Bio

BIO
Eric Pop is a Professor of Electrical Engineering (EE) and Materials Science & Engineering (by courtesy) at Stanford, where he leads the SystemX Heterogeneous Integration focus area. Before Stanford, he spent several years on the faculty of UIUC, and in industry at Intel and IBM. His research interests are at the intersection of electronics, nanomaterials, and energy. He received his Ph.D. in EE from Stanford (2005) and three degrees from MIT (MEng and BS in EE, BS in Physics). In 2018 he was named one of the world's Highly Cited Researchers by Clarivate. His other honors include the Presidential Early Career (PECASE) Award, and Young Investigator Awards from the ONR, NSF, AFOSR and DARPA. He is an IEEE Fellow, he was General Chair of the IEEE Device Research Conference (DRC), and has served on program committees of the IEDM, VLSI, MRS, and APS conferences. More information about the Pop Lab can be found online at http://poplab.stanford.edu

ACADEMIC APPOINTMENTS
• Professor, Electrical Engineering
• Professor (By courtesy), Materials Science and Engineering
• Member, Bio-X
• Affiliate, Precourt Institute for Energy

ADMINISTRATIVE APPOINTMENTS
• Lead of EE Culture, Equity, and Inclusion (CEI) Committee, Electrical Engineering, (2019- present)
• Co-Lead of Heterogeneous Integration Focus Area, SystemX Alliance, (2015- present)

HONORS AND AWARDS
• Intel 2021 Outstanding Researcher Award, Intel (2021)
• IEEE Fellow, IEEE (2021)
• Highly Cited Researcher, Web of Science (2018)
• Golden Reviewers List, IEEE Electron Device Letters (2017, 2013-09)
• Most Cited Researchers List in EE, Elsevier (2016)
• Okawa Foundation Grant, Okawa Foundation (2014)
• Engineering Council Award for Excellence in Advising, UIUC (2013)
• Award for Faculty Research, Xerox/UIUC (2011)
• Center for Advanced Study (CAS) Fellowship, UIUC (2011)
• Outstanding Presentation Award, EPCOS Symposium (2011)
• Senior Member, IEEE (2011)
Research & Scholarship

CURRENT RESEARCH AND SCHOLARLY INTERESTS
Research in the Pop Lab is at the intersection of nanoelectronics and nanoscale energy conversion. Most projects include both fundamental and applied, experimental and computational components. Some recent topics (as of 2013) include:

* Energy-efficient transistors, memory and integrated circuits
* Novel nanomaterials, e.g. graphene, BN, MoS2, carbon nanotubes, GeSbTe, etc.
* Fundamental physical limits of current and heat flow, e.g. ballistic electrons and phonons
* Applications of nanoscale energy transport, conversion and harvesting, e.g. thermoelectrics

For more details see the Pop Lab research website: http://poplab.stanford.edu

Teaching

COURSES
2021-22
• Circuits I: EE 101A (Win)
• Principles and Models of Semiconductor Devices: EE 216 (Aut)

2020-21
• Circuits I: EE 101A (Win)
• Introductory Research Seminar in Electrical Engineering: EE 301 (Aut)

2019-20
• Circuits I: EE 101A (Win)
• Energy in Electronics: EE 323 (Spr)
• Principles and Models of Semiconductor Devices: EE 216 (Aut)

2018-19
• Principles and Models of Semiconductor Devices: EE 216 (Win)
• Semiconductor Devices for Energy and Electronics: EE 116 (Spr)

STANFORD ADVISEES

Doctoral Dissertation Reader (AC)
Minda Deng, Carlo Gilardi, Marc Jaikissoon, Jung-Soo Ko, Chris Perez, Maryann Tung, Yecun Wu, Dante Zakhidov

Postdoctoral Faculty Sponsor
Koosha Nassiri Nazif

Doctoral Dissertation Advisor (AC)
Connor Bailey, Michelle Chen, Victoria Chen, Mahnaz Islam, Asir Intisar Khan, Cagil Koroglu, Crystal Nattoo, Katie Neilson, Kirstin Schauble, Sumaiya Wahid, Maritha Wang, Jerry Yang

Master's Program Advisor
Chloe Delmotte

Doctoral (Program)
Connor Bailey, Robert Bennett, Lauren Hoang, Fei Huang, Cassandra Huff, Katie Neilson, Robert Radway, Sumaiya Wahid, Yecun Wu, Jerry Yang, Sofie de Olazarra

Publications

PUBLICATIONS

• Fast-Response Flexible Temperature Sensors with Atomically Thin Molybdenum Disulfide. *Nano letters*
 Daus, A., Jaikissoon, M., Khan, A. I., Kumar, A., Grady, R. W., Saraswat, K. C., Pop, E.
 2022

• Unveiling the Effect of Superlattice Interfaces and Intermixing on Phase Change Memory Performance. *Nano letters*
 Khan, A. I., Wu, X., Perez, C., Won, B., Kim, K., Ramesh, P., Kwon, H., Tung, M. C., Lee, Z., Oh, I., Saraswat, K., Asheghi, M., Goodson, et al
 2022

• Extended Scale Length Theory for Low-Dimensional Field-Effect Transistors *IEEE TRANSACTIONS ON ELECTRON DEVICES*
 Gilardi, C., Bennett, R. A., Yoon, Y., Pop, E., Wong, H., Mitra, S.
 2022

• Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters *NATURE NANOTECHNOLOGY*
 Fang, Z., Chen, R., Zheng, J., Khan, A., Neilson, K. M., Geiger, S. J., Callahan, D. M., Moebius, M. G., Saxena, A., Chen, M. E., Rios, C., Hu, J., Pop, et al
 2022
• How to report and benchmark emerging field-effect transistors. Nature Electronics
Cheng, Z., Pang, C., Wang, P., Le, S. T., Wu, Y., Shahrjerdi, D., Radu, I., Lemme, M. C., Peng, L., Duan, X., Chen, Z., Appenzeller, J., Koester, et al
2022; 5 (7): 416-423

• Substrate-dependence of monolayer MoS2 thermal conductivity and thermal boundary conductance. Journal of Applied Physics
Gabourie, A. J., Koroglu, C., Pop, E.
2022; 131 (19)

• Nonequilibrium Phonon Thermal Resistance at MoS2/Oxide and Graphene/Oxide Interfaces. ACS applied materials & interfaces
Zheng, W., McClellan, C. J., Pop, E., Koh, Y. K.
2022

• Direct measurement of nanoscale filamentary hot spots in resistive memory devices. Science Advances
Deshmukh, S., Rojo, M. M., Yalon, E., Vaziri, S., Koroglu, C., Islam, R., Iglesias, R. A., Saraswat, K., Pop, E.
2022; 8 (13): eabk1514

• Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nature communications
Abdollahramezani, S., Hemmatyar, O., Taghinejad, M., Taghinejad, H., Krasnok, A., Eftekhar, A. A., Teichrib, C., Deshmukh, S., El-Sayed, M. A., Pop, E., Wuttig, M., Alo, A., Cai, et al
2022; 13 (1): 1696

• Temperature-dependent thermal resistance of phase change memory. Applied Physics Letters
Stern, K., Keller, Y., Neumann, C. M., Pop, E., Yalon, E.
2022; 120 (11)

• Electro-Thermal Confinement Enables Improved Superlattice Phase Change Memory. IEEE Electron Device Letters
Khan, A., Kwon, H., Chen, M. E., Asheghi, M., Wong, H., Goodson, K. E., Pop, E.
2022; 43 (2): 204-207

• High-specific-power flexible transition metal dichalcogenide solar cells. Nature communications
Nassiri Nazif, K., Daus, A., Hong, J., Lee, N., Vaziri, S., Kumar, A., Nitta, F., Chen, M. E., Kananian, S., Islam, R., Kim, K., Park, J., Poon, et al
2021; 12 (1): 7034

• Lateral electrical transport and field-effect characteristics of sputtered p-type chalcogenide thin films. Applied Physics Letters
Wahid, S., Daus, A., Khan, A., Chen, V., Neilson, K. M., Islam, M., Chen, M. E., Pop, E.
2021; 119 (23)

• Transistors based on two-dimensional materials for future integrated circuits. Nature Electronics
Das, S., Sebastian, A., Pop, E., McClellan, C. J., Franklin, A. D., Grasser, T., Knobloch, T., Illarionov, Y., Penumatcha, A. V., Appenzeller, J., Chen, Z., Zhu, W., Asselberghs, et al
2021; 4 (11): 786-799

• Vibrational Properties of a Naturally Occurring Semiconducting van der Waals Heterostructure. Journal of Physical Chemistry C
Costa, V., Liang, L., Vaziri, S., Miller, A., Pop, E., Newaz, A. M.
2021; 125 (39): 21607-21613

• Application-driven synthesis and characterization of hexagonal boron nitride deposited on metals and carbon nanotubes. 2D Materials
Chen, V., Shin, Y., Mikheev, E., Lin, Q., Martis, J., Zhang, Z., Chatterjee, S., Majumdar, A., Wong, H., Goldhaber-Gordon, D., Pop, E.
2021; 8 (4)

• Field-effect at electrical contacts to two-dimensional materials (Jul, 10.1007/s12274-021-3670-y, 2021). Nano Research
Guo, Y., Sun, Y., Tang, A., Wang, C., Zhao, Y., Bai, M., Xu, S., Xu, Z., Tang, T., Wang, S., Qiu, C., Xu, K., Peng, et al
2021

• Sub-Nanosecond Pulses Enable Partial Reset for Analog Phase Change Memory. IEEE Electron Device Letters
Stern, K., Wainstein, N., Keller, Y., Neumann, C. M., Pop, E., Kvatinsky, S., Yalon, E.
2021; 42 (9): 1291-1294

• Toward Low-Temperature Solid-Source Synthesis of Monolayer MoS2. ACS Applied Materials & Interfaces
Tang, A., Kumar, A., Jaikissoom, M., Saraswat, K., Wong, H. P., Pop, E.
• **Field-effect at electrical contacts to two-dimensional materials.** *Nano research*
 Guo, Y., Sun, Y., Tang, A., Wang, C., Zhao, Y., Bai, M., Xu, S., Xu, Z., Tang, T., Wang, S., Qiu, C., Xu, K., Peng, et al
 2021: 1-7

• **A Comprehensive Study of WSe2 Crystals Using Correlated Raman, Photoluminescence (PL), Second Harmonic Generation (SHG), and Atomic Force Microscopy (AFM) Imaging** *SPECTROSCOPY*
 Schmidt, U., Bailey, C. S., Englert, J., Yalon, E., Ankonina, G., Pop, E., Hollricher, O., Dieing, T.
 2021; 36 (7): 23-30

• **Graphene-based electromechanical thermal switches** *2D MATERIALS*
 Chen, M. E., Rojo, M., Lian, F., Koeln, J., Sood, A., Bohaiuchuk, S. M., Neumann, C. M., Garrow, S. G., Goodson, K. E., Alleyne, A. G., Pop, E.
 2021; 8 (3)

• **High-performance flexible nanoscale transistors based on transition metal dichalcogenides** *NATURE ELECTRONICS*
 Daus, A., Vaziri, S., Chen, V., Koroglu, C., Grady, R. W., Bailey, C. S., Lee, H., Schaubkle, K., Brenner, K., Pop, E.
 2021

• **Uncovering Phase Change Memory Energy Limits by Sub-Nanosceond Probing of Power Dissipation Dynamics** *ADVANCED ELECTRONIC MATERIALS*
 Stern, K., Wainstein, N., Keller, Y., Neumann, C. M., Pop, E., Kvatsinsky, S., Yalon, E.
 2021

• **Spectral decomposition of thermal conductivity: Comparing velocity decomposition methods in homogeneous molecular dynamics simulations** *PHYSICAL REVIEW B*
 Gabourie, A. J., Fan, Z., Afa-Nissila, T., Pop, E.
 2021; 103 (20)

• **Ultrathin Three-Monolayer Tunneling Memory Selectors.** *ACS nano*
 Wang, C., Chen, V., McClellan, C. J., Tang, A., Vaziri, S., Li, L., Chen, M. E., Pop, E., Wong, H. P.
 2021

• **Carbon nanotube thermoelectric devices by direct printing: Toward wearable energy converters** *APPLIED PHYSICS LETTERS*
 Lee, H., Furukawa, N., Ricco, A. J., Pop, E., Cui, Y., Nishi, Y.
 2021; 118 (17)

• **High-Performance p-n Junction Transition Metal Dichalcogenide Photovoltaic Cells Enabled by MoOx Doping and Passivation.** *Nano letters*
 Nassiri Nazif, K., Kumar, A., Hong, J., Lee, N., Islam, R., McClellan, C. J., Karni, O., van de Groep, J., Heinz, T. F., Pop, E., Brongersma, M. L., Saraswat, K. C.
 2021

• **High Current Density in Monolayer MoS2 Doped by AlOx.** *ACS nano*
 McClellan, C. J., Yalon, E., Smithe, K. K., Suryavanshi, S. V., Pop, E.
 2021

• **Dynamic Hybrid Metasurfaces.** *Nano letters*
 Abdollahramezani, S. n., Hemmatyar, O. n., Taghinejad, M. n., Taghinejad, H. n., Kiarashinejad, Y. n., Zandehshahvar, M. n., Fan, T. n., Deshmukh, S. n., Eftekhar, A. A., Cai, W. n., Pop, E. n., El-Sayed, M. A., Adibi, et al
 2021

• **Advanced Data Encryption using 2D Materials.** *Advanced materials (Deerfield Beach, Fla.)*
 Wen, C., Li, X., Zanotti, T., Puglisi, F. M., Shi, Y., Saiz, F., Antidormi, A., Roche, S., Zheng, W., Liang, X., Hu, J., Duhm, S., Roldan, et al
 2021: e2100185

• **Engineering Thermal Transport across Layered Graphene-MoS2 Superlattices.** *ACS nano*
 Sood, A., Sievers, C., Shin, Y. C., Chen, V., Chen, S., Smithe, K. K., Chatterjee, S., Donadio, D., Goodson, K. E., Pop, E.
 2021

• **Diamond Integration on GaN for Channel Temperature Reduction**
 Malakoutian, M., Xu, R., Ren, C., Pasayat, S., Sayed, I., Pop, E., Chowdhury, S., IEEE
 IEEE.2021: 70-74
• **Sub-200 Omega.μm Alloyed Contacts to Synthetic Monolayer MoS2**
 Kumar, A., Schauble, K., Neilson, K. M., Tang, A., Ramesh, P., Wong, H., Pop, E., Saraswat, K., IEEE
 IEEE.2021

• **Ultralow-switching current density multilevel phase-change memory on a flexible substrate.** *Science (New York, N.Y.)*
 Khan, A. I., Daus, A., Islam, R., Neilson, K. M., Lee, H. R., Wong, H. P., Pop, E.
 2021; 373 (6560): 1243-1247

• **Uncovering Thermal and Electrical Properties of Sb2Te3/GeTe Superlattice Films.** *Nano letters*
 Kwon, H., Khan, A. I., Perez, C., Asheghi, M., Pop, E., Goodson, K. E.
 2021

• **Reduced thermal conductivity of supported and encased monolayer and bilayer MoS2** *2D MATERIALS*
 Gabourie, A. J., Suryavanshi, S., Farimani, A., Pop, E.
 2021; 8 (1)

• **Tuning electrical and interfacial thermal properties of bilayer MoS2 via electrochemical intercalation.** *Nanotechnology*
 Xiong, F. n., Yalon, E. n., McClellan, C. n., Zhang, J. n., Aslan, O. B., Sood, A. n., Sun, J. n., Andolina, C. M., Al-Saidi, W. A., Goodson, K. E., Heinz, T. n., Cui, Y. n., Pop, et al
 2021

• **Two-Fold Reduction of Switching Current Density in Phase Change Memory Using Bi2Te3 Thermoelectric Interfacial Layer** *IEEE ELECTRON DEVICE LETTERS*
 Khan, A., Kwon, H., Islam, R., Perez, C., Chen, M. E., Asheghi, M., Goodson, K. E., Wong, H., Pop, E.
 2020; 41 (11): 1657–60

• **Ultrahigh Doping of Graphene Using Flame-Deposited MoO3** *IEEE ELECTRON DEVICE LETTERS*
 Vaziri, S., Chen, V., Cai, L., Jiang, Y., Chen, M. E., Grady, R. W., Zheng, X., Pop, E.
 2020; 41 (10): 1592–95

• **Visualizing Energy Transfer at Buried Interfaces in Layered Materials Using Picosecond X-Rays** *ADVANCED FUNCTIONAL MATERIALS*
 Nyby, C., Sood, A., Zalden, P., Gabourie, A. J., Muscher, P., Rhodes, D., Mannebach, E., Corbett, J., Mehta, A., Pop, E., Heinz, T. F., Lindenberg, A. M.
 2020

• **Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater.** *Advanced materials (Deerfield Beach, Fla.)*
 Zheng, J., Fang, Z., Wu, C., Zhu, S., Xu, P., Doylend, J. K., Deshmukh, S., Pop, E., Dunham, S., Li, M., Majumdar, A.
 2020: e2001218

• **VO2 Switch for Electrostatic Discharge Protection** *IEEE ELECTRON DEVICE LETTERS*
 Bohaichuk, S. M., Pelella, M. M., Sun, Y., Zhang, Z., Ramanathan, S., Pop, E.
 2020; 41 (2): 292–95

• **Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe2/MoSe2 Heterostructures for Photocatalytic Energy Conversion** *ACS APPLIED NANO MATERIALS*
 Chen, J., Bailey, C., Cui, D., Wang, Y., Wang, B., Shi, H., Cai, Z., Pop, E., Zhou, C., Cronin, S. B.
 2020; 3 (2): 1175–81

• **Monolithic mtesla-level magnetic induction by self-rolled-up membrane technology.** *Science advances*
 Huang, W., Yang, Z., Kraman, M. D., Wang, Q., Ou, Z., Rojo, M. M., Yalamarty, A. S., Chen, V., Lian, F., Ni, J. H., Liu, S., Yu, H., Sang, et al
 2020; 6 (3): eaa4508

• **Improved Current Density and Contact Resistance in Bilayer MoSe2 Field Effect Transistors by A1O x Capping.** *ACS applied materials & interfaces*
 Somvanshi, D. n., Ber, E. n., Bailey, C. S., Pop, E. n., Yalon, E. n.
 2020; 12 (32): 36355–61

• **Large temperature coefficient of resistance in atomically thin two-dimensional semiconductors** *Applied Physics Letters*
 Khan, A., Khakhaz, P., Brenner, K. A., Smihe, K., Mieczko, M. J., Essen, D., Pop, E.
 2020; 116 (20)

* **Flexible Low-Power Superlattice-Like Phase Change Memory**
• Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. *2D MATERIALS*
Patel, K., Grady, R. W., Smithe, K. H., Pop, E., Sordan, R.
2020; 7 (1)

• Nonvolatile Electrically Reconfigurable Integrated Photonic Switches Using Phase-Change Materials
Zheng, J., Fang, Z., Wu, C., Zhu, S., Xu, P., Doylend, J. K., Deshmukh, S., Pop, E., Dunham, S., Li, M., Majumdar, A., IEEE
IEEE.2020

• Highly confined plasmons in individual single-walled carbon nanotube nanoantennas
Yu, S., Roberts, J., Lin, Q., Bohaichuk, S., Luo, Y., Choi, Y., Ho, P., Lee, K., Falk, A. L., Wilson, W. L., Pop, E., Wong, H., Fan, et al
IEEE.2020

• Phase Change Material Integrated Silicon Photonics: GST and Beyond
Fang, Z., Zheng, J., Xu, P., Deshmukh, S., Pop, E., Majumdar, A., Jiang, S., Digonnet, M. J.
SPIE-INT SOC OPTICAL ENGINEERING.2020

• Uncovering the Effects of Metal Contacts on Monolayer MoS2. *ACS nano*
Schauble, K. n., Zakhidov, D. n., Yalon, E. n., Deshmukh, S. n., Grady, R. W., Cooley, K. A., McClellan, C. J., Vaziri, S. n., Passarello, D. n., Mohney, S. E., Toney, M. F., Sood, A. K., Salleo, et al
2020

• Localized Heating and Switching in MoTe2-Based Resistive Memory Devices. *Nano letters*
Datye, I. M., Rojo, M. M., Yalon, E. n., Deshmukh, S. n., Mleczko, M. J., Pop, E. n.
2020

• Thermal conductivity of crystalline AlN and the influence of atomic-scale defects *JOURNAL OF APPLIED PHYSICS*
Xu, R., Rojo, M., Islam, S. M., Sood, A., Vareskic, B., Katre, A., Mingo, N., Goodson, K. E., Xing, H., Jena, D., Pop, E.
2019; 126 (18)

• Temperature-Dependent Contact Resistance to Nonvolatile Memory Materials *IEEE TRANSACTIONS ON ELECTRON DEVICES*
Deshmukh, S., Yalon, E., Lian, F., Schauble, K. E., Xiong, F., Karpov, I. V., Pop, E.
2019; 66 (9): 3816–21

• Layer-Dependent Interfacial Transport and Optoelectrical Properties of MoS2 on Ultraflat Metals *ACS APPLIED MATERIALS & INTERFACES*
Lee, H., Deshmukh, S., Wen, J., Costa, V. Z., Schader, J. S., Sanchez, M., Ichimura, A. S., Pop, E., Wang, B., Newaz, A. M.
2019; 11 (34): 31543–50

• Localized Triggering of the Insulator-Metal Transition in VO2 Using a Single Carbon Nanotube. *ACS nano*
Bohaichuk, S. M., Munoz Rojo, M., Pitner, G., McClellan, C. J., Lian, F., Li, J., Jeong, J., Samant, M. G., Parkin, S. S., Wong, H. P., Pop, E.
2019

• Thermal boundary conductance of two-dimensional MoS2 interfaces *JOURNAL OF APPLIED PHYSICS*
Suryavanshi, S., Gabourie, A. J., Farimani, A., Pop, E.
2019; 126 (5)

• Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. *Science advances*
Vaziri, S., Yalon, E., Munoz Rojo, M., Suryavanshi, S. V., Zhang, H., McClellan, C. J., Bailey, C. S., Smithe, K. K., Gabourie, A. J., Chen, V., Deshmukh, S., Bendersky, L., Davydov, et al
2019; 5 (8): eaax1325

• Strain- and Strain-Rate-Invariant Conductance in a Stretchable and Compressible 3D Conducting Polymer Foam *MATTER*
Chen, G., Rastak, R., Wang, Y., Yan, H., Feig, V., Liu, Y., Jiang, Y., Chen, S., Lian, F., Molina-Lopez, F., Jin, L., Cui, K., Chung, et al
2019; 1 (1): 205–18

• Significant Phonon Drag Enables High Power Factor in the AlGaN/GaN Two-Dimensional Electron Gas. *Nano letters*
Yalamarthy, A. S., Munoz Rojo, M., Bruefach, A., Boone, D., Dowling, K. M., Satterthwaite, P. F., Goldhaber-Gordon, D., Pop, E., Senesky, D. G.
2019
• Understanding the switching mechanism of interfacial phase change memory *JOURNAL OF APPLIED PHYSICS*
 Okabe, K. L., Sood, A., Yalon, E., Neumann, C. M., Asheghi, M., Pop, E., Goodson, K. E., Wong, H.
 2019; 125 (18)

• Quasi-Ballistic Thermal Transport Across MoS2 Thin Films *NANO LETTERS*
 Sood, A., Xiong, F., Chen, S., Cheaito, R., Lian, F., Asheghi, M., Cui, Y., Donadio, D., Goodson, K. E., Pop, E.
 2019; 19 (4): 2434–42

• Strongly tunable anisotropic thermal transport in MoS2 by strain and lithium intercalation: first-principles calculations *2D MATERIALS*
 Chen, S., Sood, A., Pop, E., Goodson, K. E., Donadio, D.
 2019; 6 (2)

• Quasi-Ballistic Thermal Transport Across MoS2 Thin Films, *Nano letters*
 Sood, A., Xiong, F., Chen, S., Cheaito, R., Lian, F., Asheghi, M., Cui, Y., Donadio, D., Goodson, K. E., Pop, E.
 2019

• Thermal transport in layer-by-layer assembled polycrystalline graphene films *NPJ 2D MATERIALS AND APPLICATIONS*
 Estrada, D., Li, Z., Choi, G., Dunham, S. N., Serov, A., Lee, J., Meng, Y., Lian, F., Wang, N. C., Perez, A., Haasch, R. T., Zuo, J., King, et al
 2019; 3

• Ternary content-addressable memory with MoS2 transistors for massively parallel data search *NATURE ELECTRONICS*
 Yang, R., Li, H., Smithe, K. H., Kim, T. R., Okabe, K., Pop, E., Fan, J. A., Wong, H.
 2019; 2 (3): 108–14

• Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe2 *ACS PHOTONICS*
 Chen, J., Bailey, C. S., Hong, Y., Wang, L., Cai, Z., Shen, L., Hou, B., Wang, Y., Shi, H., Sambur, J., Ren, W., Pop, E., Cronin, et al
 2019; 6 (3): 787–92

• Energy-Efficient Indirectly Heated Phase Change RF Switch *IEEE ELECTRON DEVICE LETTERS*
 Yalon, E., Datye, I. M., Moon, J., Son, K., Lee, K., Pop, E.
 2019; 40 (3): 455–58

• Engineering thermal and electrical interface properties of phase change memory with monolayer MoS2 *APPLIED PHYSICS LETTERS*
 Neumann, C. M., Okabe, K. L., Yalon, E., Grady, R. W., Wong, H., Pop, E.
 2019; 114 (8)

• Thermal transport in MoS2 from molecular dynamics using different empirical potentials *PHYSICAL REVIEW B*
 Xu, K., Gabourie, A. J., Hashemi, A., Fan, Z., Wei, N., Farimani, A., Komsa, H., Krasheninnikov, A., Pop, E., Ala-Nissila, T.
 2019; 99 (5)

• Spatial Separation of Carrier Spin by the Valley Hall Effect in Monolayer WSe2 Transistors. *Nano letters*
 Barre, E., Incorvia, J. A., Kim, S. H., McClellan, C. J., Pop, E., Wong, H. P., Heinz, T. F.
 2019

• 3D Heterogeneous Integration with 2D Materials
 McClellan, C., Bailey, C., Datye, I., Gabourie, A., Grady, R., Schauble, K., Vaziri, S., Pop, E., IEEE
 IEEE.2019: 89–90

• Fast Spiking of a Mott VO2-Carbon Nanotube Composite Device. *Nano letters*
 Bohaichuk, S. M., Kumar, S. n., Pitner, G. n., McClellan, C. J., Jeong, J. n., Samant, M. G., Wong, H. P., Parkin, S. S., Williams, R. S., Pop, E. n.
 2019

• Contact Engineering High-Performance n-Type MoTe2 Transistors. *Nano letters*
 Mleczko, M. J., Yu, A. C., Smyth, C. M., Chen, V. n., Shin, Y. C., Chatterjee, S. n., Tsai, Y. C., Nishi, Y. n., Wallace, R. M., Pop, E. n.
 2019

• Publisher Correction: An electrochemical thermal transistor. *Nature communications*
 Sood, A. n., Xiong, F. n., Chen, S. n., Wang, H. n., Selfi, D. n., Zhang, J. n., McClellan, C. J., Sun, J. n., Donadio, D. n., Cui, Y. n., Pop, E. n., Goodson, K. E.
 2019; 10 (1): 4465
• Reconfigurable Infrared Spectral Imaging with Robust Phase Change Materials
Moon, J., Seo, H., Son, K., Yalon, E., Lee, K., Flores, E., Candia, G., Pop, E., George, T., Islam, M. S.
SPIE-INT SOC OPTICAL ENGINEERING.2019

• Dry Transfer of van der Waals Crystals to Noble Metal Surfaces To Enable Characterization of Buried Interfaces. ACS applied materials & interfaces
Krayev, A. n., Bailey, C. S., Jo, K. n., Wang, S. n., Singh, A. n., Darlington, T. n., Liu, G. Y., Gradenek, S. n., Schuck, P. J., Pop, E. n., Jariwala, D. n.
2019

• Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements 2D MATERIALS
Datye, I. M., Gabourie, A. J., English, C. D., Smithe, K. H., McClellan, C. J., Wang, N. C., Pop, E.
2019; 6 (1)

• Thermal transport across graphene step junctions 2D MATERIALS
Rojo, M., Li, Z., Sievers, C., Bornstein, A. C., Yalon, E., Deshmukh, S., Vaziri, S., Bae, M., Xiong, F., Donadio, D., Pop, E.
2019; 6 (1)

• Recommended Methods to Study Resistive Switching Devices ADVANCED ELECTRONIC MATERIALS
Lanza, M., Wong, H., Pop, E., Ielmini, D., Strukov, D., Regan, B. C., Larcher, L., Villena, M. A., Yang, J., Goux, L., Belmonte, A., Yang, Y., Puglisi, et al
2019; 5 (1)

• Nanoelectronics and Heterogeneous Integration with 2D Materials
Pop, E., IEEE
IEEE.2019

• Process-induced anomalous current transport in graphene/InAlN/GaN heterostructured diodes
Satterthwaite, P. F., Yamalartahy, A., Vaziri, S., Rojo, M., Pop, E., Senesky, D. G., IEEE
IEEE.2019

• An electrochemical thermal transistor NATURE COMMUNICATIONS
Sood, A., Xiong, F., Chen, S., Wang, H., Selli, D., Zhang, J., McClellan, C. J., Sun, J., Donadio, D., Cui, Y., Pop, E., Goodson, K. E.
2018; 9

• An electrochemical thermal transistor. Nature communications
Sood, A., Xiong, F., Chen, S., Wang, H., Selli, D., Zhang, J., McClellan, C. J., Sun, J., Donadio, D., Cui, Y., Pop, E., Goodson, K. E.
2018; 9 (1): 451–56

• Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects, intercalation, and valley dynamics to straintronics and power dissipation APL MATERIALS
Lin, Z., Lei, Y., Subramanian, S., Briggs, N., Wang, Y., Lo, C., Yalon, E., Lloyd, D., Wu, S., Koski, K., Clark, R., Das, S., Wallace, et al
2018; 6 (8)

• Electronic synapses made of layered two-dimensional materials NATURE ELECTRONICS
Shi, Y., Liang, X., Yuan, B., Chen, V., Li, H., Hui, F., Yu, Z., Yuan, F., Pop, E., Wong, H., Lanza, M.
2018; 1 (8): 458–65

• High-Field Transport and Velocity Saturation in Synthetic Monolayer MoS2 NANO LETTERS
Smithe, K. H., English, C. D., Suryavanshi, S. V., Pop, E.
2018; 18 (7): 4516–22

• GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform OPTICAL MATERIALS EXPRESS
Zheng, J., Khanolkar, A., Xu, P., Deshmukh, S., Myers, J., Frantz, J., Pop, E., Hendrickson, J., Doylend, J., Boechler, N., Majumdar, A.
2018; 8 (6): 1551–61

• Tuning Electrical and Thermal Transport in AlGaN/GaN Heterostructures via Buffer Layer Engineering ADVANCED FUNCTIONAL MATERIALS
Yalamarthy, A., So, H., Rojo, M., Suria, A. J., Xu, X., Pop, E., Senesky, D. G.
2018; 28 (22)

• Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts NANO LETTERS
Wang, C., Incorvia, J. C., McClellan, C. J., Yu, A. C., Mleczko, M. J., Pop, E., Wong, H.
2018; 18 (5): 2822–27
• Probing the Optical Properties and Strain-Tuning of Ultrathin Mo1-ITx&ITW&ITx&ITTe2 NANO LETTERS
Aslan, O., Datye, I. M., Mleczko, M. J., Cheung, K., Krylyuk, S., Bruma, A., Kalish, I., Davydov, A. V., Pop, E., Heinz, T. F.
2018; 18 (4): 2485–91

• Ultra-low contact resistance in graphene devices at the Dirac point 2D MATERIALS
Anzi, L., Mansouri, A., Pedrinazzi, P., Guerriero, E., Fiocco, M., Pesquera, A., Centeno, A., Zurutuza, A., Behnam, A., Carrion, E. A., Pop, E., Sordan, R.
2018; 5 (2)

• Flexural resonance mechanism of thermal transport across graphene-SiO2 interfaces JOURNAL OF APPLIED PHYSICS
Ong, Z., Qiu, B., Xu, S., Ruan, X., Pop, E.
2018; 123 (11)

• Carbon nanomaterials for non-volatile memories NATURE REVIEWS MATERIALS
Ahn, E. C., Wong, H., Pop, E.
2018; 3 (3)

• Microstructural origin of resistance-strain hysteresis in carbon nanotube thin film conductors PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Jin, L., Chortos, A., Lian, F., Pop, E., Linder, C., Bao, Z., Cai, W.
2018; 115 (9): 1986–91

• Detection of Methylation on dsDNA at Single-Molecule Level using Solid State Nanopores
Bello, J., Kim, Y., Banerjee, S., Smithe, K., Estrada, D., Myong, S., Nardulli, A., Pop, E., Bashir, R., Shim, J.
CELL PRESS: 2018: 216A

• Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials NPJ COMPUTATIONAL MATERIALS
Rehn, D. A., Li, Y., Pop, E., Reed, E. J.
2018; 4

• Low Power Nanoscale Switching of VO2 using Carbon Nanotube Heaters
Bohaichuk, S., Rojo, M., Pitner, G., McClellan, C., Lian, F., Li, J., Jeong, J., Samant, M., Parkin, S., Wong, H., Pop, E., IEEE
IEEE. 2018

• 3D Monolithic Stacked 1T1R cells using Monolayer MoS2 FET and hBN RRAM Fabricated at Low (150 degrees C) Temperature
Wang, C., McClellan, C., Shi, Y., Zheng, X., Chen, V., Lanza, M., Pop, E., Wong, H., IEEE
IEEE. 2018

• The Heat Conduction Renaissance
Sood, A., Pop, E., Asheghi, M., Goodson, K. E., IEEE
IEEE. 2018: 1396–1402

• Investigation of Monolayer MX2 as Sub-Nanometer Copper Diffusion Barriers
Smithe, K. H., Zhu, Z., Bailey, C. S., Pop, E., Yoon, A., IEEE
IEEE. 2018

• Localized Heating in MoTe2-Based Resistive Memory Devices
Datye, I. M., Rojo, M., Yalon, E., Mleczko, M. J., Pop, E., IEEE
IEEE. 2018

• Probing Self-Heating in RRAM Devices by Sub-100 nm Spatially Resolved Thermometry
Deshmukh, S., Rojo, M., Yalon, E., Vaziri, S., Pop, E., IEEE
IEEE. 2018

• Sub-Thermionic Steep Switching in Hole-Doped WSe2 Transistors
McClellan, C. J., Yalon, E., Cai, L., Suryavanshi, S., Zheng, X., Pop, E., IEEE
IEEE. 2018

• Energy-Efficient Phase Change Memory Programming by Nanosecond Pulses
Yalon, E., Okabe, K., Neumann, C. M., Wong, H., Pop, E., IEEE
IEEE.2018

- Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry. *ACS Applied Materials & Interfaces* Yalon, E., Aslan, O., Smithe, K. H., McClellan, C. J., Suryavanshi, S. V., Xiong, F., Sood, A., Neumann, C. M., Xu, X., Goodson, K. E., Heinz, T. F., Pop, E. 2017; 9 (49): 43013–20

- Studies of two-dimensional h-BN and MoS2 for potential diffusion barrier application in copper interconnect technology. *NPJ 2D Materials and Applications* Lo, C., Catalano, M., Smithe, K. H., Wang, L., Zhang, S., Pop, E., Kim, M. J., Chen, Z. 2017; 1

- Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials. *ACS Applied Materials & Interfaces* Barako, M. T., Isaacson, S. G., Lian, F., Pop, E., Dauskardt, R. H., Goodson, K. E., Tice, J. 2017; 9 (48): 42067–74

- Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials. *ACS Applied Materials & Interfaces* Barako, M. T., Isaacson, S. G., Lian, F., Pop, E., Dauskardt, R. H., Goodson, K. E., Tice, J. 2017; 9 (48): 42067–42074

- Improved Hysteresis and Reliability of MoS2 Transistors With High-Quality CVD Growth and Al2O3 Encapsulation. *IEEE Electron Device Letters* Illarionov, Y., Smithe, K. H., Waltl, M., Knobloch, T., Pop, E., Grasser, T. 2017; 38 (12): 1763–66

- Spatially Resolved Thermometry of Resistive Memory Devices. *Scientific Reports* Yalon, E., Deshmukh, S., Rojo, M., Lian, F., Neumann, C. M., Xiong, F., Pop, E. 2017; 7: 15360

- Detection of methylation on dsDNA using nanopores in a MoS2 membrane. *Nanoscale* Shim, J., Banerjee, S., Qiu, H., Smithe, K. H., Estrada, D., Bello, J., Pop, E., Schulten, K., Bashir, R. 2017; 9 (39): 14836–45

- Low Variability in Synthetic Monolayer MoS2 Devices. *ACS Nano* Smithe, K. H., Suryavanshi, S. V., Rojo, M., Tedjarati, A. D., Pop, E. 2017; 11 (8): 8456–63

- HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-# oxides. *Science Advances* Mleczko, M. J., Zhang, C., Lee, H. R., Kuo, H. H., Magyari-Köpe, B., Moore, R. G., Shen, Z. X., Fisher, I. R., Nishi, Y., Pop, E. 2017; 3 (8): e1700481

- High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide. *Scientific reports* Guerrierio, E., Pedrinazzi, P., Mansouri, A., Habibpour, O., Winters, M., Rorsman, N., Behnam, A., Carrion, E. A., Pesquera, A., Centeno, A., Zurutuza, A., Pop, E., Zirath, et al 2017; 7 (1): 2419–?

- Photoresponse of Natural van der Waals Heterostructures. *ACS Nano* Ray, K., Yore, A. E., Mou, T., Jha, S., Smithe, K. K., Wang, B., Pop, E., Newaz, A. K. 2017

- High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide. *Scientific Reports* Guerrierio, E., Pedrinazzi, P., Mansouri, A., Habibpour, O., Winters, M., Rorsman, N., Behnam, A., Carrion, E. A., Pesquera, A., Centeno, A., Zurutuza, A., Pop, E., Zirath, et al 2017; 7 (1): 2419–?

- Intrinsically electrical transport and performance projections of synthetic monolayer MoS2 devices. *2D Materials*
Smithe, K. K., English, C. D., Suryavanshi, S. V., Pop, E.
2017; 4 (1)

- Sub-15 nm Nanowires Enabled by Cryo Pulsed Self-Aligned Nanotrench Ablation on Carbon Nanotubes
 Deshmukh, S., Lian, F., Yalon, E., Pitner, G., Wang, H., Pop, E., IEEE
 IEEE.2017: 489–90

- INVITED: In Quest of the Next Information Processing Substrate Extended Abstract
 Datta, S., Seabough, A., Niemier, M., Raychowdhury, A., Schlom, D., Jena, D., Xing, G., Wong, H., Pop, E., Salahuddin, S., Gupta, S., Guha, S., IEEE
 IEEE.2017

- Invited: A Systems Approach to Computing in Beyond CMOS Fabrics
 Patil, A., Shanbhag, N., Varshney, L., Pop, E., Wong, H., Mitra, S., Rabaey, J., Weldon, J., Pileggi, L., Manipatruni, S., Nikonov, D., Young, I., IEEE
 IEEE.2017

- Metasurfaces Based on Nano-Patterned Phase-Change Memory Materials
 Colburn, S., Zhan, A., Deshmukh, S., Myers, J., Frantz, J., Pop, E., Majumdar, A., IEEE
 IEEE.2017

- Effective n-type Doping of Monolayer MoS2 by AlOx
 McClellan, C. J., Yalon, E., Smithe, K. H., Suryavanshi, S. V., Pop, E., IEEE
 IEEE.2017

- 2D Molybdenum Disulfide (MoS2) Transistors Driving RRAMs with 1T1R Configuration
 Yang, R., Li, H., Smithe, K. H., Kim, T. R., Okabe, K., Pop, E., Fan, J. A., Wong, H., IEEE
 IEEE.2017

- Thermal Boundary Conductance of the MoS2-SiO2 Interface
 Suryavanshi, S. V., Gabourie, A. J., Farimani, A., Yalon, E., Pop, E., IEEE
 IEEE.2017: 26–29

- Active metasurfaces based on phase-change memory material digital metamolecules
 Colburn, S., Zhan, A., Majumdar, A., Deshmukh, S., Pop, E., Myers, J., Frantz, J., IEEE
 IEEE.2017: 5–8

- Electronic, Thermal, and Unconventional Applications of 2D Materials
 Pop, E., Yalon, E., Manoz-Rojo, M., Mleczko, M., English, C., Wang, N., Smithe, K., Suryavanshi, S., Datye, I., McClellan, C., Gabourie, A., IEEE
 IEEE.2017: 916–17

- S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities JOURNAL OF APPLIED PHYSICS
 Suryavanshi, S. V., Pop, E.
 2016; 120 (22)

- Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes APPLIED PHYSICS LETTERS
 An, Y., Shekhawat, A., Behnam, A., Pop, E., Ural, A.
 2016; 109 (22)

- Visualization of Defect-Induced Excitonic Properties of the Edges and Grain Boundaries in Synthesized Monolayer Molybdenum Disulfide JOURNAL OF PHYSICAL CHEMISTRY C
 Yore, A. E., Smithe, K. K., Crumrine, W., Miller, A., TUCK, J. A., Redd, B., Pop, E., Wang, B., Newaz, A. K.
 2016; 120 (42): 24080-24087

- Interfaces. Nano letters
 Koh, Y. K., Lyons, A. S., Bae, M., Huang, B., Dorgan, V. E., Cahill, D. G., Pop, E.
 2016; 16 (10): 6014-6020

- SANTA: Self-aligned nanotrench ablation via Joule heating for probing sub-20 nm devices NANO RESEARCH
 Xiong, F., Deshmukh, S., Hong, S., Dai, Y., Behnam, A., Lian, F., Pop, E.
 2016; 9 (10): 2950-2959
• Role of Remote Interfacial Phonon (RIP) Scattering in Heat Transport Across Graphene/SiO2 Interfaces NANO LETTERS
 Koh, Y. K., Lyons, A. S., Bae, M., Huang, B., Dorgan, V. E., Cahill, D. G., Pop, E.
 2016; 16 (10): 6014-6020

• High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2. ACS nano
 Mleczko, M. J., Xu, R. L., Okabe, K., Kuo, H., Fisher, I. R., Wong, H. P., Nishi, Y., Pop, E.
 2016; 10 (8): 7507-7514

• Electrical and Thermoelectric Transport by Variable Range Hopping in Thin Black Phosphorus Devices NANO LETTERS
 Choi, S. J., Kim, B., Lee, T., Kim, Y. H., Li, Z., Pop, E., Kim, J., Song, J. H., Bae, M.
 2016; 16 (7): 3969-3975

• Role of Pressure in the Growth of Hexagonal Boron Nitride Thin Films from Ammonia-Borane CHEMISTRY OF MATERIALS
 Koepeke, J. C., Wood, J. D., Chen, Y., Schmucker, S. W., Liu, X., Chang, N. N., Nienhaus, L., Do, J. W., Carrion, E. A., Hewaparakrama, J., Ranaarajan, A., Datye, I., Mehta, et al
 2016; 28 (12): 4169-4179

• Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition NANO LETTERS
 English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C., Pop, E.
 2016; 16 (6): 3824-3830

• Kinetic Study of Hydrogen Evolution Reaction over Strained MoS2 with Sulfur Vacancies Using Scanning Electrochemical Microscopy JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
 Li, H., Du, M., Mleczko, M. J., Koh, A. L., Nishi, Y., Pop, E., Bard, A. J., Zheng, X.
 2016; 138 (15): 5123-5129

• Thermal conductivity of chirality-sorted carbon nanotube networks APPLIED PHYSICS LETTERS
 Lian, F., Llinas, J. P., Li, Z., Estrada, D., Pop, E.
 2016; 108 (10)

• Energy-Efficient Abundant-Data Computing: The N3XT 1,000x COMPUTER
 Aly, M. M., Gao, M., Hills, G., Lee, C., Piter, G., Shulaker, M. M., Wu, T. F., Asheghi, M., Bokor, J., Franchetti, F., Goodson, K. E., Kozyrakis, C., Markov, et al
 2015; 48 (12): 24-33

• Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier. Nano letters
 Ahn, C., Fong, S. W., Kim, Y., Lee, S., Sood, A., Neumann, C. M., Asheghi, M., Goodson, K. E., Pop, E., Wong, H. P.
 2015; 15 (10): 6809-6814

• Engineering Ultra-Low Work Function of Graphene NANO LETTERS
 Yuan, H., Chang, S., Bargatin, I., Wang, N. C., Riley, D. C., Wang, H., Schwede, J. W., Provine, J., Pop, E., Shen, Z., Pianetta, P. A., Melosh, N. A., Howe, et al
 2015; 10 (15): 6475-6480

• Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties NANO LETTERS
 Xiong, F., Wang, H., Liu, X., Sun, J., Brongorsma, M., Pop, E., Cui, Y.
 2015; 15 (10): 6777-6784

• Nanoscale phase change memory with graphene ribbon electrodes APPLIED PHYSICS LETTERS
 Behnam, A., Xiong, F., Cappelli, A., Wang, N. C., Carrion, E. A., Hong, S., Dai, Y., Lyons, A. S., Chow, E. K., Piccinini, E., Jacoboni, C., Pop, E.
 2015; 107 (12)

• Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer JOURNAL OF APPLIED PHYSICS
 An, Y., Behnam, A., Pop, E., Bosman, G., Ural, A.
 2015; 118 (11)

• A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime-Part II: Extrinsic Elements, Performance Assessment, and Design Optimization IEEE TRANSACTIONS ON ELECTRON DEVICES
Lee, C., Pop, E., Franklin, A. D., Haensch, W., Wong, H. P.
2015; 62 (9): 3070-3078

- **A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime-Part I: Intrinsic Elements**
 IEEE TRANSACTIONS ON ELECTRON DEVICES
 Lee, C., Pop, E., Franklin, A. D., Haensch, W., Wong, H. P.
 2015; 62 (9): 3061-3069

- **Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment.**
 ACS nano
 Khatib, O., Wood, J. D., McLeod, A. S., Goldflam, M. D., Wagner, M., Damhorst, G. L., Koepke, J. C., Doidge, G. P., Rangarajan, A., Bashir, R., Pop, E., Lyding, J. W., Thiemens, et al
 2015; 9 (8): 7968-7975

- **Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment**
 ACS NANO
 Khatib, O., Wood, J. D., McLeod, A. S., Goldflam, M. D., Wagner, M., Damhorst, G. L., Koepke, J. C., Doidge, G. P., Rangarajan, A., Bashir, R., Pop, E., Lyding, J. W., Thiemens, et al
 2015; 9 (8): 7968-7975

- **Bright visible light emission from graphene**
 NATURE NANOTECHNOLOGY
 Kim, Y. D., Kim, H., Cho, Y., Ryoo, J. H., Park, C., Kim, P., Kim, Y. S., Lee, S., Li, Y., Park, S., Yoo, Y. S., Yoon, D., Dorgan, et al
 2015; 10 (8): 676-681

- **Solution-Mediated Selective Nanosoldering of Carbon Nanotube Junctions for Improved Device Performance**
 ACS NANO
 Do, J., Chang, N. N., Estrada, D., Lian, F., Cha, H., Duan, X. J., Haasch, R. T., Pop, E., Girolami, G. S., Lyding, J. W.
 2015; 9 (5): 4806-4813

- **Annealing free, clean graphene transfer using alternative polymer scaffolds.**
 Nanotechnology
 Wood, J. D., Doidge, G. P., Carrion, E. A., Koepke, J. C., Kaitz, J. A., Datye, I., Behnam, A., Hewaparakrama, J., Aruin, B., Chen, Y., Dong, H., Haasch, R. T., Lyding, et al
 2015; 26 (5): 055302-

- **Annealing free, clean graphene transfer using alternative polymer scaffolds.**
 Nanotechnology
 Wood, J. D., Doidge, G. P., Carrion, E. A., Koepke, J. C., Kaitz, J. A., Datye, I., Behnam, A., Hewaparakrama, J., Aruin, B., Chen, Y., Dong, H., Haasch, R. T., Lyding, et al
 2015; 26 (5): 055302-

- **Scaling of graphene integrated circuits**
 NANOCALE
 Bianchi, M., Guerriero, E., Fiocco, M., Alberti, R., Polloni, L., Behnam, A., Carrion, E. A., Pop, E., Sordan, R.
 2015; 7 (17): 8076-8083

- **Direct observation of resistive heating at graphene wrinkles and grain boundaries**
 APPLIED PHYSICS LETTERS
 Grosse, K. L., Dorgan, V. E., Estrada, D., Wood, J. D., Vlassiouk, I., Eres, G., Lyding, J. W., King, W. P., Pop, E.
 2014; 105 (14)

- **Heterogeneous nanometer-scale Joule and Peltier effects in sub-25 nm thin phase change memory devices**
 JOURNAL OF APPLIED PHYSICS
 Grosse, K. L., Pop, E., King, W. P.
 2014; 116 (12)

- **Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices**
 REVIEW OF SCIENTIFIC INSTRUMENTS
 Grosse, K. L., Pop, E., King, W. P.
 2014; 85 (9)

- **Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.**
 The Review of scientific instruments
 Grosse, K. L., Pop, E., King, W. P.
 2014; 85 (9): 094904

- **Phase change materials and phase change memory**
 MRS BULLETIN
 Raoux, S., Xiong, F., Wuttig, M., Pop, E.
 2014; 39 (8): 703-710
• Theoretical analysis of high-field transport in graphene on a substrate *JOURNAL OF APPLIED PHYSICS*
 Serov, A. Y., Ong, Z., Fischetti, M. V., Pop, E.
 2014; 116 (3)

• Substrate-supported thermometry platform for nanomaterials like graphene, nanotubes, and nanowires *APPLIED PHYSICS LETTERS*
 Li, Z., Bae, M., Pop, E.
 2014; 105 (2)

• Self-aligned Cu etch mask for individually addressable metallic and semiconducting carbon nanotubes. *ACS nano*
 Jiang, Y., Xiong, F., Tsai, C. L., Ozel, T., Pop, E., Shim, M.
 2014; 8 (6): 6500-8

• Ultrafast terahertz-induced response of GeSbTe phase-change materials *APPLIED PHYSICS LETTERS*
 Shu, M. J., Zalden, P., Chen, F., Weens, B., Chatzakis, I., Xiong, F., Jeyasingh, R., Hoffmann, M. C., Pop, E., Wong, H. P., Wuttig, M., Lindenberg, A. M.
 2014; 104 (25)

• Monolithic III-V Nanowire Solar Cells on Graphene via Direct van der Waals Epitaxy. *Advanced materials*
 Mohseni, P. K., Behnam, A., Wood, J. D., Zhao, X., Yu, K. J., Wang, N. C., Rockett, A., Rogers, J. A., Lyding, J. W., Pop, E., Li, X.
 2014; 26 (22): 3755-3760

• Self-Aligned Cu Etch Mask for Individually Addressable Metallic and Semiconducting Carbon Nanotubes *ACS NANO*
 Jiang, Y., Xiong, F., Tsai, C., Ozel, T., Pop, E., Shim, M.
 2014; 8 (6): 6500-6508

• Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors *IEEE TRANSACTIONS ON ELECTRON DEVICES*
 Carrion, E. A., Serov, A. Y., Islam, S., Behnam, A., Malik, A., Xiong, F., Bianchi, M., Sordan, R., Pop, E.
 2014; 61 (5): 1583-1589

• Carbon Nanotube Circuit Integration up to Sub-20 nm Channel Lengths *ACS NANO*
 Shulaker, M. M., Van Rethy, J., Wu, T. F., Liyanage, L. S., Wei, H., Li, Z., Pop, E., Gielens, G., Wong, H. P., Mitra, S.
 2014; 8 (4): 3434-3443

• Nanoscale thermal transport. II. 2003-2012 *APPLIED PHYSICS REVIEWS*
 Cahill, D. G., Braun, P. V., Chen, G., Clarke, D. R., Fan, S., Goodson, K. E., Keblinski, P., King, W. P., Mahan, G. D., Majumdar, A., Maris, H. J., Phillpot, S. R., Pop, et al
 2014; 1 (1)

• High-Field and Thermal Transport in 2D Atomic Layer Devices *Conference on Micro- and Nanotechnology Sensors, Systems, and Applications VI*
 Serov, A., Dorgan, V. E., Behnam, A., English, C. D., Li, Z., Islam, S., Pop, E.
 SPIE-INT SOC OPTICAL ENGINEERING 2014

• Energy Efficiency and Conversion in 1D and 2D Electronics *44th European Solid-State Device Research Conference (ESSDERC)*
 Pop, E., English, C., Xiong, F., Lian, F., Serov, A., Li, Z., Islam, S., Dorgan, V.
 IEEE.2014: 35–37

• Multi-Valley High-Field Transport in 2-Dimensional MoS2 Transistors *72nd Annual Device Research Conference (DRC)*
 Serov, A. Y., Dorgan, V. E., English, C. D., Pop, E.
 IEEE.2014: 183–184

• Improving Contact Resistance in MoS2 Field Effect Transistors *72nd Annual Device Research Conference (DRC)*
 English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C., Pop, E.
 IEEE.2014: 193–194

• Variability of Graphene Mobility and Contacts: Surface Effects, Doping and Strain *72nd Annual Device Research Conference (DRC)*
 Carrion, E. A., Wood, J. D., Behman, A., Tung, M., Lyding, J. W., Pop, E.
 IEEE.2014: 199–200

• Nanosoldering Carbon Nanotube Junctions by Local Chemical Vapor Deposition for Improved Device Performance *NANO LETTERS*
 Do, J., Estrada, D., Xie, X., Chang, N. N., Mallek, J., Girolami, G. S., Rogers, J. A., Pop, E., Lyding, J. W.
 2013; 13 (12): 5844-5850
• Helical Carbon Nanotubes Enhance the Early Immune Response and Inhibit Macrophage-Mediated Phagocytosis of Pseudomonas aeruginosa. *PLOS ONE*
 Walling, B. E., Kuang, Z., Hao, Y., Estrada, D., Wood, J. D., Lian, F., Miller, L. A., Shah, A. B., Jeffries, J. L., Haasch, R. T., Lyding, J. W., Pop, E., Lau, et al 2013; 8 (11)

• High field breakdown characteristics of carbon nanotube thin film transistors. *NANOTECHNOLOGY*
 Gupta, M. P., Behnam, A., Lian, F., Estrada, D., Pop, E., Kumar, S. 2013; 24 (40)

• High-field electrical and thermal transport in suspended graphene. *Nano letters*
 Dorgan, V. E., Behnam, A., Conley, H. J., Bolotin, K. I., Pop, E. 2013; 13 (10): 4581-4586

• Conductive preferential paths of hot carriers in amorphous phase-change materials. *APPLIED PHYSICS LETTERS*
 Cappelli, A., Piccinini, E., Xiong, F., Behnam, A., Brunetti, R., Rudan, M., Pop, E., Jacoboni, C. 2013; 103 (8)

• Compact Model for Carbon Nanotube Field-Effect Transistors Including Nonidealities and Calibrated With Experimental Data Down to 9-nm Gate Length. *IEEE TRANSACTIONS ON ELECTRON DEVICES*
 Luo, J., Wei, L., Lee, C., Franklin, A. D., Guan, X., Pop, E., Antoniadis, D. A., Wong, H. P. 2013; 60 (6): 1834-1843

• Gigahertz Integrated Graphene Ring Oscillators. *ACS NANO*
 Guerriero, E., Polloni, L., Bianchi, M., Behnam, A., Carrion, E., Rizzi, L. G., Pop, E., Sordan, R. 2013; 7 (6): 5588-5594

• Resistive Random Access Memory Enabled by Carbon Nanotube Crossbar Electrodes. *ACS NANO*
 Tsai, C., Xiong, F., Pop, E., Shim, M. 2013; 7 (6): 5360-5366

• Direct observation of nanometer-scale Joule and Peltier effects in phase change memory devices. *APPLIED PHYSICS LETTERS*
 Grosse, K. L., Xiong, F., Hong, S., King, W. P., Pop, E. 2013; 102 (19)

• Signatures of dynamic screening in interfacial thermal transport of graphene. *PHYSICAL REVIEW B*
 Ong, Z., Fischetti, M. V., Serov, A. Y., Pop, E. 2013; 87 (19)

• The Role of External Defects in Chemical Sensing of Graphene Field-Effect Transistors. *NANO LETTERS*
 Kumar, B., Min, K., Bashirzadeh, M., Farimani, A. B., Bae, M., Estrada, D., Kim, Y. D., YASAEI, P., Park, Y. D., Pop, E., Aluru, N. R., Salehi-Khojin, A. 2013; 13 (5): 1962-1968

• Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. *NATURE NANOTECHNOLOGY*
 Jin, S. H., Dunham, S. N., Song, J., Xie, X., Kim, J., Lu, C., Islam, A., Du, F., Kim, J., Felts, J., Li, Y., Xiong, F., Wahab, et al 2013; 8 (5): 347-355

• Ballistic to diffusive crossover of heat flow in graphene ribbons. *NATURE COMMUNICATIONS*
 Bae, M., Li, Z., Aksamija, Z., Martin, P. N., Xiong, F., Ong, Z., Knezevic, I., Pop, E. 2013; 4

• InxGa1-xAs Nanowire Growth on Graphene: van der Waals Epitaxy Induced Phase Segregation. *NANO LETTERS*
 Mohseni, P. K., Behnam, A., Wood, J. D., English, C. D., Lyding, J. W., Pop, E., Li, X. 2013; 13 (3): 1153-1161

• Role of Joule Heating on Current Saturation and Transient Behavior of Graphene Transistors. *IEEE ELECTRON DEVICE LETTERS*
 Islam, S., Li, Z., Dorgan, V. E., Bae, M., Pop, E. 2013; 34 (2): 166-168

• Self-Aligned Nanotube-Nanowire Phase Change Memory. *NANO LETTERS*
 Xiong, F., Bae, M., Dai, Y., Liao, A. D., Behnam, A., Carrion, E. A., Hong, S., Ielmini, D., Pop, E. 2013; 13 (2): 464-469
• Effect of grain boundaries on thermal transport in graphene *Applied Physics Letters*
 Serov, A. Y., Ong, Z., Pop, E.
 2013; 102 (3)

• Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions *Applied Physics Letters*
 An, Y., Behnam, A., Pop, E., Ural, A.
 2013; 102 (1)

• Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study *ACS Nano*
 Koepke, J. C., Wood, J. D., Estrada, D., Ong, Z., He, K. T., Pop, E., Lyding, J. W.
 2013; 7 (1): 75-86

• Substrate Dependent High-Field Transport of Graphene Transistors *71st Device Research Conference (DRC)*
 Islam, S., Serov, A. Y., Meric, I., Shepard, K. L., Pop, E.
 IEEE.2013: 35–36

• Realistic Simulation of Graphene Transistors Including Non-Ideal Electrostatics *71st Device Research Conference (DRC)*
 Serov, A. Y., Islam, S., Pop, E.
 IEEE.2013: 31–32

• Reliability, Failure, and Fundamental Limits of Graphene and Carbon Nanotube Interconnects *IEEE International Electron Devices Meeting (IEDM)*
 Liao, A. D., Behnam, A., Dorgan, V. E., Li, Z., Pop, E.
 IEEE.2013

• Novel 3D random-network model for threshold switching of phase-change memories *IEEE International Electron Devices Meeting (IEDM)*
 Piccinini, E., Cappelli, A., Xiong, F., Behnam, A., Buscemi, F., Brunetti, R., Rudan, M., Pop, E., Jacoboni, C.
 IEEE.2013

• High-Field Transport and Thermal Reliability of Sorted Carbon Nanotube Network Devices *ACS Nano*
 Behnam, A., Sangwan, V. K., Zhong, X., Lian, F., Estrada, D., Jariwala, D., Hoag, A. J., Lauhon, L. J., Marks, T. J., Hersam, M. C., Pop, E.
 2013; 7 (1): 482-490

• Electrochemistry at the Edge of a Single Graphene Layer in a Nanopore *ACS Nano*
 Banerjee, S., Shim, J., Rivera, J., Jin, X., Estrada, D., Solovyeva, V., You, X., Pak, J., Pop, E., Aluru, N., Bashir, R.
 2013; 7 (1): 834-843

• Impact of thermal boundary conductances on power dissipation and electrical breakdown of carbon nanotube network transistors *Journal of Applied Physics*
 Gupta, M. P., Chen, L., Estrada, D., Behnam, A., Pop, E., Kumar, S.
 2012; 112 (12)

• Thermal properties of graphene: Fundamentals and applications *MRS Bulletin*
 Pop, E., Varshney, V., Roy, A. K.
 2012; 37 (12): 1273-1281

• Quantitative Thermal Imaging of Single-Walled Carbon Nanotube Devices by Scanning Joule Expansion Microscopy *ACS Nano*
 Xie, X., Grosse, K. L., Song, J., Lu, C., Dunham, S., Du, F., Islam, A. E., Li, Y., Zhang, Y., Pop, E., Huang, Y., King, W. P., Rogers, et al
 2012; 6 (11): 10267-10275

• Transport in Nanoribbon Interconnects Obtained from Graphene Grown by Chemical Vapor Deposition *Nano Letters*
 Behnam, A., Lyons, A. S., Bae, M., Chow, E. K., Islam, S., Neumann, C. M., Pop, E.
 2012; 12 (9): 4424-4430

• Cascading Wafer-Scale Integrated Graphene Complementary Inverters under Ambient Conditions *Nano Letters*
 Rizzi, L. G., Bianchi, M., Behnam, A., Carrion, E., Guerriero, E., Polloni, L., Pop, E., Sordan, R.
 2012; 12 (8): 3948-3953

• Scanning Tunneling Microscopy Study and Nanomanipulation of Graphene-Coated Water on Mica *Nano Letters*
 He, K. T., Wood, J. D., Doidge, G. P., Pop, E., Lyding, J. W.
• Effect of Carbon Nanotube Network Morphology on Thin Film Transistor Performance NANO RESEARCH
 Timmermans, M. Y., Estrada, D., Nasibulin, A. G., Wood, J. D., Behnam, A., Sun, D., Ohno, Y., Lyding, J. W., Hassanien, A., Pop, E., Kauppinen, E. I.
 2012; 5 (5): 307-319

• Effects of tip-nanotube interactions on atomic force microscopy imaging of carbon nanotubes NANO RESEARCH
 Alizadegan, R., Liao, A. D., Xiong, F., Pop, E., Hsia, K. J.
 2012; 5 (4): 235-247

• Nanometalization of single-wall carbon nanotubes and graphene quantum dots Symposium on Ionic Liquids - Science and Applications / 243rd National Spring Meeting of the American-Chemical-Society
 Ye, W., Martin, P. A., Kumar, N., Estrada, D., Daly, S. R., Rockett, A. A., Abelson, J. R., Pop, E., Girolami, G. S., Lyding, J. W.
 AMER CHEMICAL SOC. 2012

• New Technique of DNA Sensing: Nanoribbon Transverse Electrodes 56th Annual Meeting of the Biophysical-Society
 Solovyeva, V., Chow, E., Bae, M., Estrada, D., Banerjee, S., Behnam, A., Dorgan, V. E., Chang, W., Pop, E., Bashir, R.
 CELL PRESS. 2012: 428A–428A

• Chemical sensors based on randomly stacked graphene flakes APPLIED PHYSICS LETTERS
 Salehi-Khojin, A., Estrada, D., Lin, K. Y., Ran, K., Haasch, R. T., Zuo, J., Pop, E., Masel, R. I.
 2012; 100 (3)

• Atomic-scale Study of Scattering and Electronic Properties of CVD Graphene Grain Boundaries 12th IEEE International Conference on Nanotechnology (IEEE-NANO)
 Koepke, J. C., Wood, J. D., Estrada, D., Ong, Z., Xiong, F., Pop, E., Lyding, J. W.
 IEEE. 2012

• IMPACT OF CONTACT RESISTANCES ON ELECTRICAL AND THERMAL TRANSPORT IN CARBON NANOTUBE NETWORK TRANSISTORS 3rd ASME Micro/Nanoscale Heat and Mass Transfer International Conference (MNHMT2012)
 Gupta, M. P., Estrada, D., Pop, E., Kumar, S.
 AMER SOC MECHANICAL ENGINEERS. 2012: 769–776

• Scanning Tunneling Microscopy Characterization of Graphene-coated Few-layered Water on Mica 12th IEEE International Conference on Nanotechnology (IEEE-NANO)
 He, K. T., Wood, J. D., Doidge, G. P., Pop, E., Lyding, J. W.
 IEEE. 2012

• Nanosoldering Carbon Nanotube Junctions with Metal via Local Chemical Vapor Deposition for Improved Device Performance 12th IEEE International Conference on Nanotechnology (IEEE-NANO)
 Do, J., Estrada, D., Xie, X., Chang, N. N., Girolami, G. S., Rogers, J. A., Pop, E., Lyding, J. W.
 IEEE. 2012

• Graphene Nanopores for Nucleic Acid Analysis 12th IEEE International Conference on Nanotechnology (IEEE-NANO)
 Shim, J., Solovyeva, V., Estrada, D., Banerjee, S., Rivera, J., Pop, E., Bashir, R.
 IEEE. 2012

• Improved Graphene Growth and Fluorination on Cu with Clean Transfer to Surfaces 12th IEEE International Conference on Nanotechnology (IEEE-NANO)
 Wood, J. D., Schmucker, S. W., Raasch, R. T., Doidge, G. P., Nienhaus, L., Damhorst, G. L., Lyons, A. S., Gruebele, M., Bashir, R., Pop, E., Lyding, J. W.
 IEEE. 2012

• Stacked Graphene-Al2O3 Nanopore Sensors for Sensitive Detection of DNA and DNA-Protein Complexes ACS NANO
 Venkatesan, B. M., Estrada, D., Banerjee, S., Jin, X., Dorgan, V. E., Bae, M., Aluru, N. R., Pop, E., Bashir, R.
 2012; 6 (1): 441-450

• Polycrystalline Graphene Ribbons as Chemiresistors ADVANCED MATERIALS
 Salehi-Khojin, A., Estrada, D., Lin, K. Y., Bae, M., Xiong, F., Pop, E., Masel, R. I.
 2012; 24 (1): 53–?

• Pressure tuning of the thermal conductance of weak interfaces PHYSICAL REVIEW B
 Hsieh, W., Lyons, A. S., Pop, E., Keblinski, P., Cahill, D. G.
A Web Service and Interface for Remote Electronic Device Characterization. IEEE TRANSACTIONS ON EDUCATION
Dutta, S., Prakash, S., Estrada, D., Pop, E.
2011; 54 (4): 646-651

Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. NANO LETTERS
Wood, J. D., Schmacker, S. W., Lyons, A. S., Pop, E., Lyding, J. W.
2011; 11 (11): 4547-4554

Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica. PHYSICAL REVIEW B
Ong, Z., Pop, E., Shiomi, J.
2011; 84 (16)

Scaling of High-Field Transport and Localized Heating in Graphene Transistors. ACS NANO
Bae, M., Islam, S., Dorgan, V. E., Pop, E.
2011; 5 (10): 7936-7944

Electronic, optical and thermal properties of the hexagonal and rocksalt-like Ge2Sb2Te5 chalcogenide from first-principle calculations. JOURNAL OF APPLIED PHYSICS
Tsafack, T., Piccinini, E., Lee, B., Pop, E., Rudan, M.
2011; 110 (6)

Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates. NANO LETTERS
Kim, R., Bae, M., Kim, D. G., Cheng, H., Kim, B. H., Kim, D., Li, M., Wu, J., Du, F., Kim, H., Kim, S., Estrada, D., Hong, et al.
2011; 11 (9): 3881-3886

Effect of substrate modes on thermal transport in supported graphene. PHYSICAL REVIEW B
Ong, Z., Pop, E.
2011; 84 (7)

Electrical power dissipation in semiconducting carbon nanotubes on single crystal quartz and amorphous SiO2. APPLIED PHYSICS LETTERS
Tsai, C., liao, A., Pop, E., Shim, M.
2011; 99 (5)

Thermally Limited Current Carrying Ability of Graphene Nanoribbons. PHYSICAL REVIEW LETTERS
Liao, A. D., Wu, J. Z., Wang, X., Tahy, K., Jena, D., Dai, H., Pop, E.
2011; 106 (25)

Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. NATURE NANOTECHNOLOGY
Grosse, K. L., Bae, M., Lian, F., Pop, E., King, W. P.
2011; 6 (5): 287-290

Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes. SCIENCE
Xiong, F., Liao, A. D., Estrada, D., Pop, E.
2011; 332 (6029): 568-570

Imaging dissipation and hot spots in carbon nanotube network transistors. APPLIED PHYSICS LETTERS
Estrada, D., Pop, E.
2011; 98 (7)

Reliably Counting Atomic Planes of Few-Layer Graphene (n > 4). ACS NANO
Koh, Y. K., Bae, M., Cahill, D. G., Pop, E.
2011; 5 (1): 269-274

Imaging, Simulation, and Electrostatic Control of Power Dissipation in Graphene Devices. NANO LETTERS
Bae, M., Ong, Z., Estrada, D., Pop, E.
2010; 10 (12): 4787-4793

Frequency and polarization dependence of thermal coupling between carbon nanotubes and SiO2. JOURNAL OF APPLIED PHYSICS
Ong, Z., Pop, E.
• Thermal dissipation and variability in electrical breakdown of carbon nanotube devices *Physical Review B*
 liao, A., Alizadegan, R., Ong, Z., Dutta, S., Xiong, F., Hsia, K. J., Pop, E.
 2010; 82 (20)

• Heat Conduction across Monolayer and Few-Layer Graphenes *Nano Letters*
 Koh, Y. K., Bae, M., Cahill, D. G., Pop, E.
 2010; 10 (11): 4363-4368

• Mobility and saturation velocity in graphene on SiO2 *Applied Physics Letters*
 Dorgan, V. E., Bae, M., Pop, E.
 2010; 97 (8)

• Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2 *Physical Review B*
 Ong, Z., Pop, E.
 2010; 81 (15)

• Covalent Functionalization and Electron-Transfer Properties of Vertically Aligned Carbon Nanofibers: The Importance of Edge-Plane Sites *Chemistry of Materials*
 Landis, E. C., Klein, K. L., liao, A., Pop, E., Hensley, D. K., Melechko, A. V., Hamers, R. J.
 2010; 22 (7): 2357-2366

• Reduced Thermal Conductivity in Nanoengineered Rough Ge and GaAs Nanowires *Nano Letters*
 Martin, P. N., Aksamija, Z., Pop, E., Ravaiol, U.
 2010; 10 (4): 1120-1124

• Energy Dissipation and Transport in Nanoscale Devices *Nano Research*
 Pop, E.
 2010; 3 (3): 147-169

• Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization *Nanotechnology*
 Estrada, D., Dutta, S., liao, A., Pop, E.
 2010; 21 (8)

• Topography and refractometry of nanostructures using spatial light interference microscopy *Optics Letters*
 Wang, Z., Chun, I. S., Li, X., Ong, Z., Pop, E., Millet, L., Gillette, M., Popescu, G.
 2010; 35 (2): 208-210

• Infrared Imaging of Heat Dissipation in Graphene Transistors 2nd International Symposium on Graphene, Ge/III-V and Emerging Materials For Post-CMOS Applications / 217th Meeting of the Electrochemical Society (ECS)
 Bae, M., Ong, Z., Estrada, D., Pop, E.
 ELECTROCHEMICAL SOC INC.2010: 51–62

• Modeling of the Voltage Snap-Back in Amorphous-GST Memory Devices 15th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2010)
 Rudan, M., Giovanardi, F., Tsafack, T., Xiong, F., Piccinini, E., Buscemi, F., liao, A., Pop, E., Brunetti, R., JACOBONI, C.
 IEEE.2010: 257–260

• Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters *Applied Physics Letters*
 Xiong, F., liao, A., Pop, E.
 2009; 95 (24)

• Multiband Mobility in Semiconducting Carbon Nanotubes *IEEE Electron Device Letters*
 Zhao, Y., liao, A., Pop, E.
 2009; 30 (10): 1078-1080

• Compact Thermal Model for Vertical Nanowire Phase-Change Memory Cells *IEEE Transactions on Electron Devices*
 Chen, I., Pop, E.
 2009; 56 (7): 1523-1528
• Electrical and Thermal Coupling to a Single-Wall Carbon Nanotube Device Using an Electrothermal Nanoprobe. NANO LETTERS
Lee, J., liao, A., Pop, E., King, W. P.
2009; 9 (4): 1356-1361

• Impact of Phonon-Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires. PHYSICAL REVIEW LETTERS
Martin, P., Aksamija, Z., Pop, E., Ravaioli, U.
2009; 102 (12)

• A TWO-TEMPERATURE MODEL OF NARROW-BODY SILICON TRANSISTORS UNDER STEADY STATE AND TRANSIENT OPERATION. 3rd Energy Nanotechnology International Conference
Ong, Z., Pop, E.
AMER SOC MECHANICAL ENGINEERS.2009: 97–108

• Infrared Microscopy of Joule Heating in Graphene Field Effect Transistors. 9th IEEE Conference on Nanotechnology (IEEE-NANO)
Bae, M., Ong, Z., Estrada, D., Pop, E.
IEEE.2009: 818–821

• Avalanche, Joule Breakdown and Hysteresis in Carbon Nanotube Transistors. 47th Annual IEEE International Reliability Physics Symposium
Pop, E., Dutta, S., Estrada, D., liao, A.
IEEE.2009: 405–408

• Prediction of Reduced Thermal Conductivity in Nano-Engineered Rough Semiconductor Nanowires. 16th International Conference on Electron Dynamics in Semiconductors, Optoelectronics and Nanostructures (EDISON 16)
Martin, P. N., Aksamija, Z., Pop, E., Ravaioli, U.
IOP PUBLISHING LTD.2009

• ELECTRON-PHONON INTERACTION AND JOULE HEATING IN NANOSTRUCTURES. 3rd Energy Nanotechnology International Conference
Pop, E.
AMER SOC MECHANICAL ENGINEERS.2009: 129–132

• Comparison of Energy Relaxation in One-Dimensional Thermionic and Tunneling Transistors. 9th IEEE Conference on Nanotechnology (IEEE-NANO)
Ramasubramanian, B., Pop, E.
IEEE.2009: 496–499

• Avalanche-Induced Current Enhancement in Semiconducting Carbon Nanotubes. PHYSICAL REVIEW LETTERS
liao, A., Zhao, Y., Pop, E.
2008; 101 (25)

• The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes. NANOTECHNOLOGY
Pop, E.
2008; 19 (29)

• Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME
Panzer, M. A., Zhang, G., Mann, D., Hu, X., Pop, E., Dai, H., Goodson, K. E.
2008; 130 (5)

• Operational voltage reduction of flash memory using high-kappa composite tunnel barriers. IEEE ELECTRON DEVICE LETTERS
Verma, S., Pop, E., Kapur, P., Parat, K., Saraswat, K. C.
2008; 29 (3): 252-254

• Electrically driven light emission from hot single-walled carbon nanotubes at various temperatures and ambient pressures. APPLIED PHYSICS LETTERS
Wang, X., Zhang, L., Lu, Y., Dai, H., Kato, Y. K., Pop, E.
2007; 91 (26)

• Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. APPLIED PHYSICS LETTERS
Reifenberg, J. P., Panzer, M. A., Kim, S., Gibby, A. M., Zhang, Y., Wong, S., Wong, H. P., Pop, E., Goodson, K. E.
2007; 91 (11)

• Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. JOURNAL OF APPLIED PHYSICS
Pop, E., Mann, D. A., Goodson, K. E., Dai, H.
2007; 101 (9)

- Electrically driven thermal light emission from individual single-walled carbon nanotubes. *Nature Nanotechnology*
 Mann, D., Kato, Y. K., Kinkhabwala, A., Pop, E., Cao, J., Wang, X., Zhang, L., Wang, Q., Guo, J., Dai, H.
 2007; 2 (1): 33-38

- Electrical and thermal transport in metallic single-wall carbon nanotubes. *International Semiconductor Device Research Symposium*
 Pop, E.
 IEEE.2007: 401–402

- Heat generation and transport in nanometer-scale transistors. *Proceedings of the IEEE*
 Pop, E., Sinha, S., Goodson, K. E.
 2006; 94 (8): 1587-1601

- Non-equilibrium phonon distributions in sub-100 nm silicon transistors. *Journal of Heat Transfer-Transactions of the ASME*
 Sinha, S., Pop, E., Dutton, R. W., Goodson, K. E.
 2006; 128 (7): 638-647

- Electrical transport properties and field effect transistors of carbon nanotubes. *Nano*
 Dai, H., Juvey, A., Pop, E., Mann, D., Kim, W., Lu, Y.
 2006; 1 (1): 1-13

- Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes. *Journal of Physical Chemistry B*
 Mann, D., Pop, E., Cao, J., Wang, Q., Goodson, K. E., Dai, H. J.
 2006; 110 (4): 1502-1505

- Thermal conductance of an individual single-wall carbon nanotube above room temperature. *Nano Letters*
 Pop, E., Mann, D., Wang, Q., Goodson, K. E., Dai, H. J.
 2006; 6 (1): 96-100

- Electro-thermal transport in silicon and carbon nanotube devices. *14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors*
 Pop, E., Mann, D., Rowlette, J., Goodson, K., Dai, H.
 Springer-Verlag Berlin.2006: 195–199

- Multiphysics modeling and impact of thermal boundary resistance in phase change memory devices. *10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems*
 Reifenberg, J., Pop, E., Gibby, A., Wong, S., Goodson, K.
 IEEE.2006: 106–113

- Thermal properties of metal-coated vertically-aligned single wall nanotube films. *10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems*
 Panzer, M., Zhang, G., Mann, D., Hu, X., Pop, E., Dai, H., Goodson, K. E.
 IEEE.2006: 1306–1313

- Advanced cooling technologies for microprocessors. *Workshop on Frontiers in Electronics (WOFE-04)*
 Kenny, T. W., Goodson, K. E., Santiago, J. G., Wang, E., Koo, J., Jiang, L., Pop, E., Sinha, S., Zhang, L., Fogg, D., Yao, S., Flynn, R., Chang, et al
 World Scientific Publ Co Pte Ltd.2006: 301–313

- Negative differential conductance and hot phonons in suspended nanotube molecular wires. *Physical Review Letters*
 Pop, E., Mann, D., Cao, J., Wang, Q., Goodson, K. E., Dai, H. J.
 2005; 95 (15)

- Monte Carlo simulation of Joule heating in bulk and strained silicon. *Applied Physics Letters*
 Pop, E., Dutton, R. W., Goodson, K. E.
 2005; 86 (8)

- Thermal phenomena in deeply scaled MOSFETs. *IEEE International Electron Devices Meeting*
 Rowlette, J., Pop, E., Sinha, S., Panzer, M., Goodson, K.
 IEEE.2005: 1005–1008
• Joule heating under quasi-ballistic transport conditions in bulk and strained silicon devices *International Conference on Simulation of Semiconductor Processes and Devices*
 Pop, E., Rowlette, J. A., DUTTON, R. W., Goodson, K. E.
 JAPAN SOCIETY APPLIED PHYSICS.2005: 307–310

• Electo-thermal transport in metallic single-wall carbon nanotubes for interconnect applications *IEEE International Electron Devices Meeting*
 Pop, E., Mann, D., Reifenberg, J., Goodson, K., Dai, H. J.
 IEEE.2005: 261–264

• Thermal simulation techniques for nanoscale transistors *IEEE/ACM International Conference on Computer Aided Design*
 Rowlette, J., Pop, E., Sinha, S., Panzer, M., Goodson, K.
 IEEE.2005: 225–228

• Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion *JOURNAL OF APPLIED PHYSICS*
 Pop, E., DUTTON, R. W., Goodson, K. E.
 2004; 96 (9): 4998-5005

• Electro-thermal comparison and performance optimization of thin-body SOI and GOI MOSFETs *50th IEEE International Electron Devices Meeting*
 Pop, E., Chui, C. O., Sinha, S., Dutton, R., Goodson, K.
 IEEE.2004: 411–414

• Thermal phenomena in nanoscale transistors *9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems*
 Pop, E., Goodson, K. E.
 IEEE.2004: 1–7

• Thermal analysis of ultra-thin body device scaling *IEEE International Electron Devices Meeting*
 Pop, E., Dutton, R., Goodson, K.
 IEEE.2003: 883–886

• Detailed heat generation simulations via the Monte Carlo method *IEEE International Conference on Simulation of Semiconductor Processes and Devices*
 Pop, E., Dutton, R., Goodson, K.
 IEEE.2003: 121–124