How are Forbush decreases related with interplanetary magnetic field enhancements?

K. P. Arunbabu1,2, H. M. Antia2,3, S. R. Dugad2,3, S. K. Gupta2,3, Y. Hayashi2,4, S. Kawakami2,4, P. K. Mohanty2,3, A. Oshima5, P. Subramanian1,2

1 Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 021, India
2 The GRAPES–3 Experiment, Cosmic Ray Laboratory, Raj Bhavan, Ooty 643 001, India
3 Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
4 Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
5 College of Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan

ABSTRACT

Aims. Forbush decrease (FD) is a transient decrease followed by a gradual recovery in the observed galactic cosmic ray intensity. We seek to understand the relationship between the FDs and near-Earth interplanetary magnetic field (IMF) enhancements associated with solar coronal mass ejections (CMEs).

Methods. We use muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We select those FD events that have a reasonably clean profile, and magnitude $>0.25\%$. We use IMF data from ACE/WIND spacecrafts. We look for correlations between the FD profile and that of the one hour averaged IMF. We ask if the diffusion of high energy protons into the large scale magnetic field is the cause of the lag observed between the FD and the IMF.

Results. The enhancement of the IMF associated with FDs occurs mainly in the shock-sheath region, and the turbulence level in the magnetic field is also enhanced in this region. The observed FD profiles look remarkably similar to the IMF enhancement profiles. The FDs typically lag the IMF enhancement by a few hours. The lag corresponds to the time taken by high energy protons to diffuse into the magnetic field enhancement via cross-field diffusion.

Conclusions. Our findings show that high rigidity FDs associated with CMEs are caused primarily by the cumulative diffusion of protons across the magnetic field enhancement in the turbulent sheath region between the shock and the CME.

Key words. cosmic rays, Forbush decrease, interplanetary magnetic field, coronal mass ejection

1. Introduction

Forbush decreases (FDs), are short-term decreases in the intensity of galactic cosmic rays that were first observed by Forbush (1937, 1938). It was the work of Simpson using neutron monitors (Simpson, 1954), which showed that the origin of the FDs was in the interplanetary (IP) medium. Solar transients such as CMEs cause enhancements in the IMF. The near-Earth manifestation of a CME from the Sun typically has two major components: i) the interplanetary counterpart of CME (commonly called an ICME), and ii) the shock, which is driven ahead of it. Both the shock and the ICME cause significant enhancement in the IMF. ICMEs, which possess some well defined criteria such as reduction in plasma temperature and smooth rotation of magnetic field are called magnetic clouds (e.g., Burlaga et al. 1981; Bothmer & Schwenn 1998).

Correlations between the parameters characterising FDs and solar wind parameters have been a subject of considerable study. Belov et al. (2001) and Kane (2010) maintain that there is a reasonable correlation between the FD magnitude and the product of maximum magnetic field and maximum solar wind velocity. Dumbović et al. (2012) also found reasonable correlation between the FD magnitude (FD), and duration with the solar wind parameters such as the amplitude of magnetic field enhancement B, amplitude of the magnetic field fluctuations δB, maximum solar wind speed associated with the disturbance v, duration of the disturbance t_d. We note that the FD magnitude also depends strongly on other solar wind parameters like the velocity of the CME, turbulence level in the magnetic field, size of the CME etc. The contributions of these parameters are explained in the CME-only cumulative diffusion model described in Arunbabu et al. (2013).

Arunbabu et al. (2013) described the CME-only cumulative diffusion model for FDs, where the cumulative effects of diffusion of cosmic ray protons through the turbulent sheath region as the CME propagated from the Sun to the Earth was invoked to explain the FD magnitude. However, the diffusion was envisaged to occur across an idealized thin boundary. In this paper we relax the ideal, thin boundary assumption and examine the detailed relationship between the FD profile and the IMF compression.

2. Data Analysis

2.1. The GRAPES-3 experiment

The GRAPES-3 experiment is located at Ooty (11.4°N latitude, 76.7°E longitude, and 2200 m altitude) in India. It contains two major components, first an air shower array of 400 scintillation detectors (each 1 m2), with a distance of 8 m between adjacent detectors deployed in a hexagonal geometry (Gupta et al. 2005, Mohanty et al. 2009, Mohanty et al. 2012). The GRAPES-3 array is designed to measure the energy spectrum and composition of the primary cosmic rays in the energy region from 10 TeV to 100 PeV (Gupta et al. 2009, Tanaka et al. 2012). The second component of GRAPES-3 experiment, a large area tracking muon telescope is a unique instrument used to search for high
energy protons emitted during the active phase of a solar flare or a CME. The muon telescope provides a high statistics, directional measurement of the muon flux. The GRAPES-3 muon telescope covers an area of 560 m², consisting of a total of 16 modules, each 35 m² in area. The energy threshold of the telescope is $\sec(\theta) \text{GeV}$, for the muons arriving along a direction with zenith angle θ. The observed muon rate of $\sim 3000 \text{s}^{-1}$ per module, yields a total muon rate $\sim 3 \times 10^6 \text{min}^{-1}$ for the entire telescope (Hayashi et al. 2005, Nonaka et al. 2006). This large rate permits even a small change of $\lesssim 0.1\%$ in the muon flux to be accurately measured over a time scale of $\sim 5 \text{min}$, after appropriate corrections are applied for the time dependent variation in the atmospheric pressure (Mohanty et al. 2013).

We identified the FDs using the data from the GRAPES-3 muon telescope. By using the tracking capability of the muon telescope the direction of detected muons are binned into 9 different solid angle directions, named NW (north-west), N, NE, W, E, SW, S, SE. The cutoff rigidity due to the geomagnetic field at Ooty is 17 GeV along the vertical direction and varies from 14 to 42 GeV across the 2.2 sr. field of view of the muon telescope. Details of the muon telescope are given in Hayashi et al. (2005), Nonaka et al. (2006), and Subramanian et al. (2009).

2.2. Broad shortlisting criteria

The GRAPES-3 muon telescope has observed a large number of FD events exhibiting a variety of characteristics. We now describe the broad criteria we use to shortlist events used for analysis in this paper. In addition to the criteria described here, we will have occasion to apply further criteria, which will be described in subsequent sections. We have examined all FD events observed by the GRAPES-3 muon telescope during the years 2001 – 2004. We shortlist events that have a clean FD profile and FD magnitude $>0.25\%$, and are also associated with an enhancement in the near-Earth interplanetary magnetic field. Here, the term ‘clean profile’ is used to refer to an FD event characterised by a sudden decrease and a gradual recovery in the cosmic ray flux. Although 0.25 per cent might seem like a small number, as explained in Arunbabu et al. (2013), these are fairly significant events in the GRAPES-3 data, given its high sensitivity. This yields a sample of 65 events, which is used in the analysis reported in § 3. We note that the event of 29 September 2001 is not included in this list, since it was associated with many IMF enhancements, which could be due to multiple Halo and partial halo CMEs. Similarly, the event of 29 October 2003 is not included (even though it was the biggest FD event observed in the solar cycle 23), since the near-Earth magnetic field data is incomplete for this event.

We used GRAPES-3 data summed over a time interval of one hour for each direction. This improves the signal to noise ratio, but the diurnal variation in the muon flux is still present. We used a low-pass filter to remove oscillations having frequency $> 1 \text{d}^{-1}$. This filter has been explained in Subramanian et al. (2009). The measured variation of the muon flux in percent for 24 November 2001 event is shown in Figure 1 where the dotted black lines are the unfiltered data and the solid black lines are the filtered data after using the low pass filter to remove the frequencies $> 1 \text{d}^{-1}$. Although the filtering may change the amplitude of the decrease and possibly shift the onset time for the FD by few hours in some cases, but it is often difficult to determine whether these differences are artifacts of filtering or the unfiltered data showed different amplitude because a diurnal oscillation happened to have the right phase, so as to enhance or suppress the amplitude of the FD. Some fluctuations in the muon flux could be due to FD and associated events, but it is unlikely that they will be periodic in nature and are not likely to be affected by the filter.

The FDs that we study are associated with near-Earth CME counterparts, which contribute to significant increases in the IMFs. We intend to investigate the relation between these IMF enhancements and FDs. We used the IMF data observed by the ACE and WIND spacecraft available from the OMNI database. We used hourly resolution data on magnetic field B_{total}, B_x, B_y, B_z in the geocentric solar ecliptic (GSE) coordinate system. B_{total} is the magnitude of the magnetic field, B_x is the magnetic field component along the Sun-Earth line in the ecliptic plane pointing towards the Sun, B_y the component parallel to the ecliptic north pole, and B_z the component in the ecliptic plane pointing towards dusk. For a consistent data analysis we have applied the same low-pass filter to the magnetic field data as we did to the muon flux, which removes any oscillations having frequency $> 1 \text{d}^{-1}$. Since FD events are associated with enhancements in the IMF, we use the quantity $100 - |B|$ and calculate the average value and the percent deviation of this quantity over the same data interval as the FD. This effectively “flips” the magnetic field increase and makes it appear as a decrease, enabling easy comparison with the FD profile. Figure 2 shows the FD event on 24 November 2001, Figure 3 shows the FD event on 11 April 2001, and Figure 4 shows the FD event on 23 May 2002, together with the IMF data processed in this manner. The black solid line is the percentage deviation of cosmic ray intensity in each of the nine directions. The red-dotted, blue-dash-dot-dotted, green-dash-dotted and orange-dash lines are the percentage deviation of IMFs B_{total}, B_x, B_y and B_z, respectively.

3. Correlation of FD magnitude with peak IMF

Before studying detailed relationship between the IMF and FD profiles, we examine the relationship between the peak IMF and the FD magnitudes. For this study we have considered all 65 FD events shortlisted using the criteria explained in section 2.2. The FD magnitude for a given direction is calculated as the difference between the pre-event intensity of the cosmic rays and the intensity at the minimum of the decrease. We examine the corresponding IMF during these events. We term B_x and B_z “perpen-
Arunbabu et al.: Forbush decreases related with IMF

Fig. 2. The FD event of 24 Nov 2001 and the magnetic field for 9 directions in GRAPES-3 muon telescope. Black solid line is percentage deviation of cosmic ray intensity in each direction. The red-dotted, blue-dot-dotted, green-dash-dotted and orange-dash lines are percentage deviation of IMFs B_{total}, B_z, B_y and B_x respectively, that are scaled down by a factor of 10 to fit in the frame.

Fig. 3. Correlation of maximum total magnetic field in the magnetic field enhancement to FD magnitude observed in different directions using GRAPES-3.

Fig. 4. Correlation of maximum net perpendicular magnetic field in the magnetic field enhancement to FD magnitude observed in different directions using GRAPES-3.

dicular” fields, because they are tangential to a flux rope CME approaching the Earth. They are perpendicular to a typical cosmic ray proton that seeks to enter the CME radially; it will therefore have to cross these perpendicular fields. We study the relation between the FD magnitude and the peak of the total magnetic field $B_{\text{total}} = (B_x^2 + B_y^2 + B_z^2)^{1/2}$ and the peak of the net perpendicular magnetic field $B_p = (B_y^2 + B_z^2)^{1/2}$.

The correlation coefficients of the peak B_{total} with the FD magnitude for different directions are listed in Table 1 and shown in Figure 3. The correlation coefficients of the peak B_p with FD magnitude are listed in Table 1 and shown in Figure 4. We find that the correlation coefficient between peak B_p and peak B_{total} with the FD magnitude ranges from 63% to 72%. We note that the correlations in Figures 3 and 4 are fairly similar; this is because the longitudinal magnetic field (B_x) is fairly small for most events. We will have further occasion to discuss this in § 5.1. We have also carried out the same study using Tibet neutron monitor data; this yields a correlation coefficient of 60.0% and 61.9% respectively for B_{total} and B_p. The error on the correlation coefficients are calculated using Eq 1 below, and are listed in Table 1.

$$\text{err} = \sqrt{1 - (cc)^2 \frac{n-2}{n-2}}, \quad (1)$$

where cc is the correlation coefficient, $n-2$ gives the degree of freedom and n is the number of points considered for the correlation.

From the CME-only cumulative diffusion model described in Arunbabu et al. (2013) we know that the FD magnitude depends on various parameters associated with CME, like velocity of CME, turbulence level in the magnetic field and the size of the CME. It is, thus not surprising that the FD magnitude correlates only moderately with the peak value of the IMF.

4. IMF compression: shock-sheath or ICME?

As mentioned earlier, we consider FD events associated with the magnetic field enhancements that are due to the shock propagating ahead of the CME. An example of this is shown in Figure 5 A.3 & A.4 where the nine different panels show the cosmic ray flux (FD profile) of nine directions of GRAPES-3 muon telescope for the FD observed on 24 November 2001. The black solid line denotes the percentage deviation of the cosmic ray intensity, while the black dotted line is the percentage deviation of the total magnetic field $[100 - B]$ as explained in 2. The vertical brown-dotted, magenta-dash-dotted, blue-dot-dotted, green-long-dashed and black-dashed lines are the timings of the FD onset, shock arrival, magnetic cloud start, magnetic cloud end and FD minimum, respectively. The solid red vertical line corresponds to the maximum of the magnetic field compression. It is clear that the magnetic field compression responsible for the FD is in the sheath region; the region between the shock and magnetic cloud.

The CME-only model described in Arunbabu et al. (2013) deals with the diffusion of cosmic rays through the turbulent magnetic field in the sheath region. The cross-field diffusion coefficient depends on the rigidity of the proton and the turbulence level in the magnetic field; e.g., Candia & Roulet (2004). The
turbulence level in the magnetic field is an important parameter in this context. We have calculated the turbulence level using one minute averaged data from the ACE/WIND spacecraft available from the OMNI data base. To calculate the turbulence level \(\sigma \) we use a 1 hour running average of the magnetic field (\(B_0 \)) and the fluctuation of the IMF around this average (\(B_{\text{fur}} = B - B_0 \)). We define the quantity \(\sigma \) as,

\[
\sigma = \left(\frac{\langle B_{\text{fur}}^2 \rangle}{B_0^2} \right)^{0.5}
\]

where \(\langle B_{\text{fur}}^2 \rangle \) denotes the average of \(B_{\text{fur}}^2 \) over the 1 hour window. Figure 6 shows a representative event. The top panel shows the one minute average magnetic field for 21–30 November 2001. The bottom panel in this Figure shows the turbulence level \(\sigma \) calculated for this event. The vertical solid-black, dotted-black and dashed-black lines correspond to the timings of shock arrival, start and end of the magnetic cloud, respectively. We note that the magnetic field compression responsible for the FD occurs in the shock sheath region: the region between the shock and the magnetic cloud. The turbulence level enhancement also occurs in this region.

For events selected using the criteria described in § 2, we narrow down the ones that have a well defined shock and associated magnetic cloud. Such events allow us to clearly distinguish the shock, sheath and CME regions associated with the magnetic field compression. We studied 10 such FD events, which are listed in Table 2. The timings of the shock, maximum of the magnetic field compression, magnetic cloud start and end timings along with the FD onset times for different directions are given in Table 2. The peak of the magnetic field enhancement in the filtered data generally occurs before the start of the magnetic cloud or at the start of the magnetic cloud, whereas in the unfiltered data the enhancement lies in the sheath region. We note that the filtering procedure using the low pass filter shifts the maximum by a small amount (-5 to 10 hours).

Direction	Cut-off Rigidity (GV)	\(B_{\text{total}} \) Correlation coeff.	err	\(B_p \) Correlation coeff.	err
NW	15.5	0.702	0.030	0.712	0.089
N	18.7	0.707	0.090	0.714	0.089
NE	24.0	0.720	0.088	0.724	0.088
W	14.3	0.684	0.093	0.691	0.092
V	17.2	0.688	0.092	0.692	0.092
E	22.4	0.681	0.093	0.685	0.093
SW	14.4	0.669	0.094	0.676	0.094
S	17.6	0.660	0.095	0.666	0.095
SE	22.4	0.636	0.098	0.642	0.097
Tibet	14.1	0.600	0.102	0.619	0.100

Table 1. Correlation of the FD magnitude with the maximum total and perpendicular IMF. For each direction of GRAPES 3, the correlation is calculated along with the standard error (err) in the next column. The last row shows the correlation coefficient calculated using data from the Tibet neutron monitor.
Table 2. Shock arrival time, time of maximum magnetic field enhancement, magnetic cloud start and end timings and FD onset timings for different directions for FD events which have a well defined shock and magnetic clouds associated with them.

Event	NW	N	NE	W	V	E	SW	S	SE	Shock arrival	Maximum of Mag. compre.	MC Start	MC end
2001 Apr 04	04.30	04.33	04.29	04.3	04.34	04.32	04.37	04.34	04.25	04.61	04.79	04.87	05.35
2001 Apr 11	11.54	11.58	11.67	11.47	11.50	11.54	11.35	11.43	11.52	11.58	12.00	11.958	12.75
2001 Aug 17	17.18	17.08	17.05	16.97	16.94	16.92	17.00	16.98	16.97	17.45	17.87	18.00	18.896
2001 Nov 24	24.13	24.14	24.13	24.17	24.17	24.14	24.17	24.13	24.06	24.25	24.58	24.708	25.541
2002 May 23	23.13	23.08	23.00	23.17	23.09	23.04	23.21	23.13	23.09	23.44	23.58	23.896	25.75
2002 Sep 07	07.71	07.72	07.67	07.62	07.62	07.63	07.66	07.68	07.71	07.6	08.00	07.708	08.6875
2002 Sep 30	30.56	30.45	30.43	30.56	30.48	30.42	30.52	30.45	30.36	30.31	31.16	30.917	31.6875
2003 Nov 20	19.89	21.34	21.12	20.08	20.45	20.86	20.29	20.43	20.63	20.31	20.67	21.26	22.29
2004 Jan 21	22.09	22.03	21.96	21.98	22.00	21.97	21.83	21.91	21.90	22.09	22.50	22.58	23.58
2004 Jul 26	26.60	26.64	26.75	26.59	26.65	26.75	26.67	26.77	26.86	26.93	27.29	27.08	28.00

Fig. 6. Magnetic field compression associated with the FD event on 24 November 2001. In the first panel the black line denotes \(B_{\text{total}} \) and the black dotted line denotes \(B_p \). The black line in the second panel shows the turbulence level for \(B_{\text{total}} \). In both panels the vertical lines black-solid corresponds to the shock arrival time, black-dotted correspond to magnetic cloud start time and black-dashed correspond to magnetic cloud end time.

It is clear from Figures 5, A.3, A.4, 6 and Table 2 that the peak of the magnetic field compression responsible for the FD lies in the sheath region, and the turbulence level is also enhanced in this region. This is in broad agreement with Richardson & Cane (2011).

5. How similar are the FD and the IMF profiles?

One of the near-Earth effects of a CME is the compression of (and consequent increase in) the IMF. IMF measured by spacecrafts such as WIND and ACE can detect these magnetic field compressions. We investigate the relation of these magnetic field compressions to the FD profile. We work with the hourly resolution IMF data from the ACE and WIND spacecrafts obtained from the OMNI database. Applying the low-pass filter, described in 2 to this data yields a combined magnetic field compression comprising the shock and ICME/magnetic cloud. A visual comparison of the FD profile with the magnetic field compression often reveals remarkable similarities. To quantify the similarity between these two profiles, we studied the cross correlation of the cosmic ray intensity profile with the IMF profile. In order to do so, we shift the magnetic field profile (with respect to the FD profile) by amounts ranging from -36 hours to 12 hours. We identify the peak correlation value and the shift corresponding to this value is considered to be the time lag between the IMF and the cosmic ray FD profile. Most of the FD events exhibit correlations ≥ 60% with at least one of the four IMF components \((B_{\text{total}}, B_x, B_y, B_z) \). Examples of the correlation between the FD profile and \(B_{\text{total}} \) for the events 24 November 2001, 11 April 2001 and 23 May 2002 are shown in the Figures and and respectively. The top panel in these Figures shows the percentage deviation of the cosmic ray flux and the \(B_{\text{total}} \). The percentage deviation of \(B_{\text{total}} \) is scaled to fit in the frame. The middle panel shows the same percentage deviations but the magnetic field is shifted by the peak correlation lag and the bottom panel shows the correlation coefficients corresponding to different lags. The correlation lag means that the IMF profile precedes the FD profile by 21 hours for the 24 November 2001 event, by 19 hours for the 11 April 2001 event and 13 hours for the 23 May 2003 event. In particular, Table gives the maximum cross correlation values obtained for different FD profile of different directions of GRAPES-3 to the total magnetic field compression and different components of magnetic field for the 24 November 2001 event. The same quantities for Tibet neutron monitor data is also shown in last row of this Table. In further discussion we consider only those events showing a cross correlation ≥ 70% for lags between -36 to 12 hours. The events thus short-listed are listed in Table From these, we will further narrow down events for which the FD profile exhibits a high correlation with the perpendicular component of the IMF.

5.1. Cross-field diffusion into the ICME through the sheath

The time lag between the cosmic ray flux and the IMF is due to the fact that the high energy protons do not respond to magnetic field compressions immediately; they are subjected to the classical magnetic mirror effect arising from the gradient in the longitudinal magnetic field and to turbulent cross-field (also referred as perpendicular) diffusion (e.g. Kubo & Shimazu, 2010). Here, we concentrate only on the cross-field diffusion of the high energy protons through the turbulent sheath region between the shock and the CME. As discussed earlier, we have identified the IMF compression to comprise mainly of this sheath region; we therefore use the observed values of the mean field and turbulent fluctuations in the sheath region to calculate representative diffusion timescales for cosmic rays. The time delay between the IMF compression and the FD profile (i.e., the correlation lag) can be interpreted as the time taken by the cosmic rays to diffuse into the magnetic compression. Our approach may be contrasted
Table 3. Correlation of FD profile in different direction observed in GRAPES-3 with magnetic fields for the 24 November 2001 event. The numbers in the last row are derived from the Tibet neutron monitor data.

Instrument	dir.	Rg (GV)	FD mag. (%)	B_{total} err (%)	Lag (hrs)	Corr. (%)	B_y err (%)	Lag (hrs)	Corr. (%)	B_y err (%)	Lag (hrs)	Corr. (%)	B_y err (%)	Lag (hrs)
NW	15.3	2.60	80.4	3.8	-23	27.3	6.2	-13	36.3	6.0	-35	73.0	4.4	-13
N	18.7	2.38	82.3	3.7	-23	29.2	6.2	-16	37.9	6.0	-35	73.8	4.4	-12
GRAPES-3	24.0	1.69	80.7	3.8	-26	26.5	6.2	-19	39.3	5.9	-35	72.6	4.5	-14
W	14.3	2.85	85.3	3.4	-21	30.1	6.1	-12	40.3	5.9	-30	75.7	4.2	-11
V	17.2	2.71	85.3	3.4	-21	29.4	6.2	-14	40.5	5.9	-28	76.3	4.2	-11
E	22.4	2.00	82.1	3.7	-24	29.7	6.2	-17	39.3	5.9	-22	75.5	4.2	-13
SW	14.4	2.49	84.6	3.4	-21	29.1	6.2	-12	41.0	5.9	-31	74.3	4.3	-11
S	17.6	2.44	84.9	3.4	-21	31.0	6.1	-14	39.0	6.0	-27	76.6	4.1	-11
SE	22.4	1.89	81.1	3.8	-26	32.4	6.1	-20	36.8	6.0	-22	77.1	4.1	-14
Tibet	14.1	4.28	87.9	3.1	-20	27.7	6.2	-11	38.9	6.0	-20	75.6	4.2	-8

Fig. 7. Cross correlation of the cosmic ray flux with B_{total}. Top panel shows the percentage deviation of cosmic ray flux using solid black lines and the magnetic field using dotted black lines (scaled to fit in the frame). The middle panel shows the same with magnetic field shifted to the right corresponding to the time lag and the bottom panel shows the correlation coefficient for different lags.

6. Cross-field diffusion coefficient (D_f)

The cross-field diffusion coefficient D_f governs the diffusion of the ambient high-energy protons into the CME across the magnetic fields that enclose it. The topic of cross-field diffusion of charged particles across magnetic field lines in presence of turbulence is subject of considerable research. Analytical treatments include classical scattering theory (e.g. Giacalone & Jokipii (1999), and references therein) and non-linear guiding center theory (Matthaeus et al. 2003; Shalchi, 2010) for cross-field diffusion. Numerical treatments of cross-field diffusion of charged particle in turbulent magnetic field include Giacalone & Jokipii (1999), Casse, Lemoine, & Pelletier (2002), Candia & Roulet (2004), Tautz & Shalchi (2011) and Potgieter et al. (2014). We seek a concrete prescription for D_f that can incorporate observationally determined quantities.

6.1. D_f: Candia & Roulet (2004)

The D_f prescription we use is given by Candia & Roulet (2004), obtained from extensive Monte Carlo simulations of cosmic rays propagating through tangled magnetic fields. Their results reproduce the standard results of Giacalone & Jokipii (1999) and Casse, Lemoine, & Pelletier (2002), and also extend the regime of validity to include strong turbulence and high rigidities. The extent of cross-field diffusion of protons depends on 1) the proton rigidity, which indicates how tightly the proton is bound to the magnetic field. 2) the level of magnetic field turbulence, which can contribute to field line transport.

Candia & Roulet (2004) give the following fit for the ‘parallel’ diffusion coefficient D_y (which is due to scattering of the particles back and forth along the mean field, as the field is subject to random turbulent fluctuations),

\[D_y \equiv cL_{max} \rho \left(\frac{\rho}{\rho_i} \right) \left(\frac{\rho}{\rho_i} \right)^{1+\gamma} \]

where c is the speed of light and the quantities N_i, \gamma, and \rho_i are constants specific to different kinds of turbulence whose values are listed in Table 1 of Candia & Roulet (2004). L_{max} is the maximum length scale of turbulence, in our case we considered it as size of the CME near the Earth. The quantity \rho is related to the rigidity of the proton Rg as,

\[\rho \equiv \frac{r_i}{L_{max}} = \frac{Rg}{B_0L_{max}} \]

with that of Kubo & Shimazu, (2010), who use a computational approach to investigate cosmic ray dynamics (thus incorporating both the mirror effect and cross-field diffusion) in a magnetic field configuration that comprises an idealized flux rope CME. They do not consider the sheath region, and neither do they use observations to guide their choice of magnetic field turbulence levels.

To calculate the cross-field diffusion timescale, we proceed as follows: considering the flux rope geometry of a near-Earth CME, the magnetic field along the Sun-Earth (B_x) represents the longitudinal magnetic field. The fields B_y and B_b represent the perpendicular magnetic fields encountered by the diffusing protons. In our discussion we consider only cross-field diffusion; we therefore choose events which exhibit good correlation with the B_y and B_b magnetic field compressions and poor correlation with compressions in B_x. The events short listed using these criteria are listed in Table 4.
The quantity \(N_L (\sigma^2)^{a_L}, \) is the magnetic turbulence level, which is defined as in Eq (2).

The cross-field diffusion coefficient (\(D_{\perp} \)) is related to the parallel one (\(D_{\parallel} \)) by,

\[
D_{\perp} = \begin{cases}
N_L (\sigma^2)^{a_L}, & (\rho \leq 0.2) \\
N_L (\sigma^2)^{a_L} \left(\frac{\rho}{\rho_0} \right)^2, & (\rho \geq 0.2)
\end{cases}
\]

\[(5) \]

The quantities \(N_L \) and \(a_L \) are constants specific to different kinds of turbulent spectra, and are given in Table 1 of Candia & Roulet (2004). We note that the exponent characterizing the IMF turbulence may vary through the magnetic field compression associated with FD (Alania & Wawrzynczak, 2012). Although the treatment of Candia & Roulet (2004), which we use, cannot accommodate arbitrary turbulent spectrum indices, it can address the Kolmogorov (\(\gamma = 5/3 \)), Kraichnan (\(\gamma = 3/2 \)) and Bykov-Toptygin (\(\gamma = 2 \)) spectra. We therefore quote results for all three turbulence spectra.

7. The IP B field compression-FD lag: how many diffusion lengths?

We have shown that the FD profile is often very similar to that of the IMF compression, and lags it by a few hours. This observed lag is poorly correlated with the FD magnitude and the CME speeds (both near the Sun and near the Earth). We interpret the observed time lag between the IMF and the FD profiles as the time taken by the protons to diffuse through the magnetic field compression via cross-field diffusion. The time taken for a single turbulence random walk of a high energy proton into the magnetic structure of CME is given by,

\[
\tau_{diff} = D_{\perp} / \nu_{sw}
\]

\[(6) \]

where \(\nu \) is the speed of light (which is the typical propagation speed for the highly relativistic galactic cosmic rays we are concerned with) and \(\nu_{sw} \) is the solar wind velocity upstream of the CME.

When using the \(D_L \) from Candia & Roulet (2004), we use two different ways for computing the turbulence level \(\sigma^2 \): in the first one, we calculate \(\sigma^2 \) as a function of time using the one-minute averaged IMF data, as described in Eq (2). In the second, we assume a constant value of 15% for \(\sigma^2 \), which is typically expected to be the maximum level of turbulence in quiet solar wind (Spangler, 2002). We used both these methods to calculate \(\tau_{diff} \) for Kolmogorov, Kraichnan and Bykov-Toptygin turbulent spectra. Using these values of \(\tau_{diff} \), we estimated the number of diffusion lengths required to account for the observed time lag between the FD profile and the IMF profile using

\[
\text{No. of Diffusions} = \frac{\tau_{lag}}{\tau_{diff}}
\]

\[(7) \]

The results for number of diffusion times needed to account for the observed lag between the IMF enhancement and the FD profile are shown in Table 7. These numbers are calculated using the peak value of the IMF profile. It is evident that the observed lags can be accounted for by a few tens to a few hundred diffusion times. There are two exceptional events on: 2001 December 14 and 2003 December 27, where the number of diffusions is \(\sim 1000 \) using the time-varying \(\sigma^2 \) prescription. There are three events in this list that have no correlation lag between the IMF profile and FD profile. The FD on 2001 May 27 correlates well with \(B_{tot} \), the FD on 2002 December 22 correlates well with \(B_L \) and the FD on 2003 May 04 correlates with the \(B_z \) with no correlation lag.

8. Summary

We studied all FD events observed by the GRAPES-3 muon telescope during the years 2001–2004 satisfying the broad criteria listed in §2. For a sample of especially well-observed events, we find that the magnetic field compression responsible for the FD as well as the turbulence level gets enhanced in the shock-sheath region. For these events, details regarding shock timing, magnetic cloud start and end timings along with the FD onset time for different directions are given in the Table 2.

We find that the FD profiles looks remarkably similar to that of the corresponding IMF compression and lags it by few hours.

Event	CME (near Sun)	Time (UT)	\(V_m \) km s\(^{-1} \)	Corr.(%)	\(B_{tot} \) Lag (hrs)	Corr.(%)	\(B_L \) Lag (hrs)	Corr.(%)	\(B_z \) Lag (hrs)
Jan 13	Jan 10	00:54	832	97.2	-13	95.8	-14	96.6	-23
Apr 11	Apr 10	05:30	2411	90.7	-19	89.9	-17	91.3	-5
May 27	May 25	04:06	354	569	0	65.0	-3	75.7	-21
Aug 13	Aug 11	04:30	313	548	-7	97.5	-7	70.0	-5
Sep 12	Sep 11	14:54	791	79.2	-25	26.7	-30	86.2	-1
Nov 24	Nov 22	23:30	1437	85.3	-21	41.0	-31	77.1	-14
Dec 14	Dec 13	14:54	864	74.7	-35	69.7	-2	72.8	-17
Sep 07	Sep 05	16:54	1748	77.1	-18	49.6	-24	87.4	3
Sep 29	Sep 29	15:08	261	958	8	72.1	-1	75.7	-12
Dec 22	Dec 19	22:06	1092	73.4	-15	43.4	0	84.7	-12
Jan 23	Jan 22	05:06	338	875	70.9	-21	-	75.4	-28
Feb 16	Feb 14	20:06	256	796	-	-	-	74.3	-11
May 02	May 02	12:26	222	595	83.4	84.7	-10	80.7	0
Jul 23	Jul 23	05:30	302	543	95.3	-19	73.3	21.6	2
Dec 25	Dec 25	09:06	257	178	-35	21.7	5	87.2	-3
Aug 29	Aug 29	02:30	274	1195	-	-	-	92.4	1
Dec 03	Dec 03	00:26	1216	85.3	-12	89.4	8	58.4	-13
Dec 08	Dec 08	20:26	611	81.1	-17	73.3	-25	78.9	-13
(Table B.1). Since we want to focus on cross-field diffusion, we further selected the FD events whose profiles correlate well with the enhancements in the perpendicular magnetic fields (B⊥, B⊥) and not with the radial magnetic field (B∥); these events are listed in Table B.2. We have calculated the number of diffusions using Eq 7 for 14.3 GV and 24.0 GV protons. The number of diffusions corresponding the observed lag for the selected events are listed in Table B.2. For most events we find that the observed time lag corresponds to a few tens to a few hundred diffusions.

9. Conclusion

The results of Arunbabu et al. (2013) show that FDs are due to cumulative diffusion of galactic cosmic ray protons into the CME as it propagates from the Sun to the Earth. However, the precise nature of the diffusive barrier was left unspecified, and the diffusion was assumed to occur across an idealized thin boundary that presumably had to do with the turbulent sheath region. The results of this work clearly show that the magnetic field enhancement responsible for the FD comprises the shock-sheath region. The FD profile looks like a lagged (and inverted) copy of the magnetic field enhancement (Table 1). The FD lags the magnetic field enhancement by a few hours (Tables B.1 and B.2). We have quantitatively shown that the time lag between the FD and the magnetic field enhancement can be accounted for by cross-field diffusion through the turbulent sheath region (Table B.2). This work establishes i) the importance of the turbulent sheath region between the shock and ICME. We show that the magnetic field enhancement responsible for the FD comprises the shock-sheath, and the magnetic turbulence level is also enhanced in this region (\hat{B}); ii) the viability of cross-field diffusion through the turbulent CME sheath as the primary mechanism for FDs (\hat{B}).

Acknowledgements. K. P. Arunbabu acknowledges support from a Ph.D. studentship at IISER Pune. Subramanian acknowledges partial support via the CAWSES-II program administered by the Indian Space Research Organization and via a grant from the Asian Office of Aerospace Research and Development, Tokyo. We thank D. B. Arjunan, A. Jain, the late S. Karthikeyan, K. Manjunath, S. Murugapandian, S. D. Morris, B. Rajesh, B. S. Rao, C. Ravindran, and R. Sureshkumar for their help in the testing, installation, and operation of the proportional counters and the associated electronics and during data acquisition. We thank G. P. Francis, I. M. Haroon, V. Jeyakumar, and K. Ramadass for their help in the fabrication, assembly, and installation of various mechanical components and detectors. We are thankful to the Tibet neutron monitor groups for making the data available on the internet. We thank the anonymous referee for a thorough and helpful review.

References

Alania, M. V., & Wawrzynzczak, A., 2012, AdSpR, 50, 725
Arunbabu, K. P., Antia, H. M., Dugad, S. R., Gupta, S. K., Hayashi, Y., Kawakami, S., Mohanty, P. K., Nonaka, T., Oshima, A., Subramanian, P., 2013, A&A, 555, 139
Belov, A. V., Eroshenko, E. A., Olenova, V. A., Struminsky, A. B., Yanke, V. G., 2001, AdSpR, 27, 625
Botheiner, V., & Schwenn, R. 1998, Ann. Geophysicae, 16, 1
Burlaga, L. F., Sittler, E., Mariam, F., & Schwenn, R. 1981, J. Geophys. Res., 86, 6673
Candia, J., & Roulet, E. 2004, J. Cosmology & Astropart. Phys., 10, 1007
Casse, F., Lemoiné, M., & Pelletier, G. 2002, Phys. Rev. D, 65, 023002
Dumbrovich, M.; Vešnak, B.; Čalogović, J.; Župan, R., 2012, A&A, 538, 28
Forbush, S. E., 1937, Phys. Rev, 51, 1108
Forbush, S. E., 1938, Phys. Rev, 54, 975
Giacalone, J., & Jokipii, J. R. 1999, Apj, 520, 204
Gupta, S. K., Aikawa, Y., Gopalakrishnan, N. V., et al., 2005, Nucl. Instrum. Methods A, 540, 311
Gupta, S. K., Antia, H. M., Dugad, S. R., et al., 2009, Nucl. Phys. B Proc. Suppl., 196, 153

Appendix A: Additional figures
Appendix B: Additional Tables
Table B.1. List of FD events for which the correlation coefficient between the profiles of the FD and the IMF enhancement ≥ 70%. The ‘-’ entries denote events that have low correlation values for lags between -36 and 12 hours.

Event	B_{total}	B_x	B_y	B_z					
	Correlation (%)	Coeff.	Err	Coeff.	Err	Coeff.	Err	Coeff.	Err
13 Jan 2001	97.2	2.4	-	-	95.8	2.9	96.6	2.6	
26 Mar 2001	70.3	6.5	-	-	-	-	39.1	8.3	
4 Apr 2001	92.8	3.1	97.3	1.9	77.2	5.3	63.4	6.4	
7 Apr 2001	94.3	3.0	92.7	3.4	71.9	6.2	54.2	7.7	
11 Apr 2001	90.7	3.5	-	-	89.9	3.7	91.3	3.4	
27 May 2001	66.5	7.7	27.8	9.8	65.0	7.7	75.7	6.7	
1 Jun 2001	77.1	4.9	70.5	5.4	52.3	6.6	54.5	6.5	
13 Aug 2001	51.8	7.2	-	-	97.5	1.8	70.0	5.9	
17 Aug 2001	84.6	3.8	-	-	31.2	6.8	58.0	5.9	
6 Sep 2001	68.8	6.1	87.0	4.1	64.7	6.3	45.1	7.5	
12 Sep 2001	79.2	4.2	56.2	5.6	26.7	6.6	86.2	3.5	
29 Sep 2001	70.3	4.0	-	-	58.1	4.6	-	-	
5 Nov 2001	88.3	3.0	64.6	4.9	34.8	6.1	-	-	
24 Nov 2001	85.3	3.4	32.4	6.1	41.0	5.9	77.1	4.1	
14 Dec 2001	74.7	3.5	42.7	4.8	69.7	3.8	72.8	3.6	
23 May 2002	98.1	2.0	79.4	6.2	75.9	6.7	60.0	8.2	
7 Sep 2002	77.1	4.6	-	-	49.6	6.3	87.4	3.5	
23 Sep 2002	60.4	5.8	87.9	3.5	41.4	6.6	93.1	2.6	
30 Sep 2002	81.1	5.3	58.7	7.4	72.1	6.3	75.7	6.0	
22 Dec 2002	73.4	4.9	-	-	43.4	6.5	84.7	3.8	
9 Jan 2003	90.1	3.3	68.1	6.7	-	-	56.2	6.4	
23 Jan 2003	70.9	6.4	-	-	-	-	75.4	6.0	
30 Jan 2003	94.8	3.7	84.4	6.4	42.7	10.7	95.7	3.4	
16 Feb 2003	-	-	31.3	5.3	-	-	74.3	3.7	
26 Mar 2003	77.1	3.8	64.8	4.5	-	-	-	-	
4 May 2003	83.4	5.6	32.8	9.7	84.7	5.4	80.7	6.1	
18 May 2003	86.5	3.6	-	-	-	-	-	-	
25 Jul 2003	95.3	2.8	47.9	8.0	73.3	6.2	41.6	8.3	
16 Aug 2003	71.6	6.4	49.6	8.0	45.5	8.2	57.7	7.5	
21 Oct 2003	80.1	6.1	92.0	4.0	70.1	7.3	93.5	3.6	
27 Dec 2003	86.1	4.2	-	-	21.7	8.1	87.2	4.1	
21 Jan 2004	77.9	4.0	78.2	4.0	-	-	-	-	
29 May 2004	53.1	6.6	90.2	3.3	-	-	86.9	3.8	
26 Jul 2004	86.5	4.2	73.5	5.7	85.5	4.3	94.8	5.6	
30 Aug 2004	-	-	-	-	-	-	92.4	2.9	
5 Dec 2004	85.3	3.1	-	-	89.4	2.6	58.4	4.8	
12 Dec 2004	81.1	4.2	61.6	5.7	73.3	4.9	78.9	4.4	
Fig. A.1. The FD event of 11 April 2001 and the magnetic field for 9 directions in GRAPES-3 muon telescope. The linestyles are same as used in Figure 2.

Fig. A.2. The FD event of 23 May 2002 and the magnetic field for 9 directions in GRAPES-3 muon telescope. The linestyles are same as used in Figure 2.
Fig. A.3. FD event on 11 April 2001. The linestyles are same as used in figure 5.

Fig. A.4. FD event on 23 May 2002. The linestyles are same as used in figure 5.
Fig. A.5. Cross correlation of the cosmic ray flux with B_{total}. Top panel shows the percentage deviation of cosmic ray flux using solid black lines and the magnetic field using dotted black lines (scaled to fit in the frame). The middle panel shows the same with magnetic field shifted to the right corresponding to the time lag and the bottom panel shows the correlation coefficient for different lags.

Fig. A.6. Cross correlation of the cosmic ray flux with B_{total}. Top panel shows the percentage deviation of cosmic ray flux using solid black lines and the magnetic field using dotted black lines (scaled to fit in the frame). The middle panel shows the same with magnetic field shifted to the right corresponding to the time lag and the bottom panel shows the correlation coefficient for different lags.
Table B.2. Number of diffusions required for the observed lag in FD events using three different turbulent spectrums and two different methods described in \(\sigma \). 1st stands for the method using dynamic \(\sigma \), 2nd stands for the method using a constant \(\sigma \).

Event	\(\sigma \) (%)	Rg (GV)	Lag (hrs)	No. of diffusions	B_{\text{ref}}	Lag (hrs)	No. of diffusions	B_{\text{ref}}	Lag (hrs)	No. of diffusions	B_{\text{ref}}
2001 Jan 13	8-15	14.3	-0.7	216	106	89	279	153	326	120	120
	24.0	-0.7	165	250	199	97	273	130	49	73	49
2001 Apr 11	10-23	14.3	-0.7	838	583	695	307	953	415	-12	-12
	24.0	-0.7	312	247	277	224	99	254	108	-17	-17
2001 May 27	8-13	14.3	-0.7	1346	872	494	1066	614	1440	736	736
	24.0	-0.7	302	288	298	287	93	326	399	499	499
2001 Aug 13	10-20	14.3	-0.7	776	555	241	667	936	1255	393	393
	24.0	-0.7	532	172	295	928	369	245	313	497	497
2001 Sep 12	10-20	14.3	-0.7	207	171	177	224	99	254	108	108
	24.0	-0.7	172	205	205	205	100	167	198	174	174
2001 Nov 24	20-40	14.3	-0.7	822	666	338	834	442	1067	456	456
	24.0	-0.7	113	173	311	126	363	165	490	181	181
2001 Dec 14	5-12	14.3	-0.7	1346	872	494	1066	614	1440	736	736
	24.0	-0.7	302	288	298	287	93	326	399	499	499
2002 Sep 07	5-20	14.3	-0.7	776	555	241	667	936	1255	393	393
	24.0	-0.7	532	172	295	928	369	245	313	497	497
2002 Sep 30	10-20	14.3	-0.7	207	171	177	224	99	254	108	108
	24.0	-0.7	172	205	205	205	100	167	198	174	174
2002 Dec 22	5-13	14.3	-0.7	822	666	338	834	442	1067	456	456
	24.0	-0.7	113	173	311	126	363	165	490	181	181
2003 Jan 23	8-18	14.3	-0.7	1346	872	494	1066	614	1440	736	736
	24.0	-0.7	302	288	298	287	93	326	399	499	499
2003 Feb 16	5-17	14.3	-0.7	776	555	241	667	936	1255	393	393
	24.0	-0.7	532	172	295	928	369	245	313	497	497
2003 May 04	10-40	14.3	-0.7	252	200	101	245	121	325	157	157
	24.0	-0.7	200	132	214	121	325	157	157	157	157
2003 Jul 25	8-15	14.3	-0.7	365	289	554	367	704	408	-2	-2
	24.0	-0.7	312	224	247	124	321	177	224	-2	-2
2003 Dec 27	4-12	14.3	-0.7	1210	900	380	1079	446	1497	603	603
	24.0	-0.7	900	312	380	1079	446	1497	603	603	603
2004 Aug 30	8-20	14.3	-0.7	326	200	101	245	121	325	157	157
	24.0	-0.7	200	132	214	121	325	157	157	157	157
2004 Dec 05	10-23	14.3	-0.7	326	200	101	245	121	325	157	157
	24.0	-0.7	200	132	214	121	325	157	157	157	157
2004 Dec 12	5-20	14.3	-0.7	326	200	101	245	121	325	157	157
	24.0	-0.7	200	132	214	121	325	157	157	157	157