Moment categories and operads

Clemens Berger

University of Nice-Sophia Antipolis

CRM Barcelone Seminar
Higher Homotopical Structures
March 9, 2021
Summary (active/inert factorisation system)

moments \(\sim\)	moment category	units \(\sim\)	operad-type	plus \(\sim\)	Segal presheaf
\(\mathbb{C}\)	\(\mathbb{C}\)-operad	\(\mathbb{C}\)-monoid	\(\mathbb{C}_\infty\)-monoid		
\(\Gamma\)	sym. operad	comm. monoid		\(E_\infty\)-space	
\(\Delta\)	non-sym. operad	assoc. monoid		\(A_\infty\)-space	
\(\Theta_n\)	\(n\)-operad	\(n\)-monoid	\(E_n\)-space		
\(\Omega\)	tree-hyperoperad	sym. operad	\(\infty\)-operad		
\(\Gamma\updownarrow\)	graph-hyperoperad	properad	\(\infty\)-properad		

Related concepts (replacing “inert part” with \(\sim\))

- Operator category (Barwick \(\sim\) pullback structure)
- Operadic category (Batanin-Markl \(\sim\) fibre structure)
- Feynman category (Kaufmann-Ward \(\sim\) sym. monoidal structure)
- Categorical pattern (Chu-Haugseng \(\sim\) \(\infty\)-categorical context)
Moment categories and operads

Introduction

Summary (active/inert factorisation system)

moments	moment category	units	operad-type	plus	Segal presheaf
\(\mathbb{C} \)	\(\mathbb{C} \)-operad	\(\mathbb{C} \)-monoid	\(\mathbb{C}_\infty \)-monoid		
\(\Gamma \)	sym. operad	comm. monoid		\(E_\infty \)-space	
\(\Delta \)	non-sym. operad	assoc. monoid		\(A_\infty \)-space	
\(\Theta_n \)	\(n \)-operad	\(n \)-monoid		\(E_n \)-space	
\(\Omega \)	tree-hyperoperad	sym. operad		\(\infty \)-operad	
\(\Gamma \uparrow \)	graph-hyperoperad	properad		\(\infty \)-properad	

Related concepts (replacing “inert part” with \(\rightsquigarrow \))

Operator category (Barwick \(\rightsquigarrow \) pullback structure)
Operadic category (Batanin-Markl \(\rightsquigarrow \) fibre structure)
Feynman category (Kaufmann-Ward \(\rightsquigarrow \) sym. monoidal structure)
Categorical pattern (Chu-Haugseng \(\rightsquigarrow \) \(\infty \)-categorical context)
Moment categories and operads

Introduction

Summary (active/inert factorisation system)

```
| moments | moment category | units | operad-type | plus | Segal presheaf |
|---------|----------------|-------|-------------|------|----------------|
| C       | C-operad       | C-monoid | C∞-monoid  |      |                |
| Γ       | sym. operad    | comm. monoid | E∞-space  |      |                |
| Δ       | non-sym. operad| assoc. monoid | A∞-space  |      |                |
| Θ_n    | n-operad       | n-monoid | E_n-space  |      |                |
| Ω       | tree-hyperoperad| sym. operad | ∞-operad  |      |                |
| Γ↑      | graph-hyperoperad| properad | ∞-properad |      |                |
```

Related concepts (replacing “inert part” with ~⇒)

Operator category (Barwick ~⇒ pullback structure)
Operadic category (Batanin-Markl ~⇒ fibre structure)
Feynman category (Kaufmann-Ward ~⇒ sym. monoidal structure)
Categorical pattern (Chu-Haugseng ~⇒ ∞-categorical context)
Summary (active/inert factorisation system)

Moment categories	Operad-type	Segal presheaf	
\(\mathcal{C} \)	\(\mathcal{C} \)-operad	\(\mathcal{C} \)-monoid	\(\mathcal{C}_\infty \)-monoid
\(\Gamma \)	sym. operad	comm. monoid	\(E_\infty \)-space
\(\Delta \)	non-sym. operad	assoc. monoid	\(A_\infty \)-space
\(\Theta_n \)	\(n \)-operad	\(n \)-monoid	\(E_n \)-space
\(\Omega \)	tree-hyperoperad	sym. operad	\(\infty \)-operad
\(\Gamma \updownarrow \)	graph-hyperoperad	properad	\(\infty \)-properad

Related concepts (replacing “inert part” with \(\rightsquigarrow \))

- Operator category (Barwick \(\rightsquigarrow \) pullback structure)
- Operadic category (Batanin-Markl \(\rightsquigarrow \) fibre structure)
- Feynman category (Kaufmann-Ward \(\rightsquigarrow \) sym. monoidal structure)
- Categorical pattern (Chu-Haugseng \(\rightsquigarrow \) \(\infty \)-categorical context)
Moment categories and operads

Introduction

Summary (active/inert factorisation system)

moments ▲	moment category	units ▲	operad-type	plus ▲	Segal presheaf
C	C-operad	C-monoid	C-∞-monoid		
Γ	sym. operad	comm. monoid	E-∞-space		
Δ	non-sym. operad	assoc. monoid	A-∞-space		
Θ_n	n-operad	n-monoid	E_n-space		
Ω	tree-hyperoperad	sym. operad	∞-operad		
Γ↑	graph-hyperoperad	properad	∞-properad		

Related concepts (replacing “inert part” with ▲)

Operator category (Barwick ▲ pullback structure)
Operadic category (Batanin-Markl ▲ fibre structure)
Feynman category (Kaufmann-Ward ▲ sym. monoidal structure)
Categorical pattern (Chu-Haugseng ▲ ∞-categorical context)
A moment category is a category \mathcal{C} with an active/inert factorisation system $(\mathcal{C}_{act}, \mathcal{C}_{in})$ such that

1. each inert map admits a unique active retraction;
2. if the left square below commutes then the right square as well

where r, r' are the active retractions of i, i' provided by (1).
Definition (moment category)

A *moment category* is a category \mathcal{C} with an *active/inert* factorisation system $(\mathcal{C}_{\text{act}}, \mathcal{C}_{\text{in}})$ such that

1. each inert map admits a unique active retraction;
2. if the left square below commutes then the right square as well

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{i} & & \downarrow^{i'} \\
A' & \xrightarrow{g} & B'
\end{array}
\quad
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{r} & & \downarrow^{r'} \\
A' & \xrightarrow{g} & B'
\end{array}
\]

where r, r' are the active retractions of i, i' provided by (1).
Definition (moment category)

A moment category is a category \mathcal{C} with an active/inert factorisation system $(\mathcal{C}_{act}, \mathcal{C}_{in})$ such that

1. each inert map admits a unique active retraction;
2. if the left square below commutes then the right square as well

where r, r' are the active retractions of i, i' provided by (1).
Lemma (inert subobjects vs moments)

For each object A of a moment category \mathbb{C} there is a bijection between \textit{inert subobjects} of A and \textit{moments} of A, i.e. endomorphisms $\phi : A \to A$ s.th. $\phi = \phi_{\text{in}}\phi_{\text{act}} \implies \phi_{\text{act}}\phi_{\text{in}} = 1_A$.

Put $m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{\text{act}}\phi_{\text{in}} = 1_A \}$

For $f : A \to B$ define $f_* : m_A \to m_B$ by

$A \xrightarrow{\phi_{\text{act}}} A_{\phi} \xleftarrow{f'} B_{\psi} \xleftarrow{\psi_{\text{act}}} B \xrightarrow{\psi_{\text{in}}} B_{\psi}$

with $f_*(\phi_{\text{in}}\phi_{\text{act}}) = \psi_{\text{in}}\psi_{\text{act}}$.
Lemma (inert subobjects vs moments)

For each object A of a moment category \mathbb{C} there is a bijection between \textit{inert subobjects} of A and \textit{moments} of A, i.e. endomorphisms $\phi : A \to A$ s.t. $\phi = \phi_{\text{in}}\phi_{\text{act}} \implies \phi_{\text{act}}\phi_{\text{in}} = 1_A$.

Put $m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{\text{act}}\phi_{\text{in}} = 1_A \}$

For $f : A \to B$ define $f_* : m_A \to m_B$ by

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow \phi_{\text{act}} & & \downarrow \psi_{\text{act}} \\
A_{\phi} & \xrightarrow{f'} & B_{\psi}
\end{array}
\]

with $f_*(\phi_{\text{in}}\phi_{\text{act}}) = \psi_{\text{in}}\psi_{\text{act}}$.
Lemma (inert subobjects vs moments)

For each object A of a moment category \mathbb{C} there is a bijection between *inert subobjects* of A and *moments* of A, i.e. endomorphisms $\phi : A \to A$ sth. $\phi = \phi_{in}\phi_{act} \implies \phi_{act}\phi_{in} = 1_A$.

Put $m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act}\phi_{in} = 1_A \}$

For $f : A \to B$ define $f_* : m_A \to m_B$ by

$$
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\phi_{act} & \downarrow & \phi_{in} \\
A & \xrightarrow{\phi} & B
\end{array}
\quad \quad \quad \quad
\begin{array}{ccc}
& & \\
\psi_{in} & \downarrow & \psi_{act} \\
& & \\
& & \\
\psi_{in} & \downarrow & \psi_{act}
\end{array}
\quad \quad \quad \quad
\text{with} \quad f_*(\phi_{in}\phi_{act}) = \psi_{in}\psi_{act}.
$$
Proposition (left regular band – skew-commutativity)

The moment set m_A is a submonoid of $C(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi = \phi \psi$.

Example (Segal’s category $\Gamma \rightsquigarrow \Gamma^{\text{op}} = $ finite sets and partial maps)

- $m^{(n_1, \ldots, n_m)} \to n$ active provided $n_1 \cup \cdots \cup n_m = n$. (partition)
- $m^{(n_1, \ldots, n_m)} \to n$ inert provided all n_i are singleton. (embedding)

Example (simplex category Δ)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. $f(0) = 0, f(m) = n$.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. $f(i + 1) = f(i) + 1$ for all i.
Proposition (left regular band – skew-commutativity)

The moment set m_A is a submonoid of $C(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi = \phi \psi$.

Example (Segal’s category $\Gamma \leftrightarrow \Gamma^{\text{op}} = \text{finite sets and partial maps})

- $m(n_1, \ldots, n_m) \rightarrow n$ active provided $n_1 \cup \cdots \cup n_m = n$. (partition)
- $m(n_1, \ldots, n_m) \rightarrow n$ inert provided all n_i are singleton. (embedding)

Example (simplex category Δ)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. $f(0) = 0, f(m) = n$.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. $f(i + 1) = f(i) + 1$ for all i.
Proposition (left regular band – skew-commutativity)

The moment set m_A is a submonoid of $C(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi = \phi \psi$.

Example (Segal’s category $\Gamma \hookrightarrow \Gamma^{\text{op}} = \text{finite sets and partial maps}$)

- $m^{(n_1, \ldots, n_m)} \to n$ active provided $n_1 \cup \cdots \cup n_m = n$. (partition)
- $m^{(n_1, \ldots, n_m)} \to n$ inert provided all n_j are singleton. (embedding)

Example (simplex category Δ)

- $[m] \to [n]$ is active provided f is endpoint-preserving, i.e. $f(0) = 0, f(m) = n$.
- $[m] \to [n]$ is inert provided f is distance-preserving, i.e. $f(i + 1) = f(i) + 1$ for all i.
Proposition (left regular band – skew-commutativity)

The moment set m_A is a submonoid of $C(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi = \phi \psi$.

Example (Segal’s category $\Gamma \rightsquigarrow \Gamma^{\text{op}} = \text{finite sets and partial maps}$)

- $m(n_1, \ldots, n_m) \xrightarrow{} n$ active provided $n_1 \cup \cdots \cup n_m = n$. (partition)
- $m(n_1, \ldots, n_m) \xrightarrow{} n$ inert provided all n_i are singleton. (embedding)

Example (simplex category Δ)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e.
 $f(0) = 0, f(m) = n$.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e.
 $f(i + 1) = f(i) + 1$ for all i.

Moment categories and operads
Proposition (left regular band – skew-commutativity)

The moment set m_A is a submonoid of $C(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi = \phi \psi$.

Example (Segal’s category $\Gamma \rightsquigarrow \Gamma^{\text{op}} = \text{finite sets and partial maps}$)

- $m^{(n_1, \ldots, n_m)} \rightarrow n$ active provided $n_1 \cup \cdots \cup n_m = n$. (partition)
- $m^{(n_1, \ldots, n_m)} \rightarrow n$ inert provided all n_i are singleton. (embedding)

Example (simplex category Δ)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. $f(0) = 0, f(m) = n$.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. $f(i + 1) = f(i) + 1$ for all i.
Proposition (left regular band – skew-commutativity)

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi \psi \phi = \phi \psi$.

Example (Segal’s category $\Gamma \hookrightarrow \Gamma^{\text{op}} = \text{finite sets and partial maps}$)

- $m \xrightarrow{(n_1, \ldots, n_m)} n$ active provided $n_1 \cup \cdots \cup n_m = n$. (partition)
- $m \xrightarrow{(n_1, \ldots, n_m)} n$ inert provided all n_i are singleton. (embedding)

Example (simplex category Δ)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. $f(0) = 0, f(m) = n$.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. $f(i + 1) = f(i) + 1$ for all i.
Proposition (left regular band – skew-commutativity)

The moment set m_A is a submonoid of $C(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

Example (Segal’s category $\Gamma \leadsto \Gamma^{\text{op}} =$ finite sets and partial maps)

- $m^{(n_1, \ldots, n_m)} \to n$ active provided $n_1 \cup \cdots \cup n_m = n$. (partition)
- $m^{(n_1, \ldots, n_m)} \to n$ inert provided all n_i are singleton. (embedding)

Example (simplex category Δ)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. $f(0) = 0, f(m) = n$.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. $f(i + 1) = f(i) + 1$ for all i.
Definition (units, elementary moments, nilobjects)

- A moment ϕ is centric if ϕ_{in} is the only inert section of ϕ_{act}.
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is elementary if it splits over a unit. The set of elementary moments of A is denoted $e{l}_A \subset m_A$.
- An object without elementary moments is called a nilobject.

Example (Γ and Δ)

- 0 is the nilobject, and 1 the unit of Γ. Elementary inert subobjects $1 \rightarrow n$ are elements. Cardinality of $e{l}_n$ is n.
- $[0]$ is the nilobject, and $[1]$ the unit of Δ. Elementary inert subobjects $[1] \rightarrow [n]$ are segments. Cardinality of $e{l}_{[n]}$ is n.
Definition (units, elementary moments, nilobjects)

- A moment ϕ is centric if ϕ_{in} is the only inert section of ϕ_{act}.
- A unit is an object U s.t. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is elementary if it splits over a unit. The set of elementary moments of A is denoted $\text{el}_A \subset m_A$.
- An object without elementary moments is called a nilobject.

Example (Γ and Δ)

- 0 is the nilobject, and 1 the unit of Γ. Elementary inert subobjects $1 \rightarrowtail n$ are elements. Cardinality of el_n is n.
- $[0]$ is the nilobject, and $[1]$ the unit of Δ. Elementary inert subobjects $[1] \rightarrowtail [n]$ are segments. Cardinality of $\text{el}_{[n]}$ is n.
Definition (units, elementary moments, nilobjects)

- A moment ϕ is **centric** if ϕ_{in} is the only inert section of ϕ_{act}.
- A **unit** is an object U s.t. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is **elementary** if it splits over a unit. The set of elementary moments of A is denoted $\text{el}_A \subset m_A$.
- An object without elementary moments is called a **nilobject**.

Example (Γ and Δ)

- 0 is the nilobject, and 1 the unit of Γ. Elementary inert subobjects $1 \to n$ are elements. Cardinality of el_n is n.
- $[0]$ is the nilobject, and $[1]$ the unit of Δ. Elementary inert subobjects $[1] \to [n]$ are segments. Cardinality of $\text{el}_{[n]}$ is n.

Definition (units, elementary moments, nilobjects)

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act}.
- A *unit* is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $\text{el}_A \subset m_A$.
- An object without elementary moments is called a *nilobject*.

Example (Γ and Δ)

- 0 is the nilobject, and 1 the unit of Γ. Elementary inert subobjects $1 \twoheadrightarrow n$ are elements. Cardinality of el_n is n.
- $[0]$ is the nilobject, and $[1]$ the unit of Δ. Elementary inert subobjects $[1] \twoheadrightarrow [n]$ are segments. Cardinality of $\text{el}_{[n]}$ is n.
Definition (units, elementary moments, nilobjects)

- A moment \(\phi \) is *centric* if \(\phi_{in} \) is the only inert section of \(\phi_{act} \).
- A *unit* is an object \(U \) s.th. \(1_U \) is the only centric moment but \(m_U \neq \{1_U\} \), and every active map with target \(U \) admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of \(A \) is denoted \(\text{el}_A \subset m_A \).
- An object without elementary moments is called a *nilobject*.

Example (\(\Gamma \) and \(\Delta \))

- \(0 \) is the nilobject, and \(1 \) the unit of \(\Gamma \). Elementary inert subobjects \(1 \rightarrow n \) are elements. Cardinality of \(\text{el}_n \) is \(n \).
- \([0] \) is the nilobject, and \([1] \) the unit of \(\Delta \). Elementary inert subobjects \([1] \rightarrow [n] \) are segments. Cardinality of \(\text{el}_{[n]} \) is \(n \).
Definition (units, elementary moments, nilobjects)

- A moment ϕ is **centric** if ϕ_{in} is the only inert section of ϕ_{act}.
- A **unit** is an object U s.t. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is **elementary** if it splits over a unit. The set of elementary moments of A is denoted $el_A \subset m_A$.
- An object without elementary moments is called a **nilobject**.

Example (Γ and Δ)

- 0 is the nilobject, and 1 the unit of Γ. Elementary inert subobjects $1 \rightarrow n$ are elements. Cardinality of el_n is n.
- $[0]$ is the nilobject, and $[1]$ the unit of Δ. Elementary inert subobjects $[1] \rightarrow [n]$ are segments. Cardinality of $el_{[n]}$ is n.
Definition (units, elementary moments, nilobjects)

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act}.
- A *unit* is an object U s.th. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted $\text{el}_A \subset m_A$.
- An object without elementary moments is called a *nilobject*.

Example (Γ and Δ)

- 0 is the nilobject, and 1 the unit of Γ. Elementary inert subobjects $1 \twoheadrightarrow n$ are elements. Cardinality of el_n is n.
- $[0]$ is the nilobject, and $[1]$ the unit of Δ. Elementary inert subobjects $[1] \twoheadrightarrow [n]$ are segments. Cardinality of $\text{el}_{[n]}$ is n.
Definition (\(\mathcal{C}\)-operads for unital moment categories \(\mathcal{C}\))

A \(\mathcal{C}\)-operad \(\mathcal{O}\) in a symmetric monoidal category \((\mathbb{E}, \otimes, I_\mathbb{E})\) assigns to each object \(A\) of \(\mathcal{C}\) an object \(\mathcal{O}(A)\) of \(\mathbb{E}\), together with

- a unit \(I_\mathbb{E} \rightarrow \mathcal{O}(U)\) in \(\mathbb{E}\) for each unit \(U\) of \(\mathcal{C}\);
- a unital, associative and equivariant composition
 \(\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)\) for each active \(f : A \longrightarrow B\), where
 \(\mathcal{O}(f) = \otimes_{\alpha \in \text{el}_A} \mathcal{O}(B_{f_*}(\alpha)).\)

Example (\(\Gamma\) and \(\Delta\))

- \(\Gamma\)-operads—symmetric operads:
 \(\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \rightarrow \mathcal{O}_{n_1 + \cdots + n_m}\) for each \(m \longrightarrow n\).

- \(\Delta\)-operads—non-symmetric operads:
 \(\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \rightarrow \mathcal{O}_{n_1 + \cdots + n_m}\) for each \([m] \longrightarrow [n]\).
Definition (C-operads for unital moment categories C)

A C-operad O in a symmetric monoidal category (E, ⊗, I_E) assigns to each object A of C an object O(A) of E, together with

- a unit I_E → O(U) in E for each unit U of C;
- a unital, associative and equivariant composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗_{α ∈ elA} O(B_{f*}(α)).

Example (Γ and Δ)

- Γ-operads—symmetric operads:
 \[O_m ⊗ O_{n_1} ⊗ \cdots ⊗ O_{n_m} → O_{n_1+\cdots+n_m} \text{ for each } m → n. \]
- Δ-operads—non-symmetric operads:
 \[O_m ⊗ O_{n_1} ⊗ \cdots ⊗ O_{n_m} → O_{n_1+\cdots+n_m} \text{ for each } [m] → [n]. \]
Definition (\(\mathbb{C}\)-operads for unital moment categories \(\mathbb{C}\))

A \(\mathbb{C}\)-operad \(O\) in a symmetric monoidal category \((\mathbb{E}, \otimes, I_{\mathbb{E}})\) assigns to each object \(A\) of \(\mathbb{C}\) an object \(O(A)\) of \(\mathbb{E}\), together with

- a unit \(I_{\mathbb{E}} \rightarrow O(U)\) in \(\mathbb{E}\) for each unit \(U\) of \(\mathbb{C}\);

- a unital, associative and equivariant composition \(O(A) \otimes O(f) \rightarrow O(B)\) for each active \(f : A \rightarrow B\), where \(O(f) = \bigotimes_{\alpha \in \text{el}_A} O(B_{f*}(\alpha))\).

Example (\(\Gamma\) and \(\Delta\))

- \(\Gamma\)-operads = symmetric operads:
 \[O_m \otimes O_{n_1} \otimes \cdots \otimes O_{n_m} \rightarrow O_{n_1 + \cdots + n_m}\] for each \(m \rightarrow n\).

- \(\Delta\)-operads = non-symmetric operads:
 \[O_m \otimes O_{n_1} \otimes \cdots \otimes O_{n_m} \rightarrow O_{n_1 + \cdots + n_m}\] for each \([m] \rightarrow [n]\).
Definition (C-operads for unital moment categories C)

A \(\mathbb{C} \)-operad \(\mathcal{O} \) in a symmetric monoidal category \((\mathbb{E}, \otimes, I_{\mathbb{E}}) \) assigns to each object \(A \) of \(\mathbb{C} \) an object \(\mathcal{O}(A) \) of \(\mathbb{E} \), together with

- a unit \(I_{\mathbb{E}} \rightarrow \mathcal{O}(U) \) in \(\mathbb{E} \) for each unit \(U \) of \(\mathbb{C} \);
- a unital, associative and equivariant composition \(\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B) \) for each active \(f : A \rightarrow B \), where \(\mathcal{O}(f) = \bigotimes_{\alpha \in \text{id}_A} \mathcal{O}(B_{f^*}(\alpha)) \).

Example (Γ and Δ)

- Γ-operads = symmetric operads:
 \(\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \rightarrow \mathcal{O}_{n_1+\cdots+n_m} \) for each \(m \rightarrow n \).
- Δ-operads = non-symmetric operads:
 \(\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \rightarrow \mathcal{O}_{n_1+\cdots+n_m} \) for each \([m] \rightarrow [n] \).
Definition (C-operads for unital moment categories C)

A C-operad O in a symmetric monoidal category (E, ⊗, I_E) assigns to each object A of C an object O(A) of E, together with

- a unit I_E → O(U) in E for each unit U of C;
- a unital, associative and equivariant composition

O(A) ⊗ O(f) → O(B) for each active f : A → B, where

O(f) = \bigotimes_{\alpha \in \text{el}_A} O(B_{f*}(\alpha)).

Example (Γ and ∆)

Γ-operads=symmetric operads:

O_m \otimes O_{n_1} \otimes \cdots \otimes O_{n_m} → O_{n_1+\cdots+n_m} for each m → n.

Δ-operads=non-symmetric operads:

O_m \otimes O_{n_1} \otimes \cdots \otimes O_{n_m} → O_{n_1+\cdots+n_m} for each [m] → [n].
Definition (C-operads for unital moment categories C)

A \mathbb{C}-operad O in a symmetric monoidal category $(\mathbb{E}, \otimes, I_\mathbb{E})$ assigns to each object A of \mathbb{C} an object $O(A)$ of \mathbb{E}, together with

- a unit $I_\mathbb{E} \to O(U)$ in \mathbb{E} for each unit U of \mathbb{C};
- a unital, associative and equivariant composition $O(A) \otimes O(f) \to O(B)$ for each active $f : A \otimes \to B$, where $O(f) = \otimes_{\alpha \in \text{el}\, A} O(B_{f*}(\alpha))$.

Example (Γ and Δ)

- Γ-operads = symmetric operads:
 \[O_m \otimes O_{n_1} \otimes \cdots \otimes O_{n_m} \to O_{n_1+\cdots+n_m} \] for each $m \otimes \to n$.

- Δ-operads = non-symmetric operads:
 \[O_m \otimes O_{n_1} \otimes \cdots \otimes O_{n_m} \to O_{n_1+\cdots+n_m} \] for each $[m] \otimes \to [n]$.
Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \rightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathcal{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathcal{C}} : \mathcal{C} \rightarrow \Gamma$.

Definition (wreath product of unital moment categories A, B)

$\text{Ob}(A \wr B) = \{(A, B_\alpha) \mid A \in \text{Ob}(A), \alpha \in \text{el}_A, B_\alpha \in \text{Ob}(B)\}$

$(f, f_\alpha^\beta) : (A, B_\alpha) \rightarrow (A', B'_\beta)$ where f_α^β for each $\beta \leq f_* (\alpha)$.

Proposition

Joyal’s category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n-operads are Batanin’s $(n - 1)$-terminal n-operads.
Definition (unital moment categories)
For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \rightarrow A$ from a unit.

Proposition (universal role of Γ)
For every unital moment category C there is an essentially unique cardinality preserving moment functor $\gamma_C : C \rightarrow \Gamma$.

Definition (wreath product of unital moment categories A, B)
\[
\begin{align*}
\text{Ob}(A \wr B) &= \{ (A, B_\alpha) \mid A \in \text{Ob}(A), \alpha \in \mathsf{el}_A, B_\alpha \in \text{Ob}(B) \} \\
(f, f_\alpha) : (A, B_\alpha) &\rightarrow (A', B'_\beta) \text{ where } f_\alpha^{\beta} \text{ for each } \beta \leq f_*^{\star}(\alpha).
\end{align*}
\]

Proposition
Joyal’s category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n-operads are Batanin’s $(n - 1)$-terminal n-operads.
Definition (unital moment categories)
For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \rightarrow A$ from a unit.

Proposition (universal role of Γ)
For every unital moment category C there is an essentially unique cardinality preserving moment functor $\gamma_C : C \rightarrow \Gamma$.

Definition (wreath product of unital moment categories A, B)
$\text{Ob}(A \wr B) = \{(A, B_\alpha) | A \in \text{Ob}(A), \alpha \in \text{el}_A, B_\alpha \in \text{Ob}(B)\}$
$(f, f_\alpha) : (A, B_\alpha) \rightarrow (A', B'_\beta)$ where f_α^β for each $\beta \leq f_*(\alpha)$.

Proposition
Joyal’s category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n-operads are Batanin’s $(n - 1)$-terminal n-operads.
Definition (unital moment categories)
For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \xrightarrow{\sim} A$ from a unit.

Proposition (universal role of Γ)
For every unital moment category C there is an essentially unique cardinality preserving moment functor $\gamma_C : C \to \Gamma$.

Definition (wreath product of unital moment categories A, B)
$\text{Ob}(A \wr B) = \{(A, B_\alpha) \mid A \in \text{Ob}(A), \alpha \in el_A, B_\alpha \in \text{Ob}(B)\}$
$(f, f_\alpha^\beta) : (A, B_\alpha) \longrightarrow (A', B'_\beta)$ where f_α^β for each $\beta \leq f_*(\alpha)$.

Proposition
Joyal’s category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n-operads are Batanin’s $(n-1)$-terminal n-operads.
Definition (unital moment categories)
For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A : \xrightarrow{} A$ from a unit.

Proposition (universal role of Γ)
For every unital moment category \mathcal{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathcal{C}} : \mathcal{C} \rightarrow \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})
\[
\text{Ob}(\mathcal{A} \wr \mathcal{B}) = \{(A, B_\alpha) \mid A \in \text{Ob}(\mathcal{A}), \alpha \in \mathsf{el}_A, B_\alpha \in \text{Ob}(\mathcal{B})\}
\]
\[
(f, f_{\alpha}^\beta) : (A, B_\alpha) \rightarrow (A', B'_\beta) \text{ where } f_{\alpha}^\beta \text{ for each } \beta \leq f_*(\alpha).
\]

Proposition
Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n-operads are Batanin’s $(n - 1)$-terminal n-operads.
Definition (unital moment categories)
For every object A, e_A has finite cardinality and receives an essentially unique active morphism $U_A \rightarrow A$ from a unit.

Proposition (universal role of Γ)
For every unital moment category C there is an essentially unique cardinality preserving moment functor $\gamma_C : C \rightarrow \Gamma$.

Definition (wreath product of unital moment categories A, B)
$\text{Ob}(A \wr B) = \{(A, B_\alpha) \mid A \in \text{Ob}(A), \alpha \in e_A, B_\alpha \in \text{Ob}(B)\}$
$(f, f_\alpha^\beta) : (A, B_\alpha) \rightarrow (A', B_\beta')$ where f_α^β for each $\beta \leq f_*(\alpha)$.

Proposition
Joyal’s category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n-operads are Batanin’s $(n - 1)$-terminal n-operads.
Remark (moment category structure on Θ_n)

- Objects of Θ_n correspond to n-level trees.
- There is a unique unit U_n, the linear tree of height n.
- $\gamma_{\Theta_n} : \Theta_n \to \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \to T$ correspond to Batanin’s S_\ast-indexed decompositions of T_\ast, where T_\ast is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

Example (inert substructure of $[2]|[2],[0]$ in $\Delta \wr \Delta = \Theta_2$)
Remark (moment category structure on Θ_n)

- Objects of Θ_n correspond to n-level trees.
- There is a unique unit U_n, the linear tree of height n.
- $\gamma_{\Theta_n} : \Theta_n \to \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \to T$ correspond to Batanin’s S_*-indexed decompositions of T_*, where T_* is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

Example (inert substructure of $[2][[2],[0]]$ in $\Delta \wr \Delta = \Theta_2$)
Remark (moment category structure on Θ_n)

- Objects of Θ_n correspond to n-level trees.
- There is a unique unit U_n, the linear tree of height n.
- $\gamma_{\Theta_n} : \Theta_n \to \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \rightarrow T$ correspond to Batanin’s S_*-indexed decompositions of T_*, where T_* is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

Example (inert substructure of $[2][[2],[0]]$ in $\Delta \wr \Delta = \Theta_2$)
Remark (moment category structure on Θ_n)

- Objects of Θ_n correspond to n-level trees.
- There is a unique unit U_n, the linear tree of height n.
- $\gamma_{\Theta_n} : \Theta_n \to \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \rightarrow T$ correspond to Batanin’s S_\ast-indexed decompositions of T_\ast, where T_\ast is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

Example (inert substructure of $[2]([2],[0])$ in $\Delta \wr \Delta = \Theta_2$)
Remark (moment category structure on Θ_n)

- Objects of Θ_n correspond to n-level trees.
- There is a unique unit U_n, the linear tree of height n.
- $\gamma_{\Theta_n} : \Theta_n \to \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \to T$ correspond to Batanin’s S_\ast-indexed decompositions of T_\ast, where T_\ast is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

Example (inert substructure of $[2][[2],[0]]$ in $\Delta \wr \Delta = \Theta_2$)
Remark (moment category structure on Θ_n)

- Objects of Θ_n correspond to n-level trees.
- There is a unique unit U_n, the linear tree of height n.
- $\gamma_{\Theta_n} : \Theta_n \to \Gamma$ takes n-level tree to its set of height n vertices.
- Active maps $S \rightarrow T$ correspond to Batanin’s S_*-indexed decompositions of T_*, where T_* is the n-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

Example (inert substructure of $[2][[2],[0]]$ in $\Delta \wr \Delta = \Theta_2$)
Definition (C-monoids for C with single rigid unit U)

- $\mathcal{E}_X(A) = \text{hom}_E(X \otimes^\text{el}_A, X)$ (endomorphism-\mathbb{C}-operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O}-algebra structure on X).
- \mathbb{C}-monoid = algebra over the unit-\mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal E)

\mathbb{C}-monoids are presheaves $X: \mathbb{C}^{\text{op}}_{\text{act}} \to E$ such that

- $X(A) = X \otimes^\text{el}_A$.
- $X(f: A \to B) = \bigotimes_{\alpha \in \text{el}_A} X(f_\alpha: U \to B_{f_\alpha(\alpha)})$.

Lemma (presheaf presentation for cartesian closed E)

\mathbb{C}-monoids arise from presheaves $X: \mathbb{C}^{\text{op}} \to E$ such that

- $X(N) = \ast$ for every nilobject N.
- $X(A) \xrightarrow{\sim} \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition).
Definition (C-monoids for C with single rigid unit U)

- $\mathcal{E}_X(A) = \text{hom}_\mathcal{E}(X \otimes_{el} A, X)$ (endomorphism-\mathcal{C}-operad of X).
- $\mathcal{O} \rightarrow \mathcal{E}_X$ (\mathcal{O}-algebra structure on X).
- \mathcal{C}-monoid = algebra over the unit-\mathcal{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathcal{E})

\mathcal{C}-monoids are presheaves $X : \mathcal{C}^{op}_{act} \rightarrow \mathcal{E}$ such that

- $X(A) = X \otimes_{el} A$.
- $X(f : A \rightarrow B) = \bigotimes_{\alpha \in el A} X(f\alpha : U \rightarrow B_{f\alpha(\alpha)})$.

Lemma (presheaf presentation for cartesian closed \mathcal{E})

\mathcal{C}-monoids arise from presheaves $X : \mathcal{C}^{op} \rightarrow \mathcal{E}$ such that

- $X(N) = \ast$ for every nilobject N.
- $X(A) \xrightarrow{\sim} \prod_{\alpha \in el A} X(U)$ (strict Segal-condition).
Definition (C-monoids for C with single rigid unit U)

- \(\mathcal{E}_X(A) = \text{hom}_\mathbb{E}(X \otimes \text{el}_A, X) \) (endomorphism-\(\mathbb{C}\)-operad of \(X\)).
- \(\mathcal{O} \to \mathcal{E}_X \) (\(\mathcal{O}\)-algebra structure on \(X\)).
- \(\mathbb{C}\)-monoid = algebra over the unit-\(\mathbb{C}\)-operad.

Lemma (presheaf presentation for closed symmetric monoidal \(\mathbb{E}\))

\(\mathbb{C}\)-monoids are presheaves \(X : \mathbb{C}^{\text{op}}_{\text{act}} \to \mathbb{E}\) such that

- \(X(A) = X \otimes \text{el}_A\).
- \(X(f : A \to B) = \bigotimes_{\alpha \in \text{el}_A} X(f_\alpha : U \to B_{f_\alpha(\alpha)})\).

Lemma (presheaf presentation for cartesian closed \(\mathbb{E}\))

\(\mathbb{C}\)-monoids arise from presheaves \(X : \mathbb{C}^{\text{op}} \to \mathbb{E}\) such that

- \(X(N) = \ast\) for every nilobject \(N\).
- \(X(A) \xrightarrow{\sim} \prod_{\alpha \in \text{el}_A} X(U)\) (strict Segal-condition).
Definition (\(\mathbb{C}\)-monoids for \(\mathbb{C}\) with single rigid unit \(U\))

- \(\mathcal{E}_X(A) = \text{hom}_E(X \otimes_{\text{el}_A} X, X)\) (endomorphism-\(\mathbb{C}\)-operad of \(X\)).
- \(\mathcal{O} \rightarrow \mathcal{E}_X\) (\(\mathcal{O}\)-algebra structure on \(X\)).
- \(\mathbb{C}\)-monoid=algebra over the unit-\(\mathbb{C}\)-operad.

Lemma (presheaf presentation for closed symmetric monoidal \(E\))

\(\mathbb{C}\)-monoids are presheaves \(X : \mathbb{C}^{\text{op}}_{\text{act}} \rightarrow E\) such that

- \(X(A) = X \otimes_{\text{el}_A}\).
- \(X(f : A \rightarrow B) = \bigotimes_{\alpha \in \text{el}_A} X(f_\alpha : U \rightarrow B_{f_\alpha(\alpha)})\).

Lemma (presheaf presentation for cartesian closed \(E\))

\(\mathbb{C}\)-monoids arise from presheaves \(X : \mathbb{C}^{\text{op}} \rightarrow E\) such that

- \(X(N) = \ast\) for every nilobject \(N\).
- \(X(A) \xrightarrow{\sim} \prod_{\alpha \in \text{el}_A} X(U)\) (strict Segal-condition).
Definition (\(\mathbb{C}\)-monoids for \(\mathbb{C}\) with single rigid unit \(U\))

- \(\mathcal{E}_X(A) = \text{hom}_E(X \otimes_{\text{el}_A} X)\) (endomorphism-\(\mathbb{C}\)-operad of \(X\)).
- \(\mathcal{O} \to \mathcal{E}_X\) (\(\mathcal{O}\)-algebra structure on \(X\)).
- \(\mathbb{C}\)-monoid=algebra over the unit-\(\mathbb{C}\)-operad.

Lemma (presheaf presentation for closed symmetric monoidal \(E\))

\(\mathbb{C}\)-monoids are presheaves \(X : \mathbb{C}_{act}^{\text{op}} \to E\) such that

- \(X(A) = X \otimes_{\text{el}_A}\).
- \(X(f : A \to B) = \bigotimes_{\alpha \in \text{el}_A} X(f_\alpha : U \to B_{f_*}(\alpha))\).

Lemma (presheaf presentation for cartesian closed \(E\))

\(\mathbb{C}\)-monoids arise from presheaves \(X : \mathbb{C}_{act}^{\text{op}} \to E\) such that

- \(X(N) = *\) for every nilobject \(N\).
- \(X(A) \xrightarrow{\sim} \prod_{\alpha \in \text{el}_A} X(U)\) (strict Segal-condition).
Definition (C-monoids for C with single rigid unit U)

- $\mathcal{E}_X(A) = \text{hom}_E(X \otimes \text{el}_A, X)$ (endomorphism-\mathbb{C}-operad of X).
- $O \rightarrow \mathcal{E}_X$ (O-algebra structure on X).
- \mathbb{C}-monoid = algebra over the unit-\mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal E)

\mathbb{C}-monoids are presheaves $X : \mathbb{C}^{\text{op}}_{\text{act}} \rightarrow E$ such that

- $X(A) = X \otimes \text{el}_A$.
- $X(f : A \rightarrow B) = \bigotimes_{\alpha \in \text{el}_A} X(f_\alpha : U \rightarrow B_{f_\alpha(\alpha)})$.

Lemma (presheaf presentation for cartesian closed E)

\mathbb{C}-monoids arise from presheaves $X : \mathbb{C}^{\text{op}} \rightarrow E$ such that

- $X(N) = *$ for every nilobject N.
- $X(A) \xrightarrow{\sim} \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition).
Definition (C-monoids for C with single rigid unit U)

- $\mathcal{E}_X(A) = \text{hom}_E(X \otimes_{\text{el}_A} X)$ (endomorphism-\mathbb{C}-operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O}-algebra structure on X).
- \mathbb{C}-monoid = algebra over the unit-\mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

\mathbb{C}-monoids are presheaves $X : \mathbb{C}^{\text{op}}_{\text{act}} \to \mathbb{E}$ such that

- $X(A) = X \otimes_{\text{el}_A}$.
- $X(f : A \to B) = \bigotimes_{\alpha \in \text{el}_A} X(f_\alpha : U \to B_{f^*(\alpha)})$.

Lemma (presheaf presentation for cartesian closed \mathbb{E})

\mathbb{C}-monoids arise from presheaves $X : \mathbb{C}^{\text{op}} \to \mathbb{E}$ such that

- $X(N) = *$ for every nilobject N.
- $X(A) \overset{\approx}{\to} \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition).
Definition (\(\mathbb{C}\)-monoids for \(\mathbb{C}\) with single rigid unit \(U\))

- \(\mathcal{E}_X(A) = \text{hom}_E(X \otimes \text{el}_A, X)\) (endomorphism-\(\mathbb{C}\)-operad of \(X\)).
- \(O \to \mathcal{E}_X\) (\(O\)-algebra structure on \(X\)).
- \(\mathbb{C}\)-monoid = algebra over the unit-\(\mathbb{C}\)-operad.

Lemma (presheaf presentation for closed symmetric monoidal \(E\))

\(\mathbb{C}\)-monoids are presheaves \(X : \mathbb{C}^{\text{op}} \to E\) such that

- \(X(A) = X \otimes \text{el}_A\).
- \(X(f : A \rightleftarrows B) = \bigotimes_{\alpha \in \text{el}_A} X(f_\alpha : U \rightleftarrows B_{f*}(\alpha))\).

Lemma (presheaf presentation for cartesian closed \(E\))

\(\mathbb{C}\)-monoids arise from presheaves \(X : \mathbb{C}^{\text{op}} \to E\) such that

- \(X(N) = *\) for every nilobject \(N\).
- \(X(A) \xrightarrow{\simeq} \prod_{\alpha \in \text{el}_A} X(U)\) (strict Segal-condition).
Definition (\(\mathbb{C}\)-monoids for \(\mathbb{C}\) with single rigid unit \(U\))

- \(E_X(A) = \text{hom}_E(X \otimes \text{el}_A, X)\) (endomorphism-\(\mathbb{C}\)-operad of \(X\)).
- \(O \rightarrow E_X\) (\(O\)-algebra structure on \(X\)).
- \(\mathbb{C}\)-monoid = algebra over the unit-\(\mathbb{C}\)-operad.

Lemma (presheaf presentation for closed symmetric monoidal \(E\))

\(\mathbb{C}\)-monoids are presheaves \(X : \mathbb{C}^{\text{op}}_{\text{act}} \rightarrow E\) such that

- \(X(A) = X \otimes \text{el}_A\).
- \(X(f : A \rightarrow B) = \bigotimes_{\alpha \in \text{el}_A} X(f_\alpha : U \rightarrow B_{f_\alpha})\).

Lemma (presheaf presentation for cartesian closed \(E\))

\(\mathbb{C}\)-monoids arise from presheaves \(X : \mathbb{C}^{\text{op}} \rightarrow E\) such that

- \(X(N) = *\) for every nilobject \(N\).
- \(X(A) \xrightarrow{\sim} \prod_{\alpha \in \text{el}_A} X(U)\) (strict Segal-condition).
Definition (C-monoids for C with single rigid unit U)

- $\mathcal{E}(A) = \text{hom}_E(X \otimes \text{el}_A, X)$ (endomorphism-\mathbb{C}-operad of X).
- $O \to \mathcal{E}$ (O-algebra structure on X).
- \mathbb{C}-monoid = algebra over the unit-\mathbb{C}-operad.

Lemma (presheaf presentation for closed symmetric monoidal E)

\mathbb{C}-monoids are presheaves $X : \mathbb{C}^{\text{op}}_{\text{act}} \to E$ such that

- $X(A) = X \otimes \text{el}_A$.
- $X(f : A \to B) = \bigotimes_{\alpha \in \text{el}_A} X(f_\alpha : U \to B_{f_\alpha(\alpha)})$.

Lemma (presheaf presentation for cartesian closed E)

\mathbb{C}-monoids arise from presheaves $X : \mathbb{C}^{\text{op}} \to E$ such that

- $X(N) = \ast$ for every nilobject N.
- $X(A) \cong \prod_{\alpha \in \text{el}_A} X(U)$ (strict Segal-condition).
Definition (hypermoment category)

A hypermoment category \mathcal{C} comes equipped with an active/inert factorisation system and $\gamma_\mathcal{C} : \mathcal{C} \to \Gamma$ such that

- $\gamma_\mathcal{C}$ preserves active (resp. inert) morphisms;
- for each A and $1 \xrightarrow{} \gamma_\mathcal{C}(A)$, there is an ess. unique inert lift $U \xrightarrow{} A$ in \mathcal{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
- inert mono = outer face = dendrix embedding
- $\gamma_\Omega : \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n, one for each $n \in \mathbb{N}$.
Definition (hypermoment category)

A **hypermoment category** \(C \) comes equipped with an active/inert factorisation system and \(\gamma_C : C \to \Gamma \) such that

- \(\gamma_C \) preserves active (resp. inert) morphisms;
- for each \(A \) and \(1 \xrightarrow{} \gamma_C(A) \), there is an ess. unique inert lift \(U \xrightarrow{} A \) in \(C \) such that \(U \) satisfies the second unit-axiom.

Example (dendroidal category \(\Omega \) of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
- inert mono = outer face = dendrix embedding
- \(\gamma_\Omega : \Omega \to \Gamma \) takes a dendrix to its vertex set.
- units = corollas \(C_n \), one for each \(n \in \mathbb{N} \).
Definition (hypermoment category)

A hypermoment category \mathcal{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathcal{C}} : \mathcal{C} \to \Gamma$ such that

- $\gamma_{\mathcal{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\mathbf{1} \xrightarrow{} \gamma_{\mathcal{C}}(A)$, there is an ess. unique inert lift $U \xrightarrow{} A$ in \mathcal{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
- inert mono = outer face = dendrix embedding
- $\gamma_{\Omega} : \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n, one for each $n \in \mathbb{N}$.
Definition (hypermoment category)

A **hypermoment category** \mathcal{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathcal{C}} : \mathcal{C} \to \Gamma$ such that

- $\gamma_{\mathcal{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\mathbf{1} \to \gamma_{\mathcal{C}}(A)$, there is an ess. unique inert lift $U \to A$ in \mathcal{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
- inert mono = outer face = dendrix embedding
- $\gamma_{\Omega} : \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n, one for each $n \in \mathbb{N}$.
Definition (hypermoment category)

A hypermoment category \mathcal{C} comes equipped with an active/inert factorisation system and $\gamma_\mathcal{C} : \mathcal{C} \to \Gamma$ such that

- $\gamma_\mathcal{C}$ preserves active (resp. inert) morphisms;
- for each A and $1 \rightarrow \gamma_\mathcal{C}(A)$, there is an ess. unique inert lift $U \rightarrow A$ in \mathcal{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
- inert mono = outer face = dendrix embedding
- $\gamma_\Omega : \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n, one for each $n \in \mathbb{N}$.
Definition (hypermoment category)

A **hypermoment category** \mathcal{C} comes equipped with an active/inert factorisation system and $\gamma_\mathcal{C} : \mathcal{C} \to \Gamma$ such that

- $\gamma_\mathcal{C}$ preserves active (resp. inert) morphisms;
- for each A and $1 \xrightarrow{\gamma_\mathcal{C}} A$, there is an ess. unique inert lift $U \xrightarrow{} A$ in \mathcal{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
 - every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
 - active mono = inner face = dendrix insertion
 - inert mono = outer face = dendrix embedding
- $\gamma_\Omega : \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n, one for each $n \in \mathbb{N}$.
Definition (hypermoment category)

A hypermoment category \mathcal{C} comes equipped with an active/inert factorisation system and $\gamma_\mathcal{C} : \mathcal{C} \rightarrow \Gamma$ such that

- $\gamma_\mathcal{C}$ preserves active (resp. inert) morphisms;
- for each A and $\mathbf{1} \twoheadrightarrow \gamma_\mathcal{C}(A)$, there is an ess. unique inert lift $U \twoheadrightarrow A$ in \mathcal{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
 - active mono = inner face = dendrix insertion
 - inert mono = outer face = dendrix embedding
- $\gamma_\Omega : \Omega \rightarrow \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n, one for each $n \in \mathbb{N}$.
Definition (hypermoment category)

A *hypermoment category* \mathcal{C} comes equipped with an active/inert factorisation system and $\gamma_\mathcal{C} : \mathcal{C} \to \Gamma$ such that

- $\gamma_\mathcal{C}$ preserves active (resp. inert) morphisms;
- for each A and $1 \xrightarrow{} \gamma_\mathcal{C}(A)$, there is an ess. unique inert lift $U \xrightarrow{} A$ in \mathcal{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
- inert mono = outer face = dendrix embedding

$\gamma_\Omega : \Omega \to \Gamma$ takes a dendrix to its vertex set.

units = corollas C_n, one for each $n \in \mathbb{N}$.
Definition (hypermoment category)

A hypermoment category \mathcal{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathcal{C}} : \mathcal{C} \to \Gamma$ such that

- $\gamma_{\mathcal{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\mathbf{1} \xrightarrow{} \gamma_{\mathcal{C}}(A)$, there is an ess. unique inert lift $U \xrightarrow{} A$ in \mathcal{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
- inert mono = outer face = dendrix embedding
- $\gamma_{\Omega} : \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n, one for each $n \in \mathbb{N}$.
Definition (hypermoment category)

A hypermoment category \mathcal{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathcal{C}} : \mathcal{C} \to \Gamma$ such that

- $\gamma_{\mathcal{C}}$ preserves active (resp. inert) morphisms;
- for each A and $\mathbf{1} \xrightarrow{u} \gamma_{\mathcal{C}}(A)$, there is an ess. unique inert lift $U \xrightarrow{v} A$ in \mathcal{C} such that U satisfies the second unit-axiom.

Example (dendroidal category Ω of Moerdijk-Weiss)

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion
- inert mono = outer face = dendrix embedding
- $\gamma_{\Omega} : \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n, one for each $n \in \mathbb{N}$.
Example (graphoidal category $\Gamma \downarrow \Gamma$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion
- inert mono = outer face = graphix embedding
- $\gamma_{\Gamma \downarrow \Gamma} : \Gamma \downarrow \Gamma \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n, m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma \downarrow \Gamma$)

- $\Omega / \Gamma \downarrow \Gamma$-operads = tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega / \Gamma \downarrow \Gamma$-monoids = symmetric operads/properads (Vallette)
Example (graphoidal category $\Gamma_{\uparrow \downarrow}$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion
- inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow \downarrow}} : \Gamma_{\uparrow \downarrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n, m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

- Ω/Γ_{\uparrow}-operads = tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ_{\uparrow}-monoids = symmetric operads/properads (Vallette)
Example (graphoidal category $\Gamma \downarrow \downarrow$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
 - active mono = inner face = graphix insertion
 - inert mono = outer face = graphix embedding
- $\gamma_{\Gamma \downarrow} : \Gamma \downarrow \rightarrow \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n, m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma \uparrow$)

- $\Omega / \Gamma \uparrow$-operads = tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega / \Gamma \uparrow$-monoids = symmetric operads/properads (Vallette)
Example (graphoidal category $\Gamma \downarrow$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion
- inert mono = outer face = graphix embedding

$\gamma_{\Gamma \downarrow} : \Gamma \downarrow \rightarrow \Gamma$ takes a graphix to its vertex set.

- units = directed corollas $C_{n,m}$, one for each $(n, m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma \uparrow$)

- $\Omega/\Gamma \uparrow$-operads=tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega/\Gamma \uparrow$-monoids=symmetric operads/properads (Vallette)
Example (graphoidal category $\Gamma\downarrow$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion
- inert mono = outer face = graphix embedding
- $\gamma_{\Gamma\downarrow} : \Gamma\downarrow \rightarrow \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n, m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma\uparrow$)

- $\Omega/\Gamma\uparrow$-operads = tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega/\Gamma\uparrow$-monoids = symmetric operads/properads (Vallette)
Example (graphoidal category $\Gamma \updownarrow$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion
 inert mono = outer face = graphix embedding
- $\gamma_{\Gamma \updownarrow} : \Gamma \updownarrow \rightarrow \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n, m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma \updownarrow$)

- $\Omega/\Gamma \updownarrow$-operads = tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega/\Gamma \updownarrow$-monoids = symmetric operads/properads (Vallette)
Example (graphoidal category $\Gamma \downarrow$ of Hackney-Robertson-Yau)

- Objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- Every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- Active mono = inner face = graphix insertion
 Inert mono = outer face = graphix embedding
- $\gamma_{\Gamma \downarrow} : \Gamma \downarrow \to \Gamma$ takes a graphix to its vertex set.
- Units = directed corollas $C_{n,m}$, one for each $(n, m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma \uparrow$)

- $\Omega/\Gamma \uparrow$-operads = tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega/\Gamma \downarrow$-monoids = symmetric operads/properads (Vallette)
Example (graphoidal category $\Gamma \downarrow \dagger$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion
- inert mono = outer face = graphix embedding
- $\gamma_{\Gamma \downarrow \dagger} : \Gamma \downarrow \dagger \rightarrow \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n, m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma \downarrow \dagger$)

- $\Omega / \Gamma \downarrow \dagger$-operads = tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega / \Gamma \downarrow \dagger$-monoids = symmetric operads/properads (Vallette)
Example (graphoidal category $\Gamma \updownarrow$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion
 inert mono = outer face = graphix embedding
- $\gamma_{\Gamma \updownarrow} : \Gamma \updownarrow \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n, m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma \updownarrow$)

- $\Omega/\Gamma \updownarrow$-operads = tree/graph-hyperoperads (Getzler-Kapranov)
- $\Omega/\Gamma \updownarrow$-monoids = symmetric operads/properads (Vallette)
Definition (plus construction for unital hypermoment categories \mathcal{C})

- A \mathcal{C}-tree $([m], A_0 \rightarrow \cdots \rightarrow A_m)$ consists of $[m]$ in Δ and a functor $A_\bullet : [m] \rightarrow \mathcal{C}_{act}$ such that A_0 is a unit in \mathcal{C}.
- A \mathcal{C}-tree morphism (ϕ, f) consists of $\phi : [m] \rightarrow [n]$ and a nat. transf. $f : A \rightarrow B\phi$ sth. $f_i : A_i \rightarrow B\phi(i)$ is inert for $i \in [m]$.
- \mathcal{C}^+ is the category of \mathcal{C}-trees and \mathcal{C}-tree morphisms.
- A vertex is given by $([1], U \rightarrow \rightarrow A) \rightarrow \rightarrow ([m], A_\bullet)$.

Theorem (cf. Baez-Dolan)

\mathcal{C}^+ is a unital hypermoment category such that \mathcal{C}-operads get identified with \mathcal{C}^+-monoids.
Definition (plus construction for unital hypermoment categories \mathcal{C})

- A \mathcal{C}-tree $([m], A_0 \rightarrow \cdots \rightarrow A_m)$ consists of $[m]$ in Δ and a functor $A_\bullet : [m] \rightarrow \mathcal{C}_{act}$ such that A_0 is a unit in \mathcal{C}.

- A \mathcal{C}-tree morphism (ϕ, f) consists of $\phi : [m] \rightarrow [n]$ and a nat. transf. $f : A \rightarrow B\phi$ sth. $f_i : A_i \rightarrow B\phi(i)$ is inert for $i \in [m]$.

- \mathcal{C}^+ is the category of \mathcal{C}-trees and \mathcal{C}-tree morphisms.

- A vertex is given by $([1], U \rightarrow \cdots \rightarrow A)$ \rightarrow $([m], A_\bullet)$.

Theorem (cf. Baez-Dolan)

\mathcal{C}^+ is a unital hypermoment category such that \mathcal{C}-operads get identified with \mathcal{C}^+-monoids.
Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $([m], A_0 \rightarrow \cdots \rightarrow A_m)$ consists of $[m]$ in Δ and a functor $A_\bullet : [m] \rightarrow \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C}.

- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi : [m] \rightarrow [n]$ and a nat. transf. $f : A \rightarrow B\phi$ sth. $f_i : A_i \rightarrow B\phi(i)$ is inert for $i \in [m]$.

- \mathbb{C}^+ is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.

- A vertex is given by $([1], U \rightarrow A) \rightarrow ([m], A_\bullet)$.

Theorem (cf. Baez-Dolan)

\mathbb{C}^+ is a unital hypermoment category such that \mathbb{C}-operads get identified with \mathbb{C}^+-monoids.
Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $([m], A_0 \rightarrow \cdots \rightarrow A_m)$ consists of $[m]$ in Δ and a functor $A_\bullet : [m] \rightarrow \mathcal{C}_{act}$ such that A_0 is a unit in \mathbb{C}.
- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi : [m] \rightarrow [n]$ and a natural transformation $f : A \rightarrow B\phi$ sth. $f_i : A_i \rightarrow B\phi(i)$ is inert for $i \in [m]$.
- \mathbb{C}^+ is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.
- A vertex is given by $([1], U \rightarrow \rightarrow A) \rightarrow ([m], A_\bullet)$.

Theorem (cf. Baez-Dolan)

\mathbb{C}^+ is a unital hypermoment category such that \mathbb{C}-operads get identified with \mathbb{C}^+-monoids.
Definition (plus construction for unital hypermoment categories \mathcal{C})

- A \mathcal{C}-tree $([m], A_0 \rightarrow \cdots \rightarrow A_m)$ consists of $[m]$ in Δ and a functor $A_\bullet : [m] \rightarrow \mathcal{C}_{act}$ such that A_0 is a unit in \mathcal{C}.
- A \mathcal{C}-tree morphism (ϕ, f) consists of $\phi : [m] \rightarrow [n]$ and a natural transformation $f : A \rightarrow B\phi$ s.t. $f_i : A_i \rightarrow B\phi(i)$ is inert for $i \in [m]$.
- \mathcal{C}^+ is the category of \mathcal{C}-trees and \mathcal{C}-tree morphisms.
- A vertex is given by $([1], U \rightarrow A) \rightarrow ([m], A_\bullet)$.

Theorem (cf. Baez-Dolan)

\mathcal{C}^+ is a unital hypermoment category such that \mathcal{C}-operads get identified with \mathcal{C}^+-monoids.
Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $([m], A_0 \to \cdots \to A_m)$ consists of $[m]$ in Δ and a functor $A_\bullet : [m] \to \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C}.

- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B\phi(i)$ is inert for $i \in [m]$.

- \mathbb{C}^+ is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.

- A vertex is given by $([1], U \to \cdots \to A) \to ([m], A\bullet)$.

Theorem (cf. Baez-Dolan)

\mathbb{C}^+ is a unital hypermoment category such that \mathbb{C}-operads get identified with \mathbb{C}^+-monoids.
Definition (plus construction for unital hypermoment categories \mathbb{C})

- A \mathbb{C}-tree $([m], A_0 \rightarrow \cdots \rightarrow A_m)$ consists of $[m]$ in Δ and a functor $A_\bullet : [m] \rightarrow \mathbb{C}_{act}$ such that A_0 is a unit in \mathbb{C}.

- A \mathbb{C}-tree morphism (ϕ, f) consists of $\phi : [m] \rightarrow [n]$ and a nat. transf. $f : A \rightarrow B\phi$ sth. $f_i : A_i \rightarrow B\phi(i)$ is inert for $i \in [m]$.

- \mathbb{C}^+ is the category of \mathbb{C}-trees and \mathbb{C}-tree morphisms.

- A vertex is given by $([1], U \rightarrow A) \rightarrow ([m], A_\bullet)$.

Theorem (cf. Baez-Dolan)

\mathbb{C}^+ is a unital hypermoment category such that \mathbb{C}-operads get identified with \mathbb{C}^+-monoids.
Proposition \((\Omega \subseteq \Gamma^+, \text{cf. Chu-Haugseng-Heuts})\)

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \\
\downarrow \downarrow \\
\bullet \\
\downarrow \\
1
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
2 \\
\downarrow \\
\bullet \\
\downarrow \\
1
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
3 \\
\downarrow \\
\bullet \\
\downarrow \downarrow \\
\{1,2\},\{3\}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\]

Remark (reduced dendrices)

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\Gamma_{\text{mono}}^+ \leftarrow \equiv \Omega_{\text{open, pruned}} \Rightarrow \Omega_{\text{reduced}}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\]
Proposition ($\Omega \supset \Gamma^+$, cf. Chu-Haugseug-Heuts)

\[
\begin{array}{c}
\bullet \\
\downarrow^{1} \\
\bullet \\
\downarrow^{2} \\
\bullet \\
\downarrow^{3} \\
\end{array}
\quad
\begin{array}{c}
3 \\
\mapsto \{1,2\}, \{3\} \\
2 \\
\mapsto \{1,2\} \\
1 \\
\end{array}
\]

Remark (reduced dendrices)

\[
\begin{array}{c}
\Gamma_{mon}^+ \cong \Omega_{open, pruned} \\
\cong \Omega_{reduced} \\
\end{array}
\]
Definition (extensionality)
A hypermoment category \mathcal{C} is \textit{extensional} if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathcal{C}}$.

Proposition (\mathcal{C}-tree insertion for extensional \mathcal{C})
\mathcal{C}-trees can be inserted into vertices of \mathcal{C}-trees. There exists a Feynman category $\mathcal{F}_{\mathcal{C}}$ such that $(\mathcal{C}\text{-operads})\simeq (\mathcal{F}_{\mathcal{C}}\text{-algebras})$.

Theorem (monadicity for extensional \mathcal{C})
The forgetful functor from \mathcal{C}-operads to \mathcal{C}-collections is monadic.

Remark
\mathcal{F}_{Γ} is the coloured symmetric operad of finite rooted trees whose algebras are symmetric operads.
Definition (extensionality)

A hypermoment category \mathcal{C} is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathcal{C}}$.

Proposition (C-tree insertion for extensional C)

\mathcal{C}-trees can be inserted into vertices of \mathcal{C}-trees. There exists a Feynman category $\mathcal{F}_{\mathcal{C}}$ such that $(\mathcal{C}\text{-operads}) \simeq (\mathcal{F}_{\mathcal{C}}\text{-algebras})$.

Theorem (monadicity for extensional C)

The forgetful functor from \mathcal{C}-operads to \mathcal{C}-collections is monadic.

Remark

\mathcal{F}_Γ is the coloured symmetric operad of finite rooted trees whose algebras are symmetric operads.
Definition (extensionality)

A hypermoment category \mathcal{C} is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathcal{C}}$.

Proposition (\mathcal{C}-tree insertion for extensional \mathcal{C})

\mathcal{C}-trees can be inserted into vertices of \mathcal{C}-trees. There exists a Feynman category $\mathcal{F}_\mathcal{C}$ such that $(\mathcal{C}\text{-operads}) \simeq (\mathcal{F}_\mathcal{C}\text{-algebras})$.

Theorem (monadicity for extensional \mathcal{C})

The forgetful functor from \mathcal{C}-operads to \mathcal{C}-collections is monadic.

Remark

\mathcal{F}_Γ is the coloured symmetric operad of finite rooted trees whose algebras are symmetric operads.
Definition (extensionality)

A hypermoment category \mathcal{C} is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathcal{C}}$.

Proposition (\mathcal{C}-tree insertion for extensional \mathcal{C})

\mathcal{C}-trees can be inserted into vertices of \mathcal{C}-trees. There exists a Feynman category $\mathcal{F}_{\mathcal{C}}$ such that $\mathcal{(C\text{-operads})\simeq(F_{\mathcal{C}}\text{-algebras})}$.

Theorem (monadicity for extensional \mathcal{C})

The forgetful functor from \mathcal{C}-operads to \mathcal{C}-collections is monadic.

Remark

\mathcal{F}_{Γ} is the coloured symmetric operad of finite rooted trees whose algebras are symmetric operads.
Definition (extensionality)

A hypermoment category \(\mathcal{C} \) is \emph{extensional} if pushouts of inert maps along active maps exist, are inert and preserved by \(\gamma_{\mathcal{C}} \).

Proposition (\(\mathcal{C} \)-tree insertion for extensional \(\mathcal{C} \))

\(\mathcal{C} \)-trees can be inserted into vertices of \(\mathcal{C} \)-trees. There exists a Feynman category \(\mathcal{F}_{\mathcal{C}} \) such that \((\mathcal{C}\text{-operads}) \simeq (\mathcal{F}_{\mathcal{C}}\text{-algebras})\).

Theorem (monadicity for extensional \(\mathcal{C} \))

The forgetful functor from \(\mathcal{C} \)-operads to \(\mathcal{C} \)-collections is monadic.

Remark

\(\mathcal{F}_\Gamma \) is the coloured symmetric operad of finite rooted trees whose algebras are symmetric operads.
Moment categories and operads

Monadicity

Definition (Segal core for strongly unital \mathcal{C})

The Segal core \mathcal{C}_{Seg} is the subcategory of \mathcal{C}_{in} spanned by nil- and unit-objects. \mathcal{C} is strongly unital if \mathcal{C}_{Seg} is dense in \mathcal{C}_{in}.

\mathcal{C}	Δ	Θ_n	Ω	$\Gamma\uparrow$
\mathcal{C}_{Seg}	$[0] \Rightarrow [1]$	cell-incl. of glob. n-cell	edge-incl. of corollas	edge-incl. of dir. corollas
\mathcal{C}-gph	graph	n-graph	multigraph	dir. multigraph
\mathcal{C}-cat	category	n-category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathcal{C})

The forgetful functor from \mathcal{C}-categories to \mathcal{C}-graphs is monadic.

Thanks for your attention!
Definition (Segal core for strongly unital \mathcal{C})

The *Segal core* \mathcal{C}_{Seg} is the subcategory of \mathcal{C}_{in} spanned by nil- and unit-objects. \mathcal{C} is *strongly unital* if \mathcal{C}_{Seg} is dense in \mathcal{C}_{in}.

\mathcal{C}	Δ	Θ_n	Ω	Γ
\mathcal{C}_{Seg}	$[0] \Rightarrow [1]$	cell-incl. of glob. n-cell	edge-incl. of corollas	edge-incl. of dir. corollas
\mathcal{C}-gph	graph	n-graph	multigraph	dir. multigraph
\mathcal{C}-cat	category	n-category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathcal{C})

The forgetful functor from \mathcal{C}-categories to \mathcal{C}-graphs is monadic.

Thanks for your attention!
Definition (Segal core for strongly unital \mathcal{C})

The *Segal core* \mathcal{C}_{Seg} is the subcategory of \mathcal{C}_{in} spanned by nil- and unit-objects. \mathcal{C} is *strongly unital* if \mathcal{C}_{Seg} is dense in \mathcal{C}_{in}.

\mathcal{C}	Δ	Θ_n	Ω	$\Gamma\updownarrow$
\mathcal{C}_{Seg}	$[0] \Rightarrow [1]$	cell-incl. of glob. n-cell	edge-incl. of corollas	edge-incl. of dir. corollas
\mathcal{C}-gph	graph	n-graph	multigraph	dir. multigraph
\mathcal{C}-cat	category	n-category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathcal{C})

The forgetful functor from \mathcal{C}-categories to \mathcal{C}-graphs is monadic.

Thanks for your attention!
Definition (Segal core for strongly unital \mathcal{C})

The *Segal core* \mathcal{C}_{Seg} is the subcategory of \mathcal{C}_{in} spanned by nil- and unit-objects. \mathcal{C} is *strongly unital* if \mathcal{C}_{Seg} is dense in \mathcal{C}_{in}.

\mathcal{C}	Δ	Θ_n	Ω	$\Gamma \updownarrow$
\mathcal{C}_{Seg}	[0] \Rightarrow [1]	cell-incl. of glob. n-cell	edge-incl. of corollas	edge-incl. of dir. corollas
\mathcal{C}-gph	graph	n-graph	multigraph	dir. multigraph
\mathcal{C}-cat	category	n-category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathcal{C})

The forgetful functor from \mathcal{C}-categories to \mathcal{C}-graphs is monadic.

Thanks for your attention!