Evaluation of association of maternal IL-10 polymorphisms with risk of preeclampsia by A meta-analysis

Wenchao Yang a, *, Zhenmin Zhu b, Jin Wang a, Wei Ye a, Yong Ding a

a Management Department, Shanghai Medical Instrumentation College, Shanghai, China
b Medical Electronic Information Department, Shanghai Medical Instrumentation College, Shanghai, China

Received: May 29, 2014; Accepted: August 19, 2014

Abstract

Emerging evidence shows that interleukin (IL)-10 gene polymorphisms can regulate its expression level and thus influence person’s susceptibility to preeclampsia. However, various published results were inconsistent. To explore the association between maternal IL-10 gene polymorphisms and preeclampsia, we performed a meta-analysis based upon 11 individual studies here. Our meta-analysis results indicated that IL-10 -819C/T (C versus T, OR = 1.28, 95% CI = 1.08–1.50, P = 0.003) and -592C/A (C versus A, OR = 1.28, 95% CI = 1.03–1.59, P = 0.03) polymorphisms were associated with preeclampsia. Although there was no overall association between -1082A/G polymorphism and preeclampsia (G versus A, OR = 0.93, 95% CI = 0.77–1.13, P = 0.49), such association existed among Asian (G versus A, OR = 1.29, 95% CI = 1.04–1.60, P = 0.02) and South American (G versus A, OR = 0.72, 95% CI = 0.54–0.94, P = 0.02) populations in the subgroup analysis stratified by continents.

Keywords: IL-10 polymorphism - preeclampsia - meta-analysis

Introduction

Preeclampsia is a common pregnancy-specific disorder characterized by new-onset hypertension in combination with proteinuria after 20 weeks of gestation [1]. It occurs in about 2–8% pregnancies and has become one of the three leading causes of maternal and neonatal morbidity and mortality [2, 3]. Although the precise aetiology of preeclampsia is unknown because of its heterogeneous origins, the immune system has been found to play a significant role in the development of preeclampsia [4].

Normal pregnancy entails the shift of Th1/Th2 ratio towards Th2-type reactions [5, 6]. Th1-type cytokines are responsible for several cell-mediated cytotoxic and inflammatory reactions and can produce a proinflammatory milieu. Excessive Th1-type cytokines like interleukin (IL)-2, tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) have been reported to be detrimental to foetus and associated with preeclampsia [6–9]. Th2 cells are involved in the regulation of Th1 cell development and the maintenance of an anti-inflammatory environment besides the common antibody responses [5, 10, 11]. As foetus is like a semi-allograft, the ability of Th2 cells to protect against allograft rejection plays a vital role during pregnancy [5, 10].

Interleukin-10, originally described as a crucial Th2-type cytokine because of its anti-inflammatory actions, plays a pivotal role in pregnancy maintenance and development [12, 13]. It can help to establish the Th2 immune environment and inhibit the secretion of Th1-type cytokines like IL-6, TNF-α and IFN-gamma [14–16]. Also, IL-10 has been reported to contribute to trophoblast invasion, corpus luteum maturation and placental angiogenesis during pregnancy [12, 15, 17–20]. Evidence showed that the expression levels of placental and decidual IL-10 were altered in preeclampsia patients [21–23]. Reduced production of IL-10 has been suggested to cause a proinflammatory cytokine response and thus lead to the pathogenesis of preeclampsia [24, 25].

As polymorphisms in regulatory regions of cytokine genes can influence their expression levels, they may be related to person’s predisposition to certain diseases [26]. Given the recognized importance of IL-10 in pregnancy, several polymorphic sites in its regulatory regions including -1082A/G (rs1800896), -819C/T (rs1800871) and -592C/A (rs1800872) have been widely investigated for their potential correlation with preeclampsia because of their reported capability of altering the gene expression level of IL-10 [27–30]. However, the results are still inconclusive or controversial. Although three meta-analyses have suggested that the -1082A/G polymorphism of the
the statistical analysis. The association was evaluated with the use of the allelic model (mutation [M] allele versus wild [W] allele), the dominant model (WM+MM versus WW), the recessive model (MM versus WM+WW) and the co-dominant model (WM versus WW+MM) respectively. We calculated the OR and 95% CI for each study as well as the combined OR and corresponding 95% CI for all the included studies. The heterogeneity between individual studies was assessed using chi-squared-based Q-tests with the significance level set at $P < 0.1$. If the heterogeneity existed among the included studies, we calculated the pooled OR using the random-effect model (the DerSimonian and Laird method). Otherwise, we adopted the fixed-effect model (the Mantel–Haenszel method). The significance of the pooled OR was assessed by Z-test with $P < 0.1$ considered significant.

For each study, the Hardy–Weinberg equilibrium (HWE) was assessed by Fisher’s exact test with $P < 0.05$ considered significant. In every pooled analysis, studies with controls not in HWE were still considered but the corresponding sensitivity analysis without these studies was also performed. The potential publication bias was checked by Egger’s funnel plot and the funnel plot asymmetry was assessed by Egger’s linear regression test with the significance level set at $P < 0.05$.

Results

Literature selection

We found a total of 375 articles after an initial search from the PubMed, Web of Science and Scopus databases. By reviewing the titles and abstracts, 355 of them were excluded because of no relevance to the association of IL-10 polymorphisms with preeclampsia. After excluding reviews, meta-analyses, studies without sufficient data or replication study, 12 eligible studies were finally included in this meta-analysis [6, 7, 15, 24, 34–41]. A total of 1861 preeclampsia patients and 3632 normotensive pregnant women were included in this study.

Table 1 summarized the characteristics of 12 included studies. There were 10 case–control studies [6, 7, 15, 24, 34–39] and 1 cohort study [40] involving IL-10 -1082A/G polymorphism, 5 case–control studies involving IL-10 -592C/A polymorphism [6, 7, 37, 38, 41] and 3 case–control studies involving IL-10 -2849G/A polymorphism [6, 7, 38]. Only one study investigated the association of IL-10 -2849G/A polymorphism with preeclampsia [42].

Association between IL-10 -1082A/G polymorphism and preeclampsia

A total of 1368 cases and 3410 controls from 10 case–control studies and 1 cohort study were included for the evaluation. Significant heterogeneity existed and therefore the random-effect model was adopted to pool the results ($P_{\text{heterogeneity}} = 0.002, I^2 = 63\%$). The meta-analysis result showed that IL-10 -1082A/G polymorphism was not associated with the risk of preeclampsia under the allelic model (G allele versus A allele, OR = 0.93, 95% CI = 0.77–1.13, $P = 0.49$; Fig. 1A).

As there were two studies with controls not in HWE [6, 39], we con-
ducted a sensitivity analysis with these two studies excluded and the result still indicated that there was a lack of association between IL-10 -1082A/G polymorphism and the risk of preeclampsia (G allele versus A allele, OR = 0.89, 95% CI = 0.71–1.10, P = 0.28; Fig. 1B).

In the subgroup analysis stratified by continents, we found that the heterogeneity was significantly lower in the Asia (I² = 0.35, P = 0.58), Europe (I² = 0.91, P = 0.0%; South America (I² = 0.91, P = 0%) and North America groups (I² = 0.37, P = 0%) than in the whole population (I² = 0.002, P = 63%; Fig. 2). Therefore, the regions where the individual studies were performed could explain the source of heterogeneity. This result was somewhat reminiscent of Daher et al.’s previous report that the association between IL-10 -1082A/G polymorphism and preeclampsia were only observed in white women instead of non-white women [34]. However, our meta-analysis results based upon four previously published relevant studies did not support the association between IL-10 -1082A/G polymorphism and the risk of preeclampsia among white women under the allelic model (G allele versus A allele, OR = 0.83, 95% CI = 0.56–1.21, P = 0.32; Fig. 3).

Besides, we observed a significant association between IL-10 -1082A/G polymorphism and the risk of preeclampsia in the Asia (G allele versus A allele, OR = 1.29, 95% CI = 1.04–1.60, P = 0.02) and the South America (G allele versus A allele, OR = 0.72, 95% CI = 0.54–0.94, P = 0.02) subgroups under the allelic model. However, under the allelic model (G allele versus A allele), there was no such association in the Europe (OR = 1.13, 95% CI = 0.80–1.59, P = 0.49) or the North America group (OR = 0.97, 95% CI = 0.82–1.15, P = 0.75; Fig. 2). To further explore the potential way the G allele affected the risk of preeclampsia among Asian and South American populations, we then evaluated the association under other three genetic models. For Asian population, as there was no obvious heterogeneity under the dominant (GG versus GA, OR = 1.62, 95% CI = 0.97–2.63, P = 0.08; Fig. 4B) or co-dominant model (GA versus GA+AA, OR = 0.54, P = 0.02) subgroups under the allelic model. How-

Table 1 Characteristics of the 12 eligible studies included for the investigation of IL-10 polymorphisms’ association with preeclampsia

First author	Year	Country/Continent	Ethnicity	Sample size (preeclampsia/control)	SNP studied	Method
Stonek [35]	2008a	Austria/Europe	Caucasian	107/107	-1082A/G	Microarray
Valencia	2012	Mexico/the Americas	Mexican-Mestizo, Maya-Mestizo	411/613	-1082A/G	TaqMan technology
Haggerty	2005	USA/the Americas	Black, White	150/661	-1082A/G, -819C/T	TaqMan technology
Mirahmadian	2008	Iran/Asia	Asian	160/100	-1082A/G, -819C/T, -592C/A	PCR-SSP
Kamali-Sarvestani	2006	Iran/Asia	Asian	134/164	-1082A/G, -819C/T, -592C/A	PCR-SSP
de Lima [38]	2009	Brazil/the Americas	Mulatto	165/101	-1082A/G	PCR-SSP
Daher [34]	2006	Brazil/the Americas	Black, White, Mulatto	151/189	-1082A/G	PCR-SSP
Sowmya [39]	2013	India/Asia	Asian	88/100	-1082A/G	PCR-SSP
Stonek [40]	2008b	Austria/Europe	Caucasian	254/1362	-1082A/G	Microarray
Elhawary [15]	2013	Egypt/Africa	African	20/20	-1082A/G	PCR-RFLP
Sowmya [41]	2014	India/Asia	Asian	120/120	-819C/T	PCR-SSP
Vural [24]	2010	Turkey/Europe-Asia	European-Asian	101/95	-1082A/G	PCR-SSP
because of lack of between-study heterogeneity. Under the dominant model, the pooled data indicated that the GG and GA phenotypes were linked to the decreased risk of preeclampsia among South American population (OR = 0.67, 95% CI = 0.47–0.95, P = 0.03; Fig. 5A). There was no evidence for similar association under the recessive (OR = 0.57, 95% CI = 0.29–1.12, P = 0.10; Fig. 5B) or co-dominant model (OR = 0.79, 95% CI = 0.55–1.12, P = 0.18; Fig. 5C).

A total of 631 cases and 1059 controls from 5 case–control studies were included for data synthesis. Under the allelic model, there was no evidence of between-study heterogeneity and therefore the fixed-effect model was adopted to pool the results (C allele versus T allele, P_heterogeneity = 0.15, ² = 41%). The meta-analysis results showed that the C allele was associated to the risk of preeclampsia under the allelic model (C allele versus T allele, OR = 1.28, 95% CI = 1.08–1.50, P = 0.003; Fig. 6A). As significant between-study heterogeneity was absent under the dominant model (CC + CT versus TT, P_heterogeneity = 0.23, ² = 29%) and existed under the recessive (CC versus CT + TT, P_heterogeneity = 0.02, ² = 67%) and co-dominant (CT versus CC + TT, P_heterogeneity = 0.01, ² = 69%) models, the fixed-effect model was used for the dominant model and the random-effect model was used for the other two genetic models. Under the dominant model, the CC and CT genotypes were not significantly associated with the risk of preeclampsia (CC + CT versus TT, OR = 0.98, 95% CI = 0.67–1.39, P = 0.83; Fig. 6B). The CC genotype was linked to the risk of preeclampsia under the recessive model (CC versus CT + TT, OR = 1.62, 95% CI = 1.10–2.38, P = 0.01; Fig. 6C) and the CT genotype did not contribute to the risk of preeclampsia under the co-dominant model (CT versus CC + TT, OR = 0.59, 95% CI = 0.40–0.88, P = 0.01; Fig. 6D).

Association between IL-10 -819C/T polymorphism and preeclampsia

A total of 631 cases and 1059 controls from 5 case–control studies were included for data synthesis. Under the allelic model, there was no evidence of between-study heterogeneity and therefore the fixed-effect model was adopted to pool the results (C allele versus T allele, P_heterogeneity = 0.15, ² = 41%). The meta-analysis results showed that the C allele was associated to the risk of preeclampsia under the allelic model (C allele versus T allele, OR = 1.28, 95% CI = 1.08–1.50, P = 0.003; Fig. 6A). As significant between-study heterogeneity was absent under the dominant model (CC + CT versus TT, P_heterogeneity = 0.23, ² = 29%) and existed under the recessive (CC versus CT + TT, P_heterogeneity = 0.02, ² = 67%) and co-dominant (CT versus CC + TT, P_heterogeneity = 0.01, ² = 69%) models, the fixed-effect model was used for the dominant model and the random-effect model was used for the other two genetic models. Under the dominant model, the CC and CT genotypes were not significantly associated with the risk of preeclampsia (CC + CT versus TT, OR = 0.98, 95% CI = 0.67–1.39, P = 0.83; Fig. 6B). The CC genotype was linked to the risk of preeclampsia under the recessive model (CC versus CT + TT, OR = 1.62, 95% CI = 1.10–2.38, P = 0.01; Fig. 6C) and the CT genotype did not contribute to the risk of preeclampsia under the co-dominant model (CT versus CC + TT, OR = 0.59, 95% CI = 0.40–0.88, P = 0.01; Fig. 6D).

© 2014 The Authors.
Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Fig. 2 Forest plot of preeclampsia associated with IL-10 -1082A/G polymorphism stratified by continents under the allelic model (G allele versus A allele). The Europe-Asia subgroup included countries spanning Europe and Asia.
Fig. 3
Forest plot of the risk of preeclampsia among white women associated with IL-10 -1082A/G polymorphism under the allelic model (G allele versus A allele).

Study or Subgroup	Preeclampsia	Control	Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Daher 2006	24	108	64	22.4%	0.46 [0.26, 0.79]
Haggerli 2005	92	224	387	816	0.77 [0.57, 1.04]
Stonek 2008a	95	214	91	214	1.08 [0.74, 1.58]
Stonek 2008b	12	24	1143	2724	1.38 [0.62, 3.09]

Total (95% CI): 570 3920 100.0% 0.83 [0.56, 1.21] 1685.

Heterogeneity: $\tau^2 = 0.09$, $\chi^2 = 8.14$, df = 3 ($P = 0.04$); $I^2 = 63$

Test for overall effect: $Z = 0.99$ ($P = 0.32$)

Fig. 4
Forest plot of the risk of preeclampsia among Asian population associated with IL-10 -1082A/G polymorphism under the dominant (GG+GA versus AA) (A), recessive (GG versus GA+AA) (B) and co-dominant (GA versus GG+AA) (C) model.

A

Study or Subgroup	Preeclampsia	Control	Weight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI	
Kamali-Sarvestani 2006	72	122	78	159	56.1%	1.50 [0.93, 2.41]
Mirahmadian 2008	155	160	87	100	6.8%	4.63 [1.60, 13.43]
Sowmya 2013	43	73	53	100	37.1%	1.27 [0.69, 2.34]

Total (95% CI): 355 359 100.0% 1.62 [1.14, 2.30] 218.

Heterogeneity: $\chi^2 = 4.46$, df = 2 ($P = 0.11$); $I^2 = 55$

Test for overall effect: $Z = 2.72$ ($P = 0.007$)

B

Study or Subgroup	Preeclampsia	Control	Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI	
Kamali-Sarvestani 2006	23	122	19	159	38.4%	1.71 [0.88, 3.31]
Mirahmadian 2008	17	160	5	100	26.5%	2.26 [0.81, 6.33]
Sowmya 2013	13	73	25	100	35.1%	0.65 [0.31, 1.38]

Total (95% CI): 355 359 100.0% 1.31 [0.63, 2.73] 49.

Heterogeneity: $\tau^2 = 0.25$; $\chi^2 = 5.04$, df = 2 ($P = 0.08$); $I^2 = 60$

Test for overall effect: $Z = 0.72$ ($P = 0.47$)

C

Study or Subgroup	Preeclampsia	Control	Weight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI	
Kamali-Sarvestani 2006	49	122	59	159	52.4%	1.14 [0.70, 1.85]
Mirahmadian 2008	138	160	82	100	23.7%	1.38 [0.70, 2.27]
Sowmya 2013	30	73	28	100	23.8%	1.79 [0.95, 3.40]

Total (95% CI): 355 359 100.0% 1.35 [0.97, 1.89] 169.

Heterogeneity: $\chi^2 = 1.24$, df = 2 ($P = 0.54$); $I^2 = 0$

Test for overall effect: $Z = 1.76$ ($P = 0.08$)

© 2014 The Authors.
Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Association between IL-10 -592C/A polymorphism and preeclampsia

A total of 376 cases and 445 controls from 3 case–control studies were included for data synthesis. Under the allelic model, there was no evidence of between-study heterogeneity and therefore the fixed-effect model was adopted to pool the results (C allele versus A allele, \(P \text{heterogeneity} = 0.48, \hat{I}^2 = 0\%\)). The pooled data demonstrated that the C allele was associated to the risk of preeclampsia under the allelic model (C allele versus A allele, \(\text{OR} = 1.28, 95\% \text{ CI} = 1.03–1.59, P = 0.03; \) Fig. 7A).

As significant between-study heterogeneity was absent under the dominant model (CC + CA versus AA, \(P \text{heterogeneity} = 0.13, \hat{I}^2 = 50\%\)) and existed under the recessive (CC versus CA + AA, \(P \text{heterogeneity} = 0.01, \hat{I}^2 = 77\%\)) and co-dominant (CA versus CC + AA, \(P \text{heterogeneity} < 0.00001, \hat{I}^2 = 91\%\)) models, the fixed-effect model was used for the dominant model and the random-effect model was used for the other two genetic models. There was no evidence for any significant association under the dominant (CC versus CA + AA, \(\text{OR} = 1.38, 95\% \text{ CI} = 1.38–2.22, P = 0.18; \) Fig. 7B), recessive (CC versus CA + AA, \(\text{OR} = 1.34, 95\% \text{ CI} = 0.73–2.44, P = 0.34; \) Fig. 7C) or co-dominant (CA versus CC + AA, \(\text{OR} = 0.88, 95\% \text{ CI} = 0.32–2.43, P = 0.80; \) Fig. 7D) model.

Discussion

Although the pathogenesis of preeclampsia remains poorly understood, the immunological system is thought to play a pivotal role...

Table A

Study or Subgroup	Preeclampsia	Control	Weight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI
Daher 2006	67	142	102	63.2%	0.67 [0.43, 1.05]
de Lima 2009	41	88	54	36.8%	0.66 [0.37, 1.19]
Total (95% CI)	230	274	108	100.0%	0.67 [0.47, 0.95]

Table B

Study or Subgroup	Preeclampsia	Control	Weight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI
Daher 2006	9	142	20	69.5%	0.54 [0.24, 1.22]
de Lima 2009	5	88	8	30.5%	0.66 [0.21, 2.08]
Total (95% CI)	230	274	14	100.0%	0.57 [0.29, 1.12]

Table C

Study or Subgroup	Preeclampsia	Control	Weight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI
Daher 2006	58	142	82	62.1%	0.82 [0.52, 1.28]
de Lima 2009	36	88	46	37.9%	0.74 [0.41, 1.32]
Total (95% CI)	94	128	230	100.0%	0.79 [0.55, 1.12]
Fig. 6 Forest plot of preeclampsia associated with IL-10 -819C/T polymorphism under the allelic (C allele versus T allele) (A), dominant (CC+CT versus TT) (B), recessive (CC versus CT+TT) (C) and co-dominant (CT versus CC+TT) (D) model.
It is well known that IL-10 can exert a regulatory effect on Th1/Th2 balance and is a crucial cytokine for pregnancy and development [12, 13]. Given the great importance of IL-10 during pregnancy and the influence of its several polymorphic sites in the regulatory regions on its expression levels, several case–control studies have investigated the association between IL-10 gene polymorphisms and the risk of preeclampsia. In the present study, we investigated the association of three maternal IL-10 polymorphisms with preeclampsia.

Interleukin-10 -1082A/G polymorphism was most extensively investigated and there have been three relevant meta-analyses [31–33]. Consistent with these three previous reports, we found that IL-10 -1082A/G polymorphism was not associated with the risk of preeclampsia after including those new relevant studies published between 2011 and 2013. As there existed significant between-study heterogeneity, we performed the subgroup analysis to explore its source. When stratified by continents, the heterogeneity was greatly

![Forest plot of preeclampsia associated with IL-10 -592C/A polymorphism under the allelic (C allele versus A allele) (A), dominant (CC + CA versus AA) (B), recessive (CC versus CA + AA) (C) and co-dominant (CA versus CC + AA) (D) model.](image-url)
diminished. Therefore, geographical region was probably a critical factor in between-study heterogeneity and should be better matched between individual studies to further reduce heterogeneity. As Daher et al. have reported that the association between IL-10 -1082A/G polymorphism and preeclampsia could be influenced by ethnicity and was only observed in white women instead of non-white women in their study, we analysed such association among white women using four previously published relevant studies and the meta-analysis result did not support the existence of such association among white women. The lack of such association among white women might also be because of the fact that the included studies were from different geographical regions. Besides, we also observed that IL-10 -1082G allele was correlated with the risk of preeclampsia in the Asia and the South American subgroups and both related meta-analysis results favoured the dominant model. Similar association was not observed in the subgroups of Europe and North America. However, meta-analysis could not be performed with only one relevant study available in the subgroups of Africa and Europe-Asia. Therefore, more studies are still called upon to further evaluate the association between IL-10 -1082A/G polymorphism and preeclampsia among persons from different geographical regions.

Both the -819 C allele and the -592 C allele of IL-10 showed evident association with the risk of preeclampsia in our meta-analysis. As these two alleles were related to higher expression levels of IL-10 [30, 44] and IL-10 has been thought to facilitate successful pregnancy with IL-10 deficiency leading to preeclampsia [12, 24, 25], such correlations were somewhat counterintuitive. However, our findings were consistent with the latest meta-analysis result of the association between IL-10 expression level and preeclampsia, which also indicated the elevated IL-10 levels in women with preeclampsia [45]. Although higher IL-10 expression levels have been proposed to provide protection against preeclampsia, further experiments are badly needed to better elucidate the underlying mechanism [6, 46]. Besides, our meta-analysis results supported the recessive model for IL-10 -819C/T polymorphism. The association between IL-10 -592C/A polymorphism and preeclampsia was not observed in the dominant, recessive or co-dominant model and probably more studies are needed to investigate the way this polymorphism affects the predisposition to preeclampsia. de Groot et al. have reported that IL-10 -2849G/A polymorphism site was also associated with the risk of preeclampsia [42]. However, no other similar studies of such association have been reported. More relevant studies are needed to perform corresponding meta-analyses and confirm such association.

We must admit that there are several limitations in the present study. The total number of the included studies was still relatively small, especially for the meta-analysis of IL-10 -819C/T and -592C/A polymorphisms’ association with preeclampsia. The same problem also existed in the subgroup analysis of IL-10 -1082A/G polymorphism’s association with preeclampsia stratified by continents. More studies are needed to investigate the role of geographical regions in determining the association between IL-10 -1082A/G polymorphism and preeclampsia. Moreover, other clinical factors like age, gestational weeks and subtypes of preeclampsia (early-onset, late-onset or complicated by other diseases, etc.) may result in bias. Further investigation is called upon to determine if these factors affect the results of our meta-analysis.

In conclusion, our meta-analysis results suggested that IL-10 -819C/T and -592C/A polymorphisms were associated with preeclampsia. The same problem also existed in the subgroup analysis of IL-10 -1082A/G polymorphism’s association with preeclampsia stratified by continents. More studies are needed to investigate the role of geographical regions in determining the association between IL-10 -1082A/G polymorphism and preeclampsia. Moreover, other clinical factors like age, gestational weeks and subtypes of preeclampsia (early-onset, late-onset or complicated by other diseases, etc.) may result in bias. Further investigation is called upon to determine if these factors affect the results of our meta-analysis.

Acknowledgements

This work was supported by grants from Shanghai Municipal Education Commission (slg11057 and slg14065).

Conflicts of interest

The authors confirm that there are no conflicts of interest.
References

1. Warrington JP, George EM, Palei AC, et al. Recent advances in the understanding of the pathophysiology of preeclampsia. Hypertension. 2013; 62: 666–73.
2. Ghulmiyyah L, Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol. 2012; 36: 56–9.
3. Bergmann A, Ahmad S, Cudmore M, et al. Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J Cell Mol Med. 2010; 14: 1857–67.
4. Lareggioli-Servitje E, Gomez-Lopez N, Olson DM. An immunological insight into the origins of preeclampsia. Hum Reprod Update. 2016; 16: 510–24.
5. Sykes L, Maclntyre DA, Yap XJ, et al. The Th1:Th2 dichotomy of pregnancy and pre-term labour. Mediators Inflamm. 2012; 2012: 967629.
6. Mirhamadian M, Kalantar F, Heidari G, et al. Association of tumor necrosis factor-alpha and interleukin-10 gene polymorphisms in Iranian patients with preeclampsia. Am J Reprod Immunol. 2008; 60: 179–85.
7. Kamali-Sarvestani E, Kiany S, Ghareshi-Fard B, et al. Association study of IL-10 and IFN-gamma gene polymorphisms in Iranian women with preeclampsia. J Reprod Immunol. 2006; 72: 118–26.
8. Raghupathy R. Cytokines as key players in the pathophysiology of preeclampsia. Med Princ Pract. 2013; 22: 8–19.
9. Szarka A, Rigo J Jr, Lazar L, et al. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 2010; 11: 59.
10. Warning JC, McCracken SA, Morris JM. A balancing act: mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction. 2011; 141: 715–24.
11. Sykes L, Maclntyre DA, Yap XJ, et al. Changes in the Th1:Th2 cytokine bias in pregnancy and the effects of the anti-inflammatory cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2. Mediators Inflamm. 2012; 2012: 416739.
12. Thaxton JE, Sharma S. Interleukin-10: a multi-faced agent of pregnancy. Am J Reprod Immunol. 2010; 63: 482–91.
13. Brogin Moreli J, Cirino Ruocco AM, Vernini JM, et al. Interleukin 10 and tumor necrosis factor-alpha in pregnancy: aspects of interest in clinical obstetrics. ISRN Obstet Gynecol. 2012; 2012: 230742.
14. Denney JM, Nelson EL, Wadhwa PD, et al. Longitudinal modulation of immune system cytokine profile during pregnancy. Cytokine. 2011; 53: 170–7.
15. Elhawy TM, Demerdash HD, Swellam MA. Relationship between interleukin-10 polymorphism and maternal serum leptin level in preeclampsia. Clin Exp Hypertens. 2013; 35: 367–72.
16. Hanlon AM, Jang S, Salgame P. Signaling from cytokine receptors that affect Th1 responses. Front Biosci. 2002; 7: d1247–54.
17. Agarwal R, Loganath A, Roy AG, et al. Effect of T-helper 1 cytokines on secretion of T-helper 2 cytokines by term trophoblast cells in culture. Gynecol Endocrinol. 2000; 14: 305–10.
18. Hashii K, Fujishara H, Yoshioka S, et al. Peripheral blood mononuclear cells stimulate progesterone production by luteal cells derived from pregnant and non-pregnant women: possible involvement of interleukin 4 and interleukin-10 in corpus luteum function and differentiation. Hum Reprod. 1998; 13: 2738–44.
19. Roth I, Corry DB, Locksley RM, et al. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med. 1996; 184: 539–48.
20. Roth I, Fisher SJ. IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev Biol. 1999; 205: 194–204.
21. Hennessy A, Pilmore HL, Simmons LA, et al. A deficiency of placental IL-10 in preeclampsia. J Immunol. 1999; 163: 3491–5.
22. Wilczynski JR, Tchorzowski H, Glowacka E, et al. Cytokine secretion by decidual lymphocytes in transient hypertension of pregnancy and pre-eclampsia. Mediators Inflamm. 2012; 11: 105–11.
23. Pennington KA, Schiltt JM, Jackson DL, et al. Preeclampsia: multiple approaches for a multifactorial disease. Dis Model Mech. 2012; 5: 9–18.
24. Vural P, Degirmencioglu S, Saral NY, et al. Tumor necrosis factor alpha, interleukin-6 and interleukin-10 polymorphisms in preeclampsia. J Obstet Gynaecol Res. 2010; 36: 64–71.
25. Williams PJ, Broughton Pipkin F. The genetics of pre-eclampsia and other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011; 25: 405–17.
26. Bidwell J, Keen L, Gallagher G, et al. Cytokine gene polymorphism in human disease: on-line databases. Genes Immun. 1999; 1: 3–19.
27. Ramkumar HL, de Shen F, Tuo J, et al. IL-10–1082 SNP and IL-10 in primary CNS and vitreoretinal lymphomas. Graefes Arch Clin Exp Ophthalmol. 2012; 250: 1541–8.
28. Makris A, Xu B, Yu B, et al. Placental deficiency of interleukin-10 (IL-10) in preeclampsia and its relationship to an IL10 promoter polymorphism. Placenta. 2006; 27: 445–51.
29. Chenjiao Y, Zili F, Habibin C, et al. IL-10 promoter polymorphisms affect IL-10 production and associate with susceptibility to acute myeloid leukemia. Pharmazie. 2013; 68: 201–6.
30. Turner DM, Williams DM, Sankaran D, et al. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet. 1997; 24: 1–8.
31. Xie C, Yao MZ, Liu JB, et al. A meta-analysis of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 in preeclampsia. Cytokine. 2011; 56: 550–9.
32. Staines-Urias E, Paez MC, Doyle P, et al. Genetic association studies in preeclampsia: systematic meta-analyses and field synopsis. Int J Epidemiol. 2012; 41: 1764–75.
33. Buurma AJ, Turner RJ, Driessen JH, et al. Genetic variants in pre-eclampsia; a meta-analysis. Hum Reprod Update. 2013; 19: 289–303.
34. Daher S, Sass N, Oliveira LG, et al. Cytokine genotyping in preeclampsia. Am J Reprod Immunol. 2006; 55: 130–5.
35. Stonek F, Hafner E, Metzenbauer M, et al. Absence of an association of tumor necrosis factor (TNF)-alpha G308A, interleukin-6 (IL-6) G174C and interleukin-10 (IL-10) G1082A polymorphism in women with pre-eclampsia. J Reprod Immunol. 2008; 77: 85–90.
36. Valencia Villalvazo EY, Canto-Cetina T, Romero Arauz JF, et al. Analysis of polymorphisms in interleukin-10, interleukin-6, and interleukin-1 receptor antagonist in Mexican-Mestizo women with pre-eclampsia. Genet Test Mol Biomarkers. 2012; 16: 1269–73.
37. Haggerty CL, Ferrell RE, Hubel CA, et al. Association between allelic variants in cytokine genes and preeclampsia. Am J Obstet Gynecol. 2005; 193: 209–15.
38. de Lima TH, Sass N, Mattar R, et al. Cytokine gene polymorphisms in preeclampsia and eclampsia. Hypertens Res. 2009; 32: 565–9.

39. Sowmya S, Ramaiah A, Sunitha T, et al. Evaluation of interleukin-10 (G-1082A) promoter polymorphism in preeclampsia. J Reprod Infertil. 2013; 14: 62–6.

40. Stonek F, Metzenbauer M, Hafner E, et al. Interleukin-10 -1082G/A promoter polymorphism and pregnancy complications: results of a prospective cohort study in 1,616 pregnant women. Acta Obstet Gynecol Scand. 2008; 87: 430–3.

41. Sowmya S, Ramaiah A, Sunitha T, et al. Role of IL-10 -819(T/C) promoter polymorphism in preeclampsia. Inflammation. 2014; 37: 1022–7.

42. de Groot CJ, Jansen MW, Bertina RM, et al. Interleukin 10-2849AA genotype protects against pre-eclampsia. Genes Immun. 2004; 5: 313–4.

43. Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013; 31: 387–411.

44. Zhang X, Hei P, Deng L, et al. Interleukin-10 gene promoter polymorphisms and their protein production in peritoneal fluid in patients with endometriosis. Mol Hum Reprod. 2007; 13: 135–40.

45. Lau SY, Guild SJ, Barrett CJ, et al. Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels are altered in pre-eclampsia: a systematic review and meta-analysis. Am J Reprod Immunol. 2013; 70: 412–27.

46. Benian A, Madazli R, Aksu F, et al. Plasma and placental levels of interleukin-10, transforming growth factor-beta1, and epithelial-cadherin in preeclampsia. Obstet Gynecol. 2002; 100: 327–31.