Current controversies and future perspectives on treatment of intensive care unit delirium in adults

Marco Cascella, Marco Fiore, Sebastiano Leone, Domenico Carbone, Raffaela Di Napoli

Abstract
Delirium is the most frequent manifestation of acute brain dysfunction in intensive care unit (ICU). Although antipsychotics are widely used to treat this serious complication, recent evidence has emphasized that these agents did not reduce ICU delirium (ICU-D) prevalence and did not improve survival, length of ICU or hospital stay after its occurrence. Of note, no pharmacological strategy to prevent or treat delirium has been identified, so far. In this scenario, new scientific evidences are urgently needed. Investigations on specific ICU-D subgroups, or focused on different clinical settings, and studies on medications other than antipsychotics, such as dexmedetomidine or melatonin, may represent interesting fields of research. In the meantime, because there is some evidence that ICU-D can be effectively prevented, the literature suggests strengthening all the strategies aimed at prevention through no-pharmacological approaches mostly focused on the correction of risk factors. The more appropriate strategy useful to treat established delirium remains the use of antipsychotics managed by choosing the right doses after a careful case-by-case analysis. While the evidence regarding the use of dexmedetomidine is still conflicting and sparse, this drug offers interesting perspectives for both ICU-D prevention and treatment. This paper aims to provide an overview of current pharmacological approaches of treatment of ICU-D.
Delirium represents the most common type of acute brain dysfunction in intensive care unit (ICU). Despite no support from rigorous controlled studies, haloperidol and atypical antipsychotics have been for decades the main class of drugs used for its pharmacological management. Recently, large size studies demonstrated that antipsychotics do not significantly shorten the duration of delirium. However, because ICU delirium has multifactorial pathogenesis it is difficult to postulate that a single agent can be useful for all clinical contexts. In this manuscript we want to provide an overview of most recent pharmacological approaches for the ICU delirium treatment.

INTRODUCTION

Delirium is recognised as the most frequent manifestation of acute brain dysfunction in intensive care unit (ICU) as it affects up to 80% patients, especially in the postsurgical or traumatic settings. This complication is associated with increased duration of mechanical ventilation (MV), prolonged ICU and hospital length to stay (LOS), increased rates of self-extubation, refusal of medications, and overall increased hospital costs. Of note, it has been also proved that delirium in ICU (ICU-D) represents an independent predictor for increased mortality. Furthermore, the occurrence of ICU-D and its duration seems to be associated with long-term cognitive impairment in survivors of critical illness, probably due to alterations in brain structure and white-matter disruption.

Clinically, the two recognized subtypes of delirium are the hyperactive type (often called “ICU psychosis”) featuring agitation, hallucinations, restlessness, and the hypoactive delirium (also referred as “quiet delirium” or “acute encephalopathy”) characterized by apathy, decreased responsiveness, slowed motor function, withdrawn attitude, lethargy, and drowsiness. Patients may also exhibit a fluctuation between the hypoactive and hyperactive types (mixed delirium) (Table 1). In terms of clinical relevance, hyperactive delirium has generally a low prevalence whereas the hypoactive form is very often underestimated and is associated with a worse prognosis.

Based on these premises, appropriate management of ICU-D through careful prophylaxis, early detection and treatment, is mandatory for improving patient’s outcome. However, this target still remains an unmet need. While no-pharmacological interventions focused on the early recognition and correction of risk factors seems to be the more appropriate strategy to prevent delirium, there are numerous controversies concerning pharmacological prophylaxis and treatment of established delirium. Of note, to date there are no United States Food and Drug Administration-approved pharmacologic therapies for ICU-D prevention or treatment. In this complex scenario, this paper aims to offer an overview of current pharmacological approaches and results from evidence based-medicine (EBM) analysis. The state of the art of the clinical research on the topic and perspectives for future research are also addressed.

CURRENT PHARMACOLOGICAL APPROACHES AND CONTROVERSIES
Table 1 Features and pharmacological management of delirium in intensive care unit

Delirium subtypes	Notes
Hypoactive (24.5%-43.5%)^[6]: Apathy, decreased responsiveness, slowed motor function, withdrawn attitude, lethargy, and drowsiness	Poor response to antipsychotics
Hyperactive (1.6%-23%)^[6]: Agitation, hallucinations, restlessness	May respond to antipsychotics
Mixed (52.5%)^[6]: Fluctuation of hypoactive and hyperactive features	Requires a careful assessment over the time

Prevention (Drugs)

Drug	Notes
Haloperidol	Poor efficacy on ICU-D prevention and related clinical outcomes (e.g., mortality). Not recommended^[10]
Atypical antipsychotics	Poor efficacy. Not recommended^[10]
Dexmedetomidine	Although not recommended^[10], low doses (e.g., 0.1 μg/kg per hour) may reduce ICU-D occurrence

Treatment (Drugs)

Drug	Notes
Haloperidol	Useful: 2-10 mg (IV every 6 h), but recommended for not routinely using (especially in hyperactive form)^[10]
Atypical antipsychotics	Olanzapine (IM 5-10 mg; max: 30 mg/d), risperidone (0.5-8 mg), quetiapine (orally 50 mg; max 400 mg/d)^[2]. Starting regimens may need to be higher than maintenance doses; Recommended for not routinely using^[10]
Dexmedetomidine	Useful, but recommended (with low quality evidence) in adults under MV, especially when hyperactive manifestations preclude weaning^[10]
Short-acting benzodiazepines	Useful in patient experiencing alcohol or sedative withdrawal, or for delirium resulting from seizures; Lorazepam: IM and IV forms; no active metabolites (preferred); Midazolam: IM and IV forms; has active metabolites

Drug side effects

Drug	Notes
Haloperidol	Insomnia, EPSs^[2] and agitation are the most common side effects. Dose dependent changes of EPSs. Cardiotoxicity occurs at doses > 2 mg IV
Atypical antipsychotics	EPSs at high doses. Olanzapine and quetiapine may lead to excessive sedation, ziprasidone is more associated with QTc prolongation
Dexmedetomidine	Bradycardia, and hypotension. Hypertension
Benzodiazepines	Delirogenic effect

¹Compared to haloperidol, their efficacy is similar, and with less extrapyramidal side effects;

²EPSs management: dose-escalation; anticholinergic; dopamine agonist; beta blockers or even benzodiazepines for akathisia. ICU-D: Intensive care unit delirium; IV: Intravenous; IM: Intramuscular; MV: Mechanical ventilation; EPSs: Extrapyramidal symptoms; QTc: Corrected QT interval.

About pharmacological interventions (Table 1), despite no support from rigorous randomized controlled trials (RCTs), haloperidol and, subsequently, atypical antipsychotics have been for decades the main class of drugs used for the acute treatment of ICU-D. Haloperidol is a dopamine (D2) receptor antagonist used in 75%-80% of ICU-D cases^[8]. Depending on the severity of the delirium its dose may range from 2 to 10 mg (intravenous every 6 h). Common side effects of haloperidol include agitation, drowsiness, insomnia, headache, restlessness, anxiety, and mood changes. Severe side effects are extrapyramidal symptoms (EPSs) including subacute parkinsonism featuring dystonic reactions or akathisia (i.e., the subjective inner restlessness and feeling to need to move), cardiotoxicity [e.g., corrected QT interval (QTc) prolongation, torsade de pointes, hypotension], and neuroleptic malignant syndrome (NMS). This latter condition represents a rare but serious complication characterized by rigidity, fever, and autonomic dysfunctions (e.g., tachycardia). Among all these complications, insomnia, EPSs, and agitation are the most common side effects. Concerning cardiotoxicity, it usually occurs at high doses, whereas a dosage of 2 mg haloperidol can be safely administered^[9].

Despite its wide use, several controversies regard the efficacy of haloperidol for both prevention and treatment of ICU-D. In critically ill patients, two large size (RCTs), the Hope-ICU and the REDUCE studies, showed that haloperidol administration was of limited efficacy on ICU-D prevention^[10] and compared with placebo did not improve survival at 28 d in patients with a high risk of delirium^[11]. Although there have been a number of criticisms levelled at the REDUCE’s study mainly concerning design^[11] and drug regimens used^[11], it seems that this investigation offers more certainties than doubts. Furthermore, it has been demonstrated that low-dose haloperidol did not impact delirium duration and severity even when the antipsychotic was combined with other strategies such as reduced exposure to anticholinergic medications, or the benzodiazepines (BZDs).
use[16]. Thus, a recent guideline suggests that clinicians should not use antipsychotics, either typical and atypical, to prevent delirium in adult ICU patients[19].

Olanzapine, risperidone, quetiapine, and ziprasidone are drugs included among the atypical antipsychotics class. These drugs, also indicated as second-generation antipsychotics (SGAs) are prescribed in 35%-40% of patients with ICU-D. Functionally, they have a variety of effects on the dopaminergic, cholinergic, glutamategic, and serotoninergic (5-HT2A) systems. Because SGAs have a higher ratio of 5-HT2 to D2 blockade, they induce a low incidence of EPSs. Interestingly, they may decrease neurotoxicity and improve cognitive function[18]. Compared to haloperidol, the efficacy of SGAs for delirium treatment is similar, although their use was found associated with less EPSs, and lower risk of tardive dyskinesia, or NMS[19]. However, olanzapine and quetiapine may lead to excessive sedation due to their strong antagonism at H1 receptors, whereas ziprasidone is more associated with QTc prolongation[20]. Recent data from the MIND-USA RCT, conducted on a large size of patients (n = 1183), demonstrated that compared with placebo haloperidol (maximum dose, 20 mg daily) or ziprasidone (maximum dose, 40 mg daily) did not significantly shorten the duration of delirium or coma. Furthermore, there were no significant differences on other endpoints including mortality (after 30 and 90 d), and duration of MV, or in the ICU and hospital LOS[19]. Previously, two RCTs designed to evaluate the efficacy of SGAs on ICU-D offered contradictory results[19,21]. Again, the sample sizes were too small to extrapolate significant data on clinical outcomes (e.g., mortality, or LOS) to be useful for EBM analysis. In one study (n = 36), Devlin et al[19] administered quetiapine by increasing its doses every 24 h added to as-needed haloperidol, and obtained good results in terms of faster ICU-D resolution, whereas there was no significant occurrence of side effects compared to placebo (P = 1.0). On the contrary, in the other study (n = 101), the authors found no significant differences with haloperidol, or ziprasidone, compared to placebo on the duration of ICU-D and MV[20]. In summary, although the routinely use of haloperidol and SGAs have been not recommended, the short-term use of haloperidol or a SGAs may be helpful, especially in case of hyperactive delirium characterized by excessive agitation[19]. In case of lack of response to haloperidol/SGAs, other pharmacological strategies could be evaluated in order to avoid serious dose-related side effects.

Short-acting BDZs, such as midazolam and lorazepam, are often used for sedation in ICU. Because, their delirigenic effect especially after continuous infusion[22] has been well recognized[23], these drugs are particularly administered for managing delirium only in patient experiencing alcohol withdrawal[21] whereas there is no evidence to support their use in the treatment of other types of delirium[14]. Dexmedetomidine is an alpha-2-adrenergic agonist with sedative, analgesic, and anxiolytic properties. Several investigations demonstrated that this agent may reduce the use of other sedatives and the duration of MV. Furthermore, it could be able to promote natural sleep without respiratory depression by inhibiting noradrenergic neurons in the locus coeruleus and, in turn, by inducing rapid eye movement sleep (REM) and non-REM I-III sleep states[24]. Prophylactic low-dose dexametomididine (0.1 µg/kg/h; given only the first postoperative day) significantly decreases the occurrence of delirium (from 23% to 9%) during the first 7 d after non-cardiac surgery. Moreover, there was a reduction in sedative and narcotics agents administration[25]. Other controlled investigations demonstrated that this alpha-2 agonist medication reduced the incidence and duration of ICU-D when compared with lorazepam[26] or midazolam[27] in patients under MV, although with a higher occurrence of bradycardia. About side effects, the administration of dexametomididine may induce bradycardia, and hypotension through inhibition of sympathetic activity in the periphery. Moreover, it may lead to withdrawal symptoms if abruptly discontinued, whereas limited data are available on circulatory insufficiency and mortality[28].

Despite this limitation, a recent guideline recommends - with low quality evidence - the use of dexametomididine in the pharmacological management of ICU-D in adults under MV, especially when hyperactive manifestations preclude weaning[29]. According to the theory of cholinergic deficit in delirium, van Eijk et al[30] tested the cholinesterase inhibitor rivastigmine. Because the intervention did not decrease duration of delirium and, in turn, increased mortality, the RCT was prematurely terminated. The explanation for this negative finding was that plasma cholinesterase activity is impaired in ICU patients[31], especially in those with sepsis[14]. However, according to Opdam et al[32] this agent should receive a second chance.

Multiple mechanisms of hippocampal and extra-hippocampal dysfunction due to neuroinflammation are involved in the pathogenesis of delirium[33]. Thus, based on anti-inflammatory properties of statins, Page et al[34] tested simvastatin in the prevention and treatment of delirium. The results, however, were not encouraging as duration of delirium was not shortened and high creatine kinase concentrations were registered after the statin administration.
Melatonin is a hormone released by the pineal gland with a key role in sleep and circadian rhythm regulation\(^3\). In ICU patients, it has been proved a significant alteration in the sleep patterns and these findings are associated with decreased melatonin production and, in turn, with delirium occurrence\(^3\). A retrospective analysis demonstrated that the exogenous administration of melatonin for at least 48 hours was associated with a significant reduction in development of ICU-D\(^3\). Previously, the administration of melatonin (5 mg preoperatively) has been found to decrease incidence of postoperative delirium (POD)\(^3\). Ramelteon is a melatonin receptor agonist prescribed for insomnia due to difficulty with sleep onset. In a RCT this medication (given 8 mg/d every night for 7 d) was associated with a decreased incidence of delirium\(^3\).

EVIDENCE BASED MEDICINE FINDINGS ON PHARMACOLOGICAL PREVENTIVE AND THERAPEUTIC STRATEGIES

In non-ICU patients, a recent Cochrane analysis found that there is poor evidence about the efficacy of typical or SGAs on the duration of delirium, length of hospital stay, discharge time, or health-related quality of life (HRQoL)\(^4\). In the setting of POD, although based on small studies of limited scope, another Cochrane research showed that low dose haloperidol (< 3.0 mg/d) may be effective in decreasing the degree and duration of delirium whereas compared to the SGAs higher doses haloperidol were associated with a greater incidence of side effects\(^5\). In contrast with previous EBM analysis that found that prophylactic use of haloperidol, or dexmedetomidine, may be useful for reducing the prevalence of ICU-D\(^4\), a recent EBM research highlighted and confirmed the poor results demonstrated through the Hope-ICU and REDUCE investigations\(^4\). In summary, evidence suggests that there is no benefit from prophylactic treatment with haloperidol, or SGAs, against the development of ICU-D.

Concerning ICU-D treatment, the authors of a recent systematic overview of reviews and meta-analyses failed to identify, through their methodology, any EBM study assessing any pharmacological agents\(^6\). This lack concerns also dexmedetomidine and confirmed results from the previous analysis. For instance, Chen et al\(^4\) found no evidence on the prophylactic and therapeutic role of this medication against ICU-D and its clinical outcome when compared with BZDs or propofol. On the contrary, other meta-analysis indicated that dexmedetomidine may reduce delirium and duration of MV in patients after cardiac surgery when compared with propofol\(^6\), or in patients undergoing non-invasive ventilation in no-cardiac ICU\(^6\). According to Maagaard et al\(^6\), the evidence regarding the use of dexmedetomidine in the treatment of ICU-D is conflicting and sparse. As the authors designed an exhaustive protocol for a systematic review, their results could give us valuable information on the real effectiveness of the drug on delirium management\(^6\). Finally, there is more uncertainty on the efficacy of anticholinesterase inhibitors as a systematic review found that these drugs offer no benefit in terms of prophylaxis, or treatment of diagnosed delirium\(^5\). Selected evidence-based research on pharmacological management of ICU-D is summarized in Table 2.

ON-GOING TRIALS

Several RCTs focused on pharmacological approaches for prevention and/or treatment of ICU-D are on-going. One study was designed to test haloperidol (2.5 mg haloperidol × 3 daily intravenously with additional doses to a maximum of 20 mg/daily) in a large number of ICU patients with delirium (NCT03392376). Another investigation (NCT02216266) regards the use of physostigmine (24 mg + 25 min a 0.04 mg/kg intravenously) after elective, or emergency, heart surgery. Of note, for assessing the efficacy of their treatment the authors are evaluating changes in the spontaneous EEG and auditory evoked potentials in patients with ICU-D and agitation. Researchers from the Hôpitaux de Paris are evaluating the effect of melatonin vs placebo. Through enteral route, low (0.3 mg/d) or high (3 mg/d) doses of the medication will be administered up to Day-14 in patients under MV (NCT03524937). Melatonin is under investigation in another RCT enrolling elderly non-ventilated patients (NCT03013790). Again, a phase II triple blind RCT comparing two doses of melatonin (0.5 mg and 2.0 mg) are currently assessing the feasibility to subsequently design a full-scale RCT (NCT02615340).
Table 2 Selected evidence-based research on pharmacological management of delirium in intensive care unit

Ref	Analysis	Findings
Burry et al[41]	Cochrane analysis	In non-ICU patients there is a poor evidence about the efficacy of typical, or SGAs, on the duration of delirium, discharge time, or HRQoL.
Lonergan et al[42]	Cochrane analysis	Low dose haloperidol may be effective against POD, although with greater incidence of side effects when compared to the SGAs; Limitation: analysis based on small studies of limited scope
Serafim et al[43]	Systematic review	Prophylactic use of haloperidol, may be useful for reducing the prevalence of ICU-D.
Herling et al[44]	Cochrane analysis	No difference proved between haloperidol and placebo for preventing ICU-D.
Tao et al[45]	Meta-analysis	Administration of dexamethasone was associated with a reduction in delirium after on-pump cardiac surgery; Limitation: studies at a high risk of bias
Barbateskovic et al[45]	Systematic overview of reviews and meta-analyses	Pharmacological strategies for prevention or management of ICU-D is poor, or sparse
Chen et al[46]	Cochrane analysis	No evidence on the preventive and therapeutic role of dexmedetomidine against ICU-D and its outcome
Liu et al[47]	Meta-analysis	Dexmedetomidine may reduce delirium and duration of MV in patients after cardiac surgery when compared with propofol
Pasin et al[48]	Meta-analysis	Dexmedetomidine may reduce delirium also in patients undergoing non-invasive ventilation
Tampi et al[50]	Systematic review	Anticholinesterase inhibitors have no benefit against ICU-D prevention, or treatment
Lonergan et al[24]	Cochrane analysis	There is no evidence to support the use of BDZs in the treatment of non-alcohol withdrawal related delirium

ICU: Intensive care unit; SGAs: Second generation antipsychotics; LOS: Length of stay; HRQoL: Health-related quality of life; POD: Postoperative delirium; MV: Mechanical ventilation; BDZs: Benzodiazepines.

Based on their protocol adopted for pain control, sedation, and delirium in ICU patients (PAD protocol: Propofol or dexmedetomidine)[51], researcher from the Duke University are evaluating its feasibility versus midazolam in post cardiac surgery patients under MV (NCT02903407). Apart from the Duke’s study, because dexmedetomidine represents an interesting perspective, other RCTs on this drug are on-going. In these studies, dexmedetomidine is used at low dosage continuously (NCT03172897), or during the night of surgery in the ICU unit (NCT03624595). Dexmedetomidine is also investigated compared to propofol in specific delirium types (hyperactive or mixed type) (NCT02807467), in the setting of sepsis (NCT01739933), and with the purpose to reduce incidence and severity of delirium by restoring sleep, in not intubated patients (NCT02856594).

Despite BDZs are commonly used for discomfort, anxiety, agitation, and alcohol withdrawal syndrome in the ICU, their use may induce the so-called BDZ-associated hypoactive delirium. Researchers are testing the hypothesis that the continuous infusion of flumazenil may be able to reverse this hypoactive ICU-D type (NCT02899156).

PERSPECTIVES

In the lack of effective pharmacological strategies for the prevention and management of ICU-D, new scientific evidence is urgently needed. Further large size trials on antipsychotics should be designed, should be conducted in order to evaluate preventive pharmacological strategies. These investigations must necessarily focus on a cohort of patients recognized as at higher risk. For instance, in a no-controlled investigation conducted on high-risk patients, van den Boogaard et al[52] found that prophylactic treatment with haloperidol (3 mg/d) was very effective. Pharmacological prophylactic agents other than antipsychotics should be investigated. For instance, because a meta-analysis suggested that the perioperative use of dexa-
Cascella M et al. Treatment of ICU-D

methasone may prevent POD after on-pump cardiac surgery, studies on non-cardiac ICU patients could be encouraged [53].

Concerning delirium therapy, investigation on different clinical settings (e.g., postsurgical, or sepsis), or focused on sedated or non-sedated patients receiving assessment before and after sedative interruption, could represent an interesting perspective. Moreover, the clinical practice suggests that the hyperactive delirium type seems to respond to antipsychotics whereas the hypoactive form is usually refractory to this therapy. Indeed, because delirium has multifactorial etiology and a complex pathophysiology involving neuroinflammation, microglia activation, surgical stress response (in postsurgical patients), and neurotoxic effects due to systemic infection [54], it is difficult to suppose that a single drug can be useful for all forms of delirium. Thus, the typology of delirium should be better typed and specific RCTs should be designed on specific ICU-D subgroups or by targeting specific symptoms such as anxiety or apathy.

Different outcomes such as delirium duration, ICU length of stay, mortality, duration of MV as well as the correlation between the severity of delirium and these clinical outcomes must be better highlighted. The issue of safety endpoints included excessive sedation and drug-related side effects could be exceeded through studies designed with defined drug regimens.

In addition, clinical studies on medications other than antipsychotics as a potential alternative or adjunct treatment could offer useful data. For instance, it seems that melatonin, and melatonin agonists (e.g., L-tryptophan, and ramelteon) may offer some benefit, although clinical data are inconclusive [55]. Positive results from studies on valproic acid [56], or suvorexant [57], or more selective orexin receptor antagonists, should encourage further attempts focused on these interesting substances. More research should be also conducted on dexmedetomidine in order to investigate its overall safety profile, and efficacy in different clinical settings. Finally, systematic reviews with low risk of bias, or addressing serious adverse events, and clinical outcomes such as those related to the HRQoL and cognitive function are urgently warranted.

CONCLUSION

Despite the huge number of clinical investigations conducted on the topic, to date results from EBM analysis highlighted that there are no effective pharmacological strategies in both prevention and management of established ICU-D. Thus, for these purposes no-pharmacological approaches must be preferred. The identification of specific risk factors and their prompt correction is certainly a winning strategy; however, given the significant clinical impact of this complication, it is necessary to offer clinicians effective and safe therapeutic opportunities. Results from several ongoing RCTs could provide useful information. Furthermore, a careful analysis of the unsatisfactory results obtained from previous research is necessary to identify possible lines of research.

REFERENCES

1. Pandharipande P, Cotton BA, Shintani A, Thompson J, Pun BT, Morris JA, Dittus R, Ely EW. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. *J Trauma* 2008; 65: 34–41 [PMID: 18580517 DOI: 10.1097/TA.0b013e31814b2c4d]

2. Vasilevskis EE, Chandrasekhar R, Holtze CH, Graves J, Speroff T, Girard TD, Patel MB, Hughes CG, Cao A, Pandharipande PP, Ely EW. The Cost of ICU Delirium and Coma in the Intensive Care Unit Patient. *Med Care* 2018; 56: 960–971 [PMID: 30179988 DOI: 10.1097/MLR.00000000000010973]

3. Lin SM, Liu CY, Wang CH, Lin HC, Huang CD, Huang PY, Fang YF, Shieh MH, Kuo HP. The impact of delirium on the survival of mechanically ventilated patients. *Crit Care Med* 2004; 32: 2254–2259 [PMID: 15646638 DOI: 10.1097/01.CCM.0000145587.16421.BB]

4. Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani AK, Gordon SM, Canonico AE, Dittus RS, Bernard GR, Ely EW. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. *Crit Care Med* 2010; 38: 1513–1520 [PMID: 20473145 DOI: 10.1097/CCM.0b013e3181e47be1]

5. Morandi A, Rogers BP, Gunther ML, Merkle K, Pandharipande P, Girard TD, Jackson JC, Thompson J, Shintani AK, Gevarghese S, Miller RR, Canonico A, Cannistra CI, Gore JC, Ely EW, Hopkins RO; VISIONS Investigation, VSIulanting ICU Survivors: Neuropsychological Sequelae. The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging: the VISIONS prospective cohort magnetic resonance imaging study*. *Crit Care Med* 2012; 40: 2182–2189 [PMID: 22584706 DOI: 10.1097/CCM.0b013e318250edc]

6. Collet MO, Caballero I, Sonnevile R, Bozza FA, Nydahl P, Schandl A, Waisen H, Citerio G, van den Boogaard M, Hästbacka J, Haennig M, Colpaert K, Rose I, Barbateskovic M, Lange T, Jensen A, Krog MB, Egerod I, Niboh HL, Wetterles J, Perner A; AID-ICU cohort study co-authors. Prevalence and risk factors related to haloperidol use for delirium in adult intensive care patients: the multinational AID-ICU study*. *Crit Care Med* 2012; 40: 2182–2189 [PMID: 22584706 DOI: 10.1097/CCM.0b013e318250edc]
inception cohort study. Intensive Care Med 2018; 44: 1081-1089 [PMID: 29767323 DOI: 10.1007/s00134-018-5204-y]
7 Arumugam S, El-Menayar A, Al-Hassani A, Strandvik G, Asim M, Makkothalil A, Mudeal I, Al-Thani H. Delirium in the Intensive Care Unit. J Emerg Trauma Shock 2017; 10: 37-46 [PMID: 2824012 DOI: 10.4103/jets.2017.199520]
8 Patel RP, Gambrell M, Speroff T, Scott TA, Pun BT, Okahashi J, Strength C, Pandharipande P, Girard TD, Burgess H, Dittus RS, Bernard GR, Ely EW. Delirium and sedation in the intensive care unit: survey of behaviors and attitudes of 1384 healthcare professionals. Crit Care Med 2009; 37: 825-832 [PMID: 19257884 DOI: 10.1097/CCM.0b013e3181968608]
9 Meyer-Massetti C, Cheng CM, Sharpe BA, Meier CR, Guglielmo BJ. The FDA extended warning for intravenous haloperidol and torsades de pointes: how should institutions respond? J Hosp Med 2010; 5: E8-16 [PMID: 20394022 DOI: 10.1002/jhm.691]
10 Page VJ, Ely EW, Gates S, Zhao XB, Alice T, Shintani A, Jackson J, Perkins GD, McAuley DF. Effect of intravenous haloperidol on the duration of delirium and coma in critically ill patients (Hope-ICI): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med 2013; 1: 515-523 [PMID: 24461612 DOI: 10.1016/S2213-2600(13)70166-8]
11 van den Boogaard M, Slooter AJC, Brüggemann RJM, Schoonhoven L, Beishuizen A, Vermeijden JW, Pretorius D, de Koning J, Simons KS, Dennense PJW, Van der Vooct PHJ, Houterman S, van der Hoeven JG, Pickers P, REDUCE Study Investigators, van der Woude MCE, Besselink A, Hofstra LS, Sprock PE, van den Bergh W, Donker DW, Fuchs M, Karakus A, Koeman M, Van Duijnhoeven M, Hannink G. Effect of Haloperidol on Survival Among Critically Ill Adults With a High Risk of Delirium: The REDUCE Randomized Clinical Trial. JAMA 2018; 319: 680-690 [PMID: 29466591 DOI: 10.1001/jama.2018.0160]
12 Torbie H, Duggal A. Propylthetic Haloperidol for Critically Ill Adults. JAMA 2018; 320: 303-304 [PMID: 30027243 DOI: 10.1001/jama.2018.6045]
13 Strik JMJH, Schieveld JNM. Propylthetic Haloperidol for Critically Ill Adults. JAMA 2018; 320: 303 [PMID: 30027242 DOI: 10.1001/jama.2018.6041]
14 Khan BA, Perkins AJ, Campbell NL, Gao S, Farber MO, Wang S, Khan SH, Zarrabul BA, Boustani MA. Pharmacological Management of Delirium in the Intensive Care Unit: A Randomized Pragmatic Clinical Trial. J Am Geriatr Soc 2019; 67: 1057-1065 [PMID: 30681720 DOI: 10.1161/JAHA.118.009695]
15 Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, Watson PL, Weinhoush GL, Nunally ME, Rochweger B, Balas MC, van den Boogaard M, Bosma KJ, Brummel NE, Charuzes G, Denefy L, Drouot X, Fraser GL, Harris JE, Joffe AM, Kho ME, Kress JP, Lanphere JA, McKinley S, Neufeld KJ, Pisani MA, Payen JF, Pun BT, Puntillio KA, Riker RR, Robinson BRH, Shehabi Y, Szumita PM, Winkelman C, Centofanti JE, Price C, Nikayn S, Misak CJ, Flood JD, Kiewrowski K, Alhazzani W. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit Care Med 2018; 46: e285-e873 [PMID: 30131379 DOI: 10.1097/CCM.0000000000003299]
16 Meltzer HY. What's atypical about atypical antipsychotic drugs? Curr Opin Pharmacol 2004; 4: 53-57 [PMID: 15018933 DOI: 10.1016/j.coph.2003.09.010]
17 Mo Y, Yam FK. Racial and Rational Use of Second-Generation Antipsychotics for the Treatment of ICU Delirium. J Pharm Pract 2017; 30: 121-129 [PMID: 26003792 DOI: 10.1177/1099141316675893]
18 Girard TD, Esline MC, Carson S, Hough CL, Rock P, Gong MN, Nyquist IS, Malhotra A, Owens RL, Feinstein DJ, Khan B, Pisani MA, Hzye BC, Schamid GA, Schaweckt WD, Hite RD, Bowton DL, Masica AL, Thompson JL, Chandrasekhar R, Pun BT, Strength C, Boehm LM, Jackson JC, Pandharipande PP, Brummell NE, Hughes CG, Patel MB, Stollings JL, Hjortard GR, Dittus RS, Ely EW; MIND-USA Investigators. Haloperidol and Ziprasidone for Treatment of Delirium in Critical Illness. N Engl J Med 2018; 379: 2506-2516 [PMID: 30346242 DOI: 10.1056/NEJMoa1806217]
19 Devlin JW, Roberts RJ, Fong JJ, Skrobik Y, Riker RR, Hill NS, Robbins T, Garpestad E. Efficacy and safety of quetiapine in critically ill patients with delirium: a prospective, multicenter, randomized, double-blind, placebo-controlled pilot study. Crit Care Med 2010; 38: 419-427 [PMID: 19915454 DOI: 10.1097/CCM.0b013e31818c302]
20 Girard TD, Pandharipande PP, Carson S, Schmidt GA, Wright PE, Canonicco AE, Pun BT, Thompson JL, Shintani AK, Meltzer HY, Bernard GR, Dittus RS, Ely EW; MIND Trials Investigators. Feasibility, efficacy, and safety of antipsychotics for intensive care unit delirium: the MIND randomized, placebo-controlled trial. Crit Care Med 2010; 38: 428-437 [PMID: 20950688 DOI: 10.1097/CCM.0b013e3181e59715]
21 Zaal IJ, Devlin JW, Hazelbag M, Klein Klouwenberg PM, van der Kooi AW, Ong DS, Cremer OL, Groenewald RH, Slooter AJ. Benzodiazepine-associated delirium in critically ill adults. Intensive Care Med 2015; 41: 2130-2137 [PMID: 26404392 DOI: 10.1007/s00134-015-4063-z]
22 Pandharipande P, Shintani A, Petersen J, Pun BT, Wilkinson GR, Dittus RS, Bernard GR, Ely EW. Lorazepam is an independent risk factor for transitioning to delirium in intensive care patients. Anesthesiology 2006; 104: 21-26 [PMID: 16398685 DOI: 10.1097/00000542-200601000-00005]
23 Amato I, Minozzi S, Vecchi S, Davoli M. Benzodiazepines for alcohol withdrawal. Cochrane Database Syst Rev 2010; CD005963 [DOI: 10.1002/14651858.CD005963.pub3]
24 Lonergan E, Luxenberg J, Areosa Sastre A. Benzodiazepines for delirium. Cochrane Database Syst Rev 2009; CD006379 [PMID: 19821364 DOI: 10.1002/14651858.CD006379.pub3]
25 Nelson S, Muzyk AJ, Bucklin MH, Brudney S, Gagliardi JP. Defining the Role of Dexamethasone in the Prevention of Delirium in the Intensive Care Unit. Biomed Res Int 2015; 2015: 635737 [PMID: 26576429 DOI: 10.1155/2015/635737]
26 Su X, Meng ZT, Wu XH, Cui F, Li HL, Wang DX, Zhu X, Zhu SN, Maze M, Ma D. Dexamethasone for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 2016; 388: 1893-1902 [PMID: 27542303 DOI: 10.1016/S0140-6736(16)30580-3]
27 Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, Shintani AK, Thompson JL, Jackson JC, Deppen SA, Stiles RA, Dittus RS, Bernard GR, Ely EW. Effect of sedation with dexamethasone vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA 2007; 298: 2644-2653 [PMID: 18073360 DOI: 10.1001/jama.2007.55549]
28 Riker RR, Shehabi Y, Bokesch PM, Ceresa D, Wisenmandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexamethasone Compared With Midazolam) Study Group. Dexamethasone vs midazolam for sedation of critically ill patients: a
Cascella M et al. Treatment of ICU-D

randomized trial. JAMA 2009; 301: 489-499 [PMID: 19188334 DOI: 10.1001/jama.2009.56]

Flikéjé J, Hollinger A, Speich B, Meier V, Tontsch J, Zehnder T, Siegemund M. Dexmedetomidine in prevention and treatment of postoperative and intensive care unit delirium: a systematic review and meta-analysis. Ann Intensive Care 2018; 8: 92 [PMID: 30238272 DOI: 10.1186/s13613-018-0437-z]

van Eijk MM, Roes KC, Honing ML, Kuiper MA,arakus A, van der Jagt M, Spronk PE, van Gool WA, van der Mast RC, Kiesegiul J, Slooter AJ. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. Lancet 2010; 376: 1829-1837 [PMID: 21054640 DOI: 10.1016/S0140-6736(10)61855-2]

al-Kassab AS, Vijayakumar E. Profile of serum cholinesterase in systemic sepsis syndrome (septic shock) in intensive care unit patients. Eur J Clin Chem Clin Biochem 1995; 33: 11-14 [PMID: 7756436 DOI: 10.1515/eccl.1995.33.1.11]

van Gool WA, van de Beek D, Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 2010; 375: 773-775 [PMID: 20180929 DOI: 10.1016/S0140-6736(09)61158-2]

Opdam FL, Oleksik AM, Westendorp RG. Cholinesterase inhibitor treatment in patients with delirium. Lancet 2011; 377: 900-1; author reply 901 [PMID: 21397579 DOI: 10.1016/S0140-6736(11)60545-0]

Cascella M, Bimonte S. The role of general anesthetics and the mechanisms of hippocampal and extra-hippocampal dysfunctions in the genesis of postoperative cognitive dysfunction. Neural Regen Res 2017; 12: 1780-1785 [PMID: 29239315 DOI: 10.1016/j.neureg.2017.03.002]

Page VJ, Caesarin A, Ely EW, Zhao D, McDowell C, Murphy L, McAuley DF. Evaluation of early administration of simvastatin in the prevention and treatment of delirium in critically ill patients undergoing mechanical ventilation (MoDUS): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med 2017; 5: 727-737 [PMID: 28734823 DOI: 10.1016/S2213-2600(17)30234-5]

Chowdhury I, Sengupta A, Maitra SK. Melatonin: fifty years of scientific journey from the discovery in bovine pineal gland to delineation of functions in human. Indian J Biochem Biophys 2008; 45: 289-304 [PMID: 19096940]

Oldham MA, Lee HB, Desan PH. Circadian Rhythm Disruption in the Critically Ill: An Opportunity for Improving Outcomes. Crit Care Med 2016; 44: 207-217 [PMID: 26308428 DOI: 10.1097/CCM.0000000000001282]

Baumgartner I, Lam K, Lai J, Barnett M, Thompson A, Gross K, Morris A. Effectiveness of Melatonin for the Prevention of Intensive Care Unit Delirium. Pharmacotherapy 2019; 39: 280-287 [PMID: 30603785 DOI: 10.1002/phar.2226]

Sultan SS. Assessment of role of perioperative melatonin in prevention and treatment of postoperative delirium after hip arthroplasty under spinal anaesthesia in the elderly. Saudi J Anaesth 2010; 4: 169-173 [PMID: 21189654 DOI: 10.4103/1658-354X.71132]

Hatta K, Kishi Y, Wada K, Takeuchi T, Odawara T, Usui C, Nakamura H; DELIRIA-J Group. Preventive effects of ramelteon on delirium: a randomized placebo-controlled trial. JAMA Psychiatry 2014; 71: 397-403 [PMID: 25452342 DOI: 10.1001/jamapsychiatry.2013.3320]

Burry L, Mehta S, Perreault MM, Luxenberg JS, Siddiqi N, Hutton B, Fergusson DA, Bell C, Rose L. Antipsychotics for treatment of delirium in hospitalised non-ICU patients. Cochrane Database Syst Rev 2016; 6: CD005594 [PMID: 29920537 DOI: 10.1002/14651858.CD005594.pub2]

Lonergan E, Brinton AM, Luxenberg J, Wyller T. Antipsychotics for delirium. Cochrane Database Syst Rev 2007; CD005594 [PMID: 17443602 DOI: 10.1002/14651858.CD005594.pub2]

Serafin RB, Bozza FA, Soares M, do Brasil PE, Tura BR, Ely EW, Salhui JI. Pharmacologic prevention and treatment of delirium in intensive care patients: a systematic review. J Crit Care 2015; 30: 799-807 [PMID: 25957498 DOI: 10.1016/j.jcrc.2015.04.005]

Herling SF, Greve IE, Vasilevskis EE, Egerod I, Beker Mortensen C, Møller AM, Svenningsen H, Thomsen T. Interventions for preventing intensive care unit delirium in adults. Cochrane Database Syst Rev 2018; 11: CD009783 [PMID: 30484283 DOI: 10.1002/14651858.CD009783.pub2]

Barbateskovic M, Krauss SR, Collet MO, Larsen LK, Jacobsen JC, Perner A, Wetterslev J. Pharmacological interventions for prevention and management of delirium in intensive care patients: a systematic overview of reviews and meta-analyses. BMJ Open 2019; 9: e024562 [PMID: 30728910 DOI: 10.1136/bmjopen-2018-024562]

Chen K, Lu Z, Xin YC, Cui Y, Chen Y, Pan SM. Alpha-2 agonists for long-term sedation during mechanical ventilation in critically ill patients. Cochrane Database Syst Rev 2015; 1: CD010269 [PMID: 25879090 DOI: 10.1002/14651858.CD010269.pub2]

Liu X, Xie G, Zhang K, Song S, Song F, Jin Y, Fang X. Dexmedetomidine vs propofol sedation reduces delirium in patients after cardiac surgery: A meta-analysis with trial sequential analysis of randomized trials. Crit Care 2017; 30: 489-496 [PMID: 28398407 DOI: 10.1186/s13054-016-1406-z]

Passin L, Landoni G, Nardelli P, Belletti A, Di Prima AL, Taddeo D, Isella F, Zangrillo A. Dexmedetomidine reduces the risk of delirium, agitation and confusion in critically ill patients: a meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth 2017; 31: 60-69 [PMID: 28017156 DOI: 10.1053/j.jvca.2014.03.010]

Maagaard M, Barbateskovic M, Perner A, Jacobsen JC, Wetterslev J. Dexmedetomidine for the management of delirium in critically ill patients-A protocol for a systematic review. Acta Anaesthesiol Scand 2019; 63: 549-557 [PMID: 30701537 DOI: 10.1111/aas.13320]

Tampi RR, Tampi DJ, Ghori AK. Acetylcholinesterase Inhibitors for Delirium in Older Adults. Am J Alzheimers Dis Other Demen 2016; 31: 305-310 [PMID: 26646113 DOI: 10.1177/1533373415618034]

Barr J, Fraser GL, Puntillo K, Ely EW, Devlin JW, Kress JP, Joffe AM, Cousin DB, Herr DL, Tung A, Robison BR, Barrett RE, Fortinane DK, Rasmussen H, Sessler CN, Pun B, Skrobik Y, Jaeschke R; American College of Critical Care Medicine. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med 2015; 43: 263-306 [PMID: 25269131 DOI: 10.1097/CCM.0000000000000372]

van den Boogaard M, Schoonhouven L, van Achtberg T, van der Hoeven JG, Pickkers P. Haloperidol prophylaxis in critically ill patients with a high risk for delirium. Crit Care 2013; 17: 89 [PMID: 23327295 DOI: 10.1186/cc13193]

Tao R, Wang XW, Pang LJ, Cheng J, Wang YM, Gao GQ, Liu Y, Wang C. Pharmacologic prevention of postoperative delirium after on-pump cardiac surgery: A meta-analysis of randomized trials. Medicine (Baltimore) 2018; 97: e12271 [PMID: 29841268 DOI: 10.1097/MD.0000000000012271]
cognitive dysfunction: updates in pathophysiology, potential translational approaches to clinical practice and further research perspectives. *Minerva Anestesiol* 2018; **84**: 246-260 [PMID: 28984099 DOI: 10.23736/S0375-9393.17.12146-2]

55 Walker CK, Gales MA. Melatonin Receptor Agonists for Delirium Prevention. *Ann Pharmacother* 2017; **51**: 72-78 [PMID: 27539735 DOI: 10.1177/106002801665863]

56 Sher Y, Miller Cramer AC, Ament A, Lolak S, Maldonado JR. Valproic Acid for Treatment of Hyperactive or Mixed Delirium: Rationale and Literature Review. *Psychosomatics* 2015; **56**: 615-625 [PMID: 26674479 DOI: 10.1016/j.psych.2015.09.008]

57 Hatta K, Kishi Y, Wada K, Takeuchi T, Ito S, Kurata A, Murakami K, Sugita M, Usui C, Nakamura H; DELIRIA-J Group. Preventive Effects of Suvorexant on Delirium: A Randomized Placebo-Controlled Trial. *J Clin Psychiatry* 2017; **78**: e970-e979 [PMID: 28767209 DOI: 10.4088/JCP.16m11194]
