A limitation of the Cognitive Reflection Test: Familiarity

Stefan Stieger, Corresp., 1, 2, Ulf-Dietrich Reips 1

1 Department of Psychology, University of Konstanz, Konstanz, Germany
2 School of Psychology, University of Vienna, Vienna, Austria

Corresponding Author: Stefan Stieger
Email address: stefan.stieger@uni-konstanz.de

The Cognitive Reflection Test (CRT; Frederick, 2005) is a frequently used measure of cognitive vs. intuitive reflection. It is also a frequently found entertaining ‘test’ on the Internet. In a large age-stratified community-based sample (N = 2,272) we analyzed the impact of having already performed the CRT or any similar task in the past. Indeed we found that 44% of participants had experiences with these tasks, which was reflected in higher CRT scores (Cohen’s d = 0.41). Furthermore, experienced participants were different from naïve participants regarding their socio-demographics (younger, higher educated, fewer siblings, more likely single or in a relationship than married, having no children). The best predictors of a high CRT score were the highest educational qualification (4.62% explained variance) followed by the experience with the task (3.06%). Therefore, we suggest to use more recent multi-item CRTs with newer items and more elaborated test construction.
A limitation of the Cognitive Reflection Test: Familiarity

Stefan Stieger¹,²* & Ulf-Dietrich Reips¹

¹ Research Methods, Assessment, and iScience group, Department of Psychology, University of Konstanz, Germany

² Department of Basic Psychological Research and Research Methods, School of Psychology, University of Vienna, Austria

* Corresponding author. Stefan Stieger, Department of Psychology, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany. E-mail: stefan.stieger@uni-konstanz.de
Abstract

The Cognitive Reflection Test (CRT; Frederick, 2005) is a frequently used measure of cognitive vs. intuitive reflection. It is also a frequently found entertaining ‘test’ on the Internet. In a large age-stratified community-based sample (N = 2,272) we analyzed the impact of having already performed the CRT or any similar task in the past. Indeed we found that 44% of participants had experiences with these tasks, which was reflected in higher CRT scores (Cohen’s d = 0.41). Furthermore, experienced participants were different from naïve participants regarding their socio-demographics (younger, higher educated, fewer siblings, more likely single or in a relationship than married, having no children). The best predictors of a high CRT score were the highest educational qualification (4.62% explained variance) followed by the experience with the task (3.06%). Therefore, we suggest to use more recent multi-item CRTs with newer items and more elaborated test construction.
Introduction

The Cognitive Reflection Test (CRT) was introduced by Frederick (2005) and is supposed to be a measure of cognitive reflection in contrast to intuition. It consists of three mathematical/numerical text-based problems, which elicit first an intuitive (wrong) answer and can only be solved when consciously thinking of the (not obviously) true answer. The theory behind this task assumes that there are two distinct cognitive processes: a fast intuitive one and a slow and rather reflective one (Epstein, 1994). Some researchers called them System 1 (i.e., spontaneous, instantly, effortlessly) and System 2 processes (i.e., effortful, motivated, reflected; Stanovich & West, 2000). To solve the CRT items, one has to ignore the first intention of the System 1 processes and switch to System 2 processes to think intentionally about the correct answer. The CRT has been frequently used and within many research topics (e.g., ideology: Deppe, Gonzales, Neiman, Jacobs, Pahlke, Smith, & Hibbings, 2015; superstitious and paranormal beliefs: Pennycook, Cheyne, Seli, Koehler, & Fugelsang, 2012).

The CRT has also been frequently studied from a methodological point of view. One frequently researched topic is whether the CRT is rather a measure of numerical ability than of cognitive reflection. Using a mathematical modeling approach, Campitelli and Gerrans (2014) found that the CRT is not only a measure of numerical ability, but also of rational thinking and open-minded thinking for males and of mathematical ability and rational thinking for women. Sinayev and Peters (2015) analyzed this issue in a large-N multi-study design and found that numerical ability seems to be the key mechanism behind the CRT score (for a similar reasoning, see Welsh, Burns, & Delfabbro, 2013). Furthermore, although the CRT could prove its usefulness in predicting normative decision making in (primarily) laboratory tasks (Toplak, West, & Stanovich, 2014), it failed to predict real-life decision outcomes when controlling for
personality and decision-making styles (Juanchich, Dewberry, Sirotla, & Narendran, 2016).

Some researchers suggested an alternative score of intuition (in contrast to reflection; e.g., Brosnan, Hollinworth, Antoniadou, & Lewton, 2014), but recent research found that the reflective score still predicts behavior (e.g., intuitive-analytic cognitive styles) better than the intuitive score (Pennycook, Cheyne, Koehler, & Fugelsang, 2016). Because the CRT has only three items, it often lacks high reliability values (range between .60 and .74; Weller, Dieckmann, Tusler, Mertz, Burns, & Peters, 2013; Liberali, Reyna, Furlan, Stein, & Pardo, 2011; for a short review, see Campitelli & Gerrans, 2014). Therefore, multi-item revisions of the CRT with higher reliability values have been introduced (e.g., 7 items: Toplak et al., 2014; 5 items: Gómez-Chacón, Garcia Madruga, Rodriguez, Vila, & Elosúa, 2012), some with psychometric properties scrutinized by using Item Response Theory (6 items: Primi, Morsanyi, Chiesi, Donati, & Hamilton, 2015), which come with the additional advantage of being less susceptible to floor and ceiling effects. To sum up, although some methodological topics are still under debate, the CRT keeps developing and is used widely.

The CRT’s frequent use and constant further development might explain its popularity, the Web of Science lists 386 citations and Google Scholar lists 1,286 citations. All the more, several well-known books cite this task (e.g., Kahneman, 2011) and the CRT is a frequently found ‘test’ on the Internet where people can try to solve the items in a game-like competitive manner with the aim of being better than their friends and/or peers. For example, the search term ‘Cognitive Reflection Test’ elicits 9,130 search results and the first few words of the first item of the test (‘a bat and a ball cost…’) creates 8,570 hits on the Internet (German version ‘ein Schläger und ein Ball…’ 2,970 hits). Recent reports about people working on Amazon’s Mechanical Turk platform (i.e., a microjob web platform also called MTurk; Buhrmester,
Kwang, & Gosling, 2011) state that the CRT items are the ones which are probably most often asked in MTurk projects.¹

We found one study that investigated the influence of popularity on CRT results. Brañas-Garza, Kujal, and Lenkei (2015) performed a meta-analysis about the CRT and also included a cross-temporal meta-analysis, where they correlated the mean CRT score (per year), with the respective year of publication. Overall, they found some support for their assumption that, with time, CRT scores are increasing and this effect seems to be driven by online studies (where participants have the possibility to look up the correct answer) although effect sizes were low. However, in this cross-temporal meta-analysis the moderator variable of having already performed the CRT was not explicitly assessed, rather it was assumed that in later samples participants might have already performed such tasks and are more experienced (Brañas-Garza et al., 2015).

The CRT obviously only works well if participants are not aware of the rationale behind the task, i.e., that the CRT items elicit a spontaneous, intuitive answer and that this answer is not the correct one. Therefore, we asked whether the obvious prominence of the task could have an effect on the CRT’s outcome (for a similar reasoning, see Toplak et al., 2014). If participants are aware of the rationale, they can consciously overcome their first intuition and think about the items more thoroughly knowing that the correct answer is probably not the first answer that came to mind. If this assumption is correct, then participants who have already performed the CRT (or any other similar task) in the past, should have higher CRT scores than participants doing the CRT for the very first time.

To sum up, we investigated whether having already performed the CRT or any similar

¹ http://www.pbs.org/newshour/updates/inside-amazons-hidden-science-factory/
task (e.g., multi-item versions of the CRT: Toplak et al., 2014) in the past has an effect on the
CRT’s outcome (mean difference, floor and ceiling effects) and whether differences in the
sample composition regarding socio-demographics (e.g., sex, age, highest educational
qualification, current relationship status) influence this effect.

Method

Participants

Participants (N = 2,272) were recruited by word-of-mouth through friends, relatives, and
friends-of-friends of several research assistants following a convenience sampling approach.
Participants filled in the questionnaire wherever they were approached (e.g., at home, at the
university). The final sample was age-stratified and constitutes German-speaking volunteers
(predominantly Austria and Germany) from all walks of life, \(M_{\text{age}} = 39.8 \) years, \(SD = 17.7; \)
56.6% women. We used six different age-strata (18 – 25, 26 – 30, 31 – 40, 41 – 50, 51 – 60, 61+)
with the aim of an equal number of participants in each strata in the final sample. In terms of
highest educational qualification, 4% had not completed primary education, 15% had completed
primary education, 23% had an apprenticeship diploma, 34% had completed secondary
education, and 24% had a university degree. Participants’ current relationship status was: 24%
single, 29% in a relationship, 38% married, 4% divorced, 4% widowed, and 1% stated a different
relationship status. Almost half of participants had children (46%), 26% were currently smoker,
and had on average 1.8 siblings (Median = 1; range 0 to 11; 13% were the only child in their
family).

Materials

Cognitive Reflection Test (CRT). The CRT (Fredericks, 2005) is a measure of cognitive in
contrast to intuitive reflection. It contains three problems, which first elicit a spontaneous, but
mathematically wrong answer. Only individuals who overcome this first intention and
deliberately think about the correct answer can solve the problems (e.g., first problem “A bat and
a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost?
_____ cents.”; intuitive answer = 10 cents; correct answer = 5 cents). The CRT has no time limit
and the total score is calculated as the number of correct answers (range 0 to 3; for descriptive
results, see Table 1).² Directly after the three CRT items, we asked participants whether they had
done these tasks or any similar ones before (yes/no).

Table 1.

Success rate of the CRT items, results from the present study.

Empirical results [%]	Correct	Wrong (intuitive)	Correct	Wrong (intuitive)	Wrong (but not intuitive)	Missing	Sum
Correct answer	5	10	28.3%	68.1%	2.3%	1.3%	100.0%
Wrong (intuitive answer)	47	24	53.0%	34.9%	8.0%	4.1%	100.0%

Note. CRT = Cognitive Reflection Test.

Item 1: “A bat and a ball cost €1.10 in total. The bat costs €1.00 more than the ball. How much
does the ball cost? _____ cents”

² We have also tried the intuitive score as an alternative (for a recent comparison, see Pennycook et al., 2015), but
found very little differences in the results. This is probably due to the rather low rate of participants who gave a
wrong non-intuitive answer (see Table 1).
Item 2: “If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets? _____ minutes”

Item 3: “In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of the lake? _____ days”

Demographics. Participants were asked about their sex, age, highest educational qualification, and current relationship status. Because we were interested whether there are general differences between those participants having already performed the CRT or any similar task in the past and those without experience, we also asked further specific demographics without having any specific research question in mind only to give a more complete picture of potential differences in demographics, i.e., whether or not they have children (yes/no), smoke (yes/no), and how many siblings they have, if any.

Procedure

Participants gave their informed consent, completed the CRT along with several other measures that were not part of this study, and finally provided demographic details. For the purpose of anonymity, each questionnaire was put into an envelope and thrown into a box. All participants took part on a voluntary basis and were not financially remunerated for participation.

Dominance analysis

When calculating linear regressions, multicolinearity (i.e., intercorrelation between predictors) is a problem when it turns out to be substantial. To quantify multicolinearity, statistical packages calculate the so-called Variance Inflating Factors (VIFs). In the present study, multicolinearity was foreseeable, because demographic variables usually correlate (e.g., participant age is correlated with the highest educational qualification and having children or
To account for multicolinearity, we decided to additionally conduct a dominance analysis (Azen & Budescu, 2003; Budescu, 1993). Dominance analyses have the advantage of assessing the importance of each predictor relative to the other predictors in the regression model. This is realized by looking at the contribution of each single predictor in the linear model not only in conjunction with other predictors, but also in isolation. Practically, all possible combinations of predictors are used to calculate partial, direct, and total effect parts by decomposing the total R^2 (explained variance). The partial effects come from all possible combinations of predictors on the outcome measure by excluding either one or more predictors from the model. The direct effect is the independent contribution without the other predictors in the model (i.e., zero-order correlation with the outcome measure). The total effect represents the classical multiple linear regression when all predictors are included in the model at once. The outcomes of the dominance analysis are R^2 values for each predictor, which are adjusted for shared variances with other predictors (i.e., representing the real explained variance). In the present study, dominance analyses were calculated using the R package ‘yhat’ (Nimon & Oswald, 2013; for a recent application, see Stieger, Burger, Schiller, Schulze, & Voracek, 2014).

Ethics

The present study was conducted in accordance with the principles of the Declaration of Helsinki and with institutional guidelines of the School of Psychology, University of Vienna. Furthermore, the present study followed the Guidelines for ethical conduct of behavioral projects involving human participants proposed by the American Psychological Association. According to the institutional guidelines of the University of Vienna, Austria (http://satzung.univie.ac.at/ethikkommission-der-universitaet-wien/), approval by an ethics
Results

Descriptives

Out of the overall sample of 2,272 participants, 135 (5.9%) did not answer at least one of the three CRT questions (percentage of missing answers, see Table 1) or did not state whether or not they had experience with the test ($n = 23$). Data from these participants were excluded from further analyses, leading to a final sample size of $N = 2,137$. In 45 cases (2.1%), participants misstated an obviously correct answer with the first item of the CRT by ignoring the fact that the result should be stated in Cent not in Euros (e.g., participants stated 0.05 instead of 5). These inconsistencies were solved and these cases included. We found no inconsistencies for the second and third item of the CRT. Descriptive statistics of the CRT items can be found in Table 1.

The question whether or not participants had already performed the CRT or any similar task in the past were answered with “Yes” by almost half of participants (44.9%, $n = 959$). We will differentiate between naïve and experienced participants in the following sections. The reliability estimate of the CRT for the experienced participants was slightly higher than the one for the naïve participants (Cronbach $\alpha = .657$ vs. .595, respectively).

Mean differences: Are there differences between naïve and experienced participants?

As can be seen from Table 2, there were several differences between the participant groups, not only regarding the CRT but also regarding several demographic variables. First of
all, as hypothesized experienced participants had significantly higher CRT scores than naïve
participants (low-to-medium effect size; Cohen, 1988). This experience effect affected all CRT
items more or less to the same extent (Odds Ratios ORs between 1.66 and 2.05).
Table 2.

	Experienced	Naïve	t-test	Cohen’s d
CRT sum score	1.65 (1.11)	1.21 (1.06)	9.38***	0.41
Age	35.0 (16.00)	43.4 (17.93)	11.36***	0.50
Education	3.8 (1.12)	3.5 (1.10)	7.11***	0.31
Number of siblings	1.7 (1.46)	1.9 (1.61)	3.44**	0.15
Standardized residuals				
CRT Item 1	-3.0/-4.7	2.7/-4.2	56.25***	2.05 [1.70, 2.48]
CRT Item 2	-3.5/2.8	2.9/-2.5	32.86***	1.66 [1.40, 1.98]
CRT Item 3	-4.3/3.9	3.9/-3.5	61.56***	2.01 [1.69, 2.39]
Sex [m/f]	0.8/-0.7	-0.7/0.6	1.97	0.88 [0.74, 1.05]
Relationship status 1)	2.7/3.8/-4.8/	-2.4/-3.4/4.3/	88.87***	CC = 0.2
	-0.4/-2.0/0.5	0.4/1.8/-0.4		
Own children [yes/no]	-5.2/4.9	4.7/-4.4	92.74***	2.36 [1.98, 2.82]
Smoker [yes/no]	-0.7/0.4	0.7/-0.4	1.35	1.12 [0.92, 1.36]

Note. 1) Coding of relationship status: single, in a relationship, married, divorced, widowed, other. CC = Contingency Coefficient; CRT = Cognitive Reflection Test.

* p < .05, ** p < .01, *** p < .001 (two-tailed).
Furthermore, experienced and naïve participants differed in their demographics. Experienced participants were younger, had a higher education, fewer siblings, no children, and were more likely single or in a relationship than married (see standardized residuals in Table 2). The difference between experienced and naïve participants regarding the CRT score becomes even more pronounced for different educational levels (see Table 3). Compared to the university samples presented by Frederick (2005), participants in the present study having experience with the CRT or any similar tasks and having an apprenticeship diploma as highest educational level, performed slightly better than Harvard students (1.50 vs. 1.43). The same applies to participants with secondary education, they were similar to Princeton students (1.65 vs. 1.63), and participants with a university degree performed almost as well as Massachusetts Institute of Technology (MIT) students (1.99 vs. 2.18). Furthermore, floor and ceiling effects became relevant. About one third of experienced participants with secondary education or a university degree reached the highest score possible (= 3), whereas again one third of experienced participants with lower education did not solve any CRT item.
Differences in CRT scores between experienced and naïve participants separated by highest educational qualification.

CRT score [SD]	Mean CRT score	N
	CRT score [SD]	
Not completed		
1.16 (1.08)	36% 25% 25% 14%	44
1.22 (1.03)	30% 32% 24% 14%	37
Primary education	0.93 (0.97)	191
1.16 (1.17)	43% 29% 20% 8%	122
Apprenticeship diploma	1.06 (1.03)	359
1.50 (1.12)	26% 21% 30% 23%	121
Secondary education	1.31 (1.05)	344
1.65 (1.11)	29% 27% 28% 16%	390
University degree	1.55 (1.07)	236
1.99 (0.64)	10% 17% 37% 36%	285

Note. First-line entry = naïve participants, second-line entry = experienced participants.

In a next step, we calculated a linear regression with the CRT score as the dependent measure to better quantify the influence of the CRT knowledge and participants’ demographics onto the CRT score. Because some of the predictors are intercorrelated (e.g., age with current relationship status, highest educational qualification, and having children), multicollinearity can be assumed. This is a problem for linear regressions, because the influence of predictors onto the...
dependent measure are not pure, they may depend on other predictors. Therefore, we also
250 calculated a dominance analysis. Results can be found in Table 4. Variance Inflation Factors
251 (VIFs), which indicate multicollinearity, were between 1.034 and 17.692 (following current
252 practices, VIFs higher than 10 are regarded as problematic; O’Brien, 2007).

253
254 Table 4.
255 Results of the linear regression and dominance analysis with the CRT score as the dependent
256 measure.

	β	Zero-order correlation r	Dominance R² [%]
Age	-.018	-.028	0.05%
Education	.203***	.239***	4.62%
Number of siblings	-.001	-.048*	0.08%
Sex	-.138***	-.141***	1.88%
Own children	.011	-.026	0.03%
Smoker	-.091***	-.088***	0.80%
CRT experience	.158***	.198***	3.06%

Relationship status

	β	Zero-order correlation r	Dominance R² [%]
Single	-.016	-.055**	0.19%
In a relationship	.077	.084***	0.32%
Married	.062	.005	0.07%
Divorced	.015	-.016	0.02%
Widowed	-.003	-.069**	0.20%
Note. $F(12,2070) = 22.03, p < .001$; adj. $R^2 = 10.8\%$

Coding of Sex: 1..male, 2..female; Coding of ‘own children’ and smoker: 0..no, 1..yes

* $p < .05$, ** $p < .01$, *** $p < .001$ (two-tailed).

The impact of multicolinearity on the beta weights can also be tested by calculating Spearman rank-order correlations between dominance weights (which should be true values adjusted for intercorrelations) and the absolute values of beta weights. In case of no multicolinearity, order ranks of dominance weights should resemble the order ranks of beta weights (i.e., perfect rank-order correlation of 1). If the rank-order correlation deviates from 1, the more likely multicolinearity is present. In fact, the rank-order correlation was below 1 ($r_{sp} = .76, p < .01$). Therefore, the dominance weights should be given preference over beta weights.

As can be seen in Table 4, the best predictors of the CRT score were the highest educational qualification, followed by CRT experience, participant’s sex (male higher scores), and being a smoker (smokers had lower CRT scores, i.e. scored rather intuitive than reflective). Most of the overall explained variance could be attributed to the first two predictors (highest education qualification, CRT experience: 7.68% in total). We repeated the analyses for each CRT item, but the pattern of results remained constant. The only exception was that for the CRT Item 1, age was also significant (the lower the age, the higher the score; $\beta = -.095$; detailed results omitted for brevity).

Discussion

In the present study we could clearly show that having prior experience with the CRT or any similar task has a substantial influence on the CRT score ($d = 0.41$). CRT experience was one of the best predictors of the CRT score (3.06% explained variance), along with the highest educational qualification (4.62%).
Experienced participants not only had a higher CRT score (~ half a point on average), they were also different from naïve participants regarding their socio-demographics (e.g., young, lower educated, being rather single or in a relationship than married, and having no children). Furthermore, floor and ceiling effects were prevalent. Almost one third of higher educated (secondary education, university) experienced participants reached the highest possible score, whereas one third of the lower educated participants did not solve any CRT item at all.

This suggests that the CRT in its original 3-item form (Frederick, 2005) is not only limited by familiarity, it is also limited by range restrictions. Although the items seem to be of medium difficulty, the classical CRT is not suitable for the highly educated (because they solve all items) as well as the lowly educated (because they solve none of them).

Therefore, we strongly recommend using recent multi-item CRTs (including new intuitive vs. reflection items; Primi et al., 2015; Toplak et al., 2014). This recommendation has several implications. First, following our recommendation should lower the probability that participants have experience with the CRT’s items, at least for some time. When contrasting results based on old and new items, one can evaluate a possible influence from CRT experience (at least with the original CRT). If one wants to avoid the original CRT items entirely, Toplak et al. (2014) also introduced a 4-item version of the CRT including only new items. Second, multi-item CRTs have higher measurement reliability. Currently the CRT’s reliability is rather low – in the present sample, naïve participants produced a rather low reliability of Cronbach $\alpha = .595$.

Also, it could be that reliability estimates from past studies are impaired by CRT experience as well, i.e., the real reliability estimate is actually even lower. Using reliable multi-item CRTs should also raise the possibility to find substantial and meaningful effects in future research.
projects because increased measurement reliability leads to larger effect sizes (for a discussion, see LeBel & Paunonen, 2011) as well as less range restrictions.

The present results are also of interest regarding another effect – the Flynn effect (i.e., secular IQ gains; for an overview see Williams, 2013). The Flynn effect is the substantial increase in intelligence (fluid and crystallized) test scores over time (from ~1930 until now). The reasons for this effect are still under debate, but it seems to be a mixture of several influences such as real IQ gains through education or increases in test-specific skills (e.g., Jensen, 1998).

For the CRT, the same effect of increasing test scores has been found by Brañas-Garza et al. (2015) in their cross-temporal meta-analysis. Initially, this could mean that people indeed are becoming more rational and reflective (compared to intuitive) over time. But the authors also found that this effect was driven by online samples, i.e., the effect might be driven by participants looking up the correct answers on the Internet. The present study extends and clarifies this supposition, that indeed the prevalence rate of knowing the CRT (and similar tasks) is high and indeed prior experience with the task substantially raises the CRT score. Hence, the gain in CRT scores is due to gains in test-specific skills rather than a gain in rational thinking.

Limitations

In the present study only German-speaking volunteers were recruited, therefore it is unclear how the found results apply to other communities. We believe that for English-speaking countries the CRT experience effect might even be more prevalent. First of all, the CRT was originally published in English, so there was more time for items to become well-known in English. Second, as far as we know, the CRT items (especially the first bat-and-ball item) are frequently used in introductory courses and classroom presentations in the US and UK. In the future, it would be interesting to analyze potential experience effects with the CRT items in other
languages (e.g., Spanish; Gòmez-Chacòn et al., 2012).

Furthermore, in the present study we only asked about whether or not participants have any experience with the CRT items or similar tasks, but we did not ask how much experience they have and when they made this experience (long time ago vs. very recently). Assessing these two additional variables would make it possible do draw a more nuanced picture about the influence of CRT experience onto CRT scores.

Conclusion

To sum up, we think that a methodologically well-developed CRT is vital in order to settle debates about the CRT (e.g., its dependency on numerical ability and correlation with intelligence). Currently the classical CRT (Frederick, 2005) is limited by familiarity because it is frequently found on the Internet and is frequently used in introductory courses and classroom presentations. Furthermore, it is limited by range restrictions due to its 3-item form. With the present study we could show that experience strongly affects the CRT and a revalidation of the task is therefore indicated. Fortunately, there are already encouraging new developments regarding the CRT (e.g., Primi et al., 2015; Toplak et al., 2014) which should be given preference over the classical CRT.
References

Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predictors in multiple regression. *Psychological Methods, 8*, 129-148.

Brañas-Garza, P., Kujal, P., & Lenkei, B. (2015). *Cognitive Reflection Test: Whom, how, when*. Munich Personal RePEc Archive paper no. 68049. https://mpra.ub.uni-muenchen.de/68049/

Brosnan, M., Hollinworth, M., Antoniadou, K., & Lewton, M. (2014). Is empathizing intuitive and systemizing deliberative? *Personality and Individual Differences, 66*, 39-43. doi:10.1016/j.paid.2014.03.006

Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. *Psychological Bulletin, 114*, 542-551.

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality, data? *Perspectives on Psychological Science, 6*, 3-5. doi:10.1177/1745691610393980

Campitelli, G., & Gerrans, P. (2014). Does the Cognitive Reflection Test measure cognitive reflection? A mathematical modelling approach. *Memory and Cognition, 42*, 434-447. doi:10.3758/s13421-013-0367-9

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.), New Jersey: Lawrence Erlbaum.

Deppe, K. D., Gonzales, F. J., Neiman, J. L., Jacobs, C., Pahlke, J., Smith, K. B., & Hibbings, J. R. (2015). Reflective liberals and intuitive conservatives: A look at the Cognitive Reflection Test and ideology. *Judgment and Decision Making, 10*, 314-334

Epstein, S. (1994). Integration of the cognitive and psychodynamic unconscious. *American
Psychologist, 49, 709-724.

Frederick, S. (2005). Cognitive reflection and decision making. *Journal of Economic Perspectives, 19*, 25-42.

Gòmez-Chacòn, I., García Madruga, J. A., Rodriguez, R., Vila, J. O., & Elosúa, R. (2012). Mathematical beliefs and cognitive reflection: Do they predict academic achievement? In B. Roesken & M. Casper (Eds.), *Proceedings of the MAVI-17 Conference, September 17-20, 2011, Current state of research on mathematical beliefs* (pp. 64-73). Ruhr-Universität Bochum, Germany.

Jensen, A. R. (1998). *The g factor: The science of mental ability*. Westport, CT: Praeger.

Juanchich, M., Dewberry, C., Siroti, M., & Narendran, S. (2016). Cognitive reflection predicts real-life decision outcomes, but not over and above personality and decision-making styles. *Journal of Behavioral Decision Making*. doi:10.1002/bdm.1875

Kahneman, D. (2011). *Thinking, fast and slow*. New York: Farrar, Straus and Giroux.

LeBel, E. P., & Paunonen, S. V. (2011). Sexy but often unreliable: The impact of unreliability on the replicability of experimental findings with implicit measures. *Personality and Social Psychology Bulletin, 37*, 570-583. doi:10.1177/0146167211400619

Liberali, J. M., Reyna, V. F., Furlan, S., Stein, L. M., & Pardo, S. T. (2011). Individual differences in numeracy and cognitive reflection, with implications for biases and fallacies in probability judgment. *Journal of Behavioral Decision Making, 25*, 361-381.

Nimon, K., & Oswald, F. L. (2013). Understanding the results of multiple linear regression: Beyond standardized regression coefficients. *Organizational Research Methods, 16*, 650-674. doi:10.1177/1094428113493929

O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. *Quality Improvement and Patient Safety, 2*, 1-12.
Pennycook, G., Cheyne, J. A., Koehler, D. J., & Fugelsang, J. A. (2016). Is the Cognitive Reflection Test a measure of both reflection and intuition? *Behavior Research Methods*. doi:10.1007/s11135-006-9018-6

Pennycook, G., Cheyne, J. A., Seli, P., Koehler, D. J., & Fugelsang, J. A. (2012). Analytic cognitive style predicts religious and paranormal belief. *Cognition, 123*, 335-346. doi:10.1016/j.cognition.2012.03.003

Primi, C., Morsanyi, K., Chiesi, F., Donati, M., & Hamilton, J. (2015). The development and testing of a new version of the Cognitive Reflection Test applying item response theory (IRT). *Journal of Behavioral Decision Making*. doi:10.1002/bdm.1883

Sinayev, A., & Peters, E. (2015). Cognitive reflection vs. calculation in decision making. *Frontiers in Psychology, 6*, 532.

Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? *Behavioral and Brain Sciences, 22*, 5, 645-726.

Stieger, S., Burger, C., Schiller, F. R., Schulze, E. K., & Voracek, M. (2014). Measuring implicit gender-role orientation: The Gender Initial Preference Task. *Journal of Personality Assessment, 96*, 358-367.

Toplak, M. E., West, R. F., & Stanovich, K. E. (2011). The Cognitive Reflection Test as a predictor of performance on heuristics-and-biases tasks. *Memory and Cognition, 39*, 1275-1289.

Toplak, M. E., West, R. F., & Stanovich, K. E. (2014). Assessing miserly information processing: An expansion of the Cognitive Reflection Test. *Thinking and Reasoning, 20*, 147-168. doi:10.1080/13546783.2013.844729
Weller, J. A., Dieckmann, N. F., Tusler, M., Mertz, C. K., Burns, W. J., & Peters, E. (2013). Development and testing of an abbreviated numeracy scale: A Rasch analysis approach. *Journal of Behavioral Decision Making, 26*, 198-212.

Welsh, M., Burns, N., & Delfabbro, P. (2013). The Cognitive Reflection Test: How much more than numerical ability? In M. Knauff, N. Sebanz, M. Pauen, & I. Wachsmuth (Eds.), *Proceedings of the 35th Annual Meeting of the Cognitive Science Society* (pp. 1587-1592). Cognitive Science Society.

Williams, R. L. (2013). Overview of the Flynn effect. *Intelligence, 41*, 753-764. doi:10.1016/j.intell.2013.04.010