We describe an algorithm for computing the Picard-Fuchs equation for a family of twists of a fixed elliptic surface. We then apply this algorithm to obtain the equation for several examples, which are coming from families of Kummer surfaces over Shimura curves, as studied in our previous work. We use this to find correspondences between the parameter spaces of our families and Shimura curves. These correspondences can sometimes be proved rigorously.

1. Introduction

Let \(\pi : X \to \mathbb{P}^1 \) be a family of complex algebraic varieties. As \(s \in \mathbb{P}^1 \) varies, the periods of the fibers \(X_s \), i.e., integrals of holomorphically varying differential forms against a topologically constant family of homology classes, satisfies a certain differential equation, known as the Picard-Fuchs equation, whose coefficients are rational functions. These equations and their power series solutions are interesting in several respects.

Many of the previously studied examples where of families of elliptic curves with some extra structure. In hope of finding new applications, we decided to study the related families associated with Shimura curves.

Recall that if \(B \) is a division quaternion algebra over the field \(\mathbb{Q} \) of rational numbers, which is unramified at \(\infty \) in the sense that \(B \otimes \mathbb{Q} \mathbb{R} \cong M_{2 \times 2}(\mathbb{R}) \), and if \(\mathcal{M} \) is a maximal order in \(B \), the group \(\Gamma \) of norm one elements in \(\mathcal{M} \) embeds in \(\text{SL}_2(\mathbb{R}) \), via the embedding of \(B \) in \(M_{2 \times 2}(\mathbb{R}) \), as a discrete subgroup. The quotients of the complex upper half plane \(\mathcal{H} \) by \(\Gamma \), and more generally by finite subgroups \(\Gamma' \subset \Gamma \), are algebraizable as moduli spaces of abelian surfaces whose endomorphism algebras are certain orders in \(\mathcal{M} \) (so called QM abelian surfaces), together with some extra structures. Under mild assumptions they carry a universal family of such abelian surfaces. Since K3 surfaces are easier to write down, it is natural to consider instead the universal family of the associated Kummer surfaces obtained by taking the quotient under multiplication by \(\pm 1 \).

In trying to write explicit equations for QM Kummer surfaces, we were led to study in [3] families of quadratic twists of a fixed elliptic surface (see Section 3). We identified 11 examples as related to QM Kummer surfaces. In each of these examples we have a family of varieties over \(\mathbb{P}^1 \) for which we know that the generic fiber is isogenous, in a possibly complicated way, to a Kummer surface associated with a QM abelian surface. Consequently, there is a correspondence between the base spaces for these families, and a Shimura curve. In [3] we carried out a detailed

2010 Mathematics Subject Classification. Primary: 14D07, 14J27; secondary: 14G35, 14J28.

Key words and phrases. Picard-Fuchs equations, Elliptic surfaces, Shimura curves.
analysis of this correspondence, which was highly involved and required a delicate study of finite discriminant forms.

The main contribution of the present work is Algorithm 2 which computes the Picard-Fuchs equation for a family of twists of a fixed elliptic surface, together with Theorem 4.3 that claims its validity. A nice feature of our algorithm is that it only requires knowledge of the Picard-Fuchs equation of the elliptic surface being twisted. As input to our algorithm we thus need a method for computing the Picard-Fuchs equation for an elliptic surface. We describe an algorithm for doing this borrowed from a MAPLE script of F. Beukers. We prove that the algorithm works since we have found no record of this in the literature.

After describing the algorithm and the proof of the main theorem, we apply the algorithm to the study of the families of QM Kummer surfaces described above. In all of the examples we expect the resulting Picard-Fuchs equation to be of degree 3 and to further be a symmetric square (see Section 5) of a degree 2 equation. This turns out indeed to be the case and we list the resulting degree 2 equations.

On the Shimura curve side, these degree 2 equations have been studied by Elkies in [5]. This suggests a method of discovering and verifying the correspondences between the bases of the families we study and the related Shimura curve, using these Picard-Fuchs equations. We describe this in all the examples. We note that while this method falls short of a rigorous proof of the existence of a correspondence between the underlying moduli problems, it is far easier than the analysis carried out in [3]. In fact, we needed the results of the present work to exclude some possibilities in [3] and furthermore, one of the cases there is left unproved even though we know the correspondence using Picard-Fuchs techniques.

2. The Picard-Fuchs Equation

We briefly recall the Picard-Fuchs differential equation for a family of varieties over a curve. For further details see for example [10].

Let C be a complex analytic curve and let V/C be a local system of \mathbb{C}-vector spaces of dimension n over C. The analytic rank n vector bundle $\mathcal{V} := V \otimes_{\mathbb{C}} \mathcal{O}_C$ carries a canonical connection ∇ defined by the condition that it vanishes on sections of V. We fix a meromorphic vector field d/dt on C, e.g., the one associated with a rational parameter t if $C = \mathbb{P}^1$. Recall that d/dt induces a covariant derivative operator

$$\nabla_{d/dt} : \mathcal{V} \to \mathcal{V}.$$

Let α be a meromorphic section of \mathcal{V}. Since \mathcal{V} has rank n, there is going to be a relation

$$\sum_{i=0}^{m} a_i (\nabla_{d/dt})^i \alpha = 0$$

with $m \leq n$ and with a_i meromorphic functions on C. We may normalize this by insisting that $a_m = 1$.

Suppose $\gamma \in V^*(U)$, for some open $U \subset C$, where V^* is the dual of V. The evaluation of γ on α, which we suggestively write as $\int_U \gamma \alpha$, is a meromorphic function on U and is called a period of α. Since ∇ vanishes on sections of V it follows easily
that the period $\int_\gamma \alpha$ satisfies the differential equation

$$\frac{d^m}{dt^m} y + \sum_{i=0}^{m-1} a_i \frac{d^i}{dt^i} y = 0,$$

which is called the Picard-Fuchs equation associated with α.

When V comes from geometry, a bit more can be said. Suppose that $\pi : X \to C$ is a smooth projective family of algebraic varieties, and that V is the family of cohomology groups $V = R^l \pi_* C$ for some non-negative integer l. In this case, V is canonically identified with the vector bundle of de Rham cohomology groups, $V^\sim = R^l \pi_* \Omega^\bullet_X/C$, and the connection ∇ is identified with the Gauss-Manin connection on the latter vector bundle. If C and π are algebraic, it follows easily that we may take α to be an algebraic (meromorphic) section of V and that then the coefficients a_i in the Picard-Fuchs equation will be rational functions on C. We will call this a Picard-Fuchs equation associated with the H^l of the family.

In geometric situations we may further take α to be a section in the sub-bundle $\pi_* \Omega^l_X/C$ and we may take γ to be a family of homology classes, so that the associated period is now indeed the integral $\int_\gamma \alpha$.

In applications, it will always be the case that the sub-bundle $\pi_* \Omega^l_X/C$, will be of rank 1. Thus, α is determined up to a product by a rational function. The Picard-Fuchs equation is in some sense unique then, since we may recover easily the equation associated with such a product from the equation for α (see also Section 6 for how to remove the remaining ambiguity).

We can also consider Picard-Fuchs equations associated with sub-local systems $V \subset \mathbb{R}^l \pi_* C$ provided our chosen α resides in $V \otimes \mathcal{O}_C$.

We now list the local systems considered in this work. Let \mathcal{H} be the complex upper half plane. We have a family of elliptic curves $\pi^u : E^u \to \mathcal{H}$ where for $\tau \in \mathcal{H}$ we have

$$E^u_\tau = \mathbb{C}/\mathbb{Z}(1, \tau).$$

We consider the resulting local system

$$Sh := \mathbb{R}^1 \pi_* C,$$

which has a constant fiber \mathbb{C}^2. See [11, § 12] for a detailed discussion. Note that $\pi_* \Omega^1_{E^u/\mathcal{H}}$ has the section dz, where z is the standard coordinate on C, whose associated periods are 1 and τ, hence its Picard-Fuchs equation is $y'' = 0$.

Let $\Gamma \subset \text{SL}_2(\mathbb{R})$ be a discrete group, acting on \mathcal{H} by fractional linear transformations. It acts on Sh in the via the standard representation of $\text{SL}_2(\mathbb{R})$ on \mathbb{C}^2. When $\Gamma \subset \text{SL}_2(\mathbb{Z})$ is a congruence subgroup, the quotient $X_\Gamma := \Gamma \backslash \mathcal{H}$ has a family $E^u_\Gamma := \Gamma \backslash E^u$ of elliptic curves above it, and both are algebraizable. The quotient $\Gamma \backslash Sh$ is a local system on X_Γ, isomorphic to $\mathbb{R}^1 \pi_* C$, with π^Γ the induced projection.

Let B be an indefinite rational quaternion algebra and let $\Gamma \subset B^\times$ be as in the introduction. Let $\pi^u : A^u \to X_\Gamma$ be the associated universal family of abelian surfaces with quaternionic multiplication. Then (see [2]) the local system $\mathbb{R}^2 \pi_* C$
splits as a direct sum of a 3-dimensional local system and a system isomorphic to the symmetric square of \(SH, \text{Symm}^2(SH) \).

For any family \(\pi^A : A \to X \) of abelian surfaces, let \(\pi^S : S = \text{Kummer}(A) \to X \) be the associated family of Kummer surfaces. Then, the local system \(\mathbb{R}^2\pi^S_*C \) splits as a sum of a 16-dimensional trivial system and \(\mathbb{R}^2\pi^A_*C \). In particular, when \(A = A^u \) we see that \(\mathbb{R}^2\pi^S_*C \) splits as a sum of a 19-dimensional trivial system and \(\text{Symm}^2(SH) \).

Furthermore, we have \(\pi^S_*\Omega^2_{S/X} \subset \text{Symm}^2(SH) \otimes \mathcal{O}_X \). Consequently the Picard-Fuchs equation satisfied by the periods of a relative 2-form \(\omega \) on \(S \) is going to be of degree 3, and will be the symmetric square of a Picard-Fuchs equation of degree 2 associated with the local system \(SH \) (see Section 5 for symmetric squares of equations).

3. Elliptic surfaces and their Picard-Fuchs equations

An elliptic surface, always considered over \(\mathbb{P}^1 \), is a smooth and connected compact complex algebraic surface \(E \), together with a surjective morphism \(\pi : E \to \mathbb{P}^1 \), such that the generic fiber is a curve of genus 1. We will always assume that the fibration is relatively minimal and has a given section, denoted \(0 \).

For all but a finite number of points \(s \in \mathbb{P}^1 \), the fiber \(E_s = \pi^{-1}(s) \) is an elliptic curve. The singular locus \(\Sigma = \Sigma(E) \) of the fibration is the (finite) subset of \(\mathbb{P}^1 \) over which the fibers are singular (namely \(\pi \) is not everywhere smooth). Kodaira [9] classified all possible types of singular fibers (see also [1, Chapter V.7]).

The generic fiber of an elliptic surface may be given by a Weierstrass equation of the form \(y^2 = f(x) \), where \(f(x) = ax^3 + bx^2 + cx + d \) and \(a, b, c, d \) are rational functions of the parameter \(t \) on \(\mathbb{P}^1 \).

Given two distinct points \(\alpha \) and \(\beta \) in \(\mathbb{P}^1 \), the quadratic twist \(E_{\alpha,\beta} \) at these points can be described in two ways. Algebraically, if \(E \) has Weierstrass equation \(y^2 = f(x) \) and \(\alpha \) and \(\beta \) are finite points, then \(E_{\alpha,\beta} \) has equation

\[
\frac{t - \alpha}{t - \beta} y^2 = f(x) .
\]

Analytically, \(E_{\alpha,\beta} \) can be described as follows. Take the double cover \(B' \to \mathbb{P}^1 \) ramified at \(\alpha \) and \(\beta \) and let \(E' \) be the pullback surface. Now quotient \(E' \) by the transformation which identifies the two fibers above each fiber of \(E \) with sign \(-1 \).

Definition 3.1. Let \(E \to \mathbb{P}^1 \) be an elliptic surface as above with \(s \in \Sigma = \Sigma(E) \). For \(\lambda \in \mathbb{P}^1 - \Sigma \) let \(E_{s,\lambda} \) be the twisted family at \(s \) and at \(\lambda \). These surfaces vary in a family \(TW_\lambda(E) \) over the \(\lambda \)-line \(\mathbb{P}^1(\lambda) - \Sigma \).

The local system \(\mathbb{R}^1\pi_*C \) over \(\mathbb{P}^1 - \Sigma \) has dimension 2. Its dual is the homological invariant (tensored with \(C \)) associated by Kodaira to the elliptic surface, and we denote it by \(F \).

A Picard-Fuchs equation for the \(H^1 \) of a general elliptic surface \(E \), corresponding to the invariant differential \(\omega = dx/y \), can be computed using Algorithm 1. It is taken from a MAPLE script of F. Beukers (see Section 9). We failed to find it documented anywhere so we give a short proof that it indeed works.

Proposition 3.2. Algorithm 1 gives the Picard-Fuchs equation for the elliptic surface \(E \).
Algorithm 1: Computing a Picard-Fuchs equation for an elliptic surface

Input: An elliptic surface given by a Weierstrass equation
\[y^2 = ax^3 + bx^2 + cx + d, \]
with \(a, b, c, d\) rational functions of \(t\)

Output: The Picard-Fuchs equation \(y'' + c_1 y' + c_2 y = 0\) satisfied by the periods of the invariant differential \(\omega = dx/y\)

\[
\begin{align*}
& f \leftarrow ax^3 + bx^2 + cx + d; \\
& f_t \leftarrow \frac{\partial f}{\partial t}; \\
& f_{tt} \leftarrow \frac{\partial^2 f}{\partial t^2}; \\
& f_x \leftarrow \frac{\partial f}{\partial x}; \\
& q \leftarrow q_1 x^3 + q_3 x^3 + q_2 x^2 + q_1 x + q_0; \\
& q_x \leftarrow \frac{\partial q}{\partial x}; \\
& e \leftarrow -\frac{f_{xx} f + 3 f^2}{2} - c_1 \frac{f_{x} f_t}{2} + c_2 f^2 + 3 \frac{f_{x} f}{2} - f \cdot q_x; \\
& C \leftarrow \text{COEFFICIENTS}(e, x); \\
& (c_1, c_2, q_0, q_1, q_2, q_3, q_4) \leftarrow \text{SOLVE}(C = 0);
\end{align*}
\]

Proof. We express \(y\) in terms of \(x\) as \(y = f(x)^{1/2}\). Applying the covariant Gauss-Manin differentiation with respect to \(t\) amounts to differentiating (after eliminating \(y\)) with respect to \(t\). On the invariant differential \(\omega = f(x)^{-1/2} dx\) we find

\[
\nabla_{dx/dt} \omega = -\frac{1}{2} f^{-\frac{3}{2}} f_t dx \\
\nabla^2_{dx/dt} \omega = \left(\frac{3}{4} f^{-\frac{5}{2}} f_t^2 - \frac{1}{2} f^{-\frac{3}{2}} f_{tt} \right) dx.
\]

Now we may write the general differential operator of degree 2 applied to \(\omega\),

\[
(3.2) \quad \nabla^2_{dx/dt} \omega + c_1 \nabla_{dx/dt} \omega + c_2 \omega = \left(\frac{3}{4} f^{-\frac{5}{2}} f_t^2 - \frac{1}{2} f^{-\frac{3}{2}} f_{tt} - \frac{1}{2} c_1 f^{-\frac{3}{2}} f_t + c_2 f^{-\frac{5}{2}} \right) dx.
\]

For the appropriately chosen \(c_1\) and \(c_2\) this will give a trivial de Rham cohomology class on \(E/\mathbb{P}^1\). Reduction theory (see for example [8]) tells us that it is going to be the differential of a rational function of the form \(q(x)/y^n\) and examining the poles at the 2-torsion points shows that one can take \(n = 3\) and \(q\) a polynomial of degree at most 4. This is given by

\[
(3.3) \quad d\frac{q(x)}{y^3} = d\frac{q(x)}{f^{3/2}} = \left(\frac{3}{2} q \cdot f^{-\frac{3}{2}} f_x + q_x f^{-\frac{5}{2}} \right) dx
\]

To find the Picard-Fuchs equation, we equate (3.2) to (3.3), multiply by \(f^{5/2}\) to clear denominators. This gives the quantity \(e\) in the algorithm. Then we simply solve \(e = 0\), identically in \(x\), expressing the \(c\)'s and \(q\)'s in terms of \(t\). \(\square\)

4. The Picard-Fuchs equation for a family of twists

In this section we prove our main theorem, Theorem 4.3, which describes the differential equation satisfied by the periods of the \(H^2\) of the family of twists \(TW_s(E)\), described in Definition 3.1, of a fixed elliptic surface \(E\). We will in fact show that the periods for this \(H^2\) can be recovered from the periods for \(H^1\) of \(E\) and the differential equation can be recovered solely based on a Picard-Fuchs equation for \(H^1\) of \(E\).
To simplify the notation, we assume that $s = 0$, i.e., that the twists are at 0 and a varying point. Recall from the description following (3.1) that $E_{0,\lambda}$ can be obtained from E as follows: One takes a double covering $\pi_\lambda : B' \to \mathbb{P}^1$ which is ramified exactly over 0 and λ. Let $d_\lambda : B' \to B'$ be the deck transformation of the covering. One considers the pullback π_λ^*E and takes the quotient π_λ^*E/D_λ where D_λ is the map $(s, e) \mapsto (d_\lambda(s), -e)$, i.e., the map that identifies the fibers at s and $d_\lambda(s)$ but via the map -1. The result may have singularities at the fixed points 0 and λ of d_λ and resolving them one obtains $E_{0,\lambda}$. We henceforth ease notation and write E_λ for $E_{0,\lambda}$.

We now write a homology class $\Gamma_\lambda \in H_2(E_\lambda; \mathbb{C})$. We will obtain Γ_λ by modifying a fixed homology class $\Gamma' \in H_2(E, \mathbb{C})$. In fact, we take Γ' in $H_1(\mathbb{P}^1 - \Sigma, F)$, where F is the homological invariant (see Section 3). An element of $H_1(\mathbb{P}^1 - \Sigma, F)$ consists of a formal sum $\sum(\gamma_i, x_i)$ where γ_i are paths in $\mathbb{P}^1 - \Sigma$ and x_i is a section of F_{γ_i}, in such a way that the obvious boundary map vanishes. Write the one form on the elliptic surface E, dx/y, as a family of differential forms ω_t and consider the function G_t on the path γ_i given at a point t by $G_t(t) = \int_{x_i(t)} \omega_t$.

Having fixed Γ' we can write a family of 2 homology classes $\Gamma_\lambda \in H_2(E_\lambda; \mathbb{C})$ as follows. Each path γ_i can be pulled back to B'. If one of the pullbacks is δ_i then the other one is $d_\lambda(\delta_i)$. The section x_i pull back to both of these lifts. Since we identify the fiber at s with the fiber at $d_\lambda(s)$ via the map -1 and since -1 acts as -1 on the first homology it is clear that $\Gamma'_\lambda := \sum(\delta_i, x_i) + \sum(d_\lambda(\delta_i), -x_i)$ descents to the required homology class $\Gamma_\lambda \in H_2(E_\lambda; \mathbb{C})$.

Let us now write explicitly a period associated with this homology class. We first need to write a holomorphic differential two form η_λ on E_λ. We have a two form on E, $\eta = \omega_t \wedge dt$. We can write an affine model for B', the double cover of \mathbb{P}^1 ramified at 0 and λ, as $s^2 = t(t - \lambda)$. The form $s^{-1} \pi_\lambda^*$ has the right behavior with respect to deck transformations and therefore descents to the required form η_λ on E_λ. Note that the choice of s^{-1} as a multiplier eliminates the zeros that dt acquires from the ramified cover. We now compute the period $\int_{\Gamma_\lambda} \eta_\lambda$. Let us write the function obtained by evaluating η_λ at points t.

$$\int_{\Gamma_\lambda} s^{-1} \pi_\lambda^* \eta = \sum_i \left(\int_{\bar{\delta}_i} s^{-1} G_i(\pi_\lambda(s)) \pi_\lambda^* dt + \int_{\delta_i} s^{-1} (-G_i(\pi_\lambda(s))) \pi_\lambda^* dt \right)$$

$$= 2 \sum_i \int_{\delta_i} s^{-1} G_i(\pi_\lambda(s)) \pi_\lambda^* dt$$

$$= 2 \sum_i \int_{\gamma_i} (t(t - \lambda))^{-1/2} G_i(t) dt .$$

Dividing by 2 we get the period

$$u(\lambda) := \sum \int_{\gamma_i} (t(t - \lambda))^{-1/2} G_i(t) dt .$$

Our goal is now to compute a differential equation satisfied by u. In doing so, we will only use the fact that the G_i satisfy the Picard-Fuchs equation for the elliptic family E, which we recalled in section 3,

$$y'' + c_1(t)y' + c_2(t)y = 0 .$$

(4.1)
The computation is inspired by the computation in [4, 2.10].

Lemma 4.1. Suppose y satisfies (4.1). Then, for a fixed λ, the function $z = z_\lambda = (t(t - \lambda))^{-1/2}y$ satisfies the equation

$$z'' + \alpha_\lambda(t)z' + \beta_\lambda(t)z = 0$$

with

$$\alpha_\lambda(t) = c_1(t) + \frac{2t - \lambda}{t(t - \lambda)}$$

$$\beta_\lambda(t) = c_2(t) + c_1(t)\frac{2t - \lambda}{2t(t - \lambda)} - \frac{\lambda^2}{4t^2(t - \lambda)^2}$$

Proof. A straightforward computation. \qed

Suppose now that we are given two rational functions $p(t) = p_\lambda(t)$ and $q(t) = q_\lambda(t)$. We have

$$(pz + qz')' = p'z + (p + q')z' + qz''$$

If we force the relation

$$(4.2) \quad p + q' = \alpha_\lambda q$$

then we can write

$$p'z + (p + q')z' + qz'' = p'z + q(z'' + \alpha_\lambda z') = p'z - q\beta_\lambda z,$$

by using the differential equation for z. The relation (4.2) gives $p = \alpha q - q'$ so that

$$p' = \alpha'q + q'\alpha - q''$$

and we finally end up with the relation

$$(pz + qz')' = (\alpha'q + q'\alpha - q'' - q\beta)z.$$ \hspace{1cm} (4.3)

Now, we can do the following: We have $u(\lambda) = \sum \int_{\gamma_i} z_\lambda(t)dt$. Since z depends on λ only through division by $\sqrt{t-\lambda}$, we easily get by differentiating n times with respect to λ below the integral sign,

$$(4.3) \quad \frac{d^n u}{d\lambda^n} = \frac{1 \cdot 3 \cdots (2n - 1)}{2^n} \sum \int_{\gamma_i} \frac{z}{(t-\lambda)^n} dt$$

Lemma 4.2. There is a choice for q such that we may expand $\alpha'q + q'\alpha - q'' - q\beta$ as a polynomial in $(t - \lambda)^{-1}$ with coefficients which are rational functions of λ,

$$(4.4) \quad \alpha'q + q'\alpha - q'' - q\beta = \sum c_n(\lambda)(t - \lambda)^{-n}$$

Proof. First let q_0 be the least common multiple of the denominators of α and β as rational functions of t. Then, $\alpha'q_0 + q_0'\alpha - q_0'' - q_0\beta$ is a polynomial in t and can therefore also be written as a polynomial in $t - \lambda$, with coefficients which are rational functions of λ. Suppose that this polynomial has degree m. Then, we may simply take $q = q_0(t - \lambda)^{-m}$. \qed

We may modify the paths γ_i to homotopic paths making sure that $\sqrt{t-\lambda}$ is single valued on each path. Also, the sums of the monodromies of the G_i around
the paths γ_i is 0 because Γ' is closed. Thus, we have,

$$0 = \sum_i \int_{\gamma_i} \frac{d}{dt} \left(p_{\lambda} z_{\lambda} + q_{\lambda} \frac{d}{dt} z_{\lambda} \right) dt$$

$$= \sum_i \int_{\gamma_i} \left(\frac{d\alpha_{\lambda}}{dt} q_{\lambda} + \frac{d\alpha_{\lambda}}{dt} \alpha_{\lambda} - \frac{d^2 q_{\lambda}}{dt^2} - q_{\lambda} \beta_{\lambda} \right) z_{\lambda} dt$$

$$= \sum_i \int_{\gamma_i} \sum_n c_n(\lambda) (t - \lambda)^{-n} z_{\lambda} dt$$

$$= \sum_n c_n(\lambda) \sum_i \int_{\gamma_i} \frac{z_{\lambda}}{(t - \lambda)^n} dt$$

$$= \sum_n \tilde{c}_n(\lambda) \frac{d^n u}{d\lambda^n},$$

by (4.3), with

$$\tilde{c}_n(\lambda) = \frac{2^n}{1 \cdot 3 \cdots \cdot (2n - 1)} c_n(\lambda).$$

We therefore proved the following.

Theorem 4.3. Let E be an elliptic surface whose periods satisfy the differential equation (4.1). Then, algorithm 2 computes a differential equation with polynomial coefficients satisfied by a non-trivial period for H^2 of the family $T W_0(E)$.

Algorithm 2: Computing a differential equation for periods of $T W_0(E)$

Input: A Picard-Fuchs equation $y'' + c_1(t) y' + c_2(t) y = 0$ for an elliptic surface E

Output: A vector \tilde{c} such that a Picard-Fuchs equation for the family of twists $T W_0(E)$ is given by $\sum_n \tilde{c}_n(\lambda) \frac{d^n u}{d\lambda^n}$

$\alpha \leftarrow c_1(t) + \frac{2(t - \lambda)}{t(t - \lambda)}$;

$\beta \leftarrow c_2(t) + c_1(t) \frac{2(t - \lambda)}{t(t - \lambda)} - \frac{\lambda^2}{4(t - \lambda)^2}$;

$q_0 \leftarrow \text{LCM(DENOMINATOR(\alpha),DENOMINATOR(\beta))}$;

$\text{pol}_0 \leftarrow \alpha' q_0 + q_0' \alpha - q_0'' - q_0 \beta$;

$m \leftarrow \text{DEG(\text{pol}_0)}$;

$q \leftarrow q_0(t - \lambda)^{-m}$;

$\text{pol} \leftarrow (\alpha' q + q' \alpha - q'' - q \beta)_{t+s+\lambda}$;

$c_n(\lambda) \leftarrow \text{COEFFICIENT}(s^{-n} \text{ in pol})$;

$\tilde{c}_n(\lambda) \leftarrow \frac{2^n}{1 \cdot 3 \cdots \cdot (2n - 1)} c_n(\lambda)$.

5. K3 surfaces

In [3] we studied a particular class of elliptic fibrations. Out of the list of elliptic fibrations with 4 singular fibers compiled by Herfurtner [6], we picked out the ones for which the twists give K3 surfaces, generically with Picard number 19. These K3 surfaces are then isogenous to Kummer surfaces associated with Abelian surfaces whose isogeny algebra is a rational quaternion algebra. We further picked out only the examples in which the quaternion algebra in question is indefinite. There are
11 examples, which we list below (Table 1, see also [3, Table 1]). The method for deciding which families of twists correspond to quaternion algebras and the method for determining the discriminant of the associated algebra are detailed in [3, Proposition 2.4.1 and Lemma 2.5.1].

As discussed in Section 2, for each of the examples above, the resulting Picard-Fuchs equation should be of degree 3 and should be a symmetric square of a degree 2 equation, which is a Picard-Fuchs equation for the Shimura local system descended to the base. In this section we verify that this is indeed the case, and we compute the degree 2 equations.

Symmetric squares of differential equations are considered, for example in [10, Example 6.5.2]. Given a differential equation of degree 2, \(y'' + ay' + by = 0 \), one looks for the equations satisfied by \(z = y^2 \). The result is

\[
(5.1) \quad z''' + \alpha z'' + \beta z' + \gamma z = 0 \quad \text{with} \quad \alpha = 3a, \quad \beta = 4b + 2a^2 + a', \quad \gamma = 4ab + 2b'.
\]

If we are given a differential equation of degree 3, we can check if it is a symmetric square of one of degree 2 and find the “square root” as described in Algorithm 3:

Algorithm 3: Taking the square root of a degree 3 differential equation
Input: A differential equation \(z''' + \alpha z'' + \beta z' + \gamma z = 0 \)
Output: A differential equation \(y'' + ay' + by = 0 \) whose symmetric square equals the input equation, if it exists
\(a \leftarrow \alpha/3; \)
\(b \leftarrow (\beta - 2a^2 - a')/4; \)
\(c \leftarrow \gamma - 4ab - 2b'; \)

Not surprisingly, in all 11 examples, the resulting differential equation turn out to be a symmetric square of an equation of degree 2. In table 1 below we list the examples together with the resulting equations of degree 2 (one can recover the degree 3 equation using (5.1)).

The first column is the example number, which is the same as in Table 1 in [3]. The second column gives the types of singular fibers for the based elliptic surface and their locations and the third column gives the coefficients of the degree 2 equation. The final column gives the expected discriminant for the associated quaternion algebra. In the table \(\gamma = \frac{-1 + \sqrt{-7}}{3} \) and \(\delta = \frac{1 + \sqrt{-7}}{512} \). Conjugates for such elements are over \(\mathbb{Q} \).

6. SCHWARZIAN DERIVATIVES

Our goal in the rest of this work is to compare the differential equations that we obtained in the previous section to those obtained by Elkies in [5]. One essential problem is that the equation depends in an essential way on the choice of the section of the de Rham bundle. Even, as is the case for us, if the choice is between different sections of a line bundle, it still means that the periods could be multiplied by an arbitrary rational function. To compare two differential equations it is best to compare quantities which are invariant with respect to such scaling.

This can be done as follows for equations of degree 2. Consider the quotient of two independent solutions. This is invariant with respect to scaling. It depends of course on the choice of the two solutions, but only up to a fractional linear
I_1, I_2, I_3, I_4	$a = \frac{27-21\lambda+6\lambda^2}{27\lambda-144\lambda^2+3\lambda^3}$, $b = \frac{3(-1-6\lambda+3\lambda^2)}{16\lambda^3(27-144\lambda^2+3\lambda^3)}$	$\sigma = \frac{3(945-652\lambda+142\lambda^3-60\lambda^3+9\lambda^4)}{4\lambda^3(27-144\lambda^2+3\lambda^3)^2}$	6
$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	35	10	
I_1, I_2, I_3, I_4	$a = \frac{1044+399\lambda+444\lambda^2}{144\lambda^3+230\lambda^4+72\lambda^5}$, $b = \frac{-2+36\lambda+27\lambda^3}{4\lambda^3(12+13\lambda+36\lambda^2)^2}$	$\sigma = \frac{20160+129998\lambda+41331\lambda^2+17388\lambda^3+3888\lambda^4}{4\lambda^3(72+13\lambda+36\lambda^2)^2}$	6
$\frac{-3}{2}, \frac{-3}{2}, \frac{9}{2}, \frac{9}{2}$	3	0, ∞, $\frac{1}{8}$	
I_1, I_2, I_3, I_4	$a = \frac{-5+1193+16\lambda^2}{6\lambda^2-10+79\lambda+8\lambda^2}$, $b = \frac{6(1+7\lambda+2\lambda^2)}{(1-8\lambda)^3(10+\lambda)}$	$\sigma = \frac{3(25-210\lambda+2179\lambda^4+216\lambda^4+4\lambda^3)}{(1-8\lambda)^2(10+\lambda)^2}$	15
$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	35	0, ∞, 3	
I_1, I_2, I_3, I_4	$a = \frac{154-30\lambda-30\lambda^3}{30\lambda^3+64\lambda^5-15\lambda^3}$, $b = \frac{-2+3-20\lambda+8\lambda^2}{28(3-\lambda)^3\lambda(5+9\lambda)}$	$\sigma = \frac{2025+4295\lambda+9156\lambda^2-1809\lambda^2+729\lambda^2}{12(-3+\lambda)^3(3+5\lambda)}$	10
$\frac{5}{3}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3}$	0, ∞, 0		
I_1, I_2, I_3, I_4	$a = \frac{6+49+16\lambda^2}{64\lambda^3+26\lambda^4+8\lambda^5}$, $b = \frac{-2+4+4\lambda^2}{4\lambda^3(32+13\lambda+4\lambda^2)}$	$\sigma = \frac{384+2072\lambda+43\lambda^2+220\lambda^3+48\lambda^4}{36(32+13\lambda+4\lambda^2)^2}$	14
$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	3, 3, 3, 3, 3, 15, 10		
I_1, I_2, I_3, I_4	$a = \frac{8-15\lambda+6\lambda^2}{2\lambda(4-5\lambda+\lambda^2)}$, $b = \frac{1-6\lambda+3\lambda^2}{16\lambda^4(4-5\lambda+\lambda^2)}$	$\sigma = \frac{3(20-33\lambda+28\lambda^2-7\lambda^3+\lambda^4)}{4\lambda^3(4-5\lambda+\lambda^2)^2}$	6
$1, 1, 1, 1, 1, 1, 1$	5		
I_1, I_2, I_3, I_4	$a = \frac{25-369\lambda+60\lambda^2}{590\lambda^2-244\lambda^2-30\lambda^2}$, $b = \frac{-167+630\lambda+225\lambda^2}{16(1-5\lambda)^3\lambda(5+3\lambda)}$	$\sigma = \frac{15(125-675\lambda+424\lambda^2+501\lambda^3+45\lambda^4)}{4(1-5\lambda)^2(3+7\lambda)}$	6
$\frac{5}{3}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3}$	0, ∞, $\frac{1}{5}$		
I_1, I_2, I_3, I_4	$a = \frac{1+3\lambda-12\lambda^2}{2\lambda+4\lambda^2+6\lambda^3}$, $b = \frac{-1-9\lambda+9\lambda^2}{16(1-\lambda)^3(1+\lambda^2)}$	$\sigma = \frac{3(1+3\lambda+13\lambda^2-6\lambda^3+9\lambda^4)}{4(-1+\lambda)^3(\lambda+3\lambda^2)^2}$	6
$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	1, $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$		
I_1, I_2, I_3, I_4	$a = \frac{1-2\lambda^2}{\lambda^3-\lambda^3}$, $b = \frac{4+27\lambda^3}{144\lambda^3(-1+\lambda^2)^2}$	$\sigma = \frac{32+49\lambda^2+27\lambda^4}{36\lambda^2(-1+\lambda^2)^2}$	6
$1, 1, 1, 1, 1, 1, 1, 1$	6		
I_1, I_2, I_3, I_4	$a = \frac{27+8\lambda^3-16\lambda^2}{27\lambda^3+58\lambda^2+8\lambda^3}$, $b = \frac{-3+16\lambda^2+6\lambda^2}{4\lambda^3(27+58\lambda^2+8\lambda^3)}$	$\sigma = \frac{22+182\lambda^3-313\lambda^3+470\lambda^3+48\lambda^4}{87(27+58\lambda^2+8\lambda^3)^2}$	10
$\frac{-7}{2}, \frac{-7}{2}, \frac{-7}{2}, \frac{-7}{2}$	0, ∞, $\frac{1}{6}$		
I_1, I_2, I_3, I_4	$a = \frac{1+1+1+1\lambda^2}{4\lambda^3(1+1+1+1\lambda^2)}$, $b = \frac{-3-22\lambda^3-27\lambda^3}{144(-1+\lambda^2)(\lambda+\lambda^2)}$	$\sigma = \frac{27+5\lambda+64\lambda^3+5\lambda^3+27\lambda^4}{36\lambda^2(-1+\lambda^2)^2}$	6
$\frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}$	35	10	

Table 1. Twists of elliptic surfaces

transformation. Applying the Schwarzian derivative, to be recalled next, removes this ambiguity. Our reference for this material is [5] (see also [7]).

Definition 6.1. The Schwarzian derivative of a function z with respect to the parameter ζ is the function [5, (13)]

$$S_\zeta(z) = \frac{2z'z''' - 3(z'')^2}{(z')^2}$$

where derivatives are with respect to ζ.

We recall the following relevant results
Proposition 6.2.

1. If z_1 is obtained from z by a fractional linear transformation, then $S_\zeta(z_1) = S_\zeta(z)$.

2. If z is the quotient of a basis of solutions to the differential equation $y'' + ay' + by = 0$, derivative taken with respect to ζ, then the Schwarzian derivative of z, which is independent of the choice of solutions by the first part, is given by [5, (17)]

$$S_\zeta(z) = 4b - a^2 - 2a'.$$

This gives our required invariant.

To describe the dependency of the parameter ζ, it is better to consider the quadratic differential

$$\sigma_\zeta(z) = S_\zeta(z)(d\zeta)^2$$

We have the formula [5, (14)]

$$S_\eta(z) = \left(\frac{d\zeta}{d\eta}\right)^2 S_\zeta(z) + S_\eta(\zeta)$$

and thus

$$\sigma_\eta(z) = \sigma_\zeta(z) + \sigma_\eta(\zeta)$$

so the quadratic differential σ is not independent of the parameter, but has a simple transformation formula with respect to changing the variable. This will allow us, using the sigma invariant, to determine the change of variables that will take one equation to another.

To allow us to guess the required change of variables more easily, we further study the residue of the sigma invariant and how it behaves with respect to change of variables.

An honest quadratic differential $f(\zeta)(d\zeta)^2$ has a well defined residue which is the coefficient of ζ^{-2} in f, with a chance of variable $\zeta = \zeta(\eta)$ which has order n the residue is multiplied by a factor of n^2.

Suppose now that $\zeta = \eta^n$. Then

$$S_\eta(\zeta) = 2 \frac{n(n-1)(n-2)\eta^{n-3}}{n^3} - 3 \left(\frac{n(n-1)\eta^{n-2}}{n^3}\right)^2$$

$$= \eta^{-2} (2(n-1)(n-2) - 3(n-1)^2)$$

$$= \eta^{-2} (2(n^2 - 3n + 2) - 3(n^2 - 2n + 1))$$

$$= \eta^{-2}(1 - n^2)$$

It follows that if the coefficient of ζ^{-2} in $S_\zeta(z)$ is α then the coefficient of η^{-2} in $S_\zeta(z)$ is

$$n^2 \alpha + (1 - n^2) = 1 - n^2(1 - \alpha)$$

This leads to the following.

Definition 6.3. The schwwarzian residue of $\sigma = f(\zeta)(d\zeta)^2$, denoted $\text{res}_s \sigma$, is 1– the coefficient of ζ^{-2} in $f(\zeta)$.

and we have

Proposition 6.4. if $\zeta = \zeta(\eta)$ is a change of variables of degree n then

$$\text{res}_s \sigma_\eta(z) = n^2 \text{res}_s \sigma_\zeta(z)$$
Note that at points where the differential is holomorphic the Schwarzian residue is 1 and not 0. In our examples, the local system pulls back to the Shimura local system \mathcal{S}_h over the upper half plane \mathcal{H}, where it is holomorphic. Thus, the Schwarzian residue is always $1/n^2$ for some n. We call this n the Schwarzian index at the point. It is, of course, just the ellipticity index of the point.

In the following table we list for the examples we have the sigma invariant (with respect to the parameter λ, neglecting the $d\lambda^2$ term, and the Schwarzian indexes at points when it is bigger than 1 (where the original fibration had a singular fiber).

	γ, ζ, ∞, 0	$\frac{3(945-652\lambda+142\lambda^2-60\lambda^3+9\lambda^4)}{4\lambda^2(27-14\lambda+3\lambda^2)^2}$
2	$\frac{1}{5}$, $\frac{1}{5}$, ∞, 0	$\frac{20160+42098\lambda+41331\lambda^2+17388\lambda^3+3888\lambda^4}{4\lambda^2(72+113\lambda+36\lambda^2)^2}$
3	-10, 0, ∞, $\frac{1}{8}$	$\frac{3(25-210\lambda+2179\lambda^2+216\lambda^3+16\lambda^4)}{(1-8\lambda)^2(10+\lambda)^2}$
4	$\frac{1}{3}$, 0, ∞, 3	$\frac{2025+4295\lambda+9156\lambda^2-1809\lambda^3+729\lambda^4}{12(1-3+\lambda\lambda^2)(3+9\lambda)^2}$
5	0, δ, ∞, 0	$\frac{3840+2072\lambda+43\lambda^2+220\lambda^3+48\lambda^4}{4\lambda^2(32+13\lambda+4\lambda^2)^2}$
6	4, 1, ∞, 0	$\frac{3(20-33\lambda+28\lambda^2-7\lambda^3+\lambda^4)}{4\lambda^2(4-5\lambda+\lambda^2)^2}$
7	$\frac{1}{6}$, 0, ∞, $\frac{1}{5}$	$\frac{15(125-675\lambda+4244\lambda^2+507\lambda^3+45\lambda^4)}{4(1-5\lambda^2)(25+3\lambda)^2}$
8	$\frac{1}{3}$, 0, ∞, 1	$\frac{3(1+3\lambda+13\lambda^2-6\lambda^3+9\lambda^4)}{4(-1+\lambda)^2(\lambda+3\lambda^2)^2}$
9	1, -1, ∞, 0	$\frac{32+49\lambda^2+27\lambda^4}{36\lambda^2(-1+\lambda^2)^2}$
10	$\frac{1}{2}$, 0, ∞, 0	$\frac{64+1824\lambda+3157\lambda^2+476\lambda^3+48\lambda^4}{\lambda^2(27+58\lambda+8\lambda^2)^2}$
11	∞, 0, -1, 1	$\frac{27+5\lambda+64\lambda^2+5\lambda^3+27\lambda^4}{36\lambda^2(-1+\lambda^2)^2}$

Table 2. Sigma invariants and Schwarzian indices

7. The results of Elkies

In [5] Elkies computes certain differential equations associated with Shimura curves. While this is not stated explicitly, these are exactly the Picard Fuchs equations associated with the Shimura local system descended to the Shimura curve because the quotient of the two solutions gives the coordinate τ on the upper half plane, just as for the Shimura local system, as in Section 2.

The briefly list the types of Shimura curves considered. For more information one may consult [5] or [3] (our notation is consistent with the latter reference). For each discriminant D (always the product of an even number of primes) the Shimura curve V_D is the quotient of the upper half plane by the group Γ of norm one elements in a maximal order in a quaternion algebra of discriminant D (see the introduction). For each prime $p\mid D$ it carries a modular involution w_p and these
involutions commute with each other so that we can also set \(w_n = \prod_{p \mid n} w_p \) for \(n \mid D \). We let \(V_D^* \) be the quotient of \(V_D \) by the group generated by all its modular involutions. Finally, for a prime \(p \) which does not divide \(D \) there is a modular curve \(V_{D,p} \), which corresponds to an additional “\(\Gamma_0(p) \)” structure. This retains all of the previous involutions but has an additional involution \(w_p \).

In Table 3 we give, for the relevant curves, the equation that Elkies finds, the associated sigma invariant and the Schwarzian indices at the relevant points. The equations of Elkies are in non-normalized form \(ay'' + by' + cy = 0 \), so one needs to normalize first before computing the sigma invariant.

\(V_{10}^* \)	\(t(t - 2)(t - 27)y'' + \frac{16t^2 - 203t + 216}{6}y' + \left(\frac{7t}{t - 12} - \frac{7}{t - 18} \right)y = 0 \)	27, 2, \(\infty \), 0	2, 2, 2, 3
\(V_{14}^* \)	\(t(16t^2 + 13t + 8)y'' + (24t^2 + 13t + 4)y' + \left(\frac{2t + 3}{16t^2 - 18} \right)y = 0 \)	\(\delta_1, \delta_1, 0, \infty \)	2, 2, 2, 4
\(V_{15}^* \)	\((t - 81)(t - 1)y'' + \left(\frac{3t^2}{4} - 82t + \frac{81}{t} \right)y' + \left(\frac{t}{2t^2 - 1} \right)y = 0 \)	1, 81, 0, \(\infty \)	2, 2, 2, 6

Table 3. Elkies’s list of differential equations

\(V_{10}^* \)	\(t(t - 2)(t - 27)y'' + \frac{10t^2 - 203t + 216}{6}y' + \left(\frac{7t}{t - 12} - \frac{7}{t - 18} \right)y = 0 \)	27, 2, \(\infty \), 0	2, 2, 2, 3
\(V_{14}^* \)	\(t(16t^2 + 13t + 8)y'' + (24t^2 + 13t + 4)y' + \left(\frac{2t + 3}{16t^2 - 18} \right)y = 0 \)	\(\delta_1, \delta_1, 0, \infty \)	2, 2, 2, 4
\(V_{15}^* \)	\((t - 81)(t - 1)y'' + \left(\frac{3t^2}{4} - 82t + \frac{81}{t} \right)y' + \left(\frac{t}{2t^2 - 1} \right)y = 0 \)	1, 81, 0, \(\infty \)	2, 2, 2, 6

Table 3. Elkies’s list of differential equations

Here \(\delta_1 \) is a solution to the equation \(16t^2 + 13t + 8 = 0 \).

For discriminant 6 Elkies does not write down the equation explicitly, though he gives a recipe to discover one of 4 possible equations. As he notes, however, since there are only 3 elliptic points, the sigma invariant is uniquely determined by the indexes of ellipticity. Suppose that these are at \(t = 0, 1, \infty \). The most general form of \(\sigma \) is

\[
\sigma = \left(\frac{a}{t^2} + \frac{b}{(t - 1)^2} + \frac{c}{t} + \frac{d}{t - 1} \right) (dt)^2
\]

and one has the condition \(c + d = 0 \) to avoid a pole of order 3 at \(\infty \). The residues are \(a, b \) and \(a + b + d \) at 0, 1 and \(\infty \) respectively, from which all the coefficients are easily determined. In the case at hand, Elkies chooses the coordinate \(t \) so that the indices are 2, 4, 6 at 0, 1 and \(\infty \) respectively. This gives

\[
\sigma = \left(\frac{3}{4t^2} + \frac{15}{16(t - 1)^2} + \frac{103}{144t} - \frac{103}{144(t - 1)} \right) (dt)^2
\]

8. Comparison with the Results of Elkies

In this section we compare Elkies’s list with the list of differential equations we obtained in Section 5. As explained in the introduction, each of these examples is a family of varieties over \(\mathbb{P}^1 \) and there is a correspondence between these \(\mathbb{P}^1 \) and a Shimura curve of some (computable) discriminant.

The above correspondence is compatible with the Shimura local system \(Sh \). This implies that the correspondence is going to map the sigma invariants on Elkies’s list to the corresponding sigma invariant of the families. Here we demonstrate how one can use this to guess the correct correspondence. This is not a proof that the correspondence is the correct one, which then needs to be established by more precise means [3, Section 8]. It can nevertheless be used to exclude certain possible correspondenced (see Subsection 8.2 in the above reference).
No. 10 - Corresponds to discriminant 10. The correspondence has to carry the special points of the fibration at \(\lambda = -27/4, -1/2, \infty, 0 \) with respective Schwarzian indices 2, 2, 2, 3 to the special points \(t = 27, 2, \infty, 0 \) with the same respective indices for the equation that Elkies finds for \(V_{10}/(w_5, w_2) \). It is trivial to guess the relation \(t = -4\lambda \). A change of variables for the sigma invariants confirms this. It can be proved rigorously (see [3, Subsection 8.3]) that the \(\lambda \)-line is isomorphic to \(V_{14}/(w_2, w_5) \).

No. 5 - Corresponds to discriminant 14. The correspondence has to carry the special points of the fibration at \(\lambda = 5, 6, \infty, 0 \) with respective Schwarzian indices 2, 2, 4 to the special points \(t = 5, 6, 0, \infty \) with the same respective indices for the equation that Elkies finds for \(V_{14}/(w_7, w_2) \). Since \(\delta \) is a solution of the equation \(4x^2 + 13x + 32 = 0 \) it is easy to guess the relation \(t = 2/\lambda \). A change of variables for the sigma invariants confirms this. It can be proved rigorously (see [3, Subsection 8.1]) that the \(\lambda \)-line is indeed isomorphic to the Shimura curve \(V_{14}/(w_2, w_7) \).

No. 3 - Corresponds to discriminant 15. The correspondence has to carry the special points \(t = 1, 81, 0, \infty \) with respective Schwarzian indices 2, 2, 6 for the equation that Elkies finds for \(V_{15}/(w_5, w_3) \) to the special points of the fibration at \(\lambda = -10, 0, \infty, 1/8 \) with the same indices. This can be done with the change of variables \(\lambda = \frac{t-81}{w_3} \) and a change of variables for the sigma invariants confirms this. It can be proved rigorously (see [3, Lemma 3.8.2]).

No. 4 - Corresponds to discriminant 10. In this case we speculated (but could not prove) that the \(\lambda \)-line was the curve \(V_{10,3}/(w_2, w_5, w_3) \). Here we show this is consistent with the Picard-Fuchs equations. According to Elkies, the curve \(V_{10,3}/\langle w_2, w_5 \rangle \) is a degree 4 cover of \(V_9^* \), rational with a coordinate \(x \) such that

\[
t = \frac{(-6 + 6x)^3}{(1 + x)^2 (17 - 10x + 9x^2)}
\]

(this is equation (57) in [5] but the 7 there should be corrected to 17, as for example in the computation between equations (59) and (60)). From the expression

\[
\frac{6^3}{9\tau + 8} \text{ with } \tau = \frac{(3x^2 + 5)^2}{9(x - 1)^3}
\]

which is also in (57) there it is easy to see that the map \(x \to t \) sends 1, \(\infty, -1, 5 \) to 0, 0, \(\infty, 2 \) with multiplicities 3, 1, 2 respectively, \(\pm \sqrt{-5/3} \) to 27 with multiplicity 2, the two roots of \(9x^2 - 10x + 5 = 0 \) to 2 with multiplicity 1, and the two roots of \(9x^2 - 10x + 17 = 0 \) to \(\infty \) with multiplicity 1. Thus, the elliptic points for \(V_{10,3}/\langle w_2, w_3 \rangle \) are going to be at \(x = \infty \) with multiplicity 3 and at the roots of the equations \(9x^2 - 10x + 5 = 0 \) and \(9x^2 - 10x + 17 = 0 \) with multiplicity 2. The involution \(w_3 \) is given by Elkies, just after (57), to be \(w_3(x) = \frac{10}{9} - x \) and so a coordinate on the quotient is given by

\[
\zeta = 9 \left(x - \frac{5}{9} \right)^2 = 9x^2 - 10x + \frac{25}{9}
\]

We see that the elliptic points will map to \(\zeta = \infty, -20/9, -128/9 \), so these will be elliptic of degree 6, 2, 2, and in addition the ramification point 0 is elliptic of degree 2. We can map \(\zeta \) to \(\lambda \) with the correct orders by

\[
\lambda = 3 - \frac{128}{3\zeta + \frac{128}{\zeta}} = 3 - \frac{128}{3(9x^2 - 10x + 17)}.
\]
This is confirmed by the matching of the sigma invariants.

Other examples correspond to discriminant 6. Some of them are directly interrelated. Consider examples number 6 and 8. The special points are \(\lambda_1 = 4, 1, \infty, 0 \) and \(\lambda_2 = -1/3, 0, \infty, 1 \) respectively with the same indices. There is a finite number of ways for carrying one set to the other preserving the indices, and testing each one using the sigma invariants we get the correct transformation \(\lambda_1 = 1 - 1/\lambda_2 \). It turns out that (see [3, Subsection 8.7]) that making this change of variable makes the two base elliptic fibrations isogenous.

Consider next examples 9 and 11. The special points in both cases are \(\infty, 0, -1, 1 \) but with indices 2, 3, 2, 2 in example 9 and 2, 2, 2, 3 in example 11. Testing again the finite number of possible transformations with the sigma invariants gives \(\lambda_2 = (1 + \lambda_1)/(1 - \lambda_1) \). It is proved in [3, Subsection 8.8] that this again makes the two base fibrations isogenous.

No. 6 - For \(V_6/\langle w_2, w_3 \rangle \) it turns out to be slightly better to work with the coordinate \(\zeta = 1/(1 - t) \) so that the elliptic points are at \(\zeta = 0, 1 \) and \(\infty \) with indices 6, 2 and 4 respectively. To get the required ellipticity behavior for the \(\lambda \)-line, with elliptic points at \(\lambda = 4, 1, \infty, 0 \) with indices 2, 2, 2, 4, one may consider a degree 3 map having ramification type \((2, 1) \) over \(\infty \), producing indices 2 and 4, ramification 3 above 0, producing an additional index 2 and ramification type \((1, 2) \) above 1, producing one additional index 2 and an additional non-elliptic point. This can be arranged by a map of the form \(\zeta = c\lambda^{-1}((\lambda - 1)^3) \) for the appropriate \(c \) for which this ramifies above 1. So \(c \) is the value for which one of the roots of the derivative \((c(\lambda - 1)^3 - \lambda)^2 = 3c(\lambda - 1)^2 - 1 \) is mapped to \(\zeta = 1 \). We have for that root

\[
1 = c\frac{(\lambda - 1)^3}{\lambda} = \frac{\lambda - 1}{3\lambda}
\]

hence \(\lambda = -1/2 \) and \(c = 4/27 \). Consider the equation for \(\lambda \) to map to \(\zeta = 1 \). As an equation on \(\lambda - 1 \) the sum of the 3 roots should be 0, hence the third root should be 3, so that the additional preimage of 1 is 4. Thus, the cover we found matches perfectly with the \(\lambda \)-line. Summarizing, we have

\[
t = 1 - \frac{1}{\zeta} = 1 - \frac{27\lambda}{4(\lambda - 1)^3}
\]

This is confirmed by the sigma invariants.

No. 9 - Here the elliptic points are \(-25/3, 0, \infty, 1/5 \) and with indices 2 at the first 3 points and 4 at the last point. Here we guess that the base for the family of twists is isomorphic to the quotient \(V_{6,5}/\langle w_2, w_3, w_5 \rangle \). Elkies find a coordinate \(x \) on \(V_{6,5}/\langle w_2, w_3 \rangle \) for which the action of \(w_5 \) is given by [5, (37)] \(w_5(x) = (42 - 55x)/(55 + 300x) \). The two fixed points of this action are 7/30 and -3/5. Thus, a coordinate on the quotient is provided by

\[
y = ((x + 3/5)/(x - 7/30))^2.
\]

(8.1)

The map from \(X_6^*(5) \) to \(V_6/\langle w_2, w_3 \rangle \) is given by [5, Equation 36] by

\[
t = (1 + 3x + 6x^2)^2(1 - 6x + 15x^2) = 1 + 27x^4(5 + 12x + 20x^2).
\]
The relation between t and ζ is
\begin{equation}
\zeta = 1/(1-t) = \frac{-1}{27x^4(5+12x+20x^2)}.
\end{equation}

The ramification above $\zeta = 0$ is of order 6 at infinity. The ramification over $\zeta = \infty$ is of order 4 at $x = 0$ and order 1 at each of the roots of $5 + 12x + 20x^2$. The ramification over $\zeta = 1$, or $t = 0$, is of order 1 at each of the roots of $1 - 6x + 15x^2$ and of order 2 at each of the roots of $1 + 3x + 6x^2$. Thus the elliptic points of the cover are of order 4 at the roots of $5 + 12x + 20x^2$ and of order 2 at each of the roots of $1 - 6x + 15x^2$. These two pairs of points are interchanged by w_5. The elliptic points of order 4 are mapped to $y = -9/16$ while those of order 2 are mapped to $y = -24$. In addition we get elliptic points at the ramification points of the covering at $y = 0$ and $y = \infty$, both of order 2. Now, if we guessed correctly, there would be a Möbius transformation sending the 4 elliptic points to the 4 singular points of the elliptic surface, sending $y = -9/16$ to $\lambda = 1/5$. It is easy to check that the unique transformation of this type is $\lambda = -25y/(3(24+y))$. Composing with (8.1) we get
\begin{equation}
\lambda = \frac{-(3+5x)^2}{5(1-6x+15x^2)}.
\end{equation}

This, as usual, is confirmed by Pulling back the σ-invariants. Our guess can be proved rigorously [3, Subsection 8.6].

No. 2 - The elliptic points are at $-9/4, -8/9, \infty, 0$ with indices 2, 2, 2, 6 respectively.

We try to guess that this family corresponds to $V_{6,7}/\langle w_2, w_3, w_7 \rangle$. Elkies write a coordinate x on $V_{6,7}/\langle w_2, w_3 \rangle$ for which the action of w_7 is given by [5, (40)]
\begin{equation}
w_7(x) = (116 - 9x)/(9 + 20x).
\end{equation}
The two fixed points of this action are $-29/10$ and 2. Thus, a coordinate on the quotient is provided by
\begin{equation}
y = \left(\frac{x + 29/10}{x - 2}\right)^2.
\end{equation}
The map from $V_{6,7}/\langle w_2, w_3 \rangle$ to V_6^* is given by [5, (39)] by
\begin{equation}
t = \frac{-(25 + 4x + 4x^2)(2 - 12x + 3x^2 - 2x^3)^2}{108 (37 - 8x + 7x^2)} = 1 - \frac{(2x^2 - x + 8)^4}{108(7x^2 - 8x + 37)}.
\end{equation}
This looks nicer with ζ
\begin{equation}
\zeta = 1/(1-t) = \frac{108 (37 - 8x + 7x^2)}{(8 - x + 2x^2)^4}.
\end{equation}
The preimage of $\zeta = 0$ is 6 times ∞ plus the two roots of $7x^2 - 8x + 37$. The preimage of $\zeta = \infty$ is 4 times each of the roots of $2x^2 - x + 8$. The preimage of $\zeta = 1$, or $t = 0$, is 2 times each of the roots of $2 - 12x + 3x^2 - 2x^3$ plus each of the roots of $4x^2 + 4x + 25$. Thus the elliptic points of $V_{6,7}/\langle w_2, w_3 \rangle$ are the two roots of $7x^2 - 8x + 37$ with index 6 and the roots of $4x^2 + 4x + 25$ with index 2. Two pairs of points are interchanged by w_7. The elliptic points of order 6 are mapped to $y = -243/100$ while those of order 2 are mapped to $y = -24/25$. In addition we get elliptic points at the ramification points of the covering at $y = 0$ and $y = \infty$, both of order 2. Now, if we guessed correctly, there would be a Möbius transformation sending the 4 elliptic points to the 4 singular points of the elliptic surface, sending
\[y = -\frac{243}{100} \text{ to } \lambda = 0. \] It is easy to check that the unique transformation of this type is

\[\lambda = \frac{486 + 200y}{-216 - 225y}. \]

Composing with (8.3) we get

\[\lambda = -8 \frac{(37 - 8x + 7x^2)}{9 (25 + 4x + 4x^2)}. \]

This is confirmed by the \(\sigma \)-invariants. Our guess can be proved rigorously [3, Subsection 8.5].

9. Software

All the relevant computations for this work can be downloaded from http://www.math.bgu.ac.il/~bessera/picard-fuchs/. They are in the form of a MATHEMATICA notebook. The notebook is self explanatory. It loads the following files:

- pf.m - main file containing all the algorithms
- data.m - file contains the equations for the elliptic fibrations on Herfurtner’s list
- elkiesdata.m - contains the differential equations obtained by Elkies.

The relevant functions contained in the file pf.m

- picfucs function - computes the Picard-Fuchs equation for an elliptic surface. This is just a translation into Mathematica of the Maple script by Beukers, which may be found at http://www.staff.science.uu.nl/~beuke106/picfuchs.maple
- Twistpf function - computes the Picard-Fuchs equation for the family of twists given the equation for the original elliptic fibration.
- SigChVar function - makes a change of variable for the sigma invariant.
- DRes function - computes the residue of a quadratic differential.

References

[1] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 2004.
[2] A. Besser. CM cycles over Shimura curves. Journal of Algebraic Geometry, 4:659–693, 1995.
[3] A. Besser and R. Livne. Universal Kummer families over Shimura curves. Preprint, 2010.
[4] C. H. Clemens. A scrapbook of complex curve theory, volume 55 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2003.
[5] N. D. Elkies. Shimura curve computations. In Algorithmic number theory (Portland, OR, 1998), pages 1–47. Springer, Berlin, 1998.
[6] S. Herfurtner. Elliptic surfaces with four singular fibers. Math. Ann., 291:319–342, 1991.
[7] Y. Ihara. Schwarzian equations. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 21:97–118, 1974.
[8] K. Keel. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc., 16(4):323–338, 2001.
[9] K. Kodaira. On compact analytic surfaces:II. Ann. of Math., 77:563–626, 1962.
[10] C. Peters. Monodromy and Picard-Fuchs equations for families of K3-surfaces and elliptic curves. Ann. Sci. École Norm. Sup. (4), 19(4):583–607, 1986.
[11] S. Zucker. Hodge theory with degenerating coefficients. L2 cohomology in the Poincaré metric. Ann. of Math. (2), 109(3):415–476, 1979.
School of Mathematical and Statistical Sciences, Arizona State University, PO Box 871804, Tempe, AZ, 85287-1804, USA

Current address: Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, Be’er-Sheva 84105, Israel

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel