Phylogenetic Analysis of Cell Types using Histone Modifications

Nishanth Ulhas Nair¹,*, Yu Lin¹, Philipp Bucher²*, and Bernard M.E. Moret¹,*

¹ School of Computer and Communication Sciences.
² School of Life Sciences.
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
NUN’s project was funded by Swiss National Science Foundation.
* corresponding authors
{philipp.bucher, bernard.moret}@epfl.ch

Abstract. In cell differentiation, a cell of a less specialized type becomes one of a more specialized type, even though all cells have the same genome. Transcription factors and epigenetic marks like histone modifications can play a significant role in the differentiation process. In this paper, we present a simple analysis of cell types and differentiation paths using phylogenetic inference based on ChIP-Seq histone modification data. We propose new data representation techniques and new distance measures for ChIP-Seq data and use these together with standard phylogenetic inference methods to build biologically meaningful trees that indicate how diverse types of cells are related. We demonstrate our approach on H3K4me3 and H3K27me3 data for 37 and 13 types of cells respectively, using the dataset to explore various issues surrounding replicate data, variability between cells of the same type, and robustness. The promising results we obtain point the way to a new approach to the study of cell differentiation.

Keywords: cell differentiation, cell type, epigenomics, histone modifications, phylogenetics

1 Introduction and Background

In developmental biology, the process by which a less specialized cell becomes a more specialized cell type is called cell differentiation. Since all cells in one individual organism have the same genome, epigenetic factors and transcriptional factors play an important role in cell differentiation [8,9,10]. Thus a study of epigenetic changes among different cell types is necessary to understand cell development.

Histone modifications form one important class of epigenetic marks; such modifications have been found to vary across various cell types and to play a role in gene regulation [3]. Histones are proteins that package DNA into structural units called nucleosomes [14]. These histones are subject to various types of modifications (methylation, acetylation, phosphorylation, and ubiquitination), modifications that alter their interaction with DNA and nuclear proteins. In turn, changes in these interactions influence gene transcription and genomic function. In the last several years a high-throughput, low-cost, sequencing technology called ChIP-Seq has been used in capturing these histone marks on a genome-wide scale [2,11]. A study of how histone marks change across...
various cell types could play an important role in our understanding of developmental biology and how cell differentiation occurs, particularly as the epigenetic state of chromatin is inheritable across cell generations [12].

Since cell differentiation transforms less specialized cell types into more specialized ones and since most specialized cells of one organ cannot be converted into specialized cells of some other organ, the paths of differentiation together form a tree, in many ways similar to the phylogenetic trees used to represent evolutionary histories. In evolution, present-day species have evolved from some ancestral species, while in cell development the more specialized cells have evolved from less specialized cells. Moreover, observed changes in the epigenetic state are inheritable, again much as mutations in the genome are (although, of course, through very different mechanisms and at very different scales); and in further similarity, epigenetic traits are subject to stochastic changes, much as in genetic mutations. (It should be noted that we are interested here in populations of cells of a certain type, not all coming from the same individual, rather than in developmental lineages of cells within one individual.) Finally, one may object that derived and more basic cell types coexist within the body, while phylogenetic analysis places all modern data at the leaves of the tree and typically qualifies internal nodes as “ancestral”. However, species in a phylogenetic tree correspond to paths, not to nodes. In particular, a species that has survived millions of years until today and yet has given rise to daughter species, much like a basic cell type that is observed within the organism, but from which derived cell types have also been produced and observed, is simply a path to a leaf in the tree, a path along which changes are slight enough not to cause a change in identification. (The time scale makes such occurrences unlikely in the case of species phylogenies, but the framework is general enough to include them.)

Therefore it may be possible to use or adapt some of the techniques used in building phylogenetic trees for building cell-type trees. There are of course significant differences between a phylogenetic tree and a cell-type tree. Two major differences stand out. The more significant difference is the lack of well established models for changes to histone marks during cell differentiation, as compared to the DNA and amino-acid mutation models in common usage in research in molecular evolution. The other difference is that functional changes in cell differentiation are primarily driven by programmed mutational events rather than by selection—and this of course makes it all the harder to design a good model. In spite of these differences, we felt that phylogenetic approaches could be adapted to the analysis of cell differentiation.

In this paper, we provide evidence that such a scenario is possible. We do this by proposing new data representation techniques and distance measures, then by applying standard phylogenetic methods to produce biologically meaningful results. We used data on two histone modifications (but mostly on H3K4me3) for 37 cell types, including replicate data, to construct cell-type trees—to our knowledge, these are the first such trees produced by computational methods. We show that preprocessing the data is very important: not only are ChIP-Seq data fairly noisy, but the ENCODE data are based on several individuals and thus adds an independent source of noise. We also outline some of the computational challenges in the analysis of cell differentiation, opening new perspectives that may prove of interest to computer scientists, biologists, and bioinformaticians.
2 Methods

2.1 Model of differentiation for histone marks

We assume that histone marks can be independently gained or lost in regions of the genome as cells differentiate from a less specialized type to a more specialized one. Histones marks are known to disappear from less specialized cell types or to appear in more specialized ones and are often correlated with gene expression, so our assumption is reasonable. The independence assumption simply reflects our lack of knowledge, but it also enormously simplifies computations.

2.2 Data representation techniques

The analysis of ChIP-Seq data typically starts with a peak-finding step that defines a set of chromosomal regions enriched in the target molecule. We therefore use peak lists as the raw data for our study. We can decide on the presence or absence of peaks at any given position and treat this as a binary character, matching our model of gain or loss of histone marks. Since all of the cell types have the same genome (subject only to individual SNPs or varying copy numbers), we can compare specific regions across cell types. Therefore we code the data into a matrix in which each row is associated with a different ChIP-Seq library (a different cell type or replicate), while each column is associated with a specific genomic region.

We use two different data representations for the peak data for each cell type. Our first method is a simple windowing (or binning) method. We divide the genome into bins of certain sizes; if the bin contains at least one peak, we code it 1, otherwise we code it 0. The coding of each library is thus independent of that of any other library.

Our second method uses overlap and takes into account all libraries at once. We first find interesting regions in the genome, based on peaks. Denote the \(i\)th peak in library \(n\) as \(P_n^i = [P_{nL}^i, P_{nR}^i]\), where \(P_{nL}^i\) and \(P_{nR}^i\) are the left and right endpoints (as basepair indices). Consider each peak as an interval on the genome (or on the real line) and build the interval graph defined by all peaks in all libraries. An interval graph has one vertex for each interval and an edge between two vertices whenever the two corresponding intervals overlap [6]. We simply want the connected components of the interval graph.

Definition 1. An interval in the genome is an interesting region iff it corresponds to a connected component of the interval graph.

Finding these interesting regions is straightforward. Choose a chromosome, let \(PS\) be its set of peaks, set \(AS = \{\emptyset\}\) and \(z = 0\), and enter the following loop:

1. \(P_{nL}^* = \arg\min_{P^i \in PS} P_{nL}^i\). Set \(a = P_{nL}^*\) and \(AS = AS \cup \{P_{nL}^*\}\).
2. Set \(S = \{P \mid P \cap P_{nL}^* \neq \emptyset\ and P \in PS\}\) and \(AS = AS \cup S\).
3. If \(S\) is not empty, then find \(P_{nR}^* = \arg\max_{P^i \in PS} P_{nR}^i\) and go to step 2.
4. Let \(b = P_{nR}^*\) and set \(PS = PS - AS\).
5. The interesting region lies between \(a\) and \(b\), \(IR[a,b]\). Let \(D_{IR}^n[z]\) be the data representation for \(IR[a,b]\) in library \(n\). Set \(z = z + 1\). Set \(D_{IR}^n[z] = 1\) if there is a peak in library \(n\) that lies in \(IR[a,b]\); otherwise set \(D_{IR}^n[z] = 0\) \((1 \leq n \leq N)\).
Repeat this procedure for all chromosomes in the genome. The algorithm takes time linear in the size of the genome to identify the interesting regions.

For a given collection of libraries, these interesting regions have a unique representation. We assume that it is in these interesting regions that histone marks are lost or gained and we consider that the size of the histone mark (which depends at least in part on the experimental procedures and is typically noisy) does not matter. Our major reason for this choice of representation is noise elimination: since the positioning of peaks and the signal strength both vary from cell to cell as well as from test to test, we gain significant robustness (at the expense of detail) by merging all overlapping peaks into one signal, which we use to decide on the value of a single bit. The loss of information may be illusory (because of the noise), but in any case we do not need a lot of information to build a phylogeny on a few dozen cell types.

2.3 Phylogenetic analysis

Phylogenetic analysis attempts to infer the evolutionary relationships of modern species or taxa—they could also be proteins, binding sites, regulatory networks, etc. The best tools for phylogenetic inference, based on maximum parsimony (MP) or maximum likelihood (ML), use established models of sequence evolution, something for which we have no equivalent in the context of cell differentiation. However, one class of phylogenetic inference methods uses variations on clustering, by computing measures of distance (or similarity) to construct a hierarchical clustering that is assimilated to a phylogenetic tree. This type of method is applicable to our problem, provided we can define a reasonable measure of distance, or similarity, between cell types in terms of our data representations. (We are not implying that models of differentiation do not exist nor that they could not be derived, but simply stating that none exist at present that could plausibly be used for maximum-likelihood phylogenetic inference.) Finally more that, with 0/1 data, we can also use an MP method, in spite of the absence of a valid model of character evolution.

In a cell-type tree, most cell types coexist in the present; thus at least some of them can be found both at leaves and at internal nodes. (We are unlikely to have data for all internal nodes, as we cannot claim to have observed all cell types.) Fortunately, phylogenetic inference still works in such cases: as mentioned earlier, when the same taxon should be associated with both a leaf and an internal node, we should simply observe that each edge on the path from that internal node to that leaf is extremely short, since that distance between the two nodes should be zero (within noise limits). The tree inferred will have the correct shape; however, should we desire to reconstruct the basic cell types, then we would have to lift some of the leaf data by copying them to some internal nodes.

From among the distance-based methods, we chose to use the most commonly used one, Neighbor-Joining (NJ) [15]. While faster and possibly better distance-based methods exist, such as FastME [4], it was not clear that their advantages would still obtain in this new domain; and, while very simple, the NJ method has the advantage of not assuming a constant rate of evolution across lineages. In each of the two data representation approaches, we compute pairwise distance between two libraries as the Hamming distance of their representations. (The Hamming distance between two strings of equal
length is the number of positions at which corresponding symbols differ.) We thus obtain a distance matrix between all pairs of histone modification libraries; running NJ on this matrix yields an unrooted tree. For MP, we used the TNT software [7].

2.4 On the inference of ancestral nodes

We mentioned that lifting some of the leaf data into internal nodes is the natural next step after tree inference. However, in general, not all internal nodes can be labelled in this way, due mostly to sampling issues: we may be missing the type that should be associated with a particular internal node, or we may be missing enough fully differentiated types that some internal tree nodes do not correspond to any real cell type. Thus we are faced with a problem of ancestral reconstruction and, more specifically, with three distinct questions:

- For a given internal node, is there a natural lifting from a leaf?
- If there is no suitable lifting, is the node nevertheless a natural ancestor—i.e., does it correspond to a valid cell type?
- If the node has no suitable lifting and does correspond to a valid cell type, can we infer its data representation?

These are hard questions, in terms of both modelling and computational complexity; they are further complicated by the noisy nature of the data. Such questions remain poorly solved in standard phylogenetic analysis; in the case of cell-type trees, we judged it best not to address these problems until the tree inference part is better understood and more data are analyzed.

3 Experimental Design

The histone modification ChIP-Seq data were taken from the ENCODE project database (UW ENCODE group) for human (hg19) data [5]. We carried out experiments on both H3K4me3 and H3K27me3 histone mark data. H3K4me3 is a well studied histone mark usually associated with gene activation, while the less well studied H3K27me3 is usually associated with gene repression [13]. We used data for cell types classified as “normal” and for embryonic stem cells—we did not retain cancerous or EBV cells as their differentiation processes might be completely distinct from those of normal cells. The ENCODE project provides peaks of ChIP-Seq data for each replicate of each cell type. We therefore used their peaks as the raw input data for our work. For the windowing representation, we used bins of 200 bp: this is a good size for histone marks, because 147 bp of DNA wrap around the histone and linker DNA of about 80 bp connect two histones, so that each bin represents approximately the absence or presence of just one histone modification. We programmed our procedures in R and used the NJ implementation from the ape library in R.

Table 1 show the list of the 37 cell types used for H3K4me3 data, giving for each an abbreviation and a short description. In addition, the cells are classified into various groups whose names are based on their cell type. Keratinocytes (NHEK) is included
Table 1. Cell names, short description, and general group for H3K4me3 data. For details see the ENCODE website [1].

Cell Name	Short Description	Group
AG04449	fetal buttoc/thigh fibroblast	Fibroblast
AG04450	fetal lung fibroblast	Fibroblast
AG09319	gum tissue fibroblasts	Fibroblast
AoAF	aortic adventitial fibroblast cells	Fibroblast
BJ	skin fibroblast	Fibroblast
CD14	Monocytes-CD14+ from human leukapheresis production	Blood
CD20(1)	B cells replicate, African American	Blood
CD20(2) and CD20(3)	B cells replicates, Caucasian	Blood
hESC	undifferentiated embryonic stem cells	hESC
HAc	astrocytes-cerebellar	Astrocytes
HAsp	astrocytes spinal cord	Astrocytes
HBMEC	brain microvascular endothelial cells	Endothelial
HCFaa	cardiac fibroblasts-adult atrial	Fibroblast
HCF	cardiac fibroblasts	Fibroblast
HCM	cardiac myocytes	Myocytes
HCPepiC	choroid plexus epithelial cells	Epithelial
HEEpiC	esophageal epithelial cells	Epithelial
HFF	foreskin fibroblast	Fibroblast
HFF MyC	foreskin fibroblast cells expressing canine cMyc	Fibroblast
HMEC	mammary epithelial cells	Epithelial
HPFA	pulmonary artery fibroblasts	Fibroblast
HPF	pulmonary fibroblasts isolated from lung tissue	Fibroblast
HRE	renal epithelial cells	Epithelial
HRPEpiC	retinal pigment epithelial cells	Epithelial
HUVEC	umbilical vein endothelial cells	Endothelial
HVMF	villous mesenchymal fibroblast cells	Fibroblast
NHDF Neo	neonatal dermal fibroblasts	Fibroblast
NHEK	epidermal keratinocytes	Epithelial
NHLF	lung fibroblasts	Fibroblast
RPTEC	renal proximal tubule epithelial cells	Epithelial
SAEC	small airway epithelial cells	Epithelial
SKMC	skeletal muscle cells	Skeletal Muscle
WI 38	embryonic lung fibroblast cells	Fibroblast

in the Epithelial group. We have two replicates for most cell types, but only one replicate for types HCFaa, HFF, and CD14, and three replicates for CD20. (CD20(1) is a B-cell from an African-American individual while CD20(2) and CD20(3) are from a Caucasian individual). The replicates are biological replicates, i.e., the data come from two independent samples. For human Embryonic Stem Cells (hESC) we have data for different days of the cell culture, so we shall use hESC D2 to mean data for hESC cells on day 2. For each cell type, we shall mention the replicate number in brackets, unless the cell type has only one replicate.
4 Results/Discussion

4.1 H3K4me3 data on individual replicates

We report on our analyses using peak data from the ENCODE database for H3K4me3 histone modifications. We carried out the same analyses using H3K27me3 data, but results were very similar and so are not detailed here—we simply give one tree for comparison purposes. The similarity of results between the two datasets reinforces our contention that phylogenetic analyses yield biologically meaningful results on such data. We color-code trees to reflect the major groupings listed in Table 1.

Fig. 1 shows the trees constructed using only one replicate for each cell type using both windowing and overlap representations. The color-coding shows that embryonic stem cells and blood cells are in well separated clades of their own, while fibroblasts and epithelial cells fall in just two clades each. Even within the hESC group we see that day 0 is far off from day 14 compared to its distance from day 2. Thus epigenetic data such as histone marks do contain a lot of information about cell differentiation history.

In order to quantify the quality of the groupings, we compute the total number of cells in a subtree that belong to one group. Since our groups are based on cell type only, there could be many subdivisions possible within each group. Therefore we choose the two largest such subtrees available for each group such that each subtree contains only the leaf nodes of that group. The results are shown in Table 2: most of the cell types in each group do cluster together in the tree. Fig. 1 shows long edges between (most) leaf nodes and their parents—a disquieting feature, as it casts doubt as to the robustness of the tree, parts of which could be assimilated to stars. To quantify this observation, we measured the SR ratio, defined as $SR = \frac{\sum_{e \in I} l(e)}{\sum_{e \in E} l(e)}$, where I is the set of all edges connecting leaf nodes to their parents, E is the set of all edges in the tree, and $l(e)$ is the length of edge e. If this ratio SR is close to 1, then the tree looks star-shaped with
Table 2. Statistics for cell-type trees on H3K4me3 data. 2nd to 9th columns show the number of cells (of the same type) belonging to the largest and second-largest clades; the total number of cells of that type is in the top row. Rows correspond to various methods (WM: windowing; OP: overlap; TP: top peaks). The last column contains the percent deviation (PD) of the distances between the leaves found using the NJ tree from the Hamming distance between the leaves.

hESC	Epithelial	Fibroblast	Blood	Astrocytes	Myocytes	Endothelial	Skeletal Muscle	SR	PD (%)
5.0	6.1	8.4	2.0	1.1	1.0	1.1	1.0		0.93
5.0	4.1	6.3	2.0	2.0	1.0	1.1	1.0		0.92
5.0	6.1	11.2	2.0	1.1	1.0	1.1	1.0		0.84
5.0	4.2	9.4	2.0	2.0	1.0	1.1	1.0		0.78
5.0	6.1	7.4	2.0	1.1	1.0	1.1	1.0		0.81
5.0	4.3	8.5	2.0	2.0	1.0	1.1	1.0		0.74

long branches to the leaves. This ratio was 0.93 using the windowing representation; using the overlap representation reduced it very slightly to 0.92. These long branches are due in part to the very high level of noise in the data, explaining why the overlap representation provided a slight improvement.

As a final entry in the table, we added another measure on the tree and the data. The NJ algorithm is known to return the “correct” tree when the distance matrix is ultrametric; the technical definition does not matter so much here as the consequence: if the matrix is ultrametric, then the sum of the length of the edges on the path between two leaves always equals the pairwise distance between those two leaves in the matrix. Thus one way to estimate how far the distance matrix deviates from this ideal is to compare its distances to the length of the leaf-to-leaf paths in the tree:

\[
PD = \frac{\sum_{i,j} |NJ(i,j) - M(i,j)|}{\sum_{i,j} NJ(i,j)}
\]

where \(i\) and \(j\) are leaf nodes, \(NJ(i,j)\) is the tree distance between \(i\) and \(j\), and \(M(i,j)\) is the matrix distance between \(i\) and \(j\). A high value of \(PD\) indicates that the data representations and measures do not fit well to any tree. We get very low values (of less than 4% for both windowing and overlap representations), suggesting that the distances we compute are in fact representative of a tree and thus offering confirmation of the validity of the inference.

4.2 H3K4me3 data with all replicates

By bringing replicates into the analysis, we can expect to see a stronger phylogenetic signal as each replicate adds to the characterization of its cell type. In particular, wherever we have two or more replicates, they should form a tight subtree of their own. We thus used our replicate data (two replicates for 33 of the 37 cell types, and three for one type, for a total of 72 libraries) in the same analysis pipeline. Fig. 2 shows the differentiation trees obtained using windowing and overlap representations. For completeness, we include the same study (in overlap representation only) on H3K27me3 data in Fig. 3. (Finally, the trees obtained using TNT are very similar and not shown.) As expected,
almost all replicates are grouped; since we usually have two replicates, we get a collection of “cherries” (pairs of leaves) where we had a single leaf before. In most cases, it is now the distance from each leaf in a cherry to their common parent that is large, indicating that the distance between the two replicates is quite large—as we can also verify from the distance matrix. This suggests much noise in the data. This noise could be at the level of raw ChIP-Seq data, but also due to the bias of peak-finding methods used—one expects a general-purpose peak finder to be biased against false negatives and more tolerant of false positives, but for our application we would be better served by the inverse bias. Another reason for the large distance is the nature of the data: these are biological replicates, grown in separate cultures, so that many random losses or
gains of histone marks could happen once the cell is differentiated. Thus it may be that only a few of the mutations in the data are correlated with cell differentiation. Identifying these few mutations would be of high interest, but with just two replicates we are unlikely to pinpoint them with any accuracy.

Looking again at Table 2, we see that, using the windowing representation, the value of SR for the full set of replicates is 0.84 and that here the overlap representation, which is more effective at noise filtering, yields an SR value of 0.78. This is a significant reduction and indicates that the long edges are indeed due to noise. The PD percentage values remain very low for both representations, so the trees we obtained do represent the data well. Note that the groupings appear (in the color-coding in the figure) somewhat better than when we used only one replicate, and the values in columns 2 through 9 of Table 2 confirm this impression.

4.3 Using top peaks and masking regions

In order to study the nature of the noise, we removed some of the less robust peaks. The ENCODE dataset gives a p-value for each peak listed; we kept only peaks with (negative) log p-values larger than 10. We kept all replicates and ran the analysis again, with the results depicted in Fig. 4. The PD percentage values are again very low, so the trees once again fit the data well. The improvement looks superficially minor, but we obtained some more biologically meaningful clusters with this approach. For example, in the fibroblast group, the top two subtrees in Table 2 changed from (9,4) to (8,5) when we used only top peaks in the overlap method. This change occurred because cell HFF moved from the larger group to the smaller group forming a subtree with HFF-Myc (which makes more sense as both are foreskin fibroblast cells). Such a change could be due to particularly noisy data for the HFF cells having obscured the relationship before.

![Fig. 4. Cell-type tree on H3K4me3 data (using all replicates) on peaks with negative log p-value ≥ 10: (a) windowing representation, (b) overlap representation.](image-url)
we removed noisy peaks. Overall, removing noisy peaks further reduced the SR ratio from 0.78 to 0.74 for the overlap representation and from 0.84 to 0.81 for the windowing representation.

Another typical noise-reduction procedure, much used in sequence analysis, is to remove regions that appear to carry little information or to produce confounding indications—a procedure known as masking. We devised a very simplified version of masking for our problem, for use only with replicate data, by removing any region within which at most one library gave a different result (1 instead of 0 or vice versa) from the others. In such regions, the presence of absence of peaks is perfectly conserved across all but one replicate, indicating the one differing replicate has probably been called wrong. After removing such regions, we have somewhat shorter representations, but follow the same procedure. The trees returned have exactly the same topology and so are not shown; the length of edges changed very slightly, as the SR value decreased from 0.74 down to 0.70 using top peaks in the overlap representation.

4.4 A better looking tree

Barring the addition of many replicates, the SR ratio of 0.70 appears difficult to reduce and yet remains high. However, the cherries of replicate pairs by themselves give an indication of the amount of “noise” (variation among individual cells as well as real noise) present in the data. We can take that noise out directly by replacing each cherry with its parent, which is a better representative of the population of this particular cell type than either of the two leaves. We carried out this removal on the tree of Fig. 2(b) and obtained the tree shown in Fig. 5. Since hESC cells do not form clear pairs, we replaced the entire clade of hESC cells by their last common ancestor. The leaves with remaining long edges are those for which we did not have a replicate (CD14, HCFaa, and HFF).

![Fig. 5. H3K4me3 data, overlap representation on peaks with negative log p-value ≥ 10. Replicate leaves are removed and replaced by their parent.](image-url)
5 Conclusions

We addressed the novel problem of inferring cell-type trees from histone modification data. We defined methods for representing the peaks as 0/1 vectors and used these vectors to infer trees. We obtained very good trees, conforming closely to expectations and biologically plausible, in spite of the high level of noise in the data and the very limited number of samples per cell type. Our results confirm that histone modification data contain much information about the history of cell differentiation. We carried out a number of experiments to understand the source of the noise, using replicate data where available, but also devising various noise filters. Our results show that larger replicate populations are needed to infer ancestral nodes, an important step in understanding the process of differentiation. Refining models will enable the use of likelihood-based methods and thus lead to better trees. Since many histone marks appear independent of cell differentiation, identifying which marks are connected with the differentiation process is of significant interest. Finally, once such marks have been identified, reconstructing their state in ancestral nodes will enable us to identify which regions of the genome play an active role in which steps of cell differentiation.

References

1. http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeUwHistone
2. Barski, A., et al.: High-resolution profiling of histone methylations in the human genome. Cell 129(4), 823–837 (2007)
3. Berger, S.L.: Histone modifications in transcriptional regulation. Current Opinion in Genetics & Development 12(2), 142–148 (2002)
4. Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. In: Proc. 2nd Workshop Algs. in Bioinf. (WABI’02). Lecture Notes in Comp. Sci., vol. 2452, pp. 357–374. Springer Verlag (2002)
5. Project Consortium ENCODE: A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9(4), e1001046 (2011)
6. Fishburn, P.C.: Interval orders and interval graphs: A study of partially ordered sets. Wiley New York (1985)
7. Goloboff, P.: Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15(4), 415–428 (1999)
8. Lee, J.H., Hart, S.R., Skalnik, D.G.: Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 38(1), 32–38 (2004)
9. Lister, R., et al.: Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336), 68–73 (2011)
10. Lobe, C.G.: Transcription factors and mammalian development. Current topics in developmental biology 27, 351–351 (1992)
11. Mardis, E.R., et al.: ChIP-seq: welcome to the new frontier. Nature Methods 4(8), 613–613 (2007)
12. Martin, C., Zhang, Y.: Mechanisms of epigenetic inheritance. Current Opinions Cell Biology 3(19), 266–272 (2007)
13. Mikkelsen, T.S., et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153), 553–560 (2007)
14. Nelson, D.L., Cox, M.M.: Lehninger principles of biochemistry. W.H. Freeman (2010)
15. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)