An alternative CYB5A transcript is expressed in aneuploid ALL and enriched in relapse

Lorenz Bartsch1*, Michael P. Schroeder1, Sonja Hänzelmann2, Lorenz Bastian3,4,5, Juan Lázaro-Navarro3,4,6, Cornelia Schlee7, Jutta Ortiz Tanchez1, Veronika Schulze1, Konstandina Isaakidis1, Michael A. Rieger3,4,8,9, Nicola Gökbuget3,4,8, Cornelia Eckert3,4,6, Hubert Serve3,4,8, Martin Horstmann2, Martin Schrappe3,4,10, Monika Brüggemann5, Claudia D. Baldus3,4,5 and Martin Neumann3,4,5

Abstract

Background: B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogeneous malignancy with poor prognosis in relapsed adult patients. The genetic basis for relapse in aneuploid subtypes such as near haploid (NH) and high hyperdiploid (HeH) BCP-ALL is only poorly understood. Pathogenic genetic alterations remain to be identified. To this end, we investigated the dynamics of genetic alterations in a matched initial diagnosis-relapse (ID-REL) BCP-ALL cohort. Here, we firstly report the identification of the novel genetic alteration CYB5Aalt, an alternative transcript of CYB5A, in two independent cohorts.

Methods: We identified CYB5alt in the RNAseq-analysis of a matched ID-REL BCP-ALL cohort with 50 patients and quantified its expression in various molecular BCP-ALL subtypes. Findings were validated in an independent cohort of 140 first diagnosis samples from adult BCP-ALL patients. Derived from patient material, the alternative open reading frame of CYB5Aalt was cloned (pCYB5Aalt) and pCYB5Aalt or the empty vector were stably overexpressed in NALM-6 cells. RNA sequencing was performed of pCYB5Aalt clones and empty vector controls followed by differential expression analysis, gene set enrichment analysis and complementing cell death and viability assays to determine functional implications of CYB5Aalt.

Results: RNAseq data analysis revealed non-canonical exon usage of CYB5Aalt starting from a previously undescribed transcription start site. CYB5Aalt expression was increased in relapsed BCP-ALL and its occurrence was specific towards the shared gene expression cluster of NH and HeH BCP-ALL in independent cohorts. Overexpression of pCYB5Aalt in NALM-6 cells induced a distinct transcriptional program compared to empty vector controls with downregulation of pathways related to reported functions of CYB5A wildtype. Interestingly, CYB5A wildtype expression was decreased in CYB5Aalt samples in silico and in vitro. Additionally, pCYB5Aalt NALM-6 elicited a more resistant drug response.

Conclusions: Across all age groups, CYB5Aalt was the most frequent secondary genetic event in relapsed NH and HeH BCP-ALL. In addition to its high subgroup specificity, CYB5Aalt is a novel candidate to be potentially implicated in therapy resistance in NH and HeH BCP-ALL. This is underlined by overexpressing CYB5Aalt providing first evidence for a functional role in BCL2-mediated apoptosis.

Keywords: B-cell precursor acute lymphoblastic leukemia, Relapse, NH, HeH, High hyperdiploid, Cryptic transcription start site, Alternative transcript, CYB5A, Venetoclax, Resistance mechanism
Background

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a heterogeneous lymphoproliferative malignancy. Despite novel therapeutic strategies ranging from immuno-therapies [1] to targeting mutational driver lesions, e.g. BCR-ABL1 [2], prognosis remains poor for refractory and relapsed BCP-ALL, in particular for adult patients [3].

BCP-ALL can be molecularly classified into various genetic subtypes with differences in clinical outcome and age-dependent prevalence [4]. The subtypes are defined by structural chromosomal alterations, e.g. translocations or recurrent aneuploidy patterns, with secondary events, such as sequence mutations and copy number alterations, in pathways related to epigenetic regulation, cell cycle, lymphoid differentiation, cytokine receptor, kinase and RAS signalling [5]. They show distinct mRNA expression [6] and methylation profiles [7] likely reflecting different leukemogenic mechanisms underlying each subtype.

Near Haploid (NH) ALL (24–30 chromosomes) and high hyperdiploid (HeH) ALL (51–67 chromosomes) as defined by conventional cytogenetics [8, 9] are two different subtypes with distinct clinical outcomes in childhood BCP-ALL [10–13]. They are defined by non-random patterns of chromosomal losses and gains as well as cooperating single nucleotide variants [14, 15]. Virtual karyotyping by SNParrays showed in pediatric patients that a near haploid karyotype with retained chromosomes (e.g. 10, 14, 18, 21) could also be observed in a duplicated manner, resulting in a high hyperdiploid karyotype with trisomies or tetrasomies of the otherwise retained chromosomes [16, 17]. In our adult patient cohort these duplicated karyotypes or karyotypes with the same non-random gain of chromosomes were identified by virtual karyotyping (WES; SNParrays) [18]. RNaseq analysis revealed shared gene expression profiles of near haploid and high hyperdiploid samples with a clear distinction to other subtypes across pediatric and adult subgroups [14, 18, 19]. Secondary mutations in RAS-pathway genes and epigenetic regulators such as CREBBP [14, 15, 18] and a shared DNA methylation profile [18] have been observed in both subtypes. Due to these biological similarities and our RNaseq-based subtype classification, NH and HeH samples have been grouped together (NH/HeH) despite the clinical importance of differentiating between NH and HeH samples.

In NH and HeH BCP-ALL, underlying causes of chromosomal instability, i.e. TP53 mutations [20] or aberrant RAG activity [21], have thus far not been identified. It remains unclear if aneuploidy resembles a driver event or an epiphenomenon. Additionally, the most frequent secondary mutations are only seen in a subset of patient samples and are inconsistently gained or lost at relapse [14, 22–24]. Functional studies are limited by the lack of appropriate models [25]. Thus, leukemogenesis of these subtypes is incompletely understood, and additional genetic alterations may contribute to pathogenesis and therapy resistance.

In addition to DNA-based genetic alterations, altered transcripts arising from alternative transcription start sites (TSS) may contribute to leukemogenesis in lymphoid neoplasms [26, 27]. In the present study, we describe the alternative transcript of Cytochrome B₅ Type A (CYB5A), CYB5Aalt, starting from a previously undescribed TSS. CYB5A wildtype (WT) is located on chromosome 18q22.3 and encodes for the 15.2 kDA hemeprotein Cytochrome B₅, which reduces methemoglobin to ferrous hemoglobin and provides reducing equivalents in steroid biogenesis, lipid biosynthesis and to members of the cytochrome P450 system [28–31]. It is physiologically expressed in human B-lymphocyte lineage [32]. In drosophila, mutations in CYB5A WT homologue dappled cause the formation of melanotic tumors and dysregulation of hematopoiesis [33]. In humans, mutations in CYB5A WT cause type IV methemoglobinemia [34]; low CYB5A mRNA and protein expression is associated with shorter survival in pancreatic cancer [35].

We identify CYB5Aalt to be a frequent event and highly specific to the NH/HeH gene expression cluster in a cohort of 50 matched initial diagnosis-relapse samples. Further, its expression was increased in relapse. Specificity and frequency of CYB5Aalt was confirmed in a cohort of 140 BCP-ALL initial diagnosis samples from adult patients. Additionally, we present first evidence for a potential role of CYB5Aalt in apoptosis and viability by overexpressing CYB5Aalt in vitro in BCP-ALL cell line NALM-6.

Methods

Patient material

This manuscript extends analyses from two previously published cohorts including adult and pediatric BCP-ALL patients enrolled into trials of population-based German study cohorts (GMALL, AIOP-BFM, COALL) [18, 23].

For the exploratory cohort (Additional file 1), methylation, transcriptome and whole exome analysis has been performed by Schroeder et al. [23]. The cohort was designed to include relapsed BCP-ALL patients with paired initial diagnosis (ID) - relapse (REL) samples, solely including patients lacking driver fusion genes detected by routine clinical diagnostics (BCR-ABL1, MLL rearrangements, ETV6-RUNX1). Eighty-six samples had sufficient RNA material for gene fusion detection and were used...
in this study for the detection of CYB5Aalt (cohort 1, \(n = 86 \)) and 80 of these samples had sufficient RNA quality for gene expression analysis in transcripts per million (TPM). The validation cohort, cohort 2 (\(n = 140 \)), represents a subset of a patient cohort of ID BCP-ALL samples with sufficient RNA data, previously published by Bastian et al. [18]. RNAseq pipeline algorithms for both cohorts are shown in Additional file 3.

Transcript validation by reverse transcriptase polymerase chain reaction and sanger sequencing
After Ficoll density separation, RNA and DNA isolation of patient samples was performed following standard procedures (AllPrep, Quiagen, Hilden, Germany; Trizol, Life Technologies, Carlsbad, CA). RNA was transcribed to complementary DNA (cDNA) using MMLV Reverse Transcriptase (Epiconcentré, Chicago, USA). For validation, Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) on patient cDNA was performed using CYB5Aalt-specific primers (forward: 5'-TCCAGCTCTCCTCTGTTACCTT-3'; reverse: 5'-GGAGGTTGTTCAGTCTCTGC-3'). PCR bands were extracted using QIAquick Gel Extraction Kit (Quiagen, Hilden, Germany) and bilateral Sanger Sequencing using the CYB5Aalt-specific primers was performed. Genedious version 5.4.3 software (Biomatters Ltd., Auckland, NZ) was used for analysis.

Cell lines and culture
The human cell line NALM-6 (BCP-ALL; ACC-128) was purchased from the DSMZ (Braunschweig, Germany). Cells were maintained in RPMI 1640 medium containing 25 mM HEPES, 2 mM L-glutamine, 1 mM sodium pyruvate, 100 U/ml and 100 mg/ml streptomycin (all from Merck Millipore, Darmstadt, Germany). 10% Fetal bovine serum (Linaris, Bettingen, Germany) was added to medium. The medium has not been changed for any experiment. Cell culture was routinely checked for mycoplasma contamination by PCR (Merck Millipore).

Plasmid constructs and transfection
cDNA derived from CYB5Aalt positive patient RNA served as template for a standard PCR to amplify the alternative open reading frame of CYB5Aalt (CYB5Aalt-ORF) using the primers 5'-GCCACCATTGTCCAAAACATTTCATTGGGAG-3' and 5'-TGTTCACTGCCTCTGACATTAGGC-3'. The 191 base pairs (bp) PCR product was cloned via TOPO vector pCR 2.1 (Invitrogen, Karlsruhe, Germany) into vector pcDNA3.1-IRES-GFP for eukaryotic overexpression (pCYB5Aalt). BCP-ALL cell line NALM-6 was transfected with pCYB5Aalt or empty vector control (pEmpty) by electroporation (Neon Transfection System, Invitrogen, Basel, Switzerland). After 24h, transfected cells were treated with neomycin (0.6 mg/ml, Merck Millipore) for 4 weeks. Cells were cloned by single cell sorting for Green Fluorescent Protein (GFP) and kept in culture for additional 4 weeks. Stable integration of pCYB5Aalt was confirmed by standard PCR on genomic DNA, expression was confirmed by RT-PCR using cDNA of clones and Glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as internal control. Before conduction of experiments, cells were thawed, cultured for 4 weeks and expression was reconfirmed by RT-PCR.

RNA extraction and quantitative real-time PCR
RNA of pCYB5Aalt- and pEmpty-NALM-6 clones was isolated using the Rneasy Kit (Quiagen, Hilden, Germany) and cDNA was synthesized using MMLV Reverse Transcriptase (Epiconcentré, Chicago, USA). Quantitative real-time PCR (qRT-PCR) was performed using the Sybr Green PCR assay (Invitrogen, Karlsruhe, Germany) following the instructor’s manual. CYB5A mRNA expression was measured using CYB5A- forward primer 5'-TGAGGATGTCGGCAGCTCTA-3' and CYB5A-reverse primer 5'-GAGGGTTCAGTCTCCTGCC-3'. GAPDH was used as internal control (forward: 5'-GAGTCAACGATTTGGTCTG-3', reverse: 5'-GATCTCGGTCTGAGATG-3'). Relative expression values were indicated as Δ CT value (GAPDH_{CT}-CYB5A_{CT}).

WST-1 viability assays
pCYB5Aalt NALM-6 and empty vector controls were treated with Venetoclax (SelleckChem, München, Germany) and seeded in quintets for each concentration of Venetoclax (0, 0.2, 0.5, 1, 5, 10 μM). 1 × 10⁵ cells per well were seeded in 90 μl medium and incubated at 37°C, 5% CO₂. After 72 h, 10 μl of WST-1 reagent was added to each well and cells were incubated at same conditions for 3h to allow for reduction of WST-1 to formazan by the electron transport chain of viable cells. Then, absorbance was measured using a Sunrise microplate absorbance reader (Tecan, Männerdorf, Switzerland) at 450 nm with a reference wavelength of 620 nm. Raw absorbance measurements were normalised to untreated control samples, after subtracting WST-1 absorbance measurements in wells only containing medium.

Cell death assays
pCYB5Aalt NALM-6 and empty vector controls were treated with Venetoclax and seeded in duplicates for each concentration of Venetoclax (0, 0.2, 0.5, 1, 5, 10, 20 μM). 2.5 × 10⁵ cells per well were seeded in 500 μl medium and incubated at 37°C, 5% CO₂. After 48h, 300 μl of cells per well were transformed to FACS tubes and washed with 4°C Phosphate Buffered Saline. Working on ice, 50 μl Annexin V binding buffer (1:10 dilution)
Wilcoxon rank sum test was performed to compare CYB5A low expressers in patient cohorts. An exact test was used to assess enrichment of CYB5Aalt age linkage was used for unsupervised clustering. Fisher’s gene expression was evaluated by performing CYB5A exact test. Inverse correlation between CYB5Aalt and Subtype frequency of CYB5Aalt was analysed by Fisher’s analysis has been done using ‘ggplot2’ [44].

Results
Transcriptomic characterisation of BCP-ALL identifies CYB5Aalt as novel transcript
Fifty BCP-ALL samples at initial diagnosis and relapse, 26 adult and 24 pediatric patients, lacking cytogenetic rearrangements identified by conventional diagnostics (BCR-ABL1, KMT2A-AFF1, ETV6-RUNX1, TCF3-PBX1) were analysed as exploratory cohort (cohort 1, Additional file 4) [23]. ALL patients were previously classified into molecular BCP-ALL subtypes based upon their mRNA expression and methylation profiles in addition to specific chromosomal rearrangements and mutations [23]. Twelve patients (24 samples) were allocated to the Ph-like and to the DUX4r subtype, respectively. Fourteen patients (28 samples) were characterised by an aneuploid karyotype defined by 3 or more whole chromosomes affected by loss of heterozygosity (LOH) or hyperdiploidies identified by virtual karyotyping (Additional file 5) [18]. Ten out of fourteen aneuploid patients showed gains in chromosomes 4, 14, and 21, distinct methylation and mRNA expression profiles and were defined as NH/HeH BCP-ALL. Four NH / HeH samples showed LOH of most disomic chromosomes and gains in chromosome 14 and 21 suggesting a “masked” near-haploid phenotype [17]. The remaining 4 aneuploid samples all had TP53 mutations and a masked low hypodiploid karyotype (LH) with whole chromosomal gains in 1 and 22. Further patients were assigned to the PAX5mut (2 patients), PAX5r (1 patient), BCL2r (2 patients), ZNF384f (2 patients), MLLr (1 patient) and MEF2Dr subtype (1 patient). The remaining seven samples could not be allocated to a specific subtype.

Sufficient RNA material was available for 86 out of 100 patient samples to analyse subgroup specific fusion transcripts and transcripts with non-canonical exon usage at initial diagnosis and relapse (Additional file 1). This analysis revealed a previously undescribed alternative transcript of CYB5A, CYB5Aalt, in 13 out of 86 patient samples. The alternate TSS is currently not annotated in publicly available CAGE-Seq [45] and RNAseq data [46] and thus regarded a novel finding. In antisense direction, the novel TSS of CYB5Aalt (hg19, chr18:72,084,437) is located 125,268 bp upstream of the wildtype TSS. RNAseq coverage and junction reads allowed for further

High throughput sequencing analyses
Sample preparation, sequencing and bioinformatic analysis of the matched, multiomics ID-REL BCP-ALL cohort and the validation cohort have been performed as previously published. To identify CYB5Aalt and to determine its mRNA expression, ‘stringtie’package [36] and ‘defuse’package [37] were used. To increase transcript specificity, only CYB5A transcripts spanning a genomic distance exceeding 120,000bp and partial alignment to CYB5A were used for downstream analysis of CYB5Aalt expression and frequency. Only samples passing quality control by RNA-SeQC [38] were used for expression analysis. Normalized mRNA Expression was reported in TPM.

pCYB5Aalt NALM-6 and empty vector controls
For RNAseq, 6 samples per lane were sequenced with an average of approximately 30 million mapped reads per sample (MMR5). All sequences were aligned to the human genome build GRCh38 [39] using STAR-aligner [40]. Samples were further processed using the DESEQ2 pipeline for differential gene expression analysis [41]. Hierarchical clustering of the 500 most variably expressed genes based on DESEQ2-regularised-logarithm transformation (rlog) gene expression values and the heatmap were constructed using the ‘pheatmap’ package [42]. Principal component analysis (PCA) was performed with rlog-normalised gene expression values using DESEQ2. Gene set enrichment analysis was performed using the ‘fgsea’ package [43]. As input for ranked gene lists, mean log2-foldchange of genes between pCYB5Aalt NALM-6 and empty vector controls was used. Gene sets “Hallmark” and “KEGG subset of canonical pathways “from the ‘misgdbr’ package were used for analysis. Data visualization has been done using ‘ggplot2’ [44].

Statistical analysis
Subtype frequency of CYB5Aalt was analysed by Fisher’s exact test. Inverse correlation between CYB5Aalt and CYB5A gene expression was evaluated by performing linear regression analysis. Euclidean distance with average linkage was used for unsupervised clustering. Fisher’s exact test was used to assess enrichment of CYB5Aalt samples in CYB5A low expressers in patient cohorts. Wilcoxon rank sum test was performed to compare differences in CYB5A gene expression as well as expression of BH3-motif genes between CYB5Aalt positive and negative patient samples. Group differences in PI-uptake to evaluate cell death and group differences in WST-1 reduction to formazan to assess viability were evaluated by Mann-Whitney-U-Test. All statistical tests were both-sided. Adjustment of p-values for multiple comparison was performed by the Benjamini-Hochberg method.
characterisation of CYB5Aalt (Fig. 1A). Towards its 5’end, CYB5Aalt contains a novel sequence resulting in two new exons with alternative exon 2 splicing into exon 2 of CYB5A WT, thereby skipping exon 1 of the wildtype. Since exon 1 encodes the start of the open reading frame (ORF) of CYB5A WT, skipping exon 1 by CYB5Aalt gives rise to an alternative open reading frame, starting from an ‘ATG’-codon in exon 2 of CYB5A WT. This alternative ORF maintains the reading frame of the wildtype ORF and may result in a truncated version of CYB5A WT lacking its heme-binding domain (Additional file 6).

Expression and sequence of CYB5Aalt was confirmed by RT-PCR followed by Sanger Sequencing (Additional file 6).

CYB5Aalt frequency is increased in relapsed BCP-ALL and enriched in NH/HeH gene expression cluster

Next, CYB5Aalt expression was compared between initial diagnosis and relapse of matched BCP-ALL patient samples. CYB5Aalt expression was detected in 13 out of 86 samples (Fig. 1B). It occurred in 8 out of 43 REL samples (18.6%) and in 5 out of 43 ID samples (11.6%). Four of five samples at ID maintained CYB5Aalt expression in relapse. Four samples gained CYB5Aalt expression at relapse without detectable expression at ID. Summarised in Table 1, median bone marrow blast count of CYB5Aalt-positive patients (n = 9) was 88%. CYB5Aalt-negative patients (n = 41) had a median blast count of 92%. CYB5Aalt was detected in 7/37 adult and 6/49 pediatric samples (5/19 adult and 4/25 pediatric patients respectively). CYB5Aalt was identified in 11 out of 18 NH/HeH samples, in Ph-like (1/20) and LH (1/6) samples. Overall, the frequency of CYB5Aalt samples was 61.1% (11/18) in NH/HeH samples compared to 2.7% (2/68) in other BCP-ALL samples (p = 2 × 10⁻⁴, two tailed Fisher’s exact test). Within the NH/HeH gene expression cluster, four CYB5Aalt-positive samples showed a masked near-haploid phenotype (4/6) and seven samples were hyperdiploid (7/12).

The specificity towards the NH/HeH gene expression cluster was further validated in an independent validation cohort of 140 BCP-ALL RNA ID patient samples, analysed by RNAseq [18], including 15 molecular subtypes including recurrent cytogenetic rearrangements identified by conventional diagnostics (BCR-ABL1, KMT2A-AFF1, ETV6-RUNX1, TCF3-PBX1) (Additional file 8). CYB5Aalt expression could be detected in 9 samples. 80% (4/5) NH/HeH cases were positive for CYB5Aalt compared to 3.7% (5/135) of non-NH / HeH samples (p = 3.5 × 10⁻⁵, two tailed Fisher’s exact test). The five CYB5Aalt cases, that were not assigned to NH/HeH BCP ALL, comprised four Ph-like (n = 27) and one sample that could not be categorised by a subtype (n = 17). Although CYB5Aalt was not exclusively identified in NH/HeH samples, we observed statistically significant enrichment for CYB5Aalt in NH/HeH samples in both cohorts. CYB5Aalt-expression across molecular subtypes is shown in Additional file 9.
Table 1 Basic clinical characteristics and subgroup frequencies of CYB5Aalt positive and negative patients in cohort 1

CYB5Aalt-status	positive (n = 9)	negative (n = 41)
median BM blast count (%) at ID	88	92
median age at ID (years)	18	15
median time to REL (days)	615	744
samples		
adult (n = 24)	5	19
pediatric (n = 26)	4	22
sex		
male (n = 27)	4	23
female (n = 23)	5	18
molecular subgroup		
NH (n = 4)	2	2
HeH (n = 6)	3	3
LH (n = 4)	1	3
Ph-like (n = 12)	0	12
DUX4r (n = 12)	1	11
Unknown (n = 3)	0	3
BCL2r (n = 2)	0	2
PAXSmut (n = 2)	0	2
PAX5r (n = 1)	0	1
MEF2Dr (n = 1)	0	1
MLLr (n = 2)	0	2
ZNF384f (n = 2)	0	2

Table 1 lists a comparison of characteristics for CYB5Aalt positive patients (n = 9) and negative patients (n = 41) in cohort 1 (n = 50). Characteristics include median bone marrow (BM) blast count, age, sex, frequencies of adult (n = 24) and pediatric patients (n = 26) and median time to REL. Further, frequencies of CYB5Aalt-positive and negative samples in the different molecular subtypes in cohort 1 are listed with total number of patients per subgroup in brackets, respectively.

CYB5A WT mRNA expression is decreased in CYB5Aalt samples

To examine the impact of CYB5Aalt on CYB5A WT expression, gene expression analysis was performed. In cohort 1, 80 samples passed quality control (Additional file 1) and mean CYB5A WT gene expression was significantly lower in CYB5Aalt samples (0.29 vs. 3.13 TPM log2, p = 5.19 × 10⁻⁵, Wilcoxon rank sum test). In cohort 2 (n = 140), mean CYB5A WT expression was also lower in CYB5Aalt samples (0.004 vs. 3.759 TPM log2, p = 6.1 × 10⁻⁵, Wilcoxon rank sum test). A total of 220 samples passed quality control and were used for expression analysis (combined cohort 3, n = 220). In combined cohort 3, mean gene expression of CYB5A WT in CYB5Aalt positive samples was 0.17 TPM log2 and 3.54 TPM log2 in CYB5Aalt negative samples (p = 2.1 × 10⁻³⁸, Wilcoxon rank sum test). CYB5A WT expression was mostly stable across molecular subtypes in combined cohort 3 apart from CYB5Aalt positive samples (Fig. 2A). CYB5Aalt samples were highly overrepresented among the 10% of samples with the lowest CYB5A WT expression (68.2%, 15/22) in comparison with the rest of the cohort (3.5%, 7/198, p = 2.23 × 10⁻¹³, two-tailed Fisher’s exact test). Further, an inverse relation between CYB5A WT and CYB5Aalt gene expression was observed (Fig. 2B) suggesting that a higher CYB5Aalt expression contributes to a decrease in CYB5A WT gene expression (R² = 0.25, p = 0.01, linear regression analysis).

Overexpression of CYB5Aalt-ORF induces a distinct transcriptional program in NALM-6 cells

Since CYB5Aalt was acquired and higher expressed in relapse, we explored its role in therapy resistance using a cell line overexpression model. CYB5Aalt-ORF was overexpressed in the BCP-ALL cell line NALM-6 (Fig. 3A) by stably integrating pcDNA3.1-CYB5AaltORF-IRES-GFP (pCYB5Aalt). Similarly to CYB5Aalt patient samples, downregulation of CYB5A WT mRNA was observed in pCYB5Aalt NALM-6 clones compared to empty vector controls by qRT-PCR (Additional file 10).

Further, RNA sequencing was carried out for four pCYB5Aalt and two empty vector NALM-6 clones. Principal component analysis using the top 500 variably expressed genes showed two clusters separating empty vector clones from pCYB5Aalt clones (Additional file 11). One of the pCYB5Aalt clones clustered separately from all other clones. It was excluded from downstream analysis since this difference is most probable explained by random genomic integration of the overexpression vector and not by the expression of CYBalt-ORF. Using the top 500 variable expressed genes, hierarchical clustering of the genes between samples was carried out. The resulting heatmap of differentially expressed genes (Fig. 3B) showed clustering of pCYB5Aalt clones and empty vector controls suggesting the induction of a distinct transcriptional program by the overexpression of CYB5Aalt-ORF in NALM-6 cells.

To get insights into how these differences in the transcriptional program may affect biological mechanisms in pCYB5Aalt NALM-6, gene set enrichment analysis was carried out (Additional file 12). To explore possible involved pathways, MsigDB Hallmark and KEGG pathway gene sets comparing pCYB5Aalt NALM-6 and empty vector controls were used. Among significantly differentially regulated gene sets (false discovery rate (FDR) < 0.05), there were several gene sets related to the endoplasmic reticulum such as the Unfolded Protein Response (normalised enrichment score (NES) = -1.65, FDR = 0.006), Xenobiotic metabolism (NES = -1.57, FDR = 0.009), Peroxisome (NES = -1.82, FDR = 0.006) and Protein secretion...
(NES = −1.82, FDR = 0.006). Similarly, these gene sets were significantly downregulated (FDR < 0.05) in CYB5Aalt patient samples compared to CYB5A WT samples in the NH/HeH gene expression cluster in combined cohort 3 (Additional file 13). Additionally, the DNA repair gene set was significantly downregulated (NES = −2.05, FDR = 0.006). Cytochrome b5, encoded by CYB5A WT, is anchored in the endoplasmic reticulum membrane and the localisation domain is retained by the CYB5Aalt-ORF. A murine CYB5A−/− model induced changes in gene and protein expression in multiple CYP-enzymes [29, 30] involved in xenobiotic metabolism. The unfolded protein stress response is interlinked with the key regulator of apoptosis BCL2 [47] suggesting a possible contribution of CYB5Aalt towards therapy resistance via this mechanistic link. Interestingly, the comparison of mRNA expression of genes belonging to the BCL2-family (Additional file 14) showed an upregulation of anti-apoptotic genes, e.g. BCL2, BCL2L2 and MCL1 and downregulation of pro-apoptotic genes, e.g. BAD and BID, in pCYB5Aalt-NALM-6. Similarly, pro-apoptotic BH3-motif genes such as BID (FDR = 0.01) were downregulated and anti-apoptotic genes, i.e. BCL2L2 (FDR = 0.04) were upregulated in CYB5Aalt-positive samples in combined cohort 3 (Additional file 14).

pCYB5Aalt Nalm-6 is more resistant to Venetoclax induced cell death

To assess, whether the observed trend towards upregulation of anti-apoptotic mediators in pCYB5Aalt-NALM-6 has a functional effect upon BCL2-regulated apoptosis, pCYB5Aalt NALM-6 and empty vector controls were incubated with the selective BCL2 inhibitor Venetoclax [48]. After 48h, pCYB5Aalt-Nalm 6 and empty vector controls were stained with WST-1 as a surrogate marker for viability. pCYB5Aalt-Nalm 6 showed significantly (p < 0.05, Mann-Whitney U Test) higher viability (Fig. 3C) at different concentrations of Venetoclax (0.2 μM:0.67 vs. 0.29 absorbance at 450 nm, 0.5 μM: 0.61 vs. 0.24, 1 μM: 0.45 vs. 0.19) compared to empty vector controls in three independent experiments. Further, the cells were stained with PI to assess cell death. FACS-Analysis gating for PI positive and GFP negative cells revealed significantly (p < 0.05, Mann-Whitney U Test) less cell death in pCYB5Aalt-Nalm 6 cells at different concentrations of Venetoclax (0.02 μM: 9.6% vs. 16.6%, 0.05 μM: 19.6% vs. 31.9%, 0.1 μM: 37.2% vs. 64.5%, 0.1 μM: 47.7% vs. 71.8%, 0.02 μM: 47.7% vs. 71.8%) in four independent experiments (Fig. 3D).

Discussion

The underlying mechanisms of leukemogenesis in NH and HeH BCP-ALL are incompletely understood and a mutational driver event remains to be identified.
Similarly to chromophobe renal cell carcinoma and pancreatic neuroendocrine tumors [49], malignancies with a reported high fraction of unidentified drivers, a uniformly occurring aneuploidy pattern is present in NH and HeH BCP-ALL, which arises early in leukemogenesis [15, 50]. However, the functional role of this pattern as a driver or passenger event is disputed [51]. In addition, secondary mutational events are often volatile and lost or gained at relapse [15, 23]. Despite cytogenetic and outcome differences between NH and HeH BCP-ALL, they share a common gene expression and methylation profile likely reflecting a common leukemogenic mechanism with differences in clinical outcome likely dependent on a simple gain of chromosomes (HeH) or a loss of chromosomes (NH) with a possible consequential duplication of chromosomes and widespread uniparental disomies (masked-NH). Here, we add to the genetic complexity of NH and HeH BCP-ALL by introducing the alternative transcript

Fig. 3 pCYB5Aalt Nalm 6 showed a distinct transcriptional program and resistance to Venetoclax induced cell death. A CYB5Aalt-ORF is stably overexpressed in NALM-6 cells. NALM-6 cells were transfected with pCYB5Aalt (+) or pEmpty (−). RT-PCR was used to confirm overexpression of CYB5Aalt-ORF mRNA. Two representative samples of each are shown. GAPDH was used as a control. NTC = non-template control. Full length electrophoretic gel is displayed in Additional file 17. B pCYB5Aalt NALM-6 show a distinct transcriptional program compared to empty vector controls. Samples were grouped according to the 500 most variably expressed genes between samples. Columns indicate pCYB5Aalt clones and empty vector controls, rows represent gene expression in rlog for each sample. Colour of the heatmap indicates relative expression strength according to the deviation from the mean of all samples in rlog. C Viability of pCYB5Aalt NALM-6 cells and pEmpty upon Venetoclax treatment (n = 3). Cells were incubated with different concentrations of Venetoclax (0μM, 0.2 μM, 0.5 μM, 5 μM, 10 μM) for 72 h. Viability was assessed photometrically after 3 h incubation time with WST-1. Absorbance values were normalised to untreated control samples and shown as viability (%). Bars represent mean viability, error bars ± standard deviation of three independent experiments each with five technical replicates per concentration. Mann-Whitney-U-Test, ***P-value< 0.001, ns = non-significant. D Cell death of pCYB5Aalt NALM-6 and pEmpty upon Venetoclax treatment (n = 4). Cells were incubated at different concentrations of Venetoclax (0μM, 0.2 μM, 0.5 μM, 5 μM, 10 μM, 20 μM) for 48 h. Cell death was assessed by staining cells with PI. Bars represent percentage of PI positive cells, error bars ± standard deviation of four independent experiments each with technical duplicates for each concentration. Mann-Whitney-U-Test, ***P-value< 0.001, **P-value< 0.01, *P-value< 0.05, ns = non-significant.
of CYB5A, CYB5Aalt, and provide first evidence pointing towards a possible role of CYB5Aalt in therapy resistance. CYB5Aalt was firstly discovered analysing RNaseq data in a matched ID-REL cohort of 50 BCP-ALL patients (cohort 1) showing enrichment in relapse and increased occurrence in the NH/HeH gene expression cluster. In this for relapse selected cohort, CYB5Aalt was detected in samples with a masked near-haploid phenotype and in samples with a virtual high hyperdiploid karyotype. Relapse in HeH-BCP-ALL is not common and associated with a less favourable prognosis [16, 22, 52, 53]. Interestingly, CYB5Aalt was the most frequent genetic event secondary to aneuploidy in relapsed HeH BCP-ALL (Additional file 15). The specificity towards the NH/HeH subtype has been described to be widely hypomethylated (23) and first Hi-C experiments suggest a wide dysregulation of 3D-chromatin architecture in this subtype compared to ETV6-RUNX1 BCP-ALL [54], making epigenetic dysregulation a probable cause for this genetic event. This is further supported by enrichment for tri-methylation of H3K27 near the TSS of CYB5Aalt. Rather, the HeH subtype has been described to be widely hypomethylated (23) and first Hi-C experiments suggest a wide dysregulation of 3D-chromatin architecture in this subtype compared to ETV6-RUNX1 BCP-ALL [54], making epigenetic dysregulation a probable cause for this genetic event. This is further supported by enrichment for tri-methylation of H3K27 near the TSS of CYB5Aalt [55, 56], a histone modification frequently associated with gene silencing [57], and the incidence of comparable non-canonical exon usage starting from cryptic TSS after treating a lung cancer cell line with a combination of a histone deacetylase inhibitor and a DNA methyltransferase inhibitor [58].

To gain first insights into biological mechanisms related to BCP-ALL, that CYB5Aalt may influence, pCYB5Aalt was overexpressed in BCP-ALL cell line NALM-6. In concordance to the patient cohorts, pCYB5Aalt overexpression caused a decrease in expression of wildtype CYB5A mRNA in this functional model. Further, it induced a distinct transcriptional program in NALM-6 cells compared to empty vector controls. Gene set enrichment analysis revealed several significantly altered gene sets related to the endoplasmic reticulum, i.e. the unfolded protein stress response, xenobiotic metabolism and protein secretion as well as fatty acid metabolism and adipogenesis. These findings are in line with previously reported roles for CYB5A WT [28, 29, 31] and a downregulation of these pathways may be partly explained by the observed decreased expression of wildtype CYB5A. CYB5Aalt leads to an alternative ORF lacking the coding sequence for the heme-binding domain, which is necessary for Cytochrome B5's reducing capability [31]. This lack raises the possibility of a dominant-negative effect of CYB5Aalt upon Cytochrome B5 and further studies are needed to investigate protein interactions. Interestingly, DNA repair was also significantly downregulated. Aneuploidy induces DNA damage response pathways via several proposed mechanisms. Consequent activation of p53 suppresses aneuploidy-induced tumorigenesis in mice models [59]. High hyperdiploid BCP-ALL shows prolonged metaphase which triggers a p38 and p53-mediated G1 arrest and blocks proliferation [60]. In contrast to other aneuploid BCP-ALL subtypes, e.g. hypodiploid BCP-ALL, mutations in TP53 are no frequent event in the NH or HeH subtype. Therefore, a downregulation of DNA damage response by CYB5Aalt in the context of aneuploidy may contribute to a survival and proliferative advantage of leukemic cells. Further, hyperdiploidy has been associated with increased proteotoxic stress resulting in an increase in apoptosis [61]. pCYB5Aalt NALM-6 also show a significantly downregulated protein stress response pathway. The unfolded protein stress response controls cell fate decision via the mitochondrial pathway of apoptosis controlled by the BCL-2 protein family [47], which play a dominant role in survival of lymphoid malignancies [62]. We observed a trend towards mRNA upregulation of the anti-apoptotic BCL2, MCL1, BCL2L1 and BCL2L2 in pCYB5Aalt NALM-6 compared to empty vector controls. Notably, the same trend was observed in the combined patient cohorts (Additional file 13). To gain first insights whether BCL2-regulated apoptosis is functionally impacted in NALM-6 overexpressing pCYB5Aalt, pCYB5Aalt NALM-6 and empty vector controls were incubated with Venetoclax, a specific BCL2-inhibitor, and assessed for viability and apoptosis. Although BCL2 expression was higher in pCYB5Aalt NALM-6, which has been associated with higher sensitivity towards Venetoclax [63, 64], pCYB5Aalt NALM-6 showed both, increased viability assessed by WST-1 and reduced cell death measured by PI-staining. This may be explained by the higher expression of MCL1, which has been reported to sequester BCL2, thus preventing Venetoclax from binding BCL2 and inducing apoptosis [64–66]. The observed resistance towards Venetoclax provides first evidence for a role of pCYB5Aalt in mediating resistance towards BCL2-dependent apoptosis. This might be of clinical significance, although Venetoclax is still under clinical investigation as therapeutic option in refractory and relapsed (R/R) BCP-ALL [67], because preclinical data derived from patient-derived xenografts and primary BCP-ALL cells as well as a case report of three R/R T-ALL patients suggested efficacy of Venetoclax in overcoming resistance towards components of
induction therapy [68–71]. Further, patients resistant to Venetoclax with chronic lymphocytic leukemia and acute myeloid leukemia, where Venetoclax has already been approved, show dismal outcomes and worse response towards standard antineoplastic therapy [72, 73]. However, further mechanistic studies are needed to gain a deeper understanding of how CYB5Aalt may be implicated in therapy resistance of BCP-ALL.

Conclusion
We report the occurrence of CYB5Aalt, an alternative transcript of CYB5A arising from a previously undescribed TSS, to be highly specific for NH and HeH BCP-ALL in two independent cohorts. It is the most frequent secondary genetic event in relapsed NH and HeH BCP-ALL as assessed by RNAseq, Exonseq and gene panel sequencing analysis in a matched ID-REL cohort. Over-expressing CYB5Aalt in BCP-ALL cell line NALM-6 provides first hints for a functional implication in BCL2-mediated apoptosis.

Abbreviations
BCP-ALL: B-cell precursor Acute Lymphoblastic Leukemia; CYB5A: Cytochrome B5 Type A; TSS: Transcription Start Site; Bp: Base pairs; cDNA: Complimentary DNA; GFP: Green Fluorescent Protein; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; qRT-PCR: Quantitative real-time Polymerase chain reaction; RT-PCR: Reverse Transcriptase Polymerase chain reaction; TPM: Transcripts per million; Rloc: Regularised logarithm transformation; WT: Wildtype; ID: Initial diagnosis; CR: Complete Remission; REL: Relapse; LOH: Loss of heterozygosity; NH / HeH: Near-haploid and high hyperdiploid; LH: Low Hypodiploid; CYB5Aalt: Alternative transcript of CYB5A; ORF: Open reading frame; CYB5Aalt-ORF: Alternative open reading frame of CYB5Aalt; pCYB5Aalt: pcDNA3.1-CYB5AaltORF-IRES-GFP; pEmpty: pcDNA3.1-IRES-GFP; FDR: False discovery rate; NES: Normalised enrichment score; PI: Propidium iodide.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12863-022-01041-1.

Additional file 1. Summary table cohort 1. This table lists basic clinical characteristics (e.g. age at ID, time to REL, sex, bone marrow blast count), molecular subgroups and the status of CYB5Aalt for each sample of the exploratory cohort. Further, it indicates which samples had sufficient RNA to detect gene fusions and alternative transcripts, referred to as cohort 1 (n = 86), and passed the quality check for gene expression analysis.

Additional file 2. Summary table cohort 2. This table lists available basic clinical characteristics (age at ID, sex), molecular subgroup annotation and occurrence of CYB5Aalt for each sample of the validation cohort (cohort 2, n = 140). The table also shows which samples were used for detection of gene fusions (including CYB5Aalt) and were used for gene expression analysis.

Additional file 3. RNAseq pipeline algorithms of cohort 1 and cohort 2. RNAseq workflow is shown for cohort 1 and cohort 2 including most important steps of patient material collection, processing and data analysis.

Additional file 4. Heatmap of subgroup-specific RNA expression profiles shows subgroup specificity of CYB5Aalt in cohort 1. Unsupervised clustering (Euclidean, Average Linkage) of 500 most variably expressed genes was performed in cohort 2 (n = 140). Samples could be grouped according to known subtypes of BCP-ALL (top). Further, CYB5Aalt occurrence is shown at the top for each patient sample. Columns indicate patient samples, rows indicate gene expression in TPM log2 for each sample. The colour of the heatmap indicates relative expression strength as deviation from the mean of all samples in TPM log2.

Additional file 5. Heatmap of subgroup-specific RNA expression profiles shows subgroup specificity of CYB5Aalt in cohort 2. Unsupervised clustering (Euclidean, Average Linkage) of 500 most variably expressed genes was performed in cohort 2 (n = 140). Samples could be grouped according to known subtypes of BCP-ALL (top). Further, CYB5Aalt occurrence is shown at the top for each patient sample. Columns indicate patient samples, rows indicate gene expression in TPM log2 for each sample. The colour of the heatmap indicates relative expression strength as deviation from the mean of all samples in TPM log2.

Additional file 6. Heatmap of subgroup-specific RNA expression profiles shows subgroup specificity of CYB5Aalt in cohort 2. Unsupervised clustering (Euclidean, Average Linkage) of 500 most variably expressed genes was performed in cohort 2 (n = 140). Samples could be grouped according to known subtypes of BCP-ALL (top). Further, CYB5Aalt occurrence is shown at the top for each patient sample. Columns indicate patient samples, rows indicate gene expression in TPM log2 for each sample. The colour of the heatmap indicates relative expression strength as deviation from the mean of all samples in TPM log2.

Additional file 7. Validation of CYB5Aalt in patient samples via RT-PCR and Sanger Sequencing. A RT-PCR with specific primers reaching from alternative Exon 1 to Exon 2 of CYB5A WT confirms expression of CYB5Aalt in CDNA derived from two representative patient RNA samples (AL03 REL, AE02 REL). CKCR expression was used as positive control, NTC as non-template control. Size of PCR product is shown in bp. Full length electrophoretic gel is shown in Additional File 16. B Sanger sequencing of CYB5Aalt PCR products in (A), depicted as chromatograms, confirms RNAseq sequence (top) of alternative transcript.

Additional file 8. Heatmap of subgroup-specific RNA expression profiles shows subgroup specificity of CYB5Aalt in cohort 2. Unsupervised clustering (Euclidean, Average Linkage) of 500 most variably expressed genes was performed in cohort 2 (n = 140). Samples could be grouped according to known subtypes of BCP-ALL (top). Further, CYB5Aalt occurrence is shown at the top for each patient sample. Columns indicate patient samples, rows indicate gene expression in TPM log2 for each sample. The colour of the heatmap indicates relative expression strength as deviation from the mean of all samples in TPM log2.

Additional file 9. CYB5Aalt mRNA expression across molecular subtypes in cohort 3. CYB5Aalt expression (TPM log2) is shown across molecular subgroups in cohort 3. Only samples with detectable CYB5Aalt expression (n = 22) are displayed. Subgroups with CYB5Aalt positive samples include NH/HeH (n = 15), Ph-like (n = 5), LH (n = 1) and unknown (n = 1).

Additional file 10. Wildtype CYB5A mRNA expression is lower in pCYB5Aalt NALM-6 than in empty vector controls. Relative mRNA expression measured by qRT-PCR is depicted as ΔCT(GAPDH-CYB5A). GAPDH was used as reference gene. Red dots represent mean expression of pCYB5Aalt NALM-6 (n = 11, mean = −7.24) and empty vector controls (n = 3, mean = −6.61). Red lines show standard error of the mean (pCYB5Aalt NALM-6: ±0.185, empty vector controls: ±0.063). The maximum and minimum expression value of CYB5Aalt clones were defined as outliers and excluded from statistical analysis. Mean expression was compared using both-sided t-test (p = 0.01).

Additional file 11. Sample-to-sample distance between pCYB5Aalt NALM-6 and Empty Vector controls by Principal Component Analysis. Principal component analysis of log2 normalised RNAseq counts from pCYB5Aalt NALM-6 cells (n = 4) and Empty Vector controls (n = 2) identifies different clusters. Empty vector controls define one cluster (bottom right). Three pCYB5Aalt NALM-6 clones define another (top middle). The fourth pCYB5Aalt clone was treated as an outlier and not included in further analysis.

Additional file 12. Gene set enrichment analysis identifying differentially expressed pathways between pCYB5Aalt NALM-6 cells and Empty Vector controls. Gene set enrichment analysis was performed using the log2 foldchange/standard error of log2 foldchange between the transcriptional profiles of pCYB5Aalt and Empty Vector samples. A NES for MsigDB Hallmark pathways (n = 50) is displayed in a descending order, positive
scores implying an upregulation. Pathways with a FDR < 0.05 are displayed in dark grey. B NES for Miseq DKEG pathways (n = 186) is displayed in a descending order, positive score implying an upregulation. Only KEGG pathways with a FDR < 0.05 are displayed (n = 51).

Additional file 13. Gene set enrichment analysis comparing CYB5Aalt-positive and CYB5A WT samples in the Nh/Hh gene expression cluster shows similar downregulated pathways to the overexpression cell line. Gene set enrichment analysis was performed between CYB5Aalt-positive samples (n = 15) and CYB5A WT samples (n = 7) in the Nh/Hh cluster (n = 22) of combined cohort 3. NES for Miseq Hallmark pathways (n = 50) is shown with positive scores implying an upregulation in CYB5Aalt-positive samples. Pathways with a FDR < 0.05 are displayed in dark grey. Stars indicate pathways that are also significantly downregulated (FDR < 0.05) in pCYB5Aalt NALM-6.

Additional file 14. Expression of BH3-motif genes in engineered cell lines and combined cohort 3. BH3-motif genes are subdivided according to their reported roles in apoptosis in pro-apoptotic (BAD, BID, BCL2L11), anti-apoptotic (BCL2, BCL2L2, BCL2A1) and isom-form-dependent (MCL1, BCL2L1). A BH3-motif gene expression (n TPM) is compared between pCYB5Aalt NALM-6 (n = 3) and empty vector controls (n = 2). Dots represent expression of individual clones. B Gene expression is compared between samples positive for CYB5Aalt (n = 22) and negative samples (n = 198) in combined cohort 3 (n = 220). Dots represent mean expression; vertical lines show standard error of mean. FDR = false discovery rate (Benjamini-Hochberg method).

Additional file 15. Genetic alterations in relapsed NH/Hh BCP-ALL patients (n = 10). The table summarises the number of genetic events occurring in NH/Hh BCP-ALL patients (n = 10) in cohort 1 as assessed by Exome seq and gene panel sequencing. Sheet 1 (summary) summarises recurrent genetic alterations (count > 1), subdivided into gene mutations (mutational count, detected by Exome seq and panel sequencing) and copy number alterations (CNA count, Exome seq). Sheet 2 (mutations) and sheet 3 (can) list all detected genetic alterations in relapsed NH / Hh BCP-ALL patients.

Additional file 16. Uncropped electrophoretic gel of Additional file 7. RT-PCR, followed by Sanger Sequencing (Additional Figure 5), was performed to validate CYB5Aalt expression in two representative patient samples (AL03 REL, AE02 REL). A and B show the top and the bottom of the same uncropped electrophoretic gel (agarose, 1.6%) showing the expression of different genes (CYB5A, CYB5Aalt, NTRK1, PEAR1, ZEB2, CXCR4, ZEB2-CXCR4) in two patient samples (AL03 REL, AE02 REL). CXCR4 was used as positive control. NTC = non-template-control. Ladder size is indicated in bp. Cropped parts of gel are indicated by dotted, black rectangles.

Additional file 17. Uncropped electrophoretic gel of Fig. 3. A RT-PCR was used to confirm overexpression of pCYB5Aalt in NALM-6-cell line. Uncropped electrophoretic gel (agarose, 1.6%) of RT-PCR results of Fig. 3 are shown. Cells were transfected with pCYB5Aalt (+) or pEmpty (-). GAPDH was used as control. NTC = non-template-control. Size of PCR bands are shown in bp. Cropped parts of gel that were used for Fig. 3 are indicated by dotted, black rectangles.

Acknowledgements

Not applicable.

Authors’ contributions

The project was planned and designed by CDH, MN and LB. CDH and MN oversaw the project. MPS performed bioinformatic analysis of cohort 1. MPS and LB performed bioinformatic analysis of cohort 2. MPS and LB identified and characterised CYB5Aalt in silico. LB performed gene expression analysis of cohort 3. SH developed the bioinformatics pipeline and performed the alignment for RNA-seq data of the cell line constructs. LB performed analysis of RNA-seq data of cell line constructs. JOT, CS, KI and VS have performed the sample preparation. LB constructed the genetically engineered cell lines and conducted experiments. JLH, KI and VS contributed to the experimental work. MN, CDH and LB performed the analyses of clinical data. All authors were involved in writing and reviewing the manuscript. All authors read and approved the final manuscript.

Funding

Open Access funding enabled and organized by Projekt DEAL. This study was supported by the German Cancer Aid (Deutsche Krebs Hilfe, grant number: 111533) and the German Cancer Consortium (DKTK). Principal investigator of these grants, Claudia D. Baldus, played a major contributing role in the design of the project. Lorenz Bartsch is member of the Berlin School of Integrative Oncology (BSIO), a joined graduate school of Charité Universitätsmedizin Berlin, Humboldt University Berlin and Free University Berlin funded by the Deutsche Forschungsgemeinschaft (DFG) excellence initiative.

Availability of data and materials

This study extends upon analyses performed in previously published papers with RNAseq data available as stated in them [18, 23].

 declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competition interests

The authors declare that they have no competing interests.

Author details

1Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany. 2Research Institute Children’s Cancer Center, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, 20251 Hamburg, Germany. 3German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. 4German Cancer Consortium (DKTK), 69120 Heidelberg, Germany. 5Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany. 6Department of Pediatric Hematology/Oncology, Charité, University Hospital Berlin, Campus Rudolf Virchow, 13335 Berlin, Germany. 7Core Unit Genomics, Berlin Institute of Health, 13335 Berlin, Germany. 8Department of Medicine, Department of Hematology/Oncology, Goethe University Hospital, 60590 Frankfurt/M, Germany. 9Frankfurt Cancer Institute, 60590 Frankfurt/M, Germany. 10Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.

Received: 25 May 2021 Accepted: 25 January 2022

Publications online: 18 April 2022

References

1. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.
2. Ottmann OG, Wassmann B, Pfeifer H, Giagoudakis A, Stelljes M, Duhren U, et al. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Cancer. 2007;109(10):2068–76.
3. Gokbuget N, Dombret H, Ribera JM, Fielding AK, Advani A, Bassan R, et al. International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractory acute lymphoblastic leukemia. Haematologica. 2016;101(12):1524–33.
4. Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol. 2017;35(9):575–83.
5. Mullighan CG. The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematology Am Soc Hematol Educ Program. 2014;2014(1):174–80.
6. Li JF, Dai YT, Liljebjorn H, Shen SH, Cui BW, Bai L, et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci U S A. 2018;115(50):E11711–E20.
7. Nordlund J, Backlin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 2013;14(9):r105.
8. Safavi S, Paulsson K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: two distinct subtypes with consistently poor prognosis. Blood. 2017;129(4):420–3.

9. Paulsson K, Johannson B. High hypodiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2009;48(8):637–60.

10. Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martinneau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXI/eastern cooperative oncology group (ECOG) 2993 trial. Blood. 2000;100(8):1317–9.

11. Moorman AV, Richards SM, Martinneau M, Cheung KL, Robinson HM, Jalali GR, et al. Outcome heterogeneity in childhood high-hypodiploid acute lymphoblastic leukemia. Blood. 2003;102(8):2756–28.

12. Harrison CJ, Moorman AV, Broadfield ZJ, Cheung KL, Harris RL, Reza Jalali G, et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol. 2004;125(3):552–9.

13. Nachman JB, Heerema NA, Sather H, Carotta B, Forester E, Harrison CJ, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110(4):1112–5.

14. Holmfield L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45(3):242–52.

15. Paulsson K, Lilliehorn H, Biloglav A, Olsson L, Risser M, Castor A, et al. The genomic landscape of high hypodiploid childhood acute lymphoblastic leukemia. Nat Genet. 2015;47(6):672–6.

16. Groeneveld-Krentz S, Schroeder MP, Reiter M, Pogodzinski MJ, Pimentel-Gutierrez HJ, Vagkopoulos R, et al. Aneuploidy in children with relapsed B-cell precursor acute lymphoblastic leukaemia: clinical importance of detecting a hypodiploid origin of relapse. Br J Haematol. 2019;185(2):266–83.

17. Carroll AJ, Shah P, Mikhail FM, Hirsch BA, Loh ML, et al. Masked hypodiploidy: Hypodiploid acute lymphoblastic leukemia (ALL) mimicking hypodiploid ALL in children: a report from the Children’s Oncology group. Cancer Genet. 2019;238(6):2–8.

18. Bastian L, Schroeder MP, Eckert C, Schlee C, Tanchez JO, Kampf S, et al. RAG-mediated recombination is the predominant driver of oncogenic RAG-1 deficiency of cytochrome b5. N Engl J Med. 1986;314(12):757–61.

19. Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X, Nakitandwe J, et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med. 2010;16(5):751–9 preserving SOX9.

20. Zang J, McCastlain K, Yoshihara H, Xu B, Chang Y, Churchman ML, et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016;48(12):1481–9.
hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2012;26(8):1797–803.

54. Yang M, Vesterlund M, Malldal VS, Dreszer TR, Learned K, Kirkup VM, et al. ENCODE data in the UCSC genome browser: year 5 update. Nucleic Acids Res. 2013;41(Database issue):D56–63.

55. UCSC Genome Browser. (Available from: https://genome.ucsc.edu/s/barts

56. Rosenbloom KR, Stoeckfess MJ, Malladi VS, Dreszer TR, Learned K, Kirkup VM, et al. ENCODE data in the UCSC genome browser: year 5 update. Nucleic Acids Res. 2013;41(Database issue):D56–63.

57. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.

58. Brooks D, Schmidt CR, Daskalakis M, Jang HS, Shah NM, Li D, et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet. 2017;49(7):1052–60.

59. Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z, et al. The ATM-p53 pathway

60. Molina O, Vinyoles M, Granada I, Roca-Ho H, Gutierrez-Aguera F, Valledor L, et al. Impaired condensin complex and Aurora B kinase underlie mitotic and chromosomal defects in hyperdiploid B-cell ALL. Blood. 2020;136(3):313–22.

61. Santaguida S, Amon A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol. 2015;16(8):473–85.

62. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335(6189):440–2.

63. Seyfried F, Demir S, Holt RL, Stirnweis FJ, Ryan J, Scheffold A, et al. Prediction of venetoclax activity in precursor B-ALL by functional assessment of apoptosis signaling. Cell Death Dis. 2019;10(8):571.

64. Alford SE, Kothari A, Loeff FC, Moura-Castro LH, Castor A, Fioretos T, et al. Proteogegonism and hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat Commun. 2019;10(1):1519.

65. Choudhary GS, Al‑Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J, et al. Binding of released BH3 inhibitor sensitivity and Bcl-2 dependence in primary acute lymphoblastic leukemia cells. Cancer Res. 2015;75(7):1366–75.

66. Niu X, Zhao J, Li J, Xie C, Edwards H, Wang G, et al. Binding of released Bim to mcl-1 is a mechanism of intrinsic resistance to ABT-199 which can be overcome by combination with Daunorubicin or Cytarabine in AML cells. Cancer Res. 2016;76:1593.

67. U.S. National Library of Medicine. (Available from: https://clinicaltrials.gov/ct2/results?cond=Acute+Lymphoblastic+Leukemia&term=Venetoclax&cnd1=Acute+Lymphoblastic+Leukemia&term=Venetoclax

68. Autry RJ, Paugh SW, Carter R, Shi L, Liu J, Ferguson DC, et al. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. Nat Cancer. 2020;13(3):329–44.

69. Fischer U, Rinaldi A, Risch T, Sungalak S, Wartetz H, et al. Genomics and drug profiling of fatal TCF3-HEL-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet. 2015;47(9):1020–9.

70. Frismantas V, Debay MP, Rinaldi A, Chinda J, Dunn SH, Kunz J, et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood. 2017;129(11):e26–37.

71. La Starza R, Cambo B, Pienni A, Bornhauser B, Montanaro A, Bourquin JP, et al. Venetoclax and Bortezomib in relapsed/refractory early T-cell precursor acute lymphoblastic leukemia. JCO Precis Oncol. 2019;3.

72. Eye TA, Kirkwood AA, Gohill S, Follows G, Walewksa R, Walter H, et al. Efficacy of venetoclax monotherapy in patients with relapsed chronic lymphocytic leukemia in the post-BCR inhibitor setting: a UK wide analysis. Br J Haematol. 2019;185(4):566–69.

73. Maiti A, Rausch CR, Cortes JE, Pemmaraju N, Daver NG, Ravandi F, et al. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens. Haematologica. 2021;106(3):894–8.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.