Progress in perisynaptic Schwann cell and neuromuscular junction research

Chandler L. Walker

The neuromuscular junction (NMJ) is widely studied for its utility in investigating synaptic properties and processes and neuromuscular changes in response to injury, aging, and disease. The NMJ consists of three essential anatomic components, the pre-synaptic motor axon terminal, the post-synaptic nicotinic acetylcholine receptors (AchRs) on the muscle, and the perisynaptic Schwann cell (PSC), also known as the terminal Schwann cell, that caps the synapse (Figure 1A). In addition to this tri-partite construction, another cell called the kranocyte is known to be involved in the structural makeup of the NMJ though even less is known about this cell type. The PSC is a protective cellular covering for the NMJ and serves various dynamic functions under normal and pathological conditions. The NMJ is a complex multi-component site of communication between motor axons and target musculature. The PSC is a specialized non-myelinating Schwann cell that protects, nourishes, and regulates synaptic function at the NMJ (Alvarez-Suarez et al., 2020). A dynamic reciprocal communication network exists between the PSC and muscle to adapt to and help modulate alterations to NMJ activity in healthy adults. The PSC produces and secretes trophic factors that influence the axon’s health, post-synaptic muscle, and overall integrity of the NMJ. Likewise, muscle also secretes trophic factors and other chemical mediators that influence the PSC and associated localized structures at the NMJ.

These interactions also directly affect PSCs to aid in neuromuscular reinnervation following nerve injury. Retraction of the motor axon terminals and Wallerian degeneration of the axonal segments distal to the injury site occurs acutely and rapidly post-injury. As part of this early response, localized acetycholine decreases, and the PSC becomes activated and modifies its biochemistry and morphology. Some changes include an upregulation of glial fibillary acidic protein and neuregulin-1/Erb receptor signaling as the extended cytoplasmic processes of the PSC interact with and guide the regenerating axon toward its muscular target. Trophic factors and guidance cues produced by activated PSCs can also directly influence neuromuscular reinnervation (Figure 1B). The result is PSC-facilitated reinnervation and reestablishment of the NMJ. Expression of G-coupled protein receptor, GPR126, by PSCs improves the ability of axons to successfully reinnervate NMJs after injury, with evidence suggesting it affects trophic factor production and influences target skeletal muscle chemokine and inflammatory response (Jablonska-Shariff et al., 2020). However, the extent of GPR126 expression fluctuations in PSCs over time post-injury is unclear. The correlation between its expression and changes in other components of the NMJ that influence regenerating motor axon innervation requires further investigation (Figure 1B).

In neuromuscular diseases such as amyotrophic lateral sclerosis (ALS), pre-symptomatic denervation of skeletal muscle occurs, and early PSC changes are also observed. As demonstrated by Carrasco et al. (2016) a mouse model of ALS exhibits fewer PSCs at the NMJ than their wild-type counterparts. The PSCs that are present are misaligned with the post-synaptic AchRs under normal conditions (Carrasco et al., 2016). This disorganization of PSCs varies in different muscles. Those exhibiting early pre-symptomatic PSC abnormalities are more likely to be affected by the onset of denervation of motor axons from the NMJ in later stages of disease progression. Evidence to date has clearly shown relevance for PSC presence, reactivity, and morphologic alteration in innervated, denervated, and reinnervated states of the NMJ.

Despite the increasingly clear importance of the PSC in NMJ integrity and function, it has remained surprisingly challenging to study the PSC as an individual cell type. This difficulty has been due in no small part to the fact that PSCs are closely associated with other structures at the NMJ, making them hard to separate, and they express many of the same markers as other SCs, including S100 (Jablonska-Shariff et al., 2021). As such, specific markers for PSCs have not been easily identifiable. Though some markers and labeling methods for PSCs have been previously identified, such as peanut agglutinin and monoclonal antibody 2A12 labeling (Astrow et al., 1998), it is necessary to understand better the development, normal and pathological functions of PSCs. To do this, clearer and more consistently evident markers of PSCs are needed. A few have been identified, with two recent advancements highlighting specific proteins that could aid in efforts to progress PSCs research in health and disease.

Neuron-gial antigen-2 (NG2): Long studied as a marker of glial progenitor cells such as those of the oligodendrocyte lineage (McTigue et al., 2006), NG2 proteoglycan, also known as chondroitin sulfate proteoglycan 4, has recently been shown to be expressed by PSCs at the NMJ (Castro et al., 2020). By crossing mice with enhanced green fluorescent protein expressed in S100+ cells (S100-EGFP) with the NG2dsRed mouse, Castro et al. (2020) were able to identify dual-labeled S100-NG2 positive cells at the motor endplate on the extensor digitorum longus muscle under normal physiologic conditions. Importantly, co-labeling these fluorescently labeled proteins did not present any adverse outcomes for PSC morphology or behavior. The group further determined the role of this marker combination under conditions of stress. A nerve crush injury was performed, and the co-expression of S100-EGFP and NG2dsRed was maintained at the NMJ, despite clear denervation observed as early as one day post-injury.
The PSC is a functionally important participant in the maintenance and plasticity of the NMJ, and these recent studies have highlighted specific markers to study them more clearly and deeply than previously possible. However, the physical and physiologic characteristics of the PSC revealed thus far have only begun to address questions that now may be addressed using these new approaches. A key benefit for these advances is an improved understanding of the role of the PSC in neuromuscular denervation or reinnervation under pathologic conditions.

Impact on future research: The PSC is a functionally important participant in the maintenance and plasticity of the NMJ, and these recent studies have highlighted specific markers to study them more clearly and deeply than previously possible. However, the physical and physiologic characteristics of the PSC revealed thus far have only begun to address questions that now may be addressed using these new approaches. A key benefit for these advances is an improved understanding of the role of the PSC in neuromuscular denervation or reinnervation under pathologic conditions.

Neuromuscular disconnection represents an early anatomical pre-symptomatic peripheral pathologic condition in the loss of NMJ innervation through axon die-back occurs before axonal degeneration. For example, in the mutant superoxide dismutase 1 G93A (mSOD1^{G93A}) mouse models of ALS, NMJ endplate degeneration is observed approximately seven weeks into the mouse lifespan. By comparison, symptoms onset occurs at about 14–15 weeks of age. In slower progressing models, such as the mSOD1^{G93A} mouse, functional PSC alterations are observed much earlier than morphologic fluctuations. Specifically, PSC excitability is elevated pre-symptomatically and progressing throughout the lifespan of the mouse despite sustained structural integrity (breakdown of soleus NMJs in the G37R model occurs at approximately 55 weeks of age) (Arbour et al., 2015). This pronounced and prolonged neuromuscular endurance of excitability correlated with motor neuron hyperexcitability associated with motor neuron degeneration in ALS.

Thus, the PSC functional properties support dysfunctional neuronal motor signaling and promote progressive motor neuron pathology as integrity is broken down later in the disease. Pre-symptomatic loss of NMJ innervation is also observed in sporadic and some forms of hereditary ALS in humans. Despite two decades worth of research into some forms of hereditary ALS in humans, the role of the PSC in neuromuscular denervation or reinnervation under pathologic or disease conditions. Further studies non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. How to cite this article: Walker CL (2022). Progress in persynaptic Schwann cell and neuromuscular junction research. Neural Regen Res 17(6): 1273-1274. Copyright license agreement: The Copyright License Agreement has been signed by the author before publication. Plagiarism check: Checked twice by iThenticate. Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

References

Alvarez-Suarez F, Gawor M, Prozszytsky T (2020) Persynaptic schwann cells-the multiskilling cells at the developing neuromuscular junctions. Semin Cell Dev Biol 104:31-38.

Arbour D, Tremblay E, Martinou E, Julien JP, Robitaille R (2015) Early and persistent abnormal decoding by glial cells at the neuromuscular junction in an ALS model. J Neurosci 35:688-706.

Astrow SH, Qiang H, Ko CP (1998) Persynaptic Schwann cells at neuromuscular junctions revealed by a novel monoclonal antibody. J Neurocytol 27:667-681.

Carrasco DJ, Seburn KL, Pinter MJ (2016) Altered terminal Schwann cell morphology precedes denervation in SOD1 mice. Exp Neurol 275:172-181.

Castro R, Tantzh T, Vaughan SK, Godbe K, Chappell J, Settlage RE, Valdez G (2020) Specific labeling of synaptic schwann cells reveals unique cellular and molecular features. Elife 9:e56932.

Jablonka-Shariff A, Lu CY, Campbell K, Monk KR, Snyder-Warwick AK (2021) T-box transcription factor 21 (TBX21) is expressed in terminal Schwann cells at the neuromuscular junction. Muscle Nerve 64:109-115.

Jablonka-Shariff A, Lu CY, Campbell K, Monk KR, Snyder-Warwick AK (2020) Gpr126/Adgrg6 contributes to the terminal Schwann cell response at the neuromuscular junction following peripheral nerve injury. Glia 68:1182-1200.

Lazar evecz V, Glimcher LH (2011) T-bet in disease. Nat Immunol 12:597-606.

Lazar evecz V, Glimcher LH, Lord GM (2013) T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol 13:777-789.

McTigue D, Tripathi R, Wei P (2006) NG2 colocalizes with axons and is expressed by a mixed cell population in spinal cord lesions. J Neuropathol Exp Neurol 65:406-420.

Nard G, Trolese MC, Verderio M, Mariani A, da Paola M, Riva N, Dina G, Panini N, Erba E, Quattrini A, Bordelli C (2018) Counteracting roles of MHC II and CD8⁺ T cells in the peripheral and central nervous system of ALS G93A mice. Mol Neurobiol 55:398-422.

Zhang X, Wen X, Feng N, Chen A, Yao S, Ding X, Zhang L (2020) Increased expression of T-Box transcription factor protein 21 (TBX21) in skin cutaneous melanoma predicts better prognosis: a study based on the cancer genome atlas (TCGA) and genotype-tissue expression (GTEx) databases. Med Sci Monit 26:e923087.