Self-Reported Sleeping Time Effects on Physical Performance and Body Composition Among Spanish Older Adults: EXERNET-Elder 3.0 study

Eva Gesteiro1,2, Raquel Aparicio-Ugarriza1,2,3, María del Carmen García-Centeno4, David Escobar-Toledo1, Asier Mañas2,5,6, Jorge Pérez-Gómez2,7, Narcís Gusi2,6,7,8, Alba Gómez-Cabello2,9,10, Ignacio Ara2,5,6, José A. Casajús2,4,9, Germán Vicente-Rodríguez2,4,9,11,12, and Marcela González-Gross1,2,4

Abstract
Objective: To determine the link between physical fitness and body composition with nocturnal and nap time in Spanish older adults. Methods: Eight hundred thirty older adults underwent several tests. Sleep was measured using Jenkins Sleep Scale. Nocturnal sleep was categorized (<7, 7–9, and > 9 hours), and nap time (no nap, 1–30 minutes, and >30 minutes). Physical fitness was evaluated using validated tests, and body composition by electric bioimpedance. Results: 75.1% of participants were female, mean age 77.7 ± 5.1 years. Mean nocturnal sleep and nap time was 6.7 hours and 23.3 minutes, respectively. Models showed nocturnal sleep >9 hours was significant and positively associated with body shape index (Odds ratio[OR] = 4.07 (p = .011)) and waist circumference OR = 1.04 (p = .024) in females. Males’ waist and hip circumference were positively significantly related to nap time between 1 and 30 minutes, OR = 1.08, p = .009 and OR = 1.08, p = .048, respectively. In females, nap time >30 minutes was associated with greater fat mass and body shape index OR = 1.22, p = .032 and OR = 3.95, p = .027, respectively. Physical fitness showed no associations with sleep outcomes. Conclusions: Sleep patterns do not influence physical fitness but body composition, being more related to female body composition as nocturnal and nap sleep were associated with higher fat mass, waist circumference and body shape index, while only short nap times were related to higher waist and hip circumference in males.

Keywords
body composition, older adults, physical fitness, sleep habits, active life/physical activity, aging, sleep disorders

Manuscript received: June 3, 2022; final revision received: July 27, 2022; accepted: August 24, 2022.
Introduction

Several studies have shown associations between inadequate nocturnal sleep and negative health factors (Foley et al., 2004; Goldman et al., 2007). In fact, repetitive sleep deprivation (<6 hours/day) is associated with endocrine and immune dysregulations and cognitive decline (Tumiran et al., 2018), which increase the prevalence of chronic diseases such as diabetes (Tan et al., 2018), metabolic syndrome (Tan et al., 2018), obesity (Tan et al., 2019), osteoporosis (Yi et al., 2018), heart disease (Foley et al., 2004), neurodegenerative diseases (Wei et al., 2019), and even mortality (Stone et al., 2009).

Physical fitness is closely associated with one’s health status (Fu et al., 2017). A high level of physical fitness is related to the prevention of most of the mentioned chronic diseases and organic deterioration (Anderson & Durstine, 2019; Pedrero-Chamizo et al., 2012). It is important to note that physical fitness levels show sex and age specific differences in older adults (Pedrero-Chamizo et al., 2012). Research has suggested a bidirectional relationship between exercise and sleep (Kline, 2014). However, aging is associated with impairments in sleep patterns (Hargens et al., 2013), and therefore the benefits of regular physical activity on sleep in the elderly have been extensively studied (Moreno-Vecino et al., 2017; Vanderlinden et al., 2020). A recent systematic review concluded that moderate physical activity programs improved sleep variables in the elderly (Vanderlinden et al., 2020). Adults with sleep problems score lower in physical fitness and higher in physical frailty (Nakakubo et al., 2018), but there are still aspects regarding the association between sleep problems and body shape index that should be determined as for example short or long time sleeping (Moreno-Vecino et al., 2017). Older adults with sleep disruption demonstrate a high prevalence of risk factors associated with poor body composition (Tan et al., 2019), and too short or too long nocturnal sleep could be linked with greater adiposity in the middle-age and elderly (Theorell-Haglöw et al., 2014). A study has shown that lower nocturnal sleep time could be associated with greater body mass index (BMI), waist circumference (Faraone et al., 2021), and fat mass among Chinese males (Chen, Zhang et al., 2019). Furthermore, it is important to notice that both sexes sleep different (Mong & Cusmano, 2016). One of the main reasons is the role of sex steroids in sleep modulation in which females described poor quality and more disorders (Mong & Cusmano, 2016).

Diurnal sleep (also called nap) rarely is considered in total sleep time and efficiency, despite it is a noteworthy addition to daily sleep duration. In older adults, light and fragmented sleep during nocturnal sleep could lead to increased daytime somnolence, which also leads to longer daytime naps (Tan et al., 2018). A brief nap (<30 minutes) is considered as the optimal duration to promote the recuperative effects of napping in healthy people (Hilditch et al., 2017). It is not if producing sleep inertia and has a few minutes of slow-wave sleep, which is the most restful sleep phase (Tumiran et al., 2018). In healthy people, short naps improve cognitive performance, alertness, and mood (Tumiran et al., 2018); whereas long naps induce somnolence and impair cognitive abilities (Mantua & Simonelli, 2019), and could be a risk for hypertension (Cheungpasitporn et al., 2016). Naps could be a symptom of diurnal somnolence, especially in older people, which is related to cognitive degeneration, drug intake, obesity, and sleep impairment. People with sleep deprivation or sleep impairment could replace their sleep loss with diurnal naps. A study observed that napping could be protective against chronic diseases in older females (Stone et al., 2009). Nevertheless, scientific evidence of the long-term effect of napping is controversial (Lopez-Minguez et al., 2017) and it could be associated with obesity (Patel et al., 2006), fatigue, immune system (Faraut et al., 2011), and sleep wake-cycles (Endo et al., 1981). The effect of napping, where it is a rooted habit, remains unknown in Mediterranean, Asian, or Islamic countries (Tumiran et al., 2018).

Therefore, the aim of this study was to determine the associations of nocturnal sleep and nap time with physical fitness and body composition among older adults.

Methodology

Study Setting and Sample

This research is a cross-sectional study conducted in the framework of the EXERNET-Elder 3.0 project, whose protocol has been published elsewhere (Gomez-Bruton et al., 2020). EXERNET-Elder project is a multi-center study executed between 2008 and 2009 (baseline data) and 2016 and 2017 (follow-up) in Spain in older adults aged over 65 years old. Data collection was performed in sports centers or centers for the elderly where participants were used to attend. Participants were contacted by phone and once the study began. For the purpose of this study, we obtained data from the follow-up.

Inclusion criteria was being over 65 years. Exclusion criteria for bioimpedance analysis were to wear a pacemaker and/or a metal prosthesis, and people suffering from cancer or dementia. For physical fitness tests, exclusion criteria were any medical advice against doing physical activity due to disease, recent heart failure, blood pressure over 180/100, and joint or chest pain when doing physical activity.

From an initial total sample of 3,093 participants in 2008, 236 deaths were noticed between 2008 and 2016, leaving a total of 2,857. Furthermore, one center could not perform the follow-up due to lack of funding and, the sample was reduced by 400 participants, moving to 2,457 eligible older adults. 1,055 participants were also not able to attend the follow-up (i.e., change of residence or city, did not answer the phone, became dependent and could not attend the follow-up or was not willing to undertake the evaluation). Therefore, 1,402 participants finalized all the evaluations. Sleep questionnaire was added in 2016 to 2017, and to be included in this research, only 830 participants completed sleep
questionnaire, body composition, and physical fitness assessments. The protocol was approved by the Ethics Committee of Clinical Research of the Alcorcón Foundation University Hospital (16/50), Spain.

The protocol followed the ethical guidelines of the Declaration of Helsinki 1964, revised in Fortaleza (2013) by the World Medical Association, complying with the Spanish legislation and legal regulations for clinical research in humans (Law 14/2007 on biomedical research). Written informed consent was obtained from each participant.

Demographic Data

Demographic data were obtained on all participants through an interview conducted by junior researchers using a validated questionnaire (Lopez-Rodriguez et al., 2017). A question regarding organized physical activity was included: Are you currently engaged in organized physical activity? Organized physical activity refers to a collective guided and supervised activity that is developed by an instructor. Units were hours per week.

Sleep Assessments

Sleep patterns were assessed using the Jenkins Sleep Scale (Jenkins et al., 1988). The questions used for this study were: (1) How many hours do you sleep at night daily? (2) How many hours do you sleep or nap daily? Both questions quantify nap and nocturnal sleep duration and were answered in hours and minutes, respectively.

Nocturnal sleep was divided into three groups: <7, 7 to 9, and >9 hours (U.S. Department of Health & Human Services (HHS) (2016)). Nap time was categorized as: No nap, 1 to 30 minutes, and >30 minutes groups following the criteria used previously by Leng et al. (2019). Total daily sleep was also created as the sum of nocturnal sleep and nap time as a continuous variable.

Physical Fitness

Physical fitness was evaluated by trained researchers through a Senior Fitness Battery (Rikli, 2001), and some test modified from Eurofit Testing Battery (Eurofit, 2003), which has been described in detail and for which reference values for the Spanish population have previously given (Pedrero-Chamizo et al., 2012). Aerobic capacity, upper and lower body strength, maximum handgrip strength, static balance, agility/dynamic balance, and gait speed were tested using both batteries.

The results of each test were stratified by sex. Quartiles were calculated assigning punctuation between the iliac crest without clothes. Body shape index (waist circumference (m)/Height (m)½), and waist to hip ratio (waist circumference (m)/Height (m)) were then calculated.

Data Analysis

Baseline characteristics are presented as mean ± standard deviation (SD) for continuous variables and frequency (%) for categorical variables. A Kolmogorov-Smirnov test was done to check the data normality. Differences between sex groups were assessed using an independent sample t-test for continuous variables, and chi-squared test for categorical variables. All statistical models were divided by sex because both groups were not homogeneous regarding physical fitness, body composition, nap, and nocturnal sleep duration. Comparisons were done using Bonferroni or T2 Tamhane post hoc analysis between nocturnal sleep and nap groups with body composition and physical fitness. The Levene test was done to check the homogeneity of the variances (p < .05). Odds ratios (OR) and 95% confidence interval were calculated by multinomial regression models with nocturnal sleep groups (<7, 7–9, and >9 hours) and nap groups (no nap, 1–30 minutes, and >30 minutes) as dependent variables, and physical fitness and body composition as independent variables. Nocturnal sleep 7 to 9 hours and no nap groups were the reference groups in all the models. Each model was adjusted for the age, BMI (except for BMI model), physical fitness index (except for physical fitness index model), and nocturnal sleep time. Significant difference was set considered at \(p < .05 \). All tests were conducted with SPSS for Windows, Version 25.0. Armonk, NY: IBM Corp.

Results

Descriptive Characteristics

Table 1 shows the 830 participants’ characteristics of this study. Participants were 75.1% female with a mean age of 77.7 ± 5.1 years. Females presented less nocturnal sleep, nap, physical fitness (except for flexibility), but had higher BMI, and fat mass (\(p < .05 \)) than males. Among 623 females, 51.0% and 54.0% slept below 7 hours and did not
were observed in females who slept position, higher waist circumference and body shape index other groups (except for handgrip). Regarding body composition, males who took a nap, respectively. In males, only 32.0% had nocturnal sleep below 7 hours and 30.4% did not nap during the day.

Differences in Physical Fitness and Body Composition According to Nocturnal Sleep and Nap Time Groups (Tables 2 and 3)

Males: There were no significant differences between nocturnal sleep groups nor in physical fitness neither in body composition. There were significant differences among the three nap groups in all physical fitness tests (except for handgrip and balance), having nap groups higher scores than the no nap group \(p < .05 \). Furthermore, males who took a nap \(> 30 \) minutes showed higher waist circumference than the other groups \(p < .05 \).

Females: Significant differences were found between nocturnal sleep and all physical fitness tests (except for balance and chair stand test) \(p < .05 \). Females who slept \(< 7 \) hours presented higher physical fitness scores than the other groups (except for handgrip). Regarding body composition, higher waist circumference and body shape index were observed in females who slept \(> 9 \) hours \(p < .05 \) compared to those who slept \(< 7 \) hours and between 7 and 9 hours. Those in the no nap group had significantly higher scores for the chair stand test \(p < .05 \).

Association between sleep patterns, physical fitness and body composition

Males: For the nap time groups, waist and hip circumference were significantly related to nap duration between 1 and 30 minutes, \(OR = 1.08 \) (1.02 and 1.16, \(p = .009 \)) and \(OR = 1.08 \) (1.00–1.17, \(p = .048 \)), respectively (Table 4).

Females: The \(> 9 \) hours nocturnal sleep group was significantly associated with body shape index and waist circumference, \(OR = 4.07 \) (2.87–5.76, \(p = .011 \)) and \(OR = 1.04 \) (1.00–1.08, \(p = .024 \)), respectively. A nap time \(> 30 \) minutes was associated with higher fat mass and body shape index, \(OR = 1.22 \) (1.01–1.46, \(p = .032 \)) and \(OR = 3.95 \) (1.82–8.38, \(p = .027 \)), respectively (Table 5).

Discussion

A cross-sectional study was conducted to analyze the association between nocturnal sleep and nap time with physical fitness and body composition among a
Table 2. Physical Fitness and Body Composition Values by Sex, and Stratified by Nocturnal Sleep Time Groups.

	Males	Females						
	<7 hours Mean ± SD	7-9 hours Mean ± SD	>9 hours Mean ± SD	p Value				
	7-9 hours Mean ± SD	>9 hours Mean ± SD	p Value	<7 hours Mean ± SD	7-9 hours Mean ± SD	>9 hours Mean ± SD	p Value	
Physical fitness								
One leg balance (s)	31.4 ± 22.8	25.1 ± 21.4	22.3 ± 19.8	.128	19.4 ± 18.1	19.8 ± 18.3	15.4 ± 19.9	.588
Handgrip dynamometer (kg)	35.5 ± 6.4	33.5 ± 7.2	32.9 ± 5.2	.145	20.3 ± 4.5	20.8 ± 4.3	17.7 ± 4.1	.005
Chair stand test (reps)	14.7 ± 3.8	13.9 ± 4.3	14.4 ± 3.6	.432	13.6 ± 3.9	13.4 ± 3.7	11.5 ± 3.6	.053
8-Foot Up-And-Go Test (s)	5.5 ± 1.2	6.2 ± 4.0	6.2 ± 0.9	.353	6.5 ± 1.9	6.6 ± 2.3	10.8 ± 14.6	<.001
30-m gait speed (s)	16.0 ± 4.0	16.6 ± 4.3	17.9 ± 3.3	.288	19.4 ± 4.5	19.9 ± 5.9	25.6 ± 13.9	<.001
6-minute Walk Test (m)	548.9 ± 99.9	516.9 ± 105.7	495.3 ± 134.4	.079	472.7 ± 88.6	459.9 ± 100.6	416.5 ± 115.8	<.017
Physical fitness Index	2.7 ± 0.7	2.4 ± 0.7	2.2 ± 0.7	.052	2.5 ± 0.6	2.5 ± 0.7	2.0 ± 0.7	<.014
Body composition								
Fat mass (%)	28.5 ± 4.9	29.1 ± 4.8	29.3 ± 5.3	.702	38.7 ± 4.9	38.5 ± 5.6	40.6 ± 4.4	.217
BMI (kg/m²)	28.4 ± 3.9	27.9 ± 3.7	28.4 ± 3.8	.745	28.8 ± 4.1	28.9 ± 5.1	29.9 ± 4.5	.519
Body shape index	0.085 ± 0.004	0.084 ± 0.003	0.084 ± 0.003	.914	0.079 ± 0.006	0.078 ± 0.007	0.083 ± 0.007	.008
Waist circumference (cm)	101.9 ± 9.1	100.5 ± 9.2	100.4 ± 11.1	.590	91.7 ± 10.0	90.9 ± 11.8	97.9 ± 12.7	.014
Hip circumference (cm)	103.6 ± 6.3	102.9 ± 6.4	102.3 ± 6.8	.697	106.3 ± 9.2	106.7 ± 10.0	107.8 ± 8.9	.714

Note: Data with different superscript letters are significantly different p < .05, according to the ANOVA (adjusted p-values by Bonferroni or T2 Tamhane post hoc analysis were chosen depending on if the variances were equal or not methods). The column means test table assigns a superscript letter (a, b, or c) to nocturnal sleep groups. If a pair of values are significantly different, the values have different subscript letters assigned to them. If a pair of values are not significantly different, the values will have the same superscript letters assigned to them. BMI = body mass index.

Table 3. Physical Fitness and Body Composition Values by Sex, Stratified by Nap.

	Males	Females						
	No nap Mean ± SD	1–30 minutes Mean ± SD	>30 minutes Mean ± SD	p Value				
	7-9 hours Mean ± SD	>9 hours Mean ± SD	p Value	<7 hours Mean ± SD	7-9 hours Mean ± SD	>9 hours Mean ± SD	p Value	
Physical fitness								
One leg balance (s)	28.6 ± 23.5	30.5 ± 21.5	22.5 ± 20.5	.083	19.7 ± 18.1	19.5 ± 19.1	18.9 ± 18.9	.932
Handgrip (kg)	34.5 ± 6.6	34.9 ± 5.7	32.9 ± 7.8	.198	20.6 ± 4.6	20.5 ± 4.2	19.5 ± 4.2	.089
Chair stand test (reps)	14.9 ± 3.8	14.8 ± 4.1	13.3 ± 4.2	.031	13.9 ± 3.9	12.9 ± 3.6	12.6 ± 3.5	.002
8 Foot-Up-And-Go Test (s)	5.8 ± 0.8	5.6 ± 1.1	6.8 ± 4.5	.011	5.5 ± 2.1	6.7 ± 2.3	7.4 ± 3.3	.063
30m velocity (s)	15.6 ± 2.6	15.9 ± 2.9	16.5 ± 5.6	.007	19.5 ± 5.6	20.1 ± 5.3	20.5 ± 7.5	.257
6-minute Walk Test (m)	555.8 ± 79.4	547.4 ± 76.6	486.9 ± 134.5	<.001	470.8 ± 95.8	462.8 ± 96.6	450.2 ± 91.6	.183
Physical fitness Index	2.6 ± 0.7	2.6 ± 0.6	2.3 ± 0.8	.014	2.5 ± 0.7	2.4 ± 0.7	2.4 ± 0.6	.051
Body composition								
Fat mass (%)	28.0 ± 4.5	28.4 ± 4.8	29.9 ± 5.0	.550	38.8 ± 4.9	38.5 ± 5.1	38.7 ± 6.3	.812
BMI (kg/m²)	27.9 ± 3.7	27.8 ± 4.3	28.6 ± 4.1	.383	28.7 ± 4.5	28.9 ± 4.7	29.3 ± 4.6	.617
Body shape index	0.085 ± 0.004	0.085 ± 0.003	0.083 ± 0.004	.052	0.079 ± 0.007	0.078 ± 0.006	0.079 ± 0.005	.576
Waist circumference (cm)	98.6 ± 7.9	100.4 ± 8.9	103.3 ± 10.2	.012	91.4 ± 10.7	91.3 ± 11.2	92.8 ± 11.7	.479
Hip circumference (cm)	102.6 ± 6.2	101.9 ± 6.2	103.0 ± 6.1	.069	106.2 ± 9.2	106.9 ± 9.8	106.6 ± 10.2	.688

Note: Data with different superscript letters are significantly different p < .05 (in bold), according to the ANOVA (adjust p-values by Bonferroni or T2 Tamhane post hoc analysis were chosen depending on if the variances were equal or not methods). The column means test table assigns a superscript letter (a, b, or c) to nap groups. If a pair of values is significantly different, the values have different subscript letters assigned to them. If a pair of values are not significantly different, the values will have the same superscript letters assigned to them. BMI = body mass index.
Table 4. (a) Association of Nocturnal Sleep Groups on Physical Fitness and Body Composition in Males.

	Group 1	Group 2	Group 3	Group 4	OR (95% CI)	p Value	OR (95% CI)	p Value
	Male	7–8 hours	< 7 hours	> 9 hours				
		OR (95% CI)	p Value	OR (95% CI)	p Value			
Physical fitness								
One leg balance test (s)	I [Reference]	1.00 (0.98–1.02)	.805	1.01 (0.97–1.04)	.601			
Handgrip (kg)	I [Reference]	1.05 (0.94–1.07)	.887	1.00 (0.89–1.13)	.898			
Chair stand test (reps)	I [Reference]	0.93 (0.88–1.11)	.908	1.15 (0.95–1.40)	.145			
8 Foot-Up-and-Go test (s)	I [Reference]	0.91 (0.63–1.32)	.645	1.03 (0.65–1.65)	.871			
30m velocity (s)	I [Reference]	1.02 (0.88–1.17)	.737	1.01 (0.80–1.28)	.879			
6-minute Walk test (m)	I [Reference]	1.00 (0.99–1.07)	.544	1.00 (0.99–1.01)	.368			
Physical fitness Index	I [Reference]	1.19 (0.72–1.97)	.482	0.72 (0.29–1.79)	.485			
Body composition								
Fat mass (%)	I [Reference]	0.96 (0.89–1.03)	.318	0.98 (0.86–1.12)	.817			
BMI (kg/m²)	I [Reference]	1.00 (0.91–1.10)	.915	1.03 (0.87–1.21)	.731			
Body shape index	I [Reference]	2.61 (2.56–2.67)	.162	1.53 (1.00–2.07)	.117			
Waist circumference (cm)	I [Reference]	1.01 (0.97–1.05)	.422	0.98 (0.92–1.04)	.586			
Hip circumference (cm)	I [Reference]	1.01 (0.96–1.06)	.560	0.97 (0.88–1.06)	.507			

Note. Each model was adjusted for age, BMI (except for BMI model), Physical fitness Index (except for physical fitness index model), and nocturnal sleep time. Significant associations are in bold (p < .05). CI = confidence interval; BMI = body mass index.

(b) Association of nocturnal sleep groups on physical fitness and body composition in females.

	Group 1	Group 2	Group 3	Group 4	OR (95% CI)	p Value	OR (95% CI)	p Value
	Females	7–8 hours	< 7 hours	> 9 hours				
		OR (95% CI)	p Value	OR (95% CI)	p Value			
Physical fitness								
One leg balance test (s)	I [Reference]	1.00 (0.98–1.01)	.770	0.87 (0.97–1.04)	.595			
Handgrip (kg)	I [Reference]	0.95 (0.91–1.00)	.096	0.86 (0.75–1.00)	.058			
Chair stand test (reps)	I [Reference]	1.00 (0.96–1.08)	.671	0.99 (0.84–1.18)	.982			
8 Foot-Up-and-Go test (s)	I [Reference]	0.91 (0.80–1.03)	.150	1.06 (0.92–1.12)	.391			
30m velocity (s)	I [Reference]	0.97 (0.93–1.02)	.353	1.03 (0.97–1.10)	.250			
6-minute Walk test (m)	I [Reference]	1.00 (1.00–1.00)	.055	1.00 (0.99–1.00)	.664			
Physical fitness Index	I [Reference]	0.95 (0.72–1.23)	.726	0.49 (0.23–1.02)	.057			
Body composition								
Fat mass (%)	I [Reference]	1.00 (0.97–1.04)	.746	1.05 (0.96–1.15)	.268			
BMI (kg/m²)	I [Reference]	0.99 (0.95–1.03)	.741	1.02 (0.92–1.12)	.672			
Body shape index	I [Reference]	2.50 (1.31–4.82)	.117	4.07 (2.87–5.76)	.011			
Waist circumference (cm)	I [Reference]	1.00 (0.99–1.02)	.357	1.04 (1.00–1.08)	.024			
Hip circumference (cm)	I [Reference]	0.99 (0.97–1.01)	.540	0.99 (0.95–1.04)	.976			

Note. CI = confidence interval; BMI = body mass index. Each model was adjusted for age, BMI (except for BMI model), physical fitness index (except for physical fitness index model), and nocturnal sleep time. Significant associations are in bold (p < .05).

population of Spanish community-dwelling older adults. In our sample, higher nocturnal sleep was related to poor body composition outcomes in females. Nap time >30 minutes was associated with greater risk for high fat mass and body shape index in females, whereas naps during <30 minutes were associated with higher waist and hip circumference in males. Our results suggested that body composition and physical fitness were associated with sleep patterns in different ways. In multinomial regression models, the nap groups showed an association with some body composition outcomes in both sexes; however, no significant connections were found between physical fitness with nocturnal sleep and nap groups.

The dissimilar results with nocturnal sleep and nap time with physical fitness and body composition in each sex may be partially explained due to females tend to sleep less than males and could happen because of biological, social, and/or physiologic factors (Burgard & Ailshire, 2013; Jung et al., 2013). According to Kim et al. (2021), females slept more than they reported, or they had better sleep quality (Kim et al., 2021). On the one hand, the group-based differences in the physical fitness scores were also similar in those found in previous research (Pedrero-Chamizo et al., 2012), showing higher physical fitness levels in males than females (Bibiloni et al., 2018). Females who got <7 hours nocturnal sleep also reported significantly better results in all physical fitness tests (except for handgrip) compared to the other female groups. A good physical fitness is essential to reduce risk of falls and promote functionality, but also is associated with less risk of suffering from...
Table 5. (a) Association of nap groups on physical fitness and body composition in males.

	Males	No nap	OR (95% CI)	p Value	OR (95% CI)	p Value	
Physical fitness							
One leg balance test (s)	[Reference]	1.02	0.98–1.06	.234	1.01	0.96–1.06	.641
Handgrip (kg)	[Reference]	1.01	0.91–1.13	.768	1.01	0.88–1.15	.878
Chair stand test (reps)	[Reference]	0.93	0.75–1.16	.545	1.14	0.85–1.53	.364
8 Foot-Up-and-Go test (s)	[Reference]	1.44	0.89–2.32	.135	1.10	0.51–2.00	.958
30m velocity (s)	[Reference]	1.22	0.98–1.52	.070	0.91	0.64–1.28	.595
6-minute Walk test (m)	[Reference]	0.99	0.98–1.00	.525	1.02	0.99–1.04	.059
Physical fitness index	[Reference]	0.03	0.01–0.10	.287	0.34	0.07–1.63	.179
Body composition							
Fat mass (%)	[Reference]	1.09	0.93–1.27	.279	0.86	0.70–1.05	.149
BMI (kg/m²)	[Reference]	1.14	0.96–1.34	.122	0.86	0.69–1.06	.171
Body shape index	[Reference]	1.58	1.01–2.28	.139	1.00	0.03–2.73	.942
Waist circumference (cm)	[Reference]	1.08	1.02–1.16	.009	0.94	0.87–1.01	.138
Hip circumference (cm)	[Reference]	1.08	1.00–1.17	.048	0.92	0.80–1.05	.245

Note. Each model was adjusted for age, BMI (except for BMI model), physical fitness index (except for physical fitness index model), and nocturnal sleep time. Significant associations are in bold (p < .05). CI = confidence interval; BMI = body mass index.

(b) Association of nap groups on physical fitness and body composition in females.

	Females	No nap	OR (95% CI)	p Value	OR (95% CI)	p Value	
Physical fitness							
One leg balance test (s)	[Reference]	1.00	0.98–1.03	.530	0.99	0.92–1.05	.795
Handgrip (kg)	[Reference]	0.90	0.81–1.00	.061	0.77	0.58–1.01	.062
Chair stand test (reps)	[Reference]	0.98	0.85–1.12	.790	1.32	0.99–2.36	.056
8 Foot-Up-and-Go test (s)	[Reference]	0.96	0.73–1.126	.790	1.07	0.70–1.64	.728
30m velocity (s)	[Reference]	0.98	0.89–1.08	.814	1.07	0.92–1.24	.342
6-Minute Walk test (m)	[Reference]	1.00	0.99–1.00	.613	1.00	0.99–1.01	.341
Physical fitness index	[Reference]	1.15	1.01–4.15	.986	0.00	0.00–0.02	.454
Body composition							
Fat mass (%)	[Reference]	0.96	0.88–1.05	.395	1.22	1.01–1.46	.032
BMI (kg/m²)	[Reference]	0.99	0.90–1.08	.852	1.10	0.87–1.19	.815
Body shape index	[Reference]	1.00	1.46–2.86	0.570	3.95	1.82–8.38	.027
Waist circumference (cm)	[Reference]	1.00	0.96–1.03	0.985	1.05	0.99–1.12	.096
Hip circumference (cm)	[Reference]	0.98	0.93–1.02	0.391	1.01	0.94–1.08	.690

Note. Each model was adjusted for age, BMI (except for BMI model), physical fitness index (except for physical fitness index model), and nocturnal sleep time. Significant associations are in bold (p < .05). CI = confidence interval; BMI = body mass index.

non-communicable chronic diseases and early mortality in the elderly (Yerrakalva et al., 2015). Nevertheless, it could be appreciated that physical fitness did not present a significant association with either nocturnal sleep or nap groups in both sexes. In this sense, results could be different if objective methodologies to measure sleep time will be used in this study.

Regarding the prevalence, the prevalence of high BMI and percentage of fat mass was consistently higher in females in most studies (Kim et al., 2016; Valentine et al., 2009; Vogel et al., 1986; Wray & Blaum, 2001). Moreno-Vecino et al. found females with sleep disturbance presented higher BMI and waist circumference (Moreno-Vecino et al., 2017). In our study, females who slept >9 hours during the night had higher waist circumference and body shape index. Sleep duration is associated with hormonal disruption, diurnal somnolence, and increased sedentary time, which increases the risk of developing chronic diseases such as type 2 diabetes or obesity by different mechanisms (Patel et al., 2008; Vgontzas et al., 2008). Furthermore, diurnal somnolence is associated with an increased risk of obesity in elderly adults (Becucci & Pannain, 2011), while Chen et al. (2019) found that napping is associated with being overweight (Chen, Zhang et al., 2019). Concretely, they found that poor nocturnal sleep time was associated with greater BMI, waist circumference, and fat mass in Chinese older males (Chen, Zhang et al., 2019).

Our data also indicated that napping was also more frequent in males than females (37.4±41.5 vs. 18.7±31.5 minutes). These findings agree with previous studies (Guidozzi, 2015; Jung et al., 2013). Nonetheless, other studies have reported negative association between long naps and functional capacity and independency in older
Decloration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was funded by “Ministerio de Economía, Industria y Competitividad” (DEP2016–78309-R), “Centro Universitario de la Defensa de Zaragoza” (UZCUD2017-BIO-01), Zaragoza City Council, the Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), and the official funding agency for biomedical research of the Spanish government, Institute of Health Carlos III (ISCIII), which is co-funded by the European Regional Development Fund (CIBEROBN CB12/03/30038).

Ethical Statement
The protocol was approved by the Ethics Committee of the Alcorcón Foundation University Hospital (16/50), Spain.

ORCID iDs
Eva Gesteiro https://orcid.org/0000-0002-9498-4228
Raquel Aparicio-Ugarriza https://orcid.org/0000-0001-7342-5972
María del Carmen García-Centeno https://orcid.org/0000-0002-0858-2530
Narcís Gusi https://orcid.org/0000-0002-1001-8883

References
Anderson, E., & Durstine, J. L. (2019). Physical activity, exercise, and chronic diseases: A brief review. Sports Medicine and Health Science, 1(1), 3–10. https://doi.org/10.1016/j.smhs.2019.08.006
Becucci, G., & Pannain, S. (2011). Sleep and obesity. Current Opinion in Clinical Nutrition and Metabolic Care, 14(4), 402–412. https://doi.org/10.1097/mco.0b013e3283479109
Bibiloni, M. D. M., Karam, J., Bouzas, C., Aparicio-Ugarriza, R., Pedroso-Chamizo, R., Sureda, A., González-Gross, M., & Tur, J. A. (2018). Association between physical condition and body composition, nutrient intake, sociodemographic characteristics, and lifestyle habits in older Spanish adults. Nutrients, 10(11), 1608. https://doi.org/10.3390/nu10111608
Burgard, S. A., & Allshire, J. A. (2013). Gender and time for sleep among U.S. Adults. American Sociological Review, 78(1), 51–69. https://doi.org/10.1177/0003122412472048
Chen, M., Zhang, X., Liang, Y., Xue, H., Gong, Y., Xiong, J., He, F., Yang, Y., & Cheng, G. (2019). Associations between nocturnal sleep duration, midday nap duration and body composition among adults in Southwest China. PLoS One, 14(10), e0223665–e0223665. https://doi.org/10.1371/journal.pone.0223665
Cheungpasitporn, W., Thongprayoon, C., Srivali, N., Vijayvargiya, P., Anderssen, C. A., Kittanamongkolchai, W., Sathick, I. J., Caples, S. M., & Erickson, S. B. (2016). The effects of napping on the risk of hypertension: A sys-
的研究和分析。《Journal of Evidence-Based Medicine》, 9(4), 205–212. https://doi.org/10.1111/jebm.12211

Chumlea, W. C., Roche, A. F., & Steinbaugh, M. L. (1985). Estimating stature from knee height for persons 60 to 90 years of age. Journal of the American Geriatrics Society, 33(2), 116–120. https://doi.org/10.1111/j.1532-5415.1985.tb02276.x

Endo, S., Kobayashi, T., Yamamoto, T., Fukuda, H., Sasaki, M., & Ohita, T. (1981). Persistence of the circadian rhythm of REM sleep: A variety of experimental manipulations of the sleep-wake cycle. Sleep, 4(3), 319–328. https://doi.org/10.1093/sleep/4.3.319

Eurofit. (2003). Eurofit tests of physical fitness.

Faraone, S. V., Banaschewski, T., Coghill, D., Zheng, Y., Biederman, J., Bellgrove, M. A., Newcorn, J. H., Gignac, M., Al Saud, N. M., Manor, I., Rohde, L. A., Yang, L., Cortese, S., Almagor, D., Stein, M. A., Albatti, T. H., Aljoudi, H. F., Alqahtani, M. M. J., Asherson, P., . . . Wang, Y. (2021). The World Federation of ADHD International Consensus Statement: 208 Evidence-based conclusions about the disorder. *Neuroscience and Biobehavioral Reviews*, 128, 789–818. https://doi.org/10.1016/j.neubiorev.2021.01.022

Faraut, B., Boudjelal, K. Z., Dyza, M., Rousseau, A., David, E., Stenuit, P., Franck, T., Antwerp, P. V., Vanhaeverbeek, M., & Kerkhofs, M. (2011). Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction. *Brain, Behavior, and Immunity*, 25(1), 16–24. https://doi.org/10.1016/j.bbi.2010.08.001

Foley, D., Ancoli-Israel, S., Britz, P., & Walsh, J. (2004). Sleep disturbances and chronic disease in older adults: Results of the 2003 National Sleep Foundation Sleep in America Survey. *Journal of Psychosomatic Research*, 56(5), 497–502. https://doi.org/10.1016/j.jspysci.2004.02.010

Fu, L., Jia, L., Zhang, W., Han, P., Kang, L., Ma, Y., Yu, H., Zhai, T., Chen, X., & Guo, Q. (2017). The association between sleep duration and physical performance in Chinese community-dwelling elderly. *PLoS One*, 12(3), e0174832. https://doi.org/10.1371/journal.pone.0174832

Goldman, S. E., Stone, K. L., Ancoli-Israel, S., Blackwell, T., Ewing, S. K., Boudreau, R., Cauley, J. A., Hall, M., Matthews, K. A., & Newman, A. B. (2007). Poor sleep is associated with poorer physical performance and greater functional limitations in older women. *Sleep*, 30(10), 1317–1324. https://doi.org/10.1093/sleep/30.10.1317

Gomez-Bruton, A., Navarrete-Villanueva, D., Pérez-Gómez, J., Vila-Maldonado, S., Gesteiro, E., Gusi, N., Villa-Vicente, J. G., Espino, L., Gonzalez-Gross, M., Casajus, J. A., Ara, I., Gomez-Cabello, A., & Vicente-Rodriguez, G. (2020). The effects of age, organized physical activity and sedentarism on fitness in older adults: An 8-Year Longitudinal Study. *International Journal of Environmental Research and Public Health*, 17(12), 4312. https://doi.org/10.3390/ijerp17124312

Guardiérrie Ribeiro Bueno, C., Andréuch, C. R. S., Guimarães Lima, M., Ceretta Oliveira, H., Zanchanella, E., Berti de Azevedo Barros, M., Marchiori de Oliveira, T. A., & Ceolim, M. F. (2019). Napping, functional capacity and satisfaction with life in older adults: A population-based study. *Journal of Clinical Nursing*, 28(9-10), 1568–1576. https://doi.org/10.1111/jocn.14768

Guidozi, F. (2015). Gender differences in sleep in older men and women. *Climacteric*, 18(5), 715–721. https://doi.org/10.3109/13697137.2015.1042451

Hargens, T. A., Kalesh, A. S., Edwards, E. S., & Butner, K. L. (2013). Association between sleep disorders, obesity, and exercise: A review. *Nature and Science of Sleep*, 5, 27–35. https://doi.org/10.2147/NS.S34838

Hilditch, C. J., Dorrian, J., & Banks, S. (2017). A review of short naps and sleep inertia: do naps of 30 min or less really avoid sleep inertia and slow-wave sleep? *Sleep Medicine*, 32, 176–190. https://doi.org/10.1016/j.sleep.2016.12.016

Jenkins, C. D., Stanton, B. A., Niemczyk, S. J., & Rose, R. M. (1988). A scale for the estimation of sleep problems in clinical research. *Journal of Clinical Epidemiology*, 41(4), 313–321. https://doi.org/10.1016/0895-4356(88)90138-2

Jung, K.-I., Song, C.-H., Ancoli-Israel, S., & Barrett-Connor, E. (2013). Gender differences in nighttime sleep and daytime napping as predictors of mortality in older adults: The Rancho Bernardo study. *Sleep Medicine*, 14(1), 12–19. https://doi.org/10.1016/j.sleep.2012.06.004

Kim, H. J., Kim, R. E., Kim, S., Kim, S. A., Kim, S. E., Lee, S. K., Lee, H. W., & Shin, C. (2021). Sex differences in deterioration of sleep properties associated with aging: A 12-year longitudinal cohort study. *Journal of clinical sleep medicine*, 17(5), 964–972. https://doi.org/10.5664/jcsm.9072

Kim, Y. M., Kim, S. H., Kim, S., Yoo, J. S., Choe, E. Y., & Won, Y. J. (2016). Variations in fat mass contribution to bone mineral density by gender, age, and body mass index: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008-2011. *Osteoporosis International*, 27(8), 2543–2554. https://doi.org/10.1007/s00198-016-3566-y

Kline, C. E. (2014). The bidirectional relationship between exercise and sleep: Implications for exercise adherence and sleep improvement. *American Journal of Lifestyle Medicine*, 8(6), 375–379. https://doi.org/10.1177/1932296814544437

Leng, Y., Redline, S., Stone, K. L., Ancoli-Israel, S., & Yaffe, K. (2019). Objective napping, cognitive decline, and risk of cognitive impairment in older men. *Alzheimers Dementia*, 15(8), 1039–1047. https://doi.org/10.1016/j.jalz.2019.04.009

López-Minguez, J., Morosoli, J. J., Madrid, J. A., Garaulet, M., & Ordoñana, J. R. (2017). Heritability of siesta and night-time sleep as continuously assessed by a circadian-related integrated measure. *Scientific Reports*, 7(1), 12340. https://doi.org/10.1038/s41598-017-12460-x

López-Rodríguez, C., Laguna, M., Gómez-Cabello, A., Gusi, N., Espino, L., Villa, G., Pedrero-Chamizo, R., Casajus, J. A., Ara, I., & Aznar, S. Validation of the self-report EXERNET questionnaire for measuring physical activity and sedentary behavior in elderly. *Arch Gerontol Geriatr*. 2017 Mar-Apr;69:156-161. doi: 10.1016/j.archger.2016.11.004. Epub 2016 Nov 13. PMID: 27978491.

Mantuà, J., & Simonelli, G. (2019). Sleep duration and cognition: Is there an ideal amount? *Sleep*, 42(3), zsz010. https://doi.org/10.1093/sleep/zsz010

Mong, J. A., & Cusmano, D. M. (2016). Sex differences in sleep: Impact of biological sex and sex steroids. *Philosophical Transactions of the Royal Society B Biological Sciences*, 371(1688), 20150110. https://doi.org/10.1098/rstb.2015.0110

Moreno-Vecino, B., Arija-Blázquez, A., Pedrero-Chamizo, R., Gómez-Cabello, A., Alegre, L. M., Pérez-López, F. R., González-Gross, M., Casajus, J. A., & Ara, I. (2017).
Sleep disturbance, obesity, physical fitness and quality of life in older women: EXERNET study group. Climacteric, 20(1), 72–79. https://doi.org/10.1080/13697137.2016.1264934

Nakakubo, S., Makizako, H., Doi, T., Tsutsumimoto, K., Hotta, R., Lee, S., Lee, S., Bae, S., Makino, K., Suzuki, T., & Shimada, H. (2018). Long and short sleep duration and physical frailty in community-dwelling older adults. The Journal of Nutrition Health & Aging, 22(9), 1066–1071. https://doi.org/10.1007/s12603-018-1116-3

Patel, S. R., Blackwell, T., Redline, S., Ancoli-Israel, S., Cauley, J. A., Hillier, T. A., Lewis, C. E., Orwoll, E. S., Stefanick, M. L., Taylor, B. C., Yaffe, K., & Stone, K. L. (2008). The association between sleep duration and obesity in older adults. International Journal of Obesity, 32(12), 1825–1834. https://doi.org/10.1038/ijo.2008.198

Patel, S. R., Malhotra, A., White, D. P., Gottlieb, D. J., & Hu, F. B. (2006). Association between reduced sleep and weight gain in women. American Journal of Epidemiology, 164(10), 947–954. https://doi.org/10.1093/aje/kwj280

Pedroso-Chamizo, R., Gómez-Cabello, A., Delgado, S., Rodríguez-Llarena, S., Rodríguez-Marroyo, J. A., Cabanillas, E., Meléndez, A., Vicente-Rodríguez, G., Aznar, S., Villa, G., Espino, L., Gusi, N., Casajus, J. A., Ara, I., & González-Gross, M. (2012). Physical fitness levels among independent non-institutionalized Spanish elderly: The elderly EXERNET multi-center study. Archives of Gerontology and Geriatrics, 55(2), 406–416. https://doi.org/10.1016/j.archger.2012.01.004

Qian, Y., Ma, Q., Sun, H., Xu, Y., & Pan, C. (2020). Combined effect of three common lifestyle factors on cognitive impairment among older Chinese adults: A community-based, cross-sectional survey. Psychogeriatrics, 20(6), 844–849. https://doi.org/10.1111/psyg.12604

Rikli, R. R. C. (2001). Senior Fitness Test Manual. Human Kinetics.

Stone, K. L., Ewing, S. K., Ancoli-Israel, S., Ensrud, K. E., Redline, S., Bauer, D. C., Cauley, J. A., Hillier, T. A., & Cummings, S. R. (2009). Self-reported sleep and nap habits and risk of mortality in a large cohort of older women. Journal of the American Geriatrics Society, 57(4), 604–611. https://doi.org/10.1111/j.1532-5415.2008.02171.x

Tan, X., Chapman, C. D., Cedernaes, J., & Benedict, C. (2018). Association between long sleep duration and increased risk of obesity and type 2 diabetes: A review of possible mechanisms. Sleep Medicine Reviews, 40, 127–134. https://doi.org/10.1016/j.smrv.2017.11.001

Tan, X., Titova, O. E., Lindberg, E., Elmståhl, S., Lind, L., Schiöth, H. B., & Benedict, C. (2019). Association between self-reported sleep duration and body composition in middle-aged and older adults. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine, 15(3), 431–435. https://doi.org/10.5664/jcsm.7668

Theorell-Haglöw, J., Berglund, L., Berne, C., & Lindberg, E. (2014). Both habitual short sleepers and long sleepers are at greater risk of obesity: A population-based 10-year follow-up in women. Sleep Medicine, 15(10), 1204–1211. https://doi.org/10.1016/j.spmi.2014.02.014

Tumiran, M. A., Rahman, N. N. A., Saat, R. M., Kabir, N., Zulkifli, M. Y., & Adli, D. S. H. (2018). The concept of Qailulah (Midday napping) from Neuroscientific and Islamic Perspectives. Journal of Religion and Health, 57(4), 1363–1375. https://doi.org/10.1007/s10943-015-0093-7

U.S. Department of Health & Human Services (HHS). (2016). A good night’s sleep. https://www.nia.nih.gov/health/good-nights-sleep

Valentine, R. J., Misic, M. M., Rosengren, K. S., Woods, J. A., & Evans, E. M. (2009). Sex impacts the relation between body composition and physical function in older adults. Menopause, 16(3), 518–523. https://doi.org/10.1097/gme.0b013e31818c931f

Vanderlinden, J., Boen, F., & van Uffelen, J. G. Z. (2020). Effects of physical activity programs on sleep outcomes in older adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 11. https://doi.org/10.1186/s12966-020-0913-3

Vgontzas, A. N., Lin, H. M., Papaliaga, M., Calhoun, S., Vela-Bueno, A., Chrousos, G. P., & Bixler, E. O. (2008). Short sleep duration and obesity: The role of emotional stress and sleep disturbances. International Journal of Obesity, 32(5), 801–809. https://doi.org/10.1038/ijo.2008.4

Vogel, J. A., Patton, J. F., Mello, R. P., & Daniels, W. L. (1986). An analysis of aerobic capacity in a large United States population. Journal of Applied Physiology, 60(2), 494–500. https://doi.org/10.1152/jappl.1986.60.2.4941985.

Wei, Y. C., Huang, L. Y., Chen, C. K., Lin, C., Shyu, Y. C., Chen, Y. L., Huang, W. Y., & Lin, C. P. (2019). Subjective cognitive decline in the community is affected at multiple aspects of mental health and Life Quality: A cross-sectional study of the community medicine of Keelung Chang Gung Memorial Hospital. Dementia and Geriatric Cognitive Disorders Extra, 9(1), 152–162. https://doi.org/10.1159/000497222

Wray, L. A., & Blaum, C. S. (2001). Explaining the role of sex on disability: A population-based study. The Gerontologist, 41(4), 499–510. https://doi.org/10.1093/geront/41.4.499

Yerrakalva, D., Mullis, R., & Mant, J. (2015). The associations of “fatness,” “fitness,” and physical activity with all-cause mortality in older adults: A systematic review. Obesity, 23(10), 1944–1956. https://doi.org/10.1002/oby.21181

Yi, S. S., Chung, S.-H., & Kim, P. S. (2018). Sharing pathological mechanisms of insomnia and osteoporosis, and a new perspective on Safe Drug Choice. Journal of Menopausal Medicine, 24(3), 143–149. https://doi.org/10.6118/jmm.2018.24.3.143