Incremental Machine Speech Chain
Towards Enabling Listening while Speaking in Real-time

Sashi Novitasari¹, Andros Tjandra¹, Tomoya Yanagita¹, Sakriani Sakti¹,², Satoshi Nakamura¹,²

¹NAIST, Japan
²RIKEN-AIP, Japan
Outline

I. Introduction
II. Incremental Machine Speech Chain
III. Experiments
IV. Conclusion
I. Introduction

II. Incremental Machine Speech Chain

III. Experiments

IV. Conclusion
Background

ASR and TTS

- Spoken language technologies:
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)

- Crucial for human-machine interaction

- Remarkable performance
 \(\rightarrow \text{requires a lot of speech-text paired data} \)
Background

Machine Speech Chain
[Tjandra et al., 2017]

- Semi-supervised ASR and TTS training via closed feedback loop
- ASR/TTS : standard attention-based seq2seq network
- 2 training phases:
 1) ASR/TTS supervised independent training
 2) ASR/TTS unsupervised joint training with feedback loop
- Full-utterance-based ASR and TTS ⇒ High delay
Human speech chain [Denes, 1993]

- Feedback loop between speech production and hearing systems
- **Real-time** process \rightarrow immediate adaptation
- Feedback delay causes a disturbance during speaking

Challenge in mimicking human speech chain for machine
Speech generation or recognition and feedback generation based on incomplete sequence information with **minimum delay**

Propose: Incremental Machine Speech Chain
II. Incremental Machine Speech Chain
Propose
Incremental Machine Speech Chain

Closed short-term feedback loop between incremental ASR (ISR) and incremental TTS (ITTS)

- Reduce feedback delay within machine speech chain training
- Improve ISR and ITTS learning quality
- Enable immediate feedback generation during inference

Move a step closer for ASR and TTS that can adapt to real-time environment unsupervisedly
→ Similar to human

Basic Framework

Incremental Framework (proposed)

Unrolled processes in machine speech chain loop
Incremental Machine Speech Chain

Components

Incremental ASR (ISR): Low delay ASR
- Hidden Markov model ASR
- End-to-end ISR with attention-based seq2seq model
 - Neural transducer [Jaitly et al., 2016]
 - Attention-transfer ISR [Novitasari et al., 2019]

Incremental (ITTS): Low delay TTS
- Hidden Markov model TTS
- End-to-end ITTS with attention-based seq2seq model
 - Neural ITTS [Yanagita et al., 2019]
 - ITTS based on prefix-to-prefix framework [Ma et al., 2019]

- Performance limitation due to short-input-based processing
- Previous: independent development
Incremental Machine Speech Chain
Training Mechanism

2 training phases:

1. ISR and ITTS supervised-independent training

2. ISR and ITTS joint training via short-term feedback loop
Incremental Machine Speech Chain Training

1. ISR and ITTS Independent Training

- Incremental: Predict a complete output sequence in \(N \) steps.
 For each step \(n \):
 1. Encode a segment of input from input window
 2. Decode and predict a segment of output
 3. Shift the input windows

- ISR and ITTS training by attention transfer from standard non-incremental ASR [Novitasari et al., 2019] \(\rightarrow \) same alignment for ISR and ITTS

\[
\text{ISR}\quad \text{Output Text (} Y_n \text{)} \quad \text{ISR}\quad \text{Dec} \quad \text{Att} \quad \text{Enc} \quad \text{Input Speech (} X_n \text{)} \quad X_1, \ldots, X_8 \quad \text{Full speech (} X \text{)}
\]

\[
\text{ITTS}\quad \text{Output Speech (} X_n \text{)} \quad \text{ITTS}\quad \text{Dec} \quad \text{Att} \quad \text{Enc} \quad \text{Input Text (} Y_n \text{)} \quad X_9, \ldots, X_{16} \quad \text{Full text (} Y \text{)}
\]
Incremental Machine Speech Chain Training

2. ISR and ITTS Joint Training

- Short-term feedback loop between the components
- Segment-based output passing
- Unrolled processes

a. ISR-to-ITTS
 For each step n, ISR predicts \hat{y}_n from X_n, and then ITTS predicts \hat{x}_n from ISR output \hat{y}_n

b. ITTS-to-ISR

\[\text{Loss}_{TTS_{n=1}}(x_{n=1}, \hat{x}_{n=1}) \]
\[\hat{x}_{n=1} = \quad \text{ITTS} \]
\[\hat{y}_{n=1} = \text{“a b c”} \]
\[x_{n=1} = \quad \text{ISR} \]
\[\text{Loss}_{TTS_{n=2}}(x_{n=2}, \hat{x}_{n=2}) \]
\[\hat{x}_{n=2} = \quad \text{ITTS} \]
\[\hat{y}_{n=2} = \text{“d e”} \]
\[x_{n=2} = \quad \text{ISR} \]

Step $n = 1$

Step $n = 2$

Full speech = (X)
Incremental Machine Speech Chain Training

2. ISR and ITTS Joint Training

• Short-term feedback loop between the components
• Segment-based output passing
• Unrolled processes

a. ISR-to-ITTS
 For each step n, ISR predicts \hat{Y}_n from X_n, and then ITTS predicts \hat{X}_n from ISR output \hat{Y}_n

b. ITTS-to-ISR
 For each step n, ITTS predicts \hat{X}_n from Y_n, and then ISR predicts \hat{Y}_n from ITTS output \hat{X}_n

Full text = $a b c d e f$
Exploration on 2 learning approaches:

A) **Semi-supervised incremental machine speech chain**
 1) ISR/ITTS independent training: supervised
 2) ISR/ITTS joint training: unsupervised (unlabeled data)

B) **Supervised incremental machine speech chain**
 1) ISR/ITTS independent training: supervised
 2) ISR/ITTS joint training: supervised (labeled data)
III. Experiments
Experiments

Dataset

Wall Street Journal CSR Corpus [Paul and Baker, 1992]

- Language: English
 - Training sets:
 - SI-84: 16 hours of speech, 83 speakers
 - SI-200: 66 hours of speech, 200 speakers
 - SI-284: si84 + si200
 - Dev. set: dev93
 - Eval. set: eval92
- Character-level
- Speech features: 80-dims log Mel spectrogram (window: 50 msec, shift: 12.5 msec)
Experiments

Model Configuration

* Same architecture for standard (non-incremental) and incremental models

ASR

- **Encoder**
 - BiLSTM
 - FNN
 - Hierarchical sub-sampling: 8 feature frames into 1 encoder state

- **Decoder**
 - LSTM
 - Char Emb.

TTS

- **Encoder**
 - Tacotron 2 [Wang et al., 2017] structure with speaker embedding [Tjandra et al., 2018]
 - BiLSTM
 - 3 Conv
 - Char Emb.

- **Decoder**
 - Linear Proj.
 - 2 LSTM
 - 2 Pre-Net

- **Attention**

Input/step
- **ISR**: 0.84 sec
- **Std. ASR**: full-utterance (avg. 7.88 sec)

Input/step
- **ITTS**: avg. 30 chars
- **Std. TTS**: full-sentence (avg. 103 chars)
Result

ASR (CER%) and TTS (log Mel-spectrogram L2 loss) performances

Data	ASR (CER%)	TTS (L2-norm)2		
	Standard	Incremental	Standard	Incremental
	(delay: 7.88 sec)	(delay: 0.84 sec)	(delay: 103 chars)	(delay: 30 chars)
	nat-sp syn-sp	nat-sp syn-sp	nat-txt rec-txt	nat-txt rec-txt

Independent Training	ASR (CER%)	TTS (L2-norm)2
Indep-trn SI-84	17.33 27.03	17.81 44.54
Indep-trn SI-284	7.16 9.60	7.97 19.99

Machine Speech Chain	ASR (CER%)	TTS (L2-norm)2
Indep-trn (SI-84) +	11.21 11.52	14.23 32.43
chain-trn-greedy (SI-200)	7.27 6.30	9.43 12.78

- **Baseline**
 - ISR and ITTS *indep-trn SI-84*
- **Topline**
 - Standard systems *indep-trn SI-284*
- **Proposed**
 - Incremental machine speech chain
- **Input type:**

- Incremental machine speech chain
 - Improved ISR and ITTS
 - Shorter delay with a close performance to the standard system
I. Introduction

II. Incremental Machine Speech Chain

III. Experiments

IV. Conclusion
Conclusion

Incremental machine speech chain

Short-term feedback loop for ISR/ITTS development by mimicking human speech chain

- Reduced the delay with a close performance to the basic framework
- Improve ISR and ITTS (natural/synthetic input)
- Synthetic input processing: demonstration of real-time feedback generation
Thank you