2071. Evaluation of BD Phoenix™ CPO Detect Assay for Detection of Carbapenemase Producing Organisms in Clinical Samples in Singapore
Partha P. De, MBBS, FRCPath; Esme Ng, BS; 2Tien Pin; 2Raymond Lin, FRCPA; MBBS, FAMS 3 and Tim Hart, MD-PhD; 4Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore; 5Tan Tock Seng Hospital, Singapore, Singapore, Singapore; 6Division of Microbiology, National University Hospital, Singapore, Singapore; 7Microbiology, Tan Tock Seng Hospital, Singapore, Singapore, Singapore

Session: 232. Diagnostics: Resistance Testing
Saturday, October 6, 2018: 12:30 PM

Background. Rapid and accurate detection of CPO is crucial to a targeted infection control strategy, as in Tan Tock Seng Hospital (TTSIH), a large tertiary hospital in Singapore, where cohorting of CPO colonized patients is driven by PCR-based genotypic determination. A newly released panel for the BD Phoenix system, the CPO Detect panel, includes CPO detection with Amber Class identification, alongside standard Phoenix antibiotic susceptibility testing. We evaluated this system in the context of the TTSIH CPO control strategy.

Methods. A total of 201 isolates from CHROMID® positive rectal swabs taken as part of inpatient screening, and from clinical samples with confirmed carbapenem resistance, were assayed prospectively between January and April 2018. Ninety-five samples were sampled retrospectively from 2017. CPO genotype was determined using PCR targeting NDM, KPC, oxaz48-like, IMP and IMP carbapenemases. Isolates were analysed on the CPO Detect assay in parallel.

Results. A broad range of CPO genotypes was achieved and results were comparable in both prospective and retrospective samples. Overall, a concordance of 76% was found between CPO Detect determination of CPO status (both positive and negative) and PCR (238/313 isolates). PCR genotype was in agreement with the Amber class found by CPO Detect in 151/200 positives (75.5%), 27 samples were not assigned an Amber class and Amber class was mismatched in 8 samples. Partial agreement was noted in 17 samples in which PCR CPO Detect indicated a single Amber class, but PCR identified two carbapenemase genes. CPO Detect outright failed to detect 14/200 PCR positive samples (7%) of which 10 were IMI. CPO Detect did however identify a CPO in a further 54 samples which were PCR negative.

Conclusion. Compared with PCR, CPO Detect had a sensitivity of 93% in CPO detection and agreement of 75.5% with respect to Amber class specificity. False negatives were overwhelmingly the IMI genotype. We are continuing to characterise these by further molecular means, as well as the 54 samples found by CPO Detect but PCR negative.

Disclosures. All authors: No reported disclosures.

2072. Multicenter Evaluation of the Etest vs. Agar Dilution for Susceptibility Testing of Helicobacter pylori
Salika M. Shakir, PhD, D’ABMM; 1Josiah Otiso, MPH, MLS (ASCP); 2George Keller, SM (ASCP); 3Hillary Van Heule, MT (ASCP); 4Peggy Kohrer, MT (ASCP); 5Nicholyn Cole, MT (ASCP); 6Audrey N. Schaetz, MD; 7Sandra S. Richter, MD 2and Marc Roger Couturier, PhD, D’ABMM; 1, 2ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah; 3Department of Pathology, University of Utah, Salt Lake City, Utah; 4Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio; 5Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota

Session: 232. Diagnostics: Resistance Testing
Saturday, October 6, 2018: 12:30 PM

Background. Helicobacter pylori is associated with peptic ulcer disease and gastric malignancy. Antimicrobial susceptibility testing (AST) is often requested for patients who fail eradication therapy. The CLSI reference method, agar dilution (AD), is not performed in most laboratories and maintaining organism viability during transit to a reference laboratory is difficult. We assessed the performance of the Etest (bioMerieux), as a method for H. pylori AST in comparison to AD.

Methods. Frozen stocks of 82 H. pylori isolates with AD results previously reported by Mayo Clinic were prepared from the same plate for distribution to participating laboratories. Etest was performed at ARUP Laboratories and Cleveland Clinic (CC). For Etest, isolates were incubated for 72 hours in a microaerobic atmosphere. Aged Mueller–Hinton agar with 5% sheep blood plates were inoculated with a three McFarland suspension prepared in brain heart infusion broth. Etest strips were applied and MICs read after 72 hours of microaerobic incubation. Results were interpreted by applying CLSI and EUCAST breakpoints. Categorical agreement (CA), very major, major and minor errors (VME, ME, and mE) were determined for Etest using AD as the reference method. Isolates with errors were repeat tested in duplicate by Etest to determine the final results summarized below.

Results. For clarithromycin, 65% of isolates were resistant (R) by AD; Etest results at each laboratory showed 97.5% CA (1 mE and 1 ME). For tetracycline, only 2.5% of isolates were R by AD; a single VME occurred at both ARUP and CC (98.8% CA) with the same isolate. The AD dilutions tested for amoxicillin prevented interpretation with EUCAST breakpoints. With one exception, amoxicillin Etest results were susceptible (S, 0.125 mg/L) at both laboratories (98.8% of MICs ± one dilution). Applying levofloxacin EUCAST breakpoints (S, ≤0.1 mg/L) to interpret ciprofloxacin results, 57.8% of isolates were R by AD. ARUP CA was 97.5% (1 ME, 1 VME) and CC CA was 96.3% (1 ME, 2 VMEs).

Conclusion. Clarithromycin, tetracycline, and ciprofloxacin Etest results for H. pylori showed acceptable CA (>95%) at both testing sites compared with the AD reference method. The comparative ease of performance and reproducibility of the Etest may help standardize it as an AST method for H. pylori.

Disclosures. S. S. Richter, bioMerieux: Grant Investigator, Research grant; BD Diagnostics: Grant Investigator, Research grant; Roche: Grant Investigator, Research grant; Hologic: Grant Investigator, Research grant; Diasorin: Grant Investigator, Research grant; Accelerate: Grant Investigator, Research grant; BioFire: Grant Investigator, Research grant.

2073. Positive Clinical Impact of MALDI-TOF for the Management of Inpatient Pneumonia Without Additional Antimicrobial Stewardship (AS) Support
Ann Marie Porreca, PharmD, BCPS 1; Jason Gallagher, PharmD, FCCP, FIDSA, BCPS 1 and Kaele Ota Sullivan, MD 2, Temple University School of Pharmacy, Philadelphia, Pennsylvania; 3Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania

Session: 232. Diagnostics: Resistance Testing
Saturday, October 6, 2018: 12:30 PM

Background. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry decreases time to identification (ID) and has been shown to improve antibiotic utilization when combined with real-time AS intervention. We assessed the impact of MALDI-TOF without additional AS support in patients with inpatient pneumonia.

Methods. This was a single-center quasi-experimental study of adult patients with a pneumonia who had a positive respiratory culture with bacteria that were identified by MALDI-TOF from August 2016-February 2017 (Pre-MALDI-TOF) and August–February 2018 (Post-MALDI-TOF). The primary endpoint was the time to initiation of optimal therapy before and after MALDI-TOF. The secondary endpoints included: clinical cure at 7 days; inpatient antibiotic duration; infection-related length of stay (LOS); overall LOS; excess antibiotic doses; and costs. T-tests, Mann–Whitney U, and chi-squared tests were used for comparisons where appropriate.

Results.

Table 1: Time to Optimal Therapy and Intervention Opportunities	Pre-MALDI-TOF (180)	Post-MALDI-TOF (180)	P-Value
Total opportunities for intervention, n (%)	152 (84)	168 (93)	0.007
De-escalation performed, n/N (%)	105/152 (69)	124/152 (74)	0.40
Escalation performed, n/N (%)	29/152 (19)	34/152 (20)	0.79
Time to identification, h, median, IQR	63 [46–72]	32 [24–46]	<0.001
Time-to-optimal therapy, hour, median, IQR	73 [55–89]	56 [48–73]	<0.001
Excess doses, n (%)	0 [0–1]	1 [0–3]	0.003
Excess cost	2,122.57	3,335.72	0.007

Table 2: Outcomes	Pre-MALDI-TOF	Post-MALDI-TOF	P-Value
In-hospital mortality	7 [4]	8 [4]	0.79
Inpatient duration of antibiotics, days, median, IQR	7 [5–10]	7 [5–9]	1
Infection related LOS, days, median, IQR	7 [5–11]	7 [5–9]	0.09
Overall hospital LOS, days, median, IQR	14.5 [7–22]	13 [6–29]	0.26
Clinical cure	145 (81)	150 (83)	0.49

Conclusion. The implementation of MALDI-TOF without AS support for pneumonia patients reduced the time to ID and optimal therapy but there were no significant differences in clinical outcomes. It did not positively impact excess antibiotic doses or costs.

Disclosures. J. Gallagher, Achaogen: Consultant, Consulting fee; Merck: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee and Research