GROWING CONDITION INFLUENCES VARIATION IN INITIATION TO WILTING OF FLOWERS OF WINTER ANNUALS

Bikash Bhattarai*1, Soumen Maitra2, Rocky Thokchom3

1Research Scholar, Department of Horticulture, Sikkim University, 6th Mile Samdur, Tadong, Gangtok - 737102, Sikkim, India
2Department of Floriculture, Medicinal and Aromatic Plants, Faculty of Horticulture, Uttar Banga Krishi Viswavidyalaya, Panditbari, Cooch Behar - 736165, West Bengal, India
3Department of Floriculture, School of Horticulture, Pandit DeenDayal Upadhyay Institute of Agricultural Sciences, Utlou, Bishnupur - 795134, Manipur, India.

Received – April 16, 2019; Revision – May 28, 2019; Accepted – June 07, 2019
Available Online – June 10, 2019

DOI: http://dx.doi.org/10.18006/2019.7(3).281.288

ABSTRACT

Present study was conducted to study the differences in flowering behavior of twenty different ornamental winter annuals, mostly used for landscaping purpose under different agro-climatic conditions, in the Terai region of West Bengal, India under open field and protected condition. Flowering parameters such as Days required for flower bud initiation (FBI), Days required for flower bud development (FBD), Days required for blooming, Days required for wilting of flower were recorded in each plot and their average was calculated. *Calendula officinalis* showed earliness in FBI (23.25 DAT), FBD (32.88 DAT), blooming (35.50 DAT) and wilting (43.00 DAT) under open condition and the late flowering was found in *Antirrhinum majus* (74.67 DAT), whereas, the delayed wilting was observed in *Helichrysum bracteatum* (94.30 DAT) both under protected condition. *Iberis umbellata* required minimum time period (6.17 days) to reach flower bud development from flower bud initiation stage. The shortest period for wilting of flowers was recorded in *Eschscholtzia californica* (2.00 days) under protected condition, while, *Helichrysum bracteatum* required the maximum time period (21.84 days) from blooming to wilting.

* Corresponding author
E-mail: bikashflori@gmail.com (Bikash Bhattarai)

All the article published by Journal of Experimental Biology and Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Based on a work at www.jebas.org.

Production and Hosting by Horizon Publisher India [HPI] (http://www.horizonpublisherindia.in/).
All rights reserved.
1 Introduction

An annual plant is a plant that completes its life cycle within a particular growing season of the year. Whereas, annual plant which having short period of lifespan is known as flowering annuals. Plants which are sown during winter months starting from October to first week of November and flowering commences within February are called as winter flowering annuals or winter annuals for the plains. (Randhawa & Mukhopadhyay, 1986) Plants with strong vernalization requirement are often referred as winter annuals. Winter flowering annuals provides excellent relaxation, attracts people when planting in a mass and serve as beautification in any landscape plan (Brown, 2012). Annuals are also used as bedding plants, rockery, window baskets, garden plants and herbaceous borders in garden.

Flowering in plant is an inductive process which includes initiation of floral meristem in which the apical meristem modified towards floral development (McDaniel et al., 1992). Murfet (1977) summarized as the flowering is the end result of physiological processes, biochemical sequences, and gene action, which are influenced by environmental stimuli and the passage of time (Munir 2003; Zheng et al., 2006) as well as genotype; a genotype can take two seasons to flower in an environment whereas it may flower within a single season in different environment.Usually, after completing of juvenile and developmental phases plants go through reproductive phase responding to the environmental factors (temperature, photoperiod). The literatures related to the winter annuals like effects of differential temperature on the growth, morphology and flowering of Antirrhinum majus, flower production of calendula, growth and flowering of Californian poppy, Helichrysum bracteatum, Coreopsis, Cornflower, Sweet Williams (Krog, 1980; Kanamadi et al., 1999; Kazinczi et al., 1999; Shang et al., 2003; Mili & Sable, 2003; Singh, 2005; Dhatt & Kumar, 2007; Ibrahim et al., 2010), flower initiation and development of Petunia and Viola (Matsson & Erwin, 2003), responds of Calendula, Chrysanthemum, Pansy and Snapdragon to high temperatures, impact of reduce temperature and irradiance flowering and growth of four annual bedding plants (Warner & Erwin, 2006; Boldt & Atland, 2019) and assessment of height, earliness and biomass production in winter annuals (Bhattarai et al., 2019) revealed the variation on plant height, growth habit, shape, size, color of flowers, time and duration of flowering within the genotypes, even though these are the species of same growing season. But reports regarding the comparative study and the performance of diverse winter ornamental annuals under different growing environments are in scarcity. Winter annuals being a source of garden decoration are need precise documentation and characterization to satisfy the gardening practices and landscaping principles. In this study, an attempts have been made to study the comparative flowering behavior of twenty different winter flowering ornamental annuals both under open field and protected conditions to develop a database on the performance of ornamental annuals in the Terai region of West Bengal for more diversified use of ornamental annuals in landscape, garden display as well as in commercial floriculture.

2 Materials and Methods

Present experiment was carried out at the instructional field of Department of Floriculture, Medicinal and Aromatic plants, Faculty of Horticulture, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India. Experiment was designed in Randomized Block Design with 20 different winter flowering annuals, each annual were replicated twice (4 plants per each replication). The detail of the selected flowering species is depicted in Table 1. Seeds of 20 winter flowering annuals were

No.	English common name	Botanical name	Plant family
1	Snapdragon	Antirrhinum majus L.	Scrophulariaceae
2	Pot Marigold / Calendula	Calendula officinalis L.	Compositae
3	Straw Flower / Helichrysum	Helichrysum bracteatum (Vent.) Andrews	Compositae
4	Petunia	Petunia hybridaVilm	Solanaceae
5	Livingstone Daisy / Mesembryanthemum	Mesembryanthemum cristiflorum L.	Aizoaceae
6	Larkspur	Delphinium ajacis L.	Ranunculaceae
7	Daisy / English Daisy	Bellis perennis L.	Compositae
8	Californian Poppy	Eichscholtzia californica Cham.	Papaveraceae
9	Shirley Poppy	Papaver rhoeas L.	Papaveraceae
10	Lupin	Lupinus hartwegii L.	Leguminosae
11	Sweet Pea	Lathyrus odoratus L.	Leguminosae
12	Brachycome / Swan River Daisy	Brachycome iberidifolia Benth.	Compositae
13	African Daisy / Cape Marigold	Dimorphotheca aurantiaca DC.	Compositae
14	Phlox	Phlox drummondii Hook.	Polemoniaceae
15	Sweet William	Dianthus barbarus L.	Caryophyllaceae
16	Coreopsis / Calliopsis / Tick-seed	Coreopsis tinctoria L.	Compositae
17	Dianthus / Common Pink	Dianthus chinensis L.	Caryophyllaceae
18	Candytuft	Iberis umbellata L.	Cruciferae
19	Cornflower	Centaurea cyanus L.	Compositae
20	Pansy	Viola tricolor L.	Violaceae
sown on October 2012 in the seed bed. Beds were prepared having a dimension of 3m x 1m and height of the beds was maintained up to 15 cm from the ground level. 10 g seeds of each winter flowering annual (10x20=200g) were sown in 5 seed beds, seeds of 4 winter annuals were sown in each bed. The initial nutrient provided was 5 kg FYM along with 10 g each of N, P₂O₅ and K₂O / m². Copper oxychloride at 2 gL⁻¹ of water was sprayed as preventive measure in the seed bed twice at 10 and 20 days after the seedling emergence.

Seedlings of 28 days were transplanted in the main field with spacing varies with the genotypes (Table 2). Repeated ploughing was followed to bring land to make fine tilth. The entire experimental land was divided into raised beds measuring 1.0 m × 1.0 m and there were 40 plots in each open field and polyhouse condition. Each bed was separated to the other through a 30 cm wide path in both ways. Winter flowering annuals (20 Nos.) were planted in a same manner in open field as well as in polyhouse condition. For present experiment, the glavanized iron pipe frame polyhouses having 200 gauges UV stabilized polyethylene sheet as cladding material and sides were covered with insect proof white nets with side vents open facility were used (zero energy polyhouse).

The average minimum and maximum temperature of open and protected condition varied from 7.96°C and 11.31°C during January to 30.38°C and 34.74°C during October respectively. The relative humidity of the study area varies from 41.87 to 98.03%. Meteorological data for open field was obtained from Gramin Krishi Mau Sam Seva, AMFU-Pundibari, Coochbehar, West Bengal, India and polyhouse temperature and relative humidity were measured by digital hygrometer. Consequently, the area is warm and humid except a short spell of winter extending from December to February. The meteorological data of the study period is given in Figure 1.

2.1 Parameters recorded:

Flowering parameters such as days required for flower bud initiation (FBI), days required for flower bud development (FBD), Days required for blooming, Days required for wilting of flower were recorded in each plot and their average was calculated. Data were analyzed using GLM procedure of statistical system (SAS) Software (Version 9.3). Design of the experiment was based on randomized block design with two replications in both the condition and parameters were tested at the 5% level of significance.

3 Results and Discussion

Twenty different winter flowering ornamental annuals when grown under open and protected conditions; the flowering commences earlier in open field and later in polyhouse situation.

Table 2 Spacing of the selected Genotypes

Spacing	Genotypes
25cm x 25cm	Daisy, Phlox, Dianthus, Californian Poppy,
	Petunia, Shirley Poppy, Coreopsis, Sweet
	William, Pansy, Candytuft
30cm x 30cm	Brachycome, Ice Plant, Antirrhinum, Lupin,
	Cornflower, Larkspur, Helichrysum
50cm x 30cm	Calendula, Dimorphotheca, Sweet Pea

Figure 1 Monthly mean meteorological data of open field and polyhouse during the period of experiment a) Temperature and b) Relative Humidity.
Results of study revealed that Calendula reached the flower bud initiation stage earliest (23.25 DAT) and showed resultant earlier flower bud development (32.88 DAT) and full blooming (35.50 DAT) as well as wilting of flowers (43.00 DAT) under open field condition. Delayed flowering was observed in Antirrhinum (74.67 DAT) while delayed wilting was observed with Helichrysum (94.30 DAT) under polyhouse situation. Least time period required to reach FBD from FBI was observed in candytuft (6.17 days), blooming from FBD in Lupin (1.50 days) and wilting of flowers from blooming was recorded in Californian poppy (2.00 days) under polyhouse, whereas, highest time period required from FBI to FBD was noticed in Cornflower (19.60 days) under open field, from FBD to blooming in Helichrysum (6.57 days) under polyhouse and from blooming to wilting in Helichrysum (21.84 days) in open field condition (Table 3). Annuals showed marked variation to reach into their reproductive phase classifying them as early flowering, mid-season flowering or late bloomers. However, this is well established since time immemorial but the quantitative measurements of these durations were lacking. Moreover, the changes in duration under varied growing conditions also represent the physiological changes within the species as an influence of the growing environment. In this experiment all the winter ornamental annual species except
Table 4 Grouping of genotypes on the basis of FBI and FBI to FBD

Open field condition	Polyhouse condition
FBI TO FBD	
t’ grouping	Genotypes
A	Cornflower
B	Coreopsis
C	Larkspur
D	Helichrysum
E	Dimorphotheca
F	Sweet William
G	Brachycome
H	Dianthus
I	Phlox
J	Sweet Pea
K	Pansy
L	Calendula
M	Californian Poppy
N	Candytuft
O	Candytuft
P	Petunia
Q	Daisy
both ways from the day after transplanting as well as from the preceding stage. This experiment was performed to provide the information about winter annuals for the growers to sow the late bloomers well ahead with a quantitative measurement. Various researchers also found that the species-wise variation regarding different durations might be due to the combination of several factors like environmental stimuli, inherent growth pattern, soil condition, genotypic configuration of the species (Munir et al., 2004; Inaba & Ohshiro, 2005; Ibrahim et al., 2010; Ali, 2013). Apart from that, the variation in maturity was observed due to the effect of temperature under different growing conditions during flowering period (Niu et al., 2000; Kang & Iersel, 2001; Niu et al., 2006; Warner, 2010).

Fluctuation in flowering behavior under open and protected condition was observed in this experiment due to temperature and light quality was corroborated by the observations of Kumar & Kaur (2000) and Warner & Erwin (2002) also noticed significant variation in FBI and other phases of flower development within the different ornamental annual species.

Conclusion

The results obtained from the present experiment revealed that the variability exists within the genotypes under each growing environment or in the same genotype under different growing conditions. To exert the best effect in any landscaping situation, especially in herbaceous borders - simultaneous blooming is an essential principle with color combination. To achieve this objective, it is essential to categorize the plants accordingly by comparing its flowering habit and colour combination.

Conflict of Interest

No conflict of interest.

References

Ali MA (2013) Effect of different concentrations (NPK) on growth and flowering of *Helichrysum bracteatum*. International Journal of Agriculture and Crop Sciences 5: 1966-1968.

Table 5 Grouping of genotypes on the basis of FBD to Blooming

Open field condition	Genotypes	Polyhouse condition	Genotypes					
't' grouping	't' grouping							
A	Helichrysum	A	Helichrysum					
B	Ice Plant	B	Daisy					
C	B	Antirrhinum	C	B	Dimorphotheca			
D	C	Brachycome	C	B	D	Dianthus		
E	D	Cornflower	C	F	E	D	Phlox	
F	D	Ice Plant	C	F	E	D	Calendula	
G	D	Sweet William	G	C	F	E	D	Larkspur
H	D	Brachycome	G	C	F	E	D	Sweet William
I	D	Pansy	G	H	F	E	D	Petunia
J	D	Californian Poppy	G	H	F	E	D	Californian Poppy
K	D	Lupin	G	H	F	E	D	Shirley Poppy
L	E	Petunia	G	H	F	E	D	Candytuft
M	G	Candytuft	G	H	F	E	D	Coreopsis
N	G	Shirley Poppy	H	F	E	D	Lupin	
Bhattarai B, Maitra S, Thokchom R (2019) Assessment of Height, Earliness and Biomass Production in Selected Winter Flowering Ornamental Annuals for Better Utilization in Landscaping. The Pharma Innovation 8: 59-64

Boldt JK, Atland JE (2019) Timing of short -term reduction in temperature and irradiance affects growth and flowering of four annual bedding plants. Horticulturae 5: 15 https://doi.org/10.3390/horticulturae5010015.

Brown SH (2012) Colorful plant beds for South Florida and similar climates. Lee County Extension, Fort Myers, Florida 239: 533-7513.

Cavins TJ, Dole JM, Stamback V (2000) Unheated and minimally heated winter greenhouse production of specialty cut flower. Horticulture Technology 10: 793-799.

Dhatt KK, Kumar R (2007) Effect of planting time and spacing on plant growth, flowering and seed yield in Coreopsis lanceolata and Coreopsis tinctoria. Journal of Ornamental Horticulture 10: 105-109.

Ibrahim SMM, Taha LS, Farahat MM (2010) Influence of foliar application of Peptone on growth, flowering and chemical composition of Helichrysum bracteatum plants under different irrigation intervals. Ocean Journal of Applied Sciences 3: 143-155.

Inaba Z, Ohshiro M (2005) Effects of planting density and methods of raising seedlings on flowering, yield and quality of cut flowers in snapdragons (Antirrhinum majus L.). Environment Control in Biology 43: 201-210.

Kanamadi VC, Dharmatti PR, Patil S, Gangadharappa PM, Patil BC (1999) Propagation of straw flower (Helichrysum bracteatum Andr.) by stem cuttings. Advances in Plant Science Research in India 9:113-115.

Kang JG, Iersel MWV (2001) Interactions between temperature and fertilizer concentration affect growth of subirrigated petunias. Journal of Plant Nutrition 24: 753-765.

Kazinczi G, Hunyadi K, Lukacs D (1999) Data on the biology of Cornflower (Centaurea cyanus L.) I. Germination biology and growth analysis. Novenyvedelem 35: 45-52.

Krogt TVD (1980) The flowering of Sweet Williams in the winter. Vakbladvoor de Bloemisterij 35: 34-35.

Kumar R, Kaur K (2000) Effect of planting time and cultivars on growth, flowering and seed yield in Phlox (Phlox drummondi). Seed Research 28: 23-26.

Lindgren DT, Streich AN, Todd KA, Rodie SN (2007) Annuals for Nebraska Landscape. I. Flowering plants. University of Nebraska-Lincoln Extension. http://anrpubs.unl.edu/live/g1774/build/g1774.pdf.

Love SL, Noble K, Parkinson S, Bell S (2009) Herbaceous ornamentals: annuals, perennials and ornamental grasses. Short-Season, high altitude gardening 1-16. http://www.cals.uidaho.edu/edcomm/pdf/bul/bul0861.pdf.

Mattson NS, Erwin JE (2003) Temperature affects flower initiation and development rate of Impatiens, Petunia, and Viola. Acta Horticulturae 624: 191-197.

McDaniel CN, Singer SR, Smith SME (1992) Developmental states associated with the floral transition. Developmental Biology 153: 59-69.

Mili R, Sable AS (2003) Effect of planting density and nitrogen levels on growth and flower production of Calendula (Calendula officinalis L.). Indian Journal of Horticulture 60: 399-403.

Munir M (2003) A study on the effects of environmental factors affecting the phases of flower development in Antirrhinum majus L.. Ph.D. Thesis submitted to the Department of Horticulture and Landscape, School of Plant Sciences, The University of Reading, United Kingdom.

Munir M, Jamil M, Baloch JUD, Khattak KR (2004) Growth and flowering of Antirrhinum majus L. under varying temperatures. International Journal of Agriculture and Biology 6: 173-178.

Murflit IC (1977) Environmental interaction and genetics of flowering. Annual Review of Plant Physiology 28: 253-278.

Niu G H, Rodriguez DS, Wang YT (2006) Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. Hort Science 41: 1408-1411.

Randhawa GS, Mukhopadhyay A (1986) Floriculture in India. Allied Publishers Private Limited, 58-60.

Shang H, Deitzer GF, Cox LJD (2003) Differential temperature (DIF) effects on the growth, morphology and flowering of Antirrhinum majus L. (Snapdragon) cultivars. Acta Horticulturae 624: 177-183.

Singh AK (2005) Growth and seed yield in California poppy (Eschscholtzia californica Chamisso) as influenced by plant growth regulators. Journal of Ornamental Horticulture 8: 159-160.
Growing condition influences variation in initiation to wilting of flowers of winter annuals

Warner RM (2010) Temperature and photoperiod influence flowering and morphology of four Petunia spp. HortScience 45: 365-368.

Warner RM, Erwin JE (2002) Photosynthetic responses of heat-tolerant and heat-sensitive cultivars of Impatiens hawkeri and Viola x wittrockiana to high temperature exposures. Acta Horticulturae 580: 215-219.

Warner RM, Erwin JE (2006) Prolonged high temperature exposure differentially reduces growth and flowering of 12 Viola x wittrockiana Gams. cvs. ScientiaHorticulturae108: 295-302.

Zheng ZL, Yang Z, Jang JC, Metzger JD (2006) Phytochromes A1 and B1 have distinct functions in the photoperiodic control of flowering in the obligate long day plant Nicotiana sylvestris. Plant Cell & Environment 29: 1673-1685.