Indicações do Uso de Inibidores da PCSK9 em Pacientes com Alto Risco e Muito Alto Risco Cardiovascular

Indications of PCSK9 Inhibitors for Patients at High and Very High Cardiovascular Risk

Paulo Eduardo Ballvé Behr,1 Emilio Hideyuki Moriguchi,2,3 Iran Castro,4 Luiz Carlos Bodanese,1 Oscar Pereira Dutra,4 Paulo Ernesto Leães,5 Pedro Pimentel Filho6

Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul,1 Porto Alegre, RS - Brasil
Faculdade de Medicina - Universidade Federal do Rio Grande do Sul,1 Porto Alegre, RS - Brasil
Serviço de Cardiologia - Hospital de Clínicas de Porto Alegre,1 Porto Alegre - Brasil
Instituto de Cardiologia / Fundação Universitária de Cardiologia,4 Porto Alegre, RS - Brasil
Irmandade Santa Casa de Misericórdia de Porto Alegre,3 Porto Alegre, RS - Brasil
Hospital Nossa Senhora da Conceição,6 Porto Alegre, RS - Brasil

A doença cardiovascular (DCV) aterosclerótica é a principal responsável pelos eventos isquêmicos agudos coronários, proporção significativa de acidente vascular cerebral (AVC) isquêmico, bem como isquemia de artérias periféricas. Tais eventos conferem significativa mortalidade, incapacidade física e/ou mental e custo para o indivíduo e para a sociedade.1

LDL-C como fator de risco

A causalidade entre LDL-C plasmática e a reduzida captação mediada pelo receptor de LDL-C na fisiopatologia da DCV tem sido estabelecida com muita consistência.2 Para pacientes com muito alto risco de eventos prematuros, incluindo aqueles com hipercolesterolemia familiar (HF), LDL-C elevado é um fator de risco extremamente prevalente.3

Dificuldade em atingir metas com estatinas

Uma questão clínica relevante é a dificuldade na obtenção dos níveis de LDL-C recomendados pelas diretrizes para indivíduos com muito alto risco cardiovascular (CV). Mesmo com o uso de estatinas de alta potência, uma proporção substancial desses pacientes não atingirá o alvo do LDL-C, em parte como resultado de efeitos farmacogenéticos que determinam ampla variabilidade inter-individual na resposta às estatinas. Essa questão enfatiza a necessidade de redução adicional do LDL-C com novas opções terapêuticas que visem essas partículas aterogênicas.4

Inibidores da PCSK9

A protease PCSK9 (proprotein convertase subtilisin/kexin type 9), um membro da família protease-serina, desempenha um papel central na regulação da atividade do receptor hepático do LDL-C. Sujeitos com mutações no gene PCSK9 e que apresentam perda de função terão risco substancialmente reduzido de desenvolver doença coronaria resultante de menores níveis do LDL-C; inversamente, indivíduos heterozigotos para a mutação da PCSK9, com ganho de função, apresentam um fenotipo consistente com HF.5

Esses achados estimularam a investigação do uso de inibidores da PCSK9 (I-PCSK9) como uma alternativa terapêutica inovadora para melhorar o controle de níveis elevados do LDL-C.5,6

Inúmeros estudos clínicos com diferentes anticorpos monoclonais contra PCSK9 circulante, tanto isoladamente quanto em adição às estatinas, têm confirmado profundas reduções dos níveis do LDL-C, atingindo até 60%.7,8

FOURIER, SPIRE e ODYSSEY

O estudo FOURIER, recentemente apresentado no Congresso do American College of Cardiology, avaliou pacientes que haviam apresentado síndrome coronária aguda um papel central na regulação da atividade do receptor hepático do LDL-C. Sujeitos com mutações no gene PCSK9 e que apresentam perda de função terão risco substancialmente reduzido de desenvolver doença coronaria resultante de menores níveis do LDL-C; inversamente, indivíduos heterozigotos para a mutação da PCSK9, com ganho de função, apresentam um fenotipo consistente com HF.5

Os estudos incluíram pacientes com alto risco cardiovascular, que receberam evolocumabe, bococizumabe ou placebo. Os pacientes receberam estatinas de alta potência, exceto maior incidência de reação no local de aplicação, no seguimento mediano de 2,2 anos. Esses estudos demonstraram a eficácia e segurança dos inibidores da PCSK9 em pacietes com alto risco cardiovascular.

Correspondência: Paulo Eduardo Ballvé Behr • Av. Ipiranga, 6690 sala 300. CEP 90610-000, Jardim Botânico, Porto Alegre, RS - Brasil
E-mail: pbehr@cardiol.br, pbehr@terra.com.br
Artigo recebido em 30/11/2017, revisado em 01/03/2018, aceito em 25/04/2018

DOI: 10.5935/abc.20180133
no período entre 1 e 12 meses antes da randomização. Todos os indivíduos estavam tratados com estatinas de moderada e alta potência, associadas ou não à ezetimiba. O seguimento médio foi de 2,8 anos.12 Esse estudo demonstrou significativa redução de IAM não fatal, angina instável e AVC isquêmico naqueles que foram randomizados para receber o I-PCSK9 alirocumabe. Achado interessante foi que o subgrupo de indivíduos com LDL-C maior ou igual a 100 mg/dl (já tratados com estatinas) e que recebeu alirocumabe apresentou o maior benefício, inclusive com redução da mortalidade total em 29%, comparado com o placebo.

Custo versus benefício de novas terapias

Embora o advento da medicina de precisão e os tratamentos inovadores tenham sido o guia para uma abordagem individualizada na prevenção e no manejo do paciente, as restrições financeiras ao crescente aumento do custo dos sistemas de saúde ao redor do mundo frequentemente requerem que o benefício terapêutico seja balanceado contra o custo de determinada intervenção.

Diretriz brasileira

A recentemente atualizada Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose recomenda a utilização dos I-PCSK9 (evolocumabe e alirocumabe) somente em pacientes com risco CV elevado, em tratamento otimizado com estatinas na maior dose tolerada, associado ou não à ezetimiba, e que não tenham alcançado as metas do LDL-C ou não HDL-C recomendadas.13

No entanto, a diretriz brasileira não aponta quais indivíduos terão maior benefício com o uso dessa nova classe de medicamento.

Estudos têm demonstrado que a quantificação do “benefício absoluto” de uma terapia adicional é um fator importante para determinar a decisão clínica de usar ou não esse novo tratamento. Aspectos financeiros também devem ser levados em conta, mas, por enquanto, não temos análises de custo-efetividade com os I-PCSK9 no Brasil.14

Considerando que os I-PCSK9 apresentam um custo acima daquele das demais drogas para o tratamento CV, torna-se importante identificar, na população de indivíduos de alto risco, aqueles para quem o tratamento estará associado à redução do risco absoluto para a mesma redução relativa.15

O cálculo do NNT também pode auxiliar a identificar grupos de pacientes que tenham maior benefício da adição de uma terapia não estatina, usando uma combinação de risco absoluto e limites do LDL-C.

Dessa maneira, a seleção de pacientes para uso de I-PCSK9 deve ser individualizada na prevenção e no manejo do paciente. No entanto, ao analisar essa variável, é importante lembrar que a redução do risco absoluto para a mesma redução relativa do LDL-C será menor quando o LDL-C basal for mais baixo (figura 1). Em outras palavras, quanto mais elevado o nível do LDL-C após tratamento com estatinas/ezetimiba, maior será o benefício do tratamento com os I-PCSK9 e menor será o NNT.17

A redução relativa nos eventos CV para estatinas, ezetimiba e anticorpos monoclonais contra PCSK9 tem demonstrado consistência com a relação descrita na meta-análise do CTT (Cholesterol Treatment Trials) onde cada redução de 39 mg/dl no LDL-C foi associada com 21% de redução nos eventos CV maiores.18

Critérios para decisão

Ao associar as duas variáveis apresentadas em uma excelente análise, Robinson et al.,16 estimaram, de acordo com o risco CV dos indivíduos e dos seus níveis do LDL-C sob tratamento com estatinas, os NNTs em 5 anos para prevenir um evento CV.16 (Tabela 1)
Embora exista um consenso que NNTs até 50 são considerados aceitáveis para novas intervenções, devemos lembrar que os I-PCSK9 são drogas de alto custo. Por outro lado, NNTs abaixo de 20 são raramente obtidos em intervenções para tratamento ou prevenção de DCV, resultantes de estudos atuais.

Dessa maneira, partindo da premissa que os I-PCSK9 reduzem em pelo menos 50% o LDL-C, de maneira consistente, consideramos que NNTs abaixo de 30 são plenamente aceitáveis e identificam um subgrupo de indivíduos que terão grande benefício com o uso dessa nova classe de medicamentos.

Consideramos, portanto, que pacientes com “alto risco” CV, plenamente tratados com estatina de alta potência associada à ezetimiba, e que apresentem LDL-C acima de 130 mg/dl, terão expressiva redução do risco de eventos CV ao associar I-PCSK9.

Tabela 1 – NNT em 5 anos para prevenir um evento cardiovascular (CV) em indivíduos com “alto risco CV” e “muito alto risco CV”, já tratados com estatinas de alta potência, ao adicionar inibidor de PCSK9 (I-PCSK9)

LDL-C Inicial	Redução do LDL-C em 50% com I-PCSK9	Redução do LDL-C em 65% com I-PCSK9
	Alto risco (risco de DCVA em 10 anos de 20-29%)	
190	19	15
160	23	18
130	28	22
100	37	28
70	53	40
	Muito alto risco (risco de DCVA em 10 anos ≥ 30%)	
190	13	10
160	15	12
130	19	15
100	25	19
70	35	27

LDL-C: low-density-lipoprotein cholesterol; PCSK9: proprotein convertase subtilisin/kexin type 9; DCVA: doença cardiovascular aterosclerótica. Tabela adaptada com permissão de Elsevier.
Da mesma maneira, indivíduos com “muito alto risco” CV e LDL-C acima de 100 mg/dl após uso de estatina e ezetimiba apresentam grande chance de obter significativa redução de desfechos e do risco CV residual com o uso dessa nova classe medicamentosa.

Conclusão
Este posicionamento do Departamento de Aterosclerose da Sociedade de Cardiologia do Rio Grande do Sul identifica pacientes que podem obter o maior benefício clínico secundário à inibição da PCSK9. Esses são os indivíduos com maior risco CV associado à maior probabilidade de atingir grande redução do LDL-C. Leva em conta, também, restrições financeiras dentro do sistema de saúde e do cenário econômico atual.

É importante enfatizar que indivíduos que não se enquadrem nas indicações para uso dos anticorpos contra PCSK9 apresentadas neste posicionamento não estão proibidos de ter indicado este tratamento, pois a decisão terapêutica envolve julgamento clínico e consenso entre médico e paciente.

Contribuição dos autores
Concepção e desenho da pesquisa, Obtenção de dados, Análise e interpretação dos dados, Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Behr PEB, Moriguchi EH, Castro I, Bodanese LC, Dutra OP, Leães PE, Pimentel Filho P.

Potencial conflito de interesses
Dr. Paulo Eduardo Ballvé Behr honorários de palestras em programas de educação continuada médica continuada para Amgen.
Dr. Emilio Hideyuki Moriguchi honorários de palestras em programas de educação continuada médica continuada para Amgen e Sanofi.
Dr. Luiz Carlos Bodanese participou como investigador dos estudos Odyssey e Rourier.
Dr. Oscar Pereira Dutra participou como investigador dos estudo Rourier.
Dr. Paulo Ernesto Leães participou como investigador dos estudos Odyssey e Rourier.

Fontes de financiamento
O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica
Não há vinculação deste estudo a programas de pós-graduação.

Referências
1. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937-52.
2. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459-72.
3. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, et al. Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. J Am Coll Cardiol. 2016;67(22):2578-89.
4. Ridker PM, Mora S, Rose I; JUPITER Trial Study Group. Percent reduction in LDL cholesterol following high-intensity statin therapy: potential implications for guidelines and for the prescription of emerging lipid-lowering agents. Eur Heart J. 2016;37(17):1373-9.
5. Kathiresan S. Developing medicines that mimic the natural successes of the human genome: lessons from NPC1L1, HMGCR, PCSK9, APOC3, and CETP. J Am Coll Cardiol. 2015;66(15):1562-6.
6. Urban D, Pöss J, Böhm M, Laufs U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013;62(16):1401-8.
7. Kastelein JJ, Ginsberg HN, Langlet G, Hovingh GK, Ceska R, Dufour R, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36(43):2996-3003.
8. Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled Trial. Lancet. 2015;385(9965):331-40.
9. Sabatine MS, Giugliano RP, Keech AC, Honapour N, Wiviott SD, Murohy AS, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713-22.
10. Giugliano RP, Mach F, Zavitz K, Kurtz C, Im H, Kanovsky E, et al. Cognitive Function in a Randomized Trial of Evolocumab. N Engl J Med. 2017;377(7):633-43.
11. Ridker PM, Revkin J, Amerencio P, Brunell R, Curto M, Civeira F, et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med. 2017;376(16):1527–39.
12. Schwartz GG, Szarek M, Bhatt DL, Bittner V, Diaz R, Steg G, et al. “The ODYSSEY OUTCOMES Trial: Topline results Alirocumab in patients after acute coronary syndrome”. In: 67th Scientific Session of American College Cardiology; 2018 March 10. Orlando(Florida);2018. [Cited in 2018 April 10]. Available from:https://clinicaltrials.gov/ct2/show/NCT01663402?cond=NCT01663402&rank=1.
13. Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afine Neto A et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose – 2017. Arq Bras Cardiol 2017; 109(2Supl.1):1-76.

14. Lloyd-DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD, DePalma SM, et al. 2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: a report of the American College of Cardiology Task Force on Clinical Expert Consensus. J Am Coll Cardiol. 2016;68(1):92–125.

15. Cook RJ, Sackett DL. The number needed to treat: a clinically useful measure of treatment effect. BMJ. 1995;310(6977):452-4.

16. Robinson JG, Huijgen R, Ray K, Persons J, Kastelein JJ, Pencina MJ. Determining when to add nonstatin therapy: a quantitative approach. J Am Coll Cardiol. 2016;68(22):2412-21.

17. Laufs U, Descamps OS, Catapano AL, Packard CJ. Understanding IMPROVE-IT and the cardinal role of LDL-C lowering in CVD prevention. Eur Heart J. 2014;35:1996-2000.

18. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet 2010; 376(9753):1670-81.

19. Van der Leeuw J, Oemrawsingh RM, van der Graaf Y, Brugts JJ, Deckers JW, et al. Prediction of absolute risk reduction of cardiovascular events with perindopril for individual patients with stable coronary artery disease — Results from EUROPA. Int J Cardiol. 2015;182:194-9.

20. Steel N. Thresholds for taking antihypertensive drugs in different professional and lay groups: questionnaire survey. BMJ. 2000;320(7247):1446–7.

Este é um artigo de acesso aberto distribuído sob os termos da licença de atribuição pelo Creative Commons