Background. Brucellosis is still endemic in many developing countries and frequently leads to misdiagnosis and treatment delays. Indirect inflammatory markers such as mean platelet volume (MPV), platelet distribution width (PDW), red cell distribution width (RDW), neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) have been identified as markers of inflammation. The present study aimed to evaluate and compare the levels of these markers for prognostic purposes and to assess the correlation of C-reactive protein (CRP) with brucellosis in adults and children.

Methods. The study included 137 adults and 41 age- and gender-matched healthy controls, as well 71 children and 81 age- and gender-matched healthy controls. Hematological parameters and CRP were retrospectively recorded and compared between the adult and pediatric patients.

Results. The mean age of the adult patients (54% female) was 43.1 ± 15.4 years, whereas the mean age of the pediatric patients (59.2% male) was 9.5 ± 3.6 years. Significantly higher lymphocyte count, and lower neutrophil, platelet count, RDW, MPV, NLR and PLR values were found in adult brucellosis patients compared with their healthy subjects, whereas higher lymphocyte count, PDW and lower neutrophil count, platelet count, MPV, NLR and PLR values were observed in pediatric brucellosis patients compared with the control subjects. Significantly higher neutrophil count (p = 0.019) and NLR (p < 0.001) were found in adult patients compared with the pediatric patients. Positive correlation was found between CRP and NLR (R² = 0.052, P = 0.011), PLR (R² = 0.061, P = 0.006) in adult patients.

Conclusion. Based on our findings, we consider that the use of complementary indirect markers such as MPV, NLR, PLR and RDW together with the CRP test – which is used concomitantly with serological diagnostic tests in situations where brucellosis is suspected – might be helpful in the diagnosis and follow-up of brucellosis, as well as in the evaluation of complications and response to therapy, in both adult and pediatric brucellosis patients.

Disclosures. All authors: No reported disclosures.

1148. Impact of Procalcitonin (PCT)-Guided Antibiotic Therapy on Mortality in Critically Ill Patients: A Systematic Review and Meta-Analysis of 18 Randomized Controlled Trials

Dominique Pepper, MD MBCCh; Junfeng Sun, PhD; Chau Rhe, MD, MPH; Judith Welsh, BSN, RN; John H. Powers III, MD; Robert L. Danner, MD* and Sameer Kadi, MD.

Critical Care Medicine Department, National Institutes of Health, Bethesda, MD, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, 1National Institutes of Health Library, National Institutes of Health, Bethesda, Maryland, 2Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, MD, 2Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland

Session: 144. Diagnostics: Biomarkers
Friday, October 6, 2017: 12:30 PM

Background. Procalcitonin (PCT)-guided antibiotic therapy has been shown to reduce antibiotic use in critically ill patients with suspected or proven infection, but its impact on mortality remains uncertain. Our meta-analysis examines the effect of PCT-guided antibiotic therapy on survival in critically ill patients. Methods. We performed a sub-analysis of 464 patients with clinical suspicion for bacterial infection. We used a previously published tool (5) to assess and record antibiotic treatment. We assessed sustainability with a Cochrane risk of bias tool. Two reviewers conducted all review stages independently, and a third reviewer adjudicated any disagreements. Data was pooled using random-effects meta-analysis.

Results. Of the 18 RCTs selected (n = 5,183 patients; Table), 17 assessed mortality as a primary end point and 10 scored ≥ 6 out of 10 on the risk of bias assessment. Compared with controls, PCT-guided antibiotic treatment was associated with a significant reduction in mortality (20.7% vs. 23.0%; risk ratio [RR] 0.90 [95% CI, 0.81–0.99], I² = 0%; Figure 1). Survival benefit was retained in the RCT subset with a lower risk of bias (score ≥ 3; RR 0.97 [95% CI, 0.96–0.98], I² = 0%; Figure 2) but not with higher risk (score ≤ 2; RR 0.98 [95% CI, 0.80–1.20], I² = 90%). Our analysis of the effect of PCT-guided antibiotic therapy on antibiotic duration displayed significant heterogeneity (I² = 61.2%, P = 0.004), which precluded reporting on aggregate effect. Important limitations were: single previously conducted multi-center studies, lack of double blinding (all studies) and variable protocol non-adherence and timeframes examined for mortality.

Conclusion. In a meta-analysis of RCTs of critically ill patients with suspected or proven infection, PCT-guided antibiotic treatment was associated with a significant reduction in mortality. The observed survival benefit was weighted towards RCTs of relatively higher quality. However, the plausibility of this finding, as well as the impact of protocol non-adherence on outcome needs further study.

1149. Serial Procalcitonin Levels Correlate with Microbial Etiology in Hospitalized Patients with Pneumonia

Kfir Oved, PhD1; Eran Eden, PhD2; Chantal Van Houten, MD3; Tanya Gottlieb, PhD; RoyNAVAC, MSc4; Asi Cohen, PhD5; Olga Boico, PhD6; Meital Paz, BSc7; Liat Ezekiel, MD8; Gali Kronenfeld, MSc9; Tom Friedman, MD10; Ellen Bamberger, MD*11; Irina Chistyakov, MD12; Israel Potsaxman, MD12; IFID; Michal Stein, MD13; Adi Klein, MD14; Alain Gervaux, MD15; Isaac Sruge, MD16 and Louis Bont, MD/PhD17; MedDiagstics, Tirat Carmel, Israel, 2Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht, Netherlands, 3Rambam Health Care Campus, Haifa, Israel, 4Bnai Zion Medical Center, Haifa, Israel, 5Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel, 6Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel, 7Infectious Diseases, Bnai Zion Med. Ctr., Haifa, Israel, 8Infectious Disease Unit, Hilltop Medical Center, Haifa, Israel, 9Department of Pneumology, Medical Center, Hadera, Israel, 10Pediatric Emergency Division, Geneva University Hospitals and University of Geneva, Geneva, Switzerland

Session: 144. Diagnostics: Biomarkers
Friday, October 6, 2017: 12:30 PM

Background. Serial procalcitonin levels during the early course of bacterial pneumonia reveal a difference between pneumococcal and other bacterial etiologies, and may have an adjunct role in guiding antibiotic choice and duration.

Disclosures. All authors: No reported disclosures.

1150. A Novel Host-protein Assay Accurately Distinguishes Bacterial From Viral Upper Respiratory Tract Infections

Kfir Oved, PhD1; Eran Eden, PhD2; Chantal Van Houten, MD3; Tanya Gottlieb, PhD; RoyNAVAC, MSc4; Asi Cohen, PhD5; Olga Boico, PhD6; Alain Gervaux, MD14; Isaac Sruge, MD16 and Louis Bont, MD/PhD17; MedDiagstics, Tirat Carmel, Israel, 2Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht, Netherlands, 3Rambam Health Care Campus, Haifa, Israel, 4Bnai Zion Medical Center, Haifa, Israel, 5Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel, 6Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel, 7Infectious Diseases, Bnai Zion Med. Ctr., Haifa, Israel, 8Infectious Disease Unit, Hilltop Medical Center, Haifa, Israel, 9Department of Pneumology, Medical Center, Hadera, Israel, 10Pediatric Emergency Division, Geneva University Hospitals and University of Geneva, Geneva, Switzerland

Session: 144. Diagnostics: Biomarkers
Friday, October 6, 2017: 12:30 PM

Background. Viral and bacterial infections are often clinically indistinguishable, particularly in upper respiratory tract infections (URTI), which leads to antibiotic misuse. A novel assay (ImmunoXpert®) that integrates measurements of three host-response proteins (TRAIL, IP-10, CRP) was recently developed to assist in differentiation between bacterial and viral infections. We evaluated the assay performance in URTI patients and compared it with standard laboratory measures.

Methods. We performed a sub-analysis of 464 patients with clinical suspicion for upper respiratory tract infections (URTI). Which led to antibiotic misuse. A novel assay (ImmunoXpert®) that integrates measurements of three host-response proteins (TRAIL, IP-10, CRP) was recently developed to assist in differentiation between bacterial and viral infections. We evaluated the assay performance in URTI patients and compared it with standard laboratory measures.

Results. We performed a sub-analysis of 464 patients with clinical suspicion for URTI enrolled in three multi-center clinical studies that evaluated the assay performance in patients with acute infections: ‘Curiosity’ study (NCT01917461), ‘Opportunity’ study (NCT01911254), and ‘Pathfinder’ study (NCT01911143). Comparator method was predetermined criteria combined with expert panel adjudication, while URTI diagnosis was defined by the diagnostic performance was evaluated by comparing test and comparator method outcomes.

Results. A unanimous panel adjudication was obtained for 61 bacterial (72%) and 241 viral (52%) patients (162 patients (35%) had an indeterminate diagnosis). The assay distinguished between bacterial and viral infected patients with a sensitivity of 92% (95% CI: 82%–98%) and specificity of 93% (88%–96%) with 11% equivocal test results. Overall the assay outperformed other routine laboratory tests (FIG 1), including: white blood cell count (WBC; cutoff 15,000 cells/μL, sensitivity 48% (35%–60%), P = 0.05); C-reactive protein (CRP; cutoff 100 μg/L, sensitivity 82% (72%–92%), P = 0.16, specificity 79% (74%–84%), P < 0.01); Procalcitonin (PCT; cutoff 0.5 mg/mL, sensitivity 22% (11%–32%), P < 10⁻⁴); specificity 80% (74%–85%), P < 0.001); absolute neutrophil count (ANC; cutoff 10,000 cells/μL, sensitivity 58% (45%–71%), P < 10⁻⁴), specificity 94% (91%–97%), P = 0.7).
Conclusion. The novel assay demonstrated superior performance compared with routine laboratory tests (WBC, ANC) and biomarkers (CRP, PCT), in distinguishing bacterial from viral etiologies in patients with URTI. It has the potential to help clinicians avoid missing bacterial infections or prescribing unwarranted antibiotics for viral URTIs.

Disclosures. K. Oved, MeMed Diagnostics: Board Member, Employee and Shareholder, Salary E. Eden, MeMed Diagnostics: Board Member, Employee and Shareholder, Salary T. Gottlieb, MeMed Diagnostics: Employee, Salary R. Navon, MeMed Diagnostics: Employee, Salary A. Cohen, MeMed Diagnostics: Employee, Salary O. Boico, MeMed Diagnostics: Employee, Salary M. Paz, MeMed Diagnostics: Employee, Salary L. Etstein, MeMed Diagnostics: Employee, Salary G. Kron, MeMed Diagnostics: Employee, Salary T. Friedman, MeMed Diagnostics: Employee, Salary E. Bamberger, MeMed Diagnostics: Employee, Salary I. Chistyakov, MeMed Diagnostics: Consultant, Consulting fee I. Potasman, MeMed Diagnostics: Holding stock options, stock options

1151. Biomarker-based Assessment of Urinary Tract Infection in Persons with Spinal Cord Injury
M. De Mal MANSOURI, PhD; 1 PERTSAM THIAGARAJAN, MD; 2 DENA MANSOURI, BS2 and S. ANN HOLMES, MD; 3; 1 Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, 2 Baylor College of Medicine, Houston, Texas, 3 Michael E DeBakey VA Medical Center / Baylor College of Medicine, Houston, Texas

Session: 144. Diagnostics: Biomarkers
Friday, October 6, 2017: 12:30 PM

Background. Urinary tract infection (UTI) is the most common infection and the second leading cause of death in spinal cord injury (SCI) patients. However, there is currently no consensus about the clinical criteria for UTI in SCI patients and the lack of a universal definition of asymptomatic bacteruria (ABU) make the diagnosis even more complex and the treatment recommendations problematic. Prompt diagnosis and timely treatment of UTI are important to prevent possible progression to sepsis. Elevated concentrations of some biomarkers may be correlated with infection and their serial measurements may be helpful to assess the effectiveness of antibiotic therapy.

Methods. Fifteen SCI participants were enrolled for either lower UTI, upper UTI (pyelonephritis), ABU, or control. Patients suspected of having any inflammation or infection other than UTI were excluded. Participants were monitored for their serum procalcitonin (PCT) and c-reactive protein (CRP) levels initially and every 3 days once the UTI was confirmed and antibiotics prescribed. In addition, the urine was cultured initially and every three days in patients with UTI for correlation with biomarkers. UTI/ABU was assessed by patient’s physician.

Results. Both mean initial PCT and CRP were significantly higher in patients with lower UTI (P = 0.027 and P = 0.001, respectively) and those with upper UTI (P = 0.044 and P < 0.0001, respectively) compared with control and ABU participants. PCT levels were significantly reduced to the normal levels gradually during the course of antibiotic therapy for those patients with UTI that were placed on antibiotic therapy. Mean bacterial colonies grown from initial urine cultures in patients with upper or lower UTI were >100,000 CFU/mL. Control participants had urine cultures of ≤1,000 CFU/mL. Generally, cultures from UTI patients placed on antibiotics were negative for the organism(s) treated for during or after the completion of antibiotic therapy.

Conclusion. Serum concentrations of CRP and PCT may be used to aid in the early assessment of UTI in SCI patients in the absence of other sources of inflammation and/or infection. In general, CRP measurements are more pronounced than PCT measurements in patients with ABU or lower UTI. However, PCT levels elevate conspicuously in patients with pyelonephritis.

Disclosures. All authors: No reported disclosures.

1152. Serum Procalcitonin as a Marker for Infection in Patients with Acute Myocardial Infarction
Inthabha Vinkomsarsri, MD; 1 Tulia Lazarovich, PhD; 1 Dvir Marchaim, MD; 2 Hannah Segloff, BS; 2 Ronit Zaidenstein, MD 2 and Sass Minha, MD; 2 Assaf Harofeh Medical Center, Zerifin, Israel, 3 Infectious Diseases, Assaf Harofeh Medical Center, Zerifin, Israel, 4 University of Michigan, Ann Arbor, Michigan, 5 Medicine a, Assaf Harofeh Medical Center, Beer Yaacov, Israel

Session: 144. Diagnostics: Biomarkers
Friday, October 6, 2017: 12:30 PM

Background. Significant proportion of patients with acute myocardial infarction (AMI) also present with systemic inflammatory response syndrome (SIRS). Thus it is difficult to determine in certain situations, whether empiric antibiotic treatment is warranted. Serum procalcitonin (PCT) is known to be elevated in bacterial infections, but its performances in predicting bacterial infection among patients with AMI, who might benefit from appropriate empiric management, is unknown.

Methods. A prospective observational study was conducted at Assaf Harofeh Medical Center, Israel. Serum PCT was collected within 48 hours from patients presenting with AMI. Demographic, clinical, and laboratory data, were collected prospectively. Two experienced Infectious Diseases (ID) specialists who were blinded to the PCT results, independently determined the gold standard for infection in every patient. By utilizing sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the area under the ROC curve (AUC), the performance of PCT, fever, white-blood cells (WBC) count and C-reactive protein (CRP) for infection diagnosis was calculated.

Results. The analysis included 230 AMI patients (age 63.0 ± 13.0 years), of which 36 (15.6%) were determined to be infected. The best cutoff for PCT as a differentiating marker between infected and non-infected patients was achieved at 0.90ng/dl (sensitivity 94.4%, specificity 85.1%, AUC ROC 0.94). This test outperformed CRP, WBC, and fever, for infection diagnosis (figure).

Conclusion. PCT should be utilized for ruling out infection in AMI patients by utilizing serum PCT>0.90ng/dl (i.e., ≥ 20.1ng/dl) as a cutoff.