2D model of CCRF discharge with liquid electrode

V Yu Chebackova¹, A F Gaisin² and V S Zheltukhin³

¹Department of Data Analysis and Operations Research, Kazan Federal University, 18 Kremlin street, Kazan, 420008, Russia
²Department of Technical Physics, A N Tupolev Kazan National Research Technical University, 10 Karl Marx street, Kazan, 420111, Russia
³Department of Plasma Technology and Nanotechnology of High Molecular Weight Materials, Kazan National Research Technological University, 68 Karl Marx street, Kazan 420015, Russia

E-mail: vchebakova@mail.ru

Abstract. A mathematical model of RF discharge between metal rod and liquid electrodes in argon media at decreasing pressure in range of 10^3–10^5 Pa at a local approach is constructed. Electrons, atomic and dimer ions, excited atoms and dimers of Ar as well as effect of vorticity electromagnetic field and processes on plasma-liquid interphase boundary are considered.

1. Introduction
Plasma technologies is widely used for ecologies and environment defenses. Plasma is used for waste water purification from both organic and heavy metals impurities. For example, a possibility of DC glow discharge application for an industrial effluent purification from heavy metal ions is showed in [1]. Methods of impoverishments of harmful organic impurities in water by strong non-equilibrium discharges is showed in paper [2]. These methods are most effectively at high percentage of impurities in water. In this case the plasma gives rise to stimulated combustion of organics which results in energy cost reduction. Furthermore, at percentage more than 20% these wastes can be a source of low-quality fuel for heating up of an engineering and utility services room. A technique for controlling of the water plant species of Cyanobacteria Microcystis Aeruginosa on water and wastewater treatment facility is presented in [3].

A specific feature of plasma technologies applications is a possibility of decontaminating of objects which is remoted on some tens or more distances from the used technical equipment. For example, authors of [4] presents experimental results of planktonic microorganisms and their consortiums by a plasma jet. A flood lamp system based on pulsed high pressure short-arc xenon lamp is proposed in paper [5] for using as a generator of peaky directional emission of the biocidal band. Likewise, a great interest to another plasma with liquid electrode application is taken worldwide [6-12].

The most studied kinds of discharges with liquid electrodes now are the DC discharges. The rf discharge between solid and liquid electrodes is studied not long ago. There is no a theory of such discharges. Results of experimental studies of discharges with liquid electrodes can be found in [13-16].

In this regard the work objectives is a construction of approximate 2d-model of RF discharge when one of electrode is liquid and the other is solid.
2. System of equation

A mathematical model of RF discharge between metal rod and circular metal plate dipping into a weak electrolyte. The rod is connected to RF current source and the plate is tied to ground. The discharge is burned in Ar media at pressure in range from 10^3 to 10^5 Pa. The discharge chamber is a dielectrically cylinder by g in radius.

Let us introduce the cylindrical coordinate system rOz where axis Oz is perpendicularly to the plate and origin of coordinates is placed in the center of the rod end (see figure 1).

![Figure 1](image)

The scheme of discharge chamber for burning of the discharge between the metallic rod and liquid.

The mathematical model includes the following equations:

- An equation of diffusion-drift for the atomic ions:

$$\frac{\partial n_k}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left(r \left(D_n \frac{\partial n_k}{\partial r} \right) \right) - \frac{\partial}{\partial z} \left(D_n \frac{\partial n_k}{\partial z} + \mu_k n_k E_z \right) = R_1 n_e N + R_2 n_m + R_3 n_m n_e - R_4 n_e n_k - R_5 n_k^2 n_e + R_{12} n_e n_k - R_1 n_k N^2 + R_{20} N n_{k_2}.$$

Here n_e, n_m, n_k, n_{k_2} is densities of electrons, metastable, atomic and dimeric ions, N – is the density of neutral atoms in the ground state, μ_k and D_n are the mobility and diffusion coefficient of atomic ions, E_z, E_i are components of the potential electrical tense vector $E = E_i \hat{i} + E_\theta \hat{j}$, where \hat{i}, \hat{j} are basis vectors, $R_{\alpha}, i=1...20$ are coefficients of rates of plasma chemical reactions (see table 1):

Table 1. Kinetic processes taken into account in model of RF discharge with liquid electrodes in Ar media [17].

Designation	Reaction	Designation	Reaction
R_1	Ar$^+$+e→Ar$^++2$e;	R_2	Ar$^++$Ar$^→$Ar$^++$Ar^+e;
R_3	Ar$^+$e→Ar$^++2$e;	R_4	Ar$^++$e→Ar^++h;
R_5	Ar$^++2$e→Ar^++e;	R_6	Ar$^++e→Ar^++;e$;
R_7	Ar$^++Ar^++h$;	R_8	Ar$^++Ar^++2$Ar;
R_9	Ar$^++2$Ar^+e;	R_{10}	2Ar$^++2$Ar$^+→2$Ar$^++;e$;
R_{11}	Ar$^++Ar^++e$;	R_{12}	Ar$^++e→Ar^++2$Ar^+e;
R_{13}	Ar$^++e→Ar^++Ar$;	R_{14}	Ar$^++→2$Ar$^++;e$;
R_{15}	Ar$^++2$Ar$^+→Ar^++Ar$;	R_{16}	Ar$^++2$Ar$^++→e+2$Ar$^++Ar^+e$;
R_{17}	Ar$^++Ar^++e+Ar^++Ar^+$;	R_{18}	e$+Ar^++→2$Ar^++e;
R_{19}	Ar$^++2$Ar$^+→3$Ar^++h;	R_{20}	Ar$^++2$Ar$^+→2$Ar$^++2$Ar^+e;

- An equation of diffusion-drift for the molecular ions:
\[
\frac{\partial n_{2+}}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left[r \left(D_{2+} \frac{\partial n_{2+}}{\partial r} \right) \right] - \frac{\partial}{\partial z} \left(D_{2+} \frac{\partial n_{2+}}{\partial z} + \mu_{2+} n_{2+} E_{z} \right) = \\
= R_{14} n_{m}^{2} + R_{17} n_{e} N^{2} - R_{12} n_{e} n_{2+} - R_{13} n_{e} n_{2+} + R_{16} n_{2+}^{2} + R_{17} n_{m} n_{2+} - R_{20} N n_{2+}.
\]

Here \(D_{2+} \) is the diffusion coefficient of molecular ions, \(\mu_{2+} \) is the mobility of molecular ions;

- An equation of diffusion-drift for the electrons:
\[
\frac{\partial n_{e}}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left[r \left(D_{e} \frac{\partial n_{e}}{\partial r} \right) \right] - \frac{\partial}{\partial z} \left(D_{e} \frac{\partial n_{e}}{\partial z} - \mu_{e} e E_{z} \right) =
\]
\[
= R_{1} n_{e} N + R_{2} n_{m}^{2} + R_{3} n_{m} n_{e} - R_{4} n_{e} n_{4} - R_{5} n_{e}^{2} n_{4} + R_{10} n_{m}^{2} - R_{13} n_{e} n_{2+} + R_{16} n_{2+}^{2} + R_{17} n_{m} n_{2+}.
\]

Here \(D_{e} \) is the diffusion coefficient of electrons, \(\mu_{e} \) is the mobility of electrons, \(n_{2+} \) is the Ar dimer density;

- The Poisson equation for electric potential \(\phi \):
\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) - \frac{\partial^{2} \phi}{\partial z^{2}} = \frac{e}{\varepsilon_{0}} (n_{+} + n_{2+} - n_{e}).
\]

- The Maxwell equation for electromagnetic curl field:
\[
\frac{\partial \vec{H}_{\phi}}{\partial z} = i \varepsilon_{0} \varepsilon \omega \vec{E}_{r},
\]
\[
- \frac{1}{r} \frac{\partial}{\partial r} \left(r \vec{H}_{\phi} \right) = j + i \varepsilon_{0} \varepsilon \omega \vec{E}_{r},
\]
\[
\frac{\partial \vec{E}_{r}}{\partial z} - \frac{\partial \vec{E}_{z}}{\partial r} = i \mu_{0} \omega \vec{H}_{\phi}.
\]

Here \(\vec{H}_{\phi}, \vec{E}_{r}, \vec{E}_{z} \) are complex amplitudes of the electromagnetic curl field, \(i \) is the imaginary unit, \(\varepsilon_{0} \) is the electrical constant, \(\varepsilon \) is the relative permittivity, \(\omega = 2\pi f \) is the cyclic frequency, \(f \) is the generator frequency, \(j \) is the axial component of the RF current in a rod as well as in the discharge. We suppose that radial component of conduction current in discharge is negligibly small.

- An equation of diffusion for excited atoms, taken into account a fast mixing of electronically excited levels due to electron impact:
\[
\frac{\partial n_{m}}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left[r \left(D_{m} \frac{\partial n_{m}}{\partial r} \right) \right] - \frac{\partial}{\partial z} \left(D_{m} \frac{\partial n_{m}}{\partial z} \right) =
\]
\[
= R_{6} N n_{e} + R_{15} n_{m}^{2} - R_{7} n_{e}^{2} n_{m} - R_{7} n_{e} n_{m}^{2} - R_{8} n_{m}^{2} n_{e} - R_{9} N n_{m} -
R_{7} n_{m} n_{e}^{2} - R_{15} N^{2} n_{e} - R_{14} n_{m} n_{e} - R_{19} n_{m} N^{2}.
\]

Here \(D_{e} \) is the diffusion coefficient of excited atoms;

- A kinetic equation for excited dimers of:
\[
\frac{\partial n_{2+}}{\partial t} = R_{14} n_{m}^{2} + R_{15} N^{2} n_{m} - R_{14} n_{2+}^{2} - R_{16} n_{2+}^{2} - R_{17} n_{m} n_{2+} - R_{18} n_{e} n_{2+} + R_{19} n_{m} N^{2}.
\]

- A kinetic equation for ground-state atoms
\[
\frac{\partial n}{\partial t} = -R_{1} n_{e} N + R_{2} n_{m}^{2} + R_{4} n_{e} n_{4} + R_{5} n_{e}^{2} n_{4} - R_{6} N n_{e} + R_{7} n_{m} + R_{8} N n_{m} + R_{9} n_{m} n_{e} -
R_{11} n_{m} N^{2} + 2R_{12} n_{e} n_{2+} + 2R_{13} n_{e} n_{2+} + 2R_{14} n_{2+} - R_{15} N^{2} n_{m} + 2R_{16} n_{2+} +
R_{17} n_{m} n_{2+} + R_{19} n_{m} N^{2}.
\]
3. Boundary conditions
Here the following notations are used: \(d \) is the rod length, \(c \) is the radius of the rod, \(m_+ \), \(m_- \), \(m_c \), \(m_r \) are masses of corresponding particles, \(T_+, T_{2+}, T_+, T_r \) are their temperature (let us suppose that difference between rotational, vibrational, and translational temperatures is negligible), \(V_a \) is the magnitude of electrode voltage, \(G_{+r}, G_{2+}, G_{e+r}, G_{m+r} \) are particle fluxes in the radial axis, \(G_{+x}, G_{2+x}, G_{e+x}, G_{m+x} \) are particle fluxes in the Oz direction. Hereinafter, we suppose that there is no tangential particle flux.

3.1. On the surface of the load electrode

- at \(z=d \) and \(0 \leq r \leq c \) the following conditions are formulated:

\[
G_{+z} = \begin{cases} -\sqrt{8kT_+/(\pi m_+)}n_+/4 + \mu_+n_4E_z, & \text{if } E_z < 0, \\ -\sqrt{8kT_+/(\pi m_+)}n_+/4, & \text{if } E_z \geq 0. \end{cases}
\]

\[
G_{2z} = \begin{cases} -\sqrt{8kT_{2+}/(\pi m_{2+})}n_{2+}/4 + \mu_-n_{2+}E_z, & \text{if } E_z < 0, \\ -\sqrt{8kT_{2+}/(\pi m_{2+})}n_{2+}/4, & \text{if } E_z \geq 0, \end{cases}
\]

\[
G_{e,z} = \begin{cases} -\sqrt{8kT_e/(\pi m_e)}n_e/4 + c(G_{+z} + G_{+z}), & \text{if } E_z < 0, \\ -\sqrt{8kT_e/(\pi m_e)}n_e/4 - \mu_en_eE_z, & \text{if } E_z \geq 0, \end{cases}
\]

\[
G_{m,z} = -\sqrt{8kT_a/(\pi m_a)n_m/4},
\]

\[
V_a = \cos(\omega t),
\]

\[
\dot{E}_r = 0, \dot{E}_z = 0, \dot{H}_\phi = i\exp(i\omega t).
\]

- at \(r=c \neq 0 \leq z \leq d \) the following conditions are formulated:

\[
G_{+r} = -\sqrt{8kT_+/(\pi m_+)}n_+/4,
\]

\[
G_{e,r} = -\sqrt{8kT_e/(\pi m_e)}n_e/4,
\]

\[
G_{m,r} = -\sqrt{8kT_a/(\pi m_a)n_m/4},
\]

\[
V_a = \cos(\omega t),
\]

\[
\dot{E}_r = 0, \dot{E}_z = 0, \dot{H}_\phi = i\exp(i\omega t).
\]

3.1 On dielectrically surfaces

On dielectrically surfaces the normal to a particle flow is set equal to flux of Brownian particle and

\[
-\partial \phi / \partial r = q/\varepsilon_0, \partial q / \partial t = e(G_{+\perp} + G_{2+\perp} - G_{e\perp}),
\]

where \(q \) is surface-charge density defined by equation of charge collection.

3.2. On the interphase surface water-gas the following conditions are formulated.

Let us allow that specific conductance of weak electrolytes tends to water specific conductance and water does not have time to polarize. Then Ohm’s law \(j = \sigma \dot{E} \) is valid, where \(\sigma \) is water specific conductance. Along the interface with electrolyte, the flow of particles is Brownian.

Plasma chemical processes depending on electrical field direction are considered on the interphase surface too. If the field is directed back to rod electrode, then water dissociation processes are prevailed \(y_1 \rightarrow y_3 \) (see table 2). Dissociation product is reacted with each to other in processes denoted as \(Rw11-Rw15 \). At this phase the negative charge \(O^- \) is accumulated than it is incompletely neutralized at changing of field direction in reactions \(Rw16-Rw18 \). As a result, \(atE_z < 0 \) the following conditions are formulated

\[
G_{+x} = \sqrt{8kT_+/(\pi m_+)}n_+/4,
\]

\[
G_{2+x} = \sqrt{8kT_{2+}/(\pi m_{2+})}n_{2+}/4,
\]

\[
G_{e,x} = \sqrt{8kT_e/(\pi m_e)}n_e/4 - \mu_en_eE_z,
\]

\[
G_{m,x} = \sqrt{8kT_a/(\pi m_a)n_m/4},
\]
Table 2. Kinetic processes taken into account on the interphase surface.

Designation	Reaction	Designation	Reaction
\(\gamma_1 \):	\(e + H_2O \rightarrow H + OH^+ \);	\(Rw_{14} \):	\(H^+ + e \rightarrow 2e + H \);
\(\gamma_2 \):	\(e + H_2O \rightarrow H_2 + O^+ \);	\(Rw_{15} \):	\(2OH + H_2 \rightarrow 2e + 2H_2O \);
\(\gamma_3 \):	\(e + H_2O \rightarrow OH + H^+ \);	\(Rw_{16} \):	\(O^+ + O \rightarrow O_2 + e \);
\(Rw_{11} \):	\(OH^+ + O \rightarrow e + H_2O \);	\(Rw_{17} \):	\(O^+ + Ar^+ \rightarrow O + Ar^* \);
\(Rw_{12} \):	\(OH + H \rightarrow e + H_2O \);	\(Rw_{18} \):	\(O^+ + Ar^+ + Ar \rightarrow O + 2Ar \);
\(Rw_{13} \):	\(H^+ + H \rightarrow e + H_2 \);		

At \(E_z > 0 \) the following conditions are formulated:

\[
\begin{align*}
G_{e,x} &= \sqrt{8kT_e/(\pi m_e)}n_e/4 + \mu_e n_e E_z, \\
G_{2+,x} &= \sqrt{8kT_{2+}/(\pi m_{2+})}n_{2+}/4 + \mu_{2+} n_{2+} + E_z, \\
G_{e,x} &= \sqrt{8kT_e/(\pi m_e)}n_e/4 - \gamma(G_e + G_{2+}), \\
G_m &= \sqrt{8kT_a/(\pi n_a)}n_m/4.
\end{align*}
\]

The interphase surface is exposed to ion bombardment during the discharge burning what leads to water dissociation and ionization. As a result, radicals of hydrogenium, oxygenium, and hydroxyl appear in the discharge zone. For this reason, the following system of a kinetic equations at zero initial conditions is considered:

\[
\begin{align*}
\frac{\partial n_{OH^-}}{\partial t} &= \gamma_1 G_e - Rw_{11} n_0 n_{OH^-} - Rw_{12} n_H n_{OH^-}, \\
\frac{\partial n_{H^+}}{\partial t} &= \gamma_2 G_e + Rw_{13} n_H n_{H^+} - Rw_{15} n_{OH^+} n_{H^+}, \\
\frac{\partial n_{OH}}{\partial t} &= \gamma_3 G_e - Rw_{15} n_{OH^+} n_{H^+}, \\
\frac{\partial n_{O^-}}{\partial t} &= \gamma_4 G_e - Rw_{16} n_0 n_{O^-} - Rw_{17} n_4 n_{O^-} - Rw_{18} n_{O^+} n_{O^-}, \\
\frac{\partial n_{H^-}}{\partial t} &= \gamma_5 G_e - Rw_{13} n_H n_{H^-} - Rw_{14} n_{e} n_{H^-}, \\
\frac{\partial n_{H}}{\partial t} &= \gamma_1 G_e - Rw_{12} n_H n_{OH^-} - Rw_{13} n_H n_{H^-} + Rw_{14} n_{e} n_{H^-}, \\
\frac{\partial n_{O}}{\partial t} &= -Rw_{11} n_0 n_{OH^-} - Rw_{16} n_0 n_{O^-} + Rw_{17} n_4 n_{O^-} + Rw_{18} n_{O^+} n_{O^-}.
\end{align*}
\]

The model is hybrid because charged particle distribution functions of both electron and ions, their integral characteristics such as transport coefficients and rate coefficients, as well as water radical pervasion into discharge should be modelling by Monte-Carlo method [18-20].

4. Conclusion

A mathematical model of RA discharge between rod metallic and liquid electrodes in argon media at decreased pressure in range of \(10^3 - 10^5 \) Pa is constructed. Electrons, atomic and molecular ions, excited atoms and dimers, plasma chemical processes on the interphase surface between water and gas, as well as electromagnetic curl field is considered.
Acknowledgments
The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and the work is funded by RFBR, projects No. 18-32-00033 and No. 16-01-00301.

References
[1] Bobkova E S, Sungurova A V and Kobeleva N A 2016 Using DC discharge for water purification from heavy metals 43th international conference on plasma physics and CF, February 8–12, Zvenigorod
[2] Velikodny V Yu, Dyrenkov A V, Popov V V and Son E E Electrophysical properties of the discharge in the nine-electrode reactor for cleaning organic wastes 41th international conference on plasma physics and CF, February 10–14, 2014, Zvenigorod
[3] Lapsongpon T, Leungprasert S and Yoshimura C 2017 Pre-chlorination contact time and the removal and control of Microcystis aeruginosa in coagulation IOP Conf. Series: Earth and Environmental Science 67 012011
[4] Kazak A V, Simonchik L V, Nezhvinskaya O Ya and Dudaik N V 2017 Inactivation of planctonic microorganisms and their consortiums by dc atmospheric pressure plasma jets 44th international conference on plasma physics and CF, February 13–17, Zvenigorod
[5] Arkhipov V P, Kamrukov A S, Kozlov N P and Makarchuk A A 2016 About the possibility of remote decontamination of objects 43th international conference on plasma physics and CF, February 8–12, Zvenigorod
[6] Peter Bruggeman and Christophe Leys 2009 Non-thermal plasmas in and in contact with liquids J. Phys. D: Appl. Phys. 42 053001
[7] Bruggeman P J, Kushner M J et al 2016 Plasma–liquid interactions: a review and roadmap Plasma Sources Sci. Technol. 25 053002
[8] Zhao Li, Kunyao Wu, Jing Cao and Yongfeng Wang 2017 Study on microwave induced pyrolysis of low metamorphic coal and liquefaction residue IOP Conf. Series: Earth and Environmental Science 64 012038
[9] Bingsnan Yan, Zhou Jing and Zhao Liang 2017 Study on the influence of the electrode model on discharge characteristics in High-voltage Pulsed Deplugging Technology IOP Conf. Series: Earth and Environmental Science 64 012001
[10] Sunarti T C, Yanti S D and Ruriani E 2017 Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production IOP Conf. Series: Earth and Environmental Science 65 012052
[11] Zhu X, Li F, Qiu Z Z and Huang J W 2017 Migration of DEHP from plastic to food simulants under microwave heating IOP Conf. Series: Earth and Environmental Science 64 012050
[12] Sato M, Ohgiyama T and Clements J S 1996 Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water IEEE Trans. Indus. Appl. 32 106–12
[13] Gaisin, A F, Kashapov N F, Kuputdinova A I and Mukhametov R A 2018 Discharge between Liquid Jet and Metallic Electrodes Technical Physics 63(5) 695-9
[14] Mirkhanov D N, Gaisin A F, Kuputdinova A I and Mukhametov R A 2017 Electrophysical and heat properties of the discharge with liquid anode Journal of Physics: Conference Series 927 (1) 012017
[15] Gaisin A F, Son E E and Kashapov N F 2017 Discharge between the jet and dropping liquid cathode and metal anode Journal of Physics: Conference Series 927(1) 012018
[16] Gaisin A F, Son E E, Efimov AV, Gil’mutdinov A K and Kashapov N F 2017 Spectral diagnostics of plasma discharge between a metal cathode and liquid anode High Temperature 55 (3) 457–60
[17] Chebakova V Y 2017 Modeling of radio-frequency capacitive discharge under atmospheric pressure in argon Lobachevskii Journal of Mathematics 38 (6) 1165–78
[18] Askhatov R M, Badiev I B, Chebakova V Yu and Zheltukhin V S 2018 Simulation of electron moving in RF capacitively coupled discharge Journal of Physics: Conference Series 1058 (1) 012044

[19] Youssfi M, Hennad A and Alkaf A 1994 Monte Carlo simulation of electron swarms at low reduced electric fields Physical Review E 49 (4) 3264–73

[20] Hans Rau 2000 Monte Carlo simulation of a microwave plasma in hydrogen J. Phys. D: Appl. Phys. 33 3214–22