Persistent Increase of Prevalence of Metabolic Syndrome Among US adults: NHANES III to NHANES 1999-2006

Running title: Increase of Metabolic Syndrome in US adults

Arupendra Mozumdar, Ph.D.; Gary Liguori, Ph.D.

Health, Nutrition and Exercise Sciences, North Dakota State University, Fargo, ND

Correspondence to:
Gary Liguori
Email: Gary.Liguori@ndsu.edu

Submitted 7 May 2010 and accepted 24 September 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective- To compare the prevalence in metabolic syndrome (MetSyn) between 1988-1994 and 1999-2006 among US adults of different race or ethnicity.

Research Design and Methods- Analysis of data on 6423 adult men and non-pregnant women aged >=20 years from Third National Health and Nutrition Examination Survey (NHANES-III) and 6962 participants from the combined NHANES 1999-2006 were done. The revised National Cholesterol Education Program/ Adult Treatment Panel-III definition was used to calculate MetSyn.

Results- Both the unadjusted prevalence (27.9 +/-1.1% to 34.1 +/-0.8%, P <0.001) and age-adjusted prevalence (29.2 +/-1.0% to 34.2 +/-0.7, P <0.001) increased from NHANES-III to NHANES 1999-2006, respectively. Although MetSyn prevalence was highest in Mexican Americans, significant increases in prevalence occurred among non-Hispanic Whites and non-Hispanic Blacks, especially among younger women.

Conclusions- The persistent increase of MetSyn among US adults is a serious public health concern as it raises the likelihood of increased prevalence of type-2 diabetes.

The metabolic syndrome (MetSyn) is a constellation of metabolic abnormalities and is associated with increased risk of developing diabetes (1), cardiovascular disease (2) and higher mortality from all causes (3). Among the few studies using nationally representative samples on MetSyn (4-9), Ford et al (9) estimated an increasing trend of MetSyn prevalence by comparing the Third National Health and Nutrition Examination Survey (NHANES-III) and NHANES 1999-2000 data. However, due to the smaller sample size of NHANES 1999-2000, the change in MetSyn prevalence for various subpopulations was not estimated, which is necessary to track age and ethnicity specific trends. Therefore, the objective of this study is to compare the prevalence of MetSyn between NHANES-III and NHANES 1999-2006 among US adults of different races or ethnicity.

RESEARCH DESIGN AND METHODS

We identified the cases of MetSyn using the revised American Heart Association/ National Cholesterol Education Program/ Adult Treatment Panel-III definition (10), including medication uses for appropriate MetSyn criteria. Data for this study was obtained from public-use data sets of the NHANES-III, 1988-1994 (data release 11#1A), and four continuous NHANES data releases: 1999-2000, 2001-2002, 2003-2004, and 2005-2006. Details of survey and laboratory procedure of NHANES are published elsewhere (11-13). Data from NHANES 1999-2006 were combined for this study to produce estimates of MetSyn for demographic subpopulations (e.g. sex-age-race/ethnicity) with greater statistical reliability. As the data on fasting triglycerides and fasting glucose were required to identify MetSyn and those measurements were done on a subsample population, the sample weights for the subsample were used in this study.

The appropriate sample weights for combined NHANES 1999-2006 were constructed using National Center for Health Statistics.
guidelines (14). To maintain the consistency of blood pressure data between the two surveys, the procedure described by Ford et al. (10) was followed. The continuous NHANES measured fasting glucose and serum triglycerides from blood samples drawn in the morning; therefore, only participants who attended a morning examination session for NHANES-III were included in this analysis. Otherwise, the sample includes men and non-pregnant women aged ≥ 20 years who fasted for at least 8 hours. The number of participants in the final analysis was 6423 for NHANES-III and 6962 for NHANES 1999-2006. Statistical analyses to calculate prevalence were performed using the survey procedures in SAS software version 9.1 (SAS Institute Inc., Cary, NC). The statistical significance of the change in MetSyn prevalence between the two surveys was examined by t-test, where the square root of the sum of the squared standard errors was utilized to calculate the pooled standard error of the difference in the mean.

RESULTS
The age-adjusted prevalence of four of the five metabolic abnormalities of MetSyn increased significantly between the surveys for women: abdominal obesity 46.0+/−1.4% to 58.0+/−1.1%, P<0.001; hypertriglyceridemia 24.7+/−1.2% to 27.6+/−0.8%, P=0.042; high blood pressure (HBP) 27.8+/−0.9% to 36.6+/−0.8%, P<0.001; high fasting glucose 24.2+/−1.2% to 29.2+/−1.0%, P=0.002. However, for men, age-adjusted prevalence significantly increased in abdominal obesity (30.4+/−1.6% to 41.1+/−1.1%, P<0.001) and HBP (32.0+/−0.8% to 40.0+/−0.7%, P<0.001) only. The age-adjusted prevalence of low HDL-cholesterol significantly decreased in both gender (men: 36.4+/−1.7% to 27.6+/−1.0%, P<0.001; women: 39.6+/−1.4% to 33.8+/−1.1%, P=0.001) between the surveys.

Both age-adjusted and age-specific prevalence of MetSyn for NHANES 1999-2006 were significantly higher than for NHANES-III (Table 1). The unadjusted (P=0.012) and age-adjusted (P=0.046) prevalence increased significantly between the two surveys for men, however, there was no significant change in any of the three age-groups. For women, both unadjusted and age-adjusted (P<0.001) prevalence increased significantly between the two surveys, with a significant increase noted in all three age-groups. Among non-Hispanic White (NHW), both men and women showed significant increases in unadjusted (men: P=0.010, women: P=0.001) and age-adjusted (men: P=0.048, women: P=0.007) prevalence of MetSyn. However, when classified by age groups, only women age 20-39 showed significant increase (P=0.010). Prevalence of MetSyn did not change significantly among Non-Hispanic Black (NHB) men (P>0.050) between the two surveys, but NHB women age 20-39 showed a significant increase in prevalence (P=0.036). The age-adjusted prevalence of MetSyn in NHANES 1999-2006 was highest among Mexican Americans (men: 36.6+/−1.9%, women: 42.6+/−1.7%) with little change in this group from NHANES-III. Using the unadjusted prevalence rates from combined sample population of NHANES 1999-2006 we estimated that about 32.4 million men and 35.3 million women in US had MetSyn. Among US adults with MetSyn, about 50.6 million were NHW, about 6.3 million were NHB, and about 4.6 million were Mexican Americans.

The age-adjusted prevalence of US adults reporting diabetes (other than pregnancy related) or having a fasting blood glucose ≥126mg/dL significantly increased in both gender (men: 8.1+/−0.6% to 10.5+/−0.6%, P=0.005; women: 5.8+/−0.6% to 8.5+/−0.5%, P=0.001) between the two surveys. The age-
The adjusted prevalence of MetSyn among US men without diabetes did not change significantly (27.6 +/- 1.4% to 30.6 +/- 1.1%, \(P=0.08 \)), however, the prevalence significantly increased for women without diabetes (24.0 +/- 1.2% to 29.4 +/- 1.0%, \(P=0.001 \)), including women age 20-39 (10.0 +/- 1.6% to 15.8 +/- 1.2%, \(P=0.003 \)) and age 40-59 (25.8 +/- 2.4% to 31.6 +/- 1.7%, \(P=0.049 \)).

CONCLUSIONS
Ford et al. estimated that ~50 million US adults had MetSyn in 1990 and ~64 million in 2000 (9), representing a 28% increase in prevalence. From the combined NHANES 1999-2006 data, we estimated ~68 million US adults had MetSyn, or a further increase of 6%. The prevalence of MetSyn in US adults in 1999-2006 was 34.1 +/- 0.8% (after age adjustment 34.2 +/- 0.7%) which is a significant increase from 1988-1994, and more so in women (28.4%) than men (16.8%). Further, in both NHW and NHB, the prevalence of MetSyn significantly increased in women, particularly younger women (age 20-39). The increased prevalence of MetSyn was primarily due to increases in abdominal obesity and HBP.

An increase in MetSyn prevalence is expected to be followed by an increase in diabetes prevalence, though of a lesser magnitude. Between the two surveys, there was a 4.3% increase in age-adjusted prevalence of MetSyn among adults without diabetes and a 2.6% increase in diabetes. As we continue to see an increase in MetSyn, especially in certain ethnic groups and younger women, we will see a concomitant increase in diabetes and its co-morbidities and associated medical costs.

Author contributions. Both authors equally contributed in study design, data analysis, and manuscript writing. We thank Paul S. Fisk, MS, North Dakota State University for his assistance with data analysis. We also thank Subrata K. Roy, PhD, Indian Statistical Institute, Kolkata, India for his help during the review process.

ACKNOWLEDGEMENTS
Neither author had any financial or personal conflicts of interest in the organization that supported the research.

REFERENCES
1. Meigs JB, Wilson PW, Fox CS, Vasan RS, Nathan DM, Sullivan LM, D'Agostino RB: Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. *J Clin Endocrinol Metab* 91: 2906-2912, 2006.
2. Galassi A, Reynolds K, He J: Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. *Am J Med* 119: 812-819, 2006.
3. Malik S, Wong ND, Franklin SS, Kamath TV, L'Italien GJ, Pio JR, Williams GR: Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. *Circulation* 110: 1245-1250, 2004.
4. Ford ES, Giles WH, Dietz WH: Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Examination Survey. *JAMA* 287: 356-359, 2002.
5. Aguilar-Salinas CA, Rojas R, Gómez-Pérez FJ, Valles V, Ríos-Torres JM, Franco A, Olaiz G, Rull JA, Sepulveda J: Analysis of the agreement between the World Health Organization...
criteria and the National Cholesterol Education Program-III definition of the metabolic syndrome: results from a population-based survey. *Diab Care* 26: 1635, 2003.

6. Lim S, Jang HC, Lee HK, Kimm KC, Park C, Cho NH: A rural-urban comparison of the characteristics of the metabolic syndrome by gender in Korea: the Korean Health and Genome Study (KHGS). *J Endocrinol Invest* 29: 313-319, 2006.

7. Kozan O, Oguz A, Abaci A, Erol C, Ongen Z, Temizhan A, Celik S: Prevalence of the metabolic syndrome among Turkish adults. *Eur J Clin Nutr* 61: 548-553, 2007.

8. Churilla, J.R., and Fitzhugh, E.C., Thompson, D.L. The Metabolic Syndrome: How Definition Impacts Prevalence and Risk Among U.S. Adults, NHANES 1999-2004. *Metab Syndr Relat Disord* 5:331-341, 2007.

9. Ford ES, Giles WH, Mokdad AH: Increasing prevalence of the metabolic syndrome among U.S. Adults. *Diabetes Care* 27: 2444-2449, 2004.

10. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C: Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. *Circulation* 109: 433-438, 2004.

11. Centers for Disease Control and Prevention: About the National Health and Nutrition Examination Survey. Available at http://www.cdc.gov/nchs/nhanes/about_nhanes.htm. Accessed April 22, 2010.

12. Centers for Disease Control and Prevention: Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988-1994. Available at http://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/nchs/manuals/labman.pdf. Accessed April 22, 2010.

13. Centers for Disease Control and Prevention: Laboratory Procedures Manual. National Health and Nutrition Examination Survey. Available at http://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/LAB.pdf. Accessed April 22, 2010.

14. National Center for Health Statistics. When and How to Construct Weights When Combining Survey Cycles. Available at http://www.cdc.gov/nchs/tutorials/Nhanes/SurveyDesign/Weighting/Task2.htm. Accessed April 22, 2010.
Table 1- Age-specific (unadjusted) and age-adjusted (Adjusted) prevalence of the metabolic syndrome among US adults aged >= 20 years: NHANES-III and NHANES 1999-2006.

	NHANES-III	NHANES 1999-2006	Absolute change	Relative change						
	n	% (SE)	n	% (SE)	change	% change	P			
Total										
Unadjusted	6423	27.9 (1.1)	6962	34.1 (0.8)	6.3	22.6	<0.001			
Adjusted	6423	29.2 (1.0)	6962	34.2 (0.7)	5.0	17.0	<0.001			
Men										
Unadjusted	3059	29.3 (1.6)	3582	34.2 (1.1)	4.9	16.8	0.012			
Adjusted	3059	31.4 (1.4)	3582	34.9 (1.0)	3.5	11.2	0.046			
20-39	1217	15.7 (2.1)	1229	20.2 (1.4)	4.4	28.1	0.080			
40-59	839	36.3 (2.3)	1114	41.2 (1.7)	5.0	13.7	0.083			
60+	1003	50.3 (2.3)	1239	49.9 (2.0)	-0.4	-0.8	0.899			
Women										
Unadjusted	3364	26.5 (1.4)	3380	34.1 (1.10	7.5	28.4	<0.001			
Adjusted	3364	27.1 (1.2)	3380	33.3 (1.0)	6.2	22.8	<0.001			
20-39	1447	10.7 (1.7)	1061	16.7 (1.2)	6.0	55.5	0.003			
40-59	943	30.2 (2.3)	1113	36.3 (1.7)	6.2	20.4	0.033			
60+	974	50.2 (2.2)	1206	56.8 (1.9)	6.6	13.1	0.022			
NH-White*										
Men										
Unadjusted	1284	30.8 (2.0)	1881	37.0 (1.3)	6.3	20.3	0.010			
Adjusted	1284	32.1 (1.9)	1881	36.5 (1.2)	4.4	13.8	0.048			
20-39	337	16.6 (2.8)	523	22.3 (2.0)	5.8	35.0	0.090			
40-59	361	37.1 (3.0)	618	42.2 (2.0)	5.1	13.7	0.164			
60+	586	50.4 (2.5)	740	51.4 (2.4)	1.0	2.1	0.762			
Women										
Unadjusted	1462	26.5 (1.6)	1725	33.3 (1.4)	6.8	25.6	0.001			
Adjusted	1462	26.2 (1.4)	1725	31.4 (1.3)	5.2	20.0	0.007			
20-39	446	9.1 (1.9)	483	16.0 (1.8)	6.8	74.5	0.010			
40-59	411	29.4 (2.7)	543	33.0 (2.2)	3.7	12.6	0.292			
60+	605	50.2 (2.5)	699	55.2 (2.1)	5.0	9.9	0.121			
NH-Black*										
Men										
Unadjusted	762	20.2 (1.2)	634	22.0 (1.6)	1.8	8.8	0.372			
Adjusted	762	23.1 (1.4)	634	24.9 (1.6)	1.9	8.0	0.388			
20-39	375	13.9 (1.5)	261	11.9 (2.0)	-2.0	-14.1	0.439			
40-59	210	24.3 (3.10)	192	26.6 (3.2)	2.3	9.3	0.613			
60+	177	36.9 (3.3)	181	44.6 (3.3)	7.7	21.0	0.098			
Women										
	Unadjusted	Adjusted								
----------------------	------------	----------	------------	----------	------------	----------	------------	----------	------------	----------
	913	30.6	656	36.5	268	35.6	173	53.3		
	26.4 (1.7)	(1.7)	34.3 (1.7)	(1.6)	5.9	(2.5)	5.1	(2.7)		
	7.9		30.0		0.001		19.3		0.014	
20-39	472	12.6	244	18.9	287	14.5	241	15.2		
	12.6 (1.6)	(1.6)	18.9 (2.5)		14.5	(2.9)	15.2	(2.9)		
	6.3		49.8		27.1		124.4			
	49.8		0.036		0.005		0.005			
40-59	268	35.6	230	40.7	268	35.6	173	53.3		
	35.6 (2.7)	(2.7)	40.7 (3.4)	(2.7)	35.6	(3.4)	5.1	(2.7)		
	5.1		14.2		23.9		56.6			
	14.2		0.241		0.021					
60+	173	53.3	182	59.9	173	53.3	173	53.3		
	53.3 (4.0)	(4.0)	59.9 (2.7)	(2.7)	53.3	(4.0)	53.3	(4.0)		
	6.6		12.3		23.9		56.6			
	12.3		0.180		0.021					

* NH = Non-Hispanic, Mex Amer = Mexican American