Cerebral microbleeds (CMBs) are radiologically defined small round or ovoid regions of signal loss seen on paramagnetic MRI sequences. In the limited available pathologic correlation studies, CMBs mostly correspond to hemosiderin-laden macrophages close to vessels affected by small vessel disease. It is thus inferred that CMBs are a marker of direct extravasation of erythrocytes from arteries and capillaries damaged by bleeding-prone arteriopathies. An arteriopathy associated with systemic arterial hypertension and pathologic changes in small perforating arteries of the deep gray and white matter causes CMBs in deep (basal ganglia) as well as lobar regions. In Western (Caucasian) people with intracerebral hemorrhage (ICH), CMBs in lobar regions are associated with increased stroke risk after IS or TIA. With increasing CMB burden (compared to no CMBs), the risk of ICH increases more steeply than that of IS. However, IS absolute event rates remain higher than ICH absolute event rates in all CMB burden categories.
a strictly lobar distribution are highly specific for cerebral amyloid angiopathy (CAA), which causes progressive deposition of β-amyloid in small cortical and leptomeningeal arterial walls, though this pattern may not be so specific in Eastern (Asian) people and in those without ICH.8

Multiple prospective studies in ischemic stroke (IS) cohorts have shown that CMBs are associated with subsequent ICH risk.9,10 However, CMBs are also associated with increased subsequent IS risk.11–14 Indeed, suggested ischemic mechanisms for CMBs include ischemia-mediated iron store release by oligodendrocytes,15 phagocytosis of red cell microemboli into the perivascular space (termed angiophagy),16 or hemorrhagic transformation of small microinfarcts.17 Indeed, in a recent community study, after adjusting for cardiovascular risk factors, CMBs were found to be associated with lacunes and white matter volume progression.18 Few data are available on how CMB burden affects the balance of ICH and IS risk in different populations. In CAA cohorts, an increasing number of CMBs is associated with an increased risk of ICH, suggesting a relationship between CMB number and the severity of bleeding-prone arteriopathy.19 Whether an increasing number of CMBs is also associated with an increased risk of ICH in IS and TIA cohorts remains uncertain. If increasing CMB burden shifts the balance of risk toward ICH rather than IS, this could have major clinical relevance for antithrombotic treatment. We obtained data on outcome events of symptomatic IS and ICH, with baseline CMB number categories as follows: CMB present, 1 CMB, >1 CMB, 2–4 CMBs, 5–10 CMBs, >10 CMBs, strictly deep CMBs, strictly lobar CMBs, and mixed distribution CMBs. We extracted all demographic, imaging, and follow-up outcome data from each study.

Quality assessment and reducing the risk of bias. All included studies were critically appraised against a checklist of 6 key quality indicators (table e-1 at Neurology.org), with reference to the Strengthening the Reporting of Observational Studies in Epidemiology statement and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The quality criteria included assessment for bias, and all studies had a quality score of ≥4/6.

Statistical methods. We first performed separate random effect meta-analyses to derive summary estimates of the pooled risk ratios of ICH and IS for each CMB category vs the reference category of “no CMBs.” Due to the small number of events in some studies, the categories 5–10 and >10 were combined, in line with previous studies of CMB burden and prognosis, which demonstrated their prognostic relevance for future ICH risk.20 Logistic regression was then used to estimate the increased risk (odds) of IS/ICH for each additional CMB. First, CMB categories were converted to a continuous scale by assuming that patients in the CMB groups 0, 1, 2–4, 5–10, and >10 had, on average, 0, 1, 3, 7.5, and 12.5 CMBs, respectively. Then, for each study, a logistic regression model was fitted relating the (log) odds of IS or ICH to the (estimated) number of CMBs. These (log) odds ratios were then pooled using random effects meta-analysis.

We calculated the Eg statistic to investigate heterogeneity. Funnel plots (Begg and Mazumdar) were generated to investigate publication bias. Finally, where necessary, we undertook meta-regression of confounding covariates of biological plausibility or with differences between the studies (average follow-up, age, hypertension prevalence, demographics, antithrombotic use). All analyses were performed using STATA 12.0 (StataCorp LP, College Station, TX).
Standard protocol approvals, registrations, and patient consents. Individual studies and data transfer protocols were approved by local ethics committees. No additional ethical approval was required for this meta-analysis.

RESULTS

Fifteen studies met our inclusion criteria (12 published and 3 unpublished) including 5,068 patients\(^9,11-14,21-27\) (figure 1). The patient and data characteristics of each study are shown in tables e-2 and e-3. Twelve of the 15 studies provided data on CMBs at the time of the initial IS/TIA fully stratified into number categories and location. Eight studies involving 3,111 patients were from predominantly Eastern (Asian) cohorts; the remainder (1,957 patients) were predominantly Western (Caucasian). Two studies included strictly TIA patients, 4 included those with TIA or IS, and 9 included strictly IS patients. The number of patients with CMBs was 1,284, giving an overall pooled prevalence of 25.3%. Median follow-up was 18 months (interquartile range 11–30). Overall, 79% of patients were prescribed antiplatelet agents; only 15% of patients were prescribed anticoagulants (mainly from one study with a high proportion of patients on anticoagulation [87%]).\(^{24}\) CMB presence was more prevalent, with higher burden, in the Eastern cohorts compared to Western cohorts (table e-3).

CMBs and IS risk. The total recurrent IS rate was 327/5,068 (6.5%). The IS event rate in those with CMBs was 9% (115/1,284) vs 5.6% (212/3,781) for those without CMBs; thus, CMBs are associated with an absolute risk increase of 3.4% for IS. The absolute risk increase for IS for CMBs vs no CMBs increases as the CMB burden increases (1.8% for 1 CMB, 4.8% for 2–4 CMBs, and 5.1% for \(\geq 5\) CMBs [table 1]).

The risk ratios for different CMB burden and distribution categories on IS are also shown in table 1. The presence of CMBs (vs no CMBs) was associated with a pooled risk ratio of recurrent IS of 1.8 (95% confidence interval [CI] 1.4–2.5) (figure 2). Funnel plots revealed no evidence of publication bias (Egger test \(p = 0.4\)). The presence of a single CMB (vs no

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow chart of study selection
Table 1

Pooled relative risk for recurrent ischemic stroke and intracerebral hemorrhage for different cerebral microbleed (CMB) burden and distribution (all risk ratios are compared to the reference category of no CMBs)

CMB distribution, n	Ischemic stroke	Intracerebral hemorrhage								
	Pooled absolute event rates, n/N (%)	Pooled absolute risk increase, %	Pooled RR	Lower 95% CI	Upper 95% CI	Pooled absolute event rates, n/N (%)	Pooled absolute risk increase, %	Pooled RR	Lower 95% CI	Upper 95% CI
CMB presence										
CMB										
1 CMB	115/1,284 (9)	3.4	1.8	1.4	2.5	49/1,142 (4.3)	3.8	6.3	3.5	11.4
2–4 CMBs	31/433 (7.2)	1.8	1.8	1.0	3.1	8/354 (2.3)	1.7	4.6	1.9	10.7
≥5 CMBs	44/433 (10.2)	4.8	2.4	1.3	4.4	9/383 (2.3)	1.8	5.6	2.4	13.3
Strictly deep	34/342 (10.5)	5.1	2.7	1.5	4.9	24/274 (8.8)	8.2	14.1	6.9	29.0
Strictly lobar	31/332 (9.3)	3.9	2.0	1.4	2.9	12/332 (3.6)	3.2	10.5	4.5	24.3
Mixed	29/437 (6.6)	1.2	1.6	1.0	2.7	6/437 (1.4)	1.3	3.3	1.3	8.5
	44/411 (10.7)	5.3	2.6	1.5	4.3	25/411 (6.1)	5.7	11.1	5.5	22.6

Abbreviations: CI = confidence interval; n = number of events in each subgroup; N = total number of patients in each subgroup; RR = risk ratio.

CMBs had a pooled risk ratio for IS of 1.8 (95% CI 1.0–3.1). The pooled risk estimates for IS suggest an increasing trend toward higher IS risk with increasing CMB burden (table 1 and figure 3). Logistic regression was used to estimate the increase in risk for each additional CMB; this showed an odds ratio of 1.10 (95% CI 1.06–1.14) per CMB increase (figure e-1). The risk estimates for IS for each distribution category of CMBs (vs no CMBs) ranged from 1.6 (95% CI 1.0–2.7) for strictly deep CMBs to 2.6 (95% CI 1.5–4.3) for mixed CMBs, with overlapping confidence intervals for all groups. Because we noted statistical heterogeneity among the cohorts for IS risk (I^2 33%, 47%, 68%, and 51%, respectively, for CMB presence, 1 CMB, 2–4 CMB, and ≥5 CMB, respectively), each potential confounder (ethnicity, average follow-up, age, hypertension prevalence, and antithrombotic use) was investigated separately using meta-regression (table e-4, figure e-2). We found only weak evidence for a confounding effect of hypertension; as expected, the relative risk associated with baseline CMBs on future IS risk (effect size) is attenuated in studies with a higher prevalence of hypertension.

CMBs and ICH risk. The total ICH rate was 66/5,068 (1.3%). The ICH event rate in those with CMBs was 4.3% (49/1,142) vs 0.5% (172/2,912) for those without CMBs; thus, CMBs confer an absolute risk increase of 3.8% for ICH. The absolute risk increase for ICH for CMBs vs no CMBs increases as the CMB burden increases (1.7% for 1 CMB, 1.8% for 2–4 CMBs, and 8.2% for ≥5 CMBs [table 1]).

The risk ratios for different CMB burden and distribution categories on ICH are also shown in table 1. The presence of CMBs (vs no CMBs) was associated with a pooled risk ratio of 6.3 for subsequent ICH (95% CI 3.5–11.4) (figure 2). Four studies were excluded, as they did not report any ICH outcomes. Increasing CMB burden was associated with an increased risk of ICH (pooled risk ratio 4.6 [95% CI 1.9–10.7], 5.6 [95% CI 2.4–13.3], and 14.1 [95% CI 6.9–29.0] for 1 CMB, 2–4 CMBs, and ≥5 CMBs compared to no CMBs, respectively) (table 1 and figure 4). Logistic regression showed an odds ratio of 1.29 (95% CI 1.21–1.37) for ICH per additional CMB (figure e-1). Of the CMB anatomical distribution categories (strictly lobar, mixed, or strictly deep), strictly lobar CMBs were associated with the highest risk of subsequent ICH vs no CMBs (pooled risk ratio 10.5 [95% CI 4.5–24.3]; table 1). There was no publication bias within studies (Egger test $p = 0.98$). Meta-regression was not undertaken because heterogeneity was not detected (I^2 was 0%) for ICH outcomes.

Discussion Our meta-analysis of 15 prospective studies, including more than 5,000 patients presenting with IS or TIA, found that the presence of any CMBs is associated with an approximate doubling of the risk of IS, but with an approximately 6-fold increase in the risk of ICH, in keeping with 2 previous smaller meta-analyses.20,28 Our meta-analysis also builds on these previous studies and adds new knowledge on ICH risk: first, we were able to increase our statistical power by including more ICH outcomes; second, by pooling aggregate data, we investigated how increasing CMB burden affects the balance between future IS and ICH (including both relative and absolute risks); and third, we partially adjusted for confounding factors through meta-regression. Our most important new finding is that with increasing CMB burden, the risk of ICH increases more steeply than that of IS. In patients with ≥5 CMBs, the risk of ICH was substantially higher than that of IS (risk ratio for ICH 14.1 [95% CI 6.7–29.0] vs risk ratio for IS 2.73 [95% CI 1.5–4.9]). In a complementary...
logistic regression analysis, we showed that each additional CMB is associated with an increased odds of 1.3 (95% CI 1.2–1.4) for ICH and 1.1 (95% CI 1.1–1.1) for IS, supporting a steeper increase in ICH than IS risk with higher CMB burden. However, the absolute event rate of
Figure 3

Forest plot of the risk of ischemic stroke (IS) for different burdens of cerebral microbleeds (CMBs) vs no CMBs

A. 1 CMB

Study	RR (95% CI)	Events CMBs	Events No CMBs	Weight (%)
Ref #21	1.48 (0.32, 6.73)	2/68	8/386	7.70
Ref #23	2.46 (0.24, 23.35)	1/14	2/69	4.27
Ref #24	2.19 (0.33, 14.39)	1/6	12/131	5.84
Ref #9	0.45 (0.11, 1.85)	2/77	22/377	8.34
Ref #25	0.57 (0.25, 1.28)	6/108	64/656	13.60
Ref #12	1.01 (0.37, 4.0)	3/17	3/150	7.74
Heidelberg	1.60 (0.49, 5.6)	1/22	2/6	5.11
OXVASC	3.10 (0.22, 42.97)	0/3	18/457	3.51
Overall (F = 46.5%, p = 0.038)	3.40 (1.17, 9.89)	4/10	6/51	11.14

B. 2-4 CMBs

Study	RR (95% CI)	Events 2-4 CMBs	Events No CMBs	Weight (%)
Ref #21	2.25 (0.75, 6.75)	5/107	8/386	9.79
Ref #7	0.67 (0.03, 13.35)	0/20	2/69	3.28
Ref #23	1.76 (0.53, 5.98)	3/22	10/131	9.18
Ref #24	0.97 (0.34, 2.72)	4/71	22/377	10.13
Ref #9	2.21 (1.31, 3.71)	14/65	64/656	12.84
Ref #14	40.66 (13.94, 115.13)	6/6	3/150	10.01
Ref #12	1.65 (0.84, 4.25)	5/57	19/358	10.65
Heidelberg	1.09 (0.08, 18.39)	0/14	6/211	3.58
OXVASC	1.68 (0.39, 7.21)	2/28	11/259	7.93
Ref #22	3.16 (0.91, 12.28)	2/13	17/349	8.42
Ref #13	2.03 (0.50, 8.27)	2/25	18/457	8.18
CROMIS-1 (38)	1.70 (0.25, 11.45)	1/5	6/51	6.04
Overall (F = 67.5%, p = 0.000)	2.39 (1.29, 4.44)	44/333	189/3454	100.00

C. ≥5 CMBs

Study	RR (95% CI)	Events ≥5 CMBs	Events No CMBs	Weight (%)
Ref #21	3.76 (1.34, 10.53)	6/77	8/386	12.25
Ref #7	1.97 (0.29, 13.41)	2/35	2/69	6.30
Ref #23	0.25 (0.02, 4.15)	0/24	10/131	3.54
Ref #24	0.32 (0.02, 5.18)	0/25	22/377	3.61
Ref #9	1.56 (0.86, 2.75)	12/79	64/656	16.67
Ref #14	16.67 (2.38, 117.55)	1/3	3/150	6.14
Ref #12	2.69 (0.38, 19.37)	4/28	10/358	12.45
Heidelberg	1.95 (0.25, 15.35)	1/18	6/211	5.69
OXVASC	2.35 (0.34, 15.00)	1/10	11/259	6.17
Ref #22	3.42 (0.54, 21.72)	1/6	17/349	6.62
Ref #13	8.46 (3.03, 22.04)	5/15	18/457	19.88
CROMIS-1 (38)	2.13 (0.32, 13.60)	1/4	6/51	6.59
Overall (F = 50.7%, p = 0.022)	2.73 (1.52, 4.89)	34/324	189/3454	100.00

Note: Weights are from random effects analysis.

CI = confidence interval; RR = risk ratio.
Figure 4 Forest plot of the risk of intracerebral hemorrhage (ICH) for different burdens of cerebral microbleeds (CMBs) vs no CMBs

A. 1 CMB

Study	RR (95% CI)	Events Treatment	Events Control	Weight (%)
Ref #21	17.33 (0.71, 420.91)	1/66	0/386	7.17
Ref #7	14.00 (0.80, 337.25)	1/14	9/98	7.35
Ref #23	21.83 (1.50, 300.50)	1/6	1/131	10.41
Ref #24	3.67 (0.84, 16.08)	3/77	4/377	33.48
Ref #9	3.04 (1.56, 6.38)	2/108	4/856	25.71
Ref #12	2.18 (0.09, 52.74)	0/64	1/358	7.16
2Ref #2	1.30 (0.07, 23.51)	0/29	4/349	8.69
Overall	(I² = 0.0%, p = 0.709)	8/354	14/2326	100.00

B. 2-4 CMBs

Study	RR (95% CI)	Events Treatment	Events Control	Weight (%)
Ref #21	10.75 (0.44, 262.01)	1/107	0/386	7.37
Ref #7	16.67 (0.83, 333.74)	2/20	0/69	8.36
Ref #23	1.91 (0.08, 45.54)	0/22	1/131	7.48
Ref #24	1.33 (0.15, 11.70)	1/71	4/377	15.86
Ref #9	7.57 (1.73, 33.09)	3/65	4/656	34.52
Ref #12	6.28 (0.40, 99.00)	1/57	1/358	9.88
OXVASC	26.80 (1.12, 645.17)	1/28	0/259	7.44
Ref #22	2.78 (0.10, 49.11)	0/13	4/349	9.10
Overall	(I² = 0.0%, p = 0.765)	9/383	14/2585	100.00

C. ≥5 CMBs

Study	RR (95% CI)	Events ≥5 CMBs	Events No CMBs	Weight (%)
Ref #21	44.65 (2.43, 821.01)	4/77	0/386	8.12
Ref #7	25.28 (1.46, 436.22)	6/35	0/98	6.40
Ref #23	21.83 (2.55, 187.00)	4/24	1/131	11.26
Ref #24	11.31 (2.68, 47.79)	3/25	4/377	25.00
Ref #9	12.48 (3.59, 43.19)	8/79	4/656	33.58
Ref #12	4.13 (0.17, 96.05)	0/28	1/358	5.14
Ref #22	14.54 (1.80, 111.53)	1/8	4/349	12.51
Overall	(I² = 0.0%, p = 0.935)	14/274	14/2326	100.00

CI = confidence interval; RR = risk ratio.
recurrent IS was consistently higher than the absolute event rate of ICH in patients with CMBs and within all CMB categories, including those with ≥5 CMBs.

A large number of CMBs (e.g., ≥5 CMB) might help identify patients at substantially higher risk of ICH than of IS. Indeed, for clinicians, the key question is what burden of CMBs could tip the balance of risk towards ICH sufficiently to affect clinical decisions; for example, antithrombotic drug use. Antiplatelet agents only modestly reduce the absolute risk of IS in secondary prevention (0.5%–2.5%).29 Our data show the absolute risk of ICH increases substantially more than the absolute risk of IS as CMB burden increases; the effect is most evident with ≥5 CMBs, which is associated with an 8.2% absolute risk increase for ICH vs a 5.1% absolute risk increase for IS. This raises the possibility that antiplatelet drug risk-benefit assessment may favor avoiding their use in those with numerous CMBs (e.g., ≥5 CMBs). This could affect a substantial proportion of IS and TIA patients; of patients with CMBs, the prevalence of those with ≥5 CMBs ranged from 12% to 51% in studies included in this analysis (table e-3) and varied by ethnicity (mean 17% for Western cohorts and 35% for Eastern cohorts).

A previous meta-analysis suggested that ethnicity may be an important determinant of the balance of ICH and IS risks associated with CMBs; an increased risk for ICH risk was only statistically significant in Eastern cohorts, while IS risk was only significant in Western cohorts.20 In the present study, we included more patients, and using meta-regression found that ethnicity does not confound the association between CMB burden and IS or ICH risks. Thus, based on the current study, CMB burden appears to be a greater predictor of IS and ICH risk than ethnicity.

Our study has a number of strengths, including a large sample size from multiple cohorts from different countries. We only included those of high quality using systematic quality indicator assessment. We included data on CMB burden and distribution, and adjusted for confounding factors through meta-regression. Our study thus provides the best currently available evidence on how CMBs affect IS and ICH risk after IS or TIA.

Our study also has limitations. Because we included aggregate summary-level data (rather than individual patient data), we could not explore the effect of CMB distribution free from the confounding effect of CMB burden. The mixed CMB category has the highest risk of stroke, but by definition includes only patients with multiple CMBs; by contrast, the strictly lobar and strictly deep CMB categories could include patients with a single CMB. Specifically, we could not fully investigate the independent risk associated with strictly lobar CMBs, critical to the diagnosis of CAA with high recurrent ICH risk.19,30 Although we undertook meta-regression, this can only partially account for confounding and is unlikely to fully account for variables such as age and hypertension. Our logistic regression assumes an average CMB count within each category (difficult to estimate in the open-ended ≥10 CMB category) and that the log odds of ICH/IS increase linearly with CMB burden. However, consistent findings from 2 complementary statistical analyses strongly support the hypothesis that increasing CMB burden increases the risk of ICH more than that of IS. Further limitations include the variable study sample size and follow-up, which may bias our results, especially regarding ICH, a rare outcome with wide CIs around risk estimates (which overlap for the different CMB burden categories). A time to event analysis may have been a more appropriate statistical method given the varying follow-up, but this was not possible with the data available. Imaging protocols and analysis were similar but not completely uniform (table e-2); field strength,31 echo time,32 and optimized paramagnetic sequences33 can all influence CMB detection. However, most studies were performed at 1.5T with echo times within a narrow range, making this unlikely to affect our conclusions. Nevertheless, our results are only generalizable to patients scanned on 1.5T MRI using gradient recalled echo and may not be applicable to susceptibility-weighted imaging (SWI) or MRI with a higher field strength. SWI increases the number of CMBs detected compared to T2*-weighted images; CMB burden categories may thus have to be revised for SWI. Finally, studies used different methods for CMB rating; standardized rating instruments1,35,36 may improve the reliability of defining CMB categories, particularly that of a single CMB.

Although our study provides important new information, to fully determine how CMBs might influence antithrombotic decisions, the interaction between CMBs and antiplatelet agents and anticoagulants needs to be further addressed in large prospective studies. Although the prevalence of antithrombotic and anticoagulant use did not show an association with either ICH or IS outcome in our meta-analysis, the large majority of patients we included were treated with antiplatelet agents. Very few patients included in our meta-analysis were on anticoagulation; more data are therefore needed on this group, who may be at highest ICH risk. Ongoing prospective observational studies addressing this question include ucl.ac.uk/cromis-2 and clinicaltrials.gov/ct2/show/NCT02238470. Further pooled analyses of
individual patient data from these and other observational studies—and, ultimately, randomized controlled trials based on CMB burden—are needed to fully assess the interaction between CMBs and antithrombotic drugs (both antiplatelet agents and anticoagulants) after IS and TIA. Nevertheless, we have shown that with increasing CMB burden, the risk of ICH increases more steeply than that of IS in a cohort of IS and TIA patients largely treated with antiplatelet medication. A high CMB burden (e.g., ≥5 CMBs) may identify patients at similar or greater risk of ICH than IS, with implications for antithrombotic treatment and future randomized controlled trials.

AUTHOR CONTRIBUTIONS

D.W. was involved in data acquisition and statistical analysis and drafted the manuscript. A.C. was involved in study concept, data acquisition, and revised the manuscript. G.A. was involved in statistical analysis and revised the manuscript. Z.V.F. was involved in statistical analysis and revised the manuscript. P.R. was involved in data acquisition and revised the manuscript. S.G. was involved in data acquisition and revised the manuscript. T.I. contributed data, was involved in data acquisition, and revised the manuscript. F.F. contributed data, was involved in data acquisition, and revised the manuscript. H.N. contributed data, was involved in data acquisition, and revised the manuscript. R.V. contributed data, was involved in data acquisition, and revised the manuscript. P.M.R. contributed data, was involved in data acquisition, and revised the manuscript. V.I.H.K. contributed data, was involved in data acquisition, and revised the manuscript. V.T. contributed data, was involved in data acquisition, and revised the manuscript. Y.S.L. contributed data, was involved in data acquisition, and revised the manuscript. K.S.W. contributed data, was involved in data acquisition, and revised the manuscript. H.R.J. was involved in study concept and revised the manuscript. D.J.W. was involved in study concept, contributed data, and revised the manuscript.

STUDY FUNDING

Dr. Werring receives research support from the Stroke Association, British Heart Foundation, and the Rosetrees Trust. Dr. Wilson receives research support from the Stroke Association, British Heart Foundation. This work was undertaken at UCLH/UCL, which received a proportion of funding from the Department of Health’s NIHRI Biomedical Research Centers funding scheme. Dr Rothwell receives research support from the Wellcome Trust, Wollson Foundation, UK Stroke Association, British Heart Foundation, National Institute of Health Research (NIHR), Medical Research Council, Dunhill Medical Trust, and the NIHR Biomedical Research Centre, Oxford. Dr. Rothwell is also in receipt of an NIHR Senior Investigator Award and a Wellcome Trust Senior Investigator Award. Dr. Gareth Ambler receives funding from the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

DISCLOSURE

D. Wilson, A. Charidimou, G. Ambler, Z. Fox, S. Gregoire, P. Rayson, T. Imazumi, F. Fluri, H. Naka, S. Horstmann, R. Veltkamp, P. Rothwell, and Y. Kim report no disclosures relevant to the manuscript. Y. Thijis was affiliated to KU Leuven and funded by FWO Flanders and VIB Flanders when this research was performed. Y. Lee, Y. Kim, Y. Huang, K. Wong, H. Jäger, and D. Werring report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES

1. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–174.

2. Fazekas F, Kleinnert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–642.

3. Tanaka A, Ueno Y, Nakayama Y, Takano K, Takebayashi S. Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas. Stroke 1999;30:1637–1642.

4. Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001;56:537–539.

5. Shoamanesh A, Kwok CS, Benavente O. Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc Dis 2011;32:528–534.

6. Charidimou A, Krishnan A, Werring DJ, Rolf Jager H. Cerebral microbleeds: a guide to detection and clinical relevance in different disease settings. Neuroradiology 2013;55:655–674.

7. Imazumi T, Inamura S, Kohama I, Yoshifuji K, Nomura T, Komatsu K. Nascent lobar microbleeds and stroke recurrences. J Stroke Cerebrovasc Dis 2014;23:610–617.

8. Martinez-Ramirez S, Romero JR, Shoamanesh A, et al. Diagnostic value of lobar microbleeds in individuals without intracerebral hemorrhage. Alzheimer’s Dement 2015;11:1480–1488.

9. Soo YO, Yang SR, Lam WW, et al. Risk vs benefit of antithrombotic therapy in ischaemic stroke patients with cerebral microbleeds. J Neurol 2008;255:1679–1686.

10. Loevelock CE, Cordonnier C, Naka H, et al. Antithrombotic drug use, cerebral microbleeds, and intracerebral hemorrhage: a systematic review of published and unpublished studies. Stroke 2010;41:1222–1228.

11. Boulanger JM, Coutts SB, Eliaszw M, et al. Cerebral microhaemorrhages predict new disabling or fatal strokes in patients with acute ischemic stroke or transient ischemic attack. Stroke 2006;37:911–914.

12. Thijis V, Lemmens R, Schoofs C, et al. Microbleeds and the risk of recurrent stroke. Stroke 2010;41:2005–2009.

13. Lim JS, Hong KS, Kim GM, et al. Cerebral microbleeds and early recurrent stroke after transient ischemic attack: results from the Korean Transient Ischemic Attack Expression Registry. JAMA Neurol 2015;72:301–308.

14. Fluri F, Fax J, Amort M, et al. Significance of microbleeds in patients with transient ischaemic attack. Eur J Neurol 2012;19:522–524.

15. Janaway BM, Simpson JE, Hogger N, et al. Brain haemosiderin in older people: pathological evidence for an ischaemic origin of magnetic resonance imaging (MRI) microbleeds. Neuropathol Appl Neurobiol 2014;40:258–269.

16. Grutzenzler J, Murikinati S, Hiner B, et al. Angiophagy prevents early embolus washout but recanalizes microvessels through embolus extravasation. Sci Transl Med 2014;6:524–674.

17. Tanskanen M, Makela M, Myllykangas L, Rastas S, Sulkava R, Paetau A. Intracerebral hemorrhage in the oldest old: a population-based study (VANTAA 85+). Front Neurol 2012;3:103.
18. Akoudad S, Ikram MA, Koudstaal PJ, et al. Cerebral microbleeds are associated with the progression of ischemic vascular lesions. Cerebrovasc Dis 2014;37:382–388.
19. Greenberg SM, Eng JA, Ning M, Smith EE, Rosand J. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004;35:1415–1420.
20. Charidimou A, Kakar P, Fox Z, Weir RJ. Cerebral microbleeds and recurrent stroke risk: systematic review and meta-analysis of prospective ischemic stroke and transient ischemic attack cohorts. Stroke 2013;44:995–1001.
21. Huang Y, Cheng Y, Wu J, et al. Cilostazol as an alternative to aspirin after ischaemic stroke: a randomised, double-blind, pilot study. Lancet Neurol 2008;7:494–499.
22. Kwa VI, Algra A, Brundel M, Bouvy W, Kappelle LJ, Group MS. Microbleeds as a predictor of intracerebral haemorrhage and ischaemic stroke after a TIA or minor ischaemic stroke: a cohort study. BMJ Open 2013;3: e002575.
23. Naka H, Nomura E, Takahashi T, et al. Combinations of the presence or absence of cerebral microbleeds and advanced white matter hyperintensity as predictors of subsequent stroke types. AJNR Am J Neuroradiol 2006;27: 830–835.
24. Song TJ, Kim J, Lee HS, et al. The frequency of cerebral microbleeds increases with CHADS(2) scores in stroke patients with non-valvular atrial fibrillation. Eur J Neurol 2013;20:502–508.
25. Fan YH, Zhang L, Lam WW, Mok VC, Wong KS. Cerebral microbleeds as a risk factor for subsequent intracerebral hemorrhages among patients with acute ischemic stroke. Stroke 2003;34:2459–2462.
26. Mok VC, Lau AT, Wong A, et al. Long-term prognosis of Chinese patients with a lacunar infarct associated with small vessel disease: a five-year longitudinal study. Int J Stroke 2009;4:81–88.
27. Imahori T, Horita Y, Hashimoto Y, Niwa J. Dotlike hemosiderin spots on T2*-weighted magnetic resonance imaging as a predictor of stroke recurrence: a prospective study. J Neurosurg 2004;101:915–920.
28. Wang DN, Hou XW, Yang BW, Lin Y, Shi JP, Wang N. Quantity of cerebral microbleeds, antiplatelet therapy, and intracerebral hemorrhage outcomes: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2015;24:2728–2737.
29. Antithrombotic Trialists C. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002;324:509–516.
30. Akoudad S, Portegies M, Koudstaal PJ, et al. Cerebral microbleeds are associated with an increased risk of stroke: the Rotterdam study. Circulation 2015;132:509–516.
31. Stehling C, Wiersching H, Kloska SP, et al. Detection of asymptomatic cerebral microbleeds: a comparative study at 1.5 and 3.0 T. Acad Radiol 2008;15:895–900.
32. Gregoire SM, Werring DJ, Chaudhary UJ, et al. Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds. Clin Radiol 2010;65: 391–394.
33. Cheng AL, Batool S, McCreary CR, et al. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Stroke 2013;44:2782–2786.
34. Shams S, Martola J, Cavallin L, et al. SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol 2015;36:1089–1095.
35. Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130:1988–2003.
36. Gregoire SM, Chaudhary UJ, Brown MM, et al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009;73: 1759–1766.
37. Charidimou A, Wilson D, Shakeshaft C, et al. The Clinical Relevance of Microbleeds in Stroke study (CROMIS-2): rationale, design, and methods. Int J Stroke 2015;10(Suppl A100):155–161.
Recurrent stroke risk and cerebral microbleed burden in ischemic stroke and TIA: A meta-analysis
Duncan Wilson, Andreas Charidimou, Gareth Ambler, et al.
Neurology published online September 2, 2016
DOI 10.1212/WNL.0000000000003183

This information is current as of September 2, 2016

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2016/09/02/WNL.0000000000003183.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2016/09/02/WNL.0000000000003183.DC1

Citations
This article has been cited by 6 HighWire-hosted articles:
http://n.neurology.org/content/early/2016/09/02/WNL.0000000000003183.full##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
Infarction
http://n.neurology.org/cgi/collection/infarction
Intracerebral hemorrhage
http://n.neurology.org/cgi/collection/intracerebral_hemorrhage
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise