Optimization of 14 microsatellite loci in a Mediterranean demosponge subjected to population decimation, *Ircinia fasciculata*

Ana Riesgo · Gema Blasco · Patrick M. Erwin · Rocío Pérez-Portela · Susanna López-Legentil

Received: 5 December 2013 / Accepted: 30 December 2013 © Springer Science+Business Media Dordrecht 2014

Abstract The recovery potential of decimated populations of sponges will largely hinge on their populations’ size retrieval and their connectivity with conspecifics in unaffected locations. Here, we report on the development of microsatellite markers for estimation of the population connectivity and bottleneck and inbreeding signals in a Mediterranean sponge suffering from disease outbreaks, *Ircinia fasciculata*. From the 220,876 sequences obtained by genomic pyrosequencing, we isolated 14 polymorphic microsatellite loci and assessed the allelic variation of loci in 24 individuals from 2 populations in the Northwestern Mediterranean. The allele number per locus ranged from 3 to 11, observed heterozygosity from 0.68 to 0.73, and expected heterozygosity from 0.667 to 0.68. No significant linkage disequilibrium between pairs of loci was detected. The 14 markers developed here will be valuable tools for conservation strategies across the distributional range of this species allowing the detection of populations with large genetic diversity loss and high levels of inbreeding.

Keywords Porifera · Conservation genetics · Pyrosequencing · Simple sequence repeats · Disease outbreaks · Inbreeding

Introduction

Sponges play an ecologically important role given their abundance and diversity as well as their contribution to primary production and nitrification through complex symbioses in marine benthic communities (Webster 2007). In the Mediterranean, massive mortalities are drastically reducing population size and creating extensive gaps in the distribution of many species, including sponges. In particular, periodic episodes of massive die-offs have been reported for the genus *Ircinia* (Cebrián et al. 2011) and the environmental stress due to elevated seawater temperatures has been suggested to trigger the disease (Maldonado et al. 2010; Cebrián et al. 2011).

Molecular markers have been widely applied in conservation biology to evaluate the vulnerability of marine species but studies on population genetics using microsatellite markers are available for very few sponges (see Pérez-Portela et al. 2013). Here, we report on the optimization of microsatellite markers further estimation of genetic diversity indexes, populations’ connectivity, and for detecting signals of recent bottlenecks in order to evaluate the degree of vulnerability of the sponge *Ircinia fasciculata* from the Mediterranean.

Methods

Sponge tissue was dissociated prior to DNA extraction and the bacterial symbionts removed by sequential centrifugations. Genomic DNA was extracted using DNeasy Tissue and Blood extraction kit (QIAGEN) to a final DNA concentration of 2 μg and distributed in two lanes of a plate. Pyrosequencing was performed on a Roche Life Science 454 GS-FLX System at the Scientific-Technical Services of...
Locus	F and R primers	Fluor.	Repeat motif	T	Size range	N	Na	Ho/He	FIS	G–W	N	Na	Ho/He	FIS	G–W
3IFAS	CCAACAGAATTGGACATCTT	FAM	(ATG)*6	55	150–190	12	4	0.917/0.685	−0.397	0.364	12	5	0.833/0.722	−0.154	0.356
	GGAGGAGCTCTTTGAAGT														
	GCTGCGTCTGAAGTCAAGAG	FAM													
8FA	TCAACCATGCTCAAAATTA	FAM	(TG)*8	55	370–400	12	6	0.667/0.775	0.103	0.08	12	4	0.417/0.642	0.351	0.055
	GCAGATATTCCTCCCATGTT	NED													
25FAS	GTCCCTATCCTTTTCAAGGAG	VIC	(GTA)*6	55	120–160	10	4	0.900/0.658	−0.440	0.210	12	4	1.000/0.642	−0.557	0.364
	GCAACCTGACAAATAATG	VIC													
40FAS	TGACAGAGTCATGCTTAGG	VIC	(TAA)*9	55	250–280	12	3	0.833/0.648	−0.341	0.103	12	4	0.917/0.688	−0.333*	0.174
	GTGTTTTGGGATATGCG	VIC													
44FAS	GACTGCTTCAACATTTGCA	FAM	(TAA)*10	56	160–230	12	4	0.417/0.373	−0.165	0.108	12	3	0.333/0.292	−0.143	0.231
	GAAAGCATTTAAAGCTAGG	VIC													
41FAS	GCCCCCTGGTGAATCTATAC	VIC	(CCA)*9	60	268–308	12	3	0.333/0.304	−0.143	0.111	12	3	0.667/0.469	−0.422	0.073
	TTGCTGCAACTGACACACA	VIC													
42FAS	GCACACGCGATCATGACT	FAM	(GT)*28	70	200–300	12	3	1.000/0.561	−0.858**	0.049	12	5	0.750/0.542	−0.385	0.238
	GTGCAATGGGATAAAAACAT	FAM													
10FAS	CACCCCAATAATGTATCGC	FAM	(TA)*19	52	97–172	12	8	0.667/0.779	0.107	0.066	12	9	0.583/0.823	0.291	0.113
	TCTTTTTCACTCTCCTCCC	FAM													
49FAS	ACACCTGGTCTTGCTCCTG	VIC	(TA)*9	60	186–240	12	6	0.667/0.721	0.035*	0.353	12	5	0.417/0.361	−0.154	0.217
	TGTTGTGGGGGATTATGAGA	VIC													
22FAS	CAGGGGCTAAATGCTATGCG	VIC	(TAG)*18	52	136–361	12	11	1.000/0.917	−0.138	0.229	12	8	0.667/0.819	0.186*	0.32
	TACATCCCGGTATATGCG	VIC													
7IFAS	CTAAGCTGAGCTGCTTGTTCC	VIC	(TAA)*6	55	170–310	12	6	0.583/0.754	0.192	0.043	12	5	0.582/0.628	0.072	0.046
	TTGACCAAATCTGCTATCG	NED													
47FAS	GACCCCTCTATCTCTCGCAG	FAM	(TACA)*19	58/60	177–229	12	7	0.667/0.833	0.165*	0.079	12	6	0.750/0.726	−0.033	0.352
	TAGGTGTGGGTATGAGGAGCAG	VIC													
48FAS	CGTTATGTGCCACTCTCGC	VIC	(ATTG)*6	58/60	136–161	11	5	0.909/0.662	−0.438	0.192	12	7	0.750/0.740	−0.014	0.2
	TCCGATTTTCAACATCTC	FAM													
36FAS	TCTTTTATTTTGTGACATGC	FAM	(TACA)*17	56	190–320	12	9	0.667/0.873	0.203	0.141	12	12	0.917/0.865	−0.06	0.245
Total						72	72	0.730/0.682	−0.15	0.15 ± 0.1	684/0.667	−0.5	0.21 ± 0.1		

* sample size, NA the number of alleles per locus, HE expected heterozygosity, HO observed heterozygosity, FIS inbreeding coefficient, G–W Garza–Williamson index.

* ** Significant deviation from HWE after application of Narum correction (P < 0.05). Locus showing significant excess of heterozygotes are shown in bold letters.
the University of Barcelona. Sequences (220,876) were searched for perfect microsatellites (di-, tri-, tetra- and penta-nucleotides) with at least eight repeats and enough priming regions with Phobos (http://www.rub.de/spezzoo/cm/cm_phobos.htm). 40,109 sequences contained microsatellites, 61.7 % being dinucleotide, 3.4 % trinucleotide, 3.4 % tetranucleotide, and 0.7 % pentanucleotide. Thirty-six primer sets were designed with the software PRIMER 3 for 14 dinucleotide loci, 14 trinucleotide loci, 7 tetranucleotide loci, and 1 pentanucleotide locus.

Amplification success and polymorphism were tested in two populations of the NW Mediterranean (Costa Brava) collected in 2010–2012: Els Caials (42°17′19″N 3°16′40″E) and Blanes (41°41′N 2°48′E). Total DNA was extracted and amplified using the REDExtract-N-Amp Tissue PCR Kit (Sigma Aldrich). Forward primers were labeled with a fluorescent dye (Table 1). Samples were amplified on a PCR System 9700 (Applied Biosystems) with an initial 2 min denaturation step at 95 °C; followed by 35–40 cycles of 95 °C for 30 s, 52–70 °C for 35 s (depending on each locus; Table 1) and 72 °C for 15 s, followed by a 3 min final extension at 72 °C. Amplification products were analyzed on an Applied Biosystems 3730xl Genetic Analyzer at the Scientific-Technical Services of the University of Barcelona. The length and allele scoring of PCR products was estimated relative to the internal size standard GeneScan 600LIZ using the software PEAKS-CANNER v1.0 (Applied Biosystems).

Linkage disequilibrium, number of alleles per loci and population, observed heterozygosity (Ho), and expected heterozygosity (He) were calculated with GenAlEx (http://biology.anu.edu.au/GenAlEx/Welcome.html) and ARLEQUIN c 3.5.1.2 (Excoffier and Lischer 2010). Genetic diversity [Garza–Williamson (G–W) index] and inbreeding coefficients (FIS) were calculated using ARLEQUIN c 3.5.1.2 and GenPop (http://genepop.curtin.edu.au/). The exact test for departure from Hardy–Weinberg Equilibrium (HWE) was also performed with the same software. Narum (P < 0.05) corrections of the P values for multiple tests were applied.

Results and discussion

Out of the 36 microsatellite loci attempted, a total of 14 polymorphic microsatellite were optimized, including a selection of different microsatellite types (see Table 1) because different microsatellite types are equally valid to assess genetic diversity and populations structure of marine invertebrates. No evidence of linkage disequilibrium was detected across all pairwise comparisons. Failed amplifications due to presence of null alleles were detected in 2 loci of the Caials population (Table 1). Five markers showed Hardy–Weinberg disequilibrium after Narum corrections but the overall populations were in HWE (Table 1). Heterozygosity deficit was observed in 5 loci (3 loci in the Caials population and two in the Blanes population; Table 1). The average gene diversity over 14 loci using the Tajima index was 0.684 ± 0.367 in Caials, and 0.668 ± 0.354 in Blanes. Using the genetic G–W index (Garza and Williamson 2001), it seems that all markers were indicating bottleneck events in both populations (Table 1), but more populations should be sequenced for further confirmation. The application of the microsatellite markers developed herein to additional I. fasciculata populations will allow to understand how the genetic diversity is distributed in this species, and to know its overall status, identifying hotspots of genetic diversity, populations affected by large genetic diversity loss and high levels of inbreeding. Information on population genetics of the species is crucial for the assessment of ecological threats and recovery potential following disease episodes and population decimation, and the developing of management strategies when necessary.

Acknowledgments Dr. Xavier Turon (CEAB-CSIC) helped with some of the sampling. This study was funded by the Spanish Government project SOLID CTM2010-17755, and the Catalan Government Grant 2009SGR-484 for Consolidated Research Groups and Juan de la Cierva contracts to AR and RPP.

References

Cebrián E, Uriz MJ, Garrabou J, Ballesteros E (2011) Sponge mass mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring species worse off? PLoS ONE 6(6):e20211

Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10(3):564–567

Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10(2):305–318

Maldonado M, Sánchez-Tocino L, Navarro C (2010) Recurrent disease outbreaks in corneous demosponges of the genus Ircinia: epidemic incidence and defense mechanisms. Mar Biol 157(7):1577–1590

Pérez-Portela R, Noyer C, Becerro M (2013) Genetic structure and diversity of the endangered bath sponge Spongia lamella. Aquatic Conserv: Mar Freshw Ecosyst doi:10.1002/aqc.2423

Webster NS (2007) Sponge disease: a global threat? Environ Microbiol 9(6):1363–1375