Kleptoplasty: Getting away with stolen chloroplasts

Sónia Cruz*, Paulo Cartaxana

Laboratory for Innovation and Sustainability of Marine Biological Resources (ECOMARE), Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal

* sonia.cruz@ua.pt

Abstract

Kleptoplasty, the process by which a host organism sequesters and retains algal chloroplasts, is relatively common in protists. The origin of the plastid varies, as do the length of time it is retained in the host and the functionality of the association. In metazoa, the capacity for long-term (several weeks to months) maintenance of photosynthetically active chloroplasts is a unique characteristic of a handful of sacoglossan sea slugs. This capability has earned these slugs the epithets “crawling leaves” and “solar-powered sea slugs.” This Unsolved Mystery explores the basis of chloroplast maintenance and function and attempts to clarify contradictory results in the published literature. We address some of the mysteries of this remarkable association. Why are functional chloroplasts retained? And how is the function of stolen chloroplasts maintained without the support of the algal nucleus?

Introduction

Kleptoplasty is the capacity of a non-photosynthetic organism to acquire and maintain algal chloroplasts [1]. The process involves digestion of the algal cellular components by the host organism, including the nucleus, while the chloroplasts—thereafter termed kleptoplasts—are maintained structurally intact and, in many cases, photosynthetically competent [1,2]. This extraordinary act of thievery is sometimes referred to as endosymbiosis, or one organism living within another, although this is not accurate in this case as the chloroplast does not constitute an organism [3]. Nevertheless, kleptoplast-bearing organisms have emerged as potential model species in the study of the early stages of the endosymbiosis that led to chloroplast establishment [4].

The chloroplast derives from primary endosymbiosis involving the uptake of a cyanobacterium by a non-photosynthetic eukaryote more than 1.5 billion years ago [5]. This has allowed host organisms to convert light into energy and has deeply impacted the evolution of life [6]. Secondary and tertiary plastid acquisition events, among several eukaryote lineages, gave rise to the diversity of algae found in aquatic ecosystems [7,8]. The transformation into an obligate organelle entailed a considerable reduction in the genome size of the endosymbiont, partly due to gene transfer into the nuclear genome of the host [9]. Hence, many of the proteins required for the functioning and maintenance of the photosynthetic apparatus in today’s photosynthetic algae are nucleus encoded [8–10]. One of the unsolved mysteries of kleptoplasty,
particularly in animal cells, is how the host is able to maintain algal chloroplasts in a photosynthetically competent state for long periods, after stripping them of their nuclear entourage. Kleptoplasty is not without risks. Reactive oxygen species (ROS) are generated in the chloroplasts as a result of the photosynthetic transport of electrons and the transfer of energy, particularly under strong light [11]. ROS act mainly by inhibiting the de novo synthesis of proteins, which compromises the repair of photosystem II (PSII) [12] (Box 1). In host organisms harboring kleptoplasts, ROS formation can compromise the functionality of the stolen organelle, but damages may also extend to the rest of the host cell [4]. Considering that chloroplast acquisition is a risky mission for the host, it is reasonable to assume that the gains of a partially photosynthetic lifestyle must be considerable. However, the actual benefits of harboring stolen chloroplasts are still somewhat controversial.

Box 1. Glossary

Monophagous
Feeding on one kind of food, such as on a certain type of plant or algae.

Paraheliotropism
Leaf movement in response to incoming light, usually minimizing excess light absorption.

Peridinin
Carotenoid pigment found in the light-harvesting antenna of dinoflagellates.

Photic zone
The upper layer of a body of water in which enough sunlight can penetrate to permit photosynthesis.

Photosystem I
Membrane protein complex (plastocyanin–ferredoxin oxidoreductase) that uses light energy to catalyze the transfer of electrons across the thylakoid membrane, as part of the light-dependent reactions of oxygenic photosynthesis.

Photosystem II
Membrane protein complex (water–plastoquinone oxidoreductase) that uses light energy to split H₂O into O₂, protons, and electrons, as part of the light-dependent reactions of oxygenic photosynthesis.

Zooxanthellae
Informal term for single-celled dinoflagellates that are able to live in symbiosis with different marine invertebrates (e.g., corals, jellyfish, and nudibranchs).
In this Unsolved Mystery, we identify the taxa in which kleptoplasty has been reported and review the most relevant literature on a peculiar group of metazoans, the sacoglossan sea slugs. We aim to address some of the unsolved mysteries of this remarkable association between an animal and an algal-derived organelle.

Which organisms steal chloroplasts from algae?

Kleptoplasty occurred on multiple occasions in distantly related protist lineages, such as dinoflagellates, ciliates, and foraminifera [7,13–15]. In these protist lineages, the origin of the stolen algal chloroplasts is diverse, including diatoms, prasinophytes, haptophytes, and cryptophytes [7]. In dinoflagellates, chloroplast origin is particularly complex and highly chimeric [16]. Several lineages of dinoflagellates have been identified to maintain long-term photosynthetically active kleptoplasts. The Antarctic Ross Sea dinoflagellate, which is able to partition functions between ancestral peridinin plastids and chloroplasts stolen from its haptophyte prey [17], is able to maintain active kleptoplasts for as long as 30 months [18]. Other dinoflagellates have cryptophyte-derived or diatom-derived kleptoplasts. In one of the most peculiar cases, *Dinophysis* obtains its kleptoplasts by feeding on the ciliate *Mesodinium rubrum*, which in turn acquires the plastids from cryptophytes [19]. Several authors have classified kleptoplasty in some dinoflagellates as an emerging endosymbiotic event or a transitional phase towards permanent chloroplasts [19,20].

Chloroplast-bearing foraminifera are usually shallow-water species, inhabiting the photic zone, that acquire their plastids mostly from diatoms [15,21]. In some foraminifera species, the kleptoplasts break down within hours or days; while in other species, they remain functional for weeks to months [21–23]. Inorganic carbon labeling experiments have shown light-dependent incorporation in some foraminifera, an indication that kleptoplast photosynthesis constitutes an additional carbon source for these organisms [24,25]. However, kleptoplasty was also observed in deep-sea species (approximately 600 m), where light levels are too low to fuel photosynthesis [23,26]. In the latter case, the chloroplasts were intact and functional for up to 1 year [23]. Given that foraminifera are unable to acquire and assimilate inorganic sources of nitrogen, it was suggested that the kleptoplasts were used to fulfill the nitrogen requirements of the host [23].

Among metazoans, kleptoplasty is the privilege of a few. Until recently, the animal chloroplast-stealing gang was restricted to sacoglossan sea slugs, but it has been extended to include rhabdocoeo flatworms [27]. In the latter organisms, kleptoplasts originated from different diatoms, and photosynthetic activity was maintained for only a few days [27]. The capacity for long-term (several weeks to months) maintenance of photosynthetically active chloroplasts, potentially for the entire lifespan of the host, is a unique characteristic of a handful of Sacoglossa, mostly within the genus *Elysia* [28,29]. Some of these sea slugs are monophagous, sequestering chloroplasts from a specific algal species. The sea slugs with the longest retention times of functional chloroplasts, *Elysia chlorotica* and *Elysia timida*, feed on and retain chloroplasts exclusively from the chromophytic alga *Vaucheria litorea* and the green alga *Acetabularia acetabulum*, respectively [29,30]. The sacoglossans *Elysia viridis*, *Elysia crispata*, and *Plakobranchus ocellatus* are less picky with their food, obtaining chloroplasts from a variety of different algae, mostly siphonous green seaweeds [31–33]. In the next sections of this Unsolved Mystery, we focus on these best-studied, successful long-term animal–chloroplast partnerships.

Why do some sacoglossan sea slugs retain stolen functional chloroplasts?

In kleptoplast-bearing sea slugs, the macroalgal chloroplasts are phagocytized by cells of the digestive tubules, which ramify throughout most of the sea slug’s body [34]. Hence, one of the most noticeable characteristics of these sea slugs is their green coloration, which allows them to blend with the environment dominated by macroalgae and pass unnoticed to predators.
such as fish and crabs [35,36]. Avoiding predation might have been an important evolutionary drive in the acquisition of chloroplasts by some sacoglossans. However, crypsis is also an ability of sea slugs that acquire nonfunctional chloroplasts, such as Placida dendritica (Fig 1). These chloroplasts are maintained in the animal cells for just a few days and are not photosynthetically competent [28]. Therefore, crypsis alone cannot explain the evolution of long-term retention of functional chloroplasts in Sacoglossa.

Earlier studies using inorganic labeled 14C indicate that photosynthesis-derived metabolites are translocated from the kleptoplasts in the digestive tubules into kleptoplast-free sea slug tissues [37,38]. NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry), which allows high-resolution measurements of elemental and isotopic ratios, was recently used to image carbon translocated from kleptoplasts to the reproductive organs of 2 different sacoglossans [39,40]. In the following sections, we will evaluate some of the advantages related to the translocation of photosynthates from kleptoplasts to sea slug cells, which may help explain this unique evolutionary trait.

Longer survival in periods of food shortage

The great majority of studies addressing the role of kleptoplast photosynthesis in sacoglossan sea slugs typically compare weight and survival rates of starved specimens (unable to feed) under dark (unable to acquire photosynthates from the kleptoplasts) and light conditions.
Evidence of kleptoplast photosynthesis minimizing weight loss and increasing survival in periods of food scarcity in sea slugs such as *E. viridis*, *E. timida*, *E. chlorotica*, and *P. ocellatus* are overwhelming [41–45]. On the contrary, 1 single study reported comparable weight loss in *P. ocellatus* starved under dark and light conditions and in the presence of a photosynthesis inhibitor [46]. However, that study’s conclusion that kleptoplast photosynthesis has no impact on the survival of sacoglossan sea slugs during periods of food shortage was likely overstated, as the authors based it on an extremely low sample size (2 slugs per condition) and failed to show a fed control treatment in the light. Although metabolites produced by kleptoplast photosynthesis are continuously made available to the sea slugs by rapid translocation into kleptoplast-free tissues [37–40], it is also possible that under prolonged starvation sea slugs obtain nutritive benefits by targeting kleptoplasts for degradation and using their starch reserves [46,47].

It is important to note that extended periods of complete darkness are ecologically unrealistic [48]. On the other hand, long starvation treatments have an impact on both heterotrophic and autotrophic nutrition because in the absence of the macroalgal food source, the older kleptoplasts are not replaced and the photosynthetic activity declines [49]. Overcoming these limitations, Baumgartner and colleagues [48] observed increased growth efficiency in *E. viridis* fed on *C. fragile* under regular light compared to quasi-dark, which correlated to increased photosynthesis. By contrast, *E. viridis* feeding on *Cladophora rupestris* did not display an increase in growth efficiency under light conditions due to the highly limited functionality of the algal chloroplasts. Using stable nitrogen isotopic composition of amino acids, the nutritional role of photosynthesis in wild *P. ocellatus* feeding on multiple macroalgae was found to be negligible [50]. Nevertheless, the authors concluded that kleptoplast photosynthates formed a significant nutritional source for animals in periods of food shortage. Based on the mass balance of stable carbon isotopes at the natural abundance level, total carbon derived from kleptoplast photosynthesis was estimated to range between 16% and 60% in several Sacoglossa [51].

Higher reproductive output

It was recently hypothesized that kleptoplast photosynthesis could support the reproductive output of sacoglossan sea slugs [39,40]. It is reasonable to consider that better-nourished individuals, including sea slugs able to obtain metabolites from kleptoplast photosynthesis, have more resources to allocate to reproduction and consequently display higher fecundity (Fig 2).

The sea slug *E. atroviridis* was shown to spawn a higher number of eggs when fed under regular light than under quasi-dark conditions [52]. Using NanoSIMS, it was possible to image light-dependent incorporation of 13C and 15N in the albumen gland and gonadal follicles of the sea slugs *E. viridis* and *E. timida* [39,40]. The authors demonstrated that inorganic carbon and nitrogen assimilated by the kleptoplasts in the digestive tubules were subsequently translocated to the reproductive organs of the sea slugs. Furthermore, it was shown that long-chain polyunsaturated fatty acids with reported roles in reproduction were produced in the sea slug cells using labeled precursors translocated from the kleptoplasts [39,40]. In addition, the number of eggs spawned by *E. timida* during a 4-week period was significantly higher in sea slugs exposed to regular light than in animals reared under quasi-dark [40]. Under limited kleptoplast photosynthesis due to reduced light levels, the sea slugs clearly changed their reproductive energy investment by decreasing the number of spawned eggs [40].

Increased mucus production

Mucus secretion is paramount for mollusks, playing different roles in processes such as locomotion, feeding, reproduction, or protection, including reducing exposure to predation or
physical stress [53]. A relevant role of kleptoplast photosynthesis in providing substrates for mucus production by sacoglossan sea slugs has been hypothesized [54–56]. Using 14C-labeling experiments, Trench and colleagues [37] showed carbon incorporation in the mucus-secreting
pedal gland of *E. crispata* and *E. diomedea*. Estimates of carbon fixed by the kleptoplasts that end up in the secreted mucus ranged between 5% and 30% in the sea slugs *E. crispata*, *E. diomedea*, and *P. ocellatus*, with most of the labeled carbon incorporated into galactose and glucose [54,55]. Limiting photosynthesis by rearing sea slugs under reduced light led to lower mucus production and lower carbohydrate concentrations in the secreted mucus than under regular light [56].

In symbiotic reef corals, the release of mucus has often been associated with phototrophic nutrition [57–59]. Increased photosynthetic activity of the zooxanthellae with higher light availability lead to greater translocation to the coral host of high-energy compounds, which are channeled into coral respiration and mucus production [58,59]. Further studies are required to determine the relevance of kleptoplast-derived metabolites in mucus production by sacoglossan sea slugs.

How do photosynthetic sea slugs avoid or repair oxidative damage in the stolen chloroplasts?

The most controversial hypothesis put forward to answer this question involves horizontal gene transfer (HGT) of algal nuclear genes encoding essential chloroplast proteins to the host nuclear genome [60–62]. Earlier evidence of HGT from the alga *V. litorea* to the nuclear DNA of the sea slug *E. chlorotica* was contradicted by reports of the absence of algal-derived genes in the germline of the sea slug [63]. In accordance, genomic and transcriptomic studies on the sea slugs *E. timida* and *P. ocellatus* found no evidence of HGT [64,65]. Hence, sacoglossan sea slugs do not seem to introduce foreign algal genes to support their photosynthetic lifestyle [63–65]. Alternative hypotheses to HGT need to be considered to explain the long-term maintenance of functional kleptoplasts in sacoglossans (Fig 3).

![Fig 3. Repair and avoidance mechanisms involved in kleptoplast longevity.](https://doi.org/10.1371/journal.pbio.3001857.g003)
Chloroplast robustness and genetic autonomy

Chloroplasts isolated from the alga *Codium fragile*, one of the chloroplast sources of *E. viridis*, were shown to be more stable than spinach chloroplasts, fixing CO$_2$ for several days after isolation [66]. The robustness of siphonous algae chloroplasts could be an important factor in the ability to integrate and function in sea slug cells [66]. Similar results were later reported for *V. litorea* chloroplasts, which were also largely unaffected by osmotic fluctuations [67]. The reasons underlying the robustness of these chloroplasts remain unclear, but high capacity for repair of the light-damaged PSII has been considered crucial for kleptoplast longevity in sacoglossan sea slugs [68,69].

In the algae *V. litorea* and *A. acetabulum*, the protease FtsH, essential for PSII repair, is encoded in the chloroplast genome [60,69]. In land plants, the *ftsH* gene has been transferred to the nuclear genome and the protein needs to be imported from the cytosol [69]. The FtsH protease is responsible for the removal of the photodamaged core protein D1 of PSII, before the insertion of a newly synthesized D1 that is encoded by the plastome gene *psbA*. It was previously shown that chloroplasts sequestered from *V. litorea* by the sea slug *E. chlorotica* continue to actively transcribe and translate the plastid-encoded *psbA* [70]. The D1 repair cycle reduces the accumulation of damaging ROS that would rapidly limit photosynthesis [11,71,72]. Evidence for the presence of transcripts of *ftsH*, *psbA*, and *tufA* genes in *E. timida* were reported in sea slugs that had been starved for 1 month [69]. The translation of *ftsH* transcript would be impaired in the absence of the crucial elongation factor Tu encoded by *tufA* [69]. Assessing the transcripts of 7 plastome genes in isolated *V. litorea* chloroplasts, Havurinne and colleagues [73] observed that levels of *ftsH* and *tufA* decreased slower than the transcripts of the other tested genes. Furthermore, photoinhibition in *V. litorea* was similar in the absence and presence of a cytosolic translation inhibitor, suggesting that the PSII repair cycle was not dependent on active translation of nuclear-encoded proteins [73]. These chloroplasts seem to possess the genetic autonomy for maintaining a PSII repair cycle.

Physiological photoprotective mechanisms

Photosynthetic organisms display a variety of physiological photoprotective mechanisms that can protect the photosynthetic apparatus after light is absorbed by the light-harvesting systems, but before actual damage is inflicted by ROS. The photoprotective mechanism prevalent in high light levels is the conversion and dissipation of the excess excitation energy as heat, typically assessed as the energy-dependent component of non-photochemical quenching (NPQ), qE [74]. This fast reversible NPQ component requires the irradiance-dependent establishment of a transthylakoidal proton gradient and the activation of a xanthophyll cycle (XC) [75,76]. A fast reversible NPQ component and functional XCs were reported in kleptoplasts of *E. timida* and *E. chlorotica* [77–79]. Furthermore, both *E. timida* and *E. chlorotica* were shown to induce NPQ faster and to higher levels than their algae prey [77,79]. In the case of *E. timida*, the enhanced NPQ of the sea slugs was related to a stronger acidification of the thylakoid lumen of the kleptoplasts [79]. However, energy dissipation via the XC decreased as *E. timida* kleptoplasts aged along with animal starvation, indicating a progressive loss of photoprotective capacity [78].

In the dark, the first component of the photosynthetic electron transport chain, plastoquinone, was found to be more oxidized in the chloroplasts sequestered by *E. timida* than in those of its algal prey, *A. acetabulum* [79]. Upon transition to light, this allows PSI to transfer extra electrons to plastoquinone, avoiding the buildup of harmful ROS. Furthermore, kleptoplasts of *E. timida*, as well as chloroplasts of *A. acetabulum*, may use alternative electron sinks (e.g., flavodiiron proteins) to protect the photosystem I (PSI) from photoinhibition [79].
Once ROS are formed, scavenging mechanisms can be triggered to reduce oxidative stress. The sister species *E. cornigera* and *E. timida* obtain active chloroplasts from the alga *A. acetabulum*, but only the latter slug is able to maintain long-term photosynthetically active plastids [80]. Comparing the response of these species to starvation and light stress, de Vries and colleagues [81] observed that *E. cornigera* individuals died while accumulating high levels of ROS in the kleptoplast-bearing digestive tubules. Low levels of ROS and *E. timida* longer survival could be related to more effective ROS scavenging mechanisms. Isolated thylakoids of *V. litorea* were found to be more resilient to photoinhibition of PSII than spinach thylakoids, possible due to lower 1O$_2$ production and higher concentrations of ROS detoxification compounds (e.g., α-tocopherol and carotenoids) [73]. The maintenance of photoprotective mechanisms (e.g., non-photochemical processes and ROS scavenging) following chloroplast incorporation into sea slug cells could have a significant role in the longevity of kleptoplast photosynthetic activity by reducing light-induced oxidative stress [77,81].

Chloroplast shielding mechanisms

The 2 previous sections have analyzed the repair and physiological photoprotective mechanisms of kleptoplasts after light is captured by the organelle’s light-harvesting systems. However, an array of mechanisms that avoid light reaching the kleptoplasts can help explain the long-term maintenance of functional plastids in sacoglossan sea slugs. To discriminate from the previously discussed photoprotective processes, we will refer to them as chloroplast shielding mechanisms.

Contrary to sessile photosynthetic life forms, sea slugs are motile and can actively search for optimum light levels. Positive phototaxis has been shown for several sea slug species hosting functional kleptoplasts [82–84]. However, avoidance of high light levels and a preferential selection of irradiance levels coincident with the optimum for photosynthetic activity were also reported [82–84]. Furthermore, all sacoglossan sea slugs that harbor long-term functional chloroplasts have parapodia, wing-like extensions that, when closed, provide shielding from high irradiance [28]. Avoidance of high light levels through parapodia closure has been observed in *E. timida*, *E. viridis*, and *P. ocellatus* sea slugs [78,84,85]. Parapodia closure could be an efficient strategy to reduce absorption under high light availability, functionally equivalent to leaf movement or paraheliotropism in plants [86].

Production of structurally complex compounds that can protect the chloroplasts from the highly photoinhibitory ultraviolet (UV) radiation has been reported in sacoglossan sea slugs [87,88]. In fact, UV-protective long-chain polypropionates were found exclusively in sea slugs with long-term chloroplast retention [87]. In the sea slug *P. ocellatus*, incorporation of 14C into UV-screening polypropionates was observed, indicating a role of kleptoplast photosynthesis in the biosynthesis of these photoprotective secondary metabolites [88]. UV radiation screening was observed in the tissues of the sea slug *E. timida*, preventing it from reaching the kleptoplasts [89]. Hence, efficient UV-screening compounds may greatly improve kleptoplast longevity in sacoglossan sea slugs by reducing damages to the photosynthetic apparatus.

Conclusion

Studying kleptoplastic sacoglossan sea slugs in isolation from sequestered chloroplasts is extremely complex, as the relation is described as obligatory. The sea slugs will not complete the initial steps of development in the absence of their algal prey and the acquisition of functional chloroplasts [29,43]. Recent transcriptomic data on the early stages of *E. chlorotica* development indicated the engagement of communication and complementarity of gene functions between the host and the kleptoplasts [90]. The authors showed that chloroplast
sequestration influenced host gene expression in a similar way to the establishment of symbiosis in corals. This strongly suggests that the kleptoplasts are not slowly digestible “snacks” as suggested by some, but rather energy powerhouses that support and are integrated into animal development [90].

It is important to highlight that compatibility between host and algae, enabling kleptoplasty and determining the longevity of kleptoplasts, can be determined by a chain of factors, ranging from feeding preference to intracellular metabolic and immunological selection. Several promising lines of research that were not addressed in this Unsolved Mystery can deepen our understanding of long-term kleptoplasty in sacoglossan sea slugs. For example, the redirecting of animal nuclear-encoded proteins to the kleptoplasts. In fact, there are several mitochondrial proteins (electron transport system, ATP synthase complex) and cytosolic proteins (gluconeogenesis and pentose phosphate pathways) that could replace similar proteins in the kleptoplasts [91,92]. An important hypothesis that remains to be addressed is whether the host provisioning of different compounds enhances kleptoplast longevity.

Regarding the host’s benefits, the involvement of kleptoplasts in the sea slug’s capacity to acquire nitrogen, as has been suggested for deep-sea foraminifera [23], should be further investigated. Light-dependent assimilation of nitrogen was observed from incubations of *E. viridis* and *E. timida* with 15N-labeled nitrogen substrates [39,40,93]. Furthermore, nitrogen assimilation decreased significantly when sea slugs were incubated with specific inhibitors of glutamine (GS) and glutamate synthetases (GOGAT), showing that at least part was occurring through the kleptoplast GS-GOGAT activity [93]. Comparative omics analysis across different sacoglossan sea slug species and different stages of chloroplast integration are necessary to continue the process of unraveling the maintenance of long-term functional kleptoplasts and establish the full benefits of this extraordinary association [90,94].

Acknowledgments

We thank Anthony Moreira for comments on the manuscript, Miguel Leal for help designing Fig 3, and João Cartaxana for photo editing.

References

1. Rumpho ME, Dastoor FP, Manhart JR, Lee J. The kleptoplast. In: Wise RR, Hoober JK, editors. Advances in photosynthesis and respiration: the structure and function of plastids, Vol. 23. Springer; 2007. p. 451–473. https://doi.org/10.1007/978-1-4020-4061-0_23

2. Pierce SK, Curtis NE. Cell biology of the chloroplast symbiosis in sacoglossan sea slugs. Int Rev Cell Mol Biol. 2012; 293:123–148. https://doi.org/10.1016/B978-0-12-394304-0.00009-9 PMID: 22251560

3. Raven JA, Beardall J, Flynn KJ, Maberly SC. Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot. 2009; 60:3975–3987. https://doi.org/10.1093/jxb/erp282 PMID: 19767306

4. Dorrell RG, Howe CJ. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci. 2012; 125:1865–1875. https://doi.org/10.1242/jcs.102285 PMID: 22547565

5. Archibald JM. Endosymbiosis and eukaryotic cell evolution. Curr Biol. 2015; 25:R911–R921. https://doi.org/10.1016/j.cub.2015.07.055 PMID: 26439354

6. Wernegreen JJ. Endosymbiosis. Curr Biol. 2012; 22:R555–R561. https://doi.org/10.1016/j.cub.2012.06.010 PMID: 22835786

7. Johnson MD. The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles. Photosynth Res. 2011; 107:117–132. https://doi.org/10.1007/s11120-010-9546-8 PMID: 20405214

8. Sibbald SJ, Archibald JM. Genomic insights into plastid evolution. Genome Biol Evol. 2020; 12:978–990. https://doi.org/10.1093/gbe/evaa096 PMID: 32402068

9. Ponce-Toledo RI, López-García P, Moreira D. Horizontal and endosymbiotic gene transfer in early plastid evolution. New Phytol. 2019; 224:618–624. https://doi.org/10.1111/nph.15965 PMID: 31135958
10. Martin W, Herrmann RG. Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol. 1998;118:9–17. https://doi.org/10.1104/pp.118.1.9 PMID: 9733521

11. Nishiyama Y, Allakhverdiev SI, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta. 2006;1757:742–749. https://doi.org/10.1016/j.bbabio.2006.05.013 PMID: 16784721

12. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta. 2007;1767:414–421. https://doi.org/10.1016/j.bbabio.2006.11.019 PMID: 17207454

13. Kim M, Kim KY, Nam SW, Shin W, Yih W, Park MG. The effect of starvation on plastid number and photosynthetic performance in the kleptoplastidic dinoflagellate Amrylix triacantha. J Eukaryot Microbiol. 2014;61:354–63. https://doi.org/10.1111/jeu.12115

14. McManus GB, Zhang H, Lin SJ. Marine planktonic ciliates that prey on macroalgae and enslave their chloroplasts. Limnol Oceanogr. 2004;49:308–313. https://doi.org/10.4319/lo.2004.49.1.0308

15. Pillet L, Vargas C, Pawlowski J. Molecular identification of sequestered diatom chloroplasts and kleptoplasty in Foraminifera. Protist. 2011;162:394–404. https://doi.org/10.1016/j.protis.2010.10.001 PMID: 21130034

16. Waller RF, Kofényi L. Plastid complexity in dinoflagellates: A picture of gains, losses, replacements and revisions. In: Hirakawa Y, editor. Advances in Botanical Research, Vol. 84. Academic Press; 2017. p. 105–143. https://doi.org/10.1016/bs.abbr.2017.06.004

17. Hehenberger E, Gast RJ, Keeling PJ. A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc Natl Acad Sci U S A. 2019;116:17934–17942. https://doi.org/10.1073/pnas.1910121116 PMID: 31427512

18. Sellers CG, Gast RJ, Sanders RW. Selective feeding and foreign plastid retention in an Antarctic dinoflagellate. J Phycol. 2014;50:1081–1088. https://doi.org/10.1111/jphy.12240 PMID: 26988789

19. Rusterholz PM, Hansen PJ, Daugbjerg N. Evolutionary transition towards permanent chloroplasts?—Division of kleptochloroplasts in starved cells of two species of Dinophysis (Dinophyceae). PLoS ONE. 2017;12:e0177512. https://doi.org/10.1371/journal.pone.0177512

20. Gast RJ, Moran DM, Dennett MR, Caron DA. Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol. 2007;9:39–45. https://doi.org/10.1111/j.1462-2920.2006.01109.x PMID: 17227410

21. Jauffraïs T, LeKieffre C, Koho KA, Tsuchiya M, Schweizer M, Bernhard JM, et al. Ultrastructure and distribution of kleptoplasts in benthic foraminifera from shallow-water (photic) habitats. Mar Micropaleontol. 2018;138:46–62. https://doi.org/10.1016/j.marmicro.2017.10.003

22. Jauffraïs T, Jesus B, Metzger E, Mouget JL, Jorissen F, Geslin E. Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida). Biogeosciences. 2016;13:2715–2726. https://doi.org/10.5194/bg-13-2715-2016

23. Grzymski J, Schofield OM, Falkowski PG, Bernhard JM. The function of plastids in the deep-sea benthic foraminifer Nonionella stella. Limnol Oceanogr. 2002;47:1569–1580. https://doi.org/10.4319/lo.2002.47.6.1569

24. Lopez E. Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar Biol. 1979;53:201–211. https://doi.org/10.1007/BF00952427

25. LeKieffre C, Jauffraïs T, Geslin E, Jesus B, Bernhard JM, Giovanni M-E, et al. Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastidic foraminifer. Sci Rep. 2018;8:10140. https://doi.org/10.1038/s41598-018-28455-1 PMID: 29973634

26. Bernhard JM, Bowser SS. Benthic foraminifera of dysoxic sediments: Chloroplast sequestration and functional morphology. Earth Sci Rev. 1999;46:149–165. https://doi.org/10.1016/S0012-8252(99)00017-3

27. Van Steenikste NWL, Stephenson I, Herranz M, Husnik F, Keeling PJ, Leander BS. A new case of kleptoplasmy in animals: marine flatworms steal functional plastids from diatoms. Sci Adv. 2019;5:eaaw4337. https://doi.org/10.1126/sciadv.aaw4337 PMID: 31328166

28. Händeler K, Grzymbowski YP, Krug PJ, Wägele H. Functional chloroplasts in metazoan cells: a unique evolutionary strategy in animal life. Front Zool. 2009;6:28–46. https://doi.org/10.1186/1742-9994-6-28 PMID: 19951407

29. Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D. The making of a photosynthetic animal. J Exp Biol. 2011;214:303–311. https://doi.org/10.1242/jeb.046540 PMID: 21177950

30. Marin A, Ros JD. Dynamics of a peculiar plant-herbivore relationship: the photosynthetic ascoglossan Elysia timida and the chlorophycean Acetabularia acetabulum. Mar Biol. 1992;112:677–682. https://doi.org/10.1007/BF00346186
31. Baumgartner FA, Toth GB. Abundance and size distribution of the sacoglossan *Elysia viridis* on co-occurring algal hosts on the Swedish West Coast. PLoS ONE. 2014; 9:e92472. https://doi.org/10.1371/journal.pone.0092472

32. Vital XG, Rey F, Cartaxana P, Cruz S, Domingues MR, Calado R, et al. Pigment and fatty acid heterogeneity in the sea slug *Elysia crispata* is not shaped by habitat depth. Animals. 2021; 11:3157. https://doi.org/10.3390/ani1113157

33. Wade RM, Sherwood AR. Molecular determination of kleptoplast origins from the sea slug *Plakobranchus ocellatus* (Sacoglossa, Gastropoda) reveals cryptic bryopsidalean (Chlorophyta) diversity in the Hawaiian Islands. J Phycol. 2017; 53:467–475. https://doi.org/10.1111/jpy.12503

34. Hirose E. Digestive system of the sacoglossan *Plakobranchus ocellatus* (Gastropoda: Opisthobranchia): light- and electron-microscopic observations with remarks on chloroplast retention. Zoolog Sci. 2005; 22:905–916. https://doi.org/10.2108/zsj.22.905

35. Trowbridge CD. Defensive responses and palatability of specialist herbivores: predation on NE Pacific sacoglossan gastropods. Mar Ecol Prog Ser. 1994; 105:63–70. https://doi.org/10.3354/meps105063

36. Wägele H, Klussmann-Kolb A. Opistho branchia (Mollusca, Gastropoda) – more than just slimy slugs. Shell reduction and its implications on defence and foraging. Front Zool. 2005; 2:3. https://doi.org/10.1186/1742-9994-2-3 PMID: 15715915

37. Trench RK, Greene RW, Bystrom BG. Chloroplasts as functional organelles in animal tissues. J Cell Biol. 1969; 42:404–417. https://doi.org/10.1083/jcb.42.2.404 PMID: 5792329

38. Trench RK, Boyle JE, Smith DC. The association between chloroplasts of *Codium fragile* and the moluscs *Elysia viridis*. II. Chloroplast ultrastructure and photosynthetic carbon fixation in *E. viridis*. Proc R Soc Lond B. 1973; 184:63–81. https://doi.org/10.1098/rspb.1973.0031.

39. Cruz S, LeKieffre C, Cartaxana P, Hubas C, Thiney N, Jakobsen S, et al. Functional kleptoplasts intermediate incorporation of carbon and nitrogen in cells of the Sacoglossa sea slug *Elysia viridis*. Sci Rep. 2020; 10:10548. https://doi.org/10.1038/s41598-020-66909-7

40. Cartaxana P, Rey F, LeKieffre C, Lopes D, Hubas C, Spangenberg JE, et al. Photosynthesis from stolen chloroplasts can support sea slug reproductive fitness. Proc R Soc B. 2021; 288:20211779. https://doi.org/10.1098/rspb.2021.1779 PMID: 34583582

41. Hinde R, Smith DC. Persistence of functional chloroplast in *Elysia viridis* (Opisthobranchia, Sacoglossa). Nat New Biol. 1972; 239:30–31. https://doi.org/10.1038/newbio239030a0

42. Giménez-Casaldueiro F, Muniaín C. The role of kleptoplasts in the survival rates of *Elysia timida* (Risso, 1818): (Sacoglossa: Opisthobranchia) during periods of food shortage. J Exp Mar Biol Ecol. 2008; 357:181–187. https://doi.org/10.1016/j.jembe.2008.01.020

43. Pelletreau KN, Weber APM, Weber KL, Rumpho ME. Lipid accumulation during the establishment of kleptoplasty in *Elysia chlorotica*. PLoS ONE. 2014; 9:e97477. https://doi.org/10.1371/journal.pone.0097477

44. Yamamoto S, Hirano YM, Hirano YJ, Trowbridge CD, Akimoto A, Sakai A, et al. Effects of photosynthesis on the survival and weight retention of two kleptoplastic sacoglossan opisthobranchs. J Mar Biol Assoc U K. 2013; 98:209–215. https://doi.org/10.1017/S0025315412000628

45. Cartaxana P, Trampe E, Kühll M, Cruz S. Kleptoplast photosynthesis is nutritionally relevant in the sea slug *Elysia viridis*. Sci Rep. 2017; 7:7714. https://doi.org/10.1038/s41598-017-08002-0

46. Christa G, Zimorski V, Woehle C, Tielens AG, Waägele H, Martin WF, et al. Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive. Proc R Soc B. 2014; 281:20132493. https://doi.org/10.1098/rspb.2013.2493

47. Laetz EM, Moris VC, Moritz L, Haubrich AN, Wägele H. Photosynthetic accumulation in solar-powered sea slugs—starving slugs survive due to accumulated starch reserves. Front Zool. 2017; 14:4. https://doi.org/10.1186/s12983-016-0186-5 PMID: 28115976

48. Baumgartner FA, Pavia H, Toth GB. Acquired phototrophy through retention of functional chloroplasts increases growth efficiency of the sea slug *Elysia viridis*. PLoS ONE. 2015; 10:e0120874. https://doi.org/10.1371/journal.pone.0120874

49. Cartaxana P, Rey F, Ribeiro M, Moreira ASP, Domingues MRM, Calado R, et al. Nutritional state determines reproductive investment in the mixotrophic sea slug *Elysia viridis*. Mar Ecol Prog Ser. 2019; 611:167–177. https://doi.org/10.3354/meps12866

50. Maeda T, Hirose E, Chikaraishi Y, Kawato M, Takishita K, Yoshida T, et al. Algivore or phototroph? *Plakobranchus ocellatus* (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE. 2012; 7:e42024. https://doi.org/10.1371/journal.pone.0042024

51. Raven JA, Walker DJ, Jensen KR, Handley LL, Scrimgeour CM, McNnroy SG. What fraction of the organic carbon in sacoglossans is obtained from photosynthesis by kleptoplasts? An investigation using the natural abundance of stable carbon isotopes. Mar Biol. 2001; 138:537–545. https://doi.org/10.1007/s002270000488
52. Shiroyama H, Mitoh S, Ida TY, Yusa Y. Adaptive significance of light and food for a kleptoplastic sea slug: implications for photosynthesis. Oecologia. 2020; 194:455–463. https://doi.org/10.1007/s00442-020-04779-8 PMID: 33064215

53. Davies MS, Hawkins SJ. Mucus from marine molluscs. Adv Mar Biol. 1998; 34:1–71. https://doi.org/10.1016/S0065-2881(08)60210-2

54. Trench ME, Trench RK, Muscatine L. Utilization of photosynthetic products of symbiotic chloroplasts in mucus synthesis by Placobranchus Ianthobaptus (Gould), Opisthobranchia, Sacoglossa. Comp Biochem Physiol. 1970; 37:113–117. https://doi.org/10.1016/0010-406X(70)90964-3

55. Trench RK, Trench ME, Muscatine L. Symbiotic chloroplasts; their photosynthetic products and contribution to mucus synthesis in two marine slugs. Biol Bull. 1972; 142:335–349. https://doi.org/10.2307/1540236 PMID: 5021132

56. Lopes D, Cruz S, Martins P, Ferreira S, Nunes C, Domingues P, et al. Sea slug mucus production is supported by photosynthesis of stolen chloroplasts. Biology. 2022; 11:1207. https://doi.org/10.3390/biology11081207 PMID: 36009836

57. Dubinsky Z, Jokiel PL. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci. 1994; 48:313–324. http://hdl.handle.net/10125/2241.

58. Davies PS. Effect of daylight variations on the energy budgets of shallow-water corals. Mar Biol. 1991; 108:137–144. https://doi.org/10.1007/BF01313481

59. Davies PS. The role of zooxanthellae in the nutritional requirements of Pocillopora eydouxi. Coral Reefs. 1984; 2:181–186. https://doi.org/10.1007/BF00263571

60. Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, et al. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci U S A. 2008; 105:17867–17871. https://doi.org/10.1073/pnas.0804968105

61. Schwartz JA, Curtis NE, Pierce SK. Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evol Biol. 2010; 37:29–37. https://doi.org/10.1007/s11692-010-9079-2

62. Pierce SK, Fang X, Schwartz JA, Jiang X, Zhao W, Curtis NE, et al. Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica. Mol Biol Evol. 2012; 29:1545–1556. https://doi.org/10.1093/molbev/msq316

63. Bhattacharya D, Pelletreau KN, Price DC, Sarver KE, Rumpho ME. Genome analysis of Elysia chlorotica egg DNA provides no evidence for horizontal gene transfer into the germ line of this kleptoplastic mollusc. Mol Biol Evol. 2013; 30:1843–1852. https://doi.org/10.1093/molbev/msm084

64. Wägele H, Deusch O, Händeler K, Martin R, Schmitt V, Christa G, et al. Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Placobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Mol Biol Evol. 2011; 28:699–706. https://doi.org/10.1093/molbev/msq239

65. Maeda T, Takahashi S, Yoshida T, Shimamura S, Takaki Y, Nagai Y, et al. Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs, Placobranchus ocellatus. eLife. 2021; 10:e60176. https://doi.org/10.7554/eLife.60176

66. Trench RK, Boyle EJ, Smith DC. The association between chloroplasts of Codium fragile and the mollusk Elysia viridis: I. Characteristics of isolated Codium chloroplasts. Proc R Soc Lond. 1973; 184:51–61. https://doi.org/10.1098/rspb.1973.0030.

67. Green BJ, Fox TC, Rumpho ME. Stability of isolated algal chloroplasts that participate in a unique molusko-kleptoplastic association. Symbiosis. 2005; 40:31–40.

68. Cruz S, Calado R, Sero ˆdio J, Cartaxana P. Crawling leaves: photosynthesis in sacoglossan sea slugs. J Exp Bot. 2013; 64:3999–4009. https://doi.org/10.1093/jxb/ert197 PMID: 23846876

69. de Vries J, Habicht J, Woehle C, Huang C, Christa G, Wägele H, et al. Is ftsH the key to plastid longevity in sacoglossan slugs? Genome Biol Evol. 2013; 5:2540–2548. https://doi.org/10.1093/gbe/evt205

70. Mujer CV, Andrews DL, Manhart JR, Pierce SK, Rumpho ME. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorearoplastids with the sea slug Elysia chlorotica. Proc Natl Acad Sci U S A. 1996; 93:12333–12338. https://doi.org/10.1073/pnas.93.22.12333

71. Aro EM, Virgin I, Andersson B. Photo-inhibition of photosystem II: inactivation, protein damage and turn-over. Biochim Biophys Acta. 1993; 1143:113–134. https://doi.org/10.1016/0005-2728(93)90134-2

72. Tyystjärvi E, Aro EM. The rate constant of photo-inhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci U S A. 1996; 93:2213–2218. https://doi.org/10.1073/pnas.93.5.2213 PMID: 11607639

73. Havurirrme V, Handrich M, Antinluoma M, Khorobrykh S, Gould SB, Tyystjärvi E. Genetic autonomy and low singlet oxygen yield support kleptoplastic functionality in photosynthetic sea slugs. J Exp Bot. 2021; 72:5553–5568. https://doi.org/10.1093/jxb/erab216 PMID: 33989402
74. Müller P, Li X-P, Niyogi KK. Non-photochemical quenching: A response to excess light energy. Plant Physiol. 2001; 125:1558–1566. https://doi.org/10.1104/pp.125.4.1558 PMID: 11299337

75. Goss R, Jakob T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res. 2010; 106:103–122. https://doi.org/10.1007/s11120-010-9536-x PMID: 20224940

76. Goss R, Lepeil B. Biodiversity of NPQ. J Plant Physiol. 2015; 172:13–32. https://doi.org/10.1016/j.jplph.2014.03.004 PMID: 24854581

77. Cruz S, Cartaxana P, Newcomer R, Dionisio G, Calado R, Seródio J, et al. Photoprotection in sequestered plastids of sea slugs and respective algal sources. Sci Rep. 2015; 5:7904. https://doi.org/10.1038/srep07904 PMID: 25601025

78. Cartaxana P, Morelli L, Jesus B, Calado G, Calado R, Cruz S. The photon menace: kleptoplast protection in the photosynthetic sea slug *Elysia timida*. J Exp Biol. 2019; 222:jeb202580. https://doi.org/10.1242/jeb.202580

79. Havurinne V, Tyysjärvi E. Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae. eLife 2020; 9:e57389. https://doi.org/10.7554/eLife.57389 PMID: 33077025

80. Krug PJ, Händeler K, Vendetti J. Genes, morphology, development and photosynthetic ability support the resurrection of *Elysia coriacea* (Heterobranchia: Plakobranchioidea) as distinct from the ‘solar-powered’ sea slug, *E. timida*. Invertebr Syst. 2011; 5:477–489. https://doi.org/10.1071/IS11026

81. de Vries J, Woehle C, Christa G, Waagele H, Tielens AGM, Jahns P, et al. Comparison of sister species identifies factors underpinning plastid compatibility in green sea slugs. Proc R Soc B. 2015; 282:20142519. https://doi.org/10.1098/rspb.2014.2519 PMID: 25652835

82. Gallop A, Bartrop J, Smith DC. The biology of chloroplast acquisition by *Elysia viridis*. Proc R Soc B. 1980; 207:335–349. https://doi.org/10.1098/rspb.1980.0027

83. Miyamoto A, Sakai A, Nakano R, Yusa Y. Phototaxis of sacoglossan sea slugs with different photosynthetic abilities: a test of the ‘crawling leaves’ hypothesis. Mar Biol. 2015; 162:1343–1349. https://doi.org/10.1007/s00227-015-2673-1

84. Cartaxana P, Morelli L, Quintaniero C, Calado G, Calado R, Cruz S. Kleptoplast photoacclimation state modulates the photobehaviour of the solar-powered sea slug *Elysia viridis*. J Exp Biol. 2018; 221: jeb180463. https://doi.org/10.1242/jeb.180463

85. Donà AR, Evertsen J, Johnsen G. The role of parapodia and lack of photoacclimation in kleptoplasts of the sacoglossan sea slug *Plakobranchus ocellatus*. Coral Reefs. 2022; 41:319–332. https://doi.org/10.1007/s00338-022-02224-z

86. Pastenes C, Pimentel P, Lillo J. Leaf movements and photoinhibition in relation to water stress in field-grown beans. J Exp Bot. 2005; 56:425–433. https://doi.org/10.1093/jxb/eri061 PMID: 15596474

87. Torres JP, Lin Z, Winter JM, Krug PJ, Schmidt EW. Animal biosynthesis of complex polyketides in a photosynthetic partnership. Nat Commun. 2020; 11:2882. https://doi.org/10.1038/s41467-020-16376-5 PMID: 32513940

88. Ireland C, Scheuer PJ. Photosynthetic marine mollusks: in vivo 14C incorporation into metabolites of the sacoglossan *Placobranchus ocellatus*. Science. 1979; 205:922–923. https://doi.org/10.1126/science.205.4409.922

89. Havurinne V, Aitokari R, Mattila H, Käpylä V, Tyysjärvi E. Ultraviolet screening by slug tissue and tight packing of plastids protect photosynthetic sea slugs from photoinhibition. Photosynth Res. 2022; 152:373–387. https://doi.org/10.1007/s11120-021-00883-7 PMID: 34826025

90. Chan CX, Vaysberg P, Price DC, Pelletreau KN, Rumpho ME, Bhattacharya D. Active host response to algal symbionts in the sea slug *Elysia chlorotica*. Mol Biol Evol. 2018; 35:1706–1711. https://doi.org/10.1093/molbev/msy061

91. Rumpho ME, Sumner EJ, Manhart JR. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 2000; 123:29–38. https://doi.org/10.1104/pp.123.1.29 PMID: 10806222

92. Rumpho ME, Sumner EJ, Green BJ, Fox TC, Manhart JR. Mollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus? Zoology. 2001; 104:303–312. https://doi.org/10.1078/0944-2006-00036 PMID: 16351845

93. Teugels B, Bouillon S, Veuger B, Middelburg JJ, Koedam N. Kleptoplasts mediate nitrogen acquisition in the sea slug *Elysia viridis*. Aquat Biol. 2008; 4:15–21. https://doi.org/10.3354/ab00092

94. Rey F, Melo T, Cartaxana P, Calado R, Domingues P, Cruz S, Domingues MRM. Coping with starvation: contrasting lipidomic dynamics in the cells of two sacoglossan sea slugs incorporating stolen plastids from the same macroalga. Integr Comp Biol. 2020; 60:43–56. https://doi.org/10.1093/icb/icaa019 PMID: 32294176