Radiation Stability of Metal Nanowires

S A Bedin¹, F F Makhin'ko¹, V V Ovchinnikov¹,², N N Gerasimenko¹,³ and D L Zagorskiy¹,⁴

¹Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, ul. Amundsena 106, Yekaterinburg, 620016, Russia
²El'tsin Ural Federal University, ul. Mira 19, Yekaterinburg, 620002 Russia
³National Research University of Electronic Technology (MIET), pl. Shokina 1, Zelenograd, Moscow 124498 Russia
⁴Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiy pr. 59, Moscow, 119333 Russia

E-mail: bserg5@gmail.com

Abstract. The aim of this work is to investigate the radiation stability of pure nickel and iron–nickel Fe₀.₅₆Ni₀.₄₄ alloy nanowires fabricated by matrix synthesis using polymer track membranes and Ar⁺ and Xe⁺ (E = 20 keV, j = 300 μA/cm²) beam irradiation. The dependence of the stability of nanowires on their diameter, fluence, and type of implanted ions is investigated. The assumption that the thermalized regions of dense cascades of atomic displacements (thermal spikes) play an important role in the nanowire structure change is made. These regions are nanosized zones of explosive energy release and heated to several thousands of degrees.

1. Introduction

In recent years, scientists have been increasingly interested in the production, investigation, and application of nanosized materials. Among these materials is a promising type, namely arrays of one-dimensional metal structures, in other words, nanowires (NWs). Arrays of NWs made of copper and silver are interesting as ion and electron emitters (cold cathodes), whereas NWs made of iron are promising as magnetic materials (sensors, materials for high-density magnetic recording).

Among the important characteristics of the NW arrays is their stability. It is known [1] that the specific geometry and the developed surface lead to their lower (compared with volume analogues) chemical and thermal stability. According to preliminary results, the radiation stability of these arrays is different from that of volume materials. The study of the radiation stability is of interest because of at least two factors.

First, radiation treatment is a kind of modification and control of the properties of such NWs.

Second, radiation resistance, the ability to retain properties under different radiation conditions, in many cases is one of the most important service parameters.

It should also be noted that, in addition to the practical aspect, the issue of structural changes under irradiation is of independent theoretical interest. In contrast to the studies of radiation defects in volume metals, there is a small number of works dedicated to nanostructures of this kind. The main part of these studies is devoted to materials with nanosized grains. For example, it is noticed in [1] that
among features of nanostructures can be the inability to accumulate radiation defects due to the fact that such defects can immediately break the surface.

Among several works actually dedicated to the study of NWs, articles on the modeling of the impact of ion beams on metal NWs using molecular dynamics methods [2, 3, 4] should be noted.

In addition to the works modeling of radiation effects, there are works devoted to the study of the radiation impact on the metal NWs. For example, a method for the ion beam modification of Ni and Co NWs 200 nm in diameter is described in [5]. These NWs fabricated by template synthesis using a porous alumina oxide were irradiated with 3-MeV Cl ions at a fluence of 1015 cm$^{-2}$. As a result, an oxidation layer on the surface of the NWs was reduced, which was supported by high-resolution TEM. The features of the surface structure changes were investigated under such irradiation.

In [6], silver NWs 120 nm in diameter and 20 μm in length were irradiated at room temperature with 5-MeV He$^+$ ions at a beam current of 50 nA. Insignificant changes at a fluence of 5·1015 cm$^{-2}$ were observed, whereas the initially crystal structure of NWs was transformed into the amorphous structure at a fluence of more than 8·1016 cm$^{-2}$.

In [7], silver NWs were irradiated with 3-MeV protons (beam current of 50 nA) at room temperature. Under irradiation with fluence of 1014-1015 cm$^{-2}$, NWs were welded in contact areas to form a kind of grid of nanowires.

In [8], 5-MeV carbon ion irradiation-induced changes in the electrical conductivity of silver NWs were studied at different ion fluences ranging from 1012 to 1016 cm$^{-2}$. The electrical conductivity increases and, then, decreases with increase in fluence. The first behavior was explained by the formation of contacts between the wires; the second, by an increased defectiveness in some wires.

In our work we investigated some points of radiation stability of NWs made of 3d-metals, namely pure nickel and iron-nickel Fe$_{0.56}$Ni$_{0.44}$ alloy. The effects of the fluence and the temperature of a target on the stability of NW arrays were investigated upon irradiation with Ar$^+$ and Xe$^+$ ions (E = 20 keV). The used energy relates to the energy range of the most commonly used to modify the structure and properties of materials.

2. Experiment
The investigated NWs were fabricated by the template synthesis. Commercial track membranes with a pore diameter from 0.03 to 0.1 μm (Joint Institute for Nuclear Research, Dubna) were used as template matrices. This deposition process is described in detail in [9, 10].

A Watts electrolyte that contains 300 g/lof NiSO$_4$·7H$_2$O, 45 g/l of NiCl$_2$·6H$_2$O, and 38 g/l of H$_2$BO$_3$ was used to prepare nickel NWs, at an electrolyte temperature of 50–60°C.

The Fe$_{0.56}$Ni$_{0.44}$ alloy was deposited from the electrolyte of the following composition: 16 g/l of NiSO$_4$·7H$_2$O, 40 g/l of NiCl$_2$·6H$_2$O; 16 g/l of FeSO$_4$·7H$_2$O; 1-2 g/l of antiscorbutin (C$_6$H$_8$O$_7$); and less than 1 g/l of sodium laurel sulfate (NaC$_{12}$H$_{25}$SO$_4$).

NW arrays separated from the polymer template were irradiated with continuous Ar$^+$ ion beams using an ILM-1 implanter equipped with a PULSAR-1M technological ion source based on a low-pressure glow discharge with a hollow cold cathode, which can operate in the continuous and pulsed-periodic modes ($S_{beam} \sim 100$ cm$^{-2}$; the energy and ion current density in the continuous mode were varied in the following ranges: $E = 5$–50 keV, $j = 10$–500 μA/cm2) [11].

NWs were irradiated with Ar$^+$ and Xe$^+$ (Figure 1) onto a copper substrate with a rotated holder (angle between the ion beam axis and a normal to the substrate surface was 45°; $E = 20$ keV, $j = 300$ μA/cm2, a rotation rate of 8 rpm) at various fluences and in several temperature conditions:

(i) irradiation with Ar$^+$ ions, $F = 10^{16}$-1018 cm$^{-2}$, beam heating below 150°C (fluences were achieved in several stages to avoid sample overheating);

(ii) irradiation with Ar$^+$ ions, $F = 10^{16}$-1018 cm$^{-2}$, beam heating to 550°C (fluence was continuously accumulated);

(iii) irradiation with Xe$^+$ ions, $F = 10^{16}$-1017 cm$^{-2}$, beam heating to 550°C (fluence was continuously accumulated).

Initial and irradiated samples were investigated using an FEI Scios scanning electron microscope.
Figure 1. Scheme of the ion irradiation of NW assemblies.

3. Results and discussions

Figure 2 shows scanning electron microscopy images of initial (before irradiation) NWs made of Ni with a diameter of 60 nm (Figure 2 a) and NWs made of Fe$_{0.56}$Ni$_{0.44}$ alloy with a diameter of 100 nm (Figure 2 b).

![Initial NWs](image)

Figure 2. Scanning electron microscopy images of (a) initial Ni NWs 60 nm in diameter and (b) FeNi NWs 100 nm in diameter.

Below, Figure 3 a demonstrates Ni NWs 60 nm in diameter after Ar$^+$ ion irradiation. The arrow indicates the irradiation direction. At a fluence of 10^{17} cm$^{-2}$ and an irradiation time of 1 min (Figure 3 a), melted NW tops (see the left top angle in the image) are observed. No noticeable changes are observed at a lower fluence of 10^{16} cm$^{-2}$. An increase in the fluence to $5 \cdot 10^{17}$ cm$^{-2}$ (irradiation time of 5 min with a step of 1 min) results in melting of a NW bundle up to its middle, which is clearly observed in the scanning electron microscopy images (Figure 3 b). A further increase in the fluence (Figure 3 c) (irradiation time of 10 min with a step of 1 min) causes subsequent melting and deformation of NWs. Continuous irradiation with heating (Figure 3 d) (5 min) leads to the melting of the all surface of a NW bundle. The wires are less melted inside the bundle.
Scanning electron microscopy image of Ni NWs 60 nm in diameter after Ar\(^+\) ion irradiation with different fluences, heating to not higher than 150°C (accumulated fluences were achieved in several stages to avoid overheating): (a) \(F=10^{17}\, \text{cm}^{-2}\); (b) \(F=5\times10^{17}\, \text{cm}^{-2}\); (c) \(F=10^{18}\, \text{cm}^{-2}\); and (d) \(F=5\times10^{17}\, \text{cm}^{-2}\), heating to a stationary temperature of 550°C.

Figure 4 shows Fe\(_{0.56}\)Ni\(_{0.44}\) NWs 100 nm in diameter after Ar\(^+\) ion irradiation. In this case, wires have a greater diameter; therefore, this seems to be the reason for their less deformation after irradiation. It is noticeable that tops of the wires are "sharpened" from the direction of beam irradiation at the increased fluence.

Figure 5 shows NWs irradiated with Ar\(^+\) and Xe\(^+\) ions for comparison purposes. In both cases, irradiation conditions were the same: \(E=20\, \text{keV}, j=300\, \mu\text{A/cm}^2\), a rotation rate of 8 rpm, an angle of 45°, heating to 550°C. Irradiation was performed in a continuous mode for 5 min. It can be seen from the figures that wires are noticeably deformed after Xe\(^+\) irradiation and are different from those irradiated with Ar\(^+\).

Taking into account the temperatures (150 and 550°C), which are insufficient for melting pure nickel and iron-nickel alloy, the observed melting of nanowires can be explained by the formation of thermal spikes under irradiation with heavy ions [12, 13]. They are almost spherical (in the case of the implantation of heavy ions into heavy matrices) regions of dense cascades of atomic displacements with a typical diameter of 5-10 nm (about 9 nm for Ar\(^+\) and 6 nm for Xe\(^+\) [15] implanted in Ni with the used energy). The mentioned regions thermalized for \(10^{-12}\) s (cooling time of \(\sim10^{-11}\)), reaching temperatures of 3000-5000 K and above. The average depth at which these regions are formed is about 5-10 nm at an ion energy of 20 keV.

Since the energy release per atom of the cascade is significantly higher in the case of Xe\(^+\) than that of Ar\(^+\) [15], Figure 5 shows more significant bending of nanowires with the formation of knots (buds) and even branches under Xe\(^+\) ion irradiation due to the possible splashes of the thermal peak regions out of the nanowires. Covering of adjacent nanowires with molten metal is possible.

In view that the number of atoms per unit of the surface area of metals is \(\sim10^{15}\, \text{cm}^{-2}\), we can conclude that the NW surface (which is not in the field of geometric shadow) has melted repeatedly at
fluences of 10^{16}-10^{18} cm$^{-2}$ due to the formation of thermal spikes [13, 14]. We put forward this mechanism as an explanation for the observed effect of melting of the NWs at low total temperatures.

Figure 4. Scanning electron microscopy image of Fe$_{0.56}$Ni$_{0.44}$ alloy NWs 100 nm in diameter after Ar$^+$ ion irradiation with different fluences, with heating to 150°C: (a) $F=10^{17}$ cm$^{-2}$; (b) $F=5 \cdot 10^{17}$ cm$^{-2}$; (c) $F=10^{18}$ cm$^{-2}$; and (d) $F=5 \cdot 10^{17}$ cm$^{-2}$, with heating to 550°C.

Figure 5. Scanning electron microscopy image of Ni NWs 60 nm in diameter and Fe$_{0.56}$Ni$_{0.44}$ alloy NWs 100 nm in diameter after Ar$^+$ and Xe$^+$ ion irradiation with $F = 5 \cdot 10^{17}$ cm$^{-2}$ (heating to 550°C).
It should be noted that damaged near-surface volume is comparable with the volume of nanowires (taking into account their rotation). There is an opinion that some decrease in the melting temperature may be caused by a sharp increase in the number of nonequilibrium defects in the NW volume. Although, it is evident that this mechanism cannot be the only explanation for the observed melting effect, but it can ease the melting process.

Note that damageable subsurface volume is comparable to a volume of NWs (in view of their rotation). Because of this, a marked decrease in the melting temperature may occur due to a sharp increase of the number of non-equilibrium defects in the volume of NWs. Although only this mechanism can hardly explain the observed melting effect, but it is also likely to contribute.

4. Conclusions
As a result, the study showed that under both Ar\(^+\) and Xe\(^+\) ion irradiation conditions (\(E = 20\) keV, \(j = 300\) \(\mu\)A/cm\(^2\), fluxes of \(10^{16}-10^{18}\) cm\(^{-2}\)), NWs are deformed and melted even upon slight general (not local) beam heating (to 150°С). The effect of Xe\(^+\) ion irradiation is more pronounced.

As an explanation for the observed effect of melting of NW arrays at decreased temperatures we propose to consider the formation of thermal spikes under ion irradiation.

The conclusion about the low radiation stability of the NWs under used Ar\(^+\) and Xe\(^+\) ion irradiation conditions can be drawn. It is further interesting to study the effect of the chemical composition, the geometric characteristics of nanowires, the ion energy, and the kind of implanted ions on the radiation stability in detail. X-ray diffraction analysis and Mössbauer spectroscopy are required to obtain the information about possible amorphization of the NW surface by rapid quenching of thermal spikes and about other structural features of nanowires.

Acknowledgments
We thank V.V. Artemov (Shubnikov Institute of Crystallography, Russian Academy of Sciences) for the assistance in electron microscopy studies.

This work was supported by the Russian Scientific Foundation, project no. 15-19-10054.

References
[1] Andrievski R A 2014 Physics-Uspekhi 57 10 945
[2] ZhenYu Yang et al. 2013 Science China Physics, Mechanics and Astronomy March 56 3 498
[3] Weina Lia et al. 2013 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 307 15 158
[4] Zou Xue-Qing et al. 2010 Chinese Physics B 19 3 036102
[5] Soung Kyu Park et al. 2009 Current Applied Physics 9 847
[6] Shehla H, Ali A. et al. 2015 Chin. Phys. Lett. 32 9 096101
[7] Honey S et al. 2016 Chinese Physics B 25 4 045105-1
[8] Bushra Bari et al. 2015 Current Applied Physics 15 642-647
[9] Bedin S A, Rybalko O G, Polyakov N B, Zagorskiy D L, Razumovskaya I V, Bondarenko G G and Oleinikov V A 2010 Inorganic Materials: Applied Research 1 3 359
[10] Zagorskiy D L, Korotkov V V, Frolov K V, Sulyanov S N, Kudryavtsev V N, Kruglikov S S and Bedin S A 2015 Physics Procedia 80 144
[11] Gavrilov N V, Mesyats G A, Nikulin S P, Radkovskii G V, Eklind A and Perry A J 1996 J. Vac. Sci. Technol. A 14 1 1050
[12] Ovchinnikov V V 2008 Phys. Usp. 51 955
[13] Ovchinnikov V V, Makhin’ko F F, Solomonov V I, Gushchina N V and Kaigorodova O A 2012 Technical Physics Letters 38 86
[14] Ovchinnikov V V Makhin’ko F F and Solomonov V I 2015 Journal of Physics: Conference Series 652 012070
[15] Biersack J P and Hagmark L G 1980 Nucl. Instr. & Meth. 174 257