The effects of different cooking modes on the ^{137}Cs, ^{40}K, and total K content in Boletus edulis (King Bolete) mushrooms

Martyna Saba 1 · Jerzy Falandysz1,2

Received: 7 July 2020 / Accepted: 5 October 2020 / Published online: 19 October 2020 © The Author(s) 2020

Abstract
This study aimed to get an insight into the effects of household processing on the leaching behaviour of ^{137}Cs and ^{40}K from fresh, frozen and dried Boletus edulis (King Bolete) mushrooms. Three processes were investigated—blanching, blanching and pickling, and drying followed by grinding and soaking. The activity concentrations of ^{137}Cs and ^{40}K in the fresh unprocessed mushrooms were 270 Bq kg$^{-1}$ dry biomass (27 Bq kg$^{-1}$ whole weight) and 590 Bq kg$^{-1}$ db (59 Bq kg$^{-1}$ ww), respectively.

Blanching of fresh mushrooms decreased ^{137}Cs activity by 55%, and ^{40}K activity by 34%, and blanching of deep-frozen mushrooms caused a reduction of 52% and 44% (db) (equivalent to whole weight reductions of 37% and 8.5%, and 67% and 22%, respectively). Blanching and pickling of fresh mushrooms decreased ^{137}Cs activity by 83% and ^{40}K activity by 87%, while blanching deep-frozen mushrooms resulted in decreases of 88% and 80% (db) (whole weight decreases of 77% and 81%, and by ~84% and 72%, respectively). This study confirms earlier reports that blanching of fresh or frozen mushrooms alone is not as efficient at removing ^{137}Cs as blanching followed by pickling. The study also shows that the initial rate of fruiting body disintegration and pre-preparation (comparing fresh, deep-frozen, or dried and ground) can have an impact on the leaching rate of the water soluble fraction of metallic elements.

Keywords Cs-137 · Potassium-40 · Potassium · Foods · Household processing · Mushrooms · Radioactive pollution

Introduction

Macrofungi exhibit a remarkable aptitude and propensity to bioconcentrate a variety of major and trace mineral constituents, including radioactive elements, in their fruiting bodies (mushrooms) (Falandysz and Borovička 2013). Edible species that grow in the wild were considered as a potentially significant source of human dietary exposure to radiocaesium ($^{134/137}\text{Cs}$) from the atmospheric fallout of radioactivity from nuclear weapon testing in the atmosphere and nuclear power plant accidents (Daillant et al. 2013; Kiefer et al. 1965; Rantavaara 2003). In particular, the incident at the Chernobyl nuclear power plant in 1986 led to ^{137}Cs contamination of wild mushrooms in surrounding European regions (Betti et al. 2017; Daillant et al. 2013; Tucaković et al. 2018). Similarly, the incident at the Fukushima-Daichi nuclear power plant in 2011 caused ^{137}Cs contamination of locally foraged mushrooms (Cui et al. 2020), without showing any noticeable effect on the wild species collected in continental Asia and Europe (Falandysz et al. 2018; Prand-Stritzko and Steinhauser 2018).

Mushrooms preparation techniques, e.g., blanching, boiling, parboiling, pickling, braising, stewing, grilling, frying, soaking (macerating), and also industrial conserving (pickling and canning), have an effect on the content of mineral constituents in processed products (Beresford et al. 2001; Drewnowska et al. 2017; Falandysz et al. 2020a, b; Pankavec et al. 2019; Skibniewska and Smoczyński 1999; Steinhauser and Steinhauser 2016; Stijve 1994). Daillant et al. noted that routine culinary practices using a variety of...
different treatments were only partly successful in decreasing 137Cs contents in potential mushroom meals (Daillant et al. 2013). Some practices such as stir-frying and braising cause an increase rather than diminution in 137Cs and 40K activity concentrations as well as concentration of mercury (Hg) compounds in the cooked products as the hot oil/processing dehydrates the mushrooms, while substantially preserving the mineral constituents, including 137Cs (Falandysz et al. 2019, 2020a, b; Falandysz et al. submitted for publication). Culinary processing of mushrooms, depending on the process, may or may not lead to a potential reduction of 137Cs and other contaminants in mushroom meals and is therefore a potentially important means of modulating human exposure.

This study aimed to study the effects of blanching and blanching followed by pickling on the leaching of 137Cs and 40K from processed fresh and frozen fruiting bodies of Boletus edulis. Additionally, dried mushrooms were also ground and soaked in cold water to assess possible leakage of the nuclides. Activity data obtained for the pickled B. edulis were also discussed relative to the activity concentrations of 137Cs and 40K in commercially pickled King Bolete and other mushrooms such as Imleria badia (Fr.) Fr. (Bay Bolete) and Suillus luteus (Slippery Jack).

Materials and methods

Materials

Eighteen fruiting bodies of Boletus edulis (Bull: Fr.) were collected in the proximity of the village of Osiek in the Tuchola Pinewoods from the north-central region of Poland in 2015 (Fig. 1). The specimens were relatively large sized, well-developed, and in good body condition with white to yellow hymenophores. The mushrooms were carefully cleaned from foreign debris using a plastic knife and brush and separated into caps and stipes. The caps and stipes were cut using a plastic knife into three approximately equivalent pools. The separately pooled caps and stipes were subjected to household treatments including blanching; blanching and pickling; drying, grinding, and macerating; deep-freezing, blanching, and pickling.

In brief, batches of pooled fresh caps and stipes were subjected to blanching and blanching and pickling, and in parallel, a subsamples of pooled caps and stipes in sealed polyethylene bags were deep-frozen ($-20 \, ^\circ C$) for a week. The frozen subsamples were subjected to blanching and blanching and pickling in the same manner as the fresh samples (Table 1). The procedures used for blanching (no salt) and pickling in dilute (proportion 1:4 of 100 mL) spirit vinegar (10%) were the same as described in a previous article (Drewnowska et al. 2017). The blanched and blanched and pickled mushrooms from each culinary experiment were lyophilised (model LYOVAC GT2; Steris, Germany) after draining the liquid, ground and stored in a dry condition until determination of 137Cs and 40K.

Unprocessed subsamples of caps and stipes were sliced using a plastic knife, then lyophilised, ground to a fine powder using a porcelain mortar and pestle and divided into two halves. One half served as a control to calculate the change in activity concentrations of 137Cs and 40K, and the second was used in a soaking (maceration) experiment. For this, aliquots of powdered caps and stipes (ca 1 g each) in a glass beaker (100 mL) were macerated for 24 h using cooled boiled water (50 mL) at room temperature. The macerate was separated from the fungal solids after filtration through a laboratory filter paper (medium fine) under gravity. The filter and solids were lyophilised, ground, and stored in sealed polyethylene bags in dry condition. Commercially pickled samples of King Bolete, Bay Bolete, and Slippery Jack in glass jars (250 mL) were purchased randomly from retail outlets in the city of Gdańsk in Poland in 2016. These commercially pickled

Fig. 1 Localization of the sampling site of B. edulis nearby to the village of Osiek in the Tuchola Pinewoods from the north-central region of Poland (Google maps; colour figure available on-line)
mushrooms were drained from the marinade, lyophilized, ground, and stored in the same manner as the other studied materials, until analysis.

Analysis

Directly before measurement of the 137Cs and 40K activities, the materials were deep-frozen and lyophilized for 3 days to remove any absorbed humidity. The activities were determined using a gamma spectrometer with a coaxial HPGe detector and with a relative efficiency of 18%. The resolution efficiency was 1.9 keV at 1.332 MeV (with associated electronics). The equipment was calibrated using a multi-isotope solution:”Standard solution of gamma emitting isotopes, code BW/Z-62/27/07” produced at the IBJ-Świerk near/Otwock in Poland, was used for preparing reference samples for equipment calibration. The same geometry of cylindrical dishes with 40 mm diameter (as applied for environmental samples) was used for reference samples during equipment calibration. Data obtained on activity concentration of 137Cs were decay corrected back to the time of sampling. The stable K contents were calculated from the 40K data (Falandysz et al. 2020a).

Results and discussion

Elemental composition

In order to track changes in the activity concentrations of 137Cs and 40K, and the total K concentration in processed $B. edulis$, and to estimate hypothetical intakes with a meal, an attempt has been made to express the results both on dry and whole (wet) weight basis (Tables 1 and 2 and Appendix). When assessing the risk from contaminants accumulated in mushrooms, but also the nutritional benefits, the expression of data both on a dry and whole weight is useful to better track the change in elemental content during the course of the household treatment. Thus, in realistic approaches, the intake and exposure assessments need to relate to the whole (wet) weight mushroom meal.

$B. edulis$ from the Tuchola Pinewoods in 2015 showed relatively low contamination with 137Cs in the whole fruiting bodies at a level of 270 Bq kg$^{-1}$ db (27 Bq kg$^{-1}$ ww), while higher activity was noted for the natural radionuclide 40Ka at 590 Bq kg$^{-1}$ db (59 Bq kg$^{-1}$ ww) (Tables 1 and 2). The mushrooms’ caps usually are more contaminated with 137Cs than stipes (Falandysz and Borovička 2013; Falandysz et al. 2018). In this study, the $B. edulis$ was characterised by a 137Cs activity quotient ($Q_{C/S}$—of activity concentration in caps compared with stipes) of 2.8, with 2.1 to 4.5 for the cooked products on a dry biomass basis. Corresponding values for 40K were 2.2 (2.1 to 4.1 in cooked products) (Table 1). In $B. edulis$ the caps usually show higher concentrations of K than the stipes and the reported median $Q_{C/S}$ is 1.5 (Frankowska et al. 2010). Radionuclide 40K ($t_{1/2}$ is 1.248×109 years) is a minor part of the natural K that is the major metallic element in mushrooms (atomic percent occurrence is 0.0117%) (Falandysz and Borovička 2013; Falandysz et al. 2020a; Frankowska et al. 2010). Estimated total K concentration in the whole fruiting bodies of $B. edulis$ in this study was 21,000 mg kg$^{-1}$ db and 2100 mg kg$^{-1}$ ww.

Product and treatment	Caps 137Cs (Bq kg$^{-1}$ db)	Stipes 137Cs (Bq kg$^{-1}$ db)	Whole fruiting bodies 137Cs (Bq kg$^{-1}$ db)	$Q_{C/S}$	Caps 40K (Bq kg$^{-1}$ db)	Stipes 40K (Bq kg$^{-1}$ db)	Whole fruiting bodies 40K (Bq kg$^{-1}$ db)	Difference (%)
Fresh → dried	370 ± 7	130 ± 4	270 ± 6	2.8	WD	WD	WD	-55
Fresh → blanched	160 ± 4	65 ± 5	120 ± 4	2.5	-56	-50	-55	-55
Fresh → blanched → pickled	59 ± 3	24 ± 1	45 ± 2	2.5	-84	-81	-83	-83
Fresh → dried (powdered) → macerated	18 ± 2	7.2 ± 1	14 ± 1	2.5	-95	-94	-95	-95
Fresh → deep frozen → blanched	180 ± 3	44 ± 3	130 ± 3	4.1	-51	-66	-52	-52
Fresh → deep frozen → blanched → pickled	48 ± 2	< 9.3	~ 31	WD	87	(-) 90	(-) 88	-88

WD without data
Drying of *B. edulis* results in an up to tenfold increase in the content of minerals relative to the original product.

In this study fresh *B. edulis* when blanched showed a 137Cs activity concentration of 120 Bq kg$^{-1}$ db (a decrease of 55% relative to the fresh product) equivalent to 17 Bq kg$^{-1}$ww (decrease of 37%). 40K activity was recorded at 390 Bq kg$^{-1}$db (decrease of 34%) and 54 Bq kg$^{-1}$ww (decrease of 8.5%) (Tables 1 and 2). The fresh mushrooms when blanched and pickled showed 137Cs activity concentration of 45 Bq kg$^{-1}$db (a decrease of 83%) and 6.2 Bq kg$^{-1}$ww (decrease of 77%). 40K activity was 77 Bq kg$^{-1}$db (a decrease of 87%) and 11 Bq kg$^{-1}$ww (decrease of 81%) (Tables 1 and 2). The total K contents in fresh *B. edulis* when blanched were 14,000 mg kg$^{-1}$db (1900 Bq kg$^{-1}$ww), and when blanched and pickled, were 2700 mg kg$^{-1}$db (370 mg kg$^{-1}$ww) (Appendix).

When fresh *B. edulis* was deep frozen for a period of one week (−20 °C) and then blanched, the 137Cs at activity concentration was 130 Bq kg$^{-1}$db (18 Bq kg$^{-1}$ww) and the 40K activity concentrations was 330 Bq kg$^{-1}$db (46 Bq kg$^{-1}$ww). The total K content was 8800 mg kg$^{-1}$db and 1200 mg kg$^{-1}$ww (Tables 1 and 2 and Appendix). Fresh *B. edulis* when deep frozen and next blanched and pickled had 137Cs at activity concentration of 31 Bq kg$^{-1}$db (4.3 Bq kg$^{-1}$ww), and the activity of 40K was 120 Bq kg$^{-1}$db (17 Bq kg$^{-1}$ww) (Tables 1 and 2). The total K content was 3200 mg kg$^{-1}$db (440 mg kg$^{-1}$ww) (Appendix). The 137Cs and 40K leaching rates from deep frozen and blanched or blanched and pickled mushrooms were 88 and 80% (db), equivalent to 84 and 72% (ww) respectively (Tables 1 and 2).

As mentioned, blanching decreases activities of 137Cs and 40K and contents of total K in processed mushrooms in relation to raw substrate mushrooms when the data are expressed on a dry weight (biomass) basis (Table 1). In this study the degree of reduction and hypothetical intake of the elements differed depending on whether the results were estimated on a dry biomass basis or on a whole (wet) weight. Blanched, fresh mushrooms lost 137Cs at 55% db and depending on the morphological part, at 4 to 37% on a ww basis, while deep frozen and blanched mushrooms lost 52% db (67% ww). The loss of potassium during blanching of fresh mushrooms was 34% in db, and if expressed on a whole weight, the loss was 8.5%. When deep frozen and blanched, the reduction of K was 44% (db) and 22% (ww) (Table 2 and Appendix).

Mushrooms collected from the wild may represent an insignificant component of the diet, but they can make a significant contribution to the intake of radiocaesium (Kiefer et al. 1965; Rantavaara 2003). Hence, cooking procedures that decrease the content of radiocaesium in mushroom are beneficial. Blanching is necessary in some cooking recipes of mushrooms. The household blanching of mushrooms retains a portion of 137Cs within the blanched product (Tables 1 and 2) and results obtained in this study are in good agreement with the findings by Daillant et al. (2013). Frying decreases the moisture content and causes retention of a portion of 137Cs in the cooked mushrooms, and in consequence, the fried product relative to the fresh material on a whole (wet) weight basis, can be enriched in this nuclide (Falandysz et al. 2020a, b). There is no previous data available on the reduction of potassium in mushrooms through the effects of blanching or

Table 2 137Cs and 40K activity concentrations in King Bolette mushroom products and change in activity concentrations of nuclides after household processing [data presented on the whole (wet) weight basis]

Product and treatment	Caps 137Cs (Bq kg$^{-1}$ww)	Stipes 137Cs (Bq kg$^{-1}$ww)	Wholemushrooms 137Cs (Bq kg$^{-1}$ww)	Caps 40K (Bq kg$^{-1}$ww)	Stipes 40K (Bq kg$^{-1}$ww)	Wholemushrooms 40K (Bq kg$^{-1}$ww)	Difference (%)
Fresh*	37 ± 1	13 ± 0	27 ± 1	WD	WD	WD	
Fresh → blanched*	22 ± 1	9.0 ± 0.7	17 ± 1	−40	−31	−37	
Fresh → blanched → pickled	8.1 ± 0.4	3.3 ± 0.1	6.2 ± 0.3	−78	−31	−77	
Fresh → dried (powdered) → macerated	1.8 ± 0.2	0.72 ± 0.1	1.4 ± 0.2	−95	−94	−95	
Fresh → deep frozen → blanched	25 ± 1	1.9 ± 0.1	18 ± 1	−32	−85	−67	
Fresh → deep frozen → blanched → pickled	6.6 ± 0.3	< 1.3	~4.3	−82	(~)90	(~)84	

* Moisture 90.0%; * moisture 90.44% (Jaworska and Bernaś 2009)
blanching and pickling. Activity concentration of 137Cs in macerated mushrooms was at 14 Bq kg$^{-1}$ db (1.4 Bq kg$^{-1}$ ww), and the reduction in content when related to the fresh substrate was 95% (assuming 90% moisture in rehydrated product). It appears that the degree of disintegration of fruiting bodies is a major factor determining the rate at which mineral constituents leach from cells. Traditionally, the soaking period varies from 2 h to overnight (12 h) regardless of whether the powdered or sliced product is used. In practice, the rehydration yield could be < 90% if the whole dried fruiting bodies were rehydrated, due to an effect of maximal shrinkage as well as a decrease in rehydration ability in this state, while for sliced or powdered states, the rehydration yield can be higher.

For comparison with other species, the fresh fruiting bodies of *Cantharellus tubaeformis* soaked for 12 h (200 g in 3 L fresh water) lost 40% radioactivity from 137Cs, increasing to 50% and 61% in salted water (1% and 5% NaCl respectively) (the organoleptic values were not affected very much). The loss increased to 95% after twice rinsing and blanching, but this caused the resulting product to have a slimy consistency (Stijve 1994). Whole, dried *C. tubaeformis* (16 g) macerated for 30 min (0.5 L water) lost 40% of 137Cs. However, when macerated for 15 min (0.5 L water) and then blanched for 3 min, the sample lost 99% of 137Cs (but this procedure preserved good texture and taste in the reconstituted mushrooms) (Stijve 1994). Dried *Craterellus lutescens* (Fr.) Fr. (previous name *Cantharellus lutescens* Fr.) and *Cortinarius caperatus* (Pers.) Fr. (previous name *Rozites caperatus* (Pers.) P. Karst.) soaked in water for three hours lost 70% of 137Cs on a dry weight biomass basis (Daillant et al. 2013). Soaking of dried shitake mushrooms in water decreased the radioesium content by around 50% when compared with uncooked shitake (Nabeshi et al. 2013).

In this study, mushrooms after maceration, contained an activity level of 40K at 71 Bq kg$^{-1}$ db (7.1 Bq kg$^{-1}$ ww) with a total K content of 2500 mg kg$^{-1}$ db (250 mg kg$^{-1}$ db). The rate of decrease was 88%. Results from this study confirm some findings by Daillant et al. (2013), that removal of 137Cs using blanching and fresh boiling water is only partially successful, while on the other hand, it retains some of the potassium. Both 137Cs and 40K decreased more or less at a similar rate under the household processes used in this study. Decrease of 137Cs and 40K was roughly lower if data were calculated based on the whole (wt) weight of cooked mushrooms than on dried biomass.

Activities of 137Cs in cooked mushrooms (potential meals) from 2015 were in the range of 1.4 to 25 Bq kg$^{-1}$ ww, which is considerably lower than the maximum permitted value of 600 Bq kg$^{-1}$ that is considered as a safe concentration in foodstuffs (Falandysz et al. 2020a). When considered in parallel, the activities from 40K were in the range of 7.1 ± 3.9 to 72 ± 5 Bq kg$^{-1}$ ww, i.e., 3 to 5-fold higher (Table 2). The estimated potassium content in processed *B. edulis* varied from 250 ± 140 to 1900 ± 320 mg kg$^{-1}$ ww, depending on the processing mode (Appendix).

If it is assumed that a 100-g whole (wt) weight portion of blanched or pickled mushrooms represents a single mushroom meal, it can provide from 25 to 460 (median 120) mg of K. This mushroom dish containing 120 mg K accounts for around 3% of the adequate daily adult intake, assuming absorption at around 90% (recommended intake is 4700 mg) (NIH 2020). Fried mushrooms on average seem to be a much better source of K than mushrooms that are blanched and then pickled (Falandysz et al. 2020a, b). In this study, fresh mushrooms when blanched alone could provide from 120 to 460 (median 190) mg of K in a 100-g meal. Commercially pickled *B. edulis*, *I. badia*, and *S. luteus* showed 137Cs at activity concentrations of $10 ± 1.0$ Bq kg$^{-1}$ db, $34 ± 1.0$ Bq kg$^{-1}$ db and <0.53 Bq kg$^{-1}$ db, respectively. On a whole weight, the 137Cs activity concentrations in commercially pickled products was $1.5 ± 0.1$ Bq kg$^{-1}$ ww in *B. edulis*, 4.6 ± 0.1 Bq kg$^{-1}$ ww in *I. badia*, and <0.07 Bq kg$^{-1}$ ww in *S. luteus*. The moisture content of these products was in the range of 85.4 to 86.7%. Thus, the contamination levels in commercial products were much lower than those seen for *B. edulis* in this study. Analogically to 137Cs, the activity concentrations from 40K and the contents of total K in the commercial products were 50 ± 10 Bq kg$^{-1}$ db and 7.3 ± 1.5 Bq kg$^{-1}$ ww and $1600 ± 300$ mg kg$^{-1}$ db and $230 ± 50$ mg kg$^{-1}$ ww (*B. edulis*), 95 ± 11 Bq kg$^{-1}$ db and $13 ± 2$ Bq kg$^{-1}$ ww and $3100 ± 400$ mg kg$^{-1}$ db and $410 ± 60$ mg kg$^{-1}$ ww (*I. badia*), and 81 ± 11 Bq kg$^{-1}$ db and $11 ± 1$ Bq kg$^{-1}$ ww and $2600 ± 400$ mg kg$^{-1}$ db and $350 ± 30$ mg kg$^{-1}$ ww (*S. luteus*).

Conclusions

This study confirms earlier reports that blanching of fresh mushrooms using traditional methods of household preparation is to some degree efficient at removing 137Cs. The initial rate of fruiting body disintegration and pre-preparation can have an impact on the leaching rate of the water-soluble fraction of metallic elements. Mushrooms that are uncontaminated or that show low concentrations of radioesium can still retain some potassium when subjected to blanching and pickling. Blanching of the fungal materials always decreased activities resulting from 137Cs and 40K, but also the total K content of the product, relative to the substrate, if data were expressed on a dry weight (biomass) basis.

Acknowledgements Technical help by Sviatlana Pankavec and Michał Saniewski is acknowledged.

Dedication This manuscript is dedicated to the memory of Dr. Tjakko Stijve (1937–2020).
Authors' contributions Maryna Saba contributed equally to this work; Jerzy Falandysz contributed equally to this work.

Data availability Not applicable

Compliance with ethical standards

Competing interests The authors declare that they have no conflict of interest.

Ethical approval and consent to participate Not applicable. This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Consent to publish Not applicable. This manuscript does not contain any individual person's data in any form.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Beresford NA, Voigt G, Wright SM, Howard BJ, Barnett CL, Prister B, Balonov M, Ratnikov A, Travnikova I, Gillet AG et al (2001) Self-help countermeasure strategies for populations living within contaminated areas Belarus, Russia and Ukraine. J Environ Radioact 56:215–239

Betti L, Palego L, Lucacchini A, Giannaccini G (2017) 137Caesium in samples of wild-grown Boletus edulis Bull. from Lucca province (Tuscany, Italy) and other Italian and European geographical areas. Food Addit Contam A 34:49–55

Cui L, Orita M, Taira Y, Takamura N (2020) Radiocesium concentrations in mushrooms collected in Kawauchi Village five to eight years after the Fukushima Daiichi Nuclear Power Plant accident. PLoS One 15(9):e0239296. https://doi.org/10.1371/journal.pone.0239296

Daillant O, Boilley D, Josset M, Hettwig B, Fischer HW (2013) Evaluation of radiocesium contamination in mushrooms and influence of treatment after collection. J Radioanal Nucl Chem 297:437–441

Drewnowska M, Falandysz J, Chudzińska M, Hanć A, Saba M, Baralkiewicz D (2017) Leaching of arsenic and sixteen metallic elements from Amanita fulva mushrooms after food processing. LWT Food Sci Technol 84:861–866

Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501

Falandysz J, Saniewski M, Zheng J, Zalewska T, Liu H, Kluzā K (2018) Artificial 137Cs and natural 40K in mushrooms from the subalpine region of the Minya Konka summit and Yunnan province in China. Environ Sci Pollut Res 25:615–627

Falandysz J, Zhang J, Mędyk M, Zhang X (2019) Mercury in stir-fried and raw mushrooms from the Boletaceae family from the geochemically anomalous region in the Midu county, China. Food Control 102:17–21

Falandysz J, Wang Y, Saniewski M, Fernandes AR (2020a) 137Caesium, 40Potassium and Potassium in raw and deep-oil stir-fried mushroom meals from Yunnan in China. J Food Compos Anal 91:103538

Falandysz J, Zhang J, Saniewski M (2020b) 137Cs and 40K(K) in a stir-fried mushroom meal and raw mushrooms from the Boletaceae family in Midu, Yunnan province, China. Environ Sci Pollut Res 27:32509–32517

Frankowska A, Ziolkowska J, Bielawski L, Falandysz J (2010) Profile and bioconcentration of minerals by King Bolete (Boletus edulis) from the Plocka Dale in Poland. Food Addit Contam B 3:3–6

Jaworska G, Bernai E (2009) The effect of preliminary processing and period of storage on the quality of frozen Boletus edulis (Bull: Fr.) mushrooms. Food Chem 113:936–943

Kiefer H, Maushart R, Emho Khler R (1965) Elevated Cs-137 content in the human body after mushroom ingestion (in German). Atompraxis: Direct Information 15

Nabeshi H, Tsutsui T, Hachisuka A, Matsuda R (2013) Variation in amount of radioactive cesium before and after cooking of dry shiitake and beef (in Japanese with English summary). J Food Hyg Soc Japan 54:65–70

NHI (2020) National Institute of Health. https://ods.od.nih.gov/factsheets/Potassium-HealthProfessional/, retrieved on July 7, 2020.

Pankavec S, Hanč A, Baralkiewicz D, Dryzałowska A, Zhang J, Falandysz J (2019) Mineral constituents of conserved white button mushrooms: Similarities and differences. Roczn Państw Zakl Hig 71:15–25

Prand-Stritzko B, Steinhauser G (2018) Characteristics of radiocesium contaminations in mushrooms after the Fukushima nuclear accident: evaluation of the food monitoring data from March 2011 to March 2016. Environ Sci Pollut Res 25:2409–2416

Rantavaara AH (2003) Radioecology of human food chains and forests in Finland. In: Amano H, Uchida S (eds). Proceedings of the International Symposium: Transfer of Radionuclides in Biosphere – Prediction and Assessment. Mito, December 18–19, 2002. JAERI-Conf 2003-010, 2003. p. 71–78

Skibniwskas KA, Smoczyński S (1999) Wpływ obróbki kulinarnej na poziom radioceu w grzybach. Roczn Państw Zakl Hig 50:157–167

Steinhauser G, Steinhauser V (2016) A simple and rapid method for reducing radiocesium concentrations in wild mushrooms (Cantharellus and Boletus) in the course of cooking. J Food Prote 79:1995–1999

Stijve T (1994) Extraction of radiocesium from contaminated mushrooms. Observations Mycologiques, (Bulletin de l’Observatoire Mycologique) 6:2–9

Tucaković I, Barišić D, Grahek Ž, Kasap A, Sirić I (2018) 137Cs in mushrooms from Croatia sampled 15–30 years after Chernobyl. J Environ Radioact 181:147–151

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.