Decrease in primary but not in secondary abdominal surgery for Crohn’s disease: nationwide cohort study, 1990–2014

T. D. Kalman1, Å. H. Eversohn2,3, C. Nordenvall4,6, M. C. Sachs3, J. Halfvarson8, A. Ekbom3, J. F. Ludvigsson5,9,10,11, P. Myrelid1 and O. Olén2,3,7

1Division of Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, and Department of Surgery, County Council of Östergötland, Linköping, 2Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 3Division of Clinical Epidemiology, Department of Medicine Solna, 4Department of Molecular Medicine and Surgery, and 5Department Medical Epidemiology and Biostatistics, Karolinska Institutet, 6Centre for Digestive Disease, Division of Coloproctology, Karolinska University Hospital, and 7Department of Paediatric Gastroenterology and Nutrition, Sachs’ Children and Youth Hospital, Stockholm, and 8Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, and 9Department of Paediatrics, Örebro University Hospital, Örebro University, Örebro, Sweden, 10Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK, and 11Department of Medicine, Columbia University College of Physicians and Surgeons, New York, USA

Correspondence to: Dr T. D. Kalman, Kirurgiska Kliniken, Universitetssjukhuset, 581 85 Linköping, Sweden (e-mail: disa.kalman@liu.se)

Background: Treatment of patients with Crohn’s disease has evolved in recent decades, with increasing use of immunomodulatory medication since 1990 and biologicals since 1998. In parallel, there has been increased use of active disease monitoring. To what extent these changes have influenced the incidence of primary and repeat surgical resection remains debated.

Methods: In this nationwide cohort study, incident patients of all ages with Crohn’s disease, identified in Swedish National Patient Registry between 1990 and 2014, were divided into five calendar periods of diagnosis: 1990–1995 and 1996–2000 with use of inpatient registries, 2001, and 2002–2008 and 2009–2014 with use of inpatient and outpatient registries. The cumulative incidence of first and repeat abdominal surgery (except closure of stomas), by category of surgical procedure, was estimated using the Kaplan–Meier method.

Results: Among 21273 patients with Crohn’s disease, the cumulative incidence of first abdominal surgery within 5 years of Crohn’s disease diagnosis decreased continuously from 54.8 per cent in 1990–1995 to 40.4 per cent in 1996–2000 (P < 0.001), and again from 19.8 per cent in 2002–2008 and 2009–2014 with use of inpatient and outpatient registries. The cumulative incidence of first and repeat abdominal surgery (except closure of stomas), by category of surgical procedure, was estimated using the Kaplan–Meier method.

Conclusion: The 5-year rate of surgical intervention for Crohn’s disease has decreased significantly, but the rate of repeat surgery has remained stable despite the introduction of biological therapy.

Presented in part to the 13th Annual Congress of the European Crohn’s and Colitis Organization, Vienna, Austria, February 2018; published in abstract form as J Crohns Colitis 2018; 12(Suppl): S011–S012

Paper accepted 4 April 2020
Published online 26 May 2020 in Wiley Online Library (www.bjs.co.uk). DOI: 10.1002/bjs.11659

Introduction

Medical therapy, including monoclonal antibodies, constitutes the majority of healthcare costs for patients with Crohn’s disease (CD)1. To what extent the advent of biological therapy has affected the incidence of surgery remains debated, as the favourable efficacy results from clinical trials have not readily translated into real-world effects. A recent observational study2 of all surgery-naïve patients with CD in Stockholm county between 2006 and 2014 reported no difference in bowel resection rates between those maintained on antitumour necrosis factor (TNF) therapy for more than 12 months and those who discontinued treatment earlier.

Population-based studies3–15 of the incidence of abdominal surgery for CD have shown conflicting results, although a decreasing trend was most often reported (Table S1, supporting information). However, the incidence of specific surgical procedures for CD and the risk of repeat surgery remains unknown.
The aim of this study was to use data from a national cohort of patients with CD diagnosed between 1990 and 2014 to provide both the trend and current rate of primary and repeat surgery for CD, as well as to describe rates of surgery based on the type of surgical procedure.

Methods

Ethical approval for this study was granted by the Regional Ethics Committee, Karolinska Institutet, Stockholm, Sweden (approval numbers including amendments: 2007/785-31/5; 2015/1030-32).

Study design and setting

A population-based nationwide registry was used to create a cohort study of patients with CD who were followed longitudinally. Sweden had a population of 9.7 million inhabitants in December 2014, and has a tax funded healthcare system with universal access. The majority of patients with CD are cared for at hospital-based outpatient facilities or inpatient facilities, and have access to modern pharmaceutical agents.

Linkage and data sources

Since 1947, every Swedish resident has been given a unique personal identity number, which is used in all official registries and enables registry linkage. The National Patient Registry (NPR) consists of the inpatient and the outpatient registries. The inpatient registry contains data on all inpatient care since 1964, with full national coverage from 1987, and on hospital-based outpatient surgery since 1997. The non-primary outpatient registry has had full national coverage since 2001.

Study population

Patients were included if they had a first-ever diagnosis of CD registered in the NPR between 1 January 1990 and 31 December 2014, as determined by ICD-9 and ICD-10 codes listed in Table S2 (supporting information). To confirm the diagnosis of CD, at least two diagnostic listings with CD as the main or contributory diagnosis in inpatient or outpatient care, or abdominal surgery associated with inflammatory bowel disease (IBD) (Table S3, supporting information) on the same date as the first diagnosis of CD, was required. Patients were excluded if they had a diagnosis of ulcerative colitis or IBD unclassified (IBD-U) before the first diagnosis of CD or underwent intestinal surgery (except appendicectomy) before 1 January 1990.

Inflammatory bowel disease subtypes during follow-up

The subtype of IBD (CD, ulcerative colitis or IBD-U) was classified at the end of follow-up according to a previously published algorithm accounting for CD-specific surgery.

Abdominal surgery

Information on the date and type of abdominal surgery was extracted from the NPR. Procedures were classified based on anatomical location and expected functional outcome (Tables S3 and S4, and Appendix S1, supporting information): A, resection of small bowel with or without formation of a stoma; B, ileocaecal/ileocolic resection or right-sided hemicolecctiony with or without formation of a stoma; C, segmental resections of colon or rectum with or without formation of a stoma; D, colectomy (with or without concurrent proctectomy) and with or without formation of a stoma (including patients having 3 or more segmental colonic resections); E, proctectomy (with or without concurrent colectomy); or F, other procedures including formation of a stoma and/or strictureplasty as the only procedure. If a patient was coded with procedures from any of the categories A–E and category F (other procedures), the categories A–E had priority, meaning that any other procedures were counted as additional secondary procedures and therefore not recorded.

Procedures for stoma closure and those for adhesive small bowel obstruction were excluded as they were not felt to be related to refractory CD or complications of CD alone.

Statistical analysis

Categorical variables are described as number with percentage, and continuous variables as mean(s.d.) or median (i.q.r.). Follow-up time started on the date patients fulfilled inclusion criteria and ended on the date of emigration, death or 31 December 2014, whichever came first. The cumulative incidence of first abdominal surgery overall, as well as for the different surgery types separately (small bowel resection, ileocaecal resection, segmental colorectal resection, colectomy, proctectomy and other procedures) was estimated using the Kaplan–Meier method.

The cumulative incidence of abdominal surgery was compared across different calendar periods (1990–1995, 1996–2000, 2001, 2002–2008 and 2009–2014). The first two intervals included patients identified through the inpatient registry only. The 2001 cohort contained a mixture
unchanged but low risk of repeat surgery for Crohn’s disease

Fig. 1 Study flow chart

First diagnosis of Crohn’s disease between 1990 and 2014
\(n = 33,701 \)

Excluded: < 2 IBD listings and no abdominal surgery on same day \(n = 11,306 \)

Diagnosed twice or had abdominal surgery on same day \(n = 22,395 \)

Excluded \(n = 1,122 \)
Abdominal surgery before diagnosis \(n = 952 \)
Missing birth date/data irregularities \(n = 170 \)

Included \(n = 21,273 \)

IBD, inflammatory bowel disease.

of true incident patients (identified in outpatient or inpatient care) as well as prevalent cases that appeared to be incident as there had been no previous inpatient care. The last two calendar periods contained true incident CD cases identified in outpatient or inpatient care. The differences in cumulative incidence of first operation across calendar periods before and after the start of the outpatient registry were compared using log rank tests.

The cumulative incidence of repeat abdominal surgery (except closure of stomas), overall and according to surgical type, was also compared. For repeat surgery, follow-up started on the day after the patient was released from hospital after the first surgical procedure. In contrast to the analyses of first operation, all patients at risk of repeat surgery had been hospitalized previously, and the cumulative risks could therefore be compared across the entire study interval.

Results

A total of 21,273 incident patients with CD were identified between 1990 and 2014 (Fig. 1 and Table 1). One-third of the patients were diagnosed before 2001. Median follow-up ranged from 20.9 years in the first cohort to 3.0 years in the most recent one encompassing the years 2009–2014.

Table 1 Description of study population by year of first diagnostic listing of Crohn’s disease

Age at Crohn’s disease onset (years)	1990–1995 \(n = 3110 \)	1996–2000 \(n = 3,184 \)	2001 \(n = 1,680 \)	2002–2008 \(n = 7,262 \)	2009–2014 \(n = 6,037 \)
Mean(s.d.)	40.3(19.6)	39.5(19.4)	40.9(18.4)	39.0(20.0)	38.8(20.2)
Median (i.q.r.)	37(24–54)	36(23–54)	39(26–55)	36(22–55)	34(22–55)
< 18	333(10–7)	401(12–6)	171(10–2)	1183(16–3)	881(14–6)
18–39	1359(43–7)	1358(42–7)	706(42–0)	2909(40–1)	2601(43–1)
40–59	816(26–2)	897(28–2)	519(30–9)	1870(25–8)	1360(22–5)
≥ 60	602(19–4)	528(16–6)	284(16–9)	1300(17–9)	1195(19–8)
Sex					
F	1640(52–7)	1639(51–5)	865(51–5)	3764(51–8)	2975(49–3)
M	1470(47–3)	1545(48–5)	815(48–5)	3498(48–2)	3062(50–7)
Age at end of follow-up (years)					
Mean(s.d.)	59.1(16–7)	54.3(17–7)	53.7(17–6)	48.0(19–5)	41.8(20–2)
Median (i.q.r.)	57.7(45.5–72.1)	51.6(39.7–68.7)	52.1(39.6–67.5)	45.2(31.5–63.5)	36.9(24.6–58.4)
Subtype of inflammatory bowel disease at end of follow-up					
Crohn’s disease	2909(93.5)	2946(92.8)	1523(90.7)	6653(91.6)	5711(94.6)
Ulcerative colitis	90(2.9)	100(3.1)	64(3.8)	162(2.2)	5(0.1)
Unclassified	111(3.6)	138(4.3)	93(5.5)	447(6.2)	321(5.3)
Duration of follow-up (years)					
0 to <5	229(7.4)	192(6.0)	74(4.4)	414(5.7)	5037(83.4)
≥ 5 to <10	181(5.8)	157(4.9)	70(4.2)	4075(56.1)	1000(6.6)
≥ 10 to <15	181(5.8)	768(24.1)	1536(91.4)	2773(38.2)	0(0)
≥ 15	2519(81.0)	2067(64.9)	0(0)	0(0)	0(0)

Values in parentheses are percentages unless indicated otherwise.
Table 2 Duration of follow-up and surgery events by year of Crohn’s disease onset and type of surgery (first operation only)

Year of CD onset	Follow-up (years)*	Surgery within 1 year	Surgery within 5 years	Surgery within 10 years	Surgery ever
1990–1995	20.9 (19.1–22.8)	1399 (45.0)	1692 (54.4)	1855 (59.6)	2001 (64.3)
1996–2000	15.7 (14.5–17.2)	1015 (31.9)	275 (40.0)	1419 (44.6)	1547 (48.6)
2001	13.6 (13.2–13.8)	202 (12.0)	311 (18.5)	400 (23.8)	436 (26.0)
2002–2008	9.1 (7.2–11.1)	956 (13.2)	1426 (19.6)	1706 (23.5)	1753 (24.1)
2009–2014	3.0 (1.5–4.4)	619 (10.3)	842 (13.9)	851 (14.1)	851 (14.1)

Values in parentheses are crude percentages calculated on counts of events without accounting for censoring, unless indicated otherwise; *values are median (i.q.r.). CD, Crohn’s disease. Surgery codes: A, resection of small bowel with or without stoma formation; B, ileocaecal resection/ileocolic resection/right-sided hemicolectomy with or without stoma formation; C, all other segmental resections of colon and rectum with or without stoma formation; D, total colectomy; E, proctectomy; F, other abdominal surgical procedures, including stoma formation as the only procedure.

(Tables 2). A total of 6588 patients (30.9 per cent) underwent a primary abdominal operation and, of these, 1625 (24.7 per cent) had a second abdominal procedure (Table 2 and Fig. 2).

First abdominal surgery

The 5- and 10-year cumulative incidence of primary abdominal surgery decreased significantly between 1990–1995 and 1996–2000, with 5-year rates dropping from 54.8 to 40.4 per cent, and 10-year rates from 60.5 to 45.2 per cent ($P < 0.001$) (Fig. 2a). The 5-year cumulative incidence further decreased from 19.8 per cent in 2002–2008 to 17.3 per cent in 2009–2014 ($P < 0.001$). The 10-year cumulative incidence was 25.0 per cent between 2002 and 2008, but remains unknown to date for 2009–2014. Ileocaecal resection was the most common procedure performed, irrespective of time period, accounting for 64.6 per cent of all primary resections (Fig. 2a); 68.8 per cent of these were performed within a year of CD diagnosis (Table 2).

Repeat abdominal surgery

Median follow-up after primary abdominal surgery was 7.3 years. The cumulative incidence of a second abdominal procedure within 5 years of the index operation decreased significantly from 18.9 per cent in 1990–1995 to 16.0 per cent in 1996–2000 ($P = 0.009$) (Fig. 2b). There was no significant decrease across the subsequent calendar periods. The most common repeat surgical procedure was neoleiocolic re-resection (Fig. 3b), which accounted for 28.4 per cent of all repeat resections.

Small bowel resection

The 5-year cumulative incidence of first small bowel resection decreased significantly from 13.6 per cent in 1990–1995 to 8.2 per cent in 1996–2000 ($P < 0.001$). The
Fig. 2 Cumulative incidence of first and second abdominal surgery in relation to year of inflammatory bowel disease onset

(a) First abdominal surgery

(b) Second abdominal surgery

Fig. 3 Cumulative incidence of first ileocaecal resection and first ileocolic re-resection in relation to year of inflammatory bowel disease onset

(a) First ileocaecal resection

(b) First ileocolic re-resection

© 2020 The Authors. British Journal of Surgery published by John Wiley & Sons Ltd www.bjs.co.uk BJS 2020; 107: 1529–1538 on behalf of BJS Society Ltd.
cumulative 5-year incidence further decreased from 5.8 per cent in 2002–2008 to 5.0 per cent in 2009–2014 (P=0.020) (Fig. 4a). The cumulative incidence of repeat resection of small bowel within 5 years of first resection ranged from 9.5 to 13.5 per cent, and did not decrease significantly between calendar periods (Fig. 4b).

Ileocaecal or ileocolic resection

The 5-year cumulative incidence of first ileocaecal/ileocolic resection decreased significantly from 36.8 per cent in 1990–1995 to 29.0 per cent in 1996–2000 (P<0.001). There was no significant decrease between 2002–2008 and 2009–2014 (13.3 versus 12.4 per cent; P=0.065) (Fig. 3a). The cumulative incidence of repeat ileocolic resection decreased significantly from 5.5 to 4.4 per cent between 1990–1995 and 1996–2000 within 5 years of diagnosis, and from 13.0 to 8.8 per cent within 10 years (P=0.016) (Fig. 3b). However, no significant decrease was seen thereafter. Median follow-up after a first ileocolic resection was 8.9 years.

Segmental resection of colon or rectum

Patients undergoing segmental resection of the colon or rectum were scarce in all cohorts (Fig. S1, supporting information). The 5-year cumulative incidence of first segmental resection decreased significantly from 7.9 per cent in 1990–1995 to 5.2 per cent in 1996–2000 (P<0.001) (Fig. S1, supporting information). There was no significant decrease between 2002–2008 and 2009–2014 (2.7 versus 2.2 per cent; P=0.246). The cumulative incidence of second segmental resection was low in all cohorts, with no significant decreasing trend. For 2001 and 2002–2008, the incidence within 5 years was 7.6 and 8.3 per cent respectively (P=0.852).

Colectomy

The incidence of colectomy was low and decreased throughout the study interval. The cumulative incidence within 5 years was 1.9 per cent in 2002–2008 and 1.1 per cent in 2009–2014 (P=0.001) (Fig. 5).

Proctectomy

The cumulative incidence of proctectomy was very low in all cohorts, even among those with long-standing disease. The incidence decreased between the two cohorts in the 1990s (3.0 versus 1.9 per cent within 20 years of disease onset; P=0.020). In 2002–2008, with a median follow-up of 9.1 years, the cumulative incidence of proctectomy after 10 years was 0.6 per cent.
Other procedures

The cumulative incidence of other main surgical procedures was low throughout the study, with a rate of 1.7 per cent in the most recent cohort. Strictureplasties were included in this category, but could not be fully ascertained in the registry until 1997.

Discussion

During the past decade, several population-based studies have assessed temporal trends in CD surgery, but results have been conflicting (Table S1, supporting information)\(^{21,22}\). A meta-analysis\(^{22}\) of population-based studies of patients diagnosed with CD between 1955 and 2011 reported decreasing rates of surgery, with a 24 per cent probability of surgery within 5 years of diagnosis after 2000. In another meta-analysis\(^{23}\) of population-based studies the risk of a second abdominal procedure within 10 years was 33.2% in studies conducted after 1980. In the present nationwide longitudinal cohort study of more than 21 000 patients with CD, the 5-year cumulative incidence of primary intestinal resection decreased by two-thirds over the study interval. In contrast to the continuously decreasing incidence of primary intestinal resection, the cumulative incidence of repeat abdominal surgery within 5 years of primary surgery remained constant after an initial decrease during the 1990s.

Consistent with another population-based study\(^{11}\), ileo-caecal resection remained the most common procedure during the whole study period. This is likely because CD most commonly affects the terminal ileum, creating the most bowel wall damage in that location, in combination with the narrower lumen of the small bowel being more prone to obstructive symptoms than the colon. Interestingly, colectomies and small bowel resections were the only categories of abdominal surgery with a continual decrease in incidence over the study. This is somewhat surprising given the recent increase in the incidence of colonic CD\(^{24}\), which is now similar to that of ileal disease\(^{24,25}\).

Studies from Denmark\(^{12,13}\), Manitoba\(^{8}\), UK primary care\(^{14}\) and the Netherlands\(^{15}\) have all reported decreasing rates of intestinal resection for CD over time. The Dutch group even noted decreasing surgical rates for all anatomical locations and repeat resections during the entire period. Of note, the incidence of surgery was, however, based on an estimated, rather than known prevalence of CD in the Netherlands\(^{15}\). Other studies have reported conflicting data. A French study\(^{26}\) of 2573 patients during the years 1978–2002 and an analysis\(^{11}\) of 310 patients from Olmsted County in the USA during 1970–2004 did not find a decrease in the incidence of abdominal surgery. Reports from administrative databases in Ireland between 2000 and 2010\(^{27}\), and the USA between 1988 and 2011\(^{28}\), similarly did not document a decrease in the rates of surgery.

IBD, inflammatory bowel disease. \(P = 0.002\) (1990–1995 versus 1996–2000), \(P = 0.001\) (2002–2008 versus 2009–2014) (log rank test).
decreased rates in the present Swedish cohort study may be related to the fact that more than half of the included patients with CD were diagnosed after the introduction of TNF inhibitors, in the era of early immunomodulator use, more conservative management of patients, including the introduction of endoscopic balloon dilatation for anastomotic stricture, improved diagnostics and surveillance, reduced tobacco use, improved active disease monitoring, and increased use of postoperative medical prophylaxis during the study interval.

The use of a nationwide population-based design allows stratification by calendar period and type of surgical procedure for data analysis. In a recent validation of this study design, 93 per cent of patients with at least two recorded diagnoses of IBD in the NPR had a correct diagnosis according to the Copenhagen criteria. The surgical procedure codes have also recently been validated with a positive predictive value of 99 per cent and sensitivity of 94 per cent. Limitations of the analysis are the short follow-up in the most recent cohort, lack of fully comparable data on incidence before and after start of the outpatient register, and lack of complete information on tobacco and medication use.

Updated surgical risk estimates, relevant to current treatment paradigms, are essential for both patients and doctors when making therapeutic decisions. Patients can be educated regarding the decreased rates of bowel resection, even in those with colonic and rectal disease, a phenotype that has become more common in recent years. In fact, the present results have shown that the risk of proctectomy is very low, even in patients with long-standing disease. However, to what extent this trend will continue with the introduction of new medical therapies, in contrast with data from the LIRIC trial that support early surgery, remains an unanswered question.

In a Swedish population-based database, the cumulative incidence of a first abdominal surgical procedure after a diagnosis of CD has decreased by two-thirds over the past 25 years, whereas the incidence of repeat abdominal surgery has not decreased since the introduction of biological therapies.

Acknowledgements

P.M. and O.O. contributed equally to this study. This project was supported by grants from the Swedish Medical Society and Karolinska Institutet Foundations. Financial support was also provided through the regional agreement on medical training and clinical research between Stockholm County Council and Karolinska Institutet, and between Östergötland County and University Hospital in Linköping (ALF). None of the funding organizations had any role in the design and conduct of the study; in the collection, management and analysis of the data; or in the preparation, review and approval of the manuscript. O.O. has been principal investigator on projects at Karolinska Institutet partly financed by investigator-initiated grants from Janssen, Ferring, Takeda and Pfizer, none related to the present study. Karolinska Institutet has received fees for lectures by O.O. and participation on advisory boards from Janssen, Ferring, Takeda and Pfizer regarding subjects not related to the present study. J.F.L. is coordinating a study unrelated to the present study on behalf of the Swedish IBD Quality Register (SWIBREG); that study has received funding from Janssen. P.M. has been involved in projects partly financed by investigator-initiated grants from Janssen, Ferring, Takeda and Pfizer, none related to the present study; and has received fees for lectures and participation on advisory boards from Abbvie, Janssen, Ferring, Takeda and Tillotts Pharma, not related to the present study. J.H. has received consulting/lecture fees from Abbvie, Celgene, Ferring, Hospira, Janssen, Medivir, MSD, Pfizer, Prometheus, RenapharmaVifor, Sandoz, Shire Takeda and Tillotts Pharma, and research grants from Janssen, MSD and Takeda. A.H.E. has worked on projects at Karolinska Institutet partly financed by investigator-initiated grants from Janssen and Ferring, none related to the present study.

Disclosure: The authors declare no other conflict of interest.

References

1. van der Valk ME, Mangen MJ, Leenders M, Dijkstra G, van Bodegraven AA, Fidder HH et al. Healthcare costs of inflammatory bowel disease have shifted from hospitalisation and surgery towards anti-TNFalpha therapy: results from the COIN study. *Gut* 2014; 63: 72–79.

2. Eberhardson M, Soderling JK, Neovius M, Cars T, Myrlid P, Ludvigsson JF et al. Anti-TNF treatment in Crohn’s disease and risk of bowel resection – a population based cohort study. *Aliment Pharmacol Ther* 2017; 46: 589–598.

3. Bernell O, Lapidus A, Hellers G. Risk factors for surgery and postoperative recurrence in Crohn’s disease. *Ann Surg* 2000; 231: 38–45.

4. Wolters FL, Russel MG, Sijbrands J, Schouten LJ, Odes S, Riis L et al. Disease outcome of inflammatory bowel disease patients: general outline of a Europe-wide population-based 10-year clinical follow-up study. *Scand J Gastroenterol Suppl* 2006; 243: 46–54.

5. Jess T, Riis L, Vind I, Winther KV, Borg S, Binder V et al. Changes in clinical characteristics, course, and prognosis of inflammatory bowel disease during the last 5 decades: a population-based study from Copenhagen, Denmark. *Inflamm Bowel Dis* 2007; 13: 481–489.
6 Solberg IC, Vatn MH, Hoie O, Stray N, Saur J, Jahnson J et al. Clinical course in Crohn's disease: results of a Norwegian population-based ten-year follow-up study. Clin Gastroenterol Hepatol 2007; 5: 1430–1438.

7 Ramadas AV, Gunesh S, Thomas GA, Williams GT, Hawthorne AB. Natural history of Crohn's disease in a population-based cohort from Cardiff (1986–2003): a study of changes in medical treatment and surgical resection rates. Gut 2010; 59: 1200–1206.

8 Nguyen GC, Nugent Z, Shaw S, Bernstein CN. Outcomes of patients with Crohn's disease improved from 1988 to 2008 and were associated with increased specialist care. Gastroenterology 2011; 141: 90–97.

9 Lakatos PL, Golovics PA, David G, Pandur T, Erdelyi Z, Horvath A et al. Has there been a change in the natural history of Crohn's disease? Surgical rates and medical management in a population-based inception cohort from Western Hungary between 1977–2009. Am J Gastroenterol 2012; 107: 579–588.

10 Peneau A, Salleron J, Fumery M, Savoye G, Lerebours E, Dupas J-L et al. P137: Long-term outcome of paediatric-onset Crohn's disease: a population-based study. J Crohns Colitis 2012; 6: S64.

11 Peyrin-Biroulet L, Harmsen WS, Tremaine WJ, Zinsmeister AR, Sandborn WJ, Loftus EV Jr. Surgery in a population-based cohort of Crohn's disease from Olmsted County, Minnesota (1970–2004). Am J Gastroenterol 2012; 107: 1693–1701.

12 Rungoe C, Langholz E, Andersson M, Basit S, Nielsen NM, Wohlfahrt J et al. Changes in medical treatment and surgery rates in inflammatory bowel disease: a nationwide cohort study 1979–2011. Gut 2014; 63: 1607–1616.

13 Vester-Andersen MK, Prosberg MV, Jess T, Andersson M, Bengtsson BG, Blixt T et al. Disease course and surgery rates in inflammatory bowel disease: a population-based, 7-year follow-up study in the era of immunomodulating therapy. Am J Gastroenterol 2014; 109: 705–714.

14 Burr NE, Lord R, Hull MA, Subramanian V. Decreasing risk of first and subsequent surgeries in patients with Crohn's disease in England from 1994 through 2013. Clin Gastroenterol Hepatol 2019; 17: 2042–2049.

15 Beelen EMJ, van der Woude CJ, Pierik MJ, Hoentjen F, de Boer NK, Oldenburg B et al. Dutch Initiative on Crohn's and Colitis (ICC). Decreasing trends in intestinal resection and re-resection in Crohn's disease: a nationwide cohort study. Ann Surg 2019; https://doi.org/10.1097/SLA.0000000000003395 [Epub ahead of print].

16 Statistics Sweden. Födelsmängd 2014: Största folkmängden någonsin SCB; 2015. https://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Befolkning/Befolkningens-sammansattning/Befolkningstakstistik/25788/25795/Behallare-for-Press/385509/# [accessed 3 June 2018].

17 Everhov ÅH, Halfvarson J, Myrelid P, Sachs MC, Nordenvall C, Soederling J et al. Incidence and treatment of patients diagnosed with inflammatory bowel diseases at 60 years or older in Sweden. Gastroenterology 2017; 154: 518–528.

18 Sjöberg D, Holmström T, Larsson M, Nielsen AL, Holmquist L, Ekborn A et al. Incidence and clinical course of Crohn's disease during the first year – results from the IBD Cohort of the Uppsala Region (ICURE) of Sweden 2005–2009. J Crohns Colitis 2014; 8: 215–222.

19 Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, Ekborn A. The Swedish personal identity number: possibilities and pitfalls in healthcare and medical research. Eur J Epidemiol 2009; 24: 659–667.

20 Everhov ÅH, Sachs MC, Malmborg P, Nordenvall C, Myrelid P, Khalili H et al. Changes in inflammatory bowel disease subtype during follow-up and over time in 44 302 patients. Scand J Gastroenterol 2019; 54: 55–63.

21 Annesee V, Duricova D, Gower-Rousseau C, Jess T, Langholz E. Impact of new treatments on hospitalisation, surgery, infection, and mortality in IBD: a focus paper by the epidemiology committee of ECCO. J Crohns Colitis 2016; 10: 216–225.

22 Frolkis AD, Dykeman J, Negron ME, Debruyne J, Jette N, Fiest KM et al. Risk of surgery for inflammatory bowel diseases has decreased over time: a systematic review and meta-analysis of population-based studies. Gastroenterology 2013; 145: 996–1006.

23 Frolkis AD, Lipton DS, Fiest KM, Negron ME, Dykeman J, DeBruyne J et al. Cumulative incidence of second intestinal resection in Crohn's disease: a systematic review and meta-analysis of population-based studies. Am J Gastroenterol 2014; 109: 1739–1748.

24 Lapidus A. Crohn's disease in Stockholm County during 1990–2001: an epidemiological update. World J Gastroenterol 2006; 12: 75–81.

25 Zhulina Y, Udumyan R, Henriksson I, Tysk C, Montgomery S, Halfvarson J. Temporal trends in non-stricturing and non-penetrating behaviour at diagnosis of Crohn's disease in Örebro, Sweden: a population-based retrospective study. J Crohns Colitis 2014; 8: 1653–1660.

26 Cosnes J, Nion-Larmurier I, Beaugerie L, Afchain P, Toret E, Gendre JP. Impact of the increasing use of immunosuppressants in Crohn's disease on the need for intestinal surgery. Gut 2005; 54: 237–241.

27 Burke JP, Velupillai Y, O'Connell PR, Coffey JC. National trends in intestinal resection for Crohn's disease in the post-biologic era. Int J Colorectal Dis 2013; 28: 1401–1406.

28 Geltzeiler CB, Hart KD, Lu KC, Deveney KE, Herzig DO, Tsikitis VL. Trends in the surgical management of Crohn's disease. J Gastrointest Surg 2015; 19: 1862–1868.

29 Feagan BG, Panaccione R, Sandborn WJ, D'Ihaens GR, Schreiber S, Rutgeerts PJ et al. Effects of adalimumab therapy on incidence of hospitalization and surgery in Crohn's disease: results from the CHARM study. Gastroenterology 2008; 135: 1493–1499.

30 Khanna R, Bressler B, Levesque BG, Zou G, Stitt LW, Greenberg GR et al. Early combined immunosuppression for
the management of Crohn’s disease (REACT): a cluster randomised controlled trial. *Lancet* 2015; **386**: 1825–1834.

31 Zhulina Y, Udumyan R, Tysk C, Montgomery S, Halfvarson J. The changing face of Crohn’s disease: a population-based study of the natural history of Crohn’s disease in Örebro, Sweden 1963–2005. *Scand J Gastroenterol* 2016; **51**: 304–313.

32 Olaison G, Smedh K, Sjödahl R. Natural course of Crohn’s disease after ileocolic resection: endoscopically visualised ileal ulcers preceding symptoms. *Gut* 1992; **33**: 331–335.

33 Rutgeerts P, Geboes K, Vantrappen G, Beyls J, Kerremans R, Hiele M. Predictability of the postoperative course of Crohn’s disease. *Gastroenterology* 1990; **99**: 956–963.

34 Gustavsson A, Magnuson A, Blomberg B, Andersson M, Halfvarson J, Tysk C. Endoscopic dilation is an efficacious and safe treatment of intestinal strictures in Crohn’s disease. *Aliment Pharmacol Tber* 2012; **36**: 151–158.

35 van den Heuvel TRA, Jeuring SFG, Zeegers MP, van Dongen DHE, Wolters A, Masceee AAM et al. A 20 year temporal change analysis in incidence, presenting phenotype and mortality in the Dutch IBDSL cohort – can diagnostic factors explain the increase in IBD incidence? *J Crohns Colitis* 2017; **11**: 1169–1179.

36 Cosnes J. Smoking and diet: impact on disease course? *Dig Dis* 2016; **34**: 72–77.

37 Colombel JF, Panaccione R, Bossuyt P, Lukas M, Baert F, Vanasek T et al. Effect of tight control management on Crohn’s disease (CALM): a multicentre, randomised, controlled phase 3 trial. *Lancet* 2018; **390**: 2779–2789.

38 Jakobsson GL, Sternegard E, Olen O, Myrelid P, Ljung R, Strid H et al. Validating inflammatory bowel disease (IBD) in the Swedish National Patient Register and the Swedish Quality Register for IBD (SWIBREG). *Scand J Gastroenterol* 2017; **52**: 216–221.

39 Forss A, Myrelid P, Olen O, Everhov AH, Nordenvall C, Halfvarson J et al. Validating surgical procedure codes for inflammatory bowel disease in the Swedish National Patient Register. *BMC Med Inform Decision Making* 2019; **19**: 217.

40 Silverstein MD, Loftus EV, Sandborn WJ, Tremaine WJ, Feagan BG, Nietert PJ et al. Clinical course and costs of care for Crohn’s disease: Markov model analysis of a population-based cohort. *Gastroenterology* 1999; **117**: 49–57.

41 Boualit M, Salleron J, Turck D, Fumery M, Savoye G, Dupas JL et al. Long-term outcome after first intestinal resection in pediatric-onset Crohn’s disease: a population-based study. *Inflamm Bowel Dis* 2013; **19**: 7–14.

42 Ponsioen CY, de Groof EJ, Eshuis EJ, Gardenbroek TJ, Bossuyt PMM, Hart A et al. Laparoscopic ileocaecal resection versus infliximab for terminal ileitis in Crohn’s disease: a randomised controlled, open-label, multicentre trial. *Lancet Gastroenterol Hepatol* 2017; **2**: 785–792.

Supporting information

Additional supporting information can be found online in the Supporting Information section at the end of the article.