The QGP dynamics in relativistic collisions

E. L. Bratkovskaya1,2, W. Cassing3, V. P. Konchakovski3,4 and V.D. Toneev5,2

1 Institute for Theoretical Physics, University of Frankfurt, Frankfurt, Germany
2 Frankfurt Institute for Advanced Study, Frankfurt, Germany
3 Institute for Theoretical Physics, University of Giessen, Giessen, Germany
4 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
5 Joint Institute for Nuclear Research, Dubna, Russia

Abstract. The dynamics of partons and hadrons in ultra-relativistic nucleus-nucleus collisions is analyzed within the Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for the partonic phase (DQPM) including a dynamical hadronization scheme while reproducing lattice QCD results in thermodynamic equilibrium for the equation-of-state as well as transport coefficients like shear and bulk viscosities or the electric conductivity of the hot QCD medium. The PHSD model reproduces a large variety of observables from SPS to LHC energies, e.g. the quark-number scaling of elliptic flow, transverse mass and rapidity spectra of charged hadrons, dilepton spectra, open and hidden charm production, collective flow coefficients etc., which are associated with the observation of a strongly interacting QGP (sQGP). The 'highlights' of the latest results from LHC energies are presented with a focus on observable effects from the non-equilibrium initial dynamics.

1. Introduction

The dynamics of the early universe in terms of the 'Big Bang' may be studied experimentally by ultra-relativistic nucleus-nucleus collisions at Relativistic-Heavy-Ion-Collider (RHIC) or Large-Hadron-Collider (LHC) energies in terms of 'tiny bangs' in the laboratory. With sufficiently strong parton interactions, the medium in the collision zone can be expected to achieve local equilibrium after some initial delay and exhibit approximately hydrodynamic flow [1, 2, 3]. In these collisions a new state of strongly interacting matter is created, being characterized by a very low shear viscosity η to entropy density s ratio, η/s, close to a nearly perfect fluid [4, 5, 6]. Lattice QCD (lQCD) calculations [7, 8] indicate that a crossover region between hadron and quark-gluon matter should have been reached in these experiments.

In case of nucleon-nucleus (e.g. Pb+Pb) collisions the ideal or viscous hydro calculations the initial conditions – at some finite starting time of the order of 0.3 to 0.5 fm/c – have to be evaluated either in terms of the (standard) Glauber model or other initial state scenarios like in the IP-glasma model [9, 10] or the CGC approach [11, 12, 13, 14], respectively. Alternative initial state scenarios are a coherent or incoherent superposition of 'strings' [15] or just an incoherent superposition of hard nucleon-nucleon collisions as in the wounded nucleon model (WNM) [16]. Differences between the different initial state assumptions and dynamical evolutions thus have to be expected. The applicability of ideal or viscous hydrodynamic models to proton-nucleus reactions for low multiplicity events, however, is very much debated. This also holds for hybrid models [17, 18, 19] as long as they employ a hydro phase. To our knowledge only microscopic
transport approaches [20, 21] allow to bridge the gap from p-p to p-A and A-A collisions in a unique way without introducing additional (and less controlled) parameters. We will here employ the microscopic Parton-Hadron-String Dynamics (PHSD) transport approach [22] to analyze early reaction dynamics in the context of collective flow coefficients to shed some light on the sensitivity of these observables on different assumptions on the initial state dynamics.

The complexity of heavy-ion collisions is reduced essentially in the case of proton-nucleus collisions owing to the expected dominance of the initial state effects. In 2013 the first ALICE measurement of the charged particle pseudorapidity density has been reported [23] for $|\eta| < 2$ in p-Pb collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{NN}} = 5.02$ TeV. The measurement has been compared to two sets of particle production models that describe similar measurements for other collision systems: the saturation models employing coherence effects [12, 13, 14] and the two-component models combining perturbative QCD processes with soft interactions [24, 25]. A comparison of the model calculations with the data has shown that the results are model-dependent and predict the measured multiplicities only within 20%. Accordingly, the restrictions imposed by the measured minimal bias pseudorapidity spectra $dN_c/d\eta$ are not sufficient to disentangle different models for the very early interaction stage of ultra-relativistic collisions. Furthermore, a test of color coherence in proton-nucleus collisions at the LHC energy has been proposed in Ref. [16]. The idea of this proposal is based on the fact that the observed mean multiplicity of charged particles $\langle N_{ch}\rangle$ linearly depends on the number of participants N_{part} within the wounded nucleon model (WNM) of independent nucleon-nucleon scatterings, $\langle N_{ch}\rangle \sim N_{part}$, while in the CGC models this dependence is logarithmic, $\langle N_{ch}\rangle \sim \ln N_{part}$. For a small number of participants, $N_{part} \leq 10$, the mean multiplicities calculated in both approaches practically coincide (in agreement with experiment) but for $N_{part} \sim 25$ they differ by almost a factor of two [16]. Such large numbers of participants are possible at the LHC energy of 5.02 TeV in p-Pb collisions. Furthermore, as pointed out in Ref. [26] there should be a sizeable difference in the mean transverse momentum of particles versus the pseudorapidity $\langle p_T\rangle(\eta)$ with opposite slopes in η on the projectile side within the CGC framework relative to hydrodynamical calculations due to the saturation scale Q_s in the CGC. We will report on these suggestions employing a study within the PHSD approach.

2. PHSD @ LHC

We briefly recall the ingredients of the PHSD which is a covariant dynamical approach for strongly interacting systems formulated on the basis of Kadanoff-Baym equations [27] or off-shell transport equations in phase-space representation, respectively. In the Kadanoff-Baym theory the field quanta are described in terms of dressed propagators with complex selfenergies. Whereas the real part of the selfenergies can be related to mean-field potentials (of Lorentz scalar, vector or tensor type), the imaginary parts provide information about the lifetime and/or reaction rates of time-like particles [28]. Once the proper (complex) selfenergies of the degrees-of-freedom are known, the time evolution of the system is fully governed by off-shell transport equations (as described in Refs. [27, 28]). The PHSD approach includes a dynamical hadronization scheme based on transition rates and incorporates elastic and inelastic interactions of hadrons in the final expansion stage as in the HSD model [29]. This approach allows for a simple and transparent interpretation of lattice QCD results for thermodynamic quantities as well as correlators in the partonic stage and leads to effective strongly interacting partonic quasiparticles with broad spectral functions. For a review on off-shell transport theory we refer the reader to Ref. [28]. Actual PHSD results and their comparison with experimental observables for heavy-ion collisions from the lower super-proton-synchrotron (SPS) to RHIC energies can be found in Refs. [22, 30, 31] including electromagnetic probes such as e^+e^- or $\mu^+\mu^-$ pairs [32, 33].
2.1. p-p reactions at the LHC

To extend the PHSD model to higher energies than $\sqrt{s_{NN}} = 200$ GeV at RHIC, we have additionally implemented the PYTHIA 6.4 generator [34] for initial nucleon collisions at LHC energies. For the subsequent (lower energy) collisions the standard PHSD model [22] is applied (including PYTHIA v5.5 with JETSET v7.3 for the production and fragmentation of jets [35], i.e. for $\sqrt{s_{NN}} \leq 500$ GeV [35]). In this way all results from PHSD up to top RHIC energies are regained and a proper extension to LHC energies is achieved. At $\sim \sqrt{s_{NN}} = 500$ GeV both PYTHIA versions lead to very similar results. In PYTHIA 6.4 we use the Innsbruck pp tune (390) which allows to describe reasonably the p-p collisions at $\sqrt{s_{NN}} = 7$ TeV in the framework of the PHSD transport approach. The overall agreement with LHC experimental data for the distribution in the charged particle multiplicity N_{ch} (a), the charged particle pseudorapidity distribution (b), the transverse momentum p_T spectra (c) and the correlation of the average p_T with the number of charged particles (d) is satisfactory (cf. Fig. 1).

![Graphs showing comparisons](image)

Figure 1. Comparison of the PHSD results (including PYTHIA 6.4) with LHC experimental data from the ATLAS Collaboration [36] for p-p collisions at $\sqrt{s_{NN}} = 7$ TeV: (a) N_{ch} distribution, (b) $dN_{ch}/d\eta$ distribution, (c) p_T-spectra and (d) average p_T vs. N_{ch}.

2.2. Properties of p-Pb collisions at the LHC

With the elementary p-p collisions in the PHSD being adjusted at LHC energies via PYTHIA 6.4 (using the Innsbruck pp tune (390)) we proceed with observables and correlations from p-Pb collisions. In Fig. 2 (lhs) we present the probability distribution in the participant number N_{part} and the number of charged hadrons at midrapidity $N_{ch}(\eta = 0)$ as well as the ensemble average $<N_{ch}>$ vs. N_{part} (rhs) for p-Pb ($\sqrt{s_{NN}}$=5.02 TeV). As is seen from Fig. 2 (lhs), the number of
charged particles at midrapidity correlates with the number of participants, \(N_{ch}(\eta = 0) \sim N_{part} \), however, with a large dispersion in both quantities. When considering the ensemble average \(< N_{ch}/d\eta > (\eta = 0) \) vs. \(N_{part} \) we obtain the solid (blue) line within PHSD while the dotted (red) line results from PHSD when including additionally fluctuations in the cross section (PHSD GG). For details we refer the reader to Ref. [37]. Both the standard Glauber and CGC results are presented and support the results of Ref. [16]. The two versions of the PHSD model, with (red dotted line) and without cross section fluctuations (blue solid line), predict that the multiplicity dependence turns out to be close to the CGC result but substantially differs from the wounded nucleon moden (WNM) for larger \(N_{part} \). Thus, multiplicity distributions do not allow us to disentangle the different initial states under discussion from the CGC and a Glauber version as in PHSD. The reason of such a multiplicity suppression relative to the WNM is the energy-momentum conservation in PHSD which on average results in a decrease of particle multiplicity in subsequent scatterings as compared to the primary interaction.

A wide distribution is also observed in the number of participants or in the number of charged particles at midrapidity for a given impact parameter \(b \), see Fig. 3. The solid lines in this figure show the mean values \(\langle N_{part} \rangle \) and \(\langle dN_{ch} / d\eta \rangle \), respectively. In contrast to nucleus-nucleus collisions, these mean quantities are almost independent of the impact parameter for central and semi-central collisions, \(b < (4-5) \) fm. This fact should have been expected since the size of the projectile-proton is noticeably smaller than that of the target nucleus. From these results it follows that an event selection with respect to the number of participants or charged particles refers to a large range in impact parameter \(b \).

The pseudorapidity distributions of charged particles from p-Pb minimum bias collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV are compared with the experimental data [23] in Fig. 4. The data are displayed in the laboratory system which is shifted with respect to the nucleon-nucleon center-of-mass by \(y_{cm} = -0.465 \). The results of two versions of the parton-hadron string dynamics model (PHSD and PHSD-GG) differ only for backward-emitted particles and both versions are rather close to the measured data and the CGC result (open circles). Note that there are no modifications (or free parameters) in the PHSD except the extensions by PYTHIA 6.4 which implies that p-p, p-A

![Figure 2](image-url)

Figure 2. Probability distribution of the participant number and number of charged particles for Pb+Pb at \(\sqrt{s_{NN}} = 5.02 \) TeV at midrapidity (lhs) and its ensemble average in comparison to different models (rhs). The wounded nucleon model (WNM)(full dots) and color glass condensate (CGC) calculations (dotted line) are taken from Ref [16] while simulations in the Glauber-Gribov approximation (full squares and triangles) stem from Ref. [38]. The PHSD results are displayed in terms of the solid (blue) lines while the PHSD results including fluctuations in the cross section (PHSD GG) are shown in terms of the dotted (red) lines.
Figure 3. Event distributions of 2D-correlations for the participant number N_{part} (lhs) and charged particle multiplicity $dN_{\text{ch}}/d\eta$ (rhs) with the impact parameter b. The mean values of these distributions are shown by the solid (blue) lines.

and A-A collisions are consistently described from low SPS to LHC energies (within $\sim 10\%$).

Figure 4. (lhs) Rapidity distribution of charged particles for minimum bias data from the ALICE [23] (full dots) and ATLAS [38] (full squares) collaborations for p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in comparison to the PHSD results (solid blue line) and the PHSD GG results including fluctuations in the cross section (dotted red line). The CGC results (open circles) have been taken from Ref. [14]. The zoomed results are displayed in the insertion. (rhs) Event-by-event fluctuations of the rapidity distribution. The blue solid line shows the average charged particle pseudorapidity distribution.

The CGC predictions from Ref. [14], performed earlier for the upcoming p-Pb run at the LHC, are plotted in the same figure (open circles). This result is based on the Balitsky-Kovchegov (BK) equation [39] which is the large-N_c limit of non-linear renormalization group equations such as the BK-JIMWLK hierarchy [40] which is tested with respect to $e + p$ data. An astonishing result is that the CGC and PHSD results almost coincide again. Note that this minimum-bias distribution corresponds to the mean charged particle multiplicity at the given value of pseudorapidity η. However, event fluctuations of $dN_{\text{ch}}/d\eta$ are very large as demonstrated in Fig. 4 (rhs). Thus, the study of minimum-bias $dN_{\text{ch}}/d\eta$ does not allow to disentangle the initial state concepts described within the PHSD and CGC approaches.
Let us, furthermore, consider pseudorapidity distributions for fixed high-multiplicity events. Such distributions for different centrality bins have been measured by the ATLAS collaboration [38] for p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \). Experimentally the centrality was defined according to selected bins in the transverse energy. We have defined corresponding bins in \(N_{ch} \) keeping the same percentage of the number of selected events as in [38] (the bin partition is shown in Fig. 5 (lhs) and the relative contribution of different centralities is given in the legend in Fig. 5 (rhs)). In this figure the PHSD results are based on \(10^6 \) simulated events.

As is seen from Fig. 5 (rhs), the PHSD model quite well reproduces the shape of the \(dN_{ch}/d\eta \) distributions and its variation with centrality, in particular the increase with centrality of the forward-backward asymmetry between the directions of the proton-beam and Pb-target. For the most central events the PHSD calculations very slightly overshoot this asymmetry, however, are in line with the data for the higher centralities within the experimental uncertainties (shaded areas in Fig. 5 (rhs)). We mention that the centrality sample of 40-60\% with the maximal number \(N_{ch} \sim 20 \) roughly corresponds to the minimum-bias distribution. For events of the highest multiplicity which amount to (0-1)\% – corresponding to \(\sim 6 \times 10^5 \) simulated events – the number of charged particles at the maximum of the distribution is about 75. The agreement between calculations and data is not so bad taking into account the experimental error bands and the fact that PHSD has no free parameters once the p-p dynamics is fixed (by the PYTHIA tune).

The transverse momentum characteristics for charged particles from the PHSD for p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) are compared with the ALICE data in Fig. 6. In the measured range \(0.5 < p_T < 10 \text{ GeV}/c \) the yield changes by 7 orders of magnitude in a rough agreement with experiment [41]. Deviations by up to a factor of three are observed in the momentum range \(p_T > 1.5 \text{ GeV}/c \) (see Fig. 6 (lhs)) and are presently not understood.

A remarkable difference in observables between the predictions of the saturated CGC and hydro models has been pointed out in Ref. [26]. Based on general arguments, it was shown that in the case of the CGC the mean transverse momentum slightly grows with increasing rapidity \(y \) on the proton side due to the increasing saturation momentum \(Q_s \) of the nucleus. On the contrary, the \(\langle p_T \rangle_y / \langle p_T \rangle_{y=0} \) in the hydrodynamical framework (with Glauber initial conditions) decreases due to the decreasing number of particles with positive rapidity. This is due to the fact that the collective expansion scenario (in hydrodynamics) cannot lead in a simple way to
an increase of the average transverse momentum on the proton side $y > 0$ [26] since there are less degrees-of-freedom to generate e.g. a transverse flow. The PHSD model predicts the $\langle p_T \rangle$ distribution (blue solid line) to be rather close to the hydrodynamic models since also in PHSD the collectivity is correlated with the density of the degrees-of-freedom which decreases with forward rapidity (cf. Fig. 5 (lhs)); cross section fluctuations have no essential influence on this result (dotted red line). It would be of great interest to check experimentally this clear difference in the $\langle p_T \rangle_y / \langle p_T \rangle_{y=0}$ distribution due to different initial state concepts.

2.3. Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV

We recall that especially in case of heavy-ion reactions the flow harmonics v_n for the azimuthal angular distribution of hadrons have been found to be sensitive to the early stage of the nuclear interaction and in particular to their fluctuations. Indeed, the detailed heavy-ion analysis in Ref. [43] shows that Monte Carlo CGC approaches (MC-CGC) systematically give a larger initial eccentricity than Glauber models. However, it is unclear to what extent such properties of the CGC formalism are robust with respect to extended correlations. Also, studies of higher harmonics – as presented in [44] by the PHENIX or ALICE collaborations – do not clearly favor the CGC or Glauber assumptions for the initial state of the collision. The first LHC data on the bulk particle production in Pb-Pb collisions are in good agreement with improved CGC expectations but they are also compatible with Monte Carlo event generators [45]. We here compute bulk properties of Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV and explore the sensitivity of the collective flow coefficients v_n on the size of initial state fluctuations within the (PHSD) transport approach [22] employed also in the previous subsection.

The first question to answer is whether the PHSD approach still works at LHC energies for nucleus-nucleus collisions at $\sqrt{s_{NN}}=2.76$ TeV although the invariant energy is higher by about a factor of 13.8 than at the top RHIC energy. In Fig. 7 we compare the average $\langle p_T \rangle$ as a function of charged multiplicity N_{ch} in p-p reactions at $\sqrt{s_{NN}} = 7$ TeV, p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV and Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV from the PHSD to the experimental data from Ref. [42]. Note that for low multiplicities ($N_{ch} < 5$) the mean p_T
is almost independent on energy (see also Ref. [42]) which in PHSD can be traced back to the fact that (for the acceptance $|\eta| \leq 0.3, 0.15 \leq p_T \leq 10$ GeV/c) only events with one or two binary collisions N_{bin} are selected for all systems. Actually, the correlation $<p_T>(N_{ch})$ only weakly depends on $\sqrt{s_{NN}}$ for pp reactions at these LHC energies, however, when plotting $p_T(N_{ch})$ on an event-by-event basis, large fluctuations in p_T or N_{ch} are obtained within PHSD. The same holds true for p-Pb and Pb-Pb reactions where a fixed N_{ch} can be obtained by reactions with a varying number of binary collisions N_{bin}. Each of these binary reactions then has a low N_{ch} and $<p_T>$, respectively. The ensemble average finally leads to the average correlation shown in Fig. 7. Nevertheless, the agreement between data and calculations (within the statistical accuracy) is encouraging. Note again that only very peripheral Pb-Pb collisions are probed for $N_{ch} < 100$.

We continue with the transverse momentum spectra for central Pb-Pb reactions at $\sqrt{s_{NN}} = 2.76$ TeV (0-5% centrality) which are compared in Fig. 8 (lhs) with results of the ALICE Collaboration for all charged particles [46, 47] (PHSD: black solid line) as well as for charged pions [48] (PHSD: dashed blue line). Note that except for the upgrade in the PYTHIA version no additional parameters or changes have been introduced in the PHSD that had been employed before in Refs. [22, 30, 31, 32, 50, 51] from lower SPS up to top RHIC energies. In this respect the approximate reproduction of the midrapidity p_T spectra for central collisions over 7 orders of magnitude in Fig. 8 (lhs) is quite remarkable. A closer look at the low momentum spectra is offered in Fig. 8 (rhs) where the PHSD spectra for pions and kaons are compared to results of the ALICE Collaboration [46, 47, 48]. We recall, furthermore, that the charged particle pseudo-rapidity density $dN_{ch}/d\eta$ at midrapidity from PHSD matches well the experimental centrality dependence from ALICE when displayed as a function of the number of participants N_{part} (cf. Fig. 1 in Ref. [33]).

Whereas the transverse charged single-particle spectra compare quite well with the experimental observation the question remains for the collective behavior of the system. Anisotropic flow coefficients in both cases – i.e. experimental data and PHSD calculations – were obtained from the two-particle cumulant method [52] in the central pseudorapidity window.
Figure 8. (lhs) Transverse momentum spectra from PHSD in comparison to the results of the ALICE Collaboration for all charged particles [46, 47] (solid line) as well as for charged pions [48] (dashed line). (rhs) Transverse momentum spectra from PHSD for $p_T \leq 2$ GeV/c in comparison to the results of the ALICE Collaboration [46, 47, 48] for pions and kaons.

Figure 9. The flow coefficients v_2, v_3, v_4 and v_5 of all charged particles as a function of p_T for the centralities 0-5% (lhs) and 30-40% (rhs). The ALICE data have been taken from Ref. [49].

$|\eta| < 0.8$ and denoted as $v_n\{2\}$. The flow coefficients v_2, v_3, v_4 and v_5 of all charged particles from PHSD are shown in Fig. 9 as a function of p_T for the centralities 0-5% (lhs) and 30-40% (rhs) in comparison to the ALICE data from Ref. [49]. The PHSD results for $v_2(p_T)$, $v_3(p_T)$ and $v_4(p_T)$ compare reasonably up to about 3.5 GeV/c whereas at higher transverse momenta the statistics is insufficient to draw robust conclusions. This also holds for the flow coefficient v_5 which still is in line with the data within error bars. It is quite remarkable that the collective behavior is reproduced not only for semi-central collisions (rhs) but also for 0-5% central collisions (lhs) that are more sensitive to the initial fluctuations [18]. These tests indicate that the 'soft' physics at LHC in central A-A reactions is very similar to the top RHIC energy regime although the invariant energy is higher by more than an order of magnitude. Furthermore, the PHSD approach seems to work from lower SPS energies up to LHC energies for p-p, p-A as well as A-A collisions, i.e. over a range of more than two orders in $\sqrt{s_{NN}}$.

A detailed study of the sensitivity of the initial state fluctuations in space on the collective flow coefficients v_2, v_3 and v_4 turned out to be negative even for very central ($b=0$) Pb-Pb collisions at the LHC (cf. Ref. [53]) which is essentially due to the fact that the global shape
characteristics do not change much when increasing the local fluctuations. Thus our studies do not support the suggestion that the collective flow coefficients might be used to discriminate CGC from Glauber initial state conditions.

3. Conclusions
In this study the parton-hadron-string dynamics (PHSD) approach has been employed in the LHC energy range for Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV as well as p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. We find that this approach works reasonably for both systems with respect to charged particle spectra as well as collective flow coefficients v_2, v_3, v_4 and v_5 for different centralities with a quality comparable to that achieved at RHIC energies before [22, 30, 31, 32, 50, 51]. Our finding implies that the ‘soft’ physics in Pb-Pb collisions at the LHC and Au-Au interactions at the top RHIC energies – despite a factor of ~ 14 in $\sqrt{s_{NN}}$ – is very similar and in line with the dynamical quasiparticle model (DQPM) that defines the parton properties for PHSD in equilibrium. This finding is common with earlier studies using viscous hydro approaches with varying initial conditions [10, 54].

The particular question addressed in this study has been the possibility to obtain information on the very early non-equilibrium dynamics of the reactions. We find for p-Pb reactions that the PHSD approach provides correlations between the charged particle multiplicity at midrapidity and the number of participant nucleons close to results from the CGC and differs substantially from results calculated with independent Glauber initial conditions (WNM). However, a sizeable difference is found between the PHSD approach and CGC models with respect to the rapidity dependence of the average transverse momentum. In Pb-Pb collisions the PHSD calculations have shown no sensitivity on the initial size of spatial fluctuations for the flow harmonics v_2 to v_4 which on one hand can be traced back to the low interaction rate in the initial nonequilibrium stage in PHSD (~ 0.3 fm/c) where effects from different granularities are already washed out to some extent. This is different from hydro calculations with varying granularity that instantly start to convert fluctuations in coordinate space to collective modes in momentum space. On the other hand our method for changing the size of initial fluctuations keeps the event shape in coordinate space approximately invariant (cf. [53]) which - in line with hydrodynamics - leads to very similar flow coefficients v_n. We mention that the low interaction rate in this very early phase in PHSD is common with the CGC concept and thus does not allow to disentangle or determine the effective degrees-of-freedom in this ‘pre-hydro’ phase.

Acknowledgments
This work in part was supported by the LOEWE center HIC for FAIR as well as by BMBF. V. D. was also partly supported by the Heisenberg-Landau grant of JINR.

4. References
[1] Ollitrault J Y 1992 Phys. Rev. D 46 229
[2] Heinz U and Kolb P 2002 Nucl. Phys. A 702 269
[3] Shuryak E V 2009 Prog. Part. Nucl. Phys. 62 48
[4] Shuryak E V 2005 Nucl. Phys. A 750 64
[5] Gyulassy M and McLerran L 2005 Nucl. Phys. A 750 30
[6] Peshier A and Cassing W 2005 Phys. Rev. Lett. 94 172301
[7] Cheng M et al. 2008 Phys. Rev. D 77 014511
[8] Aoki Y et al. 2009 JHEP 0906 088
[9] Schenke B Triebey P and Venugopalan R 2012 Phys. Rev. C 86 034908
[10] Gale C Jeon S Schenke B Triebey P and Venugopalan R 2013 Phys. Rev. Lett. 110 012302
[11] McLerran L 2007 Nucl. Phys. A 787 12
[12] Dumitru A Kharzeev D E Levin E M and Nara Y 2012 Phys. Rev. C 85 044902
[13] Triebey P and Venugopalan R 2012 Phys. Lett. B 710 125
[14] Albacete J L Dumitru A Fuji A and Nara Y 2013 Nucl. Phys. A 897 1
[15] Andrs C Moscoso A and Pajares C 2014 Phys. Rev. C 90 054902
[16] Bzdak A and Skokov V 2013 Phys. Rev. Lett. 111 182301
[17] Nonaka C and Bass S A 2007 Phys. Rev. C 75 014902
[18] Petersen H and Bleicher M 2010 Phys. Rev. C 81 044906
[19] Qin G-Y Petersen H Bass S A and Muller B 2010 Phys. Rev. C 82 064903
[20] Plumari S Puglisi A Scardina F and Greco V 2012 Phys. Rev. C 86 054902
[21] Xu Z and Greiner C 2005 Phys. Rev. C 71 064901
[22] Cassing W and Bratkovskaya E L 2009 Nucl. Phys. A 831 215
Bratkovskaya E L et al. 2011 Nucl. Phys. A 856 162
[23] Abelev B et al. [ALICE Collaboration] 2013 Phys. Rev. Lett. 110 032301
[24] Barnafoldi G G Barrette J Gyulassy M Levai P and Topor Pop V 2012 Phys. Rev. C 85 024903
[25] Xu R Deng W-T and Wang X-N 2012 Phys. Rev. C 86 051901
[26] Bozek P Bzdak A and Skokov V 2014 Phys. Lett. B 728 662
[27] Juchem S Cassing W and Greiner C 2004 Phys. Rev. D 69 025006
Juchem S Cassing W and Greiner C 2004 Nucl. Phys. A 743 92
[28] Cassing W and Bratkovskaya E L 1999 Phys. Rept. 308 65
Cassing W Bratkovskaya E L and Juchem S 2000 Nucl. Phys. A 674 249
Bratkovskaya E L and Cassing W 1997 Nucl. Phys. A 619 413
Geiss J Cassing W and Greiner C 1998 Nucl. Phys. A 644 107
[30] Toneev V D et al. 2012 Phys. Rev. C 85 034910
[31] Konchakovski V P Bratkovskaya E L Cassing W Toneev V D and Voronyuk V 2012 Phys. Rev. C 85 011902
[32] Linnyk O Cassing W Manninen J Bratkovskaya E L and Ko C M 2012 Phys. Rev. C 85 024910
Linnyk O Bratkovskaya E L Ozvenchuk V Cassing W and Ko C M 2012 Phys. Rev. C 84 054917
[33] Linnyk O et al. 2013 Phys. Rev. C 87 014905
[34] Sjostrand T Mrenna S and Slands P Z 2006 JHEP 0605 026
[35] Bengtsson H-U and Sjostrand T 1987 Comp. Phys. Commun. 46 43
[36] Aal G et al. [ATLAS Collaboration] 2011 New J. Phys. 13 053033
[37] Konchakovski V P Cassing W and Toneev V D 2014 J. Phys. G 41 105004
[38] ATLAS collaboration, ATLAS-CONF-2013-096
[39] Balitsky I 1996 Nucl. Phys. B 463 99
Kovchergin V V 1999 Phys. Rev. D 60 034008
[40] Gelis F Iancu E Jalilian-Marian J and Venugopalan R, Ann. Rev. Nucl. Part. Science 60 463
Iancu E and Venugopalan R 2003 Quark Gluon Plasma, edited by R. Hwa, X. N. Wang (World Scientific)
Weigert H 2005 Prog. Part. Nucl. Phys. 55 461
[41] Abelev B B et al. [ALICE Collaboration] 2013 Phys. Rev. Lett. 110 082302
Abelev B B et al. [ALICE Collaboration] 2013 Phys. Lett. B 727 371
Albacete J L 2011 J. Phys. G: Nucl. Part. Phys. 38 124006
[43] Schutz Y and Wiedemann U A (ed) 2011 Proc. of the 22nd Int. Conf. on Ultra-Relativistic Nucleus-Nucleus Collisions (Annecy, France, 23-28 May 2011) J. Phys. G: Nucl. Part. Phys. 38 120301
[45] ATLAS Collaboration 2013 JHEP 11 183
[46] Abelev B B et al. [ALICE Collaboration] 2013 Phys. Lett. B 720 52
[47] Abelev B B et al. [ALICE Collaboration] 2013 Eur. Phys. J. C 73 2662
Abelev B B et al. [ALICE Collaboration] 2014 Phys. Lett. B 736 196
[49] Aamodt K et al. [ALICE Collaboration] 2011 Phys. Rev. Lett. 107 032301
[50] Linnyk O Cassing W and Bratkovskaya E L 2014 Phys.Rev. C 89 034908
Linnyk O Konchakovski V P Cassing W and Bratkovskaya E L 2013 Phys. Rev. C 88 034904
[51] Konchakovski V P et al. 2012 Phys. Rev. C 85 044922
[52] Bilandzic A Snellings R and Voloshin S 2001 Phys. Rev. C 83 044913
[53] Konchakovski V P Cassing W and Toneev V D 2015 J. Phys. G 42 arXiv:1411.5534
[54] Song H Bass S A and Heinz U 2011 Phys. Rev. C 83 054912
Song H Bass S A and Heinz U 2013 Phys. Rev. C 87 019902
Song H Bass S A and Heinz U 2014 Phys. Rev. C 89 034919