I. Introduction

Computational studies in linguistics have led to a variety of proposals for semantic representations of natural language. To a first approximation these all have a number of features in common. First, there is some formal language onto which, with the aid of a grammar, surface forms are mapped. Secondly, there is a formal language (usually, but not necessarily, the same as the first) for the representation of world knowledge and which is used to perform inferences necessary for integrating the surface form into the knowledge structure and/or for answering questions. Finally, there is, or should be [5,18] a specification of the semantics of these formal languages.

There seem to be three dominant proposals for semantic representations:

1) Procedural semantics [16,17] where the underlying representation consists of procedures in some executable language.
2) Network structures [11,13,14] which represent knowledge by appropriate graphical data structures.
3) Logical representation [3,7,12] which express world knowledge by formulae in some formal calculus.

These distinctions are not nearly as clear as one might like. Both logical and network representations, often appeal to procedural components, networks appear to be representable as logical formulae via fairly direct mappings [15], while logical formulae have straight-forward procedural representations [6].

In this paper I shall discuss mechanisms for formal reasoning within logical representations. I shall make the (gross) assumption that surface forms have already been mapped onto some form of predicate calculus representation. In particular, I make no claims about the role or nature of the inferences required in mapping from surface structures to a logical deep structure. Neither do I take any position on the primitives of this deep structure. They may derive from a case oriented grammar, conceptual dependency theory etc. Ultimately, of course, the extent to which the choice of these primitives facilitates inference will be a factor affecting this choice. I take it as self evident that no semantic representation can explicitly contain all of the information required by a language understanding system so there is a need for inferring new knowledge from that explicitly represented. In this connection it is worth observing that, contrary to some prevailing opinions, formal reasoning does not preclude fuzzy or imprecise reasoning. There are no a priori reasons why notions like "probably", "possibly", etc. cannot be formalized within a logical calculus and new imprecise knowledge deduced from old by means of preferably definite and precise rules of inference.

In the remainder of this paper I discuss two paradigms for formal reasoning with which I have worked - resolution and natural deduction - and argue in favour of the latter approach. I also indicate how other semantic representations - procedures and networks - might fit into this paradigm. Finally, I discuss some problems deriving from computational linguistics which have not been seriously considered by researchers in formal inference but which I think might fruitfully be explored within a logical framework.

2. Paradigms for Formal Reasoning

A. Resolution [10]

The resolution principle is based on five key concepts, two of which (the elimination of quantifiers through the introduction of Skolem functions, unification) are of particular relevance to problems in the representation of linguistic deep structures.

1) The elimination of quantifiers

One might choose to assign to the statement "Every animal has a nose" a logical representation of the form

\[(x)(3y)[\text{ANIMAL}(x) \lor \text{HAS-AS-PART}(x, y) \land \text{NOSE}(y)]\] (1)

As is well known, the sequence of quantifiers at the head of this formula is critical to its interpretation - interchanging them assigns a totally different meaning to the formula. Hence each quantifier is assigned a scope which, roughly speaking, is the maximal part of the formula governed by that quantifier. Unfortunately, the representation of quantifiers and their scope leads to some complexity in processing this information. (Anyone who has faced this problem in semantic net representations is well aware of the difficulties.) An elegant solution is to replace each existentially quantified variable \(y\) in (1) by a new Skolem function (which in (1) we can call "nose") whose arguments are all of the universally quantified variables \(x\) in (1) in whose scope the existential variable lies. (Thus \(y\) is replaced by \(\text{nose}(x)\) in (1).) Next, all of the quantifiers are deleted. The resulting formula is logically equivalent to the original. The quantifier-free formula of (1) is

\[\text{ANIMAL}(x) \lor \text{HAS-AS-PART}(x, \text{nose}(x)) \land \text{NOSE}(\text{nose}(x))\] (2)

The reduction of formulae to quantifier-free form also admits a primitive form of inference by pattern matching (unification).

(ii) Unification

In effect the unification algorithm answers questions like "Is formula A an
Resolution is also complete. This means that if T is indeed logically valid (T is true under all possible interpretations in which the knowledge base is true) then there is a refutation proof of T with resolution as the sole rule of inference. There are two observations one can make here. The first is that resolution is very much a competence model for formal inference. By no stretch of the imagination can it be construed as a performance model, in part because of its canonical representation for formulae, in part because of its "unnatural" rule of inference. Secondly, by virtue of its completeness resolution is provably adequate as a competence model, in contrast with linguistic competence models for which the adequacy of any proposed theory is largely an empirical question.

It is the combination of representational security deriving from completeness and theoretical elegance deriving from the simplicity of the underlying logic that has led to so much intensive research into resolution. In particular, attempts to deal with the gross inefficiency of the theory have been largely syntactic, designed to constrain the possible inferences that can be made, but without sacrificing the completeness security blanket. Very little research has been devoted to the representation and use of domain knowledge, primarily, I think, because the ways in which humans use such knowledge have no correspondents within the resolution paradigm.

B. Natural Deduction Systems[1,8,9]

These can best be characterized as attempts to define a performance model for logical reasoning, in contrast to resolution as a competence model. In particular, any such model must make use of all of the domain specific "non-logical" knowledge available to a human, and make use of it in corresponding ways. Among the features of such systems are the following:

(i) Formulae are quantifier-free, but remain in their "natural" form. Thus, (1) is represented in the form (2), not as (3).

(ii) There are many (not just one) rules of inference, each corresponding to some observable inference mechanism used in human reasoning. Some examples: (grossly simplified. In particular the role of unification is suppressed.)

(a) Generalized modus ponens. If A∧B∧C∧D is a known fact, and if A∧B and C are all known facts, then D may be deduced as a new known fact. If one of A,B or C is not known, no deduction is made.

(b) Back-chaining. If the current subgoal is to prove D, and if C∧D is known, then a possible next subgoal is to prove C.

(c) Case analysis. If A∧B is known, generate two cases, one a context in which A is assumed true, the other a context in which B is true, and proceed with the proof for each context.

(d) Splitting conjunctive subgoals. If
the current subgoal is to prove $A \land B$, first prove A, then prove B.
(e) Implicative subgoals. If the current subgoal is to prove $A \Rightarrow B$, update the current context with A, and prove B.

Quite a number of additional inference rules are possible. I have given a few examples only to indicate the flavour of the approach, and to set the naturalness of some observations. First, the logic yields direct proofs, each of which must be provable assuming that its ancestor is provable. This property turns out to be critical for the application of domain specific knowledge for reducing search. (See (iii) below.) I know of no resolution logic with this property. Thirdly, the search for a proof proceeds by decomposing a problem into simpler problems as in rules (c), (d) and (e). Finally, there is an explicit representation of local contexts which prevents irrelevant formulae in adjacent contexts from polluting the local search. By way of contrast, resolution systems operate in a single global context.

(iii) Central to the natural deduction approach is its emphasis on the representation and appropriate use by the logic of domain specific knowledge. Examples of such knowledge are models, counterexamples, special cases etc. The fact that, as noted in (ii), each subgoal W must be provable provides the logic with a handle on how to use such knowledge. For if W or some special case of W is false in a model, or if there is a known counterexample to W, then there is no point in trying to prove it. If W is true in some model, or if it is possible to derive consequences of W which are known to be true, then there is additional evidence to warrant trying to prove it.

In some approaches [9] formulae in the knowledge base may have associated with them domain specific knowledge indicating how best to use that formula in the search for a proof. For example, in view of the enormous number of possible animals, there would be associated with $\text{CAT}(y) \Rightarrow \text{ANIMAL}(y)$ the advice: If you are trying to prove that something is an animal and you don't currently know it to be a cat, don't try to prove it is a cat. The representation of this kind of knowledge clearly derives from the exhortations of the proceduralist [6].

(iv) Natural deduction systems are incomplete. This seems to be a necessary consequence of their emphasis on generating subgoals each of which must be provable. There are serious questions as to whether this is a satisfactory state of affairs. A facile argument has it that humans are necessarily incomplete (because of natural time and space bounds) so there is no need for computational logic to concern itself with this issue. However, for a logic to qualify as a theory for a model, it must be incomplete in precisely the ways that we are. The fact is that we overcome some of the limitations to time and space bounds by appealing to a variety of "non-logical" processes. Typical of these processes is the inspired guess which one encounters in mathematics whenever an induction hypothesis is proposed, or some obscure expression is somehow pulled out of a hat to make a proof go through. One thing is certain. Neither the induction hypothesis, nor the expression was discovered by any process of pattern directed (via unification) search using the rules of inference of a logic, despite the fact that completeness guarantees the ultimate success of such a search. The difficulty with formulating an appropriate notion of completeness for a performance model is precisely in characterizing these non-logical processes and how they function in "completing" the underlying logically incomplete rules of inference. One of the virtues of natural deduction systems is that this distinction between logical and non-logical processes is made, and that it is possible in some fairly general situations for the logic to recognize when to invoke appropriate external routines [9].

3. The Two Cultures - Future Prospects

It is safe to say that there has been little communication between researchers in computational linguistics and formal inference. The justification seems to be that the former are concerned with performing shallow inference on large knowledge bases, whereas the latter focus on deep inference over relatively small domains. I believe this distinction is a superficial one, and that each discipline has much to gain from the problems and proposed solutions of the other. As an example of how a logical paradigm can be relevant to current ideas in computational linguistics, consider the relationship between semantic nets and logical representations.

Almost all of the question-answering systems that I know of use semantic nets for their inferencing component despite the fact that
(a) their semantics is by no means clear [18]
(b) there are serious difficulties in representing and processing quantifiers and their scopes
(c) no methods have been proposed for computing on a net which yield inferencing capabilities even remotely approximating those of a natural deduction system - capabilities which we know humans possess.

These are all non-problems for an appropriate logical system. Nevertheless, there are definite virtues to semantic nets as knowledge representations, especially their use in forming associations among concepts and their explicit representation of superset links. It seems to me that there would be definite advantages to interfacing a natural deductive system with a semantic net, each component doing what it does best. In its simplest realization, imagine a net all of whose nodes denote nominal concepts and all of whose links denote "subset" or "superset". Within the logic, each variable and function symbol occurring in a formula is assigned a type which is the domain over
which the variable is meant to range or the
range of the function symbol. Each such
node has a corresponding node in the net.

For example, \(2\) would be represented as
\[\text{HAS-AS-PART}(x\{\text{ANIMAL}\}, \text{nose}\{\text{NOSE}\})(x\{\text{ANIMAL}\})\]

The general fact that cats are animals
has no representation in the logical
model, but is represented in the net by
propriately linked \text{CAT} and \text{ANIMAL} nodes.

Notice how each component benefits from
the presence of the other. The logic
benefts by processing fewer, and
necessarily more compact formulae than
would otherwise be necessary. (Compare \(6\)
with \(2\)). In particular, compactification
eliminates many logical connectives, which
is the effect of reducing the number of
applications of rules of inference in
deriving a result. This is so because these
rules are "connective driven". Since search
is largely a matter of the nondeterministic
application of rules of inference, the
search space is reduced. Notice also that
the unifier is now responsible for some
inference beyond that of simple pattern
matching. From a search strategic point of
view there are sound reasons for encouraging
this transfer of logical power from the
rules of inference to the unifier. Thus,
the unifier should also be responsible for
ruling generally with transitive and
reflexive relations by appealing to
computations on appropriate data structures
which represent these relations. The
general point of view here is that as much
the inferencing as possible should be
"computerized" rather than
logically, leaving the logic to deal with
"difficult" problems. Given this view, a
semantic net is just one of a whole class of
possible data structures which facilitate
computation as a substitute for certain
kinds of deduction. Assuming that it is
possible to isolate "what nets do best" the
designer of a net is free to tune its
presentation and procedures with respect
to a few well defined tasks without concern
for its general inferencing abilities (or
lack thereof).

Finally, it must be admitted that there
are a host of problems deriving from
linguistic considerations which have not
even been considered by work in
formal inference. Many of these problems,
notably most of the "fuzzy" kinds of
reasoning described in \[2\], probably cannot
nicely be incorporated in any paradigm for
formal inference. Nevertheless, there
remain many interesting questions worth
exploring within a logical framework.

(1) Other quantifiers. Logic has been
content to deal with just two quantifiers --
"there exists" and "for all". Natural
language invokes a whole spectrum of
quantifiers - "most of", "many of", "seven
of", "a few of", etc. There is no
difficulty in augmenting the syntax of a
logical formalism with new quantifiers
corresponding to these. The difficulty is
in defining their semantics, and in
specifying appropriate new rules of
inference. It is possible, for example, to
define "most-of" as a Skolem function which effectively says "more than
80%", but I find this approach unsatisfying.
A different approach, borrowing on the
successful treatment of "there exists" in
logic, might define "most-of" as a Skolem
function with certain properties peculiar to
our understanding of the meaning of "most
of". Thus, one property of the "Skolem
function" most-of is that it unifies with
any term of the same type as the argument to
most-of; the unifier returns the atom
"probably". Thus, "Most dogs bark" becomes
something like \(\text{BARK}(\text{most-of}(x\{\text{DOG}\}))\), and
"Does Fido bark?" translates to
\(\text{BARK}(\text{fido}\{\text{DOG}\})\) Unification succeeds and
we conclude something like
\(\text{PROBABLY}(\text{BARK}(\text{fido}\{\text{DOG}\}))\). Clearly there
are plenty of problems here not least what
we mean by "probably", but the example gives
the flavour of a possible logical approach,
ass well as an indication how certain kinds
of "fuzzy" reasoning might be modeled in an
extended logic.

(ii) Different levels of memory - contexts
for wanting, needing etc. Consider
representing "x wants P" in some logical
formalism, where \(P\) is an arbitrary
proposition. In specifying the properties
of "WANT" we shall need (among other things)
some kind of schema of the form
\[\text{WANTS}(x,P) \equiv Q\]
where \(Q\) is an arbitrary proposition. This
is unlike anything that researchers in
formal inference have had to deal with. One
possible approach, deriving from the context
mechanism in natural deduction systems,
is to maintain a variety of contexts, one
containing formulae assumed universally true
(the knowledge base), and for each
individual \(x\) who wants something a context
of all the formulae representing what \(x\)
wants. Notice that within a want-context
there is no commitment to the truth value of
a formula - \(x\) may want a unicorn. The role of
the schema \((7)\) is assumed by the logic
which knows which intercontextual inferences
are legal.

(iii) Computation vs. deduction. This is a
general problem involving the trade-off
between the generality of deduction with its
attendant inefficiency, and the use of
highly tuned procedural specialists. My
particular bias is that one cannot entirely
do away with deduction, but that the logic
should recognize if and when a deduction is
best done procedurally, call the right
specialist, and know what to do with the
results returned. This point of view is reflected in my earlier suggestion that one possible role for a semantic net is as a specialist for checking compatibility of types. Similarly, work in procedural semantics (e.g. [17]) can be viewed as complementary to deduction, not as an antithetical paradigm.

Ideally, what we want is "search-free" inference i.e. an appropriate collection of procedural specialists together with some supervisory system which knows which specialist to call, and when. If the specialists are "factored out" there is no logic left. The possibility of realizing this ideal seems to me remote, if only because mathematics is a human activity which does require formal inference and hence search. Consequently, it is important to better understand this trade-off between computation and deduction (or the particular and the general) and we can hope that in the future researchers in formal reasoning will clarify some of the issues. In this connection it is worth remarking that the distinction between computation and deduction is by no means clear [4].

REFERENCES

[1] Bledsoe, W.W., Boyer, R.S. and Henneman, W.H., Computer proofs of limit theorems, Artificial Intelligence, 3 (1972), pp. 27-60.
[2] Carbonell, J.R. and Collins, A.M., Natural semantics in artificial intelligence, Proc. Third IJCAI, Stanford University, Stanford, CA (1973), pp.344-351.
[3] Coles, L.S., An on-line question-answering system with natural language and pictorial input, Proc. ACM 23rd Natl. Conf. (1968), pp.157-167.
[4] Hayes, P.J., Computation and deduction, Proc. Symposium on the Mathematical Basis of Computation, Czech. Academy of Sciences (1973).
[5] Hayes, P.J., Some problems and non-problems in representation theory, Proc. AISB Summer Conf., University of Sussex, Brighton, U. K. (1974), pp.63-79.
[6] Hewitt, C., Description and theoretical analysis (using schemata) of PLANNER: A language for proving theorems and manipulating models in a robot, AI TR-258 (1972), AI Lab., M.I.T.
[7] McCarthy, J. and Hayes, P., Some philosophical problems from the standpoint of artificial intelligence, Machine Intelligence 4, Meltzer and Michie (eds), pp.463-502 (American Elsevier, NYC 1969).
[8] Reiter, R., A semantically guided deductive system for automatic theorem-proving, Proc. Third IJCAI, Stanford University, Stanford CA (1973), pp.41-46.
[9] Reiter, R., A paradigm for formal reasoning, Dept. of Computer Science, Univ. of British Columbia (forthcoming).
[10] Robinson, J.A., A machine oriented logic based on the resolution principle, J. ACM, 12 (1965), pp.33-91.
[11] Rumelhart, D.E. and Norman, D.A., Active semantic networks as a model of human memory, Proc. Third IJCAI, Stanford University, Stanford CA (1973), pp.450-457.
[12] Sandewall, E.J., Representing natural language information in predicate calculus, Machine Intelligence 6, Meltzer and Michie (eds), pp.255-277.
[13] Schank, R.C., Identification of conceptualizations underlying natural language, Computer Models of Thought and Language, Schank and Colby (eds), pp.187-247, (W.H. Freeman and Company, San Francisco CA, 1973).
[14] Simmons, R.P., Semantic networks: their computation and use for understanding English sentences, Computer Models of Thought and Language, Schank and Colby (eds), pp.63-113.
[15] Simmons, R.P. and Bruce, B.C., Some relations between predicate calculus and semantic net representations of discourse, Proc. Second IJCAI, The British Computer Society, London (1971), pp.524-530.
[16] Winograd, T., Understanding Natural Language, Cognitive Psychology, 3, (1972).
[17] Woods, W.A., Procedural semantics for a question-answering machine, AFIPS Conf. Proc., FJCC, 33 (Part I), (1968), pp.457-471.
[18] Woods, W.A., What's in a link: Foundations for semantic networks, Representation and Understanding, Bobrow and Collins (eds), Academic Press (forthcoming).