Efficacy of Modified Vavoua and Nzi Traps in the Capture of Stable Flies: A Preliminary Field Trial in Cameroon

Sevidzem Silas Lendzele1,1, Zinga Koumba Christophe Roland2, Koumba Aubin Armel1, Mintsa Nguema Rodrigue3, Mamoudou Abdoulmoumini3, Acapovi-Yao Genevieve Lydie4, M’batchi Bertrand5, Jacques François Mavoungou2,5

1Ecole Doctorale des Grandes Ecoles (EDGE), Laboratoire d’Ecologie Vectorielle (LEV-IRET), Libreville, Gabon; 2Institut de Recherche en Ecologie Tropicale (IRET), Libreville, Gabon; 3Department of Parasitology and Parasitological Diseases, University of Ngaoundere, Ngaoundere, Cameroon; 4Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d’Ivoire; 5Université des Sciences et Techniques de MASUKU, Franceville, Gabon

ABSTRACT
There is need for a simple, cheap and efficient collection and control tool for the different stable fly-species in hyper-infested foci. The efficacy of a modified unbaited Vavoua trap (MVT) was compared with an unbaited Nzi as a standard. Each trap type was set either inside or outside the cattle overnight pen with rotation taking place after four days for eight days in September 2018 in Ngaoundere. Fly collection was made every 24 hours and sorted using standard identification keys. In total, 2105 hematophagous flies were caught and constituted of 1417 S. niger niger (89 S.n/t/d), 124 S. calcitrans (8 S.c/t/d), 562 Musca spp. (25 m/t/d) and 2 Chrysops distinctipennis (0.1 Cd/t/d).

The overall mean catches with the MVT (50.96 ± 57.16) was higher than with the Nzi (27.43 ± 27.73), with no statistically significant difference (t=0.9, df=46.0, P=0.37). Higher mean catches were recorded outside the overnight stable, pen (47.79 ± 55.27) than inside (39.83 ± 55.40) with no statistically significant difference (t=0.5, df=46.0, P=0.62). Stable flies and tabanids were highly caught outside the overnight stable, while Musca spp. were highly caught inside. In conclusion, the MVT had similar efficacy and specificity as Nzi and can serve as a simple and efficient tool for the survey and control of stable flies in the Adamawa plateau and elsewhere.

Keywords: Modified vavoua; Nzi; Efficacy; Stable flies; Tabanids; Ngaoundere

INTRODUCTION
The control of most haematophagous insect vectors especially Stomoxyinae can be effectively conducted using collective approaches such as sanitation, biological, mechanical and chemical [1]. Talking of biological control, Baleba [2] reported on the potential pathogen, predators and parasites that can control stable flies. The chemical approach includes the use of insecticides. Due to the high biting insect infestation rates of livestock farms in Ngaoundere, farmers have devised certain control measures like bush fires and use of insecticides. Due to the high biting insect infestation rates of livestock farms in Ngaoundere, farmers have devised certain control measures like bush fires and use of insecticides. It is important to consider an alternative approach.

The use of insecticide incorporated screens is a major tool used by the Special Mission for Tsetse Erradication (MSEG) to control tsetse and other biting flies in Ngaoundere and other infested areas and its efficacy to control tsetse and other dipterous insect vectors in the Adamawa and North regions of Cameroon has already been reported [4,5]. Some insecticides have been reported to be resistant to stable flies [6,7], therefore it is important to consider an alternative approach.

The physical or mechanical control approach is based on the use of traps like box trap supplemented with alsynite fibre glass sticky panels [8] and was reported to be efficient for the control of stable flies. The blue-black cloth traps particularly the Vavoua trap has been reported to be highly specific to stable flies [9-11]. According to Solórzano [12] the Nzi is more efficient than Vavoua in the collection of stable flies, but the Nzi is large and heavy and only suitable for an infested area where stable flies are encountered in high numbers. Modifications of the blue-black cloth trap have been made in order to improve its efficiency.

The blue-black cloth traps particularly the Vavoua trap has been reported to be highly specific to stable flies [9-11]. According to Solórzano [12] the Nzi is more efficient than Vavoua in the collection of stable flies, but the Nzi is large and heavy and only suitable for an infested area where stable flies are encountered in high numbers. Modifications of the blue-black cloth trap have been made in order to improve its efficiency.

There is need for a simple, cheap and efficient collection and control tool for the different stable fly-species in hyper-infested foci. The efficacy of a modified unbaited Vavoua trap (MVT) was compared with an unbaited Nzi as a standard. Each trap type was set either inside or outside the cattle overnight pen with rotation taking place after four days for eight days in September 2018 in Ngaoundere. Fly collection was made every 24 hours and sorted using standard identification keys. In total, 2105 hematophagous flies were caught and constituted of 1417 S. niger niger (89 S.n/t/d), 124 S. calcitrans (8 S.c/t/d), 562 Musca spp. (25 m/t/d) and 2 Chrysops distinctipennis (0.1 Cd/t/d).

The overall mean catches with the MVT (50.96 ± 57.16) was higher than with the Nzi (27.43 ± 27.73), with no statistically significant difference (t=0.9, df=46.0, P=0.37). Higher mean catches were recorded outside the overnight stable, pen (47.79 ± 55.27) than inside (39.83 ± 55.40) with no statistically significant difference (t=0.5, df=46.0, P=0.62). Stable flies and tabanids were highly caught outside the overnight stable, while Musca spp. were highly caught inside. In conclusion, the MVT had similar efficacy and specificity as Nzi and can serve as a simple and efficient tool for the survey and control of stable flies in the Adamawa plateau and elsewhere.

Keywords: Modified vavoua; Nzi; Efficacy; Stable flies; Tabanids; Ngaoundere

Correspondence to: Sevidzem Silas Lendzele, Ecole Doctorale des Grandes Ecoles (EDGE), Laboratoire d’Ecologie Vectorielle (LEV-IRET), Libreville, Gabon, E-mail: sevidzem.lendze@gmail.com

Received: July 24, 2020; Accepted: August 10, 2020; Published: August 17, 2020

Citation: Lendzele SS, Roland ZKC, Armel KA, Rodrigue MN, Abdoulmoumini M, Lydie AYG, et al. (2020) Efficacy of Modified Vavoua and Nzi Traps in the Capture of Stable Flies: A Preliminary Field Trial in Cameroon. Entomol Ornithol Herpetol.9.230. DOI: 10.35248/2161-0983.20.9.230.

Copyright: © 2020 Lendzele SS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The maximum amount of fabric from the piece. Black screens are then placed at the three sectors of the cone: the screens are then placed at the trap (Figure 1D). Between the free edges and two black screens, insert a 0.5 cm blue screen, aligning the upper edges. This assembly of the three black screens: two of the screens are superimposed and then sewn longitudinally 13 cm from the edge; an identical seam is made between the 1st screen and the 3rd arranged along the opposite edge; finally the 2nd and 3rd screens are sewn together in the same way (Figure 1D). This creates a 2 cm groove for the passage of the fixing material and the trap (Figure 1D). Between the free edges and two black screens, insert a 0.5 cm blue screen, aligning the upper edges, then sew longitudinally (Figure 1C).

The internal part of the trap thus produced is then sewn with the three sectors of the cone; the screens are then placed at 120°. For capture, the end of the cone is truncated to allow the lacing support system to pass. For the cone, it is protected from the metallic axis by a carded cotton pad; a piece of string around the top holds the whole. The rigidity of the cone can be ensured by a circular galvanized wire of 80-81 cm in diameter (Figure 1A). When setting up, the bottom of the trap must be between 30 cm and 40 cm from the ground. The length of the iron rod (8 mm concrete iron) will essentially depend on the nature of the site: it is advisable to use 1.50 m iron rod as support.

Figure 1: Design of the Vavoua trap [13]; (A): Vavoua trap (articulated system); (B): the different fabric parts; (C): stitching of the three black parts; (D): stitching of the blue and black parts; (E): detail of the throat (see text); (F) cutting of the three parts of the cone; (G): cutting of the blue fabrics.

The MVT [14] is a simple blue/black polyester trap with a trapezium-like blue/black core in the mosquito net section. The section of the trap protruding to the bottom of the mosquito net is in the form of a blue-black flat screen. The size of the MVT is 132 cm × 84 cm (Figures 2A-2E).

This trap has the same trapping mechanism as the Vavoua and Nzi. Its ability to capture dipterous insects relies only on the visual cue offered by the blue and black colors of its cloth. Concerning the specific dimensions of this trap, the trapezium-like blue-black pieces each has the following dimensions: base length of 42 cm, length of the top is 10 cm, vertical height is 36 cm, and the slanting height is 52 cm (Figure 2B).

The rectangular blue and black pieces each have a dimension of 40 cm height and 42 cm width (Figure 2C). The mosquito net sewn to cover the collection cage has a dimension of 10 cm height and 5 cm width (Figure 2D). The mosquito net section designed in the form of a cone has a bottom diameter of 84 cm, a top diameter of 4 cm, and a height of 82 cm (Figure 2E). The entire trap is held by a vertical iron rod of 1.5 m in length. The distance from the ground to the trap must be maintained at 20 cm (Figure 2A).

The Nzi trap

The Nzi is a blue-black trap like the MVT but is larger in size (Figure 3). This trap is originally designed by Mihok at ICIPE. This trap consists of a 1 m × 1 m mosquito net. Blue and black cloth pieces of 0.5 m × 1 m in dimension that are sewn to form the trap.
the wings of this trap (Figure 3). The horizontal net shelf forms the roof of this trap and holds the collecting cage. The trap is supported by four sticks or iron rods with at least six tension points that makes the trap very cumbersome.

Figure 2: Modified Vavoua trap (source: original conception); (A): Modified Vavoua Trap; (B): trapezium-like blue and black polyester clothes; (C): rectangular blue and black polyester clothes; (D): Collection cages; (E): Cone-like mosquito net section.

Figure 3: Presentation of the Nzi trap (source: Mihok S); (A): The Nzi trap (Source: original); (B): The schematic presentation of the Nzi trap.

Study design
Unbaited Nzi and Modified vavoua (MVT) traps were pitched; one inside the cattle overnight stable and the other outside the grazing field (Figure 4). The two trap types were 500 m from each other. A 2 × 2 Latin square with rotation experimental design was used.

The cages of the traps were emptied every 24 hours. Flies were collected into well labeled plastic bags for identification using a dissecting microscope. The trapping effort was 2 traps × 8 days in the rainy season (August to September)=16 traps days.

Fly identification
Stomoxys spp. were identified using the key of Zumpt [15]. Tabanids identification was realized using the morphological key of Oldroyd [16]. The identification of the genus Musca was made using the key of Gregor.

Data analysis
The abundance was defined by the Trap Apparent Density (ADT) known as the number of Stomoxys caught per trap and day as follows:

\[
ADT = \frac{\text{Number of flies caught}}{\text{Number of traps} \times \text{Number of trapping days}}
\]

The specificity was calculated using the following formula:

\[
\text{Specificity (\%)} = \frac{\text{Total number of the individuals of a particular species}}{\text{Total number of the individuals of all species caught}} \times 100
\]

The JASP statistical software of version 0.8.5.1 was used for the statistical analyses. The mean catches of the trap types and their positions were compared using the Student t-test. The statistical test was kept at the p<0.05 significant level.

RESULTS
The entomological prospection resulted in 2105 flies with the following flies identified with their apparent abundances in order of magnitude: 1417 S. n. niger (89 S.n/t/d), 562 Musca spp. (25 m/t/d), 124 S. calcitrans (8 S.c/t/d) and 2 C. distinctipennis (0.1 Cd/t/d).

Catches with respect to trap type
The MVT caught muscids (Musca spp. and Stomoxys spp.) but failed to catch tabanids. The Nzi trap caught all flies including
Musca spp., Stomoxys spp., and Chrysops (Figure 5). The number of muscids caught by the MVT was higher for each species than with the Nzi. The specificity of the MVT was higher for S. niger niger (54.97%) and S. calcitrans (52.42%) as compared to Nzi, but the Nzi trap recorded 100% specificity for C. distinctipennis and zero with the MVT (Figure 6).

The Musca spp. count was higher outside the cattle pen than inside (Figure 7). Stomoxys calcitrans had the same catches when traps were pitched either inside or outside the cattle pen. Stomoxys niger niger catches were higher outside than inside the cattle pen.

Efficiency of trap-types based on mean catches
The mean catches with trap types revealed a higher mean catch with the MVT (50.96 ± 57.16) as compared to the Nzi (27.43 ± 27.79) even though there was no statistically significant difference (t=0.9, df=46.0, P=0.37) with catches of the two trap types.

Regarding the position of the trap types, there was a higher mean catch outside (47.79 ± 55.27) the cattle pen than inside (39.83 ± 55.40) with no statistically significant difference (t=0.5, df=46.0, p=0.62) (Table 1).

Table 1: Mean fly catches based on trap models and position.

Parameters	Number	Mean ± Standard deviation
Trap models	t=0.9, df=46.0, p=0.37	
Nzi	882	27.43 ± 27.79
MVT	1223	50.96 ± 57.16
Position of trap models	t=0.5, df=46.0, p=0.62	
Inside	956	39.83 ± 55.40
Outside	1149	47.79 ± 55.27

DISCUSSION
The occurrence of tabanids and Stomoxynini in the rangeland of Ngaoundere has already been reported [17]. In our study, high numbers of stable flies were caught outside the cattle pen as compared to the inside. The high catches outside could be due to the proximity of the traps to the breeding sites of the stable flies [18,19] because stomyxines developmental substrates consist of faecally-soiled surfaces and decomposing vegetation as well as beddings from poultry [2] and such potential breeding material were found outside the cattle overnight pen where cattle graze as compared to the muddy nature of the inside of the cattle overnight stable. In addition, the poultry blocks found around the grazing field located outside the pen did not have fly proofs and were probable source of stable flies. Hogsette and Ose [20] reported high catches inside the periphery of the zoological parks with no statistically significant difference with

Figure 5: Fly species caught with respect to trap type.

Figure 6: Specificity of trap types.

Figure 7: Fly catches with position of traps.
catches inside and outside. According to Hogsett [20] best catches of stable flies are made near animals, but Murchie [19] realised that stable flies were collected with sticky traps placed at the periphery of a cattle pen. The blue/black colour of the traps used in this trial simply mimic the natural forest edges where stable flies rest and digest their blood meal as well as the two colours reflect light in the UV range [4,21].

Despite the use of insecticide in fly control in most areas in Africa, the obvious shortcoming remains the development of insecticide resistance [7] and its toxic effect on non-target population such as honey bees. An alternative of insecticide usage for fly control is the use of parasitoids [2] and traps that are environmentally friendly [9]. Some of the most common traps used for the control of important pasture flies like tse tse, tabanids and Stomoxynini, include Nzi, Vavoua and Biconical and the Vavoua that has been reported to be highly specific to stable flies [9-11]. However, the Vavoua (10 to 12 Euros) is expensive, difficult to reproduce and not easily available to local farmers and fly control authorities. The modified Vavoua trap (MVT) is a descendant of the Vavoua and is cheaper (7 Euros), simple, easily reproducible, highly specific and available to local farmers of Adamawa through a farmer association (Production Laitiere et Embouche Bovine, Ngaoundere, Cameroon). The Nzi trap is most expensive (14 to 16 Euros) of all the tsetse traps and difficult to transport in the field, but is very expensive. The results of this study indicate that the efficacy and specificity of the MVT to Stomoxys calcitrans and Stomoxys niger niger was similar to that of the Nzi which is a standard trap. The MVT was unable to catch tabanids that were caught by the Nzi even though with scanty catch. We cannot say that the MVT cannot catch tabanids because the trial was conducted in August and September, characterised by heavy rains and weak abundance of tabanids in Ngaoundere. However, we need to conduct a longitudinal prospection with the MVT, original Vavoua and Nzi in different biotic regions in order to validate this new tool.

CONCLUSION

We designed a trap known as the modified Vavoua trap (MVT) which is a descendant of the Vavoua trap, it is cheaper and easily reproducible than the Vavoua and Nzi and is available to farmers of the Adamawa region. The MVT recorded similar results in terms of specificity and efficiency as Nzi. The MVT and Nzi traps caught more biting muscids outside the pen as compared to inside. This trap is important because it can reduce the population of stable flies as well as act as a re-infestation barrier for biting fly free rangelands.

ACKNOWLEDGEMENTS

The study was successful thanks to the field assistance of Mr Aboubakary (Veterinary technician) and Miss Kong Anita (DVM student). The study was successful thanks to the BWS-REK grant received by the first author. Authors acknowledge the technical support of the Laboratory of Vector Ecology (LEV) of the Institute of Research in Tropical Ecology (IRET) in Gabon.

REFERENCES

1. Bastien F. Effet larvicide des huiles essentielles sur Stomoxys calcitrans a la Réunion. Thèse pour Obtention le grade de Docteur Vétérinaire de l’Université Paul-Sabatier de Toulouse. 2008:1-78.
2. Baleba SBS, Torto B, Masiga D, Getahun MN, Weldon CW. Stable flies, Stomoxys calcitrans L. (Diptera : Muscidae), Improve Offspring Fitness by Avoiding Oviposition Substrate with Competitors or Parasites. Front Ecol Evol. 2020;8:6.
3. Sevidzem SL, Mavoungou JF, Mintsa NR. Veterinary pharmaceuticals sold in cattle markets for the management of foot and mouth disease and flies in Vina division (Adamawa-Cameroon). Dairy Vet Sci J. 2019;10(2):1-13.
4. Sevidzem SL, Tchawe R, Zinga-Koumba R, Mamoudou A, Ndjonka D, Mavoungou JF. Insecticide coated screen models reduce insect vector population in a pasture area in Ngaoundere, Cameroon. Trends Appl Sci Res. 2019;14:80-89.
5. Mamoudou A, Sevidzem SL, Feussom JM, Abdoulay M. Delcametherin Coated Screen against Tsetse and Trypanosomosis. Walaikal J Sci Technol. 2017;14:893-909.
6. Tainchum K, Shukri S, Duvallet G, Etienne L, Jacquet P. Phenotypic susceptibility to Pyrethroids and Organophosphates of wild Stomoxys calcitrans (Diptera: Muscidae) populations in South western France. Parasitol Res. 2018;117(12):4027-4032.
7. Olafson PU, Kaufman PE, Duvallet G, Solorzano JA, Taylor DB, Frystell RT. 2019. Frequency of kdr and kdr-his Alleles in Stable Fly (Diptera:Muscidae) Populations From the United States, Costa Rica, France, and Thailand. Journal of Med Entomol. 2019;56(4): 1145-1149.
8. Williams DF. Sticky traps for sampling populations of Stomoxys calcitrans. J Ecol Entomol. 1973;66(6):1279-1280.
9. Sevidzem SL, Mavoungou JF. Relative Efficacy of Tsetse Traps and Live Cattle in Estimating the Real Abundance of Blood-Sucking Insects. J Appl Sci. 2019;19(7):690-700.
10. Hol V, Sieumeni AD, Mamoudou A, Sevidzem SL, Njan-Nloga AM, Nukenine EN. Spatio-Temporal Dynamics of Glossinidae, Tabanidae and Stomoxynidae around the Douala-Edea Wildlife Reserve in Cameroon. Am J Entomol.2019;3(2):36-42.
11. Sevidzem SL, Mavoungou JF, Zinga-Koumba CR, Koumba AA, Duvallet G. Factors Influencing Seasonal and Daily Dynamics of the Genus Stomoxys Geoffroy, 1762 (Diptera: Muscidae), in the Adamawa Plateau, Cameroon. Int J Zool. 2019,9.
12. Solo´rzano JA, Gille S, Bravo O, Vargas C, Yannery GB, Bingham GV, et al. Biology and Trapping of Stable Flies (Diptera: Muscidae) Developing in Pineapple Residues (Ananas comosus) in Costa Rica. J Insect Sci. 2015;15:145.
13. Laveissière C, Grébaut P. Recherche sur les pièges à glossines (Diptera : Glossinidae). Mise au point d’un modèle économique: le piège “Vavoua”. Trop Med Parasitol.1990;41:185-192.
14. Sevidzem SL, Affiri OJM, Zinga-Koumba CR, Mounioko F, Koumba AA, Nguema RM, et al. Abundance and Diurnal Activity Rhythm of Stomoxys spp. in a Wildlife-human Interface in Makokou (North-East Gabon). Asian J Res Zool. 2019;2:1-10.
15. Zumpt F. The Stomoxynine biting flies of the world. Diptera: Muscidae. Taxonomy, biology, economic importance and control measures. Stuttgart: Gustav Fischer Verlag. 1973;2(4-5):433.
16. Oldroyd HMA. The horse flies (Diptera : Tabanidae) of the Ethiopian region. Subfamilies, Chrysopinae, Scepsidinae and Pangoninae and a revised classification. Brishist Museum (Natural History), London. 1957;3:489.
17. Lendzele SS, Eisenbarth A, Zinga-Koumba RC, Mavoungou JF, Rent A. Aspects of the bionomics of hematophagous symbionve
dipterans in a hyper-infested rangeland of Ngaoundere (Adamawa-Cameroon). J Asia-Pac Entomol. 2019;22(4):1019-1030.

18. Mavoungou JF, Nguema RM, Acapovi GL, Koumba RZ, Mounioko F, Sevidzem SL, et al. Breeding Sites of Stomoxys spp. (Diptera: Muscidae), a Preliminary Study in the Makokou Region (North-East-Gabon). Vector Biol J. 2017;2(1).

19. Murchie AK, Carol EH, Alan WG, Clawson S. Black Border Increases Stomoxys calcitrans Catch on White Sticky Traps. Insects. 2018;9(1):13.

20. Hogsette JA, Ose GA. Improved capture of stable flies (Diptera: Muscidae) by placement of knight stick sticky fly traps protected by electric fence inside animal exhibit yards at the Smithsonian's National Zoological Park. Zoo Biol. 2017;36(6):382-386.

21. Mihok S, Carlson DA, Krafsur ES, Foil LD. Performance of the Nzi and other traps for biting flies in North America. Bulletin of Entomol Res. 2006;96(4):387-397.