Method Article

A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters

Tao Liua,b, Jianpeng Xiaoa, Weilin Zenga, Jianxiong Hua, Xin Liua, Moran Donga, Jiaqi Wanga, Donghua Wana, Wenjun Maa,b,*

a Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
b General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, 528200, China

\textbf{Abstract}

We aimed to establish a spatiotemporal land-use-regression (ST-LUR) model assessing individual level long-term exposure to fine particulate matters (PM\textsubscript{2.5}) among 6627 adults enrolled in Guangdong province, China from 2015 to 2016. We collected weekly average PM\textsubscript{2.5} concentration (from the air quality monitoring stations) and visibility, population density, road density and types of land use of each air quality monitoring station and participant’s residential address from April 2013 to December 2016. A ST-LUR model was established using these spatiotemporal data, and was employed to estimate the weekly average PM\textsubscript{2.5} concentration of each individual residential address. Data analysis was carried out by R software (version 3.5.1) and the \textit{SpatioTemporal} package was used. The results showed that the ST-LUR model applying the land use data extracted using a buffer radius of 1300 m had the best modelling fitness. The results of 10-fold cross validation showed that the R^2 was 88.86% and the RMSE (Root mean square error) was 5.65 μg/m3. The two-year average of PM\textsubscript{2.5} prior to the date of investigation were calculated for each participant. This study provided a novel method to precisely assess individual level long-term exposure to ambient PM\textsubscript{2.5}, which may extend our understanding on the health impacts of air pollution.

- Variables input in the spatiotemporal land-use-regression (ST-LUR) model include visibility, population density, road density, and types of land use.
- The land use data should be extracted using a buffer radius of 1300 m.
- The R^2 of the ST-LUR model was 88.86% and the RMSE was 5.65 μg/m3, indicating the good performance of the model.

* Corresponding author at: No. 160, Qunxian Road, Panyu District, Guangzhou, China.

E-mail addresses: gzt2_2002@163.com (T. Liu), jpengx@163.com (J. Xiao), letitiazeng@foxmail.com (W. Zeng), hzeros_hu@163.com (J. Hu), ladyxin1219@126.com (X. Liu), dongmr_1900@163.com (M. Dong), wjq_9511@163.com (J. Wang), donghuawan@126.com (D. Wan), mawj@gdiph.org.cn (W. Ma).

https://doi.org/10.1016/j.mex.2019.09.009

2115-0161/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specification Table

Subject Area: Environmental Science
More specific subject area: Guangdong province, south China
Method name: Spatiotemporal land-use-regression (ST-LUR) model
Name and reference of original method: https://cran.r-project.org/web/packages/SpatioTemporal/index.html
Resource availability: Data

Method details

This is a community based cross-sectional study conducted in Guangdong province located in south China. We aimed to estimate individual participant’s long-term exposure to ambient fine particulate matters (PM2.5), and further assess the effects of PM2.5 exposure on risks of chronic diseases. Participants aged over 18 years old were selected from 14 districts or counties using a multistage cluster sampling method which has been described elsewhere [1,2]. Residential address of each participant was obtained by a questionnaire interview.

A spatiotemporal land use regression (ST-LUR) model was used to assess the individual level two-year average exposure to ambient air pollutants including PM2.5. First, we collected daily ambient air pollutant data (April 2013 to December 2016) of 55 air quality monitoring stations which began to monitor PM2.5 in April 2013 in Guangdong province from the National Urban Air Quality Real-time Publishing Platform (http://106.37.208.233:20035/), meteorological data [daily mean temperature (TM), relative humidity (RH), mean wind speed (WS), atmospheric pressure (AP), and visibility] of all 86 monitoring stations from Guangdong Meteorological Service, population density data in 2015 from GeoData Institute in University of Southampton (www.worldpop.org.uk), and geographic information system (GIS) covariates (geographic map, road density, and land use data) from the Data Center for Resources and Environmental Sciences (http://www.resdc.cn). The detailed information of these data sources is shown in supplementary material (Table 1). Second, we prepared the data for the ST-LUR

Variable	Brief description	Time	Format of data	Source
Air pollutants	PM2.5, SO2, NO2, O3 and CO	2013–2016	Weekly mean concentration	National Urban Air Quality Real-time Publishing Platform
Meteorological data	GM: TM, RH, WS, AP and Visbility in each address were extracted with a resolution of 1.0*1.0 km	2013–2016	Weekly mean	Guangdong Meteorological Service
Population density		2015	Raster data with a resolution of 0.1*0.1 km	GeoData Institute
Road density Types of land use	Distribution of road The types of land used were divided into four groups: farmland, blue space, living land, and green space.	2016–2015	Vector data	Data Center for Resources and Environmental Sciences
			Raster data with a resolution of 0.03*0.03 km	
model establishment. We extracted the latitude and longitude information of each residence address and air quality monitoring station. The meteorological data of each air quality monitoring station and participant’s residence address was extracted using an Inverse Distance Weighted method with a resolution of 1*1 km. Similarly, we extracted the population density, length of road, and types of land use data (farmland, blue space, living land, and green space) of each address (both monitoring station and residence address) within different buffer radii (300 m, 500 m, 800 m, 1000 m, 1300 m, 1500 m, 1800 m, and 2000 m). Then we calculated the weekly averages of PM2.5 concentrations and meteorological data for each address. Third, we established a ST-LUR model using the above prepared data of all air quality monitoring stations: weekly air pollutant, weekly visibility, population density, road length and land use data. Two smooth temporal basis functions were included in the model. In

Buffer radius of data extraction (m)	Modelling performance	
	R² (%)	RMSE (µg/m³)
300	88.54	5.73
500	88.37	5.77
800	88.64	5.70
1000	88.75	5.67
1300	88.86	5.65
1500	88.86	5.65
1800	88.86	5.65
2000	88.71	5.69

Note: The buffer radii were used for the data extraction of road density (length, meters) and land use data (farmland, blue space, living land, and green space).
R²: R square.
RMSE: Root mean squared prediction error (µg/m³).

Fig. 1. Performance and validation of modeling predicting the weekly PM2.5.
Panel A: The predicted and observed data for one monitoring station. The red line denotes observed weekly PM2.5 concentration. The black line and grey shading give predictions and 95% CIs. The green and blue lines give the contributions of temporal trends (temporal basis functions).
Panel B: Density scatterplots of model performance. RMSE, root mean squared prediction error (µg/m³).
particular, we selected the visibility as an important covariate because it is a good predictor of air quality [3]. The process of model establishment has been well demonstrated in the SpatioTemporal R package [4]. The results of modelling showed that extraction of land use data within a radius of 1300 m could produce the best modelling fitness (Table 2). The 10-fold cross validation analyses showed that the R^2 was 88.86% and RMSE (Root mean square error) was 5.65 μg/m3 (Fig. 1). Fourth, we input the predictors of each participant’s address into the model, and predicted the weekly air pollutant concentrations from April 2013 to December 2016. Finally, the two-year average of air pollutant concentrations prior to the date of investigation were calculated for each participant. The entire process of air pollution exposure assessment can be seen in Fig. 2.

All statistical analyses were performed using R software (version 3.5.1), and the SpatioTemporal (version 1.1.9) R packages were mainly used.

Interpretation

The ST-LUR model using meteorology and GIS covariates could well predict the spatial and temporal variability of ambient PM$_{2.5}$, and precisely assess individual level long-term exposure. This method has the potential to link with a wide range of health data and help understand health impacts of air pollution.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgements

The authors acknowledge the contributions of the local CDC investigators and registered nurses for their help with collection point maintenance and metadata and stool sample collection. We thank all volunteers who participated in this project. This study was supported by the National Key R&D
Program of China (2016YFC0207001), National Natural Science Foundation of China (81874276), and the Science and Technology Program of Guangzhou (201607010004).

References

[1] Y. He, W. Wu, S. Wu, H. Zheng, P. Li, H. Sheng, et al., Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis, Microbiome 6 (1) (2018) 172.

[2] Y. He, W. Wu, H.-M. Zheng, P. Li, D. McDonald, H.-F. Sheng, et al., Regional variation limits applications of healthy gut microbiome reference ranges and disease models, Nat. Med. 24 (2018) 1532–1535.

[3] T. Liu, Y. Zhang, Y.J. Xu, et al., The effects of dust–haze on mortality are modified by seasons and individual characteristics in Guangzhou, China, Environ. Pollut. 187 (2014) 116–123.

[4] J. Lindstrom, A. Szpiro, P.D. Sampson, S. Bergen, L. Sheppard, SpatioTemporal: An R Package for Spatio-Temporal Modelling of Air-Pollution, (2019). https://cran.r-project.org/web/packages/SpatioTemporal/index.html.