Four new species and three new records of helicosporous hyphomycetes from China and their multi-gene phylogenies

Yong-Zhong Lu1,2,3,4, Jian Ma2,3,4, Xing-Juan Xiao2, Li-Juan Zhang2,3, Yuan-Pin Xiao1,2 and Ji-Chuan Kang1*

1Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, China, 2School of Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China, 3Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand, 4Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China

Helicosporous hyphomycetes have the potential to produce a variety of bioactive compounds. However, the strain resources of this fungal group are relatively scarce, which limits their further exploitation and utilization. In this study, based on phylogenetic analyses of combined ITS, LSU, RPB1, and TEF1α sequence data and the morphology from 11 isolates, we introduce four new species of helicosporous hyphomycetes, viz. Helicoma wuzhishanense, Helicosporium hainanense, Helicosporium viridisporum, and Neohelicomyces hainanensis, as well as three new records, viz. Helicoma guttulatum, H. longisporum, and Helicosporium sexuale. Detailed morphological comparisons of the four new species that distinguish them are provided.

KEYWORDS
freshwater fungi, taxonomy, Tubeufiales, woody substrates, saprophytic fungi

Introduction

The most remarkable feature that distinguishes helicosporous hyphomycetes from other fungal groups is that its conidia curve through at least 180° in one plane as they extend in length (Goos, 1986; Zhao et al., 2007; Luo et al., 2017; Lu et al., 2018a,b; Tian et al., 2022). They are distributed in the Dothideomycetes (Capnodiales, Microthyriales, Pleosporales, Tubeufiales, and Venturiales), Leotiomycetes (Helotiales), Orbiliomycetes (Orbilicales), Sordariomycetes (Hypocreales, Lulworthiales, Microascales, Torpedosporales), Agaricomycetes (Agaricales), Atractiellomycetes (Atractiellales), Exobasidiomycetes (Exobasidiales), Tremellomycetes (Tremellales), and Zoopagomycetes (Zoopagales) (Lu and Kang, 2020). Helicosporous fungi are widespread in tropical and temperate regions (Lu et al., 2018b). Most species in this group, which were published more than 10 years ago, were saprophytic on terrestrial woody substrates, and most of them were lacking in DNA molecular data (Goos, 1986; Zhao et al., 2007; Boonmee et al., 2014; Lu et al., 2018b). However, the species of this group discovered in the last decade mainly come from aquatic...
habitats (Lu et al., 2018b; Boonmee et al., 2021; Tian et al., 2022), and almost all newly published helicosporous species have molecular data. The latest comprehensive revision on helicosporous hyphomycetes was carried out by Lu et al. (2018b), who established nine new helicosporous genera based on morphology and phylogeny, viz. *Dematiohelicothecium*, *Dematiohelicospicum*, *Dematiohelicosporium*, *Helicoarctatus*, *Helicothecium*, *Helicotrichococcus*, *Pleurohelicosporium*, *Pseudohelicosporium*, and *Pseudohelicothecium*, and reassessed the taxonomic system of the three earliest described helicosporous hyphomycete genera, viz. *Helicomyces*, *Helicosporium*, and *Helicoma*. For example, in the genus *Helicosporium*, Lu et al. (2018b) redefined its generic concept based on morphological and phylogenetic evidence, and accepted 13 species, including five new species, and excluded 25 species from this genus which were transferred to the genera *Neohelicosporium* and *Helicoma*. In addition, although Lu et al. (2018b) proposed some suggestions on how to classify and identify helicosporous fungi, there are still some species in this group that need more morphological and molecular data to solve their taxonomic status.

The focus of research on helicosporous fungi has been mainly in the field of taxonomy. However, these fungi are not only morphologically fascinating but also a potential source to produce a variety of bioactive secondary metabolites. For example, species of *Helicomyces*, *Helicosporium*, and *Helicoma* have been reported to produce natural products with antibacterial, anticancer, and anti-diabetic activities (Itazaki et al., 1990; Hanada et al., 1996; Ohtsu et al., 2003; Yoshimura et al., 2003; Zenkoh et al., 2003; Dong et al., 2004; Hu et al., 2006; Jiao et al., 2006; Jung et al., 2012; Lee et al., 2013). Furthermore, recent studies have revealed that other helicosporous fungi also show great potential for exploring new active natural products (Qian et al., 2022; Zeng et al., 2022; Zheng et al., 2022). Zheng et al. (2022) reported two novel compounds in *Tubeufia rubra*, one of which reverses multidrug resistance of tumor cell lines to Doxorubicin. Qian et al. (2022) also discovered another two new compounds in *Tubeufia rubra*, and one, namely, Rubrosin-D displayed significant multidrug resistance reversal effects. Zheng et al. (2022) discovered that some alkaloids in *Neohelicosporium hyalosporus* were cytotoxic against human cancer (A549, TCA, and RD) cells.

In order to solve the classification problems related to helicosporous hyphomycetes and enrich the species resources of the fungal group, we have recently collected a large number of specimens of this group from various terrestrial and aquatic environments. In this study, we report on 11 helicosporous hyphomycetes collected from decaying woody substrates from freshwater streams and terrestrial habitats in southern China. The taxa are characterized based on morphological features and phylogenetic analyses. The new species are morphologically and phylogenetically distinct. Detailed descriptions, illustrations, and phylogenetic analyses are provided.

Materials and methods

Sample collection and specimen examination

Submerged decaying wood samples were collected from various sites in freshwater streams and terrestrial environments in Guangxi Zhuang Autonomous Region and Hainan Provinces, China (Figure 1). Techniques in Senanayake et al. (2020) were followed for morphological study and single spore isolation. Morphological characteristics were examined with a stereomicroscope (SMZ 745 Nikon, Japan). Micro-morphological characters were photographed using a Nikon EOS 70D digital camera attached to an ECLIPSE Ni compound microscope (Nikon, Japan). Measurements were made with a Tarosoft (R) Image Frame Work program. Figures were processed and combined using Adobe Photoshop CS6 Extended version 10.0 software (Adobe Systems, USA).

Herbarium specimens were deposited in the Herbarium of Guizhou Academy of Agriculture Sciences (Herb. GZASAS) and the Herbarium of Cryptogams Kunming Institute of Botany Academia Sinica (Herb. HKAS). Ex-type living cultures are deposited at Guizhou Culture Collection (GZCC). Facesoffungi database and Index Fungorum numbers are provided (Jayasiri et al., 2015).

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from at least 3-week-old living pure cultures grown on PDA at 28°C using the Biospin Fungus Genomic DNA Extraction Kit (BioFlux, China), and following the manufacturer’s protocol. The primer pairs of ITS5/ITS4, LR0R/LR5, RP2B-5F/RP2B-7cR, and EF1-983F/EF1-2218R were used to amplify the internal transcribed spacer (ITS) (White et al., 1990), the large subunit ribosomal DNA (LSU) (Vilgalys and Hester, 1990), the RNA polymerase II second largest subunit (RPB2) (Liu et al., 1999), and the translation elongation factor 1-alpha gene (TEF1α) (Rehner and Buckley, 2005) regions, respectively. The ITS, LSU, RPB2, and TEF1α amplification reactions were carried out using the method described by Lu et al. (2017b, 2018a). The PCR products were purified and sequenced with the same primers at Tsingke Biological Technology (Kunming) Co., China.

Phylogenetic analysis

DNASTAR Lasergene SeqMan Pro v. 7.1.0 (44.1) was used to edit ambiguous bases at both ends of the raw forward and reverse reads and to assemble them. The newly obtained sequences were used as queries to perform BLAST searches against the
nr database to check for contamination, compare species, and create datasets. MAFFT v.7 was used to align the individual datasets (Katoh et al., 2019). Each alignment was trimmed using Trimal (Capella-Gutiérrez et al., 2009). BioEdit was used to check the alignment manually (Hall, 1999).

Four genetic markers, including ITS, LSU, RPB2, and TEF1α, were used for phylogenetic inferences (Table 1). The phylogeny tree was inferred using 147 taxa. IQ-Tree v.2 (Minh et al., 2020) was used to infer maximum likelihood trees (ML) according to the Bayesian information criterion (BIC). Partitioned analyses were carried out for the combined datasets, which were partitioned according to genetic markers. Branch support was estimated from 1,000 ultrafast bootstrap replicates. RAxML-HPC2 on XSEDE (8.2.12) (Stamatakis, 2014) in the CIPRES Science Gateway platform was also used. ModelTest, as implemented in MrMTgui (Nuin, 2007), was used to determine the best-fit evolution model for Bayesian inference analyses using the Akaike Information Criterion (AIC). Bootstrap support was estimated from 1,000 rapid bootstrap replicates. MrBayes v.3.1.2 (Ronquist et al., 2012) was utilized to evaluate the posterior probabilities (PP) by Markov Chain Monte Carlo sampling (MCMC). The number of generations was determined separately for each dataset and is noted in the individual tree legends. The first 25% of the trees were discarded, as they represented the burn-in phase of the analyses, while the remaining were used for calculating PP in the majority rule consensus tree. For all Bayesian inference trees, convergence was declared when the average standard deviation reached 0.01. The trees were figured in the FigTree v1.4.0 program (Rambaut and Drummond, 2008). The approximately unbiased (AU) test, implemented in CONSEL, was used to test the placement of the newly erected family (Shimodaira and Hasegawa, 2001). Topologies with AU test p-values <0.05 were rejected.

Results

Phylogenetic analysis of combined ITS, LSU, RPB2, and TEF1α sequence data

The combined ITS, LSU, RPB2, and TEF1α datasets comprised 11 newly sequenced strains. Multiple genes were concatenated, which comprised 146 taxa and 3313 nucleotide characters, including gaps (ITS: 513 bp; LSU: 843 bp; RPB2: 1045
Taxa	Strain/Voucher No.	GenBank accession no.			
Acanthohelicospora aurea	GZCC 16-0060	KY321323	KY321326	KY92600	MF589911
Acanthohelicospora pinicola	MFLUCC 10-0116	KF301526	KF301534	KF301555	–
Acanthostigma changmuensis	MFLUCC 10-0125	JN865209	JN865197	KF301560	–
Acanthostigma perpusillum	UAMH 7237	AY916492	AY856892	–	–
Acanthostigmina multisepatum	ANM 475	GQ856145	GQ850492	–	–
Acanthostigmina multisepatum	ANM 665	GQ856144	GQ850493	–	–
Aquaphila allicaens		DQ414096	DQ41101	–	–
Aquaphila allicaens	MFLUCC 16-0010	KX454165	KX454166	KY171034	MF535255
Berklesiaum fusiforme	MFLUCC 17-1978	MHS58693	MHS58820	MHS50884	MHS51007
Berklesiaum longisporum	MFLUCC 17-1999	MHS58698	MHS58825	MHS50889	MHS51012
Boerlagiomyces maccropora	MFLUCC 12-0388	KU144927	KU764712	KU872750	–
Botryosphaeria agarae	MFLUCC 10-0051	JX646790	JX646807	–	–
Botryosphaeria dothidea	CBS 115476	KF66153	DQ78051	DQ787637	DQ77944
Chlamydotubeufia cylindrica	MFLUCC 16-1130	MHS58702	MHS58830	MHS50893	MHS51018
Chlamydotubeufia huaikangplaensis	MFLUCC 10-0926	JN65210	JN65198	–	–
Chlamydotubeufia krabiensis	MFLUCC 16-1134	KY678767	KY678759	KY925989	MF535261
Dematiotehelicoma pulchrum	MUCJ 39827	AY916457	AY56872	–	–
Dematiotehelicomyces helicosporus	MFLUCC 16-0003	KX454169	KX454170	KY171035	MF535258
Dematiotehelicomyces helicosporus	MFLUCC 16-0007	MHS58703	MHS58831	MHS50894	MHS51019
Dematiotehelicomyces helicosporus	MFLUCC 16-0213	KX454169	KX454170	KY171035	MF535258
Dematiotehelicoporum guttalatum	MFLUCC 17-2011	MHS58705	MHS58833	MHS50896	MHS51021
Dematiotebuefia chiangraiensis	MFLUCC 10-0115	JN65220	JN65188	KF301551	–
Dictyospora thailandica	MFLUCC 16-0001	KY73627	KY73622	KY73286	–
Dictyospora thailandica	MFLUCC 16-0215	KY73628	KY73623	KY73287	–
Helicangiospora lignicola	MFLUCC 11-0378	KF01523	KF01531	KF01552	–
Helicosortatus aquaticus	MFLUCC 17-1996	MHS58707	MHS58835	MHS50988	MHS51024
Helicoderchium aquaticum	MFLUCC 17-2016	MHS58709	MHS58837	MHS50900	MHS51026
Helicoderchium aquaticum	MFLUCC 18-0490	MHS58710	MHS58838	MHS50901	MHS51027
Helicobyalum aquaticum	MFLUCC 16-1131	KY73625	KY73620	KY73284	MF535257
Helicobyalum infundibulum	MFLUCC 16-1133	MHS58712	MHS58840	MHS50903	MHS51029
Helicoma ambiens	UAMH 10533	AY916451	AY586916	–	–
Helicoma ambiens	UAMH 10534	AY916450	AY586899	–	–
Helicoma aquaticum	MFLUCC 17-2025	MHS58713	MHS58841	MHS50904	MHS51030
Helicoma brunnesporum	MFLUCC 17-1983	MHS58714	MHS58842	MHS50905	MHS51031
Helicoma demissi	NBRC 30667	AY916455	AY586897	–	–
Helicoma freycinetiae	MFLUCC 16-0363	MH275062	MH260295	MH412770	–
Helicoma fusiforme	MFLUCC 17-1981	MHS58715	–	MHS50906	–
Helicoma guttalatum	GZCC 22-2004	OP508739	OP508779	OP698090	OP698079
Helicoma guttalatum	GZCC 22-2024	OP508733	OP508773	OP698084	OP698073
Helicoma guttalatum	GZCC 22-2025	OP508737	OP508777	OP698088	OP698077
Helicoma guttalatum	MFLUCC 16-0022	KX454171	KX454172	MF535254	–
Helicoma guttalatum	MFLUCC 21-0152	OL454546	OL606150	OL64521	OL64527
Helicoma wuzhishanense	GZCC 22-2003	OP508732	OP508772	OP698083	OP698072
Helicoma hongkongense	MFLUCC 17-2005	MHS58716	MHS58843	MHS50907	MHS51033
Helicoma hydei	MFLUCC 18-1270	MH747116	MH747101	MH747100	–

(Continued)
Taxa	Strain/Voucher No.	GenBank accession no.			
		ITS	LSU	TEF1α	RPB2
Helicoma inthanonense	MFLUCC 11-0003	JN865211	JN865199	–	–
Helicoma khunkornensis	MFLUCC 10-0119	JN865203	JN865191	KF301559	–
Helicoma lindiert	NBRC 9207	AY916454	AY856895	–	–
Helicoma longisporum	GZCC 22-2005	OP508740	OP508780	OP98091	OP98080
Helicoma longisporum	GZCC 22-2026	OP508738	OP508778	OP98089	OP98078
Helicoma longisporum	MFLUCC 16-0002	MHS58717	MHS58844	MHS50908	MHS51034
Helicoma longisporum	MFLUCC 16-0005	MHS58718	–	MHS50909	MHS51035
Helicoma longisporum	MFLUCC 16-0211	MHS58719	MHS58845	MHS50910	MHS51036
Helicoma longisporum	MFLUCC 17-1997	MHS58720	MHS58846	MHS50911	MHS51037
Helicoma longisporum	MFLUCC 16-0226	MHS58721	MHS58847	MHS50912	MHS51038
Helicoma longisporum	MFLUCC 18-0491	MHS58723	MHS58849	MHS50914	MHS51040
Helicoma longisporum	MFLUCC 17-1806	MHS58724	MHS58850	MHS50915	–
Helicoma longisporum	MFLUCC 17-1991	MHS58725	MHS58851	MHS50916	MHS51041
Helicoma longisporum	MFLUCC 17-2001	MHS58726	MHS58852	MHS50917	MHS51042
Helicoma longisporum	MFLUCC 10-0120	JN865204	JN865192	KF301558	–
Helicoma longisporum	HKUCC 9118	–	AY849966	–	–
Helicoma longisporum	MFLUCC 12-0563	KU144928	KU764713	KU782751	–
Helicoma longisporum	MFLUCC 17-1991	MHS58725	MHS58851	MHS50916	MHS51041
Helicoma longisporum	MFLUCC 17-2001	MHS58726	MHS58852	MHS50917	MHS51042
Helicoma longisporum	MFLUCC 10-0120	JN865204	JN865192	KF301558	–
Helicoma longisporum	MFLUCC 17-1991	MHS58725	MHS58851	MHS50916	MHS51041
Helicoma longisporum	MFLUCC 17-2001	MHS58726	MHS58852	MHS50917	MHS51042
Helicoma longisporum	MFLUCC 10-0120	JN865204	JN865192	KF301558	–
Helicoma longisporum	MFLUCC 17-2001	MHS58726	MHS58852	MHS50917	MHS51042
Helicoma longisporum	MFLUCC 16-1230	KY763626	KY763621	KY763285	–
Helicoma longisporum	GZCC 22-2006	OP508730	OP508770	OP98081	OP98070
Helicoma longisporum	MFLUCC 16-0226	KY321324	KY321327	KY792601	–
Helicoma longisporum	MFLUCC 16-1233	–	KY763624	–	–
Helicoma longisporum	BCC 3332	AY916490	AY856907	–	–
Helicoma longisporum	BCC 3332	AY916490	AY856907	–	–
Helicoma longisporum	MFLUCC 17-1994	MHS58735	MHS58861	MHS50926	MHS51051
Helicoma longisporum	MFLUCC 17-2006	MHS58736	MHS58862	MHS50927	MHS51052
Helicoma longisporum	MFLUCC 17-2007	MHS58737	MHS58863	MHS50928	MHS51053
Helicoma longisporum	GZCC 22-2007	OP508731	OP508771	OP98082	OP98071
Helicoma longisporum	MFLUCC 16-1244	MZ538503	MZ538537	MZ567082	MZ567111
Helicoma longisporum	NBRC 9014	AY916489	AY856903	–	–
Helicoma longisporum	CBS 254.75	–	DQ470982	DQ471105	–
Helicoma longisporum	CBS 269.52	AY916487	AY856893	–	–
Helicoma longisporum	CBS 941.72	AY916488	AY856883	–	–
Helicoma longisporum	NBRC 30345	–	AY856896	–	–

(Continued)
TABLE 1 (Continued)

Taxa	Strain/Voucher No.	GenBank accession no.			
		ITS	LSU	TEF1α	RPB2
Helicosporium vesicarium	MFLUCC 17-1795	MH558739	MH558864	MH550930	MH551055
Helicosporium viridiflavum	MFLUCC 17-2336	MH58738	–	MH550929	MH551054
Helicosporium viridisporum	GZCC 22-2008	OP508736	OP508776	OP698087	OP698076
Helicotrunatum palmigenum	KUMCC 21-0474	OM102542	OL985959	OM355488	OM355492
Helicotrunatum palmigenum	NBRC 32663	AY916480	AY85689	–	–
Helicotubefia guangxensis	MFLUCC 17-0040	MH290018	MH290023	MH290028	MH290033
Helicotubefia jonesii	MFLUCC 17-0043	MH290020	MH290025	MH290030	MH290035
Kevinhydea brevistipitata	MFLUCC 18-1269	MH747115	MH747102	–	–
Manoharachariella tectonae	MFLUCC 12-0170	KU144935	KU746705	KU747262	–
Marti pulchra aquatica	KUMCC 15-0276	KY320534	KY320551	KY320564	–
Marti pulchra aquatica	MFLUCC 15-0249	KY320532	KY320549	–	–
Neocanthothea fusiforme	MFLUCC 11-0510	KF015129	KF015137	–	–
Neochlamydotubefia fusiformis	MFLUCC 16-0016	MH58740	MH58865	MH590931	MH59109
Neochlamydotubefia khunkornensis	MFLUCC 10-0118	JN65202	JN65190	KF01564	–
Neohelicoma fagacearum	MFLUCC 11-0379	KF015124	KF015132	KF015153	–
Neohelicosporium aquaticum	MFLUCC 17-1519	MF467916	MF467929	MF353242	MF353272
Neohelicosporium astrictum	MFLUCC 17-2004	MF58747	MH58872	MH590938	MH51070
Neohelicosporium ellipsoideum	MFLUCC 16-0229	MH58748	MH58873	MH590939	MH51071
Neohelicosporium guangxense	MFLUCC 17-1522	MF467922	MF467935	MF353248	MF353278
Neohelicosporium hainanensis	GZCC 22-2009	OP508734	OP508774	OP698085	OP698074
Neohelicosporium hainanensis	GZCC 22-2027	OP508735	OP508775	OP698086	OP698075
Neohelicosporium hyalosporus	GZCC 16-0086	MH58745	MH58870	MH590936	MH51064
Neohelicosporium longisetus	NCUY 106H1-1-1	MT939303	–	–	–
Neohelicosporium pallidus	CBS 245.49	–	GU566745	–	–
Neohelicosporium pallidus	CBS 27L.52	AY916461	AY856887	–	–
Neohelicosporium pallidus	CBS 962.69	AY916460	AY856886	–	–
Neohelicosporium pallidus	UAMH 10535	AY916462	AY856913	–	–
Neohelicosporium pandanicola	KUMCC 16-0143	NR_168180	MH260307	MH41277	–
Neohelicosporium submersus	MFLUCC 16-1106	KY20530	KY20547	–	–
Neohelicosporium aquaticum	MFLUCC 17-1519	MF467916	MF467929	MF353242	MF353272
Neohelicosporium astriculum	MFLUCC 17-2004	MF58747	MH58872	MH590938	MH51070
Neohelicosporium ellipsoideum	MFLUCC 16-0229	MH58748	MH58873	MH590939	MH51071
Neohelicosporium guangxense	MFLCC 17-1522	MF467922	MF467935	MF353248	MF353278
Neohelicosporium hainanensis	GZCC 16-0076	MF467923	MF467936	MF353249	MF353279
Neohelicosporium irregularis	MFLUCC 17-1796	MH58752	MH58877	MH59043	MH51075
Neohelicosporium krabense	MFLUCC 16-0224	MH58754	MH58879	MH59045	MH51077
Neohelicosporium laxispore	MFLUCC 17-2027	MH58755	MH58880	MH59046	MH51078
Neohelicosporium ovoides	GZCC 16-0064	MH58756	MH58881	MH59047	MH51079
Neohelicosporium parvisporum	MFLUCC 17-1523	MF467926	MF467939	MF353252	MF353282
Neohelicosporium thailandicum	MFLUCC 16-0221	MF467928	MF467941	MF353253	MF353283
Neotubefia krabensis	MFLUCC 16-1125	MG012031	MG012024	MG012010	MG012017
Parahelicosporium aquaticus	MFLUCC 16-0234	MH58766	MH58891	MH59098	MH51092
Parahelicosporium chingmaoensis	MFLUCC 21-0159	OL697884	OL606145	OL64518	OL64522
Parahelicosporium talbotii	MFLUCC 17-2021	MH58765	MH58890	MH59097	MH51091
Parahelicosporium yunnanensis	CGMCC 3.20429	MZ092717	MZ841658	–	OM82000

(Continued)
TABLE 1 (Continued)

Taxa	Strain/Voucher No.	GenBank accession no.	ITS	LSU	TEF1α	RPB2
Pleurohelicosporium parvisporum	MFLUCC 17-1982	MH558764	MH558889	MH550956	MH551088	
Pseudohelicon giganstiporum	BCC 3550	AY916467	AY856904	–	–	
Pseudohelicon subglobosum	NCUY K3-2-3	LC316609	LC316612	–	–	
Tampinipora indica	NFFCI 2924	KC469282	KC469283	–	–	
Tambinipora srinivasanii	NFFCI 4323	MG763746	MG763745	–	–	
Thaxteriellopsis lignicola	MFLUCC 16-0026	MH558768	MH558893	MH550960	MH551094	
Thaxteriellopsis lignicola	MFLUCC 10-0124	JN865208	JN865196	KF301561	–	
Tubeufia bambuicola	MFLUCC 17-1803	MH558771	MH558896	MH550963	MH551097	
Tubeufia brevis	MFLUCC 17-1799	MH558772	MH558897	MH550964	MH551098	
Tubeufia javanica	MFLUCC 12-0545	KH800034	KH800036	KH800037	–	
Tubeufia rubra	GZCC 16-0081	MH558801	MH558926	MH550994	MH551128	

New sequences are in bold.

1ANM, A.N. Miller; BBB, Bahía Blanca Biology Herbarium, Argentina; BCC, BIOTEC Culture Collection, Thailand; CBS, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CGMCC, the China General Microbiological Culture Collection Center, Beijing, China; GZCC, Guizhou Culture Collection, Guizhou Academy of Agricultural Sciences, Guiyang, China; ICM, Japan Collection of Microorganisms; KUMCC, Culture collection of Kunming Institute of Botany, Kunming, China; MFLU, the Herbarium of Mae Fah Luang University, MFLUCC, Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; MUCL, Mycothèque de l’Université Catholique de Louvain, Louvain-la-Neuve, Belgium; NBRC, the NITE Biological Resource Center; NCUY, National Chiai University, Taiwan, China; NFCCI, the National Fungal Culture Collection of India; UHAM, UAMH Center for Global Microfungals Diversity, University of Toronto, Canada; UBC, University of British Columbia, Canada.

bp; TEF1α: 912 bp). The maximum likelihood and Bayesian analysis of the combined dataset resulted in phylogenetic reconstructions with largely similar topologies, and the IQ-Tree is shown in Figure 2.

Representatives of the sequenced genera (with molecular data) of helicosporous hyphomycetes (Boonmee et al., 2011, 2014; Rajeshkumar and Sharma, 2013; Brahamanage et al., 2017; Doilom et al., 2017; Lu et al., 2017a, 2018a,b; Luo et al., 2017; Phookamsak et al., 2017; Liu et al., 2019; Tian et al., 2022) are included in our phylogenetic analysis (Figure 2). Thirty-six genera are represented by at least one species in Tubeufiaceae. Our 11 isolates are recognized as four new species, viz. Helicoma wuzhishanense, Helicosporium hainanense, H. viridisporum, and Neohelicoomycetes hainanensis, and three new records, viz. Helicoma guttulatum, H. longisporum, and Helicosporium sexuale.

Taxonomy

Helicoma guttulatum Y.Z. Lu, Boonmee & K.D. Hyde, Fungal Diversity 80: 125 (2016), Figure 3.

Index Fungorum number: IF 552218; Facesoffungi number: FoF 02358.

Saprobic on submerged decaying wood in a freshwater stream. Sexual morph Undetermined. Asexual morph

Hyphomycetous, helicosporous. Colonies superficial, effuse, gregarious, brown to dark brown. Mycelium mostly immersed, composed of branched, septate, brown hyphae. Conidiophores 120–202 μm (x = 169 ± 5.5 μm, n = 20), macronematous, mononematous, cylindrical, erect, septate, unbranched, pale brown to brown at the apex, dark brown at the base, smooth-walled. Conidiogenous cells 18–37 × 4–6 μm (x = 24 × 5 μm, n = 20), holoblastic, mono- to polyblastic, integrated, terminal, cylindrical, brown, and smooth-walled. Conidia 20–26.5 μm (x = 22 μm, n = 25) in diam., and conidial filament 7.5–9.5 μm (x = 8.5 μm, n = 25) wide and 43–57 μm long (x = 51.5 μm, n = 25), solitary, acrogenous, helicoid, tightly coiled 1–1½ times, guttulate, do not become loose in water, 7–8-septate, straight constricted at the septa, subhyaline to pale brown, tapering toward the flat end, rounded at the apex, conico-truncate at the base, smooth-walled.

Culture characteristics: Conidia germinating on PDA within 12 h; Colonies growing on PDA, reaching 9 mm in 2 weeks at 25°C, circular, with a flat surface, edge undulate, and pale brown to brown in the PDA medium.

Material examined: CHINA, Hainan Province, Yanoda Tropical rainforest scenic area, on submerged decaying wood in a freshwater stream, 23 October 2021, Jian Ma, Y16.2 (GZAAS 22-2004), living culture, GZCC 22-2004; living culture, GZCC 22-2004; Ibid., Y4 (GZAAS 22-2025), living culture, GZCC 22-2025; Hainan Province, Wuzhishan City, Shuimanhe tropical rainforest scenic area in Wuzhishan, on submerged decaying wood in a freshwater stream, 15 August 2021, Jian Ma, WZS34 (GZAAS 22-2024), living culture, GZCC 22-2024.
FIGURE 2 (Continued)
Phylogenetic tree generated from a maximum likelihood analysis based on a concatenated alignment of ITS, LSU, RPB2, and TEF1α sequence data. Bootstrap support values of maximum likelihood (ML) ≥75% and Bayesian posterior probabilities (PP) ≥0.95 are given near the nodes as PP/ML BS. The tree is rooted with

Botryosphaeria agaves MFLUCC 10-0051 and B. dothidea CBS 115476. Newly generated sequences are in red. Ex-type strains are in bold.
Helicoma guttulatum (GZAAS 22–2004). (a) Colony on decaying wood. (b–d) Conidiophores and conidia. (e–g) Conidiogenous cells. (i) Germinating conidium. (h,j–l) Conidia. (m,n) Colonies on PDA observed from above and below. Scale bars: (b–d) = 20 µm, (e–j,l–l) = 10 µm, and (h) = 5 µm.
GenBank accession numbers: GZCC 22-2004: OP508739 (ITS), OP508779 (LSU), OP698079 (RPB2), and OP698090 (TEF1α); GZCC 22-2025: OP508737 (ITS), OP508777 (LSU), OP698077 (RPB2), and OP698088 (TEF1α); GZCC 22-2024: OP508733 (ITS), OP508773 (LSU), OP698073 (RPB2), and OP698084 (TEF1α).

Notes: Helicoma guttulatum was introduced by Hyde et al. (2016) with morphological and phylogenetic evidence. Tian et al. (2022) reported a new collection from Thailand. In this study, three newly obtained isolates clustered with two known strains of *H. guttulatum* (MFLUCC 16-0022 and MFLUCC 21-0152) with high statistical support (100% ML/1.00 PP, Figure 2). We note that there are two isolates (GZCC 22-2004 and GZCC 22-2025) clustered together with high statistical support and were phylogenetically different from the other isolates. However, there are only 5 bp and 12 bp differences in ITS and RPB2 between them and the ex-type strain of *H. guttulatum*. This species has only been previously reported in Thailand. It is the first record of *H. guttulatum* in China and in a terrestrial habitat.

Helicoma longisporum Y.Z. Lu, J.K. Liu & K.D. Hyde, Fungal Diversity 92: 178 (2018), Figure 4.

Index Fungorum number: IF 900032;Facesoffungi number: FoF 04715.

Saprobic on decaying wood in a freshwater stream. **Sexual morph** Undetermined. **Asexual morph** Hypomycetous, helicosporous. Colonies on the substratum superficial, effuse, gregarious, brown to dark brown. Mycelium partly immersed, brown, septate, branched hyphae, with masses of crowded, glistening conidia. Conidiophores 114–281 × 6–10.5 μm (x = 197.5 × 7 μm, n = 20), macronematous, mononematous, cylindrical, straight, unbranched, septate, part pale brown, smooth-walled. Conidiogenous cells 11–21 × 6.5–10 μm (x = 13.5 × 7.5 μm, n = 20), holoblastic, monoblastic, integrated, intercalary, cylindrical, with denticles, rising laterally from the lower portion of conidiophores as tiny tooth-like protrusions (3–5.5 μm long, 3.5–4.5 μm wide), pale brown, smooth-walled. Conidia 51–70 μm in diam. and conidial filament 6.5–11 μm wide (x = 61 × 9 μm, n = 20), 325–508 μm long, solitary, pleurogenous, helicoid, coiled 2–3 times, becoming loosely coiled in water, rounded at tip, up to 34-septate, constriicted at septa, pale brown to brown, smooth-walled.

Culture characteristics: Conidia germinating on water agar and germ tubes produced from conidia within 12 h. Colonies growing on PDA, circular, with a flat surface, edge entire, and pale brown to brown in the PDA medium.

Material examined: CHINA, Hainan Province, Yanoda Tropical rainforest scenic area, on submerged decaying wood in a freshwater stream, 23 October 2021, Jian Ma, Y16.3 (GZAAS 22-2005), living culture, GZCC 22-2005; Ibid., Y5 (GZAAS 22-2026), living culture, GZCC 22-2026.

GenBank accession numbers: GZCC 22-2005: OP508740 (ITS), OP508780 (LSU), OP698080 (RPB2), and OP698091 (TEF1α); GZCC 22-2026: OP508778 (ITS), OP508778 (LSU), OP698078 (RPB2), and OP698089 (TEF1α).

Notes: Helicoma longisporum was introduced by Lu et al. (2018b) based on morphology and phylogeny. In this study, two newly obtained isolates are identified as *H. longisporum* based on their identical DNA molecular data, conidiophores, conidiogenous cells, and conidial characteristics (Lu et al., 2018b). This species has only been previously reported in Thailand (Lu et al., 2018b). It is the first record of *H. longisporum* in China.

Helicoma wuzhishanense Y.Z. Lu & J.C. Kang, sp. nov.

Index Fungorum number: IF 900032; Facesoffungi number: FoF 13100.

Holotype: GZAAS 22-2003.

Etymology: “wuzhishanense” referring to collecting site.

Saprobic on decaying wood in a freshwater stream. **Sexual morph** Undetermined. **Asexual morph** Hypomycetous, helicosporous. Colonies on the substratum superficial, effuse, gregarious, brown to dark brown. Mycelium partly immersed, brown, septate, branched hyphae, with masses of crowded, glistening conidia. Conidiophores 90–130 μm long, 5.5–6.5 μm wide (x = 115 × 6 μm, n = 30), macronematous, mononematous, cylindrical, erect, straight to slightly bent, unbranched, septate, the lower part brown and the upper part pale brown, smooth-walled. Conidiogenous cells 10–13 × 5–6.5 μm (x = 11.5 × 5.5 μm, n = 20), holoblastic, mono- to polyplastic, integrated, intercalary, cylindrical, with denticles, rising laterally from the lower portion of conidiophores as tiny tooth-like protrusions (1.5–3 μm long, 1.5–2.5 μm wide), brown, smooth-walled. Conidia 34–58 μm diam., and conidial filament 2.5–5 μm wide (x = 45 × 4 μm, n = 20), 182–287 μm long, up to 34-septate, solitary, pleurogenous, helicoid, coiled 2½–3½ times, becoming loosely coiled in water, rounded at tip, guttulate, hyaline to pale brown, smooth-walled.

Culture characteristics: Conidia germinating on water agar and germ tubes produced from conidia within 12 h. Colonies growing on PDA, circular, with a flat surface, edge entire, reaching 29 mm in 4 weeks at 25°C, pale brown to yellowish in the PDA medium.

Material examined: CHINA, Hainan Province, Wuzhishan City, Shuimanhe tropical rainforest scenic area in Wuzhishan, on submerged decaying wood in a freshwater stream, 15 August 2021, Jian Ma, WZS23.2 (GZAAS 22-2003), holotype; HKAS 125862, isotype), ex-type living culture, GZCC 22-2003.
FIGURE 4
Helicoma longisporum (GZAAS 22-2005). (a,b) Colony on decaying wood. (c,d) Conidiophores with attached conidia. (e,f,j) Conidiogenous cells. (g–i) Conidia. (k) Germinating conidium. (l,m) Colonies on PDA observed from above and below. Scale bars: (c–k) = 20 μm.
FIGURE 5
Helicoma wuzhishanense (GZAAS 22-2003, holotype). (a,b) Colony on decaying wood. (c–f) Conidiophores. (g,h) Conidiogenous cells with attached conidium. (i,j) Conidia. (k) Germinating conidium. (l,m) Colonies on PDA observed from above and below. Scale bars: (c–f, k) = 20 µm, (g–j) = 10 µm.
GenBank accession numbers: OP508732 (ITS), OP508772 (LSU), OP698072 (RPB2), and OP698083 (TEF1α).

Notes: Morphologically, Helicoma wuzhishanense resembles Helicoma rufum, having unbranched, straight to slightly bent, cylindrical conidiophores, and pleurogenous helicoid conidia. However, H. wuzhishanense can be distinguished from H. rufum by its smaller conidiophores (90–130 μm × 5.5–6.5 μm vs. 110–210 μm × 7–8.5 μm) and shorter conidial filament (182–287 μm vs. 240–410 μm) (Lu et al., 2018b). Furthermore, H. rufum produces a reddish brown pigment in the PDA medium in 7 days but H. wuzhishanense lacks this characteristic. Phylogenetically, H. wuzhishanense formed an independent lineage within the genus (Figure 2) and the phylogenetic analysis result supports it as a distinct species.

Helicosporium hainanense Y.Z. Lu & J.C. Kang, sp. nov.

Type species: H. hainanense Y.Z. Lu & J.C. Kang, sp. nov.

Index Fungorum number: IF 558542; Facesoffungi number: FoF 09194.

Holotype: MFLU 21-0104.

Hyphomycetous, helicosporous. Colonies on the substratum superficial, effuse, gregarious, yellow green. Mycelium partly immersed, partly superficial, brown to dark brown, septate, branched hyphae, with masses of crowded, glistening conidia. Conidiophores 118–182 μm long, 2.5–4 μm wide (x = 155 × 3 μm, n = 30), macroconidial, mononematous, cylindrical, unbranched, straight or slightly flexuous, septate, pale brown to dark brown, smooth-walled. Conidiogenous cells holoblastic, mono- to polyblastic, discrete, determinate, rising laterally from the lower portion of the conidiophores as tiny bladder-like protrusions, 2–8.5 μm long, 1.5–3.5 μm diam., each bearing 1–3 tiny conidiogenous loci, hyaline to pale brown, smooth-walled. Conidia 11–13 μm diam. and conidial filament 2–3 μm wide (x = 12 × 2.5 μm, n = 20), 55–60 μm long, solitary, pleurogenous, helicoid, tightly coiled 2¹/₂–3 times, do not become loose in water, tapering toward the rounded ends, indistinctly multi-septate, guttulate, hyaline to yellowish, smooth-walled.

Culture characteristics: Conidia germinating on water agar and germ tubes produced from conidia within 12 h. Colonies growing on PDA, irregular, with a flat surface, edge undulate, reaching 40 mm in 6 weeks at 25°C, brown to dark brown in the PDA medium.

Material examined: CHINA, Guangxi Zhuang Autonomous Region, Liuzhou City, Luzhai County, on submerged decaying wood in a freshwater stream, 4 May 2021, Jian Ma & Yongzhong Lu, LZ15 (GZCC 22-2007 = HKAS 125866), living cultures, GZCC 22-2007.

GenBank accession numbers: OP508731 (ITS), OP508771 (LSU), OP698071 (RPB2), and OP698082 (TEF1α).

Notes: In this study, a new helicosporous hyphomycete (GZCC 22-2007) was phylogenetically grouped with Helicosporium sexuale (MFLUCC 16-1244) and did not show much divergence (Figure 2). We compared their DNA sequences and found that only 5 bp nucleotide differences between them in TEF1α sequence data, whereas their ITS, LSU, and RPB2 sequence data were identical. Therefore, we identify the new isolate GZCC 22-2007 as H. sexuale. Helicosporium sexuale was described as only a sexual morph (Boonmee et al., 2021). Its asexual morph is reported in this study for the first time. This is also the first record of H. sexuale in a freshwater habitat in China.
Helicosporium hainanense (GZAAS 22–2006, holotype). (a,b) Colony on decaying wood. (c–f) Conidiophores and conidia. (g–i) Conidiogenous cells with attached conidia. (j) Germinating conidium. (k–m) Conidia. (n,o) Colonies on PDA observed from above and below. Scale bars: (c–f) = 20 µm, (g–j) = 10 µm, (k–m) = 5 µm.
Helicosporum sexuale (GZAAS 22-2007). (a, b) Colony on decaying wood. (c–h) Conidiophores. (i, j) Conidiogenous cells. (k) Germinating conidium. (l–o) Conidia. (p, q) Colonies on PDA observed from above and below. Scale bars: (c–h) = 20 µm, (i–o) = 10 µm.
Helicosporium viridisporum (GZAS 22-2008, holotype). (a,b) Colony on decaying wood. (c–e,g,i,j) Conidiophores and conidia. (f) Conidiogenous cells. (h) Germinating conidium. (k–n) Conidia. (o,p) Colonies on PDA observed from above and below. Scale bars: (c–f,i,j) = 20 µm, (g,h) = 10 µm, (k–n) = 5 µm.
Helicosporium viridisporum Y.Z. Lu & J.C. Kang, sp. nov.

Figure 8.

Index Fungorum number: IF 900030, Facesoffungi number: FoFo 13102.

Holotype: GZAAS 22-2008.

Etymology: "viridisporum" referring to the bright lime green conidia in a natural woody substrate.

Saprobic on decaying wood in a freshwater stream. **Sexual morph** Undetermined. **Asexual morph** Hyphomycetous, helicosporous. **Colonies** on the substratum superficial, effuse, gregarious, bright lime green. **Mycelium** partly immersed, brown to dark brown, septate, branched hyphae, with masses of crowded, glistening conidia. **Conidiophores** 80–206 µm long, 3–7 µm wide (\(\bar{x} = 146 \times 5 \mu m, n = 30 \)), macronematous, mononematous, erect, setiferous, cylindrical, septate, brown to dark brown, smooth-walled. **Conidigenous cells** holoblastic, polyblastic, discrete, determinate, denticulate, rising laterally from the lower parts of conidiophores as tiny tooth-like protrusions, hyaline to pale brown, smooth-walled. **Conidia** solitary, 12–14 µm in diameter. **Conidial filament** 1–2 µm wide (\(\bar{x} = 13 \times 1.5 \mu m, n = 30 \)), 75–97 µm long, pleurogenous, helicoid, tightly coiled 2–3/3 times, becoming loosely coiled in water, rounded at tip, guttulate, indistinctly multi-septate, hyaline to pale green, smooth-walled.

Culture characteristics: **Conidia** germinating on water agar and germ tubes produced from conidia within 12 h. **Colonies** growing on PDA, circular, with a flat surface, edge undulate, reaching 40 mm in 5 weeks at 25°C, brown to dark brown in the PDA medium.

Material examined: CHINA, Guangxi Zhuang Autonomous Region, Hechi City, Xiayi Village, on submerged decaying wood in a freshwater stream, 3 May 2021, Jian Ma, YXC2 (GZAAS 22-2009, holotype; HKAS 125863, isotype), ex-type living culture, GZCC 22-2008. **GenBank accession numbers:** OP508736 (ITS), OP508776 (LSU), OP698076 (RPB2), and OP698087 (TEF1α).

Notes: The conidiophores and conidial features of *Neohelicomyces hainanensis* are morphologically similar to those of *N. hyalosporus* but it can be distinguished from *N. hyalosporus* by its shorter conidiophores (137–197 µm vs. 210–290 µm) (Lu et al., 2018b). Its colonies change from white to pink on a natural woody substrate; a feature that other species of the genus do not have. Phylogenetically, *N. hainanensis* shares a sister relationship to *N. pallidus* with high statistical support (97 MLBS/0.99 PP), and the phylogenetic analysis results support it as a distinct species (Figure 2).

Discussion

The difficulty in the taxonomic study of helicosporous hyphomycete species is that their morphological characteristics are very similar; it is difficult to distinguish them only by morphological comparison (Linder, 1929; Pirozynski, 1972; Goos, 1985, 1986, 1989; Zhao et al., 2007; Kuo and Goh, 2018; Lu et al., 2018a; Hsieh et al., 2021; Tian et al., 2022). Therefore, polygenic phylogenetic analysis is required to accurately identify them. However, previous studies have mainly focused on the description of morphological characteristics; most of them without obtaining strains and DNA molecular data (Linder, 1929; Pirozynski, 1972; Goos, 1985, 1986, 1989; Zhao et al., 2007). What makes things
Neohelicomyces hainanensis (GZAAS 22-2009, holotype). (a,b) Colony on decaying wood. (c–g) Conidiophores and conidia. (h–j) Conidiogenous cells. (k–n) Conidia. (o) Germinating conidium. (p,q) Colonies on PDA observed from above and below. Scale bars: (c–g) = 20\,\mu m, (h–j,k–n) = 10\,\mu m, (l) = 5\,\mu m.
more complicated is that standards for species identification are not uniform, which creates confusion in this taxonomic system. Some helicosporous fungi have been transferred several times. For example, Moore (1957) treated Drepanospora pannosa as Helicosporium pannosum; Matsushima (1975) classified Drepanospora pannosa, Helicosporium linderi, Helicosporium nematosporum, and Helicosporium serpentinum under Helicosporium pannosum; Goos (1989) treated them as Drepanospora pannosum; Zhao et al. (2007) treated all of them and Helicosporium gigasporum as Helicosporium pannosum. The reason the authors reassessed the taxonomic status of these species is that there were some differences in the morphological characteristics of the conidiophores, conidiogenous cells, and conidia; the authors used different taxonomic principles to identify these species (Moore, 1957; Matsushima, 1975; Goos, 1989; Zhao et al., 2007). In our previous study, we paid attention to the confusion regarding the classification of helicosporous hyphomycete, analyzed the existing problems, and proposed ideas to solve the problems (Lu et al., 2018b). Lu et al. (2018b) provided several examples to show that the morphological characteristics of conidiophores, conidiogenous cells, and conidia, including their color and size, are very important influencing factors that cannot be ignored in distinguishing helicosporous fungi. The key to solve this taxonomic system problem is to obtain more species resources such as molecular data and morphological characteristics, for both newly collected specimens and published specimens with incomplete morphological features. Specimens observed in previously published literature that have molecular data but lack morphological characteristics, and are well preserved, can be borrowed for further morphological research.

In addition, different fungal species with similar morphologies produced distinctly characteristic secondary metabolites. For example, the stromata and ascospores of Annulohypoxylon arceolatum were morphologically similar to those in A. leptiscum. However, they could be distinguished by their unique stromatal HPLC profiles, in which A. arceolatum produced the sole main metabolite viz. urceoline, while A. leptiscum produced large quantities of truncatone A and C (Kuhnert et al., 2017). Annulohypoxylon yangensis was morphologically similar to A. truncatum, but the former produced BNT (1,1′-binaphthalene-4,4′-5,5′-tetrol), whereas the latter produced truncaquenone A and B in large quantities as well as trace truncatone A (Surup et al., 2016; Kuhnert et al., 2017). Kuhnert et al. (2017) provided a good example, using chemotaxonomy to evaluate the taxonomic systems of fungi with similar morphologies. This may be a new way to solve the problem of the taxonomy of helicosporous hyphomycetes by using evidence from chemotaxonomic data together with phylogenetic and morphological data.

In this study, we obtained 11 helicosporous fungal specimens and cultures and introduced four new species and three new records of helicosporous hyphomycetes based on morphological and phylogenetic evidence. We are also carrying out studies on the secondary metabolites of these fungi, and hope to find the characteristic compounds of each genus and solve the classification problem of helicosporous fungi with evidence from chemotaxonomic data in future.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article supplementary material.

Author contributions

Y-ZL and JM conducted the experiments, analyzed the data, and wrote the article. J-CK planned the experiments. X-JX and Y-PX analyzed the data. JM and X-JX conducted the experiments. L-JZ and J-CK revised the article. Y-ZL and J-CK funded the experiments. All authors revised and agreed to the published version of the article.

Funding

This work was funded by the National Natural Science Foundation of China (NSFC 31900020, 32170019, and 31670027), the Science and Technology Foundation of Guizhou Province ([2020]1Y058), the China Post-doctoral Science Foundation Project (2020M683657XB), and the Guizhou Province high-level talent innovation and entrepreneurship merit funding project (No. 202104).

Acknowledgments

L-JZ would like to thank Mae Fah Luang University for granting a tuition scholarship for his Ph.D. studies.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Rehner, S. A., and Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97, 84–98. doi: 10.3852/mycologia.97.1.84

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hobina, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi: 10.1093/sysbio/sys029

Senanayake, I. C., Rathnayaka, A. R., Marasinghe, D. S., Calabon, M. S., Gentekaki, E., Lee, H. B., et al. (2020). Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11, 2678–2754. doi: 10.5943/mycosphere/11/1/20

Shimodaira, H., and Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247. doi: 10.1093/bioinformatics/17.12.1246

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. doi: 10.1093/bioinformatics/btu033

Surup, F., Wiebach, V., Kuhnert, E., and Stadler, M. (2016). Truncquinones A and B, asterriquinones from Annulohypoxylon truncatum. Tetrahedron Lett. 57, 2183–2185. doi: 10.1016/j.tetlet.2016.04.014

Tian, X., Karunarathna, S. C., Xu, R., Lu, Y., Suwannarach, N., Mapook, A., et al. (2022). Three new species, two new records and four new collections of Tubeufiaceae from Thailand and China. J. Fungi 8, 206. doi: 10.3390/jof8020206

Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172, 4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990

White, T. J., Bruns, T., Lee, S., and Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols Guide Methods Appl. 18, 315–322. doi: 10.1016/S978-0-12-372180-8.50042-1

Yoshimura, S., Zenkoh, T., Ohtu, Y., Kanasaki, R., Shigematsu, N., Takase, S., et al. (2003). Isolation, structure determination and biological study of novel gluconeogenesis inhibitors, FR225659 family. Sympos. Chem. Nat. Prod. 45, 281–286.

Zeng, X., Qian, S., Lu, Y., Li, Y., Chen, L., Qian, Y., et al. (2022). A novel Nitrogen-containing Glyceride from fungal saprobe Tubeufia rubra reverses MDR of tumor cell lines to Doxorubicin. Rec. Nat. Prod. 16, 622–632. doi: 10.25135/rnp.320.2201.2334

Zenkoh, T., Ohtu, Y., Yoshimura, S., Shigematsu, N., Takase, S., and Hino, M. (2003). The novel gluconeogenesis inhibitors FR225659 and FR225656 from Helicomyces sp. No. 19353 III. Structure determination. J. Antibiot. 56, 694–699. doi: 10.7164/antibiotics.56.694

Zhao, G. Z., Liu, X., and Wu, W. (2007). Helicosporous hyphomycetes from China. Fungal Divers. 26, 313–524.

Zheng, W., Han, L., He, Z.J., and Kang, J.C. (2022). A new alkaloid derivative from the saprophytic fungus Neohelicomyces hyalosporus FF11-1. Nat. Prod. Res. (In press).