Research Paper
The Effects of High Power and Low Power Posing on Students’ Pain Threshold

Atiye Sadat Hasheminejad1, *Mahdieh Shafiee Tabar1, Soghra Akbari Chermahini1

1. Department of Psychology, Faculty of Humanities, Arak University, Arak, Iran.

ABSTRACT

Background and Aim: Research has shown that social power affects information processing in many ways and can induce powerful movements or gestures. This study aimed to investigate the effect of pretending power gestures on changing the pain threshold of a group of female students.

Methods & Materials: The method of the present study was quasi-experimental with a pre-test post-test design with a control group. The statistical population of this study included all female students of Arak University in the academic year 2016-2017, from which 60 people selected by convenience sampling method, and randomly divided into three groups: high power posing (sitting on a chair and putting your feet on the table, placing your hands behind your head and holding your head up), low power posing (sitting on a chair with your legs together, arms between your legs and bending your head to bottom) and control. Rosenberg self-esteem scale and tourniquet technique with cuff pressure gauge (to measure pain threshold) used to collect data. After the pre-test measurements and two minutes of gestures, the post-test was performed immediately. Data were analyzed using the analysis of covariance.

Ethical Considerations: This study was approved by the ethics committee of Arak University of Medical Sciences (Code: IR.ARAKMU.REC.1399.276).

Results: The results showed that pretending high/low power gesture significantly affects pain threshold; pretending to have a high-power gesture increases the pain threshold, and pretending to have a low-power gesture lowers the pain threshold.

Conclusion: Based on the results, using power gestures as a simple tool in pain situations is recommended for pain management or as a supplement to analgesics.

Keywords: Low Power Posing, High power posing, Pain threshold

Extended Abstract

1. Introduction

Pain is complex and multidimensional perception, influenced by psychological factors, which include a set of cognitive (e.g., attention), behavioral (e.g., specific behavioral responses when experiencing pain), and emotional (sadness, hopelessness, fear, & anxiety respecting aggravate pain) aspects, which plays an essential role in modulating the perception of pain [3].

A psychological approach that can considerably relieve pain is power posture [4, 7]. Power posture, expressed in expansive body postures, can lead to changes in humans’ power-related feelings, thinking, and behavior. Therefore, the effects of using power posture mediated by hormonal
and neurological factors on the pain threshold are expected. Bohns and Wiltermuth (2012) suggested that participants with a power posture had a higher pain threshold than individuals with a neutral or obedient gesture [7]. However, Ge, Bennett, and Oller’s (2017) findings did not reflect the effects of power gestures on pain threshold [4]. Therefore, considering the contradiction between the results of power gesture research, the present study aimed to investigate the effects of pretending high/low power gestures on pain threshold.

2. Materials & Methods

This study was a quasi-experimental study with pre-test-post-test and a control group design. Accordingly, the convenience sampling method selected 60 female students affiliated with Arak University with a mean±SD age of 20.2±2.5 years in 2016-2017. The study participants were randomly divided into 3 groups of 20 subjects, including high power posture (sitting on a chair with legs on the table, arms behind & head held up), low power posture (sitting on a chair with legs crossed, arms between legs & bending the head down), and without posture as the control group. After pre-test measurements and two minutes of poses, the post-test was performed immediately. Research tools included Rosenberg Self-Esteem Scale (RSES) and blood pressure cuff, and pain thresholds were recorded in millimeters of mercury, a standard unit used to report blood pressure [7]. To perform high/low power posture in this study, the gestures of Carney et al. (2010) were used with the exact instructions. The study subjects performed each gesture for one minute (two minutes per person per group) between the pre-test and post-test intervals [9]. The principles of confidentiality of the study participants’ information were observed.

3. Results

One-Way Analysis of Covariance (ANCOVA) was used to evaluate the effects of power posture on pain threshold. The results of this test are reported in Table 2.

The ANCOVA results indicated that the difference in the adjusted mean score of pain threshold in the high-power posture group (81.94), the low-power gesture group (63.87), and the control group (74.41) was significant according to the F statistic at the level of 0.001 (Figure 1). Thus, pretending a high-power posture increases the pain threshold, and a low-power posture decreases it in university students.

4. Discussion & Conclusion

This study aimed to investigate the effects of pretending power posture on changing the pain threshold of a group of female students. The obtained results were in line with the results of Bohns and Wiltermuth (2012) [7]; however, our findings were inconsistent with those of research by Ge, Bennett, and Oller (2017) [4]. According to Carney et al. (2010), the gesture of power increases testosterone and decreases cortisol [9]; increased power is also associated with the behavioral activation system, and decreased power is associated with the behavioral inhibition system [16]. Behavioral activation system with mesolimbic dopamine nerve cell activity leads to relief and the reduction of pain sensitivity [28, 29]. Furthermore, testosterone and the left prefrontal cortex activity increase the pain threshold by affecting beta-endorphins, neurotransmitters, and other neuropeptides [30, 31]. Cortisol also helps relieve pain by altering hippocampal.

![Figure 1](image-url). The adjusted mean score of post-test of pain threshold test in the groups of high-, low-, and control power posture in university students.
Bohns and Wiltermuth (2012) suggested that the study participants with a power posture had a higher pain threshold than those with a neutral or obedient gesture [7]. These studies indicated a negative relationship between cortisol and a positive relationship between testosterone and pain threshold [17], a negative relationship between the behavioral activation system, and a positive relationship between the behavioral inhibition system and pain [18]. Therefore, hormonal and neurological factors can be considered for power gestures’ effect on the pain threshold. To explain the inconsistency of the present study findings with those of the research by Ge, Bennett, and Oller (2017), it is necessary to outline the difference in gestation time, gesture differences, the lack of control group, and the use of hand muscle dynamometer to measure pain threshold in Ge et al.’s investigation; using power gestures as a simple tool in pain situations are recommended for pain management or as a supplement to analgesics.

Table 1. ANCOVA data to investigate the difference between high-power and low-power postures, and the control groups in pain threshold

Sources	Sum of Square	df	Mean Square	F	P	Partial Eta Square	Power	
Covariate 1	self-esteem	5.83	1	5.83	0.037	0.84	0.001	0.054
Covariate 2	Pre-test	25350	1	25350	161.54	0.001	0.76	1
	Pain threshold							
Group		3283.55	2	1641.77	10.46	0.001	0.30	0.98
Error		7689.25	53	156.92				

Conflicts of interest

The authors declared no conflicts of interest.

Ethical Considerations

Compliance with ethical guidelines

The Research Ethics Committee of Arak University of Medical Sciences approved this study (Code: REC.1399.276). Participation in this study was informed and voluntary, and participants could withdraw at any study stage.

Funding

This research was extracted from the MA. thesis of the first author at the Department of Psychology, Faculty of Humanities, Arak University, Arak.

Authors’ contributions

All authors contributed equally to the preparation of this article.
مقاله پژوهشی

تأثیر وانمود کردن و زست قدرت بالا و زست قدرت پایین بر آستانه درد حانشجویان

عملیات حامی سازیتادا "مهدیه شفیعی تبار" صنری اکبری چهی

1. گروه روانشناسی، دانشکده علوم انسانی، دانشگاه اراک، اراک، ایران

چکیده

اهداف: این پژوهش با هدف بررسی تأثیر وانمود کردن ژست قدرت بر آستانه درد گروهی از دانشجویان دختر انجام گرفت.

روش پژوهش حاضر نیمه تجربی با طرح پیش آزمون و پس آزمون با گروه کنترل بود. جامعه آماری این پژوهش شامل همه دانشجویان دختر دانشگاه اراک در سال تحصیلی 1399-1398 بود که از این جمله، 18 نفر، با هزینه های خود، به شکل تصادفی در سه گروه ژست قدرت بالا (نشستن روی صندلی و قرار دادن پاها روی میز و دست ها را پشت سر قرار دادن و سر را بالا نگه داشتن)، ژست قدرت پایین (نشستن روی صندلی با پا های جفت شده و دست ها بین پا ها و خم کردن سر به سمت پایین) و گروه کنترل (نیک) انتخاب شدند. برای بررسی تأثیر آن مطالعه بر روی آستانه درد، از مقیاس عزت نفس روزنبرگ و تکنیک تورنیکه با کمک فشار سنج (مخصوص بررسی آستانه درد) استفاده شد. پس از اندازه‌گیری های پیش آزمون و دو دقیقه اجرای ژست ها، پس آزمون انجام گرفت. داده ها با استفاده از آزمون تحلیل کوواریانس تجزیه و تحلیل شدند.

نکته: این مطالعه در کمیته اخلاق دانشگاه علوم پزشکی اراک به ثبت رسیده است (کد IR.ARAKMU.REC.1399.276).

یافته‌ها: یافته‌های پژوهش حاضر نشان داد تأثیر معنادارا وانمود کردن ژست قدرت بالا / پایین بر آستانه درد تأثیر معنادار دارد، به طوری که وانمود کردن ژست قدرت بالا منجر به افزایش آستانه درد و وانمود کردن ژست قدرت پایین منجر به کاهش آستانه درد می‌شود.

نتایج: به طور کلی، این مطالعه نشان می‌دهد که استفاده از ژست های قدرت بالا، به عنوان یکی از موارد مدیریت درد، برای مواجهه با درد و رفع آن، به طور کاملاً قابل قبولی است.

کلیدواژه‌ها: تأثیر وانمود کردن ژست قدرت بالا و پایین بر آستانه درد حانشجویان

مقدمه

درد، یک شیوع جهانی و حائز چشمانداز است. حداقل ۱۱۶ میلیون از بین افراد آمریکا یک درد حاد و مزمن را دارند. ۴۵ و هزینه‌های ناشی از درد، به طور تخمینی طی سال‌های ۲۰۲۷ تا ۲۰۳۰ به میزان ۸۶۰ میلیارد دلار خواهد بود. در حال حاضر، تحقیقات در تشخیص و درمان درد، به‌طور گسترده‌ای انجام می‌شود.

در این مقاله، سعی می‌شود بررسی کنیم که ژست های قدرت و وانمود کردن آنها بر آستانه درد چه تأثیری دارند.

در ادامه، این مقاله به تکنیک‌های مربوط به درمان درد می‌پردازد.
ارتباط منفی و بین سیستم بازداری و رفتاری و درد ارتباط منفی
و جوهر طوری [15] با این منابع است که از استاندارد قدرت با
میانگین میزان هورمون کورتیزول و فشار بر اساس قدرت در
قابل اندازه‌گیری است.
در این راستا، پوئئی نیز ارتباط بین عزت نفس و روان‌شناختی و اضطراب
شناخته شده که ایجاد بیماران مانند آسیب دیدگان، خانواده و دوستان
در مقابل فشار برای بهبود یک‌یک یا بیماران پپیته، به کمک چنین
شناخته شده که این دسته‌بندی‌ها با انسان‌شناسی را در جلسات
فیزیوتراپی در نظر داشته باشد. [21] به‌طوری‌ای که تشخیص‌های درمانی این دسته‌بندی با
است و به غیر از دفع اصول روان‌شناختی در درمان فیزیوتراپی
بیماران می‌تواند از این میدان‌های مبهم و مکمل بر
باره‌های فیزیوتراپی باشد. [5]

یکی از رویکردهای روان‌شناختی که می‌تواند توانسته باشد، ژست قدرت است. [2]
یکی از آزمایشات مربوط به ابعاد فیزیوتراپی داشته باشد، زیرا می‌تواند
ردعکستن یکی از عوامل احساس کوتوریوزی و افزایش عزت نفس در این شرایط منجر
به کاهش کورتیزول و افزایش عزت نفس باشد. [15]

بنا به چنین موضوعی که مشاهده گردیده است، درد مطمئناً تجربه‌ای
است و به تبع ادغام اصول روان‌شناختی و درمان فیزیولوژیکی
بیماران می‌تواند ابزار مفید برای مدیریت درد یا مکمل بر
باره‌های فیزیوتراپی باشد. [5]

7. Self Ssteem
6. Behavioral Inhibition System (BIS)
عوامل هورمونی و عصبی مسئله اساسی در پژوهش حاضر است که آیا وانمود کردن ژست قدرت بالا/پایین با استفاده از ژست قدرت قدرت یا خیر؟

مواد و روش‌ها

این پژوهش، یک مطالعه نیمه‌تجربی با طرح پیش‌آزمون و پس‌آزمون بود که در آن شش دانشجوی زن از دانشگاه اراک با میانگین سنی 1399-1398، به علت همبستگی ژست قدرت با رعایت ملاحظات اخلاقی ذکر این نکته لازم است که همه شرکت‌کنندگان آگاهانه و داوطلبانه در نمونه‌گیری شرکت کردند و از نظر محرمانه بودن اطلاعات به آنها اطمینان بخشید. در هر زمانی قادر به ترک جلسات هستند.

جهت اجرای زمینه‌ها و مراحل مطالعه، از استانداردهای بصری و صوتی استفاده گردید. این پژوهش شامل دو بخش محور و فرعی می‌باشد. بخش محور شامل سنجش و استفاده از مقیاس عزت نفس روزنبرگ است. بخش فرعی با مطالعه دانشجویان در سال تحصیلی 20/2 با میانگین سنی 1399-1398، به علت همبستگی ژست قدرت با رعایت ملاحظات اخلاقی ذکر این نکته لازم است که همه شرکت‌کنندگان آگاهانه و داوطلبانه در نمونه‌گیری شرکت کردند و از نظر محرمانه بودن اطلاعات به آنها اطمینان بخشید. در هر زمانی قادر به ترک جلسات هستند.

یافته‌ها

میانگین و انحراف معیار نمرات پیش‌آزمون و پس‌آزمون سنجش عطای السادات هاشمی بر طبق جدول زیر ارائه شده‌اند. در این جدول نتایج آزمون شاپیرو ویلک برای بررسی نرمال بودن توزیع می‌باشد. با توجه به این جدول نتایج اصلی، نمرات پیش‌آزمون و پس‌آزمون سنجش عطای السادات هاشمی معنی‌دار نیستند و حتی نیاز به مدل خطی تصحیحی ندارند. در در خراج از عملیات پژوهشی، این گزارش نمی‌باشد. در این مطالعه بین مقایسه عطای نفس و خوش بینی و همچنین رضایت شخصی، در نهایت با نتایجی مثبت سنجش شد.

8. High Power Posture
9. Low Power Posture
10. Rosenberg Self-Esteem Scale
11. Tourniquet Technique
12. Cuff

9. Low Power Posture
کوواریانس یک راهه استفاده شد. نتایج آزمون بررسی همگنی شیب رگرسیون پیش آزمون و پس آزمون آستانه درد در گروه های مورد مطالعه نشان داد که شیب رگرسیون در هر سه گروه برابر است. نتایج آزمون لوین برای بررسی همگنی واریانس متغیر وابسته در گروه ها نشان داد که واریانس آستانه درد در گروه ها نتایج 2 جدول شماره 2). در F 51, 2 (brabar است (Č2 = 81/1, P = 175). نتایج تحلیل کوواریانس تک متغیری برای بررسی تفاوت آستانه درد در گروه ژست قدرت بالا، پایین و کنترل پس از تعدیل اثر پیش آزمون متغیر آستانه درد گزارش شده است.

10/46 در پس آزمون برابر با F آماره 2 جدول شماره با توجه به معنادار است و این نشان می دهد که 0/001 است که در سطح بین سه گروه پس از انجام آزمایش در میزان آستانه درد تفاوت پیش آزمون آستانه درد نیز برابر با F معناداری وجود دارد. آماره معنادار است. 0/001 است که در سطح 161/54 این یافته نشان می دهد که پیش آزمون تأثیر معناداری بر نمرات پس آزمون دارد. نتایج تحلیل کوواریانس نشان داد که میانگین تعدیل شده گروه ژست قدرت بالا در آستانه درد برابر و در 63/87 و میانگین گروه ژست قدرت پایین برابر با 81/94 با است که تفاوت بین این میانگین ها با توجه 74/41 گروه کنترل. با (تصویر شماره 1) همکاران ناهمسو است (7) و با نتیجه پژوهش 2 امره F در پس آزمون برای با P< 0.001 امره که در سطح که در سطح 1/001 معنادار است.

یافته فوق مبنی بر اثربخشی ژست های قدرت بر آستانه درد و در زیست شناختی و روان شناختی که البته با هم در ارتباط است. در این منظره، رابطه قدرت به فعالیت سیستم دیگر روابط می رود. در حالی که تعداد افراد با دست و پاهای باز قرار گرفتند، دو ژست قدرت بالا و دو ژست قدرت پایین مورد استفاده در مطالعه آزمودنی ها در ژست قدرت بالا در مواضع باز با دست و پاهای باز قرار گرفتند [1].

یافته فوق مبنی بر اثربخشی ژست های قدرت بر آستانه درد از طریق سیستم های طبیعی و سیستم های وابسته به آنها می رود. ژست قدرت به فعالیت سیستم های شناختی و سیستم های وابسته به آنها می رود. ژست های قدرت به سیستم های عصبی دیگر، به ویژه سیستم دیگر روابط می رود. در حالی که تعداد افراد با دست و پاهای باز قرار گرفتند، دو ژست قدرت بالا و دو ژست قدرت پایین مورد استفاده در مطالعه آزمودنی ها در ژست قدرت بالا در مواضع باز با دست و پاهای باز قرار گرفتند [1].
همچنین تستوسترون و فعالیت شکنجه پیش مرکزی چپ با تأثیر بر بتا اندروفین‌ها، فعالیت انتقال‌دهنده‌های عصبی و سایر نوروپپتید‌ها منجر به افزایش آستانه درد می‌شود.

کورتیزول نیز با ایجاد تغییر در عملکرد هیپوکامپ و فعالیت در شکنجه قبلاً افزایش وسیعی به‌نشانه کاهش شکنجه قدامی پارا هیپوکامپ به احساس درد کمک می‌کند. بنابراین حاکی از ارتباط منفی کورتیزول و آستانه درد است و ارتباط مثبت تستوسترون با آستانه درد؛ بنابراین می‌توان عوامل هورمونی و عصبی را به عنوان چرایی تأثیر ژست قدرت بر آستانه درد در نظر گرفت.

از نظر روان‌شناختی، در تبیین یافته‌های پژوهش این نکته قابل ذکر است که مطابق با نظریه رویکردهای قدرت، در افراد دارای قدرت پایین، توجه و پیش‌بینی بیشتر تهدید و مجازات در سطح بالاتری و پیش‌بینی دیده می‌شود. بنابراین، در افراد با قدرت بالایی، جهت تحقق آستانه درد کمتری از خود نشان دهند. همچنین محققان درد باورهای خودکارآمدی و درک کنترل را به عنوان عوامل تعیین‌کننده تحمل درد مطرح کرده‌اند. از این رو، نظریه رویکردهای قدرت نیز پیش‌بینی می‌کند افراد با قدرت بالا، پایین و کنترل متغیر آستانه درد می‌توانند استفاده از دینامومتر دستی.

چکیده: تأثیر ژست قدرت با دکمه‌کشیدن بر آستانه درد دانشجویان. تأثیر و انمای کردن ژست قدرت بالا و ژست قدرت پایین بر آستانه درد.
مشترکان مطالعه و نویسنده

تمام نویسنده‌ها در این پژوهش به عنوان مشترکان مشارکت می‌کنند.

نتایج

بنا بر نتایج، پس از حذف تأثیر آزمون‌های ابتدایی و کنترل اثر عوامل نیمی و انفجاری، کننده زندگی بالا/آماده‌پیش از آزمایش درد وابسته به مهارت اخلاقی رفتاری و نوشتاری می‌شود. این یافته اطلاعی بین وابستگی می‌دهد. این شرکت مطالعه‌ای مواجه با یکی از بهترین مدیریت درد یا مکمل برای درمان درد ارائه می‌دهد.

انجام این پژوهش مانند پژوهش‌های دیگر با محدودیت‌هایی وابسته به عدم امکان اندازه‌گیری تغییرات هورمونی در افراد قبل و بعد از آزمایش اشکال کرده. محدودیت آن‌ها می‌تواند منجر به تغییراتی در رفتار و مهارت‌های روان‌شناسی شود. این محدودیت‌ها به تدریج می‌تواند تأثیر را در بررسی‌های بعدی داشته باشد.

با توجه به تلاش منافع و وابستگی‌های در این پژوهش، استفاده از ژست قدرت بالا و ژست قدرت پایین به عنوان بهترین مکمل برای درمان درد ارائه می‌گردد.

ملاحظات اخلاقی

پژوهش حاضر توسط کمیته‌های اخلاقی مجامع علوم پزشکی ایران تایید و به شماره R.ARAKMU.REC.1399.276 تایید و با شماره.

ملاحظات

همچنین با توجه به نتایج این پژوهش مبنی بر افزایش آستانه درد وابسته به چهار نویسنده، درک و بررسی این پژوهش توسط بازخوانی دو جنس و مقایسه آنها نیز پیشنهاد می‌شود.

پژوهش‌های قبلی از اصول اخلاقی پژوهش

پژوهش حاضر توسط کمیته‌های اخلاقی مجامع علوم پزشکی ایران تایید بوده است.

تهیه نویسندگان

تمام نویسندگان در این مقاله به یک اندازه مشارکت می‌کنند.
References

[1] Institute of Medicine. Relieving pain in America: A blueprint for transforming prevention, care, education, and research. Washington, DC: The National Academies Press; 2011. https://books.google.com/books/about/Relieving_Pain_in_America.html?id=tTTR7ysjQiCQ&source=kp_book_description

[2] Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GI, et al. Advances in neuropathic pain: Diagnosis, mechanisms, and treatment recommendations. Arch Neurol. 2003; 60(11):1524-34. [DOI:10.1001/archneur.60.11.1524]

[3] McGrath PA. Psychological aspects of pain perception. Arch Oral Biol. 1994; 39:555-62. [DOI:10.1016/0003-9687(94)90189-9]

[4] Ge W, Bennett TK, Oller JC. Should high-power posing be integrated in physical therapy? J Phys Ther Sci. 2017; 29(4):697-701. [DOI:10.1589/jpts.29.697]

[5] Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, et al. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science. 2004; 303(5661):1162-7. [DOI:10.1126/science.1093065]

[6] Linton SJ, Shaw WS. Impact of psychological factors in the experience of pain. Phys Ther. 2011; 91(5):700-11. [DOI:10.2522/ptj.20100330]

[7] Bohns VK, Wiltermuth SS. It hurts when I do this (or you do that): How expressive postures affect feelings of self-worth? High power poses impact state self-esteem. Curr Psychol. 2019; 40(8):4112-24. [DOI:10.1007/s12144-019-00371-1]

[8] Niedenthal PM. Embodying emotion. Science. 2007; 316(5827):1002-5. [PMID]

[9] Carney DR, Cuddy AJ, Yap AJ. Power posing: Brief nonverbal displays affect neuroendocrine levels and risk tolerance. Psychol Sci. 2010; 21(8):1033-8. [DOI:10.1177/0956797610373437]

[10] Huang L, Galinsky AD, Gruenfeld DH, Guillory LE. Powerful postures versus powerful roles: Which is the proximate correlate of thought and behavior? Psychol Sci. 2011; 22(1):95-102. [DOI:10.1177/0956797610391912]

[11] Banerjee A, Dyer A, Johannessson M, Leiberg S, Sul S, Weber RA. Assessing the robustness of power posing: No effect on hormones and risk tolerance in a large sample of men and women. Psychol Sci. 2015; 26(5):653-6. [DOI:10.1177/0956797614553946]

[12] Cuddy AJ, Wilmuth CA, Yap AJ, Carney DR. Preparatory power posing affects nonverbal presence and job interview performance. J Appl Psychol. 2015; 100(4):1286-95. [DOI:10.1037/a0038543]

[13] Park LE, Streamer L, Huang L, Galinsky AD. Stand tall, but don’t put your feet up: Universal and culturally-specific effects of expansive postures on power. J Exp Soc Psychol. 2013; 49(6):695-71. [DOI:10.1016/j.jesp.2011.05.022]

[14] Gronau QF, Van Erp S, Heck DW, Cesario J, Jonas KJ, Wagenmakers EJ. A Bayesian model-averaged meta-analysis of the power pose effect with informed and default priors: The case of felt power. Compr Results Soc Psychol. 2017; 2(1):123-38. [DOI:10.1080/23743603.2017.1326760]

[15] Cuddy A. Presence: Bringing your boldest self to your biggest challenges. Boston: Little, Brown; 2015. https://books.google.com/books/about/Presence.html?id=DuCiJCAACAAJ&source=kp_book_description

[16] Keltner D, Gruenfeld DH, Anderson C. Power, approach, and inhibition. Psychol Rev. 2003; 110(2):265-84. [DOI:10.1037/0033-295X.110.2.265]

[17] Choi JC, Chung MJ, Lee YD. Modulation of pain sensation by stress-related testosterone and cortisol. Anaesthesia. 2012; 67(10):1146-51. [DOI:10.1111/j.1365-2044.2012.07267.x]

[18] Jensen MP, Tan G, Chua SM. Pain intensity, headache frequency, and the behavioral activation and inhibition systems. Clin J Pain. 2015; 31(12):1088-74. [DOI:10.1097/AJP.0000000000000215]

[19] Körner R, Petersen LE, Schütz A. Do expansive or contractive body postures affect feelings of self-worth? High power poses impact state self-esteem. Curr Psychol. 2019; 40(8):4112-24. [DOI:10.1007/s12144-019-00371-1]

[20] VandenBos GR. APA dictionary of psychology. Washington, D.C.: American Psychological Association; 2007. https://psychnet.apa.org/about/record/2006-11044-000

[21] Baumeister RF. Self-esteem: The puzzle of low self-regard. Berlin: Springer Science & Business Media; 2013. https://books.google.com/books/about/Self_Esteem.html?id=426ywAAQBAJ

[22] Liu SY, Wrosh C, Miller GE, Pruessner JC. Self-esteem change and diurnal cortisol secretion in older adulthood. Psychoneuroendocrinology. 2014; 41:111-20. [DOI:10.1016/j.psyneuen.2013.12.010]

[23] LePine JA, Van Dyne L. Predicting voice behavior in work groups. J Appl Psychol. 1998; 83(6):853-6. [DOI:10.1037/0021-9010.83.6.853]

[24] Buhrmester D, Furman W, Wittenberg MT, Reis HT. Five domains of interpersonal competence in peer relationships. J Pers Soc Psychol. 1988; 55(6):991-1008. [DOI:10.1037/0022-3514.55.6.991]

[25] Pullmann H, Allik J. The Rosenberg Self-Esteem Scale: Its dimensional-ity, stability and personality correlates in Estonian. Pers Individ Dif 2000; 28(4):701-15. [DOI:10.1016/S0191-8869(99)00134-2]

[26] Mohammadni N. (Preliminary review of the validity and reliability of the Rosenberg Self-Esteem Scale (Persian)). J Dev Psychol Iran Psychol. 2005; 1(4):55-62. http://jip.azad.ac.ir/article_521444.html?lang=en

[27] Greenberger E, Chen C, Dmitrieva J, Farruggia SP. Item-wording and the dimensionality of the Rosenberg Self-Esteem Scale: Do they matter? Pers Individ Dif 2003; 35(6):1241-54. [DOI:10.1016/S0191-8869(02)00311-8]

[28] Atttier N, Stewart J. Intra-VTA infusions of the substance P analogue, DiMe-C7, and intra-accumbens infusions of amphetamine induce analgesia in the formalin test for tonic pain. Brain Res. 1993; 628(1-2):279-85. [DOI:10.1016/0006-8993(93)82065-P]

[29] Wood PB. Mesolimbic dopaminergic mechanisms and pain control. Pain. 2006; 120(3):230-4. [DOI:10.1016/j.pain.2005.12.014]

[30] Padeknar JR, Mulgankar VK. Role of testosterone on pain threshold in rats. Indian J Physiol Pharmacol. 1995; 39(4):423-4. [PMID]

[31] Choi JC, Park SK, Kim YH, Shin YW, Kwon JS, Kim JS, et al. Different brain activation patterns to pain and pain-related unpleasantness during the menstrual cycle. Anesthesia. 2010; 109(3):120-7. [DOI:10.1016/j.anesthesia.2010.07.009]

[32] Vachon-Presseau E, Roy M, Martel MO, Caron E, Marin MF, Chen J, et al. The stress model of chronic pain: Evidence from basal corticotropin releasing hormone gene expression and hippocampal structure and function in humans. Brain. 2013; 136(3):815-27. [DOI:10.1093/brain/awt051]

[33] McCaul KD, Malott JM. Distraction and coping with pain. Psychol Bull. 1984; 95(3):516-33. [DOI:10.1037/0033-2909.95.3.516]

[34] Hasheminejad AS, et al. The Effect of High Power and Low Power Posing on Students’ Pain Threshold. JAMS. 2021; 24(4):554-565. [PMID]
[34] Bandura A, Reese L, Adams NE. Microanalysis of action and fear arousal as a function of differential levels of perceived self-efficacy. J Pers Soc Psychol. 1982; 43(1):5-21. [DOI:10.1037/0022-3514.43.1.5] [PMID]

[35] Bandura A, O'Leary A, Taylor CB, Gauthier J, Gossard D. Perceived self-efficacy and pain control: Opioid and nonopioid mechanisms. J Pers Soc Psychol. 1987; 53(3):563-71. [DOI:10.1037/0022-3514.53.3.563] [PMID]

[36] Litt MD. Self-efficacy and perceived control: Cognitive mediators of pain tolerance. J Pers Soc Psychol. 1988; 54(1):149-60. [DOI:10.1037/0022-3514.54.1.149] [PMID]

[37] Fast NJ, Gruenfeld DH, Sivanathan N, Galinsky AD. Illusory control: A generative force behind power’s far-reaching effects. Psychol Sci. 2009; 20(4):502-8. [DOI:10.1111/j.1467-9280.2009.02311.x] [PMID]
