Non trivial zeros of the Riemann zeta function

W. Oukil
Faculty of Mathematics.
University of Science and Technology Houari Boumediene.
BP 32 EL ALIA 16111 Bab Ezzouar, Algiers, Algeria.

February 27, 2025

Abstract

In this paper, we consider the representation of the Riemann zeta function \(\zeta \) defined by Abel’s summation formula. We show that: if \(|\zeta(s)| = 0 \) then \(|\zeta(1-s)| \neq 0 \) for any point \(s \) in the critical strip where the real part is not equal to one-half.

Keywords: Riemann hypothesis, Riemann zeta function, Non trivial zeros.

AMS subject classifications: 00A05

1 Main results

Consider the representation of the Riemann zeta function \(\zeta \) defined by Abel’s summation formula [1], page 14 Equation 2.1.5 as

\[
\zeta(s) := -\frac{s}{1-s} - s \int_1^{+\infty} u^{-1-s}\{u\}du, \quad \Re(s) > 0, \quad \Im(s) \in \mathbb{R},
\]

(1)

where \(\{u\} \) is the fractional part of the real \(u \). We shall prove the following result:

Theorem 1. Consider the Riemann zeta function \(\zeta \) given by Equation (1). For any point \(s \in \mathbb{C} \) such that \(\Re(s) \in \left(\frac{1}{2}, 1 \right) \) and \(\Im(s) \in \mathbb{R} \) we have

\[
\left| \Re \left(\frac{2-\bar{s}}{s(1+s)}\zeta(s) - \frac{\zeta(1-\bar{s})}{1-s} \right) \right| > 0.
\]

Proof. Let be \(s \in \mathbb{C} \) such that \(\Re(s) \in \left(\frac{1}{2}, 1 \right) \) and \(\Im(s) \in \mathbb{R} \). Consider the Equation (1), using the integration by parts formula, that gives

\[
\zeta(s) = -\frac{s}{1-s} - \frac{1}{2} + s(1+s) \int_1^{+\infty} u^{-2-s}\eta(u)du.
\]

(2)
where by Dirichlet’s Theorem, the real periodic function \(\eta : [1, +\infty) \rightarrow \mathbb{R} \) is defined as

\[
\eta(u) := \int_1^u \left(\frac{1}{2} - \{v\} \right) dv = \sum_{j \in \mathbb{Z}^*} \frac{1}{(j2\pi)^2} \left(1 - \exp(ij2\pi u) \right), \quad \forall u \geq 1. \tag{3}
\]

Equation (2), implies

\[
\zeta(s) - \zeta(1-s) \frac{1}{s(1+s)} - \frac{1}{(1-s)(2-s)} = -\frac{1}{2} \left(1 - \frac{1}{s} + \frac{1}{s} \right) + \frac{1}{2} \left(\frac{1}{1 - s} + \frac{1}{s} \right) + \int_1^{+\infty} \left(u^{-2-s} - u^{-3+\pi} \right) \eta(u) du. \tag{4}
\]

By Equation (3), we have \(\eta(n) = 0 \) for all \(n \in \mathbb{N} \). Using the integration by parts formula, for every \(n \in \mathbb{N} \) we have

\[
\int_1^n \Im \left(u^{-2-s} - u^{-3+\pi} \right) \eta(u) du = \int_1^n u^{-3+\pi} \left(u^{-2\Re(s)+1} - 1 \right) \eta(u) du
\]

\[= - \int_1^n \frac{d}{du} \left(u^{-2\Re(s)+1} - 1 \right) \eta(u) \int_1^u u^{-3+\pi} v du. \]

In other words,

\[
(2 - \pi) \int_1^n \Im \left(u^{-2-s} - u^{-3+\pi} \right) \eta(u) du = - \int_1^n \frac{d}{du} \left(u^{-2\Re(s)+1} - 1 \right) \eta(u) \left(1 - u^{-2+\pi} \right) du.
\]

Thanks to Equation (4), we obtained

\[
(2 - \pi) \left(\frac{\zeta(s)}{s(1+s)} - \frac{\zeta(1-s)}{(1-s)(2-s)} \right) = -\frac{1}{2} \left(2 - \pi \right) \left(\frac{1}{1 - s} + \frac{1}{s} - \frac{1}{1 - \pi} - \frac{1}{\pi} \right) \tag{5}
\]

\[- \lim_{n \to +\infty} \int_1^n \frac{d}{du} \left(u^{-2\Re(s)+1} - 1 \right) \eta(u) \left(1 - u^{-2+\pi} \right) du.
\]

We recall that the function \(\eta \) is given by Equation (3) and for every \(u \in [1, +\infty)/\mathbb{N} \) it satisfies the following equation

\[
\frac{d}{du} \left(u^{-2\Re(s)+1} - 1 \right) \eta(u) = -(2\Re(s)-1)u^{-2\Re(s)}\eta(u) + u^{-2\Re(s)+1} - 1 \left(\frac{1}{2} - \{u\} \right).
\]

Since \(2\Re(s) > 1 \) then

\[
\left| \frac{d}{du} \left(u^{-2\Re(s)+1} - 1 \right) \eta(u) \right| \leq \frac{1}{2} (2\Re(s)-1)u^{-2\Re(s)}(u-1) - \frac{1}{2} (u^{-2\Re(s)+1} - 1), \quad \forall u \geq 1.
\]
In other words
\[
\left| \frac{d}{du} \left(u^{-2\Re(s)+1} - 1 \right) \eta(u) \right| \leq \frac{d}{du} \left(u^{-2\Re(s)+1} - 1 \right) \eta_s(u), \quad \forall u \geq 1.
\]
where \(\eta_s \) is the constant function defined as \(\eta_s(u) = -\frac{1}{2} \) for all \(u \geq 1 \). Equation (5) implies
\[
\left| \Re \left((2 - \overline{s}) \left(\frac{\zeta(s)}{s(1+s)} - \frac{\zeta(\overline{1-s})}{(1-\overline{s})(2-\overline{s})} \right) \right) \right| \geq \frac{1}{2} \left| \Re \left((2 - \overline{s}) \left(\frac{1}{1-s} + \frac{1}{s} - \frac{1}{1-\overline{s}} - \frac{1}{\overline{s}} \right) \right) \right|
\]
\[
-\lim_{n \to +\infty} \int_1^n \frac{d}{du} \left(u^{-2\Re(s)+1} - 1 \right) \eta_s(u) (1 - \Re(u^{-2+\overline{s}})) du.
\]
Equivalent to
\[
\left| \Re \left((2 - \overline{s}) \left(\frac{\zeta(s)}{s(1+s)} - \frac{\zeta(\overline{1-s})}{(1-\overline{s})(2-\overline{s})} \right) \right) \right| \geq \frac{1}{2} \left| \Re \left((2 - \overline{s}) \left(\frac{1}{1-s} + \frac{1}{s} - \frac{1}{1-\overline{s}} - \frac{1}{\overline{s}} \right) \right) \right|
\]
\[
+ \frac{1}{2} \Re \left((2 - \overline{s}) \int_1^{+\infty} \left(u^{-2-s} - u^{-3+\overline{s}} \right) du \right),
\]
or even,
\[
\left| \Re \left((2 - \overline{s}) \left(\frac{\zeta(s)}{s(1+s)} - \frac{\zeta(\overline{1-s})}{(1-\overline{s})(2-\overline{s})} \right) \right) \right| \geq \frac{1}{2} \left| \Re \left((2 - \overline{s}) \left(\frac{1}{1-s} + \frac{1}{s} - \frac{1}{1-\overline{s}} - \frac{1}{\overline{s}} \right) \right) \right|
\]
\[
+ \frac{1}{2} \Re \left(\frac{2 - \overline{s}}{1+s} - 1 \right).
\]
Since \(\Re(s) \in (\frac{1}{2}, 1) \), we have
\[
\left| \Re \left((2 - \overline{s}) \left(\frac{1}{1-s} + \frac{1}{s} - \frac{1}{1-\overline{s}} - \frac{1}{\overline{s}} \right) \right) \right| + \Re \left(\frac{2 - \overline{s}}{1+s} - 1 \right) > 0.
\]
We obtained
\[
\left| \Re \left((2 - \overline{s}) \left(\frac{\zeta(s)}{s(1+s)} - \frac{\zeta(\overline{1-s})}{(1-\overline{s})(2-\overline{s})} \right) \right) \right| > 0.
\]

\[\square \]

References

[1] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function (revised by D.R. Heath-Brown), Clarendon Press, Oxford. (1986).