Supporting Information

Polyoxometalate Steric Hindrance Driven Chirality-Selective Separation of Subnanometer Carbon Nanotubes

Xusheng Yang, Chao Zhu, Lianduan Zeng, Weiyang Xue, Luyao Zhang, Lei Zhang, Kaitong Zhao, Min Lyu, Lei Wang, Yuan-Zhu Zhang, Xiao Wang*, Yan Li*, and Feng Yang*

Supporting Results

Figure S1. a–c, Typical HAADF-STEM images of {PW$_{12}$}-CoMo-SWCNTs.

Figure S2. Thermogravimetric curves of {PW$_{12}$}-SWCNTs and raw SWCNTs.
Figure S3. Raman spectra of polyoxometalate-SWCNTs and pristine SWCNTs. The spectra were normalized with respect to the intensity of G bands. A laser filter (25%) was applied to the powder sample to avoid any laser heating effect induced Raman shift.

Figure S4. XPS spectra of $\{\text{PW}_{12}\}$ and $\{\text{PW}_{12}\}$-SWCNTs.
Figure S5. Absorption spectra of sodium deoxycholate dispersed raw CoMo-SWCNTs, indicating the non-selective chiral indices in raw sample.

Figure S6. Raman spectra of sorted \{PW_{12}\}-CoMo-SWCNTs and raw CoMo-SWCNTs. The spectra are normalized with the G bands.
Figure S7. UV–Vis–NIR absorption spectra, deconvolution curves, and fitting spectra of PCz sorted raw SWCNTs (a) and {PW12}-SWCNTs (b).

Table S1. Fitted and calculated relative abundance of \((n,m)\) in PCz sorted {PW12}-SWCNTs from absorption spectra.

\((n,m)\)	Wavelength (nm)	Peak Area	Relative Abundance (%)
(6,4)	891	0.27	5.9
(6,5)	992	4.14	90.6
(7,5)	1028	0.01	0.2
(7,6)	1146	0.15	3.3

Table S2. Fitted and calculated relative abundance of \((n,m)\) in PCz sorted raw SWCNTs from absorption spectra.

\((n,m)\)	Wavelength (nm)	Peak Area	Relative Abundance (%)
(6,4)	899	0.42	2.7
(9,1)	935	0.55	3.6
(8,3)	970	1.34	8.8
(6,5)	992	1.85	12.1
(7,5)	1048	3.49	22.9
(7,6)(8,4)(9,4)	1125-1160	5.54	36.3
(8,6)	1200	1.47	9.6
(8,7)	1265	0.30	2.0
(10,3)	1292	0.31	2.0

Three types of adsorption sites of {PW12} on a (8,4) SWCNT were used. The smallest \(O_{\text{cluster}}-\text{CNT}\) inter-distance was found to be 1.44, 2.44, and 3.41 Å (Figure
S8a–c), respectively. The optimized configuration by DFT calculations is determined to be 3.40 Å (Figure S8d).

![Figure S8](image)

Figure S8. a–c, Different adsorption sites of \{PW_{12}\} on (8,4) SWCNT before optimization. The smallest inter-distances (O-C) 1.44 (a), 2.44 (b), and 3.41 Å (c) are labelled. d, Optimized configuration of \{PW_{12}\}/(8,4) SWCNT in tri-adsorption site with an inter-distance of 3.40 Å.

![Figure S9](image)

Figure S9. DFT calculations: iso-surface plots of electron density differences for \{PW_{12}\} on outside SWCNTs with different chirality/diameter: (8,3), (7,5), (8,4), and (7,6). The corresponding electron transfer (|e|) is indicated.
Figure S10. a–c, HAADF-STEM images of {PW\textsubscript{12}}-SWCNT residue after the sorting and centrifugation, showing lots of {PW\textsubscript{12}} clusters adsorbed on outside SWCNTs.

Figure S11. Normalized absorption spectra of PCz sorted {PW\textsubscript{12}}-SWCNTs under different sonication time: 50, 150, and 300 min.
Figure S12. Raman spectrum showing the D, G bands of sorted SWCNTs via different sonication time.

Figure S13. SEM image (a) and length distribution (b) of (6,5) SWCNTs sonicated by 300 min. Tube counts: $N = 124$. Average length: $1.75 \pm 0.71 \, \mu m$.

Figure S14. a, b, TEM images of Pd nanoparticles with a size of ~1-2 nm.
Figure S15. Cyclic voltammogram of different polyoxometalates in Na$_2$SO$_4$ solution (0.5 mol·L$^{-3}$) using a 3 mm-diameter glass carbon electrode, a carbon rod counter electrode, and a saturated calomel electrode (SCE) reference electrode.

Figure S16. Cyclic voltammogram of CoMo-SWCNT thin film in Na$_2$SO$_4$ solution (0.5 mol·L$^{-3}$) using a 3 mm-diameter glass carbon electrode, a carbon rod counter electrode, and a Ag/Ag$^+$ reference electrode. The potential (V vs. Ag/Ag$^+$) of voltammogram of SWCNTs was converted to the potential (V vs. SCE) by subtracting 45 mV. The key features of the cyclic voltammogram are labeled.