Defect-Induced Photoluminescence of Strontium Titanate and its Modulation by Electrostatic Gating

Dushyant Kumar and R. C. Budhani*
Condensed Matter Low Dimensional Systems Laboratory,
Department of Physics, Indian Institute of Technology, Kanpur 208016, India
(Dated: December 18, 2015)

The photoluminescence (PL) spectra of Ar$^+$-ion irradiated single crystals of SrTiO$_3$ (STO) excited by 325 nm line of a He-Cd laser are compared with those of pristine crystals, epitaxial films and amorphous layers of STO at several temperatures down to 20 K. The 550 eV Ar$^+$-beam irradiation activates distinctly visible three PL peaks; blue (∼430 nm), green (∼550 nm), and infra-red (∼820 nm) at room temperature making the photoluminescence multi-colored. The abrupt changes in PL properties below ∼100 K are discussed in relation with the antiferrodistortive structural phase transition in SrTiO$_3$ from cubic-to-tetragonal symmetry which makes it a direct bandgap semiconductor. The photoluminescence spectra are also tuned by electrostatic gate field in a field-effect transistor geometry. At 20 K, we observed a maximum increase of ∼20% in PL intensity under back gating of SrTiO$_3$.

I. INTRODUCTION

Strontium titanate (SrTiO$_3$) is perhaps the most widely studied perovskite because of its unusual and technologically important properties, which also make it a promising material for the oxide-based electronics. At ambient temperature SrTiO$_3$ (STO) is a cubic crystal (Pm3m) with an indirect band gap of 3.27 eV. A cubic-to-tetragonal structural phase transition at ∼105 K makes STO a direct bandgap semiconductor and a precipitous growth of dielectric function follows below this temperature. High quality single crystals of STO have been used as substrates for epitaxial growth of many other transition metal oxides. It is also an ideal material for gate dielectric in field effect transistors (FET) due to its large dielectric constant. The properties of STO can be varied from insulating to semiconducting and even superconducting at low temperatures on electron doping. Recently, it has been demonstrated that the interfaces of STO with perovskite oxides like LaAlO$_3$ and LaTiO$_3$ can stabilize a two dimensional electron gas (2DEG) with mobilities as high as ∼104 cm2/Vs. The later creates oxygen vacancies on the surface of STO, which make it metallic. Many groups have studied this surface electron gas and have reported its unique properties, which include a large (≈300%) low temperature magnetoresistance, electrostatic control of carrier concentration, persistent photoconductivity and its control by electrostatic gating.

In the context of optical properties, while the undoped stoichiometric single crystals of STO do not show any PL at room temperature, a broad greenish luminescence is seen near ∼10 K. The intensity of this emission decreases rapidly above 60 K and disappears all together beyond 110 K. The luminescence becomes pronounced when oxygen vacancies are incorporated in STO. Kan et al. have noted that bombardment with 300 eV Ar$^+$-ions induces blue (∼420 nm) PL in stoichiometric single crystals of STO at room temperature, which they attribute to emission from oxygen vacancies related defect states. However, a recent experiment of Sung et al. on 100 keV Ar$^+$-ion irradiated STO shows only a broad luminescence centered at ∼510 nm at room temperature. Since the nature of defects may change with ion energy, ion type and their fluence, these results indicate much diverse nature of defect physics in this material. The PL emission is generally derived from localized electronic states within the forbidden gap created by atomic vacancies or impurities. The vacancies/defects present in Ar$^+$-ion irradiated STO may not be of just single kind but in various different forms leading to far more abundant defect states. Indeed, the local density approximation (LDA)+ Hubbard U study carried out recently on oxygen deficient STO predicts that linear vacancy clusters result in many localized in-gap states. This suggests the possibility to activate several PL emissions simultaneously at room temperature in Ar$^+$-ion irradiated STO. Moreover, it is expected that the nature and abundance of the surface states can be tuned by electrostatic gating to achieve multi-color optical devices. In view of these interesting predictions of the LDA+U theory, it is desirable to further explore the photoluminescence of Ar$^+$-ion irradiated STO and its other forms over a broad range of temperatures to cover the direct to indirect optical gap regimes. Moreover, since the PL is a very sensitive and selective probe of defect/impurity states, studies of luminescence would improve our understanding of the persistent photoconductivity reported earlier in Ar$^+$-ion irradiated STO.

Here we present a detailed study of photoluminescence of oxygen-deficient SrTiO$_3$ created by Ar$^+$-ion irradiation over a broad range of temperature and compare it with our measurements of the PL in pristine crystals, epitaxial films and amorphous layers of the same material. While we did not observe any luminescence from the pristine STO at ambient temperature, the ion irradiation led to a multi-frequency emission. However, below ∼105 K the characteristic PL of the unperturbed STO below
the irradiated layer emerges and grows into a broad peak centered at \(\approx 500 \) nm. It is also shown that the photoluminescence spectrum can be modulated by electrostatic gating at low temperatures (\(< 20 \) K) which may be potentially important for applications.

II. EXPERIMENTAL DETAILS

The stoichiometric single crystals of SrTiO\(_3\) used in this study were acquired from Crystal GmbH Germany. The (001) surface of these 0.5 mm thick and optically polished plates was irradiated at room temperature by Ar\(^+\) ions with a cumulative doses of \(\approx 3.0 \times 10^{18}, 4.2 \times 10^{18} \) and \(6 \times 10^{18} \) ions/cm\(^2\). The typical acceleration voltage and ion current used in these experiments, carried out with a Kauffman type ion source operated at \(\approx 8.5 \times 10^{-4} \) mbar Ar pressure, were 550 V and 1.5 mA/cm\(^2\), respectively. The irradiated surface of STO is metallic down to the lowest temperature (\(\approx 10 \) K) where the sheet resistance and carrier mobility are \(\approx 3 \ \Omega/\square \) and \(\approx 0.2 \times 10^4 \) cm\(^2\)/Vs respectively. Further details of the Ar\(^+\) ion irradiation experiments and measurements of electronic transport in irradiated samples are given in our earlier article. The photoluminescence spectra were excited with the 325 nm line of a He-Cd laser, and measured using Jobin Yvon Triax-320 spectrometer. For measurements of the temperature dependence of PL spectra, the samples were mounted in a close cycle helium cryostat having a quartz window for optical access. The PL response was also modulated electrostatically by gating the irradiated surface in a back gate configuration.

III. RESULTS

In Fig. 1(a), we show the room temperature photoluminescence spectrum of the (001) surface of Ar\(^+\) ion irradiated SrTiO\(_3\). In the same figure we have also shown the feature less PL response of a non-irradiated sample. The richness of the spectrum in the former case is a testimony of enhanced optical activity as a result of ion irradiation. The spectrum shows three distinct emission peaks centered at \(\approx 430 \) nm, \(\approx 550 \) nm and \(\approx 820 \) nm, which on the energy scale correspond to \(\approx 2.9 \) eV, \(\approx 2.3 \) eV, and \(\approx 1.5 \) eV, respectively. The blue luminescence (\(\approx 430 \) nm) observed in this study is essentially the same as that reported by Kun et al. in their 300 eV Ar\(^+\)-ion irradiated STO. But these authors did not observe the two additional peaks seen here which result in a multi-colored photoluminescence at room temperature in these 550 eV Ar\(^+\)-ion irradiated STO crystals.

Since heavy ion irradiation can cause amorphization of the target surface, we have also studied the effects of post irradiation etching of STO on its photoluminescence characteristics. For this purpose two STO samples 3 \(\times \) 5 mm\(^2\) were irradiated together to avoid any discrepancy. After irradiation, one of the samples was chemically etched in HF solution (NH\(_4\)F : DI water : HF = 18.54 gm : 50 ml : 3.75 ml) for 30 seconds. For comparison, the room temperature PL spectra of the etched sample is also plotted in Fig. 1(a). It is observed that the HF etching increases the integrated PL peak intensity by a factor of two. For reference, the PL of non-irradiated stoichiometric STO is also shown in Fig. 1(a). The 390 nm peak at 20 K is zoomed in the inset of panel (b).

![FIG. 1. (Color online) Multi-color PL spectra of Ar\(^+\)-ion irradiated STO and the effect of hydrofluoric (HF) acid etching (a) at 300 K and (b) at 20 K. The HF treatment of irradiated STO increases the PL intensity at 300 K by a factor of two. For reference, the PL of non-irradiated stoichiometric STO is also shown in Fig. 1(a). The 390 nm peak at 20 K is zoomed in the inset of panel (b).]
However, as clear from the inset of Fig. 1(b), it increases the effect of etching on the greenish broad band luminescence, etched irradiated STO. One can see that there is no effect on lowering the temperature. On reaching 20 K, an intense broad luminescence ranging from 370 nm to 850 nm along with this extra peak centered at 390 nm is clearly visible in the figure [panel (a) and (b)]. Note that the later is not observed in stoichiometric non-irradiated STO [panel (c)]. The PL spectrum of un-etched (only irradiated) STO has also been collected at 20 K. The spectrum is shown in Fig. 1(b) along with that of the etched irradiated STO. One can see that there is no effect on the greenish broad band luminescence, however, as clear from the inset of Fig. 1(b), it increases the 390 nm PL peak intensity by a factor of two.

![Fig. 2](image2.png)

FIG. 2. (Color online) PL spectra of Ar$^+$-ion irradiated STO and non-irradiated (bare) STO in the temperature range of 300 K to 20 K. Panel (a) shows the temperature dependence emission spectra of Ar$^+$-ion irradiated STO. For clarity, the spectra along with their deconvolution fit are shifted and the intensity of PL spectra at 20 K, 40 K and 60 K are reduced by factor of 13, 10 and 3. These spectra are put together in panel (b) and zoomed in the vicinity of 390 nm peak emphasizing its appearance below ~60 K. The similar measurements carried out for bare STO are shown in panel (c) for comparison. The spectra at 20 K and 40 K are reduced by factor of 12 and 9.

![Fig. 3](image3.png)

FIG. 3. (Color online) Photoluminescence profile of epitaxial oxygen deficient thin film and amorphous film of SrTiO$_3$ at room temperature. For comparison, the PL spectra of Ar$^+$-irradiated STO is also shown. Note that the amorphous film shows a broad featureless emission profile whereas the PL spectra of oxygen deficient film behave similar to that of Ar$^+$-irradiated STO.

We now turn our attention to the possible sources of the rich spectrum, whether it is oxygen deficient layer or the top amorphous layer. Towards this end, we have examined the PL properties of oxygen deficient epitaxial thin films as well as amorphous films of STO. These 100 nm thick films were grown on STO (001) substrates by pulsed laser ablation of a bulk target of SrTiO$_3$. The oxygen deficient film was deposited under reduced oxygen environment (6.3×10^{-6} mbar) at 800°C substrate temperature. The epitaxial growth was confirmed by X-ray diffraction. This film showed a metallic behaviour down to 10 K coming from oxygen vacancy induced mobile electrons in the system as reported earlier by Perez-Casero et al. To grow the amorphous film, the deposition was carried out at room temperature under 1×10$^{-4}$ mbar of oxygen. Two samples of each type were prepared. Both of them showed similar PL results. The room temperature PL spectra of these films are shown in Fig. 3 along with those of the Ar$^+$-irradiated STO crystal. The amorphous film displays a broad featureless luminescence ranging from 350 nm to 950 nm, which is in accordance with the reported photoluminescence of amorphous SrTiO$_3$. This emission profile clearly does not match with the luminescence of Ar$^+$-irradiated STO. However, the emission behaviour of the oxygen deficient epitaxial film is close to that of the Ar$^+$-irradiated STO, which suggests that the photoluminescence in the later is mainly originating from the oxygen deficient layer.

A unique feature of the present study is the modulation of the PL spectra with an electrostatic gate field as shown in Fig. 4(a) under a gate voltage varying from -150 V to +150 V at 20 K. These voltages translate into an electric
The changes in broad green peak intensity as a function of gate field are shown in inset of panel (a). At 20 K, the gate field increases the peak-intensity where as there are no noticeable changes at 300 K.

A similar analysis has been done for all the spectra collected in the temperature range of 20 K to 300 K. The cumulative fits are drawn in Fig. 2(a). The peak positions, their full width at half maximum (FWHM) and intensity derived from the deconvolution procedure are plotted in Fig. 6 as a function of temperature. The intensity of all the peaks increases gradually on lowering the temperature from 300 K to 100 K. This trend accelerates on further decreasing the temperature below ≈100 K. Two different mechanisms appear to be responsible for the luminescence as indicated by the two distinct regions of behaviour well separated at ≈100 K. From 300 K to ≈100 K, the blue and red peaks shift gently towards green with no noticeable shift of the IR and violet peak positions. However, in low-T region (below ≈100 K), the response is remarkably different. At 60 K, the diverse nature of luminescence is no more visible. There is only a broad emission profile peaked at the position of the green line. It seems that all other peaks are merged under this broad and intense luminescence. Moreover, the intensity of this green signal increases sharply on lowering the temperature. In the low T-region, a similar T-dependence has been reported for the greenish luminescence with no noticeable shift of the IR and violet peak positions.

TABLE I. The percentage area of each decomposed PL peak

	Violet	Blue	Green	Red	Infra-red
405 nm	3%	15%	47%	30%	7%

IV. DISCUSSION

The broad spectrum stretching from ≈380 nm to ≈850 nm with three distinct peaks suggests that there may be additional specific features which are hidden under the envelope. To better understand the PL spectrum and its origin, we have analyzed the emission collected at 300 K by deconvolution using gaussian line-shapes. Multiple peaks which account for the measured intensity profile are shown in Fig. 5. Table-I lists the position of these peaks and their spectral weight.
We have also recorded the PL spectra of stoichiometric non-irradiated STO (001) crystal undergoes an antiferrodistortive ($O_h^2 \rightarrow D_{4h}^{18}$) structural phase transition (AFD-PT) to a tetragonal symmetry (I4/mcm) in the vicinity of 105 K. In the cubic STO, the top of the valence band is located at the R-point in the first Brillouin zone whereas the lowest conduction band bottom lies at the Γ-point making this transition indirect. The AFD-PT results in merging of the R and Γ-points of the Brillouin zone where as the lowest conduction band bottom lies at the Γ-point this transition indirect. We believe that the ion irradiation is creating disorder in the material leading to several different kinds of oxygen-vacancy clusters which induce many in-gap localized states. The recombination of electrons trapped in these levels to the valence band holes can lead to multi-frequency emission at room temperature.

At this point it is worth commenting on why the pristine STO crystal shows an onset of photoluminescence at ~ 100 K which becomes quite pronounced around ≈ 20 K. It is well known that cubic (Pm3m) SrTiO$_3$ undergoes an antiferrodistortive ($O_h^2 \rightarrow D_{4h}^{18}$) structural phase transition (AFD-PT) to a tetragonal symmetry (I4/mcm) in the vicinity of 105 K. In the cubic STO, the top of the valence band is located at the R-point in the first Brillouin zone whereas the lowest conduction band bottom lies at the Γ-point making this transition indirect. The AFD-PT results in merging of the R and Γ-points of the Brillouin zone where as the lowest conduction band bottom lies at the Γ-point making this transition indirect. We believe that this opening of the direct gap results in enhanced PL intensity in the pristine STO below 100 K. Now we discuss the possible origin of the increase in PL intensity as seen on applying a gate field. A voltage (positive/negative) on the gate induces onto the sample a charge (negative/positive), which, in the absence of surface states, distributes throughout a space charge region either in gap states or in the bands. Using Barbe theory of field effect, the induced space charge (Q_{sc}) per unit area in the semiconductor can be expressed as

$$| Q_{sc} | = \left\{ \frac{\epsilon_0 k T}{e \lambda} \right\} y_s$$

where ϵ is the dielectric constant of the material, ϵ_0 is the permittivity of free space, k is the Boltzmann constant and y_s is the dimensionless energy at the surface. However, in the presence of surface states/trapping centers in the material, most of the induced charge falls into these states. The charge (Q_{sc}) residing in surface states can change abruptly below around ≈ 100 K, the temperature where SrTiO$_3$ crystal undergoes a structural phase transition from cubic-to-tetragonal.

The multicolored PL seen in these experiments is consistent with the predictions of LDA+U calculations of Cuong et al. on oxygen deficient STO, where they have shown that a single oxygen vacancy can create a shallow level just below (≈ 0.11 eV) the conduction band minimum of STO. This will lead to emission at ≈ 390 nm. Incorporation of vacancy-vacancy interactions in the calculation yields oxygen vacancy clusters which induce localized electronic levels ranging in energy from 0.3 eV to 1.14 eV in the forbidden gap with respect to the conduction band edge. Defect clusters can also result from binding of oxygen and strontium vacancies. The accelerated Ar$^+$-ions, while penetrating into the STO lose their energy resulting in an oxygen-deficient layer along with an amorphous layer on the top. We believe that the ion irradiation is creating disorder in the material leading to several different kinds of oxygen-vacancy clusters which induce many in-gap localized states. The recombination of electrons trapped in these levels to the valence band holes can lead to multi-frequency emission at room temperature.
be written as

$$|Q_{ss}| = e k T (N_{AS}^F + N_{DS}^F) y_s$$

where \(N_{AS}^F\) and \(N_{DS}^F\) are the number of acceptor type and donor type surface states per unit area per unit energy at the Fermi level, respectively.

In our case, the ion irradiation process is likely to create a large number of defects and thus midgap energy states. These states are plausibly to be hole as well as electron trap levels forming non-radiative recombination sites which lower the intrinsic PL of STO in the direct band gap state.\(^{38}\) These positive and negative recombination centers can efficiently be deactivated by the variation of relative position of the Fermi level using negative and positive gate fields respectively.\(^ {38,41}\) We expect the filling of electron trap states while the gate field is swung positive and the passivation of hole trap states when the gate field is swung negative. Therefore, the gate field regardless of its polarity will ensure the reduction of non-radiative recombination and hence the increase in PL intensity. On the other hand, at 300 K, where the gate field is swung negative, therefore the gate field results in the reduction of non-radiative recombination of the STO.

ACKNOWLEDGMENTS

The authors thank A. Rastogi for initial help while doing photoluminescence measurements. D.K. would like to acknowledge Indian Institute of Technology Kanpur for partial financial support. R.C.B. acknowledges J. C. Bose National Fellowship of the Department of Science and Technology, Government of India.

REFERENCES

1. C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323, 1026 (2009).
2. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science 266, 1540 (1994).
3. G. Koster, G. Rijnders, D. H. A. Blank, and H. Rogalla, Physica C: Superconductivity 339, 215 (2000).
4. D. Newns, J. Misewich, C. Tsuei, A. Gupta, B. Scott, and A. Schrott, Applied Physics Letters 73, 780 (1998).
5. H. Nakamura, H. Takagi, H. Inoue, Y. Takahashi, T. Hasegawa, and Y. Tokura, Applied physics letters 89, 133504 (2006).
6. A. Rastogi, A. K. Kushwaha, T. Shiyan, A. Gangawar, and R. C. Budhani, Advanced Materials 22, 4448 (2010).
7. O. N. Tuft and P. W. Chapman, Phys. Rev. 155, 796 (1967), URL http://link.aps.org/doi/10.1103/PhysRev.155.796
8. H. P. R. Frederikse, W. R. Thurber, and W. R. Hosler, Phys. Rev. 134, A444 (1964), URL http://link.aps.org/doi/10.1103/PhysRev.134.A444
9. J. F. Schooley, W. R. Hosler, and M. L. Cohen, Phys. Rev. Lett. 12, 474 (1964), URL http://link.aps.org/doi/10.1103/PhysRevLett.12.474
10. C. Kooence, M. L. Cohen, J. Schooley, W. Hosler, and E. Pfeiffer, Physical Review 163, 380 (1967).
11. A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
12. A. Rastogi, J. J. Pulikkotil, S. Auluck, Z. Hossain, and R. C. Budhani, Physical Review B 86, 075127 (2012).
13. W. Meevasana, P. King, R. He, S. Mo, M. Hashimoto, A. Tamai, P. Songsiririthigul, F. Baumberger, and Z. Shen, Nature Materials 10, 114 (2011).
14. D. W. Reagor and V. Y. Butko, Nature Materials 4, 593 (2005).
15. D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, et al., Nature Materials 4, 816 (2005).
16. A. Gentils, O. Copie, G. Herranz, F. Fortuna, M. Bibes, K. Bouzehouane, E. Jacquet, C. Carrétéro, M. Basleti, E. Tafra, et al., Phys. Rev. B 81, 144109 (2010), URL http://link.aps.org/doi/10.1103/PhysRevB.81.144109
17. F. Y. Bruno, J. Tornos, M. G. del Olmo, G. S. Santolino, N. M. Nemes, M. Garcia-Hernandez, B. Mendez, J. Pi-Queras, G. Antorrena, L. Morellón, et al., Physical Review B 83, 245120 (2011).
18. D. Kumar, Z. Hossain, and R. C. Budhani, Phys. Rev. B 91, 205117 (2015), URL http://link.aps.org/doi/10.1103/PhysRevB.91.205117
19. L. Grabner, Phys. Rev. 177, 1315 (1969), URL http://link.aps.org/doi/10.1103/PhysRev.177.1315
20. Y. Sihvonen, Journal of Applied Physics 38, 4431 (1967).
