Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence

Bhaskar Mitra
Microsoft
bmitra@microsoft.com

Hamed Zamani
University of Massachusetts Amherst
zanami@cs.umass.edu

Sebastian Hofstätter
TU Wien
s.hofstaetter@tuwien.ac.at

Nick Craswell
Microsoft
nickcr@microsoft.com

ABSTRACT
The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark—and can be considered to be an efficient (but slightly less effective) alternative to other Transformer-based architectures that employ (i) large-scale pretraining (high training cost), (ii) joint encoding of query and document (high inference cost), and (iii) larger number of Transformer layers (both high training and high inference costs). Since, a variant of the TK model—called TKL—has been developed that incorporates local self-attention to efficiently process longer input sequences in the context of document ranking. In this work, we propose a novel Conformer layer as an alternative approach to Transformer-based runs (“nnlm”) on NDCG@10.

1 INTRODUCTION
In the inaugural year of the TREC Deep Learning track [10], ranking models using Transformers [57] demonstrated substantial improvements over traditional information retrieval (IR) methods. Several of these approaches—e.g., [62, 65]—employ BERT [17], with large-scale pretraining, as their core architecture. Diverging from this trend, Hofstätter et al. [21] propose the Transformer-Kernel (TK) model with few key distinctions: (i) TK uses a shallower model with only two Transformer layers, (ii) there are no computation-intensive pretraining, and (iii) TK independently encodes the query and document allowing for offline precomputations for faster response times. Consequently, TK achieves competitive performance at a fraction of the training and inference cost of its BERT-based peers.

Notwithstanding these efficiency gains, the TK model shares two critical drawbacks with other Transformer-based models. Firstly, the memory complexity of the self-attention layers is quadratic $O(n^2)$ with respect to the length n of the input sequence. This restricts the number of document terms we can inspect under fixed GPU memory budget. A trivial workaround involves inspecting only the first k terms of the document. This approach can negatively impact retrieval quality and has been shown to under-retrieve longer documents [20]. Secondly, in any real IR system, it is impractical to exhaustively evaluate every document in the collection for every query—and therefore these systems typically enforce some sparsity property to drastically narrow down the set of candidates.

TK employs a nonlinear matching function over query-document pairs which makes it difficult to enforce such sparsity before model inference. This restricts TK’s scope of application to late-stage reranking of smaller candidate sets as identified by simpler retrieval models. So, in this work, we extend TK in the following ways:

1. To scale to long text, we replace the Transformer layers with novel Conformer layers whose memory complexity is $O(n \times d_{key})$, instead of $O(n^2)$,
2. To enable fast retrieval with TK, we incorporate query term independence (QTI) [42], and finally,
3. We complement TK’s latent matching with lexical term matching as suggested previously by Mitra et al. [40, 41], which is known to be effective for full retrieval [19, 28, 41, 60].

We study the impact of aforementioned changes under the strictly blind evaluation setting of the TREC 2020 Deep Learning track.

2 RELATED WORK
Scaling self-attention to long text. The self-attention layer, as proposed by Vaswani et al. [57], can be described as follows:

$$\text{Self-Attention}(Q, K, V) = \Phi \left(\frac{QK^T}{\sqrt{d_k}} \right) \cdot V$$

Where, $Q \in \mathbb{R}^{n \times d_{key}}$, $K \in \mathbb{R}^{n \times d_{key}}$, and $V \in \mathbb{R}^{n \times d_{value}}$ are the query, key, and value matrices—and d_{key} and d_{value} are the dimensions of the key and value embeddings, respectively. Here, n is the length of the input sequence and Φ denotes a softmax along the last tensor dimension. The quadratic $O(n^2)$ memory complexity of self-attention...
is a direct consequence of the component QK^T that produces a $n \times n$ matrix. Recently, several approaches have been proposed to mitigate this quadratic complexity that broadly fall under: (i) Restricting self-attention to smaller local windows over the input [15, 49, 54, 63], or (ii) operating under the assumption that the attention matrix is low rank r [27, 52, 55, 59] and hence finding alternatives to explicitly computing the QK^T matrix, or (iii) hybrid approaches [3, 7, 61]. In IR, recently Hofstätter et al. [20] extended TK to longer text using local self-attention. Other more general approaches to reducing the memory footprint, such as model parallelization [53] and gradient checkpointing [3] have also been explored.

Full retrieval with deep models. Efficient retrieval using deep models is an important challenge in IR [36, 37]. One approach involves the dual encoder architecture where the query and document are encoded independently, and efficient retrieval is achieved by approximate nearest-neighbour search [1, 5, 25, 26, 29] or by employing inverted-index over latent representations [66]. Precise matching of terms or concepts may be difficult using query-independent latent document representations [30], and therefore these models are often combined with explicit term matching [40, 43].

An alternative approach assumes QTI in the design of the neural ranking model [42]. In these models, the estimated relevance score $S_{q,d} = \sum_{t \in q} s_{t,d}$ is the sum of the document scores w.r.t. individual query terms. Readers should note that QTI is already baked into several classical IR models, like BM25 [50]. Relevance models with QTI can be used to offline precompute all term-document scores, and subsequently efficient search is performed using inverted-index. Several recent neural IR models [12–14, 32, 33, 42] that incorporate QTI have obtained promising results under the full retrieval setting. Document expansion based methods [46, 48], using large neural language models, can also be classified as part of this approach, assuming the subsequent retrieval step employs a traditional QTI model like BM25. In all these cases, the focus of the deep model is to estimate the relevance of the document w.r.t. individual terms in the vocabulary that can be precomputed during indexing. Another approach may involve neural query reformulation [31, 45, 56], where, large neural language models, can also be classified as part of this approach, assuming the subsequent retrieval step employs a traditional QTI model like BM25. In all these cases, the focus of the deep model is to estimate the relevance of the document w.r.t. individual terms in the vocabulary that can be precomputed during indexing. Another approach may involve neural query reformulation [31, 45, 56], although these methods typically underperform compared to the methods considered here.

3 CONFORMER KERNEL WITH QTI

Conformer. The quadratic memory complexity of self-attention layers w.r.t. the input length is a direct result of explicitly computing the attention matrix $QK^T \in \mathbb{R}^{n \times n}$. In this work, we propose a new separable self-attention layer that avoids instantiating the full term-term attention matrix.

Separable-Self-Attention($Q, K, V) = \Phi(Q) \cdot A$

Where, $A = \Phi(K)^T \cdot V$. As previously, Φ denotes softmax along the last dimension of the input tensor. Note that, however, in this separable self-attention mechanism, the softmax operation is employed twice: (i) $\Phi(Q)$ computes the softmax along the d_{key} dimension, and (ii) $\Phi(K)^T$ computes the softmax along the n dimension. By computing $A \in \mathbb{R}^{d_{key} \times d_{value}}$ first, we avoid explicitly computing the full term-term attention matrix. The memory complexity of the separable self-attention layer is $O(n \times d_{key})$, which is a significant improvement when $d_{key} \ll n$. We modify the standard Transformer block as follows: (i) We replace the standard self-attention layer with the more memory efficient separable self-attention layer, and (ii) we apply grouped convolution before the separable self-attention layers to better capture the local context based on the window of neighbouring terms. We refer to this combination of grouped convolution and Transformer with separable self-attention as a Conformer. We incorporate Conformers into TK as a direct replacement for the Transformer layers and name the new architecture as a Conformer-Kernel (CK) model. In relation to handling long input sequences, we also replace the standard Kernel-Pooling with windowed Kernel-Pooling [20] in our proposed architecture.

Query term independence. To incorporate QTI into CK, we make two simple modifications. Firstly, we simplify the query encoder by getting rid of the Transformer layers and only considering the non-contextualized embeddings for the query terms. Secondly, instead of applying the aggregation function over the full interaction matrix, we apply it to each row individually, which corresponds to individual query terms. The scalar outputs from the aggregation function are linearly combined to produce the final query-document score. Fig 1b shows the proposed CK-QTI architecture.

Explicit term matching. We adopt the Duet [38–40, 44] framework wherein the term-document score is a linear combination of outputs from a latent and an explicit matching models.

$$s_{t,d} = w_1 \cdot \text{BN}(s_{t,d}^{\text{(latent)})} + w_2 \cdot \text{BN}(s_{t,d}^{\text{(explicit)})} + b$$

Where, $\{w_1, w_2, b\}$ are learnable parameters and $\text{BN}(x) = (x - \text{E}(x))/\sqrt{\text{Var}(x)}$ denotes the BatchNorm operation [22]. We employ CK and define a new lexical matching function modeled on BM25 to compute $s_{t,d}^{\text{(latent)}}$ and $s_{t,d}^{\text{(explicit)}}$, respectively.

$$s_{t,d}^{\text{(explicit)}} = \frac{\text{IDF}_t \cdot \text{BS(TF}_{t,d})}{\text{BS(TF}_{t,d}) + \text{ReLU}(w_{dlen} \cdot \text{BS(|d|)} + b_{dlen}) + \epsilon}$$

Where, IDF_t, $\text{TF}_{t,d}$, and $|d|$ denote the inverse-document frequency of the term t, the term-frequency of t in document d, and the length of the document, respectively. The w_{dlen} and b_{dlen} are the only two learnable parameters of this submodel and ϵ is a small constant added to prevent a divide-by-zero error. The BatchScale (BS) operation is defined as $\text{BS}(x) = x/\left(\text{E}(x) + \epsilon\right)$.

4 EXPERIMENT DESIGN

TREC 2020 Deep Learning Track. We evaluate CK under the strictly-blind TREC benchmarking setting by participating in the 2020 edition of the Deep Learning track [11], which: (a) provides stronger protection against overfitting that may result from the experimenter running multiple evaluations against the test set, and (b) is fairer to dramatically new approaches that may surface additional relevant documents not covered by pre-collected labels [64]. The 2020 track [11] uses the same training data as the previous year [10] originally derived from the MS MARCO dataset [2]. However, the track provides a new blind test set for the second year. We only focus on the document ranking task and point the reader to [11] for further benchmarking details. We report NDCG@10 [23], NCG@100 [51], AP [67], and RR [8] against this blind set.

1We exclude group name and run IDs here to anonymize for the blind-review process.
Model variants. We compare several variants of our model. The NDRM1 variant incorporates Conformer layers and QTI into TK [21]. Figure 1 visualizes the NDRM1 architecture. The NDRM2 model is a simple QTI-compliant explicit-term-matching model as described by Equation 4. A linear combination of NDRM1 and NDRM2 gives us the NDRM3 model. Because of the limit on the number of run submission to TREC, we only evaluate NDRM1 and NDRM3, although we confirm on the TREC 2019 test set that NDRM2 is competitive with a well-tuned BM25 baseline. The TREC 2020 Deep Learning track provided participants with a click log dataset called ORCAS [9]. We use clicked queries in the ORCAS data [9] as additional meta description for corresponding documents to complement the intrinsic document content (URL, title, and body). Unlike previous work [66] on fielded document representations, we simply concatenate the different fields. We test each variant under both the rerank and the fullrank settings.

Model training. We consider the first 20 terms for every query and the first 4000 terms for every document. We pretrain the word embeddings using the word2vec [35] implementation in FastText [24]. We use a concatenation of the IN and OUT embeddings [41, 43] from word2vec to initialize the embedding layer parameters. The document encoder uses 2 Conformer layers and we set all hidden layer sizes to 256. We set the window size for the grouped convolution layers to 31 and the number of groups to 32. Correspondingly, we also set the number of attention heads to 32. We set the number of kernels k to 10. For windowed Kernel-Pooling, we set the window size to 300 and the stride to 100. Finally, we set the dropout rate to 0.2. For further details, please refer to the publicly released model implementation in PyTorch. All models are trained on four Tesla P100 GPUs, with 16 GB memory each, using data parallelism.

We train the model using the RankNet objective [4]. For every positively labeled query-document pair in the training data, we randomly sample one negative document from the provided top 100 candidates corresponding to the query and two negative documents from the full collection. In addition to making pairs between the positively labeled document and the three negative documents, we also create pairs between the negative document sampled from the top 100 candidates and those sampled from the full collection, treating the former as more relevant. This can be interpreted as incorporating a form of weak supervision [16] as the candidates were previously generated using a traditional IR function.

5 RESULTS

RQ1. Does CK-QTI improve reranking quality over TKL? According to the taxonomy proposed by Craswell et al. [10], CK-QTI and TKL runs are the only "nn" runs—i.e., neural models that do not use pretrained transformers—submitted to TREC 2020 Deep Learning track. TKL has previously been shown to outperform TK [20], and we confirmed with the submitting group that they considered these as well-tuned TKL runs. We also confirm that the related hyperparameters are comparable between the TKL runs and ours. Table 1 shows that in the same rerank setting, both NDRM1 and NDRM3 improve NDCG@10 over the best TKL run by 5.3%. The improvement from NDRM1 over TKL is statistically significant according to student’s t-test ($p < 0.05$). However, similarly large improvement from NDRM3 over TKL is not statistically significant due to small test set size. Even if we consider TK and CK to be comparable
in results quality, the key motivation behind Conformers is their reduced GPU memory usage which we discuss next.

RQ2. Does CK-QTI perform in the full retrieval setting?
To enable retrieval from the full collection, we incorporate two changes in TKL: QTI and explicit term matching. QTI allows for precomputation of term-document scores and consequently fast retrieval using inverted-index data structures. The explicit term matching is expected to help with result quality under the full retrieval setting. In Table 1, we find that the NDRM3 variant—that incorporates explicit term matching—does indeed achieve 2.9% better NDCG@10 compared to the NDRM1 variant and 5.5% improvement in both AP and NCG@100. In contrast, both models achieve similar performance under the rerank setting. The candidate documents for reranking were generated by a first-stage BM25 ranker and hence explicit term matching signal is already part of this retrieval pipeline which may explain why we find no benefit from explicit term matching in reranking. These observations are supported by Kuzi et al. [28], who find that exact term matching are important for the fullrank setting. Also, NDRM1, in the absence of explicit term matching, achieves a lower NDCG@10 under the fullrank setting compared to the rerank setting. However, when explicit term matching is incorporated (i.e., NDRM3), the metrics are comparable under both settings. Interestingly, when we include the ORCAS data in the document representation, we see improvements under the fullrank setting compared to reranking across all metrics: 2.2% for RR, 2.1% for AP, and 0.5% for NDCG@10. We confirm that the NDCG@10 improvement from fullrank over rerank setting under the NDRM3 + ORCAS configuration is stat. sig. based on a student’s t-test ($p < 0.05$). Based on qualitative inspection of the queries, we find that exact term matching may be important for queries containing named entities—e.g., “who is aziz hashim” and “why is pete rose banned from hall of fame”—where it is necessary to ensure that the retrieved documents are about the correct entity. Finally, with respect to the full retrieval setting, we note that NDRM3 with ORCAS improves NCG@100 by 7.7% over the provided candidates for the reranking setting, which puts it among the 10 top performing runs according to NCG@100 as seen in Fig 3.

RQ3. How does CK-QTI compare to "trad" and "nnlm" runs?
In adhoc retrieval, a common strategy involves sequentially cascading multiple rank-and-prune stages [6, 18, 34, 47, 58] for better effectiveness-efficiency trade-offs. The multiple stages can improve result quality at additional computation costs. However, in our experiments under the full retrieval setting, we employ CK-QTI as a single stage retriever. Despite of this straightforward and efficient setup, we find that all three runs NDRM1, NDRM3, and NDRM3 + ORCAS achieve better NDCG@10 compared to the best non-neural (i.e., "trad") run. The improvements from NDRM3, both with and without the ORCAS-based document representation, is stat. sig. compared to the best "trad" run based on student’s t-test ($p < 0.05$). Additionally, NDRM3, with and without ORCAS, outperforms two-thirds of the "nnlm" runs that employ costly pretraining of Transformers. The "nnlm" runs that outperform CK-QTI not only employ cascades of multiple rank-and-prune stages but sometimes
multiple of those stages employ costly models like BERT. In con-
trast, CK-QTI retrieves from the full collection in one-shot and its
performance can likely be improved by additional reranking stages.

6 CONCLUSION
We update TK by (i) replacing Transformers with Conformers,
and incorporating (ii) QTI and (iii) explicit term matching. Con-
formers scale better to longer inputs and show both relevance and
GPU memory improvements. Incorporating QTI and explicit term
matching adapts the model to fullrank setting. In spite of being a
single-stage retriever, CK-QTI outperforms all traditional methods
and two-thirds of pretrained Transformer models. We believe that
CK, like its predecessor TK, represents an alternative to BERT-based
ranking models at lower training and run-time inference cost.

REFERENCES

[1] Amin Ahmad, Noah Constant, Yinfei Yang, and Daniel Cer. 2019. ReQA: An eval-
uation for end-to-end answer retrieval models. arXiv preprint arXiv:1907.04780
(2019).

[2] Payal Bajaj, Daniel Campos, Nick CRAWELL. Li Deng, Jianfeng Gao, Xiaodong Liu,
Rangan Majumder, Andrew Nelamara, Bhaskar Mitra, Tri Nguyen, et al. 2016.
MS MARCO: A Human Generated Machine Reading Comprehension Dataset.
arxiv preprint arXiv:1601.09268 (2016).

[3] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. arXiv preprint arXiv:2004.05150 (2020).

[4] Chris Burgess, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicola Hamilton,
and Greg Hullender. 2015. Learning to rank using gradient descent. In Proc. ICM.
ACM, 89–96.

[5] Wei-Cheng Chang, Felix X Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar.
2020. Pre-training tasks for embedding-based large-scale retrieval. arXiv preprint
arXiv:2002.03902 (2020).

[6] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, and J Shane Culpepper. 2017.
Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval. In Proc. of SIGIR.

[7] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generat-
ing Long Sequences with Sparse Transformers. CoRR abs/1904.10509 (2019).
arXiv:1904.10509 http://arxiv.org/abs/1904.10509

[8] Nick Crawell. 2009. Mean Reciprocal Rank. Encyclopedia of database systems
1703 (2009).

[9] Nick Crawell, Daniel Campos, Bhaskar Mitra, Emine Yilmaz, and Bode Biddlebeck.
2020. TRECAS-18 Million Clicked Query-Document Pairs for Analyzing Search. arXiv preprint
arXiv:2006.05324 (2020).

[10] Nick Crawell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2020. Overview of
the TREC 2019 deep learning track. In Proc. TREC.

[11] Nick Crawell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021. Overview of
the TREC 2020 deep learning track. In Proc. TREC.

[12] Zhuyun Dai and Jamie Callan. [n.d.]. Context-Aware Passage Term Weighting
For First Stage Retrieval. (In review).

[13] Zhuyun Dai and Jamie Callan. 2019. Deeper text understanding for IR with
contextual neural language modeling. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval. 985–988.

[14] Zhuyun Dai and Jamie Callan. 2019. An Evaluation of Weakly-Supervised DeepCT
in the TREC 2019 Deep Learning Track. In TREC.

[15] Zhiang Dai, ZhiLin Yang, YingMing Yang, Jay Carbonell, Qun V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xl: Attentive language models beyond a fixed-
length context. arXiv preprint arXiv:1901.02860 (2019).

[16] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Simpson. 2019. Leveraging Semantic and Lexical Matching to Improve the Recall of Document
Retrieval for weakly supervised open domain question answering. arXiv preprint arXiv:1906.00300
arXiv preprint arXiv:1906.00300

[17] Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick CRAWELL, and Allan
Hanbury. 2020. Local Self-Attention over Long Text for Efficient Document
Retrieval. In Proc. of SIGIR.

[18] Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Crawford, and Allan
Hanbury. 2020. Local Self-Attention over Long Text for Efficient Document
Retrieval. In Proc. of SIGIR.

[19] Sebastian Hofstätter, Markus Zlabinger, and Allan Hanbury. 2020. Interpretable
& Time-Budget-Constrained Contextualization for Re-Ranking. In Proc. of EACL.

[20] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[21] K. Jarvelin and J. Kekäläinen. 2002. Cumulated Gain-Based Evaluation of IR
Techniques. ACM TOIS 20, 4 (2002), 422–446.

[22] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016).

[23] Vladimir Karpukhin, Barlas Ongur, Sewon Min, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-Domain Questi-
on Answering. arXiv preprint arXiv:2004.04996 (2020).

[24] Omar Kathab and Matei Zaharia. 2020. CoBERT: Efficient and Effective Pas-
sage Search via Contextualized Latent Interaction over BERT. arXiv preprint
arXiv:2004.12832 (2020).

[25] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2019. Reform: The Efficient
Transformer. In International Conference on Learning Representations.

[26] Saar Kuzi, Mingyang Zhang, Cheng Li, Michael Bendersey, and Marc Najork. 2020.
Leveraging Semantic and Lexical Matching to Improve the Recall of Document
Retrieval Systems: A Hybrid Approach. arXiv preprint arXiv:2010.01195 (2020).

[27] Hakan Leblebici, Lyle Hailperin, and William B. Croft. 2007. Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence
Woodstock '18, June 03–05, 2018, Woodstock, NY.

[28] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Pas-
sage Search via Dataset Augmentation. In Proceedings of the 43rd Annual ACM SIGIR Conference on Research & Development in Information
Retrieval.

[29] Irina Matveeva, Chris Burges, Timo Burckard, Andy Laurcis, and Leon Wong.
2006. High Accuracy Retrieval with Multiple Nested Ranker. In Proc. of SIGIR.

[30] Bhaskar Mitra and Nick Crawell. 2018. An introduction to neural information
retrieval. Foundations and Trends® in Information Retrieval (2018).

[31] Bhaskar Mitra and Nick Crawell. 2019. Duet at TREC 2019 Deep Learning Track.
In Proc. TREC.

[32] Bhaskar Mitra and Nick Crawell. 2019. An Updated Duet Model for Passage
Re-ranking. arXiv preprint arXiv:1903.07666 (2019).

[33] Bhaskar Mitra, Fernando Diaz, and Nick Crawell. 2017. Learning to Match Using
Local and Distributed Representations of Text for Web Search. In Proc. WWW.
1291–1299.

[34] Bhaskar Mitra, Eric Nalisnick, Nick Crawell, and Rich Caruana. 2016. A Dual
Embedding Space Model for Document Ranking. arXiv preprint arXiv:1602.01173
arXiv preprint arXiv:1602.01173

[35] Bhaskar Mitra, Corby Rossell, David Hawking, Nick Crawell, Fernando Diaz,
and Emine Yilmaz. 2019. Incorporating Query Term Independence Assumption
for Efficient Retrieval and Ranking using Deep Neural Networks (under review).
In Proc. ACL.

[36] Eric Nalisnick, Bhaskar Mitra, Nick Crawell, and Rich Caruana. 2016. Improving
Document Ranking with Dual Word Embeddings. In Proc. WWW.

[37] Federico Nanni, Bhaskar Mitra, Matt Magnusson, and Laura Dietz. 2017. Bench-
mark for complex answer retrieval. In Proc. ICTIR. ACM, 293–296.

[38] Rodrigo Nogueira, Jimmy Lin, and Al Epsteinic. 2019. From doc2query to
docTQT/query. Online preprint (2019).

[39] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-Stage
Document Ranking with BERT. arXiv preprint arXiv:1910.14424 (2019).

[40] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
Expansion by Query Prediction. arXiv preprint arXiv:1904.08375 (2019).

[41] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. 2018. Image transformer. arXiv preprint
arXiv:1802.05751 (2018).

[42] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.
[51] Corby Rosset, Damien Jose, Gargi Ghosh, Bhaskar Mitra, and Saurabh Tiwary. 2018. Optimizing query evaluations using reinforcement learning for web search. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 1193–1196.

[52] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. 2020. Efficient Content-Based Sparse Attention with Routing Transformers. arXiv preprint arXiv:2003.05997 (2020).

[53] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter language models using gpus model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[54] Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. 2019. Adaptive attention span in transformers. arXiv preprint arXiv:1905.07799 (2019).

[55] Yi Toy, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. 2020. Sparse Sinkhorn Attention. arXiv preprint arXiv:2002.11296 (2020).

[56] Christophe Van Gysel, Bhaskar Mitra, Matteo Venanzi, Roy Rosemarin, Grzegorz Kukla, Piotr Grudzien, and Nicola Cancedda. 2017. Reply With: Proactive Recommendation of Email Attachments. In Proc. CIKM.

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems. 5998–6008.

[58] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A Cascade Ranking Model for Efficient Ranked Retrieval. In Proc. of SIGIR.

[59] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Linformer: Self-Attention with Linear Complexity. arXiv preprint arXiv:2006.04788 (2020).

[60] Marco Wrazlik and Dirk Krechel. 2020. CoRT: Complementary Rankings from Transformers. arXiv preprint arXiv:2010.10252 (2020).

[61] Zhanghao Wu, Zhijian Liu, Ji Lin, Yuqun Lin, and Song Han. 2020. Lite Transformer with Long-Short Range Attention. In International Conference on Learning Representations (ICLR ’20).

[62] Ming Yan, Chenliang Li, Chen Wu, Bin Bi, Wei Wang, Jiangnan Xia, and Luo St. 2019. IDST at TREC 2019 Deep Learning Track: Deep Cascade Ranking with Generation-based Document Expansion and Pre-trained Language Modeling. In TREC.

[63] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le. 2019. XLNet: Generalized Autoregressive Pretraining for Language Understanding. arXiv preprint arXiv:1906.08237 (2019).

[64] Emine Yilmaz, Nick Craswell, Bhaskar Mitra, and Daniel Campos. 2020. On the Reliability of Test Collections for Evaluating Systems of Different Types. In Proc. of SIGIR.

[65] Zeynep Akkalyoncu Yilmaz, Shengjin Wang, and Jimmy Lin. 2019. H2oloo at TREC 2019: Combining Sentence and Document Evidence in the Deep Learning Track. In TREC.

[66] Hamed Zamani, Mostafa Dehghani, W Bruce Croft, Erik Learned-Miller, and Jaap Kamps. 2018. From neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing. In Proceedings of the 27th ACM international conference on information and knowledge management. 497–506.

[67] Mo Zhu. 2004. Recall, Precision and Average Precision. Department of Statistics and Actuarial Science, University of Waterloo, Waterloo 2 (2004), 30.