Estimation of a general time-dependent Hamiltonian for a single qubit

L.E. de Clercq, R. Oswald, C. Flühmann, B. Keitch, D. Kienzler, H.-Y. Lo, M. Marinelli, D. Nadlinger, V. Negnevitsky & J.P. Home

The Hamiltonian of a closed quantum system governs its complete time evolution. While Hamiltonians with time-variation in a single basis can be recovered using a variety of methods, for more general Hamiltonians the presence of non-commuting terms complicates the reconstruction. Here using a single trapped ion, we propose and experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. We measure the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. The initially unknown Hamiltonian arises from transporting an ion through a static laser beam. Hamiltonian estimation allows us to estimate the spatial beam intensity profile and the ion velocity as a function of time. The estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high-operational fidelities in quantum control.

1Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland. †Present address: Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK. Correspondence and requests for materials should be addressed to J.P.H. (email: jhome@phys.ethz.ch).
Estimation of the underlying dynamics, which drive the evolution of systems is a key problem in many areas of physics and engineering. This knowledge allows control inputs to be designed, which account for imperfections in the physical implementation. For closed quantum systems, the time dependence of a system is driven by the Hamiltonian through Schrödinger’s equation. If the Hamiltonian is static in time, a wide range of techniques have been proposed for recovering the Hamiltonian\(^1\text{–}^4\), which have been applied to a variety of systems including chemical processes\(^5\) and quantum dots\(^6\text{–}^7\). These methods often involve estimation of the eigenvectors and eigenvalues of the Hamiltonian via spectroscopy, or through pulse-probe techniques for which a Fourier transform of the time evolution gives information about the spectrum.

These methods are not directly applicable to time-dependent Hamiltonians, which are becoming increasingly important as quantum engineering pursues a combination of high-operational fidelities and speeds, often involving fast variation of control fields, which are particularly susceptible to distortion before reaching the quantum device\(^8\text{–}^{12}\). The time-varying case has thus far been studied in cases where the variation is along a single dimension in the Hilbert space, which for the commonly studied spin is a single spatial direction. In the case that the measured fields dominate the evolution (strong field limit), measurement of the system evolution as a function of time suffices for the reconstruction. For fields which are weaker than other available control fields (weak-field limit) the latter can be used to modulate the effect of the signal Hamiltonian on the quantum system\(^13\text{–}^{15}\), providing an excellent signal-to-noise ratio. A further complication arises when a time-varying Hamiltonian contains non-commuting terms (for example, time-variation along two spin axes), because the evolution of the quantum system depends not only on their separate influences, but also on products arising from the non-commutativity. For unspecified time-dependent coefficients, no analytical solution to Schrödinger’s equation exists\(^16\text{–}^{17}\). In the weak-field limit, strong control fields can be used to separate out the different components using modulation, however, when the Hamiltonian itself is strong (as is the case in fast quantum control) these techniques cannot be applied.

In this article, we propose and demonstrate a method for reconstructing a general time-dependent single qubit Hamiltonian with non-commuting terms. The technique involves observing the evolution of the spin projection on the z-axis, while applying a static offset to one of the terms of the Hamiltonian. By varying the static offset, we build up data sets, which contain sufficient information to extract the full time-dependent Hamiltonian. Parameterizing the two time-dependent terms using basis splines (B-splines), we introduce an iterative fitting technique, which finds the Hamiltonian that best matches the data. We benchmark the reconstruction method experimentally by transporting a single trapped ion through a static laser beam, a technique suited to scaling up trapped-ion quantum information processing\(^18\text{–}^{19}\).

We perform two consistency checks on the Hamiltonian estimation using four separate reconstructions. For the first two, we compare two cases which use the same ion velocity profile, but different laser beam positions. For the second consistency check, we use the same laser beam, but change the velocity profile between the two by using different sets of time-varying control potentials. The method produces consistent experimental parameters in both cases, indicating the success of the reconstruction technique. Our method is applicable to spin Hamiltonians of the general form \(H = \sum f(t) \hat{\sigma}_i\), where the \(f(t)\) are arbitrary time-dependent functions and \(\hat{\sigma}_i\) are the Pauli operators.

Results

Hamiltonian estimation method. In our experiments, a Hamiltonian with two non-commuting time-dependent terms arises when we perform quantum logic gates by transporting an ion through a static laser beam\(^18\text{–}^{19}\). In this case, the Hamiltonian describing the interaction between the ion and the laser can be written in an appropriate rotating frame as

\[
\hat{H}_1(t) = \frac{\hbar}{2} \left(-\Omega(t) \hat{\sigma}_x + \delta(t) \hat{\sigma}_z \right)
\]

which includes a time-varying Rabi frequency \(\Omega(t)\), and an effective detuning \(\delta(t)\), which is related to the first-order Doppler shift of the laser in the rest frame of the moving ion (see Methods for details).

To reconstruct the Hamiltonian, we make use of two additional capabilities. First, we can switch-off the Hamiltonian at time \(t_{\text{off}}\) on a timescale much faster than the qubit evolution. Subsequently measuring in the \(\hat{\sigma}_\parallel\) basis, we can obtain \(\langle \hat{\sigma}_\parallel(t_{\text{off}}) \rangle\). On its own, this does not allow us to separate the contributions from \(\Omega(t)\) and \(\delta(t)\). To do this, we use a second capability, which is the ability to add a controlled offset \(\hat{H}_2 = \hbar \delta \hat{\sigma}_z / 2\) to the Hamiltonian, resulting in \(\hat{H}_t(t) = \hat{H}_1(t) + \hat{H}_2\). The resulting spin measurement is now dependent on both \(t_{\text{off}}\) and the set value of \(\delta\). Repeating the experiment for a range of values of \(\delta\) but with otherwise identical settings, we obtain an estimate of the expectation value which we denote as \(\langle \hat{\sigma}^{\text{sim}}_{\text{mirror}}(t_{\text{off}}, \delta) \rangle\).

Hamiltonian extraction involves finding the functions \(\delta(t)\) and \(\Omega(t)\), which generate spin populations \(\langle \hat{\sigma}^{\text{sim}}_{\text{mirror}}(t_{\text{off}}, \delta) \rangle\) that most closely match the data. We minimize the reduced \(\chi^2\) cost function.

\[
J = \frac{1}{N} \sum_{t_{\text{off}}} \sum_{\delta} \left(\frac{\langle \hat{\sigma}^{\text{meas}}_{\text{mirror}}(t_{\text{off}}, \delta) \rangle - \langle \hat{\sigma}^{\text{sim}}_{\text{mirror}}(t_{\text{off}}, \delta) \rangle}{\sigma^{\text{meas}}_{\text{mirror}}(t_{\text{off}}, \delta)} \right)^2
\]

where \(v = N - n - 1\) is the number of degrees of freedom, with \(N\) the number of data points, \(n\) the number of fitting parameters and \(\sigma^{\text{meas}}_{\text{mirror}}(t_{\text{off}}, \delta)\) the s.e. on the estimated \(\langle \hat{\sigma}^{\text{sim}}_{\text{mirror}}(t_{\text{off}}, \delta) \rangle\). This is subject to the initial condition \(\langle \Psi(t = 0, \delta) | 0 \rangle\), and the following restrictions, which are imposed by quantum mechanics

\[
\frac{i\hbar}{\partial t} |\Psi(t, \delta)\rangle = (\hat{H}_1(t) + \hat{H}_2) |\Psi(t, \delta)\rangle,
\]

\[
\langle \hat{\sigma}^{\text{sim}}_{\text{mirror}}(t, \delta) \rangle = \langle \Psi(t, \delta) | \hat{\sigma}_\parallel | \Psi(t, \delta) \rangle
\]

for all \(\delta\).

One challenge in obtaining an estimate for the Hamiltonian is that we must optimize over continuous functions \(\delta(t)\) and \(\Omega(t)\). To address this, we represent \(\delta(t)\) and \(\Omega(t)\) with a linear combination of B-spline polynomials, which allow the construction of smooth functions using only a few parameters\(^2\). Any smooth function \(S(t)\) can be written in terms of B-spline polynomials \(B_{i,k}(t)\) and a set of weights \(x_i\) as

\[
S(t) = \sum_{i=0}^{n} x_i B_{i,k}(t).
\]

The polynomial B-spline functions \(B_{i,k}(t)\) are of order \(k\) with each polynomial centred at a time \(t_i\), which is parameterized by the index \(i\). Further details and an example can be found in Methods. Using the B-spline form for \(\delta(t)\) and \(\Omega(t)\), the cost function is minimized by adjusting the weights of the B-spline decomposition. Solving this optimization problem in general is hard, because it is non-linear and non-convex due to the nature of Schrödinger’s equation and the use of projective measurements. This produces a non-trivial relation between the weights and the spin populations as discussed in Methods. To overcome this challenge, we have implemented a method which we call ‘Extending the Horizon Estimation’ (EHE) in analogy to a
well-established technique called 'Moving Horizon Estimation' (MHE)\(^2\).

The key idea is that because our measurement data arises from a causal evolution, we can also estimate the Hamiltonian in a causal way. Instead of optimizing \(J\) over the complete time span at once, we first restrict ourselves to a small, initial time span reaching only up to the start of the qubit dynamics \(0 < t_{\text{off}} < T_b\), where we denote \(T_b\) as the time horizon for the first step. Optimizing \(J\) over this short time span requires fewer optimization parameters and is simpler than attempting to optimize over the full data set. Once we have solved this small sub-problem, we extend the time horizon to \(T_1\) where \(T_1 = T_0 + \tau\) and re-run the optimization, extrapolating the results of the initial time span into the extended region to provide good starting conditions for the subsequent optimization. This procedure is iterated until the time span extends over the whole data set \((T_{\text{max}} = \text{max}(t_{\text{off}}))\).

The method allows us to reduce the number of B-spline functions used to represent \(\delta(t)\) and \(\Omega(t)\), and also reduces the amount of data considered in the early stages of the fit, when the least is known about the parameters. This facilitates the use of non-linear minimization routines, which are based on local linearization of the problem and converge faster near the optimum. More details regarding the optimization routine can be found in Methods.

Conceptually EHE is very similar to MHE. The main difference is that in MHE the time span has a fixed length and thus its origin is shifted forward in time along with the horizon. In EHE, the origin stays fixed at the expense of having to increase the time span under consideration. MHE avoids this by introducing a so-called arrival cost to approximate the previous occurrence occurred before the start of the time span. This keeps the computational burden fixed over time, which is very important as MHE is usually used to estimate the state of a system in real-time, often on severely constrained embedded platforms. Since neither constraint applies to our problem, we decided to extend the horizon rather than finding an approximate arrival cost. This is advantageous since finding the arrival cost in the general case is still an open problem\(^2\). Due to the similarity between MHE and EHE, we anticipate future improvements by adapting techniques used in MHE to EHE. This might be used to reduce the data-processing required for reconstruction, which for EHE scales as \(T_b^2\).

Experimental implementation. To test the ability of the method to reliably extract a Hamiltonian from data, we apply it to the Hamiltonian for an trapped-ion qubit during transport through a near-resonant laser beam. Our qubit is encoded in the electronic states of a calcium ion, which is defined by \(|0\rangle \equiv |S\rangle_{1/2}, M_{1/2}=1/2\) and \(|1\rangle \equiv |D\rangle_{3/2}, M_{3/2}=3/2\). This transition is well-resolved from all other transitions, and has an optical frequency of \(\nu_{0}(2\nu) \approx 411.0420\) THz. The laser beam points at 45° to the transport axis, and has an approximately Gaussian spatial intensity distribution. The time-dependent velocity \(z(t)\) of the ion is controlled by adiabatic translation of the potential well in which the ion is trapped. This is implemented by applying time-varying potentials to multiple electrodes of a segmented ion trap, which are generated using a multi-channel arbitrary-waveform generator, each output of which is connected to a pair of electrodes via a passive third-order low-pass Butterworth filter. The result is that the ion experiences a time-varying Rabi frequency \(\Omega(t)\) and a laser phase which varies with time as \(\Phi(t) = \phi(z(t)) - \omega_{\text{L}}t\), where \(\phi(z(t)) = k_{\text{L}}(z(t))z(t)\) with \(k_{\text{L}}(z(t))\) the laser wave vector projected onto the transport axis at position \(z(t)\) and \(\omega_{\text{L}}\) the laser frequency. The spatial variation of \(k_{\text{L}}(z(t))\) accounts for the curvature of the wavefronts of the Gaussian laser beam. To create a Hamiltonian of the form of equation (1), we work with the differential of the phase, which gives a detuning \(\delta(t) = \delta_1 - \phi = \delta_1 - (k_{\text{L}}'(z_{\text{off}})z_{\text{off}} + k_{\text{L}}(z_{\text{off}}))\) with \(\delta_1 = \omega_{\text{L}} - \nu_{0}\) the laser detuning from resonance. For planar wavefronts, \(k_{\text{L}}'(z_{\text{off}}) = 0\), and \(\delta(t)\) corresponds to the familiar expression for the first-order Doppler shift (see Methods for details).

The experimental sequence is depicted in Fig. 1. We start in zone B by cooling all motional modes of the ion to \(n < 3\) using a combination of Doppler and electromagnetically induced transparency cooling\(^2\), and then initialize the internal state by optical pumping into \(|0\rangle\). The ion is then transported to zone A, and the laser beam used to implement the Hamiltonian is turned on in zone B. The ion is then transported through this laser beam to zone C. During the passage through the laser beam, we rapidly turn the beam off at time \(t_{\text{off}}\) and thus stop the qubit dynamics. The ion is then returned to the central zone B to perform state readout, which measures the qubit in the computational basis \(\sigma_{z}\) (for more details see Methods). The additional Hamiltonian \(\hat{H}_{1}\) is implemented by offsetting the laser frequency used in the experiment by a detuning \(\delta_1\). For each setting of \(t_{\text{off}}\) and \(\delta_1\), the experiment is repeated 100 times, allowing us to obtain an estimate for the qubit populations \(\langle \sigma_{z} \rangle_{m_{\text{opt}}} (t_{\text{off}}, \delta_1)\).

We first perform a comparison in which the ion velocity is the same but the beam position is changed. Thus we expect to obtain two different profiles for \(\Omega(t)\) but the same velocity profile, which is closely related to \(\delta(t)\). Experimental data is shown in Fig. 2 alongside the results of fitting performed using our iterative method. The beam positions used for each data set differ by \(\sim 64 \mu m\) along the transport axis, but the transport wavefront used was identical. It can be seen from the residuals that the estimation is able to find a Hamiltonian, which results in a close match to the data.

Figure 1 | Experimental sequence and timing. (a) The experiment is carried out in three zones of the trap indicated by A, B and C. (b) The experimental sequence involves steps (i) through (v). Preparation and readout are carried out on the static ion in zone B. The qubit evolves while the ion is transported through the laser beam in zone B in a transport operation taking the ion from zone A to zone C. (c) Experimental sequence showing the timing of applied laser beams and ion transport, including shutting off the laser beam during transport.
The estimated coefficients of the Hamiltonian extracted from the two data sets are shown in Fig. 3a,b. To estimate the relevant errors of our reconstruction, we have performed non-parametric resampling with replacement, optimizing for the solution using the same set of B-spline functions as was used for the experimental data to provide a new estimate for the Hamiltonian. This is repeated for a large number of samples, resulting in a distribution for the estimated values of \(\delta(t) \) and \(\Omega(t) \) from which we extract statistical properties such as the s.e. The error bounds shown in Fig. 3 correspond to the s.e. on the mean obtained from these distributions (see Methods for further details). It can be seen that the values of \(\delta(t) \) for the two different beam positions have a similar form but a fixed offset for the region where the reconstructions overlap. We believe that this effect arises from the non-planar wavefronts of the laser beam. Inverting the expression for \(\delta(t) \) to obtain the velocity of the ion, we find \(\dot{z}(t) = (\delta_1 - \delta(t)) / (\kappa(z)_1 - \kappa(z)) \). Using this correction, we find that the two velocity profiles agree if we assume that the ion passes through the centre of the beam at a distance of 2.27 mm before the minimum beam waist, a value which is consistent with experimental uncertainties due to beam propagation and possible mis-positioning of the ion trap with respect to the fixed final focusing lens. The velocity estimates taking account of this effect are shown in Fig. 3c.

Our second comparison involves using two different velocity profiles but with a common beam position. The resolution in both time and detuning were lower in this case than for the data shown in Fig. 2 (see Methods for the data). Figure 4 shows the results of the reconstruction. We observe that the estimated Rabi frequency profiles agree to within the error bars of the reconstruction. One interesting feature of this plot is that the error bars produced from the resampled data sets increase near the peak. We believe that this happens because the sampling time of the data is 0.5 \(\mu s \), which starts to become comparable to the Rabi frequency (the Nyquist frequency is 1 MHz). To optimize the efficiency of our method, it would be advantageous to run the reconstruction method in parallel with data taking, thus allowing updating of the sampling time and frequency resolution based on the current estimates of parameter values.

Discussion

Our method for directly obtaining a non-commuting time-dependent Hamiltonian uses straightforward measurements of the qubit state in a fixed basis as a function of time and a
controlled offset to the Hamiltonian. Unlike schemes based on dynamical modulation or continuous strong driving, it avoids the need for control fields which act more strongly on the qubit than the Hamiltonian to be measured. This is a key advantage in quantum technologies where the Hamiltonian of interest is often already close to the limit of system drive strength. A process for realizing multi-qubit transport gates18. We expect them to be made in multiple bases24–26. This requires a much greater level of precision obtained for a given number of measurements, and to see whether a similar approach could be taken for non-unitary dynamics. Extensions to our work are required to provide a suitable knot vector and restricted ourselves to optimizing the coefficients \(a_i\) and \(a_0\). We therefore used the Matlab function spap2 to automatically choose a minimal time horizon such that we can then use this as a starting point to iteratively extend the horizon as described in step 2.

Methods

Derivation of Hamiltonian. The interaction of a laser beam with frequency \(\omega_0\) and wave vector \(k(z(t))\) with a two-level atom with resonant frequency \(\omega_0\) and time-dependent ion position \(z(t) = (0, 0, z(t))\) can be described in the Schrödinger picture by the Hamiltonian

\[
\hat{H}_t = -\frac{\hbar}{2} \partial_z - B \Omega(z(t)) \cos(k(z(t)) \cdot z(t) - \omega_0 t) \partial_z, \tag{5}
\]

where the Rabi frequency \(\Omega(z(t))\) gives the interaction strength between the laser and the two energy levels. We can define the laser phase at the position of the ion as \(\Phi(z(t)) = \phi(z(t)) - \omega_0 t\) with \(\phi(z(t)) = k(z(t)) \cdot z(t) - k(z(t))z(t)\) and \(k(z(t)) = k(\cos(\theta(t))\) being the projection of the laser beam onto the \(z\)-axis along which the ion is transported. Here \(\theta(t)\) is the angle between the wave vector \(k(z(t))\) and the transport axis evaluated at position \(z(t)\). Moving to a rotating frame using the unitary transformation \(U = e^{-i \hat{H}_t \tau}\) and applying the rotating wave approximation with respect to optical frequencies, we obtain

\[
\hat{H}_1 = \frac{\hbar}{2} (-\Omega(z) \delta_1 + (-\omega_0 - \Phi(z)) \delta_z). \tag{6}
\]

Defining a static detuning \(\delta_1 = \omega_1 - \omega_0\), we obtain

\[
\hat{H}_1 = \frac{\hbar}{2} (-\Omega(z) \delta_1 + \left(\delta_1 - \Phi(z)\right) \delta_z). \tag{7}
\]

with

\[
\delta(t) = \delta_1 - \Phi(t), \tag{8}
\]

which is the expression used in the main text.

B-spline curves and optimization algorithm. The set of polynomial B-spline functions \(B_k(t)\) of order \(k\) are recursively defined over the index \(i\) over a set of points \(K = \{t_0, t_1, \ldots, t_n\}\), which is referred to as the knot vector20.

\[
B_k(t) = \begin{cases} 1 & t_i \leq t \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases} \tag{9}
\]

\[
o_{k+1}(t) = \begin{cases} t_{i+1} - t & \text{if } t_{i+1} \neq t_{k+1} \\ 0 & \text{otherwise} \end{cases} \tag{9}
\]

where \(B_k(t)\) gives the interaction strength between the laser and the two energy levels. We can define the laser phase at the position of the ion as \(\Phi(z(t)) = \phi(z(t)) - \omega_0 t\) with \(\phi(z(t)) = k(z(t)) \cdot z(t) - k(z(t))z(t)\) and \(k(z(t)) = k(\cos(\theta(t))\) being the projection of the laser beam onto the \(z\)-axis along which the ion is transported. Here \(\theta(t)\) is the angle between the wave vector \(k(z(t))\) and the transport axis evaluated at position \(z(t)\). Moving to a rotating frame using the unitary transformation \(U = e^{-i \hat{H}_t \tau}\) and applying the rotating wave approximation with respect to optical frequencies, we obtain

\[
\hat{H}_1 = \frac{\hbar}{2} (-\Omega(z) \delta_1 + (-\omega_0 - \Phi(z)) \delta_z). \tag{6}
\]

Defining a static detuning \(\delta_1 = \omega_1 - \omega_0\), we obtain

\[
\hat{H}_1 = \frac{\hbar}{2} (-\Omega(z) \delta_1 + \left(\delta_1 - \Phi(z)\right) \delta_z). \tag{7}
\]

with

\[
\delta(t) = \delta_1 - \Phi(t), \tag{8}
\]

which is the expression used in the main text.

Figure 4 | Time-dependent detuning and spatial Rabi frequency. (a) The estimated \(\delta(t)\) obtained from the second pair of data sets (Fig. 8 in Methods). (b) The estimated Rabi frequency \(\Omega(t)\) for the same two data sets. In each part, the blue and red solid lines show data obtained using different velocity profiles. Dashed lines indicate the s.e. on the mean of these estimates, which are obtained using resampling.

Figure 5 | Extending the horizon estimation. The steps performed when extending the time horizon from \(T_n\) to \(T_{n+1}\) are illustrated. We first predict in the old basis, then move to the new basis, and finally optimize again. The figure also shows the B-splines \(B_k(t)\).
This procedure is used to provide a starting point for the optimization over the
initially chosen window, which is typically performed with a set of higher order
B-splines. From this starting point, we iteratively extend the fitting method to
the full data set as follows.

2. Extend the horizon: this step is repeated until the whole time horizon is covered.
 It consists of the following sequence, which is illustrated in Fig. 5.

 (a) Extend the time horizon by \(\tau \) from \(T_0 \) to \(T_0 + \tau \).
 (b) Extrapolate \(f_{\text{interp}}(t) \) within \(\tau \), for example, using \text{funfit} in Matlab.
 (c) Adapt the B-splines to the new time horizon \(T_{0} + 1 \) and represent \(f_{\text{interp}}(t) \) in the new basis, giving \(f_{\text{interp,new}}(t) \). In Matlab one can use \text{spap2}
to do this.
 (d) Use \(f_{\text{interp,new}}(t) \) as the initial guess for a weighted non-linear least-squares
 fit over the extended time span up to \(T_{0} + \tau \).
 (e) Judge the results of the fit based on its reduced \(\chi^2 \)-value \(\chi^2_{\text{red}} \). If it is below
 a specified bound, continue with an additional iteration of steps a-d,
 repeating until the full region of the data is covered. Otherwise, attempt
 the following fall-back procedures:

 i. Reduce \(\tau \), the time by which the time horizon is extended, and try again.
 ii. Increase the number of B-splines and try again.
 iii. Try again using a different starting point.

 If all these fail, we have to resort to increasing the bound on \(\chi^2_{\text{red}} \).

3. Post-processing: the following steps are optional and were performed manually
 in cases where we wished to improve the fit or examine its behaviour.

 (a) The optimization over the whole time horizon was re-run using different
 numbers of B-splines for \(\delta(t) \) and \(\Omega(t) \). This was used to check the
 sensitivity of the fit.
 (b) The optimization over the whole time horizon was re-run using a starting
 point based on the previously found optimum plus randomized
 deviations. This tested the robustness of the final fit.

Wavefront correction. For plane waves, we find that \(\phi(t) = -\mathbf{k} \cdot \mathbf{v}(t) \), which is the
well-known expression for the first-order Doppler shift. For transport through a
real Gaussian beam, the wave vector direction changes with position. Taking this
into account, the derivative of \(\phi(t) \) becomes

\[
\phi(t) = [k_x(z(t))\xi(t) + k_z(z(t))\zeta(t)]
\]

(10)

where \(k'_x = \frac{dk_x}{dz} \), \(\xi(t) \) is the component of the ion velocity along the \(x \)-axis.
We extract \(\delta(t) \) using our Hamiltonian estimation procedure, thus to obtain the
velocity of the ion we use

\[
\dot{z}(t) = -\frac{\delta(t) + \delta_z}{k'_x(\xi(t)) + k_z(\zeta(t))}.
\]

(11)

As the ion moves through the beam it experiences the same magnitude of the wave
vector \(|\mathbf{k}| = 2\pi/\lambda \), but the angle \(\theta \) between the ion direction and the wave vector
changes. Written as a function of this angle, the velocity becomes

\[
\dot{z}(t) = -\frac{\delta(t) + \delta_z}{|\mathbf{k}|\sin(\theta(z(t)))\sqrt{\dot{z}(t)^2 + |\mathbf{k}|\cos(\theta(z(t)))}}
\]

(12)

where \(\sin(\theta(z(t))) = \sin(\theta(z(t))) \). We parameterize our Gaussian beam according to
Fig. 6. The phase is given as a function of both the position along the beam axis \(\zeta \)
and the perpendicular distance from this axis \(\kappa \) by

\[
\varphi(\kappa, \zeta) = |kr - \zeta| + \frac{|kr^2|}{2R(\zeta)}.
\]

(13)

where the Gaussian beam parameters include the beam waist \(W(\zeta) \), the radius
of curvature \(R(\zeta) \), the Rayleigh range \(\xi_R \) and the Guoy phase shift \(\xi_G \). These are
given by the expressions

\[
W(\zeta) = W_0\sqrt{1 + \left(\frac{\zeta}{\xi_R}\right)^2}
\]

\[
R(\zeta) = \frac{\zeta}{1 + \left(\frac{\zeta}{\xi_R}\right)^2}
\]

\[
\xi_R = \frac{\lambda^2}{\pi W_0^2}
\]

\[
\kappa = \frac{\zeta}{\xi_R}
\]

(14)

and the unit vector \(\mathbf{e}_k \) pointing along the direction of transport is given by

\[
\mathbf{e}_k = \cos(\theta) \mathbf{e}_x + \sin(\theta) \mathbf{e}_y
\]

(15)

The angle \(\theta(z(t)) \) between the wave and position vector is then given by the dot
product

\[
\theta(z(t)) = \cos^{-1}(\mathbf{e}_z \cdot \mathbf{e}_i).
\]

(16)

which can be written in terms of the full set of parameters above as

\[
\theta(\kappa, \zeta) = \cos^{-1}(\gamma_1 + \gamma_2)
\]

\[
\gamma_1 = \cos(\kappa + \zeta)
\]

\[
\gamma_2 = \cos(\kappa + \zeta) + \cos(\zeta) - \cos(\kappa + \zeta)
\]

\[
\zeta_R = \frac{\sin(2\kappa \cos(\gamma_2))}{\cos(\gamma_2)}
\]

\[
\kappa = \frac{z(t)\sin(\theta)}{|\mathbf{k}|}
\]

(17)

(18)

where \(\gamma_1, \gamma_2 \) and \(\zeta_R \) are the full set of parameters.

Using equations (12) and (18), we examined the value of \(\zeta_R \) required for the
velocity to match for our two beam positions. We find that they agree for
\(\zeta_R = -2.27 \text{~mm} \), which is within the experimental uncertainties for our set-up.
Obtain statistics:

- Projection noise: data point results from 100 repetitions of the experimental sequence. For the Hamiltonian estimation, the data was weighted according to quantum data sets used to obtain the reconstructed parameters shown in Fig. 4.

- Even larger spread might be expected (the dynamics has stopped evolving at this point). We think that the net effect is to under-estimate the errors in the regions where the Hamiltonian is uncertain, but that the error bars given in the central region (where the Hamiltonian is well-defined) are close to what would be obtained through a full optimization.

- We have also applied parametric bootstrapping to obtain the error bounds shown in Fig. 7. The difference to the non-parametric case is that in point (2) the samples are created using the solutions obtained from (1) and adding quantum projection noise. For each sample the Hamiltonian is estimated. The estimates from multiple samples are used to construct error bounds in the same manner as for the non-parametric resampling. We have found that the error bounds obtained from parametric bootstrapping are lower compared with that of the non-parametric case as shown in Fig. 3. We think this is due to the latter exploring deviations around a single minimum in the optimization landscape, while the case resampling arrives at different local minima, which are spread over a wider region.

Error estimation. To estimate the errors of the time-dependent functions, we use non-parametric bootstrapping\(^8,9\). The process is summarized as follows:

1. **Estimate initial solution:** estimate the time-dependent functions from the original data using Hamiltonian estimation.
2. **Resampling:** create \(N_s \) sample solutions for all time-dependent functions in the following way:
 - (a) Form a sample set by randomly picking with replacement from the photon count data used in qubit detection.
 - (b) Re-estimate new time-dependent functions by optimizing over the full time span, using the solution found in (1) as a starting point.
 - (c) Record the reduced \(\chi^2 \)-values \(\chi^2_{\text{red}} \) for each sample \(r \) along with the B-spline curve coefficients \(\mathbf{a}_r \).
3. **Post-process samples:**
 - (a) Form a histogram of the \(\chi^2 \)-values \(\chi^2_{\text{red}} \).
 - (b) Find and fit a normal-like distribution to the histogram with preference to the spread with lowest lying \(\chi^2_{\text{red}} \), in the case of a multi-modal distribution. From the fit obtain the mean reduced-\(\chi^2 \)-value \(\langle \chi^2_{\text{red}} \rangle \), as well as the s.d. \(\sigma_{\chi^2} \).
 - (c) Eliminate the outlier samples by removing all \(\mathbf{a}_r \) with \(\chi^2_{\text{red}} \) values that are \(3–5\sigma_{\chi^2} \) from the mean \(\langle \chi^2_{\text{red}} \rangle \).
 - (d) Form a matrix \(\mathbf{Y} \), where each row vector is a sample set of coefficients \(\mathbf{a}_r \) that remained after step 3(c).
4. **Obtain statistics:**
 - (a) Find the mean B-spline coefficients \(\langle \mathbf{a} \rangle \) of equation (4) by taking the mean over the column vectors of \(\mathbf{Y} \) with each element of the mean given by \(\langle a_i \rangle = \langle a_i \rangle \).
 - (b) Find the covariance matrix \(\Sigma = \text{cov}(\mathbf{Y}) \) with \(\Sigma_{ij} = E[(a_i - \langle a_i \rangle)(a_j - \langle a_j \rangle)] \) with \(E \) the expectation operator. The s.d. of each of the mean coefficients \(\langle a_i \rangle \) is given by \(\sigma_{a_i} = \sqrt{\Sigma_{ii}} \). We record these values in a row vector \(\sigma_{a_i} \).

In evaluating errors using bootstrapping, we use the same set of spline polynomials as were used for the final optimization stage in the data, which makes the reconstruction more reliable in converging to a minimum. We thus expect that the parameter space explored in evaluating the errors is not the same as for the \(\textit{ab initio} \) estimation of the Hamiltonian. This is apparent in the regions of the data where the final estimate has large error bounds (for example, in Fig. 4), where an even larger spread might be expected (the dynamics has stopped evolving at this point).

Figure 8 | Measured data, estimation and residuals. Spin population as a function of detuning and switch-off time of the laser beam, for the data sets used to obtain the reconstructed parameters shown in Fig. 4. \(a \) corresponds to the blue reconstruction while \(b \) to the red one. Each data point results from 100 repetitions of the experimental sequence. For the Hamiltonian estimation, the data was weighted according to quantum projection noise.

References

1. Cole, J. H. et al. Identifying an experimental two-state hamiltonian to arbitrary accuracy. \textit{Phys. Rev. A} \textbf{71}, 062312 (2005).
2. Mitra, A. & Rabitz, H. Identifying mechanisms in the control of quantum dynamics through hamiltonian encoding. \textit{Phys. Rev. A} \textbf{67}, 033407 (2003).
3. de Castro, R. R. & Rabitz, H. Laboratory implementation of quantum-control-mechanism identification through hamiltonian encoding and observable decoding. \textit{Phys. Rev. A} \textbf{81}, 063422 (2010).
4. Zhang, J. & Sarovar, M. Quantum hamiltonian identification from measurement time traces. \textit{Phys. Rev. Lett.} \textbf{113}, 080401 (2014).
5. de Castro, R. R., Cabrera, R., Bondar, D. I. & Rabitz, H. Time-resolved quantum process tomography using hamiltonian-encoding and observable decoding. \textit{N. J. Phys.} \textbf{15}, 025032 (2013).
6. Devitt, S. J., Cole, J. H. & Hollenberg, L. C. L. Scheme for direct measurement of a general two-qubit hamiltonian. \textit{Phys. Rev. A} \textbf{73}, 052317 (2006).
7. Shabani, A., Mohseni, M., Lloyd, S., Koutit, R. L. & Rabitz, H. Estimation of many-body quantum hamiltonians via compressive sensing. \textit{Phys. Rev. A} \textbf{84}, 012107 (2011).
8. Zhao, N. et al. Sensing single remote nuclear spins. \textit{Nature Nanotech.} \textbf{7}, 657–662 (2012).
9. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. *Phys. Rev. A* **69**, 062320 (2004).
10. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. *Science* **339**, 1169–1174 (2013).
11. Bowler, R. et al. Coherent diabatic ion transport and separation in a multizoned trap array. *Phys. Rev. Lett.* **109**, 080502 (2012).
12. Wälther, A. et al. Controlling fast transport of cold trapped ions. *Phys. Rev. Lett.* **109**, 080501 (2012).
13. Kotler, S., Akerman, N., Blickman, Y. & Ozeri, R. Non-linear single-spin spectrum analyzer. *Phys. Rev. Lett.* **110**, 110503 (2013).
14. Magesan, E., Cooper, A., Yum, H. & Cappellaro, P. Reconstructing the profile of time-varying magnetic fields with quantum sensors. *Phys. Rev. A* **88**, 032107 (2013).
15. Cooper, A., Magesan, E., Yum, H. & Cappellaro, P. Time-resolved magnetic sensing with electronic spins in diamond. *Nat. Commun.* **5**, 3141 (2014).
16. Barnes, E. & Das Sarma, S. Analytically solvable driven time-dependent two-level quantum systems. *Phys. Rev. Lett.* **109**, 060401 (2012).
17. Barnes, E. Analytically solvable two-level quantum systems and landau-zener interferometry. *Phys. Rev. A* **88**, 013818 (2013).
18. Leibfried, D., Kuill, E., Ospelkaus, C. & Wineland, D. J. Transport quantum logic gates for trapped ions. *Phys. Rev. A* **76**, 032324 (2007).
19. de Clercq, L. et al. Parallel Transport-Based Quantum Logic Gates With Trapped Ions. *Phys. Rev. Lett.* **116**, 080502 (2016).
20. de Boor, C. A Practical Guide to Splines (Applied Mathematical Sciences), revised edn (Springer, 2001).
21. Muske, K. R. & Rawlings, J. B. in *Methods of Model Based Process Control* (ed. Berber, R.) (Springer, 1995).
22. Rao, C. V., Rawlings, J. B. & Mayne, D. Q. Constrained state estimation for non-linear discrete-time systems: stability and moving horizon approximations. *IEEE Trans. Automat. Contr.* **48**, 246–258 (2003).
23. Roos, C. F. et al. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. *Phys. Rev. Lett.* **85**, 5547 (2000).
24. Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. *J. Mod. Opt.* **44**, 2455–2467 (1997).
25. Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: the two-bit quantum gate. *Phys. Rev. Lett.* **78**, 390 (1997).
26. Wiebe, M. et al. Process tomography of ion trap quantum gates. *Phys. Rev. Lett.* **97**, 220407 (2006).
27. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. *J. Res. Natl. Inst. Stand. Technol.* **103**, 259–328 (1998).
28. Martinis, J. M. & Geller, M. R. Fast adiabatic gates using only σ_z control. *Phys. Rev. A* **90**, 022307 (2014).
29. Schuitjens, R., Abu Dagga, F., Egger, D. J. & Wilhelm, F. K. Single-qubit gates in frequency-crowded transmon systems. *Phys. Rev. A* **88**, 052330 (2013).
30. Barends, R. et al. Digital quantum simulation of fermionic models with a superconducting circuit. *Nat. Commun.* **6**, 7654 (2015).
31. Bonato, C. et al. Optimized quantum sensing with a single electron spin using real-time adaptive measurements. *Nature Nanotech* **11**, 247–252 (2016).
32. Saleh, B. E. A. & Teich., M. C. *Fundamentals of Photonics* (Wiley, 2007).
33. Murphy., K. P. *Machine Learning: a Probabilistic Perspective* (MIT press, 2012).

Acknowledgements

We thank Lukas Gerster, Martin Sepiol and Karin Fisher for contributions to the experimental apparatus. We thank Florian Leupold for feedback on the manuscript and useful discussions. We acknowledge support from the Swiss National Science Foundation under grant numbers 200021_134776 and 200020_153430, ETH Research Grant under grant no. ETH-18 12–2, and from the National Centre of Competence in Research for Quantum Science and Technology (QSIT).

Author contributions

Experimental data was taken by L.E.d.C., R.O., M.M. and D.N. using apparatus built up by all authors. Data analysis was performed by L.E.d.C. and R.O. The paper was written by J.P.H., L.E.d.C. and R.O., with input from all authors. The work was conceived by J.P.H. and L.E.d.C.

Additional information

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: de Clercq, L. E. et al. Estimation of a general time-dependent Hamiltonian for a single qubit. *Nat. Commun.* **7**:11218 doi: 10.1038/ncomms11218 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/