Nuclear magnetic spectrometer of differential type for
determining the longitudinal relaxation time in turbulent fluid
flows

N S Myazin¹, V V Davydov¹, ², V I Sviatkina¹, V V Yushkova³
¹Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
²All-Russian Research Institute of Phytopathology, Moscow Region 143050, Russia
³Saint Petersburg University of Management Technologies and Economics, 190109, Russia

Abstract. The article substantiates the necessity of measuring the longitudinal relaxation time
T_1 of the flowing liquid to control its state. For such measurements, a new method for measuring
T_1 in a flowing fluid is proposed. This method allows to measure relaxation time in a wide range
of a flow rate (more than two orders of magnitude).

1. Introduction
Deteriorating global environmental conditions, as well as increased production and much more, required
the development of various methods for monitoring condensed media [1-9]. Various methods are
necessary, since their applicability depends on the measurement conditions, as well as on the tasks to be
solved [8-23]. In some cases, it is necessary to ensure the sterility of the measured process, therefore
non-contact instruments are used to control the media [6, 7, 11-14, 24-28]. In addition, additional
requirements have been imposed on the control devices. Namely, the measurements must be in real time
and the measuring process must not change the physical structure and chemical composition of the
medium [5-8, 11-15, 27-32].

When implementing these requirements, there are especially many difficulties with monitoring the
condition of the flowing liquid through the pipeline [12, 24, 33-37]. Such control is necessary to
determine the flowing liquid state both during experiments and during automation of industrial
production of various liquid media, biological solutions, etc. This is one of the tasks of the technical
physics [12, 24, 28, 29, 32, 37-40].

2. Nuclear magnetic spectrometer and method for control of flowing liquid state
One of the most promising methods to control the state of the flowing liquid is the use of the nuclear
magnetic resonance (NMR) phenomenon [34-42]. However, it is extremely difficult to register the NMR
spectrum since the liquid is located for a limited time in the NMR signal registration system [26-42].
Therefore, the condition of the current liquid is monitored according to the measured time values of its
longitudinal T_1 and transverse T_2 relaxation.

Since the monitoring devices of the flowing liquid must operate effectively when the value of liquid
flow rate q changes in at least two orders of magnitude, a few problems arise. The main one is related
to the limitations of the previously developed methods for measuring T_1 relaxation time of a liquid. This
is because during the experiments or control of technological process it is difficult to perform
measurements of T_1 on optimum value of flow q_{opt} when the flow rate q changes within two orders or
more [12, 36, 37]. Therefore, it is almost impossible to use this method in industry.
Thus, the development of the method for determining the longitudinal relaxation time of the flowing liquid by the nuclear magnetic spectrometer is extremely relevant. Such measurement must be performed with an error of less than 1%, even in cases where the liquid flow rate varies by more than two orders of magnitude.

One of the possible solutions to this problem has been proposed in our work. Figure 1 shows the experimental setup of a differential type NMR spectrometer that implements a new method for measuring the longitudinal relaxation time T_1 of a flowing fluid.

Figure 1. The block diagram of the experimental setup: 1 is the pump; 2 is the magnet polarizer; 3 is the vessel polarizer; 4 is the connecting section of the pipeline; 5 is the content of the nutation coil; 6 is the flow switches; 7 is the a connecting section of the pipeline connected through flow switches; 8 is the flow switches; 9 is the magnet analyzer; 10 is the coil recording the NMR signal; 11 is the registration diagram; 12 is the oscilloscope; 13 is the modulation coils; 14 is the modulation generator; 15 is a processing and control diagram; 16 is the electronic keys; 17 is the nutation generator; 18 is the frequency counter; 19 is the magnetic screens.

To implement the new method, we have considered the evolution of the magnetization vector along all its paths from the polarizer magnet to the registration coil. As a result of the research it was found that under certain conditions the magnetization of the liquid changes only because of relaxation processes. These conditions are mean the fulfilling conditions of the of adiabatic theorem on the whole length of the magnetized liquid flow from the polarizer to the registration coil.

If two sections of the pipeline with different volumes are used, the magnetization M_1 of the liquid will change, and so does the amplitude of the recorded NMR signals. In this case, it was found that the ratio of amplitudes of the recorded signals was proportional to the ratio of magnetization change factors:

$$\frac{U_1}{U_2} = \frac{e^{-\frac{V_{c_1}}{qT_1}}}{e^{-\frac{V_{c_2}}{qT_1}}}$$

(1)

where T_1 is the time of longitudinal relaxation of the liquid.

After some mathematical conversions, this ratio takes the following form:
\[T_1 = \frac{V_{c2} - V_{c1}}{q \cdot \ln \frac{U_1}{U_2}} \]

(2)

It should be noted that in the developed method, the error of \(T_1 \) determination with the use of the formula (2) is mainly determined by the error of measurement of \(q \) value and the error of determination of volumes of connecting pipeline sections \(V_{c1} \) and \(V_{c2} \). The error of measuring amplitudes of NMR signals has no significant impact on the error of measuring \(T_1 \) since the formula (1) uses their ratio [24, 38, 42].

The liquid flow rate \(q \) is measured by the method developed by the authors [39–42], based on the registration of the time of arrival of the NMR signal with the inversion of the magnetization in the detection coil 10 from the nutation coil 5.

It should be noted that in the developed method in the ratio for measuring \(T_1 \) it is possible to use measured values of amplitudes \(U_1 \) and \(U_2 \) from NMR signals with magnetization inversion. This allows simultaneous measurements of \(q \) and \(T_1 \).

3. Results of experimental research and discussion

Figure 2 shows the example of the recorded signals.

Figure 2 (a, b). NMR signals from tap water for different volumes of pipeline connection section. Graph a) correspond to \(V_{c1} = 146 \) ml and graph b) correspond to \(V_{c2} = 204 \) ml.

An analysis of the obtained NMR signals shows that in the case of an increase in \(V_c \), the amplitude of the recorded NMR signal decreases, which corresponds to [39–42]. To confirm the obtained data, NMR signals with inversion, which is created in the nutation coil 6, were studied.

Figure 3 presents, as an example, the recorded NMR signals from tap water with magnetization inversion at two volume values \(V_c \).
For tap water at $T = 276.3$ K, using the new method, the value of the longitudinal relaxation time was measured. The measured value is $T_1 = 1.436 \pm 0.014$ s. The relaxation time measurement cycle was repeated 10 times to average the data and estimate the measurement error in accordance with standard methods. A sample of the same water at $T = 276.3$ K was studied on a Minispec mq20M stationary NMR relaxometer (made by BRUKER). The measured value is $T_1 = 1.4338 \pm 0.0028$ s. The obtained values of T_1 coincided within the measurement error.

4. Conclusion
The analysis of the obtained experimental results showed that the experimental setup we have developed using a new method allows to measure T_1 with an error of less than 1% in real time simultaneously with the measurements of T_2 and liquid flow rate q when it changes in the range of more than two orders of magnitude. This allows us to offer the developers of NMR measuring devices, on the basis of the developed design of the experimental setup and our proposed new method for measuring T_1, to develop a new NMR design of a flowmeter-relaxometer, both for conducting scientific research and for solving various problems in the energy and industry.

Acknowledgments
This research work was supported by the Academic Excellence Project 5-100 proposed by Peter the Great St. Petersburg Polytechnic University.

References
[1] Rumyantsev N, Bondareva O, Makeev S and Krasnoshekov V 2019 IOP Conference Series: Earth and Environmental Science 390(1) 012037
[2] Kozar M, Sabliy L, Korenchuk M, Korshunov A and Kosolapov V 2019 IOP Conference Series: Earth and Environmental Science 390(1) 012002
[3] Karseev A Yu, Vologdin V A and Davydov V V 2015 Journal of Physics: Conference Series 643(1) 012108
[4] Petrov A A, Davydov V V, Vologdin V A and Zalyotov D V 2015 Journal of Physics: Conference Series 643(1) 012087
[5] Davydov R, Antonov V, Molodtsov D, Cheremisin A and Korabev V 2018 MATEC Web of Conferences 245 15002
[6] Grebenikova N M, Myazin N S, Rud' V Yu and Davydov R V 2018 Proceedings of the 2018 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2018 (Saint-Petersburg) 8564409 p. 295-297
[7] Grebenikova N M, Davydov R V and Rud V Yu 2019 Journal of Physics: Conference Series 1326(1) 012012
[8] Davydov R, Antonov V and Moroz A 2019 Proceedings of the 2019 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2019 (Saint-Petersburg) 8906791 p. 42-45
[9] Yushkova V, Kostin G, Davydov R, Rud S, Dudkin V and Valiullin L 2019 IOP Conference Series: Earth and Environmental Science 390(1) 012016
[10] Davydov R, Antonov V, Makeev S, Batov Y, Dudkin V and Myazin N 2019 E3S Web Conference 140 02001
[11] Davydov V V and Myazin N S 2017 Measurement Techniques 60(5) 491-496
[12] Zhernovoi A I, Komlev A A and D’yachenko S V 2016 Technical Physics 61(2) 302-305
[13] Myazin N S, Davydov V V, Yushkova V V and Rud V Yu 2018 Journal of Physics: Conference Series 1038(1) 012088
[14] Myazin N, Neronov Y, Dudkin V, Davydov V and Yushkova V 2018 MATEC Web of Conferences 245 11013
[15] Logunov S E, Rud V Yu, Davydov R V, Moroz A V and Smirnov K J 2019 Journal of Physics: Conference Series 1326(1) 012024
[16] Valov A P, Davydov R V, Rud V Yu and Grevtseva A S 2019 Journal of Physics: Conference Series 1326(1) 012040
[17] Grevtseva A S, Davydov R V, Dudkin V I and Rud' V Yu 2019 Journal of Physics: Conference Series 1326(1) 012043
[18] Lukashev N A, Davydov R V, Glimushkin A P and Rud' V Yu 2019 Journal of Physics: Conference Series 1326(1) 012046
[19] Logunov S E, Davydov R V, Vysotsky M G, Dudkin V I and Rud' V Yu 2019 Journal of Physics: Conference Series 1368(1) 022056
[20] Davydov R, Antonov V and Kalinin N 2015 Journal of Physics: Conference Series 643(1) 012107
[21] Davydov R V and Antonov V I 2016 Journal of Physics: Conference Series 769(1) 012060
[22] Davydov R V and Antonov V I 2017 Journal of Physics: Conference Series 929(1) 012040
[23] Davydov R V and Antonov V I 2018 Journal of Physics: Conference Series 1124(1) 081037
[24] Davydov V V, Dudkin V I, Petrov A A and Myazin N S 2016 Technical Physics Letters 42(7) 692-696
[25] Davydov V V, Myazin N S and Davydova T I 2017 Russian Journal of Nondestructive Testing 53(7) 520-529
[26] Davydov V V, Dudkin V I and Karseev A Y 2015 Journal of Applied Spectroscopy 82(5) 794-800
[27] Davydov V V, Velichko E N, Dudkin V I and Karseev A Y 2015 Instruments and Experimental Techniques 58(2) 234-238
[28] Davydov V V 1999 Russian Physics Journal 42(9) 822-825
[29] Davydov V V, Dudkin V I, Karseev A Y 2015 Technical Physics 60(3) 456-460
[30] Davydov V V, Dudkin V I and Karseev A Y 2015 Instruments and Experimental Techniques 58(6) 787-793
[31] Gizatullin B, Gafurov M, Rodionov A, Mamin G, Mattea C, Stapf S and Orlovskii S 2018 Energy Fuels 32(11) 11261-11268
[32] Alexandrov A S, Ivanov A A, Archipov R V, Gafurov M R and Tagirov M S 2019 Magnetic Resonance in Solids 21(2) 19203
[33] Davydov R V, Antonov V I, Yushkova V V, Grebenikova N M and Dudkin V I 2019 Journal of Physics: Conference Series 1326(1) 012079
[34] Davydov V V, Dudkin V I and Karseev A Y 2014 Measurement Techniques 57(8) 912-918
[35] Davydov V V, Velichko E N, Dudkin V I and Karseev A Y 2014 *Measurement Techniques* **57**(6) 684-689
[36] D’yachenko S V and Zhernovoi A I 2016 *Technical Physics* **61**(12) 1845–1847
[37] Diachenko S V, Kondrashkova I S and Zhernovoy A I 2017 *Technical physics* **62**(10) 1602–1604
[38] Davydov V, Cheremiskina A, Velichko E and Karseev A 2014 *Journal of Physics: Conference Series* **541**(1) 012006
[39] Davydov V V, Dudkin V I and Myazin N S 2016 *Journal of Communications Technology and Electronics* **61**(10) 1159-1165
[40] Davydov V V 2017 *Measurement Techniques* **59**(11) 1202-1209
[42] Davydov V V 2016 *Optics and Spectroscopy (English translation of Optika i Spektroskopiya)* **121**(1) 18-24