Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe$_2$

Mingzhe Yan1, Huaqing Huang1, Kenan Zhang1, Eryin Wang1, Wei Yao1, Ke Deng1, Guoliang Wan1, Hongyun Zhang1, Masashi Arita2, Haitao Yang1,3, Zhe Sun4, Hong Yao5,6, Yang Wu3, Shoushan Fan1,3,6, Wenhui Duan1,6 & Shuyun Zhou1,6

Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart—type-II Dirac fermions—can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe$_2$ single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe$_2$ as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.
In three dimensional topological semimetals, the low energy excitations—Dirac or Weyl fermions—are described by the massless Dirac equation. Dirac fermions are protected by certain crystal symmetries. When time-reversal or inversion symmetry is broken, a spin-degenerate Dirac fermion splits into two Weyl fermions, and the topological surface states (TSS) evolve from a closed Fermi surface to open Fermi arcs. The generic Hamiltonian for Dirac and Weyl fermions is $H(k) = T(k) \pm U(k)$, where $U(k)$ is a potential component and $T(k)$ is a linear kinetic term that tilts the Dirac cone. The relative magnitude of $T(k)$ and $U(k)$ can be used to classify the topological nature of the Dirac or Weyl semimetals. For type-I Dirac and Weyl semimetals, which obey the Lorentz invariance, $T(k) < U(k)$ and isolated Dirac or Weyl points with linear Dirac cones are expected at the Fermi energy (see schematic drawing in Fig. 1a). When $T(k) > U(k)$ along certain momentum direction, the Lorentz invariance is violated and strongly tilted Dirac cones emerge at the topologically protected touching points between electron and hole pockets (Fig. 1b). Such Lorentz-violating Dirac fermions are classified as type-II Dirac fermions. The classification and comparison of type-I and type-II Dirac/Weyl semimetals are summarized in Table 1.

The different band topology can also lead to distinct magneto-transport properties. While type-I Dirac and Weyl semimetals exhibit negative magneto-resistance along all directions, the magneto-transport properties of type-II semimetals are expected to be extremely anisotropic and negative magneto-resistance is expected only along momentum directions with $T(k) < U(k)$. Although type-II Weyl semimetals have been reported recently, type-II Dirac semimetals still remain to be realized experimentally. This is particularly important since type-II Dirac semimetal stands at the critical point of topological phase transition and can be tuned to Weyl semimetal or topological crystalline insulator via crystal distortions or magnetic doping.

Here we fill in the last missing element in the classification of Dirac and Weyl semimetals. By combining angle-resolved photoemission spectroscopy (ARPES) measurements and first-principles calculations, we report the experimental evidence of type-II Dirac fermions in bulk PtTe$_2$ single crystal with a pair of strongly tilted Dirac cones.

Results

Structural characterization

PtTe$_2$ crystallizes in the CdI$_2$-type trigonal (1 T) structure with $P\overline{3}m1$ space group (No. 162). The crystal structure is composed of edge-shared PtTe$_6$ octahedra with PtTe$_3$ layers tiling the ab plane (Fig. 1c, d). The isostructural PtSe$_2$ film with one monolayer thickness is a semiconductor with a 1.2 eV gap and exhibits helical spin texture with spin-layer locking. Here we focus on the topological property of the bulk semimetallic PtTe$_2$ crystal, and we note that similar topological property is also expected in bulk PtSe$_2$. Figure 1e shows the hexagonal bulk Brillouin zone (BZ) and projected surface BZ onto the (001) surface. The Raman spectrum in Fig. 1f shows the E_g and A_{1g} vibrational modes at ~110 and 157 cm$^{-1}$ respectively, which are typical for 1 T structure. The sharp X-ray diffraction (XRD) peaks (Fig. 1g) and low-energy electron diffraction (LEED) pattern (Fig. 1h) confirm the high quality of the single crystals.

Electronic structure

The overview of PtTe$_2$ band structure measured by ARPES near the Fermi energy (E_F) is shown in Fig. 2. Figures 2a, b show ARPES data taken along two high-symmetry directions Γ-M and Γ-K at photon energy of 22 eV. There are a few conical dispersions in the ARPES data. The most obvious one is centered at the Γ point, which is formed by a V-shaped dispersion touching a flatter A-shaped dispersion (pointed by red arrow). The calculated projected spectral weight along the two high-symmetric directions is shown in Figs. 2c, d for comparison. The cone-like dispersion discussed above corresponds to continuous states in the calculation, suggesting that this band is from the bulk states. This cone shows up as a pocket around the Γ point in the measured and calculated Fermi surface maps (Figs. 2e, f). It is also clearly revealed in the

Fig. 1 Characterization of type-II Dirac semimetal PtTe$_2$. **a**, **b** Schematic drawing of type-I and type-II Dirac fermions. **c**, **d** Side and top views of PtTe$_2$ crystal structure. Green balls are Pt atoms and red balls are Te atoms. The unit cell is indicated by black dashed line. **e** Bulk and projected surface Brillouin zone onto (001) plane. Red dots (labeled as D) mark the positions of 3D Dirac points. **f** Raman spectrum measured at room temperature. **g** XRD of PtTe$_2$ measured at room temperature. The inset shows the picture of one single crystal with a few mm size. **h** LEED pattern taken at beam energy of 70 eV.
Table 1 The classification of type-I and type-II Dirac/Weyl semimetal

Classification	Type I Lorentz invariant	Type II Breaking Lorentz invariance
Dirac	Protected by crystal symmetry	PtTe₂ (this work)
Weyl	Doubly-degenerate Dirac cone	TaAs family¹⁰,¹¹
	Closed surface from TSS	MoTe₂¹⁴,¹⁵
	Breaking time-reversal or inversion symmetry	
	Non-degenerate Dirac cone	Linear Dirac cone
	Open Fermi arcs from TSS	Isolated Dirac/Weyl points with vanishing DOS at \(E_F \)
		Negative magneto-resistance along all direction
		Strongly tilted Dirac cone

Electronic and transport properties

Classification	Type I Lorentz invariant	Type II Breaking Lorentz invariance
Dirac	Protected by crystal symmetry	PtTe₂ (this work)
Weyl	Doubly-degenerate Dirac cone	TaAs family¹⁰,¹¹
	Closed surface from TSS	MoTe₂¹⁴,¹⁵
	Breaking time-reversal or inversion symmetry	
	Non-degenerate Dirac cone	Linear Dirac cone
	Open Fermi arcs from TSS	Isolated Dirac/Weyl points with vanishing DOS at \(E_F \)
		Negative magneto-resistance along all direction
		Strongly tilted Dirac cone

three dimensional electronic structure shown in Fig. 2g. The evolution of this cone with the out-of-plane momentum \(k_z \) and its topological property are the main focus of this work. The second conical dispersion is located between the \(\Gamma \) and M points (labeled as \(\Gamma' \)), and it is gapped at the Dirac point slightly below \(E_F \) (pointed by white arrow). Calculated dispersions (Fig. 2c) show that this cone has bulk properties, and there are sharp surface states connecting the gapped Dirac cone here. The third conical dispersion is at much deeper energy between \(-2.0 \) and \(-2.6 \) eV (pointed by gray arrow in Figs. 2a, b). This cone corresponds to sharp surface states in the calculated dispersions (Fig. 2c), and it connects the gapped bulk bands, similar to the \(Z_2 \) topological surface states observed in PdTe₂. The comparison between the measured and calculated band structure shows a good agreement with multiple conical dispersions arising from both the bulk bands and surface states.

To reveal the bulk versus surface properties of these Dirac cones, we show in Fig. 3 ARPES data measured along the \(\Gamma-K \) and \(\Gamma-M \) directions using different photon energies. The corresponding \(k_z \) values are calculated using an inner potential of 13 eV, which is determined by comparing the experimental data with theoretical calculations. Figure 3a–e shows the measured dispersions. The calculated bulk band dispersions at each \(k_z \) value are overplotted on the curvature image in Figs. 3f–j. A good agreement is obtained for the bulk Dirac cone at the \(\Gamma \) point and its evolution with \(k_z \). The Dirac point discussed above is at \(k_z = 0.35 \) (\(\pi/2 \)), which is labeled as D in Fig. 1e. Away from this special point along the \(\Gamma-A \) direction, the valence and conduction bands begin to separate, and the separation becomes larger when \(k_z \) moves further away from 0.35. The strong \(k_z \) dependence confirms its three-dimensional nature. We note that at \(k_z = 0.30 \), some signatures of the dispersion at
$k_z = 0.35c^*$ are also observed (pointed by gray arrow), suggesting that there is significant k_z broadening due to a finite escape depth of photoelectrons. In addition to the bulk bands discussed above, there are surface states between -0.5 to -1 eV at the BZ center (highlighted by yellow dashed line in Figs. 3f–j) and at deeper energy (gray dashed line) that do not change with photon energy.

Figure 3k shows the zoom-in dispersions at the Dirac point. The conical dispersion can be clearly observed by following the energy of photoelectrons. Namely, the measured dispersion is the averaged dispersion over a finite k_z window (from the penetration depth $\lambda \approx 5\,\text{Å}$, k_z broadening is estimated to be $\Delta k_z \approx 1/\lambda \approx 0.2\,\text{Å}^{-1}$, \sim17% of the BZ), and the contribution of dispersion away from the Dirac node could contribute to a gap-like feature, considering the strong k_z dispersion in this material. A more conclusive explanation requires further studies. The type-II characteristic is also reflected in the constant energy contours (Figs. 3n, o). The three dimensional intensity map $E-k_x-k_z$ at $k_y = 0$, blue and red arrows indicate hole and electron pockets. The k_z values are calculated in extended Brillouin Zone.

Theoretical calculation. In order to further reveal the topological nature of surface states and type-II Dirac cone in PtTe$_2$, we present the first-principles calculations of electronic structure and perform symmetry analysis. Figure 4a shows the calculated band structure along both the in-plane S-D-T and out-of-plane A-D-Γ directions through the D point. Due to the band inversion between Γ_4^+ and Γ_4^- at the Γ point, there is a topologically

Fig. 3 Evidence of type-II Dirac fermions in PtTe$_2$. a–e Dispersions along the M-Γ-K direction measured at 17, 19, 21, 22, and 24 eV respectively. The corresponding k_z values in the reduced BZ are labeled in each panel. f–j Comparison of EDC-curvature with calculated dispersions from first-principles calculations (red dashed lines). Surface states are highlighted by yellow and gray dashed line respectively. k In-plane Dirac cone along the M-Γ-K direction measured at 22 eV. l MDCs for the data shown in k. Red and gray markers are guides for the peak positions of inner and outer bands. m Measured dispersion at $k_y = 0$. Red broken lines are calculated dispersions for comparison. n Three-dimensional map $E-k_x-k_z$ at $k_y = 0$, blue and red arrows indicate hole and electron pockets. The k_z values are calculated in extended Brillouin Zone. o Illustration for the evolution of hole pocket (blue) and electron pocket (red) with binding energy.
nontrivial gap between them which gives rise to the surface states connecting the gapped cone structure at the M' point. In addition, there is another band inversion at the A point at ~ 2 eV, which leads to the existence of the deep surface state as mentioned above. We have calculated the Z_2 invariants for bands below these two gaps, confirming the nontrivial topology of them. The bulk Dirac cone is formed by two valence bands with Te-p orbitals (highlighted by red color). These two bands show linear dispersions in the vicinity of D along both the in-plane (S-D-T) and out-of-plane (Γ-A) directions, confirming that it is a three-dimensional Dirac cone. This band crossing is unavoidable, because these two bands belong to different representations (Δ_4 and Δ_5, c) respectively, as determined by the C_3 rotational symmetry about the c axis. The different irreducible representations prohibit hybridization between them, resulting in the symmetry-protected band crossing at $D = (0,0,0.346a_c)$.

As each band is doubly degenerate, the band crossing forms the four-fold degenerate Dirac point. We also calculated the energy contours by tuning the chemical potential to the Dirac point, as shown in Fig. 4b. It is clear that there is a hole pocket in the BZ center (red color), while the much more complicated electron pockets (green color) are composed of a large outer pocket and a small inner one. The hole pocket and the small electron pocket touch each other at two Dirac points as shown in the isoenergy counter in the k_x-k_z plane (Fig. 4d). By tuning the chemical potential above or below E_D (Figs. 4c, e), we find that the hole and electron pockets disconnect, confirming that they only touch at the Dirac point.

Discussion

By combining both ARPES measurements and first-principles calculations, we provide the first direct experimental evidence for the realization of type-II 3D Dirac fermions in single crystal PtTe$_2$. While there are trivial bands at the Dirac nodes of type-II semimetals, their magneto-transport response is different from Dirac fermions. As long as the topologically nontrivial bands cross the Fermi level, they can contribute to distinctive transport behavior even in the presence of trivial bands. Recent transport measurements have revealed a nontrivial Berry phase in a sister compound PdTe$_2$, with the Dirac node also below E_F, and similar transport properties can be expected in PtTe$_2$ if the Fermi level is tuned so that both bands forming the Dirac cone cross the Fermi level. By further tuning the Dirac node to the Fermi energy, more intriguing transport properties (e.g., angle-dependent negative magnetoresistance) can be further revealed. Doping PtTe$_2$ by Ir is one possible solution. IrTe$_2$ has the same crystal structure as PtTe$_2$ at room temperature, yet with the Dirac node above E_F (Supplementary Fig. 2). By substituting Ir for Pt in Pt$_{1-x}$Ir$_x$Te$_2$, it is possible to fine tune the Dirac point to the Fermi energy. Expanding the c axis lattice constant either by tensile strain or appropriate intercalation can also shift the Dirac node toward the Fermi level, and finding a suitable intercalant is critical along this line. Our study paves the way for designing and realizing a number of similar type-II Dirac materials in other chemical groups. The realization of type-II Dirac semimetal provides a new platform for investigating various intriguing properties different from their type-I analogues such as anisotropic magneto-transport properties.

Methods

Sample growth. High quality PtTe$_2$ single crystal was obtained by self-flux methods. High purity Pt granules (99.9%, Alfa Aesar) and Te lump (99.9999%, Alfa Aesar) at a molar ratio of 2:98, were loaded in a silica tube, which is flame-sealed in a vacuum of ~1 Pa. The sample was heated at 700 °C for 48 hours to homogenize the starting materials. The reaction was then slowly cooled to 480 °C at 5 °C h$^{-1}$ to crystallize PtTe$_2$ in Te flux. The excess Te was centrifuged isothermally after 2 days.

ARPES measurement. ARPES measurements were taken at BL13U of Hefei National Synchrotron Radiation Laboratory, BL9A of Hiroshima Synchrotron...
Radiation Center under the proposal No.15-A-26 and our home laboratory. The crystals were cleaved in situ and measured at a temperature of $T \approx 20$ K in vacuum with a base pressure better than 1×10^{-5} torr.

Theoretical calculation. All first-principles calculations are carried out within the framework of density-functional theory using the Perdew-Burke-Ernzerhof-type\(^1\) generalized gradient approximation for the exchange-correlation potential, which is implemented in the Vienna ab initio simulation package\(^2\). A $8 \times 8 \times 6$ grid of k points and a default plane-wave energy cutoff (230 eV in this case) are adopted for the self-consistent field calculations. We use the Methfessel-Paxton-type smearing method with a width of 0.2 eV. Spin-orbit coupling is taken into account in our calculations. We calculate the surface spectral function and Fermi surface using the surface Green's function method\(^3\) based on maximally localized Wannier functions\(^4\) from first-principles calculations of bulk materials.

Data availability. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Received: 21 January 2017 Accepted: 19 June 2017

Published online: 15 August 2017

References

1. Young, S. M. et al. Dirac semimetal in three dimensions. *Phys. Rev. Lett.* **108**, 140405 (2012).
2. Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. *Nat. Commun.* **5**, 4898 (2014).
3. Wang, Z. et al. Dirac semimetal and topological phase transitions in A$_2$Bi (A=Na, K, Rb). *Phys. Rev. B* **85**, 195320 (2012).
4. Morimoto, T. & Furusaki, A. Weyl and Dirac semimetals with Z_2 topological charge. *Phys. Rev. B* **89**, 235127 (2014).
5. Wang, Z. et al. Dirac semimetal and topological phase transitions in A$_2$Bi (A=Na, K, Rb). *Phys. Rev. B* **85**, 195320 (2012).
6. Neupane, M. et al. Observation of a three-dimensional topological Dirac fermions in the PtSe$_2$ class of transition metal dichalcogenides. *Phys. Rev. B* **94**, 121117 (2016).
7. Glazma, A., Choi, K.-Y., Lemmens, P., Yang, J. I. & Cheong, S.-W. Proximity to a commensurate charge modulation in IrTe_2, Se_2, ($x=0$ and 0.45) revealed by Raman spectroscopy. *Rev. Mod. Phys.* **86**, 013001 (2014).
8. Liu, Y. et al. Identification of topological surface state in PtSe$_2$ superconductor by angle-resolved photoemission spectroscopy. *Chin. Phys. Lett.* **32**, 067303 (2015).
9. Zhou, S., Gweon, G.-H. & Lanzara, A. Low energy excitations in graphite: the role of dimensionality and lattice defects. *Ann. Phys.* **321**, 1730–1748 (2006).
10. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arc surface states in the electronic structure of pyrochlore iridates. *Phys. Rev. B* **83**, 205101 (2011).
11. Lu, X.-F. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in (La$_{0.66}$Sr$_{0.34}$)$_2$IrO$_4$ from angle-resolved photoemission spectra. *Phys. Rev. B* **74**, 115114 (2006).
12. Liu, Y. et al. Identification of topological surface state in PtSe$_2$ superconductor by angle-resolved photoemission spectroscopy. *Chin. Phys. Lett.* **32**, 067303 (2015).
13. Wang, Z. et al. Dirac semimetal and topological phase transitions in A$_2$Bi (A=Na, K, Rb). *Phys. Rev. B* **85**, 195320 (2012).
14. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na$_2$Bi. *Science* **343**, 864–867 (2014).
15. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd$_3$As$_2$. *Nat. Commun.* **5**, 3786 (2014).
16. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arc. *Science* **343**, 613–617 (2015).
17. Liu, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. *Phys. Rev. X* **5**, 031013 (2015).
18. Xu, S.-Y. et al. Observation of fermi arc surface states in a topological metal. *Science* **347**, 294–298 (2015).
19. Liu, Z.-K. et al. A stable three-dimensional topological Dirac semimetal Cd$_3$As$_2$. *Nature Mater.* **13**, 677–681 (2014).
20. Dixit, D. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe$_2$. *Phys. Rev. B* **92**, 041201 (2015).
21. Huang, L. et al. Evidence for a type II Weyl semimetallic state in MoTe$_2$. *Nature Mater.* **15**, 1155–1160 (2016).
22. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na$_3$Bi. *Science* **350**, 413–416 (2015).
23. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd$_3$As$_2$. *Nat. Mater.* **14**, 280–284 (2015).
24. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. *Phys. Rev. X* **5**, 031023 (2015).
25. Zvyuzin, A. A. & Tiwari, R. P. Intrinsically anomalous Hall effect in type-II Weyl semimetals. *Jett. Lett.* **103**, 717–722 (2016).
26. Chang, T.-R. et al. Prediction of an arc-tunable Weyl Fermion metallic state in Mo,W$_1$Te$_2$. *Nat. Commun.* **7**, 10639 (2016).
27. Liang, A. et al. Electronic Evidence for Type II Weyl Semimetal State in MoTe$_2$. Preprint at http://arxiv.org/abs/1604.01706 (2016).
28. Jiang, J. et al. Observation of the Type-II Weyl semimetal phase in MoTe$_2$. *Nat. Commun.* **8**, 13973 (2017).
29. Xu, N. et al. Discovery of Weyl semimetal state violating Lorentz invariance in MoTe$_2$. Preprint at http://arxiv.org/abs/1604.02116 (2016).
30. Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe$_2$. *Phys. Rev. X* **6**, 031021 (2016).
31. Wang, Y. et al. Monolayer PtSe$_2$, a new semiconducting transition-metal dichalcogenide, epitaxially grown by direct selenization of Pt. *Nano Lett.* **15**, 4013–4018 (2015).
32. Zhao, S. et al. Observation of a three-dimensional topological Dirac fermions in the PtSe$_2$ class of transition metal dichalcogenides. *Phys. Rev. B* **94**, 121117 (2016).
33. Zyuzin, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions from first-principles calculations of bulk materials.