Diversity and distribution of the Isopoda (Crustacea, Peracarida) of Kuwait, with an updated checklist

Manal Abdulrahman Al-Kandari¹, Valiallah Khalaji-Pirbalouty², Hadeel Abdulkhaliq¹, Weizhong Chen¹

¹ Ecosystem-Based Management of Marine Resources, Environment, and Life Sciences Research Center, Kuwait Institute for Scientific Research, Hamad Al-Mubarak Street, Building 900004, Area 1, Raas Salmiya, Kuwait
² Department of Biology, Faculty of Basic Science, Shahrekord University, Shahrekord, Iran

Corresponding author: Valiallah Khalaji-Pirbalouty (vkhalaji@sci.sku.ac.ir, khalajiv@yahoo.com)

Academic editor: Rachael Peart | Received 10 July 2021 | Accepted 8 December 2021 | Published 5 January 2022

Citation: Al-Kandari MA, Khalaji-Pirbalouty V, Abdulkhaliq H, Chen W (2022) Diversity and distribution of the Isopoda (Crustacea, Peracarida) of Kuwait, with an updated checklist. ZooKeys 1080: 107–133. https://doi.org/10.3897/zookeys.1080.71370

Abstract

Thirty-eight species of Isopoda, belonging to 13 families and 29 genera, are listed from Kuwait based on previous literature records (of 17 species) and collections carried out along Kuwait’s coastal and subtidal zones during the present study. The majority of species belongs to the suborder Cymothoida (23), followed by Sphaeromatidea (9), Oniscidea (3), Valvifera (2), and Asellota (1). In total, 25 species were collected and identified from 12 families and 22 genera from Kuwaiti coastal and subtidal areas. These include eight families, 15 genera, and 21 species recorded for the first time from Kuwait. Isopod diversity was highest in the sandy rock areas, including southern Kuwait, particularly in Al-Khiran and Al-Nuwaiseeb, and in mixed habitat (muddy, rocky, and sandy) intertidal transects such as in Failaka Island. The species number increased from the subtidal and lowest zones into the high tidal zone. Isopods were found in sandy substrata, among shells, cobbles, rocks, dead corals, and algae.

Keywords

Biodiversity, checklist, first records, geographical distribution, Isopoda, Kuwait
Introduction

The isopod fauna in Kuwait’s intertidal and subtidal habitats have received little attention. The few significant accounts of Kuwait’s marine isopods are those of Bowman and Tareen (1983), describing six new species of Cymothoidae. In addition, Abu-Hakima (1984) recorded a bopyrid, *Epipenaeon elegans* Chopra, 1923, and Jones (1986) in ‘Field Guide to the Seashores of Kuwait’ recorded six marine isopods from Kuwait. However, *Apanthura sandalensis* Stebbing, 1900, *Ligia exotica* Roux, 1828; and *Cymodoce richardsoniae* Nobili, 1906, were misidentified in his guide. They are reidentified as *Amakusanthura* sp., *L. persica* Khalaji-Pirbalouty & Wägele, 2010, and *C. delvarii* Khalaji-Pirbalouty, Bruce & Wägele, 2013, respectively, in this work. *Arcturinoides angulata* Kensley, Schotte & Poore, 2007 and *Astacilla mccaini* Kensley, Schotte & Poore, 2007 have been reported by Kensley et al. (2007) from the coasts of Kuwait and Saudi Arabia and, most recently, Jones and Nithyanandan (2012) reported four species of the genus *Eurydice* Leach, 1815 from Kuwait and Saudi Arabia. In contrast, the isopod fauna along the Iranian coast of the Gulf has received more attention than adjacent regions (e.g., Khalaji-Pirbalouty and Wägele 2009, 2010a, b, c, 2011, 2012; Khalaji-Pirbalouty et al. 2013; Khalaji-Pirbalouty and Bruce 2014; Khalaji-Pirbalouty and Raupach 2014, 2016).

In 2013, a large-scale survey covering Kuwait’s entire coastline and offshore islands was initiated to document biodiversity, species distribution, and species abundance of the intertidal fauna. This survey was completed in 2017 (Al-Kandari et al. 2017). A further complementary sampling of four sites was conducted from 2016 to 2018. Survey results for molluscs, decapods, and polychaetes have been published (Al-Kandari et al. 2019a, b, 2020a, b), and summaries on other taxa are in progress. Here we report the results for the crustacean order Isopoda.

Materials and methods

Intertidal and subtidal sampling

Thirty-eight intertidal transects and two subtidal sites were sampled quantitatively and qualitatively for macrofauna (Fig. 1, Table 1). Transects were located between Khor Al-Subiya in the north and the border with Saudi Arabia in the south. The surveys were conducted in daylight during the late autumn and winter seasons from December 2013 to December 2016. The sampling dates (see Table 1) and time for each site coincided with the lowest tides (as near to 0 chart datum as possible) using the Kuwait Port Authority’s Tide Tables for 2013, 2014, 2015, and 2016. Kuwait’s intertidal areas consist of coral, rocky, sandy, and/or muddy habitats or combinations thereof. At some transects, sandy mud or muddy sand covered a hard stratum throughout the intertidal range. Other transects consisted of combinations of sand and rocks, with some rocks
An updated checklist of the Isopoda of Kuwait

lose and resting on the surface and others being part of the bedrock. All sandy beaches, rocky beaches, underneath stones, rubble, algal turf, and/or seagrass beds were sampled at each transect. Samples were left in seawater for a day before the fauna was collected from the bottom of the containers. Additionally, fauna living within porous rocks was collected by breaking the rocks with a hammer, placing the resulting debris in isotonic magnesium chloride solution, and collecting the fauna after their relaxation. For soft substrates, a 25 × 25-cm square metal box corer, 15 cm deep, was placed randomly, and sediment was collected by spade from inside the corer. These samples were sieved with seawater using 0.3-mm mesh sieves 45- and 75-cm in diameter, and all sediment and organisms remaining were preserved with 5% buffered formalin for subsequent picking and identification. Isopod specimens were also collected qualitatively from under rocks and among intertidal vegetation. Sand was sieved further samples were collected from rocks broken by a hammer, washing algae, sponges and seagrass, turning over stones, as well as collecting directly in the habitat. Material was rinsed under seawater, and all the washings passed through a 0.3-mm mesh sieve to collect any isopod specimens. The collected isopods were fixed in a 75–95% ethanol solution for subsequent morphological and molecular analyses. All specimens were deposited in the Kuwait Institute for Scientific Research (KISR) reference collection.

Figure 1. Map of the 40 sampling sites established in Kuwait's intertidal and subtidal zones; site numbers corresponding to Table 1.
Table 1. Sampling sites studied in the intertidal and subtidal zones of Kuwait with habitat details (*KPC = Kuwait Petroleum Corporation).

Site No.	Site Name (north to south)	Sampling Dates	Coordinates	Area	Substrate
1	Umm Al-Shajar (north Khor Al-Subiya), (B11)	29.12.2015	29°54.263’N, 48°01.475’E	BI	Mud
2	Khor Al-Subiya (Al-Magasel)	23.11.2014	29°44.746’N, 48°05.740’E	North	Mud-rock
3	Khor Al-Subiya (Al-Shumaima)	24.11.2014	29°39.403’N, 48°07.850’E	North	Mud-rock
4	Khor Subiyah (south)	25.11.2014	29°34.849’N, 48°10.248’E	North	Mud
5	Umm Al-Shajar (north Khor Al-Subiya), (BI1)	30.12.2014	29°32.672’N, 47°55.394’E	Bay-mud	Mud
6	Al-Kuwaiti	17.11.2014	29°22.677’N, 47°42.480’E	Bay-mud	Mud
7	Al-Judaili	02.02.2014	29°22.497’N, 47°45.183’E	Bay-mud	Mud
8	Aushairij	03.02.2014	29°23.047’N, 47°50.192’E	Bay	Sand-rock
9	Sulabiibhat Bay	06.11.2014	29°19.702’N, 47°49.670’E	Bay-mud	Mud
10	Shuwaikh (KPC*), subtidal	22.02.2016	29°21.401’N, 47°56.390’E	Bay	Sand-rock
11	Kuwait Bay (Al-Salam Beach)	09.12.2013	29°21.631’N, 47°57.204’E	Bay	Sand-rock
12	Kuwait Bay (Ras Ajaza)	08.12.2013	29°23.481’N, 47°59.800’E	Bay	Sand-rock
13	Al-Sha’Eab	19.01.2014	29°21.979’N, 47°54.344’E	Middle 1	Sand-rock
14	Al-Salmiya	19.12.2013	29°20.313’N, 47°57.204’E	Middle 1	Sand-rock
15	Al-Messilah	18.12.2013	29°16.496’N, 47°55.394’E	Middle 1	Sand-rock
16	Al-Fanatees	19.12.2013	29°22.677’N, 47°42.480’E	Middle 1	Sand-rock
17	Abu Halifa	04.01.2014	29°22.497’N, 47°45.183’E	Middle 1	Sand-rock
18	Al-Mangaf	01.02.2014	29°19.702’N, 47°49.670’E	Middle 1	Sand-rock
19	Masfat Al-Ahmadi	10.12.2014	29°21.401’N, 47°56.390’E	Middle 2	Sand-rock
20	North Oil loading terminal, subtidal	28.09.2014	29°21.631’N, 47°57.204’E	Middle 2	Sand-rock
21	Mina Abdullah	16.02.2014	29°21.631’N, 47°57.204’E	Middle 2	Sand-rock
22	Al-Julaia’Ea	17.02.2014	29°21.631’N, 47°57.204’E	Middle 2	Sand-rock
23	Dohat Al-Zour	24.12.2014	29°21.631’N, 47°57.204’E	Middle 2	Sand-rock
24	Ras Al-Zour	08.01.2015	29°21.631’N, 47°57.204’E	Middle 2	Sand-rock
25	Al-Khiran	03.03.2014	29°21.631’N, 47°57.204’E	Middle 2	Sand-rock
26	Al-Nuwaiseeb	04.03.2014	29°21.631’N, 47°57.204’E	Middle 2	Sand-rock
27	Umm Al-Maradim Island, east (UI1)	11.11.2014	28°40.778’N, 48°39.207’E	UI1	Sand-rock
28	Umm Al-Maradim Island, northeast (UI2)	11.11.2014	28°40.939’N, 48°39.196’E	UI2	Sand-rock
29	Umm Al-Maradim Island, northwest	11.11.2014	28°40.960’N, 48°39.173’E	UI3	Sand-rock
30	Qurah Island (north), (Q1l)	10.11.2014	28°49.105’N, 48°46.553’E	Q1	Sand-rock
31	Qurah Island (south), (Q2)	10.11.2014	28°49.022’N, 48°46.607’E	Q1	Sand-rock
32	Kubbar Island (east), (Q3)	09.11.2014	28°49.022’N, 48°46.607’E	Q1	Sand-rock
33	Kubbar Island (west)	09.11.2014	28°49.022’N, 48°46.607’E	Q1	Sand-rock
34	Aluha Island (northwest), (AI)	10.02.2014	28°49.022’N, 48°46.607’E	AI	Sand-rock
35	Failaka Island (east 2), (FI1)	25.12.2014	28°49.022’N, 48°46.607’E	FI	Sand-rock
36	Failaka Island (east 1), (F2)	24.12.2014	28°49.022’N, 48°46.607’E	FI	Sand-rock
37	Failaka Island (east), (FI3)	23.12.2014	28°49.022’N, 48°46.607’E	FI	Sand-rock
38	Failaka Island (northwest), (FI4)	22.12.2014	28°49.022’N, 48°46.607’E	FI	Sand-rock
39	Boubyan Island (south), (BI2)	24.01.2015	29°38.993’N, 48°18.830’E	BI	Mud
40	Boubyan Island (Ras Al-Gayed), (BI3)	25.01.2015	29°48.093’N, 48°21.975’E	BI	Mud

Species identification

For identification, morphological studies were conducted using a Leica DFC450 camera mounted on a Leica M125 Stereomicroscope equipped with an imaging system that was employed to obtain colour images of the specimens. For greater depth of field,
we merged 10–20 source images of a single specimen taken at different focus distances into one final image with the software LAS V4.5. The final image was edited using Adobe Photoshop. Isopods were identified to the lowest possible taxonomic level.

Results

In total, 25 species representing 12 families and 22 genera were identified from specimens collected in the present study. These species were collected from 31 intertidal transects, including 17 mainland and 14 island transects, and two subtidal sites (Table 2).

Sphaeromatidae Latreille, 1825 was the best-represented family with five genera and eight species, followed by the family Cirolanidae comprising five genera and five species. Two species were recorded in each of the families Gnathiidae and Arcturidae. The remaining seven families were represented by single species (Table 2). In descending order, the most widely distributed isopod species were *Amakusanthura* sp. from 20 transects, *Gnathia* sp., and *Sphaeromopsis sarii* Khalaji-Pirbalouty & Wägele, 2009, from 18 transects, *Astacilla mccaini* Kensley, Schotte & Poore, 2007, from 15 transects; *Heterodina mccaini* Schotte & Kensley, 2005, from 12 transects; *Cymodoce delvarii* Khalaji-Pirbalouty, Bruce & Wägele, 2013, occurred at 12 transects, and *Lanocira gardineri* Stebbing, 1904, was collected from ten transects. Interestingly, some species occurred in their 100s from single qualitative samples. Such high numbers for *S. sarii* and *C. delvarii* were obtained from randomly collected *Sargassum* at Al-Nuwaiseeb and Failaka Island. Similarly, high numbers of *S. sarii* occurred on algal turfs from Kubbar Island. Other species found in high numbers were found from rocks, dead coral, or dead shells and included *Gnathia* sp., *H. mccaini*, and *Sphaeroma walkeri* Stebbing, 1905.

Thirty-eight isopod species under five sub-orders, 13 families, and 29 genera are listed in taxonomic order, including Kuwait’s previous records (17 species), type localities, and geographical distributions.

Table 2. List of isopod species recorded in Kuwait in the present survey (* indicates a new record to Kuwait) and from literature records.

Suborder	Family	Species	Reference
CYMOTHOIDA	Anthuridae	*Amakusanthura* sp. *	This study
CYMOTHOIDA	Expanthuridae	*Eionbatis* sp. *	This study
CYMOTHOIDA	Cirolanidae	*Atarbolana exoconta*	This study
CYMOTHOIDA	Cirolanidae	*Baharilana kiabii*	This study
CYMOTHOIDA	Cirolanidae	*Cirolana tarahomii*	This study
CYMOTHOIDA	Cirolanidae	*Eurydice arabica*	Jones & Nithyanandan (2012)
CYMOTHOIDA	Cirolanidae	*E. marazogui*	Jones & Nithyanandan, 2012
CYMOTHOIDA	Corallanidae	*E. peraticis*	Jones & Nithyanandan (2012); This study
CYMOTHOIDA	Corallanidae	*Metacirroloana* sp. *	This study
CYMOTHOIDA	Corallanidae	*Lanocira gardineri*	This study
CYMOTHOIDA	Cymothoidea	*Anilocra monoma*	Bowman & Tareen, 1983
CYMOTHOIDA	Cymothoidea	*Catoessa gruneri*	Bowman & Tareen, 1983
CYMOTHOIDA	Cymothoidea	*Cymothoa eremita*	Bowman & Tareen, 1983
CYMOTHOIDA	Cymothoidea	*foryna sawayah*	Bowman & Tareen, 1983
Taxonomy

Order Isopoda Latreille, 1817
Suborder Cymothoidea Wägele, 1989
Superfamily Anthuroidea Leach, 1814
Family Anthuridae Leach, 1814
Genus Amakusanthura Nunomura, 1977

Amakusanthura sp.

Figure 2A

Apanthura sandalensis — Jones, 1986: 148, pl. 40 [not Apanthura sandalensis Stebbing, 1900; misidentification].

Material examined. Kuwait. 3 specimens; St. 2; 29°44.476'N, 48°05.740'E; 23 Nov. 2014; ♀♀, 2 juveniles; St. 3; 29°39.403'N, 48°07.850'E; 24 Nov. 2014; (5 ♂♀); St. 4; 29°34.849' N, 48°10.248'E; 25 Nov. 2014; 2 ♂♂; St. 8; 29°23.047'N, 47°50.192'E; 3 Feb. 2014; 1 ♂; St. 11; 29°21.631'N, 47°57.204'E; 9 Dec. 2013; 2 ♂♀♀; St. 12; 29°23.481'N, 47°59.800'E; 8 Dec. 21013; 1 ♂; St. 19; 29°04.431'N, 48°08.676'E; 10 Dec. 2014; 2 ♂♀♀; St. 22; 28°49.480'N, 48°16.812'E; 17 Feb 2014, 1 juvenile, 6 ♂♀♀; St. 24; 28°44.502'N, 48°22.950'E; 08 Jan. 2015; 1 ♂; St. 25; 28°38.813'N, 48°23.429'E; 3 Mar. 2014; 5 ♂♀♀, 2 juveniles; St. 26; 28°34.794'N, 48°24.078'E; 4 Mar. 2014; 5 ♂♀♀, 3 juveniles; St. 27; 28°40.778'N, 48°39.207'E; 11 Nov. 2014; 3 ♂♀♀; St. 28; 28°40.939'N, 48°39.196'E; 11 Nov. 2014; 1 ♂; St. 29; 28°40.960'N, 48°39.173'E; 11 Nov. 2014; 2 ♂♀♀; St. 30; 28°49.105'N, 48°46.553'E; 10 Nov. 2014;
7 ♀♂; St. 32; 29°04.278'N, 48°29.655'E; 9 Nov. 2014; 12 ♀♂; St. 34; 29°22.726'N, 48°26.269'E; 10 Feb. 2014; 3 ♀♂; St. 36; 29°23.629'N, 48°23.958'E; 24 Dec. 2014; 2 ♀♂; St. 38; 29°28.049'N, 48°17.838'E; 22 Dec. 2014.

Remarks. *Amakusanthura motasi* (Negoescu, 1980) is the only species of this genus recorded from the nearest locality (Gulf of Aden). The specimens examined here differ from *A. motasi* in the shape of the pleon with different lengths of pleonites 1–5 (vs. *Amakusanthura* sp. from Kubbar Island B *Eisothistos* sp. from Failaka Island C *Atarbolana exoconta* Bruce & Javed, 1987 from Masfat Al-Ahmadi D *Baharilana kiabii* Khalaji-Pirbalouty & Wägele, 2011 from Al-Nuwiseeb E *Cirolana tarabomii* Khalaji-Pirbalouty & Wägele, 2011 from Quaruh Island F *Eurydice peraticis* Jones, 1974 from Alkhiran G *Metacirolana* sp. from Um-Almaradim H *Lanocira gardineri* Stebbing, 1904 from Al-Shamaimah.
pleonites 1–5 similar to each other in *A. motasi*), the setation of pereopods, uropods and pleotelson; antenna and antennular articles are narrower than in *A. motasi*.

Distribution. New record for Kuwait.

Family Expanathuridae Poore, 2001
Genus *Eisothistos* Haswell, 1884

Eisothistos sp.

Figure 2B

Material examined. 1 ♂; St. 38; 29°28.049'N, 48°17.838'E; 22 Dec. 2014.

Distribution. New record for Kuwait

Family Cirolanidae Dana, 1852
Genus *Atarbolana* Bruce & Javed, 1987

Atarbolana exoconta Bruce & Javed, 1987

Figure 2C

Atarbolana exoconta Bruce & Javed, 1987: 145, figs 1, 2, Manora Island, Pakistan (type locality); Khalaji-Pirbalouty & Raupach, 2016: 155–162, figs 2–6.

Material examined. 4 ♂♂, 5 ♀♀; St. 19; 29°04.431'N, 48°08.676'E; 10 Dec. 2014; 1 ♂, 8 ♀♀; St. 21; 29°00.071'N, 48°09.853'E; 16 Feb. 2014; 2 ♀♀: St. 27; 28°40.778'N, 48°39.207'E; 11 Nov. 2014.

Distribution. Pakistan, Oman Sea (Bruce and Javed 1987; Khalaji-Pirbalouty and Raupach 2016), new record for Kuwait.

Genus *Baharilana* Bruce & Svavarsson, 2003

Baharilana kiabii Khalaji-Pirbalouty & Wägele, 2011

Figure 2D

Baharilana kiabii Khalaji-Pirbalouty & Wägele, 2011: 34–39, figs 1–4; Qeshm Island, Iran (type locality).

Material examined. 1 ♀, 1 juvenile; St. 19; 29°04.431'N, 48°08.676'E; 10 Dec. 2014; 2 ♀♀; St. 25; 28°38.813'N, 48°23.429'E; 3 Mar. 2014; 3 ♂♂, 5 ♀♀; St. 26; 28°34.794'N, 48°24.078'E; 4 Mar. 2014; 1 ♂, 1 juvenile; St. 27; 28°40.778'N, 48°39.207'E; 11 Nov. 2014; 1 ♀, 1 juvenile; St. 32; 29°04.278'N, 48°29.655'E; 9 Nov. 2014; 1 ♀; St. 35; 29°23.710'N, 48°24.136'E; 25 Dec. 2014.

Distribution. Qeshm Island, Hengam Island, Iran (Khalaji-Pirbalouty and Wägele 2011), new record for Kuwait.
Genus *Cirolana* Leach, 1818

Cirolana tarahomii Khalaji-Pirbalouty & Wägele, 2011

Figure 2E

Cirolana tarahomii Khalaji-Pirbalouty & Wägele, 2011: 39–45, figs 5–8; Qeshm Island, Iran (type locality).

Material examined. 7 ♀♂, 3 juveniles; St. 30; 28°49.105’N, 48°46.553’E; 10 Nov. 2014; 1 ♀, St. 32; 29°04.278’N, 48°29.655’E; 9 Nov. 2014.

Distribution. Qeshm Island, Iran (Khalaji-Pirbalouty and Wägele 2011), new record for Kuwait.

Genus *Eurydice* Leach, 1815

Eurydice arabica Jones, 1974

Eurydice arabica Jones, 1974: 202, fig. 2, Red Sea (type locality); Bruce, 1986: 221.

Distribution. Kuwait, Al-Ahmad Sea City waterways, Bahrain, Mashtan Island (Jones and Nithyanandan 2012).

Eurydice marzouqui Jones & Nithyanandan, 2012

Eurydice marzouqui Jones & Nithyanandan, 2012: 47–48, figs 1–4; Tarut Bay, Saudi Arabia (type locality).

Distribution. Sabah Al-Ahmad Sea City Waterways, Kuwait; Manifa, Saudi Arabia (Jones and Nithyanandan 2012).

Eurydice peraticis Jones, 1974

Figure 2F

Eurydice peraticis Jones, 1974: 204, fig. 3, Dammam, Saudi Arabia (type locality); Eleftheriou & Jones, 1976: 387; Bruce, 1986: 221; Kazmi et al. 2002: 91, fig. 66.

Material examined. 1 ♂; St. 8; 29°23.047’N, 47°50.192’E; 3. Feb. 2014; 2 ♂♀; St. 19; 29°04.431’N, 48°08.676’E; 10 Dec. 2014; 2 ♂♀; St. 21; 29°00.071’N, 48°09.853’E; 16 Feb. 2014; 2 ♂♂, 3 ♂♀; St. 25; 28°38.813’N, 48°23.429’E; 3 Mar. 2014; 1 ♀; St. 34; 29°22.726’N, 48°26.269’E; 10 Feb. 2016; 3 ♂♂, 7 ♂♀; St. 39; 29°38.993’N, 48°18.830’E; 24 Jan. 2015; 6 ♂♂, 9 ♂♀, 2 juveniles; St. 40; 25 Jan. 2015.

Distribution. Saudi Arabia, Bahrain, India, Pakistan, Kuwait (Eleftheriou and Jones 1976; Kazmi et al. 2002).
Genus *Metacirolana* Nierstrasz, 1931

Metacirolana sp.

Figure 2G

Material examined. 1 ♂; St.2; 29°44.476’N, 48°05.740’E; 23 Nov. 2014; 4 ♀♀; St. 3; 29°39.403’N, 48°07.850’E; 24 Nov. 2014; 1 ♂; St.27; 28°40.778’N, 48°39.207’E; 11 Nov. 2014; 1 ♂, 2 ♀♀; St.30; 28°49.105’N, 48°46.553’E; 10 Nov. 2014; 1 ♀; St. 34; 29°22.726’N, 48°26.269’E; 10 Feb. 2016; 2 ♂♂, 2 ♀♀; St. 36; 29°23.629’N, 48°23.958’E; 24 Dec. 2014.

Distribution. New record for Kuwait.

Family Corallanidae Hansen, 1890

Genus *Lanocira* Hansen, 1890

Lanocira gardineri Stebbing, 1904

Figure 2H

Lanocira gardineri Stebbing, 1904: 706, pl. LI, A, Mahlosmadulu Atoll, Maldive Islands (type locality).

A comprehensive synonymy to the species can be found in Bruce and Sidabalok 2011: 25.

Material examined. 1 ♂, 4 ♀♀, 3 juveniles; St. 3; 29°39.403’N, 48°07.850’E; 24 Nov. 2014; 2 ♀♀; St. 12; 29°23.481’N, 47°59.800’E; 8 Dec. 2104; 1 ♀; St. 22; 28°49.480’N, 48°16.812’E; 17 Feb. 2014; 1 Juvenile; St. 30; 28°49.105’N, 48°46.553’E; 10 Nov. 2014; 2 ♂♂, 5 ♀♀; St. 3; 29°39.403’N, 48°07.850’E; 24 Nov. 2014; 3 ♂♂, 6 ♀♀; St. 35; 29°23.710’N, 48°24.136’E; 25 Dec. 2014; 2 ♂♂, 5 ♀♀, 2 ovigerous ♀♀, 5 juveniles; St. 36; 29°23.629’N, 48°23.958’E; 24 Dec. 2014; 1 ♀; St. 37; 29°25.625’N, 48°20.307’E; 23 Dec. 2014; 1 ♂; St. 38; 29°28.049’N, 48°17.838’E; 22 Dec. 2014; 2 ♂♂; St. 40; 29°48.093’N, 48°21.975’E; 20 Jan. 2015.

Distribution. Maldives, Kenya, Madagascar (Delaney 1989); Western Australia (Bruce and Sidabalok 2011); Iran (Khalaji-Pirbalouty, unpublished), new family for Kuwait.

Family Cymothoidae Leach, 1814

Of the cymothoid isopods (parasites of fishes), the following species have been reported by Bowman and Tareen (1983).
Anilocra monoma Bowman & Tareen, 1983

Anilocra monoma Bowman & Tareen, 1983: 1, figs 3, 4, Kuwait (type locality).

Distribution. Kuwait (Bowman and Tareen 1983).

Catoessa gruneri Bowman & Tareen, 1983

Catoessa gruneri Bowman & Tareen, 1983: 18, figs 14, 15, Kuwait (type locality).

Distribution. Kuwait (Bowman and Tareen 1983).

Joryma sawayah Bowman & Tareen, 1983

Joryma sawayah Bowman & Tareen, 1983: 21, figs 16–18, Doha, Kuwait (type locality).
Livoneca sp., Mathews & Samuel, 1987: 144.

Distribution. Kuwait (Bowman and Tareen 1983).

Nerocila arres Bowman & Tareen, 1983

Nerocila arres Bowman & Tareen, 1983: 12, figs 10–12; Kuwait (type locality).
Nerocila kisra Bowman & Tareen, 1983: 8, figs 6–8.

Distribution. Kuwait (Bowman and Tareen 1983).

Nerocila sigani Bowman & Tareen, 1983

Nerocila sigani Bowman & Tareen, 1983: 12, fig. 9; Kuwait (type locality).

Distribution. Kuwait (Bowman and Tareen 1983).

Nerocila phaiopleura Bleeker, 1857

Nerocila phaiopleura Bleeker, 1857: 25–26, fig. 3, Java (type locality); Bowman & Tareen, 1983: 5, fig. 5.

Distribution. A widespread species, recorded in the Indian Ocean from Hong Kong to South Africa (Bowman and Tareen 1983).
Mothocya sp.

Mothocya sp., Bowman & Tareen, 1983: 25, fig. 19.

Cymothoa eremita ? (Brunnich, 1783), Bowman & Tareen, 1983: 25, fig. 20, India (type locality).

Distribution. India (Bowman and Tareen 1983)

Family Gnathiidae Leach, 1814

Genus Gnathia Leach, 1814

Gnathia sp.

Figure 3A

Material examined. 1 ♂, 2 ♀; St. 7; 29°22.497’N, 47°45.183’E; 02 Feb. 2014; 1 ♀, 6 praniza larvae; St. 8; 29°23.047’N, 47°50.192’E; 3 Feb. 2014; 1 ♀, 6 praniza larvae; St. 10; 29°21.401’N, 47°56.390’E; 22 Feb. 2014; 1 ♂; St. 11; 29°21.631’N, 47°57.204’E; 9 Dec. 2013; 1 ♀; St. 12; 29°23.481’N, 47°59.800’E; 08 Dec. 2013; 3 ♀, 8 praniza larvae; St. 19; 29°04.431’N, 48°08.676’E; 10 Dec. 2014; 2 ♀, 1 praniza larva; St. 21; 29°00.071’N, 48°09.853’E; 16 Feb 2014; 1 ♀, 3 praniza larvae; St. 25; 28°38.813’N, 48°23.429’E; 3 Mar. 2014; 3 ♀, 1 ♂, 50 praniza larvae; St. 26; 28°34.794’N, 48°24.078’E; 4 Mar. 2014; 5 ♀, 9 ♀, 6 praniza larvae; St. 27; 28°40.778’N, 48°39.207’E; 11 Nov. 2014; 1 ♂, 3 praniza larvae; St. 28; 28°40.939’N, 48°39.196’E; 11 Nov. 2014; 8 ♀, 16 juveniles, 50 ♀, 3 praniza larvae; St. 30; 28°49.105’N, 48°46.553’E; 10 Nov. 2014; 3 ♀, 6 juveniles; St. 31; 28°49.022’N, 48°46.607’E; 10 Nov. 2014; 50 ♀ and praniza larvae; St. 32; 29°04.278’N, 48°29.655’E; 9 Nov. 2014; 3 ♀; St. 35; 29°23.710’N, 48°24.136’E; 25 Dec. 2014; 4 ♂♂, 2 sub adults ♂♂, 3 praniza larvae; St. 36; 29°23.629’N, 48°23.958’E; 24 Dec. 2014; 4 praniza larvae; St. 38; 29°28.049’N, 48°17.838’E; 22 Dec. 2014.

Remarks. The specimen is closely related to *Gnathia luxata* Kensley, Schotte & Poore, 2009 from Khawr Musharraba, Saudi Arabia, Persian Gulf. However, it differs from *G. luxata* by having a larger and conical mediofrontal process and bifid superior frontolateral process instead of a conical process. Also, the supraocular lobe is blunt and oblique rather than simply rounded.

Distribution. New record for Kuwait.

Genus Elaphognathia Monod, 1926

Elaphognathia sp.

Figure 3B

Material examined. 1 ♂; St. 3; 24°11.2014’N, 48°07.850’E; 24 Nov. 2014.

Remarks. The specimen is similar to *E. gladia* Kensley, Schotte & Poore, 2009 in having the long, thin saber-like mandible from Somalia. However, it differs from
E. gladia in having a mandible with only one conical lobe at its base rather than two and having an acute mediofrontal process (vs. absent in *E. gladia*).

Distribution. New record for Kuwait.

Family Bopyridae Rafinesque, 1815

Genus *Epipenaeon* Nobili, 1906

Epipenaeon elegans Chopra, 1923

Epipenaeon elegans Chopra, 1923: 454–456, figs 6–11, Ganges Delta, India (type locality); Dawson, 1958: 240; Tareen, 1982: 159–160; Abu-Hakima 1984: 51–58; Mathews et al. 1988: 53–62; Eslami & Mokhayer, 2002: 89–95; An et al. 2015: 2033.

Distribution. India; Kuwait; Abu Ali and Tarut (Saudi Arabia); Boushehr port (Iran).

Genus *Parabopyrella* Markham, 1985

Parabopyrella sp.

Material examined. 1 ♂, 1 ♀; St.8; 29°23.047’N, 47°50.192’E; 3 Feb. 2014.

Remarks. Parasite, found on the gill of the common alpheid shrimp in Kuwait the *Alpheus lobidens* De Haan, 1849.

Distribution. New record for Kuwait.

Suborder Oniscidea Latreille, 1802

Family Ligiidae Brandt & Ratzeburg, 1831

Genus *Ligia* Fabricius, 1798

Ligia persica Khalaji-Pirbalouty & Wägele, 2010

Figure 3C

Ligia persica Khalaji-Pirbalouty & Wägele, 2010b: 136–149, figs 2–7; Kish Island, Iran (type locality).

Ligia exotica Roux, 1828. – Jones, 1986: 148, pl. 40.

Material examined. 1 ♀; St. 7; 29°22.497’N, 47°45.183’E; 2 Feb. 2014; 4 ♂♂, 2 ♀♀; St. 8; 29°23.047’N, 47°50.192’E; 3 Feb. 2014; 3 ♂♂, 17 ♀♀; St. 12; 29°23.481’N, 47°59.800’E; 8 Dec. 2013 20 ♂♂ and 2 ♀♀; St. 13; 29°21.979’N, 48°01.344’E; 19 Jan. 2014; 4 ♂♂, 6 ♀♀; St. 26; 28°34.794’N, 48°24.078’E; 4 Marc. 2014; 4 ♂♂, 4 ♀♀; St. 28; 28°40.939’N, 48°39.196’E; 11 Nov. 2014.

Distribution. Iran, Oman, and United Arab Emirates (Taiti and Checcucci 2011; Khalaji-Pirbalouty and Wägele 2010), new record for Kuwait.
Family Olibrinidae Budde-Lund, 1913
Genus Olibrinus Budde-Lund, 1913

Olibrinus antennatus Budde-Lund, 1902

Olibrinus antennatus Budde-Lund, 1902: 379, Malaysia (type locality); Schmalfuss, 2003: 182; Taiti & Ferrara, 2004: 223, pl. 4.

Material examined. 1 ♀; St. 3; 29°39.403’N, 48°07.450’E; 24 Nov. 2014.
Distribution. Indian Ocean (Taiti and Ferrara 2004), coastal waters of Iran (Khalaji-Pirbalouty, unpublished data), new record for Kuwait.

Family Tylidae Milne-Edwards, 1840
Genus *Tylos* Audouin, 1826

Tylos maindroni Giordani Soika, 1954
Figure 3D

Tylos maindroni Giordani Soika, 1954: 76, figs 8, 9, pl. 10, Oman Sea, Muscat (type locality); Ferrara & Taiti, 1986: 94; Taiti & Ferrara, 1991: 213, fig. 3; Taiti et al. 2000: 148.

Tylos sp. Jones, 1986: 149, pl. 40.

Material examined. 2 juveniles; St. 4; (1 ♀); St. 28; 11 Nov. 2014; 2 ♂♂, 2 ♀♀; St. 33; 29°04.377’N, 48°29.472’E; (1 ♀, 3 juveniles); St. 35; 29°23.710’N, 48°24.136’E; 25 Dec. 2014; 1 ♀, 4 juveniles; St. 38; 29°22.726’N, 48°26.269’E; 22 Dec. 2014.

Distribution. Oman, Kuwait (Taiti and Ferrara 1991); Bandar-e-Charak, Bandar-e Bostanoo, Iran (Khalaji-Pirbalouty, unpublished data).

Suborder Sphaeromatidea Wägele, 1989
Family Sphaeromatidae Latreille, 1825
Genus *Cymodoce* Leach, 1814

Cymodoce delvarii Khalaji-Pirbalouty, Bruce & Wägele, 2013
Figure 3E

Cymodoce delvarii Khalaji-Pirbalouty et al., 2013: 523–528, figs 16–19; Boushehr Province, Iran (type locality).

Cymodoce richardsoniae Jones, 1986: 149, pl. 40 [not *C. richardsoniae* Nobili, 1906; misidentification].

Material examined. 1 ♂, 1 ♀, 1 subadult ♂, 1 juvenile; St. 3; 29°39.403’N, 48°07.850’E; 24 Nov. 2014; 6 ♂♂ 25 ♀♀, 6 sub adult ♂♂; St. 12; 29°23.481’N, 47°59.800’E; 8 Dec. 2013; 1 juvenile St.15; 29°16.496’N, 48°05.407’E; 18 Dec. 2013; 1 ♂, 1 sub-adult ♂, 1 juvenile; St.18; 29°06.041’N, 48°08.323’E; 1 Feb. 2014; 1 ♀; St.19; 29°04.431’N, 48°08.676’E; 10 Dec. 2014; 2 juveniles; St. 25; 28°38.813’N, 48°23.429’E; 3 Mar. 2014; 4 ♂♂, many juveniles; St. 26; 28°34.794’N, 48°24.078’E; 4 Mar. 2014; 1 ♀; St. 28; 28°40.939’N, 48°39.196’E; 11 Nov. 2014; 1 ♀; St. 32; 29°04.278’N, 48°29.655’E; 9 Nov. 2014; 1 ♂, 15 ♀♀; St. 34; 29°22.726’N, 48°26.269’E; 10 Feb. 2016; 1 ♀; St. 35; 29°23.710’N, 48°24.136’E; 25 Dec. 2014; 2 ♂♂, 26 ♀♀, many juveniles; St. 36; 29°23.629’N, 48°23.958’E; 24 Dec. 2014.
Distribution. Bousher Province, Iran (Khalaji-Pirbalouty, Bruce and Wägele 2013), new record for Kuwait.

Cymodoce fuscina Schotte & Kensley, 2005
Figure 3F

Cymodoce fuscina Schotte & Kensley, 2005: 1245–1248, figs 19–20, Safaniya and Manifa, Saudi Arabia (type locality); Ulman et al. 2017: 27.
Cymodoce sp. Jones, 1986: 149, pl. 40.

Material examined. 2 ♂♂ and 3 ♀♀♀; Kuwait Fishery Station (from Smithsonian Natural History Museum collection, USNM 1145230).
Distribution. Saudi Arabia, United Arab Emirates, the Mediterranean basin, Greece (Schotte and Kensley 2005; Ulman et al. 2017), new record for Kuwait.

Cymodoce waeglei Khalaji-Pirbalouty & Raupach, 2014
Figure 3G

Cymodoce waeglei Khalaji-Pirbalouty & Raupach, 2014: 242–249, figs 7–12, Boushehr Province, Iran (type locality); Khalaji-Pirbalouty et al. 2015: 34, fig. 2.

Material examined. 2 ♂♂, 3 ♀♀♀; St. 25; 28°38.813’N, 48°23.429’E; 3 Mar. 2014; 4 ♂♂, 9 ♀♀♀; St. 26; 28°34.794’N, 48°24.078’E; 4 Mar. 2014; 1 ♂, 1 ♀; St. 27; 28°40.778’N, 48°39.207’E; 11 Nov. 2014.

Distribution. Bousher Province and Hengam Island, Iran (Khalaji-Pirbalouty and Raupach 2014; Khalaji-Pirbalouty et al. 2015), new record for Kuwait.

Genus Dynamenella Hansen, 1905

Dynamenella granulata Javed & Ahmed, 1988
Figure 3H

Dynamenella granulata Javed & Ahmed, 1988: 234–236, figs 1–3, Karachi coast, Pakistan (type locality).

Materials examined. 1 juvenile; St. 25; 28°38.813’N, 48°23.429’E; 3 Mar. 2014; 1 sub-adult ♂, 2 ♀♀♀, 1 juvenile; St. 28; 28°40.939’N, 48°39.196’E; 11 Nov. 2014; 4 sub-adults ♂♂, 5 ♀♀♀, 5 juveniles; St. 33; 29°04.377’N, 48°29.472’E; 9 Nov. 2014.

Distribution. Pakistan and Iran coasts (Javed & Ahmed, 1988; Khalaji-Pirbalouty unpublished data), new record for Kuwait.
Genus *Heterodina* Schotte & Kensley, 2005

Heterodina mccaini Schotte & Kensley, 2005

Figure 4A

Heterodina mccaini Schotte & Kensley, 2005: 1259–1261, figs 27, 28, Manifa, Saudi Arabia (type locality).

Material examined. > 100 ♂♂ and ♀♀; St. 7; 29°22.497′N, 47°45.183′E; 2 Feb. 2014; 1 ♂; St. 8; 29°23.047′N, 47°50.192′E; 7 ♀♀; St. 12; 29°23.481′N, 47°59.800′E; 8 Dec. 2013; 8 ♂♂, > 100 ♀♀ and Juveniles; St. 19; 47°59.800′N, 48°08.676′E; 10 Dec. 2014; 1 ♂; St. 21; 29°00.071′N, 48°09.853′E; 16 Feb. 2014; 5 ♂♂, 23 ♀♀; St. 25; 28°38.813′N, 48°23.429′E; 3 Mar. 2014; > 100 ♂♂ and ♀♀; St. 26; 28°34.794′N, 48°24.078′E; 4 Mar. 2014; 2 ♀♀, 1 juvenile; St. 32; 29°04.278′N, 48°29.655′E; 9 Nov. 2014; 2 ♂♂; St. 34; 29°22.726′N, 48°26.269′E; 10 Feb. 2016; 1 ♂, 1 ♀; St. 37; 29°25.625′N, 48°20.307′E; 23 Dec. 2014; 3 ♀♀; St. 38; 29°28.049′N, 48°17.838′E; 22 Dec. 2014.

Distribution. Manifa and Ras Tanajib, Saudi Arabia (Schotte and Kensley 2005), new record for Kuwait.

Genus *Sphaeroma* Bosc, 1802

Sphaeroma walkeri Stebbing, 1905

Figure 4B

Sphaeroma walkeri Stebbing, 1905: 31–33, pl. VII, Jokkenpiddi Paar, Sri Lanka (type locality). Latest synonymies to the species can be found in Martínez-Laiz et al., (2018: 13).

Material examined. 8 ♂♂, 5 ♀♀, 10 juveniles; St. 24; 28°44.502′N, 48°22.950′E; 8 Jan. 2015; 9 ♀♀; St. 25; 28°38.813′N, 48°23.429′E; 3 Mar. 2014.

Distribution. *Sphaeroma walkeri* is one of the most widespread species of the marine isopods, reported along the Indian, Atlantic, and Pacific oceans coastal zones (Khalaji-Pirbalouty and Wägele 2010c; Martínez-Laiz et al. 2018).

Sphaeroma khalijfarsi Khalaji-Pirbalouty & Wägele, 2010

Figure 4C

Sphaeroma khalijfarsi Khalaji-Pirbalouty & Wägele, 2010c: 3–9, figs 1–5, Qeshm Island, Iran (type locality).

Material examined. 3 ♀♀, 25 juveniles; St. 4; 29°34.849′N, 48°10.248′E; 25 Nov. 2014; 1 juvenile; St. 17; 29°08.154′N, 48°07.985′E; 4 Jan. 2014; 2 ♀♀; St.
26; 28°34.794’N, 48°24.078’E; 4 Mar. 2014; 2 ♂♂, 6 ♀♀, 6 juveniles; St. 39; 29°38.993’N, 48°18.830’E; 24 Jan. 2015; 4 ♂♂, 25 ♀♀, 21 juveniles; St. 40; 29°48.093’N, 48°21.975’E; 25 Jan. 2015.

Distribution. Qeshm Island, Bandare Abbas, Bandare Kolahi, Iran (Khalaji-Pirbalouty and Wägele 2010c), new record for Kuwait.

Sphaeroma annandalei Stebbing, 1911

Sphaeroma annandalei Stebbing, 1911: 181, pl. X, West Bengal, India (type locality); Barnard, 1936: 174; Barnard, 1940: 405; Pillai, 1955: 134, figs 23–35, pl. VII; Joshi & Bal, 1959: 62; Kelsey, 1978: 113; Jones, 1986: 149, pl. 40; Khalaji-Pirbalouty & Wägele, 2010: 31–37, figs 1–5.

Sphaeroma irakiensis irakiensis Ahmed, 1971: 77–79, fig. 1.

Distribution. India, Habbanyyah Lake, and Shat Al- Arab River (Iraq); Arvand Kenar (Iran); Kuwait.

Genus *Sphaeromopsis* Holdich & Jones, 1973

Sphaeromopsis sarii Khalaji-Pirbalouty & Wägele, 2009

Figure 4D

Sphaeromopsis sarii Khalaji-Pirbalouty & Wägele, 2009: 34–42, figs 1–5, Kish Island, Iran (type locality).

Material examined. 1 ♀; St. 4; 29°34.849’N, 48°10.248’E; 25 Nov. 2014; 3 ♂♂; St. 12; 29°23.481’N, 47°59.800’E; 8 Dec. 2013; 100 ♂♂ and ♀♀; St. 15; 29°16.496’N, 48°05.407’E; 2 ♂♂, 15 ♀♀; St. 18; 29°06.041’N, 48°08.323’E; 1 Feb. 2014; 1 ♂, 10 ♀♀; St. 21; 29°00.071’N, 48°09.853’E; 16 Feb. 2014; 2 ♂♂, 12 ♀♀, 2 Juveniles; St. 24; 28°44.502’N, 48°22.950’E; 8 Jan. 2015; 3 ♂♂, 8 ♀♀; St. 25; 28°38.813’N, 48°23.429’E; 3 Mar. 2014; 1 ♀; St. 26; 28°34.794’N, 48°24.078’E; 4 Mar. 2014; 22 ♂♂, 9 ♀♀, 2 juveniles; St. 27; 28°40.778’N, 48°39.207’E; 11 Nov. 2014; 28 ♂♂, 31 ♀; St. 28; 28°40.939’N, 48°39.196’E; 11 Nov. 2014; 35 ♂♂ and ♀♀; St. 29; 28°40.960’N, 48°39.173’E; 11 Nov. 2014; > 100 ♂♂ and ♀♀; St. 30; 28°49.105’N, 48°46.553’E; 10 Nov. 2014; 3 ♂♂, 43 ♀♀; St. 31; 28°49.022’N, 48°46.607’E; 10 Nov. 2014; > 100 ♂♂ and ♀♀; St. 32; 29°04.278’N, 48°29.655’E; 9 Nov. 2014; 9 ♂♂, 12 ♀♀, 3 juveniles; St. 33; 29°04.377’N, 48°29.472’E; 9 Nov. 2014 13 ♂♂, 14 ♀♀; St. 34; 29°22.726’N, 48°26.269’E; 10 Feb. 2016; > 100 ♂♂ and ♀♀; St. 36; 29°23.629’N, 48°23.958’E; 10 Feb. 2016; > 100 ♂♂ and ♀♀; St. 37; 29°25.625’N, 48°20.307’E; 23 Dec. 2014.

Distribution. Kish, Qeshm, Hengam Islands, Iran (Khalaji-Pirbalouty and Wägele 2009; Khalaji-Pirbalouty et al. 2015), new record for Kuwait.
Suborder Valvifera Sars, 1882
Family Arcturidae Sars, 1897
Genus *Arcturinoides* Kensley, 1977

Arcturinoides angulata Kensley, Schotte & Poore, 2007
Figures 4E, 7F

Arcturinoides angulata Kensley et al., 2007: 433–436, figs 3, 4, Kuwait Bay (type locality).

Material examined. 1 ♀; St. 7; 29°22.497'N, 47°45.183'E; 2 Feb. 2014; 1 ♀; St. 8; 29°23.047'N, 47°50.192'E; 3 Feb. 2014; 2 ♂♂; St. 34; 29°22.726°N, 48°26.269'E; 10 Feb. 2016; 1 ♂; St. 35; 29°23.710°N, 48°24.136'E; 25 Dec. 2014.

Distribution. United Arab Emirates, Kuwait Bay, Kuwait (Kensley et al. 2007).

Genus *Astacilla* Cordiner, 1793

Astacilla mccaini Kensley, Schotte & Poore, 2007
Figure 4G, H

Astacilla mccaini Kensley et al., 2007: 437–440, figs 5, 6, Manifa Bay, Saudi Arabia (type locality).

Material examined. 10 ♂♂; St. 20; 29°8.043°N, 48°9.139'E; 28 Sep. 2014; 1 ♀; St. 21; 29°00.071°N, 48°09.853'E; 16 Feb. 2014; 1 ♂; St. 34; 29°22.726°N, 48°26.269°E; 10 Feb. 2016; 1 ♂; St. 35; 29°23.710°N, 48°24.136'E; 25 Dec. 2014; 6 ♂♂, 2 ovigerous ♀♀, 2 juveniles; St. 36; 29°23.629°N, 48°23.958'E; 25 Dec. 2014.

Distribution. Manifa Bay, Saudi Arabia; Kuwait Bay, Kuwait (Kensley et al. 2007).

Suborder Asellota Latreille, 1802
Family Paramunnidae Vanhöffen, 1914
Heterosignum Gamô, 1976

Type species. *Heterosignum mutsuensis* Gamô, 1976

Heterosignum sp.

Material examined. 3 ♀; St. 28; 28°40.939°N, 48°39.196'E; 11 Nov, 2014; 1 ♀; St. 25; 28°38.813°N, 48°23.429'E; 3 Mar. 2014.

Distribution. New record for Kuwait.
Bowmen and Tareen (1983) were the first to study Kuwait’s isopod fauna, recording nine species of Cymothoidae, all ectoparasitic on marine fishes (Table 6). Jones (1986) included six isopod species in his ‘Field Guide to the Seashores of Kuwait’: *Apanthura sandalensis*, *Ligia exotica*, and *Cymodoce richardsoniae* are reidentified as...
Amakusanthura sp., L. persica, and C. delvarii, respectively. Moreover, Cymodoce sp. of Jones (1986) is reidentified as Cymodoce fuscina and Tylos sp. is identified as Tylos maindroni. The widespread supratidal isopod Tylos maindroni was previously reported from Kuwait by Taiti and Ferrara (1991). However, Sphaeroma annandali Stebbing, 1911 was not found in the current study: the known distribution of S. annandali is from the West Bengal estuaries in India to the Arvandroud (Shatt-Al-Arab) riverbanks between Iran and Iraq (Khalaji-Pirbalouty and Wägele 2010).

Two additional species, Arcturinoides angulata and Astacilla mccaini, were collected from Kuwait Bay by Kensley et al. (2007). In monitoring the fauna of recently dredged canals in the Al-Khiran area of Kuwait, Jones and Nithyanandan (2012) discovered and described two new isopod species from Kuwait and mentioned the occurrence of a third, increasing the valid species of Isopoda recorded from Kuwait to 17. With the present survey, we now count 38 species of Isopoda, more than doubling Kuwait's known isopod fauna. Twenty-one of the 25 species collected for this study represent first records for Kuwait (Table 2). Only four of these 25 species were reported previously: Eurydice peraticis, Tylos maindroni, Arcturinoides angulata, and Astacilla mccaini.

The geographical distribution of isopod species in Kuwait waters show very different patterns. The burrowing isopod Sphaeroma walkeri was found living in soft rocks in the high intertidal area of the Al-Zour coast. The type locality of this species is Sri Lanka, and it has been considered restricted to the northern Indian Ocean. This thermophilic species is also tolerant to a range of salinities, and its distribution is worldwide in the tropics (Ríos-Touma et al. 2017). The ranges of other species are also limited to the Indian Ocean. For example, Lanocira gardineri, is widely distributed from western Australia (Bruce and Sidabalok 2011) and the Maldives, Kenya, and Madagascar (Delaney 1989). Delaney (1989) recorded it from the Khor Abdullah estuary, Iraq, in the northwestern Gulf. Tolerance of salinity fluctuations is believed to be a primary reason for the wide distribution of this species throughout the Indian Ocean. Other species, such as Dynamenella granulata, and Atarbolana exoconta, are widely distributed along the northeastern coast of the Gulf and along the Pakistani coast. Their distribution pattern is similar to some brachyuran decapods as suggested by Apel and Türkay (1999) and Naderloo et al. (2011). According to this distribution pattern, the fiddler crab fauna of the southern and western Gulf is similar in East Africa, the Gulf of Aden, and the Red Sea. At the same time, the fauna of the northeastern parts of the Persian Gulf is also somewhat similar to that of the northeastern Arabian Sea coasts of Pakistan and India. Finally, some of the known species of isopoda (e.g., Heterodina mccaini; Sphaeroma khalijfarsi, and Sphaeromopsis sarii) are indigenous to the Gulf.

The new results reveal a low species richness of Isopoda in Kuwait waters compared to the adjacent regions of the Indian Ocean. Based on Kensley’s (2001) isopod checklist, the Indian Ocean exhibits a high species diversity of more than 1000 species. Of these, 268 species inhabit the Indian coastal region, and fewer than half that number, 121 species, has been recorded from Pakistan’s coast by Kazmi et al. (2002). The apparently low species richness of Isopoda in the Kuwait region compared to that of other areas of the Indian Ocean is due to Kuwait’s limited coastline, less than 200 km, but also to the Gulf’s young age, less than 6,000 years BP (Sheppard et al. 2010), and the harsh
environmental conditions. The age of the environment is an essential factor for the evolution of diversity (Gaston and Chown 1999). The seabed regions of the Gulf presently at depths of 4–6 m have only been submerged for 3,000–4,000 years (Sheppard et al. 2010). Therefore, the current coastal habitat development is comparatively young.

The harsh environmental conditions in Kuwait coastal zone arise from high temperatures and high salinity. Salinities exceed 40 PSU, and summer temperatures often exceed 35 °C. For instance, from 2000 to 2013, the mean seawater temperature in Kuwait Bay was 23.6 °C with a range of 9.7–36.0 °C, and salinity ranged from 30–46 PSU (Al-Yamani et al. 2004). Furthermore, extreme air temperatures with highs up to 55°C in the summer months and winter lows around freezing are known from Kuwait (Jones 1986).

However, a comparison between this study and restricted localities of similar size suggested no lower diversity in Kuwait. Brusca (1987) reported 36 species of marine isopods from the Galapagos. Seventeen species of these were shallow-water species from the littoral to a depth of 100 m. Furthermore, Kensley (1984) identified only 24 species of isopods from the Belizean reef crest. The low species composition of these studies may arise from limited sampling. This study focuses on the Kuwaiti shoreline; therefore, many species living in sub-tidal depths were not collected.

Some isopod species appear to be introduced into Kuwait Bay from outside of the Gulf. For example, *Cymodoce fuscina* and *C. waegelei* were found in the subtidal zone of the Iranian and Arabian coasts of the Gulf, but were also recently reported from the Mediterranean basin, Greece (Ulman et al. 2017) and Egypt (pers. obs.). This distribution supports the hypothesis of a human-assisted introduction, such as through ballast water discharge. According to the Public Relations Department of Hormozgan Ports, Iran, ca. 53,000 tanker and cargo ships enter the Gulf annually and ca. 40% of the world’s total oil transportation passes through the Strait of Hormuz (Al-Yamani et al. 2015). In this context, ships transport a billion tonnes of ballast water annually, so although this intertidal study was comprehensive, it was only limited to sampling in the intertidal zone. Repeated sampling during different seasons as well as subtidal investigations would certainly increase Kuwait’s known isopod fauna.

The present study provides a baseline account of Kuwait’s coastal zone isopod fauna. The next step will be evaluating their ecology and conservation status. As Kuwait is one of the major oil exporters, invasive species are a significant issue, mainly due to the discharge of ballast water from oil tankers and cargo ships. Therefore, prevention is crucial for decision-making and implementation of invasion control and detection of new exotics. The results of this study highlight the need for further morphological as well as molecular studies to clarify the taxonomic status of some specimens, and a larger sampling effort in deeper waters of this area.

Acknowledgements

Gratitude to the Kuwait Petroleum Company (KPC) and the Kuwait Institute for Scientific Research (KISR) for providing financial support for this project. Special thanks to Miss Zainab Sattari for her support during the project with fieldwork and data
entry, and Miss Muneera Aljeri for preparing the GIS map. We thank especially Dr. James Bishop for his helpful suggestions on the first draft of the manuscript. Dr. Wolfgang Wägele (Zoological Research Museum Alexander Koenig, Bonn), Dr. Gary Poore (Museums Victoria), Dr. Niel Bruce (Queensland Museum), Dr. Lena Hartebrodt (University of Auckland), Dr. Brenda Doti (Universidad de Buenos Aires, Argentina), and Dr. Rachael Peart (National Institute of Water and Atmospheric Research, New Zealand) are thanked for their constructive suggestions and comments that improved the manuscript. Extended thanks to all KISR staff in project FM075C for helping in macrofauna sampling in the field and sample processing in the laboratory.

References

Abu-Hakima R (1984) Preliminary observations on the effects of *Epipenaeon elegans* Chopra (Isopoda: Bopyridae) on reproduction of *Penaeus semisulcatus* de Haan (Decapoda; Penaeidae). International Journal of Invertebrate Reproduction and Development 7: 51–62. https://doi.org/10.1080/01688170.1984.10510071

Al-Kandari M, Sattari Z, Hussain S, Radashevsky VI, Zhadan A (2019a) Checklist of intertidal polychaetes (Annelida) of Kuwait, Northern part of the Arabian Gulf. Regional Studies in Marine Science 32: e100872. https://doi.org/10.1016/j.rsma.2019.100872

Al-Kandari M, Oliver G, Chen W, Taqi A, Skryabin V, Yousif A, Raghu M, Al-Jazzaf S, Al-Hamad A (2019b) Diversity and distribution of the intertidal Mollusca of the State of Kuwait, Arabian Gulf. Regional Studies in Marine Science 33: e100905. https://doi.org/10.1016/j.rsma.2019.100905

Al-Kandari M, De Grave S, Hussain S, Anker A (2020a) Five New Records of Man-tis Shrimps (Stomatopoda) From Kuwait. Crustaceana 93: 671–675. https://doi.org/10.1163/15685403-642bja10011

Al-Kandari M, Anker A, Hussain S, Al-Yassen Sh, Sattari Z, De Grave S (2020b) New records of decapod crustaceans from Kuwait (Malacostraca: Decapoda). Zootaxa 4803: 251–280. https://doi.org/10.11646/zootaxa.4803.2.2

Al-Kandari M, Bishop J, Chen W, Skryabin V, Polikarpov I, Sattari Z, Taqi A, Hussain S (2017) Biodiversity, Distribution and Abundance of Intertidal Macrofauna in Kuwait. Final Report FM075C, KISR 14461, Kuwait Institute for Scientific Research.

Al-Yamani F, Skryabin V, Durvasula SRV (2015) Suspected ballast water introductions in the Arabian Gulf. Aquatic Ecosystem Health and Management 18: 282–289. https://doi.org/10.1080/14634988.2015.1027135

Al-Yamani FY, Skryabin V, Boltachova N, Revkov N, Makarov M, Grinstov V, Kolesnikova E (2012) Illustrated Atlas on the Zoobenthos of Kuwait. Kuwait Institute for Scientific Research, 383 pp.

An J, Boyko CB, Li X (2015) A Review of Bopyrids (Crustacea: Isopoda: Bopyridae) Parasitic on caridean Shrimps (Crustacea: Decapoda: Caridea) from China. Bulletin of the American Museum of Natural History 399: 1–85. https://doi.org/10.1206/amnb-921-00-01.1

Apel M, Türkay M (1999) Taxonomic composition, distribution and zoogeographic of the grapsid and ocypodid crab fauna of intertidal soft bottoms in the Arabian Gulf. Estuarine, Coastal and Shelf Science 49: 131–142. https://doi.org/10.1016/S0272-7714(99)80018-3
Barnard KH (1914) Contributions to the crustacean fauna of South Africa, 3. Additions to the marine Isopoda, with notes on some previously incompletely known species. Annals of the South African Museum 10: 325–442. https://doi.org/10.5962/bhl.part.9319

Bowman TE, Tareen IU (1983) Cymothoidae from Fishes of Kuwait (Arabian Gulf) (Crustacea: Isopoda). Smithsonian Contributions to Zoology, 30 pp. https://doi.org/10.5479/si.00810282.382

Bruce NL (1980) The systematics of some Japanese marine isopod Crustacea (Fam. Sphaeromatidae) of the genera Dynoides Barnard, 1914 and Cymodocella Pfeffer, 1887, with description of two new species. Crustaceana 38: 199–211. https://doi.org/10.1163/156854080X00643

Bruce NL (1986) Cirolanidae (Crustacea: Isopoda) of Australia. Records of the Australian Museum 6: 1–239. https://doi.org/10.3853/j.0812-7387.6.1986.98

Brusca RC (1987) Biogeographic relationships of Galapagos marine isopod crustaceans. Bulletin of Marine Science 41: 268–281.

Bruce NL, Javed W (1987) A new genus and species of cirolanid isopod Crustacea from the northern Indian Ocean. Journal of Natural History 21: 1451–1460. https://doi.org/10.1080/002229387070911

Bruce NL, Sidabalok C (2011) The genus Lanocira Hansen, 1890 (Corallanidae: Isopoda: Crustacea) in tropical Australian waters. Zootaxa 2793: 23–34. https://doi.org/10.11646/zootaxa.2793.1.2

Brusca RC, Brusca GJ (2003) Invertebrates. Sinauer Associates, Sunderland, 936 pp.

Brusca RC, Coelho V, Taiti S (2001) A guide to the Costal Isopods of California. http://tolweb.org/notes/?note_id=3004

Budde-Lund G (1902) A list of terrestrial isopods. In: Lanchester W (Ed.) On the Crustacea collected during the Skeat Expedition to the Malay Peninsula. Proceedings of the Zoological Society of London 1902: 379–381.

Chopra B (1923) Bopyrid isopods parasitic on Indian Decapoda Macrura. Records of the Indian Museum 25: 411–550. [pls 11–21]

Dawson CE1 (1958) Observations on the infection of the shrimp, Penaeus semisulcatus, by Epipenaeon elegans in the Persian Gulf. Journal of Parasitology 44: 240–241. https://doi.org/10.2307/3274711

Delaney PM (1989) Phylogeny and biogeography of the marine isopod family Corallanidae (Crustacea, Isopoda, Flabellifera). Contributions to Science, Natural Museum of Los Angeles County 409: 1–75. https://doi.org/10.5962/p.226815

Eleftheriou A, Jones DA (1976) The genus Eurydice on the west coast of India. Journal Zoological Society London 178: 385–394. https://doi.org/10.1111/j.1469-7998.1976.tb02276.x

Eslami F, Mokhayer B (2002) Occurrence of Bopyridae parasite (Epipenaeon elegans) in green tiger shrimp in the Persian Gulf (Bushehr Waters). Iranian Scientific Fisheries Journal 10: 89–96.

Gamô S (1976) Heterosignum mutsuenis gen. nov., sp. nov., a new isopod crustacea from Mutsu Bay, northern Japan (Paraselloidea, Munniidae). Proceedings of the Japanese Society of Systematic Zoology 12: 39–45.

Gaston KJ, Chown SL (1999) Elevation and climatic tolerance: a test using dung beetles. Oikos 86: 584–590. https://doi.org/10.2307/3546663
Giordani Soika A (1954) Ecologia, sistematica, biogeografia ed evoluzione del *Tylos latreillei* 703 auct. (Isop. Tylidae). Bollettino del Museo civico di Storia naturale di Venezia 7: 63–83.

Javed W, Ahmed R (1988) Two new species of the genus *Dynamenella* from the northern Arabian Sea (Isopoda). Crustaceana 55: 234–241. https://doi.org/10.1163/156854088X000320

Jones DA (1974) The systematics and ecology of some sand beach isopods (Family Cirolanidae) from the coasts of Saudi Arabia. Crustaceana 26: 201–211. https://doi.org/10.1163/156854074X00569

Jones DA (1982) New isopods of the genus *Lanocira* (Corallanidae) from the Indian Ocean region. Crustaceana 42: 65–75. https://doi.org/10.1163/156854082X00704

Jones DA (1986) A field guide to the sea shores of Kuwait and the Arabian Gulf. University of Kuwait, Distributed by Blandford Press, Dorset, 192 pp.

Jones DA, Nithyanandan M (2012) Taxonomy and distribution of the genus *Eurydice* Leach, 1815 (Crustacea, Isopoda, Cirolanidae) from the Arabian region, including three new species. Zootaxa 716(3314): 45–57. https://doi.org/10.11646/zootaxa.3314.1.4

Kazmi QBM, Schotte M, Yousof F (2002) An illustrated key to the Malacostraca (Crustacea) of the Northern Arabian Sea, Part V: Isopoda. Pakistan Journal of Marine Sciences 11: 47–116.

Kensley B (1978) Guide to the Marine Isopods of Southern Africa. South African Museum & The Rustica Press, Wynberg, Cape Town, 173 pp.

Kensley B (1984) The role of isopod crustaceans in the reef crest community at Carrie Bow Cay, Belize. Marine Ecology 5: 29–44. https://doi.org/10.1111/j.1439-0485.1984.tb00305.x

Kensley B (2001) Biogeography of the marine Isopoda of the Indian Ocean, with a checklist of species and records. In: Brusca RC, Kensley B (Eds) Isopod Systematics and Evolution. Crustaceana 13: 205–264.

Kensley B, Schotte M, Poore GCB (2007) New species and records of valviferan isopods (Crustacea: Isopoda: Valvifera) from the Indian Ocean. Proceedings of the Biological Society of Washington 120: 429–445. https://doi.org/10.2988/0006-324X(2007)120[429:NSAROV2.0.CO;2]

Kensley B, Schotte M, Poore GCB (2009) Gnathiid isopods (Crustacea: Isopoda: Gnathiidae), mostly new, from the Indian Ocean. Proceedings of the Biological Society of Washington 122(1): 32–51. https://doi.org/10.2988/07-16.1

Khalaji-Pirbalouty V, Bruce, NL (2014) A review of the genus *Heterodina* Kensley & Schotte, 2005 (Crustacea: Isopoda: Sphaeromatidae) with description of a new species from Iran. Zootaxa 3887: 494–500. https://doi.org/10.11646/zootaxa.3887.4.7

Khalaji-Pirbalouty V, Bruce NL, Wägele JW (2013) The genus *Cymodoce* Leach, 1814 (Crustacea: Isopoda: Sphaeromatidae) in the Persian Gulf with description of a new species. Zootaxa 3686: 501–533. https://doi.org/10.11646/zootaxa.3686.5.1

Khalaji-Pirbalouty V, Hajializadeh P, Sourinejad I (2015) A Report on the Isopods of the Coastal Waters of the Persian Gulf: the Hengam Island. Journal of the Persian Gulf 6: 33–38.

Khalaji-Pirbalouty V, Raupach MJ (2014) A new species of *Cymodoce* Leach, 1814 (Crustacea: Isopoda: Sphaeromatidae) based on morphological and molecular data, with a key to the Northern Indian Ocean species. Zootaxa 3826(1): 230–254 https://doi.org/10.11646/zootaxa.3826.1.7
Khalaji-Pirbalouty V, Wägele JW (2010a) A new record of *Sphaeroma annandalei* Stebbing, 1911 (Crustacea: Isopoda: Sphaeromatidae) from the Persian Gulf, and description of a new related species (*Sphaeroma silvai* nov. sp.) from the South Atlantic Ocean. Zootaxa 2508: 30–752. https://doi.org/10.11646/zootaxa.2508.1.2

Khalaji-Pirbalouty V, Wägele JW (2010b) Two new species of *Ligia* Fabricius, 1798 (Crustacea: Isopoda: Ligidae) from coasts of the Persian and Aden gulfs. Organisms Diversity and Evolution 10: 135–145. https://doi.org/10.1007/s13127-010-0003-5

Khalaji-Pirbalouty V, Wägele JW (2010c) A new species and a new record of *Sphaeroma* Bosc, 802 (Sphaeromatidae: Isopoda: Crustacea) from intertidal marine habitats of the Persian Gulf. Zootaxa 2631: 1–18. https://doi.org/10.1007/s13127-010-0003-5

Khalaji-Pirbalouty V, Wägele JW (2011) Two new species of cirolanid isopods (Crustacea: Isopoda: Cirolanidae) from Qeshm and Kish Islands in the Persian Gulf). Zootaxa 2930: 33–46. https://doi.org/10.11646/zootaxa.2930.1.3

Martínez-Laiz G, Ros M, Guerra-García JM (2018) Marine exotic isopods from the Iberian Peninsula and nearby waters. PeerJ 6: e4408. https://doi.org/10.7717/peerj.4408

Mathews CP, Samuel M (1987) The incidence of *Livoneca* sp. (Isopoda) on *Helotes sexlineatus* (Pisces) in Kuwait waters. Journal of Applied Ichthyology 3: 142–144. https://doi.org/10.1111/j.1439-0426.1987.tb00467.x

Monod T (1933) Mission Robert-Ph. Dollfus en Egypte, Tanaidacea et Isopoda. Mémoires de l’Institut d’Égypte 21: 161–264.

Santucci R (1937) La *Ligia exotica* Roux sulle coste del Mar Rosso. Bollettino dei Musei e Laboratorii di Zoologia e Anatomia Comparata della R. Università di Genova 17: 1–10.

Naderloo R, Türkay M, Apel M (2011) Brachyuran crabs of the family Macrophthalmidae Dana, 1851 (Decapoda: Brachyura: Macrophthalmidae) of the Persian Gulf. Zootaxa 2911: 1–4. https://doi.org/10.11646/zootaxa.2911.1.1

Nierstrasz HF (1917) Die isopoden-sammlung im Naturhistorishen reichs-museum zu Leiden II. Cymothoidae, Sphaeromidae, Serolidae, Anthuridae, Idoteidae, Asellidae, Janiridae, Munnopsidae. Zoologische Mededelingen 3: 87–119.

Perry DM, Brusca RC (1989) Effects of the root-boring isopod *Sphaeroma peruvianum* on red mangrove forests. Marine Ecology Progress Series 57: 287–292. https://doi.org/10.3354/meps057287

Pillai NK (1967) Littoral and parasitic isopods from Kerala: Families Eurydicidae, Corallanidae and Aegidae. Journal of the Bombay Natural History Society 64: 267–283.

Poore GCB (2001) Families and genera of Isopoda Anthuridea. Crustacean Issues 13: 63–173.
Ríos-Touma B, Holzenthal RW, Huisman J, Thomson R, Rázuri-Gonzales E (2017) Diversity and distribution of the Caddisflies (Insecta: Trichoptera) of Ecuador. PeerJ 5: e2851. https://doi.org/10.7717/peerj.2851

Schotte M, Kensley B (2005) New species and records of Flabellifera from the Indian Ocean (Crustacea: Peracarida: Isopoda) Journal of Natural History 39: 1211–1282. https://doi.org/10.1080/00222930400005757

Sheppard C, Al-Husiani M, Al-Jamali F, Al-Yamani F, Baldwin R, Bishop J, Benzoni F, Dutrieux E, Dulvy NK, Durvasula SRV, Jones DA, Loughland R, Medio D, Nithyanandan M, Pilling GM, Polikarpov I, Price ARG, Purkis S, Riegl B, Saburova M, Samimi Namin K, Taylor O, Wilson S, Zainal K (2010) The Gulf: A young sea in decline. Marine Pollution Bulletin 60: 13–38. https://doi.org/10.1016/j.marpolbul.2009.10.017

Stebbing TRR (1904) Marine Crustaceans. XII. Isopoda, with description of a new genus. In: Gardiner JS (Ed.) Fauna and Geography of the Maldive and Laccadive Archipelagoes. University Press, Cambridge, 699–721.

Taiti S, Checcucci I (2011) Order Isopoda, suborder Oniscidea. In: Van Harten A (Ed.) Arthropod Fauna of the UAE 4: 33–58.

Taiti S, Ferrara F (1991) Terrestrial Isopods (Crustacea) from the Hawaiian Islands. Bishop Museum Occasional Papers 31: 202–227.

Taiti S, Ferrara F (2004) The terrestrial Isopoda (Crustacea: Oniscidea) of the Socotra Archipelago. Fauna of Arabia 20: 211–325.

Taiti S, Ferrara F, Davolos D (2000) The terrestrial Isopoda (Crustacea: Oniscidea) of Oman. Fauna of Arabia 18: 145–163.

Tareen IU (1985) First record of two bopyrid parasites of Penaeus semisulcatus from the Arabian Gulf. Kuwait Institute for Scientific Research, Technical Report 1845: 1–15.

Ulman A, Ferrario J, Occhpinti-Ambrogi A, Arvanitidis Ch, Bandi A, Bertolino M, Bogi C, Chatzigeorgiou G, Çiček BA, Deidun A, Ramos-Esplà A, Koçak C, Lorenti M, Martinez- Laiz G, Merlo G, Princisgh E, Scribano G, Marchini A (2017) A massive update of non- indigenous species records in Mediterranean marinas. PeerJ 5: e3954. https://doi.org/10.7717/peerj.3954