Redox lipidomics to better understand brain aging and function

Reinald Pamplona, a,* Consuelo Borras, b,* Mariona Jové, a Irene Pradas, a Isidre Ferrer, c,d Jose Viña b

a Department of Experimental Medicine, University of Lleida—Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
b Freshage Research Group-Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA
c Department of Pathology and Experimental Therapeutics, University of Barcelona; Bellvitge University Hospital, L’Hospitalet de Llobregat, Barcelona, Spain
d Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Spain

*Corresponding authors:
Dr. Reinald Pamplona, E-mail: reinald.pamplona@mex.udl.cat
Dr. Consuelo Borrás, E-mail: consuelo.borras@uv.es

Key words:
Advanced lipoxidation end products, aging, energy metabolism, lipidomics, mitochondrion, neurotransmission, oxidative stress, prefrontal cortex, proteostasis, reactive carbonyl species

Type of article
Review
Abbreviations

AA, arachidonic acid
ACO2, aconitate hydratase
ACTB, beta-actin
ALE, advanced lipoxidation endproduct
ATP5F1A, ATP synthase subunit alpha
ATP5F1B, ATP synthase subunit beta
BASP1, brain acid soluble protein 1
BLVRB, NADPH-flavin reductase
CA1, carbonic anhydrase 1
CEL, carboxyethyl-lysine
ChoGpl, glycerophosphocholines
CKB, creatine kinase B-type
CML, carboxymethyl-lysine
CMRg, cerebral metabolic rate of glucose
COX, cyclooxygenases
CR, caloric restriction
CRYAB, alpha-crystallin B chain (heat shock protein B5)
DHA, docosahexaenoic acid
DLD, dihydrolipoyl dehydrogenase
DPYSL2, dihydropyrimidinase-related protein 2
ENO1, alpha-enolase
ENO2, gamma-enolase
EtbGpl, glycerophosphoethanolamines
ETC, electron transport chain
GAPDH, glyceraldehyde-3-phosphate dehydrogenase
GFAP, glial fibrillary acidic protein
GL, glycerolipids
GLUD1, glutamate dehydrogenase 1
GLUL, glutamine synthetase
GNB1, guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta1
GOT1, aspartate aminotransferase
GP, glycerophospholipids
GPx4, phospholipid hydroperoxide glutathione peroxidase
GST, glutathione-S-transferase
HBA1, hemoglobin subunit alpha
HNE, 4-hydroxy-2-nonenal
HSPD1, heat shock protein 60KDa
IF, intermittent fasting
IMS, imaging mass spectrometry
InoGpl, glycerophosphoinositols
LOX, lipoxigenases
MDA, malondialdehyde
MetR, methionine restriction
MRI, magnetic resonance image
MS, mass spectrometry
MUFA, monounsaturated fatty acids
NEFL, neurofilament light polypeptide
NEFM, neurofilament medium polypeptide
NKT, neuroketals
Nrf2, nuclear factor erythroid 2-related factor
ONE, 4-oxo-2-nonenal
OxPhos, oxidative phosphorylation

PARK7, protein/nucleic acid deglycase DJ-1

PC, phosphatidylcholine

PE, phosphatidylethanolamine

PEBP1, phosphatidylethanolamine-binding protein 1

PET, positron emission tomography

PFC, prefrontal cortex

PGAM1, phosphoglycerate mutase 1

PI, peroxidizability index

PIGpl, phosphatidylinositols

PKM, pyruvate kinase

PR, protein restriction

PS, phosphatidylserine

PUFA, polyunsaturated fatty acids

RCS, reactive carbonyl species

REST, RE1-silencing transcription factor

ROS, reactive oxygen species

SerGpl, glycerophosphoserines

SFA, saturated fatty acids

SM, sphingomyelins

SP, sphingolipids

SYN1, synapsin-1

TCA, tricarboxylic acid cycle

TUBA1B, tubulin alpha 1B chain

TUBB, tubulin beta chain

TPPP, tubulin polymerization-promoting protein
UCHL1, ubiquitin carbosyl-terminal hydrolase L1

UCP, uncoupling protein

UFA, unsaturated fatty acids

UQRC1, ubiquinol-cytochrome c reductase complex core protein 1

VIM, vimentin

YWHAG, 14-3-3 protein gamma
Table of Contents

1. Introduction
2. Lipidomics of human prefrontal cortex
3. The meaning of lipid oxidation and lipoxidation-derived protein adducts
4. Redox lipidomics and adductomics in human prefrontal cortex aging
5. Lipoxidation-derived protein damage targets in human prefrontal cortex
6. Advanced lipoxidation end-products and soluble oligomers
7. Interventions against prefrontal cortex aging
8. Healthy aging brain as prevention for neurodegenerative diseases
9. Conclusions
Highlights

1. Human prefrontal cortex (PFC) has unique and specific lipidome that undergoes progressive changes with aging

2. PFC protein damage is selective and affects specific biological processes

3. Human PFC lipid oxidation and lipoxidation-derived protein damage increase with aging

4. Human PFC lipid oxidation and lipoxidation-derived protein damage processes may have a role in the age-associated PFC cognitive decline.
Abstract

Human prefrontal cortex (PFC) is a recently evolutionary emerged brain region involved in cognitive functions. Human cognitive abilities decline during aging. Yet the molecular mechanisms that sustain the preservation or deterioration of neurons and PFC functions are unknown. In this review, we focus on the role of lipids in human PFC aging. As the evolution of brain lipid concentrations is particularly accelerated in the human PFC, conferring a specific lipid profile, a brief approach to the lipidome of PFC was considered along with the relationship between lipids and lipoxidative damage, and the role of lipids in human PFC aging. In addition, the specific targets of lipoxidative damage in human PFC, the affected biological processes, and their potential role in the cognitive decline associated with aging are discussed. Finally, interventions designed to modify this process are considered. We propose that the dysfunction of key biological processes due to selective protein lipoxidation damage may have a role in the cognitive decline of PFC during aging.
1. Introduction

One critical trait of human evolution is the rapid expansion of brain size and the emergence of unique and complex cognitive capabilities. These changes have demanded metabolic adaptations, in particular with respect to increased energy supplies [1]. Thus, humans allocate about 20% of their total energy to the brain, compared with 12% for apes and 5% for other mammalian species [2]. This higher metabolic activity, supported by increased expression of genes related to neuronal functions and energy metabolism [3, 4], as well as the increased density of glia cells relative to neurons [5, 6], shows its greatest demand in human prefrontal cortex (PFC) [5, 7]. Furthermore, PFC has been shown to undergo greater expansion at the gross anatomy level in human evolutionary lineage than other brain regions [8]; it is the brain region that has emerged and evolved most recently during primate evolution. PFC is involved in complex cognitive functions including reasoning, planning, social behavior, and general intelligence [9-11].

Cognitive abilities decline during aging. Yet brain aging does not affect all neurons identically. Non-invasive techniques such as structural brain imaging and functional magnetic resonance imaging (MRI) are being widely used and combined with post-mortem analyses of aging human brain to identify the most age-sensitive regions of the brain. Volumetric brain measurements as well as positron emission tomography (PET) measures of whole brain and regional cerebral metabolic rates of glucose (CMRg) reinforce the idea that aging affects some brain regions more than others. Thus, in addition to the volume changes in, particularly, the association cortex during aging, it has been shown that the PFC shows the greatest and most consistent decrements in CMRg as compared with all other regions of the aging brain [12-15]. In this line, cognitive functions that rely on PFC, such as learning, memory, and executive functions, show considerable age-related decline. Consequently, it is plausible to postulate that the decline in both energy metabolism and cognition are closely linked.

These changes in metabolic activity in PFC during aging have been associated with different, and non-exclusive, molecular mechanisms and biological processes comprising altered neuronal expression of proteins involved in the metabolic state of neurons and glial cells, altered activation of synapses, and the disruptive effects of abnormal neuronal excitability. But, in any case, the evidence clearly suggests that neuronal loss during aging
is very modest, whereas a decrease in the number of synapses appears to be a more prominent trait of brain aging. Indeed, most of the functional decline associated with physiological aging is caused by relatively subtle changes, such as loss of dendrites, reductions in spine density, altered spine morphology, changes in the molecular profile of synapses, and a general loss of synaptic plasticity, all of which is paralleled by declining cognitive function and elevated risk of neurodegenerative disease [16-22]. Nevertheless, the molecular mechanisms behind aging-related phenotypic changes are only scarcely understood.

Lipids have allowed and lent support to the brain’s evolution toward complexity [23]. In addition to their quantitative relevance (50% of the dry matter [24]), brain lipids show great structural and functional diversity, with most lipid categories represented in cells as expressions of the different needs and functions ascribed to them which are related to the generation of membranes, cell signaling, and energy storage [23,25]. By regulating the chemical and physical properties of membranes, lipids direct vesicle fusion and fission processes, ion flux, and lateral diffusion of membrane proteins, they also create the microdomains necessary for optimal cellular communication, among other functions [26] [27, 28]. However, despite growing evidence of the critical role of lipids in brain function, little is known about the participation of lipids in PFC aging. In this review, we used data from targeted and untargeted mass spectrometry (MS)-based lipidomics and redox lipidomics to characterize the lipidome composition of human PFC and its association with the cognitive decline linked to the aging process.

2. Lipidomics of human prefrontal cortex

Recent progress in mass spectrometry (MS)-based lipidomics has provided experimental opportunities for the large-scale quantitative profiling of thousands of individual lipid molecular species in human brain, providing novel insights into the mechanisms and evolution of brain functionality. Thus, current data demonstrate the existence of lipidomic signatures which are tissue-specific [29, 30] and brain region-dependent [29, 31, 32], with the lipid profile of the brain seen to be markedly different from that of the other tissues (verified in mammals, non-human primates, and humans) [29]. This supports the
idea that lipids play specific roles in brain function [25]. Interestingly, the largest lipidome divergence between the brain and other tissues is found in humans, who show the greatest cognitive complexity. Furthermore, lipidome divergence follows the genetic divergence among animal species, supporting the idea that concentration levels of lipids enriched in brain evolved at a much more rapid pace than the concentration levels of lipids characteristic of non-neural tissues [29]. As stated by Khaitovich and coworkers [29], these features suggest a link between brain lipidome evolution and the evolution of brain functionality.

Importantly, the greater acceleration of lipidome changes in the human evolutionary lineage is specific to brain enriched lipids in PFC, the region commonly associated with human-specific brain functions. Lipids showing human PFC-specific concentration changes belong to three lipid categories: glycerolipids (GL), glycerophospholipids (GP), and sphingolipids (SP); these in turn are represented in very specific lipid subclasses, namely: 1-(1Z-alkenyl), 2-acylglycerophosphoethanolamines (plasmalogenes of phosphatidylethanolamines), diacylglycerols, N-acylsphinganines (dihydroceramides), and N-acylsphingosines (ceramides) [29].

This specific lipid pattern present in human PFC seems to also be projected and reflected at the cellular, subcellular, and molecular levels. Thus, for example, at the cellular level, by using imaging mass spectrometry (IMS) [33, 34] it is possible to generate density maps for several lipid species, mainly glycerophosphocholines (ChoGpl), glycerophosphoethanolamines (EtnGpl), and sphingomyelins (SM), offering important information about the lipidome of the human brain and, in particular, the human PFC. The IMS images show that the diverse lipid molecular species found in human PFC exhibit a different and specific distribution, and even allow us to distinguish among the six different layers of the PFC based on the slight differences in lipid density throughout the cortex [33] (see Figure 1).

A recent study has used a lipidomic approach to analyze the lipid profile at the mitochondrial and microsomal levels in grey matter of human PFC [35]. The results show that, independently of the subcellular fraction and with a very similar distribution, the three major phospholipid classes are ChoGpl, EtnGpl, and glycerophosphoserines
(SerGpl). Overall, ChoGpl comprise around 55% of total phospholipids, and the main molecular species are PC(16:0/18:1), PC(16:0/16:0), and PC(18:0/18:1). EtnGpl represent about 30% of total phospholipids, with the major molecular species being PE(18:0/22:6), PE(18:0/20:4), PE(18:0/22:4), and PE(16:0/22:6). Finally, SerGpl represent 15% of total phospholipids, with the major molecular species being PS(18:0/22:6) and PS(18:0/18:1). Other minor phospholipids such as phosphatidylinositols (PIGpl) and cardiolipin were not analyzed.

At the membrane level, lipid rafts are microdomains which provide a highly-saturated liquid-ordered microenvironment that promotes protein-lipid and protein-protein interactions [36, 37]. Lipid rafts comprise a highly dynamic clustering of proteins and lipids playing a central role in signal transduction and intercellular communication. Lipid rafts from human PFC are characterized by their high level of cholesterol and sphingolipids (SM, cerebrosides, and sulfatides), and lower content in GP (particularly EtnGpl and SerGpl, both aminophospholipids, and to a lesser degree ChoGpl and PIGpl) compared to the non-rafts membranes [38] (see Table 1).

Fatty acids are prime components of the structural diversity of lipids of neurons and glial cells. Indeed, with different permutations of head group and fatty acids, up to 10,000 theoretical lipid molecular species could be generated [39]. Fatty acids determine the functional properties of lipids in PFC which can be ascribed to their roles in the structural and functional integrity of membranes, the generation of lipid signaling mediators, and the chemical reactivity of the acyl chains [23]. In human PFC, the fatty acid profile is characterized by an average chain length of 18 carbon atoms, and a relative distribution between saturated (SFA) and unsaturated (UFA) fatty acids of about 40:60 [32]. Among SFA, 16:0 and 18:0 are the most abundant. The most abundant UFA are the monounsaturated (MUFA) 18:1n-9, and the polyunsaturated fatty acids (PUFAs) 20:4n-6 (arachidonic acid, AA), and 22:6n-3 (docosahexaenoic acid, DHA) [32, 40, 41] (see Table 2). The content of these PUFAs in PFC is the highest across human brain regions [32], is supported at transcriptional and protein expression levels, and can probably be ascribed to inherent neuronal activity [32]. The specific finding that DHA (22:6n-3) is the main PUFA present in brain regions is in line with previous findings pointing up the very high level of DHA in the whole brain [24]. Interestingly, lipid rafts from human PFC are
characterized by their high level of SFA, as well as by reduced amounts of PUFA compared to the non-rafts membranes [38].

The high concentration of PUFAs in neuronal and glial cell membrane GP in PFC not only makes them prime targets for lipoperoxidative damage but also enables them to participate in long free radical chain reactions. Considering that the peroxidizability index (PI) combines the membrane fatty acid composition with the relative susceptibility of individual fatty acids to peroxidation [42], the available evidence indicates that PFC shows the highest value of PI in the human brain and, consequently, helps explain the greater susceptibility of the membrane bilayer to lipid peroxidation [32]. Considering that lipid rafts from PFC show enrichment in SFA, it is proposed that this vulnerability particularly affects non-raft territories of the cell membrane. However, a greater PI is not necessarily associated with a higher degree of molecular damage. In fact, quite the reverse is the case. Thus, the higher PI of the human PFC compared to other human brain regions is associated with a lower steady-state level of lipoxidation-derived protein damage [32, 43]. This dissociation is probably due to the lower mitochondrial stress present in PFC (based on the levels of the mitochondrial stress marker succinyl-cysteine (SC)) and the relevant presence of neuronal adaptive response mediated by the antioxidant response-signaling pathway Nrf2 (Nuclear factor erythroid 2-related factor), as well as by the stress resistance adaptive response mediated by the transcriptional factor REST (RE1-silencing transcription factor, also known as neuron-restrictive silencer factor (NRSF)) [32, 44].

Globally, human PFC has a specific lipidome that significantly differs from those of other human brain regions, tissues, and animal species. Inside the PFC, this lipidome varies in the cell layers of the grey matter, the subcellular level (mitochondria and microsomes), and even the membrane levels (non-raft vs lipid raft domains). Furthermore, PFC presents a specific fatty acid profile characterized by the presence of a high content in PUFAs, conferring to PFC a high vulnerability to oxidative conditions, which in turn probably demands the presence of adaptive responses to ensure neuronal survival during adult lifespan.

3. The meaning of lipid oxidation and lipoxidation-derived protein adducts
Polyunsaturated fatty acids (PUFAs) are abundant constituents preferentially located at the sn-2 position in glycerophospholipids (to pointing up plasmalogen-PE) within cellular membranes. The fact that lipids constitute a major portion of the plasma, and mitochondrial and endoplasmic membranes, establishes the presence of substantial concentrations of PUFAs within membranous structures. It is known that PUFA residues of lipids (and particularly GP) are very sensitive to oxidation, and this sensitivity increases as a function of the number of double bonds per fatty acid molecule [45, 46]. In this context, PFC is the human brain region with the highest content in PUFAs which also determines that it has the highest content in double bond and peroxidation indexes [32] (see Table 2).

PUFAs are vulnerable to diverse oxidation reactions and radical reactions, both of which result in the formation of so-called electrophilic lipid products. Certain oxidation reactions involving PUFAs are enzymatically mediated by families of enzymes including the lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome P450 [47]. In contrast to the highly regulated PUFA oxidation mediated by enzymes, the electrophilic lipid products generated by free radical-mediated lipid oxidation are part of the lipid peroxidation process (for a review see [48, 49]). Lipid peroxidation occurs in three major phases, comprised of an initiation event, chain propagation, and termination (for more details, see [50, 51]). Of note, a single initiation reaction is postulated to result in 200 to 400 propagation cycles, rapidly amplifying free radical damage in highly oxidizing PUFA-rich environments. The resulting electrophilic lipid products are reactive aldehydes characterized by the common group R-CHO consisting of a carbonyl center bonded to hydrogen and an R group arising predominantly as a consequence of oxidative damage within the cellular microenvironment. These reactive carbonyl species (RCS) have signaling properties, but can also be cytotoxic [23, 42]. It is estimated that over a hundred different reactive species can be generated, each with a wide range of reactivity, size, and specificity. The most reactive RCS are α,β-unsaturated aldehydes [4-hydroxy-2-nonenal (HNE) and acrolein], di-aldehydes [malondialdehyde (MDA) and glyoxal], and keto-aldehydes [4-oxo-2-nonenal (ONE) and isoketals] [50, 51]. Special mention must be made of neuroketals (NKT) which are keto-aldehydes formed by the non-enzymatic oxidation of the 22:6n-3 through the neuroprostane pathway [52]. 2-Hydroxyheptanal, 4-
hydroxyhexenal, cyclopentenone prostaglandins, levuglandins, and oxidized phospholipids are other significant aldehydic products of lipid peroxidation of PUFAs.

As mentioned above, lipid rich membranes provide an optimal environment for producing a large abundance of these cytotoxic compounds. For instance, microsomal and mitochondrial intra-membrane concentrations of these lipid peroxidation-derived electrophilic compounds have been estimated to accumulate to as many as 1-10 mM in vivo [50]. The regulatory function and/or cytotoxicity of these aldehydes depend on abundance, reactivity, and half-life. Half-life varies significantly, with compounds such as ONE and HNE exhibiting half-lives of about 1 second and 2 minutes, respectively. So compared with reactive oxygen species (ROS), RCSs have a much longer half-life. This property along with the non-charged structure of aldehydes allows them to transiently modify distant proteins, lipid membranes (particularly aminophospholipids), and nucleic acids [42]. These properties may contribute to a localized bias for molecular adduction by RCSs, particularly those with short half-life, as cellular components located within the vicinity of lipid peroxidation targets remain more susceptible to generated RCS. By contrast, long-lived RCSs can be more destructive because they may have a more pronounced global impact by altering a broader array of molecular targets due to their transient nature [42, 49].

RCS react with nucleophilic groups in macromolecules (lipoxidation reactions) such as proteins, nucleic acids, and aminophospholipids, resulting in their chemical and non-enzymatic modification (see Figure 2). The result is the formation of a diversity of adducts and intra- and inter-molecular cross-links collectively called Advanced Lipoxidation Endproducts (ALEs) [53]. Thus, by reacting with nucleophilic sites in proteins (basically to cysteine (Cys), lysine (Lys), arginine (Arg), and histidine (His) residues), RCSs generate ALE adducts such as MDA-Lys, HNE-Lys, NKT-lys, FDP-Lys, carboxymethyl-lysine (CML), and S-carboxymethyl-cysteine, as well as the cross-links glyoxal-lys dimer (GOLD) and lys-MDA-lys, among others [53-55]. Several of these compounds have been detected, characterized, and located (by mass spectrometry, redox proteomics, and immunohistochemistry) in the human PFC. RCSs can also react with the exocyclic amino groups of nucleosides to form alkylated products. Guanine is the most vulnerable and commonly modified DNA base because of its high nucleophilicity, while MDA-
deoxyguanosine (M1dG) is the most common adduct [56]. Finally, the amino group of aminophospholipids can also react with RCS, leading to the formation of adducts such as MDA-PtdEtn and carboxymethyl-PE [57]. To the best of our knowledge, no data are currently available about lipoxidation-derived damage to DNA and aminophospholipids in human brain.

The molecular consequences of ALE formation in proteins mostly include deleterious structural and functional changes [42]. Thus, ALE formation induces alterations in physico-chemical properties (e.g., conformation, charge, hydrophobicity, and solubility), formation of intra- and inter-molecular protein crosslinks and aggregates, and loss of enzymatic activity, among others; yet it also includes protein activation when the ALE formation is in proteins particularly designed to sense and respond to cellular RCS production. In other words, protein activation seems to be associated with specific protein targets designed to detect RCS which will act as signaling products (see next paragraph). In a deleterious way, ALE formation on nucleic acids induces DNA damage and mutagenesis, and alterations in physico-chemical and biological properties of the lipid bilayer [56, 57]. In this context, a relevant recent study demonstrated that MDA causes neuronal mitochondrial dysfunction by directly promoting ROS generation and modifying mitochondrial proteins [58].

In contrast to their cytotoxic effects, RCSs can also work by sending regulatory signals activating specific protein targets which act as adaptive responses designed to decrease lipoxidative damage and improve antioxidant defenses. Among these mechanisms involved in the modulation of oxidative damage by RCS are i) the modification and activation of uncoupling proteins (UCPs) by the RCS hydroxynonenal and the subsequent decrease in mitochondrial ROS production [59], and ii) the activation of the antioxidant response signaling pathway Nrf2 that includes, among others, the expression of enzymes such as glutathione-S-transferase (GST), specifically designed to detoxify reactive carbonyl compounds, and GPx4 (phospholipid hydroperoxide glutathione peroxidase), designed to restore reduced states of membrane fatty acids from phospholipids to ensure membrane lipid homeostasis [60-62]. The existence of both mechanisms at the brain level and the relevant content of Nrf2 in PFC suggest a particular adaptive response in the face of the
presence of a lipid microenvironment showing the higher unsaturation degree of human brain [32].

4. Redox lipidomics and adductomics in human prefrontal cortex aging

Aging induces changes at all levels of the biological organization which are offset by allostatic adaptive response mechanisms geared to preserving the composition and function within homeostatic limits. The cell membrane is not an exception [63], and, consequently, the longer the optimal membrane lipid composition is maintained, the better the cell survival and function. These adaptive mechanisms seem to be particularly effective in human PFC since cognitive functions are relatively well-preserved during normal aging. Among these mechanisms, the preservation of the lipid membrane composition seems to be a key component.

The first evidence that the membrane lipid composition of the human PFC changes with aging emerged in 1990s. The work of Svennerholm and coworkers [64], analyzing the membrane lipid composition of human PFC in 118 subjects from 20 to 100 years old, found that phospholipids and cholesterol decreased slightly from 20 years of age, whereas gangliosides differed from the other lipids, showing an almost constant concentration between 20 and 70 years of age. Later, a study focused on the mitochondrial and microsomal lipidome of PFC of subjects from 20 to 100 years old [35] showed that minor lipid molecular species of ChoGpl, EtnGpl, and SerGpl and containing adrenic acid (22:4n-6) and AA specifically decreased along adult life in the PFC, whereas particular ChoGpl, EtnGpl, and SerGpl containing DHA increased or remained the same during the same period. Finally, in the most recent work [65], the comprehensive assessment of lipid concentration changes in the gray matter of the human PFC over the adult lifespan (from 30 to 99 years of age) demonstrated that aging affects 14% of lipidome (682 from 5024 lipid species showed significant concentration differences) with changes starting predominantly at 50-55 years of age, and with differences existing between females and males. The lipid functional pathways analyses revealed that the biosynthesis of UFA, the glycerolipid metabolism, and the cannabinoid signaling pathways were the most affected by aging.
Lipidomic changes with aging have also been described in lipid raft from human PFC. Thus, Diaz and coworkers [38], using lipid rafts isolated from PFC of healthy subjects aged 24 to 85, demonstrated that that human cortical lipid rafts are modified by aging in a gender-dependent way. The main changes were in levels of plasmalogens, PUFAs (especially AA and DHA), total polar lipids (mainly InoGpl, SM, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). These findings may provide molecular support for the modifications in protein-protein dynamics and protein clustering in lipid raft underlying alterations in synaptic plasticity, memory retention, and learning during aging [38]. Further studies are, however, needed to consolidate these new ideas.

An additional research line is to be found in studies focused on analysis of the fatty acid compositional profile of human PFC [35, 66, 67] in healthy subjects ranging from 20 to 80 years old. The findings of these studies point to: i) a general sustained and preserved fatty acid profile throughout the adult lifespan in PFC; ii) the maintenance or minor changes with age in the SFA and MUFA content; iii) the decrease in the PUFA content from series n-6 with age, particularly affecting 20:4n-6 and 22:4n-6; and iv) the maintenance or minor increase in 22:6n-3 content during aging, with eventual reduction at a very advanced age. Sustained SFA, MUFA, and DHA content with age could be interpreted as an adaptive response to aging to preserve neurons and cerebral function by helping to maintain the geometric properties of lipids and, consequently, functional properties such as exocytosis and membrane domain formation [25]. The decreases in PUFA n-6, and particularly the 20:4n-6 and 22:4n-6 fatty acid content, could have biological effects in that they are substrates for lipid mediators. Thus, one explanation for this finding lies in the reported decline of the PUFA biosynthesis pathway [67]; however, there is also increased consumption by enzymes involved in anti-inflammatory pathways which synthesize a diversity of compounds with neuroprotective properties to ensure cell survival and functioning during normal aging [67]. For this reason, it is proposed that during normal human brain aging, the lipid profile is particularly resistant to changes with age as a result of strict control designed to ensure neuronal survival and function.

Although the membrane lipid composition is largely maintained to guarantee cell survival and function, there is a continuous physiological lipoperoxidative attack on the
membrane, and the membrane becomes a source of carbonyl compounds with the ability to damage other cellular components. In this line, a recent initial study analyzing selected specific protein damage markers with mass spectrometry in PFC from healthy humans ranging in age from 43 to 86 years old was published [68]. The results demonstrated that there is an increase in the steady-state level of oxidative and lipoxidative protein damage in human PFC over the adult lifespan, with a breakpoint at 60 years of age (the detected and quantified markers for protein oxidation were glutamic semialdehyde and aminoadipic semialdehyde, and for protein lipoxidation carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL)). In two additional recent studies, changes with age in the protein damage markers derived from the RCS neuroketals (NKT) and malondialdehyde (MDA) in human PFC in two groups of individuals, middle-aged and old-aged, were analyzed. Steady-state levels of these markers were also analyzed as continuous variables in function of age. The levels of NKT- and MDA-protein adducts were significantly increased in old-aged human PFC when comparing the two groups, and they remained significantly increased considering age as a continuous variable [43, 69].

Consequently, it is suggested that progressive lipoxidation-derived molecular damage is a conserved, central mechanism of age-related functional decline in human PFC. Indeed, several alterations occur in the human PFC with age including increased levels of cytokines and of mediators of the innate inflammatory response [70], increased cytotoxic oligomeric species [69], regression of dendritic arbors and dendritic spines [71], neurotransmitter deficits [72], and reduction in the volume of the gray and white matter [73].

5. Lipoxidation-derived protein damage targets in human prefrontal cortex

Although the steady-state levels of ALEs in proteins increase in human PFC during aging, such evidence does not elucidate the specific mechanisms that cause losses in particular cellular/tissue functions. Is there a selective pattern of lipoxidative protein damage? If there is, what proteins are the targets? Recent proteomic studies performed in human PFC demonstrate that there is only a subset of lipoxidatively-modified proteins, that the degree of lipoxidative damage increases with age, and that in all the identified proteins increased lipoxidation is not due to a higher content of the corresponding protein but
rather to increased flux of protein damage [69, 74]. Importantly, this small but significant pool of lipoxidized protein will probably increase over time because the ALEs detected are limited to those derived from MDA and NKTs. Consequently, further studies are needed to develop a more detailed view.

The identification of specific lipoxidation-modified proteins in the PFC of adult and aged subjects provides an overview of the selective cellular functions that are affected during the aging process. The proteins listed in Table 3 represent the biological processes affected by RCS-related protein damage. If we consider these molecular pathways, we can verify that energy metabolism (with 34.2% of modified proteins, n=12), cytoskeleton (22.8% of modified proteins, n=8), and neurotransmission (including neuronal communication, synaptic plasticity, and other processes) (with 20% of modified proteins, n=7) are the main affected cellular functions. Other significant molecular pathways involved, but with a lesser number of modified proteins, are proteostasis (11.4%, n=4 modified proteins), O$_2$/CO$_2$/heme metabolism (8.5%, n=3), and signal transduction (2.8%, n=1) (see Figure 2).

There is extensive evidence that energy metabolism is particularly affected during PFC aging [14, 19, 75]. The reported observations give some clues about the molecular substrates of energy failure with PFC aging after the identification of key proteins as targets of lipoxidative damage including proteins of glycolysis such as enolases (ENO1, ENO2), GAPDH, PGAM1, and PKM; proteins of the tricarboxylic acid (TCA) cycle ACO2, and GLUD1; protein subunits of the mitochondrial electron transport chain complexes DLD and UQCRC1; and different protein subunits of mitochondrial ATP synthase or complex V (ATP5F1A, and ATP5F1B) responsible for oxidative phosphorylation. All of these proteins are components of coupled processes which are necessary to fulfill the ATP requirements of neurons and glial cells. Neuronal activity is highly dependent on these processes since, under normal conditions, glucose is the exclusive energy substrate for the brain [76]. In addition, CKB, being a key player in the ‘phosphocreatine circuit’ for cellular energy homeostasis, is in charge of rapid ATP production from phosphocreatine reservoirs in response to acute increased energy demands in neurons [77]. Thus, CKB provides neurons with a reservoir and also an alternative source of ATP to glycolysis, TCA cycle, and respiration.
Cytoskeletal proteins are also lipoxidized in the second major biological process with a great number of modified proteins. The protein targets are beta-Actin, glial fibrillary acidic protein, neurofilament light polypeptide, neurofilament medium polypeptide, tubulin alpha 1B chain, tubulin beta chain, tubulin polymerization-promoting protein (TPPP), and vimentin. Proteins belonging to the main components of cytoskeleton seem to be affected: microfilaments, intermediate filaments, and microtubules. These findings are in line with previous findings showing that neurofilaments are the main targets of RCS adduction in mouse nervous system [78, 79]. Consequently, general neuronal and glial processes linked to cytoskeleton can become dysfunctional as a consequence of ALE formation in their protein components, but additional functions more specifically linked to neurons which require cytoskeleton integrity can also be affected secondarily to protein lipoxidation [18, 19]. Some of these functions are vesicle trafficking, maintenance of the neuronal caliber, axon guidance, synaptogenesis, and synaptic plasticity.

The third major biological process that is affected during aging based on the number of lipoxidized proteins is neurotransmission. The affected proteins are aspartate aminotransferase (GOT1), brain acid soluble protein (BASP1), dihydropyrimidinase Like 2 (DPYSL2), glutamate-ammonia ligase (GLUL), phosphatidylethanolamine-binding protein (PEBP1), 14–3–3 protein gamma (YWHAG), and synapsin 1 (SYN1). These proteins are involved in several functions such as neurotransmitter metabolism, axon growth and guidance, growth cone collapse and cell migration, neuron differentiation, synaptic transmission and plasticity, synaptic vesicle trafficking, signaling pathways, and regulation transcriptional activity, among others. These damaged proteins together with those linked to the high-energy demands make synapses especially vulnerable to oxidative stress damage. Interestingly, these biological processes potentially affected by the modified proteins are in line with the concept that most of the functional decline associated with normal PFC aging is caused by relatively subtle changes such as those in the molecular profile of synapses, altered spine morphologies, reductions in spine densities, and loss of dendrites [14] [18].

Four damaged proteins are involved in proteostasis. These proteins are alpha-crystallin B chain (heat shock protein B5) (CRYAB), heat shock protein 60KDa (HSPD1), protein/nucleic acid deglycase DJ-1 (PARK7), and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1).
Whereas HSPD1 participates in mitochondrial protein import and macromolecular assembly, folding of proteins, and apoptotic process, among other potential functions, the rest of the proteins (UCHL1, CRYAB, and PARK7) play a relevant role in oxidative stress homeostasis. The case of HSPD1 may be particularly important since decreased content of mitochondrial ETC complexes during aging has been described, without any explanation [68]. So, it is proposed that defects in HSPD1 activity could induce a decreased import of nuclear subunits to the mitochondria with the subsequent deficiencies in complex formation which, in turn, affect energy production. As for the other proteins, UCHL1 participates in processing of ubiquitin precursors and ubiquitinated proteins for proteasomal degradation [80], and CRYAB shows chaperone-like activity and prevents aggregation of proteins under stress conditions [81]. PARK7 is a protein and nucleotide deglycase that catalyzes the degradation of adducts formed between amino groups of proteins or nucleotides and RCS acting as a protein repair system [82-85]. Furthermore, it plays an important role in cell protection against oxidative stress and cell death, acting as an oxidative stress sensor and redox-sensitive chaperone and protease, and it is also involved in neuroprotective mechanisms linked to mitochondrial uncoupling proteins, L-type channels, and inflammatory responses. So, the modified chaperones are implied in maintaining neuronal oxidative stress homeostasis. Assuming that non-enzymatic modifications are mostly linked to the loss of function, it may be proposed that the inactivation of the modified chaperones favors PFC aging by promoting cellular oxidative stress.

Three proteins related to heme metabolism and oxygen and carbon dioxide regulation, biliverdin reductase B (BLVRB), carbonic anhydrase (CA), and hemoglobin A1 (HbA1), are also lipoxidatively damaged. CA participates in the conversion of carbon dioxide into bicarbonate and participates in the transport of carbon dioxide out of the tissues. BLVDR regulates the final step in heme metabolism, but it also regulates glucose metabolism and has neuroprotective effects [86]. HbA1 is a component of hemoglobin, the role of which in the nervous system is still poorly understood. Hemoglobin has been found in neurons where it probably plays a role in oxygen transport or in the regulation of cytosolic neuronal oxygen [87]. Lipoxidative damage to these three proteins tags cell oxygen and
carbon dioxide regulation as a target of putative cellular respiratory dysfunction in the aged PFC.

Structural characterization of the modified proteins in the healthy adult human PFC with PredictProtein software analysis (https://www.predictprotein.org/) reveals some shared specific traits which may explain this specificity, rendering proteins more susceptible to oxidative damage [69]. Thus, i) the predominant structures of lipoxidized proteins are alpha helix and loops, ii) most proteins (excepting cytoskeletal proteins) are globular and form soluble coiled-shaped molecules with hydrophobic groups at the core and exposed hydrophilic groups to the medium, and iii) among the most recurrent amino acids encountered in the exposed regions is lysine, in addition to glutamic acid and aspartic acid, a frequent target of lipoxidation on proteins. Another factor that may be important in the selectivity of targeted proteins is the cellular location. Localization of proteins may make them more vulnerable as a result of their environmental conditions. Thus, several lipoxidized proteins are located in the mitochondria, the principal source of damaging free radicals; other proteins are located in membranes belonging to different subcellular compartments or even plasma membrane, which show a high content in PUFAs. In contrast, yet other damaged proteins, located in the cytoskeleton and the growth cones, are involved in neurotransmission, or present in synaptic vesicles. It is worth stressing that axons and synaptic terminals have high bioenergetic demands met by continuous mitochondrial activity and recruitment, and rapid energy transduction. In addition, axons are radial structures with a small diameter in comparison to the cell body, which heightens the probability of stochastic interactions between free radicals and membrane lipids, thus propitiating lipid peroxidation and further non-enzymatic modification of proteins.

Overall, these findings show that i) the PFC in healthy adults contains lipoxidized proteins, ii) the ALE-modified proteins increase in aged subjects, and iii) the selectivity of molecular damage is associated with specific structural traits and spatial location.

6. Advanced lipoxidation end-products (ALEs) and soluble oligomers

Aberrant protein structures are able to generate soluble oligomers with a high cytotoxic potential [88]. For instance, NKT-modified proteins generate aberrant structures with
cross-linking and aggregation [52]. For this reason, global levels of NKT-protein adducts and the presence of oligomers were analyzed in a recent work [69]. A positive significant relation between NKT-modified proteins and soluble oligomer levels in human PFC was found, suggesting that modifications of proteins parallels soluble oligomer formation. Furthermore, levels of oligomers and NKT increase with age in the PFC. These findings are complementary to previous observations showing increased expression levels of soluble oligomers in the PFC when comparing middle-aged individuals lacking sAD (Alzheimer disease)-related pathology with older cases with sporadic AD-related pathology stages I-II. Thus, increased levels of soluble oligomers are indeed a characteristic feature of the aging human brain coincidental with the first stages of AD-related pathology [70]. Importantly, increased levels of oligomeric species parallel regulation of brain cytokines and mediators of the immune response in old age [70]. Whether these coincidences have a cause-effect relationship needs further study using appropriate in vitro and in vivo models. Studies in post-mortem brains serve to demonstrate that such changes do really exist in the human PFC and that they deserve to be investigated deeper.

7. Interventions against PFC aging

The identification of interventions that delay PFC aging and can be easily implemented in humans is especially important because, to date, no pharmacological treatments able to maintain brain function and/or reduce cognitive decline, the risk of dementia, and neurodegenerative pathologies have been discovered. In recent decades there have been major advances in our understanding of the biology of aging, along with the development of nutritional interventions that delay aging including calorie restriction (CR), intermittent fasting (IF), protein restriction (PR), methionine restriction (MetR), and chemicals that influence pathways linking nutrition and aging processes [89, 90].

Growing evidence supports the view that CR/IF/PR/MetR may be helpful in preventing age-related changes in the brain associated with cognitive dysfunction [89, 91-93]. CR improves cognitive function, including learning and memory, in old rodents and humans [94-97], as well as improving the plasticity and recovery of the brain [98, 99], possibly mediated by its effects on cell-mitochondrial metabolism [91], nutrient-sensing pathways [89], and specific brain-related mechanisms [100].
One of the most relevant mechanisms proposed to explain this protective effect involves oxidative stress. In this line, a number of studies have shown that CR, as well as PR and MetR, may act at the mitochondrial level, reprogramming and improving mitochondrial metabolism and thereby decreasing free radical production [91, 101, 102]. In parallel to the improvement in mitochondrial free radical generation, there is a reduction in the steady-state levels of oxidative damage to proteins, lipids, and DNA in animals subjected to CR, IF, PR, and MetR, in whole brain as well as in brain cortex [32, 103-110]. Importantly, the set of brain proteins affected in normal aged rats is protected from oxidative damage by CR in association with improvement in cognitive functions [111].

With regards to lipids, several studies have demonstrated that these interventions (CR, PR, and MetR) have an impact on brain lipid profiles, inducing changes toward a lipid profile that is more resistant to lipid peroxidation which, in turn, leads to a significantly lower lipoxidation-derived protein damage level and, consequently, lower loss of function [32, 105, 106, 108, 111]. These interventions can also influence brain lipidome. Thus, it has been found that 80% MetR in mice induces marked changes in the brain, spinal cord, and liver lipidomes [108]. Interestingly, at least 50% of the lipids changed are common in the brain and spinal cord but not in the liver, suggesting a nervous system-specific lipidomic profile for MetR. The differentially expressed lipids basically include specific phospholipid species, which could reflect adaptive membrane responses, and sphingolipids, which could lead to changes in ceramide signaling pathways. In addition, specific oxidation products derived from cholesterol, ChoGpl, and EtnGpl are significantly decreased in brain, spinal cord, and liver from MetR mice. These results demonstrate the importance of adaptive responses of membrane lipids leading to increased stress resistance in brain.

Overall, these data provide a valuable insight into the mechanism of dietary restriction (CR, IF, PR, MetR) on oxidative stress reduction and functional improvements in the aged brain.

8. Healthy aging brain as prevention for neurodegenerative diseases

Various morphological, biochemical, metabolic and circulatory alterations, which are translated into functional changes, occur in brain aging. The degree of these functional
changes will in turn determine whether or not neurodegenerative diseases take place. When damage exceeds certain limits age-associated cognitive deterioration occurs. Indeed, it has been shown that the physiopathological processes associated to the disease begin more than 20 years before the clinical onset of dementia [112]. This provides a window of opportunity for finding interventions which can slow or even prevent the progress of the disease. Genetics, along with the lifestyle, nutrition, environmental factors, etc. can prevent the appearance of these diseases that occur with cognitive impairment [113]. This is of the utmost importance, as in many occasions there is no treatment for these diseases once the symptoms have debuted. As stated by our group in [114] “Only prevention makes sense”, i.e. maintaining a healthy aging brain is the best way to prevent neurodegenerative diseases. In this regard, there have been some attempts to intervene early in neurodegenerative diseases. The FINGER study is a randomised controlled trial with a multidomain intervention consisting of a 2 years intervention including diet, exercise, cognitive training and vascular risk monitoring, which demonstrated that this multidomain approach could improve or maintain cognitive functioning in at-risk elderly people [115]. Two years later, a 24-month multicentre trial in which prodromal Alzheimer’s patients received a specific multinutrient showed that they had better results on the cognitive-functional measurements and less brain atrophy as assessed by magnetic resonance imaging (MRI) [116].

The Lancet Commission stated in 2017: that we should “be ambitious about prevention” [117]. “Active treatment of hypertension in middle aged (45–65 years) and older people (aged older than 65 years) without dementia to reduce dementia incidence. Interventions for other risk factors including more childhood education, exercise, maintaining social engagement, reducing smoking, and management of hearing loss, depression, diabetes, and obesity might have the potential to delay or prevent a third of dementia cases”. Therefore, maintaining a healthy brain throughout all life by healthy lifestyle habits seems to be one of the best ways to prevent neurodegenerative diseases.

9. Conclusions

Overall, the available evidence provides robust information about changes in lipidome and increased steady-state levels of protein damaged by lipoxidation reactions with PFC
aging. The set of damaged proteins compromise vital cell functions such as energy metabolism, cytoskeleton, neurotransmission, proteostasis, and oxygen/carbon dioxide/heme homeostasis. The affected biological processes may be considered putative collaborative factors contributing to the cognitive decline associated with PFC aging. Different nutritional interventions can have an impact on these mechanisms, improving brain function and delaying changes associated with PFC aging. Since molecular damage is already identified in normal middle-aged individuals and increases physiologically in the elderly, it seems reasonable to act upon the identified free radical-producing targets and lipid metabolism in the appropriate middle-age window.

Acknowledgements

We thank T. Yohannan for editorial help.

Funding

Research by the authors was supported by the Spanish Ministry of Economy and Competitiveness, Institute of Health Carlos III (FIS grants PI14/00757 and PI14/00328), and the Autonomous Government of Catalonia (2017SGR696), to I.F. and R.P. and Instituto de Salud Carlos III and co-funded by FEDER [grant number PIE15/00013], SAF2016-75508-R from the Spanish Ministry of Education and Science (MEC), CB16/10/00435 (CIBERFES), PROMETEOII2014/056 de “Consellería, de Sanitat de la Generalitat Valenciana and EU Funded CM1001 and FRAILOMIC-HEALTH.2012.2.1.1-2 and ADVANTAGE-724099 Join Action (HP-JA) 3rd EU Health Programme to J.V. and and PCIN-2017-117 of the Ministry of Economy and Competitiveness and the EU Joint Programming Initiative ‘A Healthy Diet for a Healthy Life’ (JPI HDHL INTIMIC-085) to C.B. This study was co-financed by FEDER funds from the European Union (‘A way to build Europe’).

Author Contributions

The manuscript was written by C.B., M.J., I.P., I.F., J.V., and R.P., and edited by R.P.

Notes

The authors declare no competing financial interest.
Bibliography

[1] W.P. Aiello L, The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution, Current anthropology 36(2) (1995) 199-221.

[2] J.W. Mink, R.J. Blumenschine, D.B. Adams, Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis, Am J Physiol 241(3) (1981) R203-12.

[3] M. Caceres, J. Lachuer, M.A. Zapala, J.C. Redmond, L. Kudo, D.H. Geschwind, D.J. Lockhart, T.M. Preuss, C. Barlow, Elevated gene expression levels distinguish human from non-human primate brains, Proc Natl Acad Sci U S A 100(22) (2003) 13030-5.

[4] M. Uddin, D.E. Wildman, G. Liu, W. Xu, R.M. Johnson, P.R. Hof, G. Kapatos, L.I. Grossman, M. Goodman, Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles, Proc Natl Acad Sci U S A 101(9) (2004) 2957-62.

[5] C.C. Sherwood, C.D. Stimpson, M.A. Raghanti, D.E. Wildman, M. Uddin, L.I. Grossman, M. Goodman, J.C. Redmond, C.J. Bonar, J.M. Erwin, P.R. Hof, Evolution of increased glia-neuron ratios in the human frontal cortex, Proc Natl Acad Sci U S A 103(37) (2006) 13606-11.

[6] R. Cabre, M. Jove, A. Naudi, V. Ayala, G. Pinol-Ripoll, M.P. Gil-Villar, M. Dominguez-Gonzalez, E. Obis, R. Berdun, N. Mota-Martorell, M. Portero-Otin, I. Ferrer, R. Pamplona, Specific Metabolomics Adaptations Define a Differential Regional Vulnerability in the Adult Human Cerebral Cortex, Front Mol Neurosci 9 (2016) 138.

[7] X. Fu, P. Giavalisco, X. Liu, G. Catchpole, N. Fu, Z.B. Ning, S. Guo, Z. Yan, M. Somel, S. Paabo, R. Zeng, L. Willmitzer, P. Khaitovich, Rapid metabolic evolution in human prefrontal cortex, Proc Natl Acad Sci U S A 108(15) (2011) 6181-6.

[8] D.A. Clark, P.P. Mitra, S.S. Wang, Scalable architecture in mammalian brains, Nature 411(6834) (2001) 189-93.

[9] A.K. Barbey, F. Krueger, J. Grafman, An evolutionarily adaptive neural architecture for social reasoning, Trends Neurosci 32(12) (2009) 603-10.

[10] J. Duncan, R.J. Seitz, J. Kolodny, D. Bor, H. Herzog, A. Ahmed, F.N. Newell, H. Emslie, A neural basis for general intelligence, Science 289(5478) (2000) 457-60.
[11] G. Winterer, D. Goldman, Genetics of human prefrontal function, Brain Res Brain Res Rev 43(1) (2003) 134-63.
[12] A. Loessner, A. Alavi, K.U. Lewandrowski, D. Mozley, E. Souder, R.E. Gur, Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age, J Nucl Med 36(7) (1995) 1141-9.
[13] E.M. Reiman, K. Chen, J.B. Langbaum, W. Lee, C. Reschke, D. Bandy, G.E. Alexander, R.J. Caselli, Higher serum total cholesterol levels in late middle age are associated with glucose hypometabolism in brain regions affected by Alzheimer's disease and normal aging, NeuroImage 49(1) (2010) 169-76.
[14] X. Wang, M.L. Michaelis, E.K. Michaelis, Functional genomics of brain aging and Alzheimer's disease: focus on selective neuronal vulnerability, Curr Genomics 11(8) (2010) 618-33.
[15] S. Nugent, C.A. Castellano, C. Bocti, I. Dionne, T. Fulop, S.C. Cunnane, Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?, Biogerontology 17(1) (2016) 241-55.
[16] J.H. Morrison, P.R. Hof, Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer's disease, Prog Brain Res 136 (2002) 467-86.
[17] E.R. Sowell, P.M. Thompson, A.W. Toga, Mapping changes in the human cortex throughout the span of life, Neuroscientist 10(4) (2004) 372-92.
[18] S.N. Burke, C.A. Barnes, Neural plasticity in the ageing brain, Nat Rev Neurosci 7(1) (2006) 30-40.
[19] M.P. Mattson, T. Magnus, Ageing and neuronal vulnerability, Nat Rev Neurosci 7(4) (2006) 278-94.
[20] T.A. Salthouse, When does age-related cognitive decline begin?, Neurobiol Aging 30(4) (2009) 507-14.
[21] J. Dorszewska, Cell biology of normal brain aging: synaptic plasticity-cell death, Aging Clin Exp Res 25(1) (2013) 25-34.
[22] F.W. Grillo, S. Song, L.M. Teles-Grilo Ruivo, L. Huang, G. Gao, G.W. Knott, B. Maco, V. Ferretti, D. Thompson, G.E. Little, V. De Paola, Increased axonal bouton dynamics in the aging mouse cortex, Proc Natl Acad Sci U S A 110(16) (2013) E1514-23.
[23] A. Naudi, R. Cabre, M. Jove, V. Ayala, H. Gonzalo, M. Portero-Otin, I. Ferrer, R. Pamplona, Lipidomics of human brain aging and Alzheimer's disease pathology, Int Rev Neurobiol 122 (2015) 133-89.

[24] P.S. Sastry, Lipids of nervous tissue: composition and metabolism, Prog Lipid Res 24(2) (1985) 69-176.

[25] D. Piomelli, G. Astarita, R. Rapaka, A neuroscientist's guide to lipidomics, Nat Rev Neurosci 8(10) (2007) 743-54.

[26] K. Jacobson, O.G. Mouritsen, R.G. Anderson, Lipid rafts: at a crossroad between cell biology and physics, Nature cell biology 9(1) (2007) 7-14.

[27] H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling, Nature 438(7068) (2005) 590-6.

[28] J. Rohrbough, K. Broadie, Lipid regulation of the synaptic vesicle cycle, Nat Rev Neurosci 6(2) (2005) 139-50.

[29] W.Y. Bozek K, Yan Z, Liu X, Xiong J, Sugimoto M, Tomita M, Pääbo S, Sherwood CC, Hof PR, Ely JJ, Li Y, Steinhauser D, Willmitzer L, Giavalisco P, Khaitovich P., Organization and evolution of brain lipidome revealed by large-scale analysis of human, chimpanzee, macaque, and mouse tissues., Neuron 85(4) (2015) 695-702.

[30] I. Pradas, K. Huynh, R. Cabre, V. Ayala, P.J. Meikle, M. Jove, R. Pamplona, Lipidomics Reveals a Tissue-Specific Fingerprint, Frontiers in physiology 9 (2018) 1165.

[31] R.B. Chan, T.G. Oliveira, E.P. Cortes, L.S. Honig, K.E. Duff, S.A. Small, M.R. Wenk, G. Shui, G. Di Paolo, Comparative lipidomic analysis of mouse and human brain with Alzheimer disease, J Biol Chem 287(4) (2012) 2678-88.

[32] A. Naudi, R. Cabre, M. Dominguez-Gonzalez, V. Ayala, M. Jove, N. Mota-Martorell, G. Pinol-Ripoll, M.P. Gil-Villar, M. Rue, M. Portero-Otin, I. Ferrer, R. Pamplona, Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system, Biochim Biophys Acta Mol Cell Biol Lipids 1862(5) (2017) 485-495.

[33] A. Veloso, E. Astigarraga, G. Barreda-Gomez, I. Manuel, I. Ferrer, M.T. Giralt, B. Ochoa, O. Fresnedo, R. Rodriguez-Puertas, J.A. Fernandez, Anatomical distribution of lipids in human brain cortex by imaging mass spectrometry, Journal of the American Society for Mass Spectrometry 22(2) (2011) 329-38.
[34] E. Gonzalez de San Roman, I. Manuel, M.T. Giralt, I. Ferrer, R. Rodriguez-Puertas, Imaging mass spectrometry (IMS) of cortical lipids from preclinical to severe stages of Alzheimer's disease, Biochim Biophys Acta Biomembr 1859(9 Pt B) (2017) 1604-1614.

[35] S.E. Norris, M.G. Friedrich, T.W. Mitchell, R.J.W. Truscott, P.L. Else, Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease, Neurobiol Aging 36(4) (2015) 1659-1669.

[36] D.A. Brown, E. London, Structure and function of sphingolipid- and cholesterol-rich membrane rafts, J Biol Chem 275(23) (2000) 17221-4.

[37] L.J. Pike, Lipid rafts: heterogeneity on the high seas, Biochem J 378(Pt 2) (2004) 281-92.

[38] M. Diaz, N. Fabelo, I. Ferrer, R. Marin, "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease, Neurobiol Aging 67 (2018) 42-52.

[39] L. Yetukuri, K. Ekroos, A. Vidal-Puig, M. Oresic, Informatics and computational strategies for the study of lipids, Mol Biosyst 4(2) (2008) 121-7.

[40] A.Y. Taha, Y. Cheon, K. Ma, S.I. Rapoport, J.S. Rao, Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients, Journal of psychiatric research 47(5) (2013) 636-43.

[41] K. Hamazaki, M. Maekawa, T. Toyota, Y. Iwayama, B. Dean, T. Hamazaki, T. Yoshikawa, Fatty acid composition and fatty acid binding protein expression in the postmortem frontal cortex of patients with schizophrenia: A case-control study, Schizophrenia research 171(1-3) (2016) 225-32.

[42] R. Pamplona, Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity, Biochim Biophys Acta 1777(10) (2008) 1249-62.

[43] M. Dominguez-Gonzalez, M. Puigpinos, M. Jove, A. Naudi, M. Portero-Otin, R. Pamplona, I. Ferrer, Regional vulnerability to lipoxidative damage and inflammation in normal human brain aging, Exp Gerontol 111 (2018) 218-228.

[44] T. Lu, L. Aron, J. Zullo, Y. Pan, H. Kim, Y. Chen, T.H. Yang, H.M. Kim, D. Drake, X.S. Liu, D.A. Bennett, M.P. Colaiacovo, B.A. Yankner, REST and stress resistance in ageing and Alzheimer's disease, Nature 507(7493) (2014) 448-54.
[45] R. Holman, Autoxidation of fats and related substances., Prog Chem Fats Other Lipids 2(1954) (1954) 51-98.

[46] H. Yin, L. Xu, N.A. Porter, Free radical lipid peroxidation: mechanisms and analysis, Chemical reviews 111(10) (2011) 5944-72.

[47] H.A. Brown, L.J. Marnett, Introduction to lipid biochemistry, metabolism, and signaling, Chemical reviews 111(10) (2011) 5817-20.

[48] A. Catala, Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions, Chem Phys Lipids 157(1) (2009) 1-11.

[49] K.S. Fritz, D.R. Petersen, An overview of the chemistry and biology of reactive aldehydes, Free Radic Biol Med 59 (2013) 85-91.

[50] H. Esterbauer, R.J. Schaur, H. Zollner, Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes., Free Rad. Biol. Med. 11 (1991) 81-128.

[51] P. Zimniak, Relationship of electrophilic stress to aging, Free Radic Biol Med 51(6) (2011) 1087-105.

[52] N. Bernoud-Hubac, S.S. Davies, O. Boutaud, T.J. Montine, L.J. Roberts, 2nd, Formation of highly reactive gamma-ketoaldehydes (neuroketals) as products of the neuroprostane pathway, J Biol Chem 276(33) (2001) 30964-70.

[53] S.R. Thorpe, J.W. Baynes, Maillard reaction products in tissue proteins: new products and new perspectives, Amino Acids 25(3-4) (2003) 275-81.

[54] R. Pamplona, Advanced lipoxidation end-products, Chem Biol Interact 192(1-2) (2011) 14-20.

[55] R.M. Domingues, P. Domingues, T. Melo, D. Perez-Sala, A. Reis, C.M. Spickett, Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms?, J Proteomics 92 (2013) 110-31.

[56] J.D. West, L.J. Marnett, Endogenous reactive intermediates as modulators of cell signaling and cell death, Chem Res Toxicol 19(2) (2006) 173-94.

[57] A. Naudi, M. Jove, V. Ayala, R. Cabre, M. Portero-Otin, R. Pamplona, Non-enzymatic modification of aminophospholipids by carbonyl-amine reactions, Int J Mol Sci 14(2) (2013) 3285-313.
[58] J. Long, C. Liu, L. Sun, H. Gao, J. Liu, Neuronal mitochondrial toxicity of malondialdehyde: inhibitory effects on respiratory function and enzyme activities in rat brain mitochondria, Neurochem Res 34(4) (2009) 786-94.

[59] K.S. Echtay, T.C. Esteves, J.L. Pakay, M.B. Jekabsons, A.J. Lambert, M. Portero-Otin, R. Pamplona, A.J. Vidal-Puig, S. Wang, S.J. Roebuck, M.D. Brand, A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling, EMBO J 22(16) (2003) 4103-10.

[60] J. Maher, M. Yamamoto, The rise of antioxidant signaling--the evolution and hormetic actions of Nrf2, Toxicol Appl Pharmacol 244(1) (2010) 4-15.

[61] M. Conrad, M. Schneider, A. Seiler, G.W. Bornkamm, Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals, Biol Chem 388(10) (2007) 1019-25.

[62] V. Casanas-Sanchez, J.A. Perez, N. Fabelo, D. Quinto-Alemany, M.L. Diaz, Docosahexaenoic (DHA) modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4) gene expression to ensure self-protection from oxidative damage in hippocampal cells, Frontiers in physiology 6 (2015) 203.

[63] R.M. Hagen, S. Rodriguez-Cuenca, A. Vidal-Puig, An allostatic control of membrane lipid composition by SREBP1, FEBS Lett 584(12) (2010) 2689-98.

[64] L. Svennerholm, K. Bostrom, B. Jungbjer, L. Olsson, Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years, J Neurochem 63(5) (1994) 1802-11.

[65] Q. Yu, Z. He, D. Zubkov, S. Huang, I. Kurochkin, X. Yang, T. Halene, L. Willmitzer, P. Giavalisco, S. Akbarian, P. Khaitovich, Lipidome alterations in human prefrontal cortex during development, aging, and cognitive disorders, Mol Psychiatry (2018).

[66] R.K. McNamara, Y. Liu, R. Jandacek, T. Rider, P. Tso, The aging human orbitofrontal cortex: decreasing polyunsaturated fatty acid composition and associated increases in lipogenic gene expression and stearoyl-CoA desaturase activity, Prostaglandins Leukot Essent Fatty Acids 78(4-5) (2008) 293-304.

[67] R. Cabre, A. Naudi, M. Dominguez-Gonzalez, M. Jove, V. Ayala, N. Mota-Martorell, I. Pradas, L. Nogueras, M. Rue, M. Portero-Otin, I. Ferrer, R. Pamplona, Lipid Profile in Human Frontal Cortex Is Sustained Throughout Healthy Adult Life Span to Decay at Advanced Ages, J Gerontol A Biol Sci Med Sci 73(6) (2018) 703-710.
[68] R. Cabre, A. Naudi, M. Dominguez-Gonzalez, V. Ayala, M. Jove, N. Mota-Martorell, G. Pinol-Ripoll, M.P. Gil-Villar, M. Rue, M. Portero-Otin, I. Ferrer, R. Pamplona, Sixty years old is the breakpoint of human frontal cortex aging, Free Radic Biol Med 103 (2017) 14-22.
[69] M. Dominguez, E. de Oliveira, M.A. Odena, M. Portero, R. Pamplona, I. Ferrer, Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly, Free Radic Biol Med 95 (2016) 1-15.
[70] I. Lopez-Gonzalez, E. Aso, M. Carmona, M. Armand-Ugon, R. Blanco, A. Naudi, R. Cabre, M. Portero-Otin, R. Pamplona, I. Ferrer, Neuroinflammatory Gene Regulation, Mitochondrial Function, Oxidative Stress, and Brain Lipid Modifications With Disease Progression in Tau P301S Transgenic Mice as a Model of Frontotemporal Lobar Degeneration-Tau, J Neuropathol Exp Neurol 74(10) (2015) 975-99.
[71] D.L. Dickstein, D. Kabaso, A.B. Rocher, J.I. Luebke, S.L. Wearne, P.R. Hof, Changes in the structural complexity of the aged brain, Aging Cell 6(3) (2007) 275-84.
[72] L. Erraji-Benchekroun, M.D. Underwood, V. Arango, H. Galfalvy, P. Pavlidis, P. Smyrniotopoulos, J.J. Mann, E. Sibille, Molecular aging in human prefrontal cortex is selective and continuous throughout adult life, Biological psychiatry 57(5) (2005) 549-58.
[73] S.M. Resnick, D.L. Pham, M.A. Kraut, A.B. Zonderman, C. Davatzikos, Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain, J Neurosci 23(8) (2003) 3295-301.
[74] R. Pamplona, E. Dalfo, V. Ayala, M.J. Bellmunt, J. Prat, I. Ferrer, M. Portero-Otin, Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets, J Biol Chem 280(22) (2005) 21522-30.
[75] N.A. Bishop, T. Lu, B.A. Yankner, Neural mechanisms of ageing and cognitive decline, Nature 464(7288) (2010) 529-35.
[76] P.J. Magistretti, Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling, Brain Res 886(1-2) (2000) 108-112.
[77] T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay, H.M. Eppenberger, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis, Biochem J 281 (Pt 1) (1992) 21-40.
[78] T. Wataya, A. Nunomura, M.A. Smith, S.L. Siedlak, P.L. Harris, S. Shimohama, L.I. Szweda, M.A. Kaminski, J. Avila, D.L. Price, D.W. Cleveland, L.M. Sayre, G. Perry, High molecular weight neurofilament proteins are physiological substrates of addition by the lipid peroxidation product hydroxynonenal, J Biol Chem 277(7) (2002) 4644-8.

[79] E.A. Perry, R.J. Castellani, P.I. Moreira, A. Nunomura, Q. Lui, P.L. Harris, L.M. Sayre, P.A. Szweda, L.I. Szweda, X. Zhu, M.A. Smith, G. Perry, Neurofilaments are the major neuronal target of hydroxynonenal-mediated protein cross-links, Free Radic Res 47(6-7) (2013) 507-10.

[80] S.H. Graham, H. Liu, Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia, Ageing Res Rev 34 (2017) 30-38.

[81] W.C. Boelens, Cell biological roles of alphaB-crystallin, Prog Biophys Mol Biol 115(1) (2014) 3-10.

[82] M.A. Wilson, The role of cysteine oxidation in DJ-1 function and dysfunction, Antioxid Redox Signal 15(1) (2011) 111-22.

[83] M.M. Wilhelmus, P.G. Nijland, B. Drukarch, H.E. de Vries, J. van Horssen, Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders, Free Radic Biol Med 53(4) (2012) 983-92.

[84] G. Richarme, M. Mihoub, J. Dairou, L.C. Bui, T. Leger, A. Lamouri, Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues, J Biol Chem 290(3) (2015) 1885-97.

[85] S.E. Oh, M.M. Mouradian, Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction, Redox Biol 14 (2018) 211-217.

[86] D.E. Baranano, M. Rao, C.D. Ferris, S.H. Snyder, Biliverdin reductase: a major physiologic cytoprotectant, Proc Natl Acad Sci U S A 99(25) (2002) 16093-8.

[87] M. Biagioli, M. Pinto, D. Cesselli, M. Zaninello, D. Lazarevic, P. Roncaglia, R. Simone, C. Vlachouli, C. Plessy, N. Bertin, A. Beltrami, K. Kobayashi, V. Gallo, C. Santoro, I. Ferrer, S. Rivella, C.A. Beltrami, P. Carninci, E. Raviola, S. Gustincich, Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells, Proc Natl Acad Sci U S A 106(36) (2009) 15454-9.
[88] C.G. Glabe, Common mechanisms of amyloid oligomer pathogenesis in degenerative disease, Neurobiol Aging 27(4) (2006) 570-5.

[89] D. Wahl, V.C. Cogger, S.M. Solon-Biet, R.V. Waern, R. Gokarn, T. Pulpitel, R. Cabo, M.P. Mattson, D. Raubenheimer, S.J. Simpson, D.G. Le Couteur, Nutritional strategies to optimise cognitive function in the aging brain, Ageing Res Rev 31 (2016) 80-92.

[90] A.H. Morgan, Z.B. Andrews, J.S. Davies, Less is more: Caloric regulation of neurogenesis and adult brain function, J Neuroendocrinol 29(10) (2017).

[91] R. Pamplona, G. Barja, Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection, Biochim Biophys Acta 1757(5-6) (2006) 496-508.

[92] M. Perluigi, A.M. Swomley, D.A. Butterfield, Redox proteomics and the dynamic molecular landscape of the aging brain, Ageing Res Rev 13 (2014) 75-89.

[93] M.P. Mattson, T.V. Arumugam, Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States, Cell Metab 27(6) (2018) 1176-1199.

[94] D.K. Ingram, R. Weindruch, E.L. Spangler, J.R. Freeman, R.L. Walford, Dietary restriction benefits learning and motor performance of aged mice, J Gerontol 42(1) (1987) 78-81.

[95] A. Boveris, A. Navarro, Brain mitochondrial dysfunction in aging, IUBMB Life 60(5) (2008) 308-14.

[96] A.V. Witte, M. Fobker, R. Gellner, S. Knecht, A. Floel, Caloric restriction improves memory in elderly humans, Proc Natl Acad Sci U S A 106(4) (2009) 1255-60.

[97] D. Wahl, S.C. Coogan, S.M. Solon-Biet, R. de Cabo, J.B. Haran, D. Raubenheimer, V.C. Cogger, M.P. Mattson, S.J. Simpson, D.G. Le Couteur, Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia, Clin Interv Aging 12 (2017) 1419-1428.

[98] M.P. Mattson, Apoptosis in neurodegenerative disorders, Nat Rev Mol Cell Biol 1(2) (2000) 120-9.

[99] M.P. Mattson, Neuroprotective signaling and the aging brain: take away my food and let me run, Brain Res 886(1-2) (2000) 47-53.

[100] A. Del Arco, G. Segovia, M. de Blas, P. Garrido, D. Acuna-Castroviejo, R. Pamplona, F. Mora, Prefrontal cortex, caloric restriction and stress during aging: studies on dopamine and acetylcholine release, BDNF and working memory, Behavioural brain research 216(1) (2011) 136-45.
[101] M. Lopez-Torres, G. Barja, Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans, Biochim Biophys Acta 1780(11) (2008) 1337-47.
[102] I. Sanchez-Roman, G. Barja, Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction, Exp Gerontol 48(10) (2013) 1030-42.
[103] A. Dubey, M.J. Forster, H. Lal, R.S. Sohal, Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of the mouse, Arch Biochem Biophys 333(1) (1996) 189-97.
[104] Z. Guo, A. Ersoz, D.A. Butterfield, M.P. Mattson, Beneficial effects of dietary restriction on cerebral cortical synaptic terminals: preservation of glucose and glutamate transport and mitochondrial function after exposure to amyloid beta-peptide, iron, and 3-nitropropionic acid, J Neurochem 75(1) (2000) 314-20.
[105] P. Caro, J. Gomez, I. Sanchez, A. Naudi, V. Ayala, M. Lopez-Torres, R. Pamplona, G. Barja, Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria, Rejuvenation Res 12(6) (2009) 421-34.
[106] P. Rathod, T. Hemnani, M.S. Parihar, Dietary restriction lowers endogenous levels of oxidative stress in different brain regions of adult mice, Cell Mol Biol (Noisy-le-grand) 57 Suppl (2011) OL1575-80.
[107] R. Singh, D. Lakhanpal, S. Kumar, S. Sharma, H. Kataria, M. Kaur, G. Kaur, Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats, Age (Dordr) 34(4) (2012) 917-33.
[108] M. Jove, V. Ayala, O. Ramirez-Nunez, A. Naudi, R. Cabre, C.M. Spickett, M. Portero-Otin, R. Pamplona, Specific lipidome signatures in central nervous system from methionine-restricted mice, J Proteome Res 12(6) (2013) 2679-89.
[109] P. Dkhar, R. Sharma, Late-onset dietary restriction modulates protein carbonylation and catalase in cerebral hemispheres of aged mice, Cellular and molecular neurobiology 34(2) (2014) 307-13.
[110] R. Singh, S. Manchanda, T. Kaur, S. Kumar, D. Lakhanpal, S.S. Lakhman, G. Kaur, Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats, Biogerontology 16(6) (2015) 775-88.

[111] H.F. Poon, H.M. Shepherd, T.T. Reed, V. Calabrese, A.M. Stella, G. Pennisi, J. Cai, W.M. Pierce, J.B. Klein, D.A. Butterfield, Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis, Neurobiol Aging 27(7) (2006) 1020-34.

[112] R.J. Bateman, C. Xiong, T.L. Benzinger, A.M. Fagan, A. Goate, N.C. Fox, D.S. Marcus, N.J. Cairns, X. Xie, T.M. Blazey, D.M. Holtzman, A. Santacruz, V. Buckles, A. Oliver, K. Moulder, P.S. Aisen, B. Ghetti, W.E. Klunk, E. McDade, R.N. Martins, C.L. Masters, R. Mayeux, J.M. Ringman, M.N. Rossor, P.R. Schofield, R.A. Sperling, S. Salloway, J.C. Morris, N. Dominantly Inherited Alzheimer, Clinical and biomarker changes in dominantly inherited Alzheimer's disease, N Engl J Med 367(9) (2012) 795-804.

[113] C. Borras Blasco, J. Vina Ribes, [Neurophysiology and ageing. Definition and pathophysiological foundations of cognitive impairment], Rev Esp Geriatr Gerontol 51 Suppl 1 (2016) 3-6.

[114] J. Vina, J. Sanz-Ros, Alzheimer's disease: Only prevention makes sense, Eur J Clin Invest 48(10) (2018) e13005.

[115] T. Ngandu, J. Lehtisalo, A. Solomon, E. Levalahti, S. Ahtiluoto, R. Antikainen, L. Backman, T. Hanninen, A. Jula, T. Laatikainen, J. Lindstrom, F. Mangialasche, T. Paajanen, S. Pajala, M. Peltonen, R. Rauramaa, A. Stigsdotter-Neely, T. Strandberg, J. Tuomilehto, H. Soininen, M. Kivipelto, A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial, Lancet 385(9984) (2015) 2255-63.

[116] H. Soininen, A. Solomon, P.J. Visser, S.B. Hendrix, K. Blennow, M. Kivipelto, T. Hartmann, g. LipiDiDiet clinical study, 24-month intervention with a specific multinutrient in people with prodromal Alzheimer's disease (LipiDiDiet): a randomised, double-blind, controlled trial, Lancet Neurol 16(12) (2017) 965-975.

[117] G. Livingston, A. Sommerlad, V. Orgeta, S.G. Costafreda, J. Huntley, D. Ames, C. Ballard, S. Banerjee, A. Burns, J. Cohen-Mansfield, C. Cooper, N. Fox, L.N. Gitlin, R. Howard, H.C. Kales, E.B. Larson, K. Ritchie, K. Rockwood, E.L. Sampson, Q. Samus, L.S.
Schneider, G. Selbaek, L. Teri, N. Mukadam, Dementia prevention, intervention, and care, Lancet 390(10113) (2017) 2673-2734.
Figure Legends

Figure 1. Imaging mass spectrometry (IMS) of a human brain section, built by integrating selected lipids. The six layers of the gray matter and the white matter (WM) are labeled. GPCho, glycerophosphocholine; SPM, sphingomyelin; GPEtn, glycerophosphoethanolamine. Modified from [33].

Figure 2. Lipid peroxidation in human prefrontal cortex aging. Increased levels of lipid peroxidation induce formation of reactive carbonyl species-protein adducts which triggers the impairment of energy metabolism, cytoskeleton, neurotransmission, proteostasis, and oxygen/carbon dioxide/heme metabolism. The progressive dysfunction of these biological processes probably underlies the cognitive decline of PFC associated with the aging process.
Table 1. Lipid class comparison of lipid rafts and non-raft membranes from gray matter of prefrontal cortex from healthy subjects.

Lipid Class	Nonrafts	Lipid rafts
Sphingomyelin	1.97 ± 0.86	11.43 ± 1.44
Phosphatidylcholine (PC)	9.86 ± 0.87	5.35 ± 0.49
Phosphatidylserine (PS)	10.85 ± 1.08	6.82 ± 0.50
Phosphatidylinositol (PI)	3.67 ± 0.59	2.16 ± 0.17
Phosphatidylglycerol (PG)	2.71 ± 0.58	0.70 ± 0.10
Phosphatidylethanolamine (PE)	28.72 ± 1.82	20.97 ± 0.57
Sulfatides	0.00 ± 0.00	10.56 ± 0.68
Cerebrosides	0.00 ± 0.00	5.10 ± 0.79
Cholesterol	27.68 ± 1.98	33.04 ± 1.18
Free fatty acids	10.68 ± 0.92	2.17 ± 0.28
Sterol esters	0.00 ± 0.00	1.68 ± 0.60
Total neutral lipids	42.23 ± 2.66	36.90 ± 1.41
Total polar lipids	57.77 ± 2.66	63.09 ± 1.41
Phospholipid/cholesterol	2.15 ± 0.18	1.11 ± 0.06

Results are expressed as mole % and represent mean ± SEM. Data from: [38]
Table 2. Fatty acid profiles of healthy adult human prefrontal cortex.

Fatty Acid	Taha et al., 2013	Hamazaki et al., 2016	Naudi et al., 2017
PFC area	BA10	BA8	BA8
Age (years)	49.7 years	47.9 years	40-49 years
14:0	nd	0.4	1.3
16:0	19.4	21.8	20.01
16:1n-7	0.5	0.5	1.5
18:0	23.6	25.1	20.4
18:1n-9/n-7	23.5	19.6	24.6
18:2n-6	1.0	0.7	1.2
18:3n-3	nd	nd	0.2
18:4n-3	nd	nd	0.4
20:0	nd	0.2	0.5
20:1n-9	nd	0.6	1.7
20:2n-6	nd	0.1	0.4
20:3n-6	1.0	0.9	1.1
20:4n-6	8.9	8.6	6.9
20:5n-3	0.1	nd	0.4
22:0	nd	0.1	0.5
22:1n-9	nd	0.06	nd
22:4n-6	6.5	5.1	4.8
22:5n-6	1.5	nd	1.04
22:5n-3	0.5	0.3	0.7
22:6n-3	13.5	14.5	10.4
24:0	nd	0.2	0.9
24:1n-9	nd	0.9	nd
24:5n-3	nd	nd	0.2
24:6n-3	nd	nd	0.1
Double bond index	182.1	169.9	160.0
Peroxidation Index	185.8	176.6	153.3

Values are expressed as mol %. Nd, not detected, identified, or quantified.

Data were obtained and modified from [32, 40, 41]
Table 3. Lipoxidized proteins identified by redox proteomics in healthy adult/aged human prefrontal cortex.

ID (entry human)	Protein	Gene	Main location	Protein modification by	Biological process
P06733	alpha-Enolase	ENO1	Cytosol, cell membrane, nucleus	MDA, NKT	Energy metabolism (glycolysis)
P09104	gamma-Enolase	ENO2	Cytosol, cell membrane	MDA	Energy metabolism (glycolysis)
P04406	Glyceraldehyde-3-phosphate dehydrogenase	GAPDH	Cytosol, cytoskeleton, nucleus	NKT	Energy metabolism (glycolysis)
P18669	Phosphoglycerate mutase 1	PGAM1	Cytosol, EVE, nucleus	NKT	Energy metabolism (glycolysis)
P14618	Pynovate kinase	PKM	Cytosol, nucleus	NKT	Energy metabolism (glycolysis)
Q99798	Acotinate hydratase	ACO2	Mitochondrion	NKT	Energy metabolism (TCA cycle)
P00367	Glutamate dehydrogenase 1	GLUD1	Mitochondrion	MDA	Energy metabolism (TCA cycle)
P09622	Dihydrolipoyl dehydrogenase	DLD	Mitochondrion, nucleus	NKT	Energy metabolism (ETC)
P31930	Ubiquinol-cytochrome c reductase complex core protein 1	UQRC1	Mitochondrion	MDA	Energy metabolism (ETC)
P25705	ATP synthase subunit alpha	ATP5F1A	Mitochondrion	NKT	Energy metabolism (OxPhos)
P06576	ATP synthase subunit beta	ATP5F1B	Mitochondrion	MDA	Energy metabolism (OxPhos)
P12277	Creatine kinase B-type	CKB	Cytosol	MDA, NKT	Energy metabolism (energy transduction)
P17174	Aspartate aminotransferase	GOT1	Cytosol	NKT	Neurotransmission
P60723	Brain acid soluble protein 1	BASP1	Cell membrane, growth cone	NKT	Neurotransmission
Q16555	Dihydropyrimidinase-related protein 2	DPYSL2	Cytosol, cytoskeleton, membrane	MDA, NKT	Neurotransmission
P15104	Glutamine synthetase	GLUL	Cytosol, mitochondrion	MDA	Neurotransmission
P30086	Phosphatidyethanolamine-binding protein 1	PEPE1	Cytosol	NKT	Neurotransmission
P61981	14-3-3 protein gamma	YWHAQ	Cytosol	NKT	Neurotransmission
P17600	Synapsin-1	SYNT	Golgi apparatus, synaptic vesicle	NKT	Neurotransmission
P60709	beta-Actin	ACTB	Cytosol (cytoskeleton)	MDA	Cytoskeleton
P14136	Gial fibrillary acidic protein	GFAP	Cytosol (cytoskeleton)	MDA, NKT	Cytoskeleton
P07196	Neurofilament light polypeptide	NEFL	Cytosol (cytoskeleton)	MDA, NKT	Cytoskeleton
P07197	Neurofilament medium polypeptide	NEFM	Cytosol (cytoskeleton)	NKT	Cytoskeleton
P68363	Tubulin alpha 1B chain	TUBA1B	Cytosol (cytoskeleton)	MDA	Cytoskeleton
P07437	Tubulin beta chain	TUBB	Cytosol (cytoskeleton)	MDA	Cytoskeleton
O94811	Tubulin polymerization-promoting protein	TPPP	Cytosol (cytoskeleton), nucleus	NKT	Cytoskeleton
P08670	Vimentin	VIM	Cytosol (cytoskeleton), nucleus	MDA	Cytoskeleton
P02511	alpha-Crystallin B chain (Heat Shock Protein B5)	CRYAB	Cytosol, nucleus	NKT	Proteostasis
P10809	Heat shock protein 60KDa	HSPD1	Mitochondrion	MDA, NKT	Proteostasis
Q99497	Protein/nucleic acid deacetylase DJ-1	FARK7	Cytosol, mitochondrion, cell membrane	NKT	Proteostasis
P09936	Ubiquitin carboxyl-terminal hydrolase L1	UCHL1	Cytosol, endoplasmic reticulum	NKT	Proteostasis
P00915	Carbonic anhydrase 1	CA1	Cytosol	NKT	Ox/CO2/heme metabolism
Accession	Description	Main Location	Location	Biological Process	
-----------	--	---------------	----------	-----------------------------	
P69905	Hemoglobin alpha subunit	HBA1	Cytosol, EVE	NKT, O2/CO2/heme metabolism	
P30043	NADPH-Flavin reductase	BLVRB	Cytosol	NKT, O2/CO2/heme metabolism	
B1AKQ8	Guanine nucleotide-binding protein G(I/G(S)/G(T) beta1	GNB1	Not described	MDA, Signal transduction	

Gene, main location, and biological process are based on what was reported in the UniProt database (http://www.uniprot.org/). Abbreviations: EVE, extracellular vesicular exosome; TCA cycle, tricarboxylic acid cycle; ETC, electron transport chain; OxPhos, oxidative phosphorylation; ALEs, advanced lipoxidation end-products; NKT, neuroketals; MDA, Malondialdehyde.

Sources: [69, 74].
Figure 2.