In Vitro Antiplasmodial Activity of Phospholipases A2 and a Phospholipase Homologue Isolated from the Venom of the Snake Bothrops asper

Juan Carlos Quintana Castillo 1,*, Leidy Johana Vargas 2, Cesar Segura 3, José María Gutiérrez 4 and Juan Carlos Alarcón Pérez 2

1 Center for the Study of Biological Systems, Cooperative University of Colombia, Medellín 050012, Colombia
2 Ophidism/Escorpionism Program, University of Antioquia, Medellín 050012, Colombia; E-Mails: johana2104@gmail.com (L.J.V.); juan.alarcon@siu.udea.edu.co (J.C.A.P.)
3 Malaria Group, School of Medicine, University of Antioquia, Medellín 050012, Colombia; E-Mail: cesar.segura@siu.udea.edu.co
4 Clodomiro Picado Institute, School of Microbiology, University of Costa Rica, San José 1000, Costa Rica; E-Mail: jose.gutierrez@ucr.ac.cr

* Author to whom correspondence should be addressed; E-Mail: juan.quintanac@ucc.edu.co; Tel.: +57-4-219-6536; Fax: +57-4-263-1914.

Received: 2 November 2012; in revised form: 23 November 2012 / Accepted: 30 November 2012 / Published: 14 December 2012

Abstract: The antimicrobial and antiparasite activity of phospholipase A2 (PLA2) from snakes and bees has been extensively explored. We studied the antiplasmodial effect of the whole venom of the snake Bothrops asper and of two fractions purified by ion-exchange chromatography: one containing catalytically-active phospholipases A2 (PLA2) (fraction V) and another containing a PLA2 homologue devoid of enzymatic activity (fraction VI). The antiplasmodial effect was assessed on in vitro cultures of Plasmodium falciparum. The whole venom of B. asper, as well as its fractions V and VI, were active against the parasite at 0.13 ± 0.01 µg/mL, 1.42 ± 0.56 µg/mL and 22.89 ± 1.22 µg/mL, respectively. Differences in the cytotoxic activity on peripheral blood mononuclear cells between the whole venom and fractions V and VI were observed, fraction V showing higher toxicity than total venom and fraction VI. Regarding toxicity in mice, the whole venom showed the highest lethal effect in comparison to fractions V and VI. These results suggest that B. asper PLA2 and its homologue have antiplasmodial potential.
Keywords: snake venom; *Plasmodium falciparum*; *Bothrops asper*; phospholipase A₂; enzymatic activity; phospholipase A₂ homologue

1. Introduction

Malaria is responsible for approximately 1.5 million deaths every year in the world. Over 85% of them occur in Africa, with *Plasmodium falciparum* as the leading species involved in mortality [1,2]. The 2010 WHO report confirmed almost 1 million deaths during the previous year [3]. Malaria is caused by parasites of the genus *Plasmodium* and is a public health problem in tropical and sub-tropical regions of the world. The most widely used treatment of the clinical syndrome includes artemisinin-based combined therapies [3]. High rates of antimalarial treatment failure have led to the investigation of possible therapeutic alternatives, among which toxins and poisons of animal and plant extracts are included [4–9].

The viperid snake species *Bothrops asper* is widely distributed throughout America, from southern Mexico to northern Ecuador [10]. Its venom is a complex mixture of peptides, enzymes and toxins, including metalloproteases (41%–44%), phospholipases A₂ (PLA₂) (29%–45%), serine proteases (4%–18%), L-amino acid oxidases (5%–59%), disintegrins (1%–2%) C-type lectin-like proteins (0.5%) and cysteine-rich secretory proteins (CRISP) (0.1%) [11], which are responsible for the toxicity of the venom and result in the complex pathophysiology provoked by these envenomations, characterized by coagulopathy, hemorrhage, blistering, edema, nephrotoxicity, shock and myotoxicity [12].

The PLA₂ (E.C 3.1.1.4) superfamily includes enzymes that hydrolyze phospholipids, specifically the sn-2 ester bond, to produce fatty acids and lysophospholipids. Secreted PLA₂s (sPLA₂) share several characteristics: low molecular mass (13–18 kDa), numerous disulfide bonds, histidyl and aspartyl catalytic residues and a highly conserved calcium (Ca²⁺) binding region [13,14]. PLA₂s from snake venom exhibit a variety of pharmacological/toxicological activities, such as myotoxicity, neurotoxicity, anticoagulant activity, edema-forming activity, cardiotoxicity, antibacterial activity, antiparasite effect and anti-aggregation activity on platelets, among others [15–25].

Based on the already described antimicrobial and anti-parasitic activity of PLA₂ [17,25–28] from snake venoms, the antimalarial potential of the venom of *B. asper* and PLA₂s from this venom were explored. Two PLA₂s from the whole venom were purified and characterized, and their *in vitro* antiplasmodial activity against *P. falciparum* was investigated. Cytotoxicity on peripheral blood mononuclear cells (PBMC) and acute toxicity in mice were also evaluated. Results indicate that catalytically-active and inactive PLA₂s isolated from *B. asper* venom are cytotoxic against *P. falciparum* and, thus have the potential as antimalarials.
2. Results

2.1. Isolation of Phospholipase A2 Fractions

Six fractions obtained by fractionating *B. asper* venom on ion exchange chromatography on CM-Sephadex C-25 were evaluated for PLA2 activity. It was found that fraction V was the only positive fraction for PLA2 activity (see Figure 1A). However, fraction VI, corresponding to a PLA2 homologue devoid of enzymatic activity (see Section 3.2), was also analyzed for antiplasmodial activity to determine the possibility of catalytically-independent actions. Fractions V and VI were subjected to further separation by RP-HPLC on a C18 column. This separation revealed that fraction V had four subfractions (see Figure 1B,C), only one of which (V-4) showed PLA2 activity, whereas fraction VI showed only one peak. These two fractions were used to assess antiplasmodial activity.

Figure 1. (A) Chromatographic elution profile on CM Sephadex C-25 at 280 nm from the venom of *B. asper*; fractions V and VI (shaded) were further characterized; (B) Elution profile on RP-HPLC on a C18 column of fraction V; (C) Elution profile on RP-HPLC on a C18 column of fraction VI; (D) SDS-PAGE (12%) separation of venom and fractions: *MW*, molecular weight markers; lane 1, crude venom; lane 2, fraction V under non-reducing conditions; lane 3, fraction V under reducing conditions; lane 4, fraction VI under non-reducing conditions; lane 5, fraction VI under reducing conditions.
2.2. Indirect Hemolytic Activity

Fraction V had a minimal indirect hemolytic dose of 1.35 µg, while fraction VI showed no such activity. The PLA$_2$ isolated by HPLC from fraction V showed a minimum indirect hemolytic dose of 0.82 µg, while the peak obtained by HPLC separation of fraction VI lacked activity (data not shown). The hemolysis test with different substrates (egg yolk, plasma or human serum) yielded similar results in all assays. When indirect hemolytic activity was determined in solution, 100% hemolysis was observed using concentrations of 25 µg/mL for whole venom and 12.5 µg/mL for fraction V, whereas fraction VI lacked PLA$_2$ activity in all tests (see Figure 2).

Figure 2. Indirect hemolytic activity in solution of venom and fractions V and VI. Analysis on erythrocyte suspensions containing (A) egg yolk; (B) inactivated human plasma and (C) inactivated human serum. * $p \leq 0.05$.

2.3. Antiplasmodial Activity of the Venom, Fractions and Purified PLA$_2$s

Both venom and fractions V and VI exhibit antiplasmodial activity on the FCB1 strain of *P. falciparum*, with fraction V being more active than fraction VI (see Table 1). On the other hand, the venom was more active than the two fractions evaluated. Guillaume *et al.* showed that removal of phospholipids from cultures of *P. falciparum* reduced the antiplasmodial activity of PLA$_2$ [27], confirming the crucial role of PLA$_2$ enzymatic activity to control the growth of parasites in this test. Our data demonstrate the antimalarial efficacy of fraction with PLA$_2$ activity. However, a PLA$_2$ homologue devoid of enzymatic activity also resulted in restriction of *P. falciparum* multiplication,
confirming a catalytically-independent antiplasmodial activity. This effect could be due to the perturbing action exerted by the PLA\textsubscript{2} homologue in the plasma membrane, thus resulting in an increase in permeability [29]. It has been shown that the C-terminal region of these PLA\textsubscript{2} homologues is responsible for this catalytically-independent membrane perturbation, as demonstrated in bacteria [16,30,31], being, therefore, a different mechanism from the one described for other PLA\textsubscript{2}s [26,27].

Table 1. Antimalarial activity, cytotoxic activity on peripheral blood mononuclear cells and acute toxicity of *B.* asper venom and isolated PLA\textsubscript{2}s. ND: not determined. € No deaths were recorded at this dose. Ω \(p \leq 0.05 \) when compared with the other treatments.

Compound	Antimalarial activity IC\textsubscript{50} (µg/mL)	LD\textsubscript{50} (µg/kg)	Cytotoxicity CC\textsubscript{50} (µg/mL)
B. asper venom	0.13 ± 0.01 €	3566 (2561 to 3693)	38.46 ± 0.95 Ω
Fraction V	1.42 ± 0.56 €	\(\geq 15000 \)	26.98 ± 0.51 Ω
Fraction VI	22.89 ± 1.22 €	\(\geq 15000 \)	67.43 ± 1.03 Ω
CQ *	323.35 ± 6.97	ND	ND

* CQ: chloroquine. These results are expressed in nM concentration; CC\textsubscript{50}: Dose that induces 50% cytotoxicity in peripheral blood mononuclear cells. Results are expressed as mean ± S.E.M.; Ω \(p \leq 0.05 \) when compared with the other treatments.

The changes observed in the intraerythrocytic development of *Plasmodium* indicate that structural changes occur, as well as modifications in membrane functions in parasitized red blood cells. In addition, increments and changes in the permeability of the membrane have been described, together with the appearance of new parasite-derived proteins and changes in the composition of membrane lipids [32,33]. The observed increased permeability could also be responsible for the PLA\textsubscript{2} activity on the parasite, as demonstrated by Moll *et al.*, who noted that in the absence of serum in the culture *in vitro*, PLA\textsubscript{2} lysed parasitized cells [34]. This increase in membrane permeability could also enhance the antimalarial activity of the PLA\textsubscript{2} homologue observed in our experiments.

2.4. SDS-PAGE

Electrophoresis showed that proteins of fractions V and VI (lanes 2 and 4, respectively) had molecular weights ranging from 25 kDa and 14 kDa, when fractions were separated in non-reducing conditions, thus evidencing the presence of monomers and dimers, whereas only bands of around 14 kDa were observed (lanes 3 and 5 in Figure 1D, respectively) when these fractions were subjected to reducing conditions, thus corresponding to PLA\textsubscript{2} monomers (Figure 1D).

2.5. Mass Spectrometry and Identification of the Protein

We determined the molecular mass of each of the fractions obtained by RP-HPLC: Fraction V (fractions V-1, V-2, V-3 and V-4) and VI. Mass spectrometric analysis showed that V-1 was of 13786.9 Da, V-2 was of 13950.1 Da, V-3 was of 13972.4 Da, V-4 was of 13974.6 Da and VI was of 13725 Da. The tandem mass MS/MS analysis indicated that the PLA\textsubscript{2}s isolated corresponding to the fractions V-1, V-2, V-3 and VI were K49 PLA\textsubscript{2} homologs, and V-4 was D49 PLA\textsubscript{2} (Table 2).
Table 2. Protein identification results for *B. asper*-PLA$_2$ by ESI MS/MS peptide sequence obtained from mass tandem MS/MS.

Fraction	MH$^+$ (monoisotopic mass)	z	MS/MS-derived sequence	Data base ID	Species	Score	Reference
P V-1	1944.87	3+	NPVTSYGAYGCNCGVLR	Q9PVE3.1	*B. asper* M1-3-3	17.76	52 [35]
	1394.64	2+	TIVCGENNSCLK	AAF66702.1	*B. moojeni* Myotoxin II precursor	14.21	87 [36]
	460.74	2+	MILQETGK	Q9PRT7.1	*B. asper* Myotoxin IV	-	37 [37]
	434.05	2+	CCYVHK	AAF66702.1	*B. moojeni* Myotoxin II precursor	-	25 [36]
P V-2	1944.87	3+	NPVTSYGAYGCNCGVLR	Q9PVE3.1	*B. asper* M1-3-3	12.65	68 [35]
	1394.57	2+	TIVCGENNSCLK	AAF66702.1	*B. asper* Myotoxin II	-	53 [38]
	1637.76	3+	DKTIVCGENNSCLK	AAF66702.1	*B. moojeni* Myotoxin II precursor	12.23	24 [36]
	952.78	2+	ELCECDK	AAF66702.1	*B. moojeni* Myotoxin II precursor	-	27 [36]
	996.80	1+	ENLDTYNK	AAF66702.1	*B. moojeni* Myotoxin II precursor	12.69	31 [36]
	802.36	2+	AVAICLR	Q9PRT7.1	*B. asper* Myotoxin IV	-	36 [37]
P V-3	1944.87	3+	NPVTSYGAYGCNCGVLR	Q9PVE3.1	*B. asper* M1-3-3	10.85	43 [35]
	1394.64	2+	TIVCGENNSCLK	AAF66702.1	*B. moojeni* Myotoxin II precursor	-	57 [36]
	1637.74	3+	DKTIVCGENNSCLK	AAF66702.1	*B. moojeni* Myotoxin II precursor	17.52	31 [36]
	952.78	2+	ELCECDK	AAF66702.1	*B. moojeni* Myotoxin II precursor	-	27 [36]
	802.36	2+	AVAICLR	Q9PRT7.1	*B. asper* Myotoxin IV	-	32 [37]
	1533.66	2+	SYGAYGCNCGVLR	AAF66703.1	*B. neuwiedi pauloensis* PLA2 homolog	17.32	63 [39]
P V-4	2064.41	2+	DATDRCCFVHDCCYVK	P20474.2	*B. asper* Myotoxin III	9.51	30 [35]
	1728.75	2+	EICECDKAAACFR	1GMZ_A	*B. pirajai* Piratoxin III	8.61	- [40]
	1506.59	2+	SGVIICCEGTPEK	P20474.2	*B. asper* Myotoxin III	-	64 [35]
	862.56	2+	MILEETK	P20474.2	*B. asper* Myotoxin III	-	35 [35]
	794.57	2+	AAAVCFR	P86974.1	*B. leucurus bLD-PLA2	-	26 [41]
	1273.31	2+	YMYAPDLLLKC	P20474.2	*B. asper* Myotoxin III	-	42 [35]
	675.45	2+	YSYSR	P20474.2	*B. asper* Myotoxin III	-	23 [35]
P VI	1329.72	2+	MILQETGKNPAC	Q9IA9T2	*B. neuwiedi pauloensis* BnSP-7	11.63	42 [39]
	1533.66	2+	SYGAYGCNCGVLR	AAF66703.1	*B. neuwiedi pauloensis* PLA2 homolog	17.92	52 [39]
	790.04	1+	LTGCNPK	P86453.1	*B. alternatus* BaTx	-	28 [42]
	1637.56	2+	DKTIVCGENNSCLK	AAF66702.1	*B. moojeni* Myotoxin II precursor	-	21 [36]
	1394.57	2+	TIVCGENNSCLK	1CLP_B	*B. asper* Myotoxin II	-	77 [38]
Figure 3. Multiple sequence alignment of Fraction P V-1. The boxes represent conserved amino acids. \textit{B. asper} M1-3-3 Swiss Protein ID: Q9PVE3.1, GenBank ID: AAF14241.1|AF109911, Myotoxin \textit{B. asper} PDB ID: 1CLP_A, Myotoxin-II \textit{B. asper} Swiss Protein ID: P24605.3, Bothropotoxin-Ia \textit{B. jararacussu} GenBank ID: CAA55334.2, BnSP-7 \textit{B. neuwiedi} Q9IAT9.2, Piratoxin-II Bothrops pirajai P82287.1, Piratoxin-I \textit{B. pirajai} Swiss Protein ID: 58399.2, Myotoxin-I \textit{B. atrox} Swiss Protein ID: P82287.1.

Additionally, the identified peptides were subjected to BLAST analysis to determine their identity with other phospholipases. The results confirmed the high identity of these peptides with PLA$_2$s from...
the venoms of *B. asper, B. neuwiedi, B. jararacussu, B. pirajai* and *Cerrophidion godmani*, among others (see Figures 3–7).

Figure 5. Multiple sequence alignment of Fraction P V-3. The boxes represent conserved amino acid. M1-3-3 *B. asper* Swiss Protein ID: Q9PVE3.1, Myotoxin-II *B. asper* Swiss Protein ID: P24605.3, piratoxin-II *B. pirajai* Swiss Protein ID: P82287, Piratoxin-I *B. pirajai* Swiss Protein ID: 58399.2, Bothrotoxin-Ia *B. jararacussu* GenBank ID: CAA55334.2, BnSP-7 *B. neuwiedi* Swiss Protein ID: Q9IAT9.2. BOJU-I *B. jararacussu* Swiss Protein ID: Q90249.3, Myotoxin-II *B. moojeni* GenBank ID: AAF66702.1.

Figure 6. Multiple sequence alignment of Fraction P V-4. The boxes represent conserved amino acid. Myotoxin-III *B. asper* Swiss Protein ID: P20474.2, BthTx-II *B. jararacussu* Swiss Protein ID: P45881.1, PLA2 *S. miliarius* GenBank ID: ABY77926.1, N6 PLA2 *C. godmani*. GenBank ID: AAR14161.1, N6 PLA2 *B. schlegelii* GenBank ID: AAR14162.1, PLA-N *T. flavoviridis* GenBank ID: BAC56893, PA2B_AGKAG *D. acutus* Swiss Protein ID: Q1ZY03, Variant ammodotoxin-B *V. aspis* GenBank ID: CAE47279.1, PLA2 *S. c. tergeminus* Accession number GenBank ID: ABY77930.1.
Figure 7. Multiple sequence alignment of Fraction P VI. The boxes represent conserved amino acid. Myotoxin-II *B. asper* Swiss Protein ID: P24605.1, Piratoxin-I *B. pirajai* Swiss Protein ID: P58399.2, Piratoxin-II *B. pirajai* Swiss Protein ID: P82287.3, BthTx-Ia *B. jararacussu* GenBank ID: CAA55334, BnSP-7 *B. neuwiedii* Swiss Protein ID: Q9IAI9.2, myotoxin-II *B. moojeni* PDB ID: 1XXS_2, MjTx-I *B. moojeni* Swiss Protein ID: P82114.1, BaTx *B. alternatus* Swiss Protein ID: P86453.1.

![Multiple sequence alignment](image)

The results of the alignments show that the PLA\(_2\)s and PLA\(_2\) homologues purified from the venom of *B. asper* from Colombia are similar to other PLA\(_2\)s and PLA\(_2\) homologues present in other *Bothrops* snakes. In addition, the PLA\(_2\) D49 shows homology with other PLA\(_2\)s from *Bothrops*, being higher with those of *B. asper* from Costa Rica (see Figure 5).

2.6. Cytotoxic Activity

Analysis of the cytotoxic effect of the whole venom and the different fractions tested showed that fraction V was more cytotoxic than whole venom or fraction VI on PBMC cells (see Figure 8).

Figure 8. Cytotoxic activity of *B. asper* venom and isolated fractions on human peripheral blood mononuclear cells. VT venom, Fraction V, fraction VI. *p \leq 0.05* compared to different doses.
The cytotoxic activity of venoms and PLA\textsubscript{2}s is a problem in using these in future biomedical applications. However, our results show that the PLA\textsubscript{2} isolated exerts an antimalarial effect at a lower dose than that required to induce cytotoxicity in PBMC and indirect hemolysis.

Other authors have shown that cytotoxic activity is dependent on serum in suspensions of tumor cells and red blood cells [43]. In some experiments, we cultured cells with fetal bovine serum 2\% (FBS) and inactivated serum or plasma, and in these conditions, the cytotoxic dose was still higher than the antimalarial dose (results not shown).

2.7. Acute Toxicity

The LD\textsubscript{50} of the whole venom of \textit{B. asper} was 3566 µg/kg (2561 to 3693), whereas no lethality was observed in mice injected with fractions V and VI at doses as high as 15,000 µg/kg (see Table 1).

The envenoming of \textit{B. asper} induces local and systemic symptoms, such as edema, pain and bleeding, among others, due to the effect of different toxins in the venom, such as PLA\textsubscript{2}, serine proteinases and metalloproteases, among others [19,44–49]. The low toxicity of fraction V and of the PLA\textsubscript{2} homologue isolated from fraction VI compared with the venom indicates their low overall toxicity in mice and reinforces the concept that these fractions are good lead compounds in the search for antimalarial activity. This is in agreement with reports on the use of snake venom PLA\textsubscript{2}s to inhibit microorganisms, such as bacteria and fungi, as well as parasites including \textit{Giardia duodenalis}, \textit{Trypanosoma cruzi}, \textit{Leishmania spp} and \textit{P. falciparum} [17,30,31,50–52].

3. Materials and Methods

3.1. Venom and Reagents

The venom was obtained by manual milking of 40 adult specimens from different regions of Colombia held in captivity at the Serpentarium of the University of Antioquia (Medellín, Colombia). Once extracted and pooled, the venoms were centrifuged (3000 rpm, 15 min), and the resulting supernatants were lyophilized and stored at −20 °C until use.

Acetonitrile (CH\textsubscript{3}CN) and trifluoroacetic acid (CF\textsubscript{3}COOH) HPLC grade were purchased from Fisher Scientific (Loughborough, UK). Histopaque®-1077, RPMI-1640 medium culture, Thiazolyl Blue Tetrazolium Bromide (MTT) and dimethyl sulfoxide (DMSO) were purchased from Sigma (Sigma-Aldrich, St Louis, MO, USA). Water for HPLC was deionized to a degree of purity of 17 Ω.

3.2. Venom Fractionation

PLA\textsubscript{2}s were purified from 50 mg of whole venom of \textit{B. asper} dissolved in phosphate-buffered saline (PBS), pH 7.2, and passed through a CM-Sephadex C\textsubscript{25} ion exchange column (1.8 × 120 cm) at the flow rate 1.0 mL/min on a low-pressure chromatography system (Econo-System, BioRad, Hercules, CA, USA). The resulting fractions were analyzed for their PLA\textsubscript{2} activity and then PLA\textsubscript{2} positive fractions submitted to a reverse phase HPLC (RP-HPLC) (Shimadzu, Model Prominence, Shimadzu Corporation, Kyoto, Japan) in a C\textsubscript{18} column (pore 5 µm, 250 mm × 4.6 mm mark RESTEK Bellefonte, PA, USA) using a linear gradient (0\%–100\%) acetonitrile (v/v) in 0.1\% (v/v) trifluoroacetic acid at a flow rate 1.0 mL/min. Finally, fractions were lyophilized and stored at −20 °C until use.
3.3. Electrophoresis and Molecular Mass Determination

Protein homogeneity of the obtained fractions were determined by electrophoresis under reducing and non-reducing conditions in SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 15% [53]. Protein molecular weight was estimated according to a molecular weight markers range of 97.4 to 14.4 kDa (BioRad, Philadelphia, PA, USA). The gels were stained with Coomassie Brilliant Blue G-250. The molecular masses of PLA₂ fractions were confirmed by direct-infusion mass spectrometry in an IonTrap (series 6310, Agilent Technologies, Santa Clara, CA, USA).

3.4. Protein Identification by HPLC-nESI-MS/MS

The PLA₂s and PLA₂ homologues isolated from B. asper venom (fractions V and VI see results, Figure 1B,C) were digested in solution with trypsin (0.1 ng) at 30 °C (Agilent Technologies, Santa Clara, CA, USA) overnight, according to the manufacturer’s instructions, and injected onto a nano LC-ESI-MS/MS system (Agilent Technologies, Santa Clara, CA, USA) using a nano column C₁₈ (Agilent Zorbax 300SB-C18, 150 × 0.075mm, 3.5 μm) coupled to a mass spectrometer IonTrap MSD series 6300 (Model 6310, Agilent Technologies, Santa Clara, CA, USA) [54]. MS/MS mass spectra were obtained in positive mode, dynamic range 200–1200 Da; Electrospray at 2 kV and 230 °C dry temperature, trap drive 200 ms. Charged state deconvolution of the MS/MS spectra were determined using the ChemStation G2070-91126 (Agilent Technologies, Santa Clara, CA, USA).

3.5. Search Database

Deconvoluted profile spectra were used to search online the MASCOT [55] and Spectrum Mill (Agilent Technology, Santa Clara, CA, USA) in the NCBI nr database for protein identification. The parameters of the search included digestion with trypsin and Carbamidomethylation modified (C) as fixed modification. The minimum score for the intensity of each fraction was 50%, monoisotopic mass, mass tolerance of 2.5 Da and a way to search for identity.

3.6. BLAST Search of the Identified Peptides

The identified peptides were subjected to a BLAST search [56] to determine the homology with other PLA₂ family proteins. This homology was performed in BLASTP, the search parameters being non-redundant protein sequence (nr) and a snake organism.

3.7. Acute Toxicity of the Venom and Fractions

The Median Lethal Dose (LD₅₀) was determined by the Spearman-Karber method (World Health Organization, 1981) using groups of four mice (Swiss-Webster mice strain) injected intraperitoneally (IP) with varying doses of either fractions or whole B. asper venom, previously dissolved in 0.5 mL PBS, pH 7.2. Fatalities were recorded within 48 h, and the results were expressed as the average of three repetitions.
3.8. Cytotoxic Activity

Peripheral blood mononuclear cells (PBMC) were separated by centrifugation of citrated human blood (400g, 30 min) with Histopaque®-1077 (Sigma-Aldrich, St Louis, MO, USA), washed with PBS and transferred to 96 well plates at a concentration of 3 × 10^5 cells/well. Cells were cultured with different concentrations of fractions (37 °C, 5% CO₂) for 24 h. After this time, 40 µL of MTT was added and incubated for 3 h (same conditions as described). The reaction was halted by adding 130 µL of dimethyl sulfoxide (DMSO) and readings were performed in a microplate reader at 420 nm. The 50% cytotoxic dose was calculated by linear regression [57].

3.9. Indirect Hemolysis

This was evaluated following the method that uses agarose gel-erythrocyte-egg yolk [58,59]. We estimated the minimum indirect hemolytic dose (MIHD), defined as the dose of venom producing a hemolytic halo of 20 mm in diameter after 20 h. In addition, indirect hemolytic activity was assessed on red blood cells in suspension. For this, different doses of either the whole venom or fractions V and VI were incubated with fresh human red blood cells for 30 min at 37 °C in the presence of 250 µL of inactivated human serum, inactivated human plasma, egg yolk or PBS. Afterwards, samples were centrifuged, and the percentage of lysis was determined by recording the absorbance at 540 nm as an index of released hemoglobin. As a control of 100% hemolysis, 2% Triton X-100 was used. The results were expressed as percentage of lysis, and the venom or toxin concentration producing 100% hemolysis was determined.

3.10. Cultivation of Plasmodium falciparum

Based on the procedure described by Trager and Jensen [60], parasites were grown at 37 °C in A+ human erythrocytes to a hematocrit of 2% and 3%–6% parasitemia under an atmosphere of 3% CO₂, 6% O₂ and 91% N₂.

3.11. Determination of Percentage of Growth Inhibition of P. falciparum by B. asper PLA₂ Fractions

Increasing concentrations of PLA₂ fractions V and VI in complete medium were plated in 96-well plates (100 µL/well) and incubated with asynchronous P. falciparum FCB1 (1.5% parasitemia, 4% hematocrit, 100 µL/well). Parasites were incubated as previously described [60]. After 24 h, 0.5 mCi of ³H-hypoxanthine was added to the culture, and parasites were cultured for further 24 h at the same conditions. Finally, the plates were freeze-thawed, and parasites were harvested onto filter paper, added to liquid scintillation cocktail and the incorporation of ³H-hypoxanthine determined in a Microbeta counter 1450 (Wallac, Perkin Elmer, Waltham, MA, USA).

The percentage of growth inhibition was calculated based on 100% uptake of the 3H-hypoxanthine of controls (parasites in culture medium, incomplete RPMI). Growth inhibition was calculated based on 100% uptake of the 3H-hypoxanthine control in parasites in the absence of PLA₂s or PLA₂ homologues. The IC₅₀ values correspond to the venom or toxin concentration required to kill 50% of the parasites within 48 h, and was determined from dose-response curves according to Desjardins et al. [58].
3.12. Statistical Analysis

The results are presented as mean ± S.E.M of three replicates, and experimental differences between means were determined by analysis of variance followed by Dunnett’s test for intragroup comparisons. Significance was set up at $p < 0.05$.

4. Conclusions

Our observations suggest that PLA$_2$s and PLA$_2$ homologues present in the venom of Bothrops asper represent promising lead compounds in the search for novel antimalarial agents. Further studies should be performed on the identification of the molecular determinants of this activity.

Acknowledgements

The authors thank Carlos Augusto Uribe, for his excellent assistance in the mass spectrometer. This work was supported by the Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) project number 111540820526, Universidad de Antioquia (Estrategia para la Sostenibilidad de los Grupos 2013–2014) and Universidad Cooperativa de Colombia. This study was performed as partial requirement for the PhD degree of Juan Carlos Quintana Castillo at Universidad de Antioquia.

Conflict of Interest

The authors declare no conflict of interest.

References

1. World Health Organization. World Malaria Report 2008. Available online: http://malaria.who.int/wmr2008/malaria2008.pdf (accessed on 10 August 2012).
2. Breman, J.G.; Aliilio, M.S.; Mills, A. Conquering the intolerable burden of malaria: What’s new, what’s needed: A summary. Am. J. Trop. Med. Hyg. 2004, 71, 1–15.
3. World Health Organization. World Malaria Report 2010. Available online: http://www.who.int/malaria/publications/atoz/artemisinin_resistance_containment_2011.pdf (accessed on 13 March 2011).
4. Abdel-Sattar, E.; Maes, L.; Salama, M.M. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytother. Res. 2010, 24, 1322–1328.
5. Ayuko, T.A.; Njau, R.N.; Cornelius, W.; Leah, N.; Ndiege, I.O. In vitro antiplasmodial activity and toxicity assessment of plant extracts used in traditional malaria therapy in the Lake Victoria Region. Mem. Inst. Oswaldo Cruz. 2009, 104, 689–694.
6. Gao, B.; Xu, J.; Rodriguez Mdel, C.; Lanz-Mendoza, H.; Hernandez-Rivas, R.; Du, W.; Zhu, S. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus euepus. Biochimie 2010, 92, 350–359.
7. Karunamoorthi, K.; Ilango, K.; Murugan, K. Laboratory evaluation of traditionally used plant-based insect repellent against the malaria vector *Anopheles arabiensis* Patton (Diptera: Culicidae). *Parasitol. Res.* 2010, 106, 1217–1223.

8. Milhous, W.K.; Weina, P.J. Plant science. The botanical solution for malaria. *Science* 2010, 327, 279–280.

9. Muller, G.C.; Beier, J.C.; Traore, S.F.; Toure, M.B.; Traore, M.M.; Bah, S.; Doumbia, S.; Schlein, Y. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the *Anopheles gambiae* complex in Mali, West Africa. *Malar. J.* 2010, 9, 210.

10. Campbell, J.; Lamar, W. *The Venomous Reptiles of the Western Hemisphere*; Cornell University Press: Chichester, Scotland, UK, 2004.

11. Alape-Giron, A.; Sanz, L.; Escolano, J.; Flores-Diaz, M.; Madrigal, M.; Sasa, M.; Calvete, J.J. Snake venomics of the lancehead pitviper *Bothrops asper*: Geographic, individual, and ontogenetic variations. *J. Proteome Res.* 2008, 7, 3556–3571.

12. Angulo, Y.; Lomonte, B. Biochemistry and toxicology of toxins purified from the venom of the snake *Bothrops asper*. *Toxicon* 2009, 54, 949–957.

13. Six, D.A.; Dennis, E.A. The expanding superfamily of phospholipase A(2) enzymes: Classification and characterization. *Biochim. Biophys. Acta* 2000, 1488, 1–19.

14. Talvinen, K.A.; Nevalainen, T.J. Cloning of a novel phospholipase A2 from the cnidarian *Adamsia carciinopados*. *Comp. Biochem. Physiol. B* 2002, 132, 571–578.

15. Andriao-Escarso, S.H.; Soares, A.M.; Rodrigues, V.M.; Angulo, Y.; Diaz, C.; Lomonte, B.; Gutierrez, J.M.; Giglio, J.R. Myotoxic phospholipases A(2) in bothrops snake venoms: Effect of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from *Bothrops jararacussu*. *Biochimie* 2000, 82, 755–763.

16. Barbosa, P.S.; Martins, A.M.; Havt, A.; Toyama, D.O.; Evangelista, J.S.; Ferreira, D.P.; Joazeiro, P.P.; Beriam, L.O.; Toyama, M.H.; Fonteles, M.C.; et al. Renal and antibacterial effects induced by myotoxin I and II isolated from *Bothrops jararacussu* venom. *Toxicon* 2005, 46, 376–386.

17. Costa Torres, A.F.; Dantas, R.T.; Toyama, M.H.; Diz Filho, E.; Zara, F.J.; Rodrigues de Queiroz, M.G.; Pinto Nogueira, N.A.; Rosa de Oliveira, M.; de Oliveira Toyama, D.; Monteiro, H.S.; et al. Antibacterial and antiparasitic effects of *Bothrops marajoensis* venom and its fractions: Phospholipase A2 and L-amino acid oxidase. *Toxicon* 2010, 55, 795–804.

18. Evangelista, I.L.; Martins, A.M.; Nascimento, N.R.; Havt, A.; Evangelista, J.S.; de Noroeds, T.B.; Toyama, M.H.; Diz-Filho, E.B.; toyama Dde, O.; Fonteles, M.C.; et al. Renal and cardiovascular effects of *Bothrops marajoensis* venom and phospholipase A2. *Toxicon* 2010, 55, 1061–1070.

19. Gutierrez, J.M.; Lomonte, B. Phospholipase A2 myotoxins from *Bothrops* snake venoms. *Toxicon* 1995, 33, 1405–1424.

20. Harris, J.B.; Grubb, B.D.; Maltin, C.A.; Dixon, R. The neurotoxicity of the venom phospholipases A(2), notexin and taipoxin. *Exp. Neurol.* 2000, 161, 517–526.

21. Kini, R.M. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes. *Toxicon* 2003, 42, 827–840.
22. Kini, R.M.; Evans, H.J. Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2. *J. Biol. Chem.* 1987, 262, 14402–14407.

23. Landucci, E.C.; de Castro, R.C.; Toyama, M.; Giglio, J.R.; Marangoni, S.; de Nucci, G.; Antunes, E. Inflammatory oedema induced by the lys-49 phospholipase A(2) homologue piratoxin-i in the rat and rabbit. Effect of polyanions and p-bromophenacyl bromide. *Biochem. Pharmacol.* 2000, 59, 1289–1294.

24. Murakami, M.T.; Arruda, E.Z.; Melo, P.A.; Martinez, A.B.; Calil-Elias, S.; Tomaz, M.A.; Lomonte, B.; Gutierrez, J.M.; Arni, R.K. Inhibition of myotoxic activity of *Bothrops asper* myotoxin II by the anti-trypanosomal drug suramin. *J. Mol. Biol.* 2005, 350, 416–426.

25. Quintana, J.C.; Chacon, A.M.; Vargas, L.; Segura, C.; Gutierrez, J.M.; Alarcon, J.C. Antiplasmodial effect of the venom of *Crotalus durissus cumanensis*, crotoxin complex and Crotoxin B. *Acta Trop.* 2012, 124, 126–132.

26. Deregnaucourt, C.; Schrevel, J. Bee venom phospholipase A2 induces stage-specific growth arrest of the intraerythrocytic Plasmodium falciparum via modifications of human serum components. *J. Biol. Chem.* 2000, 275, 39973–39980.

27. Guillaume, C.; Deregnaucourt, C.; Clavey, V.; Schrevel, J. Anti-*Plasmodium* properties of group IA, IB, IIA and III secreted phospholipases A2 are serum-dependent. *Toxicon* 2004, 43, 311–318.

28. Passero, L.F.; Laurenti, M.D.; Tomokane, T.Y.; Corbett, C.E.; Toyama, M.H. The effect of phospholipase A2 from *Crotalus durissus collilineatus* on *Leishmania (Leishmania) amazonensis* infection. *Parasitol. Res.* 2008, 102, 1025–1033.

29. Lomonte, B.; Rangel, J. Snake venom Lys 49 myotoxins: From phospholipases A(2) to non-enzymatic membrane disruptors. *Toxicon* 2012, 60, 520–530.

30. Nuñez, V.; Arce, V.; Gutierrez, J.M.; Lomonte, B. Structural and functional characterization of myotoxin I, a Lys49 phospholipase A2 homologue from the venom of the snake *Bothrops atrox*. *Toxicon* 2004, 44, 91–101.

31. Santamaria, C.; Larios, S.; Quiros, S.; Pizarro-Cerda, J.; Gorvel, J.P.; Lomonte, B.; Moreno, E. Bactericidal and anti-toxoplasmodic properties of short cationic peptides derived from a snake venom Lys49 phospholipase A2. *Antimicrob. Agents Chemother.* 2005, 49, 1340–1345.

32. Hill, D.A.; Desai, S.A. Malaria parasite mutants with altered erythrocyte permeability: A new drug resistance mechanism and important molecular tool. *Future Microbiol.* 2010, 5, 81–97.

33. Vial, H.J.; Ancelin, M.L. Malarial lipids. In *Malaria: Parasite Biology, Pathogenesis, and Protection*; Sherman, I.W., Ed.; ASM Press: Washington, DC, USA, 1998; pp. 159–175.

34. Moll, G.N.; Vial, H.J.; van der Wiele, F.C.; Ancelin, M.L.; Roelofsen, B.; Slotboom, A.J.; de Haas, G.H.; van Deenen, L.L.; Op den Kamp, J.A. Selective elimination of malaria infected erythrocytes by a modified phospholipase A2 in vitro. *Biochim. Biophys. Acta* 1990, 1024, 189–192.

35. Lizano, S.; Lambeau, G.; Lazdunski, M. Cloning and cDNA sequence analysis of Lys(49) and Asp(49) basic phospholipase A(2) myotoxin isoforms from *Bothrops asper*. *Int. J. Biochem. Cell Biol.* 2001, 33, 127–132.

36. Soares, A.M.; Rodrigues, V.M.; Homsi-Brandeburgo, M.I.; Toyama, M.H.; Lombardi, F.R.; Arni, R.K.; Giglio, J.R. A rapid procedure for the isolation of the Lys-49 myotoxin II from
Bothrops moojeni (caissaca) venom: Biochemical characterization, crystallization, myotoxic and edematogenic activity. *Toxicon* 1998, 36, 503–514.

37. Diaz, C.; Lomonte, B.; Zamudio, F.; Gutierrez, J.M. Purification and characterization of myotoxin IV, a phospholipase A2 variant, from *Bothrops asper* snake venom. *Nat. Toxins* 1995, 3, 26–31.

38. Arni, R.K.; Ward, R.J.; Gutierrez, J.M.; Tulinsky, A. Structure of a calcium-independent phospholipase-like myotoxic protein from *Bothrops asper* venom. *Acta Crystallogr. D* 1995, 51, 311–317.

39. Rodrigues, V.M.; Soares, A.M.; Mancin, A.C.; Fontes, M.R.; Homsi-Brandeburgo, M.I.; Giglio, J.R. Geographic variations in the composition of myotoxins from *Bothrops neuwiedi* snake venoms: Biochemical characterization and biological activity. *Comp. Biochem. Physiol. A* 1998, 121, 215–222.

40. Rigden, D.J.; Hwa, L.W.; Marangoni, S.; Toyama, M.H.; Polikarpov, I. The structure of the D49 phospholipase A2 piratoxin III from *Bothrops pirajai* reveals unprecedented structural displacement of the calcium-binding loop: Possible relationship to cooperative substrate binding. *Acta Crystallogr. D* 2003, 59, 255–262.

41. Higuchi, D.A.; Barbosa, C.M.; Bincoletto, C.; Chagas, J.R.; Magalhaes, A.; Richardson, M.; Sanchez, E.F.; Pesquero, J.B.; Araujo, R.C.; Pesquero, J.L. Purification and partial characterization of two phospholipases A2 from *Bothrops leucurus* (white-tailed-jararaca) snake venom. *Biochimie* 2007, 89, 319–328.

42. Ponce-Soto, L.A.; Lomonte, B.; Gutierrez, J.M.; Rodrigues-Simioni, L.; Novello, J.C.; Marangoni, S. Structural and functional properties of BaTX, a new Lys49 phospholipase A2 homologue isolated from the venom of the snake *Bothrops alternatus*. *Biochim. Biophys. Acta* 2007, 1770, 585–593.

43. Vadas, P. Group II phospholipases A2 are indirectly cytolytic in the presence of exogenous phospholipid. *Biochim. Biophys. Acta* 1997, 1346, 193–197.

44. Otero, R.; Nunez, V.; Osorio, R.G.; Gutierrez, J.M.; Giraldo, C.A.; Posada, L.E. Ability of six Latin American antivenoms to neutralize the venom of mapana equis (*Bothrops atrox*) from Antioquia and Choco (Colombia). *Toxicon* 1995, 33, 809–815.

45. Otero-Patino, R. Epidemiological, clinical and therapeutic aspects of *Bothrops asper* bites. *Toxicon* 2009, 54, 998–1011.

46. Otero-Patino, R.; Cardoso, J.L.; Higashi, H.G.; Nunez, V.; Diaz, A.; Toro, M.F.; Garcia, M.E.; Sierra, A.; Garcia, L.F.; Moreno, A.M.; *et al.* A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for *Bothrops* snake bites in Uraba, Colombia. The Regional Group on Antivenom Therapy Research (REGATHER). *Am. J. Trop. Med. Hyg.* 1998, 58, 183–189.

47. Gutierrez, J.M.; Ownby, C.L.; Odell, G.V. Pathogenesis of myonecrosis induced by crude venom and a myotoxin of *Bothrops asper*. *Exp. Mol. Pathol.* 1984, 40, 367–379.

48. Gutierrez, J.M.; Ownby, C.L.; Odell, G.V. Isolation of a myotoxin from *Bothrops asper* venom: Partial characterization and action on skeletal muscle. *Toxicon* 1984, 22, 115–128.

49. Trebien, H.A.; Calixto, J.B. Pharmacological evaluation of rat paw oedema induced by *Bothrops jararaca* venom. *Agents Actions* 1989, 26, 292–300.
50. Choi, S.J.; Parent, R.; Guillaume, C.; Deregnaucourt, C.; Delarbre, C.; Ojcius, D.M.; Montagne, J.J.; Celerier, M.L.; Phelipot, A.; Amiche, M.; et al. Isolation and characterization of Psalmopeotoxin I and II: Two novel antimalarial peptides from the venom of the tarantula *Psalmopoeus cambridgei*. FEBS Lett. 2004, 572, 109–117.

51. Shinohara, L.; de Freitas, S.F.; da Silva, R.J.; Guimaraes, S. *In vitro* effects of *Crotalus durissus terrificus* and *Bothrops jararaca* venoms on *Giardia duodenalis* trophozoites. Parasitol. Res. 2006, 98, 339–344.

52. Adade, C.M.; Cons, B.L.; Melo, P.A.; Souto-Padron, T. Effect of *Crotalus viridis viridis* snake venom on the ultrastructure and intracellular survival of *Trypanosoma cruzi*. Parasitology 2011, 138, 46–58.

53. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685.

54. Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 1996, 68, 850–858.

55. Matrix Science. Mascot MS/MS Ion Search. Available online: http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MIS (accessed on 12 May 2012).

56. NCBI. Standard Protein Blast. Available online: http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins (accessed on 15 May 2012).

57. Lomonte, B.; Gutierrez, J.M.; Romero, M.; Nunez, J.; Tarkowski, A.; Hanson, L.A. An MTT-based method for the *in vivo* quantification of myotoxic activity of snake venoms and its neutralization by antibodies. J. Immunol. Methods 1993, 161, 231–237.

58. Habermann, E.; Hardt, K.L. A sensitive and specific plate test for the quantitation of phospholipases. Anal. Biochem. 1972, 50, 163–173.

59. Gutierrez, J.M.; Chaves, F.; Rojas, E.; Elizondo, J.; Avila, C.; Cerdas, L. Production of monovalent anti-*Bothrops asper* antivenom: Development of immune response in horses and neutralizing ability. Rev. Biol. Trop. 1988, 36, 511–517.

60. Trager, W.; Jenson, J.B. Cultivation of malarial parasites. Nature 1978, 273, 621–622.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).