What is the impact of food reformulation on individuals' behaviour, nutrient intakes and health status? A systematic review of empirical evidence

Mathilde Gressier1,2 | Boyd Swinburn3 | Gary Frost1 | Alexa B. Segal2 | Franco Sassi2

1Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
2Centre for Health Economics and Policy Innovation, Department of Economics and Public Policy, Imperial College London, London, UK
3The University of Auckland, Auckland, New Zealand

Correspondence
Mathilde Gressier, Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
Email: m.gressier18@imperial.ac.uk

Summary
Food reformulation aimed at improving the nutritional properties of food products has long been viewed as a promising public health strategy to tackle poor nutrition and obesity. This paper presents a review of the empirical evidence (i.e., modelling studies were excluded) on the impact of food reformulation on food choices, nutrient intakes and health status, based on a systematic search of Medline, Embase, Global Health and sources of grey literature. Fifty-nine studies (in 35 papers) were included in the review. Most studies examined food choices (n = 27) and dietary intakes (n = 26). The nutrients most frequently studied were sodium (n = 32) and trans fatty acids (TFA, n = 13). Reformulated products were generally accepted and purchased by consumers, which led to improved nutrient intakes in 73% of studies. We also conducted two meta-analyses showing, respectively, a −0.57 g/day (95%CI, −0.89 to −0.25) reduction in salt intake and an effect size for TFA intake reduction of −1.2 (95% CI, −1.79 to −0.61). Only six studies examined effects on health outcomes, with studies on TFA reformulation showing overall improvement in cardiovascular risk factors. For other nutrients, it remains unclear whether observed improvements in food choices or nutrient intakes may have led to an improvement in health outcomes.

KEYWORDS
consumer behaviour, food environments, food policy, food reformulation

1 | INTRODUCTION

Noncommunicable diseases (NCDs) are leading causes of death worldwide. In Europe, a quarter of NCD deaths are attributed to poor diet through an increased risk of diabetes, obesity, cardiovascular disease and other conditions, so improving diets can reduce the burden of NCDs. Exposure to a healthy food environment has been shown to be a stronger driver of healthy eating than health promotion and education efforts.2,3 Food environment interventions include changes to the availability, price, information or composition of food products. For example, food environments can be changed through reformulation of packaged and processed foods. Reformulation, in the context of the prevention of NCDs, is defined as a change in the nutrient profile of a food with the goal of making it healthier for consumers. If successful, food reformulation strategies will improve...
dietary intakes by changing the composition of foods without changing consumers’ eating habits.

Food reformulation strategies became popular in the mid 2000’s when governments and manufacturers focused on the removal of industrially produced trans fatty acids (TFA) and the decrease in salt content of manufactured products. Given that an average of 46% of daily energy intakes in Europe is from processed foods, reformulation has the potential to improve the dietary intakes of the population, if applied consistently.

1.1 | The role of food reformulation in public health

Food reformulation can take many forms and can be driven by different motivations and incentives. A public health model of food reformulation typically involves the enactment of policies deploying regulation or incentives leading manufacturers to improve the nutritional properties of food products by changing their composition. Reformulated food products would replace, rather than add to, preexisting versions of the same products and would be marketed in ways that would preserve consumers’ acceptance and liking of the products after reformulation, for example, through gradual and ‘silent’ reformulation that would not be perceived by consumers as altering the food product’s sensory characteristics. Reformulation would, in this way, change dietary intakes without significantly altering food choices, potentially leading to health improvements.

In practice, however, food reformulation initiatives often deviate from the model described above, even when they retain a public health goal. A common deviation is that reformulated products add to preexisting versions (which should be more appropriately labelled as diversification of food products, rather than reformulation) compounding food choices and their impacts on dietary intakes. This strategy can be favoured by manufacturers as adding products create product diversity that can be a source of increasing sales. When this happens, marketing strategies may actively encourage consumers to switch to the reformulated versions of their products, which may trigger a wider range of substitutions in consumers’ food choices. In addition, food reformulation may not be prompted by an explicit government policy but rather be driven by voluntary agreements, industry pledges, corporate social responsibility motivations, which often involve less systematic approaches and a reduced scope for food reformulation.

This review is not limited to one or another approach to food reformulation. However, the approach taken may contribute to determining the effectiveness of food reformulation in improving dietary intakes and health outcomes; therefore, this dimension was assessed qualitatively in the review.

1.2 | Existing systematic reviews

Several systematic reviews have studied the effect of reformulation (sometimes amongst other policies) on the consumption of specific nutrients, mainly sodium, TFA, and more recently sugar. Reformulation was effective to reduce populations’ sodium intakes, with a greater reduction observed in countries where reformulation is mandatory compared to countries where it is voluntary. Similarly, the reduction of TFA intakes was greater in countries where TFA reduction is mandatory, than in countries where it is voluntary, or in countries implementing solely labelling policies. Overall, these reviews show that reformulation is most effective in improving dietary intakes when part of multiple-component interventions designed to change the food environment. The systematic review on the effect of sugar reformulation reported that reformulation could lead to reductions in sugar intakes and in body weight. However, these findings derive from studies in controlled environments; the effect of reformulation implemented as a population-wide intervention may be different. Previous reviews on food reformulation do not investigate consumers’ reactions to reformulated foods, such as consumers’ long-term acceptance of reformulated products. Consumer acceptance is a key driver of the effectiveness of reformulation in changing dietary intakes, in the absence of which unwarranted substitutions may take place. Also, no review included at the same time outcomes related to consumer choices, dietary intakes and health outcomes, the three steps through which reformulation may have an impact on public health.

1.3 | Aim of this review

This review aims to assess the empirical evidence of the impact of food reformulation on food choices, nutrient intakes and health status, with no restriction on the type of reformulation strategy employed, nor the nutrient targeted. When possible, we also report the effect of reformulation strategies on children.

2 | METHODS

The systematic review methodology was adapted from the Cochrane methodology for systematic reviews. The protocol is published in the PROSPERO database (CRD42019127624), and the reporting adheres to the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA) statement.

2.1 | Eligibility criteria

Eligibility criteria followed the PICO (Population, Intervention, Comparator, Outcome) framework, shown in Table 1. Studies had to be empirical evaluations of an implemented reformulation intervention, targeting the general population. We only included empirical evidence and excluded studies modelling the expected result of a...
TABLE 1 PICO (population, intervention, comparator, outcome) table for the selection of studies

PICO Feature	Criteria
Population	General population (subgroup analysis for children if possible). Studies focusing on the effect in specific subgroups with medical conditions were excluded.
Intervention	Reformulation interventions include those targeting packaged foods and/or beverages, or food sold in restaurant chains. Reformulation at a population-scale can be driven by mandatory or voluntary targets, labelling, self-regulation or public-private partnerships (PPP). Studies evaluating consumer reaction to reformulated products in lab-experiments will be included though will be analysed separately from policies implemented at population-level.
Comparison	Comparators may include no intervention or a comparison of the same group before the implementation of the intervention.
Outcomes	Studies must focus on food product choices, nutrient intakes or long-term outcomes linked to noncommunicable diseases. Primary outcomes include choice behaviour (purchases and sales), dietary intakes and patterns, risk factors for non-communicable diseases (BMI, blood pressure, biological markers of dietary intakes) or health outcomes (mortality). Excluded outcomes: Changes in awareness, knowledge or beliefs, measures of liking, studies with non-quantitative outcomes, and studies evaluating only the change in food composition but not the change in consumer behaviour.

We employed keyword searches through EMBASE, MEDLINE and Global Health for peer-reviewed studies published until December 2018 (the search strategy for Medline is available in Appendix A). The search strategy was refined by conducting sensitivity analysis in EMBASE with a test set of 15 key papers. Adjustments to the search strategy concluded once 85% of the key papers were identified. We also included references from four relevant systematic reviews. Grey literature was searched using the NOURISHING database of reformulation initiatives and following advice from experts.

2.3 | Screening, data extraction and data synthesis

Studies retrieved from the searches were sequentially screened by title, abstract and full text by one author (MG). A second author (ABS) independently reviewed a sample of 10% of studies based on titles and abstracts. The full text of all studies included by the first author were screened by the second author.

We extracted data about intervention, study design and outcome from the included papers; data on subgroups of the population (defined by age, sex and socio-economic status) were extracted when available.

For studies similar enough to be pooled, we performed a meta-analysis using inverse-variance weighting with random effects. Mean differences were used when outcomes were reported in the same unit. Standardized mean differences (Hedge’s g) were used otherwise as a measure of the effect size. Between-study variance was estimated using restricted maximum likelihood as recommended for continuous outcomes. Heterogeneity was assessed with the I² statistics, and meta-regression was performed to explain heterogeneity. Sensitivity analyses were conducted by restricting the sample to studies with the least risk of bias (see section below). Publication bias was assessed with funnel plots. Otherwise, a narrative review was used to qualitatively analyse extracted data.

2.4 | Risk of bias assessment

Risk of bias for each study was assessed using an adapted version of the Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomized studies, given that most studies were designed as natural experiments. Studies were rated on four domains: selection (representativeness of the sample and ascertainment of exposure), comparability of the two groups, outcome (ascertainment of outcome and
duration of follow-up) and adjustment (control for confounders and evaluation of reformulation independent of other mechanisms). An overall score was then calculated (out of seven), reflecting decreasing levels of risk of bias.

3 | RESULTS

The search strategy retrieved 11,315 studies from the three databases. Searching the grey literature and the reference list of included studies led to the addition of 29 papers (PRISMA flow chart13 in Figure 1). After a full-text review of 177 papers against eligibility criteria, 35 papers were included for the review (listed in Appendix B). The 35 papers reported on 32 distinct reformulation initiatives. However, as some of the papers analysed the effect of reformulation on multiple outcomes or nutrients, we included a total of 59 studies in this qualitative analysis.

The majority of studies reported on either the choice and acceptability of reformulated foods (n = 27)15–30 or nutrient intakes (n = 26) in the context of reformulation.5,18,24,25,29,31–42 Only six studies reported on outcomes linked to reduction of NCD burden such as diet-related risk factors or diseases.43–48 The majority of studies were conducted in high-income countries; only three of the 59 studies were conducted in upper-middle-income countries (Costa Rica and Turkey) (Appendix C). Three of the 32 initiatives were mandatory (i.e., bans on the use of TFA), 19 resulted from a rise in consumer awareness (through public health campaigns or nutrition labelling), six were designed as public-private partnerships (with targets to incentivize manufacturers to reformulate their products), two were manufacturer-led and one was a real-condition experiment led by a research group (Appendix C).

The adapted NOS risk of bias tool was effective in differentiating the risk of bias between studies (Appendix D). The domain representing the higher risk of bias was the adjustment domain, with only seven papers (16%) having a point in the two criteria of the domain (adequate control for confounders: 34%, and evaluation of reformulation prevented from other input 27%). Other domains from the risk of bias scale had better compliance, with between 64 and 80% of papers with a low risk of bias.

3.1 | Effect on consumer behaviour and food choices

Overall, reformulated food products were accepted and consumed by the population, that is, when food products were reformulated; those products were purchased, resulting in an improved composition of the population purchases. This means that reformulation did not trigger specific behavioural response. A favourable change in the composition of a food category or of household's basket of purchase was observed in 22 of 27 studies after products were reformulated (Table 2). In those studies, the nutrient content of individual products was weighted by their sales (or purchased quantities) to have a measure representative of households' intakes.

Studies reporting on the acceptability of reformulated products analysed sodium (n = 10), TFA (n = 3), energy reductions (n = 3), fibre (n = 2) or whole grain (n = 2) increases, or an improvement in several nutrients at the same time (n = 5). The extent to which
foods were reformulated changed depending upon the nutrient targeted by reformulation initiatives (i.e., the relative change was different across nutrient targeted). For example, the percentage reduction of TFA in reformulated products (between 80% to almost 100%) was substantially larger than that of reductions in total energy (reductions of around 0.4%–3%27,30) or sugar (reductions of around 2%–3%17,21). The extent to which foods were reformulated also depends on the food category. For example, categories that had the most important salt reduction were cereal products, soups, sauces or cold cuts.17,24,25,30 There was evidence that the larger the improvement of the composition of the food, the larger the effect was on consumers’ purchases: For example, intense reduction in food TFA led to large reduction in TFA purchase (restriction of restaurants TFA to 0.5 g/serving led to a 85% reduction in TFA purchases from restaurants in New York City16); whereas modest reductions in food energy density led to smaller reduction in energy density of total purchases (Clapp et a)23 observed an overall reduction of 1.1% in total purchase, following reductions in foods of around 0.1% to 4.4%).

3.2 Effect on nutrient intakes

Twenty-six studies reported the effect on nutrient intakes; 70% of these studies concluded that reformulation led to improved intakes of the relevant nutrient (Table 2). Studies that used biomarkers (from blood or urine) or reported measures (dietary surveys or total purchases taken as a proxy) of nutrient intakes showed similar positive results, with 77% and 69%, respectively (Appendix E). Most of these studies were focused on sodium (n = 20); and of these studies, 13 reported reduced sodium intakes, ranging from a decrease in sodium intake between 4% and 15% per year (Table 3, and meta-analysis below for estimates of mean differences). Five studies evaluated the effect of TFA reduction and again reported positive effects, ranging from a total decrease between 38% and 85%, measured over a range of seven to 19 years (Table 3). No studies investigated the effect of sugar or energy reformulation on dietary intake.

Pooled effects were estimated for the effect of reformulation on salt and TFA intakes. Overall, reformulation led to a significant decrease in salt intakes of 0.57 g/day (95% Confidence Interval −0.89 to −0.25)

Table 2

Characteristics	All Outcomes, n	Acceptability^a	Intake^b	Morbidity/Mortality			
	Studies, n	Positive Results, %	Studies, n	Positive Results, %			
	Positive Results, %	Positive Results, %					
Total	59	27	81	26	73	6	83
Effect of reformulation isolated							
No	41	16	100	22	73	3	67
Yes	18	11	55	4	75	3	100
Nutrient studied							
Salt (sodium)	31	10	90	20	65	1	100
TFA	13	3	100	5	100	5	80
Several nutrients^c	5	5	80				
Energy	3	3	100				
Sugars	3	3	33				
Fibres	2	2	50				
Whole grains	2	1	100	1	100		
Type of reformulation							
Mandatory limit	5	1	100			4	75
Voluntary reformulation^d	54	26	81	26	73	2	100

Note. Positive results were defined as a significant change in average nutrient density of purchased products or a change in nutrient intake going in the direction of an improvement for public health (i.e., reduction for sodium, TFA, energy or sugars, increase in fibres or whole grains and improvement of the nutrient profile of foods), or a reduction in disease risk or mortality.

^a Acceptability of reformulated products was either measured using sales/purchases of the reformulated product before and after reformulation and the evolution of market-share weighted averages of a nutrient content before and after reformulation.

^b Intakes were measured by means of traditional methods (dietary survey and biomedical measures) or by evaluating the nutrient content of all purchased items by households representative of the population.

^c Several nutrients’ is used either for measures of nutrient profile (e.g., score) or when several nutrients where evaluated jointly.

^d Voluntary reformulation can be triggered via commitment, or the implementation of labelling.
Nutrient	Study	Country	Measurement Method	Time Evaluated	Effect of Reformulation Isolated	NOS Score	Effect on Intakes—a	Effect Size—b
Sodium	McLaren et al[5]	Austria	24-h dietary recall	4 y	No	0	−1.8% NS	−1.8% NS
	McLaren et al[5]	Switzerland	24-h urine sample	27 y	No	2	+9.5%b	
	McLaren et al[5]	Netherlands	24-h urine sample	4 y	No	4	0.0% NS	0.0% NS
	Temme et al[35]	Netherlands	24-h urine sample	9 y	No	4	0.0% NS	0.0% NS
	McLaren et al[5]	USA	Spot urine	−20 y	No	4	−4.0% NS	−4.0% NS
	Poti et al[18]	USA	Purchases-adjusted 24-h dietary recall	5 y	No	5	−0.0% NS	−0.0% NS
	McMahon et al[29]	Australia	Sales-adjusted content	18 weeks	Yes	5	−2.5% NS	−2.5% NS
	McLaren et al[5]	Turkey	24-h urine sample	4 y	No	0	−10.0% NA	
	McLaren et al[5]	Ireland	FFQ	5 y	No	2	−4.3%b	
	Curtis et al[24]	USA	Sales-adjusted content	5 y	No	3	−6.8%b	
	McLaren et al[5]	Denmark	Spot urine	4 y	No	3	−7.4% NA	
	Millett et al[42]	UK	Spot urine	4 y	No	4	−14.0%b	
	McLaren et al[5]	UK (GB)	24-h urine sample	8 y	No	5	−9.3%b	
	McLaren et al[5]	Finland	24-h urine sample	7 y	No	5	−9.8%b	
	McLaren et al[5]	France	7-day open-ended survey	8 y	No	5	−5.8%b	
	He, 2014 [41]	UK	24-h urine sample	y	No	5	−15.0%b	
	Shankar et al[34]	UK	Spot urine	4 y	No	5	−10.0%b	
	Griffith et al[29]	UK	Purchases-adjusted content	6 y	Yes	6	−5.1% NA	
	Eyles et al[25]	UK	Purchases-adjusted content	5 y	No	6	−7.0% NA	
	Poti et al[18]	USA	Purchase-adjusted content and total sodium purchased	15 y	Yes	7	−12.0%b	
TFA	Monge-Rojas et al[31]	Costa Rica	3-day dietary record	10 y	No	2	+	−38.0%b
	Friesen et al[27]	Canada	TFA in breastmilk	7 y	No	2	+	−45.0%b
	Ratnayake et al[23]	Canada	TFA in breastmilk	19 y	No	3	+	−85.0%b
	Vesper et al[26]	USA	Blood fatty acids	9 y	No	6	+	−53.0%b
	Hutchinson et al[41]	UK	Food diaries (7 and 4 days)	10 y	Yes	6	+	−55.0% NA
Whole grains	Greve and Neess[38]	Denmark	Market shares-adjusted dietary surveys (7-day diary)	6 y	No	5	+	+75.0% NA

Note. Intakes were measured by means of traditional methods (dietary survey, measures of biomarkers) or by evaluating the nutrient content of all purchased items by households representative of the population.

Abbreviations: FFQ, Food Frequency Questionnaire; GB, Great-Britain; NOS, Newcastle-Ottawa Scale; TFA, trans fatty acids; y, years; NS, nonsignificant; NA, not applicable.

—A positive effect on intake was defined as a significant change in average nutrient density of purchased products or a change in nutrient intake going in the direction of an improvement for public health (i.e., reduction for sodium and TFA and increase in whole grains).

—Significant at (at least) 5%. Statistic tests were not performed in the study.
The positive effect was greater for studies that measured salt purchased by households (−1.04 g/day 95% CI, −1.11 to −0.97) versus those studies that measured salt intake using 24-h urinary excretion (−0.47 g/day 95% CI, −1.13 to +0.18). There was a high heterogeneity across all salt studies ($I^2 = 98\%$). This was expected given the various nature of the reformulation initiatives implemented: category coverage, targets and baseline intake of populations varied between studies. The method used to estimate salt intake or the duration of the intervention could not explain this heterogeneity: findings were statistically similar both when stratifying by method used and by duration of intervention (see meta-regressions in Appendix F). The effect was stronger when studies with the least risk of bias (NOS score >2) were selected (Appendix G). No publication bias was detected as studies were symmetrically distributed around the pooled estimate (Appendix H), Egger’s test showed no evidence for small study effect. Reformulation of TFA also led to a significant reduction in TFA intakes (estimated effect size using Hedge’s g of −1.20, 95% CI, −0.79 to −0.61) (Figure 3). The effect was stronger when the sample was restricted to women (two studies measured breastmilk TFA), and when only studies with the least risk of bias were selected (Appendix G). There were too few studies to investigate heterogeneity, that was high ($I^2 = 99\%$). There was no small study effect (Egger’s test not significant).

3.3 Effect on health status

Six studies investigated the empirical impact of reformulation initiatives on health status (i.e., morbidity and mortality), with five of these studies showing an improvement in health status (Table 3). Of these six studies, five focused on the effect of TFA, whereas only one focused on the effect of sodium reduction. The morbidity or mortality from cardiovascular diseases was reduced in four of the five studies that evaluated the effect of TFA bans in packaged foods or restaurant foods, where mortality was reduced by between 4.3%–6.2% (Table 4). The sodium reduction study concluded that the effect of the UK intervention had a positive impact blood pressure.

Study	Before intervention	After intervention	Mean Diff. with 95% CI				
	N	Mean	SD	N	Mean	SD	
24h urine sample							
He, 2014 [40]	1,147	9.5	4.7	692	8.1	5.8	-1.40 [-1.89, -0.91]
McLaren, 2016 (Finland)	670	11.8	4.7	400	10.6	4.1	-1.15 [-1.71, -0.59]
McLaren, 2016 (UK)	1,724	9.5	4.5	692	8.6	4.4	-0.89 [-1.28, -0.50]
Temme, 2017	317	9.1	3.4	289	9.0	3.6	-0.10 [-0.66, 0.46]
McLaren, 2016 (Netherlands)	317	8.6	3.2	342	8.6	3.4	0.00 [-0.50, 0.50]
McLaren, 2016 (Switzerland)	147	8.4	3.6	1,448	9.2	3.8	0.80 [0.16, 1.44]
dietary surveys							
McLaren, 2016 (France)	1,345	8.0	2.6	1,922	7.5	2.3	-0.46 [-0.63, -0.29]
McLaren, 2016 (Ireland)	5,992	8.2	5.9	9,172	7.8	3.7	-0.35 [-0.50, -0.20]
McLaren, 2016 (Austria)	2,123	8.3	3.5	380	8.1	3.0	-0.15 [-0.53, 0.23]
household purchases							
Griffith, 2017	16,664	6.5	4.0	28,767	5.5	3.5	-1.08 [-1.15, -1.01]
Poti, 2017 [18]	33,706	6.0	0.8	58,138	5.0	2.5	-1.01 [-1.03, -0.98]
spot urine							
Millett, 2012	1,668	5.3	4.2	4,269	4.6	3.3	-0.74 [-0.94, -0.54]
Overall							
Heterogeneity: $I^2 = 0.28, I^2 = 98.30\%, H^2 = 58.94$							
Test of group differences: $Q_{(3)} = 100.85, p = 0.00$							

FIGURE 2 Pooled estimate of the effect of initiatives including salt reformulation on populations’ salt intake (in g/day), by measurement method used to measure a change in dietary sodium.
3.4 Isolated effect of reformulation

It was difficult to isolate the effect of reformulation, as many studies were part of larger initiatives including other components such as labelling or public health campaigns. Overall, the effect of reformulation alone could be observed in 18 studies (30% of all studies) (Appendix C). These studies included designs where the only policy implemented was reformulation or, in the case of...
interventions with different components, the effect of reformulation was isolated from the effect of the other components. These studies evaluating only the effect of reformulation were less likely to report positive results on the acceptability of reformulated products, although more likely to report improvement of health outcomes, compared to other studies. Studies not isolating the effect of reformulation reported on an effect that can be the result of reformulation, and other strategies (in the case of multiple-component interventions, or by other uncontrolled inputs such as a change in advertising) (Table 2).

3.5 | Effect on subgroups of the population

Only three studies evaluated the effect of interventions specifically in children or adolescents.31,32,38 Studies showed similar effects across age groups. The majority of studies did not report results by gender.

4 | DISCUSSION

Overall, reformulated products were accepted by consumers, although evidence differs by nutrient. Several studies (10) showed that salt-reduced products were accepted, whereas a limited number of studies found that products reduced in sugar or increased in fibres were less likely to be accepted by consumers. Acceptance in this context means that the reformulated food product led to an improved nutrient composition of total food purchased and hence in intakes. Compensation (overconsumption or a change in dietary patterns such as a switch towards non-reformulated products) did not offset the benefits of reformulation (70% of studies showed a positive overall effect of reformulation). Nonetheless, compensation did occur (e.g., for salt) in some studies in which reformulation did not lead to decreased intakes or led to a smaller decrease than predicted from changes in food composition.18,35 Two studies showed that the effect of reformulation was partly offset by consumers switching to less-healthy options.20,39 Studies using experimental settings found that while abrupt reformulation was noticed by consumers and led to compensation,49,50 silent reformulation did not lead to compensatory behaviours hence reduced intakes of sodium or saturated fatty acids.51,52

Due to the variability in initiatives’ nutrient focus and scope (number of categories and type of foods targeted), it was not possible to quantify compensatory behaviours or to identify the specific context in which compensation occurred. For example, as there was no study on the impact of sugar reduction strategies on intakes, we cannot assess whether consumers would compensate by choosing alternative products with higher sugar content. However, most studies reported an improvement in dietary intakes, confirming that reformulation can lead to a positive change in dietary habits.

4.1 | Health outcomes

Five of six studies examining health outcomes show that reformulation can provide health benefits by improving the nutritional properties of foods.53 However, a link between reformulation and health outcomes was only observed for TFA reformulation, and it cannot be generalized to other nutrients. The extent of the reformulation was also a factor driving impact on health outcomes. The combination of a complete removal of TFA from the food supply in some countries, in addition to the strong correlation between TFA intake and health,54 created the conditions for a measurable impact on health. The reformulation of the whole nutrient profile of foods is challenging as most nutrients (sugars, fats, fibres or sodium) play a role in texture, stability and taste of products.55 Also, although products containing artificial TFA are easy to identify, defining what foods should be included in strategies targeting different nutrients is more difficult as nutrients such as sugars or salt are naturally present in foods. Reformulating a food product with the objective of modifying one nutrient has consequences on the whole nutrient profile of the food, as often the quantity of other nutrients needs to be adjusted.56 The fact that the health impact of diets is not mediated solely through one nutrient may explain the difficulty to observe any health impact of the reformulation of single nutrients. Sodium reformulation was done with the use of salt substitutes, and with gradual reductions of the salt intensity. Contrarily to TFA reformulation, sodium reformulation was gradual, possibly the reason why it is more difficult to evaluate the health impact of sodium reformulation.

4.2 | Intervention designs

This review suggests that to have the expected favourable impact on consumers’ intakes and health, reformulation interventions should have large scope across and within food categories that are the major sources of the targeted nutrient. This is because the effect of reformulation can be offset if consumers switch to similar products that have a worse nutrient profile. For all nutrients, it appeared that a reformulation across the maximum of food products, and covering most of food categories (and at a measurable size) was needed to see significant changes.18,21,35 The absence of effect was often explained by a small proportion of products reformulated, or a too slow pace.18,35,57 Strategies are generally designed to promote the reformulation of the foods that represent the leading sources of the targeted nutrient. Foods reformulated to reduce TFA were mostly margarines, fried products, or biscuits although most countries had a limit (either a ban or a 2% of fat limit) applying to all processed foods sold in retail and restaurants. Foods most often targeted in reformulation programmes for the reduction of sodium intakes were cereal products, processed meats and soups. Foods such as biscuits or prepared meals were included in strategies focusing on multiple nutrients, as these foods can be
at the same time sources of salt, sugar and TFA. Reformulating a comprehensive range of food products limits the possibility for consumers to switch to alternative sources of the targeted nutrient (e.g., nonreformulated foods).

4.3 | Different reformulation approaches

Reformulation policies have been mostly implemented at the country level. However, a large part of processed foods is produced by companies operating in different countries. Studies have shown that there are differences in the composition of similar products across different countries: even if they carry the same brand, some products have different formulation to adapt to local preferences, production capabilities or the regulatory environment. Where TFA reformulation was voluntary, studies showed that reformulation of TFA in restaurants was shown to have had a positive impact on health outcomes. Relevant out-of-home settings include canteens (in workplaces or schools), restaurants, fast-food outlets or street vendors. Foods provided in these settings can be industrially produced and can be distributed and advertised similarly to packaged foods for home consumption. These characteristics make foods consumed out-of-home suitable targets for reformulation policies. Foods in out-of-home settings have been targeted specifically (e.g., TFA ban in New York restaurants or food standards in schools) or as part of wider reformulation policies (e.g., the UK sugar reduction initiative targets retailers, manufacturers and foods sold for out of home consumption).

4.5 | Reformulation in the context of wider policies

Reformulation initiatives were often employed in conjunction with other initiatives, most commonly, initiatives to inform and educate consumers. Nation-wide reformulation initiatives for the reduction of sodium and TFA were deployed with public health campaigns that informed consumers about the harmful effects of excessive intake of those nutrients. Further, front of pack labelling, claims or logos incentivized manufacturers to reformulate their products so that they attract consumers.

Systematic reviews on sodium and TFA showed that multicomponent strategies including a reformulation scheme were the most promising to improve diets. In particular, interventions including regulations to change the price or composition of foods (i.e., changing the structure of the food environment) had a greater impact than interventions focusing only on education. This suggests that changes in behaviour (compensation) occurred more often when there was no counterintervention to raise population's awareness to dietary choices, highlighting the need for reformulation to be embedded in wider initiatives comprising education components.

4.6 | Reformulation alone is unlikely to reduce energy intake

Although reformulation is a promising strategy to improve the nutrient profile of foods, it is unlikely to lead to major reduction in the energy density of the food environment (i.e., reformulation is not contributing to obesity prevention). Most often, reformulation strategies included in this review led to products with the same energy density. For example, if a strategy aimed to reduce sodium, TFA or sugar, the energy density of the product would be unchanged following the reduction of the respective nutrient. Reformulating foods to decrease a certain macronutrient is often done by substituting it with a macro-nutrient of the same energy density (e.g., TFA was replaced with other types of fat and sugars by carbohydrates, with the total energy density held constant). One way to decrease energy density of a product is to substitute its sugars with fibres, as fibres provide less energy than sugar for the same weight. Given that reformulation is a strategy designed to gradually improve the food environment, reformulation may be an inadequate strategy to reduce total energy intake of individuals via decreasing the energy density of foods. This is mainly because it is unlikely that major reductions in energy density of products can be achieved in without changing the sensory characteristics of that product, especially texture and taste. An exception could be reformulation of sugar-sweetened drinks, where the replacement of sugar with no-calorie sweeteners decreases the energy content of the drink. This reformulation is easier to implement than reducing sugar in solid foods, as highlighted by the latest report from Public Health England about their sugar reduction programme: the sugar was reduced by 3% in foods, but by 29% in beverages. To
reduce energy intake of populations, other strategies are needed, such as reducing portion sizes of products, and promoting healthier alternatives to energy-dense foods.65

4.7 | Strengths and limitations of the review

This review is the first to evaluate the impact of reformulation interventions, regardless of the nutrient targeted. This approach allows us to make conclusions regarding reformulation as a specific strategy to improve food environments and populations’ health. By looking at three different outcomes (purchases, intakes and health status), this review contributes to the evidence needed to better understand the impact of reformulation on population health. However, our review is subject to limitations. Firstly, there is not equal representation of reformulation on all nutrients, meaning that evidence on reformulation of TFA and sodium are overrepresented. Secondly, some studies relied on labelled nutrient content in foods to measure changes, which can produce a biased measure, as nutrition labels allow for a margin of error between labelled content and actual content.66 This margin of error may not allow the detection of small reformulations that would not require a change in labelling (and hence representing a saving for manufacturers). Thirdly, we could only tease out the effect of reformulation alone on a small proportion of studies (n = 18), of which only seven appropriately controlled for confounders. Finally, we were able to perform a meta-analysis for only two of the included outcomes. Pooled estimates were different by measurement method used, highlighting the systematic bias associated with some methods (e.g., dietary surveys underestimate table salt use).

Further studies are needed to fill the gaps highlighted in this review, as there is missing evidence about the efficacy and impact on dietary intakes (and health) of sugar, fibre reformulation policies. However, population-based monitoring is generally not sensitive enough to link reformulation to health outcomes. Also, studies are needed to understand the impact of reformulation on the whole diet and not only on the nutrient targeted by the reformulation strategy. The impact of reformulated foods on consumer choices is also poorly understood; studies on this topic could help to design effective policies where the reformulation of foods would have an impact on consumers diet.

5 | CONCLUSION

The evidence base examined in this review shows that food reformulation has the potential to improve people’s diet and health. Changes in the nutrient composition of food products translate into changes in the balance of nutrients from food purchased by consumers. Overall, the evidence shows that a reduction in sodium or TFA contents in foods results in a change in the intakes of those nutrients. Further, reductions of TFA in foods tend to be associated with decreased mortality from cardiovascular diseases at a population level. However, many reformulation initiatives lack a robust evaluation of their impacts on food choices, dietary intakes and health. Therefore, our conclusions are based on a subsample of reformulation initiatives and are not necessarily generalizable to all reformulation initiatives. Due to the small number of studies, it was not possible to draw conclusions on the impact of reformulation on children’s diet and health, though the three studies included investigating the effect of reformulation on children suggest that results are similar across age groups.

Although reformulation may be helpful in changing the consumption of some nutrients (including TFA, sodium, sugar or fibres), it is not enough to tackle obesity as a global issue, especially for children. Given the challenges involved in changing behaviours and food choices, reformulation can provide the means to improve dietary intakes and health by changing the environment in which people make their food choices. Nonetheless, the success of reformulation as a public health strategy crucially depends on the breadth of products reformulated and the extent to which they are reformulated.

ACKNOWLEDGEMENTS

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 774548.

This document reflects only the authors’ views and the European Commission is not responsible for any use that may be made of the information it contains.

MG is the recipient of an unconditional PhD Studentship grant from Nestec. Nestec has no role in the study design, data collection and analysis, or preparation of the protocol and research paper.

The Nutrition Research Group is funded by grants from the MRC, BBSRC, NIHR, an Integrative Mammalian Biology (IMB) Capacity Building Award, and is supported by the NIHR Biomedical Research Centre Funding Scheme. GF is and NIHR senior investigator. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

ORCID

Mathilde Gressier https://orcid.org/0000-0002-0487-1589
Boyd Swinburn https://orcid.org/0000-0002-2131-045X
Gary Frost https://orcid.org/0000-0003-0529-6325
Alexa B. Segal https://orcid.org/0000-0003-3051-4347
Franco Sassi https://orcid.org/0000-0001-9773-2117

REFERENCES

1. Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958-1972. https://doi.org/10.1016/S0140-6736(19)30041-8
2. Mozaffarian D, Rosenberg I, Uauy R. History of modern nutrition science-implications for current research, dietary guidelines, and food policy. BMJ. 2018;361:k2392. https://doi.org/10.1136/bmj.k2392
3. Swinburn BA, Kraak V, Rutter H, et al. Strengthening of accountability systems to create healthy food environments and reduce global obesity. Lancet. 2015;385(9986):2534-2545. https://doi.org/10.1016/S0140-6736(14)61747-5
4. Monteiro CA, Moubacar J-C, Levy RB, Canella DS, Da Costa Louzada ML, Cannon G. Household availability of ultra-processed
foods and obesity in nineteen European countries. Public Health Nutr. 2018;21(1):18-26. https://doi.org/10.1017/S1368990017001379
5. McLaren L, Sumer N, Barberio AM, et al. Population-level interventions in government jurisdictions for dietary sodium reduction. Cochrane Database Syst Rev. 2016;2016(9):CD010166. https://doi.org/10.1002/14651858.CD010166.pub2
6. Tieu K, Neal B, Hawkes C, et al. Salt reduction initiatives around the world—a systematic review of progress towards the global target. DeAngelis MM, ed. PLoS ONE. 2015;10(7):e0130247. https://doi.org/10.1371/journal.pone.0130247
7. Hyseni L, Elliot-Green A, Lloyd-Williams F, et al. Systematic review of dietary salt reduction policies: evidence for an effectiveness hierarchy? PLoS ONE. 2017;12(5):e0177535. https://doi.org/10.1371/journal.pone.0177535
8. Downs SM, Thow AM, Leeder SR. The effectiveness of policies for reducing dietary trans fat: a systematic review of the evidence. Bull World Health Organ. 2013;91(4):262-9H. https://doi.org/10.2471/BLT.12.111468
9. Downs SM, Bloem MZ, Zheng M, et al. The impact of policies to reduce trans fat consumption: a systematic review of the evidence. Curr Dev Nutr. 2017;1(12):cdn.117.000778. https://doi.org/10.3945/cdn.117.000778
10. Hyseni L, Bromley H, Kypridemos C, et al. Systematic review of dietary trans-fat reduction interventions. Bull World Health Organ. 2017;95(12):821-830G. https://doi.org/10.2471/BLT.16.189795
11. Hashem KM, He FJ, MacGregor GA. Effects of product reformulation on sugar intake and health—a systematic review and meta-analysis. Nutr Rev. 2019;77(3):181-196. https://doi.org/10.1093/nutri/nuy015
12. Gressier M, Segal A, Svinburn BA, Gary Frost FS. What is the impact of food reformulation on individual’s behaviour, nutrient intakes and health status? A systematic review of empirical evidence. PROSPERO. 2019:CRD42019127624. https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=127624. Accessed April 9, 2019
13. Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097
14. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate study variance and its uncertainty in meta-analyses: the PRI- SMA framework. PLoS Med. 2016;13(6):e1002137. https://doi.org/10.1371/journal.pmed.1002137
15. Ahuja JKCC, Pehrsson PR, Haytowitz DB, et al. Sodium monitoring in foods and obesity in nineteen European countries. Public Health Nutr. 2018;2019;17(7):983-987. https://doi.org/10.1017/S1368990017000944
17. Rojas R, Aragón MC, Chinnock A, Campos H, Colón R, Rojas V, et al. Change in trans fatty acid content of fast-food purchases associated with New York City’s restaurant regulation. Ann Intern Med. 2012;157(2):81-86.
19. Ogali. Bilan Des Premiers Résultats Des Suivis Des Évolutions—Étude de l’évolution Des Produits Transformés Disponibles Sur Le Marché Français Par Secteur Entre 2006–2010 et 2010–2013. 2016. https://www.ogali.fr/content/download/3452/33055/file/Ogali 2016_Rapport_Bilan des premiers resultats des suivs des evolutions. pdf. Accessed November 1, 2018.
20. Poti JM, Dunford EK, Popkin BM. Sodium reduction in US households' packaged food and beverage purchases, 2000 to 2014. JAMA Intern Med. 2017;177(7):986-994. https://doi.org/10.1001/jamainternmed.2017.1407
21. Quilez J, Salas-Salvado J. The feasibility and acceptability of reducing salt in partially baked bread: a Spanish case study. Public Health Nutr. 2016;19(6):983-987. https://doi.org/10.1017/S1368980015000944
22. Spiteri M, Soler L-G. Food reformulation and nutritional quality of food consumption: an analysis based on households panel data in France. Eur J Clin Nutr. 2018;72(2):228-235. https://doi.org/10.1038/s41430-017-0044-3
23. Tedstone A, Coulton V, Targett V, Bennett A, Sweeney K, Morgan K, Clegg E, Robinson M, Dowd L, Knowles B. Sugar reduction and wider reformulation programme: report on progress towards the first 5% reduction and next steps.; 2018. https://www.gov.uk/government/publications/sugar-reduction-report-on-first-year-progress. Accessed October 1, 2018.
24. Zupančič N, Hribar M, Kupirović UP, Kušar Š, Žmitek K, Pravst I. Limiting trans fats in foods: use of partially hydrogenated vegetable oils in prepacked foods in Slovenia. Nutrients. 2018;10(3):355. https://doi.org/10.3390/nu10030355
25. Hyseni L, Bromley H, Kypridemos C, et al. Systematic review of dietary trans-fat reduction interventions. Bull World Health Organ. 2017;95(12):821-830G. https://doi.org/10.2471/BLT.16.189795
26. Henninger M, Ulberth F. Trans fatty acids in margarines and shortenings marketed in Austria. Z Lebensm Unters Forsch. 1996;203(3):210-215. https://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=8738457
27. Jensen JD, Sommer I. Reducing calorie sales from supermarkets—‘silent’ reformulation of retailer-brand food products. Int J Behav Nutr Phys Act. 2017;14(104). https://doi.org/10.1186/s12966-017-0559-y
28. Mancino L, Kuchler F, Leibtag E. Getting consumers to eat more whole-grains: the role of policy, information, and food manufacturers. Food Policy. 2008;33(6):489-496. https://doi.org/10.1016/j.foodpol.2008.05.005
29. McMahon E, Webster J, Brimblecombe J. Effect of 25% sodium reduction on sales of a top-selling bread in remote indigenous australian community stores: a controlled intervention trial. Nutrients. 2017;9(9):214. https://doi.org/10.3390/nu9030214
30. Ni Mhrurchu C, Eyles H, Choi YH. Effects of a voluntary front-of-pack nutrition labelling system on packaged food reformulation: the health star rating system in New Zealand. Nutrients. 2017;9(9):918. https://doi.org/10.3390/nu9080918
31. Angell SY, Cobb LK, Curtis CJ. Changes in dietary intake and food sources of saturated and cis and trans unsaturated fatty acids in Costa Rican adolescents: 1996 versus 2006. Nutrition. 2013;29(4):641-645. https://doi.org/10.1016/j.nut.2012.10.004
32. Poti JM, Yoon E, Hollingsworth B, et al. Monitoring changes in sodium intake for the US population between 2007 and 2012: a novel approach using a crosswalk between nutrition label data and dietary recalls. FASEB J. 2017;31(1 Supplement 1). http://www.fasebj.org/content/31/1_Supplement/302.a;abstract?sid=fa96a40-450e-4505-95bf-8ad32f1591a, http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexa&NEWS=N&AN=616959321
33. Ratnayake WMN, Swist E, Zoka R, Gagnon C, Lilleycrop W, Pantazopoulos P. Mandatory trans fat labeling regulations and nationwide product reformulations to reduce trans fatty acid content in foods contributed to lowered concentrations of trans fat in Canadian women’s breast milk samples collected in 2009-2011. Am J Clin Nutr. 2014;100(4):1036-1040. https://doi.org/10.3945/ajcn.113.1078352
34. Shankar B, Brambila-Macias J, Traill B, Mazzocchi M, Capacci S. An evaluation of the UK Food Standards Agency’s salt campaign. Heal Econ (United Kingdom). 2013;22(2):243-250. https://doi.org/10.1002/hec.2772
35. Temme EHM, Hendriksen MAH, Milder IEJ, et al. Salt reductions in some foods in the Netherlands: monitoring of food composition and salt intake. Nutrients. 2017;9(7):791. https://doi.org/10.3390/nu9070791
40. He FJ, Brinsden HC, MacGregor GA. Salt reduction in the United Kingdom: a successful experiment in public health. J Hum Hypertens. 2014;28(6):345-352. https://doi.org/10.1038/jhh.2013.105

41. Hutchinson J, Rippin HL, Jewell J, Breda JJ, Cade JE. Comparison of high and low trans-fat acid consumers: analyses of UK National Diet and nutrition surveys before and after product reformulation. Public Health Nutr. 2018;21(3):465-479. https://doi.org/10.1017/S1368946517002877

42. Millett C, Laverty AA, Stylianou N, Bibbins Domingo K, Pape UJ. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. PLoS ONE. 2012;7(1):e29836. https://doi.org/10.1371/journal.pone.0029836

43. Grabovac I, Hochfellner L, Rieger M, et al. Impact of Austria’s 2009 trans fatty acids regulation on all-cause, cardiovascular and coronary heart disease mortality. Eur J Public Health. 2018;28(2):4-9. https://doi.org/10.1093/eurpub/kyx147

44. Colón-Ramos U, Baylin A, Campos H. The relation between trans fatty acid levels and increased risk of myocardial infarction does not hold at lower levels of trans fatty acids in the Costa Rican food supply. J Nutr. 2006;136(11):2887-2892. https://doi.org/10.1093/jn/136.11.2887

45. He FJ, Pombo-Rodrigues S, MacGregor GA. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischemic heart disease mortality. BMJ Open. 2014;4(4):e004549. https://doi.org/10.1136/bmjopen-2013-004549

46. Restrepo BJ, Rieger M. Denmark’s policy on artificial trans fat and cardiovascular disease. Am J Prev Med. 2016;50(1):69-76. https://doi.org/10.1016/j.amepre.2015.06.018

47. Restrepo BJ, Rieger M. Trans fat and cardiovascular disease mortality: evidence from bans in restaurants in New York. J Health Econ. 2016;45:176-196. https://doi.org/10.1016/j.jhealeco.2015.09.005

48. Brandt EJ, Myerson R, Perraillon MC, Polonsky TS. Hospital admissions for myocardial infarction and stroke before and after the artificial trans fatty acids restrictions in New York. JAMA Cardiol. 2017;2(6):627-634. https://doi.org/10.1001/jamacardio.2017.0491

49. Bobowski N, Rendahl A, Vickers Z. A longitudinal comparison of two salt reduction strategies: acceptability of a low salt food demand depends on the consumer. Food Qual Prefer. 2015;40(PB):270-278. https://doi.org/10.1016/j.foodqual.2014.07.019

50. Markey O, Le Jeune J, Lovegrove JA. Energy compensation following consumption of sugar-reduced products: a randomized controlled trial. Eur J Nutr. 2015;56(5):2137-2149. doi:5

51. Janssen AM, Kremer S, van Stipriaan WL, Noort MWJ, de Vries JHM, Temme EHM. Reduced-sodium lunches are well-accepted by uninformed consumers over a 3-week period and result in decreased daily dietary sodium intakes: a randomized controlled trial. J Acad Nutr Diet. 2015;115(10):1614-1625. https://doi.org/10.1016/j.jand.2015.01.008

52. Markey O, Vasilopoulou D, Kliem KE, et al. Plasma phospholipid fatty acid profile confirms compliance to a novel saturated fat-reduced, monounsaturated fat-enriched dairy product intervention in adults at moderate cardiovascular risk: a randomized controlled trial. Nutr J. 2017;16(1):1-16. https://doi.org/10.1186/s12937-017-0249-2

53. Ratnayake WMN, L‘Abbé MR, Mozaffarian D. Nationwide product reformulations to reduce trans fatty acids in Canada: when trans fat goes out, what goes in? Eur J Clin Nutr. 2009;63(6):808-811. https://doi.org/10.1038/ejcn.2008.39

54. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Trans fatty acids and cardiovascular disease. N Engl J Med. 2006;354(15):1601-1613. https://doi.org/10.1056/NEJMra054035

55. Buttriss JL. Food reformulation: the challenges to the food industry. Proc Nutr Soc. 2013;72(1):51-69. https://doi.org/10.1017/S1368946512002686

56. Savio S, Mehta K, Uddell T, Coveney J. A survey of the reformulation of Australian child-oriented foods products. BMC Public Health. 2013;13(1). https://doi.org/10.1186/1471-2458-13-836

57. Magnusson R, Reeve B. Food reformulation, responsive regulation, and “regulatory scaffolding”: strengthening performance of salt reduction programs in Australia and the United Kingdom. Nutrients. 2015;7(7):5281-5308. https://doi.org/10.3390/nu7075221

58. Farrand C, Charlton K, Crino M, et al. Know your noodles! Assessing variations in sodium content of instant noodles across countries. Nutrients. 2017;9(6):1-10. https://doi.org/10.3390/nu9060612

59. Vin K, Beziat J, Seper K, et al. Nutritional composition of the food supply: a comparison of soft drinks and breakfast cereals between three European countries based on labels. Eur J Clin Nutr. 2020;74(1):17-27. https://doi.org/10.1038/s41430-019-0442-9

60. Laverty AA, Kypridemos C, Seferidi P, et al. Quantifying the impact of the public health responsibility Deal on salt intake, cardiovascular disease and gastric cancer burdens: interrupted time series and microsimulation study. J Epidemiol Community Health. 2019;73(9):881-887. https://doi.org/10.1136/jech-2018-211749

61. Lachat C, Nago E, Verstraeten R, Roberfroid D, Va Camp J, Kolsteren P. Eating out of home and its association with dietary intake: a systematic review of the evidence. Obes Rev. 2012;13(4):329-346. https://doi.org/10.1111/j.1467-789X.2011.00953.x

62. Jahn JL, Cohen JFFW, Gorski-Findling MT, et al. Product reformulation and nutritional improvements after new competitive food standards in schools. Public Health Nutr. 2018;21(5):1011-1018. https://doi.org/10.1017/S1368946918000700.3445

63. Herrera AMM, Crino M, Erskine HE, et al. Cost-effectiveness of product reformulation in response to the health star rating food labelling system in Australia. Nutrients. 2018;10(5):1-16. https://doi.org/10.3390/nu10050614

64. Niblett P, Coyle N, Little E. Sugar Reduction: Report on Progress between 2015 and 2018. 2019. https://www.gov.uk/government/publications/sugar-reduction-progress-between-2015-and-2018

65. Grieger JA, Wycherley TP, Johnson BJ, Golley RK. Discrete strategies to reduce intake of discretionary food choices: a scoping review. Int J Behav Nutr Phys Act. 2016;13(57):1-22. https://doi.org/10.1186/s12966-016-0380-z

66. Albuquerque TG, Nunes MA, Oliveira MBPP, Costa HS. Compliance of Declared Vs Analysed Values with EU Tolerance Limits for Mandatory Nutrients in Prepacked Foods. Food Chem. 2020;302:125330. https://doi.org/10.1016/j.foodchem.2019.125330

How to cite this article: Gressier M, Swinburn B, Frost G, Segal AB, Sassi F. What is the impact of food reformulation on individuals’ behaviour, nutrient intakes and health status? A systematic review of empirical evidence. Obesity Reviews. 2021;22:e13139. https://doi.org/10.1111/obr.13139
APPENDIX A: SEARCH STRATEGY ON MEDLINE FOR PART ONE (SYSTEMATIC REVIEW ON REFORMULATION)

1 sodium, dietary/ or Sodium Chloride/ or sodium chloride, dietary/ or exp ENERGY INTAKE/ or dietary fats/ or Fats, Unsaturated/ or Fatty Acids, Unsaturated/ or Dietary Sugars/ or Dietary fiber/ or exp Nutritive value/ or whole grains/ or dietary carbohydrates/or dietary proteins/

2 (salt or sodium or sugar" or energy or calori" or saturated fat" or "trans fat" or trans?fat or fibre" or fiber" or whole?grain" or wholegrain" or "whole grain" or carbohydrate" or protein" or fatty acid" or nutrient").ab.

3 1 or 2

4 reformulat*.ab.

5 3 and 4

6 ((salt or sodium or sugar" or saturated fat" or "trans fat" or trans?fat or TFA) adj5 (target" or limit" or restrict" or regulat* or reduc*)).ab.

7 ((fibre" or fiber" or whole?grain" or wholegrain" or whole grain") adj5 (improv" or increas" or promot" or favo"r*)).ab.

8 ((energy or calori") adj5 (reduc* or limit" or target")).ab.

9 (((improve" or better or enhance" or health") adj5 (composition" or profile")) and (nutrition or food or nutrient)).ab.

10 5 or 6 or 7 or 8 or 9

11 (sold or sales or intake" or purchase" or consumption or diet" or overweight or diabetes or bmi or cholesterol or "coronary heart disease" or cardiovascular or "dietary habit" or "heart disease risk" or "consumer behaviour" or "consumer behavior" or "blood pressure" or hyperglyc? emia or "glucose tolerance" or "insulin resistance" or hypertension or hyperlipidemia or dyslipidemia).ab.

12 (grocery or groceries or store or stores or supermarket or supermarkets or retailer or retailers or market or markets or food industry or food dispensers or vending or point-of-purchase or point-of-selection or package" or packages or front-of-pack).ab.

13 ((regulat* or polic* or legislation* pledge" or ban or bans or standard or standards or strategy or strategies or intervention" or restriction") and food").ab.

14 12 or 13

15 exp animals/not humans.sh.

16 (restaurant* or fast-food* or "fast food" or fastfood* or takeaway* or take-away* or "take-away"").ab.

17 14 or 16

18 10 and 11 and 17

19 18 not 15

APPENDIX B: LIST OF INCLUDED STUDIES IN PART ONE (SYSTEMATIC REVIEW ON REFORMULATION)

Ahuja JKCC, Pehrsson PR, Haytowitz DB, et al. Sodium monitoring in commercially processed and restaurant foods. Am J Clin Nutr. 2015;101(3):622-631. doi:https://dx.doi.org/10.3945/ajcn.114.084954

Angell SY, Cobb LK, Curtis CJ, Konty KJ, Lynn D. Silver. Change in Trans Fatty Acid Content of Fast-Food Purchases Associated With New York City’s Restaurant Regulation. Ann Intern Med. 2012;157:81-86.

Brandt EJ, Myerson R, Perraillon MC, Polonsky TS. Hospital admissions for myocardial infarction and stroke before and after the trans-fatty acid restrictions in New York. JAMA Cardiol. 2017;2(6):627-634. doi:10.1001/jamacardio.2017.0491

Clapp JE, Niederman SA, Leonard E, Curtis CJ. Changes in Serving Size, Calories, and Sodium Content in Processed Foods From 2009 to 2015. Prev Chronic Dis. 2017;14(6):1-9. doi:https://dx.doi.org/10.5888/pcd15.170265

Colón-Ramos U, Baylin A, Campos H. The Relation between Trans Fatty Acid Levels and Increased Risk of Myocardial Infarction Does Not Hold at Lower Levels of Trans Fatty Acids in the Costa Rican Food Supply. J Nutr. 2006;136(11):2887-2892. doi:10.1093/jn/136.11.2887

Curtis CJ, Clapp J, Niederman SA, Ng SW, Angell SY. US food industry progress during the National Salt Reduction Initiative: 2009-2014. Am J Public Health. 2016;106(10):1815-1819. doi:http://dx.doi.org/10.2105/AJPH.2016.303397

Eyles H, Webster J, Jebb S, Capelin C, Neat B, Ni Mhurchu C. Impact of the UK voluntary sodium reduction targets on the sodium content of processed foods from 2006 to 2011: analysis of household consumer panel data. Prev Med (Baltim). 2013;57(5):555-560. doi:10.1016/j.ypmed.2013.07.024

Friesen R, Innis SM. Trans Fatty Acids in Human Milk in Canada Declined with the Introduction of Trans Fat Food Labeling. J Nutr. 2006;136(10):2558-2561. doi:10.1093/jn/136.10.2558

Grabovac I, Hochfeldner L, Rieger M, et al. Impact of Austria’s 2009 trans fatty acids regulation on all-cause, cardiovascular and coronary heart disease mortality. Eur J Public Health. 2018;28(2):4-9. doi:10.1093/eurpub/cky147
Greve C, Neess RI. The Evolution of the Whole Grain Partnership in Denmark. https://www.fuldkorn.dk/media/179349/the-evolution-of-the-whole-grain-partnership-in-denmark.pdf. Published 2014. Accessed March 5, 2019.

Griffith R, O’Connell M, Smith K. The Importance of Product Reformulation Versus Consumer Choice in Improving Diet Quality. Economica. 2017;84(333):34-53. doi:10.1111/ecca.12192

He FJ, Brinsden HC, MacGregor GA. Salt reduction in the United Kingdom: a successful experiment in public health. J Hum Hypertens. 2014;28(6):345-352. doi:10.1038/jhj.2013.105

He FJ, Pombo-Rodrigues S, MacGregor GA. Salt reduction in England from 2003 to 2011: Its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open. 2014;4(4):e004549. doi:10.1136/bmjopen-2013-004549

Henninger M, Ulberth F. Trans fatty acids in margarines and shortenings marketed in Austria. Z Lebensm Unters Forsch. 1996;203(3):210-215.

Hutchinson J, Rippin HL, Jewell J, Breda JJ, Cade JE. Comparison of high and low trans-fatty acid consumers: Analyses of UK National Diet and Nutrition Surveys before and after product reformulation. Public Health Nutr. 2018;21(3):465-479. doi:10.1017/S1368980017002877

Jensen JD, Sommer I. Reducing calorie sales from supermarkets – "silent" reformulation of retailer-brand foods. Int J Behav Nutr Phys Act. 2017;14(1):104. doi:10.1186/s12966-017-0559-y

Mancino L, Kuchler F, Leibtag E. Getting consumers to eat more whole-grains: the role of policy, information, and food manufacturers. Spec Sect Food Prod Compos Consum Heal public policy. 2008;33(6):489-496. http://dx.doi.org/10.1016/j.foodpol.2008.05.005

McLaren L, Sumar N, Barberio AM, et al. Population-level interventions in government jurisdictions for dietary sodium reduction. Cochrane Database Syst Rev. 2016;2016(9):CD010166. doi:10.1002/14651858.CD010166.pub2

McMahon E, Webster J, Brimblecombe J. Effect of 25% sodium reduction on sales of a top-selling bread in remote indigenous Australian community stores: A controlled intervention trial. Nutrients. 2017;9(3):214. doi:http://dx.doi.org/10.3390/nu9030214

Millett C, Laverty AA, Stylianou N, Bibbins-Domingo K, Pape UJ. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. PLoS One. 2012;7(1):e29836. doi:10.1371/journal.pone.0029836

Monge-Rojas R, Aragón MC, Chinnock A, Campos H, Colón-Ramos U. Changes in dietary intake and food sources of saturated and cis and trans unsaturated fatty acids in Costa Rican adolescents: 1996 versus 2006. Nutrition. 2013;29(4):641-645. doi:10.1016/j.nut.2012.10.004

Ni Mhurchu C, Eyles H, Choi YH. Effects of a voluntary front-of-pack nutrition labelling system on packaged food reformulation: The health star rating system in New Zealand. Nutrients. 2017;9(8):918. doi:10.3390/nu9080918

Oqali. Bilan Des Premiers Résultats Des Suivis Des Évolutions - Etude de L'évolution Des Produits Transformés Disponibles Sur Le Marché Français Par Secteur Entre 2008-2010 et 2010-2013.; 2016.

Poti JM, Dunford EK, Popkin BM. Sodium reduction in US households' packaged food and beverage purchases, 2000 to 2014. JAMA Intern Med. 2017;177(7):986-994. doi:10.1001/jamainternmed.2017.1407

Poti JM, Yoon E, Hollingsworth B, et al. Monitoring changes in sodium intake for the US population between 2007 and 2012: A novel approach using a crosswalk between nutrition label data and dietary recalls. FASEB J. 2017;31(1 Supplement 1).

Quilez J, Salas-Salvado J. The feasibility and acceptability of reducing salt in partially baked bread: A Spanish case study. Public Health Nutr. 2016;19(6):983-987. doi:10.1017/S1368946215000944

Ratnayake WMN, Swist E, Zoka R, Gagnon C, Lillycrop W, Pantazapoulos P. Mandatory trans fat labeling regulations and nationwide product reformulations to reduce trans fatty acid content in foods contributed to lowered concentrations of trans fat in Canadian women’s breast milk samples collected in 2009-2011. Am J Clin Nutr. 2014;100(4):1036-1040. doi:10.3945/ajcn.113.078352

Restrepo BJ, Rieger M. Denmark’s policy on artificial trans fat and cardiovascular disease. J Prev Med. 2016;50(1):69-76. doi:http://dx.doi.org/10.1016/j.amepre.2015.06.018

Restrepo BJ, Rieger M. Trans fat and cardiovascular disease mortality: Evidence from bans in restaurants in New York. J Health Econ. 2016;45:176-196. doi:http://dx.doi.org/10.1016/j.jhealeco.2015.09.005

Shankar B, Brambila-Macias J, Traill B, Mazzocchi M, Capacci S. An evaluation of the UK Food Standards Agency’s salt campaign. Heal Econ [United Kingdom]. 2013;22(2):243-250. doi:http://dx.doi.org/10.1002/hec.2772

Spiteri M, Soler L-G. Food reformulation and nutritional quality of food consumption: An analysis based on households panel data in France. Eur J Clin Nutr. 2018;72(2):228-235. doi:http://dx.doi.org/10.1038/s41430-017-0044-3

Tedstone A, Coulton V, Targett V, et al. Sugar reduction and wider reformulation programme: Report on progress towards the first 5% reduction and next steps. https://www.gov.uk/government/publications/sugar-reduction-report-on-first-year-progress. Published May 2018. Accessed October 1, 2018.

Temme EHM, Hendriksen MAH, Milder IEJ, et al. Salt reductions in some foods in the Netherlands: monitoring of food composition and salt intake. Nutrients. 2017;9(7):791. doi:http://dx.doi.org/10.3390/nu9070791

Vesper HW, Caudill SP, Kuiper HC, et al. Plasma trans-fatty acid concentrations in fasting adults declined from NHANES 1999-2000 to 2009-2010. Am J Clin Nutr. 2017;105(5):1063-1069. doi:10.3945/ajcn.116.141622

Zupanic N, Hribar M, Kupirovic Z. Mandatory trans fat labeling regulations and nationwide product reformulation of retailer-brand food products. Int J Food Sci Technol. 2017;84(33):34-53. doi:10.1016/j.ijfoodsci.2017.03.011
APPENDIX C: TABLE OF REFORMULATION INITIATIVES INCLUDED IN THE REVIEW, AND SUMMARY OF FINDINGS PER STUDY EVALUATING THEM

Country	Description of the Intervention	Type of Reformulation (Incentive)	Study Focus	Effect of Reformulation Isolated	Outcome^b	Morbidity/Mortality	Reference^d
Australia	Salt reduction in a bread (large-scale experiment)	Research study	Sodium	Yes	+/−	−	McMahon, 2017
Austria	Multicomponent initiative on salt since 2011 (public health campaign, reformulation, food procurement policies in some institutions)	Voluntary reformulation (raised awareness)	Sodium	No	−	−	McLaren, 2016
	TFA restriction (<2% total fat) for processed foods since 2009	Mandatory limit (standards)	TFA	No	−	−	Grabovac, 2018
	voluntary reformulation of TFA	Voluntary reformulation (raised awareness)	TFA	+			Henninger, 1996
Canada	labelling of TFA and voluntary reformulation	Voluntary reformulation (raised awareness)	TFA	No	+	−	Friesen, 2006
	TFA	Voluntary reformulation (raised awareness)	TFA	No	+	−	Ratnayake, 2014
Costa Rica	Public-Private Partnership and Health campaigns to reduce TFA intakes	Voluntary reformulation (PPP)	TFA	No	+	−	Colón-Ramos, 2006
			TFA	No	+	−	Monge-Rojas, 2013
Denmark	Ban on TFA from 2003	Mandatory limit (standards)	TFA	Yes	+	−	Restrepo, 2016 [47]
	Danish Whole Grain Partnership: public-private partnership	Voluntary reformulation (PPP)	Whole grains	No	+	−	Greve, 2014
	Energy reduction in 8 products (retailer brand)	Voluntary reformulation (manufacturer led)	Energy	Yes	+	−	Jensen, 2017
	Multicomponent initiative on salt since 2008 (Public health campaign, nutrition labelling, reformulation, food procurement policy in some institutions)	Voluntary reformulation (raised awareness)	Sodium	No	+	−	McLaren, 2016
Finland	Multicomponent initiative on since 1979 (public health campaign, nutrition labelling, reformulation, food procurement policy in some institutions)	Voluntary reformulation (raised awareness)	Sodium	No	+	−	McLaren, 2016
France	Multicomponent initiative on salt since 2001 (public health campaign, reformulation, food procurement policies in some institutions)	Voluntary reformulation (raised awareness)	Sodium	No	+	−	McLaren, 2016
	Voluntary reformulation (PPP)	Sodium	Yes	+/−			Oqali, 2016
	Sugars	Yes	+/−				
Country	Description of the Intervention	Type of Reformulation (Incentive)	Study Focus	Effect of Reformulation Isolated a	Outcome b	Reference	
-------------	--	--	-------------	-----------------------------------	-----------	-----------	
Ireland	Multicomponent initiative on salt since 2003 (public health campaign, reformulation, nutrition labelling)	Voluntary reformulation (raised awareness)	Sodium	No	+	McLaren, 2016	
New Zealand	Health Star Rating (Front-of-pack labelling using a nutrient profile model) since 2015	Voluntary reformulation (raised awareness)	Sodium	No	+	Ni Mhurchu, 2017	
Slovenia	Public health campaign in 2015–2016	Voluntary reformulation (raised awareness)	TFA	No	+	Zupanić, 2018	
Spain	Salt reduction in breads (voluntary reformulation by a manufacturer)	Voluntary reformulation (raised awareness)	Sodium	No	+	Quilez, 2016	
Switzerland	Multicomponent initiative on salt since 2008 (public health campaign, reformulation, food procurement policies in some institutions)	Voluntary reformulation (raised awareness)	Sodium	No	–	McLaren, 2016	
The Netherlands	Mandatory limits for salt in bread (gradual reduction from 2009, latest amendment in 2013), several industry engagement to reduce salt in their foods	Voluntary reformulation (standards + voluntary)	Sodium	No	–	Temme, 2017	
Turkey	Multicomponent initiative on salt since 2011 (public health campaign, reformulation, food procurement policies in some institutions)	Voluntary reformulation (raised awareness)	Sodium	No	+	McLaren, 2016	
UK	FSA salt reduction programme from 2003 to 2011 (agreements with the food industry to reformulate, public health campaigns and nutrition labelling)	Voluntary reformulation (PPP)	Sodium	No	+	Eyles, 2013	

(Continues)
Country	Description of the Intervention	Type of Reformulation (Incentive)	Study Focus	Effect of Reformulation Isolated	Outcome^b	Reference^d
	PHE sugar reduction programme from 2017 (voluntary reformulation targets and soft-drink industry levy)	Voluntary reformulation (raised awareness)	Sodium	No	+	McLaren, 2016
	voluntary reformulation of TFA	Voluntary reformulation (raised awareness)	Sugars	No	+	Tedstone, 2018
			Total	Yes	+	Hutchinson, 2018
USA, New York States	TFA restriction in fast food restaurants	Mandatory limit (standards)	TFA	Yes	+	Angell, 2012
			TFA	Yes	+	Brandt, 2012
	Multicomponent initiative on salt since the late 1980s (public health campaign, reformulation, nutrition labelling)	Voluntary reformulation (raised awareness)	Sodium	No	–	McLaren, 2016
	National Salt Reduction Initiative: voluntary targets	Voluntary reformulation (PPP)	Sodium	No	+	Ahuja, 2015
			Sodium	No	+	Clapp, 2018
			Sodium	No	+	Curtis, 2016
			Sodium	Yes	+	Poti, 2017 [19,33]
			Sodium	No	–	Mancino, 2008
	New dietary guidelines on whole grain intakes in 2005 restriction in fast food restaurants, labelling for packaged foods	Voluntary reformulation (raised awareness)	Whole grains	No	+	Vesper, 2017

^a Abbreviations: PPP, public-private partnership; TFA, trans fatty acids; PHE, Public Health England; FSA, Food Standard Agency.

^b The effect of reformulation was estimated to be estimated on its own when the effect of the reformulation initiative was isolated from potential confounders (such as educational campaigns aiming at changing behaviours).

^c Positive results were defined as a significant change in the outcome measured, going in the direction of an improvement in public health (i.e., reduction of intakes for sodium, TFA, energy or sugars, increase for fibres or whole grains), or a reduction in disease risk or mortality.

^d The number of the reference is specified when the short citation is ambiguous.
APPENDIX D: RISK OF BIAS OF INCLUDED STUDIES (ACCORDING TO THE NEWCASTLE-OTTAWA SCALE)

Reference	Selection	Comparability	Outcome	Adjustment						
	Representativeness	Ascertainment of Exposure	Comparability	Ascertainment of Outcome	Follow-up Long Enough	OUTCOME	Control for Confounders	Reformulation Isolated	Sum of Points	
Brandt, 2017	1	1	2	1	1	2	1	1	2	7
Restrepo, 2016 [47]	1	1	2	1	1	2	1	1	2	7
Restrepo, 2016 [48]	1	1	2	1	1	2	1	1	2	7
Poti, 2017 [19]	1	1	2	1	1	2	1	1	2	7
Grabovac, 2018	1	1	2	1	1	2	1	0	1	6
Angell, 2012	1	1	2	1	0	1	1	1	2	6
Colón-Ramos, 2006	1	1	2	1	1	2	1	0	1	6
Hutchinson, 2018	1	1	2	1	0	1	1	1	2	6
Vesper, 2017	1	1	2	1	1	2	1	0	1	6
Eyles, 2013	1	1	2	1	0	1	1	1	2	6
Griffith, 2017	1	1	2	1	1	2	0	1	1	6
Spiteri, 2018	1	1	2	1	1	2	0	1	1	6
He, 2014 [46]	1	1	2	1	1	2	0	0	0	5
He, 2014 [41]	0	1	1	1	1	2	1	0	1	5
McLaren, 2016 (Finland)	1	0	1	1	1	2	1	0	1	5
McLaren, 2016 (UK)	1	1	2	1	1	2	0	0	0	5
McMahon, 2017	1	1	2	1	1	2	0	1	1	5
Poti, 2017 [33]	1	1	2	1	1	2	0	0	0	5
Shankar, 2013	0	1	1	1	1	2	1	0	1	5
McLaren, 2016 (France)	1	1	2	1	1	2	0	0	0	5
Greve, 2014	1	1	2	1	1	2	0	0	0	5
Jensen, 2017	1	1	2	0	1	1	0	1	1	4
Millett, 2012	0	1	1	0	1	2	1	0	1	4
McLaren, 2016 (Netherlands)	1	1	2	0	1	2	0	0	0	4
McLaren, 2016 (USA)	0	1	1	1	1	2	0	0	0	4
Ni Mhurchu, 2017	1	1	2	1	1	0	1	0	0	4

(Continues)
Reference	Selection	Compressibility	Outcome	Adjustment	Sum of Points
Temme, 2017	0	1	1	2	4
Clapp, 2018	0	1	1	2	4
Mancino, 2008	1	1	1	1	4
Curtis, 2016	0	1	1	1	3
Quilez, 2016	1	1	1	1	3
Ratnayake, 2014	0	1	1	2	3
Ahuja, 2015	0	0	1	2	3
McLaren, 2016	1	0	1	1	3
Tedstone, 2018	1	1	1	0	3
Friesen, 2006	0	1	1	1	2
McLaren, 2016	1	0	1	1	2
(Ireland)					
McLaren, 2016	0	0	0	2	2
(Switzerland)					
Monge-Rojas, 2013	0	1	1	0	2
Zupanić, 2018	0	1	1	0	2
Ogali, 2016	1	0	1	0	2
Henninger, 1996	0	1	1	1	2
McLaren, 2016	0	0	0	0	0
(Austria)					
McLaren, 2016	0	0	0	0	0
(Turkey)					
APPENDIX E: SUMMARY OF RESULTS FOR STUDIES REPORTING THE EFFECT OF REFORMULATION ON INTAKES

Table 1 Summary of results for studies reporting the effect of reformulation on intakes. Biomarker measures include spot or 24h urine for sodium measures, or TFA concentration in blood or breastmilk. Reported measures include data from dietary surveys (food frequency questionnaires, 24-h dietary recalls) and from total purchases or sales.

Nutrient studied	Total N Studies	% Positive Results	Studies Reporting a Measure of Intakes	Reported Measures				
	Total		Total N Studies	% Positive Results	N Studies	% Positive Results	N Studies	% Positive Results
	26	70%	13	77%	13	69%		
sodium	20	65%	10	70%	10	60%		
TFA	5	100%	3	100%	2	100%		
whole grains	1	100%			1	100%		

APPENDIX F: Meta-regressions to explain heterogeneity in the pooled estimate of changes in salt intakes

TABLE F1 Meta-regression using method of salt intake estimation to explain heterogeneity

	Estimate	95% CI	P Value
Intercept	−0.46	−0.94 to 0.01	0.06

Difference with 24-h urinary samples

	Estimate	95% CI	P Value
Dietary surveys	0.14	−0.67 to 0.94	0.7
Household purchases	−0.58	−1.49 to 0.33	0.2
Spot urine	−0.28	−1.49 to 0.93	0.6

TABLE F2 Meta-regression using timeframe between baseline and follow-up to explain heterogeneity

	Estimate	95% CI	P Value
Intercept	−0.31	−1.01 to 0.38	0.4

Difference with studies measuring a change <5y

	Estimate	95% CI	P Value
5–10 y	−0.29	−1.28 to 0.69	0.6
>10 y	−0.36	−1.20 to 0.49	0.4

APPENDIX G: SENSITIVITY ANALYSES FOR META-REGRESSIONS

FIGURE G1 Sensitivity analysis of the pooled estimate of the effect of initiatives including salt reformulation on populations’ salt intake (in g/day). Only studies with a NOS Score >2 were selected [Correction added on November 28, 2020 after first online publication: Figure G1 has been updated.]
APPENDIX H: FUNNEL PLOT OF THE TWO META-ANALYSES

FIGURE G2 Sensitivity analysis of the pooled estimate of the effect of initiatives including TFA reformulation on populations’ TFA intake (the effect size is the standardized mean difference given by the Hedge's g statistic). Only studies with a NOS Score >2 were selected.
Funnel plot of changes in TFA intake