I. Introduction

Wireless sensor network (WSN) comprises of the unavoidable/pervasive computing. With the progression of assembling and remote innovations, numerous attainable applications are proposed, for example, modern sensor systems, habitat monitoring and so forth. The heterogeneous WSN contains sensor nodes with different limits, for instance, distant sensor types and correspondence/distinguishing extend, appropriately gives more noteworthy flexibility in organization. For example, we can build up a WSN in which nodes are outfitted with different sorts of sensors to give distinctive distinguishing organizations. The WSN comprise of two sorts of sensor nodes the first is having more lifetimes and all the more identifying area; the low-end ones are significantly more affordable and with compelled count and correspondence/recognizing limits. An adjustment plan of these nodes can achieve a leveling of execution like a couple of lower-end sensor nodes can be used to displace first class ones without reducing the lifetime of WSN. Numerous look into works have been proposed to address the sending issue of heterogeneous WSN. To achieve a fabulous execution, the circulation of heterogeneous WSN is more entangled than homogeneous WSN [1]. Distribution of nodes is fundamental already authentic establishment of sensor nodes, since various setups can be tried without thinking about the expense of genuine node distribution. Nonetheless, to emulate the conduct of WSN accurately is a noteworthy test of sensor nodes sending reproduction. HWSNs are especially valuable in genuine arrangements since they are all the more near genuine circumstances. Routing is a great challenge testing issue in the structure of WSNs. The stable and energy efficient clustering protocol (SEEC) have two highlights like it is energy proficiency situated convention and stability oriented protocol. In SEEC convention the entire system is partitioned into several different clusters. Every cluster has strong advance nodes (AN) and (NN) normal nodes are conveyed arbitrarily in the system[2,3]. The normal nodes go about as detecting specialists and advance nodes collect information and send it to the sink. Then again, multilevel stable and energy efficient clustering protocol is utilized which is an expansion over the SEEC convention. In this convention, normal nodes (NN), advance nodes (AN) and super nodes (SN) are utilized dependent upon their underlying energy. Advance nodes having time more energy and super nodes acquiring β times more energy in comprise of normal nodes. The individuals from cluster will send information to advance and super head. After getting the information, the aggregation operation will be...
III. Related Works

Many of the researches agilities in the situation of establishing a routing algorithm for WSNs are given in this section. The authors in [2015][4] generated the comparison among TSRA with different types of ACO. The results showed more balanced transmission between the nodes, reduces the cost as well as the energy consumption with extended the lifetime of network. The author has failed to upgrade the area for lifetime of network. In [2015][5] the author produced the meta-heuristic algorithm based on TABU-search to give the optimal solution. The approach is based on greedy and random selection techniques. The work is carried out with QOI (Quality of Information) with energy aware mobile sensing (QEMSS) problem but failed to explain the energy consumption of the nodes with minimization of sensing time. The author [2016][6] depicted the meta-heuristic techniques which are applied on combinatorial problem.

This technique relieves local search method from local optima problem and found the solution from single point which is fitted in all the aspects of computer science including VANET, software development effort estimation etc but has not implemented with TABU. The author[2017][7] developed the TABU search approach for better combination of weights to be allocated with the trust factors in order to find the trusted sensor operations. The results approved the reduction of search space by 22% in comparison to the local search having simulated annealing (SA). The author [2017][8] found difficulty for global optimum in traditional optimization techniques. A novel Entanglement QTS is proposed which is based on the QTS (quantum-inspired TABU search) algorithm. The search discovered the optimal solution found the optimal local solution by quantum not gate and also managed the strong-dependence problems and this approach proved to be better in terms of effectiveness at global optimum with its computational efficiency. The author[2018][9] depicted the meta-heuristic techniques based on PSO with TABU search algorithm as PSO is not effective to find local optima problem. The TABU search made the problem easier and enhanced the number of clusters with reduction in packet loss and end to end delay.

IV. TABU-multilevel stable and energy efficient clustering protocol

This paper described TABU-MSEEIC protocol for WSNs in the presence of node heterogeneity with the routing done by TABU search in the randomization of normal nodes against the area of 200m × 200m. The idea of the metabolic stable and energy efficient clustering protocol (MSEEIC) for the purpose of routing in WSN with the aim of maximizing the network lifetime in the area of 2000m × 2000m.

Remaining paper is in following order: Section 2 elaborates the contribution and Section 3 formulates the related work. Section 4 defines the TABU-MSEEIC. Section 5 depicts the TABU search algorithm and Section 6 specifies the experimental setup and Section 7 defines the simulation Results and discussion and at last Section 8 formulate with conclusion and future scope.

II. Contributions

Following objectives have been considered for the advancement of multilevel stable and energy efficient clustering protocol:

- To enhance multilevel stable and energy efficient clustering protocol (MSEEIC) over energy utilization by formulating significant criteria for routing.
- For uniform energy utilization over the system, another strategy for information transmission over the system is proposed.
Figure 1. Snapshot of the entire network when 200 nodes are distributed in 200m×200m network.

Level of heterogeneity

The level of heterogeneity is represented by the given formula that is

\[R_{i-1} = R_{i-2} \]

Where \(i \) denotes the heterogeneity level.

Optimal Number of ANs

The measure of energy taken during a solitary round is expressed by following condition

\[E_{AN} = nA \cdot L \cdot E_{elec} + nA \cdot L \cdot E_{DA} + L \cdot E_{elec} + L \cdot e_{fs}. \]

Where \(E_{DA} \) represents the data aggregation cost and \(R1 \) represents the distance among advance node and base station. The Energy utilized by normal nodes are expressed by following equation

\[E_{NN} = L \cdot E_{elec} + L \cdot e_{fs}. \]

Where \(d_{to AN}^2 \) represent the distance between the normal node and advance nodes.

The total energy consumed during a single round is expressed by following condition

\[E_{Round} = m_{AN} \left(n_{1_{AN}} \cdot L \cdot E_{elec} + n_{1_{AN}} \cdot L \cdot E_{DA} + L \cdot E_{elec} + L \cdot E_{fs} \cdot R1^2 + \frac{n_{1_{AN}} \cdot L \cdot E_{elec} + n_{1_{AN}} \cdot L \cdot E_{fs} \cdot d_{to AN}^2}{E_{elec} + E_{fs} \cdot d_{to AN}^2} \right) \]

After differentiating \(E_{Round} \) correspond to \(m_{AN} \) and equalizing with zero , the minimum number of advance nodes generated to be

\[m_{AN} \text{ opt} = 0.7668 \]

Required energy for AN

For computing the energy of advance nodes, firstly calculate the total lifetime of a network which is the total of all rounds from beginning to end.

\[\text{Rounds}_{AN} = \text{AN} \]

\[\text{Rounds}_{NN} = \text{NN} \]

The value of advance node should be greater than that of normal nodes in each cluster

\[\alpha \geq \left[\frac{n_{SN} \cdot E_{elec} + n_{SN} \cdot E_{DA} + E_{elec} + E_{fs} \cdot R2^2}{E_{elec} + E_{fs} \cdot d_{to SN}^2} \right] - 1 \]

Optimal Number of SNs

The measure of energy taken during a solitary round is expressed by following condition

\[E_{SN} = nS \cdot L \cdot E_{elec} + nS \cdot L \cdot E_{DA} + L \cdot E_{elec} + L \cdot e_{fs}. \]

Where \(E_{DA} \) represents the data aggregation cost and \(R1 \) represents the distance among advance node and base station. The Energy utilized by normal nodes are expressed by following equation

\[E_{NN} = L \cdot E_{elec} + L \cdot e_{fs}. \]

Where \(d_{to CH}^2 \) represent the distance among the normal node and its super node and advance nodes.

The total energy consumed during a single round is expressed by following condition

\[E_{Round} = m_{SN} \left(E_{AN} + n_{A} \cdot E_{NN} + m_{SN} \cdot (E_{SN} + n_{s} \cdot E_{NN}) \right) \]

After differentiating \(E_{Round} \) correspond to \(m_{SN} \) and associating with zero, the minimum number of advance nodes found to be

\[m_{SN} \text{ opt} = 0.7668\sqrt{n2} \]

Required energy for SN

For computing the energy of advance nodes, firstly calculate the total lifetime of a network which is the total of all rounds from beginning to end.

\[\text{Rounds}_{SN} = \text{SN} \]

\[\text{Rounds}_{NN} = \text{NN} \]

The value of advance node should be greater than that of normal nodes in each cluster

\[\beta \geq \left[\frac{n_{SN} \cdot E_{elec} + n_{SN} \cdot E_{DA} + E_{elec} + E_{fs} \cdot R2^2}{E_{elec} + E_{fs} \cdot d_{to SN}^2} \right] - 1 \]

V. TABU Search Algorithm

Essentially, the TABU search was generated by Fred Glover and this instrument is enlivened by human memory with the end goal to enhance the productivity of the investigation procedure, one needs to store the neighborhood data (like the present estimation of the goal work) yet in addition of some data identified with the investigation procedure. To locate the ideal arrangement, the TABU search produces the underlying arrangement attainably. The underlying arrangement turns out to be at the same time the best arrangement and current arrangement and by and large this arrangement is embedded into the memory list, called TABU list. This list
is utilized to keep the cycling. On the off chance that TABU list is full; the most established component of TABU list is evacuated and new is included [11,12]. The TABU scan acquired the area answers for the present arrangement, and updates the present arrangement with TABU list. In each time, the arrangement of neighbors of current arrangement is make by the area tasks and the neighbor with the most noteworthy esteem is check as the new best arrangement in TABU list and new best arrangement is acknowledged for the choice of hopeful arrangement, generally the arrangement having the following most astounding quality will turns into the competitor arrangement. Presently, the expense of new best arrangement is contrasted and the best arrangement generally cycles is increments and new best arrangement is updated into the TABU list and mentioned as the present answer for the next arrangement. The means of TABU search are characterized underneath:-

It could be communicated as seeks after (i* is the best arrangement found up until now and k the cycle counter):

Stage 1. Pick the first solution I in S. Set i*=i and k=0.
Stage 2. Set k=k+1 and create a subset V* of arrangement in N(i,k)
Stage 3. Pick a best j in V* (regarding f or to some altered capacity f ~) and set i=j.
Stage 4. In the event that f(i) < f(i*) set i*=i.
Stage 5. In the event that a ceasing condition is met, stop. Else go to Step 2.

Figure 2. Flow chart of TABU-SEARCH

Guidelines related to TABU SEARCH

- When TABU limitations depend on a solitary kind of move characteristic, it is commonly desirable over select a quality whose TABU status less unbendingly confines the decision of accessible moves.
- Multiple TABU records have been utilized essentially to keep up discrete records for various arrangement forms or to avert reiterations and additionally inversions.
- Embody the treatment of goal criteria in a credit based system practically equivalent to that used to characterize TABU limitations[13].
- To join the enhancement and increase objectives, make a rating framework by reference to target examination, keeping up records of profoundly evaluated characteristics and how regularly these qualities show up in arrangements produced.
- Devote a set number of primer cycles to distinguish verifiable measurements for move assessments in each separation class and apply connections from target investigation to get viable decisions at consequent emphases. [14]
• For longer term expansion, utilize recurrence inferred punishments to get the pursuit far from arrangements recently experienced either by restarting or by dynamic from the present arrangement.

• As TABU search is higher level optimization technique so various applications of TABU search is mentioned with references.[15]

Table 1: Various Applications of TABU-Search

Area	Brief description	Reference
Scheduling	Employed scheduling Flow shop scheduling	Glover and mcmillian [16] Widmer and hertz[17]
Graph	Clustering	Glover et al[18] Hansen et al[19] Dorndorf and Pesch
Neural network	Learning in an associative memory Nonconvex optimization problems	De werra and hertz[20] Beyer and ogier [21]

VI. Experimental Setup

The MATLAB simulator is used for the implementation. In the first case, 200 nodes are placed in which 8 advanced nodes and 8 super nodes are fixed and rest of the normal nodes are changed after every round inside the area of 200×200 m². Here, the parameters are used in the simulation are mentioned below in table 2.

Table 2: Network Parameters

Parameter	Value
Terrain of the network	200×200
Position of Sink	100,100
Total number of Nodes	200
Probability(p) to be a cluster head	0.1

VII. Simulation Results and Discussion

On applying TABU search mechanism, the following results will come out. For simulation MATLAB 2013 a tool is used for easy computing of results. All results were compared with the basic MSEEC and TABU- MSEEC. The performance metrics used in the results shown that the proposed TABU-MSEEC gives the larger stability period, more efficient in favor of energy and high network lifetime than the MSEEC. In this case, we moving the normal nodes with each round and position of 8 advanced nodes and 8 super nodes are fixed against the area of 200m ×200 m. The stability period of TABU-MSEEC is much longer than that of other case. This paper observed that TABU MSEEC take some advantage in forms of death of first node and last node, which enhances the network stability.

Number of dead nodes

Figure 3 depicts that in MSEEC network the first and last sensor node death is after 5100and 15000 rounds. However, for TABU MSEEC network the first node and last node dead is after 6000 and 20000 rounds respectively. From the results, it is clearly shown that the performance of TABU MSEEC is 4% raise in case of first node dead (FND) and 20% raise in case of last node dead (LND). Certainly, this change in the performance is due to the modification in the simulation setup because the protocol has the random normal node mobility. Table 3 calculates the exact reading of the network.

Table 3: First node dead and Last node dead comparison among protocols

Dead Nodes	Protocol	FND	LND
All nodes including NN, AN and SN	MSEEC	5100	15000
TABU MSEEC	6000	20000	

Figure 3. Number of dead nodes vs. no of rounds for 200 nodes in 200×200 network.

Number of alive nodes

Figure 4 represents the number of alive nodes against the number of rounds. From the figure, it is clearly shown that the nodes are alive while increases the number of rounds. To evaluating the energy efficiency of a network, the

Table: Parameter and Value

Parameter	Value
Startup Energy(Eo)	0.5J
Transmitter_energy	50nJ/bit
Receiver_energy	50nJ/bit
Free space	10nj/bit/m²
Multipath	0.0013pj/bit/m²
number of alive nodes was calculated for every round. From the simulation, it is observed that the alive nodes in case of MSEEC protocol are 12000 rounds and in case of TABU MSEEC it is 15000. Proposed protocol has 12% improvement which shows that TABU MSEEC performs better than that of MSEEC protocol. Table 4 calculates the exact reading of the network.

Table 4: Readings of alive node with respect to rounds among different protocols

Alive Nodes	Protocol	No of rounds
All nodes including NN, AN and SN	MSEEC	12000
	TABU MSEEC	15000

Figure 4. Alive nodes vs. no of rounds for 200 nodes in 200×200 network.

Average remaining energy of normal node (NN), advance node (AN) and super node (SN):-

Suppose E_i be the initial energy of node and energy consumed by node $E(t)$ after t time period is given by $E(t) = (\text{Number s_packet} \times \alpha) + (\text{Number r_packet} \times \beta)$

Where, Number s_packet = number of packet send, Number r_packet = number of packet receive $(\alpha, \beta) \in \text{range } [0,1]$

Now, E_{rem} of a node at time t is calculated using the equation

$$E_{\text{rem}} = E_i - E(t)$$

The average remaining energy is very important parameter in this model. So, the observations have to be made in case of normal node, advance node and super node with MSEEC and TABU-MSEECC protocol.

Figure 5. a) Average remaining energy of normal nodes vs. no of rounds for 200 nodes in 200×200 network.

b) Average remaining energy of advance nodes vs. no of rounds for 200 nodes in 200×200 network.
Here, we have observed the average remaining energy of nodes after particular rounds of simulation. The remaining energy of network degrades rapidly in MSEEC protocol. The average remaining energy represents a slope generally.

VIII. CONCLUSION AND FUTURE SCOPE

In this paper, MSEEC and TABU MSEEC protocol with random mobility in nodes has been proposed for wireless sensor network. Here, the performance comparison is done and found that TABU-MSEEC is 4% raise in case of first node dead (FND) and 20% raise in case of last node dead (LND) and the average remaining energy is delayed by 12% in advance nodes and 20% in super nodes respectively. Here, the observations reveal that the performance of TABU SEARCH is very high as compared to the MSEEC protocol because TABU search chooses the most effective solution. As a future work, gathered data can be utilized to decide the impact of the path loss in applications that relies upon RSSI and path loss exponent, for example, RSS-based confinement and energy analysis and also work on clustering as well as routing with other bio-inspired algorithms like cuckoo search, flower pollination, spider monkey optimization, Glow-worm, Meer cat Clan algorithm.

References

[1] Farouk, F., Rizk, R., & Zaki, F. W. (2014). Multi-level stable and energy-efficient clustering protocol in heterogeneous wireless sensor networks. IET Wireless Sensor Systems, 4(4), 159-169.
[2] Wang, X., Qian, L., Wu, J., & Liu, T. (2010). An energy and distance based clustering protocol for wireless sensor networks. In Novel Algorithms and Techniques in Telecommunications and Networking (pp. 409-412). Springer, Dordrecht.
[3] Li, X., Li, N., Chen, L., Shen, Y., Wang, Z., & Zhu, Z. (2010, March). An improved LEACH for clustering protocols in wireless sensor networks. In 2010 International Conference on Measuring Technology and Mechatronics Automation (Vol. 1, pp. 496-499). IEEE.
[4] Orojloo, H., & Haghighat, A. T. (2016). A Tabu search based routing algorithm for wireless sensor networks. Wireless Networks, 22(5), 1711-1724.
[5] Messaoud, R. B., & Ghamri-Doudane, Y. (2015, September). QoI and energy-aware mobile sensing scheme: A tabu-search approach. In 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (pp. 1-6). IEEE.
[6] Amathan, A., & Thilak, K. D. (2016, October). Survey on Tabu search meta-heuristic optimization. In 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) (pp. 1539-1543). IEEE.
[7] Habib, S. J., & Marimuthu, P. N. (2017, April). Reputation analysis of sensors’ trust within tabu search. In World Conference on Information Systems and Technologies (pp. 343-352). Springer, Cham.
[8] Kuo, S. Y., & Chou, Y. H. (2017). Entanglement-enhanced quantum-inspired tabu search algorithm for function optimization. IEEE Access, 5, 13236-13252.
[9] Vijayalakshmi, K., & Anandan, P. (2018). A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN. Cluster Computing, 1-8.
[10] Glover, F. (1990). Tabu search: A tutorial. Interfaces, 20(4), 74-94.
[11] de Werra, D., & Hertz, A. (1989). Tabu search techniques. Operations-Research-Spektrum, 11(3), 131-141.
[12] Vaithyanathan, S., Burke, L. I., & Magent, M. A. (1996). Massively parallel analog tabu search using neural networks applied to simple plant location problems. European Journal of Operational Research, 93(2), 317-330.
[13] Reinelt, G. (1994). The traveling salesman: computational solutions for TSP applications. Springer-Verlag.
[14] Gendreau, M., Laporte, G., & Séguin, R. (1996). A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Operations Research, 44(3), 469-477.
[15] Kinney, G. W., Barnes, J. W., & Colletti, B. W. (2007). A reactive tabu search algorithm with variable clustering for the unicost set covering problem. International Journal of Operational Research, 2(2), 156-172.
[16] Glover, F., & McMillan, C. (1986). The general employee scheduling problem: An integration of MS and AI. Computers & operations research, 13(5), 563-573. [5] Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: a survey. Computers & industrial engineering, 37(1-2), 57-61.

[17] Glover, F., McMillan, C., & Novick, B. (1985). Interactive decision software and computer graphics for architectural and space planning. Annals of operations research, 5(3), 557-573.

[18] Hansen, P., Jaumard, B., & Da Silva, E. (1991). Average-linkage divisive hierarchical clustering. Cahiers du GERAD.

[19] Dorndorf, U., & Pesch, E. (1994). Fast clustering algorithms. ORSA Journal on Computing, 6(2), 141-153.

[20] Glover, F., & Taillard, E. (1993). A user's guide to tabu search. Annals of operations research, 41(1), 1-28.

[21] Beyer, D. A., & Ogier, R. G. (1991, November). Tabu learning: a neural network search method for solving nonconvex optimization problems. In [Proceedings] 1991 IEEE International Joint Conference on Neural Networks (pp. 953-961). IEEE.

[22] Ganesh, S., & Amutha, R. (2010). Real Time and Energy Efficient Transport Protocol for Wireless Sensor Networks. International Journal of Advanced Networking and Applications. arXiv preprint arXiv:1006.2691.

[23] Basavaraj, G. N., & Jaidhar, C. D. (2019). Intersecting Sensor Range Cluster-based Routing Algorithm for Enhancing Energy in WSN. International Journal of Advanced Networking and Applications, 10(4), 3938-3943.

Author's Biography

Varsha received her B-Tech from MIMIT, Malout, India and Master of Technology in Computer Science and Engineering from Guru Nanak Dev Engineering college, Ludhiana in the year 2011 and pursuing her Ph.D. from Punjab Technical University Jalandhar. She has published many papers in IEEE Conferences & Scopus Indexed Journals and many more in the International/National Conferences. Her area of interest is Wireless Sensor Network, Data Communication and Computer Network.

Manju Sharma received her B-Tech from UP Technical University, Lucknow, India and Master of Technology in Computer Science and Engineering from Punjab Technical University Jalandhar, in the year 2007 and she has done her Ph.D. from Punjab Technical University Jalandhar. Currently, she is a director at Khalsa College of Engineering & Technology, Amritsar Punjab, India. She has published many papers in IEEE Conferences & Scopus Indexed Journals and many more in the International/National Conferences. Her area of interest is Wireless Sensor Network, Data Communication and Computer Network. She is guiding many research scholars.