Modeling and Simulation of a Horizontally Moving Suspended Mass Pendulum Base using H∞ Optimal Loop Shaping Controller with First and Second Order Desired Loop Shaping Functions

Mustefa Jibril¹, Messay Tadese², Reta Degefa³

¹ Msc, School of Electrical & Computer Engineering, Dire Dawa Institute of Technology, Dire Dawa, Ethiopia
² Msc, School of Electrical & Computer Engineering, Dire Dawa Institute of Technology, Dire Dawa, Ethiopia
³ Msc, School of Electrical & Computer Engineering, Dire Dawa Institute of Technology, Dire Dawa, Ethiopia

mustefa.jibril@ddu.edu.et

Abstract: In this paper, a horizontally moving suspended mass pendulum base is designed and controlled using robust control theory. H_∞ optimal loop shaping with first and second order desired loop shaping function controllers are used to improve the performance of the system using Matlab/Simulink Toolbox. Comparison of the H_∞ optimal loop shaping with first and second order desired loop shaping function controllers for the proposed system have been done to track the desired angular position of the pendulum using step and sine wave input signals and a promising result has been obtained successfully.

[Mustefa Jibril, Messay Tadese, Reta Degefa. Modeling and Simulation of a Horizontally Moving Suspended Mass Pendulum Base using H_∞ Optimal Loop Shaping Controller with First and Second Order Desired Loop Shaping Functions. Rep Opinion 2021;13(1):16-19]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 4. doi: 10.7537/marsroj130121.04.

Keywords: Pendulum, H_∞ optimal loop shaping, Track

1. Introduction

A pendulum with suspended mass is a system that has a mass suspended in its base and a mass suspended from a pivot so that it can swing freely. When the suspended mass in the base of the pendulum forced to move horizontally by applying a force, the pendulum become displaced sideways from its resting, equilibrium position, then the pendulum will be subjected to a restoring force due to gravity that will accelerate it back toward the equilibrium position. The restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing.

2. Mathematical Modeling of the System

A system consists of two point masses, m1 and m2, connected with a weightless rigid rod of length l (Figure 1). The motion occurs in a gravity field and is considered to be in a plane, i.e. is considered in the coordinates x, y, t. The location of point of a mass m1 (suspension) is not fixed, and can move along the axis x. The mathematical model of the system will be as follow.

![Figure 1 Pendulum with suspended mass](image)

The four functions of time of the system are, x1(t), y1(t), x2(t), y2(t), i.e. the Cartesian coordinates of the first and second points.

The suspension cannot move vertically Y1=0

While the second is described by equation

\[
(x_1 - x_2)^2 + y_2^2 = l^2
\]

We choose the generalized coordinates as

\[q_1(t) = x_1(t) \text{ and } q_2(t) = \alpha(t) \]

where \(\alpha \) is the angle between the vertical is and the axis of rod.

\[x_1 = q_1, x_2 = q_1 + l \sin q_2, y_2 = -l \cos q_2 \]

The kinetic energy of system $T = T1 + T2$ in coordinates q1, q2. For the suspension we have
\[T_1 = \frac{m_1 v_1^2}{2} = \frac{m_1 v_{1x}^2}{2} = \frac{m_1 \dot{x}_1^2}{2} \]

For the pendulum we obtain
\[\frac{m_1 x_1 v_2^2}{2} = \frac{m_2 v_{2x}^2}{2} + \frac{m_2 v_{2y}^2}{2} \]

V2x and V2y simply simplified as
\[v_{2x} = \dot{x}_1 + l \ddot{\alpha} \cos \alpha \]
\[v_{2y} = l \ddot{\alpha} \sin \alpha \]

Rewrite \(T_2 \) as function of \(\alpha \) and \(x_1 \)
\[T_2 = \frac{m_2 x_1^2}{2} + \frac{m_2}{2} (2l \ddot{\alpha} \dot{x}_1 \cos \alpha + l^2 \ddot{\alpha}^2) \]

For the force of gravity \(F_2 \) acting on the pendulum. For its projection we have
\[F_{g y} = 0 \]
\[F_{g y} = -m_2 g = -m_2 \frac{\partial \Pi}{\partial y_2} \]

Where
\[\Pi(y_2) = m_2 g y_2 \]

is the potential energy of the pendulum.

In coordinates \(q_1, q_2, \Pi(y_2) \) is expressed by the formula
\[V(q_2) = -m_2 l g \cos \alpha \]

In so far as the considered motion is potential, it is necessary to use the Lagrangian equations
\[L = T - V = T_1 + T_2 - V \]

Or
\[L = \frac{m_1 + m_2}{2} \dot{x}_1^2 + \frac{m_1}{2} (l \dot{\alpha}^2 + 2 \dot{x}_1 \ddot{\alpha} \cos \alpha) + m_2 l g \cos \alpha \]

Differentiating \(L \) by \(q_1, \dot{q}_1, q_2, \dot{q}_2 \), (recall, that \(q_1 = x_1, q_2 = \alpha \)) we obtain
\[\frac{\partial L}{\partial q_1} = 0, \frac{\partial L}{\partial \dot{q}_1} = (m_1 + m_2) \dot{x}_1 + m_2 l \dot{\alpha} \cos \alpha \]
\[\frac{\partial L}{\partial q_2} = -m_2 l \sin \alpha (\dot{x} + \dot{\alpha} + g), \frac{\partial L}{\partial \dot{q}_2} = m_2 l (\dot{\alpha} + \dot{x} \cos \alpha) \]

Then
\[\frac{d}{dx} \left(\frac{\partial L}{\partial \dot{q}_1} - \frac{\partial L}{\partial q_1} \right) = F \]
\[\frac{d}{dx} \left(\frac{\partial L}{\partial \dot{q}_2} - \frac{\partial L}{\partial q_2} \right) = 0 \]

Substituting the obtained equations into Lagrangian equations and differentiating them by \(t \), we come to two equations with respect to \(\dot{x}_1 \) and \(\alpha \)
\[(m_1 + m_2) \ddot{x}_1 + m_2 l \ddot{\alpha} \cos \alpha - m_2 l \dot{\alpha}^2 \sin \alpha = F \]
\[\ddot{x}_1 \cos \alpha + l \ddot{\alpha} + g \sin \alpha = 0 \]

Linearizing the above equation as
\[\cos \alpha = 1 \]
\[\sin \alpha = \alpha \]
\[\ddot{\alpha}^2 = 0 \]

After linearization, Equation (6) and Equation (7) becomes
\[(m_1 + m_2) \ddot{x}_1 + m_2 l \ddot{\alpha} = F \]
\[\ddot{x}_1 + l \ddot{\alpha} + g \alpha = 0 \]

Let
\[z_1 = x_1, z_2 = \dot{x}_1, z_3 = \alpha, z_4 = \dot{\alpha}, z_5 = \ddot{\alpha} \]

The state space representation of the system becomes
\[\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_2 l & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \]

The parameters of the system are shown in Table 1 below.

No	Parameter	Symbol	Value
1	Suspended mass	\(m_1 \)	0.4 Kg
2	Pendulum mass	\(m_2 \)	0.2 Kg
3	Rod length	\(l \)	0.4 m
4	Gravitational constant	\(g \)	10 m/s^2

The state space representation of the system then becomes
\[\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.33 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

3. Proposed Controllers Design

3.1 H ∞ Optimal Loop Shaping Control
H ∞ Optimal Loop Shaping Control computes a stabilizing H∞ controller K for plant G to shape the sigma plot of the loop transfer function GK to have desired loop shape G₆ with accuracy γ = GAM in the sense that if ω₀ is the 0 db crossover frequency of the sigma plot of G₆(jω), then, roughly,

\[\sigma(G(j\omega)K(j\omega)) \leq \frac{1}{\gamma} \sigma(G(j\omega)) \text{ for all } \omega > \omega_0 \]

\[\sigma(G(j\omega)K(j\omega)) \geq \gamma \sigma(G(j\omega)) \text{ for all } \omega > \omega_0 \]

A MIMO stable min-phase shaping pre-filter W, the shaped plant Gₛ = GW, the controller for the shaped plant Kₛ = WKₛ and the shaped system is plotted as a function of \{ω₀min, ω₀max\} over which the loop shaping is achieved. The block diagram of the pendulum on the free suspension with H ∞ Optimal Loop Shaping Controller is shown in Figure 2 below.

\[K₁(s) = \frac{5.369s^5 + 4.409s^4 + 9.094s^3 + 1.764s^2 + 1.399s + 3.415}{s^6 + 1.639s^5 + 1.007s^4 + 2.751s^3 + 2.820s^2 + 2.818s + 6.955} \]

For the second order, the desired loop shaping function is

\[G_{d2} = \frac{1}{s^2 + 2s + 6} \]

And the H ∞ Optimal Loop Shaping Controller becomes

\[K₂(s) = \frac{7.314s^7 + 3.221s^6 + 2.645s^5 + 5.459s^4 + 1.123s^3 + 2.353s^2 + 6.077s + 1.222}{s^8 + 1.639s^7 + 1.007s^6 + 2.753s^5 + 2.826s^4 + 1.153s^3 + 2.867s^2 + 3.523s + 8.939} \]

The pendulum angular position angle increases for the 0.1 N input.

4. Result and Discussion

Here in this section, the investigation of the open loop response and the closed loop response with the proposed controller have been done. Finally the comparison of the system with the proposed controllers for a first order and a second order desired loop shaping design have been done.

4.1 Open Loop Response of the Pendulum

The open loop response of the system for a 0.1 Newton suspended mass force simulation is shown in Figure 3 below.

![Figure 3. Open loop response](Image)

4.2 Comparison of the Step Response of Pendulum with Suspended Mass using H ∞ Optimal Loop Shaping Controller with First and Second Order Desired Loop Shaping Function Controllers

The simulation result of the step response of pendulum with suspended mass using H ∞ optimal loop shaping controller with first and second order desired loop shaping function is shown in Figure 4 below.

![Figure 4. Step response](Image)
The data of the rise time, percentage overshoot, settling time and peak value is shown in Table 2.

No	Performance Data	First Order	Second Order
1	Rise time	1.05 sec	1.12 sec
2	Per. overshoot	13.3 %	40 %
3	Settling time	1.38 sec	1.45 sec
4	Peak value	17 Degree	21 Degree

As Table 2 shows that the pendulum with suspended mass using H∞ optimal loop shaping controller with first order desired loop shaping function controller improves the performance of the system by minimizing the rise time, percentage overshoot and settling time.

4.3 Comparison of the Sine Wave Response of Pendulum with Suspended Mass using H∞ Optimal Loop Shaping Controller with First and Second Order Desired Loop Shaping Function Controllers

The simulation result of the sine wave response of pendulum with suspended mass using H∞ optimal loop shaping controller with first and second order desired loop shaping function is shown in Figure 5 below.

![Figure 5. Sine wave response](image)

As Figure 5 shows that the pendulum with suspended mass using H∞ optimal loop shaping controller with first order desired loop shaping function controller improves the performance of tracking the set point input to the system.

5. Conclusion

In this paper, the design and simulation of a horizontally moving suspended mass pendulum base is done using H^∞ optimal loop shaping with first and second order desired loop shaping function controllers. Comparison of the proposed system with H^∞ optimal loop shaping with first and second order desired loop shaping function controllers have been done to track the desired angular position of the pendulum using step and sine wave input signals. The step input signal response shows that the pendulum with suspended mass using H∞ optimal loop shaping controller with first order desired loop shaping function controller improves the performance of the system by minimizing the rise time, percentage overshoot and settling time while the sine wave input signal response shows that the pendulum with suspended mass using H∞ optimal loop shaping controller with first order desired loop shaping function controller improves the performance of tracking the set point input to the system. Finally the simulation comparison results prove that the system with H∞ optimal loop shaping controller with first order desired loop shaping function controller improved the system performance better.

Reference

1. Chen Huang et al. “Structural Vibration Control of the Spatial Suspended Mass Pendulum” IOP Conference Series: Earth and Environmental Science, Vol. 455, 2020.
2. Cwen Wuang et al. “Control Performance of Suspended Mass Pendulum with the Consideration of Out of Plane Vibration” Journal of Structural Control and Wealth Monitoring, Vol. 25, Issue 9, 2018.
3. Zhan Shu et al. “Performance Based Seismic Design of a Pendulum Tuned Mass Damper System” Journal of Earthquake Engineering, Vol. 23, Issue 2, 2017.
4. Yuanhong D. et al. “Multi-Mode Control Based on HSIC for Double Pendulum Robot” Journal of Vibroengineering, Vol. 17, Issue 7, pp. 3683-3692, 2015.
5. Yu. G. Martynenko et al. “Controlled Pendulum on a Moveable Base” Journal of Mechanics of Solids, Vol. 48, Issue 1, pp. 6-18, 2013.