VIRUSES AND THE VERSATILE MACROPHAGE

Page S Morahan
Janice R Connor
Kathryn R Leary

Department of Microbiology and Immunology
Medical College of Pennsylvania
Philadelphia PA

Mononuclear phagocytes, including circulating monocytes and tissue macrophages, play a central role in resistance to viruses. This resistance can be expressed both non-specifically and specifically in induction, regulation and amplification of humoral and cell mediated immune responses to viruses. These lead to the extrinsic effect of macrophages on other virus-infected cells or free virus, and the intrinsic effect on viruses within macrophages. While these interactions usually appear to be protective, immunopathologic consequences as well as macrophage dysfunctions have also been noted. The outcome of any given interaction (viral elimination, persistence, latency or transformation) varies markedly with the type of macrophage. The molecular mechanisms involved in these very diverse macrophage-virus interactions are currently under study.

Mononuclear phagocytes (MP) comprise a widely distributed cell system that includes immature cells in the bone marrow, circulating monocytes and tissue macrophages (Mφ). Mφ are placed strategically throughout the body to meet foreign particles, and are prominent in the liver, lung, spleen and body cavities. The importance of MP in non-specific resistance to viruses was emphasized first in the 1960s.1-3 Now it is recognized that they also play a central role in the induction, regulation and amplification of specific immune responses, as well as being pivotal in nonspecific resistance, homeostasis and synthesis of potent biologic mediators. The importance of MP perhaps can be appreciated best by their very early phylogenetic appearance, and the fact that no genetic defect resulting in absence of MP has yet been found in vertebrates that is compatible with life.

Current Concepts of the Role of MP in Resistance to Viruses

The reader is referred to several recent reviews of the role of MP in resistance to herpes simplex virus (HSV) and other viruses for most work published prior to 1982.4-8 Extensive data document the importance of MP in resistance to virus infections in animal models, and probably in human disease (Table 1).4-8 It has been difficult to deplete MP selectively in order to determine their precise role, but a new experimental system may prove to be useful—treatment of mice with radioactive 89Sr to destroy bone marrow and thus remove marrow dependent cells. We have found that 89Sr causes a rapid and profound decrease in circulating monocytes, polymorphonuclear leukocytes and in NK cell activity in CD1 mice, but does not have significant effects on the number or function of tissue Mφ.9 Moreover, natural or immunomodulator-enhanced resistance to encephalomyocarditis (EMC) virus10 and HSV (unpublished observations) was not markedly changed from that in non-treated mice. These data provide evidence for a prominent role for tissue Mφ in non-specific resistance to these viruses.

It is becoming increasingly apparent that MP do not act in isolation. There is a dynamic and balanced interplay of MP with other resistance mechanisms, most notably natural killer cells and specific cell mediated and humoral immune responses (see pp. 22-27 & 92-97).6,11-14 Delineating the relative roles for the various immune elements in vivo is a major research goal. In vitro systems have provided experimental approaches to define these elements in isolation and in controlled interactions.

Intrinsic and Extrinsic MP-Virus Interactions In Vitro

Extrinsic resistance of MP is defined as their ability to inactivate extracellular virus or reduce production in other surrounding cells that are normally permissive. The intrinsic interaction is defined as the permissiveness/non-permissiveness of the MP itself for growth of a virus. The extrinsic ability of MP to suppress virus production in another cell is independent of the ability of the MP to support virus replication itself.6,15 The interactions may be completely non-specific, or may be modified immunologically in either direction.

The extrinsic interaction may be modified by specifically immune cells, antibody, complement or lymphokines. T lymphocytes may activate MP for increased antiviral activity, thus amplifying specific T cell immunity.16 The activity of low levels of specific antibody can be amplified by MP-mediated antibody dependent cellular cytotoxicity (ADCC) for virus infected cells.18,19 When primary cultures of MP are used, it can be difficult to isolate the effects of MP alone from combined effects with these other immunologic elements or contaminating lymphoid cells.19-20 Unfortunately, there have been few studies of the extrinsic interaction of pure cultures of bone-marrow-derived Mφ (BMDMφ), Mφ clones or Mφ-like cell lines with virus infected cells. Such studies will be invaluable in defining at the molecular level the mechanisms involved in MP mediated extrinsic antiviral activity.

Viruses that have been shown to be inhibited by extrinsic MP effects include HSV, cytomegalovirus (CMV), Marek's disease, mouse hepatitis (MHV), ectromelia, EMC and vesicular stomatitis viruses (VSV).4,6,15,20-22 Several operative mechanisms have been demonstrated (Table 2). Undoubtedly multiple processes are involved in limiting such diverse virus groups, e.g., if a virus has a high requirement for arginine, then arginine depletion by arginase secreted by MP may be important.23 The mechanism in any given interaction appears to differ depending upon the particular MP, and the particular 'Achilles heel' of the virus replication strategy in the permissive cell. It is not yet clear whether diverse functional

Table 1
Evidence for involvement of mononuclear cells in resistance to viruses in experimental animal models

| Monocytes and Mφ predominate at sites of viral infection |
| Mφ transfer resistance, particularly in neonatal animals which form a model of Mφ deficiency |
| Mφ often required for T cell or antibody transfer of resistance |
| Mφ activated during virus infection for increased antiviral activity |
| Mφ activation by immunomodulators, although other cells (e.g. NK cells) may also be activated, increases resistance |
| Mφ depletion may decrease resistance |
| Increased Mφ antiviral action (e.g., age, genetic factors) often correlates with increased resistance |
VIRUSES AND THE VERSATILE MACROPHAGE P S Morahan et al.

Table 2
Reported mechanisms of extrinsic mononuclear phagocyte-mediated antiviral activity

Mechanism
Direct inactivation of extracellular virus by enzymes, reactive oxygen metabolites or other factors secreted by Mφ
Inhibition of virus adsorption and penetration into permissive cells
Enzymatic depletion of molecules needed for virus replication, e.g. arginine
Synthesis of interferon that inhibits virus replication in the permissive cells
Inhibition of synthesis of macromolecules necessary for virus replication in the permissive cells
Inhibition of virus maturation in the permissive cells
Inhibition of virus release from the permissive cells

mechanisms co-exist within the same Mφ cell, or if these functions are mutually exclusive, since antiviral activity is not necessarily correlated with other Mφ functions.

In MP–virus interactions there are also a multitude of possible outcomes. These include abortive, cytolytic, persistent non-cytolytic, and latent infections, and transformation. The non-permissiveness of Mφ for most viruses has been the subject of numerous investigations. MP-mediated oxidative metabolism, which is important in some tumoricidal and microbicidal activities, was not important for intrinsic resistance to VSV infection in parental or oxidative metabolism-defective cloned Mφ-like cell lines. A possible role for MP secretion of arginase has also been studied, but conflicting results have been obtained.

Interferons produced by MP appear to play a complex role in intrinsic resistance. Interferon had no effect on African swine fever virus, but decreased production of rubella virus in MP. Interferon induced by a high multiplicity of infection with HSV was correlated with inhibition of productive virus replication in human monocytes. The authors suggested that interferon caused antiviral activity and also inhibition of monocyte to Mφ differentiation in vitro. Whether the endogenous interferon production was related to defective interfering particles remains to be determined. The use of anti-interferon serum treatment in vivo has suggested that endogenous interferon may be present under some physiologic conditions and maintain resident peritoneal Mφ (ResMφ) in a non-permissive state for certain viruses. The recent finding that human MP infected with different viruses produce different alpha interferons with distinctive antiviral spectra is also of interest. The interaction of alpha/beta interferon, but not gamma interferon, with the Mx gene for resistance to influenza virus in Mφ, is an elegant example of the complex mechanisms governing the outcome of intrinsic Mφ-virus interactions.

MP Heterogeneity in Intrinsic Interactions with Viruses

MP are morphologically and functionally very diverse and the origins of this diversity have not yet been delineated. Recent studies have established the effect of in-vitro 'ageing' and the maturation of monocytes to Mφ in the Mφ-virus interaction. Ageing in culture appears to increase replication of HSV, caprine arthritis-encephalitis virus, and rubella virus in MP. What relationship ageing in vitro has to increased differentiation/maturation of Mφ is unresolved. Cells susceptible to infection and transformation by avian myeloblastosis virus (AMV) have been found at all stages of MP differentiation.

Regardless of the stage of differentiation only a subset of Mφ are targets for transformation by AMV. The same has been described for productive infection with HSV, CMV, lactic dehydrogenase (LDH), rubella and influenza viruses. Most laboratories have reported that only 3–20% of the MP are infected. With LDH, the Mφ permissiveness for virus has been both reported to be related to, and not to be related to la antigen expression (Brinton, personal communication). The reasons for the apparent permissiveness and non-permissiveness within a Mφ population remain an enigma. It is not known whether the heterogeneity is related to cell cycle, to stages of differentiation, to separate sublines of Mφ, or transient modulation by environmental factors.

In addition to the heterogeneity that exists among MP naturally in vivo or through culture in vitro, MP can be altered by a myriad of treatments in vivo and in vitro. Immunization increases intrinsic resistance of Mφ to some viruses, but not others. Intrinsic resistance of Mφ to HSV was reported to be decreased in rats bearing a transplantable epithelium. Treatment of the MP in vitro with cytochalasin B or phytohaemagglutinin has been reported to alter permissiveness. The use of agents to elicit tissue Mφ, however, is probably a major source of variability in virus–Mφ interactions. An interferon-mediated mechanism in Mφ for the immunomodulator, Corynebacterium parvum (CP), has been reported recently for ectromelia virus, but does not appear to be effective for MHV. In general the attempts to use agents such as CP, interferon, or lipo polysaccharide, to elucidate the mechanisms for Mφ intrinsic resistance, have provided more confusion than consensus.

There have been few studies of possible changes in the intrinsic resistance of non-dividing MP when the cells are put under the proliferative stimulus of colony-stimulating factor. Proliferating BMDMφ appear to be more susceptible to guinea pig herpes-like virus, and MHV. Proliferation of variously elicited peritoneal Mφ resulted in increased production of LDH and Sindbis viruses, but not of HSV. Results with LDH suggest generation of new transiently permissive cells from non-permissive precursors (116 and Brinton, personal communication). We have found major differences between ResMφ and BMDMφ in their interactions with HSV (see later section). Whether elicitors and MP growth stimulators increase the mitotic index of tissue Mφ, which is then responsible for increased viral infection, is an intriguing possibility. Efficiency of infection and transformation with AMV was directly related to the mitotic activity of MP.

The above highlights have pointed out the diversity in MP from the same body site, and how these cells are altered by various treatments. There is also heterogeneity in permissiveness of MP from different organs. For example, mouse alveolar and peritoneal Mφ are reported to respond very differently to infection with influenza virus, while LDH appeared to replicate equally well in Mφ from different organs. The genetic background of the animal provides a final source of variation in the virus-Mφ response. In a few instances, e.g. MHV and Rift Valley fever viruses (Rosebroeck and Peters, personal communication), the resistance of the animal to infection paralleled MP resistance to the virus. More commonly, the genetic background affects all cells in a relatively equal fashion. In summary, MP constitute a very diverse population of cells. Compounding this natural heterogeneity with the imposed heterogeneity of experimental systems precludes drawing broad conclusions regarding mechanisms of Mφ-virus interactions (Table 3). Where data are most intriguing, investigators have endeavoured to isolate and thoroughly characterize a single animal–virus system. Likewise, where in-vivo infections are mimicked by in-vitro results, there is reassurance of the validity of the in-vitro observations. New tools now being developed will aid in
defining the interactions of M_M and viruses. Monoclonal antibodies to MP have the potential to separate and identify subpopulations of MP heterogeneous in functional phenotypes, as well as tissue-types, and elicited and resident M_M. The studies of the effects of local microenvironment on expression of various markers and endothymocytes profiles hold great promise in determining the origins of functional variability of the MP branch of the immune network.

Pathologic Effects of MP in Virus Infections

As with lymphocyte responses, MP responses can either be beneficial or harmful. T lymphocyte-activated MP can eliminate virus and be useful in most extraneural sites, but are pathologic in the central nervous system (see pp. 75–79). Similarly, while MP-mediated ADCC lyses virus infected cells and thus decreases virus, ADCC can also cause massive tissue necrosis.

In acute infection of adult mice with CMV, activated M_M can clearly be protective. At the same time, it has been documented that splenic M_M are a major site for productive CMV infection and, if mice are splectomized, resistance to CMV is increased. Other work has shown that only a small percent of the M_M are cytolytically infected, and that M_M may be the predominant site for vehicle infection (Table 5). Infection of MP removes the M_M from the infection site.

Another type of pathologic interaction is exemplified by visna-maedi retrovirus infection in sheep and goats. The virus produces a persistent non-cytolytic infection in monocytes and tissue M_M. Thus protected from immune responses, infectious virus is continually disseminated to cells permissive for cytolytic infection. A few other viruses also appear to have a predilection for persistent and often non-cytolytic infection in MP, a mechanism that may be related to infection chronicity (Table 4). In addition, the pathogenesis of scrapie has recently been suggested to involve replication of the agent in MP.

Considerable investigation has been conducted to define antibody enhancement of virus infection of MP. This phenomenon has been reported with a wide range of RNA viruses. Enhanced infection requires monocytic M_M or M_M-like cell lines with Fc receptors, and non-cytopholic IgG antibody that exhibits virus serotype or cross-reactive specificity. In one case, some enhancement was also observed with IgM and the CR3 complement receptor. The effective virus multiplicity of infection is apparently increased. Increasing phagocytosis by treatment of M_M with activating agents also increased virus uptake and replication. It is hypothesized that dengue virus hemorrhagic fever, in individuals undergoing a second infection, involves non-neutralizing antibody which enhances virus infection in monocytes. The infected monocytes then become targets for T cell immune elimination and release inflammatory mediators, presumably because of the prominent expression of major histocompatibility complex antigens on the MP surface. There is an obvious need to determine whether this phenomenon plays a general role in viral pathogenesis.

Virus Effects on MP Functions

This section briefly updates Mogensen's recent review. Virus infected cells can produce chemotactic stimuli or inhibitors. Moreover, the intrinsic interaction of viruses with MP may alter MP behaviour (Table 5). Cytolytic infection of MP removes the MP system in a local or systemic manner. The subsequent decreased resistance can be demonstrated by frog virus 3 destruction of hepatic Kupffer M_M, allowing hepatocytes to become available for vaccinia virus infection. The more subtle outcomes of intrinsic interactions, i.e. abortive or persistent infections, can also alter MP functions (Table 4). Depressed function of alveolar M_M after infection of mice with CMV, Sendai, or influenza viruses has been associated with predisposition to secondary microbial infection in the lung. Studies in vitro have focused on changes in MP receptors, phagocytosis, oxidative metabolism, phagosome-lysosome fusion and microbicidal killing. Usually depressed function has also been observed, although no effect and even enhanced activity has been noted in infected cells. These conflicting results may be related to different M_M populations, to M_M differentiation, or to the particular virus used.

Other MP activities may be affected by virus infection. Mice acutely or chronically infected with MHV or Sendai virus showed impaired wound healing, which could be overcome by local administration of M_M stimulating agents. Infection of M_M with Pichinde virus, Newcastle disease or lymphocyte choriomeningitis viruses inhibited M_M proliferation in response to colony stimulating factor. We have also observed that MHV infection changes the endothymocyte phenotype of ResM_M to that of activated M_M, and may inhibit proliferation of BMDM.

Few studies have addressed virus effects on MP immunoregulation, which may play a central role in viral pathogenesis, and in immunopathologic responses. Monocytes or M_M infected with CMV, influenza, Sendai or poliovirus have been shown to be suppressive
VIRUSES AND THE VERSATILE MACROPHAGE

P S Morahan et al.

Table 5
Functions of mononuclear phagocytes that may be affected by virus infection

Chemotaxis	Attachment and phagocytosis of particles through nonspecific, Fc or complement receptors
Intracellular oxidative response	Lysosome-phagosome fusion
Intracellular microbicidal activity	Synthesis and/or secretion of biologically active molecules, e.g, prostaglandins, neutral lipids, interferon and complement
Antigen presentation	Regulation of immune responses, i.e accessory and suppressor activity
MΦ activation process for microbicidal and tumoricidal activity	Antibody dependent cytotoxicity (ADCC) by MΦ
Wound healing	DNA synthesis and MΦ proliferation in response to macrophage growth factor

Table 6
Interaction of HSV-1 with various mononuclear phagocytes and Vero cells

Cells	Hours after infection			
Vero	2	24	48	
HSV genome	10-100	+	+ + +	
HSV CPE	10,000		10,000	
ResMΦ	HSV genome	10-100	+	Undetectable
HSV CPE	10-100	100-1000	1000-10,000	

* CPE—cytopathic effect where + = 0-10%, + + = 10-25%, + + + = 25-50%, + + + + = 50-75%, + + + + + = 75-100%

1 Estimated number of total HSV genomes per diploid cell equivalent. Cells were infected at a multiplicity of infection of 5

for certain lymphocyte responses. 83-85 LDH infection has been reported to interfere with MP antigen presentation. 41 Bovine rhinotracheitis and HSV infections have been shown to inhibit MΦ ADCC activity. 76-78 A recent report indicates that only early CMV protein synthesis, without any apparent morphologic change in the MΦ, was required for MΦ dysfunction. 86a The relevance that such MΦ immunoregulatory changes may have during viral infections requires further investigation.

Use of Molecular Biology Techniques to Define Heterogeneity

The preceding sections have reviewed the extensive data available on the biological interactions of MΦ and viruses. There is now a distinct need to detail the precise mechanisms at the molecular level. The heterogeneity of MΦ is well known, but the gene expression involved in the evolution of this heterogeneity is poorly understood. The overall rate of RNA synthesis in polyinosinic-polycytidylic acid activated MΦ, elicited with protease peptone, is decreased. 86b Concomitantly, there is an increased rate of glucose oxidation and cytolytic activity and perhaps an increased rate of protein synthesis. This suggests a selective turn-on/off of specific gene products during MΦ activation. Recent work, using recombinant cDNA clones of mRNAs in activated RAW 264.7 MΦ-like cells, has identified a family of coordinately regulated mRNAs. Two dimensional gel analysis of proteins in these cells shows the same coordinate regulation of protein synthesis (Largen, personal communication). These are important beginnings in the definition of the molecular mechanisms of MΦ heterogeneity and differentiation.

Use of Molecular Biology Techniques to Define MΦ-virus Interactions

The elucidation of MΦ-virus interactions is approaching adolescence. We are beginning to note the terms 'viral genomes', 'use of cloned probes', 'synthesis of mRNA transcripts' etc. For example, Haller et al. discovered that MΦ bearing the Mx loci, upon stimulation with interferon, could no longer replicate influenza virus. 32 Virus penetration was normal, yet no viral proteins were synthesized. 87 When the cells were analyzed by RNA/RNA hybridization, normal influenza virus transcripts were present, which could not be translated. In a cell-free in vitro translation system, virus-specific proteins were synthesized from these mRNAs. 73 A unique protein induced by interferon in Mx-bearing cells has been identified, 88 what selective action it may have on the translation of primary influenza virus transcripts remains undefined.

Selected restriction of viral replication by different populations of MΦ has also been studied by molecular biology techniques. MCMV-infected TGMΦ and ResMΦ showed virus-specific DNA present in approximately 85% of each cell population, but more infectious centres in TGMΦ. 53 Moreover, when TGMΦ or ResMΦ from latently infected mice were examined, virus was produced only from the TGMΦ even though there were low levels of MCMV DNA in both cell types. The authors concluded that activation of MΦ plays a major role in the in vivo activation of MCMV infection following latency. In another non-MΦ cell line, HCMV also does not replicate unless the cells have been stimulated to differentiate. 89

Stevens and Cook have shown the presence of HSV DNA and empty virus particles in MΦ unable to replicate HSV. 90 To examine the mechanism of restriction in more detail, we compared the replication of HSV-1 in BMDMΦ, ResMΦ and permissive Vero cells (Table 6). At 24 hour post infection (PI) in Vero cells, the cells showed considerable cytopathic effect (CPE) and a yield of HSV of about 10^7 PFU/culture (100 PFU/cell). The BMDMΦ also showed marked CPE at 48 h PI but no evidence of production of infectious virus, the yield being 10^4 PFU/culture (0.03 PFU/cell). ResMΦ showed no CPE and no evidence of infectious virus (10^2 PFU/culture, 0.0005 PFU/cell). Using cloned Eco R1 fragments of the HSV-1 genome 91 as radioactive probes in cell and dot-blot analysis, 60% of the HSV-1 genome (Eco R1 fragments D, G, N, F, M, O, A and I) was present in all cell types at 2h PI. In BMDMΦ, viral DNA replication occurred; the number of viral genome equivalents per cell increased with time. In contrast, the viral DNA content in ResMΦ decreased to undetectable levels by 48 h PI. Eco R1 fragments H, L, EK, and JK representing the terminal repeats, joint region and part of unique long region are reported to contain sequences that cross-hybridize with cellular sequences (Sandri-Goldin personal communication). 92,93 The examination of this region of the HSV-1 genome in infected MΦ by the more detailed Southern blot analysis 94 showed results similar to those for the other parts of the HSV genome. These data provide evidence that the block in virus production in BMDMΦ occurs at a point beyond viral DNA replication, while the block in ResMΦ is prior to HSV DNA synthesis. However, we do not know if a subpopulation of BMDMΦ replicate HSV-1 DNA.

Use of MΦ Clones and Cell Lines

While a definition of MΦ heterogeneity in molecular terms will enable us to better understand MΦ differences and viral interactions, the development of MΦ lines is essential, particularly for in vitro studies. Most investigations in intrinsic interactions have used non-dividing monocytes or tissue MΦ, which are relatively non-permissive for most viruses, such as VSV and HSV. The available data with MΦ-like cell lines indicate that permissiveness for VSV and HSV is not solely dependent upon the ability of MΦ to divide.
The same gene function(s) appear to be involved in the transformation of the two very different cell types. In the hematopoietic precursor cell line 416B, the levels of endogenous cellular P21 sare (immunologically related to the src gene product of Harvey murine sarcoma virus) may be related to differentiation. In the promyelocytic cell line, HL60, regulation of cellular oncogenes is seen following induction of differentiation with dimethyl sulphoxide or retinoic acid. While regulation of differentiation by cellular oncogenes is not restricted to the MP lineage, it clearly plays an important role. With this knowledge, it may now be possible to predict and test for some of the steps involved in MP differentiation, following the examples set for non-MP cells.

Other methods for the generation of Mφ cell lines include the formation of somatic cell hybrids or clones. LDH has been reported to replicate transiently in a mouse Mφ-human fibroblast hybrid. The recent work of Johnson et al. has successfully demonstrated that normal Mφ may be cloned and propagated continuously without the complications of viral transformation and somatic cell hybridization.

Concluding Remarks

Before the versatile MP system can be manipulated successfully for immunotherapy against virus infections, methods need to be established to increase MP resistance and decrease immunopathologic outcomes. We have reviewed much data concerning the biological interactions of viruses or virus-infected cells with MP, and the importance of the differentiated and/or activated state of that MP to the outcome of the interaction. A crucial issue now is delineation of the origins of diversity of these cells at the molecular level. Only then will the control of MP gene expression, which determines the differing degrees of extrinsic and intrinsic MP antiviral activity, become evident. The field is now primed for this type of detailed experimental analysis that should lead to potent immunotherapeutic manipulation of the MP system.

ACKNOWLEDGEMENTS

Our research in this review was partially supported by grant CA35961 from the National Cancer Institute and contract N00014-82-K-0669 from the Office of Naval Research. We thank Mrs Cindy Books for superb preparation of the manuscript and Dr Walla Dempsey for critical review.

REFERENCES

1 Mims CA. Aspects of the pathogenesis of virus diseases. Bacteriol Rev 1964; 28: 30-71
2 Gresser I, Lang DJ. Relationships between viruses and leukocytes. Progr Med Virol 1966; 8: 62-130
3 Johnson BT. The pathogenesis of herpes virus encephalitis. II. A cellular basis for the development of resistance with age. J Exp Med 1964; 120: 359-374
4 Morahan PS, Morse SS. Macrophage-virus interactions. In: Proffitt MR, ed. Virus-lymphocyte interactions: implications for disease. Proceedings of the Second Immunodynamics Conference. Cleveland . . . 1979, New York; Elsevier-North Holland, 1979: 17-35
5 Mogensen SC. Role of macrophages in natural resistance to virus infections. Microbiol Rev 1979; 43: 1-26
6 Morahan PS. Interactions of herpesviruses with mononuclear phagocytes. In: Rouse BT, Lopez C, eds. Immunobiology of herpes simplex virus infection. Boca Raton, FL: CRC Press, 1984: 71-89
7 Bird RA, Sweet C, Hussein RH, Smith H. The similar interaction of ferret alveolar macrophages with influenza virus strains of differing virulence at normal and pyrexial temperatures. J Gen Virol 1983; 64: 1807-1810
8 Thomsen AR, Volkert, M Studies on the role of mononuclear phagocytes in resistance to acute lymphocytic choriomeningitis virus infection. Scand J Immunol 1983; 18: 271-277
9 Volkman A, Chang NC, Strausbauch PH, Morahan PS. Differential effects of chronic monocyte depletion on macrophage populations. Lab Invest 1983; 49: 291-298
10 Morahan PS, Coleman PH, Morse SS, Volkman A. Resistance to infections in mice with defects in the activities of mononuclear phagocytes and natural killer cells. Effects of immunomodulators in beige mice and 8SR-treated mice. Infect Immun 1982; 37: 1079-1085
11 Lindsey, MD, Torpey, DJ, Rinaldo CR. Lymphocytotoxic mediated cytotoxicity of cytomegalovirus-infected human monocytes restricted by the HLA-DR locus. In: Plotkin S, ed. Pathogenesis and prevention of human cytomegalovirus disease. New York: Alan R. Liss, 1984; In Press
12 Lopez, C. Natural resistance mechanisms against herpesvirus in health and disease. In: Rouse BT, Lopez C, eds. Immunobiology of herpes simplex virus infections. Boca Raton, FL: CRC Press, 1984: 45-70
13 Knoblich A, Görtz J, Härle-Grupp Y, Falke D. Kinetics and genetics of herpes simplex virus induced antibody formation in mice. Infect Immun 1983; 39: 15-23
14 Kohl S. The immune response of the neonate to herpes simplex virus infection. In: Rouse BT, Lopez, C, eds. Immunobiology of herpes simplex virus infection. Boca Raton, FL: CRC Press; 1984: 121-130
15 Stohlan SA, Woodward JG, Frelinger JA. Macrophage antiviral
VIRUSES AND THE VERSATILE MACROPHAGE

P S Morahan et al.

...
VIRUSES AND THE VERSATILE MACROPHAGE P S Morahan et al.

Cardoso MJ, Porterfield JS, Gordon S. Complement receptor
mediates enhanced flavivirus replication in macrophages. J Exp Med 1983; 158: 259-263

Hotta H, Hotta, S, Takada H, Kotani S, Tanaka S, Ohki M.
Enhancement of dengue virus type 2 replication in mouse macrophage
cultures by bacterial cell walls, peptidoglycans, and a polymer of
cell wall peptidoglycan. Infect Immun 1983; 41: 462-469

Pang T. Delayed-type hypersensitivity: probable role in the patho-
genesis of dengue hemorrhagic fever/dengue shock syndrome. Rev Infect Dis 1983; 5: 346-352

Gulatsi L, Chaturvedi UC, Mathur A. Dengue virus-induced cytotoxic
factor induces macrophages to produce a cytotoxic. Immunology. 1983; 129. 1-310

Mogensenc V. Viral interference with function of phagocytic cells
In: FEMS Symposium of Bacterial and Viral Inhibition and
Modulation of Host Defense. New York: Academic Press 1982

Tannous R, Myers MG. Acquired chemotactic inhibitors during
infection with guinea pig cytomegalovirus. Infect Immun 1983; 41: 88-96

Younte EL, Bia FJ, Griffith BP, Root RK. Neutrophil response and
function during acute cytomegalovirus infection in guinea pigs.
Infect Immun 1982, 36: 11-16

Steiffin A-M, Gendrault J-L, Kern A. Synthesis of vaccinia specified
antigens in mouse hepatocytes after frog virus 3-induced damage to the
liver. Proc Natl Acad Sci USA 1983, 80: 1910-1914

Friedlander AM, Jahrling PB, Merrill P, Tobery S. Inhibition of
arenavirus Pichinde. Infect Immun 1984; 43: 283-288

Mills J. Effects of Sendai virus infection on function of cultured mouse
alveolar macrophages. Am Rev Resp Dis 1979; 120: 1239-1244

Chaturvedi UC, Narg R, Mathur A. Effect of dengue virus infection
on Fc-receptor functions of mouse macrophages. J Gen Virol 1983; 64:
2399-2407

Plaeger-Marshall S, Wilson LA, Smith JW. Alteration of rabbit
alveolar and peritoneal macrophage function by herpes simplex virus.
Infect Immun 1983; 41: 1376-1379

Rogers BC, Mims CA. Influenza virus replication in human alveolar macrophages.