Measuring the Performance and Network Utilization of Popular Video Conferencing Applications

Kyle MacMillan
University of Chicago

Tarun Mangla
University of Chicago

James Saxon
University of Chicago

Nick Feamster
University of Chicago

ABSTRACT

Video conferencing applications (VCAs) have become a critical Internet application, even more so during the COVID-19 pandemic, as users worldwide now rely on them for work, school, and telehealth. It is thus increasingly important to understand the resource requirements of different VCAs and how they perform under different network conditions, including: how much “speed” (upstream and downstream throughput) a VCA needs to support high quality of experience; how VCAs perform under temporary reductions in available capacity; how they compete with themselves, with each other, and with other applications; and how usage modality (e.g., number of participants) affects utilization. We study three modern VCAs: Zoom, Google Meet, and Microsoft Teams. Answers to these questions differ substantially depending on VCA. First, the average utilization on an unconstrained link varies between 0.8 Mbps and 1.9 Mbps. Given temporary reduction of capacity, some VCAs can take as long as 50 seconds to recover to steady state. Differences in proprietary congestion control algorithms also result in unfair bandwidth allocations: in constrained bandwidth settings, one Zoom video conference can consume more than 75% of the available bandwidth when competing with another VCA (e.g., Meet, Teams). For some VCAs, client utilization can decrease as the number of participants increases, due to the reduced video resolution of each participant’s video stream given a larger number of participants. Finally, one participant’s viewing mode (e.g., pinning a speaker) can affect the upstream utilization of other participants.

1 INTRODUCTION

Internet users around the world have become increasingly dependent on video conferencing applications over the past several years, particularly as a result of the COVID-19 pandemic, which has caused many users to rely almost exclusively on these applications for remote work, education, healthcare, social connections, and many other activities. Some ISPs have reported as much as a three-fold increase in video conferencing traffic during an eight-month period in 2020 during the pandemic [5]. Our increased reliance on these video conferencing applications (VCAs) has highlighted certain disparities, especially given that nearly 15 million public school students across the United States during the pandemic lacked Internet access for remote education [19].

As cities and countries around the world moved to close this gap, many asked a series of simple questions geared towards understanding the level of connectivity that they needed to provide citizens to guarantee reliable, high-quality Internet experience: What is the baseline level of Internet performance needed to support common video conferencing applications for the activities people commonly use them for (e.g., education, remote work, telehealth)? This was the question, in fact, that our own city officials asked us which motivated us to pursue this question in this paper. The question has been brought into focus even more over recent months as the United Stated Federal Communications Commission (FCC) continues to debate the levels of Internet speed that should classify as a “broadband” service offering. The current standard is 25 Mbps downstream/3 Mbps upstream. With the rise of video conferencing applications, however, consumer Internet connections saw an increase in upstream traffic utilization. Some policy advocacy papers have claimed (without measurements) that the FCC should change its definition of “broadband” to a symmetric 20 Mbps connection on account of these trends. Moreover, because many users, especially in underserved regions, experience frequent connectivity disruptions, a comparative analysis of VCAs under dynamic (and degraded) network conditions can also shed light on the design practices of VCAs and help identify best design practices.

In light of these discussions and questions from municipal, state, and federal policymakers, we were motivated to explore the answers to questions concerning how much network resources video conferencing applications required, how they responded to network degradations and connectivity interruptions, how they compete with each other and with other applications, and how these questions vary depending on the modalities of use (e.g., gallery mode vs. speaker mode). Similar questions have of course been studied in the past [2, 6, 7, 11, 31], but the vast majority of these studies are now at least a decade old, during which time both the VCAs themselves and how
we use them has changed dramatically. New VCAs such as Google Meet, Microsoft Teams, and Zoom have emerged in the last few years alone. In light of these new VCAs and recent drastic shifts in usage pattern and our dependence on these applications, a re-appraisal of these questions is timely.

We study the following questions for three popular, modern video conferencing applications:

1. What is the network utilization of common video conferencing applications?
2. What speeds do these VCAs require to deliver good quality of experience to users?
3. How do VCAs respond to temporary disruptions to connectivity? and how quickly do they recover when connectivity is restored?
4. How do VCAs respond in the presence of competing traffic? How do they compete with themselves, with other VCAs, and with other applications?
5. How do different usage modalities (number of participants, speaker vs. gallery viewing) affect network utilization?

We explore these questions by performing controlled laboratory experiments with emulated network conditions across a collection of clients, collecting application performance data using provided application APIs. We collect application data under a variety of network conditions and call modalities, including different numbers of participants and viewing modes. Many of the answers to these questions surprised us; as we will discover, sometimes the answers depend quite a lot on the particular video conferencing application. Table 1 summarizes our main findings and where they can be found in the paper. In particular, we found significant differences in network utilization, encoding strategy, and recovery time after network disruption. We also discovered that VCAs share available network resources with other applications differentially. We confirm earlier findings [33], that one participant’s choice of how to interact in the video conference can affect the network utilization of other participants.

Our findings have broad implications, for network management, as well as for policy. For network management, our findings concerning network utilization and performance under various network conditions have implications for network provisioning, as access ISPs seek to provision home networks to achieve good performance for consumers. From a policy perspective, our results are particularly important: questions about the throughput needed to support quality video conferencing, especially in multi-user households, was a question from city government officials that motivated this paper in the first place. Looking ahead, as city, state, and federal governments both subsidize broadband connectivity and build out new infrastructure, understanding how these increasingly popular video conferencing applications consume and share network resources is of critical importance.

2 BACKGROUND & EXPERIMENT SETUP

We provide a brief background on video conferencing transport, technology, and architecture before turning to our experiment setup.

2.1 Video Conferencing Applications

Most modern VCAs use Real-time Transport Protocol (RTP) [25, 26] or its variants [3, 16] to transmit media content. The audio and video data is generally transmitted over separate RTP connections. RTP also uses two other protocols in conjunction, Session Initiation Protocol (SIP) [23] to establish connection between clients and RTP Control Protocol (RTCP) [25] to share performance statistics and control information during a call. Despite using well-known protocols, VCAs can differ from each other significantly across the following dimensions:

- **Network mechanisms**: RTP and the associated protocols are implemented in the application-layer. Thus, the specific implementation of the protocols can vary across VCAs. For instance, Zoom reportedly uses a custom extension of RTP [16]). Furthermore, the key network functions, i.e., congestion control and error recovery, can also be different and proprietary.
- **Application-layer parameters**: These include media encoding standards and default bitrates. More recent video codecs (e.g., VP9, H.264) can encode at the same...
video quality with fewer bytes when compared to older codec (e.g., VP8), albeit with a higher compute overhead [4].

- **Streaming architecture**: VCAs can either choose to use direct connections or use relay servers. Centralized servers are almost always used for multi-point calls to combine data from multiple users. VCAs can differ in the exact strategies of data combination as well as the geographic footprint of their servers. For instance, Zoom rapidly expanded its server infrastructure to support increased call volume because of COVID-19 [18].

Differences across one or more of these factors can lead to different VCA network utilization and performance. In this paper, we aim to dig deeper into some of these differences for a subset of VCAs.

2.2 Experiment Setup

Video Conferencing Applications: In this paper, we study three popular VCAs—Zoom, Google Meet, and Microsoft Teams. These VCAs have been used extensively worldwide over the past year, especially in enterprises and educational institutions [29]. Teams and Zoom provide desktop applications as well as browser clients, whereas Meet is “native” in the Chrome. Most of our tests are conducted using the desktop applications for Teams and Zoom, and using the Google Chrome browser for Meet. In-browser tests for Teams and Zoom are specified by Teams-Chrome and Zoom-Chrome, respectively. We use Chrome (Meet) version 89.0.4389, Zoom client version 5.6.1, and Teams client version 1.4.00.7556.

Laboratory Environment: We conduct experiments in a controlled environment. We begin by describing our experimental setup for a 2-party call. We use two identical laptops, referred to as C1 and C2, representing the two VCA clients. Each laptop is a Dell Latitude 3300 with a screen resolution of 1366 × 768 pixels and running Ubuntu 20.04.1. The laptops have a wired connection to a Turris Omnia 2020 router and access a dedicated 1 Gbps symmetric link to the Internet. Each experiment consists of a call between C1 and C2 under a pre-specified network bandwidth profile and VCA. The bandwidth profile is emulated by shaping the link between C1 and the router using traffic control (tc). A pre-recorded talking-head video\(^1\) with a resolution of 1280 × 720 is used as the video source for the call, using ffmpeg. This is done to both replicate a real video call and ensure consistency across experiments. All experiments are conducted with the laptop lid open and the application window maximized.

Automating Experiments: To conduct experiments at scale, we automated the entire in-call process. We take several steps to recreate the in-call process. We use the Python PyAutoGUI package [22] to automate joining and leaving calls. The package enables to programatically control the keyboard and the mouse by specifying coordinates or visual elements on the screen. For Zoom-Chrome, we encountered CAPTCHA before joining a call on the default browser. Using the Selenium-based Chrome browser [27], however, enabled us to bypass the CAPTCHA. Note the experiments using Selenium are run exactly as it would be in default Chrome browser. The workflow is controlled from C1, with TCP sockets used to coordinate between C1 and C2. We modify this setup slightly for subsequent experiments (e.g., multi-party calls); those slight modifications are described in the respective sections.

3 STATIC NETWORK CONDITIONS

In this section, we study the effect of network capacity on VCA performance.

Method: We conduct a series of experiments, each consisting of a 2.5-minute call between two clients, C1 and C2 (as described in Section 2.2), under a specific shaping level. We conduct two sets of experiments, shaping first the uplink and then the downlink. We constrain throughput to {0.3, 0.4, . . . , 1.4, 1.5, 2, 5, 10} Mbps (in each of the upstream and downstream directions). For each condition, we perform five 2.5-minute experiments; our data show that due to relatively low variance in most observations, this number of experiments is sufficient to achieve statistically significant results. For Zoom and Teams clients, we perform measurements both for native clients as well as for browser-based clients, referred to as Zoom-Chrome and Teams-Chrome, respectively.

3.1 Network Utilization

Constrained upstream utilization: Figure 1a shows the median sent network bitrate for different uplink capacities. We observe differences in upstream network utilization among VCAs given the same available uplink network capacity. In the case of a 10 Mbps uplink, for example, the average upstream utilization for Teams-native is 1.44 Mbps whereas it is only 0.95 for Meet and 0.77 Mbps for Zoom. All three VCAs utilize the uplink efficiently (above 85%) when that link is constrained (0.8 Mbps or lower), although Meet’s bitrate is slightly higher than the other VCAs.

Constrained downstream throughput: We explored the effect of constrained downstream capacity on VCAs’ network

VCA	Utilization (Mbps)
Meet	0.95
Teams	1.40
Zoom	0.78

Table 2: Unconstrained network utilization.
utilization. Figure 1b shows this result. As with a constrained uplink, the VCAs differ in terms of their downlink utilization under unconstrained link. The unconstrained downlink utilization differs from unconstrained upstream utilization, as shown in Table 2. To better understand this phenomenon, we analyzed the traffic captured from both clients.

In the case of Teams, we found that the sent traffic from C1 is almost same as the received traffic at C2, and vice versa. We suspect the small differences in upstream and downstream utilization may largely be due to the variability in utilization across experiments in Teams, as is also evident in the larger confidence intervals as compared to Zoom and Meet.

In contrast, Zoom’s utilization patterns were asymmetric: we found an asymmetry in sent and received data rates at both clients. For instance, in a single instance with 10 Mbps downlink shaping, C2 sent a median 0.85 Mbps and C1 received a median 1.10 Mbps. Investigating this asymmetry further, we discovered an interesting phenomenon: We found that Zoom uses a relay server instead of direct communication. Additionally, related work by Nistico et al. [21] suggests that Zoom uses Forward Error Correction (FEC) for error recovery. This is further supported by a related patent from Zoom itself, which talks about a methodology to generate FEC data at the server [17]. We suspect that the extra data may thus correspond to FEC added by the relay server, leading to asymmetric upstream and downstream utilization.

In addition to the asymmetric unconstrained utilization, Meet exhibits markedly different behavior with a constrained downlink. Specifically, the network utilization with constrained downstream throughput (< 0.8 Mbps) is only 39–70% (Figure 1b), while it is more than 90% in the case of a constrained uplink (Figure 1a). Upon further exploration, we discovered that Meet also uses a relay server, as well as simulcast, wherein the sender (C2) transmits multiple copies of the video to the server, each at a different quality level [21]. The server then relays one of the quality streams to C1 depending on the inferred available capacity of the server-C1 link. We observe two simultaneous video streams in our experiments, one at 320x180 and other at 640x360 resolution. When downstream throughput is constrained, the relay server cannot switch to a higher quality video and keeps sending at low quality bitrate. This explains why Meet’s network utilization at 0.5 Mbps is only 0.19 Mbps, almost similar to its utilization at 0.3 Mbps. The use of simulcast also explains the higher upstream utilization as compared to downstream utilization.

Browser vs. native client utilization: Figure 1c compares the upstream utilization of Zoom and Teams between their respective native and Chrome clients. Zoom’s utilization is similar across the native and browser-based platforms; in contrast, we find significant difference between Teams native and browser client. When uplink capacity is shaped to 1 Mbps, the Teams-native client uses 0.84 Mbps, whereas Teams-Chrome uses only 0.61 Mbps. We found a similar difference between Teams-native and Teams-Chrome when downstream throughput is constrained.

3.2 Application Performance

Next, we explore how video conference application performance varies depending on network capacity. To do so, we rely on the WebRTC stats API available in Google Chrome to obtain application metrics for Teams-Chrome and Meet [30]. We could not obtain the same statistics for Zoom-Chrome as it uses DataChannels instead of RTP MediaStream in WebRTC to transmit media. DataChannels statistics lack any video quality metrics and mostly contain data volume information. Obtaining application metrics is challenging for native clients. The Zoom API does provide limited application performance (e.g., video resolution, FPS) at a per-minute granularity [35] for the native client, but this granularity is insufficient to observe short-term quality fluctuations. We thus limit our analysis in this section to only Meet and Teams-Chrome. We focus on a subset of metrics available from WebRTC Stats.
Figure 2: Video encoding parameters with 90% confidence intervals under downstream and upstream throughput constraints.

API that relate to video quality and freezes. These metrics are available at a per-second granularity during each call.

Video quality: VCAs adapt the video quality by adjusting the encoding parameters to achieve a target bitrate estimate provided by the transport. Ideally, VCAs can adjust one or more of the following three parameters:

- frames per second (FPS),
- quantization parameter used in video compression, and
- video resolution indicated as the number of pixels in each dimension.

We can obtain all three parameters from the WebRTC stats. In our analysis, we present a single dimension of the resolution, namely, its width.

We first look at these parameters for different downstream capacities (see Figures 2a to 2c). Teams-Chrome simultaneously degrades all three video quality parameters as downstream capacity decreases. In the case of Teams-Chrome, we also observe variable behavior across multiple experiments under the same network capacity, as shown by the 90% confidence interval bands in the plot. Meet, on the other hand, behaves in a more consistent fashion: it adjusts parameters differently based on capacity. Within the 0.7–1 Mbps range, Meet adapts the bitrate primarily by adapting frames per second, while keeping the quantization parameter and frame width similar to the quality levels in the absence of degradation. As capacity is further constrained, however, from 0.5–0.7 Mbps, both the frame width and quantization parameter degrade, whereas there is a simultaneous increase in the frames per second.

Upon closer inspection of the per-second statistics in this operating range, we find that the relay server may switch to a lower quality copy of the stream it received via simulcast. Meet does not appear to reduce the bitrate any further by reducing the FPS for the low-quality stream—specifically, we observed a consistent frame rate even at rates of less than 0.5 Mbps. It is not clear why the quantization parameter reduces from 38 to 33 at 0.3 Mbps in Meet.

We next analyze the effect of uplink capacity constraints on encoding parameters (see Figures 2d to 2f). Teams adapts to constrained throughput settings mainly by increasing the quantization parameter and reducing the frame width, while keeping the FPS almost constant. To our surprise, we found that the frame width, increases as uplink capacity is reduced to 0.3 Mbps. There seems to be no particularly good explanation for this effect, and (as we discuss in the next paragraph) it also results in video freezes, suggesting a poor design decision or implementation bug. Meet follows a similar trend by mostly increasing the quantization parameter until the upstream bandwidth decreases to 0.5 Mbps. At 0.4 Mbps, it also reduces frame width and the FPS.

Video freezes: We also analyze the effect of constrained settings on video freezes. When constraining downlink capacity, we directly obtain the freeze duration from WebRTC stats. A
Freeze is assumed to occur if the frame inter-arrival > max (3δ, δ + 150ms), where δ is the average frame duration. We normalize the freeze duration with the total call duration to obtain freeze ratio. Figure 3a shows the freeze ratio under different downstream capacities. The freeze ratio increases as the downlink bandwidth degrades. Meet has higher freeze ratio than Teams-Chrome with 10% freeze ratio at 0.3 Mbps. Interestingly, Teams-Chrome incurs freezes (a 3.6% freeze ratio) even in the absence of throughput constraints, suggesting again implementation problems or poor design choices.

When the uplink is constrained, we could not obtain freeze statistics from C1’s logs, because the WebRTC stats provide freeze statistics only for the received video stream. Instead, we analyze the total count of Full Intra Requests (FIR) for the upstream video data. An FIR is sent if the receiver cannot decode the video or falls behind, likely due to frame losses. A low FIR count does not rule out freezes on the receiver, but a high count does indicate that video freezes are occurring. Figure 3b shows that the FIR count is particularly high for Teams-Chrome at uplink capacity below 0.5 Mbps. A high FIR count in Teams-Chrome may be triggered due to the sender sending high-resolution video, as shown in Figure 2f.

4 NETWORK DISRUPTIONS

VCAs must handle network disruptions; they may do so in different ways. Designing to cope with disruptions, such as interruptions to network connectivity, has become even more pertinent over the past year as users have increasingly relied on broadband Internet access to use VCAs, which can sometimes experience connectivity disruptions. In addition to experiencing periodic outages, home networks are susceptible to disruptions caused by temporary congestion along the end-to-end path. In this section, we aim to understand how VCAs respond to the types of disruptions that home Internet users might sometimes experience.

Method: We analyze how VCAs respond to temporary network disruptions during the call by introducing transient capacity reductions. Using the same setup as in the previous experiment, we initiate a five-minute VCA session between two clients, C1 and C2, both of which are connected to the Internet via a 1 Gbps link. One minute after initiating the call, we reduce the capacity between C1 and the router for 30 seconds, before reverting back to the unconstrained 1 Gbps link. We repeat each experiment four times. We conduct two sets of experiments: first disrupting the uplink, and then disrupting the downlink. We reduce capacity to the following levels: 0.25, 0.5, 0.75, 1.0 Mbps. (We do not consider disruptions in capacity to levels of more than 1 Mbps because both Zoom and Meet’s average utilization is below 1 Mbps.)

4.1 Uplink Disruptions

Figure 4a shows VCA upstream bitrate over the course of a call. Following a disruption, both the time to recovery and the characteristics of that recovery differ across VCAs. We quantify the time for VCA utilization to return to normal by defining a **time to recovery (TTR)** metric. We define TTR as the time between when the interruption ends and when the five-second rolling median bitrate reaches the median bitrate before interruption, also referred to as nominal bitrate.

Time to Recovery: Figure 4b shows how the extent of the disruption to uplink connectivity affects each VCA’s time to recovery. The more severe the capacity reduction, the longer the VCAs need to recover.

Teams takes longer to recover even at less severe disruptions for two reasons: (1) the nominal bitrate of Teams is higher...
Figure 4: VCA response to a 30-second reduction in uplink capacity.

(a) Average upstream bitrate over time. Grey region indicates period where uplink capacity is constrained to 0.25 Mbps. Vertical dotted lines indicate when the upstream bitrate has returned to the average bitrate before disruption.

(b) Time to recover from disruption to a given uplink capacity

than Meet and Teams, (2) Teams increases the upstream bitrate slowly immediately after the interruption before increasing quickly back to normal (as shown in Figure 4a). Meet also observes a similar recovery pattern when the disruption drops capacity to 0.25 Mbps. However, it recovers much faster for the case of less severe disruptions, mostly because its nominal bitrate is around 0.96 Mbps.

Recovery Patterns: While Meet and Teams follow a more rapid trend, Zoom’s recovery is different: It takes the longest time to recover under severe disruptions. According to Figure 4a, Zoom follows a stepwise recovery, with an almost-linear increase immediately after interruption. It then enters a periodic-probing phase where it increases the sending rate, stays at it for sometime before increasing it again. The probing phase continues well above its nominal bitrate, before finally reducing the bitrate. Zoom does not return to a steady-state sending pattern until two minutes after the disruption, in the meantime sending at much higher rates. At first glance, such probing might appear to be bad design as it could introduce additional packet loss and delay harming both Zoom’s own performance and the performance of other applications. We suspect, however, that Zoom may be using redundant FEC packets to gauge capacity similar to the FBRA congestion control proposed by Nagy et al. [20]. Thus, even if such behavior induces packet loss, the user performance may not suffer.

Figure 5: Response to a 30-second reduction in downlink capacity.

Nevertheless, this inefficient use of the uplink, however, could disturb other applications on the same link, leading to a poor quality of experience for competing applications.

4.2 Downlink Disruptions

Figure 5b shows that Teams recovers more slowly than Meet and Zoom, always taking at least 20 seconds longer to return to the average rate, regardless of the magnitude of the interruption. Furthermore, Meet and Zoom recover much more quickly in this case compared to uplink interruptions. This can be explained by the way each VCA sends video. For all three VCAs, the clients communicate through an intermediate server. Thus, the recovery times depend on the congestion control behavior at the server, as well.

As mentioned in Section 3, Meet uses an encoding technique called simulcast, where the client encodes the same video at different quality levels and sends the encoded videos to an intermediate server. The server then sends the appropriate version based on the perceived downlink capacity at the receiver. The server can quickly switch between versions based on downstream capacity. This quick recovery is shown in Figure 5: Meet returns to its average rate in under ten seconds, regardless the severity of the interruption.

Similarly, Zoom uses scalable video coding when transmitting video [34]. Instead of sending several versions of varying
Teams suffer more serious degradation. Zoom’s efficient net- work utilizes encoding parameters (i.e., SVC-encoded layers, FPS, level of available capacity during the disruption; Meet and Teams suffer more serious degradation. Zoom’s efficient network utilization and response to disruption may be due to its encoding mechanisms, which allows it to effectively control the encoding parameters (i.e., SVC-encoded layers, FPS, resolution etc.) to match the target bitrate.

The server can then recover faster by sending additional layers (which uses QUIC).

5 COMPETING APPLICATIONS

With work and school continuing online, it is even more common to have multiple applications simultaneously using the home network, potentially leading to competition between any combination of VCAs, video streaming applications, or other popular applications. In this section, we measure how VCAs perform in the presence of other applications sharing the same bottleneck link. We focus on link sharing with other VCAs, a single TCP flow (iPerf3), and two popular video streaming applications, Netflix and YouTube (which uses QUIC).

Method: As illustrated in Figure 7, the setup for these experiments differs slightly from earlier ones. Instead of connecting the client directly to the router, the two matched clients, C1 and F1, are connected to the router via a switch. The link capacity between the switch and the router is set on the router. For each test, C1 (the incumbent application) first establishes a VCA call with C2. Approximately 30 seconds later, F1 initiates the competing application, which lasts for two minutes. F1’s counter-party, F2, depends on the type of competing application. If the competing application is a VCA call, then F2 is another laptop. If the application is an iPerf3 (TCP) flow, then F2 is a server on the same network. If F1 is Netflix or YouTube (launched on Chrome), then F2 is a server for the respective service. After the competing application terminates, the incumbent application continues for an additional minute. We repeat each experiment 3 times, with link capacity varied symmetrically at {0.5, 1, 2, 3, 4, 5} Mbps.

5.1 VCA vs. VCA

VCAs can achieve their nominal bitrate when the link capacity is 4 Mbps or greater, which is expected because the link capacity exceeds the sum of nominal bitrates of each VCA. We then focus on the operating regime when the link capacity is lower, leading to competition between the VCAs. With only two competing clients, we use the proportion of the link shared as a metric to assess fairness. We call a VCA “aggressive” if it uses more than half of the link capacity under competition, and “passive” otherwise.

Considering the upstream direction, we observe differences in how each VCA shares the link. Figure 8 shows a box plot of the upstream share of an incumbent VCA and a competing VCA when the uplink capacity is 0.5 Mbps. We find that an incumbent Meet client shares the link fairly with a new Meet or Teams client but backs off when a Zoom client joins (see each VCA’s media sending mechanism and how congestion control is implemented at the intermediate server for each VCA.)

Takeaways: Modern VCAs are slow to recover from reductions in uplink capacity, with all three requiring more than 25 seconds to recover from severe interruptions to 0.25 Mbps. Only Teams is consistently slow to recover from disruptions to downlink capacity, even showing degradation in response to more moderate capacity reductions (e.g., to 1 Mbps). This result can be attributed to

Figure 6: Client 2 (C2) upstream bitrate. Grey region indicates when C1’s downlink capacity is reduced to 0.25 Mbps

Figure 7: Setup for competition experiments.

Figure 8: Modern VCAs are slow to recover from reductions in uplink capacity, with all three requiring more than 25 seconds to recover from severe interruptions to 0.25 Mbps. Only Teams is consistently slow to recover from disruptions to downlink capacity, even showing degradation in response to more moderate capacity reductions (e.g., to 1 Mbps). This result can be attributed to
Figure 8: Share of uplink capacity used by VCAs in competition with VCAs on a 0.5 Mbps symmetric link. White box is the incumbent application

Figure 9: Upstream bitrate of VCAs in competition on a 0.5 Mbps capacity link. Upper trendline is incumbent application and lower is competing application.

Figure 8a). The results are similar for Teams except it receives a slightly higher share while competing with Zoom compared to Meet. Interestingly, Zoom is highly aggressive, both as an incumbent and a competing application, using at least 75% of the link capacity in the case it is an incumbent client (see Figure 8c). In fact, Zoom’s congestion control is not even fair to itself.

Figure 9a illustrates this effect more clearly, with the link sharing between two Zoom clients for a single experiment under 0.5 Mbps uplink capacity. We contrast this with the link sharing between two Meet clients in Figure 9b, where both sessions converge to their fair share of 0.25 Mbps. The results are similar for other uplink capacities, with aggressive applications leaving more room for new clients if they achieve their nominal bitrate.

We find similar results for Zoom and Meet when downstream capacity is constrained. However, we find that Teams is passive when sharing downstream capacity, backing off to all other VCAs, including other Teams flows. Figure 10b shows the link share of an incumbent Teams client compared to the competing VCA under 0.5 Mbps downlink capacity. Teams achieves only 20% of the link when sharing with Meet and Zoom. We observe similar behavior for other downlink capacities. Figure 11b illustrates how an incumbent Teams client shares the link with a Zoom client at 1 Mbps downlink capacity. Clearly the Teams client backs off to 0.2 Mbps. In contrast in the upstream direction, both Teams and Zoom converge to a near fair share of the link, as shown in Figure 11a. Additionally, the downstream throughput in Figure 11b for Teams degrades even before the Zoom call starts, likely because the competing client opens the Zoom landing page to initiate a call. This can lead to competing TCP traffic on the link and as we find in the next subsection, Teams is extremely passive when competing against TCP.

5.2 VCA vs. TCP

We now compare how the three VCAs compete with a 120 seconds long TCP flow from iPerf3. In a home network, a long TCP flow can be created by file download or upload. We find that Zoom is highly aggressive, especially at low uplink and downlink capacity, consuming more than 75% of the bandwidth under a symmetric 0.5 Mbps link. Meet is TCP-friendly in the uplink direction but not in the downlink, consuming 75% of the bandwidth at 0.5 Mbps downlink (figures omitted due to lack of space). Teams, on the other hand, is passive and backs-off against a TCP flow in both upstream and downstream even at high link capacity. Figure 12b and 12a show how each VCA shares a 2 Mbps downlink and uplink with iPerf3, respectively. Teams is able to use 37% in uplink and only 20% in the downlink even at 2 Mbps. The low upstream
throughput for Teams with a TCP flow is particularly surprising as it was able to achieve its fair-share when competing against (more aggressive) Meet and Zoom, as shown in Figure 8b. At 2 Mbps, both Meet and Teams achieve their nominal bitrate allowing iPerf3 to use rest of the link. Clearly, all the VCAs are not TCP CUBIC-friendly with Meet and Zoom being highly aggressive and Teams being highly passive.

Anomalous Zoom Bursts: In the previous section, Figures 4a and 5a showed how Zoom can send bursts of data for an extended period of time following a network disruption. Figure 13 shows how this behavior is also exhibited when in competition with iPerf3. At about 125 seconds, Zoom’s increased sending rate causes iPerf3 to abruptly lower its utilization. This confirms that the temporary bursts in Zoom, likely for inferring available bandwidth, can adversely affect other applications on a scarce link.

Figure 10: Share of downlink capacity used by VCAs in competition with other VCAs on a 0.5 Mbps symmetric link. White box is the incumbent application.

Figure 11: Comparison of Teams competition behavior for uplink and downlink on a 1 Mbps symmetric link. Teams is the incumbent application.

Figure 12: iPerf3 link sharing with VCAs on a 2 Mbps capacity link.

5.3 VCA vs. Video Streaming

We also compared each VCA’s link share against two video streaming applications, Netflix and YouTube, which consume significant downstream bandwidth. YouTube uses QUIC, a UDP-based transport protocol, which can be TCP-friendly depending on some configuration values [9]. Both Meet and Zoom are very aggressive when competing against video streaming applications, using over 75% of the link capacity. In contrast, Teams uses less than 25% while competing with
People now increasingly rely on video conferencing for remote work, school, and even large virtual conferences (such as this one!), particularly during the COVID-19 pandemic, which has shifted many in-person activities to virtual forums. These settings involve many participants, which raises questions concerning performance and network utilization of VCAs in settings involving multiple users. We study network utilization under two prominent call modalities:

1. the number of participants in a call and
2. the viewing mode.

We consider two viewing modes that are common across all three VCAs: *speaker mode* wherein a specific user’s video is pinned on the call and *gallery mode*, in which all participants’ video are shown on the screen. Each experiment consists of a 2-minute call with n users and specific viewing mode. We vary the number of clients in the call from two to eight, across both gallery and speaker modes. We perform five experiment for each (number, viewing mode) combination; we log the network utilization of Client C1 for each call. Although it is difficult to evaluate these applications for hundreds of simultaneous users, we can nevertheless explore trends in utilization and performance for a smaller number of users and observe various utilization trends. Larger-scale experiments could be a possible area for future work.

6.1 Number of Users

To explore the effect of the number of users on utilization, we fix the viewing mode to *gallery*, which is the default viewing mode in all of the VCAs. Figures 15a and 15b show the average downstream and upstream network utilization respectively for different numbers of participants. Total downstream utilization depends on both the number of video streams and the data rate of each stream. Utilization in both directions typically decreases as the number of participants increases in a Meet or Zoom call. In the case of Zoom, the uplink utilization drops from 0.8 Mbps to 0.4 Mbps as number of participants increases from 4 to 5. For Meet, the reduction happens at n = 7, from 1 Mbps to 0.2 Mbps. Both Meet and Zoom have tiled-screen display with each user displayed in a separate tile. As the number of users increases, the tile size shrinks to accommodate all the users on the fixed size screen. For instance, Zoom uses a 2×2 grid for 4 participants; switching to 5 participants creates a third row of video feeds making each individual video feed smaller. The sender uses this opportunity to reduce the resolution of transmitted video, leading to reduction in upstream utilization.

We observe a similar reduction in downstream utilization at 5 and 7 participants for Zoom and Meet, respectively (Figure 15a). However, there are also notable differences when compared to the uplink utilization. For instance, the downlink...
Figure 15: Network utilization in different viewing modes. The bands represent 90% confidence intervals.

utilization for Google Meet increases from 1.25 Mbps to 2.5 Mbps when the number of participants increases from 3 to 6, while upstream utilization stays mostly constant. The trend is similar for Zoom as the number of participants increases beyond 5.

Teams does not exhibit these trends: upstream utilization remains almost constant as the number of participants changes. Downstream utilization increases until five participants and drops as more participants join the call. Teams has a fixed 4-tile layout on Linux. It thus displays only a subset of participants if a call has more than four participants which may explain why the sending rate does not change, particularly as the number of videos and the frame size may not change significantly with more users. It is, however, not clear why the downstream utilization decreases in calls with more than participants; this phenomenon deserves more exploration.

6.2 Viewing Mode

For all three VCAs, viewing a user’s video in speaker mode leads to greater uplink consumption on that user’s network as compared to gallery mode. Putting C1 on the speaker mode enlarges its tile size on other users’ screen. The sender streams the video at a high resolution to provide a high better user experience, thus leading to increase in uplink utilization compared to when C1 was not pinned by other users. Zoom and Meet consistently send at 1 Mbps when all clients pin C1’s video, regardless of the number of participants. Note that, only one client needed to put C1 on speaker for this behavior. Each client can decide to pin any client independently of others.

The behavior of Teams differs from Meet and Zoom in this regard, as well. C1’s uplink utilization continues to increase from 1.25 Mbps with 3 participants to 2.9 Mbps participants when it is put on speaker mode. We checked if the increase could be attributed to Teams communicating with multiple destinations (e.g., with each user separately). However, we observe that all of the traffic was directed to a single server. It is not clear what contributes to the increase in traffic for Teams but this clearly leads to inefficient network utilization, especially when compared to Zoom and Meet.

Takeaways: Each participant’s video layout affects client’s network utilization. Calls with more participants can decrease upstream and downstream utilization for each participant, depending on how the VCA displays participant video. The settings of one participant (e.g., pinning a video, using speaker mode vs. gallery mode) can also affect the upstream utilization of other participants.

7 RELATED WORK

VCA measurement: Some of the early VCA measurement work has focused on uncovering the design of the Skype focusing on its streaming protocols [2], architecture [11], traffic characterization [6], and application performance [13]. More recent work has included other VCAs and streaming contexts [1, 31, 32]. Xu et al. [31] use controlled experiments to study the design and performance of Google+, iChat, and Skype. The work is further extended to include performance of the three services on mobile video calls [32]. Closest to our work is work by Jansen et al. [14] and Nistico et. al [21]. Jansen et al. evaluate WebRTC performance using their custom VCA under controlled network conditions [14]. Emulating similar network conditions, we consider performance of commercial and more recent VCAs that widely used for education and work. Even between tested VCAs using WebRTC, namely Meet and Teams-Chrome, we find significant performance differences, likely due to different design parameters (e.g., codecs, default bitrates). Nistico et al. [21] consider a wider range of recent VCAs, focusing on their design differences including protocols and architecture. Our
work provides a complimentary performance analysis for a subset of the VCAs studied by them. We use the insights from their work to explain the differences among VCAs’ network utilization and performance under similar streaming contexts.

VCA congestion control: Several congestion control algorithms have been proposed for VCAs. These algorithms rely on a variety of signals such as loss [12], delay [8], and even VCA performance metrics [28] for rate control. For instance, Google Congestion Control [8], also implemented in WebRTC, uses one-way delay gradient for adjusting the sender rate while SCReAM [15] relies on both loss and delay along with TCP-like self-clocking. While the VCAs may use one or more of these variants, the exact implementation of the algorithm and parameter values vary and is proprietary. In this work, we study the efficacy of the VCA congestion control in the case of transient interruptions and background applications. A recent study by Sander et al. evaluates Zoom’s congestion control along these dimensions [24]. Our work observes similar results for Zoom and also analyses more VCAs, including their fairness to each other and other popular internet applications, namely YouTube (QUIC-based) and Netflix (TCP-based).

8 FUTURE WORK

Generalizability to other VCA contexts: While this paper focuses on three popular video conferencing applications, the methods in this paper could be used to measure utilization and performance of other VCAs, across different device platforms. Our framework, using PyAutoGUI for automation, can be applied to other VCAs. It can also work on other device platforms based on Linux, MacOS, or Windows. Furthermore, we can include other network profiles that represent other contexts, such as WiFi and cellular. We plan to release all of our experiment data and code so that it others can extend this work to other contexts.

Application performance metrics: Analyzing application performance statistics can shed more light on the VCA behavior and user quality of experience, as is also seen through a subset of our results using WebRTC statistics in Section 3.2. It is challenging to obtain application performance metrics for all VCAs, especially native clients. Future research could explore the methods from related work, such as using annotated videos [31] or network traffic captures [10] to infer application metrics.

Performance under other network conditions: Other network factors such as latency, packet loss, and jitter could affect VCA performance and utilization. Future work could explore the effects of these parameters. Experiments in this paper also focus on issues in the last-mile access network, when there could be problems anywhere along the end-to-end path. However, emulating all kinds of impairments is challenging to accomplish in-lab. An alternative could be to collect VCA performance metrics from a large number of users in the real world.

Further exploration of VCA design: Some of our results reveal unusual VCA behavior that we found difficult to explain and deserve further exploration. Examples include: (1) Some VCAs exhibit different behavior depending on if the competition exists in the upstream or downstream direction, (2) Teams utilization is not consistent with the video layout for different call modalities; and (3) Meet shows unusual encoding behavior (specifically, increased frame rates) when network capacity is very low.

9 CONCLUSION

We analyzed the network utilization and performance of three major VCAs under diverse network conditions and usage modalities. Our results show that VCAs vary significantly both in terms of their resource utilization and performance, especially when capacity is constrained. Differences in behavior can be attributed to different VCA design parameter values, congestion control algorithms, and media transport mechanisms. The VCA response also varies depending on whether constraints exist on the uplink or downlink. Different behavior often arises due to both differences in encoding strategies, as well as how the VCAs rely on an intermediate server to deliver video streams and adapt transmission to changing conditions. Finally, the network utilization of each VCA can vary significantly depending on the call modality. Somewhat counterintuitively, calls with more participants can actually reduce any one participant’s upstream utilization, because changes in the video layout on the user screen ultimately lead to changes in the sent video resolutions. Future work could extend this analysis to more VCAs, device platforms, and network impairments. In general, however, performance can begin to degrade at upstream capacities below 1.5 Mbps, and some VCAs do not compete well with other TCP streams under constrained settings, suggesting the possible need for the FCC to reconsider its 25/3 Mbps standard for defining “broadband.”
REFERENCES

[1] Abdullah Azfar, Kim-Kwang Raymond Choo, and Lin Liu. 2016. Android mobile VoIP apps: a survey and examination of their security and privacy. Electronic Commerce Research 16, 1 (2016), 73–111.

[2] Salman A Baset and Henning Schulzrinne. 2004. An analysis of the skype peer-to-peer internet telephony protocol. arXiv preprint cs/0412017 (2004).

[3] Mark Baughner, D McGrew, M Naslund, E Carrara, and Karl Normman. 2004. The secure real-time transport protocol (SRTP).

[4] Juraj Bienik, Miroslav Uhrina, Michal Kuba, and Martin Vaculik. 2016. Performance of H. 264, H. 265, VP8 and VP9 Compression Standards for High Resolutions. In 2016 19th International Conference on Network-Based Information Systems (NBiS). IEEE.

[5] Bitag. 2021. 2020 pandemic network performance. https://bitag.org/documents/bitag_report.pdf.

[6] Dario Bonfiglio, Marco Mellia, Michela Meo, Nicolo Ritacca, and Dario Rossi. 2008. Tracking down skype traffic. In IEEE INFOCOM 2008-The 27th Conference on Computer Communications. IEEE.

[7] Dario Bonfiglio, Marco Mellia, Michela Meo, and Dario Rossi. 2008. Detailed analysis of skype traffic. IEEE Transactions on Multimedia (2008).

[8] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2016. Analysis and design of the google congestion control for web real-time communication (WebRTC). In Proceedings of the 7th International Conference on Multimedia Systems. 1–12.

[9] Romuald Corbel, Stéphane Tuffin, Annie Gravey, Xavier Marjou, and Arnaud Braud. 2019. Assessing the impact of QUIC on network fairness. In 2nd International Conference on Communication and Network Protocol (ICCNN 2019).

[10] Mallesh Dasari, Shruti Sanadhyaa, Christina Vlachou, Kyu-Han Kim, and Samir R Das. 2018. Scalable ground-truth annotation for video qoe modeling in enterprise wifi. ACM. In IEEE IWQoS.

[11] Saikat Guha and Neil Daswani. 2005. An experimental study of the skype peer-to-peer voip system. Technical Report. Cornell University.

[12] Mark Handley, Sally Floyd, Jitendra Padhye, and Jörg Widmer. 2003. TCP friendly rate control (TFR): Protocol specification. Technical Report. RFC.

[13] Tobias Höfßeld and Andreas Binzenhöfer. 2008. Analysis of Skype VoIP traffic in UMTS: End-to-end QoS and QoE measurements. Computer Networks (2008).

[14] Bart Jansen, Timothy Goodwin, Varun Gupta, Fernando Kuipers, and Gil Zussman. 2018. Performance evaluation of WebRTC-based video conferencing. ACM SIGMETRICS Performance Evaluation Review (2018).

[15] Ingemar Johansson and Zaheduzzaman Sarker. 2015. Self-clocked rate adaptation for multimedia. draft-johansson-rmcat-scream-cc-05 (work in progress) (2015).

[16] Citizen Lab. 2020. Zoom uses a bespoke extension of RTP. https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/.

[17] Qiyong Liu, Zhaofeng Jia, Kai Jin, Jing Wu, and Huipin Zhang. 2019. Error resilience for interactive real-time multimedia application. US Patent 10,348,454.

[18] Shihan Liu, Paul Schmitt, Francesco Bronzino, and Nick Feamster. 2020. Characterizing Service Provider Response to the COVID-19 Pandemic in the United States. arXiv preprint arXiv:2011.00419 (2020).

[19] Common Sense Media. 2021. LOOKING BACK, LOOKING FORWARD: What it will take to permanently close the K–12 digital divide. https://www.commonsensemedia.org/about-us/news/press-releases/the-us-k-12-digital-divide-has-narrowed-but-must-close-to-eliminate.

[20] Marcin Nagy, Varun Singh, Jörg Ott, and Lars Eggert. 2014. Congestion control using fcc for conversational multimedia communication. In Proceedings of the 5th ACM Multimedia Systems Conference. 191–202.

[21] Antonio Nisticò, Dena Markudova, Martino Trevisan, Michela Meo, and Giovanna Carofiglio. 2020. A comparative study of RTC applications. In 2020 IEEE International Symposium on Multimedia (ISM). IEEE.

[22] ReadTheDocs. 2020. PyAutoGUI: Application automation. https://pyautogui.readthedocs.io/en/latest/.

[23] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon Peterson, Robert Sparks, Mark Handley, Eve Schoolder, et al. 2002. SIP: session initiation protocol.

[24] Constantin Sander, Ike Kunze, Klaus Wehrle, and Jan Rüth. [n.d.]. Video Conferencing and Flow-Rate Fairness: A First Look at Zoom and the Impact of Flow-Queuing AQM. [J. d.].

[25] Henning Schulzrinne, Steven Casner, R Frederick, and Van Jacobson. 2003. RFC3550: RTP: A transport protocol for real-time applications.

[26] Henning Schulzrinne, Stephen Casner, Ron Frederick, Van Jacobson, et al. 1996. TCP: A transport protocol for real-time applications.

[27] Selenium. 2017. Selenium: Web browser automation.

[28] Varun Singh, Jörg Ott, and Igor DD Curcio. 2012. Rate-control for conversational video communication in heterogeneous networks. In 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE. 1–7.

[29] Email Tool Tester. 2021. Video conferencing market share. https://www.emailtooltester.com/en/blog/video-conferencing-market-share/.

[30] W3. 2020. WebRTC Stats. https://www.w3.org/TR/webrtc-stats/.

[31] Yang Xu, Chenguang Yu, Jingjiang Li, and Yong Liu. 2012. Video telephony for end-consumers: Measurement study of Google+, iChat, and Skype. In IHC. ACM.

[32] Chenguang Yu, Yang Xu, Bo Liu, and Yong Liu. 2014. “Can you see me now?” A measurement study of mobile video calls. In IEEE INFOCOM 2014-IEEE Conference on Computer Communications. IEEE. 1456–1464.

[33] Jay Zhu, Doug Jones, and Sheldon Webster. 2020. Testing Bandwidth Usage of Popular Video Conferencing Applications. https://www.cablelabs.com/testing-bandwidth-usage-of-popular-video-conferencing-applications.

[34] Zoom. 2019. Here’s How Zoom Provides Industry-Leading Video Capacity. https://blog.zoom.us/zoom-can-provide-increase-industry-leading-video-capacity/.

[35] Zoom. 2021. Zoom API. https://marketplace.zoom.us/docs/api-reference/zoom-api/.