A matlab toolbox for continuous state transition algorithm

Xiaojun Zhou, Chunhua Yang, Weihua Gui
School of Information Science and Engineering, Central South University, Changsha 410083, P. R. China
E-mail: michael.x.zhou@csu.edu.cn

Abstract: State transition algorithm (STA) has been emerging as a novel stochastic method for global optimization in recent few years. To make better understanding of continuous STA, a matlab toolbox for continuous STA has been developed. Firstly, the basic principles of continuous STA are briefly described. Then, a matlab implementation of the standard continuous STA is explained, with several instances given to show how to use to the matlab toolbox to minimize an optimization problem with bound constraints. In the same while, a link is provided to download the matlab toolbox via available resources.

Key Words: State transition algorithm, matlab toolbox, global optimization, continuous optimization

1 Introduction

State transition algorithm (STA) [1–6] has been emerging as a novel stochastic method for global optimization in recent few years, and it has found applications in nonlinear system identification, optimized controller design, water distribution networks, energy conservation optimization, optimized controller design, signal processing, etc [7–10]. In state transition algorithm, a solution to an optimization problem is considered as a state, and an update of a solution can be regarded as a state transition. Unlike other population-based stochastic optimization techniques, such as genetic algorithm, particle swarm optimization, differential evolution, etc, the basic state transition algorithm is an individual-based optimization method. Based on an incumbent best solution, a neighborhood with special property will be formed automatically when using certain state transformation operator. A variety of state transformation operators, for example, rotation, translation, expansion, and axision in continuous STA, or swap, shift, symmetry and substitute in discrete STA, are designed purposely for both global and local search. On the basis of the neighborhood, then, a sampling technique is used to generate a candidate set, and the next best solution is updated by using a selection technique based on previous best solution and the candidate set. This process is repeated until some terminal conditions are satisfied.

In this paper, we focus on the continuous STA for the following global optimization problem

$$\min_{x \in \Omega} f(x)$$

where \(x \in \mathbb{R}^n \), \(\Omega \subseteq \mathbb{R}^n \) is a closed and compact set, which is usually composed of lower and upper bounds of \(x \).

To make better understanding of continuous STA, a matlab toolbox for continuous STA for global optimization problem with bound constraints has been developed. In the rest of this paper, we will describe the continuous STA and its corresponding matlab toolbox in detail.

2 The basic principles of continuous STA

By referring to state space representation, on the basis of current state \(x_k \), the unified form of generation of a new state \(x_{k+1} \) in state transition algorithm can be described as follows:

$$\begin{align*}
 x_{k+1} &= A_k x_k + B_k u_k, \\
 y_{k+1} &= f(x_{k+1})
\end{align*}$$

(2)

where \(x_k = [x_1, x_2, \cdots, x_n]^T \) stands for a state, corresponding to a solution of an optimization problem; \(u_k \) is a function of \(x_k \) and historical states; \(A_k \) and \(B_k \) are state transition matrices, which are usually some state transformation operators; \(f(\cdot) \) is the objective function or fitness function, and \(y_{k+1} \) is the function value at \(x_{k+1} \).

2.1 State transition operators

Using state space transformation for reference, four special state transition operators are designed to generate continuous solutions for an optimization problem.

(1) Rotation transformation

$$x_{k+1} = x_k + \alpha \frac{1}{n\|x_k\|_2} R_r x_k,$$

(3)

where \(\alpha \) is a positive constant, called the rotation factor; \(R_r \in \mathbb{R}^{n \times n} \), is a random matrix with its entries being uniformly distributed random variables defined on the interval \([-1, 1] \), and \(\| \cdot \|_2 \) is the 2-norm of a vector. This rotation transformation has the function of searching in a hypersphere with the maximal radius \(\alpha \).

(2) Translation transformation

$$x_{k+1} = x_k + \beta R_t \frac{x_k - x_{k-1}}{\|x_k - x_{k-1}\|_2},$$

(4)

where \(\beta \) is a positive constant, called the translation factor; \(R_t \in \mathbb{R} \) is a uniformly distributed random variable defined on the interval \([0,1] \). The translation transformation has the function of searching along a line from \(x_{k-1} \) to \(x_k \) at the starting point \(x_k \) with the maximum length \(\beta \).

(3) Expansion transformation

$$x_{k+1} = x_k + \gamma R_e x_k,$$

(5)
where γ is a positive constant, called the expansion factor; $R_e \in \mathbb{R}^{n \times n}$ is a random diagonal matrix with its entries obeying the Gaussian distribution. The expansion transformation has the function of expanding the entries in x_k to the range of $[-\infty, +\infty]$, searching in the whole space.

(4) Axesion transformation

$$x_{k+1} = x_k + \delta R_\alpha x_k$$ \hspace{1cm} (6)

where δ is a positive constant, called the axesion factor; $R_\alpha \in \mathbb{R}^{n \times n}$ is a random diagonal matrix with its entries obeying the Gaussian distribution and only one random position having nonzero value. The axesion transformation is aiming to search along the axes, strengthening single dimensional search.

2.2 Regular neighborhood and sampling

For a given solution, a candidate solution is generated by using one of the aforementioned state transition operators. Since the state transition matrix in each state transformation is random, the generated candidate solution is not unique. Based on the same given point, it is not difficult to imagine that a regular neighborhood will be automatically formed when using certain state transition operator. In theory, the number of candidate solutions in the neighborhood is infinity; as a result, it is impractical to enumerate all possible candidate solutions.

Since the entries in state transition matrix obey certain stochastic distribution, for any given solution, the new candidate becomes a random vector and its corresponding solution (the value of a random vector) can be regarded as a sample. Considering that any two random state transition matrices in each state transformation are independent, several times of state transformation (called the degree of search enforcement, SE for short) based on the same given solution are performed for certain state transition operator, consisting of SE samples. It is not difficult to find that all of the SE samples are independent, and they are representatives of the neighborhood. Taking the rotation transformation for example, a total number of SE samples are generated in pseudocode as follows

1. \textbf{for} \(i \leftarrow 1, SE \) \textbf{do}
2. \hspace{1cm} State(_, \(i \)) \leftarrow Best + $\alpha \frac{1}{\|\text{Best}\|}$ $R_r \text{Best}$
3. \textbf{end for}

where \text{Best} is the incumbent best solution, and SE samples are stored in the matrix State.

2.3 An update strategy

As mentioned above, based on the incumbent best solution, a total number of SE candidate solutions are generated. A new best solution is selected from the candidate set by virtue of the fitness function, denoted as newBest. Then, an update strategy based on greedy criterion is used to update the incumbent best as shown below

$$\text{Best} = \begin{cases} \text{newBest}, & \text{if } f(\text{newBest}) < f(\text{Best}) \\ \text{Best}, & \text{otherwise} \end{cases}$$ \hspace{1cm} (7)

2.4 Algorithm procedure of the basic continuous STA

With the state transformation operators, sampling technique and update strategy, the basic state transition algorithm can be described by the following pseudocode

1: \textbf{repeat}
2: \hspace{1cm} \textbf{if } $\alpha < \alpha_{\text{min}}$ \textbf{then}
3: \hspace{2cm} $\alpha \leftarrow \alpha_{\text{max}}$
4: \hspace{1cm} \textbf{end if}
5: \hspace{1cm} Best $\leftarrow \text{axesion(fcn,Best,SE,}$\(\beta, \gamma \))
6: \hspace{1cm} Best $\leftarrow \text{rotation(fcn,Best,SE,}$\(\alpha, \beta \))
7: \hspace{1cm} Best $\leftarrow \text{axesion(fcn,Best,SE,}$\(\beta, \delta \))
8: \hspace{1cm} $\alpha \leftarrow \frac{\alpha}{2}$
9: \hspace{1cm} \textbf{until} \text{the specified termination criterion is met}

As for detailed explanations, rotation(\cdot) in above pseudocode is given for illustration purposes as follows

1: oldBest \leftarrow Best
2: fBest \leftarrow feval(fcn,oldBest)
3: State \leftarrow op_rotate(Best,SE,α)
4: [newBest,fnewBest] \leftarrow fitness(fcn,State)
5: \textbf{if } fnewBest $<$ fBest \textbf{then}
6: \hspace{1cm} fBest \leftarrow fnewBest
7: \hspace{1cm} Best \leftarrow newBest
8: \hspace{1cm} State \leftarrow op_translate(oldBest,newBest,SE,\(\beta \))
9: \hspace{1cm} [newBest,fnewBest] \leftarrow fitness(fcn,State)
10: \textbf{if } fnewBest $<$ fBest \textbf{then}
11: \hspace{1cm} fBest \leftarrow fnewBest
12: \hspace{1cm} Best \leftarrow newBest
13: \textbf{end if}
14: \textbf{end if}

As shown in the above pseudocodes, the rotation factor α is decreasing periodically from a maximum value α_{max} to a minimum value α_{min} in an exponential way with base fc, which is called lessening coefficient. op_rotate(\cdot) and op_translate(\cdot) represent the implementations of proposed sampling technique for rotation and translation operators, respectively, and fitness(\cdot) represents the implementation of selecting the new best solution from SE samples. It should be noted that the translation operator is only executed when a solution better than the incumbent best solution can be found in the SE samples from rotation, expansion or axesion transformation. In the basic continuous STA, the parameter settings are given as follows: $\alpha_{\text{max}} = 1$, $\alpha_{\text{min}} = 10^{-4}$, $\beta = 1$, $\gamma = 1$, $\delta = 1$, SE = 30, fc = 2.

When using the fitness(\cdot) function, solutions in State are projected into Ω by using the following formula

$$x_i = \begin{cases} u_i, & \text{if } x_i > u_i \\ l_i, & \text{if } x_i < l_i \\ x_i, & \text{otherwise} \end{cases}$$ \hspace{1cm} (8)

where u_i and l_i are the upper and lower bounds of x_i, respectively.
3 A matlab implementation of the continuous STA

3.1 Installation

The STA toolbox was developed under matlab 7.11.0 (R2010b), which can be download via the following link http://www.mathworks.com/matlabcentral/fileexchange/52498-state-transition-algorithm. After unzipping the file “basic_STA.zip”, you will get the following file list:

```
sta File folder
ackley M File
Easom M File
Goldstein_Price M File
Griewank M File
Michalewicz M File
Rastrigin M File
 readme Text Document
Rosenbrock M File
Schaffer M File
Schwefel M File
Spherical M File
Test_sta M File
```

Fig. 1: The unzipped basic_STA file list

There exist a file folder named “sta” (it contains the core files of the STA toolbox), and several .m files as well as a text document.

3.2 The main file

By running the main file “Test_sta.m”, which is shown as below

```matlab
clear all
clc
currentFolder = pwd;
addpath(genpath(currentFolder))
% parameter setting
warning('off')
SE = 30; % degree of search enforcement
Dim = 10;% dimension
Range = repmat([-5.12;5.12],1,Dim);
Iterations = 1e3;
tic
[Best,fBest,history] = STA(@Rastrigin,SE, Dim,Range,Iterations);
toc
Best
fBest
```

```
semilogy(history)
xlabel('Iterations'),ylabel('Fitness(log')
you can get the following similar results
Elapsed time is 0.686311 seconds.
Best =
1.0e-008 *
Columns 1 through 5
-0.6730  0.0080  0.0013 -0.2359 -0.0114
Columns 6 through 10
 0.1098  0.1003  0.5083  0.0490 -0.5944
```

```
Fig. 2: The results for the Rastrigin function (10D)
```

If you want to optimize another benchmark function (the file list as shown in Fig. [1]), for example, the Griewank function with 15 dimension, you just need to do the following changes

```matlab
Dim = 15;% dimension
Range = repmat([-600;600],1,Dim);%range
[Best,fBest,history] = STA(@Griewank,SE, Dim,Range,Iterations);
```

After that, by running the main file, you can get the following similar results as shown in Fig. [3].
If you want to optimize a user-defined function, for example, the following minimization problem:
\[
\begin{align*}
\min_{x \in \mathbb{R}^3} & \quad (x_1 - 1)^2 + (x_2 - 2x_1)^2 + (x_3 - 3x_2)^2 \\
\text{s.t.} & \quad -3 \leq x_1 \leq 3, -2 \leq x_2 \leq 2, -1 \leq x_3 \leq 1
\end{align*}
\]

Firstly, you have to create a m-file (for example with a name ‘myfun’) as follows

```matlab
function y = myfun(x)
    x1=x(:,1);
    x2=x(:,2);
    x3=x(:,3);
    y=(x1-1).^2+(x2 - 2*x1).^2+(x3-3*x2).^2;
```

Then, you need to do the following changes of the main file “Test_sta.m”

```matlab
Dim = 3;% dimension
Range = [-3 -2 -1;3 2 1];%range
Iterations = 1e1;
tic
[Best,fBest,history] = STA(@myfun,SE, Dim,Range,Iterations);
toc
Best
fBest
```

After that, by running the main file, you can get the following similar results as shown in Fig. 4.

```
Elapsed time is 0.558033 seconds.

Best =

0.3478 0.3696 1.0000
```

3.3 The core files of STA

The core files of STA are contained in the file folder “sta”, in which, the file list can be seen in Fig. 5.

By opening the file STA.m, the main algorithm procedure of the basic continuous STA is shown as below

```matlab
function [Best,fBest,history]=STA(funfcn,
```
Fig. 5: The file list in the file folder “sta”

SE, Dim, Range, Iterations) % parameter setting
alpha_max = 1;
alpha_min = 1e-4;
alpha = alpha_max;
beta = 1;
gamma = 1;
delta = 1;
fc = 2; % initialization
State = initialization(SE, Dim, Range);
[Best, fBest] = fitness(funfcn, State); % iterative process
for iter = 1:Iterations
 if alpha < alpha_min
 alpha = alpha_max;
 end
 [Best, fBest] = expand(funfcn, Best, SE, Range, beta, gamma);
 [Best, fBest] = rotate(funfcn, Best, SE, Range, alpha, beta);
 [Best, fBest] = axesion(funfcn, Best, SE, Range, beta, delta);
 history(iter) = fBest;
 alpha = alpha/fc;
end

The function initialization is to generate SE uniformly random initial points within the range (lower and upper bounds), and fitness is to select the best candidate among them using greedy criterion. They are shown in matlab codes as below

```matlab
function State=initialization(SE, Dim, Range)
    Pop_Lb = Range(1,:);
    Pop_Ub = Range(2,:);
    State = rand(SE, Dim).*repmat((Pop_Ub-Pop_Lb,SE,1)+repmat(Pop_Lb,SE,1));
end
```

```matlab
function [Best, fBest] = fitness(funfcn, State) % calculate fitness
    fState = feval(funfcn, State);
    [fGBest, g] = min(fState);
    fBest = fGBest;
    Best = State(g,:);
end
```

The functions op_rotate, op_translate, op_expand and op_axes are the implementation of rotation, translation, expansion and axesion transformation respectively. The corresponding matlab codes are listed as below

```matlab
function y=op_rotate(Best, SE, alpha) % rotation transformation
    n = length(Best);
    y = repmat(Best',1,SE) +
         alpha*(1/n/(norm(Best)+eps)) * reshape(unifrnd(-1,1,SE*n,n)*Best',n,SE);
    y = y';
end
```

```matlab
function y=op_translate(oldBest, newBest, SE, beta) % translation transformation
    n = length(oldBest);
    y = repmat(newBest',1,SE) +
         beta/(norm(newBest-oldBest)+eps) *
         reshape(kron(rand(SE,1), (newBest-oldBest)'),n,SE);
    y = y';
end
```

```matlab
function y = op_expand(Best, SE, gamma) % expansion transformation
    n = length(Best);
    y = repmat(Best',1,SE) + gamma*(normrnd(0,1,n,SE).*repmat(Best',1,SE));
    y = y';
end
```

```matlab
function y = op_axes(Best, SE, delta) % axesion transformation
    n = length(Best);
    A = zeros(n,SE);
    index = randint(1, SE, [1, n]);
    A(n*(0:SE-1)+index) = 1;
    y = repmat(Best',1,SE) + delta*normrnd(0,1,n,SE).*A.*repmat(Best',1,SE);
    y = y';
end
```

Each of these functions aims to generate SE random points with special property based on incumbent best solution.

The functions expansion, rotation, axesion are to generate random points and update incumbent best solution by using corresponding state transition operators. Taking the expansion function for example, it is shown as below
function [Best, fBest] = expand(funfcn, oldBest, SE, Range, beta, gamma)
 Pop_Lb = repmat(Range(1,:), SE, 1);
 Pop_Ub = repmat(Range(2,:), SE, 1);
 Best = oldBest;
 fBest = feval(funfcn, Best);
 flag = 0;
 State = op_expand(Best, SE, gamma);
 changeRows = State > Pop_Ub;
 State(find(changeRows)) = Pop_Ub(find(changeRows));
 changeRows = State < Pop_Lb;
 State(find(changeRows)) = Pop_Lb(find(changeRows));
 [newBest, fGBest] = fitness(funfcn, State);
 if fGBest < fBest
 fBest = fGBest;
 Best = newBest;
 flag = 1;
 else
 flag = 0;
 end

 if flag == 1
 State = op_translate(oldBest, Best, SE, beta);
 changeRows = State > Pop_Ub;
 State(find(changeRows)) = Pop_Ub(find(changeRows));
 changeRows = State < Pop_Lb;
 State(find(changeRows)) = Pop_Lb(find(changeRows));
 [newBest, fGBest] = fitness(funfcn, State);
 if fGBest < fBest
 fBest = fGBest;
 Best = newBest;
 end
 end

and it can be found that the translation transformation is executed only when a better solution is found by the expansion transformation (flag = 1).

The matlab codes of rotation function and axesion function are very similar to that of expansion function. The only difference is that the subfunction op_expand is replaced by op_rotate function or op_axes function. For more details of the rotation and axesion functions, please refer to [11].

4 Conclusion

In this paper, a matlab toolbox for the standard continuous STA is described, and several instances are given to show how to use the STA toolbox. The core functions in the STA toolbox are explained as well. An available link to download the STA toolbox is also provided for reference.

References

[1] X.J. Zhou, C.H. Yang and W.H. Gui, “Initial version of state transition algorithm,” in the 2nd International Conference on Digital Manufacturing and Automation (ICDMA), pp. 644–647, 2011.
[2] X.J. Zhou, C.H. Yang and W.H. Gui, “A new transformation into state transition algorithm for finding the global minimum,” in the 2nd International Conference on Intelligent Control and Information Processing (ICICIP), pp. 674-678, 2011.
[3] X.J. Zhou, C.H. Yang and W.H. Gui, “State transition algorithm,” Journal of Industrial and Management Optimization, vol. 8, no. 4, pp. 1039–1056, 2012.
[4] X.J. Zhou, D.Y. Gao and C.H. Yang, “A Comparative study of state transition algorithm with harmony search and artificial bee colony,” Advances in Intelligent Systems and Computing, vol. 212, pp. 651-659, 2013.
[5] C.H. Yang, X.L. Tang, X.J. Zhou and W.H. Gui, “A discrete state transition algorithm for traveling salesman problem,” Control Theory & Applications, vol. 30, no. 8, pp. 1040–1046, 2013.
[6] X.J. Zhou, D.Y. Gao, C.H. Yang and W.H. Gui, “Discrete state transition algorithm for unconstraining integer optimization problems,” Neurocomputing, vol. 173, pp. 864-874, 2016.
[7] X.J. Zhou, C.H. Yang and W.H. Gui, “Nonlinear system identification and control using state transition algorithm,” Applied Mathematics and Computation, vol. 226, pp. 169-179, 2014.
[8] X.J. Zhou, D.Y. Gao and A.R. Simpson, “Optimal design of water distribution networks by a discrete state transition algorithm,” Engineering Optimization, DOI:10.1080/0305215X.2015.1025775, 2015.
[9] Y.L. Wang, H.M. He, X.J. Zhou, C.H. Yang, Y.F. Xie, “Optimization of both operating costs and energy efficiency in the alumina evaporation process by a multi-objective state transition algorithm,” The Canadian Journal of Chemical Engineering, vol. 94, pp. 53-65, 2016.
[10] G.W. Wang, C.H. Yang, H.Q. Zhu, Y.G. Li, X.W. Peng, W.H. Gui, “State-transition-algorithm-based resolution for overlapping linear sweep voltammetric peaks with high signal ratio,” Chemometrics and Intelligent Laboratory Systems, vol. 151, pp. 61-70, 2016.
[11] http://www.mathworks.com/matlabcentral/fileexchange/52498-state-transition-algorithm.