Tooth Loss and its Association with the Number of Children and Interpregnancy Interval: A Cross-Sectional Study Among Yemeni Women

Anas Shamala¹, Ebtesam Al-Maimooni¹, Salsbeel Al-Matari¹, Ryhana Hiyat², Mohammed Ali Al-wesabi¹, Sadeq Al-Maweri³, Mohammad Zakaria Nassani⁴, Esam Halboub⁵,⁶

¹Department of Preventive and Biomedical Science, College of Dentistry, University of Science & Technology, Sanaa, Yemen; ²Postgraduate Program, School of Dental Science, Universiti Sains Malaysia; ³Sadeq Al-Maweri : College of Dental Medicine, QU Health, Qatari University, Doha, Qatar; ⁴Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia; ⁵Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Saudi Arabia; ⁶Department of Oral Medicine, Oral Pathology and Oral Radiology, Faculty of Dentistry, Sana'a University, Yemen.

ABSTRACT

Introduction: Physiological pregnancy changes can negatively impact the oral health of pregnant women.

Objectives: The present study sought to assess tooth loss among a sample of Yemeni women in association with the number of children and interpregnancy interval.

Subjects and Methods: This cross-sectional study was conducted on 644 Yemeni women. The subjects were interviewed to collect relevant socio-demographic factors, including age, education, and number of children. Oral hygiene practices as well as oral habits (such as qat chewing and smoking) were also recorded. Number of missing teeth was ascertained through clinical examination.

Results: A round 644 women aged between 16 and 51 years participated in the study. Overall, the participants revealed poor oral hygiene practices, with only one-fifth of the sample reported brushing their teeth regularly (i.e., at least once a day), and around 36.8% reported using dental aids occasionally. Some 52% and 21% of the sample were qat chewers and smokers, respectively. The mean number of tooth loss and the number of children were 4.7 and 4.15, respectively; approximately 54% of the participating women had more than 3 children. The logistic regression revealed a significant association between the number of children and tooth loss.

Conclusion: Yemeni women showed unsatisfactory oral hygiene practices and a high prevalence of tooth loss which increased proportionally with the number of children and interpregnancy interval. This emphasizes the importance of effective oral hygiene motivation and health education among females during pregnancy periods.

Key Words: Giving birth pregnant, Interpregnancy interval, Oral hygiene, Tooth loss, Qat chewing, Yemen

INTRODUCTION

Dental diseases are amongst the most prevalent health issues worldwide. In particular, the tooth loss is a significant health burden that gravely impacts the patients’ quality of life. Tooth loss is considered a marker of both periodontal disease and dental caries, though teeth can be lost due to other reasons such as trauma. The former, periodontal disease, is a very common chronic condition affecting a considerable proportion of the adult population worldwide. It is characterized by progressive inflammatory destruction of tooth-supporting structures in response to dental biofilm. If untreated, periodontal disease may progress, destroying soft and hard tissues surrounding the tooth, causing attachment loss, tooth mobility and eventually tooth loss and edentulism. The current evidence suggests that periodontal disease/tooth loss is a risk factor for several systemic diseases such as rheumatoid arthritis, atherosclerosis, respiratory diseases and non-alcoholic fatty liver disease. It is recognized that dental plaque (biofilm) is the main causative agent for periodontal diseases.
However, a plethora of factors including poor oral hygiene, tobacco use, alcohol consumption, advanced age, low socioeconomic status, stress, and systemic conditions such as diabetes mellitus, obesity, and osteoporosis, and pregnancy have been reported to increase the risk and severity of periodontitis.13-18

Pregnancy, a physiological phenomenon, has been reported as a risk factor for oral diseases including periodontitis.19-22 It is associated with several hormonal changes that alter the gingival response to dental plaque, thus increasing its susceptibility to gingival inflammation and periodontal diseases.20,22,23 Several studies have reported greater gingival inflammation during pregnancy,19,21,22 and other studies reported a positive association between number of giving births and tooth loss.24-26

In Yemen, the prevalence of dental diseases such as periodontitis, dental caries and tooth loss is amongst the highest in the world.16,27,28 This might be ascribed to the poor socioeconomic status, high prevalence of tobacco use and chewing habits, and limited human resources.16,29-31 By and large, studies on oral health in Yemen -especially among women- are very limited, and most of these studies were conducted among males, mainly in relation to local oral habits, namely smokeless tobacco and qat chewing.16,27,28,31,32 However, no attempt has been made to assess the relationship between frequency of pregnancy and oral health outcomes among Yemeni women. Availability of such information is very important for planning public health prevention and promotion programs. Hence, the present study sought to: 1) assess oral health status (using tooth loss as a proxy indicator) of Yemeni women, and 2) determine the prevalence and relationship between tooth loss and number of children and interpregnancy interval among Yemeni women who attended the dental clinics, College of Dentistry, UST, Sana’a, Yemen.

Subjects and Methods:

This study was of an observational cross-sectional design. The study protocol was reviewed and approved by the research ethical committee at the University of Science and Technology (UST), Sanaa, Yemen (No: EAC/UST179). The target population was women who attended the dental clinics, College of Dentistry, UST, Sana’a, (private university) Yemen. The study was conducted during the 2018-2019 academic year: from November 2018 to April 2019. The sample size was calculated using version 3.01 of OpenEpi software for epidemiologic statistics (Bill and Melinda Gates Foundation, Emory University, Atlanta, Georgia, USA); the required sample size for 95% confidence level and power of 80%, was 424 subjects minimally.

Women were included if they aged above 16 years and had a previous history of pregnancy. Women who were medically compromised or were out of the said age range were excluded.

The participants were informed about the study aims and procedures and asked to provide their consent-to-participate anonymously. The participant’s sheet comprised questions related to age, education, qat chewing, smoking, oral hygiene practices, oral hygiene aids, previously periodontal treatments and dental and medical history. The sheet included also items about frequency of pregnancy along with the number of children as to take account for the chance of premature birth and Interpregnancy interval period.

The study was based on the following criteria: Frequency of pregnancy: The number of women who became pregnant throughout their life, regardless of the outcome. Also excluding premature births, we add the number of children as an independent variable as dichotomous <= 3 children /> 3 children. Interpregnancy interval period defined as the length of time between the events of a multiple pregnancy as <= 4 years /> 4 years. The number of missing teeth was presented as a mean and standard deviation, for statistical issues, its then categorized into three categories (<= or 5, 6-10, and >10 teeth). For the purpose of performing binary logistic regression analysis the “missing teeth” was further transformed to a dichotomous variable (“Three or less missed teeth” and “More than three teeth missed”). Third molars or teeth missing congenitally or due to previous orthodontic or traumatic treatment. The number of missing teeth evaluated by two well-trained dentists using a sterile dental examination kit under artificial light of the dental chair. Intra- and inter-examiner agreements were conducted on fifty cases in two different occasions with a week interval. Kappa statistic revealed a perfect intra-examiner agreement (1) and a high level of inter-examiner reliability (0.9).

The analysis of the collected data was carried out using the SPSS statistical package (IBM SPSS Statistics for Windows, Version 20.0, Released 2011, IBM Corp, Armonk, New York, USA). The demographics and other characteristics of study population were presented as frequency with proportion and mean with standard deviation, as appropriate. The bivariate analyses were done using independent t-test or ANOVA to identify any potential differences in the mean number of missing teeth between two or more different subgroups, respectively. Spearman’s correlation analysis was applied in order to identify any correlations between number of “missing teeth” and the number of children and interpregnancy interval. The outcome variable was “number of missing teeth”, and level of education, oral health practices including frequency of tooth brushing and using oral hygiene aids, gum bleeding, periodontal treatment, number of children, interval between pregnancy were considered as independent variables (determinants) and it added to the model using “enter” method. Odd ratios (ORs) and their 95% confidence intervals (CIs) were calculated, and the significance level was set at P< 0.05.
RESULTS

In total, 644 women (age range: 16-51 years) participated in the present study; most of the participants aged between 30-40 years (288, 44.7%), 28.9% were older than 40 years, and 26.4% were less than 30 years old. Around 46.2% were illiterate, 40.7% got high school education, and only 13.2% got University education. Only one fifth of the sample reported brushing their teeth regularly (i.e., at least once a day), and around 36.8% reported occasionally using one type of oral hygiene aids. Additionally, 52% and 21% of the sample were qat chewers and smokers, respectively. The mean number of children was 4.15, with 53.6% of the participating women having more than 3 children. Among the 556 (86.3%) of sample, the Interpregnancy interval was ≤ 4 years (Table 1).

The mean number of missing teeth among the sample was 4.7. As presented in table 2 and 3, the bivariate analysis results showed a statistically significant association between mean number of missing teeth and age, level of education, frequency of tooth brushing, oral hygiene aids type, bleeding on brushing, number of children and interval between pregnancy.

Table 4 illustrates the results of the logistic regression analysis which reveal the determinant factors for the number of missing teeth. The results showed that the number of children and age of participating women were the only independent determinants for number of missing teeth (P < 0.01).

DISCUSSION

To the best of our knowledge, this is the first study that evaluated the oral health status and its relationship with the number of children and interpregnancy interval and other independent variables among a sample of Yemeni women. We considered tooth loss as a proxy indicator of oral health (dependent variable). In fact, tooth loss is an ultimate marker of dental and periodontal diseases, though teeth can be lost due to other reasons such as trauma. Overall, the results showed a significant association between the number of children and number of tooth loss after controlling the other potential confounders. Additionally, the results revealed poor oral hygiene practices (only one fifth reported brushing their teeth regularly) as well as a high prevalence of oral habits namely qat chewing (52%) and smoking (23%), among Yemeni women.

The main result of the present study is a positive association between the number of children and tooth loss, a finding which is consistent with the results of many previous studies from other countries that reported a significant association between number of children and periodontal disease/tooth loss. The positive association between these two phenomena could be explained by many biological mechanisms. The first plausible explanation is the increase of progesterone and estrogen hormones during pregnancy which lead to vascular permeability and minimal host modulation and thus increasing susceptibility to dental and periodontal infections. In addition, the limited access to dental health care owing to socioeconomic factors, especially in developing countries, could affect the oral health status; the effect of this factor magnifies with repeated pregnancy and giving births.

Another important result of the present study is the lack of any correlation between the number of missing teeth tobacco and chewing habits. Qat chewing (also known as khat), a highly prevalent social habit in Yemen and some East African countries, is associated with several oral health disorders including oral keratotic lesions, periodontitis, teeth attrition, and temporomandibular joint disorders. The results of our study contradict most of the published literature conducted on adult Yemeni males which implicated qat chewing as a risk factor for periodontal signs/diseases including gingivitis, attachment loss, deep pockets and tooth loss. With regard to smoking, the present study did not find a significant association with tooth loss, and this is consistent with a recent study conducted in Yemen, but contradicts other studies elsewhere that reported smoking as a significant risk factor for periodontal diseases and tooth loss. Such unexpected findings can be ascribed to the fact that the relationship between periodontal diseases and both qat chewing and smoking is dose-dependent response; that said, the relationship depends on many factors such as the duration of the habit practice (in years), duration per day (for qat chewing), and frequency of chewing/smoking.

Unfortunately, no detailed information was obtained about the intensity/duration of these habits although 53% and 23% reported qat chewing and smoking, respectively. Another possible explanation is the negative response given by Yemeni women regarding practicing these habits due to the delicacy of this subject for cultural reasons. Thus, the real prevalence of these habits might have been underestimated.

Apart from the negative results of the present study, the deleterious effects of smoking and qat chewing on oral and systemic health have been well documented. Hence, dental practitioners can play a pivotal role in reducing the deleterious effects of these habits. They have a commitment of educating their patients about the harmful consequences of such habits and providing them tobacco/qat cessation advice to help them quit the habits.

The current study provides an insight on oral health status (using tooth loss as indicator) among a sample of Yemeni women and supports the association between the number of children and tooth loss. In line with the previous literature, the results of the present study found a significant positive
association between tooth loss and advance age. Also they showed a statistically significant association between mean number of missing teeth and frequency of tooth brushing, oral hygiene aids type, and bleeding on brushing. However, the present study has several limitations that should be taken into consideration. These include the following: the nature of study design (being cross-sectional study), the sample was taken from one city and one private university and hence the causality cannot be established; recall bias; and lack of reliable medical and dental records, or more accurate investigative tools to decrease the confounding factors such as systemic diseases.

CONCLUSION

In summary, the current study revealed poor oral hygiene practices and high prevalence of tooth loss among Yemeni women. Of utmost importance, the higher the number of children the Yemeni women have, the higher the number the tooth loss they have. This emphasizes the importance of an effective oral hygiene motivation and health education among Yemeni women at pregnancy periods. Further large-scale studies are also recommended.

ACKNOWLEDGEMENTS

Authors sincerely thank all academic staff & administrators in the college of dentistry at university of science & technology who helped us to conduct this study. The authors are also grateful to authors / editors / publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Source of funding: the authors declare no funding

Conflict of interest: Authors have no conflicts of interest to disclose.

Authors’ Contribution: Anas Shamala and Sadeq Ali Al-Maweri designed The present study and the main conceptual ideas, drafted the manuscript, provided critical feedback, helped shape the research, and supervising the diagnosis process. Ebtesam Al-Maimooni, Salsbeel Al-Matari, and Ryhana Hiyat carried out the investigation and diagnosis process and measurements that were under supervision, provided critical feedback and helped shape the research, and contributed to the final manuscript. Mohammed Al-wesabi and Esam Halboub carried out the program manipulation and measurements and discussed the results and contributed to the final manuscript. Mohammad Zakaria Nassani re-write the manuscript depending on the feedback and preparing it for publication and discussed the results and contributed to the final manuscript.

REFERENCES

1. Righolt A, Jevdjevic M, Marceves W, Listl S. Global-, regional-, and country-level economic impacts of dental diseases in 2015. Journal of Dental Research. 2018;97(5):501-7.
2. Schierz O, Baba K, Fueki K. Functional Oral Health-Related Quality of Life Impact: A Systematic Review in Populations with Tooth Loss. J. Oral Rehabil. 2020.
3. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. The lancet. 2005;366(9499):1809-20.
4. Papapanou PN, Susin C. Periodontitis epidemiology: is periodontitis under-recognized, over-diagnosed, or both? Periodontology 2000. 2017;75(1):45-51.
5. Murakami S, Mealey BL, Mariotti A, Chapple IL. Dental plaque–induced gingival conditions. Journal of clinical periodontology. 2018;45:S17-S27.
6. Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease. Periodontology 2000. 2020;83(1):14-25.
7. Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontology 2000. 2015;69(1):7-17.
8. Beukers NG, van der Heijden GJ, van Wijk AJ, Loos BG. Periodontitis is an independent risk indicator for atherosclerotic cardiovascular diseases among 60 174 participants in a large dental school in the Netherlands. J Epidemiol Community Health. 2017;71(1):37-42.
9. de Oliveira Ferreira R, de Brito Silva R, Magno MB, Carvalho Almeida APCPS, Fagundes NCF, Maia LC, et al. Does periodontitis represent a risk factor for rheumatoid arthritis? A systematic review and meta-analysis. Therapeutic advances in musculoskeletal disease. 2019;11:1759720X19858514.
10. Moghadam SA, Shirazaiy M, Risbaf S. The associations between periodontitis and respiratory disease. J. Nepal Health Res. Counc.. 2017;15(1):1-6.
11. Alakhali MS, Al-Maweri SA, Al-Shamiri HM, Al-haddad K, Halboub E. The potential association between periodontitis and non-alcoholic fatty liver disease: A systematic review. Clinical oral investigations. 2018;22(9):2965-74.
12. Bui FQ, Almeida-da-Silva CLC, Huyhn B, Trinh A, Liu J, Woodward J, et al. Association between periodontal pathogens and systemic disease. biomedical journal. 2019.
13. Moeintaghavi A, Arab HR, Rezaee SAR, Naderi H, Shiezadeh F, Sadeghi S, et al. The effects of smoking on expression of IL-12 and IL-1β in gingival tissues of patients with chronic periodontitis. The open dentistry journal. 2011;5:595.
14. Jaiswal R, Shenoy N, Thomas B. Evaluation of association between psychological stress and serum cortisol levels in patients with chronic periodontitis-Estimation of relationship between psychological stress and periodontal status. J. Indian Soc. Periodontol. 2016;20(4):381.
15. Shamala A, Al-Hajri M, Al-Wesabi A. Risk factors for periodontal diseases among Yemeni type II diabetic patients. A case-control study. Journal of Oral Research. 2017;6(7):176-81.
16. Al-Hajj W, Hwaiti H, Shamala A, Al-Azazi H, Alwesabi M. Association of Khat chewing, smoking, age and sex with periodontal status among Yemeni adults. Brazilian Dental Science. 2020;23(1):8.
17. Kalakonda B, Al-Maweri S-A, Al-Shamiri H-M, Ijaz A, Gamal S, Dhaifullah E. Is Khat (Catha edulis) chewing a risk factor for periodontal diseases? A systematic review. J. clin. exp. dent.. 2017;9(10):e1264.
18. Dhaifullah E, Al-Maweri SA, Koppolu P, Elkhbat E, Mostafa D, Mahgoub M. Body mass index and periodontal health status among young Saudi adults: a cross-sectional study. Annals of Saudi Medicine. 2019;39(6):433-40.
Table 1: Demographics and general characteristics of the study sample

Age	N	%
Less than 30 years	170	26.4%
30-40 years	288	44.7%
More than 40 years	186	28.9%

Level of education	N	%
Illiterate	297	46.2%
High school	262	40.7%
University	85	13.2%

Frequency of tooth brushing	N	%
Never	178	27.8%
1 time per week	294	45.7%
2 or 3 times per week	41	6.4%
At least once daily	130	20.1%
Table 1: (Continued)

Variable	N	%
Oral hygiene aids		
None	407	63.2%
Dental floss	49	7.6%
Interdental brush	115	17.9%
Mouthwash	73	11.3%
Gum bleeding when brushing		
No	72	11.1%
Yes	394	61.2%
Pervious periodontal treatment		
No	422	65.5%
Yes	222	34.5%
Smoking		
No	495	76.9%
Yes	149	23.1%
Qat chewing		
No	309	48.0%
Yes	335	52.0%
Number of children		
<= 3 children	299	46.4%
> 3 children	345	53.6%
Interpregnancy Interval		
<= 4 years	556	86.3%
> 4 years	88	13.7%

Table 2: Bivariate analysis of missing teeth (mean number of missed teeth) by independent factors

Variable	Mean±SD	P-value
Age		
Less than 30 years old	2.74±1.2	0.000*
30- 40 years	3.68±2.7	
More than 40 years	7.80±7.3	
Level of education		
Illiterate	6.55±6.6	0.000*
High school	3.36±2.1	
University	2.89±1.6	
Frequency of tooth brushing		
Never	6.72±7.4	0.000*
1 time per week	4.55±3.4	
2 or 3 times per week	3.24±1.9	
At least once daily	3.04±1.65	
Oral hygiene aids		
None	4.86±5.4	0.001*
Dental floss	2.92±1.4	
Interdental brush	5.14±4.4	
Mouthwash	3.63±2.9	
Gum bleeding when brushing		
No	5.50±6.2	0.000*
Yes	4.06±3.5	
Pervious periodontal treatment		
No	5.01±5.4	0.074
Yes	3.87±3.5	
Smoking		
No	4.82±5.1	0.055
Yes	3.95±3.8	
Table 2: (Continued)

Variable	Missing teeth	P-value				
	F	%	F	%	F	%
Qat chewing						
No	160	32.0%	10	10.4%	0	0.0%
Yes	4.97±5.3	0132				
Number of children						
<= 3 children	3.08±2.7	0.000†				
> 3 children	5.95±5.8					
Interval between pregnancy						
<= 4 years	4.88±5.1	0.000†				
> 4 years	2.95±1.5					

*Kruskal-Wallis test
†Mann Whitney test

Table 3: Bivariate analysis of the association between number of missing teeth and independent factors.

Variable	Missing teeth	P-value				
	F	%	F	%	F	%
	<= or 5		>10			
Less than 30 years old						
Age						
Less than 30 years old						
30- 40 years	243	48.6%	37	38.5%	8	16.7%
More than 40 years	97	19.4%	49	51.0%	40	83.3%
Illiterate	194	38.8%	59	61.4%	44	91.7%
Level of education						
High school	227	45.4%	31	32.3%	4	8.3%
University	79	15.8%	6	6.2%	0	0.0%
Never	115	23.0%	33	34.4%	30	63.8%
Frequency of tooth brushing						
1 time per week	231	46.2%	49	51.0%	14	29.8%
2 or 3 times per week	37	7.4%	2	2.1%	2	4.3%
At least once daily	117	23.4%	12	12.5%	1	2.1%
Oral hygiene aids						
None	333	62.6%	59	61.5%	35	72.9%
Dental floss	46	9.2%	3	3.1%	0	0.0%
Interdental brush	79	15.8%	26	27.1%	10	20.8%
Mouthwash	62	12.4%	8	8.3%	3	6.2%
Gum bleeding when brushing						
No	184	36.8%	37	38.5%	29	60.4%
Yes	316	63.2%	59	61.5%	19	39.6%
Pervious periodontal treatment						
No	314	62.8%	70	72.9%	38	79.2%
Yes	186	37.2%	26	27.1%	10	20.8%
Smoking						
No	375	75.0%	79	82.3%	41	85.4%
Yes	125	25.0%	17	17.7%	7	14.6%
Qat chewing						
No	231	46.2%	52	54.2%	26	54.2%
Yes	269	53.8%	44	45.8%	22	45.8%
Number of children						
<= 3 children	276	55.2%	19	19.8%	4	8.3%
> 3 children	224	44.8%	77	80.2%	44	91.7%
Interval						
<= 4 years	419	81.8%	89	92.7%	48	100.0%
> 4 years	81	16.2%	7	7.3%	0	0.0%

*Kruskal-Wallis test
†Mann Whitney test
Table 4: Binary logistic regression analysis of the predictors of missing teeth.

	B	S.E.	P-value	Odds ratio	95% C.I.for OR	
					Lower	Upper
Education (ref: “Illiterate”)						
High school	-.361-	.207	.081	.697	.464	1.046
University	-.926-	.336	.006	.396	.205	.765
Interdental aids (ref: “None”)						
Dental floss	-.790-	.402	.049	.454	.207	.997
Interdental brush	.314	.245	.200	1.368	.847	2.210
Mouthwash	-.079-	.301	.794	.924	.512	1.668
Gum bleeding (ref: “No”)						
	-.258-	.193	.180	.772	.529	1.127
Periodontal treatment						
	.012	.197	.952	1.012	.688	1.488
Medical history						
	.369	.296	.214	1.446	.809	2.585
Number of children						
	.762	.214	.000	2.143	1.407	3.262
Interval						
	-.313-	.304	.303	.731	.403	1.326
Age (ref: “Less than 30 years old”)						
30-40 years	.549	.254	.030	1.732	1.054	2.847
More than 40 years	1.326	.292	.000	3.766	2.124	6.675
Frequency of tooth brushing (ref: “Never”)						
1 time per week	.012	.265	.963	1.012	.602	1.703
2 or more times per week	.251	.240	.296	1.285	.803	2.057