REMARKS ON NONLINEAR EQUATIONS WITH MEASURES

MOSHE MARCUS

To the memory of I. V. Skrypnik

Abstract. We study the Dirichlet boundary value problem for equations with absorption of the form $-\Delta u + g \circ u = \mu$ in a bounded domain $\Omega \subset \mathbb{R}^N$ where g is a continuous odd monotone increasing function. Under some additional assumptions on g, we present necessary and sufficient conditions for existence when μ is a finite measure. We also discuss the notion of solution when the measure μ is positive and blows up on a compact subset of Ω.

1. Introduction

In this paper we discuss some aspects of the boundary value problem

$$
-\Delta u + g \circ u = \mu \quad \text{in } \Omega \\
u = 0 \quad \text{on } \partial \Omega,
$$

where $\mu \in \mathcal{M}_\rho(\Omega)$, i.e. μ is a Borel measure such that

$$
\int_\Omega \rho d|\mu| < \infty, \quad \rho(x) = \text{dist}(x, \partial \Omega).
$$

In addition we define a notion of solution in the case that μ is a positive Borel measure which may explode on a compact subset of the domain and discuss the question of existence and uniqueness in this case. We always assume that $g \in C(\mathbb{R})$ is a monotone increasing function such that $g(0) = 0$. To simplify the presentation we also assume that g is odd.

A function $u \in L^1(\Omega)$ is a weak solution of the boundary value problem (1.1), $\mu \in \mathcal{M}_\rho$, if $u \in L^p_\rho(\Omega)$, i.e.

$$
\int_\Omega g(u)\rho dx < \infty
$$

and

$$
\int_\Omega (-\nu \Delta \phi + g \circ \nu \phi)dx = \int_\Omega \phi d\mu
$$

for every $\phi \in C^2_0(\Omega)$ (= space of functions in $C^2(\Omega)$ vanishing on $\partial \Omega$).

We say that u is a solution of the equation

$$
-\Delta u + g \circ u = \mu \quad \text{in } \Omega
$$

Date: January 13, 2013.
if \(u \) and \(g \circ u \) are in \(L^1_{\text{loc}}(\Omega) \) and (1.2) holds for every \(\phi \in C_c^2(\Omega) \).

Brezis and Strauss [6] proved that, if \(\mu \) is an \(L^1 \) function the problem possesses a unique solution. This result does not extend to arbitrary measures in \(\mathcal{M}_\rho(\Omega) \).

Denote by \(\mathcal{M}_\rho^0 \) the set of measures \(\mu \in \mathcal{M}_\rho \) for which (1.1) is solvable. A measure in \(\mathcal{M}_\rho^0 \) is called a \(g \)-good measure. It is known that, if a solution exists then it is unique.

We say that \(g \) is subcritical if \(\mathcal{M}_\rho^g = \mathcal{M}_\rho \). Benilan and Brezis, [5] and [4] proved that the following condition is sufficient for \(g \) to be subcritical:

\[
\int_0^1 \frac{g(r^{2-N})}{r^{N-1}} dr < \infty.
\]

In the case that \(g \) is a power non-linearity, i.e., \(g = g_q \) where \(g_q(t) = |t|^q \text{sign } t \) in \(\mathbb{R} \), \(q > 1 \), this condition means that \(q < q_c := N/(N - 2) \). Benilan and Brezis also proved that, if \(g = g_q \) and \(q \geq q_c \), problem (1.1) has no solution when \(\mu \) is a Dirac measure.

Later Baras and Pierre [3] gave a complete characterization of \(\mathcal{M}_\rho^g \) in the case that \(g = g_q \) with \(q \geq q_c \). They proved that a finite measure \(\mu \) is \(g_q \)-good if and only if \(|\mu| \) does not charge sets of \(\bar{C}_{2,q'} \) capacity zero, \(q' = q/(q - 1) \). Here \(\bar{C}_{\alpha,p} \) denotes Bessel capacity with the indicated indices.

In the present paper we extend the result of Baras and Pierre to a large class of non-linearities and also discuss the notion of solution in the case that \(\mu \) is a positive measure which explodes on a compact subset of \(\Omega \).

2. Statement of results

Denote by \(\mathcal{H} \) the set of even functions \(h \) such that

\[
\begin{align*}
&h \in C^1(\mathbb{R}), \quad h(0) = 0, \quad \text{\(h \) is strictly convex}, \\
&h'(0) = 0, \quad h'(t) > 0 \quad \forall t > 0, \quad \lim_{t \to \infty} h'(t) = \infty.
\end{align*}
\]

For \(h \in \mathcal{H} \) denote by \(L^h(\Omega) \) the corresponding Orlicz space in a domain \(\Omega \subset \mathbb{R}^N \):

\[
L^h(\Omega) = \{ f \in L^1_{\text{loc}}(\Omega) \mid \exists k > 0 : h \circ (f/k) \leq 1 \}
\]

with the norm

\[
\|f\|_{L^h} = \inf\{k > 0 \mid h \circ (f/k) < \infty\}.
\]

Further denote by \(h^* \) the conjugate of \(h \). Since, by assumption, \(h \) is strictly convex, \(h' \) is strictly increasing so that

\[
h^*(t) = \int_0^t (h')^{-1}(s)ds.
\]

Let \(G \) be the Green kernel for \(-\Delta \) in \(\Omega \) and denote

\[
\mathcal{G}_\mu(x) = \int_{\Omega} G(x,y)d\mu(y) \quad \forall x \in \Omega, \quad \mu \in \mathcal{M}_\rho(\Omega).
\]
For every $h \in H$, the capacity $C_{2,h}$ in Ω is defined as follows. For every compact set $E \subset \Omega$ put:

\begin{equation}
C_{2,h}(E) = \sup\{\mu(\Omega) : \mu \in \mathcal{M}(\Omega), \mu \geq 0, \mu(E^c) = 0, \|\mathcal{G}\mu\|_{L^h^*} \leq 1\}.
\end{equation}

If O is an open set:

\[C_{2,h}(O) = \sup\{C_{2,h}(E) : E \subset O, E \text{ compact}\}.\]

For an arbitrary set $A \subset \Omega$ put

\[C_{2,h}(A) = \inf\{C_{2,h}(O) : A \subset O \subset \Omega, O \text{ open}\}.\]

This definition is compatible with (2.2) : when E is compact the value of $C_{2,h}(E)$ given by the above formula coincides with the value given by (2.2), (see [2]).

We say that h satisfies the Δ_2 condition if there exists $C > 0$ such that $h(a + b) \leq c(h(a) + h(b)) \forall a, b > 0$.

If $h \in H$ satisfies this condition then, L^h is separable (see [8]) and the capacity $C_{2,h}$ has the following additional properties (see [2]).

Let Ω be a bounded domain in \mathbb{R}^N. For every $A \subset \Omega$,

\begin{equation}
C_{2,h}(A) = \sup\{C_{2,h}(E) : E \subset A, E \text{ compact}\}
\end{equation}

and for every increasing sequence of sets $\{A_n\}$

\begin{equation}
\lim C_{2,h}(A_n) = C_{2,h}(\bigcup A_n).
\end{equation}

Furthermore, for every $A \subset \Omega$

\begin{equation}
C_{2,h}(A) = \inf\{\|f\|_{L^h} : f \in L^h(\Omega), \mathcal{G}f \geq 1 \text{ on } A\}.
\end{equation}

If $h \in H$ and both h and h^* satisfy the Δ_2 condition then L^h is reflexive [8].

Finally we denote by \mathcal{G} the space of odd functions in $C(\mathbb{R})$ such that $h := |g| \in H$ and by \mathcal{G}_2 the set of functions $g \in \mathcal{G}$ such that h and h^* satisfy the Δ_2 condition. For $g \in \mathcal{G}$ put

\[L^g := L^{|g|}, \quad C_{2,g} := C_{2,|g|}, \quad g^*(t) = |g|^*(t)\text{sign } t \forall t \in \mathbb{R}.\]

In the sequel we assume that Ω is a bounded domain of class C^2. The first theorem provides a necessary and sufficient condition for the existence of a solution of (1.1) in the spirit of [3].

Theorem 2.1. Let $g \in \mathcal{G}_2$ and let μ be a measure in $\mathcal{M}_\nu(\Omega)$. Then problem (1.1) possesses a solution if and only if μ vanishes on every compact set $E \subset \Omega$ such that $C_{2,g^*}(E) = 0$. This condition will be indicated by the notation $\mu \prec C_{2,g^*}$.

Next we consider problem (1.1) when μ is a positive Borel measure which may explode on a compact set $F \subset \Omega$. In this part of the paper we assume
that \(g \in \mathcal{G}_2 \) and that \(g \) satisfies the Keller – Osserman condition \([9]\) and \([12]\).

This condition ensures that the set of solutions of

\[
- \Delta u + g \circ u = 0
\]

in \(\Omega \) is uniformly bounded in compact subsets of \(\Omega \). Therefore, if \(E \subset \Omega \) and \(E \) is compact then there exists a maximal solution of

\[
- \Delta u + g \circ u = 0 \quad \text{in } \Omega \setminus E, \quad u = 0 \quad \text{on } \partial \Omega.
\]

This solution will be denoted by \(U_E \).

Notation. Consider the family of positive Borel measures \(\mu \) in \(\Omega \) such that:

1. There exists a compact set \(F \subset \Omega \) such that, for every open set \(O \supset F \),
\[
\mu(\Omega \setminus \bar{O}) < \infty
\]
2. \(\mu(A) = \infty \) for every non-empty Borel set \(A \subset F \).

The set \(F \) will be called the singular set of \(\mu \). The family of measures \(\mu \) of this type will be denoted by \(\mathcal{B}_\infty(\Omega) \).

Definition 2.2. Assume that \(g \in \mathcal{G}_2 \) and that \(g \) satisfies the Keller – Osserman condition. If \(\nu \in \mathcal{M}^g_\rho(\Omega) \) denote by \(v_\nu \) the solution of \((1.1)\) with \(\mu \) replaced by \(\nu \).

Let \(\mu \in \mathcal{B}_\infty(\Omega) \) and let \(F \) be the singular set of \(\mu \). A function \(u \in L^1_{\text{loc}}(\bar{\Omega} \setminus F) \) (i.e., \(u \in L^1(\Omega \setminus \bar{O}) \) for every neighborhood \(O \) of \(F \)) is a generalized solution of \((1.1)\) if:

1. \(u \) satisfies \((1.2)\) for every \(\phi \in C^2_\infty(\bar{\Omega}) \) such that \(\text{supp } \phi \subset \Omega \setminus F \).
2. \(u \geq V_F := \sup \{ v_\nu : \nu \in \mathcal{M}^g_\rho(\Omega), \nu \geq 0, \text{supp } \nu \subset F \} \).

Theorem 2.3. Assume that \(g \in \mathcal{G}_2 \) and that \(g \) satisfies the Keller – Osserman condition. Let \(\mu \in \mathcal{B}_\infty \) with singular set \(F \). Then:

1. If \(\mu \) vanishes on every compact set \(E \subset \Omega \setminus F \) such that \(C_{2,g^*}(E) = 0 \) then the generalized solution is unique.

2. If \(g \) satisfies the subcriticality condition \((1.4)\) then problem \((1.1)\) possesses a unique generalized solution for every \(\mu \in \mathcal{B}_\infty \).

3. Let \(g = g_q, q \geq q_c \). If \(\mu \prec C_{2,g^*} \) in \(\Omega \setminus F \) then \((1.1)\) possesses a unique solution.

3. Proof of Theorem 2.1

The proof is based on several lemmas. We assume throughout that the conditions of the theorem are satisfied.

Denote by \(L^1_\rho(\Omega) \) the Lebesgue space with weight \(\rho \) and by \(L^g_\rho(\Omega) \) the Orlicz space with weight \(\rho \).

Further denote by \(W^k L^g(\Omega) \), \(k \in \mathbb{N} \), the Orlicz-Sobolev space consisting of functions \(v \in L^g(\Omega) \) such that \(D^\alpha v \in L^g(\Omega) \) for \(|\alpha| \leq k \).

Under our assumptions the set of bounded functions in \(L^g \) is dense in this space (see \([8]\)). Consequently, by \([7]\), \(C^\infty(\Omega) \) is dense in \(W^k L^g(\Omega) \). As
a consequence of the reflexivity of \(L^g \) the space \(W^k L^g(\Omega) \) is reflexive. Let \(W^k L^g(\Omega) \) denote the closure of \(C^\infty_c(\Omega) \) in \(W^k L^g(\Omega) \). The dual of this space, denoted by \(W^{-k} L^{g^*}(\Omega) \) is the linear hull of \(\{ D^\alpha f : f \in L^g(\Omega), \ |\alpha| \leq k \} \). The standard norm in \(W^k L^g(\Omega) \) is given by

\[
\|v\|_{W^k L^g} = \sum_{|\alpha| \leq k} \|D^\alpha v\|_{L^g}
\]

and the norm in \(W^{-k} L^{g^*} \) is defined as the norm of the dual space of \(W^k_0 L^g \).

The spaces \(W^k L^g_0 \) and \(W^{-k} L^{g^*}_0 \) are defined in the same way.

Lemma 3.1. If \(\mu \in \mathcal{M}_g(\Omega) \) is a g-good measure then (1.1) has a unique solution, which we denote by \(v_\mu \). The solution satisfies the inequality

\[
(3.1) \quad \|v_\mu\|_{L^1(\Omega)} + \|v_\mu\|_{L^g(\Omega)} \leq C \|\mu\|_{\mathcal{M}_g(\Omega)}
\]

where \(C \) is a constant depending only on \(g \) and \(\Omega \).

If \(\mu_j \in \mathcal{M}_g(\Omega), \ j = 1, 2 \) are g-good measures and \(\mu_1 \leq \mu_2 \) then \(v_{\mu_1} \leq v_{\mu_2} \).

These results are well-known (see e.g. [13]).

Lemma 3.2. Let \(\mu \in \mathcal{M}_g(\Omega) \) be a positive measure such that \(\mathbb{G}_\mu \in L^1_{\text{loc}}(\Omega) \). Then \(\mu \) is g good.

Proof. Let \(\{ \Omega_n \} \) be a \(C^2 \) uniform exhaustion of \(\Omega \). Then \(\mathbb{G}_\mu \in L^g(\Omega_n) \) is a positive supersolution of problem (1.1) in \(\Omega_n \). Therefore – as the zero function is a subsolution – there exists a solution, say \(u_n \), of (1.1) in \(\Omega_n \) and, by Lemma 3.1

\[
\int_{\Omega_n} u_n dx + \int_{\Omega_n} g \circ u_n \rho_n dx \leq C \int_{\Omega_n} \rho_n d\mu,
\]

where \(\rho_n(x) = \text{dist}(x, \partial \Omega_n) \) and \(C \) is a constant depending only on \(g \) and the \(C^2 \) character of \(\Omega_n \). Since \(\Omega_n \) is uniformly \(C^2 \), the constant may be chosen to be independent of \(n \). Moreover \(\{ u_n \} \) is increasing. Therefore \(u = \lim u_n \in L^1(\Omega) \cap L^g_0(\Omega) \) is the solution of (1.1). \(\square \)

Lemma 3.3. (a) If \(\mu \in \mathcal{M}_g \) and \(|\mu| \) is g-good then \(\mu \) is g-good. (b) \(T \in W^{-2} L^g(\Omega) \) if and only if \(T = \Delta h \) for some \(h \in L^g(\Omega) \). (c) If \(\mu \) is a positive measure in \(W^{-2} L^g_{\text{loc}}(\Omega) \) then \(\mathbb{G}_\mu \in L^g(\Omega) \). If, in addition, \(\mu \in \mathcal{M}_g(\Omega) \) then \(\mu \) is g-good.

Proof. (a) Assuming that \(|\mu| \) is g-good, let \(v \) be the solution of (1.1) with \(\mu \) replaced by \(|\mu| \). Then \(v \) is a supersolution and \(-v \) is a subsolution of (1.1). Therefore (1.1) has a solution.

(b) If \(T = \Delta h \) then, for every \(\phi \in C^\infty_c(\Omega) \),

\[
T(\phi) = \int_{\Omega} h \Delta \phi dx, \quad |T(\phi)| \leq \|h\|_{L^g} \|\phi\|_{W^2 L^g^*}.
\]

As \(C^\infty_c \) is dense in \(W^2_0 L^g \), \(T \) defines a continuous linear functional on this space; consequently \(T \in W^{-2} L^g(\Omega) \).
On the other hand if $T \in W^{-2}L^g(\Omega)$, put
\[S(\Delta \phi) := T(\phi) \quad \forall \phi \in W^2_L^g. \]
Note that for ϕ in this space we have $\phi = G_{-\Delta \phi}$. Therefore S is well defined on the subspace of L^g given by $\{ \Delta \phi : \phi \in W^2_L^g \}$. Therefore there exists $h \in L^g(\Omega)$ such that
\[T(\phi) = \int_{\Omega} h \Delta \phi \, dx \quad \forall \phi \in W^2_L^g. \]
It follows that $T = \Delta h$.

(c) Let μ be a positive measure in $W^{-2}L^g_{loc}(\Omega)$. By part (b), if $\Omega' \subseteq \Omega$ is a subdomain of class C^2 there exists $h \in L^g(\Omega')$ such that $\mu = \Delta h$. Then $h + G_{\mu}$ is an harmonic function in Ω'; consequently $G_{\mu} \in L^g_{loc}(\Omega')$ and finally $G_{\mu} \in L^g(\Omega)$. If, in addition, $\mu \in \mathcal{M}_p(\Omega)$ then, by Lemma 3.2 μ is g good.

Lemma 3.4. Assume that $\mu \in \mathcal{M}_p(\Omega)$ is g good. Then:

(i) There exists $f \in L^1_p(\Omega)$ and $\mu_0 \in W^{-2}L^g_{loc}(\Omega) \cap \mathcal{M}_p(\Omega)$ such that $\mu = f + \mu_0$.

(ii) $\mu \prec C_{2,g^*}$.

Proof. Assume that μ is g-good and let u be the solution of (1.1). Then $\mu = f + \mu_0$ where $f := g \circ u \in L^1_p$, $\mu_0 := \mu - g \circ u$ and $u = G_{\mu_0} \in L^g(\Omega)$.

This implies that
\[\phi \mapsto \int_{\Omega} \phi \, d\mu_0 = \int_{\Omega} \Delta \phi u \, dx \quad \forall \phi \in C^\infty(\Omega) \]
is continuous on $C^2_0(\Omega)$ with respect to the norm of $W^2L^g_{loc}(\Omega)$. Therefore, the functional can be extended to a continuous linear functional on $W^2L^g_{loc}(\Omega')$ for every $\Omega' \subseteq \Omega$. Thus $\mu_0 \in W^{-2}L^g_{loc}(\Omega) \cap \mathcal{M}_p(\Omega)$.

(ii) In view of (2.3) it is sufficient to prove that μ vanishes on compact sets E such that $C_{2,g^*}(E) = 0$.

Assertion. If $\nu \in W^{-2}L^g_{loc}(\Omega)$ then $\nu(E) = 0$ for every compact set E such that $C_{2,g^*}(E) = 0$.

This assertion and part (i) imply part (ii).

Suppose that there exists a set E such that $C_{2,g^*}(E) = 0$ and $\nu(E) \neq 0$. Then there exists a compact subset of E on which ν has constant sign. Therefore we may assume that E is compact and that ν is positive on E. We may assume that $\nu \in W^{-2}L^g(\Omega)$; otherwise we replace Ω by a C^2 domain $\Omega' \subseteq \Omega$.

Let $\{ V_n \}$ be a sequence of open neighborhoods of E such that $V_{n+1} \subset V_n$ and $V_n \downarrow E$. Then there exists a sequence $\{ \varphi_n \}$ in $C^\infty_c(\Omega)$ such that $0 \leq \varphi_n \leq 1$, $\varphi_n = 1$ in V_{n+1}, $\text{supp} \varphi_n \subset V_n$ and $\| \varphi_n \|_{g^*} \rightarrow 0$.

This is proved in the same way as in the case of Bessel capacities. We use (2.5) and the fact that $C^\infty(\Omega)$ is dense in $W^2L^g_p(\Omega)$ (7). Furthermore we
use an extension of the lemma on smooth truncation [1, Theorem 3.3.3] to Sobolev-Orlicz spaces with an integral number of derivatives. The extension is straightforward.

Hence,

\[(3.2)\quad \int_{\Omega} \varphi_n \, d\nu \to 0.\]

On the other hand,

\[\int_{\Omega} \varphi_n \, d\nu \geq \nu(V_n +1) - |\nu|(V_n \setminus \bar{V}_{n+1}) \to \nu(E) > 0.\]

This contradiction proves the assertion. □

Lemma 3.5. Let \(\mu\) be a positive measure in \(\mathcal{M}_\rho(\Omega)\). If \(\mu\) vanishes on every compact set \(E \subset \Omega\) such that \(C_{2,g^*}(E) = 0\) then \(\mu\) is the limit of an increasing sequence of positive measures \(\{\mu_n\} \subset W^{-2}L^g(\Omega)\).

Proof. Since \(\mu\) is the limit of an increasing sequence of measures in \(\mathcal{M}(\Omega)\) it is sufficient to prove the lemma for \(\mu \in \mathcal{M}(\Omega)\). Let \(\varphi \in W^2_0L^g(\Omega)\) and denote \(\tilde{\varphi} = G\Delta \varphi\).

Then \(\tilde{\varphi}\) is equivalent to \(\varphi\).

Suppose that \(\{\varphi_n\}\) converges to \(\varphi\) in \(W^2_0L^g(\Omega)\). Then \(\Delta \varphi_n \to \Delta \varphi\) in \(L^g\). Consequently, by [2, Theorem 4], there exists a subsequence such that \(\tilde{\varphi}_n' \to \tilde{\varphi}\) \(C_{2,g^*}\)-a.e. (i.e., everywhere with the possible exception of a set of \(C_{2,g^*}\)-capacity zero). As \(\mu\) vanishes on sets of capacity zero, it follows that \(\tilde{\varphi}_n' \to \tilde{\varphi}\) \(\mu\)-a.e..

Every \(\varphi \in W^2_0L^g(\Omega)\) is the limit of a sequence \(\{\varphi_n\} \subset C^\infty_c(\Omega)\). Hence \(\varphi_n \to \tilde{\varphi}\) \(\mu\)-a.e. and consequently \(\tilde{\varphi}\) is \(\mu\)-measurable.

Therefore the functional \(p : W^2_0L^g(\Omega) \hookrightarrow [0, \infty]\) given by

\[p(\varphi) := \int_{\Omega} (\tilde{\varphi})_+ \, d\mu\]

is well defined. The functional is sublinear, convex and l.s.c.: if \(\varphi_n \to \varphi\) in \(W^2_0L^g(\Omega)\) then (by Fatou’s lemma)

\[p(\varphi) \leq \lim \inf p(\varphi_n).\]

Furthermore,

\[p(a\varphi) = ap(\varphi) \quad \forall a > 0.\]

Therefore the result follows by an application of the Hahn-Banach theorem, in the same way as in [3, Lemma 4.2]. □

Proof of Theorem 2.1. By Lemma 3.4 the condition \(\mu \prec C_{2,g^*}\) is necessary for the existence of a solution. We show that the condition is sufficient.

If \(\mu \prec C_{2,g^*}\) then \(|\mu| \prec C_{2,g^*}\). By Lemma 3.3 if \(|\mu|\) is \(g\)-good then \(\mu\) is \(g\)-good. Therefore it remains to prove the sufficiency of the condition for positive \(\mu\). In this case, by Lemma 3.5 there exists an increasing sequence
of positive measures \(\{ \mu_n \} \subset W^{-2}L^0(\Omega) \) such that \(\mu_n \uparrow \mu \). By Lemma 3.3 the measures \(\mu_n \) are \(g \)-good. Denote by \(u_n \) the solution of (4.1) with \(\mu \) replaced by \(\mu_n \). By Lemma 3.1 \(u_n \geq 0 \), \(\{ u_n \} \) increases and \(\{ u_n \} \) is bounded in \(L^1(\Omega) \cap L^0_\mu(\Omega) \). Therefore \(u = \lim u_n \in L^1(\Omega) \cap L^0_\mu(\Omega) \) and \(u_n \to u \) in this space. Consequently \(u \) is the solution of (1.1).

4. Proof of Theorem 2.3

(i) Let \(\{ O_n \} \) be a decreasing sequence of open sets such that \(\tilde{O}_{n+1} \subset O_n \), \(\tilde{O}_n \subset \Omega \) and \(O_n \downarrow F \) and \(O_n \) is of class \(C^2 \). By Theorem 2.1 the condition \(\mu < C_{2,g}^* \) in \(\Omega \setminus F \) is necessary and sufficient for the existence of a solution of the equation

\[
-\Delta u + g \circ u = \mu \quad \text{in} \quad \Omega_n := \Omega \setminus \tilde{O}_n
\]

such that \(u = 0 \) on the boundary. By a standard argument, it follows that, under this condition: for every \(f \in L^1(\partial \Omega \cup \partial O_n) \), (4.1) has a solution such that \(u = f \) on the boundary. As \(g \) satisfies the Keller – Osserman condition, it also follows that (4.1) has a solution \(u_n \) such that \(u_n = 0 \) on \(\partial \Omega \) and \(u_n = \infty \) on \(\partial O_n \). Denote by \(v_n \) the solution of (4.1) vanishing on \(\partial \Omega \cup \partial O_n \) and put

\[
v_{0,\mu} = \lim v_n, \quad \bar{u}_\mu = \lim u_n.
\]

Then \(v_{0,\mu} \) is the smallest positive solution of (4.1) vanishing on \(\partial \Omega \) while \(\bar{u}_\mu \) is the largest such solution. In particular \(\bar{u}_\mu \geq v_\nu \) for every \(\nu \in \mathcal{M}_2^* \) such that \(\operatorname{supp} \nu \subset F \). Thus \(\bar{u}_\mu \) is the largest generalized solution of (1.1).

Next we construct the minimal generalized solution of (1.1). The function \(u_{0,\mu} + V_F \) is a supersolution and \(\max(u_{0,\mu}, V_F) \) is a subsolution of (4.1), both vanishing on the boundary. Let \(w_n \) denote the solution of (4.1) such that \(w_n = 0 \) on \(\partial \Omega \) and \(w_n = \max(u_{0,\mu}, V_F) \) on \(\partial O_n \). Then

\[
w_{n+1} \leq w_n \leq u_{0,\mu} + V_F
\]

and consequently, \(w = \lim w_n \) is the smallest solution of (1.1) such that

\[
\max(u_{0,\mu}, V_F) \leq w \leq u_{0,\mu} + V_F.
\]

It follows that \(w \) is a generalized solution of (1.1). Since any such solution dominates \(\max(u_{0,\mu}, V_F) \) it follows that \(w \) is the smallest generalized solution of the problem. It is easy to see that \(w = \bar{u}_\mu \), as given by (2.7).

Since \(g \) is convex, monotone increasing and \(g(0) = 0 \) we have

\[
g(a) + g(b) \leq g(a + b) \quad \forall a, b \in \mathbb{R}_+.
\]

Therefore \(\bar{u}_\mu - u_{0,\mu} \) is a subsolution of (2.6) in \(\Omega \setminus F \). Consequently \(\bar{u}_\mu - u_{0,\mu} \leq U_F \) and

\[
(4.2) \quad \max(u_{0,\mu}, U_F) \leq \bar{u}_\mu \leq u_{0,\mu} + U_F.
\]

Put \(\Omega_n = \Omega \setminus \tilde{O}_n \). Let \(u_{n,\mu} \) be the solution of the problem

\[
-\Delta u + g \circ u = \mu \quad \text{in} \quad \Omega_n, \\
u = V_F \quad \text{on} \quad \partial O_n, \quad u = 0 \quad \text{on} \quad \partial \Omega.
\]
Then \(\{ \vec{u}_n \} \) increases and \(u = \lim \vec{u}_n \).

Similarly, if \(\bar{u}_n \) is the solution of the problem

\[
-\Delta u + g \circ u = \mu \quad \text{in } \Omega_n, \\
\bar{u} = U_F \quad \text{on } \partial \Omega_n, \\
u = 0 \quad \text{on } \partial \Omega.
\]

then \(\{ \bar{u}_n \} \) increases and, in view of (4.2), \(\bar{u} = \lim \bar{u}_n \). Therefore, if \(\mu = \mu \) then \(\mu = \mu \).

(ii) We assume that in addition to the other conditions of the theorem, \(g \) satisfies the subcriticality condition. In this case, for every point \(z \in \Omega \) and \(k \in \mathbb{R} \), there exists a solution \(u_{k,z} \) of the problem

\[
-\Delta u + g \circ u = k \delta_z \quad \text{in } \Omega, \\
u = 0 \quad \text{on } \partial \Omega.
\]

Put \(w_z = \lim_{k \to \infty} u_{k,z} \). By definition \(w_z = V_{\{z\}} \). We also have \(w_z = U_{\{z\}} \).

This follows from the fact that \(g \) satisfies the Keller – Osserman condition. This condition implies that there exists a decreasing function \(\psi \in C(0, \infty) \) such that \(\psi(t) \to \infty \) as \(t \to 0 \) and every positive solution \(u \) of (4.3) satisfies

\[
C_2 \psi(|x-z|) \leq u(x) \leq C_1 \psi(|x-z|).
\]

The constant \(C_1 \) depends only on \(g, N \). Because of the boundary condition the constant \(C_2 \) depends on \(z \). However for \(z \) in a compact subset of \(\Omega \) one can choose \(C_2 \) to be independent of \(z \).

This inequality implies that

\[
w_z \leq U_{\{z\}} \leq C_1/C_2 w_z.
\]

If \(F \) is a compact subset of \(\Omega \) put

\[
F' = \{ x \in \Omega : \text{dist}(x, F) \leq \frac{1}{2} \text{dist}(F, \partial \Omega) \}.
\]

Let \(x \in F' \setminus F \) and let \(z \) be a point in \(F \) such that \(|x-z| = \text{dist}(x, F) \). Then there exists a positive constant \(C(F) \) such that

\[
C(F)\psi(|x-z|) \leq u_z(x) \leq V_F(x) \leq U_F(x) \leq C_1 \psi(|x-z|).
\]

It follows that there exists a constant \(c \) such that

\[
\text{(4.4) } U_F(x) \leq cV_F(x)
\]

for every \(x \in F' \). Since \(U_F \) and \(V_F \) vanish on \(\partial \Omega \) it follows that (4.4) (with possibly a larger constant) remains valid in \(\Omega \setminus F' \). This is verified by a standard argument using Harnack’s inequality and the fact that \(g \) satisfies the Keller – Osserman condition. Thus (4.4) is valid in \(\Omega \setminus F \). By an argument similar to the one introduced in [10 Theorem 5.4], this inequality implies that \(U_F = V_F \).

(iii) For the case considered here, it was proved in [11] that \(U_F = V_F \). Therefore uniqueness follows from part (i). \(\Box \)
References

[1] Adams D. R. and Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wissen. 314, Springer (1996).
[2] Aissaoui N. and Benkirane A., Capacité dans les espaces d’Orlicz, Ann. Sci. Math. Québec 12 (1994) 1-23.
[3] Baras P., Pierre M. Singularités éliminables pour des équations semilinéaires, Ann. Inst. Fourier 34 (1984), 185–206.
[4] Benilan Ph. and Brezis H., Nonlinear problems related to the Thomas-Fermi equation, J. Evolution Eq. 3, 673-770 (2003).
[5] Brezis H., Notes (circa 1970) unpublished.
[6] Brezis H. and Strauss W., Semilinear second-order elliptic equations in L^1, J. Math. Soc. Japan 25 (1973), 565-590.
[7] Donaldson Th. K. and Trudinger N. S. Orlicz-Sobolev spaces and imbedding theorems, J. Funct. An. 8 (1971) 52-75.
[8] Krasnoselskii M. A. and Rutickii Y. B., Convex functions and Orlicz spaces, P. Noordhoff, Groningen, 1961.
[9] Keller J. B. , On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math. 10, 503-510 (1957).
[10] Marcus M. and Véron L., The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. rat. Mech. Anal. 144, 201-231 (1998).
[11] Marcus M. and Véron L., Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. European Math. Soc. 6, 483-527 (2004).
[12] Osserman R., On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7, 1641-1647 (1957).
[13] Véron L., Singularities of solutions of second order quasilinear equations, Pitman Research Notes, vol. 353, Longman, 1996.

Department of Mathematics, Technion, Haifa 32000, ISRAEL
E-mail address: marcusm@math.technion.ac.il