Morphological changes in the muscle tissue of mice with the use of adaptogens

I V Mironova¹, R M Khabibullin¹, M A Derkho³, S Yu Kontsevaya³, S V Strizhikova² and E K Ovchinnikova⁴

¹Bashkir State Agrarian University, 34 50-letiya Oktyabrya Str., Ufa, Russian Federation
²South-Ural State Agrarian University, 13 Gagarina st., Troitsk, Russian Federation
³Belgorod state agricultural university named after V. Gorin, village Maisky, st. Vavilova 1, Belgorod, Russian Federation
⁴City Veterinary Station of Veliky Novgorod of the Ministry of Agriculture of the Novgorod Region

E-mail: ruzel- msmk@bk.ru

Abstract. Due to the fact that it is important for athletes to restore the physiological functions of the body after physical exertion, it is necessary to develop corrective measures. One of such methods can be the use of adaptogen preparations of various origins. In this regard, the goal of our research was to study morphological changes in the body of laboratory animals during physical exertion and the use of biologically active substances. For this, the object of the study was mice, the subject of the study was an adaptogen of plant origin - tincture of safflower leuzea, and of animal origin - tincture of pantocrine. Distilled water was used in the control group of animals. Research data carried out for 28 days indicate that in the body of mice, over the limit loads lead to a violation of morphogenesis in a number of internal organs. It has also been established that the use of tincture of leuzea safflower and pantocrine before physical exertion allows you to correct and stabilize the physiological functions of the body of animals, and in particular, the physiology and morphogenesis of the skeletal muscles of animals. The best effect was manifested from the use of an adaptogen of plant origin.

1. Introduction

To stimulate physiological processes in the human body leading an active lifestyle, the urgent issue is to ensure the adjustment of the constancy of the internal environment [1–3]. After prolonged physical exercise, a violation of the constancy of the internal environment is recorded, which further leads to negative consequences. A number of researchers note the effect of super high loads on histological changes in a number of vital internal organs such as lung tissue, cardiac muscle tissue, kidney, liver, and also in skeletal muscle tissue. [4–8].

To reduce body fatigue and to activate physiological processes after prolonged physical exercise, researchers recommend using a pre-developed individual nutritional regimen [9–14].

Research results indicate that these substances accelerate the recovery process of the body, correlate its functional abilities, affect the structure of muscle fibers, kidneys, spleen, skeletal muscle, blood morphology, and histological structure in some organs [15–18].
Thus, we can say that many authors share the opinion that the acceleration of the body's recovery after physical exertion is possible through the intake of certain adaptogen drugs.

2. Condition, materials and methods
The study used observation methods, experimental, model, physiological, histological and morphological research methods, statistical analysis and generalization [17–20].

According to the methodological recommendations proposed in 1977 by Porsalt, the influence of the moral root and pantocrine on the performance of the organism of laboratory mice was studied during the period of twenty-eight days from the beginning of the experiment. The structure of internal organs was studied by methods generally accepted in histology. Histological sections were stained according to the technique developed in 1889 by Ira Van Gieson and stained by hematoxylin-eosin.

Modeling of physical activity was carried out in the conditions of the department of private animal breeding on laboratory animals in the amount of 60 ones. We formed groups identical to each other, taking into account age, sex and body weight (table 1).

Group	Drug	Dosage and administration
experienced 1	tincture of leuzea	The dosage of adaptogens was calculated according to the method proposed by Clark on the basis of live weight of animals. Which amounted to 2 μl at the beginning of the experiment, subsequently increased the dosage to 6 μl for all experimental groups
control 2	pantocrine tincture	
control	distilled water	

Laboratory animals that participated in the experiment on the study of performance were in the conditions of the university vivarium, taking into account the recommendations of the rules for keeping experimental mice in accordance with the Directive 2010/63/EC.

3. Analysis and results
When studying the duration of physical activity of laboratory animals at the beginning of experimental studies, serious changes were not recorded for this indicator, which ranged from 49.60 to 51.60 seconds, at the end of the first week the modeling of the swimming activity expiration did not increase, after two weeks it sharply increased (figure 1).
Figure 1. Swimming activity of experimental mice after completion of the experiment.

The blood vessels were of varying size and moderate congestion. Perivascular edema was revealed. Dystrophic changes in muscle tissue were also observed (figures 2, 3).

Figure 2. Perivascular edema of the skeletal muscle tissue of an animal in the control group. Stained with hematoxylin-eosin. Micrograph. Ok. 10, about 20.
Figure 3. Perivascular edema of the musculoskeletal tissue of the animal of the control group. Stained with heme.-eosin. Micrograph. Good. 10, about 20.

The vessels of the animals receiving leuzea were characterized by edema; between the muscle fibers, erythrocytes were excreted outside the blood vessel. In this experimental model, the dystrophic changes in muscle cells were the smallest. The edema decreased (figures 4, 5).

Figure 4. Skeletal muscle tissue of an animal treated with safflower-like levzea. Stained with hematoxylin-eosin. Micrograph. Ok. 10, about 20.
Figure 5. Skeletal muscle tissue when giving animals safflower. Stained with hematoxylin-eosin. Micrograph. Good. 10, about 20.

In the group of animals receiving pantocrine, a decrease in the edema of the nucleus was noted, the number of erythrocytes released into the tissue was clearly visible and decreased. There was no complete recovery (figures 6, 7).

Figure 6. Skeletal muscle tissue of an animal receiving pantocrine. Stained by hematoxylin-eosin. Micrograph. Ok. 10, about 10.
In the experimental group, the proportion of leukocytes decreased at the end of the experiment, and increased in the control group.

Table 2. Morphological blood parameters of experimental mice after exercise and the use of adaptogens.

Index	Research term	7 days		28 days			
		experienced 1	experienced 2	control	experienced 1	experienced 2	control
Red blood cells x 10^{12}/l		7.18±0.360	6.87±1.8*	6.93±0.62	7.02±0.41*	7.41±2.1*	6.01±0.52
Hemoglobin, g/l		165±3.50	159±8.4	163±8.20	163±3.70*	168±8.8*	146±10.10
White blood cells x10^9/l		7.29±0.16	6.89±1.2*	7.13±0.80	5.98±0.28*	5.5±0.9	8.81±0.90
Lymphocytes		66.05±3.60	66.19±9.70*	67.14±3.10	71.30±5.00*	71.98±9.10	65.40±2.90
Neutrophils		32.50±0.70	31.80±0.90*	33.01±0.70	23.01±0.63**	18.01±6.00	12.90±1.70
Neutrophils stab		4.96±1.20	5.96±0.90*	4.30±1.01	2.48±1.00**	2.60±1.10	3.68±0.33
Neutrophils segmented		29.91±1.10*	25.91±1.40	27.40±0.99	22.03±0.99*	15.08±2.10**	25.10±1.30
Eosinophils		1.04±0.01	1.00±0.06	1.08±0.002	2.86±0.04*	0.42±0.01	2.86±0.01
Basophils		0.91±0.004	0.55±0.001	0.85±0.001	1.46±0.002*	0.49±0.01	1.46±0.002
Monocytes		1.08±0.01	1.2±0.001*	1.10±0.002	1.57±0.03*	1.38±0.02	1.57±0.001

4. Conclusion
To activate the physiological functions and resistance of the animal organism to maximum physical exertion, tincture of pantocrine and safflower leuzea can be used in the recommended doses. After prolonged physical activity when using adoptogens, a complete recovery of the body is recommended. We recommend using our research to develop recovery programs.
References

[1] Roiter L, Akopyan A and Kavtarashvili A 2016 Securing the financial stability of poultry producing enterprises: problems and mechanisms The Proceed. of XXV World's Poultry Congress Abstracts Beijing, China, 05-09 September 2016 (World's Poultry Science Association) 643–48

[2] Korshunova L, Karapetyan R, Ziadinova O and Fisinin V 2018 The transgenic technologies improving the efficiency of poultry production The XVth European Poultry Conf. Dubrovnik, Croatia, 17.21.2018 (World's Poultry Science Association, Croatian Branch) 461–470

[3] Ristow M et al. 2009 Antioxidants prevent health-promoting effects of physical exercise in humans Proceedings of the National Academy of Sciences 106 (21) 8665–70

[4] Blagonravov M, Korshunova A, Bryk A, Frolov V and Azova M 2016 Expression of bax protein and morphological changes in the myocardium in experimental acute pressure overload of the left ventricle Experimental Biology and Medicine 161 (2) 312–15

[5] Yakimoskii A, Shantyr I, Vlasenko M and Yakovleva M 2017 Effects of acyzol on zinc content in rat brain and blood plasma Bulletin of Experimental Biology and Medicine 162 (2) 293–94

[6] Kuznetsov D, Kursanov A, Lisin R, Mukhlyina E, Lookin O, Protsenko Y and Balakin A 2017 Contractility of right ventricular myocardium in male and female rats during physiological and pathological hypertrophy Experimental Biology and Medicine 162 (2) 303–05

[7] Anikina T, Zverev A, Krylova A, Zefirov T, Masliuko P and Moiseev K 2017 NPY1 receptors participate in the regulation of myocardial contractility in rats Experimental Biology and Medicine 162 (4) 418–20

[8] Novoselov V, Savchenko S, Porvin A, Koshlyak D, Nadev A, Ageeva T, Chikinev Y and Polyakevich A 2016 Ultrastructure of cardiomyocytes and blood capillary endotheliocytes in the myocardium under conditions of experimental mechanical injury to the heart Experimental Biology and Medicine 161 (1) 134–36

[9] Gavrilova N, Chernopolskaya N, Rebezov M, Shchetinina E, Dogareva N, Likhodeevskaya O, Knysy I and Sanova Z 2020 Specialized sports nutrition foods: review International Journal of Pharmaceutical Research 12 (2) 998–1003

[10] Chernopolskaya N, Gavrilova N, Rebezov M, Dolmatova I, Zaitseva T, Somova Y, Babaeva M, Ponomarev E and Voskanyan O 2019 Biotechnology of specialized product for sports nutrition International Journal of Engineering and Advanced Technology 8 (4) 40–45 DOI: 10.35940/ijrte.B3158.078219

[11] Gavrilova N, Chernopolskaya N, Rebezov M, Shchetinina E, Suyazova I, Safronov S, Ivanova V and Sultanova E 2020 Development of specialized food products for nutrition of sportsmen Journal of Critical Reviews (7) 233–36 DOI: 10.31838/jcr.07.04.43

[12] Gavrilova N, Chernopolskaya N, Molyboga E, Shipkova K, Dolmatova I, Demidova V, Rebezov M, Kuznetsova E and Ponomareva L 2019 Biotechnology application in production of specialized dairy products using probiotic cultures immobilization International Journal of Innovative Technology and Exploring Engineering 8 (6) 642–48

[13] Kulushytayeva B, Okuskhanova E, Rebezov M, Burakovskaya N, Kenijz N, Fedoseeva N, Artemeva I, Saranova O and Pershina O 2020 Bread with sesame seeds for gerodietetic nutrition International Journal of Psychosocial Rehabilitation 24 (7) 1661–65 DOI: 10.37200/IJPR/V24I7/PR270149

[14] Kulushytayeva B, Rebezov M, Igenbayev A, Kichko Yu, Burakovskaya N, Kulakov V and Khayrullin M 2019 Gluten-free diet: positive and negative effect on human health Indian Journal of Public Health Research & Development 10 (7) 906–09

[15] Sokolova T, Sergeev I and Dvoretskii D 2016 Influence of high blood pressure on microcirculation in cerebral cortex of young rats Experimental Biology and Medicine 160 (3) 298–99

[16] Tuktarov V, Mishukovskaya G, Galimova V, Chudov I, Dementyev E, Galieva C and Mironova I 2020 Evaluating bactericidal effect of the antibiotics on the European foulbrood disease in honeybees Journal of Global Pharma Technology 12 (2) 187–95
[17] Bagautdinov A, Baymatov V, Gildikov D, Kozlov G, Chudov I, Tagirov H, Karimov F, Skovorodin E, Tuktarov V and Mukminov M 2018 Assessment of the antioxidant properties of plant and chemical origin dietary supplements in the model Test System Journal of Engineering and Applied Sciences 13 (8) 6576–83

[18] Balakhonov S, Vityazeva S, Dubrovina V, Starovoitova T, Mukhturgin G, Ivanova T, Korytov and Kolesnikov S 2017 Immunogenesis in white mice infected with yersinia pestis with different plasmid composition Experimental Biology and Medicine 162 (4) 470–73

[19] Khabibullin R, Khabibullin I, Yagafarov R, Bakirova A, Fazlaev R, Karimov F, Mussina L, Ismagilova E, Fazlaeva S and Tuktarov V 2019 The influence of dietary supplements on the adaptive processes in animals after physical stress Bulgarian Journal of Agricultural Science 25 (S2) 105–18

[20] Mikashinovich Z, Sarkisyan O and Belousova E 2017 Impairment of energy-dependent processes in the muscle tissue as a pathogenetic mechanism of statin-induced myopathy Experimental Biology and Medicine 162 (4) 433–43