ON UNIFORMIZATION OF COMPACT KÄHLER MANIFOLDS

Robert Treger

The aim of the present note is to extend the uniformization theorem of projective manifolds in [9, Introduction, Theorem] to compact Kähler manifolds. In an email to the author (January, 2015), Dennis Sullivan essentially raised the question whether one can generalize the uniformization theorem in [9]. The author would like to thank him for the question.

Let X be a compact complex manifold of dimension $n \geq 2$. We denote its universal covering by U_X. We will derive the following theorem from a similar theorem in [9].

Theorem (uniformization). Let X be a compact Kähler manifold of dimension n with large and residually finite fundamental group $\pi_1(X)$. If $\pi_1(X)$ is, in addition, nonamenable then U_X is a bounded domain in \mathbb{C}^n. Thus X is projective by Poincaré [5, Theorem 5.22].

Proof of Theorem. By a theorem of Moishezon [7], it will suffice to establish that X is a Moishezon manifold. In [4, Sect. 3], Gromov uses his notion of Kähler hyperbolicity to obtain holomorphic L^2 forms on U_X and prove that X is Moishezon.

A priori, we do not know if there are holomorphic L^2 forms on U_X. Set $\Gamma := \pi_1(X)$. Let L be an arbitrary complex line bundle on U_X. We will consider a section $f \in H^0(L^q, U_X)$ which is not assumed to be L^p, where $p < \infty$.

As in Kollár [5, Chap 13.1], we will employ ℓ^p sections f on orbits of Γ in place of L^p sections. Of course, we need a natural Γ-invariant Hermitian quasi-metric on L^q (see the definition in the proof of Lemma 3).

Given an arbitrary Γ-invariant Hermitian metric on U_X, we get the induced Riemannian metric on U_X with the volume form $d\mu$. Since Γ is nonamenable, we get non-constant bounded harmonic functions on U_X by Lyons and Sullivan [6].

Employing their theorem, Toledo [8] has established that the space of bounded harmonic functions as well as the space generated by bounded positive harmonic functions are infinite dimensional (see [9, Sect. 2.6]). Given r linearly independent functions g_1, \ldots, g_r on U_X, clearly there exist r points $u_1, \ldots, u_r \in U_X$ such that the vectors $(g_i(u_1), \ldots, g_i(u_r))$ ($1 \leq i \leq r$) are linearly independent.

Let $H_{ar}(U_X)$ ($H_{ar}^b(U_X)$) be the space of harmonic functions (bounded harmonic functions, respectively) on U_X.

In place of the standard $L^2(d\mu)$ integration with the standard Riemannian measure $d\mu$ on U_X, we will integrate the *bounded* harmonic functions with respect to the measure

$$dv := p_{U_X}(s, x, Q)d\mu,$$
where \(Q \in U_X \) is a fixed point and \(p_{U_X}(s, x, Q) \) is the heat kernel. Because all bounded harmonic functions are square integrable, i.e. in \(L_2(dv) \), we obtain the pre-Hilbert space of bounded harmonic functions (compare [9, Sect. 2.4 and Sect. 4]). We observe that the latter pre-Hilbert space has a completion in the (real) Hilbert space \(H \) of all harmonic \(L_2(dv) \) functions:

\[
H := \left\{ h \in \text{Har}(U_X) \mid \| h \|_H^2 := \int_{U_X} |h(x)|^2 dv < \infty \right\}.
\]

Let \(H^b \subset H \) be the Hilbert subspace generated by \(\text{Har}^b(U_X) \). These Hilbert spaces are separable infinite dimensional and have reproducing kernels. The group \(\Gamma \) acts isometrically on \(H^b : \psi \mapsto (\psi \circ \gamma) (\gamma \in \Gamma) \).

Let \(\{ \phi_j \} \subset \text{Har}^b(U_X) \) be an orthonormal basis of \(H^b \). We obtain a continuous, even smooth, finite \(\Gamma \)-energy \(\Gamma \)-equivariant mapping

\[
g : U_X \longrightarrow (H^b)^* \quad (u \mapsto (\phi_0(u), \phi_1(u), \ldots)).
\]

Also we get a natural mapping \(g : U_X \longrightarrow \mathbb{P}((H^b)^*) \), \(u \mapsto \psi(u) (\forall \psi \in H^b) \).

We assume \(g \) is harmonic; otherwise, we replace \(g \) by a harmonic mapping homotopic to \(g \). Let \(\mathbf{F}_C(\infty, 0) \) denote the complex flat Fubini space, i.e. a complex Hilbert space.

Lemma 1. With assumptions of the theorem, \(g \) will produce a pluriharmonic mapping \(g^{fl} \). There exists a natural holomorphic mapping \(g^h : U_X \longrightarrow \mathbf{F}_C(\infty, 0) \).

Proof of Lemma 1. We define a harmonic \(\Gamma \)-equivariant mapping

\[
g^{fl} := S_{g(Q)} \cdot g : U_X \longrightarrow (H^b)^*.
\]

We have applied the mapping \(g \) followed by the Calabi flattening out \(S_{g(Q)} \) (a generalized stereographic projection from \(g(Q) \)) of the real projective space \(\mathbf{F}_R(\infty, 1) \) into the Hilbert space \(\mathbf{F}_R(\infty, 1) \). By \([2, \text{Chap. 4, Cor. 1, p. 20}]\), the whole \(\mathbf{F}_R(\infty, 1) \), except the antipolar hyperplane \(A \) of \(g(Q) \), can be flatten out into \(\mathbf{F}_R(\infty, 0) \). The image of \(g \) does not intersect the antipolar hyperplane \(A \) of \(g(Q) \). Thus we have introduced a flat metric in a large (i.e. outside \(A \)) neighborhood of \(g(Q) \) in \(\mathbf{P}((H^b)^*) \).

Since the mapping \(g^{fl} \) has finite \(\Gamma \)-energy, it is pluriharmonic; this is a special case of a theorem of Sin (see, e.g., [1]). Since \(U_X \) is simply connected, we obtain the natural holomorphic mappings

\[
g^h : U_X \longrightarrow \mathbf{F}_C(\infty, 0) (\hookrightarrow \mathbf{P}_C((H^b)^*) = \mathbf{F}_C(\infty, 1)).
\]

Lemma 2. Construction of a complex line bundle \(\mathcal{L}_X \) on \(X \) and its pullback on \(U_X \), denoted by \(\mathcal{L} \).

Proof of Lemma 2. We take a point \(u \in U_X \). Let \(v := g^h(u) \in \mathbf{F}_C(\infty, 1) \), where \(\mathbf{F}_C(\infty, 1) \) is the complex projective space. We consider the linear system of hyperplanes in \(\mathbf{F}_C(\infty, 1) \) through \(v \) and its proper transform on \(U_X \). We consider only the moving part. The projection on \(X \) of the latter linear system on \(U_X \) will produce a linear system on \(X \).

A connected component of a general member of the latter linear system on \(X \) will be an irreducible divisor \(D \) on \(X \) by Bertini’s theorem. The corresponding line bundle will be the desired \(\mathcal{L}_X := \mathcal{O}_X(D) \) on \(X \).
Lemma 3. Conclusion of the proof of theorem by induction on \(\dim X \).

Proof of Lemma 3. By the Campana-Deligne theorem [5, Theorem 2.14], \(\pi_1(D) \) will be nonamenable. We proceed by induction on \(\dim X \), the case \(\dim X = 1 \) being trivial. Let \(q = q(n) \) be an appropriate integer.

We get a global holomorphic function-section \(f \) of \(\mathcal{L}^g \) corresponding to a bounded pluriharmonic function (see Lemma 1 and [9, Sect. 4]). We will define a \(\Gamma \)-invariant Hermitian quasi-metric on sections of \(\mathcal{L}^g \) below. Furthermore, \(f \) is \(\ell^2 \) on orbits of \(\Gamma \), and it is not identically zero on any orbit because, otherwise, we could have replaced \(U_X \) by \(U_X \setminus B \), where the closed analytic subset \(B \subset U_X \) is the union of those orbits on which \(f \) had vanished [5, Theorem 13.2, Proof of Theorem 13.9].

One can show that \(f \) satisfies the above conditions by taking linear systems of curvilinear sections of \(U_X \) through \(u \in U_X \) and their projections on \(X \) (see the proof of Lemma 2 above), since the statements are trivial in dimension one. The required Hermitian quasi-metric on \(\mathcal{L}_X^g \) is also defined by induction on dimension with the help of the Poincaré residue map [3, pp. 147-148].

The condition \(\ell^2 \) on orbits of \(\Gamma \) is a local property on \(X \). We get only a Hermitian quasi-metric on \(\mathcal{L}_X^g \) (instead of a Hermitian metric). Precisely, we get Hermitian metrics over small neighborhoods of points of \(X \), and on the intersections of neighborhoods, they will differ by constant multiples (see [5, Chap. 5.13]).

For \(\forall k > N \gg 0 \), the Poincaré series are continuous sections

\[
P(f^k)(u) := \sum_{\gamma \in \Gamma} \gamma^* f^k(\gamma u),
\]

and they do not vanish for infinitely many \(k \) (see [5, Sect. 13.1, Theorem 13.2]).

Finally, we can apply Gromov’s theorem, precisely, its generalization by Kollár (see [4, Corollary 3.2.B, Remark 3.2.B’] and [5, Theorem 13.8, Corollary 13.8.2, Theorem 13.9, Theorem 13.10]). So, \(X \) is a Moishezon manifold.

The Lemma 3 and Theorem are established.

Remarks. i) The theorem of the present note provides an alternative proof of a conjecture of H. Wu provided \(\pi_1(X) \) is residually finite (see [10]).

ii) A generalization of the theorem to singular spaces will appear elsewhere.

References

[1] J. Amoros, M. Burger, K. Corlette, D. Kotschick, D. Toledo, *Fundamental Groups of Compact Kahler Manifolds*, American Math. Soc., Math. Surveys and Monographs, vol 44, Providence, RI, 1996.

[2] E. Calabi, *Isometric imbedding of complex manifolds*, Ann. of Math. 58 (1953), 1–23.

[3] P. Griffiths and J. Harris, *Principles of Algebraic Geometry*, John Wiley, New York, 1978.

[4] M. Gromov, *Kahler Hyperbolicity and \(L_2 \)-Hodge theory*, J. Diff. Geometry 33 (1991), 263–292.

[5] J. Kollár, *Shafarevich maps and automorphic forms*, Princeton Univ. Press, Princeton, 1995.

[6] T. Lyons and D. Sullivan, *Bounded harmonic functions on coverings*, J. Diff. Geometry 19 (1984), 299-323.

[7] B. G. Moishezon, *Algebraic varieties and compact complex spaces*, Actes, Congrés Intern. Math. (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 1971, 643-648.

[8] D. Toledo, *Bounded harmonic functions on coverings*, Proc. Amer. Math. Soc. 104 (1988), 1218-1219.

[9] R. Treger, *Metrics on universal covering of projective variety*, arXiv:1209.3128v5.[math.AG].

[10] , *On a conjecture of H. Wu*, arXiv:1503.00938v1.[math.AG].

Princeton, NJ 08540
E-mail address: roberotreger117@gmail.com