Coresets for Vertical Federated Learning: Regularized Linear Regression and \(k \)-Means Clustering

Lingxiao Huang*
Nanjing University
huanglingxiao1990@126.com

Zhize Li*
Carnegie Mellon University
zhizeli@cmu.edu

Jialin Sun*
Fudan University
sunjl20@fudan.edu.cn

Haoyu Zhao*
Princeton University
haoyu@princeton.edu

Abstract

Vertical federated learning (VFL), where data features are stored in multiple parties distributively, is an important area in machine learning. However, the communication complexity for VFL is typically very high. In this paper, we propose a unified framework by constructing coresets in a distributed fashion for communication-efficient VFL. We study two important learning tasks in the VFL setting: regularized linear regression and \(k \)-means clustering, and apply our coreset framework to both problems. We theoretically show that using coresets can drastically alleviate the communication complexity, while nearly maintain the solution quality. Numerical experiments are conducted to corroborate our theoretical findings.

1 Introduction

Federated learning (FL) is a learning framework where multiple clients/parties collaboratively train a machine learning model under the coordination of a central server without exposing their raw data (i.e., each party’s raw data is stored locally and not transferred). There are two large categories of FL, horizontal federated learning (HFL) and vertical federated learning (VFL), based on the distribution characteristics of the data. In HFL, different parties usually hold different datasets but all datasets share the same features; while in VFL, all parties use the same dataset but different parties hold different subsets of the features (see Figure 1a).

Compared to HFL, VFL is generally harder and requires more communication: as a single party cannot observe the full features, it requires communication with other parties to compute the loss and the gradient of a single data. This will result in two potential problems: (i) it may require a huge amount of communication to jointly train the machine learning model when the dataset is large; and (ii) the procedure of VFL transfers the information of local data and may cause privacy leakage. Most of the FL literature focus on the privacy issue, and designing secure training procedure for different machine learning models in the VFL setting is somewhat underexplored. For unsupervised clustering problems, Ding et al. propose constant approximation schemes for \(k \)-means clustering, and their communication complexity is \(\text{linear} \) in terms of the dataset size. For linear regression, although the communication complexity can be improved to \(\text{sublinear} \) via sampling, such as SGD-type uniform sampling for the dataset, the final performance is not comparable to that using the whole dataset.

*Alphabetical order.
dataset. Thus previous algorithms usually do not scale or perform well to the big data scenarios. This leads us to consider the following question:

How to train machine learning models using sublinear communication complexity in terms of the dataset size without sacrificing the performance in the vertical federated learning (VFL) setting?

In this paper, we try to answer this question, and our method is based on the notion of coreset \[27, 22, 23\]. Roughly speaking, coreset can be viewed as a small data summary of the original dataset, and the machine learning model trained on the coreset performs similarly to the model trained using the full dataset. Therefore, as long as we can obtain a coreset in the VFL setting in a communication-efficient way, we can then run existing algorithms on the coreset instead of the full dataset.

Our contribution We study the communication-efficient methods for vertical federated learning with an emphasis on scalability, and design a general paradigm through the lens of coreset. Concretely, we have the following key contributions:

1. We design a unified framework for coreset construction in the vertical federated learning setting (Section 3), which can help reduce the communication complexity (Theorem 2.5).
2. We study the regularized linear regression (Definition 2.1) and k-means (Definition 2.2) problems in the VFL setting, and apply our unified coreset construction framework to them. We show that we can get ε-approximation for these two problems using only $o(n)$ sublinear communications under mild conditions, where n is the size of the dataset (Section 4 and 5).
3. We conduct numerical experiments to validate our theoretical results. Our numerical experiments corroborate our findings that using coresets can drastically reduce the communication complexity, while maintaining the quality of the solution (Section 6). Moreover, compared to uniform sampling, applying our coresets can achieve a better solution with the same or smaller communication complexity.

1.1 More related works

Federated learning Federated learning was introduced by McMahan et al. [54], and received increasing attention in recent years. There exist many works studied in the horizontal federated learning (HFL) setting, such as algorithms with multiple local update steps [54, 17, 39, 25, 56, 77]. There are also many algorithms with communication compression [38, 55, 47, 45, 24, 46, 60, 21, 76, 61, 78] and algorithms with privacy preserving [70, 30, 79, 64, 48].

Vertical federated learning Due to the difficulties of VFL, people designed VFL algorithms for some particular machine learning models, including linear regression [50, 74], logistic regression [75, 73, 29], gradient boosting trees [63, 11, 10], and k-means [19]. For k-means, Ding et al. [19] proposed an algorithm that computes the global centers based on the product of local centers, which requires $O(nT)$ communication complexity. For linear regression, Liu et al. [50] and Yang et al. [74] used uniform sampling to get unbiased gradient estimation and improved the communication efficiency, but the performance may not be good compared to that without sampling. Yang et al. [73] also applied uniform sampling to quasi-Newton algorithm and improved communication complexity for logistic regression. People also studied other settings in VFL, e.g., how to align the data among different parties [62], how to adopt asynchronous training [9, 26], and how to defend against attacks in VFL [49, 53]. In this work, we aim to develop communication-efficient algorithms to handle large-scale VFL problems.

Coreset Coresets have been applied to a large family of problems in machine learning and statistics, including clustering [22, 71, 51, 15, 16], regression [20, 43, 6, 13, 34, 12], low rank approximation [14], and mixture model [52, 33]. Specifically, Chhaya et al. [12] investigated coreset construction for regularized regression with different norms. Feldman and Langberg [22], Braverman et al. [7] proposed an importance sampling framework for coreset construction for clustering (including k-means). The coreset size for k-means clustering has been improved by several following works [31, 15, 16] to $O(k\varepsilon^{-4})$, and Cohen-Addad et al. [16] proved a lower bound of size $\Omega(\varepsilon^{-2}k)$. Due to the mergable

\[2\]In our numerical experiments (Section 6), we provide some results to justify this claim.
property of coresets, there have been studies on coreset construction in the distributed/horizontal setting \cite{2, 58, 1, 51}. To our knowledge, we are the first to consider coreset construction in VFL.

2 Problem Formulation/Model

In this section, we formally define our problems: coresets for vertical regularized linear regression and coresets for vertical \(k \)-means clustering (Problem 1).

Vertical federated learning model. We first introduce the model of vertical federated learning (VFL). Let \(X \subset \mathbb{R}^d \) be a dataset of size \(n \) that is vertically separated stored in \(T \) data parties \((T \geq 2)\). Concretely, we represent each point \(x_i \in X \) by \(x_i = (x_i^{(1)}, \ldots, x_i^{(T)}) \) where \(x_i^{(j)} \in \mathbb{R}^{d_j} (j \in [T]) \), and each party \(j \in [T] \) holds a local dataset \(X^{(j)} = \{x_i^{(j)}\}_{i \in [n]} \). Note that \(\sum_{j \in [T]} d_j = d \).

Additionally, if there is a label \(y_i \in \mathbb{R} \) for each point \(x_i \in X \), we assume the label vector \(y \in \mathbb{R}^n \) is stored in Party \(T \). The objective of vertical federated learning is to collaboratively solve certain training problems in the central server with a total communication complexity as small as possible.

Similar to Ding et al. \cite{19} Figure 1, we only allow the communication between the central server and each of the \(T \) parties, and require the central server to hold the final solution. Note that the central server can also be replaced with any party in practice. For the communication complexity, we assume that transporting an integer/floating-point costs 1 unit, and consequently, transporting a \(d \)-dimensional vector costs \(d \) communication units. See Figure 1(a) for an illustration.

Vertical regularized linear regression and vertical \(k \)-means clustering. In this paper, we consider the following two important machine learning problems in the VFL model.

Definition 2.1 (Vertical regularized linear regression (VRLR)). Given a dataset \(X \subset \mathbb{R}^d \) together with labels \(y \in \mathbb{R}^n \) in the VFL model, a regularization function \(R: \mathbb{R}^d \to \mathbb{R}_{\geq 0} \), the goal of the vertical regularized linear regression problem (VRLR) is to compute a vector \(\theta \in \mathbb{R}^d \) in the server that (approximately) minimizes \(\text{cost}^R(X, \theta) := \sum_{i \in [n]} \text{cost}^R_i(X, \theta) = \sum_{i \in [n]} (x_i^\top \theta - y_i)^2 + R(\theta) \), and the total communication complexity is as small as possible.

Definition 2.2 (Vertical \(k \)-means clustering (VKMC)). Given a dataset \(X \subset \mathbb{R}^d \) in the VFL model, an integer \(k \geq 1 \), let \(C \) denote the collection of all \(k \)-center sets \(C \in C \) with \(|C| = k \) and \(d(\cdot, \cdot) \) denote the Euclidean distance. The goal of the vertical \(k \)-means clustering problem (VKMC) is to compute a \(k \)-center set \(C \in C \) in the server that (approximately) minimizes \(\text{cost}^C(X, C) := \sum_{i \in [n]} \text{cost}^C_i(X, C) = \sum_{i \in [n]} d(x_i, C)^2 = \sum_{i \in [n]} \min_{c \in C} d(x_i, c)^2 \), and the total communication complexity is as small as possible.

Ding et al. \cite{19} proposed a similar vertical \(k \)-means clustering problem and provided constant approximation schemes. They additionally compute an assignment from all points \(x_i \) to solution \(C \), which requires a communication complexity of at least \(\Omega(nT) \). Due to huge \(n \), directly solving VRLR or VKMC is a non-trivial task and may need a large communication complexity. To this end, we introduce a powerful data-reduction technique, called coresets \cite{27, 22, 23}.

![Diagram](image_url)
Coresets for VRLR and VKMC. Roughly speaking, a coreset is a small summary of the original dataset, that approximates the learning objective for every possible choice of learning parameters. We first define coresets for offline regularized linear regression and \(k\)-means clustering as follows. As mentioned in Section 1.1, both problems have been well studied in the literature \cite{22,23,31,15,16}.

Definition 2.3 (Coresets for offline regularized linear regression). Given a dataset \(X \subset \mathbb{R}^d\) together with labels \(y \in \mathbb{R}^n\) and \(\varepsilon \in (0, 1)\), a subset \(S \subseteq [n]\) together with a weight function \(w : S \to \mathbb{R}_{\geq 0}\) is called an \(\varepsilon\)-coreset for offline regularized linear regression if for any \(\theta \in \mathbb{R}^d\),

\[
\text{cost}^R(S, \theta) := \sum_{i \in S} w(i) \cdot (x_i^\top \theta - y_i)^2 + R(\theta) \in (1 \pm \varepsilon) \cdot \text{cost}^R(X, \theta).
\]

Definition 2.4 (Coresets for offline \(k\)-means clustering). Given a dataset \(X \subset \mathbb{R}^d\), an integer \(k \geq 1\) and \(\varepsilon \in (0, 1)\), a subset \(S \subseteq [n]\) together with a weight function \(w : S \to \mathbb{R}_{\geq 0}\) is called an \(\varepsilon\)-coreset for offline \(k\)-means clustering if for any \(k\)-center set \(C \subset \mathbb{R}^d\),

\[
\text{cost}^C(S, C) := \sum_{i \in S} w(i) \cdot d(x_i, C)^2 \in (1 \pm \varepsilon) \cdot \text{cost}^C(X, C).
\]

Now we are ready to give the following main problem.

Problem 1 (Coreset construction for VRLR and VKMC). Given a dataset \(X \subset \mathbb{R}^d\) (together with labels \(y \in \mathbb{R}^n\)) in the VFL model and \(\varepsilon \in (0, 1)\), our goal is to construct an \(\varepsilon\)-coreset for regularized linear regression (or \(k\)-means clustering) in the server, with as small communication complexity as possible. See Figure 15 for an illustration.

Note that our coreset is a subset of indices which is slightly different from that in previous work \cite{27,22,23}, whose coreset consists of weighted points. This is because we would like to reduce data transportation from parties to the server due to privacy considerations. Specifically, if the communication schemes for VRLR and VKMC do not need to make data transportation, then we can avoid data transportation by first applying our coreset construction scheme and then doing the communication schemes based on the coreset. Moreover, we have the following theorem that shows how coresets reduce the communication complexity in the VFL models, and the proof is in Section C.

Theorem 2.5 (Coresets reduce the communication complexity for VRLR and VKMC). Given \(\varepsilon \in (0, 1)\), suppose there exist

1. a communication scheme \(A\) that given a (weighted) dataset \(X \subset \mathbb{R}^d\) together with labels \(y \in \mathbb{R}^n\) in the VFL model, computes an \(\alpha\)-approximate solution (\(\alpha \geq 1\)) for VRLR (or VKMC) in the server with a communication complexity \(\Lambda(n)\);

2. a communication scheme \(A'\) that given a (weighted) dataset \(X \subset \mathbb{R}^d\) together with labels \(y \in \mathbb{R}^n\) in the VFL model, constructs an \(\varepsilon\)-coreset for VRLR (or VKMC respectively) of size \(m\) in the server with a communication complexity \(\Lambda_0\).

Then there exists a communication scheme that given a (weighted) dataset \(X \subset \mathbb{R}^d\) together with labels \(y \in \mathbb{R}^n\) in the VFL model, computes an \((1 + 3\varepsilon)\alpha\)-approximate solution (\(\alpha \geq 1\)) for VRLR (or VKMC respectively) in the server with a communication complexity \(\Lambda_0 + 2mT + \Lambda(m)\).

Usually, \(\Lambda(m) = \Omega(mT)\) and \(\Lambda_0\) is small or comparable to \(Tm\) (see Theorems 4.2 and 5.2 for examples). Consequently, the total communication complexity by introducing coresets is dominated by \(\Lambda(m)\), which is much smaller compared to \(\Lambda(n)\). Hence, coreset can efficiently reduce the communication complexity with a slight sacrifice on the approximate ratio.

3 A Unified Scheme for VFL Coresets via Importance Sampling

In this section, we propose a unified communication scheme (Algorithm 1) that will be used as a meta-algorithm for solving Problem 1. We assume each party \(j \in [T]\) holds a real number \(g_{j}^{(i)} \geq 0\) for data \(x_{j}^{(i)}\) in Algorithm 1, that will be computed locally for both VRLR (Algorithm 2) and VKMC (Algorithm 3). There are three communication rounds in Algorithm 1. In the first round (Lines 2-4), the server knows all “local total sensitivities” \(G^{(j)}\), takes samples of \(T\) with probability proportional
to $G^{(j)}$, and sends a_j to each party j, where a_j is the number of local samples of party j for the second round. In the second round (Lines 5-6), each party samples a collection $S^{(j)} \subseteq [n]$ of size a_j with probability proportional to $g^{(j)}_i$. The server achieves the union $S = \bigcup_{j \in [T]} S^{(j)}$. In the third round (Lines 7-8), the goal is to compute weights $w(i)$ for all samples. In the end, we achieve a weighted subset (S, w). We propose the following theorem to analyze the performance of Algorithm 1 and show that (S, w) is a coreset when size m is large enough.

Theorem 3.1 (The performance of Algorithm 1). The communication complexity of Algorithm 1 is $O(mT)$. Let $\varepsilon, \delta \in (0, 1/2)$ and $k \geq 1$ be an integer. We have

- Let $\zeta = \max_{i \in [n]} \sup_{x \in [n]} \frac{\|x_i\|_2}{\sum_{j \in [T]} g^{(j)}_i}$ and $m = O\left(\varepsilon^{-2} \zeta \log(\zeta) + \log(1/\delta)\right)$. With probability at least $1 - \delta$, (S, w) is an ε-coreset for offline regularized linear regression.

- Let $\zeta = \max_{i \in [n]} \sup_{(x, C) \in C} \frac{\|x_i\|_2}{\sum_{j \in [T]} g^{(j)}_i}$ and $m = O\left(\varepsilon^{-2} \zeta \log(\zeta) + \log(1/\delta)\right)$. With probability at least $1 - \delta$, (S, w) is an ε-coreset for offline k-means clustering.

The proof can be found in Appendix D. The main idea is to show that Algorithm 1 simulates a well-known importance sampling framework for offline coreset construction by [22, 7]. The term $\sup_{\theta \in \mathbb{R}^d} \frac{\|x_i\|_2}{\sum_{j \in [T]} g^{(j)}_i}$ (or $\sup_{C \in C} \frac{\|x_i\|_2}{\sum_{j \in [T]} g^{(j)}_i}$) is called the sensitivity of point x_i for VRLR (or VKMC) that represents the maximum contribution of x_i over all possible parameters. Algorithm 1 aims to use $\sum_{j \in [T]} g^{(j)}_i$ to estimate the sensitivity of x_i, and hence, ζ represents the maximum sensitivity gap over all points. The performance of Algorithm 1 mainly depends on the quality of these estimations $\sum_{j \in [T]} g^{(j)}_i$. As both ζ and the total sum $G = \sum_{i \in [n], j \in [T]} g^{(j)}_i$ become smaller, the required size m becomes independent of n as expected. Combining with Theorem 2.5, we can heavily reduce the communication complexity for VRLR or VKMC.

Algorithm 1 A unified importance sampling for coreset construction in the VFL model

Input: Each party $j \in [T]$ holds data $x^{(j)}_i$ together with a real number $g^{(j)}_i \geq 0$, an integer $m \geq 1$

Output: a weighted collection $S \subseteq [n]$ of size $|S| \leq m$

1: **procedure** DIS(m, $(g^{(j)}_i : i \in [n], j \in [T])$

2: Each party $j \in [T]$ sends $G^{(j)} \leftarrow \sum_{i \in [n]} g^{(j)}_i$ to the server. \hfill \triangleright 1st round begins

3: The server computes $G = \sum_{j \in [T]} G^{(j)}$ and samples a multiset $A \subseteq [T]$ of m samples, where each sample $j \in [T]$ is selected with probability $G^{(j)}/G$.

4: The server sends $a_j \leftarrow \# \{j \in A \text{ to each party } j \in [T]\}$. \hfill \triangleright 1st round ends

5: Each party $j \in [T]$ samples a multiset $S^{(j)} \subseteq [n]$ of size a_j, where each sample $i \in [n]$ is selected with probability $g^{(j)}_i / G^{(j)}$, and sends $S^{(j)}$ to the server. \hfill \triangleright 2nd round begins

6: The server broadcasts a multiset $S \leftarrow \bigcup_{j \in [T]} S^{(j)}$ to all parties. \hfill \triangleright 2nd round ends

7: Each party $j \in [T]$ sends $G^{(j)} = \left\{g^{(j)}_i : i \in S\right\}$ to the server. \hfill \triangleright 3rd round begins

8: The server computes weights $w(i) \leftarrow g^{(j)}_i/|S| \sum_{j \in [T]} g^{(j)}_i$ for each $i \in S$. \hfill \triangleright 3rd round ends

9: **return** (S, w)

10: **end procedure**

Privacy issue. We consider the privacy of the proposed scheme from two aspects: coreset construction and model training. As for the coreset construction part (Algorithm 1), the privacy leakage comes from the "sensitivity score" $g^{(j)}_i$ of the data points in different parties. To tackle this problem, we can use secure aggregation [5] to transport the sum $g_i = \sum_{j=1}^T g^{(j)}_i$ to the server without revealing the exact values of $g^{(j)}_i$’s (Line 7 of Algorithm 1). The server only knows (S, w) and $G^{(j)}$’s. For the model training part, we can apply the secure VFL algorithms if existed, e.g., using homomorphic encryption on SAGA for regression (it is an extension from SGD to SAGA [28]).
With slightly abuse of notation, we denote X as the data.

Assumption 4.1. Let X satisfy the following assumption, which will be justified in the appendix.

Assumption 4.1. Let $U^{(j)} \in \mathbb{R}^{n \times d_j}$ denote the orthonormal basis of the column space of $X^{(j)}$ stored on party j. $U^{(T)}$ denotes the orthonormal basis of $[X^{(T)}]$, and then the matrix $U = [U^{(1)}, U^{(2)}, \ldots, U^{(T)}]$ has smallest singular value $\sigma_{\text{min}}(U) \geq \gamma > 0$.

Intuitively, $\gamma \in (0, 1]$ represents the degree of orthonormal among data in different parties. As the larger γ is, the more orthonormal among the column spaces of $X^{(j)}$, and thus U is more close to the orthonormal basis computed on X directly. Now we introduce our coreset construction algorithm for VRLR (Algorithm 2). At a very high level perspective, we let each party j to compute a coreset $S^{(j)}$ based on its own data $X^{(j)}$, and combine all the $S^{(j)}$ together to obtain a final coreset S. More specifically, for each party j, we let it to compute $U^{(j)} = [u_1^{(j)}, \ldots, u_n^{(j)}]^\top$ based on the data $X^{(j)}$, and set $g_i^{(j)} = \|u_i^{(j)}\|^2 + \frac{1}{n}$ to be the weight of data i on party j. Then, we set $g_i = \sum_{j \in [T]} g_i^{(j)}$ to be the final weight of data x_i, and want to sample m samples using weight g_i. To do this, we apply the DIS procedure (Algorithm 1).

Theorem 4.1 (Communication complexity lower bound for VRLR). We first show that it is hard to compute the coreset for VRLR by proving an $\Omega(n)$ deterministic communication complexity lower bound.

Theorem 4.1 (Communication complexity lower bound for VRLR). Let $T \geq 2$. Given n deterministic communication scheme that constructs an ϵ-coreset for VRLR requires a communication complexity $\Omega(n)$.

The communication complexity lower bound for linear regression has also been considered in the HFL setting \cite{67}, e.g., Vempala et al. \cite{67} also gets a deterministic communication complexity lower bound. Theorem 4.1 shows that linear regression in the VFL setting is “hard” and thus we may need to add data assumptions to get theoretical guarantees for coreset construction.

Algorithm 2: Vertical federated coreset construction for Regularized Linear Regression (VRLR)

Input: Each party $j \in [T]$ holds the data $x_i^{(j)}$ for all $i \in [n]$, coreset size m.

1: for each party $j \in [T]$ do
2: Compute orthonormal basis $U^{(j)} = [u_1^{(j)}, \ldots, u_n^{(j)}]^\top$ of $X^{(j)}$
3: $g_i^{(j)} \leftarrow \|u_i^{(j)}\|^2 + \frac{1}{n}$ for all $i \in [n]$
4: end for
5: return $(S, w) \leftarrow \text{DIS}(m, \{g_i^{(j)}\})$

Communication-efficient coreset construction for VRLR. Now we show that under mild condition, we can construct a strong coreset for VRLR using $o(n)$ number of communication. Specifically, we assume the data X satisfies the following assumption which will be justified in the appendix.

Theorem 4.2 (Coresets for VRLR). For a given dataset $X \subset \mathbb{R}^d$ satisfying Assumption 4.1, number of parties $T \geq 1$ and constants $\varepsilon, \delta \in (0, 1)$, with probability at least $1 - \delta$, Algorithm 2 constructs...
we introduce our coreset construction algorithm for VKMC (Algorithm 3). For the input, note that there exists a party that is “important”, and any two data points which are close to each other in party t can also induce a global one. Then by projecting points onto this global constant cost robust coreset for offline regularized linear regression if for any $\theta \in \mathbb{R}^d$, there exists a subset $O_\theta \subseteq [n]$ such that $|O_\theta|/n \leq \beta$, $|S \cap O_\theta|/|S| \leq \beta$ and

$$\text{cost}^R(S \setminus O_\theta, \theta) \in \text{cost}^R(X \setminus O_\theta, \theta) + \varepsilon \cdot \text{cost}^R(X, \theta).$$

If Assumption 4.1 is not satisfied, for $m = O((\varepsilon \beta T)^{-2}d^5)$, Algorithm 4 will return a (β, ε)-robust coreset for VRLR with communication complexity $O(mT)$.

5 Coreset Construction for VKMC

In this section, we discuss the coreset construction for VKMC. Similar to VRLR, we first show it generally requires $\Omega(n)$ communication complexity to construct a coreset for VKMC, and then we show that it is possible to vastly reduce the communication complexity (Algorithm 3) under mild data assumption. All missing proofs can be found in Section F.

Communication complexity lower bound for VKMC. We first present an $\Omega(n)$ communication complexity lower bound for constructing an ε-coreset for VKMC in the following theorem.

Theorem 5.1 (Communication complexity of coreset construction for VKMC). Let $d \geq T \geq 2$. Given a constant $\varepsilon \in (0, 1)$ and an integer $k \geq 3$, any randomized communication scheme that constructs an ε-coreset for VKMC with probability 0.99 requires a communication complexity $\Omega(n)$.

Different from VRLR, we have a randomized communication complexity lower bound for VKMC. Similarly, we also need to introduce certain data assumptions to get theoretical guarantees for coreset construction due to this hardness result.

Communication-efficient coreset construction for VKMC Now we show how to communication-efficiently construct coresets for VKMC under mild conditions. Specifically, we assume that the data satisfies the following assumption, which will be justified in the appendix.

Assumption 5.1. There exists $\tau \geq 1$ and some party $t \in [T]$ such that $\|x_i - x_j\|^2 \leq \tau \|x_i^{(t)} - x_j^{(t)}\|^2$ for any $i, j \in [n]$.

This assumption says that, there is a party that is “important”, and any two data points which can be differentiated can also be differentiated on that party to some extent. Specifically, as τ is more close to 1, Assumption 5.1 implies that there exists a party $t \in [T]$ whose local pairwise distances $\|x_i - x_j\|$ are close to the corresponding global pairwise distances $\|x_i - x_j\|$. Then we introduce our coreset construction algorithm for VKMC (Algorithm 3). For the input, note that there exist several constant approximation algorithms for k-means [41, 66]. The widely used k-means++ algorithm [66] provides an $O(\ln k)$-approximation and performs well in practice. Similar to Algorithm 3 for VRLR, Algorithm 3 also applies Algorithm 1 after computing $g_{ij}^{(t)}$ locally. The key is to construct local sensitivities $h_{ij}^{(t)}$ to upper bound both ζ and G in Theorem 3.1. The derivation of the local sensitivities $g_{ij}^{(t)}$ defined in Line 10 is partly inspired by [65], which upper bounds the total sensitivity of a point set in clustering problems by projecting points onto an optimal solution. Intuitively, if some party t satisfies Assumption 5.1, a constant factor approximate solution computed locally in party t can also induce a global one. Then by projecting points onto this global constant

\[O(\varepsilon^{-2}d^2 \log^{-2}d + \log 1/\delta) \]

an ε-coreset for VRLR of size $m = O(\varepsilon^{-2}\gamma^{-2}d^2 \log^{-2}d + \log 1/\delta)$, and uses communication complexity $O(mT)$.

Note that the coreset size and the total communication are all independent on n, and thus when combined with Theorem 2.5 using coreset construction can reduce the communication complexity for VRLR. When Assumption 4.1 is not satisfied, Algorithm 4 is not guaranteed to return a strong coreset. However, as shown in the following remark, it will return another kind of coreset called robust coreset [22, 32, 69], which allows a small portion of data to be treated as outliers and excluded from the computation.

Remark 4.3 (Robust coreset for VRLR). Given a dataset $X \subseteq \mathbb{R}^d$ together with labels $y \in \mathbb{R}^n$, $\varepsilon \in (0, 1)$ and $\beta \in [0, 1)$, a subset $S \subseteq [n]$ together with a weight function $w : S \rightarrow \mathbb{R}_{\geq 0}$ is called a (β, ε)-robust coreset for offline regularized linear regression if for any $\theta \in \mathbb{R}^d$, there exists a subset $O_\theta \subseteq [n]$ such that $|O_\theta|/n \leq \beta$, $|S \cap O_\theta|/|S| \leq \beta$ and

$$\text{cost}^R(S \setminus O_\theta, \theta) \in \text{cost}^R(X \setminus O_\theta, \theta) + \varepsilon \cdot \text{cost}^R(X, \theta).$$

If Assumption 4.1 is not satisfied, for $m = O(\varepsilon \beta T)^{-2}d^5$, Algorithm 4 will return a (β, ε)-robust coreset for VRLR with communication complexity $O(mT)$.

Algorithm 3 Vertical federated coreset construction for k-means Clustering (VKMC)

Input: Each party \(j \in [T] \) holds the data \(x_i^{(j)} \) for all \(i \in [n] \), coreset size \(m \), number of centers \(k \), an \(\alpha \)-approximation algorithm \(\mathcal{A} \) (e.g., k-means++).

Output: a weighted collection \(R \) of size \(m \).

1: for all party \(j \in [T] \) do
2: \(C^{(j)} \leftarrow \mathcal{A}(\{x_i^{(j)}\}_{i \in [n]}) \). Note that \(C^{(j)} = \{c_1^{(j)}, c_2^{(j)}, \ldots, c_k^{(j)}\} \).
3: Initialize \(B^{(j)}_l = \emptyset \) for all \(l \in [k] \).
4: for all \(i \in [n] \) do
5: \(\pi(i) \leftarrow \arg\min_{l \in [k]} d(x_i^{(j)}, c_l^{(j)}) \) \(\triangleright \) a mapping to find the closest center locally.
6: \(B^{(j)}_{\pi(i)} \leftarrow B^{(j)}_{\pi(i)} \cup \{i\} \).
7: end for
8: \(\text{cost}^{(j)} \leftarrow \sum_{i \in [n]} d(x_i^{(j)}, C^{(j)})^2 \) \(\triangleright d(x_i^{(j)}, C^{(j)}) = d(x_i^{(j)}, c_{\pi(i)}^{(j)}) \)
9: for all \(i \in [n] \) do
10: \(l \leftarrow \pi(i), g_l^{(j)} \leftarrow \frac{\alpha d(x_i^{(j)}, c_l^{(j)})^2}{\text{cost}^{(j)}} + \frac{\sum_{j' \in B^{(j)}_l} d(x_i^{(j)}, c_{j'}^{(j)})^2}{|B^{(j)}_l| \cdot \text{cost}^{(j)}} + \frac{2\alpha}{|B^{(j)}_l|} \).
11: end for
12: end for
13: return \((S, w) \leftarrow \text{DIS}(m, \{g_l^{(j)}\})\)

Theorem 5.2 (Coresets for VKMC). For a given dataset \(X \subset \mathbb{R}^d \) satisfying Assumption 5.1 an \(\alpha \)-approximation algorithm for k-means with \(\alpha = O(1) \), integers \(k \geq 1 \), \(T \geq 1 \) and constants \(\varepsilon, \delta \in (0, 1) \), with probability at least \(1 - \delta \), Algorithm 3 constructs an \(\varepsilon \)-coreset for VKMC of size \(m = O\left(\varepsilon^{-2}k^5T(\log(\alpha T + 1)) + 1\right) \) and uses communication complexity \(O(mT) \).

Again, note that both the coreset size and communication complexity are independent of \(n \). Thus, using Algorithm 3 together with other baseline algorithms can drastically reduce the communication complexity. Similar to VRLR, we have the following remark when the data assumption (Assumption 5.1) is not satisfied. More details can be found in the Theorem 6.4.

Remark 5.3 (Robust coreset for VKMC). Given a dataset \(X \subset \mathbb{R}^d \), an integer \(k \geq 1 \), \(\varepsilon \in (0, 1) \) and \(\beta \in (0, 1) \), a subset \(S \subseteq [n] \) together with a weight function \(w : S \rightarrow \mathbb{R}_{\geq 0} \) is called a \((\beta, \varepsilon)\)-coreset for offline k-means clustering if for any \(C \subseteq \mathbb{R}^d \), there exists a subset \(OC \subseteq [n] \) such that \(|OC|/n \leq \beta, |S \cap OC|/|S| \leq \beta \) and

\[
\text{cost}^C(S \setminus OC, C) \leq \text{cost}^C(X \setminus OC, C) + \varepsilon \cdot \text{cost}^C(X, C).
\]

If Assumption 5.1 is not satisfied, for \(m = O(\varepsilon^{-2}k^5d) \) Algorithm 3 will return a \((\beta, \varepsilon)\)-robust coreset for VKMC with communication complexity \(O(mT) \).

6 Numerical Experiments

In this section, we present the numerical experiments, which corroborate our theoretical results. We conduct experiments on a single system that simulates the distributed settings.

Empirical setup. We conduct experiments on the YearPredictionMSD dataset [4] for both VRLR and VKMC. YearPredictionMSD dataset has 515345 data, and each data contains 90 features and a corresponding label. We assume there are \(T = 3 \) parties and each party stories 30 distinct features. For VRLR, we split the data into a training set with size \(463715 \) and a testing set with size \(51630 \). We consider ridge regression in VRLR by letting \(R(\theta) = \lambda \|	heta\|^2 \) for \(\lambda = 0.1n \) where \(n \) is the dataset size.

The codes are available at https://github.com/haoyuzhao123/coreset-vfl-codes.
For VKMC, there is only one training set with size 515345 and without labels. We choose \(k = 10 \) (10 centers) and we normalize each feature with mean 0 and standard deviation 1 for VKMC.

For VRLR, we consider two baselines: 1) CENTRAL as the procedure that transfers all data to the central server and solves the problem using scikit-learn package \[57\]; 2) SAGA as using \[18\]'s algorithm to optimize in a VFL fashion. For VKMC, we also consider two baselines: 1) KMEANS++ as the procedure that transfers all data to the central server and clusters using KMEANS++ \[66\]; 2) DISTDIM by \[19\].

For each baseline, we compare our coreset algorithm with uniform sampling. We use C-X to denote coreset sampling followed by algorithm X and U-X for uniform sampling followed by algorithm X, e.g. C-DISTDIM means that we apply coreset construction and then use DISTDIM algorithm. We compare C-X and U-X with different sizes, and each experiment is repeated 20 times.

Empirical results. Figure 2 shows our results for VRLR and Figure 3 shows our results for VKMC. Table 1 summarizes the results. For VRLR, since it is a supervised learning problem, we report the testing loss; for VKMC, it is an unsupervised learning task and the cost refers to the training loss on the full training data.

Coreset sampling performs close to the baseline with less communication. From the results, we find that using our coreset can achieve a similar loss compared to the baseline, while the communication complexity is reduced drastically. Specifically by Table 1, our coreset algorithm C-CENTRAL can
Table 1: Results of VRLR and VKMC on YearPredictionMSD dataset. Left: results for VRLR. Right: results for VKMC. The average and std. are computed using the 20 repeated experiments. The communication complexity denotes the average communication complexity, and the number in the parenthesis denotes the fraction of coreset construction (or uniform sampling respectively).

Alg	(size)	Cost avg/std	Com. compl.	Alg	Cost avg/std	Com. compl.			
CENTRAL	**90,450,000**	**4,267**		**CENTRAL**	**100,000,000**	**9,380,000**			
1000	95.01/0.95	2.0e5(0.09)	99.65/1.01	1.9e5(0.03)	2000	72.68/0.35	2.0e5(0.09)	73.52/0.44	1.9e5(0.03)
3000	93.39/0.63	3.0e5(0.09)	96.60/1.73	2.8e5(0.03)	3000	72.23/0.17	3.0e5(0.09)	73.25/0.39	2.8e5(0.03)
4000	92.73/0.41	4.0e5(0.09)	95.32/0.65	3.7e5(0.03)	4000	72.48/0.19	4.0e5(0.09)	72.74/0.39	3.7e5(0.03)
5000	92.42/0.33	5.0e5(0.09)	94.08/0.48	4.7e5(0.03)	5000	71.97/0.13	5.0e5(0.09)	72.54/0.37	4.7e5(0.03)
6000	91.97/0.32	6.0e5(0.09)	93.54/0.44	5.6e5(0.03)	6000	71.86/0.09	6.0e5(0.09)	72.57/0.44	5.6e5(0.03)

SAGA	N/A	N/A		**DIST**	**9,590,000**	1.56			
-----	-----	-----		-----	-----	-----			
1000	102,922,17	6.9e5(0.01)	104,629,63	7.2e5(0.01)	2000	77,520,78	1.3e40(0.01)	78,87/1.44	1.3e40(0.01)
3000	97,130,98	1.9e5(0.01)	100,641,44	2.4e5(0.01)	3000	75,520,64	3.7e40(0.73)	77,85/2.23	3.9e40(0.48)
4000	95,900,04	2.5e5(0.01)	99,101,20	3.6e5(0.01)	4000	75,499,45	4.9e40(0.74)	76,79/1.27	5.2e40(0.48)
5000	94,750,85	3.0e5(0.01)	97,640,59	3.9e5(0.01)	5000	75,270,50	6.1e40(0.74)	76,30/1.17	6.1e40(0.49)
6000	94,830,65	3.6e5(0.01)	96,881,12	4.6e5(0.01)	6000	75,320,33	7.3e40(0.74)	76,44/1.03	3.7e40(0.49)

Coreset performs better than uniform sampling under the same communication. From Figures 2 and 3 (right), we observe that our coresets always achieve a better solution than uniform sampling under the same sample size. Table 1 also reflects this trend. Under the same sample size, the communication complexity by uniform sampling is slightly lower than that of coreset, since there is no need to transfer weights in uniform sampling. Thus, we also compare the performance of our coresets and uniform sampling under the same communication complexity. From Figures 2 and 3 (left), we find that for different baselines, our coreset algorithms still achieve better testing loss/training cost while using fewer or the same communication, compared to uniform sampling.

Coreset and uniform sampling may also make the problem feasible. It is also interesting to observe that SAGA will not converge (or very slowly) on the original VRLR problem (Table 1), possibly because of the large dataset and the ill-conditioned optimization problem. However, by applying the coreset/uniform sampling, SAGA works for VRLR. This also indicates the effectiveness of our framework and the importance to reduce the dependency on \(n \) (the dataset size).

7 Conclusion and Future Directions

In this paper, we first consider coreset construction in the vertical federated learning setting. We propose a unified coreset framework for communication-efficient VFL, and apply the framework to two important learning tasks: regularized linear regression and \(k \)-means clustering. We verify the efficiency of our coreset algorithms both theoretically and empirically, which can drastically alleviate the communication complexity while still maintaining the solution quality.

Our work initializes the topic of introducing coresets to VFL, which leaves several future directions. Firstly, our VFL coreset size is still larger than that of offline coresets for both VRLR and VKMC, even under certain data assumptions. One direction is to further improve the coreset size. Another interesting direction is to extend coreset construction to other learning tasks in the VFL setting, e.g., logistic regression or gradient boosting trees.

References

[1] O. Bachem, M. Lucic, and A. Krause. Scalable k-means clustering via lightweight coresets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1119–1127, 2018.

[2] M.-F. F. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clustering on general topologies. Advances in neural information processing systems, 26, 2013.
[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. *Journal of Computer and System Sciences*, 68(4):702–732, 2004.

[4] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The million song dataset. 2011.

[5] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning. In *proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security*, pages 1175–1191, 2017.

[6] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal coresets for least-squares regression. *IEEE transactions on information theory*, 59(10):6880–6892, 2013.

[7] V. Braverman, D. Feldman, and H. Lang. New frameworks for offline and streaming coreset constructions. *CoRR*, abs/1612.00889, 2016.

[8] P. Bürgisser and F. Cucker. Smoothed analysis of moore–penrose inversion. *SIAM Journal on Matrix Analysis and Applications*, 31(5):2769–2783, 2010.

[9] T. Chen, X. Jin, Y. Sun, and W. Yin. VAFL: a method of vertical asynchronous federated learning. *arXiv preprint arXiv:2007.06081*, 2020.

[10] W. Chen, G. Ma, T. Fan, Y. Kang, Q. Xu, and Q. Yang. Secureboost+: A high performance gradient boosting tree framework for large scale vertical federated learning. *arXiv preprint arXiv:2110.10927*, 2021.

[11] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q. Yang. Secureboost: A lossless federated learning framework. *IEEE Intelligent Systems*, 36(6):87–98, 2021.

[12] R. Chhaya, A. Dasgupta, and S. Shit. On coresets for regularized regression. In *International conference on machine learning*, pages 1866–1876. PMLR, 2020.

[13] M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sidford. Uniform sampling for matrix approximation. In *Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science*, pages 181–190. ACM, 2015.

[14] M. B. Cohen, C. Musco, and C. Musco. Input sparsity time low-rank approximation via ridge leverage score sampling. In *Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1758–1777. SIAM, 2017.

[15] V. Cohen-Addad, D. Saulpic, and C. Schwiegelshohn. A new coreset framework for clustering. In S. Khuller and V. V. Williams, editors, *STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021*, pages 169–182. ACM, 2021.

[16] V. Cohen-Addad, K. G. Larsen, D. Saulpic, and C. Schwiegelshohn. Towards optimal lower bounds for k-median and k-means coresets. In *Proceedings of the forty-fourth annual ACM symposium on Theory of computing*, 2022.

[17] R. Das, A. Hashemi, S. Sanghavi, and I. S. Dhillon. Improved convergence rates for non-convex federated learning with compression. *arXiv e-prints*, pages arXiv–2012, 2020.

[18] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. *Advances in neural information processing systems*, 27, 2014.

[19] H. Ding, Y. Liu, L. Huang, and J. Li. K-means clustering with distributed dimensions. In *International Conference on Machine Learning*, 2016.

[20] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Sampling algorithms for l_2 regression and applications. In *Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm*, pages 1127–1136. Society for Industrial and Applied Mathematics, 2006.
[21] I. Fatkhullin, I. Sokolov, E. Gorbunov, Z. Li, and P. Richtárik. EF21 with bells & whistles: Practical algorithmic extensions of modern error feedback. arXiv preprint arXiv:2110.03294, 2021.

[22] D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 569–578. ACM, 2011.

[23] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1434–1453. SIAM, 2013.

[24] E. Gorbunov, K. P. Burlachenko, Z. Li, and P. Richtárik. MARINA: Faster non-convex distributed learning with compression. In International Conference on Machine Learning, pages 3788–3798. PMLR, 2021.

[25] E. Gorbunov, F. Hanzely, and P. Richtárik. Local sgd: Unified theory and new efficient methods. In International Conference on Artificial Intelligence and Statistics, pages 3556–3564. PMLR, 2021.

[26] B. Gu, A. Xu, Z. Huo, C. Deng, and H. Huang. Privacy-preserving asynchronous federated learning algorithms for multi-party vertically collaborative learning. arXiv preprint arXiv:2008.06233, 2020.

[27] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In 36th Annual ACM Symposium on Theory of Computing., pages 291–300, 2004.

[28] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and B. Thorne. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption. arXiv preprint arXiv:1711.10677, 2017.

[29] D. He, R. Du, S. Zhu, M. Zhang, K. Liang, and S. Chan. Secure logistic regression for vertical federated learning. IEEE Internet Computing, 2021.

[30] R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong. Personalized federated learning with differential privacy. IEEE Internet of Things Journal, 7(10):9530–9539, 2020.

[31] L. Huang and N. K. Vishnoi. Coresets for clustering in euclidean spaces: Importance sampling is nearly optimal. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 1416–1429, 2020.

[32] L. Huang, S. H.-C. Jiang, J. Li, and X. Wu. Epsilon-coresets for clustering (with outliers) in doubling metrics. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 814–825. IEEE, 2018.

[33] L. Huang, K. Sudhir, and N. Vishnoi. Coresets for regressions with panel data. Advances in Neural Information Processing Systems, 33:325–337, 2020.

[34] I. Jubran, A. Maalouf, and D. Feldman. Fast and accurate least-mean-squares solvers. In Advances in Neural Information Processing Systems, pages 8305–8316, 2019.

[35] Kaggle. Kc house data. https://www.kaggle.com/datasets/shivachandel/kc-house-data

[36] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[37] B. Kalyanasundaram and G. Schintger. The probabilistic communication complexity of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.

[38] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signsgd and other gradient compression schemes. In International Conference on Machine Learning, pages 3252–3261. PMLR, 2019.
[39] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[40] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[41] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time \((1/\epsilon)\)-approximation algorithm for k-means clustering in any dimensions. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 454–462. IEEE, 2004.

[42] E. Kushilevitz. Communication complexity. In Advances in Computers, volume 44, pages 331–360. Elsevier, 1997.

[43] M. Li, G. L. Miller, and R. Peng. Iterative row sampling. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 127–136. IEEE, 2013.

[44] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[45] Z. Li and P. Richtárik. A unified analysis of stochastic gradient methods for nonconvex federated optimization. arXiv preprint arXiv:2006.07013, 2020.

[46] Z. Li and P. Richtárik. CANITA: Faster rates for distributed convex optimization with communication compression. In Advances in Neural Information Processing Systems, pages 13770–13781, 2021.

[47] Z. Li, D. Kovalev, X. Qian, and P. Richtárik. Acceleration for compressed gradient descent in distributed and federated optimization. In International Conference on Machine Learning, pages 5895–5904. PMLR, 2020.

[48] Z. Li, H. Zhao, B. Li, and Y. Chi. SoteriaFL: A unified framework for private federated learning with communication compression. arXiv preprint arXiv:2206.09888, 2022.

[49] J. Liu, C. Xie, K. Kenthapadi, O. O. Koyejo, and B. Li. Rvfr: Robust vertical federated learning via feature subspace recovery. 1st NeurIPS Workshop on New Frontiers in Federated Learning (NFFL 2021), 2021.

[50] Y. Liu, Y. Kang, X. Zhang, L. Li, Y. Cheng, T. Chen, M. Hong, and Q. Yang. A communication efficient collaborative learning framework for distributed features. arXiv preprint arXiv:1912.11187, 2019.

[51] H. Lu, M. Li, T. He, S. Wang, V. Narayanan, and K. S. Chan. Robust coreset construction for distributed machine learning. IEEE J. Sel. Areas Commun., 38(10):2400–2417, 2020.

[52] M. Lucic, M. Faulkner, A. Krause, and D. Feldman. Training Gaussian mixture models at scale via coresets. The Journal of Machine Learning Research, 18(1):5885–5909, 2017.

[53] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi. Feature inference attack on model predictions in vertical federated learning. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 181–192. IEEE, 2021.

[54] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[55] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik. Distributed learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

[56] A. Mitra, R. Jaafar, G. J. Pappas, and H. Hassani. Linear convergence in federated learning: Tackling client heterogeneity and sparse gradients. Advances in Neural Information Processing Systems, 34:14606–14619, 2021.
[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

[58] J. M. Phillips. Coresets and sketches. *CoRR*, abs/1601.00617, 2016.

[59] A. Razborov. On the distributional complexity of disjointness. *Theoretical Computer Science*, 106(2):385–390, 1992.

[60] P. Richtárik, I. Sokolov, and I. Fatkhullin. EF21: A new, simpler, theoretically better, and practically faster error feedback. *Advances in Neural Information Processing Systems*, 34, 2021.

[61] P. Richtárik, I. Sokolov, E. Gasanov, I. Fatkhullin, Z. Li, and E. Gorbunov. 3PC: Three point compressors for communication-efficient distributed training and a better theory for lazy aggregation. In *International Conference on Machine Learning*, pages 18596–18648. PMLR, 2022.

[62] J. Sun, X. Yang, Y. Yao, A. Zhang, W. Gao, J. Xie, and C. Wang. Vertical federated learning without revealing intersection membership. *arXiv preprint arXiv:2106.05508*, 2021.

[63] Z. Tian, R. Zhang, X. Hou, J. Liu, and K. Ren. Federboost: Private federated learning for gbdt. *arXiv preprint arXiv:2011.02796*, 2020.

[64] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei. Ldp-fed: Federated learning with local differential privacy. In *Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking*, pages 61–66, 2020.

[65] K. Varadarajan and X. Xiao. On the sensitivity of shape fitting problems. In *IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)*. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[66] S. Vassilvitskii and D. Arthur. k-means++: The advantages of careful seeding. In *Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms*, pages 1027–1035, 2006.

[67] S. S. Vempala, R. Wang, and D. P. Woodruff. The communication complexity of optimization. In *Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1733–1752. SIAM, 2020.

[68] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahen, M. Al-Shedivat, G. Andrew, S. Avestimehr, K. Daly, D. Data, et al. A field guide to federated optimization. *arXiv preprint arXiv:2107.06917*, 2021.

[69] Z. Wang, Y. Guo, and H. Ding. Robust and fully-dynamic coreset for continuous-and-bounded learning (with outliers) problems. *Advances in Neural Information Processing Systems*, 34, 2021.

[70] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V. Poor. Federated learning with differential privacy: Algorithms and performance analysis. *IEEE Transactions on Information Forensics and Security*, 15:3454–3469, 2020.

[71] K. Wei, J. Li, C. Ma, M. Ding, S. Wei, F. Wu, G. Chen, and T. Ranbaduge. Vertical federated learning: Challenges, methodologies and experiments. *arXiv preprint arXiv:2202.04309*, 2022.

[72] H. Weng, J. Zhang, F. Xue, T. Wei, S. Ji, and Z. Zong. Privacy leakage of real-world vertical federated learning. *arXiv preprint arXiv:2011.09290*, 2020.

[73] K. Yang, T. Fan, T. Chen, Y. Shi, and Q. Yang. A quasi-newton method based vertical federated learning framework for logistic regression. *arXiv preprint arXiv:1912.00513*, 2019.

[74] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and applications. *ACM Transactions on Intelligent Systems and Technology*, 10(2):1–19, 2019.
[75] S. Yang, B. Ren, X. Zhou, and L. Liu. Parallel distributed logistic regression for vertical federated learning without third-party coordinator. *arXiv preprint arXiv:1911.09824*, 2019.

[76] H. Zhao, K. Burlachenko, Z. Li, and P. Richtárik. Faster rates for compressed federated learning with client-variance reduction. *arXiv preprint arXiv:2112.13097*, 2021.

[77] H. Zhao, Z. Li, and P. Richtárik. FedPAGE: A fast local stochastic gradient method for communication-efficient federated learning. *arXiv preprint arXiv:2108.04755*, 2021.

[78] H. Zhao, B. Li, Z. Li, P. Richtárik, and Y. Chi. BEER: Fast $O(1/T)$ rate for decentralized nonconvex optimization with communication compression. *arXiv preprint arXiv:2201.13320*, 2022.

[79] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, and K.-Y. Lam. Local differential privacy-based federated learning for internet of things. *IEEE Internet of Things Journal*, 8(11):8836–8853, 2020.
Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes] See Section 7.
 (c) Did you discuss any potential negative societal impacts of your work? [No]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assumption 4.1 and Assumption 5.1, and we also provide justification of these data assumptions in Section 8.
 (b) Did you include complete proofs of all theoretical results? [Yes] All missing proofs can be found in the appendix.

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] See section 6 footnote.
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes]
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [No] All experiments are done using a single computer.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes] See the baseline algorithms mentioned in Section 6.
 (b) Did you mention the license of the assets? [N/A]
 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes] We provided the code for our experiments.
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]