THE WEIGHTED PROPERTY (A) AND THE GREEDY ALGORITHM

P. M. BERNÁ, S. J. DILWORTH, D. KUTZAROVA, T. OIKHBERG, AND B. WALLIS

Abstract. We investigate various aspects of the “weighted” greedy algorithm with respect to a Schauder basis. For a weight \(w \), we describe \(w \)-greedy, \(w \)-almost-greedy, and \(w \)-partially-greedy bases, and examine some properties of \(w \)-semi-greedy bases. To achieve these goals, we introduce and study the \(w \)-Property (A).

1. Introduction

In this paper, we investigate the operation of the “weighted” greedy algorithm, and its efficiency. Throughout, \((X, \| \cdot \|) \) is a real Banach space with a semi-normalized Schauder basis \(B = (e_n)_{n=1}^{\infty} \), with biorthogonal functionals \((e^*_n)_{n=1}^{\infty} \); that is,

\[
A1) \quad 0 < c_1 := \inf_n \min \{\|e_n\|, \|e^*_n\|\} \leq \sup_n \max \{\|e_n\|, \|e^*_n\|\} := c_2 < \infty,
A2) \quad e^*_i(e_j) = 1 \text{ if } i = j \text{ and } e^*_i(e_j) = 0 \text{ for } i \neq j,
A3) \quad X = \text{span} \{e_i : i \in \mathbb{N}\},
A4) \quad \|S_m\| \leq K \text{ for every } m, \text{ where } (S_m)_{m=1}^{\infty} \text{ are partial sum operators – that is, } S_m(\sum_{i=1}^{\infty} a_i e_i) = \sum_{i=1}^{m} a_i e_i.\]

We denote by \(K \) the least value of \(K \) for which the preceding inequality holds, and call it the basis constant.

We will refer to \(B \) as a basis. Of course, for every \(x \in X \), there exists a unique expansion \(x = \sum_j e^*_j(x)e_j \). As usual, \(\text{supp}(x) = \{i \in \mathbb{N} : e^*_i(x) \neq 0\} \), \(|A| \) denotes the cardinality of a set \(A \) and \(\mathbb{N}^m = \{A \subset \mathbb{N} : |A| = m\} \), \(\mathbb{N}^{<\infty} = \bigcup_{m=0}^{\infty} \mathbb{N}^m \).

Further notations will be often used: if \(a \) and \(b \) are functions of some variable, \(a \lesssim b \) means that there exists a constant \(c > 0 \) such that \(a \leq c \cdot b \); if \(A \) and \(B \) are subsets of \(\mathbb{N} \), \(A < B \) means that \(\max_{j \in A} j < \min_{j \in B} j \), \(P_A \) is the projection operator, i.e., if \(A \) is a finite set, \(P_A(\sum_{j=1}^{\infty} a_j e_j) = \sum_{j \in A} a_j e_j \) and \(P_A^\perp = I - P_A \) is the complementary projection, \(1_A = \sum_{n \in A} e_n e_n \) for \(e_n \in \{\pm 1\} \) and if \(e_n \equiv 1 \), we write \(1_A \).

In 1999, S. V. Konyagin and V. N. Temlyakov introduced in [16] the Thresholding Greedy Algorithm (TGA): for in \(x \in X \) we produce the sequence of greedy approximands

\[
G_m(x) = \sum_{n=1}^{m} e^*_{\pi(n)}(x)e_{\pi(n)};
\]

2000 Mathematics Subject Classification. 46B15, 41A65.

Key words and phrases: thresholding greedy algorithm, unconditional basis, Property (A), \(w \)-greedy bases.

The first author was supported by a PhD fellowship FPI-UAM and the grants MTM-2016-76566-P (MINECO, Spain) and 19368/PI/14 (Fundació Séneca, Región de Murcia, Spain). The second author was supported by the National Science Foundation under Grant Number DMS–1361461. The second and third authors were supported by the Workshop in Analysis and Probability at Texas A&M University in 2017.
where \(\pi \) is a greedy ordering, that is, \(\pi : \{1, 2, \ldots, |\text{supp } x|\} \rightarrow \text{supp } x \) is a bijection such that \(|e_{\pi(i)}^*(x)| \geq |e_{\pi(j)}^*(x)| \) for \(i \leq j \). Alternatively we can write \(G_m(x) = \sum_{k \in A_m(x)} e_k^* e_k \), where \(A_m(x) = \{ \pi(n) : n \leq m \} \) is a greedy set of \(x \): \(\inf_{k \in A_m(x)} |e_k^*| \geq \sup_{k \notin A_m(x)} |e_k^*| \).

Also, they defined in [16] the quasi-greedy bases as those bases such that there exists a constant \(C \) such that

\[
\|G_m(x)\| \leq C\|x\|, \quad \forall x \in X, \forall m \in \mathbb{N}.
\]

P. Wojtaszczyk proved in [18] that a basis is quasi-greedy if and only if the (TGA) converges – that is,

\[
\lim_{m \to \infty} \|x - G_m(x)\| = 0, \quad \forall x \in X.
\]

Of course, (1) is equivalent to the existence of a constant \(C' \) such that

\[
\|x - G_m(x)\| \leq C'\|x\|, \quad \forall x \in X, \forall m \in \mathbb{N}.
\]

We denoted by \(C_q \) the least constant that satisfies (2), it is called the quasi-greedy constant and we say that \(B \) is \(C_q \)-quasi-greedy.

On the other hand, the (TGA) is a good candidate to obtain the best m-term approximation with regard to \(B \). In this sense, S. V. Konyagin and V. N. Temlyakov defined in [16] the greedy bases as those bases such that there exists a constant \(C \geq 1 \) such that

\[
\|x - G_m(x)\| \leq C \inf \{\|x - \sum n \in A a_n e_n\| : A \subset \mathbb{N}, |A| = m, a_n \in \mathbb{R}\}.
\]

Furthermore, they showed that \(B \) is greedy if and only if \(B \) is democratic (that is, \(\|1_A\| \lesssim \|1_B\| \), for all \(|A| \leq |B| \) and unconditional.

Some years later, G. Kerkyacharian, D. Picard and V. N. Temlyakov [15] introduced the following extension of the greedy bases: we consider a weight \(w = (w_i)_{i=1}^{\infty} \in (0, \infty)^{\mathbb{N}} \). If \(A \subset \mathbb{N} \), \(w(A) = \sum_{i \in A} w_i \) denote the \(w \)-measure of \(A \). We define the error \(\sigma_\delta^w(x) \) as

\[
\sigma_\delta^w(x, B) = \sigma_\delta^w (x) := \inf \{\|x - \sum n \in A a_n e_n\| : A \subset \mathbb{N}^{\infty}, w(A) \leq \delta, a_n \in \mathbb{R}\}.
\]

Definition 1.1. We say that \(B \) is \(w \)-greedy if there exists a constant \(C \geq 1 \) such that

\[
\|x - G_m(x)\| \leq C \sigma_\delta^w (A_m(x)), \quad \forall x \in X, \forall m \in \mathbb{N}.
\]

We denote by \(C_g \) the least constant that satisfies (4) and we say that \(B \) is \(C_g \)-\(w \)-greedy.

Roughly, the greedy bases are those where the greedy approximation is “as effective as m-term approximation can possibly be”.

This generalization was motivated by the work of A. Cohen, R. A. DeVore and R. Hochmuth in [8]. In their recent paper [6], the first author and Ó. Blasco characterize \(w \)-greedy bases using the best \(m \)-term error in the approximation “with polynomials of constant coefficients”. Moreover, [17] characterizes \(w \)-greedy bases in terms of their \(w \)-democracy and unconditionality.

Definition 1.2. We say that \(B \) is \(w \)-democratic if there exists a constant \(C \geq 1 \) such that

\[
\|1_A\| \leq C\|1_B\|,
\]

for any pair of sets \(A, B \in \mathbb{N}^{\infty} \) with \(w(A) \leq w(B) \). We denote by \(C_d \) the least constant that satisfies (5) and we say that \(B \) is \(C_d \)-\(w \)-democratic.
Recall that a basis \mathcal{B} in X is {unconditional} if any rearrangement of $\sum_n e_n^*(x)e_n$ converges in norm to x for any $x \in X$. This is equivalent to the uniform boundedness of basis projections:

$$\|x - P_A(x)\| \leq K\|x\|, \ \forall x \in X, \forall A \subset \mathbb{N}. \quad (6)$$

We denote by K_a the least constant that satisfies (6), it is called the (suppression) unconditional constant, and we say that \mathcal{B} is K_a-(suppression) unconditional.

Other important w-type greedy basis in this context is the w-almost-greedy basis.

Definition 1.3. We say that \mathcal{B} is w-{almost-greedy} if there exists a constant $C \geq 1$ such that

$$\|x - \mathcal{G}_m(x)\| \leq C\tilde{\sigma}^w_{w(A_m(x))}, \ \forall x \in X, \forall m \in \mathbb{N}, \quad (7)$$

where

$$\tilde{\sigma}^w_\delta(x, \mathcal{B}) = \tilde{\sigma}^w_\delta(x) := \inf\{|\|x - P_A(x)\|| : A \in \mathbb{N}^{<\infty}, w(A) \leq \delta\}.$$

We denote by C_{al} the least constant that satisfies (7) and we say that \mathcal{B} is C_{al}-w-almost-greedy.

Remark 1.4. If $w \equiv 1$, that is, $w(A) = |A|$, we recover the classical definition of almost-greediness (resp. greediness, democracy and Property (A)-see the definition below), and we will say that \mathcal{B} is almost-greedy (resp. greedy, democratic, has the Property (A)).

In the classical sense, that is, when $w \equiv 1$, S. J. Dilworth, N. J. Kalton, D. Kutzarova and V. N. Temlyakov gave in [12] a characterization of almost-greedy bases in terms of the quasi-greedy and democracy. Recently, S. J. Dilworth, D. Kutzarova, V. N. Temlyakov and B. Wallis, in [13], gave a characterization of w-almost-greedy bases in terms of quasi-greedy and w-democratic bases.

It is well known that, even for $w \equiv 1$, the w-democracy and unconditionality (resp. quasi-greediness), cannot be used to determine whether a given basis is w-greedy (resp. w-almost-greedy) with constant 1. For the weight $w \equiv 1$, F. Albiac and P. Wojtaszczyk introduced in [4] the so called Property (A) (defined below) in order to obtain finer estimate for the greedy constant C_g (and, in particular, to characterize bases with $C_g = 1$). The results of [4] were further generalized in [11]; in [2], the Property (A) was used to estimate the almost-greedy constant C_{al}.

Throughout the paper, we will be using a weighted version of Property (A):

Definition 1.5. We say that \mathcal{B} satisfies the w-{Property (A)} if there exists a constant $C \geq 1$ such that

$$\|x + t1_{\varepsilon A}\| \leq C\|x + t1_{\eta B}\|, \quad (8)$$

for any $x \in X$, for any $A, B \in \mathbb{N}^{<\infty}$ such that $w(A) \leq w(B)$, $A \cap B = \emptyset$, supp $(x) \cap (A \cup B) = \emptyset$, for any $\varepsilon, \eta \in \{\pm 1\}$ and $t \geq \sup_j |e_j^*(x)|$. We denote by C_a the least constant that satisfies (8) and we say that \mathcal{B} has the C_a-w-Property (A).

Remark 1.6. The definition of w-Property (A) was motivated by the “classical” Property (A) (introduced in [4]), which states that

$$\|x + t1_{\varepsilon A}\| \leq C\|x + t1_{\eta B}\|,$$

whenever $|A| = |B| < \infty$, $A \cap B = \emptyset$, supp $(x) \cap (A \cup B) = \emptyset$, $\varepsilon, \eta \in \{\pm 1\}$ and $t \geq \sup_j |e_j^*(x)|$. Proposition 3.2 shows that the classical Property (A) is equivalent to the w-Property (A) if $0 < \inf_n w_n \leq \sup_n w_n < \infty$.

THE WEIGHTED PROPERTY (A) AND THE GREEDY ALGORITHM

3
Another way of estimating the efficiency of greedy approximation is to compare the rate of convergence with straightforward Schauder approximation. To this end we consider \(w \)-partially-greedy bases. In [12], the authors defined the partially-greedy bases as those satisfying
\[
\|x - G_m(x)\| \leq C \|x - S_m(x)\|, \quad \forall x \in X, \forall m \in \mathbb{N},
\]
for some positive and absolute constant \(C \). Moreover, they proved that \(B \) is partially-greedy if and only if \(B \) is quasi-greedy and conservative (that is, \(\|1_A\| \leq \|1_B\| \) for all pair of finite sets \(A, B \) such that \(A < B \) and \(|A| \leq |B| \)). Here, we present the notion of \(w \)-partially-greedy bases and we characterize these bases using \(w \)-conservative bases.

The paper is structured as follows. In Section 2 we describe the \(w \)-greedy and \(w \)-almost-greedy bases in terms of their other properties (such as \(w \)-Property (A), unconditionality, or being quasi-greedy). The main results are Theorems 2.1 and 2.2.

In Section 3, we collect basic facts about the \(w \)-Property (A). In addition, we consider the \(w \)-semi-greedy bases – that is, the bases where the Chebyshev greedy approximands are optimal. It turns out (Theorem 3.7) such bases necessarily possess the \(w \)-Property (A).

Section 4 is devoted to properties (C) and (D), which arise naturally in the study of quasi-greedy bases. In particular, it is shown that \(w \)-superdemocracy and Property (C) imply \(w \)-Property (A) (Proposition 4.2). However, superdemocracy does not imply Property (C) (Example 4.8). Further, we show that any \(w \)-semi-greedy basis has Property (C) if the weight \(w \) is equivalent to a constant (Proposition 4.10).

In Section 5, we compare the efficiency of greedy approximation with that of the canonical basis projections. This gives rise to the notion of an \(w \)-partially-greedy basis; such bases are characterized in Theorem 5.7.

Finally, in Section 6 and Section 7 we state some open questions related to our results, and prove some basic lemmas used throughout the paper.

We freely use the standard “greedy” terminology. The reader can consult e.g. [17] for more information.

2. Characterization of \(w \)-greedy and \(w \)-almost-greedy bases

In this section we describe the \(w \)-(almost)-greediness of a basis in terms of its \(w \)-Property (A) and unconditionality (resp. quasi-greediness). The corresponding results for the constant weight \(w \equiv 1 \) can be found, for instance, in [17].

Theorem 2.1. Let \(B \) be a basis of a Banach space \(X \).

- a) If \(B \) is \(C_g \)-\(w \)-greedy, then the basis is \(K_u \)-unconditional and has the \(C_a \)-\(w \)-Property (A) with constants \(K_u \leq C_g \) and \(C_a \leq C_g \).
- b) If \(B \) is \(K_u \)-unconditional and has the \(C_a \)-\(w \)-Property (A), then the basis is \(C_g \)-\(w \)-greedy with \(C_g \leq K_u C_a \).

Theorem 2.2. Let \(B \) be a basis of a Banach space \(X \).

- a) If \(B \) is \(C_{al} \)-\(w \)-almost-greedy, then the basis is \(C_q \)-quasi-greedy and has the \(C_a \)-\(w \)-Property (A) with constants \(C_q \leq C_{al} \) and \(C_a \leq C_{al} \).
- b) If \(B \) is \(C_q \)-quasi-greedy and has the \(C_a \)-\(w \)-Property (A), then the basis is \(C_{al} \)-\(w \)-almost-greedy with \(C_{al} \leq C_q C_a \).

Later (Proposition 5.11) we will see examples of bases with \(w \)-Property (A) for a certain weight \(w \), but failing the “classical” Property (A).

For further use, we need the following reformulation of the \(w \)-Property (A) (inspired by [2]).
Proposition 2.3. A basis \mathcal{B} has the C_a-w-Property (A) if and only if
\[\|x\| \leq C_a\|x - P_A(x) + 1_{\eta B}\|, \]
for any $x \in \mathbb{X}$ with $\sup_j |e_j^*(x)| \leq 1$, $A, B \in \mathbb{N}^{<\infty}$, $w(A) \leq w(B)$, $B \cap \text{supp} \,(x) = \emptyset$ and $\eta \in \{\pm 1\}$.

The proof requires a technical result.

Lemma 2.4. Suppose D is a finite subset of \mathbb{N}, and $x \in \mathbb{X}\backslash\{0\}$ satisfies $\text{supp} \,(x) \cap D = \emptyset$. Then for any $\varepsilon > 0$ there exists a finitely supported $y \in \mathbb{X}$, so that $\|x - y\| < \varepsilon$, $\text{supp} \,(y) \cap D = \emptyset$, and $\max_j |e_j^*(x)| = \max_j |e_j^*(y)|$.

Proof. It suffices to consider $\varepsilon < 1/(2c_2)$. By scaling, we can assume that $\max_j |e_j^*(x)| = 1$ (then $\|x\| \geq 1/c_2$). Clearly $P_D(x) = 0$, and $P_D^c(x) = x$. Now set $\delta = \varepsilon/(3c_2\|x\|)$. As span $[e_j : j \in \mathbb{N}]$ is dense in \mathbb{X}, there exists a finitely supported $z \in \mathbb{X}$ so that $\|x - z\| < \delta/\|P_D^c\|$. Let $u = P_D(z)$, then $\|x - u\| = \|P_D^c(x - z)\| < \delta$. For every j, $|e_j^*(x - u)| < c_2\delta$, hence $C = \max_j |e_j^*(x)| \in (1 - c_2\delta, 1 + c_2\delta)$. Now let $y = u/C$. Then $\max_j |e_j^*(y)| = 1$, and
\[\|x - y\| \leq \|x - u\| + \|1 - C^{-1}\|u\| \leq \delta + \frac{c_2\delta}{1 - c_2\delta}(|x| + \delta) < \varepsilon. \]

Proof of Proposition 2.3. By Lemma 2.4 it suffices to restrict our attention to finitely supported vectors $x \in \mathbb{X}$ only. So, throughout this proof, we assume $|\text{supp} \,(x)| < \infty$.

Suppose that \mathcal{B} has the C_a-w-Property (A), and $x, A, B, \varepsilon, \eta$ are as in the statement of the proposition with $\sup_j |e_j^*(x)| \leq 1$. Applying the definition of w-Property (A) to $P_A \cdot x$, A, and B, we obtain
\[\|P_A \cdot x + 1_{\varepsilon A}\| \leq C_a\|P_A \cdot x + 1_{\eta B}\| = C_a\|x - P_A \cdot x + 1_{\eta B}\|. \]

To finish the proof, observe that x belongs to the convex hull of the set $\{P_A \cdot x + 1_{\varepsilon A} \mid \varepsilon \in \{\pm 1\}\}$.

Now, suppose (9), and prove that the basis \mathcal{B} has the w-Property (A) with the same constant. Take $x \in \mathbb{X}$ and $\sup_j |e_j^*(x)| \leq 1$, $A, B \in \mathbb{N}^{<\infty}$ such that $w(A) \leq w(B)$, $A \cap B = \emptyset$, $\text{supp} \,(x) \cap (A \cup B) = \emptyset$ and $\varepsilon, \eta \in \{\pm 1\}$. Define $x' = x + 1_{\varepsilon A}$. Using (9),
\[\|x + 1_{\varepsilon A}\| = \|x'\| \leq C_a\|x' - P_A \cdot (x') + 1_{\eta B}\| = C_a\|x + 1_{\eta B}\|. \]

Proof of Theorem 2.7. Assume that \mathcal{B} is C_g-w-greedy.

Unconditionality: Let $x \in \mathbb{X}$ and $A \subset \text{supp} \,(x)$. Define $y := P_A \cdot x + \sum_{n \in A} (\alpha + e_n^*(x))e_n$, where
\[\alpha > \sup_{j \in A} |e_j^*(x)| + \sup_{j \in A^c} |e_j^*(x)|. \]

As A is a greedy set of y,
\[\|x - P_A \cdot x\| = \|y - P_A \cdot y\| \leq C_g \sigma_{w(A)}^w(y) \leq C_g\|y - \alpha 1_A\| = C_g\|x\|. \]

Thus, the basis is unconditioned with constant $K_u \leq C_g$.

w-Property (A): Fix $x \in \mathbb{X}$, take $t \geq \sup_n |e_n^*(x)|$. Consider $\varepsilon, \eta \in \{\pm 1\}$ and finite sets A, B such that $A \cap B = \emptyset$, $w(A) \leq w(B)$, and $(A \cup B) \cap \text{supp} \,(x) = \emptyset$. Set $y := x + t 1_{\varepsilon A} + (t + \delta) 1_{\eta B}$ with $\delta > 0$. Hence,
\[\|x + t 1_{\varepsilon A}\| = \|y - G_{\eta B}(y)\| \leq C_g \sigma_{w(B)}^w(y) \leq C_g\|y - t 1_{\varepsilon A}\| = C_g\|x + (t + \delta) 1_{\eta B}\|. \]

Taking $\delta \to 0$, we obtain that the basis satisfies the w-Property (A) with constant $C_a \leq C_g$.

THE WEIGHTED PROPERTY (A) AND THE GREEDY ALGORITHM 5
Next we prove that if \mathcal{B} is K_u-unconditional and has the C_u-w-Property (A), then it is w-greedy.

Take $x \in X$ and suppose that A is a greedy set of cardinality m for $x \in X$—that is, $P_A(x) = G_m(x)$. For $\varepsilon > 0$ find $y \in X$ such that $\|x - y\| < \sigma^w_{w(A)}(x) + \varepsilon$, with $\text{supp}(y) = B$ and $w(B) \leq w(A)$. Then, taking $t := \min \{ |e_j^*(x)| : j \in A \}$ and $\eta \equiv \text{sgn} \{ e_j^*(x) \}$, using the reformulation of the w-Property (A) and Lemma 7.1, we obtain that

$$\|x - G_m(x)\| \leq C_a \|x - P_A(x) - P_{B \setminus A}(x) + t1_{\eta(A)B}\| = C_a \|P_{(A \cup B)^c}(x - y) + t1_{\eta(A)B}\|$$

$$= C_a \|T_t(I - P_B)(x)\| = C_a \|T_t(I - P_B)(x - y)\| \leq K_u C_a \|x - y\|.$$

Consequently, for any greedy set A we have $\|x - P_A x\| \leq K_u C_a \sigma^w_{w(A)}(x)$. \hfill \Box

Proof of Theorem 2.2. Assume that \mathcal{B} is C_{al}-w-almost-greedy.

- **Quasi-greedy:** Since

$$\|x - G_m(x)\| \leq C_{al} \inf \{ \|x - \sum_{n \in B} e_n^*(x) e_n\| : w(B) \leq w(A_m(x)), B \in N^{<\infty} \},$$

we can select $B = \emptyset$. Then, we obtain that $\|x - G_m(x)\| \leq C_{al} \|x\|$, hence the basis is quasi-greedy with constant $C_q \leq C_{al}$.

- **w-Property (A):** We can use the same argument as in Theorem 2.1.

Now, we will prove that if \mathcal{B} is C_q-quasi-greedy and has the C_u-w-Property (A), then it is w-almost-greedy.

For $x \in X$, let A be a greedy set of cardinality m. For $\varepsilon > 0$, find B such that $\|x - P_B(x)\| < \tilde{\sigma}^w_{w(A)}(x) + \varepsilon$, with $w(B) \leq w(A)$. Then, taking $t := \min \{ |e_j^*(x)| : j \in A \}$ and $\eta \equiv \text{sgn} \{ e_j^*(x) \}$, using the reformulation of the w-Property (A) and Lemma 7.1,

$$\|x - G_m(x)\| \leq C_a \|P_{(A \cup B)^c}(x - y) + t1_{\eta(A)B}\|$$

$$= C_a \|T_t(I - P_B)(x)\| \leq C_q C_a \|x - P_B(x)\|.$$

This gives that, for any greedy set A, $\|x - P_A(x)\| \leq C_q C_a \sigma^w_{w(A)}(x)$ as desired. \hfill \Box

Remark 2.5. In this paper, we focus on the situation when \mathcal{B} is a Schauder basis. However, the w-Property (A) can be defined for any complete biorthogonal system satisfying the conditions (A1)-(A3); the proof of Proposition 2.3 goes through as well.

Moreover, in the definition of the w-Property (A), it suffices to show that (8) holds for with $\max_j |e_j^*(x)| = t$. More specifically, the following four statements are equivalent:

(a) \mathcal{B} satisfies the w-Property (A) (see Definition 1.5).

(b) There exists a constant C so that $\|x\| \leq C \|x - P_A(x) + t1_{\eta B}\|$ for any $\eta \in \{\pm 1\}$, $x \in X$, $B \cap \text{supp}(x) = \emptyset$, $w(A) \leq w(B)$ and $t \geq \sup_j |e_j^*(x)|$.

(c) There exists a constant C' so that $\|x + s1_{\eta B}\| \leq C \|x + s1_{\eta B}\|$ for any $x \in X$, $w(A) \leq w(B)$, $A \cap B = \emptyset$, $\sup_j |e_j^*(x)|$. \hfill \Box

(d) There exists a constant C'' so that $\|x\| \leq C'' \|x - P_A(x) + s1_{\eta B}\|$ for any $x \in X$, $\eta \in \{\pm 1\}$, $B \cap \text{supp}(x) = \emptyset$, $w(A) \leq w(B)$ and $s = \sup_j |e_j^*(x)|$.

Indeed, the implications (a) \Rightarrow (c) and (b) \Rightarrow (d) (with $C' = C$) are immediate. The equivalence (a) \Leftrightarrow (b) (with the same constant C) has been established in Proposition 2.3. Minor adjustments to that argument give us (c) \Leftrightarrow (d).

To establish (d) \Rightarrow (b), take x, A, B, η as in (b) and $t \geq \sup_j |e_j^*(x)|$. As before, we can assume that x is finitely supported. Find k so that $\|e_k^*(x)\| = \sup_j |e_j^*(x)|$. By replacing x by
\(-x\) if necessary, we can assume \(s = e'_k(x) \geq 0\). Let \(c = t - s\), and consider
\[
x' = x + c e_k = \sum_{j \in \text{supp}(x) \setminus \{k\}} e^*_j(x) e_j + t e_k.
\]
Note that \(\|x - x'\| \leq cc_2 \leq tc_2\). Furthermore, \(x' - P_A(x')\) equals either \(x - P_A(x)\) (if \(k \in A\)), or \(x - P_A(x) + ce_k\) (if \(k \notin A\)). In either case,
\[
\|x - P_A(x) + t1_{\eta B}\| \geq \|x' - P_A(x') + t1_{\eta B}\| - tc_2.
\]
By (d), we have \(\|x'\| \leq C'\|x' - P_A(x') + t1_{\eta B}\|\). By the above,
\[
\|x\| - tc_2 \leq C'\|x - P_A(x) + t1_{\eta B}\| + tc_2
\]
As \(\|x - P_A(x) + t1_{\eta B}\| \geq tc_2^{-1}\), we conclude that \(\|x\| \leq (C' + 2c_2^2)\|x - P_A(x) + t1_{\eta B}\|\).

3. Some Remarks on the \(w\)-Property (A)

Definition 3.1. Let \(v = (v_n)_{n=1}^{\infty}\) and \(w = (w_n)_{n=1}^{\infty}\) be weights. We say that \(v\) is equivalent to \(w\), written \(v \approx w\), whenever there exist positive real constants \(0 < a \leq b < \infty\) satisfying
\[
av_n \leq w_n \leq bw_n \quad \text{for all } n \in \mathbb{N}.
\]

Proposition 3.2. Let \(v, w\) weights and suppose that \(v \approx w\). Then every basis with the \(w\)-Property (A) also has the \(v\)-Property (A).

Proof. Let \(x \in X\) with \(|\text{supp}(x)| < \infty\) and \(\sum_j |e^*_j(x)| \leq 1\), \(A\) and \(B\) finite satisfying \(v(A) \leq v(B)\), \(A \cap B = \emptyset\), \(\text{supp}(x) \cap (A \cup B) = \emptyset\) and \(\varepsilon, \eta \in \{\pm 1\}\). We set
\[
\Gamma = \{n \in A : w_n \geq w(B)\}.
\]
Observe that
\[
w(A) \leq b \cdot v(A) \leq b \cdot v(B) \leq \frac{b}{a} \cdot w(B),
\]
which gives us
\[
w(A) \geq w(\Gamma) \geq |\Gamma| \cdot w(B) \geq |\Gamma| \cdot \frac{a}{b} \cdot w(A),
\]
and hence \(|\Gamma| \leq b/a\). Next, we give the following partition of \(A \setminus \Gamma\): \(A_1 < \ldots < A_m\), so that for each \(i = 1, \ldots, m\), the set \(A_i\) is a maximal such that \(w(A_i) \leq w(B)\). Due to maximality,
\[
w(B) < w(A_i) + w(A_{i+1})\] for all \(i = 1, \ldots, m - 1\).
Thus,
\[
(m - 1) \cdot w(B) < \sum_{i=1}^{m-1} [w(A_i) + w(A_{i+1})] < 2 \cdot w(A \setminus \Gamma) \leq 2 \cdot w(A) \leq \frac{2b}{a} \cdot w(B).
\]
This gives us
\[
m \leq \frac{2b}{a} + 1.
\]
Hence, using the bounds of $|\Gamma|$, m and the condition of the w-Property (A),
\[
\|x + 1 \varepsilon A\| \leq \|1_{\Gamma}\| + \|x + \sum_{i=1}^{m} 1_{\varepsilon A_i}\| \leq \sum_{n \in \Gamma} \|e_n\| + \sum_{i=1}^{m} \|\frac{x}{m} + 1_{\varepsilon A_i}\|
\]
\[
\leq c_{2}^{2}|\Gamma|\|x + 1_{\eta B}\| + C_{a}m\|\frac{x}{m} + 1_{\eta B}\| \leq \frac{c_{2}^{2}b}{a}\|x + 1_{\eta B}\| + C_{a}\|x + m1_{\eta B}\|
\]
\[
\leq \frac{c_{2}^{2}b}{a}\|x + 1_{\eta B}\| + C_{a}m\|x + 1_{\eta B}\| + C_{a}(m - 1)\|x\|
\]
\[
\leq \frac{c_{2}^{2}b}{a}\|x + 1_{\eta B}\| + C_{a}m\|x + 1_{\eta B}\| + C_{a}^{2}(m - 1)\|x + 1_{\eta B}\|
\]
\[
\leq \left(\frac{c_{2}^{2}b + 2bC_{a}^{2}}{a}\right)\|x + 1_{\eta B}\|.
\]
\[\square\]

Remark 3.3. In a similar fashion, one can show that, if the weights w and v are equivalent, then any w-democratic (w-superdemocratic, w-conservative – for the definitions, see below) basis is also v-democratic (resp. v-superdemocratic or v-conservative).

Remark 3.4. The converse to Proposition 3.2 does not hold in general. For example, suppose the weights w, v belong to ℓ_1. By [13], the family of w-democratic (or v-democratic) bases consists precisely of those bases which are equivalent to the canonical basis of c_0. However, w and v need not be equivalent.

The rest of this section is motivated by the recent definition of w-semi-greedy bases introduced in [13]. To give this notion, we need the Chebyshev Greedy Algorithm: for $x \in X$ and $m \in \mathbb{N}$, if $A_{m}(x)$ is the greedy set of x with cardinality m, we define the Chebyshev Greedy Approximand of order m as any $G_{m}(x) \in \text{span}\{e_{i} : i \in A_{m}(x)\}$ such that
\[
\|x - G_{m}(x)\| = \min\{|x - \sum_{n \in A_{m}(x)} b_{n}e_{n}| : b_{n} \in \mathbb{R}\}.
\]

Definition 3.5. We say that B is w-semi-greedy if there exists a constant $C \geq 1$ such that
\[
\|x - G_{m}(x)\| \leq C_{w}^{\sigma_{w}(A_{m}(x))}(x), \quad \forall x \in X, \forall m \in \mathbb{N}.
\] (10)

We denote by C_{sg} the least constant that satisfies (10) and we say that B is C_{sg}-w-semi-greedy.

By [13], any w-semi-greedy basis is w-superdemocratic.

Definition 3.6. We say that B is w-superdemocratic if there exists a constant $C \geq 1$ such that
\[
\|1_{A}\| \leq C\|1_{\eta B}\|, \quad (11)
\]
for any $A, B \in \mathbb{N}^{\leq \infty}$ with $w(A) \leq w(B)$ and $\varepsilon, \eta \in \{\pm 1\}$.

We denote by C_{s} the least constant that satisfies (11) and we say that B is C_{s}-superdemocratic.

Here, we show that
\[
w - \text{semi-greedy} \Rightarrow w - \text{Property (A)} \Rightarrow w - \text{superdemocracy}. \quad (12)
\]

Theorem 3.7. If a basis B is w-semi-greedy, then B has the w-Property (A).
Proof. Assume that \(\| x - \overline{G}_m(x) \| \leq C_{sg}\sigma_{w(A_m(x))}^w \) for any \(x \in \mathbb{N} \) and \(m \in \mathbb{N} \).

We take \(\varepsilon, \eta, A, B \) and \(x \) in the conditions of the definition of the \(w \)-Property (A). In all of the following cases we consider \(x \in \mathbb{N} \) such that \(|\text{supp} (x)| < \infty \) and \(\sup_n |e_n^\ast(x)| \leq 1 \).

Case 1: \(\sum_{n=1}^{\infty} w_n = \infty \) and \(\sup_n w_n < \infty \).

Case 1.1: \(w(B) > \limsup_{n \to \infty} w_n \). Since \(\sum_n w_n = \infty \), we can choose \(E \) and \(n_0 \in \mathbb{N} \) with \(\min E > \max(A \cup B \cup \text{supp} (x)) \) and \(n_0 > \max E \) such that
\[
\begin{align*}
\inf_{n \in E} \| x + \varepsilon \| &\leq \inf_{n \in F} \| x + 1 \| + \delta \| 1_F \|.
\end{align*}
\]

Consequently, \(\| x + \varepsilon \| \leq K_b C_{sg} \| x + (1 + \delta) 1_F \| \). Taking \(\delta \to 0 \),
\[
\begin{align*}
\| x + \varepsilon \| &\leq K_b C_{sg} \| x + 1 \| + K_b C_{sg} \| e_n \| \leq K_b C_{sg} \| x + 1 \| + K_b C_{sg} \| 1_E \| \leq K_b C_{sg} \| x + 1 \| + K_b C_{sg} \| 1_E \| + K_b C_{sg} \| 1_E \|.
\end{align*}
\]

Now, we set \(y := 1_{\eta B} + (1 + \delta) 1_F \). Reasoning as before, we obtain
\[
\begin{align*}
\| 1_{\eta B} \| &\leq K_b \inf_{c_n} \| 1_{\theta B} + \sum_{n \in F} \| c_n e_n \| \leq K_b C_{sg} \sigma_{w(F)}^w(y) \leq K_b C_{sg} \| (1 + \delta) 1_F \|.
\end{align*}
\]

Sending \(\delta \to 0 \), we obtain
\[
\| 1_{\eta B} \| \leq K_b C_{sg} \| 1_F \| \leq K_b C_{sg} \| 1_E \| + K_b C_{sg} \| 1_F \|.
\]

On the other hand, taking \(s := x + (1 + \delta) 1_{\theta B} + 1_E \),
\[
\begin{align*}
\| 1_E \| &\leq (K_b + 1) \| x + \sum_{n \in B} b_n e_n + 1_E \| \leq C_{sg} (K_b + 1) \sigma_{w(B)}^w(s) \leq C_{sg} (K_b + 1) \| x + 1_{\eta B} \|.
\end{align*}
\]

Then, taking \(\delta \to 0 \),
\[
\| 1_E \| \leq C_{sg} (K_b + 1) \| x + 1_{\eta B} \|.
\]

Finally, using (13), (14) and (15), the basis satisfies the \(w \)-Property (A) with constant \(K = O(C_{sg}^3 K_{sg}^2) \).

Case 1.2: \(w(A) \leq w(B) \leq \lim \sup_{n \to \infty} w_n \). Using Proposition 3.5 of [13],
\[
\max \{ \| 1_{\varepsilon A} \|, \| 1_{\eta B} \| \} \leq 2 K_b C_{sg} \| 1_F \|.
\]

Since \(1 = |e_j^\ast(x + 1_{\eta B})| \leq \| e_j^\ast \| \| x + 1_{\eta B} \| \leq c_2 \| x + 1_{\eta B} \| \) for \(j \in B \), then
\[
\begin{align*}
\| x + 1_{\varepsilon A} \| &\leq \| x + 1_{\eta B} \| + \| 1_{\eta B} \| + \| 1_{\varepsilon A} \| \\
&\leq \| x + 1_{\eta B} \| + 4 K_b C_{sg} \| 1_F \| \leq (4 K_b C_{sg}^2 + 1) \| x + 1_{\eta B} \|.
\end{align*}
\]

Case 2: If \(\sum_n w_n < \infty \) or \(\sup_n w_n = \infty \), using the Proposition 3.5 of [13], \(B \) is equivalent to the canonical basis of \(c_0 \) and the result is trivial.

\[\square\]
Proposition 3.8. If \mathcal{B} has the C_a-w-Property (A), then \mathcal{B} is $2C_a$-w-superdemocratic.

Proof. Take $A, B \in \mathbb{N}^\infty$ with $w(A) \leq w(B)$, and show that, for any choice of signs, $\|1_{\eta A}\| \leq 2C_a\|1_B\|$. As in [7], Subsection 4.4, it is enough to prove our inequality for $\varepsilon \equiv 1$ (otherwise, replace $\mathcal{B} = \{e_n : n \in \mathbb{N}\}$ by $\{\varepsilon_n e_n : n \in \mathbb{N}\}$). Since $1_{\eta A} \in 2S$, where $S = \{\sum_{A' \subseteq A} \theta_{A'} 1_{A'} : \sum_{A' \subset A} |\theta_{A'}| \leq 1\}$ (see [10] Lemma 6.4), it suffices to show that

$$\|1_{A'}\| \leq C_a\|1_B\|, \forall A' \subset A.$$

Take $A' \subset A$. Obviously, $1_{A'} = 1_{A' \setminus B} + 1_{B \cap A'}$. Then, using the w-Property (A),

$$\|1_{A'}\| = \|1_{A' \setminus B} + 1_{B \cap A'}\| \leq C_a\|1_{B \setminus A'} + 1_{B \cap A'}\| = C_a\|1_B\|.$$

We can apply the w-Property (A) because

$$w(A') = w(A' \setminus B) + w(A' \cap B) \leq w(A) \leq w(B) = w(B \setminus A') + w(B \cap A') \Rightarrow w(A' \setminus B) \leq w(B \setminus A').$$

This completes the proof.

With these results, we have proved the implications (12).

Remark 3.9. If $w \equiv 1$, we recover the classical definition of semi-greediness (resp. superdemocracy), and we will say that \mathcal{B} is semi-greedy (resp. superdemocratic).

Improving [13] Proposition 4.5, we prove that, in certain cases, any w-superdemocratic basis has to contain a subsequence equivalent to the canonical basis of c_0 (c_0-basis henceforth), or even to be equivalent to such basis.

Proposition 3.10. Suppose a basis $\mathcal{B} = (e_n)_{n=1}^\infty$ is C_s-w-superdemocratic.

i) If $A \in \mathbb{N}^\infty$ and $w(A) \leq \limsup_{n \to \infty} w_n$, then $\max_{\varepsilon \in \{\pm 1\}} \|1_{\varepsilon A}\| \leq c_2C_s$.

ii) If $\sup_n w_n = \infty$, then \mathcal{B} is equivalent to the c_0-basis.

iii) If $\inf_n w_n = 0$, then there exist $i_1 < i_2 < \ldots$ so that the sequence $(e_{i_k})_{k \in \mathbb{N}}$ is equivalent to the c_0-basis. Moreover, if $\lim_n w_n = 0$, then for any infinite set $A \subset \mathbb{N}$ we can select $i_1, i_2, \ldots \in A$ with the properties described above.

iv) If $\sum_n w_n < \infty$, then \mathcal{B} is equivalent to the c_0-basis.

Proof. i) Find $n \in \mathbb{N} \setminus A$ so that $w_n > w(A)$, then $\|1_{\varepsilon A}\| \leq C_s\|1_{\{n\}}\| \leq c_2C_s$.

ii) By (i), $\|1_{\varepsilon A}\| \leq c_2C_s$ for all choices of signs, which yields the desired equivalence.

iii) Suppose $\inf_n w_n = 0$, and find $i_1 < i_2 < \ldots$ so that $\sum_k w_{i_k} < \infty$. By convexity, it suffices the existence of a constant K with the property that the inequality $\|1_{\varepsilon E}\| \leq K$ holds for any finite set $E \subset \{i_1, i_2, \ldots\}$. To this end, find $N \in \mathbb{N}$ so that $\sum_{j=1}^N w_j \geq \sum_k w_{i_k} < \infty$. Let $B = \{1, \ldots, N\}\setminus\{i_1, i_2, \ldots\}$, $D = \{1, \ldots, N\} \cap \{i_1, i_2, \ldots\}$, and $A = E \setminus D$. Note that $|B|, |D| \leq N$, hence, for every $\varepsilon \in \{-1, 1\}^N$, $\|1_{\varepsilon B}\|, \|1_{\varepsilon D}\| \leq c_2N$. Then $w(A) \leq w(B)$ and hence $\|1_{\varepsilon A}\| \leq C_s\|1_{\varepsilon B}\| \leq c_2NC_s$. By the triangle inequality,

$$\|1_{\varepsilon E}\| \leq \|1_{\varepsilon A}\| + \|1_{\varepsilon D}\| \leq c_2N(C_s + 1).$$

If $\lim_n w_n = 0$, then every infinite $A \subset \mathbb{N}$ contains $i_1 < i_2 < \ldots$ with $\sum_k w_{i_k} < \infty$. It remains to invoke the preceding result.

iv) The proof proceeds as in (iii).

From this we immediately obtain:

Corollary 3.11. If the weight w is unbounded, then a basis has the w-Property (A) if and only if it is equivalent to the canonical basis of c_0.

4. Properties (C) and (D)

Properties (C) and (D) (discussed below) naturally arise in the study of quasi-greedy bases.

Definition 4.1. We say that B satisfies the Property (C) if for any $x \in X$, there exists a positive constant C such that

$$\min_{j \in \Lambda} |e_j^*(x)| \leq C \|x\|,$$

for any greedy set Λ of x and $\varepsilon \in \{\pm 1\}$. We denote by C_u the least constant that satisfies this inequality and we say that B has the Property (C) with constant C_u.

It is well known any quasi-greedy basis has Property (C) (see [7, Lemma 2.3]). Generalizing [7, Lemma 2.2], we prove that any w-superdemocratic basis with the Property (C) has the w-Property (A).

Proposition 4.2. If B is a C_s-w-superdemocratic and satisfies the Property (C) with constant C_u, then B has the C_a-w-Property (A) with $C_a \leq 3C_uC_s$.

Proof. Take $x, A, B, \varepsilon, \eta$ as in the definition of the w-Property (A) and assume that $\sup_j |e_j^*(x)| \leq 1$. Then,

$$\|x + 1_{xA}\| \leq \|x + 1_{yB}\| + \|1_{yB}\| + \|1_{xA}\|.$$ \hspace{1cm} (18)

Using the w-superdemocracy and $w(A) \leq w(B)$, we obtain that $\|1_{xA}\| \leq C_s\|1_{yB}\|$. Now, we only have to estimate $\|1_{yB}\|$. For that, we consider the element $y := x + 1_{yB}$. It’s clear that 1_{yB} is a greedy sum for y, so

$$\min_{j \in B} |e_j^*(y)| \leq \|1_{yB}\| \leq C_u\|y\| = C_u\|x + 1_{yB}\|.$$ \hspace{1cm} (19)

Then, using (18) and (19),

$$\|x + 1_{xA}\| \leq \|x + 1_{yB}\| + 2C_sC_u\|x + 1_{yB}\| \leq 3C_sC_u\|x + 1_{yB}\|.$$ \hspace{1cm} (20)

Hence, the basis has the w-Property (A) with constant $C_a \leq 3C_uC_s$. \hfill \Box

Example 4.3. We next revisit a “pathological” basis constructed in Section 5.5 of [7] (using some ideas from [9, Example 4.8]): a basis which has the Property (A), but fails to be quasi-greedy. The initial proof of the Property (A) was unwieldy. Here we present a streamlined proof that the basis has the Property (C), and then invoke Proposition 4.2.

First recall the construction: D_k denote the set of all dyadic intervals $I \subset [0, 1]$ with length $|I| = 2^{-k}$, and consider $D = \bigcup_{k \geq 0} D_k$. Now, we consider the space ℓ^q_1 of all real sequences $a = (a_I)_{I \in D}$ such that

$$\|a\|_{\ell^q_1} = \left\| \left(\sum_I |a_I\chi_I^{(1)}|^q \right)^{1/q} \right\|_{L^1} < \infty,$$

where $\chi_I^{(1)} = |I|^{-1} \chi_I$. By [13], the canonical basis $\{e_I\}_{I \in D}$ is unconditional and democratic.

For every $N \geq 1$, we shall pick a subset $\{k_1, \ldots, k_N\} \subset \mathbb{N}_0$ and look at the finite dimensional space F_N consisting of sequences supported in $\bigcup_{j=1}^N D_{k_j}$. We order the canonical basis by $\bigcup_{j=1}^N \{e_I\}_{I \in D_{k_j}}$, so we may as well write their elements as $a = (a_j)_{j=1}^{\dim F_N}$. We also consider in...
\[F_N \text{ the James norm} \]

\[
\| (a_j) \|_{J_q} = \sup_{m_0 = 0 < m_1 < \cdots} \left(\sum_{k \geq 0} \left| \sum_{m_k < j \leq m_{k+1}} a_j \right|^q \right)^{1/q}.
\]

Now, set in \(F_N \) a new norm

\[
\| a \| = \max \{ \| a \|_{J_q}, \| a \|_{J_q} \}.
\]

Finally, we consider the Banach space \(X = \oplus_q F_N \) with \(B \) the consecutive union of the natural bases in \(F_N \).

It’s possible to show that \(B \) is superdemocratic and \(\| 1_{\varepsilon A} \| \approx |A| \approx \| 1_{\varepsilon A} \|_{q} \). To show that \(B \) satisfies the Property (C), we use that the canonical basis in \(f_q \) is unconditional: take \(a \in X \) and \(A \) a greedy set of \(a \), then

\[
\min_{n \in A} |a_n| \| 1_{\varepsilon A} \| \lesssim \min_{n \in A} |a_n| \| 1_{\varepsilon A} \|_{q} \lesssim \| a \|_{q} \leq \| a \|.
\]

Hence, the basis satisfies the Property (C). Also, since the basis is superdemocratic, using the Proposition 4.2, the basis satisfies the Property (A).

Definition 4.4. We say that \(B \) is bidemocratic if there exists a constant \(C \geq 1 \) such that

\[
\| 1_{\varepsilon A} \| \| 1_{\eta A} \|_{*} \leq C |A|, \quad \forall \text{ finite } A, \forall \varepsilon, \eta \in \{ \pm 1 \}.
\]

Here, \(\| \cdot \|_{*} \) is the norm of \(X^* \), and \(1_{\eta A} = \sum_{i \in A} \eta_i e_i^* \).

Lemma 4.5. If \(B \) is bidemocratic, then \(B \) satisfies the Property (C).

Proof. Here, we prove a stronger condition than Property (C). Take \(x \in X \) and \(A \subset \text{supp} \,(x) \). Then, taking \(\eta = 1/\text{sgn} \,(e_i^*(x)) \),

\[
\min_{j \in A} |e_j^*(x)| \| 1_{\varepsilon A} \| \lesssim \min_{j \in A} |e_j^*(x)| \| 1_{\eta A} \|_{*} \leq \sum_{j \in A} |e_j^*(x)| \| 1_{\eta A} \|_{*} \leq \| 1_{\eta A}^* (x) \|_{*} \leq \| x \|.
\]

\n
Corollary 4.6. All bidemocratic bases satisfy the “classical” Property (A).

Proof. If a basis \(B \) is bidemocratic, then it is superdemocratic. Now combine the preceding lemma with Proposition 4.2. \(\square \)

Relaxing the assumptions of Definition 4.1, we consider:

Definition 4.7. We say that \(B \) satisfies the Property (D) if there exists a positive constant \(C \) such that

\[
\min_{n \in A} |a_n| \| 1_A \| \leq C \sum_{n \in A} |a_n e_n|,
\]

for any finite set \(A \) and scalars \((a_n)_{n \in A} \).

It’s clear that if \(B \) satisfies the Property (C), then \(B \) satisfies the Property (D) as well.

Example 4.8. [Example of superdemocratic basis in a Banach space without the Property (D)] Let \(X = \ell_1 \oplus c_0 \) and \(\|(x, y)\| = \|x\|_{\ell_1} + \|y\|_{\infty} \). Let \((e_n) \) be the canonical basis in \(\ell_1 \) and \((f_m) \) the canonical basis in \(c_0 \). We define

\[
E_{2n-1} = \left(\frac{1}{2} e_n, -\frac{1}{2} f_n \right), \quad E_{2n} = \left(\frac{1}{4} e_n, \frac{3}{4} f_n \right), \quad n = 1, 2, \ldots,
\]
and consider $\mathcal{B} = \{E_n\}_n = \{E_{2n-1}, E_{2n}\}_n$. This basis is normalized.

To prove that this basis is superdemocratic, we show the following proposition:

Proposition 4.9. $D(m) \approx d(m) \approx m$, where $D(m) := \sup\{\|1_{\varepsilon A}\| : |A| \leq m, \varepsilon \in \{\pm 1\}\}$ and $d(m) := \inf\{\|1_{\varepsilon A}\| : |A| \geq m, \varepsilon \in \{\pm 1\}\}$.

Proof. Of course, $d(m) \leq D(m) \leq m$. We prove that $d(m) \geq \frac{1}{3}m$. To this end, given $A \subset \mathbb{N}$ finite, we write

$$A_1 = \{k \in \mathbb{N} : 2k \in A \text{ and } 2k - 1 \in A\},$$

$$A_2 = \{k \in \mathbb{N} : 2k \in A \text{ and } 2k - 1 \notin A\},$$

$$A_3 = \{k \in \mathbb{N} : 2k \notin A \text{ and } 2k - 1 \in A\}.$$

Observe that the sets A_1, A_2, A_3 are mutually disjoint, and $2|A_1| + |A_2| + |A_3| = |A|$. For any choice of signs,

$$\|1_{\varepsilon A}\| = \sum_{k \in A_1} \varepsilon_{2k}E_{2k} + \varepsilon_{2k-1}E_{2k-1} + \sum_{k \in A_2} \varepsilon_{2k}E_{2k} + \sum_{k \in A_3} \varepsilon_{2k-1}E_{2k-1}$$

$$= \sum_{k \in A_1} \left(\frac{1}{4}E_{2k} + \frac{1}{2}E_{2k-1}\right) + \frac{3}{4}E_{2k} - \frac{1}{2}E_{2k-1}\right) + \sum_{k \in A_3} \varepsilon_{2k-1}\left(\frac{1}{2}E_k, \frac{1}{2}E_{k-1}\right)$$

$$\geq \sum_{k \in A_1} \frac{1}{4}E_{2k} + \frac{1}{2}E_{2k-1} + \sum_{k \in A_2} \frac{1}{4} + \sum_{k \in A_3} \frac{1}{2}.$$

Therefore,

$$\|1_{\varepsilon A}\| \geq \frac{1}{4}|A_1| + \frac{1}{4}|A_2| + \frac{1}{2}|A_3| \geq \frac{1}{8}|A|.$$

This finishes the proof. \qed

Back to Example 4.8 to see that the basis does not have the Property (D), take $z = \sum_{n=1}^{N} 2E_{2n} - \sum_{n=1}^{N} E_{2n-1}$. Then,

$$\|z\| = \|\sum_{n=1}^{N} (0, 2f_n)\| = 2.$$

Write $z = \sum_{i \in A} a_iE_i$. Then, $\min_{i \in A} |a_i| = 1$ and

$$\|\sum_{i \in A} E_i\| = \|\sum_{n=1}^{N} E_{2n} + \sum_{n=1}^{N} E_{2n-1}\| = \|\sum_{n=1}^{N} (\frac{3}{4}e_n, \frac{1}{4}f_n)\| = \frac{3}{4}N + \frac{1}{4}.$$

This shows that the Property (D) fails.

Lemma 4.13 of [13] establishes that, if w is equivalent to the constant, and \mathcal{B} is w-semi-greedy, then \mathcal{B} satisfies the Property (D). Here, we improve this result showing that the condition of being w-semi-greedy implies the Property (C).

Proposition 4.10. Assume that w is equivalent to the constant, and the basis \mathcal{B} is w-semi-greedy. Then \mathcal{B} satisfies the Property (C).

Proof. By Theorem 3.7 \mathcal{B} has the w-Property (A). By Proposition 3.2 \mathcal{B} also has the “classical” Property (A). This, in turn, implies the Property (C). \qed
5. w-Partially-greedy bases

Partially-greedy and conservative bases were introduced in [12], in order to compare the errors of greedy approximation with those of the canonical approximation relative to Schauder basis (the “tails” of the basis expansion). In this section we define w-partially-greedy and w-conservative bases and extend the characterization of partially-greedy bases proved in [12] to this more general setting.

Definition 5.1. We say that B is w-partially-greedy if for all m and r such that $w(\{1, \ldots, m\}) \leq w(A_r(x))$, there exists a positive constant such that

$$\|x - G_r(x)\| \leq C \sum_{n=m+1}^{\infty} e^*_n(x)e_i\|.$$ \hspace{1cm} (20)

We denote by C_p the least constant that satisfies (21) and we say that B is C_p-w-partially-greedy.

Definition 5.2. We say that B is w-conservative if there exists a positive constant C such that

$$\|1_A\| \leq C\|1_B\|,$$ \hspace{1cm} (21)

for all pair of $A, B \in \mathbb{N}^{<\infty}$ such that $A < B$ and $w(A) \leq w(B)$. We denote by C_c the least constant that satisfies (21) and we say that B is C_c-w-conservative.

Remark 5.3. If $w \equiv 1$, we recover the classical definition of partially-greediness (resp. conservativeness), and we will say that B is partially-greedy (resp. conservative).

Remark 5.4. Note that for some choices of weight w, the property of w-conservativeness can be in some sense trivial. For instance, if $w = (2^{-n})_{n=1}^{\infty}$ then every seminormalized basis is w-conservative. This is because there are no nonempty $A, B \in \mathbb{N}^{<\infty}$ satisfying both $A < B$ and $w(A) \leq w(B)$.

Let us give a simple characterization of weights for which this occurs.

Proposition 5.5. Let w be a weight and set

$$s_w := \sup\{n \in \mathbb{N}_0 : \text{there exist } A \in \mathbb{N}^n \text{ and } B \in \mathbb{N}^{<\infty} \text{ such that } A < B \text{ and } w(A) \leq w(B)\}.$$

Then $s_w < \infty$ if and only if every seminormalized basis is w-conservative.

Proof. (\Rightarrow): Suppose $s_w < \infty$. Let $(e_n)_{n=1}^{\infty}$ be a seminormalized basis for a Banach space X, and select $A, B \in \mathbb{N}^{<\infty}$ such that $A < B$ and $w(A) \leq w(B)$. Observe that $\|1_A\| \leq c_2|A| \leq c_2s_w$. It follows immediately that $\|1_A\| \leq c_2s_w \leq c_2s_w\|1_B\|$. Hence, $(e_n)_{n=1}^{\infty}$ is (c_2s_w)-w-conservative.

(\Leftarrow): Suppose $s_w = \infty$. Let’s inductively construct sequences $(A_n)_{n=1}^{\infty} \subset \mathbb{N}^{<\infty}$ and $(B_n)_{n=1}^{\infty} \subset \mathbb{N}^{<\infty}$ satisfying

$$A_1 < B_1 < A_2 < B_2 < A_3 < B_3 < \ldots,$$

and also satisfying $|A_n| \geq n$ and $w(A_n) \leq w(B_n)$ for all $n \in \mathbb{N}$. Let us begin by selecting $A_1 \in \mathbb{N}^{<\infty}$ and $B_1 \in \mathbb{N}^{<\infty}$ with $|A_1| = 1$, $A_1 < B_1$, and $w(A_1) \leq w(B_1)$, which is possible as $s_w \geq 1$. This is the base case; from now on, we proceed inductively. Since $s_w = \infty$, we may select $\hat{A}_{n+1} \in \mathbb{N}^{<\infty}$ and $B_{n+1} \in \mathbb{N}^{<\infty}$ with $|\hat{A}_{n+1}| > n + \max B_n$, $\hat{A}_{n+1} < B_{n+1}$, and $w(\hat{A}_{n+1}) < w(B_{n+1})$. Now set $A_{n+1} = \hat{A}_{n+1} \setminus \{1, \ldots, \max B_n\}$ so that we have $|A_{n+1}| > n$, $A_{n+1} < B_{n+1}$, and $w(A_{n+1}) < w(B_{n+1})$. This completes the inductive step, and gives us our
intertwining sequences with the desired properties. We may now define a norm on c_{00} via the rule
\[\| (a_n)_{n=1}^\infty \|_X = \| (a_n)_{n=1}^\infty \|_X \vee \sup_{k \in \mathbb{N}} \sum_{n \in A_k} |a_n| \quad \forall \ (a_n)_{n=1}^\infty \in c_{00}, \]
and denote by \overline{X} the completion of c_{00} under this norm. It is clear that the standard canonical basis for this space form a normalized 1-unconditional basis. However, it fails to be w-conservative as $\| 1_{A_k} \|_X = |A_k| \geq k$ whereas $\| 1_{B_k} \|_X = 1$ for all $k \in \mathbb{N}$.

Proposition 5.6. Let w be a nonincreasing weight, i.e., $w_{n+1} \leq w_n$ for all $n \in \mathbb{N}$. Then every conservative basis in a Banach space is w-conservative with the same constant.

Proof. Let $(e_n)_{n=1}^\infty$ be a conservative basis in a Banach space X, and select any $A, B \in \mathbb{N}^{<\infty}$ satisfying both $A < B$ and $w(A) \leq w(B)$. Now,
\[|A| \cdot w_{\max A} \leq w(A) \leq w(B) \leq |B| \cdot w_{\min B} \leq |B| \cdot w_{\max A}, \]
so that $|A| \leq |B|$.

Theorem 5.7. A basis B is w-partially-greedy if and only if B is quasi-greedy and w-conservative.

Proof. Assume that B is C_p-w-partially-greedy.

1. **w-conservative:** take A and B such that $A < B$ and $w(A) \leq w(B)$. Let $m = \max A$ and define the set $D = [1, \ldots, m] \setminus A$. Of course,
\[w(\{1, \ldots, m\}) = w(A \cup D) \leq w(B \cup D). \]
Define now $x := 1_A + (1 + \delta)1_{B \cup D}$. Then,
\[\| 1_A \| = \| x - G_{B \cup D}(x) \| \leq C_p \| (1 + \delta)1_B \|. \]
Taking $\delta \to 0$, the basis is w-conservative.

2. **Quasi-greedy:** here, we consider two cases.

a) Assume that the index $1 \notin A_r(x)$. Define then $\tilde{x} = te_1 + \sum_{i=2}^\infty e^*_i(x)e_i = x + (t - e^*_1(x))e_1$, with $t = \max |e^*_i(x)| + \delta$ with $\delta > 0$. Then,
\[G_{r}(\tilde{x}) = te_1 + G_{r-1}(x), \]
hence $\tilde{x} - G_r(\tilde{x}) = \sum_{i=2}^\infty e^*_i(x)e_i - G_{r-1}(x)$. Thus, using the triangle inequality and the fact that $w(\{1\}) \leq w(A_r(\tilde{x}))$,
\[\| G_{r-1}(x) \| \leq \| \tilde{x} - G_r(\tilde{x}) \| + \| \sum_{i=2}^\infty e^*_i(x)e_i \| \leq C_p \| \sum_{i=2}^\infty e^*_i(x)e_i \| + \| \sum_{i=2}^\infty e^*_i(x)e_i \|
\leq (C_p + 1)(1 + K_b)\|x\|. \]
That’s implies that $\| G_r(x) \| \leq ((C_p + 1)(K_b + 1) + e_2^2)\|x\|.

b) Assume now that $1 \in A_r(x)$. Taking the same \tilde{x} that in the above case,
\[G_{r}(\tilde{x}) = G_{r-1}(x - e^*_1(x)e_1) + te_1, \]
so \(\bar{x} - G_r(\bar{x}) = \sum_{i=2}^{\infty} e_i^*(x)e_i - G_{r-1}(x - e_1^*(x)e_1) \). Hence, using the same argument than before,

\[
\|G_{r-1}(x - e_1^*(x)e_1)\| \leq \| \bar{x} - G_r(\bar{x}) \| + \| \sum_{i=2}^{\infty} e_i^*(x)e_i \|
\]

\[
\leq \ C_p \| \sum_{i=2}^{\infty} e_i^*(x)e_i \| + \| \sum_{i=2}^{\infty} e_i^*(x)e_i \|
\]

\[
\leq \ (C_p + 1 + K_b)\|x\|.
\]

Now, \(\|G_{r-1}(x - e_1^*(x)e_1)\| = \|G_{r-1}(x - e_1^*(x)e_1 + e_1^*(x)e_1 - e_1^*(x)e_1)\| = \|G_r(x) - e_1^*(x)e_1\| \). So, using the triangle inequality, we obtain that \(\|G_r(x)\| \leq ((C_p + 1)(K_b + 1) + c_2^2)\|x\| \).

Now, assume that \(B \) is \(C_c\)-w-conservative and \(C_q\)-quasi-greedy, and show that \(B \) is \(w \)-partially-greedy. Take \(x \in X \), \(m \), and \(r \) as in the definition of \(w \)-partially-greedy, and consider the sets

\[
D := \{ \rho(j) : j \leq r, \rho(j) \leq m \}, \quad B := \{ \rho(j) : j \leq r, \rho(j) > m \}, \quad A := [1, \ldots, m] \setminus D,
\]

where \(\rho \) is the greedy ordering. Then \(A_r(x) = B \cup D \), and \(w(A) = w(\{1, \ldots, m\}) - w(D) \leq w(A_r(x)) - w(D) = w(B) \).

\[
x - G_r(x) = \sum_{i=m+1}^{\infty} e_i^*(x)e_i - P_B(x) + P_A(x).
\]

On the one hand, \(\|P_B(x)\| \leq 2C_q\| \sum_{i=m+1}^{\infty} e_i^*(x)e_i \|. \) On the other hand, using Lemmas 7.1 and 7.2 with \(\eta \equiv \text{sgn}(e_j^*(x)) \),

\[
\|P_A(x)\| \leq 4C_q C_c \max_{i} |e_i^*(x)| \|1_{\eta B}\| \leq 4C_q C_c \min_{i} |e_i^*(x)| \|1_{\eta B}\|
\]

\[
\leq 8C_q^2 C_c \|P_B(x)\| \leq 8C_q^3 C_c \sum_{i=m+1}^{\infty} e_i^*(x)e_i \|
\]

Then, \(\|x - G_r(x)\| \leq C_q^3 C_c \| \sum_{i=m+1}^{\infty} e_i^*(x)e_i \|. \)

\[\Box\]

Remark 5.8. Note that if the inequality \(\|x - G_r(x)\| \leq C \|x - S_m(x)\| \) is satisfied for \(m \) and \(r \), then it is automatically satisfied – with a different constant – for any \(n < m \) and the same \(r \) (since \(C \|x - S_n(x)\| \leq (1 + K_b)C \|x - S_m(x)\| \) where \(K_b \) is the basis constant). So we only need to check the condition in the definition of \(w \)-partially-greedy for the largest \(m \) satisfying \(w(\{1, \ldots, m\}) \leq w(A_r(x)) \).

Using the constant weight \(w \equiv 1 \), we recover the usual definition of a partially-greedy basis. Indeed, for \(w \equiv 1 \), the largest \(m \) satisfying the definition is \(m = r \), which recaptures the original definition of partially-greedy given in [12].

5.1. **Example of conservative and not democratic basis.** Define the set

\[\mathcal{S} = \{ A \in \mathbb{N}^{<\infty} : |A| \leq \sqrt{\min A} \}. \]

Observe that \(\mathcal{S} \) has the spreading property, i.e., if \(m \in \mathbb{N}, \ (f_i)_{i=1}^{m} \in \mathcal{S} \) and \((g_i)_{i=1}^{m} \in \mathbb{N}^{m} \) with \(f_i \leq g_i \) for all \(i = 1, \ldots, n \), then \((g_i)_{i=1}^{m} \in \mathcal{S} \). It also hereditary, i.e., if \(A \in \mathcal{S} \) and \(B \subseteq A \) then \(B \in \mathcal{S} \).
Now, let X be the Banach space that we define like the completion of c_{00} under the norm

$$\|(a_n)_n\| = \sup_{A \in S} \sum_{n \in A} |a_n|.$$

Observe that this is a very slight modification of the Schreier space.

Of course, the canonical basis $(e_n)_n$ is a normalized 1-unconditional basis. Note that the hereditary property guarantees that

$$\|1_A\| = \sup_{F \in S, F \subseteq A} |F|.$$

Now, if $A < B$ and $|A| \leq |B|$, then there is $F \in S$ with $F \subseteq A$ such that $\|1_A\| = |F|$. By the spreading property, we can “push out” F to obtain a set $G \subseteq B$ such that $G \in S$ and $|G| = |F|$. Hence,

$$\|1_A\| = |F| = |G| \leq \|1_B\|.$$

Thus, the basis is conservative with constant 1.

To prove that the basis is not democratic, we can select the sets $A = \{N^2 + 1, \ldots, N^2 + N\}$ and $B = \{1, \ldots, N\}$. Then, since $A \in S$, $\|1_A\| = N$. However, $\|1_B\| \leq \sqrt{N}$, hence the basis is not democratic: to prove this upper estimate, take a set $A_1 \in S$ such that $\|1_B\| = |A_1|$. Then, $\min A_1 \leq N$, so $|A_1| \leq \sqrt{N}$. Hence, $\|1_B\| \leq \sqrt{N}$.

Remark 5.9. Of course, since the canonical basis is unconditional (hence, quasi-greedy) and conservative, is partially-greedy, but not almost-greedy because is not democratic.

5.2. Example of a w-greedy basis which is not conservative (hence not greedy).

Definition 5.10. Fix $1 \leq p < q \leq \infty$, and consider $(e_n)^{\infty}_{n=1}$ and $(f_n)^{\infty}_{n=1}$ the respective canonical bases of ℓ_p and ℓ_q (or c_0 if $q = \infty$). Let $w = (w_n)^{\infty}_{n=1} \in (0, \infty)^N$. We define the **Rosenthal-Woo space** $X_{q,p,w}$ as the closed subspace $[f_n \oplus w_n e_n]^{\infty}_{n=1}$ of $\ell_q \oplus \ell_p$. For $s = (s_n)^{\infty}_{n=1}$, the summing basis of c_0, we can define $X_{q,s,w}$ similarly as the subspace $[f_n \oplus w_n s_n]^{\infty}_{n=1}$ of $\ell_q \oplus \infty c_0$.

It was mentioned in [13] that if $w \in (0, \infty)^N$ satisfies $w \in c_0 \setminus \ell_1$ then the basis formed by completing c_{00} under the norm

$$\|(a_n)^{\infty}_{n=1}\|_\infty \vee \left(\sum_{n=1}^{\infty} |a_n|^2 w_n \right)^{1/2}, \quad (a_n)^{\infty}_{n=1} \in c_{00},$$

forms a normalized 1-w-greedy basis which is not greedy. In fact, this is just the canonical basis of the Rosenthal-Woo space $X_{\infty,2,w^{1/2}}$. More generally, we have the following.

Proposition 5.11. Fix $1 \leq p < \infty$ and $w \in (0, \infty)^N \cap (c_0 \setminus \ell_1)$. Then the canonical basis of $X_{\infty,p,w^{1/p}}$ is 1-w-greedy, but it is not conservative.

Proof. Clearly it is unconditional with constant 1. To prove that the canonical basis is w-greedy with constant 1, we need to show that it satisfies the w-Property (A) with constant 1 (Theorem 2.1). For that, take $x \in X_{\infty,p,w^{1/p}}$ with $\sup_j |e_j^x(x)| \leq 1$, and consider $A, B \subseteq \mathbb{N}$ such that $A \cap B = \emptyset$, $\text{supp}(x) \cap (A \cup B) = \emptyset$, $w(A) \leq w(B)$. Then, if ε and η are arbitrary choice
of signs,
\[
\left\| x + 1_{x \in A} \right\| = 1 \vee \left(\sum_{n \in \text{supp}(x)} |e_n^*(x)|^p w_n + w(A) \right)^{1/p} \\
\leq 1 \vee \left(\sum_{n \in \text{supp}(x)} |e_n^*(x)|^p w_n + w(B) \right)^{1/p} = \left\| x + 1_{x \in B} \right\|.
\]

Then, the basis satisfies the w-Property (A) with constant 1, hence, using that the basis is unconditional with constant 1, the basis is w-greedy with constant 1.

To see that it fails to be conservative, fix $m \in \mathbb{N}$ and set $A_m = \{1, \ldots, m\}$ and $B_{m,k} = \{k + 1, \ldots, k + m\}$ for each $k \in \mathbb{N}$. Now observe that $w \in c_0$ ensures that $w(B_{m,k}) \to 0$ when $k \to \infty$ and hence $\left\| 1_{B_{m,k}} \right\|_{w^1/p} = 1$ for sufficiently large k. Hence, we may select $k_m \in \mathbb{N}$ so that $B_{m,k_m} > A_m$ and $\left\| 1_{B_{m,k_m}} \right\|_{w^1/p} = 1$. On the other hand, $w \notin \ell_1$ guarantees that $w(A_m) \to \infty$. \hfill \Box

Remark 5.12. The above proof works for $X_{\infty,s,w}$ as well, except that the basis is no longer unconditional. It yields an example of a subspace of c_0 with a basis which is w-basic but not conservative, so long as $w \in (0, \infty)^{\mathbb{N}} \cap (c_0 \setminus \ell_1)$.

However, the situation is different for the canonical basis of $X_{q,p,w^1/p}$ when $q \neq \infty$. These spaces fail to contain any copies of c_0, and hence do not admit v-greedy bases for v non-semi-normalized. Even when v is semi-normalized the canonical basis may not be v-democratic (nor v-greedy), as we will see momentarily.

Proposition 5.13. Fix $1 \leq p < q < \infty$, and let $w \in (0, \infty)^{\mathbb{N}}$ be decreasing. Then the canonical basis of $X_{q,p,w^1/p}$ is unconditional and w-conservative with constants 1.

Proof. Select $A, B \in \mathbb{N}^{<\infty}$ with $w(A) \leq w(B)$ and $A < B$. Since w is decreasing, we must have $|A| \leq |B|$. Thus,
\[
\left\| 1_A \right\|_{q,p,w^1/p} = (|A|)^{1/q} \vee w(A)^{1/p} \leq (|B|)^{1/q} \vee w(B)^{1/p} = \left\| 1_B \right\|_{q,p,w^1/p}.
\]

\hfill \Box

Proposition 5.14. Fix $1 \leq p < q < \infty$ and $0 < \theta < 1 - \frac{p}{q}$. Let $w = (w_n)_{n=1}^{\infty} \in (0, \infty)^{\mathbb{N}}$ be defined by $w_n = n^{-\theta}$ for $n \in \mathbb{N}$. Then the canonical basis for $X_{q,p,w^1/p}$ is not conservative, and not w-democratic.

Proof. First establish that our basis is not conservative. As in the proof of Proposition 5.11 for $k, m \in \mathbb{N}$ we set $A_m = \{1, \ldots, m\}$ and $B_{m,k} = \{k + 1, \ldots, k + m\}$, and for each $m \in \mathbb{N}$ we find $k_m \in \mathbb{N}$ large enough that $A_m < B_{m,k_m}$ and $\left\| 1_{B_{m,k_m}} \right\|_{w^1/p} = m^{1/q}$. Meanwhile,
\[
\left\| 1_{A_m} \right\|_{q,p,w^1/p} \geq w(A_m)^{1/p} = \left(\sum_{n=1}^{m} n^{-\theta} \right)^{1/p} \geq \left(\int_{1}^{m} t^{-\theta} \, dt \right)^{1/p} = \left(\frac{m^{1-\theta} - 1}{1-\theta} \right)^{1/p}
\]
so that, due to $1 - \theta - p/q > 0$,
\[
\left\| 1_{A_m} \right\|_{q,p,w^1/p} \geq \left(\frac{m^{1-\theta} - 1}{1-\theta} \right)^{1/p} m^{-1/q} = \left(\frac{m^{1-\theta-p/q} - m^{-p/q}}{1-\theta} \right)^{1/p} \to \infty.
\]
We next sketch the proof of the lack of \(w \)-democracy. To this end, consider the sets \(A_n \) and \(B_{m,k} \) as defined in the preceding paragraph. There exist universal constants \(c \) and \(C \) so that
\[w(A_n) \geq cn^{1-\theta} \] and
\[\|1_A_n\| \leq Cn^{1-\theta}. \]
Then \(w(B_{m,k}) < mk^{-\theta} \), while \(\|1_{B_{m,k}}\| \geq m^{1/q} \). For large values of \(k \), select \(m \in [cn^{1-\theta}k^\theta/2, cn^{1-\theta}k^\theta] \). Then \(w(B_{m,k}) \leq w(A_n) \), yet the ratio
\[\frac{\|1_{B_{m,k}}\|}{\|1_{A_n}\|} \approx \frac{m^{1/q}}{n^{1-\theta}} \approx \frac{n^{(1-\theta)/q}k^{\theta/q}}{n^{1-\theta}} = k^{\theta/q}n^{-(1-\theta)(1-1/q)} \]
can be arbitrarily large (for large \(k \)), ruling out the possibility of \(w \)-democracy.

\[\square \]

Corollary 5.15. Fix \(1 \leq p < q < \infty \) and \(0 < \theta < 1 - \frac{p}{q} \). Let \(w = (w_n)_{n=1}^\infty \in (0, \infty)^\mathbb{N} \) be defined by \(w_n = n^{-\theta} \) for \(n \in \mathbb{N} \). Then the canonical basis for \(X_{q,p,w}^{1/p} \) is not \(v \)-democratic for any weight \(v \in (0, \infty)^\mathbb{N} \).

Proof. Suppose, for the sake of contradiction, that the canonical basis for \(X_{q,p,w}^{1/p} \) is \(v \)-democratic. Note that this basis contains no subsequences equivalent to the \(c_0 \)-basis. Proposition 5.10 shows that \(0 < \inf v_n \leq \sup v_n < \infty \) – that is, the weight \(v \) is equivalent to a constant. Then, by Remark 5.3, the canonical basis for \(X_{q,p,w}^{1/p} \) has to be democratic, hence conservative. This, however, contradicts Proposition 5.14. \[\square \]

Remark 5.16. Consider again the weight \(w \) from Proposition 5.14

- It follows from Propositions 5.13 and 5.14 that the canonical basis of \(X_{q,p,w}^{1/p} \) is \(w \)-partially-greedy, but not \(w \)-almost-greedy. However, the space \(X_{q,p,w}^{1/p} \) does have an almost-greedy basis. Indeed, we recall from [3, Theorem 10.7.1] that if \(X \) has a complemented subspace with a symmetric basis and finite cotype then \(X \) admits an almost-greedy basis. If \(w \in (0, \infty)^\mathbb{N} \cap (c_0 \setminus \ell_{(p,q)/(q-p)}) \) then the Woo-Rosenthal spaces \(X_{q,p,w} \) contain complemented copies of \(\ell_p \) and \(\ell_q \) (or \(c_0 \) if \(q = \infty \); see [20, Corollary 3.2]), and hence satisfy this condition.
- Just as in Proposition 5.14, one can show that the canonical basis of \(X_{q,s,w} \) is not conservative when \(0 < \theta < 1 - \frac{1}{q} \). However, it is not quasi-greedy, either. For \(\theta = 1 - \frac{1}{q} \), this basis becomes quasi-greedy and democratic (for \(q = 2 \), this was observed in [3, Example 10.2.9], the argument is valid for all \(1 < q < \infty \)).

6. Questions

- Does Property (D) imply Property (C)?
- Does Property (A) imply Property (D)?
- If a basis has Properties (C) and (A), is it necessarily semi-greedy?
- Is it possible to formulate a new property so that every conservative basis with this property is necessarily democratic?
- If \(w = (1, 1, \ldots) \) in Theorem 5.7, do we get the same constant as in the classic case ([12, Theorem 3.4])?

7. Appendix

The purpose of this appendix is to show two basic lemmas. The first one resembles a result from [7]. For each \(\lambda > 0 \), we define the \(\lambda \)-truncation of \(z \in \mathbb{C} \) by
\[
T_\lambda(z) = \begin{cases}
\text{sgn}(z) & \text{if } |z| \geq \lambda \\
z & \text{if } |z| \leq \lambda
\end{cases}
\]
We extend T_λ to an operator on \mathbb{X} by

$$T_\lambda(x) = \sum_j T_\lambda(e_j^*(x))e_j = \sum_{j \in \Lambda} \lambda \text{sgn}(e_j^*(x))e_n + \sum_{j \in \Lambda^s} e_j^*(x)e_j,$$

where $\Lambda = \{ j : \lambda < |e_j^*(x)| \}$.

Lemma 7.1. For all $\lambda > 0$ and $x \in \mathbb{X}$, if B is C_q-quasi-greedy, we have

$$\|T_\lambda(x)\| \leq C_q\|x\|, \quad \|(I - T_\lambda)(x)\| \leq (C_q + 1)\|x\|, \quad \alpha\|1_{\epsilon A}\| \leq 2C_q\|x\|,$$

where $\alpha = \min_{j \in \Lambda} |e_j^*(x)|$, Λ is a greedy set of x and $\epsilon \equiv \text{sgn}(e_j^*(x))$.

Moreover, if B is K_u-unconditional, for every set A with $|A| < \infty$,

$$\|T_\lambda(I - P_A)(x)\| \leq K_u\|x\|.$$

Proof.

$$T_\lambda(x) = \int_0^1 \left[\sum_j \chi_{[0,|e_j^*(x)|]}(s)e_j^*(x)e_j \right] ds = \int_0^1 (I - P_{\Lambda, s})x ds,$$

where $\Lambda, s = \{ j : \frac{\lambda}{s} < |e_j^*(x)| \}$ is a greedy set of x of finite cardinality. Then, using the Minkowski’s integral inequality,

$$\|T_\lambda(x)\| \leq \int_0^1 \|(I - P_{\Lambda, s})x\| ds \leq C_q\|x\|.$$

Also, since $(I - T_\lambda)x = \int_0^1 P_{\Lambda, s}(x) ds$, hence

$$\|(I - T_\lambda)(x)\| \leq (C_q + 1)\|x\|.$$

Now, since $\alpha 1_{\epsilon A} = T_\alpha(x) - P_A(x) = \int_0^1 P_A(x) - P_{\Lambda, s}(x) ds$,

$$\alpha\|1_{\epsilon A}\| \leq 2C_q\|x\|.$$

On the other hand, if A is a general set with $|A| < \infty$,

$$T_\lambda(I - P_A)x = \int_0^1 (I - P_{\Lambda, s})(I - P_A)x ds = \int_0^1 (I - P_{\Lambda, s})x ds,$$

thus

$$\|T_\lambda(I - P_A)(x)\| \leq K_u\|x\|.$$

\[\square\]

The second lemma involves the concept of w-partially-greedy bases.

Lemma 7.2. If B is C_w-w-conservative and C_q-quasi-greedy, then

$$\| \sum_{j \in A} a_j e_j \| \leq 4C_qC_w \max_{j \in A} |a_j| \|1_{\eta B}\|,$$

for any sign η and $A, B \in \mathbb{N}^{<\infty}$ such that $w(A) \leq w(B)$, $A < B$ and any collection of scalars $(a_j)_{j \in A}$.
Proof. We prove that \(\|1_{\varepsilon A}\| \leq 4C_qC_w\|1_\eta B\| \) for any signs \(\varepsilon \) and \(\eta \). First, we can decompose \(1_{\varepsilon A} = 1_{A^+} - 1_{A^-} \), where \(A^\pm = \{ j \in A : \varepsilon_j = \pm 1 \} \). Then,

\[
\|1_{\varepsilon A}\| \leq \|1_{A^+}\| + \|1_{A^-}\| \leq 2C_w\|1_B\|.
\]

Now, using the condition to be quasi-greedy, it is clear that \(\|1_B\| \leq 2C_q\|1_\eta B\| \), then

\[
\|1_{\varepsilon A}\| \leq 4C_qC_w\|1_\eta B\|.
\]

Now, using convexity, we are done. \(\square \)

Acknowledgments: The first author thanks the University of Murcia for partially supporting of his research stay in the University of Illinois at Urbana-Champaign in September 2017, where this paper began.

References

[1] F. Albiac, J. L. Ansorena, Characterization of 1-quasi greedy bases, J. Approx. Theory, 201, 7-12 (2016).
[2] F. Albiac, J. L. Ansorena, Characterization of 1-almost greedy bases, Rev. Mat. Complut., 30(1), 13-24 (2017).
[3] F. Albiac and N. Kalton, Topics in Banach Space Theory, second edition, ISBN 978-3-319-31555-3 (2016).
[4] F. Albiac, P. Wojtaszczyk, Characterization of 1-greedy bases, J. Approx. Theory, 138 (2006), 65-86.
[5] P. M. Berná, Ó. Blasco, Characterization of greedy bases in Banach spaces, J. Approx. Theory, 205 (2017), 28-39.
[6] P. M. Berná, Ó. Blasco, The best m-term approximation with respect to polynomials with constant coefficients, Anal. Math., 43 (2) (2017), 119-132.
[7] P. M. Berná, Ó. Blasco, G. Garrigós, Lebesgue inequalities for the greedy algorithm in general bases, Rev. Mat. Complut. 30 (2017), 369-392.
[8] A. Cohen, R. A. DeVore, R. Hochmuth,Restricted nonlinear approximation, Constr. Approx., 16 (2000), 85-113.
[9] S. J. Dilworth, N. J. Kalton, D. Kutzarova, On the existence of almost greedy bases in Banach spaces, Studia Math. 159 (2003), 67–101.
[10] S. J. Dilworth, D. Kutzarova, T. Oikhberg, Lebesgue constants for the weak greedy algorithm, Rev. Mat. Complut. 28(2), 393–409 (2015).
[11] S. J. Dilworth, D. Kutzarova, E. Odell, T. Schlumprecht, A. Zsák, Renorming spaces with greedy bases, J. Approx. Theory 188 (2014), 39-56.
[12] S. J. Dilworth, N. J. Kalton, D. Kutzarova, V. N. Temlyakov, The thresholding greedy algorithm, greedy bases, and duality, Constr. Approx. 19 (2003), no.4, 575-597.
[13] S. J. Dilworth, D. Kutzarova, V. N. Temlyakov, B. Wallis, Weight-Almost greedy bases. (Preprint) \texttt{http://arxiv.org/abs/1803.02932v1}.
[14] G. Garrigós, E. Hernández, T. Oikhberg, Lebesgue-type inequalities for quasi-greedy bases, Constr. Approx. 38 (2013), 447-470.
[15] G. Kerych, A. Picard, V. N. Temlyakov, Some inequalities for the tensor product of greedy bases and weight-greedy bases, East J. Approx., 12 (2006), 103-118.
[16] S. V. Konyagin, V. N. Temlyakov, A remark on greedy approximation in Banach spaces, East J. Approx. 5 (1999), 365-379.
[17] V. N. Temlyakov, Greedy approximation, Cambridge Monographs on Applied and Computational Mathematics, vol.20, Cambridge University Press, Cambridge, 2011.
[18] P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems, J. Approx. Theory 107 (2) (2000), 293-314.
[19] P. Wojtaszczyk, Greedy type bases in Banach spaces, Constructive theory of functions, 136-155, DARBA, Sofia, 2003.
[20] J. Y. T. Woo, On a class of universal modular sequence spaces, Israel Journal of Mathematics 20 (1975), 193-215.
