3’-6-Dimethoxy-3””,4”’-Methylenedioxy-2,5-Epoxylignan-4’-ol Inhibited Glioma-Associated Oncogene

Yusnita Rifai1*, Midori Arai2 and Masami Ishibashi2

1Faculty of Pharmacy Hasanuddin University, Makassar 90245, Indonesia
2Graduate School of Pharmaceutical Sciences, Chiba University, Japan

Abstract

Aberrant activation of Hedgehog (Hh) signaling pathway has been linked to the development of cancers. A naturally occurring Hedgehog inhibitor, 3’,6-dimethoxy-3””,4”’-(methylenedioxy)-2,5-epoxylignan-4’-ol (DMEO), isolated from Piper nigrum, exhibited selective cytotoxicity against human pancreatic cancer (PANC1) with no toxic effect on normal cells. This compound blocked the translocation of GLI transcription factors into the nucleus in PANC1. RNA interference of the Smoothened (Smo) function in PANC1 treated with the compound downregulated the mRNA expression of Ptch.

Keywords: Hedgehog signaling; GLI; Smo; PANC1; MRNA expression; Ptcch

Introduction

The Hh signaling pathway has become an important regulator of tissue patterning, stem cell maintenance and cancer growth [1]. In cancer cells, binding of the Hh protein to the membrane receptor patched 1 (PTCH) releases its inhibitory effect on Smo. Activated Smo further transduces downstream cascades to activate the glioma-associated oncogene (GLI) family of transcription factors [2]. Recent papers reported that GLI signaling pathway has been considered as a promising target for selective cancer therapy.

In some types of human cancers, Hh/GLI signaling is activated because of mutations in Ptch or Smo, leading to cancer formation and progression. Searching for bioactive natural products targeting Hh/GLI signaling thus may promote an effective anticancer-strategy. We identified several Hh/GLI-mediated transcriptional inhibitors from plants [3-6] including 3’-6-dimethoxy-3””,4”’-(methylenedioxy)-2,5-epoxylignan-4’-ol (DMEO) which was isolated from Piper nigrum [7]. We have previously adapted the concept of nano magnetic beads to the identification of GLI inhibitory compounds, using GLI-GST culture which was immobilized on the beads and plant extracts [8]. DMEO was bound to GLI-magnetic bead thus may be a lead constituent for the inhibition of Hh/GLI-dependant cancer.

GLI families, which are activated by the aberrant Hh/GLI signaling in the cells, contribute to the progression of pancreatic [9] and prostate [10] cancer cells. Most known Hh inhibitors repress the pathway by inhibiting Smo thus inactivate Ptch function; however, one of the oncogenic Smo mutants (SmoM2) is apparently resistant to cyclopamine [11] and most Smo inhibitors did not reduce the proliferation levels of medullablastoma and cancer related to downstream lesions [12].

In the present study, to provide a novel bioactive agent that could inhibit GLI, the cytotoxicity of DMEO and its underlying mechanism were elucidated in cellular extracts of PANC-1. To verify the function of Smo in PANC1 during the Hh inhibition of DMEO, RNA interference work was also performed.

Materials and Methods

Compound

DMEO was isolated from Piper nigrum according to the target oriented-isolation method [7]. Compound DMEO was isolated as a white amorphous solid and gave the molecular formula C_{21}H_{24}O_{6}Na as deduced from HR-FABMS m/z 395.1294 (calcld for C_{21}H_{24}O_{6}Na, 395.1305). The IR absorption bands suggested the presence of hydroxyl (3490 cm^{-1}) (br) and aromatic (1620, 1450 cm^{-1}) groups and methylenedioxy (935 cm^{-1}). The UV absorption maxima were at UV (MeOH) λmax 282 nm (log ε 3.1) and 230 nm (log ε 3.0). For identification of the compound, 1H NMR spectra were recorded at 400 MHz on an AC-250 Bruker NMR spectrometer, and elemental analyses were carried out to get analytical results compared to literatures.

Target-oriented isolation using gli-bound magnetic beads

GST-GLI was bound to magnetic beads according to the manual procedure (Invitrogen). MeOH extract of Piper nigrum fruits in EtOH solution (370 mg in EtOH, 50 mL) was added to GLI-bound magnetic beads (2 mL). The mixture was gently kept for 2h at -4°C prior to centrifugation for 10 min (12,000 rpm, -4°C). The supernatant solution was removed and the pellet (15.5 mg) was subjected to preparative HPLC [Capcell Pack C.18 type Acr, 4.6 x 250 mm; MeOH : H2O (3 : 2)]; flow rate: 2.0 mL/min; RI and UV detection at 254 nm) to obtain DMEO (8.2 mg).

Cytotoxicity test

PANC1, C3H10T1/2 (RIKEN BRC) or DU145 (Cell Resource Center for Biomedical Research Institute of Development, Aging and Cancer, Tohoku University) were seeded in black 96-well plates at 1 x 10^4 cells per well. After incubation at 37°C for 24h, medium was replaced by DMEO at different concentrations (1.9 µM; 3.8 µM; 7.6 µM) and cell viability was determined by the fluorometric microculture cytotoxicity assay (FMCA), and IC_{50} values were determined. Assays were performed in triplicate.

*Corresponding author: Yusnita Rifai, Faculty of Pharmacy. Hasanuddin University, Makassar, Indonesia, Tel : +62-411-588556; Fax : +62-411-590663; E-mail: yusnita@fmipa.unhas.ac.id

Received October 25, 2014; Accepted November 27, 2014; Published December 04, 2014

Citation: Rifai Y, Arai M, Ishibashi M (2014) 3’,6-Dimethoxy-3””,4”’-Methylenedioxy-2,5-Epoxylignan-4’-ol Inhibited Glioma-Associated Oncogene. J Biomol Res Ther 3: 117. doi: 10.4172/2167-7956.1000117

Copyright: © Rifai Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Isolation of cellular extracts

PANC1 cells were seeded into 10 cm dishes (2 x 10^6 cells) and incubated for 24h at 37°C. Compounds DMOE at various concentrations were added. After 24h incubation, cells were washed with PBS and then collected by scraping the whole parts. Protein lysate was prepared with lysis buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.5% sodium deoxycholate, 10 mM EDTA, 1 mM sodium orthovanadate, and 0.1 mM NaF) containing a 1% proteasome inhibitor cocktail (Nacalai Tesque, Japan), and then centrifuged at 13000 rpm, 4°C for 30 min.

Isolation of cytosolic and nuclear proteins

PANC1 cells were seeded into 60 mm dishes (2x10^6 cells), and incubated for 24h at 37°C, after which cells were harvested with trypsin and centrifuged at 1000 rpm at 4°C for 5 min. Protein lysates were prepared in the same way as the isolation of the whole cellular extract. Nuclear and cytosolic extracts were used using NE-PER nuclear and cytosolic extraction reagents (Pierce) according to the manufacturer’s instructions.

Western blotting

Protein lysates of the whole extract, cytosol or nucleus were blotted using standard procedures. To detect GLI1 (150 kDa), PTCH (140 kDa) and BCL-2 (26 kDa), anti-GLI1 (Santa Cruz Biotechnology), anti PTCH (Santa Cruz Biotechnology), and anti BCL-2 (Sigma) were used as specific primary antibodies followed by anti-goat IgG (Sigma), anti-rabbit IgG, and anti-mouse IgG (Amersham Biosciences) as the second antibodies. β-actin (45 kDa) was used as an internal control.

RNA interference experiments

PANC1 cells were seeded into 6 cm dishes (4x10^5 cells) and incubated for 12h. RPMI-1640 medium (containing 10 % FBS) was removed and compound DMOE at concentrations of 4.0 µM and 8.0 µM were added. After 12h incubation, cells were transfected with small interfering RNA (20 nM) (SMO siRNAs, Santa Cruz Biotechnology) using SiPORT™ NeoFX™ (Ambion) and OPTI-MEM® (Invitrogen), as described by the manufacturer. Non-targeting siRNA at the same concentration served as a control (DMOE was replaced by DMSO) was transfected. To confirm the transfection efficiency of RNA interference, Western blotting was performed prior to quantitative RT-PCR. First and second antibodies (anti Smo, Santa Cruz Biotechnology and anti-rabbit IgG, Jackson Immuno Research Lab. Inc.) were used then the band was detected using enhanced chemiluminescence light (GE Healthcare Biosciences).

Real-Time RT-PCR

Total RNA was extracted using an Rnasey Mini kit (Qiagen), and cDNA was synthesized using the RT-PCR SuperScript III Platinum Two Step qRT-PCR Kit (Invitrogen). The mRNA levels of Ptcch were measured on a Mx3000P QPCR system (Stratagene) at the following annealing temperatures: 50°C for 2 min (initial incubation), 95°C for 2 min (initial denaturation), and then 40 cycles of 95°C for 15 s (denaturation) and 60°C for 30 s (annealing, extension). Each amplification reaction was performed in triplicate. mRNA quantification is expressed in arbitrary units and was normalized to an internal control GAPDH.

Results and Discussion

GLI inhibitory activity of DMOE (IC_{50} value of 4.1 µM) was examined by using the luciferase assay whereas the cytotoxicity of DMOE against pancreatic cancer cells (PANC1), prostate cancer cells (DU145) and normal cells (C3H10T1/2) was checked using the FMCA system. The results revealed that the new epoxy lignan compound was cytotoxic against PANC1 cells (IC_{50} value of 3.6 µM) and DU145 cells (IC_{50} value of 3.4 µM) but did not affect normal cell lines (Figure 1a and 1b). Cytotoxicities may contribute to the inhibition of GLI transcriptional activity.

To understand the molecular mechanism underlying the Hh signaling inhibitory effect of DMOE, we checked the expression of a GLI-related gene (Ptcch) using real-time quantitative RT-PCR (Figure 2a). Compared with the control group, mRNA expression of PANC1 treated with DMOE was slightly down regulated at a concentration of 4.0 µM. The compound DMOE might be able to modulate Ptcch expression in PANC1 due to the inhibition of GLI transcriptional activity.

To verify the function of Smo in PANC1 during the Hh inhibition of DMOE, we knocked down Smo expression in PANC1 cells by siRNA and performed real-time quantitative RT-PCR on its mRNA
expression. Western blot results confirmed that there was a proved total depletion of the Smo protein level after the silencing process (Figure 2b). Accordingly, silencing of Smo siRNA significantly reduced the expression of Ptch mRNA in PANC1 cells treated with DME0 after the silencing process (Figure 2c). These results thus indicated that DME0 is a potential GLI inhibitor in the nuclei site of PANC-1 without Smo interference.

The effect of DME0 on downstream events was identified by checking the protein levels of full, cytoplasmic and nuclear PANC1 after treatment with DME0. Our Western blot result showed that treatment with DME0 at a concentration of 4.0 μM led to a significant decrease in the protein level of nuclear GLI1 in PANC1. The compound also reduced the expression of a GLI-related gene Ptch but not BCL-2 in the protein level of full cytoplasmic PANC1 according to a dose-dependent manner (Figure 2c). This result was in agreement with the previous report stated that Ptch was a repressive Hh receptor. Thus elevated expression of Ptch results in the concomitant expression of Hh target genes, including GLI1.

Acknowledgement

This work was supported by Ministry of Science and Technology of Indonesia through grant of SiNas 2013. We are grateful to Dr. Sasaki from RIKEN (Japan) for the kind provision of cultured GST and to Prof. Elly Wahyudin the dean of Faculty of Pharmacy from Hasanuddin University for providing necessary research facilities.

References

1. Ruiz AA, Sanchez P, Dahmane N (2002) Gli and Hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2: 361-372.
2. Rubin LL, de Sauvage FJ (2006) Targeting the Hedgehog pathway in cancer. Nat Rev Drug Disc 5: 1026-1033.
3. Rifai Y, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2010) Terpenoids and flavonoid glycoside from Acacia pennata as Hedgehog/GLI-mediated transcriptional inhibitors. J Nat Prod 73: 995-997.
4. Rifai Y, Arai MA, Sadhu SK, Ahmed F, Ishibashi M (2011) New Hedgehog/GLI signaling inhibitors from Excoecaria agallocha. Bioorg Med Chem Lett 21: 718-722.
5. Rifai Y, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2011) Acoschimerosperoside P, 2-acetate: a Hedgehog signaling inhibitor constitutive from Vallaris glabra. J Nat Med 65: 629-632.
6. Shintani A, Toume K, Rifai Y, Arai MA, Ishibashi M (2010) A bisindole alkaloid with Hedgehog signal inhibitory activity from the myxomycete Perichaena chrysosperma. J Nat Prod 73: 1711-1713.
7. Rifai Y, Aswad M, Subehan (2012) A new ligand from Piper nigrum. Int Journal of Chemical and Analytical Science 3: 1585-1586.
8. Rifai Y (2012) A new method for fast isolation of GLI inhibitory compounds. Int Journal of Pharma Research and Review 5: 1-5.
9. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, et al. (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425: 851-856.
10. Sanchez P, Hernandez AM, Sterco B, Kahler AJ, De Gueame AM, et al. (2004) Inhibition of prostate cancer proliferation by interference with Sonic Hedgehog-GLI1 signaling. Proc Natl Acad Sci 101: 12561-12566.
11. Lauth M, Bergström A, Shimokawa T, Toftgård R (2007) Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 104: 8455.
12. Lee Y, Kawagoe R, Sasaki K, Li Y, Russell HP, Curran T, McKinnon PJ (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26: 6442.

Submit your next manuscript and get advantages of OMICS

Group submissions

Unique features:

• User friendly/feasible website-translation of your paper to 50 world’s leading languages
• Audio Version of published paper
• Digital articles to share and explore

Special features:

• 400 Open Access Journals
• 30,000 editorial team
• 21 days rapid review process
• Quality and quick editorial, review and publication processing
• Indexing at PubMed (partial), Scopus, B&CC, Index Copernicus and Google Scholar etc
• Sharing Option: Social Networking Enabled
• Authors, Reviewers and Editors rewarded with online Scientific Credits
• Better discount for your subsequent articles

Submit your manuscript at: http://emiscinehrna.org/submission/