CASE REPORT

ophillectomy for an ampullary adenoma.

CASE REPORT

An 82-year-old woman with no significant medical history presented with a 2-month history of abdominal pain and nausea. Vital signs were as follows: blood pressure, 130/80 mm Hg; heart rate, 72 beats/minute (bpm); respiratory rate, 20/min-
te; and body temperature, 36.4°C. She appeared chronically ill and the findings of a physical examination of the thorax, heart, and abdomen were unremarkable. Laboratory studies revealed a white blood cell (WBC) count of 8,110/μL (neutrophils, 78.5%; and lymphocytes, 17.5%) and a hemoglobin (Hb) of 11.5 g/dL. Serum biochemical values were as follows: blood urea nitrogen (BUN), 12 mg/dL; serum creatinine (Cr), 0.8 mg/dL; aspartate aminotransferase/alanine aminotransferase, 21/14 U/L; albumin, 4.0 g/dL; total bilirubin, 0.6 mg/dL; and amylase 2,460 U/L. Electrolyte levels were as follows: Na, 139
mmol/L; K, 4.0 mmol/L; and Cl, 102 mmol/L. Carbohydrate antigen 19-9 (CA19-9) levels were 37.0 U/mL.

An abdominal computed tomography (CT) scan revealed a 2-cm mass near the ampulla of Vater with mild dilation of the intrahepatic and common bile ducts as well as the pancreatic ducts (Fig. 1). There was no evidence of invasion of other organs. Both kidneys were normal sized without apparent abnormalities.

Endoscopic retrograde cholangiopancreatography with endoscopic ultrasound (EUS) revealed a 2-cm adenoma-like protruding lesion in the ampulla of Vater. EUS showed a well-defined isoechoic homogeneous mass without bile or pancreatic duct invasion (Fig. 2A-C). The mass was resected using a snare and a plastic stent was inserted into the bile duct; insertion of a plastic stent into the pancreatic duct failed. No specific complications, including severe bleeding or perforation, were observed (Fig. 2D). Six hours post-procedure, the patient vomited 50 mL of blood and complained of abdominal pain. A second episode of hematemesis (<30 cc) occurred approximately 5 hours later. Immediately after the second episode, treatment with 1 g of tranexamic acid and 2 KU of hemocoagulase was initiated. Her vital signs were unremarkable; the WBC count was 7,090/μL, Hb was 10.1 g/dL, BUN was 14 mg/dL, Cr was 0.8 mg/dL, and amylase/lipase was 69/54 U/L. Venous blood gas analysis revealed the following: pH, 6.92; pCO₂ 37 mm Hg; and HCO₃ 7.6 mmol/L. Pulmonary edema was observed on a chest radiograph and continuous renal replacement therapy (CRRT) was performed to treat metabolic acidosis and pulmonary edema caused by acute renal failure. Although there were no signs of bleeding at that time, 2 units of packed red blood cells were transfused.

Approximately 10 hours after the CRRT was initiated, the patient was noted to have melena mixed with a small amount of hematochezia. Melena continued to occur 2–3 times/day with a total daily volume of 200–400 cc. Her vital signs were relatively stable: blood pressure, 120–175/65–100 mm Hg; heart rate, 90–120 bpm; respiratory rate, 20–25/minute; and body temperature, 36.0°C–37.8°C. The daily serum Hb level was 7.1–9.5 g/dL and the tranexamic acid with hemocoagulase were continued. The patient received a total of 13.5 g of tranexamic acid and 36 KU of hemocoagulase and received three additional units of packed red blood cells until the sixth day post-procedure, when no further signs of bleeding were observed. Her daily urine output was nearly zero despite the CRRT. A contrast-enhanced abdominal CT scan was performed on day 12 to assess the cause of her anuric acute renal failure and showed normal-sized kidneys with enhancement of the renal medulla but not of the renal cortex, a finding consistent with acute RCN (Fig. 3). Histopathology revealed a villotubular high-grade adenoma with clear resection margins. Conventional hemodialysis was continued, but renal function did not improve and the oliguria persisted post-discharge. Presently, 6 months after the endoscopic procedure, she continues to undergo hemodialysis. Her most recent
Fig. 2. A 2-cm adenoma-like protruding lesion was found in the ampulla of Vater on endoscopy (A) and endoscopic ultrasound showed an approximately 17-mm well-defined isoechoic homogeneous mass without bile duct or pancreatic duct invasion. A dilated common bile duct is visible (B, C). After mass resection using a snare and the insertion of a biliary plastic stent, no specific complications, such as severe bleeding or perforation, were observed (D).

Fig. 3. Follow-up abdominal contrast-enhanced computed tomography scan revealing normal-sized kidneys with enhancement of the renal medulla but not the renal cortex (white arrows) consistent with acute renal cortical necrosis (A, B).
DISCUSSION

Tranexamic acid infusion is a medical treatment for non-variceal upper gastrointestinal bleeding that decreases the need for surgical intervention and mortality. However, tranexamic acid alone is less frequently used than proton pump inhibitors or H₂ receptor antagonists in these patients. Tranexamic acid reversibly binds plasminogen during thrombogenesis, interferes with the binding of plasminogen and fibrin, inhibits fibrinolysis, and thus exerts antifibrinolytic effects, promoting thrombus formation and hemostasis. Its side effects include mostly minor gastrointestinal symptoms (e.g., nausea, vomiting, abdominal pain, and diarrhea) and rarely severe complications related to thrombogenesis, such as pulmonary embolism, myocardial infarction, stroke, deep vein thrombosis, and RCN. To our knowledge, four cases of tranexamic acid-induced RCN have been reported to date, and ours is the first report of acute RCN in which tranexamic acid was administered for bleeding control after endoscopic papillectomy of an ampullary adenoma.

In our patient, the volume of the first two episodes of hematemesis was relatively small, and there was no significant decrease in Hb level. Our patient’s vital signs were stable before the development of anuric acute renal failure and dyspnea. Repeat endoscopy was considered because of the patient’s additional bleeding events after CRRT but was not performed because the patient and her family preferred medical treatment alone after a thorough explanation of the risks and benefits of second-look endoscopy for hemostasis of the post-papillectomy bleeding. Fortunately, her bleeding stopped approximately 2 days after CRRT was initiated and 6 days after the endoscopic papillectomy.

Bleeding after endoscopic papillectomy has been reported to occur in 2%–16% of patients, and most episodes can be controlled with conservative management with medical treatment and endoscopic hemostasis. In our patient, the bleeding was successfully controlled by medical treatment and transfusions, but serious acute RCN occurred possibly due to the potent vasoconstrictor endothelin-1, has been implicated in the pathophysiology of RCN. Vascular endothelial injury can occur through a direct mechanism, as in hemolytic uremic syndrome, eclampsia, and snake bite, or indirectly as in sepsis, pancreatitis, and intravascular hemolysis. The diagnosis of RCN often requires a kidney biopsy, and the histology typically shows tubular cell necrosis with leukocyte infiltration. The glomeruli may be necrotic, and arteriolar thrombosis can be seen with medullary preservation and a thin rim of the subcapsular area. However, invasive biopsy has recently been replaced by non-invasive methods. Hallmark thin cortical lines caused by calcification can be observed on plain film, and a hypoechoic circumferential band in the renal subcapsular area is a characteristic finding on sonography. Contrast-enhanced CT scans are the most sensitive imaging modality, showing bilateral enhancement of the renal medulla and renal subcapsular area with no enhancement of the renal cortex. Renal scans are also useful if contrast-enhanced CT imaging is not available.

Acute RCN can be treated with hemodialysis, as in other forms of acute renal failure. However, RCN has a poor prognosis and usually progresses to chronic renal failure. The mortality rate of RCN was 55%–86% prior to 1980 but decreased to 36% after 1980 with improvements in hemodialysis. One-third of RCN patients still require continued hemodialysis. As shown in this rare case of tranexamic acid-induced acute RCN during gastrointestinal bleeding control, clinicians should be aware of the possibility of this serious complication.

Conflicts of Interest

The authors have no financial conflicts of interest.

REFERENCES

1. Prakash J, Singh VP. Changing picture of renal cortical necrosis in acute kidney injury in developing country. World J Nephrol 2015;4:480-486.
2. Sahay M, Swarnalata, Swain M, Padua M. Renal cortical necrosis in tropics. Saudi J Kidney Dis Transpl 2013;24:725-730.
3. Kim HJ. Bilateral renal cortical necrosis with the changes in clinical features over the past 15 years (1980-1995). J Korean Med Sci 1995;10:132-141.
4. Aksoy S, Hocaoglu E, Karahasanoglu A, Igsu B, Acay MB, Inci E. Bisphosphonate-induced bilateral acute renal cortical necrosis. Radiol Case Rep 2015;10:992.
5. British Society of Gastroenterology Endoscopy Committee. Non-variceal upper gastrointestinal haemorrhage: guidelines. Gut 2002;51 Suppl 4:iv1-iv6.
6. Gluud LL, Klingenberg SL, Langholz E. Tranexamic acid for upper gas-
Ko DH et al. Tranexamic Acid-Induced Acute Renal Cortical Necrosis

trointestinal bleeding. Cochrane Database Syst Rev 2012;1:CD006640.
7. Mannucci PM. Hemostatic drugs. N Engl J Med 1998;339:245-253.
8. Koo JR, Lee YK, Kim YS, Cho WY, Kim HK, Won NH. Acute renal
cortical necrosis caused by an antifibrinolytic drug (tranexamic acid).
Nephrol Dial Transplant 1999;14:750-752.
9. Levin MD, Betjes MG, V d Kwast TH, Wenberg BL, Leebeek FW. Acute
renal cortex necrosis caused by arterial thrombosis during treatment for
acute promyelocytic leukemia. Haematologica 2003;88:ECR21.
10. Odabaş AR, Cetinkaya R, Selçuk Y, Kaya H, Coşkun U. Tranexamic-ac-
id-induced acute renal cortical necrosis in a patient with haemophilia A.
Nephrol Dial Transplant 2001;16:189-190.
11. Park JH, Kang MK, Na WT, et al. A case of bilateral acute renal cortical
necrosis complicated by tranexamic acid administration. Korean J Med
2011;80:723-728.
12. De Palma GD. Endoscopic papillectomy: indications, techniques, and
results. World J Gastroenterol 2014;20:1537-1543.
13. Wang T, Wang DN, Liu WT, et al. Hemostatic effect of topical
hemocoagulase spray in digestive endoscopy. World J Gastroenterol
2016;22:5831-5836.
14. Kim HJ, Cho OK. CT scan as an important diagnostic tool in the
initial phase of diffuse bilateral renal cortical necrosis. Clin Nephrol
1996;45:125-130.
15. Lantsberg S, Rachinsky I, Lupu L, Tovbin D, Hertzana Y. Unilateral
acute renal cortical necrosis: correlative imaging. Clin Nucl Med
2000;25:184-186.