STUDY OF EFFECT OF AYURVEDIC PHARMACEUTICAL PROCESSING NAMED SHODHANA AND MARANA ON THE CHEMICAL COMPOSITION AND CRYSTALLINE STRUCTURE OF METAL IRON AND IRON-CONTAINING MINERALS USING XRD AND XRF ANALYSIS

ADITI KULKARNI1, SYED TANVEER AHMED2, S. S. SAVRIKAR3

1-2Rasashastra and Bhaishyajya Kalpana, Ra Podar Medical College, Dr. Annie Besant Road, Worli Mumbai 400018, 2Senior Project Assistant (Rspcl Project), Ict, Matunga | Mumbai
Email: aditi0509@gmail.com

ABSTRACT

Objective: This study was designed to evaluate the effect of Ayurvedic pharmaceutical procedures Shodhana and Marana on the chemical composition of the raw material.

Methods: Iron and four iron-containing minerals were subjected to Shodhana and Marana. For Shodhana, Loha (Iron), Suvarnamakshika (Copper pyrite) and Mandura (iron slag) were repeatedly quenched sequentially in sesamin oil, buttermilk, cow’s urine, natural vinegar and herbal decoctions. Kasisa (green vitriol) was ground in the juice of Eclipta Alba. For Marana, these materials were first ground in prescribed liquids and then incinerated in closed earthenware caskets in measured pits. Powdered Gairika (red ochre) was roasted in Cow’s ghee for its Shodhana. Samples of Loha (iron)-L1, Samanya Shodhita Loha-I2, Vishahea Shodhita Loha-I3, Loha bahmsa-L4, Mandura (iron slag)-M1, Shodhita Mandura-M2, Mandura bahmsa-M3, Suvarnamakshika (copper pyrite)-S1, Shodhita Suvarnamakshika-S2, Suvarnamakshika bhasma-S3, Kasisa (green vitriol)-K1, Shodhita Kasiss–K2, Kasisa bahmsa–K3, Gairika (red ochre)-G1 and Shodhita gairika-G2 were studied using XRF and XRD techniques.

Results: XRD findings suggested that the Chemical nature, elemental composition and Crystalline lattice structure of each substance were altered after extensive processing. XRF studies confirmed the multi-elemental nature of the final products. Reduction in particle size and other morphological changes were observed in intermediate and finished products during each procedure.

Conclusion: The study indicates that the composition of material is altered as a result of Ayurvedic pharmaceutical processing ‘Shodhana and Marana.

Keywords: Ayurvedic drug, Shodhana, Marana, XRD, XRF, Bhasma

INTRODUCTION

A branch of Ayurvedic medicine that principally deals with metallic and mineral drug preparations is known as Rasa Shastra. The drugs of Metallic and mineral origin are processed with an objective to make them edible, therapeutically effective and completely safe in therapeutic doses. Generally, a raw metallic or mineral drug substance undergoes through the following pharmaceutical procedures.

The raw material fulfilling the required criteria of selection for its use in drug preparation is usually collected from the market. The collected raw material is first made suitable for further processing like preparation of thin metal sheets or grinding the raw material to produce a powder of suitable particle size. The thin metal sheets or the metal powder as the case may be, are subjected to a pharmaceutical procedure named Shodhana [1] in terms of Ayurveda. The literal meaning of Shodhana is purification. But translation of the term Shodhana as purification produces a misperception about the objective and the real effect of the Shodhana procedure. Hence such translation should never be used. Purification in the process of Shodhana is restricted only to physical purification. It nowhere implies or achieves chemical purity of the material being processed. In addition to physical purification, the procedure softens the processed material to some extent and makes it ready for further processing. In some cases, particularly in case of some minerals which are soft in consistency like red ochre used in the present study, the softening of the material is sufficient to put the material directly to therapeutic use. In such cases the material also becomes safe for internal use in therapeutic doses following Shodhana. Metals are usually subjected to two types of Shodhana: Samanya (common for all metals) and Vishahea (specific to a metal to be used with a specific therapeutic objective). All metals and minerals which are hard in consistency need to undergo one more pharmaceutical procedure named as Marana [2] following Shodhana.

The pharmaceutical process of Shodhana includes procedures like heating the material to red heat and then quenching it in prescribed liquids till the material under process achieves the required quality. The pharmaceutical process of Marana to be followed after Shodhana includes incineration of the material obtained as an end product of the process of Shodhana. The material obtained from Shodhana is first wet ground with prescribed medicinal substances either liquid or solid or both, depending on the prescribed method. The grinding is continued till the material is converted into a dough. The dough so produced is used to prepare small cakes of suitable size. The cakes so produced are dried and put in a closed circular earthenware container known as casket (Sharava Samputa in terms of Ayurveda) and then subjected to incineration in a measured pit using dried cow dung cakes as fuel. The process of incineration is repeated till a product of desired quality is obtained. The product obtained after completion of incineration is known as Bhasma. Both these processes named Shodhana and Marana bring about significant change in the constitution of the processed material. Naredran N. et al. (2012) have shown the reducing effect of Gallic acid from Horse gram on Loha Bhasma during Marana [3]. In the present study the metal Loha (metal Iron) and minerals Gairika (red ochre), Kasisa (ferrous sulphate), Suvarnamakshika(Copper pyrite) and Mandur (iron slag, ferric oxide) were subjected to their respective Shodhana and Marana to obtain their therapeutically useful drug forms named as Bhasmas. These Bhasmas and their intermediates obtained as end products following their Shodhana and Marana were subjected to XRD and XRF analysis to study the effect of these procedures on the constitution of the processed raw metals and minerals.

© 2021 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). DOI: https://dx.doi.org/10.22159/ijpps.2021v13i10.42077. Journal homepage: https://innovareacademics.in/journals/index.php/ijpps.
MATERIALS AND METHODS

Collection of raw materials

The raw material i.e. Loha (metal Iron), Gairika (red ochre), Kasisa (green vitriol: ferrous sulfate), Suvarnamakshika (Cu-pyrite), and Mandura (iron slag: ferric oxide) fulfilling the expected quality as described in the classical texts were collected from the local market.

The raw materials so collected were subjected to their respective Shodhana and Marana procedures. The end products obtained following completion of both the procedures were Loha Bhasma, Mandura Bhasma, Suvarnamakshika Bhasma, Kasisa Bhasma, and Shuddha Swarna Gairika.

Pharmaceutical processing

Loha (metal Iron) was subjected to the following pharmaceutical processing to obtain Loha Bhasma.

Shodhana and marana of loha

Loha Bhasma preparation includes the following steps.

Loha samanya shodhana

Moderately fine powder of Loha was heated till it gets red hot and quenched seven times each into Sesame oil, buttermilk, kanjika (sour rice gruel), cow’s urine, and decoction of Kulattha (horse gram), respectively [5].

Loha vishesh shodhana

After Following Samanya Shodhana, Vishesh Shodhana was performed. Loha choorna was heated till it gets got red hot and quenched seven times in the decoction of Triphala prepared in Gomutra (cow’s urine). By this method, Shuddha Loha Choorna was obtained [6].

Loha marana

After Following Loha Shodhana, Shuddha Loha was subjected to Loha Marana. It was done in three steps.

Loha bhanupaka

Shuddha Loha choorna was soaked in specially prepared Triphala decoction to make it produce its slurry. The mixture was kept in an open earthen plate. This plate was exposed to blazing sunlight till all the liquid got evaporated. The process was repeated 7 times [7].

Loha sthalipaka

Loha choorna processed in Bhanupaka was washed with water. It was then mixed in specially prepared Triphala decoction (q. s.) to produce a slurry. The mixture was then subjected to heating on a high flame. This was continued till all the moisture got evaporated. The process is known as Loha Sthalipaka [8].

Loha putpaka

Loha Choorna was obtained as an end product of Bhanupaka followed by Sthalipaka, was washed with water and then ground well with specially prepared Triphala decoction to produce a soft dough. Thin flat pellets from this dough were prepared and dried. They were arranged and placed in a closed circular earthenware container known as Sharava sampata (casket) and then subjected to incineration in a measured pit named Gajaputa, using dried cow dung cakes as fuel. The process was repeated till the desired quality Bhasma was obtained [9].

Mandura (iron slag) was subjected to the following procedures to obtain mandura bhasma

Shodhana of mandura

Raw Mandura (iron slag) lumps were procured from the market. They were heated till they got red hot. Thereafter, n they were quenched in the decoction of Triphala 21 times. This decoction was prepared by boiling Triphala in cow urine instead of water. This process yielded small fragile pieces of Shuddha Mandura [10].

Marana of mandura

Shuddha Mandura obtained as an end product of the Shodhana process was subjected to wet grinding with Aloe juice (Aloe barbadensis) to produce a soft dough. Thin flat pallets from this dough were prepared and dried. They were arranged and placed in a closed circular earthenware container known as Sharava sampata (casket) and then subjected to incineration in a measured pit named Gajaputa, using dried cow dung cakes as fuel. The process was repeated till the desired quality Bhasma was obtained [11].

Suvarnamakshika (copper pyrite) was subjected to the following procedures to obtain Suvarnamakshika Bhasma.

Preparation of Suvarna makshika

Raw Suvarnamakshika was procured directly from Khetri Mines Rajasthan.

The lumps were subjected to the Shodhana process by quenching them in Triphala decoction 7 times. This process yielded Suvarna Makshikha in the form of brittle pieces [12].

Marana of suvarna makshika

Shuddha suvarnamakshika was mixed with castor oil (q. s.) to produce a slurry. This slurry was subjected to heating in an open iron pan till all the oil part was evaporated. Oil catches fire during the process.

The material obtained as an end product of the above-mentioned procedure was subjected to wet grinding with lemon juice to produce a soft dough. Thin flat pallets from this dough were prepared and dried. They were arranged and placed in a closed circular earthenware container known as Sharava sampata (casket) and then subjected to incineration in a measured pit named Gajaputa, using dried cow dung cakes as fuel. The process was repeated till the desired quality Bhasma was obtained [13].

Kasisa (green vitriol: ferrous sulfate) was subjected to the following procedures to obtain Kasisa Bhasma

Preparation of Kasisa Bhasma includes the following steps.

Kasisa shodhana

Kasisa Choorna was procured from the local market. It was subjected to wet grinding with a sufficient quantity of juice of Bhringraj (Eclipta Alba) in a quantity sufficient to soak and immerse the Kasisa powder in it completely. The mixture was wet ground firmly till all the powder of Kasisa gets dried by grinding. This process was repeated three times consecutively. Thus Shuddha Kasisa was obtained as an end product of this grinding in the form of very fine powder [14].

Kasisa marana

Shuddha Kasisa obtained as an end product of the Shodhana process was wet ground with a sufficient quantity of lemon juice to produce a soft dough. Thin flat pallets from this dough were prepared and dried. They were arranged and placed in a closed circular earthenware container known as Sharava sampata (casket) and then subjected to incineration in a measured pit named Gajaputa, using dried cow dung cakes as fuel. The process was repeated till a desired quality of Bhasma was obtained [15].

Gairika (red ochre) was subjected to the following procedures to obtain Shuddha Gairika

This compound is not used in Bhasma form. Gairika is used after Shodhana only. Gairika powder was mixed with Cows ghee taken in 1/8th of its measure. Further, it was roasted on mild heat, till ghee mixed in Gairika powder disappears by frying and a free flowing powder of Gairika is obtained. This processed Gairika is used as medicine. This is called Shuddha Gairika [16].
The Raw Loha—Samanya Shodhana—Vishesh Shodhana—Bhanapaka—Sthalipaka—Putapaka—Loha Bhasma.
Raw Mandur—Shodhana of Mandura—Marana of Mandura—Mandura Bhasma.
Raw Suvarnamakshika—Shodhana of Suvarnamakshika—Marana of Suvarnamakshika—Suvarnamakshika Bhasma
Raw Kasisa—Shodhana of Kasisa—Marana of Kasisa—Kasisa Bhasma.
Raw Gairika—Shodhana of Gairika—Shuddha Swarna Gairika.

Table 1: Schematic representation of processing's of Iron metal and other Iron containing drugs

Processing	The Raw Loha	Samanya Shodhana	Vishesh Shodhana	Bhanapaka	Sthalipaka	Putapaka	Loha Bhasma
Raw Mandur	Shodhana of Mandura	Marana of Mandura	Mandura Bhasma	Raw Suvarnamakshika	Shodhana of Suvarnamakshika	Marana of Suvarnamakshika	Suvarnamakshika Bhasma
Raw Kasisa	Shodhana of Kasisa	Marana of Kasisa	Kasisa Bhasma	Raw Gairika	Shodhana of Gairika	Shuddha Swarna Gairika	

Table 2: Medium used for Shodhana and Marana procedures of each drug, all the materials were tested for their authenticity, following Indian standards and in-house standards

Drug	Drugs used for Shodhana	Preparation of medium	Drugs used for Marana	Preparation of medium
Loha	Sesame oil, Buttermilk, Cow's Urine	Procured from local market, mixed with 3 parts of water, boiled, and reduced to 1/8th of the original quantity.	Course powder of Triphala weighing 44 was mixed with 16 parts of water, boiled, and reduced to 1/8th of the original quantity.	Course powder of Triphala expressed from Aloe Vera leaves.
Vishesh Shodhana	Cow's Urine	Procured from local source.		
Mandura	Tripala decoction	Course powder of Triphala passing through sieve no 44 was mixed with 16 parts of water, boiled, and reduced to 1/8th of the original quantity.	Aloe Vera Juice	Juice expressed from Aloe Vera leaves.
Kasisa	Juice extract of Eclipta Alba	Juice is expressed from fresh Eclipta Alba leaves.	Lemon Juice	Expressed juice from Lemon (Citrus Azida Fruits)
Suvarna makshika	Tripala decoction	Course powder of Triphala passing through sieve no 44 was mixed with 16 parts of water, boiled, and reduced to 1/8th of the original quantity.	Castor oil	Procured from local market.
Gairika	Cow's ghee	Procured from the Market	-	-

After such an extensive procedure of Shodhana and Marana the following samples were withdrawn for the study.

Table 3: The samples collected for XRD and XRF studies at different stages of pharmaceutical processing

Name of the material	Samples taken	Description	Analysis Performed
Iron	L1	Raw Loha	XRD
L2	After Samanya Shodhana	XRD	
L3	After Vishesh Shodhana	XRD	
L4	Bhasma (Cak)	XRD and XRF	
Gairika	G1	Raw Gairika	XRD
G2	Shuddha Gairika	XRD and XRF	
Suvarna makshika	S1	Raw Suvarna makshika	XRD
S2	Shuddha Suvarna makshika	XRD	
S3	Bhasma of Suvarna makshika	XRD and XRF	
Kasisa	K1	Raw Kasisa	XRD
K2	Shuddha Kasisa	XRD	
K3	Bhasma of Kasisa	XRD and XRF	
Mandura	M1	Raw Mandura	XRD
M2	Shuddha Mandura	XRD	
M3	Bhasma of Mandura	XRD and XRF	
Description of XRD studies—Powder X-ray diffraction spectra were recorded at 298K on a Bruker D8-Ray diffractometer, with a 0.2 step size at 0.02 theta/min scanning speed, 40 kV voltage, 40mA current between scanning angles 5 to 90 (2 thetas).

Description of XRF studies—X-Ray fluorescence was done at Varsha Bullion Lab in Mumbai.

RESULTS
The results were recorded as follows.

Fig. 1: XRD analysis of raw Gairika and shuddha Gairika revealed interesting findings

2-Theta-scale
Gairika-File: G1. raw-Type: 2Th/Th locked-Start: 5.000°-End: 80.005°-Step: 0.021°-Step time: 17.7 s-Temp.: 25 °C (Room)-Time Started: 10 s-Anode: Cu-WL1: Operations: Y Scale Add 792 | Smooth 0.150 | Background 1.000,1.000 | Import
G2-File: G2. raw-Type: 2Th/Th locked-Start: 5.000°-End: 80.005°-Step: 0.021°-Step time: 17.7 s-Temp.: 25 °C (Room)-Time Started: 9 s-Anode: Cu-WL1: 1.540|operations: Smooth 0.150 | Background 1.000,1.000 | Import
G1 and G2 have their X-ray characteristic peaks at 2-theta values of 12, 21, 25, 33, 36, 49, and 54, which correspond to the lattice indices of 111, 220, 222, 104, 110, 024, and 116, respectively. The crystallinity of the compounds based on XRD analysis shows similarity with Iron Tin Oxide (01-088-0434 (N)) with Rhombohedral lattice. There is no remarkable change in crystallinity of Gairika due to processing from G1 to G2. The crystalline phase remains Rhombohedral. This may be because of the roasting of Gairika with ghee. The process doesn’t involve intense heat. Hence the crystalline phase didn’t change. Percentage crystallinity is decreased in G2 because of heat treatment. The XRF studies revealed that Shuddha Gairika contains 35.8% of ferric oxide, 34.3% of silica, Al2O3 in 28.4%. Also, there are some trace elements found in G2.

Fig. 2: The XRD analysis findings in case of Mandura are as follow
The XRD analysis of Mandura reveals the structure of the compound as Orthorhombic with major characteristic peaks matching with Iron Silicate-Fe2SiO4 (M1 and M2). Major XRD peaks for Mandura are observed at 25, 32, 35, and 52 two-theta values correspond to 111, 130, 131, 112, and 222 respectively. The crystalline phase change was observed from Orthorhomic (M1 and M2) to Rhombohedral (M3). The crystalline phase change is due to intense treatment of heat and trituration. Even the peaks are found more intense in M3 than M1 and M2. The major peaks observed for M2 are at 24, 33, 36, 41, 49, and 54 two-theta values corresponding to hkl values of 012, 104, 110, 113, 024, and 211 respectively. The amount of crystallinity also changes from M1 to M3. The XRF studies of Mandura Bhasma showed the presence of 58.3% of ferric oxide, 19.6% of silica, 11.3% of Alumina, and the rest of the other elements like K, Ca, S, P, etc.

The Peaks of XRD are matching with Iron Sulphate Hydrate (K1), Iron hydroxide sulfate (K2), and Iron tin oxide (K3). The crystalline phase change was observed from Monoclinic (K1) to Orthorhombic (K2) to Rhombohaxes (K3). The crystalline phase change is due to the intense treatment of heat and grinding. Even the peaks are found more intense in K3 than K1 and K2. Peaks at the 2-theta value of 17, 25, 28, and 31 correspond to K2 with indices values of 101, 002, 102, and 112, respectively. K3 has major XRD characteristic peaks at 24, 33, 36, 41, 50, and 54 with indices of 012, 104, 110, 113, 024, and 116, respectively. The amount of crystallinity also changes from K1 to K3. The XRF studies showed the presence of 93.2% of ferric oxide, 1.22% of silica, and the rest of the other elements like K, Ca, S in Kasisa Bhasma.
2-Theta–scale

SM-File: S1. raw-Type: 2Th/Th locked-Start: 5.000°-End: 80.05°-Step: 0.02°-Step time: 17.7 s-Temp.: 25 °C (Room)-Time Started: 9 s-Anode: Cu-WL1: 1.54 Operations: Scale Add 500 | Y Scale Add 792 | Smooth 0.150 | Smooth 0.150 | Background 1.000,1.000 | Import

S2-File: S2. raw-Type: 2Th/Th locked-Start: 5.000°-End: 90.02°-Step: 0.10°-Step time: 35.4 s-Temp.: 25 °C (Room)-Time Started: 10 s-Anode: Cu-WL1: 1.50 Operations: Y Scale Add 917 | Smooth 0.150 | Smooth 0.150 | Background 1.000,1.000 | Import

S3-File: S3. raw-Type: 2Th/Th locked-Start: 5.000°-End: 80.00°-Step: 0.02°-Step time: 17.7 s-Temp.: 25 °C (Room)-Time Started: 9 s-Anode: Cu-WL1: 1.54 Operations: Smooth 0.150 | Smooth 0.150 | Background 1.000,1.000 | Import

The XRD studies on raw, intermediate Swarnamkashika and Swarnamkashika Bhasma revealed the following results. XRD analysis of Swarnamkashika Bhasma (S3) reveals the major XRD peaks at 2-θ values of 18, 39, 35.5, 43, 57, and 63, which are matching accurately with the XRD pattern of copper iron oxide having indices at 111, 220, 311, 400, 511, and 440 for respective peaks. The peaks in XRD are matching with the Copper iron sulfide (S1), Copper manganese oxide (S2), and copper-iron oxide (S3). The crystalline phase change is observed as Orthorhombic (S1) to Cubic (S2) and Cubic (S3).

Fig. 5: Results of XRD studies of Loha were as follows

L1-File: L1. raw-Type: 2Th/Th locked-Start: 10.00°-End: 89.99°-Step: 0.02°-Step time: 35.4 s-Temp.: 25 °C (Room)-Time Started: 12 s-Anode: Cu-WL1: 1.54 Operations: Y Scale Add 1000 | Smooth 0.150 | Background 1.000,1.000 | Import

L2-File: L2. raw-Type: 2Th/Th locked-Start: 10.00°-End: 89.99°-Step: 0.02°-Step time: 35.4 s-Temp.: 25 °C (Room)-Time Started: 15 s-Anode: Cu-WL1: 1.50 Operations: Y Scale Add 458 | Y Scale Add 1000 | Smooth 0.150 | Background 1.000,1.000 | Import

L3-File: L3. raw-Type: 2Th/Th locked-Start: 10.00°-End: 89.99°-Step: 0.02°-Step time: 35.4 s-Temp.: 25 °C (Room)-Time Started: 8 s-Anode: Cu-WL1: 1.54 Operations: Y Scale Add 1000 | Smooth 0.150 | Background 1.000,1.000 | Import

L4-File: L4. raw-Type: 2Th/Th locked-Start: 10.00°-End: 89.99°-Step: 0.02°-Step time: 35.4 s-Temp.: 25 °C (Room)-Time Started: 0 s-Anode: Cu-WL1: 1.54 Operations: Y Scale Add 458 | Y Scale Add 1000 | Smooth 0.150 | Background 1.000,1.000 | Import

Peaks in XRD analysis of all the four samples of Loha a were matching with Iron oxide right from Ashuddha Loha (L1), Samanya shodhit Loha (L2), Vishes Shodhit Loha (L3), and Loha a Bhasma (L4). L4 has major XRD characteristic peaks at two theta angles of 30, 35, 43, 54, 57, and 63 which corresponds to 220, 311, 400, 422, 511, and 440 indices respectively. L1, L2, and L3 have peaks at 31, 36, 44, 57, and 63 which corresponds to the Iron oxide XRD pattern with indices at 220, 313, 400, 422, and 440. The difference was observed in the crystalline phase, which has changed from tetragonal (L1, L2, and L3) to Cubic structure (L4). The peaks are intense, sharp, and well defined in the XRD pattern of Loha a Bhasma. The intense peaks represent the highly crystalline form of the compound (L4); the heat treatment has adversely affected the crystallinity of the compound and changes it to cubic form.

According to the XRF studies of Loha a Bhasma, it contains Fe2O3 88%, Silica in 4.87%, and other elements such as K, Ca, Al, O, Na, Zn, in trace amounts.

DISCUSSION

The XRD and XRF studies of 5 iron-containing drugs and their intermediates revealed interesting findings. These procedures brought a change in the elemental composition of medicinal raw material. The extensive heat treatments and other procedures on raw materials of Ayurvedic drugs change their structure and composition. The XRD data has revealed that some elements were removed, changed, or minimized after Shodhana and Marana procedures. This clearly shows the effectiveness of the adopted pharmaceutical procedures.

In some samples in the above study, although no constitutional change is observed in the processed material, the brittleness of the material was observed to increase notably at the end of Shodhana. An increase in brittleness is known to facilitate further processing of Marana in such cases.
It is believed that the use of different medicinal liquids in the form of decoctions and expressed juices for grinding the raw materials to facilitate pharmaceutical processing like Shodhana and Marana are responsible for the therapeutic action of the end product Bhasma. These Bhasmas are used with different adjuvants in medical practice by the Ayurvedic practitioners to derive different therapeutic effects. These processes make this one single end product able to be used in various conditions with different adjuvants. They make them a broad spectrum Ayurvedic drug.

XRD data has revealed that there is a change in the arrangements of the lattice structure of crystals. The amount of crystallinity has increased. This is important because the bioavailability of the drug in the body depends upon its structure. In some cases (L4 and S3), major changes in crystal structure have been observed. This could be the result of the co-crystallization of compounds. Co-crystals are multicomponent crystalline solids that can alter the Physico-chemical properties of solids. They can increase or decrease the solubility of the drug compounds depending on the interaction between the solids. The observed change in XRD pattern for L4 and S3 possibly be a result of crystallization between phenolic compounds that can further be evaluated in a separate study.

A common pattern regarding the change in the chemical constitution of all 5 drugs is observed in this study. This pattern indicates the transformation of all raw materials into their oxides. All the 5 iron-containing raw materials were observed as being transformed into iron oxide following Marana. The oxides are known to be more acceptable in the body. Singh N et al. have observed similar findings in their study on Loha Bhasma. According to them the ultimate phase of Loha Bhasma was observed as Iron oxide only [17].

After the cascade of these intense procedures, particle size of all these bhasmas was reduced significantly. PVani et al. have confirmed the particle size of Loha bhasma to be 28.7 nm [18].

Some part of every bhasma is in nanodomain also. There is a trend of preparation of metal nanoparticles with green synthesis method. The herbal juices of various plants are used for preparation of nanoparticles by green synthesis. Some of these plants are Ayurvedic herbs. P. Karan et al. have described the green biosynthesis of Magnetic Iron oxide Nanoparticles of Vitex Negundo aqueous extract. They have stated that such biosynthetically prepared iron oxide nanoparticles can be a good source of alternative therapy for human diseases [19].

Patil Y et al. have recently reported the antimicrobial activity of magnetic iron nanoparticles. These magnetic iron nanoparticles were prepared by green synthesis process using leaf extract of medicinal plant Tridax Procumens. These magnetic iron nanoparticles exhibited good antibacterial activity against gram-negative (E. Coli) bacteria [20].

This is clear that these finally prepared Bhasmas have some nanomaterial part in them. In our opinion these bhasmas can exhibit superior pharmacological activity over the synthetically prepared nanoparticles. The resion reason is that they have gone through extensive processes during their preparation. Hence their bioavailability and bioassimilable nature could be superior to these synthetically prepared nanoparticles. This point needs a separate study for its evaluation. Further, these bhasmas are in clinical use since ages hence using these bhasmas will save lots of energy and time of various preclinical studies as their safety is already well explored in several different studies.

Although XRD studies revealed the major elemental phase composition of these Iron-containing drugs, XRF studies showed that each Bhasma and even Shuddha Gairika are compound formations comprising of multiple trace elements. This explains the broad therapeutic activity of these drugs. With no dispute, these microelements must have entered into the end products as a result of the use of different types of medicinal plant material used in Shodhana and Marana procedures. Bhargava S. also confirms the presence of several trace elements in Loha Bhasma [21] Ashwini A et al. also confirm the multielemental nature of Ayurvedic bhasmas. However, they brought to notice that Bhasma prepared by different pharmacies differ in their elemental composition which can be attributed to different preparation procedures adapted by them pharmacies [22].

During the entire procedure of Shodhana and Marana, a strong possibility of the formation of herbal ligands with metals is felt. Such a possibility presents a new vista of therapeutically effective herb-metallic products. It is believed that the material adopts the therapeutic activity of the other material with which it is processed. Therefore, different plant materials are used, different Shodhana and Marana procedures. In this context, it is stated that, “Tad Tod Vyadhypuyuktanam aushdhanam jale Ayasah prakashepam prabh” (A. P.3/246)

This means, as per the therapeutic requirement, one can use a different medium for Shodhana and Marana procedures in different diseases. This suggests that different herbal media impose a different effect on metals and minerals while processing.

The formation of different ligands from respective plants may be the reason for the difference in therapeutic activity of the drug product processed with it.

CONCLUSION
Pharmaceutical procedures such as Shodhana and Marana described in Ayurvedic classics, bring about a change in elemental composition and crystalline structure of the processed material. In the present study, such a change was studied and confirmed through XRD and XRF analysis. It is conclusively said that a change in the chemical constitution and crystalline structure is observed in the metal Loha (Iron) and iron-containing minerals Gairika (red ochre), Mandura (iron slag), Kastha (green VHrkl), and Savarnamakshika (Copper patra) as a result of Shodhana and Marana. The basic iron element is transformed into its oxide. Apart from Iron oxide, the end product Bhasma is also observed to contain few trace elements like-K, Ca, P, AL, O, Ma, Zn. The presence of trace elements is deemed to be a result of the processing of the raw material with different types of plant materials.

ACKNOWLEDGMENT
The authors are thankful to the staff of ICT Matunga Mumbai and Varsha Bullion Lab Mumbai.

FUNDING
Nil

AUTHORS CONTRIBUTIONS
KAM performed all the pharmaceutical processes mentioned in the paper, conceptualized and wrote the manuscript. STA performed XRD analysis and worked as instrumentation expert. He added to the part of the manuscript related with instrumentation. SSS Critical reviewed and edited the manuscript.

CONFLICT OF INTERESTS
The authors declare no conflict of interest in the publication of this manuscript.

REFERENCES
1. Rasatargini Sharma S. Motilal banarasidas publications. 11th ed. New Delhi; 2004. p. 22.
2. Kulkarni A. Samucchaya Rasaratna [reprint]. New Delhi: Mehrachand Lachhamandas Publication; 2007. p. 45.
3. Naredran R. Role of galic acid in the preparation of an iron-based Indian traditional medicine– lauha bhasma. Int J Pharm Pharm Sci. 2012;4:45-8.
4. Anonymous. The ayurvedic Pharmacopedia of India, Part 1. 1st ed. Vol. VII. Government of India; 2008. p. 5, 19.
5. Rastargini Sharma S. Motilal Banarasi Das publications. 11th ed. New Delhi; 2004. p. 362.
6. Rastargini Sharma S. Motilal Banarasi Das publications. 11th ed. New Delhi; 2004. p. 495.
7. Rastargini Sharma S. Motilal Banarasi Das publications. 11th ed. New Delhi; 2004. p. 496.
8. Rastargini Sharma S. Motilal Banarasi Das publications. 11th ed. New Delhi; 2004. p. 497.
9. Rastargini Sharma S. Motilal Banarasi Das publications. 11th ed. New Delhi; 2004. p. 498, 502.
10. Rasamrutam Yadavji T [reprint]. Chaukhamba Sanskrit Sansthan, Varanasi; 2007. p. 95.
11. Rastargini Sharma S. Motilal Banarasi Das publications. 11th ed. New Delhi; 2004. p. 95-6.
12. Kulkarni A. Samucchaya Rasaratna [reprint]. New Delhi: Meharchand Lachhamandas Publication; 2007. p. 30.
13. Rastargini Sharma S. Motilal Banarasi Das publications. 11th ed. New Delhi; 2004. p. 99.
14. Rastargini Sharma S. Motilal Banarasi Das publications. 11th ed. New Delhi; 2004. p. 99-100.
15. Rastargini Sharma S. Motilal Banarasi Das publications. 11th ed. New Delhi; 2004. p. 596.
16. Singh N, Krc R, Nk P, Singh M. Chemical characterization of Lauha Bhasma by X-ray diffraction and vibrating sample magnetometry. Int J Ayurvedic Med. 2010;1(3):143-9. doi: 10.47552/ijam.v1i3.26.
17. Tambur Pavani Tambur et al. A facile method of synthesizing ayurvedic medicine: Lauha bhasma (iron oxide nanoparticles) and its characterization Tsch. Acad Pharm Acol 2015:4:51-3.
18. Karnan P, Anbarasu A, Deepa N, Usha R. Green biosynthesis of magnetic iron oxide nanoparticles of Vitex negundo aqueous extract. Int J Curr Pharm Sci. 2018;10(3):11-4. doi: 10.22159/ijcpr.2018v10i3.27220.
19. Patil YYY, Sutar VB, Tiwari AP. Green synthesis of magnetic iron nanoparticles using medicinal plant tTridax procumbens leaf extracts and its application as an antimicrobial agent against E. coli. Int J App Pharm. 2020;1:34-9. doi: 10.22159/ijap.2020.v12s4.40102.
20. Bhargava SSC, Reddy KR, Sastry GV. Identifications studies of Lauha Bhasma by X-ray diffraction and X-ray fluorescence. Ayu. 2012;33(1):143-5. doi: 10.4103/0974-8520.100332, PMID 23049200.
21. Ashwini A, Kerur B. Elemental analysis of ayurvedic drugs (bhasmas) by atomic absorption spectrometer. Asian J Pharm Clin Res. 2019;12:545-9.