Expansion of human γδ T cells for adoptive immunotherapy using a bisphosphonate prodrug

Yoshimasa Tanaka1,2,3 | Kaoru Murata-Hirai1 | Masashi Iwasaki1 | Kenji Matsumoto1 | Kosuke Hayashi1 | Asuka Kumagai3 | Mohanad H. Nada4 | Hong Wang4 | Hirohito Kobayashi5 | Hiroshi Kamitakahara6 | Haruki Okamura7 | Tomoharu Sugie8 | Nagahiro Minato2 | Masakazu Toi8 | Craig T. Morita4

1Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
2Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
3Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
4Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
5Department of Transfusion Medicine and Cell Processing, Tokyo Women’s Medical University, Tokyo, Japan
6Department of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
7Department of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
8Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Correspondence
Yoshimasa Tanaka, Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
Email: ystanaka@nagasaki-u.ac.jp

Funding Information
This study was supported by grants from the Ministry of Education, Science, Culture, Sports, and Technology of Japan. To Y. Tanaka: Grants-in-Aid for Scientific Research, 16K08844, and Platform Project for Supporting Drug Discovery and Life Science Research, 17933802, from Ministry of Education, Science, Culture, Sports, and Technology of Japan and Astellas Pharma. To Y. Tanaka: “Special Coordination Funds for Promoting Science and Technologies” program through the “Formation of Center for Innovation by Fusion of Advanced Technologies”, 11800121, from Kyoto University and Japan Agency for Medical Research and Development. To Y. Tanaka: Grants-in-Aid for Translational Research, A48 and A90, from the Department of Veterans Affairs. To C. T. Morita: Veterans Health Administration, 201 BX000972.

Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocompatibility complex (MHC)-unrestricted fashion that is independent of the number of tumor mutations. In clinical trials, adoptive transfer of Vγ2Vδ2 T cells has been shown to be safe and does not require preconditioning. In this report, we describe a method for preparing highly enriched human Vγ2Vδ2 T cells using the bisphosphonate prodrug, tetrakis-pivaloyloxyethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA). PTA stimulated the expansion of Vγ2Vδ2 cells to purities up to 99%. These levels were consistently higher than those observed after expansion with zoledronic acid, the most commonly used stimulator for clinical trials. Cell numbers also averaged more than those obtained with zoledronic acid and the expanded Vγ2Vδ2 cells exhibited high cytotoxicity against tumor cells. The high purity of Vγ2Vδ2 cells expanded by PTA increased engraftment success in immunodeficient NOG mice. Even low levels of contaminating αβ T cells resulted in some mice with circulating human αβ T cells rather than Vγ2Vδ2 cells. Vγ2Vδ2 cells from engrafted NOG mice upregulated CD25 and secreted tumor necrosis factor-α and interferon-γ in response to PTA-treated tumor cells. Thus, PTA expands Vγ2Vδ2 T cells to higher purity than...
zolecronic acid. The high purities allow the successful engraftment of immunodeficient mice without further purification and may speed up the development of allogeneic V₂V62 T cell therapies derived from HLA-matched normal donors for patients with poor autologous V₂V62 T cell responses.

KEYWORDS
adoptive cancer immunotherapy, bisphosphonate, farnesyl diphosphate synthase, V₂V62 T cells, zolecronic acid

1 | INTRODUCTION

Recent advances in cancer immunotherapy have revolutionized treatment for a number of cancers. By targeting checkpoint receptors, durable remissions have been achieved in patients with advanced metastatic melanoma, non-small cell lung cancer (NSCLC), bladder cancer and kidney cancer that would have had little chance of survival with conventional chemotherapies or targeted therapies. Similarly, chimeric antigen receptor-T cells (CAR-T) bearing receptors specific for CD19 have successfully treated patients with relapsing B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma. However, both these treatments have limitations. Checkpoint blockade targeting PD-1 or its ligand, PD-L1, provides clinical benefits for a minority of the patients; approximately 30% for melanoma and kidney cancer and approximately 20% for lung cancer.1,2 Moreover, the effectiveness of checkpoint blockade correlates with the numbers of nonsynonymous mutations present in the tumors from patients with NSCLC3 and melanoma.4 Thus, patients with cancers that have low numbers of mutations, such as many of the pediatric cancers and glioblastomas,5 would be predicted to respond infrequently as has been observed.6 CAR-T therapy is limited because there are few clearly defined tumor-specific antigens on solid tumors.7 Therefore, additional types of immunotherapy are needed to realize the full potential of cancer immunotherapy.

Adoptive immunotherapy with V₂V62 T cells (also termed V₂V62) is a potential therapy for a variety of cancers and is independent of the mutational status of the tumor. Stimulation of V₂V62 T cells is not dependent on peptides presented by MHC proteins and is, therefore, major histocompatibility complex (MHC) -unrestricted.8 Instead, V₂V62 T cells respond to the presence of small isoprenoid metabolites, such as self isopentenyl pyrophosphate (IPP)9 or foreign microbial (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMPP),10,11 in a process requiring the butyrophilin 3A1 (BTN3A1) protein, an immunoglobulin superfamily protein present on all normal and tumor cells.12-14 The isoprenoid metabolites bind to the B30.2 intracellular domains of BTN3A1,15,16 which alters the cell through an unknown process to allow the V₂V62 TCR17 to recognize this intracellular binding. TCR recognition leads to the activation of V₂V62 T cells for cytotoxicity and cytokine secretion.

In 9 clinical trials involving a total of 213 patients, adoptive transfer of V₂V62 T cells18-26 has proven to be safe,20,21 does not require pretreatment with cytotoxic agents, and has resulted in a durable remission in a patient with metastatic clear cell renal cancer.27 complete and partial responses in patients with breast and cervical cancer,20 and stable disease in 50% of patients with advanced NSCLC.28 However, most patients progressed, underscoring the need for improvements in the efficacy of this therapy.

The most successful adoptive transfer γδ T cells gave the nitrogen-containing bisphosphonate zoledronic acid (Zol) prior to the transfer of the cells.20,21 Bisphosphonates indirectly stimulate V₂V62 T cells by inhibiting farnesyl diphosphate synthase (FDPS), resulting in the subsequent intracellular accumulation of its substrate, isopentenyl pyrophosphate (IPP), which is bound by BTN3A1.29,30

Bisphosphonates enter cells through fluid-phase endocytosis and uptake can be enhanced by Ca²⁺, suggesting that the negatively charged P-C-P structure limits entry.31 To improve cellular uptake and activity, we recently synthesized a bisphosphonate produg, tetraakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA), where these negative charges are masked with pivoxil esters.32,33 PTA is highly hydrophobic, allowing its efficient entry into cells where intracellular esterases convert it to its active acid form that blocks FDPS. PTA is a highly potent inhibitor of tumor cell proliferation that is 796-fold more potent against hematopoietic tumors and 27-fold more potent against solid tumors than Zol (the most potent bisphosphonate in current use).32 Similarly, PTA efficiently stimulates V₂V62 T cells to secrete TNF-α with 75 different tumor cell lines, being 903-fold more potent on average than Zol.33

In this study, we examine the effect of the PTA bisphosphonate produg on the expansion of peripheral blood V₂V62 T cells ex vivo from patients with prostate cancer and breast cancer and analyze the engraftment success and effector functions of the expanded V₂V62 T cells after adoptive transfer to immunodeficient NOG mice.

2 | MATERIALS AND METHODS

2.1 | Reagents

Tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA) and 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (TA) were synthesized as described.32 Zoledronic acid (Zol) was purchased from Novartis AG (Basel, Switzerland). (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMPP) was synthesized as described.34
2.2 | Solubilization of PTA

PTA (10 μmoles) was dissolved in 10 mL of either DMSO or ethanol containing 10 mM of trimethyl β-cyclodextrin (TMβCD). TMβCD, a cyclic compound composed of 7 trimethyl-D-glucopyranoside units linked α-1→4, was synthesized as described.35

2.3 | Expansion of Vγ2Vδ2 T cells

Blood was obtained from healthy adult donors and prostate and breast cancer patients following approval by the institutional review board of Kyoto University and the Tokyo Women’s Medical University and written informed consent being provided by patients. Patients’ characteristics are summarized for prostate cancer patients in Table S1 and for breast cancer patients in Table S2. Peripheral blood mononuclear cells (PBMC) were purified by Ficoll-Paque PLUS (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) gradient centrifugation. The cells were washed 2 times with PBS, then resuspended in modified Yssel’s medium supplemented with 10% human AB serum (Cosmobio, Koto-ku, Tokyo, Japan) or enriched RPMI 1640 medium.36 They were cultured at 2.5 × 10⁶ cells/1.5 mL/well in medium with either 1 μM PTA.
5 μM TA or 5 μM ZOL in the presence of 100 U/mL interleukin-2 (IL-2) (Shionogi Pharmaceutical, Chuo-ku, Osaka, Japan) in 4 wells of a 24-well plate (Corning Incorporated, Corning, NY). The culture medium was replaced every day from day 2 to day 9 with fresh medium containing IL-2. On day 10 for Yssel’s media or on day 14 for RPMI 1640 media, the cells were harvested. Purity of the V_c2V_d2 T cells were assessed by flow cytometry and the cells were either directly transferred or frozen in liquid nitrogen for later use.

2.4 Statistical analysis

Statistical analyses were performed in GraphPad Prism v7.0A using the non-parametric 2-tailed Wilcoxon signed rank test for paired samples. P-values are as given with values <.05 considered significant.

2.5 Cell aggregation assay

Cell aggregation during the culture was recorded under a microscope (Eclipse TS100, Nikon, Minato-ku, Japan) equipped with a digital camera (CoolPIX L20, Nikon).

2.6 Flow cytometric analysis

Peripheral blood mononuclear cells before and after expansion were plated out at 2 x 10⁵ cells/50 μL in a 96-well plate (Corning Incorporated, Corning, NY). The cells were then treated with 3 μL of FITC-conjugated anti-TCR V_d2 mAb (clone IMMU 389, Beckman Coulter, Fullerton, CA, USA) and phycoerythrin (PE)-conjugated anti-CD3 mAb (clone SK7, BD Biosciences, San Diego, CA, USA) on ice for 30 min. After being washed 3 times with PBS, the cells were resuspended in 200 μL of 1%
2.7 | TNF-α production by peripheral blood mononuclear cells in response to bisphosphonates

Peripheral blood mononuclear cells derived from a healthy adult donor were cultured for 24 h at 2.5 × 10⁶ cells/1.5 mL in modified Yssell’s medium with 1 μM PTA, 5 μM TA or 5 μM Zol in the presence of 100 U/mL IL-2 in a 24-well plate. The culture medium was removed and the content of TNF-α was determined using the standard ELISA according to the manufacturer’s protocol (Peprotech, Rocky Hill, NJ, USA).

2.8 | Cytotoxicity assay

Peripheral blood mononuclear cells from 2 healthy adult volunteers were stimulated with 1 μM PTA and IL-2. On day 11, the proportion of Vγ2Vδ2 T cells among CD3 T cells was confirmed to be greater than 99%. Vγ2Vδ2 T cell-mediated cellular cytotoxicity against tumor cells was determined using a non-radioactive cellular cytotoxicity assay according to the manufacturer's protocol (Techno Suzuta, Heiwama-cho, Nagasaki, Japan). In brief, RPMI8226 (a plasmacytoma cell line that directly stimulates Vγ2Vδ2 T cells), K562 (an erythroleukemic cell line that is sensitive to killing by natural killer (NK) cells and to NK-like killing by T cells) and PTA-pretreated U937 (a monocyte-like histiocytic lymphoma cell line) were incubated with the europium-chelate-forming compound, bis(butyryloxymethyl) 4'-hydroxymethyl-2,2'-terpyridine-6,6'-dicarboxylate, for 15 min at 37°C. After being washed with RPMI 1640 medium, the tumor cells were incubated with PTA-expanded Vγ2Vδ2 T cells at effector to target ratios of 0, 0.625, 1.25, 2.5, 6, 10, 20 and 40. The cells were centrifuged and after 40 min, the culture supernatants harvested and mixed with a europium solution to form a europium-chelate complex with released labeling compound. Time-resolved europium fluorescence was measured on a PHERAstar FS multplate reader (BMG LABTECH GmbH, Allmedenegg, Ortenberg, Germany) or a Berthold multplate reader (Berthold Technologies GmbH, KG, Bad Wildbad, Germany).

2.9 | Adoptive transfer of Vγ2Vδ2 T cells into immunodeficient NOG mice

Peripheral blood mononuclear cells derived from healthy donors or prostate cancer patients were stimulated with 1 μM of PTA and IL-2 as detailed above and harvested on day 10 for direct transfer (for healthy donors) or frozen for later use (for cancer patients). Vγ2Vδ2 T cells constituted >98% of lymphocytes. Vγ2Vδ2 T cells from healthy donors were transferred directly, whereas Vγ2Vδ2 T cells from cancer patients were thawed, washed and then transferred. For both types of donors, 5 × 10⁶ Vγ2Vδ2 T cells were i.p. injected into immunodeficient NOD.Cg-Prkdcscid Ij12gajms15sj/Jic (NOG) mice (Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan) that were maintained under specific-pathogen-free conditions. Fourteen or fifteen days later, peripheral blood was obtained and the red blood cells (RBC) were lysed with 1 mL of paraformaldehyde in PBS and analyzed using a FACSCalibur or an LSR II flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA).
ACK lysis buffer (8.024 g of NH₄Cl, 1.001 g of KHCO₃ and 3.722 mg of EDTA Na₂/2H₂O in 1000 mL of Milli-Q water). After washing with PBS/2% FCS, the resulting cells were stained with FITC-conjugated anti-V_{c2V}_{d2} TCR and PE-conjugated anti-human CD3 mAb. Animal use was approved by the institutional review board of Kyoto University Medical School. All experiments were performed in accordance with the relevant guidelines and regulations of Kyoto University Medical School.

2.10 | TNF-α production by adoptively transferred V_{c2V}_{d2} T cells in vitro

NOG mice were i.p. injected with 5 × 10⁷ V_{c2V}_{d2} T cells from a breast cancer patient (BC21). Two weeks later peripheral blood was taken from the mice, RBC were lysed with ACK buffer, and the resulting peripheral blood cells were stimulated with 1 μM of HMBPP at a cell concentration of 1 × 10⁵ cells/100 μL in vitro. After 24 h, the culture supernatants were harvested and TNF-α levels were determined in triplicate by ELISA (Peprotech, Rocky Hill, NJ, USA).

2.11 | CD25 expression on adoptively transferred V_{c2V}_{d2} T cells stimulated in vivo

NOG mice were i.p. injected with 1 × 10⁶ EJ-1 cells. Four weeks later the mice were i.p. injected with 1 × 10⁷ V_{c2V}_{d2} T cells and 1 μg of PTA. V_{c2V}_{d2} T cells were harvested 24 h after the injection and stained with PE-conjugated anti-human CD25 mAb (clone BC96, Biolegend, San Diego, CA, USA).

2.12 | Determination of IFN-γ mRNA in adoptively transferred V_{c2V}_{d2} T cells stimulated in vivo

NOG mice were i.p. injected with 1 × 10⁶ EJ-1 cells. Four weeks later, the mice were i.p. injected with 1 × 10⁷ V_{c2V}_{d2} T cells with or without 1 μg of PTA. Peripheral blood was taken from the mice 4 h and 24 h after the challenge, and human IFN-γ mRNA levels measured in the harvested cells by quantitative PCR. Total RNA was purified using an RNeasy Mini Kit (Qiagen, Valencia, CA, USA) and complementary DNA was synthesized from 1 μg of total RNA using SuperScript III reverse transcriptase kit and random hexamers.

Prostate cancer Patient 1 (PC01)

Prostate cancer Patient 2 (PC02)

Prostate cancer Patient 3 (PC03)

FIGURE 4 Expansion of V_{c2V}_{d2} T cells from prostate cancer patients by PTA leads to high purity. Peripheral blood mononuclear cells (PBMC) isolated from prostate cancer patients were analyzed by flow cytometry before (left panels) and after (right panels) stimulation with PTA and interleukin-2 (IL-2) for 10 days. Values shown are % of CD3 T cells. The absolute number of V_{d2} T cells increased from 2.0 × 10⁵ to 2.4 × 10⁸ for PC01, 5.7 × 10⁵ to 6.4 × 10⁸ for PC02, and 1.7 × 10⁵ to 7.6 × 10⁸ for PC03, with the expansion rate being 1175-fold for PC01, 1118-fold for PC02, and 4398-fold for PC03.
and 24 h after the injection, serum was prepared, and serum IFN-γ levels were measured by ELISA (Peprotech, Rocky Hill, NJ).

3 | RESULTS

3.1 | Delivery of PTA in an inclusion complex with trimethyl β-cyclodextrin

We recently described a new thiazole bisphosphonate prodrug, PTA, that is highly active relative to its acid form, TA, and to Zol (the most potent bisphosphonate in clinical use) (structures shown in Figure 1A). PTA is highly hydrophobic and is insoluble in water or ethanol. Although PTA can be dissolve in DMSO for research use, few drugs solubilized in DMSO have been approved for use in patients. Therefore, we tested a number of nonionic detergents for their ability to solubilize PTA in ethanol. A trimethyl derivative of β-cyclodextrin (TMβCD) had the best ability to solubilize PTA in ethanol (Figure S1). Cyclodextrin compounds can form inclusion complexes with drugs where hydrophobic drugs bind to their central hydrophobic cavity and where the polar surface of cyclodextrin makes the complex soluble in ethanol. PTA could be dissolved up to a concentration of 1 mM in ethanol containing 10 mM of TMβCD. Importantly, PTA solubilized in TMβCD/ethanol exhibited identical bioactivity to PTA solubilized in DMSO. For example, PTA in TMβCD/ethanol inhibited the proliferation of the EJ-1 bladder carcinoma and the U937 histiocytic leukemia cell lines identically to PTA in DMSO (Figure S1C,D). Thus, TMβCD/ethanol can be used as the solvent for PTA, as was done in this study.

3.2 | Stimulation of Vγ2Vδ2 T cells by PTA

PTA potently inhibits the growth of tumor cell lines in vitro and selectively activates Vγ2Vδ2 T cells in PBMC to proliferate, secrete cytokines and kill tumor cells. Consistent with these results, when we compared the activity of Zol to the PTA produg and its TA acid form, PTA was strongly active. Zol and TA stimulated Vγ2Vδ2 T cell-dependent cell aggregation at concentrations of approximately 10 µM, whereas PTA caused aggregation at approximately 0.1 µM (Figure 1B). Similarly, PTA stimulated TNF-α production by Vγ2Vδ2 T cells at an EC50 of 3 nM, whereas TA and Zol stimulated at an EC50 of 3000 nM (Figure 1C). Thus, PTA was 1000-fold more potent than TA and Zol in stimulating Vγ2Vδ2 T cells in PBMC.

3.3 | Ex vivo expansion by PTA of Vγ2Vδ2 T cells for adoptive immunotherapy

To determine whether PTA can be used to expand Vγ2Vδ2 T cells for adoptive immunotherapy, PMBC from cancer patients and from healthy donors were stimulated with PTA and IL-2 and the resulting Vγ2Vδ2 T cells were assessed for purity and biological activity after 10 days. Similar to what we have previously
shown for Zol. PTA stimulated maximum expansion within a relatively narrow dose range when PBMC were continuously exposed to PTA as it was slowly diluted (Figure 2). Thus, V\textsubscript{\alpha2V\textbeta2} T cell expansion was maximal at a PTA concentration of 1 \muM, while a PTA concentration of 2 \muM was highly toxic (Figure 2A). PTA stimulation resulted in highly enriched populations of V\textsubscript{\alpha2V\textbeta2} T cells that approached 100% of CD3 T cells, whereas Zol stimulation was consistently less (Figure 2A,B). To determine the effect of PTA on V\textsubscript{\alpha2V\textbeta2} T cells from cancer patients, PBMC from 8 cancer patients with prostate or breast cancer were stimulated with either PTA or Zol (Figure 3). PTA stimulation resulted in significantly higher enrichment of the V\textsubscript{\alpha2V\textbeta2} T cell population as compared with Zol stimulation (95.6 \pm 5.7% of total cells vs 90.3 \pm 10.0%, P = .0078, Figure 3A). All donors exhibited higher enrichment with PTA compared to Zol. In addition, the number of V\textsubscript{\alpha2V\textbeta2} T cells was 20% higher on average for stimulation with PTA as compared with Zol (6.3 \times 10^8 \pm 5.5 \times 10^8 cells with PTA vs 5.7 \times 10^8 \pm 4.3 \times 10^8 cells with Zol, P = .38, Figure 3B), although this was observed for only 6 out of 8 patients and was not statistically significant. The increase in V\textsubscript{\alpha2V\textbeta2} cell numbers varied widely ranging from 959 to 28,722-fold (6344-fold for PTA vs 4302-fold for Zol, P = .31) and was not significantly different (Figure 3C). Examples of V\textsubscript{\alpha2V\textbeta2} T cell expansion in response to PTA are shown for prostate cancer patients (Figure 4) and healthy donors (Figure S2). Thus, ex vivo PTA stimulation of V\textsubscript{\alpha2V\textbeta2} T cells in PBMC from

![Image of V\textsubscript{\alpha2V\textbeta2} T cells in NOG mouse blood](image)

FIGURE 6 Adoptively transferred human V\textsubscript{\alpha2V\textbeta2} T cells from prostate cancer patients persist in the blood of NOG mice. V\textsubscript{\alpha2V\textbeta2} T cells (>98%) were expanded from prostate cancer patient 2 (PC02) (left panels) and patient 4 (PC04) (right panels) and frozen for later use. 5 \times 10^7 thawed V\textsubscript{\alpha2V\textbeta2} T cells were then adoptively transferred into each NOG mice. Fifteen days after transfer, peripheral blood was obtained. After RBC lysis, the resulting cells were stained and then analyzed by flow cytometry for expression of V\textsubscript{\alpha2} TCR and human CD3. Values shown are % of total cells. Mean \pm SD PC02 2.5% \pm 0.9%, n = 3 PC04 6.4% \pm 2.4%, n = 3
3.4 | Cytotoxic activity of Vγ2Vδ2 T cells expanded by PTA

Adult Vγ2Vδ2 T cells are highly cytotoxic\(^4\) and exhibit cytotoxicity for most tumor cell lines.\(^8,33\) Vγ2Vδ2 T cells expanded with PTA were, therefore, assessed for their cytotoxic activity against an NK-sensitive cell line, a stimulatory plasmacytoma and a tumor cell line treated with PTA. PTA-expanded Vγ2Vδ2 T cells exhibited strong NK-like cytotoxic activity efficiently lysing the NK target cell line, K562, which lacks MHC class I (Figure 5A). PTA-expanded Vγ2Vδ2 T cells also lysed the RPMI 8226 plasmacytoma cell line that is directly stimulatory for Vγ2Vδ2 T cells through a TCR-dependent mechanism (Figure 5A).\(^17,41\)

Finally, PTA-expanded Vγ2Vδ2 T cells efficiently lysed U937 tumor cells that had been treated with PTA (Figure 5B). Therefore, expansion of Vγ2Vδ2 T cells by PTA preserves their cytotoxic activity.

3.5 | Purity of Vγ2Vδ2 T cells helps to determine their engraftment success after adoptive transfer in NOG mice

To assess their potential use for cancer immunotherapy, Vγ2Vδ2 T cells expanded by PTA were adoptively transferred into immunodeficient NOG mice. Vγ2Vδ2 T cells expanded from prostate cancer patient 2 (PC02) and 4 (PC04) using PTA with IL-2 (shown in Figure 4) were i.p. injected into immunodeficient NOG mice and continued to circulate 15 days later. Mice receiving cells from prostate cancer patient 2 (PC02) averaged 2.5% Vγ2Vδ2 T cells, whereas mice receiving cells from prostate cancer patient 4 (PC04) averaged 6.4% Vγ2Vδ2 T cells of total cells (Figure 6). Similarly, NOG mice receiving Vγ2Vδ2 T cells derived from a normal donor averaged 18.8% in Experiment 1 and 12.6% in Experiment 2 (Figure S3), whereas breast cancer patients averaged 8.8% for BC36 and 4.8% for BC35 (Figure S4). The higher proportions of Vγ2Vδ2 T cells observed with the normal donor were likely due to the transfer of freshly expanded Vγ2Vδ2 T cells instead of the previously frozen cells used from prostate and breast cancer patients.

Transfer of highly enriched Vγ2Vδ2 T cells (>98% of total cells) reduced the proportion of NOG mice with elevated levels of Vβ1 T cells (Figure 7A,B). For example, transfer of Vγ2Vδ2 T cells expanded using Zol from patient BC35 which were 90% pure resulted in only 1 out of 9 NOG mice having Vγ2Vδ2 T cells that constituted greater than 80% of circulating T cells while transfer of Vγ2Vδ2 T cells which were 97% pure resulted in only 1 out of 5 NOG mice (Figure S4). In contrast, transfer of Vγ2Vδ2 T cells with purities >98% resulted in 29 out of 32 NOG mice with Vγ2Vδ2 T cells constituting greater than 80% of circulating T cells (Figure 7A, lower panel). Thus, the high purity of Vγ2Vδ2 T cells expanded using PTA helped to ensure successful engraftment of NOG mice without Vβ1 T cell outgrowth.

3.6 | Adoptively transferred Vγ2Vδ2 T cells from NOG mice are fully functional

To assess the functional capabilities of Vγ2Vδ2 T cells expanded by PTA in vivo, we tested various immunological functions of the cells...
after their adoptive transfer to immunodeficient NOG mice. First, recovered V_{α}2V_{δ}2 T cells were tested for their ability to secrete TNF-α. Despite 2 weeks in NOG mice without exogenous human IL-2 or IL-15, recovered V_{α}2V_{δ}2 T cells secreted TNF-α upon in vitro stimulation with the bacterial metabolite, HMBPP (Figure 8A). Note that murine cells and other human T cells do not respond to HMBPP or its analogs, as we have shown in earlier studies.11,42

Second, we examined the ability of transferred V_{α}2V_{δ}2 T cells to respond to bisphosphonate stimulation in vivo. For these experiments, NOG mice bearing human EJ-1 bladder carcinoma cells were i.p. injected with V_{γ}2V_{δ}2 T cells with or without PTA and V_{γ}2V_{δ}2 T cells recovered from the mice 4 h and 24 h later. After 24 h, V_{γ}2V_{δ}2 T cells upregulated expression of the CD25 IL-2α receptor when stimulated with PTA (right panel, Figure 8B) but not if PTA was omitted (left panel, Figure 8B). Moreover, IFN-γ mRNA expression in V_{γ}2V_{δ}2 T cells was upregulated, reaching maximum levels at 4 h and declining thereafter (Figure 8C). Serum human IFN-γ protein levels increased later such that levels were higher at 24 h compared with 4 h (Figure 8D), consistent with the requirement for translation of IFN-γ to produce the cytokine rather than its release from preformed stores as has been demonstrated for in vivo responses to lymphocytic choriomeningitis virus.43 IFN-γ production was dependent on V_{γ}2V_{δ}2 T cells given that NOG mice bearing EJ-1 cancer cells with PTA but no V_{γ}2V_{δ}2 T cells or receiving only PTA alone failed to upregulate IFN-γ expression at either the mRNA or protein levels. These findings clearly demonstrate that adoptively transferred V_{γ}2V_{δ}2 T cells that have been expanded by PTA stimulation can be specifically activated in vivo with bisphosphonate stimulation to upregulate CD25 for proliferation and IFN-γ for its myriad effector functions.
In the present study, we show that PTA, a novel bisphosphonate prodrug, expands peripheral blood V_{2}V_{6}2 T cells up to several thousand-fold in 10 days, with very high purity in both cancer patients and healthy adult donors. PTA is, thus, ideal for the preparation of large numbers of highly homogeneous V_{2}V_{6}2 T cells for use in adoptive immunotherapy for cancer. These expanded V_{2}V_{6}2 T cells exhibited full immunological functions when tested in preclinical immunodeficient mouse models and their high purity helped to limit the outgrowth of human T cells in these mice.

The pivaloyloxymethyl groups of PTA mask the hydrophilic phosphonate moieties, allowing cell entry but also making PTA hydrophobic such that it dissolves in DMSO but not in ethanol. Because of the possible toxicity of DMSO and its chemical properties (high freezing point and garlic taste), few intravenous drugs are solubilized in DMSO for patient use. However, because none of the conventional detergents used in clinical practice allowed PTA to dissolve in ethanol, we tested TM_ICD. TM_ICD is highly soluble in both water and ethanol and its parent compound, JCD, has been used for drug delivery. The less hydrophilic interiors of these compounds allow them to form complexes with hydrophobic drugs. Accordingly, TM_ICD solubilizes PTA in ethanol. This TM_ICD/ethanol solubilization method could be applicable to other hydrophobic therapeutics, such as alkoxymethyl derivatives of anionic compounds. PTA dissolved in TM_ICD/ethanol exhibited identical biological activity to PTA dissolved in DMSO, suggesting that PTA preparation in TM_ICD/ethanol could be used for both preclinical and clinical studies.

In previous clinical studies, it was not clear whether IL-2 infusion was essential for adoptive immunotherapy with T cells because some studies gave IL-2 in vivo. This study clearly shows that V_{2}V_{6}2 T cells continued to circulate in the peripheral blood even 2 weeks after i.p. injection into NOG mice in the absence of exogenous IL-2. In addition, the transfected V_{2}V_{6}2 T cells were functionally active, as evidenced by the expression of TNF-\(\alpha\), CD25 and IFN-\(\gamma\) in response to PTA-sensitized tumor cells or HMBPP stimulation. Although IL-2 is absolutely required for the maintenance of V_{2}V_{6}2 T cells in vivo, these findings suggest that IL-2 is not absolutely necessary in adoptive immunotherapy with V_{2}V_{6}2 T cells. Thus, IL-2 infusion might be omitted or reduced in patients undergoing adoptive cancer immunotherapy with V_{2}V_{6}2 T cells.

Using PTA to expand V_{2}V_{6}2 T cells for adoptive immunotherapy has potential advantages over Zol, the most commonly used stimulator for clinical trials. PTA stimulation consistently resulted in highly enriched populations of V_{2}V_{6}2 T cells that were of significantly higher purity than those expanded by Zol. In many cases, V_{2}V_{6}2 T cells were >99% of total T cells and it may be possible to further increase cell yields by using pulse PTA stimulation, as we have shown for pulse stimulation with Zol. The ability to generate highly enriched V_{2}V_{6}2 T cells would be useful for preclinical studies in immunodeficient mice. Our findings show that relatively low levels of CD3 T cell contamination could lead to xenogeneic graft-versus-host disease that is observed when human PBMC are xenotransplanted into NSG mice and that leads to their deaths with a median survival of 40 days. The contamination could also compromise tumor immunity by V_{2}V_{6}2 T cells through competition with the T cells. Our findings suggest that V_{2}V_{6}2 T cells should generally be purified prior to use in long-term tumor studies in immunodeficient NSG or NOG mice. Using PTA-expanded V_{2}V_{6}2 T cells as a starting population would ensure that purification would give highly enriched V_{2}V_{6}2 T cells with few T cells.

Another potential use of such highly enriched populations would be allogeneic adoptive transfer of V_{2}V_{6}2 T cells for tumor immunotherapy. Thus far, all clinical trials have used syngeneic V_{2}V_{6}2 T cells. However, because V_{2}V_{6}2 T cells are not alloreactive and because the BTN3A1 is not polymorphic, V_{2}V_{6}2 T cells can be stimulated by allogeneic tumor cells treated with PTA or a prenyl pyrophosphate. Because they are not alloreactive, transfer of V_{2}V_{6}2 T cells will not cause graft-versus-host disease. Note that in natural infections, very high numbers of V_{2}V_{6}2 T cells can be observed (up to 50% of circulating T cells) without autoimmunity or other toxicity (reviewed in Morita et al).

The ability to generate highly enriched V_{2}V_{6}2 T cells preparations without contaminating CD3 T cells would allow their use as "off-the-shelf" reagents for cancer immunotherapy. This would result in major cost savings and greatly increase the feasibility of such treatments because normal donors that expand particularly well could be selected and these individuals can be repeatedly leukopherosed to obtain starting PBMC. To avoid host-versus-graft disease, the donors could be HLA typed and donors selected based on their degree of HLA match to the recipient. If host-versus-graft responses develop, the donor for the V_{2}V_{6}2 T cells could be switched. If necessary, CD3 T cells could be depleted using anti-CD3 TCR magnetic beads as this process would be very efficient because of their low abundance. Such an approach is being investigated commercially for CAR-NKT cells. Moreover, infusion of HLA-matched allogeneic virus-specific cytotoxic lymphocytes derived by in vitro stimulation is already being used to treat patients undergoing bone marrow transplantation who have developed severe viral infections with Epstein–Barr virus or cytomegalovirus. In one study, the transferred cells could be detected in the blood for a median period of 10 weeks and there was minimal toxicity. The ability to generate large numbers of highly enriched V_{2}V_{6}2 T cells that can be banked and used as "off-the-shelf" reagents could greatly facilitate the development of adoptive V_{2}V_{6}2 T cell therapies.

CONFLICT OF INTEREST

Y.T. is a co-inventor of novel terpyridine-derivative proligands for measuring cytotoxicity: PCT/JP2015/059838. C.T.M. is a co-inventor of US Patent 8,012,466 on the development of live bacterial vaccines for activating CD3 T cells and has no other financial or non-financial conflict of interest. The other authors declare no financial or non-financial conflicts of interest.
REFERENCES

1. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443-2454.

2. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455-2465.

3. Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape defines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124-128.

4. Goodman AM, Kato S, Bazenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598-2608.

5. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415-421.

6. Khagi Y, Goodman AM, Daniels GA, et al. Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy. Clin Cancer Res. 2017;23:5729-5736.

7. Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med. 2016;22:26-36.

8. Torizawa CT, Jin C, Sarikonda G, Wang H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human V_dV₆ T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev. 2007;215:59-76.

9. Tanaka Y, Torizawa CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature. 1995;375:155-158.

10. Hintz M, Reichenberg A, Altincicek B, et al. Identification of (E)-4-hydroxy-3-methyl-2-ethyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett. 2001;509:317-322.

11. Puan K-J, Jin C, Wang H, et al. Preferential recognition of a microbial metabolite by human V_dV₆ T cells. Int Immunol. 2007;19:657-673.

12. Harly C, Guillaume Y, Nedelec S, et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood. 2012;120:2269-2279.

13. Wang H, Henry O, Distefano MD, et al. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human V_dV₆ T cells. J Immunol. 2013;191:1029-1042.

14. Palakodeti A, Sandstrom A, Sundaresan L, et al. The molecular basis for modulation of human V_dV₆ T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. J Biol Chem. 2012;287:32780-32790.

15. Sandstrom A, Peigne C-M, Léger A, et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human V_dV₆ T cells. Immunity. 2014;40:490-500.

16. Wang H, Torizawa CT. Sensor function for butyrophilin 3A1 in prenyl pyrophosphate stimulation of human V_dV₆ T Cells. J Immunol. 2015;195:4583-4594.

17. Bukowski JF, Torizawa CT, Tanaka Y, Bloom BR, Brenner MB, Band H. V_dV₆ TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J Immunol. 1995;154:998-1006.

18. Bennouna J, Bompas E, Neidhardt EM, et al. Phase-I study of Inna-cell γδ, an autologous cell-therapy product highly enriched in γδV₆ T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 2008;57:1599-1609.

19. Abe Y, Muto M, Nieda M, et al. Clinical and immunological evaluation of zoledronate-activated V_dγδ T-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol. 2009;37:956-968.

20. Nicol AJ, Tokuyama H, Mattarollo SR, et al. Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer. 2011;105:778-786.

21. Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K. Phase I/Ii study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother. 2011;60:1075-1084.

22. Sakamoto M, Nakajima J, Murakawa T, et al. Adoptive immunotherapy for advanced non-small cell lung cancer using zoledrate-expanded γδ T cells: a phase I clinical study. J Immunother. 2011;34:202-211.

23. Izumi T, Kondo M, Takahashi T, et al. Ex vivo characterization of γδ T-cell repertoire in patients after adoptive transfer of V_dV₆ T cells expressing the interleukin-2 receptor β-chain and the common γ- chain. Cytotherapy. 2013;15:481-491.

24. Wada I, Matsushita H, Noji S, et al. Intraperitoneal injection of in vitro expanded V_dV₆ T cells together with zoledrate for the treatment of malignant ascites due to gastric cancer. Cancer Med. 2014;3:362-375.

25. Okawaki M, Hironaka K, Yamanura M, Yamaguchi Y. Adoptive immunotherapy using autologous lymphocytes activated ex vivo with antigen stimulation for patients with incurable cancer. Kawasaki Med J. 2014;40:33-39.

26. Noguchi A, Kaneko T, Kimigaki T, et al. Zoledrate-activated V_dγδ T cell-based immunotherapy is feasible and restores the impairment of γδ T cells in patients with solid tumors. Cytotherapy. 2011;13:92-97.

27. Kobayashi H, Tanaka Y, Shimamura H, Minato N, Tanabe K. Complete remission of lung metastasis following adoptive immunotherapy using activated autologous γδ T-cells in a patient with renal cell carcinoma. Anticancer Res. 2010;30:575-579.

28. Kakimi K, Matsushita H, Murakawa T, Nakajima J. γδ T cell therapy for the treatment of non-small cell lung cancer. Transl Lung Cancer Res. 2014;3:23-33.

29. Gober H-J, Kistowska M, Anglan L, Jeno P, Mori L, De Libero G. Human T cell receptor γδ T cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med. 2003;197:163-168.

30. Wang H, Sarikonda G, Puan K-J, et al. Indirect stimulation of human V_dV₆ T cells through alterations in isoprenoid metabolism. J Immunol. 2011;187:5099-5113.

31. Thompson K, Rogers MJ, Coxon FP, Crockett JC. Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol Pharmacol. 2006;69:1624-1632.

32. Matsumoto K, Hayashi K, Murata-Hirai K, et al. Targeting cancer cells with a bisphosphonate prodrug. ChemMedChem. 2016;11:2656-2663.

33. Tanaka Y, Iwasaki M, Murata-Hirai K, et al. Anti-tumor activity and immunotherapeutic potential of a bisphosphonate prodrug. Sci Rep. 2017;7:5987.

34. Iwasaki M, Tanaka Y, Kobayashi H, et al. Expression and function of PD-1 in human γδ T cells that recognize phosphoantigens. Eur J Immunol. 2011;41:345-355.

35. Hakomori S. A rapid permethylation of glycolipid, and polysaccharide chain. Exp Hematol. 1964;55:205-208.

36. Nada MH, Wang H, Workalemahu G, Tanaka Y, Morita CT. Enhancing adoptive cancer immunotherapy with V_dV₆ T cells through pulse zoledronate stimulation. J Immunother Cancer. 2017;5:9.

37. Tanaka Y, Sakai Y, Mizuta S, et al. Live cell labeling with terpyridine derivative proligrads to measure cytotoxicity mediated by immune cells. ChemMedChem. 2017;12:2006-2013.
38. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727.
39. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442-453.
40. Morita CT, Verma S, Aparicio P, Martinez AC, Spits H, Brenner MB. Functionally distinct subsets of human γδ T cells. Eur J Immunol. 1991;21:2999-3007.
41. Selin LK, Stewart S, Shen C, Mao HQ, Wilkins JA. Reactivity of γδ T cells induced by the tumour cell line RPMI 8226: functional heterogeneity of clonal populations and role of GroEL heat shock proteins. Scand J Immunol. 1992;36:107-117.
42. Tanaka Y, Sano S, Nieves E, et al. Nonpeptide ligands for human γδ T cells. Proc Natl Acad Sci USA. 1994;91:8175-8179.
43. Araki K, Morita M, Bederman AG, et al. Translation is actively regulated during the differentiation of CD8+ effector T cells. Nat Immunol. 2017;18:1046-1057.
44. Ali N, Flutter B, Sanchez Rodriguez R, et al. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγc null mice display a T-effector memory phenotype. PLoS One. 2012;7:e44219.
45. Ito R, Katano I, Kawai K, et al. Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation. 2009;87:1654-1658.
46. Kabelitz D, Bender A, Schonelmaier S, da Silva Lobo ML, Janssen O. Human cytotoxic lymphocytes. V. Frequency and specificity of γδ T cells for adoptive immunotherapy using a bisphosphonate prodrug. Cancer Sci. 2018;109:587–599. https://doi.org/10.1111/cas.13491