for bacterial muramyl dipeptide (MDP) in the cell wall of Gram-positive and Gram-negative bacteria [8,15,16,17]. However, the exact mechanism how NOD2 variants influence the intestinal inflammation is still under investigation. First, NOD2 mutations are associated with diminished mucosal alpha-defensin expression in CD [33], although this finding is challenged by the results of a recent study [34], demonstrating that in ileal CD reduced alpha-defensin expression is the result of inflammation and not of NOD2 mutation status. Second, there is evidence for an impaired dendritic cell function in CD patients with NOD2 variants [35] and a loss of synergy between TLR9 and NOD2 in innate immune responses to CpG DNA [36]. Third, there might be cross-tolerization between NOD1 and NOD2 leading to increased responses to microbial ligands [37]. Fourth, the study by Kobayashi et al. demonstrated that Nod2-deficient mice are more susceptible to bacterial infection and thus Nod2 protein is a critical regulator of bacterial immunity within the intestine [38]. Finally, very recent evidence suggests that NOD1 and NOD2 are essential for recruitment of ATG16L1 during bacterial infection [31], which is impaired in patients with CD-associated NOD2 variants [31]. We therefore analyzed CD-associated NOD2 and ATG16L1 variants for epistasis. However, we found no evidence for significant gene-gene interactions between these variants regarding CD susceptibility. This is in line with another large study demonstrating no epistasis for the three main CD-associated NOD2 variants and ATG16L1 [39], while another study found a weak gene-gene interaction between the ATG16L1 variant rs2241880 and the three common CD-associated NOD2 variants (p = 0.039) [14].

Despite the growing evidence for a strong genetic background in IBD by various genome-wide analyses and cohort studies [7,11,13,14,40,41,42,43,44], CD still remains a complex disorder modulated not only by susceptibility genes but also influenced by environmental factors. Moreover, there are genetic differences between different ethnic cohorts. For example, studies in Asian CD cohorts [45,46] could not show any evidence for a role of NOD2 in CD susceptibility in Asian populations. Genetic counselling based on the NOD2 genotype as well as the analysis of environmental risk factors could therefore benefit the individual at risk and change daily clinical practice.

Taken together, we conclude that the identification of the two novel NOD2 variants rs2066843 and rs2076756 might have implications for the future risk assessment in CD patients, considering their high minor allele frequencies among Caucasian CD patients and the association with a severe disease phenotype. However, the association of these two NOD2 variants with CD was less pronounced than that with rs2066847 (p.Leu1007X1008) which demonstrated even a more severe phenotypic effect than rs2066843 and rs2076756 in our previous studies [21,22]. So far, a major functional effect on the NF-κB pathway has only be shown for the p.Leu1007X1008 variant 6. Therefore, further functional analyses of rs2066843 and rs2076756 as well as detailed genotypetype-phenotype analyses in very large cohorts including a comprehensive assessment of low frequency variants in the NOD2 gene region are needed to clarify the contribution of these novel variants to the pathogenesis of CD. Currently, these two novel variants will not replace the other common CD-associated NOD2 variants p.Arg702Trp (rs2066844), p.Gly908Arg (rs2066847), and p.Leu1007X1008 (rs2066847) when evaluating genetic risk factors in CD patients.

Supporting Information

Table S1 Primer sequences, FRET probe sequences and primer annealing temperatures used for genotyping of NOD2 variants rs2066843 and rs2076756. Note: FL: Fluorescein, LC640: LightCycler Red 640, LC670: LightCycler Red 670; the polymorphic position within the sensor probe is underlined. A phosphate is linked to the 3'-end of the acceptor probe to prevent elongation by the DNA polymerase in the PCR.

Table S2 Primer sequences used for sequence analysis of NOD2 variants rs2066843 and rs2076756.

Table S3 Allele frequencies of the SNPs rs2066843 and rs2076756 in patients with Crohn’s disease (CD), ulcerative colitis (UC) and controls in the initial discovery cohort from the University Hospital Munich-Grosshadern. Minor allele frequencies (MAF), allelic test P-values, and odds ratios (OR, shown for the minor allele) with 95% confidence intervals (CI) are depicted for both the CD and UC case-control cohorts.

Table S4 Allele frequencies of the NOD2 SNPs in patients with Crohn’s disease (CD), ulcerative colitis (UC) and controls in the replication cohort of the University Hospital Munich, Campus Innenstadt and Ruhr-University Bochum. Minor allele frequencies (MAF), allelic test P-values, and odds ratios (OR, shown for the minor allele) with 95% confidence intervals (CI) are depicted for both the CD and UC case-control cohorts.

Table S5 LD matrix for NOD2 SNPs in CD patients. Values are given as D’/r².

Table S6 LD matrix for NOD2 SNPs in UC patients. Values are given as D’/r².
Table S7
LD matrix for NOD2 SNPs in controls. Values are given as D'/r^2.

Table S8
Haplotype-analysis for NOD2 SNPs in the UC patient cohort. Only omnibus p-values are presented, given that none of these haplotypes showed significant disease association.

Table S9
Analysis for epistasis between SNPs rs2066843, rs2066843, rs2066844 (p.Arg702Trp), rs2066845 (p.Gly908Arg) and rs2206847 (p.Leu1007X1008) in the NOD2 gene and the SNP rs2241880 = pThr300Ala within the ATG16L1 gene regarding CD susceptibility. *All p values given are uncorrected for multiple comparisons.

Contributed reagents/materials/analysis tools: JG CT BG TO PL SB. Wrote the paper: JG JS SB.

Author Contributions
Conceived and designed the experiments: JG SB. Performed the experiments: JG JS CT BG TO PL SB. Analyzed the data: JG SP MJ TO RPL BMM DC SB. Contributed reagents/materials/analysis tools: JG CT BG TO PL SB. Wrote the paper: JG JS SB.

References
1. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 447: 427–434.
2. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347: 417–429.
3. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, et al. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411: 599–603.
4. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, et al. (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411: 603–606.
5. Hugot JP (2006) CARD15/NOD2 mutations in Crohn's disease. Ann N Y Acad Sci 1072: 9–18.
6. Abreu MT (2005) Nod2 in normal and abnormal intestinal immune function. Gastroenterology 129: 1302–1304.
7. Kucharski T, Maaser C, Lagerer A, Kagooff M, Mayer L, et al. (2006) Recent understanding of IBD pathogenetic implications for future therapies. Inflamm Bowel Dis 12 Suppl 1: S3–S9.
8. Brand S (2009) Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut 58: 1152–1167.
9. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, et al. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. *All p values given are uncorrected for multiple comparisons.
10. Liong M, Husein S, Kurtzber G, D'Souza E, Tan C, et al. (2006) Novel CARD15 variants detected by DNA sequence analysis of the CARD15 gene in 111 patients with inflammatory bowel disease. Immunogens 39: 99–106.
11. Leonard-Jones JE (1989) Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl 170: 2–6; discussion 16–19.
12. Silverberg MS, Satsangi J, Al-Malad T, Arnott ID, Bernstein CN, et al. (2005) Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease. Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 19 Suppl A: 5–36.
13. Glas J, Konrad A, Schmehel S, Danbacher J, Seidler J, et al. (2008) The ATG16L1 gene variants rs2241879 and rs2241880 (T300A) are strongly associated with susceptibility to Crohn's disease in the German population. Am J Gastroenterol 103: 662–691.
14. Alvarez-Llobos M, Arosetti JL, Cozz M, Tassies D, Plaza S, et al. (2005) Crohn's disease patients carrying Nod2/CARD15 gene variants have an increased and early risk for first surgery due to strictureing disease and higher rate of surgical recurrence. Ann Surg 242: 693–700.
15. van Heel DA, Ghosh S, Hunt KA, Mathew CG, Forbes A, et al. (2005) Synergy between NOD2 and CARD15 in the main disease-associated IL23R variant in German Crohn's disease patients: combined analysis of IL23R, CARD15, and OCTIN1/2 variants. PLoS ONE 2: e142–1422.
16. Hugot JP, Glas J, Tonouchi L, Lohe P, Muller-Miyosik B, et al. (2005) Polymorphisms in the DLG5 and OCNt cation transporter genes in Crohn's disease. Gut 54: 1421–1422.
17. Hampe J, Franke A, Rosenstiel P, Till A, Tesch M, et al. (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39: 207–211.
18. Afdhous MC, Nummo ER, Satsangi J (2003) NOD2/CARD15 and the Paneth cell: another piece in the genetic jigsaw of inflammatory bowel disease. Gut 52: 1533–1535.
19. Bonen DK, Ogura Y, Nicolae DL, Inohara N, Saab L, et al. (2003) Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 124: 140–146.
20. Girardin SE, Boneca IG, Vialle J, Chamaillard M, Labigne A, et al. (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278: 8899–8972.
21. Lakatos EJ, Fischer S, Lajos L, Gai L, Papp J (2006) Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take "toll"? World J Gastroenterol 12: 1829–1841.
22. Maeda S, Hos I, Liu H, Bunkston LA, Iimura M, et al. (2005) Nod2 mutation in Crohn's disease patients potentiates toll-like receptor-9 polymorphism and therapeutic opportunities. Inflamm Bowel Dis 12: 1114–1121.
23. Seidler J, Schneider F, Brand S, Staudinger T, Pfeiffen S, et al. (2006) Homozygosity for the CARD15 frameshift mutation 1007fs is predictive of early onset of Crohn's disease with ileal stenosis, enterо-enteral fistulas, and frequent need for surgical intervention with high risk of re-stenosis. Scand J Gastroenterol 41: 1421–1432.
24. Economic M, Tikalinos TA, Loizou KT, Tsiaras EV, Ioannidis JP (2004) Differential effects of NOD2 variants on Crohn's disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol 99: 2393–2404.
25. Carlbert AP, Fisher NA, Mirza MM, King K, Hampe J, et al. (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122: 867–874.
26. Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, et al. (2002) CARD15/NO2 haplotype-analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 70: 843–857.
27. Schnitzler F, Brand S, Staudinger T, Pfeiffen S, Hofbauer K, et al. (2006) Eight novel CARD15 variants detected by DNA sequence analysis of the CARD15 gene in 111 patients with inflammatory bowel disease. Immunogenetics 58: 99–106.
28. Lebenthal-Ionescu AE, Ceauacescu S, Mihali S, Aftanas M, Mihali S, et al. (2006) Complex disease gene. Science 314: 1461–1463.
42. Brand S, Staudinger T, Schnitzler F, Pfennig S, Hofbauer K, et al. (2005) The role of Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn’s disease. Inflamm Bowel Dis 11: 645–652.
43. Cho J (2006) Genetic advances in inflammatory bowel disease. Curr Treat Options Gastroenterol 9: 191–200.
44. Dambacher J, Staudinger T, Seiderer J, Sisic Z, Schnitzler F, et al. (2007) Macrophage migration inhibitory factor (MIF) -173G/C promoter polymorphism influences upper gastrointestinal tract involvement and disease activity in patients with Crohn’s disease. Inflamm Bowel Dis 13: 71–82.
45. Yamazaki K, Takazoe M, Tanaka T, Ichimori T, Saito S, et al. (2004) Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. J Hum Genet 49: 664–668.
46. Wang YF, Zhang H, Ouyang Q (2007) Clinical manifestations of inflammatory bowel disease: East and West differences. J Dig Dis 8: 121–127.