Mathematical Modeling for Performance Analysis and Inference of k-out of-n Repairable System Integrating Human Error and System Failure

Vishwa Nath Maurya¹,², *¹Department of Mathematics, School of Science & Technology, University of Fiji, Saweni, Fiji
²Vision Institute of Technology Aligarh, G.B. Technical University, India
*Corresponding author: prof.drvmmaurya@gmail.com, prof_vmaurya@yahoo.in

Received January 20, 2014; Revised February 12, 2014; Accepted February 27, 2014

Abstract Present paper demonstrates mathematical modeling and evaluation of performance measures of k-out of-n repairable system wherein the most influencing constraints of human error and common-cause failure have been taken into consideration. Firstly the mathematical modeling is developed for performance analysis of k-out of-n repairable system with standby units involving human and common-cause failure. Then, a successful attempt has been made to evaluate various important performance measures such as availability of system, steady state availability and mean time of system failure (MTSF), mean operational time (MOT), expected busy period (EBP) and steady state busy period etc. Using the supplementary variable technique, Laplace transforms of various state probabilities are explored. Moreover, a particular case when repair rate follows exponential distribution has also been discussed. In addition, numerical illustration has also been presented in order to enable a better mode for understanding and testing the outcomes explored herein. Finally, tables and graphs for investigated results are displayed for drawing some significant conclusive observations for testing their validity and consistency.

Keywords: Mathematical modeling, repairable system, human error, common-cause failure, steady state availability, Laplace transform, supplementary variable technique, performance analysis

Cite This Article: Vishwa Nath Maurya, “Mathematical Modeling for Performance Analysis and Inference of k-out of-n Repairable System Integrating Human Error and System Failure.” American Journal of Modeling and Optimization, vol. 2, no. 1 (2014): 16-24. doi: 10.12691/ajmo-2-1-3.

1. Introduction

Literature shows that performance analysis of networks with queues has received considerable attention by a large number of previous noteworthy researchers and it has occupied a prominent place in Operational Research in recent years. Repairable system incorporating human error and system failure is a particular type of queueing system. In series systems, the failures of one or more units result in the system failure. However, there exist systems that are not considered failed until at least k units or components have failed. Such systems are known as k-out of-n systems. Examples of such systems are: large airplanes usually have three or four engines, but two engines may be the minimum number required to provide a safe journey. Similarly, in many power-generation systems that have two or more generators, one generator may be sufficient to provide the power requirements. Performance analysis of wide range of queueing models in different frame works has been confined by several noteworthy researchers, (e.g. [3,4,5,6,7,8,11,13]) and references therein. Among them, recently Maurya [7,8] paid keen attention concerning with performance analysis of $M^2/(G_1,G_2)/1$ queueing model with second phase optional service and Bernoulli vacation schedule and succeeded to investigate significant performance measures.

It is relevant to mention here that mathematical modeling pay a key role for performance analysis of system repair problems like other mathematical techniques. In this direction, some previous researchers (e.g. [3,9,10,16]) and references therein are worth mentioning. Although, reliability and/or performance analysis of system repair problems have been attempted by some previous researchers, (e.g. [2,14,15,16,17]) but human error and common-cause failure have not been yet taken into consideration in their studies. However, it has been keenly observed that human error and common-cause failure are very much influencing constraints in performance and/or reliability analysis of system repair problems. Few earlier research workers confined the reliability behavior of k-out of-n systems taking into account the common-cause failure, for example, Hughes (1987) presented a new approach to common-cause failure in analyzing system repair problems and Who Kee Chang (1987) attempted for reliability analysis of a repairable parallel system with standby involving human failure and common-cause failures yet no attention has been paid to the performance evaluation of k-out of-n repairable system due to human error and system failure constraints. Jain et al (2002) studied a k-out of-n system with
dependent failure and standby support and Moustafa (1997) also studied k-out-of-n repairable system with dependent failure and imperfect coverage.

In this paper, our main objective is to investigate performance measures and valuable inferences of k-out-of-n repairable system with standby units involving human and common-cause failure by using mathematical modeling, particularly to evaluate availability, steady state availability, mean time of system failure (MTSF) etc. The supplementary variable technique has been used here to evaluate Laplace transforms of various state probabilities of the repair model. Numerical computations and graphs for availability and MTSF have also been drawn. Following three particular cases are also developed:

(i). The case when there is repair due to hardware, human and common-cause failures
(ii). The case when there is repair due to hardware and human failures
(iii). The case with no repair

2. Hypotheses of the System

Here, we consider k-out-of-n repairable system with standby units involving human and common-cause failure. Following are some assumptions taken into our present consideration for the repair model.

(i). The system consists of n identical main units and s standby units
(ii). Unit failure, human error and common-cause failure are constant
(iii). Repair rate from failed states due to unit failure, human error and common-cause failure are generally distributed
(iv). Initially n units are operating and s unit are kept as cold standby
(v). The entire system working if at least k out of n units or components are operating
(vi). The system is said to be in one of the failed if k+1 unit have failed due to unit failure, human error and common-cause failure
(vii). When any of the operating units fails, it is replaced immediately by standby unit
(viii). If all the standby are consumed, the system works as degraded system until k-units works
(ix). No repair will be undertaken until the system has failed due to hardware and human error (i.e. until k+1 unit have failed) or due to common-cause failure
(x). We assume that a repaired system is as good as new
(xi). A perfect switch is used to switch-on the standby units and switch-over time is negligible

3. Notations and Description of the System

In order to analyze our present repair model in the direction as indicated earlier, we use underlying notations;
P_{ij}(t) Probability that the system is in state (i, j) at time t. State (i, j) is the state of the system when j units failed due to hardware failure and i units due to human error, i, j = 0, 1, 2, …., k + 1.

4. Evaluation of State Probabilities of the System

In view of our assumptions and notations as in sections 2-3, the set of governing differential equations for the model can be expressed as following;

\[
\frac{d}{dt} + \lambda + H \cdot \rho P_{0,0}(t) = \sum_{i=0}^{k+1} \int_{0}^{\infty} \rho(y) P_{i,k+1-i}(y,t) \, dy + \int_{0}^{\infty} \rho(y) P_{cc}(y,t) \, dy
\]

\[
\frac{d}{dt} + \lambda + c \cdot \rho P_{i,j}(t) = NP_{i-1,j}(t) + HP_{i,j-1}(t)
\]

\[
\frac{d}{dt} + \lambda + \rho(y) P_{i,j+1}(t) = 0
\]

\[
\frac{d}{dt} + \lambda + \rho(y) P_{cc}(y,t) = 0
\]

4.1. Boundary Conditions

\[
P_{i,k+1-i}(0,t) = \lambda P_{i-1,j}(t) + HP_{i,j-1}(t); \quad i = 0, 1, 2, \ldots, k + 1
\]

\[
P_{cc}(0,t) = \lambda \rho \sum_{j=0}^{k+1} \sum_{i=0}^{k+1} P_{i,j}(t)
\]

\[
\sum_{i=0}^{k+1} \sum_{j=0}^{k+1} P_{i,j}(t) + P_{cc}(y,t) = 1
\]

4.2. Initial Conditions

\[
P_{0,0}(t) = 1, \quad P_{i,j}(t) = 0, \quad i = 0, 1, 2, \ldots, k + 1
\]

5. Solution of the Mathematical Model

By taking the Laplace transform of equations (4.1)-(4.7), one may get a set of following integral and differential equations:

\[
(s + \lambda + H + \lambda) F_{0,0}(s) = \sum_{i=0}^{k+1} \int_{0}^{\infty} \rho(y) F_{i,k+1-i}(y,s) \, dy + \int_{0}^{\infty} \rho(y) F_{cc}(y,s) \, dy
\]
5. Boundary Conditions

\[P_{i,k+1-i}(0, s) = \Lambda P_{i,k+1-i}(s) + H P_{i,k+1-i}(s) ; \]
\[i = 0, 1, 2 \ldots, k + 1 \]
\[F_{cc}(0, s) = \lambda_c \sum_{i=0}^{k} \sum_{j=0}^{k-i} P_{i,j}(t) + P_{cc}(0, t) = 1 \]

By integrating equations (5.3), (5.4), we get:
\[F_{cc}(0, s) = \text{exp}(\rho s) \int \rho(y)dy \]
\[F_{cc}(y, s) = F_{cc}(0, s) \text{exp}(-\rho s - \rho(y)dy) \]

Again integrating equations (5.8), (5.9), using equations (5.5)-(5.7), we get
\[P_{i,k+1-i}(s) = s^{i-1}[1-F(s)](k+1)\Lambda^i H^{k+1-i} P_{0,0}(s) / A^k ; \]
\[i = 0, 1, 2 \ldots, k + 1 \]
\[F_{cc}(s) = \lambda s^{i-1}[1-G(s)] \sum_{i=0}^{k} \sum_{j=0}^{k-i} \Lambda^i H^{k+1-i} P_{0,0}(s) / A^L \]

6. Particular Case

When repair rate follows exponential distribution. Setting
\[F(s) = \frac{\rho}{s + \rho} , \ G(s) = \frac{\rho_c}{s + \rho_c} \]

The Laplace transform of the probabilities of the system are:
\[F_{i,L-i}(s) = \Lambda P_{i,L-i}(s) / A^L \]
\[P_{i,k+1-i}(s) = \frac{1}{s + \rho} \sum_{i=0}^{k} \sum_{j=0}^{k-i} \Lambda^i H^{k+1-i} P_{0,0}(s) / A^k \]
\[P_{cc}(s) = \frac{\lambda}{s + \rho_c} \sum_{i=0}^{k} \sum_{j=0}^{k-i} \Lambda^i H^{k+1-i} P_{0,0}(s) / A^k \]
\[\bar{P}_{0,0}(s) = \{(s + \Lambda + H + \lambda_c) \}
\]

6.1. Case I

Consider the case when \(n=2, s=1, k=1, \rho, \rho_c \) are the repair rates when system is in state \((i, j)\) and in cc states respectively. In this case we have:
\[\Lambda = 2\lambda, H = 2h, A = s + 2(\lambda + h) + \lambda_c \]

Moreover, from equations (6.2)-(6.5), one may get
\[P_{0,1}(s) = \frac{2h}{(s + 2(h + \lambda) + \lambda_c)} \bar{P}_{0,0}(s) \]
\[P_{1,0}(s) = \frac{2\lambda}{(s + 2(h + \lambda) + \lambda_c)} \bar{P}_{0,0}(s) \]
\[R_{0,2}(s) = \frac{4h^2}{(s + \rho)(s + 2(h + \lambda) + \lambda_c)} \bar{P}_{0,0}(s) \]
\[R_{1,1}(s) = \frac{8\lambda h}{(s + \rho)(s + 2(h + \lambda) + \lambda_c)} \bar{P}_{0,0}(s) \]
\[P_{2,0}(s) = \frac{4\lambda^2}{(s + \rho)(s + 2(h + \lambda) + \lambda_c)} \bar{P}_{0,0}(s) \]
\[P_{cc}(s) = \frac{\lambda}{(s + \rho_c)(s + 2(h + \lambda) + \lambda_c)} \bar{P}_{0,0}(s) \]
\[\bar{R}_{0,0}(s) = \{(s + \rho)(s + \rho_c)(s + 2(h + \lambda) + \lambda_c)^2 \}
\]

where :
\[C(s) = (s + \rho)(s + \rho_c)(s + 2(h + \lambda) + \lambda_c)^2 \]

Therefore the Laplace transform of probability of the system is in up-state is:
\[P_{up}(s) = P_{b,0}(s) + P_{b,1}(s) + P_{c,0}(s) \]
\[P_{up}(s) = \frac{(s+\rho)(s+\rho_2)(s+4(\lambda + h) + \lambda_c)}{s(s^3 + k_1 s^2 + k_2 s + k_3)} \]

where
\[k_1 = \rho + \rho_2 \lambda_c + 4(h + \lambda) \]
\[k_2 = \rho_2 (\lambda_c - \lambda) + (2(h + \lambda) + \lambda_c^2) + 2(\rho + \rho_2)(2(h + \lambda) + \lambda_c) \]
\[k_3 = \rho_2 (\lambda_c - \lambda_c)(4h + 4\lambda + \lambda_c) + (\rho + 4\rho_2)(2(h + \lambda) + \lambda_c^2 - 4\rho(h + \lambda)^2) \]

\[P_{down}(s) = \hat{P}_{cc}(s) + \hat{P}_{c,k+1}(s) = \frac{\lambda_c}{s} \]
\[+ (s+\lambda_c)(s+\rho)(s+\lambda_c)(s+\rho_2)(s+4(\lambda + h) + \lambda_c) + 4(\rho_2 + \lambda_c) \]
\[C(s) \]

Taking inverse Laplace transform of equation (6.1.8), one may get:
\[P_{up}(t) = \frac{k_4 e^{\eta t} + k_5 e^{2\eta t} + k_6 e^{3\eta t} + k_7 e^{4\eta t}}{\eta} \]

where
\[k_4 = \rho \lambda_c (4(\lambda + h) + \lambda_c) / (-\eta \lambda_c r_2) \]
\[k_5 = \left(\frac{(\eta + \rho)(\eta + \rho_2)(\eta + 4(\lambda + h))}{(\eta - \eta_2)(\eta - \eta_3)} \right) \]
\[k_6 = \left(\frac{(\eta_2 + \rho_2)(\eta_2 + \rho)(\eta_2 + 4(\lambda + h) + \lambda_c)}{(\eta_2 - \eta_3)(\eta_3 - \eta_2)} \right) \]
\[k_7 = \left(\frac{(\eta + \rho)(\eta_3 + \rho_2)(\eta_3 + 4(\lambda + h) + \lambda_c)}{(\eta_2 - \eta_3)(\eta_3 - \eta_2)} \right) \]

and \(\eta_2, \eta_3 \) are the roots of the equation \(s^3 + k_1 s^2 + k_2 s + k_3 = 0 \)

6.1.1. Mean Operational Time (MOT)

From equation (6.1.9) one may get:
\[\mu_{up}(t) = \int_0^\infty P_{up}(t) dt = \frac{k_4}{\eta} (e^{\eta t} - 1) + \frac{k_5}{\eta_2} (e^{2\eta t} - 1) + \frac{k_6}{\eta_3} (e^{3\eta t} - 1) + \frac{k_7}{\eta_4} (e^{4\eta t} - 1) \]

6.1.2. Busy Period

\[B(s) = \hat{P}_{cc}(s) + \hat{P}_{c,k+1}(s) \]
\[= \frac{\lambda_c}{s} (s+4(\lambda + h) + \lambda_c)(s+\rho)(s+\lambda) + 4(h + \lambda)^2 (s+\rho_c) \]
\[s(s^3 + k_1 s^2 + k_2 s + k_3) \]

Taking inverse Laplace transform of equation (6.1.11), it is fairly easy to get busy period:
\[B(t) = k_4^1 e^{\eta t} + k_5^1 e^{2\eta t} + k_6^1 e^{3\eta t} + k_7^1 e^{4\eta t} \]

where
\[k_4^1 = (\lambda_c \rho (4(\lambda + h) + \lambda_c) + 4\rho_c(h + \lambda)^2) / (-\eta r_2) \]
\[k_5^1 = (\lambda_c (\eta + 4(\lambda + h) + \lambda_c)(\eta + \rho) + 4(h + \lambda)^2 (\eta + \rho_c)) \]
\[(\eta - \eta_2)(\eta - \eta_3) \]
\[k_6^1 = (\lambda_c r_2 (4(\lambda + h) + \lambda_c)(\rho_2 + \rho) + 4(h + \lambda)^2 (\rho_2 + \rho_c)) \]
\[(\eta - \eta_2)(\eta - \eta_3) \]
\[k_7^1 = (\lambda_c (r_3 + 4(\lambda + h) + \lambda_c)(\rho_3 + \rho) + 4(h + \lambda)^2 (\rho_3 + \rho_c)) \]

6.1.3. Expected Busy Period (EBP)

From equation (6.1.12) one may get the expected busy period as following:
\[\mu_B(t) = \int_0^\infty B(t) dt = \frac{k_4^1}{\eta} (e^{\eta t} - 1) + \frac{k_5^1}{\eta_2} (e^{2\eta t} - 1) + \frac{k_6^1}{\eta_3} (e^{3\eta t} - 1) + \frac{k_7^1}{\eta_4} (e^{4\eta t} - 1) \]

6.1.4. Steady State Availability of the System

\[P_{ap} = \lim_{s \to 0} sP_{up}(s) = \rho \lambda_c (4(\lambda + h) + \lambda_c) / C(0) \]

where:
\[C(0) = (2(h + \lambda) + \lambda_c^2 (\rho + \rho_c) + 2\rho \lambda_c (2(h + \lambda) + \lambda_c) - \lambda_c \rho_c (4(\lambda + h) + \lambda_c) - 4\rho_2 (h + \lambda)^2 - \lambda_c \rho_2 \rho_c \]

6.1.5. Steady State Busy Period

\[B(\infty) = (\lambda_c (s + 4(\lambda + h) + \lambda_c)(s + \rho) + 4(h + \lambda)^2 (s + \rho_c)) / C(0) \]

6.1.6. Mean Time of System Failure (MTSF)

\[MTSF = \lim_{s \to 0} \frac{P_{up}(s)}{s} = \rho \lambda_c (4(\lambda + h) + \lambda_c) / C(0) \]

where:
\[C(0) = \rho \lambda_c (2(h + \lambda) + \lambda_c)^2 - \lambda_c \rho_2 (4(\lambda + h) + \lambda_c) - 4\rho_2 (h + \lambda)^2 \]

6.2. Case II

We consider the case when \(n=2, s=1, k=1, \rho \) are the repair occurs when system is in state (i, j). In this case, we have:
\[\Lambda = 2\lambda, H = 2h, A = s + 2(\lambda + h) + \lambda_c \] and from equations (6.2)-(6.5), one may get
\[R_{0,1}(s) = \frac{2h}{s + 2(h + \lambda) + \lambda_c} \]
\[R_{1,0}(s) = \frac{2\lambda}{s + 2(h + \lambda) + \lambda_c} \]
\[R_{0,2}(s) = \frac{4h^2}{(s + \rho)(s + 2(h + \lambda) + \lambda_c)} \]
\[R_{1,1}(s) = \frac{8\lambda h}{(s + \rho)(s + 2(h + \lambda) + \lambda_c)} \]
\[P_{2,0}(s) = \frac{4\lambda^2}{(s + \rho)(s + 2(\lambda + h) + \lambda_c)} P_{0,0}(s) \] (6.2.5)

\[P_{cc}(s) = \frac{\lambda_s (s + 4(\lambda + h) + \lambda_c)}{s^2 [s + 2(\lambda + h) + \lambda_c]} P_{0,0}(s) \] (6.2.6)

\[P_{0,0}(s) = \frac{(s + \rho)(s + 4(\lambda + h) + \lambda_c)}{(s + \rho)(s + 2(\lambda + h) + \lambda_c)^2 - 4\rho(\lambda + h)^2} \] (6.2.7)

Therefore the Laplace transform of probability of the system is in up-state is:

\[P_{up}(s) = P_{0,0}(s) + P_{1,0}(s) \] (6.2.8)

where

\[k_1 = \rho + 4(\lambda + h) + 2\lambda_c \]
\[k_2 = (2(\lambda + h) + \lambda_c)^2 + \rho(4(\lambda + h) + 2\lambda_c) \]
\[k_3 = \lambda_s \rho(4(\lambda + h) + \lambda_c) \]

\[P_{down}(s) = P_{0,0}(s) + P_{1,0}(s) + P_{2,0}(s) \]

Taking inverse Laplace transform of equation (6.1.8), one may get after a little simplification:

\[P_{up}(t) = k_4 + k_5 e^{nt} + k_6 e^{2nt} + k_7 e^{3nt} \] (6.2.9)

where

\[k_4 = \frac{(\eta + \rho)(\eta + 4(\lambda + h) + \lambda_c)}{(\eta - r_2)(\eta - r_3)} \]
\[k_5 = \frac{(r_2 + \rho)(r_2 + 4(\lambda + h) + \lambda_c)}{(r_2 - \eta)(r_2 - r_3)} \]
\[k_6 = \frac{(r_3 + \rho)(r_3 + 4(\lambda + h) + \lambda_c)}{(r_3 - \eta)(r_3 - r_2)} \]

and \(\eta, r_2, r_3 \) are the roots of the equation

\[s^3 + k_1 s^2 + k_2 s + k_3 = 0 \]

\[P_{down}(s) = \frac{(s + \rho)(s + 4(\lambda + h) + \lambda_c)}{(s + \rho)(s + 2(\lambda + h) + \lambda_c)^2 - 4\rho(\lambda + h)^2} \]

6.2.1. Expected Operational Time

From equation (6.2.9), one may get the expected operational time as below;

\[\mu_{up}(t) = \int_0^\infty P_{up}(t) \, dt \]
\[= k_4 + \frac{k_5}{\eta} (e^{nt} - 1) + \frac{k_6}{r_2} (e^{2nt} - 1) + \frac{k_7}{r_3} (e^{3nt} - 1) \] (6.2.10)

6.2.2. Busy Period

\[B(s) = \frac{4(\lambda + h)^2}{(s + \rho)(s + 2(\lambda + h) + \lambda_c)} \] (6.2.11)

where

\[k_1 = \rho + 2\lambda_c + 4(h + \lambda) \]
\[k_2 = (2(\lambda + h) + \lambda_c)(2(\lambda + h) + 2\rho + \lambda_c) \]
\[k_3 = \lambda_s \rho(4(\lambda + h) + \lambda_c) \]

Taking inverse Laplace transform of equation (6.2.11) and after a little simplification, one may get:

\[B(t) = k_4^1 e^{nt} + k_5^1 e^{2nt} + k_6^1 e^{3nt} \] (6.2.12)

where

\[k_4^1 = \frac{4(\lambda + h)^2}{(\eta - r_2)(\eta - r_3)} \]
\[k_5^1 = \frac{4(\lambda + h)^2}{(r_2 - \eta)(r_2 - r_3)} \]
\[k_6^1 = \frac{4(\lambda + h)^2}{(r_3 - \eta)(r_3 - r_2)} \]

6.2.3. Expected Busy Period

From equation (6.2.12), one may get:

\[\mu_{s}(t) = \int_0^\infty B(t) \, dt \]
\[= k_4^1 (e^{nt} - 1) + \frac{k_5^1}{r_2} (e^{2nt} - 1) + \frac{k_6^1}{r_3} (e^{3nt} - 1) \] (6.2.13)

6.2.4. Steady State Availability of the System

\[M_{up}(s) = \lim_{s \to 0} s P_{up}(s) \]
\[= \frac{\rho(4(\lambda + h) + \lambda_c)}{2(\lambda + h) + \lambda_c} \] (6.2.14)

6.2.5. Steady State Busy Period

\[M_{down}(s) = \lim_{s \to 0} s P_{down}(s) \]
\[= \frac{4(\lambda + h)^2}{(\rho(2(\lambda + h) + \lambda_c)^2 - 4\rho(\lambda + h)^2)} \] (6.2.15)

6.2.6. Mean Time of System Failure (MTSF)

\[\text{MTSF} = \lim_{s \to 0} P_{up}(s) \]
\[= \frac{(\rho(4(\lambda + h) + \lambda_c))}{(\rho(2(\lambda + h) + \lambda_c)^2 - 4\rho(\lambda + h)^2)} \] (6.2.16)

6.3. Case III

Consider the case when n=2, s=1, k=1, and no repair, we have: \(\Lambda = 2\lambda, H = 2h, A = s + 2(\lambda + h) + \lambda_c \)

And from equations (6.2)-(6.5), one may get:

\[P_{0,0}(s) = \frac{2h}{s^2(2(\lambda + h) + \lambda_c)} \] (6.3.1)
\[P_{1,0}(s) = \frac{2\lambda}{s^2(2(\lambda + h) + \lambda_c)} \] (6.3.2)
\[P_{0,2}(s) = \frac{4h^2}{s^2(2(\lambda + h) + \lambda_c)} \] (6.3.3)
\[P_{1,1}(s) = \frac{8\lambda h}{s^2(2(\lambda + h) + \lambda_c)} \] (6.3.4)
\[P_{2,0}(s) = \frac{4\lambda^2}{s^2(2(\lambda + h) + \lambda_c)} \] (6.3.5)
\[P_{cc}(s) = \frac{\lambda_c (4(h + \lambda) + \lambda_c)}{s[s + 2(h + \lambda) + \lambda_c]} P_{0,0}(s) \] (6.3.6)

\[P_{0,0}(s) = \frac{1}{(s + 2(\lambda + h) + \lambda_c)} \] (6.3.7)

Therefore the Laplace transform of probability of the system is in upstate is:

\[P_{up}(s) = P_{0,0}(s) + P_{1,0}(s) + P_{n,0}(s) \]

\[P_{up}(s) = \frac{(s + 4(\lambda + h) + \lambda_c)}{s^3 + k_1 s^2 + k_2} \] (6.3.8)

where

\[k_1 = 4(h + \lambda) + 2\lambda_c \]
\[k_2 = 2(h + \lambda) + \lambda_c \]

\[P_{down}(s) = P_{0,0}(s) + P_{1,0}(s) + P_{n,0}(s) + P_{cc}(s) \]

\[P_{down}(s) = \frac{\lambda_c (4(h + \lambda) + \lambda_c) + 4(\lambda + h)^2}{s^3 + 2(h + \lambda) + \lambda_c} \]

Taking inverse Laplace transform of equation (6.1.8), one may get:

\[P_{up}(t) = k_3 e^{r_1 t} + k_4 e^{r_2 t} \] (6.3.9)

where

\[k_3 = \frac{4(\lambda + h) + \lambda_c)}{(\eta - r_2)} \]
\[k_4 = \frac{4(\lambda + h) + \lambda_c)}{(r_2 - \eta)} \]

and \(r_1, r_2 \), are the roots of the equation \(s^2 + k_1 s + k_2 = 0 \)

6.3.1. Mean Operational Time (MOT)

From equation (6.3.9), one may get:

\[\mu_{up}(t) = \int_0^t P_{up}(s) ds = \frac{k_3}{\eta} e^{r_1 t} + \frac{k_4}{r_2} e^{r_2 t} - 1 \] (6.3.10)

6.3.2. Steady State Availability of the System

\[P_{up} = \lim_{s \to 0} sP_{up}(s) = \frac{4(\lambda + h) + \lambda_c)}{(2(h + \lambda) + \lambda_c)^2} \] (6.3.11)

6.3.3. Mean Time of System Failure (MTSF)

\[MTSF = \lim_{s \to 0} sP_{up}(s) = \frac{4(\lambda + h) + \lambda_c)}{(2(h + \lambda) + \lambda_c)^2} \] (6.3.12)

7. Numerical Illustration

In this section, our endeavor is to test the validity of various performance measures explored herein by way of numerical illustration. Setting \(\lambda = .02, \ h = .01, \ \lambda_c = .002, \ \rho = .8, \ \rho_c = .008 \), one can compute results case wise as following:

7.1. Case I

when \(n=2, s=1, k=1, \ rho, \ rho_c \) are the repair rates when system is in state (i, j), and in ce states respectively

7.1.1. Availability Analysis

\[P_{up}(t) = 4.2907 \times 10^{-2} \ exp(-0.12737t) + 0.1193 \exp(-9.1338 \times 10^{-3}t) - 6.8221 \times 10^{-3} \exp(-0.79463t) + 0.84461 \] (7.1.1)

7.1.2. Expected Operational Time

\[\mu_{up}(t) = 0.84461 t - 0.33687 \exp(-0.12737t) - 13.061 \exp(-9.1338 \times 10^{-3}t) - 8.5853 \times 10^{-3} \exp(-0.79463t) - 1 \] (7.1.2)

7.1.3. Busy Period

\[B(t) = 6.8167 \times 10^{-3} \exp(-0.79463t) - 0.20564 \exp(-9.1338 \times 10^{-3}t) - 4.3484 \times 10^{-2} \exp(-0.12737t) + 0.2431 \] (7.1.3)

7.1.4. Expected Busy Period

\[\mu(t) = 0.2423 \mu t - 8.5785 \times 10^{-3} \exp(-0.79463t) - 22.514 \exp(-9.1338 \times 10^{-3}t) - 0.3414 \exp(-0.12737t) - 0.3414 \] (7.1.4)

7.2. Case II

when \(n=2, s=1, k=1, \ rho \) are the repair occurs when system is in state (i, j)

7.2.1. Availability Analysis

\[P_{up}(t) = 4.3691 \times 10^{-2} \exp(-0.12744t) - 6.8295 \times 10^{-3} \exp(0.79463t) + 0.96314 \exp(1.9276 \times 10^{-3}t) \] (7.2.1)

7.2.2. Expected Operational Time

\[\mu_{up}(t) = 8.5782 \times 10^{-3} \exp(0.79464t) - 0.34226 \exp(-0.12743t) - 18.771 \exp(1.9277 \times 10^{-3}t) - 0.3414 \exp(-0.12737t) - 0.3414 \] (7.2.2)

7.2.3. Busy Period

\[B(t) = 6.8068 \times 10^{-3} \exp(-0.79463t) - 4.2990 \times 10^{-2} \exp(-0.12744t) - 499.66 \exp(-1.9277 \times 10^{-3}t) - 1 \] (7.2.3)

7.2.4. Expected Busy Period

\[\mu(t) = -8.5660 \times 10^{-3} \exp(-0.79463t) - 4.2990 \times 10^{-2} \exp(-0.12744t) - 18.771 \exp(-1.9277 \times 10^{-3}t) - 1 \] (7.2.4)

7.3. Case III

when \(n=2, s=1, k=1, \) and no repair
7.3.1. Availability Analysis

\[P_{up}(t) = 1.0 \cdot \exp\{-0.062t\} + 0.06 \cdot \exp\{-0.062t\} \]

\[\mu_{up}(t) = 32.258 \cdot \exp\{-0.062t\} - t \cdot \exp\{-0.062t\} \]

Setting \(t = 0, 1, 2, \ldots \), in equations (7.1.1), (7.2.1) and (7.3.1), one gets **Table 1**. Variation of availability w.r.t. time in three cases is shown in Figure 1.

Table 1. Availability of the system for three cases at time \(t \)

\(t \)	Availability of the system with \(\rho \) and \(\rho_c \)	Availability of the system with \(\rho \)	Availability of the system without repair
0	1.00	1.00	1.0
10	0.9655	0.957	0.86071
20	0.94735	0.93018	0.63665
30	0.93626	0.91003	0.43588
40	0.92766	0.89199	0.28473
50	0.92025	0.87477	0.18020
60	0.9136	0.85802	0.11148
70	0.90756	0.84162	6.7790 \times 10^{-2}
80	0.90206	0.82555	4.0675 \times 10^{-2}
90	0.89705	0.80978	2.4144 \times 10^{-2}
100	0.89247	0.79432	1.4206 \times 10^{-2}

Setting \(t = 0, 1, 2, \ldots \), in equations (7.1.2), (7.2.2) and (7.3.2), one gets **Table 2**. Variation of expected operational time w.r.t. time in three cases is shown in Figure 2.

Table 2. Expected operational time of the system for three cases at time \(t \)

\(t \)	Expected operational time of the system with \(\rho \) and \(\rho_c \)	Expected operational time of the system with \(\rho \)	Expected operational time of the system without repair
0	0.0	0.0	0.0
10	9.8202	9.7777	9.5255
20	19.375	19.204	17.135
30	28.79	28.402	22.566
40	38.108	37.411	26.207
50	47.347	46.245	28.552
60	56.515	54.908	30.022
70	65.621	63.406	30.925
80	74.668	71.742	31.471
90	83.663	79.918	31.797
100	92.611	87.938	31.99

Setting \(h = 0, 0.02, 0.04 \ldots \), in equations (6.1.14), (6.2.14), one gets **Table 3**. Variation of steady state availability for different values of human error in three cases is shown in Figure 3.

Table 3. Relationship between steady state availability and human error for three cases

\(h \)	Steady state Availability of the system with \(\rho \) and \(\rho_c \)	Steady state Availability of the system with \(\rho \)
0.0	0.78469	0.93122
0.02	0.76896	0.93965
0.04	0.75507	0.92154
0.06	0.74108	0.90245
0.08	0.7276	0.88351
10	0.7146	0.86503
12	0.70206	0.84714
14	0.68995	0.82988
16	0.67625	0.81324
18	0.66694	0.79721
20	0.65601	0.78177

Setting \(h = 0, 0.02, 0.04 \ldots \), in equations (6.1.16), (6.2.16) and (6.3.12), one gets **Table 4**. Variation of MTSF for different values of human error in three cases is shown in Figure 4.

Table 4. Relationship between MTSF and human error for three cases

\(h \)	MTSF of the system with \(\rho \) and \(\rho_c \)	MTSF of the system with \(\rho \)	MTSF of the system without repair
0.0	\(\infty \)	500	46.485
0.02	\(\infty \)	500	24.093
0.04	\(\infty \)	500	16.259
0.06	\(\infty \)	500	12.269
0.08	\(\infty \)	500	9.8520
10	\(\infty \)	500	8.2303
12	\(\infty \)	500	7.0670
14	\(\infty \)	500	6.1919
16	\(\infty \)	500	5.5096
18	\(\infty \)	500	4.9627
20	\(\infty \)	500	4.5146

MTSF of the system with \(\rho \) and \(\rho_c = \infty \), MTSF of the system with \(\rho = 500 \)
failure for the second and third cases. By comparing the MTSF with respect to human failure for the system with ρ and without repair graphically, we observe that:

- The mean time of system failure (MTSF) with ρ and $\rho_c = \infty$.
- MTSF with $\rho = 500$ (constant). However, in case of MTSF without repairing, as for as the value of human failure rate h increases at constant $\lambda = 0.02, \lambda_c = 0.002, \rho_0 = 0.8, \rho_c = 0.008$, the MTSF of the system decreases.

Finally with passing above remarks, we have succeeded to investigate significant performance measures of k-out of-n repairable system involving human and common-cause failures. It is highly expected that our present contribution for performance analysis and inference of k-out of-n repairable system involving human and common-cause failures will be useful for researchers, statisticians, mathematicians and management professionals for their future research and development in this direction, e.g. very recently Maurya (2013 c) proposed a computational approach to cost and profit analysis of k-out of-n repairable system integrating human error and system failure constraints.

Acknowledgements

The present paper is an integral part of the post-doctoral dissertation entitled “Performance Analysis And Inference of Mixed Poisson Queueing Models” published in Scholars Press Publishing, Germany. Prof. V.N. Maurya; author of the paper would like to express his heartiest gratitude to his D.Sc. advisor Prof. (Dr.) R.B. Misra. Ex-Vice Chancellor, Dr. Ram Manohar Avadh University Faizabad, India; Hon’ble Vice Chancellor, University of Fiji, Saweni and Dean, School of Science & Technology, University of Fiji for their encouragement and sincere support to provide all essential facilities.

References

[1] Hughes, R.P., 1987. A new approach to common-cause failure. *Reliability Engineering and System Safety*, Vol. 17, pp. 211-236.

[2] Jain Madhu, Sharma G.C. and Alok Kumar, 2002. K-out of-n system with dependent failure and standby support. *JKAU: Engineering Science*, Vol. 14, No. 2, pp. 73-83

[3] Maurya Avadhesh Kumar and Maurya V.N., 2013. A novel algorithm for optimum balancing energy consumption LEACH protocol using numerical simulation technique, *International Journal of Electronics Communication and Electrical Engineering*, Algeria, Vol. 3, No. 4, pp. 1-19.

[4] Maurya Avadhesh Kumar, Maurya V.N. and Arora D. Kaur, 2013. Linear regression and coverage rate performance analysis for optimization of received signal strength in antenna beam-tilt cellular mobile environment, *International Journal of Electronics Communication and Electrical Engineering*, Algeria, Vol. 3, No. 7, pp. 1-14.

[5] Maurya V.N., 2010. On busy period of an interdependent M/M/1:(\infty;GD) queueing model with bivariate Poisson process and controllable arrival rates, *IEEE Transactions*, pp. 243-246.

[6] Maurya V.N., 2012. Determination of expected busy periods in faster and slower arrival rates of an interdependent M/M/1:(\infty;GD) queueing model with controllable arrival rates, *International Journal of Engineering Research and Technology*, Engineering Science & Research Support Academy (EERSA) Publication, Vadodara, India, Vol.1, No. 5, pp. 1-5.

[7] Maurya V. N., 2013 a. Sensitivity analysis on significant performance measures of bulk arrival retrial queueing
M^{\text{SR}}(G_1, G_2)/1 model with second phase optional service and Bernoulli vacation schedule, *International Open Journal of Operations Research*, Academic and Scientific Publishing, New York, USA, Vol. 1, No. 1, pp. 1-15.

[8] Maurya V.N., 2013 b. Performance analysis of M^{\text{SR}}(G_1, G_2)/1 queueing model with second phase optional service and Bernoulli vacation schedule, *American Journal of Modeling and Optimization, Science and Education Publishing*, New York, USA, Vol. 2, No.1, pp 01-07.

[9] Maurya V. N., Arora Divinder Kaur, Maurya Avadhesh Kumar and Gautam Ram Asrey, 2013 a. Numerical simulation and design parameters in solar photovoltaic water pumping systems, *American Journal of Engineering Technology*, Academic & Scientific Publishing, New York, USA, Vol.1, No. 1, pp. 1-09.

[10] Maurya V.N., Arora Divinder Kaur, Maurya Avadhesh Kumar and Gautam R.A., 2013 b. Exact modeling of annual maximum rainfall with Gumbel and Frechet distributions using parameter estimation techniques, *World of Sciences Journal*, Engineers Press Publishing, Vienna, Austria, Vol. 1, No. 2, pp.11-26.

[11] Maurya V.N., 2000. A study of use of stochastic processes in some queueing models, Ph.D. Thesis, Department of Mathematics & Statistics, Dr. R.M.L. Avadh University, Faizabad, India.

[12] Maurya V.N., 2013 c. Computational approach to cost and profit analysis of k-out of-n repairable system integrating human error and system failure constraints, *Physical Sciences Research International, Net Journals*, Abuja, Nigeria, Vol. 1, No. 4, pp. 133-140.

[13] Mishra S.S. and Yadav D.K., 2010. Computational approach to cost and profit analysis of clocked queueing networks, *Contemporary Engineering Sciences*, Vol.3, No. 8, pp. 365-370.

[14] Moustafa S.M., 1997. Reliability analysis of k-out of-n systems with dependent failures and imperfect coverage. *Reliability Engineering and System Safety*, Vol. 58, pp. 15-17.

[15] Pham H., Suprasad A., and Misra R.B., 1997. Availability and mean life time predication of multistage degraded system with partial repair, *Reliability Engineering and System Safety*, Vol. 56, pp. 169-173.

[16] Shao J. and Lamberson L.R., 1991. Modeling a shared-load k-out of-n: G systems, *IEEE Trans. Reliab.* Vol. 40, No. 2, pp. 202-208

[17] Wang K.H. and Ming Y., 1997. Profit analysis of M/Ec/1 machine repair problem with a non-reliable service station, *Computers and Industrial Engineering*, Vol. 32, pp. 587-594.

[18] Who Kee Chang, 1987. Reliability analysis of a repairable parallel system with standby involving human failure and common-cause failures, *Micro-electron. Reliab.* Vol. 27, No 2, pp. 269-271.