Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder

Todd Lencz1,2,3,4,5,*, Saurav Guha1,*, Chunyu Liu6, Jeffrey Rosenfeld1, Semanti Mukherjee1, Pamela DeRosse1, Majnu John1, Lijun Cheng7, Chunling Zhang7, Judith A. Badner7, Masashi Ikeda8, Nakao Iwata8, Sven Cichon9, Marcella Rietschel10, Markus M. Nöthen9, A.T.A. Cheng11, Colin Hodgkinson12, Qiaoping Yuan12, John M. Kane1,2,3,4,5, Annette T. Lee13, Anne Pisanté14, Peter K. Gregersen13,15, Itsik Pe’er16, Anil K. Malhotra1,2,3,4,5, David Goldman12 & Ariel Darvasi14

Schizophrenia and bipolar disorder are major psychiatric disorders with high heritability and overlapping genetic variance. Here we perform a genome-wide association study in an ethnically homogeneous cohort of 904 schizophrenia cases and 1,640 controls drawn from the Ashkenazi Jewish population. We identify a novel genome-wide significant risk locus at chromosome 4q26, demonstrating the potential advantages of this founder population for gene discovery. The top single-nucleotide polymorphism (SNP; rs11098403) demonstrates consistent effects across 11 replication and extension cohorts, totalling 23,191 samples across multiple ethnicities, regardless of diagnosis (schizophrenia or bipolar disorder), resulting in $P_{\text{meta}} = 9.49 \times 10^{-12}$ (odds ratio (OR) = 1.13, 95% confidence interval (CI): 1.08–1.17) across both disorders and $P_{\text{meta}} = 2.67 \times 10^{-8}$ (OR = 1.15, 95% CI: 1.08–1.21) for schizophrenia alone. In addition, this intergenic SNP significantly predicts postmortem cerebellar gene expression of NDST3, which encodes an enzyme critical to heparan sulphate metabolism. Heparan sulphate binding is critical to neurite outgrowth, axon formation and synaptic processes thought to be aberrant in these disorders.
Schizophrenia and bipolar disorder are among the most severe psychiatric disorders. With a combined lifetime prevalence of 1–4% of the general population, these disorders account for 4–5% of all disability in the developed world and are associated with high rates of mortality due to suicide, poor self-care and increased risk for cardiovascular disease and diabetes. Family and twin studies have consistently reported high heritability (~0.80) for both disorders, yet only a modest portion of the genetic variance of either disorder has been explained at the molecular level.

The historical distinction between schizophrenia and bipolar disorder, which was based on clinical observation studies of the late 19th century, has been challenged by recent genetic evidence. Notably, several alleles that have emerged from genome-wide association studies (GWAS) of one disorder have demonstrated significant association to the other disorder. Moreover, a putative set of polygenic risk factors including thousands of common alleles of small effect can simultaneously predict risk for both schizophrenia and bipolar disorder, but not non-psychiatric disease (or even certain other psychiatric disorders). These molecular data are further supported by population-scale epidemiological studies, which have identified increased sibling recurrence of schizophrenia amongst first-degree relatives of bipolar probands, and vice versa. These data suggest that combining cohorts of schizophrenia and bipolar disorder in molecular genetic studies may have dual advantages in enhancing power by increasing eligible sample size, and identifying the most fundamental risk factors in the aetiology of severe psychiatric disorder.

Prior GWAS in both schizophrenia and bipolar disorder have indicated that many common alleles of small effect remain to be detected, but may require very large discovery cohorts (~10,000 subjects) to identify single-nucleotide polymorphisms (SNPs) with higher power. Logistic regression (additive model) has been used to test the association between genetic variants and schizophrenia in the Ashkenazi Jewish discovery cohort. We replicate our top, genome-wide significant SNP (rs11098403) in 11 independent case–control cohorts of severe psychiatric disorder (comprising 5,415 schizophrenia cases, 4,785 bipolar cases and 12,991 controls) drawn from multiple populations. We then examine the functionality of rs11098403 by testing the effect of this variant on gene expression in postmortem brain tissue, and by performing supplementary in vitro and in silico experiments, thereby implicating a neighbouring gene, NDST3. These results suggest that abnormalities in heparan sulphate (HS) metabolism in the brain may underlie both schizophrenia and bipolar disorder.

Results

Genome-wide association analysis. Using Illumina Human-OMNI-Quad arrays, we genotyped an ethnically homogeneous cohort of Ashkenazi Jewish (AJ) patients with schizophrenia and matching controls (Methods). After quality control, the final data set comprised 904 cases and 1,640 controls genotyped on 762,372 high-quality SNPs with 99.8% overall call rate (Supplementary Figs S1,S2). Logistic regression (additive model) yielded a single genome-wide significant signal at chromosome 4q26. This peak included the sixteen most strongly associated SNPs in the genome, all with $P < 10^{-6}$ (Fig. 1, Supplementary Data S1). A total of five SNPs fell below the study genome-wide significance threshold of $P < 6.56 \times 10^{-8}$, with the most strongly associated SNP, rs11098403, obtaining $P_{\text{gwas}} = 6.55 \times 10^{-9}$ (odds ratio (OR) for minor (G) allele = 1.41, 95% confidence interval = 1.26–1.59, Hardy–Weinberg Equilibrium for control $P = 0.23$, case $P = 0.76$ and overall $P = 0.14$). For this analysis, $\lambda_G = 1.038$, which is considered ‘benign’ (see Q–Q plot in Figure 1).

Figure 1 | Manhattan plot demonstrating genome-wide association results. Logistic regression (additive model) was used to test the association between genetic variants and schizophrenia in the Ashkenazi Jewish discovery cohort.
Fig. 2; results also remained genome-wide significant \((P = 4.52 \times 10^{-8}, \text{FDR} = 1.002) \) when examined with EMMMAX, which controls for effects of residual population stratification and subtle cryptic relatedness.

A list of all SNPs achieving nominal \(P \)-values \(< 10^{-4} \) is provided in Supplementary Data S1. Notably, seven SNPs on this list are located in the MHC, which has been consistently associated with schizophrenia susceptibility in large-scale GWAS\(^6,10\). Supplementary Data S2 displays a systematic evaluation of effects in our discovery cohort for SNPs achieving genome-wide significance in prior large-scale \((N > 10,000 \text{ in discovery + replication cohorts}) \) GWAS studies for schizophrenia or bipolar disorder. Supplementary Data S2 displays a systematic evaluation of effects in our discovery cohort for SNPs achieving genome-wide significance in prior large-scale \((N > 10,000 \text{ in discovery + replication cohorts}) \) GWAS studies for schizophrenia or bipolar disorder obtained from the NHGRI GWAS catalogue (http://www.genome.gov/gwastudies/, downloaded 10 January 2013). For formal testing, we compared direction of effects in 23 loci (excluding the MHC) for which direct or proxy SNPs were available in our data set; each independent locus is represented only once in this analysis to avoid redundancy due to linkage disequilibrium (LD). We obtained the same direction of effects in our cohort at 21 loci \(\text{(sign test} \ P = 3.3 \times 10^{-5}, \text{one-tailed), including all available SNPs reported by the Psychiatric GWAS Consortium mega-analysis of schizophrenia}\(^10\). Moreover, four loci were nominally significant in our data set, including SNPs in the extended MHC as well as \(\text{NT5C2, PTGFR and CACNA1C.} \)

Due to the lack of a HapMap reference panel specific to the Ashkenazi population, primary analyses were conducted on genotyped SNPs only. However, genome-wide imputation using more densely genotyped HapMap\(^3\) data did not substantively alter results; no imputed SNPs attained stronger association \(P \)-values than that reported for our top genotyped SNP, rs11098403. In both genotyped and imputed data, nominally associated SNPs were observed across a \(\sim 300 \text{-kb span on chromosome} \ 4 \ \text{(} \sim 118.7–119.0 \text{MB in Build 36/hg18 coordinates; Fig. 3).} \)

This locus is within an intergenic region in the vicinity of \(NDST3; \) the \(5^\prime \)-end of this gene is \(\sim 308 \text{kb from} \ rs11098403. \) Conditional analysis revealed no significant associations \(\text{(all} \ P > 0.01) \) within a 1-MB region after controlling for effects of rs11098403 (Supplementary Fig. S3).

Potential regulatory role of rs11098403 on \(NDST3. \) As rs11098403 does not fall within the same LD block as \(NDST3 \) (or any other gene) in any population, we obtained several lines of evidence supporting a regulatory relationship between this SNP

Figure 2 | Q–Q plot of the genome-wide association results. Logistic regression (additive model) was used to test the association between genetic variants and schizophrenia in the Ashkenazi Jewish discovery cohort.
Most notably, data derived from postmortem cerebellar tissue (total n = 119, comprised of 39 patients with schizophrenia, 36 with bipolar disorder and 44 healthy controls) demonstrated a significant relationship between risk allele carrier status at rs11098403 and SVA-corrected expression of NDST3 using logistic regression under the additive model (P = 8.4 × 10⁻⁴, Fig. 5); carriers of the risk allele had significantly higher expression compared with homozygotes for the common allele. In addition, all SNPs within the LD block containing rs11098403 (hg18; Chr4: 118.7–119.0 MB) demonstrate nominally significant association to NDST3 expression levels (all P < 0.01 using logistic regression, additive model), and conditional analysis indicates no secondary sources of signal within the region (Fig. 5). Although the strongest statistical signal was observed at a neighbouring SNP (rs17862991, which is 2,801 bp from rs11098403), the precise functional element is not recoverable from this analysis due to the effects of LD.

By contrast, no significant relationship was observed between rs11098403 and any of the eight other transcripts available on our expression arrays within a 3-MB window centred on this SNP (all

Table 1 | Summary of logistic regression results for rs11098403 across cohorts.

Sample	Ethnicity	Case diagnosis	Total samples	Controls	Cases	MAF controls	MAF cases	Odds ratio	Additive P-value	Reference
Discovery										
Ashkenazi*	Caucasian	Schizophrenia	2,544	1,640	904	0.38	0.47	1.41	6.55E – 09	
Replication/extension										
MGS EA	Caucasian	Schizophrenia	4,942	2,056	2,886	0.27	0.28	1.05	0.127	49
ZHH	Caucasian	Schizophrenia	317	140	177	0.29	0.32	1.15	0.208	50
MGS AA*	African–American	Schizophrenia	1,875	954	921	0.25	0.27	1.09	0.12	49
Japan*	Asian	Schizophrenia	1,080	530	550	0.16	0.17	1.06	0.238	51
Munich	Caucasian	Schizophrenia	842	412	430	NA	NA	1.1	0.287	52
Aberdeen	Caucasian	Schizophrenia	892	441	451	NA	NA	1.21	0.03	52
GAIN	Caucasian	Bipolar	1,710	689	1,021	0.25	0.28	1.13	0.058	53
German	Caucasian	Bipolar	1,982	1,300	682	0.29	0.31	1.05	0.255	54
WTCCC	Caucasian	Bipolar	4,806	2,938	1,868	0.25	0.27	1.1	0.019	55
Taiwan*	Asian	Bipolar	2,000	1,000	1,000	0.15	0.16	1.06	0.25	56
Ashkenazi*	Caucasian	Bipolar	2,745	2,531	214	0.38	0.43	1.24	0.0177	
All cohorts excluding discovery			23,191	12,991	10,200	1.09		1.46E – 07		
All cohorts			25,735	14,631	11,104	1.13		9.49E – 12		

AA, African–American; EA, European–American; GAIN, The Genetic-Association Information Network; MAF, minor allele frequency; MGS, molecular genetics of schizophrenia; WTCCC, The Wellcome Trust Case-Control Consortium; ZHH, The Zucker Hillside Hospital.

P-values are two-sided for the discovery cohort and combined analyses; one-sided P-values are listed for the replication cohorts.

Cohort details are available in Supplementary Note 1.

*Cohorts not part of Psychiatric Genomics Consortium Phase 1 publications.2,10,11

Figure 3 | Regional association plot of the 4q26 region in the discovery cohort after HapMap3 imputation. Note that no imputed SNP has a lower P-value (based on logistic regression under the additive model) than rs11098403.
additive model logistic regression analyses $P > 0.3$). The eQTL effect on NDST3 remained significant when the control group ($n = 44$) alone was examined ($P = 0.002$), indicating that the association of genotype to expression is not an artifact of psychiatric status or medication. Moreover, using analysis of covariance, there were no significant main effects of diagnostic group ($P = 0.801$) and no interaction of diagnostic group and genotype ($P = 0.902$; Supplementary Fig. S4).

Next, we performed an in silico analysis of the LD block surrounding rs11098403. As depicted in Fig. 6, rs11098403 occurs in a conserved region that overlaps ENCODE enhancer sites (H3K4Me1, grey and blue arrows in Fig. 6). Moreover, a close proxy SNP rs17862977 (2,953 bp telomeric to rs11098403; $r^2 = 0.96$ in 1,000 Genomes CEU), neighbours an unmethylated CpG island (red arrow), which is uncommon within the intergenic window (Supplementary Fig. S5). Finally, RNA-seq performed in postmortem hippocampal tissue ($n = 31$ human, 20 macaque and 16 rat samples) identified a novel, non-coding transcript adjacent to rs11098403 consistently expressed in each individual human sample (Fig. 7 displays signal pooled across all samples; Fig. 8 compares our results to publicly available UCSC expression tracks). Although too weakly expressed in each individual to perform eQTL analysis, it is notable that this transcript shows considerable sequence homology (1,034 nucleotides spanning a 3-kb region) with a splice variant of NDST3 that is annotated by Ensembl as a retained intron (ENST00000394488; Fig. 9); retained introns are known to affect relative expression of primary and alternative transcripts of genes16.

Discussion

NDST3 encodes N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3, an enzyme found in the Golgi apparatus, which helps define the binding properties of HS17. NDST3 is expressed in both fetal and adult brain, with highest abundance in hippocampus and cerebellum18. Knockout of this gene in mice results in
substantially reduced sulfation of HS in cortex, but paradoxically increased N-, 6-O-, and 2-O-sulfation in the cerebellum, possibly due to compensatory activity of other sulfotransferase enzymes. HS subtypes have diverse cellular functions, acting as co-receptors for multiple growth factor molecules. Thus, aberrant sulfation of HS could have a role in several critical neurodevelopmental processes, including neurite outgrowth, axon guidance and synapse formation. Differentially sulfated HS proteoglycans have varying patterns of binding to neuregulin-1 (NRG1), thereby altering NRG1 distribution and signalling of erbB4 in the nervous system; converging lines of evidence have implicated NRG1/erbB4 signalling abnormalities in both schizophrenia and bipolar disorder.

Although most GWAS studies are conducted in outbred populations of European ancestry, examination of alternate populations has been a successful strategy for identification of novel risk alleles. Our use of a founder population may have resulted in a stronger result than typically observed in GWAS discovery cohorts in psychiatry. Although statistical significance was enhanced, in part, by the greater minor allele frequency observed for rs11098403 in the general AJ population compared with all other populations, our data also suggest an enhanced

Figure 6 | In silico analysis of region immediately surrounding top GWAS SNP rs11098403. An H3K4me1 activation mark at this locus is observed in H1 human embryonic cell lines (grey arrow). A close proxy SNP (rs17862077, which is 2,953 bp telomeric to rs11098403; $r^2 = 0.96$ in 1,000 Genomes CEU), neighbours an unmethylated CpG island (red arrow), which is the only such site within an 850-kb intergenic window. Additional SNPs with the same LD relationship to rs11098403 (for example, rs11562906) localize to an H3K4me1 mark detected in hippocampus (blue arrow).

Figure 7 | RNA-seq expression profile in hippocampus of rat, macaque and human. Genomic features in the syntenic region of 1Mb around human rs11098403 are represented. TATA boxes were predicted by TSSG (Softberry Inc) and the predicted TATA box locations were depicted with vertical arrows (red on plus strand and blue on minus strand of chromosome 4). In cross-species genomic sequence alignment, high sequence similarity was depicted in red (same orientation) and blue (opposite orientation); low sequence similarity was depicted in cyan. Green arrowed lines represent the location and orientation of the repeat sequences around rs11098403; the green horizontal arrow in the bottom panel corresponds to the left-most green arrow in the panel above.
penetrance of the risk allele in AJ populations, with a relatively large discovery OR. As GWAS effects are generally over-estimated in discovery cohorts (the so-called ‘winner’s curse’), we applied a bias correction method to the discovery effect size estimate. The corrected OR estimate obtained using the two-stage method was 1.34 (95% CI: 1.20–1.45), and the weighted mean square error (MSE) estimator that takes into account over-correction was 1.37 (95% CI: 1.26–1.48). Notably, the Ashkenazi replication cohort also provided a larger effect size than all non-AJ replication cohorts.

Heightened effect sizes for specific GWAS loci have been reported in Ashkenazi cohorts in at least two other complex diseases: rs2180341 (RNF146) in breast cancer and rs2076756 (NOD2) in Crohn’s. This phenomenon may be related to the unique demographic history of the Ashkenazim, which was marked by an extreme bottleneck followed by exceptionally rapid expansion. Such a history can result in blocks of enhanced LD relative to outbred populations, and enhanced LD can increase the effectiveness of GWAS for tagging a causal variant. In our data, there are ~50% more SNP pairs with moderate or stronger LD within 500 kb of rs11098403 in AJ (191 SNP pairs with $r^2 \geq 0.5$) compared to CEU samples (only 123 such pairs). Moreover, the average LD of these SNP pairs is significantly greater in the AJ cohort (paired t-test = 4.991; $P = 1 \times 10^{-6}$; Supplementary Fig. S6). In addition, AJ are relatively more homogeneous than the general Caucasian population, with decreased background genetic variation. Enhanced GWAS effect sizes have been reported in other homogeneous and/or isolated populations.

Consistency of results across both schizophrenia and bipolar disorder support a growing body of evidence that current diagnostic boundaries in psychiatric nosology are not biologically valid. Although modifier genes influencing specific clinical features of the phenotype may be identified by future research, NDST3 variation appears to predispose to severe psychiatric disease of varying presentations.

Methods

Discovery cohort description. Case ($n = 1,156$) and control ($n = 2,279$) samples were selected from an Ashkenazi Jewish repository (Hebrew University Genetic Resource, HUGR, http://hugr.huji.ac.il). Patients for discovery analysis were recruited from hospitalized inpatients at seven medical centres in Israel. All
diagnoses were assigned after direct interview using the structured clinical inter-
view (SCID)42,43, a questionnaire with inclusion and exclusion criteria, and cross-
referencing medical records. The inclusion criteria specified that subjects had to
be diagnosed with schizophrenia or schizoaffective disorder by the Diagnostic
and Statistical Manual of Mental Disorders (DSM-IV), that all four grandparents
of each subject were reported by the subject to be of Ashkenazi Jewish ethnic
origin, and that each subject or the subject’s legal representative has signed the informed
consent form. The exclusion criteria eliminated subjects diagnosed with at least one
of the following disorders: psychotic disorder due to a general medical condition,
substance-induced psychotic disorder, or any Cluster A (schizotypal, schizoid or
paranoid) personality disorder. Samples from healthy Ashkenazi individuals were
collected from within the Israeli Blood Bank; these subjects were not
psychiatically screened but reported no chronic disease and were taking no
medication at the time of blood draw. Corresponding institutional review boards
and the National Genetic Committee of the Israeli Ministry of Health approved the
studies. All samples were fully anonymized immediately after collection and
subsequently, genomic DNA was extracted from blood samples through use of the
Nucleon kit (Pharmacia). Genotyping and analyses were performed under
protocols approved by the Institutional Review Board of the North Shore-LIJ
Health System.

Genotyping and quality control. Genotyping was performed for ~1 million
genome-wide SNPs using Illumina HumanOmni1-Quad arrays according to
manufacturers’ specifications. As depicted in Supplementary Fig. S1, SNPs were
filtered on the following bases: call rate <98%, minor allele frequency <0.02 and
Hardy–Weinberg exact test P < 0.000001 in controls. Samples were filtered based
on genotype quality control filtration (sample call rate <97%, gender mismatch)
and examined for cryptic identity and first- or second-degree relatedness using
pairwise identity-by-decent estimation (PI_HAT) in PLINK39 with 128,403 LD
pruned (r^2 > 0.2) genome-wide SNPs. Samples were excluded based on
PI_HAT > 0.125; the individual with lower call rate from each control/control
or case/case pair was excluded, and controls were excluded from case/control pairs.
These remaining samples were further examined for underlying population
stratification using principal component analysis (PCA) with ancestry informative
markers specific for the Ashkenazi Jewish population45. Samples with PCA results
suggestive of one or more non-AJ grandparents were identified as outliers based on
first principal component score >0.01 and were excluded from further analysis
(n = 607).

Statistical analysis. The allelic association between each SNP and the risk of
 schizophrenia was assessed using logistic regression under the additive model,
covarying for the first two components derived from genome-wide principal
components analysis; only the first two PCs carried eigen values >1 (Supplementary
Fig. S2). These analyses were implemented in SVS7 software (Golden Helix, Inc., Bozeman, MT). The threshold for genome-wide significance
was established at P < 6.56 × 10^-8 based upon a strict Bonferroni correction for
762,377 tests, which may be controlled conservatively given that tests of
linked SNPs are not independent40. EMMAX41 analysis was conducted using
correction for identity-by-state, as well as the same 2 principal components as
covariates. Conditional analysis controlling for the effects of the top SNP in the
region were conducted in PLINK.

Imputation analysis. We performed imputation analysis to determine the full
extent of the association region, and to test for any ancestry diagnostics with stronger
associations that those observable on the Illumina GWAS platform. After
pre-phasing of the original data using SHAPEIT42, genome-wide imputation was
performed using IMPUTE243 using the cosomopolitan HapMap3 reference panel
(n = 1,011 individuals from Africa, Asia, Europe and the Americas). Association
tests (additive model, using the same two PCA covariates described above) were
performed on imputed genotype dosages using the impute2SNTEST program within the
IMPUTE2 framework on a total of 1,622,655 SNPs; of these, 70,330 SNPs were
monomorphic and were not examined further.

Replication cohorts and meta-analysis. We examined the association of the top
SNP from our schizophrenia discovery cohort in six independent non-Ashkenazi
 schizophrenia case–control cohorts and four non-Ashkenazi bipolar case–control
cohorts, as well as one Ashkenazi bipolar case–control cohort, encompassing
23,191 individuals, as described in Table 1 and in Supplementary Note 1. Each of
the non-Ashkenazi replication cohorts were drawn from published, peer-reviewed
studies and all subjects provided written informed consent in studies conducted in
accordance with the Declaration of Helsinki and approved by local ethics
committees. The top SNP from the discovery cohort was directly genotyped
(not imputed) in nine replication cohorts using the following platforms: Affymetrix
6.0, Affymetrix 500 k and Illumina Hap550. For two cohorts (Munich and
Abderdeen), the top discovery SNP was not available, so the nearest SNP
(rs1870482, r^2 = 0.95 in HapMap CEU population) was used as proxy. All ana-
lyses were performed under the additive model.

Meta-analysis across cohorts was performed based on the weighted Z-score
method using METAL13. As described in previous GWAS meta-analysis44,45,
P-values for each replication cohort are reported as one-tailed tests, while P-values
for all combined analysis are reported as two-tailed tests. Before meta-analysis in
METAL, P-values for each replication cohort were converted to z-scores as described
by Nyholt et al.45 Between-group heterogeneity was accessed by Cochran’s Q
statistics and I^2. It should be emphasized that no replication cohorts were examined
and subsequently excluded for any reason. No further replication cohorts, beyond
the eleven reported, were sought due to the relative stability of the parameter
estimate: given that our combined total of 25,735 subjects yielded a P-value
approximately three orders of magnitude beyond the conventional threshold of
statistical significance, a further doubling of the total sample size would reduce
the 95% confidence interval of the OR by a mere 0.01 units on each end.

Winners curse analysis. In order to adjust for potential selection bias, commonly
reported as to the winner’s curse, we utilized a conditional maximum likelihood approach28, in which a corrected OR estimate is derived using the asymptotic
approximation to the conditional probability density function of the log OR
estimate after selection. This OR estimate is then subjected to a weighted MLE
estimator, to account for potential overcorrection of the corrected estimate. To
isoalte effects of the winner’s curse from population-specific effects that may
differentiate AJ cohorts, we considered the AJ discovery cohort as the first stage
and the AJ replication cohort as the second stage in a two-stage design. The
weighted MLE estimator was obtained as a linear combination of OR estimates
from the AJ discovery cohort and the corrected OR estimate. All calculations
were done using R codes obtained from the authors of the method28.

LD analysis. Randomly-selected Ashkenazi controls (n = 60) and 60 CEU Hap-
Map founder samples were used to compare the LD structure in the 500 kb region
surrounding rs11098403. For purposes of comparison, only SNPs directly
genotyped in both samples were examined.

Genotype-expression correlation analysis. To determine the functional effect of
our disease-associated SNP, we performed a gene expression study in a set of
postmortem brain samples obtained from the Stanley Medical Research Institute
(SMRI). Cerebellar tissue was obtained from 119 Caucasian subjects, including
patients diagnosed with schizophrenia (n = 39), bipolar disorder (n = 36) and
donors without psychiatric disease (n = 44). Diagnoses of the samples were made
by two senior psychiatrists, using the DSM-IV criteria and based on medical
records, and, when possible, telephone interviews with family members. Diagnoses
of substance use controls were based on structured interviews by a senior
psychiatrist with family member(s) to rule out Axis-I diagnoses. All samples have age, gender,
postmortem interval (PMI), brain pH, smoking and alcohol use, suicide status and
antipsychotic medication data.

Genomic DNA was extracted from frozen cerebellar tissues using the BNI. A pheno/chorom/soxamyl alcohol protocol was modified and followed. The
DNA was resuspended in 0.1 mM EDTA TE buffer. Genomic DNA was
evaluated by NanoDrop ND-1000 spectrophotometer (Nanodrop Technologies,
Wilmington, DE) for concentration and by 1% agarose gel to validate the DNA
integrity. Genotyping was performed using Affymetrix GeneChip Mapping 5.0
Array Set, Susy Kits (Affymetrix, Santa Clara, CA) according to the Affymetrix
protocol46. Genotypes were called with the BRLMM-p algorithm (Affymetrix) with
as all arrays simultaneously. SNP call rates ranged from 97.3–99.58% (average 98.9%).
Total RNA was extracted from frozen cerebellar tissues using miNeasy mini
kit (Qiagen, Valencia, CA). Gene expression was assessed using the Affymetrix
GeneChip U133 Plus 2.0 Array. Total RNA from 10 patients was used to synthesize cDNA from which was performed a labeling protocol using
the GeneChip hybridization kit (Affymetrix). The experiments were performed at
NIH Neuroscience Microarray Consortium at Yale University. The raw CEL
gene expression files were processed by Affymetrix Expression Console software
ECI.1.2 using customized SNP-free library files. Batch effects were removed by
ComBat in R package47. For the genotype-expression correlation analysis, SVA48
was used to remove effects of all confounding covariates. For purposes of the present study, we considered the relationship of
alleles from our top disease-associated SNP to expression of nine transcripts
available on our expression arrays within a 3-MB window centred on rs11098403.
Next, we performed eQTL analyses to examine the association between
NDSST and all available SNPs (n = 40) within the region of our GWAS signal
Chr14:118,7–119.0 MB). For the analysis of differential expression across groups,
analysis of covariance analysis including six factors (age, PMI, brain pH, Affect
tion status, sex and antipsychotics) was performed in SSPS16.0 software (http://www.sppss.com). For these analyses, heterozygotes were combined with the risk
allele homozygotes; cell sizes were too small to permit modelling of additive allelic
effects in each diagnostic group.

Genome-wide expression profiling using RNA-seq technology. Postmortem
brain tissue (hippocampus) of 31 humans was obtained from the University of
Miami Brain Endowment Bank (Miami, FL, USA). Postmortem hippocampus of 10
husus macaques was obtained from the National Institutes of Health Animal
Center in Poolesville, Maryland. Hippocampal tissue from 16 rats was obtained
from the Dr. indard Eberberg lab at Indiana University. The human research
protocol for procedures involved in collecting postmortem brain and associated
data was approved by the University of Miami. Macaque study protocols were

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3739
8 NATURE COMMUNICATIONS
approved by the NIAAA and NICHD Animal Care and Use Committees. Rat study protocols were approved by the Institutional Animal Care and Use Committee at Indiana University School of Medicine.

RNA was extracted from ~100 mg of hippocampus tissue and mRNA was isolated from 35 μg of total RNA with Dynabeads oligo (dT)25 (Invitrogen). The purified mRNA was fragmented to the 150–500 base pairs by mixing with 10x fragmentation buffer (Ambion, Austin, TX) and heating at 70 °C for 3 min. Approximately 200 ng of fragmented mRNA was used for synthesis of cDNA synthesis following Illumina’s mRNASeq protocol. RNA-seq was carried out for each sample individually on an Illumina Genome Analyser (Illumina, San Diego, CA) according to Illumina protocols with 36 cycles using the ‘sequencing-by-synthesis’ method. Sequences were called from image files with the Illumina Genome Analyser Pipeline (GAPipeline) and aligned to the corresponding reference genomics (UCSC hg18 for human, UCSC rheMac2 for macaque, and UCSC rn4 for rat) using Extended Eland in the GAPipeline. The uniquely mapped reads (total of 297.8 million for human, 44.6 million for macaque and 125.5 million for rat) were parsed with in-house Perl scripts to generate WIG files, which were used to generate expression profiles with Genome Browser. All raw sequences generated in this study have been deposited in the Sequence Read Archive (NCBI) with the accession numbers SRA028822, SRA027316, SRA029279 and SRA029275.

References

1. Perálá, J. et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch. Gen. Psychiatry 64, 19–28 (2007).
2. Prince, M. et al. No health without mental health. Lancet 370, 859–877 (2007). Laursen, T. M. Increased mortality among patients admitted with major psychiatric disorders: a register-based study comparing mortality in unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia. J. Clin. Psychiatry 68, 899–907 (2007).
3. Cardno, A. G. et al. Heritability estimates for psychotic disorders: the Maudsley twinregister psychosis study. Arch. Gen. Psychiatry 56, 162–168 (1999).
4. Williams, H. J. et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum. Mol. Genet. 20, 387–391 (2011).
5. Williams, H. J. et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).
6. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).
7. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).
8. Van Snellenberg, J. & de Candia, T. Meta-analytic evidence for familial coaggregation of schizophrenia and bipolar disorder. Arch. Gen. Psychiatry 66, 748–755 (2009).
9. Lee, S. H. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44, 247–250 (2012).
10. The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five novel schizophrenia loci. Nat. Genet. 43, 969–976 (2011).
11. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).
12. Kristiansson, K., Naukkarinen, J. & Peltonen, L. Isolated populations and population stratification in genome-wide association studies. Nat. Genet. 44, 459–463 (2010).
13. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012).
14. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association studies. Bioinformatics 26, 2190–2191 (2010).
15. Galante, P. A., Sakabe, N. J., Kirschbaum-Slager, N. & Souza, S. J. Detection and evaluation of intrain variation events in the human transcriptome. RNA 10, 757–765 (2004).
16. Akawa, J. & Esko, I. Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacytelylase/Na-sulfotransferase family. J. Biol. Chem. 274, 2690–2695 (1999).
17. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 455, 168–176 (2009).
18. Pallerla, S. R. et al. Altered heparan sulfate structure in mice with deleted NIST3 gene function. J. Biol. Chem. 283, 16885–16894 (2008).
19. Noordermeer, M. S., Gallagher, J. T. & Lobo, J. A. Specific structural features of heparan sulfate proteoglycans potentiate neurun-1 signaling. J. Biol. Chem. 280, 383–388 (2005).
20. Green, E. K. et al. Operation of the schizophrenia susceptibility gene, neurelin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch. Gen. Psychiatry 62, 642–648 (2005).
21. Shi, Y. et al. Common variants on 8p12 and 1q24 confer risk of schizophrenia. Nat. Genet. 43, 1224–1227 (2011).
22. Yue, W. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p12.1. Nat. Genet. 43, 1228–1231 (2011).
23. Lucido, A. L. et al. Rapid assembly of functional presynaptic boutons triggered by adhesive contacts. J. Neurosci. 29, 12449–12466 (2009).
24. Lee, J. M. et al. Generation of these data sets is available from www.wtccc.org.uk as well as the following their genotype data publicly available through dbGAP and the Wellcome Trust Case-Control Consortium. A full list of the investigators who contributed to the generation of these data sets are from www.wtccc.org.uk as well as the following studies within dbGAP (http://www.ncbi.nlm.nih.gov/projects/gap):
Author contributions
T.L., S.G. and A.D. wrote the manuscript. A.D. coordinated sample recruitment and phenotype assessment. T.L., A.D., I.P., J.M.K., D.G. and A.K.M. conceptualized and designed the study. T.L. and S.G. performed the primary analyses and interpreted the genome-wide data. C.L., L.C., C.Z. and J.B. performed the expression experiments and analysis. J.R., M.J. and S.M. contributed statistical analyses. A.T.L. and P.K.G. oversaw the genotyping of the samples. M.I., N.I., S.C.M., M.M.N., A.T.A.C. and A.P. provided replication data. C.H., Q.Y. and P.D. contributed RNA-seq data. All the authors contributed to the current version of the paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Lencz, T. et al. Genome-wide association study implicates NDST3 in Schizophrenia and bipolar disorder. Nat. Commun. 4:2739 doi:10.1038/ncomms3739 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/