Relationship of udder morphometry with milk yield and body condition traits in Beetal goats

SOUMYASHREE JENA¹, D S MALIK², SANDEEP KASWAN³, AMIT SHARMA⁴, NEERAJ KASHYAP⁵ and UDEYBIR SINGH⁶

Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141 004 India

Received: 19 July 2018; Accepted: 14 August 2018

ABSTRACT

Present study was conducted to find the relationship of udder morphometry with milk yield and body condition traits in Beetal goats. Beetal goats (60) having 4 different parities were used. Udder (length, column width, row width, depth, circumference, volume) and teat (length, diameter, circumference, height from ground, inter teat distance) morphological traits were recorded just before morning milking at fortnightly interval up to 3 months post-kidding stage. Simultaneously, milk yield (morning and daily) and body condition parameters (body condition score (BCS), sternal and lumbar thickness) were also recorded. All the udder morphological traits were positively correlated with morning as well as daily milk yield. Similarly, teat morphological traits were also positively correlated with morning as well as daily milk yield except teat height from ground which had negative correlation. Whereas some of the udder and teat morphological traits showed positive correlation with body condition parameters. Milk yield had positive correlation with BCS, sternal and lumbar thickness. It can be concluded that the udder and teat morphological traits have direct relationship with milk yield and body condition parameters in Beetal goats.

Key words: Beetal goats, Body condition traits, Milk yield, Udder traits

The goat population of India is 135.17 million which constitutes 26.4% of total livestock population (19th Livestock Census 2012). In Punjab, goat population has registered 11.9% increase from 0.29 million to 0.33 million between last two censuses (2007–2012). India is a leading goat milk producer in the world with 5.18 MT of goat milk (FAOSTAT 2014). Goat milk is recommended in the diets of children, adults and convalescents (Ribeiro and Ribeiro 2001). The increasing demand for goat milk is due to rising consumers’ knowledge about nutritional and health benefits of goat milk products. Beetal or Amritsari goat has good potential as milch animal.

In goats, udder characteristics, milk production, milking time and rate are traits with adequate genetic variation to allow selection responses. A relationship between morphological udder measures and milk production has been noted in goats, although diverse criteria exist. Keskin et al. (2007) investigated the relationship between daily milk yield (DMY) and 10 udder traits (udder upper height (UH), udder bottom height (UBH), udder depth (UD), udder width (UW), udder circumference (UC), left teat length (LTL), right teat length (RTL), left teat circumference (LTC) and right teat circumference (RTC), and teat angle (TA)) in Akkeci (Kilis × Saanen) crossbred goat. Studies have suggested that milk yield is positively associated with body condition score (BCS) in goats (Graff et al. 2012 and Susilorini et al. 2012, 2014). Koyuncu and Altincikci (2013) found that the body fat reserve in dairy goats bears importance in terms of milk production, fertility, feed consumption and general health of the animal. Morphological traits of udder in Beetal goats have not been studied in detail so far. Therefore, study of udder traits in Beetal goats and its relationship with milk production potential or body condition traits can be helpful in identifying most important udder or teat parameters for selection of high yielding animals.

MATERIALS AND METHODS

Experimental design: Study was conducted at Goat Research Farm, Department of Livestock Production Management, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana. A total of 60 female Beetal goats (1.5 to 5 years of age) kidded during year 2017–18 were used for taking observations. The goats belonged to 4 different parities i.e. first (30), second (11), third (10) and fourth (9).

Management of animals: Experimental Beetal goats in
advanced stage of pregnancy (10–14 days before expected date of kidding) were shifted to kidding pen. These were housed in kidding pen having east-west orientation of long axis till the end of observational period of 95 days. Goats were fed maize-soybean meal-wheat bran-deoiled rice polish based concentrate mixture @ 500 g during lactation period. Concentrate feed (8:00 AM and 2:30 PM) as well as green fodder (11:00 AM and 4:00 PM) was offered twice in a day. Goats had been vaccinated against FMD, HS, PPR and ET as per schedule recommended by CIRG, Makhdoom.

Udder morphological traits: The udder morphological traits recorded at fortnightly interval were udder length (UL, length from rear to the front attachment of udder along with its sole, where the udder blends smoothly with the body); udder row width (URW, distance between the widest part of the udder measured from the rear end); udder column width (UCW, distance between the widest part of the udder measured from the lateral side); udder depth (UD, distance from the base to the lowest point of the udder at the place of attachment of the teats); udder circumference (UC, measured at maximum diameter of udder); udder circumference at base (UCB, circumference of the udder was measured at base of udder) and udder volume (UV, udder volume was measured by water displacement method).

Teat morphological traits: Various teat morphological traits recorded at fortnightly interval were teat length (TL, measured between line parallel to bifurcation of udder and tip of teat for right as well as left side); teat diameter (TD, measured at mid of the teat length using vernier calipers for right as well as left side); teat circumference (TC, measured at maximum diameter of teat for right as well as left side); teat height from ground (THG, distance between teat end and ground measured with the help of rigid measuring scale for right as well as left side) and distance between teats (DBT, distance between sphincter of the teats).

Body condition traits: Body condition traits included body condition score (BCS), thickness of sternal fold and lumbar thickness. Body condition scoring was done using visual cum palpation technique following nine-point scale i.e.1 to 5 scale with increment of 0.5 point. The observations were made in the morning before feeding. For sternal and lumbar thickness measurements, skin fold caliper with least count of 1 mm was used. In lumbar region at the L4 position (4th lumbar vertebrae) measurement was taken with the help of skin fold caliper at approximately half distance of horizontal process away from the vertebral column. In the sternal region, thickness of brisket fold was measured at 3rd sternebrae position i.e. about two inches away from anterior end of sternum.

Milk yield: Milking of experimental goats was done twice a day i.e. morning and evening. Morning milk yield and total daily milk yield was recorded at fortnightly interval as per the schedule followed for all other parameters i.e. on 5th day to 95th day post-kidding.

Statistical analysis: Collected data were arranged and analyzed using standard statistical methods with SAS 9.3 software. Pearson’s correlation technique was used for finding relationship between pairwise udder and teat morphological traits, body condition traits and milk yield.

RESULTS AND DISCUSSION

Correlations of udder morphological traits with milk yield were estimated and presented in Table 1. The udder morphological traits were positively correlated (P<0.01) with morning as well as daily milk yield in Beetal goats, which indicates that increase in dimension of any of the observed udder morphological trait leads to increase in morning as well as daily milk yield during early lactation period. Akpa et al. (2003) reported correlation coefficients of udder circumference with each of total milk yield, initial milk yield and peak milk yield similar to present study. Earlier, Kumar et al. (1983) also indicated that the different levels of relationship appeared logical since the different measurements and udder volumes are a function of milk secreting activity of the mammary gland and the quantity of milk produced and stored in the udder. Emediato et al. (2008) suggested that all the udder measures had lower coefficients of correlation and, with the exception of udder depth, all were negative during pre-weaning period. While after weaning, measures of circumference, depth and volume of the udder had all significantly positive coefficients of correlation with milk yield. Significant

Table 1. Correlation of udder morphological traits with milk yield in Beetal goats

	MMY	DMY	UL	URW	UCW	UD	UC	UCB	UV
MMY	1								
DMY	0.872**	1							
UL	0.506**	0.423**	1						
URW	0.458**	0.351**	0.383**	1					
UCW	0.255**	0.328**	0.355**	0.163**	1				
UD	0.495**	0.500**	0.535**	0.414**	0.398**	1			
UC	0.568**	0.613**	0.492**	0.503**	0.382**	0.654**	1		
UCB	0.511**	0.578**	0.547**	0.421**	0.433**	0.642**	0.865**	1	
UV	0.713**	0.618**	0.506**	0.472**	0.188	0.539**	0.621**	0.565**	1

Significant correlation at 1% level; UL, udder length; UCW, udder column width; URW, udder row width; UD, udder depth; UC, udder circumference; UCB, udder circumference at base; UV, udder volume; MMY, morning milk yield; DMY, daily milk yield.
correlations between udder traits, udder volume, body weight, milk yield, and milking traits in Murciano-Gradina dairy goat was suggested by Peris et al. (1999). Significant correlations between udder traits, viz. udder length, udder width, udder circumference, teat length, teat width, teat circumference, and udder volume etc. were obtained by Amao (2003) in Red Skoto goats. Similarly, positive significant (P<0.01) correlation between udder traits, viz. udder depth, udder circumference, teat circumference and daily milk yield in Akkeci goats was noted by Siddik et al. (2005). A positive and significant correlation between average daily milk yield and doe’s body weight at different intervals with udder morphological traits was found by Upadhayay et al. (2014).

Similarly, correlations of teat morphological traits with milk yield were estimated (Table 2). The teat morphological traits showed positive correlation (P<0.01) with morning as well as daily milk yield in Beetal goats except that of teat height from ground. Teat height from ground was negatively correlated (P<0.01) with milk yield as well as with other teat morphometric traits which showed that increase in teat height from ground leads to decrease in morning as well as total daily milk yield. Similar to present study, Upadhayay et al. (2014) observed that teat parameters, viz. teat length, distance between the teats, teat circumference, and teat height from ground were positively correlated (P<0.01) with morning milk yield; DMY, daily milk yield.

Table 2. Correlation of teat morphological traits with milk yield in Beetal goats

MMY	DMY	TL	TD	TC	THG	DBT	
MMY	1						
DMY	0.872**	1					
TL	0.453**	0.334**	1				
TD	0.574**	0.480**	0.626**	1			
TC	0.617**	0.509**	0.587**	0.900**	1		
THG	-0.395**	-0.411**	-0.516**	-0.436**	-0.432**	1	
DBT	0.427**	0.292**	0.238**	0.360**	0.406**	-0.279**	1

**Significant correlation at 1% level; TL, mean teat length; TD, mean teat diameter; TC, mean teat circumference; THG, mean teat height from ground; DBT, distance between the teats; MMY, morning milk yield; DMY, daily milk yield.

Several udder morphological traits were positively correlated (P<0.01) with BCS and other body condition traits (lumbar and sternal thickness) in Beetal goats (Table 3). BCS had strong positive correlation (P<0.01) with lumbar and sternal thickness traits. Udder depth and circumference were positively correlated with all three body condition traits (BCS, lumbar and sternal thickness). Some other udder morphological traits also showed positive correlation with certain body condition traits.

All the teat morphological traits (teat length, diameter, circumference, distance between teats) except teat height from ground were positively correlated (P<0.01) with lumbar thickness trait in Beetal goats (Table 4). Teat height from ground was negatively correlated (P<0.01) with all the body condition traits. Whereas, BCS had positive correlation (P<0.05) with teat circumference alone. Results indicate that good body condition goats should have good teat morphometric traits as well. Alphonseus et al. (2010) noted positive correlation between BCS and udder height, udder width, teat length and teat placement while BCS had negative correlation with udder hock distance in crossbred cows. Relationship between BCS and udder or teat morphometric traits could not be cited with regard to goats for comparison with this study.

Milk yield had positive correlation with sternal thickness (P<0.01), lumbar thickness (P<0.01) as well as BCS (P<0.05) (Table 5). During early lactation, BCS had positive association with milk production, negative with milk protein and no association with milk fat in Peranakan Etawah goats.

Table 3. Correlation of udder morphological traits with BCS in Beetal goats

UL	URW	UCW	UD	UC	UCB	UV	Sternal thickness	Lumbar thickness	BCS	
UL	1									
URW	0.383**	1								
UCW	0.355**	0.163**	1							
UD	0.535**	0.414**	0.398**	1						
UC	0.492**	0.503**	0.382**	0.654**	1					
UCB	0.547**	0.421**	0.433**	0.642**	0.865**	1				
UV	0.500**	0.472**	0.188**	0.539**	0.621**	0.565**	1			
Sternal thickness	0.044	0.088	0.065	0.124*	0.195**	0.186**	0.038	1		
Lumbar thickness	0.130**	0.326	0.005	0.170**	0.206**	0.192*	0.267**	0.551**	1	
BCS	0.069	0.225**	0.014	0.152**	0.180**	0.192**	0.099	0.543**	0.468**	1

**Significant correlation at *5% and **1% levels, respectively; UL, udder length; UCW, udder column width; URW, udder row width; UD, udder depth; UC, udder circumference; UCB, udder circumference at base; UV, udder volume; BCS, body condition score.
between BCS 2 to 4 as suggested by Susilorini et al. (2014). Few other studies also showed that BCS has high correlation with milk production and composition (Zahraddeen et al. 2008 and Serin et al. 2010) as well as it affects the reproduction performance of dairy animals (Suharto et al. 2010).

It is concluded that most of the udder as well as teat morphological traits have positive relationship with milk yield and body condition traits in Beetal goats which can be utilized as selection criterion.

REFERENCES

19th Livestock Census. 2012. All India Report. Ministry of Agriculture, Department of Animal Husbandry, Dairying and Fisheries, Krishi Bhawan, New Delhi.

Ahmed B M S, Maarof N N and Petrus T Y. 2010. Effect of body condition score on productive performance of local Karadi cows. *Journal of Zankoy Sulaimani - Part A* 1(1): 121–28.

Akporhuarho P O, Orheruata J A, Otoikhian C S O and Igene F U. 2010. Evaluation of udder size and milk yield of white borno (WB) goats reared under on-field research environment. *Journal of Natural and Applied Science* 11: 1–6.

Akpa G N, Asiribo O E and Oni O O. 2003. Relationships among udder and teat size characteristics with milk yield in Red Sokoto goats. *Journal of Tropical Animal Research* 80: 114–17.

Alphonsus C G, Akpa N, Oni O O, Rekwot P I, Barje P P and Yashim S M. 2010. Relationship of linear conformation traits with body weight, body condition score and milk yield in Friesian × Bunaji cows. *Journal of Applied Animal Research* 38(1): 97–100.

Amao O A. 2003. ‘Evaluation of udder traits in West Africa Dwarf and Red Sokoto goats.’ Master Thesis, Department of Animal Production and Health, University of Agriculture, Abeokuta, Nigeria.

Capote J, Lopez J L and Caja G. 2000. *El orden “oenalas-cabascarancias*. 1st edn. Ediciones La Palma, Madrid, Spain.

Emediato R M S, Siqueira E R, Stradiotto M M, Maest’a S A and Fernandes S. 2008. Relationship between udder measurements and milk yield in Bergamasca ewes in Brazil. *Small Ruminant Research* 75: 232–35.

FAO Statistical Year Book. 2014. Food and Agriculture Organization of the United Nations, Rome.

Grall K M, Javor A and Kukovic S. 2012. The effect of age and body condition score on milk production and reproduction of Saanen goats. *Proceedings of XIth International Conference on goats*, pp. 205. Gran Canaria, Spain.

Keskin S, Korand A and Karaca S. 2007. Use of factor analysis scores in multiple linear regression model for determining relationships between milk yield and some udder traits in Goats. *Journal of Applied Animal Research* 31: 185–88.

Koyuncu M and Altyncekcic S O. 2013. Importance of body condition score in dairy goats. *Macedonian Journal of Animal Science* 3(2): 167–73.

Kumar C S P, Singh S N and Balraj S. 1983. Relationship between milk yield and udder biometries in Black Bengal goats. *Indian Journal of Dairy Science* 36: 105–07.

Pambu R G, Webb E C and Mohale L. 2011. Differences in milk yield and composition of different goat breeds raised in the same environment in South Asia. *Agricultural Journal* 6(5): 237–42.

Peris S, Caja G and Such X. 1999. Relationship between udder and milking traits in Murciano-Granadina goats. *Small Ruminant Research* 33: 171–79.

Peris S. 1994. ‘Characteristics of the lactation curve and mechanic order fitness of the Goat-Granician goat.’ PhD Thesis, Univ. Auto´noma de Barcelona, Spain.

Ribeiro L A and Ribeiro H J S S. 2001. Nutritional and therapeutic use of goat milk. *ClAgràries, Londrina* 22: 229–35.

Serin I G, Serin M, Yilmaz F, Kiral and Ceylan A. 2010. The effect of body weight, body condition score, age, lactation, serum trygliceride, cholesterol and paraoxanase levels on pregnancy rates of Saanen goats in breeding season. *Journal of Animal and Veterinary Advances* 9: 48–1851.

Siddik K A, Karaca S and Mertagioglu H. 2005. A study of relationships between milk yield and some udder traits by using of path analysis in Akkeci goats. *Journal of Animal Veterinary Advances* 4: 547–50.

Table 5. Correlation of body condition traits with milk yield in Beetal goats

DMY	Sternal thickness	Lumbar thickness	BCS					
TL	1							
TD	0.626**	1						
TC	0.587**	0.900**	1					
THG	-0.516**	-0.436**	-0.432**	1				
DBT	0.238**	0.360**	0.406**	-0.279**	1			
Sternal thickness	0.031	0	0.026	-0.176**	0.014	1		
Lumbar thickness	0.310**	0.187**	0.213**	-0.207**	0.202**	0.551**	1	
BCS	0.046	0.084	0.097*	-0.193**	0.045	0.543**	0.468**	1

Significant correlation at *5% or **1% levels, respectively; DMY, daily milk yield; BCS, body condition score.
Suharto K, Junaedi A, Kusumawati A and Widayati D T. 2008. Comparison of fertility of Ettawa crossbred goats in low versus ideal body condition score after estrus synchronization and artificial insemination. *Media KedoteranHewan* 24(1): 49–54.

Susilorini T E, Maylinda S and Surjowardoj P. 2012. Effect of body condition score on milk yield, protein and fat contents in Etawah crossbred dairy goats. *Proceedings of 1st Asia Dairy Goat Conference*. Pp 124–26. Kuala Lumpur, Malaysia.

Susilorini T E, Maylinda S, Surjowardoj P and Suyadi. 2014. Importance of body condition score for milk production traits in Peranakan Etawah goats. *Journal of Biology, Agriculture and Healthcare* 4(3): 151–57.

Upadhyay D, Patel B H M, Kerketta S, Kaswan S, Sahu S, Bhushan B and Dutt T. 2014. Study on udder morphology and its relationship with production parameters in local goats of Rohilkhand region of India. *Indian Journal of Animal Research* 48(6): 615–19.

Zahraddeen D, Butswat I S R and Mbp S T. 2009. A note on factor influencing milk yield of local goats under semi-intensive system in Sudan Savannah Ecological Zone of Nigeria. *Livestock Research for Rural Development*. Volume 21, Article # 34.