Design and Characterization of Mucoadhesive Microspheres of Etodolac

A R Shabaraya*, A S Parulkar, D Shripathy, P Shetty

Department of Pharmaceutics, Srinivas College of Research Institute, Valachil, Mangalore, Karnataka, India

ABSTRACT
Mucoadhesive microspheres are drug delivery system intended for drug targeting to a specific region. Etodolac is a Non-steroidal anti-inflammatory drug. Sustain released Etodolac loaded mucoadhesive microspheres were prepared to overcome the relatively short residence time of Etodolac in the GIT tract before elimination. Solvent evaporation method was used for preparation of mucoadhesive microspheres with the help of Carbopol 974P, HPMC K100M and HPMC K4M as the polymers. Central composite design was selected for the development of the formulation. The formulations were evaluated for their particle size, surface morphology, degree of swelling, entrapment efficiency, drug content and in-vitro drug release study was done. Based on the results obtained from the preliminary formulations three optimized formulations were designed. The percentage mucoadhesion and swelling index of these formulations were obtained in the range of 66-70% and 82.50-83.84% respectively. Optimized formulation releases 90.94% to 92.11% of drug after 10 hours and follows zero order kinetics.

Keywords: Mucoadhesive microsphere, Etodolac, Optimization, Mucoadhesion.

INTRODUCTION
Microencapsulation is a novel method which is helpful in delaying and modifying the release of the drug. It is a process of coating small particles or droplets inside a shell resulting in the formation of microspheres. [1] Microspheres are multiparticulate drug delivery systems which are made up of protective substances such as natural, semi-synthetic or synthetic polymers. The particle size falls in the range of 10µm-1000µm. [2] Microspheres give numerous advantages especially for sustain release, controlled release and site specific delivery. Microspheres are also helpful in reducing drug toxicity; improve efficacy, stability and better patient compliance. [3] Mucoadhesive delivery of drugs has gained prominence in recent times as a means of drug administration. The mucoadhesive microspheres adhere more intimately with the mucous membrane. The intimate contact of the mucoadhesive polymer with the mucous surface can result in an increased drug retention time, increasing bioavailability and increasing contact time between drug and mucosa. [4]
A R Shabaraya et al. / Design and Characterization of Mucoadhesive Microspheres of Etodolac

Mucoadhesive microspheres enhance the bioavailability and improve the absorption of the drug as they connect with the mucus membrane intimately. [5] Etodolac (ET) is NSAID (non-steroidal anti-inflammatory) prescribed for the treatment of acute pain, osteoarthritis, and rheumatoid arthritis. ET is the most selective COX-2 inhibitor; it possesses 10-fold COX-2 selectivity over COX-1. [6] Etodolac is BCS class-II drug having half-life 6.4 hours and low and pH-dependent solubility between pH 3 to 7. As many NSAIDs, ET has side effects, as gastro-toxicity, cardiovascular risk. [7-9] Formulation of ET loaded mucoadhesive microspheres may improve the safety and efficacy of the product and help to target the active substance for a better efficacy.

MATERIALS AND METHODS

Materials used

Etodolac, Carbopol 974-P, HPMC K4M and HPMC K100M were obtained from Yarrow Chem products. Dichloroethane, Light liquid paraffin, and Span 80 were obtained from Himedia. All the reagents used in the study were of analytical grade.

Methods

Compatibility studies

Fourier transforms Infrared spectroscopy (FTIR) of drug along with polymers was recorded using Shimadzu FTIR system. The samples were scanned in the range of 4000 to 400 cm⁻¹. [10]

Central composite design (CCD)

In central composite design (CCD) response surface methodology was selected for the development of the formulation. CCD has three groups of design points, two-level factorial or fractional factorial design points, axial points and central points. Effect of Carbopol 974P (A), HPMC K100M (B), and HPMC K4M (C) was selected as independent variables. Higher (+1) and Lower (-1) value of the independent variables were selected. These values were put in the optimization software and get the different formulations. Swelling index, percentage mucoadhesion and percentage in-vitro drug release were selected as response.

Preparation of Etodolac mucoadhesive microspheres

Solvent evaporation method was used to prepare Etodolac loaded mucoadhesive microspheres. Ethanol and dichloromethane were used as solvents. Carbopol 974-P, HPMC K4M, HPMC K100M was the polymer used in the preparation. First the polymer was dissolved in the solvents followed by adding of the drug. The final solution was kept in sonicator for 20 mins. 100 ml of liquid paraffin was taken in a container along with 2% span 80 and the solution containing drug and polymers were extruded in it. The solution was stirred at 1800 rpm using a three blade propeller for 5 hours at 50°C so the solvent will completely evaporate. The solution was then filtered and microspheres were collected and washed with petroleum and dried at temperature of 50°C for 2 hours. [11]

| Table 1: Independent variables (Formulation Factors) |
|-----------------|-----------------|
| Symbols | Levels (mg) |
| Carbopol 974P | X1 150 225 |
| HPMC K100M | X2 40 75 |
| HPMC K4M | X3 100 150 |

| Table 2: Composition of mucoadhesive microspheres of ET |
|-----------------|-----------------|
| Formulation code| Etodolac (mg) |
| | Carbopol 974P (mg) | HPMC K100M (mg) | HPMC K4M (mg) |
| F1 | 300 | 187.5 | 40.0 | 125 |
| F2 | 300 | 225.0 | 57.5 | 125 |
| F3 | 300 | 150.0 | 75.0 | 100 |
| F4 | 300 | 187.5 | 75.0 | 125 |
| F5 | 300 | 187.5 | 57.5 | 125 |
| F6 | 300 | 150.0 | 40.0 | 100 |
| F7 | 300 | 225.0 | 40.0 | 150 |
| F8 | 300 | 187.5 | 57.5 | 150 |
| F9 | 300 | 187.5 | 57.5 | 100 |
| F10 | 300 | 225.0 | 40.0 | 100 |
| F11 | 300 | 225.0 | 75.0 | 100 |
| F12 | 300 | 150.0 | 75.0 | 150 |
| F13 | 300 | 225.0 | 75.0 | 150 |
| F14 | 300 | 150.0 | 40.0 | 150 |
| F15 | 300 | 150.0 | 57.5 | 125 |

Characterization of microspheres

Particle Size

Particle size analysis of the samples was done using optical microscope. Microspheres were placed on a glass slide with the help of a thin brush and then it was covered with a cover slip and placed on the stage of the microscope. Then it was observed under 10X magnification. Hundred particles were counted from each batch and average particle diameter was determined. [12]

Micromeritic Study

Angle of repose, bulk density, tapped density, Carr’s index and Hausner’s ratio was determined for the prepared microspheres. Microspheres were evaluated for their flow. [13]

Swelling study

Swelling index was determined by measuring the extent of swelling of microspheres. 100 mg of microspheres were placed in 6.8 pH phosphate buffer for 24 hours and were allowed to swell. The excess drops on the surface of microspheres were removed by blotting method and the microspheres were weighed. [11]

Percentage Yield

Percentage yield of the microspheres were calculated by following formula

\[
\% \text{ yield} = \frac{\text{actual yield}}{\text{theoretical yield}} \times 100
\]

The total quantity of the microspheres obtained was divided by the total quantity of the drug and excipients taken for the preparation gives the percentage yield. [5]

Drug Content and Entrapment Efficiency

50 mg equivalent of weighed microspheres were crushed in a glass mortar and the powdered...
Microspheres were suspended in 15 ml of methanol and kept in magnetic stirrer for 1 hour. The solution was then centrifuged and the supernatant liquid was collected. The liquid was then diluted suitably with 6.8 pH phosphate buffer and analysed for drug content. The drug content was analysed by measuring absorbance in UV spectrophotometer at 200 - 400 nm (UV spectrophotometer-1800, Shimadzu-Japan) using 6.8 pH phosphate buffer as blank. [5, 11]

Surface Morphology

Surface morphology study was done using scanning electron microscopy (JEOL JSM 6380LA, Japan). Small amount of the sample was taken and mounted scotch double adhesive tape. Sample were coated with gold to thickness 100A using Hitachi Vacuum Evaporator (HUS 5GB). Coated samples were analysed in a Scanning Electron Microscope operated at 15Kv and photographed. [12]

Percentage Mucoadhesion Test

Mucoadhesion test was done using egg shell membrane as it matches the properties of animal stomach mucosa having similar composition and thickness. The membrane was extracted from the fresh chicken eggs. The external shell was removed after removing the egg contents, and the membrane was removed. The egg membrane was cut and placed on a glass slide and it was tied. Approximately 10 mg of microspheres were spread on the wet membrane and the prepared slides were hung onto the groves of a USP tablet disintegrating test apparatus so that the glass slide will get a regular up and down movement into a beaker having 6.8 phosphate buffer. The microspheres adhering to the surface of the membrane were counted after 1, 2, 3, 4, 5 and 6 hours. [11]

In-vitro Drug Release Study

The in-vitro dissolution studies were carried out using USP Type-II Dissolution apparatus for up to 10 hours. Microspheres equivalent to 50 mg of Etodolac taken and placed in dissolution apparatus containing 900ml 6.8 pH phosphate buffer using 1% SLS which was maintained at 37±0.2°C and at a speed of 50 rpm. At predetermined time intervals 5 ml of the sample was withdrawn and same volume of fresh medium was replaced into the basket. Aliquot of 5 ml was withdrawn at time intervals of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 hours. The concentration of drug released was estimated by using UV spectrophotometer at 222 nm. The percent of drug released at various time intervals was calculated and plotted against time. [11]

In-vitro drug release kinetics

The dissolution profile of all the batches was evaluated for Zero order, First order and Higuchi to ascertain the kinetic modelling of the drug release. The results obtained from in-vitro release studies were plotted in four kinetics models of data treatment as follows:

Cumulative percentage drug release vs. √t (Higuchi’s classical diffusion equation),
Log of cumulative percentage drug release vs. log Time (Peppa’s exponential equation). [12]

Stability studies

The stability study of the mucoadhesive microspheres was done and determined by drug content and in-vitro drug release study. The selected batch was packed in an aluminium foil and was kept in a petridish at accelerated temperature (40±2°C/75±5% RH) for a period of 90 days. [14]

RESULTS AND DISCUSSION

Compatibility studies

Compatibility studies were performed using FTIR spectrophotometer. The FTIR of pure drug and along with the polymers were done by making KBr disc. The peaks of both the mixtures were compared and correlated to find any changes. The FTIR of pure drug is characterized by N-H stretch at 3344.41 cm⁻¹, C=O stretch at 1144.22 cm⁻¹, C=C stretch at 1616.91 cm⁻¹ and C-H stretch at 3055.05 cm⁻¹. All the characteristic FTIR peaks related to ET also appeared in the FTIR spectrum of mixture of ET with Polymer, so there was no chemical incompatibility between ET and polymer. Functional groups and their IR range of Etodolac and the physical mixture are showed in figure 1 and 2.

![Fig. 1: FTIR spectra of Etodolac](image1)

![Fig. 2: FTIR spectra of Etodolac and its physical mixture](image2)
Shape and surface morphology

Particle size
Particle size of the mucoadhesive microspheres ranges from 63.67μm to 161.85μm (Table 4). Mean particle size increases if drug and polymer ratio increases this may be due to the increase in the viscosity leading to increased particle size.

Micromeritic study
The flow property of the prepared microspheres was studied from the angle of repose and Carr’s index value. The obtained data’s are shown in Table 3. The angle of repose value ranges from 21°.70±0.89 to 37°.00±0.12 which are passable. Carr’s index value was obtained in the ranged of 20°.65±0.45 to 28°.95±0.35. From this result it could be concluded that the mucoadhesive microspheres exhibited good flow property.

Drug content and entrapment efficiency
The drug content was found in the range of 30.50% to 43.40% and Entrapment efficiency in the range of 62.90 to 87.00%. Entrapment efficiency increases with increase in polymer concentration due to increase in viscosity and leading to larger particle size.

Shape and surface morphology
The shape and surface morphology of the prepared microspheres were observed by scanning electron microscopy. SEM photographs of microspheres were spherical, discrete with smooth surface.

Percentage degree of swelling
The swelling index study data is shown in table 4. Swelling index of the formulations was found to be in the range of 59.50% to 85.50%. Increase in the amount of Carbopol 974P in the formulation, increases the swelling index.

Percentage mucoadhesion test
Percentage of mucoadhesion was determined by in-vitro wash off test done with the egg cell membrane. The % Mucoadhesion of the formulations after 6 hours was found in the range of 52% to 76%. Mucoadhesivity increased with increase in polymer concentration. A result of in-vitro mucoadhesion is shown in table 4.

In-vitro drug release
In-vitro drug release data for the mucoadhesive microspheres of ET are represented in Figure 6. The % cumulative drug release of the formulation ranged from 71.41% to 90.00%. The increase in proportion of polymer in the formulation, sustains the release of the drug.

Design and summary of response
Response 1: Swelling index
ANOVA analysis of response 1 i.e. % swelling index showed that the linear model was found to be significant with F-value of 18.46. There is only a 0.01% chance that a “Model F-value” this large could occur due to noise. Values of “Prob > F ” less than 0.0500 indicate model terms are significant. In this case A are significant model terms.

Final equation in terms of actual factors: % Mucoadhesion= +63.60+8.20*A+0.40*B-1.40* C

Final equation in terms of coded factors: % Mucoadhesion= +63.60+8.20*A+0.40*B-1.40* C

Response 2: % Mucoadhesion
ANOVA analysis of response 2 i.e. % Mucoadhesion showed that the linear model was found to be significant with F-value of 18.17. There is only a 0.01 % chance that a “Model F-value” this large could occur due to noise. Values of “Prob >F” less than 0.05 indicate model terms are significant. In this case A are significant model terms.

Final equation in terms of actual factors: % Mucoadhesion= +28.28571+0.21867*Carbopol

Int. J. Pharm. Sci. Drug Res. May-June, 2019, Vol 11, Issue 3 (78-84)
Table 3: Micromeritic properties of Etodolac loaded mucoadhesive microspheres

Formulation code	Angle of Repose (θ ± SD)*	Bulk Density (gm/ml ± SD)*	Tapped density (gm/ml ± SD)*	Carr’s Index (%±SD)*	Hausner’s Ratio*
F1	37.00 ± 0.12	0.46 ± 0.11	0.61 ± 0.14	24.31 ± 0.67	1.22 ± 0.105
F2	27.91 ± 0.89	0.51 ± 0.13	0.73 ± 0.17	28.15 ± 0.35	1.35 ± 0.050
F3	30.91 ± 0.46	0.53 ± 0.13	0.71 ± 0.17	24.50 ± 0.50	1.28 ± 0.045
F4	21.70 ± 0.10	0.61 ± 0.14	0.77 ± 0.18	20.65 ± 0.45	1.24 ± 0.020
F5	24.60 ± 0.22	0.47 ± 0.12	0.62 ± 0.15	23.35 ± 0.45	1.29 ± 0.015
F6	28.13 ± 0.68	0.53 ± 0.13	0.71 ± 0.17	25.50 ± 0.50	1.25 ± 0.050
F7	28.07 ± 0.73	0.57 ± 0.14	0.77 ± 0.19	24.50 ± 0.50	1.25 ± 0.150
F8	30.20 ± 0.34	0.36 ± 0.09	0.51 ± 0.13	28.15 ± 0.35	1.35 ± 0.050
F9	35.50 ± 0.50	0.41 ± 0.10	0.53 ± 0.13	21.95 ± 0.25	1.24 ± 0.040
F10	30.30 ± 0.42	0.64 ± 0.15	0.90 ± 0.23	21.50 ± 0.50	1.30 ± 0.015
F11	32.05 ± 0.55	0.69 ± 0.17	0.97 ± 0.23	26.90 ± 0.70	1.35 ± 0.030
F12	32.50 ± 5.00	0.35 ± 0.08	0.46 ± 0.11	22.10 ± 0.40	1.26 ± 0.025
F13	30.50 ± 0.40	0.62 ± 0.15	0.77 ± 0.19	22.50 ± 0.50	1.20 ± 0.030
F14	26.79 ± 0.67	0.60 ± 0.15	0.86 ± 0.21	28.05 ± 0.35	1.38 ± 0.020
F15	23.70 ± 0.51	0.43 ± 0.10	0.58 ± 0.14	25.00 ± 0.60	1.31 ± 0.030

Table 4: Results of various characterization studies

Formula	% Yield (± SD)*	Particle size (μm ± SD)*	Drug content (mg ± SD)*	Entrapment efficiency (%±SD)*	Swelling index (%±SD)*	% Mucoadhesivity
F1	81.00 ± 2.00	111.00 ± 1.00	35.30 ± 0.40	70.50 ± 0.50	68.00 ± 1.00	60
F2	74.95 ± 0.70	151.52 ± 0.52	37.10 ± 0.43	74.50 ± 0.50	78.50 ± 0.50	64
F3	70.50 ± 0.50	68.50 ± 0.50	32.50 ± 0.50	65.00 ± 1.00	61.50 ± 0.50	56
F4	70.69 ± 0.48	135.00 ± 1.00	41.50 ± 0.50	83.50 ± 0.50	70.50 ± 0.50	66
F5	80.50 ± 0.50	103.50 ± 0.50	39.87 ± 0.87	80.80 ± 0.68	72.50 ± 0.50	66
F6	88.00 ± 1.00	96.96 ± 0.96	30.50 ± 0.50	62.90 ± 0.90	66.00 ± 1.00	58
F7	73.50 ± 0.50	98.91 ± 0.91	42.50 ± 0.50	85.50 ± 0.50	79.50 ± 0.50	72
F8	71.67 ± 0.47	161.85 ± 0.85	41.25 ± 0.25	82.50 ± 0.50	76.00 ± 0.40	60
F9	85.82 ± 0.26	144.80 ± 0.80	35.68 ± 0.68	71.50 ± 0.50	73.50 ± 0.50	68
F10	75.50 ± 0.50	133.10 ± 1.10	41.02 ± 0.02	81.50 ± 0.50	81.50 ± 0.50	74
F11	92.03 ± 1.03	128.50 ± 0.50	39.48 ± 0.48	78.96 ± 0.96	83.00 ± 1.00	72
F12	85.00 ± 1.00	136.64 ± 0.64	31.80 ± 0.08	64.50 ± 0.50	73.50 ± 0.50	52
F13	71.50 ± 0.50	117.65 ± 0.65	43.50 ± 0.50	87.00 ± 1.00	85.50 ± 0.50	76
F14	81.75 ± 0.75	141.50 ± 0.50	32.55 ± 0.55	65.65 ± 0.65	61.50 ± 0.50	54
F15	89.00 ± 1.00	63.67 ± 0.67	35.61 ± 0.61	71.72 ± 0.72	59.50 ± 0.50	56

Optimized Formulations

Using the polynomial equations, the optimized formulations were obtained for the response parameters. In the trail runs the optimized formulations were arrived using numerical optimization in design expert 10.0.3 Version. The data for the formulation variables, the response parameters and the constraints placed on them are as follows.

Preparation of the optimized formulation

The optimized formulations were prepared by the method previously mentioned in methodology.

Evaluation of optimized formulations

The data of the optimized formulations are shown in Table 1. The Percentage yield and particle size of an optimized formulation was found in the range of 78.28% to 85.88% and 104.50% to 133.10%, respectively. The drug content was found to be in the range of 38.52% to 41.02%. The Entrapment efficiency was found in the range of 77.10% to 81.98%. The entrapment efficiency was found to increase with increase in polymer concentration due to increase in viscosity of the preparation. Swelling index of the formulations was found to be in the range of 82.50% to 83.84%. Increase in the amount of Carbopol 974P in the formulation, increases the swelling index.

Micromeritic study of optimized formulations

The flow property of the optimized formula was studied from the angle of repose and Carr’s index.
value. The obtained data’s are shown in table 2. The angle of repose value ranges from 290.09°±0.64 to 300.89°±0.53 which are good. Carr’s index value ranged from 22°±0.2 to 25°.4°±.3 from this result it could be concluded that the optimized formula exhibited good flow property.

Table 9: Results of % mucoadhesivity of optimized formulations

Num	OF1	OF2	OF3
% Mucoadhesivity	85	84	78
% In-vitro release	90	85	81

Table 6: Optimized formulae obtained and their desirability

No.	Carbo pol K100 M	HP MC K100 M	HPM C K4M	% Mucoadhesion	% In-vitro drug release
OF1	216.55	0.00	158.0	69.07	93.719
OF2	216.40	0.00	158.8	68.99	93.912
OF3	216.46	0.00	158.5	69.02	93.830

Table 7: Evaluation of optimized formulations

No.	Percentage Yield (%± SD)*	Particle size (µm± SD)*	Drug content (mg± SD)*	Entrapment Efficiency (%± SD)*	% Degree of Swelling*
OF1	81.97 ± 122.42 ± 40.76 ± 80.10 ± 0.54	83.84 ± 0.39			
OF2	78.28 ± 133.10 ± 41.02 ± 81.98 ± 0.75	83.06 ± 0.72			
OF3	85.88 ± 104.50 ± 38.52 ± 81.98 ± 0.75	82.50 ± 0.50			

Table 8: Results of micromeritic study of optimized formulations

No.	Angle of Repose (θ ± SD)*	Bulk Density (gm/ml ± SD)*	Tapped density (gm/ml ± SD)*	Carr’s Index (θ ± SD)*	Hausner Ratio* (± SD)*
OF1	30.89 ± 0.30 ± 0.40 ± 24.1 ± 1.26 ± 0.33	0.305 ± 0.005 ± 0.2 ± 0.005			
OF2	29.78 ± 0.34 ± 0.44 ± 22.0 ± 1.26 ± 0.33	0.005 ± 0.010 ± 0.2 ± 0.02			
OF3	29.09 ± 0.25 ± 0.34 ± 25.4 ± 1.28 ± 0.64	0.010 ± 0.005 ± 0.3 ± 0.06			

Table 9: Results of % mucoadhesivity of optimized formulations

Formulation code	1 h	2 h	3 h	4 h	5 h	6 h
OF1	90	85	81	77	72	68
OF2	87	84	82	79	74	70
OF3	90	85	81	77	72	68

Mucoadhesivity increases with increase in polymer concentration.

In-vitro drug release study of optimized formulations

The results obtained in the in-vitro drug release studies for the optimized formulations are shown in figure 6. Optimized formulations OF1, OF2 and OF3 show 92.11 %, 91.54 % and 90.94 % release of drug at the end of 10 hours respectively. Values obtained are near to the predicted values.

Validation of the RSM results

Three check point formulations were selected, for which the results of all the dependent variables were found to be within the limits. Table 10 lists the obtained and predicted values of the check point formulations along with the % prediction error. Linearity correlation chart between the observed experimental values and the predicted values clearly showed there is no much deviation between predicted and experimental values; all are within the range given in the suggested model.

In-vitro drug release kinetics

In order to find out the exact mechanism of drug release from mucoadhesive microspheres of ET, drug release data were fit into various mathematical models, zero order, first order, Higuchi matrix and Peppas. The in-vitro release profile of drug from formulations OF1, OF2 and OF3 could be expressed by zero order equation, as the plots shows high linearity (r² = 0.9849-0.9946) in comparison to first order (r² = 0.8210-0.8941) and Higuchi’s release (r² = 0.6278-0.8226). So, it was understood that zero order release pattern was followed by all formulations. All mucoadhesive microsphere formulations followed Supercase-II release mechanism as their ‘n’ values are higher than 0.89 i.e. 0.9244-1.080.
Stability Studies of the optimized formulations

Stability studies were done for 3 months at 40°C/75% RH. The optimized formulations OF1, OF2 and OF3 were selected for stability studies in order to study the effect temperature and humidity on prepared formulations. The mucoadhesive microsphere were analysed for drug content and in-vitro release studies. Formulation OF1 showed drug content of 40.76, 39.78 and 38.21 mg in first, second and third month respectively. Drug release studies conducted on OF1 showed that there was no significant change as it released 92.11%, 91.92% and 89.12% at the end of 10 hours in first month, second and third month respectively. Formulation OF2 showed drug content of 41.02, 40.97 and 39.92 mg in first, second and third month respectively. Drug release studies conducted on OF2 showed that there was no significant change as it released 91.54%, 90.04% and 89.01% at the end of 10 hours in first month, second and third month respectively. Whereas formulation OF3 showed drug content of 38.52, 37.21 and 36.78 mg in first month, second and third month respectively. Drug release studies conducted on OF3 showed that there was no significant change as it released 90.94%, 89.51% and 88.78% at the end of 10 hours in first month, second and third month respectively. No significant changes in drug content and in-vitro release profile were observed in ET mucoadhesive microsphere during study period, thus it can be concluded that prepared formulations were physiochemically stable.

The mucoadhesive microsphere of Etodolac was prepared by non-aqueous solvent evaporation method using Carbopol 974P, HPMCK4M and HPMCK100M as the polymers. Central composite design was selected for the development of the formulation. Micromeritic studies like angle of repose, Carr’s index, Hausner’s ratio revealed that the prepared microspheres exhibited passable flow property. Microspheres obtained were spherical in shape and entrapment efficacy increases with increase in concentration of polymers. The microspheres of the optimized batches exhibited mucoadhesion in the range of 68.99% to 69.073% after 6 hours, and swelling index of 85.0%. The optimized formulation OF1, OF2 and OF3 could sustain the release of the drug for more than 10 hours and followed zero order release kinetics.

ACKNOWLEDGEMENT

Author’s gives sincere gratitude to Srinivas College of Pharmacy, Valachil, Mangalore, for providing sufficient equipments and facilities in completing the present study.

REFERENCES

1. Gohel MC, Amin AF. Formulation optimization of controlled release diclofenac sodium microspheres using factorial design. J Control Release. 1998; 51(2-3):115-122.
2. Vyas SP, Khar RK. Novel carrier system. In: Vyas SP, Ed (s). Targeted and controlled drug delivery: Novel carrier system. New Delhi: CBS Publishers and distributors, 2008, pp. 41-43.
3. Chowdary KPR, Rao YS. Design and in-vitro and in-vivo evaluation of mucoadhesive microcapsules of glipizide for oral controlled release: a technical note. AAPS PharmSciTech. 2009; 4:E39.
4. Chowdary KPR, Balatipura G. Design and in-vitro evaluation of mucoadhesive controlled release oral tablets of Glipizide. Ind J Pharm Sci. 2003; 65: 591-94.
5. Vasij JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm. 2003; 255:13-32.
6. Reddy DP, Swarnalatha D, Kishore HB, Dinakar A, Chaitthanya V, Shivakumar K. Formulation and evaluation of extended release Etodolac, tablets. JJTPS. 2010; (7): 294-7.
7. Strickmann DB, Balschke G. Isolation of an unknown metabolite of the non-steroidal anti-inflammatory drug Etodolac and its identification as 5-hydroxy Etodolac. J Pharm Biomed Anal. 2001; 25: 977-984.
8. Bhalani M, Subrahmayam EVS, Shabaraya AR. New Analytical Methods and Their Validation for the Estimation of Etodolac in Bulk and Marketed Formulations. International Journal of Pharma Sciences and Research. 2015; 6:414-16.
9. Dutt KR, Yashoda P, Vasanthi R, Sundar PS, Raja MA, Rao KNV et al. Method Development And Validation Of Etodolac By Visible Spectroscopy. Indo American Journal of Pharmacy and International Peer Review Journal. 2017; 3(5): 245-53.
10. Acharya A, Kiran GBK, Ahmed MG, Paudel S. A novel approach to increase the bioavailability of candesartan cilestil by proniosomal gel formulation: in-vitro and in-vivo evaluation. Int J Pharm Sci. 2016; 8(1): 241-46.
11. Garud N, Garud AL. Preparation and in-vitro evaluation of metformin microspheres using non-aqueous solvent evaporation technique. Trop J Pharm Res. 2012; 11(4): 577-83.
12. Acharya A, Ahmed MG, Rao BD, Vinay CH. Development and evaluation of ethosomal gel of lornoxicam for transdermal delivery: in-vitro and in-vivo evaluation. Manipal J Pharm Sci. 2016; 2(1): 13-20.
13. Acharya A, Acharya A, Paudel S. Comparative study on effect of natural and synthetic super disintegrants in the formulation of fast dissolving palatable tablets of an antiemetic drug. Am J Pharm Health Res. 2015; 3(6): 1-13.
14. Adhikari S, Kumar SK, Acharya A, Gulzar Ahmed MG, Aswini G, Sapkota A. An approach to enhance the solubility and bioavailability of poorly water soluble drug acyclovir by self-emulsifying technique using natural oil. Am J Pharm Tech Res. 2016; 6(2): 229-41.

HOW TO CITE THIS ARTICLE: Shabaraya AR, Parulkar AS, Shripathy D, Shetty P. Design and Characterization of Mucoadhesive Microspheres of Etodolac. Int. J. Pharm. Sci. Drug Res. 2019; 11(3): 78-84. DOI: 10.25004/IJPSDR.2019.110302