Systematic Review: A Comparison between Vancomycin and Daptomycin for Sepsis Infection Antibiotic Therapy

Rath Puspita Febrinasari1,*, Benedictus Benedictus2, Akhmad Azmiardi3,4,*

1Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; 2Graduate Programme, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; 3Doctoral Program of Public Health, Universitas Sebelas Maret, Surakarta, Indonesia; 4Department of Public Health, Faculty of Public Health, Universitas Veteran Bangun Nusantara, Sukoharjo, Indonesia

Abstract

BACKGROUND: Sepsis is a dangerous condition that threatens life because of immune system dysregulation caused by an infection resulting in organ failure. One of the most common resistant strain bacteria that can cause sepsis is Methicillin-resistant Staphylococcus aureus (MRSA). Vancomycin is the first-line therapy for treating sepsis infection caused by MRSA, but recently there have been some MRSA strains that are resistant to vancomycin therapy.

AIM: This study aimed to review comparison between vancomycin and daptomycin for sepsis infection antibiotics therapy.

MATERIALS AND METHODS: This research was a systematic review using three databases such as PubMed, ProQuest, and ScienceDirect. The journal articles included in this study were about randomized controlled trial (RCT) studies published from 2011 to 2020.

RESULTS: This research included seven RCT studies, but none of them discuss the usage of daptomycin for sepsis treatment caused by MRSA. They discuss more the effect of dose, method of administration, and side effects of vancomycin therapy in relation to the outcome of the patient.

CONCLUSIONS: Because of the lack of RCT articles that conducted experiments of daptomycin usage for sepsis treatment caused by MRSA infection, this research could not compare the effectiveness between vancomycin and daptomycin. Because of the lack of RCT articles that conducted experiments of daptomycin usage for sepsis treatment caused by MRSA infection, this research could not compare the effectiveness between vancomycin and daptomycin.

Introduction

Sepsis is a life-threatening condition characterized by organ dysfunction caused by immune system dysregulation after infection [1]. Based on the data from the World Health Organization (WHO) in 2018, the prevalence of sepsis is 30 million cases per year, which leads to 6 million deaths per year globally. Most sepsis cases around the world emerge from low to middle economic outcome countries [2], [3].

One of the most frequent bacteria with antibiotic resistance that can cause sepsis is Methicillin-resistant Staphylococcus aureus (MRSA) [4]. Globally, the mean prevalence of MRSA infection is 17.4% from all kinds of infection. In the USA, MRSA infected 31.8/100,000 populations, and 75% of infections resulting in bacteremia that can develop into sepsis [5], [6]. The WHO stated that MRSA is one of the high-priority bacteria for new antibiotics research and development [7].

Based on the IDSA guideline in 2020, the first-line therapy for sepsis is vancomycin or daptomycin [8]. However, recently, some MRSA strains were found resistant to vancomycin [9], [10]. Casapao et al. (2013) also found a strain that is sensitive to vancomycin therapy during the microbiology sensitivity test becomes resistant to in vivo. The threat of antibiotic resistance makes a review needed to assess the effectiveness of vancomycin for sepsis first-line therapy compared to daptomycin [9]. This study aimed to review comparison between vancomycin and daptomycin for sepsis infection antibiotics therapy.

Materials and Methods

Study design

This review was reported using the “Preferred Reporting Items for Systematic Reviews and Meta-Analysis” guideline and written using the “Synthesis without Meta-Analysis” method. This systematic review was designed to answer the question of whether there is a different result between the treatment with vancomycin and daptomycin in patients with sepsis infection. This
question includes the information of population (patient with sepsis caused by MRSA), intervention (vancomycin or daptomycin), and outcomes (mortality).

Eligibility criteria

The included studies for this review were following several criteria, including randomized controlled trial (RCT), English language articles, using vancomycin or daptomycin as treatment, and investigating sepsis patients caused by MRSA infection. The study was excluded if it was a non-randomized control trial, did not use vancomycin or daptomycin, and had an inappropriate population. In addition, duplicate publications, observational studies, review studies, and case reports were excluded from the study.

Search strategy

The included studies for this systematic review were collected from three online databases including PubMed, ProQuest, and ScienceDirect published between 2011 and 2020 in the English language. The keywords used for this systematic review were “sepsis,” “shock septic,” “MRSA,” “vancomycin,” and “daptomycin.” These keywords were utilized in combination to search all these databases for relevant literature.

Study selection

Two authors were independently screening the collected articles. Any disagreement was resolved by discussion. The inclusion criteria were according to population, interventions, comparators, and outcomes, that is, the population of patients with MRSA, intervention, and comparison of daptomycin or linezolid, and the outcome of mortality.

Data extraction and quality assessment

The data from the selected studies were extracted by two independent authors independently. Any disagreement was resolved by discussion to reach a consensus. The collected data included the author’s last name, year of study, location of study, the number of participants, type of treatment, and mortality outcome. The critical appraisal used in this review was Jadad Scoring.

Results

Figure 1 shows the process of selecting relevant studies. The seven studies were included in this systematic review with a total of 1316 patients. The characteristics of the studies are presented in Table 1. All studies were published from 2010 to 2020 and were of randomized control trial designs. Two studies were conducted in multinational and five studies in a single nation, including Croatia, Israel, Swiss, France, and the Czech Republic. The sample size of included studies ranges from 45 to 448 participants. Four studies only used vancomycin treatment; two studies used a

First Author, Year	Research location	Study type	Sample population	Antibiotics treatment	Total patients	Sepsis patient	Patients receiving vancomycin/ daptomycin	Mortality	Failure of treatment	Mean Jadad score		
Sundelic et al., 2020	Croatia	Prospective single center open-label Randomized controlled trial	Patient aged 18 years old, with resistance strain Gram-positive bacterial infection from blood culture	Vancomycin	74	11	24	4	–	2.5		
Paul et al., 2015	Israel	Multicenter open label randomized controlled trial	Patient aged 18 years old, suspected or infected with MRSA	Vancomycin	252	91	117	13	32	2		
Emonet et al., 2016	Switzerland	Single-center open parallel Randomized controlled trial	Patient aged 18 years old, with positive culture of Gram-positive bacteria	Vancomycin	89	33	35	15	(from all research patient)	33	(from all research patient)	2.5
Niederman et al., 2014	USA, Asia, Europa, Latin Americans (79.3% from the USA)	Phase IV, double-blind, randomized, comparator-controlled, multicenter trial	Patient aged 18 years old	Vancomycin	448	35	224	–	–	2.5		
Fowler et al., 2020	Paris	Open-label 1:1 randomized controlled trial	Patients aged 3–17 years old	Vancomycin	45	13	13	8	–	4		
Berthaud et al., 2019	Switzerland	Single center, prospective, randomized, open label comparative study	Patient aged 18 years old	Vancomycin	99	8	99	–	–	3		
Chytra et al., 2012	Czech Republic	Meropenem+Vancomycin	–	Vancomycin	240	214	12	36	(from all research patient)	45	2.5	
combination of vancomycin and daptomycin, and the other used vancomycin plus meropenem as the treatment. Patient mortality was included in five studies with the number of deaths ranging from 4 to 36 while two studies did not show the number of deaths.

Most of the journals included in this review were open-label RCT, except for single double-blind RCT studies.

Discussion

In this systematic review, the difference in the effectiveness between vancomycin and daptomycin for sepsis caused by MRSA could not be compared since there was a lack of RCT studies found in databases that directly compared the use of vancomycin and daptomycin. Most RCT used vancomycin as the primary therapy [11], [12], [13], [14], [15], [16]. Although daptomycin has been included in the guideline for bloodstream infection caused by MRSA and has better efficacy than vancomycin, there is still a lack of RCT studies using daptomycin for sepsis treatment [8], [17], [18], [19]. In this systematic review, the use of daptomycin was only found in one RCT and was not used as the primary or comparison treatment in the research [19].

Although there was a lack of RCT about the daptomycin usage for sepsis treatment, there are some case reports about daptomycin use found during journal preview in this systematic review. Based on the compilation of 26 case reports between 2011 and 2012,
the failure of the first-line therapy using vancomycin 101 will result in the futility of daptomycin therapy. Most of the futilities occur when the minimum inhibitory concentration of vancomycin needed is greater than one. However, the combination of daptomycin and cefazoline will offer a successful therapy [20].

The mortality rate of sepsis patients caused by MRSA infection based on the journal articles included in this systematic review was 11.1–50%, and the failure rate of vancomycin therapy was 18.8–27.4% [12], [16], [21]. The mortality rate of sepsis patients caused by MRSA lies between 20% and 30%. Most of the studies included in this systematic review showed better outcomes of vancomycin therapies except for one study from America [21], [22]. These outcomes could have resulted from the difference in the prevalence of MRSA bacteria included in vancomycin-resistant S. aureus (VRSA), vancomycin intermediate S. aureus (VISA), or heterogeneous VISA (hVISA) between America and another continent. In America, the prevalence of VRSA, VISA, or hVISA is 3.6% while in Asia and Europe, the prevalence is 1.2% and 1.1%, respectively [23].

Many factors contribute to the failure of vancomycin therapy. Some of them correlate with the serum concentration of vancomycin during medication. Based on the guideline, the target vancomycin serum concentration is 15–20 mg/l. Low vancomycin serum concentration during treatment of <10 mg/l is associated with the presence of vancomycin-resistant strain bacteria [24]. Patients with serum vancomycin concordant to the target of area under the curve/minimum inhibitory concentration >400 in 24 h will likely have a 53% lower mortality rate and a 61% lower therapy failure rate [25].

From the data collected in this systematic review that presented in Table 2, the attainment of the target vancomycin serum concentration is still low. Sundalic et al. (2020) suggest only five out of 24 patients reach target vancomycin serum in 24 h while Paul et al. (2015) show that the median of vancomycin serum concentration in 117 patients is only 14.9 mg/l [11], [12]. Low vancomycin serum concentration during treatment is probably caused by an increase in the excretion rate in sepsis patients. In severe disorders like sepsis, the body volume distribution will be very high, which leads to escalation in the drug excretion rate [26]. On the other hand, Berthaud et al. (2019) show that altered vancomycin dose using Bayesian methods could increase the rate of patients achieving the target vancomycin serum concentration [15].

One of the side effects caused by vancomycin use is the emergence of renal damage because of vancomycin nephrotoxic properties [27]. The independent factor correlated with renal failure is the reach of vancomycin serum concentration of ≥15 mg/l while the target vancomycin serum treatment is 15–20 mg/l [24], [28], [29], [30], [31]. This problem shows the dilemma of sepsis or septic shock medication. It is caused by the increase in renal damage because of the disorder and medication. Apart from the increase in renal injury, the failure in renal function during sepsis or septic shock medication leads to an escalation of expenditure cost of approximately $52,257 [14].

Vancomycin can be combined with another antimicrobial treatment to tackle antibiotics resistance.

Table 2: Impact of Vancomycin usage during therapy

First Author, Year	Duration of Therapy	Vancomycin serum concentration	AKI/Kidney failure cases	Other founding
Sundalic et al., 2020	15–32.5 days	• Only five patients reached the concentration target of 15–20 mg/l in 12 h	Eight patients from all research sample	–
		• 17 patients reached the target concentration of 20–40 mg/l in 72 h	–	–
Paul et al., 2015	11–28 days	10.4–21 (median 14.9) From 97 patients whose serum vancomycin concentrations were measured, only 80 patients reached the target of>10 mg/L	–	–
Emonet et al., 2016	15–36 days (definitive antibiotics administration in 5 hours after detection)	–	–	Bacteriology examination with PCR shows faster the result compared to standard examination (3.9 vs. 25.4 h), but earlier administration of specific therapy does not affect the patient’s mortality
	11.3–30.3 days (definitive antibiotics administration in 25.5 h after detection)	–	–	–
Niederman et al., 2014	23.6 days (mean)	–	34 of 224 patients receiving vancomycin develop kidney failure	Patients who developed kidney failure from the vancomycin therapy spent $52,257, compared to those who did not develop kidney failure spending $29,923
Fowler et al., 2020	31.3 days (mean) (Antibiotics only)	–	–	Additional therapy with Exebacase produced a better result of 42.8% compared to the antibiotics-only therapy
	36.6 days (mean) (antibiotics+Exebacase)	–	–	Compared to standard dosing, dosing using The bayesian calculation provides significant results in achieving the target serum vancomycin concentration in 24 h
Berthaud et al., 2019	–	AUC 0–24/MIC=400 and AUC 0–24/ MIC<800=34; Reach the target concentration of 20–40 mg/l16=27 (Bayesian dose)	–	–
	–	AUC 0–24/MIC=400 and AUC 0–24/ MIC<800=24; reaching the target concentration of 20–40 mg/l16 (normal dose)	–	–
Chytra et al., 2012	18–39 days (infusion)	–	–	Antibiotics administration via infusion or bolus produced a clinically insignificant result, but infusion showed a higher efficacy level of antimicrobial therapy

AKI: Acute kidney injury, PCR: Polymerase chain reaction, AUC: Area under the curve, MIC: Minimum inhibitory concentration.
One of the drugs that can be used in combination with vancomycin is Exebacase, which is an anti-staphylococcal lysin [32], [33]. Exebacase is an antimicrobial drug that is not in the antibiotics class. This drug acts as peptidoglycan hydroxylase that synergically works with antibiotics to destroys biofilm produced by bacteria and decrease the rate of bacteria resistance to antibiotics [32], [33], [34], [35]. Fowler et al. (2020) found that Exebacase combined with vancomycin or daptomycin will increase the effectiveness of therapy up to 42.8%, compared to a medication using vancomycin or daptomycin only [21].

Conclusions

Because of the lack of RCT journal articles about the experiment of daptomycin usage for sepsis treatment caused by MRSA infection, this research cannot compare the effectiveness between vancomycin and daptomycin. However, from some case reports included in this research, there is evidence that the usage of daptomycin base after vancomycin treatment failure will cause another treatment failure. Based on the data collected from several RCT included, the usage of vancomycin for sepsis therapy caused by MRSA infection is still viable although several factors affect the effectiveness of the therapy.

Acknowledgment

The authors would like to thank the Faculty of Medicine Universitas Sebelas Maret, Surakarta, for supporting this publication.

Declarations

This manuscript is based on original work and has not been published in whole or part, in any printed or electronic media, or is under consideration of publication in any printed or electronic media other than as the abstract of conference proceedings.

Authors’ Contributions

All authors contributed equally to the literature search and data analysis.

References

1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801. https://doi.org/10.1001/JAMA.2016.0287 PMid:26903338

2. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259-72. https://doi.org/10.1164/rccm.201504-0781oc PMid:26414292

3. World Health Organization. Sepsis. Geneva: World Health Organization; 2018.

4. Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Crit Care. 2017;21(1):211. https://doi.org/10.1186/s13054-017-1801-3 PMid:28807042

5. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298(15):1763-71. https://doi.org/10.1001/jama.298.15.1763 PMid:17940231

6. ECDC. European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2014. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2015. p. 118.

7. Tacconelli E, Carrara E, Savoldi A, Harbuth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27. https://doi.org/10.1016/S1473-3099(17)30753-3 PMid:29276051

8. Lambert M. IDSA Guidelines on the Treatment of MRSA Infections in Adults and Children; 2011.

9. Casapao AM, Leonard SN, Davis SL, Lodise TP, Patel N, Goff DA, et al. Clinical outcomes in patients with heterogeneous vancomycin-intermediate Staphylococcus aureus bloodstream infection. Antimicrob Agents Chemother. 2013;57(9):4252-9. https://doi.org/10.1128/aac.00380-13 PMid:23796929

10. Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res. 2020;20:169-76. https://doi.org/10.1016/j.jare.2019.10.005 PMid:32071785

11. Šundalić S, Curčić E, Pavić Ž, Gornik I, Brajković AV. Effect of vancomycin, teicoplanin, and linezolid on renal function of critically ill patients with sepsis. URINE. 2019;1:3-7. https://doi.org/10.1016/j.urine.2020.05.003

12. Paul M, Bronstein E, Yahav D, Goldberg E, Bishara J, Leibovici L. External validity of a randomised controlled trial on the treatment of severe infections caused by MRSA. BMJ Open. 2015;5(9):e008838. https://doi.org/10.1136/bmjopen-2015-008838 PMid:26362666

13. Emonet S, Charles PG, Harbarth S, Stewardson AJ, Renzi G, Uckay I, et al. Rapid molecular determination of methicillin resistance in staphylococcal bacteremia improves early targeted antibiotic prescribing: A randomized clinical trial. Clin Microbiol Infect. 2016;22(11):946.e9-15.
14. Niederman MS, Chastre J, Solem CT, Wan Y, Gao X, Myers DE, et al. Health economic evaluation of patients treated for nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus: Secondary analysis of a multicenter randomized clinical trial of vancomycin and linezolid. Clin Ther. 2014;36(9):1233-43.e1. https://doi.org/10.1016/j.clinthera.2014.06.029
PMid:25066668

15. Berthaud R, Benaboud S, Hirt D, Genuini M, Oualha M, Castelle M, et al. Early bayesian dose adjustment of vancomycin continuous infusion in children in a randomized controlled trial. Antimicrob Agents Chemother. 2019;63(12):e01102-19. https://doi.org/10.1128/AAC.01102-19
PMid:31591117

16. Chytra I, Stepan M, Benes J, Pelnar P, Zidkova A, Bergerova T, et al. Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: A randomized open-label controlled trial. Crit Care. 2012;16(3):R113. https://doi.org/10.1186/cc11405
PMid:22724765

17. Quist SR, Flierbeck G, Seaton RA, Loeffler J, Chaves RL. Comparative randomised clinical trial against glycopeptides supports the use of daptomycin as first-line treatment of complicated skin and soft-tissue infections. Int J Antimicrob Agents. 2012;39(1):90-1. https://doi.org/10.1016/j.ijantimicag.2011.08.007
PMid:21982144

18. Konychev A, Heep M, Moritz RK, Kreuter A, Shulutko A, Flierbeck G, et al. Safety and efficacy of daptomycin as first-line treatment for complicated skin and soft-tissue infections in elderly patients: An open-label, multicentre, randomised phase IIib trial. Drugs Aging. 2013;30(10):829-36. https://doi.org/10.1007/s40266-013-0114-8
PMid:23990341

19. Fowler VG, Boucher HW, Corey GR, Abruyn E, Karchmer AW, Rupp ME, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653-65. https://doi.org/10.1056/NEJMoa053783
PMid:16914701

20. Sakoulas G, Moise PA, Casapao AM, Nonejue P, Olson J, Okumura CY, et al. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin Ther. 2014;36(10):1317-33. https://doi.org/10.1016/j.clinthera.2014.05.061

21. Fowler VG, Das AF, Lipka-Diamond J, Schuch R, Pomerantz R, Jäuregui-Peredo L, et al. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J Clin Invest. 2020;130(7):3750-60. https://doi.org/10.1172/JCI136577
PMid:32271718

22. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Goebell IB. Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev. 2012;25(2):362-86. https://doi.org/10.1128/CMR.00222-11
PMid:22491776

23. Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S, Darban-Sarokhalli D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: A systematic review and meta-analysis. Sci Rep. 2020;10(1):12689. https://doi.org/10.1038/s41598-020-69058-z
PMid:32728110

24. Ye ZK, Li C, Zhai SD. Guidelines for therapeutic drug monitoring of vancomycin: A systematic review. PLoS One. 2014;9(6):e99044. https://doi.org/10.1371/journal.pone.0099044
PMid:24932495

25. Men P, Li HB, Zhai SD, Zhao RS. Association between the AUC0-24/MIC ratio of vancomycin and its clinical effectiveness: A systematic review and meta-analysis. PLoS One. 2016;11(1):e0146224. https://doi.org/10.1371/journal.pone.0146224
PMid:26731739

26. Jeurissen A, Sluys J, Rutsaert R. A higher dose of vancomycin in continuous infusion is needed in critically ill patients. Int J Antimicrob Agents. 2011;37(1):75-7. https://doi.org/10.1016/j.ijantimicag.2010.09.004
PMid:21074374

27. Vandecasteele SJ, de Vries AS, Taconelli E. The pharmacokinetics and pharmacodynamics of vancomycin in clinical practice: Evidence and uncertainties. J Antimicrob Chemother. 2013;68(4):743-8. https://doi.org/10.1093/jac/dks495
PMid:23249839

28. Hermens ED, Hanson M, Sankaranarayanan J, Stoner JA, Florescu MC, Rupp ME. Clinical outcomes and nephrotoxicity associated with vancomycin trough concentrations during treatment of deep-seated infections. Expert Opin Drug Saf. 2010;9(1):9-14. https://doi.org/10.1517/147440330903413514
PMid:20021290

29. Bosso JA, Nappi J, Rudissil C, Wellein M, Bookstaver PB, Swindler J, et al. Relationship between vancomycin trough concentrations and nephrotoxicity: A prospective multicenter trial. Antimicrob Agents Chemother. 2011;55(12):5475-9. https://doi.org/10.1128/AAC.00168-11
PMid:21947388

30. McKamy S, Hernandez E, Jahng M, Moriwaki T, Deveikis A, Le J. Incidence and risk factors influencing the development of vancomycin nephrotoxicity in children. J Pediatr. 2011;158(3):422-6. https://doi.org/10.1016/j.jpeds.2010.08.019
PMid:20888013

31. Cano EL, Haque NZ, Welch VL, Cely CM, Peyrani P, Scerpella EG, et al. Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: Retrospective analysis of the IMPACT-HAP database. Clin Ther. 2012;34(1):149-57. https://doi.org/10.1016/j.clinthera.2011.12.013
PMid:22284995

32. Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M. Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemother. 2017;61(7):e02666-16. https://doi.org/10.1128/AAC.02666-16
PMid:28461319

33. Indiani C, Sauve K, Raz A, Abdelhady W, Xiong YQ, Cassino C, et al. The antistaphylococcal lysin, CF-301, activates key host factors in human blood to potentiate methicillin-resistant Staphylococcus aureus bacteriolysis. Antimicrob Agents Chemother. 2019;63(4):e02291-18. https://doi.org/10.1128/AAC.02291-18
PMid:30670427

34. Schuch R, Lee HM, Schneider BC, Sauve KL, Law C, Khan BK, et al. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis. 2014;209(9):1469-78. https://doi.org/10.1093/infdis/jit637
PMid:24286983
35. Watson A, Sauve K, Cassino C, Schuch R. Exebacase demonstrates in vitro synergy with a broad range of antibiotics against both methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2020;64(2):e01885-19. https://doi.org/10.1128/aac.01885-19 PMid:31712212