Generalized Fractional Differential Ring

Zeinab Toghani, Luis Gaggero
Queen Mary University of London
Universidad Autónoma del Estado de Morelos (CIICAp)

Abstract

There are many possible definitions of derivatives, here we present some and present one that we have called generalized that allows us to put some of the others as a particular case of this but, what interests us is to determine that there is an infinite number of possible definitions of fractional derivatives, all are correct as differential operators each of them must be properly defined its algebra.

We introduce a generalized version of fractional derivative that extends the existing ones in the literature. To those extensions it is associated a differentiable operator and a differential ring and applications that shows the advantages of the generalization.

We also review the different definitions of fractional derivatives proposed by Michele Caputo in [Cap67], Khalil, Al Horani, Yousef, Sababheh in [KAHYS14], Anderson and Ulness in [AU15a], Guebbai and Ghiat in [GG16], Udita N. Katugampola in [Kat14], Camrud in [Cam16] and it is shown how the generalized version contains the previous ones as a particular cases.

Keywords: Generalized Fractional Derivative, Fractional differential ring.

1 Introduction

Fractional derivative was defined for responding to a question’ what does it mean \(\frac{d^\alpha f}{dt^\alpha} \) if \(\alpha = \frac{1}{2} \) ’ in 1695. Following that, finding the right definition of fractional derivative has attracted significant attention of researcher and in the last few years it has seen significantly progress in mathematical and non-mathematical journals (see [Las02], [Wei15], [Aga12], [DWH13], [CK15], [WZD17], [AHK14], [Nam80], [YZUHR13], [And16]). In fact, there are articles which in few months have gained hundreds of citations. In particular in past three years several definitions of fractional derivative have been proposed (see [KAHYS14], [AU15b], [SdO17], [Cam16], [MR93], [OTM15], [Kat14], [IN16], [AAHK15], [AAHK13], [GG16], [And16], [SB17], [CF15], [DWH13], [Aga12], [Las00]). Since some of previous definitions do not satisfy the classical formulas of the usual derivative, it has been proposed an ad hoc algebra associated to each definition. To unify that diversity, we propose a version of fractional derivative that has the advantages that generalized the already
existing in the literature and where the different algebras are unified under the notion of fractional differential ring.

The present paper is organized as follows: In the second section we give the previous definitions of fractional derivative and our generalized fractional derivative (GFD) definition, in the third section we introduce a fractional differential ring, in the forth section we give some result of GFD, in the fifth section we give a definition of partial fractional differential derivative, in the sixth section we give a definition of GFD when \(\alpha \in (n, n + 1] \).

2 Fractional derivative

Let \(\alpha \in (0, 1] \) be a fractional number, we want to give a definition of generalized fractional derivative of order \(\alpha \) for a differentiable function \(f \). We denote \(\alpha \)-th derivative of \(f \) by \(D^\alpha(f) \) and we denote the first derivative of \(f \) by \(D(f) \).

We begin the present section listing previous definition of fractional derivative; later we present our proposal of generalized one showing how it contains the once already described. We finish the section providing some examples.

1. The Caputo fractional derivative was defined by Michele Caputo in [Cap69]:
\[
D^\alpha(f) = \frac{1}{\Gamma(1-\alpha)} \int_a^t \frac{f'(x)}{(t-x)^\alpha} \, dx.
\]

2. The conformable fractional derivative was defined by Khalil, Al Horani, Yousef and Sababheh in [KAHYS14]:
\[
D^\alpha f(t) = \lim_{\varepsilon \to 0} \frac{f(t + t^{1-\alpha}\varepsilon) - f(t)}{\varepsilon}.
\]

3. The conformable fractional derivative was defined by Anderson and Ulness in [AU15a]:
\[
D^\alpha f(t) = (1 - \alpha) \mid t \mid ^\alpha f(t) + \alpha \mid t \mid ^{1-\alpha} D f.
\]

4. The fractional derivative was defined by Udita N.Katugampola in [Kat14]:
\[
D^\alpha f(t) = \lim_{\varepsilon \to 0} \frac{f(te^{\varepsilon t-\alpha}) - f(t)}{\varepsilon}.
\]

5. The fractional derivative was defined by Guebbai and Ghiat in [GG16] for an increasing and positive function \(f \):
\[
D^\alpha f(t) = \lim_{\varepsilon \to 0} \left(\frac{f(t + f(t)^{1-\alpha}\varepsilon) - f(t)}{\varepsilon} \right)^\alpha.
\]

6. The conformable ratio derivative was defined by Camrud in [Cam16] for a function \(f(t) \geq 0 \) with \(Df(t) \geq 0 \):
\[
D^\alpha f(t) = \lim_{\varepsilon \to 0} \left(\frac{f(t + \varepsilon) - f(t)}{\varepsilon} \right)^\alpha.
\]
From all these definitions, we propose a definition that unifies almost all of them.

Definition 1. Given a differentiable function \(f : [0, \infty) \to \mathbb{R} \), the **generalized fractional derivative** (GFD) for \(\alpha \in (0, 1] \) at point \(t \) is defined by:

\[
D^\alpha f(t) = \lim_{\varepsilon \to 0} \frac{f(t + w_{t,\alpha}t^{1-\alpha}\varepsilon) - f(t)}{\varepsilon},
\]

where \(w_{t,\alpha} \) is a function that may depend on \(\alpha \) and \(t \).

Remark 1. As a consequence of definition 1, we can see

\[
D^\alpha f(t) = w_{t,\alpha}t^{1-\alpha}Df(t).
\]

Definition 2. A differentiable function \(f : [0, \infty) \to \mathbb{R} \) is said to be \(\alpha \)-generalized fractional differentiable function over \([0, \infty)\) if it exists \(D^\alpha(f)(t) \) for all \(t \in [0, \infty) \) for \(\alpha \in (0, 1] \).

We denote \(C^\alpha[0, \infty) \) the set of \(\alpha \)-generalized differentiable functions with real values in the interval \([0, \infty)\) in variable \(t \). The set \((C^\alpha[0, \infty), +, \cdot)\) is a ring. In the following we want to see the relation between GFD and the other definitions:

1. The fractional derivative of Khalil, Al Horani, Yousef and Sababheh in [KAHYS14] is a particular case of GFD where \(w_{t,\alpha} = 1 \).
2. The fractional derivative of Anderson and Ulness in [AU15a] is a particular case of GFD where

\[
w_{t,\alpha} = (1 - \alpha)t^\alpha f(t) + \alpha t^{1-\alpha}Df(t).
\]

In this fractional derivative \(w_{t,\alpha} \) depends on \(\alpha \) and \(t \).
3. The fractional derivatives of Guebbai and Ghiat in [GG16] and Camrud in [Cam16] are particular cases of GFD where \(w_{t,\alpha} = \left(\frac{tDf}{f}\right)^{-1} \).

We are particularly interested in discussing GFD where \(w_{t,\alpha} = g(t, \alpha)^{\tau^{-\alpha}} \) such that \(g : [0, \infty) \times (0, 1] \to \mathbb{R} \) is a function and \(\tau \) is the characteristic of the system with the properties

\[
w_{t,\alpha} = 1 \quad \text{if and only if} \quad \alpha = 1.
\]

If the system is periodic with period \(T \), then we have \(\tau = T \). In the quantum systems \(\tau \) is the Bohr radius and in astronomy \(\tau \) is the light year. The characteristic of system \(\tau \) depends on the systems and the derivative. If \(t \) is time, \(\tau \) is time too. If \(t \) is space, \(\tau \) is space too. In fact the unit of \(t \) is \(\tau \), i.e., \(t = c\tau \) where \(c \) is a constant. In the general \(\tau = 1 \).

Example 3. Let \(\alpha, \beta \in (0, 1] \). Let \(f, h \) be two functions in \(C^\alpha[0, \infty) \). We suppose \(w_{t,\alpha} = g(t, \alpha)^{\tau^{-\alpha}} \) with \(\tau = 1 \).

1. If \(g(t, \alpha) \) is a function with \(g(0, 0) = 0 \), then \(\lim_{\alpha \to 0} D^\alpha(f) = 0 \).
2. If \(g(t, \alpha) = \alpha \), we have the chain rule

\[
D^\alpha(f \circ h) = \frac{t^{\alpha-1}}{\alpha} D^\alpha (f(h)) D^\alpha(h).
\]

Example 4. We want to present the corresponding figure to the generalized fractional derivatives for \(\alpha = \frac{3}{4} \) for a trigonometric, using all the fractional derivative definitions that we have already mentioned in this article. It can be seen from all the figures that in principle these definitions do not find a reason to discard them. That is, they have a fairly reasonable behavior. We consider \(f(t) = \sin(2t) \), the figure of \(f \) can be seen in the following picture.

![Figure 1](image)

Figure 1: red: Caputo, green: Khalil et al, blue: Anderson et al, orange: Guebbai et al, black: GFD when \(w_t, \alpha = \alpha \).

3 Generalized fractional differential ring

In this section we want to stress out that instead of defining a new derivative, we focus on the notion of differentiable operator and the ring that it carries with.

Definition 5. Let \(R \) be a commutative ring with unity. A derivation on \(R \) is a map \(d : R \to R \) that satisfies \(d(a + b) = d(a) + d(b) \) and \(d(ab) = d(a)b + ad(b), \forall a, b \in R \). The pair \((R, d) \) is called a differential ring (see [Rit50]).

Theorem 6. Let \(\alpha \in (0, 1] \). The ring \(C^\alpha[0, \infty) \) with operator \(D^\alpha : C^\alpha[0, \infty) \to C^\alpha[0, \infty) \) is a differential ring.

Proof. Since \(C^\alpha[0, \infty) \) is a commutative ring with unity \(f(t) = 1 \) and the derivation \(D^\alpha \) for \(\alpha \in (0, 1] \) satisfies following properties from remark (1)

1. \(D^\alpha(af_1 + bf_2) = aD^\alpha(f_1) + bD^\alpha(f_2), \forall f_1, f_2 \in C^\alpha[0, \infty), \forall a, b \in \mathbb{R} \),

2. \(D^\alpha(f_1f_2) = f_1D^\alpha(f_2) + f_2D^\alpha(f_1), \forall f_1, f_2 \in C^\alpha[0, \infty) \).

\[\square\]
Let $\alpha \in (0, 1]$ be a fractional number, let $f_1, f_2 \in C^\alpha[0, \infty)$ be two functions, GFD has the following properties:

1. $D^\alpha\left(\frac{f_1}{f_2} \right) = \frac{f_2 D^\alpha f_1 - f_1 D^\alpha f_2}{f_2^2}$.
2. $D^\alpha(f_1 \circ f_2) = \frac{\alpha - 1}{\alpha} D^\alpha f_1(f_2) D^\alpha f_2$.
3. $D^{\alpha+\beta}(f_1) = \frac{\alpha \cdot \alpha}{\alpha + \beta} D^\alpha D^\beta(f_1)$.

It is easy to see these properties from remark [1]. If $w_{t, \alpha} = t^{1-\alpha}$ we have the equality

$$D^\alpha(f_1 \circ f_2) = D^\alpha f_1(f_2) D^\alpha f_2.$$

If $\frac{w_{t, \alpha+\beta}}{w_{t, \alpha} w_{t, \beta}} = t$ we have the equality

$$D^{\alpha+\beta}(f_1) = D^\alpha D^\beta(f_1), \forall \alpha, \beta \in (0, 1].$$

Parts 4 and 5 of the properties imply that we can create function spaces with different algebras using different expressions for $w_{t, \alpha}$.

By considering previous properties of GFD we called $C^\alpha[0, \infty)$ a $w_{t, \alpha}$-generalized fractional differential ring of functions and we denote it by $(C^\alpha[0, \infty), D^\alpha, w_{t, \alpha})$. Let $I \subset C^\alpha[0, \infty)$ be an ideal. If $D^\alpha(I) \subset I$ then the ideal I is called a $w_{t, \alpha}$-generalized fractional differential ideal. By using the previous properties we can see the following result:

Theorem 7. Let $\alpha \in (0, 1]$. Associated to any α and any $w_{t, \alpha}$ there exists a fractional differential ring.

4 Some results of Generalized Fractional Derivative

Let $\alpha \in (0, 1]$ be a fractional number and $t \in [0, \infty)$ then GFD has the following properties:

1. $D^\alpha\left(\frac{t^n}{\alpha w_{t, \alpha}} \right) = 1$,
2. $D^\alpha(\sin(\frac{t^n}{\alpha w_{t, \alpha}})) = \cos(\frac{t^n}{\alpha w_{t, \alpha}})$,
3. $D^\alpha(\cos(\frac{t^n}{\alpha w_{t, \alpha}})) = -\sin(\frac{t^n}{\alpha w_{t, \alpha}})$,
4. $D^\alpha(e^{\frac{t^n}{\alpha w_{t, \alpha}}}) = e^{\frac{t^n}{\alpha w_{t, \alpha}}}$.

Theorem 8. (Rolle’s theorem for α-Generalized Fractional Differentiable Functions)

Let $a > 0$, let $f : [a, b] \to \mathbb{R}$ be a function with the properties that

1. f is continuous on $[a, b]$,
2. f is α-generalized fractional differentiable on (a, b) for some $\alpha \in (0, 1]$,
3. $f(a) = f(b)$.

Then, there exist $c \in (a, b)$ such that $D^\alpha f(c) = 0$.

Proof. Since f is continuous on $[a, b]$ and $f(a) = f(b)$, then the function f has a local extreme in a point $c \in (a, b)$. Then

$$D^\alpha f(c) = \lim_{\varepsilon \to 0^+} \frac{f(c + w_{t,\alpha}c^{1-\alpha}\varepsilon) - f(c)}{\varepsilon} = \lim_{\varepsilon \to 0^-} \frac{f(c + w_{t,\alpha}c^{1-\alpha}\varepsilon) - f(c)}{\varepsilon}. $$

But two limits have different signs. Then $D^\alpha f(c) = 0$. \(\square\)

Theorem 9. (Mean Value Theorem for α–Generalized Fractional Differentiable Functions) Let $a > 0$ and $f : [a, b] \to \mathbb{R}$ be a function with the properties that

1. f is continuous on $[a, b]$,
2. f is α–Generalized fractional differentiable on (a, b) for some $\alpha \in (0, 1]$.

Then, there exists $c \in (a, b)$ such that $D^\alpha f(c) = \frac{\alpha w_{t,\alpha}(f(b) - f(a))}{b - a}$.

Proof. Consider function

$$h(t) = f(t) - f(a) - \frac{\alpha w_{t,\alpha}(f(b) - f(a))}{b - a} \left(\frac{t^\alpha}{\alpha w_{t,\alpha}} - \frac{a^\alpha}{\alpha w_{t,\alpha}} \right),$$

Then, the function h satisfies the conditions of the fractional Rolle's theorem. Hence, there exists $c \in (a, b)$ such that $D^\alpha h(c) = 0$. We have the result since

$$D^\alpha h(c) = D^\alpha f(c) - \frac{\alpha w_{t,\alpha}(f(b) - f(a))}{b - a}(1) = 0 \quad \square$$

5 Generalized Partial Fractional Derivative

In this section we introduce a partial fractional derivative of first and second order, also we introduce a partial fractional differential ring.

Definition 10. Let $f(t_1, \ldots, t_n) : [0, \infty)^n \to \mathbb{R}$ be a function with n variables such that $\forall i$, there exists the partial derivative of f respect to t_i. Let $\alpha \in (0, 1]$ be a fractional number. We define α–generalized partial fractional derivative (GPFD) of f with respect to t_i at point $t = (t_1, \ldots, t_n)$

$$\frac{\partial^\alpha f(t)}{\partial t_i^\alpha} = \lim_{\varepsilon \to 0} \frac{f(t_1, \ldots, t_i + w_{t_i,\alpha}t_i^{1-\alpha}\varepsilon, \ldots, t_n) - f(t)}{\varepsilon},$$

where $w_{t_i,\alpha}$ can be a function depend on α and t_i.

Remark 2. As a consequence of definition [2] we can see for $\alpha \in (0, 1]$ and $1 \leq i \leq n$:

$$\frac{\partial^\alpha f}{\partial t_i^\alpha}(t) = w_{t_i,\alpha}(t_i)^{1-\alpha} \frac{\partial f}{\partial t_i}(t).$$
Let $\alpha \in (0, 1]$ and $1 \leq i \leq n$. A partial differentiable function $f : [0, \infty)^n \rightarrow \mathbb{R}$ is said to be a α-generalized partial fractional differentiable function with respect to t_i over $[0, \infty)$ if exists $\frac{\partial^{\alpha} f(t)}{\partial t^\alpha_i}$ for all $t \in [0, \infty)$. We denote by $C_\alpha^n[0, \infty)^n$ the set of α-generalized partial fractional differentiable functions with respect to t_i with real values in the interval $[0, \infty)^n$ in variable $t = (t_1, \ldots, t_n)$. The set $(C_\alpha^n[0, \infty)^n, +, \cdot)$ is a ring.

Theorem 11. Let $\alpha \in (0, 1]$ and $1 \leq i \leq n$. The ring $C_\alpha^n[0, \infty)^n$ with operator

$$
\frac{\partial^{\alpha}}{\partial t^\alpha_i} : C_\alpha^n[0, \infty)^n \rightarrow C_\alpha^n[0, \infty)^n
$$

is a differential ring.

Proof. Since the ring $C_\alpha^n[0, \infty)^n$ is a commutative ring with unity $f(t_1, \ldots, t_n) = 1$ and the derivation $\frac{\partial^{\alpha}}{\partial t^\alpha_i}$ for $\alpha \in (0, 1]$ satisfies the following properties from remark [2]:

1. $\frac{\partial^{\alpha}(f_1 + f_2)}{\partial t^\alpha_i} = \frac{\partial^{\alpha}f_1}{\partial t^\alpha_i} + \frac{\partial^{\alpha}f_2}{\partial t^\alpha_i}$, $f_1, f_2 \in C_\alpha^n[0, \infty)^n$,

2. $\frac{\partial^{\alpha}(f_1f_2)}{\partial t^\alpha_i} = f_1 \frac{\partial^{\alpha}f_2}{\partial t^\alpha_i} + f_2 \frac{\partial^{\alpha}f_1}{\partial t^\alpha_i}$, $f_1, f_2 \in C_\alpha^n[0, \infty)^n$.

Let $\alpha \in (0, 1]$ and $1 \leq i \leq n$, let $f_1, f_2 \in C_\alpha^n[0, \infty)^n$ be two functions, then GPFD has the following properties from remark [2]:

1. $\frac{\partial^{\alpha}(f_1)_{f_2}}{\partial t^\alpha_i} = \frac{f_2^{\alpha}f_1 - f_1^{\alpha}f_2}{f_2^2}$,

2. $\frac{\partial^{\alpha}f_1f_2}{\partial t^\alpha_i} = \frac{\partial^{\alpha}(f_1(f_2))}{\partial t^\alpha_i} + \frac{\partial^{\alpha}(f_2)}{\partial t^\alpha_i}$,

3. $\frac{\partial^{\alpha+\beta}f_1}{\partial t^\alpha_i} = \frac{w_{i,\alpha}w_{i,\beta}t_1^{\alpha}t_1^{\beta}}{w_{i,\alpha+\beta}} \frac{\partial^{\alpha}f_1}{\partial t^\alpha_i}$.

By considering previous properties of GPFD we called the ring $C_\alpha^n[0, \infty)^n$ a $w_{i,\alpha}$ generalized partial fractional differential ring. We denote it by $(C_\alpha^n[0, \infty)^n, \frac{\partial^{\alpha}}{\partial t^\alpha_i}, w_{i,\alpha})$.

We can see the following result by using the previous properties.

Theorem 12. Let $\alpha \in (0, 1]$ and $1 \leq i \leq n$. Associated to any α and any $w_{i,\alpha}$ there is a partial fractional differential ring.

Example 13. Let $f(t_1, t_2) = t_1^3 \sin(t_2)$, let $\alpha \in [0, 1)$. We have

$$
\frac{\partial^{\alpha}f}{\partial t^\alpha_1} = w_{1,\alpha}(t_1)^{1-\alpha}(3t_2^2) \sin(t_2).
$$

Definition 14. Let $\alpha \in (0, 1]$ be a fractional number. We define α-generalized partial fractional derivative of second order with respect to t_i and t_j at point $t = (t_1, \ldots, t_n)$ is

$$
\frac{\partial^{\alpha}f(t)}{\partial t^\alpha_i \partial t^\alpha_j} = \frac{\partial^{\alpha}f(t)}{\partial t^\alpha_i} \frac{\partial^{\alpha}f(t)}{\partial t^\alpha_j} = \lim_{\varepsilon \to 0} \frac{\partial^{\alpha}f(t_1, \ldots, t_j + w_{j,\alpha}t_1^{1-\alpha} \varepsilon, \ldots, t_n)}{\varepsilon}.
$$
Remark 3. As a consequence of definition \[14\] we can see for \(\alpha \in (0, 1]\) and \(1 \leq i, j \leq n\);

\[
\frac{\partial^{\alpha^2} f(t)}{\partial t_i^\alpha \partial t_j^\alpha} = \epsilon \frac{\partial f}{\partial t_i} \left(t_j \right)
\]

A partial differentiable function of second order \(f : [0, \infty)^n \to \mathbb{R}\) is said to be a \(\alpha\)-generalized fractional partial differentiable function of second order respect to \(t_i\) and \(t_j\) over \([0, \infty]\) if exists \(\frac{\partial^{\alpha^2} f(t)}{\partial t_i^\alpha \partial t_j^\alpha}\) for all \(t \in [0, \infty)\). We denote \(C^{\alpha^2}_{i,j}[0, \infty)^n\) the set of \(\alpha\)-generalized partial fractional differentiable functions of second order respect to \(t_i\) and \(t_j\) with real values in the interval \([0, \infty)^n\) in variable \(t = (t_1, \ldots, t_n)\). The set \((C^{\alpha^2}_{i,j}[0, \infty)^n, +, .)\) is a ring.

6 Generalized Fractional Derivative for \(\alpha \in (n, n + 1]\)

In this section we define a fractional differential derivative for \(\alpha \in (n, n + 1]\).

Definition 15. Let \(\alpha \in (n, n + 1]\) be a fractional number for \(n \in \mathbb{N}\), let \(f : [0, \infty) \to \mathbb{R}\) be a \(n\)-differentiable. The generalized fractional derivative of order \(\alpha\) is defined by

\[
D^\alpha f(t) = \lim_{\epsilon \to 0} \frac{f([\alpha]-1(t + \epsilon t_i) - \alpha - \epsilon) - f([\alpha]-1(t))}{\epsilon},
\]

where \([\alpha]\) is the smallest integer greater than or equal to \(\alpha\).

As a consequence of definition \[15\] we can see

\[
D^\alpha (f) = w_{t, \alpha} f^{[\alpha]-\alpha} D^{[\alpha]} (f),
\]

where \(\alpha \in (n, n + 1]\).

Let \(n < \alpha \leq n + 1\). A function \(f : [0, \infty) \to \mathbb{R}\) is said to be \(\alpha\)-generalized differentiable over \([0, \infty)\) if there exists \(D^\alpha (f)(t)\) for all \(t \in [0, \infty)\). We denote \(C^\alpha[0, \infty)\) the set of \(\alpha\)-generalized fractional differentiable functions with real values in the interval \([0, \infty)\) in variable \(t\). The set \((C^\alpha[0, \infty), +, .)\) is a ring.

Theorem 16. The ring \((C^\alpha[0, \infty), +, .)\) with operator \(D^\alpha\) is not a differential ring for fractional number \(\alpha \in (n, n + 1]\).

Proof. Since \(D^\alpha (fg) \neq f D^\alpha g + gD^\alpha (f)\) for every \(f, g \in C^\alpha[0, \infty)\).

7 \(\alpha\)-Fractional Taylor Series

There are some articles about fractional Taylor series see \([\text{AU15b}, \text{Use08}, \text{Mun04}, \text{Yan11}]\). In this section we use GFD to define a fractional taylor series for a function \(f \in C^\alpha[0, \infty)\) for every fractional number \(\alpha\).

Let \(0 < \alpha < 1\), we define the \(\alpha\)-fractional taylor series of \(f\) at real number \(x_0\)

\[
f(x) = f(x_0) + \sum_{i=1}^{\infty} \frac{D^i f(x_0)}{w_{x, \alpha} (\alpha + i - 1)!} (x - x_0)^{\alpha+i-1},
\]

8
where $(\alpha + i - 1)! = \alpha(\alpha + 1)\cdots(\alpha + i - 1)$.

Let $1 < \alpha \leq 2$, we define the α-fractional taylor series of f at real number x_0

$$f(x) = f(x_0) + Df(x_0)(x - x_0) + \sum_{i=2}^{\infty} \frac{D^i f(x_0)(x - x_0)^{\alpha+i-2}}{w_{x,\alpha}(\alpha+i-2)!},$$

where $(\alpha + i - 2)! = (\alpha - 1)(\alpha + 1)\cdots(\alpha + i - 2)$. Let $n < \alpha \leq n + 1$ such that $\alpha = n + A$ with $0 < A < 1$ we define the α-fractional taylor series of f at real number x_0,

$$f(x) = f(x_0) + \sum_{i=1}^{n} \frac{D^i f(x_0)(x - x_0)^{i}}{i!} + \sum_{i=n+1}^{\infty} \frac{D^i f(x_0)}{w_{x,\alpha}(A+i-1)!}(x - x_0)^{A+i-1},$$

where $\alpha = n + A$, $(A+i-1)! = A(A+1)\cdots(A+i-1)$.

8 Application to differential equations

There are some articles for applications of fractional differential derivative such as [YZUHR13], [Aga12], [AHK14], [WZD17]. In this section we solve some (partial)fractional differential equations by using our definitions. At the first we solve the fractional differential equations with the form

$$aD^\alpha y + by = c, \quad (7)$$

where $y = f(t)$ be a differentiable function and $0 < \alpha < 1$.

By substituting GFD in the equation (7) we have

$$aw_{t,\alpha}t^{1-\alpha}Dy + by = c \implies Dy + \frac{b\alpha}{aw_{t,\alpha}}y = \frac{t^{\alpha-1}c}{aw_{t,\alpha}},$$

the solutions of this equation have the form $y(t) = \frac{c}{b} + c_1e^{(-\frac{b\alpha}{aw_{t,\alpha}})}$.

Example 17. We consider the partial fractional differential equation with boundary conditions

$$\begin{cases}
n_t + 2\sqrt{xu_x} + u = x^2, t > 0 \\
u(t, 0) = 0, \\
u(0, x) = 0,
\end{cases} \quad (8)$$

where $u(x, t)$ be a differentiable function respect to x and t, $u(x, t)$ be a $\frac{1}{3}$-partial fractional differentiable function of first order respect to x, $u_t = \frac{\partial u}{\partial t}$ and $\sqrt[3]{u_x} = \frac{\partial^{\frac{1}{3}}u}{\partial x^{\frac{1}{3}}}$. For $w_{t,\frac{1}{3}} = \frac{1}{3}$ by using remark [2] we can write

$$u_t + 2\sqrt{xu_x} + u = x^2 \implies u_t + 2\sqrt{xw_{t,\frac{1}{3}}x^{-\alpha}u_x} + u = x^2 \implies u_t + \frac{2}{3}xu_x + u = x^2.$$

We solve this equation by taking Laplace transform of equation respect to t, we denote by $U(x,s)$ the Laplace of $u(x,t)$ respect to t, we have the following equation

$$\begin{cases}
sU(x,s) - U(x, 0) + \frac{2}{3}xU_x(x, s) + U(x, s) = x^2s \\
U(t, 0) = 0, \\
U(0, x) = 0.
\end{cases} \quad (9)$$
then
\[U_x + \frac{3 + 3s}{2x} U = \frac{3x}{2s} \implies U(x, s) = \frac{3x^2}{s(3s + 7)} + c(s) x^{-3 - 3s}. \]

By substituting \(U(0, x) = 0 \) we have \(c(s) = 0 \), then \(U(x, s) = x^2 \left(\frac{3}{7s} + \frac{9}{7(3s + 7)} \right) \). The solution of equation is \(u(x, t) = \frac{x^2}{T} (1 - e^{-\frac{T}{x^2}}) \).

Example 18. We consider the partial fractional differential equation of second order;
\[\sqrt[3]{u_{x,t}} + 2\frac{u}{x} = 0, \tag{10} \]

where \(u(x, t) \) be a \(t^{\frac{1}{5}} \)-fractional partial differentiable function of second order respect to \(t, x \). For \(w_{x, t^{\frac{1}{5}}} = x^2, w_{t, t^{\frac{1}{5}}} = \frac{1}{\sqrt{t}} \) by using remark (3) we have
\[x^2 \sqrt[3]{x^4} u_{x,t} + 2 \sqrt[3]{t} u = 0. \tag{11} \]

We consider a solution of this differential equation with the form \(u(x, t) = f(x)g(t) \) such that \(f \) a function depends on \(x \) and \(g \) a function depends on \(t \). By substituting \(u(x, t) \) in the equation (11) we have
\[x^2 \sqrt[3]{x^4} Df.Dg + 3 \sqrt[3]{t} fg = 0. \tag{12} \]

We can write the equation (12) a form that divide the functions of \(t \) and \(x \):
\[\frac{x^2 \sqrt[3]{x^4} Df}{f} = - \frac{2 \sqrt[3]{t} g}{\sqrt[3]{t^4} Dg}, \tag{13} \]

two sides of the equality (13) is a constant \(k \). We have
\[
\begin{align*}
\frac{Df}{f} &= \frac{k}{\sqrt[3]{t}} \rightarrow Lnf = k \sqrt[3]{x} + c_1 \rightarrow f = \exp(k \sqrt[3]{x} + c_1) \\
\frac{Dg}{g} &= \frac{-2}{k \sqrt[3]{t}} \rightarrow Lng = -\frac{2 \sqrt[3]{t} g}{k} + c_2 \rightarrow g = \exp\left(-\frac{2 \sqrt[3]{t}}{k} + c_2\right)
\end{align*}
\]
\tag{14}

The solution of the equation (10) has the form
\[u(x, t) = \exp(k \sqrt[3]{x} + c_1) \exp\left(-\frac{2 \sqrt[3]{t}}{k} + c_2\right) = c \exp(k \sqrt[3]{x} + \frac{-2 \sqrt[3]{t}}{k}). \]

9 Conclusion

We define a generalized fractional derivative(GFD). We show that the previous derivatives are particular cases. We show how it is possible to have infinite fractional derivatives with their algebra. We present the fractional differential ring, the fractional partial derivatives and their applications.

Acknowledgement

This paper was supported by PRODEP of Mexico for Zeinab Toghani postdoctoral position.
References

[AAHK15] Thabet Abdeljawad, Mohammed AL Horani, and Roshdi Khalil, Conformable fractional semigroups of operators, Journal of Semigroup Theory and Applications 2015 (2015), Article–ID.

[Aga12] Praveen Agarwal, On applications of fractional calculus involving summations of series, American Journal of Mathematics and Statistics 2 (2012), no. 6, 221–225.

[AHK14] I Abu Hammad and R Khalil, Fractional fourier series with applications, Am. J. Comput. Appl. Math 4 (2014), no. 6, 187–191.

[And16] Douglas R Anderson, Taylor’s formula and integral inequalities for conformable fractional derivatives, Contributions in Mathematics and Engineering, Springer, 2016, pp. 25–43.

[AU15a] Douglas R Anderson and Darin J Ulness, Newly defined conformable derivatives, Advances in Dynamical Systems and Applications 10 (2015), no. 2, 109–137.

[AU15b] _____, Properties of the katugampola fractional derivative with potential application in quantum mechanics, Journal of Mathematical Physics 56 (2015), no. 6, 063502.

[Cam16] Evan Camrud, The conformable ratio derivative, Rose-Hulman Undergraduate Mathematics Journal 17 (2016), no. 2, 10.

[Cap67] Michele Caputo, Linear models of dissipation whose q is almost frequency independent-ii, Geophysical Journal of the Royal Astronomical Society 13 (1967), no. 5, 529–539.

[Cap69] M Caputo, Elasticita e dissipazione: Zanichelli, bologna, italy, Links (1969).

[CF15] Michele Caputo and Mauro Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl 1 (2015), no. 2, 1–13.

[CK15] Yücel Cenesiz and Ali Kurt, The solutions of time and space conformable fractional heat equations with conformable fourier transform, Acta Universitatis Sapientiae, Mathematica 7 (2015), no. 2, 130–140.

[DWH13] Maolin Du, Zaihua Wang, and Haiyan Hu, Measuring memory with the order of fractional derivative, Scientific reports 3 (2013), no. 1, 1–3.

[GG16] Hamza Guebbai and Mourad Ghiat, New conformable fractional derivative definition for positive and increasing functions and its generalization, Advances in Dynamical Systems and Applications 11 (2016), no. 2, 105–111.

[IN16] Olaniyi S Iyiola and Eze R Nwaeze, Some new results on the new conformable fractional calculus with application using d’alambert approach, Progr. Fract. Differ. Appl 2 (2016), no. 2, 115–122.
[KAHY14] Roshdi Khalil, M Al Horani, Abdelrahman Yousef, and M Sababheh, *A new definition of fractional derivative*, Journal of Computational and Applied Mathematics 264 (2014), 65–70.

[Kat14] Udita N Katugampola, *A new fractional derivative with classical properties*, arXiv preprint arXiv:1410.6535 (2014).

[Las00] Nick Laskin, *Fractional quantum mechanics*, Physical Review E 62 (2000), no. 3, 3135.

[Las02] _____, *Fractional schrödinger equation*, Physical Review E 66 (2002), no. 5, 056108.

[MR93] Kenneth S Miller and Bertram Ross, *An introduction to the fractional calculus and fractional differential equations*.

[Mun04] Joakim Munkhammar, *Riemann-liouville fractional derivatives and the taylor-riemann series*, 2004.

[Nam80] Victor Namias, *The fractional order fourier transform and its application to quantum mechanics*, IMA Journal of Applied Mathematics 25 (1980), no. 3, 241–265.

[OTM15] Manuel D. Ortigueira and J.A. Tenreiro Machado, *What is a fractional derivative?*, J. Comput. Phys. 293 (2015), no. C, 4–13.

[Rit50] Joseph Fels Ritt, *Differential Algebra*, American Mathematical Society Colloquium Publications, Vol. XXXIII, American Mathematical Society, New York, N. Y., 1950. MR 0035763 (12,7c)

[SB17] Mehmet Zeki Sarikaya and HÜSEYİN BUDAK, *New inequalities of opial type for conformable fractional integrals*, Turkish Journal of Mathematics 41 (2017), no. 5, 1164–1173.

[SdO17] J Vanterler da C Sousa and E Capelas de Oliveira, *M-fractional derivative with classical properties*, arXiv preprint arXiv:1704.08186 (2017).

[Use08] David Usero, *Fractional taylor series for caputo fractional derivatives. construction of numerical schemes*, Preprint http://www. fdi. ucm. es/profesor/l vazquez/calcfrac/docs/paper_Usero. pdf (2008).

[Wei15] Y Wei, *Some solutions to the fractional and relativistic schrödinger equations*, Int. J. Theor. Math. Phys. 5 (2015), 87–111.

[WZD17] Xiaoping Wang, Fei Zhang, and Jianli Ding, *Evaluation of water quality based on a machine learning algorithm and water quality index for the ebinur lake watershed, china*, Scientific reports 7 (2017), no. 1, 1–18.

[Yan11] Xiao-Jun Yang, *Generalized local fractional taylor’s formula with local fractional derivative*, arXiv preprint arXiv:1106.2459 (2011).
[YZUHR13] Muhammad Younis, Asim Zafar, K Ul-Haq, and M Rahman, *Travelling wave solutions of fractional order coupled burger’s equations by (g'/g)-expansion method*, American Journal of Computational and Applied Mathematics 3 (2013), no. 2, 81–85.