ON THE LUSTERNIK-SCHNIRELMANN CATEGORY OF PEANO CONTINUA

TULSI SRINIVASAN

Abstract. We define the LS-category \(\text{cat}_g \) by means of covers of a space by general subsets, and show that this definition coincides with the classical Lusternik-Schnirelmann category for compact metric ANR spaces. We apply this result to give short dimension theoretic proofs of the Grossman-Whitehead theorem and Dranishnikov's theorem. We compute \(\text{cat}_g \) for some fractal Peano continua such as Menger spaces and Pontryagin surfaces.

1. Introduction

We recall that the Lusternik-Schnirelmann category \(\text{cat} \) of a topological space \(X \) is the smallest integer \(k \) such that \(X = \bigcup_{i=0}^{k} A_i \), where each \(A_i \) is an open set contractible in \(X \). A set \(A \subset X \) is said to be contractible in \(X \) if its inclusion map \(A \to X \) is homotopic to the constant map. It is known that for absolute neighborhood retracts (ANR spaces) the sets \(A_i \) can be taken to be closed. In this paper we investigate what happens if the \(A_i \) are arbitrary subsets. Thus, we consider the following:

1.1. Definition. For any space \(X \), define the general LS-category \(\text{cat}_g \) of \(X \) to be the smallest integer \(k \) such that \(X = \bigcup_{i=0}^{k} A_i \), where each \(A_i \) is contractible in \(X \).

We apply this definition to Peano continua, i.e., path connected and locally path connected compact metric spaces. On these spaces, \(\text{cat}_g \) has the same upper and lower bounds as \(\text{cat} \), i.e.,

\[
\text{cup-length}(X) \leq \text{cat}_g X \leq \text{dim} X.
\]

Moreover, the Grossman-Whitehead theorem (Corollary 4.3) and Dranishnikov's theorem (Corollary 4.11) can be proven for \(\text{cat}_g \), using dimension theoretic arguments. This allows us to compute \(\text{cat}_g \).
for fractal spaces such as the Sierpinski carpet, Menger spaces and Pontryagin surfaces.

We show that \(\text{cat}_g X = \text{cat} X \) for compact metric ANRs, which yields new short proofs of the Grossman-Whitehead theorem and Dranishnikov’s theorem.

2. ACKNOWLEDGEMENT

I am very grateful to my adviser Alexander Dranishnikov for formulating this problem, and for all his ideas and advice.

3. LS-CATEGORY FOR GENERAL SPACES

The following result is known.

3.1. Proposition. Let \(X \) be a metric space, \(A \) a subset of \(X \) and \(V' = \{ V'_i \}_{i \in I} \) a cover of \(A \) by sets open in \(A \). Then \(V' \) can be extended to a cover \(V = \{ V_i \}_{i \in I} \) of \(A \) by sets open in \(X \) with the same nerve and such that \(V_i \cap A = V'_i \) for all \(i \in I \).

Proof. Let
\[
V_i = \bigcup_{a \in V'_i} B(a, d(a, A - V'_i)/2),
\]
and let \(V = \{ V_i \} \). Clearly \(V \) is an extension of \(V' \) and \(V_i \cap A = V'_i \). We claim that \(V_i \cap \cdots \cap V_{i_k} \neq \emptyset \) if and only if \(V'_i \cap \cdots \cap V'_{i_k} \neq \emptyset \). We prove the claim only for \(k = 2 \), since we apply it only in this case. A similar proof holds for \(k > 2 \).

Thus, we show that if \(V_i \cap V_j \neq \emptyset \), then \(V'_i \cap V'_j \neq \emptyset \). If \(x \in V_i \cap V_j \), then there exist \(a_i \in V'_i \) and \(a_j \in V'_j \) for which \(d(x, a_i) < d(a_i, A - V'_i)/2 \) and \(d(x, a_j) < d(a_j, A - V'_j)/2 \). Suppose \(d(a_i, A - V'_i) = \max\{d(a_i, A - V'_i), d(a_j, A - V'_j)\} \). Then \(d(a_i, a_j) < d(a_i, A - V'_i) \), so \(a_j \in V'_{i_j} \), which means that \(a_j \in V'_i \cap V'_j \).

We refer to [Hu] for the definitions of absolute neighborhood retracts (ANRs) and absolute neighborhood extensors (ANEs).

3.2. Theorem. [Hu] A metrizable space \(X \) is an ANR for metrizable spaces iff it is an ANE for metrizable spaces.

The following is a version of a lemma that appears in [Wa].

3.3. Theorem (Walsh Lemma). Let \(X \) be a separable metric space, \(A \) a subset of \(X \), \(K \) a metric separable ANR, and \(f : A \to K \) a map. Then, for any \(\epsilon > 0 \), there is an open set \(U \supset A \) and a map \(g : U \to K \) such that:

(1) \(g(U) \) is contained in an \(\epsilon \)-neighborhood of \(f(A) \)
is an open neighborhood

We use the fact that any Polish space is homeomorphic to a closed subspace of a Hilbert space H. Since K is an ANR, there is an open neighborhood O of K in H, and a retraction $r : O \to K$. For every $y \in K$, pick $\delta_y > 0$ such that:

(i) $B(y, 2\delta_y) \subset O$,

(ii) For all $y_1, y_2 \in B(y, 2\delta_y)$, we have $d(r(y_1), r(y_2)) < \epsilon$.

For each $a \in A$, pick a neighborhood U_a of a that is open in A so that $f(U_a) \subset B(f(a), \delta_{f(a)})$. Let $\mathcal{V}' = \{V_i'\}$ be a locally finite refinement of the collection of U_a, and $\mathcal{V} = \{V_i\}$ the cover obtained by applying Proposition 3.1 to \mathcal{V}'. Let $U = \bigcup_i V_i$.

For each i, fix $a_i \in V_i'$. Let $\{f_i : V_i \in \mathcal{V}\}$ be a partition of unity subordinate to \mathcal{V}. Define $h : U \to H$ by $h(u) = \sum_i f_i(u) f(a_i)$.

Choose any $u \in U$. Then u lies in precisely k of the V_i, say in V_{i_1}, \ldots, V_{i_k}. Assume that $\delta_{f(a_{i_j})} = \max\{\delta_{f(a_{i_1})}, \ldots, \delta_{f(a_{i_k})}\}$. Then all the $f(a_{i_j})$ lie in $B(f(a_{i_j}), 2\delta_{f(a_{i_j})})$, so $h(u)$ lies in this ball too. This means that h is a map from U to O.

Define $g : U \to K$ by $g = r \circ h$. If $u \in U$, then we have seen that $h(u)$ lies in $B(f(a_u), 2\delta_{f(a_u)})$ for some $a_u \in A$, so $d(g(u), f(a_u)) < \epsilon$, which implies that $g(U) \subset N_{\epsilon}(f(A))$. Note here that we could have taken the V_i to have as small a diameter as required, so the distance between u and a_u can be made as small as necessary. This will be made use of in Lemma 3.7.

For every $a \in A$, $h(a)$ and $f(a)$ lie in some convex ball, so $h|_A$ is homotopic to f in O via the straight line homotopy. The composition of this homotopy with r is then a homotopy in K between $g|_A$ and f.

\square

3.4. Theorem. Let K be a compact ANE. Then there exists a constant $\epsilon(K) > 0$ such that for any metric space X and maps $f, g : X \to K$, if $d(f(x), g(x)) < \epsilon(K)$ for all $x \in X$, then f is homotopic to g.

3.5. Proposition. Let K be a compact ANE, $y_0 \in K$ and PK the path space $\{\phi : [0, 1] \to K | \phi(1) = y_0\}$ with sup norm D. If $\epsilon(K)$ is as in Theorem 3.4, then any two maps $f, g : X \to PK$ such that $D(f(x), g(x)) < \epsilon(K)$ for all $x \in X$, are homotopic to each other.

Proof. Since PK is endowed with the sup norm, we have

$$d(f(x)(t), g(x)(t)) < \epsilon(K)$$

for every $x \in X, t \in [0, 1]$. Define $F : X \times I \to K$ by $F(x, t) = f(x)(t)$ and $G : X \times I \to K$ by $G(x, t) = g(x)(t)$.

Since \(d(F(x,t), G(x,t)) < \epsilon(K) \) for all \((x,t) \in X \times I\), there exists a homotopy \(h_s : X \times I \to K \) between \(F \) and \(G \). Define \(\tilde{h}_s : X \to PK \) by \(\tilde{h}_s(x) = h_s(x,t) \). Then \(\tilde{h}_s \) is the required homotopy between \(f(x) \) and \(g(x) \).

The following is well known.

3.6. Proposition. If \(K \) is an ANE, so is \(PK \).

Proof. Suppose \(K \) is an ANE. Let \(A \) be a closed subspace of a metric space \(X \) and \(f : A \to PK \) a map. Define \(F : A \times I \to K \) by \(F(x,t) = f(x)(t) \). By hypothesis, \(F \) extends over an open neighborhood \(V \) of \(A \times I \) in \(X \times I \). For each \(a \in A \), find an open neighborhood \(U_a \) such that \(U_a \times I \subset V \). Let \(U = \bigcup_{a \in A} U_a \). The map \(\tilde{f} : U \to PK \) given by \(\tilde{f}(x)(t) = \tilde{F}(x,t) \) is the required extension.

3.7. Lemma. Let \(X \) be a compact metric space, \(A \subset X \), \(K \) a compact metric ANR, and \(f : X \to K \) a map such that the restriction of \(f \) to \(A \) is nullhomotopic. Then there exists \(U \supset A \) open in \(X \) such that the restriction of \(f \) to \(U \) is nullhomotopic.

Proof. Since \(K \) is compact, there is an \(\epsilon \) such that any two \(\epsilon \)-close maps to \(K \) are homotopic. Let \(D \) be the metric on \(K \) and \(d \) the metric on \(X \). Let \(PK \) be the path space \(\{ \phi : [0,1] \to K | \phi(1) = y_0 \} \) (for some \(y_0 \in K \)), under the sup metric \(D' \). As \(f|_A \) is nullhomotopic, there is a map \(F : A \to PK \) satisfying \(F(a)(0) = f(a) \) for all \(a \in A \). By the uniform continuity of \(f \), there is a \(\delta > 0 \) such that \(d(x,y) < \delta \Rightarrow D(f(x), f(y)) < \frac{\epsilon}{2} \).

By Proposition 3.6 and Theorem 3.2, \(PK \) is an ANR for metric spaces. By Proposition 3.5, any two \(\epsilon \)-close maps to it are homotopic. We apply Theorem 3.3 to \(F \), and construct an open neighborhood \(U \) of \(A \) and a map \(G : U \to PK \) such that for every \(u \in U \), there exists \(a_u \in A \) such that \(D'(G(u), F(a_u)) < \frac{\epsilon}{2} \). As noted in the proof of Theorem 3.3 we can construct \(U \) so that \(\text{diam}V_i < \delta \) for all \(i \), so \(d(u,a_u) < \delta \). Let \(g : U \to K \) be given by \(g(u) = G(u)(0) \). For any \(u \in U \), we have

\[
D(g(u), f(u)) \leq D(g(u), f(a_u)) + D(f(a_u), f(u)) \\
\leq D(G(u)(0), F(a_u)(0)) + \frac{\epsilon}{2} \\
\leq D'(G(u), F(a_u)) + \frac{\epsilon}{2} \\
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]
It follows that
\[f\big|_U \text{ is homotopic to } g. \]

But \(h_t : U \to K \) given by \(h_t(u) = G(u)(t) \) is a homotopy between \(g \) and the constant map at \(y_0 \), so \(f\big|_U \) is nullhomotopic. \(\square \)

3.8. **Corollary.** Let \(X \) be a compact metric ANR, and let \(A \subset X \) be contractible in \(X \). Then there exists an open set \(U \supset A \) that is contractible in \(X \).

3.9. **Theorem.** For a compact metric ANR \(X \), \(\text{cat}_g X = \text{cat} X \).

Proof. Clearly \(\text{cat}_g X \leq \text{cat} X \), and equality holds if \(\text{cat}_g X \) is infinite.

Suppose \(\text{cat}_g X = n \). Then we can write \(X = \bigcup_{i=0}^{n} A_i \), where the \(A_i \) are contractible in \(X \). By Corollary 3.8 there exist open sets \(U_i \) containing \(A_i \) that are contractible in \(X \) for each \(i \). It follows that \(\text{cat} X \leq n \). \(\square \)

The following proposition illustrates some of the basic properties of \(\text{cat}_g \). The proofs are nearly identical to those in the case of the usual definition of category (see [CLOT]), and so are omitted.

3.10. **Proposition (Properties of \(\text{cat}_g \)).** If \(A, B, X, Y \) are spaces and \(f : X \to Y \) is a map with mapping cone \(C_f \), then the following hold:

i) \(\text{cat}_g(A \cup B) \leq \text{cat}_g A + \text{cat}_g B + 1 \)

ii) If \(f \) has a right homotopy inverse, then \(\text{cat}_g X \geq \text{cat}_g Y \)

iii) If \(f \) is a homotopy equivalence, then \(\text{cat}_g X = \text{cat}_g Y \)

iv) \(\text{cat}_g(C_f) \leq \text{cat}_g Y + 1 \).

The following proposition shows that the sets in the definition of the LS-category can be assumed to be \(G_\delta \).

3.11. **Proposition.** Let \(X \) be a complete metric space. If \(A \subset X \) is contractible in \(X \), then there exists a \(G_\delta \) set \(B \) with \(A \subset B \subset X \) such that \(B \) is contractible in \(X \).

The proof is based on the following classical theorem [E2]:

3.12. **Theorem (Lavrentieff).** If \(Y \) is a complete metric space, then any continuous map \(f : A \to Y \), where \(A \) is a dense subset of a space \(X \), can be extended to \(F : B \to Y \), where \(B \) is a \(G_\delta \) set in \(X \) containing \(A \).

Proof of Proposition 3.11. Consider \(A \) as a subspace of its closure \(\bar{A} \). Since \(A \) is contractible in \(X \), there is a map \(f : A \to PX \) satisfying \(f(a)(0) = a \). By Theorem 3.12 \(f \) can be extended to \(F : B \to PX \), where \(B \) is a \(G_\delta \) set in \(\bar{A} \) containing \(A \). Since \(B \) is clearly also \(G_\delta \) in \(X \), it only remains to show that it is contractible in \(X \).

Pick any \(b \in B \). Then \(b \) is the limit of some sequence \(\{a_n\} \) in \(A \), so
\[
F(b)(0) = F\left(\lim_{n \to \infty} a_n \right)(0) = \lim_{n \to \infty} F(a_n)(0) = \lim_{n \to \infty} f(a_n)(0) = \lim_{n \to \infty} a_n = b,
\]
so B is contractible in X.

4. Upper bounds

We need the following definitions for the Grossman-Whitehead theorem. An absolute extensor in dimension k, or $AE(k)$, is a space X with the property that for every space Z with $\dim Z \leq k$ and closed subset $Y \subset Z$, any map $f : Y \to X$ can be extended over all of Z. A k-connected or C^k space is a space whose first k homotopy groups are trivial. A locally k-connected or LC^k space is a space X with the property that for every $x \in X$ and neighborhood U of x, there is a neighborhood V with $x \in V \subset U$ such that every map $f : S^r \to V$ is nullhomotopic in U for $r \leq k$.

4.1. **Theorem** (Kuratowski). For $k \geq 0$, a metrizable space X is $AE(k + 1)$ for metrizable spaces iff it is LC^k and C^k.

We use the notation CX for the cone over X,

$$CX = (X \times [0, 1])/(X \times \{1\}).$$

4.2. **Theorem.** For $k \geq 0$, let X be an LC^k and C^k compactum. Then $\text{cat}_g X \leq \dim X/(k + 1)$.

Proof. Suppose $\dim X = n = p(k + 1) + r$, where $0 \leq r < k + 1$. We can write $X = \bigcup_{i=0}^{p(k+1)+r} X_i$, where $\dim X_i = 0$ for each i. Let $A_i = X_{(k+1)i} \cup X_{(k+1)i+1} \cup \ldots \cup X_{(k+1)(i+1)-1}$ for $i = 0, \ldots, p - 1$, and let $A_p = X_{p(k+1)} \cup \ldots \cup X_{p(k+1)+r}$. Then $\dim A_i \leq k$ for each i, so $\dim CA_i \leq k + 1$.

For each i, consider the inclusion map $A_i \hookrightarrow X$. Since X is k-connected and locally k-connected, X is an $AE(k + 1)$ space, and so the inclusion maps extend over CA_i for each i. Hence we have $X = \bigcup_{i=0}^{p} A_i$, where each A_i is contractible in X, which implies that $\text{cat}_g X \leq p \leq \dim X/(k + 1)$.

4.3. **Corollary** (Grossman-Whitehead Theorem). For a k-connected complex X,

$$\text{cat} X \leq \dim X/(k + 1).$$

4.4. **Example.** For the n-dimensional Menger space μ^n,

$$\text{cat}_g \mu^n = 1.$$

Proof. The n-dimensional Menger space is $(n - 1)$-connected and $(n - 1)$-locally connected [Be], so $\text{cat}_g \mu_n \leq 1$. Since μ^n is not contractible, $\text{cat}_g \mu_n = 1$.

□
4.5. **Definition.** i) A family \(\{A_i\}\) of subsets of \(X\) is called an \(n\)-cover if every subfamily of \(n\) sets forms a cover: \(X = A_{i_1} \cup \cdots \cup A_{i_n}\).

ii) Given an open cover \(U\) of \(X\) and a point \(x \in X\), the order of \(U\) at \(x\), \(\text{Ord}_x U\), is the number of elements of \(U\) that contain \(x\).

We will make use of the following result that appears in [Dr2]:

4.6. **Proposition.** A family \(U\) that consists of \(m\) subsets of \(X\) is an \((n+1)\)-cover of \(X\) if and only if \(\text{Ord}_x U \geq m - n\) for all \(x \in X\).

Proof. See [Dr1, Dr2]. \(\square\)

4.7. **Theorem.** [Os] For every \(m > n\), every \(n\)-dimensional compactum \(X\) admits an \((n+1)\)-cover by \(m\) 0-dimensional sets.

Proof. This result follows from a slight modification to a proof given in [Os].

Since \(\dim X \leq n\), \(X\) can be decomposed into 0-dimensional sets as \(X = X_0 \cup \ldots \cup X_n\). We assume that the \(X_i\) are \(G_\delta\) sets [El Theorem 1.2.14], and proceed inductively. For any \(m > n + 1\), suppose an \((n+1)\)-cover \(\{X_0, ..., X_{m-1}\}\) consisting of 0-dimensional \(G_\delta\) sets has been constructed. Let

\[X_m = \{x \in X| x \text{ lies in exactly } (m - n) \text{ of the } X_i\}\]

Since the \(X_0, ..., X_{m-1}\) form an \((n+1)\)-cover, Proposition [El] implies that each \(x \in X\) lies in at least \(m - n\) of the \(X_i\). Then \(X_m\) is the complement in \(X\) of a finite union of finite intersections of \(G_\delta\) sets, and is therefore \(F_\sigma\). Similarly, for \(0 \leq i \leq m - 1\), each \(X_m \cap X_i\) is a 0-dimensional set that is \(F_\sigma\) in \(X\), and therefore in \(X_m\). As the finite union of 0-dimensional \(F_\sigma\) sets, \(X_m\) is also 0-dimensional [El Corollary 1.3.3]. It is also clear from the construction of \(X_m\) that \(\{X_0, ..., X_m\}\) is an \((n+1)\)-cover of \(X\). \(\square\)

4.8. **Corollary.** For every \(m > \lfloor n/2 \rfloor\) every \(n\)-dimensional compactum admits an \((\lfloor n/2 \rfloor + 1)\)-cover by \(m\) 1-dimensional sets.

Proof. Decompose \(X\) into 0-dimensional sets \(X_0, ..., X_n\) as before, and group these into pairs to get (at most) 1-dimensional \(G_\delta\) sets \(Y_0, ..., Y_{\lfloor n/2 \rfloor}\) that cover \(X\).

We proceed by induction again. For any \(m > \lfloor n/2 \rfloor\), suppose an \((\lfloor n/2 \rfloor + 1)\)-cover \(\{Y_0, ..., Y_{m-1}\}\) consisting of 1-dimensional \(G_\delta\) sets has been constructed. Let \(Y_m\) be the \(F_\sigma\) set \(\{x \in X| x \text{ lies in exactly } (m - \lfloor n/2 \rfloor) \text{ of the } Y_i\}\). Each \(Y_m \cap Y_i\) is \(F_\sigma\) of dimension \(\leq 1\), so \(\dim Y_m \leq 1\) [El Theorem 1.5.3], and \(\{Y_0, ..., Y_m\}\) is the desired \((\lfloor n/2 \rfloor + 1)\)-cover of \(X\). \(\square\)
The following lemma can be traced back to Kolmogorov (see [Os], [Dr2, Proof of Theorem 3.2]).

4.9. Lemma. Let A_0, \ldots, A_{m+n} be an $(n+1)$-cover of X and B_0, \ldots, B_{m+n} an $(m+1)$-cover of Y. Then $A_0 \times B_0, \ldots, A_{m+n} \times B_{m+n}$ is a cover of $X \times Y$.

We recall that the geometric dimension $gd(\pi)$ of a group π is defined as the minimum dimension of all Eilenberg-Maclane complexes $K(\pi, 1)$. It is known that $gd(\pi)$ coincides with the cohomological dimension of the group, $cd(\pi)$, for all groups with $gd(\pi) \neq 3$ [Br]. The Eilenberg-Ganea conjecture asserts that the equality $gd(\pi) = cd(\pi)$ holds true for all groups π.

The following theorem was proven by Dranishnikov [Dr2] for CW complexes. We present here a new short proof based on his idea to use the general LS-category.

4.10. Theorem. Let X be a semi-locally simply connected Peano continuum. Then

$$\text{cat}_g X \leq gd(\pi_1(X)) + \frac{\dim X}{2}.$$

Proof. The conditions imply that X has the universal covering space $p: \tilde{X} \to X$. Let $\pi = \pi_1(X)$ and let $q: E \to K(\pi, 1)$ be the universal cover. Note that the orbit space $\tilde{X} \times \pi E$ under the diagonal action of π on $\tilde{X} \times E$ has the projections $p_1: \tilde{X} \times \pi E \to X$ and $p_2: \tilde{X} \times \pi E \to K(\pi, 1)$ which are locally trivial bundles. Since E is contractible, p_1 admits a section s, so by Proposition 3.10, $\text{cat}_g X \leq \text{cat}_g(\tilde{X} \times \pi E)$.

The projection $p \times q: \tilde{X} \times E \to X \times K(\pi, 1)$ is the projection onto the orbit space of the action of the group $\pi \times \pi$. Therefore, it factors through the projection $\xi: \tilde{X} \times E \to \tilde{X} \times \pi E$ of the orbit action of the diagonal subgroup $\pi \subset \pi \times \pi$, $p \times q = \psi \circ \xi$ as follows:

$$\tilde{X} \times E \xrightarrow{\xi} \tilde{X} \times \pi E \xrightarrow{\psi} X \times K(\pi, 1).$$

Let $\dim X = n$ and $\dim(K(\pi, 1)) = gd(\pi) = m$. We apply Corollary 4.8 to X and Theorem 4.7 to $K(\pi, 1)$ to obtain an $(\lceil n/2 \rceil + 1)$-cover A_0, \ldots, A_r of X by 1-dimensional sets and an $(m+1)$-cover B_0, \ldots, B_r of $K(\pi, 1)$ by 0-dimensional sets, for $r = m + \lceil n/2 \rceil$. By Lemma 4.9, $A_0 \times B_0, \ldots, A_r \times B_r$ is a cover of $X \times K(\pi, 1)$ by 1-dimensional sets.

If $f: X \to Y$ is an open surjection between metric separable spaces such that the fiber $f^{-1}(y)$ is discrete for each $y \in Y$, then $\dim X = \dim Y$ [ET]. The map $\psi \circ \xi = (p, q)$ is an open map, each fiber of which is discrete. An open set in $\tilde{X} \times \pi E$ is taken to an open set in $\tilde{X} \times E$ by ξ^{-1}, which is taken to an open set in $X \times K(\pi, 1)$ by $\psi \circ \xi$, and so,
using the surjectivity of ξ, we can say that ψ is open. Similarly, the
image under ξ of any discrete set is still discrete, so $\psi^{-1}(y)$ is discrete
for every $y \in X \times K(\pi, 1)$. It follows that $\{\psi^{-1}(A_i \times B_i)\}_{i=0}^n$ is a cover
of $\tilde{X} \times_{\pi} E$ by 1-dimensional sets.

We show that each $\psi^{-1}(A_i \times B_i)$ is contractible in $\tilde{X} \times_{\pi} E$. This will
imply that
\[
\text{cat}_{g}(\tilde{X} \times_{\pi} E) \leq gd(\pi) + \lfloor n/2 \rfloor \leq gd(\pi) + \frac{\dim X}{2}.
\]

Note that $p_2(\psi^{-1}(A_i \times B_i)) = B_i$. Since B_i is contractible to a point in
$K(\pi, 1)$, the set $\psi^{-1}(A_i \times B_i)$ can be homotoped to a fiber
$p_2^{-1}(x_0) \cong \tilde{X}$. Since \tilde{X} is a simply connected and each $\psi^{-1}(A_i \times B_i)$ is 1-dimensional,
Theorem 4.1 implies that the inclusion map of each subspace can be
extended over its cone, and so each $\psi^{-1}(A_i \times B_i)$ can be contracted to
a point in $\tilde{X} \times_{\pi} E$. □

4.11. Corollary (Dranishnikov’s Theorem). For a finite CW complex
X,
\[
\text{cat} X \leq gd(\pi_1(X)) + \frac{\dim X}{2}.
\]

5. Lower bounds

5.1. Definition. Let R be a commutative ring. The R-cup-length
$\text{cup-length}_R X$ of a space X is the smallest integer k such that all cup-
products of length $k+1$ vanish in the Čech cohomology ring $\tilde{H}^*(X; R)$.

5.2. Theorem. Let X be a compactum with $\text{cat}_g X \leq m$. Then
\[
\text{cup-length}_R X \leq m
\]
for any ring R.

Proof. Let $\{A_i\}_{i=0}^m$ be as in Definition 4.1. Assume the contrary, i.e.,
that there exists a non-zero product $\alpha_0 \sim \alpha_1 \sim \ldots \sim \alpha_m$ in $\tilde{H}^*(X; R)$,
where $\alpha_i \in H^k(X; R)$, $k_i > 0$. For each i, there exists a function
$f_i : X \rightarrow K(R, k_i)$ such that α_i belongs to the homotopy class $[f_i]$
(in view of the isomorphism between the group of homotopy classes
$[X, K(R, n)]$ and the Čech cohomology group $\tilde{H}^n(X; R)$ [SP], and the
fact that the Čech cohomology agrees with the Alexander-Spanier co-
homology). Since X is compact, for each i there is a finite subcomplex
$K_i \subset K(R, k_i)$ such that $f_i(X) \subset K_i$. Since each A_i is contractible
in X, $f_i|_{A_i} : A_i \rightarrow K_i$ is nullhomotopic. By Lemma 3.7, there ex-
sts an open neighborhood U_i of A_i such that $f_i|_{U_i} : U_i \rightarrow K_i$ is also
nullhomotopic.
Let \(j_i \) be the inclusion \(U_i \to X \), and \(q_i \) the map \(X \to (X, U_i) \). We consider the exact sequence of the pair \((X, U_i) \) in the Alexander-Spanier cohomology (see [Sp], p. 308-309):

\[
\ldots \to H^k(X, U_i; R) \xrightarrow{j_i^*} H^k(X; R) \xrightarrow{q_i^*} H^k(U_i; R) \to \ldots
\]

Using, once more, the fact that the Alexander-Spanier cohomology coincides with the Čech cohomology on \(X \) and \(U_i \) and is, therefore, representable, we have, for each \(\alpha_i \), \(j_i^* (\alpha_i) = [f_i \circ j_i] = 0 \). By exactness, there is an element \(\bar{\alpha}_i \in H^k(X, U_i; R) \) satisfying \(q_i^* (\bar{\alpha}_i) = \alpha_i \).

The rest of the proof goes in the same vein as in the case of a CW complex [CLOT]. Namely, in view of the cup-product formula for the Alexander-Spanier cohomology (see [Sp], pp. 315),

\[
H^k(X, U; R) \times H^l(X, V; R) \xrightarrow{\cup} H^{k+l}(X, U \cup V; R),
\]

and the fact that \(H^n(X, X; R) = 0 \), we obtain a contradiction.

5.3. Example. Let \(\Pi_2 \) denote a Pontryagin surface constructed from the 2-sphere for the prime 2. Then \(\text{cat}_g \Pi_2 = 2 \).

Proof. We recall that \(\Pi_2 \) is the inverse limit of a sequence [Ku], [Dr4],

\[
L_1 \xleftarrow{p_2} L_2 \xleftarrow{p_3} L_3 \xleftarrow{p_4} \ldots
\]

where \(L_1 = S^2 \) with a fixed triangulation, each simplicial complex \(L_{i+1} \) is obtained from \(L_i \) by replacing every 2-simplex in the barycentric subdivision by the (triangulated) Möbius band, and the bonding map \(p_i \) sends this Möbius band back to the simplex. Thus each \(L_i, i > 1 \), is a non-orientable surface. It is well known that there is an \(\alpha \in H^1(L_2; \mathbb{Z}_2) \) with \(\alpha \sim \alpha \neq 0 \) [H]. Since for \(i > 1 \), \((p_i)_* : H_1(L_i; \mathbb{Z}_2) \to H_1(L_{i-1}; \mathbb{Z}_2) \) is an isomorphism, this cup-product survives to the limit. Thus, \(\text{cup-length}_{\mathbb{Z}_2} \Pi_2 > 1 \). Since we also have \(\text{cat}_g \Pi_2 \leq \text{dim} \Pi_2 = 2 \), we must have \(\text{cat}_g \Pi_2 = 2 \). □

5.4. Question. Let \(D_2 \) be a Pontryagin surface constructed from the 2-disk. What is \(\text{cat}_g D_2 \) ?

5.5. Remark. The above computation works for all Pontryagin surfaces \(\Pi_p \) constructed from the 2-sphere, where \(p \) is any prime number. The cup-length estimate in the case \(p \neq 2 \) requires cohomology with twisted coefficients. Another approach to obtaining a lower bound for the category of \(\Pi_p \) is to use the category weight [CLOT]. Both approaches require substantial work.
References

[Be] M. Bestvina, Characterizing k-dimensional universal Menger compacta. Memoirs Amer. Math. Soc., 71, (1988), no. 330.

[B] K. Borsuk, Theory of Retracts. PWN, 1967.

[Br] K. Brown, Cohomology of groups. Springer, 1982.

[Ch] A. Chigogidze, Inverse spectra. North Holland, 1996.

[CLOT] O. Cornea, G. Lupton, J. Oprea, D. Tanré, Lusternik-Schnirelmann category. AMS, 2003.

[Dr1] A. Dranishnikov, The Lusternik-Schnirelmann category and the fundamental group. Algebr. Geom. Topol. 10 (2010), no. 2, 917-924.

[Dr2] A. Dranishnikov, On the Lusternik-Schnirelmann category of spaces with 2-dimensional fundamental group. Proc. of AMS. 137 (2009), no. 4, 1489-1497.

[Dr4] A. Dranishnikov, Homological dimension theory. Russian Math. Surveys 43 (1988), no. 4, 11 -63.

[E1] R. Engelking, Dimension Theory. North Holland Publishing Co., 1978.

[E2] R. Engelking, General Topology. Revised and completed edition Heldermann Verlag, 1989.

[Gr] D. P. Grossman, An estimation of the category of Lusternik-Schnirelman C. R. (Doklady) Acad. Sci. URSS (N.S.) 54, 1946.

[H] A. Hatcher, Algebraic Topology. Cambridge University Press 2002.

[Hu] S. T. Hu, Theory of Retracts. Wayne State Univ. Press, 1965.

[Ku] V. I. Kuzminov, Homological dimension theory. (Russian) Uspehi Mat. Nauk 23 1968 no. 5 (143), 3-49.

[Os] Ph. Ostrand, Dimension of metric spaces and Hilbert’s problem 13. Bull. Amer. Math. Soc. 71 1965, 619-622.

[Sp] E. Spanier, Algebraic Topology. McGraw-Hill Book Co., 1966.

[Wa] J. J. Walsh, Dimension, cohomological dimension, and cell-like mappings. Lecture Notes in Math., 870, Springer, 1981.

Tulsi Srinivasan, Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105, USA
E-mail address: tsrinivasan@ufl.edu