Variation in Fruit and Seed Traits among Different Seed Sources of *Calophyllum inophyllum* L. Collected from Coastal Regions of Konkan, India

Rahul Sreekumar* and Rajesh P. Gunaga

College of Forestry, ACHF, Navsari Agricultural University, Navsari, Gujarat, India

*Corresponding author

A B S T R A C T

The present study was carried out in the College of Forestry, ACHF, Navsari Agricultural University during 2015 to understand the variation in fruit and seed traits among 15 seed sources of *Calophyllum inophyllum* collected from the coastal regions of Konkan (four locations from Maharashtra and one location from Karnataka). Fruits collected from each accession were evaluated for various fruit and seed traits *viz.* fruit length, fruit width, fruit weight, seed length, seed width, seed weight, seed volume, seed density, shell weight, kernel weight and shell to kernel ratio. It was observed that all the 15 seed sources showed a wide range of variation in fruit length (16.60 to 64.03 mm), fruit width (12.10 to 36.14 mm) and fruit weight (2.40 to 18.66 g) in collected seedlots. Fruits collected from CIMP1, CIMP4, CIMN1, CIMN2 and CIMN3 recorded to be bolder and bigger in size than other seed sources. Significant difference was observed among the seed sources for all seed traits, except seed width. Accession CIMP1 showed highest value for most of the seed traits, followed by CIMD3, CIMP4, CIMN1 and CIMN3 seed sources. Kernel weight ranged from 2.28 to 5.06 g, whereas shell weight varied between 1.13 and 2.88 g with an overall shell to kernel ratio ranging from 0.42 to 0.63. Considering growing condition, seeds collected from Maharashtra sources showed bigger and bolder seeds than Karnataka seed source.

Keywords

Seed Source, *Calophyllum inophyllum*, Seed traits, Variation.

Accepted: 07 October 2017

Available Online: 10 December 2017

Introduction

Morphological variations in fruit/pod and seed characteristics among the natural population are useful in selection programme for genetic improvement of forest species (Bahadur and Hooda, 1995; Kaushik *et al.*, 2007). For screening the naturally available genetic variations to select the best planting material for attaining higher productivity, source variation tests are very much necessary (Bhat and Chauhan, 2002). Such tests can yield valuable information that may be useful for commercial planters, nursery growers, foresters and tree breeders. Fruit and seed variability can be linked to the genetic potential of a genotype (Pavithra *et al.*, 2013). Understanding intra and inter population variation for reproductive traits would be fundamental steps for domestication. Information generated through such studies help in further selection and multiplication of high yielding genotypes. Considering the genetic quality of seeds, the Australian Tree Seed Centre has adopted the slogan- ‘Good seed does not cost – it pays’ (Midgley, 1996) to provide higher productivity, which means that the small investment for obtaining best seed source is meagre that produce better growth of the progeny, which ultimately
achieve the higher yield (Schmidt, 2000). Therefore, it is very important to select superior trees, which are morphologically superior in terms of its commercial characters and free from pest and diseases. Seed collection could be done on such trees for large-scale seedling production. Efforts have already been made in some commercial important species; however, such information is scanty in many forest species and *Calophyllum inophyllum* is one among them, which is an important bio-resource used in biofuel production.

Calophyllum inophyllum L. (Clusiaceae; popularly called Undi), is a littoral tree distributed along the coastal lines of India, except Gujarat. It is considered as a multipurpose tree species due to its various end uses like biofuel, seed oil, small timber, fuel wood, medicinal value and others (Friday and Okano, 2006). The seed (kernel) yields 36 to 80 per cent non-edible oil (Rahul, 2016), and it can be used in the conventional diesel engines (without any alterations) in its pure form or as a blend with mineral oil; moreover, seed oil of Undi fulfils the quality of fossil fuel as per American Standards for Testing and Material (ASTM) - 6751 (Agarwal, 2007; Chavan *et al.*, 2013). Therefore, there is a wide scope for improvement of this species towards biofuel production. With this, an attempt has been made to study the variability in fruit and seed traits among few selected accessions of *C. inophyllum*, an important forest resource of coastal regions in India.

Materials and Methods

The present study was carried out in the laboratory of College of Forestry, Navsari Agricultural University, Navsari during 2015. Fifteen high fruit yielding phenotypes of *C. inophyllum* were selected as seed source in five locations from Konkan region of India, which includes four locations *viz.*, Dapoli, Navare, Purnaghar and Vettye from Maharashtra and one location, *i.e.*, Kumta from Karnataka (Table 1). Matured fruits were collected from these selected 15 trees and were measured for various fruit and seed traits. From each source (N=60), three samples were drawn randomly and from each sample, twenty seeds were selected for measurement of fruit length, fruit thickness, fruit weight, seed length, seed thickness, seed weight, seed volume and seed density.

However, for assessment of shell weight, kernel weight and shell/kernel ratio, 30 seeds were cut and used for measurement. Data was subjected to statistical analysis and ANOVA table was constructed. Values of minimum, maximum, mean, standard deviation, standard error of mean and critical difference at 5% P were given in tabular form and detailed inference is described below.

Results and Discussion

Fruit characteristics

Fifteen seed sources of *C. inophyllum* showed a wide range of variation in fruit length (16.60 to 64.03 mm), fruit width (12.10 to 36.14 mm) and fruit weight (2.40 to 18.66 g) in collected seedlots. Significant difference for these parameters was recorded among studied seed sources (Table 2).

Mean values shows that fruit length varied between 23.31 (CIMV\textsubscript{2}) and 34.50 mm (CIMP\textsubscript{1}) with mean of 28.73 mm. In case of fruit width and fruit weight, the mean values ranged from 21.51 (CIKK\textsubscript{3}) to 31.21 mm (CIMN\textsubscript{1}) and 5.74 (CIMV\textsubscript{2}) to 13.82 g (CIMN\textsubscript{1}), respectively. Accession CIMN\textsubscript{1} showed highest value for both fruit width (36.14 mm) and fruit weight (18.66 g). Fruits collected from CIMP\textsubscript{1}, CIMP\textsubscript{4}, CIMN\textsubscript{1} to N\textsubscript{3} recorded to be bolder and bigger in size than other seed sources.
Seed characteristics

Based on raw data, seed length (14.51 to 34.82 mm), seed width (13.05 to 33.04 mm), seed weight (0.61 to 9.97 g), seed volume (1.38 to 14.34 cm3) and seed density (0.010 to 1.187 g/cm3) showed lot of difference in collected seedlots of C. inophyllum.

Analyzed data showed that there was a significant difference among the 15 seed sources collected across the Konkan region for all seed traits, except seed width. Mean seed length ranged from 22.27 to 30.16 mm, whereas seed weight ranged from 3.57 to 7.02 g and seed volume ranged between 4.61 and 9.76 cm3 with seed density values of 0.723 to 0.928 g/cm3 among studied seed sources (Table 3). Accession CIMP$_1$ showed highest value for most of the seed traits, followed by CIMD$_3$, CIMP$_4$, CIMN$_1$ and CIMN$_3$ seed sources. Considering growing condition, seeds collected from Maharashtra sources showed bigger and bolder seeds than Karnataka seed source.

Seed kernel of C. inophyllum is used for both oil extraction as well as seed germination. In the present study, kernel weight ranged from 2.28 (CIMV$_2$) to 5.06 g (CIMP$_1$) with mean of 3.35 g, whereas shell weight ranged from 1.13 (CIMV$_1$) to 2.88 g (CIMN$_1$; Fig. 1).

The overall shell to kernel ratio varied between 0.42 and 0.63.

Table 1 Details of location including geo-coordinates of selected accessions of Calophyllum inophyllum

Name of the location	State	Latitude (N)	Longitude (E)	Accessions selected
Dapoli	Maharashtra	17° 48’ 12”	73° 06’ 10”	CIMD$_1$, CIMD$_2$, CIMD$_3$
Navare	Maharashtra	17° 06’ 43”	73° 16’ 29”	CIMN$_1$, CIMN$_2$, CIMN$_3$, CIMN$_4$
Purnagharh	Maharashtra	16° 48’ 19”	73° 19’ 08”	CIMP$_1$, CIMP$_2$, CIMP$_3$, CIMP$_4$
Vettye	Maharashtra	16° 41’ 17”	73° 19’ 52”	CIMV$_1$, CIMV$_2$
Kumta	Karnataka	14° 25’ 39”	74° 23’ 10”	CIKK$_1$, CIKK$_2$, CIKK$_3$
Table.2 Variation in fruit traits among 15 different accessions of *Calophyllum inophyllum*

Accession No.	Fruit length (mm)	Fruit width (mm)	Fruit weight (gm)									
	Min	Max	Mean	SD	Min	Max	Mean	SD	Min	Max	Mean	SD
CIMV₁	16.60	31.58	24.42	2.59	17.83	30.69	23.80	2.28	2.40	12.66	6.69	2.03
CIMV₂	18.95	26.16	23.31	1.47	18.38	25.45	22.88	1.39	3.27	7.54	5.74	0.88
CIMD₁	23.30	33.35	27.65	2.62	21.11	28.02	24.61	1.93	3.98	12.02	8.03	1.70
CIMD₂	25.32	33.12	29.28	2.10	20.73	29.95	25.77	1.87	5.81	12.73	8.78	1.61
CIMD₃	25.80	37.41	31.22	2.48	22.56	31.39	25.88	1.94	6.36	14.18	9.36	1.80
CIMP₁	23.31	40.00	34.50	3.05	21.27	33.90	30.16	2.72	5.24	18.50	13.18	2.81
CIMP₂	19.45	41.67	29.51	4.04	18.24	31.66	25.77	3.06	3.03	17.29	9.82	3.22
CIMP₃	24.18	33.82	28.63	2.27	20.39	29.11	24.79	2.08	4.82	11.50	7.77	1.62
CIMP₄	26.13	64.03	31.27	5.29	23.01	31.43	26.41	1.88	5.97	15.18	9.48	2.00
CIMN₁	28.36	38.84	33.83	2.18	27.61	36.14	31.21	1.76	9.49	18.66	13.82	2.05
CIMN₂	17.81	36.73	30.26	4.10	17.66	31.94	27.19	3.16	2.49	14.37	10.04	2.82
CIMN₃	22.51	42.46	31.90	3.74	22.05	32.12	28.05	2.52	5.22	17.55	11.83	2.79
CIKK₁	18.01	37.25	24.76	3.39	17.23	28.39	21.59	2.45	2.91	12.55	6.17	2.03
CIKK₂	19.43	30.45	26.12	2.73	16.03	26.53	22.04	2.16	2.67	8.92	5.86	1.79
CIKK₃	17.39	30.78	24.35	2.66	12.10	26.32	21.51	2.69	3.82	11.47	8.49	1.94
Mean	-	-	28.73	2.98	-	-	25.44	2.26	-	-	9.00	2.07
SEm (±)	-	-	0.65	-	-	-	0.51	-	-	-	0.73	-
CD @ 5% P	-	-	1.87	-	-	-	1.47	-	-	-	2.10	-
Table 3 Variation in seed traits among 15 different accessions of Calophyllum inophyllum

Accession No.	Seed length (mm)	Seed width (mm)	Seed weight (g)	Seed volume (cm³)	Seed density (g/cc)																		
	Min	Max	Mean	SD	Min	Max	Mean	SD		Min	Max	Mean	SD	Min	Max	Mean	SD		Min	Max	Mean	SD	
CIMV₁	14.70	28.88	22.32	2.52	13.62	24.91	20.04	2.04	0.85	6.91	3.59	1.20	1.38	9.23	4.61	1.48	0.243	0.900	0.782	0.125			
CIMV₂	18.12	25.11	22.27	1.40	16.41	22.64	20.44	1.21	1.70	4.87	3.57	0.65	2.39	6.38	4.66	0.80	0.288	0.869	0.771	0.095			
CIMD₁	20.59	29.81	25.06	2.04	17.91	25.35	21.72	1.63	1.16	6.81	4.54	1.08	3.30	9.33	5.98	1.33	0.272	0.873	0.764	0.106			
CIMD₂	21.23	30.75	25.65	1.91	17.70	27.27	22.00	1.76	3.01	7.65	4.82	1.00	3.47	9.31	6.34	1.33	0.618	1.023	0.763	0.064			
CIMD₃	23.82	33.08	28.00	2.16	19.94	27.66	23.43	1.77	3.37	8.37	5.78	1.12	4.46	12.08	7.51	1.63	0.632	0.890	0.774	0.052			
CIMP₁	20.68	34.82	30.16	2.66	18.06	29.36	25.42	2.13	2.15	9.96	7.02	1.84	3.21	14.34	9.76	2.23	0.226	0.905	0.723	0.108			
CIMP₂	17.33	31.63	25.26	3.08	13.86	25.86	21.20	2.96	0.64	8.13	4.57	1.76	1.58	10.07	5.83	2.20	0.328	0.994	0.782	0.150			
CIMP₃	20.10	30.32	24.95	2.19	17.82	25.58	21.33	1.88	2.40	7.32	4.22	1.00	3.25	9.57	5.73	1.45	0.487	0.847	0.742	0.059			
CIMP₄	22.89	31.56	26.78	2.21	19.71	33.04	22.71	2.26	2.33	7.99	5.25	1.19	4.23	10.56	6.78	1.60	0.010	0.957	0.761	0.134			
CIMN₁	22.89	31.56	26.78	2.21	19.71	33.04	22.71	2.26	2.33	7.99	5.25	1.19	4.23	10.56	6.78	1.60	0.010	0.957	0.761	0.134			
CIMN₂	14.51	30.01	25.56	3.49	13.60	25.01	21.86	2.71	0.61	6.91	4.71	1.49	1.39	9.42	6.25	1.95	0.420	0.920	0.760	0.075			
CIMN₃	18.89	31.83	26.67	2.88	16.66	26.00	22.65	2.09	2.24	7.51	5.41	1.17	2.56	10.30	6.89	1.74	0.695	0.937	0.795	0.052			
CIKK₁	17.07	34.20	24.75	3.22	14.92	27.14	20.97	2.43	2.12	9.97	5.08	1.61	2.09	11.42	5.62	1.96	0.753	1.032	0.913	0.055			
CIKK₂	18.40	28.80	24.55	2.53	13.05	24.53	20.11	2.02	1.73	7.29	4.07	1.13	2.17	8.11	5.03	1.37	0.440	1.039	0.817	0.102			
CIKK₃	19.14	31.58	24.62	2.43	15.16	25.48	20.96	1.98	1.92	7.40	5.27	1.17	2.41	9.79	5.75	1.46	0.606	1.187	0.928	0.110			
Mean	-	-	25.56	2.46	-	21.84	2.08	-	-	4.88	1.24	-	6.23	1.61	-	-	0.789	0.095					
SEM (±)	-	-	0.77	-	-	1.70	-	-	-	0.34	-	-	0.46	-	-	-	0.01	-					
CD @ 5% P	-	-	2.22	-	-	NS	-	-	-	0.98	-	-	1.32	-	-	-	0.03	-					
Fig. 1 Variation in shell weight, kernel weight and shell to kernel ratio among 15 different accessions of *Calophyllum inophyllum*.
Such kind of seed source variation was also recorded by Shinde et al., (2012) using 21 genotypes of Maharashtra and Palanikumaran et al., (2015) using 30 provenances of C. inophyllum in Southern India.

It is concluded that seeds collected from 15 different seed sources of C. inophyllum in coastal lines of Konkan regions showed greater variation in most of the fruit and seed traits. Seed sources such as CIMD$_3$, CIMP$_1$, CIMP$_4$, CIMN$_1$, CIMN$_2$ and CIMN$_3$ resulted in bigger sized seeds than nine other sources. Therefore, these sources may be used for improvement programme as well as to raise quality seedlings in large quantity.

Acknowledgements

Authors are thankful to Revenue Department and Forest Department of Maharashtra and Karnataka for giving permission to collect seed materials for conducting experiments. Navsari Agricultural University, Navsari is acknowledged for support and permission to carry out this experiment in the campus. Authors are also thankful to Mr. Prashant Kamble, M.Sc. Scholar of Dr. B.S. K. K. V., Dapoli for his support in field studies especially in locating the natural populations of C. inophyllum in Maharashtra region.

References

Agarwal, A.K. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Sciences, 33(3): 233-271.

Bahadur, R. and Hooda, M.S. 1995. Genetic variability and correlation studies for some pod and seed traits in Khejri (Prosopis cineraria (L.) Druce). Indian Journal of Forest, 18(2): 161-164.

Bhat, G.S. and Chauhan, P.S. 2002. Provenance variation in seed and seedling traits of Albizia lebbeck Benth. Journal of Tree Sciences, 21: 52-57.

Chavan, S.B., Kumbhar, R.R. and Deshmukh, R.B. 2013. Calophyllum inophyllum Linn. (“honne”) oil: A source for biodiesel production. Research Journal of Chemical Sciences, 3(11): 24-31.

Friday, J.B. and Okano, D. 2006. Calophyllum inophyllum (kamani) species profiles for Pacific Island agroforestry. Traditional Tree Initiative, Hawaii, (cited from http://traditionaltree.org).

Gunaga, R.P. 2011. Influence of seed size on seed germination and seedling vigour in Calophyllum inophyllum: an important multipurpose tree of coastal region. Journal of Indian Society of Coastal Agricultural Research, 29(2): 35-38.

Hathurusingha, S., Nanjappa, A., Wijesekara, K. and Midmore, D. 2011. Reproductive phenology of Calophyllum inophyllum in Yeppon, Australia and Meegoda Western Province, Sri Lanka. Journal of Forestry Research, 22(4): 615-619.

Kaushik, N., Kumar S., Kumar, K., Beniwal, R.S. and Roy, S. 2007. Genetic variability and association studies in pod and seed traits of Pongamia pinnata (L.) Pierre in Haryana, India. Genetic Resource Crop Evolution, 54: 1827-1832.

Midgley, S. 1996. Seed collection strategies in a changing world. In: IUFRO: Innovations in tropical tree seed technology. Proceedings of the IUFRO Symposium of the Project Group P.2.04.00, ‘Seed Problems’. Arusha, Tanzania. 1995.

Palanikumaran, B., Parthiban, K.T., Sekar, I., Umarani, R. and Amirtham, D. 2015. Variability studies for seed and seedling traits in Undi (Calophyllum Inophyllum L.) from different zones of south India.
Pavithra, H.R., Gowda, B., Prasanna, K.T., Shivanna, M.B. 2013. Pod and seed traits in Candidate Plus Trees of *Pongamia pinnata* (L.) Pierre from Southern Peninsular India in relation to provenance variation and genetic variability. Journal of Crop Science and Biotecnology, 16(2): 131-142.

Rahul, S. 2016. Provenance variation for seed traits, germination, seedling vigour and oil content in *Calophyllum inophyllum* Linn. M.Sc. Forestry thesis, Navsari Agricultural University, Navsari, India. Pp. 78+xi.

Schmidt, L. 2000. Guide to Handling of Tropical and Subtropical Forest Seed. Pp. 6-7.

Shinde, P.P., Rane, A.D., Bhave, S.G., Gunaga, R.P. and Narkhede, S.S. 2012. Variability and genotype selection in *Calophyllum inophyllum* for quality fruit yield in the central west coast of India. Journal of Tree Sciences, 31(1&2): 8-14.

How to cite this article:

Rahul Sreekumar and Rajesh P. Gunaga. 2017. Variation in Fruit and Seed Traits among Different Seed Sources of *Calophyllum inophyllum* L. Collected from Coastal Regions of Konkan, India. *Int.J.Curr.Microbiol.App.Sci.* 6(12): 441-448.

doi: https://doi.org/10.20546/ijcmas.2017.612.054