Environmental Research Letters

LETTER

On the role of rainfall deficits and cropping choices in loss of agricultural yield in Marathwada, India

Mariam Zachariah1, Arpita Mondal2,4, Mainak Das3, Krishna Mirle AchutaRao1 and Subimal Ghosh1,2

1 Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
2 Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India
3 Center for Atmospheric Sciences, Indian Institute of Technology Delhi, Delhi, India
4 Author to whom any correspondence should be addressed.

E-mail: marpita@civil.iitb.ac.in

Keywords: crop yield, mixed-effects linear regression, DSSAT, climate change

Abstract
Crop loss and ensuing social crises can be detrimental for the agriculture-driven economy of India. Though some studies identify country-wide increasing temperatures as the dominant factor for crop loss, the agro-climatic diversity within the country necessitates an understanding of the influence of climate variability on yields at regional scales. We report a complex interplay among rainfall, temperature and cropping choices, with a focus on the drought-prone Marathwada region in Maharashtra. Our analysis based on observations, as well as statistical and process-based modelling experiments, and temperature projections of 1.5 °C and 2 °C warmer worlds show that for the two major cropping seasons, rainfall deficit is the primary cause of crop failure, as compared to rising temperatures. The gradual shift from drought-resilient food crops, such as sorghum and pearl-millet to water-intensive cash crops such as sugarcane in recent years, is seemingly responsible for aggravating this crisis. Our findings warrant strategies promoting drought-resilient food crops, that will be useful, not only for mitigating the immediate agrarian crisis, but also for curbing impending threats to food security in the region under future climate change.

1. Introduction
Crop failure and subsequent agrarian crises (Mohanty and Shroff 2004, Rao & Suri, 2006, Gruère and Sengupta 2011, Gutierrez, 2015) is a major concern for the agriculture-driven economy of India (DoES & MoAW, 2016). The geographical location, and the spatial heterogeneity in landforms and climate (figure S1), aids cultivation over two major cropping seasons: the rain-fed Kharif season (June-September) during the southwest monsoons, and the irrigated Rabi season (October-February). The vulnerability of crop production to monsoon variability (Prasanna 2014, Verma et al 2018) warrants understanding of the major meteorological drivers of crop loss, while framing relevant mitigation strategies.

Climate effects on crops are different at global (e.g. Lobell et al 2011, Iizumi and Ramankutty 2016, Lesk et al 2016), national (e.g. Olesen et al 2011, Gourdji et al 2015, Zampieri et al 2017) and sub-national scales (e.g. Almeayehu and Bewket 2016, Zhang et al 2016, Zampieri et al 2017). This is also true for the Indian sub-continent (Ghosh et al 2009, Pal & Al-tabba, 2011) where rainfall and warming trends are spatially non-uniform (Kothawale and Rupa Kumar 2005, Dash et al 2009, Lau and Kim 2010, Sonali and Nagesh Kumar 2013). Many studies have evaluated and reported variability in rainfall (Ray et al 2015, Fishman 2016) and/or temperature (Mondal et al 2015, DeFries et al 2016, Davis et al 2019, Bhatt et al 2019) to be the dominant driver of crop yields, among other climate-agriculture-environment interactions such as irrigation and fertilization, depending on the geographical location/spatial scale, crop type, and cropping season.

Carleton (2017) analyzed the link between crop yields and climate change over India and attributed about 6.8% rise in farmer suicides from 1987 to 2013 to rising growing season temperatures. Although the results were consistent with other studies that established the effect of global warming on declining crop yields (Lobell and Field 2007, Auffhammer
To quantify the relative contributions of rainfall, and to investigate the cause for observed shifts in crop yields, to offer a prognosis of agriculturally relevant temperature trends, during the major cropping seasons and years 2014 and 2015 that may have had a confounding effect on sharp fall in crop yields, in a set of model experiments (supplementary section S2).

\[\text{Yield}_{d,t} = \beta_1 \text{Rain}_{d,t} + \beta_2 \text{Rain}_{d,t}^2 + \beta_3 \text{GDD}_{d,t} + \beta_4 \text{GDD}_{d,t}^2 + \beta_5 \text{NumRD}_{d,t} + \beta_6 \text{AccRain}_{d,t} + \beta_7 \text{Irrig}_{d,t} + 1|\text{District}_{j,d} + 1|\text{Year}_{t} \]

where, \(\beta_1, \ldots, \beta_7 \) are the standardized partial regression coefficients for crop \(j \), for the fixed-effects. \(1|\text{District}_{j,d} \) and \(1|\text{Year}_{t} \) are random effects for district \(d \) and year \(t \), respectively.

2.2. Process-based model

For disaggregating the response of selected crop yields to the respective growing season precipitation and temperature, we use two analytical methods (e.g. Lobell and Asseng 2017) as discussed below. Figure S2 presents the detailed workflow of the analysis.

2.1. Statistical model

We use a mixed-effects regression approach for modeling the response of the selected crops to climate variability (Mondal et al 2014, DeFries et al 2016, Fishman 2016, Davis et al 2019), at district-scales (figure 1(a)). The observed meteorological effects on crop yields are the fixed-effects, while the unobserved spatial and temporal variations in soil quality and crop management practices form the random-effects. The crop yield (Yield) is modeled as a function of rainfall and temperature, via a suite of explanatory variables. The total rainfall received (Rain) and the number of rainy days (NumRD), both cumulated over the growing season, rainfall accumulations from the previous seasons (AccRain) and available irrigation amounts (Irrig; proxied by change in groundwater levels) are used to capture rainfall variability, while available growing degree days during the growing season (GDD) form the effect of temperature on yields. Intercepts for districts (District) and years (Year) account for the random-effects.

All variables are standardized prior to modeling, for facilitating comparison of sensitivities of yields to the various drivers, both for individual crops and across different crops (Schielzeth 2010). The details of the regression model are detailed in supplementary section S1 (available at stacks.iop.org/ERL/15/094029/mmedia). We arrive at the best performing model (equation 1), based on the sensitivity of the selected crops and overall performance of the models to the omission/inclusion of (i) higher order terms of rainfall and temperature, (ii) irrigation and rainfall accumulations from previous season, and (iii) the drivers in years 2014 and 2015 that may have had a confounding effect on sharp fall in crop yields, in a set of model experiments (supplementary section S2).

\[\text{Yield}_{d,t} = \beta_1 \text{Rain}_{d,t} + \beta_2 \text{Rain}_{d,t}^2 + \beta_3 \text{GDD}_{d,t} + \beta_4 \text{GDD}_{d,t}^2 + \beta_5 \text{NumRD}_{d,t} + \beta_6 \text{AccRain}_{d,t} + \beta_7 \text{Irrig}_{d,t} + 1|\text{District}_{j,d} + 1|\text{Year}_{t} \]

where, \(\beta_1, \ldots, \beta_7 \) are the standardized partial regression coefficients for crop \(j \), for the fixed-effects. \(1|\text{District}_{j,d} \) and \(1|\text{Year}_{t} \) are random effects for district \(d \) and year \(t \), respectively.
Figure 1. (a) Marathwada sub-division in Maharashtra, India. The districts that form the region are marked by numbers 1–8. (b) Seasonal average rainfall and temperature from 1951 to 2015 in Marathwada, for the Kharif season. (c) same as (b), for the Rabi season. The JJAS rainfalls and ONDJF temperatures are both significant at 5% significance level, based on the Mann-Kendall non-parametric trend test. (d) Cropped area under major crops cultivated in the region for the Kharif season. (e) same as (d), for the Rabi season. (f) Area-averaged standardized crop yield time series (1980–81 to 2015–16) for selected crops based on increasing/decreasing acreages with time, for the Kharif season. (g) same as (f), for the Rabi season.

our analysis to a single process-based model, for qualitative comparison with results from regression models. Despite difficulties in calibration, either arising from lack of reliable field data (Lobell and Burke 2010), or due to uncertainties in the different meteorological (Tao et al 2009) and phenological parameters (Izumi et al 2009), process-based models form important tools for assessing climate change impacts on agriculture (e.g. Challinor et al 2009, White et al 2011, Rötter et al 2012, Angulo et al 2013).

A summary of the model forcing data, both meteorological and crop specific, cultivar choices and associated assumptions in crop management is provided in Table S8. We use DSSAT simulations for two design scenarios for the period 1997–2015. The two scenarios, P_VAR and T_VAR, assume rainfall and temperature, respectively, to be the observed daily values while all other meteorological inputs are kept constant at their respective 1997–2015 daily means. Without loss of generality, the estimated yields for each crop are scaled to lie in the interval [0, 1] (normalized) to make the scenarios comparable. Further, we also report the coefficient of variation (ratio of standard deviation to mean) (Abdi 2010), based on the time series of annual yields in the P_VAR and T_VAR experiments. A lower (higher) coefficient indicates a larger (smaller) spread of the series about its mean, and translates to lower (higher) sensitivity of crop yield to the variability in rainfall or temperature.
Figure 2. DSSAT experiment results: Simulated response of crop yields to the growing season rainfall when temperature is held at a long-term mean (blue), and to the growing season GDD when rainfall is held at a long-term mean (red) for: (a) sugarcane, (b) cotton, (c) soybean, (d) wheat and (e) chickpea.

3. Data

The annual yield and area under cultivation for the various crops grown in Marathwada is compiled for 1997–2015, from the district-wise data, from the Area and Production Statistics portal, under the Ministry of Agriculture and Farmers Welfare, Government of India (aps.dac.gov.in). For sugarcane, cotton, sorghum, pearl millet, soybean, wheat, chickpea and sunflower, annual yields for 1980–1997 are obtained from the annual reports of the Commissionerate of Agriculture (1991, 1995, 1996). The cropping calendars (Table S6) are obtained from the Directorate of Economics and Statistics, Government of India (eands.dacnet.nic.in/At_A_Glance-2011/appendix-IV.xls). Optimum temperature ranges (Hatfield et al 2011) for the different growth stages of the crops are inferred from various studies and are presented in Table S10.

Observed daily gridded rainfall for 1901–2016 at 0.25° × 0.25° lat-lon. resolution (Pai et al 2013) and daily maximum and minimum temperatures for 1951–2016 at 1° × 1° resolution (Srivastava et al 2009) are obtained from the India Meteorological Department (IMD; available at http://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html). Total rainfall and growing degree days (GDD) over the growing season for the Marathwada region (17.5°N—20.75°N, 74.75°E—78.25°E, shown in figure 1(a)) are computed for 1997–2015 from the daily records. Gridded monthly root-zone soil moisture (cu.m/cu.m) for 1980–2015 is obtained from the Modern Era Retrospective-Analysis for Research and Applications (MERRA-Land, available at http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset.pl?LOOKUPID_List=MSTMNXMLD) at a resolution of 0.5° x 0.66° (Reichle et al 2011,
Figure 3. Optimum temperature ranges for (a) sugarcane, (b) cotton, (c) soybean, (d) wheat and (e) chickpea, for different stages of crop growth (pink—sowing, green—growing, yellow—harvesting). Boxplots show the spread of daily temperatures for historical (1980–2015) observations (black), and future (2065–2100) projections under the 1.5 ◦C (blue) and 2 ◦C (red) warming scenarios. The temperature distribution in each of the crop growing stages in the 1.5 ◦C and 2 ◦C warmer worlds are significantly different from the observed distributions at 5% significance level (Table S11).
groundwater depletion (WWF 2004), thereby underlining its importance for further analysis (Khapre 2015, Joshi 2016). Further, industry-estimated sugarcane acreage from satellite observations is larger than the Government-reported figures (PTI, 2012), indicating that the acreages used in this study might be an understimation.

A careful examination of these crops, with regard to their relative importance in the economy (details in table S9 and figure S5), reveals that the crops showing increasing acreages in recent years namely, sugarcane, cotton, soybean and wheat, are cash crops. Therefore, the changing cropping patterns can be partially ascribed to expected higher returns arising from greater demand for these crops. The complex roles of the various agrarian welfare programs aimed at national food security and financial sustenance is yet another important dimension that influence these trends (Aditya et al. 2017, Dreze and Khera, 2013, Ranaware et al. 2015). Based on these findings, we focus on the sub-selection of Kharif and Rabi crops that show the highest change in acreages with time—sugarcane, cotton, soybean, sorghum, pearl millet, wheat, chickpea and sunflower.

4.2. Sensitivity of crop yields to hydrometeorological variability

Figures 1(f) and (g) shows yields of the selected crops, for 1980–2015, detrended to remove the effects of improvement in agricultural practices (Lobell and Burke 2009) while preserving the year-to-year climatic fluctuations (Rao et al. 2014) and normalized for comparability. In general, the yields show a strong sensitivity to monsoon rainfall. For Marathwada, which receives most of its annual rainfall from the southwest monsoons, the JJAS rainfall governs the Rabi crops also, via soil moisture, groundwater storage and irrigation (Kumar et al. 2004, Pavelic et al. 2012). The correlations between soil moisture during each month of the Rabi season and monthly rainfall for the previous June to September months (figure S6) show that soil moisture approximately has a memory of 3 months. The residual soil moisture is expected to influence Rabi crop growth during the initial months (OND) in the field, and subsequently the yields (figure S7). Regional groundwater levels in the post-Rabi season are also found to be strongly correlated with JJAS rainfall (figure S8), owing to the sensitivity of yields of heavily irrigated crops such as wheat to JJAS rainfalls.

4.3. Disaggregation of rainfall and temperature effects on yields using mixed-effects regression models

Table 1(a) shows the standardized partial regression coefficients for the five independent variables. Most Kharif crops show similar sensitivities to temperature (GDD), with regression coefficients ranging from 0.298 to 0.365 (significant at 5%). The rainfall sensitivities (Rain), on the other hand, are more for the cash crops—sugarcane and soybean, with coefficients greater than 0.4 (significant at 5%), as compared to the food crops. Sugarcane is also sensitive to the other markers of rainfall, namely, number of rainy days, soil moisture and irrigation. Cotton and soybean are also responsive to irrigation amounts. Interestingly, the food crops—sorghum and pearl millet, that have been declining in acreages in recent years, show lower sensitivities to rainfall with coefficient values less than 0.22. These coefficients are generally lesser than the respective temperature coefficients, which simply means that the crops show a higher sensitivity to temperature, as compared to rainfall. Further, though the food crops are sensitive to the number of rainy days during the season (significant at 5%), there is no evident response to irrigation, indicating that these crops require lesser water, thereby emphasizing their drought-resiliency. The pronounced sensitivity of the cash crops to rainfall variability, and the lack thereof, in the case of food crops, is suggestive of unwise cropping choices to be a major driver of crop loss in the region.

Among Rabi crops, wheat is found to be significantly sensitive to irrigation (Irrig; significant at 1%), while all the Rabi crops are sensitive (significant at 5%) to the rainfall accumulations from the preceding JJAS season (AccRain), via residual soil moisture. These findings are justified because, among the crops considered in this study, wheat uses the highest amount of irrigation water (450 mm, under flood irrigation). Chickpea, on the other hand, is a drought-resilient crop and requires only 130–240 mm. (The irrigation water requirements for these crops are taken from Fishman et al. (2015)). Sunflower on the other hand, is a short-duration crop that has a growing period of only four months (Oct-Jan) and survives on showers during the retreating monsoons and residual soil moisture, with small amounts of irrigation during the later months, if the rainfall distribution has been insufficient during the preceding season.

Furthermore, we arrive at similar results on repeating the analysis with the rainfall and temperature data used in Carleton (2017) (table S5; details in supplementary section S2). This emphasizes the importance of considering regional scales, rather than country-wide scales, for robustly concluding the effects of climate variability on crop loss and subsequent crises.

4.4. Disaggregation of rainfall and temperature effects on yields using DSSAT experiments

Figures 2(a)–(e) shows the disaggregated response of DSSAT simulated yields to growing season rainfall (P_VAR) and temperature (T_VAR), for the crops showing increasing acreages. The simulations confirm that increasing rainfall has a positive effect on
yield while rising temperatures reduce productivity consistently across all crops, except sugarcane (figure 2(a)) and soybean (figure 2(c)). Interestingly, most of these crops also show a stronger response to rainfall, than temperature. However, this is not true for the crops with declining acreages. Sorghum and pearl millet of the Kharif season show a weaker response to rainfall, as compared to temperature (figure S9), owing to their drought-resilient nature (Garg et al., 1981, Sanchez et al., 2002). Further, the coefficient of variation (C_v) of yields for all the crops (table 1(b)), report low variation with changing temperatures ($C_v < 10\%$). Interestingly, sugarcane and soybean, which are currently the dominant Kharif crops, report large C_v in the P_V AR experiment. Sorghum and pearl millet reveal small values of C_v even for P_V AR, indicating that they are resilient to changes in both temperature and rainfall.

The findings from the statistical models and the process-based models emphasize that the recent shift in cropping patterns, from drought-resilient food crops such as sorghum and pearl millet, to water-intensive cash crops such as sugarcane and soybean is an imprudent choice that can adversely affect production in the region. Based on this analysis, therefore, crop loss in Marathwada and the subsequent issue of farmer crises, can be ascribed to the rainfall deficits and the spread of rainfall-sensitive crops and their reducing productivity; at present, the role of growing season temperature seems insignificant.

4.5. Optimal crop growth in 1.5 °C and 2 °C warmer worlds

The observed range of daily average temperatures for the three main growth stages (sowing, growing and, harvesting), for the selected crops, alongside the corresponding optimum temperature ranges are presented in figure 3 (similar plots for other crops in figure S11). In general, the observations lie within the prescribed ranges beyond which the crops can be negatively impacted. For the harvesting stages of sugarcane (figure 3(a)) and soybean (figure 3(c)), such temperatures marginally exceed optimal ranges, but are well below the lethal threshold of 38 °C for these crops (Luo, 2011, Directorate of Sugarcane Development, 2015). Might such seasonal temperatures reach crop-damaging ranges under projected climate change? To address this question, we use regional temperature projections in 1.5 °C and 2 °C warmer worlds (figure 3). In general, future temperatures are found to lie within or close to the prescribed thresholds. Temperature during the harvesting period for cotton that was sub-optimal in the observed climate (figure 3(b)), are found to get closer to the optimal range in the future projections. However, sugarcane yields are expected to reduce as temperatures above the optimal range can cause a reduction in sucrose enrichment (FAO, 2018). The projected range of harvesting-period temperatures of wheat are also seen to exceed optimal thresholds, in agreement with studies for other regions (Lobel et al., 2012, Rao et al., 2014), though Maharashtra is not considered to be a significant producer of wheat. Interestingly, for drought-resilient crops—sorghum and pearl millet, the observed and projected temperatures are found to lie within or below the optimal ranges (figures S11(a) and S11(b)). Therefore, except for sugarcane and wheat, the role of temperatures in affecting agricultural yields in Marathwada is expected to remain insignificant in a future, warmer world.

Table 1. (a) Mixed-effects model results: Standardized regression coefficients generated by the mixed-effects regression model, for all the selected crops. (b) DSSAT experiment results: Coefficient of variation, C_v (%) of crop yields for the P_V AR and T_V AR experiments.

Season	Type	Crop Variable	Rain (β_1)	GDD (β_2)	NumRD (β_3)	Irrig (β_4)	AccRain (β_5)	R-squared
Kharif	Cash Crops	Sugarcane	0.421 ***	−0.314 ***	0.274 ***	0.151 **	−0.078	0.726
		Cotton	0.065	−0.026	0.073	0.177	0.007	0.786
		Soybean	0.430 ***	−0.365 ***	0.037	0.195 **	0.158 **	0.718
	Food Crops	Cotton	0.218 **	−0.365 ***	0.163 **	0.165	0.058	0.279
		Soybean	0.024	−0.298 **	0.203 **	0.041	−0.030	0.798
Rabi	Cash Crops	Sorghum	−0.192	0.288	0.035	0.225 **	0.253 **	0.620
		Pearl millet	0.190	0.252	−0.060	0.061	0.345 **	0.355
	Food Crops	Sorghum	−0.019	0.288	0.030	0.026	0.298	0.779
		Pearl millet	0.023	−0.171	−0.218	−0.101	0.041	0.798

(b) DSSAT model results

Season	Type	Crop Experiment	Rain (β_1)	GDD (β_2)	NumRD (β_3)	Irrig (β_4)	AccRain (β_5)	R-squared
Kharif	Cash Crops	P_V AR	13.9	6.1	57.3	0.5	0.5	17.5
		T_V AR	2.7	6.0	4.6	4.2	6.6	2.7
Rabi	Cash Crops	Wheat	17.5	29.5	28.8	2.7	4.9	7.1
5. Conclusions

As demonstrated, disaggregating the agricultural response to growing season precipitation and temperature serves as an important step to ascertaining the drivers of crop loss and subsequent farmer crisis. For the agro-climatically diverse country of India where regional trends in climate affect the Kharif/Rabi crops, an unequivocal attribution of crop loss and subsequent farmer suicides to country-wide rising temperatures disregarding cropping seasons (Carleton 2017) may be questionable (Murari et al 2018, Das 2018, Plewis 2018). Focussing on the crisis-prone Marathwada region in India, we use mixed-effects regression models based on observed records, and customised crop model simulations to build a framework for disaggregating agricultural response to rainfall and temperature. Further, we also show that yield loss results from an interplay of various factors, among which precipitation deficit and unwise shift in cropping patterns from drought-resilient food crops to water-intensive cash crops, are the most significant. Growing season temperatures are in general found to lie within the optimal bounds for crop growth, both for the observed records, and under projected warming.

An important caveat in this analysis is that multiple crop models have not been investigated. Although the relative sensitivities of crops to the major meteorological drivers such as rainfall and temperature are not expected to reverse among different crop models (Sultan and Gaetani 2016), such comparisons can improve the confidence of these estimates. The Global Gridded Crop Model Inter-comparison (GGCMI) initiative, under Agricultural Model Intercomparison and Improvement Project (AgMIP) offers a suite of crop-model experiments for the entire globe, for four major crops- wheat, soybean, maize and rice (https://www.agmip.org/ag-grid/ggcmi/). In regions where these crops contribute significantly to livelihoods, it would be meaningful to analyse AgMIP ensembles, to understand climate on yields (Rosenzweig et al 2014, Asseng et al 2015, Li et al 2015). Further, the crop yield estimates used in this study may suffer from inconsistencies due to sampling errors, particularly for the food crops that have been declining in acreages. The confounding roles of the various government assistance programs under National Food Security Mission, and market intervention measures such as minimum support prices, in the nexus between cropping choices and agrarian crisis (Kumar et al 2012, John et al 2019) in the region have not been investigated in this study. In addition to precipitation and temperature, the role of other meteorological or local physiographic factors, carbon-dioxide (CO$_2$) fertilization (Donohue et al 2013) and/or field-scale practices may also be investigated. Despite these limitations, our analysis can inform advisories on various coping strategies such as, alternative crop choices and income, water management practices, crop insurances and policies relevant to food security (Swain 2014, Pradhan and Mukherjee 2018). It is simple, and can be extended for different parts of India and other world regions.

Acknowledgments

AM, MD and KAR would like to thank DST-UKIERI for financial support through sponsored project DST/INT/UKP-135/2016. MZ is supported by the Industrial Research & Consultancy Centre Fellowship, IIT Bombay. The authors thank Sahana V. for her help with ArcGIS, and Anamitra Saha, for procuring and sharing temperature data from the Community Earth System Model (CESM) simulations used in this study.

Data Availability Statement

Any data that support the findings of this study are included within the article.

Author contributions

Conceptualization—SG and AM; Methodology—MZ, MD and AM; Analysis—MZ; Crop Model Simulation—MD and MZ; Preparation of Figures—MZ and MD; Interpretation of Results—MZ, AM, MD and SG; Writing—MZ & AM; Supervision—AM, SG, KAR; Funding Acquisition—AM and KAR.

ORCID iDs

Mariam Zachariah https://orcid.org/0000-0002-9124-5120
Arpita Mondal https://orcid.org/0000-0002-7622-8306
Mainak Das https://orcid.org/0000-0001-6612-4303
Krishna Mirle AchutaRao https://orcid.org/0000-0001-9064-5053
Subimal Ghosh https://orcid.org/0000-0002-5722-1440

References

Abdi H 2010 Coefficient of variation Encyclopedia of Research Design Vol 1 (Thousand Oaks, CA: SAGE) 169–71 (https://wwwpub.utdallas.edu/~herve/abdi-cv2010-pretty.pdf)
Aditya K S, Subash S P, Praveen K V, Nithyashree M L, Bhuvana N and Sharma A 2017 Awareness about minimum support price and its impact on diversification decision of farmers in India Asia Pac. Policy Stud. 5 154–26
Alemayehu A and Bewket W 2016 Local climate variability and crop production in the central highlands of Ethiopia Environ. Dev. 19 36–48
Angulo C, Rötter R, Trnka M, Pirttioja N, Gaiser T, Hlavinka P and Ewert F 2013 Characteristic ‘fingerprints’ of crop model
responses to weather input data at different spatial resolutions Eur. J. Agron. 49 104–14
Asseng S, Ewert F, Martre P, Rötter R P, Lobell D B, Cammarano D and Zhu Y 2015 Rising temperatures reduce global wheat production Nat. Clim. Change 5 143–7
Auffhammer M, Ramanathan V and Vincent J R 2012 Climate change, the monsoon, and rice yield in India Clim. Change 111 413–24
Awasthi S 2013 From watershed development towards climate resilience:反思s from WD projects implemented by WOTR Pune: WOTR Retrieved from (https://wotr.org/sites/default/files/From WSD towards Resilience.pdf)
Bhatt D, Sonkar G and Mall R K 2019 Impact of climate variability on the rice yield in Uttar Pradesh: an agro-climatic zone based study Environ. Processes 6 135–53
Carleton T A 2017 Crop-damaging temperatures increase suicide rates in India Proc. Natl Acad. Sci. 201701354
Challinor A J, Ewert F, Arnold S, Simelton E and Fraser E 2009 Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation J. Exp. Bot. 60 2775–89
Commissioner of Agriculture 1991 Districtwise general statistical information of agricultural department (1990-1991). Part II- epitome of agriculture in Maharashtra. Commissioner of Agriculture, Maharashtra State, Pune (http://dspace.gipe.ac.in/xmlui/handle/10973/45990)
Commissioner of Agriculture 1996 Districtwise agricultural statistical information of Maharashtra Part II (1993-1994 and 1994-1995). Commissioner of Agriculture, Maharashtra State, Pune (http://dspace.gipe.ac.in/xmlui/handle/10973/46081)
Dandekar A, Narawade S, Rathod R, Ingle R, Kulkarni V and Satyepa Y D 2005 Causes of farmer suicides in Maharashtra: an enquiry. Tata Institute of Social Sciences, Osmanabad (http://vnss-mission.gov.in/docs/farmers_suicide_tiss_report-2005.pdf)
Das S 2018 Unfounded assumptions in linking crop-damaging temperature and suicide in India Proc. Natl Acad. Sci. 115 E116
Dash S K, Kulkarni M A, Mohanty U C and Prasad K 2009 Changes in the characteristics of rain events in India J. Geophys. Res. Atmos. 114
Davis K F, Chhatre A, Rao N D, Singh D and Defries R 2019 Sensitivity of grain yields to historical climate variability in India Environ. Res. Lett. 14 064013
DeFries R, Mondal P, Singh D, Agrawal I, Fanoo J Remans R and Wood S 2016 Synergies and trade-offs for sustainable agriculture: Nutritional yields and climate-resilience for cereal crops in Central India. Glob. Food Secur. 11 44–53
Directorate of Sugarcane Development 2015 Status paper on sugarcane. Government of India, Lucknow (http://www.nfsm.gov.in/Publicity/2014-15/Books/Status Paper of Sugarcane_Final_Nov.pdf)
DoES (Directorate of Economics and Statistics), and MoAW (Ministry of Agriculture and Welfare) 2016 Agricultural situation in India. Government of India, Delhi (http://eands.dacnet.nic.in/PDF/March2016.pdf)
Donohue R J, Roderick M L, Mecvar T R and Farquhar G D 2013 Impact of CO 2 fertilization on maximum foliage cover across the globe’s warm, arid environments Geophys. Res. Lett. 40 5031–5
Drézet J and Khera R 2013 Rural poverty and the public distribution system Econ. Political Weekly 48 55–60
FAO (Food and Agricultural Organization) 2018 Land & water. (http://www.fao.org/land-water/databases-and-software/crop-information/sugarcane/en/)
Fishman R 2016 More uneven distributions overturn benefits of higher precipitation for crop yields Environ. Res. Lett. 11 024004
Fishman R, Devineni N and Raman S 2015 Can improved agricultural water use efficiency save India's groundwater? Environ. Res. Lett. 10 084022
Garg B K, Kathju S, Lahiri A N and Vyas S P 1981 Drought resistance in pearl millet Biol. Plant. 23 182–5
Gaurav S 2015 Are rainfall agricultural households insured? Evidence from five villages in Vidarbha, India World Dev. 66 71–9
Ghosh S, Luniva V and Gupta A 2009 Trend analysis of Indian summer monsoon rainfall at different spatial scales Atmos. Sci. Lett. 10 285–90
Glotter M, Elliot J, McNerney D, Best N, Foster I and Moyer E J 2014 Evaluating the utility of dynamical downsampling in agricultural impacts projections Proc. Natl Acad. Sci. 111 8776–81
Gourji D, Laidacher P, Valle A M, Martinez C Z and Lobell D B 2015 Historical climate trends, deforestation, and maize and bean yields in Nicaragua Agric. For. Meteorol. 200 270–81
Gruère G and Sengupta D 2011 Bt cotton and farmer suicides in India: an evidence-based assessment J. Dev. Stud. 47 316–37
Gutierrez A P, Ponti L, Herren H R, Baumgärtner J and Kenmore P E 2015 Deconstructing Indian cotton: weather, yields, and suicides Environ. Sci. Eur. 27 12
Hatfield J L, Boote K J, Kimball B A, Ziska L H, Izaurralde R C, Ort D R and Wolfe D 2011 Climate impacts on agriculture: implications for crop production Agron. J. 103 351
Hoogenboom G et al 2017 Decision support system for agrotechnology transfer (DSSAT) version 4.7. DSSAT (Foundation Gainesville, Florida) (https://dssat.net)
Iizumi T and Ramankutty N 2016 Changes in yield variability of major crops for 1981–2010 explained by climate change Environ. Res. Lett. 11 034003
Iizumi T, Yokozawa M and Nishinomi M 2009 Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach Agric. For. Meteorol. 149 333–48
John J, Bhatt A and Varma P 2019 Impact of minimum support price policy and national food security mission on the production of pulses in India (https://ageconsearch.umn.edu/record/29118/files/abstracts_19_05_13_05_11_46_79__59_96_10_119_0.pdf)
Jones J, Hoogenboom G, Porter C, Boote K, Batchelor W, Hunt L and Ritchie J 2003 The DSSAT cropping system model Eur. J. Agron. 18 235–65
Joshi P 2016 Drought forces change in region’s cropping choices. Times of India (https://timesofindia.indiatimes.com/city/aaurangabad/Drought-forces-change-in-regions-cropping-chances/articleshow/53661727.cms)
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iizumi T, Yokozawa M and Nishimori M 2009 Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach Agric. For. Meteorol. 149 333–48
Kumar M D, Sivamohan M V K and Narayanamoorthy A 2012 Predictability of surface temperature trends over India Bull. Am. Meteorol. Soc. 93 135–53
Kothawale D R and Rupa Kumar K 2005 On the recent changes in the agro-climatic conditions in Maharashtra J. Agron. For. Meteorol. 539–56
Li H, Sheffield J and Wood E F 2010 Bias correction of monthly and seasonal climate conditions Environ. Res. Lett. 5 084003
Lau W K and Kim K M 2010 Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall Geophys. Res. Lett. 37 16
Lesk C, Rowhani P and Ramankutty N 2016 Influence of extreme weather disasters on global crop production Nature 529 84–87
M Zachariah et al

IOP Publishing
Environ. Res. Lett. 15 (2020) 094029

9
intergovernmental panel on climate change AB4 models using equidistant quantile matching J. Geophys. Res. 115 D10101
Li T, Hasegawa T, Yin X, Zhu Y, Boote K, Adam M and Gaydon D 2015 Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions Global Change Biol. 21 1528–41
Lobell D B and Asseng S 2017 Comparing estimates of climate change impacts from process-based and statistical crop models Environ. Res. Lett. 12 015001
Lobell D B and Burke M 2009 Climate Change and Food Security: Adapting Agriculture to a Warmer World vol 37 (Berlin: Springer)
Lobell D B and Burke M B 2010 On the use of statistical models to predict crop yield responses to climate change Agric. For. Meteorol. 150 1443–52
Lobell D B and Field C B 2007 Global scale climate–crop yield relationships and the impacts of recent warming Environ. Res. Lett. 2 014002
Lobell D B, Schlenker W and Costa-Roberts J 2011 Climate trends and global crop production since 1980 Science 333 616–20
Lobell D B, Sibley A and Ivan Ortiz-Monasterio J 2012 Extreme heat effects on wheat senescence in India Nat. Clim. Change 2 186–9
Luo Q 2011 Temperature thresholds and crop production: a review Clim. Change 109 583–98
Malode K R and Patil V D 2014 Characterization of some vertisols of drought prone zone of Marathwada region Asian J. Soil Sci. 9 137–41
Mishra V, Mukherjee S, Kumar R and Stone D A 2017 Heat wave exposure in India in current, 1.5 C, and 2.0 C worlds Environ. Res. Lett. 12 124012
Mohanty B B and Shroff S 2004 Farmers’ suicides in Maharashtra Econ. Political Weekly 39 5599–606
Mondal P, Jain M, Defries R S, Galford G L and Small C 2015 Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions J. Environ. Manage. 148 21–30
Mondal P, Jain M, Robertson A W, Galford G L, Small C and Defries R S 2014 Winter crop sensitivity to inter-annual climate variability in central India Clim. Change 126 61–76
Murari K K, Jayaraman T and Swaminathan M 2018 Climate change and agricultural suicides in India Proc. Natl Acad. Sci. 115 E115
Olesen J E, Trnka M, Herbst A C, Skjelvåg A O, Sasaki T, Palm C E, Beltrán-Ortega E R and van Marle K 2015 Projecting the impacts of climate change on crop yields in the year 2100 in Europe J. Agron. 14 103–13
Pai D S, Shridhar L, Rajeevan M, Sreejith O P, Satbhai N S and Mukhopadyay B 2013 Development and analysis of a new high spatial daily gridded rainfall data set over India Mauam 65 1–18
Pal I and Al-tabbaa A 2011 Assessing seasonal precipitation trends in India using parametric and non-parametric statistical techniques Theoretical Appl. Climatol. 103 1–11
Pavelic P, Patankar U, Acharya S, Jella K and Gumma M K 2012 Role of groundwater in buffering irrigation production against climate variability in the western United States Water Resour. 48 592–603
Pandey S K 2013 Review of trend detection methods and their application to detect temperature changes in India J. Hydrol. 476 212–27
Prasanna V 2014 Impact of monsoon rainfall on the total foodgrain yield over India J. Earth Syst. Sci. 79 359–64
PTI (Press Trust of India) 2012 India’s 2012–13 sugarcane area estimate higher than govt figures. The Economic Times (https://economictimes.indiatimes.com/news/economy/agriculture/industries-2012-13-sugarcane-area-estimate-higher-than-govt-figures/articleshow/64499956.cms)
Radanare K, Das U, Kulkarni A and Narayan S 2015 MGNREGA works and their impacts Econ. Political Weekly 50 53–61 (https://www.pragatiabhiyan.org/MGNREGA_ Works_and_Their_Impacts.pdf)
Ray D K, Gerber J S, Macdonald G K and West P C 2015 Climate variation explains a third of global crop yield variability Nat. Commun. 6 1–9
Reiche H R 2012 The MERRA-land data product. gmao office note no.3 (version 1.2) (https://gmao.gsfc.nasa.gov/pubs/docs/Reiche541.pdf)
Reiche H R, Koster R D, De Lannoy G J M, Forman B A, Liu Q, Mahanama S P P and Touré A 2011 Assessment and enhancement of MERRA land surface hydrology estimates J. Clim. 24 6322–38
Rosenzweig C, Elliott J, Deryng D, Ruane A C, Müller C, Arneth A and Neumann K 2014 Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison Proc. Natl Acad. Sci. 111 5268–73
Rötter R P, Hohn J G and Franzek S 2012 Projections of climate change impacts on crop production: a global and a Nordic perspective Acta Agric. Scand. A 62 166–80
Ruane A C, Goldberg R and Chryssanthacopoulos J 2015 Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation Agric. For. Meteorol. 200 233–48
Sanchez A C, Subudhi P K, Rosnow D T and Nguyen H T 2002 Mapping QTLs associated with droughty resistance in sorghum (Sorghum bicolor L. Moench) Plant Mol. Biol. 48 713–23
Sanderson B M, Xu Y, Tebaldi C, Wehner M, O’Neill B, Jain A and Lamarque J F 2017 Community climate simulations to assess avoided impacts in 1.5 and 2C futures Earth Syst. Dyn. 8 827–47
Sathyanadh A, Karipot A, Ranalkar M and Prabhakaran T 2016 Evaluation of soil moisture data products over Indian region and analysis of spatio-temporal characteristics with respect to monsoon rainfall J. Hydrol. 542 47–62
Schielzeth H 2010 Simple means to improve the interpretability of regression coefficients Methods Ecol. Evol. 1 103–13
Shin D W, Baigoria G A, Lim Y-K, Cocke S, Larow T E, O’Brien J J and Jones J W 2010 Assessing maize and peanut yield simulations with various seasonal climate data in the southeastern United States J. Appl. Meteorol. Climatol. 49 592–603
Sonali P and Nagesh Kumar D 2013 Review of trend detection methods and their application to detect temperature changes in India J. Hydrol. 476 212–27
Srivastava A K, Rajeevan M and Khirsagar S R 2009 Development of a high resolution daily gridded temperature data set (1969-2005) for the Indian region Atmos. Sci. Lett. 10 249–54
Sultan B and Gaetani M 2016 Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation Front. Plant Sci. 7 1262
Swain M 2014 Crop insurance for adaptation to climate change in India. Asia Research Centre Working Paper; London School of Economics and Political Science London, UK. (http://www.lse.ac.uk/asiaResearchCentre/files/ARCWP61-Swain.pdf)
Tao F, Yokozawa M and Zhang Z 2009 Modelling the impacts of wheat yield over India J. Earth Syst. Sci. 118 119–25
UKPLC (Publishing) 2015 Paris Agreement (http://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf)
Verma R R, Srivastava T K and Singh P 2018 Climate change impacts on rainfall and temperature in sugarcane growing upper gangetic plains of India Theor. Appl. Climatol.

Wang W, Yu Z, Zhang W, Shao Q, Zhang Y, Luo Y and Xu J 2014 Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: historical simulation and future projections Agric. Water Manage. 146 249–61

White J W, Hoogenboom G, Kimball B A and Wall G W 2011 Methodologies for simulating impacts of climate change on crop production Field Crops Res. 124 357–68

WWF 2004 Sugar and the environment: encouraging better management practices in sugar production. WWF, Zeist, The Netherlands (http://wwf.panda.org/about_our_earth/about_freshwater/freshwater_problems/thirsty_crops/)

Zampieri M, Ceglar A, Dentener F and Toreti A 2017 Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales Environ. Res. Lett. 12 064008

Zhang Z, Song X, Tao F, Zhang S and Shi W 2016 Climate trends and crop production in China at county scale, 1980 to 2008 Theor. Appl. Climatol. 123 291–302

Zhao A, Bollasina M A and Stevenson D S 2019 Strong influence of aerosol reductions on future heatwaves Geophys. Res. Lett. 46 4913–23