Tunable chiral bound states in a dimer chain of coupled resonators

Jing Li, Jing Lu, Z R Gong, and Lan Zhou

1 Synergistic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Xiangjiang-Laboratory and Department of Physics, School of Physics and Electronics, Hunan Normal University, Changsha 410081, People’s Republic of China
2 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
* Authors to whom any correspondence should be addressed.

E-mail: gongzr@szu.edu.cn and zhoulan@hunnu.edu.cn

Keywords: coupled resonators, chirality, bound states

Abstract

We study an excitation hopping on a one-dimensional (1D) dimer chain of coupled resonators with the alternate on-site photon energies, which interacts with a two-level emitter (TLE) by a coupling point or two adjacent coupling points. In the single-excitation subspace, this system not only possesses two energy bands with propagating states, but also possesses photonic bound states. The number of bound states depends on the coupling forms between the TLE and the dimer chain. It is found that when the TLE is locally coupled to one resonator of the dimer chain, the bound-state that has mirror reflection symmetry. When the TLE is nonlocally coupled to two adjacent resonators, three bound states with preferred direction arise due to the mirror symmetry breaking. By using chirality to measure the asymmetry, it is found that the chirality of these bound states can be tuned by changing the energy differences of single photon in the adjacent resonators, the coupling strengths and the transition energy of the TLE.

1. Introduction

The quantum electrodynamics of light-matter interactions in waveguide systems [1–3] has attracted considerable interest. In a waveguide, the electromagnetic field is confined spatially in two dimensions and propagates along the remaining one, which is called guided modes, the interference of spontaneously emitted waves from a quantum emitter (QE) and the incident wave leads to total reflection of single photons in the one-dimensional (1D) waveguide with linear [4] or nonlinear [5] dispersion relation. One of the most intriguing is the existence of bound states for photons: The single-photon bound states in continuum [6–10], where the photon is trapped between the QEs or the mirror and a QE; The single-photon bound states with energies slightly outside the continuum [11–17], where a photon is localized and symmetrical around the resonator coupling to the quantum emitter; Multiple-photon bound states [18–23], which give rise to strong correlations between photons.

Nowadays, widespread attention has been paid on giant atoms. Different from a local interaction between QEs and light field [24–31], giant atoms nonlocally couples to light field [32–39] at multiple points. Such unconventional light–matter interaction occurs when the atomic size is comparable or even larger than the wavelength of the light. The interference effects between these multiple coupling points leads to unconventional phenomenon such as frequency dependent relaxation and Lamb shift [32], non-Markovian atomic dissipation [40–42] and the decoherence free interatomic interaction [43, 44]. The symmetry bound states outside the band are found numerically for a giant atom coupling to a 1D coupled-resonator waveguide [45]. And the asymmetric bound state close to an atomic transition frequency is found in a giant atom interacting with the photonic mode of an energy band [46]. In this paper, we study a waveguide quantum electrodynamics system composed of a two-level emitter (TLE) and 1D coupled resonators arranged in a dimer chain due to their alternate on-site photon energies. Different from the 1D
coupled-resonator waveguide with uniform-hopping rates, this dimer chain possesses two energy bands, and the point-like TLE coupled non-locally to two adjacent resonators of the dimer chain. To establish the relation of bound states with the mirror symmetry, we present the exact analytical solution of the bound states in real space for arbitrary atomic transition frequency. The asymmetry of bound states stems from the nonlocal coupling of the quantum emitter to two resonators with different on-site energies. Although we show how to judge the symmetry or asymmetry of bound states from the mirror symmetry, the properties of single-photon bound states include more details, for example, how many bound states in this system; whether they all have the same preferred direction or not? Is it possible for a bound state to localized at the one-side of the symmetry axe? How to tune the asymmetry of the bound state?

The paper is organized as follows. In section 2, we propose the model describing the interaction between a TLE and a chain of coupled resonators, and the equations of the probability amplitudes are presented in single-excitation subspace. In section 3, we derive the condition for the single-photon bound state and discuss the asymmetry of all bound states by introducing the chirality. Finally, a summary has been made in section 4.

2. Model for a quantum emitter nonlocal coupled to a dimer chain

We consider a system consisting of a one-dimensional (1D) waveguide and a TLE. The 1D waveguide consists of a series of coupled resonators in which light propagates due to the coupling between the adjacent resonators (see figure 1(a)). The system can be implemented by nano-electromechanical resonator arrays where two nearest resonators with ferromagnetic particles in the tips are coupled to a localized spin [47], a side-defected cavity with double couplings to a waveguide of coupled defected cavity arrays [25, 48, 49], a superconducting atoms coupled to a Josephson photonic-crystal waveguide [46, 50], or a quantum emitter coupled to a surface plasmon polaritiation waveguide [51, 52]. For the last system the surface plasmon polaritiation supported by a metallic waveguide and can be strongly coupled with quantum emitter [53, 54] and the dual-band surface polariton waveguide can be realized by composite structures, which facilitates the emergence of the bound states. In contrast to the previous 1D waveguide with identical resonators [5], the two adjacent resonators (shown as the green and blue cavities in figure 1(a)) have on-site photon energies \(\omega_g - \delta\) and \(\omega_c + \delta\), respectively. Here, 26 denotes the the energy differences of single photon in the adjacent resonators. We cast this 1D waveguide as a dimer chain of discrete bosonic sites with equally spaced sites but two kinds of on-site photon energies, and the dimer chain is assumed to be infinitely long in both direction. Then the continuum of modes in the waveguide are the Bloch modes. We use \(\hat{a}_{j \sigma}\) and \(\hat{b}_{j \sigma}\) as the bosonic annihilation (creation) operators of a single photon for the green and blue resonators at the \(j\)th cell, respectively. Its corresponding real-space Hamiltonian reads

\[
\hat{H}_c = (\omega_c - \delta) \sum_{j=-\infty}^{+\infty} \hat{a}_{j \sigma}^\dagger \hat{a}_{j \sigma} + (\omega_g + \delta) \sum_{j} \hat{b}_{j \sigma} \hat{b}_{j+1 \sigma} - \sum_{j} \lambda \left(\hat{a}_{j \sigma} \hat{b}_{j+1 \sigma} + \hat{a}_{j+1 \sigma}^\dagger \hat{b}_{j \sigma}^\dagger \right) + h.c. \tag{1}
\]

where \(\lambda\) is the coupling constant between adjacent resonators in the dimer chain. Two bands of propagating photons have the following dispersion relation as (see appendix A)

\[
\omega_{\pm}^k = \omega_c \pm \sqrt{\delta^2 + 4\lambda^2 \cos^2(k/2)}. \tag{2}
\]

with wave number \(k \in [-\pi, \pi]\). The bands of propagating photons with different \(\delta\) in the first Brillouin zone is depicted in figure 1(b). The time-reversal symmetry is satisfied for the propagating modes in the dimer chain since \(\omega_{\pm}^k = \omega_{\mp}^k\).

The TLE’s ground and excited states \(|g\rangle\) and \(|e\rangle\), respectively, are separated in energy by \(\Omega\). The transition \(|g\rangle \leftrightarrow |e\rangle\) of the TLE is dipole coupled with coupling strength \(g_{d} \langle g | |e\rangle\) to the resonator at the 0th cell. Defining the rising operators \(\hat{\sigma}_+ = |e\rangle\langle g|\), and its adjoint \(\hat{\sigma}_-\), the Hamiltonian for the free TLE part and the interaction between the TLE and the field within the rotating-wave approximation reads

\[
\hat{H}_1 = \Omega \langle e | g \rangle \langle e | + \hat{\sigma}_+ \left(g_{d} \hat{a}_0 + g_{b} \hat{b}_0 \right) + h.c. \tag{3}
\]

Here, we have introduced the nonlocal interaction between the TLE and the light field.

The number operator \(\hat{N} = \sum_j (\hat{a}_{j \sigma}^\dagger \hat{a}_{j \sigma} + \hat{b}_{j \sigma}^\dagger \hat{b}_{j \sigma} + 1)\) commutes with the total Hamiltonian \(\hat{H} = \hat{H}_c + \hat{H}_1\). We restrict the analysis to the subspaces with single excitation hereafter. In the single-excitation subspace, there are two mutual exclusive possibilities: the particle either is propagating...
inside the cavity or is absorbed by the TLE. Letting $|\emptyset\rangle = |0g\rangle$ be the state without photon while the TLE stays on its ground state, the eigenstate of the Hamiltonian reads

$$|\epsilon\rangle = \left(\sum_j \alpha_{2j} \hat{a}_{2j}^\dagger + \sum_j \beta_{2j+1} \hat{b}_{2j+1}^\dagger + u_c \hat{\sigma}_+\right) |\emptyset\rangle,$$

(4)

where α_{2j}, β_{2j+1} are the probability amplitudes to find a photon in a and b resonators of the jth cell, respectively, and u_c is the probability amplitude of the TLE in the excited state while no photon in the dimer chain. From the stationary Schrödinger equation, one can obtain the equations for the amplitudes. By removing u_c, the equations for the photonic amplitudes reduce to

$$\begin{align}
(\epsilon - \omega_c + \delta) \alpha_{2j} &= -\lambda \left(\beta_{2j+1} + \beta_{2j-1}\right) + \delta \beta \left(G \alpha_0 + V_b \beta_1\right), \\
(\epsilon - \omega_c - \delta) \beta_{2j+1} &= -\lambda \left(\alpha_{2j} + \alpha_{2j+2}\right) + \delta \alpha \left(G^* \alpha_0 + V_b \beta_1\right),
\end{align}

(5a, b)

which lead to a nonlocal energy-dependent delta-like potentials V_n, $n = a, b$ and the effective dispersive coupling strength

$$V_n = \frac{\xi_n^a \xi_n^b}{\epsilon - \Omega}G = \frac{\xi_n^a \xi_n^b}{\epsilon - \Omega},$$

(6)

Obviously, the effective dispersive coupling strength G vanishes when the TLE only interacts with one resonator of the unit cell, which plays an important role in the emergence of the chiral bound states.

3. Single-photon bound states

The presence of the TLE breaks down the translational symmetry of the dimer chain, which leads to the highly-localized states. We plot the energy spectrum versus coupling strengths in the single excitation subspace in figures 2(a)–(d) by numerical diagonalization of the Hamiltonian in the real space and plot the energy versus wave number k in figures 2(e)–(f). Two energy bands of scattering states are symmetrically formed above and below $\epsilon = \omega_c$ with 2δ as the band gap. Obviously the two bands merge to one band when there is no energy difference between resonators ($\delta = 0$). The three curves, one above all bands, one below all bands and the other inside the band gap, are the bound states. As coupling strengths increase, the energy differences between the bound states and the band edges also increase. However, the increment of the energy differences between the bound states and the band edges is dependent on transition frequency Ω, especially for the emerging bound state inside the gap. When $\Omega < \omega_c$, the energy of the emerging bound state increases as the coupling strengths increase. When $\Omega > \omega_c$, the energy of the emerging bound state decreases as the coupling strengths increase. In figures 2(c) and (d) the TLE only interacts with one resonator of the unit cell. It is noted that figure 2(d) can be obtained by the mirror reflection of the figure 2(c) with mirror surface locating at $\epsilon = \omega_c$, which actually indicates the same mirror reflection symmetry of the dimer resonator energies and the TLE’s energy when $a \rightarrow b$ and $\Omega - \omega_c \rightarrow - (\Omega - \omega_c)$. We plot the energy versus wave number k in figures 2(e) and (f). Hereafter, for brevity, the bound state above, below the bands in the dimer chain are denoted as bound state I, II, and the bound state in the band gap is denoted as bound state III.

The highly-localized states in previous studies [11–17, 45] decay exponentially and symmetrically in both directions, actually, the symmetry of the bound state is guaranteed by the mirror reflection symmetry around
the quantum emitter. However, the mirror reflection symmetry is broken in our model with all $g_0 \neq 0$. Since only the energy bands are modified, there should still be localized modes of photons around the cell where the TLE is embedded. So we assume the following damped wave

$$\alpha_{2j} = \begin{cases} A_F^e e^{ik_0+\kappa j}, & j < 0 \\ A_R^e e^{ik_0-\kappa j}, & j > 0 \end{cases}, \quad \beta_{2j+1} = \begin{cases} B_F^e e^{ik_0+(j+1)/2}, & j < 0 \\ B_R^e e^{ik_0-(j+1)/2}, & j > 0 \end{cases}$$

(7)

with $k_0 = 0, \pi$, which decreases exponentially with the distance from the 0th cell. As shown in appendix B, the imaginary wave vector $\kappa > 0$ labels the energy

$$\epsilon = \omega_c \pm \sqrt{\delta^2 + \lambda^2 (2 + e^{ik_0+\kappa} + e^{-ik_0-\kappa})}$$

(8)

of a localized photon outside of the bands. At the region far away from the TLE, we obtain

$$\frac{A_F^e}{B_F^e} = -\lambda \frac{e^{\delta/2} + e^{-\kappa/2}}{\epsilon - \omega_c + \delta}, \quad \frac{A_R^e}{B_R^e} = -\lambda \frac{e^{-\kappa/2} + e^{-\kappa/2}}{\epsilon - \omega_c + \delta}.$$

(9)

By applying equations (7) and (9) to the discrete scattering Equation at $j = \pm 1$, the amplitudes for the $j = 0$ cell can be obtained as

$$\alpha_0 = A_F^e, \quad \beta_1 = B_R^e e^{-\kappa/2}.$$

(10)

Substituting equation (10) and the spatial exponential-decay solution (7) to equation (5) at $j = 0$ yields the condition for the energy of the bound state

$$|G - \lambda|^2 = \left(\epsilon - \omega_c + \delta - V_a + \frac{\lambda B_F^e}{A_F^e} e^{-ik_0-\kappa/2} \right) \left(\epsilon - \omega_c - \delta - V_b + \frac{\lambda A_R^e}{B_R^e} e^{ik_0-\kappa/2} \right).$$

(11)

Once κ is obtained from equation (11), so does the ratio in equation (9). To give an intuitive knowledge on the bound state, we rewrite the wave function of the bound states as

$$\frac{\alpha_{2j}}{A_R^e} = \begin{cases} A_F^e e^{ik_0+\kappa j}, & j < 0 \\ A_R^e j, & j = 0 \\ A_F^e e^{ik_0-\kappa j}, & j > 0 \end{cases}, \quad \frac{\beta_{2j+1}}{A_R^e} = \begin{cases} B_F^e e^{ik_0+(j+1)/2}, & j < 0 \\ B_R^e e^{-\kappa/2}, & j = 0 \\ B_F^e e^{ik_0-(j+1)/2}, & j > 0 \end{cases}.$$

(12)
The bound state distribution above all the bands (a), (d), (g), inside the band gap (b), (e), (h) and below all the bands (c), (f), (i). In panels (a)–(c), \(g_a = 0.5, g_b = 0, \delta = 0.2, \Omega = 99.8 \), i.e. the TLE only interacts with the resonator at the 0th site. In panels (d)–(f), \(g_a = 0, g_b = 0.5, \delta = 0.2, \Omega = 100.2 \), the TLE only interacts with the resonator at the 1st site. In panels (g)–(i), the TLE interacts with the adjacent resonators at the 0th cell, \(g_a = g_b = 0.7, \Omega = 102, \delta = 1 \) (h) \(\Omega = 99.5, \delta = 0.3 \), (i) \(\Omega = 98.5, \delta = 0.5 \). All parameters are in units of the hop strength \(\lambda \) and \(\omega_c = 100 \).

Figure 3. The photonic probability distribution of the bound state I (a,d,g), III (b,e,h) and II (c,f,i). It can be found from figures 3(a)–(f) that all the bound states are symmetry around the resonator. When the TLE only interacts with single resonator, the same mirror reflection symmetry of the dimer resonator energies and the TLE’s energy under \(a \rightarrow b \) and \(\Omega \rightarrow -\omega_c \rightarrow -(\Omega - \omega_c) \) still can be found in panels (a–c) and (d–f) (e.g. figures 3(a) and (j)). However, when the TLE interacts with two adjacent resonators at one unit cell, the bound states no longer has the mirror reflection symmetry as shown in figures 3(g)–(i).

If the TLE is located at the middle of the unit cell at \(j = 0 \), e.g. position \(x_0 = l/4 \), the line at the TLE’s location divides the space into left- and right-hand side of the TLE. The photonic component of the bound state in figure 3(g) are strongly localized at the right-hand side of the TLE, and that in figure 3(h) mostly distributes to the left-hand side of the TLE, the asymmetry of the photonic probability on both side of the \(x_0 \) axis can also be found in figure 3(i). According to the reflection symmetry in geometry, we introduce the chirality [46]

\[
S = \frac{s_L - s_R}{s_L + s_R}
\]
Figure 4. Tuning the chirality of the bound state above all the bands (a), (d), below all the bands (b), (e) and inside the band gap (c), (f). (a)–(c) Chirality versus δ for fixed coupling strength $g_a = g_b = 0.7, \Omega = 102$ (red), $\Omega = 101.5$ (blue), $\Omega = 100.5$ (orange), $\Omega = 99.5$ (green) and $\Omega = 98.5$ (purple). (d)–(f) Chirality versus g_b for fixed $\delta = 0.2, g_a = 0.7, \Omega = 101.5$ (blue), $\Omega = 100.5$ (orange), $\Omega = 99.5$ (green) and $\Omega = 98.5$ (purple). All parameters are in units of the hop strength λ and $\omega_c = 100$.

to depict the asymmetry of the bound state in left- and right-hand side of the TLE

\[
s_L = \sum_{j=-\infty}^{\infty} \left(|\alpha_{2j}|^2 + |\beta_{2j+1}|^2 \right) + |\alpha_0|^2, \quad (16a)
\]

\[
s_R = \sum_{j=1}^{\infty} \left(|\alpha_{2j-1}|^2 + |\beta_{2j}|^2 \right) + |\beta_1|^2, \quad (16b)
\]

where $S > 0$ ($S < 0$) indicates that the left-handed (right-handed) chirality, and $S \to 1$ ($S \to -1$) corresponds to the perfect left-handed (right-handed) chirality. By applying the wave function in equation (12), we can obtain the expression of the chirality in terms of the ratios

\[
S = \frac{|A_L^x/A_L^y|^2 + \left(|A_L^x/A_L^y|^2 - 1 \right) \frac{e^{-\kappa} + |A_L^x/A_L^y|^2}{1 - e^{-2\kappa}} e^{-\kappa}}{|A_R^x/A_R^y|^2 + \left(|A_R^x/A_R^y|^2 + 1 \right) \frac{e^{-\kappa} + |A_R^x/A_R^y|^2}{1 - e^{-2\kappa}} e^{-\kappa}}. \quad (17)
\]

To show the dependence of the chirality on the parameters, we have plotted the chirality S of the bound state versus δ in figures 4(a)–(c) and the coupling strength in figures 4(d)–(f). Since the TLE-resonator coupling strengths are equal in panels (a–c), the break of the reflection symmetry depends on whether δ vanishes or not. It is shown that all chirality vanishes at $\delta = 0$ in panels (a,b) for ordinary bound states I and II. While since the merging bound state III disappear for $\delta = 0$, the critical chirality of the emerging bound state III in panel (c) is quite different for different transition energies of the TLE, while the chirality of ordinary bound states tends to coincidence. One can tune the chirality by adjusting the transition energy Ω for a given δ: the left-handed chirality decreases as Ω increases for bound state II, the right-handed chirality can increase as Ω increases under certain parameters for bound state I. It should be aware that the chirality of bound state I prefers the right-hand side of dimer chain and bound state II prefers the left hand side of dimer chain. Although the chirality of all bound states can be continuously tuned by adjusting δ, the right (left) hand side chirality remains unchanged for bound state I (II), only bound state III can change its sign of chirality for an appropriate Ω (see the green line in panel c). The perfect right (left) chirality can be achieved only for the bound state I (III). For a given δ, one can change the sign of chirality of the bound states I and II by adjusting one of the coupling strengths, see figures 4(d) and (e). These changes can be easily explained by following reasons: When $g_b \ll g_a$, bound states are mainly localized around the 0th site, however the
symmetry line is positioned at \(x_0 = l/4 \) not \(x_0 = 0 \), they present left handed chirality; When \(g_b \gg g_a \), bound states are mainly localized around the 1th site, thence the symmetry line positioned at \(x_0 = l/4 \) gives rise to a right handed chirality of bound state I and II. It can be also found that the left handed chirality increases (decreases) as \(\Omega \) increases when \(g_b \) is smaller than \(g_a \) and the right handed chirality increases (decreases) as \(\Omega \) increases when \(g_b \) is larger than \(g_a \) for bound state I (II), the perfect right (left) charity can be still achieved only for the bound state I (III).

4. Conclusion

In summary, we consider a 1D dimer chain of coupled resonators, where two resonators in each dimer have different on-site photon energies. In the single-excitation subspace, this system has propagating states forming two energy bands and bound-states. We mainly focus on the chiral feature of the bound states. After obtaining the analytical solutions of the bound states in real space, we found that 1) the bound-state distributes symmetrically around the coupling point when the TLE is locally coupled to one resonator of the dimer chain; 2) the mirror-reflection symmetry breaking leads to the formation of three chiral bound states when the TLE is nonlocal coupled to two adjacent resonators. The chirality of the bound states inherits from the geometry aspects, which are characterized by either the difference of on-site energies in each unit cell or the coupling strengths between the TLE and the resonators, but it can also be tuned by the transition energy of the TLE. When the coupling strengths are identical, the nonvanishing difference of on-site energies lead to right handed chirality of bound state I and left handed chirality of bound state II, and bound state III can change its preferred chirality by adjusting on-site difference together with appropriate transition energy of the TLE. For given on-site energies, one can change the preferred chirality the bound states I and II by adjusting one of the coupling strengths.

The storage, the manipulation, and the transmission of quantum information are the three principal components of quantum information processing. For storage, the bound state trap the excitation around the TLS. For manipulation, when multiple TLSs are coupled to the same waveguide, the directional dipole–dipole interaction can be induced by the chiral bound states since their interaction strength is determined by the overlap between the decaying evanescent fields of the bound states, which means that the atoms only interact with the atoms in their chiral preferred directions, but cannot interact with those in the opposite direction. More exotic quantum phenomena, such as topological phase transition, might be realized.

This model can be realized in the circuit QED system: a superconducting qubit coupled to an array of transmission line resonators. The eigenfrequency of a transmission line resonator can be tuned from \(2\pi \times 4 \text{ GHz} \) to \(2\pi \times 4.8 \text{ GHz} \) [55], the coupling strength among two adjacent resonator is about \(2\pi \times 44 \text{ MHz} \) [56], and it can be further increased by using larger capacitors to connect two transmission line resonators or by a qubit ultrastrong coupling to two transmission line resonators [57].

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

We are grateful to Z. H Wang for useful discussions. This work was supported by NSFC Grants Nos.11935006, 12075082, 12247105, 12175150, the science and technology innovation Program of Hunan Province (Grant Nos. 2020RC4047, XJ2302001), Hunan Provincial major Sci-Tech Program (2023ZJ1010) and the Natural Science Foundation of Guang-dong Province (Grant No. 2023A1515011223).

Appendix A

We begin with Hamiltonian in equation (1) which reads

\[
\hat{H}_c = (\omega_c - \delta) \sum_{j=-\infty}^{+\infty} \hat{a}_{2j}^\dagger \hat{a}_{2j} + (\omega_c + \delta) \sum_{j} \hat{b}_{2j+1}^\dagger \hat{b}_{2j+1} - \sum_{j} \lambda \left(\hat{a}_{2j}^\dagger \hat{b}_{2j+1} + \hat{a}_{2j} \hat{b}_{2j-1}^\dagger \right) + h.c. \tag{18}
\]
By applying the Fourier transform under the periodic boundary condition

$$\hat{a}_{2j} = \frac{1}{\sqrt{N}} \sum_k \hat{a}_k e^{jkx_{2j}}, \hat{b}_{2j+1} = \frac{1}{\sqrt{N}} \sum_k \hat{b}_k e^{jkx_{2j+1}}$$ \hspace{1cm} (19)$$

where $x_{2j} = j$ and $x_{2j+1} = j + \frac{1}{2}$. Substituting equation (18) into equation (19), we have

$$\hat{H}_c = \sum_k \left(\hat{a}_k \hat{a}_k^\dagger \hat{b}_k^\dagger \right) \left(\begin{array}{cc} \omega_c - \delta & -2\lambda \cos \frac{k}{2} \\ -2\lambda \cos \frac{k}{2} & \omega_c + \delta \end{array} \right) \left(\begin{array}{c} \hat{a}_k \\ \hat{b}_k \end{array} \right).$$ \hspace{1cm} (20)$$

Now we can introduce the new operator

$$\hat{c}_{k+} = \cos \theta \hat{a}_k - \sin \theta \hat{b}_k, \hat{c}_{k-} = \sin \theta \hat{a}_k + \cos \theta \hat{b}_k$$ \hspace{1cm} (21)$$

with the parameters

$$\cos \theta = \frac{\cos \frac{k}{2}}{\sqrt{\left(\delta + \sqrt{\delta^2 + 4\lambda^2 \cos^2 \frac{k}{2}} \right)^2 + 4\lambda^2 \cos^2 \frac{k}{2}}}$$ \hspace{1cm} (22)$$

$$\sin \theta = \frac{\delta + \sqrt{\delta^2 + 4\lambda^2 \cos^2 \frac{k}{2}}}{\sqrt{\left(\delta + \sqrt{\delta^2 + 4\lambda^2 \cos^2 \frac{k}{2}} \right)^2 + 4\lambda^2 \cos^2 \frac{k}{2}}}$$ \hspace{1cm} (23)$$

to write Hamiltonian \hat{H}_c in the diagonal form

$$\hat{H}_c = \sum_k \omega_k^+ \hat{c}_k^+ \hat{c}_k^+ + \sum_k \omega_k^- \hat{c}_k^- \hat{c}_k^-.$$ \hspace{1cm} (24)$$

Then, the energy spectrum is obtained as

$$\omega_k^\pm = \omega_c \pm \sqrt{\delta^2 + 4\lambda^2 \cos^2 \left(k/2 \right)}.$$ \hspace{1cm} (25)$$

Appendix B

In section 2 of the main text, we have given the equations for the amplitudes by the stationary Schrödinger equation. At the region far away from the TLE, equation (5) can be written as

$$(\epsilon - \omega_c + \delta) \alpha_{2j} = -\lambda \left(\beta_{2j+1} + \beta_{2j-1} \right),$$ \hspace{1cm} (26a)$$

$$(\epsilon - \omega_c - \delta) \beta_{2j+1} = -\lambda \left(\alpha_{2j} + \alpha_{2j+2} \right).$$ \hspace{1cm} (26b)$$

Substituting the following test wavefunction

$$\alpha_{2j} = \left\{ \begin{array}{ll} A_R^c e^{ikj} & j < 0 \\ A_R^c e^{-ikj} & j > 0 \end{array} \right., \beta_{2j+1} = \left\{ \begin{array}{ll} B_R^c e^{ik(j+1)/2} & j < 0 \\ B_R^c e^{-ik(j+1)/2} & j > 0 \end{array} \right.$$ \hspace{1cm} (27)$$

with $k_0 = 0, \pi$ into equation (26) far away from the resonators $j = \pm 1$, the relation between the left-side amplitudes of the TLS as well as that of its right-side amplitudes reads

$$0 = (\epsilon - \omega_c + \delta) A_R^c + \lambda B_R^c \left(e^{\kappa j/2} + e^{-i\kappa j} e^{-\kappa j/2} \right),$$ \hspace{1cm} (28a)$$

$$0 = (\epsilon - \omega_c - \delta) B_R^c + \lambda A_R^c \left(e^{-\kappa j/2} + e^{i\kappa j} e^{\kappa j/2} \right),$$ \hspace{1cm} (28b)$$

$$(\epsilon - \omega_c + \delta) A_R^c = -\lambda B_R^c \left(e^{-\kappa j/2} + e^{-i\kappa j} e^{\kappa j/2} \right),$$ \hspace{1cm} (29a)$$

$$(\epsilon - \omega_c - \delta) B_R^c = -\lambda A_R^c \left(e^{\kappa j/2} + e^{i\kappa j} e^{-\kappa j/2} \right).$$ \hspace{1cm} (29b)$$
According to equations (28) and (29), we can obtain equation (9). The non-zero amplitudes of equations (28) and (29) requires the determinant of coefficients matrix to be zero. Therefore, the energy of the bound state read

$$\epsilon = \omega_c \pm \sqrt{\delta^2 + \lambda^2 \left(2 + e^{i \theta} + e^{-i \theta - \kappa} \right)}.$$ (30)

The upper one of equation (26) at \(j = 1 \) and the lower one of equation (26) at \(j = -1 \) read

$$\lambda \beta_1 = -\lambda \beta_3 - (\epsilon - \omega_c + \delta) \alpha_2,$$ (31a)

$$\lambda \alpha_0 = -\lambda \alpha_2 - (\epsilon - \omega_c - \delta) \beta_1.$$ (31b)

By applying equations (27) and (9) to the equation (31), the amplitudes for \(j = 0 \) cell can be obtained as

$$\alpha_0 = A^L_0, \beta_1 = B^R_0 e^{-\kappa/2}.$$ (32)

Substituting equations (32) and (27) to equation (5) at \(j = 0 \) leads to the following equations

$$0 = (\epsilon - \omega_c + \delta - V_a) A^L_0 + (\lambda - G) B^R_0 e^{-\kappa/2} + \lambda B^L_0 e^{-i \theta_0} e^{-\kappa/2},$$ (33a)

$$0 = (\epsilon - \omega_c - \delta - V_b) B^R_0 + (\lambda - G^*) A^L_0 e^{-\kappa/2} + \lambda A^R_0 e^{i \theta_0} e^{-\kappa/2}.$$ (33b)

After some algebra, we then obtain the condition for the energy of the bound state

$$|G - \lambda|^2 = \left(\epsilon - \omega_c + \delta - V_a + \frac{\lambda B^R_0}{A^L_0} e^{-i \theta_0 - \kappa/2} \right) \left(\epsilon - \omega_c - \delta - V_b + \frac{\lambda A^R_0}{B^R_0} e^{i \theta_0 - \kappa/2} \right).$$ (34)

ORCID iD

Jing Li https://orcid.org/0009-0006-1055-3188

References

[1] Gu X, Kockum A F, Miranowicz A, Liu Y-X and Nori F 2017 Microwave photonics with superconducting quantum circuits Phys. Rep. 718 1

[2] Roy D, Wilson C M and Firstenberg O 2017 Colloquium: strongly interacting photons in one-dimensional continuum Rev. Mod. Phys. 89 021001

[3] Sheremet A S, Petrov M I, Iorsh I V, Poshakinskii A V and Poddubny A N 2023 Waveguide quantum electrodynamics: collective radiation and photon-photon correlations Rev. Mod. Phys. 95 015002

[4] Shen J T and Fan S 2005 Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits Phys. Rev. Lett. 95 213601

[5] Zhou L, Gong Z R, Liu Y-X, Sun C P and Nori F 2008 Controllable scattering of a single photon inside a one-dimensional resonator waveguide Phys. Rev. Lett. 101 100501

[6] Lim K H, Mok W-K and Kwek L-C 2023 Oscillating bound states in non-Markovian photonic lattices Phys. Rev. A 107 0233716

[7] Zhou L, Dong H, Liu Y-X, Sun C P and Nori F 2008 Quantum supercavity with atomic mirrors Phys. Rev. A 78 063827

[8] Gong Z R, Ian H, Zhou L and Sun C P 2008 Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism Phys. Rev. A 78 053806

[9] Dong H, Gong Z R, Ian H, Zhou L and Sun C P 2009 Intrinsic cavity QED and emergent quasinormal modes for a single photon Phys. Rev. A 79 063847

[10] Tufarelli T, Ciccarello F and Kim M S 2013 Dynamics of spontaneous emission in a single-end photonic waveguide Phys. Rev. A 87 013820

[11] Zhou L, Yang S, Liu Y-X, Sun C P and Nori F 2009 Quantum Zeno switch for single-photon coherent transport Phys. Rev. A 80 062109

[12] Longo P, Schmitteckert P and Busch K 2010 Few-photon-in-motion systems: interaction-induced radiation trapping Phys. Rev. Lett. 104 023603

[13] Zhou L, Yang L P, Li Y and Sun C P 2013 Quantum routing of single photons with a cyclic three-level system Phys. Rev. Lett. 111 103604

[14] Lu J, Zhou L, Kuan L-M and Nori F 2014 Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences Phys. Rev. A 89 013805

[15] Lombardo F, Ciccarello F and Palma G M 2014 Photon localization versus population trapping in a coupled-cavity array Phys. Rev. A 89 053826

[16] Sánchez-Burillo E, Zueco D, Martín-Moreno L and García-Ripoll J J 2017 Dynamical signatures of bound states in waveguide QED Phys. Rev. A 96 023831

[17] Ahumada M, Orellana P A and Retamal J C 2018 Bound states in the continuum in whispering gallery resonators Phys. Rev. A 98 023827

[18] Talukdar J and Blume D 2023 Photon-induced dropletlike bound states in a one-dimensional qubit array Phys. Rev. A 108 023702

[19] Shen J T and Fan S 2007 Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system Phys. Rev. Lett. 98 153603

[20] Zheng H X, Gauthier D J and Baranger H U 2010 Waveguide QED: many-body bound-state effects in coherent and fock-state scattering from a two-level system Phys. Rev. A 82 063816
[21] Shi T, Fan S and Sun C P 2011 Two-photon transport in a waveguide coupled to a cavity in a two-level system Phys. Rev. A 84 063803
[22] Roy D 2011 Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency Phys. Rev. Lett. 106 053601
[23] Shi T, Wu Y-H, Gonzalez-Tudela A and Cirac J I 2016 Bound states in boson impurity models Phys. Rev. X 6 021027
[24] Qiao L, Song Y-J and Sun C-P 2019 Quantum phase transition and interference trapping of populations in a coupled-resonator waveguide Phys. Rev. A 100 013825
[25] Zhou L, Chang Y, Dong H, Kuang L-M and Sun C P 2012 Inherent Mach-Zehnder interference with “which-way” detection for single-particle scattering in one dimension Phys. Rev. A 85 013806
[26] Wang Z H, Zhou L, Li Y and Sun C P 2014 Controllable single-photon frequency converter via a one-dimensional waveguide Phys. Rev. A 89 053813
[27] Yan W-B and Fan H 2014 Control of single-photon transport in a one-dimensional waveguide by a single photon Phys. Rev. A 90 053807
[28] Fong P T and Law C K 2017 Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array Phys. Rev. A 96 023842
[29] Xu X-W, Chen A-X, Li Y and Liu Y-X 2017 Single-photon nonreciprocal transport in one-dimensional coupled-resonator waveguides Phys. Rev. A 95 063808
[30] Wang Z, Du L, Li Y and Liu Y-X 2019 Phase-controlled single-photon nonreciprocal transmission in a one-dimensional waveguide Phys. Rev. A 100 053809
[31] Qiao L and Sun C-P 2019 Atom-photon bound states and non-Markovian cooperative dynamics in coupled-resonator waveguides Phys. Rev. A 100 063806
[32] Kockum A F, Delsing P and Johansson G 2014 Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom Phys. Rev. A 90 013837
[33] Kockum A F 2021 Quantum optics with giant atoms—the first five years
[34] Gustafsson M V, Aref T, Kockum A F, Ekstrom M K, Johansson G and Delsing P 2014 Propagating phonons coupled to an artificial atom Science 346 207–11
[35] Manenti R, Kockum A F, Patterson A, Behrle T, Rahamim J, Tancredi G, Nori F and Leek P J 2017 Circuit quantum acoustodynamics with surface acoustic waves Nat. Commun. 8 975
[36] Delsing P et al 2019 The 2019 surface acoustic waves roadmap J. Phys. D: Appl. Phys. 52 353001
[37] Sletten L R, Moores B A, Viennot J J and Lehnert K W 2019 Resolving phonon fock states in a multimode cavity with a double-slit qubit Phys. Rev. X 9 021056
[38] Andersson G, Ekstrom M K and Delsing P 2020 Electromagnetically induced acoustic transparency with a superconducting circuit Phys. Rev. Lett. 124 240402
[39] Bienfait A et al 2020 Quantum erasure using entangled surface acoustic phonons Phys. Rev. X 10 021055
[40] Guo L, Grimsmao A, Kockum A F, Pletyukhov M and Johansson G 2017 Giant acoustic atom: a single quantum system with a deterministic time delay Phys. Rev. A 95 053821
[41] Guo L, Kockum A F, Marquardt F and Johansson G 2020 Oscillating bound states for a giant atom Phys. Rev. Res. 2 043014
[42] Andersson G, Suri B, Guo L, Aref T and Delsing P 2019 Non-exponential decay of a giant artificial atom Nat. Phys. 15 1123
[43] Kockum A F, Johansson G and Nori F 2018 Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics Phys. Rev. Lett. 120 140404
[44] Carollo A, Cilluffo D and Ciccarello F 2020 Mechanism of decoherence-free coupling between giant atoms Phys. Rev. Res. 2 043184
[45] Zhao W and Wang Z H 2020 Single-photon scattering and bound states in a atom-waveguide system with two or multiple coupling points Phys. Rev. A 101 053855
[46] Wang X, Liu T, Kockum A F, Li H-R and Nori F 2021 Tunable chiral bound states with giant atoms Phys. Rev. Lett. 126 043602
[47] Rahi P, Kolkowitz S J, Koppens F H L, Harris J G E, Zoller P and Lukin M D 2010 A quantum spin transducer based on nanoelectromechanical resonator arrays Nat. Phys. 6 602
[48] Baba T 2008 Slow light in photonic crystals Nan. Phys. 2 465
[49] Xu D Z, Ian H, Shi T, Dong H and Sun C P 2010 Photonic feshbach resonance Sci. China Phys. Mech. Astron. 53 1234
[50] Scigliuzzo M, Calajo G, Ciccarello F, Lozano D P., Bengtsson A, Scarlino P, Wallraff A, Chang D, Delsing P and Gasparinetti S 2022 Controlling atom-photon bound states in an array of Josephson-junction resonators Phys. Rev. X 12 031036
[51] Barnes W L, Dereux A and Ebbesen T W 2004 Surface plasmon subwavelength optics Nature 424 824
[52] Aziz A and Aziz A 2022 A novel plasmonic waveguide for the dual-band transmission of spoof surface plasmon polaritons Eur. Phys. J. Plus 137 605
[53] Santhosh K, Bitton O, Chuntonov L and Haran G 2016 Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit Nat. Commun. 7 11823
[54] Gonzalez-Tudela A, Huidobro P A, Martin-Moreno L, Tejedor C and Garcia-Vidal F J 2013 Theory of strong coupling between quantum emitters and propagating surface plasmons Phys. Rev. Lett. 110 126801
[55] Sandberg M, Wilson C M, Persson E, Bauch T, Johansson G, Shumeiko V, Duty T and Delsing P 2008 Tuning the field in a microwave resonator faster than the photon lifetime Appl. Phys. Lett 92 203501
[56] Houck A A, Schuster D I, Gambetta J M, Schreier J A, Johnson B R, Chow J M and Schoelkopf R J 2007 Generating single microwave photons in a circuit Nature 449 328–31
[57] Yoshihara E, Fuse T, Ashhab S, Kakuyanagi K, Saito S and Semb kouichi 2017 Superconducting qubit Oscillator circuit beyond the ultrastrong-coupling regime Nat. Phys. 13 44–47