I. INTRODUCTION

These years are witnessing an increasing research effort at the intersection of Quantum Information Science1 and more established fields like theoretical condensed matter2. It belongs to this class the approach to quantum phase transitions (QPT)3 based on the information-geometry of quantum states that has been recently proposed in Ref.2 and3. Further developments, for specific, yet important, classes of quantum states have been then reported in 7, 8, 10, 11, 12, 13, 14. The underlying idea is deceptively simple: the major structural change in the ground state (GS) properties at the QPT should reveal itself by some sort of singular behavior in the distance function between the GSs corresponding to slightly different values of the coupling constants. This intuition can be made more quantitative by analyzing the leading order terms in the expansion of the quantum fidelity between close GSs.

A general differential-geometric framework encompassing all of these results has been offered in Ref.15. There it has been shown that these leading order terms do correspond to a Riemannian metric g over the parameter manifold. This metric g is nothing but the pull-back of the natural metric over the projective Hilbert space via the map associating the Hamiltonian parameters with the corresponding GS. In the thermodynamical limit the singularities of g correspond to QPTs. In Ref.16 the nature of this correspondence has been further investigated and it has been shown that both the metric approach to QPT and the one based on geometrical phases17, 18 can be understood in terms of the critical scaling behavior of the quantum geometric tensor19.

The conceptually appealing and potentially practically relevant feature of this strategy consists of the fact that its viability does not rely on any a priori knowledge of the physics of the model e.g., order parameters, symmetry breaking patterns,... but just on a universal geometrical structure (basically the Hilbert scalar product). Very much in the spirit of Quantum Information the metric approach is fully based on quantum states rather than Hamiltonians (that might be even unknown), once these are given the machinery can be applied.

In this paper we further extend the scope of this metric approach by considering the manifold of thermal states of a family of Hamiltonians featuring a zero-temperature PT. In Ref.20 it was shown that by studying the mixed-state fidelity21 between Gibbs states associated with slightly different Hamiltonians one could detect the influence of the zero-temperature quantum criticality over a finite range of temperatures. Here we will refine that analysis and make it more quantitative by resorting to the concept of Bures metric between mixed quantum states. This metric provides the natural finite-temperature extension of the metric tensor g studied in the GS case and corresponds again to the leading order in the expansion of the (mixed-state) fidelity between close states i.e., associated with infinitesimally close parameters. By analyzing the case of the Quantum Ising model we shall show how the quantum-critical region above the zero-temperature QPT can be remarkably characterized in terms of the scaling behavior of the Bures metric tensor.

The paper is organized as follows: in sect. II we introduce the basic concepts about mixed-state metrics and in Sect III we specialize them to the case of thermal (Gibbs) states. In sect. IV we provide generalities about quasi-free fermion systems and in Sect VI we analyze in detail the Bures metric tensor for the quantum Ising model. Finally in sect V conclusions and outlook are given.

II. PRELIMINARIES

The Bures distance between two mixed-states ρ and σ is given in terms of the Uhlmann fidelity21

$$F(\rho, \sigma) = \text{tr} \sqrt{\rho^{1/2} \sigma \rho^{1/2}}$$

by

$$d_F(\rho, \sigma) = \sqrt{2 \left[1 - F(\rho, \sigma) \right]}.$$
generic non-commutativity of expression back into (2) one obtains
\[\{ n, m \} \in \text{Ker}(\rho) \Rightarrow \langle n | d|m \rangle = 0, \]
one can formally extend the sum to all possible pairs by setting to zero the unwanted terms. For \(\rho \) pure i.e., \(\rho = |\psi\rangle\langle\psi| \) one has
\[d\rho = (d|\psi\rangle\langle\psi|) + (|\psi\rangle\langle\psi|)(d|\psi\rangle) \]
from which one sees that the diagonal matrix elements of \(d\rho \) are vanishing and one is left with
\[d\sigma^2_B = \sum_{m \in \text{Ker}(\rho)} |\langle m | d|m \rangle|^2 = (d|\psi\rangle(1 - |\psi\rangle\langle\psi|))(d\psi). \]
This expression coincides with the Riemannian metric considered in [13]. The Bures metric (2) is tightly connected to the so-called quantum Fisher information and it appears in the quantum version of the celebrated Cramer-Rao bound [23]. This suggests the possible relevance of the results that we are going to present in this paper to the field of quantum estimation [24].

To begin with we would like to cast Eq. (2) in a form suitable for future elaborations. Let us first differentiate the density matrix \(d\rho = \sum_n (dp_n |n\rangle\langle n| + p_n |n\rangle\langle n| + p_n |n\rangle\langle n|) \) and consider to begin the matrix element \((dp)_ij \). We observe that \((i|j) = \delta_{ij} \Rightarrow (di|j) = -(i|jd) \); whence \((i|dpj) = \delta_{ij}(dp_i + (i|jd)(p_j - p_i) \). Putting this expression back into (2) one obtains
\[ds^2 = \frac{1}{4} \sum_n d\sigma^2_B + \frac{1}{2} \sum_{n \neq m} |\langle n | dm \rangle|^2 \frac{(p_n - p_m)^2}{p_n + p_m}. \]

This relation is quite interesting since it tells apart the classical and the quantum contributions. Indeed the first term in (3) is nothing but the Fisher-Rao distance between the probability distributions \(\{ p_n \}_n \) and \(\{ p_n + dp_n \}_n \) whereas the second term takes into account the generic non-commutativity of \(\rho \) and \(\rho' := \rho + d\rho \).

We will refer to these two terms as the classical and non-classical one respectively. When \(\rho' = 0 \) the problem gets effectively classical and the Bures metric collapses to the Fisher-Rao one; this latter being in general just a lower bound [22, 23].

Before moving to the analysis of the metric (2) we would like to comment about the connection with the recently established quantum Chernoff bound [20]. This latter, denoted by \(\xi_{QCB} \), is the quantum analogue of the Chernoff bound in classical information theory; it quantifies the rate of exponential decay of the probability of error in discriminating two quantum states \(\rho \) and \(\sigma \) when a large number \(n \) of them is provided and collective measurements are allowed i.e., \(P_{err} \sim \exp(-n\xi_{QCB}) \). The Chernoff bound naturally induces a distance function over the manifold of quantum states with a well defined operational meaning (the bigger the distance between the states the smaller the asymptotic error probability in telling one from the other). In [20] it has been proven that \(\exp(-\xi_{QCB}) = \min_{0 \leq s \leq 1} \text{tr} (\rho^s \sigma^{1-s}) \leq \mathcal{F}(\rho, \sigma) \) and that for infinitesimally close states i.e., \(\sigma = \rho + d\rho \), one has
\[ds^2_{QCB} := 1 - \exp(-\xi_{QCB}) = \frac{1}{2} \sum_{m,n} |\langle m | dp | n \rangle|^2 (\sqrt{p_n} + \sqrt{p_m})^2. \]

From this expression we see that the distinguishability metric associated with the quantum Chernoff bound has the same form of the Bures one (2) but the denominators \(p_n + p_m \) are replaced by \((\sqrt{p_n} + \sqrt{p_m})^2 \). Using the inequalities \((\sqrt{p_n} + \sqrt{p_m})^2 \geq p_n + p_m \) and 2\((p_n + p_m) \geq (\sqrt{p_n} + \sqrt{p_m})^2 \) one immediately sees that
\[\frac{ds^2}{2} \leq ds^2_{QCB} \leq ds^2. \]

This relation shows that, as far as divergent behavior is concerned, the Bures and the Chernoff bound metric are equivalent i.e., one metric diverges iff the other does. On the other hand in the metric approach to QPTs the identification of divergences of the rescaled metric tensor and their study plays the central role [12]. Therefore one expects the two distinguishability measures to convey equivalent information about the location of the QPTs. Though most of the calculations that are reported in this paper could be easily extended to the Chernoff bound metric, here we will limit ourselves to the analysis of the Bures metric (2).

III. THERMAL STATES

From now on we specialize our analysis to the case of thermal states. If the Hamiltonian smoothly depends on a set of parameters, denoted by \(\lambda \), living in same manifold \(\mathcal{M} \) one has the smooth map \((\lambda, \beta) \rightarrow \rho(\beta, \lambda) := Z^{-1} \rho(\beta, \lambda) \), \(Z = \text{tr} e^{-\beta H} \). What we are going to study in this paper is basically the pull-back onto the \((\lambda, \beta) \) plane of the Bures metric through this map. This is the obvious finite-temperature extension of the ground-state approach of Ref. [13].

We start by studying the Bures distance when \(T \neq 0 \) is fixed and for infinitesimal variations of the Hamiltonian’s parameters \(\lambda \). Notice first that \(p = Z^{-1} \rho(\beta, \lambda) \), \(E_n \) and \(|n\rangle \) are the eigenvalues and eigenvectors of the Hamiltonian operator \(H \). With a standard reasoning, by differentiating the Hamiltonian eigenvalue equation one finds that
\[(i|dpj) = (i|dH|j)(E_j - E_i). \]
Moreover one easily sees that
\[dp_i = d(e^{-\beta E_i}/Z) = -\beta p_i (dE_i - \sum_j (dE_j)p_j), \]
therefore the first term in equation (3) can be written as \(\beta^2/4 \sum_i p_i (dE_i^2 - (dE_i)^2) \) where \((dE_i)_\beta := \sum_j (dE_j)p_j \). This means that the Fisher-Rao distance is expressed by the thermal variance of the diagonal observable \(dH \beta := \sum_j (dE_j)p_j \). Times the square of the inverse temperature. Summarizing
\[ds^2_B = \frac{\beta^2}{4} ((dH^2)_\beta - (dH^2)_\beta^2) \]
The Bures distance can be written expanding \(n \) over \(H \) in (3). In fact the variation \(\beta \to \infty \) behavior of the Bures distance in presence of infinitesimal \(\delta H \), \(\delta \rho \) as \(\delta n \to 0 \) \(\delta H \) term in (3). In fact the variation \(\beta \) only affects the Fisher Rao classical term in (8). The complete classical term of the metric, is precisely proportional to the specific heat \(c_v \) [15], i.e.

\[
\frac{1}{4} \sum_n \frac{(dp_n)^2}{p_n} = \frac{1}{4} \left\{ \langle (\Delta H)^2 \rangle \right\} d\beta^2 + \beta^2 \left\{ \langle (\Delta H)^2 \rangle - \langle (\Delta H) \rangle^2 \right\} d\beta dh + 2\beta \langle (\Delta H)^2 \rangle d\beta dh \]

These terms correspond to the elements of the metric \(g_{\beta \beta}, \ g_{\beta h}, \ g_{h h} \) respectively. The full metric can be written once one calculates the non classical term in (3). The infinitesimal Bures distance can then be written in terms of the classical and non-classical part

\[
g_{h h}(h, \beta) = g_{h h}^c(h, \beta) + g_{h h}^n(h, \beta) \]

such that \(ds_B^2 = g_{h h}(h, \beta) dh^2 \). Let us now explore the behavior of the Bures distance in presence of infinitesimal variations of both the temperature \(\beta \) variations and a field \(h \) in the Hamiltonian. It is easy to see that the variation of \(\beta \) only affects the Fisher Rao classical term in (3). In fact the variation \(\delta H \), \(\delta \rho \) as \(\delta n \to 0 \) \(\delta H \) term in (3), are taken with respect to \(h \) only. The calculations can be summarized as follows. We first have to expand the \(dp_n \) as \(dp_n = \langle \delta \beta \rangle \beta d\beta + \langle \delta h \rangle \beta d\beta \). We have that

\[
(\partial \beta p_n) d\beta = p_n \langle (H) - E_n \rangle d\beta
\]

and

\[
(\partial h p_n) dh = \beta p_n \langle [\partial h H_d] - \partial h E_n \rangle dh
\]

where \(E_n = E_n(h) \). The complete classical term of the Bures distance can be written expanding \((dp_n)^2 = (\partial dp_n, \partial h p_n, \partial h p_n, \partial h p_n) dh \), and summing over \(n \). We thus have three different contributions:

\[
\frac{1}{4} \sum_n \frac{(dp_n)^2}{p_n} = \frac{1}{4} \left\{ \left\langle (\Delta H)^2 \right\rangle - \langle (\Delta H) \rangle^2 \right\} d\beta^2 + \beta^2 \left\{ \left\langle (\Delta H)^2 \right\rangle - \langle (\Delta H) \rangle^2 \right\} d\beta dh + 2\beta \langle (\Delta H)^2 \rangle d\beta dh \]

This completes the remark.

Before moving to the next sections, where we will specialize the previous results to the particular case of the Quantum Ising model, we would like to notice that the variation of the Bures distance with temperature only, given by the element \(g_{\beta \beta} \) of the metric, is precisely proportional to the specific heat \(c_v \) [15], i.e.

\[
ds_B^2 = \frac{d\beta^2}{4} \frac{\left\langle (\Delta H)^2 \right\rangle}{\beta} - \frac{\left\langle (\Delta H) \right\rangle^2}{\beta} = \frac{d\beta^2}{4} T^2 c_v.
\]

This simple fact was already observed in [13] and [10] and provides, we believe, a neat connection between quantum-information theoretic concept, geometry and thermodynamics.

IV. QUASI FREE FERMIONS

In this section we specialize the study of the behavior of the Bures metric to systems of quasi-free fermions when one has the variation of one parameter \(h \) of the Hamiltonian and of the temperature \(T \). The results that we present here are a finite-temperature generalization of those given in Refs [7] and [8] and directly related to the mixed-state fidelity ones reported in [20].

The quasi-free Hamiltonians we consider are given, after performing a suitable Bogoliubov transformation, by

\[
H = \sum_\nu \Lambda_\nu \eta_\nu^* \eta_\nu,
\]
where \(\Lambda_\nu > 0 \) and \(\eta_\nu \) denote the quasi-particle energies and annihilation operator respectively. One has that \(\nu \) is a suitable quasi-particle label, that for translationally invariant systems amounts to a linear momentum; the ground state is the vacuum of the \(\eta_\nu \) operators i.e., \(\eta_\nu (GS) = 0 \), \(\forall \nu \). The dependence on the parameter \(h \) is both through the \(\Lambda_\nu \)'s and the \(\eta_\nu \)'s.

We now derive the explicit general form of the Bures distance \([3]\) starting from the classical part \([5]\). We observe that the (many-body) Hamiltonian eigenvalues are given by \(E_j = \sum_\nu n_\nu \Lambda_\nu \) where the \(n_\nu \)'s are fermion occupation numbers i.e., \(n_\nu = 0, 1 \). Therefore we have that \(dE_j = \sum_\nu n_\nu d\Lambda_\nu \) and \(\langle dE_j \rangle_\beta = \sum_\nu \langle n_\nu \rangle_\beta d\Lambda_\nu \) where the averages are easy to compute since the probability distribution of the \(dE_j \) factorizes over the \(\nu \)'s. Furthermore, \(\langle n_\mu n_\nu \rangle_\beta - \langle n_\mu \rangle_\beta \langle n_\nu \rangle_\beta = \delta_{\mu \nu} \langle n_\nu \rangle_\beta (1 - \langle n_\nu \rangle_\beta) \) and we can thus write:

\[
\frac{1}{4} \sum_\nu \left(\frac{d\rho_\nu}{\rho_\nu} \right)^2 = \frac{1}{4} \sum_\nu \langle n_\nu \rangle (1 - \langle n_\nu \rangle) \times \left\{ \Lambda_\nu^2 \frac{d\beta^2}{\beta} + \beta^2 \langle \partial_\beta \Lambda_\nu \rangle^2 \, d\beta \right\} - \frac{2}{\beta} \Lambda_\nu \partial_\beta \Lambda_\nu \, d\beta \, d\beta. \tag{11}
\]

The term in \(d\beta^2 \) is the classical term due to the infinitesimal variations of the parameters of the Hamiltonian at fixed \(T \) and it corresponds to the variance, see \([6]\), \(\text{var}(H_\beta) = \sum_\nu \langle n_\nu \rangle_\beta (1 - \langle n_\nu \rangle_\beta) d\Lambda_\nu^2 \). Since we are dealing with independent free-fermions one has \(\langle n_\nu \rangle_\beta = (\exp(\beta \Lambda_\nu) + 1)^{-1} \), whence

\[
ds^2 \equiv \frac{\beta^2}{16} \sum_\nu \left(\frac{\partial_\beta \Lambda_\nu}{\cosh^2(\beta \Lambda_\nu/2)} \right)^2 d\beta^2. \tag{12}
\]

In order to compute the non-classical part of Eq. \((10)\), one has to explicitly consider the eigenvectors of \((10)\).

Following the notation of Ref. \([7]\) one has \(|m\rangle = (\alpha_\nu, \alpha_{-\nu}, \nu > 0 \rangle = \otimes_{\nu > 0} |\alpha_\nu, \alpha_{-\nu} \rangle \) where

\[
|0_\nu, 0_\nu \rangle = \cos(\theta_\nu/2) |00\rangle_{\nu, -\nu} - \sin(\theta_\nu/2) |11\rangle_{\nu, -\nu},
\]

\[
|0_\nu, 1_{-\nu} \rangle = |01\rangle_{\nu, -\nu}, \quad |1_\nu, 0_{-\nu} \rangle = |10\rangle_{\nu, -\nu},
\]

\[
|1_\nu, 1_{\nu} \rangle = \cos(\theta_\nu/2) |11\rangle_{\nu, -\nu} + \sin(\theta_\nu/2) |00\rangle_{\nu, -\nu}.
\]

We assume now that parameter dependence is only in the angles \(\theta_\nu \)'s (this assumption holds true for all the translationally invariant systems). It is easy to see from the above factorized form that the only non vanishing matrix elements \(\langle m | dm \rangle \) are given by \(\langle 0_\nu, 0_\nu | d | 1_\nu, 1_{-\nu} \rangle = d\theta_\nu/2 \) and that the thermal factor \(\rho_\nu \rho_{-\nu} \equiv \rho_\nu \rho_{-\nu} \) has the form \(\sinh^2(\beta \Lambda_\nu) / [\cosh(\beta \Lambda_\nu) + 1] [\cosh(\beta \Lambda_\nu) - 1] / \cosh(\beta \Lambda_\nu) \). Putting all together one finds

\[
d\sigma^2_{nc} = \frac{1}{4} \sum_{\nu > 0} \frac{\cosh(\beta \Lambda_\nu) - 1}{\cosh(\beta \Lambda_\nu)} (\partial_\nu \theta_\nu)^2 d\beta^2. \tag{13}
\]

We finally note that the two elements \((12)\) and \((13)\) define the metric element \([7]\). The results of this section can be applied to any quasi-free fermionic model \([10]\).

\[
\text{V. QUANTUM ISING MODEL}
\]

We are now going to discuss in some detail the behavior of the metric tensor for a paradigmatic example in the class of quasi-free fermionic models, the Ising model in transverse field. The model is defined by the Hamiltonian

\[
H = - \sum_j \sigma_j^x \sigma_{j+1}^x + h \sigma_j^z. \tag{14}
\]

At \(T = 0 \) this system undergoes a quantum phase transition for \(h = 1 \). For \(h < 1 \) the system is in an ordered phase as the correlator \(\langle \sigma_i^x \sigma_i^x \rangle_{T=0} \) tends to a non zero value: \(\lim_{T \to \infty} \langle \sigma_i^x \sigma_i^x \rangle_{T=0} = (1 - h^2)^{1/4} \). The excitations in this region are domain walls in the \(\sigma^x \) direction. Instead for \(h > 1 \) the magnetic field dominates, and excitations are given by spin flip over a paramagnetic ground state. The transition point \(h = 1 \) is described by a \(c = 1/2 \) conformal field theory, which implies that means that the dynamical exponent \(z = 1 \); the correlation function exponent is \(\nu = 1 \). As is well known \([3]\), a signature of the ground state phase diagram remains at positive temperature. In the quasi classical region \(T \ll \Delta \), where \(\Delta = |1 - h| \) is the lowest excitation gap, the system can be described by a diluted gas of thermally excited quasi-particles, even if the nature of the quasi-particles is different at the different sides of the transition. Instead in the quantum critical region \(T \gg \Delta \) the mean inter-particle distance becomes of the order of the quasi-particle de Broglie wavelength and thus quantum critical effects dominate and no semiclassical theory is available. In each of the above described regions of the \((h, T)\) plane the system displays very different dynamical as well thermodynamical properties. For example, in the quantum critical region the specific heat approaches zero linearly with the temperature (this is in fact a general feature of all conformal field theories), whereas in the quasi-classical regions the approach is exponentially fast.

\[
\text{A. Bures metric tensor in the }(h, T) \text{ plane}
\]

We now investigate whether the signature of the physically different regions can be revealed by analyzing the elements of the metric tensor defined by the Bures distance. We begin by studying the temperature dependence of the metric tensor when only the external field is varied i.e., the term \(g_{hh}(h, T) \), see Eq. \((7)\). The Hamiltonian \((11)\) is equivalent to a quasi-free fermionic model, and following our previous notation one has \(\epsilon_\nu = \cos(k) - h \), \(\Delta_k = \sin(k) \), \(\Lambda_k = \sqrt{\epsilon_k^2 + \Delta_k^2} \) and tan \(\theta_k = \Delta_k / \epsilon_k \). Using formulae \((12)\) and \((13)\) it is straightforward to write \((7)\). After rescaling \(g \to g/L \) and passing to the thermodynamic limit we obtain

\[
g_{hh}^c = \frac{\beta^2}{16\pi} \int_{-\pi}^{\pi} \frac{1}{\cosh (\beta \Lambda_k) + 1} \frac{1}{\Lambda_k^2} dk.
\]
The integrals are better evaluated by transforming momentum integration to energy integration in a standard way. As previously noticed, on general grounds, the classical term \(g_{hh}^c \) vanishes when the temperature goes to zero. In the quantum-critical region \(\beta \Delta \approx 0 \), and one obtains the following low temperature expansion:

\[
g_{hh}^c = \frac{\pi}{96h^2} T + O(T^2).
\]

Instead in the quasi-classical region where \(\beta \Delta \gg 1 \) the fall-off to zero is exponential. With a saddle point approximation one obtains

\[
g_{hh}^e = \sqrt{\frac{\Delta}{32\pi\hbar}} T^{-3/2}e^{-\Delta/T} + \text{lower order}.
\]

We now analyze the scaling behavior of the non-classical term of the metric \(g \). From the results of \([5, 7]\) it is known that the geometric tensor at zero temperature diverges as \(\Delta^{-1} \) when \(\Delta \to 0 \). The non classical term matches this ground state behavior from positive temperature. Indeed, in the quantum-critical region the integral is well approximated by

\[
g_{hh}^{nc} \approx \frac{1}{8\pi\hbar^2} \int_0^{2\beta} \frac{\cosh(x) - 1}{\cosh(x)} \frac{(4\beta^2 - x^2)}{x^2} dx.
\]

For large \(\beta \) (low temperatures) this expression can be Laurent expanded and the resulting integrals can be resummed using residuum theorem, giving

\[
g_{hh}^{nc} = \frac{\pi}{h^2} \left[\frac{C}{\pi^2} T^{-1} - \frac{1}{16} + O(T) \right], \tag{15}
\]

where \(C \) is Catalan’s constant \(C = 0.915966 \ldots \).

We would like to point out that the behavior of the metric tensor in the quasi-critical region, can be inferred from dimensional scaling analysis in much the same spirit as was done in \([16]\) for the zero temperature metric tensor. From Eq. \([9]\) we see that the scaling dimension of \(g_{hh}^{nc} \) is \(\Delta_{nc} = 2\Delta_V - 2z - d \), where \(\Delta_V \) is the scaling dimension of the operator \(dH \), \(z \) is the dynamical exponent and \(d \) is the spatial dimensionality. Following \([16]\) (\(\beta \) now plays the role of the length) we obtain

\[
g_{hh}^{nc} \sim T^{\Delta_{nc}/z} \tag{16}
\]

In the present case, \(z = d = \Delta_V = 1 \) (the scaling dimension of \(\sigma^z \) – a free fermionic field– is one) which agrees with \([16]\).

We now pass to analyze the behavior of \(g_{hh}^{nc} \) in the quasi-classical region i.e. when \(\beta \Delta \gg 1 \). In this case the “temperature” part of the integral is never effective, i.e. one has \(\frac{\cosh(\beta\Delta) - 1}{\cosh(\beta\Delta)} \approx 1 \), so it is quite clear that, in first approximation, one recovers the zero temperature result first given in \([5]\) which we re-write here as an energy integral

\[
g_{hh}^{nc}(T = 0, \Delta \to 0) \approx \frac{1}{16\Delta} \tag{17}
\]

which is a result also reported in \([5, 7]\). Instead when the gap is large, —so that we are necessary on the \(h > 1 \) side— we can approximate the radical in Eq. \((17) \) with an ellipse centered at \((h, 0)\) with semi-axes \(r_x = 1 \) and \(r_y = 2h \), that amounts to write

\[
\sqrt{\left[(h-1)^2 - \omega^2\right] \left[\omega^2 - (1+h)^2\right]} \approx 2\hbar \sqrt{1 - (\omega - h)^2}.
\]

In this case the integral gives

\[
g_{hh}^{nc}(T = 0, \Delta \gg 1) \approx \frac{1}{8\hbar(1)^{3/2}} \approx \frac{1}{8\Delta^2}.
\]

Again, by doing a saddle point approximation one realizes that the zero temperature results are approached exponentially fast with the temperature, more precisely one has

\[
g_{hh}^{nc}(\beta\Delta \gg 1) = g_{hh}^{nc}(T = 0) - \text{const.} \times T^{3/2} e^{-\Delta/T}.
\]

We now extend our analysis to the other terms of metric tensor \([9]\). When we consider the case in which both the temperature and the field \(h \) are varied two new matrix elements come into play:

\[
g_{TT} = \frac{\beta^4}{16\pi} \int_{-\pi}^{\pi} \frac{\Lambda_k^2}{\cosh(\beta\Lambda_k) + 1} dk,
\]

\[
g_{hT} = \frac{\beta^3}{16\pi} \int_{-\pi}^{\pi} \frac{\epsilon_k}{\cosh(\beta\Lambda_k) + 1} dk.
\]

Let us first comment on the behavior observed at very low temperature. In the quasi-classical region \((\Delta \gg T) \) all matrix elements of \(g \) tend to zero except for \(g_{hh}^{nc} \). This is a general feature and is due to the fact that these terms are absent in the zero temperature expression. As previously stated the fall-off to zero is exponential, and in particular, for the model in exam, we have that

\[
g_{TT} \approx T^{-5/2} e^{-\Delta/T}, \quad T \ll \Delta
\]

\[
g_{TT} \approx T^{-7/2} e^{-\Delta/T}.
\]

Let us now look at the quantum critical region \(T \gg \Delta \), small temperature. The mixed term tends to a constant:

\[
g_{hT} = \frac{\pi}{48} + O(T^2). \tag{19}
\]
Instead \(g_{TT} \) must diverge at zero temperature, as it has to match with the diverging behavior observed in the ground state. For the diagonal term \(g_{TT} \) one has
\[
g_{TT} = \frac{T^{-2}}{4} c_v = \frac{\pi}{24} T + O(T), \quad T \gtrsim \Delta. \tag{20}
\]

We note in passing that this result agrees with the one for the specific heat obtained for general conformal theories.

We first observe that there clearly are some interesting features for small temperatures, that model, see Fig. 1. We first start by noticing that at each point \((h,T)\) the eigenvectors of the metric tensor \(g\) define the directions of maximal and minimal growth of the line element \(ds_g^2\). Hence the vector field \(\vec{v}_M(h,T)\) given by the eigenvector of \(g\) related to the highest eigenvalue \(\lambda_M\), defines at each point of the \((h,T)\) plane the direction along which the fidelity decreases most rapidly: the latter represents the direction of highest distinguishability between two nearby Gibb’s states.

We now focus our analysis on the study of the vector field \(\vec{v}_M(h,T)\) in the specific case of the quantum Ising model, see Fig. 1. We first observe that there clearly are some interesting features for small temperatures, that reflect the analysis previously carried out on the metric elements of \(g\). On one hand, in the quasi-classical region, when \(h \approx 0\) we have that the direction of highest fidelity drop, is parallel to the \(h\) axis. This reflects the fact that, in this region, all the elements of \(g\) tend to zero except for the term \(g^{hh}_{hh}\). On the other hand, in the quasi critical region, the direction of highest fidelity drop is parallel to the \(T\) axis. Again, this feature can be linked to the previous analysis of the terms \((15)\) and \((20)\). Indeed both \(g_{hh}\) and \(g_{TT}\) diverge as \(T^{-1}\), but, as \((C/\pi^2) / (\pi/24) = 0.70\ldots < 1\), \(g_{TT}\) eventually becomes bigger and thus the direction of highest distinguishability turns parallel to the \(T\) axis.

B. Directions of maximal distinguishability

The analysis carried out in the previous section can be further deepened by studying some useful quantities that can be derived by the analysis of the metric tensor \(g\). Indeed, we will see that these quantities allow to give a finer description of the behavior of the system in the plane \((h,T)\) and to reveal new unexpected features.

We proceed in our description of the phase diagram through the introduced vector field by examining what happens at the \(h = 0\) axis. Here one has the impression that a kind of singular point appear around \(T \approx 1\). The reason for this is that at \(h = 0\) the system becomes the purely classical Ising model, which possess only classical behavior at any temperature. This implies that the quantum-critical region cannot extend over this line. As the dispersion \(\Lambda_k\) is flat, it is straightforward to write down the metric tensor on the \(h = 0\) line. It turns out that \(g\) is completely diagonal meaning that eigenvectors are parallel to the \((h,T)\) axes. One sees that for \(0.852 < T < \infty\), \(g_{hh} > g_{TT}\) then for \(0.101 < T < 0.852\), \(g_{TT} > g_{hh}\) and then finally, at very small temperature, quantum fluctuations dominates and for \(0 < T < 0.101\), \(g_{hh} > g_{TT}\). The appearance of the purely classical Ising line at \(h = 0\), which forbids the quantum critical phase extend over this line, is related to the fact that the model \((13)\) is invariant under the \(Z_2\) symmetry \(h \rightarrow -h\). This in turns implies that the phase diagram is mirror symmetric around the \(h = 0\) line and that there is another quantum critical point at \(h = -1\). The physical consequence is that the semiclassical ordered region is much smaller than one would think and the actual phase diagram is much like in Figure 2.

Finally we now discuss another feature that can be observed by studying \(\vec{v}_M(h,T)\). As one can see in Fig. 1 along the line \(T = h \geq 1\) the vector field becomes parallel to the vector \(\vec{v} = (-1,1)\). It turns out that this feature can be understood analytically by studying the behavior of the metric tensor \(g\) when \(|h| \gg 1\). Indeed, by evaluating the dominant part of the various metric elements on the line \(T = h = t \gg 1\), one sees that all
the Fisher-Rao terms decay as \(t^{-2} \) while \(g_{hh}^c \sim t^{-4} \), and, what is most surprising, all matrix elements tend to have the same value in magnitude. This feature can be understood simply observing that when \(|h| \gg 1\) it is only the classical term proportional to the external magnetic field of the Quantum Ising Hamiltonian that survives i.e., \(H \simeq h \sum_i \sigma_i^z \). The density matrix of the system can be written as \(\rho(h,T) = \exp(-h \sum_i \sigma_i^z / T) / Z \); in this approximation the only non zero terms of the metric are the Fisher-Rao ones and all the covariances that define these terms, see [8], coincide with \(\text{var}(H) \). Thus, in the limit \(|h| \gg 1\) the Bures distance reads \(ds_B^2 = \text{var}(H) [dT^2 / T^2 - \text{hdTdh} / T^3 + h^2 \text{dh}^2 / T^4] \). If now one chooses the particular case \(T = h = t \) and evaluates the density \(g / L \) one finds that

\[
g(t,t) = \frac{t^{-2}}{16 \cosh^2(1/2)} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} + O(t^{-3}).
\]

Thus, one has that on the line \(T = h \gg 1 \) the only non zero eigenvalue is \(2 \text{var}(H) / (Lt^2) \) and it corresponds to the eigenvector \(\vec{w} = (-1, 1) \). In this approximation, that amounts to neglecting the term \(g_{hh}^c \sim t^{-4} \), when moving along the line \(T = h \gg 1 \) i.e., along the direction defined by \(\vec{w}^2 \), no changes in the state of the system occur.

C. Crossover and metric tensor \(g \)

We finally present some preliminary results related to the intriguing possibility of determining the crossover lines between the quasi-classical and quasi-critical region [14] through the analysis of the elements of metric tensor \(g \) and the induced Gaussian curvature [28] in the plane \((h,T)\). The capability of the highest (in modulus) eigenvalue of \(g \) and of the Gaussian curvature induced by the metric to capture, in terms of divergencies or discontinuities, the existence of QPTs has been already tested in [8] and [15]. Here we would like to test whether these quantities are able to identify the crossover between the quasi-classical and quantum-critical region. Notice that the curvature of the Bures metric in the case of squeezed states has been studied in [29] and an operational interpretation attempted. It is also worthwhile to stress that the so-called thermodynamical curvature plays a central role in the geometrical theory of classical phase transition developed by Ruppeiner and coworkers [30].

As already pointed out, at each point \((h,T)\) the vector field \(\vec{v}_M(h,T) \) defines the direction of highest distinguishability between two nearby Gibb’s states. The degree of distinguishability along this direction is quantified by the maximal eigenvalue \(\lambda_M(h,T) \). Since the quasi-classical and quantum-critical regions are characterized by significantly different physical properties, it is natural to investigate whether the change of the latter, in spite of not involving a phase transition, could be revealed by our measures of statistical distinguishability and by the related functionals.

We now give a descriptive analysis of the raw data. In figure 3 we have plotted the contour plot of the maximal eigenvalue of \(g \). The main feature is the presence for \(T > 0 \) of two patterns of high distinguishability (white) that separate the regions \((h < 1, T \lesssim 0.25)\) and \((h > 1, T \lesssim 0.25)\) from the rest of the diagram. Thus, the first information that can be drawn is that a change of parameters inside these regions implies a small change in the statistical properties of the corresponding ground states. On the contrary, if one varies \(h \) and \(T \) and moves from these regions towards the center of the diagram, for example moving along the integral lines of \(\hat{v}_M(h,T) \), the statistical properties of the state necessarily have to significantly change. One can see that, the ”transition” lines between the different regions can be extrapolated numerically by tracing the ”ridge” lines of the two patterns of high distinguishability. It turns out that the same result can be achieved by looking at the lines where the Gaussian curvature of \(g \) changes sign, see figure 4. For example, when \(h > 1 \), one can see that along the de-
differential-geometry of the manifold of mixed quantum states. We studied the Bures metric over the set of thermal quantum states associated with Hamiltonians featuring a zero-temperature quantum phase transition i.e., quasi-free fermionic systems. In particular we focused on the study of the quantum Ising model for which we provided a fully analytical characterization of the Bures metric tensor g. Quantum critical and semiclassical regions in the temperature, magnetic field plane can be easily identified in terms of different scaling behavior of the components of g as a function of the temperature. Cross-over lines between the different regions can be found just by looking at the shape of the graph of the largest eigenvalue of the metric as a function of temperature and magnetic field. Remarkably these cross-over lines seem to be associated also with the change of sign of the Gaussian curvature of the metric g.

The results presented in this paper provide further support to the validity of the statistical-metric approach to phase transitions [13] and clearly show that the scope of this geometrical method can be extended to finite temperatures. The physical significance of the curvature of the metric as well as the study of the thermal states geometry associated with other distinguishability distances e.g., the quantum Chernoff bound metric, are topics deserving further investigations.

VI. CONCLUSIONS

In this paper we have analyzed the relation between quantum criticality, finite temperature and the
determined transition line, T has a linear dependence on $h - 1$.

This preliminary descriptive analysis seems thus to indicate that a neat distinction between the quasi-classical regions (characterized by a negative curvature) and the quantum-critical (characterized by a positive curvature) can be made on the basis of study of the metric g. This is indeed the first time that the use of the fidelity, and of the related functionals, allows to identify the crossover between two distinct phases.

The authors would like to thank for useful discussions R. Ionicioiu and M. Paris.

Acknowledgments

[1] For a review, see e.g., D. P. DiVincenzo and C. H. Bennett, Nature 404, 247 (2000).
[2] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110 (2002); A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature 416, 608 (2002); G. Vidal, J.I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003); Y. Chen, P. Zanardi, Z. D. Wang, F. C. Zhang, New J. Phys. 8, 97 (2006); L.-A. Wu, M.S. Sarandy, D. A. Lidar, Phys. Rev. Lett. 93, 250404 (2004)
[3] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999).
[4] K. Huang, Statistical mechanics, ohn Wiley, New York, 1987.
[5] P. Zanardi and N. Paunkovic, Phys. Rev. E 74, 031123 (2006)
[6] H.-Q. Zhou, J. P. Barjaktarevic, cond-mat/071608; H.-Q. Zhou, [arXiv:0704.2945]
[7] P. Zanardi, M. Cozzini, P. Giorda, J. Stat. Mech. (2007) L02002 doi:10.1088/1742-5468/2007/02/L02002
[8] M. Cozzini, P. Giorda, P. Zanardi, Phys. Rev. B 75, 014439 (2007).
[9] M. Cozzini, R. Ionicioiu, P. Zanardi, cond-mat/0611727
[10] W.-L. You, Y.-W. Li, S.-J. Gu, quant-ph/0701077
[11] P. Buonsante, A. Vezzani, Phys. Rev. Lett. (2007)
[12] H.-Q. Zhou et al, arXiv:0704.2940
[13] A. Hamma et al, arXiv:0705.0026
[14] S. Chen et al arXiv:0706.0072 S.-J. Gu et al arXiv:0706.2495
[15] P. Zanardi, P. Giorda, M. Cozzini, quant-ph/0701061,
(to be published in Phys. Rev. Lett.)
[16] L. Campos Venuti, P. Zanardi, arXiv:0705.2211 (to be
published in Phys. Rev. Lett.)
[17] A. C. M. Carollo and J. K. Pachos, Phys. Rev. Lett. 95,
157203 (2005) S.-L. Zhu, Phys. Rev. Lett. 96, 077206
(2006);
[18] A. Hamma, quant-ph/0602091
[19] J. P. Provost, G. Vallee, Commun. Math. Phys. 76, 289
(1980)
[20] P. Zanardi, H.-T Quan, X.-G. Wang, C.-P. Sun, Phys.
Rev A 75, 032109 (2007)
[21] A. Uhlmann, Rep. Math. Phys. 9 273 (1976); R.
[22] H.-J. Sommers, K. Zyczkowski, J. Phys. A 36, 10083
(2003)
[23] S. L. Braunstein, C.M. Caves, Phys. Rev. Lett, 72, 3439
(1994)
[24] P. Zanardi et al, in preparation
[25] W.K. Wootters, Phys. Rev. D 23, 257 (1981)
[26] K.M.R. Audenaert et al, Phys. Rev. Lett. 98, 160501
(2007)
[27] I. Affleck, Phys. Rev. Lett. 56, 746 (1986)
[28] See, for example, M. Nakahara, Geometry, topology and
Physics, Institute of Physics Publishing (1990).
[29] Gh. -S. Paraoanu and H. Scutaru, Phys. Rev. A 58, 869
(1998)
[30] G. Ruppeiner, Phys. Rev. A 20, 1608 (1979); Rev. Mod.
Phys. 67, 605 (1995) and references therein