Estrogen plays key role in the development and maintenance of mammary glands and its signaling is associated with breast cancer growth. Estrogen can exert physiological actions via estrogen receptors α/β (ERα/β). There is experimental evidence suggesting that in ERα/β-positive breast cancer, ERα promotes tumor cell proliferation and ERβ inhibits ERα-mediated transcriptional activity, resulting in abrogation of cell growth. Therefore, ERβ is attracting attention as a potential tumor suppressor, and as a biomarker and therapeutic target in the ERα/β-positive breast cancer. Based on this information, we have hypothesized that some endocrine-disrupting chemicals (EDCs) that can perturb the balance between ERα and ERβ expression levels in breast cancer cells might have effects on the breast cancer proliferation (i.e., down-regulation of the α-type of ER). We have recently reported that 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A, in ERα/β-positive human breast cancer significantly down-regulates ERα expression, yet stimulates cell proliferation through the activation of ERβ-mediated transcription. These results support our hypothesis by demonstrating that exposure to MBP altered the functional role of ERβ in breast cancer cells from suppressor to promoter. In contrast, some EDCs, such as Δ⁹-tetrahydrocannabinol and bisphenol AF, can exhibit anti-estrogenic effects through up-regulation of ERβ expression without affecting the ERα expression levels. However, there is no consensus on the correlation between ERβ expression levels and clinical prognosis, which might be due to differences in exposed chemicals. Therefore, elucidating the exposure effects of EDCs can reveal the reason for inconsistent functional role of ERβ in ERα/β-positive breast cancer.

Key words estrogen receptor α; estrogen receptor β; breast cancer; 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene; endocrine-disrupting chemical

1. INTRODUCTION

Estrogen plays key role in the development and maintenance of reproductive functions. The steroid hormone 17β-estradiol (E2) is the most potent estrogen produced in the body. The physiological actions of estrogens are largely mediated through the activities of estrogen receptors α and β (ERα/β), belonging to the nuclear receptor superfamily of transcription factors. Since the DNA-binding domain, involved in DNA recognition and binding, is highly conserved between ERα and ERβ, both ERs can recognize the same estrogen-response element (ERE). ERα and ERβ regulate the transcription of a large number of genes. Thus, perturbations to ER-mediated estrogen signaling not only disrupts normal function and development, but also initiates the progression of breast cancer.

Human breast cancers are sub-grouped based on the expression of ERα, progesterone receptor, and human epidermal growth factor receptor 2. However, ER status (positive or negative) in human breast cancer is defined only by the measurement of ERα, regardless of the status of ERβ expression. ERα affects both tumor development and progression and is significantly associated with poor breast cancer prognosis and malignancy. In ER-positive breast cancer, ERα promotes tumor cell proliferation and metastasis through estrogen action. Most breast cancer tumors co-express both ERα and ERβ. ERβ inhibits ERα-mediated transcriptional activity (Fig. 1, left panel), both in vitro and in vivo. Especially, ERβ reduces cell proliferation in ERα/β-positive breast cancer cell lines and inhibits tumor formation in mice. Moreover, increased ERβ expression levels in breast cancer have been reported to be positively correlated with good prognosis. Therefore, ERβ is attracting attention as a possible tumor suppressor and is considered as a biomarker and therapeutic target in ERα/β-positive breast cancer.

It is generally accepted that endocrine-disrupting chemicals (EDCs) can exhibit estrogenic/anti-estrogenic activities through ERα and ERβ. It has been shown that i) EDCs, such as bisphenols and cadmium, can directly/indirectly interact with ERα and ERβ as ligands, and ii) EDCs, such as bisphenols and Δ⁹-tetrahydrocannabinol (Δ⁹-THC), can up-/down-regulate the ER expression levels. EDCs have been shown to disrupt ER-mediated estrogen signaling through these modula-
In general, in ERα/β-positive breast cancer, ERα promotes tumor cell proliferation, whereas ERβ inhibits ERα-mediated transcriptional activity, resulting in abrogation of cell growth (left panel). Some EDCs can perturb the balance between ERα and ERβ expression. MBP stimulates cell proliferation through down-regulation of ERα expression and activation of ERβ-mediated transcription (right upper panel), whereas Δ9-THC and BPAF inhibits cell proliferation by up-regulation of ERβ expression (right lower panel). The functional role of ERβ is altered by exposure to EDCs in ERα/β-positive breast cancer cells.

3. A MECHANISM OF ALTERATION OF ERβ ROLE IN ERαβ-POSITIVE BREAST CANCER CELLS BY EXPOSURE TO EDCS

It is known that alternatively spliced ERβ variants, ERβ1, ERβ2 (also called ERβcx), ERβ4, and ERβ5, are expressed in breast cancer cells. ERβ1, the full-length human ERβ, has a ligand binding pocket and is the only full-functional isoform, whereas ERβ2, ERβ4, and ERβ5 have no affinity for the ligand. ERβ1 and ERβ2 can heterodimerize with ERα, which suppress ERα-mediated transcription, whereas Δ9-THC and BPAF form heterodimer with ERβ1 and enhance the activity of ERβ1 in a ligand-dependent manner. In other words, while the ERα/ERβ1 and ERα/ERβ2 heterodimers function as suppressors, the homodimers of ERβ (i.e., ERβ1/ERβ1, ERβ1/ERβ2, ERβ1/ERβ4, and ERβ1/ERβ5) play a role as promoters of breast cancer cell proliferation (Fig. 2). Therefore, it is necessary to consider the effect of exposure to EDCs on the expression of alternative splicing variants of ERβ as well. We investigated the effect of MBP on expression of ERβ variants in MCF-7 cells. MBP tended to up-regulate the mRNA expression of ERβ2 and ERβ5, but not ERβ1 (Hirao-Suzuki et al., unpublished observations). Conversely, we reported that BPAF can up-regulate mRNA expression of ERβ1 and ERβ2, although the study used ERα-negative breast cancer MDA-MB-231 cells. These findings suggest that exposure to EDCs can disrupt the balanced expression of ERα and ERβ including alternative splicing variants of ERβ, resulting in an alteration of the ERβ role through altered composition of the ER dimers presented in ERαβ-positive breast cancer cells.

4. CONCLUSION

Several immunohistochemistry-based studies have demonstrated conflicting data in relation to ERβ expression in breast...
Breast cancer cell proliferation.

ERα and ERβ suppress ERα-mediated transcription activity by heterodimerization with ERα. ERβ is also able to heterodimerize with ERβ and enhance the activity of ERα/β in a ligand-dependent manner. The ERα/ERβ and ERα/ERβ/β heteromers, as suppressors in breast cancer cell proliferation, whereas the homodimers of ERβ (i.e., ERβ/ERβ, ERβ/ERα, and ERβ/ERα) in addition to ERα/ERα homodimer, play a role in promotion of breast cancer cell proliferation.

tumors. In many published reports on clinical outcomes, ERβ expression levels in different classes of breast cancer are positively correlated with overall survival (OS) and disease-free survival (DFS). However, there are also reports where ERβ expression levels are not correlated or negatively correlated with OS and DFS. Moreover, although we are constantly exposed to various chemicals including EDCs, there are no reports that have examined the correlation between ERβ expression levels and clinical outcomes accounting the effects of exposure to EDCs. Investigations of the effects of EDC exposure on ERα and ERβ expression in ERα/β-positive breast cancer have demonstrated that i) exposure to EDCs that down-regulate ERα expression and activate ERβ can change the role of ERβ from a suppressor to a promoter, and ii) exposure to EDCs that up-regulate ERβ expression, can enhance its function as a suppressor. Exposure to EDCs causes inconsistencies in the functional role of ERβ in ERα/β-positive breast cancer. Therefore, elucidating the effects of exposure to EDCs is expected to reveal the exact functional role of ERβ in ERα/β-positive breast cancer.

Acknowledgments The author wishes to thank Prof. Shusco Takeda, Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyma University, and Prof. Masafumi Takiguchi, Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University, for their contributions to the studies.

Conflict of Interest The author declares no conflict of interest.

REFERENCES

1) Hall JM, Couse JF, Korach KS. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem., 276, 36869–36872 (2001).

2) Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M, Gustafsson J-A. Estrogen receptors: how do they signal and what are their targets. Physiol. Rev., 87, 905–931 (2007).

3) Kuiper GG, Carlsson B, Grandien K, Enmark E, Hagglund J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology, 138, 863–870 (1997).

4) Hammond MEH, Hayes DF, Dowsett M, et al. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol., 28, 2784–2795 (2010).

5) Pearce ST, Jordan VC. The biological role of estrogen receptors α and β in cancer. Crit. Rev. Oncol. Hematol., 50, 3–22 (2004).

6) Dotzlaw H, Leygue E, Watson PH, Murphy LC. Expression of estrogen receptor-β in human breast tumors. J. Clin. Endocrinol. Metab., 82, 2371–2374 (1997).

7) Fuqua SAW, Schiff R, Parra I, Moore JT, Mohsin SK, Osborne CK, Clark GM, Allred DC. Estrogen receptor β protein in human breast cancer: correlation with clinical tumor parameters. Cancer Res., 63, 2434–2439 (2003).

8) Hall JM, McDonnell DP. The estrogen receptor β isoform (ERβ) of the human estrogen receptor modulates ERα transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology, 140, 5566–5578 (1999).

9) Pettersson K, Delaunay F, Gustafsson JA. Estrogen receptor β acts as a dominant regulator of estrogen signaling. Oncogene, 19, 4970–4978 (2000).

10) Zhao C, Matthews J, Tujague M, Wan J, Strom A, Toresson G, Lam EW, Cheng G, Gustafsson JA, Dahlman-Wright K. Estrogen receptor β2 negatively regulates the transactivation of estrogen receptor α in human breast cancer cells. Cancer Res., 67, 3955–3962 (2007).

11) Powell E, Xu W. Intermolecular interactions identify ligand-selective activity of estrogen receptor α/β dimers. Proc. Natl. Acad. Sci. U.S.A., 105, 19012–19017 (2008).

12) Ström A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson J-A. Estrogen receptor β inhibits 17β-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc. Natl. Acad. Sci. U.S.A., 101, 1566–1571 (2004).

13) Faruthiyil S,Parmar H, Kerkatke C, Vunha GR, Firestone GL, Leitman DC. Estrogen receptor β inhibits 17β-estradiol-stimulated proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res., 64, 423–428 (2004).

14) Hartman J, Lindberg K, Morani A, Inzunza J, Ström A, Gustafsson J-A. Estrogen receptor β inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res., 66, 11207–11213 (2006).

15) Sinhababu AM, Green AK, Karthik S, Alizadeh Y, Hughes TA, Hawkins L, Ellis IO, Robertson JF, Paish EC, Saunders PJK, Grooten NP, Spiris V. Nuclear and cytoplasmic expression of ERβ1, ERβ2, and ERβ3 identifies distinct prognosis outcome for breast cancer patients. Clin. Cancer Res., 14, 5228–5235 (2008).

16) Reese JM, Suman VJ, Subramaniam M, Wu X, Nogro V, Gignery A, Pirel KS, Shah SS, Cunliffe HE, McCullough AE, Pekoe BA, Couch FJ, Olson JE, Reynolds C, Lingle WL, Spelsberg TC, Goetz MP, Ingle JN, Hawse JR, ER/β: characterization, prognosis, and evaluation of treatment strategies in ERα-positive and -negative breast cancer. BMC Cancer, 14, 749 (2014).

17) Shanske ER, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem. Res. Toxicol., 24, 6–19 (2011).

18) Zoeller RF, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, Woodruff TJ, Vom Saal FS. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology, 153, 4097–4110 (2012).

19) Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ. Health, 16, 94 (2017).
20) Kundakovic M, Gudsnuk K, Franks B, Madriz I, Miller RL, Perera FP, Champagne FA. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. *Proc. Natl. Acad. Sci. U.S.A.*, **110**, 9956–9961 (2013).

21) Steinmetz R, Brown NG, Allen DL, Bigsby RM, Ben-Jonathan N. The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. *Endocrinology*, **138**, 1780–1786 (1997).

22) Welshons WV, Nagel SC, vom Saal FS. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. *Endocrinology*, **147**(Suppl.), S56–S69 (2006).

23) Richter CA, Taylor JA, Ruhlen RL, Welshons WV, vom Saal FS. Estradiol and bisphenol A stimulate androgen receptor and estrogen receptor gene expression in fetal mouse prostate mesenchyme cells. *Environ. Health Perspect.*, **115**, 902–908 (2007).

24) Matsushima A, Liu X, Okada H, Shimohigashi M, Shimohigashi Y. Bisphenol AF is a full agonist for the estrogen receptor ERα but a highly specific antagonist for ERβ. *Environ. Health Perspect.*, **118**, 1267–1272 (2010).

25) Okazaki H, Hiroi-Suzuki M, Takeda S, Takemoto Y, Mizunoe R, Haraguchi K, Watanabe K, Aramaki H. Bisphenol AF as an activator of human estrogen receptor β1 (ER/β1) in breast cancer cell lines. *J. Toxicol. Sci.*, **43**, 321–327 (2018).

26) Zacharewski TR, Meek MD, Clemons JH, Wu ZF, Fielden MR, Matthews JB. Examination of the in vitro and in vivo estrogenic activities of eight commercial phthalate esters. *Toxicol. Sci.*, **46**, 282–293 (1998).

27) Okazaki H, Takeda S, Matsuo S, Matsumoto M, Furuta E, Kohro-Ikeda E, Aramaki H. Inhibitory modulation of human estrogen receptor α and β activities by dicyclohexyl phthalate in human breast cancer cell lines. *J. Toxicol. Sci.*, **42**, 417–425 (2017).

28) Stoica A, Katzenellenbogen BS, Martin MB. Activation of estrogen receptor-α by the heavy metal cadmium. *Mol. Endocrinol.*, **14**, 545–553 (2000).

29) Hiroi-Suzuki M, Takeda S, Kodama Y, Takiguchi M, Toda A, Ohara M. Metalloestrogenic effects of cadmium are absent in long-term estrogen-deprived MCF-7 cells. Evidence for the involvement of constitutively activated estrogen receptor α and very low expression of G protein-coupled estrogen receptor 1. *Toxicol. Lett.*, **319**, 22–30 (2020).

30) Okazaki H, Kohro-Ikeda E, Takeda S, Ishii H, Furuta E, Matsuo S, Matsumoto M, Takiguchi M, Aramaki H. Fipronil, an insecticide, acts as an anti-estrogen via the concomitant down-regulation of ERα and PEST. *Fundam. Toxicol. Sci.*, **3**, 33–37 (2016).

31) Yoshiihara S, Makishima M, Suzuki N, Ohts S. Metabolic activation of bisphenol A by rat liver S9 fraction. *Toxicol. Sci.*, **62**, 221–227 (2001).

32) Yoshiihara S, Mizutare T, Makishima M, Suzuki N, Fujimoto N, Igarashi K, Ohts S. Potential estrogenic metabolites of bisphenol A and bisphenol B formed by rat liver S9 fraction: their structures and estrogenic potency. *Toxicol. Sci.*, **78**, 50–59 (2004).

33) Hiroi-Suzuki M, Takeda S, Okuda K, Takiguchi M, Yoshiihara S, Repeated exposure to 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A, aggressively stimulates breast cancer cell growth in an estrogen receptor β (ERβ)-dependent manner. *Mol. Pharmacol.*, **95**, 260–268 (2019).

34) Takeda S, Yoshida K, Nishimura H, Harada M, Okajima S, Miyoshi H, Okamoto Y, Amamoto T, Watanabe K, Omiecinski CJ, Aramaki HA. Δ⁹-Tetrahydrocannabinol disrupts estrogen-signaling through up-regulation of estrogen receptor β (ERβ). *Chem. Res. Toxicol.*, **26**, 1073–1079 (2013).

35) Okazaki H, Takeda S, Kazikoe K, Taniguchi A, Tokuyasu M, Hirano T, Ishii H, Kohro-Ikeda E, Haraguchi K, Watanabe K, Aramaki H. Bisphenol AF as an inducer of estrogen receptor β (ERβ): Evidence for anti-estrogenic effects at higher concentrations in human breast cancer cells. *Biol. Pharm. Bull.*, **40**, 1909–1916 (2017).

36) Takeda S. Δ⁹-Tetrahydrocannabinol targeting estrogen receptor signaling: the possible mechanism of action coupled with endocrine disruption. *Biol. Pharm. Bull.*, **37**, 1435–1438 (2014).

37) Takeda S, Ikeda E, Okazaki H, Watanabe K, Aramaki H. Handbook of cannabis and related pathologies: biology, diagnosis, treatment, and pharmacology, Δ⁹-tetrahydrocannabinol effects in human breast cancer. Chapter 74, Academic Press, Cambridge, pp. 722–728 (2017).

38) Ma R, Karthik GM, Lovrot J, Haglund F, Rosin G, Katchy A, Zhang X, Viberg L, Frisell J, Williams C, Linder S, Fredriksson J, Hartman J. Estrogen receptor β as a therapeutic target in breast cancer stem cells. *J. Natl. Cancer Inst.*, **109**, 1–14 (2017).

39) Moore JT, McKee DD, Slentz-Kesler K, Moore LB, Jones SA, Horne EL, Su JL, Kliewer SA, Lehmann JM, Willson TM. Cloning and characterization of human estrogen receptor β isoforms. *Biochim. Biophys. Res. Commun.*, **247**, 75–78 (1998).

40) Tong D, Schuster E, Seifert M, Czerwenka K, Leodolte S, Zeilinger R. Expression of estrogen receptor β isoforms in human breast cancer tissues and cell lines. *Breast Cancer Res. Treat.*, **71**, 249–255 (2002).

41) Pooda I, Abraham J, Baldwin K, Saunders A, Bhatnagar R. Estrogen receptors βα4 and βα5 are full length functionally distinct ERβ isoforms: cloning from human ovary and functional characterization. *Endocrine*, **27**, 227–238 (2005).

42) Leung YK, Mak P, Hassan S, Ho SM. Estrogen receptor (ER)-β isoforms: a key to understanding ER-β signaling. *Proc. Natl. Acad. Sci. U.S.A.*, **103**, 13162–13167 (2006).

43) Novelli F, Milella M, Melucci E, Di Benedetto A, Sperduti I, Perrone-Donnorso R, Perracchio L, Venturo I, Nistico C, Fabi A, Buglioni S, Natali PG, Mottolese M. A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study. *Breast Cancer Res.*, **10**, R34 (2008).

44) Miller WR, Anderson TJ, Dixon JM, Saunders PTK. Oestrogen receptor β and neoadjuvant therapy with tamoxifen: prediction of response and effects of treatment. *Br. J. Cancer*, **94**, 1333–1338 (2006).

45) Liu I, Guo H, Mao K, Zhang K, Deng H, Liu Q. Impact of estrogen receptor-β expression on breast cancer prognosis: a meta-analysis. *Breast Cancer Res. Treat.*, **156**, 149–162 (2016).