動物が葉緑体を細胞内に一時的に取り込み光合成を行う盗葉緑体現象の野外での適応的意義

Algivore or Phototroph? Plakobranchus ocellatus (Gastropoda) Continuously Acquires Kleptoplasts and Nutrition

前田 太郎, 1,2,3,4 野田 裕一, 2,4 木村 嘉人, 3,4,5 大開 晃, 3,4,5 瀧下 清貴, 3,4,5 吉田 尊雄, 3,4,5 Heroen Verbruggen, 4,5 次郎 俊, 4,5 石村 正, 2
Taro Maeda, 1, 2, 4, 5 Euichi Hirose, 2, 4, 5 Yoshito Chikaraishi, 3, 4, 5 Masaru Kawato, 3, 4, 5 Kiyotaka Takishita, 3, 4, 5 Takao Yoshida, 3, 4, 5 Heroen Verbruggen, 4, 5
Jiro Tanaka, 5, Shigeru Shimamura, 1, 4, 5 Masashi Tsuchiyu, 3, 4, 5 Kenji Iawai, 1, 5 Shuji Shigenobu, 1, 5 Tadashi Maruyama, 2

1. 基礎生物研究所, 2. 琉球大学, 3. 海洋研究開発機構, 4. メルボルン大学, 5. 東京海洋大学

盗葉緑体現象とは、藻類食者の中の一部の種が、摂食した藻類の葉緑体を自らの細胞内に取り込み、数日か数ヶ月間保持し、その葉緑体が生産する光合成産物を栄養として利用する現象である。葉緑体は次世代に受け継がれず、毎世代ごとに新規に獲得される。葉緑体が持つ単一の葉緑素類は、後生動物で唯一本種が葉緑体を保持する。中でもインド洋・太平洋の熱帯域に分布するチドリミドリガイ (Plakobranchus ocellatus) は、最も長期に光合成能を保持し、その期間は10ヶ月にも及ぶ。本種では、葉緑体の形態観察等から、緑藻類のアオサ藻類を摂食し葉緑体源とすることがわかった。しかし、野外では未確定である。10ヶ月間の生存が観察される。相反する新鮮により、葉緑体の光合成能を保持していると考えられる。

我々は、この仮説を検証し、盗葉緑体現象の適応的意義の解明を試みた。最初に、今まで種レベルでは不明であった自然環境下での葉緑体源の、チドリミドリガイが持つ葉緑体のrbcL遺伝子のクローニング解析から同定し、その季節変化もをRFLP法により調査した。結果、チドリミドリガイが保有する藻類種に属する8種の藻類を摂食し、複数種の藻類の葉緑体がチドリミドリガイ個体中に共存することがわかった。また体内の葉緑体組成は雨季によって異なっていた。これら葉緑体組成の特徴は摂食による葉緑体補充が頻繁に行われた結果と考えられた。また明らかとなった藻類種は、アオサ藻類の中では微小な種類であり、これが野外での摂取観察を困難にしていた可能性が示唆された。

次に、アミノ質の窒素安定同位体比から栄養段階を計測する手法を用いて、野外個体の光合成への依存度を解析した。結果、飼育下で光合成にのみ依存させた個体は、同位体比から算出した栄養段階が1.3と、生産者に近い値となったが、野外から採集した個体は栄養段階1.9と植物食者の値を示した。この値は野外個体が光合成よりも摂食から多くの栄養を得ていることを示しており、葉緑体組成の結果と同様に、頻繁に摂食を行なっていることを示している。

本結果から、野外でチドリミドリガイの光合成に対する栄養依存は小さく、頻繁に摂食を行い葉緑体を更新していることが明らかになった。これは盗葉緑体現象を示す生物において、生息環境での光合成への依存が初めて明らかになったものである。今後、ウミウシにおける葉緑体依存の適応的意義は、摂食に対する補助としての観点（ビタミン様物質の生産や、短期間の飢餓時代の栄養源）からも研究する必要があると考えられる。

キーワード: 盗葉緑体, 袋口目ウミウシ, アオサ藻, 共生
Keywords: kleptoplasty, sacoglossan, ulvophyceae, symbiosis