Research Paper

Evaluation and Comparison of PBK and E2F7 Gene Expression Between Early and Advanced Stages of Colorectal Cancer

Reza Hashemi1, *Maryam Peymani1, Kamran Ghaedi1,2, Hana Saffar1,3

1. Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
2. Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
3. Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.

ABSTRACT

Background and Aim: PBK is a mitogen-activated protein kinase (MAPKK) among MEK1/2 and MEK7 and can phosphorylate P38, JNK, and ERK in many cellular functions. The E2F transcription factor family also belongs to a class of cellular regulators acting as oncogenes and tumor suppressors. This study aims to investigate the expression of PBK and E2F7 in the early stages of colorectal cancer (CRC) compared to advanced stages based on the experimental and TCGA (The Cancer Genome Atlas) database.

Methods & Materials: A total of 32 tissue samples of patients with CRC with the approval of a pathobiologist were collected according to the examination and criteria reported from different stages. After RNA extraction and cDNA synthesis, the RT-qPCR technique was used to evaluate the expression of the desired genes in the study groups. A receiver operating characteristic (ROC) curve analysis was also used to determine the ability of each of the selected genes to differentiate the two populations: stage I+II and stage III+IV.

Ethical Considerations: This research was approved by the ethics committee of Islamic Azad University, Shahrekord Branch. (Code IR.IAU.SHK.REC.1399.022).

Results: In this study, it was shown that the expression of PBK and E2F7 significantly increased in stage I+II samples compared to stage III+IV. These data were confirmed by laboratory results and information extracted from the TCGA database. Also, based on the area under curve obtained from the ROC curves, these two genes are significantly distinguishable between stage I+II and III+IV populations in CRC.

Conclusion: According to the results of this study, PBK and E2F7 genes are good markers in the diagnosis of CRC.

Key words: PBK expression, E2F7 expression, Colorectal cancer, ROC curve, Stage Stage

* Corresponding Author:
Maryam Peymani, PhD.
Address: Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
Tel: +98 (913) 2007650
E-mail: m.peymani@iaushk.ac.ir
Extended Abstract

Introduction

Classification of different stages of the tumor is one of the most important steps in colorectal cancer (CRC). Investigating the relationship between different gene expressions in patients with CRC and clinical features such as the stage of the disease can estimate the survival and prognostic status of patients and identify patients who are at higher risk for recurrence. PKB is a mitogen-activated protein kinase (MAPKK) among MEK1/2 and MEK7 and can phosphorylate P38, JNK, and ERK in many cellular functions [9]. In addition, PKB/TOPK plays an important role in inflammation, cell apoptosis, and cell cycle regulation. A high PKB/TOPK expression contributes to tumor growth, proliferation, and metastasis [10]. E2F is a group of genes that encode the transcription factor family and regulate genes involved in cell proliferation, differentiation, and apoptosis [12]. In this study, the expression level of genes in the early and advanced stages of CRC has been investigated based on laboratory data and the TCGA (The Cancer Genome Atlas) database.

Materials and Methods

To perform this study, tumor tissue was sampled from 32 patients with CRC at different stages. After surgery, tissue samples were placed in RNAlater solution (Behnogen, Iran) and transferred to the Biotechnology Research Center of Islamic Azad University, Shahrekord Branch. In this study, Trisol (Invitrogen, USA) was used to extract total RNA from these samples, which were placed in RNALater solution (Behnogen, Iran) and transferred to the Biotechnology Research Center of Islamic Azad University, Shahrekord Branch. In this study, Trisol (Invitrogen, USA) was used to extract total RNA according to the protocol, and the extracted RNA was evaluated qualitatively and quantitatively. The treated RNAs were used in the presence of DNaseI enzyme for 30 minutes at 37°C to remove possible contamination of the extracted RNA with genomic DNA. Finally, for cDNA synthesis, the kit of Yekta Tajhiz Azma Company and a random Hexamer primer were used. In the present study, the RT-qPCR technique was used to quantitatively measure the expression level of the desired genes. Also, based on RNASeq data extracted from TCGA and clinical information of the samples, the stage information of each sample was determined, and the samples were classified into two groups: stage I+II (n=268) and stage III+IV (n=199). The expression of the two genes was compared between these two groups.

Results

In this study, the expression levels of PKB and E2F7 in different stages of CRC in tumor tissues were analyzed using the RT-qPCR technique and ΔCt method. The results showed that the expression level of these genes changed significantly in different stages of the disease (Figure 1). As can be seen, the expression levels of PKB and E2F7 in stage I+II are 1.3 and 2.5 times higher than in the III+IV stage, respectively (Figure 1).

Also, the expression levels of PKB and E2F7 in colorectal tumor tissues were compared between stage I+II and stage III+IV based on the stage information and expression extracted from the TCGA database. The results showed that both genes in the early stages of the disease show a significant increase in expression (Figure 2).

The results from the TCGA database, based on the ROC curve diagram, showed PKB and E2F7 markers with areas below the surface of the diagram AUC=0.7035 and AUC=0.8323, respectively, as significant genes in isolation of these two populations (Figure 3).

Figure 1. PBK and E2F7 relative expression level change diagram in Stage I+II compared to Stage III+IV based on laboratory studies. The significance of gene expression changes was determined by t-test.

*, **** significance level P<0.05 and P<0.0001 were considered.
show a significant increase in expression (Figure 2).

Also, the expression levels of E2F7 genes were selected as genes with diagnostic potential in early CRC. The results of studies on gastric cancer showed that nuclear expression of PBK gene reduces the survival of patients. These results indicate that PBK increases carcinogenicity and metastasis of gastric cancer and acts as a potential biomarker for the prognosis of the disease. The analysis of laboratory data showed that the expression level of the PBK gene was higher in the early stages compared to the advanced stages. The results of transcriptome data also showed that the expression level of this gene in the early stages is higher than in the advanced stages.

The findings of this study showed that PBK and E2F7 genes have higher expression levels in the early stages than in the advanced stages. These results suggest that PBK and E2F7 genes can be used as biomarkers in the early stages. However, these findings need to be confirmed by further studies.

On the other hand, the results of the Kaplan-Meier survival analysis showed that higher expression of the PBK gene reduces the survival of patients. These results indicate that PBK increases carcinogenicity and metastasis of gastric cancer and acts as a potential biomarker for the prognosis of the disease. The analysis of laboratory data showed that the expression level of the PBK gene was higher in the early stages compared to the advanced stages. The results of transcriptome data also showed that the expression level of this gene in the early stages is higher than in the advanced stages.

The study of molecular genetics and the expression level of determining genes at different stages are useful for further understanding the pathogenesis and early detection of CRC. Therefore, detecting the expression level of PBK and E2F7 genes in the early and advanced stages of CRC with RT-qPCR, as well as confirming the results by transcriptome data set (TCGA), may help in early diagnosis and planning effective therapies. PBK and E2F7 genes have been considered biomarkers in various cancers. Therefore, in this study, for the first time, PBK and E2F7 genes were selected as genes with diagnostic potential in early CRC. The results of studies on gastric cancer showed that nuclear expression of PBK was significantly associated with increased invasion and lymph node metastasis.

Figure 2. PBK and E2F7 relative expression level change diagram in Stage I+II compared to Stage III+IV based on Cancer Genome Atlas data. The significance of gene expression changes was determined by t-test. *** and **** significance level P<0.100 and P<0.0001 were considered.

Discussion

The study of molecular genetics and the expression level of determining genes at different stages are useful for further understanding the pathogenesis and early detection of CRC. Therefore, detecting the expression level of PBK and E2F7 genes in the early and advanced stages of CRC with RT-qPCR, as well as confirming the results by transcriptome data set (TCGA), may help in early diagnosis and planning effective therapies. PBK and E2F7 genes have been considered biomarkers in various cancers. Therefore, in this study, for the first time, PBK and E2F7 genes were selected as genes with diagnostic potential in early CRC. The results of studies on gastric cancer showed that nuclear expression of PBK was significantly associated with increased invasion and lymph node metastasis.

Figure 3. Specificity and sensitivity of PBK and E2F7 markers in separating Stage I-II from Stage III+IV tumors

On the other hand, the results of the Kaplan-Meier survival analysis showed that higher expression of the PBK gene reduces the survival of patients. These results indicate that PBK increases carcinogenicity and metastasis of gastric cancer and acts as a potential biomarker for the prognosis of the disease. The analysis of laboratory data showed that the expression level of the PBK gene was higher in the early stages compared to the advanced stages. The results of transcriptome data also showed that the expression level of this gene in the early stages is higher than in the advanced stages.

The findings of this study showed that PBK and E2F7 genes have higher expression levels in the early stages than in the advanced stages. These results suggest that PBK and E2F7 genes can be used as biomarkers in the early stages. However, these findings need to be conf-
firmed by further studies. In addition, the level of expression of candidate genes in the early stages can be well distinguished from the advanced stages. Therefore, more molecular studies are needed to provide a deeper picture of the function of PBK and E2F7 in CRC.

Ethical Considerations

Compliance with ethical guidelines

This research was approved by the ethics committee of Islamic Azad University, Shahrekord Branch. (Code IR.IAU.SHK.REC.1399.022).

Funding

This article is taken from the PhD thesis of the Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University and was done with the support of the Research and Technology Vice-Chancellor of Shahrekord Azad University.

Authors' contributions

Study design and conceptualization and methodology: Reza Hashemi and Maryam Peymani; Data mining, formal analysis and review: Reza Hashemi; Supervision, validation, visualization and final approval: Maryam Peymani and Kamran Qaidi; Interpretation of obtained information: Maryam Peymani; sample collection: Hana Safar; Article writing, revision and editing: Reza Hashemi; All authors read and approved the final manuscript.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors thank and appreciate all the people who helped in collecting blood samples in this research.
بررسی بیان ژن های $E2F7$ و PBK در سرطان کلورکتال بین مواضع اولیه و مراحل پیشرفته بیماری

رشا هاشمی 1،2 مرصعی پیمانی 1،2، کامران قادری 2،3 هانیه صالحی 4

1، 2. گروه سلولی، مولکولی و میکروب شناسی، دانشکده علوم پزشکی و فندقی، دانشگاه آزاد اسلامی، اصفهان، ایران

2. استیسی کلینیک مجمع بیمارستانی آمیمی، دانشکده علوم پزشکی، اصفهان، ایران

کلیه اطلاعات در مورد بهبود مراحل پیشرفته بیماری در سرطان کلورکتال با کاهش بیان $E2F7$ و PBK احتمالاً در مقایسه با مراحل اولیه، می‌تواند به عنوان یک مارکر مفید در تشخیص بیماری در دسترس باشد.

یافته‌های این مطالعه نشان داد که نرخ بیان این دو ژن در مراحل اولیه و مراحل پیشرفته بیماری باعث تغییر در نرخ بیان این ژن‌ها می‌شود. در واقع، این نتایج نشان می‌دهند که تغییرات بیان این ژن‌ها می‌تواند به عنوان یک مارکر مفید در تشخیص بیماری در دسترس باشد.

کلیدواژه‌ها:
$E2F7$، PBK، سرطان کلورکتال، ROC، بیان ژن
صبحانه پژوهشی

مقدمه

سرطان روده بزرگ عمل اصلی مرگ و ماجع مهمی برای افراد است. امید به این دنیانی‌تری رها گزارش شده است که در اجتماع روده بزرگ سیمک و دیگر همکارها نمایانگر توموری بودن آن ها را تأیید کرده است. از تمام بیماران نمونه بافت های این مطالعه را بررسی و طبق معیارهای سلولی پژوهشی ها برای انتخاب، مشابه تر و مناسب تریکارک خاصیت توموری را بررسی کرد. از جمله این معیارهای اصلی استفاده شده تاکنون بوده است: ۱- سطح بیان توموری از نوع پرندی، ۲- سطح بیان توموری از نوع ژنتیکی، ۳- سطح بیان توموری از نوع میکروکرومو. در حال حاضر، یک روش مرحله بندی رایج برای سرطان روده بزرگ بر اساس سیستم TNM (تومور/ گره/ متاستاز) است. در حال حاضر، یک روش مرحله بندی برای برآورد عمق نفوذ سرطان در روده بزرگ و همچنین میزان درگیری بیماری های خارج از روده بزرگ استفاده می‌شود. سندرم میدر، تومور ژنتیکی و متاستاز تومور را کنترل می‌کند. برخی گزارش‌ها بیان غیرطبیعی کردن ژن PBK را در بیماران مبتلا به سرطان روده بزرگ و همچنین پتانسیل این ژن ها در تشخیص سرطان کولورکتال بررسی نشده است. این در تحقیق حاضر با استفاده از کردن PBK و PBK TOPK در سلول‌های توموری سرطان کولورکتال، پیشنهاد می‌شود که این ژن‌ها در بیماران مبتلا به سرطان روده بزرگ، اهمیت دارند. علاوه بر این، برخی گزارش‌ها بیان غیرطبیعی کردن ژن PBK را در بیماران مبتلا به سرطان روده بزرگ و همچنین پتانسیل این ژن ها در تشخیص سرطان کولورکتال بررسی نشده است. این در تحقیق حاضر با استفاده از کردن PBK و PBK TOPK در سلول‌های توموری سرطان کولورکتال، پیشنهاد می‌شود که این ژن‌ها در بیماران مبتلا به سرطان روده بزرگ، اهمیت دارند.

نتایج

در بیماران مبتلا به سرطان روده بزرگ، این ژن‌ها به صورت غیرطبیعی کرده و در تشخیص سرطان کولورکتال و همچنین پتانسیل این ژن‌ها در بیماران مبتلا به سرطان روده بزرگ، اهمیت دارند. علاوه بر این، برخی گزارش‌ها بیان غیرطبیعی کردن ژن PBK را در بیماران مبتلا به سرطان روده بزرگ و همچنین پتانسیل این ژن‌ها در تشخیص سرطان کولورکتال بررسی نشده است. این در تحقیق حاضر با استفاده از کردن PBK و PBK TOPK در سلول‌های توموری سرطان کولورکتال، پیشنهاد می‌شود که این ژن‌ها در بیماران مبتلا به سرطان روده بزرگ، اهمیت دارند. علاوه بر این، برخی گزارش‌ها بیان غیرطبیعی کردن ژن PBK را در بیماران مبتلا به سرطان روده بزرگ و همچنین پتانسیل این ژن‌ها در تشخیص سرطان کولورکتال بررسی نشده است. این در تحقیق حاضر با استفاده از کردن PBK و PBK TOPK در سلول‌های توموری سرطان کولورکتال، پیشنهاد می‌شود که این ژن‌ها در بیماران مبتلا به سرطان روده بزرگ، اهمیت دارند.

2. The Cancer Genome Atlas (TCGA)
3. Colorectal Cancer (CRC)
استخراج DNA در حضور آنزیم DNase (سیتالین ساخت کشور ایران) در حجم 1 ملیلیتر و در حمایت پس از جراحی در فاز مولکولی احتمال استخراج RNA محصول به مرحله نمونه یا یک میکرواردین شد و برای اسفنجی آزمی از دسته DNA استخراج مسار دو بهدیدن و ساخت کشور ایران RNA Latter و به مرکز تحقیقات بیوتکنولوژی دانشگاه آزاد اسلامی واحد شهرکرد منتقل شدند. سپس استخراج DNA به دمای 40 درجه و سپس در حمایت 20 درجه و پس از 2 ساعت در دمای 37 درجه سانتی گراد برای حذف DNaseI انجام شد. در هر نمونه با یک میکرولیتر مسئول احتمال به مدت 3 دقیقه در دمای 37 درجه سانتی گراد آزمایش شد.

با استفاده از تریزول RNA بکمی ساخت کشور آلمان cDNA استخراج شد و برای خنثی سازی آنزیم مید از آن در جریان دمای 37 درجه سانتی گراد انکوبه 65 دقیقه در دمای 10 تیمار و به مدت 20 دقیقه در دمای 45 درجه سانتی گراد گردید که برای تیمار شد. درنهایت باید cDNA در حیطه تکتای تجهیز آزمایش و پرایمر نوکلئوتیدی مصرف از استفاده شد.

جدول ۲. دو تا اکثر تریزول RNA بکمی ساخت کشور آلمان استخراج شده از نمونه‌های توموری

ویژگی های کلینیکی	نمونه‌ها
تعداد	
مرحله TNM	
I	5
II	10
III	10
IV	6
نمره	
مرحله TNM	
I	1
II	11
III	18
IV	1
سایز تومور	
<5 cm	10
≥5 cm	22

جدول 3. پرایمر RT-qPCR با استفاده از تریزول RNA بکمی ساخت کشور آلمان

پرایمر	توالی پرایمر	سایز محصول (bp)	درجه حرارت اتصال (°C)
PKB Forward	5' - ATAGAAGAACGATATAAAGCCA-3'	66	95
PKB Reverse	5' - GTGCGAGAATCTTACCTTACGC-3'	223	
E2F7 Forward	5' - CTGCTATCCAAGTTATCCCT-3'	62	54
E2F7 Reverse	5' - TTCTGCTCCTCTTCCAGTTGCTC-3'	107	
GAPDH Forward	5' - CCACCACCCCTGTTCTGTA-3'	60	60
GAPDH Reverse	5' - CCCACCACCCCTGTTCTGTA-3'	107	
برای سنجش کمی سطح بیان ژن‌های مورد نظر استفاده شد که از تکنیک
sybr green استفاده می‌شود.

تحلیل داده‌های پایگاه اطلس ژنوم سرطان (HTseq-Counts) در فرمت خام RNAseq استفاده از تکنیک RT-qPCR انجام شد. میزان معنی‌داری تغییرات بیان ژن‌های مورد نظر در مختلف بیماری در بافت‌های توموری روده بزرگ که در اطلس ژنوم سرطان استخراج شده است، با استفاده از آزمون تی انجام شد.

A

B

(تصویر شماره 1)
پژوهش ژنتیک مولکولی و بررسی سطح بیان ژن‌های E2F7 و PBK در سرطان کولرکتال مفید است. تحقیق سطح بیان E2F7 و PBK در مراحل اولیه و پیشرفته سرطان در سلول‌های سرطان کولرکتال به وسیله آنالیز PCR جداسازی تومورهای E2F7 و PBK انجام شد.

نتایج حاصل از پژوهش مجمع‌آمیزی جیرافارتوپ (TCGA) نشان داد که هر دو ژن در مراحل اولیه بیماری افزایش بیان معناداری داشتند. پس از انجام آزمون تی، نتایج حاصل از داده‌های اطلس ژنوم سرطان تأیید کرد که سطح B فيکتیور E2F7 و PBK در سرطان کولرکتال میزان معناداری داشتند.

کیفیت تغییرات ROC curve در سطح بیان و E2F7 و PBK از Stage III+IV در مقایسه با Stage I+II بین دو گروه متفاوت بود. نتایج حاصل از آزمون تی نشان داد که تغییرات سطح بیان ژن‌های E2F7 و PBK در بافت توموری در مراحل مختلف سرطان کولرکتال با استفاده از سطح معناداری **** و *** در مقایسه با Stage III+IV در مقایسه با Stage I+II هستند.

پیشنهاد مطالعه زیستکده‌گذاری و تحقیق بررسی سطح بیان ژن‌های E2F7 و PBK در سرطان کولرکتال می‌تواند مفید باشد.
واکنش‌هایی روندی سلولی را به طور معناداری در سرطان کولورکتال افزایش می‌دهند. بر اساس افرادی که حامل PBK/FU است، می‌توان نتایج مشابهی مربوط به سرطان معده را پیش بینی کرد. چون این ژن در سلول‌های توموری رشد می‌کند و باعث کاهش سرعت تکثیر سلولی می‌شود.

پیشنهاد می‌شود مواردی از مراجعه به بیمارستان مدیریت پیشینه بیماری را نشان دهند تا از پیشگیری از سرطان کولورکتال بهره‌مند شوند. به طور معمول، موانع زیستی بالقوه و همچنین با ارتباط بیان این ژن با تکثیر سلولی، این ژن می‌تواند به عنوان یک مارکر زیستی مورد استفاده قرار گیرد.

6. Cholangiocarcinoma
علاوه بر این، افراد با بیماری سرطان روده بزرگ معمولاً سطح بیان ژن E2F7 و PBK را در مراحل ابتدایی نسبت به مراحل پیشرفته دارند. این نتایج نشان دهنده این است که ژن E2F7 و PBK ممکن است به عنوان مارکرهای زیستی در تشخیص بیماران مبتلا به سرطان روده بزرگ استفاده شوند.

نتیجه‌گیری

پیشنهاد می‌شود مطالعات بیشتری در مورد نقش ژن‌های E2F7 و PBK در تشخیص بیماری سرطان روده بزرگ انجام گردد تا در بهبود روشهای تشخیصی و درمانی سرطان روده بزرگ کمک کند.

تمام حقوق این مقاله به مرکز دانشگاه علوم پزشکی آزاد تهران شرق می‌رسد.

ملاحظات اخلاقی

پژوهش‌هایی که به ناحیه‌های مختلفی از علوم پزشکی می‌پردازند، به ترتیب باید از طرف دو جامعه، یaac طبیعت و استاندارد‌های اخلاقی، حرفه‌ای و علمی مدیریت، مراقبت، فهم و دسترسی به رسانه‌ها انجام شود.

هامان ملایی

مانند هر پژوهش دیگر، این پژوهش نیز بهبودی درمانی و تحقیقات علمی را اطلاعی می‌دهد. به‌طور کلی، این مطالعه نشان‌دهنده است که ژن‌های E2F7 و PBK ممکن است در تشخیص و درمان بیماری‌های سرطانی مهم باشند.

7. ChIP detection
References

[1] Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021; 127(16):3029-30. [DOI:10.1002/cncr.35387] [PMID]

[2] Lao YV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011; 8(12):686-700. [DOI:10.1038/nrgastro.2011.173] [PMID] [PMCID]

[3] Sung H, Ferlay J, Siegel RL, Laversanne M, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3):209-49. [DOI:10.3322/caac.21660]

[4] Koncina E, Haan S, Rauh S, Letellier E. Prognostic and predictive activities of E2F into context. Curr Mol Med. 2006; 6(7):731-184911.111 [PMID] [PMCID]

[5] Freeman HJ. Early stage colon cancer. World J Gastroenterol. 2013; 19(46):8468-73. [DOI:10.3748/wjg.v19.i46.8468] [PMID] [PMCID]

[6] Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021; 14(10):101174. [DOI:10.1016/j.tranon.2021.101174] [PMID] [PMCID]

[7] Sreekumar R, Harris S, Moutsamin K, DeMateos R, Patel A, Emo K, et al. Assessment of nuclear ZEB2 as a biomarker for colorectal cancer outcome and TNM risk stratification. JAMA Netw Open. 2018; 1(6):e183315. [DOI:10.1001/jamanetworkopen.2018.3115] [PMID] [PMCID]

[8] Liu H, Xu Y, Zhang Q, Yang H, Shi W, Liu Z, et al. Prognostic significance of TBL1XRI in predicting liver metastasis for early-stage colorectal cancer. Surg Oncol. 2017; 26(1):13-20. [DOI:10.1016/j.suronc.2016.12.003] [PMID]

[9] Joel M, Mughal AA, Grieg Z, Murrell W, Palmero S, Mikkelsen B, et al. Targeting PDK1/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo. Mol Cancer. 2015; 14:121. [DOI:10.1186/s12935-015-0398-x] [PMID]

[10] Aylott V, O’Connor R. PDK1/TOPK promotes tumour cell proliferation through p38 MAPK activity and regulation of the DNA damage response. Oncogene. 2007; 26(24):3451-61. [DOI:10.1083/ sj.onc.1210142]

[11] Carvajal LA, Hamard P-J, Tonnessen C, Manfredi JJ. E2F7, a novel target, is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression. Genes Dev. 2012; 26(14):1533-45. [DOI:10.1101/gad.184911.111] [PMID] [PMCID]

[12] Johnson DG, DeGregori J. Putting the oncosgenic and tumor suppressive activities of E2F into context. Curr Mol Med. 2006; 6(7):731-8. [DOI:10.2174/156652401060607031] [PMID]

[13] Bahrami L, Baghi M, Peymani M, Javeri A, Ghaedi K. MiR-141-3p and miR-200a-3p are involved in Th17 cell differentiation by negatively regulating RARB expression. Hum Cell. 2021; 34(5):1375-87. [DOI:10.1016/j.humrep.2021.05.055] [PMID]

[14] Kwon CH, Park HJ, Choi YR, Kim A, Kim HW, Choi JH, et al. PSMB8 and PDK1 as potential gastric cancer subtype-specific biomarkers associated with prognosis. Oncotarget. 2016; 7(16):21454-8. [DOI:10.18632/oncotarget.7411] [PMID]

[15] Abe Y, Takeuchi T, Kagawa-Miki L, Ueda N, Shigemoto K, Yasukawa M, et al. A mitotic kinase TOPK enhances Cdk1/cyclin B1-dependent phosphorylation of PRC1 and promotes cytokinesis. J Mol Biol. 2007; 370(2):231-45. [DOI:10.1016/j.jmb.2007.04.067] [PMID]

[16] Chen T-C, Lee S-A, Hong T-M, Shih J-Y, Lai J-M, Chioo H-Y, et al. From midbody protein–protein interaction network construction to novel regulators in cytokinesis. Proteome Res. 2009; 8(11):4943-53. [DOI:10.1021/pr900325f] [PMID]

[17] He F, Yan Q, Fan L, Liu Y, Cui J, Wang J, et al. PBK/TOPK in the differential diagnosis of cholangiocarcinoma from hepatocellular carcinoma and its involvement in prognosis of human cholangiocarcinoma. Hum Pathol. 2010; 41(3):415-24. [DOI:10.1016/j.humpath.2009.05.016] [PMID]

[18] Su T-C, Chen C-Y, Tsai W-C, Hsu H-T, Yen H-H, Sung W-W, et al. Cytoplasmic, nuclear, and total PBK/TOPK expression is associated with prognosis in colorectal cancer patients: A retrospective analysis based on immunohistochemistry stain of tissue microarrays. Plos One. 2018; 13(10):e0204866. [DOI:10.1371/journal.pone.0204866] [PMID] [PMCID]

[19] Hu F, Gartenhaus R, Eichberg D, Liu Z, Fang H, Rapoport A. PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21. Oncogene. 2010; 29(40):5464-74. [DOI:10.1038/onc.2010.275] [PMID]

[20] Nagano-Matsuo A, Inoue S, Koshino A, Ota A, Nakao K, Komura M, et al. PBK expression predicts favorable survival in colorectal cancer patients. Virchows Arch. 2021; 479(2):277-84. [DOI:10.1007/s00428-021-03062-0] [PMID]

[21] Endo-Munoz L, Dahler A, Teakle N, Rickwood D, Hazar-Hetham M, Abdul-Jabbar I, et al. E2F7 can regulate proliferation, differentiation, and apoptotic responses in human keratinocytes: Implications for cutaneous squamous cell carcinoma formation. Cancer Res. 2009; 69(5):1800-8. [DOI:10.1158/0008-5472.CAN-08-2725] [PMID]

[22] Wang Y, Pei X, Xu P, Tan Z, Zhu Z, Zhang G, et al. E2F7, regulated by mir30c, inhibits apoptosis and promotes cell cycle of prostate cancer cells. Oncol Rep. 2020; 44(3):849-62. [DOI:10.3892/or.2020.7682] [PMID] [PMCID]

[23] Cheng C, Guo L, Ma Y, Wang Z, Fan X, Shan Z. Up-regulation of miR-26a-5p inhibits E2F7 to regulate the progression of renal carcinoma cells. Cancer Manag Res. 2020; 12:11723-33. [DOI:10.2147/CMAR.S271710] [PMID]

[24] Yin W, Wang B, Ding M, Luo Y, Hu H, Cai R, et al. Elevated E2F7 expression predicts poor prognosis in human patients with gliomas. J Clin Neurosci. 2016; 33:187-93. [DOI:10.1016/j.jocn.2016.04.019] [PMID]

[25] Yao H, Lu F, Shao Y. The E2F family as potential biomarkers and therapeutic targets in colon cancer. PeerJ. 2020; 8:e8562. [DOI:10.7717/peerj.8562] [PMID] [PMCID]

[26] Guo X, Liu L, Zhang Q, Yang W, Zhang Y. E2F7 transcriptionally inhibits MicroRNA-199b expression to promote USP47, thereby enhancing colon cancer stem cell activity and promoting the occurrence of colon cancer. Front Oncol. 2021; 10:565449. [DOI:10.3389/fonc.2020.565449] [PMID] [PMCID]

[27] Zhang S-L, Zhu H-Y, Zhou B-Y, Chu Y, Hoo J-R, Tan Y-Y, et al. Histone deacetylase 6 is overexpressed and promotes tumor growth of colon cancer through regulation of the MAPK/ERK signal pathway. Onco Targets Ther. 2019; 12:2409-19. [DOI:10.2147/OTT.S194986] [PMID] [PMCID]

[28] Vishnubalaji R, Manikandan M, Fahad M, Hamram R, Alfayez M, Kassem M, et al. Molecular profiling of ALDH1+ colorectal cancer stem cells reveals preferential activation of MAPK, FAK, and
oxidative stress pro-survival signalling pathways. Oncotarget. 2018; 9(17):13551-84. [DOI:10.18632/oncotarget.24420] [PMID] [PMCID]

[29] Mitxelena J, Araiz A, Vallejo-Rodríguez J, García-Santisteban I, Ful-laondo A, Alvarez-Fernández M, et al. An E2F7-dependent transcriptional program modulates DNA damage repair and genomic stability. Nucleic Acids Res. 2018; 46(9):4546-59. [DOI:10.1093/nar/gky218] [PMID] [PMCID]

[30] Shen Z-l, Wang B, Jiang K-w, Ye C-x, Cheng C, Yan Y-c, et al. Down-regulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1 signaling. Oncotarget. 2016; 7(23):35092. [DOI:10.18632/oncotarget.9042] [PMID] [PMCID] [DOI:10.18632/oncotarget.9042] [PMID] [PMCID]