A circulating T(H)2 cytokines profile predicts survival in patients with resectable pancreatic adenocarcinoma

Geny Piro(a,b,c), Francesca Simionato(b,c,d), Carmine Carbone(a,e), Melissa Frizziero(c,d), Giuseppe Malleo(c,e), Silvia Zanini(c,d), Raffaella Casolino(c,d), Raffaela Santoro(a,c), Maria Mihaela Mina(c,d), Camilla Zecchettoc,d, Valeria Merzc,d, Aldo Scarpa(f), Claudio Bassi(c,d), Giampaolo Tortorab,c,d, and Davide Melisi(c,d,f)

(a)Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, Università degli studi di Verona, Verona, Italy; (b)Laboratory of Oncology and Molecular Therapy, Department of Medicine, Università degli studi di Verona, Verona, Italy; (c)Comprehensive Cancer Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy; (d)Unit of Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy; (e)Unit of General and Pancreatic Surgery, Azienda Ospedaliera Universitaria Integrata, Verona, Italy; (f)ARC-Net Research Centre and Department of Pathology and Diagnostics, Università degli studi di Verona, Verona, Italy.

ABSTRACT
Surgery is the only potentially curative option for patients with pancreatic ductal adenocarcinoma (PDAC), but metastatic relapse remains common. We hypothesized that the expression levels of inflammatory cytokines could predict recurrence of PDAC, thus allowing to select patients who most likely could benefit from surgical resection.

We prospectively collected plasma at diagnosis from 287 patients with pancreatic resectable neoplasms. The expression levels of 23 cytokines were measured in 90 patients with PDAC by using a multiplex analyte profiling assay. Levels higher than cutoff identified of the T(H)2 cytokines interleukin (IL)4, IL5, IL6 of macrophage inflammatory protein (MIP)1α, granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein (MCP)1, and of IL17α, IFNγ-induced protein (IP)10, and IL1β were significantly associated with a shorter median OS. In particular, levels of IL4 and IP10 higher than cutoff identified, and level of T(H)1 cytokines TNFα and INFγ, and of IL9 and IL11α lower than cutoff identified were significantly associated with a shorter DFS. In the multivariate analysis, high IP10 was confirmed as negatively associated with OS (HR = 3.097, p = 0.014) and IL4 and TNFα remain negatively (HR = 2.75, p = 0.002) and positively (HR = 0.224, p = 0.049) associated with DFS, respectively. Simultaneous expression of low IL4 and high TNFα identified patients with best prognosis (HR = 0.313, p < 0.0001). In conclusion, we demonstrated that, among a series of cytokines, IL4 is the most significant independent prognostic factor for DFS in resectable PDAC patients, and it could be useful to select patients with high risk of early recurrence who may avoid an unnecessary resection.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease, with the lowest 5-yr relative survival rate among solid tumors at 7%, and is projected to become the second leading cause of cancer-related death by 2030. Surgery is the only potentially curative option for PDAC patients, but metastatic relapse remains common and no more than 20% of patients undergoing surgery and post-surgical therapy achieve long-term survival. Thus, the identification of biologic markers able to predict metastatic recurrence of PDAC remains critical to select patients most likely to benefit from surgical resection.

Tumor microenvironment contains both innate and adaptive immune cells that communicate with each other by means of cytokines and chemokines production to control tumor growth and spread. In this “immune contexture,” the cytokine expression profile may be more relevant than its specific immune cell content, and provide malignant cells with continuous supply of growth and survival signals.

In PDAC, a dysfunctional immune system aids rather than controls cancer development and progression. However, it is still unclear which cytokines or chemokines are critical for metastasis and prognosis of established tumors. Previous studies examined the association between serum levels of several proinflammatory cytokines and overall survival (OS) in cohorts of patients with mostly advanced PDAC. In these studies, only a high level of IL6 was consistently demonstrated as an independent prognostic factor for poor OS. However, comprehensive cytokine profiles have not been performed in early PDAC to date, therefore it is still unclear the potential value of cytokines or chemokines in predicting recurrence in this disease.

CONTACT Davide Melisi davide.melisi@univr.it Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, Università degli studi di Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy.
Here, we investigated whether the preoperative expression levels of 23 cytokines in a large and prospective cohort of patients with resectable PDAC could be predictive of their Disease-free survival (DFS) or OS, thus, serving as potential biomarker to select patients more likely to benefit from an upfront surgical resection.

Results

Association of patients’ characteristics with OS and DFS

Two-hundred-eighty-seven patients admitted at the Unit of General and Pancreatic Surgery of the Azienda Ospedaliera Universitaria Integrata of Verona between 2012 and 2014 with suspected non-metastatic PDAC were included in the study (Fig. 1). Patients’ characteristics are shown in Table 1. The mean age was 63 y and 51% were male. Most of them had tumors in the head of pancreas (79%), T3 stage (96%), and positive nodes (86%). Radical resection (R0) was obtained in 46% of cases. The majority of patients received adjuvant chemotherapy (82%), mostly with a gemcitabine-based regimen (97%). After a median follow-up of 26.9 mo, the median DFS was 19.9 mo and the median OS was not reached (data not show). Compliance with REMARK guidelines is reported in Table S1, available at Clinical Cancer Research online.

Univariate analysis of correlation between clinical features and OS or DFS is shown in Table 1. Among the clinical parameters analyzed, patients with poorly differentiated tumor (G3) had a significantly shorter OS (HR = 3.986, p = 0.001) and DFS (HR = 2.109, p = 0.012) compared with patients with well and moderately differentiated tumors (G1/G2). Conversely, patients treated with adjuvant therapy had a significantly longer DFS than did untreated patients (HR = 0.502, p = 0.038). Association between DFS and other commonly used prognostic parameters, such as microscopically infiltrated resection margins (R1) and positive lymph nodes (N+), although displayed a negative trend, was not statistically significant in this cohort (HR = 1.573, p = 0.121, and HR = 1.435, p = 0.408, respectively).

Association of circulating cytokines and chemokines levels with OS and DFS

To determine whether patterns of circulating cytokines and chemokines could predict patients outcome, we measured the concentration of a panel of 23 different TH1, TH2, TH9, TH17 cytokines, chemokines, and growth factors in preoperative plasma samples from 90 treatment naive patients with non-metastatic PDAC (Table 2). The optimal cutoff thresholds able to significantly predict patients’ outcome were evaluated for each cytokine (Table 2 and Fig. 2A and B).

Concentration of the TH2 cytokines IL4, IL5, IL6 of the monocyte/macrophage infiltration cytokines MIP1α, GM-CSF, and MCP-1, and of IL17a, IP10, and IL1b at level higher than cutoff were significantly associated with shorter patient median OS.

Table 1. Characteristics of patients involved in the study.
Patients characteristics
Age (y)
Gender
Female, n (%)
Male, n (%)
Tumor stage
T1, n (%)
T2, n (%)
T3, n (%)
T4, n (%)
Nodal stage
N0, n (%)
N+, n (%)
Metastasis stage
M0, n (%)
M+, n (%)
Location
Head, n (%)
Body/tail, n (%)
Resection margins
R0, n (%)
R1, n (%)
Adjuvant therapy
No, n (%)
Yes, n (%)
Non-gemcitabine based, n (%)
Gemcitabine-based, n (%)
Radiotherapy
No, n (%)
Yes, n (%)
Tumor grade
G1, n (%)
G2, n (%)
G3, n (%)

HR, hazard ratio; R1, resection denotes a microscopically positive margin; T, Tumor; N, node; G, grade.
CI and resectable PDAC patients to date. We demonstrated that IL4 is a very pro-
sive pro-
Discussion
60% (95% CI 38.7%–78.1%) and a specificity of 75.7% (95% CI = 64.5%–84.2%). In particular, an early relapse within 8 mo occurred in 12 out of 29 (41.4%) patients with a plasma concentration of IL4 higher than cutoff, and only in 8 out of 61 (13.1%) patients with IL4 lower than cutoff. The same association was not proven for the other cytokines (Fig. S1, available online).

Multivariate analysis of correlation between prognostic factors, including plasma cytokines, and OS and DFS
To confirm our findings and select the best prognostic cytokines, we performed a multivariate analysis including clinical features that had univariate significance (p < 0.05), and the most significant prognostic cytokines at univariate analysis (p < 0.01). In this analysis, high IP10 was confirmed as negatively associated with OS (HR = 3.097, p = 0.014) and IL4 and TNFα remain negatively (HR = 2.753, p = 0.002) and positively (HR = 0.224, p = 0.049) associated with DFS, respectively (Table 3).

Since the multivariate analysis revealed both IL4 and TNFα as independent predictors of DFS, we tried to determine whether the two factors could interact to affect the prognosis of patients. Indeed, concurrent plasma concentrations of IL4 and TNFα lower and higher than their respective cutoffs, identified patients with best prognosis (HR = 0.313, p < 0.0001) (Fig. 3A).

Table 2. Pre-surgical circulating cytokines levels significantly correlated with OS and DFS.

Soluble factor	N	mean pg/mL (Lower-upper 95%CI)	Median pg/mL (range)	Association with OS (p)	cutoff (pg/mL)	Association with DFS (p)	cutoff (pg/mL)	
T₄/2 cytokines	IL4	90	7.393 (8.12–11.36)	7.42 (1.28–45.48)	0.025	9.365	0.01	9.365
IL5	90	15.08 (11.64–18.52)	9.31 (0–74.02)	0.047	9.255	0.34	9.255	
IL6	90	36.8 (26.92–46.67)	23.02 (2.96–319.2)	0.038	23.92	0.41	23.92	
IL13	90	36.22 (29.2–43.25)	28.63 (0.5–223.4)	0.17	—	0.058	—	
T₄/1 cytokines	INFγ	90	574.4 (440.1–708.6)	392.5 (108.3–3418)	0.56	—	0.004	129
IL12(p70)	90	45.05 (30.01–60.1)	27.63 (0–561.6)	0.07	—	0.24	—	
TNFα	90	94.17 (66.74–121.6)	69.27 (0–1069)	0.76	—	0.003	22.04	
IL2	90	21.22 (8.47–33.97)	0 (0–426.2)	0.14	—	0.096	—	
T₄/9 cytokines	IL9	90	39.22 (23.5–54.92)	20.69 (0.3–610)	0.66	—	0.021	5.48
T₄/17 cytokines	IL17r	90	175.6 (134.8–216.4)	109.6 (0–913)	0.03	360.4	0.59	—
Chemokines	MIP1α	90	6.44 (5.39–7.49)	5.11 (0.8–34.68)	0.042	10.14	0.37	—
MCP1	90	129.3 (104.6–154)	107.9 (103.1–809.7)	0.032	109.3	0.15	—	
MIP1β	90	107.3 (73.39–141.3)	82.13 (26.81–1577)	0.94	—	0.3	—	
IP10	90	1734 (1289–2179)	1143 (376.2–17964)	0.003	2958	0.04	2958	
IL8	90	79.2 (60.05–98.35)	47.62 (8.85–848.46)	0.14	—	0.054	—	
eotaxin	90	175.1 (103.8–246.4)	102.7 (0–2912)	0.19	—	0.062	—	
Other cytokines and growth factors	G-CSF	90	243.5 (191.4–295.5)	155.9 (19.9–1076)	0.17	—	0.064	—
GM-CSF	90	70.95 (50.91–91)	49.48 (0–547.6)	0.035	134	0.38	—	
VEGF	90	82.82 (63.04–102.6)	53.82 (0–471.9)	0.17	—	0.9	—	
IL7	90	198.85 (15.88–23.83)	14.17 (0–121.2)	0.12	—	0.11	—	
IL15	90	<OOR	<OOR	<OOR	<OOR	<OOR	<OOR	
IL17	90	7.639 (5.526–9.751)	5.255 (0.59.64)	0.018	7.92	0.44	—	
IL1R	90	715.1 (480–950.2)	356 (4.45–8552)	0.66	—	0.039	115.5	

Discussion
To our knowledge, this study represents the most comprehensive profiling of cytokines in the largest prospective cohort of resectable PDAC patients to date. We demonstrated that IL4 is the most significant independent prognostic factor for DFS in resectable PDAC patients among a series of cytokines, representing a potential biomarker to stratify patients suited for surgery from patients with high risk of early recurrence who may avoid unnecessary resections.

T₄/2 immune response is defined by the cytokines IL4, IL5, IL9, and IL13, which induce in turn a complex inflammatory response characterized by T₄/2 subset of CD4⁺ helper T cells, eosinophils, mast cells, basophils, and alternatively activated macrophages. In particular, IL4 is the signature cytokine of the T₄/2 effector cells, by acting as both an inducer and an effector cytokine of these cells. In most solid tumors, it is generally conceived that a TH2 inflammation promotes tumorigenesis and tumor growth. In particular, several studies provided evidence for a general TH2 shift in PDAC with a predominance of TH2 cytokines in the plasma of patients (reviewed in16). Important studies mainly by the group of Protti and colleagues17 provided evidence on the mechanisms underlying these observations. They identified a cross talk between PDAC cells and microenvironment components, resulting in thymic stromal lymphopoietin production by activated cancer-associated fibroblasts that, in turn, induced a T₄/2 cell polarization through myeloid dendritic cell conditioning. The T₄/2 (GATA-3⁺/T₄/1 (T-bet⁺) lymphoid cells ratio was independently predictive of DFS and OS in a population of resected PDAC patients. More recently, they demonstrated that basophils recruited in tumor-draining lymph nodes of PDAC patients regulate tumor promoting T₄/2 inflammation, being the early source of IL4 necessary for the full stabilization of the T₄/2 phenotype. Our study contributes to this field by providing evidence, through an inductive approach, for
Figure 2. OS and DFS of patients with PDAC stratified according to cytokines levels. Kaplan–Meier curves for OS (A) and DFS (B) by significant cytokines cutoff concentration in plasma samples. Cytokines concentration expressed as pg/mL. (C) upper left, IL4 level in patients stratified around an early relapse cutoff of 8 mo; upper right, determination of cutoff thresholds of IL4 level for PDAC patients dichotomized according to early relapse of 8 mo. All possible cutoff thresholds were considered and the corresponding odds ratios (OR) were calculated and plotted. Each data point in the line gives the corresponding OR and 95% confidence interval (dotted lines) on the y axis. Lower left, receiver operator characteristic (ROC) curves for IL4 level in patients stratified around early relapse cutoff of 8 mo; lower right, waterfall plot, green and red bars represent cases with correct or wrong classification, respectively.
a T\textsubscript{H}2 shift in those PDAC patients for which we expect an early recurrence of disease. We examined a comprehensive immune circulating biomarkers panel demonstrating that high pre-surgical plasma levels of the T\textsubscript{H}2 cytokines IL4, IL5, IL6, and low plasma levels of T\textsubscript{H}1 cytokines TNF\textsubscript{a} and INF\textsubscript{g} were significantly associated with worst patients’ outcome. More importantly, in the multivariate analysis, we confirmed IL4 as the strongest independent prognostic factor for DFS, a clinical end point directly correlated with tumor aggressiveness that could be not corrupted by the effect of subsequent lines of therapy.

IL4 was identified as the original inducer of the polarization of the alternatively activated M2 macrophages,19 which are generally conceived to suppress antitumor immunity and to favor growth and spreading in solid tumors.20 However, recent studies correlating the infiltration of M2-polarized CD163+ macrophages and prognosis in patients affected by resectable PDAC reached opposite conclusions.21,22 In this regard, our study demonstrated that high plasma levels of the cytokines involved in macrophage recruitment MIP1\textsubscript{a}, GM-CSF, and MCP1 were significantly associated with shorter patients’ survival after surgery. Beside T\textsubscript{H}2 inflammatory cells, a FOXP3+ regulatory T cells (T\textsubscript{reg}) enriched pancreatic tumor infiltrate has been found to correlate with shorter patient survival.23,24 This cell subtype can be recruited in the tumor microenvironment by the chemokine IP10 expressed by pancreatic stellate cells, leading to immuno-suppressive and tumor-promoting effects.25,26 Consistently with these observations, we demonstrated that high IP10 plasma level were negatively associated with patients’ OS.

In conclusion, our present study prospectively demonstrated through an inductive approach that circulating markers of a T\textsubscript{H}2 immune response, and macrophages and T\textsubscript{reg} recruitment could be predictive of early metastatic relapse and poor prognosis in resectable PDAC patients. The simple measurement of

Table 3. Multivariate analysis of factors influencing OS and DFS in patients with resectable pancreatic cancer.

Variable	HR	95% CI	p
OS			
Tumor grade G3	3.698	1.602–8.535	0.002
IP10	3.097	1.257–7.632	0.014
DFS			
Tumor grade G3	2.472	1.339–4.564	0.004
Adjuvant therapy	0.609	0.312–1.186	0.145
IL4	2.753	1.465–5.175	0.002
TNF\textsubscript{a}	0.224	0.051–0.995	0.049
INF\textsubscript{g}	0.864	0.195–3.833	0.847

HR, hazard ratio; CI, confidential interval.
these cytokines by a non-invasive, blood-based assay, and the interpretation of their significance based on the cutoff thresholds here determined could represent a significant advantage over the assessment of the immune cells infiltration and differentiation in preoperative tumor biopsies, which often provide insufficient material to generate intratumor immune profiles and could not completely recapitulate the heterogeneity of these tumors. IL4 emerged among several other cytokines as the most significant independent prognostic factor for DFS in resectable PDAC patients. The expression of this T_{H}2 cytokine could be useful to select patients with high risk of early recurrence who may avoid an unnecessary resection.

Patients and methods

Patients

Inclusion criteria for this study were histopathological confirmation of PDAC, no prior neo-adjuvant therapy, no evidence of metastatic disease, eligible for surgical resection. Peripheral blood samples were prospectively collected from all patients before surgical resection using EDTA-containing tubes. Plasma was isolated from each sample by centrifugation and stored at −20°C. The variables evaluated included age, gender, tumor location, tumor size, differentiation status, lymph node involvement and TNM stage,\(^{27}\) patterns of resection margins, patterns of recurrence. DFS was determined from the time of surgery until local or metastatic PDAC tumor recurrence. OS was defined as the time of surgery to death. Informed consent was obtained from all subjects. This study was performed in accordance with the ethical standards of the Helsinki Declaration of the World Medical Association.

Multiplex cytokines profiling

Using a 23-plex kit from Bio-Rad, all plasma specimens were analyzed for interleukin (IL)1β, IL2, IL4, IL5, IL6, IL7, IL8 (CXCL8), IL9, IL-12p70, IL13, IL15, IL17a, eotaxin (CCL11), IL1Rx, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IFNγ, IP10 (CXCL10), monocyte chemoattractant protein (MCP1; CCL2), macrophage inflammatory protein 1α (MIP1α; CCL3), MIP1β (CCL4), TNFα, and vascular endothelial growth factor (VEGF). All Luminex assays were performed according to the instructions provided by the manufacturer (Bio-Rad Laboratories). All Luminex assays were performed according to the instructions provided by the manufacturer (Bio-Rad Laboratories). Median fluorescence intensities were collected on a Luminex-200 instrument, using Bio-Plex Manager software version 6.2. Standard curves for each cytokine were generated using the premixed lyophilized standards provided in the kits.

Cytokine concentrations in samples were determined from the standard curve using a 5-point regression to transform mean fluorescence intensities into concentrations.

Statistical analysis

Survival curves were drawn by Kaplan–Meier estimates and compared by log rank test. Univariate and multivariate analyses of DFS and OS, with stepwise variable selection, were conducted by Cox’s proportional hazard regression models. Multivariate analysis was conducted using the clinical-pathologic variables with a \(p\)-value < 0.05 and the strongest significant molecular variables in univariate analysis (\(p\)-value < 0.01). The optimal cutoff thresholds for soluble biomarkers were obtained based on the maximization of the Youden’s statistics \(J = \text{sensitivity} + \text{specificity} - 1^{28}\) using an R-based software as described in Budczies et al.\(^{29}\) Statistical analyses were performed using SPSS 24.0 statistical software (SPSS, Inc.), GraphPad Prism software program (version 6.0; GraphPad Software), and the statistical language R.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

Part of the work was performed at the Laboratorio Universitario di Ricerca Medica (LURM) Research Center, University of Verona.

Funding

This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) under Investigator Grant (IG) n°19111 to DM, IG n°18599 to GT, and 5 per mille Grant n°12182 to AS. Partial support was also provided by the Basic Research Project 2015 through the University of Verona, and by the Nastro Viola patients’ association donations to DM.

ORCID

Francesca Simionato http://orcid.org/0000-0001-5497-2866
Davide Melisi http://orcid.org/0000-0002-4031-7585

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65:5-29; PMID25559415; https://doi.org/10.3322/caac.21254
2. Rahib L, Smith BD, Aïtken R, Rosenzweig AB, Fleshman JM, Matisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74:2913-21; PMID:24840647; https://doi.org/10.1158/0008-5472.CAN-14-0155
3. Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, Padbury R, Moore MJ, Gallinger S, Mariette C et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. Jama 2010; 304:1073-81; PMID:20823433; https://doi.org/10.1001/jama.2010.1275
4. Melisi D, Calvetti L, Frizziero M, Tortora G. Pancreatic cancer: systemic combination therapies for a heterogeneous disease. Curr Pharmaceutical Design 2014; 20:6660-9; PMID:25341938; https://doi.org/10.2174/1381612820666140826154327
5. Giraldo NA, Becht E, Remark R, Damotte D, Sautes-Fridman C, Fridman WH. The immune contexture of primary and metastatic human tumours. Curr Opin Immunol 2014; 27:8-15; PMID:24487185; https://doi.org/10.1016/j.coi.2014.01.001
6. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140:883-99; PMID:20303878; https://doi.org/10.1016/j.cell.2010.01.025
7. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19:1423-37; PMID:24202395; https://doi.org/10.1038/nm.3394
8. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12:298-306; PMID:22419253; https://doi.org/10.1038/nrc3245

9. Sideras K, Braat H, Kwakkeboom J, van Eijck CH, Peppelenbosch MP, Sleijfer S, Bruno M. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat Rev 2014; 40:513-22; PMID:24315741; https://doi.org/10.1016/j.ctrv.2013.11.005

10. Roshani R, McCarthy F, Hagemann T. Inflammatory cytokines in human pancreatic cancer. Cancer Lett 2014; 345:157-63; PMID:23879960; https://doi.org/10.1016/j.canlet.2014.03.014

11. Ebrahimi B, Tucker SL, Li D, Abbruzzese JL, Kurzrock R. Cytokines in pancreatic cancer: correlation with phenotypic characteristics and prognosis. Cancer 2004; 101:2727-36; PMID:15526319; https://doi.org/10.1002/cncr.20672

12. Mitsunaga S, Ikeda M, Shimizu S, Ohno I, Furuse J, Inagaki M, Higashi S, Kato H, Terao K, Ochiai A. Serum levels of Il-6 and IL-1beta can predict the efficacy of gemcitabine in patients with advanced pancreatic cancer. Br J Cancer 2013; 108:2063-9; PMID:23591198; https://doi.org/10.1038/bjc.2013.174

13. Bellone G, Smirne C, Mauri FA, Tonel E, Carbone A, Buffolino A, Dughera L, Robecchi A, Pirisi M, Emanuelli G. Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother 2006; 55:684-98; PMID:16994523; https://doi.org/10.1007/s00262-005-0047-0

14. Farren MR, Mace TA, Geyer S, Mikhail S, Wu C, Ciombor K, Tahiri S, Ahn D, Noonan AM, Villalona-Calero M et al. Systemic immune activity predicts overall survival in treatment-naive patients with metastatic pancreatic cancer. Clin Cancer Res 2016; 22:2565-74; PMID:26719427; https://doi.org/10.1158/1078-0432.CCR-15-1732

15. Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol 2015; 15:271-82; PMID:25882242; https://doi.org/10.1038/nri3831

16. Wormann SM, Diakopoulos KN, Lesina M, Algal H. The immune network in pancreatic cancer development and progression. Oncogene 2014; 33:2956-67; PMID:23851493; https://doi.org/10.1038/onc.2013.257

17. De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C, Protti MP et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 2011; 208:469-78; PMID:21339327; https://doi.org/10.1084/jem.20101876

18. De Monte L, Wormann S, Brunetto E, Helsi S, Magliacane G, Reni M, Paganoni AM, Recalde H, Mondino A, Falconi M et al. Basophil recruitment into tumor-draining lymph nodes correlates with Th2 inflammation and reduced survival in pancreatic cancer patients. Cancer Res 2016; 76:1792-803; PMID:26873846; https://doi.org/10.1158/0008-5472.CAN-15-1801-T

19. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992; 176:287-92; PMID:16134642; https://doi.org/10.1084/jem.176.1.287

20. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11:889-96; PMID:20856220; https://doi.org/10.1038/ni.1937

21. Tjonesland V, Niklasson L, Sandstrom P, Borch K, Druz H, Brathall C, Messmer D, Larsson M, Spangvere A. The desmoplastic stroma plays an essential role in the accumulation and modulation of infiltrated immune cells in pancreatic adenocarcinoma. Clin Dev Immunol 2011; 2011:212810; PMID:21909682; https://doi.org/10.1155/2011/212810

22. Kurahara H, Shinchi H, Mataka Y, Maemura K, Noma H, Kubo F, Sakoda M, Ueno S, Natsugoe S, Takao S. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surgical Res 2011; 167:e211-9; PMID:19765725; https://doi.org/10.1016/j.jss.2009.05.026

23. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 2006; 12:5423-34; PMID:17000676; https://doi.org/10.1158/1078-4342.CCR-06-0369

24. Yamamoto T, Yanagimoto H, Satoi S, Toyokawa H, Hirooka S, Yamaki S, Yui R, Yamao J, Kim S, Kwon AH. Circulating CD4+CD25+ regulatory T cells in patients with pancreatic cancer. Pancreas 2012; 41:409-15; PMID:22158072; https://doi.org/10.1097/MPA.0b013e3182373a66

25. Lunardi S, Jamieson NB, Lim SY, Griffiths KL, Carvalho-Gaspar M, Al-Assar O, Yameen S, Carter RC, McKay CJ, Spolletini G et al. IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget 2014; 5:11064-80; PMID:25415223; https://doi.org/10.18632/oncotarget.2519

26. Lunardi S, Lim SY, Muschel RJ, Brunner TB. IP-10/CXCL10 attracts regulatory T cells: implication for pancreatic cancer. Oncoimmunology 2015; 4:e1027473; PMID:26405599; https://doi.org/10.1080/2162402X.2015.1027473

27. Sobin LH, Compton CC. TNM seventh edition: what's new, what's changed: communication from the International Union against cancer and the american joint committee on cancer. Cancer 2010; 116:5336-9; PMID:20665503; https://doi.org/10.1002/cncr.25537

28. Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3:325; PMID:15405759; https://doi.org/10.1002/1097-0142(1950)3:1<325::AID-CNCR2820301060-3.0.CO;2-3

29. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Edsfahni S, Denkert C. Cutoff finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PloS One 2012; 7:e51862; PMID:23251644; https://doi.org/10.1371/journal.pone.0051862