Cancer is still a major health problem around the world. The treatment failure of cancer has largely been attributed to drug resistance. Competitive endogenous RNAs (ceRNAs) are involved in various biological processes and thus influence the drug sensitivity of cancers. However, a comprehensive characterization of drug-sensitivity-related ceRNAs has not yet been performed. In the present study, we constructed 15 ceRNA networks across 15 anti-cancer drug categories, involving 217 long noncoding RNAs (lncRNAs), 158 microRNAs (miRNAs), and 1,389 protein coding genes (PCGs). We found that these ceRNAs were involved in hallmark processes such as “self-sufficiency in growth signals,” “insensitivity to antigrowth signals,” and so on. We then identified an intersection ceRNA network (ICN) across the 15 anti-cancer drug categories. We further identified interactions between genes in the ICN and clinically actionable genes (CAGs) by analyzing the co-expressions, protein-protein interactions, and transcription factor-target gene interactions. We found that certain genes in the ICN are correlated with CAGs. Finally, we found that genes in the ICN were aberrantly expressed in tumors, and some were associated with patient survival time and cancer stage.

INTRODUCTION
Cancer is the second leading cause of death globally. It is estimated that there were 18.1 million new cases of cancer and 9.6 million deaths from cancer in 2018. Drug resistance refers to some types of cancers that are not sensitive to certain or multiple kinds of drugs, which is a key issue in the treatment of cancer. The emergence of resistance toward existing drugs is a major challenge in treating cancer. Most advanced-stage cancers are not sensitive to conventional therapies. Even though targeted therapies improved the clinical treatment of a certain number of difficult-to-treat cancers, their efficiencies are various depending on the different types of cancer and genetic backgrounds of patients. Additionally, biomarkers for the diagnosis and prognosis of drug resistance are also urgently needed. Therefore, finding new ways to overcome the drug resistance of various cancers has drawn the attention of many researchers.

Numerous studies have been conducted to identify the molecular mechanisms of drug resistance. The effects of coding and noncoding genes in drug resistance have been widely investigated regarding the efflux of drugs, the inhibition of cell death, and then induction of epithelial-mesenchymal transition (EMT), among other factors. In the initial stage of exploration, researchers mainly focused on the alteration of coding genes. For instance, ATM deficiency is associated with sensitivity to poly (ADP-ribose) polymerase-1 (PARP1) and ataxia telangiectasia mutated and Rad3 related (ATR) inhibitors in lung adenocarcinoma. In recent decades, noncoding genes have also been reported to play important roles in drug resistance. Based on their length, noncoding genes can generally be classified as microRNAs (miRNAs or miRs) or long noncoding RNAs (lncRNAs). miRNAs mediate gene expression regulatory effects at the post-transcriptional level. For example, overexpression of miR-130b promotes adriamycin resistance in breast cancer cells by targeting PTEN. Circulating exosomal miR-96 promotes the progression and cisplatin resistance of lung cancer by targeting LM07. IncRNAs are also correlated with metastasis, drug resistance, and clinical outcome in...
cancer.10 The expression of lncRNA \textit{HOTAIR} is upregulated in various cancers, including lung cancer, breast cancer, and pancreatic cancer, among others.21–33 Its upregulation decreases the sensitivity of lung cancer cells to cisplatin.14 lncRNA activated by transforming growth factor (TGF)-\(\beta\) (\textit{ATB}) is highly expressed in breast cancer tissues and cells, which could predispose patients to the invasion-metastasis cascade and trastuzumab resistance.15 The upregulation of lncRNA cancer upregulated drug resistant (\textit{CUDR}) was observed in doxorubicin-resistant human squamous carcinoma cells. This over-expression could promote the resistance of squamous carcinoma cells to doxorubicin and etoposide.16 Therefore, coding and noncoding genes are both closely related to the drug sensitivity of cancer cells. However, the interaction between coding and noncoding genes in drug resistance has not been fully explored.

In recent years, Salmena et al.17 proposed a new way to reveal the interaction between noncoding and coding RNAs, that is, a competing endogenous RNA (ceRNA) theory. The roles of ceRNA triplets including lncRNAs, miRNAs, and protein coding genes (PCGs) have been confirmed in various pathological and physiological conditions, and especially in the drug sensitivity of cancers. lncRNA ARSR promotes doxorubicin and sunitinib resistance in cancers, which occurs at least partially via competitive binding of miR-34/miR-449.18,19 The downregulation of lncRNA GASS upregulates miR-222 expression, which confers tamoxifen resistance in breast cancer.20 Current studies suggest that lncRNAs are responsible for the multi-drug resistance of cancers. Moreover, the ceRNA mechanism plays an important role in drug resistance. However, there is currently a lack of understanding concerning the global drug-sensitivity-related ceRNA networks across different drug categories.

With the development of pharmacogenomics, the collection of a large amount of drug-sensitivity-related gene profile data has facilitated the prediction of the mechanism of drug sensitivity. Therefore, large-scale ceRNA networks involving different drug categories need to be constructed, as these would be helpful in elucidating the mechanism of drug resistance and promoting the rational use of drugs. The present study aimed to construct and analyze a drug-sensitivity-related ceRNA network across 15 anti-cancer drug categories. The topological properties of the networks were investigated and an intersection ceRNA network (ICN) across 15 anti-cancer drug categories was constructed. Moreover, some genes in the ICN were found to be correlated with clinically actionable genes (CAGs) and have clinical relevance.

RESULTS

Global landscape and comparison of ceRNA networks across 15 anti-cancer drug categories

To investigate the role of ceRNA triplets (lncRNAs-miRNAs-PCGs) and the competitive patterns of drug-sensitivity-related ceRNAs, we constructed 15 ceRNA networks across 15 anti-cancer drug categories (Figure 1; Table S1). A total of 105,255 ceRNA interactions were identified, involving 217 lncRNAs, 158 miRNAs, and 1,389 PCGs. The largest ceRNA network belonged to YK (1,759 nodes and 9,334 edges), whereas the smallest ceRNA network belonged to Df (1,460 nodes and 4,661 edges). The number of lncRNAs, miRNAs and PCGs, as well as the nodes and edges of the ceRNA networks for each anti-cancer drug category, are shown in Table 1. The 15 ceRNA networks across 15 anti-cancer drug categories are shown in Figure 1. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for 15 ceRNA networks (Figure S1). Some signaling pathways were shared by all drug categories, including “pathways in cancer,” “microRNAs in cancer,” “PI3K-Akt signaling pathway,” and “cell cycle,” among others, while some signaling pathways were drug type specific, involving “pertussis,” “tuberculosis,” “herpes simplex infection,” and “Ras signaling pathway,” among others. The topological evaluation of the ceRNA networks showed that the degrees of these ceRNA networks all obeyed a power law distribution, which conforms to the characteristics of biological networks (Figure S2). The node proportion of each ceRNA network is shown in Figure S3. The original data of the 15 ceRNA networks are shown in Data S1.

To explore the specificities and similarities across the 15 ceRNA networks, we compared their components of lncRNAs, miRNAs, and PCGs by calculating the Jaccard coefficients. The results showed that the ceRNA molecules, including lncRNAs and miRNAs, were more conserved in the 15 ceRNA networks, while the miRNAs tended to be shared among the different ceRNA networks (Figures 2A–2C). In contrast, PCGs displayed the lowest similarities across these drug categories (Figures 2C and 2D). The average values of the Jaccard coefficients of the lncRNAs, miRNAs, and PCGs are shown in Figure 2D. Then, we compared the distribution of lncRNAs, miRNAs, and PCGs among all ceRNA networks (Figure 2E). The results indicated that more lncRNAs and miRNAs were shared by different drug categories than PCGs.

We also compared the hub nodes in the 15 ceRNA networks. Hub nodes were identified as the highly connected nodes, which were considered to play a critical role in the maintenance of network stability.21–24 In this study, the lncRNA and PCG nodes with the top 5% highest degree and degree \(>10\) were defined as hub nodes.25 A total of 98 hubs were defined across the 15 ceRNA networks. Among them, 56 hub nodes were shared by all networks. These shared hub nodes belong to lncRNAs, including \textit{XIST}, \textit{H19}, \textit{TUG1}, and \textit{NEAT1}, among others (Figure 2F). Additionally, there are also some specific hub nodes, including \textit{CDKNA1}, \textit{VEGFA}, \textit{BCL2}, and \textit{CDK6} (Figure 2F).

In addition, we examined the properties of lncRNAs in these ceRNA networks. The classes of lncRNAs in the 15 ceRNA networks were identified according to lncRNA annotation (see Materials and methods). The results showed that most of these competitive lncRNAs were classified as long intergenic noncoding RNA (lincRNA), antisense, and processed transcripts (Figure S4). lincRNAs show broad biological activity through interacting with miRNAs.25,26 These results provided evidence that ceRNAs may be a fundamental layer of gene regulation in drug resistance. We further analyzed the ceRNA triplets and found that almost all of the lncRNAs, miRNAs, and PCGs were...
located in different chromosomes (Figure S5). This indicates that the ceRNA triplet interactions tend to be through distant regulation, which is also consistent with ceRNA theory.

Relevance between ceRNAs across 15 drug categories and cancer hallmark processes

Next, we investigated the role of these ceRNAs across 15 drug categories in cancer. To do this, we obtained cancer-related lncRNAs, miRNAs, and PCGs from several databases (see Materials and methods). The relevance between ceRNAs and cancer hallmarks was calculated using a hypergeometric test. Competing triplets that enriched lncRNAs, miRNAs, and PCGs of each drug category are shown in Figure 3A. The results indicated that miRNA, which mediates lncRNA-PCG competition pairs, is more likely to be related to cancers (Figure 3A). The hypergeometric test result of Figure 3A is shown in Table S2.
We then explored whether these PCGs for each drug category were targeting cancer hallmark processes. After collecting the cancer hallmark processes, the Jaccard coefficient was used to measure intersections between cancer hallmark genes and PCGs in each ceRNA network. The results showed that PCGs in the ceRNA networks were represented across a broad range of cancer hallmark processes, including 151 genes were associated with CAGs. Among them, some protein-protein interactions (PPIs) and transcriptional factor-gene interactions were also correlated with CAGs. Therefore, the significant interactions between CAGs and PCGs among the 15 ceRNA networks (Figures 2 and 3). This raises the question of whether intersections exist among the ceRNA networks across the 15 drug categories. And, if they do, what are their functions?

To determine this, we extracted the intersection edges of the 15 ceRNA networks and constructed an ICN, which is composed of 7 IncRNAs, 13 miRNAs, and 32 PCGs (Figure 4). This showed that H19 is the most connected IncRNA node in the ICN, which may regulate key signaling pathways in drug resistance (Figure 4). Some of the predicted relationships have been verified using HT29 and methotrexate-resistant HT29 (HT29-MTX) colon cancer cell lines. Compared with HT29 cells, the expression of HIF1A and H19 was up-regulated in HT29-MTX cells (Figures S6A and S6B). Additionally, the knockdown of H19 upregulated miR-20a-5p, miR-20b-5p, and miR-17-5p in HT29-MTX cells (Figures S6C–S6F). Also, to validate the ceRNA network of IncRNA H19/miRNA/HIF1A, an additional experiment was conducted. A dual-luciferase reporter assay was used to validate the direct interaction between miR-17-5p and H19/HIF1A. The results showed that miR-17-5p could directly bind to H19 and HIF1A. Additionally, the knockdown of H19 could upregulate miR-17-5p and downregulated HIF1A mRNA and protein (HIF-1α) expression levels, which was attenuated by miR-17-5p inhibition (Figure S7).

To show the effect of the ICN on drug response, we analyzed the correlation between drug sensitivity to 76 US Food and Drug Administration (FDA)-approved anti-cancer drugs and the transcriptional expression of genes in the ICN (Figure 5). The correlation between the expression of genes in the ICN and drug sensitivity is shown in Figure S8.

Interaction between CAGs and genes in the ICN

To further understand the clinical implications of the ICN, the expression profiles of genes in the ICN were correlated with CAGs. CAGs are FDA-approved drug target genes and associated biomarker genes, including 132 target therapeutic genes and 19 immunotherapeutic genes. The expression profiles of 151 genes were obtained and Pearson’s correlation coefficient (PCC) values were calculated (Figure 6). Gene pairs with PCCs |R| >0.3 and a false discovery rate (FDR) <0.05 were screened. We observed that 94.7% of the CAGs were associated with genes in the ICN (Figure 6). Genes in the ICN were also correlated with CAGs. Among them, some protein-protein interactions (PPIs) and transcriptional factor-gene interactions were observed (Figure 6). These results showed that CAGs could be regulated by ceRNAs, including through targeted therapy and immunotherapy. This data analysis was based on the PPI and transcription factor (TF) data from the Human Protein Reference Database (HPRD) (http://www.hprd.org/) databases. The results showed that ceRNAs have many effects on CAGs. Therefore, the significant interactions between CAGs and ceRNA-associated genes may affect the drug response.

Clinical relevance of the ICN

We then explored the association of genes in the ICN with patient survival time and cancer stage. We identified 1 IncRNA, 13 miRNAs, and 33 PCGs associated with overall survival in at least one cancer type (Figure 7A). Most of the genes in the ICN were negatively correlated with the survival of brain low-grade glioma (LGG) patients, while only a small number of these genes showed a correlation with that of acute myeloid leukemia (LAML) patients. Also, many genes in the ICN were correlated with patient survival time and cancer stage of kidney renal clear cell carcinoma (KIRC), stomach adenocarcinoma (STAD), and breast invasive carcinoma (BRCA). Some genes act as either promoters or suppressors of cancers and are closely

Table 1. Statistical results for the ceRNA networks across 15 anti-cancer drug categories

MOA	miRNAs	IncRNAs	PCGs	Nodes	Edges
YK	158	217	1,384	1,759	9,334
Df	149	213	1,944	1,406	4,661
Ds	157	217	1,369	1,743	8,831
A7	158	217	1,379	1,754	9,241
AM	156	216	1,329	1,701	8,103
Db	151	211	1,073	1,435	5,299
Ho	158	217	1,380	1,755	9,085
Rs	146	209	1,140	1,495	4,423
Tu	155	217	1,346	1,718	8,167
T2	154	216	1,290	1,660	7,890
Apto	151	212	1,108	1,471	6,015
DNMT	148	209	1,104	1,461	4,390
STK	150	213	1,220	1,583	5,731
T1	152	209	1,049	1,410	4,597
Pr	145	210	1,078	1,433	4,302

MOA, mechanism of action.
correlated with the outcome of patients. For example, patients with a low expression level of E2F2 showed significantly worse survival in head and neck squamous cell carcinoma (HNSC) (log-rank test, p = 0.0018), STAD (log-rank test, p = 0.018), and rectum adenocarcinoma (READ) (log-rank test, p = 0.018) (Figure 7B). In contrast, several other genes promote the progression of cancer. ITGB8 is taken as an example. The enhanced expression of ITGB8 was associated with worse survival in bladder urothelial carcinoma (BLCA) (log-rank test, p = 0.021), LGG (log-rank test, p < 0.0001), and pancreatic adenocarcinoma (PAAD) (log-rank test, p = 0.0023) patients (Figure 7B).

DISCUSSION

Drug resistance continues to be a major factor in treatment failure of cancers. In recent years, the ceRNA has become a research hotspot, as it reveals a new way to regulate gene expression. A large number of studies have shown that ceRNAs play important roles in the pathogenesis and treatment of cancer. A recent study revealed the role of ceRNA modules in drug resistance across multiple cancers through ceRNA network-based drug sensitivity prediction.30 In the present study, we systematically constructed and dissected ceRNA networks across 15 anti-cancer drug categories.
(paclitaxel) sensitivity in ovarian cancer. In contrast, it was upregulated in doxorubicin-resistant colorectal cancer tissues and cells. The interference of lncRNA XIST enhanced the anti-cancer effect of doxorubicin in colorectal cancer through the regulation of the miR-124/SGK1 axis. IncaRNA NEAT1 could act as a ceRNA to upregulate epigallocatechin-3-gallate (EGCG)-induced CTR1 by sponging hsa-miR-98-5p, thus enhancing the cisplatin sensitivity of non-small cell lung cancer (NSCLC) cells. IncRNA H19 is upregulated in cisplatin- and methotrexate-resistant cancer cells. The expression of H19 was negatively correlated with the cisplatin-based chemotherapy response in ovarian cancer patients. Knockdown of H19 promoted the sensitivity of colorectal cancer to methotrexate. These findings indicate that hub nodes may play important roles in drug resistance.

We investigated the relevance of ceRNAs among the drug categories and cancer hallmark processes. The results showed that ceRNAs were enriched in the cancer genes. This indicates that genes in the ceRNA networks are highly conserved and are also crucially relevant in various cancers. Compared with lncRNAs and PCGs, miRNAs were more likely to be associated with cancers. Cancer hallmark functional analysis revealed that these ceRNAs were related to hallmark processes such as “self-sufficiency in growth signals,” “insensitivity to antigrowth signals,” and “tissue invasion and metastasis” (Figure 3). These functions are all drug resistance-associated biological processes in cancer cells.

We then explored the specifics and similarities among the 15 ceRNA networks. Interestingly, although these drug categories have dramatically different molecular mechanisms, they shared many

cRNAs. Additionally, the constructed 15 ceRNA networks across 15 drug categories had many intersections. These findings suggested that there may be an intersection ceRNA network across different anti-cancer drug categories. Therefore, we speculated that there exists a common ceRNA network across the 15 drug categories. An ICN was constructed as expected (Figure 4). IncRNA H19 is the hub node across 15 ceRNA networks, which is regulated by miR-20a-5p, miR-20b-5p, miR-92a-3p, and miR-17-5p, as shown in the ICN. Some of the ceRNA relationships that we predicted (Figure 4) have now been substantiated. A recent study conducted by Zhu et al. proved one of the signaling pathways in the ICN. They found that the expression of H19 was increased and miR-20b-5p was decreased in endometrial cancer tissues and cells. Additionally, H19 accelerates the tumor formation of endometrial cancer through the miR-20b-5p/AXL/HIF-1α signaling pathway. Additionally, the knockdown of H19 showed a therapeutic significance through the inhibition of tumor growth and the promotion of cell apoptosis. Moreover, we established a methotrexate resistance colon cancer cell line (HT29-MTX) to further prove the predicted signaling pathways in the ICN. Compared with HT29 cells, the HIF1A expression was upregulated in HT29-MTX cells (Figure S6A). This result was consistent with the findings that HIF-1α (encoded by HIF1A) confers drug resistance in colorectal cancer. Simultaneously, we found that the expression of IncRNA H19 was also upregulated in HT29-MTX cells (Figure S6B). The downregulation of H19 upregulated miR-20a-5p, miR-20b-5p, and miR-17-5p in HT29-MTX cells (Figures S6C–S6F). Additionally, the relationship among H19/miR-17-5p/HIF1A has been validated (Figure S7). These results are also in accordance with the prediction in the ICN. Consistent with our findings, Huang et al. found that H19 was also upregulated in NSCLC cell lines. Silencing H19 could suppress the growth, migration, and invasion of NSCLC cells via sponging miR-17. Similarly, Liu et al. found that H19 may competitively bind to miR-17a-5p and is thus involved in the pathogenesis of thyroid cancer. Additionally, Italiano et al. identified that THBS1 is the target of the miR17-92 cluster (miR-17, miR-18a, miR-19a, miR-20a, and miR-92a).

To further explore the role of ceRNA triplets in drug resistance, this study focused on genes in the ICN. We analyzed the correlation between drug sensitivities to 76 FDA-approved anti-cancer drugs and the transcriptional expressions of genes in the ICN. The genes in the ICN were potentially related to sensitivity and resistance of
various anti-cancer drugs (Figure 5). Some genes (e.g., BRCA1, FAM96a, TRMT1) are significantly correlated with resistance (positive correlation) to most anti-cancer drugs, while others (e.g., ITCH, miR-21-5p, miR-23b-3p) are genes in the ICN that are sensitive (negative correlation) to most anti-cancer drugs. These drug sensitivity- or resistance-correlated genes we identified are of clinical significance, and they may be novel predictors of drug sensitivity. Previous studies showed that BRCA1, miR-23b-3p, and H19 were involved in the chemoresistance of cancer cells. These findings were confirmed in our analysis. These results also indicate the genes that may potentially be involved in the sensitivity or resistance of anti-cancer drugs.

The genes in the ICN are likely to confer multi-drug resistance to cancers. To explore the clinical implications of the ICN, the interactions between genes in the ICN and CAGs were identified through co-expression, PPI, and transcription factor data (Figure 6). This result suggested that these genes in the ICN should be considered in cancer therapy. We observed some validated PPIs, including NOTCH1, CDC25A, BRCA1, MYC, and NFKB1. CDC5A was positively correlated to CCNE1 while negatively correlated to EGFR. These genes in the ICN could also act as transcriptional activators. For example, MYC could promote the transcription of CDK4. Our results suggest that CAGs are regulated by the genes in the ICN, and they highlight the significance of these genes in the treatment of cancer.

Finally, we identified genes in the ICN that have potential clinical relevance based on the associations of the expression level with patient survival time and cancer stage (Figure 7A). Multiple genes are differentially expressed among tumor stages and associated with patient survival. For example, miR-20b-5p is positively correlated with the prognosis of patients in various cancers, including glioblastoma multiforme (GBM), HNSC, kidney renal papillary cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), and PAAD. IncRNA H19 is dysregulated in various cancers and correlated with the prognosis of patients (Figure 7A; Figure S9). Also, the expression level of H19 in colon adenocarcinoma (COAD) depends on the individual cancer stage according to The Cancer Genome Atlas (TCGA) database (Figure S10). E2F2 and ITGB8 were negatively or positively correlated with the survival of cancer patients, respectively (Figure 7B). E2F2 is a transcription factor that is upregulated in ovarian cancer. Enforced E2F2 expression promotes MCM4, CCNE2, and WHSC1 expression and is negatively correlated with the overall survival of ovarian cancer patients. ITGB8 encodes integrin beta 8, which is a transmembrane receptor. It is overexpressed in gefitinib-resistance HepG2 cells (HepG2/G). The silencing of ITGB8 reversed
Figure 7. Clinical relevance of the ICN across 21 kinds of cancer.

(A) Clinical relevance of the ICN across different cancer types. Pink boxes indicate genes that are differentially expressed between the ICN and different cancer samples. Dark yellow and light yellow boxes represent the upregulation or downregulation of genes in later stages (fold change of transcriptional expression between stages III/IV and stages I/II larger than 1.5). Dark green and light green boxes indicate high and low expression in tumors associated with worse overall survival times (log-rank test FDR < 0.05), respectively. (B) Kaplan-Meier curves of multiple cancer types stratified by median expression level of E2F2 and ITGB8.
gefitinib resistance of HepG2 cells. Similarly, the downregulation of ITGB8 could also restore cisplatin resistance of ovarian cancer cells. These results highlight the possible clinical utility of genes in the ICN in human cancer patients.

Our study provides a comprehensive analysis of the genes in the ICN across 15 drug categories and highlights their potential clinical utility in cancer therapy. The construction of the ICN suggested that a certain number of genes participate in multi-drug resistance. The design limitation in this work is that we only investigated single-drug effects, with no drug combination comparisons. In the following studies, we will assemble drug combination comparison data to strengthen our approach and predictability.

In summary, our study depicted the ceRNA crosstalk landscape across 15 anti-cancer drug categories. By systematically analyzing the ceRNA networks, we have revealed some important properties of ceRNA regulation. Additionally, our recent work characterized the small-molecule drugs and their affected lncRNAs. These findings not only provide new insight into the investigation of anti-cancer drug resistance, but they also provide new insight into the clinical rational use of drugs.

MATERIALS AND METHODS

Candidate IncRNA-miRNA-PCG competing interactions

We obtained the IncRNA-miRNA-PCG interactions data using a previous study, which aimed to develop a systematic identification of IncRNA-associated competing triplets. Briefly, the miRNA-IncRNA interactions were predicted using four miRNA target prediction methods, including miRanda, RNAhybrid, TargetScan, and PITA. The miRNA-lncRNA interactions predicted based on different methods were integrated. Then, to identify experimentally supported miRNA-binding sites on lncRNA sequences, the Argonauta-cross-linking and immunoprecipitation (CLIP) data were used to filter the miRNA-lncRNA interactions. The miRNA-PCG interactions were obtained from two high-quality databases, TarBase and miRTarBase, that store manually curated collections of experimentally supported miRNA targets. IncRNA-PCG pairs that shared a single miRNA were regarded as one candidate lncRNA-miRNA-PCG competing interaction. Finally, we obtained 526173 non-redundant lncRNA-miRNA-PCG interactions for further analysis.

Generation of anti-cancer drug sensitivity-associated ceRNA networks

We collected drugs and drug-sensitivity-related PCGs and miRNAs from the CellMiner database. The CellMiner database provides access to 60 human tumor cell lines (NCI-60 cell lines) and transcripts for 22,379 genes and 360 miRNAs along with activity reports for 20,503 chemical compounds including 102 drugs approved by the FDA. In the CellMiner database, these anti-cancer drugs were divided into 15 drug categories according to their mode of action. The transcripts were detected using untreated cell lines (NCI-60 cell lines), whereas the half-maximal inhibitory concentration (IC50) was calculated after treatment of the cell lines. First, we selected FDA-approved drugs and clinical trial drugs and filtered out drugs not in the DrugBank database. Then, we integrated all drug files downloaded from CellMiner, thus obtaining drug-miRNA and drug-PCG matrices.

In the NCI60 cancer cell line panel obtained by using high-throughput real-time PCR and corresponding data were downloaded from the GEO database (GO: GSE80332). A drug-lncRNA matrix was constructed by calculating the PCC. Assigning 0.3 as the PCC threshold, we obtained 31,230 correlations of drug-lncRNA pairs, 9,557 of drug-miRNA pairs, and 363,654 of drug-PCG pairs.

Then, we performed some dealing steps to reduce false-positive results and construct the anti-cancer drug-sensitive ceRNA networks. For each drug, (1) we obtained the IncRNA-miRNA-PCG triplets that contain at least one drug-related gene (|PCC| > 0.3) and (2) the expressions of IncRNA and PCG should be positive or negative at the same time. Finally, we constructed 15 anti-cancer drug sensitivity-associated ceRNA networks (Table S1). The intersection edges of the 15 ceRNA networks were extracted and an ICN was constructed. The IncRNAs in the profiles of GEO: GSE80332 were selected for further analysis. In the ICN, most of the IncRNAs are not well characterized, and only H19 was annotated. Therefore, H19 was selected for the following analyses.

Collection of cancer-related IncRNAs, PCGs, and miRNAs

In order to explore the functional roles of these anti-cancer drug sensitivity-associated ceRNA networks in tumorigenesis, we examined whether IncRNAs, miRNAs and PCGs involved in them were intrinsic cancer driver genes or were closely associated with tumors. Thus, we collected the cancer-related IncRNA, PCG, and miRNA sets. The cancer-associated IncRNAs were downloaded from LncRNA Disease database. In addition, cancer-related PCGs were extracted from COSMIC and a previous study, miRNAs associated with cancer were collected from mi2Disease and HMDD, both of which are all manually curated databases for miRNA deregulation in human disease. In total, we obtained 20 IncRNAs, 324 PCGs, and 217 miRNAs that are associated with cancer. Then, a hypergeometric test was used to evaluate whether the genes in the anti-cancer drug sensitivity-associated ceRNA networks were significantly enriched in our collected cancer-related IncRNA, PCG, and miRNA sets.

Cancer hallmarks and functional analysis

Functional enrichment analysis was used to understand the functional roles of genes in the ceRNA networks. First, we derived the cancer...
hallmark Gene Ontology (GO) terms from the research of Plaisier et al. 54 Then, the p values of the cumulative hypergeometric test were used to evaluate the significance of IncRNAs competitively regulating PCGs that enriched pathways/cancer hallmark GO terms. The cumulative hypergeometric test formula can be represented as follows:

\[
P = 1 - \sum_{k=0}^{m} \binom{n}{k} \binom{N-n}{M-k} \binom{N}{M},
\]

where \(N \) is all of the genome-wide genes, \(M \) is the number of a given GO term gene that is annotated in the \(N \) genes, \(n \) is the number of genes of a particular ceRNA, and \(m \) is the number of genes participating in a ceRNA network and annotated for the given cancer hallmark GO term.

Additionally, the Jaccard coefficient is used to calculate the similarity among 15 networks and is also used to measure intersections between cancer hallmark genes and PCGs in each ceRNA network. It is the ratio of intersection to union as follows:

\[
Jac(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.
\]

Interactions and correlations between genes in the ICN and CAGs

To further identify genes in the intersection network that have potential clinical relevance based on the associations between the expression level, patient survival time, or cancer stage, the clinical data from TCGA database were collected.

The differential miRNAs between tumor and normal tissue were obtained from an online tool named miRNA CancerMap (http://cis.hku.hk/miRNA CancerMap/). 58 Additionally, we downloaded TCGA survival data and molecular subtypes of cancer from OncoLnc (http://www.oncolnc.org/) and UALCAN (http://ualcan.path.uab.edu/index.html). 59

These tools performed a log-rank test to calculate the association between the expression of genes in the ICN and overall survival. Transcript expression levels were categorized by the upper quartile of transcripts per kilobase of exon model per million mapped reads (TPM), and a p value < 0.05 was considered to denote statistical significance. UALCAN used a test to detect genes in the ICN with differential expressions among different disease stages, and we considered a p value < 0.05 to denote a significant difference.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.omtn.2021.02.011.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (81803524 and 81803012); the China Postdoctoral Science Foundation (2018M641878); the HeiLongJiang Postdoctoral Foundation (LBH-Q19161 and LBH-Z18168); the Foundation of Health and Family Planning Commission of HeiLongJiang Province (2018465 and 2018484).

AUTHOR CONTRIBUTIONS

D.S., Z.Q., and Y.J. designed the study. B.L., X. Zhou, D.W., and X. Zhang collected data. D.S., X. Zhou, and X.S. developed the computational model and analyzed the network. D.S., Y.J., and B.L. wrote the article. Z.Q. performed the cell culture and real-time PCR analysis. All authors reviewed the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

1. World Health Organization (2018). Cancer, https://www.who.int/news-room/fact-sheets/detail/cancer.

2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424.

3. Brown, R., Curry, E., Magnani, L., Wilhelm-Benartzi, C.S., and Borley, J. (2014). Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer 14, 747–753.

4. Kage, K., Tsukahara, S., Sugiyama, T., Asada, S., Ishikawa, E., Tsuru, T., and Sugimoto, Y. (2002). Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int. J. Cancer 97, 626–630.

5. He, Z., Xiao, X., Li, S., Guo, Y., Huang, Q., Shi, X., Wang, X., and Liu, Y. (2017). Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells. Oncol. Lett. 14, 2499–2504.

6. Lee, Y.S., Kim, S.M., Kim, B.W., Chang, H.J., Kim, S.Y., Park, C.S., Park, K.C., and Chang, I.S. (2018). Anti-cancer effects of HNHA and lervatinib by the suppression of EMT-mediated drug resistance in cancer stem cells. Neoplasia 20, 197–206.

7. Schmitt, A., Knittel, G., Welcker, D., Yang, T.P., George, J., Nowak, M., Leeser, U., Böttner, R., Perner, S., Peifer, M., and Reinhardt, H.C. (2017). ATM deficiency is associated with sensitivity to PARP1- and ATR inhibitors in lung adenocarcinoma. Cancer Res. 77, 3040–3056.

8. Miao, Y., Zheng, W., Li, N., Su, Z., Zhao, L., Zhou, H., and Jia, L. (2017). MicroRNA-130b targets PTKEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Sci. Rep. 7, 41942.

9. Wu, H., Zhou, J., Mei, S., Wu, D., Mu, Z., Chen, B., Xie, Y., Ye, Y., and Liu, J. (2017). Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J. Cell. Mol. Med. 21, 1228–1236.
10. Malek, E., Jagannathan, S., and Driscoll, J.I. (2014). Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget 5, 8027–8038.

11. Liu, X.H., Liu, Z.L., Sun, M., Liu, J., Wang, X.Z., and De, W. (2013). The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer 13, 464.

12. Sørensen, K.P., Thomassen, M., Tan, Q., Bak, M., Cold, S., Burton, M., Larsen, M.J., and Kruse, T.A. (2013). Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res. Treat. 142, 529–536.

13. Kim, K., Jutosuke, I., Chadalapaka, G., Johnson, G., Frank, J., Burghardt, R., Kim, S., and Safe, S. (2013). HOTAIR is a prognostic negative factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32, 1616–1625.

14. Liu, Z., Sun, M., Lu, K., Liu, J., Zhang, M., Wu, W., De, W., Wang, Z., and Wang, R. (2013). The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregulation of p21(WAF1/CIP1) expression. PLoS ONE 8, e77293.

15. Shi, S.J., Wang, L.J., Yu, B., Li, Y.H., Jin, Y., and Bai, X.Z. (2015). lncRNA-ATB promotes tumor growth and invasion by activating miR-124 and downregulating NAMPT in gastric cancer. Sci. Rep. 5, 12451.

16. Tsang, W.P., Wong, T.W., Cheung, A.H., Co, C.N., and Kwok, T.T. (2007). Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA 13, 890–898.

17. Salmena, L., Poliseno, L., Tay, Y., Kats, L., and Pandolfini, P.P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358.

18. Qu, L., Ding, J., Chen, C., Wu, Z., Liu, B., Gao, Y., Chen, W., Liu, F., Sun, W., Li, X.F., et al. (2016). Exosome-transmitted IncARSR promotes sunitinib resistance in renal cell carcinoma by targeting miR-222. FEBS J. 434, 1–10.

19. Li, Y., Ye, Y., Feng, B., and Qi, Y. (2017). Long noncoding RNA IncARSR promotes doxorubicin resistance in hepatocellular carcinoma via modulating PTEN-P13K/Akt pathway. J. Cell. Biochem. 116, 4498–4507.

20. Gu, J., Wang, Y., Wang, X., Zhou, D., Shao, C., Zhou, M., and He, Z. (2018). Downregulation of IncRNA GAS5 confers tamoxifen resistance by activating miR-222 in breast cancer. Cancer Lett. 434, 1–10.

21. Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabási, A.L., and Vidal, M. (2007). Drug-target network. Nat. Biotechnol. 25, 1119–1126.

22. Han, J.D., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D., Walhout, A.J., Cusick, M.E., Roth, F.P., and Vidal, M. (2004). Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93.

23. Jin, G., Zhang, S., Zhang, X.S., and Chen, L. (2007). Hubs with network motifs organize modularity dynamically in the protein-protein interaction network of yeast. PLoS ONE 2, e1207.

24. Ekmann, D., Light, S., Björklund, A.K., and Elofsson, A. (2006). What properties characterize the hubs proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol. 7, R45.

25. Imig, J., Brunschweiger, A., Brunner, A., Goennweg, B., Mittal, N., Kishore, S., Tsrikika, P., Gerber, A.P., Zapolvan, M., and Hall, J. (2015). miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat. Chem. Biol. 11, 107–114.

26. Pu, Z., Li, G., Li, Z., Wang, Y., Zhao, Y., Zheng, S., Ye, H., Luo, Y., Zhao, X., Wei, L., et al. (2017). Endogenous miRNA sponge lincRNA-ROB promotes proliferation, invasion and stem-cell-like phenotype of pancreatic cancer cells. Cell Death Dis. 8, 17004.

27. Wang, E., Zaman, N., Mcevo, S., Milanes, J.S., Masoudi-Nejad, A., and O’Connor-McCourt, M. (2015). Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Semin. Cancer Biol. 30, 4–12.

28. Peri, S., Navarro, J.D., Kristiansen, T.Z., Amanchy, R., Surendranath, V., Muthusamy, B., Gandhi, T.K., Chandrika, K.N., Deshpande, N., Suresh, S., et al. (2004). Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 32, D497–D501.

29. Chat-Arayomtrir, A., Breitkreutz, B.J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolos, N., O’Donnell, L., et al. (2015). The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43, D470–D478.

30. Liu, H., Wang, S., Zhou, S., Meng, Q., Ma, X., Song, X., Wang, L., and Jiang, W. (2019). Drug resistance-related competing interactions of IncRNA and miRNA across 19 cancer types. Mol. Ther. Nucleic Acids 16, 442–451.

31. Kesarwani, M., Kincaid, Z., Gomaa, A., Huber, E., Rohraubagh, S., Siddiqui, D., Bousou, M.F., Matif, T., Xu, M., Komurov, K., et al. (2017). Targeting c-FOS and DUSP1 abrogates intrinsic resistance to tyrosine-kinase inhibitor therapy in BCR-ABL-induced leukemia. Nat. Med. 23, 472–482.

32. Zhu, J., Zhang, R., Yang, D., Li, J., Yan, X., Jin, K., Li, W., Liu, X., Zhao, J., Shang, W., and Yu, T. (2018). Knockdown of long non-coding RNA XIST inhibited doxorubicin resistance in colorectal cancer by upregulation of miR-124 and downregulation of SKG1. Cell Physiol. Biochem 51, 113–128.

33. Jiang, P., Chen, A., Wu, X., Zhou, M., U Haq, I., Mariyam, Z., and Feng, Q. (2018). NEAT1 acts as an inducer of cancer stem cell-like phenotypes in NSCLC by inhibiting EGC-G-upregulated CTLR1. J. Cell. Physiol. 233, 4852–4863.

34. Zheng, Z.G., Xu, H., Suo, S.S., Xu, X.L., Ni, W.M., Gu, L.H., Chen, W., Yang, L.Y., Zhao, Y., Tian, B., and Hua, Y.J. (2016). The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer. Sci. Rep. 6, 26993.

35. Zhu, H., Jin, Y.M., Liu, X.M., Fan, L.M., and Wu, F. (2019). Long noncoding RNA H19 regulates HIF-1α/AXL signaling through inhibiting miR-20b-5p in endometrial cancer. Cell Cycle 18, 2454–2464.

36. Wang, Y., Lei, F., Rong, W., Zeng, Q., and Sun, W. (2015). Positive feedback between oncosgenic Kras and HIF-1α confers drug resistance in colorectal cancer. Oncol. Targets Ther. 8, 1229–1327.

37. Huang, Z., Lei, W., Hu, H.B., Zhang, H., and Zhu, Y. (2018). H19 promotes non-small-cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR-17. J. Cell. Physiol. 233, 6768–6776.

38. Liu, L., Yang, J., Zhu, X., Li, D., Lv, Z., and Zhang, X. (2016). Long noncoding RNA H19 competitively binds miR-17-5p to regulate YES1 expression in thyroid cancer. FEBS J. 283, 2326–2339.

39. Irazao, A., Díez, M., Zhao, Y., and Goel, A. (2013). The long noncoding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. J. Cell Physiol. 228, 3063–3071.

40. Cale, A., Vittorio, A., D’Acci, C., Stinson, B., Airo, M., Gao, C., and Pupa, M.S. (2011). System level characterization of small molecule drugs and their affected long noncoding RNAs. Aging (Albany NY) 11, 12428–12451.
47. Wang, P., Ning, S., Zhang, Y., Li, R., Ye, J., Zhao, Z., Zhi, H., Wang, T., Guo, Z., and Li, X. (2015). Identification of IncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res. 43, 3478–3489.

48. Reinhold, W.C., Sunshine, M., Liu, H., Varma, S., Kohn, K.W., Morris, J., Doroshow, J., and Pommier, Y. (2012). CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 72, 3499–3511.

49. Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., Zhang, Q., Yan, G., and Cui, Q. (2013). LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41, D983–D986.

50. Forbes, S.A., Bindal, N., Bamford, S., Cole, C., Kok, C.Y., Beare, D., Jia, M., Shepherd, R., Leung, K., Merzies, A., et al. (2011). COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950.

51. Tamborero, D., Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Kandoth, C., Reimand, J., Lawrence, M.S., Getz, G., Bader, G.D., Ding, L., and Lopez-Bigas, N. (2013). Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 3, 2650.

52. Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G., and Liu, Y. (2009). mir2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37, D98–D104.

53. Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., and Cui, Q. (2014). HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 42, D1070–D1074.

54. Plaisier, C.L., Pan, M., and Baliga, N.S. (2012). A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res. 22, 2302–2314.

55. Van Allen, E.M., Wagle, N., Stojanov, P., Perrin, D.L., Shibulskis, K., Marlow, S., Jane-Valbuena, J., Friedrich, D.C., Kryukov, G., Carter, S.L., et al. (2014). Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 20, 682–688.

56. Mak, M.P., Tong, P., Diao, L., Cardnell, R.J., Gibbons, D.L., William, W.N., Skoulidis, F., Parra, E.R., Rodriguez-Canales, J., Wistuba, I., et al. (2016). A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin. Cancer Res 22, 609–620.

57. Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Mattys, V., Meinhardt, T., Prüss, M., Reuter, I., and Schacherer, F. (2000). TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 28, 316–319.

58. Tong, Y., Ru, B., and Zhang, J. (2018). miRNACancerMAP: an integrative web server inferring miRNA regulation network for cancer. Bioinformatics 34, 3211–3213.

59. Chandrashekar, D.S., Bashel, B., Balasubramanya, S.A.H., Creighton, C.J., Ponce-Rodriguez, I., Chakravarthi, B.V.S.K., and Varambally, S. (2017). UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658.