Identification of an unknown frameshift variant of NOG in a Han Chinese family with proximal symphalangism

Zhuang-Zhuang Yuan1,2,3,* , Fang Yu1,* , Jie-Yuan Jin2,3 , Zi-Jun Jiao2,3 , Ju-Yu Tang1 and Rong Xiang1,2,3

1Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China; 2Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; 3Human Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China

Correspondence: Ju-yu Tang (tanguyuy7749@163.com) or Rong Xiang (shirlesmile@csu.edu.cn)

Proximal symphalangism (SYM1) is an autosomal dominant disorder manifested by ankylosis of the proximal interphalangeal joints of fingers, carpal and tarsal bone fusion, and conductive hearing loss in some cases. Herein, we clinically diagnosed a Chinese patient with fusions of the bilateral proximal interphalangeal joints in the 2–5 digits without conductive hearing loss. Family history investigation revealed that his mother and grandfather also suffered from SYM1. Whole exome sequencing was performed to detect the genetic lesion of the family. The candidate gene variants were validated by Sanger sequencing. By data filtering, co-segregation analysis and bioinformatics analysis, we highly suspected that an unknown heterozygous frameshift variant (c.635_636insG, p.Q213Pfs*57) in NOG was responsible for the SYM1 in the family. This variant was predicted to be deleterious and resulted in a prolonged protein. This finding broadened the spectrum of NOG mutations associated with SYM1 and contributed to genetic diagnosis and counseling of families with SYM1.

Introduction

Proximal symphalangism (SYM1) is a hereditary disorder manifested by ankylosis of the proximal interphalangeal joints, carpal and tarsal bone fusion, and conductive hearing loss in some cases [1]. The typical features of SYM1 are reduced proximal interphalangeal joint space, symphalangism of the 4th and/or 5th finger [2,3]. The estimated prevalence of SYM1 is less than 1/100000 with autosomal dominant inherited pattern [4,5]. And the first family with ankylosis of the proximal interphalangeal joints was reported and named as symphalangism in 1916 [6].

At present, at least two types of SYM1 have been identified in the clinic. One is proximal symphalangism-1A (SYM1A; OMIM 185800), which was caused by genetic variants in NOG (noggin), another is proximal symphalangism-1B (SYM1B; OMIM 615298), which resulted from GDF5 (growth differentiation factor 5) mutations [2,7]. However, due to the extensive pleiotropy, several other diseases may be also related to NOG, such as tarsal–carpal coalition syndrome, multiple synostoses syndrome, and brachydactyly, etc. [8]. Hence, detection the genetic lesion of the patients with SYM1 may further confirm the clinical diagnosis and help us to understand the development of bone.

In the present study, we enrolled a family with SYM1 from central south region of China. The aim of the present study was to detect the genetic lesion of the affected individuals by employing whole exome sequencing and bioinformatics analysis.
Chr	Pos	RB	AB	Gene	Mutation	OMIM	Allele frequency	Topp gene	ACMG
1	220275877	C	T	IARS2	NM_018060; c.C790T: p.H264Y	AR: growth hormone deficiency	Unknown variant	Isoleucyl-tRNA aminoaaclylation	PM2, BP6
2	196681652	A	G	DNAH7	NM_018897; c.T9461C:p.V3154A	-	Unknown variant	Inner dynein arm assembly	PM2, PP1, PP3
2	233388655	G	A	PRSS56	NM_00119512; c.G1186A: p.E396K	AR: microphthalmia	Unknown variant	Serine-type endopeptidase activity	PM2, BP6
5	118485627	C	T	DMXL1	NM_001290321; c.C4105T:p.R1369C	-	Unknown variant	Vacular acidification	PM2, PP1, PP3
8	99116733	A	G	HRSP12	NM_005836; c.T335C: p.V112A	-	Unknown variant	-	PM2, PP1, PP3
9	119481126	G	A	TRIM32	NM_001099679; c.G1105A: p.G369R	AR: Bardet–Bied syndrome neuropathy	Unknown variant	Tat protein binding	PM2, BP6
12	992601	T	G	WNK1	NM_014823; c.T2789G: p.F930C	AR: neuropathy; AD: pseudohypoaldosteronism	Unknown variant	Chloride channel inhibitor activity	PM1, PM2
12	49522372	A	C	TUBA1B	NM_006082; c.T275G: p.L242R	-	Unknown variant	Fibroblast growth factor receptor signaling pathway	PM1, PM2, PM4, PP1, PP3, PP4
17	54672219	G	G	NOG	NM_005450: c.635_636insG: p.Q213PfsX57	AD: symphalangism	Unknown variant	Fibroblast growth factor receptor signaling pathway	PM2, PP1, PP3
17	71420107	G	A	SDK2	NM_001144952; c.C1708T: p.R570W	-	Unknown variant	Camera-type eye photoreceptor cell differentiation	PM2, PP1, PP3
18	13071096	G	A	CEP192	NM_003214; c.G5233A: p.E1745K	-	Unknown variant	Phosphatase binding	PM2, PP1, PP3
19	39521974	T	G	ECH1	NM_001398; c.A235C: p.N79H	-	Unknown variant	Δ3,5-Δ2,4-Dienoyl-CoA isomerase activity	PM2, PP1, PP3
19	56128115	T	C	ZNF865	NM_001195605; c.T3131C: p.L1044P	-	Unknown variant	–	PM2, PP1, PP3
20	25457050	C	CA	NINL	NM_025176; c.2876_2877insT: p.E969Dfs15	-	Unknown variant	Calcium ion binding	PM2, PP1, PP3
20	30785333	G	A	PLAGL2	NM_002667; c.C413T: p.T138M	-	Unknown variant	Chylomicron assembly	PM2, PP1, PP3
X	131188838	G	T	STK26	NM_001042452; c.G222T:p.L74F	-	Unknown variant	Microvillus assembly	PM2, PP1, PP3

CHR, chromosome; POS, position; RB, reference sequence base; AB, alternative base identified; AR, autosomal recessive; AD, autosomal dominant; BP, benign supporting; PP, pathogenicity supporting; PM, pathogenicity moderate; PVS, pathogenicity very strong. The data of allele frequency were obtained from 1000G, ESP, and ExAC databases.
Figure 1. The clinical data of the family with SYM1

(A) The pedigree of this family. Black circles/squares are affected, white circles/squares are unaffected. Arrow indicates the proband. The question mark indicates that the illness is uncertain. (B) The proband showed the symphalangism of second to fifth fingers. (C) Hands X-ray of III-2. The red circles and arrows marked the abnormal regions.

Materials and methods

Subjects and ethical approval

The proband (Figure 1A, III:2) was a 6-year-old boy from a non-consanguineous Chinese family. According to the family history investigation, mother (II:4) and grandfather (I:1) of proband also had the phenotype of limited fingers bilaterally, they may be patients with SYM1. We found the fourth to fifth fingers bilaterally of his mother were limited after preliminary diagnosis. Unfortunately, the proband’s mother refused further diagnosis and treatment and grandfather has already passed away. The photographs showed the second to fifth fingers and toes bilaterally of the proband were limited and cannot make a fist (Figure 1B). The radiographs indicated the reduced proximal interphalangeal joint space and further confirmed the clinical diagnosis (Figure 1C). No other significant phenotypes were found, such as hearing loss.

The Review Board of the Xiangya Hospital of the Central South University approved the present study. Given the proband is too young, written consent forms were signed by his parents as guardians.

Genetic analysis

Genomic DNA was prepared from peripheral blood of the patients and other all participants using a DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, U.S.A.). Genomic DNA was extracted from the peripheral blood lymphocytes of all family members by using a DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, U.S.A.) following the manufacturer’s instruction. The central part of the whole exome sequencing was provided by the Novogene Bioinformatics Institute (Beijing, China). The exomes were captured using Agilent SureSelect Human All Exon V6 kits, and high-throughput sequencing was performed using Illumina HiSeq X-10. The necessary bioinformatics analyses, including reads, mapping, variant detection, filtering, and annotation, were also endowed by Novogene Bioinformatics Institute [9].

The strategies of data filtering refer to our previous study [9]: (a) variants within intergenic, intronic, and UTR regions as well as synonymous mutations were excluded for later analysis; (b) variants with MAF>0.01 in the 1000 Genomes project, dbSNP132 were excluded; (c) variants with MAF>0.01 in genome aggregation database (gnomAD)
Table 2 The summary of reported mutations in NOG

No.	Mutation	Phenotypes	PMID
1	c. 58delC	p. Leu20fs S1	–
2	c. 103C-G	p. Pro35Ala BDB	–
3	c. 103C-T	p. Pro35Ser TCC	Hyperia
4	c. 103C-T	p. Pro35Ser SYM1	–
5	c. 103C-T	p. Pro35Ser BDB	–
6	c. 104C-G	p. Pro35Arg SYM1	–
7	c. 104C-G	p. Pro35Arg TCC	–
8	c. 106C-G	p. Ala36Pro BDB	–
9	c. 110C-G	p. Pro37Arg TCC	Hyperia
10	c. 124C-G; c. 149C-G	p. Pro42Ala; p. Pro50Arg SYM1	–
11	c. 124C-T	p. Pro42Ser SYM1	–
12	c. 125C-G	p. Pro42Arg SYNS1	–
13	c. 124C-A	p. Pro42Thr SYNS1	–
14	c. 125C-T	p. Pro42Leu SYNS1	–
15	c. 130_131insGG	p. Val44fs SYNS1 Hearing loss	Hyperia
16	c. 137T-C	p. Leu46Pro SYM1	–
17	c. 142G-A	p. Glu48Lys BDB	–
18	c. 142G-A	p. Glu48Lys POF and SYM1	Hyperia
19	c. 163G-T	p. Asp55Tyr SYM1	–
20	c. 252_253insG	p. Glu85fs SYM1 Hearing loss	Hyperia
21	c. 261_262insG	p. Pro88fs SYNS1 Hearing loss	Hyperia
22	c. 271G-T	p. Gly91Cys FOP	–
23	c. 274G-C	p. Gly92Arg FOP	–
24	c. 275G-A	p. Gly92Glu FOP	–
25	c. 283G-A	p. Ala95Thr FOP	–
26	c. 304delG	p. Ala102fs SYM1	Hyperia
27	c. 328C-T	p. Gin110X SABTT	Hyperia
28	c. 386T-C	p. Leu128X SYM1	–
29	c. 391C-T	p. Gin131X SABTT	Hyperia
30	c. 397A-T	p. Lys133X SABTT	Hyperia
31	c. 406C-T	p. Arg136Cys SYM1	–
32	c. 450G-C	p. Trp150Cys SYM1	–
33	c. 452C-A	p. Ser151X SYNS1	Hyperia
34	c. 463T-A	p. Cys155Ser SYM1	–
35	c. 499C-G	p. Arg167Gly BDB	–
36	c. 499C-T	p. Arg167Cys SYM1	–
37	c. 511G-A	p. Cys184Tyr SYM1	–
38	c. 511G-T	p. Cys184Phe SYM1	Hyperia
39	c. 559C-G	p. Pro187Ser BDB	–
40	c. 559C-G	p. Pro187Ala SYM1	Hyperia
41	c. 561delC	p. Pro187fs SYNS1	–
42	c. 565C-T	p. Gly189Cys SYM1	–
43	c. 568A-G	p. Met190Val SYNS1	–
44	c. 608T-C	p. Leu203Pro TCS	Hyperia
45	c. 611G-T	p. Arg204Leu TCC	Hyperia
46	c. 615G-G	p. Arg204Gln TCC	–
47	c. 615G-A	p. Trp205X SYNS1	–
48	c. 615G-C	p. Trp205Cys Facioaudiosymphalangism syndrome Hearing loss Hyperia	
49	c. 615G-C	p. Trp205Cys SABTT	Hyperia
50	c. 659C-G	p. Cys215X SYM1	–
51	c. 659C-G	p. Cys215X SABTT	Hyperia
52	c. 695T-G	p. Trp217Gly SYNS1	–
53	c. 695T-A	p. Leu220Asn SYM1	–

Continued over
Table 2 The summary of reported mutations in NOG (Continued)

No.	Mutation	Phenotypes	PMID	
54	c. 659_660delinsAT	p. Ile220Asn	SYM1 – –	10080184
55	c. 664T>G	p. Tyr222Asp	SYM1 – –	10080184
56	c. 665A>G	p. Tyr222Cys	SYM1 – –	10080184
57	c. 665A>G	p. Tyr222Cys	TCC – –	11545688
58	c. 668C>T	p. Pro223Leu	SYM1 – –	10080184
59	c. 682T>G	p. Cys228Gly	SABTT Hearing loss	Hyperopia 26211601
60	c. 682T>A	p. Cys228Ala	SYNS1 Hearing loss	Hyperopia 25391606
61	c. 689G>A	p. Cys230Tyr	SYNS1 –	Hyperopia 26994744
62	c. 690C>G	p. Cys230Trp	SYM1 Hearing loss –	31694554
63	c. 696C>G	p. Cys232Trp	SYNS1 Hearing loss	Hyperopia 20503332

SYNS1, multiple synostosis syndrome; BDB, brachydactyly type B; TCC, Trasal–Carpal coalition syndrome; SYM1, proximal symphalangism; TCS, Teunissen–Cremers syndrome; POF, premature ovarian failure; SABTT, stapes ankylosis with broad thumbs and toes; FOP, fibrodysplasia ossificans progressiva.

Figure 2. The genetic analysis of the variant

(A) Sanger DNA sequencing chromatogram demonstrates the heterozygosity for a NOG variant (c.635_636insG, p.Q213Pfs*57).

(B) Rope diagram of noggin–BMP7 complex (SMTL ID: 1m4u.1), the upper and lower parts are noggin dimer and BMP7 dimer, respectively. The arrows and words indicate the Q213 site, the red amino acids rope after Q213 was affected in the patient. (C) Alignment of the amino acid sequences of noggin. The affected amino acids locate in the highly conserved amino acid region in different species (from Ensembl). The arrow and words show the Q213 site.

(http://gnomad.broadinstitute.org/) were further precluded; (d) SIFT, Polyphen-2 and MutationTaster were utilized to predict the possible impacts of variants. (e) Co-segregation analysis was conducted in the family.

Result

The WES raw data had a mean depth of 125.66 on target, target region coverage of 98.05%, target region coverage (at least 10×) of 97.27%, indicating the high sequencing quality. After data filtering, only 16 variants were included in Table 1. We then further performed bioinformatic analysis including Inheritance pattern and OMIM clinical phenotypes analysis (https://www.omim.org/), ToppGene gene function analysis (https://toppgene.cchmc.org/) and The American College of Medical Genetics and Genomics (ACMG) classification, we highly suspected the unknown variant (NM_005450, c.635_636insG, p.Q213Pfs*57) of NOG, belonging to PM1, PM2, PM4, PP1, PP3, and PP4 (likely pathogenic) in ACMG guidelines [10], was the genetic lesion of the family (Figure 2A). The result of co-segregation...
analysis showed the same unknown variant exist in mother of proband but not in his father. The unknown variant, which led to alteration of amino acid residues after position 212 and a prolonged protein (Figure 2B), was predicted as “Disease Causing” (0.99) by MutationTaster (http://www.mutationtaster.org/) and not found on the 1000 Genome Browser, the gnomAD Browser and the Exome Variant Server, and was not presented in 200 control cohorts. Multiple alignment of noggin orthologs in other animal species showed that amino acid sequence after position 212 was highly conserved (Figure 2C).

Discussion
In the present study, we enrolled a family with SYM1 from China. By employing whole exome sequencing, we identified an unknown frameshift variant (c.635_636insG, p.Q213Pfs*57) in the affected members. The variant resulted in the extension of noggin protein which may affect the function of the protein. Bioinformatics analysis further predicted this variant as disease-causing variant. Our study is consistent with previous studies which indicated that variants in NOG gene may lead to SYM1 and other bone diseases [11].

The human NOG gene encoding noggin protein is located on chromosome 17q22, and it consists of one exon, spanning approximately 1.9 kilobases (kb). Noggin, the first identified BMP antagonist, is posttranslationally modified and secreted as a disulfide-bonded homodimer. BMPs play essential roles in skeletogenesis including recruiting mesenchymal cells, promoting mesenchymal cell proliferation and differentiation into chondroblasts and osteoblasts, and inducing apoptosis to form joints [12–14]. Noggin can bind to BMPs and inhibit the interactions of BMPs and BMP-specific receptors, and therefore negatively regulates BMP-induced osteogenesis [15,16]. In the present study, the unknown variant was not located at the interface between the two molecules in noggin–BMP7 complex (SWISS-MODEL Template Library, ID:1m4u.1), and no templates of sufficient quality to build a homology model were found for the changed sequence (Figure 2B). Whereas, according to the complex model and the prolonged sequence, we suspected the variant presumably affected the binding of noggin homodimer and further disrupt the structure of noggin–BMP7 complex, which activated the BMP signal pathway and lead to bone diseases. Further research is needed to confirm this hypothesis.

On the basis of reported papers, multiple bone diseases are associated with NOG mutations [17]. For example, at present, over 50 mutations of NOG involved in wide variety of bone development anomalies, including tarsal/carpal coalition syndrome, brachydactyly, multiple synostoses syndrome, stapes ankylosis with broad thumbs and toes, have been reported [5,18]. Even the same variants of NOG can lead to different phenotypes between different families or different affected members of the same family, see Table 2 [19,20]. Meanwhile, the variant was the sixth unknown variant reported in Chinese population, which indicated there were still a lot of unknown variants to be discovered in Chinese population. Here, we summarized the reported NOG mutations in Table 2, which may make us to understand the function of noggin better.

In additional to major bone diseases, patients with NOG mutations are often accompanied by other phenotypes, such as conductive hearing loss and hyperopia. In Table 2, we can find that these phenotypes are not always present in the same mutations or in different mutations at the same sites. Besides, in some papers, hearing loss do not exist in all affected members of same families [5,18]. These results seem to indicate that conductive hearing loss and hyperopia may appear randomly in patients with NOG mutations; whereas, in contrast with most NOG mutations that have been reported in kindreds with SYM1 and SYN1, the mutations observed in families with stapes ankylosis without SYM1 are predicted to disrupt the cysteine-rich C-terminal domain [21,22]. In short, the relationship between NOG and these phenotypes is still unclear, further research is needed to understand that. Some patients with NOG mutations can also have nasal bone, elbow, shoulder, and spine anomalies except for hands and feet [11,14], suggested noggin protein plays an essential and extensive role in bone development.

In summary, we investigated a Chinese family with SYM1 and an unknown frameshift variant (c.635_636insG, p.Q213Pfs*57) was detected by whole exome sequencing. According to ACMG standards and guidelines, this variant was categorized as likely pathogenic (PM1, PM2, PM4, PP1, PP3 and PP4) and identified as the genetic lesion of the family. Our study expanded the spectrum of NOG mutations and contributed to genetic counseling and diagnosis of patients with SYM1.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.
Funding
This study was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China [grant number 2017ZX10103005-006]; the National Natural Science Foundation of China [grant number 81970403]; the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University [grant number CSUZC201940]; the Fundamental Research Funds of Central South University [grant number 2018zzts394] and the Emergency Project of Prevention and Control for COVID-19 of Central South University [grant number 160260003].

Author Contribution
Z.-Y.Z. and F.Y. carried out the sample collecting and genetic testing, J.-Y.J. and Z.-J.J. collected the clinical data, Z.-Z.Y. and J.-Y.J. performed the bioinformatics analysis, J.-Y.T. and R.X. designed the project and wrote the manuscript. All authors read and approved the final manuscript. All authors reviewed the manuscript.

Acknowledgements
We thank the patient and her parents for participating in this study. We thank Dr. Liang-Liang Fan performed genetic analysis assistance.

Abbreviations
ACMG, The American College of Medical Genetics and Genomics; GDF5, growth differentiation factor 5; gnomAD, genome aggregation database; NOG, noggin; OMIM, Online Mendelian Inheritance in Man; SYM1, proximal symphalangism; SYM1A, proximal symphalangism-1A; SYM1B, proximal symphalangism-1B; SYNS1, multiple synostosis syndrome.

References
1 van Lierop, A.H., Appelman-Dijkstra, N.M. and Papapoulos, S.E. (2017) Sclerostin deficiency in humans. Bone 96, 51–62, https://doi.org/10.1016/j.bone.2016.10.010
2 Xiong, J., Tu, W., Yan, Y., Xiao, K., Yao, Y., Li, S. et al. (2019) Identification of a novel NOG Missense mutation in a Chinese family with symphalangism and tarsal coalitions. Front. Genet. 10, 353, https://doi.org/10.3389/fgene.2019.00353
3 Sha, Y., Ma, D., Zhang, N., Wei, X., Liu, W. and Wang, X. (2019) Novel NOG (p.P42S) mutation causes proximal symphalangism in a four-generation Chinese family. BMC Med. Genet. 20, https://doi.org/10.1186/s12881-019-0864-1
4 Leonidou, A., Irving, M., Holden, S. and Katchburian, M. (2016) Recurrent missense mutation of GDF5(p.R438L) causes proximal symphalangism in a British family. World J. Orthop. 7, 839, https://doi.org/10.5312/wjo.v7.i12.839
5 Ma, C., Liu, L., Wang, F.N., Tian, H.S., Luo, T., Tu, R. et al. (2019) Recurrent of a novel mutation of NOG in family with proximal symphalangism and early genetic counselling. BMC Med. Genet. 20, 169, https://doi.org/10.1186/s12881-019-0917-5
6 Cushing, H. (1916) Hereditary anchylosis of the proximal phalangeal joints (Symphalangism). Genetics 1, 90–106
7 Chen, H., Capellini, T.D., Schoor, M., Mortlock, D.P., Reddi, A.H. and Kingsley, D.M. (2016) Heads, shoulders, elbows, knees, and toes: modular Gdf5 enhancers control different joints in the vertebrate skeleton. PLoS Genet. 12, e1006454, https://doi.org/10.1371/journal.pgen.1006454
8 Ishino, T., Takeo, S. and Hirakawa, K. (2015) Novel NOG mutation in Japanese patients with stapes ankylosis with broad thumbs and toes. Eur. J. Med. Genet. 58, 427–432, https://doi.org/10.1016/j.ejmg.2015.06.005
9 Fan, L., Liu, J., Huang, H., Du, R. and Xiang, R. (2019) Whole exome sequencing identified a novel mutation (p.Ala1884Pro) of β-spectrin in a Chinese family with hereditary spherocytosis. J. Gene Med. 21, e3073, https://doi.org/10.1002/jgm.3073
10 Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J. et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–423, https://doi.org/10.1038/gim.2015.30
11 Bayat, A., Fijalkowski, I., Andersen, T., Abdulkhurim, S.A., van den Ende, J. and Van Hul, W. (2016) Further delineation of facioscapuloperiosteal syndrome: description of a family with a novel NOG mutation and without hearing loss. Am. J. Med. Genet. A 170, 1479–1484, https://doi.org/10.1002/ajmg.a.37626
12 Hashimi, S.M. (2019) Exogenous noggin binds the BMP-2 receptor and induces alkaline phosphatase activity in osteoblasts. J. Cell. Biochem. 120, 13237–13242, https://doi.org/10.1002/jcb.28597
13 Meguro, F., Pornvaveetus, T., Kawasaki, M., Kawasaki, K., Yamada, A., Kakihara, Y. et al. (2019) BMP signaling in molar cusp formation. Gene Expr. Patterns 32, 67–71, https://doi.org/10.1016/j.gep.2019.04.002
14 Das, B.A., Salem, R.V. and Dalal, A. (2018) Tarsal–Carpal coalition syndrome: Report of a novel missense mutation in NOG gene and phenotypic delineation. Am. J. Med. Genet. A 176, 219–224
15 Bernotak, O., Radaszkiewicz, T., Behal, M., Dave, Z., Witte, F., Mahl, A. et al. (2017) A novel role for the BMP antagonist noggin in sensitizing cells to non-canonical Wnt-5a/Ror2/disheveled pathway activation. Front. Cell Dev. Biol. 5, 47, https://doi.org/10.3389/fcell.2017.00047
16 Brazil, D.P., Church, R.H., Surae, S., Godson, C. and Martin, F. (2015) BMP signalling: agony and antagoxy in the family. Trends Cell Biol. 25, 249–264, https://doi.org/10.1016/j.tcb.2014.12.004

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
17 Khan, S., Mudassir, M., Khan, N. and Marwat, A. (2018) Brachydactyly instigated as a result of mutation in GDF5 and NOG genes in Pakistani population. Pak. J. Med. Sci. 34, 82–87, https://doi.org/10.12669/pjms.341.12885

18 Takano, K., Ogasawara, N., Matsunaga, T., Mutai, H., Sakurai, A., Ishikawa, A. et al. (2016) A novel nonsense mutation in the NOG gene causes familial NOG-related symphalangism spectrum disorder. Hum. Genome Var. 3, 16023, https://doi.org/10.1038/hgv.2016.23

19 Lehmann, K., Seemann, P., Silan, F., Goecke, T.O., Irgang, S., Kjaer, K.W. et al. (2007) A new subtype of brachydactyly type B caused by point mutations in the bone morphogenetic protein antagonist NOGGIN. Am. J. Hum. Genet. 81, 388–396, https://doi.org/10.1086/519697

20 Liu, F., Huang, Y., Liu, L., Liang, B., Qu, Z., Huang, G. et al. (2014) Identification of a novel NOG mutation in a Chinese family with proximal symphalangism. Clin. Chim. Acta 429, 129–133, https://doi.org/10.1016/j.cca.2013.12.004

21 Brown, D.J., Kim, T.B., Petty, E.M., Downs, C.A., Martin, D.M., Strouse, P.J. et al. (2002) Autosomal dominant stapes ankylosis with broad thumbs and toes, hyperopia, and skeletal anomalies is caused by heterozygous nonsense and frameshift mutations in NOG, the gene encoding noggin. Am. J. Hum. Genet. 71, 618–624, https://doi.org/10.1086/342067

22 Ma, C., Liu, L., Wang, F., Tian, H., Luo, Y., Yu, R. et al. (2019) Identification of a novel mutation of NOG in family with proximal symphalangism and early genetic counseling. BMC Med. Genet. 20, https://doi.org/10.1186/s12881-019-0917-5