COMPLEXITY OF NILPOTENT ORBITS AND THE
KOSTANT-SEKIGUCHI CORRESPONDENCE

DONALD R. KING

Abstract. Let G be a connected linear semisimple Lie group with Lie algebra \mathfrak{g}, and let $K_{\mathbb{C}} \to \text{Aut}(\mathfrak{p}_{\mathbb{C}})$ be the complexified isotropy representation at the identity coset of the corresponding symmetric space. Suppose that Ω is a nilpotent G-orbit in \mathfrak{g} and \mathcal{O} is the nilpotent $K_{\mathbb{C}}$-orbit in $\mathfrak{p}_{\mathbb{C}}$ associated to Ω by the Kostant-Sekiguchi correspondence. We show that the complexity of \mathcal{O} as a $K_{\mathbb{C}}$ variety measures the failure of the Poisson algebra of smooth K-invariant functions on Ω to be commutative.

1. Introduction

The Kostant-Sekiguchi correspondence is a vital tool in the study of infinite dimensional representations of semisimple Lie groups. Let us recall some facts about this correspondence in case G is a connected real, linear semisimple Lie group with maximal compact subgroup K. We obtain the corresponding Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ where \mathfrak{g} (resp. \mathfrak{k}) is the Lie algebra of G (resp., K). The vector spaces \mathfrak{g}, \mathfrak{k} and \mathfrak{p} are then complexified to give a vector space decomposition of $\mathfrak{g}_{\mathbb{C}}$, the Lie algebra of $G_{\mathbb{C}}$ (the complexification of G), as $\mathfrak{g}_{\mathbb{C}} = \mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{p}_{\mathbb{C}}$. The Kostant-Sekiguchi correspondence is a bijection between the nilpotent G-orbits in \mathfrak{g} and the nilpotent $K_{\mathbb{C}}$-orbits in $\mathfrak{p}_{\mathbb{C}}$. (For the precise definition of the correspondence we refer the reader to [2].)

If Ω is a nilpotent G-orbit in \mathfrak{g} and \mathcal{O} is the nilpotent $K_{\mathbb{C}}$-orbit in $\mathfrak{p}_{\mathbb{C}}$ associated to Ω by the Kostant-Sekiguchi correspondence, then (Ω, \mathcal{O}) is said to be a Kostant-Sekiguchi pair. Among the nice elementary properties of such a pair are: (1) Ω and \mathcal{O} lie in the same $G_{\mathbb{C}}$ orbit which we denote by $\mathcal{O}_{\mathbb{C}}$ and (2) \mathcal{O} is a Lagrangian submanifold of $\mathcal{O}_{\mathbb{C}}$ (relative to the Kostant-Souriau symplectic form on $\mathcal{O}_{\mathbb{C}}$.) Moreover, Vergne [9] has established a much deeper relationship between Ω and \mathcal{O}, namely that there is a K-equivariant diffeomorphism which maps Ω onto \mathcal{O}.

Recently, the author proved that if (Ω, \mathcal{O}) form a Kostant-Sekiguchi pair then Ω is multiplicity free as a Hamiltonian K-space if and only if \mathcal{O} is a spherical $K_{\mathbb{C}}$ variety [2]. (The definition of multiplicity free is given below in Remark 2.1. Spherical $K_{\mathbb{C}}$-varieties are defined below in Remark 2.3.) The goal of this paper is to prove a generalization of that result to all Kostant-Sekiguchi pairs. That generalization is contained in Theorem 3.1. In essence our theorem shows that the complexity of the $K_{\mathbb{C}}$ action on \mathcal{O} measures the failure of the Poisson algebra of smooth K-invariant functions on Ω to be commutative.

The author wishes to thank A. T. Huckleberry for his proof of the density result in Proposition 2.1 and Maxim Braverman for some useful discussions.

1991 Mathematics Subject Classification. Primary 22E46; Secondary 14R20, 53D20.
2. Notation and key definitions

We now introduce some further concepts and notations. Unless otherwise indicated, in this section K will denote an arbitrary compact group. We assume that K is contained in its complexification $K_{\mathbb{C}}$. Our basic reference for symplectic manifolds with Hamiltonian K-actions is [4].

If $A \subset G_{\mathbb{C}}$ is a Lie subgroup and $S \subset g_{\mathbb{C}}$ then A^S denotes the subgroup of A that fixes each element of S under the adjoint action of $G_{\mathbb{C}}$ on $g_{\mathbb{C}}$. If $a \subset g_{\mathbb{C}}$ is a Lie subalgebra, then a^S is defined similarly.

For the remainder of this section X will denote a connected symplectic manifold which is a Hamiltonian K-space. Let the K-invariant symplectic form be ω_X and the moment map be $\Phi : X \to \mathfrak{k}^\ast$.

Definition 2.1. Let $\mathfrak{A} = C^\infty(X)^K$ be the algebra (with respect to Poisson bracket) of K-invariant smooth functions on X. \mathfrak{z} denotes the center of \mathfrak{A}.

Remark 2.1. X is said to be multiplicity free if $\mathfrak{A} = \mathfrak{z}$ i.e., \mathfrak{A} is a commutative Poisson algebra.

In addition, we need to recall some facts about the symplectic structure of Ω and the action of K on Ω. (K is a maximal compact subgroup of G.) Suppose that $\Omega = G \cdot E$. For each $E' \in \Omega$, we identify $T_{E'}(\Omega)$, the tangent space of Ω at E', with the quotient $\mathfrak{g}/\mathfrak{g}^{E'}$. The Koszul-Souriau form ω_{Ω} on Ω is defined by setting

$$w_{\Omega}|_{E'}(\bar{Y}, \bar{Z}) = \kappa(E', [Y, Z])$$

for all $Y, Z \in \mathfrak{g}$ where κ denotes the Killing form of \mathfrak{g}. (\bar{Y} and \bar{Z} are the cosets of Y and Z in $\mathfrak{g}/\mathfrak{g}^{E'}$.) w_{Ω} is a symplectic form on Ω.

The action of K on Ω is the left action. If $\xi \in \mathfrak{k}$, then ξ determines a global vector field ξ_{Ω} on Ω according to the following definition:

$$\xi_{\Omega} f(E') = \frac{d}{dt} \bigg|_{t=0} \left(f(\exp(-t\xi) \cdot E') \right)$$

where f is any smooth function on Ω and $E' \in \Omega$. If Y is any smooth vector field on Ω, $Y(E')$ is the vector in $T_{E'}(\Omega)$ obtained by evaluating Y at E'.

Since w_{Ω} is invariant under G, it is invariant under K. The K action on Ω is Hamiltonian in the following sense. For each $\xi \in \mathfrak{k}$, there is a function $\phi^\xi \in C^\infty(\Omega)$ such that $i(\xi_{\Omega}) w_{\Omega} = -d\phi^\xi$, where $i(\xi_{\Omega})$ denotes interior multiplication by ξ_{Ω}. We may take $\phi^\xi = \kappa(\xi, \cdot)$. We obtain the moment mapping $\Phi_{\Omega} : \Omega \to \mathfrak{k}^\ast$ by setting $\Phi_{\Omega}(E')(\xi) = \phi^\xi(E') = \kappa(E', \xi) = \kappa(E'_k, \xi)$ for all $E' \in \Omega$ and $\xi \in \mathfrak{k}$. E'_k denotes the component of E' in \mathfrak{k}.

Thus, Ω is a Hamiltonian K-space, with moment mapping $\Phi_{\Omega} : \Omega \to \mathfrak{k}$ defined by sending an element $E' \in \Omega$ to its component in \mathfrak{k}. (We have identified \mathfrak{k} with its real dual space \mathfrak{k}^\ast using the restriction of κ to \mathfrak{k}.) Each function f in $C^\infty(\Omega)$ gives rise to a smooth vector field X_f satisfying $df(Y) = w_{\Omega}(Y, X_f)$ for all smooth vector fields Y on Ω. X_f is said to be the Hamiltonian vector field associated to f. (If $\xi \in \mathfrak{k}$, then $X_{\phi^\xi} = \xi_{\Omega}$.) $C^\infty(\Omega)$ is a Poisson algebra under the Poisson bracket $\{\cdot, \cdot\}$ defined as follows: for $f, g \in C^\infty(\Omega)$, $\{f, g\} = w_{\Omega}(X_f, X_g)$. One checks that the linear mapping $\xi \mapsto \phi^\xi$ is a Lie algebra homomorphism $\mathfrak{k} \to C^\infty(\Omega)$ when $\{\cdot, \cdot\}$ is taken as the Lie bracket on $C^\infty(\Omega)$.

Lemma 2.1. Let $E' \in X$. Set $W = W_{E'} = T_{E'}(K \cdot E')$ and W^\perp equal to the orthogonal complement (with respect to $\zeta = w_{X|E'}$) of W inside $T_{E'}(X)$, then we have the following orthogonal decomposition of $T_{E'}(X)$ into (real) symplectic vector spaces:

$$\frac{W}{W \cap W^\perp} \bigoplus \left((W \cap W^\perp) \oplus (W \cap W^\perp)^* \right) \bigoplus \frac{W^\perp}{W \cap W^\perp}. $$

The restriction of ζ to $(W \cap W^\perp) \oplus (W \cap W^\perp)^*$ is given by $\zeta((Y_1, \lambda_1), (Y_2, \lambda_2)) = \lambda_1(Y_2) - \lambda_2(Y_1)$ for all $Y_i \in (W \cap W^\perp)$, $\lambda_i \in (W \cap W^\perp)^*$. Moreover, (1) $\frac{W}{W \cap W^\perp}$ and $W \cap W^\perp$ are isomorphic (as \mathfrak{t}^E modules) and (2) W/\mathfrak{t}^E and $\frac{W}{W \cap W^\perp}$ are isomorphic (as $\mathfrak{t}^{E'}$ modules).

Proof. See Corollary 9.10 and Lemma 9.11 of [6]. These results are steps in the proof of the normal slice theorem of Guillemin, Sternberg and Marle. □

Definition 2.2. If $E'' \in X$ (or \mathfrak{t}), set $d(E'') = \dim K \cdot E''$. Let $d = d_X$ be the maximum dimension of a K-orbit in X and let $m = m_X$ denote the minimal codimension of a K-orbit in X. d_Φ will denote the maximum dimension of a K orbit in $\Phi(X)$. We define three important subsets of X.

(1) $X_d = \{E' \in X| \dim K \cdot E' = d\}$

(2) $X_0 = \{E' \in X| \exists$ an open set $U \subset X$ such that $E' \in U$ and $d(\cdot)$ is constant on $U\}$

(3) $X_\Phi = \{E' \in X| \dim K \cdot \Phi(E') = d_\Phi\} = \{E' \in X| \dim (\mathfrak{t}^E) \text{ is minimum}\}$

Remark 2.2. From Proposition 27.1 in [3] we know that X_0 is open and dense in X. In addition, $X_0 \subset X_d$. Otherwise there is a point in X_0 whose K orbit has dimension $d' < d$. But, then there must be an open subset of points whose K orbits have dimension d' which is impossible.

Proposition 2.1. X_Φ is open and dense in X.

Proof. The fact that X_Φ is open is Lemma 1 in section 3 of [3]. The following proof (unpublished) that X_Φ is dense in X is due to A. T. Huckleberry.

It suffices to show that X_Φ^c, the complement of X_Φ, has codimension at least 2 in X. We use induction on the dimension of K. If $\dim K = 0$, then K is finite. Then $X_\Phi = X$ since all K orbits in $\Phi(X)$ are zero dimensional. Suppose $\dim K > 0$. If $x \in X_\Phi^c$, we need to show that there is an open neighborhood of x whose intersection with X_Φ^c has codimension at least 2. Let K_0 denote the identity component of K. First consider X^{K_0}, the set of fixed points of K_0 on X, and its intersection with X_Φ. If $K_0 \cdot x = x$, we use the slice theorem to construct an open neighborhood $U = K \times_{K^*} \Sigma$ of x. Define Σ_Φ relative to the action of $(K^*)_0$ in the obvious way. The argument for Proposition 27.3 in [3] shows that either (a) K_0 (which equals $(K^*)_0$) acts trivially on Σ, or (b) U^{K_0} has codimension ≥ 2 in U. In case (a) K acts as a finite group on U so that $U = U_\Phi$. In case (b) $U^{K_0} \cap (U_\Phi)^c$ has codimension ≥ 2 in U. This argument takes care of the points in $X_\Phi^c \cap X^{K_0}$. If $x \notin X^{K_0}$, then the slice neighborhood $U = K \times_{K^*} \Sigma$ has the property that $\dim K^* < \dim K$. By induction $(\Sigma_\Phi)^c$ has codimension at least 2 in Σ. Thus $(U_\Phi)^c = K \times_{K^*} (\Sigma_\Phi)^c$ has codimension at least 2 in U. □

Since X_d and X_Φ are each open and dense in X, we have the following result.
Corollary 2.1. $X_\Phi \cap X_\delta$ is open and dense in X.

We know recall the notion of a coisotropic submanifold of X.

Definition 2.3. The orbit $K \cdot E'$ in X is said to be coisotropic if $W_{E'}^\perp \subset W_{E'}$.

By results of Guillemin and Sternberg [7], X is multiplicity free as a Hamiltonian K-space if and only if there is an open dense subset U of X such that for $E' \in U$ the orbit $K \cdot E'$ is coisotropic in X. Therefore, it is reasonable to use the size of the quotient $rac{T_{E'}(K \cdot E')^\perp}{T_{E'}(K \cdot E') \cap T_{E'}(K \cdot E')^\perp}$ for generic K orbits to measure the failure of X to be multiplicity free.

Proposition 2.2. There is an open dense subset U of X such that for all $E' \in U$, the non-negative integer

$$\dim \frac{T_{E'}(K \cdot E')^\perp}{T_{E'}(K \cdot E') \cap T_{E'}(K \cdot E')^\perp},$$

has a constant value. We denote this value by $2\epsilon(X)$.

Proof. Choose $U = X_\delta \cap X_\Phi$. Then for all $E' \in U$, the decomposition of $T_{E'}(X)$ in Lemma 2.1 implies that

$$\dim \frac{T_{E'}(K \cdot E')^\perp}{T_{E'}(K \cdot E') \cap T_{E'}(K \cdot E')^\perp} = \dim X - 2d + d_\Phi$$

Note that if there is another dense open set U' on which the dimension function in 2 is constant, then U' must have non-empty intersection with $X_\delta \cap X_\Phi$. Thus, $\epsilon(X)$ is well defined. \qed

As a corollary of the preceding proof we have

Corollary 2.2. Suppose that $E' \in X_\delta \cap X_\Phi$, then

$$\dim \frac{T_{E'}(K \cdot E')^\perp}{T_{E'}(K \cdot E') \cap T_{E'}(K \cdot E')^\perp} = 2\epsilon(X).$$

We recall from 3 or 2 the definition of the rank of the action of K on X.

Definition 2.4. The rank of the K-action on X, denoted by $r_K(X)$, is equal to $\text{rank } K \cdot E'$ where $E' \in X$ and the orbit $K \cdot E'$ has maximum dimension among the K orbits in X.

Finally, we recall from 4, the notions of rank and complexity of algebraic K_C actions.

Definition 2.5. Suppose that Y is a variety with K_C action and B_k is a Borel subgroup of K_C. The complex codimension of a generic B_k orbit is called the complexity of Y, denoted $c_{K_C}(Y)$ or $c(Y)$ (when the reductive group K_C is understood). If U_k is the nilpotent radical of B_k and $B_k \cdot z$ is a generic B_k orbit, then the codimension of $U_k \cdot z$ in $B_k \cdot z$ is called the rank of Y. It is denoted $r_{K_C}(Y)$.

Remark 2.3. $c(Y)$ is also the transcendence degree (over C) of the B_k invariant functions in the field of rational functions (with complex coefficients) on Y. Y is spherical for K_C if and only if $c(Y) = 0$. The rank of Y is also the transcendence degree of the U_k invariants in the field of rational functions on Y.
3. Main Theorem

Our main result is:

Theorem 3.1. Let \((\mathcal{O}, \Omega)\) be a Kostant-Sekiguchi pair, then

(a) \(r_K(\mathcal{O}) = r_K(\Omega)\);
(b) \(c(\mathcal{O}) = c(\Omega)\).

This result was inspired by the main result of [1].

We assume from now on that \((\Omega, \mathcal{O})\) is a Kostant–Sekiguchi pair. The proof of Theorem 3.1 requires two important facts about \(\Omega\) and \(\mathcal{O}\). The first is the existence of a \(K\) invariant diffeomorphism

\[
\mathcal{M}_\mathcal{O} : \mathcal{O} \to K \times_{K^s} V_\mathcal{O}(\mathfrak{s})
\]

established in the proof of Proposition 5.2 of [2]. To describe the vector bundle \(K \times_{K^s} V_\mathcal{O}(\mathfrak{s})\) in [1], we recall the notation of [2].

There is a Kostant-Sekiguchi \(sl(2)\)-triple \(\{x, e, f\}\) such that \(\mathcal{O} = K_c \cdot e\). The Kostant-Sekiguchi property means that (1) \(x \in \mathfrak{k}\), \(e, f \in \mathfrak{p}_c\), (2) \(e = \sigma(f)\), where \(\sigma\) is conjugation on \(\mathfrak{g}_c\) relative to the real form \(\mathfrak{g}\), and (3) the following Lie bracket relations hold: \([x, e] = 2e, [x, f] = -2f\), and \([e, f] = x\). It follows that the Lie algebra \(C x \oplus C e \oplus C f\) is the complexification of a Lie subalgebra \(s\) of \(\mathfrak{g}\), where \(s\) is isomorphic to \(sl(2, \mathbb{R})\). \(V_\mathcal{O}(\mathfrak{s})\) is the quotient \([\mathfrak{t}_c, e]/[\mathfrak{t}, e]\). In [2] it is shown that \(K \times_{K^s} V_\mathcal{O}(\mathfrak{s})\) is diffeomorphic to the conormal bundle of \(K \cdot e\) inside the cotangent bundle of \(\mathcal{O}\). In addition, there is an isomorphism of \(K^s\) modules over \(\mathbb{R}\):

\[
V_\mathcal{O}(\mathfrak{s}) \simeq \mathfrak{t}^s/\mathfrak{t}^s + Z.
\]

where \(Z\) is the sum (over \(C\)) of the positive eigenspaces of \(ad(x)\) on \(\mathfrak{t}_c\) that do not lie in \(\mathfrak{t}_c^s\).

We now establish the main result, Theorem 3.1.

Proof. We first establish part (a).

By composing the \(K\)-invariant diffeomorphisms in [1] and [1], we have the assignment: \(E' \mapsto \mathcal{M} \circ \mathcal{V}(E')\). So we can identify \(E'\) with an equivalence class \([k_0, y + z]\) in \(K \times_{K^s} V_\mathcal{O}(\mathfrak{s})\) where \(y \in \mathfrak{t}^s/\mathfrak{t}^s\) and \(z \in Z\). (See equation [1].) It is more convenient to consider the equivalence class \(\mathcal{M} \circ \mathcal{V}(k_0^{-1} \cdot E') = [1, y + z]\) where \(1\) denotes the identity in \(K\). Assume that \(\dim K \cdot E' = d\). Since \(\dim K \cdot E'\) is maximum, (1) \((\mathfrak{t}^s)^{y+1}\) has minimum dimension among the subalgebras \((\mathfrak{t}^s)^{v}\) for \(v \in V_\mathcal{O}(\mathfrak{s})\) and (2) \((\mathfrak{t}^s)^{y}\) has minimum dimension among the subalgebras \((\mathfrak{t}^s)^{y}\) for \(y' \in \mathfrak{t}^s/\mathfrak{t}^s\). (See Lemma 6.2 of [2].)

Set \(\mathfrak{s}_R = (\mathfrak{t}^s)^{y}\) and \(\mathfrak{s}_C = (\mathfrak{t}^s)^{y}\). Set \(S\) equal to the connected subgroup of \(K^s\) with Lie algebra \(\mathfrak{s}_C\) and \(\mathfrak{s}_R\) equal to the connected subgroup of \(S\) with Lie algebra \(\mathfrak{s}_R\). Then \(S\) (resp., \(\mathfrak{s}_R\)) is a stabilizer of general position for the action of \(K^s\) on \(\mathfrak{t}^s/\mathfrak{t}_C^s\) (resp., \(\mathfrak{t}^s/\mathfrak{t}^s\)). Also, \(\mathfrak{t}^{[1, y+z]}\), the centralizer of \([1, y + z]\) in \(\mathfrak{t}\) is equal to \(\mathfrak{s}_R\). Since \(\mathcal{M} \circ \mathcal{V}\) is \(K\)-equivariant, \(\mathfrak{t}^{k_0^{-1} \cdot E'} = \mathfrak{t}^{[1, y+z]}\). Hence, since \(\mathfrak{t}^{E'} = Ad(k_0)(\mathfrak{t}^{k_0^{-1} \cdot E'})\), \(\mathfrak{t}^{E'}\) and \(\mathfrak{s}_R\) are isomorphic Lie algebras. Therefore,

\[
r_K(\Omega) := \text{rank } \mathfrak{t}^{\Phi(E')} - \text{rank } \mathfrak{t}^{E'} = \text{rank } K - \text{rank } \mathfrak{s}_R.
\]
From Panyushev (Theorem 2.3 in [3]) \(r_{K_C}(O) = r_{K_C}(K_C^x/K_C^z) + r_{S}(Z) \). By Corollary 2(i) of Theorem 1 in [4], \(r_{K_C}(K_C^x/K_C^z) = \text{rank } K_C^x - \text{rank } S_C^r \). By the observation following equation (6.7) in [2], \(r_{S}(Z) = \text{rank } S_C^r - \text{rank } S_C^s \). Hence, by equation (7),

(8) \(r_{K_C}(O) = \text{rank } K - \text{rank } S_C^s \),

which is the same as \(r_K(\Omega) \).

The argument for part (b) of the theorem starts by noting that for all \(E' \in \Omega \), Lemma 2.1 implies that if \(W = T_{E'}(K \cdot E') \), then

(9) \(\dim \Omega = \dim T_{E'}(\Omega) = 2 \dim \left(\mathfrak{t}^{\Phi(E')}/\mathfrak{k}^{E'} \right) + \dim \left(\mathfrak{k}/\mathfrak{t}^{\Phi(E')} \right) + \dim \frac{W^\perp}{W \cap W^\perp} \).

Therefore,

(10) \(\dim \Omega = 2(\dim \mathfrak{t}^{\Phi(E')}) - \dim \mathfrak{E}' + \dim \mathfrak{k} - \dim \mathfrak{t}^{\Phi(E')} + \dim \mathfrak{t}/\mathfrak{t}^{\Phi(E')} + \dim \frac{W^\perp}{W \cap W^\perp} \).

Choose \(E' \in \Omega_d \cap \Omega_b \). By Lemma 2 in section 3 of [3], we have \([\mathfrak{t}^{\Phi(E')}, \mathfrak{t}^{\Phi(E')}] \subseteq \mathfrak{E}' \). Since \(\mathfrak{t}^{\Phi(E')} \subseteq \mathfrak{t}^{\Phi(E')} \), \([\mathfrak{t}^{\Phi(E')}, \mathfrak{t}^{\Phi(E')}]=[\mathfrak{t}^{\Phi(E')}, \mathfrak{t}^{\Phi(E')}] \).

Since \(\mathfrak{t}^{\Phi(E')} \) and \(\mathfrak{t}^{E'} \) have the same maximum semisimple ideal,

(11) \(\dim \mathfrak{t}^{\Phi(E')} - \dim \mathfrak{t}^{E'} = \text{rank } \mathfrak{t}^{\Phi(E')} - \text{rank } \mathfrak{t}^{E'} \).

Applying Corollary 2.2, equation (10) becomes

(12) \(\dim \Omega = \dim \mathfrak{t}^{\Phi(E')} - \dim \mathfrak{t}^{E'} + \dim \mathfrak{k} - \dim \mathfrak{t}^{E'} + 2\epsilon(\Omega) \).

Since \(E' \in \Omega_d \cap \Omega_b \), equation (11) implies

\(\dim \Omega = \text{rank } \mathfrak{t}^{\Phi(E')} - \text{rank } \mathfrak{t}^{E'} + \dim \mathfrak{k} - \dim \mathfrak{t}^{E'} + 2\epsilon(\Omega) \),

where \(\dim \mathfrak{k} - \dim \mathfrak{t}^{E'} \) is the maximal dimension of a \(K \) orbit in \(\Omega \).

We have just shown that the codimension of the largest \(K \) orbit in \(\Omega \) is given by the expression

(13) \(\text{rank } \mathfrak{t}^{\Phi(E')} - \text{rank } \mathfrak{t}^{E'} + 2\epsilon(\Omega) = r_{K_C}(O) + 2\epsilon(\Omega) \).

The last assertion follows from part (a). On the other hand, by equation (6.8) in [2], taking into account equation (5.3) and the fact that \(c(\Omega) = c_{K_C}(K_C^x/K_C^z) + c_S(Z) \) (Theorem 2.3 in [3]), the codimension of the largest \(K \) orbit in \(\Omega \) is also given by the expression:

(14) \(r_{K_C}(O) + 2c(\Omega) \).

Part (b) of the theorem follows from equations (13) and (14).

\[\square \]

References

[1] I. V. Mykytyuk, Actions of Borel Subgroups on Homogeneous Spaces of Reductive Complex Lie Groups and Integrability, preprint, 2001.

[2] D. R. King, Spherical Nilpotent Orbits and the Kostant-Sekiguchi Correspondence, Trans. Amer. Math Soc., 354(12) (2002), 4909-4920.

[3] Y. Karshon, Hamiltonian actions of Lie groups, thesis, MIT, 1993.

[4] Dmitrii I. Panyushev, Complexity and rank of homogeneous spaces, Geometriae Dedicata 34 (1990), 249-269.
[5] Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), 223–237.
[6] A. T. Huckleberry and T. Wurzbacher, Multiplicity-free complex manifolds, Math. Ann., 286(1990), 261-280.
[7] Victor Guillemin and Shlomo Sternberg, Multiplicity-free spaces, J. Diff. Geo. 19(1984), 31-56.
[8] Symplectic techniques in physics, Cambridge University Press, 1984.
[9] Michele Vergne, Instantons et correspondance de Kostant-Sekiguchi, C.R. Acad. Sci. Paris 320(1995), Serie I, 901-906.