초등학생들의 과학적 모델 사용 활성화를 위한 인포그래픽 수업의 효과

정진규, 김영민
부산대대학교

Effect of Infographic Instruction to Promote Elementary Students’ Use of Scientific Model

Jinkyu Jung, Youngmin Kim
Pusan National University

ARTICLE INFO

Article history:
Received 4 March 2016
Received in revised form 14 March 2016
6 April 2016
Accepted 8 April 2016

Key words:
science education, scientific model, scientific modeling, infographic

ABSTRACT

The purpose of this study was to analyze the effect of infographic instruction to promote the use of the scientific model in the ‘lens’ unit of elementary science textbooks. The participants were 6th grade students (n=53) of G elementary school in G city, Gyeongsangnam-do. For this study, the lesson plan of the ‘lens’ unit consisted of three steps as investigation of students’ prior concept about the lens, scientific model construction activity, and infographic construction activity. We then analyzed the results of this study from three perspectives: the scientific concept, scientific model, and infographic. Before the lesson, students focused on the external shape and material of the lens in prior concept of it. However, after the scientific model construction activity and infographic construction activity, students’ scientific concept about the lens improved in the categories of features of lens, features of glasses, light path, and applications of the lens. In terms of the scientific model, use of type and frequency of scientific model increased more in the infographic construction activity than the scientific construction model activity. Also, in terms of infographic, the two infographic types as function based infographic and connection based infographic used more than non-infographic in the infographic construction activity. Also, the frequency of Gestalt theory’s visual perception increased more in the infographic construction activity than the scientific model construction activity.

1. 서론

과학적 모델(scientific model)은 과학적 추론과 탐구에서 매우 중요하고 과학지식을 생산하고 확신시키는 데 필수적인 요소이다(Coll & Lajium, 2011; Gilbert, 2004; Nersessian, 2008). 특히, 과학자들은 자연현상이나 자신의 연구 결과를 나타내기 위해 개념이나 이론의 구조를 모델로 표현한다(Chin & Brown, 2000; Windschitl et al., 2008). 그리고 과학자들은 다양한 기호, 그래프, 구조화된 그림 등의 다양한 특징을 이용한 체계적인 표상을 이용하여 추상적인 이론이나 실험 결과, 중요한 과학적 사건을 나타내거나 예측한다(Gilbert, 2004; Gilbert & Boulter, 2000). 역사적으로 Rutherford의 원자 모형, 액체의 압력과 흐름을 이용한 Volta와 Ampere의 전기 모형 등은 잘 알려진 과학적 모형들이다(Stavy, 1991). 과학 교육 측면에서 볼 때에도 과학자들의 과학적 연구 결과나 업적이 완성되는 과정에서 과학적 모델이 중요한 역할을 하고 과학교육에서 중요한 부분으로 다루어야 한다고 많은 과학교육가들이 주장하였고(Clement, 2008; Gilbert, 2004), 과학적 모델 사용에 대한 가치는 오래전부터 강조하고 있다(Abell & Roth, 1995; Schwarz et al., 2009; Forbes et al., 2015; Kim & Kim, 2007; Lehrer & Schauble, 2010; Manz, 2012). 이런 연구들에서 공통적으로 중요시하는 것은 과학적 모델링 과정에 학생들이 스스로 만든 과학적 모델을 평가하고 수정하는 과정에 관여하는 것이며, 이 과정은 과학지식을 구성하고 발전시키는 메타인지적 과정인 정신 모델(mental model)을 형성하는 것으로, 정성적 연구자(Halloun, 1996; Gilbert, 2004). 이런 의미로 바탕으로 과학교육에서 학생들이 과학적 모델을 만들어 보거나 과학적 모델링 과정에서 모델의 사용과 평가 및 수정을 활성화하고 적극적인 참여를 어떻게 강화하기를 시도하는 것이 연구의 이론적 구축이다. 학생들이 과학적 모델링에 보다 적극적으로 참여할 수 있도록 교사의 스택필딩(scaffolding)을 강화한 연구(Khan, 2011; Windschitl et al., 2008), 과학적 글쓰기를 통해 모델링 전략을 개발한 연구(Cho et al., 2014), 과학 수업에 과학적 모델이 어떻게 활용되고 있는지에 대한 연구(Baker, 1999; Dodick & Orion, 2003; Oh, 2007), 과학적 개념을 중심시키기 위한 모델링 전략 연구(Cheng & Brown, 2000) 등 다양한 연구들이 이루어졌다.
2015년, 인지수준을 고려한 미완성 개념 모델 환원 활용의 효과 연구(Kim et al., 2009), 물의 순환과 관련된 초등학생들의 과학적 모델 발전과 과학적 모델의 강화(Vo et al., 2015), 초등학교 과학 수업에서 입자 모델을 이용한 수업의 효과(Park & Paik, 2004), 핵심 순환 모형 기반 수업을 통한 과정학생들의 과학 개념 변화(Kim & Kim, 2007) 등 다양한 논문으로 연구가 이루어지고 있다고. 그리고, Yoon(2011)의 연구에서는 빌딩물들을 대상으로 과학적 모델 중심 활용에 대한 논의가 이루어지고 있어 교육과정에서 인포그래픽의 강조가 있는데가 보고 있다. 전형적인 인포그래픽과 많이 닮았다고 할 수 있다. 고 과학교육에서의 활용을 강조하였다. 인포그래픽이 계속 강조될 것이라고 분석하였다. 연구에서는 학생들이 과학적 모델로 자신과 생각한 내용을 표현하는 것을 중심시키기 위해 인포그래픽 수업 활용이 과학적 모델 형성과 과학적 모델링 과정에 어떠한 영향을 주는지 알아보고자 한다.

II. 연구 방법

1. 연구 대상

본 연구는 경상남도 G시의 G초등학교 6학년 2개 반 학생 53명을 대상으로 실시하였다. G초등학교는 G시 초등학교 중 대규모학교에 속하는 학교로 학력 수준은 중간 이상에 속한다.

2. 연구 설계

인포그래픽이 그림 작성을 통해 학생들의 과학적 모델링 과정에서 인포그래픽 활용이 어떠한 영향을 주는지 알아보기 위하여 Table 1과 같이 수업을 전개하였다. 학생들과 수업을 진행한 과학 단원은 6학년 1학기 ‘렌즈의 이용’이다. 먼저 단계 1에서 학생들이 렌즈의 이용 단원을 학습하기 전에 렌즈와 관련된 개념을 부수준 개념(semantic concept)에 의하여 알아보고자 하여 질문을 통해 조사하였고, 단계 2에서 렌즈의 이용 단원을 11학년 동안 학습하였다. 11학년의 수업 과정에서 학습한 학생들이 과학적 모델로 구성하는 활동을 부분적으로 실시하였다. 그리고 렌즈의 이용 단원 학습이 끝난 후 단계 3에서 2차시 동안 학생들에게 단계 1에서 학습한 4학년 중간 영역(렌즈의 특성, 안정의 특성, 렌즈의 응용)에 대해 자유로운 만드는 경험이 있고, 다이어그램, 통계, 직각형 등이 포함된 다양한 그래픽을 제시하였다. 단계의 각 중간 영역의 과학 개념별로 문제를 제시하여 정량적이고 잘 알려진 것을 알아보는 방식은 적응하였다. 이는 단면 탐구가 렌즈의 이용 단원을 종합적으로 어떠한 구조로 이해하고 있는지 파악하고 각 중간 영역별로 어떤 연관성을 가지고 스스로 설명할 수 있는지 알아보는 연구의 의미를 두었다.

과학적 모델 구성단계가 과학적 모델 구성을 시작하는 단계로 인포그래픽 활용을 실시하였다. 이 단계에서는 자신이 만든 과학적 모델을 인포그래픽으로 표현하기 위해 단계로 인포그래픽 활용의 이해를 높이기 위해 인포그래픽을 구성하기 위한 스탠드업형 구성, 스탠드업형 방식에 따른 인포그래픽의 종류(직선, 시각, 수직, 과정, 기능, 관계 기반 인포그래픽), 인포그래픽을 구성하는 다양한 시각적 요소(그래프, 흐름도, 도식, 다자인 요소) 등을 학생들에게 소개하고 컴퓨터에서 인터넷 활용을 통해 다양한 인포그래픽을 찾아보게 하였다. 그 후 이론에서 제시된 인포그래픽의 내용을 살펴보고 내용을 파악하여, 자동차, 의학, 음악 등 자유 주제를 모둠 별로 정하여 관련된 자료를 찾고 같은 내용을 다양한 형태로 변경해보고 인포그래픽을 완성하여
Phase	Contents of phase activities	Period	
1	Investigation students’ prior concept about lens	1	
	Learning unit 3 ‘lens’		
	- If we observe an object with convex lens, how is an object observed?		
	- If we observe an object with concave lens, how is an object observed?		
	2	What kind of lens is used to make glasses?	2∼13
	- How does light go when light goes through lens?		
	- Let’s collect sun light using concave lens		
	- Let’s find tool including lens in our life		
	- Let’s make a camera		
	- Let’s take a fun photo using lens		
2	Scientific model construction activity		
	- Drawing scientific model to explain unit 3 ‘lens’ synthetically		
3	Infographic model construction activity		
	- Introduction of infographic(meaningful storytelling of infographic, kinds of infographic, visual elements of infographic, etc.)		
	- An exercise to draw infographic		
	- Drawing infographic to explain unit 3 ‘lens’ synthetically		
4	D. Applications of lens	16∼20	
	C. Light path		
	- C.1. Light to pass through convex lens		
	- C.2. Light to pass through convex lens		
	- C.3. What is refraction of light?		
	B.2. Glasses for farsightedness		
	- B.2.1. What is glasses for farsightedness?		
	- B.2.2. Observation with glasses for farsightedness		
	A. Features of lens		
	- A.1. Shape of convex lens		
	- A.1.2. Features of observation with convex lens		
	- A.1.3. Type of convex lens		
	- A.2. Concave lens		
	- A.2.1. Shape of concave lens		
	- A.2.2. Features of observation with concave lens		
	- A.2.3. Type of concave lens		
	B. Features of glasses		
	- B.1. Glasses for near vision		
	- B.1.1. What is glasses for near vision?		
	- B.1.2. Observation with glasses for near vision		
	- D.1. Collecting sun light		
	- D.2. A use of lens in our life		
	- D.3. Making camera		

모듈원과 서로 비교하며 동일한 주제의 인포그래픽이 어떻게 다르게 표현되었는지 확인하는 활동을 하였다. 이를 통해 인포그래픽 구성 활동의 의미를 학습하였다. 이후 3단계에서 만든 과학적 모델 구성 활동의 결과물을 다시 인포그래픽으로 변환하는 활동을 실시하였다. 학생들이 완성한 과학적 모델 구성 활동과 인포그래픽 구성활동의 결과물, 사전 개념 조사의 결과를 비교하여 과학 개념의 변화, 과학적 모델의 사용 활성화가 어떠한지 분석하였다.

3. 자료 분석

자료의 분석은 렌즈와 관련된 과학 개념 분석, 과학적 모델 분석, 인포그래픽 관점 분석으로 실시하였다.

가. 과학 개념 분석

학생들이 ‘렌즈의 이용’을 학습하기 전과 학습이 이루어진 후 과학적 모델 구성 활동과 인포그래픽 구성 활동에서 렌즈와 관련된 과학 개념이 어떻게 변화하였는지 알아보기 위해 렌즈의 이용 단원에 대해 2009개정 과학과 교육과정에서 제시하는 초등학교 수준의 개념 기준을 바탕으로 Table 2에서 제시된 대분류 중 A∼C에 대해 Table 4의 각각 3가지를 질문하였고 자신이 알고 있는 내용을 바탕으로 개괄하여 분석하였다. Table 3에서는 각각의 영역이 과학 교육과정에서 어떠한 내용을 바탕으로 기준을 설정하였는지를 나타내었다. 이 기준을 바탕으로 학생들이 어떠한 영역에서 렌즈에 관한 개념이나 현상을 설명하고 분류하는지, 각 영역의 개념이나 설명이 어떠한 상관을 가지고 있는지 분석하였다.

사전 단계에서는 ‘렌즈의 이용’ 단원의 중심 영역을 이용하여 설문을 구성하여 렌즈에 대한 개념이 어떻게 형성되어 있는지 알아보았고, 과학적 모델 구성과 인포그래픽 구성 활동에서는 학생들이 만든 "렌즈의 이용" 단원을 종합적으로 정리한 과학적 구성 활동과 인포그래픽 구성 활동의 결과물을 바탕으로 관련 설명을 분석하여 ‘렌즈의 이용’ 단원에서 중요하게 다루는 과학 개념이 바르게 형성되었는지 파악하였다. 이는 학생들이 학습 후 ‘렌즈의 이용’ 단원에 대한 종합적인 이해를 어떻게 하고 있는지를 알아보기 위한 것이다. 이를 위해 학생들이 제시한 개념을 분석하여 개념간의 설명이 어느 정도의 관련성을 설명하는지 알아보기 위해 상관관계 분석을 실시하였다. 과학 개념의 형성 정도는 올바르게 설명하면 1, 그렇지 않으면 0으로 코딩하였고, 이분형 데이터의 상관관계를 분석하기 위해 파이계수를 이용하여 상관 분석을 실시하였다. 그림이나 설명이 모호한 부분은 해당 학생과의 면담을 통해 자료를 보충하였다.

학생들이 렌즈의 이용 단원을 학습하기 이전에 렌즈와 관련된 개념이 무엇인지 알아보기 위해 Table 2에 제시된 대분류 중 A∼C에 해당하는 것을 확인한 학생이 3가지를 질문하였고, 자신이 알고 있는 내용을 바탕으로 3가지를 질문하였다. 이렇게 되면 그림과 설명이 모호한 부분은 해당 학생과의 면담을 통해 자료를 보충하였다. 과학적 모델 그리기 활동과 인포그래픽 그리기 활동은 학생들이 완성한 결과물에 나타난 렌즈에 관한 설명을 분석하여 ‘렌즈의 이용’ 단원에서 중요하게 다루는 과학 개념이 바르게 형성되었는지 파악하였다. 이는 학생들이 학습 후 ‘렌즈의 이용’ 단원에 대한 종합적인 이해를 어떻게 하고 있는지 알아보기 위한 것이다. 이를 위해 학생들이 제시한 개념을 분석하여 개념간의 설명이 어느 정도의 관련성을 설명하는지 알아보기 위해 상관관계 분석을 실시하였다. 과학 개념의 형성 정도는 올바르게 설명하면 1, 그렇지 않으면 0으로 코딩하였고, 이분형 데이터의 상관관계를 분석하기 위해 파이계수를 이용하여 상관 분석을 실시하였다. 그림이나 설명이 모호한 부분은 해당 학생과의 면담을 통해 자료를 보충하였다.

나. 과학적 모델 분석

과학적 모델 분석은 학생들이 어떠한 종류의 과학적 모델을 사용하였는지 분석하였다. 분류기준은 Harrison & Treagust (2000a, b)의 분류 기준을 바탕으로 구성하였다. 2009개정 과학과 교육과정에서는
Table 3. Criteria to each category formulation based on elementary science curriculum

category	classification criteria
A.1.1. Shape of convex lens	- Convex lens is thicker at the middle than the edge of lens
A.1.2. Features of observation with convex lens	- A span of a hand distance between eyes and convex lens / a span of a hand distance between convex lens and an object: We can see an object enlarged and upright
A.1.3. Type of convex lens	- Water drop, round glass rod, round fishbowl filled with water etc.
A.2.1. Shape of concave lens	- Concave lens is thicker at the edge than the middle of lens
A.2.2. Features of observation with concave lens	- A span of a hand distance between eyes and concave lens / a span of a hand distance between concave lens and an object: We can see an object reduced in size and upright
A.2.3. Type of concave lens	- A concave part of a bottle filled with water, the concave bottom of a transparent cup, etc.
B.1.1. What is glasses for near vision?	- Glasses for near vision is used when people can’t see a distant object clearly.
B.1.2. Observation with glasses for near vision	- A span of a hand distance between eyes and glasses for near vision / a span of a hand distance between glasses for near vision and an object: We can see an object reduced in size and upright
B.1.3. Type of glasses for near vision	- Concave lens is used to glasses for near vision
B.1.4. Features of observation with glasses for near vision	- A span of a hand distance between eyes and glasses for near vision / a span of a hand distance between concave lens and an object: We can see an object reduced in size and upright
B.1.5. What is glasses for farsightedness?	- Glasses for farsightedness is used when people can’t see a close object clearly.
B.1.6. Observation with glasses for farsightedness	- A span of a hand distance between eyes and glasses for farsightedness / a span of a hand distance between glasses for farsightedness and an object: We can see an object enlarged and upright
C.1. Light to pass through convex lens	- Because convex lens is thicker at the middle, light passing through convex lens is refracted toward the middle of lens
C.2. Light to pass through concave lens	- Because convex lens is thicker at the edge, light passing through concave lens is refracted toward the edge of lens
C.3. What is refraction of light?	- Refraction of light occurs as light passes across the boundary between two media.
D.1. Collecting sun light	- When sun light is collected one point by convex lens, the part collected sun light is brighten and its temperature rise.
D.2. A use of lens in our life	- Students can explain tools with lens and a use of lens.
D.3. Making camera	- Students can compare with a image of a object in convex lens camera and a real object.

Table 4. Questions to analyze students’ prior concepts about lens before learning ‘lens’

Question	Question contents
1	Describe everything you know about what lens is?(If you can explain drawing a picture, describe your explanation with a drawing as far as possible.)
2	Describe everything you know about what scientific principle is in lens. (If you can explain drawing a picture, describe your explanation with a drawing as far as possible.)
3	Describe everything you know about light path passing through lens. (If you can explain drawing a picture, describe your explanation with a drawing as far as possible.)

Table 4. Questions to analyze students’ prior concepts about lens before learning ‘lens’.
보다 세밀한 분류를 가능하게 하므로 이를 바탕으로 Table 5와 같이 코딩계획을 구성하였다. Table 6은 학생들이 나타낸 과학적 모델의 예시이다. 이 기준을 이용하여 과학적 모델 구성 활동과 인포그래픽 구성 활동의 결과물에서 어떤 과학적 모델을 사용하였는지, 두 활동에서 사용된 과학적 모델의 종류에는 어떠한 차이가 있는지를 분석하 여 그 특징을 살펴보았다.

다. 인포그래픽 판점 분석

학생들의 과학적 모델 구성 활동과 인포그래픽 구성 활동을 인포그래픽 판점에서 분석하였다. 인포그래픽 판점의 분석은 Jeon et al.(2014)의 연구에서 제시한 인포그래픽 판점의 일부를 이용하여 분석 기준으로 삼았다. 인포그래픽 판점의 분석은 Table 7과 같이 스토리텔링 방식에 따른 인포그래픽 종류 분석과 인포그래픽의 구성 내용에 대한 시각적 특징 분석이다.

스토리텔링 방식에 따른 인포그래픽의 종류는 a. 위치 정보를 바탕으로 정보를 구성한 위치 기반형 인포그래픽, b. 시간의 흐름에 따라 정보를 표현한 시계 기반형 인포그래픽, c. 정보의 수치나 데이터의 수량을 중심으로 표현한 수치 기반형 인포그래픽, d. 정보의 변화를 단계적 흐름으로 표현한 과정 기반형 인포그래픽, e. 시각적 정보만을 텍스트와 혼합하여 설명에 중점을 둔 기능 기반형 인포그래픽, f. 정보 사이의 유기적 관계나 상호작용을 강조한 관계 기반형 인포그래픽으로 6가지가 있다.

인포그래픽의 구성 내용을 배치하는 방법은 시각적 특성에 의해 이루어진다. 특히 인포그래픽 시각적 특성을 분석할 때는 게슈탈트 이론(Gestalt Theory)이 적용이 필요하다. 게슈탈트 시각적 법칙에서 그룹핑의 법칙(Law of Grouping)은 인포그래픽의 나타난 시각적 요소들이 어떠한 형태로 구성되어 있는지 분석하는 데 중요한 원리로 4가지가 있다. 1) 가까이 있는 두 개 또는 그 이상의 시각 요소들은 폐쇄된다. 2) 모양, 크기 등에서 비슷한 시각적 요소를 끼리 연결되어 폐쇄된 영역을 바탕으로 하는 시각적 법칙(Law of Similarity), 3) 어떤 형태나 그룹이 방향성을 가지고 연속되어 함께 속하는 것으로 보이는 연속성의 법칙(Law of Continuation), 4) 인간은 불완전한 형태에서 완전성을 부여하여 안정된 완성체로 지각하려는 경향이 있어 폐쇄된 윤곽으로 구축된 영역들로 보다 세밀한 분류를 가능하게 하므로 이를 바탕으로 Table 5와 같이 코딩계획을 구성하였다. Table 6은 학생들이 나타낸 과학적 모델의 예시이다. 이 기준을 이용하여 과학적 모델 구성 활동과 인포그래픽 구성 활동의 결과물에서 어떤 과학적 모델을 사용하였는지, 두 활동에서 사용된 과학적 모델의 종류에는 어떠한 차이가 있는지를 분석하고 그 특징을 살펴보았다.

다. 인포그래픽 판점 분석

학생들의 과학적 모델 구성 활동과 인포그래픽 구성 활동을 인포그래픽 판점에서 분석하였다. 인포그래픽 판점의 분석은 Jeon et al.(2014)의 연구에서 제시한 인포그래픽 판점의 일부를 이용하여 분석 기준으로 삼았다. 인포그래픽 판점의 분석은 Table 7과 같이 스토리텔링 방식에 따른 인포그래픽 종류 분석과 인포그래픽의 구성 내용에 대한 시각적 특징 분석이다.

스토리텔링 방식에 따른 인포그래픽의 종류는 a. 위치 정보를 바탕으로 정보를 구성한 위치 기반형 인포그래픽, b. 시간의 흐름에 따라 정보를 표현한 시계 기반형 인포그래픽, c. 정보의 수치나 데이터의 수량을 중심으로 표현한 수치 기반형 인포그래픽, d. 정보의 변화를 단계적 흐름으로 표현한 과정 기반형 인포그래픽, e. 시각적 정보만을 텍스트와 혼합하여 설명에 중점을 둔 기능 기반형 인포그래픽, f. 정보 사이의 유기적 관계나 상호작용을 강조한 관계 기반형 인포그래픽으로 6가지가 있다.

인포그래픽의 구성 내용을 배치하는 방법은 시각적 특성에 의해 이루어진다. 특히 인포그래픽 시각적 특성을 분석할 때는 게슈탈트 이론(Gestalt Theory)이 적용이 필요하다. 게슈탈트 시각적 법칙에서 그룹핑의 법칙(Law of Grouping)은 인포그래픽의 나타난 시각적 요소들이 어떠한 형태로 구성되어 있는지 분석하는 데 중요한 원리로 4가지가 있다. 1) 가까이 있는 두 개 또는 그 이상의 시각 요소들은 폐쇄된다. 2) 모양, 크기 등에서 비슷한 시각적 요소를 끼리 연결되어 폐쇄된 영역을 바탕으로 하는 시각적 법칙(Law of Similarity), 3) 어떤 형태나 그룹이 방향성을 가지고 연속되어 함께 속하는 것으로 보이는 연속성의 법칙(Law of Continuation), 4) 인간은 불완전한 형태에서 완전성을 부여하여 안정된 완성체로 지각하려는 경향이 있어 폐쇄된 윤곽으로 구축된 영역들로 보다 세밀한 분류를 가능하게 하므로 이를 바탕으로 Table 5와 같이 코딩계획을 구성하였다. Table 6은 학생들이 나타낸 과학적 모델의 예시이다. 이 기준을 이용하여 과학적 모델 구성 활동과 인포그래픽 구성 활동의 결과물에서 어떤 과학적 모델을 사용하였는지, 두 활동에서 사용된 과학적 모델의 종류에는 어떠한 차이가 있는지를 분석하고 그 특징을 살펴보았다.

다. 인포그래픽 판점 분석

학생들의 과학적 모델 구성 활동과 인포그래픽 구성 활동을 인포그래픽 판점에서 분석하였다. 인포그래픽 판점의 분석은 Jeon et al.(2014)의 연구에서 제시한 인포그래픽 판점의 일부를 이용하여 분석 기준으로 삼았다. 인포그래픽 판점의 분석은 Table 7과 같이 스토리텔링 방식에 따른 인포그래픽 종류 분석과 인포그래픽의 구성 내용에 대한 시각적 특징 분석이다.

스토리텔링 방식에 따른 인포그래픽의 종류는 a. 위치 정보를 바탕으로 정보를 구성한 위치 기반형 인포그래픽, b. 시간의 흐름에 따라 정보를 표현한 시계 기반형 인포그래픽, c. 정보의 수치나 데이터의 수량을 중심으로 표현한 수치 기반형 인포그래픽, d. 정보의 변화를 단계적 흐름으로 표현한 과정 기반형 인포그래픽, e. 시각적 정보만을 텍스트와 혼합하여 설명에 중점을 둔 기능 기반형 인포그래픽, f. 정보 사이의 유기적 관계나 상호작용을 강조한 관계 기반형 인포그래픽으로 6가지가 있다.

인포그래픽의 구성 내용을 배치하는 방법은 시각적 특성에 의해 이루어진다. 특히 인포그래픽 시각적 특성을 분석할 때는 게슈탈트 이론(Gestalt Theory)이 적용이 필요하다. 게슈탈트 시각적 법칙에서 그룹핑의 법칙(Law of Grouping)은 인포그래픽의 나타난 시각적 요소들이 어떠한 형태로 구성되어 있는지 분석하는 데 중요한 원리로 4가지가 있다. 1) 가까이 있는 두 개 또는 그 이상의 시각 요소들은 폐쇄된다. 2) 모양, 크기 등에서 비슷한 시각적 요소를 끼리 연결되어 폐쇄된 영역을 바탕으로 하는 시각적 법칙(Law of Similarity), 3) 어떤 형태나 그룹이 방향성을 가지고 연속되어 함께 속하는 것으로 보이는 연속성의 법칙(Law of Continuation), 4) 인간은 불완전한 형태에서 완전성을 부여하여 안정된 완성체로 지각하려는 경향이 있어 폐쇄된 윤곽으로 구축된 영역들로 보다 세밀한 분류를 가능하게 하므로 이를 바탕으로 Table 5와 같이 코딩계획을 구성하였다. Table 6은 학생들이 나타낸 과학적 모델의 예시이다. 이 기준을 이용하여 과학적 모델 구성 활동과 인포그래픽 구성 활동의 결과물에서 어떤 과학적 모델을 사용하였는지, 두 활동에서 사용된 과학적 모델의 종류에는 어떠한 차이가 있는지를 분석하고 그 특징을 살펴보았다.
은 다른 부분 보다 더 전경으로 보리는 폐쇄성의 법칙(Law of Closure), 이 4가지가 시각 법칙의 주요 요소이다.

위와 같은 인포그래픽 관점을 바탕으로 과학적 모델 구성 활동과 인포그래픽 구성 활동에서 학생들이 그림을 분석하여 특징을 파악하였다.

III. 연구 결과

1. 과학 개념 분석

렌즈와 관련된 개념이 어떻게 형성되어 있는지를 알아보기 위해 3가지 질문을 하였고 Table 8에 나타난 학생들의 응답을 분석한 결과이다. 학생들은 렌즈란 무엇인가라는 질문에 대해 렌즈가 사용되는 도구나 물체를 가장 많이 응답하였고 물질과 관련된 응답도 높게 나타났다. 6가지 응답 유형에 대해 상관관계를 분석해보았을 때 r=0.3 이상의 통계적으로 유의미한 값을 가지는 관계는 나타나지 않았다(Figure 1). 교육과정 상에서 렌즈란 유리나 플라스틱과 같이 투명한 물질을 오목하거나 볼록하게 만들어 빛을 퍼지게 하거나 모이게 하는 기구로 정의하고 있다. 렌즈의 정의와 비교하였을 때 학생들은 렌즈는 투명하다는 것과 렌즈를 따올릴 때 렌즈가 사용되는 물건을 많이 언급하는 것에서 생활 속 물건들에 렌즈가 사용되고 있다는 정도로 개념을 형성하고 있는 것을 볼 수 있다. 그리고 그림으로 표현한 부분에서는 Table 9의, (a), (b)와 같이 렌즈를 사용한 물건을 주로 나타냈으며, 볼록렌즈를 이용해 사물을 관찰할 때 볼 수 있는 모습은 Table 9의, (c), (d)와 같이 일부 나타났다. 이와의 응답 요소에서는 대부분 그림을 그려 표현하지 않았다. 이를 종합해 볼 때 렌즈란 무엇인가에 대한 개념은 경험 측면에서 보이나 느낀 외형적 형태에 국한되어 있는 것으로 보인다.

Table 8. Examples of students’ responses to question 1

Response elements	Examples of students’s responses	N (%)
material	Lens made of transparent material.	14 (26.4)
	Lens made of glass.	
	Lens made of transparent glass.	
shape of lens	Shape of lens is convex	2 (3.8)
	Lens is convex.	
	Shape of Lens is prominent and convex.	9 (17.0)
light gathering and diffusing	Lens gathers light.	9 (17.0)
	Lens diffuses light.	
extension and contraction	Lens enlarges a image of an object.	8 (15.1)
	Lens enlarges or reduces a image of and object clearly.	
type of lens	Convex lens is lens.	17 (32.1)
	Concave lens is lens.	
use	Lens is used to glasses.	19 (35.8)
	Lens is used to a telescope.	
light gathering and diffusing	Lens gathers light.	1 (1.9)
	Lens diffuses light.	
unawareness	I don’t know the role of lens.	6 (11.3)
	I have no idea about scientific principle of lens.	

Table 9. Students’ representative drawing types of question 1

Students’ representative drawings	N(%)
(a)	11 (20.8)
(b)	
(c)	4 (7.5)
(d)	

Table 10. Examples of student’s responses to question 2

Response elements	Examples of students’s responses	N (%)
shape of lens	Lens is convex.	33 (62.3)
	Shape of Lens is prominent and convex.	
extension and contraction	Lens enlarges a image of an object.	24 (45.5)
	Lens enlarges or reduces a image of and object clearly.	
type of lens	Convex lens is lens.	17 (32.1)
	Concave lens is lens.	
use	Lens is used to glasses.	19 (35.8)
	Lens is used to a telescope.	
light gathering and diffusing	Lens gathers light.	1 (1.9)
	Lens diffuses light.	
unawareness	I don’t know the role of lens.	6 (11.3)
	I have no idea about scientific principle of lens.	

렌즈에 어떠한 과학 원리가 있는지 설명하라는 질문에는 Table 10과 같은 결과가 나타났다. 렌즈의 원리를 바르게 설명하기 위해서 교육과정 상에서 오목렌즈와 볼록렌즈를 통해 눈과 사물 사이의 거리 관계에 따라 물체가 어떻게 관찰되는지 알 수 있어야 한다. 학생들의 응답에서는 렌즈의 외형적 형태, 즉 볼록렌즈의 형태를 주
로 언급하였고 물체가 크게 보이거나 작게 보인다고 응답한 경우는 볼록렌즈와 오목렌즈의 구분 없이 렌즈만 언급하여 관찰되는 결과를 응답하였다. 그리고 볼록렌즈와 오목렌즈의 종류를 언급한 학생들은 렌즈가 사용되는 도구나 물건을 언급하지 않아 응답하는 경우가 많았다. 이 결과는 Figure 2에서처럼 학생들의 응답 요소 간 상관관계 분석에서 렌즈의 외형적 형태와 렌즈를 통해 크게 보이거나 작게 보인다고 응답한 경우의 상관관계는 0.595이거나, 렌즈의 종류와 사용처 사이의 상관관계는 0.740이라는 결과에서 특징이 잘 나타난다. 학생들이 설명한 그림은 Table 11의 (a), (b)와 같이 오목렌즈와 볼록렌즈의 형태와 렌즈가 사용되는 물건을 주로 그림으로 표현하여 설명하였다. 이를 종합했을 때 학생들은 렌즈의 원리에 대해서 볼록렌즈와 오목렌즈의 형태적 측면과 이를 통해 관찰된 사물의 모습 정도에서 선개념을 가지고 있음을 알 수 있다.

빛이 렌즈를 통과하면 어떻게 되는지 설명하고자 하였을 때 학생들의 응답을 분석한 결과는 Table 12와 같다. 빛이 렌즈를 통과할 때 교육과정 상에서는 다음과 같이 설명한다. 빛이 렌즈를 통과하면 렌즈의 두께로 빛이 깎여 나가기 때문에 렌즈에서는 가운데가 두꺼워 빛이 렌즈의 가운데로 깎여 나가고 오목렌즈는 가장자리가 두껍기 때문에 빛이 가장자리로 깎여 나간다. 이리한 정의와 학생들의 응답을 비교하면 빛이 한 곳으로 모인 것으로 모인다고 응답한 경우가 62.3%로 가장 많았고 빛이 퍼졌다고 응답한 경우는 45.3%로 두 번째로 많았다. 하지만 이러한 응답은 볼록렌즈와 오목렌즈에 따라 구분하여 응답한 경우는 거의 없었고 단편적으로 답한 경우가 많았다. 빛이 깎여 나아간다고 굴절한다는 응답은 35.8% 나타났지만 단편적인 응답만 하거나 빛의 경로를 정확하게 표현한 경우는 없었다. 학생들의 응답 속에 나타난 구조를 살펴보기 위해 구조를 나타내는 요소 간의 상관관계를 분석한 결과는 Figure 3와 같다. 빛이 모인다고 응답한 학생들은 모인 빛이 종이를 태운다는 것과 연관시켜 응답하는 경우가 나타났다(r=0.393). 이는 생활 속에서 볼록렌즈를 이용해 종이를 태웠던 경험과 연관되어 나타나는 것으로 볼 수 있다. 학생들이 그림으로 나타낸 형태는 Table 13과 같다. 빛의 경로를 그림으로 표현한 학생들의 응답을 살펴보기 위해 구조를 나타내는 요소 간의 상관관계를 분석한 결과는 Figure 3과 같다. 빛의 경로를 그림으로 표현한 학생들 대부분에서 빛의 경로를 올바르게 설명하지 못하는 그림의 형태가 11.3% 나타났고(Table 13 (a), (b)), 빛의 경로도 단순히 빛이 깎여 나아간다는 측면만 설명한 렌즈의 특성에 의해 설명하지 못하는 경우도 5.7% 나타났다(Table 13 (c)). 또한 볼록렌즈와 오목렌즈를 통과한 빛의 경로를 서로 반대로 설명하는 경우도 7.5%가 있었다(Table 13 (d), (e)). 학생들의 그림과

![Figure 2. Correlation analysis among elements of students's responses about question 2](image)

![Table 11. Students’ Representative drawing types of question 2.](image)

Students’ representative drawings	N(%)
(a)	13 (24.5)
(b)	12 (22.6)

![Figure 3. Correlation analysis among elements of students’s responses about question 3](image)

![Table 12. Examples of student responses to question 3](image)

Response elements	Examples of student’s responses	N(%)
light gathering	Light gathers at one point	33 (62.3)
light diffusing	Light diffuses far away	24 (45.3)
light gathering and diffusing	Light gathers or diffuses	17 (32.1)
refraction	Light is refracted	19 (35.8)
reflection	Light reflects	1 (1.9)
burning lens	Lens is burned	6 (11.3)
burning paper	Lens burns a paper	1 (1.9)

*p<0.05 **p<0.01
응답 결과를 종합하면 렌즈를 통과한 빛에 대해 주로 빛이 한 곳으로 모인다는 선념을 가지고 있지만 블록렌즈와 오목렌즈의 차이에 의해 빛이 나가는 경로에 대해서는 정확하게 알고 있지 못한다는 것을 알 수 있다.

11차시의 수업이 끝난 후 렌즈의 이용 단원을 정리하는 과학적 모델 구성 활동과 인포그래픽 구성 활동에서 나타난 학생들의 렌즈에 대한 과학적 개념을 분석한 결과는 다음과 같다.

Table 13. Students’ representative drawing types of question 3.

Students’ representative drawings	N (%)
(a)	6 (11.3)
(b)	
(c)	3 (5.7)
(d)	4 (7.5)

Table 14. Analysis of students’ conceptions about features of lens in scientific model construction activity and infographic model construction activity

Category	N (%)	
Scientific model construction activity	Infographic model construction activity	
A.1. convex lens		
A.1.1. Shape of convex lens	39 (73.6)	42 (79.2)
A.1.2. Features of observation with convex lens	32 (60.4)	35 (66.0)
A.1.3. Type of convex lens	17 (32.1)	23 (43.4)
A.2. concave lens		
A.2.1. Shape of concave lens	40 (75.5)	41 (77.4)
A.2.2. Features of observation with concave lens	32 (60.4)	35 (66.0)
A.2.3. Type of concave lens	17 (32.1)	23 (43.4)

Figure 4. Correlation analysis among elements of students’ responses about features of lens category in scientific model construction activity(a) and infographic model construction activity(b)

안경의 특징과 관련하여 나타난 학생들의 응답 결과는 Table 15와 같다. 과학적 모델 구성 활동에서 정확하게 블록렌즈의 모양과 오목렌즈의 모양에 대해서는 70% 이상의 학생들이 정확하게 설명하였고 관찰 결과도 60% 이상의 학생들이 올바르게 설명하였다. 하지만 오목렌즈와 블록렌즈가 사용된 경우에 따른 분명한 결과를 나타낸 경우는 영역별로 블록렌즈의 특징에 대한 학생들의 응답 요소 사이의 상관관계를 분석한 결과는 Figure 5와 같다. A.1.1과 A.2. 사이의 상관관계에서 r_{ma}=0.991(r_{ma} = 과학적 모델 상관관계), r_{inf}=0.997(r_{inf} = 인포그래픽 상관관계)으로 나타나 블록렌즈를 설명 잘 할 수록 오목렌즈의 설명을 잘하는 것으로 나타났다. 두 활동에서 차이점을 렌즈의 특징을 설명할 때 블록렌즈와 오목렌즈의 모양과 종류 사이의 상관관계가 과학적 모델 구성 활동에서는 나타나지 않았는데 인포그래픽 구성 활동에서는 관리가 잘 설명하는 경우가 더욱 많았고 상관관계도 블록렌즈의 모양(A.1.1)과 블록렌즈의 종류(A.1.3) 사이의 상관관계가 r_{ma}=0.516, 오목렌즈의 모양(A.2.1)과 오목렌즈의 종류(A.2.3) 사이의 상관관계가 r_{inf}=0.346로 유의미하게 나타나는 변화를 보였다.
있듯이 근시경(B.1.)과 원시경(B.2.) 사이의 상관관계가 $r_{sm}=0.890$에서 $r_{info}=0.905$로 상승한 것을 볼 수 있으며 근시경이란(B.1.1)과 근시경 관찰(B.1.2) 사이의 상관관계도 $r_{sm}=0.683$에서 $r_{info}=0.718$로 증가한 것을 알 수 있다. 또, 원시경이란(B.2.1)과 원시경 관찰(B.2.2) 사이의 상관 관계도 $r_{sm}=0.690$에서 $r_{info}=0.719$로 증가한 것을 알 수 있다.

빛의 나아감과 관련하여 학생들의 응답을 분석한 결과는 Table 16과 같다. 빛의 나아감 영역은 렌즈의 특성과 안경의 특성에 비해 설명하는 빈도가 대체적으로 낮은 것을 알 수 있다. 과학적 모델 구성 활동과 인포그래픽 구성 활동에서 비슷한 빈도로 올바르게 설명하였지만 Figure 6에서 나타난 상관관계 분석 결과에서는 차이를 나타낸다. 볼록렌즈를 통과한 빛(C.1.)과 빛의 굴절이란(C.3.) 사이의 상관관계에서 $r_{sm}=0.403$이 $r_{info}=0.501$로 증가하였고, 오목렌즈를 통과한 빛 (C.2.)과 빛의 굴절이란(C.3.) 사이의 상관관계에서도 $r_{sm}=0.459$가 $r_{info}=0.536$으로 증가한 것을 알 수 있다.

![Figure 5. Correlation analysis among elements of students’s responses about features of glasses category in scientific model construction activity(a) and infographic model construction activity(b)](image1)

![Figure 6. Correlation analysis among elements of students’s responses about light path category in scientific model construction activity(a) and infographic model construction activity(b)](image2)
리즈의 응용과 관련된 학생들의 응답을 분석한 결과는 Table 17과 같다. 리즈의 응용 부분은 다른 영역에 비해 가장 낮은 빈도로 설명한 부분이다. 이것은 교과서에 배운 리즈의 응용 부분을 실제 학습 상황에서는 제대로 이해한 학생은 하지만 개념을 형성하는 과정에서 더 중요하게 여기지 않는 것으로 생각된다. D.1.∼D.3. 사이의 상관관계 분석은 통계적으로 유의한 값이 나타나지 않아 표현하지 않았다.

과학적 모델 구성 활동에서의 과학적 모델 구성활동에서 학생들이 리즈에 관한 내용을 설명하기 위해 사용한 과학적 모델의 종류를 분석하여 비교한 결과를 Table 18에 나타냈다. 과학적 모델 구성활동과 인포그래픽 구성활동의 과학적 모델의 전체 빈도를 비교하면 인포그래픽 구성활동에서 학생들은 중심 영역별로 과학적 모델을 보다 많이 사용하거나 다양하게 사용할 것을 알 수 있다. 인포그래픽 구성활동에서 과학적 모델 구성활동보다 특정적으로 증가한 과학적 모델 응용을 살펴보면 다음과 같다. 불록렌즈와 오클렌즈의 모양을 설명할 때는 스케일 모델이 약 30% 증가한 것으로 나타났다. 과학적 모델 구성활동에서는 불록렌즈와 오클렌즈를 렌즈가 달리는 실형 가구의 모양과 유사하게 그려지는 특징이 있었지만 인포그래픽 구성활동에서는 렌즈의 볼록하거나 오목한 모양 특성을 표현하는 모습으로 바꾸거나 과학적 모델로 나타내지 않았던 학생들도 과학적 모델로 표현하는 경우가 증가하여 이와 같은 특성이 나타났다. 그리고 불록렌즈와 오클렌즈를 렌즈를 통과한 관찰 특성을 표현한 때는 관찰 결과를 표로 제시하였을 때와 학생들이 표현한 과학적 모델은 상징적 모델로 표현하는 경우도 약 10% 증가하였다. 리즈를 응용한 부분에서는 불록렌즈를 이용해 빛을 모았을 때 나타나는 현상과 원리를 자신만의 모델로 재구성하여 재구성하는 경우가 약 29% 증가하였다. 리즈를 통한 빛이 근시경과 원시경을 통과했을 때 학생들이 표현한 과학적 모델은 상징적 모델로 표현하는 경우도 약 10% 증가하였다. 리즈를 응용한 부분에서는 불록렌즈를 이용해 빛을 모았을 때 나타나는 현상과 원리를 자신만의 모델로 표현하는 경우가 약 27% 증가하였다. 또한, 실생활 속에서의 리즈의 사용과 간이카메라의 사용에서도 과학적 모델의 사용이 소폭 상승하는 것을 볼 수 있었다. 이 결과를 볼 때 인포그래픽 구성활동에 과학적 모델을 사용하지 않은 학생들이 과학적 모델 사용에 참여하게 되었고, 과학적 모델을 표현한 학생들은 인포그래픽 구성활동으로 자신의 과학적 모델을 반영하고 수정할 수 있는 기회가 제공되어 과학적 모델 사용을 활성화하는 데에 기여하였다고 여겨진다.

과학적 모델 구성활동에서의 과학적 모델이 인포그래픽 구성활동에서 가장 두드러지게 변화한 과학적 모델의 실제 예는 Table 19와 같다. Table 19의 (a)와 (b)는 리즈의 모양을 설명할 때 사실적인 그림에서 스케일 모델로 변화한 예를 나타낸 것이고, Table 19의 (c)와 (d)는 렌즈를 이용하여 물체를 관찰했을 때 렌즈, 물체 사이의 거리에 따라 나타나는 관찰 결과를 표에서 상징 모델로 변화한 예를 나타낸 것이다. Table 19의 (e)와 (f)는 가상의 가상의 거리를 이용하여 물체를 관찰했을 때 렌즈, 물체 사이의 거리에 따라 나타나는 관찰 결과를 표에서 상징 모델로 변화한 예를 나타낸 것이다. 특히 이러한 변화는 과학적 모델 구성활동에서 사용한 모델은 교과서에 제시되어 있지 않고 교과서의 내용에 크게 의존하지 않았던 것을 보고 인포그래픽 구성활동에서 변화하여 나타난 과학적 모델은 자신의 아이디어에 기반을 두 자발적으로 생성한 과학적 모델로 과학적 모델링의 과정에서 중요하게 다루는 모델의 반상과 재구조화의 중요한 증거가 된다.
Category	Types of scientific models	SM1 (%)	SM2 (%)	SM4 (%)	SM6 (%)	SM8 (%)	Total (%)
A.1. Shape of convex lens	Scientific model construction	7(13.2)	4(7.5)	1(1.9)	28(52.8)	0(0.0)	40(75.5)
	Infographic model construction	4(7.5)	0(0.0)	0(0.0)	43(81.1)	1(1.9)	48(90.6)
A.1.2. Features of observation with convex lens	Scientific model construction	13(24.5)	1(1.9)	14(26.4)	5(9.4)	33(62.3)	
	Infographic model construction	16(30.2)	0(0.0)	5(9.4)	17(32.1)	38(71.7)	
A.1.3. Type of convex lens	Types of scientific models	SM1	SM2	SM4	SM6	SM8	Total
	Scientific model construction	16(30.2)	1(1.9)	17(32.1)			
	Infographic model construction	19(35.8)	6(11.3)	25(47.2)			
A.2. Shape of concave lens	Scientific model construction	6(11.3)	5(9.4)	29(54.7)	0(0.0)	40(75.5)	
	Infographic model construction	0(0.0)	4(7.5)	43(81.1)	1(1.9)	48(90.6)	
A.2.2. Features of observation with concave lens	Types of scientific models	SM1	SM2	SM4	SM6	SM8	Total
	Scientific model construction	13(24.5)	1(1.9)	14(26.4)	5(9.4)	33(62.3)	
	Infographic model construction	16(30.2)	0(0.0)	6(11.3)	17(32.1)	39(73.6)	
B.1. Glasses for near vision	Types of scientific models	SM1	SM2	SM4	SM6	SM8	Total
	Scientific model construction	28(52.8)	0(0.0)	1(1.9)	1(1.9)	30(56.6)	
	Infographic model construction	20(37.7)	15(28.3)	1(1.9)	0(0.0)	36(67.9)	
B.2. Glasses for farsightedness	Types of scientific models	SM1	SM2	SM4	SM6	SM8	Total
	Scientific model construction	25(47.2)	1(1.9)	1(1.9)	1(1.9)	28(52.8)	
	Infographic model construction	20(37.7)	15(28.3)	1(1.9)	36(67.9)		
C.1. Light to pass through convex lens	Types of scientific models	SM1	SM2	SM5	SM8		Total
	Scientific model construction	1(1.9)	2(3.8)	22(41.5)	25(47.2)		
	Infographic model construction	4(7.5)	6(11.3)	27(50.9)	37(69.8)		
C.2. Light to pass through convex lens	Types of scientific models	SM1	SM5	SM8			Total
	Scientific model construction	1(1.9)	2(3.8)	20(37.7)	23(43.4)		
	Infographic model construction	2(3.8)	6(11.3)	26(49.1)	34(64.2)		
D.1. Collecting sun light	Types of scientific models	SM1	SM8				Total
	Scientific model construction	1(1.9)	14(26.4)	15(28.3)			
	Infographic model construction	2(3.8)	24(45.3)	26(49.1)			
D.2. A use of lens in our life	Types of scientific models	SM1	SM2				Total
	Scientific model construction	8(15.1)	0(0.0)	8(15.1)			
	Infographic model construction	9(17.0)	7(13.2)	16(30.2)			
D.3. Making camera	Types of scientific models	SM1	SM2	SM8			Total
	Scientific model construction	4(7.5)	7(13.2)	0(0.0)	11(20.8)		
	Infographic model construction	1(1.9)	9(17.0)	3(5.7)	12(22.6)		

SM1-linguistic description, SM2- realistic drawing, SM3-diagram, SM4-table, SM5-theoretical model, SM6-scale model, SM7-analogical model, SM8-symbol model
Table 19. Comparison of students’ scientific models between scientific model construction activity and infographic model construction activity

Scientific model construction activity	Infographic model construction activity
(a) SM2- realistic drawing	(b) SM6-scale model
(c) SM4-table	(d) SM8-symbol model
(e) SM4-table	(f) SM8-symbol model

Figure 8. Comparison of infographic types between scientific model construction activity and infographic model construction activity ((a) : non infographic, (b): function based infographic, (c) : connection based infographic)

3. 인포그래픽 관점 분석

과학적 모델 구성 활동과 인포그래픽 구성 활동의 학생 응답 결과를 인포그래픽 유형으로 분석한 결과는 Table 20과 같다. 과학적 모델 구성 활동에서는 교과서에서 배운 내용을 순서대로 단순하게 나열하는 경우가 75.5%로 높게 나타났다. 그림의 형태는 Figure 8의 (a)와 같다. 일부 학생은 렌즈와 관련된 학습 내용을 제조직화하여 기능기반 인포그래픽(17.0%)과 관계기반 인포그래픽(7.5%)으로 나타났다. 인포그래픽 구성활동에서는 단순나열식의 빈도가 줄어들고(24.5%) 기능기반 인포그래픽(34.0%)과 관계기반 인포그래픽(41.5%)이 증가하는 것을 알 수 있다. 그림의 형태는 Figure 8의 (b), (c)와 같다. Figure 8의 (b)는 인포그래픽 구성활동을 통해 학생 스스로 렌즈의 이용 단원을 렌즈, 안경, 빛의 나아감 세 가지 영역으로 나누고 각 영역별로 특성을 하나씩 설명하는 기능기반 인포그래픽의 대표적인 모습이다. Figure 8의 (c)는 원폭에는 볼록렌즈의 특성을 오른쪽에 오목렌즈의 특성을 재구조화하여 서로의 관계를 대조하는 관계기반
인포그래픽을 나타내는 대표적인 예이다. 이러한 인포그래픽 형태가 증가하게 되어 과학적 모델 구성활동에서 학습한 내용을 단순히 나열하는 형태에서 학습 내용의 사이의 관계와 특성을 비교하여 연결시켜 과학 개념에 대한 상관관계 분석에서 알 수 있듯이 각 영역별 요소간의 연결을 알게 되어 자신의 학습을 성찰할 수 있는 기회가 제공된 것으로 생각된다.

Table 21은 과학적 모델 구성 활동과 인포그래픽 구성 활동 사이의 특성에 의해 분석한 결과이다. 과학적 모델 구성 활동에서는 시지각적 특성이 많이 사용되지 않았지만 인포그래픽 구성에서는 시지각적 특성이 다양하게 사용된 것을 알 수 있다. 특히 근접성의 원리가 많이 사용되었는데, 인포그래픽 구성하는 데서 비슷하게 설명할 수 있는 부분들은 그림을 그리는 공간상에 근접하게 묶어 설명하며 연속성을 나타내었고, 연속성은 렌즈의 특성을 세부적으로 나누며 관련 있는 내용을 서로 화살표로 연결하여 설명하는 형태가 많이 나왔기 때문이었다. 이러한 특성은 인포그래픽을 구성할 때 의미를 강조하기 위한 방법으로 자신이 학습한 내용을 어떤 부분을 강조하고, 개념이나 현상 사이의 관계를 어떻게 파악하고 있는지 알아볼 수 있는 중요한 요소가 된다. 그리고 이러한 요소들이 인포그래픽 구성활동에서 많이 나타났기 때문에, 렌즈에 대한 각 영역별 요소 간 상관관계가 과학적 모델 구성 활동보다 더 높게 나타나는 요인을 알 수 있는 결과이다.

Table 21. Analysis of students’ drawing in the view of visual perception of Gestalt theory

Type of infographic	Visual perception			
	Proximity N(%)	Similarity N(%)	Continuation N(%)	Closure N(%)
Scientific model	7(10.0)	0(0.0)	8(13.1)	3(5.1)
construction activity				
Infographic model	4(6.9)	10(18.9)	15(28.3)	24(45.3)
construction activity				

본 연구 결과를 통해 얻어진 인포그래픽 활용 수업에 대한 결론과 시사점은 다음과 같다. 많은 선행 연구에서 과학적 모델을 만들어 보는 활동은 다양한 과학 개념을 학습하는 데 효과적인 것으로 나타나고 있다. 본 연구에서도 인포그래픽을 활용하여 학생들이 과학적 모델을 다루고 학습하는 과정에서 인포그래픽의 활용은 다양한 과학 개념을 학습하는 데 효과적인 요소가 되었다고 할 수 있다. 본 연구결과를 통해 얻어진 인포그래픽 활용수업의 결과들은 초등학교 과학 수업에서 활용할 수 있는 중요한 자료로 생각된다.
수업에 활용하는 비율은 거의 없다고 Mun & Kang(201)의 연구에서 밝히며 교사들의 인포그래픽에 대한 이해 증진이 필요하다고 강조하고 있다. 인포그래픽 수업은 정보가 제조화될 때 정보 사내의 연관성을 스스로 성찰할 수 있는 기회가 제공되기 때문에 학습에 대한 자기 평가와 학습에 대한 메타인지의 개선을 할 수 있는 기회 제공의 측면에서 중요하다. 이는 본 연구에서 인포그래픽 구성 활동에서 시각적 특성과 과학적 모델의 변화 모습에서 드러난다. 학생들은 과학적 모델링에 적극 참여하게 하여 학습에 도움을 줄 수 있다는 연구들은 과학적 모델링 과정에서 학생들이 만든 과학적 모델에 대한 자기 반성과 평가를 통해 과학적 모델을 수정해 나가며 과학적 모델 기반 수업이 효과적이라고 밝히고 있고(Chen, 2000).

국문요약
본 연구의 목적은 초등학교 6학년 1학기 3단원 렌즈의 이용단원에서 인포그래픽 수업을 이용하며 학생들이 과학적 모델 사용에 대한 이해의 높이 및 그 수업에 대한 반성을 통해 과학적 모델로 학습을 수행해 나갈 때 과학적 모델 기반 수업의 효과성을 고려하되, 본 연구는 인포그래픽 수업과 과학적 모델을 이용한 학습에 대한 이해의 높이에 관한 연구이다.

References
Abell, S. K., & Roth, M. (1995). Reflections on a fifth-grade life science lesson: Making sense of children’s understanding of scientific models. International Journal of Science Education, 17(1), 59-74.
Baker, V. R. (1999). Geosensitivity. Geological Society of America Bulletin, 111(5), 633-645.
Black, M. (1962). Models and metaphors. Ithaca, NY: Cornell University Press.
Boulter, C. J. (2000). Language, models and modeling in the primary science classroom. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education(pp. 289-305). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Boulter, C. J., & Buckley, B. C. (2000). Constructing a typology of models for science education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 41-57). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Brunner, J. (1966). Towards a theory of instruction. Cambridge: Harvard University Press.
Cheng, M. F., & Brown, D. E. (2015). The role of scientific modeling criteria in advancing students’ explanatory ideas of magnetism. Journal of Research in Science Teaching, 52(8), 1053-1081.
Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37(2), 109-138.
Cho, H., Nami, J., & Lee, D. (2014). The development of argument-based modeling strategy using scientific writing. Journal of the Korean Association for Research in Science Education, 34(5), 479-490.
Clement, J. J. (2008). Creative model construction in scientists and students: The role of analogy, imagery, and mental simulation. Dordrecht, The Netherlands: Springer.
Coll, R. K., & Lajunm, D. (2011). Modeling and the future of science learning. In M. S. Khine & I. M. Saleh (Eds.), Models and modeling (pp. 3-21). Dordrecht, The Netherlands: Springer.
Dodick, J., & Orion, N. (2003). Geology as an historical science: Its perception within science and the education system. Science & Education, 12(2), 197-211.
Forbes, C., & Brown, D. E. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd-grade students’ model-driven explanation-construction. Journal of Research in Science Teaching, 52(7), 895-921.
Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115-130.
Gilbert, J. K., & Boulter, C. J. (2000). Developing models in science education. Dordrecht, The Netherlands: Kluwer Academic.
Gilbert, J. K., & Boulier, C. J. (1997). Learning science through models and modeling. In B. Fraser & K. Tobin (Eds.), The international handbook of science education(pp. 53-66). Dordrecht: Kluwer.
Halloun, I. (1996). Schematic Modeling for Meaningful Learning of Physics. Journal of Research in Science Teaching, 33(9), 1-26.
Harlow, D. B., Bianchini, J. A., Swanson, L. H., & Dwyer, H. A. (2013). Potential teachers’ appropriate and inappropriate application of pedagogical resources in a model-based physics course: A “knowledge in pieces” perspective on teacher learning. Journal of Research in Science Teaching, 50(9), 1098-1126.
Harrison, A. G., & Treagust, D. F. (2000a). A typology of school science models. International Journal of Science Education, 22, 1011-1026.
Harrison, A. G., & Treagust, D. F. (2000b). Learning about atoms, molecules, and chemical bonds: A case study of multiple model use in grade 11 chemistry. Science Education, 84, 352-381.
Jeon, S., Jung, J., & Park, J. (2014). An analysis of science magazine in the view of infographic. Journal of the Korean Association for Research in Science Education, 34(6), 601-611.
Khan, S. (2011). What’s missing in model-based teaching. Journal of Science Teacher Education, 22(6), 535-560.
Kim, M., & Kim, H. (2007). Analysis of high school students’ conceptual change in model-based instruction for blood circulation. Journal of the Korean Association for Research in Science Education, 27(5), 379-393.
Kim, H., & Shin, D. (2014). Representation method of infographic imageretelling - Focusing on the Peirce’s Semiotics. Semiotic Inquiry, 39, 403-438.
Kim, J., Kim, W., & Kim, Y. (2009). Effects of science conceptual model completion activity and science conceptual model modifying activity.
on middle-school students’ achievement in science conceptual learning. Journal of the Korean Association for Research in Science Education, 29(1), 1-9.

Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635-679.

Lehrer, R., & Schauble, L. (2010). What kind of explanation is a model? In M. K. Stein & L. Kucan (Eds.), Instructional explanations in the disciplines (pp. 9-22). New York, NY: Springer.

Manz, E. (2012). Understanding the co-development of modeling practice and ecological knowledge. Science Education, 96(6), 1071-1105.

Mun, H., & Kang, D. (2015). Elementary school teachers’ perception on infographics learning materials. Journal of Science education, 39(2), 151-164.

National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.

Nersessian, N. J. (2008). Mental modeling in conceptual change. In S. Vosniadou (Ed.) International handbook of research on conceptual change (pp. 391-416). London, UK: Routledge.

Newsom, D., & Haynes, J. (2007). Public relations writing: Form & Style. Belmont, CA: Wadsworth/Cengage Learning.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: Achieve, Inc.

Noh, S. & Son, J. (2014). The effect of physics instruction using infographics based on visual thinking in high school. Journal of the Korean Association for Research in Science Education, 35(3), 477-485.

Oh, P. (2007). Analysis of the manners of using scientific models in secondary earth science classrooms : With a focus on lessons in the domains of atmospheric and oceanic earth sciences. Journal of the Korean Association for Research in Science Education, 27(7), 645-662.

Park, J., & Paik, S. (2004). The learning effect of teaching materials using computer animation of particulate model in elementary school science classes. Journal of Korean Elementary Science Education, 23(2), 116-122.

Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learner. Journal of Research in Science Teaching, 46(6), 632-654.

Stavy, R. (1991). Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching, 28(4), 305-313.

Smiciklas, M. (2012). The power of infographics: Using pictures to communicate and connect with your audiences. Indianapolis: Que Publishing.

Vo, T., Forbes, C., Zangori, L., & Schwarz, C. (2015). Fostering third-grade students’ use of scientific models with the water cycle: Elementary teachers’ conceptions and practices. International Journal of Science Education, 37(15), 2411-2432.

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967.

Yoon, H. (2011). Pre-service elementary teachers’ inquiry on a model of magnetism and changes in their views of scientific models. The Korean Society of Elementary Science Education, 30(3), 353-366.