ECTO-GANGLIOSIDE-SIALIDASE ACTIVITY
OF HERPES SIMPLEX VIRUS-
TRANSFORMED HAMSTER EMBRYO FIBROBLASTS

CARA-LYNNE SCHENGRUND, ABRAHAM ROSENBERG,
and MARY ANN REPMAN

From the Department of Biological Chemistry, The Milton S. Hershey
Medical Center, The Pennsylvania State University,
Hershey, Pennsylvania 17033

ABSTRACT
Cellular location of ganglioside-sialidase activity was determined in confluent
hamster embryo fibroblasts transformed with herpes simplex virus type 2. Approx-
imately equal specific activities of ganglioside-sialidase activity were found to
be associated with the crude lysosomal and crude plasma membrane fractions
isolated from whole cell homogenates. Whole transformed cells hydrolyzed exoge-
nous ganglioside substrate, suggesting a partial location of the cellular sialidase on
the outer surface of the plasma membrane of these cells. Intact cells were treated
with the diazonium salt of sulfanilic acid, a nonpenetrating reagent inhibitory to
ecto-enzymes (DePierre, J. W., and M. L. Karnovsky. 1974. J. Biol. Chem.
249:7111-7120). Cytoplasmic lactate dehydrogenase activity was not inhibited by
this treatment, and mitochondrial succinate dehydrogenase activity was inhibited
only 10%, indicating that intracellular enzymes were not affected. 5’-Nucleotid-
ase activity was diminished 90%, and sialidase very rapidly lost 40% of its
exogenously directed activity. These results show that, in herpes simplex virus-
transformed fibroblasts, ganglioside-sialidase is both a lysosomal and a plasma
membrane enzyme. The plasma membrane sialidase is capable of acting on
endogenous plasma membrane sialolipids and also functions in the cultured
transformed cell as an ecto-enzyme which can attack exogenous substrates.

Cell surface sialic acid has been implicated in cell-
cell recognition (10), contact inhibition (3), and
crypticity of immunogenic loci (4). Changes in
lipid-bound (2, 30) and protein-bound sialic acid
(28) reportedly occur upon cell transformation.
Yogeeswaran and Hakomori have reported that
membrane-associated sialidase (neuraminidase,
N-acetyl neuraminosyl glycohydrolase, EC
3.2.1.18) activity is suppressed at the “touching”
age of cell-cell contact of normal cells, but re-
mains unaltered at any stage of cell contact in
transformed cells (29). In previous studies, we
have shown that transformed fibroblasts in culture
have membrane-bound sialidase activity directed
towards exogenous substrate but that control un-
transformed fibroblasts do not (17). We have
found a parallel trend between exogenous ganglio-
side-sialidase activity and oncogenicity of herpes
simplex virus-transformed fibroblasts (15). Visser
and Emmelot reported an enriched sialidase activi-

THE JOURNAL OF CELL BIOLOGY • VOLUME 70, 1976 • pages 555-561

555
Subcellular Fractionation and Analysis

1.8–2.4 × 10^6 cells were harvested and subcellular fractions prepared as described by Touster et al. (23). Subcellular fractions were diluted with an equal volume of water and centrifuged at 100,000 g × 1 h to pellet the membrane fractions. The pellets were washed once with water to remove residual sucrose, centrifuged as before, and the pellets were homogenized in water. Protein concentration was determined by the procedure of Lowry et al. (13), using bovine serum albumin as standard.

Plasma membrane 5'-nucleotidase was assayed according to the procedure of Touster et al. (23), with adenosine 5'-monophosphate as the substrate. Released phosphatase was determined colorimetrically by the procedure of Fiske and SubbaRow (6). Mitochondrial succinate dehydrogenase was determined as described previously (16). Lysosomal acid phosphatase was assayed according to the method described by Gianetto and de Duve (8), with β-glycerophosphate as substrate.

Sialidase activity towards endogenous and exogenous substrate was measured, as previously described (15). To allow for hydrolysis of available endogenous substrate, samples were incubated for 90 min. A 60-min reaction time was used for assaying exogenous activity. After purification on Dowex 1-X10 columns (Dow Chemical Co., Midland, Mich.) (9), released sialic acid was measured spectrophotometrically using Warren's thiobarbituric acid procedure (27). For measurement of sialidase activity of intact 333-2-29 fibroblasts, the cells were incubated at 37°C for 2 h in 0.01 M sodium acetate buffer, pH 4.2, in isosmolar pentaerythritol (1) with 0.4 mg of added disialo- and trisialoganglioside substrate. The prolonged reaction time of 2 h was used in order to allow for exhaustion of endogenous substrate which is acted upon preferentially by the enzyme. Endogenous release was monitored by incubating cells under the same conditions in the absence of added substrate. Appropriate enzyme and substrate blanks were included in all enzymatic assays.

Treatment of the Cells with the Diazonium Salt of Sulfanilic Acid

Confluent cells were rinsed nine times with Krebs-Ringer phosphate solution to remove residual growth medium (5). The cells were incubated at 37°C with 5 ml of a 1.8 mM solution of the diazonium salt from 0 to 16 min. At the end of the incubation period, the solution was decanted and the cell layer rinsed nine times with Krebs-Ringer phosphate solution to remove residual diazonium salt. To determine the effect of this treatment on the intactness of the plasma membrane, the cells were incubated with 5 ml of 1.8 mM or 7 mM diazonium salt in Krebs-Ringer phosphate buffer from 0 to 32 min. The cells were rinsed and kept subsequently in 5 ml of Krebs-
Ringer phosphate buffer at room temperature. Samples of the buffer were removed at 5, 15, and 30 min, and released lactate dehydrogenase activity was determined (12).

RESULTS

Enzyme Activities in Subcellular Fractions

The specific activities of 5'-nucleotidase, acid phosphatase, succinate dehydrogenase, and endogenous and exogenous sialidase in the subcellular fractions are shown in Table I. In the fractions obtained upon differential centrifugation (designated as P_i), the specific activity of sialidase is essentially the same in P_2 (lysosomal and mitochondrial pellet) and in P_3 (microsomal fraction). P_2 contained acid phosphatase and succinate dehydrogenase at higher specific activities than did P_3, in which 5'-nucleotidase had a higher specific activity. Therefore, to study the possible distribution of sialidase activity in the plasma membrane, fractions P_2 (microsomes with some plasma membrane) and P_4 (nuclei with some plasma membrane) were taken for further purification of enriched plasma membrane fractions. The enrichment in specific activity of exogenously directed sialidase activity in the fractions obtained from $P_3 (M)$ and $P_4 (N)$ can be seen to parallel that of the plasma membrane constituent, 5'-nucleotidase.

Effect of Diazonium Salt on Sialidase Activity

The results obtained upon treatment of the intact cells with the diazonium salt of sulfanilic acid showed that at least 40% of the sialidase is located in the plasma membrane on its outer surface where it may act as an ecto-enzyme. Fig. 1 shows the cellular release of the soluble cytoplasmic enzyme, lactate dehydrogenase, after treatment of the cells with the diazonium salt of sulfanilic acid at two concentrations. Conditions of treatment (incubation of the cells in 5 ml of 1.8 mM salt at 37°C for up to 16 min) were chosen to minimize damage to the plasma membrane. As shown in Fig. 2, cellular lactate dehydrogenase activity was not inhibited over this time span. The effects of the diazonium salt of sulfanilic acid on the ecto-enzyme, 5'-nucleotidase, and the mitochondrial

Fraction*	Sialidase†	5'-Nucleotidase	Acid phosphatase	Succinate dehydrogenase
Total sedimentable fraction	1.17 3.11	0.27 0.84	6.6	
P_2	2.70 18.8	0.50 1.2	6.5	
P_3	2.58 18.5	1.4 0.74	0.0	
P_4	2.17 7.04	0.40 0.45	1.2	
M_2	34.0 55.5	4.1 0.89	–	
M_3	49.8 55.7	4.1 0.89	–	
M_4	4.16 14.6	1.0 1.0	–	
N_2	4.16 14.6	1.0 1.0	–	
N_3	7.27 14.7	0.9 0.24	–	
N_4	5.28 0	0.07 0.05	–	

* The cell fractions were isolated by the procedure of Touster et al. (23). The total sedimentable fraction refers to the particulate portion of the cell homogenate used for the isolation of the subcellular fractions obtained by centrifugation of the cell homogenate at 100,000 g 1 × h. P_2 refers to the lysosomal-mitochondrial membrane fraction; P_3 to the microsomal membrane fraction; and P_4 to the nuclear fraction. The M subfractions are the membrane fractions obtained from centrifugation of P_3 in a discontinuous sucrose gradient. The N subfractions are the membrane fractions obtained from centrifugation of P_4 in a discontinuous sucrose gradient.

† The endogenous and exogenous sialidase activities are given as nanomoles sialic acid released/90 min/mg protein and nanomoles sialic acid released/60 min/mg protein, respectively. Endogenous activity represents sialidase catalyzed hydrolysis of more than 90% of the total endogenous sialic acid containing substrate present in these fractions and is therefore a measure of the amount of available endogenous substrate. The units for 5'-nucleotidase activity are micromoles of phosphate released/30 min/mg protein while for acid phosphatase activity the units are micromoles of phosphate released/60 min/mg protein. Succinate dehydrogenase activity is expressed as nanomoles of succinate oxidized/min/mg protein. For experimental details, see Materials and Methods.
FIGURE 1. Release of lactate dehydrogenase from cells after treatment of the cells with diazoni um salt of sulfanilic acid (5). The cells were incubated with 5 ml of 1.8 mM or 7 mM diazonium salt in Krebs-Ringer phosphate buffer for the time indicated. At the end of the reaction time, the cells were rinsed nine times with Krebs-Ringer phosphate buffer and then kept in 5 ml of the same buffer at room temperature for 30 min. The percent of the total lactate dehydrogenase activity recovered in the buffer or associated with the cells treated with 1.8 mM diazonium salt is shown by (O---O) and (O---O), respectively. (■---■) and (□---□) refer to comparable values obtained with 7 mM diazonium salt.

Study of the subcellular distribution of ganglioside-sialidase activity showed sialidase activity to be present in both the lysosomal and plasma membrane fractions at comparable specific activities in each fraction. 5'-Nucleotidase was present at a higher specific activity in P₂ than in P₁. The lysosomal marker, acid phosphatase, displayed highest specific activity in P₂. This bimodal distribution of sialidase activity is in agreement with previous results (25) obtained in studies of the distribution of sialidase in rat liver. The distribution and enrichment of exogenous sialidase activity in the fractions obtained from P₃ and P₄ parallel those of 5'-nucleotidase activity. This finding supports identification of some sialidase as a plasma membrane constituent.

DISCUSSION

Sialidase Activity of Whole Cells

The intact cells maintained at pH 4.2 in penterythritol displayed sialidase activity towards exogenous ganglioside substrate with a sp act of 1.8 nmol of sialic acid released/h/mg protein. Endogenous sialidase activity of these cells towards native substrate was comparable to that for whole cell homogenates. At the end of the experiment, the cells were examined by phase-contrast light microscopy. They appeared intact. However, they slowly took up Trypan blue, indicating plasma membrane leakiness.

FIGURE 2. The effect of the diazonium salt of sulfanilic acid on the activity of lactate dehydrogenase (■---■), succinic dehydrogenase (▲---▲), and 5'-nucleotidase (○---○) of 333-2-29 fibroblasts. The cells were treated with 5 ml of 1.8 mM diazonium salt of sulfanilic acid in Krebs-Ringer phosphate buffer for the lengths of time indicated. After rinsing the cells nine times with Krebs-Ringer phosphate to remove residual salt, the enzymatic activities were determined. For experimental details, see Materials and Methods. The control enzymatic activities were determined for cells not exposed to the diazonium salt. The zero time sample refers to cells to which the diazonium salt solution was added, immediately removed, resulting in less than a 5-s exposure time, and the cells were rinsed nine times with Krebs-Ringer phosphate buffer.
I00~te, a: 60 I-

Figure 3 The effect of the diazonium salt of sulfanilic acid on the endogenous and exogenous sialidase activities of 333-2-29 fibroblasts. The cells were treated with 5 ml of 1.8 mM diazonium salt of sulfanilic acid in Krebs-Ringer phosphate buffer for the lengths of time indicated. After rinsing the cells nine times to remove residual salt, the endogenous and exogenous sialidase activities were determined. For experimental details, see Materials and Methods. The control sialidase activity was determined for cells not exposed to the diazonium salt. The zero time sample represents cells to which the diazonium salt was added, immediately removed, resulting in less than a 5-s exposure time, and the cells were rinsed nine times with Krebs-Ringer phosphate buffer. The values shown were obtained for two experiments, each done in duplicate on cells grown under similar conditions at passage nos. 62 and 67. The upper end of the error bar refers to sialidase values obtained for cells at passage no. 62 and the lower at passage no. 67. The curves shown represent the average values for these two experiments. Curve A represents endogenous sialidase activity and B, exogenous sialidase activity.

The results obtained upon treatment of the intact cells with the diazonium salt of sulfanilic acid suggest that sialidase in the plasma membrane is an ecto-enzyme. The negligible degree of inhibition of lactate dehydrogenase and succinate dehydrogenase activities is evidence that, under the conditions used, the ecto-inhibitory reagent was unable to enter the cells, acting only on those enzymes exposed on the outer surface of the plasma membrane. Inhibition of 90% of the known ecto-enzyme, 5'-nucleooidase (5), and also of 40% of the sialidase activity was observed. These results allow the conclusion that at least 40% of the cells' total ganglioside-sialidase activity is associated with the plasma membrane, where it is located on the outer surface as an ecto-enzyme.

The demonstration of exogenously directed ganglioside-sialidase activity, comparable to that of whole cell homogenates, upon incubation of the whole cells with added ganglioside substrate suggests that the ecto-sialidase is readily active towards extracellular substrate. The acidic pH of the incubation medium and the fact that, although the cells appeared morphologically normal by phase-contrast light microscopy, they slowly took up Trypan blue suggest that some of the observed activity of whole cells might be a result of availability of substrate to the lysosomal sialidase. For all of the observed ganglioside-sialidase activity to have been due to lysosomal sialidase, however, the exogenous substrate would have to be as readily available to the lysosomal enzyme in the unbroken whole cell as in the cell homogenate. This is not probable since the cells are intact at the initiation of the reaction, and, even though it is leaky at the end of the reaction period, the plasma membrane must still pose a diffusion barrier to the availability of the ganglioside substrate to the intracellular lysosomal sialidase. Therefore, it may be inferred that plasma membrane sialidase is active in degrading the exogenous substrate. We have previously shown that for plasma membrane sialidase to be active towards exogenous substrate, it must first deplete native plasma membrane sialoglycolipid constituents to some extent. The value for plasma membrane sialidase in our procedure for measurement of ecto-ganglioside-sialidase activity of whole cells is bound to underestimate this activity since predepletion of whole cell endogenous substrate was not carried out.

These studies of ecto-sialidase activity employed gangliosides as substrate. We have shown that gangliosides can associate with membranes under the conditions used to assay ganglioside-sialidase activity (18), and that in liver plasma membranes the endogenous sialidase preferentially acts upon the native ganglioside of these cells, hematoside (16). These results suggest that for exogenous sialyl residues to be available to the enzyme, they may need to be localized near the integral membrane components (14) of the outer cell surface. However, no firm conclusions can yet be made regarding the mode of action of the ecto-sialidase.
From the evidence presented in this study, the hypothesis may be advanced that ecto-sialidase might play a role in regulating sialic acid content of cell surfaces. Changes in sialidase activity might result in an alteration of surface sialic acid, giving rise to modification of cell behavior during cell-cell interactions.

This work was supported by U. S. Public Health Service research grant CA14319 from the National Cancer Institute and NS08258 from the National Institute of Neurological and Communicative Disorders and Stroke.

Received for publication 2 February 1976, and in revised form 28 April 1976.

REFERENCES

1. BARTON, N. W., and A. ROSENBERG. 1973. Action of Vibrio cholerae neuraminidase (sialidase) upon the surface of intact cells and their isolated sialolipid components. J. Biol. Chem. 248:7353–7358.

2. BRADY, R. O., P. H. FISHMAN, and P. T. MORA. 1973. Membrane components and enzymes in virally transformed cells. Fed. Proc. 32:102–108.

3. BURGER, M. M. 1970. Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature (Lond.). 227:170–171.

4. CURRIE, G. A., and K. D. BAGSHAWE. 1969. Tumor specific immunogenicity of methylcholanthrene-induced sarcoma cells after incubation in neuraminidase. Br. J. Cancer. 23:141–149.

5. DEPIERRE, J. W., and M. L. KARNOVSKY. 1974. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. J. Biol. Chem. 249:7111–7120.

6. FISKE, C. H., and Y. SUBBAROW. 1925. The colorimetric determination of phosphorus. J. Biol. Chem. 66:375–400.

7. FOLCH, J., S. ASKOVE, and J. A. MEATH. 1951. Isolation of brain strandin, a new type of large molecular tissue component. J. Biol. Chem. 191:819–831.

8. GIANTETTO, R., and C. DE DUVE. 1955. Tissue fractionation studies. 4. Comparative study of the binding of acetylcholinesterase and cathepsin by rat-liver particles. Biochem. J. 59:433–445.

9. HORVAT, A., and O. TOUSTER. 1968. On the lysosomal occurrence and the properties of the neuraminidase of rat liver and of Ehrlich ascites tumor cells. J. Biol. Chem. 243:4380–4390.

10. KEMP, R. B. 1971. Studies on the role of cell surface sialic acids in intercellular adhesion. Folia Histochem. Cytocnem. 9:25–30.

11. KISHORE, G. S., D. R. P. TULSIANI, V. P. BHANANANDAN, and R. CARUBELLI. 1975. Membrane-bound neuraminidases of rat liver, neuraminidase activity in Golgi apparatus. J. Biol. Chem. 250:2655–2659.

12. KORNBERG, A. 1955. Lactic dehydrogenase of muscle. Methods Enzymol. 1:441–443.

13. LOWRY, O. H., N. J. ROSEBROUGH, A. L. FARR, and R. J. RANDALL. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

14. NICOLSON, G. L. 1974. The interactions of lectins with animal cell surfaces. Int. Rev. of Cytol. 39:89–190.

15. SCHENGRUND, C.-L., R. DUFF, and A. ROSENBERG. 1974. Sialidase activity of oncogenic cells transformed by herpes simplex virus. Virology. 53:595–599.

16. SCHENGRUND, C.-L., D. S. JENSEN, and A. ROSENBERG. 1972. Localization of sialidase in the plasma membrane of rat liver cells. J. Biol. Chem. 247:2742–2746.

17. SCHENGRUND, C.-L., R. N. LAUSCH, and A. ROSENBERG. 1973. Sialidase activity in transformed cells. J. Biol. Chem. 248:4424–4428.

18. SCHENGRUND, C.-L., and A. ROSENBERG. 1970. Intracellular location and properties of bovine brain sialidase. J. Biol. Chem. 245:6196–6200.

19. SCHNEIDER, E. L., E. J. STANBRIDGE, and C. J. EPISTEIN. 1974. Incorporation of 3H-uridine and 3H-uracil into RNA. A simple technique for the detection of mycoplasma contamination of cultured cells. Exp. Cell Res. 84:311–318.

20. STEFANOVIC, V., P. MANDEL, and A. ROSENBERG. 1975. Activation of acetyl- and butyrylcholinesterase by enzymatic removal of sialic acid from intact neuroblastoma and astroblastoma cells in culture. Biochemistry. 14:5257–5260.

21. STEFANOVIC, V., P. MANDEL, and A. ROSENBERG. 1976. Properties of ecto-(inorganic) pyrophosphatase of nervous system cells in culture. J. Biol. Chem. 251:493–497.

22. SVENNERHOLM, L. 1957. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochin. Biophys. Acta. 24:604–611.

23. TOUSTER, O., N. N. ARONSON, JR., J. T. DULANEY, and M. HENDRICKSON. 1970. Isolation of rat liver plasma membranes. J. Cell Biol. 47:604–618.

24. TULSIANI, D. R. P., and R. CARUBELLI. 1970. Studies on the soluble and lysosomal neuraminidases of rat liver. J. Biol. Chem. 245:1821–1827.

25. VISSEK, A., and P. EMMELOT. 1973. Studies on plasma membranes. XX. Sialidase in hepatic plasma membranes. J. Membr. Biol. 14:73–84.

26. WAGNER, H., L. HÖHSTRAMMER, and P. WOLFF. 1961. Dünnlicht-chromatographie von phosphatiden und glykolipiden. Biochem. Z. 334:175–184.

27. WARREN, L. 1959. The thiobarbituric acid assay of sialic acids. J. Biol. Chem. 234:1971–1975.
28. **Warren, L., J. T. Fuhrer, and C. A. Buck.** 1973. Surface glycoproteins of cells before and after transformation by oncogenic viruses. *Fed. Proc.* 32:80-85.

29. **Yoigeeswaran, G., and S. Hakomori.** 1975. Cell contact-dependent ganglioside changes in mouse 3T3 fibroblasts and a suppressed sialidase activity in cell contact. *Biochemistry.* 14:2151-2156.

30. **Yoigeeswaran, G., R. Sheinin, J. R. Whereitt, and R. K. Murray.** 1972. Studies on the glycosphingolipids of normal and virally transformed 3T3 mouse fibroblasts. *J. Biol. Chem.* 247:5146-5158.