Multidimensional study of hadronization in nuclei

The HERMÈS Collaboration

A. Airapetian,1,2,5,12 N. Akopov,26 Z. Akopov,5 E.C. Aschenauer,6,a W. Augustyniak,25 R. Avakian,26 A. Avetissian,26 E. Avetisyan,3,2 S. Belostotski,18 N. Bianchi,10 H.P. Blok,16,24 A. Borissow,3 J. Bowles,13 I. Brodski,12 V. Bryzgalov,19 J. Burns,13 M. Capiluppi,9 G.P. Capitani,10 E. Cisbani,21 G. Ciullo,9 M. Contalbrigo,9 P.F. Dalpiaz,9 W. Deconinck,5 R. De Leo,2 L. De Nardo,11,5 E. De Sanctis,10 M. Diefenthaler,14,8 P. Di Nezza,10 M. Düren,12 M. Ehrenfried,12 G. Elbakian,26 F. Ellinghaus,4 R. Fabbrì,6 A. Fantoni,10 L. Felawka,22 S. Frullani,21 G. Gapienko,19 V. Gapienko,19 G. Gavrilov,5,18,22 V. Gharibyan,26 F. Giordano,5,9 S. Gisler,15 M. Golenbovskaya,6 L. Grigoryan,26 C. Hadjidakis,10 M. Hartig,5 D. Hasch,10 A. Hildenbrand,6 M. Hoek,13 Y. Holler,5 I. Hristova,6 Y. Imazu,26 A. Ivanilov,19 H.E. Jackson,1 H.S. Jo,11 S. Joosten,14 R. Kaiser,13,b G. Karyan,26 T. Keri,13,12 E. Kinney,4 A. Kisselev,18 N. Kobayashi,23 V. Korotkov,19 V. Kozlov,16 P. Kravchenko,8,18 V.G. Krivokhijine,7 L. Lagamba,2 L. Lapikäis,17 I. Lehmann,13 P. Lenisa,9 A. López Ruiz,11 W. Lorenzon,15 X.-G. Lu,6 X.-R. Lu,23 B.-Q. Ma,3 D. Mahon,13 N.C.R. Makins,14 S.I. Manaenko,18 L. Manfré,21 Y. Mao,3 B. Marianski,25 A. Martinez de la Ossa,5,4 H. Marukyan,26 C.A. Miller,22 Y. Miyachi,23,c A. Movsisyan,26 V. Muccifora,10 M. Murray,13 A. Mussgiller,5,8 E. Nappi,2 Y. Naryskhin,18 A. Nass,8 M. Negodaev,6 a W.-D. Nowak,6 L.L. Pappalardo,9 R. Perez-Beutio,12 A. Petroyan,26 M. Raithel,8 P.E. Reimer,11 A.R. Reolon,10 C. Riedl,6 K. Rith,8 G. Rosner,13 A. Rostomyan,5 J. Rubin,1,14 D. Ryckbosch,11 Y. Salomatin,19 F. Sanftl,20,23 A. Schäfer,20 G. Schnell,11,d B. Seitz,13 T.-A. Shibata,24 V. Shütov,7 M. Stancari,9 M. Statera,9 E. Steffen,11 J.M. Steiniger,17 J. Stewart,6 F. Stinzing,8 S. Taroian,26 R. Truty,14 A. Trzcinski,25 M. Tytgat,11 A. Vandenburgroecke,11 Y. Van Haarlem,11 C. Van Hulse,11 D. Veretennikov,18 V. Vikhrov,18 I. Vilardi,2 C. Vogel,8 S. Wang,3 S. Yaschenko,6,b Z. Ye,5 S. Yen,22 W. Yu,12 V. Zagrebelsky,5,12 D. Zeiler,9 B. Zihlmann,5 P. Zupranski25

1Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, USA
2Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy
3School of Physics, Feringa University, Beijing 100871, China
4BASQUE, Basque Foundation for Science, 48000 Bilbao, Spain
5the Basque Country UPV/EHU, 48080 Bilbao, and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
6Now at: Brookhaven National Laboratory, Upton, New York 11777-5000, USA
7Now at: Joint Institute for Nuclear Research, 141980 Dubna, Russia
8Physikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
9Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Università di Ferrara, 44100 Ferrara, Italy
10Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
11Department of Subatomic and Radiation Physics, University of Gent, 9000 Gent, Belgium
12Physikalisches Institut, Universität Gießen, 35392 Gießen, Germany
13SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
14Department of Physics, University of Illinois, Urbana, Illinois 61801-3080, USA
15Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
16Lebedev Physical Institute, 119724 Moscow, Russia
17National Institute for Subatomic Physics (Nikhef), 1009 DB Amsterdam, The Netherlands
18Petersburg Nuclear Physics Institute, Gatchina, 188300 Leningrad region, Russia
19Institute for High Energy Physics, Protvino, 142281 Moscow region, Russia
20Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
21Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Gruppo Collegato Sanità e Istituto Superiore di Sanità, 00161 Roma, Italy
22Now at: Department of Physics, Yamagata University Yamagata, 990-8560, Japan
23Now at: Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
24Present address: International Atomic Energy Agency, A-1400 Vienna, Austria
25a Now at: Department of Physics, Yamagata University Yamagata, 990-8560, Japan
26Now at: Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
27Present address: International Atomic Energy Agency, A-1400 Vienna, Austria
28Present address: International Atomic Energy Agency, A-1400 Vienna, Austria

1EPJ manuscript No. (will be inserted by the editor)
Abstract. Hadron multiplicities in semi-inclusive deep-inelastic scattering were measured on neon, krypton, and xenon targets relative to deuterium at an electron(positron)-beam energy of 27.6 GeV at HERMES. These ratios were determined as a function of the virtual-photon energy ν, its virtuality Q^2, the fractional hadron energy z and the transverse hadron momentum with respect to the virtual-photon direction p_t. Dependences were analysed separately for positively and negatively charged pions and kaons as well as protons and antiprotons in a two-dimensional representation. Compared to the one-dimensional dependences, some new features were observed. In particular, when $z > 0.4$ positive kaons do not show the strong monotonic rise of the multiplicity ratio with ν as exhibited by pions and negative kaons. Protons were found to behave very differently from the other hadrons.
1 Introduction

The process of quark fragmentation and hadronization can be investigated by measuring hadron production in semi-inclusive deep-inelastic scattering of leptons from nuclei of various sizes. As typical hadronization lengths are of the order of the size of a nucleus, the nuclei act as scale probes of the underlying hadronization mechanism, i.e., cross sections are expected to be sensitive to whether—in a semi-classical picture—the hadronization occurs within or outside the nucleus. Thus, the space (time) development of hadronization can be investigated. Such experiments were performed by the SLAC [1], EMC [2] and E665 [3] collaborations. Recently, more precise data were collected and analysed by the HERMES [4–7] and CLAS [8] collaborations. The HERMES and the preliminary CLAS data are complementary in that the latter cover values of the virtual-photon energy \(\nu \) below 4 GeV. Compared to hadronic probes, the use of leptonic probes has the advantage that initial-state interactions can be neglected and that the energy and momentum transferred to the struck parton are well determined by the measured kinematic properties of the scattered lepton in the final state. The results of such studies of the hadronization in nuclei, i.e., cold nuclear matter, are expected to be useful for understanding the fundamental aspects of hadronization in the framework of quantum chromodynamics, as well as an input to the calculation of nuclear parton distribution functions (see, e.g., ref. [9]) and for the interpretation of jet-quenching and parton energy-loss phenomena in ultra-relativistic heavy-ion collisions (hot nuclear matter) [10–16].

The experimental data with leptonic probes are presented as the ratio of the hadron multiplicities observed in the scattering on a nucleus (A) to those on the deuteron (D):

\[
R_A^h(\nu, Q^2, z, p_t^2) = \frac{N^h(\nu, Q^2, z, p_t^2)}{N^e(\nu, Q^2)}_A, \quad (1)
\]

where \(N^h \) is the number of semi-inclusive hadrons in a given \((\nu, Q^2, z, p_t^2)\) bin and \(N^e \) the number of inclusive deep-inelastic scattering leptons in the same \((\nu, Q^2)\) bin. This ratio depends on leptonic variables: the energy \(\nu \) of the virtual photon in the laboratory frame and its squared four-momentum \(-Q^2\); and on hadronic variables: the fraction \(z \) of the virtual-photon energy carried by the hadron and the square of the hadron momentum component \(p_t^2 \) transverse to the virtual-photon direction. In principle, the ratio also depends on the azimuthal angle \(\phi \) between the lepton-scattering plane and the hadron-production plane. In the present measurement no dependence of \(R_A^h \) on \(\phi \) was observed within the statistical accuracy. As a consequence the integration over \(\phi \) was performed.

In all previous publications results for \(R_A^h \) were shown as a function of one variable only (one-dimensional dependences) except one case where a two-dimensional dependence was extracted for a combined sample of charged pions [7]. In the following, data for \(R_A^h \) for neon (Ne), krypton (Kr), and xenon (Xe) are presented in a two-dimensional form for positively and negatively charged pions and kaons, and for protons and antiprotons separately. The two-dimensional representation consists in a fine binning in one variable and a coarser binning in another variable. The other variables are integrated over within the acceptance of the experiment. This allows the dependences to be studied in more detail, while keeping the statistical uncertainties at moderate levels, at least for pions, positive kaons and protons. Some of the most prominent features of the obtained results are presented and discussed. The full set of results is available in a database [17].
The wealth of theoretical model calculations and studies \cite{18,35} reflect the strong interest of the community in hadron multiplicities on nuclei, as they provide information on the space (time) structure of the hadronization process. It is beyond the scope of this paper to compare the results of the various models with the data. The one-dimensional results published have already been instrumental in distinguishing between some models \cite{7}. It is expected that the two-dimensional results presented here will further help discriminating between models.

2 Experiment and data analysis
The measurements were performed with the HERMES spectrometer \cite{36}, using 27.6 GeV positron and electron beams stored in HERA at DESY. Data were collected during 1999, 2000, 2004 and 2005 with gaseous targets of deuterium, neon, krypton and xenon.

The experimental set-up and data analysis are described in detail in ref. \cite{7}. Here, only a brief summary and update is given. The identification of charged hadrons was accomplished using information from the dual-radiator ring-imaging Čerenkov detector (RICH) \cite{37}, which provided separation of pions, kaons and (anti)protons in the momentum range between 2 and 15 GeV. Compared to the analysis described in ref. \cite{7}, an improved hadron identification algorithm was used, which is based on a collective assignment of a set of identities to all particles detected in the event, accounting for the correlations among their probabilities \cite{38,39}. The differences compared to the results obtained with the simpler approach neglecting such correlations were found to be minor and within the quoted systematic uncertainties for all particles.

The scattered leptons were selected using the following kinematic conditions: \(\nu = 4.0 - 23.5 \) GeV (the upper bound corresponds to \(y = \nu/E < 0.85 \)), \(Q^2 > 1 \) GeV\(^2\), \(W^2 > 4 \) GeV\(^2\), where \(E \) is the beam energy and \(W \) is the invariant mass of the photon-nucleon system. The constraints on \(y \) and \(W^2 \) were applied in order to limit the magnitude of radiative corrections and to suppress events originating from nucleon resonances, respectively. The kinematic constraints imposed on the selected hadrons were: \(p_h = 2 - 15 \) GeV, \(z > 0.2 \) and \(x_F > 0 \), where \(p_h \) is the hadron momentum and the Feynman variable \(x_F \) is defined as the ratio of the longitudinal momentum transferred to the hadron in the photon-nucleon centre-of-mass system to its maximum possible value. Together, the constraints on \(z \) and \(x_F \) reduce contributions from the target fragmentation region.

From the data, the hadron multiplicity ratios \(R_A^h \) were determined for each hadron type and target. Radiative corrections were applied following the scheme described in refs. \cite{7,40,43}, using average values of \(\nu \) and \(Q^2 \) for each kinematic bin in the analysis. The corrections remain below 7% in all bins. Acceptance effects were studied in Monte-Carlo simulations using an experimentally motivated parametrisation of \(R_A^h \). They were found to be small compared to other uncertainties in all but the lowest bin in \(\nu \). The differences between the parametrised and reconstructed values were used to estimate the systematic uncertainty due to the restricted acceptance for each hadron type.

Uncertainties in the knowledge of radiative processes (up to 2%) and half of the observed maximal differences between results for \(R_A^h \) from different data-taking periods were taken together as overall scale uncertainties. The total scale uncertainties are 3%, 5%, 4%, and 10% for pions, kaons, protons and antiprotons, respectively.

The uncertainties due to the hadron identification were estimated to be up to 0.5% for charged pions, up to 1.5% for kaons and protons, and up to 4% for antiprotons. Those due to acceptance effects were 6% for pions, 3% for kaons, and 7% for protons and antiprotons in the first \(\nu \) bin, and less than 2% for any hadron in any other bin. Effects due to the contamination from diffractive \(\rho^0 \) meson production were estimated to be at most 4 and 7% for positive and negative pions, respectively. (For details see ref. \cite{7}.) These uncertainties were added in quadrature separately for each data point to yield systematic bin-to-bin uncertainties. Those were subsequently added in quadrature to the statistical uncertainties and plotted as total uncertainties.

3 Results and discussion
The results for the multiplicity ratio \(R_A^h \) are presented using a fine binning in one of the variables, a coarser binning (called slice) in a second variable, and integrating over the remaining variables within the acceptance of the experiment. The following slices were used: \(4 - 12, 12 - 17, \) and \(17 - 23.5 \) GeV for \(\nu; 0.2 - 0.4, 0.4 - 0.7, \) and \(> 0.7 \) for \(z; \) and \(\leq 0.4, 0.4 - 0.7, \) and \(> 0.7 \) GeV\(^2\) in the case of \(p_h^2 \). The dependence on \(Q^2 \) was investigated, but as it turned out to be weak, no dependences with slices in \(Q^2 \) were produced. In the following, dependences that show salient features are discussed. In the presentation of the data, bins based on fewer than 10 events were omitted because the large statistical uncertainty would preclude useful conclusions.

The dependence of \(R_A^h \) on \(\nu \) for three slices in \(z \) is shown in fig. 4. For pions and \(K^- \), a global trend of steady increase of \(R_A^h \) with increasing values of \(\nu \) was observed. Such a behaviour is explained in fragmentation models as resulting from Lorentz dilation and/or a shift in the argument \(z \) of the relevant fragmentation function \cite{18}. However, at the highest \(z \) range there is an indication for a flattening out (and possibly a reversal of this trend) at low \(\nu \) for \(\pi^+ \) and \(\pi^- \) independently, which is not explained by these mechanisms.

The behaviour of \(R_A^h \) for \(K^+ \) was found to be more complicated. For krypton and xenon there is a clear increase of \(R_A^{K^+} \) with \(\nu \) for the lowest \(z \)-slice, but at larger values of \(z \) the behaviour is flatter. In contrast, the results for \(R_A^{K^-} \) for \(K^- \) resemble those for pions. For antiprotons,
the ν-dependence was found to be weak with a slightly positive slope, but the statistical accuracy of the results is too limited to draw definite conclusions. The neon data show similar but less pronounced trends, which was a common observation in all distributions under study. This is not unexpected due to the smaller size of the nucleus of neon compared to krypton and xenon.

The results for protons differ significantly from those for the other hadrons. For the heavy nuclei, R_A^ν behaves very differently for the three z-slices, considerably exceeding unity at higher ν for the lowest z-slice. Part of the explanation may be the following. Unlike the other hadrons, protons are present already in the target nucleus. Therefore, apart from hadronization, residual protons can also result from reactions in the final state (final-state interactions), whereby a proton is knocked out of the nucleus. Those protons will preferably be emitted with low energy. This could lead to an energy dependence which, in conjunction with other kinematic factors, leads to the observed non-trivial behaviour.

The dependence of R_A^ν on z for three z-slices in ν is shown in fig. 2. A slight change of the z dependence when varying the ν range was observed for the π^+ and π^- distributions. This has been observed already in ref. [7] for the combined pion sample and we refer to that paper for the discussion. The results on krypton and xenon for protons show a very strong dependence on z, the value of R_A^ν exceeding unity in all ν ranges at low z. This supports the assumption that at low values of z there is a sizable contribution of final-state interactions. A similar, but smaller effect was seen for K^+, as $R_A^{K^+}$ increases to almost unity, while $R_A^{K^-}$ remains well below unity. This suggests that interactions play a role for K^+ production in which a proton in the target nucleus is transformed into a K^+ pair while the analogous process for K^- production is suppressed due to the quark content of the K^-. [44].

Figure 3 shows the dependence of R_A^ν on p_t^2 for three slices in z for positively charged hadrons. The behaviour of R_A^ν for π^- (not shown) was found to be the same as that for π^+ within statistical uncertainties. The rise at high p_t^2 suggests a broadening of the p_t distribution [24]. Such a broadening could result from an interaction of the struck quark with the nuclear environment before the final hadron is produced and/or from interactions of the produced hadron within the nucleus. A detailed analysis and discussion of the HERMES data for pions and K^+ particles in terms of p_t-broadening has been presented in ref. [45]. Interesting to note is that in the highest z-slice R_A^ν for pions and K^+ becomes independent of p_t^2 within statistical uncertainties, while for protons a significant rise is observed at high p_t^2. For K^- and antiprotons (neither are shown) limited statistics preclude any definite conclusion. In the intermediate z-range protons also show a much stronger
rise with p_T^2 compared to pions and kaons in the respective ranges. This is consistent with a large contribution of final-state interactions in the case of protons.

In fig. 3, the variation of the p_T^2-dependence with z is presented in a different way by showing the dependence of R^h_A on z for three slices in p_T. The global decrease of R^h_A with z was already observed in fig. 2. This dependence of R^h_A on z turns out to be stronger at higher values of p_T^2, an effect that is emphasised at larger target mass. At high z, the dependence on p_T^2 disappears for π^+, π^-, and K^+, as has already been seen in fig. 3. This lack of nuclear broadening of the p_t distribution in the limit of instantaneous hadronization, i.e., before the struck parton has lost any energy, has been interpreted in terms of broadening arising from partonic processes [24]. For protons, a similar, but much stronger dependence of the slope on p_T^2 was observed, with R^p_A increasing far above unity at low z. This has been discussed in relation to fig. 2 as being an indication of final-state interactions. The fact that the values of R^h_A for K^+ are in between those for pions and protons suggests that, in addition to fragmentation, again final-state interactions play a role here. The large uncertainties of R^h_A for K^- and antiprotons preclude any particular conclusion in those cases.

4 Conclusions

Two-dimensional kinematic dependences have been presented for the multiplicity ratio R^h_A for identified π^+, π^-, K^+, K^-, protons and antiprotons, measured in

Fig. 2. Dependence of R^h_A on z for positively and negatively charged hadrons for three slices in ν as indicated in the legend. Uncertainties are shown as in fig. 1.

Fig. 3. Dependence of R^h_A on p_T^2 for positively charged hadrons for three slices in z as indicated in the legend. Uncertainties are shown as in fig. 1.
Fig. 4. Dependence of R^h_A on z for positively and negatively charged hadrons for three slices in p_t^2 as indicated in the legend. Uncertainties are shown as in fig. 1.

The behaviour of R^h_A for π^+ and π^- was found to be the same within the experimental uncertainties and is globally characterised by an increase of R^h_A with the total energy transfer ν and a decrease with the fractional energy z of the produced hadron. Negatively charged kaons behave similarly to pions, while the dependence of R^K_A for positively charged kaons on ν changes depending on the value of z, possibly due to final-state interactions. Protons behave very differently from the other hadrons, especially in the ν-distribution for different values of z. This may be explained by a sizable contribution of final-state interactions, such as knock-out processes, in addition to the fragmentation process. These new detailed data are expected to be an essential ingredient for constraining models of hadronization and, hence, improving our understanding of hadron formation.

We gratefully acknowledge the DESY management for its support and the staff at DESY and the collaborating institutions for their significant effort. This work was supported by the Ministry of Economy and the Ministry of Education and Science of Armenia; the FWO-Flanders and IWT, Belgium; the Natural Sciences and Engineering Research Council of Canada; the National Natural Science Foundation of China; the Alexander von Humboldt Stiftung; the German Bundesministerium für Bildung und Forschung (BMBF); the Deutsche Forschungsgemeinschaft (DFG); the Italian Istituto Nazionale di Fisica Nucleare (INFN); the MEXT, JSPS, and G-COE of Japan; the Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); the Russian Academy of Science and the Russian Federal Agency for Science and Innovations; the U.K. Engineering and Physical Sciences Research Council, the Science and Technology Facilities Council, and the Scottish Universities Physics Alliance; the Basque Foundation for Science (IKERBASQUE); the U.S. Department of Energy (DOE) and the National Science Foundation (NSF); and the European Community Research Infrastructure Integrating Activity under the FP7 “Study of strongly interacting matter” (HadronPhysics2, Grant Agreement number 227431).

References

1. L. Osborne et al., Phys. Rev. Lett. 40, 1624 (1978).
2. J. Ashman et al. [EMC], Z. Phys. C 52, 1 (1991).
3. M. Adams et al. [E665], Phys. Rev. D 50, 1836 (1994).
4. A. Airapetian et al. [HERMES], Eur. Phys. J. C 20, 479 (2001).
5. A. Airapetian et al. [HERMES], Phys. Lett. B 577, 37 (2003).
6. A. Airapetian et al. [HERMES], Phys. Rev. Lett. 96, 162301 (2006).
7. A. Airapetian et al. [HERMES], Nucl. Phys. B 780, 1 (2007).
8. H. Hakobyan et al. [CLAS], AIP Conf. Proc. 1265, 230 (2010).
9. K. J. Eskola et al., JHEP 04 (2009) 065.
10. K. Adcox et al. [PHENIX], Phys. Rev. Lett. 88, 242301 (2002).
11. K. Adcox et al. [PHENIX], Nucl. Phys. A 757, 184 (2005).
12. J. Adams et al. [STAR], Phys. Rev. Lett. 92, 112301 (2004).
13. J. Adams et al. [STAR], Phys. Lett. B 637, 161 (2006).
14. G. Aad et al. [ATLAS], Phys. Rev. Lett. 105, 252303 (2010).
15. S. Chatrchyan et al. [CMS], JHEP 07 (2011) 076.
16. K. Aamodt et al. [ALICE], Phys. Lett. B 696, 30 (2011).
17. Durham HEP database, [http://durpdg.dur.ac.uk]
 inSPIRE, [http://inspirebeta.net/record/918944/]
 mail-to: management@hermes.desy.de
18. A. Accardi et al., Riv. Nuovo Cim. 32, 439 (2010).
19. A. Bialas, Acta Phys. Pol. B 11, 475 (1980).
20. A. Bialas and M. Gyulassy, Nucl. Phys. B 291, 793 (1987).
21. J. Czyzewski and P. Sawicki, Z. Phys. C 56, 493 (1992).
22. A. Accardi, V. Muccifora, H.J. Pirner, Nucl. Phys. A 720, 131 (2003).
23. A. Accardi, Phys. Lett. B 649, 384 (2007).
24. B.Z. Kopeliovich et al., Nucl. Phys. A 740, 211 (2004).
25. T. Falter et al., Phys. Lett. B 594, 61 (2004).
26. T. Falter et al., Phys. Rev. C 70, 054609 (2004).
27. N. Akopov, G. Elbakian, L. Grigoryan, hep-ph/0205123 (2002).
28. N. Akopov, L. Grigoryan and Z. Akopov, Eur. Phys. J. C 44, 219 (2005).
29. N. Akopov, L. Grigoryan and Z. Akopov, Phys. Rev. C 76, 065203 (2007).
30. X. Guo and X.-N. Wang, Phys. Rev. Lett. 85, 3591 (2000).
31. X.-N. Wang and X. Guo, Nucl. Phys. A 696, 788 (2001).
32. E. Wang and X.-N. Wang, Phys. Rev. Lett. 89, 162301 (2002).
33. F. Arleo, Eur. Phys. J. C 30, 213 (2003).
34. K. Gallmeister, U. Mosel, Nucl. Phys. A 801, 68 (2008).
35. R. Sassot et al., Phys. Rev. D 81, 054001 (2010).
36. K. Ackerstaff et al. [HERMES], Nucl. Instr. and Meth. A 417, 230 (1998).
37. N. Akopov et al., Nucl. Instr. and Meth. A 479, 511 (2002).
38. R. Lamb, Ph.D. thesis, University of Illinois, August 2010, DESY-THESIS-2010-035.
39. E. Cisbani [HERMES], Nucl. Phys. B (Proc. Suppl.) 78, 366 (1999).
40. A.A. Akhundov, D. Yu Bardin, and N.M Shumeiko, Sov. J. Nucl. Phys. 26, 660 (1977).
41. D. Yu Bardin and N.M. Shumeiko, Sov. J. Nucl. Phys. 29, 499 (1979).
42. A.A. Akhundov et al., Sov. J. Nucl. Phys. 44, 988 (1986).
43. I. Akushevich, N. Shumeiko and A. Soroko, Eur. Phys. J. C 10, 681 (1999).
44. A. Airapetian et al. [HERMES], Phys. Lett. B 684, 114 (2010).