Aberrant salience correlates with psychotic dimensions in outpatients with schizophrenia spectrum disorders

Valentina Pugliese1, Renato de Filippis1, Matteo Aloi1, Paola Rotella2, Elvira Anna Carbone1, Raffaele Gaetano1 and Pasquale De Fazio1*

Abstract

Background: Aberrant salience is a well-known construct associated with the development and maintenance of psychotic symptoms in schizophrenia. However, only a few studies have investigated aberrance salience as a trait, with no study investigating the association between the five aberrant salience domains and psychotic symptoms. We aimed to explore the role of aberrant salience and its domains on psychotic dimensions in both clinically remitted and non-remitted patients.

Methods: A sample of 102 patients diagnosed with schizophrenia spectrum disorders was divided according to the Positive and Negative Syndrome Scale (PANSS) remission criteria into two groups: remitted and non-remitted. Differences regarding psychotic symptomatology assessed by the PANSS and aberrant salience measured by the Aberrant Salience Inventory (ASI) were explored. Finally, a correlation analysis between the PANSS and the ASI was run.

Results: Significantly higher ASI scores were evident among non-remitted patients. Positive symptoms (i.e. delusions, conceptual disorganization, and hallucinatory behaviour) and general psychopathology (i.e. postural mannerisms, unusual thought content) were correlated to the aberrant salience subscales ‘sharpening of senses,’ ‘heightened emotionality’ and ‘heightened cognition’ and with the ASI total score. Significant correlations emerged between negative symptoms (blunted affect and social withdrawal) and ‘heightened cognition’. Finally, lack of spontaneity of conversation was related to the subscales ‘heightened emotionality’ and ‘heightened cognition’, as well as to the ASI total score.

Conclusions: These preliminary results support the hypothesis of an association between aberrant salience and psychotic symptoms in schizophrenia. Further research is needed, especially into the mechanisms underlying salience processing, in addition to social and environmental factors and cognitive variables.

Keywords: Aberrant salience, Negative symptoms, Positive symptoms, Postural mannerisms, Social withdrawal, Alogia, Blunted affect, Delusions, Disorganization, Schizophrenia
stimuli, thus attributing a pathological and wrong meaning. This phenomenon is known as ‘aberrant salience attribution’ [2–4]. This aberrant relevance causes a conflict that could be cognitively resolved with the creation of the first delusional thought and, eventually, end in complete delusion with a self-sustaining course [4, 5]. Thus, delusions might represent a cognitive strain to sort out confusing and unintelligible stimuli that make sense of subsequent aberrant salient experiences, whereas hallucinations may reflect a direct experience of aberrant salience [4]. Indeed, according to the original Kapur’s conceptualization, hallucinations are aberrant perceptions belonging to the wide model of psychosis, also defined as exaggerated, amplified, and aberrantly recognized internal percepts. In this framework, hallucinations arise from the internal representations of percepts and memories, with a huge gradation of severity, ranging from stimuli similar to own “internal thoughts” up to clear “voices” coming from without [4].

There is some evidence on the role of aberrant salience in schizophrenia, even if the results are somewhat inconsistent and inconclusive [6]. Data from measures of aberrant salience, such as the Salience Attribution Task (SAT) [7] and the Aberrant Salience Inventory (ASI) [8], which measure implicit (behavioural) and explicit (self-report) aberrant and adaptive salience, respectively, show increased aberrant salience in patients with schizophrenia compared to controls [8, 9]. Additionally, aberrant salience is associated with abnormal beliefs [10], perceptual aberration and magical ideation [8, 11] in individuals with no history of psychosis, as well as in individuals at ultra-high risk (UHR) to develop psychosis [12–14].

To date, only one study has evaluated the association between the aberrant salience ‘trait’ and psychotic symptoms in a sample of SSD patients, according to clinical remission state. In particular, we aimed to study the correlation between each aberrant salience subdomain and psychosis, to better understand their relationships.

Methods
Participants and procedures
This cross-sectional study was carried out at the Psychiatry Unit of the University Hospital Mater Domini of Catanzaro (Italy) in accordance with the latest version of the Declaration of Helsinki [21]. The study protocol was approved by the local research ethics committee. All patients signed written informed consent before any data were collected.

A total of 122 outpatients aged 18–65 years were consecutively recruited from August 2019 to August 2020. Following current definition of SSD [22, 23], we included all patients with a diagnosis of schizophrenia or schizoaffective disorder according to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria [24], formulated through the Structured Clinical Interview for DSM-5 (SCID-5-CV) [25] by experienced psychiatrists who used these tools in their daily clinical practice, after a minimum follow-up period of 12 months in our unit. The daily dose of prescribed antipsychotic drugs was expressed as the equivalent daily dose of chlorpromazine, based on the international consensus study [26].

We settled on the following exclusion criteria: (1) patients with schizotypal personality disorder, brief limited intermittent psychotic symptoms (BLIPS), delusional disorder, or acute psychotic episode (according to clinical evaluation); (2) patients diagnosed with dementia, intellectual disability or other severe medical conditions associated with psychiatric symptoms potentially biasing schizophrenia [20]. However, the authors only found an association between first rank symptoms and aberrant salience, regardless of the diagnosis, and found no correlation between aberrant salience and positive/negative symptoms or general psychopathology assessed by the Positive and Negative Syndrome Scale (PANSS).

To the best of our knowledge, no studies have investigated the association between the five aberrant salience domains—feelings of increased significance, sense sharpening, impending understanding, heightened emotionality and heightened cognition—according to Kapur’s conceptualization [4] and psychotic symptoms in patients affected by schizophrenia spectrum disorders (SSD).

We hypothesize that the aberrant salience trait and its domains are related to more severe general psychopathology as well as positive and negative symptoms. Therefore, the goal of this study was to investigate the relationship between aberrant salience and psychotic symptoms in a sample of SSD patients, according to clinical remission state. In particular, we aimed to study the correlation between each aberrant salience subdomain and psychosis, to better understand their relationships.
confirmed the good psychometric properties of the scale, which comprised 5 items each for height of increased significance, impending understanding, and sharpening of senses, respectively. The total score is calculated for significant results. Values of 0.2, 0.5 and >0.8 can be categorized into small, moderate and large effect size, respectively [31].

Pearson’s correlation was used to assess the correlation between psychotic symptomatology (PANSS) and aberrant salience (ASI). The statistical significance level was set at \(p < 0.05 \).

Results

Table 1 summarizes the demographic and clinical characteristics of the sample. Most patients (77%) reported no familial history of SSD. The age of onset of the disorder was, on average, 23.2 ± 6.3 years, while the mean DUP was 1.6 ± 2.1 years. The average dose of antipsychotics was 467.7 ± 185.6 mg/day (chlorpromazine equivalents). Almost 60% of patients were not clinically remitted.

Patients who were not in remission scored significantly higher than remitted patients on the ASI subscales ‘sharpening of senses’ (SS: \(p = 0.002 \)), ‘heightened emotionality’ (HE; \(p = 0.036 \)), ’heightened cognition’ (HC: \(p = 0.007 \)) and the total score (\(p = 0.010 \)), with an ES that ranged from small to moderate (0.21–0.63) (Table 2).
Table 3 shows the correlation between psychotic symptoms (PANSS) and aberrant salience (ASI). Positive symptomatology (P1, P2, P3) and general psychopathology (G5, G9) were correlated with the subscales ‘sharpening of senses’, ‘heightened emotionality’ and ‘heightened cognition’, and with the total ASI score. Regarding negative symptomatology, we found a significant correlation between N1 and N4 and the subscale ‘heightened cognition’; N6 was related to the subscales ‘heightened emotionality’ and ‘heightened cognition’, as well as with the total ASI score.

Discussion

The aim of this study was to assess the association between the aberrant salience trait and the severity of psychotic symptoms. The results of data analysis showed not only significantly higher ASI scores among non-remitted patients, but also an association between aberrant salience and positive symptoms (i.e. delusions, conceptual disorganization, hallucinatory behaviour) and general psychopathology (i.e. postural mannerisms, unusual thought content), as well as with negative symptoms (i.e. blunted affect, social withdrawal, lack of spontaneity of conversation).

This result is consistent with previous research that assessed the interplay of momentary aberrant salience in the development of paranoid [32] and psychotic experiences [33] in patients with SSD.

However, to our knowledge, this was the first study to examine the association between psychotic symptoms and aberrant salience domains in patients with SSD.

Dopaminergic dysfunction may contribute to a misattribution of salience involving both rewarding and aversive signalling; this could lead to the world seeming loaded with significance, generating feelings of apprehension and a sense that the world has changed in some, as yet, uncertain way [34].
According to this model of impaired processing capability, the dysfunction of the attribution of meaning leads to a "defective filter" where dopamine mediates a flood of stimuli together with aberrant significance from a neutral information into a positive or noxious entity [4, 35]. These experiences are characteristic of the prodromal phase of schizophrenia [34]. From this perspective, primary delusions can derive from the prodromal state, such as the individual's explanation of the experience of aberrant salience [36]. Moreover, it is possible that social environmental factors interact with the neurocognitive processes involved in the early stage of psychotic symptoms [37]. In fact, in our previous study, we found that emotional abuse during childhood can

Table 2 Comparison of scores obtained at PANSS and ASI according to the remission

	Non-remitter N=59	Remitter N=43	U	z	p	\(r^2 \)
PANSS						
Delusions (P1)	4.0	2.0	370.	−6.271	<0.001	0.63
Conceptual disorganization (P2)	4.0	3.0	464.0	−5.805	<0.001	0.54
Hallucinatory behaviour (P3)	3.0	1.0	601.0	−4.694	<0.001	0.46
Blunted affect (N1)	4.0	3.0	436.5	−6.060	<0.001	0.56
Social withdrawal passive/apathetic (N4)	4.0	3.0	466.5	−5.625	<0.001	0.55
Lack of spontaneity of conversation (N6)	4.0	2.0	663.5	−4.231	<0.001	0.41
Mannerisms and posturing (G5)	3.0	2.0	685.0	−4.140	<0.001	0.42
Unusual thought content (G9)	3.0	3.0	411.0	−6.038	<0.001	0.56
ASI						
Increased significance	5.0	4.0	1048.5	−1.514	0.130	
Sharpening of senses	3.0	2.0	824.0	−3.066	0.002	0.30
Impending understanding	3.0	2.0	1041.5	−1.564	0.118	
Heightened emotionality	4.0	3.0	963.5	−2.093	0.036	0.21
Heightened cognition	4.0	3.0	874.0	−2.710	0.007	0.26
Total ASI	20.0	14.0	889.5	−2.572	0.010	0.25

Symptomatic remission is defined as a score of 3 ("mild") or less on all of eight items (P1, P2, P3, N1, N4, N6, G5, G9).

* Only effect sizes of significant differences are displayed.

PANSS positive and negative schizophrenic symptoms, ASI aberrant salience inventory.

Significant results are in bold characters.

Table 3 Correlations between psychotic symptoms and ASI subscales

SS	HE	HC	ASI	P1	P2	P3	N1	N4	N6	G5	G9
SS	−										
HE	0.570**	−									
HC	0.704**	0.653**	−								
ASI	0.803**	0.839**	0.867**	−							
P1	0.444**	0.309***	0.399**	0.396**	−						
P2	0.308**	0.236**	0.262**	0.273**	0.577**	−					
P3	0.237**	0.223**	0.265**	0.243**	0.644**	0.498**	−				
N1	0.135	0.187	0.244**	0.163	0.381**	0.485**	0.423**	−			
N4	0.125	0.156	0.222**	0.131	0.404**	0.508**	0.445**	0.777**	−		
N6	0.149	0.233**	0.216**	0.200**	0.276**	0.383**	0.369**	0.696**	0.642**	−	
G5	0.201**	0.219**	0.309**	0.255**	0.413**	0.530**	0.370**	0.506**	0.478**	0.505**	−
G9	0.270**	0.255**	0.319**	0.278**	0.795**	0.482**	0.650**	0.428**	0.456**	0.427**	0.404**

SS sharpening of senses, HE heightened emotionality, HC heightened cognition, ASI Aberrant Salience Inventory total score, P1 delusions, P2 conceptual disorganization, P3 hallucinatory behavior, N1 blunted affect, N4 social withdrawal passive/apathetic, N6 lack of spontaneity of conversation, G5 mannerisms and posturing, G9 unusual thought content.

* \(p < 0.05 \)

** \(p < 0.01 \)

Significant results are in bold characters.
be associated with a higher level of aberrant salience in SSD patients [38].

The measurement of aberrant salience as a lifetime condition (trait) and as an episodic element (state) is essential for both a dimensional understanding of psychosis and the management of therapy [32].

In this regard, we hypothesize that aberrant salience differentiation could be explained by different variables, including psychosis severity and phase [10], medication confounding bias [7], or still to the different assessment sensibility [6]. Indeed, the SAT has shown good construct and concurrent validity when used in non-psychotic populations [9, 39], while the ASI better identifies psychotic-like experiences, such as magical ideation, regardless of the diagnosis, discriminating schizophrenia from other major disorders, such as bipolar disorder [8]. Therefore, some authors have speculated that the ASI may be able to identify the aberrant salience as a trait [40], and this could be of particular interest especially when studying non-psychotic populations.

In line with previous findings, we found stronger correlations between aberrant salience and positive symptoms than with negative symptoms [11, 41]. Kapur [4] proposed that antipsychotic drugs, which block the D2 dopamine receptors, can reduce positive symptoms by mitigating aberrant motivational salience. A consequence of this hypothesis is that antipsychotic drugs will essentially also reduce adaptive motivational salience, that is, the correct allocation of salience. Unfortunately, this can result both in remission of positive symptoms and increasing negative symptoms as a side effect, mainly related to loss of motivation, such as apathy and anhedonia [4].

Previous research found that schizophrenia patients with florid delusions exhibited significantly more momentary aberrant salience than those without [7]. However, there is a positive relationship between explicit aberrant salience and delusion-like symptoms in people at ultra-high risk of psychosis [10]. Also, a significant association between cannabis-induced psychotic symptom severity (accounting for 37% of the variance in psychotic symptom severity) and aberrant salience processing has been found [42].

On the other hand, to date, the correlation between aberrant salience and negative symptoms has been less investigated. In our study, a relationship emerged between aberrant salience and both expressive deficits (i.e. blunted affect, alogia) and the motivational domain (i.e. asociality).

Motivation impairment, underlying avolition, asociality and potentially anhedonia can derive from different dopamine pathophysiological mechanisms involving the salience system [43]. Indeed, several imaging studies found an association between alterations of the dopamine-dependent response of the ventral striatum to reward anticipation and negative symptoms in patients with schizophrenia [44]. However, in other studies the same alterations were not found to be correlated with negative symptoms [45], thus maintaining uncertainty on the subject.

Schizophrenia is characterized by well-known deficits in the comprehension and production of speech, as well as impairments in the perception and production of gestures [46]. A functional network connectivity analysis conducted on patients with schizophrenia found disrupted communication between the anterior default mode network and the salience network that was positively associated with the severity of blunted affect [47]. In this regard, impaired processing of emotional salience has been proposed as a primary antecedent to the development of psychosis [48] and may be affected according to illness stage [49].

In our study, we found a significant correlation between the subscale ‘heightened cognition’ and positive symptomatology (i.e. delusions, conceptual disorganization, hallucinatory behaviour), postural mannerisms, unusual thought content and both expressive deficits and asociality. Heightened cognition denotes experiences in which individuals feel as if they are part of something important that may not be readily apparent. These perceptual experiences are often accompanied by the feeling that some important understanding may be forthcoming, as a revelation or a sensation of unknown and uncontrolled changes [8]. The presence of elevated levels of heightened cognition was found to be positively correlated to unusual thought content [50] and studies have shown that this dimension of aberrant salience is able to distinguish patients with psychosis from other psychiatric patients, suggesting it may be the most specific for psychosis [51]. Speaking about heightened cognition, the role of neurocognition and intelligence quotient (IQ) prognosis of severe psychiatric diseases is still far from being completely understood [52]. Indeed, there are some emerging data about the correlation between higher IQ and a different prognosis in severe psychiatric conditions, which deserves more future research [53, 54].

Moreover, the subscale ‘heightened emotionality’ was associated with positive symptomatology, postural mannerisms, unusual thought content and alogia. Heightened emotionality represents increased levels of anxiety during the early stages of a psychotic episode in which an individual is trying to make sense of the increased importance of stimuli [4, 8]. Significantly, this dimension is one of the components identified by classical European psychopathology as determining the transition from a
network dysfunction may also play a critical role in the pathogenesis of SSD [34]. Indeed, a salience of a dopaminergic regulation of salience that is essential in the human experience of aberrant salience and psychosis [35].

Although the preliminary results presented in this study pave the way for a new conceptualization of salience as a trait, and not just as a trigger for psychosis, these findings should be considered in light of several limitations. Firstly, the assessment was conducted through a self-report tool and we could not cross-test aberrant salience with convergent clinician-related tasks (e.g. the SAT) [7]. On the other hand, self-report measures allow the enrolment of large samples; in addition, at present, the ASI is the only available test to measure the aberrant salience trait [8, 56] and it has shown high reliability among patients with a history of psychosis [8]. ASI scores correlate with psychotic-like experiences and discriminate schizophrenia from other psychopathologies, such as bipolar disorder [8], while the SAT shows good construct validity in unaffected individuals [39]. Second, we must acknowledge that our sample included patients taking antipsychotic treatments. While this reflects the naturalistic design of the study, it can clearly affect the relationships between aberrant salience and positive symptoms, considering the antipsychotic medications block the underlying dopaminergic drive, and given the critical role of dopamine in salience, with a consequential mitigation of the aberrantly salient ideas and perceptions [4]. Therefore, our results must be replicated in a drug-naive sample, preferably at the onset of the disorder, to mitigate this bias. Finally, the association that we found between aberrant salience and positive symptoms may be potentially influenced by their conceptual overlap. Indeed, we should consider that aberrant salience and psychosis (i.e. experience of delusions, hallucinations, and the secondary related behaviour) are relatively close concepts, even difficult to clinically discriminate from each other. Therefore, although ASI and PANSS are two well-established and solid tools to evaluate aberrant salience and psychosis, this limitation should be considered.

Conclusions
Our preliminary results seem to support the hypothesis of a dopaminergic regulation of salience that is essential to the pathogenesis of SSD [34]. Indeed, a salience network dysfunction may also play a critical role in explaining the positive, negative and cognitive symptoms of SSD [57].

We found a correlation between the aberrant salience trait and psychotic symptoms. At the beginning of the twentieth century the study of phenomenology seemed destined to never link to the neurobiology, as if they were two irreconcilable aspects of psychiatry. Instead, the application of a more recent dimensional research approach, which aimed to understand salience alterations, allowed to relate neurobiological phenomena (such as dopaminergic alterations) to psychopathological experiences (such as delusions and other psychotic symptoms), thus overcoming this gap [36]. The measurement of aberrant salience could enrich the characterization of genesis and the maintenance of psychotic experiences in patients with schizophrenia. However, the mechanisms underlying salience processing remain unclear and further consideration of social factors and cognitive variables is recommended for future studies.

Abbreviations
ASI: Aberrant salience inventory; BLIPS: Brief limited intermittent psychotic symptoms; DSM-5: Diagnostic and statistical manual of mental disorders, fifth edition; DUP: Duration of untreated psychosis; FEP: First-episode psychosis; IQ: Intelligence quotient; PANSS: Positive and Negative Symptom Scale; SAT: Salience Attribution Task; SCID-5-CV: Structured Clinical Interview for DSM-5; SPSS: Social sciences statistical package; SSD: Schizophrenia spectrum disorders; UHR: Ultra-high risk.

Acknowledgements
Authors are grateful to participants for the time they have given to this study.

Author contributions
PDF designed the study. VP, MA, RdF, EAC, PR and RG collected the data. MA performed the statistical analyses. VP, RdF and MA wrote the first draft of the manuscript. PDF made the first critical review and participated in writing the final manuscript. All authors read and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector.

Availability of data and materials
Data are available on request due to privacy restrictions.

Declarations
Ethics approval and consent to participate
This study was conducted in accordance with the latest version of the Declaration of Helsinki. The study protocol was approved by the local research ethics committee. All patients signed a written informed consent according to the Ethical Committee’s guidelines before any data were collected.

Consent for publication
All authors have read and agree to its content to be published on Annals of General Psychiatry.

Competing interests
The authors declare that they have no competing interests.
References

1. Chun C, Gross G, Mielock A, Kwapiel T. Aberrant salience predicts psychotic-like experiences in daily life: an experience sampling study. Schizophr Res. 2020;220:18–24.
2. Heinz A, Murray GK, Schlagenhauf F, Sterzer P, Grace AA, Waltz JA. Towards a unifying cognitive, neurophysiological, and computational neuroscience account of schizophrenia. Schizophr Bull. 2019. https://doi.org/10.1093/schbul/sby154.
3. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull. 2009;35(3):549–62. https://doi.org/10.1093/schbul/sbp006.
4. Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003 Jan;160(1):13–23. http://www.ncbi.nlm.nih.gov/pubmed/12506794. 10 Apr 2020.
5. Kapur S, Mizrahi R, Li M. From dopamine to salience to psychosis-linking biology, pharmacology and phenomenology of psychosis. In: Schizophrenia research. Schizophr Res. 2005;79:59–68.
6. Neumann SR, Glue P, Linscott RJ. Aberrant salience and reward processing: a comparison of measures in schizophrenia and anxiety. Psychol Med. 2021;51(1):1507–15.
7. Roiser JP, Stephen KE, Den Ouden HEM, Barnes TRE, Friston KJ, Joyce EM. Do patients with schizophrenia exhibit aberrant salience? Psychol Med. 2009;39(2):199–209.
8. Cicero DC, Kerns JG, McCarthy DM. The aberrant salience inventory: a new measure of psychosis proneness. Psychol Assess. 2010;22(3):688–701.
9. Mathiassen T, Dammengard F, Kathmann N, Kaminski J, Walter H, Heinz A, et al. Validating the construct of aberrant salience in schizophrenia—Behavioral evidence for an automatic process. Schizophr Res Cogn. 2016;6:22–7.
10. Roiser JP, Howes OD, Chaddock CA, Joyce EM, McGuire P. Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophr Bull. 2013;39(6):1328–36.
11. Cicero DC, Becker TM, Martin EA, Docherty AR, Kerns JG. The role of aberrant salience and self-concept clarity in psychotic-like experiences. Personal Pers Motiv. 2013;4(1):33–42.
12. Poletti M, Pelizza L, Azzali S, Garlassi S, Scassa I, Paterlini F, et al. Subjective experience of aberrant salience in young people at Ultra-High Risk (UHR) for psychosis: a cross-sectional study. Nord J Psychiatr. 2022;6:22–7. https://doi.org/10.1080/08039498.2021.1942547.
13. Scassa I, Pelizza L, Azzali S, Garlassi S, Paterlini F, Chin LR, et al. Aberrant salience in first-episode psychosis: longitudinal stability and treatment response. Early Interv Psychiatry. 2021. https://doi.org/10.1111/eip.13243.
14. Azzali S, Pelizza L, Scassa I, Paterlini F, Garlassi S, Chin LR, et al. Examining subjective experience of aberrant salience in young individuals at ultra-high risk (UHR) of psychosis: A 1-year longitudinal study. Schizophr Res. 2022;241:52–8. https://linkinghub.elsevier.com/retrieve/pii/S0920996420305960.
15. Abboud R, Roiser JP, Khalifeh H, Ali S, Harrison I, Killcasp HF, et al. Are persistent delusions in schizophrenia associated with aberrant salience? Schizophr Res Cogn. 2016;4:32–8.
16. Schmidt SNL, Forske S, Kirch P, Mier D. Nucleus accumbens activation is linked to salience in social decision making. Eur Arch Psychiatry Clin Neurosci. 2019;269(6):701–12.
17. Walter H, Heckers S, Kassubeck J, Erk S, Frasch K, Abler B. Further evidence for aberrant prefrontal salience coding in schizophrenia. Front Behav Neurosci. 2010. https://doi.org/10.3389/neuro.08.062.2009.
18. Kim BH, Shin Bin Y, Kyeong S, Lee SK, Kim J. Disrupted salience processing involved in motivational deficits for real-life activities in patients with schizophrenia. Schizophr Res. 2018;197:407–13.
19. Cicero DC, Docherty AR, Becker TM, Martin EA, Kerns JG. Aberrant salience, self-concept clarity, and interview-rated psychotic-like experiences. J Pers Disord. 2015;29(1):79.
20. Balleni A, Tortorelli M, Marino P, Appignanesi C, Baschirotto C, Mallardo L, et al. Aberrant salience relationship with first rank symptoms: Ann Gen Psychiatry. 2022;21(1):8.
21. World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191.
22. Bhati MT. Defining psychosis: the evolution of DSM-5 schizophrenia spectrum disorders. Curr Psychiatry Rep. 2013;15(1):409. https://doi.org/10.1007/s11920-013-0409-9.
23. Lewine R, Hart M. Schizophrenia spectrum and other psychotic disorders. In: 2020. 35–33. https://linkinghub.elsevier.com/retrieve/pii/B9780444641236000229.
24. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). Washington, D.C.: American Psychiatric Publishing. 2013.
25. First MB, Williams JBW, Karg RS, Spitzer RL. Structured Clinical Interview for DSM-5 Disorders, Clinician Version (SCID-5-CV). Arlington, VA: American Psychiatric Association, 2016.
26. Gardner DM, Murphy AL, O’Donnell H, Centorrino F, Bals ladderini RJ. International consensus study on antipsychotic dosing. Am J Psychiatry. 2010;167(6):686–93.
27. Andreasen NC, Carpenter WT, Kane JM, Lasser RA, Marder SR, Weinberger DR. Remission in Schizophrenia: proposed criteria and rationale for consensus. Am J Psychiatry. 2005;162(3):441–9. http://www.ncbi.nlm.nih.gov/pubmed/15741458. Accessed 2 Feb 2019.
28. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1997;23(2):261–76. http://www.ncbi.nlm.nih.gov/pubmed/9616518. Accessed 10 Apr 2020.
29. Raballo A, Scaru P, Petretro DR, Preti A. Aberrant salience and psychosis risk symptoms in Italian undergraduate students: further validation of the Aberrant Salience Inventory: Early Interv Psychiatry. 2014;8(Supplementary Issue 1):134.
30. Mosolov SN, Potapov AV, Ushakov UV. Remission in schizophrenia: results of cross-sectional with 6-month follow-up period and 1-year observational therapeutic studies in an outpatient population. Ann Gen Psychiatr. 2012;11(11). https://doi.org/10.1186/1744-859X-11-1.
31. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Statistical power analysis for the behavioral sciences. Hillsdale NJ: L Eribaum Associates; 1988.
32. So SHW, Chau AKC, Peters ER, Svenssen J, Garety PA, Kapur S. Moment-to-moment associations between negative affect, aberrant salience, and paranoia. Cogn Neuropsychiatr. 2018;23(5):299–306.
33. Reininghaus U, Kempton MJ, Valmaggia L, Craig TKJ, Garety P, Oney- jaika A, et al. Stress sensitivity, aberrant salience, and threat anticipation in early psychosis: an experience sampling study. Schizophr Bull. 2016;42(3):712–22.
34. Howes OD, Nour MW. Dopamine and the aberrant salience hypothesis of schizophrenia. 15. World Psychiatry. Hoboken: Blackwell Publishing Ltd; 2016.
35. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev. 1998;28(3):309–69. https://linkinghub.elsevier.com/retrieve/pii/S0165017398900198.
36. Mishara AL, Fusar-Poli P. The phenomenology and neurobiology of delusion formation during psychosis onset: jaspers, truman symptoms, and aberrant salience. Schizophr Bull. 2013;39(2):278–86.
37. Gawęda Ł, Göritz AS, Moritz S. Mediating role of aberrant salience and self-disturbances for the relationship between childhood trauma and aberrant salience. Schizophr Bull. 2013;39(2):278–86.
38. So SHW, Chau AKC, Peters ER, Svenssen J, Garety PA, Kapur S. Moment-to-moment associations between negative affect, aberrant salience, and paranoia. Cogn Neuropsychiatr. 2018;23(5):299–306.
39. Schmidt K, Roiser JP. Assessing the construct validity of aberrant salience: a comparison of different measures in anxiety and depression. Front Psychol. 2018;1942547.
40. Schmidt SNL, Fenske SC, Kirsch P, Grace AA, Waltz JA. Towards a unifying cognitive, neurophysiological, and computational neuroscience account of schizophrenia. Schizophr Bull. 2019. https://doi.org/10.1093/schbul/sby154.
41. Schmidt K, Roiser JP. Assessing the construct validity of aberrant salience. Front Psychol. 2020;11:2316.
42. Schmidt K, Roiser JP. Assessing the construct validity of aberrant salience. Front Psychol. 2020;11:2688.
43. Schmidt K, Roiser JP. Assessing the construct validity of aberrant salience. Front Psychol. 2020;11:2688.
44. Schmidt K, Roiser JP. Assessing the construct validity of aberrant salience. Front Psychol. 2020;11:2688.
41. Chun CA, Brugger P, Kwapiel TR. Aberrant salience across levels of processing in positive and negative schizotypy. Front Psychol. 2019. https://doi.org/10.3389/fpsyg.2019.02073.
42. Bloomfield MAP, Mouchlianitis E, Morgan CA, Freeman TP, Curran HV, Roxer JP, et al. Salience attribution and its relationship to cannabis-induced psychotic symptoms. Psychol Med. 2016;46(16):3383–95.
43. Galderisi S, Mucci A, Buchanan RW, Arango C. Negative symptoms of schizophrenia: new developments and unanswered research questions Vol. 5, the Lancet psychiatry, vol. 5. Amsterdam: Elsevier Ltd; 2018. p. 664–77.
44. Radua J, Schmidt A, Borgwardt S, Heinz A, Schlagenauf F, McGuire P, et al. Ventral striatal activation during reward processing in psychosis a neurofunctional meta-analysis. JAMA Psychiat. 2015;72(12):1243–51.
45. Nielsen MØ, Rostrup E, Wulff S, Bak N, Lublin H, Kapur S, et al. Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biol Psychiatry. 2012;71(10):898–905.
46. Meyer L, Lakatos P, He Y. Language dysfunction in schizophrenia: assessing neural tracking to characterize the underlying disorder(s)? Front Neurosci. 2021;15:22.
47. Hare SM, Ford JM, Mathalon DH, Damaraju E, Bustillo J, Belger A, et al. Salience-default mode functional network connectivity linked to positive and negative symptoms of schizophrenia. Schizophr Bull. 2019;45(4):892–901.
48. Anticevic A, Van Snellenberg JX, Cohen RE, Repovs G, Dowd EC, Barch DM. Amygdala recruitment in schizophrnia in response to aversive emotional material: a meta-analysis of neuroimaging studies. Schizophr Bull. 2012;38(3):608–21.
49. Modinos G, Tseng HH, Falkenberg I, Samson C, McGuere P, Allen P. Neural correlates of aberrant emotional salience predict psychotic symptoms and global functioning in high-risk and first-episode psychosis. Soc Cogn Affect Neurosci. 2015;10(10):1429–36.
50. Comparelli A, Corigliano V, Montalbani B, Bargagna P, Forcina F, Cocco G, et al. Relationship between aberrant salience and positive emotion misrecognition in acute relapse of schizophrenia. Asian J Psychiatr. 2020. https://doi.org/10.1016/j.ajp.2020.101975.
51. Golay P, Laloyaux J, Mogu M, Dellà Libera C, Larà F, Bonsack C. Psychometric investigation of the French version of the Aberrant Salience Inventory (ASI): Differentiating patients with psychosis, patients with other psychiatric diagnoses and non-clinical participants. Ann Gen Psychiatry. 2020;19(58). https://doi.org/10.1186/s12991-020-00308-0.
52. Greenwald DF, Harder DW, Gift TE, Strauss J, Ritzler BA, Kokes RF. IQ as a prognostic indicator in adult psychiatric first-admissions. J Clin Psychol. 1989;45(1):37–50. https://doi.org/10.1002/jclp.22704510106.
53. Karpinski RI, Kinase Kolb AM, Tetreault NA, Borowski TB. High intelligence: a risk factor for psychological and physiological overexcitabilities. Intelligence. 2018;66:8–23. https://linkinghub.elsevier.com/retrieve/pii/S0160289616303324
54. Ohi K, Sumiyoshi C, Fujino H, Yasuda Y, Yamamori H, Fujimoto M. A brief assessment of intelligence decline in schizophrenia as represented by the difference between current and premorbid intellectual quotient. Front Psychiatr. 2017;22:8. https://doi.org/10.3389/fpsyt.2017.00293/full.
55. Bovet P, Parnas J. Schizophrenic delusions: a phenomenological approach. Schizophr Bull. 1993;19(3):579–97.
56. Raballo A, Cicero DC, Kems JC, Sanna S, Pintus M, Agartz I, et al. Tracking salience in young people: a psychometric field test of the Aberrant Salience Inventory (ASI). Early Interv Psychiatry. 2019;13(1):64–72.
57. Palaniyappan L, Liddle PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci. 2012;37(1):17–27. https://doi.org/10.1503/jpn.100176.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.