This letter presents a wideband and high conversion gain mixer based on Gilbert-cell in InP DHBT process. Capacitive degeneration is introduced to increase the bandwidth of the mixer with no voltage drop and few cost of area. Current bleeding technique is employed to improve conversion gain. Utilization of device f_t is achieved to 0.919. The measurement demonstrates a conversion gain of 14.5 dB at 26 GHz with -3 dB bandwidth of 49 GHz. BW/f_t of 0.306 and GBP of 260 GHz are obtained, which are believed to be among the best compared to mixers fabricated with the same size process.

key words: InP DHBT, Gilbert-cell, mixer, monolithic microwave integrated circuit (MMIC)

Classification: Microwave and millimeter-wave devices, circuits, and modules

1. Introduction

A number of active mixers have been reported so far in various topologies and processes for different applications. SiGe-based heterojunction bipolar transistor (HBT) mixers [1, 2], SiGe-based BiCMOS mixers [3, 4, 5, 6, 7], CMOS-based mixers [8, 9, 10, 11] and mixers based on InP HBT technology [12, 13, 14, 15] were presented. Particularly, InP double heterojunction bipolar transistor (DHBT) has the advantages of outstanding high frequency performance, high electron mobility and high breakdown voltage [16, 17], which indicates that InP DHBT is an attractive choice for wideband mixers. Several enhancement techniques have been employed to extend the bandwidth of mixers. The designed Marchand baluns were used as input matching networks to achieve a wider operating bandwidth [18, 19, 20, 21]. But they are not suitable for system level design. Liu et al. proposed a mixer which adopts a common-gate stage with magnetic coupling. The mixer obtained a wide radio frequency (RF) bandwidth without extra input matching components, which is beneficial for being integrated in a receiver [22]. Nevertheless, the common-gate stage introduces voltage drop leading to a higher voltage supply. Zhang et al. demonstrated a mixer using a π-network technique to increase bandwidth without the need for higher power consumption [23]. However, these approaches all demand a considerable area for implementing inductor. An active mixer that supports wideband conversion gain without the extra cost of area is few reported. For a receiver front-end system, it is also beneficial from an active mixer with high conversion gain due to canceling intermediate frequency (IF) buffer and being compact in size [24]. This letter presents a wideband and high conversion gain mixer based on Gilbert-cell. In this paper, a capacitive degeneration technique which occupies no voltage drop and few additional area is employed to extend bandwidth. The current bleeding technique is used to improve the conversion gain of the mixer. Utilization of device f_t is analyzed for the purpose of making full use of the device performance. The Gilbert-cell mixer obtains a peaking conversion gain of 14.5 dB. The -3 dB bandwidth is from 0.1 GHz to 49 GHz. The bandwidth utilization (BW/f_t) [25] and gain-bandwidth product (GBP) [26] achieve 0.306 and 260 GHz respectively, which are excellent performance for wideband mixers.

2. Mixer design

The proposed mixer was realized in our in-house 0.8 μm InP DHBT process with peak f_t of 160 GHz and peak f_{max} of 350 GHz. The total circuit is powered by -6 V, which consists of RF input buffer, local oscillator (LO) input buffer, bias circuit and mixer core.

2.1 Input buffer and bias circuit of the mixer

The LO input buffer is shown in Fig. 1. A single-ended input signal can be converted to a differential signal by means of this topology. Two-stage differential pairs are used to guarantee high isolation of the mixer by suppressing signal leakage of LO port. RF input buffer and bias circuit are shown in Fig. 2 (a). The emitter followers and diodes are applied to the RF input buffer. The diodes which are formed by transistors with
Fig. 1. LO input buffer of the mixer.

their bases connected to the collectors provide level shift to ensure a appropriate quiescent work point for transistors in next stage. Since the current source in this mixer has multiple outputs, β-helper current mirror is employed to bias circuit [27]. The β-helper transistor \(Q_{20} \) reduces the gain error from the input to each output by a factor of \((\beta_F + 1) \), where \(\beta_F \) is the forward current gain of transistor \(Q_{20} \).

\[G_{cnv} = \frac{2}{\pi} g_m R_S \] (1)

where \(g_m \) is the transconductance of the transistors \(Q_1 \) and \(R_S \) is the load resistor.

Considering capacitive degeneration, the expression of the circuit transconductance \(G_m \) can be written by a mathematical derivation on the basis of conversion matrix analysis [31] as

\[G_m = \frac{g_m}{1 + \frac{C_{be3}}{g_m}} \left(1 + \frac{R_E C_E s}{2} \right) \] (2)

where \(R_E, C_E \) represent the degenerative resistor and capacitor, \(C_{be1}, C_{be3} \) are the base-emitter capacitance of transistors \(Q_1, Q_3 \), \(g_m, g_m \) are the transconductance of transistors \(Q_1, Q_3 \), respectively. The influence of emitter resistance, base resistance, collector resistance, base-collector capacitance and collector-substrate capacitance have been ignored. As IF output is fixed at a low frequency in measurement of this work, only the poles and zero with regard to the RF frequency are considered. The poles and zero are then found as follows:

\[\omega_z = -\frac{1}{R_E C_E} \] (3)

\[\omega_{p1} = -\frac{g_m}{C_{be3}} \] (4)

\[\omega_{p2} = -\frac{2 + g_m R_E}{2 R_E C_E + R_E C_{be1}} \] (5)

\(G_m \) contains a zero \(\omega_z \) and two poles with dominant pole \(\omega_{p1} \) and subdominant pole \(\omega_{p2} \). Via the appropriate values assignment to \(R_E, C_E \), the dominant pole can be cancelled by the zero when \(1/(R_E C_E) \leq g_m/C_{be3} \). Then the bandwidth of Gilbert-cell is extended to the subdominant pole.

As the location of the zero \(\omega_z \) is determined by the values of \(R_E, C_E \) and the low frequency gain decreases with the introduction of \(R_E \), there is a trade-off between low frequency
gain and the enhancement factor ω_{m1}/ω_c [29]. The values of circuit parameters are finally assigned as R_s, $R_E = 550 \Omega$, $R_E = 40 \Omega$, $C_E = 75 \text{ fF}$. As shown in Fig. 3, the simulation results demonstrate that the bandwidth of the mixer with capacitive degeneration can be extended compared to the mixer without degenerative capacitor. The conversion gain is compensated by capacitive degeneration in the high frequency.

![Simulated conversion gain swept over the RF frequency with and without degenerative capacitor.](image)

Fig. 3.

3. Analysis for maximum utilization of device f_t

The maximum operating frequency of a circuit is limited by the device cut-off frequency f_t, which means the bandwidth of the mixer can not exceed a section of device f_t [25]. It may become a considerable limitation for the bandwidth of the mixer if transistors are biased at a point with much lower f_t than the peak f_t ($f_{t_{\text{max}}}$). The performance of a Gilbert-cell mixer is mainly determined by the mixer core. As a result, a proper bias point for mixer core which fully utilizes the f_t characteristics of the device is essential for the mixer to drive high frequency signal.

Fig. 4 depicts the f_t versus I_C characteristics of the device under different collector-emitter voltage V_{ce} which takes the values of 0.7 V, 1.2 V, 1.7 V, 1.9 V, 2.2 V. The results which were measured by Agilent N5230C VNA show that as I_C increases, the f_t curve rises until the kirk effect is exhibited. In addition, it can be recognized that the growth of collector-emitter voltage V_{ce} enhances the device f_t. The peak f_t of 160 GHz is reached when V_{ce} is 1.7 V and I_C is greater than 11 mA. According to the analysis for the f_t characteristics, the bias of the transconductance stage transistors Q_1, Q_2 can be adjusted to a point which is closer to the peak f_t. As the switches are biased with relatively low current in the analysis of current bleeding technique, the f_t utilization of the switching transistors has a certain reduction.

Taking account of the supply voltage of -6 V and the consumption of dc power, I_C and V_{ce} of the transconductance stage transistors are finally set to be 7.2 mA and 1.7 V respectively. As shown in Fig. 5, the device f_t of 147 GHz which is highly close to $f_{t_{\text{max}}}$ (160 GHz) has been achieved. The transconductance stage transistors work at almost optimal state while the utilization of device f_t ($f_t/f_{t_{\text{max}}}$) reaches 0.919.

4. Experiment results

4.1 Measurement setup

The photograph of the fabricated chip is shown in Fig. 6. The DC power consumption of the mixer is 504 mW with the supply voltage of -6 V. The chip size is 0.5 x 0.6 mm2 including all testing pads.

The measurement setup is shown in Fig. 7. The InP Gilbert-cell mixer chip was measured with on-wafer probing for RF, LO and IF ports using ground-signal-ground (GSG) probes. The signal generators which consist of AV1464 and Keysight-N5247A can output LO and RF input signals from 250 kHz to 67 GHz and from 10 MHz to 67 GHz respectively. The LO and RF input signals can be transmitted to the chip via a 50 GHz cable and a 50 GHz GSG probe. The IF output signal was measured by a 43 GHz spectrum analyzer (Agilent-N9030A) through the same cable, GSG probe and DC-blocking capacitors.
4.2 Measurement results
Fig. 8 shows the IF port output spectrum with RF and IF frequency of 20 GHz and 100 MHz, respectively. The IF output power of 3.02 dBm is obtained while RF input power is -11.36 dBm.
As shown in Fig. 9, conversion gain and RF port return loss swept over RF and LO frequency with a fixed IF frequency of 100 MHz. The mixer achieves a peaking conversion gain of 14.5 dB. In order to eliminate the impact of insertion loss on differential cables, the error of signal phase-shifting and facilitate setup of the probe, single-ended input and output rather than double-ended in traditional were applied. The IF output signal was led out from a single emitter follower to the GSG probe which means that the measured conversion gain demonstrates only a half capacity of the proposed mixer. In other words, the measured conversion gain is 3 dB lower than measurement with differential output.
Fig. 10 presents the measured IF output power which swept over RF input power with a fixed RF frequency of 49 GHz.

The input 1-dB compression point of the mixer is -9.17 dBm. All of measurements were performed under the condition that the loss of cable and probe have been calibrated in available frequency range.
As shown in Table I and Fig. 11, the performance and comparison are summarized with some advanced results of wide-band mixers based on InP HBT and SiGe BiCMOS process. By comparison with other mixers, the proposed Gilbert-cell mixer demonstrates higher gain-bandwidth product (GBP)
and higher bandwidth utilization (BW/f₀) which indicate that the capacitive degeneration and current bleeding technique are effective to the enhancement of bandwidth and conversion gain, respectively.

5. Conclusion

In this letter, a wideband and high conversion gain mixer based on Gilbert-cell is implemented in 0.8 µm InP DHBT process. The bandwidth of the mixer is extended by means of capacitive degeneration with no voltage drop and few cost of area. The current bleeding technique is employed to improve conversion gain. Utilization of device f₁ is analyzed to fully release the potential ability of the device. The maximum utilization of device f₁ reaches 0.919. The measurement results show that -3 dB bandwidth from 0.1 GHz to 49 GHz is obtained with a peaking conversion gain of 14.5 dB. With peak f₁ of 160 GHz, BW/f₀ of 0.306 and GBP of 260 GHz are obtained, which are believed to be among the best compared to mixers fabricated with the same size process.

References

[1] J. A. Qayyum, et al.: “A compact V-band upconversion mixer with -1.4-dBm OP1dB in SiGe HBT technology,” IEEE Microwave and Wireless Components Letters 29 (2019) 276 (DOI: 10.1109/LMWC.2019.2901395).
[2] N. Mazor: “Highly linear 60-GHz SiGe downconversion/upconversion mixers,” IEEE Microwave and Wireless components letters 27 (2017) 401 (DOI: 10.1109/LMWC.2017.2678426).
[3] J. Chen, et al.: “A Low-Noise and High-Gain Folded Mixer for a UWB System in 0.18-µm SiGe Bi-CMOS Technology,” IEEE Transactions on Circuits and Systems II: Express Briefs (2020) 10.1107/s00034-016-0431-3.
[4] Y. Zhang, et al.: “12-mW 97-GHz low-power downconversion mixer with 0.7-V supply voltage,” IEEE Microwave and Wireless Components Letters 29 (2019) 279 (DOI: 10.1109/LMWC.2019.2901410).
[5] P. K. Saha, et al.: “A 6–20 GHz adaptive SiGe image reject mixer for a self-healing receiver,” IEEE journal of solid-state circuits 47 (2012) 1998 (DOI: 10.1109/JSSC.2012.2201284).
[6] M. Sakalas, et al.: “Highly Robust 130 nm SiGe BiCMOS Power Limiters, LNA and Mixer IC for a Wideband 1.5-18 GHz MIMO Radar Receiver,” IEEE MTT-S International Microwave Symposium (IMS) (2019) 1007 (DOI: 10.1109/MWSYM.2019.8700899).
[7] M. El-Nozahi, et al.: “A 20–32 GHz Wideband Mixer With 12-GHz IF bandwidth in 0.18 µm SiGe Process,” IEEE Transactions on Microwave Theory and Techniques 58 (2010) 2731 (DOI: 10.1109/TMTT.2010.2077572).
[8] C. Deng, et al.: “3043 GHz cascode sub-harmonic mixer in 0.13-µm CMOS technology,” IEICE Electronics Express 15 (2013) 20180793 (DOI: 10.1587/exle.15.20180793).
[9] J. Wu, et al.: “A 1.2 V high conversion gain mixer with reused gm stage in 65nm CMOS,” IEICE Electronics Express 10 (2013) 20130279 (DOI: 10.1587/exle.10.20130279).
[10] C. Lee, et al.: “A D-band gain-boosted current bleeding down-conversion mixer in 65 nm CMOS for chip-to-chip communication,” IEEE Microwave and Wireless Components Letters 26 (2016) 143 (DOI: 10.1109/LMWC.2016.2517132).
[11] B. Wei, et al.: “Design of a low-voltage CMOS mixer based on variable load technique,” IEICE Electronics Express 7 (2010) 473 (DOI: 10.1587/exle.7.473).
[12] Y. Yan, et al.: “A 110-170 GHz multi-mode transconductance mixer in 250-nm InP DHBT technology,” IEEE Transactions on Microwave Theory and Techniques 63 (2015) 2897 (DOI: 10.1109/TMTT.2015.2459676).
[13] S. Kim, et al.: “300 GHz integrated heterodyne receiver and transmitter with on-chip fundamental local oscillator and mixers,” IEEE Transactions on Terahertz Science and Technology 5 (2014) 92 (DOI: 10.1109/TTHZ.2014.2364454).
[14] Y. Wu, et al.: “A 26.5 GHz Wideband Gilbert-Cell Mixer MMIC Based on InP DHBT Technology,” 2020 IEEE 20th International Conference on Communication Technology (ICCT) (2020) 1012 (DOI: 10.1109/ICCTS0939.2020.9295737).
[15] M. Stuenkel, et al.: “A wideband high-linearity mixer in 0.5 µm InP DHBT technology,” 2010 IEEE Radio Frequency Integrated Circuits Symposium (2010) 525 (DOI: 10.1109/RFIC.2010.5477287).
[16] C. Monier, et al.: “High-Speed InP HBT technology for advanced mixed-signal and digital applications,” 2007 IEEE International Electron Devices Meeting (2007) 671 (DOI: 10.1109/IEDM.2007.4419033).
[17] M. Urteaga, et al.: “Advanced InP DHBT process for high speed LSI circuits,” 2008 20th International Conference on Indium Phosphide and Related Materials (2008) 1 (DOI: 10.1109/IEDM.2008.4539200).

Table I. Comparison with some advanced mixers

Reference	Process	Conversion Gain (dB)	Power DC (mW)	Chip size (mm²)	Chip size (mm²)	BW/f₀ (GHz)	GBP (GHz)
[5]	SiGe	12	240	1.1	0.18	0.221	105.5
[6]	InP	12	140	1.6	0.18	0.093	78.7
[7]	SiGe	12	1860	0.65	0.18	0.15	66.0
[14]	InP	15	860	0.055	0.18	0.171	17.0
This work	InP	15	860	0.055	0.18	0.171	17.0

Fig. 11. Comparison of BW/f₀ and GBP.
[18] T. Zhang, et al.: “A GaAs passive mixer with an ultra-wide IF bandwidth,” IEICE Electronics Express 14 (2017) 20160973 (DOI: 10.1587/elex.13.20160973).

[19] C. Lee, et al.: “A D-band low-power gain-boosted up-conversion mixer with low LO power in 40-nm CMOS technology,” IEEE microwave and wireless components letters 27 (2017) 1113 (DOI: 10.1109/LMWC.2017.2763753).

[20] Z. Lin, et al.: “Design of a 35–95 GHz fundamental monolithic mixer based on a novel IF extraction structure,” IEICE Electronics Express 16 (2019) 20190602 (DOI: 10.1587/elex.16.20190602).

[21] T. Yang, et al.: “A 16–46 GHz Mixer Using Broadband Multilayer Balun in 0.18 µm CMOS Technology,” IEEE microwave and wireless components letters 17 (2007) 534 (DOI: 10.1109/LMWC.2007.899320).

[22] Z. Liu, et al.: “A 39 GHz broadband high-isolation CMOS mixer using magnetic-coupling CG Gm stage for 5G applications,” IEICE Electronics Express 15 (2018) 20180726 (DOI: 10.1109/RFIC.2004.1320639).

[23] M. Beigizadeh, et al.: “UWB, high gain and highly linear Gilbert-Cell mixer in K-band,” IEICE Electronics Express 9 (2012) 1786 (DOI: 10.1587/elex.9.1786).

[24] X. Ning, et al.: “An 89 GHz single-balanced mixer design in 1 um InP DHBT technology,” 2015 Asia-Pacific Microwave Conference (APMC) (2015) 1 (DOI: 10.1109/APMC.2015.7413549).

[25] W. Zhen, et al.: “A broadband high bandwidth utilization ECL static frequency divider in InP DHBT process,” IEICE Electronics Express 17 (2020) 20200215 (DOI: 10.1587/elex.17.20200215).

[26] K. W. Kobayashi, et al.: “A DC-20 GHz InP HBT balanced analog multiplier for high-data-rate direct-digital modulation and fiber-optic receiver applications,” IEEE transactions on microwave theory and techniques 48 (2000) 194 (DOI: 10.1109/22.821759).

[27] P. R. Gray, et al.: Analysis and design of analog integrated circuits (Wiley, New York, 2009) 5th ed 262.

[28] G. H. Tan, et al.: “Design of ultra-low voltage 0.5 V CMOS current bleeding mixer,” IEICE Electronics Express 9 (2012) 990 (DOI: 10.1587/elex.9.990).

[29] B. Razavi, et al.: “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE Journal of Solid-State Circuits 42 (2007) 1999 (DOI: 10.1109/JSSC.2007.903076).

[30] S. Li, et al.: “A Broadband InP Track-and-Hold Amplifier Using Emitter Capacitive/Resistive Degeneration,” IEEE Microwave and Wireless Components Letters 30 (2020) 391 (DOI: 10.1109/LMWC.2020.2972752).

[31] T. K. Johansen, et al.: “Analysis and design of wide-band SiGe HBT active mixers,” IEEE transactions on microwave theory and techniques 53 (2005) 2389 (DOI: 10.1109/TMTT.2005.850421).