Review Article

Endothelial-Mesenchymal Transition in Regenerative Medicine

Damian Medici1,2,3,4

1Department of Orthopaedics, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
2Division of Hematology/Oncology, Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
3Center for Regenerative Medicine, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
4Cardiovascular Research Center, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA

Correspondence should be addressed to Damian Medici; damianmedici@gmail.com

Received 9 December 2015; Revised 12 March 2016; Accepted 22 March 2016

Academic Editor: Heinrich Sauer

Copyright © 2016 Damian Medici. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Endothelial-mesenchymal transition (EndMT) is a fundamental cellular mechanism that regulates embryonic development and diseases such as cancer and fibrosis. Recent developments in biomedical research have shown remarkable potential to harness the EndMT process for tissue engineering and regeneration. As an alternative to traditional or artificial stem cell therapies, EndMT may represent a safe method for engineering new tissues to treat degenerative diseases by mimicking a process that occurs in nature. This review discusses the signaling mechanisms and therapeutic inhibitors of EndMT, as well as the role of EndMT in development, disease, acquiring stem cell properties and generating connective tissues, and its potential as a novel mechanism for tissue regeneration.

1. Introduction

Endothelial cells line the interior of blood vessels and lymphatic vessels [1]. Endothelial cell plasticity plays a critical role in various developmental and pathological processes [2]. EndMT is defined by the loss of cellular adhesion and cytoskeletal reorganization of actin and intermediate filaments that convert apical-basal polarity to front-end/back-end polarity to form spindle-shaped cells. During this transformation, there is a marked decrease in endothelial biomarkers such as VE-cadherin, CD31, TIE1, and vWF, as well as increased expression of mesenchymal biomarkers such as CD44, vimentin, FSP1, and \(\alpha \)-SMA [3]. The basal lamina, primarily composed of type IV collagen and laminin, is cleaved by secreted matrix metalloproteinases (MMPs) and replaced by extracellular matrix composed of type I and type III collagen and fibronectin, which promotes cell motility [4]. These cells also acquire stem cell properties by expressing mesenchymal stem cell biomarkers and gaining multipotency [5]. This transformation is reversible through a process known as mesenchymal-endothelial transition, which is an important mechanism that regulates cardiac neovascularization [6].

Signaling Mechanisms of EndMT. A number of autocrine or paracrine signaling molecules can induce EndMT. These may be produced by tissue injury or immune cells recruited to the site of injury in response to inflammation [7]. The most common cytokines that stimulate EndMT are Transforming Growth Factor-Beta (TGF-\(\beta \)) superfamily of proteins, which include isoforms TGF-\(\beta_1 \) and TGF-\(\beta_2 \) as well as Bone Morphogenetic Proteins (BMPs) BMP2, BMP4, BMP6, BMP9, and BMP10 [8–14]. Other signaling pathways such as Wnt/\(\beta \)-catenin [15], Notch [16], and various receptor tyrosine kinases [17] have also been shown to activate EndMT. All of these pathways induce expression of transcription factors such as Snail, Slug, Twist, LEF-1, ZEB1, and ZEB2 that cause the repression of endothelial genes and/or expression of mesenchymal genes [17, 18]. These identified pathways allow for therapeutic targeting with the potential to inhibit this process for the treatment of EndMT-related pathologies.

Several microRNAs have been described to regulate endothelial plasticity. miR-9, a microRNA regulated by Tumor Necrosis Factor-\(\alpha \) (TNF-\(\alpha \)) signaling, induces EndMT in lymphatic endothelial cells [19]. miR-21 targets PTEN and mediates EndMT induced by TGF-\(\beta \) signaling [20]. miR-31...
targets VAV3 to control actin remodeling and promotes the secretion of various inflammatory cytokines that promote EndMT [21].

Other positive regulators of EndMT include bleomycin, which promotes EndMT through activation of the mTOR signaling pathway [22]. Saffrole oxide induces EndMT by initiating the ATF4/p75NTR/IL-8 pathway [23]. Parathyroid hormone (PTH) stimulates EndMT by enhancing nuclear localization of β-catenin [24]. The Kaposi sarcoma herpesvirus has been shown to induce EndMT by enhancing Notch signaling [16].

Physiological processes such as endothelial cell apoptosis can also cause EndMT through the upregulation of TGF-β1 in both apoptotic cells and in the adjacent viable cells [25]. Fluid shear stress studies have shown no EndMT with laminar fluid shear stress but induction of EndMT with disturbed flow shear stress [26]. Ventricular mechanical stretching causes EndMT associated with dysynchronous heart failure [27]. High glucose levels can cause endothelial cell damage and subsequent stimulation of EndMT [28]. Hypoxia associated with tissue damage, ischemia, and/or inflammation most commonly promotes angiogenesis but can also contribute to EndMT [29, 30].

EndMT Inhibitors. While most BMPs promote EndMT, BMP7 appears to be a negative regulator of EndMT [31], although the distinct differences between the downstream signals of the individual BMP isoforms remain elusive. Vascular Endothelial Growth Factor-A (VEGF-A) is known to inhibit EndMT through VEGFR2 signaling [32]. Inversely, VEGFR1 can have a positive effect on EndMT by sequestering VEGF-A and preventing its interaction with VEGFR2 [33]. Recent evidence has shown that BMP signaling can also repress VEGF-A to help promote EndMT [34]. Fibroblast Growth Factor Receptor 1 (FGFR1) signaling can inhibit TGF-β-induced EndMT [35]. FGF-2, although found to be an inducer of EndMT in some types of endothelial cells [36], has also been shown to inhibit EndMT in others through miR-20a-mediated inhibition of TGF-β signaling [37].

MicroRNAs miR-15a, miR-23b, and miR-199a impair EndMT during heart development, although the miR-15a-dependent inhibition is only partial [38]. miR-126 blocks TGF-β1-induced EndMT of bone-marrow derived endothelial progenitor cells through direct targeting of the PI3K subunit p85 [39]. miR-155 impairs TGF-β1-induced EndMT by inhibiting RhoA expression [40]. miR-30c negatively regulates expression of metadherin (MTDH) to impair EndMT associated with hepatocellular carcinoma [41]. N-acetylseryl-aspartyl-lysyl-proline (AcSDKP), a peptide substrate of angiotensin-converting enzyme (ACE), inhibits EndMT through the upregulation of microRNA let-7 and restoration of the FGF receptor [42].

Hydrogen sulfide can ameliorate EndMT caused by endoplasmic reticulum stress by activating the Src signaling pathway [43]. Aqueous extracts of Psoralea corylifolia L. have been shown to inhibit lipopolysaccharide-induced EndMT by inhibiting NF-κB-dependent expression of Snail [44]. Glucagon-like peptide-1 (GLP-1) blocks high glucose-induced EndMT by reducing expression of reactive oxygen species (ROS) and inhibiting poly(ADP-ribose) polymerase 1 (PARP-1) [45]. The extracellular matrix protein fibulin-1 can suppress EndMT by reducing expression TGF-β2 [46]. High-density lipoproteins (HDL) have been shown to inhibit EndMT induced by TGF-β1 signaling [47].

Several drugs have been proposed as EndMT inhibitors. Linagliptin, a DPP-4 inhibitor that impairs its interaction with integrin β1, has been shown to block TGF-β2-induced EndMT [48]. Rapamycin blocks EndMT by suppressing the mTOR signaling pathway [49]. Relaxin (RLX) has been shown to inhibit isoproterenol-induced EndMT in a cardiac fibrosis model in rats through notch-mediated signaling [50]. Macitentan, an endothelin-1 receptor inhibitor, was shown to impair EndMT induced by either endothelin-1 or TGF-β1 [51]. Marimastat, a broad-spectrum MMP inhibitor, prevents FGF-2-dependent EndMT of corneal endothelial cells [52]. Kallistatin blocks TGF-β-induced EndMT through upregulation of endothelial nitric oxide synthase (eNOS) and by differential regulation of miR-21 [53]. Spironolactone, an aldosterone receptor blocker, can also inhibit TGF-β-induced EndMT by controlling Notch1 expression [54]. Scutellarin can also regulate Notch1 and Jagged1 expression to prevent isoprenaline-induced EndMT [55]. Losartan, an inhibitor of angiotensin II type 1 receptor, impairs EndMT by blocking TGF-β signaling [56]. Cinacalcet attenuates EndMT in cardiac fibrosis associated with elevated serum levels of parathyroid hormone (PTH) by suppressing the hormone levels [57]. Interestingly, hydrocortisone has been proposed to reverse EndMT through mesenchymal-endothelial transition by enhancing endothelial cell adhesion [58]. These functional inhibitors may be used as potential therapeutic agents to perturb the pathological effects of EndMT.

EndMT in Development and Disease. EndMT has been shown to regulate angiogenesis [39], as well as cardiac development [60]. EndMT causes formation of the valves and septa of the heart during embryogenesis [60, 61]. In the postnatal organism, tissue damage and/or inflammation can stimulate this embryonic mechanism to give rise to fibroblasts and myofibroblasts that form scar tissue during wound healing or fibrotic diseases [2].

EndMT has a critical role in the generation of fibroblasts in kidney [62], lung [29], intestinal [63], and cardiac fibrosis [64]. This EndMT-dependent fibrotic phenotype contributes to diseases such as systemic sclerosis [65], atherosclerosis [66], pulmonary hypertension [67], diabetic nephropathy [68], diabetic retinopathy [69], sepsis [70], and cerebral cavernous malformations [71]. It also plays a central role in vein graft remodeling [72].

Further, while the epithelial-mesenchymal transition (EMT) has been shown to be the primary mechanism of cancer metastasis [73] and for the formation of cancer stem cells [74], EndMT occurs to form cancer-associated fibroblasts in the tumor microenvironment that help regulate the progression of the disease [75]. EndMT has also been proposed to have a role in the metastatic extravasation of cancer cells [76]. It may also have a part in central nervous system diseases associated with dysfunction of the blood-brain barrier [77].
EndMT in the Generation of Connective Tissues. Other than fibroblasts, recent studies have shown the ability of EndMT to generate various different types of connective tissues. Lineage tracing and biomarker studies have suggested an endothelial origin of heterotopic cartilage and bone that forms in a rare disease called fibrodysplasia ossificans progressiva (FOP) [5, 78, 79]. Patients with this disease carry a gain-of-function mutation in the gene encoding activin-like kinase 2 (ALK2) receptor [80]. Upon expressing this mutated gene in endothelial cells, they undergo EndMT and acquire properties of mesenchymal stem cells with the ability to transform into bone, cartilage, or fat cells [5]. A recent study has shown that kidney cells isolated from FOP patients can be transformed into induced pluripotent stem cells (iPSC) and subsequently differentiated into endothelial cells, which spontaneously underwent EndMT in culture [81].

The ability of EndMT to generate osteoprogenitor cells has also been observed in vascular calcifications [82, 83], valvular calcifications [84], and tumor calcifications [85]. Another recent study has shown that BMP6 has the ability to stimulate EndMT and subsequent differentiation to osteoblasts both independently and synergistically with oxidized low-density lipoprotein [86]. Tang et al. showed that high glucose levels mediate endothelial differentiation to chondrocytes through EndMT [87].

**Lineage tracing studies using VE-cadherin-Cre reporter mice have demonstrated an endothelial origin of white and brown fat cells [88]. A recent study that isolated endothelium from vascular tumors showed that these cells spontaneously undergo EndMT in culture and have the ability to form adipocytes and mural cells such as pericytes and smooth muscle cells [89]. Endothelial progenitor cells (EPCs) have also been induced to undergo EndMT and transform into smooth muscle cells [90].

Endothelial plasticity has also been linked to generation of skeletal myocytes for muscle repair [91]. Furthermore, lineage tracing in Tie1-Cre and VE-cadherin-Cre reporter mice has demonstrated an endothelial origin of cardiomyocytes during cardiac homeostasis, which are proposed to arise by EndMT [92].

EndMT for Tissue Engineering and Regeneration. The ability of EndMT to generate various different types of connective tissue (Figure 1) provides hope for using it as a potential method for tissue regeneration. For example, EndMT-dependent osteogenesis could be used to treat disorders such as osteoporosis or osteonecrosis. EndMT-induced chondrogenesis could be utilized for the treatment of osteoarthritis or temporal mandibular joint disorder (TMJD). Using EndMT to induce myogenesis could prove beneficial for muscular
dystrophy, while cardiomyogenesis might be helpful for regenerating heart muscle after myocardial infarction. The process may also aid in vascular tissue regeneration, particularly in vasculogenesis through its ability to generate smooth muscle cells and pericytes. EndMT has already been found to be important in engineering cardiovascular tissue grafts through its ability to increase the production and remodeling of the extracellular matrix [93].

Tissue engineering ex vivo may be achieved through EndMT for the replacement of degenerated tissues. For personalized medicine, to avoid any potential host rejection, vascular endothelial cells can be easily obtained from patients from a skin sample. The tissue can be enzymatically digested and endothelial cells can be isolated using magnetic beads conjugated with endothelial-specific antibodies. These isolated endothelial cells can then be grown and expanded in culture and then loaded onto three-dimensional scaffolds composed of collagen, polylactic acid, hydrogel, and so forth. The endothelial cells can then be induced to undergo EndMT using any of the known cytokines that stimulate the transformation, followed by addition of differentiation medium to change the newly formed mesenchymal cells into the desired tissue type [94]. The engineered tissue may then be surgically transplanted into the patient.

For tissue regeneration in vivo, the potential use of EndMT is virtually endless since almost every tissue in the body is highly vascularized, so an abundant source of vascular endothelial cells should be present in damaged or degenerated tissues in need of repair. Drugs can be developed and locally applied to degenerated tissue to convert the vascular endothelium into the cell type of need. If some capillary blood vessels are lost during this cellular transformation, they should be naturally replenished through hypoxia-induced angiogenesis [95]. Therefore, EndMT should provide a natural and effective method for building new connective tissues from blood vessels.

2. Discussion

Although EndMT has positive effects in embryonic development and wound healing, it has traditionally been considered to have negative effects in disease. While most therapeutic studies attempt to inhibit the harmful effects of EndMT in progressive diseases such as cancer and fibrosis, it is now proposed that researchers harness this natural mechanism by inducing it for tissue regeneration for treatment of degenerative diseases. Although there may be potential risks of converting the vascular endothelium into other cell types for tissue regeneration, such as blood vessel leakage or cell death associated with hypoxia, the target tissue would already be degenerated and the natural mechanism of angiogenesis should replenish the blood vessels. Therefore, the potential benefits of restoring degenerated tissue using EndMT far outweigh the risks for regenerative medicine.

Competing Interests

The author declares that he has no competing interests.

Acknowledgments

This work was supported by Grants R01HL112860 and P20GM104937 from the National Institutes of Health and a grant from the John Butler Mulliken Foundation.

References

[1] B. E. Sumpio, J. T. Timothy Riley, and A. Dardik, “Cells in focus: endothelial cell,” International Journal of Biochemistry and Cell Biology, vol. 34, no. 12, pp. 1508–1512, 2002.
[2] F. Lin, N. Wang, and T.-C. Zhang, “The role of endothelial-mesenchymal transition in development and pathological process,” IUBMB Life, vol. 64, no. 9, pp. 717–723, 2012.
[3] D. Medici and R. Kalluri, “Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype,” Seminars in Cancer Biology, vol. 22, no. 5–6, pp. 379–384, 2012.
[4] S. Lamouille, J. Xu, and R. Derynck, “Molecular mechanisms of epithelial-mesenchymal transition,” Nature Reviews Molecular Cell Biology, vol. 15, no. 3, pp. 178–196, 2014.
[5] D. Medici, E. M. Shore, V. Y. Lounev, F. S. Kaplan, R. Kalluri, and B. R. Olsen, “Conversion of vascular endothelial cells into multipotent stem-like cells,” Nature Medicine, vol. 16, no. 12, pp. 1400–1406, 2010.
[6] E. Ubil, J. Duan, I. C. L. Pillai et al., “Mesenchymal-endothelial transition contributes to cardiac neovascularization,” Nature, vol. 514, no. 7524, pp. 585–590, 2014.
[7] G. J. Mahler, E. J. Farrar, and J. T. Butcher, “Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 1, pp. 121–130, 2013.
[8] L. A. van Meeteren and P. ten Dijke, “Regulation of endothelial cell plasticity by TGF-β,” Cell and Tissue Research, vol. 347, no. 1, pp. 177–186, 2012.
[9] J. A. Maring, L. A. van Meeteren, M. J. Goumans, and P. ten Dijke, “Interrogating TGF-β function and regulation in endothelial cells,” Methods in Molecular Biology, vol. 1344, pp. 193–203, 2016.
[10] D. Medici, S. Potenta, and R. Kalluri, “Transforming growth factor-β2 promotes Snail-mediated endothelial—mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling,” Biochemical Journal, vol. 437, no. 3, pp. 515–520, 2011.
[11] L. Luna-Zurita, B. Prados, J. Grego-Bessa et al., “Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation,” Journal of Clinical Investigation, vol. 120, no. 10, pp. 3493–3507, 2010.
[12] D. J. McCulley, J.-O. Kang, J. F. Martin, and B. L. Black, “Bmp4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development,” Developmental Dynamics, vol. 237, no. 11, pp. 3200–3209, 2008.
[13] R. Y. Kim, E. J. Robertson, and M. J. Solloway, “Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart,” Developmental Biology, vol. 235, no. 2, pp. 449–466, 2001.
[14] S. Levit, M. Ouarné, D. Ciais et al., “BMP9 and BMP10 are necessary for proper closure of the ductus arteriosus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 25, pp. E3207–E3215, 2015.
[15] O. Aisagbonhi, M. Rai, S. Ryzhov, N. Atria, I. Feoktistov, and A. K. Hatzopoulos, "Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition," DMM Disease Models and Mechanisms, vol. 4, no. 4, pp. 469–483, 2011.

[16] P. Gasperini, G. Espigol-Frigole, P. J. McCormick et al., “Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through notch-dependent signaling,” Cancer Research, vol. 72, no. 5, pp. 1157–1169, 2012.

[17] D. M. Gonzalez and D. Medici, “Signaling mechanisms of the epithelial-mesenchymal transition,” Science Signaling, vol. 7, no. 344, article re8, 2014.

[18] R. Kalluri and R. A. Weinberg, “The basics of epithelial-mesenchymal transition,” The Journal of Clinical Investigation, vol. 119, no. 6, pp. 1420–1428, 2009.

[19] S. Chakraborty, D. C. Zawieja, M. J. Davis, and M. Muthuchamy, “MicroRNA signature of inflamed lymphatic endothelium and role of miR-9 in lymphangiogenesis and inflammation,” American Journal of Physiology—Cell Physiology, vol. 309, no. 10, pp. C680–C692, 2015.

[20] R. Kumarswamy, I. Volkmann, V. Jazbutyte, S. Dangwal, D.-H. Park, and T. Thum, “Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by MicroRNA-21,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 2, pp. 361–369, 2012.

[21] A. Katsura, H. I. Suzuki, T. Ueno et al., “MicroRNA-31 is a positive modulator of endothelial-mesenchymal transition and associated secretory phenotype induced by TGF-β,” Genes to Cells, vol. 21, no. 1, pp. 99–116, 2016.

[22] W. Zhang, G. Chen, J.-G. Ren, and Y.-F. Zhao, “Bleomycin induces endothelial mesenchymal transition through activation of mTOR pathway: a possible mechanism contributing to the sclerotherapy of venous malformations,” British Journal of Pharmacology, vol. 170, no. 6, pp. 1210–1220, 2013.

[23] D. Ge, Q. Jing, W. Zhao et al., “Finding ATF4/p75NTR/IL-8 signal pathway in endothelial-mesenchymal transition by safrrole oxide,” PLoS ONE, vol. 9, no. 6, Article ID e99378, 2014.

[24] M. Wu, R.-N. Tang, H. Liu, K.-L. Ma, L.-L. Lv, and B.-C. Liu, “Nuclear translocation of β-catenin mediates the parathyroid hormone-induced endothelial-to-mesenchymal transition in human renal glomerular endothelial cells,” Journal of Cellular Biochemistry, vol. 115, no. 10, pp. 1692–1701, 2014.

[25] J. Li, J. Xiong, B. Yang et al., “Endothelial cell apoptosis induces TGF-β signaling-dependent host endothelial-mesenchymal transition to promote transplant arteriosclerosis,” American Journal of Transplantation, vol. 15, no. 12, pp. 3095–3111, 2015.

[26] J. A. Moonen, E. S. Lee, M. Schmidt et al., “Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress,” Cardiovascular Research, vol. 108, no. 3, pp. 377–386, 2015.

[27] J. Mai, Q. Hu, Y. Xie et al., “Dysynchronous pacing triggers endothelial-mesenchymal transition through heterogeneity of mechanical stretch in a canine model,” Circulation Journal, vol. 79, no. 1, pp. 201–209, 2015.

[28] R. Tang, Q. Li, L. Lv et al., “Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells,” Cardiovascular Diabetology, vol. 9, article 31, 2010.

[29] S.-H. Choi, Z.-Y. Hong, J.-K. Nam et al., “A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis,” Clinical Cancer Research, vol. 21, no. 16, pp. 3716–3726, 2015.

[30] X. Xu, X. Tan, B. Tampe, E. Sanchez, M. Zeisberg, and E. M. Zeisberg, "Snail is a direct target of hypoxia-inducible factor β (HIFβ) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells," Journal of Biological Chemistry, vol. 290, no. 27, pp. 16533–16664, 2015.

[31] X. Xu, I. Friels, T. Z. Hu et al., "Endocardial fibroelastosis is caused by aberrant endothelial to mesenchymal transition," Circulation Research, vol. 116, no. 5, pp. 857–866, 2015.

[32] S. Paruchuri, J.-H. Yang, E. Aikawa et al., “Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-β2,” Circulation Research, vol. 99, no. 8, pp. 861–869, 2006.

[33] J. Tao, Y. Doughtman, K. Yang, D. Ramirez-Bergeron, and M. Watanabe, “Epidermal HIF signaling regulates vascular precursor cell invasion into the myocardium,” Developmental Biology, vol. 376, no. 2, pp. 136–149, 2013.

[34] Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses vegfa to promote outflow tract cushion development,” Development, vol. 140, no. 16, pp. 3395–3402, 2013.

[35] P.-Y. Chen, L. Qin, G. Tellides, and M. Simons, “Fibroblast growth factor receptor I is a key inhibitor of TGFβ signaling in the endothelium,” Science Signaling, vol. 7, no. 344, article ra290, 2014.

[36] J. G. Lee, M. K. Ko, and E. P. Kay, "Endothelial mesenchymal transformation mediated by IL-1β-induced FGF-2 in corneal endothelial cells," Experimental Eye Research, vol. 95, no. 1, pp. 35–39, 2012.

[37] A. C. Correia, J. R. Moonen, M. G. Brinker, and G. Krenning, “FGF2 inhibits endothelial-mesenchymal transition through microRNA-20a-mediated repression of canonical TGF-β signaling,” Journal of Cell Science, vol. 129, no. 3, pp. 569–579, 2016.

[38] F. Bonet, Á. Dueñas, C. López-Sánchez, V. García-Martínez, A. E. Aranega, and D. Franco, “MiR-23b and miR-199a impair epithelial-to-mesenchymal transition during arterioventricular endocardial cushion formation,” Developmental Dynamics, vol. 244, no. 10, pp. 1259–1275, 2015.

[39] J. Zhang, Z. Zhang, D. Y. Zhang, J. Zhu, T. Zhang, and C. Wang, “microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PI3K/R2-P13K/Akt signalling pathway,” PLoS ONE, vol. 8, no. 12, Article ID e83294, 2013.

[40] A. J. van Zonneveld, R. G. de Bruin, C. van Solingen et al., “MicroRNA-155 functions as a negative regulator of RhoA signaling in TGF-β-induced endothelial to mesenchymal transition,” MicroRNA, vol. 1, no. 1, pp. 2–10, 2012.

[41] K. Zhu, Q. Pan, L.-Q. Jia et al., “MiR-302c inhibits tumor growth of hepatocellular carcinoma by suppressing the endothelial-mesenchymal transition of endothelial cells,” Scientific Reports, vol. 4, article 5524, 2014.

[42] T. Nagai, M. Kanasaki, S. P. Srivastava et al., “N-acetyl-seryl-aspartyl-lysyl-proline inhibits diabetes-associated kidney fibrosis and endothelial-mesenchymal transition,” BioMed Research International, vol. 2014, Article ID 696475, 12 pages, 2014.

[43] R. Ying, X. Q. Wang, Y. Yang et al., “Hydrogen sulfide suppresses endoplasmic reticulum stress-induced endothelial-to-mesenchymal transition through Src pathway,” Life Sciences, vol. 144, pp. 208–217, 2016.

[44] B. Jung, E. H. Jang, D. Hong, I. H. Cho, M.-J. Park, and J.-H. Kim, “Aqueous extract of Psoralea corylifolia L. Inhibits
lipopolysaccharide-induced endothelial-mesenchymal transition via downregulation of the NF-kB-SNAIL signaling pathway,” Oncology Reports, vol. 34, no. 4, pp. 2040–2046, 2015.

[45] F. Yan, G.-H. Zhang, M. Feng et al., “Glucagon-like peptide 1 protects against hyperglycemic-induced endothelial-to-mesenchymal transition and improves myocardial dysfunction by suppressing poly(ADP-ribose) polymerase 1 activity,” Molecular Medicine, vol. 21, pp. 15–25, 2015.

[46] K. Harikrishnan, M. A. Cooley, Y. Sugi et al., “Fibulin-1 suppresses endothelial to mesenchymal transition in the proximal outflow tract,” Mechanisms of Development, vol. 136, pp. 123–132, 2015.

[47] F. Spillmann, K. Miteva, B. Pieske, C. Tschope, and S. van Linthout, “High-density lipoproteins reduce endothelial-to-mesenchymal transition,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 35, no. 8, pp. 1774–1777, 2015.

[48] K. Kanasaki, S. Shi, M. Kanasaki et al., “Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen,” Diabetes, vol. 63, no. 6, pp. 2120–2131, 2014.

[49] H. Gao, J. Zhang, T. Liu, and W. Shi, “Rapamycin prevents endothelial cell migration by inhibiting the endothelial-to-mesenchymal transition and matrix metalloproteinase-2 and -9: an in vitro study,” Molecular Vision, vol. 17, pp. 3406–3414, 2011.

[50] X. Zhou, X. Chen, J. J. Cai et al., “Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway,” Drug Design, Development and Therapy, vol. 9, pp. 4599–4611, 2015.

[51] P. Cipriani, P. Di Benedetto, P. Ruscitti et al., “The endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by Macitentan, a dual endothelin-1 receptor antagonist,” Journal of Rheumatology, vol. 42, no. 10, pp. 1808–1816, 2015.

[52] W.-T. Ho, J.-S. Chang, C.-C. Su et al., “Inhibition of matrix metalloproteinase activity reverses corneal endothelial-mesenchymal transition,” American Journal of Pathology, vol. 185, no. 8, pp. 2158–2167, 2015.

[53] Y. Guo, P. Li, G. Bledsoe, Z.-R. Yang, L. Chao, and J. Chao, “Kallistatin inhibits TGF-β-induced endothelial-mesenchymal transition by differential regulation of microRNA-21 and eNOS expression,” Experimental Cell Research, vol. 337, no. 3, pp. 103–110, 2015.

[54] X. Chen, J. Cai, X. Zhou et al., “Protective effect of spironolactone on endothelial-to-mesenchymal transition in HUVECs via notch pathway,” Cellular Physiology and Biochemistry, vol. 36, no. 1, pp. 191–200, 2015.

[55] H. Zhou, X. Chen, L. Chen et al., “Anti-fibrosis effect of scutellarin via inhibition of endothelial-mesenchymal transition on isoprenaline-induced myocardial fibrosis in rats,” Molecules, vol. 19, no. 10, pp. 15611–15623, 2014.

[56] J. Wylie-Sears, R. A. Levine, and J. Bischoff, “Losartan inhibits endothelial-to-mesenchymal transformation in mitral valve endothelial cells by blocking transforming growth factor-β-induced phosphorylation of ERK,” Biochemical and Biophysical Research Communications, vol. 446, no. 4, pp. 870–875, 2014.

[57] M. Wu, R.-N. Tang, H. Liu et al., “Cinacalcet ameliorates cardiac fibrosis in uremic hearts through suppression of endothelial-to-mesenchymal transition,” International Journal of Cardiology, vol. 171, no. 3, pp. e65–e69, 2014.

[58] T. Furihata, S. Kamawatu, R. Ito et al., “Hydrocortisone enhances the barrier properties of HBMEC/cJ, a brain microvascular endothelial cell line, through mesenchymal-to-endothelial transition-like effects,” Fluids and Barriers of the CNS, vol. 12, no. 1, article 7, 2015.

[59] K. M. Welch-Reardon, S. M. Ehsan, K. Wang et al., “Angiogenic sprouting is regulated by endothelial cell expression of Slug,” Journal of Cell Science, vol. 127, no. 9, pp. 2017–2028, 2014.

[60] J. C. Kovacic, N. Mercader, M. Torres, M. Boehm, and V. Fuster, “Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition from cardiovascular development to disease,” Circulation, vol. 125, no. 14, pp. 1795–1808, 2012.

[61] A. von Gise and W. T. Pu, “Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease,” Circulation Research, vol. 110, no. 12, pp. 1628–1645, 2012.

[62] E. M. Zeisberg, S. E. Potenta, H. Sugimoto, M. Zeisberg, and R. Kalluri, “Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition,” Journal of the American Society of Nephrology, vol. 19, no. 12, pp. 2282–2287, 2008.

[63] F. Rieder, S. P. Kessler, G. A. West et al., “Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis,” American Journal of Pathology, vol. 179, no. 5, pp. 2660–2673, 2011.

[64] E. M. Zeisberg, O. Tarnavski, M. Zeisberg et al., “Endothelial-to-mesenchymal transition contributes to cardiac fibrosis,” Nature Medicine, vol. 13, no. 8, pp. 952–961, 2007.

[65] P. Cipriani, P. Di Benedetto, P. Ruscitti et al., “The endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by macitentan, a dual endothelin-1 receptor antagonist,” Journal of Rheumatology, vol. 42, no. 10, pp. 1808–1816, 2015.

[66] P. Y. Chen, L. Qin, N. Baeyens et al., “Endothelial-to-mesenchymal transition drives atherosclerosis progression,” Journal of Clinical Investigation, vol. 125, no. 12, pp. 4514–4528, 2015.

[67] B. Ranchoux, F. Antigny, C. Rucker-Martin et al., “Endothelial-to-mesenchymal transition in pulmonary hypertension,” Circulation, vol. 131, no. 11, pp. 1006–1018, 2015.

[68] J. Li, X. Qu, J. Yao et al., “Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 59, no. 10, pp. 2612–2624, 2010.

[69] Y. Cao, B. Feng, S. Chen, Y. Chu, and S. Chakrabarti, “Mechanisms of endothelial to mesenchymal transition in the retina in diabetes,” Investigative Ophthalmology and Visual Science, vol. 55, no. 11, pp. 7321–7331, 2014.

[70] X. Huang, L. Pan, H. Pu et al., “Loss of caveolin-1 promotes endothelial-mesenchymal transition during sepsis: a membrane proteomic study,” International Journal of Molecular Medicine, vol. 32, no. 3, pp. 585–592, 2013.

[71] L. Maddaluno, N. Rudini, R. Cuttano et al., “EndoMT contributes to the onset and progression of cerebral cavernous malformations,” Nature, vol. 498, no. 7455, pp. 492–496, 2013.

[72] B. C. Cooley, J. Nevado, J. Mellado et al., “TGF-β signaling mediates endothelial-to-mesenchymal transition (EndoMT) during vein graft remodeling,” Science Translational Medicine, vol. 6, no. 227, Article ID 227ra34, 2014.

[73] J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009.
[74] C. Scheel and R. A. Weinberg, “Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links,” *Seminars in Cancer Biology*, vol. 22, no. 5-6, pp. 396–403, 2012.

[75] E. M. Zeisberg, S. Potenta, L. Xie, M. Zeisberg, and R. Kalluri, “Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts,” *Cancer Research*, vol. 67, no. 21, pp. 10123–10128, 2007.

[76] I. A. Krizbai, A. Gasparics, P. Nagyoszi et al., “Endothelial-mesenchymal transition of brain endothelial cells: possible role during metastatic extravasation,” *PLoS ONE*, vol. 10, no. 3, Article ID e0119655, 2015.

[77] C. D. Troletti, P. de Goede, A. Kamermans, and H. E. de Vries, “Molecular alterations of the blood–brain barrier under inflammatory conditions: the role of endothelial to mesenchymal transition,” *Biochimica et Biophysica Acta—Molecular Basis of Disease*, vol. 1862, no. 3, pp. 452–460, 2016.

[78] V. Y. Lounev, R. Ramachandran, M. N. Wosczyna et al., “Identification of progenitor cells that contribute to heterotopic skeletogenesis,” *The Journal of Bone & Joint Surgery—American Volume*, vol. 91, no. 3, pp. 652–663, 2009.

[79] S. A. Chakkalakal, D. Zhang, A. L. Culbert et al., “An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva,” *Journal of Bone and Mineral Research*, vol. 27, no. 8, pp. 1746–1756, 2012.

[80] E. M. Shore, M. Xu, G. J. Feldman et al., “A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva,” *Nature Genetics*, vol. 38, no. 5, pp. 525–527, 2006.

[81] J. Cai, V. V. Orlova, X. Cai et al., “Induced pluripotent stem cells to model human fibrodysplasia ossificans progressiva,” *Stem Cell Reports*, vol. 5, no. 6, pp. 963–970, 2015.

[82] Y. Yao, M. Jumabay, A. Ly, M. Radparvar, M. R. Cubberly, and K. I. Bostrom, “A role for the endothelium in vascular calcification,” *Circulation Research*, vol. 113, no. 5, pp. 495–504, 2013.

[83] J. Yao, P. J. Guihard, A. M. Blazquez-Medela et al., “Serine protease activation essential for endothelial-mesenchymal transition in vascular calcification,” *Circulation Research*, vol. 117, no. 9, pp. 758–769, 2015.

[84] J. Hjortnaes, K. Shapero, C. Goett sch et al., “Valvular interstitial cells suppress calcification of valvular endothelial cells,” *Atherosclerosis*, vol. 242, no. 1, pp. 251–260, 2015.

[85] A. C. Dudley, Z. A. Khan, S.-C. Shih et al., “Calcification of multipotent prostate tumor endothelium,” *Cancer Cell*, vol. 14, no. 3, pp. 201–211, 2008.

[86] L. Yung, G. Sánchez-Duffhues, P. Ten Dijke, and P. B. Yu, “Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells,” *Cardiovascular Research*, vol. 108, no. 2, pp. 278–287, 2015.

[87] R. Tang, M. Gao, M. Wu, H. Liu, X. Zhang, and B. Liu, “High glucose mediates endothelial-to-chondrocyte transition in human aortic endothelial cells,” *Cardiovascular Diabetology*, vol. 11, article 113, 2012.

[88] K.-V. Tran, O. Gealekman, A. Frontini et al., “The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells,” *Cell Metabolism*, vol. 15, no. 2, pp. 222–229, 2012.

[89] L. Huang, H. Nakayama, M. Klagsbrun, J. B. Mulliken, and J. Bischoff, “Glucose transporter 1-positive endothelial cells in infantile hemangioma exhibit features of facultative stem cells,” *STEM CELLS*, vol. 33, no. 1, pp. 133–145, 2015.