Mandatory vaccination support and intentions to get vaccinated for COVID-19: Results from a nationally representative general population survey in October 2020 in Greece

Theodoros V. Giannouchos PhD, MS1,2 | Evaggelia Steletou MD, MS3 | Maria Saridi PhD4 | Kyriakos Souliotis PhD4,5

1Pharmacotherapy Outcomes Research Center, College of Pharmacy, University of Utah, Salt Lake City, Utah
2Laboratory of Health Economics & Management, Economics Department, University of Piraeus, Piraeus, Greece
3University Regional General Hospital of Patras, University of Patras, Patras, Greece
4Department of Social and Education Policy, University of Peloponnese, Corinth, Greece
5Health Policy Institute, Athens, Greece

Correspondence
Theodoros V. Giannouchos, PhD, MS, Pharmacotherapy Outcomes Research Center, College of Pharmacy, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA.
Email: theo.giannouchos@utah.edu

Funding information
Health Policy Institute, Athens, Greece

Abstract
Objectives: To explore rates and factors associated with mandatory vaccination support overall and intentions to get vaccinated specifically for COVID-19 among individuals in Greece.

Methods: Using data from a nationally representative cross-sectional survey conducted in October 2020 among 855 adults (≥18 years) in Greece, we estimated support rates for mandatory vaccination and respondents’ intention to get vaccinated for COVID-19 as well as associations thereof with individual sociodemographic, clinical and contextual characteristics.

Results: About 74% of respondents supported mandatory vaccination and 62% intended to get vaccinated for COVID-19. The most prevalent reasons against COVID-19 vaccination were safety concerns related to the duration of clinical trials and potential side effects. Individuals who reported increased trust in healthcare authorities’ recommendations, who revealed that their trust in the State increased due to the way the COVID-19 pandemic was handled, who used preventive services more often, and those with higher income were more likely to both support mandatory vaccination and to indicate intention to get vaccinated for COVID-19. Participants with worse or better self-reported health status (compared to average), younger adults, and females were less likely to intend to get vaccinated for COVID-19.

Conclusion: The survey revealed that the majority of the Greek citizens favour mandatory vaccination overall and intend to get vaccinated for COVID-19, driven mostly by utilization of preventive services and trust in healthcare authorities. However, intention to get vaccinated for COVID-19 was lower relative to mandatory vaccination support. This suggests a need to intensify evidence-based yet simplified messaging by esteemed healthcare providers to inform the public on the risks and benefits of vaccines.

Keywords
COVID-19, hesitancy, patient preferences, prevention, public health, vaccination
INTRODUCTION

As vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19 become available to the majority of the population and vaccination rates increase globally in an attempt to achieve herd immunity, heated discussions spread among healthcare professionals, bioethicists, and legal entities regarding the potential to mandate vaccination.\(^1\)\(^-\)\(^3\) A legal mandate to get vaccinated for COVID-19 coupled with coercive actions for individuals who opt-out of vaccination might be restrictive to individuals’ rights, liberty, and autonomy and not ethically justifiable.\(^4\) On the other hand, the growing evidence on safety and effectiveness of available vaccines, their wide availability, affordability, and accessibility minimize the burden of a potential mandate while providing increased societal welfare and utility gains by protecting both vaccinated individuals and mitigating person-to-person transmission.\(^5\)

The decision to pursue a vaccine for the virus is not merely dependent on vaccine efficacy and safety but also driven by individuals’ preferences, knowledge, attitudes, and characteristics. Recent estimates suggest a wide variation across multiple countries in both public support for mandatory vaccination and COVID-19 vaccination intentions and acceptance.\(^6\) The consensus around COVID-19 vaccination intentions is currently between 50% to 70% in most countries, which is not sufficient to achieve herd immunity, thus raising concerns among stakeholders.\(^6\)\(^-\)\(^10\)

Although, globally, well-established vaccines against many preventable diseases are widely accepted and their health, economic, and societal benefits recognized, concerns related to the fast approval processes of COVID-19 vaccines, coupled with limited multi-year data on their real-world effectiveness, are commonly cited reasons for hesitant attitudes towards novel COVID-19 vaccines.\(^1\)\(^-\)\(^9\)\(^-\)\(^14\) Certain sociodemographic subgroups, in particular females, younger adults, those with lower educational level and income, and with negative views of vaccination in general, have also been found to be less likely to pursue COVID-19 immunization.\(^7\)\(^8\)\(^-\)\(^10\)

In Greece, support for mandatory vaccination in the pre-pandemic period ranged from 65% to 97%.\(^11\)\(^-\)\(^12\)\(^-\)\(^15\) Evidence from the first phase of the pandemic revealed that around 58% of the general population intended to get vaccinated for COVID-19, with higher rates observed for older adults, vulnerable populations, and those with more accurate knowledge regarding severity, symptoms, transmission, and prevention against the virus.\(^16\) Among healthcare professionals, reported rates were 79%, mostly driven by absence of fear regarding vaccine safety and reliable information from healthcare authorities.\(^17\) However, there is lack of evidence on how mandatory vaccination support has evolved during the ongoing pandemic.

In this study, we leverage data from a larger-scale project on preferences for healthcare policy reforms collected in October 2020 to explore rates and factors associated with support for mandatory vaccination overall and intention to get vaccinated specifically for COVID-19 among individuals in Greece. We further present evidence on the reasons to refuse COVID-19 vaccination. Our findings might inform and enable stakeholders to tailor healthcare policy interventions to certain subgroups of the population, to promote immunization uptake, while providing the framework for a potential mandate for vaccination.

METHODS

We used data from a nationally representative, cross-sectional telephone survey conducted in October 2020 in Greece to obtain information on attitudes towards mandatory vaccination and intention to get vaccinated for COVID-19 among 1012 adult (18 years of age or older) Greek residents. More details about the survey and data collection process are described elsewhere.\(^18\) The study was approved by the Ethics Committee of the University of Peloponnese.

2.1 Study variables

The two outcomes of interest were whether individuals supported mandatory vaccination or not and their intention to get vaccinated for COVID-19, both defined as dichotomous (0 = No, 1 = Yes). Among those who refused to get vaccinated for COVID-19, we further obtained information on the reasons related to this unwillingness, namely “I think the clinical trials were too short and I do not feel safe”, “Scared of side effects”, “Vaccination serves other purposes”, “Believe it’s not effective”, or “Not sure/Do not wish to answer”.

Similar to previous work, we used multiple independent variables to estimate their association with the outcome variables of interest, which are described in detail in previous work.\(^18\) These included: (a) sociodemographic and contextual characteristics, (b) health-related characteristics, (c) utilization of preventive healthcare services, and (d) information regarding trust and satisfaction with the healthcare system and how trust in the State was affected (increased, remained the same, decreased) by the way the COVID-19 pandemic was managed.

2.2 Statistical analysis

Descriptive analyses were conducted to describe overall study participants, who were further stratified by their responses on the two outcomes of interest. We tested for statistical differences in the stratified mandatory vaccination and intention to get vaccinated for COVID-19 preferences using Pearson χ\(^2\) test. We then used two multivariable logistic regressions to estimate associations between respondents’ characteristics, their attitudes towards and utilization patterns of the healthcare system, and their preferences on the two outcomes of interest separately. SEs were clustered at the geographical region of residence. We used geographic-level fixed effects to control for unobserved regional characteristics. All statistical analyses were conducted using Stata (version 16.1; StataCorp, College Station, TX).
TABLE 1 Descriptive characteristics and information of respondents overall and stratified by mandatory vaccination support and intention to get vaccinated for COVID-19

	All (n = 855)	Mandatory vaccination support	Covid-19 vaccination intention	P-value	P-value		
		No (n = 220)	Yes (n = 635)		No (n = 326)	Yes (n = 529)	
%							
Gender (%)							
Male	422 (49.4)	123 (55.9)	299 (47.1)	.024	147 (45.1)	275 (52.0)	.050
Female	433 (50.6)	97 (44.1)	336 (52.9)		179 (54.9)	254 (48.0)	
Age groups (%)							
18 to 39	254 (29.7)	62 (28.2)	192 (30.2)	.335	119 (36.5)	135 (25.5)	<.001
40 to 54	234 (27.4)	70 (31.8)	164 (25.8)		86 (26.4)	148 (28.0)	
55 to 64	193 (22.6)	49 (22.3)	144 (22.7)		75 (23.0)	118 (22.3)	
≥65	174 (20.3)	39 (17.7)	135 (21.3)		46 (14.1)	128 (24.2)	
Education (%)							
Elementary	33 (3.9)	11 (5.0)	22 (3.5)	.001	13 (4.0)	20 (3.8)	.001
High School	259 (30.3)	86 (39.1)	173 (27.2)		112 (34.4)	147 (27.8)	
University	361 (42.2)	89 (40.5)	272 (42.8)		148 (45.4)	213 (40.3)	
MSc/PhD	202 (23.6)	34 (15.4)	168 (26.5)		53 (16.2)	149 (28.2)	
Occupation (%)							
Full-time	464 (54.3)	122 (55.5)	342 (53.9)	.116	175 (53.7)	289 (54.6)	.023
Retired	225 (26.3)	86 (25.4)	169 (26.6)		75 (23.0)	150 (28.4)	
Other (student/housewife)	82 (9.6)	14 (6.4)	68 (10.7)		32 (9.8)	50 (9.4)	
Unemployed	84 (9.8)	28 (12.7)	56 (8.8)		44 (13.5)	40 (7.6)	
Underage children living in the household (%)							
No	679 (79.4)	163 (74.1)	516 (81.3)	.023	247 (75.8)	432 (81.7)	.038
Yes	176 (20.6)	57 (25.9)	119 (18.7)		79 (24.2)	97 (18.3)	
Chronic conditions (at least one) (%)							
No	463 (54.2)	142 (64.6)	321 (50.6)	<.001	196 (60.1)	267 (50.5)	.006
Yes	392 (45.8)	78 (35.4)	314 (49.4)		130 (39.9)	262 (49.5)	
Rural residence (%)				.201		.684	
No	737 (86.2)	184 (83.6)	553 (87.1)		283 (86.8)	454 (85.8)	
Yes	118 (13.8)	36 (16.4)	82 (12.9)		43 (13.2)	75 (14.2)	
Self-reported income (%)				<.001		<.001	
Very low	239 (28.0)	79 (35.9)	160 (25.2)		119 (36.5)	120 (22.7)	
Low to average	218 (25.5)	64 (29.1)	154 (24.2)		87 (26.7)	131 (24.8)	
Average	313 (36.6)	65 (29.6)	248 (39.1)		100 (30.7)	213 (40.3)	
Higher than average	85 (9.9)	12 (5.4)	73 (11.5)		20 (6.1)	65 (12.3)	
Uninsured (%)				.413		.108	
No	799 (93.4)	203 (92.3)	596 (93.9)		299 (91.7)	500 (94.5)	
Yes	56 (6.6)	17 (7.7)	39 (6.1)		27 (8.3)	29 (5.5)	
Do you have private insurance coverage (%)							
No	696 (81.4)	182 (82.7)	514 (80.9)	.558	275 (84.4)	421 (79.6)	.082
Yes	159 (18.6)	38 (17.3)	121 (19.1)		51 (15.6)	108 (20.4)	
Self-reported health status (%)				.024		<.001	
Average	147 (17.2)	26 (11.8)	121 (19.1)		38 (11.7)	109 (20.6)	
Bad/very bad	48 (5.6)	14 (6.4)	34 (5.4)		24 (7.4)	24 (4.5)	
RESULTS

Overall, 855 individuals fully completed the survey (response rate: 84.5% - 95 individuals did not respond to the COVID-19 vaccine question; 62 individuals did not fully complete the questionnaire). Characteristics and responses of all respondents are presented in Table 1 (Table 1). About 74% supported mandatory vaccination and 62% intended to get vaccinated for COVID-19. About half reported a decrease in their trust in the State attributed to the way the COVID-19 pandemic was managed. Higher rates of both mandatory vaccination support and willingness to get vaccinated for COVID-19 were observed among those who reported increased trust in the State both due to the way the COVID-19 pandemic was handled and in general.

Among those who supported mandatory vaccination, 75% also reported an intention to accept COVID-19 vaccination (Table 2). Interestingly, one-quarter did not intend to get vaccinated for COVID-19 despite their support for a vaccination mandate, while a similar share (24.1%) intended to get vaccinated for COVID-19 despite not supporting mandatory vaccination. Among the 38% of participants who did not intend to get vaccinated for COVID-19, the two primary reasons included safety concerns related to the duration of the clinical trials (60%) and potential side-effects (26%) (Table 3). However, we observed differences in the reasons related to unwillingness to get vaccinated for COVID-19 based on general support for mandatory vaccination, with conspiracy attitudes (“Vaccination serves other purposes”) and effectiveness questioning being more prevalent among those who did not support mandatory vaccination either. In contrast, more than 90% of individuals who supported mandatory vaccination but did not intend to get vaccinated for COVID-19 reported safety concerns as the primary reason for their decision.

In the multivariable analyses, increased trust in the State and healthcare authorities during the pandemic and in general, frequent use of preventive services, higher than average incomes, and postgraduate educational level (compared to elementary) were associated with support towards mandatory vaccination and intention to get vaccinated for COVID-19 (although education was not statistically significant at the $P < .05$ level) (Table 4). In contrast, worse or better than average health status was inversely associated with support towards mandatory vaccination and intention to get vaccinated for COVID-19.
TABLE 2	Mandatory vaccination support and intention to get vaccinated for COVID-19		
Covid-19 vaccination intention			
No (n = 220)	Yes (n = 635)	P-value	
No (n = 326)	167 (75.9)	159 (25.0)	
Yes (n = 529)	53 (24.1)	476 (75.0)	<.001

TABLE 3	Primary reasons against COVID-19 vaccination overall and stratified by mandatory vaccination support			
Reasons for not willing to vaccinate against COVID-19 (%)	All (n = 326)	Against mandatory vaccination (n = 167)	Mandatory vaccination support (n = 159)	P-value
I think the clinical trials were too short and I do not feel safe	194 (59.5)	86 (51.5)	108 (67.9)	<.001
Scared of side effects	84 (25.8)	45 (27.0)	39 (24.5)	
Vaccination serves other purposes	19 (5.8)	16 (9.6)	3 (1.9)	
Believe it’s not effective	18 (5.5)	16 (9.6)	2 (1.3)	
Not sure/Do not wish to answer	11 (3.4)	4 (2.4)	7 (4.4)	

TABLE 4	Multivariable logistic regressions for mandatory vaccination support and intention to get vaccinated for COVID-19					
How did your trust in the State and the authorities (ie, healthcare system) change from the way the COVID-19 pandemic was dealt with? (Ref: No change)	Mandatory vaccination support	Covid-19 vaccination intention				
	OR	95% CI	P-value	OR	95% CI	P-value
Increased	2.32	1.54-3.50	<.001	1.79	1.32-2.42	<.001
Decreased	1.16	0.80-1.70	.434	0.95	0.64-1.41	.814
Trust in official healthcare authorities’ guidelines and recommendations on healthcare issues (ie vaccination) (Ref: No trust)						
Somewhat	2.16	1.10-4.23	.026	2.59	1.78-3.75	<.001
Quite	4.45	2.25-8.81	<.001	4.41	2.56-7.58	<.001
A lot	6.19	3.17-12.08	<.001	8.62	4.56-16.31	<.001
How often do you use healthcare preventive services (ie checkup)? (Ref: Never/Rarely)						
Sometimes	1.03	0.69-1.55	.869	1.22	0.66-2.28	.526
Often	1.94	1.41-2.68	<.001	1.60	0.90-2.82	.106
Very often	1.62	0.96-2.72	.068	2.15	1.05-4.40	.037
How satisfied are you with the healthcare system? (Ref: Not at all)						
Somewhat	1.29	0.85-1.98	.235	1.09	0.74-1.60	.669
Quite/very satisfied	0.80	0.46-1.40	.438	1.52	1.10-2.09	.010
Self-reported health status (Ref: Average)						
Bad/very bad	0.54	0.22-1.29	.164	0.36	0.17-0.78	.010
Good	0.60	0.23-1.55	.290	0.49	0.34-0.69	<.001
Very good	0.41	0.21-0.80	.009	0.26	0.17-0.42	<.001
Age-groups (Ref: 18 to 39)						
40 to 54	0.60	0.35-1.03	.064	1.37	0.95-1.98	.089
general and older adults, particularly those who were 65 years of age or older compared to those who were 18 to 39, were more likely to get vaccinated for COVID-19, while females were less likely compared to males.

4 | DISCUSSION

Our results suggest that about 74% of respondents supported mandatory vaccination overall, a relative decline of 13% compared to estimates from the same survey in 2019. This finding could be related both to the observed decline in trust in healthcare authorities and the State during the pandemic as well as the uncertainty and widespread misinformation of vaccine efficacy during the past year.

We also found that 62% of participants intended to get vaccinated for COVID-19, a result consistent with global and country-specific estimates. Interestingly, this share is higher compared to a survey conducted during the same period among healthcare professionals in Greece, which indicated that 51.1% of healthcare personnel intended to get vaccinated for COVID-19. This could be related to the baseline heterogeneity between the populations analyzed. Healthcare professionals were disproportionately younger and females in the study by Maltezou and colleagues compared to our study of the general population in Greece (<40 years old: 40.5% vs 29.7%; females: 65.0% vs 50.6%), and both younger age and female gender were inversely associated with the intention to get vaccinated for COVID-19. Despite, both in our study and the study among healthcare professionals in Greece, the primary reasons for refusing COVID-19 vaccination were similar and mostly related to vaccine safety and information availability.

Furthermore, our analyses revealed that certain subgroups of the population are less likely to intend to get vaccinated for COVID-19, particularly younger adults, females, lower-income populations, and those with worse or better than average self-reported health status.

Table 4 (Continued)

	Mandatory vaccination support				Covid-19 vaccination intention		
	OR	95% CI	P-value	OR	95% CI	P-value	
55 to 64	0.86	0.39-1.94	.722	1.44	0.82-2.52	.200	
≥65	0.74	0.36-1.50	.401	2.41	1.16-5.02	.018	
Self-reported income (Ref: Very low)							
Low to average	0.82	0.56-1.21	.322	1.08	0.74-1.57	.699	
Average	1.16	0.69-1.94	.583	1.21	0.74-1.98	.445	
Higher than average	2.44	1.07-5.61	.035	2.16	1.37-3.41	.001	
Gender (Ref: Male)							
Female	1.41	0.97-2.04	.072	0.61	0.44-0.84	.002	
Chronic conditions (at least one) (Ref: No)							
Yes	1.56	1.01-2.39	.043	0.93	0.76-1.13	.445	
Occupation (Ref: Full-time)							
Retired	0.77	0.60-0.97	.028	0.61	0.31-1.21	.159	
Other (student, housewife)	1.68	0.78-3.61	.187	1.05	0.41-2.68	.925	
Unemployed	0.65	0.39-1.08	.098	0.67	0.34-1.32	.252	
Education (Ref: Elementary)							
High School	0.90	0.37-2.22	.827	0.79	0.45-1.38	.410	
University	1.44	0.59-3.48	.423	0.86	0.45-1.64	.647	
MSc/PhD	2.42	0.62-9.46	.205	1.74	0.90-3.35	.100	
Underage children living in the household (Ref: No)							
Yes	0.66	0.38-1.15	.144	0.69	0.45-1.08	.103	
Rural residence (Ref: No)							
Yes	0.71	0.31-1.60	.405	1.02	0.58-1.78	.951	
Uninsured (Ref: No)							
Yes	1.30	0.76-2.23	.333	1.34	0.93-1.93	.122	
Do you have private insurance coverage? (Ref: No)							
Yes	0.66	0.49-0.90	.009	0.92	0.67-1.26	.590	

Note: The regression models control for geographic-level fixed effects. Abbreviations: CI, Confidence intervals; OR, adjusted odds ratio; Ref, Reference.
These findings are not surprising, since younger and healthier individuals might feel invincible to the virus, those with worse health status might be more concerned about increased susceptibility to vaccine-related side effects, while gender-related differences might be attributed to males being predominantly hard-hit by COVID-19, and to initial uncertainty about vaccination for pregnant and reproductive-age females.20–22

Beyond these characteristics, common factors associated with both mandatory vaccination support and intentions to get vaccinated for COVID-19 included increased trust in the State and healthcare authorities and more frequent use of preventive services. These findings are in line with growing studies on the topic, particularly those related to the positive effect of evolving knowledge and attitudes about vaccines during the pandemic towards vaccination support, thus highlighting the need to tailor more aggressive communication efforts regarding the benefits and risks of vaccination to specific subgroups of the population.7,10,16,19,23

Our data indicate that effective community outreach initiatives have the potential to increase COVID-19 vaccination uptake by almost 20% since 159 respondents supported mandatory vaccination but did not intend to get vaccinated for COVID-19 due to safety concerns. Effective, evidence-based messaging in plain language by trustworthy providers has the potential to convince a large proportion of the population to accept COVID-19 vaccination, and, in turn, increase vaccination uptake rate to more than 80%, sufficient to achieve herd immunity.

ACKNOWLEDGEMENT
This study was funded by the Health Policy Institute. The authors did not receive any funding for this publication.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Theodoros V. Giannouchos: Conducted data and statistical analyses and wrote the first draft of the manuscript. Kyriakos Souliotis: Conceived, designed and scientifically led the study and coordinated study data collection. Evaggelia Steletou, Maria Saridi, Kyriakos Souliotis: Critically reviewed the manuscript for important intellectual content and contributed to the editing and writing of the final manuscript. All authors read and approved the final manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID
Theodoros V. Giannouchos https://orcid.org/0000-0002-1574-6767

REFERENCES
1. Opel DJ, Diekema DS, Ross LF. Should we mandate a COVID-19 vaccine for children? JAMA Pediatr. 2021;175(2):125-126.
2. Laine C, Cotton D, Moyer DV. COVID-19 vaccine: promoting vaccine acceptance. Ann Intern Med. 2021 Feb;174(2):252-253.
3. Ritchie H, Ortiz-Ospina E, Beltekian D, et al. Coronavirus (COVID-19) Vaccinations. Our World in Data. https://ourworldindata.org/covid-vaccinations. Accessed March 28, 2021.
4. Navin MC, Attwell K. Vaccine mandates, value pluralism, and policy diversity. Bioethics. 2019;33(9):1042-1049.
5. Thompson MG, Burgess JL, Naleway AL, et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers—eight US locations, December 2020–March 2021. Morb Mortal Wkly Rep. 2021;70:495-500.
6. Sallam M. COVID-19 vaccine hesitancy worldwide: a concise systematic review of vaccine acceptance rates. Vaccine. 2021;9(2):160.
7. Malik AA, McFadden SM, Elharake J, Omer SB. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine. 2020;26:100495.
8. Murphy J, Vallières F, Bentall RP, et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat Commun. 2021;12(1):1-5.
9. Kwok KO, Li KK, Wei W, et al. Influenza vaccine uptake, COVID-19 vaccination intention and vaccine hesitancy among nurses: a survey. Int J Nurs Stud. 2021;114:103854.
10. Callaghan T, Moghtaderi A, Lueck JA, et al. Correlates and disparities of COVID-19 vaccine hesitancy. SSRN; August 5 2020.
11. Wellcome Trust. Wellcome global monitor 2018. Chapter 5: Attitudes to vaccine. https://wellcome.ac.uk/reports/wellcome-global-monitor/2018/chapter-5-attitudes-vaccines. Accessed on March 29, 2021.
12. Maltezou HC, Botelho-Nevers E, Brantsaeter AB, et al. Vaccination of healthcare personnel in Europe: update to current policies. Vaccine. 2019;37(52):7576-7584.
13. Xu L, Chen J, Zhan Z, et al. Evaluating the effectiveness of national measles elimination action in mainland China during 2004–2016: a multi-site interrupted time-series study. Vaccine. 2020;38(28):4440-4447.
14. Doherty M, Buchy P, Standaert B, Giaquinto C, Prado-Cohrs D. Vaccine impact: benefits for human health. Vaccine. 2016;34(52):6707-6714.
15. Karageorgou K, Katerelos P, Efstathiou A, Theodoridou M, Maltezou HC. Vaccination coverage and susceptibility against vaccine-preventable diseases of healthcare students in Athens, Greece. Vaccine. 2014;32(39):5083-5086.
16. Kourlaba G, Kourkouni E, Maistrili S, et al. Willingness of Greek general population to get a COVID-19 vaccine. Glob Health Res Policy. 2021;6(1):1-10.
17. Papagiannis D, Rachiotis G, Mali F, et al. Acceptability of COVID-19 vaccination among Greek Health Professionals. Vaccine. 2021;9(3):200.
18. Giannouchos TV, Steletou E, Saridi M, Souliotis K. Should vaccination be mandated? Individuals’ perceptions on mandatory vaccination in Greece. J Eval Clin Pract. 2021.
19. Maltezou HC, Pavli A, Dedoukou X, et al. Determinants of intention to get vaccinated against COVID-19 among healthcare personnel in hospitals in Greece. Infect Dis Health. 2021;6(1):20017-1.
20. Giannouchos TV, Sussman RA, Mier JM, Poulas K, Farsalinos K. Characteristics and risk factors for COVID-19 diagnosis and adverse outcomes in Mexico: an analysis of 89,756 laboratory–confirmed COVID-19 cases. medRxiv; June 7 2020.
21. Xu PP, Tian RH, Luo S, et al. Risk factors for adverse clinical outcomes with COVID-19 in China: a multicenter, retrospective, observational study. Theranostics. 2020;10(14):6372-6383.

22. Ko JY, Danielson ML, Town M, et al; COVID-NET Surveillance Team. Risk factors for coronavirus disease 2019 (COVID-19)-associated hospitalization: COVID-19–associated hospitalization surveillance network and behavioral risk factor surveillance system. Clin Infect Dis. 2020;ciaa1419.

23. Ledda C, Costantino C, Cuccia M, Maltezou HC, Rapisarda V. Attitudes of healthcare personnel towards vaccinations before and during the COVID-19 pandemic. Int J Environ Res Public Health. 2021;18(5):2703.

How to cite this article: Giannouchos TV, Steletou E, Saridi M, Souliotis K. Mandatory vaccination support and intentions to get vaccinated for COVID-19: Results from a nationally representative general population survey in October 2020 in Greece. J Eval Clin Pract. 2021;27(4):996–1003. [https://doi.org/10.1111/jep.13588]