Genetic Variants in the Promoter Region of miR-10b and the Risk of Breast Cancer

Jiapeng Chen,1,2 Yue Jiang,1,3 Jing Zhou,1,3 Sijun Liu,1,4 Yayun Gu,1,3 Guangfu Jin,1,2,3 Zhibin Hu,1,2,3 Hongxia Ma,1,2,3 Hongbing Shen,1,2,3 and Juncheng Dai1,2,3

1 Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
2 Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
3 State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
4 Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, China

Correspondence should be addressed to Juncheng Dai; djc@njmu.edu.cn

Received 1 March 2017; Accepted 14 May 2017; Published 12 June 2017

A cademic Editor: Hushan Yang

Copyright © 2017 Jiaping Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Variants in microRNA genes may affect their expression by interfering with the microRNA maturation process and may substantially contribute to the risk of breast cancer. Recent studies have identified miR-10b as an interesting candidate because of its close association with the metastatic behavior of breast cancer. However, the roles of miR-10b-related single nucleotide polymorphisms in breast cancer susceptibility remain unclear. This case-control study evaluated the associations between variants in the upstream transcription regulation region of miR-10b and the risk of breast cancer among Chinese women. Seven potentially functional SNPs were investigated using genotyping assays. The potential biological functions of the identified positive SNPs were further evaluated using in silico databases. We found that rs4078756, which was located at the promoter region of miR-10b, was significantly associated with breast cancer risk (rs4078756 AG/GG versus AA, adjusted odds ratio: 1.17, 95% confidence interval: 1.02–1.35). The other six single nucleotide polymorphisms exhibited negative associations. Based on the in silico prediction, rs4078756 potentially regulated miR-10b expression through promoter activation or repression. These findings indicate that a potentially functional SNP (rs4078756) in the promoter region of miR-10b may contribute to breast cancer susceptibility among Chinese women.

1. Introduction

Breast cancer is the most common malignancy among women, with an estimated 1.7 million cases diagnosed worldwide in 2012 [1]. In China, breast cancer is the most common cancer among women and is the sixth most common cause of death among Chinese women [2]. The precise mechanisms underlying breast cancer have not been fully explored, although several strong genetic and environmental risk factors for breast cancer have been identified and have been addressed in public awareness campaigns and clinical monitoring strategies [3, 4].

Recent research has revealed that microRNAs (miRNAs) participate in human carcinogenesis as either tumor suppressors or oncogenes, and the disruption of specific miRNA expression levels and functions might play a key role in the genesis of diverse cancer types [5–7]. Abnormal expressions of many miRNAs, including miR-34a, miR-210, miR-567, and miR-10b, were also associated with breast cancer tumorigenesis or progression [8–11]. As a key molecule in the development of breast cancer, miR-10b was first identified as being downregulated in primary breast tumors, compared to normal breast samples [11]. However, Ma et al. reported conflicting findings in 2007, as they observed that miR-10b was upregulated in metastatic breast cancer [12]. Subsequent studies have revealed that overexpression of miR-10b triggered migration and invasion processes in various cancer cell lines, as well as distant metastasis in xenotransplantation models [12–18]. Furthermore, miR-10b exerted its oncogenic...
effects by directly targeting various tumor-associated genes, such as HOXD10, TBX5, KLF4, and PTEN, in breast cancer, pancreatic cancer, glioblastoma, and bladder cancer [12–19]. These findings indicate that miR-10b plays a central role in cancer metastasis and may be used as a biomarker for breast cancer carcinogenesis.

A growing number of studies have revealed that single nucleotide polymorphisms (SNPs) in miRNA genes may interfere with the miRNA transcription or maturation processes and are associated with susceptibility to cancer development [20–26]. For example, rs16159732 in the miR-6826 primary sequence was associated with breast cancer among women of African ancestry [22]. In addition, rs164913 in the miR-196a2 precursor sequence may affect the miRNA-196a2 maturation process and is associated with the risk of breast cancer among Chinese and American women [23–25]. Furthermore, rs2682818 in the stem-loop sequence of the miR-618 precursor may alter the secondary stem-loop structure and is associated with an increased breast cancer risk in a South American population [26]. However, we are not aware of any studies regarding the role of miR-10b SNPs in breast cancer risk. Nevertheless, given the important biological functions of miR-10b in breast cancer, polymorphisms in the miR-10b gene could potentially confer a risk of disease. Therefore, the present study used a case-control design to evaluate 7 potentially functional SNPs in the upstream transcription regulation region of the miR-10b gene. All candidate SNPs had a minor allele frequency (MAF) of ≥0.05 among Han Chinese women. We hope that the results can provide useful insights for breast cancer prevention and personalized treatment.

2. Materials and Methods

2.1. Study Population. This case-control study’s protocol was approved by the Institutional Review Board of Nanjing Medical University. A total of 1,064 breast cancer cases and 1,073 cancer-free controls were included in this study, which has been described previously [27]. Briefly, the patients were recruited between January 2004 and April 2010 at the First Affiliated Hospital of Nanjing Medical University, Gulou Hospital, and Cancer Hospital of Jiangsu Province (Nanjing, China). The diagnosis of breast cancer was confirmed using pathological examination. Patients with a history of cancer, radiotherapy, or chemotherapy were excluded. Cancer-free controls were randomly selected from a pool of individuals who voluntarily participated in a community-based screening program that was performed in Jiangsu Province during the same time period. The controls had no self-reported history of cancer and were frequency-matched with the cases according to age and residential area. All subjects were genetically unrelated Han Chinese women. Approximately 95% of the eligible population provided written informed consent for participation. Each participant completed an interview using a structured questionnaire to collect information regarding the demographic characteristics, menstrual history, reproductive history, and environmental exposure history. Information regarding the estrogen receptor (ER) and progesterone receptor (PR) statuses of breast cancer cases was extracted from their medical records. After each interview, a 5 mL venous blood sample was collected from each participant.

2.2. SNP Selection and Genotyping Assays. The miR-10b gene is located at 2q31.1, which is in an intergenic region between HOXD4 and HOXD8 genes. Its promoter has recently been identified in human mammary cells and is located approximately 12 kb upstream of precursor miR-10b (pre-miR-10b) [28]. We searched the International HapMap Project (http://www.hapmap.org), dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/), SNAP (http://archive.broad-institute.org/mpg/snap/), and UCSC (http://genome.ucsc.edu/) databases for SNPs that were located between the promoter and pre-miR-10b. The linkage disequilibrium (LD) value ($r^2 < 0.8$) and MAF value ($≥0.05$) in the Chinese Han population were also applied to select candidate SNPs. We ultimately identified nine SNPs (rs3731795, rs79025511, rs4078756, rs1348807, rs1018827, rs6736786, rs10196832, rs4972806, and rs1867863) in the upstream region of pre-miR-10b, although we omitted rs3731795 and rs79025511 because of their high LD with rs4078756 ($r^2 > 0.8$) to optimize the assay. Thus, seven SNPs in the miR-10b transcript were genotyped for the present case-control study (Table 1).

The seven SNPs were genotyped using the Illumina Infinium® HumanExome BeadChip platform (Illumina, USA) and 2,137 DNA samples, which have been reported in the previous study [27]. Genotype calling was performed using Illumina’s GenTrain clustering algorithm (version 1.0) in GenomeStudio (V2011.1). The genotyping call rates for all SNPs were >97% among the 1,064 breast cancer cases and the 1,073 controls. Genotyping was performed without knowledge of the individual’s case or control status, and approximately equal numbers of case and control samples were tested during each assay, with two blank controls.

2.3. Statistical Analyses. Differences in demographic characteristics, selected variables, and genotype frequencies were compared between the cases and controls. These differences were evaluated using Student’s t-test (equal variance assumed) for continuous variables and the χ^2 test for categorical variables. The Hardy-Weinberg equilibrium was tested using the goodness-of-fit χ^2 test to compare the observed and expected genotype frequencies among the control subjects.

Associations between the genotypes and breast cancer risk were estimated using logistic regression analyses adjusted for age, age at menarche, and menopausal status. The effects were reported as odds ratios (ORs) and 95% confidence intervals (CIs). All statistical analyses were performed using SAS software (version 9.1.3; SAS Institute, Cary, NC, USA). P values of ≤0.05 were considered statistically significant.

3. Results

3.1. Associations between the Selected SNPs and Breast Cancer Risk. The included individuals’ basic characteristics are presented in Supplementary Table 1 in Supplementary Material available online at https://doi.org/10.1155/2017/2352874. After
SNP	Chr	Position	Location	Alleles	Cases^b N = 1,064	Controls^b N = 1,073	Call rate (%)	MAF^c (case/control)	HWE^d	OR (95% CI)^e	P value^e
rs4078756	2q31.1	177,004,115	11 kb upstream of pre-mir-10b	A/G	540/436/84	582/425/66	97.80	0.285/0.260	0.341	1.17 (1.02–1.35)	0.027
rs1348807	2q31.1	177,005,757	9.3 kb upstream of pre-mir-10b	A/G	403/499/156	391/507/171	97.52	0.383/0.398	0.750	0.91 (0.80–1.03)	0.148
rs3018827	2q31.1	177,007,664	7.5 kb upstream of pre-mir-10b	A/G	514/448/99	502/471/99	97.85	0.304/0.312	0.477	0.92 (0.80–1.05)	0.210
rs6736786	2q31.1	177,008,914	6 kb upstream of pre-mir-10b	A/G	419/495/148	446/495/132	97.89	0.372/0.354	0.79	1.13 (0.99–1.29)	0.066
rs80196832	2q31.1	177,011,655	3.5 kb upstream of pre-mir-10b	A/G	936/127/1	920/143/7	97.89	0.061/0.073	0.502	0.87 (0.68–1.12)	0.281
rs4972806	2q31.1	177,012,578	2.5 kb upstream of pre-mir-10b	A/G	352/512/197	361/529/183	97.85	0.427/0.417	0.706	1.03 (0.91–1.17)	0.643
rs1867863	2q31.1	177,014,970	161 bp upstream of pre-mir-10b	A/C	434/488/140	403/519/151	97.89	0.362/0.383	0.477	0.90 (0.79–1.02)	0.105

^aMajor/minor allele; ^bmajor homozygote/heterozygote/rare homozygote between cases and controls; ^cminor allele frequency (MAF); ^dP values for the Hardy-Weinberg equilibrium (HWE) test; ^elogistic regression analysis with adjustment for age, age at menarche, and menopausal status in the additive model; Chr: chromosome, OR: odds ratio, CI: confidence interval.
Table 2: Associations between rs4078756 in the promoter region of miR-10b and breast cancer risk.

Characteristics	Cases	Controls	OR (95% CI)	P	pb				
	AA (%)	AG (%)	GG (%)	AA	AG	GG (%)			
Age									
<51 years	312 (53.0)	242 (41.1)	35 (5.9)	289 (53.3)	226 (41.7)	27 (5.0)	1.05 (0.86–1.28)	0.648	0.111
≥51 years	228 (48.4)	194 (41.2)	49 (10.4)	293 (55.2)	199 (37.5)	39 (7.3)	1.32 (1.08–1.61)	0.007	
Menopausal status									
Premenopausal	266 (51.9)	211 (41.1)	36 (7.0)	267 (53.0)	212 (42.1)	25 (5.0)	1.15 (0.93–1.42)	0.197	0.540
Postmenopausal	217 (48.2)	194 (43.1)	39 (8.7)	286 (54.5)	201 (38.3)	38 (7.2)	1.26 (1.03–1.54)	0.028	
Age at menarche									
<16 years	320 (53.5)	236 (39.5)	42 (7.0)	217 (52.8)	172 (41.9)	22 (5.4)	1.03 (0.84–1.26)	0.799	0.115
≥16 years	211 (47.5)	192 (43.2)	41 (9.2)	363 (55.0)	253 (38.3)	44 (6.7)	1.29 (1.06–1.56)	0.010	
Age at first live birth									
<24 years	119 (49.6)	104 (43.3)	17 (7.1)	204 (55.0)	140 (37.7)	27 (7.3)	1.18 (0.90–1.53)	0.229	0.831
≥24 years	392 (52.0)	301 (39.9)	61 (8.1)	358 (53.4)	276 (41.1)	37 (5.5)	1.14 (0.96–1.36)	0.141	
ER status									
Positive	237 (48.6)	211 (43.2)	40 (8.2)	237 (52.8)	172 (41.9)	22 (5.4)	1.27 (1.07–1.52)	0.008	0.713
Negative	194 (51.5)	146 (38.7)	37 (9.8)	193 (54.5)	170 (45.5)	21 (5.5)	1.21 (1.0–1.46)	0.055	
PR status									
Positive	237 (46.9)	223 (44.2)	45 (8.9)	237 (52.8)	172 (41.9)	22 (5.4)	1.34 (1.12–1.60)	0.001	0.204
Negative	192 (53.3)	136 (37.8)	32 (8.9)	193 (54.5)	170 (45.5)	21 (5.5)	1.13 (0.93–1.37)	0.235	

a Per-allele odds ratio (OR) and 95% confidence interval (CI) adjusted for age, age at menarche, and menopausal status where appropriate; b P value for the heterogeneity test; ER: estrogen receptor; PR: progesterone receptor.

Frequency matching, the cases and controls had comparable ages (P > 0.05). Compared to the controls, patients with breast cancer had significantly earlier menarche and later first live births (P < 0.0001). Among the 1,064 breast cancer cases, 490 cases (46.05%) were ER-positive and 506 cases (47.56%) were PR-positive.

The loci information and association results for the seven SNPs are described in Table 1. The multivariate logistic regression models revealed that rs4078756 was significantly associated with breast cancer risk (rs4078756 AG/GG versus AA, adjusted OR: 1.17, 95% CI: 1.02–1.35). The remaining six SNP were not significantly associated with breast cancer risk (Table 1).

We also performed stratification analysis of the associations between rs4078756 and breast cancer risk according to age, age at menarche, age at first live birth, and menopausal status. As shown in Table 2, the breast cancer risk associated with variant AG/GG genotypes (versus the AA genotype) was significantly higher among older women (adjusted OR: 1.32; 95% CI: 1.08–1.61), postmenopausal women (adjusted OR: 1.26; 95% CI: 1.03–1.54), women with later menarche (adjusted OR: 1.29; 95% CI: 1.06–1.56), ER-positive women (adjusted OR: 1.27; 95% CI: 1.07–1.52), and PR-positive women (adjusted OR: 1.34; 95% CI: 1.12–1.60). No heterogeneity was detected for each paired comparison (P > 0.05).

3.2. Bioinformatics Analysis of the Potentially Biological Functions of rs4078756.

The potential biological functions of rs4078756 were evaluated using bioinformatics analysis with HaploRegV4.1 and the UCSC database. As shown in Table 3, rs3731795 and rs79025511 exhibited strong linkage with rs4078756 (r² > 0.8) in Chinese and Japanese population and were strongly modified by histone H3K27Ac, which might lead to aberrant transcription of miR-10b (Figure 1). Based on the JASPAR database for predicting transcription factor binding, we found that the G allele of rs3731795 might increase the binding of transcription factors, such as TCF3, TFAP2A, and TCF4, to the promoter of miR-10b, compared to the C allele (Table 4).

4. Discussion

The present study investigated the associations between breast cancer and seven potentially functional SNPs that were located in the upstream transcription regulation region of the miR-10b gene. The results indicate that an A-to-G base change at rs4078756 increased the risk of breast cancer among a group of Han Chinese women. To the best of our knowledge, this is the first study to evaluate the associations between breast cancer susceptibility and genetic variations in the potential regulatory region of miR-10b.

Previous research has indicated that miR-10b appears to play a key role in breast cancer invasion and metastasis. Ma et al. reported that miR-10b was highly expressed in clinical samples of metastatic breast cancer, and the ectopic upregulation of miR-10b in nonmetastatic breast cancer cells initiated invasion and metastasis [12]. Moreover, miR-10b silencing inhibits breast cancer metastasis in a mouse mammary tumor model [12, 13]. Additional studies have suggested that miR-10b regulates invasion and metastasis in breast cancer by suppressing the translation of a targeting gene (HOXD10) [12]. In this context, HOXD10 is an mRNA
Table 3: Annotation of variants with strong linkage disequilibrium with the SNP rs4078756 in HaploRegV4.1.

Chr	Pos (hg19)	LD	Variant	Ref	Alt	ASN freq	Promoter histonemarks	DNAse	Proteins bound	Motifs changed
2	177000616	1.00	rs1348808	T	C	0.23	15 tissues	12 tissues	CTBP2	Ets, LF-A1, NF-E2
2	177001145	1.00	rs76652183	G	T	0.23	19 tissues	18 tissues	5 bound proteins	EBF
2	177001378	1.00	rs3731795	A	G	0.27	19 tissues	7 tissues	CTCF, p300	
2	177001962	0.96	rs79025511	C	T	0.23	19 tissues	32 tissues	5 bound proteins	4 altered motifs
2	177004689	0.92	rs79120932	G	T	0.23	19 tissues	32 tissues	5 bound proteins	4 altered motifs
2	177005519	1.00	rs67435554	G	T	0.23	12 tissues	19 tissues	Pax-5	
2	177007102	1.00	rs76652183	G	T	0.23	12 tissues	19 tissues	32 tissues	5 bound proteins
2	177007527	1.00	rs76363873	A	G	0.23			IPSC	GATA, MZF1::1–4
2	177008484	1.00	rs79440139	T	A	0.23			6 altered motifs	

Chr: chromosome, Pos: position, LD: linkage disequilibrium in CHB + JPT population, Ref: reference, Alt: alternative, freq: frequency, MUS: musculus, and IPSC: induced pluripotent stem cell.

Encoding a transcriptional repressor that inhibits the expression of several genes that are involved in cell migration and extracellular matrix remodeling, such as RhoC, uPAR, α3 integrin, and MT1-MMP [12]. Furthermore, miR-10b could target the syndecan-1 gene and promote breast cancer cell motility and invasiveness through a Rho-GTPase-dependent and E-cadherin-dependent mechanism [29]. Another study revealed that miR-10b promotes cell proliferation, migration, and invasion by inhibiting the expression of the TRX5 transcription factor, which led to repression of the DYRK1A and PTEN tumor suppressor genes [19]. In addition, miR-10b could respond to vascular endothelial growth factor stimulation and was expressed at high levels in the human high-grade breast tumor vasculature, which suggested that vascular expression of miR-10b might reflect the metastatic progression of breast cancer [30].

Similar to other protein-coding genes, the miR-10b gene has its own promoter. The putative promoter of human miR-10b was initially characterized by Zhou et al., who found that it spanned between −111 bp and −460 bp upstream of pre-miR-10b [31]. Ma et al. also found that the Twist transcription factor could activate transcription of the miR-10b gene by binding to an E-box sequence that is proximal to its putative promoter [12]. Vrba et al. subsequently performed H3K4me3 chromatin immunoprecipitation assays using human mammary cells and redefined the promoter region of miR-10b as being located approximately 12 kb upstream of pre-miR-10b [28]. Several researchers have also suggested that SNPs in the
evaluations are warranted to confirm these findings. Studies with the technically diverse population and functional Han Chinese women. Larger well-designed epidemiological confirmation using biological assays in future studies.

speculations are based on computer simulations and require depending on the specific interacting protein. However, these

ingeneregulationthroughpromoteractivationorrepression, the G allele of rs3731795 might increase the binding of tran-

peak of the H3k27me3 histone mark in seven cell lines, and this mark is often found near active regulatory elements. In addition, according to JASPAR database, we observed that the G allele of rs3731795 might increase the binding of transcription factors, such as TCF3, TFAP2A, and TCF4, to the promoter region of miR-10b. These transcription factors are involved in gene regulation through promoter activation or repression, depending on the specific interacting protein. However, these speculations are based on computer simulations and require confirmation using biological assays in future studies.

In conclusion, the present results suggest that rs4078756 in the promoter region of the miR-10b gene is associated with a significantly increased risk of breast cancer among Han Chinese women. Larger well-designed epidemiological studies with ethnically diverse populations and functional evaluations are warranted to confirm these findings.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The authors thank the study participants and research staff for their contributions. Funding was provided by the Natural Science Foundation of Jiangsu Province (BK20151553), the Natural Science Foundation for Outstanding Youth of Jiangsu Province (BK20160095), the National Natural Science Foundation of China (81521004, 81230067), the Priority Academic Program for the Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015A067).

References

1. A. Lin, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, "Global cancer statistics, 2012," *CA: A Cancer Journal for Clinicians*, vol. 65, no. 2, pp. 87–108, 2015.

2. W. Chen, R. Zheng, P. D. Baade et al., "Cancer statistics in China, 2015," *CA: A Cancer Journal for Clinicians*, vol. 66, no. 2, pp. 115–132, 2016.

3. P. Lichtenstein, N. V. Holm, P. K. Verkasalo et al., "Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland," *The New England Journal of Medicine*, vol. 343, no. 2, pp. 78–85, 2000.

4. P. G. Shields and C. C. Harris, "Cancer risk and low-penetrance susceptibility genes in gene-environment interactions," *Journal of Clinical Oncology*, vol. 18, no. 11, pp. 2309–2315, 2000.

5. J. Lu, G. Getz, E. A. Miska et al., "MicroRNA expression profiles classify human cancers," *Nature*, vol. 435, no. 7043, pp. 834–838, 2005.

6. G. A. Calin and C. M. Croce, "MicroRNA signatures in human cancers," *Nature Reviews Cancer*, vol. 6, no. 11, pp. 857–866, 2006.

7. B. D. Adams, A. L. Kasinski, and E. J. Slack, "Aberrant regulation and function of microRNAs in cancer," *Current Biology*, vol. 24, no. 16, pp. R762–R776, 2014.

8. G. Bertoli, C. Cava, C. Diceglie et al., "MicroRNA-567 dysregulation contributes to carcinogenesis of breast cancer, targeting tumor cell proliferation, and migration," *Breast Cancer Research and Treatment*, vol. 161, no. 3, pp. 605–616, 2016.

9. H. Peurala, D. Greco, T. Heikkinen et al., "MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer," *PLoS ONE*, vol. 6, no. 11, Article ID e26122, 2011.

10. F. Rothé, M. Ignatiadis, C. Chaboteaux et al., "Global microRNA expression profiling identifies MiR-210 associated with tumor
proliferation, invasion and poor clinical outcome in breast cancer," *PLoS ONE*, vol. 6, no. 6, Article ID e20980, 2011.
[11] M. V. Iorio, M. Ferracin, C.-G. Liu et al., "MicroRNA gene expression deregulation in human breast cancer," *Cancer Research*, vol. 65, no. 16, pp. 7065–7070, 2005.
[12] L. Ma, J. Teruya-Feldstein, and R. A. Weinberg, "Tumour invasion and metastasis initiated by microRNA-10b in breast cancer," *Nature*, vol. 449, no. 7163, pp. 682–688, 2007.
[13] L. Ma, F. Reinhardt, E. Pan et al., "Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model," *Nature Biotechnology*, vol. 28, no. 4, pp. 341–347, 2010.
[14] H. Xiao, H. Li, G. Yu et al., "MicroRNA-10b promotes migration and invasion through KLF4 and HOXD10 in human bladder cancer," *Oncology Reports*, vol. 31, no. 4, pp. 1832–1838, 2014.
[15] C.-G. Liao, L.-M. Kong, P. Zhou, and et al., "MiR-10b is overexpressed in hepatocellular carcinoma and promotes cell proliferation, migration and invasion through RhoC, uPAR and MMPs," *Journal of Translational Medicine*, vol. 12, no. 1, article 234, 2014.
[16] Y. Tian, A. Luo, Y. Cai et al., "MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines," *Journal of Biological Chemistry*, vol. 285, no. 11, pp. 7986–7994, 2010.
[17] G. Li, Z. Wu, Y. Peng et al., "MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells," *Cancer Letters*, vol. 299, no. 1, pp. 29–36, 2010.
[18] S. Liu, J. Sun, and Q. Lan, "TGF-β-induced miR10a/b expression promotes human glioma cell migration by targeting PTEN," *Molecular Medicine Reports*, vol. 8, no. 6, pp. 1741–1746, 2013.
[19] J. Kim, A. N. Siverly, D. Chen et al., "Ablation of miR-10b suppresses oncogene-induced mammary tumorigenesis and metastasis and reactivates tumor-suppressive pathways," *Cancer Research*, vol. 76, no. 21, pp. 6424–6435, 2016.
[20] B. M. Ryan, A. I. Robles, and C. C. Harris, "Genetic variation in microRNA networks: the implications for cancer research," *Nature Reviews Cancer*, vol. 10, no. 6, pp. 389–402, 2010.
[21] S. Cammaerts, M. Straizis, P. De Rijk, and J. Del Favero, "Genetic variants in microRNA genes: impact on microRNA expression, function, and disease," *Frontiers in Genetics*, vol. 6, article 186, 2015.
[22] F. Qian, Y. Feng, Y. Zheng et al., "Genetic variants in microRNA and microRNA biogenesis pathway genes and breast cancer risk among women of African ancestry," *Human Genetics*, vol. 135, no. 10, pp. 1145–1159, 2016.
[23] Z. Hu, J. Liang, Z. Wang et al., "Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women," *Human Mutation*, vol. 30, no. 1, pp. 79–84, 2009.
[24] Z. Hu, J. Chen, T. Tian et al., "Genetic variants of miRNA sequences and non small cell lung cancer survival," *Journal of Clinical Investigation*, vol. 118, no. 7, pp. 2600–2608, 2008.
[25] A. E. Hoffman, T. Zheng, C. Yi et al., "microRNA miR-196a-2 and breast cancer: A genetic and epigenetic association study and functional analysis," *Cancer Research*, vol. 69, no. 14, pp. 5970–5977, 2009.
[26] A. Upadhyaaya, R. A. Smith, D. Chacon-Cortes et al., "Association of the microRNA-single nucleotide polymorphism rs2910164 in miR46a with sporadic breast cancer susceptibility: a case control study," *Gene*, vol. 576, no. 1, part 1, pp. 256–260, 2016.