Kaon HBT radii from perfect fluid dynamics using the Buda-Lund model

M. Csanád

Eötvös University, H-1117 Budapest, Pázmány Péter s. 1/A, Hungary

AND

T. Csörgő

MTA KFKI RMKI, H-1525 Budapest 114, P.O.Box 49, Hungary

In this paper we summarize the ellipsoidally symmetric Buda-Lund model’s results on HBT radii. We calculate the Bose-Einstein correlation function from the model and derive formulas for the transverse momentum dependence of the correlation radii in the Bertsch-Pratt system of out, side and longitudinal directions. We show a comparison to $\sqrt{s_{NN}} = 200\, GeV$ RHIC PHENIX two-pion correlation data and make prediction on the same observable for different particles.

1. Perfect fluid hydrodynamics

Perfect fluid hydrodynamics is based on local conservation of entropy and four-momentum. The fluid is perfect if the four-momentum tensor is diagonal in the local rest frame. The conservation equations are closed by the equation of state, which gives the relationship between energy density ϵ, pressure p. Typically $\epsilon - B = \kappa(p + B)$, where B stands for a bag constant ($B = 0$ in the hadronic phase, non-zero in a QGP phase), and κ may be a constant, but can be an arbitrary temperature dependent function.

There are only a few exact solutions for these equations. One (and historically the first) is the famous Landau-Khalatnikov solution discovered more than 50 years ago [1,2,3]. This is a 1+1 dimensional solution, and has realistic properties: it describes a 1+1 dimensional expansion, does not lack acceleration and predicts an approximately Gaussian rapidity distribution.

Another renowned solution of relativistic hydrodynamics is the Hwa-Bjorken solution [4,5,6], which is a simple, explicit and exact, but accelerationless solution. This solution is boost-invariant in its original form, but
this approximation fails to describe the data [7, 8]. However, the solution allowed Bjorken to obtain a simple estimate of the initial energy density reached in high energy reactions from final state hadronic observables.

There are solutions which interpolate between the above two solutions [9, 10], are explicit and describe a relativistic acceleration.

2. The Buda-Lund model

We focus here on the analytic approach in exploring the consequences of the presence of such perfect fluids in high energy heavy ion experiments in Au+Au collisions at RHIC. Such exact analytic solutions were published recently in refs. [9, 10, 11, 12, 13]. A tool, that is based on the above listed exact, dynamical hydro solutions, is the Buda-Lund hydro model of refs. [14, 15].

The Buda-Lund hydro model successfully describes BRAHMS, PHENIX, PHOBOS and STAR data on identified single particle spectra and the transverse mass dependent Bose-Einstein or HBT radii as well as the pseudorapidity distribution of charged particles in central Au+Au collisions both at $\sqrt{s_{\text{NN}}} = 130$ GeV [16] and at $\sqrt{s_{\text{NN}}} = 200$ GeV [17] and in p+p collisions at $\sqrt{s} = 200$ GeV [18], as well as data from Pb+Pb collisions at CERN SPS [19] and h+p reactions at CERN SPS [20, 21]. The model is defined with the help of its emission function; to take into account the effects of long-lived resonances, it utilizes the core-halo model [22]. It describes an expanding fireball of ellipsoidal symmetry (with the time-dependent principal axes of the ellipsoid being X, Y and Z).

3. HBT from the Buda-Lund model

Let us calculate the two-particle Bose-Einstein correlation function from the Buda-Lund source function of the Buda-Lund model as a function of $q = p_1 - p_2$, the four-momentum difference of the two particles. The result is

$$C(q) = 1 + \lambda e^{-q^2 \Delta \tau^2 - q^2 R^2_{\tau, x} - q^2 R^2_{\tau, y} - q^2 R^2_{\tau, z}},$$

(1)

with λ being the intercept parameter (square of the ratio of particles emitted from the core versus from the halo [22]), and

$$\frac{1}{\Delta \tau^2} = \frac{1}{\Delta \tau^2} + \frac{m_t}{T_0} \frac{d^2}{d \tau^2},$$

(2)

$$R^2_{\tau, x} = X^2 \left(1 + m_t (a^2 + \dot{X}^2)/T_0\right)^{-1},$$

(3)

$$R^2_{\tau, y} = Y^2 \left(1 + m_t (a^2 + \dot{Y}^2)/T_0\right)^{-1},$$

(4)
$$R^2_{t,z} = Z^2 \left(1 + m_t (a^2 + \dot{Z}^2) / T_0 \right)^{-1},$$ \tag{5}$$

with X, \dot{Y}, \dot{Z} being the time-derivative of the principal axes, m_t the average transverse mass of the pair. T_0 is the central temperature at the freeze-out, $\Delta \tau$ is the mean emission duration and τ_0 is the freeze-out time. Furthermore, a and d are the spatial and time-like temperature gradients, defined as $a^2 = \langle \Delta T^2 \rangle_\perp$ and $d^2 = \langle \Delta T^2 \rangle_\tau$. From the mass-shell constraint one finds $q_0 = \beta_x q_x + \beta_y q_y + \beta_z q_z$, if expressed by the average velocity β. Thus we can rewrite eq. [1] with modified radii to

$$C(q) = 1 + \lambda_* \exp \left(- \sum_{i,j=x,y,z} R^2_{i,j} q_i q_j \right), \text{ where} \tag{6}$$

$$R^2_{i,i} = R^2_{i,i} + \beta_i^2 \Delta \tau_i^2, \text{ and } R^2_{i,j} = \beta_i \beta_j \Delta \tau_i^2, \tag{7}$$

From this, we can calculate the radii in the Bertsch-Pratt frame [22] of

out (o, pointing towards the average momentum of the actual pair, rotated from x by an azimuthal angle φ), longitudinal (l, pointing towards the beam direction) directions and side (s, perpendicular to both l and o) directions. The detailed calculations are described in ref. [24]. These include azimuthally sensitive oscillating cross-terms. However, due to space limitations, the angle dependent radii are not shown here. If one averages on the azimuthal angle, and goes into the LCMS frame (where $\beta_l = \beta_s = 0$), the Bertsch-Pratt radii are:

$$R^2_o = (R^2_{x,x} + R^2_{y,y})^{-1} + \beta_i^2 \Delta \tau_i^2, \tag{8}$$

$$R^2_s = (R^2_{x,x} + R^2_{y,y})^{-1}, \tag{9}$$

$$R^2_l = R^2_{z,z}. \tag{10}$$

These can be fitted then to the data [23] as in ref. [26], see fig. [1]. This allows us to predict the transverse momentum dependence of the HBT radii of two-kaon correlations as well: if they are plotted versus m_t, the data of all particles fall on the same curve. This is also shown for kaons on fig. [1].

REFERENCES

[1] L. D. Landau, Izv. Akad. Nauk SSSR Ser. Fiz. 17, 51 (1953).
[2] I. M. Khalatnikov, Zhur. Eksp. Teor. Fiz. 27, 529 (1954).
[3] S. Z. Belenkij and L. D. Landau, Nuovo Cim. Suppl. 3S10, 15 (1956).
[4] R. C. Hwa, Phys. Rev. D10, 2260 (1974).
Fig. 1. HBT radii from the axially Buda-Lund model from ref. [26], compared to data of ref [25]. We also show a prediction for kaon HBT radii on this plot: these overlap with that of pions if plotted versus transverse mass m_t.

[5] C. B. Chiu, E. C. G. Sudarshan, and K.-H. Wang, Phys. Rev. D12, 902 (1975).
[6] J. D. Bjorken, Phys. Rev. D27, 140 (1983).
[7] B. B. Back et al., Phys. Rev. Lett. 87, 102303 (2001).
[8] I. G. Bearden et al., Phys. Rev. Lett. 88, 202301 (2002).
[9] T. Csörgő, M. I. Nagy, and M. Csanád, nucl-th/0605070.
[10] T. Csörgő, M. I. Nagy, and M. Csanád, nucl-th/0702043.
[11] T. Csörgő et al., Phys. Rev. C67, 034904 (2003).
[12] T. Csörgő et al., Phys. Lett. B565, 107 (2003).
[13] Y. M. Sinyukov and I. A. Karpenko, Acta Phys. Hung. A25, 141 (2006).
[14] T. Csörgő and B. Lörstad, Phys. Rev. C54, 1390 (1996).
[15] M. Csanád, T. Csörgő, and B. Lörstad, Nucl. Phys. A742, 80 (2004).
[16] M. Csanád et al., Acta Phys. Polon. B35, 191 (2004).
[17] M. Csanád et al., Nukleonika 49, S49 (2004).
[18] T. Csörgő et al., Acta Phys. Hung. A24, 139 (2005).
[19] A. Ster, T. Csörgő, and B. Lörstad, Nucl. Phys. A661, 419 (1999).
[20] T. Csörgő, Heavy Ion Phys. 15, 1 (2002).
[21] N. M. Agababyan et al., Phys. Lett. B422, 359 (1998).
[22] T. Csörgő, B. Lörstad, and J. Zimányi, Z. Phys. C71, 491 (1996).
[23] S. Pratt, Phys. Rev. D33, 1314 (1986).
[24] M. Csanád, Master’s thesis, Eötvös University, 2004.
[25] S. S. Adler et al., Phys. Rev. Lett. 93, 152302 (2004).
[26] M. Csanád et al., J. Phys. G30, S1079 (2004).