Supplemental Material

A Unified Spatiotemporal Modeling Approach for Predicting Concentrations of Multiple Air Pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution

Joshua P. Keller, Casey Olives, Sun-Young Kim, Lianne Sheppard, Paul D. Sampson, Adam A. Szpiro, Assaf P. Oron, Johan Lindström, Sverre Vedal, and Joel D. Kaufman
Table S1. Summary of NO₂ monitoring data.

Region and site type	No. of observations per site	Site means (ppb) Min, max	Site means (ppb) Mean ± SD
Baltimore, MD			
AQS	59, 343	11.7, 21.8	17.9 ± 3.0
MESA Fixed	27, 98	8.1, 20.4	13.5 ± 4.7
MESA Home	1, 3	3.0, 29.2	11.0 ± 4.6
MESA Snapshot	1, 3	6.5, 24.4	16.0 ± 4.0
Chicago, IL			
AQS	77, 339	15.7, 29.3	23.1 ± 4.7
MESA Fixed	8, 96	14.2, 23.3	18.8 ± 3.0
MESA Home	1, 5	0.5, 30.7	15.6 ± 4.5
MESA Snapshot	1, 3	7.4, 29.8	17.4 ± 4.6
Los Angeles, CA			
AQS	84, 342	10.2, 34.9	22.9 ± 6.8
MESA Fixed	81, 90	16.9, 32.3	22.4 ± 6.2
MESA Home	1, 2	8.7, 39.0	21.6 ± 6.6
MESA Snapshot	1, 3	11.9, 42.8	28.0 ± 6.3
New York, NY			
AQS	75, 343	8.8, 36.9	22.4 ± 7.2
MESA Fixed	63, 93	13.7, 32.8	23.9 ± 9.6
MESA Home	1, 3	8.2, 47.9	25.2 ± 8.1
MESA Snapshot	1, 3	6.8, 46.3	23.7 ± 10.0
NYCCAS Reference	51, 52	14.1, 21.8	19.2 ± 3.1
NYCCAS Distributed	7, 8	12.0, 56.1	26.2 ± 8.3
St. Paul, MN			
AQS	99, 331	7.3, 20.8	13.0 ± 5.5
MESA Fixed	64, 97	5.8, 17.5	12.0 ± 5.2
MESA Home	1, 5	1.3, 20.9	10.2 ± 3.4
MESA Snapshot	1, 3	2.6, 22.0	10.9 ± 4.1
Winston-Salem, NC			
AQS	306, 313	12.4, 13.8	13.1 ± 1.0
MESA Fixed	79, 100	6.3, 11.3	8.5 ± 2.5
MESA Home	1, 5	1.2, 17.2	6.5 ± 2.8
MESA Snapshot	1, 3	2.8, 27.5	9.4 ± 3.8
Table S2. Summary of NO\textsubscript{x} monitoring data.

Region and site type	No. of observations per site	Site means (ppb) Min, max	Site means (ppb) Mean ± SD
Baltimore, MD			
AQS	130, 343	11.3, 45.3	29.9 ± 11.5
MESA Fixed	27, 98	12.5, 49.5	27.2 ± 14.4
MESA Home	1, 3	4.7, 99.6	20.4 ± 14.4
MESA Snapshot	1, 3	9.9, 60.5	35.3 ± 11.4
Chicago, IL			
AQS	77, 339	32.1, 64.3	46.5 ± 12.1
MESA Fixed	8, 96	23.3, 39.7	33.0 ± 5.5
MESA Home	1, 5	9.4, 72.2	27.6 ± 9.5
MESA Snapshot	1, 3	17.4, 69.4	34.4 ± 10.6
Los Angeles, CA			
AQS	88, 342	14.2, 91.6	45.4 ± 19.8
MESA Fixed	81, 90	36.0, 71.7	50.0 ± 13.4
MESA Home	1, 2	14.1, 107	44.7 ± 19.5
MESA Snapshot	1, 3	16.7, 141	66.0 ± 25.3
New York, NY			
AQS	73, 330	23.1, 70.9	42.4 ± 13.3
MESA Fixed	62, 92	29.0, 79.6	52.2 ± 25.6
MESA Home	1, 3	11.9, 180	49.4 ± 23.3
MESA Snapshot	1, 3	12.6, 155	60.8 ± 34.8
NYCCAS Reference	51, 52	26.1, 39.5	34.1 ± 5.2
NYCCAS Distributed	7, 8	20.6, 159	55.4 ± 23.6
St. Paul, MN			
AQS	81, 331	9.1, 44.9	22.2 ± 14.0
MESA Fixed	63, 96	9.3, 35.7	22.2 ± 11.4
MESA Home	1, 5	2.4, 54.6	18.1 ± 8.7
MESA Snapshot	1, 3	5.0, 59.3	21.9 ± 10.4
Winston-Salem, NC			
AQS	306, 313	19.1, 22.4	20.7 ± 2.3
MESA Fixed	79, 100	9.8, 21.8	14.9 ± 5.4
MESA Home	1, 5	2.4, 34.3	10.4 ± 5.9
MESA Snapshot	1, 3	4.9, 95.3	21.5 ± 12.8
Region and site type	No. of observations per site	Site means (10^3/m)	Site means (10^5/m)
------------------------------	------------------------------	---------------------	---------------------
	Min, max	Min, max	Mean ± SD
Baltimore, MD			
MESA Fixed	18, 92	0.42, 1.2	0.73 ± 0.30
MESA Home	1, 3	0.20, 1.76	0.62 ± 0.27
Chicago, IL			
MESA Fixed	4, 85	0.57, 0.91	0.76 ± 0.13
MESA Home	1, 4	0.27, 1.24	0.63 ± 0.17
Los Angeles, CA			
MESA Fixed	73, 82	0.95, 1.49	1.23 ± 0.23
MESA Home	1, 2	0.06, 2.87	1.27 ± 0.48
New York, NY			
MESA Fixed	49, 83	0.66, 1.65	1.18 ± 0.50
MESA Home	1, 3	0.06, 3.42	1.13 ± 0.53
NYCCAS Reference	50, 51	0.72, 1.14	0.93 ± 0.15
NYCCAS Distributed	6, 8	0.64, 2.75	1.23 ± 0.42
St. Paul, MN			
MESA Fixed	81, 91	0.39, 0.72	0.52 ± 0.17
MESA Home	1, 5	0.05, 0.99	0.43 ± 0.13
Winston-Salem, NC			
MESA Fixed	79, 92	0.44, 0.65	0.56 ± 0.09
MESA Home	1, 4	0.16, 0.86	0.47 ± 0.15
Table S4. Geographic covariates available for model development.

Variable	Abbreviation	Buffer radiia	Source
Roadway buffer variables			
Total A1 road length (m)	A1	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 1.5km, 3km, 5km	TeleAtlas (2000)
Total A2 and A3 road length (m)	A2/A3	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 1.5km, 3km, 5km	TeleAtlas (2000)
Total A1, A1-A2, A1-A3, A2, A2-A3, and A3 intersections	Intersections	500m, 1km, 3km	TeleAtlas (2000)
Total bus route length (New York only) (m)	Bus route	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 1.5km, 3km, 5km	New York Department of Transportation (Quodomine R, personal communication)
Total truck route length (m)	Truck route	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 1.5km, 3km, 5km, 10km, 15km	Bureau of Transportation Statistics (2009)
Proximity variablesb,c (distance in meters to nearest feature)			
A1 road, A2 or A3 road, A1 or A2 or A3 road	Dist to road	N/A	TeleAtlas (2000)
Railroad; railyard; airport; large airport; coastline	Dist to feature	N/A	TeleAtlas (2000)
Truck route	Dist to feature	N/A	Bureau of Transportation Statistics (2009)
Bus route (New York only)	Dist to feature	N/A	New York Department of Transportation (Quodomine R, personal communication)
Commercial zone	Dist to feature	N/A	Price et al. (2006)
Small port; medium port; large port	Dist to feature	N/A	National Geospatial Intelligence Agency (2013)
Residual oil boiler; residual oil grade 6 boiler (New York only)	Dist to feature	N/A	Environmental Defense Fund (Silverman I, personal communication)
Emission sources (tons/year)c			
NO$_X$ emissions	NO$_X$ emissions	3km, 15km, 30km	U.S. EPA Emission Inventory Group (2006)
SO$_2$ emissions	SO$_2$ emissions	3km, 15km, 30km	U.S. EPA Emission Inventory Group (2006)
CO emissions	CO emissions	3km, 15km, 30km	U.S. EPA Emission Inventory Group (2006)
PM$_{2.5}$ emissions	PM$_{2.5}$ emissions	3km, 15km, 30km	U.S. EPA Emission Inventory Group (2006)
PM$_{10}$ emissions	PM$_{10}$ emissions	3km, 15km, 30km	U.S. EPA Emission Inventory Group (2006)
Residual oil			
Residual oil boiler output (New York only)	Residual oil	100m, 150m, 300m, 500m, 750m, 1.5km, 3km	Environmental Defense Fund (Silverman I, personal communication)
Variable	Abbreviation	Buffer radii\(^a\)	Source
---	--------------	-------------------------------------	-------------------------------------
Caline3QHCR\(^c\)			
Dispersion model out from Caline3QHCR model\(^d\)	CALINE	1.5km, 3km, 6km, 9km	(Eckhoff and Braverman 1995)
Elevation			
Elevation (m)	Elevation	N/A	National Elevation Dataset (USGS 2013)
Census variables			
Population density	Population	500m, 1km, 1.5km, 2km, 2.5km, 3km, 5km, 10km, 15km	U.S. Census Bureau (2001)
Land use variables			
Percent of land use category: open water	LU: water	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: developed open space	LU: open	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: low intensity development	LU: low	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: medium intensity development	LU: med	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: high intensity development	LU: high	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: deciduous forest	LU: forest	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: woody wetland	LU: wetland	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: ice and snow	LU: ice	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: barren rock or sand	LU: barren	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: evergreen forest	LU: evergreen	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: mixed forest	LU: mix forest	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: shrubland	LU: shrub	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: grassland	LU: grass	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: pastureland	LU: pasture	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Variable	Abbreviation	Buffer radii^a	Source
--	------------------	--	---
Percent of land use category: cropland	LU: crop	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Percent of land use category: herbaceous wetland	LU: herb wetland	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
Average impervious surface value	Imp surface	50m, 100m, 150m, 300m, 400m, 500m, 750m, 1km, 3km, 5km	MRLC (2006)
25th percentile of 2006 Normalized Difference Vegetation Index (NDVI) values	NDVI: Q25	250m, 500m, 1km, 2.5km, 5km, 7.5km, 10km	Carroll et al. (2008)
50th percentile of 2006 NDVI values	NDVI: Q50	250m, 500m, 1km, 2.5km, 5km, 7.5km, 10km	Carroll et al. (2008)
75th percentile of 2006 NDVI values	NDVI: Q75	250m, 500m, 1km, 2.5km, 5km, 7.5km, 10km	Carroll et al. (2008)
50th percentile of 2006 Normalized Difference Vegetation Index (NDVI) values, April through September	NDVI: summer	250m, 500m, 1km, 2.5km, 5km, 7.5km, 10km	Carroll et al. (2008)
50th percentile of 2006 NDVI values, January through March and October through December	NDVI: winter	250m, 500m, 1km, 2.5km, 5km, 7.5km, 10km	Carroll et al. (2008)

Urban topography (New York and Chicago only)

Variable	Abbreviation	Source
Building height (floors)	Canyon metrics	New York City Dept. of City Planning (2004), City of Chicago (2011)
Distance-weighted mean of building heights on same and opposite side of street (floors)	Canyon metrics	New York City Dept. of City Planning (2004), City of Chicago (2011)
Block length (m)	Canyon metrics	New York City Dept. of City Planning (2004), City of Chicago (2011)
Indicator of being at block’s end	Canyon metrics	New York City Dept. of City Planning (2004), City of Chicago (2011)
Indicator of no building on opposite side of street	Canyon metrics	New York City Dept. of City Planning (2004), City of Chicago (2011)

^aMeasures were computed within circles of the given radii. ^bTruncated to between 10m and 25km, except for distance to residual oil boiler, which had an upper limit of 2km. ^cCovariate values were log-transformed. ^dAt a small number of locations missing Caline3QHCR measures, values were imputed as the geometric mean of the values at AQS and fixed sites in that region.
Figure S1. Correlations between geographic covariates and the two PLS components for the long-term average (β_0) in the Chicago NO$_2$ model. Abbreviations are defined in Supplemental Material, Table S4. Different circle sizes represent different buffer radii.
Table S5. R^2_{CV} for snapshot sites, by season. In Los Angeles, snapshot sites in Riverside were monitored at different times than the central Los Angeles sites and are reported separately. Similarly, snapshot sites in New York City and Rockland County are reported separately.

Region	Winter	Spring	Summer	Autumn
NO$_2$				
Baltimore	0.75	–	0.79	0.65
Chicago	0.56	0.53	0.53	–
Los Angeles – Central	0.49	–	0.55	0.60
Los Angeles – Riverside	0.44	0.41	0.43	–
New York – NYC	0.70	0.76	0.79	–
New York – Rockland	0.34	0.26	0.00	–
St. Paul	0.86	0.90	0.81	–
Winston-Salem	0.56	–	0.54	0.24
NO$_x$				
Baltimore	0.63	–	0.61	0.72
Chicago	0.40	0.61	0.45	–
Los Angeles – Central	0.62	–	0.35	0.65
Los Angeles – Riverside	0.35	0.33	0.32	–
New York – NYC	0.51	0.43	0.37	–
New York – Rockland	0.17	0.09	0.03	–
St. Paul	0.79	0.81	0.70	–
Winston-Salem	0.41	–	0.34	0.47
Table S6. Leave-one-out cross-validation measures of predictive accuracy for two-week predictions at AQS and fixed sites. Units for RMSE are μg/m3 (PM$_{2.5}$), ppb (NO$_2$ and NO$_X$), and 10$^{-5}$/m (LAC).

Region	RMSE	R^2_{CV}
PM$_{2.5}$		
Baltimore	1.74	0.86
Chicago	2.02	0.80
Los Angeles	3.39	0.80
New Yorka	1.89	0.83
St. Paul	1.62	0.82
Winston-Salem	1.55	0.87
NO$_X$		
Baltimore	6.95	0.88
Chicago	8.37	0.82
Los Angeles	12.6	0.86
New Yorka	12.4	0.67
St. Paul	4.72	0.86
Winston-Salem	6.76	0.63
NO$_2$		
Baltimore	2.51	0.82
Chicago	3.77	0.71
Los Angeles	4.45	0.81
New Yorka	3.49	0.85
St. Paul	2.37	0.80
Winston-Salem	2.13	0.80
LAC		
Baltimore	0.163	0.79
Chicago	0.117	0.68
Los Angeles	0.226	0.84
New Yorka	0.280	0.52
St. Paul	0.085	0.81
Winston-Salem	0.079	0.86

aIncludes NYCCAS Reference Sites.
Table S7. Cross-validation measures of predictive accuracy for site means at monitoring locations in New York, from models fit without NYCCAS data. Leave-one-out cross-validation was used for AQS and fixed sites and ten-fold cross-validation was used for home sites. Units for RMSE are $\mu g/m^3$ (PM$_{2.5}$), ppb (NO$_2$ and NO$_X$), and $10^{-5}/m$ (LAC).

Pollutant	AQS and MESA Fixed: RMSE	AQS and MESA Fixed: R^2_{CV}	AQS and MESA Fixed: R^2_{CVreg}	MESA Home: RMSE	MESA Home: R^2_{CV}	MESA Home: R^2_{CVreg}
PM$_{2.5}$	0.79	0.79	0.91	3.92	0.36	0.43
NO$_2$	1.69	0.94	0.95	3.88	0.77	0.77
NO$_X$	10.3	0.55	0.77	14.3	0.62	0.62
LAC	0.27	0.55	0.71	0.40	0.43	0.44
Figure S2. Cross-validated predictions and observations averaged over observed time period for home site monitoring locations for each pollutant. The New York data include NYCCAS distributed sites.
References

Bureau of Transportation Statistics. 2009. National Transportation Atlas Database [digital data set]. Available: http://www.bts.gov/publications/national_transportation_atlas_database

Carroll ML, DiMiceli CM, Sohlberg RA, Townshend JRG. 2008. 250m MODIS Normalized Difference Vegetation Index [digital data set]. Available: http://glcf.umiacs.umd.edu/data/ndvi/

City of Chicago. 2011. Building Footprints. Available: https://data.cityofchicago.org/Buildings/Building-Footprints/w2v3-isjw

Eckhoff P, Braverman T. 1995. Addendum to the user’s guide to CAL3QHC version 2.0 (CAL3QHCR user’s guide).

MRLC: Multi-Resolution Land Characteristics Consortium. 2006. National Land Cover Database 2006 [digital data set]. Available: http://www.mrlc.gov/nlcd2006.php

National Geospatial Intelligence Agency. 2013. World Port Index (Pub 150).

New York City Department of City Planning. 2004. New York City Primary Land Use Tax Lot Output (PLUTO) Property Characteristic Data. Available: http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml

Price CV, Nakagaki N, Hitt KJ, Clawges RC. 2006. Enhanced Historical Land-Use and Land-Cover Data Sets of the U.S. Geological Survey, U.S. Geological Survey Digital Data Series 240 [digital data set]. Available: http://pubs.usgs.gov/ds/2006/240

TeleAtlas. 2000. TeleAtlas Dynamap 2000 [CD_ROM].

U.S. Census Bureau. 2001. TIGER/Line Shapefiles. Available: http://arcdata.esri.com/data/tiger2000/tiger_download.cfm

U.S. EPA Emission Inventory Group. 2006. 2002 National Emissions Inventory Database [digital data set]. Available: http://www.epa.gov/ttn/chieft/net/2002inventory.html

USGS. 2013. National Elevation Dataset. Available: http://seamless.usgs.gov/products/1arc.php