TiO_2 Nanoparticles Sensitized by Safranine O Dye using UV-A Light System

Khwod Mohammed Jasim and Luma M. Ahmed
Department of Chemistry, College of Science, University of Kerbala, Kerbala, Iraq.
* E-mail: lumamajeed2013@gmail.com, luma.ahmed@uokerbala.edu.iq

Abstract. This study examined the photocatalytic decolorization of safranine O dye by using TiO_2 nanopowder as a photocatalyst, under illumination with using artificial UV-A light. The behavior of this reaction was pseudo first order and the maximum of removal was 88.176% in 100 min. at 30 °C. The increased of reaction temperature enhances the photoreaction, with positive ΔH that equal to 20.552 kJ mol$^{-1}$ and given low activation energy reach to 22.609 kJ mol$^{-1}$. The Fenton reaction was applied in aqueous solution of this dye with the using TiO_2 nanopowder and given maximum photo decolorization efficiency.

Keywords. Safranine O, TiO_2 nanopowder, basic red 2 dye, photo-decolorization, oxidant agent, Fenton reaction.

1. **Introduction.** Titania (TiO_2) is one of an important n-type semiconductor which used as photo catalyst. This material is found as a white crystalline powder with three main types of crystal structures in natural: Anatase, Rutile and Brookite1,2. Anatase and brookite can transform to rutile by calcinations at about 900 °C and both have metastable structures. However, rutile is more stable, less band gap (3.02 eV) and have a maximum density (4240 kg m$^{-3}$) compared with anatase and brookite.

In general, anatase and rutile have a same structure (tetragonal structure), but brookite has orthorhombic crystal system3. The TiO_2 bulk and nanopowder have good properties like high photocatalytic activity with high chemical and biological stability, low cost, non-toxicity and suitable optical-electronic properties$^{8-10}$. These reasonable properties for titania were attracted considerable attention toward published many researchers in different fields such as, using it in produced a hydrogen energy from oxidation of methanol after metalized it11,12, using it as photocatalyst$^{13-16}$, enhanced the efficiency of solar cells$^{17-19}$, treatment of tumor cells20,22, using it in UV protectors in skin$^{23-25}$ and using it as inhibitor for some enzyme to treat some diseases in human body26. Many researches confirmed that the TiO_2 nanoparticles are have a more active than TiO_2 bulk, so, that due to it has a low particle or (crystal) sizes which leads to high numbers of active sites with depressing the no. of defects in the inner grains. Moreover, it has a low melting point, a high of porosity, low phase transition temperature, and reduced the lattice constants$^{27-29}$.

The aim of this project was to exploit the created of hydroxyl radical in aqueous solution of safranine O dye, to investigate the decolorization of it in present TiO_2 nanopowder at optimum conditions.

2. **Experimental**

2.1. **Chemicals.** In this project, the chemicals were employed without any pre-treatment. Titanium dioxide nanopowder was purchased from US Research nanomaterial Inc, USA with 99.9% purity. Safranin O dye (C$_{20}$H$_{19}$N$_4$Cl) was supplied from BDH - England. This dye is also called basic red 2 dye or basic dye. Basis on...
IUPAC, it can be called 2,8-dimethyl-3,7-diamino-phenazine. It is fully soluble in water with M.Wt equal to 350.85 g mol⁻¹, beyond to the xanthene dyes class, used as redox indicator in analytical chemistry, and employed for the detection of cartilage or employed as a counterstain in some staining protocols 30, 31.

2.2. Method. By basing on the homemade photoreactor in Figure 1, the series of the photoreaction experiments were conducted by mixing 100 mL from aqueous solution of safranin O dye with a suitable amount of TiO₂ nanopowder as suspension solution.

![Homemade photoreactor setup to decolorize Safranin O dye.](image)

In fact, the equilibrium time for this reaction was closely performed at 30 min as adsorption process. After this step, the solution was exposed to UV-A light-(as HPML-type Radium (125 watts)), which has calculated light intensity equal to 9.1x10⁻⁸ einstein s⁻¹ using chemical actinometer 32,33. After regular exposed times of irradiation, about 3 mL collected from the mixture, and then double filtered to ensure from all TiO₂ nanopowder molecules must remove. The absorbance of the filtered dye solution was carried out using UV‐Visible spectrometer at 530 nm. The apparent rate constant (kₐₚₚ.) and percentage of photodecolorization efficiency PDE % were described by mentioned in the references 10,34,35.

3. Results and Discussion

3.1. Effect of TiO₂ dose on the photodecolorization rate of Safranin O dye

Figure 2 (a) and (b) clearly displays the rate constant for decolorization of this dye in presence TiO₂ raises with the increasing the dosage of TiO₂ that due to increase the active site to adsorb the dye before the irradiation process 36. The maximum value of apparent rate constant is obtained at 175 mg/ 100 mL with efficiency (PDE %) equal to 88.176 at 100 min. That pointed out the increased in active site on photocatalyst surface, which enhanced to adsorb of dye molecules with hydroxyl radicals, this case will accelerate the decolorization of the dye according to the first possible of Langmuir-Hinshelwood (L-H) kinetics model. This model is having four suggested cases 27,36,37:

The reaction is happened between (Dye(ads.) and OH(ads.)), the reaction is happened between (Dye(ads.) and OH(soln.)), he reaction is happened between (Dye(soln.)
and OH\textsubscript{(soln.)} and the reaction is happened between (Dye\textsubscript{(sol..)} and OH\textsubscript{(ads.)}).

From the other hand, after using 175 mg/100 mL of TiO\textsubscript{2} nanopowder, the rate of reaction depresses, that based on the raised of the solution turbidity and declined the transmittance of light, which caused inhibited the hydroxyl radical formation, this effect is called screen effect \cite{9,38,39}.

![Graph showing the effect of TiO\textsubscript{2} nanopowder dose on the apparent rate constant of photo-reaction and PDE %](image)

Fig. 2 Effect of TiO\textsubscript{2} nanopowder dose on the (a) apparent rate constant of photo-reaction and (b) PDE %, at conditions: cat. dose = (0.1-0.25) g/100mL, Safranin O dye conc. = 25 ppm, and T= 303.15K.

3.2. Effect of Temperature on the photodecolorization rate of Safranin O dye

Briefly, the application of different temperatures on a suspension solution of this dye leads to find the activation energy ΔE_a from plotting Arrhenius equation \cite{33,40-43}, the thermodynamics function like $\Delta H^\#$ with $\Delta S^\#$ from plotting Eyring equation \cite{34,43-46} and Gibbs free energy $\Delta G^\#$ by using Gibbs equation \cite{33,45}. From Figure 3 (a) and (b) results, the thermodynamics function and activation energy were determined, as listed in table 1. The increased in temperature causes to raise in the rate of reaction and speed of producing of hydroxyl radical and other species such as (O_2^- and $HO\textsubscript{2}^-$) \cite{33} which leads to form a hydroxyl radical at last. These results proved that the photo-decolorization of safranin O dye with the presence of TiO\textsubscript{2} nanopowder is endothermic and fast. Moreover, the negative value of entropy indicates to decolorize for the chromophoric groups of this dye by degradation it to other small species, but the positive value of $\Delta G^\#$ refers to the reaction is non-spontaneous. These results are in agreement with the reported in references \cite{33,47,48}.

Table 1 The kinetic and thermodynamic functions for the photo-decolorization process of safranin O dye in suspension of TiO\textsubscript{2} under UV-A.

E_a (kJ mol-1)	$\Delta H^\#$ (kJ mol-1)	$\Delta S^\#$ (J mol-1 K-1)	$\Delta G^\#_{303.15}$ (kJ mol-1)
22.609	20.552	-3.060	21.479
3.3. Effect of oxidant agents on the photo-decolorization rate of safranin O dye.

The addition of oxidant agents such as H$_2$O$_2$ and Fe(II) on the suspension solution of safranin O dye with TiO$_2$ nanopowder was done. The rate of reaction increases with addition 0.1 % H$_2$O$_2$ but decreases with the addition of 1x10$^{-4}$ M from Fe(II) with the efficiency equal to 92.73 and 85.923 respectively, these results are shown in Figure 4 (a) and (b). The decreased in the rate of reaction and efficiency with the using Fe(II) alone (in this concentration) was interpenetrated to scavenge of hydroxyl radical by using the Fe(II)47 according to equation 1.

\[\text{Fe}^{2+} + \text{HO}^{-} \rightarrow \text{Fe}^{3+} + \text{HO}^{-} \quad (1) \]

Whereas, the addition of 0.1% H$_2$O$_2$ alone or as the mixture from (0.1% H$_2$O$_2$ with 1x10$^{-4}$ M from Fe(II)) as (Fenton reaction), that accelerates the photo-decolorization reaction, hence, that attitude to produce a hydroxyl radicals according to the following equations50,51.

\[\text{H}_2\text{O}_2 + \text{hv} \rightarrow 2\text{HO}^{-} \quad (2) \]
\[\text{H}_2\text{O}_2 + e_{CB} \text{ of TiO}_2 \rightarrow \text{HO}^{-} + \text{HO} \quad (3) \]
\[\text{H}_2\text{O}_2 + \text{O}_2^{-} \rightarrow \text{HO}^{-} + \text{HO} + \text{O}_2 \quad (4) \]

The Fenton reaction is enhanced this photo-decolorization of safranin O by increasing the efficiency from 88.176 to 98.838 by producing a high amount of hydroxyl radicals, as noted in the following equations$^{52-55}$.

\[\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{HO}^{-} + \text{HO}^{-} \quad (5) \]
\[\text{Fe}^{3+} + \text{HO}^{-} \rightarrow \text{Fe}^{2+} + \text{HO}^{-} \quad (6) \]
Fig. 4 Effect of addition oxidant agents on the photo-decolourization of 25 ppm from safranin O dye with 175 mg/100 mL of TiO$_2$ nanopowder, at 0.1% H$_2$O$_2$ and 1x 10^{-4} M from Fe(II). a) Relation between rate constant (k$_{app}$) verse used oxidation agent with sample b) Relation between efficiency (PDE%) verse used oxidation agent with the sample.

3.4. Mechanism

In order to form hydroxyl radical on TiO$_2$ nanopowder surface must focus a light on the suspension solution of TiO$_2$ nanopowder. The hydroxyl radical is regarded a power force to start the photo-decolorization of dye and generated of hydroxyl radicals by series of redox process. The photooxidation process of hydroxyl ion by hole of semiconductor is formed HO. Moreover, the photoreduction process for O$_2$ environment is leaded to produce 2HO. The mechanism of decolorization of safranin O dye was suggested in scheme 1.

Scheme 1 Suggested mechanism for decolorization of safranin O dye in TiO$_2$ nanopowder- UV-A light system.
3.5. Conclusions
In this study, the main conclusions were investigated. The photocatalytic
decolorization process of safranin O dye in suspension solution of TiO₂ nanopowder
under UV-A light system was done. This photoreaction is found to be fast,
endothermic and obeyed the pseudo first order with low activation energy.

The efficiency for decolorization of safranin O dye with the using the best amount of
TiO₂ nanopowder under addition some oxidant agents have followed by the sequences:
PDE% using Fe(II) < PDE% without oxidant agents < PDE% using H₂O₂ < PDE%
using (mixture from H₂O₂ and Fe(II)).
The using of Fenton reaction was enhanced the efficiency that changed from 88.176%
to 98.838% at 100 min.
The suitable mechanism was suggested to obtain the decolorization and degradation
of this dye with form CO₂ and H₂O (mineralization process) at final pH equal to 7.

Acknowledgements
I thankful all peoples which enhanced me to perform this work.

References
1. S.T. Nishanthi, D. H. Raja, E. Subramanian and D. P. Padiyan, "Remarkable
Role of Annealing Time on Anatase Phase Titania Nanotubes and its Photo
electrochemical Response", Electrochimica Acta, 89, 239,(2013).
2. D. P. Macwan, Pragnesh N. Dave and Shalini Chaturvedi, "A review on nano-
TiO₂ sol–gel type syntheses and its applications, J Mater Sci, 46, 3669,(2011).
3. A. Khataee and G Ali Mansoori, Nanostructured Materials,Titanium Dioxide-
Properties, Preparation and Applications, World Scientific Publishing Co. Pte.
Ltd., NEW JERSEY, USA, 2012.
4. D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C.
Cab, R. de Cos and G. Oskam, " Phase-pure TiO₂ nanoparticles: anatase,
brookitite and rutile", Nanotechnology, 19, 145605, (2008).
5. K. Mori, "Photo-Functionalized Materials Using Nanoparticles: Photocatalysis",
KONA, 23, 205, (2005).
6. T. Morishige, Y. Yoshioka and A. Tanabe, "Titanium dioxide induces
different levels of IL-1β production dependent on its particle characteristics
through caspase-1 activation mediated by reactive oxygen species and
cathepsin B", Biochem Biophys ResCommun,392(2), 160, (2010).
7. A. D. Paola, M. Bellardita and L. Palmisano, " Brookite, the Least Known
TiO₂ Photocatalyst ", Catalysts, 3, 36, (2013).
8. C.M. The and A.R. Mohamed, "Roles of Titanium Dioxide and Ion–Doped
Titanium Dioxide on Photocatalytic Degradation of Organic Pollutants
(Phenolic Compounds and Dyes) in Aqueous Solutions: A Review", Journal
of Alloys and Compounds, 509(5), 1648, (2011).
9. L. M. Ahmed and F. H. Hussein, "Quantum yield of formaldehyde formation
from methanol in the presence of TiO₂ and platinized TiO₂ photocatalysts ", J.
of Babylon Uni./Pure and Applied Sciences, College of Science/Babylon
University Scientific Conference, 1(22), 464, (2012) and reference cited therein.
10. A. Hajjaji, M. Amlouk, M. Gaidi, B. Bessais and M. A. El Khakani, "Chromium Doped TiO$_2$ Sputtered Thin Films-Synthesis, Physical Investigations and Applications", Springer Briefs in Manufacturing and Surface Engineering, New York, 2015, pp. 2-11, p.81.
11. L. M. Ahmed, A. F. Alkaim, A. F. Halbus and F. H. Hussein, "Photocatalytic hydrogen production from aqueous methanol solution over metallized TiO$_2$", *Int. J. of Chem Tech Resch.*, 9(10), 90, (2016).
12. G. L. Chiarelli, M. H. Aguirre and E. Selli, "Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO$_2$", *Journal of Catalysis*, 273, 182, (2011).
13. L. M. Ahmed, F. H. Hussein and A.A. Mahdi, "Photocatalytic Dehydrogenation of Aqueous Methanol Solution by Naked and Platinized TiO$_2$ Nanoparticles", *Asian Journal of Chemistry*, 24(12), 5564, (2012).
14. L. M. Ahmed, I. Ivanova, F. H. Hussein and D. W. Bahmann, "Role of Platinum Deposited on TiO$_2$ in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions", *Int. J. of Photoenergy*, 1, (2014).
15. M. T. Eesa, A. M. Juda and L. M. Ahmed, "Kinetic and Thermodynamic Study of the Photocatalytic Decolourization of Light Green SF Yellowish (Acid Green 5) Dye using Commercial Bulk Titania and Commercial Nanotitania ", *IJSR*, 1495, (2015).
16. L. Yuliati, W. R. Siah, N. A. Roslan, M. Shamsuddin and H. O. Lintang, "Modification of Titanium Dioxide Nanoparticles with Copper Oxide Co-Catalyst for Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid", *Malaysian Journal of Analytical Sciences*, 20(1), 171, (2016).
17. Y. Fan, C. Ho and Y. Chang, "Enhancement of Dye-Sensitized Solar Cells Efficiency Using Mixed-Phase TiO$_2$ Nanoparticles as Photoanode", *Hindawi Scanning*, 1, (2017).
18. K. M. Prabu and P. M. Anbarasan, "Improved Performance of Natural Dye-Sensitized Solar Cells (NDSSCS) Using ZnO Doped TiO$_2$ Nanoparticles by Sol-Gel Method ", *IJSR*, 3(6), 1740, (2012).
19. Z. Tian-Hui, P. Ling-Yu, Z. Su-Ling, X. Zheng, W. Qian and K. Chao, "Application of TiO$_2$ with different structures in solar cells ", *Chin. Phys. B*, 21(11), 118401, (2012).
20. T. Sungkaworn, W. Triampo, P. Nalakarn, I. Tang, Y. Lenburg and P. Picha, "The Effects of TiO$_2$ Nanoparticles on Tumor Cell Colonies: Fractal Dimension and Morphological Properties", *International Journal of Biological and Life Sciences*, 2(1), 67, (2007).
21. M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke and P. Schmuki, "TiO$_2$ nanotubes: photocatalyst for cancer cell killing ", *phys. stat. sol.*, 2(4), 194, (2008).
22. M. A. Moosavi and M. Rahmati, "Titanium Dioxide (TiO$_2$) Nanostructures as an Ideal Tumor-Targeted Drug Delivery System ", *Austin Therapeutics*, 2 (1), 1, (2015).
23. A. Popov, "TiO$_2$ Nanoparticles as UV Protectors in Skin ", Oulu University Press, Oulu 2008, pp. 1-80.
24. A. P. Popov, A. V. Priezzhev, J. Lademann and R. Myllyla, "Titanium Dioxide (TiO$_2$) Nanostructures as an Ideal Tumor-Targeted Drug Delivery System ", *J. Phys. D: Appl. Phys.*, 38, 2564, (2005).
25. A. Popov, J. Lademann, A. Priezzhev and R. Myllyli, "Interaction of sunscreen TiO$_2$ nanoparticles with skin and UV light: penetration, protection,
phototoxicity”, Clinical and Biomedical Spectroscopy, ed. I. Georgakoudi, J. Popp and K. Svanberg, SPIE-OSA Biomedical Optics, 7368, 2009, pp. 7368221 – 7368226.

26. H. K. Al-Hakeim and K. M. Jasem, "High Ionic Strength Enhances the Anti-Pepsin Activity of Titanium Dioxide Nanoparticles”, Nano Biomed. Eng., 8(3), 133, (2016).

27. L. M. Ahmed and F. H. Hussein, "Roles of Photocatalytic Reactions of Platinized TiO2 Nanoparticles”, 1st ed., LAP Lambert Academia Published, Germany, 2014.

28. J. Behari, "Principles of nanoscience: an overview”, Indian J. of Exp. Bio., 48,1008, (2010).

29. K. Eufinger, D. Poelman, H. Poelman, R. De Gryse and G. Marin, Thin Solid Films: Process and Applications, editor by S. Nam, pp. 189-227, ISBN: 978-81-7895-314-4, (2008).

30. K. O. Adebowale, B. I. Olu-Owolabi and E. C. Chigbundu, "Removal of Safranin-O from Aqueous Solution by Adsorption onto Kaolinite Clay”, Journal of Encapsulation and Adsorption Sciences, 4, 89, (2014).

31. S. Ahmed, "Photo electrochemical study of ferrioxalate actinometry at a glassy carbon electrode", Journal of Photochemistry and Photobiology A: Chemistry, 161, 151, (2004).

32. G. W. Castellan, "Physical Chemistry", 3rd edition, Addison-Wesley Publishing Company, Menlo Park, 1983, p. 3, 33, 891.

33. C. Benson, "Physical chemistry", 1st edition, Global Media, Delhi, 2009, p.34.

34. G. G. Hammes, "Principles of Chemical Kinetics", 1st edition, Academic Press New York, 1978, P.5, 17.

35. L. Ahmed, "Photo-Decolourization Kinetics of Acid Red 87 Dye in ZnO Suspension Under Different Types of UV-A Light "., Asian J. Chem, 30 (9), 2134, (2018).

36. C. Turchi and D. Ollis,"Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack", Journal of Catalysis, 122, 178, (1990).

37. S. I. Zuafuani and L. M. Ahmed, "Photocatalytic Decolourization of Direct Orange Dye by Zinc Oxide under UV Irradiation ", Int. J. Chem. Sci., 13(1), 187, (2015).

38. B. A. Mahammed, and L. M. Ahmed, "Enhanced Photocatalytic Properties of Pure and Cr-Modified ZnS Powders Synthesized by Precipitation Method", J. of Geoscience and Environment Protection, 5,101,(2017).

39. O. Hutzinger, "The Handbook of Environmental Chemistry, Reactions and Processes", vol. 2, part L, Springer-Verlag Berlin Heidelberg GmbH, Germany, 1999, p.326.

40. R. P. Wayne, "Basic Concepts of Photochemical Transformations,in: Environmental photochemistry part II”, ed. P. Boule, D. W. Bahnemann and P. K. Robertson, Springer-Verlag Berlin Heidelberg, 2005, p. 40.

41. R. W. Missen, C. A. Mims and B. A. Saville , "Introduction to Chemical Reaction Engineering and Kinetics", John Wiley & Sons, Inc., New York, 1999, P. 44.
43. M. A. Tabbara and M. M. Jamal, "A kinetic study of the discoloration of methylene blue by \(\text{Na}_2\text{SO}_3 \), comparison with \(\text{NaOH} \), " J. of the Uni. of Chem. Tech. and Metall., 47(3), 275, (2012).

44. E. S. Fathal and L. M. Ahmed, "Optimization of Photocatalytic Decolourization of Methyl Green Dye Using Commercial Zinc Oxide as catalyst", Journal of Kerbala University, 13 (1) Scientific, 53, (2015).

45. I. M. Klotz and R. M. Rosenberg, "Chemical Thermodynamics, Basic Concepts and Methods", 7th edition, John Wiley & Sons, Inc, Canada, 2008, P.194, 205.

46. L. M. Ahmed, M. A. Jassim, M. Q. Mohammed and D. T. Hamza, " Advanced Oxidation Processes for Carmoisine (E122) Dye in UVA/ZnO System: Influencing pH, Temperature and Oxidant Agents on Dye Solution ", Journal of Global Pharma Technology, 10(7), 248, (2018).

47. L. M. Ahmed, F. T. Tawfeeq, M. H. Abed Al-Ameer, K. Abed Al-Hussein and A. R. Athaabal, "Photo-Degradation of Reactive Yellow 14 Dye (A Textile Dye) Employing ZnO as Photocatalyst", Journal of Geoscience and Environment Protection, 4, 34, (2016).

48. L. M. Ahmed, S. I. Saaed and A. A. Marhoon, "Effect of Oxidation Agents on Photo-Decolorization of Vitamin B12 in the Presence of ZnO/UV-A System", Indones. J. Chem., 18(2), 272, (2018).

49. S. A. Mousavi and S. Nazari, " Original Research Applying Response Surface Methodology to Optimize the Fenton Oxidation Process in the Removal of Reactive Red 2", Pol. J. Environ. Stud., 26(2),765, (2017).

50. M. S. Mashkour, A. M. Al-Kaim, L. M. Ahmed and F. H. Hussein, "Zinc Oxide- Assisted Photocatalytic Decolorization of Reactive Red 2 Dye", Int. J. Chem. Sci., 9(3), 969, (2011) and references cited therein.

51. B. Neppolian, S. R. Kanel, H. C. Choi, M. V. Shankar, B. Arabindoo and V. Murugesan, "Photocatalytic degradation of reactive yellow 17 dye in aqueous solution in the presence of TiO_2 with cement binder", International Journal of Photoenergy, 5,45, (2003).

52. M. Jaafar, "UV-A Activated ZnO Mediated Photocatalytic Decolorization of Nigrosine (Acid Black 2) Dye in Aqueous Solution", Journal of Geoscience and Environment Protection, 5, 138, (2017).

53. F.S.G. Einschlag, A.M., Braun, and E. Oliveros, “Fundamentals and Applications of the Photo-Fenton Process to Water Treatment” in Environmental Photo-chemistry Part III, ed. D.W. Bahnemann and P.K.J. Robertson, Springer-Verlag Berlin Heidelberg, 2015, 301–342.

54. B. A. Mohammed and L. M. Ahmed," Improvement the Photo Catalytic Properties of ZnS nanoparticle with Loaded Manganese and Chromium by Co-Precipitation Method", Journal of Global Pharma Technology, 10(7), 129, (2018).

55. Z. A. Hussein, S. K. Abbas and L. M. Ahmed, "UV-A activated ZrO_2 via photodecolorization of methyl green dye", International Conference on Materials Engineering and Science, IOP Conf. Series: Materials Science and Engineering, 454, 1, (2018).