Deciphering β-tubulin gene of carbendazim resistant *Fusarium solani* isolate and its comparison with other *Fusarium* species

Mrinmay Tarafder1 · Bejoysekhar Datta1

Received: 10 February 2022 / Revised: 19 March 2022 / Accepted: 23 March 2022 / Published online: 13 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Exploration of molecular structure of β-tubulin is key to understand mechanism of action of carbendazim since its activity depends on strong binding to β-tubulin. Resistance against the fungicide is often associated with mutation in β-tubulin gene. A full-length (1619 bp) β-tubulin gene has been cloned and sequenced from a carbendazim resistant and a sensitive isolates of *F. solani* isolated from agricultural fields of Murshidabad (24.23 °N, 88.25 °E), West Bengal, India. Phylogenetic position of the isolates was confirmed using internal transcribed spacer and β-tubulin gene sequences. In the β-tubulin based phylogenetic tree, *Fusarium* species with available data were clustered in nine species complexes and members of both *F. solani* species complex and *F. fujikuroi* species complex were distributed into three clades each. The β-tubulin gene of *F. solani* was found to be shortest due to least number of non-coding sequences indicating its primitiveness among the *Fusarium* species. The coding region (G + C 58.54%) was organized into five exons. The protein has 446 amino acid, 49.834 KD molecular weight and 4.64 isoelectric point. Amino acid sequence of the resistant and the sensitive isolates were identical, suggesting that the mechanism of carbendazim resistance in the *F. solani* isolate was not due to point mutation in β-tubulin gene. The secondary and tertiary structure of β-tubulin were similar in all the species except *F. oxysporum* f.sp. *cubense*. The identification of binding sites for GDP, carbendazim and α-tubulin would resolve how carbendazim prevents tubulin polymerization. All the data are useful to design tubulin-targeted fungicide with better performance.

Keywords
Fusarium solani · Carbendazim resistance · β-Tubulin gene · Phylogenetic analysis · Homology modeling · Molecular docking

Introduction
The fungal β-tubulin had attracted extensive attention since it was established that its gene had been used as molecular marker for species identification and phylogenetic studies, and the protein served as a target of many anti-fungal drugs that inhibit microtubule assembly. Due to its universal occurrence β-tubulin gene has been used to study evolutionary relationship among taxon (Einaix and Voigt 2003). The gene contains 3.5-fold more phylogenetic information than the 18S rRNA gene and accumulates fewer mutations (Begerow et al. 2004). Its non-coding sequences have been used to differentiate closely related species. In addition, β-tubulin being a cytoskeletal protein is assembled with α-tubulin as heterodimer in head-to-tail manner and involved in many cellular activities, such as cell division, ciliar or flagellar motility, and intracellular transport in eukaryotic organisms (Zhao et al. 2014). Several anti-tubulin fungicides including benzimidazole compounds bind at specific site(s) of β-tubulin and inhibit cell division in target fungi. Carbendazim (methyl benzimidazole carbamate) is a systemic fungicide that is widely used for management of crop diseases caused by filamentous fungi under the genera *Fusarium* (with light-coloured spores), *Botrytis* and *Penicillium* (causing fruit rots), *Cercospora* (causing eye spot), powdery mildew fungi and selected anastomosis groups of *Rhizoctonia solani*.

The members of *F. solani* (Mart.) Sacc. are ubiquitous pathogens of many agriculturally important crops (Coleman 2016). At least 111 plant species from 87 genera are commonly infected by the pathogen (Kolattukudy and Gamble...
They represent causal agent of several plant diseases such as fruit and root rot of *Cucurbita* spp., root and stem rot of *Pisum sativum*, foot rot of *Phaseolus vulgaris*, dry rot of *Solanum tuberosum*, sudden death syndrome (SDS) of *Glycine max*, wilt and damping off in vegetables, and canker and dieback disease in tropical trees (Leslie and Summerell 2008). They are also responsible for post-harvest decay of many succulent fruits and vegetables. Some strains are associated with human infections (O’Donnell et al. 2020). Carbendazim was found to be effective in controlling *F. solani* causing wilt of mulberry (Narayanan et al. 2015).

However, exclusive and repeated use of the fungicide on crop management especially against polycyclic diseases emerged resistance among fungal populations. Benzimidazole resistance has been reported in approximately 60 genera in over 115 fungal species (https://www.frac.info/). Among these, molecular mechanism of the resistance has been reported only in 49 species including 19 species from in vitro study. In most cases, carbendazim resistance is associated with point mutation at several target sites in the *β-tubulin* gene, which results in altered amino acid sequences and change in carbendazim-binding site (Ma and Michailides 2005). This causes a reduction in the affinity of the β-tubulin for the fungicide, without interfering with normal biological function of β-tubulin in the fungus. Sometimes a wide range of carbendazim-resistance could be found instead of carrying different mutations at similar amino acid residue and different substitutions at the same codon could exhibit distinct level of resistance (Albertini et al. 1999). *Fusarium* spp. such as *F. asiaticum*, *F. fujikuroi*, *F. moniliforme*, *F. oxysporum* f.sp. *niveum*, *F. proliferatum*, *F. verticilloides*, *Gibberella zeae* in which mechanism of benzimidazole resistance has been resolved showed point mutation at different sites in *β-tubulin* gene (Suga et al. 2011; Chen et al. 2014; Yan and Dickman 1996; Qiu et al. 2011; Petkar et al. 2017; Yang et al. 2018; Xu et al. 2019).

Moreover, drug-efflux mechanism, detoxification of fungicides and some unknown mechanisms are responsible for benzimidazole resistance in fungi including *Fusarium* spp. Sequencing of *β-tubulin* gene from carbendazim resistant *F. solani* isolates will provide some idea about the resistance mechanism in this species.

Tertiary structure of any protein provides an important insight into the molecular mechanism of its function, which forms the basis for intending various approaches for structure-based drug designing or altering its structure by site-directed mutagenesis. X-ray crystallography and NMR are no doubt advance techniques to provide high definition structure of protein, but the disadvantages are that these techniques are often prolonged, costly and require large quantity of purified protein. Homology based modeling of protein is a competent computational tool that can be used for predicting the structure of unknown protein based on previously resolved three-dimensional structure of other associates of the same relative having similar folds and/or function. To date, there are hardly any studies on structure–function relationship of β-tubulin of *F. solani* exhibiting carbendazim resistance and in particular there is no study on structural properties of β-tubulin of *F. solani*. Hence, in order to understand the functionality and role in carbendazim resistance, it is imperative to understand molecular structure of the protein.

Previously, carbendazim resistant *F. solani* isolates (SF0204, SF0301 and SF1303) which could grow in 100 µg/mL carbendazim and a sensitive isolate (SF0104) which showed growth upto 10 µg/mL carbendazim have been identified from our laboratory (Tarafder et al. 2019). In this study, we have identified the phylogenetic position of the *F. solani* isolates SF0104 and SF0301 based on ITS sequence and reported for the first time, cloning and sequencing of the full-length of *β-tubulin* gene, that have been analysed to detect any mutation responsible for the carbendazim resistance and to compare their nucleotide and amino acid sequences with other *Fusarium* species and the *β-tubulin* gene was used to construct a phylogenetic tree of *Fusarium* species. Furthermore, we have predicted the three-dimensional structure of the β-tubulin by homology modeling and the binding sites of GDP, carbendazim and α-tubulin were identified through molecular docking.

Materials and methods

Fungal isolates

A number of *Fusarium solani* isolates were isolated from agricultural fields of Murshidabad (24.23 °N, 88.25 °E), West Bengal, India, identified based on morphological characterization and rRNA gene sequencing and their carbendazim sensitivity was studied (Tarafder et al. 2019). Among these, *F. solani* SF0104 was considered as carbendazim sensitive as it showed only 6.7% growth in 10 µg/mL carben-dazim and failed to grow in 100 µg/mL carbendazim with ED₅₀ value 0.49 µg/mL. By contrast, *F. solani* SF0301 was carbendazim resistant and could grow in 100 µg/mL carbendazim with ED₅₀ value 0.98 µg/mL. The pure cultures of the isolates were maintained on potato dextrose agar (PDA) medium at the Mycology and Plant Pathology Research laboratory, Department of Botany, University of Kalyani, India.

Preparation of phylogenetic tree of FSSC based on ITS sequence

Genomic DNA was extracted from fresh mycelia using the DNeasy kit (Qiagen, Germany) according to the manufacturer’s instruction. The ITS (internal transcribed spacer)
of rDNA regions were amplified using ITS5 (F) [5′-GGA AGTAAAGTCTGTAACAAGG-3′] and ITS4 (R) 5′-TCC TCCGCTTATTGATAGC-3′] (Dutta et al. 2018). ITS sequences of the *Fusarium* species of *F. solani* species complex (FSSC) were retrieved from GenBank (https://www.ncbi.nlm.nih.gov/genbank) and Al-Hatmi et al. (2018), and used for preparation of phylogenetic tree with MEGA X software (Kumar et al. 2018). The genetic relationships were investigated by applying Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value (Tamura and Nei 1993). The tree was drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 44 nucleotide sequences with a total of 1189 positions in the final dataset. The confidence of the branches was determined with bootstrap analysis in 1000 samplings.

Cloning, sequencing and analysis of β-tubulin gene

Forward primers βOD F (5′-AACATCGTGAGATTGTA AG-3′) was designed from partial β-tubulin gene sequence of *F. solani* (GenBank accession No. KF255996) and according to O’Donnell and Cigelnik (1997). The reverse primer βEx5 R (5′-TACTCTCGCCCTCAGGG-3′) was designed from sequence alignment of a number of *Fusarium* species whose full sequences were available in database (https://www.ncbi.nlm.nih.gov/genbank). The start codon and termination codon in the primers are underlined. PCR amplification was performed using Perkin-Elmer PCR system in a 50 μL reaction mixture containing 5 μL of 10X PCR buffer, 25 mM MgCl2, 10 mM dNTPs, 500 nM each primer, 1 U Taq polymerase (Thermo Scientific™), and 100 ng genomic DNA. The thermal programme used for PCR was as follows: an initial denaturation of 5 min at 95 °C, followed by 35 cycle of denaturation for 30 s at 94 °C, annealing for 45 s at 57 °C, and extension at 72 °C for 2 min, followed by a final extension for 10 min at 72 °C. PCR products were purified with a gel purification kit (Qiagen, Germany), directly ligated into the pGEM-T Easy vector (Promega, USA) and sequenced with the vector primers and internal primers using Automated DNA Sequencer (ABI 3500 Genetic Analyzer) (Perkin-Elmer, Applied Biosystem, Inc.) at the S. N. Bose Innovation Centre with Central Instrumentation Laboratory, University of Kalyani. The β-tubulin sequences of both the isolates were submitted to the GenBank (https://www.ncbi.nlm.nih.gov/genbank) and homology search was carried out using nucleotide BLAST and Fusarium MLST (http://fusarium.mycobank.org). Number, position and size of coding and non-coding regions were identified through comparison with other sequences.

Comparison of β-tubulin nucleotide sequence and phylogenetic analysis

The β-tubulin sequences of both the isolates SF104 and SF301 were compared with 53 full-length β-tubulin sequences of other *Fusarium* species which were available in GenBank database (https://www.ncbi.nlm.nih.gov/genbank). The alignment was made by CLUSTAL W (Thompson et al. 1994) using the Blosum matrix and standard default parameters and MEGA X software was used to construct a phylogenetic tree (Kumar et al. 2018).

Alignment of β-tubulin amino acid sequence

The DNA sequences from the putative coding region were translated into amino acid sequences with the standard code using ExPASy-Translate tool (https://web.expasy.org/translate). The G + C content of coding region, molecular mass, extinction coefficient and isoelectric point of the protein were calculated using web based tools (www.biologicscope.com; www.aatbio.com; www.isoelectric.org). To detect any mutation the deduced amino acid sequences of the resistant and sensitive isolates were aligned and compared. The deduced amino acid sequences of the *F. solani* isolates were compared with β-tubulin sequences of other *Fusarium* species through alignment by CLUSTAL W (Thompson et al. 1994) using MEGA X (Kumar et al. 2018).

Homology modeling of β-tubulin

Homology model of β-tubulin of *F. solani* isolates and other *Fusarium* species were carried out using the Swiss-Model programme (https://swissmodel.expasy.org) based on the crystal structure of *Bos taurus* (PDB code: 4O4I of chain D). There was no experimental three-dimensional structure available in PDB for β-tubulin of *F. solani*. The modeling data were then visualized and analysed by BIOVIA Discovery Studio Visualizer. The secondary structure of the protein was developed in POLYVIEW-2D (http://polyview.cchmc.org/) (Porollo et al. 2004). The constructed model of *F. solani* was compared with other *Fusarium* species.

Validation of the model

The backbone conformation of the modeled structure of β-tubulin of *F. solani* was intended by the analysis of phi (Φ) and psi (ψ) torsion angles using Ramachandran plot server (https://zlab.umassmed.edu/bu/rama/) and QMEAN (Benkert et al. 2009). ProSA was
used to exhibit the Z-score and energy plots. VADAR (http://vadar.wishartlab.com/) was used to calculate the volume dihedral angle for fractional accessible surface area.

Identification of nucleotide binding site(s)

The nucleotide binding sites within the β-tubulin were identified using a topological approach. To recognize the nucleotide binding site of PDB file of the modeled β-tubulin we used software BIOVIA Discovery Studio v21.1.0 using ligand interaction menu.

Molecular docking

To recognize potential binding sites and the binding affinities of carbendazim (PubChem ID: 25429) for β-tubulin, web-based SwissDock program (www.swissdock.ch/docking) was used to perform automated molecular docking. The blind docking was performed using default parameters, with no region of interest defined. Docking results were visualized using UCSF Chimera v1.13.1 software and BIOVIA Discovery Studio v21.1.0.

To locate a consensus protein–protein binding conformation of α-tubulin and β-tubulin complex two different docking servers, viz., HADDOCK (High Ambiguity Driven protein–protein DOCKing) (Dominguez et al. 2003; de Vries et al. 2010) and ClusPro (Kozakov et al. 2017; Vajda et al. 2017) were used. The web-based docking tool ClusPro uses the rigid body docking method with the help of PIPER. In PIPER ligands were allowed to move while the conformation of the receptor was kept fixed. Top clusters were ranked with their representative centers on energy scoring functions. The best docked complex was chosen which would comply with the amino acid residues present in the binding interface. We also used HADDOCK web-based server for docking purpose. Rigid body docking server HADDOCK also followed the same steps as in ClusPro. The interfaces of all docked complexes were calculated using PISA server (www.ebi.ac.uk/pdbe/pisa/).

Superposition of three-dimensional protein

The constructed tertiary structure of β-tubulin of *F. solani* was compared with that of other *Fusarium* species through superimposition in UCSF Chimera (https://www.rbvi.ucsf.edu/chimera) (Petersen et al. 2004). Using web-based program SuperPose Version 1.0 (http://superspose.wishartlab.com/) the three-dimensional protein of *F. solani* SF301 was superimposed with that of *F. oxysporum* f.sp. *cubense*. During the superimposition, the following parameters were deposited. To look for sub-domain matches and mismatches (e.g. hinge regions) for pair-wise sequence, the identities were considered above 80%. To identify as ‘similar’ aligned alpha-carbon atoms with RMSD (root-mean-square deviation) of atomic positions less than 2.0 Å were used as similarity cut off value. To identify as ‘dissimilar’ aligned alpha-carbon atoms with RMSDs greater than 3.0 Å were used as dissimilarity cut off value. To set the dissimilar sub-domain, the minimum number of contiguous alpha-carbon atoms with RMSDs above the dissimilarity cut off (above) required to be considered a ‘dissimilar’ sub-domain was 7 atoms.

Results

ITS sequence based phylogeny of FSSC members

The phylogenetic analysis based on ITS sequence separated three major clades of the FSSC members and the *F. solani* isolates SF104 and SF301 aggregated into the members belonging to Clade 3 (Fig. 1). *F. solani* SF104 was placed at the same branch with the Indian isolate *F. ambrosium* (FSSC19) and the Slovenian isolate Fusarium sp. (FSSC44), whereas *F. solani* SF301 was with the Italian isolate *F. solani* (FSSC5).

Molecular characterization of β-tubulin gene

Using the primer pair βOD F and βEx5 R, an approximately 1.6 kb DNA fragment was amplified from both the *F. solani* isolates. Nucleotide BLAST of the DNA sequences revealed that 98% identical with partial β-tubulin genes of different *F. solani* strains/isolates: WNQ3 (GenBank accession no. MK441724), FJBX18-1 (MN295050), FJBX18-2 (MN295051), and FJBX18-3 (MN295052); 97% identical with CMFS007 (KU983876), MICMW-30.1 (KX912242), PaR-1 (MN692927), PaR-2 (MN692928), PaR-3 (MN692929), and *F. solani* strain causing root rot and stem canker on storage roots of sweet pea in China (KF255996); 96% identical with FS-01403 (KJ572782). Based on Fusarium MLST identification, the nucleotide sequences showed highest similarity (97.12%) with partial sequence (1333 bp) of β-tubulin gene of *F. solani* species complex NRRL 46706. The β-tubulin gene sequences of *F. solani* SF0104 and SF0301 were deposited in GenBank under accession numbers MZ409524 and MK900720, respectively.

By comparison with other fungi it was inferred that the full length (1619 bp) β-tubulin gene of both the *F. solani* isolates was organized into five exons and four introns (Fig. 3A). The intron positions were conserved and occurred after the codons for amino acids 4, 12, 53 and 316, but they varied in their lengths. All introns contained 5′ and 3′ consensus splice junctions similar to those in β-tubulin genes of other fungi that conformed to the GT-AG rule. The G+C content of the coding region was calculated as 58.61%. Both the β-tubulin genes encoded a 446 amino acid protein, with a
calculated molecular mass 49.834 KD, extinction coefficient
41,640 M$^{-1}$ cm$^{-1}$ and an estimated isoelectric point of 4.64.

Protein BLAST of the deduced amino acid sequences
revealed that 100% identical with that of
F. euwallaceae (AMD38824), a member
F. solani species complex; 99.78%
identical with that of
F. heterosporum (KAF5674510); 99.55% with
F. oxysporum (XP_018241948), *F. verticilloides* (XP018748359), *F. longipes* (RGP77670), *F. sacchari* (AMD38831), *F. denticulum* (KAF5673514) and
F. pseudograminearum (XP009254731); 99.33% with
F. graminearum (PCD17759), *F. fujikuroi* (AAB18275), *F. bulbicola* (KAF5979982) and *F. commune* (AMD38822); 99.1% with
F. babinda (AMD38822) and *F. poae* (AMD38828); and 98.88% with
F. sporotrichioides (RGP75200).

Amino acid sequence comparison between the carbendazim resistant and sensitive isolates revealed that they were
all identical, indicating that the mechanism of carbendazim resistance in *F. solani* SF0301 was different from other

Fig. 1 Maximum-likelihood phylogenetic tree of *Fusarium solani* species complex (FSSC) inferred from ITS nucleotide dataset rooted on that of *F. staphyleae*. Accession number of each sequence is given in parenthesis. Values in the nodes indicate bootstrap support. *F. solani* isolates isolated in the study are marked as red
filamentous fungi, where point mutation at different sites on the \(\beta\)-tubulin gene is responsible for the resistance.

Phylogenetic analysis of Fusarium species based on \(\beta\)-tubulin nucleotide sequences

The phylogenetic analysis of the *Fusarium* species including *F. solani* based on \(\beta\)-tubulin gene sequence revealed their position in nine clusters considered as species complexes (Fig. 2). The species complexes are *F. sambucinum* species complex (FSaSC, nine species), *F. incarnatum-equiseti* species complex (FIESC, two species), *F. tricinctum* species complex (FTSC, two species), *F. heterosporum* species complex (FHCSC, one species), *F. fujikuroi* species complex (FFSC, 25 species), *F. oxysporum* species complex (FSSC, one species), *F. solani* species complex (FOSC, four sequences), *F. decemcellulare* species complex (FDSC, one species) and *F. solani* species complex (FSSC, 10 sequences). The phylogenetic tree showed a well-supported relationship (99% MP bootstrap) among the *F. solani* isolates of FSSC under the Clade 3 including our Indian isolates, SF0104 and SF0301. The formation of three clades by FSSC isolates was also confirmed by the analyses based on \(\beta\)-tubulin sequences. The sister groups FSaSC and FIESC, FTSC and FHSC also showed well-supported lineage with 100% bootstrap support. *F. decemcellulare* formed lineage from *F. solani* was in accordance with Aoki et al. (2014). The 25 species under the FFSC were phylogenetically placed in three different clades as American, Asian and African—the Asian clade was derived from the African clade with 82% bootstrap support and American clade from the Asian clade with 100% bootstrap support.

Comparison of \(\beta\)-tubulin gene of *F. solani* isolates with other *Fusarium* species

The \(\beta\)-tubulin gene of carbendazim resistant *F. solani* SF0301 was compared with complete \(\beta\)-tubulin gene of other *Fusarium* species available in GenBank (Fig. 3B). All *Fusarium* species including *F. solani* had \(\beta\)-tubulin gene with five exons except *F. graminearum* (AY303689), *F. prae graminearum* (KX260131) and *F. sambucinum* (AF484166) as they lack 4th intron; hence, their total \(\beta\)-tubulin length became shorter with 1631 bp, 1629 bp and 1643 bp, respectively. Other species also showed variation in total length due to variation of intron length and among these, 1st intron showed maximum variation. The \(\beta\)-tubulin gene of the *F. solani* isolate was found to be shortest with 1619 bp in length and their introns were shortest among the *Fusarium* species. Out of the total length of 1619 bp, coding region consisted of 1341 bp and non-coding region with only 278 bp was made up of 1st, 2nd, 3rd and 4th introns with 139 bp, 49 bp, 44 bp and 46 bp, respectively. All the introns in other *Fusarium* species were larger, thus their \(\beta\)-tubulin lengths were larger and in the range from 1668 bp in *F. redolens* (MT011043) to 1684 bp in *F. andiyazi* (MT011059). The nucleotide length of 2nd, 3rd and 4th introns were almost similar among the *Fusarium* species with an average of 58 bp, 48 bp and 50 bp, respectively. However, shorter 2nd intron was found in *F. sambucinum* (57 bp) and *F. solani* (49 bp), and larger in *F. verticillioides* (59 bp). The length of 3rd intron also varied in few species such as, 49 bp in *F. rami genum* and *F. napiforme*, 47 bp in *F. redolens* and 44 bp in *F. solani*. The length of 4th intron was 49 bp in *F. brevicat enulatum*, *F. pseudoanthophilum*, *F. pseudonigamai*, *F. verticillioides* and *F. redolens*, whereas in *F. solani* it was 46 bp. The variable 1st intron was largest in *F. sambucin um* (197 bp) and shortest in *F. solani* (139 bp). Among the total 1341 bp coding region, the length of exons of all *Fusarium* species was highly conserved and exon 1, 2, 3, 4 and 5 contained 12 bp, 24 bp, 123 bp, 791 bp and 391 bp, respectively. Thus, exon 4 was the largest. However, exon 4 of *F. graminearum* (AY303689), *F. prae graminearum* (KX260131) and *F. sambucinum* (AF484166) were larger than the average length (791 bp) due to lack of 4th intron and contained 1185 bp, 1182 bp and 1182 bp, respectively. The \(\beta\)-tubulin of all the *Fusarium* species encoded 446 amino acid protein except *F. graminearum* which encoded 447 amino acid protein. All these data were calculated only from \(\beta_1\)-tubulin nucleotide sequence from those which had two \(\beta\)-tubulin genes.

Comparison of \(\beta\)-tubulin amino acid of *F. solani* isolates with other *Fusarium* species

The most frequent difference of \(\beta\)-tubulin amino acid sequence of *F. solani* isolates with other *Fusarium* species was found to be at 381st position with isoleucine (I) in *F. solani* isolates and valine (V) in other (Fig. 4). However, *F. avenaceum* and *F. heterosporum* also contained isoleucine at 381st position similar to the *F. solani* isolates. But they differed from *F. solani* isolates at 189th position where valine in *F. solani* was changed to serine (S) in other *Fusarium* species. However, this change was not detected in species such as *F. oxysporum*, *F. fujikuroi*, *F. verticillioides*, *F. decemcellulare*, *F. avenaceum* and *F. heterosporum*. The amino acid proline (P) was only found in *F. oxysporum* f.sp. cubense at 279th position, where as in others it was histidine (H). In addition, a few minor changes were found in different species (Fig. 4).
Homology modeling and structural analysis

To build a tertiary structural model of β-tubulin, an appropriate template has been searched using Swiss-Model (https://swissmodel.expasy.org). Of the yielded templates, the crystal structure of *Bos taurus* (PDB ID: 4O4I) was found to be the best template with the sequence identity of 83.15% with the query coverage of 96.64% and the QMEAN score of the built model was −1.85. A tertiary model structure of β-tubulin was again built up by BIOVIA Discovery Studio.
package using the crystal structure. The three-dimensional model of the protein was found to be composed of different secondary structural elements (Fig. 5).

Proposed secondary structural conformation

The secondary structure of β-tubulin of F. solani had proposed to contain 21 α-helices, 16 β-strands and several coils (Fig. 5A). The α-helices were formed with the amino acid position from 10–27, 41–44, 47–49, 71–78, 87–89, 101–105, 108–126, 143–158, 181–195, 204–213, 222–241, 250–257, 276–279, 286–293, 296–298, 305–307, 323–336, 338–340, 372–389, 396–399 and 405–427. The β-strands were found with the amino acid position from 4–9, 30, 36, 51–54, 58–61, 63–68, 90–92, 131–138, 163–170, 198–203, 265–271, 299, 310–319, 341, 249–354 and 363–371. When the constructed secondary structure of β-tubulin of F. solani was compared with that of other species using POLYVIEW-2D, it was observed that all the Fusarium species had complete β-tubulin gene of different Fusarium species. The species are arranged alphabetically in ascending order. The positions exon and intron are marked as dark and light, respectively; their lengths are given in bp. Total nucleotide length (bp) of each gene is shown at the end.

Model reputation

The stereo-chemical behaviour of the predicted model of β-tubulin protein of F. solani was analysed through ProSA and QMEAN server’s confirmation and evaluated by the Phi/Psi Ramachandran plot inspection. ProSA was used to confirm the three-dimensional model of β-tubulin protein for potential errors. The program displayed two attributes of the input structure: its Z-score and a plot of its residue energies. The ProSA Z-score of −10.11 indicates the overall model quality of β-tubulin protein (Fig. 6A). The deviation of total energy of the structure, measured by the Z-score,
with respect to an energy distribution obtained from random conformations. The scores were well within the range of scores and indicated a highly reliable structure typically found for proteins of comparable size. The energy plot demonstrated the local model superiority by plotting the knowledge-based energies as function of the amino acid sequence position (Fig. 6B). QMEAN analysis was also employed to evaluate and validate the model. The QMEAN4 score of the model was 0.82 (Fig. 6C) and the \(Z\)-score was −1.85 which was close to zero and this confirmed the superior quality of the model. This is because the estimated consistency of the model was projected to be in between 0 and 1 (Table 1).

Assessment between regularized QMEAN score (0.82) and protein size in non-redundant set of PDB structure in the plot revealed different sets of \(Z\) value for different parameters such as C-beta interactions (0.28), interactions between all atoms (0.24), solvation (0.85) and torsion (−2.31) (Table 1).

The constructed homology model was also assessed for structural and stereo-chemical competency. A Ramachandran Phi/Psi plot for β-tubulin (Fig. 6D) showed 97.436% highly preferred observations, 1.865% preferred observations and 0.699% questionable observations. The analysis of the predicted structure provided strong evidence that the predicted three-dimensional structure of β-tubulin was of superior quality.

Determination of putative nucleotide binding sites

In order to explore the spatial relationships between nucleotide and β-tubulin we used a topological approach after homology modeling. The nucleotide-binding domain in β-tubulin was depicted in Fig. 7A, B. We assumed that the GDP-binding site of β-tubulin was composed of two components: a guanine-binding component and a phosphoryl-binding component. The guanine-binding component was composed of CYS12, GLN15, SER176, GLU181, ASN204, TYR222 and ASN226 and the phosphoryl-binding component was composed of GLN11, SER138, GLY141, GLY142 and THR143. The binding pattern and the H-bond formation are according to the Fig. 7A, B and Table 2.
Molecular docking to identify carbendazim binding site(s)

Molecular docking was performed to map the interactions between carbendazim and β-tubulin and to find out putative binding sites. The molecular docking of carbendazim and β-tubulin detected 48 clusters in eight different sites of the protein. The top-score cluster exhibited best “full fitness” and those parameters were calculated by averaging the 30% most favourable effective energies of a cluster’s element and lower free energy than those obtained for other potential binding sites (Grosdidier et al. 2007; Vela-Corcía et al. 2018). The pocket atoms of β-tubulin for carbendazim binding site were VAL193, SER196, ARG251, VAL255, VAL258, PHE260, ARG262 and HSE (Half Sphere Exposure)264. Carbendazim bound with β-tubulin with different kinds of interactive force such as classical hydrogen bond, non-classical hydrogen bond, electrostatic interaction (charged) and alkyl hydrophobic interaction. There were a conventional hydrogen bond between MBC:H18 and β:PRO261:O; two non-conventional hydrogen bonds between MBC:H16 and β:GLU194:O, MBC:H17 and β:GLU194:O; seven charged-electrostatic interactions between β:ARG156:HZ2 and MBC:C1, β:ARG156:HZ2 and MBC:C3, β:GLU194:CA and MBC:C1, β:ASN195:CA and MBC:C1, β:ASP197:CA and MBC:C3, β:PRO261:CA and MBC:C1, β:PRO261:CA and MBC:C3; alkyl hydrophobic interaction between β:ALA254 and MBC (Fig. 7C, D). All the putative bonds with their bond distance were in accordance with Table 3.

Dimerization of α- and β-tubulins

Hetero-dimerization of α- and β-tubulin subunits was also checked by protein–protein docking. The two monomers were interacted to each other with H-bonds and electrostatic
interactions. The H-bonds were formed through salt bridge formation, conventional H-bonds and non-conventional with carbon–hydrogen bond formation. Out of total 11 bonds/interactions, the monomer β-tubulin contributed six amino acids as H-donor and five amino acids as H-acceptor. The amino acid representatives of α- and β-tubulin monomers with their actual positions in the peptide chain, the bond distance and bond angles are represented in Table 4. The β-tubulin of *F. solani* isolates had sites for the putative α-/β-domain interface at ASP128, CYS129, ARG162, LYS252, ASN256, ARG331, ASN347, GLN350 and GLY429 (Fig. 7E).

Comparison of β-tubulin tertiary structure

Homology models of β-tubulin of all the *Fusarium* species were constructed and to identify any discrimination with the *F. solani* protein, superimposition was performed. Though few regions in amino acid residues were dissimilar among the species, the tertiary structural superimpositions were nearly identical. This could be due to substitution of the

Scoring function term	Z-score
C-beta interactions	0.25
All-atom pairwise	0.24
Solvation	0.85
Torsion angle	–2.31
QMEAN4 score = 0.82	–1.85

Table 1 Z scores of individual component of QMEAN for β-tubulin protein model of *F. solani*
Fig. 7 Homology model of tertiary structure of *F. solani* β-tubulin showing nucleotide binding, carbendazim binding, and α-tubulin binding domains. **A** Space-filling model showing nucleotide binding domain with bound GDP-14. **B** Enlarged view of **A**, the GDP-14 binding domain of *F. solani* SF0301 β-tubulin with amino acid residues hydrogen-bonded with GDP-14 (Blue). The conventional hydrogen bonds are marked as green and non-conventional carbon–hydrogen bonds as grey. **C** Ribbon model showing carbendazim binding domains. **D** Enlarged view of **C**, showing putative carbendazim binding pocket of β-tubulin with conventional hydrogen bonds marked as green, charged electrostatic interactions marked as brown, non-conventional carbon–hydrogen bonds marked as black, alkyl hydrophobic interaction marked as magenta. **E** α/β-tubulin hetero-dimer with their interactions between them with calculated bond distance and interacting amino acid residue. α-tubulin is purple and β-tubulin is cyan in colour.

© Springer
amino acids with the same class of other amino acids. The three-dimensional model of β-tubulin of *F. oxysporum* f.sp. *cubense*, however, differed from that of *F. solani* SF0301 and other species (Fig. 8A, B). In β-tubulin of *F. oxysporum* f.sp. *cubense*, PRO279 (yellow) strongly refused to form an α-helix and acted as a helix-breaker (Fig. 8D), whereas in all other *Fusarium* species including *F. solani*, HIS279 (yellow) formed an extra α-helix (Fig. 8C). In Fig. 8C, the schematic diagram of β-tubulin of *F. solani* SF0301 showed ARG213 (blue) as a component of an α-helix while in *F. oxysporum* f.sp. *cubense* (Fig. 8D) ARG213 was not integrated into the α-helix rather it formed loop with its C terminal amino acid residue.

Discussion

Two main objectives of the study were to identify phylogenetic position of the *F. solani* isolates isolated from lower Gangetic plain of Indian subcontinent and to address their carbendazim resistance mechanism. Based on phylogenetic analyses of 19 protein-coding genes, Geiser et al. (2020)
distributed more than 300 phylogenetically distinct species (phyllospecies) of the monophyletic genus *Fusarium* into 23 evolutionary lineages referred to as species complexes. *Fusarium solani* species complex (FSSC) is one of such lineage which evolved early and contains at least 60 phylogenetically distinct species (Schroers et al. 2016). The genus *Fusarium* was originated in the middle Cretaceous period approximately 91.3 million years ago and fragmentation of Gondwanaland during the upper Cretaceous through the Paleocene played a central role in the emergence of clades in several species complexes. On the basis of molecular phylogenetic relationships among isolates, O’Donnell (2000) identified three major clades of FSSC. The basal clade, Clade 1 consisted of New Zealand isolates such as *F. illudens* isolated from *Metrosideros* species indicating that FSSC originated near New Zealand component of Gondwana. The Clade 2 comprised the South American isolates representing soybean sudden death syndrome and bean root rot pathogens, such as *F. brasiilense*, etc. The Clade 3 encompassed all the isolates formerly characterized as *Neotria haematococca* and some other species, now clustered as ‘*F. solani*’ with different *formae speciales* based on host specificity. In addition, Asian isolates, such as *F. ambrosium*, African isolates *F. neocosmosporiellum* and a few South American isolates were included in Clade 3. This clade was most likely to have emerged later due to the reproductive barrier imposed by fragmentation of the ancient southern hemisphere super continent (Bogale et al. 2009).

In this study, we confirmed phylogenetic position of the *F. solani* isolates based on ITS sequence and *β-tubulin* gene sequence (Figs. 1, 2). Although, *β-tubulin* gene sequences of both the isolates were identical, they differed slightly in ITS sequence and was placed apart in the ITS sequence based phylogenetic tree. However, both the ITS and *β-tubulin* gene sequence based phylogenetic trees separated the members of the FSSC into three clades and *F. solani* isolates, SF0104 and SF0301 were placed in Clade 3. When *β-tubulin* gene was used as molecular marker for construction of phylogenetic tree, the 53 *Fusarium* species were clustered within the nine species complexes and this clustering was almost similar with the phylogenetic analysis of O’Donnell et al. (2013), inferred from a combined gene sequences of RPB1 and RPB2 datasets.

In the *β-tubulin* gene sequence based phylogenetic tree, 25 *Fusarium* species were grouped under the *Fusarium fujikuroi* species complex (FFSC) and placed in American (5), Asian (6) and African (14) clades (Fig. 2). The emergence of the three clades in FFSC was initially recommended by O’Donnell et al. (1998) due to the fragmentation of Gondwanaland. Afterward, the same authors reported that the complex emerged more recently (ca. 8.8 million year ago) and the apparent biogeographic clustering was probably due to long distance dispersal from South America to Africa and then to Asia in the late Miocene (O’Donnell et al. 2013). Distribution of species in three clades of FFSC was in accordance with the Maximum likelihood phylogeny of the FFSC inferred from the combined translation elongation factor 1-α and *β-tubulin* gene regions sequence data of Herron et al. (2015).

The members of FSSC are agriculturally important pathogens causing foot and root rot of fruits and vegetables, stem blight, vascular wilt, and sudden death syndrome of soybean. Both pre- and post-emergence stages of crop are susceptible to attack of *F. solani*. Control of these pathogens is very difficult since they live in soil as saprophyte by producing chlamydospores. They have broad host range with diverse
formae speciales and could tolerate high temperature and salinity stress. Several in vitro studies have observed efficacy of carbendazim against *F. solani* (Gupta et al. 2020; Padvi et al. 2018; D’Addazio et al. 2016). Benomyl resistant *F. solani* causing dry rot of *Amorphophallus paeonii-folious* has been reported (Dorugade et al. 2021). Due to single-site action, carbendazim resistance develops rapidly in pathogenic fungi including *Fusarium* species (Zhang et al. 2016; Avenot et al. 2020; Liu et al. 2020). In the field, resistant isolates can arise with a very low rate of mutation in a specific gene and adapt environmental conditions to become dominant in pathogen populations under selection pressure of the fungicide, and in turn decrease the fungicide efficacy. In several species of *Fusarium*, point mutation of nucleotides (underlined) and resulting change of amino acids at various positions of β-tubulin have been reported: TYR(TAC)50ASP(AAC), TYR(TAC)50CYS(TGC), GLN(CAG)134LEU(CTG), PHE(TT T)167TYR(TAT), GLU(GAG)198LYS(AAG), GLU(GAG)198GLN(CAG), GLU(GAG)198ALA(GCG), GLU(GAG)198VAL(GTG), PHE(TTC)200TYR(TAC), THR(ACA)351ILE(ATA) (Yan and Dickman 1996; Qiu et al. 2011; Suga et al. 2011; Chen et al. 2014; Petkar et al. 2017; Yang et al. 2018; Xu et al. 2019). In addition, substitutions have also been observed at the position of 6, 165, 235, 240 and 241 in other phytopathogenic fungi (Ma and Michailides 2005). Some fungi contained two β-tubulin genes and among these, only one was responsible of benzimidazole resistance. However, *F. solani* contained only one β-tubulin gene with four copies (Zhao et al. 2014). In this study, β-tubulin amino acid sequence

Fig. 8 Three-dimensional structure and superimposition of β-tubulin proteins of two *Fusarium* species. A Diagrammatic model of β-tubulin of *F. solani* SF0301 showing HIS279 (yellow) forming an α-helix and ARG213 (blue) a component of another α-helix. B Diagrammatic model of β-tubulin of *F. oxysporum* f.sp. *cubense* showing PRO279 (yellow) acting as an α-helix breaker and ARG213 (blue) to form a loop with its C terminal amino acid residue. C Superimposition of β-tubulin of *F. solani* SF0301 (cyan) and *F. oxysporum* f.sp. *cubense* (orange). D 180° rotational model of structure E
of the carbendazim resistant and the sensitive isolates were identical and point mutation responsible for amino acid changes were not detected in \textit{F. solani} SF0301 \(\beta\)-tubulin gene. This might be explained by very low (2) resistance factor (the ration of ED\(_{50}\) of resistant and sensitive isolates) of \textit{F. solani} SF0301 in compare to other plant pathogenic fungi (> 1000) (Chen et al. 2007). Identical amino acid sequences of the \(\beta\)-tubulin has been reported from several thailandazole-resistant and -sensitive isolates of \textit{Gibberella punicaria} (syn. \textit{F. sambucinum}) (Kawchuk et al. 2002). The possible mechanism(s) that confer carbendazim resistance in \textit{F. solani} SF0301 include overproduction of the fungicide target, detoxification of the fungicide by fungal metabolite such as glutathione transferase, an active efflux or reduced uptake of the fungicide and some unknown mechanisms (Sevastos et al. 2017). In benomyl-resistant \textit{Colletotrichum acutatum} isolates, putative leucine zipper protein CaBEN1 increased production of the target protein by enhancing \(\beta\)-tubulin gene (CaTUB1) expression (Nakaune and Nakano 2007). Viglas and Olejnikova (2021) reported that in filamentous fungi the ATP-binding cassette (ABC) transporters play a key role in antifungal resistance by transporting various xenobiotics, including antifungal compounds. Drug-efflux ABC transporters were involved in resistance to benzimidazole fungicides in \textit{Aspergillus nidulans} (Andrade et al. 2000) and \textit{Penicilium digitatum} (Nakaune et al. 1998). These reports demonstrated that the resistance to benzimidazole fungicides could be partially due to the membrane transport system for these compounds into the fungal cells. Some mutations in the \(\alpha\)-tubulin gene of \textit{Saccharomyces cerevisiae} increased benzimidazole sensitivity (Richards et al. 2000). Further investigations are warranted in understanding the existence of carbendazim resistant mechanism in \textit{F. solani} SF0301.

In the present study, we characterized organization of \(\beta\)-tubulin gene of \textit{F. solani} isolates. The gene was organized into five exons of variable length (Fig. 3A). To the best of our knowledge, this was the first report of complete \(\beta\)-tubulin gene sequence of \textit{F. solani}. The full-length nucleotide sequences were in agreement with partial sequences of various \textit{F. solani} isolates available in database (https://www.ncbi.nlm.nih.gov/genbank). We also observed that \(\beta\)-tubulin genes of \textit{Fusarium} species varied significantly in their length and the variation was due to difference of their intron lengths, especially the 1st intron, which was largest among the four introns. However, the number and length of exons among \textit{Fusarium} species were almost conserved (Fig. 3B). We also compared the deduced amino acid sequence of \(\beta\)-tubulin of different \textit{Fusarium} species (Fig. 4) and constructed the secondary and tertiary structure of \(\beta\)-tubulin protein of \textit{F. solani} through homology modeling and compared the structure with that of other \textit{Fusarium} species (Fig. 5). The constructed \(\beta\)-tubulin was scrutinized by ProSA and QMEAN analysis and validated by the analysis of phi (\(\Phi\)) and psi (\(\psi\)) torsion angles using Ramachandran plot (Fig. 6).

During polymerization of microtubules, tubulin monomer shows GTPase activity and the GTP bound with \(\beta\)-tubulin is hydrolysed shortly after being incorporated. Therefore, GDP is predominantly associated in the \(\beta\)-tubulin subunit near the newly formed plus end (Horio et al. 2014). A highly conserved glycine-rich sequence, GGRTGAG, has been identified from residues 140 to 146 in the \textit{F. solani} \(\beta\)-tubulin which formed part of the GDP-14 binding site as reported by Nogales et al. (1998). As similar to other fungi, the \(\beta\)-tubulin of \textit{F. solani} isolates encoded an N terminal tetrapeptide MREI which was involved in the autoregulation of \(\beta\)-tubulin expression as detected in mammalian cells (Msiska and Morton 2009).

Carbendazim has been reported to bind at specific position of the \(\beta\)-tubulin in different fungi (Zhou et al. 2016; Vela-Corcia et al. 2018; Yang et al. 2018; Xu et al. 2019) while, to the best of our knowledge, no evidence has been raised for physical interaction between carbendazim and \(\beta\)-tubulin in \textit{F. solani}. In this study, the interaction has been demonstrated through molecular docking. Zhou et al. (2016) showed that in \textit{F. graminearum} carbendazim inhibited the dimerization of tubulin by binding with the \(\beta\)-tubulin; but unable to affect the polymerized tubulin. In our study, we investigated the mystery behind the binding of carbendazim to the monomeric form but not to the polymerized tubulin. The carbendazim binding pocket in \(\beta\)-tubulin of \textit{F. solani}, consisting of amino acids at the position was close to the \(\alpha/\beta\)-tubulin subunit interfaces (Fig. 7). Therefore, due to the presence of carbendazim binding pocket inside the \(\beta\)-tubulin, we can assume that the formation of carbendazim-\(\beta\)-tubulin complex resulted in conformation change in \(\alpha/\beta\)-tubulin sub-unit interfaces followed by losing the ability of these subunits to accept other tubulin molecules for further microtubule polymerization. In contrast, polymerized microtubules may have compacted organization that destroyed the accessibility of carbendazim to the \(\beta\)-tubulin.

Among the naturally occurring amino acids, proline is unique in that its side chain cyclically back to the backbone amide, leaving one of its dihedral angles (\(\phi\)) fixed at \(-65^\circ\) (Richardson and Richardson 1989; MacArthur and Thornton 1991). Proline residue is not often found at the center of secondary structures such as the \(\alpha\)-helix and \(\beta\)-sheet in globular protein due to the structural consequence of this particular arrangement (Chou and Fasman 1978, 1974). When proline is located in the first turn, acting apparently as an N-capping residue, it does occur in an \(\alpha\)-helix (Richardson and Richardson 1988). In our study, to compare the secondary structure formed in \(\beta\)-tubulin among different \textit{Fusarium} species, homology modeling of the \(\beta\)-tubulin protein followed by superimposition of each \(\beta\)-tubulin with the \(\beta\)-tubulin of \textit{F. solani} was carried out. Algorithms to superimpose protein’s
three-dimensional structures were applied to identify similarities of protein folds. The coordinates of a protein was superposed so that the backbone lies over the backbone of a reference protein. Distant homologues might not be recognized by their amino acid sequence because the sequences diverge more rapidly in evolution than the three-dimensional structure. The most significant difference was observed at the 279th position in *F. oxysporum* f.sp. *cubense* due to presence of proline instead of histidine (Fig. 5). In *F. oxysporum* f.sp. *cubense* proline was located in the last turn, acting apparently as a C-capping residue of α-helix and acted as a helix breaker whereas, in others including *F. solani* HIS279 was a part of α-helix (Fig. 8). Proline is unfavorable to the α-helical conformation for the several reasons. First, due to the absence of an amide proton on an x-Pro (x = any amino acid residue) bond which participates in helix stabilization during intramolecular hydrogen bonding (Williams and Deber 1991). Second, its pyrrolidine ring is too bulky to place steric constraint on the conformation of the earlier residue in the α-helix (Hurley et al. 1992). Finally, proline, being a secondary amide, is comparatively a polar residue that exhibits an enhanced tendency to form strong hydrogen bonds in non-periodic structural motifs such as proline-induced β-turns (Smith et al. 1980) and γ-turns (Deber et al. 1990). Although, no significant differences in protein function were observed in *F. oxysporum* f.sp. *cubense* because PRO279 was not the interacting residue in both tubulin polymerization as well as carbendazim binding. The other amino acid substitution(s) in different location among the species was not significant for the changes of secondary structure probably due to the substitution by the amino acid of same chemical group.

Structural characterization of β-tubulin of *Fusarium* species will provide in-depth insight to design novel tubulin-targeted drug whose efficacy cannot be changed through mutation in β-tubulin. Similar work might be undertaken in other phytopathogenic fungi where carbendazim resistance appears a problem. Further phylogenetic study of the *F. solani* isolates will be carried out by sequencing other protein coding genes such as RPB1 and RPB2, translation elongation factor 1-α and calmodulin. The exact mechanisms of carbendazim resistance in *F. solani* isolates will be investigated in future.

Conclusions

Carbendazim resistance of *F. solani* SF0301 was not associated with mutation in the β-tubulin. ITS and β-tubulin based phylogeny confirmed the placement of the Indian isolates of *F. solani* within Clade 3 of FSSC. In spite of variations in amino acid sequence of β-tubulin, constructed secondary and tertiary structures were in all *Fusarium* species except *F. oxysporum* f.sp. *cubense*. The carbendazim binding site and α-tubulin interacting site were located close to each other and binding of either of two caused conformational change in β-tubulin that resulted inaccessibility to other. The presence of proline at 279th position in β-tubulin of *F. oxysporum* f.sp. *cubense* resulted formation of 20 α-helices but did not interfere its dimerization with α-tubulin and binding with carbendazim.

Funding

The work has been supported by the funds received from University of Kalyani and DST-FIST and DST-PURSE programme II, Govt. of India

Declarations

Conflict of interest We declare no conflict of interest.

References

Albertini C, Gredt M, Leroux P (1999) Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi *Tapesia vaginalis* and *Tapesia acaiformis*. Pestic Biochem Physiol 64:17–31. https://doi.org/10.1016/S0031-6938(98)00087-4

Al-Hatmi AMS, Ahmed SA, van Diepeningen AD, Drogari-Apiranthi-tou M, Verweij PE, Meis JF, de Hoog GS (2018) *Fusarium metavores* sp. nov.: the frequent opportunist “FSSC6.” Med Mycol 56:S144–S152. https://doi.org/10.1093/mmy/myx107

Andrade AC, Del Sorbo G, Van Nistelrooy JGM, De Waard MA (2000) The ABC transporter AtrB from *Aspergillus nidulans* mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146:1987–1997. https://doi.org/10.1099/00221287-146-8-1987

Aoki T, O’Donnell K, Geiser DM (2014) Systematics of key phytopathogenic *Fusarium* species: current status and future challenges. J Gen Plant Pathol 80:189–201. https://doi.org/10.1007/s10327-014-0509-3

Avenot HF, Morgan DP, Quattrini J, Michailides TJ (2020) Resistance to thiophanate-methyl in *Botrytis cinerea* isolates from Californian vineyards and Pistachio and Pomegranate Orchards. Plant Dis 104:1069–1075. https://doi.org/10.1094/PDIS-02-19-0353-RE

Begerow D, John B, Oberwinkler F (2004) Evolutionary relationships among β-tubulin gene sequences of basidiomycetous fungi. Mycol Res 108:1257–1263. https://doi.org/10.1017/S0953756204001066

Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:510–514. https://doi.org/10.1093/nar/gkp322

Bogale M, Steenkamp ET, Wingfield MJ, Wingfield BD (2009) Diverse *Fusarium solani* isolates colonise agricultural environments in Ethiopia. Eur J Plant Pathol 124:369–378

Chen C, Wang J, Luo Q, Yuan S, Zhou M (2007) Characterization and fitness of carbendazim-resistant strains of *Fusarium graminearum* (wheat scab). Pest Manag Sci 63:1201–1207. https://doi.org/10.1002/ps.1449

Chen Z, Gao T, Liang S et al (2014) Molecular mechanism of resistance of *Fusarium fujikuroi* to benzimidazole fungicides. FEMS Microbiol Lett 357:77–84. https://doi.org/10.1111/1574-6968.12504
De Vries SJ, Van Dijk M, Bonvin AMJJ (2010) The HADDOCK

Deber CM, Glibowicka M, Woolley GA (1990) Conformations

Geiser DM, Al-Hatmi A, Aoki T, et al (2020) Phylogenomic analysis

Einax E, Voigt K (2003) Oligonucleotide primers for universal

Dutta S, Tarafder M, Islam R, Datta B (2018) Characterization of

Dorugade SP, Madhale SV, Sardesai VA, Kamble SS (2021) Survival

Chou PY, Fasman GD (1978) Empirical predictions of protein confor-

Chou PY, Fasman GD (1974) Conformational parameters for amino

446 Current Genetics (2022) 68:429–447

Coleman JJ (2016) The

Grosdidier A, Zoete V, Michielin O (2007) EADock: docking of

Kolattukudy PE, Gamble DL (1995) Gibberella fujikuroi: patho-

Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolution-

Leslie JF, Summerell BA (2008) The Fusarium species complex in the genus Fusarium.

Leslie JF, Gamble DL (1995) Gibberellins and gibberellin metabolism—a proline. Biopolymers 32:1443–1446. https://doi.org/10.1002/10.1002/biopol.360321104

Kawchuk LM, Hutchison LJ, Verhaeghe CA et al (2002) Isolation of the β-tubulin gene and characterization of thiambendazole resistance in Gibberella fujikuroi. Can J Plant Pathol 24:233–238. https://doi.org/10.1016/S0706-0663(09)507001

Kolattukudy PE, Gamble DL (1995) Nectria haematococca: pathogenesis and host specificity in plant diseases. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant pathogenic fungi and nematodes, vol 2. Eukaryotes Per-

Kozakov D, Hall DR, Xia B et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278. https://doi.org/10.1038/nprot.2016.169

Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Leslie JF, Summerell BA (2008) The Fusarium laboratory manual. Wiley, New York

Liu S, Liu J, Fu L et al (2020) Baseline sensitivity of Fusarium graminearum from wheat fields in Henan, China, to metconazole and analysis of cross resistance with carbendazim and phenamaci-

Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863. https://doi.org/10.1016/j.cropro.2005.01.011

MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218:397–412. https://doi.org/10.1016/0022-2836(91)90721-H

Miska Z, Morton JB (2009) Isolation and sequence analysis of a beta-tubulin gene from arbuscular mycorrhizal fungi. Mycorrhiza 19:501–513. https://doi.org/10.1007/s00572-009-0248-z

Nakane R, Nakano M (2007) Benomyl resistance of Colletotrichum acutatum is caused by enhanced expression of β-tubulin 1 gene regulated by putative leucine zipper protein CaBEN1. Fungal Genet Biol 44:1324–1335. https://doi.org/10.1016/j.fgb.2007.03.007

Nakane R, Adachi K, Nawata O et al (1998) A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl Environ Microbiol 64:3983–3988. https://doi.org/10.1128/aeam.64.10.3983-3988.1998

Narayanan P et al (2015) Efficacy of bio-control agents and fungicides in management of bulbil wilt caused by Fusarium solani. http://iscolabora.info/index.php/jbc/article/view/79116

Nogales E, Downing KH, Amos LA, Lowe J (1998) Tubulin and FisZ form a distinct family of GTPases. Nat Struct Mol Biol 5:451–458. https://doi.org/10.1038/nmb0698-45

O’Donnell K (2000) Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92:919–938. https://doi.org/10.1080/00275514.2000.12061237

O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus fusarium are nonhomologous. Mol Phylogenet Evol 7:103–116. https://doi.org/10.1006/mphe.1996.0376

O’Donnell K, Rooney AP, Proctor RH et al (2013) Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31. https://doi.org/10.1016/j.fgb.2012.12.004

O’Donnell K, Al-Hatmi AMS, Aoki T et al (2020) No to Neocosmostoma po- phylogenic and practical reasons for continued inclusion of the Fusarium solani species complex in the genus Fusarium. mSphere. https://doi.org/10.1128/mSphere.00810-20

O’Donnell K, Cigelnik E, Nirenberg H1 (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493. https://doi.org/10.1080/00222930.1998.12026933

Padvi SA, Hingle DG, Khaire PB (2018) In vitro efficacy of fungicides against Fusarium solani incited by dry root rot of sweet orange. J Pharmaconomy Phytochem 7(4):3270–3273

Petrak A, Langston DB, Buck JW et al (2017) Sensitivity of Fusarium oxysporum f. sp. niveum to prothioconazole and thiophanmethoxy and gene mutation conferring resistance to thio- phosphatemethyl. Plant Dis 101:366–371. https://doi.org/10.1094/PDIS-09-16-1236-RE
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—
a visualization system for exploratory research and analysis. J
Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084
Porollo AA, Adamczak R, Meller J (2004) POLYVIEW: a flexible
visualization tool for structural and functional annotations of pro-
teins. Bioinformatics 20:2460–2462. https://doi.org/10.1093/bioin-
formatics/bth248
Qiu JB, Xu JQ, Yu JJ et al (2011) Localisation of the benzimidazole
fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis. Pest Manag Sci 67:191–198. https://
doi.org/10.1002/ps.2050
Richards KL, Anders KR, Nogales E et al (2000) Structure-function
relationships in yeast tubulins. Mol Biol Cell 11:1887–1903.
https://doi.org/10.1091/mbc.11.5.1887
Richardson JS, Richardson DC (1989) Amino acid preferences for spe-
cific locations at the ends of α helices. Science 240(4859):1648–
1652. https://doi.org/10.1126/science.242.4886.1624-b
Richardson JS, Richardson DC (1989) Principles and patterns of pro-
tein conformation. Predict Protein Struct Princ Protein Conform.
https://doi.org/10.1007/978-1-4613-1571-1_1
Schoebers HJ, Samuels GJ, Zhang N, Short DP, Juba J, Geiser DM
(2016) Epitypification of Fusisporium (Fusarium) solani and its
assignment to a common phylogenetic species in the Fusarium
solanii species complex. Mycologia 108:806–819
Sevastos A, Labrou NE, Flouri F, Malandrakis A (2017) Glutathione
transferase-mediated benzimidazole-resistance in Fusarium
graminearum. Pestic Biochem Physiol 141:23–28. https://doi.org/
10.1016/j.pestbp.2016.11.002
Smith JA, Pease LG, Kopple KD (1980) Reverse turns in peptides and
protein. Crit Rev Biochem Mol Biol 8:315–399. https://doi.org/
10.3109/10409238009105470
Suga H, Nakajima T, Kageyama K, Hyakumachi M (2011) The genetic
profile and molecular diagnosis of thiophanate-methyl resistant
strains of Fusarium asiaticum in Japan. Fungal Biol 115:1244–
1250. https://doi.org/10.1038/1016/jfunbio.2011.08.009
Tamura K, Nii M (1993) Estimation of the number of nucleotide sub-
stitutions in the control region of mitochondrial DNA in humans
and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.
1093/oxfordjournals.molbev.a040023
Tarfater D, Islam R, Datta B (2019) Carbendazim sensitivity of Fusar-
ium solani soil isolates. Indian Phytopathol 72:705–710. https://
doi.org/10.1007/s42360-019-00151-8
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improv-
ing the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Res 22:4673–4680. https://
doi.org/10.1093/nar/22.22.4673
Vajda S, Yuich C, Beglov D et al (2017) New additions to the ClusPro
server motivated by CAPRI. Proteins Struct Func Bioinforma
85:435–444. https://doi.org/10.1002/prot.25219
Vela-Corcia D, Romero D, De Vicente A, Perez-Garcia A (2018)
Analysis of β-tubulin-carbendazim interaction reveals that bind-
ing site for MBC fungicides does not include residues involved
in fungicide resistance. Sci Rep 8:1–12. https://doi.org/10.1038/
s41598-018-25336-5
Viglaš J, Olejnikova P (2021) An update on ABC transporters of fil-
amentous fungi—from physiological substrates to xenobiotics.
Microbiol Res 246:126684. https://doi.org/10.1016/j.micres.
2020.126684
Wiederstein M, Sippel MJ (2007) ProSA-web: Interactive web service
for the recognition of errors in three-dimensional structures of pro-
teins. Nucleic Acids Res 35:407–410. https://doi.org/10.1093/prot.
doi.0101a1001
Xu S, Wang J, Wang H et al (2019) Molecular characterization of car-
bendazim resistance of Fusarium species complex that causes
sugarcane pokkah boeng disease. BMC Genom 20:1–14. https://
doi.org/10.1186/s12864-019-5479-6
Yang K, Dickman MB (1996) Isolation of a β-tubulin gene from Fusar-
ium moniliforme that confers cold-sensitive benomyl resistance.
Appl Environ Microbiol 62:3053–3056. https://doi.org/10.1128/aem.
62.8.3053-3056.1996
Yang Y, Li MX, Duan YB et al (2018) A new point mutation in β2-
tubulin confers resistance to carbendazim in Fusarium asiaticum.
Pestic Biochem Physiol 145:15–21. https://doi.org/10.1016/j.
pesbhp.2017.12.006
Zhang H, Brankovics B, van der Lee TAJ et al (2016) A single-nucle-
otide-polymorphism-based genotyping assay for simultaneous
detection of different carbendazim-resistant genotypes in the
Fusarium graminearum species complex. PeerJ. https://doi.org/
10.7717/peerj.2609
Zhou Y, Xu J, Zhu Y et al (2016) Mechanism of action of the benzi-
idazole fungicide on Fusarium graminearum: interfering with
polymerization of monomeric tubulin but not polymerized micro-
tubule. Phytopathology 106:807–813. https://doi.org/10.1094/
PHYTO-08-15-0186-R

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.