Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015

Capucine Picard1,2 · Waleed Al-Herz3,4 · Aziz Bousfiha5 · Jean-Laurent Casanova1,6,7,8,9 · Talal Chatila10 · Mary Ellen Conley6 · Charlotte Cunningham-Rundles11 · Amos Etzioni12 · Steven M. Holland13 · Christoph Klein14 · Shigeaki Nonoyama15 · Hans D. Ochs16 · Eric Oksenhendler17,18 · Jennifer M. Puck19 · Kathleen E. Sullivan20 · Mimi L K. Tang21,22,23 · Jose Luis Franco24 · H. Bobby Gaspar25

Received: 20 July 2015 / Accepted: 20 September 2015 / Published online: 19 October 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We report the updated classification of primary immunodeficiencies compiled by the Primary Immunodeficiency Expert Committee (PID EC) of the International Union of Immunological Societies (IUIS). In the two years since the previous version, 34 new gene defects are reported in this updated version. For each disorder, the key clinical and laboratory features are provided. In this new version we continue to see the increasing overlap between immunodeficiency, as
manifested by infection and/or malignancy, and immune dysregulation, as manifested by auto-inflammation, auto-immunity, and/or allergy. There is also an increased number of genetic defects that lead to susceptibility to specific organisms which reflects the finely tuned nature of immune defense systems. This classification is the most up to date catalogue of all known and published primary immunodeficiencies and acts as a current reference of the knowledge of these conditions and is an important aid for the genetic and molecular diagnosis of patients with these rare diseases.

Keywords Primary immunodeficiencies · classification · genetic defects

Background

The International Union of Immunological Societies (IUIS) Expert Committee on Primary Immunodeficiency met in London on the 14th and 15th March 2015 to update the classification of human primary immunodeficiencies (PIDs). This report represents the most current and complete catalogue of known PIDs. It serves as a reference for these conditions and provides a framework to help in the diagnostic approach to patients suspected to have PID.

As in previous reports, we have classified the conditions into major groups of PIDs and these are now represented in 9 different tables (Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9). In each table, we list the condition, its genetic defect if known and the major immunological and in some conditions the non-immunological abnormalities associated with the disease. This year we have added the gene OMIM number as well as the phenotype OMIM number for ease of reference.

The classification this year differs in a number of ways from the previous edition published in 2014. Importantly, each defect is now listed in only one table. The diverse immunological phenotypes of many conditions imply that a very large number of conditions could very readily be listed in multiple tables. However, with the increasing number of identified defects, this would make each table large and cumbersome. For this reason, we chose to list each defect in one table only and to place it according to the most pronounced and fundamental defect. For this reason and as an example, CD40L deficiency is now found in Table 1 amongst combined immunodeficiencies, because CD40L is a T cell signaling molecule whose absence leads to both cellular and humoral defects, even though it was originally described as an antibody deficiency. Although some of our placements may be disputed, the committee came to these decisions after much thought and deliberation.

The title of Table 6 has now been slightly changed to ‘Defects in intrinsic and innate immunity' and contains defects characterized by susceptibility to specific organisms. For this reason, the MSMDs (Mendelian Susceptibility to Mycobacterial Disease) are now in Table 6, having previously been in Table 5 (Phagocytic Disorders).

In previous editions, we have placed an asterisk against conditions in which 10 or fewer individuals had been described in the literature. However, this is now felt to be an artificial indicator as, once described, a condition may be found in additional patients but not necessarily reported. For this reason, there is no specific indicator of the number of patients identified or reported.

There is a growing appreciation of wide phenotypic variability for many of the individual specific gene defects, reflecting not only the variety of mutations within each gene but also host and/or environmental modifying factors that may impact the phenotype even between individuals with the same mutation within the same gene. The complexities of these conditions in terms of clinical and immunological presentation and heterogeneity cannot easily be captured in the limited space of a table format. For this reason, the furthest right column contains the Online Mendelian Inheritance in Man (OMIM) reference for each condition to allow access to a source of greater detail and updated information as to the phenotype.

A number of the new genes included in this edition of the classification tables are molecules associated not only with the immune system, but also with more generic cellular functions; such defects result in both immunological and non-immunological abnormalities. In addition, there are a number of gain-of-function (GOF) mutations identified such as in PIK3CD. In CARD11 and STAT1 for example, there are both autosomal dominant GOF and autosomal recessive loss of function variants and these different modes of inheritance in the same gene lead to different functional consequences and hence different immunological and clinical phenotypes. The other trend that is increasingly observed is the increase in disorder of immunedysregulation rather than pure immunodeficiency.

The goal of the IUIS Expert Committee on Primary Immunodeficiencies is to increase awareness, facilitate recognition and promote optimal treatment for patients with Primary Immunodeficiencies. In addition to the current report and previous ‘classification table’ publications, the committee has also produced a ‘Phenotypic Approach for IUIS PID classification and Diagnosis: Guidelines for Clinicians at the Bedside,’ which aims to lead physicians to particular groups of PIDs starting from clinical features and combining routine immunological investigations. This will be further updated to include the newly identified defects. Together these contributions will hopefully allow a practical clinical framework for PID diagnosis.
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated Features	Phenotype OMIM number
T B− Severe Combined Immunodeficiency (SCID)							
γc deficiency	Mutation of IL2RG	XL	Markedly decreased	Normal or increased	Decreased	Markedly decreased NK cells;	300400
JAK3 deficiency	Mutation of JAK3	AR	Markedly decreased	Normal or increased	Decreased	Markedly decreased NK cells;	600802
IL7Ra deficiency	Mutation of IL7Ra	AR	Markedly decreased	Normal or increased	Decreased	Normal NK cells	608971
CD45 deficiency	Mutation of PTPRC	AR	Markedly decreased	Normal	Decreased	Normal γ/δ T cells	608971
CD3δ deficiency	Mutation of CD3D	AR	Markedly decreased	Normal	Decreased	Normal NK cells	615615
CD3ε deficiency	Mutation of CD3E	AR	Markedly decreased	Normal	Decreased	Normal NK cells	615615
CD3ζ deficiency	Mutation of CD3Z	AR	Markedly decreased	Normal	Decreased	Normal NK cells	610163
Coronin-1A deficiency	Mutation of CORO1A	AR	Markedly decreased	Normal	Decreased	Detectable thymus EBV-associated B-cell lymphoproliferation	615401
T B− SCID	DNA recombination defects (for additional DNA repair defects see Table 2)						
RAG 1 deficiency	Mutation of RAG1	AR	Markedly decreased	Markedly decreased	Decreased		601457
RAG 2 deficiency	Mutation of RAG2	AR	Markedly decreased	Markedly decreased	Decreased		601457
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated Features	Phenotype OMIM number
---------	-------------------------------------	-------------	-------------------	--------------------	----------	-------------------	----------------------
DCLRE1C (Artemis) deficiency	Defect of recombinase activating gene (RAG) 2, Mutation of ARTEMIS	AR	Markedly decreased	Markedly decreased	Decreased	Radiation sensitivity	602450
DNA PKcs deficiency	Mutation of PRKDC, Defective VDJ recombination; defect in DNA PKcs, Recombinase repair protein	AR	Markedly decreased	Markedly decreased	variable	Radiation sensitivity, microcephaly and developmental defects	615966
Cernunnos/XLF deficiency	Mutation of Cernunnos, Defective VDJ recombination; defect in Cernunnos	AR	Markedly decreased	Markedly decreased	Decreased	Radiation sensitivity, microcephaly and developmental defects	611291
DNA ligase IV deficiency	Mutation of LIG4, Defective VDJ recombination; defect in DNA ligase IV	AR	Markedly decreased	Markedly decreased	Decreased	Radiation sensitivity, microcephaly and developmental defects	606593
Reticular dysgenesis, AK2 deficiency	Mutation of AK2, Defective maturation of lymphoid and myeloid cells (stem cell defect), Defect in mitochondrial adenylate kinase 2	AR	Markedly decreased	Decreased or normal	Decreased	Granulocytopenia and deafness	267500
Adenosine deaminase (ADA) deficiency	Mutation of ADA, Absent ADA activity, elevated lymphotoxic metabolites (dATP, S-adenosyl homocysteine)	AR	Absent from birth (null mutations) or progressive decrease	Absent from birth of progressive decrease	Progressive decrease	Decreased NK cells, often with costochondral junction flaring, neurological features, hearing impairment, lung and liver manifestations; partial ADA deficiency may lead to delayed or milder presentation	102700
Combined immunodeficiencies generally less profound than severe combined immunodeficiency							
DOCK2 deficiency	Mutations in DOCK2 required for RAC1 activation, actin polymerization, T-cell proliferation, chemokine-induced lymphocyte migration and NK-cell degranulation	AR	Decreased. Poor response to PHA. Low TREC's	Normal	Decreased/ Normal. Poor antibody responses	Normal NK numbers, but defective function. Impaired interferon responses in hematopoietic and non-hematopoietic cells	616433
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated Features	Phenotype OMIM number
-------------------------	---	-------------	---------------------	--------------------	----------	---	-----------------------
CD40 ligand deficiency	Mutation of CD40LG. Defects in CD40 ligand (CD40L; also called TNFSF5 or CD154) cause defective isotype switching and impaired dendritic cell signaling	XL	Normal, may progressively decrease	IgM⁺ and IgD⁺ B cells present, other surface isotype positive B cells absent	IgM increased or normal, other isotypes decreased	Neutropenia, thrombocytopenia; hemolytic anemia, biliary tract and liver disease, opportunistic infections	300386
CD40 deficiency	Mutation of CD40 (also called TNFRSF5) Defects in CD40 cause defective isotype switching and impaired dendritic cell signaling	AR	Normal	IgM⁺ and IgD⁺ B cells present, other isotypes absent	IgM increased or normal, other isotypes decreased	Neutropenia, gastrointestinal and liver/biliary tract disease, opportunistic infections	6006845
ICOS deficiency	Mutations in ICOS: a co-stimulatory molecule expressed on T cells	AR	Normal	Normal	Low	Recurrent infections; autoimmunity, gastroenteritis, may have granulomas	607594
CD3γ deficiency	Mutation of CD3G. Defect in CD3γ component of the T cell antigen receptor complex	AR	Normal, but reduced TCR expression	Normal	Normal		615607
CD8 deficiency	Mutation of CD8A. Defects of CD8α chain, important for maturation and function of CD8 T cells	AR	Absent CD8, normal CD4 cells	Normal	Normal		616507
ZAP-70 deficiency	Mutation in ZAP70 intracellular signaling kinase, acts downstream of TCR	AR	Decreased CD8, normal CD4 cells	Normal	Normal	Autoimmunity in some cases	26840
MHC class I deficiency	Mutations in TAP1, gene, causing MHC class I non-expression	AR	Decreased CD8, normal CD4 cells	Normal	Normal	Vasculitis; pyoderma gangrenosum	604571
MHC class I deficiency	Mutations in TAP2, gene, causing MHC class I non-expression	AR	Decreased CD8, normal CD4 cells	Normal	Normal	Vasculitis; pyoderma gangrenosum	604571
MHC class I deficiency	Mutations in TAPBP (tapasin) gene, causing MHC class I non-expression	AR	Decreased CD8, normal CD4 cells	Normal	Normal	Vasculitis; pyoderma gangrenosum	604571
MHC class I deficiency	Mutations in B2M gene, causing MHC class I non-expression	AR	Decreased CD8, normal CD4 cells	Normal	Normal		601962
MHC class II deficiency	Mutation in transcription factors for MHC class II proteins (CHI1A gene)	AR	Decreased CD4 cells	Normal	Normal or decreased	Failure to thrive, diarrhea, respiratory tract infections liver/biliary tract disease	209920
Disease	Genetic defect/Presumed pathogenesis Gene OMIM	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated Features	Phenotype OMIM number
---------	---	-------------	--------------------	--------------------	----------	---------------------	---------------------
MHC class II deficiency group B	Mutation in transcription factors for MHC class II proteins RFXANK gene 603200	AR	Decreased CD4 cells Absent MHC II expression on lymphocytes	Normal	Normal or decreased	Failure to thrive, diarrhea, respiratory tract infections liver/biliary tract disease	209920
MHC class II deficiency group C	Mutation in transcription factors for MHC class II proteins RFX5, gene	AR	Decreased CD4 cells Absent MHC II expression on lymphocytes	Normal	Normal or decreased	Failure to thrive, diarrhea, respiratory tract infections liver/biliary tract disease	209920
MHC class II deficiency group D	Mutation in transcription factors for MHC class II proteins (RFXAP gene)	AR	Decreased CD4 cells Absent MHC II expression on lymphocytes	Normal	Normal or decreased	Failure to thrive, diarrhea, respiratory tract infections liver/biliary tract disease	209920
ITK deficiency	Mutations in ITK encoding IL-2 inducible T cell kinase required for TCR-mediated activation 186973	AR	Progressive decrease	Normal	Normal or decreased	EBV associated B cell lymphoproliferation, lymphoma Normal or decreased IgG	613011
MAGT1 deficiency	Mutations in MAGT1, Impaired Mg²⁺ flux leading to impaired TCR signaling 300715	XL	Decreased CD4 cells reduced numbers of RTE, impaired T-cell proliferation in response to CD3	Normal	Normal	EBV infection, lymphoma; viral infections, respiratory and GI infections, not yet assigned	300853
DOCK8 deficiency	Mutations in DOCK8 encoding a dedicator of cytokinesis regulator of intracellular actin reorganisation 611432	AR	Decreased; Impaired T lymphocyte proliferation; Treg deficiency and poor function	Decreased; low CD27+ memory B cells	Low IgM, increased IgE	Decreased NK cells with impaired function, hyperesinophilia, recurrent infections; severe atopy, extensive cutaneous viral and staphylococcal infections, susceptibility to cancer. Defects in peripheral B tolerance.	245700
RhoH deficiency	Mutations in RHOH – an atypical Rho GTPase transducing signals downstream of various membrane receptors 602037	AR	Normal low naïve T cells and RTE, restricted T cell repertoire and impaired T cells proliferation in response to CD3 stimulation.	Normal	Normal	HPV infection, lymphoma, lung granulomas, molluscum contagiosum, not yet assigned	614868
MST1 deficiency	Mutations in STK4 – a serine/threonine kinase 604985	AR	Decreased increased proportion of terminal differentiated effector memory cells (TEMRA), low naïve T cells, restricted T cell repertoire in the TEMRA population and impaired T cells proliferation	Decreased	High	Recurrent bacterial, viral, and candidal infections; intermittent neutropenia; EBV-driven lymphoproliferation; lymphoma; Congenital heart disease, autoimmune cytopenias; HPV infection.	615387
TCRα deficiency	Mutations in TRAC – essential component of the T cell receptor 186880	AR	Normal All CD3 T cells expressed TCRβδ (or may be better to say: TCRβα T-cell deficiency), impaired T cells proliferation	Normal	Normal	Recurrent vinal, bacterial and fungal infections, immune dysregulation autoimmunity, and diarrhea.	615758
LCK deficiency	Defects in LCK – a proximal tyrosine kinase that interacts with TCR 153390	AR	Normal total numbers but CD4+ T-cell lymphopenia, low Treg numbers, restricted T cell repertoire and impaired TCR signaling	Normal	Normal IgG and IgA and increased IgM	Diarrhea, recurrent infections, immune dysregulation autoimmunity,	615468
MALT1 deficiency	Mutations in MALT1 –	AR		Normal		Bacterial, fungal and viral infections	615468
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated Features	Phenotype OMIM number
---------	-------------------------------------	-------------	--------------------	--------------------	----------	---------------------	-----------------------
CARD11 deficiency	Defects in CARD11 – acts as a scaffold for NF-kB activity in the adaptive immune response	AR	Normal predominance of naïve T-lymphocyte; impaired T cell proliferation	Normal predominance of transitional B lymphocytes,	Absent/low	Pneumocystis jirovecii pneumonia, bacterial infections,	615206
BCL10 deficiency	Mutations in BCL10 which encodes the B cell CLL/lymphoma 10 protein that forms a heterotrimer with Mal1 and CARD family adaptors and plays a role in NF-kB signaling	AR	Normal numbers, low memory T and Tregs, decreased proliferation to antigen and anti-CD3	Normal number; decreased memory and switched B cells	Low	Recurrent bacterial and viral infections, candidiasis, gastroenteritis	616098
IL-21 deficiency	Mutation in IL21	AR	Normal number, Normal low function	Normal	IgG deficiency	Severe early onset colitis	615767
IL-21R deficiency	Defects in IL21R – together with common gamma chain binds IL-21	AR	Abnormal T cell cytokine production; Abnormal T cell proliferation to specific stimuli	Normal	Normal but impaired specific responses	Susceptibility to cryptorodinia and pneumocystis and cholangitis	615207
OX40 deficiency	Defects in OX40 (TNFRSF4) encoding a co-stimulatory molecule expressed on activated T cells	AR	Normal T cell numbers; decreased antigen specific memory CD4+ cells	Normal B cell numbers; reduced frequency of memory B cells	Normal	Kaposi's sarcoma; impaired immunity to HHV8	615953
IKBKB deficiency	Defects in IKBKB, encoding IKB 2 kinase 2, a component of the NF-kB pathway	AR	Normal total T cells; absent regulatory and T0 T cells; impaired TCR activation	Normal B cell numbers; impaired BCR activation;	Decreased	Recurrent bacterial, viral and fungal infections; clinical phenotype of SCID	61592
LRBA deficiency	Mutations in LRBA (lipopolysaccharide responsive beige-like anchor protein)	AR	Normal or decreased CD4+ numbers; T cell dysregulation	Low or normal numbers of B cells	Reduced IgG and Iga in most	Recurrent infections, inflammatory bowel disease, autoimmunity; EBV infections	614700
CD27 deficiency	Mutations in CD27 (TNFRSF7) encoding TNF-R member superfamily required for generation and long-term maintenance of T cell immunity	AR	Normal	No memory B cells	Hypogammaglobulinaemia following EBV infection	Clinical and immunologic features triggered by EBV infection, HLH Aplastic anaemia, Lymphoma, hypogammaglobulinaemia, Low iNKT cells	615122
NIK deficiency	Mutation in MAP3K14, encoding NIK (NF-κB inducing kinase)	AR	Normal number; impaired proliferation in response to antigen stimulation. Polyclonal Vβ repertoire	Decreased total peripheral B cell and switched memory B cells	Hypogamma-globulinaemia	Recurrent bacterial, viral and Cryptopodidum infections. Low NK cell number and defective NK cell activation	Not yet assigned
CTPS1 deficiency	Mutation in CTPS1, encoding CTP synthase 1, essential for lymphocyte proliferation	AR	Normal or decreased number	Normal/low number	Normal/high IgG	Recurrent/chronic viral infections specially EBV and VZV, bacterial infections, EBV-driven B-cell non-Hodgkin lymphoma	615897
Table 1 (continued)

Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated Features	Phenotype
Omenn syndrome	Hypomorphic mutations in RAG1, RAG2, Artemis, IL7RA, RMRP, ADA, DNA Ligase IV, IL2RG, AK2, or associated with DiGeorge syndrome; some cases have no defined gene mutation	Present; restricted T cell repertoire and impaired function	Normal or decreased	Decreased, except for increased IgE	Erythroderma, eosinophilia, adenopathies, hepatosplenomegaly	603554	

Total no. of genes in Table 1: 49

New genes added: DOCK2, B2M, IL21, MAP3K14, CTPSI

Notes: Infants with SCID who have maternal T cell engraftment may have allogeneic T cells present even in normal numbers, but that do not function normally; these cells may cause autoimmune cytopenias or graft versus host disease. Hypomorphic mutations in several of the genes that when affected by null mutations cause SCID may result in Omenn syndrome (OS), or “leaky” SCID or a less profound combined immunodeficiency or CID phenotype. Both OS and leaky SCID can be associated with >300 autologous T cells/uL of peripheral blood and reduced rather than absent proliferative responses; Individuals with partially defective, or leaky; mutations are generally more mildly affected compared with those with typical SCID caused by null mutations. A spectrum of clinical findings including typical SCID, OS, leaky SCID, CID, granulomas with T lymphopenia, autoimmunity and CD4+ T lymphopenia can be found in an allelic series of RAG1 and other SCID associated genes. RAC2 deficiency is a disorder of leukocyte motility and is reported in Table 5; however, one patient with RAC2 deficiency had absent T cell receptor excision circles (TRECs) by newborn screening, though T cell numbers and mitogen responses were not impaired. For additional syndromic conditions with T cell lymphopenia, such as DNA repair defects, cartilage hair hypoplasia, IKAROS deficiency and NEMO syndrome, see Tables 2 and 6; however, it should be noted that individuals with the most severe manifestations of these disorders could have clinical signs and symptoms of SCID

UNC119 deficiency has been removed from this version of the classification tables, as the UNC119 variant reported previously has been identified as a polymorphism in unaffected individuals (Gorska MM, Alam R. A mutation in the human Uncoordinated 119 gene impairs TCR signaling and is associated with CD4 lymphopenia. Blood. 2012 Feb 9;119(6):1399–406. doi: 10.1182/blood-2011-04-350686. Epub 2011 Dec 19). See Erratum (Blood. 2014 Jan 16;123(3):457)

XL X-linked inheritance, AR autosomal recessive inheritance, AD autosomal dominant inheritance, SCID severe combined immune deficiency, EBV Epstein-Barr virus, Ca++ calcium, MHC major histocompatibility complex, RTE recent thymic emigrants, HPV human papillomavirus
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated features	OMIM number	
1. Congenital thrombocytopenia	Wiskott-Aldrich syndrome (WAS) Mutations in WAS; cytoskeletal and immunologic synapse defect affecting hematopoietic stem cell derivatives	XL	Progressive decrease, Abnormal lymphocyte responses to anti-CD3	Normal numbers	Decreased IgM; antibody to polysaccharides particularly decreased; often increased IgA and IgE	Thrombocytopenia with small platelets; eczema; lymphoma; autoimmune disease; IgA nephropathy; bacterial and viral infections. XL thrombocytopenia is a mild form of WAS, and XL neutropenia is caused by missense mutations in the GTPase binding domain of WASP	30092	
							301000	
	WIP deficiency Mutations in WIPF1; cytoskeletal and immunologic synapse defect affecting hematopoietic stem cell derivatives	AR	Reduced, Defective lymphocyte responses to anti-CD3	Low	Normal, except for increased IgE	Recurrent infections; eczema; thrombocytopenia. WAS-like phenotype.	614493	
							602357	
2. DNA repair defects (other than those in Table 1)	Ataxia-telangiectasia Mutations in ATM; disorder of cell cycle checkpoint and DNA double-strand break repair	AR	Progressive decrease, abnormal proliferation to mitogens	Normal	Ofm decreased IgA, IgE and IgG subclasses; increased IgM monomers; antibodies variably decreased	Ataxia; telangiectasia; pulmonary infections; lymphoreticular and other malignancies; increased alpha fetoprotein and increased radiosensitivity; chromosomal instability	208900	
							607585	
	Nijmegen breakage syndrome Hypomorphic mutations in NBS1 (Nibrin); disorder of cell cycle checkpoint and DNA double-strand break repair	AR	Progressive decrease	Variably reduced	Orm decreased IgA, IgE and IgG subclasses; increased IgM, antibodies variably decreased	Microcephaly; bird-like face; lymphomas; solid tumors; increased radiosensitivity; chromosomal instability	251260	
							602667	
	Bloom syndrome Mutations in BLM (RECQL3); encoding DNA helicase RecQ protein-like 3 helicase	AR	Normal	Normal	Reduced	Short stature; bird like face; sensitive erythema; marrow failure; leukemia; lymphoma; chromosomal instability	516900	
							604610	
	Immunodeficiency with centromeric instability and facial anomalies (ICF1) Mutations in DNA methyltransferase DNMT3B (ICF1) resulting in defective DNA methylation 602900;	AR	Decreased or normal; responses to PHA may be decreased	Decreased or normal	Hypogammaglobulinemia; variable antibody deficiency	Facial dysmorphic features; macrocephaly; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multidisciplinary configurations of chromosomes 1, 9, 16; no DNA breaks	242860	
							602900	
	Immunodeficiency with centromeric instability and facial anomalies (ICF2) Mutations in DNA methyltransferase DNMT3B (ICF2)	AR	Decreased or normal; responses to PHA may be decreased	Decreased or normal	Hypogammaglobulinemia; variable antibody deficiency	Facial dysmorphic features; macrocephaly; bacterial/opportunistic infections; malabsorption; cytopenias; malignancies; multidisciplinary configurations of chromosomes 1, 9, 16; no DNA breaks	614069	
							614069	
	PMS2 deficiency	Mutations in PMS2, resulting in Class Switch recombination deficiency due to impaired mismatch repair	AR	Normal	Reduced B cells, switched and non-switched	Low IgG and IgA, elevated IgM, abnormal antibody responses	Recurrent infections; cafè-au-lait spots; lymphoma; colorectal carcinoma, brain tumor	600259
							276000	
	RNF168 deficiency	Mutations in RNF168, resulting in defective DNA double-strand break repair (RIDDLE syndrome) 612688	AR	Normal	Normal	Low IgG, IgM, or low IgA	Short stature; mild defect of motor control to ataxia; normal intelligence to learning difficulties; mild facial dysmorphism to microcephaly; increased radiosensitivity	611943
							611943	
	MCM4 deficiency	Mutations in MCM4 (minichromosome maintenance complex component 4) gene involved in DNA replication and repair	AR	Normal	Normal	Viral infections (EBV, HSV, VZV)	Adrenal failure	609981
								609981
Table 2 (continued)

Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated features	OMIM number	
Inheritance								
Circulating T cells						De novo haplo-insufficiency (majority) or AD; phenocopies may have other as yet undefined genetic lesions		
Circulating B cells						Decreased or normal; 5% have ≤150 CD3 T cells/μl in neonatal period		
Serum Ig						Normal or decreased		
OMIM number						Hypoparathyroidism, conotruncal cardiac malformation, velopatral insufficiency, abnormal facies, intellectual disability and other abnormalities; often with 3 Mb interstitial deletion in 22q11.2 (or rarely with intragenic mutation of TBX1 deletion in 10p)	188400	
1. Thymic defects with additional congenital anomalies								
DiGeorge syndrome*	Contiguous gene deletion in chromosome 22q11.2 or mutation of a gene within this deletion region, TBX1, encoding a transcription factor critical for development of thymus and adjacent embryonic structures	De novo haplo-insufficiency (majority) or AD; phenocopies may have other as yet undefined genetic lesions	Decreased or normal; 5% have ≤150 CD3 T cells/μl in neonatal period	Normal or decreased	Hyperparathyroidism, conotruncal cardiac malformation, velopatral insufficiency, abnormal facies, intellectual disability and other abnormalities; often with 3 Mb interstitial deletion in 22q11.2 (or rarely with intragenic mutation of TBX1 deletion in 10p)	188400		
CHARGE syndrome due to CHD7 defects	Variable defects of the thymus and associated T cell abnormalities, often due to deletions or mutations in transcription regulator CHD7, 608902	De novo haplo-insufficiency (majority) or AD	Decreased or normal; response to PHA may be decreased	Normal or decreased	Coloboma, heart anomaly, chomial atresia, mental retardation, genital and ear anomalies; some are SCID-like and have low TREC's	214000		
CHARGE syndrome due to SEMA3E defects	Variable defects of the thymus and associated T cell abnormalities, often due to deletions or mutations in transcription regulator, or semaphorin SEMA3E, 608966	De novo haplo-insufficiency (majority) or AD	Decreased or normal; response to PHA may be decreased	Normal or decreased	Coloboma, heart anomaly, chomial atresia, mental retardation, genital and ear anomalies; some are SCID-like and have low TREC's	214000		
Winged helix deficiency (nude) AAB: syndromic SCID	Defects in forkhead box N1 transcription factor encoded by FOXN1, 608638	AR	Markedly decreased	Normal	Decreased	Alopecia; nail dystrophy; severe infections abnormal thymic epithelium, impaired T cell maturation	607075	
4. Immune-osseous dysplasias								
Cartilage hair hypoplasia	Mutations in RMRP (RNase MRP RNA) Involved in processing of mitochondrial RNA and cell cycle control, 157360	AR	Varies from severely decreased (SCID) to normal; impaired lymphocyte proliferation	Normal	Normal or reduced antibodies variably decreased	Short-limbed dwarfism with metaphyseal dysostosis, sparse hair, bone marrow failure, autoimmunity, susceptibility to lymphoma and other cancers, impaired spermatogenesis, neural dysplasia of the intestine	250250	
Schimke Immuneosseous Dysplasia	Mutations in SMARCAL1; involved in chromatin remodeling, 606622	AR	Decreased	Normal	Normal	Normal or reduced antibodies variably decreased	Short stature, spindloepiphyseal dysplasia, intumetaten growth retardation, nephropathy, bacterial, viral, fungal infections; may present as SCID; bone marrow failure	242900
5. Hyper-IgE syndromes (HIES)								
AD-HIES (Job or Buckley Syndrome)	Dominant-negative heterozygous mutations in signal transducer and activator of transcription STAT3, 102582	AD	Normal overall Th-17 and Th-1 follicular helper cells decreased	Normal; reduced switched and non-switched memory B cells; BAFF expression increased	Elevated IgE; specific antibody production decreased	Distinctive facial features (broad nasal bridge), bacterial infections (boils and pulmonary abscesses, pneumoniae) due to S. aureus, aspergillosis, Pneumocystis jirovecii; eczema, mucocutaneous candidiasis, hyperextensible joints, osteoporosis and bone fractures, scoliosis, retention of primary teeth, ankylosis formation	147060	
Cominex-Netherton syndrome	Mutations in SYK resulting in lack of the serine protease inhibitor LEKT1, expressed in epithelial cells, 609010	AR	Normal	Switched and non-switched B cells are reduced	Elevated IgE and IgA Antibody variably decreased	Congenital Ichthyosis, bamboo hair, atopic diathesis, increased bacterial infections, failure to thrive	256500	
PGM3 deficiency		AR	CDR and CD4 T cells may be decreased	Reduced B and memory				615816
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated features	OMIM number	
---------	-------------------------------------	-------------	---------------------	---------------------	---------	---------------------	-------------	
	Mutations in phosphoglucomutase 3							
PGM1 associated with a glycosylation and atopy	AR	Decreased	Variable	Variable	Variable	172100		
6. Dyskeratosis congenita (DKC) with bone marrow failure and dysfunctional telomere maintenance	Mutations in *DKC1* encoding dyskerin	AD or AR	Decreased	Variable	Variable	Variable	300126	
AR-DKC due to nucleolar protein family A member 2 (NHP2) deficiency	Mutations in *NOLA2* (NHP2), component of the H/ACA ribonucleoprotein complex	AR	Decreased	Variable	Variable	Variable	606470	
AR-DKC due to nucleolar protein family A member 3 (NHP3) or NOP10 deficiency	Mutation in *RTEL1* encoding regulator of telomere elongation helicase 1 (RTEL1)	AD or AR	Decreased	Variable	Variable	Variable	603833	
AR-DKC due to regulator of telomere elongation (RTEL1) deficiency	Mutation in *TERC* encoding telomerase RNA component	AD	Variable	Variable	Variable	Variable	602322	
AD-DKC due to TERC deficiency	Mutation in *TERT* encoding telomerase reverse transcriptase	AD or AR	Variable	Variable	Variable	Variable	187270	
AD-DKC due to TINF2 deficiency	Mutation in *TINF2* encoding telomerase interacting factor 2	AD	Variable	Variable	Variable	Variable	604319	
AD/AR-DKC due to TPPI deficiency	Mutation in adenosine deaminase, RNA homolog (ACD) encoding TPPI affecting the TEL-patch domain resulting in failure to recruit telomerase to telomers	AD/AR	Variable	Variable	Variable	Variable	609377	
AR-DKC due to DCLRE1B deficiency	Mutation in *DCLRE1B/SNM1/APOLLO*: RNA CROSS-LINK REPAIR PROTEIN IB	AR	Variable	Variable	Variable	Variable	608683	
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated features	OMIM number/Phenotype	
AR-DKC due to PARN deficiency	Mutation in PARN, POLYADENYLATE-SPECIFIC RIBONUCLEASE	AR	Normal	Variable	Decreased	Megaloblastic anaemia, pancytopenia, if untreated for prolonged periods results in mental retardation	604212	
Transcobalamin 2 (TCN2) deficiency	Mutation in TCN2; encoding a transporter of cobalamin into blood cells	AR	Normal	Variable	Decreased	Megaloblastic anaemia, failure to thrive, if untreated or prolonged periods results in mental retardation	613441	
SLC46A1/PCFT deficiency causing hereditary folate malabsorption	Mutation in SLC46A1, encoding a proton-coupled folate transporter	AR	Low	Low	Decreased	Megaloblastic anaemia, failure to thrive, neutropenia, seizures, mental retardation	601634	
Methylene-tetrahydrofolate dehydrogenase 1 (MTHFD1) deficiency	Mutations in enzyme encoded by MTHFD1, essential for processing single-carbon folate derivatives	AR	Low	Low	Decreased	Megaloblastic anaemia, failure to thrive, neutropenia, seizures, mental retardation	172460	
8. Anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) (EDA-ID, NEMO/IKBKG deficiency)	Mutations of NEMO (IKBKG), a modulator of NF-κB activation	XL	Normal or decreased; poor CR activation function	Normal	Decreased; poor specific antibody responses, absent antibody to polysaccharide antigens	anhidrotic ectodermal dysplasia + specific antibody deficiency (lack of Ab response to polysaccharides) + various infections (mycobacteria and pyogens)	300291, 300584, 300301, 300640	
EDA-ID IKBKA gain of function mutation	Gain of function mutation in IKBKA (NFKBIA), a component of the NF-κB pathway	AD	Normal total T cells; impaired TCR activation	Normal B cell numbers; impaired BCR activation	Decreased; poor specific antibody responses, absent antibody to polysaccharide antigens	Various infections (bacteria, mycobacteria, viruses and fungi); colitis, EDA (not in all patients); conical teeth, variable defects of skin pigmentation, monocyte dysfuction	612132	
9. Calcium channel defects	ORAI-1 deficiency	AR	Normal; defective TCR mediated activation	Normal	Normal	Autoimmunity, anhidrotic ectodermal dysplasia, non-progressive myopathy	612782	
STIM1 deficiency	Mutations in STIM1, a stromal interaction molecule 1	AR	Normal; defective TCR mediated activation	Normal	Normal	Autoimmunity, anhidrotic ectodermal dysplasia, non-progressive myopathy	612783	
10. Other defects	Hepatic veno-occlusive disease with immunodeficiency (VOID)	Mutations in nuclear body protein encoded by SVI19	AR	Normal (decreased memory T cells)	Normal (decreased memory B cells)	Decreased IgG, IgA, IgM; absent germinal centers and tissue plasma cells	Hepatic veno-occlusive disease; Susceptibility to Pneumocystis jiroveci pneumonia, CMV, candida, thymic hypoplasia; hepatoplenal hypogamaglobulinemia; cerebrospinal leukodystrophy	235350
	Facial dysmorphism, immunodeficiency, livedo, short stature (FILS) syndrome	Mutation in POLE1, Defective DNA replication	AR	Low naïve T cells; decreased T cell proliferation	Low memory B cells	Decreased IgM and IgG; Lack of antibodies to polysaccharide antigens	Mild facial dysmorphism/marker hypoplasia, high fontanels, livedo, short stature; recurrent upper and lower respiratory tract infections, recurrent pulmonary infections and recurrent meningitis	615139
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T cells	Circulating B cells	Serum Ig	Associated features	OMIM number Phenotype	
--	-------------------------------------	-------------	---------------------	--------------------	----------	---	-----------------------	
Immunodeficiency with multiple intestinal atresias	Mutation in TTC7A (tetratricopeptide repeat (TPR) domain 7A) protein, of unknown function	AR	Variable, but sometimes absent	Normal	Decreased	Multiple intestinal atresias, often with intrathecal polyhydramnios and early demise; some with SCID phenotype	243150	
Vici syndrome due to EPG5 deficiency	Mutations in EPGS encoding ectopic P-granules autophagy protein, in 5, involved in the formation of autolysosomes required for autophagy	AR	Profound depletion of CD4+ cells	Defective	Decreased (particularly IgG2)	Agenesis of the corpus callosum, cataracts, cardiomyopathy, skin hypopigmentation, cleft lip/palate, recurrent infections, chronic mucocutaneous candidiasis	242840 615068	
Purine nucleoside phosphorylase (PNP) deficiency	Mutation of PNP leading to absent PNP, T cell and neurologic defects from elevated toxic metabolites, especially dGTP	AR	Progressive decrease	Normal	Normal or decreased	Autoimmune hemolytic anemia, neurological impairment	613179	
HOIL1 deficiency	Mutation in HOIL1 (RBC1), encoding a component of the linear ubiquitination chain assembly complex LUBAC, resulting in impaired activation of NF-κB	AR	Normal numbers, Normal, but decreased memory B cells	Poor antibody production to polysaccharide antigens	Bacterial infections (pyogens), autoinflammation, amylopectinosis	615895		
HOIP deficiency	Mutation of HOIP/RNF31 (RUBBCK1), encoding a component of the linear ubiquitination chain assembly complex LUBAC, resulting in impaired activation of NF-κB	AR	Normal numbers	Normal, but decreased memory B cells	decreased	Bacterial infections (pyogens), autoinflammation. Amylopectinosis, Lymphangiectasia	Not yet assigned	
Hemizygous-lymphangiectasia-lymphedema syndrome	Mutation of CCBE1 (COLLAGEN AND CALCIUM-BINDING EGF DOMAIN-CONTAINING PROTEIN1)	AR	Low/variable	Low/variable	decreased	Lymphangiectasia and lymphedema with facial abnormalities and other dysmorphic features	235510	
STAT5b deficiency	Mutations in STAT5B signal transducer and transcription factor, essential for normal signaling from IL-2 and 15, key growth factors for T and NK cells, as well as other cytokines	AR	Moderately decreased	Normal	Normal	Growth-hormone insensitive diarrhoea, dysmorphic features, eczema, lymphocytic interstitial pneumonitis, autoimmunity	245590	

Total no. of genes in Table 2: 45
New genes added: TPP1, DCLRE1B, PARN, CCBE1, HOIP1, EPG5

Notes: T and B cell number and function in these disorders exhibit a wide range of abnormality; the most severely affected cases meet diagnostic criteria for SCID or leaky SCID and require immune system restoring therapy such as allogeneic hematopoietic cell transplantation

* Although TBX1 deletions are emphasized, data are lacking that demonstrate that isolated TBX1 haploinsufficiency (affecting solely the gene and none of the surrounding 22q11.2 region) explicitly causes T cell or immunologic deficiency in humans.
Table 3 Predominantly antibody deficiencies

Disease	Genetic defect/Presumed pathogenesis	Inheritance	Serum Ig	Associated features	Phenotype	OMIM number
1. Severe reduction in all serum immunoglobulin isotypes with profoundly decreased or absent B cells						
BTNK deficiency	Mutations in BTNK, a cytoplasmic tyrosine kinase activated by crosslinking of the BCR	XL	All isotypes decreased in majority of patients; some patients have detectable immunoglobulins	Severe bacterial infections; normal numbers of pro-B cells	300755	
μ heavy chain deficiency	Mutations in a heavy chain (RIHμ); essential component of the pre-BCR	AR	All isotypes decreased	Severe bacterial infections; normal numbers of pro-B cells	601495	
Jδ deficiency	Mutations in Jδ (JGLδ); part of the surrogate light chain in the pre-BCR	AR	All isotypes decreased	Severe bacterial infections; normal numbers of pro-B cells	613500	
Igα deficiency	Mutations in Igα (CD79A); part of the pre-BCR and BCR	AR	All isotypes decreased	Severe bacterial infections; normal numbers of pro-B cells	613501	
BLNK deficiency	Mutations in BLNK; a scaffold protein that binds to BTK 604615	AR	All isotypes decreased	Severe bacterial infections; decreased or absent pro-B cells	615214	
PI3KR1 deficiency	Mutations in PI3KR1; a kinase involved in signal transduction in multiple cell types. Complete loss of PI3KR1 p85-alpha resulting in complete loss of B cell development	AR	All isotypes decreased	Severe bacterial infections; decreased or absent pro-B cells	615214	
E47 transcription factor deficiency	Mutations in TCFF3; a transcription factor required for control of B cell development	AD	All isotypes decreased	Recurrent bacterial infections	Not yet assigned	
Thymoma with Immunodeficiency	Unknown	None	One or more isotypes may be decreased	Bacterial and opportunistic infections; autoimmunity; decreased number of pro-B cells		
2. Severe reduction in at least 2 serum immunoglobulin isotypes with normal or low number of B cells						
CD19 deficiency	Mutations in CD19; transmembrane protein that amplifies signal through BCR 107265	AR	Low IgG and IgA and/or IgM	Recurrent infections; May have glomerulonephritis	613493	
CD21 deficiency	Mutations in CD21; also known as complement receptor 2 and forms part of the CD19 complex 120650	AR	Low IgG and IgA and/or IgM	Recurrent infections; May have glomerulonephritis	613496	
CD20 deficiency	Mutations in CD20; a B cell surface receptor involved in B cell development and plasma cell differentiation	AD or AR or complex	Low IgG and IgA and/or IgM	Variable clinical expression	240500	
CD21 deficiency	Mutations in CD21; also known as complement receptor 2 and forms part of the CD19 complex 120650	AR	Low IgG; impaired anti-pneumococcal response	Recurrent infections	614699	
TACI deficiency	Mutations in TNFSF13B (TACI); a TNF receptor family member found on B cells and is a receptor for BAFF and APRIL 604900	AD or AR or complex	Low IgG and IgA and/or IgM	Variable clinical expression	240500	
BAFF receptor deficiency	Mutations in TNFSF13C (BAFF-R); a TNF receptor family member found on B cells and is a receptor for BAFF 606269	AR	Low IgG and IgM	Variable clinical expression	613494	
TWEAK deficiency	Mutations in a cytokine TWEAK (TNFSF12); TNF-related weak inducer of apoptosis 602695	AD	Low IgG and IgM; lack of anti-pneumococcal antibody	Pneumonia, bacterial infections, warts; thrombocytopenia, neutropenia	Not yet assigned	
NFKB2 deficiency	Mutations in NFKB2; an essential component of the noncanonical NF-κB pathway 602695	AD	Low IgG and IgA and/or IgM	Recurrent infections; adrenal insufficiency; ACTH deficiency; alopecia	615577	
MOGS deficiency	Mutations in mannosyl oligosaccharide glucosidase 601336	AR	Severe hypogammaglobulinemia;	Bacterial and viral infections; severe neurologic disease; also contains glycosylation type IIb (CDG-IIb)	600536	
Table 3 (continued)

Mutation/Deficiency	Description	Association/Autoimmune	Notes
TRNT1 deficiency	Mutation in TRNT1, a template-independent RNA polymerase required for the maturation of cytosolic and mitochondrial transfer RNAs (tRNAs)	AR	B cell deficiency and hypogammaglobulinemia; congenital sideroblastic anemia; deafness; developmental delay
TTC37 deficiency	Mutation in TTC37 gene	AR	Poor antibody response to pneumococcal vaccine; Recurrent bacterial and viral infections; Abnormal hair findings: trichorrhexis nodosa

3. **Severe reduction in serum IgG and IgA with normal/elevated IgM and normal numbers of B cells**

- **AID deficiency**
 - Mutations in AICDA gene
 - AR
 - IgG and IgA decreased; IgM increased
 - Bacterial infections; enlarged lymph nodes and germinal centers

- **UNG deficiency**
 - Mutations in UNG
 - AR
 - IgG and IgA decreased; IgM increased
 - Enlarged lymph nodes and germinal centers

- **INO80**
 - INO80 chromatin remodeling complex; mild DNA repair defect
 - AR
 - IgG and IgA decreased; IgM increased
 - Severe bacterial infections; not yet assigned

- **MSH6**
 - MSH6 gene defect part of mismatch repair [MMR] machinery; DNA repair defect
 - AR
 - Variable IgG, defects; increased IgM in some; normal B cells, low switched memory B cells; Ig-CSR and SHM defects
 - Family or personal history of cancer; not yet assigned

4. **Isotype or light chain deficiencies with generally normal numbers of B cells**

- **Activated PI3K-δ**
 - Mutation in PIK3CD; p110 encoding for p110 subunit of PI3K
 - AD gain of function
 - Reduced IgG2 and impaired antibody to pneumococi and hemophilus
 - Respiratory infections, bronchiectasis; autoimmunity; chronic EBV, CMV infection

- **PI3KR1 loss of function**
 - Mutation in PIK3R1 leading to mutations in p85x
 - AD loss of function of p85x (leading to activation of PI3K-δ as above)
 - Absent IgA, low IgG
 - EBV, CMV viremia; growth retardation

- **Ig heavy chain mutations and deletions**
 - Mutation or chromosomal deletion at 14q32
 - AR
 - One or more IgG and/or IgA subclasses as well as IgE may be absent
 - Respiratory allergic disease

- **IGKC deficiency**
 - Mutations in Kappa constant gene
 - AR
 - All immunoglobulins have lambda light chain
 - Asymptomatic

- **Isolated IgG subclass deficiency**
 - Unknown
 - Variable
 - Reduction in one or more IgG subclass
 - Usually asymptomatic; a minority may have poor antibody response to specific antigens and recurrent viral/bacterial infections

- **IgA with IgG subclass deficiency**
 - Unknown
 - Variable
 - Reduced IgA with decrease in one or more IgG subclass
 - Recurrent bacterial infections

- **Specific antibody deficiency with normal Ig concentrations and normal numbers of B cells**
 - Unknown
 - Variable
 - Reduced ability to produce antibodies to specific antigens

710 J Clin Immunol (2015) 35:696–725
Table 3 (continued)

Transient hypogammaglobulinemia of infancy with normal numbers of B cells	Unknown	Variable	IgG and IgA decreased	Normal ability to produce antibodies to vaccine antigens, usually not associated with significant infections
CARD11 gain of function	CARD11; scaffold for NF-κB activity in the adaptive immune response; gain of function	AD	Congenital B cell lymphocytosis. High B cell numbers due to constitutive NF-κB activation	Splenomegaly; lymphadenopathy

Total no. of gene in Table 3: 28

New genes added: MOGS, TRNT1, TTC37, IN08, MSH6, PBKR1 AD

Notes: Several autosomal recessive disorders that might previously have been called CVID have been added to Table 3. CD81 is normally co-expressed with CD19 on the surface of B cells. As for CD19 mutations, mutations in CD81 result in normal numbers of peripheral blood B cells, low serum IgG and an increased incidence of glomerulonephritis

Common Variable Immunodeficiency Disorders (CVID) include several clinical and laboratory phenotypes that may be caused by distinct genetic and/or environmental factors. Some patients with CVID and no known genetic defect have markedly reduced numbers of B cells as well as hypogammaglobulinemia. Alterations in TNFRSF13B (TACI) and TNFRSF13C (BAFF-R) sequences may represent disease modifying mutations rather than disease causing mutations. A small minority of patients with XLP (Table 4), WHIM syndrome (Table 6), ICF (Table 2), VOD1 (Table 2), thymoma with immunodeficiency (Good syndrome) or myelodysplasia are first seen by an immunologist because of recurrent infections, hypogammaglobulinemia and normal or reduced numbers of B cells

XL X-linked inheritance, AR autosomal recessive inheritance, AD autosomal dominant inheritance; BTK Bruton tyrosine kinase, BLNK B cell linker protein

AID activation-induced cytidine deaminase, UNG uracil-DNA glycosylase, Igκ immunoglobulin or κ light-chain type
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T Cells	Circulating B cells	Functional defect	Associated Features	Phenotype OMIM number
1. Familial hemophagocytic lymphohistiocytosis (FHL) syndromes							
1.1. FHL syndromes without hypopigmentation							
Perforin deficiency (FHL2)	Mutations in PRF1; perforin is a major cytolytic protein	AR	Increased activated T cells	Normal	Decreased to absent NK and CTL activities cytolysis	Fever, Hepato-Splenomegaly (HSMG), Hemophagocytic lymphohistiocytosis (HLH), Cytopenias	603553
(UNC13D / Munc13-4 deficiency (FHL3)	Mutations in UNC13D; required to prime vesicles for fusion	AR	Increased activated T cells	Normal	Decreased to absent NK and CTL activities (cytolysis and/or degranulation)	Fever, HSMG, HLH, Cytopenias,	608898
Syntaxin 11 deficiency, (FHL4)	Mutations in STX11; required for secretory vesicle fusion with the cell membrane	AR	Increased activated T cells	Normal	Decreased NK activity (cytotoxicity and/or degranulation)	Fever, HSMG, HLH, Cytopenias,	603552
STXB2 / Munc18-2 deficiency (FHL5)	Mutations in STXB2, required for secretory vesicle fusion with the cell membrane	AR or AD	Increased activated T cells	Normal	Decreased NK and CTL activities (cytolysis and/or degranulation)	Fever, HSMG, HLH, Cytopenias,	613101
SH2D1A deficiency (XLP1)	Mutations in SH2D1A encoding an adaptor protein regulating intracellular signaling	XL	Normal or increased activated T cells	Reduced Memory B cells	Partially defective NK cell and CTL cytolysis activity	Clinical and immunologic features triggered by EBV infection: HLH, lymphoproliferation, Aplastic anaemia, lymphoma	308240
XIAP deficiency (XLP2)	Mutations in XIAP/ BIRC4 encoding an inhibitor of apoptosis	XL	Normal or increased activated T cells; low/normal iNK T cells	Normal or reduced Memory B cells	Increased T cells susceptibility to apoptosis to CD95 and enhanced activation-induced cell death (AICD)	Partial albinism, recurrent infections, fever, HSMG, HLH	300079
1.2. FHL syndromes with hypopigmentation							
Chediak-Higashi syndrome	Mutations in CYST; impaired lysosomal trafficking	AR	Increased activated T cells	Normal	Decreased NK and CTL activities (cytolysis and/or degranulation)	Partial albinism, recurrent infections, fever, HSMG, HLH	214500
Griscelli syndrome, type2	Mutations in RAB27A encoding a GTPase that promotes docking of secretory vesicles to the cell membrane	AR	Normal	Normal	Decreased NK and CTL activities (cytolysis and/or degranulation)	Giant lysosomes, neutropenia, cytopoenias, bleeding tendency, progressive neurological dysfunction	607624
Hermansky-Pudlak syndrome, type 2	Mutations in AP3B1 gene, encoding for the β subunit of the AP-3 complex	AR	Normal	Normal	Decreased NK and CTL activities (cytolysis and/or degranulation)	Partial albinism, recurrent infections, pulmonary fibrosis	608233
Hermansky-Pudlak syndrome, type 9	Mutations in PLDX, encoding Palladin, a component of the biogenesis of lysosome-related organelles complex-3 (BLOC-3)	AR	(Not assessed; leukopenia)	(Not assessed, leukopenia)	Decreased NK cell cytolytic activity	Oculocutaneous albinism, recurrent cutaneous infections, leukopenia, thrombocytopenia	614171
2. T regulatory cells genetic defects							
PEX5, immune dysregulation, polyendocrinopathy, enteropathy X-linked	Mutations in FOXP3, encoding a T cell transcription factor	XL	Normal	Normal	Lack of (and/or impaired function of) CD4+ CD25+ FOXP3 regulatory T cells (Tregs)	Autoimmune enteropathy, early onset diabetes, thyroiditis hemolytic anaemia, thrombocytopenia, eczema	304790
CD25 deficiency	Mutations in IL2RA, encoding IL-2R alpha chain, 147730	AR	Normal to decreased	Normal	No CD4+ CD25+ Tregs with impaired function of Tregs cells	Elevated IgE, IgA	606367
CTLA4 deficiency (ALPSV)	Mutations in CTLA4, encoding Cytotoxic T Lymphocyte antigen 4, a protein that	AD	Decreased	Decreased	Impaired function of Treg cells.	Autoimmune cytopenias, enteropathy, interstitial lung disease,	616100
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T Cells	Circulating B cells	Functional defect	Associated Features	Phenotype OMIM number
---------	-------------------------------------	-------------	---------------------	-------------------	------------------	---------------------	----------------------
STAT3 GOF mutations	Mutations in STAT3, encoding Signal Transducer and Activator 3	AD	Decreased	Enhanced STAT3 signaling, leading to increased Th17 cell differentiation, lymphoproliferation and autoimmunity. Decreased Treg cell numbers and impaired phenotype			
APECED (APS-1), autoimmune polyendocrinopathy with candidiasis and ectodermal dystrophy	Mutations in AIRE, encoding a transcription regulator needed to establish thymic self-tolerance	AR	Normal	AIRE-1 serves as check-point in the thymus for negative selection of autoreactive T cells and for generation of Tregs	Autoimmunity: hypoparathyroidism, hypothyroidism, adrenal insufficiency, diabetes, gonadal dysfunction and other endocrine abnormalities, chronic mucocutaneous candidiasis, dental enamel hypoplasia, alopecia areata Enteropathy, Pericholangitis, hyperimmunoglobulinemia N	240300	
ITPCH deficiency	Mutations in ITPCH, an E3 ubiquitin ligase catalyzes the transfer of ubiquitin to a signaling proteins in the cell including phospholipase Cγ (PLCγ)	AR	Not assessed	ITPCH deficiency may cause immune dysregulation by affecting both anergy induction in auto-reactive effector T cells and generation of Tregs			
Tripeptidyl-Peptidase II Deficiency	Mutations in TPRP2, encoding tripeptidyl-peptidase II, serine exopeptidase involved in extracellular peptide degradation	AR	Decreased	TPP2 deficiency results in premature immunosenescence and immune dysregulation	Variable lymphoproliferation, autoimmune cytopenias, hypogammaglobulinemia, recurrent infections,		
ALPS-FAS	Germinal mutations in TNFRSF6, encoding CD95-Fas cell surface apoptosis receptor**	AR***	Increased CD4⁺CD8⁺ TCRαβ double negative (DN) T cells	Normal, low memory B cells	Apoptosis defect FAS mediated	Splenomegaly, adenopathies, autoimmune cytopenias, increased lymphoma risk, IgG and A normal or increased Elevated FasL and IL-10, vitamin B12	601859
ALPS-FASLG	Mutations in TNFRSF6, Fas ligand for CD95 apoptosis in	AR	Increased DN T cells	Normal	Apoptosis defect FAS mediated	Splenomegaly, adenopathies, autoimmune cytopenias, SLE; Soluble FasL is not elevated Adenopathies, splenomegaly, autoimmunity.	601859
ALPS-Caspase10	Mutations in CASP10, intracellular apoptosis pathway	AR	Increased DN T cells	Normal	Defective lymphocyte apoptosis	Adenopathies, splenomegaly, Bacterial and viral infections, Hypogammaglobulinemia	603909
ALPS-Caspase 8	Mutations in CASP8, intracellular apoptosis and activation pathways	AR	Slightly increased DN T cells	Normal	Defective lymphocyte apoptosis and activation		
FADD deficiency	Mutations in FADD encoding an adapter molecule interacting with FAS, and promoting apoptosis	AR	Increased DN T cells	Normal	Defective lymphocyte apoptosis	Functional hypoplasmenia, Bacterial and viral infections, Recurrent episodes of encephalopathy and liver dysfunction.	613759
PRKC delta deficiency	Mutations in PRKCD, encoding a member of the protein kinase C family critical for regulation	AR	Normal	Low memory B cells and Elevation of CD5 B cells	Apoptotic defect in B cells	Recurrent infections; EBV chronic infection	615559
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T Cells	Circulating B cells	Functional defect	Associated Features	Phenotype OMIM number
---------	-----------------------------------	-------------	---------------------	-------------------	------------------	-------------------	---------------------
4. Immune dysregulation with colitis	of cell survival, proliferation and apoptosis					Hypogammaglobulinemia	
IL-10 deficiency	Mutations in *IL10*, encoding IL-10	AR	Normal	Normal	No functional IL-10 secretion	Inflammatory bowel disease (IBD), Folliculitis, Recurrent respiratory diseases, Arthritis	613148
IL-10Ra deficiency	Mutations in *IL10Ra1*, encoding IL-10Ra1	AR	Normal	Normal	Leukocytes no response to IL-10	Recurrent respiratory diseases, Arthritis, Lymphoma	612567
IL-10Rβ deficiency	Mutations in *IL10RB*, encoding IL-10Rβ	AR	Normal	Normal	Leukocytes no response to IL-10, IL-22, IL-26, IL-28α, IL-28β, and IL-29	Recurrent respiratory diseases, Arthritis, Lymphoma	612952
NFAT5 haploinsufficiency	Hemizygous deletion of NFAT5	AD	Normal	Normal	Decreased memory B cells and plasmablasts	Not yet assigned	
5. Type 1 Interferonopathies							
TREX1 deficiency, Aicardi-Goutières syndrome 1 (AGS1)	Mutations in *TREX1*, encoding nuclease involves in clearing cellular nucleic debris	AR	Not assessed	Not assessed	Intracellular accumulation of abnormal single-stranded (ss) DNA species leading to increased CSF alpha-IFN production	Progressive encephalopathy, Intracranial calcifications, Cerebral atrophy, leukodystrophy, HSMG, Thrombocytopenia, Elevated hepatic transaminases	225750
RNASEH2B deficiency, AGS2	Mutations in *RNASEH2B*, encoding nuclease subunit involves in clearing cellular nucleic debris	AR	Not assessed	Not assessed	Intracellular accumulation of abnormal ss-DNA species leading to increased CSF alpha-IFN production	Progressive encephalopathy, Intracranial calcifications, Cerebral atrophy, leukodystrophy, HSMG, Thrombocytopenia, Elevated hepatic transaminases	610326
RNASEH2C deficiency, AGS3	Mutations in *RNASEH2C*, encoding nuclease subunit involves in clearing cellular nucleic debris	AR	Not assessed	Not assessed	Intracellular accumulation of abnormal ss-DNA species leading to increased CSF alpha-IFN production	Progressive encephalopathy, Intracranial calcifications, Cerebral atrophy, leukodystrophy, HSMG, Thrombocytopenia, Elevated hepatic transaminases	610329
RNASEH2A deficiency, AGS4	Mutations in *RNASEH2A*, encoding nuclease subunit involves in clearing cellular nucleic debris	AR	Not assessed	Not assessed	Intracellular accumulation of abnormal ss-DNA species leading to increased CSF alpha-IFN production	Progressive encephalopathy, Intracranial calcifications, Cerebral atrophy, leukodystrophy, HSMG, Thrombocytopenia, Elevated hepatic transaminases	610333
SAMHD1 deficiency, AGS5	Mutations in *SAMHD1*, encoding negative regulator of the immunostimulatory DNA response	AR	Not assessed	Not assessed	Induction of the cell intrinsic antiviral response, apoptosis, and mitochondrial DNA destruction leading to increased CSF alpha-IFN production	Progressive encephalopathy, Intracranial calcifications, Cerebral atrophy, leukodystrophy, HSMG, Thrombocytopenia, Elevated hepatic transaminases	612952
ADAR1 deficiency, AGS6	Mutations in *ADAR1*, encoding a RNA-specific adenosine deaminase	AR	Not assessed	Not assessed	Catalyzes the deamination of adenosine to inosine in dsRNA substrates	Progressive encephalopathy, Intracranial calcifications, Cerebral atrophy, leukodystrophy, HSMG, Thrombocytopenia, Elevated hepatic transaminases	615010
Aicardi-Goutières syndrome 7 (AGS7)		AD	Not assessed	Not assessed	Elevated CSF IFN-alpha	Progressive encephalopathy, Intracranial calcifications, Cerebral atrophy, leukodystrophy, HSMG, Thrombocytopenia, Elevated hepatic transaminases	615846
Spondyloenchondro-dysplasia with immune dysregulation (SPENCD)	Mutations in *ACPS*, encoding tartrate-resistant acid phosphatase (TRAP)	AR	Not assessed	Not assessed	Upregulation of IFN-alpha and type I IFN-stimulated genes	Recurrent bacterial and viral infections, Intracranial calcification, SLE-like autoimmunity, Sjögren’s syndrome, hypothyroidism, inflammatory myositis, Raynaud’s disease and vitiligo, hemolytic anemia, thrombocytopenia,	607944
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Circulating T Cells	Circulating B cells	Functional defect	Associated Features	Phenotype OMIM number
--	-------------------------------------	-------------	--------------------	--------------------	---	---	-----------------------
STING- associated vasculopathy, infantile-onset	TMEM173 encoding for STIMULATOR OF INTERFERON GENES	AR	Not assessed	Not assessed	STING activates both the NF-kappa-B and IRF3 transcription pathways to induce expression of IFN-alpha and IFN-beta and exert a potent antiviral effect	Severe infantile-onset autoinflammatory vasculopathy, skeletal dysplasia, short stature	615934
ADA2 deficiency	Mutations in CECR1; encoding ADA2	AR	Not assessed	Not assessed	ADAs deactivate extracellular adenosine and terminate signaling through adenosine receptors	Polyarteritis nodosa, childhood-onset, early-onset recurrent ischemic stroke and fever	615688

Total no. of genes in Table 4: 37

New genes added: PLDN, CTLA4, TPP2, NFAT5, IFIHI, TMEM173, CECR1, STAT 3 (GOF)

XL X-linked inheritance, AR autosomal recessive inheritance, AD autosomal dominant inheritance, FHL familial hemophagocytic lymphohistiocytosis, HLH Hemophagocytic lymphohistiocytosis, HSMG hepato-splenomegaly, DN double-negative, SLE systemic lupus erythematosus, IBD inflammatory bowel disease, CSF chronic cerebrospinal fluid

** Somatic mutations of TNFRSF6 cause a similar phenotype (ALPS-sFAS) see Table 9. Germinal mutation and somatic mutations of TNFRSF6 can be associated in some ALPS-FAS patients

*** AR ALPS-FAS patients have a most severe clinical phenotype

**** Somatic mutations in KRAS or NRAS can give this clinical phenotype associated auto-immune leukoproliferative disease (RALD) and are now include in Table 9 entitled Phenocopies of PID

***** de novo dominant TREX1 mutations have been reported
Disease	Genetic defect/ Presumed pathogenesis OMIM gene	Inheritance	Affected cells	Affected function	Associated features	Phenotype OMIM number
1) Congenital neutropenias						
Elastase deficiency (SCN1)	Mutation in ELANE: misfolded protein response, increased apoptosis 130130	AD	N	Myeloid differentiation	Susceptibility to MDS/leukemia	202700
GF1 1 deficiency (SCN2)	Mutation in GF11: loss of regulation of ELANE 606871	AD	N	Myeloid differentiation	B/T lymphopenia	613107
Kostmann Disease (SCN3)	Mutation in HAX1: control of apoptosis 605998	AR	N	Myeloid differentiation	Cognitive and neurological defects in patients with defects in both HAX1 isoforms, susceptibility to MDS/leukemia	610738
G6PC3 deficiency (SCN4)	Mutation in G6PC3: abolished enzymatic activity of glucose-6-phosphatase, aberrant glycosylation, and enhanced apoptosis of N and F 611045	AR	N+F	Myeloid differentiation, chemotaxis, O2− production	Structural heart defects, urogenital abnormalities, inner ear deafness, and venous angiectasias of trunks and limbs	612541
VPS45 deficiency (SCN5)	Mutation in VPS45 controls vesicular trafficking 610405	AR	N+F	Myeloid differentiation, migration	Extramedullary hematopoiesis, bone marrow fibrosis, nephromegaly	615285
Glycogen storage disease type 1b	Mutation in G6PT1: Glucose-6-phosphatase transporter 1 602671	AR	N+M	Myeloid differentiation, chemotaxis, O2− production	Fasting hypoglycemia, lactic acidosis, hyperlipidemia, hepatomegaly	232220
Cyclic neutropenia	Mutation in ELANE: misfolded protein response 130130	AD	N	Myeloid differentiation	Oscillations of other leukocytes and platelets	162800
X-linked neutropenia/myelodysplasia	Mutation in Wnt 6: Regulator of actin cytoskeleton (loss of autoinhibition) 300392	XL, gain of function	N+M	Mitosis	Monocytopenia	300299
P14/LAMTOR2 deficiency	Mutation in ROBLD3/LAMTOR2: Endosomal adaptor protein 14 610389	AR	N+L Med	Endosome biogenesis	Hypogammaglobulinemia, JCD8 cytotoxicity Partial albinism Growth failure	610798
Barth Syndrome	Mutation in Tafazzin (TAZ) gene: Abnormal lipid structure of mitochondrial membrane, defective carnitine metabolism 300394	XL	N	Myeloid differentiation	Cardiomyopathy, myopathy, growth retardation	302060
Cohen syndrome	Mutation in COH1 gene: Pg unknown 607817	AR	N	Myeloid differentiation	Retinopathy, developmental delay, facial dysmorphic	216550
Clercuzzo syndrome	Mutation in CISORF37 (USR1), affects genomic integrity 613276	AR	N	Myeloid differentiation	Polikidderma, MDS	604173
JAGN1 deficiency	Mutations in JAGN1, regulates secretory pathway 300395	AR	N	Myeloid differentiation	Some with a bone phenotype	610622
3-Methylglutaconic aciduria	Mutations in CLPB 616254	AR	N	Myeloid differentiation	Microcephaly, hypoglycemia, hypotonia, ataxia, seizures, cataracts, EPCR	Not yet assigned
G-CSF receptor deficiency	Mutation in CSF3R, the growth factor receptor 139771	AR	N	Myeloid differentiation	Poor response to GCSF	162830
Disease	Genetic defect/ Presumed pathogenesis	Inheritance	Affected cells	Affected function	Associated features	OMIM number
2. Defects of Motility						
Leukocyte adhesion deficiency type 1 (LAD1)	Mutation in ITGB2: B chain for adhesion proteins CD18/CD11 600065	AR	N+M + L+NK	Adherence, Chemotaxis, Endocytosis	Delayed cord separation, skin ulcers	116920
Table 5 (continued)						

Leukocyte adhesion deficiency type 2 (LAD2)	Mutation in SLC35C1: GDP-Fucose transporter 605883					
Leukocyte adhesion deficiency type 3 (LAD3)	Mutation in KINDLIN3: Rap1-activation of β1-3 integrins 607903					
Rac 2 deficiency	Mutation in RAC2: Regulation of actin cytoskeleton 602049					
β-actin deficiency	Mutation in ACTB: Cytoplasmic Actin 102630					
Localized juvenile periodontitis	Mutation in FPR1: Formylated peptide receptor 136537					
Papillon-Lefèvre Syndrome	Mutation in CTSC: Cathepsin C activation of serine proteases 602365					
Specific granule deficiency	Mutation in CEBPE: myeloid transcription factor 189965					
Shwachman-Diamond Syndrome	Mutation in SORD: Defective ribosome synthesis 607444					
3. Defects of Respiratory Burst	Mutation in CYBB: Electron transport protein (gp91phox) 300481					
X-linked chronic granulomatous disease (CGD)	Mutation in CYBA: Electron transport protein (p22phox) 608508					
Autosomal recessive CGD	Mutation in NCF1: Adapter protein (p47phox) 608512					
Autosomal recessive CGD	Mutation in NCF2: Activating protein (p67phox) 608515					
Autosomal recessive CGD	Mutation in NCF4: Activating protein (p40 phox) 601488					
Pulmonary alveolar proteinosis*	Mutation in CSF2RA	300250				

Total no. of genes in Table 5: 31

New genes added: JAGN1, CLBP, CSF3R
Table 6 Defects in Intrinsic and Innate Immunity

Disease	Genetic defect/Presumed pathogenesis	Inheritance	Affected Cell	Functional Defect	Associated Features	Phenotype OMIM Number
1. Medelian Susceptibility to mycobacterial disease (MSMD)						
IL-12 and IL-23 receptor β1 chain deficiency	Mutation in **IL12RB1**: IL-12 and IL-23 receptor β1 chain	AR	L+NK	IFN-γ secretion	Susceptibility to Mycobacteria and Salmonella	614891
IL-12p40 deficiency	Mutation in **IL12B**: subunit p40 of IL12/IL23	AR	M	IFN-γ secretion	Susceptibility to Mycobacteria and Salmonella	614890
IFN-γ receptor 1 deficiency	Mutation in **IFNGR1**: IFN-γR ligand binding chain	AR	M+L	IFN-γ binding and signaling	Susceptibility to Mycobacteria and Salmonella	209950
IFN-γ receptor 1 deficiency	Mutation in **IFNGR1**: IFN-γR ligand binding chain	AD	M+L	IFN-γ binding and signaling	Susceptibility to Mycobacteria and Salmonella	615978
IFN-γ receptor 2 deficiency	Mutation in **IFNGR2**: IFN-γR accessory chain	AR	M+L	IFN-γ signaling	Susceptibility to Mycobacteria and Salmonella	614889
STAT1 deficiency (AD form)	Mutation in **STAT1** (lost of function)	AD	M+L	IFN-γ signaling	Susceptibility to Mycobacteria, Salmonella	614892
Macrophage gp91 phox deficiency	Mutation in **CYBR**: Electron transport protein (gp 91 phox)	XL	Mφ only	Killing (faulty **O**\(^2\)\(^−\) production)	Isolated susceptibility to mycobacteria	300645
IRF8-deficiency (AD form)	Mutation in **IRF8**: IL2 production by CD1c+ MDC	AD	CD1c+MDC	Differentiation of CD1c+MDC subgroup	Susceptibility to Mycobacteria	614893
Tyk2 deficiency	Mutation in **TYK2**	AR	Normal, but multiple cytokine signaling defect	Normal	Susceptibility to intracellular bacteria (Mycobacteria, Salmonella), fungi and viruses (+/−) Elevated IgE	611521
ISG15 deficiency	Mutation in **ISG15**	AR	L+NK	IFNγ defect production	Susceptibility to Mycobacteria (BCG)	616126
RORc deficiency	Mutation in **RORC**	AR	L+NK	IFNγ defect production complete absence of IL-17A/F-producing T cells	Brain calcification mycobacteriosis and candidiasis	Not yet assigned
2. Epidermodysplasia verruciformis	Mutations of **TMC6**	AR	Keratinocytes and leukocytes	EVER proteins may be involved in the regulation of cellular zinc homeostasis in lymphocytes	HPV (group B1) infections and cancer of the skin (typical EV)	226400
EVER1 deficiency	Mutations of **TMC6**	AR	Keratinocytes and leukocytes	EVER proteins may be involved in the regulation of cellular zinc homeostasis in lymphocytes	HPV (group B1) infections and cancer of the skin (typical EV)	226400
Disease	Genetic defect/Presumed pathogenesis	Inheritance	Affected Cell	Functional Defect	Associated Features	Phenotype OMIM Number
---------------------------------------	-------------------------------------	-------------	-----------------------------------	---	---	-----------------------
EVER2 deficiency	Mutations of TMC8 605829	AR	Keratinocytes and leukocytes	EVER proteins may be involved in the regulation of cellular zinc homeostasis in lymphocytes	HPV (group B1) infections and cancer of the skin (typical EV)	226400
WHIM (Warts, Hypogammaglobulinemia, infections, Myelokathexis) syndrome	Gain-of-function mutations of CXCR4, the receptor for CXCL12 162643	AD	Granulocytes + Lymphocytes	Increased response of the CXCR4 chemokine receptor to its ligand CXCL12 (SDF-1)	warts/Human Papilloma virus (HPV) infection Neutropenia Reduced B cell number Hypogammaglobulinemia	193670
4. Predisposition to severe viral infection						
STAT1 deficiency	Mutations of STAT1 600555	AR	T and NK cells and monocytes	STAT1-dependent IFN-α, and -β response	Severe viral infections Mycobacterial infection Severe viral infections (disseminated vaccine-strain measles)	613796
STAT2 deficiency	Mutations of STAT2 600556	AR	T and NK cells	STAT2-dependent IFN-α, and -β response	Severe viral infections Mycobacterial infection Severe viral infections (disseminated vaccine-strain measles)	613796
IRF7 deficiency	Mutation in IRF7 605047	AR	Leukocytes and plasmacytoid dendritic cells, Non-hematopoietic cells	IFN-α, and -β production IFN-λ production	Severe influenza disease Not yet assigned	
CD16 deficiency	Mutation in CD16 146740	AR	NK cells	Deficient spontaneous NK cell cytotoxicity	Susceptibility to severe viral infections, inc. HSV, EBV, HPV	615707
5. Herpes simplex encephalitis (HSE)						
TLR3 deficiency	(b) Mutations of TLR3 603029	AD	Central nervous system (CNS) resident cells and fibroblasts	TLR3-dependent IFN-α, -β, and -λ induction	Herpes simplex virus 1 encephalitis (incomplete clinical penetrance for all etiologies listed here)	613002
UNC93B1 deficiency	(a) Mutations of UNC93B1 608024	AR	CNS resident cells and fibroblasts	UNC-93B-dependent IFN-α, -β, and -λ induction	Herpes simplex virus 1 encephalitis	610551
TRAF3 deficiency	(c) Mutations of TRAF3 601896	AD	CNS resident cells and fibroblasts	TRAF3-dependent IFN-α, -β, and -λ induction	Herpes simplex virus 1 encephalitis	614849
TRIF deficiency	(c) Mutations of TRIF, also called TICAM1 607601	AD	CNS resident cells and fibroblasts	TRIF-dependent IFN-α, -β, and -λ induction	Herpes simplex virus 1 encephalitis	614850
TBK1 deficiency	(c) Mutations of TBK1 604834	AD	CNS resident cells and fibroblasts	TBK1-dependent IFN-α, -β, and -λ induction	Herpes simplex virus 1 encephalitis Not yet assigned	
6. Predisposition to invasive fungal diseases						
CARD9 deficiency	Mutations of CARD9 607212	AR	Mononuclear phagocytes	CARD9 signaling pathway	Invasive candidiasis infection Deep dermatophytoses	212050
7. Chronic mucocutaneous candidiasis (CMC)						
IL-17RA deficiency	(a) Mutations in IL17RA 605461	AR	Epithelial cells, fibroblasts, mononuclear phagocytes	IL-17RA signaling pathway	CMC	613953
IL-17RC deficiency	Mutations in IL17RC 610925	AR	Epithelial cells, fibroblasts, mononuclear phagocytes	IL-17RC signaling pathway	CMC	613956
IL-17F deficiency	(b) Mutations in IL17F	AD	T cells	IL-17 F-containing dimers	CMC	
Table 6 (continued)

Disease	Genetic defect/Presumed pathogenesis OMIM gene	Inheritance	Affected Cell	Functional Defect	Associated Features	Phenotype OMIM Number
STAT1 gain-of-function	604696 gain-of-function mutations in STAT1 600555	AD	T cells, B cells, monocytes	Gain-of-function STAT1 mutations that impair the development of IL-17-producing T cells	CMC Various fungal, bacterial and viral (HSV) infections Auto-immunity (Thyroiditis, diabetes, cytopenia) Enteropathy	614162
ACT1 deficiency	(c) Mutations in ACT1, also called TRAF3IP2 (607043)	AR	T cells, fibroblasts	Fibroblasts fail to respond to IL-17A and IL-17 F, and their T cells to IL-17E	CMC Blepharitis, Folliculitis and macroGLOSSIA	615527
8. TLR signaling pathway deficiency IRAK-4 deficiency	Mutations of IRAK4, a component of TLR- and IL-1R-signaling pathway 606883	AR	Lymphocytes + Granulocytes + Monocytes	TIR-IRAK signaling pathway	Bacterial infections (pyogens)	607676
MyD88 deficiency	Mutations of MYD88, a component of the TLR and IL-1R signaling pathway 602170	AR	Lymphocytes + Granulocytes + Monocytes	TIR-MyD88 signaling pathway	Bacterial infections (pyogens)	612260
9. Isolated congenital asplenia (ICA)	Mutations in RPSA 150370	AD	Spleen	RPSA encodes ribosomal protein SA, a component of the small subunit of the ribosome	Bacteremia (encapsulated bacteria) No spleen	271400
8. Trypanosomiasis	Mutations in APOL-1 603743	AD			Trypanosomiasis	Not yet assigned

Total no. of gene defects in Table 6: 32
New genes added: RORC, IRF7, IL17RC, APOL-1

XL X-linked inheritance, AR autosomal recessive inheritance, AD autosomal dominant inheritance, NF-κB nuclear factor Kappa B, TIR Toll and Interleukin 1 Receptor, IFN interferon, HVP human papilloma virus, TLR Toll-like receptor, IL interleukin
Table 7 Autoinflammatory disorders

Disease	Genetic defect/ Presumed pathogenesis	Inheritance	Affected cells	Functional defects	Associated Features	OMIM number
1. Defects effecting the inflammasome						
Familial Mediterranean Fever	Mutations of MEFV (lead to gain of pyrin function, resulting in inappropriate IL-1β release)	AR, AD	Mature granulocytes, cytokine-activated monocytes.	Decreased production of pyrin permits ASC-induced IL-1 processing and inflammation following subclinical serosal injury; macrophage apoptosis decreased.	Recurrent fever, serositis and inflammation responsive to colchicine. Predisposes to vasculitis and inflammatory bowel disease.	249100, 134610
Mevalonate kinase deficiency (Hyper IgD syndrome)	Mutations of MVK (lead to a block in the mevalonate pathway; interleukin-1β mediates the inflammatory phenotype)	AR			Periodic fever and leukocytosis with high IgD levels	260920
Muckle-Wells syndrome	Mutations of NLRP3 (also called NALP3 CIAS1 or PYPAF1) (lead to constitutive activation of the NLRP3 inflammasome)	AD	PMNs, monocytes	Defect in cryopyrin, involved in leukocyte apoptosis and NFkB signaling and IL-1 processing	Urticaria, SNHL, amyloidosis.	191900
Familial cold autoinflammatory syndrome 1	Mutations of NLRP3 (See above)	AD	PMNs, monocytes	same as above	Non-pruritic urticaria, arthritis, chills, fever and leukocytosis after cold exposure.	120100, 611762
Familial cold autoinflammatory syndrome 2	Mutations of NLRP12	AD	PMNs, monocytes	same as above	Non-pruritic urticaria, arthritis, chills, fever and leukocytosis after cold exposure.	607115
Neonatal onset multisystem inflammatory disease (NOMID) or chronic infantile neurologic cutaneous and articular syndrome (CINCA)	Mutations of NLRP3 CIAS1 (See above)	AD	PMNs, chondrocytes	same as above	Neonatal onset rash, chronic meningitis, and arthritis with fever and inflammation.	606416
NLRC4-MAS (macrophage activating syndrome)	Mutation in NLRC4 (see functional defect)	AD	PMNs monocytes macrophages	Gain of function mutation in NLRC4 results in elevated secretion of IL-1β and IL-18 as well as macrophage activation	Severe enterocolitis and macrophage activation syndrome.	616050, 616115
Familial cold autoinflammatory syndrome 4	Mutation in PLCG2 (see functional defect)	AD	B cells, NK, Mast cells	Mutations cause activation of IL-1 pathways	Cold urticaria, hypogammaglobulinemia.	614468
APLAID (PLCγ2 associated antibody deficiency and immune dysregulation)	Mutation in PLCG2 (see functional defect)	AD	B cells, NK, mast cells	The mutation leads to activation of the NLRP3 inflammasome (not provoked by cold temperature)	Blistering skin lesion, pulmonary and bowel disease.	614878
Familial cold autoinflammatory syndrome 3	Mutation (c2120C>A) in PLCG2 (see functional defect)	AD				612680
2. Non inflammasome-related conditions	Mutations of TNFRSF1A (resulting in increased TNF inflammatory signaling)	AD	PMNs, monocytes	Mutations of 554D TNF receptor leading to intracellular receptor retention or diminished soluble cytokine receptor available to bind TNF.	Recurrent fever, serositis, rash, and ocular or joint inflammation.	604416
Pyogenic sterile arthritis, pyodermagangrenosum, acne (PAPA) syndrome	Mutations of PSTPIP1 (also called C2BP1) (affects both pyrin and upregulated in activated T-cells)	AD	Hematopoietic tissues, upregulated in activated T-cells	Disordered actin reorganization leading to compromised	Destructive arthritis, inflammatory skin rash, myositis.	607920
Disease	Genetic defect/ Presumed pathogenesis	Inheritance	Affected cells	Functional defects	Associated Features	Phenotype OMIM number
---------	--------------------------------------	-------------	----------------	-------------------	---------------------	------------------------
Blau syndrome	Protein tyrosine phosphatase to regulate innate and adaptive immune responses	AD	Monocytes	Mutations in nucleotide binding site of CARD15, possibly disrupting interactions with lipopolysaccharides and NF-κB signaling	Uveitis, granulomatous synovitis, amyloidosis, and focal cranial neuropathies, 30% develop Crohn’s disease	186580
ADAM17 deletion	Mutation in ADAM17 (leads to tumor necrosis factor α converting enzyme deficiency)	AR	Leukocytes and epithelial cells	Defective TNFα production	Early onset diarrhea and skin lesions	614328
Chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anemia (Majed syndrome)	Mutations of LPN2 (increased expression of the proinflammatory genes)	AR	Neutrophils, bone marrow cells	undefined	Chronic recurrent multifocal osteomyelitis, transfusion-dependent anemia, cutaneous inflammatory disorders	609628
DRA (Deficiency of the Interleukin 1 Receptor Antagonist)	Mutations of IL1RN (see functional defect)	AR	PMNs, Monocytes	Mutations in the IL1 receptor antagonist allow unopposed action of Interleukin 1	Neonatal onset of sterile multifocal osteomyelitis, periodontitis and pustulosis.	612852
DITRA – Deficiency of IL-36 receptor antagonist	Mutation in IL36RN (see functional defect)	AR	Keratinocyte Leukocytes	Mutations in IL-36RN lead to increase IL-8 production	Pustular Psoriasis	614204
SLC29A3 mutation	Mutation in SLC29A3	AR	Leukocyte, bone cells	Hyperpigmentation hypertrichosis	Dystrophy, panniculitis	602723
CAMPS (CARD14 mediated psoriasis)	Mutation in CARD14 (see functional defect)	AD	Mainly in Keratinocyte	Mutations in CARD14 activate the NF-κB pathway and production of IL-8	Bone degeneration in jaws	118400
Cherubism	Mutation in SHPB2 (see functional defect)	AD	Stroma cells, bone cells	Hyperactivated macrophage and increase NF-κB	Dystrophy, panniculitis	256040
CANDLE (chronic atypical neutrophilic dermatitis with lipodystrophy)	Mutation in PSMB8, (see functional defect)	AR	Keratinocyte, B cell adipsose cells	Mutations cause increased IL-6 production	Autoimmune inflammatory arthritis and interstitial lung disease with Th17 dysregulation and autoantibody production	601924

Total no. of gene defects in Table 7: 17
New genes added: NLRC4, ADAM17, COPA

Notes: Autoinflammatory diseases are clinical disorders marked by abnormally increased inflammation, mediated predominantly by the cells and molecules of the innate immune system, with a significant host predisposition. While the genetic defect of one of the most common autoinflammatory conditions, PFAPA, is not known, recent studies suggest that it is associated with activation of IL-1 pathway and response to IL-1β antagonists.

Muckle-Wells syndrome, familial cold autoinflammatory syndrome and neonatal onset multisystem inflammatory disease (NOMID) which is also called chronic infantile neurologic cutaneous and articular syndrome (CINCA) are caused by similar mutations in CIAS1/NLRP3 mutations. The disease phenotype in any individual appears to depend on modifying effects of other genes and environmental factors.

AR autosomal recessive inheritance, AD autosomal dominant inheritance, PMN polymorphonuclear cells, ASC apoptosis-associated speck-like protein with a caspase recruitment domain, CARD caspase recruitment domain, CD2BP1 CD2 binding protein-1, PSTPIP1 Prolin/threonine phosphatase-interacting protein 1, SNHL sensorineural hearing loss, CIAS1 cold-induced autoinflammatory syndrome 1
Disease	Genetic defect; presumed pathogenesis	Inheritance	Laboratory features	Associated Features	Phenotype OMIM number	
1) Integral complement cascade component deficiencies						
C1q deficiency	C1QA, Classical complement pathway component	AR	Absent CH50 hemolytic activity, Defective activation of the classical pathway	SLE, infections with encapsulated organisms	613652	
C1q deficiency	C1QB: Classical complement pathway component	AR	Absent CH50 hemolytic activity, Defective activation of the classical pathway	SLE, infections with encapsulated organisms	613652	
C1q deficiency	C1QC: Classical complement pathway component	AR	Absent CH50 hemolytic activity, Defective activation of the classical pathway	SLE, infections with encapsulated organisms	613652	
C1r deficiency	C1R: Classical complement pathway component	AR	Absent CH50 hemolytic activity, Defective activation of the classical pathway	SLE, infections with encapsulated organisms	216950	
C1s deficiency	C1S: Classical complement pathway component	AR	Absent CH50 hemolytic activity, Defective activation of the classical pathway	SLE, infections with encapsulated organisms	613783	
C4 deficiency	C4A: Classical complement pathway components	AR	Absent CH50 and AH50 hemolytic activity	Defective opsonization Defective humoral immune response	Infections; glomerulonephritis; Atypical Hemolytic-uremic syndrome with gain-of-function mutations.	613779
C4 deficiency	C4B: Classical complement pathway components	AR	Absent CH50 hemolytic activity, Defective activation of the classical pathway	Complete deficiency requires biallelic mutations/deletions/conversions of both C4A and C4B	SLE, infections with encapsulated organisms	614379
C2 deficiency	C2: Classical complement pathway component	AR	Absent CH50 hemolytic activity, Defective activation of the classical pathway	SLE, infections with encapsulated organisms, atherosclerosis	613927	
C3 deficiency	C3: Central complement component LOF	AR	Absent CH50 and AH50 hemolytic activity Defective opsonization Defective humoral immune response		Atypical Hemolytic-uremic syndrome with gain-of-function mutations.	613779
C3 GOF	C3: Central complement component	Gain-of-function AD	Increased activation of complement		Atypical Hemolytic-uremic syndrome	612925
C5 deficiency	C5: Terminal complement component	AR	Absent CH50 and AH50 hemolytic activity Defective bactericidal activity	Neisserial infections	609536	
C6 deficiency	C6: Terminal complement component	AR	Absent CH50 and AH50 hemolytic activity Defective bactericidal activity	Neisserial infections	612446	
C7 deficiency	C7: Terminal complement component	AR	Absent CH50 and AH50 hemolytic activity Defective bactericidal activity	Neisserial infections	610102	
C8 deficiency	C8A: Terminal complement component	AR	Absent CH50 and AH50 hemolytic activity Defective bactericidal activity	Neisserial infections	613790	
C8y deficiency	C8G: Terminal complement component	AR	Absent CH50 and AH50 hemolytic activity Defective bactericidal activity	Neisserial infections	613789	
C8b deficiency	C8B: Terminal complement component	AR	Absent CH50 and AH50 hemolytic activity Defective bactericidal activity	Neisserial infections	613825	
C9 deficiency	C9: Terminal complement component	AR	Reduced CH50 and AP50 hemolytic activity Deficient bactericidal activity	Mild susceptibility to Neisserial infections	613825	
Disease	Genetic defect; presumed pathogenesis	Inheritance	Laboratory features	Associated Features	Phenotype OMIM number	
--	---------------------------------------	-------------	---	--	------------------------	
MASP2 deficiency	MASP2: Cleavage of C4	AR	Deficient activation of the lectin activation pathway	Pyogenic infections; Inflammatory lung disease, autoimmunity	613791	
Ficolin 3 deficiency	FCN3: Activates the classical	AR	Absence of complement activation by the Ficolin 3 pathway.	Respiratory infections, abscesses	613860	
	complement pathway					
2) Complement Regulatory defects						
C1 inhibitor deficiency	SERPING1: regulation of kinins and	AD	Spontaneous activation of the complement pathway with consumption of C4/C2	Hereditary angioedema	106100	
	complement activation		Spontaneous activation of the contact system with generation of bradykinin from			
			high molecular weight kininogen			
			Gain-of-function mutation with increased spontaneous AH50			
Factor B	CFB: Activation of the alternative	AD	Absent AH50 hemolytic activity	Neisserial infections	613912	
	complement pathway					
Factor D deficiency	CFD: Regulation of the alternative	AR	Absent AH50 hemolytic activity	Neisserial infections	612060	
	complement pathway					
Properdin deficiency	CFP: Regulation of the alternative	XL	Absent AH50 hemolytic activity	Neisserial infections	612060	
	complement pathway					
Factor I deficiency	CFI: Regulation of the alternative	AR	Spontaneous activation of the alternative complement pathway with consumption of C3	Infections, Neisserial infections, aHUS, preeclampsia	610984	
	complement pathway		Spontaneous activation of the alternative complement pathway with consumption of C3	Infections, Neisserial infections, aHUS, preeclampsia	612923	
Factor H deficiency	CFH: Regulation of the alternative	AR/AD	Normal CH50, AH50, autoantibodies to Factor H. Linked deletions of one or more CFHR genes leads to susceptibility aHUS	aHUS, Neisserial infections	609814, 235400	
Factor H –related protein deficiencies	CFHR1-5: Bind C3b	AR/AD	Normal CH50, AH50, autoantibodies to Factor H. Linked deletions of one or more CFHR genes leads to susceptibility aHUS	aHUS, Neisserial infections	235400	
	134370					
	600889					
	605336					
	605337					
	608593					
Thrombomodulin	THBD: Regulates complement and	AD	Normal CH50, AH50	aHUS	612926	
	coagulant activation					
Complement Receptor 3 (CR3) deficiency	ITGAM	AR	CR3 expression is lost in LAD1. See LAD1 in Table 5	Infections	609939	
Membrane Cofactor Protein (CD46) deficiency	CD46: Dissociates C3b and C4b	AD	Inhibitor of complement alternate pathway, decreased C3b binding	aHUS, infections, preeclampsia	612922	
Membrane Attack Complex Inhibitor (CD59)	C59: Regulates the membrane attack	AR	Erythrocytes highly susceptible to complement-mediated lysis	Hemolytic anemia, polyneuropathy	612300	
	complex formation					

Total no. of genes Tables 8 and 9: 30
No new genes added to the 2015 classification

XL X-linked inheritance, AR autosomal recessive inheritance, AD autosomal dominant inheritance, MAC membrane attack complex, SLE systemic lupus erythematosus, MASP MBP associated serine protease 2
Table 9 Phenocopies of PID

Disease	Genetic defect/presumed pathogenesis	Circulating T cells	Circulating B cells	Serum Ig	Associated features/similar PID
Associated with somatic mutations					
Autoimmune lymphoproliferative syndrome (ALPS–SFAS)	Somatic mutation in TNFRSF6	Increased CD4–CD8–double negative (DN) T alpha/beta cells	Normal, but increased number of CD5+ B cells	Normal or increased	Splenomegaly, lymphadenopathy, autoimmune cytopenias/ALPS–FAS (=ALPS type I)
RAS-associated autoimmune leukoproliferative disease (RALD)	Somatic mutation in KRAS (gain-of-function)	Normal	B cell lymphocytosis	Normal or increased	Splenomegaly, lymphadenopathy, autoimmune cytopenias, granulocytosis, monocytosis/ALPS-like
RAS-associated autoimmune leukoproliferative disease (RALD)	Somatic mutation in NRAS (gain-of-function)	Increased CD4–CD8–double negative (DN) T alpha/beta cells	Lymphocytosis		Urticaria-like rash, arthropathy, neurological symptoms
Cryopyrinopathy, (Muckle-Wells /CINCA/NOMID-like syndrome)	Somatic mutation in NLRP3	Normal	Normal	Normal	
Associated with autoantibodies					
Chronic mucocutaneous candidiasis (isolated or with APECED syndrome)	Germline mutation in AIRE AutoAb to IL-17 and/or IL-22	Normal	Normal	Normal	Endocrinopathy, chronic mucocutaneous candidiasis/CMC
Adult-onset immunodeficiency	AutoAb to IFN gamma	Decreased naive T cells	Normal	Normal	Mycobacterial, fungal, Salmonella, VZV infections/MSMD, or CID
Recurrent skin infection	AutoAb to IL-6	Normal	Normal	Normal	Staphylococcal infections/STAT3 deficiency
Pulmonary alveolar proteinosis	AutoAb to GM-CSF	Normal	Normal	Normal	Pulmonary alveolar proteinosis, cryptococcal meningitis/CSF2RA deficiency
Acquired angioedema	AutoAb to CI inhibitor	Normal	Normal	Normal	Angioedema/C1 INH deficiency (hereditary angioedema)
Atypical Hemolytic Uremic Syndrome	AutoAb to Complement Factor H	Normal	Normal	Normal	aHUS Spontaneous activation of the alternative complement pathway

J Clin Immunol (2015) 35:696–726
