ANGULAR MOMENTUM LOSS MECHANISMS IN CATAclySMIC VARIABLES BELOW THE PERIOD GAP

YONG SHAO1 AND XIANG-DONG LI1,2

1 Department of Astronomy, Nanjing University, Nanjing 210093, China; lixd@nju.edu.cn
2 Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210093, China

Received 2011 July 1; accepted 2011 October 20; published 2012 January 16

ABSTRACT

Mass transfer in cataclysmic variables (CVs) is usually considered to be caused by angular momentum loss (AML) driven by magnetic braking and gravitational radiation (GR) above the period gap, and solely by GR below the period gap. The best-fit revised model of CV evolution recently presented by Knigge et al., however, indicates that the AML rate below the period gap is 2.47±0.22 times the GR rate, suggesting the existence of some other AML mechanisms. We consider several kinds of consequential AML mechanisms often invoked in the literature: isotropic wind from the accreting white dwarfs, outflows from the Lagrangian points, and the formation of a circumbinary disk. We find that neither isotropic wind from the white dwarf nor outflow from the L2 point can explain the extra AML rate, while outflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ∼(15–45)% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting gravitational torque on the binary. In this case, the mass-loss fraction can be as low as ∼10⁻³.

Key words: binaries: close – novae, cataclysmic variables

Online-only material: color figures

1. INTRODUCTION

Cataclysmic variables (CVs) are short-period binaries consisting of a white dwarf star accreting material from a lower-mass main-sequence star that is overflowing its Roche-lobe (Warner 1995). In the standard model, mass transfer in CVs is driven by angular momentum loss (AML) driven by gravitational radiation (GR; Kraft et al. 1962) and magnetic braking (MB; Verbunt & Zwaan 1981).

The orbital period (Porb) distribution of CVs has been summarized by Ritter & Klob (2003) as bimodal, with ∼45% of CVs having a period in the range of ∼3–16 hr, another ∼45% having ∼80 minutes to 2 hr, and the remaining ∼10% having ∼2–3 hr. The number of CVs in the period interval ∼2–3 hr is small; this is known as the period gap. In seeking a plausible explanation for the period gap in CV evolution, several authors (Rappaport et al. 1983; Spruit & Ritter 1983; Livio & Pringle 1994) proposed “disrupted” MB models, which are related to the transition of AML mechanisms. The general idea is that mass transfer in CVs above the period gap is primarily driven by MB at a rate rapid enough, making the secondary star out of thermal equilibrium, that the secondary star is oversized and has a larger radius than a main-sequence star with the same mass. Along with mass transfer, the secondary star loses mass gradually and finally becomes fully convective when Porb ∼ 3 hr.

AML is now assumed to be caused solely by GR, because MB is vanished. Accordingly, the oversized secondary star begins to shrink and underfill its Roche-lobe in an attempt to reach thermal equilibrium, cutting off matter transfer. CVs become very faint and virtually unobservable. When the Roche-lobe is again filled due to orbit shrinking driven by GR at Porb ∼ 2 hr, mass transfer restarts from the secondary star.

Most recently, Knigge et al. (2011) reconstructed the complete evolutionary path followed by CVs, using the observed mass–radius relationship of their secondary stars. For AML, they adopted a scaled version of the standard GR loss rate and the Rappaport et al. (1983) MB law. With suitable normalization parameters, fGR and fMB, these recipes provide acceptable matches for the observed data. The best-fitting scaling factors are fGR = 2.47 ± 0.22 below the gap and fMB = 0.66 ± 0.05 above, which describe the mass–radius data significantly better than the standard model (fGR = fMB = 1).

Here we focus on the origin of the enhanced AML below the gap, which has already been mentioned before (e.g., Kolb & Baraffe 1999, Pitterson 2001; Spruit & Taam 2001; Barker & Kolb 2003). One obvious candidate is the residual MB. Generally, the magnetic field of a low-mass star is supposed to be anchored at the interface between the convective envelope and the radiative core. For a fully convective star, such as the secondary star of CVs below the period gap, the interface disappears and MB is thought to be closed. However, there is strong evidence that fully convective stars are capable of generating significant magnetic fields (Sills et al. 2000; Andronov et al. 2003), which might develop differently from low-mass main-sequence stars (for a discussion see Section 8.5 in Knigge et al. 2011 and references therein). At present, it is not clear whether the magnetically channeled stellar winds can produce MB strong enough to be consistent with the model for CV evolution (e.g., Li et al. 1994). In this paper we will examine other mechanisms that are needed to account for the extra AML.

During the mass-transfer processes, part of the transferred mass from the secondary star may escape the binary system, carrying away the orbital angular momentum. AML associated with mass transfer is called consequential angular momentum loss (CAML) (King & Kolb 1995). There are several types of CAML due to different methods of mass loss in CV evolution (Soberman et al. 1997): (1) isotropic wind from the accreting white dwarf and surrounding accretion disk (King & Kolb 1995), (2) outflow through the Lagrangian points L1 or L2 (Vanbeveren et al. 1998), and (3) a circumbinary (CB) disk (van den Heuvel 1994; Taam & Spruit 2001).

The organization of this paper is as follows: We introduce the basics of orbital evolution and possible CAML mechanisms in Section 2. In Section 3, we constrain possible AML mechanisms
to explain the extra AML rate below the period gap. Discussions and conclusions are presented in the final section.

2. ORBITAL EVOLUTION AND CAML IN CVs

We first derive the relation between the CAML rate and the mass-transfer rate M_2, following the approach in King (1988) and Knigge et al. (2011).

We assume that the total angular momentum of the binary is dominated by the orbital angular momentum,

$$J = M_1 M_2 \left(\frac{G a}{M} \right)^{1/2},$$ \hspace{1cm} (1)

where a is the binary separation; and M_1, M_2, and M are the masses of the white dwarf, the secondary star, and the binary system, respectively. The relation between the binary separation a and the orbital angular velocity ω is given by Kepler’s third law,

$$GM = a^3 \omega^2.$$ \hspace{1cm} (2)

Logarithmic differentiation of Equation (1) gives

$$\frac{\dot{J}}{J} = \frac{\dot{M}_1}{M_1} + \frac{\dot{M}_2}{M_2} + \frac{\dot{a}}{2a} - \frac{\dot{M}}{2M}.$$ \hspace{1cm} (3)

The orbital AML rate in CVs contains two items. One is the systemic AML due to MB and/or GR; the other is CAML, which is related to the mass-transfer rate. The total orbital AML rate therefore can be written as

$$\dot{J} = \dot{J}_{\text{sys}} + \dot{J}_{\text{CAML}}.$$ \hspace{1cm} (4)

When mass is transferred from the donor star to the white dwarf, we assume that a fraction δ of the matter flow escapes from the CV binary, i.e.,

$$\dot{M} = \delta \dot{M}_2,$$ \hspace{1cm} (5)

which means that the actual accretion rate of the white dwarf is

$$\dot{M}_1 = (\delta - 1) \dot{M}_2.$$ \hspace{1cm} (6)

Considering that the CAML rate is related to the mass-transfer rate M_2, we can write

$$\frac{\dot{J}_{\text{CAML}}}{J} = \frac{v}{M_2},$$ \hspace{1cm} (7)

where v is a parameter as a function of δ (Knigge et al. 2011). In order to eliminate \dot{a}/a in Equation (3), we use the Paczynski (1971) formula for the Roche-lobe radius R_L of the donor star,

$$R_L = 0.462 (M_2/M) ^ {1/3} a.$$ \hspace{1cm} (8)

Logarithmic differentiation of Equation (8) yields

$$\frac{\dot{R}_L}{R_L} = \frac{M_2}{3M_2} - \frac{\dot{M}}{3M} + \frac{\dot{a}}{a}.$$ \hspace{1cm} (9)

For a Roche-lobe-filling donor star with steady mass transfer, variation of the stellar radius R_2 and the Roche-lobe radius R_L should be in step, i.e.,

$$\frac{\dot{R}_L}{R_L} = \frac{\dot{R}_2}{R_2}.$$ \hspace{1cm} (10)

To address \dot{R}_2, we use the mass–radius relation $R_2 = M_2^{\gamma}$ and its logarithmic differentiation

$$\frac{\dot{R}_2}{R_2} = \frac{\dot{M}_2}{M_2}$$ \hspace{1cm} (11)

where γ is the mass–radius exponent. Knigge et al. (2011) showed that after a CV donor emerges from the bottom of the period gap, the exponent γ evolves from ≈ 0.8 (in thermal equilibrium) to $\approx 1/3$ at the minimum period, and finally to $\approx -1/3$ (see also Rappaport et al. 1982). They adapted the broken-power-law fit to the updated $M_2 - P$ data in Knigge (2006), with $\gamma = 0.3$ for $M_2 < 0.07 M_\odot$, and $\gamma = 0.61$ for $0.07 M_\odot < M_2 < 0.2 M_\odot$. Here $0.2 M_\odot$ and $0.07 M_\odot$ are the secondary masses just below the gap and at the minimum period where the secondary stars become degenerate and the orbital periods start to bounce back into the period-increasing phase, respectively. Adopting $q = M_2/M_1$ and typical white dwarf mass $M_1 = 0.6 M_\odot$ in CVs, γ decreases from ≈ 0.61 to ≈ 0.3 with decreasing q. In the following we calculate γ by using the $M(R)$ relation derived from numerical calculations of CV binary evolution, which is very close to the empirical one in Knigge et al. (2011).

Combining Equations (3)–(11), one can derive

$$\frac{\dot{M}_2}{M_2} = \frac{\dot{J}_{\text{sys}}}{JD^2},$$ \hspace{1cm} (12)

where

$$D = (5/6 + \xi/2) - \frac{M_2}{M_1} + \gamma \left(\frac{M_2}{M_1} \right) - v.$$ \hspace{1cm} (13)

Here the systemic AML mechanism below the gap is GR, and its rate is given by (Landau & Lifshitz 1951)

$$\frac{\dot{J}_{\text{GR}}}{J} = - \frac{32}{5} \frac{M_1 M_2 a^{-4}}{c^5}.$$ \hspace{1cm} (14)

Next, we consider the possible CAML mechanisms. We assume that isotropic wind (e.g., outflows due to nova explosions and/or wind emanating from the accretion disk) carries the white dwarf’s specific orbital angular momentum j_1,

$$j_1 = \frac{M_2}{M_1} \frac{J}{M_1}.$$ \hspace{1cm} (15)

For outflows from the Lagrangian point L_2 the specific orbital angular momentum is

$$j_2 = a_{L_2}^2 \omega,$$ \hspace{1cm} (16)

where a_{L_2} is the distance between the mass center of the binary and the L_2 point. Finally, for CB disks, we assume that it extracts the orbital angular momentum from the binary by tidal force. The specific orbital angular momentum j_3 is given by

$$j_3 = \gamma a^2 \omega,$$ \hspace{1cm} (17)

where γa is taken as the inner radius of the CB disk. Usually, $\gamma = 1.5$ (Soberman et al. 1997).
3. Constraining the CAML Mechanisms Below the Period Gap

The best-fit revised model of CV evolution in Knigge et al. (2011) indicates that the AML rate below the period gap is $2.47 \dot{J}_{\text{GR}}$. This means that some other AML mechanisms besides GR should work. In the following, we discuss the feasibility of the AML rate below the period gap being negative, indicating that the CAML rate cannot be provided by the wind alone. For CVs below the period gap, $0 < q < 0.33$, $\zeta > 0$, so δ is always negative, indicating that the isotropic wind cannot provide the extra $1.47 \dot{J}_{\text{GR}}$ AML. This conclusion remains valid if we let most of the material escape from the L_2 point (Barker & Kolb 2003).

3.1. Isotropic Wind

Combining Equations (5), (7), and (15), we can derive the orbital AML rate, $\dot{J}_{\text{CAML,1}}$ of isotropic wind as

$$\dot{J}_{\text{CAML,1}} = \delta \frac{M_2^2}{M_1 M} \dot{M}_2,$$

and hence

$$\nu = \delta \frac{M_2^2}{M_1 M}.$$

Let $\dot{J}_{\text{CAML,1}} = 1.47 \dot{J}_{\text{GR}}$ and with the combined Equations (12)–(14) and (18)–(20), we have

$$2.47 \delta \frac{M_2^2}{1.47 M_1 M} = \frac{5}{6} \frac{\zeta}{2} M_2 \frac{M_2}{M_1} + \delta \left(\frac{M_2}{M_1} - \frac{M_2}{3M} \right),$$

which can be transformed into

$$\delta \simeq \frac{(2.5 + 1.5 \zeta - 3q)(1 + q)}{2q(q - 1)}.$$ \hspace{1cm} (21)

For CVs below the period gap, $0 < q < 0.33$, $\zeta > 0$, so δ is always negative, indicating that the isotropic wind cannot provide the extra $1.47 \dot{J}_{\text{GR}}$ AML. This conclusion remains valid if we let most of the material escape from the L_1 point (Barker & Kolb 2003).

3.2. Outflow from the L_2 Point

As in Section 3.1, we derive the orbital AML rate, $\dot{J}_{\text{CAML,2}}$, of outflow from the L_2 point by combining Equations (5) and (16),

$$\dot{J}_{\text{CAML,2}} = \delta \frac{a_{L_2}^2}{a^2} \frac{M_2}{M_1 M} \dot{M}_2,$$

which gives

$$\nu = \delta \frac{a_{L_2}^2}{a^2} \frac{M_2}{M_1}.$$ \hspace{1cm} (23)

Then, we obtain the following relation:

$$\frac{2.47 \delta a_{L_2}^2 M}{1.47 a^2 M_1} = \frac{(5/6 + \zeta/2)}{2} \frac{M_2}{M_1} + \delta \left(\frac{M_2}{M_1} - \frac{M_2}{3M} \right).$$

After simplification, we have

$$\delta \simeq \frac{(2.5 + 1.5 \zeta - 3q)(1 + q)}{5(1 + q)^2 x^2 - q(2 + 3q)}.$$ \hspace{1cm} (25)

where $x = a_{L_2}/a$. For different q, the values of x are given in Mochnacki (1984). The relation between δ and q is shown in Figure 1. It is seen that the required value of δ ranges from ~ 0.15 to ~ 0.45.

3.3. CB Disks

The origin of the CB disks may stem from either the remnant of the late stage of the common envelope evolution phase that formed the CVs, or from matter outflow from CVs during the mass-transfer processes (Taam & Squdquist 2000). Through tidal interaction between the CB disk and the CV binary, the CB disk can extract orbital angular momentum from the binary if part of the transferred mass flows into the disk rather than onto the white dwarf. The corresponding AML rate is

$$\dot{J}_{\text{CAML,3}} = \delta \gamma \frac{M_2 a^2 \omega}{2},$$

Then we can derive

$$\delta \simeq \frac{(2.5 + 1.5 \zeta - 3q)(1 + q)}{7.56(1 + q)^2 - q(2 + 3q)}.$$ \hspace{1cm} (27)

The relation between δ and q is shown in Figure 2. The value of δ lies between ~ 0.22 and ~ 0.4, comparable with that in the case of outflow from the L_2 point.

The above results are presented under the assumption that AML is only caused by mass loss. There is actually gravitational torque between the CB disk after it is formed and the binary, which is more efficient in extracting angular momentum from...
the binary (Spruit & Taam 2001). The AML rate under this

d Torque can be expressed as

$$J_{\text{CB}} = \gamma \left(\frac{2\pi a^2}{P_{\text{orb}}} \right) \delta M_2 \left(\frac{t}{t_{\text{eq}}} \right)^{1/3}, \quad (28)$$

where t is the time since the mass transfer begins, and t_{eq} is the viscous timescale at the inner edge of the CB disk, given by $t_{\text{eq}} = 2\pi^2 P_{\text{orb}} / 3\pi a^2$. α is the viscosity parameter (Shakura & Sunyaev 1973), and β is the ratio of the scale height to the radius of the disk. Equation (28) can be further simplified as

$$J_{\text{CB}} = A(GM)^{2/3} \delta M_2 t^{1/3}, \quad (29)$$

where $A = (3\alpha\beta^2/4)^{1/3}$. Similar to the derivation of Equation (20), we obtain the following relation for the CB disk,

$$\frac{2.47 A G^{1/6} M_7^{7/6} \delta t^{1/3}}{1.47 M_4 a^{1/2}} = \left(\frac{5}{6} + \frac{\zeta}{2} \right) - \frac{M_2}{M_1} + \delta \left(\frac{M_2}{M_1} - \frac{M_2}{3M} \right). \quad (30)$$

Previous investigations (Taam & Spruit 2001; Taam et al. 2003; Willems et al. 2005) suggest that very small values of δ ($\ll 1$) are required for CV evolution. Thus, the third term on the right-hand side of Equation (30) can be neglected. Considering the fact that $\zeta/2$ and q roughly counteract each other, $M \sim M_1$, Equation (30) is changed to become

$$\delta \simeq \frac{1}{2A(2\pi)^{1/3}} \left(\frac{P_{\text{orb}}}{t} \right)^{1/3} \sim 8 \times 10^{-4} \alpha_{0.01}^{-1/3} \beta_{0.03}^{2/3} \left(\frac{P_{\text{orb},2}}{t_9} \right)^{1/3}, \quad (31)$$

where $\alpha_{0.01} = \alpha/0.01$, $\beta_{0.03} = \beta/0.03$ (Belle et al. 2004), $P_{\text{orb},2} = P_{\text{orb}}/2$ hr, and $t_9 = t/10^9$ yr. This is close to the result $\delta \sim 3 \times 10^{-4}$ adopted in the numerical calculations by Taam et al. (2003) for CV evolution.

To investigate the effect on AML of the uncertainties in treatment of CB disks, we have numerically solved Equation (30). Figures 3 and 4 show the calculated values of δ as a function of q for different values of α and β. It is generally seen that a smaller α or β corresponds to a larger δ. This is easy to understand with Equation (29): smaller α or β indicates less efficient angular momentum transfer within the disk, which requires more mass input into the CB disk to guarantee enough AML from the orbit. Nevertheless, the values of δ are always small (<< a few 10^{-3}) when we change α from 0.001 to 0.1, and β from 0.005 to 0.1. This implies that CB disks are indeed very efficient in draining orbital angular momentum through gravitational torques even with a very small mass input rate.

To show how CB disks can influence the evolution of CVs below the gap, we perform binary evolution calculations adopting an updated version of the stellar evolution code developed by Eggleton (1971, 1972; see also Han et al. 1994; Pols et al. 1995). We set the initial solar chemical compositions (i.e., $X = 0.7$, $Y = 0.28$, and $Z = 0.02$) for the donor star, and take the ratio of mixing length to the pressure scale height as 2.0 and the convective overshooting parameter as 0.12.

We follow the evolution of a CV just below the gap with a donor star of mass 0.2 M_\odot and an orbital period ~ 0.1 days. For CB disks we take $A\delta$ as one free parameter to assess its influence on the evolution of CVs, since α, β, and δ are always combined in evaluating the AML rate (see Equation (29)). For typical values of $\alpha (= 0.01)$ and $\beta (= 0.03)$ (Taam et al. 2003 and references therein), $A \simeq 0.02$. Considering the fact that a suitable value of δ may range from $\sim 10^{-7}$ to a few 10^{-4} (Taam et al. 2003; Willems et al. 2005), we constrain the adopted value of $A\delta$ to be less than $\sim 10^{-5}$. A larger value of $A\delta$ may cause unstable mass transfer. The stability of mass transfer can be examined by comparing the Roche-lobe radius exponent ζ_L due to mass loss with ζ (Soberman et al. 1997), both of which are shown in Figure 5 as a function of q. From top to bottom, the solid curves represent ζ_L with $A\delta$ ranging from 5×10^{-5} to 1×10^{-5} in steps of 1×10^{-5}, and the dashed lines show the mass–radius exponent ζ of 0.8, 1/3, and $-1/3$, respectively. Since the mass transfer would be unstable when $\zeta_L \geq \zeta$, we can derive that $A\delta$ should be $\lesssim (2-3) \times 10^{-5}$ to guarantee stable mass transfer.

In Figure 6, we present examples of the evolutionary sequences of the donor mass, orbital period, mass-transfer rate, and the ratio of total AML rate and the AML rate due to GR ($N \equiv J/J_{\text{GR}}$) to show the influence of CB disks. The panels from top to bottom correspond to $A\delta = 0$ (i.e., AML due to GR...
ζ

Figure 5. Roche-lobe radius exponent \(\zeta_L \) as a function of \(q \). The five solid curves represent \(\zeta_L \) with different \(A \delta \) from \(5 \times 10^{-5} \) to \(1 \times 10^{-5} \) in steps of \(1 \times 10^{-5} \) (from top to bottom). The dashed lines from top to bottom correspond to the mass-radius exponent \(\zeta = 0.8, 1/3, \) and \(-1/3, \) respectively. (A color version of this figure is available in the online journal.)

solely), \(4 \times 10^{-6}, 9 \times 10^{-6}, \) and \(2 \times 10^{-5}, \) respectively. When \(A \delta = 4 \times 10^{-6} \) (or \(\delta = 2 \times 10^{-4}(A/0.02)^{-1} \)), the evolution seems similar to that with GR only. However, the mass-transfer processes are actually accelerated, with \(\sim 10\% \) higher average mass-transfer rate and \(\sim (10-15)\% \) higher AML rate than in the GR-only case. This tendency becomes more intense when \(A \delta \) increases. When \(A \delta = 2 \times 10^{-5} \), the average mass-transfer rate is enhanced by \(\sim 70\% \), and the AML rate \(J \) becomes \(\sim 2-3 \) times \(J_{GR} \). These results imply that a tiny fractional input rate (\(\delta \lesssim 10^{-3} \)) into CB disks can significantly change the evolution. This is in contrast with mass-loss-associated AML mechanisms, which usually require a much larger fraction of the transferred mass to leave the binary system (although in reality there might be multiple mechanisms at work simultaneously).

4. DISCUSSION AND CONCLUSIONS

The secular evolution of CVs is thought to be driven by the AML. Two mechanisms usually invoked to account for the dissipation of AM are GR and MB of the secondary star. However, this dual-loss mechanism cannot completely account for the magnitudes of the mass-transfer rates inferred for some CVs, and for the large spread in the mass-transfer rates observed at a given orbital period (e.g., Spruit & Taam 2001). Likely, additional AML mechanisms include mass loss from the binary during the mass-transfer process, which carries away the orbital angular momentum from the binary. Below the period gap in CV evolution, the AML mechanism was usually considered to be driven solely by GR, while the best-fit result with observations indicates that the AML rate is about \(2.47J_{GR} \) (Knigge et al. 2011). This offers a possibility of constraining the AML mechanisms besides GR. We consider several kinds of CAML mechanisms often invoked in the literature: isotropic wind from

Figure 6. Evolution of the donor mass (\(M_{\odot} \)), orbital period (days), mass-transfer rate (\(M_{\odot} \) yr\(^{-1} \)), and the ratio (\(N \)) of the total AML rate and the AML rate due to GR. The panels from top to bottom correspond to AML due to GR solely, and both GR and CB disks with \(A \delta = 4 \times 10^{-6}, 9 \times 10^{-6}, \) and \(2 \times 10^{-5}, \) respectively.
the accreting white dwarfs, outflows from the Langrangian points, and the formation of a CB disk.

We find that neither isotropic wind from the white dwarf nor outflow from the L_1 point can explain the extra $1.47 \dot{J}_{\text{GRAML}}$ rate, while outflow from the L_2 point or a CB disk is more effective in extracting the angular momentum. For a $0.6 M_\odot$ white dwarf, the fraction δ of mass loss in the total transferred mass is ~ 0.15–0.45 or ~ 0.2–0.40, respectively. It is actually found that δ is always lower than 0.45 for different masses of the white dwarf in our calculations. Note that when mass is lost from the L_2 point, it is very likely to form a CB disk around the binary (van den Heuvel 1994), so it is not surprising that the values of δ are very close in these two cases.

When the tidal interaction between the CB disk and the binary is included, the mass-transfer rate can be enhanced much more efficiently, and a very small fraction ($\delta \lesssim 10^{-3}$) of mass loss is required. This suggests a much lighter CB disk than that in the former cases. The CB disks are thought to be large (up to several AU in radius) and cool (a few thousand Kelvin at the inner edge to less than 1000 K at the outer edge), with peak emission in the infrared (Dubus et al. 2002). Although detection of excess infrared emission from magnetic CVs provides observational support for the presence of cool gas (and possibly a CB disk) surrounding CVs (Howell et al. 2006; Dubus et al. 2007; Brinkworth et al. 2007; Hoard et al. 2007), there are still many open questions associated with the formation of the CB disks. Future observations with the measurement of the disk masses might distinguish the methods of angular momentum transfer between the CB disk and the CV binary.

We are grateful to the anonymous referee for helpful comments. This work was supported by the Natural Science Foundation of China (under grant numbers 10873008 and 11133001), and the Ministry of Science and the National Basic Research Program of China (973 Program 2009CB824800).

REFERENCES
Andronov, N., Pinsonneault, M., & Sills, A. 2003, ApJ, 582, 358
Barker, J., & Kolb, U. 2003, MNRAS, 340, 623
Belle, K. E., Sanghi, N., Howell, S. B., Holberg, J. B., & Williams, P. T. 2004, AJ, 128, 448
Brinkworth, C. S., Hoard, D. W., Wachter, S., et al. 2007, ApJ, 659, 1541
Dubus, G., Taam, R. E., Hull, C., Watson, D. M., & Mauerhan, J. C. 2007, ApJ, 663, 516
Dubus, G., Taam, R. E., & Spruit, H. C. 2002, ApJ, 569, 395
Eggleton, P. P. 1971, MNRAS, 151, 351
Eggleton, P. P. 1972, MNRAS, 156, 361
Han, Z., Podsiadlowski, P., & Eggleton, P. P. 1994, MNRAS, 270, 121
Hoard, D. W., Howell, S. B., Brinkworth, C. S., Ciardi, D. R., & Wachter, S. 2007, ApJ, 671, 734
Howell, S. B., Brinkworth, C., Hoard, D. W., et al. 2006, ApJ, 646, L65
King, A. R. 1988, QJRAS, 29, 1
King, A. R., & Kolb, U. 1995, ApJ, 439, 330
Knigge, C. 2006, MNRAS, 373, 484
Knigge, C., Baraffe, I., & Patterson, J. 2011, ApJS, 194, 28
Kolb, U., & Baraffe, I. 1999, MNRAS, 309, 1034
Kraft, R. P., Mathews, J., & Greenstein, J. L. 1962, ApJ, 136, 312
Landau, L. D., & Lifshitz, E. M. 1951, The Classical Theory of Fields (Reading, MA: Addison-Wesley)
Li, J. K., Wu, K. W., & Wickramasinghe, D. T. 1994, MNRAS, 268, 61
Livio, M., & Pringle, J. E. 1994, ApJ, 427, 956
Mochnacki, S. W. 1984, ApJS, 55, 551
Paczynski, B. 1971, ARA&A, 9, 183
Patterson, J. 2001, PASP, 113, 736
Pols, O., Tout, C. A., Eggleton, P. P., & Han, Z. 1995, MNRAS, 274, 964
Rappaport, S., Joss, P. C., & Webbink, R. F. 1982, ApJ, 254, 616
Rappaport, S., Verbunt, F., & Joss, P. C. 1983, ApJ, 275, 713
Ritter, H., & Kolb, U. 2003, A&A, 404, 301
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Sills, A., Pinsonneault, M. H., & Terndrup, D. M. 2000, ApJ, 534, 335
Soberman, G. E., Phinney, E. S., & van den Heuvel, E. P. J. 1997, A&A, 327, 620
Spruit, H. C., & Ritter, H. 1983, A&A, 124, 267
Spruit, H. C., & Taam, R. E. 2001, ApJ, 548, 900
Taam, R. E., & Sandquist, E. L. 2000, ARA&A, 38, 113
Taam, R. E., Sandquist, E. L., & Dubus, G. 2003, ApJ, 592, 1124
Van den Heuvel, E. P. J. 1994, in Interacting Binaries (Saas-Fee 22), ed. S. N. Shore et al. (Berlin: Springer), 265
Vanbeveren, D., Van Rensbergen, W., & De Loore, C. 1998, The Brightest Binaries (Dordrecht: Kluwer)
Verbunt, F., & Zwaan, C. 1981, A&A, 100, L7
Warner, B. 1995, Cataclysmic Variable Stars (Cambridge: Cambridge Univ. Press)
Willems, B., Kolb, U., Sandquist, E. L., Taam, R. E., & Dubus, G. 2005, ApJ, 635, 1263