AN EXTENSION OF ALEXANDROV’S THEOREM ON SECOND DERIVATIVES OF CONVEX FUNCTIONS

J.H.G. FU

Abstract. If \(f \) is a function of \(n \) variables that is locally uniformly approximable by a sequence of smooth functions satisfying local \(L^1 \) bounds on the determinants of the minors of the Hessian, then \(f \) admits a second order Taylor expansion almost everywhere. This extends a classical theorem of A.D. Alexandrov, covering the special case in which \(f \) is locally convex.

1. Introduction

A.D. Alexandrov [2] proved that if \(f : U \to \mathbb{R} \) is a locally convex function on a domain \(U \subset \mathbb{R}^n \) then \(f \) “admits a second derivative almost everywhere”, in the sense that for a.e. \(x \in U \) there is a second order Taylor expansion for \(f \) at \(x \). In the present article we extend this conclusion to a much larger class of functions. Let us say that \(f \) is twice differentiable at \(x \) if there is a quadratic polynomial \(Q_x : \mathbb{R}^n \to \mathbb{R} \) such that

\[
\lim_{y \to x} \frac{f(y) - Q_x(y)}{|y - x|^2} = 0.
\]

Theorem 1.1. Let \(U \subset \mathbb{R}^n \) be open. Suppose \(f : U \to \mathbb{R} \) may be expressed as the locally uniform limit of a sequence \(f_1, f_2, \ldots \) of smooth functions such that the absolute integrals of all minors of the Hessians of the \(f_k \) are locally bounded, i.e.

\[
\int_K \left| \det \left(\frac{\partial^2 f_k}{\partial x_i \partial x_j} \right)_{i \in I, j \in J} \right| \leq C(K), \quad k = 1, 2, \ldots
\]

whenever \(K \subset \subset U \) and \(I, J \subset \{1, \ldots, n\} \) have the same cardinality. Then \(f \) is twice differentiable at a.e. \(x \in U \).

(If \(n = 1 \) then \(f \) is approximable in this way iff it is expressible as the difference of two convex functions: but this is not the case for \(n \geq 2 \), as we show below.)

Alexandrov’s theorem is a special case: if \(f \) is convex then such a sequence \(f_k \) may be obtained by convolution with an approximate identity. But Theorem 1.1 is significantly stronger: even though a convex function \(f \) may fail to have first derivatives in the usual sense on a dense set, it has been observed (cf. [1]) that such \(f \) admits a multiple-valued differential everywhere, whose graph transforms into the graph of a Lipschitz function under the canonical linear change of variable \((x, y) \mapsto (x + y, x - y)\) of \(T^* \mathbb{R}^n \simeq \mathbb{R}^n \times \mathbb{R}^n \). From this point of view, Alexandrov’s theorem appears as a consequence of Rademacher’s theorem on the almost everywhere differentiability of Lipschitz functions. On the other hand, there exist functions \(f \) satisfying the hypothesis of Theorem 1.1 such that the graph of the
differential of f is dense in $T^*\mathbb{R}^n$. In fact, such functions include the Sobolev space $W^{2,n}_{\text{loc}}(U)$ of functions with second distributional derivatives in $L^n_{\text{loc}}(U)$: convolution with an approximate identity yields a sequence of smooth functions with bounded local $W^{2,n}$ norms converging to f in $W^{2,n}_{\text{loc}}$. By Hölder’s inequality, the local bounds imply that the resulting sequence satisfies the bounds (3), and the Sobolev embedding theorem implies that the convergence to f is locally uniform. Meanwhile, Hutchinson-Meier [9] observed that if $n \geq 2$ then

$$f_{HM}(x) := x_1 \sin \log \log |x|^{-1}$$

belongs to $W^{2,n}(U)$ for sufficiently small neighborhoods U of 0, while ∇f_{HM} oscillates infinitely often between $(\pm 1,0,\ldots,0) + o(x)$ as $x \to 0$ along the x_1 axis. This implies first of all that f_{HM} cannot be expressed as a difference of two convex functions. Furthermore, by cutting off, translating and multiplying by suitable constants, it is easy to construct a $W^{2,n}(\mathbb{R}^n)$-convergent sum whose differential has a graph that is dense in $T^*\mathbb{R}^n$.

As a final introductory remark, we note that this class of functions is a subset of the class of “Monge-Ampère functions” introduced by Jerrard in [10, 11] (extending the class defined in [5]). It is natural to conjecture that Theorem 1.1 applies to this nominally larger class as well. However, this is just one of many perplexing questions about Monge-Ampère functions: for example, we do not even know that such functions are necessarily continuous, or even locally bounded. On the other hand, it seems highly plausible that every Monge-Ampère function satisfies the hypotheses of Theorem 1.1.

Acknowledgement. I would like to thank Bob Jerrard for stimulating conversations on the topics discussed here.

2. BASIC FACTS

2.1. SOME MEASURE THEORY. Recall that if μ is a Radon measure on $U \subset \mathbb{R}^n$ then its upper density at $x \in U$ is

$$\Theta^*(\mu, x) := \limsup_{r \downarrow 0} \frac{\mu(B(x, r))}{\omega_n r^n},$$

and its density is

$$\Theta(\mu, x) := \lim_{r \downarrow 0} \frac{\mu(B(x, r))}{\omega_n r^n},$$

if the limit exists. In fact the limit exists for a.e. $x \in U$ with respect to Lebesgue measure, and defines a Lebesgue-integrable function of x, whose integrals yield the absolutely continuous part of μ with respect to the Lebesgue decomposition into absolutely continuous and singular parts (cf. [4], Thm. 3.22).

2.2. ABSOLUTE HESSIAN DETERMINANT MEASURES. From now on we fix an open set $U \subset \mathbb{R}^n$, a function $f: U \to \mathbb{R}$, and an approximating sequence $f_1, f_2, \cdots \to f$ as in the hypothesis of Theorem 1.1. In particular, f is itself continuous. For $d = 0, \ldots, n$, and $k = 1, 2, \ldots$, we define the measures $\nu_{d,k}$ on U by

$$\nu_{d,k}(S) := \sum_{I,J \subset \{1, \ldots, n\}, |I|=|J|=d} \int_S \left| \det \left(\frac{\partial^2 f_k}{\partial x^i \partial x^j} \right)_{i,j \in I} \right|.$$
Taking subsequences, we may assume that the each sequence \(\nu_{d,k}, k = 1, 2, \ldots \), converges weakly to a Radon measure \(\nu_d, d = 0, \ldots, n \). We will refer to the \(\nu_d \) as absolute Hessian determinant measures for \(f \).

The following lemma is obvious. For quadratic polynomials \(Q : \mathbb{R}^n \to \mathbb{R} \), put \(||Q|| \) to be the maximum of the absolute values of the coefficients.

Lemma 2.1. Let \(Q \) be a quadratic polynomial. Then \(f + Q \) and the approximating sequence \(f_1 + Q, f_2 + Q, \ldots \) also satisfy the hypothesis of Theorem 1.1. Furthermore the resulting absolute Hessian determinant measures \(\tilde{\nu}_d \) for \(f + Q \) satisfy

\[
\tilde{\nu}_d \leq d! 8^n \sum_{i+j=d} ||Q||^i \nu_j, \quad d = 0, \ldots, n.
\]

2.3. An inequality from multivariable calculus

The key fact that makes the main theorem work is the extension of the following elementary classical inequality about \(C^2 \) functions to our larger class. Put \(\omega_n \) for the volume of the unit ball in \(\mathbb{R}^n \).

Lemma 2.2. If \(V \subset \subset U \) is open then

\[
\nu_n(V) \geq \omega_n (\sup_{\partial V} |f| - \sup_{\partial V} |f| - \sup_{\partial V} f - \sup_{\partial V} f - \epsilon) \geq \sup_{\partial V} f - \sup_{\partial V} f - |\lambda| \diam V
\]

\[
\sup_{\partial V} f - \sup_{\partial V} f - |\lambda| \diam V - 2\epsilon
\]

Thus if \(|\lambda| < \frac{\sup_{\partial V} f - \sup_{\partial V} f - 2\epsilon}{\diam V} \) then the left hand side is positive, and \(f_k - \lambda \) has interior local maximum in \(W \), at which \(df_k = \lambda \). Thus for \(k \geq k_0 \) let the image of \(W \) under \(\partial V \) includes the ball of radius \(\frac{\sup_{\partial V} f - \sup_{\partial V} f - 2\epsilon}{\diam V} \), and by the area formula and the properties of weak convergence of measures,

\[
\nu_n(V) \geq \nu_n(W) \geq \limsup_{k \to \infty} \int_W |\det D^2 f_k| \geq \omega_n \left(\frac{\sup_{\partial V} f - \sup_{\partial V} f - 2\epsilon}{\diam V} \right)^n
\]

by (7), and the lemma follows letting \(\epsilon \downarrow 0 \). \(\square \)

In fact we will need to apply Lemma 2.2 to affine subspaces as well.

Corollary 2.3. Given \(d < n \), let \(M \subset \mathbb{R}^n \) be a linear subspace of codimension \(d \). For each \(x \in M \), denote by \(P_x \) the affine \(d \)-plane orthogonal to \(M \) and passing through the point \(x \). If \(V \subset \subset U \) is open then

\[
\nu_d(V) \geq \omega_d \int_M \left| \frac{\sup_{V\cap P_x} |f| - \sup_{\partial(V \cap P_x)} |f| - \epsilon}{\diam(V \cap P_x)} \right|^d dx
\]
where the integrand is understood to be zero if \(V \cap P_x = \emptyset \).

Proof. Let \(W \subset \subset V \). By Lemma 2.2 for each approximating function \(f_k \)

\[
\omega_d \int_M \left| \frac{\sup_{W \cap P_x} |f_k| - \sup_{\partial(W \cap P_x)} |f_k|}{\text{diam}(W \cap P_x)} \right|^d \text{d}x \leq \int_M \int_{W \cap P_x} |\det D^2(f_k|P_x)| \text{d}x \leq \nu_{k,d}(W).
\]

By dominated convergence,

\[
\int_M \left| \frac{\sup_{W \cap P_x} |f| - \sup_{\partial(W \cap P_x)} |f|}{\text{diam}(W \cap P_x)} \right|^d \text{d}x = \lim_{k \to \infty} \int_M \left| \frac{\sup_{W \cap P_x} |f_k| - \sup_{\partial(W \cap P_x)} |f_k|}{\text{diam}(W \cap P_x)} \right|^d \text{d}x \leq \limsup_{k \to \infty} \nu_{k,d}(W) \leq \nu_d(V).
\]

Taking \(W = W_1, W_2, \ldots \) to be an exhaustion of \(V \), dominated convergence implies that the left hand side converges to the corresponding expression for \(V \). \(\square \)

3. **An extension of a special case of a theorem of Calderón and Zygmund**

We say that \(f \) admits an approximate second derivative at \(x \) if (1) holds with \(f \) replaced by the restriction \(f|E \), where \(E \) is some measurable set with density 1 at \(x \). We say that \(f \) admits a \(k \)th derivative in the \(L^1 \) sense at \(x \) if there exists a polynomial \(Q_x \) of degree \(k \) such that

\[
(9) \quad r^{-n} \int_{B_r(x)} |f(y) - Q_x(y)| \text{d}y = o(r^k)
\]
as \(r \downarrow 0 \). An easily proved equivalent formulation for first derivatives may be stated as follows.

Lemma 3.1. The function \(g \) is differentiable at 0 in the \(L^1 \) sense iff the one-parameter family of functions \(g_r(x) := rg(r^{-1}x) \) converges in \(L^1_{\text{loc}} \) to a linear function.

The following is also obvious.

Lemma 3.2. If \(f \) admits a second derivative in the \(L^1 \) sense at \(x \), then \(f \) admits an approximate second derivative at \(x \).

The next proposition generalizes a result of Calderón-Zygmund \[3\]. The original result of \[3\] (or rather the very special case of it that we have in mind) states that a function with distributional second derivatives in \(L^1_{\text{loc}} \) admits a second derivative in the \(L^1 \) sense a.e. By a straightforward adaptation of the argument of \[3\] we prove that this conclusion is true if the distributional second derivatives are only locally finite signed measures. We recall that the space \(\text{BV}_{\text{loc}}(U) \) of functions of locally bounded variation consists of all locally integrable functions whose distributional gradients are (vector) measures (cf. \[8\]).

Proposition 3.3. If the distributional gradient of \(f \in L^1(U) \) lies in \(\text{BV}_{\text{loc}}(U) \), then \(f \) admits a second derivative in the \(L^1 \) sense a.e. in \(U \).

Lemma 3.4. If \(g \in \text{BV}_{\text{loc}}(U) \) then \(g \) is differentiable in the \(L^1 \) sense at a.e. \(x \in U \).
Proof. By [4], Thm. 3.22, in the Lebesgue decomposition of the distributional gradient ∇g into its singular and absolutely continuous parts with respect to Lebesgue measure, the singular part has density zero at a.e. $x \in U$. Let $x = 0$ be such a point, and assume further that 0 is a Lebesgue point for g and for the absolutely continuous part of ∇g. We may assume without loss of generality that $g(0) = 0$.

By the BV compactness theorem (cf. [8], Theorem 1.9), for some sequence $r_i \downarrow 0$ the dilates $G_i(x) := r_ig(r_i^{-1}x)$ converge in $L^1_{\text{loc}}(\mathbb{R}^n)$ to some function $\lambda \in L^1_{\text{loc}}(\mathbb{R}^n)$. Furthermore the distributional gradients ∇G_i converge weakly to the constant $\nabla g(0)$. Therefore λ is the linear function $\lambda(x) := \sum_{i=1}^n \frac{\partial g}{\partial x_i}(0)x_i$.

Since this conclusion is independent of the sequence r_i, in fact $rg(r^{-1}x) \to \lambda(x)$ in L^1_{loc}, which by Lemma 3.4 is equivalent to the stated conclusion. \square

Proof of Prop. 3.3. By Lemma 3.4 it is enough to show that there exists an L^1 quadratic Taylor approximation for f at 0 provided ∇f is differentiable in the L^1 sense at 0. We may assume also that $f(0) = \nabla f(0) = D^2f(0) = 0$, where $D^2f(0)$ is the L^1 derivative of ∇f at 0. Put

$$G(\rho) := \int_{B(0, \rho)} \frac{|\nabla f(x)|}{|x|^{n-1}} \, dx, \quad F(\rho) := \int_{B(0, \rho)} |\nabla f(x)| \, dx.$$

Then F, G are both absolutely continuous on $[0, \infty)$, with $G'(\rho) = \frac{F'(\rho)}{\rho^{n-1}}$, and $F(\rho) = o(\rho^{n+1})$ by Lemma 3.4. Integrating by parts, it follows that $G(\rho) = o(\rho^2)$ as $\rho \downarrow 0$.

On the other hand,

$$\int_{B(0, \rho)} |f| \leq C \int_0^\rho r^{n-1} \, dr \int_{S^{n-1}} \, dv \int_0^r |Df(sv)| \, ds \leq C \int_0^\rho r^{n-1} \, dr \int_{S^{n-1}} \, dv \int_0^\rho |Df(sv)| \, ds = C \rho^n \int_{S^{n-1}} \, dv \int_0^\rho |Df(sv)| \, ds = C \rho^n G(\rho) = o(\rho^{n+2}),$$

which gives the result. \square

4. Proof of Theorem 1.1

To prove Theorem 1.1 we use induction on the dimension n. For $n = 1$, the result follows at once from Aleksandrov’s theorem and the parenthetical remark following the statement of the Theorem 1.1. Alternatively, it is also easy to prove by direct integration that f is twice differentiable at every point at which f' is differentiable in the L^1 sense. Supposing this to be true at 0, we may assume that the L^1 second derivative at 0 is 0, so the relation (9) yields

$$f(x) = \int_0^x f'(s) \, ds = o(x^2),$$

i.e. (9) holds at 0 with $Q_0 = 0$.

4.1. Setting up the inductive step. Put H for the space of all hyperplanes in \mathbb{R}^n, not necessarily passing through the origin, and $I := \{(x, P) \in \mathbb{R}^n \times H : x \in P\} \simeq \mathbb{R}^n \times \mathbb{R}^{n-1}$. Thus I admits the double fibration

$$(10) \quad \mathbb{R}^n \overset{p}{\leftarrow} I \overset{q}{\rightarrow} H.$$
Furthermore I admits a measure μ, invariant with respect to euclidean motions, expressible in local coordinates for either bundle structure as the product of invariant measures on the base and the fiber.

Lemma 4.1. Put E for the set of pairs $(x, P) \in I$ such that $f|P$ is twice differentiable at x. Then E is a Borel subset of I.

Proof. For $i, j, k \in \mathbb{N}$, define

$$E_{ijk} := \{(x, P) \in I : \text{there exists a quadratic polynomial } Q, \|Q\| \leq k, \text{ such that } |f(x') - Q(x')| \leq \frac{1}{i}|x' - x|^2 \text{ whenever } x' \in P \text{ and } |x' - x| < \frac{1}{j}\}.$$

We claim first that each E_{ijk} is a closed subset of I. Suppose $E_{ijk} \ni (x_m, P_m) \to (x_0, P_0)$ and $x'_0 \in P_0, |x'_0 - x_0| < \frac{1}{j}$. Let Q_m be a quadratic polynomial as in the definition of E_{ijk} for (x_m, P_m). We may assume that the sequence of the Q_m converges to a quadratic polynomial Q_0 with $\|Q_0\| \leq k$. Clearly there exist points $x'_m \in P_m$ with $|x'_m - x_m| < \frac{1}{j}$ and $x'_m \to x'_0$ (e.g., for large m we may take x'_m to be the orthogonal projection of x'_0 to P_m) so

$$|f(x'_0) - Q_0(x'_0)| = \lim |f(x'_m) - Q_m(x'_m)| \leq \frac{1}{i} \lim |x'_m - x_m|^2 = \frac{1}{i} |x'_0 - x_0|^2.$$

Thus $(x_0, P_0) \in E_{ijk}$.

Next we claim that

$$E = \bigcup_{i,j,k} E_{ijk} =: F,$$

which is sufficient to establish the desired conclusion.

That $E \subset F$ is obvious. To prove that $F \subset E$, suppose $(x, P) \in F$. Since $\|Q(x - x)\| \leq (1 + 2|x| + |x|^2) \|Q\|$, we may suppose that $x = 0$. Fix k, and suppose that $(0, P) \in \bigcap_i \bigcup_j E_{ijk}$. Then for each i there is j_i such that $(0, P) \in E_{ijk}$; let Q_i be the quadratic polynomial in the corresponding defining condition. Clearly the restrictions $Q_i|_P$ all agree to first order at 0, and $\|(Q_i - Q_i)(v)\| \leq \frac{2|v|^2}{\min_i \langle x', x' \rangle}$ for $v \in P$. Altering the Q_i off of P if necessary, we may assume that this is true for all $v \in \mathbb{R}^n$. Thus the Q_i converge to a quadratic polynomial Q_0, and for $x' \in P, |x'| < \frac{1}{j}$,

$$|f(x') - Q_0(x')| \leq |f(x') - Q_i(x')| + |Q_i(x') - Q_0(x')|$$

$$\leq \frac{1}{i} |x'|^2 + \frac{2}{j} |x'|^2 = \frac{3}{i} |x'|^2.$$

It follows that $f|P$ is twice differentiable at 0, with second order Taylor expansion Q_0, which establishes the claim. \hfill \Box

Assume the conclusion of Theorem 3.1 is true for dimension $n - 1$, and let $x_0 \in \mathbb{R}^n$ be a point at which f is approximately twice differentiable—this is true for a.e. $x_0 \in U$ by Lemma 3.2 and Prop. 3.3. We may assume further that $f|P$ is twice differentiable at x_0 for almost every hyperplane P passing through x_0: it is clear that for a.e. P, the hypotheses of Theorem 3.1 hold for some subsequence $f_k|P \to f|P$, hence $f|P$ is twice differentiable a.e. in P by induction. Thus by Lemma 4.1 and Fubini’s theorem, the set $\{(x, P) : f|P$ is twice differentiable at $x)\}$ has full measure in I. Applying Fubini’s theorem again, we find that for a.e. $x \in \mathbb{R}^n$, the set $\{P : f|P$ is twice differentiable at $x)\}$ has full measure in the space of hyperplanes passing through x. We will show that if x_0 is such a point, and if f does not admit a second order Taylor expansion at x_0, then at least one of the
absolute Hessian determinant measures \(\nu_0, \ldots, \nu_n \) has upper density \(\Theta^*(\nu_i, x_0) = \infty \) at \(x_0 \). This will conclude the proof.

We may assume that \(x_0 = 0 \). We may assume also that the second order approximate Taylor expansion \(Q \) of \(f \) at 0 is identically zero: otherwise, in light of Lemma 2.1 we may replace \(f \) by \(f - Q \). With these assumptions we have

Lemma 4.2. For a.e. hyperplane \(P \) passing through 0, the second order Taylor expansion \(Q^P \) of \(f|_P \) at 0 is zero.

Proof. Let \(E \subset U \) be the subset of density 1 at 0 in the definition of the approximate second derivative at the beginning of section 3. Since \(f \) is continuous, we may assume that \(E \) is closed.

We claim that a.e. line \(l \) through 0 meets \(E \) at points lying arbitrarily close to 0, i.e. \(l \cap B(0, r) \cap E \neq \emptyset \) for all \(r > 0 \). In other words, putting \(A_r := \{ l : l \cap B(0, r) \cap E \neq \emptyset \} \) for \(r > 0 \) and \(A_0 := \cap_{r > 0} A_r \), where \(A_r \downarrow A_0 \) as \(r \downarrow 0 \), we claim that \(A_0 \) has full measure in the space of lines through 0. If this were not the case then there would exist some \(r_0 > 0 \) such that \(A_{r_0} \) does not have full measure, from which it follows that for \(r < r_0 \)

\[
\frac{\text{vol}(B(0, r) \cap E)}{\omega_n r^n} \leq \frac{\text{vol}(B(0, r_0) \cap \bigcup_{l \in A_{r_0}} l)}{\omega_n r_0^n} < 1,
\]

which is a contradiction.

Now, if \(l \in A_0 \) then \(\liminf_{v \to 0, v \perp l} \frac{|f'(v)|}{|v|} = 0 \). Hence if \(v \in l \subset P \), and \(f|_P \) is twice differentiable at 0, then \(Q^P(v) = 0 \). But, by basic integral geometry, a.e. \(P \) through 0 has the property that a.e. line \(l \subset P \) through 0 belongs to \(A_0 \). Therefore \(Q^P \equiv 0 \) on a dense subset of \(P \), and therefore \(Q^P \equiv 0 \) by continuity. \(\square \)

4.2. The main lemma. For \(\epsilon > 0 \) we consider the open sets

\[
V_\epsilon := \{ x : |f(x)| > \epsilon |x|^2 \}
\]

The approximate twice differentiability hypothesis means that each \(V_\epsilon \) has density 0 at 0. The statement that \(f \) is twice differentiable at 0, with zero 2nd order Taylor expansion there, is equivalent to the statement that for each \(\epsilon > 0 \) the set \(V_\epsilon \cap B(x, r) = \emptyset \) for all sufficiently small \(r > 0 \).

Lemma 4.3. Suppose the upper densities \(\Theta^*(\nu_i, 0) < \infty, i = 0, \ldots, n - 1 \). Then for fixed \(\epsilon > 0 \), the supremum of the diameters of the components of \(B(0, r) \cap V_\epsilon \) is \(o(r) \) as \(r \downarrow 0 \).

Proof of Lemma 4.3. Put \(I_0 \) for the space of hyperplanes through 0. By Lemma 4.2 for a.e. \(P \in I_0 \) there exists \(r = r(P) > 0 \) such that

\[
P \cap V_\epsilon \cap B(0, r) = \emptyset.
\]

For \(r > 0 \), put

\[
\Pi_r := \{ P : P \in I_0, P \cap V_\epsilon \cap B(0, r) \neq \emptyset \}.
\]

Thus the family of subsets \(\Pi_r \subset I_0 \) is decreasing as \(r \downarrow 0 \), with

\[
\lim_{r \downarrow 0} \mu_0(\Pi_r) = \mu_0(\bigcap_{r > 0} \Pi_r) = 0,
\]

where \(\mu_0 \) is the invariant probability measure on \(I_0 \).
Now consider the spherical open sets
\begin{equation}
W_{r,\epsilon} := \{ v \in S^{n-1} : \text{there exists } r' \in (0, r) \text{ such that } r'v \in V_\epsilon \},
\end{equation}
i.e. \(W_{r,\epsilon} \) is the spherical projection of \(B(0, r) \cap V_\epsilon \). Thus \(P \in \Pi_r \iff P \cap W_{r,\epsilon} \neq \emptyset \).

It now follows from \cite{12} and elementary integral geometry (cf. \cite{13}) that the supremum of the spherical diameters of the components of \(W_{r,\epsilon} \) converges to 0 as \(r \downarrow 0 \) (\(\epsilon \) fixed).

To complete the proof of the lemma, it is now enough to show that the “radial diameter” \(\sup_C |x| - \inf_C |x| = o(r) \) for any component \(C \) of \(B(0, r) \cap V_\epsilon \).

Let \(\delta < \frac{\pi}{6} \) be given, and take \(r_0 > 0 \) small enough that
\begin{enumerate}[(1)]
 \item each component of \(W_{2r_0/\sqrt{3}, \epsilon} \subset S^{n-1} \) is included in a spherical ball of radius \(\delta \), and
 \item \(\frac{\omega_{n-1}(B(0, 2r_0/\sqrt{3})))}{\omega_n(2r_0/\sqrt{3})} < \Theta^*(\nu_{n-1}, 0) + 1. \)
\end{enumerate}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Proof of Lemma 4.3}
\end{figure}

Let \(C \) be any component of \(V_\epsilon \cap B(0, r_0) \), and \(C' \) the component of \(V_{\epsilon/2} \cap B(0, 2r_0/\sqrt{3}) \) that includes \(C \). Assumption (1) above guarantees that there is a spherical ball of radius \(\delta \) that includes the spherical projection of \(C' \). Let \(v_0 \) be its center and put for \(t \in \mathbb{R} \)
\[P_t := \{ x : \langle x, v_0 \rangle = t \}. \]
Finally, let \((a, b) \coloneqq \{ t \in (0, r_0) : P_t \cap C \neq \emptyset \}\). Thus for \(t \in (a, b) \)
\begin{equation}
\sup_{C \cap P_t} \left| f \right| = \sup_{C \cap P_t} \left| f \right| > \epsilon t^2.
\end{equation}

By assumption [1],
\begin{equation}
\sup_C \left| x \right| - \inf_C \left| x \right| < (b - a) \sec \delta < (b - a) \frac{\sqrt{3}}{2}
\end{equation}
and, if \(x \in C' \cap P_t \),
\begin{equation}
t \leq \left| x \right| < t \sec \delta < \frac{2t}{\sqrt{3}}.
\end{equation}
In particular, if \(P_t \cap B(0, r_0) \neq \emptyset \) (i.e. if \(t < r_0 \)) then \(C' \cap P_t \subset \subset B(0, 2r_0/\sqrt{3}) \), and in particular
\begin{equation}
|f(x)| = \frac{\epsilon}{2} |x|^2 < \frac{2 \epsilon}{3} t^2
\end{equation}
for \(x \in \partial C' \cap P_t \). Thus we may apply Corollary 2.3 to obtain
\begin{equation}
(\Theta^*(\nu_{n-1}, 0) + 1) \omega_n \left(\frac{2r_0}{\sqrt{3}} \right)^n > \nu_{n-1} \left(\frac{2r_0}{\sqrt{3}} \right)^n
\end{equation}
\begin{equation}
\geq \int_a^b \frac{\sup_{C \cap P_t} f - \sup_{\partial C \cap P_t} f}{\text{diam}(C \cap P_t)} \left| f \right|^{n-1} dt
\end{equation}
\begin{equation}
\geq \int_a^b \left(\frac{\epsilon}{2} t^2 - \frac{2 \epsilon}{3} t^2 \right)^{n-1} \frac{n-1}{2t \tan \delta} \left(\frac{|x|}{2} \right)^n dt
\end{equation}
\begin{equation}
= \epsilon \cot \delta \left(\frac{b^n - a^n}{n} \right) \frac{n}{n}
\end{equation}
\begin{equation}
\geq \left(\frac{\epsilon}{6} \right) \cot \delta \left(b^n - a^n \right).\]
Therefore, by [17],
\begin{equation}
\sup_C \left| x \right| - \inf_C \left| x \right| \leq \frac{2}{\sqrt{3}}(b - a) < \frac{C}{\epsilon} (\Theta^*(\nu_{n-1}, 0) + 1)^\frac{n}{2} r_0 \tan \delta.
\end{equation}
Since \(\delta > 0 \) can be taken arbitrarily small (and \(\epsilon \) is fixed), this completes the proof of the lemma.

4.3. Completion of the proof Theorem 1.1. Suppose \(x_1, x_2, \ldots \in V_i \) with \(x_i \to 0 \). Let \(C_i \) be the component of \(V_i \cap B(0, 2|x_i|) \) containing \(x_i \), and \(C'_i \) the component of \(V'_i \cap B(0, 2|x_i|) \) that includes \(C_i \). By Lemma 4.3 the diameter of \(C'_i \) is \(o(|x_i|) \) as \(i \to \infty \), hence \(C'_i \subset \subset B(0, 2|x_i|) \) for \(i \) sufficiently large. Applying Lemma 2.2
\begin{equation}
\frac{\nu_n(B(0, 2|x_i|))}{|x_i|^n} \geq \frac{\nu_n(C'_i)}{|x_i|^n}
\end{equation}
\begin{equation}
\geq \frac{\sup_{C'_i} |f| - \sup_{\partial C'_i} |f|}{|x_i| o(|x_i|)}
\end{equation}
\begin{equation}
\geq \left(\frac{\epsilon}{2} \right) \left(\frac{|x_i|}{o(|x_i|)} \right)^n
\end{equation}
\begin{equation}
= \frac{1}{o(1) \to \infty}
\end{equation}
as $i \to \infty$ since ϵ is fixed. Therefore the upper density of ν_i at 0 is infinite.

4.4. A concluding remark. In fact our proof yields a slightly more general statement than Theorem 1.1: besides continuity, the only properties of f that we have used are the existence of the absolute Hessian determinant measures, the transformation law of Lemma 2.1 and their role in Lemmas 2.2 and 2.3.

References

[1] Alberti, G., Ambrosio, L. A geometrical approach to monotone functions in \mathbb{R}^n. Math. Z. 230 (1999), pp. 259–316.
[2] Aleksandrov, A.D. Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it. Leningrad Univ. Ann. (Math. ser.) 6 (1939), 335 (in Russian).
[3] Calderon, A.P. and Zygmund, A. Local properties of elliptic partial differential equations. Studia Math. 20 (1961), 171–225
[4] Folland, G.B. Real analysis. Wiley, New York, 1999.
[5] Fu, J. H. G.: Monge-Ampère functions I. Indiana Univ. Math. J. 38 (1989), 745–771
[6] Fu, J. H. G.: Monge-Ampère functions II. Indiana Univ. Math. J. 38 (1989), 773–789
[7] Gilbarg, D. and Trudinger, N. Elliptic Partial Differential Equations of Second Order. Springer, New York, 1983
[8] Giusti, E. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston, 1984
[9] Hutchinson, J.E. and Meier, M. A remark on the nonuniqueness of tangent cones. Proc. Amer. Math. Soc. 97 (1986), pp. 184–185.
[10] Jerrard, R.L.: Some remarks on Monge-Ampère functions. Singularities in PDE and the Calculus of Variations, Stanley Alama, Lia Bronsard, and Peter J. Sternberg, eds. - AMS — CRM, 2008
[11] Jerrard, R.L.: Some rigidity results related to Monge-Ampère functions. To appear in Canadian Journal of Mathematics
[12] Santaló, L. Integral geometry and geometric probability, 2nd ed. Cambridge University Press, Cambridge 2004

E-mail address: fu@math.uga.edu

Department of Mathematics, University of Georgia, Athens, GA 30602, USA