Microscopic formulation of dynamical spin injection in ferromagnetic-nonmagnetic heterostructures

Amin Ahmadi and Eduardo R. Mucciolo

Department of Physics, University of Central Florida, Orlando, FL 32816, USA

(Dated: July 18, 2017)

We develop a microscopic formulation of dynamical spin injection in heterostructure comprising nonmagnetic metals in contact with ferromagnets. The spin pumping current is expressed in terms of Green’s functions of the nonmagnetic metal attached to the ferromagnet where a precessing magnetization is induced. The formulation allows for the inclusion of spin-orbit coupling and disorder. The Green’s functions involved in the expression for the current are expressed in real-space lattice coordinates and can thus be efficiently computed using recursive methods.

I. INTRODUCTION

One of the key elements in any implementation of spintronics is an efficient source of spin current. Among the different methods available, dynamical spin injection from a ferromagnet (FM) into an adjacent nonmagnetic metal (NM) has been theoretically proposed and experimentally observed. In this method, in addition to a longitudinal static magnetic field, an oscillating transverse magnetic field is applied, inducing a magnetization precession in the FM. Most of the angular momentum transferred to the FM by the oscillating field is dissipated through spin-relaxation processes in the bulk, but a small part survives as a spin current injected into the NM.

The exotic electronic properties of graphene have captured the attention of the physics community since the first experiments with this material. High mobility and a long spin-relaxation length are features that make graphene a promising passive element for spintronics. In addition, the enhancement of spin-scattering processes in graphene by adatoms or defects, which yields spin Hall and the inverse spin Hall effects, has led to proposals of graphene-based spin-pumping transistors.

Recent experimental studies show an increase in the damping of the ferromagnetic resonance (FMR) when a graphene sheet is placed in contact with a FM subject to an oscillating magnetic field. One interpretation of this phenomenon is that part of the precessing magnetization leaks into the graphene sheet as a spin current, effectively leading to another channel of magnetization damping in addition to the relaxation mechanisms existing in the bulk of the FM.

A time-dependent scattering theory based on the general theory of adiabatic quantum pumping relate the increase in the FMR damping to the magnitude of a phenomenological mixing conductance parameter; further effort is necessary to describe microscopically the process of spin pumping into two-dimensional (2D) materials, as well as to properly quantify the spin current in terms of materials and interface parameters. A recent study applied the time-dependent scattering theory to spin pumping in a insulating ferromagnet laid on top of a 2D metal. While insightful, this approach is not suitable for including disorder and spatial inhomogeneities such as adatoms; and when applied to graphene, it was confined to the vicinity of the neutrality point.

In this paper we develop a microscopical formulation of spin pumping from a FM into a NM material. Both the atomic structure of the materials and the particular geometry of the system can be taken into account exactly in this formulation. The spin current expression is written in terms of the Green’s function of the NM portion, allowing one to apply efficient recursive numerical methods for the computation of spin currents. Another advantage of the formulation we present is the possibility to include accurate, microscopic models of spin-orbit coupling in the NM portion, as it relies on a spatial tight-binding representation of the system.

Another aspect that can be addressed with this formulation is the distinction between the angular momentum that relaxes at the interface and the part that flows into the NM. As it was shown in the experiment by Singh and coauthors, where a FM was laid on top of a graphene sheet, even without graphene protruding away from the FM (when no spin current injection is possible), the enhancement of damping is significant. This enhancement has been associated with two-magnon scattering at the interface. However, in systems where graphene protrudes away from the FM, an extra damping has been measured due to the flow spin current into graphene. An atomistic study of such phenomenon is needed to discriminate the contribution of spin current from the surface relaxation in the enhanced damping.

This paper is organized as follows. In Sec. II we use a one-dimensional tight-binding chain coupled to a magnetic site to introduce the time-dependent boundary condition problem and to derive an expression for the spin current based on an equation-of-motion formulation. The definition of charge and spin currents appropriate to the problem in hand are discussed in Sec. III. We apply the formulation to a zero-length system in Sec. IV and a finite-length chain in Sec. V. In Sec. VI the general expression for the spin current in the 2D system, including spin-orbit mechanisms is derived. In Sec. VII we summarize the results and point to future work. Details of the formulation and some derivations are presented in the Appendices.
II. ONE-DIMENSIONAL MODEL

In this paper we address the problem of spin pumping in low-dimensional materials in contact with a FM where a precessing magnetization is induced. In such systems, itinerant electrons travel from the NM portion into the FM with a random spin orientation and back. The magnetization of FM changes the orientation of the spin of the returning electrons, and angular momentum leaks out of the FM and into the NM region as a spin current. To model such a hybrid FM/NM system, the FM region can be viewed as a time-dependent boundary condition to the NM region.

We begin by considering the idealized situation of a one-dimensional system, see Fig. 1. We adopt the transport formulation developed by Dhar and Shastry as the starting point and extend it to include spin-dependent and time-dependent boundary conditions in the special case of a single reservoir attached to the nonmagnetic metal region.

Consider a one-dimensional chain where the site at \(j = 1 \) is connected to a magnetic site at \(j = 0 \) as shown in Fig. 1. At the magnetic site, itinerant electrons interact with the time-dependent magnetization of the FM,

\[
M(t) = M_j \hat{z} + M_\perp (\hat{x} \cos \Omega t - \hat{y} \sin \Omega t). \tag{1}
\]

The dynamics of the magnetization is determined by the Landau-Lifshitz-Gilbert equation, where a damping term is introduced phenomenologically to account for magnetization losses. Here, we assume that Eq. (1) describes the stationary state of the magnetization and includes any damping. The opposite end of the chain, at the site \(j = N \), is connected to a reservoir via a site \(\alpha \). A hopping term describes the itinerant electronic motion along the chain, where no spin-orbit mechanism is present at this point. The Hamiltonian of each segment reads

\[
\mathcal{H}_{\text{mag}} = -\frac{J}{2} \mathbf{M}(t) \cdot \sum_{s,s'} \sigma_{ss'} a_{s}^\dagger a_{s'}, \tag{2}
\]

The dynamics of the magnetization is determined by the Landau-Lifshitz-Gilbert equation, where a damping term describes the itinerant electronic motion along the jth site of the stationary state of the magnetization and includes the precessing magnetization, where a damping term is introduced phenomenologically to account for magnetization.

\[
\mathcal{H}_{\text{chain}} = -\sum_{j=1}^{N-1} \sum_{s,s'} \left(c_{j+1,s}^\dagger c_{j,s} + c_{j,s}^\dagger c_{j+1,s'} \right) + \sum_{j=1}^{N} \sum_{s} V_{j,s} c_{j,s}^\dagger c_{j,s}, \tag{3}
\]

and

\[
\mathcal{H}_{\text{res}} = -\sum_{s} T_{\lambda,s} d_{\lambda,s}^\dagger d_{\lambda,s}, \tag{4}
\]

where \(s, s' = \uparrow, \downarrow \). The fermionic operators \(a_{s}, c_{j,s}, \) and \(d_{\lambda,s} \) act on the magnetic, chain, and reservoir sites, respectively and obey the standard anticommutation relations. \(\sigma = (\sigma^x, \sigma^y, \sigma^z) \) are Pauli matrices. The parameters \(\tau_{j,s,s'} = \tau_{j,s,s'}^\dagger \) describe the hopping amplitude between neighboring sites \(j \) and \(j+1 \) in the chain and could be spin dependent; in the absence of spin-orbit coupling, \(\tau_{j,s,s'} = \delta_{s,s'} \tau_j \). The on-site potential \(V_{j,s} \) is included to account for inhomogeneities in the chain. Finally, the matrix elements \(T_{\lambda s} \) describe the site connectivity in the reservoir, which can be complex.

The coupling between the magnetic site and the chain and between the chain and the reservoir are assumed spin independent and are given by the Hamiltonians

\[
\mathcal{H}_{\text{mag-chain}} = -\gamma_{0} \left(a_{s}^\dagger c_{1,s} + c_{1,s}^\dagger a_{s} \right) \tag{5}
\]

and

\[
\mathcal{H}_{\text{chain-res}} = -\gamma_\alpha \left(c_{N,s}^\dagger d_{s,N} + d_{s,N}^\dagger c_{N,s} \right), \tag{6}
\]

respectively.

A. Equations of Motion

Equations of motion for the fermionic particle operators are obtained using the standard Heisenberg equation of motion, e.g., \(\dot{c}_{j,s} = i [\mathcal{H}, c_{j,s}] \), where

\[
\mathcal{H} = \mathcal{H}_{\text{mag}} + \mathcal{H}_{\text{chain}} + \mathcal{H}_{\text{res}} + \mathcal{H}_{\text{mag-chain}} + \mathcal{H}_{\text{chain-res}} \tag{7}
\]

(we assume \(\hbar = 1 \)). To simplify the notation, the time-dependent and time-independent amplitudes in Eq. 2 result from the insertion of Eq. 1. \(\Omega = \Omega_{\parallel} = -J M_\parallel \) can be cast as frequency parameters \(\Omega_{\parallel} = -J M_\parallel \) and \(\Omega_\perp = -J M_\perp \). We then obtain

\[
\dot{a}(t) = -i \Omega_{\parallel} \sigma_{z} a(t) - i \Omega_\perp \left(\sigma^+ e^{i\Omega t} + \sigma^- e^{-i\Omega t} \right) a(t) + i \gamma_0 c_{1}(t) \tag{8}
\]

for the magnetic site and

\[
\dot{c}_{1}(t) = -i V_{1} c_{1}(t) + i \gamma_0 a(t) + i \tau_1 c_{2}(t), \tag{9}
\]

\[
\dot{c}_{j}(t) = -i V_{j} c_{j}(t) + i \tau_{j-1} c_{j-1}(t) + i \tau_{j} c_{j+1}(t), \tag{10}
\]
with $1 < j < N$, and
\[\hat{c}_N(t) = -i \mathbf{V}_N \mathbf{c}_N(t) + i \mathbf{\tau}_{N-1} \mathbf{c}_{N-1}(t) + i \gamma_\alpha \mathbf{d}_\alpha(t) \] (11)
for the chain sites. In the expressions above, we introduced the spinor particle operators $\mathbf{a} = \left(\alpha \right)_j$, $\mathbf{c}_j = \left(c_{j,\uparrow}^{\dagger} \ c_{j,\downarrow}^{\dagger} \right)$, and $\mathbf{d}_\alpha = \left(d_{\alpha,\uparrow} \ d_{\alpha,\downarrow} \right)$ and the matrices $\mathbf{\tau} = \left(\tau_{\uparrow,\uparrow}^{\dagger} \ \tau_{\downarrow,\uparrow}^{\dagger} \right)$ and $\mathbf{V}_j = \left(V_{j,\uparrow} \ 0 \ \ 0 \ V_{j,\downarrow} \right)$.

For the equations of motion of the reservoir operators, we get homogeneous equations for the bulk and an equation containing an inhomogeneous term due to the coupling to the chain,
\[\dot{\mathbf{d}}_\eta(t) = i \sum_\nu T_{\eta\nu} \mathbf{d}_\nu(t), \quad \eta \neq \alpha, \] (12)
and
\[\dot{\mathbf{d}}_\alpha(t) = i \gamma_\alpha \mathbf{c}_N(t) + i \sum_\nu T_{\alpha\nu} \mathbf{d}_\nu(t). \] (13)

Combining Eqs. (12) and (13), we can express the general solution for the operator of the site α with spin state s in the integral form
\[d_{\alpha,s}(t) = i \sum_\eta \int_0^\infty g_{\alpha\eta}(t-t_0) d_{\eta,s}(t_0) \]
\[- \frac{1}{\gamma_\alpha} \int_0^\infty \sum_{\eta,s} \gamma_{\eta,s}(t-t') c_{N,s}(t') dt', \] (14)
where the homogeneous part of the solution,
\[h_s(t) = i \sum_\eta \int_0^\infty g_{\alpha\eta}(t-t_0) d_{\eta,s}(t_0), \] (15)
plays the role of a noise-like term and the inhomogeneous part in Eq. (14) is dissipative in nature. In Eqs. (14) and (15), $g_{\alpha\eta}^R(t-t')$ denotes the retarded Green's function of the decoupled reservoir and reads
\[g_{\alpha\eta}^R(t-t') = -i \theta(t-t') \sum_n \phi_n^*(\lambda) \phi_n(\eta) e^{-iE_n(t-t')}, \] (16)
where $\{ \phi_n \}$ are the single-particle eigenfunctions of the reservoir with eigenenergy $\{ E_n \}$ (see Appendix A).

In the following, we assume that at time $t = t_0$ the reservoir is in thermal equilibrium, such that
\[\langle d_{n,s}^n(t_0) d_{n',s'}(t_0) \rangle = \delta_{n,n'}^s \delta_{s,s'} f(E_n), \] (17)
where $d_{n,s}(t) = \sum_\lambda \lambda d_{\lambda,s} \phi_n(\lambda)$, $f(\varepsilon) = 1/[e^{(\varepsilon-\mu)/T} + 1]$ is the Fermi-Dirac distribution, and T and μ and the reservoir's temperature and chemical potential, respectively (we assume $k_B = 1$).

B. Fourier Transform of the Equations of Motion

It is useful to express the equations of motion in frequency domain. For that purpose, let us use the following convention for the Fourier transform of the particle operators and other time-dependent terms:
\[\mathbf{a}_s(t) = \int \frac{d\omega}{2\pi} \mathbf{a}_s(\omega) e^{-i\omega t}, \] (18)
\[c_{j,s}(t) = \int \frac{d\omega}{2\pi} c_{j,s}(\omega) e^{-i\omega t}, \] (19)
\[d_{\lambda,s}(t) = \int \frac{d\omega}{2\pi} d_{\lambda,s}(\omega) e^{-i\omega t}, \] (20)
\[h_s(t) = \int \frac{d\omega}{2\pi} h_s(\omega) e^{-i\omega t}, \] (21)
and
\[g_{\alpha\eta}^R(t) = \int \frac{d\omega}{2\pi} g_{\alpha\eta}^R(\omega) e^{-i\omega t}. \] (22)

Inserting these definitions into Eqs. (8) to (15), we obtain
\[(\omega - \Omega_\parallel \sigma_\parallel) \mathbf{a}(\omega) - \int d\omega' \mathbf{H}_1(\omega,\omega') \mathbf{a}(\omega') = -\gamma_0 \mathbf{c}_1(\omega), \] (23)
\[\omega \mathbf{c}_1(\omega) = \mathbf{V}_1 \mathbf{c}_1(\omega) - \gamma_0 \mathbf{a}(\omega) - \tau_1 \mathbf{c}_2(\omega), \] (24)
\[\omega \mathbf{c}_j(\omega) = \mathbf{V}_j \mathbf{c}_j(\omega) - \tau_{j-1} \mathbf{c}_{j-1}(\omega) - \tau_j \mathbf{c}_{j+1}(\omega), \] (25)
with $1 < j < N$,
\[\omega \mathbf{c}_N(\omega) = \mathbf{V}_N \mathbf{c}_N(\omega) - \tau_{N-1} \mathbf{c}_{N-1}(\omega) - \gamma_\alpha \mathbf{d}_\alpha(\omega), \] (26)
and
\[\mathbf{d}_\alpha(\omega) = \mathbf{h}(\omega) - \gamma_\alpha g_{\alpha\alpha}^R(\omega) \mathbf{c}_N(\omega), \] (27)
where the Fourier transform of the time-dependent part of the Hamiltonian is given by the expression
\[\mathbf{H}_1(\omega,\omega') = \Omega_{\perp} \left[\sigma^+ \delta(\omega'-\omega+\Omega) + \sigma^- \delta(\omega'-\omega-\Omega) \right], \] (28)
with $\sigma^\pm = (\sigma^x \pm i\sigma^y)/2$, and $\mathbf{h} = \left(h_{\uparrow} \ h_{\downarrow} \right)$. Notice that \mathbf{H}_1 is a 2×2 matrix in spin space.

III. CHARGE AND SPIN CURRENTS

The expression for the charge current follows from the continuity equation in a discrete one-dimensional lattice,
\[\frac{\partial \rho_j}{\partial t} + (J^c_{j+1} - J^c_j) = 0, \] (29)
where $\rho_j = c_j^\dagger c_j$ is the charge density operator at the site j (both the electron charge and the lattice constant are assumed to be unity). Using the equation of motion for c_j, the particle current operator between sites $j - 1$ and j can be cast as

$$J_j'(t) = i \left[c_j^\dagger(t) \tau_{j-1} c_{j-1}(t) - c_{j-1}^\dagger(t) \tau_{j-1} c_j(t) \right].$$ \hspace{1cm} (30)

Let us first consider the case when no spin-orbit coupling is present in the chain, namely, when τ is diagonal. Equation (30) gives us the total charge current as a sum of spin up and down currents at the site j. However, to obtain the local spin current we need to keep in mind that when an electron with spin up is moving to the left, it produces an effect equivalent to an electron with spin down moving to the right as far as the transfer of angular momentum is concerned. In both cases, up spin angular momentum is transferred to the right. A general expression for the current in the presence of spin-dependent processes has been a source of debate in the literature[20,21,22]. One aspect that makes the definition nontrivial is the existence of intrinsic nondissipative background currents. In such systems, even without any dynamical source of current or spin chemical potential difference, a spin current can flow. As Sonin[22,23] pointed out, regardless of the definition of the spin current, a source torque term is needed to compensate for the transfer of spin angular to orbital angular momentum. In this paper we adopt Eq. (32) as the spin current expression. We return to discuss this definition in Sec. V.A when we deriving an expression for the current in the presence of spin-orbit interaction.

The Fourier transform of the spin current between sites $j - 1$ and j of the chain takes the form

$$J_j(\omega) = i \int \frac{d\omega'}{2\pi} \left[c_j^\dagger(\omega') \sigma \tau_{j-1} c_{j-1}(\omega' + \omega) - c_{j-1}^\dagger(\omega' - \omega) \tau_{j-1} \sigma c_j(\omega') \right].$$ \hspace{1cm} (35)

Notice that, in Fourier space, the current is no longer Hermitian; instead, it satisfies $[J_j(\omega)]^\dagger = J_j(-\omega)$. In particular, the z components of the current can be written as

$$J_z(\omega) = J_{z,\uparrow}(\omega) - J_{z,\downarrow}(\omega),$$ \hspace{1cm} (36)

where

$$J_{z,s}(\omega) = i \sum_{s'} \tau_{j-1;1,s,s'} \int \frac{d\omega'}{2\pi} \left[c_j^\dagger(\omega') c_{j-1,s'}(\omega' + \omega) - \eta_s \eta_s' c_j^\dagger(\omega') c_{j-1,s'}(\omega' - \omega) \right],$$ \hspace{1cm} (37)

and $\eta_{\uparrow,\downarrow} = \pm 1$.

Because of the harmonic nature of the precessing magnetization at the $j = 0$ site, the expectation value of the Fourier transform of the spin current can be cast as a sum over multiples of the oscillation frequency Ω, namely

$$\langle J_j(\omega) \rangle = 2\pi \sum_k I_j(\omega_k) \delta(\omega - \omega_k),$$ \hspace{1cm} (38)

where $\omega_k = k \Omega$ and k is an integer. The stationary (dc) spin current can then be directly related to the zeroth harmonic component,

$$\langle J_j(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt' \langle J_j(t') \rangle = \sum_k I_j(\omega_k) \lim_{T \to \infty} \frac{e^{-\omega_k(T + T/2)} \sin(\omega_k T/2)}{\omega_k T/2} = I_j(0).$$ \hspace{1cm} (39)

IV. SPIN PUMPING IN THE ABSENCE OF A CHAIN

For the sake of simplicity, we first evaluate the spin current for the case $N = 0$, when the reservoir is directly
connected to the magnetic site. The study of the zero-length chain gives us some insight into the behavior of spin pumping currents and serves to guide us in derivations involving finite-length chains. Following Eq. (37), the spin-\(s \) component of current in Fourier space reads (the site index can be dropped)

\[
J_s(\omega) = \frac{i \gamma}{4\pi} \int d\omega' \left[a_s(\omega') a_s(\omega + \omega) - a_s^\dagger(\omega' - \omega) a_{s,s}(\omega') \right],
\]

where \(\gamma = \gamma_0 = \gamma_n \). The equations of motion for the chainless case can be obtained from Eqs. (23) and (27),

\[
(\omega - \Omega_{||}\sigma^z) a(\omega) - \int d\omega' H_{1}(\omega,\omega') a(\omega') = -\gamma d(\omega),
\]

and

\[
d(\omega) = h(\omega) - \gamma g_{\alpha\alpha}(\omega) a(\omega). \tag{44}
\]

We can use Eq. (44) to eliminate \(d_{a,s} \) from the expression of the spin-\(s \) component of the current, \(J_s(\omega) = J_{s,s}(\omega) \), by replacing \(c_{j+1,s} \) with \(d_{a,s} \) and \(c_{j,s} \) with \(a_s \) in Eq. (37),

\[
J_s(\omega) = \frac{i \gamma}{2} \int d\omega' \left[h^+_{s}(\omega') a_s(\omega' + \omega) - a^+_s(\omega' - \omega) h_s(\omega') \right]
- \gamma^2 \int d\omega' a^+_s(\omega') a_s(\omega' + \omega) \times \left\{ g^0_{\alpha\alpha}(\omega') - g^r_{\alpha\alpha}(\omega' + \omega) \right\},
\]

recalling that \(g_{\alpha\alpha}(\omega)^* = g_{\alpha\alpha}^0(\omega) \). We can also substitute Eq. (44) into the right-hand side of Eq. (43) to get

\[
\int d\omega' \left\{ \omega \sigma^0 \delta(\omega - \omega') \right\}
- [H_0 + H_1 + \Sigma^r](\omega,\omega') a(\omega') = -\gamma h(\omega), \tag{46}
\]

where the static and the dynamic parts of the Hamiltonian are

\[
H_0(\omega,\omega') = \Omega_{||}\sigma^z \delta(\omega - \omega') \tag{47}
\]

and

\[
H_1(\omega,\omega') = \Omega_{||} [\sigma^+ \delta(\omega - \omega' - \Omega) + \sigma^- \delta(\omega - \omega' + \Omega)], \tag{48}
\]

respectively. The self energy due to the reservoir is given by

\[
\Sigma^r(\omega,\omega') = \gamma^2 g_{\alpha\alpha}^0(\omega) \sigma^0 \delta(\omega - \omega') \tag{49}
\]

and \(\sigma^0 \) denotes the identity operator in spin space. Further simplification is possible by treating the right-hand side of Eq. (46) as a nonhomogeneous term and by writing the magnetic-site particle operator in terms of the fully-dressed Green’s function of that site,

\[
a_s(\omega) = -\gamma \sum_{s,s'} \int d\omega' G^r_{ss'}(\omega',\omega') h_{s'}(\omega'), \tag{50}
\]

where

\[
\int d\omega'' \left\{ \omega \sigma^0 \delta(\omega - \omega'') - [H_0 + H_1 + \Sigma^r](\omega,\omega'') \right\}
\times G^r(\omega'',\omega') = \sigma^0 \delta(\omega - \omega'). \tag{51}
\]

Thus, we can express the magnetic-site operator \(c_{0,s} \) entirely in terms of the noise-like operator \(h_1 \). In the limit of \(t_0 \to -\infty \), it is possible to show that the correlation function for \(h_1(\omega) \) is diagonal in spin and frequency (see Appendix B),

\[
\langle h_1^\dagger(\omega) h_1(\omega') \rangle = \delta_{s,s'} \delta(\omega - \omega) I_\alpha(\omega), \tag{52}
\]

where \(I_\alpha(\omega) = \rho_\alpha(\omega)f(\omega) \) and \(\rho_\alpha(\omega) \) is the reservoir’s density of states at the site \(\alpha \),

\[
\rho_\alpha(\omega) = -\frac{1}{\pi} \text{Im} [g^r_{\alpha\alpha}(\omega)]
= \sum_n |\phi_n(\alpha)|^2 \delta(\omega - E_n). \tag{53}
\]

Using Eqs. (52) and (50), one arrives at the following expression for the expectation value of the spin-\(s \) component of the current:

\[
\langle J_s(\omega) \rangle = \frac{i \gamma^2}{2} \int d\omega' \left\{ F_s(\omega,\omega') + I_s(\omega,\omega') \right\}
\times \left\{ g^0_{\alpha\alpha}(\omega' + \omega) - g^r_{\alpha\alpha}(\omega') \right\}, \tag{54}
\]

where \(F_s \) and \(I_s \) are functions of the magnetic-site Green’s functions \(G^{r,a} \), with \(G^a = (G^r)^\dagger \),

\[
F_s(\omega,\omega') = [G^a_{ss}(\omega',\omega') - G^r_{ss}(\omega',\omega')] \times I_\alpha(\omega'), \tag{55}
\]

and

\[
I_s(\omega,\omega') = \gamma^2 \int d\omega'' \sum_{s,s'} G^r_{ss'}(\omega''',\omega') G^a_{ss'}(\omega'' + \omega,\omega''') \times I_\alpha(\omega''). \tag{56}
\]

As we argue in Sec. IV A, from the perturbative expansion of the Green’s function in powers \(\Omega_1 \), we know that even terms are diagonal in both spin and frequency, while odd terms are only nonzero when they involve opposite spin indices. Therefore, in general, one can write

\[
G_{ss}(\omega,\omega') = \delta(\omega - \omega') D_s(\omega), \tag{58}
\]

leading to

\[
F_s(\omega,\omega') = \delta(\omega) \text{Im} [D^r_s(\omega')] I_\alpha(\omega'). \tag{59}
\]

It is then useful to rewrite \(I_s \) in terms of same-spin-state and opposite-spin-state Green’s functions, namely,

\[
I_s(\omega,\omega') = \gamma^2 \int d\omega'' [G^r_{ss}(\omega'',\omega') G^a_{ss}(\omega'' + \omega,\omega'') + G^a_{ss}(\omega'',\omega') G^r_{ss}(\omega'' + \omega,\omega'')] \times I_\alpha(\omega'')(60)
\]

Using the Green’s function relation

\[
G^r - G^a = G^r [\Sigma^r - \Sigma^a] G^a, \tag{61}
\]
it is possible to show that the first term in the integrand on the right-hand side of Eq. (60) cancels F_s exactly, leading to

\[
\langle J_s(\omega) \rangle = -\frac{i\gamma^4}{2} \int d\omega' \int d\omega'' \\
\times G_{ss}^{\alpha}(\omega', \omega') G_{ss}^{\gamma}(\omega' + \omega, \omega'') \\
\times I_1(\omega'') \left[g_{\alpha\alpha}^{\gamma}(\omega') - g_{\alpha\alpha}^{\gamma}(\omega' + \omega) \right],
\]

which is the central result of this Section.

Following similar steps, one can derive expressions for the other spin components of the current. The results can be combined into a single expression that generalizes Eq. (55), namely,

\[
\langle J(\omega) \rangle = -\frac{i\gamma^2}{2} \int d\omega' \ \{F(\omega, \omega') + I(\omega, \omega') \\
- \sum_{s',s} \sigma_{ss'} \left[G_{ss'}^{\alpha}(\omega', \omega' - \omega) - G_{ss'}^{\gamma}(\omega' + \omega, \omega') \right] \\
\times I_1(\omega') \}
\]

and

\[
I(\omega, \omega') = \gamma^2 \int d\omega'' \sum_{s',s_1} G_{ss'}^{\alpha}(\omega'', \omega') \\
\times \sigma_{ss'} G_{s's_1}^{\gamma}(\omega' + \omega, \omega'') I_1(\omega'').
\]

A. Perturbative Expansion in Ω_\perp

In most situations of experimental relevance the transverse amplitude of time-dependent field driving the magnetization precession in the FM is much smaller than the longitudinal static component, resulting in $\Omega_\perp \ll \Omega_\parallel$. We consider this regime and expand the magnetic-site Green’s function in powers of Ω_\perp, namely, in powers of Ω_\perp.

The first-order Green’s function has only off-diagonal spin terms,

\[
G_{\parallel\perp}^{(1)}(\omega, \omega') = 0,
\]

\[
G_{\perp\perp}^{(1)}(\omega, \omega') = \Omega_\perp \delta(\omega' - \omega - \Omega) G_1(\omega) \\
\times \mathcal{G}_\perp(\omega + \Omega),
\]

\[
G_{\perp\parallel}^{(1)}(\omega, \omega') = \Omega_\perp \delta(\omega' - \omega - \Omega) G_1(\omega) \\
\times \mathcal{G}_\parallel(\omega - \Omega),
\]

\[
G_{\parallel\parallel}^{(1)}(\omega, \omega') = 0,
\]

while the second-order Green’s function recovers the spin-diagonal structure of the zeroth-order case,

\[
G_{\parallel\parallel}^{(2)}(\omega, \omega') = \Omega_\perp^2 \delta(\omega' - \omega) G_1(\omega) G_1(\omega) \\
\times \mathcal{G}_\parallel(\omega + \Omega),
\]

\[
G_{\perp\perp}^{(2)}(\omega, \omega') = \Omega_\perp^2 \delta(\omega' - \omega) G_1(\omega) G_1(\omega) \\
\times \mathcal{G}_\perp(\omega - \Omega),
\]

\[
G_{\perp\parallel}^{(2)}(\omega, \omega') = \Omega_\perp^2 \delta(\omega' - \omega) G_1(\omega) G_1(\omega) \\
\times \mathcal{G}_\parallel(\omega - \Omega).
\]

The spin dependence of higher order contributions to the Green’s function repeats this pattern: diagonal for even orders and off-diagonal for odd orders. In addition, even orders are also diagonal in the frequency variables.

B. Spin Current Components

From the final expression for the spin-s state component of the current, Eq. (62), and the expansion of the Green’s function up to second order in Ω_\perp, one finds the following expression for the z-component of the spin current:

\[
\langle J_z^{(s)}(\omega) \rangle = \delta(\omega) \pi \gamma^4 \Omega_\perp^2 \int d\omega' \rho_\alpha(\omega') \\
\times \left[|G_1^{\parallel}(\omega')|^2 |G_1^{\parallel}(\omega') + \Omega|^2 I_1(\omega') + \Omega \right] \\
\times \left[|G_1^{\perp}(\omega')|^2 |G_1^{\perp}(\omega') - \Omega|^2 I_1(\omega') - \Omega \right] + O(\Omega_\perp^4).
\]

Since only the zero-frequency component is nonzero, upon returning to the time representation and utilizing Eq. (41), this relation yields a nonzero dc current, namely,

\[
\langle J_z(t) \rangle = \frac{\gamma^4 \Omega_\perp^2}{2} \int d\omega \rho_\alpha(\omega - \Omega/2) \rho_\alpha(\omega + \Omega/2) \\
\times \left[|G_1^{\parallel}(\omega - \Omega/2)|^2 |G_1^{\parallel}(\omega + \Omega/2)|^2 \right] \\
\times \left[f(\omega + \Omega/2) - f(\omega - \Omega/2) \right] + O(\Omega_\perp^4),
\]

where we have symmetrized the frequency integrand for convenience.
We notice that inverting the static magnetic field and the direction of precession (e.g., $\Omega \rightarrow -\Omega$ and $\Omega_{\parallel} \rightarrow -\Omega_{\parallel}$) flips the spin of the zeroth-order Green’s function $G_{\alpha}^{\text{r}}(\omega) \rightarrow G_{\alpha}^{\text{r}}(\omega)$. As a result, the spin current reverses its direction. This is expected on the basis of time-reversal symmetry. Moreover, at zero precession or zero transverse magnetic field, the spin current vanishes.

Considering now the x component of the integral F in Eq. (64), we obtain

$$F^x = -\gamma \left(G_{\alpha \uparrow \downarrow}^{a}(\omega', \omega - \omega) - G_{\alpha \downarrow \uparrow}^{a}(\omega' + \omega, \omega') \right) + G_{\alpha \uparrow \downarrow}^{t}(\omega', \omega' - \omega) - G_{\alpha \downarrow \uparrow}^{t}(\omega' + \omega, \omega') \times I_\alpha(\omega') \right). \quad (80)$$

Notice that all terms contain opposite-spin-state Green’s functions, thus vanish in even powers in Ω_{\perp} but are Ω-dependent in odd powers of Ω_{\perp}. As a result, in the time domain, F^x oscillates and, upon averaging over one precession period, it vanishes. A similar argument can be used to show that F^z vanishes as well. Therefore, all transverse components of the spin current vanish when averaged over time.

C. Interface Parameters

The dynamics of the FM magnetization in the adiabatic approximation is governed by the Landau-Lifshitz-Gilbert (LLG) equation,

$$\frac{dm}{dt} = \gamma m \times H_{\text{eff}} + \alpha m \times \frac{dm}{dt}, \quad (81)$$

where m is the magnetization unit vector, γ is the gyromagnetic ratio, H_{eff} is the effective magnetic field (including the external magnetic field and the local demagnetization field), and α is the Gilbert damping parameter. In the absence of any contact between the FM and a NM, the relaxation of the magnetization occurs entirely through processes internal to the FM, which are phenomenologically accounted for by the parameter α. When a NM is brought in contact with the FM, the magnetization relaxation can also happen through angular momentum leaking into the NM as a spin current. To account for this contribution, consider that the effective magnetic field applied to the FM to be of the form

$$H_{\text{eff}} = h_x(t) \hat{x} + h_y(t) \hat{y} + H_{\parallel} \hat{z}, \quad (82)$$

where H_{\parallel} is the static component of the field while h_x and h_y are the time-dependent components. Following the scattering theory of spin pumping, the spin current can be expressed as

$$I_{\text{spin}} = \frac{1}{4\pi} g_{\uparrow \downarrow} m \times \frac{dm}{dt}, \quad (83)$$

where the mixing conductance $g_{\uparrow \downarrow}$ is defined in terms of reflection matrices as

$$g_{\uparrow \downarrow} = \sum_{m, n} (\delta_{m, n} - r_{mn}^{\uparrow} r_{mn}^{\downarrow}) \quad (84)$$

with the sum taken over transverse conducting channels. Notice the similarity of the right-hand side of Eq. (83) with the Gilbert damping term in Eq. (81). One can absorb the angular momentum leakage contribution on the magnetization relaxation due to the spin current by substituting α with α' in Eq. (81), where

$$\alpha' = \alpha + \frac{g_L A_r}{4\pi M}. \quad (85)$$

Here, g_L is the Landé factor, M is the total (bulk) magnetization of the FM, and $A_r = \text{Re}\{g_{\uparrow \downarrow}\}$ (in most practical situations, the imaginary component of the mixing conductance can be neglected).

In the small precessing field approximation, $h_{\perp} = \sqrt{h_x^2 + h_y^2} \ll |H_{\parallel}|$, one can solve the LLG equation for the stationary solution of the dynamics of magnetization to get

$$m_{\perp}(t) = |m_{\perp}| e^{-i(\Omega t + \delta)}, \quad (86)$$

where

$$|m_{\perp}| = \frac{\gamma M h_{\perp}}{\sqrt{(\alpha' M \Omega)^2 + (\gamma H_{||} + \Omega)^2}} \quad (87)$$

and

$$\tan \delta = \frac{\alpha' M \Omega}{\gamma H_{||} + \Omega}. \quad (88)$$

After substituting $m_{\perp}(t)$ in Eq. (83), we arrive at

$$I_{\text{spin}} = \frac{1}{4\pi} \Omega |m_{\perp}|^2 g_{\uparrow \downarrow}. \quad (89)$$

We can combine this expression with that obtained in Sec. [IV B for the spin current in terms of the system’s Green’s function, Eq. (79)] to obtain an expression for the mixing conductance in terms of Green’s functions,

$$g_{\uparrow \downarrow} = \frac{\pi J^2 \gamma^4}{2\hbar} \int d\omega \rho_{\alpha}(\omega) \left| G_{\downarrow}^{\text{r}}(\omega) \right|^2 \left| G_{\uparrow}^{\text{r}}(\omega) \right|^2 \frac{df(\omega)}{d\omega}. \quad (90)$$

In experiments, there are two standard approaches to quantify the spin pumping current and both are indirect. The first and most common consists of measuring the broadening of the FMR spectrum and utilizing Eqs. (85) and (89) [31][32][33][34]. The second is to infer the current magnitude through the observation of the inverse spin Hall effect (ISHE) in the NM when a sufficiently strong spin-orbit coupling is present [35][36]. Although, the latter seems more direct, the relation between the measured ISHE voltage and the actual spin current depends on various materials parameters which are often not accurately known. Equation (90) provides a useful relation between the physical properties of medium where the spin current that is generated propagates to the enhanced broadening of FMR due to the angular momentum leakage. When generalized to higher dimensions, Eq. (90) provides a recipe for ab initio calculations of the Gilbert parameter.
V. SPIN PUMPING WITH A FINITE CHAIN

The formulation developed for the $N = 0$ chain in Sec. IV can be extended to a finite-length chain. The equivalent to the equation of motion (40) for the particle operators in the chain can be written as

$$\sum_{j'=0}^{N} \sum_{s'} d\omega' \frac{\partial}{\partial \omega'} \left[Z_{j,s',s'}^r(\omega,\omega') c_{j,s'}(\omega') \right] = -\gamma_\alpha \delta_{j,N} h_s(\omega),$$

(91)

where $0 \leq j \leq N$ and we introduced $c_{0,s} = a_s$. The matrix Z^r can be split into two contributions,

$$Z^r = Z^r_0 + Z^r_1,$$

(92)

where

$$\left[Z^r_0 \right]_{j,s';s'}(\omega,\omega') = \delta_{s,s'} \delta(\omega - \omega') \left\{ \delta_{j,j'} \delta_{j,0} \left[(\omega - \Omega_\parallel) \delta_{s,\uparrow} + (\omega + \Omega_\parallel) \delta_{s,\downarrow} \right] + (\omega - V_{j,s}) \delta_{j,j'} - \delta_{j,j'} \delta_{j,N} \gamma_\alpha^2 g^{\tau}_{\alpha}(\omega) \right\} + \delta(\omega - \omega') \left(\delta_{j,j' + 1} \tau_{j-1:s,s'} + \delta_{j,j' - 1} \tau_{j+1:s,s'} \right).$$

(93)

and

$$\left[Z^r_1 \right]_{j,j'}(\omega,\omega') = \delta_{j,0} \delta_{j',0} \Omega \left[\sigma^+ \delta(\omega' - \omega - \Omega) + \sigma^- \delta(\omega' - \omega + \Omega) \right].$$

(94)

Let us define the retarded Green’s function of the finite chain as $G^r = (Z^r)^{-1}$. We can then solve Eq. (91) for the particle operator and write

$$c_{j,s}(\omega) = -\gamma_\alpha \sum_{s'} d\omega' \frac{\partial}{\partial \omega'} \left[G^r_{j,s;N,s'}(\omega,\omega') h_{s'}(\omega') \right],$$

(95)

where $0 \leq j \leq N$. The Green’s function can be expanded

$$G_{j,s,j',s'}^{(1)}(\omega,\omega') = \Omega \left\{ G_{j,s,0,\uparrow}(\omega) G_{0,\downarrow,j',s'}(\omega + \Omega) \delta(\omega' - \omega - \Omega) + G_{j,s,0,\downarrow}(\omega) G_{0,\uparrow,j',s'}(\omega - \Omega) \delta(\omega' - \omega + \Omega) \right\}.$$

(96)

Similarly, for the second-order contribution we have

$$G_{j,s,j',s'}^{(2)}(\omega,\omega') = \Omega^2 \left\{ \delta(\omega' - \omega - 2\Omega) G_{j,s,0,\uparrow}(\omega) G_{0,\downarrow,0,\uparrow}(\omega + \Omega) G_{0,\uparrow,j',s'}(\omega') + \delta(\omega' - \omega + 2\Omega) G_{j,s,0,\downarrow}(\omega) G_{0,\uparrow,0,\downarrow}(\omega - \Omega) G_{0,\downarrow,j',s'}(\omega') + \delta(\omega' - \omega) G_{j,s,0,\uparrow}(\omega) G_{0,\downarrow,0,\uparrow}(\omega + \Omega) G_{0,\uparrow,j',s'}(\omega') + \delta(\omega' - \omega) G_{j,s,0,\downarrow}(\omega) G_{0,\uparrow,0,\downarrow}(\omega - \Omega) G_{0,\downarrow,j',s'}(\omega') \right\}.$$

(97)

Notice that in the absence of spin-orbit coupling in the chain, $G_{0,\uparrow,0,\uparrow} = G_{0,\downarrow,0,\downarrow} = 0$ and the inelastic (off diagonal in frequency) contribution to the second-order Green’s function vanishes.

A. Current in the presence of spin-orbit coupling

If electrons experience no spin scattering in the chain, the spin s-state current flows homogeneously from the magnetic site, along the chain, and into the reservoir without spin-orbit coupling. Thus, it can be shown that the spin current will remain the same as Eq. (79).

$$J^z_j(\omega) = \frac{i\gamma_\alpha^2}{4\pi} \int d\omega' \int d\omega'' \int d\omega''' \left[h^l(\omega'') \left[G^{a}_{N;j}(\omega'',\omega') \sigma^z \tau_{j-1} G^{a}_{j-1;N}(\omega' + \omega,\omega''') - G^{a}_{N;j-1}(\omega'',\omega' - \omega) \tau_{j-1} \sigma^z G^{a}_{j;N}(\omega',\omega''') \right] h(\omega''') \right].$$

(99)
where $0 \leq j \leq N$ and $G_{j,j'}^{(a)}$ denotes the 2×2 retarded (advanced) Green’s function connecting sites j and j'. Using the correlation function introduced in Eq. (52), we can take the expectation value of Eq. (99) to obtain

$$\langle J_j^z(\omega) \rangle = \frac{i\gamma^2}{4\pi} \int d\omega' \int d\omega'' \tr \left[G_{N;1}^a(\omega'', \omega') \tau_{j-1} G_{j-1;N}^r(\omega', \omega'') - G_{N;1}^a(\omega'', \omega') \tau_{j-1} G_{j;N}^r(\omega', \omega'') \right] I_\alpha(\omega'').$$

(100)

where the trace is over spin variables. Equation (100) is one of the main results of this paper. It provides a framework for computing the z component of the spin current at any site within the chain that connects the magnetic site and the reservoir. Unfortunately, any further simplification of this expression is daunting. Similarly to the case where the reservoir is connected directly to the magnetic site, Sec. IV A, we can use the perturbative expansion of the Green’s function in powers of Ω. The result is still rather involved if the spin-dependent hopping amplitude τ is kept general and is not presented here.

A more compact expression can be obtained for the spin current between the last site of the chain and the reservoir, even in the presence of a general spin-orbit hopping amplitude. For that purpose, we take a step back, set $j = \alpha$ in Eq. (55), and consider the z component of the spin current operator,

$$J_{\alpha}^z(\omega) = \frac{i\gamma^2}{4\pi} \int d\omega' \sum_s \eta_s \left[d^\dagger_{\alpha}(\omega') c_{N,s}(\omega + \omega) - \gamma_\alpha \sum_{s'} I_\alpha(\omega'') g_{\alpha\alpha}(\omega') c_{N,s'}(\omega) \right].$$

(101)

Using Eqs. (27) and (95), taking the expectation value, and using Eq. (52), we can rewrite Eq. (101) as

$$\langle J_{\alpha}^z(\omega) \rangle = \frac{-i\gamma^2}{4\pi} \int d\omega' \sum_s \eta_s \left\{ I_\alpha(\omega') \left[G_{N,s;N,s}(\omega' + \omega, \omega') - G_{N,s;N,s}^a(\omega', \omega' - \omega) \right] \right. $$

$$- \gamma_\alpha^2 \int d\omega'' \sum_{s'} I_\alpha(\omega'') \left[g_{\alpha\alpha}(\omega') - g_{\alpha\alpha}^a(\omega') \right] G_{N,s';N,s}(\omega'', \omega') G_{N,s;N,s'}(\omega' + \omega, \omega'') \right\}. $$

(102)

The absence of a spin-dependent hopping amplitude in Eq. (102) makes it more amenable to an analytical treatment. Focusing on the dc component of the spin current, as shown in Eqs. (38) and (41), we expand the Green’s function harmonics of the precessing frequency Ω, namely,

$$G(\omega, \omega') = \delta(\omega - \omega) D_0(\omega) + \sum_{k \neq 0} \delta(\omega - \omega - k\Omega) D_k(\omega). $$

(103)

Inserting this expansion into Eq. (102) and keeping only the terms corresponding to the dc limit, we obtain

$$\langle J_{\alpha}^z(\omega) \rangle_{dc} = \frac{-i\gamma^2}{4\pi} \delta(\omega) \int d\omega' \sum_s \eta_s \left\{ I_\alpha(\omega') \left[D_{0,N,s;N,s}(\omega') - D_{0,N,s;N,s}^a(\omega') \right] \right. $$

$$- \gamma_\alpha^2 \left[g_{\alpha\alpha}(\omega') - g_{\alpha\alpha}^a(\omega') \right] I_\alpha(\omega') \sum_{s'} D_{0,N,s';N,s}(\omega') D_{0,N,s;N,s'}(\omega') $$

$$- \gamma_\alpha^2 \left[g_{\alpha\alpha}(\omega') - g_{\alpha\alpha}^a(\omega') \right] \sum_{k \neq 0} I_\alpha(\omega' + k\Omega) \sum_{s'} D_{k,N,s';N,s'}(\omega') D_{0,N,s;N,s'}(\omega + k\Omega) \right\}. $$

(104)

We can now use the relations

$$G^r - G^a = [Z^a]^{-1} - [Z^r]^{-1} = G^r (Z^a - Z^r) G^a,$$

(105)

where

$$[Z^a - Z^r]_{j,j',s,s'}(\omega, \omega') = -\gamma_\alpha^2 \delta_{j,j'} \delta_{s,s'} \delta(\omega - \omega') \left[g_{\alpha\alpha}(\omega) - g_{\alpha\alpha}^a(\omega) \right], $$

(106)

to find

$$D_{0,N,s;N,s}(\omega) - D_{0,N,s;N,s}^a(\omega) = \gamma_\alpha^2 \left[g_{\alpha\alpha}(\omega) - g_{\alpha\alpha}^a(\omega) \right] \sum_{s'} D_{0,N,s;s'}(\omega) D_{0,N,s';N,s}(\omega) $$

$$+ \gamma_\alpha^2 \sum_{k \neq 0} \left[g_{\alpha\alpha}(\omega + k\Omega) - g_{\alpha\alpha}^a(\omega + k\Omega) \right] \sum_{s'} D_{k,N,s';N,s'}(\omega) D_{0,N,s;N,s'}(\omega + k\Omega). $$

(107)
Combing Eqs. (104) and (107), recalling that \(g^\alpha_{\omega}(\omega) - g^\alpha_{\omega}(\omega) = -2\pi i \rho_\alpha(\omega) \) and using Eq. (53), we arrive at

\[
\langle J^z_\alpha(\omega) \rangle_{dc} = -\frac{\gamma^4}{2} \delta(\omega) \int dw' \sum_{k \neq 0} \rho_\alpha(\omega') \rho_\alpha(\omega' + k\Omega) \left[f(\omega') - f(\omega' + k\Omega) \right] \sum_{s,s'} \eta_s D^\alpha_{k;N,s;s'}(\omega') D^\alpha_{-k;N,s';s}(\omega' + k\Omega).
\] \tag{108}

Symmetrizing the frequency integration, we finally obtain the following expression for the dc spin current at the interface with the reservoir:

\[
\langle J^z_\alpha(t) \rangle = \frac{\gamma^4}{2} \int dw \sum_{k > 0} \rho_\alpha(\omega + k\Omega/2) \rho_\alpha(\omega - k\Omega/2) \left[f(\omega + k\Omega/2) - f(\omega - k\Omega/2) \right]
\times \text{tr} \left\{ \sigma^z D^\alpha_{k;N,s}(\omega - k\Omega/2) D^\alpha_{-k;N,s}(\omega + k\Omega/2) - D^\alpha_{-k;N,s}(\omega + k\Omega/2) D^\alpha_{k;N,s}(\omega - k\Omega/2) \right\},
\] \tag{109}

where the trace is over spin indices. Notice that in the limit of zero pumping frequency (\(\Omega \to 0 \)), the spin current goes to zero.

At this point, we can go back to the perturbative expansion of the Green’s functions in powers of \(\Omega \) and notice the following:

\[
D_{-1;1;\alpha s\alpha s'}(\omega) = \Omega_\perp G_{\alpha 1;\alpha 2}(\omega) G_{\alpha 2;\alpha 3}(\omega - \Omega) + O(\Omega^2),
\] \tag{110}

and

\[
D_{1;1;\alpha s\alpha s'}(\omega) = \Omega_\perp G_{\alpha 1;\alpha 2}(\omega) G_{\alpha 2;\alpha 3}(\omega + \Omega) + O(\Omega^2).
\] \tag{111}

Since \(D_k \sim O(\Omega^2) \), by keeping only the leading term in powers of \(\Omega \), we obtain

\[
\langle J^z_\alpha(t) \rangle = \frac{\gamma^4 \Omega^2}{2} \int dw \rho_\alpha(\omega + \Omega/2) \rho_\alpha(\omega - \Omega/2) \left[f(\omega + \Omega/2) - f(\omega - \Omega/2) \right]
\times \sum_{s,s'} \eta_s \left[|G^r_{N,s,\alpha 1}(\omega - \Omega/2)|^2 |G^r_{N,s,\alpha 3}(\omega + \Omega/2)|^2 - |G^r_{N,s,\alpha 1}(\omega + \Omega/2)|^2 |G^r_{N,s,\alpha 3}(\omega - \Omega/2)|^2 \right]
+ O(\Omega^2),
\] \tag{112}

It is straightforward to verify that setting \(N = 0 \) in Eq. (112) leads to Eq. (79). Notice that for \(\Omega \ll T, \mu \), the current is proportional to \(\Omega \),

\[
\langle J^z_\alpha(t) \rangle \approx \frac{\gamma^4 \Omega^2}{2} \int dw |\rho_\alpha(\omega)|^2 \left[\frac{df(\omega)}{d\omega} \right] \sum_{s,s'} \eta_s \left[|G^r_{N,s,\alpha 1}(\omega)|^2 |G^r_{N,s,\alpha 3}(\omega)|^2 - |G^r_{N,s,\alpha 1}(\omega)|^2 |G^r_{N,s,\alpha 3}(\omega)|^2 \right].
\] \tag{113}

Equations (109) and (113) are the main results of this section. Equation (109) can be employed to study dynamical spin pumping beyond the linear response approximation. Combining Eq. (113) with Eq. (53) enables an atomistic calculation of the macroscopic Gilbert parameter, which can be measured in FMR experiments.

To illustrate the results obtained so far, we performed numerical calculations of the chain Green’s function for chains of various lengths in the presence and absence of spin-dependent on-site potentials. In Fig. 4, the spin-diagonal components of the Green’s function across the chain, \(G^{(0)}_{N,s,\alpha s}(E) \), and the total spin pumping current, \(\langle J^z_\alpha(E) \rangle \), are plotted as functions of energy. A constant spin current over energy confirms that, in the absence of spin-scattering centers, the chain is a spin-degenerate ballistic propagating channel so long as the energy \(E \) is within the energy band. In this case, the spin current is independent of the length of the chain.

Figures 4 and 5 show the energy dependence of the spin components of the chain’s average Green’s function when spin-polarized impurities are introduced but no spin-dependent hopping is present. In these simulations, \(N = 200 \) and \(V_j = a^z_j \sigma^x + a^z_j \sigma^y \), where the amplitudes \(a^z_j \) and \(a^z_j \) are randomly and uniformly chosen in the intervals \([0,0.01t]\) and \([0,0.05t]\), respectively. Here \(t \) denotes the hopping amplitude in the lattice.

One of the key advantages of our formalism is that it can be utilized to compute the relaxation of the spin current over distance from the FM/NM interface due to spin-scattering processes in the NM region. For large enough systems, the diffusion length can be calculated.

The dependence of the average dc spin pumping current on the length of the chain is shown in Fig. 5 for
the same random spin-dependent potential. Even after averaging over 300 samples, oscillations over the length due to interference remains. However, a clear exponential decay emerges, with a decay length of 4.5, 2.7, and 2.4 lattice units for the three increasing disorder ranges of a_x shown in the plot.

VI. EXTENSION TO TWO-DIMENSIONAL SYSTEMS

The spin pumping formulation developed in Secs. II, IV, and V can be extended to 2D systems. To do so, we imagine the magnetic region as a column of magnetic sites whose magnetizations precess in a synchronized way, corresponding to a single magnetic domain. The two-dimensional nonmagnetic region is sliced into N columns
and connected to a reservoir, see Fig. 6. We keep the same notation used for the one-dimensional finite-chain case and write the Hamiltonians of the different regions as

\[H_{\text{mag}} = \frac{J}{2} M(t) \sigma^\dagger \sigma I_M a^\dagger a \]
(114)

for the magnetic region,

\[H_{\text{sheet}} = - \sum_{j=1}^{N-1} \left(c_{j+1}^\dagger \tau_j c_j + c_j^\dagger \tau_j^\dagger c_{j+1} \right) + \sum_{j=1}^{N} c_j^\dagger V_j c_j \]
(115)

for the nonmagnetic region, and

\[H_{\text{res}} = - \sum_{\lambda,\eta} \sum_{s} T_{\lambda \eta} d_{\lambda s}^\dagger d_{\eta, s} \]
(116)

for the reservoir. The Hamiltonians describing the coupling between magnetic and nonmagnetic regions (hereafter referred to as sheet), and between the nonmagnetic region and the reservoir are given by

\[H_{\text{mag-sheet}} = - \left(a^\dagger \gamma_0 c_1 + c_1^\dagger \gamma_0 a \right) \]
(117)

and

\[H_{\text{sheet-res}} = - \left(c_N^\dagger \gamma_\alpha d_\alpha + d_{\alpha}^\dagger \gamma_\alpha^\dagger c_N \right) \]
(118)

respectively, where \(a^\dagger = (a_1 a_2 \ldots a_M) \) is the particle operator at the column containing the magnetic region (\(j = 0 \)), \(\gamma_0 \) is a \(2L \times 2L \) matrix that describes the coupling between the magnetic region and the sheet, \(c_j^\dagger = (c_{j,1} c_{j,2} \ldots c_{j,d_j}) \) is the particle operator at the \(j \)th sheet slice, which is connected to the neighboring \(j+1 \)-th slice by the matrix \(\tau_i \), \(d_j \) is the number of sites in \(j \)th slice, and \(\gamma_\alpha \) is the coupling matrix between the \(N \)th sheet slice and the reservoir. Finally, the particle operator acting on the sites in the reservoir that are connected directly to the sheet is given by \(d_{\alpha}^\dagger = (d_{\alpha,1} d_{\alpha,2} \ldots d_{\alpha,d_\alpha}) \).

The equations of motion read

\[\dot{a}(t) = i \Omega_{\parallel}(\sigma_z \otimes I_M) a(t) + i \Omega_{\perp} \left[(\sigma^+ \otimes I_M) e^{i \Omega t} + (\sigma^- \otimes I_M) e^{-i \Omega t} \right] a(t) + i \gamma_0 c_1(t), \]
(119)

\[\dot{c}_1(t) = -i V_1 + i \gamma_0^\dagger a + i \tau_1 c_2(t), \]
(120)

\[\vdots \]
\[\dot{c}_j(t) = -i V_j + i \tau_{j-1}^\dagger c_{j-1} + i \tau_j c_{j+1}(t), \]
(121)

\[\vdots \]
\[\dot{c}_N(t) = -i V_N + i \tau_{N-1}^\dagger c_{N-1}(t) + i \gamma_\alpha d_\alpha(t), \]
(122)

and

\[\dot{d}_\alpha(t) = i \gamma_\alpha c_N(t) + i \sum_\nu T_{\alpha \nu} d_\nu(t). \]
(123)

The Fourier transforms of the equations of motion result in expressions similar those obtained in Sec. II, namely,

\[\left[(\omega \sigma_0 - \Omega || \sigma_z) \otimes I_M\right] a(\omega) = \int H_1(\omega, \omega') a(\omega) = -\tau_M c_1(\omega), \]
(124)

\[\omega c_1(\omega) = V_1 - \gamma_0^\dagger a - \tau_1 c_2(\omega), \]
(125)

\[\vdots \]
\[\omega c_{N}(\omega) = V_N - \tau_N^\dagger c_{N-1} - \gamma_\alpha d_\alpha, \]
(127)

and

\[d_\alpha(\omega) = h(\omega) - g^\alpha(\omega) c_N(\omega), \]
(128)

where \(h \) is a vector with dimension of the surface sites \(\alpha \) in the reservoir and the Green’s function of the decoupled reservoir for slice \(\alpha \) reads

\[[g^\alpha_{\nu\nu}](t-t') = -i \theta(t-t') \sum_\nu \phi^\nu(\alpha_\nu) \phi(\alpha_{\nu'}) \times e^{-i E_\nu(t-t')} \]
(129)

In order to expand the Green’s function in powers of \(\Omega_\perp \), we notice that, in spin space,

\[H'_{j,j'} = \delta_{j,j'} \delta_{j,0} \Omega_\perp \begin{pmatrix} 0 & \delta(\omega' - \omega - \Omega) \\ \delta(\omega' - \omega + \Omega) & 0 \end{pmatrix}, \]
(130)

which leads us to analogous relations to those derived in Sec. III for the finite chain.

In order to calculate the spin current along the sheet, we can use an expression identical to that introduced in
Sec. III, namely, \[J_j^z(\omega) = \frac{i}{2} \int \frac{d\omega'}{2\pi} \left[c_j^\dagger(\omega') \left(\sigma^z \otimes I_d_j \right) \tau^z_{j-1} c_{j-1}(\omega' + \omega) - c_{j-1}^\dagger(\omega' - \omega) \tau^z_{j-1} \left(\sigma^z \otimes I_d_j \right) c_j(\omega') \right]. \] (131)

The only difference between this relation and Eq. (35) is that here there is an implicit sum over transverse sites.

Using the orthogonality relation of \(h(\omega) \) one can derive an expression for the expectation value of the total spin current between the \((j - 1)\)th and \(j\)th slices as

\[\langle J_j^z(t) \rangle = \frac{1}{2} \int d\omega \sum_{k \neq 0} \left[f(\omega + k\Omega) - f(\omega) \right] \text{Tr} \left[\rho_\alpha(\omega + k\Omega) \gamma^a I_L \rho_\alpha(\omega) \gamma^a \right] \] (135)

VII. SUMMARY AND DISCUSSION

In this paper, we developed an atomistic model of spin pumping in hybrid ferromagnetic heterostructures. The spin current expression is given in terms of the Green’s function of the nonmagnetic portion. Motivated by the fact that, in experimental settings, the time-dependent component of the driving magnetic field is small and slow, we use a perturbative expansion to obtain a relation between the mixing conductance and the physical properties of spin-carrying medium. Among the advantages of this formalism are: (i) it provides a framework for including the atomic structure and geometry of the heterostructure, as well as local disorder and spin-orbit coupling mechanism, (ii) it yields an expression for the spin current in terms of Green’s function, which can be computed using efficient recursive computational methods, (iii) it allows us to model spin relaxation and the ferromagnet-nanomagnetic metal interface, and (iv) when applied to graphene, it is not limited to high doping.

In a future work we plan to apply this new computational tool to study dynamical spin injection in realistic ferromagnet-graphene heterostructures, and to extend...
the calculations to include a determination of the spin-Hall voltage across the graphene channel when spin-orbit coupling is included.

ACKNOWLEDGMENTS

We are grateful to C. Lewenkopf and A. Ferreira for insightful discussions. E.R.M. acknowledges the hospitality of the Instituto de Física at UFF, Brazil, where this work was initiated. This work was supported in part by the NSF Grant ECCS 1402990.

Appendix A: Reservoir Green’s function

The retarded Green’s function of the decoupled reservoir is defined as

$$ g^r_{\lambda \eta}(t, t') = -i \theta(t - t') \langle \{ d^\dagger_{\lambda}(t), d_{\eta}(t') \} \rangle. \quad (A1) $$

Expanding the field operators in terms of single-particle energy eigenfunctions

$$ d_{\lambda}(t) = \sum_n \phi_n(\lambda) d_n(t) = \sum_n \phi_n(\lambda) e^{-iE_n t} d_n(0), \quad (A2) $$

the retarded Green’s function of the reservoir can be written as

$$ g^r_{\lambda \eta}(t, t') = -i \theta(t - t') \sum_n \phi^*_n(\lambda) \phi_n(\eta) e^{iE_n(t-t')}. \quad (A3) $$

Appendix B: Noise-like correlator

We can rewrite the correlation function of the noise-like term in frequency space in terms of the fermionic operators in time using Eq [15].

$$ \langle h^\dagger_s(\omega) h_s'(\omega') \rangle = \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} dt' e^{-i(\omega-t') t} \langle h^\dagger_{\alpha}(t) h_{\alpha'}(t') \rangle \quad (B1) $$

$$ = \sum_{\eta, \eta'} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} dt' e^{-i(\omega-t') t'} \left[g^r_{\alpha \eta}(t-t_0) \right]^* g^r_{\alpha' \eta'}(t'-t_0) \langle d^\dagger_{n,s}(t_0) d_{n',s'}(t_0) \rangle. \quad (B2) $$

After substituting the expansion of decoupled reservoir’s Green’s function in terms of the reservoir’s eigenfunction, Eq. (16), we get

$$ \langle h^\dagger_s(\omega) h_s'(\omega') \rangle = \sum_{\eta, \lambda} \sum_{n, m} \phi_n(\alpha) \phi^*_m(\eta) \phi^*_m(\alpha) \phi_m(\eta') \langle d^\dagger_{n,s}(t_0) d_{n',s'}(t_0) \rangle \int_{t_0}^{\infty} dt e^{-i(\omega-E_n)t} \int_{t_0}^{\infty} dt' e^{-i(E_m-\omega')t'}. \quad (B3) $$

Using the reservoir’s eigenfunction basis,

$$ d_{n,s}(t_0) = \sum_n \phi_n(\eta) d_{n,s}(t_0), \quad (B4) $$

and the orthogonality of the reservoir’s eigenfunctions, we obtain

$$ \langle h^\dagger_s(\omega) h_s'(\omega') \rangle = \sum_{n, m} \phi_n(\alpha) \phi^*_m(\alpha) \langle d^\dagger_{n,s}(t_0) d_{m,s'}(t_0) \rangle \int_{t_0}^{\infty} dt e^{-i(\omega-E_n)t} \int_{t_0}^{\infty} dt' e^{-i(E_m-\omega')t'}. \quad (B5) $$

Using Eq. (17) and taking the limit $t_0 \to -\infty$ we arrive at Eq. (52).
For 2D systems, the correlation function $\langle h_{s_1}^\dagger(\omega_1) h_{s_2}(\omega_2) \rangle$ can be obtained in the same way:

$$\langle h_{s_1}^\dagger(\omega_1) h_{s_2}(\omega_2) \rangle = \int_{-\infty}^{\infty} dt_1 \int_{-\infty}^{\infty} dt_2 e^{-i(\omega_1 t_1 - \omega_2 t_2)} \langle h_{s_1}^\dagger(t_1) h_{s_2}(t_2) \rangle$$

(B6)

$$= \sum_{\eta_1, \eta_2} \int_{-\infty}^{\infty} dt_1 \int_{-\infty}^{\infty} dt_2 e^{-i(\omega_1 t_1 - \omega_2 t_2)} \left[g_{\alpha_1, \eta_1}(t_1 - t_0)^* g_{\alpha_2, \eta_2}(t_2 - t_0) \right] \times \langle d_{\eta_1, s_1}(t_0) d_{\eta_2, s_2}(t_0) \rangle$$

(B7)

Using the orthonormal set of eigenfunctions of the reservoir,

$$d_{\eta, s}(t_0) = \sum_n \phi_n(\eta) d_{n, s}(t_0),$$

(B9)

we can write

$$\langle h_{s_1}^\dagger(\omega_1) h_{s_2}(\omega_2) \rangle = \sum_{n_1, n_2} \phi_{n_1}(\alpha_{i_1}) \phi_{n_2}^*(\alpha_{i_2}) \langle d_{n_1, s_1}(t_0) d_{n_2, s_2}(t_0) \rangle \int_{t_0}^{\infty} dt_1 e^{-i(\omega_1 - E_{n_1}) t_1} \int_{t_0}^{\infty} dt_2 e^{-i(E_{n_2} - \omega_2) t_2}$$

(B10)

$$= \delta(\omega_1 - \omega_2) \delta_{s_1, s_2} \sum_{n_1} \phi_{n_1}(\alpha_{i_1}) \phi_{n_1}^*(\alpha_{i_2}) \delta(\omega_1 - E_{n_1})$$

(B11)

when we set $t_0 \to \infty$. We finally arrive at

$$\langle h_{s_1}^\dagger(\omega_1) h_{s_2}(\omega_2) \rangle = \delta(s_1, s_2) \delta(\omega_1 - \omega_2) I_\alpha(\omega_1),$$

(B12)

where $I_\alpha(\omega) = \rho_\alpha(\omega) f(\omega)$ and $\rho_\alpha(\omega)$ is the density of states matrix at the α slice,

$$[\rho_\alpha]_{i_1, i_2} = \sum_{n_1} \sum_{n_1} \phi_{n_1}(\alpha_{i_1}) \phi_{n_1}^*(\alpha_{i_2}) \delta(\omega_1 - E_{n_1}).$$

(B13)

Appendix C: s-component of the spin current

Substituting Eq. (44) into Eq. (42), we obtain

$$\langle J_s(\omega) \rangle = \frac{i \gamma}{2} \int \frac{d\omega'}{2\pi} \left\{ \langle h_{1}^\dagger(\omega') - \gamma [g_{s\alpha}(\omega')]^* a_s^\dagger(\omega') \rangle a_s(\omega') - \gamma a_s^\dagger(\omega') [h_s(\omega' + \omega) - \gamma g_{s\alpha}(\omega' + \omega) a_s(\omega' + \omega)] \right\}$$

(C1)

$$= \frac{i \gamma}{2} \int \frac{d\omega'}{2\pi} \left\{ \left[\langle h_{1}^\dagger(\omega') a_s(\omega' + \omega) \rangle - \langle a_s^\dagger(\omega') h_s(\omega' + \omega) \rangle \right] - \gamma \langle a_s^\dagger(\omega') a_s(\omega' + \omega) \rangle \right\} \left\{ [g_{s\alpha}(\omega')]^* - g_{s\alpha}(\omega' + \omega) \right\}$$

(C2)

Employing Eq. (50), we can derive the following relations:

$$\langle h_{s_1}^\dagger(\omega') a_s(\omega) \rangle = -\gamma G_{s\alpha}^r(\omega, \omega') I_\alpha(\omega'),$$

(C3)

$$\langle a_s^\dagger(\omega') h_s(\omega' + \omega) \rangle = -\gamma G_{s\alpha}(\omega', \omega' + \omega) I(\omega' + \omega),$$

(C4)

and

$$\langle a_s^\dagger(\omega') a_s(\omega) \rangle = \gamma^2 \sum_{\omega''} \int d\omega'' [G_{s\alpha}(\omega', \omega'')^* G_{s\alpha}(\omega', \omega'')] \times I_\alpha(\omega'').$$

(C5)

Putting these relations together with Eq. (55) one arrives at Eq. (55).
Appendix D: Spin current for 2D systems

The fermionic particle operator in terms of the system Green’s function reads

$$\mathbf{c}^\dagger_{j,s}(\omega) = - \sum_{s',m} \frac{d\omega'}{2\pi} h^\dagger_{m,s'}(\omega_1) \gamma^*_{n,m} \left[G_{N,m,s';j,1}(\omega_1,\omega) G_{N,m,s';j,2}(\omega_1,\omega) \ldots G_{N,m,s';j,d_j}(\omega_1,\omega) \right] \quad (D1)$$

where d_j is the number of sites in the slice j. After substituting it into the current expression

$$J^z_j(\omega) = i \frac{1}{2} \int \frac{d\omega'}{2\pi} \left[\mathbf{c}^\dagger_j(\omega') (\sigma^z \otimes I_{d_j}) \tau_{j-1} c_{j-1}(\omega' + \omega) - c_{j-1}(\omega') \tau_{j-1} (\sigma^z \otimes I_{d_j}) c_j(\omega' + \omega) \right], \quad (D2)$$

the expectation value of the first term in Eq. (D2) becomes

$$\frac{i}{2} \int \frac{d\omega'}{2\pi} \sum_{s_1,s_2} \sum_{n,n'} \int d\omega \gamma_{n',m} \left[G^a_{N,m,s';j,1}(\omega_1,\omega) G^a_{N,m,s';j,2}(\omega_1,\omega) \ldots G^a_{N,m,s';j,d_j}(\omega_1,\omega) \right] \times \left[(\sigma^z \otimes I_{d_j}) \tau_{j-1} \right] \int d\omega' \gamma_{n,m} \langle h^\dagger_{m',s_1}(\omega_1) h_{n',s_2}(\omega_2) \rangle. \quad (D3)$$

By applying the $h_{m,s}(\omega)$ correlator we find

$$\langle J^z_j(\omega) \rangle = \frac{i}{2} \int \frac{d\omega'}{2\pi} \int d\omega' \left[\left[\mathbf{d}^\dagger(\omega') (\sigma \otimes I_L) \gamma_{\alpha} c_{N}(\omega' + \omega) - c_{N}(\omega') \gamma_{\alpha} (\sigma \otimes I_L) d_{s}(\omega' + \omega) \right] \right]. \quad (D5)$$

The current expression can be written as

$$J^{z}_{\alpha}(\omega) = \frac{i}{2} \int \frac{d\omega'}{2\pi} \left[\left[h^{\dagger}(\omega') - c_{N}^{\dagger}(\omega') \gamma_{\alpha} c_{N}(\omega') \right] (\sigma \otimes I_L) \gamma_{\alpha} c_{N}(\omega' + \omega) - c_{N}^{\dagger}(\omega') \gamma_{\alpha} (\sigma \otimes I_L) h(\omega' + \omega) - g_{\alpha}^{\dagger}(\omega') \gamma_{\alpha} c_{N}(\omega + \omega') \right], \quad (D6)$$

which can be simplified to

$$J^{z}_{\alpha}(\omega) = \frac{i}{2} \int \frac{d\omega'}{2\pi} \left[h^{\dagger}(\omega') (\sigma \otimes I_L) \gamma_{\alpha} c_{N}(\omega' + \omega) - c_{N}^{\dagger}(\omega') \gamma_{\alpha} (\sigma \otimes I_L) h(\omega' + \omega) \right] - \frac{i}{2} \int \frac{d\omega}{2\pi} c_{N}^{\dagger}(\omega') \gamma_{\alpha} (g_{\alpha}^{\dagger}(\omega') - g_{\alpha}^{\dagger}(\omega + \omega')) (\sigma \otimes I_L) \gamma_{\alpha} c_{N}(\omega + \omega'). \quad (D7)$$

After substituting the fermionic operator in terms of the system’s Green’s function, the expectation value of the spin current becomes

$$\langle J^{z}_{\alpha}(\omega) \rangle = \frac{i}{2} \int \frac{d\omega'}{2\pi} \left[\left[\gamma_{\alpha} (\sigma \otimes I_L) G_{\alpha}^{N;\omega}(\omega',\omega') \gamma_{\alpha}^{\dagger} - \gamma_{\alpha} (\sigma \otimes I_L) G_{\alpha}^{N;\omega}(\omega + \omega,\omega') \gamma_{\alpha}^{\dagger} \right] \right] + \frac{i}{2} \int \frac{d\omega'}{2\pi} \left[\gamma_{\alpha} G_{\alpha}^{N;\omega}(\omega',\omega') \gamma_{\alpha}^{\dagger} (g_{\alpha}^{\dagger}(\omega' + \omega) - g_{\alpha}^{\dagger}(\omega + \omega')) (\sigma \otimes I_L) \gamma_{\alpha} G_{\alpha}^{N;\omega}(\omega' + \omega,\omega') \gamma_{\alpha}^{\dagger} \right]. \quad (D8)$$

Similar to the 1D case, we expand the Green’s function in terms of the frequency difference,

$$G(\omega,\omega') = \delta(\omega' - \omega) D_0(\omega) + \sum_{k \neq 0} \delta(\omega' - \omega - k\Omega) D_k(\omega), \quad (D9)$$
and following the same approach used in the 1D case, we get

\[
\langle J^z_\alpha \rangle = \frac{i}{2} \delta(\omega) \int \frac{d\omega'}{2\pi} \sum_{k \neq 0} \text{Tr} \left\{ I_\alpha(\omega') \gamma_\alpha (\sigma_z \otimes I_L) [D^a_{0,N;N}(\omega') - D^0_{0,N;N}(\omega')] \gamma_\alpha^\dagger \right\} \\
+ \frac{i}{2} \delta(\omega) \int \frac{d\omega'}{2\pi} \text{Tr} \left\{ I_\alpha(\omega') \gamma_\alpha D^0_{0,N;N}(\omega') \gamma_\alpha [g_{\alpha\alpha}(\omega') - g_{\alpha\alpha}^a(\omega')] (\sigma_z \otimes I_L) \gamma_\alpha D^0_{0,N;N}(\omega') \gamma_\alpha^\dagger \right\} \\
+ \frac{i}{2} \delta(\omega) \int \frac{d\omega'}{2\pi} \sum_{k \neq 0} \text{Tr} \left\{ I_\alpha(\omega' - k\Omega) \gamma_\alpha D^a_{k,N;N}(\omega' - k\Omega) \gamma_\alpha [g_{\alpha\alpha}(\omega') - g_{\alpha\alpha}^a(\omega')] (\sigma_z \otimes I_L) \gamma_\alpha D^a_{k,N;N}(\omega') \gamma_\alpha^\dagger \right\}
\]

which leads to

\[
\langle J^z_\alpha \rangle = -\frac{i}{2} \delta(\omega) \int \frac{d\omega'}{2\pi} \sum_{k \neq 0} \text{Tr} \left\{ I_\alpha(\omega') \gamma_\alpha D^0_{k,N;N}(\omega') \gamma_\alpha [g_{\alpha\alpha}(\omega' + k\Omega) - g_{\alpha\alpha}^a(\omega' + k\Omega)] (\sigma_z \otimes I_L) \right. \\
\times \left. \gamma_\alpha D^a_{-k,N;N}(\omega' + k\Omega) \gamma_\alpha^\dagger \right\} \\
+ \frac{i}{2} \delta(\omega) \int \frac{d\omega'}{2\pi} \sum_{k \neq 0} \text{Tr} \left\{ I_\alpha(\omega' + k\Omega) \gamma_\alpha D^a_{k,N;N}(\omega') \gamma_\alpha [g_{\alpha\alpha}(\omega') - g_{\alpha\alpha}^a(\omega')] (\sigma_z \otimes I_L) \gamma_\alpha D^a_{-k,N;N}(\omega' + k\Omega) \gamma_\alpha^\dagger \right\},
\]

leading to

\[
\frac{\langle J^z_\alpha(\omega + k\Omega) \rangle}{\langle J^z_\alpha(\omega) \rangle} = \frac{1}{2} \int \frac{d\omega}{\pi} \sum_{k \neq 0} \left[f(\omega + k\Omega) - f(\omega) \right] \\
\times \text{Tr} \left[\rho_\alpha(\omega + k\Omega) \gamma_\alpha D^a_{k,N;N}(\omega') \gamma_\alpha^\dagger (\sigma_z \otimes I_L) \rho_\alpha(\omega) \gamma_\alpha D^a_{-k,N;N}(\omega' + k\Omega) \gamma_\alpha^\dagger \right].
\]

(17)

1. D. D. Awschalom and M. E. Flatté, Nat. Phys. 3, 153 (2007).
2. A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and B. I. Halperin, Phys. Rev. B 66, 064404 (2002).
3. S. Mizukami, Y. Ando, and T. Miyazaki, J. Appl. Phys. 40, 580 (2001).
4. E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).
5. A. Azavedo, L. H. Vilela Leo, R. R. Rodriguez-Suarez, A. B. Oliveira, and S. M. Rezende, J. Appl. Phys. 97, 10C715 (2005).
6. B. Heinrich et al., Phys. Rev. Lett. 107, 066604 (2011).
7. O. Mosendz, J. Pearson, F. Fradin, G. Bauer, S. Bader, and A. Hoffmann, Phys. Rev. Lett. 104, 046601 (2010).
8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
9. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. De Heer, Science 312, 1191 (2006).
10. T. - Y. Yang, J. Balakrishnan, F. Volmer, A. Aysar, M. Jaiswal, J. Samm, S. R. Ali, A. Pachoud, M. Zeng, M. Popinciuc, G. Gutherodt, B. Beschoten, and B. Özyilmaz, Phys. Rev. Lett. 107, 047206 (2011).
11. D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. Lett. 103, 146801 (2009).
12. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
13. F. S. M. Guimarães, A. T. Costa, R. B. Muniz, and M. S. Ferreira, Phys. Rev. B 81, 233402 (2010).
14. Y. Semenov, K. Kim, and J. Zavadka, Appl. Phys. Lett. 91, 153105 (2007).
15. S. Singh, A. Ahmadi, C. T. Cherian, E. R. Mucciolo, E. del Barco, and B. Özyilmaz, Appl. Phys. Lett. 106, 032411 (2015).
16. A. K. Patra, S. Singh, B. Barin, Y. Lee, J.-H. Ahn, E. del Barco, E. R. Mucciolo, and B. Özyilmaz, Appl. Phys. Lett. 101, 162407 (2012).
17. Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
18. M. Moskalets and M. Büttiker, Phys. Rev. B 66, 035306 (2002).
19. T. Inoue, G. E. W. Bauer, and K. Nomura, Phys. Rev. B 94, 205428 (2016).
20. C. H. Lewenkopf and E. R. Mucciolo, J. Comput. Electr. 12, 203 (2013).
21. M. Hurben and C. Patton, J. Appl. Phys. 83, 4344 (1998).
22. A. Dhar and B. S. Shastry, Phys. Rev. B 67, 195405 (2003).
23. S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura, Spin Current (Oxford University Press, 2012).
24. The spin current operator should actually be a tensor since, in addition to the direction of flow, the spin orientation determines the torque transfer direction. For a one-dimensional discrete chain, propagation can only happen
along the chain and the spin current reduces to a vector.

25. J. Shi, P. Zhang, D. Xiao, Q. Niu, Phys. Rev. Lett. 96, 076604 (2006).
26. E. I. Rashba, Phys. Rev. B 68, 241315 (2003).
27. I. V. Tokatly, Phys. Rev. Lett. 101, 106601 (2008).
28. E. B. Sonin, Phys. Rev. B 76, 033306 (2007).
29. E. B. Sonin, Phys. Rev. Lett. 99, 266602 (2007).
30. K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis, C. H. W. Barnes, S. Maekawa, and E. Saitoh, Nat. Mater. 10, 655 (2011).
31. S. Mizukami, Y. Ando, and T. Miyazaki, Phys. Rev. B 66, 104413 (2002).

32. B. Heirich et al., Phys. Rev. Lett. 90, 187601 (2003).
33. O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. B 82, 214403 (2010).
34. K. Ando, Y. Kajiwara, S. Takahashi, S. Maekawa, K. Takamoto, M. Takatsu, and E. Saitoh, Phys. Rev. B 78, 014413 (2008).
35. Z. Tang, E. Shikoh, H. Ago, K. Kawahara, Y. Ando, T. Shinjo, and M. Shiraishi, Phys. Rev. B 87 140401(R) (2013).