Asymptotic Density of Open p-brane States with Zero-modes included

S. Kalyana Rama
Institute of Mathematical Sciences, C. I. T. Campus, Taramani, CHENNAI 600 113, India.
email: krama@imsc.res.in

ABSTRACT

We obtain the asymptotic density of open p-brane states with zero-modes included. The resulting logarithmic correction to the p-brane entropy has a coefficient $-\frac{p+2}{2p}$, and is independent of the dimension of the embedding spacetime. Such logarithmic corrections to the entropy, with precisely this coefficient, appear in two other contexts also: a gas of massless particles in p-dimensional space, and a Schwarzschild black hole in $(p+2)$-dimensional anti de Sitter spacetime.
1. The asymptotic density of states $\rho(N)$ at level N, $N \gg 1$, for p-branes compactified on $(S^1)^p \times \mathbf{R}^{D-p}$ has been calculated within the semiclassical quantisation scheme [1, 2, 3, 4]. (For various applications of this result see the review article in [4] and [2, 5].) The corresponding p-brane entropy, given by $\ln \rho(N)$, then has a logarithmic correction with a particular coefficient X, which depends on the dimension D of the embedding spacetime.

The correct counting of the asymptotic density of states must also include the zero-mode states. They have been included for the open string case ($p = 1$) in [6, 7]. As a consequence, the logarithmic correction coefficient X becomes independent of D and is given by $X = -\frac{3}{2}$. Such logarithmic corrections to the entropy, with precisely this coefficient, have appeared in other contexts also: in $(1+1)$-dimensional conformal field theories [6, 7], and in the entropies for $(2+1)$ and $(3+1)$ dimensional black holes calculated using the spin network formalism [8, 9].

In this paper, using the results of [4], we obtain the asymptotic density of states for open p-branes. We then include the zero-modes following the methods of [6, 7]. We find that the logarithmic correction coefficient X becomes independent of the dimension D of the embedding spacetime, and is given by $X = -\frac{p+2}{2p}$.

Logarithmic corrections to entropy also arise for statistical mechanical systems due to statistical fluctuations [10]. Using the results of [10], we find that logarithmic corrections to the entropy, with precisely the same coefficient as that obtained in the open p-brane case, namely $-\frac{p+2}{2p}$, appear in two other contexts also: a gas of massless particles in p-dimensional space, and a Schwarzschild black hole in $(p+2)$-dimensional anti de Sitter spacetime [10].

This paper is organised as follows. In section 2, we briefly present the results of [4] and, using them, obtain the asymptotic density of states for open p-branes. In section 3, we include the zero-modes. In section 4, we show that such logarithmic corrections with precisely the same coefficient appear in other contexts also. In section 5, we conclude by mentioning a few issues for further study.

2. The asymptotic density of states $\rho(N)$ at level N, $N \gg 1$, for p-branes compactified on $(S^1)^p \times \mathbf{R}^{D-p}$ can be calculated within the semiclassical quantisation scheme, and is of the form

$$\rho(N) \simeq C N^B e^{AN^s} \quad (1)$$
where δ, A, B, and C are constants. δ was obtained in [1, 2] and the correct expressions for the remaining constants A, B, and C in [4]. The corresponding p-brane entropy $S(N)$ is given by

$$S(N) = \ln \rho(N) \simeq S_0 + X \ln S_0 + (\text{const}) \tag{2}$$

where the leading term $S_0 = AN^\delta$ and $X = \frac{B}{\delta}$ is the coefficient of the logarithmic correction to the entropy.

We now present briefly the results of [4]. See [4] for details. In the semiclassical quantisation, the total number operator \mathcal{N} can be written in the proper time formalism as

$$\mathcal{N} = \sum_{i=1}^{d} \sum_{n \neq 0} \omega_n \mathcal{N}_n^i, \quad \omega_n = \sqrt{\sum_{j=1}^{p} n_j^2}, \tag{3}$$

where $d = (D - p - 1)$, $n = (n_1, n_2, \cdots, n_p) \in \mathbb{Z}^p$, $0 = (0, 0, \cdots, 0)$, and \mathcal{N}_n^i are number operators [11]. For the sake of simplicity, we have set the p-brane tension to unity and taken all the circles in $(S^1)^p$ to be of unit radius.

Let $\rho(N)$ be the number of independent eigenstates of the total number operator \mathcal{N} with eigenvalue N. Its generating function $F(z)$ is given by

$$F(z) = \sum_{N=0}^{\infty} \rho(N) e^{-zN} = Tr e^{-z\mathcal{N}} = \prod_{n \neq 0} (1 - e^{-z\omega_n})^{-d}. \tag{4}$$

Inverting the above relation then gives $\rho(N)$ in terms of $F(z)$:

$$\rho(N) = -\frac{1}{2\pi i} \oint dz \ e^{Nz} F(z) \tag{5}$$

where the integration contour is a small circle around the origin. Using Meinardus theorem [12] and the properties of Epstein zeta function, an asymptotic expression for $F(z)$ can be obtained in the limit $Re(z) \to 0$ which is sufficient to obtain $\rho(N)$ in the limit $N \gg 1$. The asymptotic expression for $F(z)$ is of the form [4]

$$F(z) \simeq c \ z^b e^{az-p} \tag{6}$$

where a, b, and c are constants. The contour integral in (5), and thus $\rho(N)$, can then be evaluated by saddle point method. For $F(z)$ of the form given
in equation (6), the saddle point is located at
\[z = z_0 = \left(\frac{N}{ap} \right)^{-\frac{1}{p+1}} \]
in the limit \(N \gg 1 \), is given by
\[
\rho(N) \simeq \frac{c (ap)^{\frac{2b+1}{p+1}}}{\sqrt{2\pi(p+1)}} N^{-\frac{2b+p+2}{2(p+1)}} e^{AN^\frac{p}{p+1}}, \quad A = \frac{p + 1}{p} (ap)^{\frac{1}{p+1}}. \tag{7}
\]
In our case, \(a = \frac{2d \Gamma(p) \zeta(p+1)}{\Gamma(\frac{p}{2})} \) and \(b = d \) where \(d = (D - p - 1) \) and \(\zeta \) is the Riemann zeta function; the constant \(c \) is given explicitly in [4] and is not required for our purposes. See [4] for further details.

We now obtain the asymptotic density of states for an open \(p \)-brane using the above results. In this case modes \(n \) and \(-n \) together contribute to one standing wave (SW) mode of the open \(p \)-brane and, hence, should be counted only once. Thus, the corresponding total number operator is given by
\[
N = \sum_{i=1}^{d} \sum_{SW; n \neq 0} \omega_n N^i. \tag{8}
\]
The corresponding generating function \(F_0(z) \) is given by
\[
F_0(z) = \sum_{N=0}^{\infty} \rho_o(N) e^{-zN} = \prod_{SW; n \neq 0} \left(1 - e^{-z\omega_n} \right)^{-d} = \prod_{n \neq 0} \left(1 - e^{-z\omega_n} \right)^{-\frac{d}{2}} \tag{9}
\]
where the last equality follows since \(\omega_n = \omega_{-n} \) and the product in the last expression includes both \(n \) and \(-n \). Note that the generating function \(F_0(z) \) is identical to that in equation (4) with \(d \) there replaced by \(\frac{d}{2} \). It therefore follows that the density of states \(\rho_o(N) \) for an open \(p \)-brane in the limit \(N \gg 1 \) is given by (7), but now with \(d \) replaced by \(\frac{d}{2} \). Explicitly, in the limit \(N \gg 1 \),
\[
\rho_o(N) \simeq \frac{c (ap)^{\frac{D-p}{2(p+1)}}}{\sqrt{2\pi(p+1)}} N^{-\frac{D-1}{2(p+1)}} e^{AN^\frac{p}{p+1}}, \quad A = \frac{p + 1}{p} (ap)^{\frac{1}{p+1}}. \tag{10}
\]
where \(a = \frac{(D-p-1) \Gamma(p) \zeta(p+1)}{\Gamma(\frac{p}{2})} \), \(c \) is as given in [4] but with \(d = (D - p - 1) \) there replaced by \(\frac{d}{2} = \frac{D-p-1}{2} \), and we have used \(b = \frac{d}{2} = \frac{D-p-1}{2} \) in obtaining (10). Note that \(\rho(N) \) is of the form given in equation (1) with \(\delta = \frac{p}{p+1} \) and \(B = -\frac{D+1}{2(p+1)} \), and that string theory result [3] is obtained upon setting \(p = 1 \).
3. We now include the zero-modes and obtain the resulting asymptotic density of open p-brane states. The complete Hamiltonian for a p-brane in the proper time formalism is given by

$$ H = p^2 + N $$

(11)

where p^2 is the transverse momentum square operator and N is the total number operator given in (8), and they both commute with each other [4].

The correct counting of the total number of states $\rho(N)$ must include the zero-mode states also, namely those corresponding to the transverse momentum. For open strings ($p = 1$), $\rho(N)$ with zero-modes included has been calculated in [6, 7] in the limit $N \gg 1$. The resulting $\rho(N)$ is still given by equation (1) with $\delta = \frac{1}{2}$ as before, but now with $B = -\frac{3}{4}$ independent of the dimension D of the embedding spacetime. See [6, 7] for further discussions.

The total number of states $\rho(N)$ for open p-branes, with zero-modes included, can be calculated for other values of p also in the limit $N \gg 1$. $\rho(N)$ is still given by equation (5), but now the relevant generating function $F(z)$, with zero-modes included, is given by

$$ F(z) = Tr e^{-zH} = \left(\int d^{D-p-1} p \ e^{-zp^2} \right) Tr e^{-zN} = \left(\int d^{D-p-1} p \ e^{-zp^2} \right) F_0(z) $$

(12)

where the second equality follows since the operators p^2 and N commute with each other and $F_0(z)$ is the generating function given in equation (9). The momentum integral can be evaluated easily and results in an extra z-dependent factor given by

$$ \int d^{D-p-1} p \ e^{-zp^2} = c_0 \ z^{-\frac{D-p-1}{2}} $$

where c_0 is a constant. The contour integral in (5), and thus $\rho(N)$, can now be evaluated by saddle point method. The saddle point is at $z = z_0 = \left(\frac{N}{ap} \right)^{-\frac{1}{p+1}}$ as before, and the total number of open p-brane states $\rho_o(N)$, in the limit $N \gg 1$ and with zero-modes included, is now given by

$$ \rho_o(N) \simeq \frac{cc_0 \ (ap)^{\frac{1}{2(p+1)}}}{\sqrt{2\pi(p+1)}} \ N^{-\frac{p+2}{2(p+1)}} \ e^{AN\frac{p}{p+1}} $$

(13)
where the constants a and c are as in equation (10). Clearly, $\rho(N)$ is of the form given in equation (1) with $\delta = \frac{p}{p+1}$ as before, but now with $B = -\frac{p+2}{2(p+1)}$ independent of the dimension D of the embedding spacetime.

The open p-brane entropy $S(N)$ with zero-modes included is thus given by

$$S(N) = \ln \rho(N) \simeq S_0 - \frac{p+2}{2p} \ln S_0 + (\text{const})$$

where $S_0 = AN^{\frac{p}{p+1}}$. The coefficient of the logarithmic correction to the open p-brane entropy with zero-modes included is now given by $-\frac{p+2}{2p}$ and is independent of the dimension D of the embedding spacetime. Note that without zero-modes included it is given by $-\frac{p+1}{2p}$, as can be seen from equations (2) and (10), and depends on D.

4. For open strings ($p = 1$) with zero-modes included, the coefficient of the logarithmic correction to the entropy given above becomes $-\frac{3}{2}$, which agrees with the results of [6, 7]. Such logarithmic corrections, with precisely this coefficient, $-\frac{3}{2}$, have appeared in other contexts also: in $(1+1)$-dimensional conformal field theories [6, 7], and in the entropies for $(2+1)$ and $(3+1)$ dimensional black holes calculated using the spin network formalism [8, 9].

Similarly, it turns out that logarithmic corrections, with precisely the coefficient given in equation (14), namely $-\frac{p+2}{2p}$, also appear in two other contexts. Recently, logarithmic corrections to entropies of statistical mechanical systems, arising due to statistical fluctuations, have been obtained in [10]. One calculates the density of states $\rho(E)$ as an inverse Laplace transformation of the partition function in the canonical ensemble. Statistical fluctuations can then be incorporated naturally. Then, $\rho(E)\Delta$ is the number of states with energy in the range $E \pm \frac{\Delta}{2}$ where Δ depends on the precision with which the system is prepared and, in particular, is independent of E. The entropy $S(E)$ is therefore given by $S(E) = \ln \rho(E) + (\text{const})$.

The result of [10] is that for a system at temperature T, with specific heat C (which must be positive for this formalism to be applicable), one obtains for its entropy

$$S = S_0 - \frac{1}{2} \ln(C T^2) + (\text{const})$$

where S_0 is the leading term. See [10] for details.
Now, consider a gas of massless particles in p-dimensional space. Then

\[S_0 \propto T^p , \quad E \propto T^{p+1} , \quad C \propto T^p . \]

Equation (15), therefore, gives

\[S = S_0 - \frac{p+2}{2p} \ln S_0 + (\text{const}) . \] (16)

For a Schwarzschild black hole, the specific heat is negative and, hence, the above formalism is inapplicable [10]. However, a Schwarzschild black hole of sufficiently large mass in a d-dimensional anti de Sitter spacetime (AdS$_d$) has positive specific heat. Consider an AdS$_{p+2}$ Schwarzschild black hole of mass M. For sufficiently large M, one has [13]

\[S_0 \propto r_+^p , \quad E = M \propto r_+^{p+1} , \quad T \propto r_+ , \]

where r_+ is the horizon. It then follows that $C \propto r_+^p$. Equation (15), therefore, gives

\[S = S_0 - \frac{p+2}{2p} \ln S_0 + (\text{const}) . \] (17)

See [10]) for details. For AdS$_3$, see also [8, 9]. From equations (16) and (17), we see that logarithmic corrections to the entropy of a gas of massless particles in p-dimensional space, and to that of an AdS$_{p+2}$ Schwarzschild black hole, both have a coefficient $-\frac{p+2}{2p}$ which is precisely the same as that obtained in the open p-brane case with zero-modes included.

5. To summarise, we have obtained the asymptotic density of open p-brane states with zero-modes included. The corresponding open p-brane entropy has a logarithmic correction, with a coefficient $-\frac{p+2}{2p}$. Such logarithmic corrections, with precisely the same coefficient, also appear for a p-dimensional gas and for an AdS$_{p+2}$ Schwarzschild black hole where the corrections arise due to statistical fluctuations.

The relation of a p-dimensional gas to AdS$_{p+2}$ Schwarzschild black hole, for $p = 1, 2, 3,$ and 5, can be understood in the context of AdS/CFT duality [14] as that of a boundary conformal field theory at high temperature [13]. In light of the present results, one may explore the relations between quantum/semi classical p-branes, p-dimensional gas, and AdS$_{p+2}$ spacetime in more detail. In particular, it will be interesting to know if the values of
p are restricted for quantum/semi classical p-branes, or if a duality exists between p-dimensional gas and AdS$_{p+2}$ spacetime for any value of p.

As mentioned earlier, the coefficient $X = -\frac{3}{2}$, corresponding to $p = 1$, also appears for the entropy of a $(3 + 1)$ dimensional black hole calculated using the spin network formalism [8]. In this formalism, one considers punctures, each carrying a spin J_{puncture}, and counts the number of spin singlet states, namely those states with $J(\text{total}) = 0$. The leading term (and a part of the logarithmic correction) in the entropy corresponds to the number of states with $J_z(\text{total}) = 0$. However, such states include states with $J(\text{total}) \neq 0$ also. A correct counting, that counts states with $J(\text{total}) = 0$ only, then leads to the coefficient $-\frac{3}{2}$ for the logarithmic correction to the entropy [8]. It will be interesting to find if a similar interpretation exists for the logarithmic correction coefficient $X = -\frac{p+2}{2p}$ for other values of p also.

Acknowledgement: We thank C. Castro for suggesting this problem, pointing out the review article in [4], and for discussions; R. Kaul for discussions regarding reference [7]; and K. Kirsten for correspondence.

References

[1] S. Fubini, A. J. Hanson, and R. Jackiw, Phys. Rev. D 7 (1973) 1732.

[2] A. Strumia and G. Venturi, Lett. Nuovo Cimento 13 (1975) 337; E. Alvarez and T. Ortin, Mod. Phys. Lett. A 7 (1992) 2889; B. Harms and Y. Leblanc, Phys. Rev. D 47 (1993) 2438, hep-th/9208070.

[3] M. B. Green, J. Schwarz, and E. Witten, Superstring Theory, section 2.3.5, Cambridge University Press, 1987.

[4] A. A. Bytsenko, K. Kirsten, and S. Zerbini, Phys. Lett. B 304 (1993) 235; A. A. Bytsenko, K. Kirsten, and S. Zerbini, Mod. Phys. Lett. A 9 (1994) 1569, hep-th/9405090. See also the review A. A. Bytsenko, G. Cognola, L. Vanzo, and S. Zerbini, Phys. Rept. 266 (1996) 1, hep-th/9505061 and references therein.

[5] A. A. Bytsenko and S. D. Odintsov, Prog. Theor. Phys. 98 (1997) 987, hep-th/9611151; A. A. Bytsenko, A. E. Goncalves, and S. D. Odintsov, JETP Lett. 66 (1997) 11, hep-th/9708136.
[6] S. Carlip, Class. Quant. Grav. 17 (2000) 4175, gr-qc/0005017. See also P. Di Francesco, P. Mathieu, and D. Senechal, *Conformal Field Theory*, sections 6.3 and 10.2, Springer 1997.

[7] R. K. Kaul, hep-th/0302170.

[8] R. K. Kaul and P. Majumdar, Phys. Lett. B 439 (1998) 267, gr-qc/9801080; Phys. Rev. Lett. 84 (2000) 5255, gr-qc/0002040; S. Das, R. K. Kaul, and P. Majumdar, Phys. Rev. D 63 (2001) 044019, gr-qc/0006211; R. K. Kaul and S. Kalyana Rama, to appear in Phys. Rev. D, gr-qc/0301128.

[9] D. Birmingham and S. Sen, Phys. Rev. D 63 (2001) 047501, hep-th/0008051; T. R. Govindarajan, R. K. Kaul, and V. Suneeta, Class. Quant. Grav. 18 (2001) 2877, gr-qc/0104010.

[10] S. Das, P. Majumdar, and R. K. Bhaduri, Class. Quant. Grav. 19 (2002) 2355, hep-th/0111001.

[11] For the definition of the number operators N_n^i and their commutation properties see, for example, M. J. Duff et al, Nucl. Phys. B 297 (1988) 515.

[12] See, for example, G. E. Andrews, *The Theory of Partitions*, Chapter 6, Encyclopedia of Mathematics and its Applications, Volume 2, Addison-Wesley publishing company (1976).

[13] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505, hep-th/9803131.

[14] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200; S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428 (1998) 105, hep-th/9802109; E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150.