Strong decay of the heavy tensor mesons with QCD sum rules

Zhí-Gang Wang

Department of Physics, North China Electric Power University, Baoding 071003, P. R. China

Abstract

In the article, we calculate the hadronic coupling constants $G_{D^2 D s}$, $G_{D^0 D K}$, $G_{B_s B s}$, $G_{B_{1,2} B K}$ with the three-point QCD sum rules, then study the two body strong decays $D^*_2(2460) \to D\pi, D^*_2(2573) \to DK, B_2^*(5747) \to B\pi, B_2^*(5840) \to BK$, and make predictions to be confronted with the experimental data in the future.

PACS number: 13.20.Fc, 13.20.He

Key words: Hadronic coupling constants, Tensor mesons, QCD sum rules

1 Introduction

The heavy-light mesons listed in the Review of Particle Physics can be classified into the spin doublets in the heavy quark limit, now the 1S (0, 1−) doublets (B, B^*), (D, D^*), (B_s, B_s^*), (D_s, D_s^*) and the 1P (1+, 2+) doublets ($B_1(5721), B_2^*(5747)$), ($D_1(2420), D_2^*(2460)$), ($B_s(5830), B_s^*(5840)$), ($D_s(2536), D_s^*(2573)$) are complete [1]. The doublet ($D_1(2420), D_2^*(2460)$) are well-established experimentally, while the quantum numbers of the $D^*_2(2573)$ are not as well established, the width and decay modes are consistent with the $J^P = 2^+$ assignment [1]. In 2007, the D0 collaboration firstly observed the $B_1(5721)^0$ and $B_2^*(5747)^0$ [2], later the CDF collaboration confirmed them, and obtained the width $\Gamma(B_2^*) = (2.7^{+3.8}_{-3.2} \pm 3.2)$ MeV [3]. Also in 2007, the CDF collaboration observed the $B_{1s}(5830)$ and $B_{2s}^*(5840)$ [4]. The D0 collaboration confirmed the $B_{2s}^*(5840)$ [5]. In 2012, the LHCb collaboration updated the masses $M_{B_{1s}} = (5828.40 \pm 0.04 \pm 0.04 \pm 0.41)$ MeV and $M_{B_{2s}^*} = (5839.99 \pm 0.05 \pm 0.11 \pm 0.17)$ MeV, and measured the width $\Gamma(B_{2s}^*) = (1.56 \pm 0.13 \pm 0.47)$ MeV [6]. Recently, the CDF collaboration measured the masses and widths of the $B_1(5721)$, $B_2^*(5747)$, $B_{1s}(5830)$, $B_{2s}^*(5840)$, and observed a new excited state $B(5970)$ [7].

The 1P (1+, 2+) doublets have been drawn little attention compared to the 1S (0, 1−) and 1P (0+, 1+) doublets [8]. We can study the masses, decay constants and strong decays of the 1P (1+, 2+) doublets based on the QCD sum rules to obtain fruitful information about their internal structure and examine the heavy quark symmetry. The P-wave, D-wave and radial excited heavy-light mesons will be studied in details in the futures at the LHCb and KEK-B. Experimentally, the strong decays of the 1P (1+, 2+) doublets take place through relative D-wave, the corresponding widths are proportional to $|p|^{2L+1}$, with the angular momentum $L = 2$ transferred in the decays. In these decays, the momentum $|p|$ is small, the decays are kinematically suppressed. The strong decays $B_1(5721)^0 \to B^{*+}\pi^−$, $B_2(5747)^0 \to B^{*+}\pi^−, B^{*+}\pi^−$ [2, 3], $B_{1s}(5830)^0 \to B^{*+}K^−$ [4, 5], $B_{2s}^*(5840)^0 \to B^*K^−$ [4, 5, 6], $B_{2s}^*(5840)^0 \to B^*K^−$ [4, 5, 6], $D_2^*(2460)^− \to D^{0}\pi^+, D_1(2420)^0 \to D^{*+}\pi^−, D_1(2420)^+ \to D^{*0}\pi^+ + 1 | 5 | 6 | 7$, $D_1(2536)^+ \to D^{*+}\pi^0, D_2(2573)^+ \to D^0 K^+ | 1 | 5 | 6 | 7$, have been observed.

The QCD sum rules (QCDSR) is a powerful nonperturbative theoretical tool in studying the ground state hadrons, and has given many successful descriptions of the masses, decay constants, hadronic form-factors, hadronic coupling constants, etc [12, 13, 14, 15]. The hadronic coupling constants in the $D^*D\pi, D^*D_s K, D^*D K, B^* B\pi, B^* B K, D D\rho, D_s D K^*, D_s B K^*, D_s^* D K^*, B^* B K^*, D^* D\rho, B^* B^\rho, B_{1s} B K, B_{3s} B^* K, D_s^2 D K_1$, $J/\psi D D^*, J/\psi D^* D^*, B_s^* B Y, B_s^* B_c J/\psi, B_s B_c Y, B_s B_c J/\psi$ vertices have been studied with the three-point QCDSR [16, 17], while the hadronic coupling constants in the $D^* D\pi, D^* D_s K, D^*_2 D K, B^* B\pi, D D\rho, D D K^*, D D_s K^*, D_s D_{1s} \phi, B B\rho, D D^* \rho, D^* D_s K^*, D_s^2 D K^*, D_s^2 D K_1, J/\psi D D^*, J/\psi D^* D^*$, $B_s^* B Y, B_s^* B_c J/\psi, B_s B_c Y, B_s B_c J/\psi$ vertices have been studied with the light-cone QCDSR [18].

1E-mail, zgwang@aliyun.com.
The detailed knowledge of the hadronic coupling constants is of great importance in understanding the effects of heavy quarkonium absorptions in hadronic matter. Furthermore, the hadronic coupling constants play an important role in understanding final-state interactions in the heavy quarkonium (or meson) decays and in other phenomenological analysis. Some hadronic coupling constants, such as $G_{B_{2}D_{π}}$, $G_{B_{2}D_{π}}$, $G_{B_{2}B_{π}}$, $G_{B_{2}B_{π}}$, can be directly extracted from the experimental data as the corresponding strong decays are kinematically allowed, we can confront the theoretical predications to the experimental data in the futures.

In Ref.[20], K. Azizi et al study the masses and decay constants of the tensor mesons $D_{2}^{*}(2460)$ and $D_{s2}^{*}(2573)$ with the QCDSR by only taking into account the perturbative terms and the mixed condensates in the operator product expansion. In Ref.[20], we calculate the contributions of the vacuum condensates up to dimension-6 in the operator product expansion, study the masses and condensates in the operator product expansion. In Ref.[20], we calculate the contributions of the QCDSR. The predicted masses of the $D_{2}^{*}(2460)$, $D_{s2}^{*}(2573)$, $B_{2}^{*}(5747)$, $B_{2}^{*}(5840)$ with the QCDSR. The predicted masses of the $D_{2}^{*}(2460)$, $D_{s2}^{*}(2573)$, $B_{2}^{*}(5747)$, $B_{2}^{*}(5840)$ are in excellent agreement with the experimental data, while the ratios of the decay constants $\frac{f_{D_{2}^{*}}}{f_{D_{s2}^{*}}} \approx \frac{f_{B_{2}^{*}}}{f_{B_{s2}^{*}}} \approx \frac{f_{D_{2}^{*}}}{f_{D_{s2}^{*}}}$, where the exp denotes the experimental value [1]. In Ref.[21], K. Azizi et al calculate the hadronic coupling constants $g_{B_{2}D_{π}}$, $g_{D_{2}D_{π}}$ with the three-point QCDSR, and study the strong decays $D_{2}^{*}(2460) \rightarrow D^{+}\pi^{-}$ and $D_{s2}^{*}(2573) \rightarrow D^{+}K^{0}$, the decay widths are too small to account for the experimental data, if the widths of the tensor mesons are saturated approximately by the two-body strong decays. In the article, we take the decay constants of the heavy tensor mesons as input parameters [20], choose the pertinent tensor structures to study the vertices $D_{2}^{*}D_{π}$, $D_{s2}^{*}DK$, $B_{2}B_{π}$, $B_{s2}BK$ with the three-point QCDSR, and obtain the corresponding hadronic coupling constants, then study the two body strong decays $D_{2}^{*}(2460) \rightarrow D_{π}$, $D_{s2}^{*}(2573) \rightarrow DK$, $B_{2}(5747) \rightarrow B_{π}$, $B_{s2}(5840) \rightarrow BK$.

The article is arranged as follows: we derive the QCDSR for the hadronic coupling constants in the vertices $D_{2}^{*}D_{π}$, $D_{s2}^{*}DK$, $B_{2}B_{π}$, $B_{s2}BK$ in Sect.2; in Sect.3, we present the numerical results and calculate the two body strong decays; and Sect.4 is reserved for our conclusions.

2 QCD sum rules for the hadronic coupling constants

In the following, we write down the three-point correlation functions $\Pi_{μν}(p,p')$ in the QCDSR,

$$
\Pi_{μν}(p,p') = i^2 \int d^4xd^4y e^{ip'x-ey(Dp-\gamma_5q)\cdot(y-z)} \langle 0 | T \left\{ J_{B}(x)J_{B}^{\dagger}(y)J_{μν}(z) \right\} | 0 \rangle |_{z=0},
$$

where $Q = c, b$ and $q, q' = u, d, s$, the pseudoscalar currents $J_{B}(x)$ ($J_{B}(y)$) interpolate the heavy (light) pseudoscalar mesons D and $B (π$ and $K)$, respectively, the tensor currents $J_{μν}(z)$ interpolate the heavy tensor mesons $D_{2}^{*}(2460)$, $D_{s2}^{*}(2573)$, $B_{2}^{*}(5747)$ and $B_{s2}^{*}(5840)$, respectively.

We can insert a complete set of intermediate hadronic states with the same quantum numbers as the current operators $J_{μν}(0)$, $J_{B}(x)$ and $J_{B}(y)$ into the correlation functions $\Pi_{μν}(p,p')$ to obtain the hadronic representation [12][13]. After isolating the ground state contributions from the heavy tensor mesons T, heavy pseudoscalar mesons D and light pseudoscalar mesons F, we get the
following result,

\[
\Pi_{\mu\nu}(p, p') = \frac{f_T M_T^2 f_D M_D^2 f_F M_F^2}{(m_Q + m_q)(m_q + m_u)(M_T^2 - p^2)(M_D^2 - p'^2)} \left\{ \frac{\lambda(M_T^2, M_D^2, q^2)}{12 M_T^2} g_{\mu\nu} + \frac{M_T^2 + M_D^2 - q^2}{2 M_T^2} (p_\mu p'_\nu + p'_\mu p_\nu) + \left[\frac{M_T^2}{M_T^2 + \frac{\lambda(M_T^2, M_D^2, q^2)}{6 M_T^2}} \right] p_\mu p_\nu \right\} + \cdots,
\]

= \Pi_1(p^2, p'^2)g_{\mu\nu} + \Pi_2(p^2, p'^2)p_\mu p'_\nu + \Pi_3(p^2, p'^2)(p_\mu p'_\nu + p'_\mu p_\nu) + \Pi_4(p^2, p'^2)p_\mu p_\nu + \cdots,
\]

(3)

where \(\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2bc - 2ca\), the decay constants \(f_T, f_D, f_F\) and the hadronic coupling constants \(G_{TDF}\) are defined by

\[
\langle 0|J_\mu(0)|T(p)\rangle = f_T M_T^2 \varepsilon_{\mu\nu},
\]

\[
\langle 0|J_\nu(0)|D(p')\rangle = f_D M_D^2, m_q,
\]

\[
\langle 0|J_\nu(0)|P(q)\rangle = f_F M_F^2, m_q,
\]

\[
\langle D(p')|P(q)|T(p)\rangle = G_{TDF} \varepsilon_{\alpha\beta}(s, p) p'^{\alpha} q^{\beta},
\]

(4)

(5)

the \(\varepsilon_{\alpha\beta}\) are the polarization vectors of the tensor mesons with the following properties,

\[
\sum_s \varepsilon_{\mu\nu}(s, p) \varepsilon_{\alpha\beta}(s, p) = \frac{\bar{g}_{\mu\alpha} g_{\nu\beta} + \bar{g}_{\mu\beta} g_{\nu\alpha}}{2} - \frac{\bar{g}_{\mu\nu} g_{\alpha\beta}}{3}.
\]

(6)

In general, we expect that we can choose either component \(\Pi_i(p^2, p'^2)\) (with \(i = 1, 2, 3, 4\)) of the correlations \(\Pi_{\mu\nu}(p, p')\) to study the hadronic coupling constants \(G_{TDF}\). In calculations, we observe that the tensor structures \(g_{\mu\nu}\) and \(p_\mu p'_\nu\) are the pertinent tensor structures. In Ref. [21], K. Azizi et al. take the tensor currents \(J_{\mu\nu}(z) = i\bar{Q}(z) (\gamma^\tau \gamma^\nu \gamma^\mu + \gamma^\nu \gamma^\mu) q(z)\), which couple both to the heavy tensor mesons and heavy scalar mesons, some contaminations are introduced.

Now, we briefly outline the operator product expansion for the correlation functions \(\Pi_{\mu\nu}(p, p')\) in perturbative QCD. We contract the quark fields in the correlation functions \(\Pi_{\mu\nu}(p, p')\) with Wick theorem firstly,

\[
\Pi_{\mu\nu}(p, p') = \int d^4x d^4y e^{ip'\cdot x} e^{ip\cdot(y-z)} Tr \left\{ i\gamma_5 S^q_{ij}(x-y) i\gamma_5 S^q_{jk}(y-z) \Gamma_{\mu\nu} S^Q_{kl}(z-x) \right\} |_{z=0},
\]

(7)

where

\[
\Gamma_{\mu\nu} = i \left(\gamma_\mu \frac{\partial}{\partial z^\nu} + \gamma_\nu \frac{\partial}{\partial z^\mu} - \frac{2}{3} \bar{g}_{\mu\nu} \gamma^7 \frac{\partial}{\partial z^7} \right),
\]

(8)

\[
S^q_{ij}(x) = \frac{i}{(2\pi)^2} \int d^4k e^{-ikx} \left\{ \delta_{ij} \frac{g_s G_{\alpha\beta} \delta_{ij}^{n,n}}{k^2 - m_Q^2} + \frac{g_s^2 G G_{\delta_{ij}} m_Q^2 + m_Q^2 k^2}{(k^2 - m_Q^2)^3} + \cdots \right\}.
\]

(9)
covariant derivative has no contributions as
the full
condensates have no contributions, so we take a simple replacement
full light quark propagators in the coordinate space. In the present case, the quark condensates
integrals to obtain the QCD spectral density through dispersion relation.
We put all the quark lines on mass-shell using the Cutkosky’s rules, see Fig.1, and obtain the
Figure 1: The leading-order contributions, the dashed lines denote the Cutkosky’s cuts.
\[\rho^{0}_{\mu\nu}(p, p') = \frac{3i}{(2\pi)^4} \int d^4k \frac{\text{Tr} \{ \gamma_5 [k - m_q] \gamma_5 [k - p - p'] + m_q \} \Gamma_{\mu\nu} [k - p - p']}{[k^2 - m_q^2] [(k + p - p')^2 - m_Q^2] [(k - p')^2 - m_Q^2]}, \]
where
\[\Gamma_{\mu\nu} = \gamma_\mu(p - 2k - 2p')_\nu + \gamma_\nu(p - 2k - 2p')_\mu - \frac{2}{3} \tilde{g}_{\mu\nu} (\not{p} + 2 \not{k} - 2 \not{p'}) . \]
We put all the quark lines on mass-shell using the Cutkosky’s rules, see Fig.1, and obtain the leading-order spectral densities \(\rho_{\mu\nu} \),
\[\rho_{\mu\nu} = \frac{3}{(2\pi)^4} \int d^4k \delta [k^2 - m_q^2] \delta [(k + p - p')^2 - m_q^2] \delta [(k - p')^2 - m_Q^2] \]
\[\text{Tr} \{ \gamma_5 [k + m_q] \gamma_5 [k + p - p' + m_q] \Gamma_{\mu\nu} [k - p' + m_Q] \}, \]

\[\frac{9 \mu\nu}{4\pi^2 \sqrt{\lambda(s, u, q^2)}} \left\{ m_Q^2 (m_q - m_Q) - q^2 m_Q (m_Q + m_{q'}) + m_Q (s m_q - u m_{q'}) \
ight.
+ 6 (u - s + q^2 + 2 m_q m_Q - 2 m_{q'} m_Q) d_2(0, 0, m_Q) \\
+ \left. \frac{3 p'_\mu p'_\nu}{2\pi^2 \sqrt{\lambda(s, u, q^2)}} \left\{ u + q^2 - m_Q^2 + 2 m_Q m_Q \
ight. \\
+ (s - 2u - 2q^2 + m_Q^2 - 4 m_q m_Q + 2 m_{q'} m_Q) b_1(0, 0, m_Q) \\
+ \left. (u - s + q^2 + 2 m_q m_Q - 2 m_{q'} m_Q) b_2(0, 0, m_Q) \right\} + \cdots , \]
where we have used the following formulae,

\begin{align*}
\int d^4k \delta^3 &= \frac{\pi}{2\sqrt{\lambda(s, u, q^2)}}, \\
\int d^4k \delta^3 k_{\mu} &= \frac{\pi}{2\sqrt{\lambda(s, u, q^2)}} \left[a_1(m_A, m_B, m_Q)p_\mu + b_1(m_A, m_B, m_Q)p'_\mu \right], \\
\int d^4k \delta^3 k_{\mu} k_\nu &= \frac{\pi}{2\sqrt{\lambda(s, u, q^2)}} \left[a_2(m_A, m_B, m_Q)p_\mu p_\nu + b_2(m_A, m_B, m_Q)p'_\mu p'_\nu \\
&\quad + c_2(m_A, m_B, m_Q)(p_\mu p'_\nu + p'_\mu p_\nu) + d_2(m_A, m_B, m_Q)g_{\mu\nu} \right], \quad (14)
\end{align*}

\[
\delta^3 = \delta [k^2 - m_A^2] \delta [(k + p - p')^2 - m_B^2] \delta [(k - p')^2 - m_Q^2],
\]

\[
b_1(m_A, m_B, m_Q) = \frac{1}{\lambda(s, u, q^2)} \left[m_Q^2(s - u + q^2) + u(u - s - 2q^2) + q^2(q^2 - s) \\
- 2sm_A^2 + m_B^2(u + s - q^2) \right],
\]

\[
b_2(m_A, m_B, m_Q) = \frac{1}{\lambda(s, u, q^2)} \left[(u - q^2 - m_Q^2)^2 + 2m_B^2(u - q^2 - m_Q^2) - 4sm_A^2 \right] \\
+ \frac{6s}{\lambda^2(s, u, q^2)} \left\{ q^2 [m_Q^2 - (u + s - q^2)m_Q^2 + su] + m_A^2m_B^2(q^2 - u - s) \\
+ m_A^2[s(s - u - q^2) + m_Q^2(u - s - q^2)] \\
+ m_B^2[u(u - s - q^2) + m_Q^2(s - u - q^2)] \right\},
\]

\[
d_2(m_A, m_B, m_Q) = \frac{1}{2\lambda(s, u, q^2)} \left\{ q^2 [m_A^4 - (u + s - q^2)m_A^2 + su] + m_A^2m_B^2(q^2 - u - s) \\
+ m_A^2[s(s - u - q^2) + m_Q^2(u - s - q^2)] \\
+ m_B^2[u(u - s - q^2) + m_Q^2(s - u - q^2)] \right\}, \quad (15)
\]

Here we have neglected the terms m_A^4 and m_B^4 as they are irreverent in present calculations. The gluon condensate contributions shown by the Feynman diagrams in Fig.2 are calculated accordingly.
We take quark-hadron duality below the continuum thresholds s_0 and u_0 respectively, and perform the double Borel transform with respect to the variables $P^2 = -p^2$ and $P'^2 = -p'^2$ to obtain the QCDSR,

\[
\Pi_1(M_1^2, M_2^2) = \frac{f_T M_1^2 f_T M_2^2 f_T M_2^2 G_{TD}(q^2)}{(M_Q + m_q)(m_q + m_{q'}) (M_2^2 - q^2)} \frac{\lambda(M_2^2, M_0^2, q^2)}{12M_B^2} \exp \left(-\frac{M_2^2}{M_1^2} - \frac{M_2^2}{M_2^2} \right) \\
= \int ds du \exp \left(-\frac{s}{M_1^2} - \frac{u}{M_2^2} \right) \left\{ \frac{1}{4\pi^2 \sqrt{\lambda(s, u, q^2)}} \left[m_Q^3(m_q - m_q) - q^2 m_Q(m_Q + m_q) + m_Q(s m_q - u m_{q'}) + 6 (u - s + q^2 + 2m_q m_Q - 2m_q m_Q) d_2(0, 0, m_Q) \right] \\
+ \frac{1}{\sqrt{\lambda(s, u, q^2)}} \left(\alpha_s G' \right) \left[\frac{1}{9s} - \frac{s - u - 3q^2}{12} \frac{\partial^2}{\partial m_A^2 \partial m_B^2} d_2(m_A, m_B, m_Q) \right] \\
- \frac{s - 3u - q^2}{12} \frac{\partial^2}{\partial m_A^2 \partial m_Q^2} d_2(m_A, 0, m_Q) + \frac{s + u + q^2}{12} \frac{\partial^2}{\partial m_B^2 \partial m_Q^2} d_2(0, m_B, m_Q) \\
- \frac{1}{3} \frac{\partial}{\partial m_A^2} d_2(m_A, 0, m_Q) - \frac{1}{2} \frac{\partial}{\partial m_B^2} d_2(0, m_B, m_Q) \right\}, \tag{16}
\]

\[
\Pi_2(M_1^2, M_2^2) = \frac{f_T M_1^2 f_T M_2^2 f_T M_2^2 G_{TD}(q^2)}{(M_Q + m_q)(m_q + m_{q'}) (M_2^2 - q^2)} \exp \left(-\frac{M_2^2}{M_1^2} - \frac{M_2^2}{M_2^2} \right) \\
= \int ds du \exp \left(-\frac{s}{M_1^2} - \frac{u}{M_2^2} \right) \left\{ \frac{3}{2\pi^2 \sqrt{\lambda(s, u, q^2)}} \left[u + q^2 - m_Q^2 + 2m_Q m_q + (s - 2u - 2q^2 + 2m_Q m_Q + 2m_{q'} m_Q) b_1(0, 0, m_Q) \right] \\
+ (u - s + q^2 + 2m_q m_Q - 2m_{q'} m_Q) b_2(0, 0, m_Q) \right\} \\
+ \frac{1}{\sqrt{\lambda(s, u, q^2)}} \left(\alpha_s G' \right) \left[\frac{1}{9s} - \frac{s - u - 3q^2}{12} \frac{\partial^2}{\partial m_A^2 \partial m_B^2} b_2(m_A, m_B, m_Q) \right] \\
- \frac{s - 3u - q^2}{12} \frac{\partial^2}{\partial m_A^2 \partial m_Q^2} b_2(m_A, 0, m_Q) + \frac{s + u + q^2}{12} \frac{\partial^2}{\partial m_B^2 \partial m_Q^2} b_2(0, m_B, m_Q) \\
- \frac{1}{3} \frac{\partial}{\partial m_A^2} b_2(m_A, 0, m_Q) - \frac{1}{2} \frac{\partial}{\partial m_B^2} b_2(0, m_B, m_Q) + \frac{5}{6} \frac{\partial}{\partial m_A^2} b_1(0, m_A, 0, m_Q) + \frac{11}{12} \frac{\partial}{\partial m_B^2} b_1(0, m_B, m_Q) \right\}, \tag{17}
\]

where

\[
\int ds du = \int_{m_Q^2}^{s_0} ds \int_{m_Q^2}^{u_0} du \left| -1 \leq \frac{(u - q^2 - m_Q^2)(s + u - q^2) - 2u (u - m_Q^2)}{|u - q^2 - m_Q^2| \sqrt{\lambda(u, s, q^2)}} \leq 1 \right| , \tag{18}
\]

\[
\frac{\partial^2}{\partial m_A^2 \partial m_B^2} f(m_A, m_B, m_Q) \mid_{m_A = 0; m_B = 0} \\
= \frac{\partial^2}{\partial m_A^2 \partial m_B^2} f(m_A, m_B, m_Q) \mid_{m_A = 0; m_B = 0} , \tag{19}
\]

and $f(m_A, m_B, m_Q) = b_1(m_A, m_B, m_Q), b_2(m_A, m_B, m_Q), d_2(m_A, m_B, m_Q), \cdots, m_A^2, m_B^2, m_Q^2$.

6
3 Numerical results and discussions

The hadronic input parameters are taken as $M_{D^2(2460)^0} = (2464.3 \pm 1.6)$ MeV, $M_{D^0(2460)^0} = (2461.8 \pm 0.7)$ MeV, $M_{D_s^+(2570)} = (2571.9 \pm 0.8)$ MeV, $M_{B_s^0(5740)^0} = (5743 \pm 5)$ MeV, $M_{B_s^+(5840)^0} = (5839.96 \pm 0.20)$ MeV, $M_{D_s^0(1869.5 \pm 0.4)}$ MeV, $M_{D^0} = (1864.91 \pm 0.17)$ MeV, $M_{B_s^\pm} = (5279.25 \pm 0.26)$ MeV, $M_{B_s^0} = (5279.55 \pm 0.26)$ MeV, $M_{K^\pm} = (493.677 \pm 0.013)$ MeV, $M_{K^0} = (497.614 \pm 0.022)$ MeV, $M_{\pi^\pm} = (139.57018 \pm 0.00035)$ MeV, $M_{\rho^0} = (134.9766 \pm 0.0006)$ MeV, $f = 130$ MeV, $f_K = 156$ MeV from the Particle Data Group [1]. The threshold parameters are taken as $s_0^D = (8.5 \pm 0.5)$ GeV2, $s_0^{D_s} = (9.5 \pm 0.5)$ GeV2, $s_0^{B_s} = (39 \pm 1)$ GeV2, $s_0^{B_{s^*}} = (41 \pm 1)$ GeV2, $u_D^0 = (6.2 \pm 0.5)$ GeV2, $u_B^0 = (33.5 \pm 1.0)$ GeV2 from the QCDSR [20, 22]. Then the energy gaps $\sqrt{s_0}/u_0 - M_{\text{ground state}} = (0.4 - 0.6)$ GeV, the contributions of the ground states are fully included.

The value of the gluon condensate $\langle \frac{\bar{G}G}{\pi^2} \rangle$ is taken as the standard value $\langle \frac{\bar{G}G}{\pi^2} \rangle = 0.012$ GeV4 [13]. The masses the u and d quarks are obtained through the Gell-Mann-Oakes-Renner relation $m_u^2 + m_d^2 = 2(m_u + m_d)(\bar{q}q)$, i.e. $m_u = m_d = 6$ MeV at the energy scale $\mu = 1$ GeV.

In the article, we take the $\overline{\text{MS}}$ masses $m_c(m_c) = (1.275 \pm 0.025)$ GeV, $m_b(m_b) = (4.18 \pm 0.03)$ GeV and $m_s(\mu) = 2$ GeV = (0.095 ± 0.005) GeV from the Particle Data Group [1], and take into account the energy-scale dependence of the $\overline{\text{MS}}$ masses from the renormalization group equation,

$$m_s(\mu) = m_s(2\text{GeV}) \left[\frac{\alpha_s(\mu)}{\alpha_s(2\text{GeV})} \right]^\frac{1}{2},$$

$$m_c(m_c) = m_c(m_c) \left[\frac{\alpha_s(m_c)}{\alpha_s(m_c)} \right]^\frac{3}{2},$$

$$m_b(m_b) = m_b(m_b) \left[\frac{\alpha_s(m_b)}{\alpha_s(m_b)} \right]^\frac{5}{2},$$

$$\alpha_s(\mu) = \frac{1}{b_0 t} \left[1 - \frac{b_1 \log t}{b_0^2} + \frac{b_2^2 (\log^2 t - \log t - 1) + b_3 b_2}{b_0^2 t} \right],$$

where $t = \log \frac{\mu^2}{\Lambda^2}$, $b_0 = \frac{33 - 2n_f}{12\pi}$, $b_1 = \frac{153 - 19n_f}{24\pi^2}$, $b_2 = \frac{2857 - 603n_f + 225n_f^2}{128\pi^4}$, $\Lambda = 213$ MeV, 296 MeV and 339 MeV for the flavors $n_f = 5, 4$ and 3, respectively $[1]$. In Ref. [20], we study the masses and decay constants of the heavy tensor mesons using the QCDSR, and obtain the values $M_{D^2} = (2.46 \pm 0.09)$ GeV, $M_{D^*_s} = (2.58 \pm 0.09)$ GeV, $M_{B_s} = (5.73 \pm 0.06)$ GeV, $M_{B_{s^*}} = (5.84 \pm 0.06)$ GeV, $f_{D^2} = (0.182 \pm 0.020)$ GeV, $f_{D^*_s} = (0.222 \pm 0.021)$ GeV, $f_{B_s} = (0.110 \pm 0.011)$ GeV, $f_{B_{s^*}} = (0.134 \pm 0.011)$ GeV. The predicted masses M_{D^2}, $M_{D^*_s}$, M_{B_s} and $M_{B_{s^*}}$ are in excellent agreement with the experimental data. In calculations, we take $n_f = 4$ and $\mu = 1(3)$ GeV for the charmed (bottom) tensor mesons. The same energy scales and truncations in the operator product expansion lead to the values $M_D = 1.87$ GeV, $M_B = 5.28$ GeV, $f_D = 156$ MeV and $f_B = 168$ MeV. If we take into account the perturbative corrections, the experimental values $f_{D^2} = 205$ MeV and $f_{B^2} = 190$ MeV can be reproduced [1, 22, 23]. In this article, we take the values of the decay constants of the heavy-light mesons as $f_{D^2} = 0.182$ GeV, $f_{D^*_s} = 0.222$ GeV, $f_{B_s} = 0.110$ GeV, $f_{B_{s^*}} = 0.134$ GeV, $f_D = 0.156$ GeV and $f_B = 0.168$ GeV, and neglect the uncertainties so as to avoid double counting as the uncertainties originate mainly from the threshold parameters and heavy quark masses.

From the QCDSR in Eqs. (16-17), we can see that there are no contributions come from the quark condensates and mixed condensates, and no terms of the orders $O(\frac{1}{M^3})$, $O(\frac{1}{M^2})$, $O(\frac{1}{M})$, $O(\frac{1}{M^3})$, \cdots, which are needed to stabilize the QCDSR so as to warrant a platform. In this article, we take the local limit $M_f^2 = M_f^2 \to \infty$, and obtain the local QCDSR.

Now we obtain the hadronic coupling constants $G_{TDP}(q^2 = -Q^2)$ at the large space-like regions, for example, $Q^2 \geq 3$ GeV2, then fit the hadronic coupling constants $G_{TDP}(Q^2)$ into the functions
Table 1: The parameters of the hadronic coupling constants $G_{\text{TDP}}(Q^2)$, where the $g_{\mu\nu}$ and $p'_\mu p'_\nu$ denote the tensor structures of the QCDSR, the units of the $G_{\text{TDP}}(Q^2)$, A_i, B_i and Q^2 are GeV$^{-1}$, GeV$^{-1}$, GeV$^{-2}$ and GeV2, respectively.

\[
\begin{array}{|c|c|c|c|c|}
\hline
i & g_{\mu\nu} & D_{\mu}D_{\nu} & D_{\mu\nu}DK & B_{\mu\nu}B\pi & B_{\mu\nu}BK \\
\hline
Q^2 & 3.0 - 5.0 & 3.0 - 5.0 & 3.5 - 5.5 & 3.5 - 5.5 \\
\hline
A_C & 16.42481 & 11.92224 & 39.18672 & 25.67374 \\
B_C & -1.86478 & -1.23275 & -3.98713 & -2.3704 \\
\hline
A_U & 19.74325 & 14.18738 & 44.15991 & 28.71525 \\
B_U & -1.99324 & -1.30484 & -4.00222 & -2.34827 \\
\hline
A_L & 12.96084 & 9.55968 & 33.97408 & 22.48229 \\
B_L & -1.67737 & -1.12313 & -3.89453 & -2.34741 \\
\hline
G_{\text{TDP}}(Q^2 = -M_Z^2) & 16.5^{+3.3}_{-3.3} & 12.2^{+7.9}_{-2.4} & 39.3^{+5.9}_{-5.2} & 26.3^{+7.1}_{-1.2} \\
\hline
p'_\mu p'_\nu & D_{\mu}D_{\nu} & D_{\mu\nu}DK & B_{\mu\nu}B\pi & B_{\mu\nu}BK \\
\hline
Q^2 & 3.0 - 5.0 & 3.0 - 5.0 & 3.5 - 5.5 & 3.5 - 5.5 \\
\hline
A_C & 12.31645 & 9.69653 & 17.07687 & 12.66033 \\
B_C & -1.3785 & -0.99737 & -1.64969 & -1.12767 \\
\hline
A_U & 14.90752 & 11.57224 & 19.45758 & 14.31228 \\
B_U & -1.47863 & -1.0608 & -1.64827 & -1.11951 \\
\hline
A_L & 9.58102 & 7.71456 & 14.55604 & 10.90844 \\
B_L & -1.2291 & -0.90211 & -1.60863 & -1.10864 \\
\hline
G_{\text{TDP}}(Q^2 = -M_Z^2) & 12.3^{+3.2}_{-2.7} & 9.9^{+7.9}_{-2.0} & 17.1^{+5.4}_{-3.5} & 12.9^{+7.1}_{-1.7} \\
\hline
\end{array}
\]

From Table 1, we can see that the ratio,

\[
\frac{G_{D_{\mu}\pi}}{G_{D_{\mu}\pi}(Q^2 = -M_Z^2)} \approx \frac{G_{B_{\mu\nu}B\pi}(Q^2 = -M_Z^2)}{G_{B_{\mu\nu}B\pi}(Q^2 = -M_Z^2)} \approx 1.
\] (21)

From Table 1, we can see that the ratio,

\[
\frac{G_{D_{\mu}\pi}}{G_{D_{\mu}\pi}(Q^2 = -M_Z^2)} \approx \frac{G_{B_{\mu\nu}B\pi}(Q^2 = -M_Z^2)}{G_{B_{\mu\nu}B\pi}(Q^2 = -M_Z^2)} \approx \frac{3}{4},
\] (22)

which is smaller than the expectation 1. In calculations, we have used the s-quark mass $m_s = 95$ MeV at the energy scale $\mu = 2$ GeV, if we take larger value (the value of the m_s varies in a rather large range [13]), say $m_s = 130$ MeV, the relations in Eq.(21) can be satisfied. So in this article, we prefer the values $G_{D_{\mu}\pi}(Q^2 = -M_Z^2)$ and $G_{B_{\mu\nu}B\pi}(Q^2 = -M_Z^2)$ from the QCDSR, and take the approximation $G_{D_{\mu}\pi}(Q^2 = -M_Z^2) = G_{B_{\mu\nu}B\pi}(Q^2 = -M_Z^2) = G_{B_{\mu\nu}B\pi}(Q^2 = -M_Z^2)$ according to the heavy quark symmetry and chiral symmetry.

The values of the hadronic coupling constants come from the QCDSR associate with the tensor $g_{\mu\nu}$ are much larger than that of the tensor $p'_\mu p'_\nu$. In this article, we prefer the values $G_{D_{\mu}\pi}(Q^2 = -M_Z^2) = 16.5^{+3.3}_{-3.5}$ GeV$^{-1}$, $G_{B_{\mu\nu}B\pi}(Q^2 = -M_Z^2) = 39.3^{+4.9}_{-5.2}$ GeV$^{-1}$ associate with the tensor $g_{\mu\nu}$, as they lead to much larger decay widths and favor accounting for the experimental data.

We can take the hadronic coupling constants $G_{\text{TDP}}(Q^2 = -M_Z^2)$ as basic input parameters and
study the following strong decays,

\begin{align*}
D_s^+(2460) & \to D^+ \pi^-, D^0 \pi^0, \\
D_s^+(2573) & \to D^0 K^+, D^+ K^0, \\
B_s^+(5747) & \to B^+ \pi^-, B^0 \pi^0, \\
B_s^+(5840) & \to B^+ K^-, B^0 \bar{K}^0,
\end{align*}

(23)

which take place through relative D-wave. The decay widths can be written as

\[\Gamma = C_p \frac{G^2_{\text{PDG}} |\vec{p}|^5}{60\pi M_T^2}, \]

(24)

where

\[|\vec{p}| = \frac{\sqrt{\lambda(M_T^2, M_{B_s}^2, M_{K_s}^2)}}{2M_T}, \]

\[C_p = 1 \text{ (or } \frac{1}{2} \text{) for the final states } \pi^\pm, K \text{ (or } \pi^0). \]

The numerical results are

\begin{align*}
\Gamma(D_s^+(2460) \to D^+ \pi^-) &= 7.91_{-3.60}^{+3.49} \text{ MeV}, \\
\Gamma(D_s^+(2460) \to D^0 \pi^0) &= 4.14_{-1.57}^{+1.82} \text{ MeV}, \\
\Gamma(D_s^+(2573) \to D^0 K^+) &= 3.35_{-1.27}^{+1.48} \text{ MeV}, \\
\Gamma(D_s^+(2573) \to D^+ K^0) &= 3.04_{-1.15}^{+1.34} \text{ MeV}, \\
\Gamma(B_s^+(5747) \to B^+ \pi^-) &= 3.42_{-0.85}^{+0.90} \text{ MeV}, \\
\Gamma(B_s^+(5747) \to B^0 \pi^0) &= 1.73_{-0.43}^{+0.46} \text{ MeV}, \\
\Gamma(B_s^+(5840) \to B^+ K^-) &= 0.25_{-0.06}^{+0.06} \text{ MeV}, \\
\Gamma(B_s^+(5840) \to B^0 \bar{K}^0) &= 0.21_{-0.05}^{+0.06} \text{ MeV}.
\end{align*}

(25)

From the experimental data of the BaBar collaboration,

\[\frac{\Gamma(D_s^+(2460) \to D^+ \pi^-)}{\Gamma(D_s^+(2460) \to D^+ \pi^-) + \Gamma(D_s^+(2460) \to D^+ \pi^-)} = 0.62 \pm 0.03 \pm 0.02 \text{ [1]}; \]

\[\frac{\Gamma(D_s^+(2460) \to D^+ \pi^-)}{\Gamma(D_s^+(2460) \to D^+ \pi^-)} = 1.47 \pm 0.03 \pm 0.16 \text{ [10]}, \]

(26)

we can obtain the average,

\[\frac{\Gamma(D_s^+(2460) \to D^+ \pi^-)}{\Gamma(D_s^+(2460) \to D^+ \pi^-)} = 1.55, \]

(27)

which is consistent with the PDG’s average 1.54 ± 0.15 [1]. We assume

\[\frac{\Gamma(D_s^+(2460) \to D^0 \pi^0)}{\Gamma(D_s^+(2460) \to D^+ \pi^-)} = \frac{\Gamma(D_s^+(2460) \to D^+ \pi^-)}{\Gamma(D_s^+(2460) \to D^+ \pi^-)} = 1.55, \]

(28)

and saturate the total decay width \(\Gamma(D_s^+(2460)) \) with the two-body strong decays \(D_s^+(2460) \to D^+ \pi^-, D^+ \pi^-, D^0 \pi^0, D^0 \pi^0 \), then obtain the theoretical value,

\[\Gamma(D_s^+(2460)^0) = (12 - 29) \text{ MeV}, \]

(29)
which is much smaller than the experimental value,
\[
\Gamma(D_s^+(2460)^0) = (49.0 \pm 1.3) \text{ MeV} \quad \text{PDG’s average [1]},
\]
\[
= (43.2 \pm 1.2 \pm 3.0) \text{ MeV \ from the final state } D^{*+}\pi^- \text{ [11]},
\]
\[
= (45.6 \pm 0.4 \pm 1.1) \text{ MeV \ from the final state } D^+\pi^- \text{ [11]}. \quad (30)
\]

The strong decays \(D_{s2}^+(2573) \to D^{*0}K^+, D^{*+}K^0\) are greatly suppressed in the phase-space, while the strong decays \(D_{s2}^+(2573) \to D^{*+}\pi^0, D^{*+}\pi^0\) violate the isospin conservation and are also greatly suppressed. We saturate the total decay width \(\Gamma(D_{s2}^+(2573))\) with the two-body strong decays \(D_{s2}^+(2573) \to D^0K^+, D^+K^0\), and obtain the theoretical value,
\[
\Gamma(D_{s2}^+(2573)) = (4 - 9) \text{ MeV}, \quad (31)
\]
which is smaller than the experimental value,
\[
\Gamma(D_{s2}^+(2573)) = (17 \pm 4) \text{ MeV [1]}. \quad (32)
\]

At the bottom sector, we assume \(\Gamma(B_2^+(5747) \to B^+\pi) = \Gamma(B_2^+(5747) \to B\pi)\) according to the experimental value [1] and neglect the kinematically suppressed decays \(B_{s2}^+(5840) \to B^{*+}K^-, B^{*0}K^0\) and isospin violated decays \(B_{s2}^+(5840) \to B^0\pi^0, B^{*0}\pi^0, B^{*0}\pi^0\), and saturate the total decay widths \(\Gamma(B_2^+(5747))\) and \(\Gamma(B_{s2}^+(5840))\) with the two-body strong decays \(B_2^+(5747) \to B^+\pi^-, B^{*+}\pi^-, B^0\pi^0, B^{*0}\pi^0\) and \(B_{s2}^+(5840) \to B^+K^-, B^{*0}K^0\), respectively. Then we obtain the theoretical values,
\[
\Gamma(B_2^+(5747))^0 = (8 - 13) \text{ MeV},
\]
\[
\Gamma(B_{s2}^+(5840)) = (0.4 - 0.6) \text{ MeV}, \quad (34)
\]
which are smaller than the experimental values,
\[
\Gamma(B_2^+(5747))^0 = (26 \pm 3 \pm 3) \text{ MeV [2]},
\]
\[
\Gamma(B_{s2}^+(5840)) = (2.0 \pm 0.4 \pm 0.2) \text{ MeV [2]}. \quad (35)
\]

If the perturbative \(O(\alpha_s)\) corrections to the hadronic coupling constants \(G_{\text{TDP}}\) are about 30\%, then taking into account the perturbative \(O(\alpha_s)\) corrections lead to the following replacements,
\[
G_{\text{TDP}} \to 1.3G_{\text{TDP}},
\]
\[
\Gamma(D_2^+(2460)^0) \to (20 - 49) \text{ MeV},
\]
\[
\Gamma(D_{s2}^+(2573)) \to (7 - 15) \text{ MeV},
\]
\[
\Gamma(B_2^+(5747))^0 \to (14 - 22) \text{ MeV},
\]
\[
\Gamma(B_{s2}^+(5840)) \to (0.7 - 1.0) \text{ MeV}. \quad (36)
\]

Then the theoretical values \(\Gamma(D_2^+(2460)^0), \Gamma(D_{s2}^+(2573))\) and \(\Gamma(B_2^+(5747))^0\) are compatible with the experimental data, while the theoretical value \(\Gamma(B_{s2}^+(5840))\) is still smaller than the experimental value.

4 Conclusion

In the article, we choose the pertinent tensor structures to calculate the hadronic coupling constants \(G_{D_2^+D\pi}, G_{D_{s2}^+DK}, G_{B_2^+B\pi}, G_{B_{s2}^+BK}\) with the three-point QCDSR, then study the two body
strong decays $D_s^*(2460) \to D\pi$, $D_s^*(2573) \to DK$, $B_s^*(5747) \to B\pi$, $B_s^*(5840) \to BK$, the predicted total widths are compatible with the experimental data, while the predicted partial widths can be confronted with the experimental data from the BESIII, LHCb, CDF, D0 and KEK-B collaborations in the futures. We can also take the hadronic coupling constants as basic input parameter in many phenomenological analysis.

Acknowledgements

This work is supported by National Natural Science Foundation, Grant Numbers 11375063, the Fundamental Research Funds for the Central Universities, and Natural Science Foundation of Hebei province, Grant Number A2014502017.

References

[1] J. Beringer et al, Phys. Rev. D86 (2012) 010001.
[2] V. M. Abazov et al, Phys. Rev. Lett. 99 (2007) 172001.
[3] T. Aaltonen et al, Phys. Rev. Lett. 102 (2009) 102003.
[4] T. Aaltonen et al, Phys. Rev. Lett. 100 (2008) 082001.
[5] V. Abazov et al, Phys. Rev. Lett. 100 (2008) 082002.
[6] R. Aaij et al, Phys. Rev. Lett. 110 (2013) 151803.
[7] T. Aaltonen et al, arXiv:1309.5961.
[8] E. S. Swanson, Phys. Rept. 429 (2006) 243; E. Klempt and A. Zaitsev, Phys. Rept. 454 (2007) 1.
[9] B. Aubert et al, Phys. Rev. Lett. 103 (2009) 051803.
[10] P. del Amo Sanchez et al, Phys. Rev. D82 (2010) 111101.
[11] R. Aaij et al, JHEP 1309 (2013) 145.
[12] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B147 (1979) 385; Nucl. Phys. B147 (1979) 448.
[13] L. J. Reinders, H. Rubinstein and S. Yazaki, Phys. Rept. 127 (1985) 1.
[14] S. Narison, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17 (2002) 1.
[15] P. Colangelo and A. Khodjamirian, hep-ph/0010175.
[16] F. S. Navarra, M. Nielsen, M. E. Bracco, M. Chiapparini and C. L. Schat, Phys. Lett. B489 (2000) 319; M. E. Bracco, M. Chiapparini, A. Lozea, F. S. Navarra and M. Nielsen, Phys. Lett. B521 (2001) 1; F. S. Navarra, M. Nielsen and M. E. Bracco, Phys. Rev. D65 (2002) 037502; R. D. Matheus, F.S. Navarra, M. Nielsen and R. Rodrigues da Silva, Phys. Lett. B541 (2002) 265; R. Rodrigues da Silva, R. D. Matheus, F. S. Navarra and M. Nielsen, Braz. J. Phys. 34 (2004) 236; M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielsen, Phys. Lett. B605 (2005) 326; M. E. Bracco, A. Cerqueira, M. Chiapparini, A. Lozea and M. Nielsen, Phys. Lett. B641 (2006) 286; M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielsen, Phys. Lett. B659 (2008) 559; M. E. Bracco and M. Nielsen, Phys. Rev. D82 (2010) 034012; B. O. Rodrigues, M. E. Bracco, M. Nielsen and F. S. Navarra, Nucl. Phys. A852 (2011) 127; K.
Azizi and H. Sundu, J. Phys. G38 (2011) 045005; H. Sundu, J.Y. Sungu, S. Sahin, N. Yinelek and K. Azizi, Phys. Rev. D83 (2011) 114009; A. Cerqueira, Jr, B. O. Rodrigues and M. E. Bracco, Nucl. Phys. A874 (2012) 130; C. Y. Cui, Y. L. Liu and M. Q. Huang, Phys. Lett. B707 (2012) 129; C. Y. Cui, Y. L. Liu and M. Q. Huang, Phys. Lett. B711 (2012) 317; Z. G. Wang, Phys. Rev. D89 (2014) 034017.

[17] M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielsen, Prog. Part. Nucl. Phys. 67 (2012) 1019.

[18] P. Colangelo, F. De Fazio, G. Nardulli, N. Di Bartolomeo and R. Gatto, Phys. Rev. D52 (1995) 6422; T. M. Aliev, N. K. Pak and M. Savci, Phys. Lett. B390 (1997) 335; P. Colangelo and F. De Fazio, Eur. Phys. J. C4 (1998) 503; Y. B. Dai and S. L. Zhu, Phys. Rev. D58 (1998) 074009; S. L. Zhu and Y. B. Dai, Phys. Rev. D58 (1998) 094033; A. Khodjamirian, R. Ruckl, S. Weinzierl and O. I. Yakovlev, Phys. Lett. B457 (1999) 245; Z. H. Li, T. Huang, J. Z. Sun and Z. H. Dai, Phys. Rev. D65 (2002) 076005; H. c. Kim and S. H. Lee, Eur. Phys. J. C22 (2002) 707; D. Becirevic, J. Charles, A. LeYaouanc, L. Oliver, O. Pene and J. C. Raynal, JHEP 0301 (2003) 009; Z. G. Wang and S. L. Wan, Phys. Rev. D73 (2006) 094020; Z. G. Wang and S. L. Wan, Phys. Rev. D74 (2006) 014017; Z. G. Wang, Eur. Phys. J. C52 (2007) 553; Z. G. Wang, Nucl. Phys. A796 (2007) 61; Z. G. Wang, J. Phys. G34 (2007) 753; Z. G. Wang, Phys. Rev. D77 (2008) 054024; Z. G. Wang and Z. B. Wang, Chin. Phys. Lett. 25 (2008) 444; Z. H. Li, W. Liu and H. Y. Liu, Phys. Lett. B659 (2008) 598.

[19] H. Sundu and K. Azizi, Eur. Phys. J. A48 (2012) 81; K. Azizi, H. Sundu, J. Y. Sungu and N. Yinelek, Phys. Rev. D88 (2013) 036005.

[20] Z. G. Wang and Z. Y. Di, arXiv:1405.5092.

[21] K. Azizi, Y. Sarac and H. Sundu, arXiv:1402.6887.

[22] Z. G. Wang, JHEP 1310 (2013) 208.

[23] J. L. Rosner and S. Stone, arXiv:1309.1924.