AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

Ximeng Sun1, Rameswar Panda2, Rogerio Feris2, Kate Saenko1,2

1 Boston University, 2 MIT-IBM Watson AI Lab, IBM Research

\{sunxm, saenko\}@bu.edu, \{rpanda, rsferis\}@us.ibm.com

Project page: https://cs-people.bu.edu/sunxm/AdaShare/project.html
Multi-task Learning

Multi-task learning (MTL) is a subfield of machine learning in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks.

MTL improves generalization by leveraging the domain-specific information contained in the training signals of related tasks.
Previous Work – Two prevailing trends for MTL

Hard parameter sharing

- Task A
- Task B
- Task C

 Task-specific layers

 Shared layers

Examples: Deep Relationship Network, Fully-Adaptive Feature Sharing

Soft parameter sharing

- Task A
- Task B
- Task C

 Constrained layers

Examples: Cross Stitch, Sluice, NDDR

Hand-crafted tree structure

Non-scalable with the increasing number of tasks
AdaShare – Learn non-handcrafted and scalable sharing patterns

- **Each block:** shared or task-specific
- **Adaptive Computation:** Gumbel-Softmax Sampling
- **Loss:** Task-specific Loss, Sparsity Loss, Sharing Loss
- **Training Strategy:** policy learning stage and retraining stage
Experiments – Quantitative Results

Datasets: NYU v2 (2 or 3 tasks), CityScapes (2 tasks), Tiny-Taskonomy (5 tasks), DomainNet (6 tasks), Text-Recognition (10 tasks)

Table 4: Tiny-Taskonomy 5-Task Learning. \(T_1 \): Semantic Segmentation, \(T_2 \): Surface Normal Prediction, \(T_3 \): Depth Prediction, \(T_4 \): Keypoint Estimation, \(T_5 \): Edge Estimation.

Models	# Params ↓	\(\Delta T_1 \) ↑	\(\Delta T_2 \) ↑	\(\Delta T_3 \) ↑	\(\Delta T_4 \) ↑	\(\Delta T_5 \) ↑	\(\Delta T \) ↑
Multi-Task	-80.0	-2.1	-0.7	-9.1	+1.5	+5.2	-1.0
Cross-Stitch	0.0	+2.6	-3.3	**0.0**	-2.5	-3.3	-1.3
Sluice	0.0	-6.1	-0.7	-4.6	**+2.5**	+6.6	-0.4
NDDR-CNN	+8.2	**+6.3**	-0.3	-11.4	+1.5	+2.8	-0.2
MTAN	-9.8	-10.8	-0.7	-4.5	**+2.0**	+4.2	-2.0
DEN	-77.6	-28.2	-3.0	-22.7	**+2.5**	+4.2	-9.4
AdaShare	-80.0	+1.6	**0.0**	-13.6	**+2.5**	**+9.0**	-0.1

Single-Task Learning: Seg: 0.575; SN: 0.707; Depth: 0.022; Keypoint: 0.197; Edge: 0.212
Experiments – Policy Visualization

Observations:
1. Not all blocks contribute to the task equally
2. More blocks shared only among a sub-group of tasks in ResNet’s conv3_x layers, where middle/high-level features (more task-specific) are starting to get captured
3. Similar tasks should have similar execution distribution to share knowledge
Thank you and welcome to our poster!