Extensions of Self-Improving Sorters

Siu-Wing Cheng1 · Kai Jin1 · Lie Yan2

Received: 29 September 2018 / Accepted: 27 June 2019 / Published online: 5 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Ailon et al. (SIAM J Comput 40(2):350–375, 2011) proposed a self-improving sorter that tunes its performance to an unknown input distribution in a training phase. The input numbers x_1, x_2, \ldots, x_n come from a product distribution, that is, each x_i is drawn independently from an arbitrary distribution D_i. We study two relaxations of this requirement. The first extension models hidden classes in the input. We consider the case that numbers in the same class are governed by linear functions of the same hidden random parameter. The second extension considers a hidden mixture of product distributions.

1 Introduction

Self-improving algorithms proposed by Ailon et al. [1] can tune their computational performance to the input distribution. There is a training phase in which the algorithm learns certain input features and computes some auxiliary structures. After the training phase, the algorithm uses these auxiliary structures in the operation phase to obtain an expected time complexity that is no worse and possibly smaller than the best worst-case complexity known. The expected time complexity in the operation phase is called the limiting complexity.

This computational model addresses two issues. First, the worst-case scenario may not happen, so the best time complexity for the input encountered may be smaller
than the worst-case optimal bound. Second, previous efforts for mitigating the worst-case scenarios often consider average-case complexities, and the input distributions are assumed to be simple distributions like Gaussian, uniform, Poisson, etc. whose parameters are given beforehand. In contrast, Ailon et al. only assume that individual input items are independently distributed, while the distribution of an input item can be arbitrary. No other information is needed.

The problems of sorting and two-dimensional Delaunay triangulation are studied by Ailon et al. [1]. An input instance I for the sorting problem has n numbers. The i-th number x_i is drawn independently from a hidden distribution D_i. The joint distribution $\prod_{i=1}^{n} D_i$ is called a product distribution. Let $\pi(I)$ denote the sequence of the ranks of the x_i's, which is a permutation of $[n]$. It is shown that for any $\varepsilon \in (0, 1)$, there is a self-improving algorithm with limiting complexity $O(\varepsilon^{-1}(n + H_\pi))$, where H_π is the entropy of the distribution of $\pi(I)$. By Shannon’s theory [4], any comparison-based sorting algorithm requires $\Omega(n + H_\pi)$ expected time. The self-improving sorter uses $O(n^{1+\varepsilon})$ space. The training phase processes $O(n^\varepsilon)$ input instances in $O(n^{1+\varepsilon})$ time, and it succeeds with probability at least $1 - 1/n$, i.e., the probability of achieving the desired limiting complexity is at least $1 - 1/n$. For two-dimensional Delaunay triangulations, Ailon et al. also obtained an optimal limiting complexity for product distributions.

Subsequently, Clarkson et al. [3] developed self-improving algorithms for two-dimensional coordinatewise maxima and convex hulls, assuming that the input comes from a product distribution. The limiting complexities for the maxima and the convex hull problems are $O(\text{OptM} + n)$ and $O(\text{OptC} + n \log \log n)$, where OptM and OptC are the expected depths of optimal linear decision trees for the maxima and convex hull problems, respectively.

On one hand, the product distribution requirement is very strong; on the other hand, Ailon et al. showed that $\Omega(2^{n \log n})$ bits of storage are necessary for optimal sorting if the n numbers are drawn from an arbitrary distribution. We study two extensions of the input model that are natural and yet possess enough structure for efficient self-improving algorithms to be designed.

The first extension models the situation in which some input elements depend on each other. We consider a hidden partition of the input $I = (x_1, \ldots, x_n)$ into classes S_k's. The input numbers in a class S_k are distinct linear functions of the same hidden random parameter z_k. The distributions of the z_k's are arbitrary and each z_k is drawn independently.¹ We call this model a product distribution with hidden linear classes. Our first result is a self-improving sorter with optimal limiting complexity under this model.

Theorem 1.1 For any $\varepsilon \in (0, 1)$, there exists a self-improving sorter for any product distribution with hidden linear classes that has a limiting complexity of $O(n/\varepsilon + H_\pi/\varepsilon)$. The storage needed by the operation phase is $O(n^2)$. The training phase processes $O(n^\varepsilon)$ input instances in $O(n^2 \log^3 n)$ time and $O(n^2)$ space. The success probability is at least $1 - 1/n$.

¹ There is a technical condition required of the input distribution to be explained in Sect. 2.
In the second extension, the distribution of I is a mixture $\sum_{q=1}^{\kappa} \lambda_q D_q$, where κ and the λ_q’s are hidden, and every D_q is a hidden product distribution of n real numbers. In other words, over a large collection of input instances, for all $q \in [1, \kappa]$, a fraction λ_q of them are expected to be drawn from D_q. Although κ is unknown, we are given an upper bound m of κ. We call this model a hidden mixture of product distributions.

Our second result is a self-improving sorter under this model.

Theorem 1.2 For any $\varepsilon \in (0, 1)$, there is a self-improving sorter for any hidden mixture of at most m product distributions that has a limiting complexity of $O ((n \log m)/\varepsilon + H_\pi /\varepsilon)$. The storage needed by the operation phase is $O (mn \log (mn))$ input instances in $O (mn \log^2 (mn) + m^\varepsilon n^{1+\varepsilon} \log (mn))$ time using $O (mn \log (mn) + m^\varepsilon n^{1+\varepsilon})$ space. The success probability is at least $1 - 1/(mn)$.

In the interesting special case of $m = O (1)$, the limiting complexity is $O (n/\varepsilon + H_\pi /\varepsilon)$ which is optimal.

2 Hidden Linear Classes

There is a hidden partition of $[n]$ into classes. For every $i \in [1, n]$, the distribution of x_i is degenerate if x_i is equal to a fixed value. Each such x_i will be recognized in the training phase. For the remaining i’s, the distributions of x_i’s are non-degenerate, and we use S_1, \ldots, S_g to denote the hidden classes formed by them. Numbers in the same class S_k are generated by linear functions of the same hidden random parameter z_k. Different classes are governed by different random parameters. We know that the functions are linear, but no other information is given to us.

Let D_k denote the distribution of z_k. There is a technical condition that is required of the D_k’s: there exists a constant $\rho \in (0, 1)$ such that for every $k \in [1, g]$ and every $c \in \mathbb{R}$, $\Pr [z_k = c] \leq 1 - \rho$. This condition says that D_k does not concentrate too much on any single value, which is quite a natural phenomenon. Our algorithm does not need to know ρ, but ρ affects the probabilistic guarantees on the correctness and limiting complexity. The input size must be at least e^{3/ρ^2} for Theorem 1.1 to hold.

2.1 Training Phase

2.1.1 Learning the Linear Classes

We learn the classes and the linear functions using $3 \ln^2 n$ input instances. Denote these instances by $I_1, I_2, \ldots, I_{3 \ln^2 n}$. Let $x_i^{(a)}$ denote the i-th input number in I_a. We first recognize the degenerate distributions by checking which $x_i^{(a)}$ is fixed for $a \in [1, 3 \ln^2 n]$.

Lemma 2.1 Assume that $n \geq e^{2/(3\rho)}$. It holds with probability at least $1 - 1/n$ that for all $i \in [1, n]$, if $x_i^{(a)}$ is the same for all $a \in [1, 3 \ln^2 n]$, the distribution of $x_i^{(a)}$ is degenerate.

Springer
Proof Let \(c_i \) be the observed value of \(x_i^{(a)} \) for \(a \in [1, 3 \ln^2 n] \). If the distribution of \(x_i^{(a)} \) is not degenerate, the probability of \(x_i^{(a)} = c_i \) for all \(a \in [1, 3 \ln^2 n] \) is at most \((1 - \rho)^{3 \ln^2 n} \leq e^{-3\rho \ln^2 n} \leq e^{-2\ln n} = n^{-2}\). Applying the union bound establishes the lemma.

Assume that the degenerate distributions are taken out of consideration. If \(i \) and \(j \) belong to the same class \(S_k \), then \(x_i^{(a)} \) and \(x_j^{(a)} \) are linearly related as \(a \) varies. Conversely, if \(i \) and \(j \) belong to different classes, it is highly unlikely that \(x_i^{(a)} \) and \(x_j^{(a)} \) remain linearly related as \(a \) varies because they are governed by independent random parameters. We check if the triples of points \((x_i^{(a-2)}, x_j^{(a-2)}), (x_i^{(a-1)}, x_j^{(a-1)}), \) and \((x_i^{(a)}, x_j^{(a)}) \) are collinear for every \(a \in [3, 3 \ln^2 n] \) and every distinct pair of \(i \) and \(j \) from \([1, n]\). We quantify this intuition in the following result.

Lemma 2.2 Let \(i \) and \(j \) be two distinct indices in \([1, n]\) that belong to different classes. For every \(a \in [3, 3 \ln^2 n] \), let \(E_{ij}^{(a)} \) denote the event that the points \((x_i^{(a-2)}, x_j^{(a-2)}), (x_i^{(a-1)}, x_j^{(a-1)}), \) and \((x_i^{(a)}, x_j^{(a)}) \) are not collinear. For any \(n \geq e^{3/\rho^2} \),

\[
\Pr \left[\bigcup_{a=3}^{3 \ln^2 n} E_{ij}^{(a)} \right] \geq 1 - n^{-3}.
\]

Proof First, we bound \(\Pr \left[E_{ij}^{(3a)} \right] \) from below for \(a \in [1, \ln^2 n] \). It is well known [9, Sections 1.3.3 and 1.5.3] that the points \((x_i^{(3a-2)}, x_j^{(3a-2)}), (x_i^{(3a-1)}, x_j^{(3a-1)}), \) and \((x_i^{(3a)}, x_j^{(3a)}) \) are collinear if and only if

\[
\begin{vmatrix}
 x_i^{(3a-2)} & x_j^{(3a-2)} & 1 \\
 x_i^{(3a-1)} & x_j^{(3a-1)} & 1 \\
 x_i^{(3a)} & x_j^{(3a)} & 1 \\
\end{vmatrix} = 0. \tag{1}
\]

Assume that \(x_i^{(3a-2)} = c_1 \) and \(x_i^{(3a-1)} = c_2 \) for two fixed values \(c_1 \) and \(c_2 \). Since \(i \) and \(j \) are in different classes, \(x_i^{(b)} \) and \(x_j^{(b')} \) are independent for all \(b \) and \(b' \). Also, \(x_j \) in one instance \(I_b \) does not influence \(x_j \) in a different instance \(I_{b'} \). So there is no dependence among \(x_i^{(3a)}, x_j^{(3a-2)}, x_j^{(3a-1)} \), and \(x_j^{(3a)} \).

Suppose that \(c_1 \neq c_2 \). If \(E_{ij}^{(3a)} \) does not occur, then by (1), we can express \(x_j^{(3a)} \) as a function \(f(c_1, c_2, x_i^{(3a)}, x_j^{(3a-2)}, x_j^{(3a-1)}) \). Hence,

\[
\Pr \left[E_{ij}^{(3a)} \Big| x_i^{(3a-2)} = c_1 \cap x_i^{(3a-1)} = c_2 \cap c_1 \neq c_2 \right] = \Pr \left[x_j^{(3a)} \neq f(c_1, c_2, x_i^{(3a)}, x_j^{(3a-2)}, x_j^{(3a-1)}) \right]
\]

\[
\geq \rho.
\]
If \(c_1 = c_2 \), then (1) becomes \((x_i^{(3a)} - x_i^{(3a-1)}) (x_j^{(3a-1)} - x_j^{(3a-2)}) = 0\). Thus,

\[
\Pr\left[E_{ij}^{(3a)} \mid x_i^{(3a-2)} = c_1 \land x_i^{(3a-1)} = c_2 \land x_j^{(3a-2)} \neq x_j^{(3a-1)} \right] \cdot \Pr\left[x_i^{(3a)} \neq c_1 \right] \\
\geq \rho^2.
\]

The above shows that the probability of \(E_{ij}^{(3a)} \) conditioned on some fixed values of \(x_i^{(3a-2)} \) and \(x_i^{(3a-1)} \) is at least \(\rho^2 \). Hence, \(\Pr\left[E_{ij}^{(3a)} \right] \geq \rho^2 \cdot \int \int \Pr\left[x_i^{(3a-2)} = c_1 \land x_i^{(3a-1)} = c_2 \right] dc_1 dc_2 = \rho^2 \).

The events in \(\bigcup_{a=1}^{\ln^2 n} E_{ij}^{(3a)} \) are independent of each other. Therefore,

\[
\Pr\left[\bigcup_{a=1}^{\ln^2 n} E_{ij}^{(a)} \right] \geq \Pr\left[\bigcup_{a=1}^{\ln^2 n} E_{ij}^{(3a)} \right] = 1 - \prod_{a=1}^{\ln^2 n} \Pr\left[\bar{E}_{ij}^{(3a)} \right] \geq 1 - (1 - \rho^2)^{\ln^2 n}.
\]

Since \(n \geq e^{3/\rho^2} \), we get \((1 - \rho^2)^{\ln^2 n} \leq e^{-\rho^2 \ln^2 n} \leq e^{-3 \ln n} = n^{-3}\), establishing the lemma. \(\square\)

By Lemmas 2.1 and 2.2 and the union bound, we can generate the classes based on collinearity in \(O(n^2 \log^3 n) \) time. The classification is correct with probability at least \(1 - 1/n \). We label the classes as \(S_1, S_2 \) and so on. We use \(g \) to denote the number of classes identified.

Lemma 2.3 Assume that \(n \geq e^{3/\rho^2} \). Using \(3 \ln^2 n \) input instances, we can correctly identify all linear classes in \(O(n^2 \log^3 n) \) time and \(O(n \log^2 n) \) space with probability at least \(1 - 1/n \).

2.1.2 Structures for the Operation Phase

In addition to learning the linear classes, we need to construct a data structure in the training phase that will allow the operation phase to run efficiently. We first give an overview of what this data structure will do.

The construction and operation of this data structure require the determination of a \(V\)-list of real numbers \(v_0 < v_1 < v_2 < \cdots < v_n < v_{n+1} \), where \(v_0 \) and \(v_{n+1} \) denote \(-\infty \) and \(\infty \), respectively. They divide the real line into \(n + 1 \) intervals:

\[
[v_0, v_1), [v_1, v_2), \ldots, [v_{n-1}, v_n), [v_n, v_{n+1}),
\]

where we use \([v_0, v_1)\) to denote \((-\infty, v_1)\). For every input instance \(I = (x_1, x_2, \ldots, x_n) \) in the operation phase, the data structure supports the following three operations.

F1: For every class \(S_k \), retrieve the sorted order of the numbers in \(I \) with indices in \(S_k \). Denote this sorted order as \(\sigma_k \).
F2: For every class S_k, every $i \in S_k$, and every number $x_i \in I$, determine the largest v_r in the V-list that is less than or equal to x_i.

F3: For every interval $[v_r, v_{r+1})$, compute a list of sorted lists $Z_r = \{\sigma_k \cap [v_r, v_{r+1}) : k \in [1, g] \land \sigma_k \cap [v_r, v_{r+1}) \neq \emptyset\}$.

We describe how to compute the V-list and the data structure in the following.

V-list The determination of the V-list requires taking another $\ln n$ input instances. Sort all numbers in these instances into one sorted list L. Then, for $i \in [1, n]$, v_i in the V-list is the number of rank i in n in L. Note that if the distribution of x_i is degenerate, the same x_i appears in n times in the sorted list L, which implies that x_i must be selected to be an element of the V-list.

Data structure The V-list induces n horizontal lines at y-coordinates v_1, v_2, \ldots, v_n. The data structure is based on the following arrangements of lines and their refinement into vertical slabs.

- For each class S_k, fix an arbitrary index $s_k \in S_k$. For each $i \in S_k$, we associate with i the equation of the line ℓ_i that expresses x_i as a linear function in x_{s_k}. This can be done by computing the equation of the support line through $(x_{s_k}^{(a)}, x_i^{(a)})$ and $(x_{s_k}^{(b)}, x_i^{(b)})$ for two arbitrary, distinct input instances I_a and I_b in $O(1)$ time. The total processing time over all classes is $O(n)$.
- For every class S_k, let A_k be the arrangement formed by the n horizontal lines induced by v_1, v_2, \ldots, v_n and the lines ℓ_i’s for all $i \in S_k$. The size of A_k is $O(n|S_k|)$.
- Draw vertical lines through the vertices of A_k. Two adjacent vertical lines bound a vertical slab. Denote by W_k the set of slabs obtained. The size of W_k is $O(n|S_k|)$. Within each slab in W_k, each line ℓ_i in A_k lies between two consecutive values v_r and v_{r+1}, i.e., v_r is the predecessor of ℓ_i in the V-list. Moreover, the bottom-to-top order of the lines for S_k is fixed within a slab.

We compute A_k and store W_k as a collection of ordered lists of lines as follows.

1. Compute A_k by a plane sweep in $O(n|S_k| \log n)$ time.
2. Each slab in W_k is represented as a list of lines for S_k ordered from bottom to top. Each line ℓ_i is associated with its predecessor v_r in the V-list within the slab. These ordered lists of lines for W_k are stored in a persistent search tree [5] in order to save storage and processing time. A persistent search tree is a collection of balanced search trees of different versions. Given a tree of a specific version, it can be searched in logarithmic time. When the first version is constructed, it is just an ordinary balanced search tree. When an update (including insertion, deletion and changing the content of a node) on the current version is specified, instead of modifying the current version, a new version is generated that incorporates the update. Each update uses $O(1)$ extra amortized space and takes logarithmic time. The construction of the persistent search tree for W_k is done as follows.
3. Initialize the first version of the search tree to store the lines for S_k in the leftmost slab of W_k in decreasing order of their slopes (which is the same as the bottom-to-top order). Lines with positive slopes are labelled with v_0 as their predecessors in this slab. Similarly, lines with negative slopes are labelled with v_n. The construction
of this version takes $O(\log |S_k|)$ time and $O(|S_k|)$ space. Run a plane sweep over A_k from left to right. We exit the current slab and enter a new slab when crossing a vertex of A_k. If we cross an intersection between two lines ℓ_i and ℓ_j, then we swap ℓ_i and ℓ_j in the persistent search tree (by swapping node contents). Suppose that we cross an intersection between a horizontal line $y = v_r$ and a line ℓ_i. If ℓ_i is above $y = v_r$ to the right of this intersection, then we update the predecessor of ℓ_i to v_r; otherwise, we update the predecessor of ℓ_i to v_{r-1}. As a result, we obtain a new version of the persistent search tree in $O(\log |S_k|)$ time and $O(1)$ extra amortized space. Constructing all versions thus take $O(n|S_k| \log |S_k|)$ time and $O(n|S_k|)$ space. Notice that there is one version for each slab in W_k.

4. Given an input instance I in the operation phase, we need to provide fast access to different versions of the persistent search tree for all classes. This is done as follows.

(a) Take another n^ε input instances for any choice of $\varepsilon \in (0, 1)$. For every class S_k, record the frequencies of x_{sk} falling into the slabs in W_k among these n^ε instances (via binary search among the slabs). This step takes $O(\frac{n}{\varepsilon} + n^{1+\varepsilon} \log n) = O(n^2)$ total time over all classes. Then, for every class S_k, we build a binary search tree T_k on these slabs whose expected search time is asymptotically optimal with respect to the recorded frequencies. Each T_k has $O(n|S_k|)$ nodes and can be constructed in $O(n|S_k|)$ time [6,8].

(b) Each node in T_k corresponds to a slab in W_k. We associate with this node a pointer to the version of the persistent search tree for the corresponding slab. A very low frequency cannot give a good estimate of the probability distribution of x_{sk}, so navigating down T_k to a node of very low frequency may be too time-consuming. Thus, if a search of T_k reaches a node at depth below $\frac{\varepsilon}{2} \log_2 n$, we answer the query by performing a binary search among the slabs in W_k, which takes $O(\log n)$ time. Note that the slab also stores a pointer to the corresponding version of the persistent search tree.

We explain how to use the data structure to support the operations F1, F2 and F3 described earlier.

Let $I = (x_1, x_2, \ldots, x_n)$ be an input instance in the operation phase. For every class S_k, we query T_k with x_{sk} to find the slab in W_k whose span of x-coordinates contains x_{sk}. This provides access to the version of the persistent search tree for that slab. Denote this version by T. An inorder traversal of T gives the sorted order of the lines ℓ_i’s for all $i \in S_k$ in $O(|S_k|)$ time. Each line ℓ_i stores its predecessor v_r in the V-list. The above handles F1 and F2. Consider F3. For $k = 1, 2, \cdots, g$, we walk through the sorted list of lines ℓ_i’s in S_k produced by the inorder traversal of T, and for each ℓ_i encountered in the traversal, let v_r be the predecessor of ℓ_i, and we append x_i to the list in Z_r under construction, i.e., the list that represents $\sigma_k \cap [v_r, v_{r+1})$. Afterwards, we scan all intervals and output $\sigma_k \cap [v_r, v_{r+1})$ for all k and r.

We summarize the above processing in the following result.

Lemma 2.4 Assume that the hidden classes S_1, S_2, \ldots, S_g have been determined.

(i) Using $\ln n$ input instances, we can set the V-list $(v_0, v_1, \ldots, v_n, v_{n+1})$ in $O(n \log^2 n)$ time using $O(n \log n)$ space, where $v_0 = -\infty$, $v_{n+1} = \infty$, and
for $i \in [1, n]$, v_i is the number of rank i in the sorted list of all numbers in the
In n input instances.

(ii) Given the V-list, there is a data structure that performs functions $F1$, $F2$, and $F3$
in $O(E + n)$ expected time for every input instance in the operation phase, where
E is the total expected time to query the T_k's. The data structure uses $O(n^2)$ space
and can be constructed in $O(n^2 \log n)$ time using n^e input instances.

2.2 Operation Phase

Given an input instance $I = (x_1, \ldots, x_n)$, the operation phase proceeds as follows.

1. During the construction of the V-list in the training phase, for each x_i that is
degenerately distributed, x_i must appear $\ln n$ times when we sort the concatenation
of $\ln n$ input instances. Therefore, for each degenerately distributed x_i, there is a
unique v_i in the V-list that is equal to x_i, and we mark v_i.

2. Use Lemma 2.4(ii) to determine for every class S_k, the sorted sequence σ_k of
numbers belonging to S_k and for every interval $[v_r, v_{r+1})$, the list of sorted lists
$Z_r = \{\sigma_k \cap [v_r, v_{r+1}) : k \in [1, g] \land \sigma_k \cap [v_r, v_{r+1}) \neq \emptyset\}$. Note that $|Z_r| \leq g$.

3. For each interval $[v_r, v_{r+1})$, merge all lists in Z_r into one sorted list. The merging
is facilitated by a min-heap that stores the next element from each list in Z_r. Thus,
each step of the merging takes $O(\log |Z_r|)$ time.

4. Finally, we concatenate in $O(n)$ time the marked v_r's and the merged lists for all
Z_r's to form the output sorted list.

Correctness is obvious. The limiting complexity has two main components. First,
the sum of expected query times of all T_k's in Lemma 2.4(ii). Second, the total time
spent on merging the lists in Z_r for $r \in [0, n]$. The remaining processing time is
$O(n + \sum_{k=1}^{g} |S_k|) = O(n)$. We give the analysis in the next section to show that the
first two components sum to $O(n/\varepsilon + H_\pi /\varepsilon)$. Recall that $\pi(I)$ is the sequence of the
ranks of numbers in I, which is a permutation of $[n]$, and H_π is the entropy of the
distribution of $\pi(I)$.

2.3 Analysis

Assign labels 0 to $n + 1$ to $v_0, v_1, \ldots, v_n, v_{n+1}$ in this order. Similarly, assign labels
$n + 2$ to $2n + 1$ to the input numbers x_1, \ldots, x_n in this order.

Define the random variable B^V_k to be the permutation of the labels that appear from
left to right after sorting $\{v_0, \ldots, v_{n+1}\} \cup \{x_1, \ldots, x_n\}$ in increasing order.

For each $k \in [1, g]$, define a random variable B^V_k to be the permutation of the labels that appear from left to right after performing the following operations: (1) sort
$\{v_0, \ldots, v_{n+1}\} \cup \{x_i : i \in S_k\}$ in increasing order, and (2) remove all v_r's that do not immediately precede some x_i's in the sorted list. Let H_k^V denote the entropy of the
distribution of B^V_k. Determining B^V_k takes at least H_k^V expected time by Shannon’s
theory [4].

Our algorithm uses Lemma 2.4(ii) to construct $\sigma_k \cap [v_r, v_{r+1})$ for all k and r in
$O(E + n)$ expected time, where E is the total expected time to query the T_k's. Then,
it performs mergings in $O\left(\sum_{r=0}^{n} \sum_{k=1}^{g} |\sigma_k \cap [v_r, v_{r+1}]| \log |Z_r| \right)$ time. Recall that $|Z_r|$ is the number of classes that have numbers falling into $[v_r, v_{r+1})$. As shown in Lemma 3.4 in [1] and the discussion that immediately follows its proof, the expected query complexity of T_k is $O(H^V_k / \varepsilon)$. The limiting complexity is thus equal to

$$O \left(n + \frac{1}{\varepsilon} \sum_{k=1}^{g} H^V_k \right) + O \left(E \left[\sum_{r=0}^{n} \sum_{k=1}^{g} |\sigma_k \cap [v_r, v_{r+1}]| \log |Z_r| \right] \right). \tag{2}$$

We bound $\sum_{k=1}^{g} H^V_k$ and $E \left[\sum_{r=0}^{n} \sum_{k=1}^{g} |\sigma_k \cap [v_r, v_{r+1}]| \log |Z_r| \right]$ in the rest of this section. We need two technical results.

Lemma 2.5 [11, Theorem 2.39] Let $H(X_1, \ldots, X_n)$ be the joint entropy of independent random variables X_1, \ldots, X_n. Then $H(X_1, \ldots, X_n) = \sum_{i=1}^{n} H(X_i)$.

Lemma 2.6 [1, Lemma 2.3] Let $X : \mathcal{U} \to \mathcal{X}$ and $Y : \mathcal{U} \to \mathcal{Y}$ be two random variables obtained with respect to the same arbitrary distribution over the universe \mathcal{U}. Suppose that the function $f : (I, X(I)) \mapsto Y(I), I \in \mathcal{U}$, can be computed by a comparison-based algorithm with C expected comparisons, where the expectation is over the distribution on \mathcal{U}. Then, $H(Y) \leq C + O(H(X))$.

We show that $\sum_{k=1}^{g} H^V_k = O(n + H_\pi)$.

Lemma 2.7 $\sum_{k=1}^{g} H^V_k = O \left(n + H(B^V) \right) = O(n + H_\pi)$.

Proof Suppose that we are given a setting of B^V, i.e., the permutation of labels from left to right in the sorted order of $\{v_0, \ldots, v_{n+1}\} \cup \{x_1, \ldots, x_n\}$. We scan the sorted list from left to right. We maintain the most recently scanned v_r. Suppose that we see a number x_i. Let S_k be the class to which x_i belongs. If this is the first time that we encounter an index in S_k after seeing v_r, we initialize an output list for B^V_k that contains the label of v_r followed by the label of x_i. If this is not the first time that we encounter an index in S_k after seeing v_r, we append the label of x_i to the output list for B^V_k. Clearly, we obtain the settings of all B^V_k’s correctly from B^V. The number of comparisons needed is $O(n)$. Therefore, Lemmas 2.5 and 2.6 imply that $\sum_{k=1}^{g} H_k^V = H(B_1^V, \ldots, B_g^V) = O(n + H(B^V))$.

Given $(I, \pi(I))$, we use $\pi(I)$ to sort I and then merge the sorted order with (v_0, \ldots, v_{n+1}). Afterwards, we scan the sorted list to output the labels of the numbers. This gives the setting of B^V. Clearly, $O(n)$ comparisons suffice, and so Lemma 2.6 implies that $H(B^V) = O(n + H_\pi)$.

Lemma 2.7 takes care of the first term in (2). We will show that the second term in (2) is $O(n)$ with high probability. We first prove that $E[|Z_r|] = O(1)$ for all $r \in [0, n]$ with high probability. Our proof is modeled after the proof of a similar result in [1]. There is a small twist due to the handling of the classification.

Lemma 2.8 It holds with probability at least $1 - 1/n$ that for all $r \in [0, n]$, $E[|Z_r|] = O(1)$.
Proof Let $I_1, \ldots, I_{\ln n}$ denote the input instances used in the training phase for building the V-list. Let $y_1, y_2, \ldots, y_{\ln n}$ denote the sequence formed by concatenating $I_1, \ldots, I_{\ln n}$ in this order. We adopt the notation that for each $\alpha \in [1, \ln n]$, y_α belongs to the class S_k and the input instance I_{y_α}.

Fix a pair of distinct indices $\alpha, \beta \in [1, \ln n]$ such that $y_\alpha \leq y_\beta$. Let \mathcal{J}_α^β be the set of index pairs $\{(a, k) : a \in [1, \ln n], k \in [1, g]\} \setminus \{(a_\alpha, k_\alpha), (a_\beta, k_\beta)\}$. For any $(a, k) \in \mathcal{J}_\alpha^\beta$, let $Y_\alpha^\beta(a, k)$ be an indicator random variable such that if some element of the input instance I_a that belongs to S_k falls into $[y_\alpha, y_\beta)$, then $Y_\alpha^\beta(a, k) = 1$; otherwise, $Y_\alpha^\beta(a, k) = 0$. Define $Y_\alpha^\beta = \sum_{(a,k) \in \mathcal{J}_\alpha^\beta} Y_\alpha^\beta(a, k)$.

Among the (a, k)’s in \mathcal{J}_α^β, the random variables $Y_\alpha^\beta(a, k)$ are independent from each other. By Chernoff’s bound, for any $\mu \in [0, 1]$,

$$\Pr \left[Y_\alpha^\beta > (1 - \mu)E[Y_\alpha^\beta] \right] > 1 - e^{-\mu^2E[Y_\alpha^\beta]/2}.$$

Since we take every $\ln n$ numbers in forming the V-list, we want to discuss the probability of $Y_\alpha^\beta > \ln n$. This motivates us to consider $E[Y_\alpha^\beta] > \ln n/(1 - \mu)$. We also want the probability bound $1 - e^{-\mu^2E[Y_\alpha^\beta]/2}$ of $Y_\alpha^\beta > \ln n$ to be at least $1 - n^{-5}$. This allows us to apply the union bound over at most $(\ln n)(\ln n - 1)$ choices of α and β to obtain a probability bound of at least $1 - \ln^2 n/n^3$. Therefore, as we consider $E[Y_\alpha^\beta] > \ln n/(1 - \mu)$, we want $1 - e^{-\mu^2\ln n/(2(1 - \mu))} = 1 - n^{-\mu^2/2(1 - \mu)} = 1 - n^{-5}$. Equivalently, we require $\mu^2/(2(1 - \mu)) = 5$ which is satisfied by setting $\mu = \sqrt{35}/5 \approx 0.9161$. We conclude that:

It holds with probability at least $1 - \ln^2 n/n^3$ that for any pair of distinct indices $\alpha, \beta \in [1, \ln n]$ such that $y_\alpha \leq y_\beta$, if $E[Y_\alpha^\beta] > \frac{1}{6-\sqrt{35}} \ln n$, then $Y_\alpha^\beta > \ln n$.

For every $r \in [0, \ln n]$, let y_{a_r} denote v_r, where $y_{a_0} = -\infty$ and $y_{a_{n+1}} = \infty$. Fix a particular $r \in [0, \ln n + 1]$. By construction, there are at most $\ln n$ numbers among $I_1, \ldots, I_{\ln n}$ that fall in $[v_r, v_{r+1})$, which guarantees the event of $Y_{a_r}^{\alpha_{r+1}} \leq \ln n$. Our previous conclusion implies that $E[Y_{a_r}^{\alpha_{r+1}}] \leq \frac{1}{6-\sqrt{35}} \ln n$ with probability at least $1 - \ln^2 n/n^3$.

We relate $E[Y_{a_r}^{\alpha_{r+1}}]$ to $E[|Z_r|]$. Let X_{kr} be an indicator random variable such that if some element of the input instance that belongs to S_k falls into $[v_r, v_{r+1})$, then $X_{kr} = 1$; otherwise, $X_{kr} = 0$. Then $\sum_{k=1}^{g} X_{kr} = |Z_r|$, implying that $\sum_{k=1}^{g} E[X_{kr}] = E[|Z_r|]$. The random process that generates the input instances is independent of the training phase. It follows that

$$E[Y_{a_r}^{\alpha_{r+1}}] \geq \left(\sum_{a=1}^{\ln n} \sum_{k=1}^{g} E[X_{kr}] \right) - 2 = \ln n \cdot E[|Z_r|] - 2 \tag{3}$$

because the index pairs (a_{a_r}, k_{a_r}) and $(a_{a_{r+1}}, k_{a_{r+1}})$ are excluded from $\mathcal{J}_{a_r}^{\alpha_{r+1}}$ but they are considered in $\sum_{a=1}^{\ln n} \sum_{k=1}^{g} E[X_{kr}]$.

\(\Box\) Springer
We have shown previously that \(\mathbb{E}[Y^{\alpha r+1}_{\alpha r}] \leq \frac{1}{6-\sqrt{35}} \ln n \) with probability at least \(1 - \ln^2 n/n^3 \). It follows that \(\mathbb{E}[|Z_r|] = O(1) \) with probability at least \(1 - \ln^2 n/n^3 \). Since the above statement holds for every fixed \(r \in [0, n] \), by the union bound, it holds with probability at least \(1 - 1/n \) that \(\mathbb{E}[|Z_r|] = O(1) \) for all \(r \in [0, n] \).

We are ready to bound the second term in (2).

Lemma 2.9 It holds with probability at least \(1 - 1/n \) that

\[
\mathbb{E} \left[\sum_{k=1}^{g} \sum_{r=0}^{n} |\sigma_k \cap [v_r, v_{r+1})| \log |Z_r| \right] = O(n).
\]

Proof Let \(n_{kr} \) denote \(|\sigma_k \cap [v_r, r_{r+1})| \). Let \(z_r \) denote \(|Z_r| \). The largest possible values of \(n_{kr} \) and \(z_r \) are \(n \) and \(g \), respectively.

\[
\mathbb{E} \left[\sum_{k=1}^{g} \sum_{r=0}^{n} n_{kr} \log z_r \right] \leq \sum_{k=1}^{g} \sum_{r=0}^{n} \mathbb{E}[n_{kr} z_r] = \sum_{k=1}^{g} \sum_{r=0}^{n} \sum_{i=0}^{g^n} i \cdot \mathbb{P}[n_{kr} z_r = i].
\]

The range of \(i \) can be reduced to \([1, gn]\) without changing the sum:

\[
\sum_{i=0}^{gn} i \cdot \mathbb{P}[n_{kr} z_r = i] = \sum_{j=1}^{g^n} j \cdot \mathbb{P}[n_{kr} z_r = j] = \sum_{j=1}^{g^n} j \cdot \mathbb{P}[z_r = j \land n_{kr} = l].
\]

The last equality follows from the fact that if \(j \neq j' \) or \(l \neq l' \), then the events \(z_r = j \land n_{kr} = l \) and \(z_r = j' \land n_{kr} = l' \) are disjoint.

Let \(y_{kr} \) be a random variable that counts the number of classes other than \(S_k \) that have numbers in \([v_r, v_{r+1})\). In the event of \(n_{kr} = l \) for some \(l \in [1, n] \), the class \(S_k \) has number(s) in \([v_r, v_{r+1})\), implying that \(z_r = y_{kr} + 1 \). Therefore,

\[
\sum_{j=1}^{g} \sum_{l=1}^{n} j \cdot \mathbb{P}[z_r = j \land n_{kr} = l] = \sum_{j=0}^{g-1} \sum_{l=1}^{n} (j + 1) \cdot \mathbb{P}[y_{kr} = j \land n_{kr} = l]
\]

\[
= \sum_{j=0}^{g-1} \sum_{l=1}^{n} (j + 1) \cdot \mathbb{P}[y_{kr} = j] \cdot \mathbb{P}[n_{kr} = l].
\]
In the last step, the equality of $\Pr[y_{kr} = j \land n_{kr} = l]$ and $\Pr[y_{kr} = j] \cdot \Pr[n_{kr} = l]$ follows from the independence of the events $y_{kr} = j$ and $n_{kr} = l$. Hence,

$\mathbb{E} \left[\sum_{k=1}^{g} \sum_{r=0}^{n} n_{kr} \log z_r \right] \leq \sum_{k=1}^{g} \sum_{r=0}^{n} \sum_{j=0}^{g-1} \sum_{l=1}^{n} (j + 1) l \cdot \Pr[y_{kr} = j] \cdot \Pr[n_{kr} = l]$

$= \sum_{k=1}^{g} \sum_{r=0}^{n} \sum_{j=0}^{g-1} (j + 1) \cdot \Pr[y_{kr} = j] \cdot \sum_{l=1}^{n} \Pr[n_{kr} = l]$

$= \sum_{k=1}^{g} \sum_{r=0}^{n} \sum_{j=0}^{g-1} \mathbb{E}[n_{kr}] \cdot (j + 1) \cdot \Pr[y_{kr} = j]$

$= \sum_{k=1}^{g} \sum_{r=0}^{n} \mathbb{E}[n_{kr}] \cdot \left(\sum_{j=0}^{g-1} j \cdot \Pr[y_{kr} = j] + \sum_{j=0}^{g-1} \Pr[y_{kr} = j] \right)$

$= \sum_{k=1}^{g} \sum_{r=0}^{n} \mathbb{E}[n_{kr}] \cdot (\mathbb{E}[y_{kr}] + 1) .

For all $k \in [1, g]$, $z_r \geq y_{kr}$ by their definitions, and so $\mathbb{E}[z_r] \geq \mathbb{E}[y_{kr}]$. By Lemma 2.8, it holds with probability at least $1 - 1/n$ that $\mathbb{E}[y_{kr}] + 1 = O(1)$ for every $k \in [1, g]$ and every $r \in [0, n]$. Finally,

$\mathbb{E} \left[\sum_{k=1}^{g} \sum_{r=0}^{n} n_{kr} \log z_r \right] \leq O \left(\sum_{k=1}^{g} \sum_{r=0}^{n} \mathbb{E}[n_{kr}] \right) = O \left(\mathbb{E} \left[\sum_{k=1}^{g} \sum_{r=0}^{n} n_{kr} \right] \right) = O(n).$

By (2) and Lemmas 2.7 and 2.9, we conclude that the limiting complexity of the sorter is $O(n/\varepsilon + H_{\pi}/\varepsilon)$ as stated in Theorem 1.1. The $O(n^2)$ space needed by the operation phase follows from Lemma 2.4(ii). In the training phase, the space usage, the number of input instances, and the processing time required follow from Lemmas 2.3 and 2.4. The success probability of $1 - 1/n$ follows from Lemma 2.9. This completes the proof of Theorem 1.1.

3 Mixture of Product Distributions

Let κ be the number of product distributions in the mixture. Although κ is hidden, we are given an upper bound m of κ. Let D_q, $q \in [1, \kappa]$, denote the hidden product distributions in the mixture. The input distribution is $\sum_{q=1}^{\kappa} \lambda_q D_q$ for some hidden positive λ_q’s such that $\sum_{q=1}^{\kappa} \lambda_q = 1$.
3.1 Training Phase

Take $mn \ln(mn)$ input instances. Denote them as $I_1, I_2, \ldots, I_{mn \ln(mn)}$. For $a \in [1, mn \ln(mn)]$, let $x_i^{(a)}$ denote x_i in I_a. For every $i \in [1, n]$ and every $a \in [(i-1)m \ln(mn) + 1, im \ln(mn)]$, define

$$s_a = x_i^{(a)}.$$

That is, we take x_1’s in $I_1, \ldots, I_{m \ln(mn)}$ to be $s_1, \ldots, s_{m \ln(mn)}$, x_2’s in $I_{m \ln(mn)+1}, \ldots, I_{2m \ln(mn)}$ to be $s_{m \ln(mn)+1}, \ldots, s_{2m \ln(mn)}$, and so on.

Sort $(s_1, s_2, \ldots, s_{mn \ln(mn)})$ in increasing order. For $i \in [1, mn]$, define v_i to be the number of rank $i \ln(mn)$ in the sorted list. Then, construct the V-list $(v_0, v_1, \ldots, v_{mn}, v_{mn+1})$, where $v_0 = -\infty$ and $v_{mn+1} = \infty$. This step takes $O(mn \log^2(mn))$ time. The V-list induces $mn + 1$ intervals: $(-\infty, v_1), [v_1, v_2), \ldots, [v_{mn}, \infty)$. We will abuse the notation slightly to take $[v_0, v_1]$ to mean $(-\infty, v_1)$.

To facilitate the operation phase, we group the $mn + 1$ intervals into n buckets as follows. We group the first m intervals into the first bucket, the next m intervals into the second bucket, and so on. There are n buckets. Each bucket contains m intervals except for the last one which contains $m + 1$ intervals. Each interval keeps a pointer to the bucket that contains it. Also, each bucket is associated with an initially empty van Emde Boas tree [10] with the intervals in that bucket as the universe. Each tree has $O(m)$ size and can be initialized in $O(m)$ time.2

Use another $O(m^6 n^5)$ input instances to record the frequency f_i_r of x_i falling into $[r, v_{r+1})$. The frequencies are determined by locating the numbers in these $O(m^6 n^5)$ input instances among the intervals using binary search. The total time needed is $O(m^6 n^{1+\varepsilon} \log(mn))$. Then, for every $i \in [1, n]$, build an asymptotically optimal binary search tree T_i with respect to the f_i_r’s on the intervals with positive frequencies. Each T_i has $O(m^6 n^5)$ size and can be constructed in $O(m^6 n^5)$ time [6, 8]. If a search of T_i reaches a node at depth below $\frac{\varepsilon}{2} \log_2(mn)$ or is unsuccessful, we answer the query by performing a binary search among the $mn + 1$ intervals in $O(\log(mn))$ time.

Let P_i be a random variable indicating the predecessor of x_i in the V-list. Let $H(P_i)$ denote the entropy of the distribution of P_i. As shown in [1, Lemma 3.4], querying T_i takes $O(H(P_i)/\varepsilon)$ expected time (including the binary search among the $mn + 1$ intervals, if applicable).

We summarize the processing in the training phase in the following result.

Lemma 3.1 The training phase constructs the following structures.

(i) The V-list $(v_0, v_1, \ldots, v_{mn+1})$ is constructed in $O(mn \log^2(mn))$ time using $mn \ln(mn)$ input instances and $O(mn \log(mn))$ space, where $v_0 = -\infty$, $v_{mn+1} = \infty$, and for $i \in [1, mn]$, v_i is the number of rank $i \ln(mn)$ in $\bigcup_{i=1}^{mn} \{x_i^{(a)} : a \in [(i-1)m \ln(mn) + 1, im \ln(mn)]\}$.

(ii) The $mn + 1$ intervals induced by the V-list are organized as n consecutive buckets of m intervals each, except for the last bucket which contains $m + 1$ intervals.

2 The space usage according to the description in [10] is $O(m \log m)$, but it can be improved to $O(m)$ as mentioned in [7].
Each bucket keeps an initially empty van Emde Boas tree with the intervals in that bucket as the universe. The processing time and space needed are $O(mn)$.

(iii) Search trees T_i for $i \in [1, n]$ are built on the intervals $[v_0, v_1], \ldots, [v_{mn}, v_{mn+1}]$ using $O(m^εn^ε)$ input instances. The processing time is $O(m^εn^{1+ε} \log (mn))$ and the search trees use $O(m^εn^{1+ε})$ space. For any input instance (x_1, \ldots, x_n) in the operation phase, T_i can be queried to find the interval that contains x_i in $O(H(P_i)/ε)$ expected time.

3.2 Operation Phase

Given an input instance $I = (x_1, \ldots, x_n)$, for each $i \in [1, n]$, we search T_i to place x_i in the interval $[v_r, v_{r+1})$ that contains it. For each $r \in [0, mn]$, the interval $[v_r, v_{r+1}]$ keeps a list N_r of x_i’s that fall into it. We sort each N_r in $O(|N_r| \log |N_r|)$ time. Recall that querying T_i with x_i takes $O(H(P_i)/ε)$ expected time, where P_i is the random variable indicating the predecessor of x_i in the V-list. Therefore, the total time for processing I is $O\left(\frac{1}{ε} \sum_{i=1}^{n} H(P_i) + E\left[\sum_{r=0}^{mn} |N_r| \log |N_r|\right]\right)$ plus the time to concatenate the sorted lists together. One easy way to perform the concatenation is to scan all $mn + 1$ intervals from left to right, but this takes $O(mn)$ time. We describe an improvement below.

1. By Lemma 3.1(ii), the $mn + 1$ intervals are grouped into n buckets in the training phase. For each bucket B, let U_B denote the van Emde Boas tree for B which is initially empty. The universe for U_B is the set of intervals in B. We merge the N_r’s for the intervals within each bucket as follows.

2. For each input number x_i, we perform the following steps.

 (a) Let $[v_r, v_{r+1})$ be the interval containing x_i which has been located using T_i. Let B be the bucket pointed to by $[v_r, v_{r+1})$.

 (b) We search for $[v_r, v_{r+1})$ in U_B. If the search fails, insert $[v_r, v_{r+1})$ into U_B; otherwise, do nothing.

3. By now, for each bucket B, U_B stores all non-empty intervals in B. We have already discussed the sorting of each N_r. We scan the n buckets in left-to-right order. For each bucket B encountered, we find the minimum element in U_B and then find successors in U_B iteratively. This allows us to visit the non-empty N_r’s in B in increasing order of r, so we can output the sorted N_r’s in increasing order. At the end, we delete all elements from U_B for each bucket B in preparation for sorting the next input instance.

4. The total time needed is $O(n)$ plus the time for manipulating the n van Emde Boas trees. The van Emde Boas tree [10] supports ordered dictionary operations in $O(\log \log N)$ worst-case time each, where N is the size of the universe. This is $O(\log \log m)$ time in our case.

Lemma 3.2 In the operation phase, the search trees T_i’s, the V-list, and the van Emde Boas trees require $O(m^εn^{1+ε})$, $O(mn)$, and $O(mn)$ space, respectively. Sorting an input instance takes $O\left(n \log \log m + \frac{1}{ε} \sum_{i=1}^{n} H(P_i) + E\left[\sum_{r=0}^{mn} |N_r| \log |N_r|\right]\right)$ expected time.
3.3 Analysis

Let I be an input instance. Let X_{ir} be a random variable such that if x_i falls into $[v_r, v_{r+1})$, then $X_{ir} = 1$; otherwise, $X_{ir} = 0$. We first bound
$$\sum_{q=1}^{\infty} \sum_{i=1}^{n} \Pr[X_{ir} = 1 \land I \sim D_q].$$

Lemma 3.3 Let I be an input instance. Let X_{ir} be a random variable that is 1 if $x_i \in [v_r, v_{r+1})$ and 0 otherwise. It holds with probability at least $1 - 1/(mn)$ that for every $r \in [0, mn]$, $\sum_{q=1}^{\infty} \sum_{i=1}^{n} \Pr[X_{ir} = 1 \land I \sim D_q] = O(1/m)$.

Proof In building the V-list in the training phase, we constructed the list $(s_1, s_2, \ldots, s_{mn\ln(mn)})$ using $mn \ln(mn)$ input instances $I_1, \ldots, I_{mn\ln(mn)}$, where s_a is equal to x_i in I_a for every $i \in [1, n]$ and every $a \in [(i-1)m \ln(mn) + 1, im \ln(mn)]$.

For any $\alpha, \beta \in [1, mn \ln(mn)]$ such that $s_\alpha < s_\beta$, let $J_\alpha^\beta = [1, mn \ln(mn)] \setminus \{\alpha, \beta\}$. For every $i \in J_\alpha^\beta$, define $Y_\alpha^\beta(i) = 1$ if $s_i \in [s_\alpha, s_\beta)$ and $Y_\alpha^\beta(i) = 0$ otherwise. Then, define $Y_\alpha^\beta = \sum_{i \in J_\alpha^\beta} Y_\alpha^\beta(i)$.

Among all $i \in J_\alpha^\beta$, the variables $Y_\alpha^\beta(i)$’s are independent from each other because the s_i’s are taken from independent input instances. By Chernoff’s bound, for any $\mu \in [0, 1]$,
$$\Pr[Y_\alpha^\beta > (1 - \mu)E[Y_\alpha^\beta]] > 1 - e^{-\mu^2 E[Y_\alpha^\beta]/2}.$$

Since we take every $\ln(mn)$ numbers in forming the V-list, we want to discuss the probability of $Y_\alpha^\beta > \ln(mn)$. This motivates us to consider $E[Y_\alpha^\beta(q)] > \ln(mn)/(1 - \mu)$. We also want the probability bound $1 - e^{-\mu^2 E[Y_\alpha^\beta]/2}$ of $Y_\alpha^\beta > \ln(mn)$ to be at least $1 - m^{-5}n^{-5}$. This allows us to apply the union bound over at most $mn \ln(mn)(mn \ln(mn) - 1)$ choices of α and β to obtain a probability bound of at least $1 - \ln^2(mn)/(m^3n^3)$. Therefore, as we consider $E[Y_\alpha^\beta] > \ln(mn)/(1 - \mu)$, we want $1 - e^{-\mu^2 \ln(mn)/(2(1-\mu))} = 1 - (mn)^{-\mu^2/(2(1-\mu))} = 1 - m^{-5}n^{-5}$. Equivalently, we require $\mu^2/(2(1 - \mu)) = 5$ which is satisfied by setting $\mu = \sqrt{35} - 5$. We conclude that:

It holds with probability at least $1 - \ln^2(mn)/(m^3n^3)$ that for any $\alpha, \beta \in [1, mn \ln(mn)]$ such that $s_\alpha < s_\beta$, if $E[Y_\alpha^\beta] > \frac{1}{6 - \sqrt{35}} \ln(mn)$, then $Y_\alpha^\beta > \ln(mn)$.

For every $r \in [0, mn + 1]$, let s_{ar} denote v_r, where $s_{a0} = -\infty$ and $s_{amn+1} = \infty$. Fix a particular $r \in [0, mn]$. By construction, there are at most $\ln(mn)$ numbers among $s_1, \ldots, s_{mn \ln(mn)}$ that fall in $[v_r, v_{r+1})$, which guarantees the event of $Y_\alpha^{ar+1} \leq \ln(mn)$. Our previous conclusion implies that:

It holds with probability at least $1 - \ln^2(mn)/(m^3n^3)$ that $E[Y_\alpha^{ar+1}] \leq \frac{1}{6 - \sqrt{35}} \ln(mn)$.

The random process that generates the input is independent of the training phase. In the training phase, for each $i \in [1, n]$, we sample $m \ln(mn) x_i$’s from $m \ln(mn)$ input instances to form $(s_1, \ldots, s_{mn \ln(mn)})$. Therefore,
\[
E[Y_{\alpha r}^{r+1}] \geq \left(\sum_{i=1}^{n} m \ln(mn) \cdot \Pr[X_{ir} = 1] \right) - 2
\]
(4)

because \(\mathcal{J}_{\alpha r}^{r+1}\) excludes \(\alpha\) and \(\beta\), but \(s_\alpha\) and \(s_\beta\) are allowed in \(\sum_{i=1}^{n} m \ln(mn) \cdot \Pr[X_{ir} = 1]\). Observe that

\[
\sum_{i=1}^{n} \Pr[X_{ir} = 1] = \sum_{i=1}^{n} \sum_{q=1}^{\kappa} \Pr[X_{ir} = 1 \land I \sim D_q] = \sum_{q=1}^{\kappa} \sum_{i=1}^{n} \Pr[X_{ir} = 1 \land I \sim D_q].
\]

Rearranging terms in (4) and applying the inequality \(E[Y_{\alpha r}^{r+1}] \leq \frac{1}{6-\sqrt{35}} \ln(mn)\) give

\[
\sum_{q=1}^{\kappa} \sum_{i=1}^{n} \Pr[X_{ir} = 1 \land I \sim D_q] \leq \frac{E[Y_{\alpha r}^{r+1}]}{m \ln(mn)} + \frac{2}{m \ln(mn)} = O(1/m).
\]

Apply the union bound over \(r \in [0, mn]\). The probability bound is thus at least

\[
1 - (mn + 1) \ln^2(mn)/(m^3 n^3) \geq 1 - 1/(mn).
\]

Recall that \(N_r\) is the subset of points that fall into \([v_r, v_{r+1})\) in the operation phase when sorting an input instance. We bound the expected total time \(E \left[\sum_{r=0}^{mn} |N_r| \log |N_r| \right]\) to sort the \(N_r\)’s.

Lemma 3.4 It holds with probability at least \(1 - 1/(mn)\) that \(E \left[\sum_{r=0}^{mn} |N_r| \log |N_r| \right] = O(n)\).

Proof

\[
E \left[\sum_{r=0}^{mn} |N_r| \log |N_r| \right] \leq E \left[\sum_{r=0}^{mn} |N_r|^2 \right]
\]

\[
= E \left[\sum_{r=0}^{mn} \left(\sum_{i=1}^{n} X_{ir} \right) \left(\sum_{j=1}^{n} X_{jr} \right) \right]
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{r=0}^{mn} E \left[X_{ir} X_{jr} \right].
\]

Both \(X_{ir}\) and \(X_{jr}\) are random indicator variables. If \(X_{ir} = 1\) and \(X_{jr} = 1\), then \(X_{ir} X_{jr} = 1\); otherwise, \(X_{ir} X_{jr} = 0\). Therefore,

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{r=0}^{mn} E \left[X_{ir} X_{jr} \right] = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{r=0}^{mn} \Pr[X_{ir} = 1 \land X_{jr} = 1]
\]

\[
= \sum_{i \neq j} \sum_{r=0}^{mn} \Pr[X_{ir} = 1 \land X_{jr} = 1] + \sum_{i=1}^{n} \sum_{r=0}^{mn} \Pr[X_{ir} = 1].
\]
Since \(x_i \) must fall into one of the \(mn + 1 \) intervals, \(\sum_{r=0}^{mn} \Pr [X_{ir} = 1] = 1 \), which gives

\[
\sum_{i=1}^{n} \sum_{r=0}^{mn} \Pr [X_{ir} = 1] = n.
\]

Let \(I \) denote an input instance. Conditioned on \(i \neq j \) and \(I \sim D_q \) for some \(q \in [1, \kappa] \), \(X_{ir} = 1 \) and \(X_{jr} = 1 \) are two independent events, and so

\[
\Pr [X_{ir} = 1 \wedge X_{jr} = 1 | I \sim D_q] = \Pr [X_{ir} = 1 | I \sim D_q] \cdot \Pr [X_{jr} = 1 | I \sim D_q].
\]

Therefore,

\[
\sum_{i \neq j} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 \wedge X_{jr} = 1]
= \sum_{i \neq j} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 | I \sim D_q] \cdot \Pr [X_{jr} = 1 | I \sim D_q] \cdot \Pr [I \sim D_q]

= \sum_{i \neq j} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 | I \sim D_q] \cdot \Pr [X_{jr} = 1 | I \sim D_q] \cdot \Pr [I \sim D_q].
\]

We expand the outermost summation over all \(i \in [1, n] \) and \(j \in [1, n] \). Also, we replace \(\Pr [X_{jr} = 1 | I \sim D_q] \cdot \Pr [I \sim D_q] \) by \(\Pr [X_{jr} = 1 \wedge I \sim D_q] \). Then,

\[
\sum_{i \neq j} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 \wedge X_{jr} = 1]
\leq \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 | I \sim D_q] \cdot \Pr [X_{jr} = 1 | I \sim D_q] \cdot \Pr [I \sim D_q]

= \sum_{q=1}^{\kappa} \left(\sum_{i=1}^{n} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 | I \sim D_q] \cdot \left(\sum_{j=1}^{n} \Pr [X_{jr} = 1 \wedge I \sim D_q] \right) \right) \cdot \left(\sum_{j=1}^{n} \Pr [X_{jr} = 1 \wedge I \sim D_q] \right).
\]

By Lemma 3.3, it holds with probability at least \(1 - 1/(mn) \) that for every \(q \in [1, \kappa] \) and every \(r \in [0, mn] \), the quantity \(\sum_{j=1}^{n} \Pr [X_{jr} = 1 \wedge I \sim D_q] \) is \(O(1/m) \). Therefore,

\[
\sum_{i \neq j} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 \wedge X_{jr} = 1] = O \left(\frac{1}{m} \sum_{q=1}^{\kappa} \left(\sum_{i=1}^{n} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 | I \sim D_q] \right) \right).
\]

Conditioned on a product distribution, \(x_i \) must fall into one of the \(mn + 1 \) intervals, and so \(\sum_{r=0}^{mn} \Pr [X_{ir} = 1 | I \sim D_q] = 1 \), implying that \(\sum_{i=1}^{n} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 | I \sim D_q] = n \). We conclude that
\[
\sum_{i \neq j} \sum_{r=0}^{mn} \Pr [X_{ir} = 1 \land X_{jr} = 1] = O \left(\frac{1}{m} \sum_{q=1}^{\kappa} n \right) = O(n).
\]

This completes the proof. \(\square \)

By Lemmas 3.2 and 3.4, sorting an input instance takes \(O \left(n \log \log m + \frac{1}{\epsilon} \sum_{i=1}^{n} H(P_i) \right) \) expected time with probability at least \(1 - 1/(mn) \), where \(H(P_i) \) is the entropy of the random variable \(P_i \) indicating the predecessor of \(x_i \) in the \(V \)-list. We bound \(\sum_{i=1}^{n} H(P_i) \) in the following.

Lemma 3.5 \(\sum_{i=1}^{n} H(P_i) = O(n \log m + H_\pi). \)

Proof Let \(Q \) be a random variable with value in the range \([1, \kappa]\) that indicates the specific product distribution from which the input instance is drawn. Let \(H(Q) \) be the entropy of \(Q \).

By the chain rule for conditional entropy \([11, \text{Proposition 2.23}]\), we get

\[
H(P_i) \leq H(P_i) + H(Q|P_i) = H(P_i, Q) = H(Q) + H(P_i|Q).
\]

The entropy of \(Q \) is at most the logarithm of the domain size \(\kappa \) of \(Q \) \([11, \text{Theorem 2.43}]\). So \(H(Q) \leq \log_2 \kappa \). It follows that \(\sum_{i=1}^{n} H(P_i) \leq n \log_2 \kappa + \sum_{i=1}^{n} H(P_i|Q) \).

Note that \(P_1|Q, P_2|Q, \ldots, P_n|Q \) are independent from each other because a product distribution is implied by the conditioning on \(Q \). It follows that \(\sum_{i=1}^{n} H(P_i|Q) = H(P_1, P_2, \ldots, P_n|Q) \). Conditioning does not increase entropy \([11, \text{Theorem 2.38}]\), and so \(H(P_1, P_2, \ldots, P_n|Q) \leq H(P_1, P_2, \ldots, P_n) \). Given the sorted order of the input instance \(I \), we can figure out the values of \(P_1, P_2, \ldots, P_n \) in \(O(n \log m) \) time by merging the sorted order of \(I \) with the \(V \)-list as follows. As in the operation phase, we group the \(mn + 1 \) intervals induced by the \(V \)-list into \(n \) buckets, each containing \(m \) intervals except the last bucket which contains \(m + 1 \) intervals. In \(O(n) \) time, we can merge the sorted order of \(I \) with the ordered list of \(n \) buckets. For each number \(x_i \in I \) that lies in a bucket \(B \), by comparing \(x_i \) with middle \(v_r \) value in \(B \), we decide whether \(x_i \) lies in the first \(m/2 \) intervals in \(B \) or the other intervals in \(B \). Recursively, we can place \(x_i \) in an interval in \(O(\log m) \) time, which gives \(P_i \). The total time needed for all \(n \) input numbers is \(O(n \log m) \). Then, Lemma 2.6 implies that

\[
H(P_1, P_2, \ldots, P_n) = O(n \log m + H_\pi).
\]

Hence, \(\sum_{i=1}^{n} H(P_i) = O(n \log m + n \log \kappa + H_\pi) = O(n \log m + H_\pi). \) \(\square \)

The limiting complexity of \(O \left((n \log m) / \epsilon + H_\pi / \epsilon \right) \) as stated in Theorem 1.2 follows Lemmas 3.2, 3.4, and 3.5. The \(O(mn + m^\epsilon n^{1+\epsilon}) \) space needed by the operation phase follows from Lemma 3.2. In the training phase, the space usage, processing time, and the number of input instances needed follow from Lemma 3.1. The success probability of \(1 - 1/(mn) \) follows from Lemma 3.4. This completes the proof of Theorem 1.2. In the interesting special case of \(m = O(1) \), the limiting complexity is \(O(n / \epsilon + H_\pi / \epsilon) \) which is optimal.
4 Conclusion

There are several possible directions for future research. One is to extend the hidden classification to allow the x_i’s in the same class S_k to be more arbitrary functions in the random parameter z_k. Linear functions in z_k have the nice property that any x_i and x_j in the same class are linearly related. This helps us to learn the hidden classes. Another direction is to improve the performance in the case of a hidden mixture of product distributions. It would also be interesting to design self-improving algorithms for other problems and possibly other input settings as well.

Acknowledgements We thank the anonymous reviewers for their valuable comments, suggesting a cleaner proof of Lemma 3.5, and alerting us to mistakes that we subsequently corrected.

References

1. Ailon, N., Chazelle, B., Clarkson, K.L., Liu, D., Mulzer, W., Seshadhri, C.: Self-improving algorithms. SIAM J. Comput. 40(2), 350–375 (2011)
2. Cheng, S.-W., Yan, L.: Extensions of self-improving sorters. In: Proceedings of the 29th International Symposium on Algorithms and Computation, pp. 63:1–63:12 (2018)
3. Clarkson, K.L., Mulzer, W., Seshadhri, C.: Self-improving algorithms for coordinatewise maxima and convex hulls. SIAM J. Comput. 43(2), 617–653 (2014)
4. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)
5. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J. Comput. Syst. Sci. 38, 86–124 (1989)
6. Fredman, M.L.: Two applications of a probabilistic search technique: sorting $X + Y$ and building balanced search trees. In: Proceedings of the 7th Symposium on Theory of Computing, pp. 240–244 (1975)
7. Italiano, G.F., Raman, R.: Topics in data structures. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, 2nd edn, pp. 5:1–5:29. Chapman & Hall, London (2009)
8. Mehlihorn, K.: Nearly optimal binary search trees. Acta Inf. 5, 287–295 (1975)
9. O’Rourke, Joseph: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)
10. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Math. Syst. Theory 10, 99–127 (1977)
11. Yeung, R.W.: A First Course in Information Theory. Kluwer Academic, Dordrecht (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.