SIRT3, A Mitochondrial Sirtuin Deacetylase, Regulates Mitochondrial Function And Thermogenesis In Brown Adipocytes

Tong Shi, Fei Wang, Emily Stieren, Qiang Tong*

United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030

Running Title: SIRT3 Regulates Mitochondrial Function and Adaptive Thermogenesis

*To whom correspondence should be addressed: Qiang Tong, Children’s Nutrition Research Center, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030, Tel: 713-798-6716, Fax: 713-798-7171, E-mail: qtong@bcm.tmc.edu

SIRT3 is one of the seven mammalian sirtuin homologues of the yeast Sir2 gene, which mediates the effect of caloric restriction on life span extension in yeast and C.elegans. Since adipose tissue is essential in energy homeostasis and also plays a role in life span determination, we decided to investigate the function of sirtuin members in fat. We report here that murine SIRT3 is expressed in brown adipose tissue and is localized on the mitochondria inner membrane. Caloric restriction activates SIRT3 expression in both white and brown adipose. Additionally, cold exposure up regulates SIRT3 expression in brown fat, while elevated climate temperature reduces the expression. Enforced expression of SIRT3 in the HIB1B brown adipocytes enhances the expression of the uncoupling protein PGC-1α, UCP1, and a series of mitochondria related genes. Both ADP-ribosyltransferase and deacetylase activities of SIRT3 are required for this action. Furthermore, the SIRT3 deacetylase mutant exhibits a dominant negative effect by inhibiting UCP1 expression. This inhibitive effect can be abolished by the co-expression of PGC-1α, indicating a major role of PGC-1α in the SIRT3 action. In addition, SIRT3 stimulates CREB phosphorylation, which reportedly activates PGC-1α promoter directly. Functionally, sustained expression of SIRT3 decreases membrane potential and reactive oxygen species (ROS) production, while increasing cellular respiration. Finally, SIRT3, along with genes related to mitochondrial function, is down regulated in the brown adipose tissue of several genetically obese mice. In summary, our results demonstrate that SIRT3 activates mitochondria functions and plays an important role in adaptive thermogenesis in brown adipose.

Sir2 and related members of the sirtuin gene family, is highly conserved in both prokaryotes and eukaryotes (1). The yeast Sir2 encodes a nuclear protein which is mainly localized in nucleoli and telomeric foci (2). In yeast, Sir2 maintains the silencing of the heterochromatin at the mating-type loci (3), telomeres (4), and rRNA-encoding DNA repeats (5). Furthermore, Sir2 is also involved in the repair of DNA double-strand breaks (6), cell cycle progression through anaphase, the meiotic chromosome segregation checkpoint (7), and the suppression of sister-chromatid recombination by recruiting cohesins (8). Most importantly, though, Sir2 mediates the effect of caloric restriction on life span extension (9). An increased dosage of the Sir2 gene prolongs life span in yeast (10), C.elegans (11), and protozoan parasite Leishmania (12), whereas its mutation would shorten lifespan. Sir2 proteins possess NAD-dependent ribosylation (13) and protein deacetylase activities (14-16). Blocking NAD synthesis in yeast abolishes the life span extension of caloric restriction (17). On the other hand, resveratrol, a natural compound present in grapes and wine, has recently been shown as an activator of sirtuins to lengthen lifespan in yeast (18), C.elegans, and fruit fly (19).

There are seven mammalian Sir2 homologues (20), all of which maintain the catalytic core domain of Sir2. NAD-dependent
deacetylase activity has been demonstrated for mammalian SIRT1, SIRT2, and SIRT3 proteins. The presence of NAD-dependent ADP-ribosylase and protein deacetylase activities of sirtuin proteins suggests that they may function as sensors of metabolic or oxidative states of cells and regulate cellular functions accordingly. Mammalian SIRT1, which resides in the nucleus, is the most closely related to yeast Sir2. SIRT1 represses p53-dependent and forkhead-dependent apoptosis by binding and deacetylating p53 (21,22), NF-κB (23), forkhead transcription factors, respectively (24-26) and histones (27). In contrast, SIRT1 deficient cells are p53 hyperacetylated and have elevated p53-dependent apoptosis, while SIRT1 knockout mice exhibit developmental defects (28). SIRT1 also suppresses muscle differentiation in response to the redox state (29). SIRT2, on the other hand, is a cytoplasmic protein, which co-localizes with microtubules and deacetylates α-tubulins (30). SIRT2 abundance increases during mitosis, suggesting that the protein plays a role in cell cycle regulation (31). Unlike SIRT2, human SIRT3 is a mitochondria protein, with its N-terminal 25 amino acid residues responsible for its mitochondrial localization (32,33). Synthesized as an enzymatically inactive protein, SIRT3 is activated by matrix processing peptidase (MPP) (33). Compared to human SIRT3, however, murine SIRT3 lacks the N-terminal 142 amino acid residues necessary for the mitochondria localization for the human version. Nevertheless, the murine SIRT3 was shown to maintain a para-nuclear localization, consistent with a mitochondrial distribution pattern (34).

Similar to yeast Sir2, mammalian sirtuin genes may also mediate caloric restriction effects on metabolism. It has been recently reported that calorie restriction induces SIRT1 expression in fat and other tissues to promote mammalian cell survival (35). SIRT1 also suppresses adipocyte differentiation and activates fat mobilization (36). In agreement with this line of reasoning, mice lacking the insulin receptor in their adipose tissues live longer (37). Because adipose tissue, an essential player in energy homeostasis, responds to caloric restriction (38), we decided to focus our investigation on sirtuin function in the mammalian adipose tissue.

Adipose tissue not only plays a part in energy storage, but it is also a critical endocrine organ, producing hormones such as leptin and adiponectin. There are two types of adipose, white adipose tissue (WAT) and brown adipose tissue (BAT). White adipocytes store energy as triglycerides in large lipid droplets and mobilize the lipid in support of the energy need of the body. Brown adipocytes are morphologically different from white adipocytes as they harbor abundant mitochondria and store lipid in multilocular lipid droplets. The physiological role of BAT also differs from that of WAT as it serves primarily to dissipate energy in the form of heat. The uncoupling protein UCP1, which resides on the mitochondrial inner membrane, mediates this process of adaptive thermogenesis. Because UCP1 induces proton leakage, it generates heat instead of ATP. As a result, UCP1 knockout mice exhibit cold sensitivity (39), whereas transgenic mice, which express UCP1 in their white adipose tissues, resist obesity (40).

In this report, we investigate the expression of mouse sirtuin family members in adipose tissue. We then focus our studies on SIRT3, which displays a high expression in brown fat but maintains a low level in white fat. Moreover, the expression of SIRT3 in BAT responds to the changes of environmental temperature and dietary restriction. Additionally, we determined that murine SIRT3 proteins localize in the mitochondrial inner membrane, and the expression of SIRT3 correlates with the expressions of genes related to mitochondrial function, including UCP1, through the activation of PGC-1α. SIRT3 also influences mitochondrial function by reducing membrane potential and ROS production and by increasing oxygen consumption.

Materials and Methods

Animals and caloric restriction

C57BL/6 male mice were used for the experiments. For caloric restriction, starting
from 8 weeks of age, mice were singly caged. The ad libitum (AL) mice were fed NIH-31 standard feed (Harlan Teklad) ad libitum, while the caloric restricted (CR) mice were fed with NIH-31/NIA fortified diet (Harlan Teklad) with a daily food allotment at 90% of the amount eaten by the AL mice at the first week, then 70% at the second and third week. From the fourth week, daily food allotment was kept at 60% for the CR mice. Three months after the onset of caloric restriction, tissues were harvested to examine SIRT3 gene expression by Northern blot analysis.

Cell culture and antibodies

HIB-1B preadipocytes, NIH3T3, and BOSC23 cells were cultured in Dulbecco’s modified Eagle’s culture medium (DMEM), containing 10% bovine calf serum. For HIB1B differentiation, at confluence, cells were incubated in DMEM with 10% cosmic calf serum (CCS) (HyClone), supplemented with 5\(\mu\)g/mL insulin (Sigma), 0.5mM isobutylmethylxanthine (IBMX) (Sigma), 1\(\mu\)M dexamethasone (Sigma), and 1nM triiodothyronine (T3) (Sigma) for 3 days. They were then refed every 2 days with 10% CCS in DMEM, containing only insulin and T3, at above mentioned concentrations. On the eighth day of differentiation, cells were stimulated with 1\(\mu\)M isoproterenol (Sigma) for 6 hours prior to harvest. The antibodies used for Western blot analysis included anti-FLAG (M2, Sigma), anti-cytochrome c (clone 7H8.2C12, BD Pharmingen), and anti-cytochrome c oxidase subunit IV (clone 20E8-C12, Molecular Probes). Anti CREB antibody and anti phosphor-CREB (Ser133) antibody were from Cell Signaling.

Plasmid construction

The murine SIRT3 cDNA in the pSport-CMV vector was obtained from Open Biosystem. It was excised with EcoR1 and XhoI and ligated into the EcoRI and SalI sites of pBabe-puro to generate pBabe-mSIRT3. For the construction of mSIRT3-FLAG, full-length mSIRT3 with a flag-tagged C terminus was generated by PCR using the following primers 5’-GCAGTGGGTGTCATG-3’ and 5’-ATACCTTGTCATCGTCTTGTAGTC TCTGTCTGTCCATCCAG-3’. The PCR fragment was cloned into pCR-Blunt II-TOPO (Invitrogen), and then excised out with HindIII and XhoI, and ligated into pCDNA3.1. Site-directed mutagenesis was performed based on a reported method (41). Amino acid residue Gly 11(G11A) or Asn 87 (N87A) of SIRT3 was substituted with Ala to disrupt the ADP-ribosyltransferase or the deacetylase activities, respectively. The primers for these two mutants are CATCAGCACACCCAAGTCCATCCCGGA CTTTAGATCC (G11A) and GCGGCTCTTACACAGGCAATCGACGG GCTTGAGA (N87A). The SIRT3 mutants were confirmed by sequencing and subcloned into the pBabe-puro vector (42).

Retroviral infection

For retro viral infection, pBabe-puro or pBabe-hygro constructs were used to transfect BOSC23 cells by calcium phosphate method. Two days after transfection, supernatants containing viral particles were harvested and used to infect HIB1B cells. The cells were then selected by puromycin (4 \(\mu\)g/ml) or hygromycin (200 \(\mu\)g/ml), respectively.

Northern Blot Analysis

Total RNA was isolated using TRIzol (Invitrogen) according to the manufacturer’s instructions. Approximately 10 \(\mu\)g of RNA was separated through 1% agarose-formaldehyde gel and transferred to a nylon membrane (Schleicher&Schuell Bioscience) in 20\(\times\)SSC. The membrane was hybridized overnight at 65\(^{\circ}\)C with a probe labeled with \(\alpha\)-\(^{32}\)P-dCTP (MP Biomedicals) by random-primed DNA labeling (Promega). The autoradiography was obtained by a Storm 860 Phosphorimager and Imagequant software (Molecular Dynamics).

Confocal microscopy

The mSIRT3-FLAG construct was used to transfect NIH3T3 cells, grown on coverslips, using Lipofectamine (Invitrogen) reagent. Forty-eight hours after transfection,
cells were incubated for 45 min with 100nM MitoTracker Orange (Molecular Probes) in DMEM at 37°C. Cells on coverslips were rinsed in PBS and then fixed in 3.7% formaldehyde/PBS for 30 min. After blocking with 10% goat serum, cells were incubated with the M2 anti-FLAG antibody (1:500, Sigma) and then with a goat anti mouse IgG antibody, conjugated with AlexaFluor 488 (1:500, Molecular Probes). The coverslips were mounted and observed under a laser scanning confocal microscope (Olympus Fluoview).

Preparation of mitochondria fractions
NIH3T3 cells, transfected with mSIRT3-FLAG, were harvested in an isotonic mitochondrial buffer (MB) (210mM mannitol, 70mM sucrose, 1mM EDTA, 10mM HEPES, pH 7.5), supplemented with protease inhibitors (PMSF 1mM, Leupeptin 50μg/ml), and then homogenized in a Dounce homogenizer (Wheaton) on ice. The suspension was centrifuged at 400g on a microcentrifuge (ThermoForma) at 4°C. This procedure was repeated twice, and supernatants from each step were combined and centrifuged at 10,000g at 4°C for 10 min to pellet mitochondria. The mitochondria were further fractionated by either alkaline or digitonin treatment. For digitonin treatment, 100μg of purified mitochondria were dissolved in 100μl of digitonin solution (1.2mg/ml). After a 25 min incubation on ice, the mixture was centrifuged at 10,000g for 10 min to generate mitoplasts, which consist of the inner membranes and the mitochondria matrix. The supernatant included the intermembranous space fraction and outer-membrane. For alkaline treatment, mitochondrial pellets were washed and resuspended in freshly prepared 0.1M sodium carbonate, pH11.5. The suspension was then incubated at 0°C for 30 min. Mitochondrial membranes and supernatant fractions were recovered by centrifugation at 100,000g for 30 min at 4°C. Trichloroacetate precipitation was used to concentrate the proteins in the supernatant. The pellet and the concentrated proteins were resuspended in SDS-PAGE sample buffer and separated by SDS-PAGE and then analyzed by Western blotting.

Measurement of respiration in whole cells
Oxygen consumption of HIB1B fibroblasts was measured by using a Clark-type oxygen electrode. Each sample was analyzed by incubating 2×10^6 cells with PBS solution in a magnetically stirred chamber, thermostated to 37°C. After recording the basal respiration, 500nM carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP) was added to the chamber to measure the maximum respiration, and oligomycin (2.5μg/ml) was added to determine the uncoupled respiration. The results are presented as means ± SD of three independent experiments.

Determination of mitochondrial membrane potential (∆Ψm)
The fluorescent probe 5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazole carbocyanide iodide (JC-1; Molecular Probe) was used to measure the ∆Ψm of HIB1B cells. Briefly, HIB1B cells (1×10^6) were harvested by trypsinization. After washing with PBS, cells were incubated with 10μg/ml JC-1 at 37°C for 15 min. Cells were then washed in PBS, and ten thousand cells were analyzed for each sample by flow cytometry, using Moflo Cell Sorter (DakoCytomation, DK). Data were presented as a ratio of relative red/green (aggregate/monomer) fluorescence intensity values. The results are presented as means ± SD of three independent experiments.

Measurement of ROS
ROS level was measured by using the probe 2’,7’-dichlorodihydrofluorescein diacetate (DCFHDA) (Sigma), which is intracellularly esterified and becomes a fluorescent product, 2’,7’-dichlorodihydrofluorescein (DCF), when oxidized (43) (44). HIB1B cells were trypsinized and washed once in PBS. Then the cells were incubated with 10μM DCFHDA for 10 min at 37°C. Ten thousand cells of each sample were then analyzed by flow cytometry.
The results are presented as means ± SD of three independent experiments.

Statistical analysis

Statistical significance was determined by the Student *t* test. Differences between groups were considered statistically significant if *P*<0.05.

Results

Mammalian sirtuins are expressed in adipose tissue — We first examined the expression pattern of seven mouse sirtuin members in various mouse tissues by Northern blot analysis. All seven mammalian sirtuin members are expressed in adipose tissues as well as a broad range of other tissues (Fig1A). Although SIRT2, SIRT4, and SIRT6 reside in both the white and brown adipose at comparable levels, SIRT1 and SIRT7 maintain a higher expression in white fat, while SIRT3 and SIRT5 are preferentially expressed in brown adipose versus white adipose. SIRT4, SIRT6, and SIRT7 display multiple mRNA species, probably due to alternative splicing.

SIRT3 expression in adipose is responsive to caloric restriction and environmental temperature — Among all the sirtuin members, SIRT3 exhibits an interesting expression pattern with a high expression in the brown adipose versus white adipose. It was known that Sir2 gene mediates caloric restriction in yeast and worms (9,17). Recently, it was reported that mammalian SIRT1 is activated by caloric restriction in white fat, liver, brain, and kidney (35). Therefore, we decided to determine whether SIRT3 expression in adipose tissue is altered by caloric restriction. SIRT3 mRNA level in both WAT and BAT is up regulated by three months of caloric restriction (Fig 1B). Since rodent brown adipose is responsible for cold-stimulated non-shivering thermogenesis, we also examined whether SIRT3 expression is regulated by cold exposure. As shown in Fig.1C, the RNA levels of both SIRT3 and UCP1 exhibit a similar pattern of increase in brown adipose during a twelve-hour period of cold exposure. When we subject mice to a thermoneutral temperature at 27.5°C for 16 hours, we found that SIRT3 expression was down regulated, compared to the mice kept at room temperature of 23°C (Fig 1D). This result raised the possibility that SIRT3 may play a role in regulating adaptive thermogenesis.

Murine SIRT3 protein is localized on the mitochondrial inner membrane — The human SIRT3 protein was shown to be located in the mitochondrial matrix (32,33), and the N-terminal 25 amino acid residues are critical for its mitochondrial localization (33). Since mouse SIRT3 lacks the N-terminal 142 amino acid residues of human SIRT3, the mitochondrial localization of mouse SIRT3 is in question. To determine the subcellular distribution of mouse SIRT3, it was expressed in a C-terminal FLAG-tagged form in the NIH-3T3 cells by transient transfection. The SIRT3-FLAG protein was detected by immunofluorescence and was observed using a laser scanning confocal microscope. As shown in Fig.2A, the subcellular distribution of FLAG-tagged mouse SIRT3 protein shares a similar distribution pattern as the mitochondria stained by the MitoTracker dye. This finding indicates that the majority of mouse SIRT3 proteins are situated in the mitochondria.

To more precisely define the exact localization of mouse SIRT3 in the mitochondria, mitochondria from NIH3T3 cells transiently transfected with SIRT3-FLAG, were isolated and incubated with digitonin, which ruptures the mitochondria outer membrane and releases soluble proteins from the intermembranous space. Immunoblotting against the interstitial protein cytochrome c, which appeared in the supernatant fraction, was used to confirm the rupture of the outer membrane by digitonin. (Fig 2B, left panel). The innermembrane protein cytochrome c oxidase subunit IV (COX IV) remained in the mitoplast fraction, unaffacted by the rupture of the outer mitochondrial membrane. The mouse SIRT3 proteins were detected in the mitoplast fraction, indicating that mouse SIRT3 reside on either the inner mitochondrial membrane or in the mitochondria matrix. To distinguish between these two possibilities, we treated
mitochondria with sodium carbonate under an alkaline condition. Under this treatment, soluble and intermembranous proteins were released into the supernatant after ultracentrifugation, while membranes with integral membrane proteins sedimented into a pellet. The murine SIRT3 proteins were found in the pellet (Fig 2B right panel), indicating that it associates with the inner membrane. Taken together, we concluded that murine SIRT3 proteins localize on the mitochondria inner membrane.

Constitutive expression of SIRT3 promotes the expression of mitochondria related genes — To investigate the role SIRT3 plays in brown adipocytes, we constitutively expressed mouse SIRT2 and SIRT3 in the HIB1B brown preadipocyte cell line using a retroviral system (42). After selection with puromycin, these cells were induced for differentiation for eight days and stimulated with isoproterenol for 6 hours before harvest. We found that in HIB1B brown adipocytes expressing SIRT2 and SIRT3, the expression of common adipocyte markers, such as adipsin and aP2, shows little difference compared to the vector control (Fig 3A), indicating that the expression of neither SIRT2 nor SIRT3 affects the general adipocyte differentiation process. However, the expression of SIRT3 but not SIRT2 up-regulates the expression of mitochondria uncoupling protein UCP1. Similarly, the expression of PGC-1α and other mitochondria related genes, such as cytochrome c oxidase subunit II and IV (COX II and COX IV) and ATP synthetase, are also activated specifically in the SIRT3 expressing cells.

Deacetylase and ADP-ribosyltransferase activities are required for SIRT3 action — Sirtuin proteins possess deacetylase and ADP-ribosyltransferase activities. To determine if either enzymatic activities are required for SIRT3 action in brown adipocytes, SIRT3 mutants with either defective deacetylase or ADP-ribosyltransferase activity were generated by site-directed mutagenesis. The amino acid residue Asn229 of human SIRT3 was demonstrated to be essential for the deacetylase activity (33). Accordingly, we generated an equivalent deacetylase mutant by substituting Asn87 of murine SIRT3 with alanine. Based on the work on SIRT1 (14), we also generated an ADP-ribosyltransferase mutant by substituting Gly11 of SIRT3 with alanine. These mutants were then constitutively expressed in HIB1B cells using the retroviral system. As shown in Fig 3B, while the G11A mutation eliminates the effect of SIRT3 on both UCP1 and PGC-1α expression, the N87A mutant of SIRT3 represses UCP1 and PGC-1α expression to a level even lower than that of the vector control, indicating a potential dominant-negative effect. This suggests that both the deacetylase and ADP-ribosylase activities of SIRT3 play a role in its regulation of UCP1 expression.

PGC-1α mediates the action of SIRT3 on UCP1 expression — It was previously reported that PGC-1α activates UCP1 in response to cold exposure (45) and also promotes mitochondria biogenesis (46). We next investigated if PGC-1α mediates the action of SIRT3 on UCP1 expression by utilizing the dominant-negative N87A deacetylase mutant of SIRT3, which decreases UCP1 and PGC-1α expression. When we co-expressed PGC-1α together with the SIRT3 N87A mutant in HIB1B cells, the expression of UCP1 is restored (Fig 3C), suggesting that PGC-1α does mediate SIRT3 action on UCP1 expression.

Constitutive expression of SIRT3 promotes activation of CREB — We then tried to elucidate the signaling pathway employed by SIRT3 to activate PGC-1α. It has been reported that CREB can activate PGC-1α gene expression (47,48), and that p38 MAPK can directly phosphorylate and stabilize PGC-1α (49). We examined CREB and p38 phosphorylation, which indicates their activation, in HIB1B cells expressing SIRT3 and its mutants by immunoblot analysis. While there is no evidence of increase of p38 phosphorylation in SIRT3 expressed cells (data not shown), SIRT3 enhances CREB phosphorylation compared to control (Fig 3D). The G11A ADP-ribosytransferase mutant abolishes this effect partially and the N87A deacetylase mutant further suppresses CREB
phosphorylation (Fig 3D). The results indicate that SIRT3 activates PGC-1α through CREB but not p38 MAPK.

Constitutive expression of SIRT3 increases oxygen consumption — Since SIRT3 promotes the expression of PGC-1α, which in turn activates mitochondria respiration (46), we measured oxygen consumption of SIRT3 expressing cells. As shown in Figure 4A, the basal oxygen consumption of the SIRT3-expressing HIB1B cell is 80% higher than the level of control cells. The chemical uncoupler FCCP can completely uncouple mitochondria and raise the respiratory capacity to the maximal level. Under FCCP stimulation, oxygen consumption in the SIRT3 expressing cells is still about 70% higher than that of the control cells, indicating that these cells have a higher mitochondrial electron transport activity. Oligomycin inhibits F1/F0 ATP synthetase to suppress all oxidative phosphorylation-associated respiration. As a result, only the uncoupling mediates the residual respiration. SIRT3 expressing cells maintain 120% higher oxygen consumption than the control consumption under the oligomycin treatment, reflecting an increase in uncoupling capacity. Combining these results, we can conclude that constitutive expression of SIRT3 stimulates both mitochondria electron transport and uncoupling.

Constitutive expression of SIRT3 reduces mitochondrial membrane potential and ROS production — Since the uncoupling protein reduces mitochondrial membrane potential and SIRT3 increases UCP-1 expression, we expected a decrease of mitochondrial membrane potential in SIRT3 expressing cells. The mitochondria membrane potentials were analyzed by JC-1 staining of cells followed by flow cytometry. JC-1 exists as a monomer when mitochondrial membrane potential is low and emits a green fluorescence. In contrast, it aggregates at high mitochondrial membrane potential to produce a red fluorescence. Thus, a ratio of red/green fluorescence reflects the level of mitochondrial membrane potential. In differentiated HIB1B cells, SIRT3 expression significantly reduces mitochondrial membrane potential (Fig 4B). This effect, however, is fully abolished by the N87A mutation, which disrupts the deacetylase activity of SIRT3, while the mutation of the ADP-ribosyltransferase activity partially mitigates the action of SIRT3. The ROS levels in those cells were also determined by staining the cells with 2ʹ,7ʹ-dichlorodihydrofluorescein diacetate (DCFHDA), followed by flow cytometry analysis. As a result, we found that the ROS production decreases in SIRT3 expressing HIB1B cells (Fig 4C), and that SIRT3 requires both the deacetylase and the ADP-ribosyltransferase activities for this action.

The expression of SIRT3 and mitochondria related genes are reduced in the brown adipose tissue of obese mice — Since SIRT3 activates PGC-1α and UCP1 expression and increases respiration, the decrease of SIRT3 functions may reduce thermogenesis and energy expenditure. Because brown adipose tissue thermogenesis is defective in obese mice (50,51), and obesity results from a combined effect of increasing energy intake and/or reducing energy expenditure, we decided to analyze if SIRT3 expression has any correlation to obesity. Four different mouse models of genetic obesity (ob/ob, db/db, tub/tub and KK) were used. The expression of SIRT3 was determined by Northern blot analysis, which manifests the down regulation of SIRT3 expression in the brown adipose of obese mice, compared to their lean wild-type littermates (Fig 5). Furthermore, the expressions of UCP1 and several mitochondria related genes, such as COXII and ATP synthetase, are also decreased in the brown adipose of obese mice in coordination to the down-regulation of SIRT3. The RNA level of SIRT3 in the white adipose does not change in obese mice (data not shown).

Discussion

Sirtuin mediates the effect of caloric restriction on life span extension in yeast and C.elegans. In mammals, caloric restriction not only delays aging but also improves metabolism. Whether or not mammalian
sirtuin homologues play a role in aging or metabolic regulation is an important question. We focused our research on sirtuin function in the mammalian adipose tissue. In this study, we revealed that all seven mammalian sirtuin members are expressed in adipose tissues. While most of them reside in both white and brown adipose, SIRT3 is preferentially expressed in brown versus white adipose. The expression of SIRT3 in adipose is physiologically regulated. Caloric restriction activates SIRT3 expression in both white and brown adipose. In addition, we demonstrated that SIRT3 expression in brown adipose tissue is elevated in response to cold, while reduced in a thermo-neutral temperature. Constitutive expression of SIRT3 in brown adipocytes not only increases the expression of genes related to mitochondria function and thermogenesis, such as PGC-1α and UCP1, but also functionally reduces mitochondrial membrane potential and increases oxygen consumption. This action appears to be relatively specific for SIRT3, since SIRT2 has no such effect when expressed in the HIB1B cells. In addition, the dominant-negative SIRT3 down regulates the expression of PGC-1α and UCP1. Moreover, reduced expressions of SIRT3 and related mitochondrial genes in brown adipose correlate with obesity, consistent with previous findings that demonstrate the defectiveness of genetically obese mice in cold and diet-induced adaptive thermogenesis (50,51). The reduced thermogenesis may contribute to the development of obesity in those mice.

We further demonstrated that murine SIRT3 proteins mainly situate on the mitochondrial inner membrane. However, it was reported that the human SIRT3 protein is localized on both the inner membrane and in the matrix (33). The difference might be explained by the facts that murine SIRT3 is shorter than the human version and different cells were used to investigate human or murine SIRT3 sub-mitochondrial localization. Murine SIRT3 predominantly resides on the inner membrane. It was demonstrated that human SIRT3 protein is in an enzymatically inactive state until it is processed by MMP (33). It is not clear if the same is true in mice. It is also possible that the murine SIRT3 protein may be processed and released into the mitochondrial matrix under particular physiological conditions.

The intriguing question is, with its mitochondria localization, how does SIRT3 activate nuclear genes such as PGC-1α? It was previously demonstrated that CREB stimulates the expression of PGC-1α by binding to its promoter, and that p38MAPK activates PGC-1α through direct phosphorylation of PGC-1α. Yet, our results reveal that SIRT3 is not able to activate p38MAPK but is able to activate CREB phosphorylation. However, many signaling pathways, such as the cAMP-PKA pathway (52), can activate CREB. The exact nature of the pathway that SIRT3 protein utilizes to activate CREB from the mitochondria is under investigation at this moment.

As a critical regulator of brown adipocyte thermogenesis (45) and mitochondria biogenesis (46), PGC-1α not only induces the expression of UCP1 but also increases oxygen consumption by functioning as a co-activator of transcription factors, such as the nuclear hormone receptor PPARγ and the nuclear respiration factor NRF-1 (46). Since the reduction of UCP1 expression under the dominant negative SIRT3 can be rescued by the co-expression of PGC-1α, we demonstrate that SIRT3 affects UCP1 expression through PGC-1α. The effects of SIRT3 on mitochondrial membrane potential and ROS production can be explained by the activation of UCP1 by SIRT3, since it was previously demonstrated that uncoupling proteins cause the reductions of both the membrane potential and ROS level (53,54). It is also possible that SIRT3 protein on the mitochondrial inner membrane affects mitochondrial respiration, membrane potential, and ROS generation directly, although we failed to detect a direct protein-protein interaction between SIRT3 and UCP1 using a co-immunoprecipitation method (data not shown).

The fact that SIRT3 is a mitochondria inner membrane protein and affects mitochondria uncoupling and respiration
suggests a possible link between SIRT3 and metabolic regulation. Dysfunction of mitochondria is linked with diabetes and insulin resistance. Recent studies associated the reduction of muscle mitochondrial oxidative phosphorylation activity to insulin resistance in young (55) and aged patients (56). Moreover, in the muscle of diabetic patients, the expression of PGC-1α related oxidative phosphorylation genes is decreased (57,58). Since SIRT3 is expressed in muscle and liver, the question of whether SIRT3 regulates mitochondria function or plays any role in insulin resistance in those tissues awaits further experimental exploration.

Mitochondria also play a key role in caloric restriction and aging. It was demonstrated that caloric restriction lengthens yeast life span and increases mitochondrial respiration (9), although studies on C.elegans show that suppression of mitochondria function prolongs life (59,60). A recent finding indicates that long-lived mice tend to have higher metabolic rate, higher mitochondria uncoupling, and increased oxygen consumption (61). The mitochondria are the major sites for reactive oxygen species (ROS) production, which causes oxidative damage. Oxidative stress is closely linked with aging and life span (62). Caloric restriction reduces the production of ROS (63) and oxidative damage (64,65). As our results reveal the effect of SIRT3 on mitochondria function and ROS production in brown adipose, we conjecture that SIRT3 may also exert a similar effect in other tissues, such as the brain, liver, and kidney, in which it is expressed. SIRT3 may therefore function to reduce free radicals and delay aging. Moreover, genetic variations of human SIRT3 gene have been linked to lifespan in humans (66).

Overall, we have provided evidence to show that one sirtuin member, SIRT3, is not only expressed in adipose tissue in a physiologically relevant fashion but also regulates adaptive thermogenesis by increasing mitochondrial respiration. Since SIRT3 also reduces free radical levels, it will be very interesting to see if SIRT3 plays any role in life span extension.

Acknowledgments

We thank Zhidan Wu for providing the COXIV cDNA, Darryl Hadsell for his help with confocal microscopy, Keltoum Anflosand and William J. Craigen for their aid in oxygen consumption measurement, Christopher Threeton for his assistance with flow cytometry, and Margaret Nguyen for technical assistance, and Robert A. Waterland for critical reading of the manuscript. This work is partly supported by funds from U.S. Department of Agriculture.

References

1. Duttall, R. N., and Pillus, L. (2001) Cell 105, 161-164
2. Gotta, M., Strahl-Bolsinger, S., Renaud, H., Laroche, T., Kennedy, B. K., Grunstein, M., and Gasser, S. M. (1997) Embo J 16, 3243-3255
3. Rine, J., and Herskowitz, I. (1987) Genetics 116, 9-22
4. Aparicio, O. M., Billington, B. L., and Gottschling, D. E. (1991) Cell 66, 1279-1287
5. Smith, J. S., and Boeke, J. D. (1997) Genes Dev 11, 241-254
6. Tsukamoto, Y., Kato, J., and Ikeda, H. (1997) Nature 388, 900-903
7. San-Segundo, P. A., and Roeder, G. S. (2000) Mol Biol Cell 11, 3601-3615
8. Kobayashi, T., Horiuchi, T., Tongaonkar, P., Vu, L., and Nomura, M. (2004) Cell 117, 441-453
9. Lin, S. J., Kaeberlein, M., Andalis, A. A., Sturtz, L. A., Defossez, P. A., Culotta, V. C., Fink, G. R., and Guarente, L. (2002) Nature 418, 344-348
10. Kaeberlein, M., McVey, M., and Guarente, L. (1999) Genes Dev 13, 2570-2580
11. Tissenbaum, H. A., and Guarente, L. (2001) Nature 410, 227-230
36. Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W., and Guarente, L. (2004) *Nature* 429, 771-776
37. Bluher, M., Kahn, B. B., and Kahn, C. R. (2003) *Science* 299, 572-574
38. Barzilai, N., and Gabriely, I. (2001) *J Nutr* 131, 90S-906S
39. Enerback, S., Jacobsson, A., Simpson, E. M., Guerra, C., Yamashita, H., Harper, M. E., and Koizumi, L. P. (1997) *Nature* 387, 90-94
40. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B., and Kozak, L. P. (1995) *J Clin Invest* 96, 2914-2923
41. Makarova, O., Kamberov, E., and Margolis, B. (2000) *Biotechniques* 29, 970-972
42. Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993) *Proceedings of the National Academy of Sciences of the United States of America* 90, 8392-8396
43. Bass, D. A., Parce, J. W., Dechatelet, L. R., Szejda, P., Seeds, M. C., and Thomas, M. A. (1983) *J Immunol* 130, 1910-1917
44. Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W., and Zlabinger, G. J. (1992) *J Immunol Methods* 156, 39-45
45. Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., and Spiegelman, B. M. (1998) *Cell* 92, 829-839
46. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmann, G., Mootha, V., Troy, A., Cinti, S., Lowell, B. B., Scarpulla, R. C., and Spiegelman, B. M. (1999) *Cell* 98, 115-124
47. Herzig, S., Long, F., Jhala, U. S., Hedrick, S., Quinn, R., Bauer, A., Rudolph, D., Schutz, G., Yoon, C., Puigserver, P., Spiegelman, B., and Montminy, M. (2001) *Nature* 413, 179-183
48. Handschin, C., Hemi, J., Lin, J., Tarr, P. T., and Spiegelman, B. M. (2003) *Proc Natl Acad Sci U S A* 100, 7111-7116
49. Puigserver, P., Rhee, J., Lin, J., Wu, Z., Yoon, J. C., Zhang, C. Y., Krauss, S., Mootha, V. K., Lowell, B. B., and Spiegelman, B. M. (2001) *Mol Cell* 8, 971-982
50. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R., and Shulman, G. I. (2004) *Proc Natl Acad Sci U S A* 101, 8466-8471
61. Speakman, J. R., Talbot, D. A., Selman, C., Snart, S., McLaren, J. S., Redman, P., Krol, E., Jackson, D. M., Johnson, M. S., and Brand, M. D. (2004) Aging Cell 3, 87-95
62. Finkel, T., and Holbrook, N. J. (2000) Nature 408, 239-247
63. Sohal, R. S., Agarwal, S., Candias, M., Forster, M. J., and Lal, H. (1994) Mech Ageing Dev 76, 215-224
64. Lee, D. W., and Yu, B. P. (1990) Aging (Milano) 2, 357-362
65. Dubey, A., Forster, M. J., Lal, H., and Sohal, R. S. (1996) Arch Biochem Biophys 333, 189-197
66. Rose, G., Dato, S., Altomare, K., Bellizzi, D., Garasto, S., Greco, V., Passarino, G., Feraco, E., Mari, V., Barbi, C., BonaFe, M., Franceschi, C., Tan, Q., Boiko, S., Yashin, A. I., and De Benedictis, G. (2003) Exp Gerontol 38, 1065-1070

Figure Legend

Figure 1. A. RNA expression of sirtuins in mouse tissues. Total RNA was isolated from the indicated tissues, and 10 µg was loaded in each lane. Northern blot analysis was performed by hybridization with mouse cDNA probes for SIRT1 to SIRT7. Size of transcripts was estimated and indicated. WAT: white adipose, BAT: brown adipose. B. SIRT3 mRNA expression in white and brown adipose of mice after three months of caloric restriction. AL: ad libitum, CR: caloric restricted. Three mice of each group were used. C. Expression of SIRT3 upon exposure of mice to cold. Mice were exposed to 5°C for 3, 6 or 12 h, and the control mice were kept at 23°C. Total RNA was isolated from the brown adipose, and the Northern blot analysis was used to detect SIRT3 expression. Three mice of each group were used. D. Expression of SIRT3 upon exposure of mice to 27.5°C. Mice were exposed to 27.5°C for 16 h, and control mice were kept at 23°C. Three mice of each group were used. Ethidium Bromide (EtBr) staining of the RNA is shown for the loading and the integrity of the samples. * p<0.05.

Figure 2. A. Subcellular localization of murine SIRT3 in mitochondria. Mouse SIRT3 with a FLAG-tag at the C-terminus was expressed in NIH-3T3 cells by transient transfection. The mitochondria in the cells were stained with 100 nM MitoTracker Orange, and the FLAG-tagged SIRT3 was detected by an anti-FLAG antibody and an Alexa488 conjugated secondary antibody. The result was observed using a laser scanning confocal microscope. Anti-FLAG immunofluorescence of the mSIRT3-FLAG fusion protein, fluorescence from the MitoTracker-stained mitochondria in the same focal plane, and a merged image demonstrating overlap of the two staining patterns are shown. B. Murine SIRT3 is localized on the mitochondria inner membrane. Mitochondria were isolated from NIH3T3 cells transfected with mSIRT3-FLAG and treated with digitonin, which selectively disrupts the outer membrane (left panel). Isolated mitochondria were also resuspended in Na₂CO₃ buffer, which disrupts both the outer and inner membranes (right panel). The resulting mitochondrial fractions were analyzed by Western blot with anti-FLAG, COX IV, and cytochrome c antibodies.

Figure 3. A. Constitutive expression of SIRT3 promotes the expression of UCP1, PGC-1α, and other mitochondria related genes. HIB1B cells expressing murine SIRT2 or SIRT3, or a control vector were induced to differentiate. On the eighth day, cells were stimulated with 1 µM isoproterenol for 6 hours prior to harvest. Total RNA (10 µg) was used for Northern blot analysis. B. Enzymatic activity of SIRT3 is required for its action. Murine SIRT3 and its mutants, G11A and N87A, which disrupt the ADP ribosylase and deacetylase activity, respectively, were expressed in the HIB1B cells. Cells were differentiated and stimulated as described above. Total RNA was isolated and analyzed by Northern blot analysis. C. PGC-1α rescues the down-
regulation of UCP1 by the dominant-negative SIRT3 N87A mutant. PGC-1α was co-expressed in the SIRT3 or N87A expressing HIB1B cells with a retroviral system. Total RNA was isolated from differentiated and stimulated cells, and UCP1 expression was detected by Northern blot. Ethidium bromide (EtBr) staining of the RNA is also shown as a control for the loading and the integrity of the samples. D. Constitutive expression of SIRT3 promotes activation of CREB. HIB1B cells constitutively expressed with murine SIRT3 and its mutants, G11A and N87A, were differentiated and stimulated as described above. Cells were harvested, and phospho-CREB (Ser133) and total CREB were detected by immunoblot analysis. Data shown are means ± SD of three independent experiments. * p<0.01.

Figure 4. A. Constitutive expression of SIRT3 increases oxygen consumption. Oxygen consumption of HIB1B cells expressing mouse SIRT3 or the empty vector was analyzed, using a Clark-type oxygen electrode. The chemical uncoupler FCCP (500nM) and ATP synthetase inhibitor oligomycin (2.5μg/ml) were used. B. Constitutive expression of SIRT3 decreases mitochondria membrane potential (ΔΨm). HIB1B cells expressing SIRT3, G11A or N87A SIRT3 mutants, or vector alone, were differentiated. The cells were then stained with 10 μg/ml JC-1 for 15 min and analyzed by flow cytometry. Cells treated with 10μM FCCP was used as a control. The relative aggregate/monomer (red/green) fluorescence intensity values were used as an indication for mitochondria membrane potential. C. Constitutive expression of SIRT3 reduces cellular ROS level. Differentiated HIB1B cells were stained with 10μM DCFHDA. The cells were analyzed by flow cytometry. All data are means ± SD of three independent experiments. * p<0.01, ** p=0.001.

Figure 5. The expressions of SIRT3 and mitochondria related genes are reduced in the brown adipose of obese mice. Total RNA (10 μg) isolated from brown fat pads of mice with different forms of genetic obesity along with lean littermates, matched by identical genetic background and sex, was subjected to northern blot analysis. Wt: wild type, Mu: mutant, ob/ob (obese, leptin deficient), db/db (diabetes, leptin receptor-deficient), tub/tub (tubby), and KKAy (yellow or agouti). β-actin probe was used as a control.
Figure 1A

SIRT1	SIRT2	SIRT3	SIRT4	SIRT5	SIRT6	SIRT7	EtBr		
Stomach	Muscle	Brain	Kidney	WAT	BAT	Testis	Heart	Liver	Lung

- SIRT1: 3.9 k
- SIRT2: 1.9 k
- SIRT3: 1.4 k
- SIRT4: 4 k
- SIRT5: 1.4 k
- SIRT6: 1.8 k, 1.4 k
- SIRT7: 2.0 k, 1.7 k
Figure 1B

WAT

AL CR

SIRT3

EtBr

BAT

AL CR

SIRT3 mRNA Level

WAT

BAT

AL CR

*
Figure 1C

Cold Exposure

	0h	3h	6h	12h
SIRT3				
UCP1				
EtBr				

SIRT3 mRNA Level

- Ctrl
- 3h
- 6h
- 12h

* indicates significant differences
Figure 1D

	RT (23°C)	27.5°C
SIRT3	![Image](image1)	![Image](image2)
UCP1	![Image](image3)	![Image](image4)
EtBr	![Image](image5)	![Image](image6)

![Graph](graph.png)

SIRT3 mRNA Level

RT (23°C) 27.5°C
Figure 2A

FLAG-SIRT3

Mito Tracker

Merge

20 μm
Figure 2B

Mitoplast	Inter and outer membrane
Digitonin	mSIRT3-FLAG
	COX IV
	Cytochrome c

Membrane	Soluble
Na₂CO₃	
Figure 3A

	V	S2	S3
SIRT2			
SIRT3			
Adipsin			
aP2			
UCP1			
PGC-1α			
COX IV			
ATP Synthetase			
COX II			
EtBr			
Figure 3B
Figure 3C
Figure 3D

α-Phospho-CREB

α-CREB

CREB Phosphorylation

Vector mSIRT3 G11A N87A

*
Figure 4A

The graph shows the comparison of basal FCCP and Oligomycin treatments with and without SIRT3 expression.

- Basal: Vector (open bars) vs. SIRT3 (dark bars)
- FCCP: Vector (open bars) vs. SIRT3 (dark bars)
- Oligomycin: Vector (open bars) vs. SIRT3 (dark bars)

Statistical significance:
- Basal: Vector × 1.8*
- FCCP: Vector × 1.7*
- Oligomycin: Vector × 2.2**
Figure 4B

Red/Green Ratio

- Vector
- mSIRT3
- G11A
- N87A
- FCCP
Figure 4C

Fluorescence Intensity vs. Different Variants

- Vector
- mSIRT3
- G11A
- N87A

Note: The bar for mSIRT3 is marked with an asterisk (*) indicating a significant difference.
Figure 5

ob	db	tub	Ay
Wt Mu	Wt Mu	Wt Mu	Wt Mu

- SIRT3
- UCP1
- ATP synthetase
- COX II
- β-Actin