Morphologic, Immunohistochemical and Molecular Analyses of a Huge Clear Cell Papillary Renal Cell Carcinoma

Raspollini MR, Montagnani I, Castiglione F, Cheng L, Montironi R and Lopez-Beltran A

1Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Italy
2Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
3Section of Pathological Anatomy, Department of Biomedical Sciences and Public Health and Polytechnic University of the Marche Region, School of Medicine, University Hospitals, Ancona, Italy
4Unit of Anatomic Pathology, Department of Surgery, Cordoba University Medical School, Cordoba, Spain, and Champalimaud Clinical Center, Lisbon, Portugal

Abstract

Among the tumors of the kidney, the clear cell papillary renal cell carcinoma (CCPRCC) is a recently described entity. This tumor is well circumscribed, with a fibrous capsule, showing mostly a prominent cystic component and a diameter less than 4 cm. Necrosis is not a feature. Tumor cells are clear with low grade nuclei with a predominantly tubular-papillary architecture and immunohistochemical staining strongly positive for CK7, and for CA IX and negative for RACEMASE, features which differentiate this tumor from clear cell renal cell carcinoma (CCRC) and papillary renal cell carcinoma (papillary RCC). In these latter tumors, it has been reported, unlike the other two, no loss or gain of chromosomes 7 and Y; no chromosome 3p deletion, and no KRAS mutation. In this report, a huge clear cell papillary renal cell carcinoma case, 9 cm diameter, in a 42-year-old male is described. Pathologic diagnosis of the tumor was confirmed by immunohistochemical analysis including CD10, CA IX, CK7, RACEMASE, and 34 beta E12 stainings. Molecular detection of KRAS, BRAF, NRAS, PIK3CA, ALK, ERBB2, DDR2, MAP2K1, RET, and EGFR gene mutation analysis has also been performed. Molecular findings are in accordance with the speculation that the CCRC is an indolent tumor which may be defined as low malignant potential. In fact, in the molecular analysis, none out of all genes evaluated showed mutation.

Keywords: Clear cell papillary renal cell carcinoma; KRAS; NRAS; BRAF; PIK3CA; ALK; ERBB2; DDR2; MAP2K1; RET; EGFR; Kidney; Molecular pathology

Abbreviations: RCC: Renal Cell Carcinoma; CCRCC: Clear Cell Renal Cell Carcinoma; PRCC: Papillary Renal Cell Carcinoma; ESDR: End-Stage Renal Disease; VHL: Von Hippel-Lindau Syndrome

Introduction

A recent update of renal tumors is reported by the 2016 WHO Classification of Tumors of the Urinary System and Male Genital Organs [1]. WHO classification underlines that genetic profiling is the clue for differentiating subtypes of renal cell carcinomas (RCCs), although little is still known about the genetic events involved in tumor progression. Among the tumors of the kidney, the clear cell papillary renal cell carcinoma (CCPRCC) is an important entity. This tumor is well circumscribed, with a fibrous capsule, showing, in the majority of the cases, a prominent cystic component and a diameter less than 4 cm. Necrosis is not a feature. Tumor cells are clear with low grade nuclei with a predominantly tubule-papillary architecture and immunohistochemical staining is strongly positive to CK7, basolateral (cup-shape) CA IX expression and negative RACEMASE, a feature which differentiates this tumor from clear cell renal cell carcinoma (CCRC) and papillary renal cell carcinoma (papillary RCC). In these latter tumors, it has been reported, unlike CCRCs and papillary RCCs, no loss or gain of chromosomes 7 and Y, no chromosome 3p deletion, and no KRAS mutation [2]. Therefore, histologic features alone are not enough to perform a differential diagnosis, while immunohistochemical and molecular analyses are also critical to assess appropriate surveillance schedules. An analysis of 327 reported cases with follow-up supports the concept that CCPRCC is an indolent tumor worth to be named clear cell papillary neoplasm of low malignant potential [3]. The differential diagnosis remains an issue since clear cell renal cell carcinoma (CCRC) and papillary RCCs might potentially metastasize [4-6] while CCPRCC has no metastatic potential [7,8]. We report a case of a huge renal tumor in a young male patient characterized by solid areas and cysts lined with clear cells. We evaluated the immunohistochemical characteristics of the tumor cells and we analysed any mutations of KRAS, NRAS, BRAF, PIK3CA, ALK, ERBB2, DDR2, MAP2K1, RET, and EGFR genes.

Case Report

A 42-year-old man underwent radical nephrectomy for a large mass. There was no personal or family history suggestive for end-stage renal disease (ESDR), chronic kidney disease or von Hippel-Lindau syndrome (VHL). Macroscopic examination showed a solid-cystic mass of 9 cm × 8 cm × 8 cm in diameters. Microscopic examination showed cystic areas lined by a single layer of cell intermixed with solid and tubular-papillary areas. The tumor had small clear appearance cytoplasm and a low nuclear grade. No necrosis was observed. No sarcomatoid or rhabdoid areas were identified. Immunohistochemical assessment showed a strong positivity for CK7, basolateral distribution “cup -shape” CA IX expression and negative RACEMASE and CD10 (Figure 1). The histological diagnosis was of CCPRCC in accordance with 2016 World Health Organization (WHO) classification [7] and the Vancouver ISUP reported criteria [9]. The neoplasm was well circumscribed and there was no evidence of capsular or perirenal fat tissue invasion. So pT2a category was assessed according to 2017 revision of TNM [10].

The neoplasm was well circumscribed and there was no evidence of capsular or perirenal fat tissue invasion. So it was classified as pT2a category according to the 2017 revision of TNM system.

Copyright: © 2017 Raspollini MR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
In the follow up period, no recurrence, distant metastasis or death caused by disease have been reported. No mutations in the investigated genes (NRAS, BRAF, PIK3CA, ALK, ERBB2, DDR2, MAP2K1, RET, and EGFR) have been detected.

Molecular Analysis

Two microliters were tested with the kit Myriapod Lung Status (Diatech Pharmacogenetics, Ancona, Italy). The Mass-ARRAY iPLEX system involves 4 main steps: PCR (Polymerase Chain Reaction), SAP (Shrimp Alkaline Phosphatase) reaction, single-base primer extension (iPLEX reaction), and separation of the products on a matrix-loaded silicon chip by MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry. The PCR, SAP and iPLEX reactions were performed in a thermal cycler (Labcycler, SensoQuest, Göttingen, Germany), whereas the extension products were analyzed using the matrix-assisted laser desorption ionization time-of-flight Mass-ARRAY Analyzer 4 (Agena Bioscience), and using all reagents and consumables contained in Myriapod Lung Status Kit (Diatech).

Assay amplification primers and extension oligos in the Myriapod Lung Status were designed with a maximum of 12 assays per well. Every single test is split in 8 wells to detect single nucleotide polymorphism (SNPs) involving 184 mutations of the genes KRAS (codons 12, 13, 18, 59, 61, 117, 146), NRAS (codons 12, 13, 18, 59, 61, 117, 146), BRAF (codons 11 and 15), PIK3CA (codons 9, and 20), ALK (codons 22, 23, and 25), ERBB2 (codon 20), DDR2 (codons 9, 16, and 18), MAP2K1 (codon 2), RET (codon 16), and EGFR.

Discussion and Conclusion

We reported an uncommon huge CCPRCC in a 42-year old male. The present case was unusual for the size, but the extensive samplings and the careful observation of histologic and immunohistochemical features were perfectly compliant to the diagnosis of clear cell papillary renal cell carcinoma. Molecular findings reinforced the morphologic data. In the molecular analysis, none out of a panel of all genes evaluated showed mutation.

CCPRCC was first described in 2006 in end-stage kidney [11]. After 10 years this entity has been recognized by the 2016 World Health Organization (WHO) classification of urologic tumors as both sporadic and end-stage renal disease or von Hippel-Lindau syndrome associated neoplasm [7]. An African-American patient's prevalence and an equal female-to-male distribution have been described [12]. Clear cell papillary renal cell carcinoma is now recognized as a distinct tumor with unique morphology, immunohistochemistry, and cytogenetics [13-15]. Zhou et al. in a series of 290 consecutive nefrectomies documented that CCPRCC is the fourth renal cell carcinoma by incidence accounting 4.1% of renal tumors [16]. Rare cases of multifocal or bilateral neoplasms have been described [17,18]. Metastases have not been reported, emphasizing the non-aggressive behaviour of this tumor [19]. Mostly these neoplasms are detected at early stage, generally pT1a [20].

Current experience is limited to support these neoplasms as benign entities although, recent literature data is supporting the concept to rename this entity as “low malignant potential tumor” [3].

The most challenging differential diagnosis is with CCRCC, but a careful evaluation of microscopic apperance and a proper immunohistochemistry use can drive to the correct diagnosis. A recent paper highlights the pitfalls of overlapping features of CCPRCC and CCRCC, suggesting the strict use of both morphologic and immunohistochemical criteria for the correct diagnosis [21]. CCPRCC is associated with a capability of recurrence in up to 30% of cases [22].
while the CCPRCC has an indolent behaviour. Unlike CCRCC [2,23], the present case did not show RAS mutations, and this is in accordance with our previous data [24] and, in addition, it did not show mutations in PIK3CA, ALK, ERBB2, DDR2, MAP2K1, RET, and EGFR genes in agreement with the results of a series of small CCPRCC recently described [25].

The molecular analysis of the huge CCPRCC was of particular help in the differential diagnosis of this challenging case.

References

1. Moch H, Humphrey PA, Ulbright TM, Reuter VE (2016) World Health Organization (WHO) Classification of tumors of the urinary system and male genital organs (4th edn), IARC Press.

2. Raspollini MR, Castiglione F, Martignoni G, Cheng L, Montironi R, et al. (2015) Unlike in clear cell renal cell carcinoma, KRAS is not mutated in multilocular cystic clear cell renal neoplasm of low potential. Virchows Arch 467(6): 687-693.

3. Diolombi ML, Cheng L, Argani P, Epstein J (2015) Do clear cell papillary renal cell carcinoma have malignant potential? Am J Surg Pathol 39(12): 1621-1634.

4. Kattan MW, Reuter V, Motzer RJ, Katz J, Russo P (2001) A postoperative prognostic nomogram for renal cell carcinoma. J Urol 166(1): 63-67.

5. Leibovich BC, Blute ML, Cheville JC, Lohe CM, Frank I, et al. (2003) Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: A stratification tool for prospective clinical trials. Cancer 97(7): 1663-1671.

6. Kim SP, Weight CJ, Leibovich BC, Thompson RH, Costello BA, et al. (2011) Outcomes and clinicopathologic variables associated with late recurrence after nephrectomy for localized renal cell carcinoma. Urology 78(5): 1101-1116.

7. Williamson SR, Halat S, Eble JN, Grignon DJ, Lopez-Beltran A, et al. (2012) Multilocular cystic renal cell carcinoma: similarities and differences in immunoprofile compared with clear cell renal cell carcinoma. Am J Surg Pathol 36(10): 1425-1433.

8. Aydin H, Chen L, Cheng L, Vaziri S, He H, et al. (2010) Clear cell tubulopapillary renal cell carcinoma: a study of 36 distinctive low-grade epithelia tumors of the kidney. Am J Surg Pathol 34(11): 1608-1621.

9. Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein Ji, et al. (2013) The International Society of Urological Pathology (ISUP) Vancouver Classification of renal neoplasia. Am J Surg Pathol 37(10): 1469-1489.

10. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK et al. (2017) American Joint Committee on Cancer (AJCC) Staging Manual, (8th edn), Springer Ed.

11. Tickoo SK, De Peraltra-Venturina M, Harik LR, Worcester HD, Salama ME, et al. (2006) Spectrum of epithelial neoplasms in end-stage renal disease. An experience from 66 tumor-bearing kidneys with emphasis on histologic patterns distinct from those in sporadic adult renal neoplasia. Am J Surg Pathol 30: 141–153.

12. Wang K, Zarrour J, Rais-Bahrami S, Gordetsky J (2017) Clear cell papillary renal cell carcinoma: New clinical and imaging characteristics. Urology 100: 429S(16): 30935-30939.