The efficacy of parecoxib in improving pain after total knee or total hip arthroplasty
Systematic review and meta-analysis

Chuan Hong, MDa, Hai-Yan Xie, MDb, Wu-Kun Ge, MDc,*, Min Yu, PhDc, Shuai-nan Lin, PhDc, Cheng-Jiang Liu, MDd

Abstract
Background: The cyclooxygenase-2 (COX-2) selective inhibitor parecoxib is widely used in the treatment of pain and inflammation. Parecoxib has been adopted for use for postoperative analgesia following a range of surgical procedures (orthopedic, general, gynecological, and dental surgery). Total knee or total hip arthroplasty (THA) surgery is mostly done in older patients, so postoperative analgesics need to be used more carefully, and the safety and efficacy of parecoxib in this type of surgery need to be further verified. The aim of this study was to investigate the effects of parecoxib on patient safety, cumulative morphine consumption and was at 24 and 48 hours in the analgesic treatment of total knee or THA for meta-analysis and systematic review, with few studies in this area so far.

Methods: We searched the Online Database Cochrane Library, PubMed, Web of Science, EMBASE, and CBM (SinoMed), CNKI, VIP, WANFANG up to January 2021. According to the value of I^2, the random-effect model or fixed-effect model was supposed to combine data from studies, respectively. Publication bias was assessed through funneling plot and Beggs test. Review Manager 5.3 and Stata 16.0 software were applied to perform the statistical analyses.

Results: Eleven RCTs which involved 1690 participants were included in this study. The meta-analysis indicated parecoxib sodium could not significantly reduce the incidence of adverse events after total knee or THA compared with placebo. There was no statistical significance in incidence of nausea and vomiting, 24 hours resting VAS score was statistically significant between the group. The 48-hour resting VAS scores did not indicate a significant difference between the groups.

Conclusion: Parecoxib can reduce the incidence of adverse events after total knee or total hip surgery to some extent but cannot reduce the incidence of nausea and vomiting. Twenty-four hour postoperative analgesia is better than placebo, but 48 hours after operation analgesia is the same as placebo.

Abbreviations: CBM = SinoMed, Author contributions, CNKI = China National Knowledge Infrastructure, COX-2 = cyclooxygenase-2, FEM = fixed-effect model, MD = mean difference, RCTs = randomized controlled trials, REM = random-effect model, RR = risk ratio, THA = total hip arthroplasty, TKA = total knee arthroplasty, VAS = visual analogue scale

Keywords: analgesia, hip arthroplasty, knee arthroplasty, parecib.

1. Introduction

It is estimated that 310 million patients worldwide undergo surgery every year[1] After >50 years of clinical practices, the therapeutic effect of artificial joint replacement has been fully affirmed and has developed into a reliable treatment. The 25-year combined survival rate of total knee or total hip replacement is 77.6[2] In the United States, 1 million total knees or total hip arthroplasty (THA) and total knee arthroplasty (TKA) are performed each year[1,3] which is expected to increase in the next few years. The incidence of complications in total knee or THA is 3.2\% to 8.0\%.[3,4] How to reduce the safety and pain after total knee or THA is an effective way to improve postoperative complications.

Morphine is an opiate receptor agonist, which has a good effect on all kinds of pain. The most common adverse reaction is nausea and vomiting, and extensive use can also make patients addicted.[5,6] Use of opioids after orthopedic surgery varies greatly,
and there is no consensus on the establishment of appropriate nursing standards. Many patients who take opioids before operation continue to use opioids after joint replacement. Some patients who have not used opioids still use opioids, but the continuous use of opioids has nothing to do with joint pain. There is no consensus on the best method of anesthesia and analgesia for total knee or THA. The purpose of our clinical practice is no consensus on the best method of anesthesia and analgesia.

The purpose of our clinical practice is to control postoperative pain effectively and minimize the risk of using opioids.

Parecoxib is the prodrug of valdecoxib, and valdecoxib is a selective cyclooxygenase (COX)-2 inhibitor in the clinical dose range, which has been widely used in postoperative analgesia. Studies have demonstrated that COX-2, as an isomer of cyclooxygenase, is induced by preinflammatory stimulation, so it is speculated that COX-2 plays the most important role in the synthesis of prostaglandin-like transmitters related to pain, inflammation and fever. Dozens of studies have shown that in the absence of pain, adverse events and other negative factors, early activity after joint replacement can shorten the hospital stay of about 1.8 days, and there are positive benefits to achieve early activity within 24 hours after operation. However, it is not clear whether parecoxib can effectively reduce the negative factors after knee or hip arthroplasty. This study is based on a randomized controlled meta-analysis and systematic review to evaluate the clinical role of parecoxib in pain relief of total knee or THA.

2. Materials and Methods

2.1. Inclusion and exclusion criteria randomized controlled trial

2.1.1. Research object For patients who receive THA or TKA, their race, nationality and course of disease are not limited. There are no ethical issues with our article.

2.1.2. Intervention measures The observation group was treated with parecoxib, and the control group was treated with placebo. Routine anesthesia was used in both groups, and the results were consistent between the 2 groups.

2.1.3. Outcome index Overall adverse events, nausea and vomiting events, 24-hour resting VAS score, and 48-hour resting VAS score (see Table 1).

2.1.4. Exclusion criteria Non-Chinese and English literature; lack of analytical data, which could not be obtained by contacting the original author; repeated publication of literature.

2.2. Literature retrieval strategy

Pubmed, CochraneLibrary, Embase, China Medical Database, related system reviews, bibliography of clinical guidelines, and clinical trial registry were searched in the database. In addition, the reference parts of each study were also searched. The key words included parecoxib, hip arthroplasty, knee arthroplasty, and pain relief. The search was only restricted in English and Chinese publications, and we checked the reference lists of retrieved articles and relevant reviews for additional published and unpublished data.

2.3. Literature screening and data extraction

The 2 researchers independently screened the literature, extracted the data and cross-checked them, and if there were any differences, they would be resolved through discussion. When screening the literature, first read the title, after excluding the obviously irrelevant literature, further read the abstract and the full text to determine whether to include it or not. If necessary, contact the original research author by email or telephone to obtain undetermined information that is very important to this study. The contents of data extraction include: the basic information included in the study: research topics, first authors, published journals, etc; baseline characteristics and intervention measures of the subjects; key elements of bias risk assessment; outcome indicators and outcome measurement data concerned.

Two researchers independently evaluated the bias risk included in the study and cross-checked the results. Bias risk assessment uses the RCT bias risk assessment tool recommended by Cochrane manual 5.1.0.

The data were analyzed by RevMan5.3 software and Stata16. The mean difference was used as the effect analysis statistic for the measurement data, and the risk ratio (RR) was used as the effect analysis statistic for the 2-category variables, and each effect quantity provided its 95% CI. The heterogeneity among the included studies was analyzed by

χ^2 test (the test level was $\alpha = 0.1$). Meanwhile, the heterogeneity was quantitatively judged by I^2. If there is no statistical heterogeneity among the studies, the fixed-effect model is used for Meta-analysis; if there is statistical heterogeneity among the studies, the source of heterogeneity is further analyzed. After excluding the influence of obvious clinical heterogeneity, the data are analyzed by random-effect model for Meta-analysis. The level of Meta-analysis was set as $\alpha = 0.05$. The obvious clinical heterogeneity was treated by subgroup analysis or sensitivity analysis, or only descriptive analysis.

3. Result

3.1. Research inclusion and exclusion process

A total of 318 related articles were obtained in the initial examination. After layer-by-layer screening, 13 RCTs (including 1868 patients) were included. The literature screening process and results are shown in Figure 1.

3.2. The basic characteristics of the inclusion study and the results of bias risk assessment

The 3-item scale of Jadad was used to assess the quality of included studies (Table 1). This instrument is referred to as the “Jadad scale.” Scale scores can range from 0 to 5 points, with higher scores indicating better quality (Table 2).

3.3. Meta-analysis result

3.3.1. Overall adverse event rates The 10 RCTs in this study have been tested for heterogeneity, and Q test $P = .21 > .01$, $I^2 = 25\% < 50\%$, suggesting that there is mild heterogeneity among the selected literatures in this study, and the fixed effect is selected for the combined effect, finally RR = 0.89 (0.76–1.04, Fig. 2), indicating that the overall adverse event rate of parecoxib sodium after knee or hip joint surgery is only 0.89 times that of the placebo group, but Not statistically significant ($Z = 1.59$, $P = .13 > .05$), suggesting that although parecoxib sodium can reduce the incidence of adverse events after hip surgery, the degree of reduction is not statistically significant, that is, from a statistical point of view, there was no significant difference in adverse events between parecoxib sodium and placebo.

3.3.2. Funnel chart By drawing a funnel chart to investigate whether there is publication bias in the 10 RCTs of this study, it is concluded that the funnel chart is symmetric ($P = .695 > .05$ from Egger test) and no publication bias, which indicates that the conclusion of this study is accurate and reliable (Fig. 3).
3.3.3. Incidence of nausea and vomiting events

The 12 RCTs in this study were tested for heterogeneity, $I^2 = 32\%<50\%$, and $P = .13$ for Q test was >0.01, suggesting that there is a slight heterogeneity among the documents selected in this study, and the fixed effect is selected. Perform a combined effect size, finally $RR = 0.84 (0.63–1.11, –4)$, which means that the overall adverse event rate of parecoxib sodium after knee or hip joint surgery is only 0.84 times that of the placebo group. It is statistically significant ($Z = 1.23, P = .22 > .05$), suggesting that although parecoxib sodium can reduce the incidence of adverse events after knee or hip surgery, the degree of reduction is not statistically significant, that is, from a statistical point of view, there was no significant difference in nausea and vomiting between parecoxib sodium and placebo (Fig. 4).

3.3.4. Funnel chart

By drawing a funnel chart to investigate whether there is publication bias in the 10 articles of this study, it is concluded that the funnel chart is symmetrical ($P = .896 > .05$ from Egger test), and there is no publication bias conclusion, suggesting that the conclusions of this study are accurate and reliable (Fig. 5).

3.3.5. Consistency test of VAS baseline period

Before performing meta-analysis, it is necessary to ensure that the baseline periods of the 2 groups of VAS are consistent, so that subsequent meta-analysis can be performed. Finally, 4 articles provided VAS baseline data, and the results are as follows. From the above forest diagram, we can clearly see that there is no heterogeneity in the VAS baseline period difference (effect size) between the 2 groups ($I^2 = 0\%<50\%$ and Q test $P = .76 > .1$, Fig 6), and the fixed effects are combined with the baseline period. Finally, the combined effect size is ($z = 0.46, P = .65 > .05$), that is, in the baseline period, there is no difference in the VAS scores between the 2 groups, and subsequent Meta-analysis can be performed.
3.3.6. 24-hour resting VAS score

The control group was divided into 2 groups according to different administration methods, 1 group was intraarticular injection, and the other group was intravenous injection. The heterogeneity of the intravenous injection group ($I^2 = 36\%$, $P = .21 > .1$) is not statistically significant, and the fixed-effect model is selected to combine the effect size, and the combined effect size is -0.51 ($Z = 5.84$, $P < .01$), statistically significant. That is, intravenous injection of parecoxib sodium for pain relief after knee or hip joint surgery can reduce the 24-hour resting VAS score compared with intravenous placebo (Fig. 7).
3.3.7. 48-hour resting VAS score

The control group was divided into 2 groups according to different administration methods, 1 group was intrarticular injection, and the other group was intravenous injection. The heterogeneity of the intravenous injection group ($I^2 = 0\%$, $P = .61 > .1$) is not statistically significant, and the fixed effect model is selected to combine the effect size, and the combined effect size is -0.05 ($Z = 1.78$, $P = .07 > .05$), the 48-hour resting VAS score was not statistically significant. That is, compared with intravenous injection of placebo, intravenous injection of parecoxib sodium for pain relief after knee or hip joint surgery can reduce the 48-hour resting VAS score, but the reduction does not reach statistical significance. That is, from a statistical point of view, there is no difference between the 2 (Fig. 8).

4. Discussion

Pain is a complicated physiological and psychological activity, which includes the pain sensation caused by nociceptive stimuli on the body and the pain response of the body to nociceptive stimuli. Incision pain is a common acute pain caused by nociceptive, ischemic, and inflammatory mechanisms as well as nerve injury. Both TKA and THA can cause incision pain after operation, and the management of postoperative pain has a direct bearing on the physiology and psychology of patients. The results of the baseline population suggested that the objects of total knee or THA are elderly patients, the body and physiology of aging patients are in a declining stage, and the recovery time is slower than that of adults. Therefore, how to achieve effective management of preoperative pain and let patients put into the rehabilitation plan as soon as possible is more important.

After operation, except that the injured cells released inflammatory mediators such as histamine and bradykinin, immune cells were attracted to the injured site and released proinflammatory cytokines (TNF-α, IL-1β, IL-6), which increased the expression of inducible cyclooxygenase (COX)-2 in monocytes, macrophages, fibroblasts, chondrocytes, and endothelial cells from 10-fold to 80-fold. Parecoxib sodium belongs...
to cyclooxygenase (COX)-2 inhibitor, which plays a reverse regulatory role. The most frequent adverse events after operation are nausea and vomiting. Severe nausea and vomiting may not only affect the comfort of patients but also lead to a variety of other complications, such as surgical suture cracking, bleeding, and so on.[35] Nausea and vomiting not only reduces patients’ satisfaction with the health care system, but also prolongs hospital stay and health care costs.[39] The safety of parecoxib sodium in postoperative pain relief of total knee joint and total hip joint is relatively stable. As can be seen from figure II, although the overall incidence of adverse events and the incidence of nausea and vomiting events were not

![Funnel plot with pseudo 95% confidence limits](image)

Figure 5. Funnel chart of nausea and vomiting.

Study or Subgroup	Parecoxib group	Control group	Mean Difference IV (Fixed, 95% CI)					
	Mean	SD	Total	Mean	SD	Total	Weight	
Bian 2018	1.72	1.96	46	1.82	2.02	42	6.5%	-0.10 [-0.05, 0.73]
Du 2014	2.8	1.2	30	2.6	0.8	30	17.0%	0.30 [0.22, 0.39]
Hu 2018	2.5	2.27	48	2.54	2.25	46	5.4%	-0.04 [-0.06, 0.07]
Ke 2019	1.75	0.74	65	1.74	0.79	72	71.0%	0.01 [0.24, 0.28]
Total (95% CI)	193		190	100.0%	0.65 [-0.16, 0.26]			

Heterogeneity: $\chi^2 = 1.16, df = 3 (P = 0.76), I^2 = 0%$
Test for overall effect: $Z = 0.46 (P = 0.65)$

Figure 6. Baseline forest plot of preoperative VAS. VAS = Visual analogue scale.

Study or Subgroup	Parecoxib group	Control group	Mean Difference IV (Fixed, 95% CI)					
	Mean	SD	Total	Mean	SD	Total	Weight	
Du 2014	3.8	2.1	30	2.5	0.7	30	4.5%	1.30 [0.51, 2.09]
Subtotal (95% CI)	30		30	4.5%	1.30 [0.51, 2.09]			

Heterogeneity: Not applicable
Test for overall effect: $Z = 3.22 (P = 0.001)$

1.2.2 Intravenous injection

Study or Subgroup	Parecoxib group	Control group	Mean Difference IV (Fixed, 95% CI)					
	Mean	SD	Total	Mean	SD	Total	Weight	
Bian 2018	2.87	1.84	46	2.88	1.17	42	7.0%	-0.01 [-0.65, 0.63]
Hu 2018	3.59	1.7	48	3.87	1.88	46	5.4%	-0.29 [-1.02, 0.44]
Ke 2019	0.54	0.12	69	1.11	0.79	72	63.1%	-0.57 [-0.75, -0.39]
Subtotal (95% CI)	163		160	55.5%	-0.51 [-0.69, -0.34]			

Heterogeneity: $\chi^2 = 3.11, df = 2 (P = 0.21), I^2 = 36%$
Test for overall effect: $Z = 5.84 (P < 0.00001)$

| Total (95% CI) | 193 | | 190 | 100.0% | -0.43 [-0.60, -0.26] |

Heterogeneity: $\chi^2 = 22.34, df = 3 (P < 0.0001), I^2 = 87%$
Test for overall effect: $Z = 5.02 (P < 0.00001)$
Test for sub-heterogeneity: $\chi^2 = 19.22, df = 1 (P < 0.0001), I^2 = 94.8%$

Figure 7. Forest plot of 24 hours resting VAS score. VAS = Visual analogue scale.
statistically significant, they may also be superior to the placebo group to some extent. There was mild heterogeneity in overall adverse events and nausea and vomiting events, considering differences in adverse event statistics and placebo use in different studies. Pareoxib sodium belongs to COX-2 inhibitors. COX-2 inhibitors play an analgesic role by reducing the synthesis of peripheral prostaglandins to reduce inflammation and inhibit the expression of peripheral and central COX-2, and ultimately reduce the sensitivity of the central nervous system. A meta-analysis shows that perioperative COX-2, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system. A meta-analysis shows that perioperative COX-2, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system, and ultimately reduce the sensitivity of the central nervous system.

Heterogeneity: Not applicable
Test for overall effect: Z = 4.70 (P < 0.00001)

1.2.2 Intravenous injection

Favours [Pareoxib group] Favours [Control group]

Figure 8. Forest plot of 48 hours resting VAS score. VAS = Visual analogue scale.

5. Conclusion

Our result suggest that the combination of pareoxib for pain relief did not lead to an increase in adverse events and the analgesic effect of combined use of pareoxib sodium was the most obvious 24 hours after operation. In order to further confirm our conclusions, more high-quality studies need to be carried out to verify them.

Acknowledgments

We thank Jinlong Xu, Caimu Wang, Hai-Yan Xie, who have been a source of encouragement and inspiration.

Author contributions

Each author has undertaken all of the following tasks listed: conceived or designed the study, or both; drafted the review or commented on it critically for intellectual content; provided final approval of the document to be published.

References

[1] Weiser TG, Regenbogen SE, Thompson KD, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372:139–44.

[2] Evans JT, Evans JP, Walker RW, Blom AW, Whitehouse MR, Sayers A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet. 2019;393:647–54.
[3] Ripolles-Melchor J, Abad-Motos A, Diez-Remeseal Y, et al. Association between use of enhanced recovery after surgery protocol and postoperative complications in total hip and knee arthroplasty in the postoperative outcomes within enhanced recovery after surgery protocol in elective total hip and knee arthroplasty study (POWER2). JAMA Surg. 2020;155:e196024.

[4] Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res. 2009;467:2606–12.

[5] Bozic KJ, Grosso LM, Lin Z, et al. Variation in hospital-level risk-standardized complication rates following elective primary total hip and knee arthroplasty. J Bone Joint Surg Am. 2014;96:640–7.

[6] Manglik A, Lin H, Aryan DK, et al. Structure-based discovery of opioid analogs with reduced side effects. Nature. 2016;537:185–90.

[7] Cook DJ, Kaskovich SW, Pirkle SC, Mica M, Shi LL, Lee MJ. Benchmarks of duration and magnitude of opioid consumption after total hip and knee arthroplasty: a database analysis of 69,368 patients. J Arthroplasty. 2019;34:638–44.

[8] Goelsing J, Moser SE, Zaidi B, et al. Trends and predictors of opioid use after total hip and total knee arthroplasty. Pain. 2016;157:1239–45.

[9] Summers M, Mohile N, McNamara C, Osman B, Gebhardt R, Hernandez VH. Analgesia in total knee arthroplasty: current pain control modalities and outcomes. J Bone Joint Surg Am. 2020;102:719–27.

[10] Soffin EM, Memtsoudis SG. Anesthesia and analgesia for total knee arthroplasty. Minerva Anestesiol. 2018;84:1406–12.

[11] Kopp SL, Borglum J, Buvanendran A, et al. Anesthesia and analgesia practice pathway options for total knee arthroplasty: an evidence-based review by the American and European societies of regional anesthesia and pain medicine. Reg Anesth Pain Med. 2017;42:683–97.

[12] Moucha CS, Weiser MC, Levin EJ. Current strategies in anesthesia and analgesia for total knee arthroplasty. J Am Acad Orthop Surg. 2016;24:60–73.

[13] Grosu I, Lavand’Homme P, Tienpoint E. Pain after knee arthroplasty: an unresolved issue. Knee Surg Sports Traumatol Arthrosc. 2014;22:1744–58.

[14] De Luca ML, Pickle SC, Mica M, Shi LL, Lee MJ. Parecoxib sodium, a parenteral cyclooxygenase 2 selective inhibitor, improves morphine analgesia and is opioid-sparing following total hip arthroplasty. Anesthesiology. 2003;99:950–6.

[15] Martinez V, Bellbacher A, Jaber A, et al. The influence of timing of administration on the analgesic efficacy of parecoxib in orthopedic surgery. Anesth Analg. 2007;104:1521–7.

[16] Peng HM, Wang LC, Wang W, et al. Preemptive analgesia with parecoxib in total hip arthroplasty: a randomized, double-blind, placebo-controlled trial. Pain Physician. 2018;21:483–8.

[17] Xue-ping D, Jian-quan L, Ping X, Yu-chang Z, Da-yong D. Analytic effects of intraarticular cocktail versus intravenous parecoxib injection after total hip arthroplasty. Chin J Tissue Eng Res. 2014;18:1325–30.

[18] Zheng Q, Yao L, Lin J, et al. Postoperative intravenous parecoxib sodium followed by oral celecoxib post total knee arthroplasty in osteoarthritis patients (PIFORCE): a multicentre, double-blind, randomised, placebo-controlled trial. BMJ Open. 2020;10:e030501e30501.

[19] Essex MN, Choi HY, Bhadra BP, Cheung R. A randomized study of the efficacy and safety of parecoxib for the treatment of pain following total knee arthroplasty in Korean patients. J Pain Res. 2018;11:427–33.

[20] Mu DL, Zhang DZ, Wang DX, et al. Parecoxib supplementation to morphine analgesia decreases incidence of delirium in elderly patients after hip or knee replacement surgery: a randomized controlled trial. Anesth Analg. 2017;124:1992–2000.

[21] Cheng-fang H, Yin-su C, Qi W, Hsao S, Wen-jun D, Xian-long Z. Analgesic efficacy of parecoxib in total knee arthroplasty and total hip arthroplasty. Chin J Anesthesia. 2011;27:1090–5.

[22] Caoqing C, He R, Bin S, Ju D. Clinical observation of parecoxib preemptive analgesia combined with postoperative epidural analgesia at hip replacement patients. Chin Pharm. 2017;28:1518–22.

[23] Shao YX, Wang LC, Qian WW, et al. Role of parecoxib sodium in the multimodal analgesia after total knee arthroplasty: a randomized double-blind controlled trial. Orthop Surg. 2018;10:321–7.

[24] Sarridou DG, Chaloumi G, Braoudaki M, Koutsoupaki A, Mela A, Vadoulouk A. Intravenous parecoxib and continuous femoral block for postoperative analgesia after total knee arthroplasty. A randomized, double-blind, prospective trial. Pain Physician. 2015;18:267–76.

[25] Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17:1–12.

[26] Machado GC, Abdel-Shaheed C, Underwood M, Day RO. Nonsteroidal anti-inflammatory drugs (NSAIDs) for musculoskeletal pain. BMJ. 2021;372:n104.

[27] Summers M, Mohile N, McNamara C, Osman B, Gebhardt R, Hernandez VH. Analgesia in total knee arthroplasty: current pain control modalities and outcomes. J Bone Joint Surg Am. 2020;102:719–27.

[28] Grosu I, Lavand’Homme P, Tienpoint E. Pain after knee arthroplasty: an unresolved issue. Knee Surg Sports Traumatol Arthrosc. 2014;22:1744–58.

[29] De Luca ML, Pickle SC, Mica M, Shi LL, Lee MJ. Parecoxib sodium, a parenteral cyclooxygenase 2 selective inhibitor, improves morphine analgesia and is opioid-sparing following total hip arthroplasty. Anesthesiology. 2003;99:950–6.